ECE 214 - Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

20 February 2018

Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments "Analog System Lab Kit Pro" evaluation board are used to explore basic OpAmp circuits. The ideal OpAmp is compared to a real OpAmp. Negative feedback is used to generate the inverting amplifier, non-inverting amplifier, inverting integrator and inverting differentiator. Positive feedback is used to generate a Schmitt trigger.

Pre-Lab:

- 1. Review the ideal OpAmp circuits from ECE 210 and make sure you are able to calculate the $V_{OUT}(t)$ as a function of $V_{IN}(t)$ for each of the four OpAmp configurations shown in Figure 1. These OpAmps use negative feedback to achieve amplification within the active region of operation.
- 2. Use NGspice to analyze the inverting OpAmp circuit in Figure 1(a). Use the TL082 OpAmp model.
 - (a) Design the inverting OpAmp circuit to produce a gain of -4.7 V/V.
 - (b) Set the power supply voltages to ± 10 V.

Figure 1: Four basic OpAmp circuits using negative feedback.

(d) Inverting differentiator OpAmp circuit.

(c) Inverting integrator OpAmp circuit.

- (c) Set the input signal to a sine wave with an amplitude of 0.5 Vp at a frequency of 10 kHz.
- (d) Plot V_{OUT} and V_{IN} as a function of time. What is the gain and phase shift of the output with respect to the input? How do these compare with an ideal OpAmp?
- (e) Increase the amplitude of the input signal until the OpAmp saturates. Determine the positive and negative saturation voltage. How do the saturation voltages differ from an ideal OpAmp.
- (f) Reduce the amplitude back to 0.5 Vp and increase the frequency of the input signal. Does the gain or phase shift change with frequency? How does the frequency response of the TL082 OpAmp differ from an ideal OpAmp?
- 3. All OpAmp circuits can be modified to operate from a single rail voltage. This is illustrated for the Schmitt trigger circuit in Figure 2. In this circuit, $-V_{SUP} = 0$ V, and the inverting input (v_n) is biased at $+V_{SUP}/2$. Draw the schematic of the OpAmp configurations shown in Figure 1 when operated from a single rail voltage.
- 4. There are many ways to implement a Schmitt trigger. The circuit in Figure 2 uses an OpAmp with positive feedback. The output (V_{OUT}) is connected through resistor R_2 to the non-inverting input (v_p) of the OpAmp. When an Op Amp is configured with positive feedback: $v_p \neq v_n$. Rather V_{out} takes on one of only two values: $+V_{SUP}$ or $-V_{SUP}$. The output voltage $V_{OUT} = +V_{SUP}$ when $v_p > v_n$, and $V_{OUT} = -V_{SUP}$ when $v_p < v_n$. V_{OUT} transitions between $-V_{SUP}$ and $+V_{SUP}$ when $v_p = v_n$. The input voltages V_{IN} which cause the output to switch between $-V_{SUP}$ and $+V_{SUP}$, and between $+V_{SUP}$ and $-V_{SUP}$ are known as the trigger levels.

Analyze the Schmitt trigger shown in Figure 2(b) and determine the values of resistors R_1 and R_2 such that the Schmitt trigger levels are separated by more than 3.5 V, but less than 4.5 V. Assume the OpAmp is ideal and $+V_{SUP}=10$ V. With the chosen values of R_1 and R_2 , what are the two Schmitt trigger levels?

5. Use NGspice to simulate the transfer function of the Schmitt trigger circuit in Figure 2(b) with the resistor values you calculated in step 4. Use DC analysis to sweep the input voltage. Set the power supply voltage to 10 V. Set the input to a DC voltage. Analyze the behavior of this circuit using both the ideal OpAmp and the TL082 OpAmp.

(a) Schmidtt trigger circuit with dual rail voltages. (b) Schmitt trigger with a single rail voltage.

Figure 2: Schmitt trigger circuit using an Op Amp with positive feedback.

- (a) Simulate the output voltage as the input voltage is increased from 0 V to $+V_{SUP}$ V.
- (b) Simulate the output voltage as the input voltage is decreased from $+V_{SUP}$ V to 0 V.
- (c) What are the trigger levels for the Ideal and TL082 OpAmps.?
- (d) How does the TL082 OpAmp compare with an ideal OpAmp?

Make sure all axes on your graphs are properly labeled.

6. Do the simulated results for the TL082 OpAmp meet the requirement that the trigger levels are separated by more than 3.5 V, but less than 4.5 V? If not, adjust the values of R₁ and R₂ so that the trigger levels meet this requirement. Record the final values of R₁ and R₂ in your notebook.

Lab Procedure:

- 1. Locate the "OpAmp Type II Full" circuit on the TI "Analog System Lab Kit Pro" evaluation board. Use this circuit for all measurements described below.
- 2. Design and build an inverting OpAmp circuit with a gain of -4.7. (Use only components that are available "OpAmp Type II Full" circuit on the TI evaluation board.)
 - (a) Turn on the Dual Voltage Supply (PS) and turn all voltages down to zero. Set the Tracking Ratio knob fully clockwise till it clicks. Attach the ends of extra long wires between (a) the PS common, adjustable +20, and adjustable -20 volt terminals and (b) the "Main Power" GND, +10V, and -10V terminals on the TI evaluation board.
 - (b) Monitor the voltage on the display and adjust the voltage to +10 V. If none of the components on your board get hot and no smoke appears, things are going well. The power LEDs on the evaluation board should be illuminated. Use a DVM to verify that the correct voltages have been established at the rails of the OpAmp.
 - (c) Connect the function generator (FG) to the input of the OpAmp circuit. Adjust the FG to output a sine wave of 0.5 Vp at a frequency of 10 kHz. Connect one channel of the oscilloscope to the FG output and the other channel to the output of the OpAmp. What are the gain and phase shift of the output with respect to the input? How do these results compare with simulated predictions? Record the results in you notebook.
 - (d) Increase the amplitude of the input signal until the OpAmp saturates. Note that there are two saturation voltages, one positive and one negative. What does the output signal look like when the input signal is too large? Sketch the output of the OpAmp in saturation in your notebook. What is the maximum and minimum output voltage from the OpAmp? Record the results in your notebook and compare to the simulated results.
 - (e) Reduce the input signal back to 0.5 Vp and examine the OpAmps behavior at frequencies below 10 kHz. Does the gain or phase shift change? Now look at frequencies above 10 kHz. Briefly describe the results in your notebook as the frequency is decreased and increased.
 - (f) Increase the frequency until the phase shift goes from -180° to $-225^{\circ}(+135^{\circ})$. What is the gain at this frequency? Record the frequency and gain in your notebook. Reference this result in your table of contents.

- 3. Design and build a non-inverting OpAmp circuit with a gain of +11. (Use only components that are available on the TI evaluation board.)
 - (a) Repeat steps 2c through 2e above.
 - (b) Increase the frequency until the phase shift goes from 0° to -45° . What is the gain at this frequency? Record the frequency and gain in your notebook.
- 4. Build the inverting integrator circuit in Figure 1(c) with R= 1 k Ω and C= 0.1 μ F. The 1 M Ω resistor across the capacitor provides a DC path from the output to ground. What is the relationship between V_{OUT} and V_{IN} for this circuit?
 - (a) Connect a 1 Vp sine wave signal with a frequency of 1 kHz to the input of the integrator. Use the DC offset on the FG to stabilize the DC component of the output signal. What DC offset voltage was needed to keep the output signal centered around 0 V? What does the output signal look like? Is the amplitude and phase what you expect? Record the results in your notebook.
 - (b) Increase the frequency of the input signal. Explain and record in your notebook what happens to the output signal. You may need to utilize AC coupling and ensure you trigger the scope from the sine wave input signal, or use external triggering, to obtain a stable output signal.
 - (c) Experiment with square, triangular and sawtooth waves as inputs to the integrator. Does the circuit integrate properly? Record the input and output signals in your notebook.
- 5. Build the inverting differentiator shown in Figure 1(d) with R= 1 k Ω and C= 0.1 μ F. What is the relationship between V_{OUT} and V_{IN} for this circuit?
 - (a) Connect a 1 Vp sine wave signal with a frequency of 1 kHz to the input of the differentiator circuit. What does the output signal look like? Is the amplitude and phase what you expect? Record the results in your notebook.
 - (b) Input a triangular signal into the differentiator circuit. Does the circuit differentiate properly? Record the input and output signals in your notebook.
- 6. Build the Schmitt trigger circuit shown in Figure 2(b) with the resistor values you determined in step 6 of the Pre-Lab.
 - (a) Set the power supply to 10 V and measure the voltage before connecting it to the circuit.
 - (b) Set the function generator to produce a 8 V peak—to—peak triangular signal with a 5 V DC offset at a frequency of 500 Hz. Check the signal on the scope before connecting it to the circuit. It should oscillate between 1 V and 9 V.
 - (c) Determine if the Schmitt trigger works by measuring $V_{\rm OUT}$ and $V_{\rm IN}$ on the scope. Record in your lab notebook what you observe on the scope and make sure to measure the trigger levels that cause the output to change.
 - (d) Do your results agree with your Pre Lab simulations? If not, adjust the values of R_1 and R_2 so that the trigger levels are separated by at least 3.5 V but not more than 4.5 V. Record the final values of R_1 and R_2 in your notebook.

Post-Lab:

- 1. Compare the behavior of the TL082 OpAmp with the ideal OpAmp. What are the major differences between the Ideal and Real OpAmps?
- 2. Simulate the behavior of the inverting integrator circuit of step 4 using NGspice when the input to the integrator is a sine wave, square wave, triangular wave, and sawtooth wave. Compare the simulated results to the experimental results from step 4c of this lab. Record the NGspice schematic, the Matlab® ".m" code, the hspc file, and all simulation results in your notebook.
- 3. Make a entry for this Post Lab in the table of contents of your Lab Notebook: