Geben Sie für folgende Gleichung die Wahrheitstabelle an!

$$Y = X_1 \vee (X_2 \wedge X_3) = (X_1 \vee X_2) \wedge (X_1 \vee X_3)$$

Wie könnte man die Gültigkeit dieser Aussage alternativ beweisen?

Wahrheits tabelle:			$\left(\begin{array}{c} \chi_1 \vee (\chi_2 \chi_3) = (\chi_1 \vee \chi_2) \wedge (\chi_1 \vee \chi_3) \end{array} \right) \rightarrow \underline{klar} \ identisch!$		
χ,	χ ₂	\times_3	$X_2 \wedge X_2$	X1 V(X21 X3)	[(X1 V X2) 1 (X1 V X)
		1 1 1		0 0	· · · · · · · · · · · · · · ·
	1 A 1	0 0			· · · · · · · · · · · · · · · · · · ·
0	, J , ,	, N , ,	<u>/</u>		
1 1	0	0 0	0 1		
7 A A	0	. 1	0		· · · · · / · · · · ·
1 1	, / , ,	00	0 0	/	· · · · //· · · · · ·
1 Oder =	1/2 = 1	$\times_{1} \vee (\times_{2}$	1	1 1 1 1 1 1 1 1	
Init Distributions yesetz:					
$= \left[\left(X_{1} \vee X_{2} \right) \wedge \left(X_{1} \vee X_{3} \right) \right]$					

TD

Aufgabe 2 Exercise 2

Stellen Sie Gleichungen auf, um:

- (a) Antivalenz durch Disjunktion, Konjunktion und Negation
- (b) Äquivalenz durch Disjunktion, Konjunktion und Negation
- (c) Inversion durch NAND
- (d) Inversion durch NOR
- (e) Konjunktion durch Disjunktion und Negation
- (f) Disjunktion durch Konjunktion und Negation

zu realisieren. Weisen Sie die Korrektheit Ihrer Ergebnisse anhand der zugehörigen Wahrheitstabellen nach!

a)
$$A \oplus B = (A_{\Lambda}(7B))_{V}((7A)_{\Lambda}B)$$

b)
$$A \equiv B = \overline{A \oplus B}$$

$$= ((7A)_{\Lambda} B)_{V}(A_{\Lambda} G^{3})$$

$$C \mid \neg A \mid = \overline{A_{\Lambda} A}$$

$$d \setminus A = \overline{A \setminus A}$$

$$e \mid A \wedge B = (7A) \vee (7B)$$

$$f) \quad A \quad V \quad B = \overline{(\gamma A) \quad (\gamma B)}$$