1 Introduzione

1.1 Slide 1

La sintesi di immagini fotorealistiche involve una serie di integrali altamente dimensionali. Al fine di poter costruire il risultato finale, costituito da una griglia di colori sRGB, è necessario accumulare, in un pixel, i valori assunti dalla funzione immagine

1.2 Slide 2

In pratica, tale funzione non è nota analiticamente, ma soltanto campionabile, e l'algoritmo qui proposto a tal scopo è il Path Tracing, il quale consiste nel generare raggi nella scena per accumulare la luce che giunge nel piano dell'osservatore. Dunque, il colore finale è risultato della convoluzione tra un filtro di ricostruzione ed i campioni estratti.

1.3 Slide 3

Tale equazione integrale si presta alla risoluzione mediante i metodi di monte carlo

1.4 Slide 4

Qui è riportato lo pseudocodice della procedura seguita per la computazione

2 Integrazione di Monte Carlo

2.1 Slide 6/7

Sono qui riportati dei preliminari sulle teorie di probabilità e statistica, in particolare Stimatore, funzione di variabili casuali atto alla stima di un parametro detto stimando

2.2 Slide 8

Di seguito è riportato lo stimatore di Monte Carlo, definito in termini della media campionaria, la quale è a sua volta stimatore dell'aspettazione di una variabile casuale. Si noti come tale stima dipende dalla distribuzione con cui è estratto il campione

2.3 Slide 9

Che si semplifica in questo modo nel caso in cui il campionamento è uniforme

2.4 Slide 10

Come si vede, l'ordine di convergenza dello stimatore è 1/2, cioè sono necessari n^2 campioni per diminuire l'errore di n volte

2.5 Slide 11

Si propone un esempio per dimostrare il funzionamento del metodo di monte carlo, considerando un integrale la cui soluzione analitica è nota, campionando uniformemente il dominio considerato

2.6 Slide 12/13

Questi sono i risultati ottenuti

2.7 Slide 14

Al fine di migliorare la convergenza dello stimatore esistono numerose tecniche, e di seguito sono riportate le più rilevanti nel campo della computer grafica

Esse puntano a sfruttare al massimo ciascun campione estratto, suddividendo il dominio di integrazione o modificando la densità di distribuzione per cogliere i contributi più significativi della funzione integranda

3 Rendering Fundamentals

3.1 Slide 15

Il modello matematico che utilizziamo è la Radiometria, basata sull'ottica geometrica e sulle assunzioni qui riportate • Linearitá • Conservazione dell'energia • Assenza di effetti propri della natura ondulatoria della luce • Assunzione di radiazione a regime, cioe' gia' propagata nello spazio circostante e dunque stabile nei valori assunti

3.2 Slide 16 - Radiometria Tabella

In particolare, la grandezza di interesse è la Radianza, potenza per unità di area per unità di angolo solido,

3.3 Slide 17

La quale può essere scomposta nei suoi contributi nelle varie lunghezza d'onda, calcolando la derivata della radianza rispetto a λ , al fine di caratterizzare una distribuzione spettrale per intensità e colore.

3.4 Slide 18 - Rendering Equation

Accompagnata dalle Illustrazioni dei principali modelli stocastici di riflessione, è presentata L'equazione del rendering. Analizzandone i termini

3.5 Slide 19

La radianza uscente da un punto \vec{p} su una superficie intersecata da un raggio in direzione di provenienza di quest'ultimo, ω_o , è pari alla somma tra la radianza emessa dalla superficie (sorgente luminosa) e la radianza riflessa e trasmessa accumulata da tutte le possibili direzioni.

Quest'ultima è espressa in termini della radianza uscente dalla prima superficie intersecata da un raggio generato da \vec{p} in direzione incidente considerata ω_i .

3.6 Slide 20

Fattore fondamentale della rendering equation è la distribuzione di radianza incidente riflessa o trasmessa, BSDF (Bidirectional Scattering Distribution Function), della quale...

3.7 Slide 21

...Analizziamo i modelli di riflessione Lambertiano e Speculare.

- Nel modello lambertiano, la superficie ha equa possibilità di riflettere radianza incidented in tutte le direzioni ed assume un valore pari a ρ/π , dove rho riflettanza direzionale-emisferica o albedo (informalmente colore).
- Nel modello speculare, la superficie riflette in una sola direzione, dettata dalla legge della riflessione, con valore proporzionale alla Riflettanza di Fresnel, ...

3.8 Slide 22

...Per la quale si riporta l'approssimazione di Schlick

4 Campionamento e Ricostruzione

4.1 Slide 23/24/25

Sia per campionare punti sul piano dell'immagine che per campionare direzioni su ciascuna direzione intersecata, necessitiamo di tecniche di campionamento.

- Nella simulazione utilizziamo una distribuzione triangolare per campionare ciascun pixel, affinchè ci sia maggiore densità di punti attorno al suo centro.
- Per le superfici, la strategia dipende dalla BSDF considerata, qui riportiamo la procedura seguita per campionare una superficie lambertiana

4.2 Slide 26

Al termine della valutazione dei campioni, essi vanno aggregati con un filtro di ricostruzione, il più semplice dei quali è un box filter, il quale considera esclusivamente i samples all'interno del pixel corrente e, seguendo l'equazione presentata nell'introduzione, ne calcola la media.

5 Simulatione

5.1 Slide 27/28–Fine

Di seguito è descritto un semplice path tracer implementato nella celebre scena "Cornel Box", e sono riportati i risultati ottenuti sottoforma di immagine e

tabella delle varianze. Da queste Ultime si evince meglio come il guadagno in termini di accuratezza diminuisce all'aumentare dei campioni Grazie per l'attenzione