低周波增幅回路

1 実習の目的

エミッタ接地 CR 結合低周波一段増幅回路の諸特性を測定することを通して、トランジスタを用いた増幅回路の特性及び動作原理を理解する。

2 使用する機器

- 回路計
- トランジスタ (2SC1815-O、2SC1815Y, 2SC1815-GR、2SC1815-BL)*1
- 低周波発振器
- オシロスコープ
- 直流安定化電源装置(V_{CC}用)
- 電子電圧計 2 台

3 実習

実習する項目

- (1) 回路定数の設計について学習する*2
- (2) 実習装置について調べる
- (3) 入出力特性を測定し、グラフを作成して特性を理解する
- (4) 周波数特性を測定し、グラフを作成して特性を理解する

 $^{^{*1}}$ $I_C=1m{\rm A}$ となる様に R_B を調整すれば、どれでも Ok!

^{*2} 実教出版株式会社「電子回路」新訂版、第 2 章第 5 節「トランジスタによる小信号増幅回路の設計」

3.1 回路定数の設計

1. まず R_E を決める

設計	· 冬	1	Ŀ
H A H	<u> </u>		

- (1) コレクタ電流 I_C には、1 mA を流すことにする。
- $(2)\ V_{CC}$ は、直流電源装置からの DC12V とする。
- (3) エミッタ抵抗 R_E における電圧降下 $V_E = V_{RE}$ は、 V_{CC} の 10% になる様にする。
- (1) 設計条件の (2) と (3) より、 $V_{RE} = V_{CC} \times 0.1 = 0.00$
- (2) R_E に流れる電流は、 $I_E=I_B+I_C$ になるが、実際には $I_B\ll I_C$ であるから、 $I_E=I_C$ と概 算する。従って R_E の電流 I_E も、 I_C と同じ() mA だと考えられる。その時の R_E における電圧降下は $V_{RE}=$ () V だったから、 $R_E=\frac{V_{RE}}{I_E}=$ () $k\Omega$
- 2. 次に、 R_C を決める

(4) $V_{CE} = V_{RC}$ となる様に設計する。これにより最大値の大きな交流信号が得られる。

(1)
$$V_{CC} = V_{RC} + V_{CE} + V_{RE}$$
 で、 $V_{CE} = V_{RC}$ とおけば、 $V_{RC} = \frac{V_{CC} - V_{RE}}{2} = ($) V

- (2) 抵抗 R_C の端子間電圧が上記の通りであり、これに流れる電流 I_C は設計条件(1)で決めら れているので、 $R_C=rac{V_{RC}}{I_C}=($) $k\Omega$ だが、 ${
 m E}$ 系列 *3 の数値から $R_C=5.6k\Omega$ を選ぶ
- 3. ブリーダ抵抗 R_A を決める

- (5) 使用するトランジスタの直流電流増幅率を $h_{FE}=180$ とする。
- (6) このトランジスタのベース エミッタ間の電圧は $V_{BE} \coloneqq 0.6V$ とする。
- (7) R_A にはベース電流 I_B の 20 倍の電流(ブリーダ電流 I_A)を流すことにする。

$$(1)$$
 コレクタ電流 I_C に $1mA$ を流す時のベース電流 I_B は、 $I_B = \frac{I_C}{h_{FE}} = ($) μA

- (2) 設計条件 (7) よりブリーダ電流は、 $I_A=20\times I_B=$ (
- (3) ベース電位は $V_B = V_{BE} + V_{RE}$ であるから、 $V_B = ($) + () = (
- (4) この値 V_B は、 R_A にブリーダ電流 I_A が流れることによる電圧降下 V_{RA} に等しいから、 $R_A = \frac{V_{RA}}{I_A} = \frac{V_B}{I_A} = () k\Omega$
- 4. 最後に、 R_B を決める
 - (1) ブリーダ抵抗 R_A と R_B は V_{CC} を分圧しているので、 $V_{RB} = V_{CC} V_{RA} = ($) V
 - (2) R_B にはブリーダ電流 I_A とベース電流 I_B の両方 $I_A + I_B = ($) μA が流れるので、 $V_{RB}=R_B\cdot (I_A+I_B)$ \$\(\mathref{b}\), $R_B=rac{V_{RB}}{I_A+I_B}=($ \(\) $k\Omega$

^{*&}lt;sup>3</sup> 抵抗値と静電容量値には、いくつかの標準数列が規定され、推奨されている。標準数列の E24 系列の数値は次の通り。 $1.0 \ 1.1 \ 1.2 \ 1.3 \ 1.5 \ 1.6 \ 1.8 \ 2.0 \ 2.2 \ 2.4 \ 2.7 \ 3.0 \ 3.3 \ 3.6 \ 3.9 \ 4.3 \ 4.7 \ 5.1 \ 5.6 \ 6.2 \ 6.8 \ 7.5 \ 8.2 \ 9.1$

(3) E系列の数値から、 $R_B = 91k\Omega$ を選ぶことにする

図 2.1 回路定数を算出した時の値

3.2 実習装置について調べる

回路計を使って以下の手順で測定し、図 2.2 と表 2.1 に測定した値を記録する

- (1) 表 2.1 の項番の $1\sim6$ を測定し記録する。(実習装置から Tr は取り外し、電源装置も繋がない)
- (2) Tr の名前を読み取って記録し、そのトランジスタについて調査したことをレポートに報告する
- (3) 抵抗器のカラーコードなどを読み取り、その抵抗器の公称値を調べ、実測値と比較する
- (4) この後 Tr を実習装置にセットし、また直流電源装置を 12V に設定して実習装置に給電する
- (5) Tr の 3 つの端子を使って、表 2.1 の項番 7~12 の電圧を回路計で直接測定する
- (6) 設計時の条件や目標値と、実際に測定した値とを比較する

実習装置で使っているトランジスタの外観、及び名盤の表記をスケッチし、トランジスタの図記号、端子の名称、各端子を流れる電流の呼称と表記、端子間電圧の呼称と表記について調べて記録する

表 9 1	同敗針)。	よる実測値

項番	項目	実測値	備考(公称値など)
1	R_E	$k\Omega$	エミッタ端子と GND 端子の間で測定*4
2	R_C	$k\Omega$	コレクタ端子と V_{CC} の+端子の間で測定
3	R_A	$k\Omega$	ベース端子と GND 端子の間で測定
4	R_B	$k\Omega$	ベース端子と V_{CC} の+端子の間で測定
5	V_{CC}	V	直流安定化電源装置(DC12V)
6	h_{FE}		Tr の名称は()
7	V_{RC}	V	設計時の目標は $V_{RC} \coloneqq V_{CE} = (V_{CC} - V_{RE})/2$ だけど?
8	V_{CE}	V	$V_{RC} = V_{CE}$ で最大値の大きな交流信号出力が得られる
9	V_{BE}	V	シリコン Tr の値になっているかな?
10	V_{RE}	V	設計時の条件、 V_{CC} の $10\% = ($) V になってる?
11	V_{RA}	V	$V_{BE} + V_{RE} = ($) V と比べてどうかな?
12	$V_{RE} + V_{CE}$	V	$V_{CC}-V_{RC}=($) V と比べてどうかな?

図 2.2 実際の回路で測定した時の値

 $V_{\rm CC} = V_{\rm RC} + V_{\rm C} = V_{\rm RC} + V_{\rm CE} + V_{\rm RE} = V_{\rm RB} + V_{\rm RA}$

^{*4} 抵抗値の測定ではトランジスタを実習装置から取り外すこと

3.3 入出力特性を測定する

入出力特性の測定と並行して、オシロスコープで入力波形および出力波形を観察、記録する

- (1) 電源電圧を $E_C(V_{CC})=12\mathrm{V}$ とし、発振器の周波数を $1k\mathrm{Hz}$ 一定の正弦波とする
- (2) 入力電圧 V_i を増加させ、その時の出力電圧 V_o の値を記録する

測定を終えたら、次の作業を行う

- (1) 電圧増幅度 $(A_V = V_o/V_i)$ を計算する
- (2) 入出力特性(入力電圧-出力電圧)をグラフに表す
- (3) グラフの直線部分を直線のまま延伸し、実測値と離れる時の入力電圧を読み取る
- (4) その時の入力電圧の前後で、出力波形に歪みを生じ始めていることを確認する

図 2.3 実習装置

図 2.4 入出力特性のグラフ作成例

		表5 入	表5 入出力特性	(周波数 f = 1kHz 一定)	= 1kHz —;	定)		
入力電圧 Vi [mV]	0	2	4	9	8	01	15	,,
出力電圧 Vo [mV]								
電圧増幅度								
٩‹								

20	
45	
40	
35	
30	
25	

【入出力特性:オシロスコープ画面の情報をスケッチせよ】

			1		

CH 1:入力信号(f = 1 kHz 一定) $V_i = 6 \text{mV}$

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:その時の出力信号

振幅 pp		
波長		

	i	1		1	i	

CH 1:入力信号(f = 1 kHz 一定) $V_i = 10 \text{mV}$

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:その時の出力信号

振幅 pp		
波長		

CH 1:入力信号(f = 1 kHz 一定) $V_i = 20 \text{mV}$

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

CH 1:入力信号($f = 1 \mathrm{kHz} - \mathrm{i} \mathrm{m}$	$V_i = 30 \text{mV}$
------------	---	----------------------

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

			1		

CH 1:入力信号($f=1 \mathrm{kHz}$ 一定) $V_i=40 \mathrm{mV}$

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:その時の出力信号

振幅 pp		
波長		

CH 1:入力信号($f=1 \mathrm{kHz}$ 一定) $V_i=50 \mathrm{mV}$

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

3.4 周波数特性を測定する

周波数特性の測定と並行して、オシロスコープで出力波形を観察、記録すること

- (1) 電源電圧を $E_C(V_{CC})=12$ V とし、入力電圧を $V_i=5m$ V 一定の正弦波とする
- (2) 入力の周波数を変えて、その都度出力電圧 V_o を記録する ($V_i = 5mV$ を一定を保つ)

測定を終えたら次の作業を行う

- (1) 電圧増幅度 $A_v = V_o/V_i$ 、および電圧利得 $G_v[dB] = 20 \log A_v$ を計算する
- (2) 周波数特性(周波数 電圧利得)を、周波数を横軸とする片対数グラフに表す
- (3) 中域周波数での電圧利得 G_{vA} を読み取り、そこから $3[\mathrm{dB}]$ 低下した増幅度 $G_{vA}-3$ を求める
- (4) 低域遮断周波数 $f_L[\mathrm{Hz}]$ 、高域遮断周波数 $f_H[\mathrm{Hz}]$ 、帯域幅 $B[\mathrm{dB}]=f_H-f_L$ をグラフから読み取る

図 2.6 実習装置

図 2.7 周波数特性のグラフ作成例

300k **¥** 200k 200 150k 300 100k 200 Ξ 表6 周波数特性 (入力電圧 Vi = 5 mV) 900k 100 70k 800k **50**K 20 700K 20k 20 600k 10k 30 500k 20 쏬 400k 15 쏡 出力電压 Vo [mV] 電圧利得 Gv [dB] 電圧増幅度 Av 周波数 f [Hz]

【周波数特性:オシロスコープ画面の情報をスケッチせよ】

					L

CH 1:入力信号($V_i = 5 \text{mV}$ 一定) f = 20 Hz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:その時の出力信号

振幅pp		
波長		

	1	1	0	1	1	1	

CH 1:入力信号($V_i = 5$ mV 一定) f = 30Hz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:その時の出力信号

振幅 pp		
波長		

CH 1:入力信号($V_i = 5$ mV 一定) f = 50Hz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

			-	-	

CH 1:入力信号($V_i = 5 \text{mV}$ 一定) $f = 1$
--

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

_						

CH 1:入力信号($V_i = 5 \text{mV}$ 一定) f = 1 kHz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:その時の出力信号

振幅 pp		
波長		

CH 1:入力信号($V_i = 5 \text{mV}$ 一定) f = 10 kHz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

では 1・1カ信号	$V_i = 5 \text{mV}$ 一定)	$f = 50 kH_{\rm Z}$
	$t (V_i - J \coprod V $	I - JUKIIZ

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

			1		

CH 1:入力信号($V_i = 5 \text{mV}$ 一定) f = 70 kHz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:その時の出力信号

振幅 pp		
波長		

CH 1:入力信号($V_i = 5$ mV 一定) f = 100kHz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

CH 1:	入力信号	$(V_i = 5 \text{mV})$	一定)	f = 200 kHz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

CH 1:入力信号($V_i = 5$ mV 一定) f = 300kHz

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:その時の出力信号

振幅 pp		
波長		

CH 1:入力信号($V_i=5\mathrm{mV}$ 一定) $f=400\mathrm{kHz}$

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

振幅 pp		
波長		

CH 1:

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:

振幅 pp		
波長		

CH 1:

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:

振幅 pp		
波長		

CH 1:

項目	DIV 数	值/DIV	値
振幅 pp			
波長			

CH2:

振幅 pp		
波長		

	 		:		 	
	 	 	:		 	
	 	 	: :		 	
	 	 	: :		 	
	 	 	: :	; :	 	
	 	 	<u>.</u>		 	
	 	 	÷ · · · · · · · · · · · · · · ·		 	
	 	 	ļ	<u> </u>	 	
	 	 	:	:	 	
	 	 	i		 	
	 	 	i		 	