1 Was ist Analysis?

Mathematik Streng logisches Herleiten neuer Aussagen (aus möglichst wenigen Grundannahmen, sogenannten Axiomen).

Analysis Aus dem altgriechischen "Auflösen". Analysis hat ihre Grundlage in der "Infinitesimalrechnung" von Leibnitz und Newton.

Zentrale Begriffe Grenzwerte von Folgen und Reihen, Funktionen, Stetigkeit, Differenzierbarkeit, Integrierbarkeit, Differential- und Integralrechnung, Differentialgleichungen (Newton, Maxwell, Schrödinger), unendlich dimensionale Räume.

Beispiele.

(a)

$$S = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \dots$$

$$\implies 2S = 1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}} + \dots$$

$$\implies 2S = 1 + S$$

$$\implies S = 1$$

S entspricht der Wahrscheinlichkeit, dass bei wiederholtem Werfen einer Münze irgendwann Kopf vorkommt.

(b) Vorsicht!

$$S = 1 + 2 + 4 + \cdots$$

$$\implies 2S = 2 + 4 + 8 + \cdots = S - 1$$

$$\implies S = -1$$

Natürlich Quatsch! Formales Rechnen kann gefährlich sein!

Fragestellungen in dieser Vorlesung

- Was sind mathematische Aussagen?
- Wie macht man Beweise, wie findet man sie? (learning by doing)
- logische Zusammenhänge
- Was sind Zahlen?