

2. Découverte de la machine synchrone :

"We must learn to live together like brothers, otherwise we'll die together like fools" Martin Luther King

Cette séance de TP nous invite à continuer notre « chemin de faire » en tentant d'interpréter quelques expérimentations en simulation autour d'une machine synchrone.

Comme nous l'indique Martin Luther King, il ne va pas falloir hésiter à développer une intelligence collective pour venir à bout de cet objet élémentaire!

A vous tous!

O. Préparation : avant la séance, préparer sa boîte à outils

1.1. Contexte d'utilisation des machines synchrones :

- a. Où sont localisées les pertes dans une machine synchrone
 - à rotor bobiné ;
 - à aimants permanents.
- **b.** Dans quelles applications, la machine synchrone à aimants permanents est-elle réellement pertinente ?
- **c.** Si l'on considère les deux applications étudiées lors des deux premières séances de TD, laquelle ou lesquelles justifient l'utilisation d'une machine synchrone et pourquoi ?

1.2. Signaux sinusoïdaux :

On s'intéresse aux deux signaux sinusoïdaux $x_1(t)$ et $x_2(t)$ relevés à l'oscilloscope.

- **d.** Donner l'expression temporelle de ces deux signaux $x_1(t)$ et $x_2(t)$.
- e. Quelles sont leurs 3 grandeurs caractéristiques ?
- f. Donnez en la représentation dans le diagramme de Fresnel.

1.3. Matlab - Simulink :

Avant la séance,

 installer, si ce n'est déjà fait, la boîte à outils (toolbox) SIMSCAPE de MATLAB qui permet de réaliser des schémas proches des connexions physiques réalisées sur les systèmes réels.

La boite à outils SIMSCAPE de MATLAB - Simulink de :

- o modéliser des systèmes tels que des moteurs électriques, des convertisseurs électriques, mais aussi des actionneurs hydrauliques et des systèmes de réfrigération.
- o assembler ces composants dans un schéma.
- o analyser le fonctionnement de ces composants.
- se confronter au fichier « Get_To_Start_TP3.mdl » avec quelques expérimentations préliminaires...

Fin de la préparation de la seconde séance de TP

On y va ?! En groupe...

1. Identification des paramètres de la machine synchrone

- **1.1.** Rappeler le schéma monophasé équivalent d'une machine synchrone (dans l'hypothèse de linéarité de son circuit magnétique).
- **1.2.** Quels sont les paramètres de ce modèle qu'il faut identifier si l'on veut caractériser ce modèle et en prédire le fonctionnement ?
- **1.3.** Faire tourner la machine sans qu'elle n'alimente de charge électrique ni qu'elle reçoive de courant d'un générateur triphasé.
 - a) Comment évolue la tension aux bornes de la machine quand vous en modifiez la fréquence de rotation N_R ?
 - b) Quelle caractéristique pouvez-vous déduire de cette expérience ?
 - c) Observer également la valeur de la tension v_a de la phase a au passage par 0 de l'angle θ_R fourni par le capteur de la position angulaire du rotor.
 - $^{ t t}$ <u>Remarque</u>: Dans les faits, le bloc MATLAB/simulink refuse cette expérience et je vous propose d'y parvenir en plaçant un système de 3 résistances de forte valeur ($10 \ k\Omega$) en charge. On a donc un alternateur fournissant un courant très faible qui pourra être négligé.
- **1.4.** Alimenter la machine par une source continue de 1 V selon le schéma de la figure ci-dessous.
 - a) La machine tourne-t-elle?
 - b) Quelle caractéristique pouvez-vous déduire de cette expérience ?

🖐 Schéma de câblage :

- **1.5.** Faire tourner la machine synchrone à une des vitesses pour laquelle vous avez déjà mesuré les tensions à vide (càd sans charge électrique). Cette fois-ci, réaliser un court-circuit triphasé selon la figure ci-dessous. Mesurer ce courant.
 - a) Faire varier la fréquence de rotation N_R . Que peut-on observer sur le courant de court-circuit quand la vitesse de rotation évolue ?
 - b) Quelle caractéristique pouvez-vous déduire de cette expérience ?
 - c) Quels ordres de grandeurs peut-on constater entre les deux caractéristiques s'exprimant en Ohms ?

🖐 Schéma de câblage :

2. Fonctionnement en alternateur autonome débitant sur une charge triphasée équilibrée, purement résistive

On s'intéresse à la machine synchrone lorsque qu'elle est entraînée à vitesse constante pour alimenter une charge électrique linéaire et équilibrée. On se place dans le cas spécifique où la charge peut être vue comme une résistance pure R_u de valeur identique sur les 3 phases.

2.1. En adoptant arbitrairement une fréquence de rotation de $N_R = 6\,000\ tours.\ min^{-1}$, observer la tension $v_S(t)$ et tracer l'évolution de la valeur efficace de la tension v_S en fonction de la valeur efficace du courant prélevé i_S . On pourra adopter les valeurs ci-dessous :

R_u	100 Ω	10 Ω	7,5 Ω	5 Ω	3,0 Ω	2,0 Ω	1,0 Ω	0,5 Ω
I_S								
V_S								
C_{em}								

2.2. Quel élément permet de maintenir la machine à sa fréquence de rotation de $N_R = 6000 \ tours. \ min^{-1}$?

2.3. Avec cette machine synchrone peut-on faire quelque chose pour réguler la tension d'alimentation de la charge ?

Dans le cas d'un rotor bobiné est-ce possible ? Faire l'ajustement pour la charge de 2,0 Ω . C'est-à-dire adapter le paramètre idoine pour que la valeur efficace V_S de la tension $v_S(t)$ fournie à R_u soit la tension à vide de la machine.

UE 3EE201

3. Fonctionnement en moteur/frein avec alimentation en courant

On souhaite observer le comportement de la machine synchrone lorsqu'on :

- l'alimente à fréquence fixe $f_{\'elec}$ avec un système de courants triphasés équilibrés,
- ullet et applique, sur son arbre moteur, un couple résistant donné \mathcal{C}_u .

On impose arbitrairement une fréquence électrique de $f_{\'elec}=100~Hz$.

- **3.1.** Imposer un couple de charge de $+50 \ Nm$ ainsi qu'une valeur efficace I_S des courants triphasés. Observer pour plusieurs valeurs de I_S (cf tableau),
 - a) le déphasage β entre la force électromotrice E et le courant I_S ;
 - b) le déphasage φ entre la tension V_S et le courant I_S ;
 - c) la valeur efficace de la tension V_S .

Qu'expriment β d'une part et φ d'autre part ?

Si l'on souhaite obtenir la minimisation des pertes Joule dans la machine, quelle est la meilleure option ? Est-elle réalisable dans cette configuration d'alimentation de la machine ?

I_S	200 A	150 A	125 A	100 A	75 A	50 A	25 <i>A</i>
β							
φ							
V_{S}							

 $^{{}^{}lap{w}}$ Remarque : De manière assez logique, le bloc MATLAB/simulink a comme entrée le couple utile, nommé T_m . Pour imposer le couple électromagnétique C_{em} , on peut tenir compte des pertes du modèle (frottements visqueux et frottements secs). Notons également que MATLAB/simulink fournit, par ses « capteurs », la valeur du couple C_{em} .

- **3.2.** Reprendre les mêmes mesures avec un couple de charge de $+100 \ Nm$.
- **3.3.** Reprendre les mêmes mesures avec un couple de charge de $-50 \ Nm$.

4. Fonctionnement en moteur/frein avec alimentation en courant autopilotée par la charge

Nous avons vu la nécessité pour l'alimentation en courant d'avoir un retour d'information sur la position du rotor afin de garantir la stabilité des points de fonctionnement, et particulièrement de ceux qui se révèlent les plus intéressants. C'est la proposition de l'autopilotage qui utilise, sur l'arbre moteur, un capteur de position précis lui permettant de construire la consigne du système de courants triphasés.

 N_R , la fréquence de rotation de la machine est désormais une réalité constatée, et, l'alimentation électrique s'y adapte en temps réel. La machine s'impose donc sa propre fréquence électrique $f_{\acute{e}lec}$ d'alimentation ! C'est la raison de la dénomination « autopilotage ».

4.1. Imposer un couple de charge C_u de $150\ Nm$ et essayer l'autopilotage à différentes vitesses N_R de rotation. Mesurer également la tension d'alimentation, dont les deux paramètres sont la tension efficace et le déphasage courant/tension.

N_R	1000 t.min ⁻¹	2000 t. min ⁻¹	4000 t. min ⁻¹	$8000 \ t.min^{-1}$	12000 t. min ⁻¹
$V_{S,eff}$					
$arphi_{v/i}$					

- **4.2.** Dans les faits, pour un système alimenté par une batterie de $400\,V$ continu, la valeur efficace de la tension d'alimentation phase-neutre est limitée à $150\,V$ efficace. Quelle est la plage de rotation permettant de produire le couple nominal ?
- **4.3.** Pour un fonctionnement à vitesse plus élevée, on accepte de réduire le couple maximal produit ... tout en maintenant constante la puissance délivrée. Faire les essais d'autopilotage proposés cidessous et vérifier que le cahier des charges est respecté.

N_R	4000 t.min ⁻¹	$6000 \ t.min^{-1}$	$8000 \ t. min^{-1}$	10000 t.min ⁻¹	12000 t. min ⁻¹
$I_{S,eff}$	157,2 <i>A</i>	117,2 <i>A</i>	111,2 <i>A</i>	113,4 <i>A</i>	117,3 <i>A</i>
β	0°	-26,6°	-45°	-56,3°	-63,4°
$V_{S,eff}$					
$\varphi_{v/i}$					

UE 3EE201

5. Fonctionnement en moteur/frein avec alimentation en tension

L'alimentation en courant que nous venons de décrire est en général réalisée par l'asservissement des courants dans les phases de la machine, car technologiquement, on sait alimenter la machine par une source triphasée de tension pilotable.

5.1. Asservissement des courants alternatifs.

Compréhension facultative des difficultés soulevées.

5.2. Transformation de la machine triphasé en une machine diphasé à courants continus.

Utilisation des matrices de transformation.

5.3. Asservissement des courants continus de la machine équivalente.

Portez-vous bien !...