A Level Maths - FP2 Sam Robbins 13SE

Second Order Differential Equations

In FP2 we are interested in solving 2nd ODEs of the form:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$
 a,b,c are constants

We consider three distinct cases:

 $b^2 > 4ac$ (Two real solutions)

 $b^2 = 4ac$ (One repeated solution)

 $b^2 < 4ac$ (Two complex solutions)

To solve 2^{nd} ODEs of this form we first consider solutions to:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

The process of solving a 2nd ODE starts with a general solution to a 1st ODE of form:

$$b\frac{dy}{dx} + cy = 0$$

$$\int \frac{1}{b} \, dy = \int \frac{1}{-cy} \, dy$$

$$b\ln(y) = -cx + k$$

$$y = Ae^{-\frac{c}{b}x}$$

$$y = Ae^{mx}$$

This was suggested to be a solution to the 2nd ODE as well

We take $y = e^{mx}$ as a starting point for finding general solutions to:

$$(1) \quad a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

If $y = e^{mx}$ is a solution to (1):

$$\frac{dy}{dx} = me^{mx}$$

$$\frac{d^2y}{dx^2} = m^2 e^{mx}$$

Then substitute this into (1)

$$am^2e^{mx} + bme^{mx} + ce^{mx} = 0$$

Factor out e^{mx}

$$e^{mx}(am^2 + bm + c)$$

As e^x must be greater than zero $am^2 + bm + c = 0$

This is a solvable quadratic called the Auxiliary equation

A Level Maths - FP2 Sam Robbins 13SE

$1 \quad Two \ real \ roots \ b^2 > 4ac$

$$(1) \quad a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

The general solution to (1) is in the form:

$$y = Ae^{\alpha x} + Be^{\beta x}$$

Where A and B are constants and α and β are the roots to the AE

1.1 Example

(1)
$$2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 3y = 0$$

Find the auxiliary equation

$$2m^{2}e^{mx} + 5me^{mx} + 3e^{mx} = 0$$
$$e^{mx}(2m^{2} + 5m + 3) = 0$$

$$m = -\frac{3}{2} \quad m = -1$$

General solution:
$$y = Ae^{\alpha x} + Be^{\beta x}$$

$$GS = Ae^{-\frac{3}{2}x} + Be^{-x}$$

2 1 Real, Repeated root $b^2 = 4ac$

General solution : $(A + bx)e^{\alpha x}$

A and B are constants and α is the root of the AE

2.1 Example

Find the general solution of:

$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0$$

Find the auxiliary equation

$$e^{mx}(m^2 + 8m + 16) = 0$$

Find the solution

$$m = -4$$

Substitute into the general solution formula

$$y = (A + Bx)e^{-4x}$$

3 Imaginary only roots $b^2 < 4ac$

This is when the AI has roots of form $\pm \alpha i$

General solution: $y = A\cos(\alpha x) + B\sin(\alpha x)$

A Level Maths - FP2 Sam Robbins 13SE

4 Complex roots $b^2 < 4ac$

This is used when the root is in the form $\beta \pm \alpha i$

General solution:
$$y = e^{\beta x} (A\cos(\alpha x) + B\sin(\alpha x))$$

4.1 Example

Find the general solution of:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 34y = 0$$

Find the auxiliary equation

$$m^2 - 6m + 34 = 0$$

Solve to find roots

Roots =
$$\frac{6 \pm \sqrt{36 - 4 \times 1 \times 34}}{2} = \frac{6 \pm 10i}{2} = 3 \pm 5i$$

Substitute into general solution formula

$$y = e^{3x} (A\cos(5x) + B\sin(5x))$$

5 Solving 2^{nd} ODE = f(x)

Of the type:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$

There are set forms of f(x)

The LHS will be solved in the standard way and the general solution of the LHS will be called the **complementary solution** (CS)

Solving the RHS will give us a particular integral (PI)

Full general solution=Complementary function+Particular integral

5.1 Standard forms of f(x)

$$f(x) = \lambda$$

$$f(x) = \lambda + \mu x$$

$$f(x) = \lambda + \mu x + \nu x^2$$

$$f(x) = ke^{px}$$

$$f(x) = m\cos\omega x$$

$$f(x) = m \sin \omega x$$

$$f(x) = m\cos\omega x \pm n\sin\omega x$$

5.2 Examples

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = f(x)$$

Find complementary function

$$m^2 - 5m + 6 = 0$$

$$m=2$$
 $m=2$

Complementary funtion = $Ae^{3x} + Be^{2x}$

5.2.1 $2^{\text{nd}} \text{ ODE} = \lambda$

$$f(x) = 3$$

Start with $y = \lambda$

$$y = \lambda$$

$$\frac{dy}{dx} = 0$$

$$\frac{d^2y}{dx^2} = 0$$

Substitute values into LHS

$$0 - 5 \times 0 + 6\lambda = 3$$

$$\lambda = \frac{1}{2}$$

Add Complementary function to particular integral

$$y = Ae^{3x} + Be^{2x} + \frac{1}{2}$$

5.2.2 2nd **ODE**= $\lambda + \mu x$

$$f(x) = 2x$$

Start with $y = \lambda + \mu x$

$$y = \lambda + \mu x$$

$$\frac{dy}{dx} = \mu$$

$$\frac{d^2y}{dx^2} = 0$$

Substitute into LHS

$$0 - 5\mu + 6(\lambda + \mu x) = 2x$$

Equate x terms

$$6\mu x = 2x$$

$$\mu = \frac{1}{3}$$

Equate constant terms

$$-\frac{5}{3} + 6\lambda = 0$$

$$6\lambda = \frac{5}{3}$$

$$\lambda = \frac{5}{18}$$

Substitute into form for the particular integral

$$y = \frac{1}{3}x + \frac{5}{18}$$

Add the PI and CF to find the general solution

$$y = Ae^{3x} + Be^{2x} + \frac{1}{3}x + \frac{5}{18}$$

A Level Maths - FP2 Sam Robbins 13SE

5.2.3 2nd **ODE**=
$$\lambda + \mu x + \nu x^2$$

$$f(x) = 3x^2$$

$$\begin{split} f(x) &= 3x^2 \\ \text{Start with } y &= \lambda + \mu x + \nu x^2 \end{split}$$

$$y = \lambda + \mu x + \nu x^{2}$$
$$\frac{dy}{dx} = \mu + 2\nu x$$
$$\frac{d^{2}y}{dx^{2}} = 2\nu$$

Substitute into the LHS

$$2\nu - 5(\mu + 2\nu x) + 6(\lambda + \mu x + \nu x^2) = 3x^2$$

Equate x^2 terms

$$6\nu = 3 \quad \nu = \frac{1}{2}$$

Equate x terms

$$-10 \times \frac{1}{2} \times x + 6\mu x = 0$$
$$-5 + 6\mu = 0$$
$$\mu = \frac{5}{6}$$

Equate constant coefficients

$$1 - 5 \times \frac{5}{6} + 6\lambda = 0$$
$$6\lambda = \frac{19}{6}$$
$$\lambda = \frac{19}{36}$$

Substitute into the particular integral form

$$y = \frac{1}{2}x^2 + \frac{5}{6}x + \frac{19}{36}$$

Add CF and PI to get the general solution

$$y = Ae^{3x} + Be^{2x} + \frac{1}{2}x^2 + \frac{5}{6}x + \frac{19}{36}$$