Homework 12

- 1. Let V be a f.d vector space over \mathbb{R} . Let $(-,-):V\times V\to\mathbb{R}$ be an Euclidian inner product. Let $\|-\|:V\to\mathbb{R}^{\geq 0}$ be the associated norm.
 - (a) Prove $\|-\|$ satisfy the triangle inequality. Write the complete proof of Cauchy Schwartz inequality.
 - (b) based on a. prove $|||u|| ||v|| \le ||u v||$, for every $u, v \in V$.
 - (c) Prove that ||u + v|| = ||u|| + ||v|| iff (u, v) = 0.
- 2. Let V be a f.d vector space over \mathbb{R} . Let $(-,-):V\times V\to\mathbb{R}$ be an Euclidian inner product. Let $U\subset V$ be a subvector space. Consider the orthogonal projections: $P_U,P_{U^\perp}:V\to V$.
 - (a) Prove that $(U^{\perp})^{\perp} = U$.
 - (b) Prove that $P_U \circ P_U = P_U$ and that $P_{U^{\perp}} \circ P_{U^{\perp}} = P_{U^{\perp}}$.
 - (c) Prove that $P_U \circ P_{U^{\perp}} = P_{U^{\perp}} \circ P_U = 0$.
 - (d) Prove that $P_U + P_{U^{\perp}} = Id$.
 - (e) Prove that $\ker P_U = U^{\perp}$ and $\ker P_{U^{\perp}} = P_U$.
- 3. Consider \mathbb{R}^2 with the standard bilinear form. Let $U = \mathbb{R}(1,1)$.
 - (a) Compute $P_U(x,y)$.
 - (b) Prove by explicit computation that $P_{U}(x,y)$ is the vector in U of minimal distance to (x,y).
- 4. Let V be a f.d vector space over a field F. Let $b: V \times V \to F$ be a bilinear form. Let $U \subset V$ be a subvector space.
 - (a) Prove that $\dim U + \dim U^{\perp} \ge \dim V$ and equality holds iff b is non-degenerate.
 - (b) Prove that $U \subset (U^{\perp})^{\perp}$.
 - (c) Prove that if b is non-degenerate then $U = (U^{\perp})^{\perp}$. Here orthogonal complement is w.r.t b.
- 5. Compute the orthogonal projections $P_U, P_{U^{\perp}}: V \to V$ in the following cases:
 - (a) Arbitrary f.d V with some Euclidian inner product and $U=\{0\},$ U=V.
 - (b) $V = \mathbb{R}^2$ with the standard inner product, $U = \mathbb{R}(0,1); U = \mathbb{R}(1,0); U = \mathbb{R}(1,1).$
 - (c) $V = \mathbb{R}^3$ with the standard inner product, $U = \mathbb{R}(1,0,0) + \mathbb{R}(0,1,0)$; $U = \mathbb{R}(1,1,0) + \mathbb{R}(1,-1,1)$.

- (d) $V = \mathbb{R}^n$ with the standard inner product; $U = \left\{ (x_1, ..., x_n) : \sum_{i=1}^n x_i = 0 \right\}$.
- (e) $V = \mathbb{R}(X)$, X a finite set with the inner product $(f, g) = \sum_{x \in X} f(x) g(x)$. $S \subset X$ a subset and $U = \{ f \in V : f(x) = 0 \text{ for every } x \in S \}$.
- 6. Apply the Grahm Schmidt orthogonalization procedure in order to compute the associated orthonormal basis in the following cases.
 - (a) $V = \mathbb{R}^2$, $B = \{(1,0), 1, -1\}$; $B = \{(1,1), (2, -2)\}$.
 - (b) $V = \mathbb{R}^3$, $B = \{(1,0,0), (0,1,0), (1,1,1)\}$; $B = \{(1,1,0); (1,0,1); (1,1,1)\}$.
 - (c) $V = \mathbb{R}^n$, $B = \{e_1, e_2 e_1, e_3 e_2, ..., e_n e_{n-1}\}; B = \{e_1, e_2, ..., e_{n-1}, e_1 + ... + e_n\}.$
 - (d) $V = \mathbb{R}(X), X = \{x_1, ..., x_n\}.$ $B = \{\delta_{x_1}, ..., \delta_{x_{n-1}}, \delta_{x_n} + \delta_{x_1}\}.$
- 7. Let V be a f.d vector space over \mathbb{R} . Let $(-,-):V\times V\to\mathbb{R}$ be an Euclidian inner product. Consider a pair of non-zero vectors v_1,v_2 of unit norm. Let $U_i=\mathbb{R}v_i$, for i=1,2. Prove that

$$Tr(P_{U_1} \circ P_{U_2}) = (v_1, v_2).$$

8. Let V be a f.d vector space over a field F. Let $b: V \times V \to F$ be a bilinear form. Let $U \subset V$ be a subvector space. Prove that

$$Tr(P_U) = \dim U.$$

9. Consider the following bilinear form on \mathbb{R}^2 :

$$b((x,y),(x',y')) = xx' + 2xy' + 2yx' + 5yy'.$$

- (a) Prove that b is Euclidian form.
- (b) Let $U = \mathbb{R}(1,1)$. Compute U^{\perp} with respect to b. Compute $P_U, P_{U^{\perp}}$.