Decomposição de Módulos Livres de Torção como Soma Direta de Módulos de Posto 1

Santiago Miler Quispe Mamani Instituto de Ciências Exatas/UFJF Orientadora: F. A. Ribeiro

- Enunciado do teorema principal
- 2 Condição necessária para decomposição
- 3 Condição suficiente para a decomposição
- Demonstração do teorema principal
- 5 Aplicação do teorema principal
- 6 Referências

- Enunciado do teorema principal
- 2 Condição necessária para decomposição
- 3 Condição suficiente para a decomposição
- 4 Demonstração do teorema principal
- 5 Aplicação do teorema principal
- 6 Referências

- Enunciado do teorema principal
- 2 Condição necessária para decomposição
- 3 Condição suficiente para a decomposição
- 4 Demonstração do teorema principal
- 5 Aplicação do teorema principal
- 6 Referências

- 1 Enunciado do teorema principal
- 2 Condição necessária para decomposição
- 3 Condição suficiente para a decomposição
- Demonstração do teorema principal
- 5 Aplicação do teorema principa
- 6 Referências

- Enunciado do teorema principal
- 2 Condição necessária para decomposição
- 3 Condição suficiente para a decomposição
- 4 Demonstração do teorema principal
- 5 Aplicação do teorema principal
- 6 Referências

- Enunciado do teorema principal
- 2 Condição necessária para decomposição
- 3 Condição suficiente para a decomposição
- Demonstração do teorema principal
- 5 Aplicação do teorema principal
- 6 Referências

Enunciado do teorema principal

Teorema

Seja R um domínio de integridade Noetheriano cujo fecho inteiro \overline{R} é um R-módulo finitamente gerado. Então, todo R-módulo livre de torção é uma soma direta de módulos de posto 1 se, e somente se, $\mu^*(R) \leq 2$. Além disso, neste caso, todo R-módulo livre de torção de posto 1 é um S-módulo projetivo para um único anel S tal que $R \subseteq S \subseteq \overline{R}$.

Para isso, precisaremos de algumas definições e alguns resultados sobre módulos de livres de torção. Todo *módulo* significará módulo finitamente gerado.

Enunciado do teorema principal

Teorema

Seja R um domínio de integridade Noetheriano cujo fecho inteiro \overline{R} é um R-módulo finitamente gerado. Então, todo R-módulo livre de torção é uma soma direta de módulos de posto 1 se, e somente se, $\mu^*(R) \leq 2$. Além disso, neste caso, todo R-módulo livre de torção de posto 1 é um S-módulo projetivo para um único anel S tal que $R \subseteq S \subseteq \overline{R}$.

Para isso, precisaremos de algumas definições e alguns resultados sobre módulos de livres de torção. Todo *módulo* significará módulo finitamente gerado.

Condição necessária para decomposição

Definição

Sejam A um domínio de integridade e M um A-módulo. Um elemento $x \in M$ é um elemento de torção de M se $Ann(x) := \{a \in A; ax = 0\} \neq \{0\}$, isto é, se x é anulado por algum elemento não-nulo de A.

Os elementos de torção de M formam um submódulo de M, chamado o submódulo de torção de M e denotado por $\mathcal{T}(M)$

Definição

Um A-módulo M é dito livre de torção se $T(M) = \{0\}$.

Condição necessária para decomposição

Definição

Sejam A um domínio de integridade e M um A-módulo. Um elemento $x \in M$ é um elemento de torção de M se $Ann(x) := \{a \in A; ax = 0\} \neq \{0\}$, isto é, se x é anulado por algum elemento não-nulo de A.

Os elementos de torção de M formam um submódulo de M, chamado o submódulo de torção de M e denotado por T(M).

Definição

Um A-módulo M é dito livre de torção se $T(M) = \{0\}$.

Condição necessária para decomposição

Definição

Sejam A um domínio de integridade e M um A-módulo. Um elemento $x \in M$ é um elemento de torção de M se $Ann(x) := \{a \in A; ax = 0\} \neq \{0\}$, isto é, se x é anulado por algum elemento não-nulo de A.

Os elementos de torção de M formam um submódulo de M, chamado o submódulo de torção de M e denotado por T(M).

Definição

Um A-módulo M é dito livre de torção se $T(M) = \{0\}$.

Definição

Seja M um R-módulo. Definimos o inteiro positivo $\mu_R(M)$ como sendo o menor número de elementos necessários para gerar M, isto \acute{e} ,

$$\mu_R(M) := \min \{ n \in \mathbb{N} : M = \langle x_1, \dots, x_n \rangle, x_1, \dots, x_n \in M \}$$

e

$$\mu^*(R) := \sup \{ \mu_R(\mathfrak{A}) : \mathfrak{A} \text{ \'e um ideal finitamente gerado de } R \}.$$

Definição

Seja M um R-módulo. Definimos o inteiro positivo $\mu_R(M)$ como sendo o menor número de elementos necessários para gerar M, isto \acute{e} ,

$$\mu_R(M) := \min \{ n \in \mathbb{N} : M = \langle x_1, \dots, x_n \rangle, x_1, \dots, x_n \in M \}$$

е

$$\mu^*(R) := \sup \{ \mu_R(\mathfrak{A}) : \mathfrak{A} \text{ \'e um ideal finitamente gerado de } R \}.$$

Definição

Seja R um domínio de integridade com o corpo de frações L e seja M um R-módulo. Definimos o posto de M, denotado por rank $_R$ M, por:

 $\operatorname{rank}_R M := \dim_L L \otimes_R M$.

lema

Sejam R um domínio de integridade e M um R-módulo finitamente gerado, livre de torção e de posto 1. Então, M é isomorfo a um ideal de R.

Definição

Seja R um domínio de integridade com o corpo de frações L e seja M um R-módulo. Definimos o posto de M, denotado por rank $_R$ M, por:

 $\operatorname{rank}_R M := \dim_L L \otimes_R M$.

Lema

Sejam R um domínio de integridade e M um R-módulo finitamente gerado, livre de torção e de posto 1. Então, M é isomorfo a um ideal de R.

Definição

Um submódulo N de um módulo M é dito ser fechado em M se M/N for livre de torção. Para um subconjunto S de M, definimos o fecho de S em M como sendo o menor submódulo fechado de M contendo S.

Proposição

Seja R um domínio de integridade para o qual todo R-módulo livre de torção é soma direta de módulos de posto no máximo k ($k \ge 1$). Então, para cada ideal maximal $\mathfrak M$ de R, $\mu^*(R_{\mathfrak M}) \le k+1$.

Se R é Noetheriano, $\mathbb{K} - \dim R$ denota a dimensão de Krull de R, isto é, o comprimento máximo de uma cadeia de ideais primos em R.

Definição

Um submódulo N de um módulo M é dito ser fechado em M se M/N for livre de torção. Para um subconjunto S de M, definimos o fecho de S em M como sendo o menor submódulo fechado de M contendo S.

Proposição

Seja R um domínio de integridade para o qual todo R-módulo livre de torção é soma direta de módulos de posto no máximo k ($k \ge 1$). Então, para cada ideal maximal $\mathfrak M$ de R, $\mu^*(R_{\mathfrak M}) \le k+1$.

Se R é Noetheriano, $\mathbb{K} - \dim R$ denota a dimensão de Krull de R, isto é, o comprimento máximo de uma cadeia de ideais primos em R.

Definição

Um submódulo N de um módulo M é dito ser fechado em M se M/N for livre de torção. Para um subconjunto S de M, definimos o fecho de S em M como sendo o menor submódulo fechado de M contendo S.

Proposição

Seja R um domínio de integridade para o qual todo R-módulo livre de torção é soma direta de módulos de posto no máximo k ($k \ge 1$). Então, para cada ideal maximal $\mathfrak M$ de R, $\mu^*(R_{\mathfrak M}) \le k+1$.

Se R é Noetheriano, $\mathbb{K} - \dim R$ denota a dimensão de Krull de R, isto é, o comprimento máximo de uma cadeia de ideais primos em R.

Anéis comutativos com condição mínima restrita

Definição

Um anel R será chamado um anel com a condição mínima restrita, ou simplesmente RM-anel, se para todo ideal $I \neq \{0\}$ em R, R/I satisfaz a condição mínima (isto é, R/I é Artiniano).

Definição

Dizemos que um anel R tem posto finito k se todo ideal em R for gerado por k elementos.

Teorema

Seja R um domínio de integridade local. Então, R tem posto finito se, e somente se, satisfaz a condição mínima restrita.

Proposição (COHEN)

Seja R um domínio de integridade Noetheriano para o qual $\mu^*(R_{\mathfrak{M}}) \leq k$, para todo ideal maximal \mathfrak{M} . Então, $\mathbb{K} - \dim R \leq 1$ (dimensão de Krull) e $\mu^*(R) \leq \max\{2,k\}$.

Com as proposições anteriores é possível mostrar uma implicação.

Demonstração (\Rightarrow) Se R for um domínio de integridade Noetheriano, tal que todo R-módulo livre de torção A é soma direta de módulos de posto 1, então, pela Proposição 1, $\mu^*(R_{\mathfrak{M}}) \leq 2$, para todo ideal maximal \mathfrak{M} de R e, pela Proposição 2[COHEN], concluímos que $\mu^*(R) \leq 2$.

Condição suficiente para a decomposição

Ideais Fracionários

Definição

Sejam A um domínio de integridade e \mathbb{K} seu corpo de frações. Um A-submódulo M de \mathbb{K} é um ideal fracionário de A se $xM \subseteq A$, para algum $x \neq 0$ em A.

Seja M um ideal fracionário. O conjunto de todos $x \in \mathbb{K}$ tais que $xM \subseteq A$ é denotado por (A : M), isto é,

$$(A:M):=\{x\in\mathbb{K}\ :\ xM\subseteq A\}.$$

Observação

Denotaremos por M^{-1} o A-módulo (A:M).

Seja R um domínio de integridade Noetheriano com dim $R \le 1$ e sejam $\mathfrak{B} \subset \mathfrak{A}$ ideais não nulos de R tais que $\mathfrak{A}^{-1} = \mathfrak{B}^{-1}$. Então, se $\mu_R(\mathfrak{A}) \le 2$, $\mathfrak{A} = \mathfrak{B}$.

Proposição

Seja R um domínio de integridade Noetheriano, tal que $\mu^*(R) \leq 2$ Então, um submódulo projetivo fechado de um R-módulo livre de torção é um somando direto.

Seja R um domínio de integridade Noetheriano com dim $R \le 1$ e sejam $\mathfrak{B} \subset \mathfrak{A}$ ideais não nulos de R tais que $\mathfrak{A}^{-1} = \mathfrak{B}^{-1}$. Então, se $\mu_R(\mathfrak{A}) \le 2$, $\mathfrak{A} = \mathfrak{B}$.

Proposição

Seja R um domínio de integridade Noetheriano, tal que $\mu^*(R) \leq 2$. Então, um submódulo projetivo fechado de um R-módulo livre de torção é um somando direto.

Seja R um domínio de integridade local Noetheriano com ideal maximal \mathfrak{M} e fecho inteiro \overline{R} . Suponhamos $\mu^*(R) = 2$. Então,

- $R_1 = \mathfrak{M}^{-1}$ é um anel próprio finitamente gerado e inteiro sobre R.
- Todo ideal não principal $\mathfrak A$ de R é um R-módulo; isto é, $R_1\mathfrak A=\mathfrak A$.
- Se S é um anel próprio finitamente gerado e inteiro sobre R, então $R_1 \subseteq S$ e $\mu^*(S) \le 2$.

Seja R um domínio de integridade local Noetheriano com ideal maximal \mathfrak{M} e fecho inteiro \overline{R} . Suponhamos $\mu^*(R) = 2$. Então,

- $R_1 = \mathfrak{M}^{-1}$ é um anel próprio finitamente gerado e inteiro sobre R.
- Todo ideal não principal $\mathfrak A$ de R é um R-módulo; isto é, $R_1\mathfrak A=\mathfrak A$.
- Se S é um anel próprio finitamente gerado e inteiro sobre R, então $R_1 \subseteq S$ e $\mu^*(S) \le 2$.

Seja R um domínio de integridade local Noetheriano com ideal maximal \mathfrak{M} e fecho inteiro \overline{R} . Suponhamos $\mu^*(R) = 2$. Então,

- $R_1 = \mathfrak{M}^{-1}$ é um anel próprio finitamente gerado e inteiro sobre R.
- Todo ideal não principal $\mathfrak A$ de R é um R-módulo; isto é, $R_1\mathfrak A=\mathfrak A$.
- Se S é um anel próprio finitamente gerado e inteiro sobre R, então $R_1 \subseteq S$ e $\mu^*(S) \le 2$.

Lema

Seja R um anel comutativo Noetheriano e $0 \to A \to B \to C \to 0$ uma sequência exata de R-módulos finitamente gerados. Então, a sequência se decompõe se, e somente se, a sequência se decompõe localmente.

Lema

Seja R um domínio de integridade Noetheriano local com ideal maximal \mathfrak{M} e \mathbb{K} – dim R=1. Seja A um R-módulo livre de torção e $\alpha \in A \setminus \{0\}$, tal que $\overline{\{\alpha\}}$ é um somando direto de A. Então, existe um inteiro n>0 tal que se $\alpha'\equiv\alpha\pmod{\mathfrak{M}^nA}$, $\overline{\{\alpha'\}}$ é um somando direto de A.

Para a demonstração do Teorema Principal, faremos indução no comprimento $I(\overline{R}/R)$, onde \overline{R} é o fecho inteiro de R. O caso $I(\overline{R}/R)=0$ é o caso clássico para domínios de Dedekind que veremos a seguir.

Decomposição de módulos livres de torção sobre domínios de Dedekind

Definição

Um anel R é dito ser um Domínio de Dedekind (ou também um anel de Dedekind) se R é um domínio de integridade e se todo ideal em R é um produto de ideais primos.

Teorema (Decomposição em Domínios de Dedekind)

Seja R um domínio de integridade no qual todo ideal finitamente gerado é invertível e seja M um R-módulo com submódulo de torção T. Então, T é somando direto de M e M/T é isomorfo a uma soma direta de módulos de posto 1.

Corolário

Sejam R um domínio de Dedekind e M um R-módulo finitamente gerado e livre de torção. Então, M é isomorfo a uma soma direta de módulos de posto 1.

Corolário

Sejam R um domínio de ideais principais e M um R-módulo finitamente gerado e livre de torção. Então, M é isomorfo a uma soma direta de módulos de posto 1.

Demonstração (\Leftarrow) Para a demonstração desta implicação faremos indução no comprimento finito $I(\overline{R}/R)$. Suponhamos $I(\overline{R}/R) = 0$. Então, $R = \overline{R}$ e R é integralmente fechado. Como $\mu^*(R) \leq 2$ por hipótese, temos, pela Proposição 2[COHEN], que $\mathbb{K} - \dim R \leq 1$.

- Se $\mathbb{K} \dim R = 0$, como R é um domínio de integridade, R é um corpo e o resultado segue da teoria de Álgebra Linear.
- Se $\mathbb{K} \dim R = 1$, então R é um domínio de Dedekind e, pelo Corolário 1, o resultado segue.

Dividiremos o restante da demonstração em três casos:

- Caso local
- Caso semi-local
- Caso geral

Dividiremos o restante da demonstração em três casos:

- Caso local
- Caso semi-local
- Caso geral

Dividiremos o restante da demonstração em três casos:

- Caso local
- Caso semi-local
- Caso geral

Primeiro Caso: R é um domínio de integridade local Noetheriano, cujo fecho inteiro \overline{R} é um R-módulo finitamente gerado e $\mu^*(R) \leq 2$. Seja A um R-módulo livre de torção. Devemos mostrar que A é soma direta de módulos de posto 1.

Sem perda de generalidade, podemos supor que A não tem somando direto livre. Seja $A_0 = \overline{\{\alpha\}}$ um submódulo fechado de posto 1. Pelo Lema 1, A_0 é isomorfo, como R-módulo, a um ideal de R.

Primeiro Caso: R é um domínio de integridade local Noetheriano, cujo fecho inteiro \overline{R} é um R-módulo finitamente gerado e $\mu^*(R) \leq 2$. Seja A um R-módulo livre de torção. Devemos mostrar que A é soma direta de módulos de posto 1.

Sem perda de generalidade, podemos supor que A não tem somando direto livre. Seja $A_0 = \overline{\{\alpha\}}$ um submódulo fechado de posto 1. Pelo Lema 1, A_0 é isomorfo, como R-módulo, a um ideal de R.

Se A_0 for cíclico, isto é, $A_0 \cong Rx$, A_0 é livre e, portanto, projetivo. Então, pela Proposição 3, A_0 é um somando direto de A, o que é absurdo, pois por hipótese A não tem somando direto livre.

Logo, A_0 não é principal. Pelo Lema 3-(ii), A_0 é um R_1 -módulo, isto é, $R_1A_0=A_0$ onde $R_1=\mathfrak{M}^{-1}$ e \mathfrak{M} é o único ideal maximal de R. Desde que todo elemento de A está em um submódulo fechado de posto 1, temos que A é um R_1 -módulo. Pelo Lema 3-(i) e (ii), temos que $I_{R_1}(\overline{R}/R_1) < I_R(\overline{R}/R)$ e $\mu^*(R_1) \le 2$, respectivamente.

Se A_0 for cíclico, isto é, $A_0 \cong Rx$, A_0 é livre e, portanto, projetivo. Então, pela Proposição 3, A_0 é um somando direto de A, o que é absurdo, pois por hipótese A não tem somando direto livre.

Logo, A_0 não é principal. Pelo Lema 3-(ii), A_0 é um R_1 -módulo, isto é, $R_1A_0=A_0$ onde $R_1=\mathfrak{M}^{-1}$ e \mathfrak{M} é o único ideal maximal de R. Desde que todo elemento de A está em um submódulo fechado de posto 1, temos que A é um R_1 -módulo. Pelo Lema 3-(i) e (ii), temos que $I_{R_1}(\overline{R}/R_1) < I_R(\overline{R}/R)$ e $\mu^*(R_1) \le 2$, respectivamente.

Observação

Não podemos terminar a demonstração no caso local por indução porque $R_1=\mathfrak{M}^{-1}$ é semi-local.

De fato, sendo R_1 inteiro sobre R, temos que dim $R_1 = \dim R$ e q é um ideal maximal de R_1 , se e somente se, $\mathfrak{q} \cap R = \mathfrak{p}$ for um ideal maximal de R. Como dim $R_1 = \dim R \leq 1$ todo ideal primo próprio de R_1 é maximal. Então, como \mathfrak{M} é um ideal de R_1 ($\mathfrak{M}R_1 = R_1$), os ideais maximais de R_1 são os primos de R_1 pertencentes a \mathfrak{M} .

Tratemos então de mostrar que A tem um somando direto de posto 1 no caso R semi-local.

Segundo Caso: R é um domínio de integridade semi-local Noetheriano, cujo fecho inteiro \overline{R} é um R-módulo finitamente gerado e $\mu^*(R) \leq 2$. Seja A um R-módulo livre de torção. Devemos mostrar que A tem um somando direto de posto 1.

Faremos indução no comprimento $I_R(\overline{R}/R)$.

Se $I_R(\overline{R}/R)=0$, R é domínio de Dedekind e A é soma direta de módulos de posto 1 (Corolário 1). Portanto tem um somando direto de posto 1.

Suponhamos a afirmação verdadeira se R for semi-local tal que $I_R(\overline{R}/R) < r$. Devemos mostrar que a afirmação vale para anéis semi-locais tais que $I_R(\overline{R}/R) = r$.

Seja $\mathfrak M$ um ideal maximal de R e seja A um R-módulo livre de torção. Então, $A_{\mathfrak M}$ é um $R_{\mathfrak M}$ -módulo livre de torção. Como no caso local, supondo que $A_{\mathfrak M}$ não tem somando direto livre, temos que $A_{\mathfrak M}$ é um R_1 - módulo livre de torção, para um anel R_1 tal que $R_{\mathfrak M}\subset R_1\subset \overline{R_{\mathfrak M}}$ e $I_{R_1}(\overline{R_{\mathfrak M}}/R_1)< I_{R_{\mathfrak M}}(\overline{R_{\mathfrak M}}/R_{\mathfrak M})$. Observemos neste momento que $I_{R_{\mathfrak M}}(\overline{R_{\mathfrak M}}/R_{\mathfrak M})\leq I_R(\overline{R}/R)=r$. Então, como R_1 é também semi-local, podemos usar a hipótese de indução e garantir que $A_{\mathfrak M}$ tem um somando direto de posto 1 da forma $\overline{\{\alpha\}}$, para algum α in A.

Sendo R semi-local, sejam $\mathfrak{M}_1,\ldots,\mathfrak{M}_r$ os ideais maximais de R. Para cada $i=1,\ldots,r$, seja $\alpha_i\in A$ tal que o fecho de $\{\alpha_i\}$ no $R_{\mathfrak{M}_i}$ -módulo $A_{\mathfrak{M}_i}$ é um somando direto. Pelo Lema 5, existe $n_i>0$ tal que se $\alpha\equiv\alpha_i\,(\mathrm{mod}\,\mathfrak{M}_i^{n_i}A_{\mathfrak{M}_i})$, então $\overline{\{\alpha\}}$ em $A_{\mathfrak{M}_i}$ é um somando direto de $A_{\mathfrak{M}_i}$.

Como $\mathfrak{M}_1,\ldots,\mathfrak{M}_r$ são comaximais, $\mathfrak{M}_1^{n_1},\ldots,\mathfrak{M}_r^{n_r}$ são comaximais, quaisquer que sejam os inteiros positivos n_1,\ldots,n_r , então podemos escolher $\alpha\in A$, tal que $\alpha\equiv\alpha_i\,(\mathrm{mod}\,\,\mathfrak{M}_i^{n_i}A_{\mathfrak{M}_i}),$ $\forall\,i=1,\ldots,r.$ Seja $A_0=\overline{\{\alpha\}}$, o fecho de α em A. Desde que, o fecho comuta com a localização a sequência exata

$$0 \to A_0 \to A \to A/A_0 \to 0$$

se decompõe localmente. Logo, pelo Lema 4, A_0 é um somando direto de A.

Terceiro Caso: R é um domínio de integridade Noetheriano, cujo fecho inteiro \overline{R} é um R-módulo finitamente gerado e $\mu^*(R) \leq 2$. Seja A um R-módulo livre de torção. Devemos mostrar que A é soma direta de módulos de posto 1.

Seja $I \subseteq R$ o condutor de \overline{R} para R, isto é,

$$I = \{a \in R : a\overline{R} \subseteq R\} = Ann(\overline{R}/R)$$

e sejam $\mathfrak{M}_1, \ldots, \mathfrak{M}_r$ os ideais maximais de R contendo I.

Como $\mathbb{K}-\dim R\leq 1$, os ideais maximais de R contendo I são os primos pertencentes a I. Seja $S=R-\bigcup_{i=1}^r\mathfrak{M}_i$. Então, A_S é um R_S -módulo e R_S é semi-local. Pelo caso semi-local podemos escolher $\alpha\in A$, não nulo, tal que o fecho de $\{\alpha\}$ em A_S é um somando direto do R_S -módulo A_S . Seja $A_0=\overline{\{\alpha\}}$ o fecho de α em A.

É possível mostrar que a sequência de R-módulos

$$0 \to A_0 \to A \to A/A_0 \to 0$$

se decompõe localmente. Para $\mathfrak{M}=\mathfrak{M}_i$, com $i=1,\ldots,r$, o reultado segue por construção. Para $\mathfrak{M}\neq \mathfrak{M}_1,\ldots,\mathfrak{M}_r$, $R_{\mathfrak{M}}$ é um domínio de valorização discreta.

De fato, se $\mathfrak{M} \neq \mathfrak{M}_1, \ldots, \mathfrak{M}_r$, então $I \nsubseteq \mathfrak{M}$. Logo, existe $a \in I$, tal que $a \notin \mathfrak{M}$, isto é, $a\overline{R} \subseteq R$, $a \notin \mathfrak{M}$. Assim,

$$\overline{R} \subseteq \frac{1}{a}R \subset R_{\mathfrak{M}} \Rightarrow \overline{R}R_{\mathfrak{M}} \subseteq R_{\mathfrak{M}}.$$

Por outro lado, segue da injetividade da aplicação $R \longrightarrow \overline{R}$, que $R_{\mathfrak{M}} \subseteq \overline{R}R_{\mathfrak{M}}$. Portanto, $\overline{R_{\mathfrak{M}}} = \overline{R}R_{\mathfrak{M}} = R_{\mathfrak{M}}$ é integralmente fechado. Concluímos assim que $R_{\mathfrak{M}}$ é Noetheriano, $\mathbb{K} - \dim R_{\mathfrak{M}} = 1$ e é integralmente fechado, isto é, um anel de valorização discreta.

Então, $R_{\mathfrak{M}}$ é um domínio de ideais principais e, por conseguinte, $(A/A_0)_{\mathfrak{M}}$ é $R_{\mathfrak{M}}$ -módulo livre. De fato, A_0 fechado, implica (A/A_0) livre de torção. Como $R_{\mathfrak{M}}$ é domínio de valorização discreta, $(A/A_0)_{\mathfrak{M}}$ livre de torção é livre. Logo,

$$0 \rightarrow A_0 \rightarrow A \rightarrow A/A_0 \rightarrow 0$$

se decompõe como $R_{\mathfrak{M}}$ -módulo, isto é, A_0 é somando direto. Finalmente, $A=A_0\oplus B$, e por indução no posto de A, B é soma direta de R-módulos de posto 1.

Aplicação do teorema principal

Singularidades de nós e cúspides

Aqui vamos usar o Teorema Principal para descrever módulos livres de torção finitamente gerados sobre dois domínios de integridade específicos.

Exemplo: Curva Nodal

Sejam k um corpo algebricamente fechado e $\mathcal{C} \subset k^2$ a curva plana definida pela equação

$$Y^2 - X^2 - X^3 = 0.$$

É fácil ver que p=(0,0) é o único ponto singular de $\mathcal C$ e que o anel das funções regulares em p, denotado por R, é $R=k[x,y]_{\mathfrak M}$, onde $x=\overline{X},\ y=\overline{Y}\in k[X,Y]/\langle Y^2-X^2-X^3\rangle$ e $\mathfrak M=\langle x,y\rangle$. Então, R é um anel local Notheriano de dimensão igual a 1.

 \vdash : O corpo de frações de R é k(y/x).

De fato, sabemos que k(x,y) que é o corpo de frações de k[x,y] e de R. Como $y^2 = x^2 + x^3$ em k[x,y], temos que $x+1 = (y/x)^2$ e $y = (y/x)^3 - (y/x)$ pertencem a k(y/x). Logo, $k[x,y] \subset k(y/x)$ e, portanto, $k(x,y) \subset k(y/x)$. Claramente, temos que $k(y/x) \subset k(x,y)$. Logo, k(x,y), o corpo de frações de k[x,y] e de R é igual a k(y/x).

 \vdash : O fecho inteiro de k[x, y] é k[y/x].

Das inclusões $k[x,y] \subset k[y/x] \subset k(y/x)$ e da igualdade $(y/x)^2 = x + 1 \in k[x,y]$, temos que k[y/x] é inteiro sobre k[x,y]. Para mostrar que os elementos inteiros de k(x/y) estão em k[y/x], façamos t = y/x para simplificar as notações. Suponhamos $z = a(t)/b(t) \in K(t)$ inteiro sobre $k[x,y] = k[t^2 - 1, t^3 - t]$.

Então, existe $p(T) = T^n + \ldots + a_1 T + a_0 \in k[x, y] = k[t^2 - 1, t^3 - t][T]$, polinômio não nulo, tal que

$$\frac{a(t)^n}{b(t)^n} + \dots + a_1 \frac{a(t)}{b(t)} + a_0 = 0 \Rightarrow$$

$$a(t)^n + a_{n-1} a(t)^{n-1} b(t) + \dots + a_1 a(t) b(t)^{n-1} + a_0 b(t)^n = 0 \Rightarrow$$

$$a(t)^n = -a_{n-1} a(t)^{n-1} b(t) - \dots - a_1 a(t) b(t)^{n-1} - a_0 b(t)^n.$$

Como t é transcendente sobre k, podemos supor que a(t) e b(t) não tem fator comum e portanto, última equação segue que $b(t) \in k$.

 \vdash : O fecho inteiro de R é $\overline{R}=k[y/x]_{\mathfrak{M}}$. Além diso, $\overline{R}=R+(y/x)R$.

De fato, como localização comuta com fecho inteiro, temos que

$$\overline{R} = \overline{k[x,y]_{\mathfrak{M}}} = \overline{k[x,y]_{\mathfrak{M}}} = k[y/x]_{\mathfrak{M}}.$$

De
$$(y/x)^2 = x + 1 \in R$$
, segue que $\overline{R} = R + (y/x)R$.

 \vdash : \overline{R}/R é um k-espaço vetorial e $\dim_k(\overline{R}/R) = 1$.

Vimos na afirmação anterior que $\overline{R}=R+(y/x)R$. Mas todo elemento em $R=k[x,y]_{\mathfrak{M}}$ é a localização de um polinômio da forma $f(x,y)=\sum a_{ij}x^iy^j+a_{00}$, onde $a_{ij}\in k$, para todo i,j. Logo, (y/x)R=R+(y/x)k e $\overline{R}=R+k(y/x)$. Daí segue que $\overline{R}/R\cong k$.

 \vdash : O ideal $\mathfrak{M} \subset R \subset \overline{R}$ é um ideal de \overline{R} .

De fato, $\mathfrak{M} = \langle x, y \rangle = xR + yR$,

$$x(\frac{y}{x}) = y \in \langle x, y \rangle$$
 e $y(\frac{y}{x}) = \frac{y^2}{x} = \frac{x^2 + x^3}{x} = x + x^2 \in \langle x, y \rangle$
 $\Rightarrow \mathfrak{M}\overline{R} \subset \mathfrak{M}.$

Na verdade, temos que $\mathfrak{M} = \langle x \rangle \overline{R}$, pois

$$\langle x, y \rangle \overline{R} = x \overline{R} + y \overline{R} = x \overline{R} + x(\frac{y}{x}) \overline{R} \subset x \overline{R}.$$

Observe ainda que $x=(y/x)^2-1=(y/x-1)(y/x+1)\subset \overline{R}$ implica que $(y/x-1)\overline{R}$ e $(y/x+1)\overline{R}$ são os únicos ideais maximais de \overline{R} contendo \mathfrak{M} .

 \vdash : Todo ideal em \overline{R} é principal.

Para simplificar as notações, vamos usar t=y/x e, nesse caso, teremos:

$$k[x,y] = k[t^2 - 1, t^3 - t], \mathfrak{M} = \langle x, y \rangle = \langle t^2 - 1, t^3 - t \rangle \text{ e } \overline{k[x,y]} = k[t],$$

$$R = k[t^2 - 1, t^3 - t]_{\mathfrak{M}}, \overline{R} = k[t]_{\mathfrak{M}} \text{ e } \mathfrak{M} = \langle t^2 - 1 \rangle \overline{R}.$$

Observemos que todo ideal em k[t] é principal e, portanto, todo ideal em $\overline{R}=k[t]_{\mathfrak{M}}$ é principal. Mais do que isso, todo polinômio em k[t] pode ser escrito na forma

$$f(t) = (t-1)^n (t+1)^m g(t)$$
, onde $n, m \in \mathbb{N}$, $g(1) \neq 0$ e $g(-1) \neq 0$. (1)

Logo, todo ideal J em $\overline{R}=k[t]_{\mathfrak{M}}$ é da forma

$$J=(t-1)^n(t+1)^mk[t]_{\mathfrak{M}}, \text{ para algum par } (n,m)\in\mathbb{N}\times\mathbb{N},$$

já que $g(1) \neq 0$ e $g(-1) \neq 0$ é equivalente a $g(t) \notin \mathfrak{M}$, ou seja, é invertível em $k[t]_{\mathfrak{M}}$.

Nesse ponto é importante salientar a seguinte propriedade do anel \overline{R} . Sejam $J=(t-1)^n(t+1)^mk[t]_{\mathfrak{M}}$ e $P=(t-1)^{1+n}(t+1)^{1+m}k[t]_{\mathfrak{M}}$ ideias de \overline{R} tais que $n,m\in\mathbb{N}$. Então, $P\subset J$ e $\dim_k(J/P)=2$. De fato, J/P é isomorfo a $k\times k$, ou mais explicitamente,

$$J/P \cong (t-1)^n (t+1)^m [k+(t-1)k].$$

Logo, $\dim_k(J/P) = 2$.

 \vdash : Todo ideal em R é um ideal gerado por no máximo dois elementos.

Seja $I\subset R$ um ideal. Como R é local, temos que $I\subset\mathfrak{M}\subset\overline{R}$. Segue da equação 1 que todo elemento em \overline{R} é da forma $f(t)=(t-1)^n(t+1)^mg(t)$, onde $n,m\in\mathbb{N},\ g(t)\in k[t]_\mathfrak{M}$ e $g(t)\notin\mathfrak{M}$. Sejam n,m os menores inteiros positivos tais que $(t-1)^n(t+1)^mg(t)\in I$ e g(t) é invertível em R. Então,

$$(t-1)^n(t+1)^mg(t)k+(t-1)^{n+1}(t+1)^{m+1}\overline{R}\subset I\subset (t-1)^n(t+1)^m\overline{R}.$$

Mas
$$(t-1)^n(t+1)^mg(t)k+(t-1)^{n+1}(t+1)^{m+1}\overline{R}\varsubsetneq (t-1)^{n+1}(t+1)^{m+1}\overline{R}$$
 implica

$$\dim_k \left(\frac{(t-1)^n (t+1)^m \overline{R}}{(t-1)^n (t+1)^m g(t) k + (t-1)^{n+1} (t+1)^{m+1} \overline{R}} \right) < \dim_k \left(\frac{(t-1)^n (t+1)^m \overline{R}}{(t-1)^{n+1} (t+1)^{m+1} \overline{R}} \right) = 2.$$

Logo,

$$\dim_k \left(\frac{(t-1)^n (t+1)^m \overline{R}}{(t-1)^n (t+1)^m g(t) k + (t-1)^{n+1} (t+1)^{m+1} \overline{R}} \right) \leq 1.$$

Por outro lado,

$$\begin{array}{l} (t-1)^n(t+1)^m g(t)k + (t-1)^{n+1}(t+1)^{m+1}\overline{R} \varsubsetneq (t-1)^n(t+1)^m \overline{R}, \\ \text{pois } (t-1)^{n+1}(t+1)^m \in (t-1)^n(t+1)^m \overline{R}, \text{ mas } \\ (t-1)^{n+1}(t+1)^m \notin (t-1)^n(t+1)^m g(t)k + (t-1)^{n+1}(t+1)^{m+1}\overline{R} \\ \text{(lembre que } g(t) \text{ \'e invertível em } \mathfrak{M}). \end{array}$$

Logo,

$$\dim_k \left(\frac{(t-1)^n (t+1)^m \overline{R}}{(t-1)^n (t+1)^m g(t)k + (t-1)^{n+1} (t+1)^{m+1} \overline{R}} \right) = 1.$$

Temos então que

$$I = (t-1)^{n}(t+1)^{m}g(t)k + (t-1)^{n+1}(t+1)^{m+1}\overline{R} = (t-1)^{n}(t+1)^{m}R$$

ou

$$I = (t-1)^n (t+1)^m \overline{R} = (t-1)^n (t+1)^m R + (t-1)^n (t+1)^{m+1} R,$$

já que $\overline{R} = R + (t+1)R$ como R-módulo.

Usando o Teorema 1, temos que todo R-módulo M livre de torção e finitamente gerado se decompõe, isto é,

$$M = M_1 \oplus M_2 \oplus \dots M_n$$
,

onde M_i são R-módulos livres de torção e posto 1, para todo $i = 1, \ldots, n$.

Além disso, para cada M_i , existe um único anel $R \subset S_i \subset R$, tal que é M_i é um S_i -módulo projetivo. Mas, $\overline{R}/R \cong k$ implica $S_i = R$ ou $S_i = \overline{R}$. Logo,

$$M \cong R^{\oplus a} \bigoplus \overline{R}^{\oplus b}.$$

Temos também que $\overline{R}\cong \mathfrak{M}$, como R-módulo o que nos permite escrever

$$M\cong R^{\oplus a}\bigoplus \mathfrak{M}^{\oplus b}.$$

O caso cuspidal é análogo e vamos apenas explicitar as diferenças.

Exemplo: Curva Cuspidal

Sejam k um corpo algebricamente fechado e $\mathcal{C} \subset \mathbb{K}^2$ a curva plana definida por

$$Y^2-X^3=0.$$

Então, p = (0,0) é o único ponto singular de \mathcal{C} e o anel das funções regulares em p, é o anel

$$R = \mathbb{K}[x, y]_{\mathfrak{M}},$$

onde $x=\overline{X}$, $y=\overline{Y}\in \mathbb{K}[X,Y]/\langle Y^2-X^3\rangle$ e $\mathfrak{M}=\langle x,y\rangle$. É fácil ver que R é um anel local Notheriano de dimensão igual a 1.

- \vdash : O corpo de frações de R é k(x,y) = k(y/x).
- \vdash : O fecho inteiro de k[x, y] é k[y/x].
- \vdash : O fecho inteiro de R é $\overline{R}=k[y/x]_{\mathfrak{M}}$. Além diso,

$$\overline{R} = R + (y/x)R.$$

- \vdash : \overline{R}/R é um k-espaço vetorial e $\dim_k(\overline{R}/R) = 1$.
- \vdash : O ideal $\mathfrak{M} \subset R \subset \overline{R}$ é um ideal de \overline{R} .

 \vdash : Todo ideal em \overline{R} é principal.

Como no caso nodal, façamos t=y/x. Nesse caso, teremos:

$$\begin{split} k[x,y] &= k[t^2,t^3], \mathfrak{M} = \langle x,y \rangle = \langle t^2,t^3 \rangle \text{ e } \overline{k[x,y]} = k[t], \\ R &= k[t^2,t^3]_{\mathfrak{M}}, \overline{R} = k[t]_{\mathfrak{M}} \text{ e } \mathfrak{M} = \langle t^2 \rangle \overline{R}. \end{split}$$

Observemos que todo ideal em k[t] é principal e, portanto, todo ideal em $\overline{R}=k[t]_{\mathfrak{M}}$ é principal. Mais do que isso, todo polinômio em k[t] pode ser escrito na forma

$$f(t) = t^n g(t)$$
, onde $n \in \mathbb{N}$, $t^2 \nmid g(t)$. (2)

Logo, todo ideal J em $\overline{R}=k[t]_{\mathfrak{M}}$ é da forma

$$J=t^{2n}k[t]_{\mathfrak{M}}, \text{ para algum } n\in\mathbb{N}.$$

Também nesse caso, temos que se $J=t^{2n}k[t]_{\mathfrak{M}}$ e $P=t^{2n+2}k[t]_{\mathfrak{M}}$ são ideias de \overline{R} tais que $n\in\mathbb{N}$. Então, $\dim_k(J/P)=2$. De fato,

$$J/P \cong t^{2n}[k+tk].$$

Logo, $\dim_k(J/P) = 2$.

 \vdash : Todo ideal em R é um ideal gerado por no máximo dois elementos.

Seja $I\subset R$ um ideal. Como R é local, temos que $I\subset \mathfrak{M}\subset \overline{R}$. Segue da equação 2 que todo elemento em \overline{R} é da forma $f(t)=t^{2n}g(t)$, onde $n\mathbb{N},\,g(t)\in k[t]$ e $g(t)\notin \mathfrak{M}$. Seja n o menor inteiro positivo tal que $t^{2n}g(t)\in I$ e g(t) é invertível em R. Então,

$$t^{2n}g(t)k+t^{2n+2}\overline{R}\subset I\subset t^{2n+2}\overline{R}.$$

Mas
$$t^{2n}g(t)k + t^{2n+2}\overline{R} \subsetneq t^{2n}\overline{R}$$
 implica

$$\dim_k\left(\frac{t^{2n}\overline{R}}{t^{2n}g(t)k+t^{2n+2}\overline{R}}\right)<\dim_k\left(\frac{t^{2n}\overline{R}}{t^{2n+2}\overline{R}}\right)=2.$$

Logo,

$$\dim_k \left(\frac{t^{2n}\overline{R}}{t^{2n}g(t)k + t^{2n+2}\overline{R}} \right) \leq 1.$$

Por outro lado, $t^{2n}g(t)k + t^{2n+2}\overline{R} \subsetneq t^{2n}\overline{R}$, pois $t^{2n+2} \in t^{2n}\overline{R}$, mas $t^{2n+2} \notin t^{2n}g(t)k + t^{2n+2}\overline{R}$ (lembre que g(t) é invertível em \mathfrak{M}).

Logo,

$$\dim_k\left(\frac{t^{2n}\overline{R}}{t^{2n}g(t)k+t^{2n+2}\overline{R}}\right)=1.$$

Temos então que

$$I = t^{2n}g(t)k + t^{2n+2}\overline{R} = t^{2n}R$$

oи

$$I = t^{2n}\overline{R} = t^{2n}R + t^{2n+1}R,$$

já que $\overline{R} = R + tR$ como R-módulo.

Usando o Teorema 1, temos que todo R-módulo M livre de torção e finitamente gerado se decompõe, isto é,

$$M = M_1 \oplus M_2 \oplus \dots M_n$$
,

onde M_i são R-módulos livres de torção e posto 1, para todo $i=1,\ldots,n$.

Além disso, para cada M_i , existe um único anel $R \subset S_i \subset \overline{R}$, tal que é M_i é um S_i -módulo projetivo. Mas, $\overline{R}/R \cong R/\mathfrak{M}$ implica $S_i = R$ ou $S_i = \overline{R}$. Logo,

$$M \cong R^{\oplus a} \bigoplus \overline{R}^{\oplus b}.$$

Temos também que $\overline{R}\cong \mathfrak{M}$, como R-módulo o que nos permite escrever

$$M\cong R^{\oplus a}\bigoplus \mathfrak{M}^{\oplus b}.$$

Referências

- SERRE, J. P. Faisceaux algébriques cohérents Ann. of Math., 61, p. 197-278, 1955.
- SESHADRI, C. S. Triviality of vector bundles over the product of the affine space K² Proc. Natl. Acad. Sci. USA, 44, 456-458, 1958.
- SESHADRI, C. S. Algebraic vector bundles over the product of an affine curve and the affine line, Proc. Amer. Math. Soc.,10, p. 670-673, 1959.
- BASS, H. Injective dimension in Noetherian ring, Trans. Amer. Math. Soc., 102, p. 18-29, 1962.

Obrigado!