You submitted this quiz on **Mon 11 Nov 2013 2:34 PM PST**. You got a score of **5.00** out of **5.00**.

Question 1

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.2. This means (check all that apply):

Your Answer		Score	Explanation
$lackbox{igwedge}{oxed{oxedge}}$ Our estimate for $P(y=0 x; heta)$ is 0.8.	~	0.25	Since we must have $P(y=0 x;\theta)=1-P(y=1 x;\theta) \ \mbox{, the former is 1 - 0.2 = 0.8}.$
lacksquare Our estimate for $P(y=1 x; heta)$ is 0.2.	~	0.25	$h_{ heta}(x)$ is precisely $P(y=1 x; heta)$, so each is 0.2
Our estimate for $P(y=0 x; heta)$ is 0.2.	~	0.25	$h_{ heta}(x)$ is $P(y=1 x; heta)$, not $P(y=0 x; heta)$.
Our estimate for $P(y=1 x;\theta)$ is 0.8.	~	0.25	$h_{ heta}(x)$ gives $P(y=1 x; heta)$, not $1-P(y=1 x; heta)$.
Total		1.00 / 1.00	

Question 2

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=-6, \theta_1=0, \theta_2=1$. Which of the following figures represents the decision boundary found by your classifier?

Your Score Explanation
Answer

Question 3

Suppose you have the following training set, and fit a logistic regression classifier $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2)$.

x_1	x_2	y
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

Your Answer		Score	Explanation
If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)})>1$.	*	0.25	The function $g(z)$ in the hypothesis $h_{\theta}(x)$ is the sigmoid function $\frac{1}{1+e^{-z}}$ which always lies between 0 and 1.
Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) could increase how well we can fit the training data.	*	0.25	Adding new features can only improve the fit on the training set: since setting $\theta_3=\theta_4=\theta_5=0$ makes the hypothesis the same as the original one, gradient descent will use those features (by making the corresponding θ_j non-zero) only if doing so improves the training set fit.
The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.	•	0.25	While it is true they cannot be separated, gradient descent will still converge to the optimal fit. Some examples will remain misclassified at the optimum.
${ m \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	~	0.25	The cost function $J(\theta)$ is guaranteed to be convex for logistic regression.
Total		1.00 / 1.00	

Question 4

For logistic regression, the gradient is given by $rac{\partial}{\partial heta_j} J(heta) = \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$.

Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

Your Answer		Score	Explanation
$lackbox{$	*	0.25	This vectorized version uses the linear regression hypothesis $\theta^T x$ instead of that for logistic regression.
$oldsymbol{oldsymbol{ec{ heta}}} heta := heta - lpha rac{1}{m} \sum_{i=1}^m igg(rac{1}{1 + e^{- heta T_x(i)}} - y^{(i)}igg) x^{(i)} .$	*	0.25	This is a vectorized version of gradient descent that substitues in the exact form of $h_{\theta}(x^{(i)})$ used by logistic regression.
$m{ heta}_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m \Big(heta^T x - y^{(i)} \Big) x_j^{(i)}$ (simultaneously update for all j).	~	0.25	This uses the linear regression hypothesis $\theta^T x$ instead of that for logistic regression.
$m{ heta}_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update for all j).	~	0.25	This is a direct substitution of $\frac{\partial}{\partial \theta_j} J(\theta)$ into the gradient descent update.
Total		1.00 / 1.00	

Question 5

Which of the following statements are true? Check all that apply.

Your Answer	Score	Explanation

Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).	~	0.25	We need to train three classifiers if there are three classes; each one treats one of the three classes as the $y=1$ examples and the rest as the $y=0$ examples.
The cost function $J(\theta)$ for logistic regression trained with $m \geq 1$ examples is always greater than or equal to zero.	~	0.25	The cost for any example $x^{(i)}$ is always ≥ 0 since it is the negative log of a quantity less than one. The cost function $J(\theta)$ is a summation over the cost for each eample, so the cost function itself must be greater than or equal to zero.
For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).	•	0.25	The cost function for logistic regression is convex, so gradient descent will always converge to the global minimum. We still might use a more advanded optimization algorithm since they can be faster and don't require you to select a learning rate.
The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1) .	✓	0.25	The denomiator ranges from ∞ to 1 as z grows, so the result is always in $(0,1).$
Total		1.00 /	

1.00