## **Decoding Brain Signals**

Microsoft machine learning competition

Ruslan Aydarkhanov, 4th place

August 20, 2016

## Background







MSc in neurosciences

Minor in computational neurosciences



Doctoral program in neuroscience

Brain-Computer Interfaces

Basic machine learning courses during Masters + self-education

## Azure ML platform

No access to testing dataset Solutions are submitted as Azure ML services and tested remotely No teams

- Pure Azure ML
  - ► Fast development of simple models
  - GUI, drag and drop
  - ► Not flexible and limited in tools
- ② Building models locally
  - ► Python + all its package zoo
  - ► Same structure for all projects on Azure ML
  - ► Outdated scikit-learn vo.15.1 on Azure ML (newest is vo.17.1) -> virtualenv
  - Learning and validation on a laptop

### Competition



Miller et al, 2014

- Electrocorticogram (ECoG)
- up to 64 channels
- window  $\pm$  400 ms around stimulus presentation onset
- 4 patients
  - 200 training samples per patient40 samples in public dataset60 samples in private dataset
- Performance metric: classification accuracy

# Data processing

#### Basics of EEG/ECoG processing

- Spatial filtering and decomposition
  - √ common average reference (CAR)
  - laplacian
  - ► PCA, ICA, CSP ...
- √ Band-pass filtering in time
- Frequency band power
  - Power spectral density
  - Signal envelope (hilbert transform)
  - √ Wavelet transform

#### **Features**

- √ Event-related potential (ERP)
- √ Wavelet transform
- √ Event-related broadband (ERBB)
- √ Covariance matrix projected on a Riemannian tangent space

#### Feature selection

- ✓ ANOVA
- Genetic algorithm

Ruslan Aydarkhanov Decoding Brain Signals

## Event-related potential (ERP)



- Bandpass filtering 1-10 Hz
- Window from -50 to 350 ms
- Down-sample by factor of 30

#### Wavelet transform



#### Continuous wavelet transform

- Complex morlet wavelets for 4-10 Hz  $e^{j*w*x} * e^{-x^2/2}$
- Convolution + absolute value -> Instant frequency power estimation
- Window from -50 to 350 ms
- Down-sample by factor of 30

Python library for EEG: MNE

Ruslan Aydarkhanov Decoding Brain Signals

## Event-related broadband (ERBB)



# Riemannian projection



- Compute covariance matrices with shrinkage from raw data
- Pick up the projection reference point
- Project on a tangent space

Python library: pyRiemann

Developed by the winner Alexandre Barachant

Originally for neural data, but can be applied to any set of semi-positive definite (SPD) matrices, e.g. covariance matrices

### Classifiers

#### Simple classifiers:

- Arbitrary combination of features
- Individual classifiers for patients
- Logistic regression with patient-specific L1 penalty (grid search)
- Stratified 5-fold cross-validation

#### Ensemble:

- Weighted average of 8 best first-layer classifiers
- Stacked classifier
  - ► Input is 5-fold out-of-sample predictions
  - ► SVM with CV Grid Search of parameters
  - ► No validation

10

## Intermediate progress

- Local cross-validation correlated well with leaderboard
- Leader position for 1 month with one ERP model (score 81)
- Adding more features, learning multiple models
- Averaging and stacking
- Small testing set (4 x 40) -> struggle for each sample in the end
- Both private and public scores are very noisy

11

#### Results

| Name                 | Highest Public Score | Highest Private Score | Final Ranking |
|----------------------|----------------------|-----------------------|---------------|
| Alexandre Barachant  | 90.625               | 93.75                 | 1             |
| KyuHwa Lee           | 88.75                | 92.5                  | 2             |
| Jean-Remi King       | 86.25                | 88.3333               | 3             |
| Ruslan Aydarkhanov   | 89.375               | 88.3333               | 4             |
| Marouane FELJA       | 82.5                 | 84.1667               | 5             |
| Igor Inozemtsev      | 81.875               | 84.1667               | 6             |
| lmzintgraf           | 89.375               | 82.9167               | 7             |
| Pablo Seibelt        | 81.25                | 82.5                  | 8             |
| Carlos Aranda Torres | 81.875               | 82.5                  | 9             |
| Bruce Cragin         | 77.5                 | 82.0833               | 10            |

My solution: https://github.com/Aydarkhan/decoding\_brain\_signals\_MS

Ruslan Aydarkhanov Decoding Brain Signals

12

#### Leaders' solutions

- Alexandre Barachant, 1st place
  - ► Average of 5 models of L2-penalized logistic regression
  - ► ERP, Riemannian projection
  - ► Covariance matrices in frequency domain projected on tanget space, averaging models across frequency bins
  - ► Cross-covariance matrices (covariance of Hankel matrices)
- Kyuhwa Lee, 2nd place
  - ► Average of 2 models of **Gradient Boosting Machine**
  - ▶ PSD with multitaper on 2 windows 0-300ms and 100-400ms
  - ► Instant band power with Hilbert transform in low band < 10 Hz and high band 10-70 Hz
- Jean-Remi King, 3rd place
  - Bagging of 5 models of logistic regression
  - ► ERP, Riemannian projection
  - ▶ PSD and time-frequency features

## Lessons and take home messages

- Competitive spirit boosts your efficiency
- Tried many things in short time
- Write good code from the beginning
- Feature engineering is crucial -> check the literature (especially with small and high-dimensional datasets)
- For brain data take into account
  - ▶ time channel
  - spectral characteristics
  - interaction between channels
- Ensemble methods are powerful

### Thank you for your attention!



Questions