Design of a PID Controller for a Molten Salt Microreactor Master's Plan

Sam J. Root,¹
Major Professor: Michael McKellar,¹
Committee Members: Robert A. Borrelli¹, Dakota Roberson²

University of Idaho · Idaho Falls Center for Higher Education ¹Department of Nuclear Engineering and Industrial Management ²Department of Electrical and Computer Engineering

Outline

- Scope
- 2 Applied Literature Review
- 3 Future Work
- 4 Final Remarks

Scope

Molten Salt Nuclear Battery (MSNB)

• Self-Contained liquid fueled molten salt micro-reactor

Simplified schematic drawing of an $\ensuremath{\mathsf{MSNB}}$

Molten Salt Nuclear Battery (MSNB)

- Self-Contained liquid fueled molten salt micro-reactor
- 1 MW design using *UF*₄dissolved in *FLiNaK*

Simplified schematic drawing of an MSNB

Molten Salt Nuclear Battery (MSNB)

- Self-Contained liquid fueled molten salt micro-reactor
- 1 MW design using *UF*₄dissolved in *FLiNaK*
- Criticality is manipulated using axial control drums
 - Neutron absorber plate covering cylinders of neutron reflector
 - Drums are rotated to point more absorber towards the core to insert negative control reactivity

Background on MSNB

Neutronics

[1]

Thermal Hydraulics

[2]

Process Control

Me

[2] Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance.

Ph.D. thesis, Univesity of Idaho

[1] Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis, University of Idaho

MSNB design

Figures from plotter (neutronics paper?), with a focus on control actuation

Applied Literature Review

Time-Variance and Non-Linearity

Future Work

Control Drum Characterization MCNP

Process Simulation

Python

Controller Tuning

MATLAB-Simulink

Python

Timeline

Table: Timeframe for Execution of Project

Tasks	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
Control Drums	X	X	X				
Process Simulation		X	X	X			
Controller Tuning				X	X		
Implementation					X	X	
Cross-Cutting						X	X
Defend							X

Final Remarks

Other Considerations

Discussion

Acknowledgements

This work and my coursework is being completed under a Graduate Fellowship funded by Nuclear Regulatory Commission (NRC)

References

- 1. Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis, University of Idaho.
- 2. Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance. Ph.D. thesis, University of Idaho.