A Clock-Based Approach to Detect Memory Consistency Errors in MPI One-Sided Communication

Michael Shell

School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia 30332–0250

Email: http://www.michaelshell.org/contact.html

Homer Simpson
Twentieth Century Fox
Springfield, USA

Email: homer@thesimpsons.com San Francisco, California 96678-2391

James Kirk and Montgomery Scott Starfleet Academy Francisco, California 96678-239

Telephone: (800) 555–1212 Fax: (888) 555–1212

Abstract—The abstract goes here.

1. Introduction

2. Memory Consistency Errors

- What is a memory consistency error?
- Showing several examples of memory consistency errors

3. MC-Checker

There are three modules in MC-Checker:

- ST-Analyzer
- Profiler
- DN-Analyzer

4. Our Clock-Based Approach

There are three modules in our clock-based approach: Analyzer, Profiler and Detector.

- 1) Analyzer is implemented by
 - a) static analysis
 - b) text processing
- Profiler is implemented by MPI Profiling as follows:
 - a) For MPI_Win_fence, MPI_Barrier: using PMPI_Allgather to update vector clocks
 - b) For MPI_Win_post/complete: using PMPI_Send to update vector clocks
 - For MPI_Win_start/wait: using PMPI_Recv to update vector clocks
 - d) For MPI_Send: using PMPI_Pack to update vector clocks
 - e) For MPI_Recv: using PMPI_Unpack to update vector clocks
- Detector

- a) Matching synchronization calls
- Detecting conflicting operations within an epoch
- Detecting conflicting operations across processes

5. Evaluation

- Correctness
- Slowdown
- Memory Usage

6. Discussion

7. Related Work

The following are some debugging tools or techniques to detect bugs in MPI one-sided communication:

- Marmot [1]
- [2]
- "Mirror Memory" [3]
- SyncChecker [4]
- MC-Checker [5]
- Nasty-MPI [6], [7]

8. Conclusions and Future Work

The size of vector clocks

Acknowledgments

The authors would like to thank...

References

 B. Krammer and M. M. Resch, "Correctness checking of mpi onesided communication using marmot," in *European Parallel Virtual Machine/Message Passing Interface Users Group Meeting*. Springer, 2006, pp. 105–114.

- [2] S. Pervez, G. Gopalakrishnan, R. M. Kirby, R. Thakur, and W. Gropp, "Formal verification of programs that use mpi one-sided communication," in *European Parallel Virtual Machine/Message Passing Interface Users Group Meeting*. Springer, 2006, pp. 30–39.
- [3] M.-Y. Park and S.-H. Chung, "Detecting race conditions in one-sided communication of mpi programs," in *Computer and Information Science*, 2009. ICIS 2009. Eighth IEEE/ACIS International Conference on. IEEE, 2009, pp. 867–872.
- [4] Z. Chen, X. Li, J.-Y. Chen, H. Zhong, and F. Qin, "Syncchecker: Detecting synchronization errors between mpi applications and libraries," in *Parallel & Distributed Processing Symposium (IPDPS)*, 2012 IEEE 26th International. IEEE, 2012, pp. 342–353.
- [5] Z. Chen, J. Dinan, Z. Tang, P. Balaji, H. Zhong, J. Wei, T. Huang, and F. Qin, "Mc-checker: Detecting memory consistency errors in mpi one-sided applications," in *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*. IEEE Press, 2014, pp. 499–510.
- [6] R. Kowalewski and K. Fürlinger, "Nasty-mpi: Debugging synchronization errors in mpi-3 one-sided applications," in *European Conference on Parallel Processing*. Springer, 2016, pp. 51–62.
- [7] —, "Debugging latent synchronization errors in mpi-3 one-sided communication," pp. 83–96, 2017.