Probability-Foundations

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Random Variables
- Joint and Conditional Distributions
- Independence and Conditional Independence

Random Variable

- We have a population of students
 - We want to reason about their grades
 - Random variable: Grade
 - P(Grade) associates a probability with each outcome Val(Grade)={ A, B, C }
- If $k=|Val\{X\}|$ then

$$\sum_{i=1}^k P(X=x^i) = 1$$

- Distribution is referred to as a multinomial
- If Val{X}={false,true} then it is a Bernoulli distribution
- P(X) is known as the marginal distribution of X₃

Joint Distribution

- We are interested in questions involving several random variables
 - Example event: Intelligence=high and Grade=A
 - Need to consider joint distributions
 - Over a set $\chi = \{X_1,...,X_n\}$ denoted by $P(X_1,...,X_n)$
 - We use ξ to refer to a full assignment to variables χ , i.e. $\xi \in Val(\chi)$
- Example of joint distribution
 - And marginal distributions

		Intelligence		
		low	high	
	Α	0.07	0.18	0.25
Grade	В	0.28	0.09	0.37
	C	0.35	0.03	0.38
		0.7	0.3	1

Conditional Probability

- P(Intelligence|Grade=A) describes the distribution over events describable by Intelligence given the knowledge that student's grade is A
- It is not the same as the marginal distribution

		Intelligence		
		low	high	
	Α	0.07	0.18	0.25
Grade	В	0.28	0.09	0.37
	C	0.35	0.03	0.38
		0.7	0.3	1

$$P(Intelligence=high)=0.3$$

$$P(Intelligence=high|Grade=A)$$

=0.18/0.25
=0.72

Independent Random Variables

- We expect $P(\alpha|\beta)$ to be different from $P(\alpha)$
 - i.e., β is true changes our probability over α
- Sometimes equality can occur, i.e, $P(\alpha|\beta) = P(\alpha)$
 - i.e., learning that β occurs did not change our probability of α
 - We say event α is independent of event β denoted $P \rightarrow (\alpha \perp \beta)$ if $P(\alpha | \beta) = P(\alpha)$ or if $P(\beta) = 0$
- A distribution P satisfies $(\alpha \perp \beta)$ if and only if $P(\alpha \land \beta) = P(\alpha)P(\beta)$

Conditional Independence

- While independence is a useful property, we don't often encounter two independent events
- A more common situation is when two events are independent given an additional event
 - Reason about student accepted at Stanford or MIT
 - These two are not independent
 - If student admitted to Stanford then probability of MIT is higher
 - If both based on GPA and we know the GPA to be A
 - Then the student being admitted to Stanford does not change probability of being admitted to MIT
 - P(MIT|Stanford,Grade A)=P(MIT|Grade A)
 - i.e., MIT is conditionally independent of Stanford given Grade A

Querying Joint Probability Distributions

Query Types

1. Probability Queries

Given L and S give distribution of I

2. MAP Queries

- Maximum a posteriori probability
- Also called MPE (Most Probable Explanation)
 - What is the most likely setting of D,I, G, S, L
- Marginal MAP Queries
 - When some variables are known

Probability Queries

- Most common type of query is a probability query
- Query has two parts
 - Evidence: a subset E of variables and their instantiation e
 - Query Variables: a subset Y of random variables in network
- Inference Task: P(Y|E=e)
 - Posterior probability distribution over values y of Y
 - Conditioned on the fact E=e
 - Can be viewed as Marginal over Y in distribution we obtain by conditioning on e
- Marginal Probability Estimation

$$P(Y = y_i | E = e) = \frac{P(Y = y_i, E = e)}{P(E = e)}$$

MAP Queries (Most Probable Explanation)

- Finding a high probability assignment to some subset of variables
- Most likely assignment to all non-evidence variables $W=\chi-Y$

```
MAP(W \mid e) = \arg \max_{w} P(w,e) Value of w for which P(w,e) is maximum
```

- Difference from probability query
 - Instead of a probability we get the most likely value for all remaining variables

Example of MAP Queries

P(Diseases)

 a^{θ} a

0.4 0.6

B

Symptom

Medical Diagnosis Problem

Diseases (A) cause Symptoms (B)

Two possible diseases

Mono and Flu

Two possible symptoms

Headache, Fever

Q1: Most likely disease P(A)?

A1: Flu (Trivially determined for root node)

Q2: Most likely disease and symptom P(A,B)?

P(Symptom|Disease) A2:

P(B A)	b^{θ}	b^1
a^0	0.1	0.9
a^{I}	0.5	0.5

Q3: Most likely symptom P(B)?

A3:

Example of MAP Query

$$P(B|A)$$
 b^0
 b^1
 a^0
 0.1
 0.9
 a^1
 0.5
 0.5

$$MAP(A) = \arg \max_{a} A = a^{1}$$
 A1: Flu

$$MAP(A,B) = \arg \frac{\max}{a,b} P(A,B) = \arg \frac{\max}{a,b} P(A)P(B|A)$$

= $\arg \frac{\max}{a,b} \{0.04,0.36,0.3,0.3\} = a^0, b^1$

A2: Mono and Fever

Note that individually most likely value a^{I} is not in the most likely joint assignment

Marginal MAP Query

Diseases

 a^0 a^1

0.4 0.6

Symptoms

\boldsymbol{A}	b^{θ}	b^1
a^0	0.1	0.9
a^{l}	0.5	0.5

We looked for highest joint probability assignment of disease and symptom

Can look for most likely assignment of disease variable only

Query is not all remaining variables but a subset of them Y is query, evidence is E=eTask is to find most likely assignment to Y: $MAP(Y|e)=arg\ max\ P(Y|e)$

If
$$Z=X-Y-E$$

$$MAP(Y \mid e) = \arg \frac{\max}{Y} \sum_{Z} P(Y, Z \mid e)$$

Example of Marginal MAP Query

P(B A)	b^{θ}	b^{I}
a^0	0.1	0.9
a^{I}	0.5	0.5

$$MAP(A,B) = \arg \frac{\max}{a,b} P(A,B) = \arg \frac{\max}{a,b} P(A)P(B \mid A)$$

= $\arg \frac{\max}{a,b} \{0.04, 0.36, 0.3, 0.3\} = a^0, b^1$

A2: Mono and Fever

$$MAP(B) = \arg \frac{\max}{b} P(B) = \arg \frac{\max}{b} \sum_{A} P(A, B)$$

= $\arg \frac{\max}{b} \{0.34, 0.66\} = b^{1}$ A3: Fever

P(A,B)	b^{θ}	b^1
a^0	0.04	0.36
a^{I}	0.3	0.3

Marginal MAP Assignments

- They are not monotonic
- Most likely assignment $MAP(Y_1|e)$ might be completely different from assignment to Y_1 in $MAP(\{Y_1,Y_2\}|e)$
 - Q1: Most likely disease P(A)?
 - A1: Flu
 - Q2: Most likely disease and symptom P(A,B)?
 - A2: Mono and Fever
- Thus we cannot use a MAP query to give a correct answer to a marginal map query

Marginal MAP more Complex than MAP

 Contains both summations (like in probability queries) and maximizations (like in MAP queries)

$$MAP(B) = \arg \frac{\max}{b} P(B) = \arg \frac{\max}{b} \sum_{A} P(A,B)$$
$$= \arg \frac{\max}{b} \{0.34, 0.66\} = b^{1}$$