CLAIMS

What is claimed is.

1		1. A ball-limiting metallurgy (BLM) stack comprising:
2		a metal adhesion first layer disposed above and on a metallization;
3		a metal second layer disposed above and on the metal adhesion first layer;
4		a metal third layer disposed above and on the metal second layer;
5		an electrically conductive bump disposed above and on the metal third layer;
6	and	
7		wherein at least one of the metal second layer and the metal third layer
8	compr	ises copper.

- 1 2. The BLM stack according to claim 1, wherein the metal adhesion 2 first layer is selected from Ti, TiW, W, and Cr.
- 1 3. The BLM stack according to claim 1, wherein the metal second
 2 layer comprises copper and the metal third layer is selected from a refractory metal,
 3 a metal-doped refractory metal, or a refractory metal alloy.
- 1 4. The BLM stack according to claim 1, wherein the metal second
 2 layer comprises copper and the metal third layer is selected from a refractory metal,
 3 a metal-doped refractory metal, or a refractory metal alloy selected from Ni, Co, Pd,
 4 Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, W, Se, Y, La, and Ce in a solid5 solution or stoichiometric ratio.
- 5. The BLM stack according to claim 1, wherein the metal second layer comprises copper and the metal third layer is selected from a nitrided refractory metal, a nitrided metal-doped refractory metal, or a nitrided refractory metal alloy selected from Ni, Co, Pd, Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, W, Sc, Y, La, and Ce in a solid-solution or stoichiometric ratio.

Attorney Docket No. 884.522US1

Client Ref. No. P11468

Attorney Docket No. 884.522US1

1	6.	The BLM stack according to claim 1, wherein the metal third layer		
2	comprises copper, and wherein the metal second layer is selected from a refractory			
3	metal, a meta	al-doped refractory metal, or a refractory metal alloy.		
1	7.	The BLM stack according to claim 1 wherein the metal third layer		
2	comprises co	pper and the metal second layer is selected from a refractory metal, a		
3	metal-doped refractory metal, or a refractory metal alloy selected from Ni, Co, Pd,			
4	Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, W, Sc, Y, La, and Ce in a solid-			
5	solution or stoichiometric ratio.			
1	8.	The BLM stack according to claim 1, wherein the metal third layer		
2	comprises co	pper and the metal second layer is selected from a nitrided refractory		
3	metal, a nitrided metal-doped refractory metal, or a nitrided refractory metal alloy			
4	selected from Ni, Co, Pd, Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, W, Sc, Y,			
5	La, and Ce in a solid-solution of stoichiometric ratio.			
1	9.	The BLM stack according to claim 1, wherein the metal second layer		
2	comprises a	copper layer and wherein the metal third layer comprises a copper stud		
1	10.	The BLM stack according to claim 1, further comprising:		
2	an int	termetallic layer disposed between the metallization and the electrically		
3	conductive b	ump.		
1	11.	The BLM stack according to claim 1, wherein the electrically		
2	conductive bump comprises a tin-lead solder composition selected from Sn37Pb,			
3	Sn97Pb, and Sn _x Pb _y , wherein x+y total 1 and wherein x is in a range from about 0.3			
4	to about 0.99).		
1	10	A process comprising:		
1	12.	A process comprising:		
2	forming a metallization over a substrate;			

19

Client Ref. No. P11468

3	forming a metal adhesion first layer above and on the metallization;				
4	forming a metal second layer above and on the metal adhesion first layer;				
5	forming a metal third layer above and on the metal second layer;				
6	forming a solder bump above and on the metal third layer, and				
7	wherein at least one of the metal second layer and the metal third layer				
8	comprises sputtered copper.				
1	13. The process according to claim 12, forming a metal adhesion first				
2	layer further comprising:				
3	sputtering a composition over the metallization under conditions to impart a				
4	compressive stress in the metal adhesion first layer, wherein the composition is				
5	selected from Ti, TiW, W, and Cr.				
1	14. The process according to claim 12, forming the metal second layer				
2	and forming the metal third layer further comprising:				
3	sputtering a copper metal second layer over the metal adhesion first layer				
4	under conditions to impart a compressive stress therein; and				
5	sputtering the metal third layer under conditions to impart a compressive				
6	stress therein, wherein the metal third layer is selected from a refractory metal, a				
7	metal-doped refractory metal, or a refractory metal alloy.				
1	15. The process according to claim 12, forming the metal second layer				
2	and forming the metal third layer further comprising:				
3	sputtering the metal second layer over the metal adhesion first layer and				
4	under conditions to impart a compressive stress therein, wherein the metal third				
5	layer is selected from a refractory metal, a metal-doped refractory metal, or a				
6	refractory metal alloy; and				
7	sputtering a copper metal third layer over the metal second layer under				
8	conditions to impart a compressive stress therein.				

1	16. The process according to claim 12, forming the metal second layer			
2	and forming the metal third layer further comprising:			
3	sputtering a copper metal second layer over the metal adhesion first layer			
4	under conditions to impart a compressive stress therein; and			
5	plating a copper stud through a mask that is disposed over the metal second			
6	layer.			
1	17. The process according to claim 12, further comprising:			
2	forming an electrically conductive bump above and on the metal third layer.			
1	18. A process comprising:			
2	forming a copper pad over a metal-six (M6) metallization;			
3	sputtering a Ti metal adhesion first layer above and on the metallization;			
4	sputtering a metal second layer above and on the Ti metal adhesion first			
5	layer;			
6	forming a metal third layer above and on the metal second layer;			
7	forming a solder bump above and on the metal third layer, and			
8	wherein at least one of the metal second layer and the metal third layer			
9	comprises copper.			
1	19. The process according to claim 18, wherein sputtering a Ti metal			
2	adhesion first layer above and on the metallization comprises:			
3	sputtering a Ti composition over the metallization, wherein the Ti			
4	composition has a thickness in a range from about 500 Å to about 4,000 Å.			
1	20. The process according to claim 18, wherein sputtering a metal			
2	second layer and forming a metal third layer comprise:			
3	sputtering a NiV composition over the Ti metal adhesion first layer, wherein			
4	the NiV composition has a thickness in a range from about 1,000 Å to about 5,000			
5	Å; and			

O	sputtering a Cu composition over the metal second layer, wherein the metal			
7	third layer has a thickness in a range from about 1,000 Å to about 5,000 Å.			
1	21. The process according to claim 18, wherein forming a metal third			
2	layer comprises:			
3	sputtering a NiV composition over the metal second layer, wherein the NiV			
4	composition has a thickness in a range from about 1,000 Å to about 5,000 Å, and			
5	wherein the metal second layer has a thickness in a range from about 1,000 Å to			
6	about 5,000 Å.			
1	22. The process according to claim 18, wherein forming a metal third			
2	layer comprises:			
3	electroplating a copper stud over the metal second layer, wherein the copper			
4	stud has a thickness in a range from about 5 micrometers to about 15 micrometers,			
5	and wherein the metal second layer has a thickness in a range from about 1,000 Å to			
6	about 5,000 Å.			
1	23. A system comprising:			
2	a substrate comprising an electrical device;			
3	a metallization pad disposed over the substrate;			
4	a ball-limiting metallurgy disposed over the metallization pad, the ball-			
5	limiting metallurgy comprising:			
6	a metal adhesion first layer disposed above and on the metallization pad;			
7	a metal second layer disposed above and on the metal adhesion first layer;			
8	a metal third layer disposed above and on the metal second layer;			
9	an electrically conductive bump disposed above and on the metal third layer;			
10	wherein at least one of the metal second layer and the metal third layer			
11	comprises copper; and			
12	a flip-chip disposed over the ball-limiting metallurgy.			
	,			

1	24.	The system according to claim 23, wherein the flip-chip comprises a
2	solder having	g a composition of about Sn37Pb, and wherein the electrically
3	conductive b	ump comprises a solder having a composition of about Sn97Pb.
1	25.	The system according to claim 23, wherein the electrical device
2	comprises a c	chip-scale package.
1	26.	The system according to claim 23, wherein the flip-chip comprises a
2	chip-scale package.	
1	27.	The system according to claim 23, wherein the electrical device
2	comprises a	chip-scale package and wherein the flip-chip comprises a chip-scale
3	package.	
1	28.	The system according to claim 23, further comprising:
2	an int	termetallic zone that substantially isolates the metal third layer from the
3	electrically c	onductive bymp.
		add 1