Weighted Model Counting with Conditional Weights for Bayesian Networks (Supplementary Material)

Paulius Dilkas¹

Vaishak Belle^{1,2}

¹School of Informatics, University of Edinburgh, Edinburgh, UK

²Alan Turing Institute, London, UK

1 PROOFS

Theorem 1. The function μ_{ν} is a measure.

Proof. Note that $\mu_{\nu}(\bot)=0$ since there are no atoms below \bot . Let $a,b\in 2^{2^U}$ be such that $a\wedge b=\bot$. By elementary properties of Boolean algebras, all atoms below $a\vee b$ are either below a or below b. Moreover, none of them can be below both a and b because then they would have to be below $a\wedge b=\bot$. Thus

$$\mu_{\nu}(a \lor b) = \sum_{\{u\} \le a \lor b} \nu(u) = \sum_{\{u\} \le a} \nu(u) + \sum_{\{u\} \le b} \nu(u)$$
$$= \mu_{\nu}(a) + \mu_{\nu}(b)$$

as required.

Theorem 3. For any set U and measure $\mu \colon 2^{2^U} \to \mathbb{R}_{\geq 0}$, there exists a set $V \supseteq U$, a factorable measure $\mu' \colon 2^{2^V} \to \mathbb{R}_{\geq 0}$, and a formula $f \in 2^{2^V}$ such that $\mu(x) = \mu'(x \land f)$ for all formulas $x \in 2^{2^U}$.

Proof. Let $V=U\cup\{f_m\mid m\in 2^U\}$, and $f=\bigwedge_{m\in 2^U}\{m\}\leftrightarrow f_m$. We define weight function $\nu\colon 2^V\to\mathbb{R}_{\geq 0}$ as $\nu=\prod_{v\in V}\nu_v$, where $\nu_v(\{v\})=\mu(\{m\})$ if $v=f_m$ for some $m\in 2^U$ and $\nu_v(x)=1$ for all other $v\in V$ and $x\in 2^{\{v\}}$. Let $\mu'\colon 2^{2^V}\to\mathbb{R}_{\geq 0}$ be the measure induced by ν . It is enough to show that μ and $x\mapsto \mu'(x\wedge f)$ agree on the atoms in 2^{2^U} . For any $\{a\}\in 2^{2^U}$,

$$\mu'(\{a\} \land f) = \sum_{\{x\} \le \{a\} \land f} \nu(x) = \nu(a \cup \{f_a\})$$
$$= \nu_{f_a}(\{f_a\}) = \mu(\{a\})$$

as required.

Lemma 1. Let $X \in \mathcal{V}$ be a random variable with parents $\operatorname{pa}(X) = \{Y_1, \dots, Y_n\}$. Then $\operatorname{CPT}_X \colon 2^{\mathcal{E}^*(X)} \to$

 $\mathbb{R}_{\geq 0}$ is such that for any $x \in \operatorname{im} X$ and $(y_1, \dots, y_n) \in \prod_{i=1}^n \operatorname{im} Y_i$,

$$CPT_X(T) = Pr(X = x | Y_1 = y_1, ..., Y_n = y_n),$$

where
$$T = \{\lambda_{X=x}\} \cup \{\lambda_{Y_i=y_i} \mid i = 1, ..., n\}.$$

Proof. If X is binary, then CPT_X is a sum of $2\prod_{i=1}^n |\operatorname{im} Y_i|$ terms, one for each possible assignment of values to variables X, Y_1, \ldots, Y_n . Exactly one of these terms is nonzero when applied to T, and it is equal to $\operatorname{Pr}(X=x\mid Y_1=y_1,\ldots,Y_n=y_n)$ by definition.

If X is not binary, then $\left(\sum_{i=1}^m [\lambda_{X=x_i}]\right)(T) = 1$, and $\left(\prod_{i=1}^m \prod_{j=i+1}^m (\overline{[\lambda_{X=x_i}]} + \overline{[\lambda_{X=x_j}]})\right)(T) = 1$, so $\operatorname{CPT}_X(T) = \Pr(X = x \mid Y_1 = y_1, \dots, Y_n = y_n)$ by a similar argument as before. \square

Lemma 2. Let $\mathcal{V} = \{X_1, \dots, X_n\}$. Then

$$\phi(T) = \begin{cases} \Pr(x_1, \dots, x_n) & \text{if } T = \{\lambda_{X_i = x_i}\}_{i=1}^n \text{ for} \\ & \text{some } (x_i)_{i=1}^n \in \prod_{i=1}^n \text{ im } X_i \\ 0 & \text{otherwise,} \end{cases}$$

for all $T \in 2^U$.

Proof. If $T = \{\lambda_{X=v_X} \mid X \in \mathcal{V}\}$ for some $(v_X)_{X \in \mathcal{V}} \in \prod_{X \in \mathcal{V}} \operatorname{im} X$, then

$$\phi(T) = \prod_{X \in \mathcal{V}} \Pr\left(X = v_X \middle| \bigwedge_{Y \in pa(X)} Y = v_Y\right)$$
$$= \Pr\left(\bigwedge_{X \in \mathcal{V}} X = v_X\right)$$

by Lemma 1 and the definition of a Bayesian network. Otherwise there must be some non-binary random variable $X \in \mathcal{V}$ such that $|\mathcal{E}(X) \cap T| \neq 1$. If $\mathcal{E}(X) \cap T = \emptyset$, then $(\sum_{i=1}^{m} [\lambda_{X=x_i}])(T) = 0$, and so $\mathrm{CPT}_X(T) = 0$, and

 $\phi(T)=0$. If $|\mathcal{E}(X)\cap T|>1$, then we must have two different values $x_1,x_2\in\operatorname{im} X$ such that $\{\lambda_{X=x_1},\lambda_{X=x_2}\}\subseteq T$ which means that $(\overline{[\lambda_{X=x_1}]}+\overline{[\lambda_{X=x_2}]})(T)=0$, and so, again, $\operatorname{CPT}_X(T)=0$, and $\phi(T)=0$.

Theorem 4. For any $X \in \mathcal{V}$ and $x \in \text{im } X$,

$$(\exists_U (\phi \cdot [\lambda_{X=x}]))(\emptyset) = \Pr(X = x).$$

Proof. Let $\mathcal{V} = \{X, Y_1, \dots, Y_n\}$. Then

$$(\exists_{U}(\phi \cdot [\lambda_{X=x}]))(\emptyset) = \sum_{T \in 2^{U}} (\phi \cdot [\lambda_{X=x}])(T)$$

$$= \sum_{\lambda_{X=x} \in T \in 2^{U}} \phi(T)$$

$$= \sum_{\lambda_{X=x} \in T \in 2^{U}} \left(\prod_{Y \in \mathcal{V}} \operatorname{CPT}_{Y} \right) (T)$$

$$= \sum_{(y_{i})_{i=1}^{n} \in \prod_{i=1}^{n} \operatorname{im} Y_{i}} \operatorname{Pr}(x, y_{1}, \dots, y_{n})$$

$$= \operatorname{Pr}(X = x)$$

by:

- the proof of Theorem 1 by Dudek et al. [2020];
- if $\lambda_{X=x} \not\in T \in 2^U$, then $(\phi \cdot [\lambda_{X=x}])(T) = \phi(T) \cdot [\lambda_{X=x}](T \cap \{\lambda_{X=x}\}) = \phi(T) \cdot 0 = 0$;
- Lemma 2;
- marginalisation of a probability distribution.

References

Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. ADDMC: weighted model counting with algebraic decision diagrams. In *The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pages 1468–1476. AAAI Press, 2020. ISBN 978-1-57735-823-7. URL https://aaai.org/ojs/index.php/AAAI/article/view/5505.