Name: Shrinivas Hatyalikar

Div: TY-B (B2) Roll No: 26

Q) Tiling using L shaped trominos

Approach:

- Use recursion to divide the grid into quadrants.
- Depending on the position of the missing tile within a quadrant, place three tiles in specific positions to cover the missing tile.
- Continue recursively dividing and placing tiles until reaching a base case (2x2 grid), where tiles are placed to fill the quadrant.

Code:

```
#include <stdio.h>
#include <string.h>
#include <math.h>
int size_of_grid, b, a, cnt = 0;
int arr[128][128];
void place(int x1, int y1, int x2,
           int y2, int x3, int y3)
    cnt++;
    arr[x1][y1] = cnt;
    arr[x2][y2] = cnt;
    arr[x3][y3] = cnt;
int tile(int n, int x, int y)
    int r, c;
    if (n == 2) {
        cnt++;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (arr[x + i][y + j] == 0) {
                    arr[x + i][y + j] = cnt;
            }
        return 0;
```

```
for (int i = x; i < x + n; i++) {
        for (int j = y; j < y + n; j++) {
            if (arr[i][j] != 0)
                r = i, c = j;
    // If missing tile is 1st quadrant
    if (r < x + n / 2 \&\& c < y + n / 2)
        place(x + n / 2, y + (n / 2) - 1, x + n / 2,
              y + n / 2, x + n / 2 - 1, y + n / 2);
    // If missing Tile is in 3rd quadrant
    else if (r >= x + n / 2 \&\& c < y + n / 2)
        place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
              y + n / 2, x + (n / 2) - 1, y + (n / 2) - 1;
   // If missing Tile is in 2nd quadrant
    else if (r < x + n / 2 \&\& c >= y + n / 2)
        place(x + n / 2, y + (n / 2) - 1, x + n / 2,
              y + n / 2, x + n / 2 - 1, y + n / 2 - 1);
   // If missing Tile is in 4th quadrant
    else if (r >= x + n / 2 \&\& c >= y + n / 2)
        place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
              y + (n / 2) - 1, x + (n / 2) - 1,
              y + (n / 2) - 1);
   // dividing it again in 4 quadrants
    tile(n / 2, x, y + n / 2);
    tile(n / 2, x, y);
    tile(n / 2, x + n / 2, y);
    tile(n / 2, x + n / 2, y + n / 2);
   return 0;
void print_line(char ch, int times)
    for (int i = 0; i < times; i++)
        printf("%c", ch);
int main()
    printf("Enter Size of grid (enter value n so that size becomes 2^n): ");
    scanf("%d", &size_of_grid);
   size of grid = (int)pow(2, size of grid);
```

```
// Initialize the array and set missing tile
    for(int i=0;i<size_of_grid;i++){</pre>
        for(int j=0;j<size_of_grid;j++){</pre>
            arr[i][j]=0;
    printf("Enter the coordinates (i,j) for the missing tile (0 based
indexing): ");
    scanf("%d %d", &a, &b);
    arr[a][b] = -1;
    tile(size_of_grid, 0, 0);
    char ab[] = "____|";
    print_line(' ', 1);
    for (int j = 0; j < size_of_grid; j++)</pre>
        print_line('_', 8);
    printf("\n");
    for (int i = 0; i < size_of_grid; i++)</pre>
        printf("|");
        for (int j = 0; j < size_of_grid; j++)</pre>
            printf("%2d\t|", arr[i][j]);
        printf("\n|");
        for (int j = 0; j < size_of_grid; j++)</pre>
            printf("%s", ab);
        printf("\n");
    return 0;
```

Output:

							2^n): 3 sed inde	xing): 2 3
9	9	8	8	4	4	3	3	-
9	7	7	8	4	2	2	3	-
10	7	11	-	 5	 5	2	6	-
10	10	11	11	1	 5	6	6	
 14	14	13	1	1	19	18	18	
 14 	12	13	 13	19	19	17	18	
 15	12	12	_ 16	20	17	17	21	
 15	15	16	_ 16	 20	20	21	 21	
S C:\L	l Jsers\she	 eh\OneDr	_l ive\Des	l_ ktop\C\o	l utput>	_	I	