EXAMEN DE CÁLCULO. GRADO EN INGEN. INFORM. DEL SOFTWARE. 22-06-2020

Se ha de contestar razonadamente. Cualquier resultado (no trivial) no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario no se valorará. No se permite usar calculadora.

- 1) Sea f una función real de variable real definida en todo R
- a) ξ puede tener f alguna asíntota vertical?
- b) Definir, con lenguaje matemático, cuando f es inyectiva e impar en R ¿Tiene inversa la función $f(x) = \sin(x)$ definida en R?

(0.4p.+0.6p.)

Solución.

a) La respuesta es afirmativa. Así, por ejemplo, la función

$$f(x) = \begin{cases} 1/x & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases} \quad \text{verifica} \quad \lim_{x \to 0^+} f(x) = +\infty \quad \text{y} \quad \lim_{x \to 0^-} f(x) = -\infty \,,$$

es decir, la recta x = 0 es asíntota vertical de f por la izquierda y por la derecha.

b) $f \text{ es inyectiva en } R \iff: \forall x_1, x_2 \in R / f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ $f \text{ es impar en } R \iff: f(-x) = -f(x), \forall x \in R$

La función $f(x) = \sin(x)$ no es inyectiva en R; así, por ejemplo, $\sin(0) = \sin(\pi) = 0$. Por tanto, no tiene inversa en R.

2) Supongamos que f es derivable en el intervalo abierto (a,b) y que $f'(x) \neq 0 \quad \forall x \in (a,b)$ ¿Cuántas raíces reales puede tener la ecuación f(x) = 0 en dicho intervalo? Determinar el número máximo de raíces reales de la ecuación $4 - x - 4/x^2 = 0$.

(0.3p.+0.7p.)

Solución.

Si f es derivable en (a,b) y $f'(x) \neq 0$ $\forall x \in (a,b)$ entonces la ecuación f(x) = 0 puede tener, a lo sumo, una raíz real en dicho intervalo, es decir, puede tener una o ninguna. Este resultado es consecuencia del teorema de Rolle.

La función $f(x) = 4 - x - 4/x^2$ es derivable en su dominio, es decir, en $R - \{0\}$.

Si
$$x \ne 0$$
, $f'(x) = -1 + 8x/x^4 = -1 + 8/x^3$, $f'(x) = 0 \Leftrightarrow x^3 = 8 \Leftrightarrow x = 2$

En cada uno de los intervalos $(-\infty, 0)$, (0, 2) y $(2, +\infty)$ la ecuación f(x) = 0 puede tener, a lo sumo, una raíz real. Además, x = 2 no es raíz de f(x) = 0. Así pues, el número máximo de raíces reales es tres.

3) Sea f la función real definida en el intervalo cerrado $I = \begin{bmatrix} -1, e^2 \end{bmatrix}$ de la forma siguiente:

$$f(x) = \begin{cases} x^2 - x & \text{si } x \in [-1, 1] \\ \log(x)/x & \text{si } x \in [1, e^2] \end{cases}$$
 log = logaritmo neperiano

- a) Utilizar las definiciones de derivadas laterales para estudiar, sin aplicar la regla de L'Hopital, la derivabilidad de f en x = 1 ξ es x = 1 un punto crítico de f en I?
- b) Obtener $f'(x) \forall x \in (-1, e^2)$ donde f sea derivable y determinar los puntos críticos de f en I.
- c) ¿Existe $m = \min$ de f(x), si $x \in I$? ¿Existe $M = \max$ máximo de f(x), si $x \in I$? obténganse, en su caso.

(1p.+0.7p.+0.7p.)

Solución.

a)

f es derivable por la izquierda en $x = 1 \iff \exists \lim_{h \to 0^-} \frac{f(1+h) - f(1)}{h} \in R$

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{(1+h)^{2} - (1+h) - (1-1)}{h} = \lim_{h \to 0^{-}} \frac{1+h^{2} + 2h - 1 - h}{h} = \lim_{h \to 0^{-}} \frac{h(1+h)}{h} = 1$$

f es derivable por la derecha en $x=1 \Leftrightarrow : \exists \lim_{h\to 0^+} \frac{f(1+h)-f(1)}{h} \in R$

$$\lim_{h \to 0^{+}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{+}} \frac{\frac{\log(1+h)}{1+h} - (1-1)}{h} = \lim_{h \to 0^{+}} \frac{\log(1+h)}{h(1+h)} = \lim_{h \to 0^{+}} \frac{h}{h(1+h)} = 1$$

Sabemos que $\log(1+x) \approx x$ si $x \to 0$ (infinitésimos equivalentes). Si $h \to 0^+$, $\log(1+h) \approx h$

Hemos obtenido que f es derivable tanto por la izquierda como por la derecha en x=1. Además, $f'(1^-) = f'(1^+) = 1$. Por tanto, f es derivable en x=1 y f'(1)=1.

x=1 no es un punto crítico de f ya que f es derivable en dicho punto y $f'(1) \neq 0$

b) f es derivable en todo punto $x \in (-1, e^2)$

$$f'(x) = \begin{cases} 2x - 1 & \text{si} \quad x \in (-1, 1) \\ \frac{1 - \log(x)}{x^2} & \text{si} \quad x \in (1, e^2) \end{cases}$$
 $f'(1) = 1$

Si
$$x \in (-1,1)$$
, $f'(x) = 0 \Leftrightarrow 2x - 1 = 0 \Leftrightarrow x = 1/2$

Si
$$x \in (1, e^2)$$
, $f'(x) = 0 \Leftrightarrow \log(x) = 1 \Leftrightarrow x = e$

Los puntos críticos de f en I son los puntos frontera del intervalo $(x=-1, x=e^2)$, los puntos interiores donde la derivada de f se anula (x=1/2, x=e) y los puntos interiores donde f no es derivable (no hay).

c) f es continua en $I = \begin{bmatrix} -1, e^2 \end{bmatrix}$. El teorema de Weierstrass nos garantiza la existencia tanto del máximo como del mínimo absoluto de la función f(x) para los $x \in I$.

Tanto el máximo como el mínimo se alcanzan en un punto crítico.

$$f(-1) = 2$$
, $f(e^2) = 2/e^2$, $f(1/2) = -1/4$, $f(e) = 1/e$
 $M = 2 = f(-1)$, $m = -1/4 = f(1/2)$

4) Dada la sucesión
$$\{a_n\} = \frac{1}{\sqrt{n^4 + 1}} + \frac{2}{\sqrt{n^4 + 2}} + \dots + \frac{n}{\sqrt{n^4 + n}}$$

Obtener, paso a paso, una sucesión mayorante y otra minorante de $\{a_n\}$ que nos permita obtener su límite.

(1.2p.)

Solución.

Para un n suficientemente grande se verifica:

$$\frac{1}{\sqrt{n^4 + 1}} > \frac{1}{\sqrt{n^4 + n}}$$

$$\frac{2}{\sqrt{n^4 + 2}} > \frac{2}{\sqrt{n^4 + n}}$$

$$\frac{2}{\sqrt{n^4 + 2}} > \frac{2}{\sqrt{n^4 + n}}$$

$$\frac{n - 1}{\sqrt{n^4 + n - 1}} > \frac{n - 1}{\sqrt{n^4 + n}}$$

$$\frac{n - 1}{\sqrt{n^4 + n}} > \frac{n - 1}{\sqrt{n^4 + n}} < \frac{n - 1}{\sqrt{n^4 + 1}}$$

$$\frac{n}{\sqrt{n^4 + n}} = \frac{n}{\sqrt{n^4 + n}}$$

$$\frac{n}{\sqrt{n^4 + n}} < \frac{n}{\sqrt{n^4 + 1}}$$

Por tanto,

$$a_n > \frac{1}{\sqrt{n^4 + n}} + \frac{2}{\sqrt{n^4 + n}} + \dots + \frac{n-1}{\sqrt{n^4 + n}} + \frac{n}{\sqrt{n^4 + n}} = \frac{1 + 2 + \dots + n - 1 + n}{\sqrt{n^4 + n}} = \frac{n(n+1)}{2\sqrt{n^4 + n}}$$

$$a_n < \frac{1}{\sqrt{n^4 + 1}} + \frac{2}{\sqrt{n^4 + 1}} + \dots + \frac{n-1}{\sqrt{n^4 + 1}} + \frac{n}{\sqrt{n^4 + 1}} = \frac{1 + 2 + \dots + n - 1 + n}{\sqrt{n^4 + 1}} = \frac{n(n+1)}{2\sqrt{n^4 + 1}}$$

Sucesión minorante:
$$\left\{\frac{n^2+n}{2\sqrt{n^4+n}}\right\}$$
; Sucesión mayorante: $\left\{\frac{n^2+n}{2\sqrt{n^4+1}}\right\}$

$$\lim_{n \to \infty} \frac{n^2 + n}{2\sqrt{n^4 + n}} = \lim_{n \to \infty} \frac{1 + 1/n}{2\sqrt{1 + \frac{1}{n^3}}} = \frac{1 + 0}{2\sqrt{1}} = \frac{1}{2} \qquad ; \qquad \lim_{n \to \infty} \frac{n^2 + n}{2\sqrt{n^4 + 1}} = \lim_{n \to \infty} \frac{1 + 1/n}{2\sqrt{1 + \frac{1}{n^4}}} = \frac{1 + 0}{2\sqrt{1}} = \frac{1}{2}$$

Aplicando el teorema de la sucesión intermedia resulta $\lim_{n\to\infty} \{a_n\} = \frac{1}{2}$

5) Estudiar el carácter de las series numéricas siguientes:

$$\sum_{n=1}^{\infty} \frac{\log(n)}{n} \qquad ; \qquad \sum_{n=1}^{\infty} \left(-1\right)^{n+1}$$

(0.6p.+0.6p.)

Solución.

a)

Para estudiar el carácter de la serie de términos no negativos $\sum_{n=1}^{\infty} \frac{\log(n)}{n}$ aplicamos el criterio de comparación con la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ que es divergente a $+\infty$.

 $\lim_{n\to\infty}\frac{\log(n)/n}{1/n}=\lim_{n\to\infty}\log(n)=+\infty \qquad \text{y la serie } \sum_{n=1}^\infty\frac{1}{n} \text{ es divergente. Por tanto, la serie dada también es divergente(a }+\infty\text{)}.$

Para estudiar el carácter de la serie $\sum_{n=1}^{\infty} (-1)^{n+1}$, tenemos en cuenta que el carácter de una serie nos lo da el carácter de la sucesión de sumas parciales de dicha serie.

$$s_1 = a_1 = (-1)^2 = 1$$

$$s_2 = a_1 + a_2 = 1 + (-1)^3 = 0$$

$$s_3 = a_1 + a_2 + a_3 = 0 + (-1)^4 = 1$$

$$s_4 = a_1 + a_2 + a_3 + a_4 = 1 + (-1)^5 = 0$$

En general, $s_n = \begin{cases} 0 & \text{si } n \text{ es par} \\ 1 & \text{si } n \text{ es impar} \end{cases}$

La sucesión $\{s_n\}$ es oscilante. Por tanto, la serie $\sum_{n=1}^{\infty} (-1)^{n+1}$ es oscilante.

6) Sea
$$f(x) = \begin{cases} sen(x/2) & \text{si } x \le 0 \\ x^2/(x^2 + 4x + 4) & \text{si } x > 0 \end{cases}$$

Obtener una función F(x) que sea una primitiva de f(x) en R y calcular la integral definida de f(x) en el intervalo $[-\pi,2]$ sin utilizar F(0).

(1.7p.)

Solución.

Si $x \ne 0$ la función f(x) es continua. Se comprueba fácilmente que es continua en todo R ya que los límites laterales de f(x) en x = 0 son iguales a f(0) = 0.

Por tanto, la función f(x) tiene primitiva en R. Para obtener una primitiva de f(x) en R, vamos a calcular las integrales indefinidas (conjunto de primitivas) de las funciones sen(x/2) y $x^2/(x^2+4x+4)$.

$$\int sen(x/2)dx = -2\cos(x/2) + C$$

$$\int \frac{x^2}{x^2 + 4x + 4} dx = \int \left(1 - \frac{4x + 4}{x^2 + 4x + 4}\right) dx = x - 4\int \frac{x + 1}{(x + 2)^2} dx$$

$$\frac{x+1}{(x+2)^2} = \frac{A}{x+2} + \frac{B}{(x+2)^2} \; ; \; x+1 = A(x+2) + B \; ; \; A=1 \; , \; 2A+B=1 \; ; \; A=1, \; B=-1$$

$$\int \frac{x^2}{x^2 + 4x + 4} dx = x - 4 \int \frac{1}{x + 2} dx + 4 \int \frac{1}{(x + 2)^2} dx = x - 4 \log|x + 2| - \frac{4}{x + 2} + K$$

Si elegimos adecuadamente las constantes C y K, resulta que la función siguiente

$$F(x) = \begin{cases} -2\cos(x/2)/\pi + C, & x \le 0\\ x - 4\log|x + 2| - \frac{4}{x + 2} + K, & x > 0 \end{cases}$$

sería una primitiva de f(x) en R. Para ello, la función F(x) habría de ser continua en x = 0

$$F(x)$$
 es continua en $x = 0 \iff -2 + C = -4\log(2) - 2 + K \iff C = -4\log(2) + K$.

Si elegimos C = 0 resulta $K = 4\log(2)$

$$F(x) = \begin{cases} -2\cos(x/2), & x \le 0\\ x - 4\log|x + 2| - \frac{4}{x + 2} + 4\log(2), & x > 0 \end{cases}$$
 es una primitiva de $f(x)$ en R

Aplicando la regla de Barrow, calculamos la integral definida de f(x) en el intervalo $[-\pi, 2]$

$$\int_{-\pi}^{2} f(x)dx = F(2) - F(-\pi) = 2 - 4\log(4) - 1 + 4\log(2) + 2\cos(-\pi/2) = 1 - 4\log(2)$$

7) Obtener el área de la región del plano delimitada por la curva $y = (x-1)e^x$, el eje de abscisas y las rectas verticales x = 0 y x = 2.

(1.5p.)

Solución.

En
$$[0,2]$$
, $(x-1)e^x \ge 0$ si $x \in [1,2]$ y $(x-1)e^x \le 0$ si $x \in [0,1]$

$$A = \int_{0}^{2} \left| (x-1)e^{x} \right| dx = \int_{1}^{2} (x-1)e^{x} dx - \int_{0}^{1} (x-1)e^{x} dx$$

Método de integración por partes, $\int (x-1)e^x dx = e^x(x-1) - \int e^x dx = e^x(x-1) - e^x = e^x(x-2) + C$

$$A = e^{x}(x-2)]_{1}^{2} - e^{x}(x-2)]_{0}^{1} = e - (-e+2) = 2e-2$$