Лабораторная работа 3.1

Определение индукции магнитного поля соленоида и взаимной индуктивности двух катушек

Лабораторная работа 3.3.1

ОПРЕДЕЛЕНИЕ ИНДУКЦИИ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА И ВЗАИМНОЯ ИНДУКТИВНОСТИ ДВУХ КАТУВЕК

цель работи: изучение закона Био-Савара-Лапласа и его привенение для расчета индукции магнитного поля; применение закона Фарадее для измерения индукции магнитного поля и взаимной индуктивности натумек.

Реиомендуемая литература: [1 - §109, 110, 119, 128];

12 - § 22.1, 22.2,22.31:

[3 - 640-41].

Теоретические сведения

Соленоидом называется цилиндрическая катужка, состоямая из больного количества витков, плотно прилегамних друг к другу. При пропускании по обмотке тока внутри соленоида возникает матинтное поле.

Для расчета магнитной индукции поля соленоида пользуются законов био-Савара-Лапласа (В.б). При этом представляют соленоид как CUCTEMY KPYFORMX TOKOB C OCCUPANCE (CHC.1.1)

оис.1.1

То принципу суперпозици результирующее значение магнитной индукции B поля соленеида в любой точке пространства определяется как векторная сумма B, полей, создаваемых каждым витком. Для точек, лежащих на оси соленоида 0-0', направления B; совпадают определяются по правилу правого винта), поэтому сложение векторов B; можно заменить сложением их модулей: $B = \sum_{i=0}^{\infty} B_i$.

Рассмотрим соленбид длиной L, радиусом витков R, по которому течет ток силой I.Пусть на вдиницу длины соленоида приходится $n_0 = \frac{1}{\sqrt{1 - n_0}}$ витков ($n_0 = \frac{1}{\sqrt{1 - n_0}}$ витков ($n_0 = \frac{1}{\sqrt{1 - n_0}}$).

Злежентарный участок соленоида длиной di, на котором укладывается nodi витков, можно рассматривать как круговой ток силой

этот ток создает в нексторой точке. А магнитное поде с индукцией dB:

$$dB = \frac{u_0(n, di \cdot I)R^2}{2(I^2 + R^2)^{3/2}}, \qquad (1.1)$$

тде \mathcal{E} - расстояние от центра витка до рассматриваемой точки \mathcal{A}

јаменив в этой формуле переменнув ℓ на переменнув ∞ — угол. получим виден радиус рассматриваемого витка из точки R в 22.21. получим:

$$dB = -\frac{\mu_0 \cdot 1 \cdot n_0}{2} SIN(d) \cdot dd . \qquad (1.2)$$

Для получения результирующего значения В интегрируют (1.2) в пределах от \ll до \ll (ск. рис.1.1):

$$B = \frac{\mu_0 \cdot n_0}{2} \int_{-2}^{2} \sin \lambda \cdot d\lambda = \frac{\mu_0 \cdot n_0}{2} (\cos \lambda_2 - \cos \lambda_1), \quad (1.3)$$

Очевидно, что индукция максимальна в центре соленоида при $L_1=L/2$, т.е. $COS d_2=-COS d_1=1/\sqrt{1+(2*R/L)^2}$, а с удалением точки A от центра в ту или другую сторону уменьмается.

Если L>>R соленоид считают бесконечно длинных, тогда

$$B = \mu_0 n_0 I . \qquad (1.4)$$

между катушками L_{χ} и L_{2} существует индуктивная связь. Она проявляется в частности в том, что при протекании по соленоиду L_{χ} переменного тока в катушке L_{χ} наводится ЗДС индукции. Количественно индуктивная связь характеризуется взаимной индуктивностью.

Взаимная индуктивность катумек L_{r} и L_{s} есть скалярная величина, равная отномению потокосцепления взаимной индукции катум-ки L_{s} к силе тока в катумке L_{s} , определяющем это потокосцепление:

$$\mathbf{k}_{2l} = \frac{\Psi_{2l}}{1}.\tag{1.5}$$

Если по соленоиду L, идет ток I,, то внутри соленоида магнитная индукция $B_{r} = \mu_{O} n_{O} I$, (1.4). Потокосцепление взаимной индукции катушки L_{o} , находящейся внутри соленоида L_{o} на его оси : $\Psi_{r} = n_{O} B_{r} \cdot S = \mu_{O} n_{O} \cdot n_{O} I$, S_{o} где $S_{o} = \mathcal{F} \cdot r_{o}^{2} -$ площадь сечения катушки L_{o} , $n_{o} =$ число витков этой катушки. Тогда

ЭДС взаимной индукции, наведенная в катушке L_2 рпределяется как

$$e_{i} = \frac{d\Psi_{i}}{dt} = -M_{i}\frac{dI_{i}}{dt}. \qquad (1.8)$$

Если I, = I_MSIN ω t , то e_{2j} = M_{2j} · I_M ω · COS ω t , деяствующее значение e_{2j} = e_{2j} ω · I, откуда

$$M_{2l} = \frac{\mathcal{E}_{2l}}{I_{,\omega}} = \frac{\mathcal{E}_{2l}}{I_{,\cdot} \cdot 2\pi V}.$$
где $\omega = 2\pi V$, $V = \text{Частота переменного тока.}$

Описание лабораторной установки и методики

эксперимента

В лабораторной работе исследуется зависимость индукции магнитного поля на оси соленоида от силы тока в его обмотке и расположения исследуемой точки на оси соленоида индукции. Для измерения в используется явление электромагнитной индукции. Злектрическая схема лабораторной установки приведена на рис.1.2.

В ее состав входят ЛАТР, амперметр А, реостат R, исследуемий соленоид L, измерительная катумка L, и жилливольтметр вU. Измерительная катумка размещена коаксиально с исследуемим соленоидом и может перемещаться вдоль его оси. При пропускании уврез соленоид L, переменного тока i=I SINcot, внутри соленоида возникает также магнитное поле, индукция которого в произвольной точке на оси может быть рассчитана по выражению (1.3).

При этом пломадь сечения S_2 измерительной катушки L_2 с числом витков n_2 пронизывается переменным магнитным потоком $\Phi=n_2B_m$ S_2 SIN ω t, где B_m — амплитудное значение индукции магнитного поля исследуемого соленоида в точке нахождения измерительной катушки L_2 .

По закону Фарадея в катушке L2 будет наводиться переменная ЭДС:

$$e_{c} = -\frac{d\theta}{dt} = B_{m} \omega \cdot n_{e} S_{e} \cos \omega t . \qquad (1.8)$$

При постоянных значениях ω , n_2 , S значение e_i пропорционально B_m и зависимость (1.5) может служить для измерения B.

Подиличенный к катушке L₂ милливольтметр измеряет действующее эначение ЭДС так, что:

$$B = \frac{\mathcal{E}_{\mathcal{E}}}{n \ S \omega} = \frac{\mathcal{E}_{\mathcal{E}}}{n \ \mathcal{F}} \ r^{2} \ 2 \mathcal{F} \mathcal{V} , \qquad (1.9)$$

где r - радиус измерительной катушки; V - частота переменного тока в сети, V = 50 Гц.

Порядок выполнения работы

. Задание 1.Исследование зависимости индукции магнитного поля соленоида от положения точки на его оси.

1. Измерить и записать: для соленоида: его длину L. радиус R, плотность намотки n_0 : для измерительной катушки: радиус r. число витков n_2 .

2.По формуле (1.3), задаваясь значением тока I=1 А, рассчитать максимальное значение B_{max} , которое наблюдается в центре соленоида.

3. Рассчитать положение точек на оси (значение 1,), для моторых $B = 0.9B_{\odot}$; $0.75B_{\odot}$; $0.6B_{\odot}$.

- 4. Построить примерный график зависимести $B/B_m = f(1/L)$.
- 5. Собрать схему рис. 1.2. Установить измерительную катушку в центре соленоида.
- 5.Включить питание. Изменяя силу тока с помощью ЛАТРа от 0,1 до 2 А, измерить милливольтметром значение ЗДС индукции, наводимой в измерительной катушке L₂.
 Результаты занести в табл.1

Таблица 1

Номер опыта	I, A	ε _ί . Β	В, Тл	Враси Тл
1 2 3 4 5	0,1 0,5 1.0 1.5 2,0			

Рассчитать по данным табл.1, п.1 значение В. Сравнить с рассчитанными в п.2 для I = 1 А.

7. Эстановить ток в соленоиде I=1 A. Перемещая измерительную катушку вправо и влево от центра , т.е. изменяя 1, измерять соответствующие значения E;. Данные занести в табя. 2.

Таблица 2

Номер опыта	1,, **	1,71	€¿, B	В. Тл
1 2 3 .				
4 (6)	•••			

Рассчитать по формуле (1.9) значения В. Построить график зависимости $B/B_{m} = f(1,/L)$. Сравнить с построенным в п.4. Сделать выводы.

Задание 2.Измерение взаимной индуктивности соленоида и измерительной катушки.

- 1. Рассчитать по данным п. і задания і и формуле (1.6) взаимную индуктивность соленоида и измерительной катушки.
- Провести подобные расчеты для других измерительных катушек, предложенных преподавателем.
- 3. Устанавливая измерительные катушки в центр соленоида и задавая значение тока I=1 А, определить соответствующие значения ЭДС взаимоиндукции \mathcal{L}_{21} , По формуле (1.7) рассчитать значения M_{21} и сравнить их с полученными в пп.1 и 2.

Контрольные вопросы

- 1.В чем суть метода измерения магнитной индукции, применяемого в данной работе?
- 2. Как определить направление вектора В?
- 3. Что такое соленоид? Охарактеризуйте магнитное поле соленоида.
- 4. Почему женяется значение индукции при перемещении измерительной катушки вдоль оси соленоида?
- 5. Каким образом используется в данной работе явление электромагнитной индукции?
- 6.0т чего зависит значения ЗДС электромагнитной индукции?
- 7. Охарактеризуйте явление взаимной индукции.