Rafał Roter, Jędrzej Ruciński

Praca Domowa 3

Spis treści

1.	${f Zadanie}$	1
2.	Eksperymenty	1
	2.1. Wykres zgodny z ogólnie przyjętą konwencją	1
	2.2. Pytania	2
	2.3. Eksperyment 1	3
	2.4. Eksperyment 2	4
3.	Wyniki	5
	3.1. Poprawność udzielonych odpowiedzi	5
	3.2. Preferencie co do typu wykresu	6

1. Zadanie

W ramach pracy domowej należało przygotować 2 eksperymenty sprawdzające czy występują określone problemy z czytaniem danych z wykresów. Celem pracy było sprawdzenie czy 'dobre praktyki' opracowane lata temu faktycznie działają.

2. Eksperymenty

Nasze badania przeprowadziliśmy na dwóch grupach graczy League of Legends i sprawdziliśmy ich umiejętność czytania danych z dwóch typów grafów.

2.1. Wykres zgodny z ogólnie przyjętą konwencją

Wykres powtarzający się w obu eksperymentach był wzorowany na wykresach generowanych po każdej zakończonej rozgrywce.

Rysunek 1. Oryginalny wykres generowany po grze

Wygenerowaliśmy go korzystając z programu RStudio, a następnie korzystając z programów Adobe Photoshop i Inkscape upodobniliśmy go do wykresu widocznego powyżej.

Rysunek 2. Wygenerowany przez nas wykres

2.2. Pytania

W obu eksperymentach zadaliśmy graczom 3 pytania dotyczące zawartości wykresów:

- Który z graczy na pozycji leśnika zadał największą ilość obrażeń?
- Który z graczy zadał największą ilość obrażeń w całej grze?
- Czy Yorick zadał większą ilość od Ornna i Veigara razem wziętych? oraz pytanie podsumowujące o to który z wykresów wydał się im prostszy do zrozumienia.

2.3. Eksperyment 1

W ramach tego eksperymentu przeprowadzonego na grupie naszych znajomych-graczy, jako wykres niezgodny z 'dobrymi praktykami' utworzyliśmy wykres kołowy 3D ze zrzutowanymi portretami postaci na odpowiadające im fragmenty wykresu. Wykres ten przygotowaliśmy w RStudio, a zrzutowanie portretów wykonaliśmy w programie Adobe Photoshop.

```
\begin{array}{l} \textbf{library} \, (\, \text{rgl} \, ) \\ \textbf{library} \, (\, \text{plotrix} \, ) \\ \textbf{pie3D} \, (\, \text{damage} \, , \, \, \text{height} \, = \, 0.2 \, , \, \, \text{theta} \, = \, 1.1) \end{array}
```


Rysunek 3. Wykres kołowy

2.4. Eksperyment 2

Ten eksperyment przeprowadziliśmy na innej grupie graczy. W tym przypadku 'złym' wykresem był wykres słupkowy 3D z portretami postaci znajdującymi się na szczycie słupków.

Rysunek 4. Wykres słupkowy

3. Wyniki

3.1. Poprawność udzielonych odpowiedzi

Pierwszą zbadaną przez nas informacją w obu eksperymentach jest umiejętność poprawnego sczytywania danych z wykresów przez badanych. Okazuje się, że w obu eksperymentach wyniki są podobne - wykres zgodny z 'dobrymi praktykami' jest dużo prostszy do zrozumienia niż pozostałe typy utworzonych przez nas wykresów co widać na poniższych wykresach.

Rysunek 5. Eksperyment 1

Rysunek 6. Eksperyment 2

3.2. Preferencje co do typu wykresu

Jak widać na załączonych poniżej wykresach (które są identyczne), wszyscy badani określili, że preferują wykres 2D wygenerowany zgodnie z 'dobrymi praktykami'.

Which graph did you find easier to read from, and seemed the most transparent to you? 15 odpowiedzi

Rysunek 7. Preferencje 1

Which graph did you find easier to read from, and seemed the most transparent to you? 15 odpowiedzi

Rysunek 8. Preferencje $2\,$