N. Bertschinger M. Kaschube Exercise Sheet 4 Discussed on Wed, May 16, 14:15

Exercise 1. Consider a data set $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$ in which the observations $\{\mathbf{x}_n\}$ are assumed to be drawn independently from a multivariate Gaussian distribution. Write down the log likelihood function $\ln p(\mathbf{X}|\mu, \Sigma)$ for this distribution. Estimate the mean μ by maximum likelihood. Interpret the result.

2 points

Exercise 2. Mixture of Gaussians: the conditional distribution of \mathbf{x} given a particular value for the latent variable \mathbf{z} is assumed to be a Gaussian, i.e. $p(\mathbf{x}|z_k=1) = \mathcal{N}(\mathbf{x}|\mu_{\mathbf{k}}, \Sigma_{\mathbf{k}})$. The probability $p(z_k=1) = \pi_k$ is called mixing coefficient. Derive an expression for the conditional distribution of \mathbf{z} given \mathbf{x} , i.e. $p(z_k=1|\mathbf{x})$ in terms of π_k and $\mathcal{N}(\mathbf{x}|\mu_{\mathbf{k}}, \Sigma_{\mathbf{k}})$. Use the derived mathematical expression to interpret $\gamma(z_k) \equiv p(z_k=1|\mathbf{x})$ (with words and by drawing a cartoon).

2 points

Exercise 3. a) Write down the log of the likelihood function of the Gaussian mixture model $\ln p(\mathbf{X}|\pi,\mu,\Sigma)$. Explain why it is difficult to find the parameters for which this function has a maximum.

1 point

b) Write down the conditions for μ_k that must be satisfied at a maximum of the log likelihood function. Derive the expression

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n$$

with

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

end interpret the result.

2 points

Machine Learning II

N. Bertschinger

M. Kaschube

c) Now maximize the log likelihood function with respect to the mixing coefficients π_k . To do so maximize

$$\ln p(\mathbf{X}|\pi,\mu,\mathbf{\Sigma}) + \lambda \left(\sum_{k=1}^K \pi_k - 1\right)$$

where λ is a Lagrange multiplier implementing the constraint that the π_k must sum to 1. Show that

$$\pi_k = \frac{N_k}{N}$$

and interpret the result.

2 points

d) Assuming Σ is fixed, why do these expression not constitute a closed-form solution for the parameters of the mixture model?

1 point