Einführung in die Logistik, Übung 1

HENRY HAUSTEIN

Aufgabe 1

(a) grafische Darstellung von \vec{G}

(b) Die Adjazenzmatrix A lautet:

Die Ausgangsgrade sind die Spaltensummen, die Eingangsgrade die Zeilensummen

- (c) Zyklenfreiheit ist gegeben, für topologische Sortierung müssen die Knoten 5 und 6 zu6 und 5 umnummeriert werden. 1
- (d) zugehörige Graph G

¹Ein Graph ist dann topologisch sortiert, wenn die Adjazenzmatrix eine echte untere Dreiecksmatrix ist, das heißt auch auf der Hauptdiagonalen stehen nur noch Nullen.

 \vec{G} ist offensichtlich nicht stark zusammenhängend, da z.B. 1 $\not\leadsto$ 2 gilt. Aber da G zusammenhängend ist, ist \vec{G} wenigstens schwach zusammenhängend.

Aufgabe 2

(a) Die Graphen \vec{G} und $G=Z(\vec{G})$

(b) Es gilt $A(Z(\vec{G})) = A(\vec{G}) + A(\vec{G})^T$

- (c) Graph \vec{G} :
 - \bullet offene Hamiltonsche Linie: (4,1,2,3,6,5)
 - $\bullet\,$ keine Eulersche Linie möglich, da Knoten 5 nicht 3 mal besucht, aber nur einmal verlassen werden kann

Graph ${\cal G}$

- geschlossene Hamiltonsche Linie: [1,2,3,6,5,4,1]
- offene Eulersche Linie: [6,5,2,3,6,4,1,2,4,5]

Aufgabe 3

(a) Wir zeichnen den Graphen zuerst

Man kann den Graphen in 2 Untergraphen unterteilen, das heißt \vec{G} ist nicht zusammenhängend.