

RQA0009SXAQS

Silicon N-Channel MOS FET

REJ03G1566-0100 Rev.1.00 Jul 04, 2007

Features

- High Output Power, High Gain, High Efficiency
 Pout = +37.8 dBm, Linear Gain = 18 dB, PAE = 65%
 (V_{DS} = 6 V, f = 520 MHz)
- Compact package capable of surface mounting
- Electrostatic Discharge Immunity Test (IEC Standard, 61000-4-2, Level4)

Outline

*UPAK is a trademark of Renesas Technology Corp.

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	16	V
Gate to source voltage	V _{GSS}	±5	V
Drain current	I _D	3.2	А
Channel dissipation	Pch ^{note}	15	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Note: Value at Tc = 25°C

This device is sensitive to electro static discharge. An adequate careful handling procedure is requested.

Electrical Characteristics

 $(Ta = 25^{\circ}C)$

Item	Symbol	Min.	Тур	Max.	Unit	Test Conditions
Zero gate voltage drain current	I _{DSS}	_	_	15	μΑ	$V_{DS} = 16 \text{ V}, V_{GS} = 0$
Gate to source leak current	I_{GSS}	_	_	±2	μΑ	$V_{GS} = \pm 5 \text{ V}, V_{DS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	0.15	0.5	0.8	V	$V_{DS} = 6 \text{ V}, I_{D} = 1 \text{ mA}$
Forward Transfer Admittance	yfs		3.2	_	S	$V_{DS} = 6 \text{ V}, I_{D} = 1.6 \text{ A}$
Input capacitance	Ciss	1	76	_	pF	$V_{GS} = 5 \text{ V}, V_{DS} = 0, f = 1 \text{ MHz}$
Output capacitance	Coss	_	40	_	pF	$V_{DS} = 6 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$
Reverse transfer capacitance	Crss		3.5	_	pF	$V_{DG} = 6 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$
Output Power	Pout		37.8	_	dBm	$V_{DS} = 6 \text{ V}, I_{DQ} = 180 \text{ mA}$
		_	6.0	_	W	f = 520 MHz,
Power Added Efficiency	PAE	_	65	_	%	Pin = +25 dBm (316 mW)
Output Power	Pout	_	35.2	_	dBm	$V_{DS} = 4.8 \text{ V}, I_{DQ} = 300 \text{ mA}$
		_	3.3	_	W	f = 465 MHz,
Power Added Efficiency	PAE	_	60	_	%	Pin = +17 dBm (50 mW)

Main Characteristics

Evaluation Circuit (f = 520 MHz)

Evaluation Circuit (f = 465 MHz)

S₁₁ Parameter vs. Frequency

Test condition:

 V_{DS} = 6 V, I_{DQ} = 180 mA, Z_{O} = 50 Ω 100 to 1000 MHz (50 MHz step) 1000 to 2500 MHz (100 MHz step)

S₁₂ Parameter vs. Frequency

Test condition:

 V_{DS} = 6 V, I_{DQ} = 180 mA, Z_{O} = 50 Ω 100 to 1000 MHz (50 MHz step) 1000 to 2500 MHz (100 MHz step)

S21 Parameter vs. Frequency

Test condition:

 V_{DS} = 6 V, I_{DQ} = 180 mA, Z_{O} = 50 Ω 100 to 1000 MHz (50 MHz step) 1000 to 2500 MHz (100 MHz step)

S₂₂ Parameter vs. Frequency

Test condition:

 V_{DS} = 6 V, I_{DQ} = 180 mA, Z_{O} = 50 Ω 100 to 1000 MHz (50 MHz step) 1000 to 2500 MHz (100 MHz step)

S₁₁ Parameter vs. Frequency

Test condition:

 V_{DS} = 4.8 V, I_{DQ} = 300 mA, Z_{O} = 50 Ω 100 to 1000 MHz (50 MHz step) 1000 to 2500 MHz (100 MHz step)

S₁₂ Parameter vs. Frequency

Test condition:

 V_{DS} = 4.8 V, I_{DQ} = 300 mA, Z_{O} = 50 Ω 100 to 1000 MHz (50 MHz step) 1000 to 2500 MHz (100 MHz step)

S21 Parameter vs. Frequency

Test condition:

 V_{DS} = 4.8 V, I_{DQ} = 300 mA, Z_{O} = 50 Ω 100 to 1000 MHz (50 MHz step) 1000 to 2500 MHz (100 MHz step)

S₂₂ Parameter vs. Frequency

Test condition:

 V_{DS} = 4.8 V, I_{DQ} = 300 mA, Z_{O} = 50 Ω 100 to 1000 MHz (50 MHz step) 1000 to 2500 MHz (100 MHz step)

S Parameter

 $(V_{DS}=6~V,~I_{DQ}=180~mA,~Zo=50~\Omega)$

	5	S11	S	21	S	612	S	22
f (MHz)	MAG	ANG (deg.)	MAG	ANG (deg.)	MAG	ANG (deg.)	MAG	ANG (deg.)
100	0.868	-154.0	9.85	88.8	0.019	1.2	0.706	-166.8
150	0.861	-159.4	5.42	77.2	0.018	-6.3	0.725	-168.9
200	0.882	-163.9	3.64	68.2	0.016	-14.1	0.755	-170.6
250	0.892	-166.8	2.64	58.5	0.016	-19.2	0.768	-170.6
300	0.899	-169.5	2.06	51.8	0.014	-22.1	0.792	-171.2
350	0.910	-171.6	1.61	45.1	0.013	-27.2	0.805	-171.5
400	0.918	-173.4	1.28	40.3	0.013	-29.3	0.827	-172.2
450	0.926	-175.2	1.04	36.0	0.011	-34.1	0.840	-173.1
500	0.932	-176.8	0.84	31.8	0.010	-33.1	0.855	-173.8
550	0.936	-178.2	0.73	28.8	0.009	-34.5	0.869	-174.6
600	0.940	-179.5	0.62	26.4	0.008	-34.6	0.880	-175.6
650	0.941	179.2	0.54	23.1	0.007	-36.5	0.892	-176.5
700	0.944	178.1	0.45	20.2	0.006	-32.7	0.901	-177.3
750	0.945	176.9	0.41	18.3	0.006	-32.0	0.906	-178.0
800	0.944	175.9	0.37	16.4	0.005	-25.3	0.915	-179.4
850	0.944	174.6	0.31	13.9	0.004	-22.3	0.919	180.0
900	0.943	173.4	0.30	12.1	0.004	-15.2	0.929	178.9
950	0.943	172.3	0.26	10.6	0.003	0.3	0.930	178.1
1000	0.946	171.1	0.23	8.6	0.003	9.1	0.936	177.2
1050	0.949	170.2	0.22	7.3	0.003	20.6	0.940	176.5
1100	0.951	169.4	0.21	6.5	0.004	36.9	0.943	175.5
1150	0.952	168.7	0.18	5.3	0.004	40.3	0.944	174.7
1200	0.952	167.8	0.18	4.3	0.004	52.0	0.950	174.1
1250	0.952	167.0	0.16	3.7	0.005	53.2	0.951	173.3
1300	0.952	166.2	0.14	2.2	0.005	56.8	0.949	173.6
1350	0.952	165.4	0.14	1.3	0.006	60.9	0.956	171.7
1400	0.952	164.6	0.13	0.8	0.006	64.0	0.958	171.0
1450	0.952	164.0	0.12	0.0	0.007	62.2	0.957	171.3
1500	0.952	163.3	0.12	-0.8	0.008	65.4	0.956	169.5
1550	0.952	162.1	0.11	-1.8	0.008	65.9	0.959	168.5
1600	0.952	160.8	0.10	-2.7	0.009	65.6	0.960	168.2
1650	0.952	159.7	0.10	-3.6	0.009	65.9	0.960	167.4
1700	0.952	158.5	0.09	-4.5	0.010	66.6	0.962	166.4
1750	0.952	157.3	0.09	-4.7	0.010	66.2	0.967	165.8
1800	0.952	156.4	0.08	-5.0	0.010	66.5	0.968	165.3
1850	0.952	155.7	0.08	-4.7	0.011	66.5	0.965	164.5
1900	0.953	154.7	0.07	-4.9	0.012	67.0	0.967	163.7
1950	0.958	153.9	0.07	-5.2	0.012	67.0	0.976	163.2
2000	0.965	153.6	0.07	-4.6	0.012	65.5	0.972	162.9
2050	0.963	153.3	0.07	-4.0	0.013	65.4	0.972	161.9
2100	0.956	153.3	0.07	-4.9 -4.2	0.013	65.4	0.972	161.9
2150	0.950	152.9	0.06	-3.5	0.014	65.2	0.981	160.7
2200	0.950	152.2	0.06	-3.5 -3.8	0.014	63.9	0.981	160.7
2250	0.944	150.7	0.06	-3.6 -3.5	0.015	63.9	0.977	159.5
				1				
2300	0.932	149.3	0.05	-3.4	0.016	63.0	0.978	158.9
2350	0.932	148.1	0.05	-3.6	0.016	62.8	0.981	158.4
2400	0.929	147.3	0.05	-3.0	0.017	63.0	0.977	158.0
2450	0.923	146.3	0.05	-3.6	0.017	61.3	0.977	157.2
2500	0.917	144.9	0.05	-3.0	0.017	61.8	0.980	156.8

S Parameter

 $(V_{DS}=4.8~V,\,I_{DQ}=300~mA,\,Zo=50~\Omega)$

	S	311	S	S21 S12		612	2 S22	
f (MHz)	MAG	ANG (deg.)	MAG	ANG (deg.)	MAG	ANG (deg.)	MAG	ANG (deg.)
100	0.772	-157.0	9.63	88.9	0.013	-1.0	0.776	-172.1
150	0.794	-162.8	5.54	79.0	0.013	-6.3	0.784	-173.8
200	0.812	-167.3	3.91	71.6	0.012	-11.1	0.799	-174.8
250	0.818	-170.4	2.98	64.7	0.011	-13.5	0.805	-174.8
300	0.824	-173.1	2.36	59.1	0.011	-15.2	0.818	-175.0
350	0.831	-175.0	1.92	53.6	0.011	-20.4	0.824	-175.1
400	0.836	-176.6	1.60	48.7	0.010	-21.4	0.837	-175.4
450	0.841	-178.3	1.36	44.8	0.009	-23.3	0.843	-175.8
500	0.848	-179.9	1.15	40.5	0.008	-22.9	0.859	-176.8
550	0.851	179.0	1.00	37.1	0.008	-22.2	0.868	-177.1
600	0.851	177.7	0.87	33.9	0.007	-24.8	0.874	-177.4
650	0.852	176.3	0.77	30.7	0.006	-24.2	0.887	-177.8
700	0.854	174.7	0.69	27.9	0.006	-20.5	0.896	-178.8
750	0.858	173.3	0.60	24.8	0.005	-18.2	0.901	-179.1
800	0.865	171.9	0.54	22.3	0.005	-15.1	0.905	-179.8
850	0.873	170.8	0.49	20.2	0.005	-12.2	0.911	179.5
900	0.878	169.8	0.45	17.9	0.004	-1.7	0.918	178.9
950	0.880	168.8	0.41	16.1	0.004	4.3	0.922	178.3
1000	0.882	167.7	0.37	14.2	0.004	11.2	0.932	177.8
1050	0.886	166.5	0.35	12.4	0.004	21.6	0.931	177.1
1100	0.889	165.5	0.32	10.7	0.004	29.8	0.935	176.5
1150	0.893	164.4	0.29	8.9	0.004	33.2	0.939	175.8
1200	0.898	163.3	0.27	7.5	0.004	40.9	0.944	175.1
1250	0.902	162.4	0.26	6.2	0.005	46.7	0.943	174.6
1300	0.901	161.3	0.23	4.7	0.005	50.8	0.948	174.1
1350	0.902	160.0	0.22	3.3	0.005	54.5	0.948	173.4
1400	0.904	158.7	0.21	1.8	0.006	57.8	0.954	173.1
1450	0.907	157.7	0.19	0.4	0.006	55.3	0.954	172.5
1500	0.904	156.5	0.18	-0.8	0.007	60.5	0.953	171.6
1550	0.905	155.1	0.17	-2.4	0.007	62.1	0.958	171.0
1600	0.912	153.8	0.16	-3.1	0.007	61.1	0.959	170.7
1650	0.915	152.8	0.15	-4.2	0.008	64.3	0.956	170.4
1700	0.919	151.5	0.14	-5.8	0.008	63.2	0.958	169.3
1750	0.926	149.9	0.14	-6.8	0.009	62.7	0.964	168.9
1800	0.938	148.8	0.13	-7.8	0.009	63.0	0.965	168.4
1850	0.942	147.9	0.13	-8.6	0.010	62.6	0.963	167.8
1900	0.942	146.7	0.12	-9.3	0.010	61.9	0.965	167.0
1950	0.945	145.5	0.11	-10.2	0.010	63.8	0.968	166.6
2000	0.946	144.7	0.11	-10.6	0.011	62.4	0.965	166.3
2050	0.942	143.7	0.11	-11.2	0.011	62.2	0.969	165.5
2100	0.939	142.3	0.10	-11.8	0.012	61.2	0.973	164.9
2150	0.940	140.9	0.10	-12.5	0.012	62.0	0.974	164.6
2200	0.942	139.8	0.09	-13.3	0.012	61.3	0.974	164.2
2250	0.939	138.3	0.09	-14.3	0.013	59.2	0.974	163.4
2300	0.937	136.8	0.08	-15.3	0.013	59.6	0.976	163.0
2350	0.937	135.4	0.08	-16.3	0.014	59.8	0.977	162.9
2400	0.935	134.1	0.08	-17.5	0.014	58.9	0.972	162.0
2450	0.932	132.8	0.07	-18.1	0.014	57.9	0.975	161.5
2500	0.931	131.3	0.07	-18.7	0.014	57.7	0.977	161.2

Package Dimensions

Ordering Information

Part Name	Quantity	Shipping Container
RQA0009SXTL-E	1000 pcs.	φ178 mm reel, 12 mm emboss taping

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510