Lógica Computacional

Práctica formativa obligatoria número "2".

Pinto, Rodrigo Guillermo

DNI: 34.680.145

1- Tomar los últimos 4 números de tu DNI y pasarlos a sistema binario y a sistema hexadecimal. Mostrar el proceso por medio del cual llevaste a cabo dicha solución.

Proceso de conversión de decimal a binario

Últimos cuatro números 0145

División por 2	Cociente	Resto
145 / 2	= 72	1
72 / 2	= 36	0
36 / 2	= 18	0
18 / 2	= 9	0
9/2	= 4	1
4/2	= 2	0
2/2	= 1	0
1/2	= 0	1

Leyendo los restos de abajo hacia arriba, obtenemos:

145₁₀ = 10010001₂

Conversión de decimal a hexadecimal:

División por 16	Cociente	Resto
145/16	9	1
9/16	1	9

Leyendo los restos de abajo hacia arriba, obtenemos:

145₁₀ = 91₁₆

En resumen:

Sistema	Valor
Decimal	145
Binario	100100012
Hexadecimal	9116

2- Tomar los cuatro primeros números del DNI, pasarlos a sistema binario y sumarlos con los últimos cuatro números del DNI en binario calculados en el punto anterior.

Primeros cuatro números: 3468

Cociente	Resto
= 1734	0
= 867	0
= 433	1
= 216	1
= 108	0
= 54	0
= 27	0
= 13	1
= 6	1
= 3	0
= 1	1
= 0	1
	= 1734 = 867 = 433 = 216 = 108 = 54 = 27 = 13 = 6 = 3 = 1

Leyendo los restos de abajo hacia arriba, obtenemos:

 $3468_{10} = 110110001100_2$

Los resultados son:

 $3468_{10} = 110110001100_2$

145₁₀ = 10010001₂

Al sumar los resultados

110110001100

+ 10010001

111000011101

Sistema	Valor
Decimal	3613
Binario	1110000111012

3- Tomar el número de DNI completo, separarlo en grupos de dos decimales y convertir esos números a hexadecimal. Por ej: 12.345.678 pasarían a ser: 12 34 56 78 y cada para de números, pasarlos a hexadecimal.

DNI: 34.680.145, al separarlo en grupo de a 2 decimales queda:

34, 68, 01, 45

Número 34:

División por 16	Cociente	Resto decimal	Resto Hexadecimal
34/16	2	0.125 * 16	2
2/16	0	0.125 * 16	2

Número 68:

División por 16	Cociente	Resto decimal	Resto Hexadecimal
68/16	4	0.25 * 16	4
4/16	0	0.25 * 16	4

Número 01:

División por 16	Cociente	Resto decimal	Resto Hexadecimal
1/16	0	0.0625 * 16	01

Número 45:

División por 16	División por 16 Cociente Resto decima		Resto Hexadecimal
45/16	2	0.8125* 16	D
2/16	0	0.125 * 16	2

En resumen:

Decimal	Hexadecimal
34	22
68	44
01	01
45	2D

4- Diseñar un circuito sumador que tenga como IMPUT 3 bits. Calcular qué valores deberían tener para que se enciendan al menos UN FLAG. Identificar que FLAG o FLAGS se encienden y por qué se da ese fenómeno (qué condiciones se dieron).

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Valores para que se encienda el FLAG carry (Cout):

Α	В	Cin	Cou	Descripción
0	1	1	1	0+1+1
1	0	1	1	1+0+1
1	1	0	1	1+1+0
1	1	1	1	1+1+1

Valores para que se encienda el FLAG Z

Α	В	Cin	S	Z	Descripción
0	0	0	0	1	Suma total = 0

5- Graficar el circuito.

