Return Predictability: Lessons and Insights for Future Hedge Fund Managers

Crash Course - International University of Monaco

March 2025

Juan F. Imbet

Motivation

If you pick a month at random between 1870 and 2025, how does the compound realized return of the SP500 **one year ahead** look like?

Guessing the events

- End of Great Recession (1932-06)
- Patient Zero COVID (2019-12)
- Banks Recognise Subprime-related losses (2007-12)
- End of WW1 (1918-11)

Business Cycles

What do periods of low/high expected returns have in common?

- Assets seem to be cheap when expected returns are high.
- Assets seem to be expensive when expected returns are low.
- A ratio of how much an asset is paying (e.g. dividends) vs its price is a good indicator of where in the business cycle we are.
- This applies to all assets, not just stocks, e.g. how much rent you can get from a house vs its price.

D/P variation over time

D/P and 3-year ahead returns

How does the D/P capture return variation?

Market Efficiency: Overview and Evidence

- Animal Spirits (Keynes, 1936): Prices are driven by irrational behavior and sentiment.
- Efficient Market Hypothesis (Fama 1970, Malkiel 1973): Prices in Financial Markets reflect all available information, and returns are unpredictable.
- **Behavioral Finance** (Shiller, 1981): Prices are driven by irrational behavior and sentiment.
- Debate between how should markets behave (normative) vs how do markets behave (positive).

Modern Approach

- **Efficient Inefficiently** (Pedersen, 2019): The idea that markets are efficient enough to reflect relevant information into prices but inefficient enough to incentivize market participants to gather information and trade.
- Markets do react to new information, but the reaction is not always immediate nor rational.
- If markets were not efficient enough then it would be easy to make money.
- It markets were not inefficient, how do we justify hedge fund fees structure of 2/20?
 2% of assets and 20% of profits.

What do we mean for predictability?

- Intuition: Can we find a variable that helps be right on average on the direction and magnitude of future returns?
- Formal definition, conditional vs unconditional expectations.

$$\mathbb{E}[R_{t
ightarrow t + au} | X_t]
eq \mathbb{E}[R_{t
ightarrow t + au}]$$

How do we search for predictability?

- Data: Data collection vs Data Exhaustion. → Market Efficiency.
- Economic Theory: What variables should be relevant?
- Model: Linear vs Non-Linear \rightarrow Economic Mechanisms vs Spurious Correlations.
- Backtesting: Implementation and Transaction Costs.
- **Risk Management**: How to manage the risk of a strategy that is not always profitable?

Time-Series and Cross-sectional Predictability

- **Time-Series**: Can you time the market? Can you time an industry? Can you buy low and sell high?
- Cross-sectional: Can you pick the best stocks? Can you pick the best industries? Why do some stocks outperform others?

Why is it predictability important for Hedge Funds?

- Mandate on generating returns regardless of market conditions.
- Flows are extremely sensitive to performance.
- Huge fees, deregulation, and access to financial technology and leverage means that the competition is fierce and expectations are high.
- Access to technology, traders, and real time information: timing the market.
- Access to a large universe of assets: cross-sectional predictability.

Simplest Tool, Linear Regression

Find Signal X_t such that

$$R_{t \to t + \tau} = a + \beta X_t + \epsilon_{t \to t + \tau}$$

- $\hat{eta}
 eq 0$: Predictability, $\mathbb{E}[R_{t
 ightarrow t + au}] = \hat{a} + \hat{eta} X_t$
- But what if its just luck? → Significance Testing.
- Look at standard errors.

Out-of-Sample Predictability / Backtesting.

- Even if $\hat{eta}
 eq 0$, it does not mean that we can make money.
- Out-of-Sample: Test the strategy on a different sample.
- It normally requires a **rolling** estimation of the model.

Long-term Experiment

Consider two timing strategies on the SP500, no leverage constraints.

- Buy/short the market if the rolling expected return over the next 3 years is positive/negative.
- Buy/short the market if the rolling expected return predicted by the log dividend price ratio is positive/negative.
- Rule of Thumb of Sharpe Ratios of 3.

Entire Sample: 1871-2023

Strategy	Average Return	Annual Volatility	Approx. Sharpe Ratio	Overall
Benchmark	0.45	0.17	2.63	<u> </u>
Linear Model	0.54	0.15	3.67	✓

Post-war Sample: 1946-2023

Strategy	Average Return	Annual Volatility	Approx. Sharpe Ratio	Overall
Benchmark	0.26	0.17	1.56	*
Linear Model	0.42	0.13	3.28	✓

1970-2023

Strategy	Average Return	Annual Volatility	Approx. Sharpe Ratio	Overall
Benchmark	0.22	0.16	1.35	*
Linear Model	0.39	0.13	2.93	✓

1990-2023

Strategy	Average Return	Annual Volatility	Approx. Sharpe Ratio	Overall
Benchmark	0.06	0.16	0.38	*
Linear Model	0.26	0.14	1.95	A

Predictability works better across shorter samples

- Expected returns over longer samples capture macroeconomic trends, risk premia, consumption growth, productivity growth, etc.
- Regardless of the source of predictability (risk vs mispricing), its profits tend to diminish over time.
- This is due to the statistical behavior of what we are trying to predict.
- My favorite analogy: General Relativity vs Quantum Mechanics, over long distances/extended periods of time you just follow the laws of physics, but at the micro-level, things get weird.

More complex relationships

Non-linearities: Many signals, that are not linearly related to returns.

$$R_{t
ightarrow t+ au}=f(X_{1t},X_{2t},\ldots,X_{kt})+\epsilon_{t
ightarrow t+ au}$$

- Machine Learning: Can we use more complex models to predict returns?
- **Pros**: Strategies can be more profitable as it can capture more complex relationships.
- Cons: Overfitting, Black-box, and lack of economic intuition.
- Alternative Data:
 - Satellite images,
 - Social Media,
 - Credit Card Transactions,
 - Walking patterns

Does ML work?

It does if you are careful.

- Evidence across equity markets exploiting **publicly available data**, it is not about gathering additional data but learning from it (Kelly et al. 2020).
- Retail Investors could benefit from ML: Publicly available data and ML can help select Mutual Funds with positive alpha (DeMiguel et al. 2023).
- Allows for in-house development of strategies that are not available to the general public.

Artificial Intelligence and Natural Language Processing

- So far we have assumed X_t is a number.
- 2023 Q4 Apple Inc's 10-K report contains only 6.91% of numerical characters.
- Natural Language Processing: Can we extract information from text?
 - Companies' reports,
 - Central Bank Statements,
 - News Articles,
 - Earnings Calls.
 - Social Media.

Al Adoption

A BarclayHedge survey of 55 hedge fund/CTA professionals

• Q1: Do you utilize a machine learning (artificial intelligence) approach in your investment processes?

Q1: Do you utilize a machine learning (artificial intelligence) approach in your investment processes?

Al Adoption

• Q2: Which part of your investment process is driven by an application of machine learning techniques?

Al Adoption

• Q5: What are your approximate total strategy assets that utilize machine learning/artificial intelligence (funds and managed accounts)?

Key Takeaways

- 1. W Future prices and business cycles.
- 2. A Markets are efficiently inefficient: Exploit mispricing, but respect competition and transaction costs.
- 3. Time-series strategies decay; combine with cross-sectional signals (e.g., value, momentum) for resilience.
- 4. **Backtest rigorously**—post-1990 data shows declining predictability; adapt models to regime shifts.
- 5. AI/ML adoption is critical—leverage NLP, alternative data, and interpretable models for alpha.