Computational explorations of reciprocity laws in number theory

Chul-hee Lee

Korea Institute for Advanced Study

August 8-9, 2023

References

- F. R. Villegas. Chapter 2 of "Experimental Number Theory." Oxford Graduate Texts in Mathematics, 2007.
- B. F. Wyman. "What is a Reciprocity Law?", The American Mathematical Monthly, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586.
- P. Stevenhagen, H. W. Lenstra. "Chebotarëv and his density theorem." The Mathematical Intelligencer 18, 26–37 (1996).
- Jürgen Neukirch. "Algebraic Number Theory." (Grundlehren der mathematischen Wissenschaften), Springer, 1999.

Visit the GitHub repository at the following URL:

https://github.com/chlee-0/exp_math.

Click the Binder icon launch binder to launch the interactive PARI/GP environment.

Quadratic Reciprocity Law

Let p and q be distinct odd prime numbers. The Legendre symbol $\left(\frac{p}{q}\right)$ is defined as:

$$\left(\frac{p}{q}\right) = \begin{cases} 1 & \text{if p is a quadratic residue modulo q,} \\ -1 & \text{if p is a quadratic non-residue modulo q.} \end{cases}$$

The quadratic reciprocity law states that:

$$\left(rac{p}{q}
ight)\left(rac{q}{p}
ight)=(-1)^{rac{p-1}{2}\cdotrac{q-1}{2}}$$

Factorization of $x^2 - q$ modulo a prime p

- If $\left(\frac{q}{p}\right) = 1$, then there exists an integer α such that $\alpha^2 \equiv q \mod p$. In this case, $x^2 - q$ factors as $(x - \alpha)(x + \alpha)$ modulo p.
- If $\left(\frac{q}{p}\right)=-1$, then there does not exist an integer α such that $\alpha^2\equiv q$ mod p. In this case, $x^2 - q$ is irreducible modulo p.
- The Quadratic Reciprocity Law implies that the factorization of $x^2 q$ modulo a prime p depends on the congruence class of p modulo 4q:

 - If $p \equiv 1 \pmod{4}$, then $\left(\frac{q}{p}\right) = \left(\frac{p}{q}\right)$. If $p \equiv 3 \pmod{4}$, then $\left(\frac{q}{p}\right) = (-1)^{\frac{q-1}{2}} \left(\frac{p}{q}\right)$.

Reciprocity Laws

What is a reciprocity law? A rough and tentative answer is :

A reciprocity law is a rule to describe the factorization of a monic polynomial with integral coefficients as a function of the prime number.

Factorization type of f modulo p

- Let $f \in \mathbb{Z}[x]$ be a monic polynomial of degree n with $\Delta(f) \neq 0$, i.e., all the n roots of f are distinct.
- Consider a prime number p and the reduction of f modulo p.
- Suppose that f factors into irreducible polynomials modulo p with degrees n_1, n_2, \ldots, n_k in descending order, i.e., $n_1 \ge n_2 \ge \cdots \ge n_k$.
- We call $\tau_p := [n_1, n_2, \dots, n_k]$ as the factorization type of f modulo p.
- Then τ_p is a partition of n.

Factorization type of f modulo p

Consider the polynomial $f = x^4 + 3x^2 + 7x + 4$.

- Factorizing f modulo 2, we find $f \equiv x \cdot (x^3 + x + 1)$. Both x and $x^3 + x + 1$ are irreducible over \mathbb{F}_2 . Therefore, $\tau_2 = [3, 1]$.
- However, modulo 11, f decomposes as $f \equiv (x^2 + 5x 1) \cdot (x^2 5x 4)$. Both factors are irreducible over \mathbb{F}_{11} . Therefore, $\tau_{11} = [2, 2]$.
- This proves that f is irreducible over \mathbb{Z} .

We can use τ_p to check the irreducibility of f.

Cubic Case

Let us consider $f = x^3 + x^2 - 2x - 1$. Look at the table for the factorization types of f modulo prime numbers. We can observe that

$$\tau_p = \begin{cases} [1,1,1] & \text{if } p \equiv \pm 1 \bmod 7, \\ [3] & \text{otherwise}. \end{cases}$$

Cubic Case

- What about $g = x^3 + x + 1$?
- Our observation can be illustrated as follows:

$$\tau_p = \begin{cases} [2,1] & \text{if } p \equiv 3,6,11,12,13,15,17,21,22,23, \\ 24,26,27,29,30 \mod 31, \\ \text{if } p \equiv 1,2,4,5,7,8,9,10,14, \\ 16,18,19,20,25,28 \mod 31 \end{cases}$$

- We observe that $\tau_p = [2,1]$ if the Legendre symbol $\left(\frac{p}{31}\right) = -1$. However, distinguishing between the factorization types [3] and [1, 1, 1] presents a challenge when using congruences on p alone.
- Given a value of N, we can search for two prime numbers p and q such that $p \equiv q \mod N$ but the factorization types τ_p and τ_q are different.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Cyclotomic polynomial

The *n*-th cyclotomic polynomial, denoted by $\Phi_n(x)$, is the polynomial whose roots are precisely the primitive *n*-th roots of unity.

Properties:

- $\Phi_n(x)$ has degree $\phi(n)$, where ϕ is Euler's totient function.
- The coefficients of $\Phi_n(x)$ are integers.
- $\Phi_n(x)$ is irreducible over \mathbb{Q} .
- The Galois group of the splitting field $\mathbb{Q}(\zeta_n)$ of $\Phi_n(x)$ over \mathbb{Q} is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$, the group of units modulo n.

Factorization of cyclotomic polynomial

Let's examine the factorization type of the cyclotomic polynomial Φ_m modulo p.

For example, consider $\Phi_{12} = x^4 - x^2 + 1$.

The factorization type of Φ_{12} modulo p depends solely on the residue class of p modulo 12:

$$\tau_p = \begin{cases} [1, 1, 1, 1] & \text{if } p \equiv 1 \mod 12, \\ [2, 2] & \text{if } p \equiv 5, 7, 11 \mod 12, \end{cases}$$

Factorization of cyclotomic polynomial

Consider the cyclotomic polynomial $\Phi_{10} = x^4 - x^3 + x^2 - x + 1$.

The factorization type of this polynomial, given m=10, depends solely on the residue class of p modulo 10:

$$\tau_p = \begin{cases} [1, 1, 1, 1] & \text{if } p \equiv 1 \mod 10, \\ [4] & \text{if } p \equiv 3, 7 \mod 10, \\ [2, 2] & \text{if } p \equiv 9 \mod 10. \end{cases}$$

Quartic polynomials

Consider a different quartic polynomial. Let $f = x^4 - x - 1$. The factorization type can be described as follows:

$$\tau_{p} = \begin{cases} [4] \text{ or } [2,1,1] & \text{if } \left(\frac{p}{283}\right) = -1\\ [3,1] \text{ or } [2,2] \text{ or } [1,1,1,1] & \text{if } \left(\frac{p}{283}\right) = 1 \end{cases}$$

However, it is challenging to distinguish between the different factorization types using congruences on p alone.

Weak form of a reciprocity law for abelian polynomials

Let $f \in \mathbb{Z}[x]$ with $\Delta(f) \neq 0$. This ensures that f factors into distinct irreducible factors as

$$f = f_1 \cdot \ldots \cdot f_r$$

and each $K_i = \mathbb{Q}[x]/(f_i)$ is a number field.

$\mathsf{Theorem}_{\mathsf{p}}$

There exists a natural number m such that τ_p is only dependent on p mod m if and only if each extension K_i/\mathbb{Q} is abelian, that is, it is Galois and its Galois group is abelian.

Abelian vs. Non-abelian

- Let $f \in \mathbb{Z}[x]$ be monic irreduible.
- Let $K = \mathbb{Q}[x]/(f)$, and let L/\mathbb{Q} be its Galois closure, i.e., the field obtained by adjoining all roots of f.
- Set $G := \operatorname{Gal}(L/\mathbb{Q})$.
- In the case of cubic extensions, there are two possibilities:
 - K = L and G is isomorphic to $\mathbb{Z}/3\mathbb{Z}$.
 - $K \subseteq L$ and G isomorphic to the non-abelian group S_3 .
- We saw two cubic examples $f = x^3 + x^2 2x 1$ and $g = x^3 + x + 1$.
- Here, $\mathbb{Q}[x]/(f)$ is abelian, and $\mathbb{Q}[x]/(g)$ is not.

Frobenius Density Theorem

- Let $f \in \mathbb{Z}[x]$ be monic with $\Delta(f) \neq 0$.
- Let L/\mathbb{Q} be the field obtained by adjoining all roots of f, and G be the Galois group.
- We have an action of G on the roots of the polynomial f, which, after labeling them in some way, gives an embedding $\iota: G \hookrightarrow S_n$, where $n = \deg(f)$.
- Recall that any $\sigma \in S_n$ has an essentially unique decomposition into disjoint cycles $\sigma = \eta_1 \cdot \ldots \cdot \eta_k$. Reorder these cycles so that $n_1 \geq n_2 \geq \ldots \geq n_k$, where n_j is the length of η_j . The conjugacy class of σ in S_n is uniquely determined by this partition.
- The lengths of these cycles give the *cycle pattern* $[n_1, n_2, \dots, n_k]$ of σ , which is a partition of n.

Frobenius Density Theorem

The Frobenius Density Theorem states that the density of primes p for which a polynomial f has a given factorization type $[n_1, n_2, ..., n_k]$ exists, and it is equal to $\frac{1}{|G|}$ times the number of $\sigma \in G$ with cycle pattern $[n_1, n_2, ..., n_k]$.

Example

Consider $f = x^4 - x^3 + x^2 - x + 1$.

The factorization type of f depends solely on the residue class of p modulo 10:

$$\tau_p = \begin{cases} [1, 1, 1, 1] & \text{if } p \equiv 1 \mod 10, \\ [4] & \text{if } p \equiv 3, 7 \mod 10, \\ [2, 2] & \text{if } p \equiv 9 \mod 10. \end{cases}$$

The Galois group is isomorphic to the cyclic group of order 4:

$$C_4 = \{(), (1234), (13)(24), (1432)\}$$

whose elements have cycle patterns [1, 1, 1, 1], [4], [2, 2], and [4], respectively.

Example

Consider $f = x^4 - x^2 + 1$.

The factorization type of f depends solely on the residue class of p modulo 12:

$$\tau_p = \begin{cases} [1, 1, 1, 1] & \text{if } p \equiv 1 \mod 12, \\ [2, 2] & \text{if } p \equiv 5, 7, 11 \mod 12, \end{cases}$$

The Galois group is isomorphic to the Klein 4 group:

$$V_4 = \{(), (12)(34), (13)(24), (14)(23)\}$$

whose elements have cycle patterns [1,1,1,1], [2,2], [2,2], and [2,2], respectively.

Cubic Case

The table presents the density of primes p for which f modulo p exhibits a specific factorization type.

f	[3]	[2, 1]	[1, 1, 1]
$x^3 + x^2 - 2x - 1$	2/3	0	1/3
$x^3 + x + 1$	1/3	1/2	1/6

Quartic case

The table presents the results of similar experiments conducted on several quartic polynomials, showing the apparent density of primes p for which f modulo p exhibits a specific factorization type.

f	[4]	[3, 1]	[2, 2]	[2, 1, 1]	[1, 1, 1, 1]
$x^4 - x - 1$	1/4	1/3	1/8	1/4	1/24
$x^4 - x^2 + 1$	0	0	3/4	0	1/4
$x^4 - x^3 + x^2 - x + 1$	1/2	0	1/4	0	1/4
$x^4 - x^2 - 1$	1/4	0	3/8	1/4	1/8
$x^4 + 3x^2 + 7x + 4$	0	2/3	1/4	0	1/12

Quartic case

The last column indicates that the Galois groups of the five polynomials in the table have orders 24, 4, 4, 8, and 12, respectively.

- The Galois group of order 24 corresponds to the symmetric group S_4 .
- The Galois groups of order 4 correspond to the Klein four-group V_4 and the cyclic group C_4 .
- The Galois group of order 8 corresponds to the dihedral group D_4 .
- The Galois group of order 12 corresponds to the alternating group A_4 .

This provides a complete list of transitive subgroups of S_4 . Consequently, every irreducible polynomial f of degree 4 behaves similarly to one of the polynomials in the table.

We can use τ_p to identify the Galois group of a polynomial statistically.

Application of Frobenius density theorem

We say that the factorization type of $x^{12} - 1$ modulo p depends solely on the residue class of p modulo 12:

$$\tau_p = \begin{cases} [1,1,1,1,1,1,1,1,1,1,1] & \text{if } p \equiv 1 \mod 12, \\ [2,2,2,2,1,1,1,1] & \text{if } p \equiv 5 \mod 12, \\ [2,2,2,1,1,1,1,1,1] & \text{if } p \equiv 7 \mod 12, \\ [2,2,2,2,2,1] & \text{if } p \equiv 11 \mod 12. \end{cases}$$

According to Frobenius density theorem, each factorization type has non-zero density. This implies the special case m=12 of Dirichlet's theorem, namely, there are infinitely many primes in each congruence class modulo 12.

Application of Frobenius density Theorem

The factorization type of $x^{10} - 1$ depends solely on the residue class of p modulo 10:

$$\tau_p = \begin{cases} [1,1,1,1,1,1,1,1,1] & \text{if } p \equiv 1 \mod 10, \\ [4,4,1,1] & \text{if } p \equiv 3,7 \mod 10, \\ [2,2,2,2,1,1] & \text{if } p \equiv 9 \mod 10. \end{cases}$$

Frobenius density theorem implies that there are infinitely many primes p whose $\tau_p = [4,4,1,1]$. But, we are not able to distinguish between the residue classes 3 mod 10 and 7 mod 10. So we cannot prove the special case m=10 of Dirichlet's theorem from Frobenius density theorem.

Chebotarev Density Theorem

- Let $f \in \mathbb{Z}[x]$ be monic with $\Delta(f) \neq 0$.
- Let L/\mathbb{Q} be the field obtained by adjoining all roots of f, and G be the Galois group.
- For a prime p, there is a way to attach a conjugacy class of G, denoted by Frob_p , known as the Frobenius element.
- The Frobenius element Frob_p gives finer information than the factorization type τ_p .
- The Chebotarev Density Theorem states that for a conjugacy class C of G, the set of primes p whose Frobenius elements Frob_p equal C has a density given by $\frac{|C|}{|G|}$.

Application of Chebotarev theorem

The factorization type of $x^{10} - 1$:

$$\tau_p = \begin{cases} [1,1,1,1,1,1,1,1,1] & \text{if } p \equiv 1 \mod 10, \\ [4,4,1,1] & \text{if } p \equiv 3,7 \mod 10, \\ [2,2,2,2,1,1] & \text{if } p \equiv 9 \mod 10. \end{cases}$$

An element of the Galois group is determined by the image of $\alpha:=e^{2\pi i/10}$ and

$$\operatorname{Frob}_{p} = \begin{cases} (\alpha \mapsto \alpha) & \text{if } p \equiv 1 \mod 10, \\ (\alpha \mapsto \alpha^{3}) & \text{if } p \equiv 3 \mod 10, \\ (\alpha \mapsto \alpha^{7}) & \text{if } p \equiv 7 \mod 10, \\ (\alpha \mapsto \alpha^{9}) & \text{if } p \equiv 9 \mod 10. \end{cases}$$

We can prove the special case m=10 of Dirichlet's theorem from the Chebotarev densithy theorem.

Computing Frob_p

If $f = f_1 \cdot \ldots \cdot f_r$ with $f_j \in \mathbb{F}_p[x]$ being irreducible polynomials of degree n_j for $j = 1, \ldots, r$, then

$$\mathbb{F}_{p}[x]/(f) \cong \mathbb{F}_{p^{n_1}} \times \ldots \times \mathbb{F}_{p^{n_r}},$$

where $\mathbb{F}_{p^{n_j}} \cong \mathbb{F}_p[x]/(f_j)$.

Each of the finite field extensions $\mathbb{F}_{p^{n_j}}/\mathbb{F}_p$ has an automorphism $x\mapsto x^p$. This automorphism is called the *Frobenius automorphism*. It arises from a unique $\sigma_j\in G$ of order n_j .

Computing Frob_p : steps

- Assume that f is irreducible.
- ② Find all the conjugate roots $g_k(x)$ of f as a polynomial in x, i.e.,

$$f(g_k(x)) \equiv 0 \mod f$$
.

- **3** Let $f = f_1 \cdot \ldots \cdot f_r$ with $f_j \in \mathbb{F}_p[x]$ irreducible of degree n_j for $j = 1, \ldots, r$.
- For each $p \notin S_f$ and j = 1, 2, ..., r, there exists a unique $g_k(x)$ such that

$$x^p \equiv g_k(x) \mod f_j$$
, in $\mathbb{F}_p[x]$.

This element g_k represents $\sigma_i \in G$.

5 Then Frob_p can be written as a list $[\sigma_1, \ldots, \sigma_r]$. Here σ_j are conjugate elements in G.

We can use factorization of a polynomial modulo p to compute Frob_p .

4 D > 4 P > 4 E > 4 E > E 9 9 9

Computing $Frob_p$: example

Let
$$f = x^4 - x^3 + x^2 - x + 1$$
.

р	$ au_{p}$	$\operatorname{Frob}_{\boldsymbol{p}}$	
7	[4]	[3]	
11	[1, 1, 1, 1]	[1, 1, 1, 1]	
13	[4]	[2]	
17	[4]	[3]	
19	[2, 2]	[4, 4]	
23	[4]	[2]	
29	[2, 2]	[4, 4]	
31	[1, 1, 1, 1]	[1, 1, 1, 1]	
37	[4]	[3]	
41	[1, 1, 1, 1]	[1, 1, 1, 1]	
43	[4]	[2]	

This shows that there are 4 conjugacy classes in the Galois group parametrized by:

Computing $\operatorname{Frob}_{p_i}$

Let
$$f = x^8 + 2x^7 + 2x^6 - 2x^5 - 2x^4 - 2x^3 + 2x^2 + 2x + 1$$
.

p	$ au_{m p}$	$\operatorname{Frob}_{\boldsymbol{p}}$
7	[4, 4]	[2, 7]
11	[2, 2, 2, 2]	[3, 3, 4, 4]
13	[2, 2, 2, 2]	[5, 5, 8, 8]
17	[2, 2, 2, 2]	[5, 5, 8, 8]
19	[2, 2, 2, 2]	[3, 3, 4, 4]
23	[4, 4]	[2, 7]
29	[1, 1, 1, 1, 1, 1, 1, 1]	[1, 1, 1, 1, 1, 1, 1, 1]
31	[2, 2, 2, 2]	[3, 3, 4, 4]
37	[2, 2, 2, 2]	[5, 5, 8, 8]
41	[2, 2, 2, 2]	[6, 6, 6, 6]
43	[4, 4]	[2, 7]

This shows that there are 5 conjugacy classes in the Galois group parametrized by:

A form of the Artin reciprocity law

Let $f \in \mathbb{Z}[x]$ be monic and irreducible.

Theorem

Assume that $K = \mathbb{Q}[x]/(f)$ is abelian. There exists a natural number m such that Frob_p is only dependent on $p \mod m$.

For more details, refer to Section VI.7 of Neukirch's book on algebraic number theory.

Dedekind zeta function

• The Dedekind zeta function $\zeta_K(s)$ associated with a number field K is defined as:

$$\zeta_{\mathcal{K}}(s) = \sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^s}$$

- The sum runs over all non-zero ideals $\mathfrak a$ in the ring of integers $\mathcal O_K$ of K.
- The norm $N(\mathfrak{a})$ of an ideal \mathfrak{a} is defined as the cardinality of the quotient ring $\mathcal{O}_K/\mathfrak{a}$.

Euler Product

- The Euler product is a way to express zeta functions as an infinite product over all prime numbers.
- For the Riemann zeta function, the Euler product is given by:

$$\zeta(s) = \zeta_{\mathbb{Q}}(s) = \prod_{p} (1 - p^{-s})^{-1}$$

where the product is over all prime numbers p.

• Similarly, the Dedekind zeta function $\zeta_K(s)$ can also be expressed as an Euler product:

$$\zeta_{\mathcal{K}}(s) = \prod_{\mathfrak{p}} \left(1 - \frac{1}{\mathcal{N}(\mathfrak{p})^s}\right)^{-1}$$

where the product runs over all prime ideals \mathfrak{p} in \mathcal{O}_{K} .

• This is derived from the unique factorization of ideals in the ring of integers \mathcal{O}_K .

Norm computation

- For a prime ideal \mathfrak{p} , the quotient ring $\mathcal{O}_K/\mathfrak{p}$ is a finite field.
- Therefore, the norm $N(\mathfrak{p})$ is of the form p^f for some prime p and integer f.
- To determine the factors in the Euler product, we need a way to find $N(\mathfrak{p})$.

Norm and inertia degree of a prime ideal

Let K/\mathbb{Q} be a finite extension, and let \mathcal{O}_K be the ring of integers of K.

$$\begin{array}{ccc}
\mathbb{Z} & \hookrightarrow & \mathcal{O}_K \\
\downarrow & & \downarrow \\
\mathbb{Q} & \hookrightarrow & K
\end{array}$$

Let p be a prime in \mathbb{Z} . The unique factorization of ideals in \mathcal{O}_K leads to

$$p\mathcal{O}_K = \prod_{j=1}^g \mathfrak{p}_j^{\mathsf{e}_j}.$$

Here, the ideal $p\mathcal{O}_K$ is decomposed into a product of distinct prime ideals \mathfrak{p}_j , with multiplicities e_j .

The field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ naturally embeds into $F_j = \mathcal{O}_K/\mathfrak{p}_j$ for every j. The degree $f_j = [\mathcal{O}_K/\mathfrak{p}_j : \mathbb{F}_p]$ is called the *inertia degree* of \mathfrak{p}_j over p.

Computing prime factorization

To factorize $p\mathcal{O}_K$ for a prime $p \in \mathbb{Z}$ into primes of \mathcal{O}_K , we follow these steps:

- **①** Select an integer θ in \mathcal{O}_K that generates K over \mathbb{Q} , i.e., $K = \mathbb{Q}(\theta)$.
- ② Find the minimal polynomial $h(x) \in \mathbb{Z}[x]$ of θ .
- **③** Factorize h(x) into distinct irreducible polynomials $\bar{h}_1(x), \bar{h}_2(x), \dots, \bar{h}_n(x)$ in $\mathbb{F}_p[x]$, with $h_i(x) \in \mathbb{Z}[x]$ being monic.
- **1** The factorization of $p\mathcal{O}_K$ in \mathcal{O}_K is given by $p\mathcal{O}_K = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_n^{e_n}$, where $\mathfrak{p}_j = p\mathcal{O}_K + h_j(\theta)\mathcal{O}_K$.

In particular, the inertia degree of \mathfrak{p}_j is the degree of h_j .

We can use factorization of a polynomial modulo p to find prime ideal decompositions.

Frobenius element

Let K/\mathbb{Q} be a Galois extension, and \mathfrak{p} be a prime ideal in K above p. Let $D_{\mathfrak{p}}$ be the subgroup of $\operatorname{Gal}(K/\mathbb{Q})$ preserving \mathfrak{p} If p is unramified in K, then $D_{\mathfrak{p}}$ is canonically isomorphic to the Galois

group of the extension of residue fields $\mathcal{O}_K/\mathfrak{p}$ over $\mathbb{Z}/p\mathbb{Z}$.

The Frobenius element associated with \mathfrak{p} , denoted as $\operatorname{Frob}_{\mathfrak{p}}$ or $\left(\frac{K/\mathbb{Q}}{\mathfrak{p}}\right)$, is the unique element in $D_{\mathfrak{p}}$ that acts as the Frobenius automorphism on the residue field extension, i.e.,

$$\operatorname{Frob}_{\mathfrak{p}}(x) \equiv x^p \mod \mathfrak{p}.$$

Example: The Gaussian Integers

- Consider the field extension $\mathbb{Q}(i)/\mathbb{Q}$.
- The ring of integers \mathcal{O}_K in $\mathbb{Q}(i)$ is simply $\mathbb{Z}[i]$, the Gaussian integers.
- We will examine the behavior of prime ideals in this extension by factoring $x^2 + 1$ modulo p.

Example: The Gaussian Integers (Continued)

- Let's consider p = 13.
- The polynomial $x^2 + 1$ factorizes modulo 13 as (x + 5)(x 5).
- Hence, two prime ideals over (13) are (13, i + 5) and (13, i 5), respectively.
- As $\mathbb{Z}[i]$ is a principal ideal domain, we can find single generators for these prime ideals:

$$(13, i+5) = (2+3i)$$
 and $(13, i-5) = (2-3i)$.

- The residue fields $\mathbb{Z}[i]/(2+3i)$ and $\mathbb{Z}[i]/(2-3i)$ are both isomorphic to the finite field with 13 elements.
- In general, for primes $p \equiv 1 \mod 4$ in \mathbb{Z} , they split into two distinct prime ideals in $\mathbb{Z}[i]$, and each of these prime ideals has an inertia degree of 1.

Example: The Gaussian Integers (Continued)

- Let's take p = 7 as an example.
- The polynomial $x^2 + 1$ is irreducible modulo 7.
- The prime (7) remains prime in $\mathbb{Z}[i]$.
- The residue field $\mathbb{Z}[i]/(7)$ is a finite field with 7^2 elements, isomorphic to $\mathbb{F}_7[x]/(x^2+1)$.
- In general, for primes $p \equiv 3 \mod 4$ in \mathbb{Z} , they remain prime in $\mathbb{Z}[i]$, and the prime ideal has an inertia degree of 2.

Example: The Gaussian Integers (Continued)

- For the prime p = 2 in \mathbb{Z} , it ramifies in $\mathbb{Z}[i]$.
- The ideal (2) in $\mathbb{Z}[i]$ can be factored as $(1+i)^2$.
- The residue field extension $\mathbb{Z}[i]/(1+i)$ is a finite field with 4 elements:
- Thus, the norm $N((1+i)) = 2^2 = 4$.

Dedekind zeta function of quadratic fields

- For a quadratic field $K = \mathbb{Q}(\sqrt{d})$, the prime ideal $(p) \subseteq \mathcal{O}_K$ factors into three types:
 - **(Split)** $(p) = \mathfrak{p}_1\mathfrak{p}_2$ with $\mathfrak{p}_1 \neq \mathfrak{p}_2$ and $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.
 - (Inert) $(p) = \mathfrak{p}$ with $N(\mathfrak{p}) = p^2$.
 - **3** (Ramify) $(p) = p^2$ with N(p) = p.
- The Dedekind zeta function becomes:

$$\zeta_{\mathcal{K}}(s) = \prod_{p: \mathsf{split}} \left(1 - p^{-s}\right)^{-2} \cdot \prod_{p: \mathsf{inert}} \left(1 - p^{-2s}\right)^{-1} \cdot \prod_{p: \mathsf{ramify}} \left(1 - p^{-s}\right)^{-1}$$

This can be written as

$$\zeta_{\mathcal{K}}(s) = \zeta(s) \prod_{p:\mathsf{split}} \left(1 - p^{-s}\right)^{-1} \prod_{p:\mathsf{inert}} \left(1 + p^{-s}\right)^{-1}.$$

• The reciprocity law implies that we can differentiate between the split and inert cases using a congruence condition.

42 / 48

Dedekind zeta function of cyclotomic fields

The factorization type of $\Phi_{10}(x) = x^4 - x^3 + x^2 - x + 1$:

$$\tau_p = \begin{cases} [1, 1, 1, 1] & \text{if } p \equiv 1 \mod 10, \\ [4] & \text{if } p \equiv 3, 7 \mod 10, \\ [2, 2] & \text{if } p \equiv 9 \mod 10. \end{cases}$$

Hence, the Dedekind zeta function $\zeta_K(s)$ of $K = \mathbb{Q}(\zeta_{10})$ (up to factors for the ramified primes) is

$$\zeta_{K}(s) = \prod_{p:p\equiv 1} (1-p^{-s})^{-4} \prod_{p:p\equiv 3,7} (1-p^{-4s})^{-1} \prod_{p:p\equiv 9} (1-p^{-2s})^{-2}$$

Dirichlet L-functions

- A Dirichlet character is a completely multiplicative arithmetic function $\chi: \mathbb{Z} \to \mathbb{C}$ that is periodic with some period k > 0, and satisfies $\chi(n) = 0$ if $\gcd(n, k) > 1$.
- Given a Dirichlet character χ , the associated Dirichlet L-function $L(s,\chi)$ is defined by

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}, \quad \Re(s) > 1$$

Euler product :

$$L(s,\chi) = \prod_{p} \left(1 - \chi(p)p^{-s}\right)^{-1}$$

where the product is over all prime numbers p.

Dirichlet characters modulo 10

Here, the table provides the values of Dirichlet characters $\chi_i(n)$ for different congruence classes of n modulo 10.

	$n\equiv 1$	<i>n</i> ≡ 3	<i>n</i> ≡ 7	<i>n</i> ≡ 9
$\chi_0(n)$	1	1	1	1
$\chi_1(n)$	1	-i	i	-1
$\chi_2(n)$	1	-1	-1	1
$\chi_3(n)$	1	i	-i	-1

For a given prime number p, we have

$$\prod_{i=0}^{3} (1 - \chi_i(p)p^{-s})^{-1} = \begin{cases} (1 - p^{-s})^{-4}, & \text{if } p \equiv 1, \\ (1 - p^{-4s})^{-1}, & \text{if } p \equiv 3, 7, \\ (1 - p^{-2s})^{-2}, & \text{if } p \equiv 9. \end{cases}$$

Using this, we can factor the Dedekind zeta function of $K = \mathbb{Q}(\zeta_{10})$ in terms of Dirichlet *L*-functions.

Factorization of Dedekind Zeta Function for cyclotomic Fields

• More generally, the Dedekind zeta function of the cyclotomic field $K = \mathbb{Q}(\zeta_n)$ can be expressed as a product of Dirichlet L-functions:

$$\zeta_{\mathcal{K}}(s) = \zeta_{\mathbb{Q}}(s) \prod_{\chi \neq \chi_0} L(s, \chi),$$

where the product is taken over all non-trivial Dirichlet characters modulo n.

• This follows from the fact that the factorization type of the cyclotomic polynomial modulo p is determined by the congruence condition of p modulo n, which is itself a consequence of the abelian nature of the field extension K/\mathbb{Q} .

In other words, the factorization of $\zeta_K(s)$ into a product of Dirichlet L-functions is a consequence of the reciprocity law.

4□ ▷ <□ ▷ < □ ▷ < □ ▷ < □ ▷ </p>

August 8-9, 2023

46 / 48

Artin reciprocity law and beyond

For a Galois extension L/K with the Galois group G(L|K), there is a factorization

$$\zeta_L(s) = \zeta_K(s) \prod_{\chi:\chi \neq 1} \mathcal{L}(L|K,\chi,s)^{\chi(1)},$$

where χ varies over the non-trivial irreducible characters of G(L|K), and $\mathcal{L}(L|K,\chi,s)$ is the Artin L-function.

Artin studied the question of whether $\zeta_L(s)/\zeta_K(s)$ is entire.

- When L/K is abelian, $\mathcal{L}(L|K,\chi,s)$ can be identified with the Hecke L-series $\mathcal{L}(\widetilde{\chi},s)$ for the the Grössencharacter $\widetilde{\chi}$. The existence of $\widetilde{\chi}$ is a consequence of class field theory, where the Artin reciprocity is the central result.
- In general, $\mathcal{L}(L|K,\chi,s)$ is still unknown to be entire. This is the Artin conjecture. One of the aims of the Langlands program is to establish this.

Thank You!