Quiz 6 Solution Math 461 S 22

Moment Generating Function

Let X be a random variable. Suppose the moment generating function $M_X(t)$ of X exists and is finite for $-\infty < t < \infty$. Then $M_X''(0) = \mathbb{E}[X^2]$.

- (a) True
 - (b) False

Solution If $M_{x}(+)$ is well-defined near 0, then $M_{x}'(-) = \mathbb{E} X$ and $M_{x}(0) = \mathbb{E} X^{2}$.

Compute Expectation by Conditioning

Let X>0 be a random variable with $\mathbb{E}[X]=1$ and $\mathbb{E}[X^2]=7$.

The conditional distribution of Y given X=x is an exponential random variable with parameter $1/x^2$.

Then, $\mathbb{E}[Y]=7$.

- (a) True
- (b) False

Solution
$$E[Y] = E[E[Y|X]]$$

$$= X^2 \text{ because } Y|X=x \sim E_{Sp}(\frac{1}{x^2})$$

 $= \mathbb{E}[X^2] = 7.$

Conditional Expectation

Let X,Y be two continuous random variables with joint density given by

$$f(x,y)=rac{12}{y}e^{-3xy^4} \qquad ext{for } x>0,y>1$$

and 0 otherwise.

Compute

$$\mathbb{E}[X \mid Y = 1].$$

Solution
$$4x(y) = \int_{0}^{\infty} \frac{12}{y} e^{-3xy^4} dx = \frac{12}{y} \frac{1}{3y^4} \left[-e^{-3xy^4} \right]_{0}^{\infty}$$

$$= \frac{y}{y^5}$$

$$4x_{1Y}(x|y) = \frac{4(x,y)}{4x_{1}(y)} = 3y^4 e^{-3xy^4} \text{ if } x>0 \text{ for } y>1$$

$$= \frac{1}{3y^4}$$

$$= \frac{1}{3y^4}$$

$$= \frac{1}{3y^4}$$

Covariance

Let X_1, X_2, \ldots be independent random variables with common mean $\mathbf 0$ and common variance $\mathbf 1$. Set

$$Y_n=6X_n+4X_{n+1},\quad n\geq 1.$$

Find $Cov(Y_2, Y_3)$.

Solution
$$Cov(Y_2, Y_3) = Cov(6X_2+4X_3, 6X_3+4X_4)$$

= $36Cov(X_1, X_3) + 24Cov(X_1, X_4)$
+ $24Cov(X_3, X_3) + 16Cov(X_3, X_4)$
= $24 \cdot Var(X_3) = 24$.