1. 极限的证明与计算

SDS 高数小班课 (2024 秋)

崔畅 北京大学化学与分子工程学院 CuiChang2022@stu.pku.edu.cn

2024-11-23

1 定义: 从序列到函数

定义 1.1 (ϵ -N 语言). 给定序列 $\{a_n\}_{n=1}^{\infty}$. 若存在 A, 使得: 对于任给的 $\epsilon > 0$, 总存在 $N = N(\epsilon) \in \mathbb{N}$, 使得 $|a_n - a| < \epsilon$ 对一切 n > N 成立, 则我们说序列 $\{a_n\}_{n=1}^{\infty}$ 是收敛 (convergent) 的, A 为其极限 (limit). 记作 $\lim_{n\to\infty} a_n = A$.

定义 1.2 (ϵ - δ 语言). 给定函数 f(x) 与点 x_0 , 并假设其在去心邻域 $U(x_0)/\{x_0\}$ 上有定义. 若存在 A, 使得: 对于任给的 $\epsilon > 0$, 总存在 $\delta = \delta(\epsilon) > 0$, 使得 $|f(x) - A| < \epsilon$ 对一切 $0 < |x - x_0| < \delta$ 成立, 则我们说函数 f(x) 在点 x_0 处是收敛 (convergent) 的, A 为其极限 (limit). 记作 $\lim_{x \to x_0} f(x) = A$.

• 左极限 $\lim_{x \to x_0^+} f(x)$ 、右极限 $\lim_{x \to x_0^-} f(x)$ 的定义可相应给出.

定义 1.3 (ϵ -L 语言). 给定函数 f(x) 与点 x_0 , 并假设其在区间 ($-\infty$, $-x_0$) \cup (x_0 , $+\infty$) 上有定义. 若存在 A, 使得: 对于任给的 $\epsilon > 0$, 总存在 $L = L(\epsilon) > 0$, 使得 $|f(x) - A| < \epsilon$ 对一切 |x| > L 成立, 则我们说函数 f(x) 在无穷远点 ∞ 是收敛 (convergent) 的, A 为其极限 (limit). 记作 $\lim_{x\to\infty} f(x) = A$.

- 单侧无穷远的极限 $\lim_{x\to+\infty} f(x)$ 与 $\lim_{x\to-\infty} f(x)$ 的定义可相应给出.
- 自变量只要足够接近某点 x_0 , 函数 f(x) 就会足够接近任意小的误差限 ϵ . 自变量的范围在上述定义中分别用 N, δ, L 来描述.
- 从定义出发证明极限, 一般使用**放缩法**, 适当放大 |f(x) A|, 直到得出关于 N, δ, L 的不等式.

例题 1.1. 证明正弦函数是**连续**的: $\lim_{x\to x_0} \sin x = \sin x_0$.

注记 1.1. 三角函数的和差化积公式:

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2},\tag{1}$$

$$\sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2},\tag{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2},\tag{3}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}.$$
 (4)

例题 1.2. (Cauchy 命题) 若 $\lim_{n\to\infty} a_n = A$, 则前 n 项的算术平均值也收敛于 A, 即:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = A. \tag{5}$$

注记 1.2. 绝对值放缩的有力工具: 三角形不等式 (triangle inequality):

$$|a \pm b| \le |a| + |b|. \tag{6}$$

2 存在性准则与两个重要极限

定理 2.1 (夹逼准则). 若三个序列 $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}, \{c_n\}_{n=1}^{\infty}$ 满足 $b_n \leq a_n \leq c_n$, 且 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n = A$, 则 $\lim_{n\to\infty} a_n = A$.

- 函数 f(x) 的夹逼准则可相应给出.
- 通常, 我们希望 $\{b_n\}$ 或 $\{c_n\}$ 的其中之一是常数序列.

例题 2.1. 证明极限 $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

注记 2.1. 对整次幂进行放缩的有力工具: 二项式定理 (binomial theorem):

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k},$$
 (7)

其中, 组合数 (combinatorial number) 定义为

$$C_n^k \equiv \frac{n!}{(n-k)!k!}. (8)$$

定理 2.2 (重要极限 1). $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

例题 2.2. 求极限 $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

定理 2.3 (单调有界准则). 单调增且有上界的序列 $\{a_n\}_{n=1}^{\infty}$ 是收敛的.

- 同理, 单调减且有下界的序列也是收敛的.
- 单调性确保其不会"反复震荡",有界性确保其不会"狂野生长".

例题 2.3. 计算极限
$$\lim_{n\to\infty} \underbrace{\sqrt{2+\sqrt{\cdots+\sqrt{2}}}}_{n \text{ 重根式}}$$
.

注记 2.2. 对递推关系极为有用的**数学归纳法** (mathematical induction): 设有关于整数的命题 p(n). 如果我们能证明如下两个命题成立,则 p(n) 就对一切 $n > n_0$ 成立:

- 1. 归纳基例: $p(n_0)$ 成立;
- 2. 归纳递推: 任给 $k > n_0$, 当 p(k) 成立时, p(k+1) 成立.

定理 2.4 (重要极限 2). $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$.

例题 2.4. 求极限 $\lim_{x\to 0} \frac{a^x-1}{x}$ 与 $\lim_{x\to 0} \frac{(1+x)^\alpha-1}{x}$. 其中, $a,\alpha>0$.

注记 2.3. 至此, 我们已掌握以下几组常用的**等价无穷小** (equivalent infinitesimal), 可用于代换和化简乘积中的某些复杂部分:

1.
$$x \sim \sin x \sim \tan x \sim \ln (1+x) \sim \frac{1}{\ln a} (a^x - 1) \sim \frac{1}{\alpha} ((1+x)^{\alpha} - 1);$$

2.
$$x^2 \sim 2(1 - \cos x)$$
.

例题 2.5. 计算极限

$$\lim_{x \to +\infty} \left(\frac{x}{x-1} \right)^{x-3}. \tag{9}$$

3 未定式极限的计算方法

3.1 等价无穷小的代换

例题 3.1 (2024 考研数学一; 等价无穷小代换). 计算极限

$$\lim_{x \to 0} \frac{(1+x^2)^{\sin x} - 1}{x^3}.$$
 (10)

注记 3.1. 处理指数型复合函数 $(1+f(x))^{g(x)}$ 的常用手段是作如下的恒等变形:

$$(1+f(x))^{g(x)} - 1 = e^{g(x)\ln(1+f(x))} - 1 \sim g(x)\ln(1+f(x)), \tag{11}$$

只要 $g(x) \ln (1 + f(x)) \to 0$.

3.2 L'Hôpital 法则

定理 3.1 (L'Hôpital 法则). 若函数 f(x), g(x) 在点 x_0 附近有定义, 且满足如下条件:

- 1. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$;
- 2. 当 $x \to x_0$ 时, $g'(x) \neq 0$ 且 $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在;

则

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}.$$
 (12)

• 以上是 $\frac{0}{0}$ 型的未定式; 对于 $\frac{\infty}{\infty}$ 型的未定式可相应得出.

例题 3.2 (L'Hôpital 法则). 计算极限

$$\lim_{x \to 0} \frac{x - \sin x}{\sin^3 x}.\tag{13}$$

注记 3.2. L'Hôpital 法则通常伴随着不必要且较大的计算量 (参考例题 3.1, 涉及隐函数求导技巧), 使用前请三思, 或做一些必要的"洛前准备"(例如等价无穷小代换, 等等)! **注记 3.3.** 分子或分母如果是减式, 则不能随意"拆开代换", 否则有可能违背极限四则运算法则的存在性前提.

3.3 含有 Peano 余项的 Taylor 展开式

• 用 x^n 作为最基本的"砌块", 以多项式展开近似复杂函数.

定理 3.2 (Taylor 中值定理 (Peano 余项)). 一个在点 x_0 处 n 次可微的函数 f(x) 满足

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$
 (14)

• 几组常用的 Tylor 展开式 (一般记忆前两项就足够):

$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \cdots, \tag{15}$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \cdots, \tag{16}$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots$$
 (17)

例题 3.3 (2021 期末; 等价无穷小代换、Taylor 展开). 计算极限

$$\lim_{x \to 0} \frac{\tan^4 x}{\sqrt{1 - \frac{x \sin x}{2} - \sqrt{\cos x}}}.$$
 (18)

注记 3.4. 分母有理化对"根式差"的形式较为有用.

例题 3.4 (2022 模拟; 等价无穷小代换、Taylor 展开). 计算极限

$$\lim_{x \to 0} \frac{\frac{x^2}{2} + 1 - \sqrt{1 + x^2}}{\sin(x^2)(\cos x - e^{x^2})}.$$
 (19)

例题 3.5 (2022 模拟; L'Hôpital 法则、变上限积分). 计算极限

$$\lim_{x \to 0} \left(\frac{1 + \int_0^x e^{t^2} dt}{e^x - 1} - \frac{1}{\sin x} \right). \tag{20}$$

基本初等函数的导数 4

定义 4.1 (导数的定义). 函数 f(x) 在点 x_0 处的导数 (derivative) 定义为

$$f'(x) \equiv \frac{f(x) - f(x_0)}{x - x_0}. (21)$$

• 对数、指数、幂函数:

$$(a^x)' = a^x \ln a, \tag{22}$$

$$(\log_a x)' = \frac{1}{x \ln a},$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1};$$
(23)

$$(x^{\alpha})' = \alpha x^{\alpha - 1}; \tag{24}$$

• 三角函数:

$$(\sin x)' = \cos x,\tag{25}$$

$$(\cos x)' = -\sin x,\tag{26}$$

$$(\tan x)' = \sec^2 x; \tag{27}$$

• 反三角函数:

$$(\arcsin x)' = \frac{1}{\sqrt{1-r^2}},\tag{28}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}},\tag{29}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}},$$
 (28)
 $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}},$ (29)
 $(\arctan x)' = \frac{1}{1 + x^2};$ (30)