数据加载

数据预处理

数据可视化

csv格式数据加载

同1.1.x

xlsx格式数据加载

需要pip install openpyxl库 pd.read_excel('文件名.xlsx')

查看表结构

data.info()

查看前五行数据

data.head()

新增时间差列

data['时间差列'] = (data['结束时间列']data['开始时间列']).dt.days

修改列名

data.rename(columns={'病人ID':'患者 ID'}, inplace=True)

转换成数值类型

data['待转换列'] = pd.to_numeric(data['待转换的 列'],errors='coerce')

删除重复行

data = data.drop_duplicates()

使用sklearn.preprocessing数据预处理 库进行数据预处理

MinMaxScaler数据归一化方法 MinMaxScaler().fit transform(data['待归一

StandardScaler().fit_transform(data['待标准

StandardScaler数据标准化方法

LabelEncoder数据归一化方法 LabelEncoder().fit_transform(data['待归一化 列'])

化列'])

化列'])

计算分位数 1、下四分位数:

Q1 = data['待计算数值列'].quantile(0.25)

2、中位数:

Q2 = data['待计算数值列'].quantile(0.5)

3、上四分位数: Q3 = data['待计算数值列'].quantile(0.75)

计算四分位距IQR

IQR = Q3-Q1

计算合理值下限 Q1-IQR*1.5

计算合理值上限

Q3+IQR*1.5

使用drop反选

确定列名之后在选择

量'])

2.1.x知识点总结

pandas的绘图方法

箱线图法处理异常值

写法1

常值

示例: 柱状图

绘图数据源.plot(kind='bar', 柱状图的各种 参数)

超过合理值上限和低于合理值下限的就是异

写法2

示例: 饼图

绘图数据源.plot.pie(饼图的各种参数)

matplotlib.pyplot的绘图方法

散点图

plt.scatter(坐标]数据,坐标2数据)

特征变量选择

X = data[selected_features]

selected_features = [col for index,col in enumerate(data) if 2<=index<=9]

X = data.drop(columns = ['目标变量','非特征变

如果特征变量索引连续且数量多,用列表推导式

直接把列名一个一个复制上去

selected_features = ['特征列名1','特征列名2', ...]

data.columns可以答应出来data所有列名,带

目标变量选择

根据题目要求直接选择

使用sklearn.model_selection库中的 train_test_split函数进行数据集划分

1、自变量训练集,自变量测试集,目标变量 训练集,目标变量测试集合= train_test_split(自变量集, 因变量集, 测试 集比例, random_state=42)

2、测试集,训练集 = train_test_split(数 据全集,测试集比例,random_state=42)

特征和目标变量数据合并

特征和目标变量选择

合并特征和目标变量

pd.concat([特征变量,目标变量], axis =1) axis = 1 表示按照列进行合并

数据保存

数据集划分

同1.1.x

引号和逗号方便直接复制