

SEQUENCE LISTING

<120> N-TERMINALLY EXTENDED POLYPEPTIDES

<130> 0217us210

<170> PatentIn Ver. 2.1

<210> 1

<211> 497 <212> PRT

<213> Homo sapiens

<220>

<221> MOD RES

<222> (495)

<223> R or H

<400> 1

Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys

Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro

Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg

Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly

Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys Phe Gln Lys Val Lys Gly

Phe Gly Gly Ala Met Thr Asp Ala Ala Ala Leu Asn Ile Leu Ala Leu

Ser Pro Pro Ala Gln Asn Leu Leu Leu Lys Ser Tyr Phe Ser Glu Glu

Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe

Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu

His Asn Phe Ser Leu Pro Glu Glu Asp Thr Lys Leu Lys Ile Pro Leu

Ile His Arg Ala Leu Gln Leu Ala Gln Arg Pro Val Ser Leu Leu Ala

Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys Thr Asn Gly Ala Val Asn

Gly	Lys	Gly 195	Ser	Leu	Lys	Gly	Gln 200	Pro	Gly	Asp	Ile	Tyr 205	His	Gln	Thr
Trp	Ala 210	Arg	Tyr	Phe	Val	Lys 215	Phe	Leu	Asp	Ala	Tyr 220	Ala	Glu	His	Lys
Leu 225	Gln	Phe	Trp	Ala	Val 230	Thr	Ala	Glu	Asn	Glu 235	Pro	Ser	Ala	Gly	Leu 240
Leu	Ser	Gly	Tyr	Pro 245	Phe	Gln	Cys	Leu	Gly 250	Phe	Thr	Pro	Glu	His 255	Gln
Arg	Asp	Phe	11e 260	Ala	Arg	Asp	Leu	Gly 265	Pro	Thr	Leu	Ala	Asn 270	Ser	Thr
His	His	Asn 275	Val	Arg	Leu	Leu	Met 280	Leu	Asp	Asp	Gln	Arg 285	Leu	Leu	Leu
Pro	His 290	Trp	Ala	Lys	Val	Val 295	Leu	Thr	Asp	Pro	Glu 300	Ala	Ala	Lys	Tyr
Val 305	His	Gly	Ile	Ala	Val 310	His	Trp	Tyr	Leu	Asp 315	Phe	Leu	Ala	Pro	Ala 320
Lys	Ala	Thr	Leu	Gly 325	Glu	Thr	His	Arg	Leu 330	Phe	Pro	Asn	Thr	Met 335	Leu
Phe	Ala	Ser	Glu 340	Ala	Cys	Val	Gly	Ser 345	Lys	Phe	Trp	Glu	Gln 350	Ser	Val
Arg	Leu	Gly 355	Ser	Trp	Asp	Arg	Gly 360	Met	Gln	Tyr	Ser	His 365	Ser	Ile	Ile
Thr	Asn 370	Leu	Leu	Tyr	His	Val 375	Val	Gly	Trp	Thr	Asp 380	Trp	Asn	Leu	Ala
Leu 385		Pro	Glu	Gly	Gly 390	Pro	Asn	Trp	Val	Arg 395	Asn	Phe	Val	Asp	Ser 400
Pro	Ile	Ile	Val	Asp 405	Ile	Thr	Lys	Asp	Thr 410	Phe	Tyr	Lys	Gln	Pro 415	Met
Phe	Tyr	His	Leu 420	Gly	His	Phe	Ser	Lys 425	Phe	Ile	Pro	Glu	Gly 430	Ser	Gln
Arg	Val	Gly 435		Val	Ala	Ser	Gln 440	Lys	Asn	Asp	Leu	Asp 445	Ala	Val	Ala
Leu	Met 450		Pro	Asp	Gly	Ser 455		Val	Val	Val	Val 460	Leu	Asn	Arg	Ser
Ser 465		Asp	Val	Pro	Leu 470		Ile	Lys	Asp	Pro 475	Ala	Val	Gly	Phe	Leu 480

Glu Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp Xaa Arg 485 490

```
<210> 2
<211> 1551
<212> DNA
<213> Homo sapiens
<400> 2
atggctggca gcctcacagg attgcttcta cttcaggcag tgtcgtgggc atcaggtgcc 60
egecectgea tecetaaaag etteggetac ageteggtgg tgtgtgtetg caatgccaca 120
tactgtgact cetttgacec eccgacettt cetgecettg gtacetteag eegetatgag 180
aqtacacgca gtgggcgacg gatggagctg agtatggggc ccatccaggc taatcacacg 240
ggcacaggcc tgctactgac cctgcagcca gaacagaagt tccagaaagt gaagggattt 300
ggaggggcca tgacagatge tgetgetete aacateettg coetgteace ceetgeecaa 360
aatttgctac ttaaatcgta cttctctgaa gaaggaatcg gatataacat catccgggta 420
cccatggcca gctgtgactt ctccatccgc acctacacct atgcagacac ccctgatgat 480
ttccagttgc acaacttcag cctcccagag gaagatacca agctcaagat acccctgatt 540
caccgageae tgcagttgge ccagegtece gttteactee ttgccagece etggacatea 600
cccacttggc tcaagaccaa tggagcggtg aatgggaagg ggtcactcaa gggacagccc 660
ggagacatet accaccagae etgggecaga taetttgtga agtteetgga tgcetatget 720
gagcacaagt tacagttctg ggcagtgaca gctgaaaatg agccttctgc tgggctgttg 780
agtggatacc cettecagtg cetgggette acceetgaac atcagegaga ettaattgee 840
egtgacetag gtectacect egecaacagt acteaccaca atgteegeet acteatgetg 900
gatgaccaac gettgetget geeceactgg geaaaggtgg tgetgacaga eecagaagca 960
gctaaatatg ttcatggcat tgctgtacat tggtacctgg actttctggc tccagccaaa 1020
gccaccctag gggagacaca ccgcctgttc cccaacacca tgctctttgc ctcagaggcc 1080
tgtgtgggct ccaagttctg ggagcagagt gtgcggctag gctcctggga tcgagggatg 1140
cagtacagec acagcateat cacgaacete etgtaceatg tggteggetg gacegactgg 1200
aaccttgccc tgaaccccga aggaggaccc aattgggtgc gtaactttgt cgacagtccc 1260
atcattgtag acatcaccaa ggacacgttt tacaaacagc ccatgttcta ccaccttggc 1320
catttcagca agttcattcc tgagggctcc cagagagtgg ggctggttgc cagtcagaag 1380
aacgacctgg acgcagtggc attgatgcat cccgatggct ctgctgttgt ggtcgtgcta 1440
aaccgctcct ctaaggatgt gcctcttacc atcaaggatc ctgctgtggg cttcctggag 1500
acaateteae etggetacte catteacace tacetgtgge gtegecagtg a
<210> 3
<211> 6186
<212> DNA
<213> Artificial sequence
<220>
<221> exon
<222> (1225)..(1572)
 <223> Coding sequence for human FSH-alpha
<400> 3
gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg
 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg
                                                                      120
 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc
                                                                      180
 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt
                                                                      240
 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
                                                                      300
 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
                                                                      360
```

cccg	ссса	tt	gacgt	caat	a at	gaco	gtate	, tto	ccai	agt	aac	gcca	ata	ggga	ctttcc	420
attg	acgt	ca a	atgg	gtgga	c ta	ttta	acggt	aaa	actgo	cca	ctt	gca	gta	catc	aagtgt	480
atca	tato	jcc a	aagta	acgcc	c cc	tatt	gacg	t tca	atga	acgg	taaa	tgg	ecc (gcct	ggcatt	540
atgo	ccag	jta (catga	acctt	a tọ	ggac	tttc	cta	actt	ggca	gtac	atc	ac	gtat	tagtca	600
togo	tatt	ac	catg	gtgat	g co	gttt	tggc	agt	acat	caa	tggg	gcgt	gga	tagc	ggtttg	660
acto	acgg	igg a	attto	caag	t ct	ccac	ccca	tte	gacgt	caa	tggg	gagt	ttg ·	tttt	ggcacc	720
aaaa	tcaa	icg (ggact	ttcc	a aa	atgt	cgta	aca	acto	ccgc	ccca	ttga	acg (caaa	tgggcg	780
gtag	gcgt	gt a	acggt	ggga	g gt	ctat	ataa	gca	agago	ctct	ctg	gctaa	act a	agag	aaccca	840
ctgc	ttac	tg	gctta	tcga	a at	taat	acga	cto	acta	atag	ggaç	gacco	caa	gctg	gctagc	900
ttat	tgcg	ıgt i	agttt	atca	c ag	ıttaa	attg	cta	acgo	agt	cagt	gctt	ct	gaca	caacag	960
tete	gaac	tt a	aagct	gcag	t ga	ctct	ctta	ago	gtago	ctt	gcag	gaagt	tg o	gtcg	tgaggc	1020
actg	ggca	ıgg f	taagt	atca	a gg	ttac	aaga	cas	gttt	aag	gaga	ccaa	ata 🤄	gaaa	ctgggc	1080
ttgt	cgag	jac i	agaga	agac	t ct	tgcg	gtttc	tga	atago	gcac	ctat	tggt	ct t	tact	gacatc	1140
cact	ttgc	et t	ttctc	tcca	c ag	gtgt	ccac	tco	cagt	tca	atta	cago	etc 1	ttaaa	aagctt	1200
ggta	ccga	igc f	tegga	tccg	c ca		let A									1251
				acc Thr												1299
				gac Asp 30												1347
				ggc Gly												1395
				ccc Pro												1443
Gln				acc Thr												1491
				gtg Val												1539

•

Cys His Cys	Ser Thr C	ys Tyr Tyr I	His Lys Ser		,,,	
aacccgctga	tcagcctcga	ctgtgccttc	tagttgccag	ccatctgttg	tttgcccctc	1652
ccccgtgcct	tccttgaccc	tggaaggtgc	cactcccact	gtcctttcct	aataaaatga	1712
ggaaattgca	tegcattgte	tgagtaggtg	tcattctatt	ctggggggtg	gggtggggca	1772
ggacagcaag	ggggaggatt	gggaagacaa	tagcaggcat	gctggggatg	cggtgggctc	1832
tatggcttct	gaggcggaaa	gaaccagctg	gggctctagg	gggtatcccc	acgcgccctg	1892
tagcggcgca	ttaagcgcgg	cgggtgtggt	ggttacgcgc	agcgtgaccg	ctacacttgc	1952
cagegeceta	gcgcccgctc	ctttcgcttt	cttcccttcc	tttctcgcca	cgttcgccgg	2012
ctttccccgt	caagctctaa	atcggggcat	ccctttaggg	ttccgattta	gtgctttacg	2072
gcacctcgac	cccaaaaaac	ttgattaggg	tgatggttca	cgtagtgggc	catcgccctg	2132
atagacggtt	tttcgccctt	tgacgttgga	gtccacgttc	tttaatagtg	gactcttgtt	2192
ccaaactgga	acaacactca	accctatctc	ggtctattct	tttgatttat	aagggatttt	2252
ggggatttcg	gcctattggt	taaaaaatga	gctgatttaa	caaaaattta	acgcgaatta	2312
attctgtgga	atgtgtgtca	gttagggtgt	ggaaagtccc	caggctcccc	aggcaggcag	2372
aagtatgcaa	agcatgcatc	tcaattagtc	agcaaccagg	tgtggaaagt	ccccaggctc	2432
cccagcaggc	agaagtatgc	aaagcatgca	tctcaattag	tcagcaacca	tagtcccgcc	2492
cctaactccg	cccatcccgc	ccctaactcc	gcccagttcc	gcccattctc	cgccccatgg	2552
ctgactaatt	ttttttattt	atgcagaggc	cgaggccgcc	tctgcctctg	agctattcca	2612
gaagtagtga	ggaggctttt	ttggaggcct	aggcttttgc	aaaaagctcc	cgggagcttg	2672
tatatccatt	ttcggatctg	atcagcacgt	gatgaaaaag	cctgaactca	ccgcgacgtc	2732
tgtcgagaag	tttctgatcg	aaaagttcga	cagegtetee	gacctgatgc	agctctcgga	2792
gggcgaagaa	tctcgtgctt	tcagcttcga	tgtaggaggg	cgtggatatg	tcctgcgggt	2852
aaatagctgc	gccgatggtt	tctacaaaga	tcgttatgtt	tatcggcact	ttgcatcggc	2912
cgcgctcccg	attccggaag	tgcttgacat	tggggaattc	agcgagagcc	tgacctattg	2972
catctcccgc	cgtgcacagg	gtgtcacgtt	gcaagacctg	cctgaaaccg	aactgcccgc	3032
tgttctgcag	ccggtcgcgg	aggccatgga	tgcgatcgct	gcggccgatc	ttagccagac	3092
gagcgggttc	ggcccattcg	gaccgcaagg	aatcggtcaa	tacactacat	ggcgtgattt	3152
catatgcgcg	attgctgatc	cccatgtgta	tcactggcaa	actgtgatgg	acgacaccgt	3212

tgc cac tgc agc acc tgc tac tac cac aag agc taatctagag ggcccgttta 1592

cagtgogtcc gtcgcgcagg ctctcgatga gctgatgctt tgggccgagg actgccccqa 3272 agteeggeae etegtgeaeg eggatttegg etecaacaat gteetgaegg acaatggeeg 3332 3392 cataacagcq qtcattgact ggagcgaggc qatgttcggg gattcccaat acgaggtcgc 3452 caacatette ttetqqaqqe eqtqqttqqe ttqtatqqaq caqcaqacqe qetactteqa qeqqaqqeat ceggagettg caggategee geggeteegg gegtatatge teegcattgg 3512 tettgaceaa etetateaga gettggttga eggeaattte gatgatgeag ettgggegea 3572 gggtcgatgc gacgcaatcg tccgatccgg agccgggact gtcgggcgta cacaaatcgc 3632 ccgcagaagc gcggccgtct ggaccgatgg ctgtgtagaa gtactcgccg atagtggaaa 3692 ccgacgcccc agcactcgtc cgagggcaaa ggaatagcac gtgctacgag atttcgattc 3752 caccqccqcc ttctatqaaa ggttggqctt cggaatcgtt ttccgqqacg ccqqctgqat 3812 gatectecag egeggggate teatgetgga gttettegee caceceaact tgtttattge 3872 3932 agcttataat ggttacaaat aaagcaatag catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat gtatcttatc atgtctgtat 3992 4052 acceptegace tetagetaga gettggegta atcatggtea tagetgttte etgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt gtaaagcctg 4112 gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc ccgctttcca 4172 gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggcgg 4232 tttgcgtatt gggcgctctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg 4292 gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg 4352 ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa 4412 ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc acaaaaatcg 4472 acgetcaagt cagaggtgge gaaaccegae aggactataa agataccagg egttteceee 4532 tggaagetee etegtgeget eteetgttee gaccetgeeg ettaenggat acetgteege 4592 ctttctccct tcgggaagcg tggcgctttc tcaatgctca cgctgtaggt atctcagttc 4652 ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg 4712 ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc 4772 actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga 4832 gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg gtatctgegc 4892

caccgct	ggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	gaaaaaaagg	5012
atctcaa	gaa	gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	acgaaaactc	5072
acgttaa	ggg	attttggtca	tgagattatc	aaaaaggatc	ttcacctaga	tccttttaaa	5132
ttaaaaa	tga	agttttaaat	caatctaaag	tatatatgag	taaacttggt	ctgacagtta	5192
ccaatgc	tta	atcagtgagg	cacctatctc	agegatetgt	ctatttcgtt	catccatagt	5252
tgcctga	ctc	cccgtcgtgt	agataactac	gatacgggag	ggcttaccat	ctggccccag	5312
tgctgca	atg	ataccgcgag	acccacgete	accggctcca	gatttatcag	caataaacca	5372
gccagcc	gga	agggccgagc	gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	5432
tattaat	tgt	tgccgggaag	ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	5492
tgttgcc	att	gctacaggca	tegtggtgte	acgctcgtcg	tttggtatgg	cttcattcag	5552
ctccggt	tcc	caacgatcaa	ggcgagttac	atgateceec	atgttgtgca	aaaaagcggt	5612
tagetee	ttc	ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	5672
ggttatg	gca	gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	5732
gactggt	gag	tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	cgagttgctc	5792
ttgcccg	geg	tcaatacggg	ataataccgc	gccacatagc	agaactttaa	aagtgctcat	5852
cattgga	aaa	cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	5912
ttcgatg	taa	cccactcgtg	cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	5972
ttctggg	tga	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	6032
gaaatgt	tga	atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	6092
ttgtctc	atg	agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	6152
gcgcaca	ttt	ccccgaaaag	tgccacctga	cgtc			6186
<210>	4						
	5651						
	DNA						

<213> Artificial sequence

<222> (1231)..(1617) <223> Coding sequence for human FSH-beta

gaeggategg gagatetece gateceetat ggtegaetet eagtacaate tgetetgatg

ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg

60

120

<220> <221> exon

<400> 4

tctqctqaaq ccaqttacct tcqqaaaaaa agttgqtaqc tcttgatccg gcaaacaaac 4952

cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc	180
ttagggttag gegttttgeg etgettegeg atgtaeggge eagatataeg egttgaeatt	240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcc:atata	300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc	360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc	420
attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgeccagta catgacetta tgggacette etaettggca gtacatetae gtattagtea	600
tegetattae eatggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg	660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc	720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg	780
gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca	840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc	900
ttattgcggt agtttatcac agttaaattg ctaacgcagt cagtgcttct gacacaacag	960
totogaactt aagotgoagt gactototta aggtagoott goagaagttg gtogtgaggo	1020
actgggcagg taagtatcaa ggttacaaga caggtttaag gagaccaata gaaactgggc	1080
ttgtcgagac agagaagact cttgcgttte tgataggcac ctattggtct tactgacate	1140
cactttgcct ttctctccac aggtgtccac tcccagttca attacagctc ttaaaagctt	1200
ggtaccgagc tcggatctat cgatgccacc atg gag acc ctg cag ttc ttc ttc Met Glu Thr Leu Gln Phe Phe Phe 1 $$	1254
ctg ttc tgc tgc tag aag gcc atc tgc tgc aac agc tgc gag ctg acc Leu Phe Cys Cys Trp Lys Ala Ile Cys Cys Asn Ser Cys Glu Leu Thr 10 20	1302
aac atc acc atc gcc atc gag aag gag tgc cgc ttc tgc atc agc Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser $30 \hspace{1cm} 35 \hspace{1cm} 40$	1350
atc aac acc acc tgg tgc gcc ggc tac tgc tac acc cgc gac ctg gtg Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys Tyr Thr Arg Asp Leu Val $$45$$	1398
tac aag gac occ goc ogc coc aag atc cag aag acc tgc acc ttc aag Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys 60	1446

Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala 75 80 85	
gac age ctg tac acc tac ccc gtg gcc acc cag tgc cac tgc ggc aag Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys 90 95 100	1542
tgc gac agc gac agc acc gac tgc acc gtg cgc ggc ctg ggc ccc agc Cys Asp Ser Asp Ser Thr Asp Cys Thr Val Arg Gly Leu Gly Pro Ser 105 110 120	1590
tac tgc agc ttc ggc gag atg aag gag taactcgaga ctagagggcc Tyr Cys Ser Phe Gly Glu Met Lys Glu 125	1637
cgtttaaacc cgctgatcag cctcgactgt gccttctagt tgccagccat ctgttgtttg	1697
cccetccccc gtgccttcct tgaccctgga aggtgccact cccactgtcc tttcctaata	1757
aaatgaggaa attgcatcgc attgtctgag taggtgtcat tctattctgg ggggtggggt	1817
ggggcaggac agcaaggggg aggattggga agacaatagc aggcatgctg gggatgcggt	1877
gggetetatg gettetgagg eggaaagaac cagetgggge tetagggggt atececaege	1937
gccctgtagc ggcgcattaa gcgcggcggg tgtggtggtt acgcgcagcg tgaccgctac	1997
acttgccage gccctagege cegeteettt egetttette eetteettte tegecaegtt	2057
cgccggcttt ccccgtcaag ctctaaatcg gggcatccct ttagggttcc gatttagtgc	2117
tttacggcac ctcgacccca aaaaacttga ttagggtgat ggttcacgta gtgggccatc	2177
gccctgatag acggtttttc gccctttgac gttggagtcc acgttcttta atagtggact	2237
cttgttccaa actggaacaa cactcaaccc tatctcggtc tattcttttg atttataagg	2297
gattttgggg atttcggcct attggttaaa aaatgagctg atttaacaaa aatttaacgc	2357
gaattaattc tgtggaatgt gtgtcagtta gggtgtggaa agtccccagg ctccccaggc	2417
aggcagaagt atgcaaagca tgcatctcaa ttagtcagca accaggtgtg gaaagtcccc	2477
aggeteccea geaggeagaa gtatgeaaag eatgeatete aattagteag eaaceatagt	2537
cccgccccta actccgccca tcccgcccct aactccgccc agttccgccc attctccgcc	2597
ccatggctga ctaattttt ttatttatgc agaggccgag gccgcctctg cctctgagct	2657
attccagaag tagtgaggag gcttttttgg aggcctaggc ttttgcaaaa agctcccggg	2717
agcttgtata tccattttcg gatctgatca gcacgtgttg acaattaatc atcggcatag	2777
tatatcggca tagtataata cgacaaggtg aggaactaaa ccatggccaa gttgaccagt	2837
geogtteegg tgeteacege gegegaegte geoggagegg tegagttetg gaeegaeegg	2897

gag ctg gtg tac gag acg gtc cgg gtg ccc ggc tgc gcc cac cac gcc 1494

*-

ctcgggttct cccgggactt cgtggaggac gacttcgccg gtgtggtccg ggacgacgtg 2957 accetyttea teagegeggt ceaggaceag gtggtgeegg acaacacect ggcetgggtg 3017 tgggtgcgcg gcctggacga gctgtacgcc gagtggtcgg aggtcgtgtc cacgaacttc 3077 cgggacgcct ccggqccggc catgaccgag atcqqcqagc agccqtqqqq qcqqqaqttc 3137 gccctgcgcg acccggccgg caactgcgtg cacttcgtgg ccgaggagca qqactgacac 3197 gtgctacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt 3257 ttccgggacg ccggctggat gatcctccag cgcggggatc tcatgctgga gttcttcqcc 3317 caccccaact tgtttattgc agcttataat ggttacaaat aaagcaatag catcacaaat 3377 ttcacaaata aagcattttt ttcactgcat tctagttgtg qtttgtccaa actcatcaat 3437 gtatcttatc atgtctgtat accgtcgacc tctagctaga gcttggcgta atcatggtca 3497 tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acqaqccqqa 3557 agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 3617 cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atqaatcqqc 3677 caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac 3737 tegetgeget eggtegtteg getgeggega geggtateag eteacteaaa qqeqqtaata 3797 cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 3857 aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct 3917 gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa 3977 agataccagg cgtttccccc tggaagetec etegtgeget etectgttee gaccetgeeg 4037 cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcaatgctca 4097 cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacqaa 4157 cccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg 4217 gtaagacacg acttatcgcc actggcagca gccactggta acaggattag cagagcgagg 4277 tatgtaggcg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaagg 4337 acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc 4397 tettgateeg geaaacaaac caeegetggt ageggtggtt tttttgtttg caaqeaqeaq 4457 attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac 4517 gctcagtgga acgaaaactc acgttaaggg attttggtca tgagattatc aaaaaqqatc 4577

ttcacctaga	teetttaaa	ttaaaaatga	agttttaaat	caatctaaag	tatatatgag	4637
taaacttggt	ctgacagtta	ccaatgctta	atcagtgagg	cacctatctc	agcgatctgt	4697
		tgcctgactc tgctgcaatg				4757 4817
gatttatcag	caataaacca	gccagccgga	agggccgagc	gcagaagtgg	tcctgcaact	4877
ttatccgcct	ccatccagtc	tattaattgt	tgccgggaag	ctagagtaag	tagttcgcca	4937
gttaatagtt	tgcgcaacgt	tgttgccatt	gctacaggca	tegtggtgtc	acgctcgtcg	4997
tttggtatgg	cttcattcag	ctccggttcc	caacgatcaa	ggcgagttac	atgatecece	5057
atgttgtgca	aaaaagcggt	tagctccttc	ggtcctccga	tegttgtcag	aagtaagttg	5117
gccgcagtgt	tatcactcat	ggttatggca	gcactgcata	attctcttac	tgtcatgcca	5177
tccgtaagat	gcttttctgt	gactggtgag	tactcaacca	agtcattctg	agaatagtgt	5237
atgcggcgac	cgagttgctc	ttgcccggcg	tcaatacggg	ataataccgc	gccacatagc	5297
agaactttaa	aagtgctcat	cattggaaaa	cgttcttcgg	ggcgaaaact	ctcaaggatc	5357
ttaccgctgt	tgagatccag	ttcgatgtaa	cccactcgtg	cacccaactg	atcttcagca	5417
tcttttactt	tcaccagcgt	ttctgggtga	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	5477
aagggaataa	gggcgacacg	gaaatgttga	atactcatac	tcttcctttt	tcaatattat	5537
tgaagcattt	atcagggtta	ttgtctcatg	agcggataca	tatttgaatg	tatttagaaa	5597
aataaacaaa	taggggttcc	gcgcacattt	ccccgaaaag	tgccacctga	cgtc	5651

<210> 5 <211> 92 <212> PRT <213> Homo sapiens <400> 5

Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Val Gln Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser 50 50

Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr 65 70 75 80

Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser 85 90

```
<210> 6
<211> 111
<212> PRT
<213> Homo sapiens
<400> 6
Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu
Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys
Tyr Thr Arq Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln
Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro
Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr
Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys Thr Val
Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys Glu
<210> 7
<211> 6213
<212> DNA
<213> Artificial sequence
<220>
<221> exon
<222> (1225)..(1599)
<223> Coding sequence for modified FSH-alpha
gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg
                                                                      60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc
                                                                     180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt
                                                                     240
gattattgac tagttattaa tagtaatcaa ttacqqqqtc attagttcat aqcccatata
tqqaqttccq cqttacataa cttacqqtaa atqqcccqcc tqqctqaccq cccaacqacc
                                                                     360
cccqcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
                                                                     420
attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt
```

atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc g	cctggcatt	540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac g	tattagtca	600
tegetattae	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga t	agcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg t	tttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg c	aaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact a	gagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa g	ctggctagc	900
ttattgcggt	agtttatcac	agttaaattg	ctaacgcagt	cagtgcttct g	acacaacag	960
tctcgaactt	aagctgcagt	gactctctta	aggtagcctt	gcagaagttg g	tcgtgaggc	1020
actgggcagg	taagtatcaa	ggttacaaga	caggtttaag	gagaccaata ç	aaactgggc	1080
ttgtcgagac	agagaagact	cttgcgtttc	tgataggcac	ctattggtct t	actgacatc	1140
cactttgcct	ttctctccac	aggtgtccac	tcccagttca	attacagete t	taaaagctt	1200
ggtaccgagc	teggateege			ege aag tae g Arg Lys Tyr A S		1251
		eu Ser Val		gtg ctg cac Val Leu His		1299
				gtg cag gac Val Gln Asp		1347
		lu Asn Pro		cag ccc ggc Gln Pro Gly 55		1395
	n Cys Met G			gcc tac ccc Ala Tyr Pro 70		1443
				aac gtg acc Asn Val Thr 85		1491
	s Cys Val A			gtg acc gtg Val Thr Val		1539
ggc ttc aa Gly Phe Ly	g gtg gag a s Val Glu A 110	ac cac acc sn His Thr	gcc tgc cac Ala Cys His 115	tgc agc acc Cys Ser Thr	tgc tac Cys Tyr 120	1587
tac cac aa	g agc taato	tagag ggccc	gttta aaccc	ctga tcagcct	cga	1639

ctgtgccttc tagttgccag ccatctgttg tttgcccctc ccccgtgcct tccttgaccc 1699 tggaaggtgc cactcccact gtcctttcct aataaaatga ggaaattgca tcgcattgtc 1759 tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag ggggaggatt 1819 1879 gggaagacaa tagcaggcat gctggggatg cggtgggctc tatggcttct gaggcggaaa gaaccagetg gggetetagg gggtateece aegegeeetg tageggegea ttaagegegg 1939 cgggtgtggt ggttacgcgc agcgtgaccg ctacacttgc cagcgcccta gcgcccgctc 1999 2059 ctttcgcttt cttcccttcc tttctcgcca cgttcgccgg ctttccccgt caagctctaa atcggggcat ccctttaggg ttccgattta gtgctttacg gcacctcgac cccaaaaaac 2119 ttgattaggg tgatggttca cgtagtgggc catcgccctg atagacggtt tttcgccctt 2179 tgacgttgga gtccacgttc tttaatagtg gactcttgtt ccaaactgga acaacactca 2239 2299 accetatete ggtetattet tttgatttat aagggatttt ggggattteg geetattggt taaaaaatga gctgatttaa caaaaattta acgcgaatta attctgtgga atgtgtgtca 2359 2419 gttagggtgt ggaaagtccc caggctcccc aggcaggcag aagtatgcaa agcatgcatc tcaattagtc agcaaccagg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc 2479 aaagcatgca totcaattag toagcaacca tagtoocgco cotaactoog cocatoocgc 2539 ccctaactcc gcccagttcc gcccattctc cgccccatgg ctgactaatt ttttttattt 2599 atgcagagge egaggeegee tetgeetetg agetatteca gaagtagtga ggaggetttt 2659 ttggaggcct aggcttttgc aaaaagctcc cgggagcttg tatatccatt ttcggatctg 2719 atcagcacgt gatgaaaaag cctgaactca ccgcgacgtc tgtcgagaag tttctgatcg 2779 aaaagttega cagegtetee gacetgatge agetetegga gggegaagaa tetegtgett 2839 tcagcttcga tgtaggaggg cgtggatatg tcctgcgggt aaatagctgc gccgatggtt 2899 tctacaaaga tcgttatgtt tatcggcact ttgcatcggc cgcgctcccg attccggaag 2959 tgcttgacat tggggaattc agcgagagec tgacctattg catctcccgc cgtgcacagg 3019 3079 gtgtcacgtt gcaagacctg cctgaaaccg aactgcccgc tgttctgcag ccggtcgcgg aggccatgga tgcgatcgct gcggccgatc ttagccagac gagcgggttc ggcccattcg 3139 3199 gaccgcaagg aatcggtcaa tacactacat ggcgtgattt catatgcgcg attgctgatc cccatgtgta tcactggcaa actgtgatgg acgacaccgt cagtgcgtcc gtcgcgcagg 3259 ctetegatga getgatgett tgggeegagg aetgeecega agteeggeae etegtgeaeg 3319 eggatttegg etceaacaat gteetgaegg acaatggeeg cataacageg gteattgaet 3379 3439 ggagegagge gatgtteggg gatteceaat acgaggtege caacatette ttetggagge egtggttgge ttgtatggag cagcagaege getaettega geggaggeat ceggagettg 3499 caggategee geggeteegg gegtatatge teegcattgg tettgaccaa etetateaga 3559 3619 gettggttga eggeaattte gatgatgcag ettgggegca gggtcgatge gacgcaateg tccgatccgg agccgggact gtcgggcgta cacaaatcgc ccgcagaagc gcggccgtct 3679 ggaccgatgg ctgtgtagaa gtactcgccg atagtggaaa ccgacgcccc agcactcgtc 3739 3799 cgagggcaaa ggaatagcac gtgctacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt ttccgggacg ccggctggat gatcctccag cgcggggatc 3859 tcatgctgga gttcttcgcc caccccaact tgtttattgc agcttataat ggttacaaat 3919 aaagcaatag catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg 3979 gtttgtccaa actcatcaat gtatcttatc atgtctgtat accgtcgacc tctagctaga 4039 4099 gettggegta atcatggtea tagetgttte etgtgtgaaa ttgttateeg etcacaatte cacacaacat acqaqccqqa aqcataaagt gtaaaqcctq qgqtgcctaa tgagtgagct 4159 4219 aactcacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agetgcatta atgaategge caacgegegg ggagaggegg tttgcgtatt gggcgctctt 4279 cogetteete geteactgae tegetgeget eggtegtteg getgeggega geggtateag 4339 ctcactcaaa ggcggtaata cqqttatcca cagaatcagg ggataacgca ggaaagaaca 4399 tqtqaqcaaa aqqccaqcaa aaqqccaqqa accqtaaaaa qqccqcqttq ctqqcqtttt 4459 tecatagget eggececet gacgageate acaaaaateg acgeteaagt cagaggtgge 4519 4579 gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg 4639 tggcqctttc tcaatqctca cqctgtaggt atctcagttc ggtgtaggtc gttcgctcca 4699 agctqqqctq tqtqcacqaa cccccqttc agcccqaccq ctqcqcctta tccqqtaact 4759 atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta 4819 acaggattag cagagogagg tatgtaggog gtgctacaga gttcttgaag tggtggccta 4879 actacggcta cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttacct 4939 toggaaaaag agttggtago tottgatoog gcaaacaaac caccgotggt agoggtggtt 4999

tttttgtttg	caagcagcag	attacgcgca	gaaaaaaagg	atctcaagaa	gatcctttga	505
tcttttctac	ggggtctgac	gctcagtgga	acgaaaactc	acgttaaggg	attttggtca	5119
tgagattatc	aaaaaggatc	ttcacctaga	tccttttaaa	ttaaaaatga	agttttaaat	5179
caatctaaag	tatatatgag	taaacttggt	ctgacagtta	ccaatgctta	atcagtgagg	5239
cacctatctc	agcgatctgt	ctatttcgtt	catccatagt	tgcctgactc	cccgtcgtgt	5299
agataactac	gatacgggag	ggcttaccat	ctggccccag	tgctgcaatg	ataccgcgag	5359
acccacgctc	accggctcca	gatttatcag	caataaacca	gccagccgga	agggccgagc	5419
gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	tattaattgt	tgccgggaag	5479
ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	tgttgccatt	gctacaggca	5539
tegtggtgte	acgctcgtcg	tttggtatgg	cttcattcag	ctccggttcc	caacgatcaa	5599
ggcgagttac	atgatecece	atgttgtgca	aaaaagcggt	tagctccttc	ggtcctccga	5659
tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	ggttatggca	gcactgcata	5719
attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	gactggtgag	tactcaacca	5779
agtcattctg	agaatagtgt	atgeggegae	cgagttgctc	ttgcccggcg	tcaatacggg	5839
ataataccgc	gccacatagc	agaactttaa	aagtgctcat	cattggaaaa	cgttcttcgg	5899
ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	ttcgatgtaa	cccactcgtg	5959
cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	ttctgggtga	gcaaaaacag	6019
gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	gaaatgttga	atactcatac	6079
tetteetttt	tcaatattat	tgaagcattt	atcagggtta	ttgtctcatg	agcggataca	6139
tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	gcgcacattt	ccccgaaaag	6199
tgccacctga	catc					6213

<210> 8

<211> 5 <212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic peptide

<220>

<221> MOD_RES

<222> (5) <223> T or S

```
<400> 8
     Ala Ser Asn Ile Xaa
     1
     <210> 9
     <211> 6
     <212> PRT
     <213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
          peptide
    <220>
    <221> MOD_RES
    <222> (6)
    <223> T or S
     <400> 9
     Ser Pro Ile Asn Ala Xaa
     1
    <210> 10
    <211> 7
     <212> PRT
    <213> Artificial Sequence
    <223> Description of Artificial Sequence: Synthetic
          peptide
    <220>
     <221> MOD RES
    <222> (7)
    <223> T or S
     <400> 10
    Ala Ser Pro Ile Asn Ala Xaa
     <210> 11
     <211> 11
     <212> PRT
     <213> Artificial Sequence
     <223> Description of Artificial Sequence: Synthetic
          peptide
     <220>
     <221> MOD RES
    <222> (4)
<223> T or S
```

```
<220>
<221> MOD RES
<222> (8)
<223> T or S
<400> 11
Ala Asn Ile Xaa Ala Asn Ile Xaa Ala Asn Ile
<210> 12
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<220>
<221> MOD RES
<222> (4)
<223> T or S
<220>
<221> MOD RES
<222> (9)
<223> T or S
<220>
<221> MOD RES
<222> (14)
<223> T or S
 <400> 12
 Ala Asn Ile Xaa Gly Ser Asn Ile Xaa Gly Ser Asn Ile Xaa
 <210> 13
 <211> 13
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
      peptide
 <220>
 <221> MOD_RES
 <222> (5)
 <223> T or S
<220>
<221> MOD RES
<222> (9)
```

```
<223> T or S
<220>
<221> MOD RES
<222> (13)
<223> T or S
<400> 13
Ala Ser Asn Ser Xaa Asn Asn Gly Xaa Leu Asn Ala Xaa
                 5
<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (4)
<223> T or S
<220>
<221> MOD RES
<222> (7)
<223> T or S
<220>
<221> MOD RES
<222> (10)
<223> T or S
<400> 14
Ala Asn His Xaa Asn Glu Xaa Asn Ala Xaa
<210> 15
<211> 7
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (7)
<223> T or S
<400> 15
Gly Ser Pro Ile Asn Ala Xaa
```

```
5
1
<210> 16
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD RES
<222> (7)
<223> T or S
<220>
<221> MOD RES
<222> (13)
<223> T or S
<400> 16
Ala Ser Pro Ile Asn Ala Xaa Ser Pro Ile Asn Ala Xaa
1
         5
                                    10
<210> 17
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD_RES
<222> (4)
<223> T or S
<220>
<221> MOD RES
<222> (7)
<223> T or S
<220>
<221> MOD_RES
<222> (10)
<223> T or S
<400> 17
```

Ala Asn Asn Xaa Asn Tyr Xaa Asn Trp Xaa

1 5

```
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (5)
<223> T or S
<220>
<221> MOD_RES
<222> (9)
<223> T or S
<220>
<221> MOD RES
<222> (12)
<223> T or S
<400> 18
Ala Thr Asn Ile Xaa Leu Asn Tyr Xaa Ala Asn Xaa Thr
<210> 19
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<220>
<221> MOD RES
<222> (5)
<223> T or S
<220>
<221> MOD RES
<222> (9)
<223> T or S
<220>
<221> MOD RES
<222> (13)
<223> T or S
<400> 19
Ala Ala Asn Ser Xaa Gly Asn Ile Xaa Ile Asn Gly Xaa
                5
                                    10
```

```
<210> 20
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (5)
<223> T or S
<220>
<221> MOD_RES
<222> (9)
<223> T or S
<220>
<221> MOD RES
<222> (13)
<223> T or S
<400> 20
Ala Val Asn Trp Xaa Ser Asn Asp Xaa Ser Asn Ser Xaa
                  5
<210> 21
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (5)
<223> T or S
<220>
<221> MOD_RES
<222> (9)
<223> T or S
<220>
<221> MOD RES
<222> (13)
<223> T or S
<400> 21
Ala Val Asn Trp Xaa Ser Asn Asp Xaa Ser Asn Ser Xaa
                   5
```

```
<210> 22
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD RES
<222> (4)
<223> T or S
<220>
<221> MOD RES
<222> (7)
<223> T or S
<220>
<221> MOD RES
<222> (10)
<223> T or S
 <400> 22
 Ala Asn Asn Xaa Asn Tyr Xaa Asn Ser Xaa
 <210> 23
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 23
 Ala Asn Asn Thr Asn Tyr Thr Asn Trp Thr
                 5
  1
 <210> 24
 <211> 15
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Linker
 <400> 24
 Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
```

```
<210> 25
<211> 35
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 25
cqcaqatetq atqqctqqca qcctcacaqq attqc
                                                                   35
<210> 26
<211> 37
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
                                                                   37
coqqaattcc catcactqqc qacqccacaq qtaqqtq
<210> 27
<211> 35
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
acgcgagete geccetgeat ceetaaaage ttegg
                                                                   35
<210> 28
<211> 54
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
gcgttgacgg cagtcagagt tgacagaagg gccagccagc aaaggatagt catg
<210> 29
<211> 62
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 29
```

```
ctagcatgac tatcctttgc tggctggccc ttctgtcaac tctgactgcc gtcaacgcag 60
<210> 30
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
cctgctactg ctcccagcag cagtgaaaga gtccaaagtg gcagcatg
                                                                  48
<210> 31
<211> 56
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 31
ctagcatgct gccactttgg actotttcac tgctgctggg agcagtagca ggagct
                                                                  56
<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 32
cagctggcca tgggtacccg g
                                                                  21
<210> 33
<211> 4
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: N-terminal
      peptide addition
<400> 33
Ala Asn Ile Thr
<210> 34
<211> 7
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: N-terminal
      peptide addition
<400> 34
Ala Ser Pro Ile Asn Ala Thr
<210> 35
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 35
tgggcatcag gtgccaacat tacagcccgc ccctgcatcc ctaaaagc
                                                                48
<210> 36
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 36
tttactqttt tcqtaacaqt tttq
                                                                  24
<210> 37
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
gcagggggg gctgtaatgt tggcacctga tgcccacgac actgcctg
                                                                 48
<210> 38
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
```

<220>

```
<221> MOD RES
<222> (1)..(13)
<223> "Xaa" represents a variable amino acid
Ala Xaa Asn Xaa Thr Xaa Asn Xaa Thr Xaa Asn Xaa Thr
<210> 39
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (1)..(10)
<223> "Xaa" represents a variable amino acid
<400> 39
Ala Asn Xaa Thr Asn Xaa Thr Asn Xaa Thr
<210> 40
<211> 81
<212> DNA
<213> Artificial Sequence
<220>
<221> modified base
<222> (1)..(81)
<223> "n" represents a, t, c, g, other or unknown
<220>
<223> Description of Artificial Sequence: Primer
<400> 40
qtqtcqtqqq catcaggtgc cnnsaaydns achdnsaayd nsachdnsaa ydnsachqcc 60
cgcccctgca tccctaaaag c
<210> 41
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 41
ggcacctgat gcccacgaca ctgcctg
```

```
<210> 42
<211> 68
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<220>
<221> modified base
<222> (1)..(68)
<223> "nnn" is a mixture of trinucleotide codons for all
      natural amino acid residues, except proline
<400> 42
cqtqqqcatc aqqtqccaac nnnachaayn nnachaaynn nachgcccgc ccctgcatcc 60
ctaaaagc
<210> 43
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 43
gttggcacct gatgcccacg acactgcctg
                                                                    30
<210> 44
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (4)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (12)
<223> F or L
 Ala Phe Asn Xaa Thr Leu Asn Lys Thr Trp Asn Xaa Thr
```

```
<210> 45
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 45
Thr Met Asn Asn Thr Trp Asn Trp Thr Trp Asn Trp Thr
<210> 46
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<400> 46
Ala Leu Asn Ser Thr Gly Asn Leu Thr Val Asp Gly Thr
<210> 47
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 47
Ala Ser Asn Ser Thr Phe Asn Leu Thr Glu Asn Leu Thr
                                    10
<210> 48
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 48
Thr Arg Asn Val Thr Ile Asn Cys Thr Asn Ser Thr
                                10
```

<210> 49

```
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 49
Ala Leu Asn Trp Thr Tyr Asn Gly Thr Lys Asn Val Thr
<210> 50
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 50
Ala Ala Asn Trp Thr Val Asn Phe Thr Gly Asn Phe Thr
<210> 51
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD_RES
<222> (2)
<223> variable amino acid
<221> MOD RES
<222> (4)
<223> variable amino acid
Ala Xaa Asn Xaa Thr Val Asn Ser Thr Asn Val Thr
<210> 52
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 52
Ala Asn Asn Phe Thr Phe Asn Gly Thr Leu Asn Leu Thr
1
          5
<210> 53
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
   peptide
<400> 53
Ala Gly Asn Trp Thr Ala Asn Val Thr Val Asn Val Thr
                                  10
                5
<210> 54
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
    peptide
<400> 54
Ala Gly Asn Ser Thr Ser Asn Val Thr Gly Asn Trp Thr
      . 5
<210> 55
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
    peptide
<400> 55
Ala Val Asn Ser Thr Met Asn Ile His Ala Ile Pro Pro
 1
         5
<210> 56
<211> 13
<212> PRT
<213> Artificial Sequence
```

<223> Description of Artificial Sequence: Synthetic

peptide

```
<400> 56
Ala Gly Asn Gly Thr Val Asn Gly Thr Ile Asn Gly Thr
 1 5 . 10
<210> 57
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD RES
<222> (8)
<223> variable amino acid
<400> 57
Ala Val Asn Ser Thr Gly Asn Xaa Thr Gly Asn Trp Thr
                5
<210> 58
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 58
Ala Gly Asn Gly Thr Asn Gly Thr Ser Asn Leu Thr
<210> 59
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 59
Ala Met Asn Ser Thr Lys Asn Ser Thr Leu Asn Ile Thr
                5
<210> 60
<211> 10
<212> PRT
```

```
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 60
Ala Phe Asn Tyr Thr Ser Lys Asn Ser Thr
<210> 61
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 61
Ala Val Asn Ala Thr Met Asn Trp Thr Ala Asn Gly Thr
                5
                                 10
<210> 62
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 62
Ala Ser Asn Ser Thr Asn Asn Gly Thr Leu Asn Ala Thr
<210> 63
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 63
Ala Arg Asn Lys Thr Lys Asn Phe Thr Ile Asn Leu Thr
<210> 64
<211> 12
<212> PRT
<213> Artificial Sequence
```

```
/22N>
  <223> Description of Artificial Sequence: Synthetic
       peptide
  <400> 64
  Ala Pro Asn Ile Thr Asn Asp Thr Val Asn Met Thr
                  5
  <210> 65
  <211> 13
  <212> PRT
  <213> Artificial Sequence
  <223> Description of Artificial Sequence: Synthetic
        peptide
  <400> 65
  Ala Gln Asn Lys Thr Phe Asn Phe Thr Met Asn Cys Thr
  <210> 66
  <211> 13
  <212> PRT
  <213> Artificial Sequence
  <223> Description of Artificial Sequence: Synthetic
       peptide
  Ala Leu Asn Val Thr Trp Asn Cys Thr Leu Asn Leu Thr
                  5
  <210> 67
  <211> 10
  <212> PRT
<213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence: Synthetic
       peptide
  <400> 67
  Ala Leu Asn Thr Thr Trp Thr Asn Leu Thr
        5
  <210> 68
  <211> 10
  <212> PRT
  <213> Artificial Sequence
```

```
<223> Description of Artificial Sequence: Synthetic
    peptide
<400> 68
Ala Asn Thr Thr Asn Phe Thr Asn Glu Thr
                5
<210> 69
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 69
Ala Asn Trp Thr Asn Arg Thr Asn Cys Thr
<210> 70
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 70
Ala Asn Trp Thr Asn Phe Thr Asn Trp Thr
<210> 71
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
Pro Thr Gly Leu Ile Gly Thr Asn Phe Thr
<210> 72
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 72
Ala Asn Trp Thr Asn Lys Thr Asn Phe Thr
<210> 73
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 73
Ala Asn Asn Thr Asn Leu Thr Asn Ala Thr
<210> 74
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 74
Ala Asn Tyr Thr Asn Trp Thr Asn Phe Thr
<210> 75
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 75
Ala Asn Thr Thr Asn Gln Thr Asn Asp Thr
                5
                                   10
 1
<210> 76
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
```

peptide

```
<400> 76
Ala Asn Arg Thr Asn Trp Thr Asn Thr Thr
<210> 77
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 77
Pro Thr Ala Thr Asn His Thr Asn Ser Thr
      5
<210> 78
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 78
Ala Asn Trp Thr Asn Gln Thr Asn Gln Thr
1
<210> 79
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 79
Ala Asn Trp Thr Asn Trp Thr Asn Ala Thr
                5
<210> 80
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
```

```
<400> 80
Ala Asn Phe Thr Asn Lys Thr Asn Met Thr
       5
<210> 81
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 81
Ala Asn His Thr Asn Glu Thr Asn Ala Thr
<210> 82
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
    peptide
<220>
<221> MOD RES
<222> (3)
<223> C or W
<400> 82
Ala Asn Xaa Thr Asn Phe Thr Asn Glu Thr
        5
<210> 83
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
    peptide
<400> 83
Ala Asn Leu Asp Lys Leu His Lys His
 1
                5
<210> 84
<211> 11
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 84
Ala Asn Cys Phe Thr Asn Gln Thr Asn Phe Thr
 1 5
<210> 85
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 85
 Ala Asn Trp Thr Asn Trp Thr Asn Glu Trp Thr
            5
 <210> 86
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 86
 Ala Asn Cys Thr Asn Trp Thr Asn Cys Thr
  <210> 87
  <211> 10
  <212> PRT
  <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
       peptide
  <400> 87
  Cys His Pro Tyr Asn Trp Thr Asn Trp Thr
  <210> 88
  <211> 10
  <212> PRT
  <213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 88
Ala Asn Glu Thr Asn Tyr Thr Asn Glu Thr
<210> 89
<211> 7
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
    peptide
<400> 89
Ala Asn Trp Thr Asn Trp Thr
<210> 90
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 90
Ala Lys Pro Tyr Lys Ser Tyr Lys Phe Tyr
<210> 91
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
Ala Asn Ile Thr Asn Lys Thr Asn Trp Thr
<210> 92
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 92
Ala Asn Trp Thr Asn Met Thr Asn Ile Thr
                5
<210> 93
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<400> 93
Ala Asn Asn Thr Asn Arg Thr Asn Phe Thr
        5
<210> 94
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 94
Ala Asn Trp Thr Asn Trp Thr Asn Trp Thr
<210> 95
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 95
Ala Asn Trp Arg Thr Asn His Thr Asn Lys Thr
 1 5
<210> 96
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
```

```
peptide
<400> 96
Ala Asn Gln Thr Asn Ile Thr Asn Trp Thr
<210> 97
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 97
Ala Asn Phe Thr Asn Val Ala Thr Asn Gln Thr
    5
<210> 98
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD RES
<222> (1)
<223> most probable amino acid
<220>
<221> MOD RES
<222> (2)
<223> most probable amino acid
<220>
<221> MOD RES
<222> (5)
<223> variable amino acid
<220>
<221> MOD RES
<222> (9)
<223> most probable amino acid
```

<210> 99 <211> 10

<400> 98

1

Ala Asn Thr Thr Xaa Leu Thr Asn Lys Thr

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD RES
<222> (6)
<223> S or C
<400> 99
Ala Asn Lys Thr Asn Xaa Thr Asn Ile Thr
        5
<210> 100
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD RES
<222> (9)
<223> most probable amino acid
<400> 100
Ala Asn Trp Thr Asn Cys Thr Asn Ile Thr
                 5
<210> 101
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<220>
<221> MOD RES
<222> (6)
<223> F or L
<400> 101
Ala Asn Trp Thr Asn Xaa Thr Asn Trp Thr
                 5
<210> 102
<211> 10
```

```
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<400> 102
Cys Gln Leu Asp Arg Ser Thr Asn Glu Thr
<210> 103
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 103
Ala Asn Asn Thr Asn Tyr Thr Asn Trp Thr
 1
                 5
<210> 104
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 104
Ala Asn Asn Thr Asn Tyr Thr Asn Trp Thr
       5
<210> 105
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<400> 105
Ala Ala Asn Asp Thr Asn Trp Thr Val Asn Cys Thr
<210> 106
<211> 13
<212> PRT
```

```
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 106
Ala Thr Asn Ile Thr Leu Asn Tyr Thr Ala Asn Thr Thr
<210> 107
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 107
Ala Ala Asn Ser Thr Gly Asn Ile Thr Ile Asn Gly Thr
                 5
<210> 108
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 108
Ala Val Asn Trp Thr Ser Asn Asp Thr Ser Asn Ser Thr
       5
<210> 109
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 109
Ala Ser Pro Ile Asn Ala Thr Ser Pro Ile Asn Ala Thr
                 5
 1
                                    1.0
<210> 110
<211> 4
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Linker
<400> 110
Gly Gly Gly Gly
<210> 111
<211> 4
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Linker
Gly Asn Ala Thr
<210> 112
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 112
Asn Ser Thr Gln Asn Ala Thr Ala
<210> 113
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 113
Ala Asn Leu Thr Val Arg Asn Leu Thr Arg Asn Val Thr Val
```