BORON FAMILY

PHYSICAL PROPERTIES

CHEMICAL PROPERTIES

Reducing power Al>Ga>In>Tl

Stability order of O.S:

Tl-1>In-1>Ga-1>Al-1>B-1(Inert pair effect) B+3>Al+3>Ga+3>In+3>Tl+3

 Tl^{+3} = Strong oxidant, Ga^{+1} = Strong reductant Maximum covalency of B is 4 (absence of valence d orbitals)

Halides -Lewis acids (BF, < BCl, < BBr,)

COMPOUNDS OF AI

AICI,

- Al₂O₂ + 3C+3Cl₂ → 2AlCl₂ + 3CO
- Aqueous solution is acidic due to the formation of HCI. AICI, + 3H2O -AI(OH), + 3HCI
- Anhyd. AlCl, is covalent & dimeric. 1189

Alum

M,SO, M,(SO,), 24H2O M - Monovalent metal MI - Trivalent metal Potash alum K, SO, Al, (SO,), 24H, O

Chrome alum K,504.Cr,(504)3.24H,0 Ferric alum (NH₄)₂.SO₄ Fe₂ (SO₄)₃.24H₂O

Each cation is surrounded by 6 H₂O

BORIC ACID

- · Weak monobasic acid (Lewis acid) $H_3BO_3+H_2O \rightarrow [B(OH)_4]^- + H^+$
- · Heating effect:

 $H_3BO_3 \stackrel{273K}{\longrightarrow} HBO_2 \stackrel{433K}{\longrightarrow} H_2B_4O_7 \stackrel{\text{red}}{\longrightarrow} B_2O_3$

Metaboricacid Tetraboric acid Boron trioxide

• Forms 6 H-bonds in aqueous solution.

DIBORANE

- Highly reactive: it catches fire B,H, + 30, → B,O, + 3H,O, A H = -ve
- With water : B₂H₂(q) + 6H₂O(1)→2B(OH)₂(aq) + 6H₂(q)
- Reaction with ammonia

BORAX / TINCAL

Na,B,O, .10H,O / Na,[B,O,(OH),].8H,O

• Aqueous solution of borax is alkaline in nature

 $Na_2B_4O_7 + 7H_2O \longrightarrow 2NaOH + 4H_3BO_3$

Borax bead test (Detection of transition metal)

 $Na_2B_4O_7.10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{740\%} 2NaBO_2 + B_2O_3$ T.M Colour

Cu/Co Blue

Uses : As flux Water softening agent As antiseptic Manufactur of glass

• There are 5 B-O-B bridge bonds

CARBON FAMILY

1) Oxidation State: +2, +4, -2 Stability of +4: C > Si > Ge > Sn > Pb Stability of +2: Pb > Sn > Ge > Si > C

2) Oxides

(Litharge)

CO Neutral SiO Neutral

GeO Acidic SnO Amphoteric PbO Amphoteric CO₂ Acidic SiO_a Acidic

GeO, Acidic SnO, Amphoteric PbO, Amphoteric

• Thermal stability order :

CCI, < SiCI, < GeCl, < SnCI, < PbCI, CCl > SiCl > GeCl > SnCl > PbCl

• CCI, can't be hydrolysed due to absence of valence d orbitals

• PbI4 & PbBr4 does not exist due to strong oxidising nature of Pb+4

COMPOUNDS OF CARBON

CO

CO

- HCOOH conc. H2504 > CO+H2O (100% pure)
- · Coal aasification

C + H₂O → CO + H₂
(steam) Syn gas / Water gas

- · Producer gas (CO + N_s)
- . With Hb it forms 300 times stable Carboxy Hb (w.r.to oxyHb)
- Solid CO₂ Dry ice (Refrigerant)
- · CO, in water gives carbonic acid (maintain pH 7.26-7.42)
- NaOH + CO₂ → NaHCO₃
- Used in soft drinks
- · Used as fire extinguisher

COMPOUNDS OF SILICON

P-BLOCK ELEMENTS

SILICA

- SiO₂-sand, quartz
- Insoluble in H₂O & inert at room temp.
- Reacts with HF (etching of glass)
- HF + SiO₂ → SiF₄ SiF₂+2HF→ H₄SiF₄
- 3D Network Covalent Solid

SILICONES

- general formula (R,SiO)
- R₂SiCl₂+H₂O→R₂Si(OH)₂ (Linear Chain Silicones)
- RSiCl₃ → RSi(OH)₃ (Cross linked silicones)
- R₃SiCl→stopping agent / Dimer

SILICATES

- Metal derivatives\ of silicic acid HaSiOa
- Basic unit is (SiO₄)4-Tetrahedral

ZEOLITES

- Sodium Aluminium silicates (Na,Al,Si,O,XH,O)
- (i) Used for Purification of H₂O to remove hardness of water
- (ii) ZSM 5 is a shape selective catalyst to convert alcohol to gasoline

ALLOTROPES OF CARBON

DIAMOND

- · C-C bond length is 154 pm
- · C is sp³ hybridised
- · Good thermal conductor
- · ∆ H of formation is 1.9KJ/mol
- Used as abrasive for sharpening of tools

GRAPHITE

- · C-C bond length is 141.5pm

- · Good electric conductor
- · Hexagonal ring lavers
- · Used as dry lubricant in machines

- Thermodynamically most stable due to $\triangle_R H = 0$
- · C is sp² hybridised
- which are 340pm apart

FULLERENES

 $C_{60} - C_{70}$

· C is sp² hybridised

 $C-C \longrightarrow 143.5 pm$ $C=C\longrightarrow 138.3$ pm

· C₆₀ has 12 pentagons

and 20 hexagons