学习方法

课程目录

1	MATLAB简介
2	MATLAB语言基础
3	MATLAB数值计算
4	MATLAB程序设计
5	MATLAB绘图

- 1.1 MATLAB发展历史
- 1.2 MATLAB应用领域
- 1.3 MATLAB工具箱
- 1.4 MATLAB安装文件
- 1.5 MATLAB操作界面
- 1.6 MATLAB文件类型
- 1.7 MATLAB常用命令
- 1.8 上机练习

1.1 MATLAB发展历史

Cleve Moler

Matlab——Matrix Laboratory, 该语言是美国New Mexico 大学计算机系主任Cleve Moler在70年代后期首先设计的. 并于80年代初开发了第二代专业版.

1984年, Cleve Moler和John Litter成立了Math works公司,并开始把Matlab推向市场. (迈斯沃克公司)

http://www.mathworks.com

Matlab—Matrix Laboratory

1.2 MATLAB应用领域

目前,Matlab 已经成为国际上最流行的科学与工程计算的软件工具,它已经不仅仅是一个"矩阵实验室"了,而成为了一种具有广泛应用前景的全新的计算机高级编程语言,有人称它为"第四代"计算机语言。 就影响而言,至今仍然没有一个别的计算软件可与Matlab 匹敌。

在欧美各高等院校,Matlab已经成为线性代数、自动控制理论、 数字信号处理、时间序列分析、动态系统仿真、图像处理等课程的基 本教学工具,成为大学生、硕士生以及博士生必须掌握的基本技能。

Mathematica Maple SAS SPSS Eviews LINGO LINDO

1.3 MATLAB工具箱

Matlab Main Toolbox

Control System Toolbox

Communication Toolbox

Financial Toolbox

System Identification Toolbox

Fuzzy Logic Toolbox

Higher-Order Spectral Analysis Toolbox

Image Processing Toolbox

LMI Control Toolbox

Model predictive Control Toolbox

μ-Analysis and Synthesis Toolbox

Matlab主工具箱

控制系统工具箱

通讯工具箱

财政金融工具箱

系统辨识工具箱

模糊逻辑工具箱

高阶谱分析工具箱

图像处理工具箱

线性矩阵不等式工具箱

模型预测控制工具箱

μ分析工具箱

1.3 MATLAB工具箱

Optimization Toolbox

Partial Differential Toolbox

Robust Control Toolbox

Signal Processing Toolbox

Spline Toolbox

Statistics Toolbox

Symbolic Math Toolbox

Simulink Toolbox

System Identification Toolbox

Wavelet Toolbox

优化工具箱

偏微分方程工具箱

鲁棒控制工具箱

信号处理工具箱

样条工具箱

统计工具箱

符号数学工具箱

动态仿真工具箱

系统辨识工具箱

小波工具箱

1.4 MATLAB安装文件

1.5 MATLAB操作界面 快捷键F5运行

1.6 MATLAB文件类型

1.7 MATLAB常用命令

help 帮助查询

lookfor 帮助查询

demo 演示文档

clc 删除命令窗口的内容(已使用过的命令)

clear 删除内存中的变量(数据)

clf 删除图形窗口的内容

who 列出在MATLAB工作空间中已有的变量

whos 列出驻留变量的同时,还给出维数及性质

home 光标移到命令窗口的左上角

调出刚才使用过的命令

quit 退出MATLAB

Ctrl+C 中断程序运行

1.7 MATLAB常用命令

version

what

which <文件名>

load name

load name x y

save name

save name x y

size (变量名)

length (变量名)

pack

vpa (x,n)

disp

显示matlab版本

列出当前目录下的.m文件和.mat文件

显示某个文件的路径

下载name文件中的所有变量到工作空间

下载name文件中的变量x,y到工作空间

保存工作空间变量到文件name.mat中

保存工作空间变量x, y到文件name.mat中

显示当前工作空间中变量的尺寸

显示当前工作空间中变量的长度

整理工作空间内存

显示n位小数的x

显示矩阵与文本

1.8 上机练习

- 2.1 MATLAB数据类型
- 2.2 MATLAB数组运算
- 2.3 MATLAB向量运算
- **2.4 MATLAB**矩阵运算
- 2.5 MATLAB字符串运算
- 2.6 MATLAB关系运算
- 2.7 MATLAB逻辑运算
- 2.8 上机练习

2.1 MATLAB数据类型

2.1 MATLAB数据类型 变量

Matlab中变量名是以字母开头,可以由字母、数字或下划线组成

Matlab 区分大小写,它的命令和函数全是小写的

Matlab变量名不超过31个字符

2.1 MATLAB数据类型 常量

ans Matlab中的默认变量

pi 圆周率

eps 计算机中的最小数,浮点运算的相对精度

NaN 不定值,如 0/0、0*∞

i或j 复数中的虚数单位

realmin 最小可用正实数

realmax 最大可用正实数

2.1 MATLAB数据类型 数字显示格式命令

format short 5位定点表示

format long 15位定点表示

format short e 5位浮点表示

format long e 15位浮点表示

format short g 5位定点和5位浮点中自动选择最好格式表示

format long g 15位定点和15位浮点中自动选择最好格式表示

format hex 16进制格式表示

format + 在矩阵中,用符号+、-和空格表示正号、负号和零

2.2 MATLAB数组运算 表达式

Matlab中的表达式由运算符、函数、变量名和数字组成

Matlab 语句由变量和表达式组成,有两种常见形式:

形式1: 表达式

形式2: 变量=表达式

若不想显示形式1或2的运算结果,可在表达式后加分号";"

2.2 MATLAB数组运算 运算符

+	加法		减法
*	乘法	*	点乘
	除法	./	点除
^	乘幂	<u>.</u> ^	点乘幂
	左除		点左除

2.2 MATLAB数组运算 数组的构造

手动法 数组用中括号,以空格或逗号为间隔输入元素

$$x=[0\ 1\ 3\ 5\ 7\ 9\ 10]$$

$$x=[0,1,3,5,7,9,10]$$

2.2 MATLAB数组运算 数组的构造

冒号法 a:步长:b a:b (默认 步长=1)

```
x=[0:0.5:2]
```

y = [0:5]

```
x=
0 0.5000 1.0000 1.5000 2.0000
y=
0 1.0000 2.0000 3.0000 4.0000 5.0000
```

2.2 MATLAB数组运算 数组的构造

函数法 linspace(a,b,n) 从a开始,到b结束,包含n个数据元素的数组

[a:(b-a)/(n-1):b]

x=linspace(0,pi,12)

X =

0 0.2856 0.5712 0.8568 1.1424 1.4280

1.7136 1.9992 2.2848 2.5704 2.8560 3.1416

2.2 MATLAB数组运算 数组的引用

x(n) 表示数组中的第**n**个元素

x(n1:n2) 表示数组中的第**n1**到**n2**个元素

x=[1 2 3 4 5]

x(1:3)

ans=

-

3

2.2 MATLAB数组运算 矩阵数组

以空格或逗号分隔,指定不同的列以分号或回车分隔,指定不同的行

$$A=[2, 4, 6, 8;1 3 5 7; 0 0 0 0;1,0,1,0]$$

$$A(10) = 5$$

$$A = \begin{pmatrix} 2 & 4 & 6 & 8 \\ 1 & 3 & 5 & 7 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

2.2 MATLAB数组运算 四则运算

数组与标量间的四则运算

$$\begin{pmatrix}
1 & 3 & 4 \\
2 & 6 & 5 \\
3 & 2 & 4
\end{pmatrix}$$

2.2 MATLAB数组运算 四则运算

数组间的四则运算,必须具有相同的维数,对应元素进行运算 + - .* ./ .\

$$\begin{pmatrix}
1 & 3 & 4 \\
2 & 6 & 5 \\
3 & 2 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 3 & 1 \\
4 & 1 & 2 \\
4 & 5 & 3
\end{pmatrix}$$

```
c=
3 6 5
6 7 7
7 7 7
```

2.2 MATLAB数组运算 四则运算

 $a./b=b.\a$

$$\begin{pmatrix}
1 & 3 & 4 \\
2 & 6 & 5 \\
3 & 2 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 3 & 1 \\
4 & 1 & 2 \\
4 & 5 & 3
\end{pmatrix}$$

2.2 MATLAB数组运算 幂运算

数组的幂运算 _^

$$\begin{pmatrix} 1 & 3 & 4 \\ 2 & 6 & 5 \\ 3 & 2 & 4 \end{pmatrix}$$

```
c= d=

1 9 16 19 29 35
4 36 25 29 52 58
9 4 16 19 29 38
```

2.2 MATLAB数组运算 幂运算

$$egin{pmatrix} 1 & 3 & 4 \ 2 & 6 & 5 \ 3 & 2 & 4 \end{pmatrix} \quad egin{pmatrix} 2 & 3 & 1 \ 4 & 1 & 2 \ 4 & 5 & 3 \end{pmatrix}$$

2.3 MATLAB向量运算 点积

c=dot(a,b)

c=a.b,相当于a*b′(a与b都是行向量)

```
a=[2 4 5 3 1]
b=[3 8 10 12 13]
c=dot(a,b)
```

2.3 MATLAB向量运算 叉积

c=cross(a,b)

c=a×b,a与b必须是3维向量

```
a = [2 4 5]
```

$$b=[3 8 10]$$

$$C =$$

4

2.3 MATLAB向量运算 混合积

由dot和cross两个函数共同完成

 $abc=(a\times b)\cdot c$

```
a=[2 4 5]
b=[3 8 10]
c=[0 -5 4]
d=dot(a,cross(b,c))
```

2.3 MATLAB向量运算 向量函数

max 求最大值

min 求最小值

sum 求和

length 求长度

mean 求平均值

median 求中间值

prod 乘积

sort 从小到大排序

2.4 MATLAB矩阵运算 特殊矩阵

生成空矩阵

eye(n,m)

生成n×m单位矩阵

ones(n,m)

生成全部元素是1的矩阵

zeros(n,m)

生成全部元素是0的矩阵

magic(n)

生成魔方矩阵

rand(n,m)

生成0~1之间均匀分布的随机矩阵

randn(n,m)

生成均值为0,方差为1的标准正态分布的随机矩阵

compan(a)

生产矩阵a的伴随矩阵

2.4 MATLAB矩阵运算 矩阵加法

矩阵的四则运算

$$A=[1 2;3 5;2 6]$$

$$B=[24;18;90]$$

$$C=A+B$$

$$egin{pmatrix} 1 & 2 \ 3 & 5 \ 2 & 6 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 4 \\
1 & 8 \\
9 & 0
\end{pmatrix}$$

$$11 \epsilon$$

2.4 MATLAB矩阵运算 矩阵乘法

矩阵的四则运算

$$D=A*B$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 5 \\ 2 & 6 \end{pmatrix} \quad \begin{pmatrix} 2 & 4 & 1 \\ 8 & 9 & 0 \end{pmatrix}$$

2.4 MATLAB矩阵运算 矩阵除法

在Matlab中矩阵的除法分左除"\"和右除"/" X=A\B 给出线性方程组 AX=B 的一个解 X=B/A 给出线性方程组 XA=B 的一个解

A\B
B/A
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

2.4 MATLAB矩阵运算 矩阵乘幂

矩阵的幂运算 ^

$$A=[21\ 34\ 20;78\ 20\ 21;17\ 34\ 31]$$

$$C=A^2$$

$$\begin{pmatrix} 21 & 34 & 20 \\ 78 & 20 & 21 \\ 17 & 34 & 31 \end{pmatrix}$$

C=

3433 2074 1754

3555 3766 2631

3536 2312 2015

2.4 MATLAB矩阵运算 矩阵转置、逆、行列式

矩阵的转置、逆运算及行列式运算

 $A=[1\ 2\ 0;2\ 5\ -1;4\ 10\ -1]$

$$\begin{pmatrix}
1 & 2 & 0 \\
2 & 5 & -1 \\
4 & 10 & -1
\end{pmatrix}$$

2.5 MATLAB字符串运算 常用字符串函数

size查看字符数组维数stremp比较字符串upper转换为大写findstr在字符串中找字符串strmatch查找匹配字符串

char把数字转换为字符串strcat字符串连接lower转换为小写strjust对齐字符数组deblank删除字符串中的空格

2.6 MATLAB关系运算

关系操作符

< 小于

<= 小于等于

> 大于

>= 大于等于

== 等于

~= 不等于

运算法则: 若关系式成立, 结果为1;

若关系式不成立,结果为0。

A=[1 4 3 5 7]

B=[26907]

A = = B

ans=

0 0 0 0 1

2.7 MATLAB逻辑运算

逻辑操作符

& 与 | 或 *

运算法则: 若逻辑真,结果为1; 若逻辑假,结果为0。

a=1:2:11 b=2:7 (a<2)|(b>6)

ans=
1 0 0 0 0 1

一、数学运算符

- □其功能主要是进行各种数学运算,按其优先 级别依次为:
- □ 1.转置(.')、共轭转置(')、幂次(.^)、 矩阵幂次(^)
- □ 2.正、负号(+/-)
- □ 3.乘法(.*)、矩阵乘法(*)、元素左右除 (.\,/.)、矩阵左右除(\,/)
- □ 4.加减法(+,-)
- □ 5.冒号(:)

几点说明:

- ☞ 在同一优先级中,运算自左至右完成,所以若对运算顺序不确定时,最好以"()"实现强制运算顺序。
- Matlab的数学运算有时支持标量、矩阵混合运算,此时即将标量展开为适当矩阵(Scalar Expansion)

(举例)

☞ 左除、右除的区别:

对于矩阵, 右除如A/B, 相当于X*B=A的解矩阵; 左除如A\B, 相当于A*X=B的解矩阵. 对于元素, 右除(./)和左除(.\)也不相同

桂林理工大学理学院信息与计算科学教研室

2.8 上机练习

- 3.1 多项式运算
- 3.2 多项式插值
- 3.3 多项式拟合
- 3.4 上机练习

3.1 多项式 构造

poly2sym (p)

p=[a0,a1,…,an],多项式降幂排列系数数组

p=[2 5 0 4 1 4] poly2sym(p)

ans= 2*x^5+5*x^4+4*x^2+x+4

3.1 多项式 四则运算

+. -. conv(p1,p2). deconv(p1,p2)

加减要补零,相同长度

```
p1=[2 5 0 4 1 4]; p2=[0 0 5 1 3 2];
p=p1+p2
poly2sym(p)
```

```
ans= 2*x^5+5*x^4+5*x^3+5*x^2+4*x+6
```

3.1 多项式 四则运算

+. -. conv(p1,p2). deconv(p1,p2)

3.1 多项式 四则运算

+, -, conv(p1,p2), deconv(p1,p2)

```
p1=[2 5 0 4 1 4]; p2=[0 0 5 1 3 2]; [p,r]=deconv(p1,p2)
```

```
p=
0.4000 0.9200 -0.4240
r=
0 0 0 0.8640 0.4320 4.8480
```

3.1 多项式 求导运算

polyder(p)

```
p1=[2 5 0 4 1 4]
h=polyder(p1)
poly2sym(h)
```

ans=
$$10*x^4+20*x^3+8*x+1$$

3.1 多项式 求值运算

polyval(p,s) 数组规则 polyvalm(p,s) 矩阵规则

```
p1=[2 5 0 4 1 4]
h=polyval(p1,[3,4])
k=polyvalm(p1,[3,4;4,6])
```

```
h=
934 3400
k=
43414 62640
62640 90394
```

3.1 多项式 求根运算

roots(p)

```
p1=[2 5 6 4 1 8]
h=roots(p1)
```

```
h=
-1.7640
-0.8679 + 1.3394i
-0.8679 - 1.3394i
0.5000 + 0.8001i
0.5000 - 0.8001i
```

3.1 多项式 多项式函数

conv	多项式乘法	polyfit	多项式拟合
deconv	多项式除法法	polyval	多项式求值
poly	求矩阵的特征多项式	polyvalm	多项式矩阵求值
polyder	多项式求导	residue	部分分式展开
polyeig	多项式求特征值	roots	求多项式的根

3.2 多项式插值

interp1(x,y,x1,' method')

```
nearest最近插值linear线性插值spline三次样条插值cubic三次插值
```

```
x=4:15;
y=[5 8 9 15 25 29 31 30 22 25 27 24];
x=4:0.5:15;
yn=interp1(x,y,x1,'nearest'); yl=interp1(x,y,x1,linear');
ys=interp1(x,y,x1,'spline'); yc=interp1(x,y,x1,'cubic');
plot(x,y,'o',x1,yn,'-'); plot(x,y,'o',x1,yl,'-');
plot(x,y,'o',x1,ys,'-'); plot(x,y,'o',x1,yc,'-');
```

3.3 多项式拟合

polyfit(x,y,n)

```
x=linspace(x,y,n);
y=cos(x);
p=polyfit(x,y,6);
y1=polyval(p,x);
plot(x,y,'or',x,y1,'-b');
```


3.4 上机练习

- 4.1 M文件
- 4.2 数据的输入输出
- 4.3 程序结构控制
- 4.4 上机练习

4.1 M文件

局部变量与全局变量

global A B C

无论在脚本文件还是在函数文件中,都会定义一些变量。函数文件所定义的变量是局部变量,这些变量独立于其他函数的局部变量和工作空间的变量,即只能在该函数的工作空间引用,而不能在其他函数工作空间和命令工作空间引用。

但是如果某些变量被定义成全局变量,就可以在整个MATLAB 工作空间进行存取和修改,以实现共享。因此,定义全局变量是函 数间传递信息的一种手段。

4.1 M文件 M文件的编辑

4.1 M文件 脚本文件

一些命令的集合

```
x=linspace(x,y,n);
y=cos(x);
p=polyfit(x,y,6);
y1=polyval(p,x);
plot(x,y,'or',x,y1,'-b');
```

4.1 M文件 函数文件

function开头,编制一个函数文件,输入什么,输出什么

$$y = \sin x + \cos x$$

function y=hanshu(x)

$$y=\sin(x)+\cos(x);$$

4.1 M文件 常用数学函数

sin(x)	正弦	asin(x)	反正弦
cos(x)	余弦	acos(x)	反余弦
tan(x)	正切	atan(x)	反正切
cot(x)	余切	acot(x)	反余切
abs(x)	绝对值	max(x)	最大值
min(x)	最小值	sum(x)	求和
sqrt(x)	开平方	exp(x)	以e为底的指数
log(x)	自然对数	log10(x)	以10为底的对数
sign(x)	符号函数	fix(x)	取整

4.2 数据输入与输出 键盘输入 屏幕输出

input

disp

```
x=input('请输入数据');
disp(x);
```

4.2 数据输入与输出

M数据文件存储\加载

save 存储

save

save filename

save filename X Y Z

将所有工作空间变量存储在名为MATLAB.mat 的文件中

将所有工作空间变量存储在名为filename.mat的 文件中

将工作空间的指定变量X、Y、Z存储在名为 filename.mat的文件中

4.2 数据输入与输出

M数据文件存储\加载

load 加载

load

加载名为MATLAB.mat的文件中的所有变量到 工作空间

load filename

加载名为filename.mat的文件中的所有变量到工作空间

load filename X Y Z

加载名为filename.mat的文件中的X、Y、Z变量 到工作空间

4.2 数据输入与输出

外部文件导入

%寻找源文件

%格式转换为矩阵

%赋名

.xls EXCEL文件数据导入

```
[filename, pathname]= uigetfile('*.xls');
file=[pathname filename];
x=xlsread(file);

之后就用x来代表导入的这个矩阵。
如excel 里输入了 1 2 3
4 5 6
如下命令
x(1,:)
ans =
1 2 3
```

4.2 数据输入与输出

外部文件导入

.txt 记事本文件数据导入

[a1,a2,a3,a4]=textread('test1.txt','%s%s%s%s','headerlines',4)

说明:

%s可以是其他形式,跟读入的数据类型有关,比如这里也可以用%n,%f等。

这里%s的个数和[a1,a2,a3,a4]对应。

4.2 数据输入与输出

外部文件导入

file->import data

按照提示进行

- .xls
- .txt

4.3 程序结构控制

for循环

for 循环控制命令

循环控制命令(for命令)

格式: for i=n1:(step):n2 commands; end

作用: 重复执行命令集commands.

4.3 程序结构控制 for循环

例1: 求和: s=1+2+...+n

```
n=input('请输入 n=');
     s=0;
for i=1:n
           s=s+i;
  fprintf('i=\%.0f, s=\%.0f\n',i,s);
end
```

例2: 求奇数和: s=1+3+5+...+(2k-1)

```
n=input('请输入 n=');
     s=0;
for i=1:2:n
           s=s+i;
  fprintf('i=\%.0f, s=\%.0f\n',i,s);
end
```

4.3 程序结构控制 for循环

例3: 求阶乘: p=1×2 × 3 × ... × n=n!

```
n=input('请输入 n= ');
     p=1;
for i=1:n
     p=p*i;
   fprintf(' i=\%.0f, p=\%.0f\n ',i,p);
end
```

例4: 求e: e=1+1+1/2!+1/3!+...+1/n!

```
n=input('请输入 n= ');
     p=1;e=1;
for i=1:n
   p=p*i;
   p1=1/p;
   e=e+p1;
   fprintf(' i=\%.0f, p=\%.0f, e=\%.8f \n ',i,p,e);
end
```

4.3 程序结构控制 for循环

例5: 求pi: pi/4=1-1/3+1/5-1/7+1/9-1/11+...

```
n=input('请输入 n= ');
     pi=0;k=-1;
for i=1:2:n
            k=(-1)*k;
   pi=pi+k*1/i;
  fprintf(' i=\%.0f, pi=\%.8f \n ',i,4*pi);
end
```

4.3 程序结构控制

while循环

while 条件循环命令

条件循环命令(while命令)

格式: while (condition is true)

commands;

end

作用: 重复执行命令集commands.

4.3 程序结构控制

while循环

例6: 求和: s=1+2+...+n<3000

例7: 求e: e=1+1+1/2!+1/3!+... (1/n!<1.0e-8)

4.3 程序结构控制

if控制

if 选择控制命令

单项选择控制

格式: if (condition is true) commands; end

作用: 若条件成立,则执行命令集 commands.

否则,不执行。

4.3 程序结构控制

if控制

例8:求n个实数中最大的数M

```
a=input('请输入数组 a[n]=');
[m,n]=size(a);
M=a(1);
    for i=2:n
        if M<a(i)
        M=a(i);
    end
    fprintf(' M=%.5f, a(%.0f)=%.5f \n ',M,i,a(i));
end</pre>
```

4.3 程序结构控制

if控制

if 选择控制命令

多项选择控制

作用: 若条件成立,则执行命令集commands. 否则,不执行。

4.3 程序结构控制 if控制

例9:建立符号函数sign(x)

```
x=input('x=');
if x > 0
  sn=1;
elseif x==0
  sn=0;
else
  sn=-1;
end
fprintf('x=\%.5f, sn=\%.0f\n',x,sn);
```

4.4 上机练习

- 5.1 图形窗口
- 5.2 二维绘图
- 5.3 三维维绘图
- 5.4 上机练习

5.1 图形窗口

figure figure (n) 创建图形窗口

close 关闭当前图形窗口

close(n) 关闭指定图形窗口n

close all 关闭所有图形窗口

clf 清楚当前图形窗口图像

5.2 二维绘图

plot

```
plot(x)
plot(x,y)
plot(x1,y1,x2,y2)
plot(x,y,'s')
plot(x1,y1,'s1',x2,y2,'s2')
```

x各分量的序号为横坐标,分量值为纵坐标 x为横坐标,y为纵坐标 同时画两条线 设置线条样式 同时画多条曲线及样式

5.2 二维绘图 颜色及样式

r	红色	-	实线
g	绿色		虚线
b	蓝色	:	点线
У	黄色	÷.	点划线
m	洋红色	0	圆圈
С	青色	х	叉号
w	白色	+	加号
k	黑色	S	正方形
*	星号	d	菱形
	点号		

5.2 二维绘图 示例

```
x=linspace(0,2*pi,101);
y=sin(x);
plot(x,y,'-*r');
```


5.2 二维绘图 示例

x=linspace(0,2*pi,101);
y1=sin(x); y2=cos(x);
plot(x,y1,'-r',x,y2,'-b');

5.2 二维绘图 示例

x=peaks;
plot(x);

5.3 三维绘图

plot3

```
plot3(x,y,z)x,y,z长度相同向量plot3(X,Y,Z)X,Y,Z维数相同矩阵plot3(x,y,z,'s')带样式plot3(x1,y1,z1,'s1',x2,y2,z2,'s2')同时画多个
```

5.3 三维绘图 示例

plot3

t=0:pi/50:10*pi;

plot3(t,sin(t),cos(t),'r-');

5.3 三维绘图 示例

plot3

5.3 三维绘图 示例

mesh 三维网格

[x,y,z]=peaks;

mesh(x,y,z);

5.3 三维绘图 示例

surf 三维曲面

[x,y,z]=peaks;

surf(x,y,z);

5.4 上机练习

