Something About Prostate Cancer

Andrew Bates
November 15, 2018

Executive Summary

This is the executive summary. Unfortunately, it has to be typed in the .yaml header. The only other thing i can think of is to have a separate file for the abstract. I'm not sure I want to do this. But actually, this may not be so bad. Each section could have a different file. this might make things a bit easier to edit. because then i would only have to look at say, the conclusion file instead of having to scroll all the way down, passing it, srolling up, passing it, etc.

1 Introduction

this seems too short. maybe comibne w/methods again? call it something like Intro and Methods or Intro and Overview?

In this paper, we investigate the relationship between the results of various prostae related exams and whether tumor penetration of the prostatic capsule has occured. The objective of this analysis is to determine if there are any factors that have a particularly influential relationship with prostatic capsule penetration. Additionally, we wish to develop a model to predict capsule penetration so it can be used as a diagnostic tool for future patients.

2 Methods

In this analysis we examine a subset of data collected by the Ohio State University Comprehensive Cancer Center as part of a study to determine the potential of standard exam results to predict whether a tumor will penetrate the prostatic capsule. Out of 380 patients, 153 have experienced capsule penetration and 227 have not. The data set contains six explanatory variables: the patients age and race, results of a digital rectal exam (DRE), whether capsular involvement was detected, Prostatic Specific Antigen (PSA) value, and total Gleason score. For a detailed description of each variable see Table 1. There are two continuous variables, PSA and age, and the remaining variables are categorical. Observe that race is recorded as only Black or White. This may be the reason why three observations contain missing values for race. Perhaps three of the patients were neither Black nor White. However, without access to details of the study and the population considered, we can only speculate. Furthermore, the other variables in these observations do not point to any particular reason as to why race is not recorded Because of this, we decided to omit these three observations. The data set used for analysis then, consists of 377 observations. Of these, 151 patients have experienced tumor penetration of the prostatic capsule, and 226 have not.

To investigate the relationship between the covariates and tumor penetration status, we use a logistic regression model. The response is especially well balanced with 40% of the observations having capsular penetration and 60% not having penetration. As such, procedures designed to assist with

¹As in, some have experienced capusle penetration, the ages and PSA scores vary significantly across the observations, etc.

Table 1: Description of variables in the data set.

Name	Description	Details
penetrate	Tumor penetration of prostatic capsule?	Yes, no
age	Patient age	Years
race	Patient race	Black, White
dre	Results of digital rectal exam	No nodule, unilobar left, unilobar right, bilobar
caps	Detection of capsular involvement?	Yes, no
psa	Prostatic Specific Antigen value	mg/ml
gleason	Total Gleason score	0-10

Table 2: Results of digital rectal exam vs. whether tumor pentration of prostatic capsule occurred, marginalized by the digital rectal exam results.

	DRE Result						
	no nodule unilobar left unilobar right bilob						
No Penetration	80.8	63.4	47.4	34.6			
Penetration	19.2	36.6	52.6	65.4			

class imbalances, such as downsampling, are not considered in this analysis. In addition to the explanatory variables included in the data set, all two-way interaction terms are examined. Using this as a starting point, the model is chosen via a backwards elimination procedure using Akaike Information Criteria (AIC) as the model selection criterion. (variable name) is not significant at the 0.05 level so it is subsequently removed, along with its corresponding interaction terms.

log odds ratios were calculated, and predictions were made. predictive power was examined through a confusion matrix. What's more important here, false negatives or false positives?

3 Analysis

3.1 Exploratory Analysis

say something about the variable types and removing of missing values.

We begin by inspecting tables of the categorical variables against whether tumor penetration has occured. Rather than examing contingency tables of counts, we find it more informative to view tables marginalized by the covariates. This provides more context by allowing us to see, for example, the proportion of Black patients who had tumor penetration and the proportion who did not. Table 2 displays the proportion of patients who did and did not experience tumor penetration of the prostatic capsule grouped by the results of a digital rectal exam. It shows that the majority of patients who do not have a nodule have not experience tumor penetration. For those patients who did have a nodule, the rate of tumor penetration is reversed. The most pronounced difference is for patients who had a bilobar nodule with 65% experiencing tumor penetration. The relationship we see here tells us that DRE results will likely be a valuable predictor.

The relationship for the remaining categorical variables can be found in Tables 3 to 5 in the appendix.

Figure 1: Histogram of prostatic specific antigen value colored by whether tumor penetration of prostatic capsule occured.

For detection of capsular involvment and Gleason score, we find a similar story as DRE results. For patients where capsular involvement was detected, tumor penetration occurred at more than twice the rate than patients where involvement was not detected (35% vs. 75%). As Gleason score increases from zero to nine, the tumor penetration rate increases from zero to 92%. Where we do not see a significant change in the rate of tumor penetration is with race. Both Black and White patients have a tumor penetration rate of approximately 40%.

For the numeric variables, we examine summary statistics and plots of age and PSA grouped by whether prostatic capusle penetration has occured. Summary statistics and a box plot for age can be found in Table 6 and Figure 3. There is virtually no difference in the age distribution of patients who have experience tumor penetration and those who have not. As such, we do not expect it to make a significant contribution to our model. On the other hand, PSA value seems like it may be an important predictor. Figure 1 is a histogram of PSA value where color indicates tumor penetration of the prostatic capsule. The distribution has a similar shape for low PSA values however, for PSA values above 67 mg/ml there are no cases where tumor penetration has occured.

3.2 Modeling

To model the relationship between tumor penetration and the predictor variables, we use a logistic regression model. As most of the covariates are tests covering different aspects of the prostate, it is not hard to imagine there some of them connected in their relationship with tumor penetration. For this reason, the initial model is fit using all first-order interaction terms. This serves as the starting point for model selection which is done via stepwise regression with AIC as the selection criteria. The model chosen via the stepwise procedure includes race, age, DRE results, PSA value, and Gleason score as well as age interacted with DRE result and race interacted with PSA value. A detailed summary can be found in Table 8. We note here that the AIC is 391 and the p-values for age and race are quite high at 0.11 and 0.99, respectively.

Since some of the p-values of the model obtained via stepwise regression, we remove this terms and refit our model. Specifically, we remove age and race along with interaction terms associated with them. We can not justify keeping variables in interactions that themselves are not included in the model. Note that for this model, removing the relevant interaction terms actually means removing all interaction terms. Once this is done, we are left with a model that relates tumor penetration to just three variables: DRE results, PSA value, and Gleason score.

3.3 Diagnostics

To assess the model we use diagnostic tools on explanatory variable patterns² (EVP). We collapse the original data into groups where each group shares the same covariate values. Recall that one of the variables, PSA, is continous so we first cut the values into nonoverlapping bins. Then we fit the model to the EVPs using the number of original observations in each EVP as weights. Standardized Pearson residuals, Cook's distance, and leverage from the EVP model are what we use to perform our diagnostics. A plot of the residuals vs. fitted probabilities is shown in Figure 2. The dotted horizontal lines indicate the standard cut off values of -3, -2, 2, and 3. There are no discernible patterns in the residuals and they are scattered roughly equally about zero. For larger fitted probabilities there is a bit more variability in the residuals but nothing too concerning. One EVP (lower right hand corner of plot) is slightly smaller than the lowest cut off bound, having a value of -3.4. This is only a minor violation and the cut off values are simply rules-of-thumb so we consider this EVP satisfactory.

Further diagnostic plots can be found in Figure 4 in the appendix. Only one other EVP is of any concern as its Cook's distance and leverage values are both outside the standard cut off values. However, this EVP is also only faintly outside the boundaries³. Twenty two of the original observations are contained in this EVP. Given that the Cook's distance and leverage for this EVP are just barely outside their respective cut off, this is not enough justification to remove this many data points.

As a final diagnostic measure we perform a Homer-Lemeshow goodness-of-fit test using the model fit to the EVPs. The EVP data is separated into bins according of quantiles of the fitted values. Then observed and expected counts are computed for each bin and a χ^2 test is performed. This test is an overall assessment of how well the model fits the data. The obtained test statistic is 3.9 with a corresponding p-value of 0.42. The p-value may seem unfruitful at first as we are typically looking for small values. However in the situation at hand this is not the case. The null hypothesis in this test is that the model fits the data well so we do *not* want to reject the null in our situation. So based on this test our model seems to fit the data well and we can move on to inferences.

3.4 Inferences

log odds ratios were calculated, and predictions were made. predictive power was examined through a confusion matrix. What's more important here, false negatives or false positives?

²Also called covariate patterns.

 $^{^{3}}$ Cook's distance = 0.06, leverage = 0.3 with cutoff values of 0.05 and 0.28.

Figure 2: Pearson residuals vs. fitted values via Explanatory Variable Patterns (74). The horizontal reference lines indicate the usual residual cutoffs of +-2 and +-3.

4 Conclusion

Table 3: Race vs. whether tumor penetration of prostatic capsule has occured, marginalized by race.

	Race		
	white black		
No Penetration	59.8	61.1	
Penetration	40.2	38.9	

Table 4: Detection of capsular involvement vs. whether tumor pentration of prostatic capsule occured, marginalized by capsular involvement.

	Capsular Involvement no yes			
No Penetration	64.1	25.0		
Tumor Penetration	35.9	75.0		

Appendix

A Exploratory Analysis

- A.1 Tables
- A.2 Figures

B Model Building and Diagnostics

- **B.1** Intermediate Models
- **B.2** Diagnostics
- C R Code

Table 5: Total Gleason score vs. whether tumor penetration of prostatic capsule occured, marginalized by Gleason score.

	Gleason Score						
	0	4	5	6	7	8	9
No Penetration	100.0	100.0	91.0	72.5	43.3	20.7	7.7
Tumor Penetration	0.0	0.0	9.0	27.5	56.7	79.3	92.3

Table 6: Summary statistics of patient age grouped by whether tumor penetration of prostatic capsule occured.

	min	median	mean	max
No Penetration	50.0	67.0	66.3	79.0
Tumor Penetration	47.0	66.0	65.7	79.0

Table 7: Summary statistics for prostatic specific antigen value grouped by whether tumor penetration of prostatic capsule occured.

	min	median	mean	max
No Penetration	0.3	7.5	10.0	66.7
Tumor Penetration	1.4	12.9	23.1	139.7

Figure 3: Boxplot of age vs. whether tumor penetration of prostatic capsule occured.

Table 8: Coefficient, standard error, and p-value for model chosen via stepwise procedure. AIC = 391

Term	Estimate	SE	p-value
(Intercept)	-28.15	12.36	0.023
age	0.29	0.18	0.107
raceblack	-0.01	0.66	0.988
dreunilobar left	7.30	4.01	0.069
dreunilobar right	-0.29	4.20	0.944
drebilobar	2.67	5.29	0.614
psa	0.04	0.01	0.001
gleason	3.94	1.84	0.032
age:dreunilobar left	-0.10	0.06	0.095
age:dreunilobar right	0.03	0.06	0.646
age:drebilobar	-0.02	0.08	0.821
age:gleason	-0.04	0.03	0.110
raceblack:psa	-0.03	0.02	0.134

Figure 4: Diagnostic plots for the model fit on explanatory variable patterns. Left: Cook's distance vs. leverage. Right: squared Pearson standardized residuals vs. fitted probabilities