强化学习2022 第11节

涉及知识点: 离线强化学习

离线强化学习

张伟楠 - 上海交通大学

课程大纲

强化学习基础部分

- 1. 强化学习、探索与利用
- 2. MDP和动态规划
- 3. 值函数估计
- 4. 无模型控制方法
- 5. 规划与学习
- 6. 参数化的值函数和策略
- 7. 深度强化学习价值方法
- 8. 深度强化学习策略方法

强化学习前沿部分

- 9. 基于模型的深度强化学习
- 10. 模仿学习
- 11. 离线强化学习
- 12. 参数化动作空间
- 13. 目标导向的强化学习
- 14. 多智能体强化学习
- 15. 强化学习大模型
- 16. 技术交流与回顾

Contents

01 离线强化学习

02 BCQ算法

03 CQL算法

离线强化学习

- □ 动机: 在真实环境中从零开始训练一个强化学习智能体往往不可取
 - 风险较高,例如无人驾驶归控、智能医疗等
 - 十分昂贵, 例如机器人控制、推荐系统等

■ 离线强化学习:在一个给定的离线数据集上直接训练出智能体策略, 训练的过程中,智能体不得和环境做交互

□ 离线强化学习有潜力大大扩宽强化学习落地的范围

离线强化学习的不同

在线策略学习

(a) online reinforcement learning

离线策略学习 (b) off-policy reinforcement learning

离线强化学习

(c) offline reinforcement learning

□ 训练的过程中与环境交互:

- 在线策略学习与离线策略学习的智能体可以和 环境交互
- 离线强化学习的智能体不得和环境做交互
- □ 训练数据是否来自别的策略交互经验:
 - Yes 离线强化学习和离线策略学习
 - No 在线强化学习

离线强化学习的优势

- □ 离线强化学习在以下方面带来好处
 - 基于一个已有经验数据集,预训练一个强化学习策略
 - 基于一个已有经验数据集, 经验性地评测一个策略的好坏
 - 缩小学术界对强化学习的研究工作和真实世界中的落地应用的差距
- □ 离线强化学习让强化学习更像有监督学习

离线强化学习的主要科学问题和方法概览

- □ 离线强化学习面临的最重要的挑战是外延误差 (Extrapolation Error)
 - 也即是处理分布外 (out-of-distribution, OOD) 问题
 - 智能体如果涉足到了从没有见过的、远离数据集的状态动作对,怎么办?

□ 外延误差主要是由于数据集分布和当前策略 的占用度量不一致导致的

离线强化学习的主要科学问题和方法概览

- □ 离线强化学习面临的最重要的挑战是外延误差 (Extrapolation Error)
 - 也即是处理分布外 (out-of-distribution, OOD) 问题
 - 智能体如果涉足到了从没有见过的、远离数据集的状态动作对,怎么办?
- □ 离线强化学习的主要方法在于设计训练中的限制,从而避免分布外问 题,可以大致分为无模型的方法和基于模型的方法

无模型的方法

- - BCQ
 - BEAR
 - BRAC
 - CQL

- 显式限制 隐式限制
 - AWR
 - REM
 - BAIL

基于模型的方法

- 使用学习的模型估计不确定性
 - MORel
 - MOPO
 - COMBO

Q学习中的外延误差

- □ 离线强化学习面临的最重要的挑战是外延误差 (Extrapolation Error)
 - 也即是处理分布外(out-of-distribution,OOD)问题
 - 智能体如果涉足到了从没有见过的、远离数据集的状态动作对,怎么办?

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$$

如果a'是一个分布外的动作,怎么处理?

□ 外延误差会随着时序差分公式传播到非OOD 数据上的Q值估计

□ 对于经典表格型强化学习(Tabular RL Setting),BCQ的基本思路: 仅仅使用在数据集支撑上的目标Q值做时序差分的计算

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{\substack{a' \text{ s.t. } (s',a') \in \mathcal{B} \\ Q(S',a')}} Q(s',a'))$$

(Q仅考虑在数据集

支撑上的(s',a')

- □ 对于更广泛的连续动作强化学习设置, BCQ的基本思路 "仅仅使用在数据集支撑上的目标Q值做时序差分的计算"可以如下实现:
 - 使用一个生成模型,如变分自动编码器VAE,来生成距离数据集较近的 状态动作对

$$\pi(s) = \underset{a_i + \xi_{\phi}(s, a_i, \Phi)}{\operatorname{arg\,max}} Q_{\theta}(s, a_i + \xi_{\phi}(s, a_i, \Phi))$$
 在[-Φ,+Φ]的扰动

where
$$\{a_i \sim G_{\omega}(s)\}_{i=1}^n$$

生成模型,如变分自动编码器VAE

- 对于n和Φ的选择,形成了模仿学习和强化学习之间的一个权衡
 - n和Φ越小,越接近模仿学习,策略性能可能不好
 - n和Φ越大,越接近强化学习,但容易出OOD问题

Input: Batch \mathcal{B} , horizon T, target network update rate τ , mini-batch size N, max perturbation Φ , number of sampled actions n, minimum weighting λ .

Initialize Q-networks $Q_{\theta_1}, Q_{\theta_2}$, perturbation network ξ_{ϕ} , and VAE $G_{\omega} = \{E_{\omega_1}, D_{\omega_2}\}$, with random parameters θ_1 , θ_2 , ϕ , ω , and target networks $Q_{\theta'_1}, Q_{\theta'_2}$, $\xi_{\phi'}$ with $\theta'_1 \leftarrow \theta_1, \theta'_2 \leftarrow \theta_2, \phi' \leftarrow \phi$.

for t = 1 to T do

Sample mini-batch of N transitions (s, a, r, s') from $\mathcal B$

$$\mu, \sigma = E_{\omega_1}(s, a), \quad \tilde{a} = D_{\omega_2}(s, z), \quad z \sim \mathcal{N}(\mu, \sigma)$$

 $\omega \leftarrow \operatorname{argmin}_{\omega} \sum (a - \tilde{a})^2 + D_{KL}(\mathcal{N}(\mu, \sigma) || \mathcal{N}(0, 1))$

Sample *n* actions: $\{a_i \sim G_{\omega}(s')\}_{i=1}^n$

Perturb each action: $\{a_i = a_i + \xi_{\phi}(s', a_i, \Phi)\}_{i=1}^n$

Set value target y (Eqn. 13)

$$r + \gamma \max_{a_i} \left[\lambda \min_{j=1,2} Q_{\theta'_j}(s', a_i) + (1 - \lambda) \max_{j=1,2} Q_{\theta'_j}(s', a_i) \right]$$

 $\theta \leftarrow \operatorname{argmin}_{\theta} \sum (y - Q_{\theta}(s, a))^2$

 $\phi \leftarrow \operatorname{argmax}_{\phi} \sum Q_{\theta_1}(s, a + \xi_{\phi}(s, a, \Phi)), a \sim G_{\omega}(s)$

Update target networks: $\theta'_i \leftarrow \tau\theta + (1-\tau)\theta'_i$

$$\phi' \leftarrow \tau \phi + (1 - \tau) \phi'$$

end for

□ BCQ方法 (连续状态 和动作的版本)

VAE做模仿学习

乐观与保守估计之间的平衡

扰动函数ξ像是actor

BCQ: 批量限制Q学习的实验效果

CQL: 保守Q学习

- □ 思路:学习一个保守的、可作为价值下界的Q函数,以避免在OOD 数据上的过高估计
- □ 于是,对于一个新的学习策略μ,需要增加一个其遇见数据上的Q函数的惩罚 #除在数据支撑范围

 \square 使用 $\max \mu$ 操作来估计当前的学习策略 π ,为了增加覆盖度,加上正则

$$\min_{Q} \max_{\mu} \alpha \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] - \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right) \\
+ \frac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi_{k}} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right] + \mathcal{R}(\mu) \quad (CQL(\mathcal{R}))$$

CQL: 保守Q学习

$$\min_{Q} \max_{\mu} \alpha \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] - \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right) \\
+ \frac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi_{k}} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right] + \mathcal{R}(\mu) \quad (CQL(\mathcal{R}))$$

□ 经验上使用μ和均匀分布直接的KL散度作为正则项的实现

$$\mathcal{R}(\mu) = -D_{\mathrm{KL}}(\mu, \mathrm{Unif}(\mathbf{a}))$$

- □ CQL可以直接做基于 价值函数的训练
- 如果需要做策略训练, 则在训练价值函数Q 的同时,使用Soft AC 算法训练出策略π

Algorithm 1 Conservative Q-Learning (both variants)

- 1: Initialize Q-function, Q_{θ} , and optionally a policy, π_{ϕ} .
- 2: **for** step t in $\{1, ..., N\}$ **do**
- 3: Train the Q-function using G_Q gradient steps on objective from Equation $\boxed{4}$ $\theta_t := \theta_{t-1} \eta_Q \nabla_\theta \text{CQL}(\mathcal{R})(\theta)$ (Use \mathcal{B}^* for Q-learning, $\mathcal{B}^{\pi_{\phi_t}}$ for actor-critic)
- 4: (only with actor-critic) Improve policy π_{ϕ} via G_{π} gradient steps on ϕ with SAC-style entropy regularization: $\phi_t := \phi_{t-1} + \eta_{\pi} \nabla_{\phi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \pi_{\phi}(\cdot | \mathbf{s})} [Q_{\theta}(\mathbf{s}, \mathbf{a}) \log \pi_{\phi}(\mathbf{a} | \mathbf{s})]$
- 5: end for

CQL: 保守Q学习的实验

Task Name	SAC	BC	BEAR	BRAC-p	BRAC-v	$CQL(\mathcal{H})$
halfcheetah-random	30.5	2.1	25.5	23.5	28.1	35.4
hopper-random	11.3	9.8	9.5	11.1	12.0	10.8
walker2d-random	4.1	1.6	6.7	0.8	0.5	7.0
halfcheetah-medium	-4.3	36.1	38.6	44.0	45.5	44.4
walker2d-medium	0.9	6.6	33.2	72.7	81.3	79.2
hopper-medium	0.8	29.0	47.6	31.2	32.3	58.0
halfcheetah-expert	-1.9	107.0	108.2	3.8	-1.1	104.8
hopper-expert	0.7	109.0	110.3	6.6	3.7	109.9
walker2d-expert	-0.3	125.7	106.1	-0.2	-0.0	153.9
halfcheetah-medium-expert	1.8	35.8	51.7	43.8	45.3	62.4
walker2d-medium-expert	1.9	11.3	10.8	-0.3	0.9	98.7
hopper-medium-expert	1.6	111.9	4.0	1.1	0.8	111.0
halfcheetah-random-expert	53.0	1.3	24.6	30.2	2.2	92.5
walker2d-random-expert	0.8	0.7	1.9	0.2	2.7	91.1
hopper-random-expert	5.6	10.1	10.1	5.8	11.1	110.5
halfcheetah-mixed	-2.4	38.4	36.2	45.6	45.9	46.2
hopper-mixed	3.5	11.8	25.3	0.7	0.8	48.6
walker2d-mixed	1.9	11.3	10.8	-0.3	0.9	26.7

□ 在多个Gym环境和不同的数据集采样设置下,CQL几乎都能取得最好的策略性能

总结离线强化学习

■ 离线强化学习:在一个给定的离线数据集上直接训练出智能体策略, 训练的过程中,智能体不得和环境做交互

- □ 离线强化学习面临的最重要的挑战是外延误差 (Extrapolation Error)
 - 也即是处理分布外 (out-of-distribution, OOD) 问题
 - 智能体如果涉足到了从没有见过的、远离数据集的状态动作对,怎么办?
- □ 离线强化学习的主要方法在于设计训练中的限制,从而避免分布外问题,可以大致分为无模型的方法和基于模型的方法
- □ 离线强化学习的评测集:RL Unplugged, D4RL, NeoRL

THANK YOU