ECE4634 Digital Communications Fall 2007

Instructor: R. Michael Buehrer

Lecture #20: Non-coherent

Reception

Introduction

- Many of the previous receiver models assume that a coherent carrier reference is available
 - We must know the absolute phase of the unmodulated carrier signal.
- Phase knowledge isn't necessary for ASK or FSK
 - However, better performance is possible if this phase is known as we will see later
- With PSK, knowledge of the reference is crucial unless modulation is differential
- Today we will examine non-coherent receivers
- What to read Section 7.6

- Do we know which BPSK symbol is transmitted just from the received signal?
- How about if we know the reference?

Noncoherent Receivers

- Up to this point, we have usually assumed that receivers are coherent (i.e. they are able to detect and track the phase of the signal).
 - For telephone lines, fixed microwave links, and some fixed satellite links, coherent reception is frequently possible.
- While there are practical circuits (phase-locked loops)
 which accomplish this (or an unmodulated pilot signal
 can be sent), in many cases strict phase synchronization
 is not possible.
 - For many mobile and wireless systems, multipath components and movement of the receiver prevent phase synchronization.

Coherent vs. Non-coherent Receivers

- For coherent reception we need to know the absolute phase of the incoming signal to determine the information
- Non-coherent reception we do not need to know the absolute phase

Transmitted Signal
$$s(t) = A_c \cos \left[\omega_c t + \frac{2\pi}{M} m(t) \right]$$
 Received Signal
$$r(t) = A_c \cos \left[\omega_c t + \frac{2\pi}{M} m(t) + \underbrace{\theta_o}_{\substack{phase \\ offset}} \right] + \underbrace{n(t)}_{noise}$$

Coherent Receiver - PSK

$$r(t) = \cos(2\pi f_c t + m(t)) + n(t)$$

RM Buehrer Virginia Tech Fall 2007 Received signal and local reference differ only by the data m(t). They are thus *coherent* with each other. $(\theta_0=0)$

Impact of phase offset - PSK

$$R_{1} = \int_{0}^{T_{b}} A_{c} \cos \left[\omega_{c} t + \frac{2\pi}{M} m(t) + \theta_{o} \right] \cos(\omega_{c} t) dt \qquad \theta_{o} = \text{phase difference between incoming carrier and locally generated sinusoid}$$

$$= \int_{0}^{T_{b}} \frac{A_{c}}{2} \left(\cos \left[2\omega_{c} t + \frac{2\pi}{M} m(t) + \theta_{o} \right] + \cos \left[\frac{2\pi}{M} m(t) + \theta_{o} \right] \right) dt$$

$$= \frac{A_{c} T_{b}}{2} \cos \left[\frac{2\pi}{M} m(t) + \theta_{o} \right]$$

$$R_{2} = \int_{0}^{T_{b}} A_{c} \cos \left[\omega_{c} t + \frac{2\pi}{M} m(t) + \theta_{o} \right] \sin(\omega_{c} t) dt$$

$$= \int_{0}^{T_{b}} \frac{A_{c}}{2} \left(\sin \left[2\omega_{c} t + \frac{2\pi}{M} m(t) + \theta_{o} \right] + \sin \left[\frac{2\pi}{M} m(t) + \theta_{o} \right] \right) dt$$

$$= \frac{A_{c} T_{b}}{2} \sin \left[\frac{2\pi}{M} m(t) + \theta_{o} \right] \qquad \text{In order to make proper}$$

RM Buehrer Virginia Tech Fall 2007 In order to make proper decisions, θ_o must be zero!

Coherent vs. Non-coherent Receivers

Example: QPSK

Types of Noncoherent Reception

- PSK and QAM signals represent information with the phase of the signal.
- In many cases, even though it is not possible to detect the absolute phase of a signal, it is possible to detect the difference in phase from one symbol to the next.
 - "Differentially" Coherent compromise between fully coherent and noncoherent
- For FSK with sufficiently spaced tones, demodulation can be accomplished with no phase information using a noncoherent receiver.
- With ASK demodulation can be accomplished using a non-coherent receiver.

Differential Encoding of Data

Consider BPSK modulation:

$$0 \Rightarrow s(t) = \sqrt{2P} \cos(2\pi f_C t) \Big|_0^T$$

$$1 \Rightarrow s(t) = \sqrt{2P} \cos(2\pi f_C t + \pi) \Big|_0^T = -\sqrt{2P} \cos(2\pi f_C t) \Big|_0^T$$

Differential Encoding Transforms Raw Data:

Rule: "Change the phase if input data is a 1"

Example of Differential Encoding

Initial condition

Example of Differential Encoding – View 1

 d_i :

 d_{i-1}' :

 $d_i^{'}$

Phase:0

-)
- π
- π
- π

Use BPSK modulation on differentially encoded data

Example of Differential Encoding – View 2

Original data causes *changes in the phase*

- Differential Encoding can be used with either coherent detection or non-coherent detection
- Coherent detection still requires differential decoding
- Non-coherent detection requires differential detection which also inherently involves differential decoding

Differential Decoding Data

 If we coherently detect the signal we follow it with differential decoding

 Differential decoding is accomplished by multiplying the current bit estimate by the previous:

modulo 2 addition for bits

Rx Phase	0	π	π	0	π	0	0	
\hat{d}_{i-1} :	0	0	1	1	0	1	0	
$\hat{d_i}'$:	0	1	1	0	1	0	0	
\hat{d}_i :	0	1	0	1	1	1	0	

Original Bits

Differential Reception

$$R_{_{1}}^{i} = \frac{A_{c}T_{b}}{2}\cos\left[\frac{2\pi}{M}m_{i}(t) + \theta_{o}\right]$$

$$R_{2}^{i} = \frac{A_{c}T_{b}}{2}\sin\left[\frac{2\pi}{M}m_{i}(t) + \theta_{o}\right]$$

$$R_1 = R_1^i R_1^{i-1} + R_2^i R_2^{i-1}$$

$$R_2 = R_2^i R_1^{i-1} - R_1^i R_2^{i-1}$$

$$R_1 = \cos\left(\frac{2\pi}{M}\left[m_i(t) - m_{i-1}(t)\right]\right)$$

$$R_2 = \sin\left(\frac{2\pi}{M} \left[m_i(t) - m_{i-1}(t)\right]\right)$$

- •Phase offset eliminated!
- •Difference between consecutive phases tells us the change in the phase which is the info

Example of Differential Detection

$$\theta(i)$$
 :

$$\theta_{o}$$

$$\theta_0 + \pi$$

$$\theta_{o}$$
 $\theta_{o} + \pi$ θ_{o} $\theta_{o} + \pi$ θ_{o} $\theta_{o} + \pi$ θ_{o}

$$\theta_0 + \pi \quad \theta_0$$

$$\theta_{0}$$

$$\theta$$
(i-1):

$$\theta_{\mathsf{o}}$$

$$\theta_0 + \pi$$

$$\theta_{o} + \pi$$
 $\theta_{o} + \pi$ θ_{o} $\theta_{o} + \pi$ θ_{o}

$$\theta_0 + \pi \theta$$

$$\Delta\theta$$
(i):

 π

0

 π

 π

 π

0

Initial condition

Original Bits

Example of Differential Decoding - With Error

Noise causes 2 errors

Practical Application: $\pi/4$ DQPSK

- Used in North American Digital Cellular Standard
 - IS-54/IS-136 (SunCom phones in Southwest Va)
- Like regular QPSK except
 - Differential encoding is used so that information is represented by the difference in phase between symbols
 - Phase shifts by a factor $\pi/4$ each symbol period to help maintain synchronization
- Thus θ_i = phase during symbol period i θ_{i+1} = phase during symbol period i+1= $\theta_i + \pi/4 + \pi m(t)/2, m(t) \in \{0,1,2,3\}$

Non-coherent Receiver for FSK

Received Signal r(t)

 $\sin(2\pi f_2 t + \psi_1)$

RM Buehrer Virginia Tech Fall 2007

Note: Phases of internally generated sinusoids are not matched to incoming sinusoids.

21

Analog and Digital Communications

Assume that f₁ is sent:

$$V_{1} = \int_{0}^{T} \sqrt{P} \cos(2\pi f_{1}) \cos(2\pi f_{1} + \psi) dt$$

$$V_{2} = \int_{0}^{T} \sqrt{P} \sin(2\pi f_{1}) \cos(2\pi f_{1} + \psi) dt$$

$$= \frac{\sqrt{P}}{2} \int_{0}^{T} \cos(4\pi f_{1} + \psi) dt + \frac{\sqrt{P}}{2} \int_{0}^{T} \cos(\psi) dt$$

$$\approx \frac{\sqrt{PT}}{2} \cos(\psi)$$

$$V_{3} = \int_{0}^{T} \sqrt{P} \cos(2\pi f_{2}t) \cos(2\pi f_{1}t + \psi) dt$$

$$= \frac{\sqrt{P}}{2} \int_{0}^{T} \cos(2\pi (f_{1} + f_{2}) + \psi) dt$$

$$\approx 0$$

$$V_4 = \int_0^T \sqrt{P} \sin(2\pi f_2 t) \cos(2\pi f_1 t + \psi) dt$$

$$= \frac{\sqrt{P}}{2} \int_0^T \sin(2\pi (f_1 + f_2) t + \psi) dt + \frac{\sqrt{P}}{2} \int_0^T \sin(2\pi (f_1 - f_2) t + \psi) dt$$

$$\approx 0$$

RM Buehrer Virginia Tech Fall 2007

First statistic

$$R_{1} = \left(\frac{\sqrt{PT}}{2}\cos(\psi)\right)^{2} + \left(\frac{\sqrt{PT}}{2}\sin(\psi)\right)^{2}$$
$$= \frac{PT^{2}}{2}$$

Second statistic

$$R_2 = 0$$

- Statistics are independent of the phase offset Ψ .
- Same can be shown for ASK

- Coherent reception requires knowledge of the absolute phase of the incoming unmodulated signal
 - Requires phase recovery circuitry
 - Can be challenging in mobile or other difficult environments
- Non-coherent reception is possible for ASK and FSK since no information is in the phase
- Differential modulation/reception possible for PSK