Knowledge Representation for the Semantic Web

Lecture 6: Answer Set Programming I

Daria Stepanova

partially based on slides by Thomas Eiter

D5: Databases and Information Systems
Max Planck Institute for Informatics

WS 2017/18

Unit Outline

Introduction

Horn Logic Programming

Negation in Logic Programs

Answer Set Semantics

French Phrases, Italian Soda

- Six people sit at a round table.
- Each drinks a different kind of soda.

- The person who is planning a trip to Quebec, who drank either blueberry or lemon soda, didn't sit in seat number one.
- Jeanne didn't sit next to the person who enjoyed the kiwi soda.
- The person who has a plane ticket to Belgium, who sat in seat four or seat five, didn't order the cherry soda.
- ..

Question:

• What is each of them drinking, and where is each of them going?

Sudoku

	6		1	4		5	
		8	1 3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2 5	6	9		
	4		5	8		7	

Task:

Fill in the grid so that every row, every column, and every 3x3 box contains the digits 1 through 9.

Graph 3-colouring

Task:

Colour the nodes of the graph in three colors such that none of the two adjacent nodes share the same colour.

Wanted!

- A general-purpose approach for modeling and solving these and many other problems.
- Issues:
 - Diverse domains
 - Spatial and temporal reasoning
 - Constraints
 - Incomplete information
 - Frame problem
- Proposal:
 - Answer-set programming (ASP) paradigm!

Answer Set Programming

- Answer Set Programming (ASP) is a recent problem solving approach, based on declarative programming.
- The term was coined by Vladimir Lifschitz [1999,2002].
- Proposed by other people at about the same time, e.g., by Marek and Truszczyński [1999] and Niemelä [1999].
- It has roots in knowledge representation, logic programming, and nonmonotonic reasoning.
- At an abstract level, ASP relates to SAT solving and constraint satisfaction problems (CSPs).

- Important logic programming method
- Developed in the early 1990s by Gelfond and Lifschitz.

Left: Michael Gelfond (Texas Tech Univ., Lubbock) Right: Vladimir Lifschitz (Univ. of Texas, Austin)

 Both are graduates from the Steklov Mathematical Institute, St.Petersburg (then: Leningrad).

- ASP is an approach to declarative programming, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - deductive databases
 - logic programming with negation
 - knowledge representation and nonmonotonic reasoning
 - constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in NP (and $\mathrm{NP}^{\mathrm{NP}}$) in a uniform way

- ASP is an approach to declarative programming, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - deductive databases
 - logic programming with negation
 - knowledge representation and nonmonotonic reasoning
 - constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in NP (and $\mathrm{NP}^{\mathrm{NP}}$) in a uniform way

Declarative Programming

Traditional programming: describe how to solve the problem Declarative programming: describe what is the problem

- ASP is an approach to declarative programming, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - deductive databases
 - logic programming with negation
 - knowledge representation and nonmonotonic reasoning
 - constraint solving (in particular, SATisfiability testing)
- \bullet ASP allows for solving all search problems in NP (and $NP^{NP})$ in a uniform way

Nonmonotonic Reasoning

- Nonmonotonicity means that conclusions may be invalidated in the light of new information.
- More specifically, an inference relation ⊨ is nonmonotonic if it violates the monotonicity principle:

if
$$T \models \phi$$
 and $T \subseteq T'$, then $T' \models \phi$.

Note: inference in description logics is monotonic.

Example: Monotonicity of description logics

- $T = \{Bird \sqsubseteq Flier, Bird(tweety)\}$
- $T \models Flier(tweety)$
- $T' = T \cup \{\neg Flier(tweety)\}$
- $T' \models Flier(tweety)$ (actually T' is inconsistent)

Nonmonotonic Reasoning

- Nonmonotonicity means that conclusions may be invalidated in the light of new information.
- More specifically, an inference relation \models is nonmonotonic if it violates the monotonicity principle:

if
$$T \models \phi$$
 and $T \subseteq T'$, then $T' \models \phi$.

Note: inference in description logics is monotonic.

Example: Nonmonotonic inference

If bird(x) holds and there is no evidence for

 $\neg flies(x)$, then infer flies(x). I.e., if bird(x), assume flies(x) by default.

ASP Systems

ASP gains increasing importance for knowledge representation

- High expressiveness
- Efficient solvers available: DLV, clasp, ...

Platform		Features					Mechanics	
Name	os	Licence	Variables	Function symbols	Explicit sets	Explicit lists	Disjunctive (choice rules) support	
ASPeRiX <i>⊕</i>	Linux	GPL	Yes				No	on-the-fly grounding
ASSAT Ø	Solaris	Freeware						SAT-solver based
Clasp Answer Set Solver <i>⊕</i>	Linux, macOS, Windows	GPL	Yes, in Clingo	Yes	No	No	Yes	incremental, SAT-solver inspired (nogood, conflict-driven)
Cmodels:∂	Linux, Solaris	GPL	Requires grounding				Yes	incremental, SAT-solver inspired (nogood, conflict-driven)
DLV	Linux, macOS, Windows ^[14]	free for academic and non-commercial educational use, and for non-profit organizations ^[14]	Yes	Yes	No	No	Yes	not Lparse compatible
DLV-Complex <i>⊕</i>	Linux, macOS, Windows	GPL.		Yes	Yes	Yes	Yes	built on top of DLV — not Lparse compatible
GnT₽	Linux	GPL	Requires grounding				Yes	built on top of smodels
nomore++@	Linux	GPL						combined literal+rule-based
Platypus₽	Linux, Solaris, Windows	GPL						distributed, multi-threaded nomore++, smodels
Pbmodels@	Linux	7						pseudo-boolean solver based
Smodels <i></i>	Linux, macOS, Windows	GPL	Requires grounding	No	No	No	No	
Smodels-cc <i>⊕</i>	Linux	7	Requires grounding					SAT-solver based; smodels w/conflict clauses
Sup.Ø	Linux	?						SAT-solver based

ASP are logic programs;

Introduction

- Their semantics adheres to the multiple preferred models approach:
 - given as a selection of the collection of all classical models;
 - selected (intended) models are called stable models or answer sets.

ASP: General Idea

- ASP are logic programs;
- Their semantics adheres to the multiple preferred models approach:
 - given as a selection of the collection of all classical models;
 - selected (intended) models are called stable models or answer sets.
- Fundamental characteristics:
 - models, not proofs, represent solutions;
 - requires techniques to compute models (rather than techniques to compute proofs)

ASP: General Idea (cont'd)

- Given a search problem Π and an instance I, reduce it to the problem of computing intended models of a logic program:
 - 1. Encode (Π, I) as a logic program P such that the solutions of Π for the instance I are represented by the intended models of P.
 - 2. Compute some intended model M of P.
 - 3. Extract a solution for I from M.
- Variant:
 - Compute multiple/all intended models to obtain multiple/all solutions

Example

ASP Applications

Use ASP to solve search problems, like

- *k*-colourability:
 - assign one of k colours to each node of a given graph such that adjacent nodes always have different colours
- Sudoku:

Introduction

- find a solution to a given Sudoku puzzle
- Satisfiability (SAT):
 - find all models of a propositional formula
- Time Tabling:
 - find a lecture room assignment for courses

ASP Applications (cont'd)

Semantic Web

ASP Applications (cont'd)

- Semantic Web
- games, puzzles
- information integration
- constraint satisfaction, configuration
- planning, routing, scheduling
- diagnosis, repair
- security, verification
- systems biology / biomedicine
- knowledge management
- musicology

See Al Magazine article on ASP [Erdem et al., 2016] for overview

ASP Applications (cont'd)

- USA-Advisor [Nogueira et al., 2001]
 - decision support system to control the Space Shuttle during flight
 - issue: problems with the oxygen transport (pipes and valves)
 - failure scenario: also multiple system failures occur
- Biological Network Repair [Kaminski et al., 2013]
 - model nodes (substances, etc) in a large scale biological influence graph, with roles (e.g. inhibitor, activator)
 - repair inconsistencies (modify roles, add links between nodes, etc)
- Anton [Boenn et al., 2011] http://www.cs.bath.ac.uk/~mjb/anton/
 - automatic system for the composition of renaissance-style music.
 - musical knowledge \approx 500 ASP rules (melody, harmony, rhythm)
 - can generate musical pieces, check pieces for violations.

Horn Logic Programming

Alfred Horn

- \bullet Assume a vocabulary Φ comprised of nonempty finite sets of
 - constants (e.g., frankfurt)
 - variables (e.g., X)
 - predicate symbols (e.g., connected)

- Assume a vocabulary Φ comprised of nonempty finite sets of
 - constants (e.g., frankfurt)
 - variables (e.g., X)
 - predicate symbols (e.g., connected)
- A term is either a variable, a constant, or inductively built from other terms using function symbols.

- Assume a vocabulary Φ comprised of nonempty finite sets of
 - constants (e.g., frankfurt)
 - variables (e.g., X)
 - predicate symbols (e.g., connected)
- A term is either a variable, a constant, or inductively built from other terms using function symbols.
- An atom is an expression of form $p(t_1, \ldots, t_n)$, where
 - p is a predicate symbol of arity $n \geq 0$ from Φ , and
 - t_1, \ldots, t_n are terms.

```
(e.g., connected(frankfurt))
```

- Assume a vocabulary Φ comprised of nonempty finite sets of
 - constants (e.g., frankfurt)
 - variables (e.g., X)
 - predicate symbols (e.g., connected)
- A term is either a variable, a constant, or inductively built from other terms using function symbols.
- An atom is an expression of form $p(t_1, \ldots, t_n)$, where
 - p is a predicate symbol of arity $n \geq 0$ from Φ , and
 - t_1, \ldots, t_n are terms.

```
(e.g., connected(frankfurt))
```

 A term or an atom is ground if it contains no variable. (e.g., connected(frankfurt) is ground, connected(X) is nonground.)

Positive Logic Programs

Def.: Positive logic programs

A positive logic program, P, is a finite set of rules (clauses) of the form

$$a \leftarrow b_1, \dots, b_m,$$
 (1)

where a, b_1, \ldots, b_m are atoms.

- a is the head of the rule
- b_1, \ldots, b_m is the body of the rule.
- If m=0, the rule is a fact (written shortly a)

Intuitively, (1) can be seen as material implication

$$\forall \vec{x} \ b_1 \wedge \cdots \wedge b_m \rightarrow a$$
, where \vec{x}

is the list of all variables occurring in (1).

Example

• **Ground rule:** "If Franfurt is a hub airport, and there is a link between Frankfurt and Saarbrücken, then Saarbrücken is a connected airport."

 $connected(srb) \leftarrow hub_airport(frankfurt), link(frankfurt, srb)$

Example

• **Ground rule:** "If Franfurt is a hub airport, and there is a link between Frankfurt and Saarbrücken, then Saarbrücken is a connected airport."

$$connected(srb) \leftarrow hub_airport(frankfurt), link(frankfurt, srb)$$

 Non-ground rule: "All airports with a link to a hub airport are connected."

$$connected(X) \leftarrow hub_airport(Y), link(Y, X)$$

can be read as a universally quantified clause

$$\forall X, Y \; hub_airport(Y) \land link(Y, X) \rightarrow connected(X).$$

Def.: Herbrand universe, base, interpretation

- Given a logic program P, the Herbrand universe of P, HU(P), is the set of all terms which can be formed from constants and functions symbols in P(resp., the vocabulary Φ of P, if explicitly known).
- The Herbrand base of P, HB(P), is the set of all ground atoms which can be formed from predicates and terms $t \in HU(P)$.

Def.: Herbrand universe, base, interpretation

- Given a logic program P, the Herbrand universe of P, HU(P), is the set of all terms which can be formed from constants and functions symbols in P(resp., the vocabulary Φ of P, if explicitly known).
- The Herbrand base of P, HB(P), is the set of all ground atoms which can be formed from predicates and terms $t \in HU(P)$.
- A (Herbrand) interpretation is a first-order interpretation $I = (D, \cdot^I)$ of the vocabulary with domain D = HU(P) where each term $t \in HU(P)$ is interpreted by itself, i.e., $t^{I} = t$.

Def.: Herbrand universe, base, interpretation

- Given a logic program P, the Herbrand universe of P, HU(P), is the set of all terms which can be formed from constants and functions symbols in P(resp., the vocabulary Φ of P, if explicitly known).
- The Herbrand base of P, HB(P), is the set of all ground atoms which can be formed from predicates and terms $t \in HU(P)$.
- A (Herbrand) interpretation is a first-order interpretation $I = (D, \cdot^I)$ of the vocabulary with domain D = HU(P) where each term $t \in HU(P)$ is interpreted by itself, i.e., $t^{I} = t$.
- I is identified with the set $\{p(t_1,\ldots,t_n)\in HB(P)\mid \langle t_1^I,\ldots,t_n^I\rangle\in p^I\}$.

Def.: Herbrand universe, base, interpretation

- Given a logic program P, the Herbrand universe of P, HU(P), is the set of all terms which can be formed from constants and functions symbols in P(resp., the vocabulary Φ of P, if explicitly known).
- The Herbrand base of P, HB(P), is the set of all ground atoms which can be formed from predicates and terms $t \in HU(P)$.
- A (Herbrand) interpretation is a first-order interpretation $I = (D, \cdot^I)$ of the vocabulary with domain D = HU(P) where each term $t \in HU(P)$ is interpreted by itself, i.e., $t^{I} = t$.
- *I* is identified with the set $\{p(t_1,\ldots,t_n)\in HB(P)\mid \langle t_1^I,\ldots,t_n^I\rangle\in p^I\}.$

Informally, a (Herbrand) interpretation can be seen as a set denoting which ground atoms are true in a given scenario.

Herbrand Semantics

Def.: Herbrand universe, base, interpretation

- Given a logic program P, the Herbrand universe of P, HU(P), is the set of all terms which can be formed from constants and functions symbols in P(resp., the vocabulary Φ of P, if explicitly known).
- The Herbrand base of P, HB(P), is the set of all ground atoms which can be formed from predicates and terms $t \in HU(P)$.
- A (Herbrand) interpretation is a first-order interpretation $I = (D, \cdot^I)$ of the vocabulary with domain D = HU(P) where each term $t \in HU(P)$ is interpreted by itself, i.e., $t^{I} = t$.
- *I* is identified with the set $\{p(t_1,\ldots,t_n)\in HB(P)\mid \langle t_1^I,\ldots,t_n^I\rangle\in p^I\}.$

Informally, a (Herbrand) interpretation can be seen as a set denoting which ground atoms are true in a given scenario.

Named after logician Jacques Herbrand.

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$p(0, 0, b). \qquad h(0, 0). \qquad t(a, b, r).$$

Program P:

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$p(0, 0, b). \qquad h(0, 0). \qquad t(a, b, r).$$

• Constant symbols: 0, a, b, r.

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).$$

- Constant symbols: 0, a, b, r.
- Herbrand universe HU(P): $\{0, a, b, r\}$

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$p(0, 0, b). \qquad h(0, 0). \qquad t(a, b, r).$$

- Constant symbols: 0, a, b, r.
- Herbrand universe HU(P): $\{0, a, b, r\}$
- Herbrand base HB(P): { $p(0,0,0), p(0,0,a), \ldots, p(r,r,r),$ $h(0,0), h(0,a), \ldots, h(r,r,r),$ $t(0,0,0),t(0,0,a),\ldots,t(r,r,r)$

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$p(0, 0, b). \qquad h(0, 0). \qquad t(a, b, r).$$

- Constant symbols: 0, a, b, r.
- Herbrand universe HU(P): $\{0, a, b, r\}$
- Herbrand base HB(P): { $p(0,0,0), p(0,0,a), \ldots, p(r,r,r),$ $h(0,0), h(0,a), \ldots, h(r,r,r),$ $t(0,0,0), t(0,0,a), \ldots, t(r,r,r)$
- Some Herbrand interpretations:

$$I_1 = \emptyset;$$
 $I_2 = HB(P);$ $I_3 = \{h(0,0), t(a,b,r), p(0,0,b)\}.$

Grounding Example

$$\begin{split} p(X,Y,Z) &\leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r). \\ h(X,Z') &\leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r). \\ p(0,0,b). & h(0,0). & t(a,b,r). \end{split}$$

Grounding Example

Program P:

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$p(0, 0, b). \qquad h(0, 0). \qquad t(a, b, r).$$

The ground instances of the first rule are

$$p(0,0,0) \leftarrow p(0,0,0), h(0,0), t(0,0,r).$$
 $X = Y = Z = Z' = 0$
...
$$p(0,r,0) \leftarrow p(0,r,0), h(0,r), t(0,0,r).$$
 $X = Z = Z' = 0, Y = r$
...
$$p(r,r,r) \leftarrow p(r,r,r), h(r,r), t(r,r,r).$$
 $X = Y = Z = Z' = r$

The single ground instance of the last rule is

Herbrand Models

Def.: Herbrand models

An interpretation I is a (Herbrand) model of

- a ground (variable-free) clause $C = a \leftarrow b_1, \ldots, b_m$, symbolically $I \models C$, if either $\{b_1, \ldots, b_m\} \not\subset I$ or $a \in I$;
- a clause C, symbolically $I \models C$, if $I \models C'$ for every $C' \in qrnd(C)$;
- a program P, symbolically $I \models P$, if $I \models C$ for every clause C in P.

Herbrand Models

Def.: Herbrand models

An interpretation I is a (Herbrand) model of

- a ground (variable-free) clause $C = a \leftarrow b_1, \dots, b_m$, symbolically $I \models C$, if either $\{b_1, \dots, b_m\} \nsubseteq I$ or $a \in I$;
- a clause C, symbolically $I \models C$, if $I \models C'$ for every $C' \in grnd(C)$;
- a program P, symbolically $I \models P$, if $I \models C$ for every clause C in P.

Proposition

For every positive logic program P, HB(P) is a model of P.

Reconsider program P:

$$p(X,Y,Z) \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$h(X,Z') \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$p(0,0,b). \qquad h(0,0). \qquad t(a,b,r).$$

- $I_1 = \emptyset$
- $I_2 = HB(P)$
- $I_3 = \{h(0,0), t(a,b,r), p(0,0,b)\}$

Reconsider program P:

$$p(X,Y,Z) \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$h(X,Z') \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$p(0,0,b). \qquad h(0,0). \qquad t(a,b,r).$$

- $I_1 = \emptyset$ no
- $I_2 = HB(P)$
- $I_3 = \{h(0,0), t(a,b,r), p(0,0,b)\}$

Reconsider program P:

$$p(X,Y,Z) \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$h(X,Z') \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$p(0,0,b). \qquad h(0,0). \qquad t(a,b,r).$$

- $I_1 = \emptyset$ no
- $I_2 = HB(P)$ yes
- $I_3 = \{h(0,0), t(a,b,r), p(0,0,b)\}$

Reconsider program P:

$$p(X,Y,Z) \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$h(X,Z') \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$p(0,0,b). \qquad h(0,0). \qquad t(a,b,r).$$

- $I_1 = \emptyset$ no
- $I_2 = HB(P)$ yes
- $I_3 = \{h(0,0), t(a,b,r), p(0,0,b)\}$ no

Minimal Model Semantics

- A logic program has multiple models in general.
- Select one of these models as the canonical model.
- ullet Commonly accepted: truth of an atom in model I should be "founded" by clauses.

Given:

$$P_1 = \{a \leftarrow b. \quad b \leftarrow c. \quad c\},\$$

truth of a in the model $I = \{a, b, c\}$ is "founded".

Given:

$$P_2 = \{a \leftarrow b, b \leftarrow a, c\},\$$

truth of a in the model $I = \{a, b, c\}$ is not founded.

Minimal Model Semantics (cont'd)

Semantics follows Occam's razor principle: prefer models with true-part as small as possible.

Def: Minimal models

A model I of P is minimal, if there exists no model J of P such that $J \subset I$.

Semantics follows Occam's razor principle: prefer models with true-part as small as possible.

Def: Minimal models

A model I of P is minimal, if there exists no model J of P such that $J \subset I$.

Theorem

Every positive logic program P has a single minimal model (called the least model), denoted LM(P).

Minimal Model Semantics (cont'd)

Semantics follows Occam's razor principle: prefer models with true-part as small as possible.

Def: Minimal models

A model I of P is minimal, if there exists no model J of P such that $J \subset I$.

Theorem

Every positive logic program P has a single minimal model (called the least model), denoted LM(P).

This is a consequence of the following property:

Proposition (Intersection closure)

If I and J are models of a positive program P, then $I \cap J$ is also a model of P.

- For $P_1 = \{ a \leftarrow b, b \leftarrow c, c \}$, we have $LM(P_1) = \{a, b, c\}$.
- For $P_2 = \{ a \leftarrow b. \quad b \leftarrow a. \quad c \}$, we have $LM(P_2) = \{c\}$.
- For P from above.

$$p(X,Y,Z) \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$h(X,Z') \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r).$$

$$p(0,0,b). \qquad h(0,0). \qquad t(a,b,r).$$

we have

$$LM(P) = \{h(0,0), t(a,b,r), p(0,0,b), p(0,0,a), h(0,b)\}.$$

Negation in Logic Programs

Negation in Logic Programs

Why negation?

- Natural linguistic concept.
- Facilitates convenient, declarative descriptions (definitions).

E.g., "Men who are not husbands are singles".

Def: Normal logic program

A normal logic program is a set of rules of the form

$$a \leftarrow b_1, \dots, b_m, not c_1, \dots, not c_n \qquad (n, m \ge 0)$$
 (2)

where a and all b_i , c_j are atoms.

The symbol "not" is called negation as failure (or default negation, weak negation).

Programs with Negation

- Prolog: logic-based programming language (developed in the 1970s), with particular algorithm for proving goals (queries) $\langle X \rangle$
- Negation in Prolog: " $not \langle X \rangle$ " means "negation as failure (to prove) $\langle X \rangle$ ".
- Closed World Assumption (CWA): whatever cannot be derived is false.

Programs with Negation

- Prolog: logic-based programming language (developed in the 1970s), with particular algorithm for proving goals (queries) $\langle X \rangle$
- Negation in Prolog: " $not \langle X \rangle$ " means "negation as failure (to prove) $\langle X \rangle$ ".
- Closed World Assumption (CWA): whatever cannot be derived is false.

Different from classical negation in first-order logic!

Negation as failure (default negation) not

At a rail road crossing cross the road if **no train is known** to approach $walk \leftarrow at(X), crossing(X), \textbf{not} \ train_approaches(X)$

Classical negation \neg

At a rail road crossing cross the road if **no train** approaches $walk \leftarrow at(X), crossing(X), \neg train_approaches(X)$

Programs with Negation (cont'd)

Example:

$$man(dilbert).$$

 $single(X) \leftarrow man(X), not \ husband(X).$

- Can not prove *husband(dilbert)* from rules.
- Single intended minimal model: { man(dilbert), single(dilbert)}.

Programs with Negation (cont'd)

Negation in Logic Programs

Example:

Modifying the last rule of P_5 , let the result be P_1 :

$$man(dilbert)$$
.

$$single(X) \leftarrow man(X), not \ husband(X).$$

$$husband(X) \leftarrow man(X), not single(X).$$

Semantics???

Problem: not a single intuitive model!

Programs with Negation (cont'd)

Example:

Modifying the last rule of P_5 , let the result be P_1 :

$$man(dilbert).$$

 $single(X) \leftarrow man(X), not \ husband(X).$
 $husband(X) \leftarrow man(X), not \ single(X).$

Semantics???

Problem: not a single intuitive model!

Two intuitive Herbrand models:

$$M_1 = \{man(dilbert), single(dilbert)\}, \text{ and } M_2 = \{man(dilbert), husband(dilbert)\}.$$

Which one to choose?

"War of Semantics" in LP (1980/90ies):
 Meaning of programs like the Dilbert example above

- "War of Semantics" in LP (1980/90ies):
 Meaning of programs like the Dilbert example above
- Single model vs. multiple model semantics

Negation in Logic Programs

- "War of Semantics" in LP (1980/90ies):
 Meaning of programs like the Dilbert example above
- Single model vs. multiple model semantics
- To date:
 - Well-Founded Semantics by Gelder, Ross & Schlipf (1991)

Partial model: man(dilbert) is true, single(dilbert), husband(dilbert) are unknown

- "War of Semantics" in LP (1980/90ies): Meaning of programs like the Dilbert example above
- Single model vs. multiple model semantics
- To date:
 - Well-Founded Semantics by Gelder, Ross & Schlipf (1991)

```
Partial model:
               man(dilbert) is true,
                single(dilbert), husband(dilbert) are unknown
```

 Stable Model (alias Answer Set) Semantics by Gelfond and Lifschitz (1990)

```
Alternative models: M_1 = \{man(dilbert), single(dilbert)\},\
                       M_2 = \{ man(dilbert), husband(dilbert) \}.
```

- "War of Semantics" in LP (1980/90ies): Meaning of programs like the Dilbert example above
- Single model vs. multiple model semantics
- To date:
 - Well-Founded Semantics by Gelder, Ross & Schlipf (1991)

```
Partial model:
               man(dilbert) is true,
                single(dilbert), husband(dilbert) are unknown
```

 Stable Model (alias Answer Set) Semantics by Gelfond and Lifschitz (1990)

```
Alternative models: M_1 = \{man(dilbert), single(dilbert)\},\
                       M_2 = \{ man(dilbert), husband(dilbert) \}.
```

Stable Models: Intuition

Consider program P_1 :

$$man(dilbert).$$
 (f_1)

$$single(dilbert) \leftarrow man(dilbert), not husband(dilbert).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

Stable Models: Intuition

Consider program P_1 :

$$man(dilbert).$$
 (f_1)

$$single(dilbert) \leftarrow man(dilbert), not husband(dilbert).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

- Consider $M' = \{man(dilbert)\}.$
 - Assuming that man(dilbert) is true and husband(dilbert) is false, by r_1 also single(dilbert) should be true.
 - M' does not represent a coherent or "stable" view of the information given by P_1 .

Stable Models: Intuition

Consider program P_1 :

$$man(dilbert).$$
 (f_1)

$$single(dilbert) \leftarrow man(dilbert), not husband(dilbert).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

- Consider $M' = \{man(dilbert)\}.$
 - Assuming that man(dilbert) is true and husband(dilbert) is false, by r_1 also single(dilbert) should be true.
 - M' does not represent a coherent or "stable" view of the information given by P_1 .
- Consider $M'' = \{man(dilbert), single(dilbert), husband(dilbert)\}.$
 - The bodies of r_1 and r_2 are not true w.r.t. M'', hence there is no evidence for single(dilbert) and husband(dilbert) being true.
 - M'' is not "stable" either.

Stable Models

Def: Gelfond-Lifschitz reduct, stable models, answer sets

- The GL-reduct (or simply reduct) of a ground program P w.r.t. an interpretation M, denoted P^M , is the program obtained from P by performing the following two steps:
 - 1. remove all rules with some not a in its body s.t. $a \in M$; and
 - 2. remove all default negated literals from the remaining rules.

An interpretation M of P is a stable model (or answer set) of P if

$$M = LM(P^M).$$

Stable Models (cont'd)

Intuition behind GL-reduct:

- M makes an assumption about what is true and what is false.
- The GL-reduct P^M incorporates this assumption.
- As a "not"-free program, P^M derives positive facts, given by the least model $LM(P^M)$.
- If this coincides with M, then the assumption of M is "stable".

Observe:

- $P^M = P$ for any "not"-free program P.
- For any positive program P, LM(P) (= $LM(P^M)$) is its single stable model.

Consider again the grounding of P_1 :

$$man(dilbert).$$
 (f_1)

$$single(dilbert) \leftarrow man(dilbert), not husband(dilbert).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

Candidate interpretations:

- $M_1 = \{man(dilbert), single(dilbert)\},\$
- $M_2 = \{man(dilbert), husband(dilbert)\},$
- $M_3 = \{man(dilbert), single(dilbert), husband(dilbert)\},$
- $M_4 = \{man(dilbert)\}.$

Consider again the grounding of P_1 :

$$man(dilbert).$$
 (f_1)

$$single(dilbert) \leftarrow man(dilbert), not husband(dilbert).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

Candidate interpretations:

- $M_1 = \{man(dilbert), single(dilbert)\},$
- $M_2 = \{man(dilbert), husband(dilbert)\},$
- $M_3 = \{man(dilbert), single(dilbert), husband(dilbert)\},$
- $M_4 = \{man(dilbert)\}.$

 M_1 and M_2 are stable models.

Recall the program P_1 :

$$man(dilbert).$$
 (f_1)

$$single(\mathit{dilbert}) \leftarrow \mathit{man}(\mathit{dilbert}), \mathit{not}\ \mathit{husband}(\mathit{dilbert}).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

Consider $M_1 = \{man(dilbert), single(dilbert)\}:$

Recall the program P_1 :

```
man(dilbert).
                    (f_1)
```

$$single(dilbert) \leftarrow man(dilbert), not husband(dilbert).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

```
Consider M_1 = \{man(dilbert), single(dilbert)\}:
```

GL-reduct $P_1^{M_1}$ of M_1 is as follows:

man(dilbert).

 $single(dilbert) \leftarrow man(dilbert).$

Recall the program P_1 :

```
man(dilbert).
                    (f_1)
```

$$single(\mathit{dilbert}) \leftarrow \mathit{man}(\mathit{dilbert}), \mathit{not}\ \mathit{husband}(\mathit{dilbert}).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

```
Consider M_1 = \{man(dilbert), single(dilbert)\}:
```

GL-reduct $P_1^{M_1}$ of M_1 is as follows:

man(dilbert).

 $single(dilbert) \leftarrow man(dilbert).$

The least model of $P_1^{M_1}$ is $\{man(dilbert), single(dilbert)\} = M_1$.

Recall the program P_1 :

$$man(dilbert).$$
 (f_1)

 $single(dilbert) \leftarrow man(dilbert), not husband(dilbert).$ (r_1) $husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$ (r_2)

Consider $M_1 = \{man(dilbert), single(dilbert)\}$:

GL-reduct $P_1^{M_1}$ of M_1 is as follows:

man(dilbert).

 $single(dilbert) \leftarrow man(dilbert).$

The least model of $P_1^{M_1}$ is $\{man(dilbert), single(dilbert)\} = M_1$.

By symmetry of husband and single, also $M_2 = \{man(dilbert), husband(dilbert)\}\$ is stable.

Summary

- 1. Introduction and background
- 2. Horn logic programming
 - Positive logic programs
 - Minimal model semantics
- 3. Negation in logic programs
 - Negation in prolog
 - Semantics of negation in logic programs
- 4. Answer-Set semantics
 - Semantic properties of stable models
 - Computational properties

References I

Georg Boenn, Martin Brain, Marina De Vos, and John ffitch.

Anton - A rule-based composition system.

In Proceedings of the 2011 International Computer Music Conference, ICMC 2011, Huddersfield, UK, July 31 - August 5, 2011. Michigan Publishing, 2011.

隓 Esra Erdem, Michael Gelfond, and Nicola Leone.

Applications of answer set programming.

AI Magazine, 37(3):53-68, 2016.

Roland Kaminski, Torsten Schaub, Anne Siegel, and Santiago Videla. Minimal intervention strategies in logical signaling networks with ASP. TPLP, 13(4-5):675-690, 2013.

References II

Vladimir Lifschitz.

Answer set planning.

In Proc. 16th International Conference on Logic Programming (ICLP),, pages 23–37, 1999.

Vladimir Lifschitz.

Answer Set Programming and Plan Generation.

Artificial Intelligence, 138:39-54, 2002.

Victor W. Marek and Mirosław Truszczyński.

Stable Models and an Alternative Logic Programming Paradigm.

In K. Apt, V. W. Marek, M. Truszczyński, and D. S. Warren, editors, *The Logic Programming Paradigm – A 25-Year Perspective*, pages 375–398. Springer, 1999.

References III

Logic Programming with Stable Model Semantics as Constraint Programming Paradigm.

Annals of Mathematics and Artificial Intelligence, 25(3-4):241-273, 1999.

Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew Barry.

An a-prolog decision support system for the space shuttle.

In I. V. Ramakrishnan, editor, *Practical Aspects of Declarative Languages, Third International Symposium, PADL 2001, Las Vegas, Nevada, March 11-12, 2001, Proceedings*, volume 1990 of *Lecture Notes in Computer Science*, pages 169–183. Springer, 2001.