Problems for Lecture 18

4.

We know that the eigenvectors of a symmetric matrix form an orthonormal basis. Let's use this fact to find the eigenvectors that form the basis for Y.

Since $\lambda_1>\lambda_2>\cdots>\lambda_n$, we know that λ_i is the ith largest eigenvalue of S. Let's assume that q_i is the eigenvector corresponding to λ_i . Then, we can construct a subspace Y using the first i eigenvectors:

$$Y = \operatorname{span} q_1, q_2, \cdots, q_i$$

To show that q_1, q_2, \dots, q_i form a basis for Y, we need to show that they are linearly independent and span Y.

Linear independence:

Suppose there exist scalars c_1, c_2, \cdots, c_i such that

$$c_1q_1 + c_2q_2 + \cdots + c_iq_i = 0$$

Then, we can left-multiply both sides by q_i^T to get

$$c_1q_j^Tq_1+c_2q_j^Tq_2+\cdots+c_iq_j^Tq_i=0$$

Since q_1,q_2,\cdots,q_i form an orthonormal basis, $q_j^Tq_k=\delta_{jk}$ (Kronecker delta), so the above equation reduces to

$$c_j = 0$$

This shows that q_1, q_2, \dots, q_i are linearly independent.

Spanning:

Let $x \in Y$. Then, we can write x as a linear combination of q_1, q_2, \cdots, q_i :

$$x = a_1q_1 + a_2q_2 + \cdots + a_iq_i$$

where a_1, a_2, \cdots, a_i are scalars. Then,

$$x^T S x = (a_1 q_1 + a_2 q_2 + \dots + a_i q_i)^T S (a_1 q_1 + a_2 q_2 + \dots + a_i q_i)$$

Since q_1, q_2, \cdots, q_i are eigenvectors of S, we have

$$Sq_k = \lambda_k q_k$$

for $k=1,2,\cdots,i$. Using this fact, we can simplify the above equation as follows:

$$x^TSx = \lambda_1a_1^2 + \lambda_2a_2^2 + \cdots + \lambda_ia_i^2$$

Since $\lambda_1>\lambda_2>\cdots>\lambda_i$, the minimum value of x^TSx for $x\in Y$ occurs when $a_i=1$ and $a_k=0$ for $k\neq i$. In other words, the minimum value of x^TSx for $x\in Y$ is λ_i , and this minimum is achieved when $x=q_i$.

Therefore, we have shown that q_1,q_2,\cdots,q_i form a basis for Y, and that the minimum value of x^TSx/x^Tx for x in Y

10.

use elimination.