Algebra Summer

Algebra

Aluffi

Authors: Shaleen Baral

Contents

1	. Preliminaries	. 2
	1.1. Naive Set Theory	
	1.2. Functions	
	13 Categories	6

1. Preliminaries

1.1. Naive Set Theory

Definition 1.1.1. The *ordered pair* (s,t) can be defined as the set $\{s,\{s,t\}\}$. This retains both the elements of the tuple but also conveys an ordering.

Definition 1.1.2. The *disjoint union* of two sets S, T is the set $S \sqcup T$ obtained by first producing 'copies' S' and T' and then taking the union.

Definition 1.1.3 . The *product* of two sets S,T is the set $S\times T$ defined as

$$S \times T = \{(s, t) \text{ such that } s \in S, t \in T\}.$$

Definition 1.1.4. A relation on a set S is a subset R of the product $S \times S$. If $(a, b) \in R$, we write aRb.

Definition 1.1.5. An *equivalence relation* on a set S is any relation \sim satisfying the following properties

- a. reflexivity: $\forall a \in S. \ a \sim a$
- b. symmetry: $\forall a \in S. \forall b \in S. \ a \sim b \iff b \sim a$
- c. transitivity: $\forall a \in S. \forall b \in S. \forall c \in S. \ a \sim b, b \sim c \Longrightarrow a \sim c.$

Definition 1.1.6. A partition of S is a family of disjoint nonempty subsets of S whose union is S.

Definition 1.1.7 . Let \sim be an equivalence relation on S. Then for every $a \in S$, the *equivalence class* of a is the subset S defined by

$$[a]_{\alpha} = \{b \in S \mid b \sim a\}.$$

Further, the equivalence classes form a partition \mathcal{P}_{\sim} of S.

Lemma 1.1.1: Every partition of *S* corresponds to an equivalence relation.

Definition 1.1.1. The *quotient* of the set S with respect to the equivalence relation \sim is the set

$$S \sim = \mathcal{P}_{a}$$

of equivalence classes of elements of S with respect to \sim .

1.2. Functions

Definition 1.2.1. The graph of f is the set

$$\Gamma_f = \{(a, b) \in A \times B \mid b = f(a)\} \subseteq A \times B.$$

Officially, a function is its graph together with information of the source A and the target B of f.

Definition 1.2.2 . A function is a relation $\Gamma \subseteq A \times B$ such that $\forall a \in A, \exists ! b \in B$ with $(a,b) \in \Gamma$. To denote f is a function from A to B we write $f: A \longrightarrow B$.

Definition 1.2.3. The collection of all functions from a set A to a set B is denoted B^A .

Example: Every set A comes equipped with the *identity function*, $id_A : A \longrightarrow A$, whose graph is the diagonal in $A \times A$. It is defined by $\forall a \in A$. $id_A(a) = a$.

Definition 1.2.4 . If $S \subseteq A$, for $f : A \longrightarrow B$, we define $f(S) \subseteq B$ as

$$f(S) = \{ b \in B \mid \exists a \in S.b = f(a) \}$$

Definition 1.2.5. The *restriction* of $f:A\longrightarrow B$ to $S\subseteq A$, denoted $f\mid_S$ is the function $S\longrightarrow B$ defined by $\forall s\in S. \ \ f\mid_S (s)=f(s).$

Remark: The restriction can be equivalently described as $f \circ i$ where $i : S \longrightarrow A$ is the inclusion. Further, $f(S) = \operatorname{im}(f \mid_S)$.

Example (Multisets): A *multiset* is like a set but allows for multiple instances of each element. A multiset may be defined by giving a function $m:A\longrightarrow \mathbb{N}^*$, where N^* is the set of positive integers. The corresponding multiset consists of the elements $a\in A$, each taken m(a) times.

Example (Indexed Sets): One may think of an indexed set $\{a_i\}_{i\in I}$ as set whose elements are denoted by a_i for i ranging over some 'set of indices' I. Instead, it is more proper to think of an indexed set as a function $a:I\longrightarrow A$, with the understanding that a_i is a shorthand for a(i). One benefit is that this allows us to consider a_0,a_1 as distinct elements of $\{a_i\}_{i\in \mathbb{N}}$ even if $a_0=a_1$ as elements of A.

Definition 1.2.6 . If $f:A\longrightarrow B$ and $g:B\longrightarrow C$ are functions then so is the operation $g\circ f$ defined by

$$\forall a \in A. \ (g \circ f)(a) = g(f(a)).$$

Pictorially, the following diagram commutes

Remark: A diagram *commutes* when the result of following a path of arrows from any point of the diagram to any other point only depends on the starting and ending points and not on the particular path chosen.

Lemma 1.2.1: Composition of functions is associative. That is to say, if $f:A\longrightarrow B, g:B\longrightarrow C$ and $h:C\longrightarrow D$ then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Graphically, the following diagram commutes

Example: If $f:A\longrightarrow B$ then $\mathrm{id}_B\circ f=f$ and $f\circ \mathrm{id}_A=f$. Graphically, the following diagrams commute

$$A \xrightarrow{\operatorname{id}_B \circ f} B \xrightarrow{\operatorname{id}_B} B \qquad A \xrightarrow{\operatorname{id}_A} A \xrightarrow{f} B$$

Definition 1.2.1. A function $f: A \longrightarrow B$ is injective if $\forall a', a'' \in A, a' \neq a'' \Longrightarrow f(a') \neq f(a'')$.

Definition 1.2.8 . A function $f:A\longrightarrow B$ is *surjective* if $\forall b\in B, \exists a\in A$ such that b=f(a). That is to say f covers B and equivalently, $\operatorname{im}(f)=B$.

Definition 1.2.9 . If $f:A\longrightarrow B$ is both injective and surjective then it is a *bijection*. Then we often write $f:A\stackrel{\sim}{\longrightarrow} B$. We also say that A and B are *isomorphic* and denote this by $A\cong B$.

Definition 1.2.10. A function $g: B \longrightarrow A$ is a *left inverse* of $f: A \longrightarrow B$ if $g \circ f = \mathrm{id}_A$. Graphically, the following diagram commutes

$$A \xrightarrow{f} B \xrightarrow{g} A$$

Definition 1.2.11. A function $f:A\longrightarrow B$ is a right inverse of $g:B\longrightarrow A$ if $f\circ g=\mathrm{id}_A$. Graphically, the following diagram commutes

$$B \xrightarrow{g} A \xrightarrow{f} B$$

Definition 1.2.12. We call $g: B \longrightarrow A$ an inverse of $f: A \longrightarrow B$ if g is both a left and right inverse of f. Then g may also be denoted f^{-1} .

Proposition 1.2.1: Assume $A \neq \emptyset$ and let $f: A \longrightarrow B$ be a function. Then

- a. f has a left inverse iff it is injective.
- b. f has a right inverse iff it is surjective.

Corollary 1.2.1.1: A function $f: A \longrightarrow B$ is a bijection if and only if it has a (two-sided) inverse.

Remark: An injective but not surjective function has no right inverse. If the source has more than two elements, there will be more than one left inverse.

Remark: A surjective function but not injective function will have multiple inverses. These are called sections.

Definition 1.2.1. Let $f:A\longrightarrow B$ be any function and $S\subseteq B$ be a subset. Then $f^{-1}(S)$ is defined by

$$f^{-1}(S)=\{a\in A\mid f(a)\in S\}.$$

If $S=\{q\}$ is a singleton then $f^{-1}(T)=f^{-1}(q)$ is denoted the fiber of f over q.

Remark: In this language: f is a bijection iff it has nonempty fiber over all elements of B and every fiber is a singleton.

Definition 1.2.1.1 . A function $f:A\longrightarrow B$ is a monomorphism (or monic) if for all sets Z and all functions $\alpha',\alpha'':Z\longrightarrow A$

$$f \circ \alpha' = f \circ \alpha'' \Longrightarrow \alpha' = \alpha''.$$

Proposition 1.2.2: A function is injective iff it is a monomorphism.

Example (Projection): Let A, B be sets. Then there are natural projections π_A, π_B

defined by

$$\forall (a,b) \in A \times B. \quad \pi_A((a,b)) = a, \quad \ \pi_B((a,b)) = b.$$

These maps are clearly surjective.

Example (Direct Sum Injection): There are natural injections from A, B to their disjoint union $A \sqcup B$

obtained by sending $a \in A$ (resp. $b \in B$) to the corresponding element in the isomorphic copy A' of A (resp. B' of B) in $A \sqcup B$.

Example (Equivalence Relation Projection): Let \sim be an equivalence relation on A. Then there is a surjective canonical projection

$$A \longrightarrow A/\sim$$

obtained by sending every $a \in A$ to its equivalence class $[a]_{\alpha} \in A/\sim$.

Lemma 1.2.2: Every function $f:A\longrightarrow B$ defines an equivalence relation \sim on A as follows: for every $a',a''\in A$,

$$a' \sim a'' \iff f(a') = f(a'').$$

Proposition 1.2.3 (Canonical Decomposition): Let $f:A\longrightarrow B$ be any function and define \sim as above. Then f decomposes as follows:

$$A \xrightarrow{\hspace*{1cm}} (A/\sim) \xrightarrow{\hspace*{1cm}} \widetilde{\tilde{f}} \xrightarrow{\hspace*{1cm}} \operatorname{im}(f) \hookrightarrow B$$

The first function is the canonical projection $A \longrightarrow A/\sim$. The third function is the inclusion im $f \subseteq B$. The bijection \tilde{f} in the middle is defined by

$$\tilde{f}([a]_{\sim}) = f(a)$$

for all $a \in A$.

1.3. Categories

Definition 1.2.2 . A category C consists of

- a class Obj(C) of *objects* the category.
- for every two objects A, B of C, a set $Hom_C(A, B)$ of morphisms with the following properties
 - for every object A of C, there exists (at least) one morphism $1_A \in \operatorname{Hom}_{\mathcal{C}}(A,A)$, the 'identity' on A.
 - ▶ two morphisms $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(B, C)$ determine a morphism $fg \in \operatorname{Hom}_{\mathcal{C}}(A, C)$. That is for every triple of objects A, B, C of C there is a function (of sets)

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \times \operatorname{Hom}_{\mathcal{C}}(B,C) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(A,C)$$

and the image of the pair (f, g) is denoted fg.

- this composition law is associative: if $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$, $g \in \operatorname{Hom}_{\mathcal{C}}(B,C)$ and $h \in \operatorname{Hom}(\mathcal{C})(C,D)$ then (hg)f = h(gf).
- the identity morphisms are identities with respect to composition: that is for all $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ we have

$$f\cdot 1_A=f,\quad 1_B\cdot f=f.$$