A FEASIBILITY STUDY OF
RENOVATION OF SEWAGE LAGOON
EFFLUENT BY RAPID INFILTRATION

VILLAGE OF MARKDALE

September, 1980



JUL 3 0 1981

MINISTRY OF THE ENVIRONMENT

ARORATORY & RESEARCH LIBERRY MINISTRY OF THE ENVIRONMENT Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at <a href="mailto:copyright@ontario.ca">copyright@ontario.ca</a>

#### THE ONTARIO MINISTRY OF THE ENVIRONMENT

A FEASIBILITY STUDY OF
RENOVATION OF SEWAGE LAGOON
EFFLUENT BY RAPID INFILTRATION
VILLAGE OF MARKDALE

by
B. Novakovic

Southwestern Region
Technical Support Section
Water Resources Assessment Unit
London
September, 1980

LIBRARY COPY

JUL 3 0 1981

MINISTRY OF THE ENVIRONMENT

We know accurately only when we know little, with knowledge doubt increases.

Johann Wolfgang von Goethe (1749-1832)

## TABLE OF CONTENTS

|                                       | Page |
|---------------------------------------|------|
| LIST OF FIGURES                       | ix   |
| LIST OF TABLES                        | хi   |
| LIST OF PHOTOGRAPHS                   | xii  |
| SUMMARY                               | xv   |
| INTRODUCTION                          | 1    |
| Objectives of the Study               | 1    |
| Background                            | 1    |
| Location                              | 5    |
| Topography                            | 5    |
| Drainage                              | 7    |
| Previous Investigations               | 9    |
| Field Work                            | 9    |
| Field Installations                   | 10   |
| GEOLOGY AND HYDROGEOLOGY              | 15   |
| Bedrock Geology                       | 15   |
| Surficial Deposits                    | 15   |
| Hydrogeology and Groundwater Movement | 18   |

## TABLE OF CONTENTS (Cont'd)

|                                                                          | Page     |
|--------------------------------------------------------------------------|----------|
| Bedrock Aquifer System Sand and Gravel Aquifer                           | 18<br>18 |
| Permeability of Surficial Deposits                                       | 19       |
| Water Use in the Area                                                    | 23       |
| INFILTRATION STUDIES                                                     | 25       |
| Procedure                                                                | 25       |
| Infiltration Rates                                                       | 28       |
| Hydraulic Response of the Shallow Water<br>Table Aquifer to the Recharge | 31       |
| Underground Detention Times                                              | 36       |
| Basin Clogging                                                           | 40       |
| WATER QUALITY STUDIES                                                    | 45       |
| General .                                                                | 45       |
| Procedure                                                                | 45       |
| Quality of the Lagoon Effluent                                           | 47       |
| Groundwater Quality                                                      | 49       |
| Basic Considerations Nitrogen Cycle                                      | 49<br>51 |

## TABLE OF CONTENTS (Cont'd)

|                                            | Page |
|--------------------------------------------|------|
| Phosphorous                                | 54   |
| Carbons                                    | 56   |
| Phenolic Compounds                         | 57   |
| Biochemical and Chemical Oxygen Demand     | 57   |
| Total Dissolved Solids and Major Ions      | 58   |
| рн                                         | 59   |
| Anionic Detergents                         | 60   |
| Heavy Metals                               | 60   |
| Bacteriological Quality                    | 61   |
| Surface Water Quality                      | 63   |
| Chemical Quality                           | 63   |
| Heavy Metals                               | 64   |
| Bacteriological Quality                    | 65   |
| DISCUSSION                                 | 66   |
| Significance of the Recharge Mechanism and |      |
| Groundwater Flow Systems                   | 66   |
| Potential Hydraulic Loading                | 68   |
| General Design Aspects                     | 69   |
| Some Aspects of Recharge Basin Management  | 70   |
| Winter Operating Constraints               | 74   |
| CONCLUSIONS                                | 76   |
| RECOMMENDATIONS                            | 78   |

## TABLE OF CONTENTS (Cont'd)

|                |                                                                  | Page |
|----------------|------------------------------------------------------------------|------|
| ACKNOWLEDGEMEN | ITS                                                              | 80   |
| REFERENCES     |                                                                  | 81   |
| APPENDIX A:    | Summary of lithological logs for observation wells and test pits | 83   |
| APPENDIX B:    | Grain size analyses of surficial deposits                        | 89   |
| APPENDIX C:    | Results of geophysical survey                                    | 93   |
| APPENDIX D:    | Summary of water well records                                    | 97   |
| APPENDIX E:    | Summary of chemical analyses of groundwater                      | 101  |
| APPENDIX F:    | Summary of chemical analyses of surface water                    | 147  |
| APPENDIX G:    | Summary of chemical analyses of sewage lagoon effluent           | 157  |
| APPENDIX H:    | Summary of bacteriological analyses of groundwater               | 161  |
| APPENDIX I:    | Summary of bacteriological analyses of surface water             | 173  |
| APPENDIX J:    | Summary of bacteriological analyses of lagoon effluent           | 177  |

## LIST OF FIGURES

| Figu | Figure                                                                                                                          |    |
|------|---------------------------------------------------------------------------------------------------------------------------------|----|
| 1.   | Location and surficial geology map.                                                                                             | 2  |
| 2.   | Map showing the depth to original water table and identification of monitored observation wells and test pits.                  | 6  |
| 3.   | Vertical cross-section A-A' showing geology and hydrogeology in the general area of investigation.                              | 11 |
| 4.   | Vertical cross-section B-B' showing geology and hydrogeology in the study area and hypsometric position of the recharge basin.  | 13 |
| 5.   | Potentiometric map of water table aquifer prior to rapid infiltration.                                                          | 20 |
| 6.   | Infiltration rates, hydraulic head in basin, depth to water level in OW-1 and rainfall at site.                                 | 29 |
| 7.   | Cumulative infiltration of the lagoon effluent.                                                                                 | 32 |
| 8.   | Response of water level to infiltration in observation wells and in test pits.                                                  | 34 |
| 9.   | Distribution of hydraulic head in the water table aquifer at maximum groundwater mounding (Nov. 25, 1979).                      | 37 |
| 10.  | Isopach of maximum hydraulic groundwater mound (Nov. 25, 1979).                                                                 | 39 |
| 11.  | Hydrochemical map of free ammonia (a), total Kjeldahl (b), nitrite (c), and nitrate (d), concentrations in shallow groundwater. | 52 |

# LIST OF FIGURES (Cont'd)

| Figur | ce                                                                                                                                                     | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 12.   | Hydrochemical map of dissolved reactive phosphorous  (a) total phosphorous (b), organic carbon (c), and inorganic carbon (d) concentrations in shallow |      |
|       | groundwater.                                                                                                                                           | 55   |
| 13.   | Map showing bacteriological quality of shallow groundwater.                                                                                            | 62   |
| 14.   | Conceptual model of the recharge mechanism and groundwater flow systems in the study area.                                                             | 67   |

# LIST OF TABLES

| Table | e ·                                                                                                           | Page |
|-------|---------------------------------------------------------------------------------------------------------------|------|
| 1.    | Selected values of the coefficient of permeability of surficial deposits determined by the Hazen formula.     | 22   |
| 2.    | Data pertaining to the recharge basin conditions and infiltration rates.                                      | 27   |
| 3.    | Frequency of sampling during the rapid infiltration study.                                                    | 46   |
| 4.    | Results of chemical analyses of water samples obtained and analyzed under various conditions.                 | 48   |
| 5.    | Quality of the infiltrated sewage lagoon effluent and calculated loading by recharged sewage lagoon effluent. | 50   |

### LIST OF PHOTOGRAPHS

| Photo |                                                                                                                                                                                                                               | Page |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.    | A portion of the Village of Markdale sewage lagoon looking east. Village of Markdale is in right background. Pumping equipment is sitting on the control manhole at the extreme lower right margin.                           | 4    |
| 2.    | Looking downstream, Rocky Saugeen River immediately upstream of the lagoon effluent discharge (arrow).                                                                                                                        | 4    |
| 3.    | A portion of the study area looking west, with the recharge basin at the extreme left - centre. The boundary between coniferous and decidious trees at left marks the position of the Rocky Saugeen River.                    | 8    |
| 4 .   | A section about 60 m wide consisting of wet peat deposits with minute cattail environments are present along the Rocky Saugeen River.                                                                                         | 8    |
| 5.    | Silty sand and gravel exposed in the test pit excavated at OW-1.                                                                                                                                                              | 16   |
| 6.    | Sand and gravel with very little silt at OW-20.                                                                                                                                                                               | 16   |
| 7.    | Continuous pumping (intake in the control manhole) was provided by a gasoline-driven pump. A full drum provided about 12 hours of continuous run. Infiltration basin is located in front of coniferous trees at extreme left. | 26   |
| 8.    | Recharge basin looking southwest. Inflow of 3.8 L/s. Water level is being measured in OW-1.                                                                                                                                   | 26   |
| 9.    | Deposition of suspended solids after 8 days of continuous infiltration indicates gradual basin clogging.                                                                                                                      | 43   |

# LIST OF PHOTOGRAPHS (Cont'd)

| Photo                                                                                                                                                                           | Page |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 10. A thin crust at the basin bottom began to develop at the end of the first inundation period. This basin clogging appears to have significantly affected very shallow depth. | 43   |
| 11. A thin sludge layer accumulated at the basin bottom at the end of the infiltration study November 26, 1979 had slightly reduced infiltration rate.                          | 73   |
| 12. Rainfall and winter weather conditions had "shaved off" the basin left partially clogged with a thin sludge layer at the end of the infiltration studies shown in Photo 11. | 73   |

#### SUMMARY

The area located immediately south, southwest and west of the Markdale sewage lagoon consists of gravel and sand with some silty and clayey sections. These granular deposits are of glaciofluvial origin. A portion of this land about 60 to 70 m wide situated along the Rocky Saugeen River is wet with small sections of cattail environment, consisting of peat deposits. This wet area along the Rocky Saugeen River is considered a discharge zone of the shallow water table and bedrock aquifer systems. The coefficient of permeability of sand and gravel deposits, 15 m in thickness is about 0.4 cm/s.

In general, the width of the area between the lagoon and the Rocky Saugeen River is about 300 m and it offers an excellent opportunity to achieve tertiary treatment of sewage lagoon effluent by infiltrating the effluent into the porous sand and gravel deposits.

A rapid infiltration study was conducted to determine the feasibility of sewage lagoon effluent treatment by means of groundwater recharge. If feasible, it would eliminate direct discharge of the effluent into the Rocky Saugeen River and thus maintain its high quality.

The study lasted from October 19 to November 26, 1979 during which time approximately  $8,000~\text{m}^3$  of sewage lagoon effluent was infiltrated into the granular deposits. In actuality only 27 days were inundation periods during which the average recharge rate was 3.46~L/s. A conservative calculation indicates an average hydraulic loading of  $24.91~\text{m}^3/\text{d/m}^2$ .

The field installation consisted of a recharge basin with a controlled infiltration area (12 m²). Numerous observation wells and test pits were located at strategic locations in close vicinity to the infiltration basin. They were used to measure water level response to infiltration and to obtain water samples for qualitative analyses.

A slight reduction of infiltration rate appears to be due to gradual clogging of the bottom of the infiltration basin caused by deposition of suspended solids present in the sewage lagoon effluent. This clogging, generated by physical factors, affected only very shallow soils (5 cm) at the bottom of the basin.

The results of qualitative analyses indicated that the dissolved reactive phosphorous was reduced to background levels a short distance from the infiltration basin. The components of the nitrogen cycle were converted into nitrate and a considerable amount of nitrogen was reduced at a relatively short distance from the infiltration basin.

Other chemical constituents present in the sewage lagoon effluent were attenuated by the subsurface environment to various degrees depending partially on the distances from the infiltration basin.

Chemical constituents of the sewage lagoon effluent which may reach the groundwater discharge area will undergo further attenuation by biological and microbiological processes while travelling overland through wet environments before entering the Rocky Saugeen River.

The quality of this small portion of the sand and gravel aquifer which received waste water from the lagoon during the rapid infiltration study can be allowed to deteriorate since it has no prospective use in the future.

In summary, the results of this study are quite encouraging. They provide sufficient background information and preliminary criteria for the design of an operational system with infiltration basins.

#### INTRODUCTION

This report summarizes the results of a study of sewage lagoon effluent treatment by utilizing mainly hydrogeological, biological and hydrological environments. Two basic aspects are briefly addressed in this study; (a) hydraulics of the receiving aquifer and (b) renovation of the effluent while moving through granular materials.

Other aspects of a recharge system such as design criteria, infiltration system management, winter operating constraints, etc. are also discussed.

#### Objectives of the Study

The main objective of this study was to examine the possibility of utilizing hydrogeological environments for treatment of sewage lagoon effluent by means of a recharge basin.

Furthermore, the results of the study (if favourable) would be useful in establishing preliminary design criteria for a full scale operational system to treat sewage lagoon effluent by rapid infiltration.

#### Background

The Village of Markdale is presently serviced by a facultative one-cell lagoon system 5.67 ha in size (Figure 1 and Photo 1). The lagoon effluent is discharged in the spring and fall to the Rocky Saugeen River located about 170



FIGURE 1. Location and surficial geology map.

m from the lagoon (Photo 2). From the control manhole, the effluent is directed by a 131 m long 20.32 cm diameter buried pipe and subsequently by an open ditch to the River (Figure 1).

A water quality survey of the Rocky Saugeen River carried out by staff of the Ministry of the Environment during the fall discharge of the lagoon effluent (MOE, 1979) showed a measurable effect on the river water quality to a considerable distance downstream from the sewage outfall.

The Rocky Saugeen River is a high quality stream which supports salmonid species. Therefore, there are concerns that expansion of the present mode of lagoon operation may have a significant impact on the stream water quality. In view of this, coupled with the fact that the present sewage treatment facilities are at capacity, this Ministry requested that the Village of Markdale look into other options (exfiltration) of improving sewage treatment facilities.

Subsequently, the Village engaged the consulting firms, Henderson, Paddon and Associates Limited and Morrison Beatty Limited to carry out the study.

This initial study by the Village's consultant was carried out in the summer and early fall of 1979. When funds for the feasibility studies were exhausted, the Ministry of the Environment, Southwestern Region, decided to apply staff resources to continue the work in order to take advantage of the experimental system that had been established.



Photo 1. A portion of the Village of Markdale sewage lagoon looking east. Village of Markdale is in right background. Pumping equipment is sitting on the control manhole at the extreme lower right margin.



Photo 2. Looking downstream, Rocky Saugeen River immediately upstream of the lagoon effluent discharge (arrow).

#### Location

The study area is located about 900 m west of the Village of Markdale, in Lots 94, 95 and 96, Concession I West of Toronto - Sydenham Road, Glenelg Township, Grey County. More precisely, the land of intensive study is situated between the Markdale oxidation pond and the Rocky Saugeen River (Figures 1 and 2).

Figures 1 and 2 also give the locations of monitoring stations and field instrumentations used in this study.

Access to the study area is provided by the access road to the sewage lagoon which is also used to transport sand and gravel extracted from the pit located immediately northeast of the lagoon (Figure 1). The study area is about 900 m from the provincial highway 10.

The study area is traversed by the Canadian Pacific Railway (Toronto - Owen Sound line).

#### Topography

The area of intensive study is situated on relatively flat ground of the Rocky Saugeen River valley botom, which in this area is about 300 m wide. There is about 6 m difference in elevation between the river and the "highest ground" which is actually a very small ridge running parallel to the river between 150 and 180 m away. The infiltration basin was located near the extreme southern flank of the ridge's crest (Figure 1).



Figure 2. Map showing the depth to original water table and identification of monitored observation wells and test pits.

In general, the area between the river and this minute ridge is overgrown by cedar trees, whereas in other sections occasional cedar trees and willows can be found particularly in the wet portion (Photo 3).

#### Drainage

The Rocky Saugeen River is deeply incised into the local glacial deposits and any associated drainage system and runoff are directed into the River which is a focus for surface and groundwater discharges.

There is very little surface water runoff occuring after intensive rainfall and snowmelt, because most rainfall infiltrates quickly into the permeable soil. A minor stream rises southeast of the lagoon fed by the natural spring-pond system and periodically by the discharges of storm water released into the former gravel pit some 130 m away (Figure 1). After passing the CPR tracks, this flow disperses into a mucky, wet environment.

A second permanent pond is located immediately northwest of the sewage lagoon (Figure 1). This pond is an integral part of a low lying wet and occasionally water covered strip of land about 25 m wide running parallel to the CPR tracks, but on the opposite side of the tracks from the lagoon.

Another wet and low lying area, overgrown by cedar trees about 60 to 70 m wide, is situated along the Rocky Saugeen River. In this section of land, black peat and small cattail environments are commonly found (Photo 4).



Photo 3. A portion of the study area looking west, with the recharge basin at the extreme left - centre. The boundary between coniferous and decidious trees at left marks the position of the Rocky Saugeen River.



Photo 4. A section about 60 m wide consisting of wet peat deposits with minute cattail environments are present along the Rocky Saugeen River.

## Previous Investigations

In connection with the proposed sewage system construction, William Trow Associates Limited (1966) investigated geotechnical conditions in the Village of Markdale and at the property now occupied by the sewage lagoon.

Hydrology Consultants Limited (1973) carried out test pumping and an evaluation of hydraulics of two municipal wells which are now water sources to the Village of Markdale.

Preliminary reconaissance work, including excavation of 16 test pits and construction of all field installations for groundwater monitoring except for TP-1 to TP-5 inclusive, staff gauges and rain gauge was carried out by Morrison Beatty Limited (1979). This work also included a 24-hour recharge test taking water from the Rocky Saugeen River as a recharge source and a 6-hour infiltration test using sewage lagoon effluent pumped directly from the lagoon. The results of their efforts were summarized in a brief report.

#### Field Work

The field investigation lasted from October 18, 1979 to November 26, 1979. The field work among other things included:

 Installation of two staff gauges, rain gauge and construction of five test pits left open.

- Pumping of the sewage lagoon effluent by a gasoline driven pump into the infiltration (recharge) basin.
- 3. Very frequent sewage flow measurements and maintaining and recording of a constant height of wastewater in the infiltration basin.
- Frequent water level (at least twice a day) measurements in observation wells and test pits.
- 5. Daily checking of rain gauge station and staff gauge in the Rocky Saugeen River.
- Collection of numerous water and wastewater samples for qualitative analyses.
- Collection of soil samples for mechanical analyses.
- 8. Performing a dye test in order to establish underground retention times of the renovated water.

#### Field Installations

The location of the field installations is given in Figures 1 and 2. Stratigraphy, depth and some details concerning the construction of observation wells and test pits is given in Appendix A.

A recharge basin located about 160 m distance from the pump intake was specifically constructed for the purpose of this study. The side and marginal sections of the basin bottom were lined with polyethylene so that the dimensions of the infiltration area were 3 X 4 m (12  $m^2$ ). The slope ratio of the side was 1.5:1 and depth was 0.83 m.



Figure 3. Vertical cross-section A-A' showing geology and hydrogeology in the general area of investigation.

About 20 to 30 cm of the original granular material at the bottom of the recharge basin was replaced with borrowed, well-sorted sand and gravel.

The hypsometric position of the infiltration basin and its relationship with the nearby piezometers is shown in Figures 3 and 4.

There were 11 observation wells (OW-1 to OW-10 inclusive and OW-18) constructed using dry augering techniques, all located in the vicinity (positioned in a cross-like fashion) of the recharge basin. Other observation wells installed with the help of backhoe and five open test pits (TP-1 to TP-5 constructed on October 29, 1979) were also located in close proximity to the basin (Figure 2).

One observation well (OW-1) along with a staff gauge were constructed right in the infiltration basin.

All piezometers were made of PVC pipe 5.71 cm in diameter with 1 to 2 m slotted sections at the bottom. The length of a single slot was about 15 mm, width of slots about 1 mm and slot spacing about 75 mm for OW-1 to OW-10 and OW-18. For the rest of the observation wells the slot width and spacing were irregular. A protective cup was placed at the bottom of the pipe as well as a bentonite clay plug near the surface for OW-1 to OW-10 and OW-18.

The majority of observation wells (OW-1 to OW-18 except OW-17 which was dry) and test pits (TP-1 to TP-5) were frequently used to measure the hydraulic response of the water table aquifer to recharge, and they also provided access to the water table to obtain water samples for qualitative analyses.



of the recharge basin.

A flowmeter was placed a few metres away from the effluent outfall into the recharge basin. A temporary rainfall gauge was installed at the site as well as two staff gauge stations; one was installed in the recharge basin and the second in the Rocky Saugeen River, under the CPR bridge (Figure 1).

#### GEOLOGY AND HYDROGEOLOGY

### Bedrock Geology

Nowhere in the study area does the bedrock outcrop. In the southwestern section of the Village of Markdale at municipal well No. 2 the bedrock is found near the ground surface overlain by about 1.2 m of granular deposits. The bedrock within the study area, and in the wider area as well, is of Middle and Lower Silurian age. It has been ascribed to the Guelph Formation which consists of dolomite. The dolomite is typically massive bedded, white, blue or brown in colour, fine to medium crystalline and highly porous.

The Guelph Formation may be seen in the Rocky Saugeen River bank at the intersection of Grey County Road 12 and associated side road some 1500 m from the study area.

Figures 3 and 4 show the hypsometric position of the bedrock within the study area and in the broader area outside of this investigation. Information from the geophysical survey indicates that the bedrock in the study area is overlain by 13 to 15 m of glacial deposits.

## Surficial Deposits

The distribution of unconsolidated deposits is given in Figure 1 (inset map). Numerous excavated test pits and boreholes augered in the study area confirm that the overburden basically consists of sand and gravel, with minor silt and clay (Appendices A and B; Photos 5 and 6). In some



Photo 5. Silty sand and gravel exposed in the test pit excavated at OW-1.



Photo 6. Sand and gravel with very little silt at OW-20.

sections, along with sand and gravel there are cobbles with minor boulders. Granular deposits of reduced permeability consisting of silty sand and gravel with minor clay fractions are present in the low area along the CPR tracks (opposite from the lagoon) and on both sides of the sewer outflow line (Figure 1). This material is most likely present in the lowland area along the Rocky Saugeen River where it is overlain by peat deposits (Figure 4, Photo 4).

Three boreholes (OW-3, OW-6 and OW-7) intercepted poorly permeable material (clayey silt till with some pebbles) at a depth of 4.9 and 5.8 m respectively. This initial information suggested that the sand and gravel deposits may be underlain by poorly permeable material separating it from the bedrock. However, a subsequent geophysical resistivity survey (electrical sounding) carried out in May, 1980 indicated that the surficial deposits mainly consist of sand and gravel (Appendix C). Directly overlying the bedrock formation, these deposits are about 15 m thick in the study area. Because it is not possible to distinguish between sandy silt till and sand and gravel on the basis of resistivity survey, it is quite conceivable that a silty till underlies the sand and gravel, thus separating it from the bedrock. It is also possible that sections of poorly permeable material less than 3 m in thickness which cannot be delineated using the electrical sounding technique may be present within the deeper portion of glacial deposits. Information from three boreholes (OW-3, OW-6, and OW-7, Appendix A) support this hypothesis.

The peat deposit is present in the low lying area along the Rocky Saugeen River in the zone about 60 to 70 m wide (Photo 4). Its thickness is unknown, however, a test hole dug in the present lagoon area reported the presence of 1.8 m of peat.

#### Hydrogeology and Groundwater Movement

Bedrock Aquifer System

The porous bedrock dolomite constitutes a high capacity aquifer system which is the source for two municipal wells and for many domestic wells in the broad area of investigation.

Permeability of the bedrock formation is due primarily to chemical dissolution of the dolomite along ancient weathered zones, fractures and bedding planes. Because this dissolution can produce a large variety of opening sizes and patterns, permeabilities in the bedrock vary widely. In general, the bedrock appears to be most permeable within 6 m of its upper surface.

In the broader area of investigation (inset map in Figure 1) the potentiometric head in the bedrock aquifer, as obtained from water well records, is higher than the Rocky Saugeen River bed. This strongly suggests that the ground-water movement in the bedrock is towards the river from both sides with the river being the discharge zone of the bedrock aquifer system.

Sand and Gravel Aquifer

All boreholes penetrated into the saturated zone in the surficial deposits. Only three test pits were not deep enough to reach water table (OW-17, OW-19 and OW-20).

Depths to water table in the area of intensive study vary considerably depending on the topographic configuration. In the small ridge area northwest of the recharge basin the depth to water table is over 5.5 m (Figure 2) whereas in the low lying area along the river, it is at the ground surface.

Groundwater flow direction in the shallow water table aquifer is strongly influenced by topography (Figure 5). The flow is to the southwest with the Rocky Saugeen River being the focal point - the discharge zone of both the overburden and bedrock aquifer systems.

### Permeability of Surficial Deposits

Two basic parameters describe porous media: porosity and permeability. Porosity is "the ratio of pore volume to the total volume of a given sample of material", whereas permeability "is a measure of the ease with which fluids pass through a porous material" (Davis, 1969).

The porosity of unconsolidated deposits depends on their packing arrangements, size distribution and shape. The porosity of sand and gravel is 20 to 35 percent (Todd, 1959).

The intrinsic or specific permeability of a porous medium to a fluid is given by

$$k = \frac{Q\mu}{A G G} \left( \frac{dh}{d1} \right)^{-1}$$
 (1)

Where Q is the fluid volume discharged per unit time through a porous medium of cross-sectional area A,  $\mu$  is the dynamic



viscosity of the fluid, % is the fluid density, G is the accelaration due to gravity, and dh/dl is the hydraulic gradient in the direction of flow (Davis, 1969). The intrinsic permeability, k, has dimensions of  $L^2$  and is a function of the geometric properties of the medium. Since hydrogeologists are mainly involved with water as the fluid, a more commonly used hydrogeologic variable is the hydraulic conductivity, K. If the terms in Equation (1) are rearranged the hydraulic conductivity may be defined as:

$$K = k g G/u$$
 (2)

which is often loosely referred to by hydrogeologists as the "permeability", i.e., the coefficient of permeability, and which has dimensions  $\mathrm{L}/\mathrm{t}$ .

Most analyses of groundwater flow in some way involve a principle known as <u>Darcy's law</u>, which has already been stated in one form in the definition of intrinsic permeability in Equation (1). It can be rewritten as:

$$q = -K \left(\frac{dh}{d1}\right) \tag{3}$$

where q=Q/A in Equation (1) and is known as the Darcy or filter velocity, or the specific discharge, and K is the hydraulic conductivity in the 1 direction. The term q is not the average pore water velocity, but a seepage flux and has the units  $L^3/L^2t$ .

In this study a common method, the Hazen formula, was used to estimate the intergranular hydraulic conductivity of the sand and gravel deposits. This method is

Table 1. Selected values of the coefficient of permeability of surficial deposits determined by the Hazen formula

| Location* | Depth | Coefficient of        |  |  |
|-----------|-------|-----------------------|--|--|
| source    | (m)   | permeability          |  |  |
|           |       | K(cm/s)               |  |  |
|           |       |                       |  |  |
| TP-1      | 0.61  | 0.56                  |  |  |
| TP-1      | 1.22  | 0.11                  |  |  |
| TP-1      | 1.83  | 0.17                  |  |  |
|           |       |                       |  |  |
| TP-2      | 0.61  | 0.42                  |  |  |
|           |       | 2                     |  |  |
| TP-3      | 0.46  | $1.22 \times 10^{-3}$ |  |  |
|           |       |                       |  |  |
| TP-4      | 0.4   | 0.56                  |  |  |
| TP-4      | 0.73  | 0.40                  |  |  |
| TP-4      | 1.22  | 0.43                  |  |  |

<sup>\*</sup>Location is shown in Figure 2

based on the empirical equation developed by Hazen (1893). Although the relation has been refined in recent years, the Hazen formula

$$K (cm/s) = C(d_{10})^2$$
 (4)

essentially relates the hydraulic conductivity, K, to the effective grain-size diameter,  $d_{10}$ , by means of the coefficient C (which varies from about 50 cm $^{-1}$ s $^{-1}$  to 150 cm $^{-1}$ s $^{-1}$ ). The hydraulic conductivity is then proportional to the effective grain size of the deposit and is also a function of the degree of uniformity of the particle size. Since, as a rule, the Hazen formula gives higher values of permeability for clean gravel and sand deposits, the empirical coefficient C = 100 was used in this calculation.

The grain size distribution of the particles comprising surficial deposits in the study area is given in Appendix B. These data were used to calculate the coefficient of permeability applying the Hazen formula. The results are given in Table 1. It can be seen from Table 1 that values for hydraulic conductivity are relatively high.

#### Water Use in the Area

The water wells for which records are on file with this Ministry are indicated in Figure 1 (inset map). A summary of the water well records for these wells is given in Appendix D. Information from water well records indicates that the confined bedrock aquifer system is a source of water for these wells.

There are two municipal wells which supply water to the Village of Markdale and they are the nearest wells to the study area (about 1070 m distance). Information from water well records for these two wells indicate that water was encountered at several depths in the bedrock in both municipal wells (Figure 3). The pumping water levels in both wells appear to have reached dynamic hydraulic equilibrium condition with the lowest pumping water level at depths of about 27 m in both municipal wells. Water level recovery is rapid after the well production is stopped, indicating high capacities of both wells.

Since the municipal wells are located at relatively short distances from the rapid infiltration area, assurances should be made that water quality in these two wells and in the bedrock in general, remains unaffected. The likelihood that contamination of municipal wells would occur is unlikely because:

- The thickness of surficial deposits (saturated zone) overlaying the bedrock is substantial.
- There is a well defined hydraulic gradient in the shallow aquifer towards the river with prevailing lateral groundwater movement and the river is the ultimate groundwater discharge zone.
- 3. There is an upward gradient in the bedrock aquifer constituting the discharge zone of groundwater flow in the bedrock.

Nevertheless, several boreholes should be drilled in the study area and completed in the bedrock in order to check findings obtained using geophysical techniques. These bedrock wells may be used in the future to monitor water quality in the bedrock aquifer.

#### INFILTRATION STUDIES

#### Procedure

Sewage lagoon effluent was directly pumped into the infiltration basin by a gasoline-powered pump. The pumping equipment was placed on the lagoon berm, on the concrete top of the control manhole, whereas the pump intake was set into the sewage outfall chamber (Photo 7). The speed of the pump was throttled to keep constant head in the infiltration basin. Because of its tendency to fail, the pump needed close attendance; therefore, whenever the pump was running, its performance was frequently checked, generally between 6:00 and 23:00 hours.

Using a stop watch, an instant flow rate was obtained by reading the quantity of flow from the flowmeter (usually recording time for flow of 100 gallons). The stop watch and a calibrated container were also frequently used to check the reliability of the flowmeter which also gave a cumulative flow measurement.

The flow rate measurements, hydraulic head of the effluent in the recharge basin (staff gauge), and ground-water level in the observation well 1 (OW-1) were considered the bench-mark parameters of the study (Photo 8). They were, therefore, the subject of watchful attendance and measurements. For example, the only time period when the pump and basin area were not closely attended was between 23:00 and 5:00 hours the following morning.

Water levels were frequently measured in the observation wells and the open test pits. Numerous water samples from groundwater and surface water sources and of sewage lagoon effluent were collected for qualitative analyses.



Photo 7. Continuous pumping (intake in the control manhole)
was provided by a gasoline-driven pump. A full drum
provided about 12 hours of continuous run. Infiltration
basin is located in front of coniferous trees at
extreme left.



Photo 8. Recharge basin looking southwest. Inflow of 3.8 L/s. Water levelis being measured in OW-1.

Table 2. Data pertaining to the recharge basin conditions and infiltration rates. a

| Basin con    | dition              | Time ; | period                  | Area of in ba | nfiltration<br>asin | Average rate of | f infiltration |
|--------------|---------------------|--------|-------------------------|---------------|---------------------|-----------------|----------------|
|              | ydraulic<br>ead (m) |        |                         | Contact       | Area<br>(m²)        | L/s/m²          | m³/d/m²        |
| Lined on     | 0.61                |        | 19, 1979 to<br>22, 1979 | Bottom        | 12                  | 0.28            | 24.19          |
| No<br>lining | 0.4                 |        | 22, 1979<br>to          | Bottom        | 12                  | 0.24            | 20.74          |
|              |                     | Nov.   | 26, 1979                | Sides         | 4.4                 | 0.26            | 22.46          |

This table should be read in conjunction with data shown in Figure 6.

#### Infiltration Rates

A continuous controlled infiltration study commenced on October 19, 1979 and continued with some dry up (resting) periods until November 26, 1979. Some of these stoppages were purposely planned, while a few of them were caused by failure of the pumping equipment.

In actuality, there were only 27 days of infiltration during which period about 8,020 m³ of wastewater were infiltrated. This value was obtained from the spot measurements using a stop watch and a calibrated container for the initial six days of infiltration (before the flow-meter was installed) and from the accumulative values as recorded by the flowmeter for the remainder of the study period. Although not very reliable, an evaluation of the flowmeter performance showed that its resulting flow data should be increased by at least five percent. This correction of flow has been included in the above calculation.

Instantaneous flow measurements using both stop watch and flowmeter on one hand, and a calibrated container and stop watch on the other are plotted in Figure 6. It is apparent that flow values reported by the later technique are considerably higher than the conservative values recorded by the flowmeter and used in the above and the following calculations. Thus, when the infiltration reported by the flowmeter is adjusted to the flow values obtained by stop watch and calibrated container, close to  $9,000~\rm m^3$  (2 MIG) were infiltrated to the granular deposits.

The results of the infiltration rates under different conditions in the infiltration basin are summarized in Table 2. It is apparent that they are relatively high infiltration rates.



Figure 6. Infiltration rates, hydraulic head in basin, depth to water level in OW-1 and rainfall at site.

As indicated earlier, the sides of the infiltration basin were lined for the most part of this study. However, the lining was removed on November 22, 1979, four days before the termination of the recharge study. It should be noted therefore, that in calculating the infiltration rate for the lower portion in Table 2, it was assumed that the infiltration rates through the bottom of the basin remained constant at 2.88 L/s, as it was immediately before the lining was removed.

Heights of effluent in the recharge basin were fairly constant at 0.6 m, except for the last four days of the study. During this later period, the weakening of the pumping equipment, in concert with rapidly high infiltration rates, generated a relatively low hydraulic head in the basin (0.4 m).

The cumulative infiltration rates were plotted in Figure 7.

# Hydraulic Response of the Shallow Water Table Aquifer to the Recharge

There were over 20 measuring points of the water table situated close to the infiltration basin. Although, there was no true piezometer nest with intakes placed at various depths, the obtained information from the available installations provides reliable data for an assessment of the hydraulic characteristics of the sand and gravel aquifer system.

The original static water level was at a depth of 3.5 m below ground level at the recharge basin, before the start of the infiltration program. The response of the



FIGURE 7- Cumulative infiltration of the lagoon effluent.

water table to infiltration was rapid, reaching an apparent hydraulic equilibrium underneath the recharge basin two days after infiltration commenced (Figure 6). In general, depths to water level below the basin remained relatively consistent at 1.7 m during infiltration periods. During the dry up periods the water level dropped rapidly to about 3 m and then the rate of recession slowed down considerably.

A similar situation prevailed in other observation wells and test pits located at various distances from the infiltration basin (Figure 8). It can be seen from this figure that the water table response was relatively rapid depending upon the distance of the observation point from the recharge basin. In general, a steady state condition in the affected wells was reached two to three days after infiltration began. It generally remained constant with periods of quick recessions during dry-up periods. One exception to this general pattern of water level behaviour occurred during the last four days of infiltration when the rate of recharge was the highest therefore causing the water level to reach its peak (Figure 8).

Sudden occasional drops in water levels in several observation wells, as shown in Figure 8, are caused by taking water samples from observation wells for qualitative analyses. Slow water level recovery was most likely caused by silting of the slotted section of the pipe which prevented water from moving quickly into the pipe.

The lateral distribution of the influence of infiltration on the water table is shown in Figures 9 and 10. The comparison of Figure 5 with Figure 9 shows how the well-defined groundwater flow (Figure 5) is modified by recharge (Figure 9), resulting in the formation of the groundwater hydraulic mound. The irregular shape of the hydraulic mound closely reflects the topographic gradient. There was no apparent indication of hydraulic channelling, or short circuiting.



Figure 8. Response of water level to infiltration in observation wells and in test pits.



Figure 8 (Cont'd). Response of water level to infiltration in observation wells and in test pits.

An isopach of the groundwater mound is shown in Figure 10. Although the water level below the infiltration basin rose quite close to the bottom of the basin (0.6 m) it never actually reached it.

An apparent effect of groundwater mounding was a lateral shift of the highest margin of the groundwater discharge zone for about 30 m. This situation is illustrated in Figure 4.

#### Underground Detention Times

One of many important aspects of a rapid infiltration study such as this is to establish how long it will take for the effluent to reach the groundwater discharge area. This is because renovation of wastewater, which is influenced by several major factors, is directly related to the underground travelling time of infiltrated effluent. Detention times could be calculated in several ways such as by observing arrival of the pollution front, monitoring water level response, measuring the hydraulic gradient along the flow lines, dye test, etc.

The underground detention time is inversely proportional to the infiltration rate and to the permeability of the coarse granular material.

In this study, an attempt was made to use a direct method to calculate the permeability of granular materials. On November 20, 1979 after letting the basin dry up, 170 gm of fluorescein dye along with 213 litres of artificially made brine were placed at the bottom of the basin. The brine solution was made by dissolving 28 kg of uniodized salt using lagoon effluent as dissolvent. The concentration of the brine was as follows:



Figure 9. Distribution of hydraulic head in the water table aquifer at maximum groundwater mounding (Nov. 26, 1979).

#### Chemical parameter

#### Concentration

| Conductance (umho | /cm³ at 25°C) | 153,615 |
|-------------------|---------------|---------|
| Sodium as Na (mg/ | L)            | 48,179  |
| Chloride as Cl (m | g/L)          | 73,307  |

At the designated time the infiltration began, followed by frequent measurements of water levels, conductance and taking water samples from observation wells and test pits for fluorescein dye analyses.

Measurements of the specific conductance in observation wells was not successful in indicating the arrival of the contamination front (sodium chloride) nor was the fluorescein dye present in detectable concentrations in several monitored observation wells, and in TP-2, TP-3 or TP-4. It is reasoned that sodium chloride was quickly diluted in the rapidly infiltrating effluent, while the fluorescein dye was absorbed by silt and clayey particles. Nevertheless, closely monitored response of the water table in several observation wells and test pits gave valuable information on the hydraulic conductivity of the granular deposits.

The calculated values of the coefficient of permeability using the information from the mechanical analyses and the empirical formula presented by Hazen (1893) are given in Table 1.

The following equation was used to calculate the average linear pore-water velocity,  $\mathbf{V_v}$ ,

$$V_{X} = \frac{K}{n g_{N}} \text{ grad h}$$
 (5)



where K is hydraulic conductivity, n is the porosity,  $G_N$  is an empirical constant and grad h is the gradient of hydraulic head. Experimental data on relatively uniform sands indicate that  $G_N$  is close to 1 for these materials. It was assumed that the sand and gravel deposits have an intergranular porosity of 0.30 and the empirical coefficient was unity. Grad h for the original water table was 0.017, whereas during the groundwater mounding effect it was 0.032. As data on Table 1 indicate, the hydraulic conductivity varies somewhat; however, an average of seven values for the hydraulic conductivity was used (0.4 cm/s). Using these values the obtained average groundwater velocities were 20 m/d for the conditions prior to the commencement of infiltration and about 38 m/d during the groundwater mounding effect due to artificial recharge.

Based on the obtained data, it is estimated that the underground detention time was in the range of one and a half to three days. Since the original upper limit of groundwater discharge is located about 60 to 70 m from the river, there will be additional time for the effluent to travel overland through wet land before entering the river system. While travelling overland through favourable attenuating environments, it will be subject to a significant additional attenuation of certain parameters involving numerous processes present along the travelling paths.

# Basin Clogging

Maintaining a high infiltration rate for long periods of time is essential for successful sewage lagoon effluent treatment by rapid infiltration. Understanding soil clogging processes that causes infiltration rate reduction is necessary for the design and long term operation

of the recharge system. There are three basic factors that can cause soil clogging; chemical, biological and physical.

Chemical clogging is largely caused by chemical interaction between chemical constituents dissolved in the effluent and present in the soil resulting in decreased pore diameter and consequently, lower permeability. Research shows that chemical clogging seldom occurs unless the sodium content of the effluent is high.

Biological clogging occurs when bacterial growth or its by-products reduce the pore diameter. Biological clogging is frequently associated with anaerobic conditions and usually occurs at the soil surface, but it can also occur at different depths (McGauhey et al., 1967).

Physical clogging is the result of suspended solids in the effluent blocking the soil pores. Some particles may penetrate to a greater depth if the pore size is larger than the diameter of the suspended solids. A restricting layer is therefore built up by these suspended solids. The hydraulic properties of the clogged layer are best expressed in terms of the hydraulic resistance or impedance, which is defined as the thickness of the layer divided by its hydraulic conductivity. According to Bouwer (1972) the impedance can be calculated as the head loss through the layer divided by the infiltration rate.

The gradual reduction in infiltration rates, as indicated in Figure 6 was caused primarily by physical clogging of the bottom of the infiltration basin (Photos 9 and 10). The examination of Figure 6 indicates that during the first inundation period, an initial infiltration rate of about 4.55 L/s was reduced to 3.4 L/s just before the pump was shut off eight and a half days later. A dry up period which followed, along with 8 mm of rainfall helped to somewhat restore the recharge rate to 3.78 L/s.

The infiltration rate at the end of the inundation period on November 9, 1979 was considerably low at 2.8 L/s. During the subsequent resting period, the longest in this study which lasted about five days, the subzero temperatures caused several inches of the basin to freeze. Consequently, the basin was thoroughly raked and harrowed with a pick before the next inundation period started. This action resulted in restoring the recharge rate to 3.5 L/s.

During the short dry up period on November 19 and 20, 1979 the basin was thoroughly raked again. This action had no effect on restoring the infiltration rate, probably because the weather during the resting period was wet and too short to have an effective improvement on the accumulated sludge at the bottom of the basin. Also, fluorescein dye and artificial brine, which were introduced in the basin just before the start of the flooding period, may have some negative effect on improving the recharge rate.

An obvious indication that physical clogging occurred affecting about 5 cm in depth of the bottom of the infiltration basin (Photo 10) is demonstrated by the data shown in Table 2. After the plastic liner was removed from the sides of the infiltration basin, the infiltration rate through the "fresh" sides of the basin was higher than through the basin's bottom, although the former area was 2.72 times smaller than the latter infiltration area.

During the initiation and termination of the infiltration stages the arrival of the initial flux of the effluent was carefully measured in OW-1. Likewise, "drawdown" of the effluent in the basin when the pump was shut off was also recorded at designated time intervals.

Using this information the increase of impedance was calculated. Since the restricting layer was not com-



Photo 9. Deposition of suspended solids after 8 days of continuous infiltration indicates gradual basin clogging.



Photo 10. A thin crust at basin bottom began to develop at the end of the first inundation period. This basin clogging appears to have significantly affected very shallow depth.

pacted and biological clogging is unlikely a factor, the resistance should increase in proportion to the suspended solids added. The suspended solids in the lagoon effluent are mostly organic and easily compacted. They also tend to develop more rapidly in the lower sections of the infiltration basin (Photo 9).

#### WATER QUALITY STUDIES

#### General

In this section, a brief discussion of the water quality of the aquifer system which received the lagoon effluent as well as quality of surface water is given. The results of the qualitative analyses of water and the sewage lagoon effluent are given in Appendices E through J inclusive. These analyses can be used by individuals interested in further pursuing the qualitative aspect of this study.

#### Procedure

Numerous grab samples were obtained from the observation wells, test pits and from the selected surface water sampling stations. Several samples of the lagoon effluent were obtained directly from the infiltration basin and analysed for generally the same qualitative parameters. The frequency of sampling is summarized in Table 3.

A bailer 2.54 cm in diameter was used to obtain water samples from observation wells, whereas, a grab sample was taken from the test pits. The bailer was washed out with distilled water following each sampling. While the bottom of test pits 1, 2 and 4 are normally in the unsaturated zone, the rise of the water table due to infiltration provided favourable conditions to obtain water samples from these test pits as well.

Table 3. Frequency of sampling during the rapid infiltration study.

| Date              | Sept |        |    |    |    | С  | ctob | er,      | 1979 |     |     | 1  | Nove | embe | r, 1 | 979 |          |    |     |        | Jan.<br>1980 |
|-------------------|------|--------|----|----|----|----|------|----------|------|-----|-----|----|------|------|------|-----|----------|----|-----|--------|--------------|
| Sampling<br>Point | 12   | 18     | 19 | 22 | 23 | 24 | 27   | 28       | 29   | 31  | 3   | 6  | 9    | 12   | 16   | 20  | 22       | 23 | 25  | 26     | 31           |
|                   |      | bm     |    |    |    |    |      | b        |      |     |     |    |      |      |      |     | CC       |    |     |        |              |
| OW-1              | C    | CCC    | CC |    | C  | C  |      | cm       | L.   | C   | ca  |    | С    | С    | С    | b   | ca       |    | C   | bm     | bm           |
|                   |      | bm     |    |    |    |    |      | b        |      |     |     |    |      |      |      |     |          |    |     | la un  | ha           |
| OW-2              | C    | CC     | C  |    |    | C  |      | bm       | l,   | C   | a   |    | C    |      |      | b   | ca       |    | C   | bm     | bc           |
| OW-3              | C    | cmb    |    |    |    | C  |      | CIT      | l.   | C   | a   |    | C    |      |      | b   | ca       |    | C   | m      | bc           |
| OW-4              | C    | b      | C  |    |    | C  |      | cn       | 1    | C   | a   |    | C    | C    |      | b   | ca       |    | C   | m      | bc           |
| OW-5              | С    | bm     | C  |    |    | С  |      | cm       | ı    | С   | a   |    | С    | С    |      | b   | ca<br>aa |    | С   | m      | ba           |
| OW-6              | С    | c cm   | C  |    |    | C  |      |          |      | C   | a   |    | C    |      | С    | b   | CCC      |    | C   | m      | bc           |
| OW-7              | C    | cm     |    |    |    | C  |      |          |      | С   | a   |    | C    |      | C    | b   | ca       |    | C   | m      | bc           |
| OW-8              | C    | CCM    | C  |    |    | C  |      |          |      | C   | a   |    | C    |      |      | b   |          |    |     | m      | bc           |
| OW-9              | C    | m      | C  |    |    | C  |      |          |      | C   | a   |    | C    |      |      | b   | ca       |    |     | m      | bc           |
| OW-10             | C    | ccm    |    |    |    | C  |      |          |      | C   | a   |    | C    |      |      | b   | ca       |    |     | m      | be           |
| OW-11             | •    | 0 0111 |    |    |    |    |      |          |      |     | a   |    |      |      |      | b   |          |    |     |        |              |
| OW-12             | C    |        |    |    |    |    |      |          |      |     | a   |    |      |      |      | b   |          |    |     |        | be           |
| OW-13             |      |        |    |    |    |    |      |          |      |     |     |    |      |      | C    | b   |          |    | C   |        | be           |
| OW-14             | С    |        |    |    |    |    |      |          |      |     | a   |    |      |      |      | b   |          |    | C   |        | bc           |
| OW-15             | C    |        |    |    |    |    |      |          |      |     | а   | Ĺ, |      |      |      | b   |          |    | C   |        | b            |
| OW-16             |      |        |    |    |    |    |      |          |      |     | a   |    |      |      |      | b   |          |    | C   |        | bc           |
| OW-18             |      |        |    |    |    |    |      |          |      | cm  | а   | L  | C    |      |      | b   | ca       |    |     | m      | bc           |
| OW-21             |      |        |    |    | (  | 2  |      |          |      |     |     |    |      |      |      |     |          |    |     |        |              |
| OW-22             |      |        |    |    | (  | 2  |      |          |      |     |     |    | C    |      |      |     |          |    |     |        |              |
|                   |      |        |    |    |    |    |      |          |      | CC  | ļ   |    |      |      |      |     |          |    |     |        |              |
| TP-1              |      |        |    |    |    |    |      |          |      | mm  | C   | :  | CC   |      |      |     | ca       |    | C   | bm     |              |
| TP-2              |      |        |    |    |    |    |      |          |      | CM  | ı a | L. | C    |      |      | b   | ca       |    | C   | bm     | -            |
| TP-3              |      |        |    |    |    |    |      |          |      | cm  | ı a | Į. | C    |      | C    | b   | ca       |    | C   |        | bc           |
| TP-4              |      |        |    |    |    |    |      |          |      | CI  | ı a | ı  | C    |      |      | b   | ca       |    | C   | bm     |              |
| TP-5              |      |        |    |    |    |    |      |          |      | cm  | ı a | L. | C    |      | C    | b   | ca       |    | C   | bm     |              |
| RSR-1             |      |        |    | bc |    |    | (    | cm       |      | C   | ä   | ì  | C    |      |      | b   | ca       |    |     | m      | bc           |
| RSR-2             |      |        |    |    |    |    |      |          |      |     |     | cm | C    |      |      | b   | ca       |    |     |        |              |
| RSR-3             |      |        |    |    |    |    |      |          |      |     |     | CM | C    |      |      | b   | ca       |    |     | m      |              |
| DOD 4             |      |        |    | he |    |    | 2    | cm.      |      | a . | a   | ,  | C    |      |      | b   | ca       |    |     | CCM    | bc           |
| RSR-4             |      |        |    | bc |    |    |      | cm<br>cm | ,    | С   | ā   |    | 0    |      |      | b   | C        | a  |     | A (2)A | bc           |
| P-5               |      |        |    |    |    |    |      | cm       |      |     | c   |    |      |      |      | ~   | -        |    |     |        |              |
| P-6               |      |        | -  |    |    |    |      | cm       |      |     | c   | ,  |      |      | С    |     | b        | Ca | ı c | bm     | bc           |
| Lag. eff          |      | CM     | C  |    |    |    |      |          |      |     | (   | -  |      |      | 0    |     | ~        | -  | -   |        |              |

a Location of sampling points is shown in Figures 1 or 2.
OW - Observation well; TP - Test pit; RSR - Rocky Saugeen River; P - Pond water

Symbols: c - Chemical analysis

m - Heavy metals analysis

a - Anionic detergent analysis

b - Bacteriological analysis

Because there was a considerable amount of silt in water samples bailed from the well, for the purpose of uniform sample treatment, all groundwater samples were filtered except for the initial few sets, and for all samples taken for phenolic compounds and for carbons. The samples were filtered through a glass fiber filter paper with two micron openings.

In order to assess the effects of well bailing prior to taking water samples and filtering several sets of water samples from OW-1 and OW-6 were obtained and analyzed subsequent to various conditions. The results are shown in Table 4. It is apparent from this table that the differences between the chemical analyses of water samples taken from observation wells prior and after bailing were insignificant.

# Quality of the Lagoon Effluent

During the inundation periods of the infiltration basin, several samples of the lagoon effluent were collected directly from the infiltration basin for qualitative analyses. A few of these samples were filtered so that they would be comparable with groundwater samples. However, the majority of effluent samples were not filtered prior to analyses.

The results of the qualitative analyses of the sewage lagoon effluent is given in Appendices G and J respectively.

The mean values of the results for four unfiltered chemical analyses of the sewage lagoon effluent were calculated and shown in Table 5. The loading by various chemical parameters from the conservative calculation of the total infiltrated lagoon effluent was calculated and also shown in Table 5.

Table 4. Results of chemical analyses of water samples obtained and analysed under various conditions.<sup>a</sup>

| Sampling Point              | Observatio | n Well 1 | (OW-1)     | Observation Well 6 (OW-6)    |          |          |  |  |
|-----------------------------|------------|----------|------------|------------------------------|----------|----------|--|--|
|                             | Before bai | ling Aft | er bailing | Before bailing After bailing |          |          |  |  |
| Constituent                 | Non- fi    | ltered   | filtered   | Non-                         | filtered | filtered |  |  |
|                             | filtered   |          |            | filtered                     |          |          |  |  |
|                             |            |          |            |                              |          |          |  |  |
|                             |            |          |            |                              |          |          |  |  |
| Hardness (calc.)            | 270        | 255      | 258        | 329                          | 278      | 275      |  |  |
| Alkalinity as CaCO3         | 269        | 262      | 264        | 273                          | 273      | 275      |  |  |
| Iron as Fe                  | 8.4        | 0.20     | 1.32       | 38                           | 0.30     | 0.60     |  |  |
| рн                          | 7.50       | 7.88     | 7.69       | 7.45                         | 7.99     | 7.70     |  |  |
| Conductance -               |            |          | Ē          |                              |          |          |  |  |
| umho/cm³ at 25°C            | 755        | 755      | 760        | 778                          | 780      | 799      |  |  |
| Chloride as Cl              | Cl 62.0    |          | 63.5       | 66.5                         | 67.0     | 68.5     |  |  |
| Sulphate as SO <sub>4</sub> |            | 36.5     | 36.5       |                              | 34.5     | 37.5     |  |  |
| Calcium as Ca               | 63.0       | 58.0     | 57.0       | 104                          | 63.0     | 61.0     |  |  |
| Magnesium as Mg             | 27.2       | 26.8     | 28.0       | 32.0                         | 29.2     | 29.8     |  |  |
| Sodium as Na                | 56.0       | 57.0     | 56.0       | 53.0                         | 55.5     | 41.8     |  |  |
| Potassium as K              | 7.25       | 7.65     | 7.75       | 6.00                         | 4.75     | 1.95     |  |  |
| Free ammonia as N           | 2.7        | 1.0      | 2.9        | 2.0                          | 2.2      | 2.4      |  |  |
| Total Kjeldahl as N         | 8.25       | 4.00     | 4.90       | 2.50                         | 2.95     | 3.70     |  |  |
| Nitrite as N                | 0.08       | 0.145    | 0.03       | 0.24                         | 0.22     | 0.03     |  |  |
| Nitrate as N                | 2.4        | 4.3      | 2.1        | 1.8                          | 2.0      | 2.2      |  |  |
| Total P. as P               | 3.10       | 2.05     | 2.00       | 0.70                         | 0.053    | 0.08     |  |  |
| Diss. react. P. as          | P 2.15     | 1.85     | 1.75       | 0.20                         | 0.001    | L0.05    |  |  |
| Inorganic carbon            |            | 63.0     | 65.5       |                              | 67.5     | 69.5     |  |  |
| Organic carbon              |            | 19.0     | 27.0       |                              | 16.5     | 18.0     |  |  |
| Total carbon                |            | 82.0     | 92.5       |                              | 84.0     | 87.5     |  |  |
| Phenols in ppb              |            |          | Ll.O       |                              |          | L1.0     |  |  |

a sampled on November 22, 1979

b All results except pH reported in mg/L unless otherwise indicated.

L - Refers to less than

The concentrations of suspended solids were relatively low during the time of year in which the study was carried out.

## Groundwater Quality

#### Basic Considerations

The existing hydrogeological conditions in the study area and the hypsometric position of the sewage lagoon may suggest that exfiltration of the lagoon effluent has occurred particularly during the initial stage of the lagoon operation. This aspect could be further advanced and utilized to the existing conditions with an attempt to assess the renovation (which occurred in the past) of the effluent by natural hydrogeological environment.

This study showed that there was no convincing evidence that the quality of the shallower zone of the water table aquifer from which most of the samples were obtained was affected by the leaks from the lagoon. Therefore, such approach will be speculative at this time. For example, groundwater quality from sampled wells and test pits located between the lagoon and the recharge basin showed no indication that water quality is affected by the nearby lagoon. However, few sampled observation wells which obtain water from a somewhat lower elevation and which are located between the recharge basin and the river showed occasionally variation in water quality that may have been influenced by an "outside" source. This aspect is discussed in the later sections of this report.

In any case, in this study groundwater quality obtained prior to the commencement of the lagoon effluent infiltration is considered as the existing "natural" back-

Table 5. Quality of the infiltrated sewage lagoon effluent and calculated loading by recharged sewage lagoon effluent.

| Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average value of four analyses (unfiltered) (mg/L) | Calculated<br>loading<br>(kg) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                               |
| Hardness (calc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 258                                                | 2069                          |
| Alkalinity as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 292                                                | 2342                          |
| Iron as Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07                                               | 0.56                          |
| рH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                  | 7.65                          |
| Chloride as Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.25                                              | 459                           |
| Sulphate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.12                                              | 274                           |
| Calcium as Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.12                                              | 458                           |
| Magnesium as Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.95                                              | 224                           |
| Sodium as Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.37                                              | 444                           |
| Potassium as K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0                                                | 64                            |
| Free ammonia as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.66                                               | 45                            |
| Total Kjeldahl as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.6                                               | 85                            |
| Nitrite as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.43                                               | 3                             |
| Nitrate as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.19                                               | 1.5                           |
| Total P as P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.06                                               | 25                            |
| Dissolved reactive P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.45                                               | 20                            |
| Inorganic carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.62                                              | 534                           |
| Organic carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.5                                               | 269                           |
| Total carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.12                                             | 803                           |
| BOD5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.05                                              | 161                           |
| COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 284                                                | 2277                          |
| Suspended solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.33                                              | 155                           |
| Phenols (ppb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F1                                                 |                               |
| A distribution of the state of |                                                    |                               |

F refers to less than

groundwater quality. Any subsequent changes of groundwater quality during this study were related to the recharge and compared with the initial water quality. It is considered that this approach did not alter the validity of any groundwater quality interpretation.

It is generally accepted and confirmed in this study that the concentrations of the majority of chemical constituents in groundwater samples obtained during this study mainly depend on several factors such as (a) distance of the sampling point from the recharge basin, (b) duration of inundation of the recharge basin before sample was taken, (c) thickness of the unsaturated zone below the recharge basin, (d) lithological composition along the travelling path before the sampling point, etc.

The results of the chemical, heavy metals and bacteriological analyses of groundwater are given in Appendices E and H respectively.

Nitrogen Cycle

The total nitrogen content of the sewage lagoon effluent generally ranged between 10.5 and 13 mg/L. Almost all of the nitrogen in the effluent was in the form of free ammonia and total Kjeldahl nitrogen.

The areal distribution of the major components of the nitrogen cycle at the beginning and at the end of the study is shown in Figure 11. This map shows that almost all nitrogen has been either converted into nitrate or attenuated at a distance of less than 40 m from the recharge basin along the shallow groundwater path toward the Rocky Saugeen River. However, the concentrations of the components of the nitrogen cycle show irregularity along the main



groundwater flow component at different distances from the basin. There are several factors that could contribute to this difference such as: (a) elevation of intake of the sampling station, (b) depth of intake below water table, (c) type of sampling point (observation well vs open test pit in which case nitrification may readily occur), (d) distance of the sampling station from the recharge basin, (e) the duration of basin flooding and quantity of effluent recharged before the sample was taken, (f) thickness of unsaturated zone (presence of oxygen), (g) travel time (time necessary for a population of nitrifying bacteria to develop), etc.

Nevertheless, the data indicate that almost all nitrogen which will be discharged to the ground surface some distance from the Rocky Saugeen River will be in the nitrate form. This nitrogen will be subject to further reduction by microbial processes thriving in the wet cattail environment along the river.

There are various processes which can remove nitrogen from waste water while it moves through soil, including adsorption of ammonium to the clay, silt and organic fraction of the soil, fixation of ammonium by the organic fraction, fixation of nitrogen by micro-organisms, and nitrogen uptake by vegetation. Volatalization of ammonia and denitrification are the only processes which cause a net removal of nitrogen. The other processes merely store nitrogen in the soil.

Research shows that the mechanism of nitrogen denitrification occurs when a new basin flooding is started. When inundation commences there is entrapped air in the soil for nitrification of ammonium during the initial part of the flooding period. However, as the oxygen is consumed, anaerobic conditions will begin to develop where nitrate and organic carbon can both be present, creating conditions

favourable for denitrification. With continued flooding all nitrogen will stay in the ammonium form, which can be adsorbed by the soil particles. If flooding is not stopped before the cation exchange complex in the soil is saturated with ammonium, increased ammonium levels in the receiving groundwater can be expected. When the flooding is stopped, air will enter the soil and the resulting aerobic conditions in the shallow unsaturated zone will enable nitrification of Some of the nitrate formed in this the adsorbed ammonium. process may diffuse to anaerobic microenvironments in the same soil and denitrification can occur if organic carbon is also present. Some of these nitrate ions may also mix later with the newly infiltrating water when a new flooding period is started and move down to anaerobic environments where denitrification may occur.

In conclusion, setting up proper inundation dry up periods is of great importance with respect to the denitrification processes and therefore nitrogen removal.

#### Phosphorous

The concentration of phosphorous in the lagoon effluent and the detrimental impact on water quality in the Rocky Saugeen River is one of the prime concerns with respect to the present mode of the sewage treatment system operation at Markdale.

Phosphorous removal seems to occur rapidly as the effluent water moves through the sand and gravel deposits (Figure 12). Although a slight increase of the dissolved reactive phosphorous is indicated (as the infiltration proceeded) at a distance of 10 m there is no doubt that favourable conditions do exist in the sand and gravel de-



Figure 12. Hydrochemical map of dissolved reactive phosphorous (A), total phorphosour (B), organic carbon (C), and inorganic carbon (D), concentrations in shallow groundwater.

posits for the removal of phosphorous from the effluent. The presence of a calcium-rich environment and iron and aluminum oxides in the granular materials are the main contributing factors for the removal of phosphorous. It is considered, however, that the removal of phosphorous is probably due to precipitation of calcium-phosphate complexes, which are formed in the slightly alkaline and calcium-rich environment of the effluent water as it moves through slightly silty sand and gravel deposits.

Total removal of phosphorous is very encouraging since it is considered the main constituent to have an adverse effect on river water quality.

Phosphates are the only constituents of the effluent that precipitate in quantity in the soil. This precipitator may affect the porosity and hence the hydraulic conductivity of the sand and gravel in the long-term operation. However, considering the pore space of the sand and gravel deposits to be about 30 percent and relatively small amount of precipitate (oxy-apatite), it will probably be a very long time before phosphate accumulation in the sands and gravels will have a significant effect on the hydraulic performance of the system.

#### Carbons

The areal distribution of the organic and inorganic carbons is shown in Figure 12. It is indicative that at a distance of less than 40 m from the basin, the organic carbon is removed to the background concentrations.

## Phenolic Compounds

Of six analyses of sewage lagoon effluent five showed concentrations of phenolic compounds to be less than 1 part per billion (ppb) and only one sample indicated that the phenols content was 25 ppb. However, this sample was taken in January, 1980, directly from the lagoon under ice conditions long after field work of this study was completed.

Contrary to the very low concentration of phenolic compounds in the lagoon effluent, several samples of groundwater showed considerably high concentrations of phenols. These include samples obtained from OW-4, OW-5, OW-8 and OW-9. The highest values of phenol concentrations in groundwater were in the samples collected on the day when the flooding of the basin started (October 19, 1979). This may suggest that these phenolic compounds are naturally occurring in the shallow groundwater. Another more likely explanation is that since two of these sampling points obtain water from a deeper elevation than other sampling stations their water quality is influenced by the deeper groundwater flow system whose quality may have been affected by exfiltration of the lagoon effluent. Increased concentration of phenolic compounds in the deeper sampling wells is in tune with the sporadic increased concentrations of few other chemical parameters in these wells. A third possibility is that the groundwater was slightly contaminated with phenols during the drilling of the observation wells.

Biochemical and Chemical Oxygen Demand

Since the majority of groundwater samples contained considerable amounts of silt and consequently were filtered, the results of biochemical ( ${\rm BOD}_5$ ) and chemical

oxygen demand (COD) were influenced by these factors. For this reason only few sets of initial samples were analysed for biochemical and chemical oxygen demand. Thus, wastewater renovation with respect to these constituents cannot be assessed.

 $$\operatorname{\mathtt{The}}$\; \operatorname{\mathtt{BOD}}_5$$  of the sewage lagoon effluent was relatively high and in the 20 to 30 mg/L range.

The COD of the lagoon effluent usually was in the 280 mg/L range.

Total Dissolved Solids and Major Ions

Total dissolved solids were calculated by measuring the specific conductance of water samples and multiplying it by a factor of 0.65.

The concentrations of total dissolved solids of the lagoon effluent were in the 400 to 515 mg/L range (Table 5) and concentrations in native groundwater were in the 400 to 470 mg/L range.

A brief discussion regarding the behaviour of the major ions in groundwater during the rapid infiltration study is given in the following paragraphs.

In general the concentrations of calcium fluctuated between 55 and 104 mg/L with maximum value found in OW-6 and the lowest value in TP-1. The concentrations of calcium in unaffected groundwater were between 70 and 80 mg/L.

Magnesium content in the native groundwater was around 30 mg/L but it may go as high as 70 mg/L. In renovated water the maximum concentration of magnesium was 62 mg/L (OW-4) while the minimum value was 23.6 mg/L (OW-1).

Concentrations of sodium in renovated water fluctuated between 67 mg/L (TP-1) and a minimum value of 3.8 mg/L (OW-4). The background concentration of sodium in groundwater was about 11 mg/L.

Background content of potassium in groundwater was about 0.7 mg/L. The maximum concentration of potassium in affected groundwater was reported at 9.8 mg/L (OW-1), whereas the minimum content was 0.7 mg/L (OW-10).

Chloride concentrations in renovated water fluctuated between a maximum value of 91 mg/L (OW-5) and a minimum concentration of 13.5 mg/L (OW-3). The background value of chloride in groundwater was about 20 mg/L.

The background concentration of sulphate in ground-water was around 10 mg/L. In renovated water the content of sulphate fluctuated between a maximum value of 61 mg/L (OW-4) and a minimum concentration of 4.0 mg/L in observation well 10.

рН

The pH of the lagoon effluent was usually between 7.69 and 8.01 and pH of the renovated water was between 7.35 and 8.0 mg/L. The pH of the native groundwater ranged from 7.5 to 7.7 mg/L.

#### Anionic Detergents

Anionic detergents are not found in natural conditions. Therefore, the presence of these substances in natural waters indicates contamination by domestic or industrial wastes.

Two sets of samples were obtained from most of the monitoring stations and analysed for anionic detergents (November 3 and November 21, 1979). The results of the November 3 set of samples indicated the concentration at or below the detection limit of 0.1 mg/L. The only exception to this, was OW-1 which had a concentration of 0.4 mg/L.

The results of the second set of samples showed a slight increase of anionic detergent concentrations in several observation wells and test pits. However, none of these observation points had values exceeding 0.4 mg/L.

The concentration of anionic detergent in the sewage lagoon effluent of only one sample was 0.1 mg/L.

#### Heavy Metals

It is indicative that non-filtered samples of groundwater have relatively high concentrations of heavy metals, in particular aluminum with concentrations of several hundred milligrams per litre, then manganese and zinc not exceeding the concentrations of 10~mg/L. In contrast, the concentrations of heavy metals in the sewage lagoon effluent were exceptionally low with the exception of zinc (14 mg/L).

The results of heavy metal analyses on filtered samples of groundwater show a different picture with very low concentrations. This suggests that the elevated concentrations of heavy metals in non-filtered samples are associated with fine soil particles present in these water samples.

#### Bacteriological Quality

The fecal coliform bacteria density in groundwater is shown in Figure 13 which indicates that some fecal bacteria were reaching distances of 60 m from the recharge basin. It is expected that if sequences of long flooding periods were held, the fecal coliform count in groundwater would tend to increase when newly infiltrated water arrives at the observation wells and then would decrease as infiltration continued.

The coliform removal was probably due to "filtering" at the surface and mortality in hostile and competitive subsurface environments. Filtering and competition, and hence the fecal coliform removal, can be expected to increase with continued infiltration because of increased surface clogging and increased bacterial populations in the soil.

It is reasoned that any bacterial population which may reach the groundwater discharge area will be further reduced by microbial activities present in wet peat deposits along the river.



#### Surface Water Quality

In order to assess whether there was any measurable effect on surface water quality, four sampling stations were established at strategic locations in the Rocky Saugeen River. In addition a few samples were obtained from two existing surface water ponds located in the immediate vicinity of the sewage lagoon. These two monitoring stations provided information with respect to possible infiltration of the effluent into the shallow water table aguifer directly from the lagoon.

The locations of the surface water sampling stations are given in Figure 1, while the results of qualitative analyses are provided in Appendices F and I.

#### Chemical Quality

The results of the chemical analyses obtained from the four sampling stations in the Rocky Saugeen River show that there was no measurable increase in any of the chemical constituents in the river due to the infiltration of about 8,020 m³ of sewage effluent to the shallow groundwater system. This is understandable taking into account effluent dilution by groundwater, surface water and other attenuating processes in the groundwater, hydrologic and surface systems existing between the upper limit of the groundwater discharge area and the Rocky Saugeen River.

In actuality, the water quality of the river has much lower concentrations of almost all chemical constituents than background concentrations in the shallow groundwater except for pH and nitrate which are somewhat higher in the River. The river water is slightly on the alkaline side compared to the groundwater.

Concentrations of the anionic detergents were below the detectable limit (0.1 mg/L) in the samples obtained on November 3, 1970 at two sampling stations in the Rocky Saugeen River (upstream and downstream from the lagoon). No increase in the content of anionic detergent was revealed by the second set of samples taken from four sampling stations in the Rocky Saugeen River on November 21, 1979.

Although the elevation of the water table in the pond located immediately west of the lagoon is lower than the elevation of the bottom of the lagoon, it appears that water quality in the pond has not been affected by the leakage from the lagoon. It should be noted though, that during the course of pumpage of the effluent into the infiltration basin one hose developed a leak and as a consequence a small amount of the effluent found its way (along the ditch parallel to the berm) into this pond. This resulted in slight increases in the concentrations of several chemical parameters including a few components of the nitrogen cycle and phosphorous (Appendix F). A similar trend was exibited by anionic detergents which increased to 0.1 mg/L.

#### Heavy Metals

The concentrations of heavy metals in the river were exceptionally low at all four sampling points indicating that there was no measurable influence on their concentration in the river caused by the effluent infiltration, or due to the existance of the sewage system at this locality (Appendix F).

# Bacteriological Quality

Bacterial counts in river water samples taken upstream and downstream from the study area were quite low (Appendix I). It is therefore concluded that rapid infiltration of the lagoon effluent into the coarse granular deposits has had no adverse effect on the bacteriological quality of the river water.

The presence of fecal coliform bacteria in the pond water located immediately west of the lagoon was most likely caused by leakage of the effluent from the pumping equipment which found its way to the pond.

#### DISCUSSION

# Significance of the Recharge Mechanism and Groundwater Flow Systems

The resulting effect of the infiltration of the sewage lagoon effluent into granular deposits was the development of a groundwater hydraulic mound. Initially, the percolating water will move downward and then after reaching the water table, it radiates in all directions until the mounding effect has reached a steady state condition. From here on, the lateral movement of water will be only in the direction of the original groundwater gradient, that is towards the Rocky Saugeen River.

It is expected that a considerable mixing with native groundwater will occur to a certain depth largely depending on the direction of groundwater flow, the quantity of recharged wastewater and the permeability of the granular deposits. In this study, because large quantities of wastewater were infiltrated in a relatively small area, it appears that a bulk of recharged wastewater occupied or "floated" above the native groundwater and hence the lateral movement prevailed. Therefore, only a limited portion (up to 2 m) of the sand and gravel aquifer, an "active" (dynamic) zone, largely participated in the wastewater renovation (Figure 14).

In view of this situation, it is important to recognize the significance of the qualitative results of groundwater in relation to the depth from which the samples were obtained. For example, it is obvious that samples taken from the open test pits (TP-1 to TP-5) will be representative of the "active" zone of the shallow aquifer,



whereas some of the deeper observation wells would depict a portion of the aquifer which is less affected by infiltrated wastewater.

Furthermore, water quality in these deep wells seems to be affected by an "outside" source most likely agricultural fertilizers. Exfiltration from the lagoon may also be a contributing factor to some of the discrepancies in water quality results in the deeper observation wells. The mechanism of groundwater flow and the potential pollution sources likely influencing groundwater quality in the study area are schematically illustrated in Figure 14. This figure shows that any exfiltration from the lagoon which is probably insignificant at this time, because of self-sealing processes at the bottom of the lagoon would have an affect on the deeper portion of the sand and gravel aquifer system. The results of qualitative analyses obtained from several sampling stations support this conceptual model.

The bulk of the renovated water will be discharged in the newly formed groundwater discharge zone created by the rise of the water table, as well as in the original groundwater discharge zone, both constituting the section along the river about 80 m wide. The discharged groundwater will undergo further renovation while travelling overland through a wet, small cattail environment.

Finally, a small quantity of groundwater from the shallow aquifer will probably reach the river directly through the banks and river bed.

# Potential Hydraulic Loading

The infiltration rates generated during the initial period of this study (first five days) could be used as the potential or bench-mark infiltration rates since they were basically affected only by the permeability of the underlain sand and gravel deposits and were not influenced by clogging factors.

Using this data, the potential application rate could be as high as  $32~\text{m}^3/\text{d/m}^2$ . This value should be increased by the amount of infiltration which will occur through the contact area of the effluent with the soil on three sides of the infiltration basin. This additional recharge rate will largely depend on the effluent depth maintained in the recharge basin.

More conservative loading rates are given in Table 2. Recharge rates given in this table represent an average rate generated during certain periods of time, under specific hydraulic and infiltration conditions of the recharge basin. For this reason, they should be considered more reliable than the former values.

The operational sequence of an infiltration system (inundation - dry up periods ratio) should be considered in close conjunction with optimal loading rates. In other words, inundation - dry up periods are highly influential factors to the optimal recharge rates.

#### General Design Aspects

A large-scale infiltration system for the renovation of wastewater from the sewage lagoon should be considered for design. Although not in abundance, the most favourable land appears to be the area located immediately northwest of the infiltration basin used in this study (Photo 3). The system may consist of a chain of elongated

recharge basins parallel to the Rocky Saugeen River. The effluent could be distributed into the basins by a channel which could run along the recharge strip. Since a low suspended solids content in the effluent would be advantageous in order to prolong flooding periods and therefore require minimum maintenance of the basins, a sedimentation reservoir could be constructed at the head of the channel system carrying the effluent to the recharge basin.

The following criteria may be used for the design of a system for renovating sewage lagoon effluent by ground-water recharge with infiltration basins at this locality.

- During infiltration the depth to water table below the recharge basin should be at least 1.5 m. Maintaining a sufficiently thick unsaturated zone is necessary for aerobic decomposition of organic matter before it reaches the water table.
- Since the above criteria may be difficult to achieve, an alternative would be oxygenation of sewage lagoon effluent by "splashing" into the basin.
- 3. The bottom of a recharge basin should be relatively flat with up to 1.0 m of relatively uniform sand maintained at its bottom. This imported filter material should be of slightly lower permeability than the parent material. The relatively thick sand filter will allow a longer time between additions of more sand, as clogged layers are removed.

# Some Aspects of Recharge Basin Management

It would be difficult to predict the optimum wet/dry ratios without extensive operational experience.

This ratio will largely depend on the quality of the effluent at different times of the year and it may change accordingly. Therefore, the ratio should be determined by experimentation with the effluent in question. The inundation period is dictated mainly by aerobic conditions in the sand filter and in the ground, whereas the dry up period serves to dry the sediment and algae layer and to allow oxygen to penetrate the sand filter and the unsaturated material below it (Hore, 1980).

Initially, a large operation system with infiltration basins, longer inundation periods alternated with dry
up periods (suggested initial ratio is 10:6) should be used
to achieve maximum efficiency. Because of relatively high
suspended solids in the sewage lagoon effluent, basically
present in the form of organic matter, it is a matter of
time until these suspended solids accumulate at the bottom
of the basin (sludge layer), thus reducing infiltration rate
to a certain degree. It is expected that upon drying up,
the sludge layer would shrink and brake up into curled up
flakes.

Initially, dry up periods may help to restore original infiltration rates without the help of any device. However, if necessary, at the end of dry up periods the basin could be raked or harrowed using manual labour only (hand operation). This procedure may be repeated at the end of each dry up period until such time that infiltration rates are reduced by build up of a thicker sludge layer thus necessitating its physical removal. Again, hand operation should be employed to accurately remove a small amount of ("shaving" of the basin bottom) the sludge and sand filter followed by harrowing, if necessary. Use and movement of any heavy vehicle will have a negative effect on the basin's performance because it will compact the sand filter thus causing permanent reduction of its permeability and consequently

decreasing infiltration capabilities in a recharge basin. In any event, the removal of the top of the sand filter should be done as infrequently as possible to maintain the biologically active (top) layer in the sand filter (Hore, 1980).

After a certain period of basin operation, it may be necessary to replace the thin (top) layer of granular material at the bottom of the basin. The usual practice of filter removal and replacement is to place a uniform layer of sand up to 1 m thick in the bottom of a basin, and remove several centimeters of this sand as it becomes clogged. Another layer of sand is placed in the basin only after the removal of the top layer reduces the original filter to about 0.3 m (Sibul, 1980). The medium sand filter is used because (a) this type of material would act as an immediate filtering media and would retain most of the suspended solids near the bottom of the basin thus minimizing the possibility of formation clogging at a greater depth and (b) it was found that granular material with larger pore space recovered its infiltration capacity more slowly than those with small pore spaces.

The effect of rainfall during dry up periods on basin performance could be significant in either reducing or improving the infiltration rate. It was observed that rain drops tend to brake the accumulated sludge layer (while it was still wet) and wash it into the soil.

An example of the effect of rainfall and snow on the basin partially clogged with a sludge layer is illustrated in Photos 11 and 12. Photo 11 shows the situation of the "unshaved" bottom of the basin at the end of the infiltration study (November 26, 1979). Rain and snow actions have "purified" it as illustrated by Photo 12 taken on April 19, 1980. Actually, all suspended solids from the surface were moved "inside", thus affecting several centimetres of granular material immediately below the bottom of the basin.



Photo 11. A thin sludge layer accumulated at basin bottom at the end of the infiltration study November 26, 1979 had slightly reduced infiltration rate.



Photo 12. Rainfall and winter weather conditions had "shaved off" the basin left partially clogged with a thin sludge layer at the end of the infiltration study shown in Photo 11.

Photo taken on April 19, 1980.

Other aspects of an efficient management of an infiltration system would be learned during its actual operation.

#### Winter Operating Constraints

In a climatic region such as the Dundalk upland in which the Village of Markdale is located, with sub-zero temperatures which may last over four months, operation of an infiltration system for the lagoon effluent during the winter months could pose serious difficulties. Notable concerns are discussed as follows:

- During the sub-freezing temperature, as long as the inundation period is continued, there is little danger (with some exceptions) that the bottom of the basin may freeze resulting in building up of ice and snow. Build up of ice and snow would disrupt smooth continuation of the operation of the system.
- 2. Pump failure, or basin clogging would eventually necessitate stoppage of the basin inundation resulting in accumulation of ice and snow.
- 3. A severe blizzard accompanied with strong winds may generate large snow drifts into the infiltration basin, thus obstructing continuous operation. Although infrequent, this could provide a seriously disruptive condition.
- 4. Research shows that application of waste water from the stabilization pond did not prove to be effective for melting snow and preventing ice accumulation. Therefore, continuous flooding at the time of the earliest

hard freeze might provide an insulating cover of snow thus enabling continuation of recharge into early winter. This would be possible provided that snow would not accumulate in such large quantities from the blizzard or snow drifts.

- 5. It is also anticipated that a greater depth of waste water in the infiltration basin would be advantageous during the early winter to extend the infiltration period under the ice. Therefore, if the flooding period is continued at least one month beyond the freezing date, the necessary winter storage of waste water would be less than four months.
- 6. Because of freezing soil conditions and other adverse weather effects, basin cleaning and drying in the winter will not be practical. If the infiltration rate is reduced to near zero while water remains in the infiltration basins, their renovation in the spring will be difficult. The remaining water would have to be pumped out in order to clean the basin filters (Hore, 1980).

Considering these adverse factors, it is doubtful that the efficient (if any) operation of the system during the winter months can be accomplished.

#### CONCLUSIONS

- 1. The results of a rapid infiltration study of sewage lagoon effluent renovation with an infiltration basin, carried out from October 19 till November 26, 1979, showed that wastewater can be effectively renovated by this method. In an operational system, the basin would be located immediately northwest of the basin used in this study, but generally parallel with the Rocky Saugeen River.
- 2. An infiltration of over 700 m/year of the lagoon effluent can be obtained with tentative flooding periods of 6 to 10 days alternated with dry up periods of 5 to 6 days. These are tentative suggestions, but experience gained from an operational system would provide data for optimal and more firm operational schedules.
- 3. The response of the water table aquifer beneath the infiltration basin and in close proximity to it, enabled an evaluation of the vertical and horizontal hydraulic conductivity of the aquifer. The values of hydraulic properties of the shallow aquifer can be used in the design of an operational infiltration system to predict underground detention times and water table configuration for various shapes of the recharge basin.
- 4. The attenuation processes in sand and gravel deposits effected complete removal of dissolved reactive phosphorous.
- 5. Free ammonia was entirely converted into total Kjeldahl nitrogen at a distance of less than 40 m, whereas over 40 percent of Kjeldahl nitrogen was removed or converted into nitrate at the same distance from the

recharge basin. Nitrate concentrations were still relatively high. Short, frequent inundations of the basin alternated with equally long dry up periods, would probably yield the most complete conversion of nitrogen in the effluent water to nitrate in the renovated water. This short inundation period may be performed when the need for it arises.

- 6. The renovation processes in the granular materials yielded almost complete removal of fecal coliform bacteria at a distance of about 60 m from the recharge basin.
- 7. There was no indication of gradual clogging of the formation at depth, although a thin layer of sludge matter gradually accumulated at the bottom of the infiltration basin thus reducing, to some degree the recharge rate. With periodic "shaving off" and the replacement of the granular material at the bottom of the basin a rapid infiltration system for renovating sewage lagoon effluent should have a long, useful life.

#### RECOMMENDATIONS

Based on the results of this study it is apparent that the approach using an infiltration basin system can be utilized on an operational scale for tertiary treatment of sewage lagoon effluent. However, a careful evaluation of the present sewage flow, 15-to 20-year projected sewage flow and subsequently required storage capacity in conjunction with the operational mode of the rapid infiltration system should be carefully assessed before the design stage is undertaken.

In the light of some uncertainty with respect to lithological conditions in the study area (as indicated by geophysical survey) it is required that

 At least three test holes should be completed into the bedrock in order to obtain more accurate information as to the thickness and nature of the overburden.

The data obtained may clarify any possible impact on groundwater use in the area (Markdale municipal wells). This should be completed before the design stage is undertaken.

It appears that the most favourable area (considering just the area between the river and CPR tracks) for the establishment of an operational system is located immediately northwest from the infiltration basin used in this study. Additional field investigation may be necessary to confirm that this prospective area consists of permeable sand and gravel deposits. This could be accomplished with the help of a backhoe.

However, the available land between the Rocky Saugeen River and CPR tracks is insufficient to accommodate the entire sewage lagoon effluent in an operational infiltration system. For this reason, the field investigation should also include an assessment of the availability of the additional land which will be suitable for sewage effluent treatment by rapid infiltration. The property immediately west of the sewage lagoon appears to be quite promising.

If the permanent infiltration system is installed, the important water quality parameters should be monitored as well as the long term water level response to recharge. The formation clogging aspects should also be studied. Underground detention time should be monitored along with renovated groundwater "polishing" by biological processes in the groundwater discharge area in the wet section near the river.

It is suggested that the municipality engage a consultant for the expansion of the sewage works based on a groundwater recharge approach philosophy. Data collected during this study and presented in this report should serve as a basis for the design of an operational system with infiltration basins.

The consultant should work closely with the staff of this Ministry in view of the innovative nature of this treatment method and to ensure that all concerns are adequately resolved before proceeding to final design.

#### ACKNOWLEDGEMENTS

The approach used in this study was initiated by Mr. Ken Goff, former Chief of Water Resources Assessment Unit, Southwestern Region.

Messrs. Denis Veal and Daniel Brown read the manuscript and made many valuable suggestions.

Messrs. Ron Hore and Ulo Sibul, Water Resources
Branch reviewed the draft report and gave much valuable and
constructive criticisms and suggestions. Dr. E. Rodrigues
and his staff of Geotechnical Services, Water Resources
Branch carried out a geophysical survey in the study area.

The field work was carried out by the author and Mr. Tom Ervasti. The levelling survey was performed by Mr. Brian Jaffray and grain size analyses by Mr. Steve Check. Drafting and assemblage of the appendices were carried out by Miss Nancy Rennie and Mr. Francois Sylvestre.

#### REFERENCES

- Bouwer, H. 1967. Infiltration with Low Quality Water.

  Paper Presented at Annual Meeting, Amer. Soc.

  Agr. Eng., Hot Spring, Ark.
- Davis, S.O. 1969. Porosity and Permeability of Natural materials. <u>In</u> Flow through Porous Media, edited by R. J. M. DeWiest, Academic Press, New York. pp. 53-89.
- Hazen, A. 1893. Some Physical Properties of Sands and Gravels with Special Reference to their use in Filtration, 24th Ann. Rept., Mass. State Bl. Health, Boston. pp. 541-556.
- Hore, R. 1980. Memorandum to D. Veal, July 9, 1980 (RE: Draft Report on a Study Sewage Lagoon Effluent Renovation, Village of Markdale).
- Hydrology Consultants Limited 1973, Report on Test Drilling Program, Village of Markdale, Project No. 5-0176-72 (with 5 page addendum: revised section "Predicted Yield").
- McGauhey, P. H., and Krone, R. B., 1967. Soil Mantle as a Waste Water Treatment System. Sanitary Engineering Research Lab. Rept. No. 67-11, Univ. of Calif, Berkley.
- Morrison Beatty Limited, 1979. Progess Report Lagoon Effluent Recharge Study Village of Markdale.

- Ontario Ministry of the Environment, 1979. A Survey to

  Determine the Effect of Waste Discharges From the

  Village of Markdale on the Rocky Saugeen River.

  Southwestern Region, London, Internal Report.
- Sibul, U. 1980. Artificial Groundwater Recharge, History and Problems. Paper presented at Groundwater Seminar Oct. 14 to 16, 1980. Kempenfeldt Bay.
- Todd, D. K., 1959. Groundwater Hydrology, John Wiley & Sons, New York.
- William Trow Associates Limited 1966. Subsoil Survey,
  Proposed Sewer Project, Village of Markdale
  O.W.R.C. Project 66-S-199.

#### APPENDIX A

| bservation<br>ell or test<br>it |          | Ground elevation a.m.s.l. | Total well (m) At time of | (pit) depth On April 19 | Depth to water<br>level at time<br>of completion | "Screen"<br>Depth to | details Litho                          | Description                                          |
|---------------------------------|----------|---------------------------|---------------------------|-------------------------|--------------------------------------------------|----------------------|----------------------------------------|------------------------------------------------------|
|                                 | 2        | (m)                       | completion                | 1980                    | (m)                                              | (m)                  | (m) (m)                                |                                                      |
| 0W-1                            | 10/09/79 | 403.97                    | 5.49                      | 4.79                    | 3.53                                             | 3.49                 | 2.0 0 - 0.83<br>0.83- 3.8<br>3.8 - 5.5 | Sand, gravel (recharge pit) Sand, gravel, minor silt |
|                                 |          |                           |                           |                         |                                                  |                      | 3.0 - 5.5                              | Sand, gravel, silt, clay layers                      |
| 0W-2                            | 05/09/79 | 404.02                    | 5.30                      | 5.14                    | 3.61                                             | 4.30                 | 1.0 0 - 4.0                            | Sand, gravel, slight                                 |
|                                 |          |                           |                           |                         |                                                  |                      | 4.0 - 5.5                              | Sand, gravel, some clayey silt                       |
| 0W-3                            | 05/09/79 | 404.25                    | 7.0                       | 6.85                    | 4.15                                             | 5.0                  | 2.0 0 - 4.0                            | Sand, gravel with cobbles                            |
|                                 |          |                           |                           |                         |                                                  |                      | 4.0 - 4.9                              | Sand, silty with gravel                              |
|                                 |          |                           |                           |                         |                                                  |                      | 4.9 - 7.6                              | <u>Till</u> , clayey silt, fine gravel               |
| OW-4                            | 05/09/79 | 403.97                    | 5.6                       | 5.78                    | 3.77                                             | 4.60                 | 1.0 0 - 3.1                            | Sand, gravel, some                                   |
|                                 |          |                           |                           |                         |                                                  |                      | 3.1 - 6.1                              | Sand, gravel, some                                   |
| 0W-5                            | 05/09/79 | 402.30                    | 5.20                      | 5.06                    | 2.49                                             | 4.20                 | 1.0 0 - 3.7                            | Sand, gravel, minor                                  |
|                                 |          |                           |                           |                         |                                                  |                      | 3.7 - 5.5                              | <u>Gravel</u> , <u>cobbles</u> , silt                |

| Observation<br>well or test<br>pit |          | Ground elevation a.m.s.l. | Total well (m) At time of completion | pit) depth<br>On April 19<br>1980 | Depth to water<br>level at time<br>of completion<br>(m) | "Screen'<br>Depth to<br>top<br>(m) | details<br>Length<br>(m) | Litho<br>Depth<br>(m)             | logic log<br>Description                                                         |
|------------------------------------|----------|---------------------------|--------------------------------------|-----------------------------------|---------------------------------------------------------|------------------------------------|--------------------------|-----------------------------------|----------------------------------------------------------------------------------|
| 0W-6                               | 10/09/79 | 403.95                    | 5.70                                 | 4.59                              | 3.36                                                    | 4.70                               | 1.0                      | 0 - 4.0<br>4.0 - 5.8<br>5.8 - 6.1 | Sand, gravel, slight silt Sand, gravel, silt layering Till, clayey silt, massive |
| 0W-7                               | 10/09/79 | 403.90                    | 5.34                                 | 4.82                              | 3.31                                                    | 4.34                               |                          | 0 - 4.1<br>4.1 - 5.9<br>5.9 - 6.1 | Sand, gravel, slight silt Sand, gravel, silt layering Till, clayey silt, massive |
| 0W-8                               | 05/09/79 | 404.16                    | 5.30                                 | 5.00                              | 2.77                                                    | 4.30                               | 1.0                      | 0 - 5.5                           | Sand, gravel, some cobbles, slight silt                                          |
| 0W-9                               | 05/09/79 | 404.04                    | 5.30                                 | 5.4                               | 3.76                                                    | 4.30                               | 1.0                      | 0 - 5.5                           | Sand, gravel, some cobbles, slight silt                                          |
| OW-10                              | 10/09/79 | 403.90                    | 5.34                                 | 4.38                              | 3.23                                                    | 4.34                               | 1.0                      | 0 - 4.0                           | Sand, gravel, slight silt Sand, gravel, silt, clay layers                        |
| OW-11                              | 15/08/79 | 403.68                    | 3.40                                 | 3.5                               | 3.26                                                    | 2.40                               | 1.0                      | 0 - 2.4                           | Gravel, cobbles, sand minor silt Sand, medium gravel, light silt                 |

| Observation well or test pit |          | Ground<br>elevation<br>a.m.s.l. | Total well (m) At time of | pit) depth<br>On April 19 | Depth to water<br>level at time<br>of completion | "Screen'<br>Depth to<br>top | details<br>Length | Lithol<br>Depth | ogic log<br>Description                                   |
|------------------------------|----------|---------------------------------|---------------------------|---------------------------|--------------------------------------------------|-----------------------------|-------------------|-----------------|-----------------------------------------------------------|
|                              |          | (m)                             | completion                | 1980                      | (m)                                              | (m)                         | (m)               | (m)             |                                                           |
| 0W-20                        | 20/07/79 |                                 | 3.50                      |                           | dry                                              | 2.5                         | 1.0               | 0 - 2.7         | Cobbles, boulders, coarse sand and gravel, silt           |
|                              |          |                                 |                           |                           |                                                  |                             |                   | 2.7 - 3.5       | Gravel, coarse with silty sand                            |
| 0W-21                        | 20/07/79 | 402.78                          | 2.70                      | 2.14                      | 2.23                                             | 1.7                         | 1.0               | 0 - 1.5         | Cobbles, boulders with                                    |
|                              |          |                                 |                           |                           |                                                  |                             |                   | 1.5 - 2.7       | sand, silty<br>Sand, gravel, little silt                  |
| 0W-22                        | 20/07/79 | 407.54                          | 2.71                      | 2.86                      | 2.69                                             | 1.7                         | 1.0               |                 | Gravel, cobbles sand Silt, sandy, dense Till, clayey silt |
| 0W-24                        | 14/09/79 | 409.83                          | 3.50                      | 2.85                      | 3.12                                             | 2.5                         | 1.0               | 0 - 3.5         | Sand, medium with gravel, slight silt                     |
| TPB-1                        | 20/07/79 |                                 | 3.5                       | backfilled                | dry                                              |                             |                   | 0 - 2.8         | Gravel, cobbles, very                                     |
|                              |          |                                 |                           |                           |                                                  |                             |                   | 2.8 - 3.5       | silty with sand<br>Silt, sand, clay                       |
| TPB-2                        | 20/07/79 |                                 | 3.9                       | backfilled                | dry                                              |                             |                   | 0 - 2.1         | Cobbles, boulders, coarse                                 |
|                              |          |                                 |                           |                           |                                                  |                             |                   | 2.1 - 3.9       | sand, gravel, silty<br>Silt, sandy, dense                 |
| TPB-5                        | 20/07/79 |                                 | 3.9                       | backfilled                | dry                                              |                             |                   | 0 - 2.0         | Gravel, cobbles, silty                                    |
|                              |          |                                 |                           |                           |                                                  |                             |                   | 2.0 - 3.9       | Gravel, coarse, silty                                     |

| Observation well or test pit |          | Ground<br>elevation<br>a.m.s.l.<br>(m) | Total well (m) At time of completion | (pit) depth<br>On April 19<br>1980 | Depth to water<br>level at time<br>of completion<br>(m) | Depth to top (m) | details<br>Length<br>(m) | Lithol<br>Depth<br>(m) | ogic log<br>Description                          |
|------------------------------|----------|----------------------------------------|--------------------------------------|------------------------------------|---------------------------------------------------------|------------------|--------------------------|------------------------|--------------------------------------------------|
| TPB-6                        | 20/07/79 |                                        | 3.9                                  | backfilled                         | dry                                                     |                  |                          | 0 - 3.9                | Gravel, cobbles, with coarse sand, silty         |
| TP-1                         | 29/10/79 | 403.9                                  | 2.5                                  |                                    | dry                                                     |                  |                          |                        | Top soil, silty Sand, gravel, occasionally silty |
| TP-2                         | 29/10/79 | 402.06                                 | 1.5                                  |                                    |                                                         |                  |                          |                        | Top soil  Gravel, sand, coarse minor silt        |
| TP-3                         | 29/10/79 | 400.60                                 | 1.0                                  |                                    |                                                         |                  |                          |                        | Top soil, silty  Gravel, sand, silty clayey      |
| TP-4                         | 29/10/79 | 402.32                                 | 1.5                                  |                                    |                                                         |                  |                          |                        | Top soil, silty, sandy Sand, gravel, silt        |
| TP-5                         | 29/10/79 | 402.78                                 | 1.4                                  |                                    |                                                         |                  |                          |                        | Top soil <pre>Gravel, sand, silty, clayey</pre>  |

#### APPENDIX B

GRAIN SIZE ANALYSES OF SURFICIAL DEPOSITS

#### GRAIN SIZE DISTRIBUTION

Project Study of sewage lagoon effluent renovation by rapid infiltration

Location of Project Markdale Boring No. Sample No.

Description of Soil Depth of Sample

Tested By. Steve Check Date of Testing January, 1980

Date sampled: October, 1979



#### LEGEND

| Test pit no. | Depth (m) | Symbol | Soil Description  |
|--------------|-----------|--------|-------------------|
| 1            | 0.61      |        | Gravel with coars |
| 1            | 1.22      | -0     | Gravelly sand wit |
| 1            | 1.83      | -•     | Gravel with coars |

# Gravel with coarse sand, some fines Gravelly sand with some fines Gravel with coarse sand, some fines

# GRAIN SIZE DISTRIBUTION

Project Study of sewage lagoon effluent renovation by rapid infiltration Location of Project \_\_\_\_\_ Markdale \_\_\_\_ Boring No. \_\_\_\_\_ Sample No. \_\_\_\_\_

Description of Soil \_\_\_\_\_\_ Depth of Sampl. \_\_\_\_\_ Date of Testing \_\_\_\_\_ January, 1980 Steve Check

Date sampled: October, 1979



#### LEGEND

| Test pit no. | Depth (m) | Symbol | Soil Description                      |
|--------------|-----------|--------|---------------------------------------|
| 2            | 0.61      | -•-    | Gravel with coarse sand, some fine    |
| 3            | 0.46      | -0-    | Gravelly sand with some silt and clay |

fines

#### GRAIN SIZE DISTRIBUTION

Project Study of sewage lagoon effluent renovation by rapid infiltration

Location of Project Markdale Boring No. Sample No.

Description of Soil Depth of Sample

Tested By. Steve Check Date of Testing January, 1980

Date sampled: October, 1979



#### LEGEND

| Test pit no. | Depth (m) | Symbol | Soil description                   |
|--------------|-----------|--------|------------------------------------|
| 4            | 0.4       |        | Gravel with coarse sand some fines |
| 4            | 0.73      | -0-    | Gravel with coarse sand some fines |
| 4            | 1.22      | -      | Gravel with coarse sand some fines |

# APPENDIX C

RESULTS OF GEOPHYSICAL SURVEY





#### APPENDIX D

SUMMARY OF WATER WELL RECORDS



#### SUMMARY OF WATER WELL RECORDS

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

Compiler: N. RENNIE

County: GREY

Township (s): GLENELG

Date compiled: 19/04/30

| County   | . 6      | KEY  |               |                    |                       | IOW                                | nship (                  | s): G                    | LENELG                    | >                      |                               |                                   |                       | Date c                | ompii                   | ea. /                 | 04/80    | Compiler: N. RENNIE                                                                                 |
|----------|----------|------|---------------|--------------------|-----------------------|------------------------------------|--------------------------|--------------------------|---------------------------|------------------------|-------------------------------|-----------------------------------|-----------------------|-----------------------|-------------------------|-----------------------|----------|-----------------------------------------------------------------------------------------------------|
| Wei      | Lo       | cati | on            | Elev               |                       |                                    | Dat<br>drii              | ĭ ¥e∃                    | Length casing,            | Well                   | Depth                         | Original<br>level, in             | Pumpi                 | ng                    | test                    | Kind                  | Water    |                                                                                                     |
| number 1 | Township | Lot  | Concession    | Elevation, in feet | Owner                 | Driller                            | Date 5                   | Well diameter, in inches | Length of casing, in feet | Well depth,<br>in feet | Depth water<br>found, in feet | Original static<br>level, in feet | Drawdown ,<br>in feet | Pumping rate, in Igpm | Duration of pumping,hrs | of water <sup>2</sup> | er use 3 | Well log and remarks                                                                                |
| 1301     | G        | 90   | II<br>Wisr    | 1390               | ALVIN<br>FOSTER       | M.<br>BELLERBY                     | 23/<br>06/<br>51         | 4                        | 111                       | 138                    | 139                           | 20                                | 10                    | 6.6                   | 1                       | FR                    | DO<br>51 | 0-21 DUG WELL 21-111 SAND and CLAY 111-138 LIMESTONE ROCK                                           |
| 4325     | G        | 100  | II<br>WTS.R   | 1370               | AUGUST<br>STRAUTNIERS | MES<br>WELL<br>DRILLING            | 21/<br>08/<br>73         | 4                        | 30                        | 105                    | 87<br>102                     | 46                                | 29                    | 4                     | -                       | FR                    | Do       | 0-4 BROWN FILL 52-105 BROWN 4-21 HARDPAN LIMESTONE 21-29 GRAVEL, STONES 29-52 GREY BROKEN LIMESTONE |
| 4655     | 6        | 100  | IL<br>WTSR.   | 1360               | ALLAN<br>OLSEN        | RAY<br>SPENCER<br>WELL<br>DRILLING | 18/06/74                 | 4                        | 63                        | 146                    | 118                           | 25                                | 65                    | 14                    | 2.5                     | FR                    | DO       | 0-2 TOPSOIL 62-146 BROWN 2-17 GRAVEL LIMESTONE 17-26 CLAY, GRAVEL 26-62 GRAVEL, SAND                |
| 4658     | G        | 100  | II<br>Wisr    | 1355               | GORD<br>HEDGES        | Ú,                                 | 17/06/74                 | 4                        | 63                        | 90                     | 83                            | 24                                | 16                    | 24                    | 2.75                    | FR                    | $\infty$ | 0-2 TOPSOIL 62-90 BROWN 2-17 GRAVEL LIMESTONE OO 17-26 CLAY, GRAVEL 26-62 BROWN GRAVEL              |
| 3125     | G        |      | III<br>WT.S.R | 1350               | R.I<br>MEI KLEHAM     | ALLAN                              | 3/11/69                  | 5                        | 67                        | 106                    | 100                           | 60                                | 15                    | 10                    | 6                       | FR                    | Do       | 0-67 CLAY, GRAVEL<br>67-107 YELLOW LIMESTONE                                                        |
| 3349     | G        | 91   | I<br>WTSR     | 1325               | D.L.<br>THOMSON       | ц                                  | 14/10/70                 | 5                        | 82                        | 98                     | 90                            | -1                                | -                     | 20                    | 6                       | FR                    | Do       | 0-82 CLAY, GRAVEL<br>82-48 YELLOW LIMESTONE                                                         |
| 1665     |          |      |               | 1390               | E<br>TRAFFORD         | m.S.<br>BELLERBY                   | 29/<br>04/ <sub>63</sub> | 5                        | 43                        | 94.5                   | -                             | -                                 | -                     | _                     | -                       | -                     | Со       | 0-43 STONEY GRAVEL, CLAY<br>43-945 GREY LIMESTONE                                                   |
| 4198     |          | 100  | I<br>WT.S.R.  | 1350               | J.<br>BROPHY          | ALLAN<br>LOUCKS                    | 18/<br>06/<br>73         | 5                        | 45                        | 100                    | 95                            | 27                                | 13                    | 10                    | 4                       | FR                    | DO       | 0-45 BROWNCLAY, GRAVEL<br>45-80 GREY LIMESTONE<br>80-100 BROWN LIMESTONE                            |
| 4218     |          | 101  | II<br>WT.S.R  | 1370               | MARKDALE<br>LEGION .  | JIM<br>CLARKE<br>WELL<br>DRILLING  | 26/<br>01/<br>73         | 5                        | 30                        | 111                    | 62                            | 35                                | 55                    | 5                     | ١                       | R                     | co       | 0-5 BROWN CLAY 5-30 CLAY, GRAVEL 30-90 BROWN LIMESTONE 90-111 GREY LIMESTONE                        |

Location is shown in Figure . FR = fresh; SA = salty; SU = sulphur; MN = mineral . 3DO = domestic; ST = stock; IR = irrigation; IN = industry; CO = commercial; MU = municipal;

PS-public supply; CA- cooling or air conditioning . MOE 0488/11/78



# SUMMARY OF WATER WELL RECORDS

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

Compiler: N. RENNIE

County: GREY Township(s): GLENELG

ship(s): GLENELG Date compiled: 19/04/80

| County      | 1:61       | KET   |              |                    |                               | TOW                                      | nship (          | S); G | LENC                      |                     |                            |                                |                    | Date c                | ompine                  | <u> </u>                   | ~ / 8       | Compiler: N. RENNIE                                                                               |
|-------------|------------|-------|--------------|--------------------|-------------------------------|------------------------------------------|------------------|-------|---------------------------|---------------------|----------------------------|--------------------------------|--------------------|-----------------------|-------------------------|----------------------------|-------------|---------------------------------------------------------------------------------------------------|
| Well number | L Township | catio | n Concession | Elevation, in feet | Owner                         | Driller                                  | Date Strilled    | eter, | Length of casing, in feet | Well depth, in feet | Depth water found, in feet | Original static level, in feet | Pumpi<br>Drawdown, | Pumping rate, in Igpm | buration of pumping,hrs | Kind of water <sup>2</sup> | Water use 3 | Well log and remarks                                                                              |
| 4533        |            |       |              | 10-1               | MIN. OF<br>THE<br>ENVIRONMENT | F.E.<br>SOHNSTON<br>DRILLING<br>CO. LTD. | 15/8/73          | જ     | 10                        | 240                 | 110                        | 27                             | 45                 | 4∞                    | 24                      | FR                         | mυ          | 0-10 BROWN SAND<br>10-56 SAND, ROCK, GRAVEL<br>56-71 GRAVEL, ROCK<br>71-240 GREY, BROWN LIMESTONE |
| 4534        |            |       |              | 1365               | i,                            | li                                       | 31/1/13          | 8     | 19                        | 232                 | 56<br>115<br>128<br>203    | 17                             | 35                 | 200                   | 24                      | FR                         |             | 0-4 BROWN SAND<br>4-131 WHITE BROWN COLOMITE<br>131-225 GREY WHITE POLOMITE<br>225-232 RUST SHALE |
| 4799        |            |       |              | 1360               | MAGEE<br>CARSON               | RAY<br>SPENCER<br>WELL<br>DRILLING       | 24/<br>07/<br>74 | 4     | 54                        | OP                  | 75<br>88                   | 14                             | l)                 | 20                    | t                       | FR                         |             | 0-3 BROWN FILL 64-90 WHITE 3-5 BLACK TOPSOIL LIMESTONE 5-53 GRAYEL 53-64 BROWN LIMESTONE          |
| 5872        | G          | ıω    | II<br>Witsr  | 1350               | PETER<br>STRAIN               | 1)                                       | 4/09/16          | 5     | 57                        | 146                 | 135                        | 20                             | 55                 | 8                     | 2.25                    | FR                         | DO          | 0-22 GRAVEL 55-146 LIMESTONE 22-29 PED CLAY 29-55 GRAVEL                                          |
|             |            |       |              |                    |                               |                                          |                  |       |                           |                     |                            |                                |                    |                       |                         |                            |             | a.                                                                                                |
|             |            |       |              |                    |                               |                                          |                  |       |                           |                     |                            |                                |                    |                       |                         |                            | ul.         | -                                                                                                 |
|             |            |       |              |                    |                               |                                          |                  |       |                           |                     |                            |                                |                    |                       |                         |                            |             |                                                                                                   |
|             |            |       |              |                    |                               |                                          |                  |       |                           |                     |                            |                                |                    |                       |                         |                            |             | *                                                                                                 |
|             |            |       |              |                    |                               |                                          |                  |       |                           |                     |                            |                                |                    |                       |                         |                            |             |                                                                                                   |

Location is shown in Figure . FR - fresh; SA - salty; SU - sulphur; MN - mineral . 3DO - domestic; ST - stock; IR - irrigation; IN - industry; CO - commercial; MU - municipal;

PS - public supply; CA - cooling or air conditioning . MOF 0488 11/78

#### APPENDIX E

# SUMMARY OF CHEMICAL ANALYSES OF GROUNDWATER



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R.

Date compiled: 15/04/80 Compiler: N. RENNIE

| Nun                                   | Owner                        |          |     | tion.      | Date               | Hydrogen<br>Sulphide             | Hard                       | Alka          | Iron             | P      | Apparent<br>in Haze          | Turb                            | Cond                               | Flu           | Chic           | Sulp             | Calcium      | Mag             | Sodium    | Pota           | Nitro             | gen               | as                | N         | Phosph<br>as         | orus<br>P          | Phe               |
|---------------------------------------|------------------------------|----------|-----|------------|--------------------|----------------------------------|----------------------------|---------------|------------------|--------|------------------------------|---------------------------------|------------------------------------|---------------|----------------|------------------|--------------|-----------------|-----------|----------------|-------------------|-------------------|-------------------|-----------|----------------------|--------------------|-------------------|
| Identification<br>Number <sup>1</sup> | Owner or<br>Source           | Township | Lot | Concession | e Sampled ×        | ogen as<br>hide H <sub>2</sub> S | Hardness caco <sub>3</sub> | Alkalinity as | as Fe            | at lab | arent Colour,<br>Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4  | ium as Ca    | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia   | Total<br>Kjeldahl | Nitrite           | Nitrate   | Dissolved<br>Reative | Total              | ا بوبر Phenois,in |
| *<br>ow1                              | OBSERVATION<br>WELL<br>NO. 1 | 2        |     |            | 12/09/79           |                                  | 368                        | 340           | 0.15             | 7.9    |                              |                                 | 730                                |               | 42             | н                | 80           | 41              | 20        | 4.5            | 0.3               | 1.4               | .02               | 0.1       | .04                  | ,760               |                   |
| "                                     | п                            |          |     |            | 18/10/19           |                                  |                            |               |                  |        |                              |                                 |                                    |               |                |                  |              |                 |           | 1.4            |                   |                   |                   |           |                      |                    | 1.0               |
| h                                     | N:                           |          |     |            | п<br>П:04          |                                  | 325                        | 299           | 0.98             | 7.52   |                              |                                 | 750                                |               | 36.0           | 0.0              | <b>7</b> 7.0 | 32.2            | 29.5      | 1.50           | 0.010             | 0.62              | 0.011             | 4.39      | 0.007                | 0.046              | 1.5               |
| и                                     | и                            |          |     |            | 18:45              |                                  | 344                        | 272           | *<br>40.01       | 7:37   |                              |                                 | 720                                |               | *<br>39.5      | *<br>30.5        | 83.5         | 32.8            | *<br>32.0 | *<br>1.55      | <b>4</b><br>0.030 | *<br>0.69         | <b>*</b><br>0.137 | *<br>3.82 | *<br>0.009           | *<br>0.618         | 102.              |
| 11                                    | и                            |          |     |            | 10/19              |                                  | 304                        | 301           | 0.08             | 7.52   |                              |                                 | 770                                |               | 56.5           | <b>₩</b><br>45.5 | 73.0         | 29.4            |           |                | <b>≠</b><br>0.355 | *<br>1.51         | *<br>0.83         | *<br>1.97 | *<br>0.013           | *<br>0.0 <b>59</b> | 41.0              |
| ır                                    | l <sub>9</sub>               |          |     |            |                    |                                  | 279                        | 269           | ×<br>0.03        | 7.49   |                              |                                 | 760                                |               | 55.0           | <b>*</b><br>41.0 | 64.0         | 29.0            |           | <b>3</b> .5    | #<br>0.125        | 1.43              | #<br>0.030        | *<br>0.54 | *<br>0.027           | 0.086              | 41.0              |
| п                                     | a                            |          |     |            | 23/<br>10/<br>79   |                                  | 279                        | 278           | <b>≯</b><br>0.24 | 7. 54  |                              |                                 | 782                                |               | 55.0           | <b>4</b> 9.0     | 0.7ما        | 27.0            | 51.5      | *<br>7.70      | *<br>4.4          | *<br>4.4          | *<br>0.235        | *<br>0.36 | *<br>0.215           | *<br>0.570         | 1.5               |
| #                                     | 36                           |          |     |            | 24/<br>/10/<br>/79 |                                  | 262                        | 276           | 0.22             | 7.73   |                              |                                 | 778                                |               | 55.5           | 41.0             | 60.5         | 26.8            | 51.5      | 7.65           |                   |                   | 0.157             | 0.46      | 0.460                | 0.726              | 1.5               |
| <b>*</b>                              | n                            |          |     |            | 28/<br>/10/<br>70  |                                  | 272                        | 184           | 3.05             | 7-91   |                              |                                 | 780                                |               | 56.5           | 41.0             | 62.5         | 28.0            | 51.5      | 8.30           | 5.0               | 6.30              | 0.355             | 0.14      | 0.340                | 0.380              | 1.5               |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp. gal; 1 µg/l = 1 ppb.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/I unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CON I, W.T.S.R.

Date compiled: 15/04/80

Compiler : N. RENNIE

|                                       | 0                            |          |     |            |                       |                                    |              |                 |              |         |        |                           |                    |                      |                           |                |           |           |           |            |          | / 80          | - т        | 7               |        |       | _        |   |   | $\neg$ |
|---------------------------------------|------------------------------|----------|-----|------------|-----------------------|------------------------------------|--------------|-----------------|--------------|---------|--------|---------------------------|--------------------|----------------------|---------------------------|----------------|-----------|-----------|-----------|------------|----------|---------------|------------|-----------------|--------|-------|----------|---|---|--------|
| Ident                                 | Owner or<br>Source           | т        | 1   | ion        | Date                  | Bioch                              | Dema         | Chem            | С            | arbo    | n      | Petroleum<br>Hydrocarb    | Tannins<br>Lignins | Reactive<br>Silicate | Total<br>Solids           | Seler          | Arsenic   | Barium as | Cadmium   | Chromium   | Copper   | Cyan          | Lead as Pb | Mang            | Nickel | Zinc  | Alum     |   |   |        |
| Identification<br>Number <sup>1</sup> | er or                        | Township | Lot | Concession | Sampled 3             | Biochemical Oxygen<br>Demand (BOD) | Demand (COD) | Chemical Oxygen | Inorganic    | Organic | Total  | Petroleum<br>Hydrocarbons | ns and             | ive<br>te as Si      | Total Dissolved<br>Solids | Selenium as Se | nic as As | m as Ba   | ium as Cd | nium as Cr | er as Cu | Cyanìde as CN | as Pb      | Manganese as Mn | as Ni  | as Zn | Aluminum |   |   |        |
|                                       |                              |          |     |            | P k                   |                                    |              |                 |              |         |        |                           |                    |                      |                           |                |           |           |           |            |          |               |            |                 |        |       |          |   |   |        |
| οω1                                   | OBSERVATION<br>WELL<br>NO. 1 |          |     |            | 18/10/19<br>11:34     |                                    |              |                 | 73.0         | 15.0    | 88.0   |                           |                    |                      |                           |                |           |           |           |            | 1.0      |               | ۷.25       | 2.0             |        | 0.50  | 36       |   |   |        |
|                                       | н                            |          |     |            | 17:04                 |                                    |              |                 | 74.5         | JI.O    | 85.5   |                           |                    |                      |                           |                |           |           |           |            |          |               |            |                 |        |       |          |   | â |        |
| μ                                     | N                            |          |     |            | N:45                  | 7.6                                | 5            | 53              |              |         |        |                           |                    |                      |                           |                |           |           |           |            |          |               |            |                 |        |       |          |   | - | 103    |
| н                                     | 11                           |          |     |            | P/<br>/10/19<br>/4:32 |                                    |              |                 | 70.5         | 23.0    | 93.5   |                           |                    |                      |                           |                |           |           |           |            |          |               |            |                 |        |       |          |   |   |        |
| н                                     | И                            |          |     |            | 11                    |                                    |              |                 | 70.5         | 22.5    | 93.0   |                           |                    |                      |                           |                |           |           |           |            |          |               |            |                 |        |       |          |   |   |        |
| 11                                    | W                            |          |     |            | 23/<br>/10/<br>/79    |                                    |              |                 | 70.5         | 29.6    | 100.0  |                           |                    |                      |                           |                |           |           |           |            |          |               |            |                 |        |       |          |   | * |        |
| *                                     | u.                           |          |     |            | 24/<br>/10/<br>/79    |                                    |              |                 | <b>6</b> 8.5 | 29.5    | ବ୍ୟ .୦ |                           |                    |                      |                           |                |           |           |           |            |          |               |            |                 |        |       |          | - |   |        |
| *                                     | 11                           |          |     |            | 29/10/79              |                                    |              |                 | 6.Pg         | 0.ول2   | 95.0   |                           |                    |                      |                           | ۷.00           | 0.002     | 0.06      | 4.005     | 40.02      | 0.02     |               | <0.03      | 0.23            | <0.02  | <.01  |          |   |   |        |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1µg/l=1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: COEU

Township(s): GLENELG, LOT 95, CONI WT.S.R Date compiled: 15/04/2. Compiler: N. RENNIE

| County                                | GREY                         |          |     |            |                                          |                        |                | Iowns            | inip(s) | GLEN   | JELG,                        | LOT 4                  | o, cor                             | or m       | 1. S. K    |             |           | Date            | compi    | led:           | 04/80           | Con               | npiler: | N.RE    | NNIE         |           |                  |
|---------------------------------------|------------------------------|----------|-----|------------|------------------------------------------|------------------------|----------------|------------------|---------|--------|------------------------------|------------------------|------------------------------------|------------|------------|-------------|-----------|-----------------|----------|----------------|-----------------|-------------------|---------|---------|--------------|-----------|------------------|
| lden<br>Num                           | Owner                        |          |     | tion       | Date                                     | Hydrogen<br>Sulphide   | Hard           | Alka             | Iron    | РН     | Apparent<br>in Haze          | Turbidity,<br>Formazin | Cond                               | Fluoride   | Chloride   | Sulphate    | Calcium   | Mag             | Sodium   | Pota           | Nitro           |                   | as      | N       | Phosph<br>as | orus<br>P | Phe              |
| Identification<br>Number <sup>1</sup> | er or<br>ce                  | Township | Lot | Concession | Sampled M                                | as<br>H <sub>2</sub> S | Hardness CaCO3 | Alkalinity caco3 | as Fe   | at lab | arent Colour,<br>Hazen Units | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | oride as F | ride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | um as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite | Nitrate | Dissolved    | Total     | Phenols, in µg/l |
|                                       | OBSERVATION<br>WELL<br>NO. 1 | 2        |     |            | 31/<br>/10/<br>/79                       |                        | 2106           |                  | 0.90    |        |                              |                        |                                    |            |            |             | 67.0      | 23.6            | 51-0     | 8.25           |                 | 6.00              |         |         |              | 0.970     | 3.0              |
| *<br>*                                | 41                           |          |     |            | 3/11/19                                  |                        | 272            | 272              | 1.12    | 7.87   |                              |                        | 760                                |            | 56.0       | 39.5        | 63.5      | 27.6            | 52.0     | 8.10           | 3.85            | 6.10              | 0.178   | 1.49    | 1.43         | 1.67      | حا. ٥            |
| <del>*</del>                          | Ш                            |          |     |            | 9/11/19                                  |                        | 266            | 265              | 0.13    | 7.80   |                              |                        | 770                                |            | 57.0       | 42.5        | ٥. اوا    | 27.6            |          |                | 3.22            | 5,30              | 0.063   | 248     | 1.94         | 2.20      | 41.0             |
| * "                                   | и                            |          |     |            | 12/11/79                                 |                        | 276            | 274-             | 0.80    | 8.07   |                              |                        | 780                                | 0.23       | 56.5       | 52.0        | 64.0      | 28.2            |          |                | 3.12            | 4.60              | 0.146   | 0.90    | 0.710        | 0.79      | ۵.۱۷             |
| * "                                   | Ĵτ                           |          |     |            | 16/11/79                                 |                        | 264            | 268              | 0.14    | 7.75   |                              |                        | 760                                |            | 56.0       | 39.0        | 61.5      | 26.8            | 54.0     | 7.70           | 3.6             | 0ءا.ما            | 0.030   | 2.5     | 1.98         | 2.50      | 41.0             |
| d                                     | п                            |          |     |            | 22/11/19                                 |                        | 270            | 269              | 8.4     | 7.50   |                              |                        | 755                                |            | 62.0       |             | 63.0      | 27.2            | 56.0     | 7. 25          | 2.7             | 8.25              | 0.08    | 2.4     | 2.15         | 3.10      |                  |
| <b>*</b>                              | N.                           |          |     |            | 12/<br>11/<br>19/<br>19/<br>19/<br>29:20 |                        | 255            | 262              | 0.20    | 7.88   |                              |                        | 755                                |            | 6١٠5       | 36.5        | 58.0      | 26.8            | 57.0     | 7.65           | 1.0             | 4.00              | 0.145   | 4.3     | 1.85         | 2.05      |                  |
| *                                     | h                            |          |     |            | 22/<br>/11/<br>/79<br>116:41             |                        | 258            | 264              | 1.32    | 7.69   |                              |                        | 760                                |            | 63.5       | 36.5        | 57.0      | 28.0            | 56.0     | 7.75           | 2.9             | 4.90              | 0.03    | 2.1     | 1.75         | 2.00      | 41.0             |
| *                                     | п                            |          |     |            | 15/<br>11/19<br>19:03                    |                        | 250            | 258              | 0.02    | 7.51   |                              |                        | 745                                |            | 56.0       | 40.5        | 57.0      | 26.2            | 51.0     | 9.8            | 3.0             | 5.00              | 0,071   | 1.80    | 1.05         | 2.00      |                  |

<sup>1</sup> Location is shown in Figure 2; N.D. – Not detected; < – Refers to less than; 1 mg/l = 1 ppm = 1|b|100,000 lmp. gal; 1 µg/l = 1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



# SUMMARY OF CHEMICAL ANALYSES OF

GROUNDWATER

All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CON I W.T.S.R

Date compiled: 15/04/80

Compiler : N. RENNIE

| Num                                   | Soun                         |          | $\neg$ | ion        | Date                 | Bioch                                            | Cher                         | С         | arbo    | n     | Petro<br>Hydro            | Tannins<br>Lignins | Reactive<br>Silicate | Total<br>Solids | Sele           | Arsenic   | Barium   | Cadr          | Chro           | Copper    | Cyar          | Lead       | Mang            | Nickel  | Zinc  |   |   | Anionic       |
|---------------------------------------|------------------------------|----------|--------|------------|----------------------|--------------------------------------------------|------------------------------|-----------|---------|-------|---------------------------|--------------------|----------------------|-----------------|----------------|-----------|----------|---------------|----------------|-----------|---------------|------------|-----------------|---------|-------|---|---|---------------|
| Identification<br>Number <sup>1</sup> | Owner or<br>Source           | Township | Lot    | Concession | Sampled 3            | Biochemical Oxygen<br>Demand (BOD <sub>5</sub> ) | Chemical Oxygen Demand (COD) | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | ins and            | ate as Si            | Dissolved       | Selenium as Se | nic as As | um as Ba | Cadmium as Cd | Chromium as Cr | per as Cu | Cyanìde as CN | Lead as Pb | Manganese as Mn | e as Ni | as Zn |   | ā | nic Detergent |
|                                       | OBSERVATION<br>WELL<br>NO. 1 | 4        |        |            | 31/<br>10/<br>79     |                                                  |                              | 69.5      | 20.0    | 99.5  |                           |                    |                      |                 |                |           |          |               |                |           |               |            |                 |         |       |   |   | 0.4           |
| * "                                   | le                           |          |        |            | 3/1/79               | 4.6                                              | 44                           | 0.ماما    | 25.5    | 91.5  |                           |                    |                      |                 |                |           |          |               |                |           |               |            |                 |         |       |   |   |               |
| * "                                   | И                            |          |        |            | %1/ <sub>79</sub>    |                                                  |                              | 65.0      | 24.0    | 93.0  |                           |                    |                      |                 |                |           |          |               |                |           |               |            |                 |         |       |   |   |               |
|                                       |                              |          |        |            |                      |                                                  |                              |           |         |       |                           |                    |                      |                 |                |           |          |               |                |           |               |            |                 |         |       |   |   | 105           |
| <b>*</b>                              | u                            |          |        |            | 14/49                |                                                  |                              | 68.0      | 24.5    | 92.5  |                           |                    |                      |                 |                |           |          |               |                |           |               |            |                 |         |       | × |   |               |
|                                       |                              |          |        |            |                      |                                                  |                              |           |         |       |                           |                    |                      |                 |                |           |          |               |                |           |               |            |                 |         |       |   |   |               |
| *                                     | u                            |          |        |            | 22/<br>1/19<br>09:20 |                                                  |                              | 63.0      | 19.0    | 82.0  |                           |                    |                      |                 |                |           |          |               |                |           |               |            |                 |         |       |   |   |               |
| <b>*</b>                              | le                           |          |        |            | 16:41                |                                                  |                              | 65.5      | 27.0    | 92.5  |                           |                    |                      |                 |                |           |          |               |                |           |               |            |                 |         |       |   |   | 0.4           |
| *                                     | И                            |          |        |            | 26/<br>11/<br>79     |                                                  |                              |           |         |       |                           |                    |                      |                 | ∠.∞            | .001      | .03      | <.005         | <.02           |           |               | 04         | .04             | ۷.02    | 4.01  |   |   |               |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1µg/l=1 ppb.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 15/04/6 Compiler: N. RENNIE

| County                                | GKEY                         |          |              |             |                  |          |                       | TOWIIS           | ilib(a)   | · GLEI | TELO,        | 12019                  | 3, 001                             | <u> </u>      | ), I. J. K     |             |           | Date            | compi     | iea .          | /80             | Cor               | npiler                | N. 72     |              |                    |                  |
|---------------------------------------|------------------------------|----------|--------------|-------------|------------------|----------|-----------------------|------------------|-----------|--------|--------------|------------------------|------------------------------------|---------------|----------------|-------------|-----------|-----------------|-----------|----------------|-----------------|-------------------|-----------------------|-----------|--------------|--------------------|------------------|
| Identific<br>Number                   | Sour                         | -        | atio         | ⊣∌          | Sulph            | Hydrogen | Hardnes               | Alka             | Iron      | РН     | Appa<br>in H | Turbidity,<br>Formazin | Cond                               | Fluc          | Chio           | Sulphate    | Calcium   | Мад             | Sodium    | Pota           | Nitro           | ogen              | as                    | N         | Phosph<br>as | oru <b>s</b><br>P  | Phe              |
| Identification<br>Number <sup>1</sup> | Owner or<br>Source           | Township | Concession   | Sampled ×   | H <sub>2</sub> S |          | ness <sub>CaCO3</sub> | Alkalinity CaCO3 | as Fe     | at lab | Hazen Units  | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite               | Nitrate   | Dissolved    | Total              | Phenols, in µg/l |
| *<br>0w1                              | OBSERVATION<br>WELL<br>NO: 1 |          |              | 31/         | 0                |          | 313                   | 317              | 0.24      | 7.63   |              |                        | 640                                | 0.13          | 20.0           | 11.5        | 72.5      | 32.0            | 13.2      | 2.65           | 0.590           | 1.03              | 0.019                 | 0.75      | 0.13         | 0.180              | Z1.0             |
|                                       |                              |          | $\downarrow$ | -           | $\downarrow$     |          |                       |                  |           |        |              |                        |                                    |               |                |             |           |                 |           |                |                 |                   |                       |           |              |                    |                  |
| *<br><b>ο</b> ω2                      | OBSERVATION<br>WELL<br>NO. 2 | 3        |              | 12/09/      | , , ,            |          | 369                   |                  |           | 7.80   |              |                        | 690                                |               | 420            |             |           |                 |           |                | 0. 20           | 1.40              | 0.01                  | 40.1      | 0.02         | 0.26               |                  |
| 11                                    | 1                            |          |              | 19/         | ,<br>q<br>4      |          | 310                   | 298              | 0.96      | 7.60   |              |                        | 645                                |               | 32.5           | 10.0        | 65.0      | 35.8            | 15.6      | 2.85           | 0.010           | 1.26              | 0.008                 | 0.02      | 0.001        | 0.052              | 2.5              |
| 11.                                   | 11                           |          |              | 17:2        | 14               |          | 322                   | 316              | <u></u>   | 7.39   |              |                        | 680                                |               | *<br>32.5      | *<br>21.5   | 71.0      | 35.0            | *<br>20.0 | *<br>2.20      | *<br>0.370      | *<br>0.97         | <del>*</del><br>0.009 | *<br>140  | *<br>0.034   | *<br>0.0 <b>43</b> | 1. 5             |
| п                                     | и                            |          |              | 10          | 79               |          | 304                   | 301              | *<br>0.08 | 7.52   |              |                        | 770                                |               | *<br>56.5      | *<br>46.5   | 73.0      | 29.4            |           |                | o. 355          | ¥<br>1.51         | *<br>0.83             | *<br>1.97 | *<br>0.013   | ¥<br>0.059         | 21.0             |
| п                                     | 43                           |          |              | 24/<br>10/1 | _                |          | 353                   | 294              | 0.22      | 7.55   |              |                        | 740                                |               | 34.5           | 54.5        | 38.0      | 32.4            | 21.10     | 1.85           | 0.010           | 1-17              | 0.194                 | 0.95      | 0.001        | 0.067              | 2.0              |
| *                                     | ár<br>-                      |          |              | 10/         | 9                |          | 354                   | 344              | 11.2      | 7.71   |              |                        | 740                                |               | 46.0           | 39.5        | 89.0      | 32.0            | 33.0      | 6.90           | 0.420           | 1.50              | 0.470                 | 0.08      | 0.022        | 0.330              | 2.5              |

Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp.gal; 1 µg/l = 1 ppb. MOE 3495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R Date compiled: 15/4/80 Compiler: N. RENNIE

| Carbo   Carbo   Carbo   Chemical Oxygen   Si.O   16.9 |
|-------------------------------------------------------|
|-------------------------------------------------------|

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1µg/l=1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R.

Date compiled: 15/04/80 Compiler: N. RENNIE

|                                   |                              | T-       |     |            |                           |                               |                        | _          |            |        |                              |                        |                                    |           |            |             |              |                 | оотпр    |                | ′ ./8           | 6 OO.             | - piici          |           |                      |           |                  |
|-----------------------------------|------------------------------|----------|-----|------------|---------------------------|-------------------------------|------------------------|------------|------------|--------|------------------------------|------------------------|------------------------------------|-----------|------------|-------------|--------------|-----------------|----------|----------------|-----------------|-------------------|------------------|-----------|----------------------|-----------|------------------|
| Identifica<br>Number <sup>1</sup> | Owner<br>Source              | -        | ati | $\neg$     | Date                      | Hydrogen<br>Sulphide          | Hardness               | Alkalinity | Iron       | P      | Apparent<br>in Haze          | Turbidity,<br>Formazin | Condu                              | Fluoride  | Chloride   | Sulphate    | Calcium      | Mag             | Sodium   | Pota           | Nitre           | ogen              | as               | N         | Phosph<br>as         | orus<br>P | Phe              |
| ation                             | or                           | Township | 2   | Concession | Sampled ×                 | gen as<br>de H <sub>2</sub> S | ness caco <sub>3</sub> | linity as  | as<br>Fe   | at lab | arent Colour,<br>Hazen Units | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | ride as F | ride as CI | hate as SO4 | um as Ca     | Magnesium as Mg | um as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite          | Nitrate   | Dissolved<br>Reative | Total     | Phenois, in µg/l |
| <b>χ</b><br>0ω2                   | OBSERVATION WELL NO. 2       |          |     |            | 31/<br>19/<br>79          |                               | 313                    |            | 0.07       |        |                              |                        |                                    |           |            |             | 71.0         | 32.6            | 37.8     | 3.90           |                 | 1.40              |                  |           |                      | 0.039     | 2.5              |
| *                                 | 10                           |          |     |            | 9/11/79                   |                               | 291                    | 277        | 0.44       | 7.8    |                              |                        | 770                                |           | 54.5       | 49.0        | 67.0         | 30.0            |          |                | 2.12            | 3.10              | 0.290            | 0.31      | 0.004                | 0.081     | 1.0              |
| *                                 | 11                           |          |     |            | 22/<br>11/<br>179         |                               |                        | 264        | 0.80       | 7.69   |                              |                        | 810                                |           | 75.0       | 40.0        |              |                 |          | 5.10           | 2-1             | 3.30              | 0.15             | 1.0       | 0.30                 | 0.36      | ۷۱.0             |
| *                                 | jı                           |          |     |            | 25/<br>11/79              |                               | 255                    | 264        | 0.80       | 7.75   |                              |                        | 740                                |           | 57.0       | 35.0        | 57.0         | 27.4            | 52.0     | 7.55           | 2:4             | 4.00              | 0.38             | 1.11      | 1.00                 | 1.16      | ,                |
| * "                               | п                            |          |     |            | 31/<br>/01/<br>80         |                               | 304                    | 313        | 0.64       | 7.71   |                              |                        | 665                                | 1.28      | 26.0       | 17.0        | <i>1</i> 4.0 | 31.8            | 20.4     | 4.7            | 1.25            | 1.67              | 0.008            | 0.19      | 0.073                | 0.148     |                  |
|                                   |                              |          | -   |            |                           |                               |                        |            |            |        |                              |                        |                                    |           |            |             |              |                 |          |                |                 |                   |                  |           |                      |           |                  |
| *                                 | OBCCO (DCCA)                 |          |     |            | 12.4                      |                               |                        |            |            |        |                              |                        |                                    |           |            |             |              |                 |          |                |                 |                   |                  |           |                      |           |                  |
| Λ<br>0ω3                          | OBSERVATION<br>WELL<br>NO. 3 |          |     | -          | 12/<br>/8/<br>/79         |                               | 265                    | 238        | 0.26       | 7.9    |                              |                        | 500                                |           | 20.0       | 0.وا        | 54.0         | 32.0            | 6.0      | 4.6            | 0.3             | 1.2               | .01              | 40.1      | 0-02                 | 0.36      |                  |
| t)                                | tir                          |          |     |            | 18/<br>10/<br>79<br>18:49 |                               | 284                    | 265        | *<br><0.01 | 7.62   |                              |                        | 530                                |           | *<br>17.0  | *<br>20.0   | 55.0         | 35.6            | *<br>5.7 | *<br>4.60      | *<br>0.085      | *<br>1.04         | <i>⋆</i><br>o.∞3 | *<br>0.04 | *<br>0.00b           | * 0.013   | 2.5              |

Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1mg/l= 1ppm = 1lb/100,000 lmp.gal; 1µg/l= 1ppb.

MCE 3495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 15/4/80

Compiler: N. RENNIE

| -              |                                | _         |        |            |                           |                                                  |                              |           |         |       |                           |                        | _         | _        |                 |            |           | Y            |               |                |          | 7          | —          | - 1             | · · · · ·    |       | т-т      | - |     | 7            |
|----------------|--------------------------------|-----------|--------|------------|---------------------------|--------------------------------------------------|------------------------------|-----------|---------|-------|---------------------------|------------------------|-----------|----------|-----------------|------------|-----------|--------------|---------------|----------------|----------|------------|------------|-----------------|--------------|-------|----------|---|-----|--------------|
| Ident          | Owner or<br>Source             | Loc       | $\neg$ |            | Date                      | Bioch                                            | Chem                         | С         | arbo    | n     | Petroleum<br>Hydrocarb    | Tannins<br>Lignins     | Silicate  | Reactive | Total<br>Solids | Selenium   | Arsenic   | Baric        | Cadn          | Chro           | Copper   | Cyanide    | Lead as Pb | Mang            | Nicke        | Zinc  | Alum     |   |     | Anionic      |
| Identification | er or<br>ce                    | Township  | 2      | Concession | Sampled 3                 | Biochemical Oxygen<br>Demand (BOD <sub>S</sub> ) | Chemical Oxygen Demand (COD) | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | Tannins and<br>Lignins | ste as Si | ive      | Dissolved       | nium as Se | nic as As | Barium as Ba | Cadmium as Cd | Chromium as Cr | er as Cu | i)de as CN | as Pb      | Manganese as Mn | Nickel as Ni | as Zn | Aluminum |   | - 1 | ic Detergent |
| )wz            | OBSERVATION<br>WELL<br>NO. 2   | 4         |        |            | 31/<br>19/<br>79          |                                                  |                              | 74.5      | 13.0    | 97.5  |                           |                        |           |          |                 |            |           |              |               |                |          |            |            |                 |              |       |          |   |     |              |
| <i>"</i>       | t <sub>1</sub>                 |           |        |            | 9/1/19                    |                                                  |                              | 69.0      | 19.5    | 98.5  |                           |                        |           |          |                 |            |           |              |               |                |          |            |            |                 |              |       |          |   | 0.  | A            |
| <b>*</b>       | IN.                            |           |        |            | 22/<br>/1/<br>/79         |                                                  |                              | ьq.0      | 21.0    | 90.0  |                           |                        |           |          |                 |            |           |              |               |                |          |            |            |                 |              |       |          |   | 0   | 3            |
| * "            | lı                             |           |        |            | 16/<br> 11/ <sub>79</sub> |                                                  |                              | •         |         |       |                           |                        |           |          |                 | ∠.∞1       | ∠.03      | -04          | ∠.∞5          | ۷.02           |          |            | .06        | .12             | <.02         | ۷.0۱  |          |   |     | 1.601        |
| *<br>"         | 11                             |           |        |            | 31/<br>/01/<br>/80        |                                                  |                              | 78.5      | 368     | 465   |                           |                        |           |          |                 |            |           |              |               |                |          |            |            |                 |              |       |          |   |     |              |
|                |                                | $\coprod$ |        |            |                           |                                                  |                              |           |         |       |                           |                        |           |          |                 |            |           |              |               |                | <u> </u> |            |            |                 |              |       |          |   |     |              |
|                |                                |           |        |            |                           |                                                  |                              |           |         |       |                           |                        | -         |          |                 |            |           |              |               |                |          |            |            |                 |              |       |          |   |     | _            |
|                |                                |           |        |            |                           |                                                  |                              |           |         |       |                           |                        |           |          |                 |            |           |              |               |                |          |            |            |                 |              |       |          |   |     |              |
| ow3            | OBSERVATION<br>WELL-<br>NO : 3 | 7         |        |            | 18/49<br>18:49            | 23. b                                            | 777                          | 63.0      | 12.0    | 75.0  |                           |                        |           |          |                 |            |           |              |               |                | 1.0      |            | ۷.25       | 9.0             |              | 1.5   | 110      |   |     |              |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1|b|100,000 lmp.gal; 1 µg/l=1 ppb. A - sampled on November 3, 1979. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI WITS R. Date compiled: 15/80 Compiler: N. RENNIE

| Num                                   | Owner<br>Source              | -        | ation      | <b>⊣</b> ≱         | Sulphide         | Haro | Alka             | Iron  | РН     | Appa                               | Turbidity,<br>Formazin | Cond                               | Fluc          | Chloride   | Sulphate    | Calcium   | Mag             | Sodium   | Pota           | Nitro           | ogen              | as      | N       | Phosph<br>as         | orus<br>P | Phe             |
|---------------------------------------|------------------------------|----------|------------|--------------------|------------------|------|------------------|-------|--------|------------------------------------|------------------------|------------------------------------|---------------|------------|-------------|-----------|-----------------|----------|----------------|-----------------|-------------------|---------|---------|----------------------|-----------|-----------------|
| Identification<br>Number <sup>1</sup> | er or<br>ce                  | Township | Concession | Sampled            | H <sub>2</sub> S | (n)  | Alkalinity caco3 | as Fe | at lab | Apparent Colour,<br>in Hazen Units | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | ride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | um as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite | Nitrate | Dissolved<br>Reative | Total     | Phenols, in µg/ |
| 0W3                                   | OBSERVATION<br>WELL<br>NO. 3 |          |            | 24/<br>/10/<br>71  | 3                | 298  | 250              | 0.16  | 7.67   |                                    |                        | 580                                |               | 19.5       | 36.0        | 62.5      | 34.4            | 6.0      | 3.80           | 0.005           | 0.52              | 0.001   | ۷٥.0١   | 0.002                | 0.03      | 3.0             |
| *                                     | 11                           |          |            | 28/<br>10/<br>79   |                  | 300  | 266              | 0.04  | 7.88   |                                    |                        | 580                                |               | 17.0       | 25.5        | 61.5      | 35.b            | 4.4      | 3.40           | 0.010           | 0.25              | 0.004   | 40.01   | 6.003                | 0.003     | 3.0             |
| *                                     | n                            |          |            | 31/19/70           |                  | 303  |                  | 0.16  |        |                                    |                        |                                    |               |            |             | 59.5      | 37.4            | 5.1      | 4.20           |                 | 0.18              |         |         |                      | 0.005     | 1.0             |
| *                                     | h                            |          |            | 9/11/79            |                  | 30%  | 279              | 0.04  | 7.83   |                                    |                        | 590                                |               | 5. ما ا    | 22.0        | 60.5      | 38.0            |          |                | 0.020           | 0.13              | 0.002   | 40.01   | 0.009                | 0.012     | <1.0            |
| *                                     | IJ                           |          |            | 22/                | 1                | 292  | 300              | 0.26  | 7.79   |                                    |                        | 555                                |               | 13.5       | 22.0        | 58.0      | 35.6            | 4.0      | 2.10           | 0.10            | 0.15              | 20.01   | 40.1    | 40.05                | <0.05     | 41.0            |
| <b>*</b>                              | 11                           |          |            | 25/<br>/11/<br>/7º |                  | 298  | 271              | 0.08  | 7.76   |                                    |                        | 560                                |               | 14.5       | 20.0        | 60.0      | 35.8            | 4.4      | 2.55           | 0.040           | 0.32              | 0.∞3    | 40.01   | 0.001                | 0.017     |                 |
| *                                     | l1                           |          |            | 31/<br>101/<br>180 |                  | 261  | 247              | 0.12  | 8.00   |                                    |                        | 496                                | 40.10         | 9.5        | 17.0        | 53.5      | 31.0            | 3.6      | 1.85           | 0.045           | ○ 43              | 0.001   | 0.23    | 0.003                | 0.006     | دا.٥            |
|                                       |                              |          |            |                    |                  |      |                  |       |        |                                    |                        |                                    |               |            |             |           |                 |          |                |                 |                   |         |         |                      |           |                 |
|                                       |                              |          |            |                    |                  |      | -                |       |        |                                    |                        |                                    |               |            |             |           |                 |          |                |                 |                   |         |         |                      |           |                 |

Location is shown in Figure  $2 \pm N.D.$  — Not detected; < — Refers to less than; 1 mg/l = 1 ppm = 1 lb/100,000 lmp. gal; 1 µg/l = 1 ppb.MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG , LOT 95 , CON. I W.T.S.R. Date compiled: 15/04/80

Compiler: N. RENNIE

| Location D D B D C Carbon T D C B S D S D C | tion D D B D C Carbon H D C D S B S D S O O | D D B D C Carbon H D C T S B S O O | D B D C Carbon H D L T S B S O O | Carbon T P C T S P S O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carbon T P C T S P S O O                                    | arbon H P L T S P S O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Hy Sa So Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hy Sa | SH Se  | S S S S S S S S S S S S S S S S S S S | S 10 S  | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Γ         | Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B                                     | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z     | Zii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7     |
|---------------------------------------------|---------------------------------------------|------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|---------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 95 S                                        | S                                           |                                    |                                  | ochei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | man                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | trole  | gnin                                  | activ   | lids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | en        | sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | riur                                  | d m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ad a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ckel  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|                                             | wnship                                      | ncession                           | <u> </u>                         | mical Oxygen<br>d (BOD <sub>S</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cai Oxygen<br>d (COD)                                       | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total                                     | erbons | s and                                 | e as Si | Disagrado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ium as Se | ic as As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n as Ba                               | um as Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ium as Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r as Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | de as CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IS PB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nese as Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | as Ni | as Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Detergent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| RVATION<br>-<br>3                           |                                             |                                    | /79                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | 62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78.0                                      |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| tx                                          |                                             |                                    | 28/<br>10/<br>79                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | 67.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.5                                      |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ۷.00      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .03                                   | <.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ط4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <.02  | .04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 1 <u>i</u>                                  |                                             |                                    | 31/<br>10/<br>79                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | L&.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٥.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.5                                      |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| h                                           |                                             |                                    | 9/11/79                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.0                                      |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , a F |
| μ                                           |                                             |                                    | 22/<br>11/<br>79                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | ld0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71.5                                      |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2     |
| h                                           |                                             |                                    | 26/<br>11/ <sub>79</sub>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| IV.                                         |                                             |                                    | 31/<br>101/<br>180               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 460                                       |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٥.٥٥      | 14.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.02                                  | <.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ∠.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۷.02  | <.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                             |                                             |                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                             |                                             |                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                             | Owner or Systion 3                          | Arions 3                           | hip ssion                        | Second   S | hip ssion oxygen OD (C) | ## Pled   Oxygen   Ox | ## Pled op Nygen   Converse   Nygen   Nygen   Converse   Nygen   Nygen   Converse   Nygen | No   No   No   No   No   No   No   No     |        |                                       |         | Pole   Pole |           | Owner or Chemical Oxygen Demand (COD)  Demand (BOD)  Deman | Ni   Ni   Ni   Ni   Ni   Ni   Ni   Ni | Docation   Concession   Command (Cod)   Cod   Cod | Demand (COD)  Biochemical Oxygen  Demand (BOD)  Demand (BO | Owner or Carbon   Car | Location   Total   Dissolved   Selenium as 8a   Carbon   Total   Dissolved   Solids   Solid | Copper as Cu   Copp | Location   Cyanide as CV   C |       | Nickel as Nick | Nickel as Ni | Location   Carbon   Carbon   Carbon   Cyanide as Cu   Chromium as Cu   C | Location   Carbon   Location   Location   Carbon   Location   Location |       |

1 Location is shown in Figure 1; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 µg/l=1 ppb. A - sampled on November 3, 1979.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONC. I W.T.S.R. Date compiled: 15/04/80 Compiler: N. RENNIE

|                                       | · GRET                       |          |     |            |                     |                      |                            |                  |           | 0      |                              |                                 | 15, ~                              | 3100.1        | 0.             | 112.15          |           |                 |           |                | 7 700                   |                   |            |         |                      |            | gran lane and the lane |
|---------------------------------------|------------------------------|----------|-----|------------|---------------------|----------------------|----------------------------|------------------|-----------|--------|------------------------------|---------------------------------|------------------------------------|---------------|----------------|-----------------|-----------|-----------------|-----------|----------------|-------------------------|-------------------|------------|---------|----------------------|------------|------------------------|
| Nun                                   | Owner<br>Source              |          | -   | ion.       | Date                | Hydrogen<br>Sulphide | Harc                       | Alka             | Iron      | Н      | Apparent<br>in Haze          | Turbi                           | Cond                               | Fluc          | Chic           | Sulp            | Calcium   | Mag             | Sodium    | Pota           | Nitro                   | gen               | as         | N       | Phosph<br>as         | orus<br>P  | Phe                    |
| Identification<br>Number <sup>1</sup> | er or                        | Township | Lot | Concession | Sampled ×           | -                    | Hardness caco <sub>3</sub> | Alkalinity CaCO3 | as Fe     | at lab | arent Colour,<br>Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | ium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia         | Total<br>Kjeldahl | Nitrite    | Nitrate | Dissolved<br>Reative | Total      | Phenols,in µg//        |
| <b>¥</b><br>0₩4                       | OBSERVATION<br>WELL<br>NO. 4 | 3        |     |            | 12/<br>/09/<br>/79  |                      | 374                        |                  |           | 8.1    |                              |                                 | 710                                |               | 72.0           |                 |           |                 |           |                | 0.2                     | 2.2               | 0.01       | 20.1    | 20.02                | 0.58       |                        |
| h                                     | ìı                           |          |     |            | 19/10/19            |                      | 478                        | 287              | *<br>0.02 | 7.58   |                              |                                 | 755                                |               | *<br>59.0      | *<br>25.5       | 89.0      | 62.0            | *<br>11.2 | *<br>1.5       | *<br>0.0 <del>1</del> 0 | *<br>1.70         | *<br>0.007 | * 0.04  | *<br>0.006           | *<br>0.035 | 27.5                   |
| п                                     | TI                           |          |     |            | 24/<br>/b/<br>/79   |                      | 373                        | 294              | 0.20      | 7.68   |                              |                                 | 735                                |               | 43.0           | 41.0            | 81.5      | 41.2            | 10.1      | 1.65           | 0,115                   | 1.12              | ه∞.٥       | اه.ه>   | 0.001                | 0.037      | 12.5                   |
| *                                     | 10                           |          |     |            | 28/<br>10/<br>79    |                      | 383                        | 295              | 0.07      | 7.86   |                              |                                 | 755                                |               | 42.5           | 51.5            | 85.5      | 41.2            | 9.5       | 1.90           | 0.175                   | 1.24              | 0.006      | 0.01    | 0.002                | 0.012      | 18.5                   |
| <b>*</b>                              | tr                           |          |     |            | 31/10/79            |                      | 369                        |                  | 0.24      |        |                              |                                 |                                    |               |                |                 | 78.5      | 42.0            | 8.9       | 0 عا - ا       |                         | 0.64              |            |         |                      | 0.016      | /2.0                   |
| * ,                                   | to                           |          |     |            | 9/11/ <sub>79</sub> |                      | 372                        | 297              | 0.13      | 7.83   |                              |                                 | 720                                |               | 34.0           | 0.10            | 83.0      | 40.0            |           |                | 0.205                   | 0.95              | 0.002      | <0.0I   | 0.004                | 0.013      | 1.0                    |
| *                                     | И.                           |          |     |            | 12/11/19            |                      | 375                        | 296              | 0.06      | 7.90   |                              |                                 | 720                                | 0.10          | 32.0           | 54.0            | 84.0      | 40.0            |           |                | 0.185                   | 1.37              | 0.004      | 0.04    | 0.004                | 0.013      | 7.0                    |
| *                                     | ri .                         |          |     |            | 22/11/19            |                      | 335                        | 279              | 0.59      | 7.83   |                              |                                 | 640                                |               | 28.5           | 17.0            | 69.0      | 39.4            | 3.8       | 2.1            | 0.1                     | 0.60              | 20.01      | 20.1    | <b>40.05</b>         | 40.05      | 2.5                    |
| <b>X</b>                              | ć,                           |          |     |            | 25/11/79            |                      | 330                        | 296              | 0.01      | 7.81   |                              |                                 | 645                                |               | 25.5           | 21.0            | 69.5      | 38.0            | 9.8       | 1.50           | 0.110                   | 0.51              | 0.002      | ۷٥.0۱   | 0.001                | ماحون      |                        |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1lb/100,000 lmp. gal; 1μg/l = 1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



#### GROUNDWATER SUMMARY OF CHEMICAL ANALYSES OF

All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONCI W.T.S.R. Date compiled: 15/04/80

Compiler: N. RENNIE

| Iden<br>Num                           | Owner                        | Loc      | 1 | -             | Date               | Bioch                           | Chen                         | С         | arbo    | n     | Petro<br>Hydro            | Tannins<br>Lignins     | Reactive<br>Silicate | Total<br>Solids | Sele           | Arsenic   | Barium   | Cadr          | Chro           | Copper    | Cyanide    | Lead       | Mans            | Nickel      | Zinc  |  | Anion             |
|---------------------------------------|------------------------------|----------|---|---------------|--------------------|---------------------------------|------------------------------|-----------|---------|-------|---------------------------|------------------------|----------------------|-----------------|----------------|-----------|----------|---------------|----------------|-----------|------------|------------|-----------------|-------------|-------|--|-------------------|
| Identification<br>Number <sup>1</sup> | Owner or<br>Source           | Township |   | Concession    | Sampled *          | Biochemical Oxygen Demand (BOD) | Chemical Oxygen Demand (COD) | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | Tannins and<br>Lignins | tive<br>ate as Si    | Dissolved       | Selenium as Se | nic as As | um as Ba | Cadmium as Cd | Chromium as Cr | per as Cu | nide as CN | Lead as Pb | Manganese as Mn | el as Ni    | as Zn |  | Anionic Detergent |
|                                       |                              |          |   |               |                    |                                 |                              |           |         |       |                           |                        |                      |                 |                |           |          |               |                |           |            |            |                 |             |       |  |                   |
|                                       | OBSERVATION<br>WELL<br>NO: 4 |          |   |               | 19/<br>/10/<br>/79 | -51                             | 150                          | 74.5      | 31.5    | 106   |                           |                        |                      |                 |                |           |          |               |                |           |            |            |                 |             |       |  |                   |
| н                                     | II                           |          |   |               | 24/<br>/10/<br>/79 |                                 |                              | 73.0      | 23.0    | 96.0  |                           |                        |                      |                 |                |           |          |               |                |           |            |            |                 |             |       |  |                   |
| *                                     | u                            |          |   |               | 10/<br>10/<br>79   |                                 |                              | 74.0      | 23.5    | 97.5  |                           |                        |                      |                 | ١٥٥١, ٢        | 0.007     | .04      | <.005         | ۷.02           | .04       |            | <.03       | .20             | ۷.02        | .06   |  | .113              |
| *                                     | и                            |          |   |               | 31/<br>10/<br>79   |                                 |                              | 78.0      | 12.5    | 90.5  |                           |                        |                      |                 |                |           |          |               |                |           |            |            |                 |             |       |  |                   |
| <b>⊁</b><br>π                         | n                            |          |   |               | 9/11/79            |                                 |                              | 75.0      | 14.0    | 99.0  |                           |                        |                      |                 |                |           |          |               |                |           |            |            |                 |             |       |  | (O.1              |
| *                                     | w                            |          |   |               | 12/19              |                                 |                              | 76.0      | 15.0    | 91.0  |                           |                        |                      |                 |                |           |          |               |                |           |            |            |                 |             |       |  | 03                |
| h                                     | 1,                           |          |   | $\overline{}$ | 27/19<br>17/19     |                                 |                              | 75.0      | 18.5    | 93.5  |                           |                        |                      |                 |                |           |          |               |                |           |            |            |                 |             |       |  |                   |
| <b>*</b><br>II                        | ų                            |          |   |               | 26/1/79            |                                 |                              |           |         |       |                           |                        |                      |                 | ا‱.            | .00%      | .03      | ∠.∞5          | 2.02           |           |            | .06        | 0.18            | <b>∠.02</b> | 0.18  |  |                   |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 µg/l=1 ppb. A - sampled on November 3, 1919. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG LOT 95, CON. I W.T.S.R. Date compiled: 15/04/ Compiler: N. RENNIE

| Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is | ) GIVE T                      | -        |            | alle produces assessment | _                      | y-                     | -                | y mp(o)   | VLL    | NAME OF TAXABLE PARTY.      | , 101                  | 45, C                              | 7N. T        | W.T.       | S.K.        | W THE COLUMN TWO IS NOT THE COLUMN TWO IS NO | Date            | comp      | neu .          | 104/8           | COL               | npner      | : N. KI   | ENNIE        |            |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|------------|--------------------------|------------------------|------------------------|------------------|-----------|--------|-----------------------------|------------------------|------------------------------------|--------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----------------|-----------------|-------------------|------------|-----------|--------------|------------|------------------|
| Identifica<br>Number 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Owner<br>Source               | -        | ation      | Date                     | Hydrogen<br>Sulphide   | Hardness               | Alka             | Iron      | H      | Apparent (<br>in Hazen      | Turbidity,<br>Formazin | Condu                              | Fluoride     | Chloride   | Sulphate    | Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mag             | Sodium    | Pota           | Nitro           | ogen              | as         | N         | Phosph<br>as | orus<br>P  | Phe              |
| Identification Number 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or or                         | Township | Concession | Sampled M                | as<br>H <sub>2</sub> S | ness caco <sub>3</sub> | Alkalinity caco3 | as<br>Fe  | at lab | rent Colour,<br>lazen Units | dity, in azin Units    | Conductance , in micromhos/cm-25°C | ride as F    | ride as CI | hate as SO4 | ium as Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Magnesium as Mg | um as Na  | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite    | Nitrate   | Dissolved    | Total      | Phenois, in µg/1 |
| *<br>0w4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OBSERVATION<br>WELL<br>NO. 4  |          |            | 31/01/80                 |                        | 334                    | 293              | 0.15      | 8.09   |                             |                        | 642                                | <b>40.10</b> | 20.0       | 39.0        | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.6            | 8.2       | 1.30           | 0.095           | 0.76              | 0.002      | 0.28      | 0.000        | 0.012      | 3.0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |            |                          |                        |                        |                  |           |        |                             |                        |                                    |              |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                |                 |                   |            |           |              |            |                  |
| <del>X</del><br>0w5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OBSERVATION<br>WELL-<br>NO. 5 |          |            | 19/19                    |                        | 700                    | 259              | 0.54      | 7.7    |                             |                        | 1410                               |              | 128        | 340         | 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.0            | 47.0      | 5. 4           | 0.4             | 1.8               | 0.32       | 0.98      | 40.02        | 0.22       |                  |
| lı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iţ                            |          |            | 19/19/79                 |                        | 437                    | 291              | *<br>0.02 | 7.66   |                             |                        | 900                                |              | *<br>91.0  | *<br>52.0   | 76.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.0            | *<br>24.6 | *<br>2.30      | *<br>0.230      | *<br>0.79         | *<br>0.011 | 头<br>0.11 | * 0.001      | *<br>0.004 | 5.5              |
| н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tr                            |          |            | 24/<br>/10/<br>/79       |                        | 349                    | 286              | 0.24      | 7.56   |                             |                        | 730                                |              | 48.0       | 35.0        | 82.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.6            | 24.6      | 1.45           | 0.030           | 0.72              | 0.004      | 0.31      | 0.001        | 0.046      | 41.0             |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l)                            |          |            | 28/<br>10/<br>79         |                        | 33%                    | 290              | 0.05      | 7.71   |                             |                        | 760                                |              | 54.0       | 36.0        | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37. 2           | 33.0      | 1.80           | 0.025           | 0.84              | 0.141      | 0.05      | 0.001        | 0.016      | 3.5              |
| * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I <sub>I</sub> .              |          |            | 31/10/79                 |                        | 334                    |                  | 0.18      |        |                             |                        |                                    |              |            |             | 77.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.4            | 41.5      | 2.20           |                 | 0.80              |            |           |              | 0.035      | 1.0              |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,                            |          |            | 9/11/49                  |                        | 280                    | 283              | 0.07      | 7.74   |                             |                        | 758                                |              | 55.5       | 37.5        | 3.5ما                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.4            |           |                | 1.42            | 2.70              | 0.023      | 0.02      | 0.003        | 0.044      | 1.0              |

<sup>&</sup>lt;sup>1</sup> Location is shown in Figure  $\lambda$ ; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp.gal; 1 pg/l = 1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG , LOT 95, CON. I W.T.S.R. Date compiled: 15/04/80 Compiler: N.RENNIE

| Ident<br>Numl                         | Owner or<br>Source           | Loca            | T          | Date               | Bioch                                            | Chem                         | С         | arbo    | n     | Petroleum<br>Hydrocarb    | Tannins<br>Lignins     | Reactive  | Solids | Sele           | Arsenic   | Barium   | Cadn          | Chro           | Copper   | Cyanide    | Lead       | Mang            | Nick         | Zinc  | Alun     |  | Anionic          |
|---------------------------------------|------------------------------|-----------------|------------|--------------------|--------------------------------------------------|------------------------------|-----------|---------|-------|---------------------------|------------------------|-----------|--------|----------------|-----------|----------|---------------|----------------|----------|------------|------------|-----------------|--------------|-------|----------|--|------------------|
| Identification<br>Number <sup>1</sup> | er or                        | <b>Township</b> | Concession | Sampled *          | Biochemical Oxygen<br>Demand (BOD <sub>5</sub> ) | Chemical Oxygen Demand (COD) | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | Tannins and<br>Lignins | ate as Si | Solids | Selenium as Se | nic as As | ım as Ba | Cadmium as Cd | Chromium as Cr | er as Cu | i)de as CN | Lead as Pb | Manganese as Mn | Nickel as Ni | as Zn | Aluminum |  | ic Detergent     |
|                                       | OBSERVATION<br>WELL<br>NO. 4 |                 |            | 31,                |                                                  |                              | 72.5      | 228     | 3∞    |                           |                        |           |        |                |           |          |               |                |          |            |            |                 |              |       |          |  |                  |
|                                       |                              |                 |            |                    |                                                  |                              |           |         |       |                           |                        |           |        |                |           |          |               |                |          |            |            |                 |              |       |          |  |                  |
|                                       |                              |                 |            |                    |                                                  |                              |           |         |       |                           |                        |           | -      |                |           |          |               |                |          |            |            |                 |              |       |          |  |                  |
| ഡട                                    | OBSERVATION<br>WELL<br>NO. 5 |                 |            |                    |                                                  |                              |           |         |       |                           |                        |           |        |                |           |          |               |                |          |            |            |                 |              |       |          |  | 717              |
| tr                                    | VI                           |                 |            | 19/<br>/10/<br>/79 |                                                  | 56                           | 72.5      | 13.0    | 85.5  |                           |                        |           |        |                |           |          |               |                | 1.0      |            | <.25       | 3.0             |              | 1.0   | 95       |  |                  |
| ħ                                     | n                            |                 |            | 24/<br>19/<br>79   |                                                  |                              | 73.5      | 14.0    | 97.5  |                           |                        |           |        |                |           |          |               |                |          |            |            |                 |              |       |          |  |                  |
| <b>*</b><br>"                         | н                            |                 |            | 28/<br>10/<br>70   |                                                  |                              | 730       | 17.0    | 90.0  |                           |                        |           |        | د.00           | 0.001     | -04      | <.005         | ۷.02           | ماه      |            | ۷.03       | .16             | ۷.02         | -08   |          |  |                  |
| <b>*</b>                              | h                            |                 |            | 31/<br>19/70       |                                                  |                              | 73.5      | /4.0    | 87.5  |                           |                        |           |        |                |           |          |               |                |          |            |            |                 |              |       |          |  |                  |
| *                                     | ŋ                            |                 |            | 9/1/49             |                                                  |                              | 74.0      | 12.5    | 86.5  |                           |                        |           |        |                |           |          |               |                |          |            |            |                 |              |       |          |  | O.1 <sup>A</sup> |

Location is shown in Figure 2; N.D.—Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1|b|100,000 lmp.gal; 1 µg/l=1 ppb. A - sampled on November 3, 1979.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CON I W.T.S.R. Date compiled . 16/04/ Compiler N RENNIE

|                                       | ) ORL !                      | _        |     |            |                           |                        |            |            | Jilipto    | ,      | -             | LU I                   |                                    | 00 1       | ω, 1.      | 3.10.       |           | Date            | comp      | iiea :         | /04/80          | Col               | mpiler     | N. RE       | ONIE                 |            |                |
|---------------------------------------|------------------------------|----------|-----|------------|---------------------------|------------------------|------------|------------|------------|--------|---------------|------------------------|------------------------------------|------------|------------|-------------|-----------|-----------------|-----------|----------------|-----------------|-------------------|------------|-------------|----------------------|------------|----------------|
| Identifica<br>Number 1                | Owner<br>Source              |          |     | tion.      | Date                      | Hydrogen<br>Sulphide   | Hardness   | Alkalinity | Iron       | PH     | Appar<br>in H | Turbidity,<br>Formazin | Condu                              | Fluoride   | Chloride   | Sulphate    | Calcium   | Mag             | Sodium    | Pota           | Nitr            | ogen              | as         | N           | Phosph<br>as         | orus<br>P  | Phe            |
| Identification<br>Number <sup>1</sup> | e or                         | Township | Lot | Concession | Sampled ×                 | as<br>H <sub>2</sub> S | ness CaCO3 | linity as  | as Fe      | at lab | Hazen Units   | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | wride as F | ride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | um as Na  | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite    | Nitrate     | Dissolved<br>Reative | Total      | Phenois,in µg/ |
| *<br>0w5                              | OBSERVATION<br>WELL<br>NO. 5 | 2        |     |            | 12/1/19                   |                        | 291        | 285        | 0.06       | 7.81   |               |                        | 770                                | 40.10      | 56.5       | 40.0        | 66.5      | 30.4            |           |                | 1.58            | 3.15              | 0.020      | 0.02        | 0.002                | 0.037      | 1.5            |
| *<br>1:                               | b                            |          |     |            | 22/<br>11/19              |                        | 285        | 272        | 0.62       | 7.82   |               |                        | 770                                |            | 59.0       | 37.0        | 62.0      | 31.6            | 50.0      | 2.65           | 2.4             | 3.20              | 0.12       | 1.7         | <0.05                | 0.05       | <1.0           |
| *<br>11                               | lı                           |          |     |            | 25/<br>/11/<br>/79        |                        | 287        | 278        | 0.16       | 7.77   |               |                        | 765                                |            | 59.5       | 36.0        | 60.0      | 33.2            | 49.5      | 4.50           | 2.2             | 3.25              | 0.58       | 1.00        | 0.004                | 0.029      |                |
| *                                     | П                            |          |     |            | 31/                       |                        | 282        | 290        | 0.18       | 7.87   |               |                        | 000                                | ∠o.10      | 33.0       | 18.0        | 60.0      | 32.0            | 28.8      | 2.90           | 0.825           | 1.40              | 0.078      | 1.75        | 0.003                | 0.010      | <1.0           |
|                                       |                              |          |     |            |                           |                        |            |            |            |        |               |                        |                                    |            |            |             |           |                 |           |                |                 |                   |            |             |                      |            |                |
|                                       |                              |          |     |            |                           |                        |            |            |            |        |               |                        |                                    |            |            |             |           |                 |           |                |                 |                   |            |             |                      |            |                |
| *<br>0W6                              | OBSERVATION<br>WELL<br>NO.6  |          |     |            | 12/9/79                   |                        | 406        |            |            | 7.8    |               |                        | 810                                |            | 84.0       |             |           |                 |           |                | 0.2             | 0.4               | 0.01       | ۷٥.١        | 40.02                | 0.08       |                |
| п                                     | 11                           |          |     |            | 18/<br>19/<br>79<br>11:34 |                        | 296        | 296        | 0.80       | 7.49   |               |                        | 585                                |            | 17.5       | 10.0        | 70.0      | 29.4            | (1.8      | 1.35           | 0.015           | 0.98              | 0.064      | 0.06        | (0.001               | 0.042      | 2.0            |
| n<br>1                                | ţı.                          |          |     |            | 18:12                     |                        | 373        | 320        | *<br><0.01 | 7-35   |               |                        | 715                                |            | *<br>25.5  | *<br>32.0   | 91.5      | 35.0            | *<br>17.0 | *<br>1.45      | *<br>0.030      | .≭<br>⊙.30        | *<br>0.018 | *<br>0 · 31 | *<br>0.004           | *<br>•.010 | 1.5            |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure  $\lambda$ ; N.D. — Not detected; < — Refers to less than; 1 mg/l = 1 ppm = 1/b/100,000 lmp. gal; 1 µg/l = 1 ppb. MOE 3495 :1/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG, LOT 95, CONT W.T.S.R. Date compiled: 16/04/80

Compiler: N. RENNIE

| N d                                   | S O S                       | Lo       | cat | ion        | Date                        | D 80                                          | 0            | Ç         | С         | arbo    | n            | Hyo                       | ۳       | 릴       | SI       | Solids    | Se       | Ars     | Ва        | Ca            | Chi       | Col     | Су       | Lea        | X a             | Nic    | Zinc | Alu      |     | Ani       |
|---------------------------------------|-----------------------------|----------|-----|------------|-----------------------------|-----------------------------------------------|--------------|-----------|-----------|---------|--------------|---------------------------|---------|---------|----------|-----------|----------|---------|-----------|---------------|-----------|---------|----------|------------|-----------------|--------|------|----------|-----|-----------|
| Identifica<br>Number <sup>1</sup>     | Owner or<br>Source          | 70       | Lot | ို         |                             | man                                           | 3            | Chemical  | _ 1       |         |              | droc                      | Lignins | Tannins | Reactive |           |          | Arsenic | Barium as | mi            | Chromium  | Copper  | Cyanide  | Lead as Pb | ngai            | Nickel | C as | Aluminum | -   | Anionic   |
| Identification<br>Number <sup>1</sup> | or                          | Township | t   | Concession | Sampled 3                   | Biochemical Oxygen Demand (BOD <sub>5</sub> ) | Demand (COD) | al Oxygen | Inorganic | Organic | Total        | Petroleum<br>Hydrocarbons |         | and     | e as Si  | Dissolved | um as Se | C as As | n as Ba   | Cadmium as Cd | ium as Cr | r as Cu | le as CN | s Pb       | Manganese as Mn | as Ni  | s Zn | m        |     | Detergent |
| *<br>თან                              | OBSERVATIO<br>WELL<br>NO. 5 | 7        |     |            | 12/1/19                     |                                               |              |           | 71.5      | 16.0    | 87.5         |                           |         |         |          |           |          |         |           |               |           |         |          |            |                 |        |      |          |     |           |
| * "                                   | VA                          |          |     |            | 22/<br>11/<br>79            |                                               |              |           | 70.5      | 15.0    | <b>9</b> 5.5 |                           |         |         |          |           |          |         |           |               |           |         |          |            |                 |        |      |          | · · | 0.3       |
| *                                     | н                           |          |     |            | 26/<br>/11/<br>79           |                                               |              |           |           |         |              |                           |         |         |          |           |          |         |           |               |           |         |          |            |                 |        |      |          |     |           |
| *<br>II                               | 11                          |          |     |            | 31/01/80                    |                                               |              |           | 68.5      | 222     | 290          |                           |         |         |          |           | 20       | 2.00    | 1 <.07    | 4.005         | ۷.02      |         |          | وا0.       | .20             | 4.02   | 4.01 |          |     | 11/7      |
|                                       |                             |          |     |            |                             |                                               |              |           |           |         |              |                           |         |         |          |           |          |         |           |               |           |         |          |            |                 |        |      |          |     |           |
|                                       |                             |          |     |            |                             |                                               |              |           |           |         |              |                           |         |         |          |           |          |         |           |               |           |         |          |            |                 |        |      |          |     |           |
| Om-e                                  | DENEZVATION                 |          |     |            | 12/9/19                     |                                               |              |           | -         |         |              |                           |         |         |          |           |          |         |           |               |           |         |          |            |                 |        |      |          |     |           |
| ow6                                   | OBSERVATION WELL NO. 6      | 90       |     |            | 19/<br>/10/<br>/79<br>11:34 | -                                             |              |           | 85.0      | 9.0     | 94.0         |                           |         |         |          |           |          |         |           |               |           | 1.5     |          | ۷.25       | 3.5             |        | 1.0  | 110      |     |           |
| 'n                                    | n.                          |          |     |            | 18:12                       |                                               |              |           | 88.0      | 6.0     | 94.0         |                           |         |         |          |           |          |         |           |               |           |         |          |            |                 |        |      |          |     |           |

Location is shown in Figure 2; N.D. — Not Detected; P — Present; < — Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 μg/l=1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95. CONI W.T.S.R. Date compiled: 1%44 Compiler: N.RENNIE

| County                                | GKEY                        |          | _    |            |                      |                                  |                            | TOWNS            | snip(s)   | , OL   | ENELO                        | ,                               | , د۳                               | CONIT         | ω.τ.           | 3. K.       |           | Date            | compi     | iea .          | 104/8           | 。 Con             | npiler     | , N.A.    | ENNIE                |            |                  |
|---------------------------------------|-----------------------------|----------|------|------------|----------------------|----------------------------------|----------------------------|------------------|-----------|--------|------------------------------|---------------------------------|------------------------------------|---------------|----------------|-------------|-----------|-----------------|-----------|----------------|-----------------|-------------------|------------|-----------|----------------------|------------|------------------|
| Num                                   | Owner<br>Source             | -        |      | ion.       | Date                 | Hydrogen<br>Sulphide             | Haro                       | Alka             | Iron      | рн     | Apparent<br>in Haze          | Turbi                           | Cond                               | Fluc          | СИС            | Sulphate    | Calcium   | Mag             | Sodium    | Pota           | Nitro           | ogen              | as         | N         | Phosph<br>as         | orus<br>P  | Phe              |
| Identification<br>Number <sup>1</sup> | er or<br>ce                 | Township | DO T | Concession | Sampled S            | ogen as<br>nide H <sub>2</sub> S | Hardness CaCO <sub>3</sub> | Alkalinity caco3 | as Fe     | at lab | arent Colour,<br>Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite    | Nitrate   | Dissolved<br>Reative | Total      | Phenols, in µg/l |
| owb                                   | OBSERVATION<br>WELL<br>NO.6 |          |      |            | 19/<br>10/<br>79     |                                  | 381                        | 350              | *<br>0.03 | 7.40   |                              |                                 | 690                                |               | *<br>26.0      | *<br>19.0   | 83.0      | 42.0            |           |                | *<br><0.005     | *<br>0.260        | *<br>0.018 | *<br>0.51 | *<br>0.010           | *<br>0.012 | ۷۱.0             |
| н                                     | и                           |          |      |            | 24/<br>10/<br>79     |                                  | 323                        | 275              | 0.36      | 7.44   |                              |                                 | 740                                |               | 50.6           | 43.0        | 81.5      | 29.0            | 39.5      | 1.20           | CO.005          | 1.06              | 0.107      | 0.70      | <0.00 l              | 0.047      | 1.0              |
| *                                     | s.f.                        |          |      |            | 31/10/19             |                                  | 284                        |                  | 0.24      |        |                              |                                 |                                    |               |                |             | 66.0      | 28.8            | 47.5      | 2.50           |                 | 1,21              |            |           | <br><br>             | 0.033      | <1.0             |
| <b>*</b>                              | IJ                          |          |      |            | 9/1/19               |                                  | 268                        | 271              | 0.03      | 7.72   |                              |                                 | 740                                |               | 56.0           | 35.0        | 0.0       | 28.0            |           |                | 1.35            | 2.15              | 0.500      | 1.70      | 0.002                | 0.043      | ۷1.0             |
| <b>*</b>                              | η,                          |          |      |            | 16/11/79             |                                  | 284                        | 275              | 0.24      | 7.77   |                              |                                 | 762                                |               | 54.5           | 36.0        | 67.0      | 28. 2           | 50.0      | 3.40           | 1-70            | 2.90              | 0.29       | 2.3       | 0.004                | 0.053      | 41.0             |
| oel<br>Halil                          | ţ,                          |          |      |            | 22/<br>11/79<br>9:20 |                                  | 329                        | 273              | 38.0      | 7. 45  |                              |                                 | 778                                |               | 66.5           |             | 104       | 32.0            | 53.0      | 6.00           | 2.0             | 2.50              | 0.24       | 1.8       | 0.20                 | 0.70       |                  |
| <b>*</b>                              | 11                          |          |      |            | 27/19<br>9:20        |                                  | 278                        | 273              | 0.30      | 7.99   |                              |                                 | 790                                |               | 67.0           | 34.5        | 63.0      | 29.2            | 55.5      | 4.75           | 2.2             | 2.95              | 0.22       | 2.0       | 0.00/                | 0.053      |                  |
| *                                     | N                           |          |      |            | n<br>14:19           |                                  | 275                        | 275              | 0.60      | 7.70   |                              |                                 | 799                                |               | 68.5           | 37.5        | 61.0      | 29.8            | 41.8      | 1.95           | 2.4             | 3.70              | 0.03       | 2.2       | 40.05                | 0.08       | <1.0             |
| * n                                   | Ų                           |          |      |            | 25/11/79             |                                  | 257                        | 267              | 0.52      | 7.75   |                              |                                 | 900                                |               | 73.5           | 35.5        | 58.5      | 27.0            | 64.5      | 4.25           | 0.60            | 3.18              | 0.37       | 1.08      | 0.006                | 0.066      |                  |

Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1mg/l = 1ppm = 1lb/100,000 lmp. gal; 1μg/l = 1ppb.

MOE 3495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG, LOT 95, CON. I W.T.S.R. Date compiled: 16/04/80

Compiler: N. RENNIE

|                                       |                              |          |    |            |                      |                                               |                              |              |         |              |                           |                    | 1        | T        |                 | 1              |           |          |               | _          |          |           |            |                 |        | N. 1  |  |             |
|---------------------------------------|------------------------------|----------|----|------------|----------------------|-----------------------------------------------|------------------------------|--------------|---------|--------------|---------------------------|--------------------|----------|----------|-----------------|----------------|-----------|----------|---------------|------------|----------|-----------|------------|-----------------|--------|-------|--|-------------|
| dent                                  | ≥ ₹                          | -        | -  | ion        | Date                 | Bioch                                         | Chem                         | C            | arbo    | n            | Petroleum<br>Hydrocarb    | Tannins<br>Lignins | Silicate | Reactive | Total<br>Solids | Seler          | Arsenic   | Barium   | Cadm          | Chromium   | Copper   | Cyanide   | Lead as Pb | Mang            | Nickel | Zinc  |  | Anionic     |
| Identification<br>Number <sup>1</sup> | er or                        | Township | ot | Concession | Sampled 3            | Biochemical Oxygen Demand (BOD <sub>5</sub> ) | Chemical Oxygen Demand (COD) | Inorganic    | Organic | Total        | Petroleum<br>Hydrocarbons | ns and             |          | ₩ (P)    | Dissolved       | Selenium as Se | nic as As | ım as Ba | Cadmium as Cd | nium as Cr | er as Cu | ide as CN | as Pb      | Manganese as Mn | as Ni  | as Zn |  | c Detergent |
| 0W6                                   | OBSERVATION<br>WELL<br>NO: 6 |          |    |            | 19/10/19             |                                               |                              | 85.5         | 6.5     | 92.0         |                           |                    |          |          |                 |                |           |          |               |            |          |           |            |                 |        |       |  |             |
| h                                     | lą                           |          |    |            | 24/<br>19/<br>19     |                                               |                              | ס.סל         | 19.0    | 89.0         |                           |                    |          |          |                 |                |           |          |               |            |          |           |            |                 |        |       |  |             |
| <b>*</b>                              | н                            |          |    |            | 31/<br>10/19         |                                               |                              | 70.5         | 14.5    | <b>%</b> 5.0 |                           |                    |          |          |                 |                |           |          |               |            |          |           |            |                 |        |       |  |             |
| *                                     | 11                           |          |    |            | 9/11/79              |                                               |                              | 64.0         | 14.5    | 83.5         |                           |                    |          |          |                 |                |           |          |               |            |          |           |            |                 |        |       |  | 0.1         |
| *                                     | 11                           |          |    |            | 16/<br>11/79         |                                               |                              | 71.0         | 17.0    | 88.0         |                           |                    |          |          |                 |                |           |          |               |            |          |           |            |                 |        |       |  |             |
|                                       |                              |          |    |            |                      |                                               |                              |              |         |              |                           |                    |          |          |                 |                |           |          |               |            |          |           |            |                 |        |       |  |             |
| <del>X</del><br>, "                   | lt                           |          |    |            | 22/<br>11/19<br>9:10 |                                               |                              | 67.5         | 16.5    | 94.0         | (                         |                    |          |          |                 |                |           |          |               |            |          |           |            |                 |        |       |  |             |
| * "                                   | 1/                           |          |    |            | II<br>14:29          |                                               |                              | <i>6</i> А.5 | 19.0    | 97.5         |                           |                    |          |          |                 |                |           |          |               |            |          |           |            |                 |        |       |  | 0.3         |
| <b>*</b>                              | Į,                           |          |    |            | 26/<br>11/79         |                                               |                              |              |         |              |                           |                    |          |          |                 | ۷.03           | .007      | - 26     | 4.005         | 2.02       |          |           | 4.03       | .90             | 4.02   | ۷.0۱  |  |             |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 µg/l=1 ppb. A-sampled on November 3,1979.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 16/04/6 Compiler: N. RENNIE

| County                                | , GIVE Y                     |          |            |                    |                        |                | TOWITS           | ilih(a)    | · OLE  | MELG                               | , 100.1                | 75,0                               | 010 1         | ۵. ۱           |             |              | Date            | comp       | ieu .          | 1 80            | Con               | ipiiei .   | 10.10      | 01                   |            |                   |
|---------------------------------------|------------------------------|----------|------------|--------------------|------------------------|----------------|------------------|------------|--------|------------------------------------|------------------------|------------------------------------|---------------|----------------|-------------|--------------|-----------------|------------|----------------|-----------------|-------------------|------------|------------|----------------------|------------|-------------------|
| Identific<br>Number                   | Owner<br>Source              |          | ation      | <b>⊣</b> ≇         | Hydrogen<br>Sulphide   | Hard           | Alka             | Iron       | РН     | Appa                               | Turbidity<br>Formazin  | Cond                               | Fluc          | СНО            | Sulphate    | Calcium      | Mag             | Sodium     | Pota           | Nitro           | ogen              | as         | N          | Phosph<br>as         | orus<br>P  | Phe               |
| Identification<br>Number <sup>1</sup> | Owner or<br>Source           | Township | Concession | Sampled S          | as<br>H <sub>2</sub> S | Hardness CaCO3 | Alkalinity caco3 | as Fe      | at lab | Apparent Colour,<br>in Hazen Units | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | hate as SO4 | ium as Ca    | Magnesium as Mg | um as Na   | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite    | Nitrate    | Dissolved<br>Reative | Total      | Phenois, in µg/ I |
| *<br>0₩6                              | OBSERVATION<br>WELL<br>NO. 6 |          |            | 31/                |                        | 326            | 316              | 0.26       | 7.77   |                                    |                        | 640                                | ۷٥. ۱٥        | 21.5           | 13.0        | 76.0         | 33.0            | 13.7       | 2.6            | 0-515           | 0.94              | 0.005      | 0.28       | 0.003                | 0-015      | <1.0              |
|                                       |                              |          |            | -                  | _                      |                |                  |            |        |                                    |                        |                                    |               |                |             |              |                 |            |                |                 |                   |            |            |                      |            |                   |
| *<br>0w7                              | OBSERVATION<br>WELL<br>NO: 7 |          |            | 12/09/19           |                        | 388            | 349              | 0.46       | 7.7    |                                    |                        | 790                                |               | 64.0           | 13.0        | 77.0         | 48.0            | 23.0       | 3.5            | 0.2             | 0.4               | 0.01       | (۵۰۱       | <0.02                | 0.20       |                   |
| 21                                    | ñ.                           |          |            | 18/10/             |                        | 343            | 350              | ¥<br><0.01 | 7.39   |                                    |                        | 660                                |               | *<br>24.0      | *<br>9.0    | 82.0         | 33.6            | ¥<br>15. 2 | *<br>1.95      | x<br>0.010      | 0.18              | *<br>0.001 | *<br>40.01 | * 0.001              | *<br>0.001 | ۷۱.0              |
| a                                     | Is.                          |          |            | 24/<br>/19/<br>/79 |                        | 319            | 284              | 2.40       | 7.43   |                                    |                        | 740                                |               | 53.0           | 35.5        | <b>%</b> 0.0 | 29.0            | 42.5       | 2.40           | 0.045           | 1.23              | 0.010      | 1.00       | 0.018                | 0.159      | <1.0              |
| *                                     | ц                            |          |            | 31/10/             |                        | 277            | (a)              | 0.18       |        |                                    |                        |                                    |               |                |             | 64.5         | 28.2            | 48.0       | 4.50           |                 | 3.05              |            |            |                      | 0.053      | <1.0              |
| *                                     | 21                           |          |            | 9/11/70            |                        | 264            | 275              | 0.03       | 7.75   |                                    |                        | 760                                |               | 56.0           | 34.0        | 59.0         | 28.2            |            |                | 2.88            | 4.25              | 0.129      | 2.07       | 0.004                | 0.055      | ۷۱.0              |
| *,                                    | 11                           |          |            | 11/1/              |                        | 281            | 282              | 0.08       | 7.78   |                                    |                        | 782                                |               | 54.5           | 35.0        | ٥.5 وا       | 28.8            | 52.0       | 5.80           | 3.0             | 4.55              | 0.070      | 3.8        | 0.003                | 0.077      | 41.0              |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp.gal; 1 µg/l = 1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 5, CONT W.T.S.R. Date compiled: 16/04/80 Compiler: N. RENNIE

| The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anionic Detergent Aluminum Zinc as Zn Nickel as Ni Nanganese as Mn |          |  | 121. | . 25 /2.0 5.0 290 |           |                  | 0.14   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------|--|------|-------------------|-----------|------------------|--------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pb as C                                                            |          |  |      | 1.0 4.25          |           |                  |        |
| September   Sept   | Chromium as Cr                                                     |          |  |      |                   |           |                  |        |
| No. 7   13.0   13.0   13.0   17.5   16.5   18.0   17.5   16.5   18.0   18.0   18.0   17.5   16.5   18.0   17.5   16.5   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0   18.0     | as As                                                              |          |  |      |                   |           |                  |        |
| 18   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Dissolved Solids                                             |          |  |      |                   |           |                  |        |
| OBSERVATION WELL-NO.7  H  OBSERVATION WELL-NO.7  H  OBSERVATION WELL-NO.7  A  OBSERVATION WELL-N | Reactive<br>Silicate as Si                                         |          |  |      |                   |           |                  |        |
| Cester/ation   Cest   | Tannins and<br>Lignins                                             |          |  |      |                   |           |                  |        |
| OBSERVATION WELL NO. 7  H  ORSERVATION NO. 7  IS / /10/ /79  II / /10/ /79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hydrocarbons Total                                                 | 490      |  |      | 91.0              | 99.5      | 98.0             | 39.0   |
| OBSERVATION WELL NO. 7  II  II  II  II  II  II  II  II  II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    | 90.5 400 |  |      | 86.0 5.0          | 72.0 17.5 | 71.5 16.5        |        |
| OBSERVATION WELL NO. 6  OBSERVATION WELL NO. 7  H  13/ 10/ 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemical Oxygen Demand (COD) Biochemical Oxygen Demand (BOD)       |          |  |      | 13.0 63.0         |           |                  |        |
| OBSERVATION WELL NO. 6  OBSERVATION WELL NO. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sampled                                                            | _        |  |      | 19/19/79          |           | 31/<br>10/<br>79 |        |
| OBSERVATION WELL NO. 6  OBSERVATION WELL NO. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Concession                                                         |          |  |      |                   |           |                  |        |
| OBSERVATION WELL NO. 6  OBSERVATION WELL NO. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    | ٥        |  |      | 2                 |           |                  | $\top$ |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Owner or<br>Source                                                 | WELL     |  |      | WELL              | н         | u                |        |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1,µg/l=1 ppb. A - sampled on November 3, 1979.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Townshin(s): GLENELS, LOT 95, CON. I W. T.S.R. Date compiled: 16/04/ Compiler: A) PENNIE

|                          | . GREY                       |                 |            |                            | ,                      |                | Towns            | ship(s)           | . GLE  | , , , , , , , , , , , , , , , , , , , | , 20                   |                                    | ωn            | - ω.              | T.S.K       | *              | Date            | comp      | iled :         | 104/9           | o Cor             | npiler     | : N.K     | ENNIE             |               |                  |
|--------------------------|------------------------------|-----------------|------------|----------------------------|------------------------|----------------|------------------|-------------------|--------|---------------------------------------|------------------------|------------------------------------|---------------|-------------------|-------------|----------------|-----------------|-----------|----------------|-----------------|-------------------|------------|-----------|-------------------|---------------|------------------|
| Identific<br>Number      | Owner<br>Source              | Loca            | _          | ન #                        | Hydrogen<br>Sulphide   | Hard           | Alka             | Iron              | PH     | Apparent<br>in Haze                   | Turbidity,<br>Formazin | Cond                               | Fluc          | Chloride          | Sulphate    | Calcium        | Mag             | Sodium    | Pota           | Nitro           | ogen              | as         | N         | Phosph<br>as      | orus<br>P     | Phe              |
| Identification  Number 1 | er or<br>ce                  | Lot<br>Township | Concession | Sampled *                  | as<br>H <sub>2</sub> S | Hardness caco3 | Alkalinity caco3 | as Fe             | at lab | arent Colour,<br>Hazen Units          | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | oride as CI       | hate as SO4 | ium as Ca      | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite    | Nitrate   | Dissolved         | Total         | Phenols, in µg/1 |
| 0W7                      | OBSERVATION<br>WELL<br>NO: 7 |                 |            | 22/<br>11/<br>79           |                        | 278            | 281              | 0.23              | 7.64   |                                       |                        | 765                                |               | 59.5              | 36.0        | 61.0           | 30.4            | 51-0      | 4.75           | 2.2             | 3.35              | 0.10       | 1.7       | 20.05             | ۷0.0 <b>5</b> | ۷/۰              |
| *                        | υ                            |                 |            | 11/79                      |                        | 257            | 266              | 0.84              | 7.81   |                                       |                        | 755                                |               | 62.0              | 33.5        | 57.5           | 27.4            | 56.0      | 5.45           | 2-4             | 3.24              | 0.076      | 1.39      | 0.015             | 0.058         |                  |
| N.                       | 11                           |                 |            | 31/01/80                   |                        | 328            | 319              | 0.45              | 7.85   |                                       |                        | 661                                | ۷٥,10         | 26.5              | 11.5        | 76.0           | 33.6            | 15. 2     | 2.10           | 0.310           | 0.70              | 0.015      | 0.11      | 0.007             | 0.014         | <1.0             |
|                          |                              |                 |            |                            | _                      |                |                  |                   |        |                                       |                        |                                    |               |                   |             |                |                 |           |                |                 |                   |            |           |                   |               |                  |
| *<br>0w8                 | OBSERVATION)<br>WELL         |                 |            | 12/09/                     | -                      | 101            |                  |                   |        |                                       |                        |                                    |               |                   |             |                |                 |           |                |                 |                   |            |           |                   |               |                  |
|                          | NO . 9                       |                 |            | /19<br>18/<br>10/<br>11/79 |                        | 329            | 320              | 1.32              | 7.9    |                                       |                        | 690                                |               | 135<br>32.0       | 7.0         | v <b>.</b> €.0 | 38.6            | 13.0      | 1.45           | 0.10            | 0.46              | 0.01       |           | 0.01              | 0.29          | 5.0              |
| и                        | b                            |                 |            | 18/<br>19/<br>19/<br>17:51 |                        | 347            | 296              | *<br><0:01        | 7.48   |                                       |                        | 680                                |               | *<br>31.5         | * 10.0      |                | 38.0            | * 8.3     | *<br>1.55      | *<br>0.130      | *                 | *          | * 0.16    | * 0.010           | ×-<br>0.019   |                  |
| 12                       | и                            |                 |            | 19/19/19                   | _                      | 399            | 318              | <b>*</b><br>40.01 | 7.56   |                                       |                        | 715                                |               | *<br><b>2</b> 9.5 | *<br>34.0   | 77.0           | 50.0            | <b>*</b>  | *<br>/-25      | #<br>0.005      | *<br>0.220        | *<br>0.003 | *<br>0.07 | <b>*</b><br>0.011 | # 0.017       | 2,0              |

<sup>1</sup> Location is shown in Figure  $\hat{\mathcal{L}}$ ; N.D. — Not detected ; < — Refers to less than ; 1 mg/l = 1 ppm = 1|b|100,000 | lmp. gal ; 1 \( \mu g/l = 1 \) ppb.

<sup>&</sup>quot;(E 3495 )1/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELS , LOT 95 , CON. I W.T.S.R Date compiled: 16/4/80 Compiler: N. RENNIE

| Num                                   | Sou                          |          |     | tion       | Date               | Bioch                                            | Cher                         | С         | arbo    | n     | Petro<br>Hydr             | Tannins<br>Lignins | Reactive  | Total<br>Solids | Sele           | Arsenic   | Barium   | Cadı          | Chro           | Copper    | Cyanide    | Leac       | Man             | Nickel   | Zinc  | Alui     |  | Anionic       |
|---------------------------------------|------------------------------|----------|-----|------------|--------------------|--------------------------------------------------|------------------------------|-----------|---------|-------|---------------------------|--------------------|-----------|-----------------|----------------|-----------|----------|---------------|----------------|-----------|------------|------------|-----------------|----------|-------|----------|--|---------------|
| Identification<br>Number <sup>1</sup> | Owner or<br>Source           | Township | Lot | Concession | Sampled 3          | Biochemical Oxygen<br>Demand (BOD <sub>5</sub> ) | Chemical Oxygen Demand (COD) | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | ins and<br>ins     | ate as Si | Dissolved       | Selenium as Se | nic as As | um as Ba | Cadmium as Cd | Chromium as Cr | per as Cu | nìde as CN | Lead as Pb | Manganese as Mn | el as Ni | as Zn | Aluminum |  | nic Detergent |
| *<br>∞7                               | OBSERVATION<br>WELL<br>NO. 7 | 2        |     |            | 2/1/19             |                                                  |                              | 71.0      | 17.0    | 88.0  |                           |                    |           |                 |                |           |          |               |                |           |            |            |                 |          |       |          |  | 0.3           |
| *                                     | n                            |          |     |            | 26/<br>11/79       |                                                  |                              |           |         |       |                           |                    |           |                 | 4.001          | .00%      | .02      | ∠.005         | <02            |           |            | .07        | . 10            | Z.02     | ٥.0١  |          |  |               |
| h                                     | II                           |          |     |            | 31/<br>/01/<br>/80 |                                                  |                              | જી!.0     | 19.0    | 100   |                           |                    |           |                 |                |           |          |               |                |           |            |            |                 |          |       |          |  |               |
|                                       |                              |          |     |            |                    |                                                  |                              |           |         |       |                           |                    |           |                 |                |           |          |               |                |           |            |            |                 |          |       |          |  | . 143         |
|                                       |                              |          |     |            |                    |                                                  |                              |           |         |       |                           |                    |           |                 |                |           |          |               |                |           |            |            |                 |          |       |          |  |               |
|                                       |                              |          |     |            |                    |                                                  |                              |           |         |       |                           |                    |           |                 |                |           |          |               |                |           |            |            |                 |          |       |          |  |               |
| ows                                   | OBSERVATION<br>WELL<br>NO.8  | 7        |     |            | 18/<br>10/<br>779, | 11:34                                            |                              | 79.5      | 8.0     | 86.5  |                           |                    |           |                 |                |           |          |               |                | 1.5       |            | ۷.25       | 18.0            |          | 7.5   | 320      |  |               |
| υ                                     | 19                           |          |     |            | II:61              |                                                  |                              | 83.5      | 3.5     | 87.0  |                           |                    |           |                 |                |           |          |               |                |           |            |            |                 |          |       |          |  |               |
| il                                    | ų                            |          |     |            | 19/19/19           |                                                  |                              | 85.0      | 16.0    | /01   |                           |                    |           |                 |                |           |          |               |                |           |            |            |                 |          |       |          |  |               |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 pg/l=1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG , LOT 95 , CONT. W.T.S.R. Date compiled: 164 Compiler: N. RENNIE

|                                       | · GICET                      |          |     |            |                  |                                  |                            |                  | iiib(e)   | 0.0         |                              | 1                            |                                   |               | ω. ι           |                 |           |                   | comp.     |                | 780             | 00.               | ipiiei     |           |              |                   |                |
|---------------------------------------|------------------------------|----------|-----|------------|------------------|----------------------------------|----------------------------|------------------|-----------|-------------|------------------------------|------------------------------|-----------------------------------|---------------|----------------|-----------------|-----------|-------------------|-----------|----------------|-----------------|-------------------|------------|-----------|--------------|-------------------|----------------|
| Iden                                  | Owner<br>Source              | Loc      | T   | -          | Date             | Hydrogen<br>Sulphide             | Harc                       | Alka             | Iron      | рн          | Apparent<br>in Haze          | Turbi                        | Cond                              | Fluc          | Chic           | Sulp            | Calcium   | Мад               | Sodium    | Pota           | Nitro           | ogen              | as         | N         | Phosph<br>as | or <b>us</b><br>P | Phe            |
| Identification<br>Number <sup>1</sup> | Owner or<br>Source           | Township | 6 4 | Concession | ~ I              | ogen as<br>nide H <sub>2</sub> S | Hardness caco <sub>3</sub> | Alkalinity CaCO3 | as Fe     | at lab      | arent Colour,<br>Hazen Units | Turbidity, in Formazin Units | Conductance, in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | ium as Ca | Magnesium as Mg   | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite    | Nitrate   | Dissolved    | Total             | Phenois,in µg/ |
| 0W8                                   | OBSERVATION<br>WELL<br>NO. 8 |          |     |            | 24/<br>10/<br>19 |                                  | 382                        | 329              | 0.44      | 7.58        |                              |                              | 720                               |               | 29.5           | 27.5            | 91.0      | 37 <sub>-</sub> 6 | 12.2      | 7.40           | 0.005           | 0.48              | 0.001      | ره.0۱     | 0.001        | 0.019             | 2.0            |
| *                                     | ų                            |          |     |            | 31/<br>10/79     |                                  | 377                        |                  | 0.05      |             |                              |                              |                                   |               |                |                 | 86.0      | 39.4              | 20.6      | 1.60           |                 | 0.30              |            |           |              | 0.009             | ۷.0            |
| *                                     | и                            |          |     |            | 9/11/79          |                                  | 337                        | 308              | 0.02      | 7.80        |                              |                              | 780                               |               | 48.5           | 40.0            | 76.0      | ما 35             |           |                | 0.015           | 0.51              | 0.004      | 0.02      | <0.001       | 0.008             | 1.0            |
| *                                     | И                            |          |     |            | 26)<br>11/<br>19 |                                  |                            |                  | .07       |             |                              |                              |                                   |               |                |                 |           |                   |           |                |                 |                   |            |           |              |                   |                |
| *                                     | и                            |          |     |            | 31/<br>01/<br>80 |                                  | 316                        | 3∞               | 0.26      | 7.94        |                              |                              | 675                               | 40.10         | 35.5           | 17.5            | 71.0      | 33.6              | 21.4      | 1.90           | 0.630           | 1.14              | 0.010      | 0.16      | 0.005        | 0.043             | L1,0           |
| *<br>owa                              | OBSERVATION<br>WELL<br>NO. 9 | 7        |     |            | 12/<br>09/<br>79 |                                  | 487                        | 292              | 0.70      | <b>7</b> .9 |                              |                              | 1040                              |               | 165.0          | 15.0            | 100.0     | 59.0              | ٥.مل2     | 3.3            | <0-1            | 1.4               | < 0.01     | ۷٥.۱      | <0.02        | 0.46              |                |
| ži.                                   | u                            |          |     |            | 19/10/79         |                                  | 362                        | 275              | *<br>0.07 | 7.67        |                              |                              | 690                               |               | * 89.0         | * 14.0          | 69.0      | 46.0              | 19.6      | *<br>2.30      | #<br>0.160      | #<br>0.90         | ¥<br>0.005 | *<br>0.01 | * 0.002      | \$ 00.008         | 11.5           |
| 4                                     | 11                           |          |     |            | 24/<br>10/<br>79 |                                  | 335                        | 282              | 0.22      | 7.66        |                              |                              | 699                               |               | 44.5           | 27.0            | 77.5      | 34.4              | 14.0      | 1-60           | 0.015           | 0.33              | డు.∞౹      | ZO.01     | 0.001        | 0.013             | 2.0            |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure  $\lambda$ ; N.D. – Not detected; < – Refers to less than; 1mg/l = 1ppm = 1lb/100,000 lmp. gal; 1µg/l = 1ppb.

MCE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R.

Date compiled: 16/04/80

Compiler: N. RENNIE

| Num                                   | Owner                        | -        | _  | ion        | Date             | Bioch                           | Dema         | Chemical     | С                | arbo    | n     | Petro<br>Hydro            | Tannins<br>Lignins | Silicate  | Reactive | Total<br>Solids | Sele           | Arsenic   | Bari         | Cadr          | Chro           | Copper    | Cyanide     | Lead       | Mang            | Nickel   | Zinc  | Alum     |   | Anionic      |
|---------------------------------------|------------------------------|----------|----|------------|------------------|---------------------------------|--------------|--------------|------------------|---------|-------|---------------------------|--------------------|-----------|----------|-----------------|----------------|-----------|--------------|---------------|----------------|-----------|-------------|------------|-----------------|----------|-------|----------|---|--------------|
| Identification<br>Number <sup>1</sup> | Owner or<br>Source           | Township | ot | Concession | Sampled 3        | Biochemical Oxygen Demand (BOD) | Demand (COD) | nical Oxygen | Inorganic        | Organic | Total | Petroleum<br>Hydrocarbons | ins and            | ate as Si | tive     | Dissolved       | Selenium as Se | nic as As | Barium as Ba | Cadmium as Cd | Chromium as Cr | )er as Cu | n) de as CN | Lead as Pb | Manganese as Mn | el as Ni | as Zn | Aluminum |   | ic Detergent |
| ഠധമ                                   | OBSERVATION<br>WELL<br>NO. 8 |          |    |            | 24/<br>10/<br>79 |                                 |              |              | <del>34</del> .5 | 17.5    | 102   |                           |                    |           |          |                 |                |           |              | -             |                |           |             |            |                 |          |       |          |   |              |
| <del>X</del>                          | ц                            |          |    |            | 31/<br>10/<br>79 |                                 |              |              | <b>85</b> .0     | 11.0    | 96.0  |                           |                    |           |          |                 |                |           |              |               |                |           |             |            |                 |          |       |          |   |              |
| *                                     | lı                           |          |    |            | 9/1/9            |                                 |              |              | 78.5             | 8.0     | 86.5  |                           |                    |           |          |                 |                |           |              |               |                |           |             |            |                 |          |       |          | ļ | 40. I        |
| <del>X</del><br>11                    | 11                           |          |    | _          | 26               |                                 |              |              |                  |         |       |                           |                    |           |          |                 | < .00I         | <.∞1      | .03          | 4.005         | <.02           |           |             | 0.07       | .86             | ۷.02     | ١٥.٧  |          |   |              |
| μ                                     | n                            |          |    |            | 31/<br>01/<br>80 |                                 |              |              | 75.0             | 25.0    | 100   |                           |                    |           |          |                 |                |           |              |               |                |           |             |            |                 |          |       |          |   |              |
|                                       |                              |          |    |            |                  |                                 |              |              |                  |         |       |                           |                    |           |          |                 |                |           |              |               |                |           |             |            |                 |          |       |          |   |              |
| 0W9                                   | OBSERVATION<br>WELL<br>NO. 9 |          |    |            |                  |                                 |              |              |                  |         |       |                           |                    |           |          |                 |                |           |              |               |                |           |             |            |                 |          |       |          | Y |              |
| ú                                     | tı                           |          |    |            | 19/19            | 49                              | 10           | ٥4           | 69.0             | 36.0    | 105   |                           |                    |           |          |                 |                |           |              |               |                | 1.0       |             | ۷.25       | 5.5             |          | 1.0   | 70       |   |              |
| ,                                     | a a                          |          |    |            | 10/79            |                                 |              |              | 71.5             | 15.5    | 87.0  |                           |                    |           |          |                 |                |           |              |               |                |           |             |            |                 |          |       |          |   | li .         |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1,µg/l=1 ppb. A - sampled on November 3, 1919.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 704/80 Compiler: N. RENNIE

|                                   | y. ORL 1               | -        |     |            | _                         | -                              |                            | 104411           | silih(a) | 1.022  | 10000                              | , 101                  | ,                                  | CO,-3      | L CE.      |             |           | Date            | comp         | ilea ;         | 104/80          | Cor               | npiler  | : N.KE  | Dioic        |            |                  |
|-----------------------------------|------------------------|----------|-----|------------|---------------------------|--------------------------------|----------------------------|------------------|----------|--------|------------------------------------|------------------------|------------------------------------|------------|------------|-------------|-----------|-----------------|--------------|----------------|-----------------|-------------------|---------|---------|--------------|------------|------------------|
| Identifica<br>Number <sup>1</sup> | Owner                  | -        |     | tion.      | Date                      | Hydrogen<br>Sulphide           | Hard                       | Alka             | Iron     | PH     | Appa<br>in F                       | Turbidity,<br>Formazin | Cond                               | Fluoride   | Chloride   | Sulphate    | Calcium   | Mag             | Sod          | Pota           | Nitro           | ogen              | as      | N       | Phosph<br>as | orus<br>P  | Phe              |
| ation                             | or or                  | Township | .ot | Concession | Sampled ×                 | gen as<br>ide H <sub>2</sub> S | Hardness caco <sub>3</sub> | Alkalinity CaCO3 | as Fe    | at lab | Apparent Colour,<br>in Hazen Units | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | oride as F | ride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | Sodium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite | Nitrate | Dissolved    | Total      | Phenois, in µg/1 |
| ×<br>owq                          | OBSERVATION WELL NO. 9 |          |     |            | 31/<br>10/<br>79          |                                | 347                        |                  | 0.08     |        |                                    |                        |                                    |            |            |             | 80.5      | 35.4            | 14.3         | 1.75           |                 | 0.46              |         |         |              | 0.010      | 3.5              |
| *                                 | ħ                      |          |     |            | 9/11/19                   |                                | 326                        | 296              | 0.03     | 7.68   |                                    |                        | 705                                |            | 38.0       | 31.0        | 77.5      | 32.0            |              |                | 0.010           | 0.76              | 0.002   | 40.01   | <0.001       | 0.083      | 1.5              |
| *                                 | н                      |          |     |            | 22/<br>11/<br>79          |                                | 314                        | 283              | 0.27     | 7.64   |                                    |                        | 720                                |            | 49.0       | 34.0        | 73.0      | 31.8            | 29.6         | 1.30           | 0.100           | 0.65              | ZO.01   | 0.10    | 40.05        | <0.05      | 1.0              |
| *                                 | 11                     |          |     |            | 26/11/79                  |                                |                            |                  | .04      |        |                                    |                        |                                    |            |            |             |           |                 |              |                |                 |                   |         |         |              |            |                  |
| * 11                              | Ц                      |          |     |            | 31/<br>/01/<br>/80        |                                | 327                        | 307              | 0.29     | 7.92   |                                    |                        | 680                                | 40.10      | 37.0       | 16.5        | 78.0      | 32.0            | 20.0         | 1.85           | 0.100           | 0.72              | 0.002   | 0.19    | 0.005        | 0.017      | <1,0             |
| *                                 | OBSERVATION WELL       |          |     |            | 12/                       |                                |                            |                  |          |        |                                    |                        |                                    |            |            |             |           |                 |              |                |                 |                   |         |         |              |            |                  |
| 0W 10                             | NO. 10                 | $\perp$  | -   |            | 19                        |                                | 375                        |                  | -        | 7.9    | -                                  |                        | 700                                |            | 33.0       |             |           |                 |              |                | 0.30            | 0.6               | ۷٥٠٥١   | 40-1    | 40.02        | 0.18       |                  |
| и                                 | 15                     |          |     |            | 18/<br>10/<br>79<br>11:34 |                                | 344                        | 338              | 2.08     | 7.36   |                                    |                        | 705                                |            | 24.5       | 4.0         | 79.0      | 35.6            | 13.1         | 0.75           | 0.050           | 0.36              | 0.007   | 0.02    | 0.014        | 0.070      | <1.0             |
| B                                 | h                      |          |     |            | II<br>17:58               |                                | 385                        | 367              | * 0.04   | 7-34   |                                    |                        | 705                                |            | *<br>23.5  | *<br>12.0   | 96.0      | 35.2            | * 8.3        | 1.00           | * 0.090         | ×<br>0.36         | * 0.005 | * 0.04  | * 0.006      | *<br>0.009 | ۷۱.0             |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1mg/l = 1ppm = 1|b/100,000 lmp.gal; 1µg/l = 1ppb. MOE 3495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONT. W.T.S.R. Date compiled: 17/04/80

d: 17/04/80 Compiler: N. RENNIE

| Identifica<br>Number <sup>1</sup>     | Sour                          | Loca            |            | Date             | Bioch<br>Demi                                    | Chen                         | С         | arbo    | n     | Petroleum<br>Hydrocarb    | Tannins<br>Lignins | Reactive          | Total<br>Solids           | Sele           | Arsenic   | Barium   | Cadr          | Chro           | Copper   | Cyanide    | Lead       | Mans            | Nickel   | Zinc  | Alun     |         |   | Anionic       |
|---------------------------------------|-------------------------------|-----------------|------------|------------------|--------------------------------------------------|------------------------------|-----------|---------|-------|---------------------------|--------------------|-------------------|---------------------------|----------------|-----------|----------|---------------|----------------|----------|------------|------------|-----------------|----------|-------|----------|---------|---|---------------|
| Identification<br>Number <sup>1</sup> | Owner or Source               | Lot<br>Township | Concession | Sampled M        | Biochemical Oxygen<br>Demand (BOD <sub>3</sub> ) | Chemical Oxygen Demand (COD) | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | ns and<br>ns       | tive<br>ate as Si | Total Dissolved<br>Solids | Selenium as Se | nic as As | um as Ba | Cadmium as cd | Chromium as Cr | er as Cu | i)de as CN | Lead as Pb | Manganese as Mn | el as Ni | as Zn | Aluminum |         |   | iic Detergent |
| *<br>ow9                              | OBSERVATION<br>WELL<br>NO. 9  |                 |            | 31/10/           |                                                  |                              | 77.0      | 11.5    | 98.5  |                           |                    |                   |                           |                |           |          |               |                |          |            |            |                 |          | ,     |          |         |   |               |
| <b>*</b>                              | Įt                            |                 |            | 9/11/79          |                                                  |                              | 77.0      | 12.0    | 89.0  |                           |                    |                   |                           |                |           |          |               |                |          |            |            |                 |          |       |          |         | ( | (0.1          |
| *<br>"                                | is .                          |                 |            | 22/<br>11/<br>79 |                                                  |                              | 73.5      | 48.5    | 122   |                           |                    |                   |                           |                |           |          |               |                |          |            |            |                 |          |       |          |         | 4 | (٥.١          |
| * "                                   | u                             |                 |            | 26/14            |                                                  |                              |           |         |       |                           |                    |                   |                           |                |           |          |               |                |          |            |            |                 |          |       |          |         |   | 1.77          |
| ¥<br>11                               | 11                            |                 |            | 31/              |                                                  |                              | 78.5      | 606     | 685   |                           |                    |                   |                           | ۱۵۵. ک         | ا∞،       | .06      | <.005         | <.02           |          |            | .05        | f, j            | 4.02     | 2.01  |          |         |   |               |
|                                       |                               |                 |            |                  |                                                  |                              |           |         |       |                           |                    |                   |                           |                |           |          |               |                |          |            |            |                 |          |       |          |         |   |               |
| 0010                                  | OBSERVATION<br>WELL<br>NO. 10 | 7               |            |                  |                                                  |                              |           |         |       |                           |                    |                   |                           |                |           |          |               |                |          |            |            |                 |          |       |          | -       |   |               |
| и                                     | W                             |                 |            | 19/10/10/11:34   |                                                  |                              | 91.5      | 9.5     | /01   |                           |                    |                   |                           |                |           |          |               | ç              | 1.0      |            | ۷.25       | 7.5             |          | 1.5   | 55       | ¥<br>.x |   |               |
| п                                     | h                             |                 |            | "<br>17: 55      |                                                  |                              | 98.0      | 5.0     | 103   |                           |                    |                   |                           |                |           |          |               |                |          |            |            |                 |          |       |          |         |   |               |

Location is shown in Figure 2; N.D.— Not Detected; P — Present; < — Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 μg/l=1 ppb. A - sampled on November 3, 1979.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CON I W.T.S.R Date compiled: 18/4/\_ Compiler: N. RENNIE

| County                   | . GREY                        | Marian  | -   |            |             |                                |                            | TOWITS           | uih(a) | · OLL  | 1-220                        | , 131                  | 10 ,                               |               |            | . 1. 5.1    | _         | Date            | compi     | iea .          | 104/80          | Con               | npiler:    | N.KE      | INIE         |            |                  |
|--------------------------|-------------------------------|---------|-----|------------|-------------|--------------------------------|----------------------------|------------------|--------|--------|------------------------------|------------------------|------------------------------------|---------------|------------|-------------|-----------|-----------------|-----------|----------------|-----------------|-------------------|------------|-----------|--------------|------------|------------------|
| lden<br>Num              | Owner                         | -       | ,   | tion.      | Date        | Hydrogen<br>Sulphide           | Hard                       | Alka             | Iron   | РН     | Apparent<br>in Haze          | Turbidity,<br>Formazin | Cond                               | Fluc          | Chloride   | Sulphate    | Calcium   | Mag             | Sodium    | Pota           | Nitro           | ogen              | as         | N         | Phosph<br>as | orus<br>P  | Phe              |
| Identification  Number 1 | er or<br>ce                   | ownship | Lot | Concession | Sampled ×   | gen as<br>ide H <sub>2</sub> S | Hardness CaCO <sub>3</sub> | Alkalinity CaCO3 | as Fe  | at lab | arent Colour,<br>Hazen Units | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | ride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | um as Na  | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite    | Nitrate   | Dissolved    | Total      | Phenois, in µg/1 |
| 0010                     | OBSERVATION<br>WELL<br>NO. 10 | 7       |     |            | 19/10/19    |                                | 459                        | 340              | * 0.02 | 7.40   |                              |                        | 720                                |               | 25.0       | *<br>29.0   | 98.5      | 51 6            | *<br>/4.6 | 4 0.70         | *<br>0,015      | *<br>0.250        | *<br>0.021 | ×<br>0.44 | *<br>0.003   | *<br>0.011 | 41.0             |
| *                        | 66                            |         |     |            | 19/19       |                                | 279                        | 274              | 0.18   | 7.37   |                              |                        | 740                                |               | 52.0       | 36.5        | 68.0      | 26.4            | 45.5      | 2.05           | 1.56            | 2.90              | 0.007      | 0.87      | 0.002        | 0.164      | 41.0             |
| *                        | 11                            |         |     |            | 31/19/79    |                                | 325                        |                  | 0.70   |        |                              |                        |                                    |               |            |             | 82.0      | 29.2            | 47.5      | 5.55           |                 | 3.70              |            |           |              | 0.090      | 41.0             |
| *                        | ñ                             |         |     |            | 9/11/19     |                                | 268                        | 279              | 0.92   | 7.77   |                              |                        | 770                                |               | 56.7       | 37.5        | 60.5      | 28.4            |           |                | 3.50            | 4.30              | 0.32       | 1.9       | 0.011        | 0.076      | < 1. o           |
| *                        | Ti                            |         |     |            | 22/11/79    |                                | 286                        | 283              | 0.54   | 7.67   |                              |                        | 779                                |               | 59.0       | 34.0        | 63.0      | 31.2            | 48.0      | 4.65           | 2.3             | 3.35              | 0.20       | 1.8       | <0.05        | 0.05       | 41.0             |
| *,                       | le .                          |         |     |            | 26          |                                |                            |                  | 0.70   |        |                              |                        |                                    |               |            |             |           |                 |           |                |                 |                   |            |           |              |            |                  |
| * 11                     | li.                           |         |     |            | 31/01/80    |                                | 346                        | 344              | 0.37   | 8.08   |                              |                        | 690                                | ۷٥.۱٥         | 26.0       | 8.0         | 83.5      | 33.4            | 14.4      | 1-20           | 0.165           | 0.42              | 0.006      | 0.15      | 0.007        | 0.015      | <1.0             |
| 0W11                     | OBSERVATION<br>WELL<br>NO. 11 | 3       |     |            | 3/11/79     |                                |                            |                  |        |        |                              |                        |                                    |               |            |             |           |                 |           |                |                 |                   |            |           |              |            |                  |
| *<br>0W12                | OBSERVATION<br>WELL<br>NO: 12 | 2       |     |            | 12/<br>0/79 |                                | 33%                        | 320              | 0.23   | 7.9    |                              |                        | 660                                |               | 27.0       | 14.0        | 80.0      | 34.0            | 17.0      | 1.9            | 0.2             | 1-2               | 0.10       | ZO:1      | <0.02        | 0.28       |                  |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1mg/l = 1ppm = 1|b/100,000 lmp. gal; 1µg/l = 1ppb. "OE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



#### OF GROUNDWATER SUMMARY OF CHEMICAL ANALYSES

All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG , LOT 95 , CON I , W.T.S.R. Date compiled: 1/04/80

Compiler: N. RENNIE

|                     |                               |                | •  |            |                           |                                                  |              |              |           |         |                        |                           |             | _        |                 |                           |                |           | <del></del> |               |                |              |            |            | 7               |          |       |     |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                 |      |
|---------------------|-------------------------------|----------------|----|------------|---------------------------|--------------------------------------------------|--------------|--------------|-----------|---------|------------------------|---------------------------|-------------|----------|-----------------|---------------------------|----------------|-----------|-------------|---------------|----------------|--------------|------------|------------|-----------------|----------|-------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
| Iden                | Owner<br>Source               | Concession Lot |    | Date       | Bioch                     | Dema                                             | 2            | C            | arboi     | n       | Petroleum<br>Hydrocarb | Lignins                   | 1 9         | Reactive | Total<br>Solids | Sele                      | Arsenic        | Barium    | Cadn        | Chro          | Сорр           | Cyanide      | Lead       | Mang       | Nickel          | Zinc     |       |     |        | Anioni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |      |
| Identification      | Owner or<br>Source            | Township       | ot | Concession | Sampled 3                 | Biochemical Oxygen<br>Demand (BOD <sub>3</sub> ) | Demand (COD) | nical Oxygen | Inorganic | Organic | Total                  | Petroleum<br>Hydrocarbons | Lignins and | 1 8      | tive<br>as Si   | Total Dissolved<br>Solids | Selenium as Se | nic as As | um as Ba    | Cadmium as Cd | Chromium as Cr | Copper as Cu | i)de as CN | Lead as Pb | Manganese as Mn | el as Ni | as Zn |     |        | a service of the serv | Anionic Detergent |      |
|                     | OBSERVATION<br>WELL<br>NO. 10 |                |    |            | 19/<br>10/<br>79<br>15:22 |                                                  |              | 9            | 12.5      | 2.5     | 95.0                   |                           |             |          |                 |                           |                |           |             |               |                |              |            |            |                 |          |       |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
| *                   | h.                            |                |    |            | 24/<br>10/19              |                                                  |              | 7            | 12.0      | 22.5    | 95.0                   |                           |             |          |                 |                           |                |           |             |               |                |              |            |            |                 |          |       |     |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |      |
| *                   | Ц                             |                |    |            | 31/10/79                  |                                                  |              | 7            | 73.5      | 17.0    | 90.5                   |                           |             |          |                 |                           |                |           |             |               |                |              |            |            |                 |          |       |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
| *                   | ll                            |                |    |            | 9/11/79                   |                                                  |              |              | 70.5      | 18.0    | 88.5                   |                           |             |          |                 |                           |                |           |             |               |                |              |            |            |                 |          |       |     |        | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . ¡A              | 129. |
| *                   | ħ                             |                |    |            | 22/<br>11/19              |                                                  |              |              | 75.0      | 19.0    | 94.0                   |                           |             |          |                 |                           |                |           |             |               |                |              |            |            |                 |          |       |     |        | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2               |      |
| <del>*</del> "      | И                             |                |    |            | 26,                       |                                                  |              |              |           |         |                        |                           |             |          |                 |                           | ا∞. یا         | .001      | .04         | <.005         | 4.02           |              |            | .05        | . 20            | <.02     | ١٥.٧  |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                 |      |
| "                   | It                            |                |    |            | 3/0/80                    |                                                  |              | 9            | 87.O      | 158     | 245                    |                           |             |          | *** **          |                           |                |           |             |               |                |              |            |            |                 |          |       |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
| <del>X</del><br>∞11 | OBSERVATION<br>WELL<br>NO: 11 | 2              |    |            | 3/11/<br>79               |                                                  |              |              |           |         |                        |                           |             |          |                 |                           |                |           |             |               |                |              |            |            |                 |          |       |     |        | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1               |      |
|                     |                               |                |    |            | rarar                     |                                                  |              |              |           |         |                        |                           |             |          |                 |                           |                |           |             |               |                |              |            |            |                 |          |       |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|                     |                               |                |    |            |                           |                                                  |              | -            |           |         |                        |                           |             |          |                 |                           |                |           |             |               |                |              |            |            |                 |          |       | one | 41.000 | 0 20 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |      |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=11b/100,000 lmp.gal; 1,4g/l=1 ppb. A - sampled on November 3, 1979. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Ontario

Township(s): GLENELG , LOT 95 , CON I W.T.S.R. Date compiled: 704/80 Compiler: N. RENNIE

| Nur                                   | Owner                         | _        | ation      | Date               | Hydr                                     | Har            | Alk              | Iron  | РН     | Appa                               | Turb                            | Conc                               | Fig           | Chlo           | Sulp            | Calc          | Mag             | Sodium    | Pota           | Nitro           | gen               | as      | N       | Phospho<br>as | orus<br>P | Phe              |
|---------------------------------------|-------------------------------|----------|------------|--------------------|------------------------------------------|----------------|------------------|-------|--------|------------------------------------|---------------------------------|------------------------------------|---------------|----------------|-----------------|---------------|-----------------|-----------|----------------|-----------------|-------------------|---------|---------|---------------|-----------|------------------|
| Identification<br>Number <sup>1</sup> | ner or                        | Township | Concession | e Sampled          | Hydrogen as<br>Sulphide H <sub>2</sub> S | Hardness CaCO3 | Alkalinity caco3 | as Fe | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | Calcium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite | Nitrate | Dissolved     | Total     | Phenols,in μg/ Ι |
| 01112                                 | OBSERVATION<br>WELL<br>NO. 12 | ,        |            | 31/101/80          |                                          | 327            | 323              | 0.08  | 7.79   |                                    |                                 | 662                                | ∠o.10         | 28.0           | 7.5             | 75.0          | 33.8            | 16.6      | 0.95           | 0.010           | 0.12              | 0.011   | 0.18    | 0.002         | 0.002     | 41.0             |
|                                       |                               |          |            |                    |                                          |                |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |               |           |                  |
| *<br>0W13                             | OBSERVATION<br>WELL<br>NO. 13 |          |            | 11/79              |                                          | 286            | 273              | 0.18  | 7.62   |                                    |                                 | 770                                |               | 52.0           | 34.0            | 68.0          | 28.2            | 47.5      | 2.45           | 0.745           | 1.68              | 0.032   | 3.12    | 0.004         | 0.034     | <1.0 C           |
| *                                     | н                             |          |            | 25/<br>/11/<br>/79 |                                          | 275            | 263              | 0.13  | 7.64   |                                    |                                 | 780                                |               | 71.5           | 29.0            | 63.0          | 28.6            | 53.5      | 2.90           | 0.805           | 1.36              | 0.113   | 3.7     | 0.002         | 0.039     | <1.0             |
| * ì                                   | h                             |          |            | 31/01/80           |                                          | 326            | 322              | 0.09  | 7.81   |                                    |                                 | 662                                | ZO-10         | 29.0           | 8.5             | 75.5          | 33.4            | 16.9      | 1.95           | 0.010           | 0.32              | 0.001   | 0.38    | 0.002         | 0.004     | 2.0              |
|                                       |                               |          |            |                    |                                          |                |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |               |           |                  |
|                                       |                               |          |            |                    |                                          |                |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |               |           |                  |
| X<br>0W14                             | OBSERVATION<br>WELL<br>NO: 14 | 0        |            | 12/09/70           | 3                                        | 361            | 344              | 0.18  | 7.30   |                                    |                                 | 670                                |               | 22.0           | 11.0            | 80.0          | 39.0            | 13.0      | 3.8            | 0.1             | 1.8               | 40.01   | 40.1    | ∠o. o z       | 0.26      |                  |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1lb/100,000 lmp. gal; 1 µg/l = 1 ppb. "DE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 17/04/80

Compiler : N. RENNIE

| Source Concession Dimension Observation Ob | oncession ot                  | Sampled and oncession of | oncession Sampled | Sampled | all A            | Demand (COD) | Inorganic 78.5 | Organic 8920 | n Total | Petroleum<br>Hydrocarbons | Tannins and<br>Lignins | Reactive<br>Silicate as Si | Total Dissolved Solids | Selenium as Se | Arsenic as As | Barium as Ba | Cadmium as Cd | Chromium as Cr | Copper as Cu | Cyanide as CN | Lead as Pb | Manganese as Mn | Nickel as Ni | Zinc as Zn |  | Anionic Detergent 9                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------------|---------|------------------|--------------|----------------|--------------|---------|---------------------------|------------------------|----------------------------|------------------------|----------------|---------------|--------------|---------------|----------------|--------------|---------------|------------|-----------------|--------------|------------|--|--------------------------------------------|
| OBSERVAT<br>WELL<br>NO. 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion                           | )                        |                   |         | 16/11/19         |              | 72.5           | 10.0         | 82-5    |                           |                        |                            |                        |                |               |              |               |                |              |               |            |                 |              |            |  | $\frac{1}{1}$ $\frac{1}{1}$ $\frac{31}{1}$ |
| 100. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                             |                          |                   |         | 25/<br>11/<br>79 |              | 69.0           | 15.0         | 83.0    |                           |                        |                            |                        |                |               |              |               |                |              |               |            |                 |              |            |  |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥                             |                          |                   |         | 31/              |              | 80.5           | 1040         | 1120    |                           |                        |                            |                        |                |               |              |               |                |              |               |            |                 |              |            |  | <br>_                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          |                   |         |                  |              |                |              |         |                           |                        |                            |                        |                |               |              |               |                |              |               |            |                 |              |            |  |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OBSERVATION<br>WELL<br>NO. 14 | N)                       |                   |         | 09/<br>79        |              |                |              |         |                           |                        |                            |                        |                |               |              |               |                |              |               |            |                 |              |            |  | A<br>KD.1                                  |

1 Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=11b/100,000 lmp.gal; 1, ug/l=1 ppb. A-sampled on November 3, 1979. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI, W.T.S.R. Date compiled: 17/04/80 Compiler: N.RENNIE

| county                  | GKET                          |          |      |                           |                           |                                  |                | 1044112       | nip(s) | · Omc  | NECC                               | ,                               | ٦٧,                                | 0010 1        | , w.           | 1               |           | Date (          | Joinpi    | icu .          | 780             | 0011              | ipiici . | 10.100  | :101010              |           |                  |
|-------------------------|-------------------------------|----------|------|---------------------------|---------------------------|----------------------------------|----------------|---------------|--------|--------|------------------------------------|---------------------------------|------------------------------------|---------------|----------------|-----------------|-----------|-----------------|-----------|----------------|-----------------|-------------------|----------|---------|----------------------|-----------|------------------|
| Ide                     | Owner<br>Source               | -        | cati | ion.                      | Date                      | Hydrogen<br>Sulphide             | Haro           | Alk           | iron   | РН     | Appa                               | Turb                            | Conc                               | Flu           | Chlo           | dins            | Calcium   | Mag             | Sodium    | Pota           | Nitro           | gen               | as       | N       | Phospho<br>as        | orus<br>P | Phe              |
| Identification Number 1 | ner or                        | Township | Lot  | Concession                | e Sampled s               | ogen as<br>hide H <sub>2</sub> S | Hardness CaCO3 | Alkalinity as | as Fe  | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | ium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite  | Nitrate | Dissolved<br>Reative | Total     | Phenols, in µg/1 |
| W 1                     | OBSERVATION<br>WELL<br>NO. 14 | 3        |      |                           | 25/<br>/11/<br>/79        |                                  | 322            | 319           | 0.13   | 7.63   |                                    |                                 | 665                                |               | 23.0           | 15.0            | 72.0      | 34.4            | 14.1      | 1.70           | 0.350           | 0.62              | 0.006    | 0.04    | <0.∞1                | 0.003     | 3.0              |
| *                       | ti                            |          |      |                           | 31/<br>01/<br>80          |                                  | 307            | 302           | 0.22   | 7.86   |                                    |                                 | 622                                | 40.10         | 25.5           | 8.0             | 70.5      | 31.8            | 13.6      | 1.35           | 0.150           | 0.39              | 0.002    | 0.23    | 0.002                | 0.013     | 3.0              |
|                         |                               |          |      |                           |                           |                                  |                |               |        |        |                                    |                                 |                                    |               |                |                 |           |                 |           |                |                 |                   |          |         |                      |           |                  |
|                         |                               |          |      |                           |                           |                                  |                |               |        |        |                                    |                                 |                                    |               |                |                 |           |                 |           |                |                 |                   |          |         |                      |           |                  |
| <del>*</del><br>0w15    | OBSERVATION<br>WELL<br>NO. 15 | 9        |      |                           | 12/<br>09/<br>79          |                                  | 384            |               |        | 8.1    |                                    |                                 | 650                                |               | 24.0           |                 |           |                 |           |                |                 |                   |          | <0.1    |                      |           |                  |
| *<br>tı                 | ii                            |          |      |                           | 25/<br>11/<br>779         |                                  | 322            | 310           | 0.05   | 7.74   |                                    |                                 | 630                                |               | 18.0           | 12.5            | 72.0      | 34.4            | 11.0      | 0.70           | 0,020           | 0.23              | 0.001    | 0.18    | <b>40.001</b>        | 0.002     | <b>41.0</b>      |
|                         |                               |          |      | Deleteration of the Party |                           |                                  |                |               |        |        |                                    |                                 |                                    |               |                |                 |           |                 |           |                |                 |                   |          |         |                      |           |                  |
|                         |                               |          |      | 1 - 1400 Term             |                           |                                  |                |               |        |        |                                    |                                 |                                    |               |                |                 |           |                 |           |                |                 |                   |          |         |                      |           |                  |
| 0W16                    | OBSERVATION<br>WELL<br>NO. 16 | 2        |      |                           | 25/<br>/11/ <sub>79</sub> |                                  | 391            | 353           | 0.16   | 7.52   |                                    |                                 | 720                                |               | 25.5           | 11.0            | 87.0      | 37.2            | 11.2      | 0.75           | 0.040           | 0.27              | 0.002    | 0.03    | 0.002                | 0.004     | 41.0             |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp.gal; 1 µg/l = 1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



County: GREY

### SUMMARY OF CHEMICAL ANALYSES OF GROUNDWATER

All analyses except pH reported in mg/l unless otherwise indicated

Township(s): GLENELG, LOT 95, CONI, W.T.S.R Date compiled: 17/04/80 Compiler: N. RENNIE

| N d                                   | Sot Ow                        | Loc         | ati | ion        | Date                  | 0 0                                | D C P                        | C         | arbo    | n     | Pet                       | Tan<br>Lig             | SII                        | Total<br>Solids           | Sei            | Ars           | Ваг          | င္မ           | Chr            | Cop          | Суг           | Lea        | Mar             | Nic          | Zinc     |  | Anio              |
|---------------------------------------|-------------------------------|-------------|-----|------------|-----------------------|------------------------------------|------------------------------|-----------|---------|-------|---------------------------|------------------------|----------------------------|---------------------------|----------------|---------------|--------------|---------------|----------------|--------------|---------------|------------|-----------------|--------------|----------|--|-------------------|
| Identification<br>Number <sup>1</sup> | Owner or Source               | Township    | 2   | Concession | Sampled               | Biochemical Oxyger<br>Demand (BOD) | Chemical Oxygen Demand (COD) | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | Tannins and<br>Lignins | Reactive<br>Silicate as Si | Total Dissolved<br>Solids | Selenium as Se | Arsenic as As | Barium as Ba | Cadmium as Cd | Chromium as Cr | Copper as Cu | Cyanide as CN | Lead as Pb | Manganese as Mn | Nickel as Ni | IC as Zn |  | Anionic Detergent |
| 10.00                                 | OBSERVATION<br>WELL<br>NO. 14 | $\parallel$ | 1   |            | DIMIY<br>25/<br>11/79 |                                    |                              | 84.5      | 9.5     | 94.0  |                           |                        |                            |                           |                |               |              |               |                |              |               |            |                 | ×            |          |  |                   |
| *<br>II                               | п                             |             |     |            | 31/                   |                                    |                              | 77. 0     | 893     | 970   |                           |                        |                            |                           |                |               |              |               |                |              |               |            |                 |              |          |  |                   |
|                                       |                               |             |     |            |                       |                                    |                              |           |         |       |                           |                        |                            |                           |                |               |              |               |                |              |               |            |                 |              |          |  |                   |
|                                       |                               |             |     |            |                       |                                    |                              |           |         |       |                           |                        |                            |                           | i i            |               |              |               |                |              |               |            |                 |              |          |  | 133               |
|                                       |                               |             |     |            |                       |                                    |                              |           |         |       |                           |                        |                            |                           |                |               |              |               |                |              |               |            |                 |              |          |  |                   |
| <b>*</b><br>0W15                      | OBSERVATION<br>WELL<br>NO. 15 | 7           |     |            | 25/<br>11/<br>79      |                                    |                              | G4.0      | 2.0     | 960   |                           |                        |                            |                           |                |               |              |               |                |              |               |            |                 |              |          |  | A<br>40.1         |
| į.                                    |                               |             |     |            |                       |                                    |                              |           |         |       |                           |                        |                            |                           |                |               |              |               |                |              |               |            |                 |              |          |  | ч                 |
|                                       |                               |             |     |            |                       |                                    |                              |           |         |       |                           |                        |                            |                           |                |               |              |               |                |              |               |            |                 |              |          |  | 41                |
| <b>*</b><br>0⊌I6                      | OBSERVATION<br>WELL<br>NO. 16 | 2           |     |            | 25/<br>/11/<br>/79    |                                    |                              | 72.5      | 9.0     | 81.5  |                           |                        |                            |                           |                |               |              |               |                |              |               |            |                 |              |          |  | &.I               |

Location is shown in Figure 2; N.D.— Not Detected; P — Present; < — Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 µg/l=1 ppb. A-sampled on November 3, 1979.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R.

Date compiled: 17/04/80 Compiler: N. RENNIE

| Count                   | , GRET                        |          |   |            |                  |                                          |                            |                  | ilihia |                  |                                    | *                            |                                    |               |                |                 |               |                 | <b>p</b>  |                   | -1/180          |                   | ipiici . |         |                      |           |                 |
|-------------------------|-------------------------------|----------|---|------------|------------------|------------------------------------------|----------------------------|------------------|--------|------------------|------------------------------------|------------------------------|------------------------------------|---------------|----------------|-----------------|---------------|-----------------|-----------|-------------------|-----------------|-------------------|----------|---------|----------------------|-----------|-----------------|
| Nur                     | Owner                         | Loc      | - |            | Date             | Hydr                                     | Har                        | Alk              | Iron   | РН               | in Appa                            | Turb                         | Conc                               | Flu           | Chic           | Sulp            | Calc          | Mag             | Sodium    | Pota              | Nitro           | gen               | as       | N       | Phosph<br>as         | orus<br>P | Phe             |
| Identification Number 1 | Owner or<br>Source            | Township | 2 | Concession | - ×              | Hydrogen as<br>Sulphide H <sub>2</sub> S | Hardness caco <sub>3</sub> | Alkalinity caco3 | as Fe  | at lab           | Apparent Colour,<br>in Hazen Units | Turbidity, in Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | Calcium as Ca | Magnesium as Mg | ium as Na | Potassium as K    | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite  | Nitrate | Dissolved<br>Reative | Total     | Phenols,in µg/l |
| ×.                      | OBSERVATION<br>WELL<br>NO. 16 | 2        |   |            | 31/<br>01/<br>80 |                                          | 317                        | 310              | 0.30   | 7.77             |                                    |                              | 618                                | <b>40.10</b>  | 19.5           | 7.5             | 77.0          | 30.2            | 10.4      | 0.75              | 0.050           | 0.34              | 0.001    | 0.30    | 0.003                | 0.005     | ۷۱.0            |
| _                       |                               |          | + |            |                  |                                          |                            |                  |        |                  |                                    |                              |                                    |               |                |                 |               |                 |           |                   |                 |                   |          |         |                      |           |                 |
| ¥<br>∞wis               | OBSERVATION<br>WELL<br>NO. 18 |          |   |            | 31/<br>10/<br>79 |                                          | 317                        |                  | 0.06   |                  |                                    |                              |                                    |               |                |                 | 70.0          | 34.4            | 40.0      | 1.70              |                 | 0.63              |          |         |                      | 0.014     | ۷۱.0            |
| *                       | и                             |          |   |            | 9/11/79          |                                          | 281                        | 283              | 0.04   | 7.7 <del>4</del> |                                    |                              | 758                                |               | 53.0           | 35.0            | 0 . حاص       | 28.2            |           |                   | 1.05            | /. 8 <del>4</del> | o.062    | 1.61    | 0.002                | 0.029     | < 1.0           |
| *                       | u                             |          |   |            | 12/19            |                                          | 292                        | 272              | 0.18   | 7.63             |                                    |                              | 780                                |               | 61.0           | 37.0            | b7.5          | 30.0            | 48.0      | 3. <del>4</del> 0 | 1.10            | 2.05              | 0.31     | 3.4     | 40.05                | ۷°.05     | <1.0            |
| *                       | n                             |          |   |            | 26/11/19         |                                          |                            |                  | 0.03   |                  |                                    |                              |                                    |               |                |                 |               |                 |           |                   |                 |                   |          |         |                      |           |                 |
| *                       | п                             |          |   |            | 31/01/80         |                                          | 315                        | 315              | 0.08   | 7.77             |                                    |                              | 640                                | 40.IO         | 19.0           | 12.0            | 75.0          | 31.0            | 16.8      | 1-05              | 0.035           | 0.30              | 0.003    | 1.05    | 0.001                | 0.006     | 3.0             |
|                         |                               |          |   |            |                  |                                          |                            |                  |        |                  |                                    |                              |                                    |               |                |                 |               |                 |           |                   |                 |                   |          |         |                      |           |                 |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp.gal; 1 µg/l = 1 ppb.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenole and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 1/04/80

Compiler : N. RENNIE

| Anionic Detergent                             |                               | 135                           | 0.1     | 0.2                      |          |       |
|-----------------------------------------------|-------------------------------|-------------------------------|---------|--------------------------|----------|-------|
| Titanium<br>Molybdenum                        |                               | ;004 .00I                     |         |                          |          |       |
| Aluminum                                      |                               | .080                          |         |                          |          |       |
| Zinc as Zn                                    |                               | 4.004                         |         |                          | ۷.0۱     |       |
| Nickel as Ni                                  |                               | ۷. 004                        |         |                          | 4.02     |       |
| Manganese as Mn                               |                               | z.004                         |         |                          | .08      |       |
| Lead as Pb                                    |                               | <. <del>004</del>             |         |                          | ۷.07     |       |
| Cyanide as CN                                 |                               |                               |         |                          |          |       |
| Copper as Cu                                  |                               | . ۵۵۹                         |         |                          |          |       |
| Chromium as Cr                                |                               | 4.004                         |         |                          | ۷.02     |       |
| Cadmium as Cd                                 |                               | 2.004                         |         |                          | <.005    |       |
| Barium as Ba                                  |                               |                               |         |                          | ۷.02     |       |
| Arsenic as As                                 |                               | Z.001                         |         |                          | ١٥٥٠ ک   |       |
| Selenium as Se                                |                               | Z.001                         |         |                          | 4.001    |       |
| Total Dissolved<br>Solids                     |                               |                               |         |                          |          |       |
| Reactive<br>Silicate as Si                    |                               |                               |         |                          |          |       |
|                                               |                               |                               |         |                          |          |       |
| Petroleum<br>Hydrocarbons                     |                               |                               |         |                          |          |       |
| Total                                         | 6350                          | 84.5                          | 81.5    | 94.5                     |          | 2000  |
| a r bor<br>Organic                            | 6270                          | 9.0                           | q.o     | 15.0                     | -        | 1920  |
| C Inorganic                                   | <b>%</b> 0.5                  | 75.5                          | 72.5    | <i>6</i> 9.5             |          | 77.5  |
| Chemical Oxygen Demand (COD)                  |                               |                               |         |                          |          |       |
| Biochemical Oxygen Demand (BOD <sub>5</sub> ) |                               |                               |         |                          |          |       |
| •                                             | DIMIY<br>3/<br>0/<br>80       | 31/<br>10/<br>79              | 9/11/79 | 27/<br>11/ <sub>79</sub> | 26/11/79 | 31/80 |
| Concession                                    |                               |                               |         |                          |          |       |
| Lot<br>Township                               |                               |                               |         |                          |          |       |
| 2 3                                           | OBSERVATION<br>WELL<br>NO. 16 | OBSERVATION<br>WELL<br>NO: 18 | u       | u                        | 11       | ty.   |
| Identification<br>Number <sup>1</sup>         | owib                          |                               | *       | H<br>*                   | *        | 10    |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 µg/l=1 ppb. A - sampled on November 3, 1979.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CON I W.T.S.R. Date compiled: 17/04/80 Compiler: N. RENNIE

|                                       | . 0                           |          |      |            |                       |                                  |                |                  | inp(c) |        |                              |                                 |                                    |               |                |                 |             |                 |              |                | 780             |                   | ·p      |         |                      |                   |                     |
|---------------------------------------|-------------------------------|----------|------|------------|-----------------------|----------------------------------|----------------|------------------|--------|--------|------------------------------|---------------------------------|------------------------------------|---------------|----------------|-----------------|-------------|-----------------|--------------|----------------|-----------------|-------------------|---------|---------|----------------------|-------------------|---------------------|
| Ider                                  | Owner<br>Source               |          | cati |            | Date                  | Hydrogen<br>Sulphide             | Haro           | Alka             | Iron   | рн     | Apparent<br>in Haze          | Turbidity,<br>Formazin          | Cond                               | Flu           | Chic           | Sulp            | Calcium     | Mag             | Sodium       | Pota           | Nitro           | gen               | as      | N       | Phosph<br>as         | or <b>us</b><br>P | Phe                 |
| Identification<br>Number <sup>1</sup> | er or                         | Township | Lot  | Concession | Sampled \$            | ogen as<br>hide H <sub>2</sub> S | Hardness CaCO3 | Alkalinity caco3 | as Fe  | at lab | arent Colour,<br>Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | ium as Ca   | Magnesium as Mg | ium as Na    | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite | Nitrate | Dissolved<br>Reative | Total             | Phenols,in pg/i     |
| owzz                                  | OBSERVATION<br>WELL<br>NO. 22 |          |      |            | %<br>149              |                                  | 278            | 267              | 0.08   | 7.65   |                              |                                 | 525                                |               | 5.5            | 8.5             | 62.5        | 29.6            |              |                | 0.045           | 0.28              | 0.043   | 1.65    | 0.002                | 0.005             | 1.0                 |
|                                       |                               |          |      |            |                       |                                  |                |                  |        |        |                              |                                 |                                    |               |                |                 |             |                 |              |                |                 |                   |         |         |                      |                   |                     |
| *<br>TP1                              | TEST<br>PIT<br>NO. 1          |          |      |            | 31/<br>10/<br>14/15/9 |                                  | 267            |                  | 0.08   |        |                              |                                 |                                    |               |                |                 | 58.0        | 29.6            | 50.0         | 5.90           |                 | 5.35              | 0.171   |         |                      |                   | <i.0< td=""></i.0<> |
| *                                     | 11                            |          |      |            | 11<br>21:25           |                                  | 269            |                  | 0.14   |        |                              |                                 |                                    |               |                |                 | 57.0        | 30.6            | <b>4</b> 7.0 | 5.00           |                 | 4.90              |         |         |                      | 0.138             | <1.0                |
| <b>*</b>                              | н                             |          |      |            | 3/1/<br>79            |                                  | 264            | 268              | 0.07   | 7.70   |                              |                                 | 750                                |               | 54.5           | 32.5            | <b>60.0</b> | 27.60           | 50.0         | 6.50           | 4.35            | 6.45              | 0.171   | 2.7     | 0.118                | 0. 275            | ∠1.0                |
| *                                     | 11<br>PIEZOMETER              |          |      |            | 9/ <sub>11/79</sub>   |                                  | 252            | 262              | 1.15   | 7.68   |                              |                                 | 750                                |               | 55.5           | 33.0            | 55.0        | 27.8            |              |                | 3.45            | 4.30              | 0.087   | 3.92    | 0.037                | 0.184             | 1.0                 |
| *                                     | OPEN WATER                    |          |      |            | n                     |                                  | 253            | 261              | 0.17   | 7.80   |                              |                                 | 740                                |               | 55.0           | 32.0            | 56.5        | 27.2            |              |                | 3.65            | 4.80              | 0.014   | 4.14    | 0.068                | 0.180             | <1.0                |
| *                                     | 13.                           |          |      |            | 22/11/19              |                                  | 251            | 261              | 1.46   | 7.78   |                              |                                 | 785                                |               | 71.0           | 35.0            | 54.5        | 27.8            | 67.0         | 3.0            | 3.1             | 4.80              | 0.09    | 2.5     | 0.05                 | 0.20              | ∠1.0                |

<sup>&</sup>lt;sup>1</sup> Location is shown in Figure  $l_1 2$ ; N.D. — Not detected; < — Refers to less than;  $l_1 = l_2 = l_3 = l_4 = l_4 = l_5 = l$ MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 1/04/go Compiler: N. RENNIE

Identification Number 1 Owner or Source Zinc Copper as Cu Reactive Solids Selenium as Arsenic as Cadmium as Co Chromium as Cyanide as Lead as Pb Manganese as Nickel as N Molybdenum Vanadium Carbon Silicate as Si Barium as Ba Aluminum Anionic Detergent Location Demand (BODs) Biochemical Oxygen Demand (COD) Petroleum Total Dissolved Titanium Chemical Oxygen Tannins and Township Lot Concession Inorganic Sampled Total Organic 9/1/19 OBSERVATION 5.0 OWIZ WELL 67.5 72.5 NO. 22 × TEST TP1 10/ 4.001 4.001 4.004 4.004 4.004 .07 4001-001 4004 PIT 20.0 89.5 4.004 4.004 .006 NO. 1 \* 4004 .009 .163 can 003 4004 4.004 .042 C.001 C.001 26.0 94.5 4.004 4.004 .019 × 0.1 19.5 67.0 86.5 \* 31.5 99.0 67.5 PIEZOMETER \* 84.0 11.5 11 OPEN WATER 22/1/79 \* 66.5 25.5 92.0

Location is shown in Figure 1,2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1µg/l=1 ppb.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY Township(s): GLENELG, LOT 95 , CONI W.T.S.R. Date compiled: 17/04/50 Compiler: N.RENNIE

|                                       | , OKL                |             |            |                    |                      |                |                  | ilip(3)    |        |                                    |                                 |                                    |               |                |                 |               |                 |              |                | 730             |                   |         |         |              |           |                  |
|---------------------------------------|----------------------|-------------|------------|--------------------|----------------------|----------------|------------------|------------|--------|------------------------------------|---------------------------------|------------------------------------|---------------|----------------|-----------------|---------------|-----------------|--------------|----------------|-----------------|-------------------|---------|---------|--------------|-----------|------------------|
| Nun                                   | Owner<br>Source      |             | ation      | - 3                | Hydrogen<br>Sulphide | Haro           | Alka             | Iron       | рН     | Appa                               | Turbi                           | Cond                               | Fluo          | Chic           | Sulp            | Calc          | Mag             | Sod          | Pota           | Nitro           | gen               | as      | N       | Phosph<br>as | orus<br>P | Phe              |
| Identification<br>Number <sup>1</sup> | Owner or<br>Source   | Township    | Concession | Sampled M          | H <sub>2</sub> S     | Hardness CaCO3 | Alkalinity Caco3 | Iron as Fe | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in<br>Formazin Units | Conductance ; in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | Calcium as ca | Magnesium as Mg | Sodium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite | Nitrate | Dissolved    | Total     | Phenois, in µg/1 |
| X<br>TP1                              | TEST<br>PIT<br>NO. 1 |             |            | 25/                |                      | 247            | 258              | 0.04       | 7.79   |                                    |                                 | 720                                |               | 54.0           | 31.5            | 54.5          | 27.0            | 50.5         | 6.40           | 3.32            | 4.60              | 0.039   | 1.66    | 1.20         | 1.28      |                  |
|                                       |                      |             |            |                    |                      |                |                  |            |        |                                    |                                 |                                    |               |                |                 |               |                 |              |                |                 |                   |         |         |              |           |                  |
| *<br>TP2                              | TEST                 |             | -          | 31/                |                      | 24.4           |                  | 0.04       |        |                                    |                                 |                                    |               |                |                 | 87.5          | 20.4            |              |                |                 |                   |         |         |              |           |                  |
| * "                                   | NO. 2                |             | +          | 9/1/19             | 1                    | 279            | 274              | 0.04       |        |                                    |                                 | 725                                |               | 52.0           | 31.0            |               | 28.6            | 40.5         | 1.10           |                 |                   | 0.046   |         | 0.004        | 0.050     | <1.0<br><1.0     |
| <del>X</del>                          | . N                  |             |            | 22/                | -                    | 265            | 259              | 0.09       | 7.58   |                                    |                                 | 722                                |               | 53.0           | 31.0            | 61.0          | 27.2            | 46.5         | 2.05           | 0.6             | 1.45              | 0.19    | 3.6     | 40.05        | 0.11      | Z1.0             |
| *                                     | Н                    |             |            | 25/<br>/11/<br>/79 |                      | 253            | 240              | 0.05       | 7.67   |                                    |                                 | 595                                |               | 32.0           | 20.5            | 56.5          | 27. 2           | 26.6         | 1.45           | 0.36            | 0.56              | 0.044   | 2.5     | 0.005        | 0.025     |                  |
|                                       |                      | $\parallel$ |            |                    |                      |                |                  |            |        |                                    |                                 |                                    |               |                |                 |               |                 |              |                |                 |                   |         |         |              |           |                  |
| <u></u>                               |                      |             |            |                    |                      |                |                  |            |        |                                    |                                 |                                    |               |                |                 |               |                 |              |                |                 |                   |         |         |              |           |                  |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 11b/100,000 lmp. gal; 1 μg/l = 1 ppb.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG , LOT 95 , CONI W.T.S.R. Date compiled: 17/04/30

Compiler: N. RENNIE

|                            |                  | 139.       |              |       |                  |  |
|----------------------------|------------------|------------|--------------|-------|------------------|--|
| Anionic Detergent          |                  | 1          | 40.1         | 0.1   |                  |  |
| Vanadium                   |                  | 4.004      |              |       |                  |  |
| Titanium                   |                  | Z.004 . 00 |              |       |                  |  |
| Aluminum                   |                  | .090       |              |       |                  |  |
| Zinc as Zn                 | < .01            | 4.004      |              |       | 2.01             |  |
| Nickel as Ni               | 4.02             | 4.004      |              |       | 2.02             |  |
| Manganese as Mn            | <.02             | •010       |              |       | <b>2</b> .02     |  |
| Lead as Pb                 | .05              | ∠.004      |              |       | .06              |  |
| Cyanide as CN              |                  |            |              |       |                  |  |
| Copper as Cu               |                  | .019       |              |       |                  |  |
| Chromium as Cr             | <.02             | Z:004      |              |       | €.02             |  |
| Cadmium as Cd              | 4.005            | 2,004      |              |       | ₹.005            |  |
| Barium as Ba               | .02              |            |              |       | <.02             |  |
| Arsenic as As              | Z.001            | 2.001      |              |       | < .001           |  |
| Selenium as Se             | ۷.۵۵۱            | 4.001      |              |       | <.001            |  |
| Total Dissolved<br>Solids  |                  |            |              |       |                  |  |
| Reactive<br>Silicate as Si |                  |            |              |       |                  |  |
| Tannins and                |                  |            |              |       |                  |  |
| Petroleum                  |                  |            |              |       |                  |  |
| Total                      |                  | 84.5       | 76.0         | 80.5  |                  |  |
| ar bor<br>Organic          |                  | 12.0       | 5.5          | 12.5  |                  |  |
| Inorganic                  |                  | 72.5       | 70.5         | 68.0  |                  |  |
| Chemical Oxygen            |                  |            |              |       |                  |  |
| Biochemical Oxygen         |                  |            |              |       |                  |  |
| Date Sampled =             | 26/<br>11/<br>79 | 31/10/19   | 9/11/79      | 11/79 | 26/<br>11/<br>79 |  |
| tion Concession            |                  |            |              |       |                  |  |
| Lot<br>Township            |                  |            |              |       |                  |  |
| Owner or                   | · 1              |            | t i          | М     | н                |  |
|                            | F                | T P P      |              |       |                  |  |
| Number 1                   | *P1              | *<br>TP 2  | <del>*</del> | *     | *"               |  |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=11b/100,000 lmp.gal; 1,49/l=1 ppb. A- sampled on November 3, 1979. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG , LOT 95 , CONI WITS.R. Date compiled: 17/04/80 Compiler: N. RENNIE

| Nun                      | Owner                | Loc      | 7 | on.        | Date               | Hydrogen<br>Sulphide | Har                        | Alk              | Iron  | На     | Appa                               | Turb                            | Conc                               | Flu           | Chic           | Sulp            | Calc          | Mag             | Sodium    | Pota           | Nitro           | gen               | as      | N       | Phosph<br>as | orus<br>P | Phe               |
|--------------------------|----------------------|----------|---|------------|--------------------|----------------------|----------------------------|------------------|-------|--------|------------------------------------|---------------------------------|------------------------------------|---------------|----------------|-----------------|---------------|-----------------|-----------|----------------|-----------------|-------------------|---------|---------|--------------|-----------|-------------------|
| Identification  Number 1 | ner or               | Township |   | Concession | = 1                | H <sub>2</sub> S     | Hardness caco <sub>3</sub> | Alkalinity caco3 | as Fe | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | Calcium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite | Nitrate | Dissolved    | Total     | Phenois, in Jug/I |
| X<br>TP3                 | TEST<br>PIT<br>NO.3  |          |   |            | 31/<br>10/<br>79   |                      | 311                        |                  | 0.12  |        |                                    |                                 |                                    |               |                |                 | 68.5          | 34.0            | 7.3       | 0.70           |                 | 0.23              |         |         |              | 0.011     | 41-0              |
| *<br>11                  | 11                   |          |   |            | 9/1/79             |                      | 30%                        | 269              | 0.02  | 7.68   |                                    |                                 | 640                                |               | 37.0           | 21.0            | 69.0          | 33.0            |           |                | 0.020           | 0.36              | 0.001   | 0.32    | 0.002        | Ø.018     | <1.0              |
| *                        | и                    |          |   |            | 16/                |                      | 309                        | 277              | 0.05  | 7.69   |                                    |                                 | 700                                |               | 45.5           | 27.5            | 71.0          | 32.0            | 30.5      | 1.40           | 0.010           | 0.49              | 0.001   | 1-11    | 0.005        | 0.017     | <1.0              |
| *<br>1                   | 10                   |          |   |            | 22/<br>/11/<br>/79 |                      | 295                        | 265              | 0.09  | 7.59   |                                    |                                 | 675                                |               | 45.5           | 27.0            | 63.0          | 31.0            | 29.4      | 0.75           | 0.10            | 0.50              | <0.0I   | 1.30    | 40.005       | 40.005    | <1.0              |
| *                        | li li                |          |   |            | 25/                |                      | 297                        | 267              | 0.01  | 7.53   |                                    |                                 | 705                                |               | 48.0           | 28.5            | 64.0          | 32.8            | 39.0      | 1.50           | 0.015           | 0.55              | 0.002   | 3.0     | 0.003        | 0.013     |                   |
| *                        | fi                   |          |   |            | 31/                |                      | 266                        | 273              | 0.05  | 7.75   |                                    |                                 | 580                                | 40.10         | 21.0           | 11.0            | 62.0          | 27.0            | 22.8      | 0.93           | 40.005          | 0.22              | a.004   | 0.81    | 0.001        | 0.003     | 41.0              |
|                          |                      |          |   |            |                    |                      |                            |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |              |           |                   |
|                          |                      |          |   |            |                    |                      |                            |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |              |           |                   |
| X<br>TP4                 | TEST<br>PIT<br>NO. 4 |          |   |            | 31/19/19           |                      | 314                        |                  | 0.04  |        |                                    |                                 |                                    |               |                |                 | 76.0          | 30.0            | 12.2      | 0.95           |                 | 0.06              |         |         |              | 0.002     | <1. O             |

<sup>1</sup> Location is shown in Figure Z; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b|100,000 lmp. gal; 1 µg/l = 1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



#### GROUNDWATER SUMMARY OF CHEMICAL ANALYSES OF

All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG , LOT 95, CONI WT.S.R. Date compiled: 1704/30

Compiler: N. RENNIE

|                        |                                                  |                      |              |                   | 141.              |                  |     |                  |            |
|------------------------|--------------------------------------------------|----------------------|--------------|-------------------|-------------------|------------------|-----|------------------|------------|
| Anionia                | Anionic Detergent                                | 4                    | 20.          |                   | 0.1               |                  |     | +-               |            |
| Vana                   | Vanadium                                         | ۷.004                |              | L                 |                   |                  |     | <del> </del>     |            |
| Titanium               | ium                                              | 002                  |              |                   |                   |                  |     | +-               |            |
| MOLY                   | Molybdenum                                       | 3 (.00)              |              |                   |                   |                  |     | +                |            |
| Aluminum               | mum                                              | 090.                 |              |                   |                   |                  |     |                  |            |
| Zinc                   | as Zn                                            | c.004                |              |                   |                   | ۲.0۱             |     |                  |            |
| Nickel                 | as Ni                                            | 2.004                |              |                   |                   | ۷.02             |     | $\rightarrow$    |            |
| Mang                   | Manganese as Mn                                  | ۷.004 .              |              |                   |                   | ८.02             |     |                  |            |
| Lead as Pb             | as Pb                                            | ۷.004 ۽              |              |                   |                   | .05              |     |                  |            |
| Cyanide                | ide as CN                                        |                      |              |                   |                   |                  |     |                  |            |
| Copper                 | er as Cu                                         | P00-                 |              |                   |                   |                  |     |                  |            |
| Chron                  | Chromium as Cr                                   | ∠.∞4                 |              |                   |                   | <.02             |     |                  |            |
| Cadmium                | nium as Cd                                       | 2.004                |              |                   |                   | ८.∞5             |     |                  |            |
| Barium                 | ım as Ba                                         |                      |              |                   |                   | <.02             |     |                  |            |
| Arse                   | Arsenic as As                                    | ۱۰۰۰ ک               |              |                   |                   | <.001            |     |                  |            |
| Selei                  | Selenium as Se                                   | ∠.∞۱                 |              |                   |                   | ∠.∞۱             |     |                  |            |
| Total<br>Solids        | Total Dissolved<br>Solids                        |                      |              |                   |                   |                  |     |                  |            |
| Reactive               | Reactive<br>Silicate as Si                       |                      |              |                   |                   |                  |     |                  |            |
| Tannins<br>Lignins     | ns and                                           |                      |              |                   |                   | _                |     |                  |            |
| Petroleum<br>Hydrocarb | Petroleum<br>Hydrocarbons                        |                      |              |                   |                   |                  |     |                  |            |
| n                      | Total                                            | 75.5                 | <b>%</b> 0.0 | 78.0              | 77.5              |                  |     | 145              | 145        |
| arbo                   | Organic                                          | 5.5                  | 10.0         | 4.5               | 8.5               |                  |     | 73.0             | 73.0       |
| С                      | Inorganic                                        | 70.0                 | 76.0         | 73.5              | <b>6</b> 9.0      | -                |     | 72.0             | 72.0       |
| Chem                   | Chemical Oxygen Demand (COD)                     |                      | L. Carlon    |                   |                   |                  |     |                  |            |
| Bioch                  | Biochemical Oxygen<br>Demand (BOD <sub>s</sub> ) |                      |              |                   |                   |                  |     |                  |            |
| Date                   | Sampled 3                                        | 31/<br>19/79         | 9/11/79      | 16/11/79          | 22/<br>  /<br> 79 | 26/<br>11/<br>79 | 31/ | 31/<br>01/<br>80 | /01/<br>80 |
| -                      | Concession                                       |                      |              |                   |                   |                  |     |                  |            |
| Loca                   | Lot<br>Township                                  |                      |              |                   |                   |                  | П   |                  |            |
| Owne                   | Owner or<br>Source                               | TEST<br>PIT<br>NO. 3 | ц            | и                 | li                | lı               |     | "                |            |
| ident<br>Numi          | Identification<br>Number <sup>1</sup>            | *<br>TP3             | *            | <del>*</del><br>" | *                 | *,               | *   | n :              |            |

A- sampled on November 3,1979 1 Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1ib/100,000 lmp.gal; 1μg/l=1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 17/04/80 Compiler: N. RENNIE

| County                     | , GREY               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            |                    |                                          |                            | 10M112                 | mpto  |        |                                    | ,                            | , ,                                |               |                |                 |               | oute (          |           | ,              | ,               |                   | opiioi i |         |               |           |                     |
|----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|--------------------|------------------------------------------|----------------------------|------------------------|-------|--------|------------------------------------|------------------------------|------------------------------------|---------------|----------------|-----------------|---------------|-----------------|-----------|----------------|-----------------|-------------------|----------|---------|---------------|-----------|---------------------|
| Nu                         | Owner                | Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cat | tion.      | Date               | Hydr                                     | Har                        | Alk                    | Iron  | Н      | App                                | Turb                         | Conc                               | Fu            | Chic           | Sulp            | Calc          | Mag             | Sodium    | Pota           | Nitro           | gen               | as       | N       | Phospho<br>as | orus<br>P | Phe                 |
| Identification<br>Number 1 | Owner or<br>Source   | Township                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lot | Concession | San                | Hydrogen as<br>Sulphide H <sub>2</sub> S | Hardness caco <sub>3</sub> | Alkalinity as<br>CaCO3 | as Fe | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | Calcium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahi | Nitrite  | Nitrate | Dissolved     | Total     | henols,in µg/1      |
| *<br>TP4                   | TEST<br>PIT<br>NO. 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            | 9/1/79             |                                          | 288                        | 268                    | 0.08  | 7.63   |                                    |                              | 720                                |               | 52.0           | 30.5            | 70.0          | 27.4            |           |                | 0.015           | 0.74              | 0.002    | 1.72    | 0.002         | 0.038     | <i-0< td=""></i-0<> |
| * "                        | П                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            | 11/79              |                                          | 279                        | 264                    | 0.07  | 7.56   |                                    |                              | 740                                |               | 51.0           | 30.0            | 65.5          | 28.0            | 46.0      | 1.30           | ∠o. I           | -1.10             | 0.27     | 5.5     | <b>4</b> 0.05 | 0.14      | <1·0                |
| * 1                        | li .                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            | 25/<br>/11/<br>/79 |                                          | 270                        | 254                    | ۷٥.٥١ | 7.64   |                                    |                              | 665                                |               | 41.0           | 24.0            | 62.0          | 27.8            | 35.0      | 1.20           | 0.190           | 0.60              | 0993     | 4.2     | 0.001         | 0.023     |                     |
|                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            |                    |                                          |                            |                        |       |        |                                    |                              |                                    |               |                |                 |               |                 |           |                |                 |                   |          |         |               |           |                     |
| *<br>TP5                   | TEST<br>PIT<br>NO. 5 | and the second s |     |            | 31/10/79           |                                          | 329                        |                        | 0.04  |        |                                    |                              |                                    |               |                |                 | 79.0          | 31.8            | 12.2      | 0.95           |                 | 0.06              |          |         |               | 0.002     | L1.0                |
| *                          | tı                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            | 9/1/79             |                                          | 323                        | 301                    | 0.02  | 7.65   |                                    |                              | 625                                |               | 22.0           | 6.0             | 80.0          | 29.8            |           |                | 0.010           | 0.14              | 40.001   | 0.04    | 0.007         | 0.023     | 41.0                |
| *                          | 11                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            | 16/                | 1                                        | 30%                        | 297                    | 0.04  | 7.52   |                                    |                              | 620                                |               | 23.0           | 9.0             | 75.0          | 29.2            | 14.3      | 0.65           | 0.010           | 0.16              | 0.001    | 0.02    | 40.00 l       | ۷٥.00۱    | <1.0                |
| *                          | lı .                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            | 22/1/79            |                                          | 288                        | 281                    | 0.09  | 7.51   |                                    |                              | 590                                |               | 22.5           | 9.0             | 68.0          | 28.6            | 13.0      | 0.70           | 40.1            | 0.20              | 40.01    | 0.1     | <0.05         | 40.05     | <1.0                |

<sup>1</sup> Location is shown in Figure 2; N.D. - Not detected; < - Refers to less than; 1mg/l= 1ppm = 1lb/100,000 lmp. gal; 1µg/l= 1ppb.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI WT.S.R. Date compiled: 7/04/90

Compiler: N. RENNIE Identification Number <sup>1</sup> Barium as Ba Cyanide as Owner or Source Vanadium Arsenic as As Manganese Reactive Selenium as Cadmium as Co Chromium as C Copper as Cu Nickel as N Zinc as Zn Aluminum Molybdenum Titanium Lignins Location Demand (BOOs) Biochemical Oxygen Carbon Hydrocarbons Silicate as Si Total Dissolved Chemical Oxygen Tannins and Township Lot Concession Inorganic Sampled Organic × 9/11/79 TEST TP4 PIT 40.1 70.0 10.0 80.0 NO. 4 \* 11/19 0.1 10.5 81.0 70.5 \* 4.001 4.001 4.02 4.005 4.02 4.03 4.02 4.02 31/ 19/ 79 \* TP5 TEST 1001 4.001 <.004 <.004 <.004 <.004 .071 kool.001 <.004 4.004 4.004 .006 PIT 82.0 5.0 87.0 NO. 5 % \* 84.0 5.0 16/1/79. \* 3,5 84.0 22/ /11/79 × 6.5 83.5

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=11b/100,000 lmp. gal; 1 µg/l=1 ppb. A - sampled on November 3, 1979. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

Country COT U

Townshinds: GIENEIG LOTGE ONT W.T.S.R. Date compiled: 1704/ Compiler W. PENINIE

| County                                | : GREY               |          |            |                    |                        |                | Towns            | hip(s)   | GLE    | NELG                               | , 6                             | 45,0                               | ONI           | w. 1           | , , , , , ,     |           | Date            | compi        | led:           | 04/80           | Con               | npiler: | N. REI  | UNIE                 |           |                  |
|---------------------------------------|----------------------|----------|------------|--------------------|------------------------|----------------|------------------|----------|--------|------------------------------------|---------------------------------|------------------------------------|---------------|----------------|-----------------|-----------|-----------------|--------------|----------------|-----------------|-------------------|---------|---------|----------------------|-----------|------------------|
| Iden                                  | Owner                |          | ation      | Date               | Hydrogen<br>Sulphide   | Harc           | Alka             | Iron     | рН     | Appa<br>in 1                       | Turbidity,<br>Formazin          | Cond                               | Fluc          | Chlo           | Sulp            | Calcium   | Mag             | Sodi         | Pota           | Nitro           | ogen              | as      | N       | Phosph<br>as         | orus<br>P | Phe              |
| Identification<br>Number <sup>1</sup> | Owner or<br>Source   | Township | Concession | Sampled S          | as<br>H <sub>2</sub> S | Hardness caco3 | Alkalinity Caco3 | as<br>Fe | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | ium as Ca | Magnesium as Mg | Sodium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite | Nitrate | Dissolved<br>Reative | Total     | Phenols, in µg/1 |
| X<br>TP5                              | TEST<br>PIT<br>NO. 5 |          |            | 25/<br>/11/<br>/79 |                        | 296            | 298              | (0.01    | 7.64   |                                    |                                 | 580                                |               | 16.5           | 9.5             | 67.5      | 31.0            | 9.8          | 0.50           | 0-100           | 0.12              | <0.00   | <0.01   | 0.602                | 0.003     |                  |
|                                       |                      |          |            |                    |                        |                |                  |          |        |                                    |                                 |                                    |               |                |                 |           |                 |              |                |                 |                   |         |         |                      |           |                  |
|                                       |                      |          |            |                    |                        |                |                  |          |        |                                    |                                 |                                    |               |                |                 |           |                 |              |                |                 |                   |         |         |                      |           |                  |
|                                       |                      |          |            |                    |                        |                |                  |          |        |                                    |                                 |                                    |               |                |                 |           |                 |              |                | lix             |                   |         |         |                      |           | -<br>-<br>-      |
|                                       |                      |          |            |                    |                        |                |                  |          |        |                                    |                                 |                                    |               |                |                 |           |                 |              |                |                 |                   |         |         |                      |           |                  |
|                                       |                      |          |            |                    |                        |                |                  |          |        |                                    |                                 |                                    |               |                |                 |           |                 |              |                |                 |                   |         |         |                      |           |                  |
|                                       |                      |          |            |                    |                        |                |                  |          |        |                                    |                                 |                                    |               |                |                 |           |                 |              |                |                 |                   |         |         |                      |           |                  |
| ê                                     |                      |          |            |                    |                        |                |                  |          |        |                                    |                                 |                                    |               |                |                 |           |                 |              |                |                 |                   |         |         |                      |           |                  |
|                                       |                      |          |            |                    |                        |                |                  |          |        |                                    |                                 |                                    |               |                |                 |           |                 |              |                |                 |                   |         |         |                      |           |                  |

<sup>1</sup> Location is shown in Figure 2: N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp. gal; 1 \mug/l = 1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 1704/80 Compiler: N. RENNIE

| Z G                        | So                  | L        | oca | tion       | D                | 9 9  | P            | 0               | С         | arbo    | n     | I P                       | г д                    | s :            | , a      | n ¬             | S              | A         | 8            | C             | C              | C        | C             | _          | Z               | z        | Z     |   |      |      |
|----------------------------|---------------------|----------|-----|------------|------------------|------|--------------|-----------------|-----------|---------|-------|---------------------------|------------------------|----------------|----------|-----------------|----------------|-----------|--------------|---------------|----------------|----------|---------------|------------|-----------------|----------|-------|---|------|------|
| m ti                       | Owner<br>Source     | _        | _   |            | ř                | ocne | mar          | 3               |           |         |       | ydro                      | Tannins<br>Lignins     | ilica          | Beactive | Total           | eler           | Arsenic   | ariu         | adn           | hro            | Copper   | yan           | ead        | lang            | Nickel   | Zinc  |   |      |      |
| Identification<br>Number 1 | Owner or<br>Source  | Township | o.  | Concession | Sampled M        |      | Demand (COD) | Chemical Oxygen | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | Tannins and<br>Lignins | Silicate as Si |          | Total Dissolved | Selenium as Se | nic as As | Barium as Ba | Cadmium as Cd | Chromium as Cr | er as Cu | Cyanide as CN | Lead as Pb | Manganese as Mn | ei as Ni | as Zn | я |      |      |
| *<br>TP5                   | TEST<br>PIT<br>NO.5 |          |     |            | 26/<br>11/<br>79 |      |              |                 |           |         |       |                           |                        |                |          |                 | 2.001          | ١٥٥١ ک    | ۷.02         | 4.005         | ₹.02           |          |               | 4.03       | ۷.02            | ۷.02     | ١٥٠ > |   |      |      |
|                            |                     |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            |                 |          |       |   |      |      |
|                            |                     |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            |                 |          |       |   |      |      |
|                            |                     |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            |                 |          |       |   |      | 145. |
|                            |                     |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            | -               |          |       |   | 1    |      |
|                            |                     |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            |                 |          |       |   |      | 1    |
|                            |                     |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            |                 |          |       |   | 1    | 1    |
|                            |                     |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            |                 |          |       |   |      |      |
|                            | 8                   |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            |                 |          |       |   |      |      |
| 1                          | n is shown          |          |     |            |                  |      |              |                 |           |         |       |                           |                        |                |          |                 |                |           |              |               |                |          |               |            |                 |          |       | L | <br> |      |

Location is shown in Figure 2; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1µg/l=1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.

#### APPENDIX F

# SUMMARY OF CHEMICAL ANALYSES OF SURFACE WATER



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG , LOT 95 , CONI , W.T.S.R. Date compiled: 17/04/80 Compiler: N. RENNIE

| County                                | · OKL I                                          |          |            |                  | *                                        |                |                  | niib(a)           |        |                                    | ,                            | 1 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 0010        | ,              |                 | THE PERSON NAMED IN COLUMN TWO IS NOT | CATOLOGICA MICHAEL | NAME OF TAXABLE PARTY. |                | 1780            |                   | mannaman- | On the latest of | THE RESERVE OF THE PERSON NAMED IN |           | principal and the last of the |
|---------------------------------------|--------------------------------------------------|----------|------------|------------------|------------------------------------------|----------------|------------------|-------------------|--------|------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-----------------|---------------------------------------|--------------------|------------------------|----------------|-----------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nur                                   | Owner                                            | -        | ation      | Date             | Hydr<br>Sulp                             | Har            | Alk              | Iron              | НФ     | Appa                               | Turb                         | Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flu           | Chlo           | Sulp            | Calc                                  | Mag                | Sodium                 | Pota           | Nitro           | gen               | as        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phosph<br>as                       | orus<br>P | Phe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Identification<br>Number <sup>1</sup> | ner or                                           | Township | Concession | e Sampled x      | Hydrogen as<br>Sulphide H <sub>2</sub> S | Hardness CaCO3 | Alkalinity caco3 | as Fe             | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in Formazin Units | Conductance , in micromhos/cm-25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fluoride as F | Chloride as CI | Sulphate as SO4 | Calcium as Ca                         | Magnesium as Mg    | ium as Na              | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite   | Nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dissolved<br>Reative               | Total     | Phenols,in µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                     | ROCKY<br>SAUGEEN R.<br>At C.P.R.<br>TRACKS       |          |            | 22/<br>10/<br>19 | T                                        | 240            | 223              | 0.07              | g.18   |                                    |                              | 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 5.0            | 15.5            | 53.0                                  | 26.4               | 2.7                    | 1.00           | 0.010           | 0.37              | 0.003     | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.003                              | 0.008     | 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| И                                     | ц                                                |          |            | 27/<br>10/<br>70 |                                          | 280            | 256              | 0.06              | 8.16   |                                    |                              | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 5.0            | 12.0            | 68.0                                  | 26.8               | 2.0                    | 1.05           | <0.005          | 0.32              | 0.001     | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ۱ ۵۰.۵۰                            | 0.001     | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iţ                                    | fi                                               |          |            | 29/<br>10/<br>79 |                                          | 280            | 248              | 0.07              | 8.06   |                                    |                              | 484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 5.5            | 13.0            | 68.0                                  | 26.8               | 2.0                    | 0.85           | 0.005           | 0.30              | 0.001     | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 2                             | 0.004     | ۷[.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| II .                                  | Ţ                                                |          |            | 9/11/79          |                                          | 255            | 240              | 0.04              | 7.36   |                                    |                              | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 6.5            | 14.0            | ٥.٥٥                                  | 25.6               | 2.9                    | 0.90           | 0.005           | 0.25              | 0.001     | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.001                             | 0.003     | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| П                                     | łı                                               |          |            | 22/              |                                          | 257            | 236              | 0.09              | 8.04   |                                    |                              | 472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 5.0            | 14.0            | 59.0                                  | 26.6               | 2.2                    | 0.50           | 0.1             | 0.30              | <0.01     | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.05                              | <0.05     | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ly                                    | II                                               |          |            | 31/              |                                          | 281            | 2602             | 0.05              | 8.15   |                                    |                              | 526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 5.5            | 12.5            | 66.0                                  | 28.2               | 2.4                    | 0.80           | 0.010           | 0.26              | 0.002     | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.008                              | 0.013     | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                  |          |            |                  |                                          |                |                  |                   |        |                                    |                              | - Conscionation and the constitution of the co |               |                |                 |                                       |                    |                        |                |                 |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                  |          |            |                  |                                          |                |                  | ir Nobella (1900) |        |                                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                 |                                       |                    |                        |                |                 |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| R5R 1                                 | ROCKY SAUGHE<br>RIVER<br>50 ft above<br>out fall |          |            | 11/10            | 1                                        | 255            | 239              | 1.49              | 8.19   |                                    | 0.35                         | 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 5.5            | 14.0            | 59.0                                  | 26.0               | 2.60                   | 0.80           | 0.005           | 0.28              | 0.001     | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.004                              | 0.005     | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

<sup>1</sup> Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b|100,000 lmp. gal; 1 µg/l = 1 ppb. MOE 0495 11/78



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI, WT. S.R. Date compiled: 17/4/80

Compiler: N. REDNIE

| A proper Determine                    |                                               |                    |                  | 149.        | p.1                      |          | , |                                                |
|---------------------------------------|-----------------------------------------------|--------------------|------------------|-------------|--------------------------|----------|---|------------------------------------------------|
| Vanadium                              |                                               |                    |                  | 4           | «                        |          | , | (,004                                          |
| Titanium                              |                                               |                    |                  |             |                          |          |   | .002                                           |
| Molybdenum                            |                                               |                    |                  |             | 4                        |          |   | 100                                            |
| Aluminum                              |                                               |                    |                  |             | -04                      |          |   | .07                                            |
| Zinc as Zn                            |                                               | 0١.                |                  |             | ۱۵. ک                    |          |   | <.00 <del>4</del>                              |
| Nickel as Ni                          |                                               | ۷.02               |                  |             | 2.02                     | 0        |   | <b>2.004</b>                                   |
| Manganese as Mn                       |                                               | ۷.02               |                  |             | ∠.02                     |          |   | .010                                           |
| Lead as Pb                            |                                               | ۷۵٥3               |                  |             | ∠.03                     |          |   | ∠.00 <b>4</b>                                  |
| Cyanide as CN                         |                                               | ده.۵۱              |                  |             |                          |          |   |                                                |
| Copper as Cu                          |                                               | ۷.0۱               |                  |             | ۷.0۱                     |          |   | 0.02                                           |
| Chromium as Cr                        |                                               | ۷.02               |                  |             | <.02                     |          |   | 2.004                                          |
| Cadmium as Cd                         |                                               | ∠. <del>∞</del> 05 |                  |             | ∠.⊘05                    |          |   | <.004                                          |
| Barium as Ba                          |                                               | .02                |                  |             | ۷.02                     |          |   |                                                |
| Arsenic as As                         | ,                                             | ۱۵۰.۵              |                  |             | ۷.03                     |          |   | ۱ ۰۵۰٪                                         |
| Selenium as Se                        |                                               | ∠.001              |                  |             | ا‱، ک                    |          |   | K.001                                          |
| Total Dissolved Solids                |                                               |                    |                  |             |                          |          |   |                                                |
| Reactive<br>Silicate as Si            |                                               |                    |                  |             |                          |          |   |                                                |
|                                       |                                               |                    |                  |             |                          |          |   |                                                |
| Petroleum<br>Hydrocarbons             |                                               |                    |                  |             |                          |          |   |                                                |
| Total                                 | 5.ام                                          | 68.0               | 68.5             | 64.5        | 65.5                     | 64.0     |   | <b>6</b> 7.0                                   |
| a r bo<br>Organic                     | 11.5                                          | 9.0                | 10.0             | 7.0         | 8.5                      | 2.5      |   | q.0                                            |
| Inorganic                             | 50.0                                          | 59.0               | 58.5             | 57.5        | <b>5</b> 7.0             | 61.5     |   | 58.0                                           |
| Chemical Oxygen Demand (COD)          | 12.0                                          | 17.0               |                  |             |                          |          |   | 24                                             |
| Biochemical Oxygen Demand (BOD)       | 1.0                                           | 0.4                |                  | ,           |                          |          |   | 0.1                                            |
| Date Sampled 3                        | 22/19/19                                      | 27/<br>/10/<br>/19 | 29/<br>10/<br>79 | 9/<br>11/79 | 22/<br>11/ <sub>79</sub> | 31/01/19 |   | 6/11/79                                        |
| Concession                            |                                               |                    |                  |             |                          |          |   |                                                |
| Lot<br>Township                       |                                               |                    |                  |             |                          |          |   |                                                |
| Owner or<br>Source                    | ROCKY<br>SAUGEEN<br>RIVER at<br>C.P.R. TRACKS | ь                  | п                | ís          | н                        | ij       |   | ROCKY SAUGEN<br>RIVER<br>SOFT above<br>outfall |
| Identification<br>Number <sup>1</sup> |                                               | Ju                 | lr               | и           | μ                        | 18       |   | R5R 2                                          |

Location is shown in Figure 1; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1,µg/l=1 ppb. MOE 0495 11/78



All analyses except pH reported in mg/l unless otherwise indicated

County' GREY

Ontario

Township(s): GLENELG, LOT 95, CONI W. T. SR. Date compiled: 1704/6 Compiler: N. RENNIE

| County                     | 1: GKEY                                          |          |     |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | LOMIN            | mpte  | · OLL  |                                    | , 101                        | 15,                                | COIOT         | _ w.           | 1. D.T.     |           | Date i          | Joinbi   | icu .          | 1/80            | 0011              | ibile.  | 15.15   |                                                   |           |                     |
|----------------------------|--------------------------------------------------|----------|-----|------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|-------|--------|------------------------------------|------------------------------|------------------------------------|---------------|----------------|-------------|-----------|-----------------|----------|----------------|-----------------|-------------------|---------|---------|---------------------------------------------------|-----------|---------------------|
| Nun                        | Owner<br>Source                                  |          | -   | tion.      | Date             | Hydrogen<br>Sulphide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haro           | Alka             | iron  | На     | Appa                               | Turbi                        | Cond                               | Fluc          | Chic           | Sulphate    | Calcium   | Mag             | Sodium   | Pota           | Nitro           | ogen              | as      | N       | Phosph<br>as                                      | orus<br>P | Phe                 |
| Identification<br>Number 1 | er or                                            | Township | Lot | Concession | 3                | as<br>H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hardness CaCO3 | Alkalinity caco3 | as Fe | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | um as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite | Nitrate | Dissolved                                         | Total     | Phenols,in yg/l     |
| RSR2                       | ROCKY SAUGREN<br>RIVER<br>50ft above<br>outfall  |          |     |            | 9/11/19          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260            | 242              | 0.12  | 8.03   |                                    |                              | 480                                |               | 5.5            | 13.5        | 61.0      | 26.0            | 2.7      | 0.90           | 0.005           | 0.47              | 0.001   | 1.30    | <0.∞0 i                                           | 0.017     | Z1.0                |
| tj -                       | 11                                               |          |     |            | 22/<br>11/<br>79 | TO THE REAL PROPERTY OF THE PR | 258            | 237              | 0.08  | 8.07   |                                    |                              | 474                                |               | 6.5            | /4.5        | 59.5      | 26.6            | 3.0      | 0.75           | <0.1            | 0.30              | <0.01   | 1.2     | <0.05                                             | <0.05     | <u>د</u> ۱.0        |
|                            |                                                  |          |     |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |       |        |                                    |                              |                                    |               |                |             |           |                 |          |                |                 |                   | ٨       |         |                                                   |           |                     |
|                            |                                                  |          |     |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |       |        |                                    |                              |                                    |               |                |             |           |                 |          |                |                 |                   |         |         |                                                   |           |                     |
| RSR 3                      | ROCKY<br>SAUGEEN R.<br>~ 300 ft<br>below outfall |          |     |            | 6/<br>1/49       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 259            | 246              | 0.07  | 8.09   |                                    | 1.6                          | 519                                |               | 12.0           | 14.5        | 60.0      | 26.4            | 8.0      | 1.65           | 0.300           | 0.96              | 0.035   | 1.34    | 0.168                                             | 0.400     | <i.0< td=""></i.0<> |
| и                          | п                                                |          |     |            | 9/11/19          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260            | 241              | 0.06  | 8.10   |                                    |                              | 481                                |               | 5.5            | 13.5        | 61.0      | 26.2            | 2.6      | 0.90           | <0.∞5           | 0.27              | 0.001   | 1.31    | 40.001                                            | 0.003     | ۷۱.0                |
| и                          | п                                                |          | A.  |            | 22/11/19         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 259            | 236              | 0.07  | 8.10   |                                    |                              | 476                                |               | 6.5            | 14.5        | 59.5      | 26.8            | 2.8      | 0.75           | 40.1            | 0.30              | <0.01   | 1.2     | ∠o.o5                                             | 20.05     | ۷1.0                |
|                            |                                                  |          |     |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |       |        |                                    |                              |                                    |               |                |             |           |                 |          |                |                 |                   |         |         |                                                   |           |                     |
|                            |                                                  |          |     |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |       |        |                                    |                              |                                    |               |                |             |           |                 |          |                |                 |                   |         |         | Automotive en |           |                     |

<sup>1</sup> Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp. gal; 1 µg/l = 1 ppb. MOE 0495 11/76



All analyses except pH reported in mg/l unless otherwise indicated

County : GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date compiled: 17/04/80

Compiler : N. RENNIE

|                                               |                                                 | 1       | 151.   |                                                |                     | 1            |  |
|-----------------------------------------------|-------------------------------------------------|---------|--------|------------------------------------------------|---------------------|--------------|--|
| Anionic Detergent                             |                                                 | <0.1    |        | 4                                              |                     | 40.          |  |
| Vanadium                                      |                                                 |         |        | 01 < .00                                       |                     |              |  |
| Molybdenum                                    |                                                 |         |        | 0,000                                          |                     |              |  |
| Aluminum                                      |                                                 |         | r<br>E | .060                                           |                     |              |  |
| Zinc as Zn                                    |                                                 |         |        | ∠.004                                          |                     |              |  |
| Nickel as Ni                                  |                                                 |         |        | <.00 <b>4</b>                                  |                     |              |  |
| Manganese as Mn                               |                                                 |         |        | .005                                           |                     |              |  |
| Lead as Pb                                    |                                                 |         |        | ۷.00 <del>4</del>                              |                     |              |  |
| Cyanide as CN                                 |                                                 |         |        |                                                |                     |              |  |
| Copper as Cu                                  |                                                 |         |        | ١٥.                                            |                     |              |  |
| Chromium as Cr                                |                                                 |         |        | ۷.00 <del>4</del>                              |                     |              |  |
| Cadmium as Cd                                 |                                                 |         |        | <.00 <b>4</b>                                  |                     |              |  |
| Barium as Ba                                  |                                                 |         |        |                                                |                     |              |  |
| Arsenic as As                                 |                                                 |         |        | ١٥٥٠ >                                         |                     |              |  |
| Selenium as Se                                |                                                 |         |        | ∠.∞1                                           |                     |              |  |
| Total Dissolved Solids                        |                                                 |         |        |                                                |                     |              |  |
| Reactive<br>Silicate as Si                    |                                                 |         |        |                                                |                     |              |  |
| Tannins and<br>Lignins                        |                                                 |         |        |                                                |                     |              |  |
| Petroleum<br>Hydrocarbons                     |                                                 |         |        |                                                |                     |              |  |
| Total                                         | 65.5                                            | 65.5    |        | 71.5                                           | 0.0                 | 65.0         |  |
| or bo                                         | 8.0                                             | 8.5     |        | 11.0                                           | 8.5                 | 7.0          |  |
| C Inorganic                                   | 57.5                                            | 57.0    |        | 60.5                                           | 57.5                | 58.0         |  |
| Chemical Oxygen Demand (COD)                  |                                                 |         |        | 20                                             |                     |              |  |
| Biochemical Oxygen Demand (BOD <sub>5</sub> ) |                                                 |         |        | 1.2                                            |                     |              |  |
| Date Sampled 3                                | %<br>%                                          | 22/1/19 |        | 11/<br>79                                      | 9/ <sub>11/79</sub> | 22/<br>11/19 |  |
| Concession                                    |                                                 |         |        |                                                |                     |              |  |
| Lot                                           |                                                 |         |        |                                                |                     |              |  |
| wner or<br>burce                              | ROOKY SAUGHEN<br>RIVER<br>50ft above<br>outfall | ū       |        | ROCKY<br>SAUGEEN R.<br>1300ft<br>below outfall | и                   | Ü            |  |
| Identification<br>Number <sup>1</sup>         | 18R2                                            | и       |        | rsr3                                           | ٠                   | и            |  |

Location is shown in Figure 1; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1 µg/l=1 ppb. MOE 0495 11/78



All analyses except pH reported in mg/l unless otherwise indicated

County: Date compiled: Compiler:

| oount)                  |                                                     |          |     |            |                  |                                  |                |                  | niip(o) |        |                                    |                                 |                                   |               |                |                 |           | 0000            | o o mp    |                |                 |                   |         |         |              |           |                |
|-------------------------|-----------------------------------------------------|----------|-----|------------|------------------|----------------------------------|----------------|------------------|---------|--------|------------------------------------|---------------------------------|-----------------------------------|---------------|----------------|-----------------|-----------|-----------------|-----------|----------------|-----------------|-------------------|---------|---------|--------------|-----------|----------------|
| Nur                     | Owner                                               | -        |     | tion.      | Date             | Hydrogen<br>Sulphide             | Har            | Alk              | Iron    | РН     | Appa                               | Turb                            | Conc                              | Fu            | Chlo           | Sulp            | Calcium   | Mag             | Sodium    | Pota           | Nitro           | gen               | as      | N       | Phosph<br>as | orus<br>P | Phe            |
| Identification Number 1 | ner or<br>rce                                       | Township | Lot | Concession | e Sampled x      | ogen as<br>hide H <sub>2</sub> S | Hardness CaCO3 | Alkalinity CaCO3 | as Fe   | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in<br>Formazin Units | Conductance, in micromhos/cm-25°C | Fluoride as F | Chloride as Cl | Sulphate as SO4 | ium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite | Nitrate | Dissolved    | Total     | henols,in pg// |
| 25R4                    | ROCKY SAUGHEA<br>RIVER<br>downstream<br>from Lagoon |          |     |            | 22/<br>10/<br>19 |                                  | 241            | 224              | 0.09    | 8.18   |                                    |                                 | 454                               |               | 6.0            | 15.0            | 53.0      | 26.2            | 3.1       | 1.2            | 0,020           | 0.61              | 0.002   | 0.80    | 0.001        | 0-010     |                |
| Ří:                     | Ñ                                                   |          |     |            | 27/<br>10/<br>79 |                                  | 266            | 244              | 0.06    | 8.17   |                                    |                                 | 493                               |               | 6.0            | 12.0            | 62.5      | 26.6            | 2.4       | 1.9            | Ko.o⊙5          | 0.30              | 0.001   | 1.41    | 0.001        | 0.003     | 41.0           |
| Įf.                     | jų.                                                 |          |     |            | 29/<br>10/<br>79 |                                  | 282            | 248              | 0.07    | 8.14   |                                    |                                 | 498                               |               | 65             | 12.0            | 68.0      | 27.2            | 2.9       | 1.00           | 0.005           | 0.29              | 0.002   | 1.55    | 0.003        | 0.005     | Z+.0           |
| Ж                       | èş                                                  |          |     |            | 9/11/79          |                                  | 260            | 249              |         | 8.11   |                                    |                                 | 499                               |               | 6.5            | /4.0            | 60.0      | 26.6            | 3.3       | 1.00           | 0,010           | 0.39              | 0.002   | 1.60    | 0.007        | 0.041     | <1.0           |
| ţ,                      | ЗV                                                  |          |     |            | 22/1/19          |                                  | 271            | 249              | 0.11    | 8.08   |                                    |                                 | 505                               |               | 8.0            | /4.5            | 61.5      | 28.4            | 3.7       | 0.90           | ۷٥.۱            | 0.35              | 40.01   | ا ۱۰    | <0.05        | 40.05     | 41.0           |
| rs.                     | ts                                                  |          |     |            | 26/              |                                  | 218            | 197              | 0.16    | 7.11   |                                    |                                 | 414                               |               | 6.5            | 16.0            | 51.0      | 22.0            | 2.9       | 1.00           | 0.015           | 0.43              | 0.004   | 0.76    | 0.006        | 0.015     |                |
| h                       | н                                                   |          |     |            | 11/19            |                                  | 251            | 229              | 0.12    | 8.07   |                                    |                                 | 472                               |               | 6.5            | 16.0            | 58.0      | 25.%            | 3.2       | /. 05          | 0.015           | 0.42              | 0.003   | 1.46    | 0.001        | 0.011     |                |
| л                       | fi                                                  |          |     |            | 31/01/80         |                                  | 282            | 261              | 0.04    | 8.16   |                                    |                                 | 518                               |               | 6.0            | 12.5            | 66.0      | 28.4            | 2.8       | 0.75           | 0.005           | 0.21              | 0.002   | 1.94    | 0.004        | 0.006     | ۷۱.0           |
|                         |                                                     |          |     |            |                  |                                  |                |                  |         |        |                                    |                                 |                                   |               |                |                 |           |                 |           |                |                 |                   |         |         |              |           |                |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure 1; N.D. – Not detected; < – Refers to less than; 1 mg/l = 1 ppm = 1 lb/100,000 lmp.gal;  $1 \mu \text{g/l} = 1 \text{ ppb.}$  MOE 0495 11/78



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG , LOT 95 , CONI W.T.S.R. Date compiled: 1/04/80

Compiler:

| -              |                                                    | _        |     |            |                  |                                                  |              |           |         |               |                           |                    |           |                           |                |               |          |               |                |              | / 00       |            |                 |              |       |      | <br>    | _         |
|----------------|----------------------------------------------------|----------|-----|------------|------------------|--------------------------------------------------|--------------|-----------|---------|---------------|---------------------------|--------------------|-----------|---------------------------|----------------|---------------|----------|---------------|----------------|--------------|------------|------------|-----------------|--------------|-------|------|---------|-----------|
| dent           | Owner or Source                                    |          | _   | tion       | Date             | Bioch                                            | Demand (     | (         | arbo    | n             | Petroleum<br>Hydrocarb    | Tannins<br>Lignins | Reactive  | Total Dit                 | Sele           | Arse          | Barium   | Cadr          | Chro           | Copp         | Cyanide    | Lead       | Man             | Nick         | Zinc  |      | Anionic |           |
| Identification | er or                                              | Township | Lot | Concession | Sampled *        | Biochemical Oxygen<br>Demand (BOD <sub>5</sub> ) | Demand (COD) | Inorganic | Organic | Total         | Petroleum<br>Hydrocarbons | ins and            | ate as Si | Total Dissolved<br>Solids | Selenium as Se | Arsenic as As | um as Ba | Cadmium as cd | Chromium as Cr | Copper as Cu | nide as CN | Lead as Pb | Manganese as Mn | Nickel as Ni | as Zn |      |         | Detergent |
| R4             | ROCKY SAUGEN<br>RIVER<br>downstream<br>from lagoon |          |     |            | 27<br>18/19      | 0.8                                              | 9.9          | 52.0      | 10.0    | 62.0          |                           |                    |           |                           |                |               |          |               |                |              |            |            |                 |              |       |      |         |           |
| n              | м                                                  |          |     |            | 19/19            | 0.5                                              | 9.7          | 58.5      | q.5     | 68.0          |                           |                    |           |                           | ⟨.∞।           | ړ.∞۱          | .04      | <. <b>005</b> | 4.02           | اه. ک        | ۷.0۱       | ۷.03       | <b>2.02</b>     | <.02         | ١٥.٧  |      |         |           |
| tı             | tı                                                 |          |     |            | 29/<br>10/<br>79 |                                                  |              | 59.5      | 8.0     | 67.5          |                           |                    |           |                           |                |               |          |               |                |              |            |            |                 |              |       |      |         |           |
| lı .           | 11                                                 |          |     |            | 9/1/19           |                                                  |              | 60.5      | 6.5     | 67.0          |                           |                    |           |                           |                |               |          |               |                |              |            | es.        |                 |              |       |      | ζO      | ٦<br>^ ئ  |
| 11             | 11                                                 |          |     | ы          | 22/<br>11/<br>19 |                                                  |              | 60.0      | 6.5     | 66.5          |                           |                    |           |                           |                |               |          |               |                |              |            |            |                 |              |       |      | 4       | ).I       |
| lı             | и                                                  |          |     |            | 26/11/19         |                                                  |              |           |         |               |                           |                    |           |                           | L 001          | ۷.03          | 4.02     | ∠. <b>∞</b> 5 | ۷.02           | ۷.0۱         |            | ۷.03       | 4.02            | ۷.02         | ۷.0۱  | ۷.02 |         |           |
| h              | n                                                  |          |     |            | 26/              |                                                  |              |           |         |               |                           |                    |           |                           |                |               |          |               |                |              |            |            |                 |              |       |      |         |           |
| U              | U                                                  |          |     |            | 31/              |                                                  |              | 62.0      | 3.0     | φ <b>5</b> .0 |                           |                    |           |                           |                |               |          |               |                |              |            |            |                 |              |       |      |         |           |
|                |                                                    |          |     |            |                  |                                                  |              |           |         |               |                           |                    |           |                           |                |               |          |               |                |              |            |            |                 |              |       |      |         |           |

1 Location is shown in Figure 1; N.D. — Not Detected; P — Present; < — Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal · 1 μg/l= 1 ppb. MOE 0495 11/78



All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T. S.R.

Date compiled: 18/04/30 Compiler: N. RENNIE

| ounty                    | GKEY                              |          |   |            |                    |                                          |                | IOWIIS           | mp(s) | . 000  |                                    | ,                               | 15,0                               |               |                |                 |               | Date (          | Joinpi    | icu . ,        | 4/80            | 00                | ·p·i·c· | 1011    |                      |           |                  |
|--------------------------|-----------------------------------|----------|---|------------|--------------------|------------------------------------------|----------------|------------------|-------|--------|------------------------------------|---------------------------------|------------------------------------|---------------|----------------|-----------------|---------------|-----------------|-----------|----------------|-----------------|-------------------|---------|---------|----------------------|-----------|------------------|
| Nur                      | Sou                               | -        |   | ion.       | Date               | Hydr<br>Sulp                             | Har            | Alk              | Iron  | рн     | App                                | Turb                            | Conc                               | Flu           | СНІ            | Sulp            | Calc          | Mag             | Sodium    | Pota           | Nitro           | gen               | as      | N       | Phosph<br>as         | orus<br>P | Phe              |
| Identification  Number 1 | Owner or<br>Source                | Township | 2 | Concession | 2                  | Hydrogen as<br>Sulphide H <sub>2</sub> S | Hardness CaCO3 | Alkalinity CaCO3 | as Fe | at lab | Apparent Colour,<br>in Hazen Units | Turbidity, in<br>Formazin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | Chloride as CI | Sulphate as SO4 | Calcium as Ca | Magnesium as Mg | ium as Na | Potassium as K | Free<br>Ammonia | Total<br>Kjeldahl | Nitrite | Nitrate | Dissolved<br>Reative | Total     | Phenois, in µg/1 |
|                          |                                   |          |   |            |                    |                                          |                |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |                      |           |                  |
| P1                       | POND NW<br>of SEWAGE<br>LAGOON    |          |   |            | 27/19              |                                          | 317            | 294              | 0.17  | 7.47   |                                    |                                 | 615                                |               | 17.0           | 17.0            | 83.5          | 26.2            | 9.6       | 1.95           | 0.005           | 0.77              | 0.003   | 40.01   | 0.002                | 0.022     | 1.0              |
| u                        | .tr                               |          |   |            | 22/<br>11/<br>79   |                                          | 249            | 243              | 0.36  | 7.36   |                                    |                                 | 555                                |               | 39.5           | 19.0            | 65.0          | 21.0            | 27.6      | 3.50           | 0.2             | 1.48              | 20,01   | ۷٥.۱    | 0.10                 | 0.23      | <1.              |
| ų                        | н                                 |          |   |            | 31/<br>/01/<br>/80 |                                          | 416            | 412              | 5.3   | 7.07   |                                    |                                 | 790                                |               | 24.0           | 5.0             | 109           | 34.8            | 19.0      | 2.50           | 0.040           | 2.45              | 0.008   | 0.07    | 0.050                | 0.455     | 12.0             |
|                          |                                   |          |   |            |                    |                                          |                |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |                      |           |                  |
|                          |                                   |          |   |            |                    |                                          |                |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |                      |           |                  |
| P2                       | POND SOUTH<br>of SEWAGE<br>LAGOON |          |   |            | II/<br>10/<br>79   |                                          | 210            | 199              | 0.06  | 7.95   |                                    |                                 | 447                                |               | 19.5           | 8-5             | 51.5          | 19.8            | 10.0      | 1.60           | 0.010           | 0.20              | 0.005   | 0.86    | ۷٥, ٥٥١              | 0.001     | ۷۱.              |
|                          |                                   |          |   |            |                    |                                          |                |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |                      |           |                  |
|                          |                                   |          |   |            |                    |                                          |                |                  |       |        |                                    |                                 |                                    |               |                |                 |               |                 |           |                |                 |                   |         |         |                      |           |                  |

<sup>1</sup> Location is shown in Figure 1; N.D. - Not detected < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 lmp. gal; 1 µg/l = 1 ppb. MOE 0495 11/78



All analyses except pH reported in mg/t unless otherwise indicated

County: GREY

Township(s): GLENELG, LOT 95, CON I W.T.S.R. Date compiled: 18/04/80

Compiler: N. RENNIE

|                                               | <b>6</b>               | -                       | 155              | 4 | $\downarrow$ |                     |   |  |
|-----------------------------------------------|------------------------|-------------------------|------------------|---|--------------|---------------------|---|--|
| Anionic Detergent                             | (0                     | 0                       |                  | + |              | _                   |   |  |
|                                               |                        |                         |                  |   |              | _                   |   |  |
|                                               |                        |                         |                  |   |              |                     |   |  |
| Zinc as Zn                                    | 4.01                   |                         |                  |   |              | ۷.σ۱                |   |  |
| Nickel as Ni                                  | 4.02                   |                         |                  |   |              | 4.02                |   |  |
| Manganese as Mn                               | 0.07                   | 0.02                    |                  |   |              | ۷.02                |   |  |
| Lead as Pb                                    | . 01                   | 2.03                    |                  |   |              | ∠.03                |   |  |
| Cyanide as CN                                 | /o.o.l                 | 0.0(                    |                  |   |              | دم. OI              |   |  |
| Copper as Cu                                  | . 01                   | 2.01                    |                  |   |              | ۷.0۱                | \ |  |
| Chromium as Cr                                | Z .OZ                  | C.02                    |                  |   |              | 2.02                |   |  |
| Cadmium as Cd                                 | ∠.005                  |                         |                  |   |              | ∠.∞5                |   |  |
| Barium as Ba                                  | .02                    | .02                     |                  |   |              | .02                 |   |  |
| Arsenic as As                                 | 0.00                   | 0.001                   |                  |   |              | ٥٠.00١              |   |  |
| Selenium as Se                                | / MI                   |                         |                  |   |              | K.001               |   |  |
| Total Dissolved Solids                        |                        |                         |                  |   |              |                     |   |  |
| Reactive<br>Silicate as Si                    |                        |                         |                  |   |              |                     |   |  |
| Tannins and<br>Lignins                        |                        |                         |                  |   |              |                     |   |  |
| Petroleum<br>Hydrocarbons                     |                        |                         |                  |   |              |                     |   |  |
| Total                                         | 975                    | 77.0                    | 131              |   |              | 52.5                |   |  |
| a r boi                                       | 22.5                   |                         | 200              |   |              | 4.5                 |   |  |
| Inorganic                                     | 75.0                   | 57.5                    | ш                |   |              | 48.0                |   |  |
| Chemical Oxygen Demand (COD)                  | 44                     |                         |                  |   |              | 31                  |   |  |
| Biochemical Oxygen Demand (BOD <sub>5</sub> ) | 2.0                    |                         |                  |   |              | 1.2                 |   |  |
| Date Sampled *                                | <i>IJ</i><br>10/<br>79 | /79<br>22/<br>11/<br>79 | 31/<br>01/<br>80 |   | 27/          | 27/10/19            |   |  |
| Concession                                    |                        |                         |                  |   |              |                     |   |  |
| Lot<br>Township                               |                        |                         |                  | - |              |                     |   |  |
| ĕ ₹                                           | POND NW<br>of SEWASE   | LAGOON                  | h                |   | POND SOUTH   | of SEWAGE<br>LAGOON |   |  |
| Identification<br>Number <sup>1</sup>         | P1                     | li                      | lı               |   |              | P2                  |   |  |

Location is shown in Figure 1; N.D.— Not Detected; P — Present; < — Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1,µg/l=1 ppb. MOE 0495 11/78

#### APPENDIX G

SUMMARY OF CHEMICAL ANALYSES
OF SEWAGE LAGOON EFFLUENT



#### OF CHEMICAL ANALYSES OF SEWAGE LAGOON EFFLUENT SUMMARY

All analyses except pH reported in mg/l unless otherwise indicated

County: GREY

Ontario

Township(s): GLENELG, LOT 95, CONT W.T.S.R. Date compiled: 18/04/0\_ Compiler: N.RENNIE

| (Charles and American      | Aller and the second and the second | Principle of | W THE REAL PROPERTY. |            | -                 | Total Control                  |                |                  |       |        |                                    | 1                      | ,                                  |               |            | . 5.17.     |           |                 | comp.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / / 8           | 9 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ipner   | . 10.10 | 101016                       |           |                  |
|----------------------------|-------------------------------------|--------------|----------------------|------------|-------------------|--------------------------------|----------------|------------------|-------|--------|------------------------------------|------------------------|------------------------------------|---------------|------------|-------------|-----------|-----------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------------------|-----------|------------------|
| lden<br>Num                | Owner<br>Source                     | -            |                      | tion.      | Date              | Hydrogen<br>Sulphide           | Hard           | Alka             | Iron  | P      | Appa<br>in I                       | Turbidity,<br>Formazin | Cond                               | Fluc          | Chloride   | Sulphate    | Calcium   | Mag             | Sodium                          | Pota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nitro           | ogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | as      | N       | Phosph<br>as                 | orus<br>P | Phe              |
| Identification<br>Number 1 | er or<br>ce                         | Township     | ot                   | Concession | Sar               | gen as<br>ide H <sub>2</sub> S | Hardness CaCO3 | Alkalinity CaCO3 | as Fe | at lab | Apparent Colour,<br>in Hazen Units | dity, in<br>azin Units | Conductance , in micromhos/cm-25°C | Fluoride as F | ride as CI | hate as SO4 | ium as Ca | Magnesium as Mg | um as Na                        | Potassium as K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Free<br>Ammonia | Total<br>Kjeldahl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nitrite | Nitrate | Dissolved<br>Reative         | Total     | Phenois, in µg/1 |
|                            | SEWAGE<br>LAGOON<br>EFFLUENT        |              |                      |            | 28/<br>105/<br>19 |                                |                |                  |       |        |                                    |                        |                                    |               |            |             |           |                 | parameter de l'acce su maire au |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2             | 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         | ar and a second point in the | 1.00      |                  |
| n                          | 11                                  |              |                      |            | 27/<br>09/<br>79  |                                | 278            | 284              | 0.05  | 7.7    |                                    | 8.8                    | 782                                |               | 60.0       | ·           | 64.0      | 29.0            |                                 | The state of the s |                 | Date to the state of the state |         | 0.1     |                              |           |                  |
| ц                          | lı                                  |              |                      |            | 18/10/19          |                                | 257            | 292              | 0.02  | 7.69   |                                    |                        | 790                                |               | 57.0       | 34.0        | 55.0      | 29.0            | 61.0                            | 7.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1             | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.41    | ۷٥.١    | 0.10                         | 3.08      | <1.0             |
| 11                         | П                                   |              |                      |            | 19/10/79          |                                | 256            | 292              | 0.12  | 7.61   |                                    |                        | 790                                |               | 57.5       | 35.5        | 55.0      | 28.8            | 53.5                            | 8.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5             | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.33    | 0.04    | 2.35                         | 3.04      | <1.0             |
| d                          | lı                                  |              |                      |            | 3/11/79           |                                |                |                  |       |        |                                    |                        | 770                                |               |            | 34.0        | 58.5      | 27.0            | 54.0                            | 8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.7             | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54    | 40.1    | 2.45                         | 2.92      | ۷۱۰۵             |
| 11                         | II                                  |              |                      |            | 16/19             |                                | 261            |                  |       |        |                                    |                        | 765                                |               |            | 33.0        | 60.0      | 27.0            | 53.0                            | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.8             | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.43    | 0.5     | 2.55                         | 3.22      | 41.0             |
| *<br>!:                    | It                                  |              |                      | -          | 23/               | -                              |                |                  |       |        |                                    |                        |                                    |               |            |             |           |                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         |                              | 1.44      | ۷۱.٥             |
| *                          | lı                                  |              |                      |            | 25/11/79          |                                | 246            | 268              | 0.02  | 8.01   |                                    |                        | 730                                |               | 55.0       | 32.5        | 54.5      | 26.6            | 51.5                            | 7.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.3             | 6-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04    | 1.0     | 2.45                         | 2.75      |                  |
| 11                         | fi                                  |              |                      |            | 31/01/80          |                                | 275            | 327              | 0,20  | 7.35   |                                    |                        | 800                                | 0.33          |            | 28.5        | 65.0      | 27. 2           | 41.0                            | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.5            | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01    | ۷٥.۱    | 3.20                         | 3.50      | 25.0             |

<sup>1</sup> Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 mg/l = 1 ppm = 1|b/100,000 | mp. gal; 1 ppb. MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.



### SUMMARY OF CHEMICAL ANALYSES OF SEWAGE LAGOON EFFLUENT

All analyses except pH reported in mg/l unless otherwise indicated

County:

Township(s):

Date compiled:

Compiler:

| Identifica<br>Number <sup>1</sup>     | Owner or<br>Source          | T        | $\neg$ | ion        | Date             | Bioche                                           | Chem                         | С         | arboi   | n     | Petroleum<br>Hydrocarb    | Tannins<br>Lignins     | Reactive | Total<br>Solids           | Selenium  | Arsenic  | Barium  | Cadm          | Chromium   | Copper   | Cyanide  | Lead as Pb | Manganese   | Nickel | Zinc  | Aluminum | Anionic | 1             |
|---------------------------------------|-----------------------------|----------|--------|------------|------------------|--------------------------------------------------|------------------------------|-----------|---------|-------|---------------------------|------------------------|----------|---------------------------|-----------|----------|---------|---------------|------------|----------|----------|------------|-------------|--------|-------|----------|---------|---------------|
| Identification<br>Number <sup>1</sup> | er or                       | Township | Lot    | Concession | Sampled 3        | Biochemical Oxygen<br>Demand (BOD <sub>5</sub> ) | Chemical Oxygen Demand (COD) | Inorganic | Organic | Total | Petroleum<br>Hydrocarbons | Tannins and<br>Lignins | te as Si | Total Dissolved<br>Solids | ium as Se | ic as As | m as Ba | Cadmium as Cd | nium as Cr | er as Cu | de as CN | as Pb      | anese as Mn | as Ni  | as Zn | num      |         | c Detergent   |
|                                       | SEWAGE<br>LAGOON<br>EFFWENT |          |        |            | 28/<br>05/<br>19 | 13.6                                             |                              |           |         |       |                           |                        |          | 24                        |           |          |         |               |            |          |          |            |             |        |       |          |         |               |
| lg                                    | W                           |          |        |            | 27/09/19         |                                                  |                              |           |         |       |                           |                        |          | <15                       |           |          |         |               |            |          |          |            |             |        |       |          | $\perp$ |               |
| ļs                                    | 41                          |          |        |            | 18/10/79         | 25.6                                             | 104                          | 71.0      | 33.0    | 104   |                           |                        |          |                           |           |          |         |               |            | <.25     |          | 1.0        | .30         |        | 16.0  | 1.5      |         |               |
| ìr                                    | μ                           |          |        |            | 19/10/79         |                                                  |                              | 71.5      | 32.5    | 104   |                           |                        |          |                           |           |          |         |               |            |          |          |            |             |        |       |          |         | <b>1</b> 65 T |
| н                                     | И                           |          |        |            | 3/11/79          | 13                                               | 464                          | 63.0      | 34.5    | 97.5  |                           |                        |          | 8.0                       |           |          |         |               |            |          |          |            |             |        |       |          |         |               |
| h                                     | 11                          |          |        |            | 16/              | 28                                               |                              | 61.0      | 34.0    | 95.0  |                           |                        |          | 26                        |           |          |         |               |            |          |          |            |             |        |       |          |         |               |
| * "                                   | 11                          |          |        |            | 23/              | 6.1                                              |                              | 62.0      | 32.5    | 94.5  |                           |                        |          | 5.0                       |           |          |         |               |            |          |          |            |             |        |       |          | -       | 0.1           |
| * 11                                  | К                           |          |        |            | 25/11/79         |                                                  |                              |           |         |       |                           |                        |          |                           | 2.001     | ۷.03     | .04     | ¢.005         | Z.02       |          |          | 4.03       | .05         | 4.02   | <.01  |          |         |               |
| lt.                                   | lı .                        |          |        |            | 31/01/80         | 46                                               | 111                          | 84.0      | 14.0    | 98.0  |                           |                        |          | 36                        |           |          |         |               |            |          |          |            |             |        |       |          |         |               |

Location is shown in Figure 1; N.D. - Not Detected; P - Present; < - Refers to less than; 1 mg/l=1 ppm=1lb/100,000 lmp.gal; 1µg/l=1 ppb.

MOE 0495 11/78 \* Filtered through glass fiber filter paper (2 microns) except for phenols and carbons.

#### APPENDIX H

SUMMARY OF BACTERIOLOGICAL ANALYSES
OF GROUNDWATER



Number of bacterial colonies per 100 ml

County: GREY

Ontario

Township(s): GLENELG, LOT 95, CON I W.T.S.R. Date Compiled: 18/4/90 Compiler: N.RENNIE

| 2.0 101                    | 1.01421                      |          |      |            |                  |                               |                        |          |                                   |                                  |                                  |                           | 1 |
|----------------------------|------------------------------|----------|------|------------|------------------|-------------------------------|------------------------|----------|-----------------------------------|----------------------------------|----------------------------------|---------------------------|---|
| Nu                         | Own                          | Lo       | cati | o n        | D a              | Feca<br>Coli1                 | B B                    | Co       | Fec<br>Str                        | Pse                              | Sulph<br>Reduc<br>Bacte          | Hete<br>Bac               |   |
| Identification<br>Number 1 | Owner<br>or<br>Source        | Township | Lot  | Concession | Date ×           | Fecal<br>Coliform<br>Bacteria | Background<br>Bacteria | Coliform | Fecal<br>Streptococci<br>Bacteria | <u>Pseudomonas</u><br>aeruginosa | Sulphate<br>Reducing<br>Bacteria | Heterotrophic<br>Bacteria |   |
| ഡ1                         | OBSERVATION WELL NO. 1       |          |      |            | 19/10/79         | A300                          | 35,000                 | A5000    | A 200                             |                                  |                                  |                           |   |
| п                          | ŢŢ.                          |          |      |            | 28/<br>10/19     | 21,000                        | 270,000                | C120,∞0  | A 900                             |                                  |                                  |                           |   |
| il                         | tę                           |          |      |            | 20/11/79         | P2-1                          | 200,000                | 190,000  | G /500                            | 340                              |                                  |                           |   |
| h                          | 11                           |          |      |            | 26/11/19         |                               | 100,000                | 72,000   | 2000                              | 085                              |                                  |                           |   |
| te                         | ñ                            |          |      |            | 31/01/90         |                               | Z1000                  | Z 1000   | ۷10                               |                                  |                                  |                           |   |
|                            |                              |          |      |            |                  |                               |                        |          |                                   |                                  |                                  |                           |   |
|                            |                              |          |      |            |                  |                               |                        |          |                                   |                                  |                                  |                           |   |
| οω 2                       | OBSERVATION<br>WELL<br>NO. 2 |          |      |            | 10/79            | 4 100                         | 6240,000               | C14,000  | A100                              |                                  |                                  |                           |   |
| 11                         | n,                           |          |      |            | 29/<br>10/<br>79 | A20                           | G 2,400,000            | A 900    | AGO                               |                                  |                                  |                           |   |

 $<sup>^{1}</sup>$ Location is shown in Figure  $^{2}$  ; < - Refers to less than; >- Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

\*OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date Compiled: 18/4/80 Compiler: N. RENNIE

|                                       | I. ORLI                      |          |      |            |                    | 3111p (37. = = =          | . ,                    |         |                                   |                                  |                         |                           | 1  |
|---------------------------------------|------------------------------|----------|------|------------|--------------------|---------------------------|------------------------|---------|-----------------------------------|----------------------------------|-------------------------|---------------------------|----|
| Identifica<br>Number <sup>1</sup>     | Owner<br>or<br>Source        |          | cati |            | Date<br>Sampled    | Fecal<br>Colifo<br>Bacter | Backgr                 | Colifo  | Fecal<br>Strept<br>Bacte          | Pseu                             | Sulph<br>Reduc<br>Bacte | Heterotrop<br>Bacteria    |    |
| Identification<br>Number <sup>1</sup> | C T                          | Township | Lot  | Concession | D M Y              | eria                      | Background<br>Bacteria | form    | Fecal<br>Streptococci<br>Bacteria | <u>Pseudomonas</u><br>aeruginosa | hate<br>cing<br>eria    | Heterotrophic<br>Bacteria |    |
|                                       | OBSERVATION<br>WELL<br>NO. 2 |          |      |            | 26/<br>11/79       | 5100                      | 68,000                 | 71,000  | 1410                              | C 32                             |                         |                           |    |
| u                                     | h                            |          |      |            | 26/<br>11/19       |                           | 90,000                 | 109,000 | G1500                             | 250                              |                         |                           | -  |
| u                                     | ц                            |          |      |            | 31/01/20           | 110                       | 500                    | 1000    | A 10                              |                                  |                         |                           |    |
|                                       |                              |          |      |            |                    |                           |                        |         |                                   |                                  |                         |                           | 15 |
|                                       |                              |          |      |            |                    |                           |                        |         |                                   |                                  | ,                       |                           |    |
| 0w3                                   | OBSERVATION WELL NO. 3       |          |      |            | 10/79              | ۷100                      | G 240,000              | C9000   | <100                              |                                  |                         |                           |    |
| и                                     | 11                           |          |      |            | 20/<br>11/19       | ۷ ۱٥                      | 2000                   | ۷100    | A 10                              | <4                               |                         |                           |    |
| h                                     | li                           |          |      |            | 31/<br>/01/<br>/80 | AIO                       | ₩                      | 230     | A10                               |                                  |                         |                           |    |
|                                       |                              |          |      |            |                    |                           |                        |         |                                   |                                  |                         |                           |    |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure  $\lambda$ ; < - Refers to less than; > - Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

<sup>\*</sup>OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T. S.R Date Compiled: 19/04/80

Compiler: N.RENNIE

| Joun ( )                   | : GREY                       |          |       |     | LOWIIS          | 111 p (371 OPE                | 10000, 101 13          | , WAL W. |                                   |                           | 120                           |                           | 1    |
|----------------------------|------------------------------|----------|-------|-----|-----------------|-------------------------------|------------------------|----------|-----------------------------------|---------------------------|-------------------------------|---------------------------|------|
| Nu                         | Own                          | Loc      | catio | n   | Da              | Fecal<br>Colife<br>Bacte      | B B                    | Вас      | Fecal<br>Strept<br>Bacte          | Pse                       | Sulph<br>Reduc<br>Bacte       | Hetero                    |      |
| Identification<br>Number 1 | Owner<br>or<br>Source        | Township | Lot   | SSI | Date<br>Sampled | Fecal<br>Coliform<br>Bacteria | Background<br>Bacteria | Coliform | Fecal<br>Streptococci<br>Bacteria | Pseudomonas<br>aeruginosa | ulphate<br>educing<br>acteria | Heterotrophic<br>Bacteria |      |
|                            |                              |          |       |     |                 |                               |                        |          |                                   | ,                         |                               |                           |      |
| 004                        | OBSERVATION<br>WELL<br>NO. 4 |          |       |     | 18/10/79        | Z100                          | 6240,000               | G17,000  | 2100                              |                           |                               |                           |      |
| đ                          | 11                           |          |       | ×   | 20/             | < 10                          | 44,000                 | R 600    | Z10                               | <4                        |                               |                           |      |
| ы                          | 11                           |          |       |     | 31/01/80        |                               | 100                    | 410      | A40                               |                           |                               |                           | 164. |
|                            |                              |          |       |     |                 |                               |                        |          |                                   |                           |                               |                           |      |
|                            |                              |          |       |     |                 |                               |                        |          |                                   |                           |                               |                           |      |
| 0w5                        | OBSERVATION<br>WELL<br>NO. 5 |          |       |     | 18/10/79        | 4100                          | 51,000                 | 23,000   | A 300                             |                           |                               |                           |      |
| h                          | и                            |          |       |     | 20/             |                               | 7,000                  | 11,000   | 230                               | < 4                       | 13                            |                           |      |
| þ                          | lı.                          |          |       |     | 31/01/79        |                               | 120                    | 430      | A 10                              |                           |                               |                           |      |

 $<sup>^{1}</sup>$ Location is shown in Figure 2; < - Refers to less than; >- Refers to greater than.

An accompanying "L " or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

<sup>&</sup>quot;OBS" indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG, LOT 95, CON. I W.T.S.R Date Compiled: 19/04/62

Compiler: N. RENNIE

| ou n t                     | Y: GREY                      |            |       |    | 10wn:            | snip(s). GLE                  | Nece, wi               | 45, 600. 1           | W. F. S. R. Da (                  | e Compiled                       | 80                               | Compiler                  | - |
|----------------------------|------------------------------|------------|-------|----|------------------|-------------------------------|------------------------|----------------------|-----------------------------------|----------------------------------|----------------------------------|---------------------------|---|
| Identification<br>Number 1 | Owner<br>or<br>Source        | L Township | Catio | SS | Date ×           | Fecal<br>Coliform<br>Bacteria | Background<br>Bacteria | Coliform<br>Bacteria | Fecal<br>Streptococci<br>Bacteria | <u>Pseudomonas</u><br>aeruginosa | Sulphate<br>Reducing<br>Bacteria | Heterotrophic<br>Bacteria |   |
|                            |                              |            |       |    |                  |                               |                        |                      |                                   |                                  |                                  | ,                         |   |
| oωω                        | OBSERVATION<br>WELL<br>NO: 6 |            |       |    | 20/<br>11/<br>79 | 9700                          | 52,000                 | 103,000              | 14,600                            | 160                              |                                  |                           |   |
| i,                         | 15                           |            |       |    | 31/90            | A 20                          | <100                   | ∠ 100                | 2100                              |                                  |                                  |                           |   |
| -                          |                              |            |       |    |                  |                               |                        |                      |                                   |                                  |                                  |                           |   |
| 0W7                        | OBSERVATION<br>WELL<br>NO. 7 |            |       |    | 20/11/19         |                               | 31,000                 | 45,000               | /220                              | 116                              |                                  |                           |   |
| h                          | ж                            |            |       |    | 31/              | ۷۱٥                           | ∠100                   | ۷۱۵٥                 | ۷۱٥                               |                                  |                                  |                           |   |
|                            |                              |            |       |    |                  |                               |                        | ·                    |                                   |                                  |                                  |                           |   |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure 2; < - Refers to less than; > - Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

<sup>\*</sup>OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG, LOT 95, CONI. W.T.S.R. Date Compiled: 19/04/80 Compiler: N. RENNIE

|                            | 7.01-1                       | 3        |      |     |                                 |                               |                        |                      |                                   | (8)                              | m TI (2)                         | m I                       | ı |
|----------------------------|------------------------------|----------|------|-----|---------------------------------|-------------------------------|------------------------|----------------------|-----------------------------------|----------------------------------|----------------------------------|---------------------------|---|
| NG                         | Own                          | Lo       | cati | o n | Sa                              | Co Co                         | 8 8                    | Bac Co-              | Fecal<br>Strept                   | Se                               | Sul <sub>l</sub><br>Red          | lete<br>}ac               |   |
| Identification<br>Number 1 | Owner<br>or<br>Source        | Township | Lot  | SSK | Date ×                          | Fecal<br>Coliform<br>Bacteria | Background<br>Bacteria | Coliform<br>Bacteria | Fecal<br>Streptococci<br>Bacteria | <u>Pseudomonas</u><br>aeruginosa | Sulphate<br>Reducing<br>Bacteria | Heterotrophic<br>Bacteria |   |
|                            |                              |          |      |     | J <sub>1</sub> m <sub>1</sub> · |                               |                        |                      |                                   |                                  |                                  |                           |   |
| യു                         | OBSERVATION<br>WELL<br>NO. 8 |          |      |     | 20/                             | A 20                          | 26,000                 | A300                 | A30                               | 20                               |                                  |                           |   |
| и                          | 11                           |          |      |     | 31/01/80                        |                               | 210                    | ДЧО                  | A 10                              |                                  |                                  |                           |   |
|                            |                              |          |      |     |                                 |                               |                        |                      |                                   |                                  |                                  |                           |   |
|                            |                              |          |      |     |                                 | H                             |                        |                      |                                   |                                  |                                  |                           |   |
| owq                        | OBSERVATION<br>WELL<br>NO. 9 |          |      |     | 20/1/9                          | <10                           | 3100                   | A 100                | ∠ 10                              | ۷4                               |                                  |                           |   |
| h                          | 11                           |          |      |     | 31/01/20                        | <10                           | 610                    | AIO                  | 210                               |                                  |                                  |                           |   |
|                            |                              |          |      |     |                                 |                               |                        |                      |                                   |                                  |                                  |                           |   |
|                            |                              |          |      |     |                                 |                               |                        |                      |                                   |                                  |                                  |                           |   |

 $<sup>^{1}</sup>$ Location is shown in Figure  $^{2}$  ; < - Refers to less than; >- Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

<sup>\*</sup>OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELS, LOT 95, CONI W.T.S.R. Date Compiled: 19/04/80 Compiler: N. RENNIE

|                                       | ,, 0                          |          |                |      | (A = 1 = 1 = 1     | 5111 p ( 6 ) . ODC            | · .                    | ,                    |                                   |                           | 7 80                             |                           | <br>7 |
|---------------------------------------|-------------------------------|----------|----------------|------|--------------------|-------------------------------|------------------------|----------------------|-----------------------------------|---------------------------|----------------------------------|---------------------------|-------|
| Identification<br>Number <sup>1</sup> | Owner<br>or<br>Source         | Lownship | cati<br>o<br>* | SSIC | Date ×             | Fecal<br>Coliform<br>Bacteria | Background<br>Bacteria | Coliform<br>Bacteria | Fecal<br>Streptococci<br>Bacteria | Pseudomonas<br>aeruginosa | Sulphate<br>Reducing<br>Bacteria | Heterotrophic<br>Bacteria |       |
| 0W10                                  | OBSERVATION<br>WELL<br>NO. 10 |          |                |      | 20/<br>11/<br>79   | 2400                          | 19,000                 | 26,000               | 600                               | C 36                      |                                  |                           |       |
| u                                     | 'n                            |          |                |      | 31/80              | ۷10                           | < 100                  | ∠100                 | ۷10                               |                           |                                  |                           |       |
|                                       |                               |          |                |      |                    |                               |                        |                      |                                   |                           |                                  |                           |       |
| 0W11                                  | OBSERVATION<br>WELL<br>NO. 11 |          |                |      | 20/<br>/11/<br>/79 | 2100                          | 33,000                 | 17,000               | 450                               | 28                        |                                  |                           |       |
| n                                     | u                             |          |                |      | 31/01/90           |                               | 2200                   | < 100                | ۷10                               |                           |                                  |                           |       |
|                                       |                               |          |                |      |                    |                               |                        |                      |                                   |                           |                                  |                           |       |
|                                       |                               |          |                |      |                    |                               |                        |                      |                                   |                           |                                  |                           |       |
| οωιλ                                  | OBSERVATION<br>WELL<br>NO. 12 |          |                |      | 20/                | /300                          | 11,000                 | 9000                 | 520                               | 24                        |                                  |                           |       |
| и                                     | n                             |          |                |      | 31/01/80           | ۷ ا۵                          | ∠100                   | A100                 | ۷10                               |                           |                                  |                           |       |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure  $\lambda$ ; < - Refers to less than; >- Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

<sup>\*</sup>OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Ontario

Township(s): GLENELG , LOT 95 , CONI W.T.S.R. Date Compiled: 19/04/80 Compiler: N. RENNIE

| , ORET                        |                         |                                                                  |                                                  |                                                         |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|-------------------------|------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| So o                          | Lo                      | catio                                                            | o n                                              | Da                                                      | Вас                                                                                                         | ස ස<br>ව ව                                                                                                                                       | Со                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fec<br>Str                                                                                              | Pse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Su-<br>Red<br>Bac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hete<br>Bac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ner<br>r<br>urce              | Township                | Lot                                                              | SS                                               |                                                         | cal<br>liform<br>cteria                                                                                     | ckground                                                                                                                                         | liform<br>cteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eptococci<br>cteria                                                                                     | uginosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | phate<br>lucing<br>iteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erotrophic<br>eteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               |                         |                                                                  |                                                  | 0,111                                                   |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               |                         |                                                                  |                                                  |                                                         |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WELL                          |                         |                                                                  |                                                  | 20/                                                     | 470                                                                                                         | /0,000                                                                                                                                           | 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11                            |                         |                                                                  |                                                  |                                                         | <10                                                                                                         | 500                                                                                                                                              | A300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               |                         |                                                                  |                                                  |                                                         |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               |                         |                                                                  |                                                  |                                                         |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OBSERVATION<br>WELL<br>NO. 14 |                         |                                                                  |                                                  | 20/<br>/11/<br>/79                                      | Z10                                                                                                         | 1500                                                                                                                                             | A100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۷.10                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ıı                            |                         |                                                                  |                                                  |                                                         |                                                                                                             | 700                                                                                                                                              | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>∠10</b>                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               |                         |                                                                  |                                                  |                                                         |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               | OBSERVATION WELL NO. 13 | OWNER TOWNShip  OBSERVATION WELL NO. 13  OBSERVATION WELL NO. 14 | OBSERVATION WELL NO. 13  OBSERVATION WELL NO. 14 | Source  Location  Concession  OBSERVATION  WELL  NO. 13 | Source  Location Sampled Date Concession Concession Dimit  OBSERVATION WELL NO. 13  OBSERVATION WELL NO. 14 | Source  Location Sampled Coliform Concession  Date Township  OBSERVATION WELL NO. 13  Description  Downer  A70  A70  A70  A70  A70  A70  A70  A7 | Colifor   Bacterial   Bacter | Source   Coliform   Sample   Coliform   Bacterial   Coliform   Concession   DIMIY   A70   10,000   3400 | Docation   Sample   Background   Backgroun | Concession   Some part   Som | Description   Some plant   So | No. 13   No. 14   No. 15   No. 16   No. 16   No. 16   No. 16   No. 17   No. 18   N |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure 2; < - Refers to less than; > - Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

\*OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date Compiled: 19/04/90 Compiler: N. RENNIE

|                               |                                          |                         |                                                  |                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                       |                                                                                                   | 1,740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |     |
|-------------------------------|------------------------------------------|-------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|
| S o Ow                        | Lo                                       | cati                    | o n                                              | D a                                              | Ba C e                                                                                                                      | B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Co<br>Ba                                                                                                                             | St.<br>Ba                             | P S                                                                                               | Su<br>Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Het<br>Ba                             |     |
| ner<br>r<br>urce              | Township                                 | Lot                     | SSic                                             |                                                  | cal<br>liform<br>cteria                                                                                                     | ckground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | liform<br>cteria                                                                                                                     | cal<br>reptococci<br>cteria           | <u>eudomonas</u><br>ruginosa                                                                      | Iphate<br>ducing<br>cteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erotrophic<br>cteria                  |     |
|                               |                                          |                         |                                                  |                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                       |                                                                                                   | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |     |
| OBSERVATION<br>WELL<br>NO: 15 |                                          |                         |                                                  | 20/<br>/11/<br>/79                               | ۷10                                                                                                                         | 8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                                                                                                                                 | <10                                   | <4                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     |
| n                             |                                          |                         |                                                  | 3/0/80                                           | < 10                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A30                                                                                                                                  | ۷.10                                  |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     |
|                               |                                          |                         |                                                  |                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                       |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     |
|                               |                                          |                         |                                                  |                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                       |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     |
| OBSERVATION<br>WELL<br>NO: 16 |                                          |                         |                                                  | 20/<br>11/79                                     | ۷10                                                                                                                         | 49,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (300                                                                                                                                 | A 10                                  | <4                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     |
| tı                            |                                          |                         |                                                  | 31/01                                            | ۷10                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A20                                                                                                                                  | ۷10                                   |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | v 4 |
|                               |                                          |                         |                                                  |                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                       |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | =   |
|                               |                                          |                         |                                                  |                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                       |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 4   |
|                               | WELL NO. 15  11  OBSERVATION WELL NO. 16 | OBSERVATION WELL NO. 15 | OBSERVATION WELL NO. 15  OBSERVATION WELL NO. 16 | OBSERVATION WELL NO. 15  OBSERVATION WELL NO. 16 | OBSERVATION WELL NO. 15  OBSERVATION WELL NO. 16  OBSERVATION WELL NO. 16  OBSERVATION WELL NO. 16  OBSERVATION WELL NO. 16 | OBSERVATION WELL NO: 15  OBSERVATION WELL NO: 15  OBSERVATION WELL NO: 16  OBSERVATION WELL NO: 10  OBSERVATION  JUNEAU  JUNEA | OBSERVATION WELL NO: 15  OBSERVATION WELL NO: 15  OBSERVATION WELL NO: 16  OBSERVATION WELL NO: 16  31/79  40  40  40  40  40  31/79 | S   S   S   S   S   S   S   S   S   S | OBSERVATION WELL NO. 15  30/79  40  A30  40  A30  CE  OBSERVATION WELL NO. 15  A30  A10  A10  A10 | OBSERVATION WELL NO: 15  OBSERVATION WELL NO: 10  OBSERVATION WELL NO: | S   S   S   S   S   S   S   S   S   S | S   |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure  $\mathcal{L}$ ; < - Refers to less than; > - Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

<sup>\*</sup>OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG , LOT 95 , CONI . WI.S.R. Date Compiled: 19/04/80

Compiler: N. RENNIE

| Count                      | y: GREY                       |          |       |      | ,            | 11 P ( 0 ) . O                | 100-0 / 00-1           | ,                    |                                   |                           |                                  |                           | 1             |
|----------------------------|-------------------------------|----------|-------|------|--------------|-------------------------------|------------------------|----------------------|-----------------------------------|---------------------------|----------------------------------|---------------------------|---------------|
| Z                          | Sou To No S                   | Lo       | catio | n Se | Da           | F e                           | B B                    | Co                   | Fecal<br>Strept<br>Bacte          | a Ps                      | Sulph<br>Reduc<br>Bacte          | Heto<br>Bac               |               |
| Identification<br>Number 1 | Owner<br>or<br>Source         | Township | Lot   | SS   | Date         | Fecal<br>Coliform<br>Bacteria | Background<br>Bacteria | Coliform<br>Bacteria | Fecal<br>Streptococci<br>Bacteria | Pseudomonas<br>aeruginosa | Sulphate<br>Reducing<br>Bacteria | Heterotrophic<br>Bacteria |               |
| owia                       | OBSERVATION<br>WELL<br>NO. 18 |          |       | 20   | 79           | 310                           | 20,000                 | 7700                 | 420                               | 32                        |                                  |                           |               |
| h                          | h                             |          |       | 31/0 | /20          | <b>410</b>                    | 200                    | A900                 | A 20                              |                           |                                  |                           |               |
|                            |                               |          |       |      |              |                               |                        |                      |                                   |                           |                                  |                           | 1/0.          |
|                            |                               |          |       |      |              |                               |                        |                      |                                   |                           |                                  |                           | ].º           |
| TP1                        | TEST<br>PIT<br>NO. 1          |          |       | 21   | 1/19         | 19,000                        | 66,000                 | 91,000               | 2200                              | 164                       |                                  |                           | $\frac{1}{4}$ |
|                            |                               |          |       |      |              |                               |                        |                      |                                   |                           |                                  |                           | $\frac{1}{2}$ |
| TP2                        | TEST<br>PIT                   |          |       | 2.1  | 0/<br>11/19  | 256                           | 12,000                 | 4000                 | 196                               | 4                         |                                  |                           | 1             |
| 11                         | NO. 2                         |          |       |      | 1/79<br>1/79 |                               | 7000                   | 6400                 | 284                               | 8                         |                                  |                           | 1             |

 $<sup>^{1}</sup>$ Location is shown in Figure  $^{2}$  ; < - Refers to less than ; >- Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

<sup>\*</sup>OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S.R. Date Compiled: 19/04/80

Compiler: N. RENNIE

|                            | · GRET                |          |      |            |                   | onip (o). On                  | EIOCEO, 40,            | 7, 3, 3, 2           |                                   | e Compiled                | 7 80                    | T T                       |  |
|----------------------------|-----------------------|----------|------|------------|-------------------|-------------------------------|------------------------|----------------------|-----------------------------------|---------------------------|-------------------------|---------------------------|--|
| Z den                      | Owner<br>or<br>Source |          | cati | on O       | Date<br>Sam       | Fecal<br>Colifo               | Backg                  | Colif<br>Bacte       | Fecal<br>Strepto<br>Bacter        | Pseu                      | Sulph<br>Reduc<br>Bacte | Hete                      |  |
| Identification<br>Number 1 | r                     | Township | Lot  | Concession | Date<br>Sampled   | Fecal<br>Coliform<br>Bacteria | Background<br>Bacteria | Coliform<br>Bacteria | Fecal<br>Streptococci<br>Bacteria | Pseudomonas<br>aeruginosa | ohate<br>ucing<br>teria | Heterotrophic<br>Bacteria |  |
| 3                          |                       | <u> </u> |      | Š          | DIMIY             |                               | α.                     |                      | <u> </u>                          | la la                     |                         |                           |  |
| İ                          |                       |          |      |            |                   |                               |                        |                      |                                   |                           |                         |                           |  |
|                            |                       |          |      |            |                   |                               |                        |                      |                                   |                           |                         |                           |  |
| TP3                        | TEST<br>PIT<br>NO. 3  |          |      |            | 20/<br>  /<br> 79 | 4                             | 920                    | 6344                 | 44                                | <b>4</b>                  |                         |                           |  |
| 11                         | I                     |          |      |            | 26/<br>11/79      | 136                           | 4900                   | 1100                 | 64                                | <4                        |                         |                           |  |
| ıı                         | H                     |          |      |            | 31/01/80          | 44                            | G24,000                | <10                  | 4                                 |                           | -                       |                           |  |
|                            |                       |          |      |            |                   |                               |                        |                      |                                   |                           |                         |                           |  |
|                            |                       |          |      |            |                   |                               |                        |                      |                                   |                           |                         |                           |  |
| TP4                        | TEST<br>PIT<br>NO. 4  |          |      |            | 20/<br>11/79      | G600                          | 13,000                 | 10,900               | 552                               | 4                         |                         |                           |  |
| h                          | ц                     |          |      |            | 26/<br>11/79      | A40                           | 2000                   | 1110                 | A 60                              | 4                         |                         |                           |  |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure  $\lambda$ ; < - Refers to less than; > - Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

\*OBS\* indicates that the analysis has been invalidated because of interference problems.



Number of bacterial colonies per 100 ml

| Identification Number 1 | y: GREY             | <del></del> | ocat i | c Concessio | Town Date Sampled | ship(s): GLI  Recal  Bacteria | ENELG, LOT9  Background  Bacteria | 5 ,CONI Coliform Bacteria | Dat Fecal Streptococci Bacteria | Pseudomonas<br>m<br>o aeruginosa | Sulphate<br>Reducing<br>Bacteria | Compiler Heterotrophic Bacteria | RENNIE |
|-------------------------|---------------------|-------------|--------|-------------|-------------------|-------------------------------|-----------------------------------|---------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|--------|
|                         |                     |             |        |             |                   |                               |                                   |                           |                                 |                                  |                                  |                                 |        |
| TP5                     | TEST<br>PIT<br>NO 5 |             |        |             | 20,               | <4                            | 800                               | 16                        | <b>~4</b>                       | <4                               |                                  |                                 |        |
| Li.                     | Ð                   |             |        |             | 26/               | ۷.4                           | 440                               | ۷4                        | <b>4</b>                        | <4                               |                                  |                                 |        |
|                         |                     |             |        |             |                   |                               |                                   |                           |                                 |                                  |                                  |                                 |        |
|                         |                     |             |        |             |                   |                               |                                   |                           |                                 |                                  |                                  |                                 |        |
|                         |                     |             |        |             |                   |                               |                                   |                           |                                 |                                  |                                  |                                 |        |
|                         |                     |             |        |             | -                 |                               |                                   |                           |                                 |                                  |                                  |                                 |        |
|                         |                     |             |        |             |                   |                               |                                   |                           |                                 |                                  |                                  |                                 |        |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure  $\lambda$ ; < - Refers to less than; >- Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

"OBS" indicates that the analysis has been invalidated because of interference problems.

### APPENDIX I

SUMMARY OF BACTERIOLOGICAL ANALYSES
OF SURFACE WATER



# SUMMARY OF BACTERIOLOGICAL ANALYSES OF SURFACE WATER

Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG, LOT 95, CONI, W.T.S.R Date Compiled: 19/04/80

Compiler: N. RENNIE

| 000111                                | y: GKET                                            |          |      |            | 1011               | ship (s). OLL              | NELO, LOI        |                      |                                   | C COp11.cc                | 7 70                    |                           | - |
|---------------------------------------|----------------------------------------------------|----------|------|------------|--------------------|----------------------------|------------------|----------------------|-----------------------------------|---------------------------|-------------------------|---------------------------|---|
| Nur                                   | Owner<br>or<br>Sourc                               | Lo       | cati | on         | Dat<br>San         | Fecal<br>Colifor<br>Bacter | Back<br>Bact     | Colif<br>Bacte       | Fec<br>Stre                       | Pse                       | Sulph<br>Reduc<br>Bacte | Hete<br>Bac               |   |
| Identification<br>Number <sup>1</sup> | Owner<br>or<br>Source                              | Township | Lot  | Concession | Date Sampled       | a B                        | kground<br>teria | Coliform<br>Bacteria | Fecal<br>Streptococci<br>Bacteria | Pseudomonas<br>aeruginosa | phate<br>ucing<br>teria | Heterotrophic<br>Bacteria |   |
| RSR1                                  | ROCKY<br>SAUGEEN R<br>at C.P.R.<br>TRACKS          |          |      |            | 22/<br>10/<br>19   | 28                         | 2600             | 280                  | 48                                |                           |                         |                           |   |
| 31                                    | (8.8)                                              |          |      |            | 20/                | 64                         | 4900             | C 290                | 28                                | 44                        |                         |                           |   |
| II                                    | IV.                                                |          |      |            | 31/01/80           | <b>4</b>                   | 210              | AIO                  | <b>24</b>                         |                           |                         |                           |   |
|                                       |                                                    |          |      |            |                    |                            |                  |                      |                                   |                           |                         |                           |   |
|                                       |                                                    |          |      |            |                    |                            |                  |                      |                                   |                           |                         |                           |   |
| R5R2                                  | ROCKY SAUGEEN<br>RIVER<br>50ft above<br>outfall    |          |      |            | 20/<br> 11/<br> 79 | A10                        | 2100             | 0PA                  | 210                               | <b>4</b>                  |                         |                           |   |
|                                       | ÷                                                  |          |      |            |                    | ,                          |                  |                      |                                   |                           |                         |                           |   |
|                                       |                                                    |          |      |            |                    |                            |                  |                      |                                   |                           |                         |                           |   |
| RSR 3                                 | ROCKY SAUSEEN<br>RIVER<br>300 ft below<br>out fall |          |      |            | 20/                | A10-                       | 3400             | C370                 | AIO                               | <b>24</b>                 |                         |                           |   |

 $<sup>^{1}</sup>$ Location is shown in Figure 1; < - Refers to less than; > - Refers to greater than.

An accompanying "L or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

"OBS" indicates that the analysis has been invalidated because of interference problems.



# SUMMARY OF BACTERIOLOGICAL ANALYSES OF SURFACE WATER

Number of bacterial colonies per 100 ml

County: GREY

Township(s): GLENELG, LOT 95, CONI W.T.S. R. Date Compiled: 19/04/80

Compiler: N. RENNIE

| Count                      | y: GREY                                   |          |       |     | TOWN             | Snip(s). OH                   | ENLLO, LOT             | 5,001-2              | or i. S. A. Dat                   | e Compiled                       | . 754/80                         | Compilerio                | 1    |
|----------------------------|-------------------------------------------|----------|-------|-----|------------------|-------------------------------|------------------------|----------------------|-----------------------------------|----------------------------------|----------------------------------|---------------------------|------|
| Identification<br>Number 1 | Owner<br>or<br>Source                     | Lownship | cat i | SSK | Date ×           | Fecal<br>Coliform<br>Bacteria | Background<br>Bacteria | Coliform<br>Bacteria | Fecal<br>Streptococci<br>Bacteria | <u>Pseudomonas</u><br>aeruginosa | Sulphate<br>Reducing<br>Bacteria | Heterotrophic<br>Bacteria |      |
| RSR4                       | ROCKY SAUGEEN BYER downstream from lagoon |          |       |     | 22/<br>10/<br>79 | 64                            | 3900                   | C550                 | 7ω                                |                                  |                                  |                           |      |
| Jt.                        | 1 <sub>1</sub>                            |          |       |     | 20/1/19          | 160                           | 2500                   | (390                 | 16                                | <4                               |                                  |                           |      |
| W                          | n                                         |          |       |     | 31/01/90         |                               | 264                    | 88                   | <b>4</b>                          |                                  |                                  |                           |      |
|                            |                                           |          |       |     |                  |                               |                        |                      |                                   |                                  |                                  |                           | <br> |
| P1                         | POND NW<br>of Sewage                      |          |       |     | 20/11/79         | 570                           | <b>6600</b>            | 2900                 | 110                               | <4                               |                                  |                           | -    |
| u                          | Lagoon'                                   |          |       |     | 31/01/90         |                               | 5100                   | ∠ 100                | ۷.10                              |                                  |                                  |                           |      |
|                            |                                           |          |       |     |                  |                               | ×                      |                      |                                   |                                  |                                  |                           |      |
|                            |                                           |          |       |     |                  |                               |                        |                      |                                   |                                  |                                  |                           |      |

<sup>&</sup>lt;sup>1</sup>Location is shown in Figure 1; < - Refers to less than; > - Refers to greater than.

An accompanying "L\* or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A" indicates that the result is a best estimate and is less precise than other determinations.

"OBS" indicates that the analysis has been invalidated because of interference problems.

#### APPENDIX J

SUMMARY OF BACTERIOLOGICAL ANALYSES
OF LAGOON EFFLUENT



### SUMMARY OF BACTERIOLOGICAL ANALYSES OF SEWAGE LAGOON EFFLUENT

Number of bacterial colonies per 100 ml

Ontario

County: GREY

Township(s): GLENELG, LOT 95, CON I WITS.R. Date Compiled: 19/04/80 Compiler; N. RENNIE

| Het                      | Heterotrophic                     |                              |         |         |          |   |  |
|--------------------------|-----------------------------------|------------------------------|---------|---------|----------|---|--|
| Ва                       | Bacteria                          |                              |         |         |          |   |  |
| Sulph<br>Reduc<br>Bacte  | ulphate<br>educing<br>acteria     |                              |         |         |          |   |  |
| Ps.                      | Pseudomonas<br>aeruginosa         | Z4                           | PRESENT | C528    |          |   |  |
| Fecal<br>Strept<br>Bacte | Fecal<br>Streptococci<br>Bacteria | A20                          | 6900    | 6600    | A 3000   |   |  |
| Co<br>Ba                 | Coliform                          | C65∞                         | 440,000 | 280,000 | 48,000   |   |  |
| B B                      | Background<br>Bacteria            | 29,∞0                        | 570,000 | 540,000 | 100,000  |   |  |
| Со<br>Ва                 | Fecal<br>Coliform<br>Bacteria     | 6600                         | 117,000 | 56,000  | A 2000   |   |  |
| D a                      | Date ×                            | 18/                          | 21/     | 26/     | 31/01/80 | - |  |
| o n                      | Concession                        |                              |         |         |          | - |  |
| ocati                    | Lot                               |                              |         |         |          |   |  |
| Lo                       | Township                          |                              |         |         |          | 1 |  |
| Sou                      | Owner<br>or<br>Source             | SEWAGE<br>LAGOON<br>EFFLUENT | Į1.     | н       | EI       | - |  |
| Z a                      | Identification<br>Number 1        |                              | £0.     | ıb      | ч        |   |  |

 $<sup>^{1}</sup>$ Location is shown in Figure  $^{1}$  ; < - Refers to less than; > - Refers to greater than.

An accompanying "L" or "G" indicates that the actual density was less than or greater than the number reported.

An accompanying "C" or "A' indicates that the result is a best estimate and is less precise than other determinations.

<sup>&</sup>quot;OBS" indicates that the analysis has been invalidated because of interference problems.

LABORATORY LIBRARY

\*96936000119319\*

Date Due

|         | Tall part | 14 50.11 |         |
|---------|-----------|----------|---------|
|         |           |          |         |
| .54     |           |          |         |
| ri Sudi | A 34- S   | 17.      |         |
|         |           |          |         |
|         |           |          |         |
|         | Na. de    |          |         |
|         |           |          | 10.144  |
|         |           | T.       | t marks |
| ti-le   | 3.51      |          |         |

MINISTRY OF THE ENVIRONMENT

PRINTED IN CANADA