

MICROBIOLOGÍA GENERAL

CRECIMIENTO MICROBIANO REQUERIMIENTOS NUTRICIONALES Y AMBIENTALES

Clase 1

Nociones básicas sobre Microbiología
Descripción estructuras: Celulares vs. Acelulares;
Procariota vs. Eucariotas; Archae vs. Bacteria;
Cocos vs. Bacilos; Gram + vs. Gram -; Célula vegetativa vs. Endosporas ...

Clase 2

Laboratorio: Medios de cultivo - Esterilización

Clase 3

Laboratorio: Control ambiental (aire – superficies) Recuentos (placa – NMP)

TEMARIO

- > Crecimiento microbiano
- Requerimientos nutricionales

Tipos de nutrientes

Categorías nutricionales

> Requerimientos ambientales

Temperatura

pH

Disponibilidad de agua

Oxígeno

CRECIMIENTO MICROBIANO

Crecimiento microbiano

Crecimiento celular (aumento de tamaño de la célula)
Crecimiento de poblaciones celulares (aumento del número de células)

- División binaria
- Tiempo de generación o duplicación // velocidad de crecimiento
- Curva de crecimiento

División Binaria

Masa umbral (inicio replicación DNA) / Longitud umbral (inicio formación septo)

La célula bacteriana se elonga y duplica su DNA

Se forma el septo transversal central que divide la célula en dos partes

(proteínas Fts)

Division plane

La división completa origina 2 células hijas iguales

¿Cómo se visualiza el crecimiento de la población? Bacterias inoculadas en medio líquido

24 h a 37 °C

¿Cómo se cuenta el número de células?

Turbidez

OD540 0 0,18 0,45 0,68

Microscopía

Recuento de u.f.c. (placas)

Tiempo de duplicación o generación Velocidad de crecimiento de la población microbiana

Tiempo de duplicación o de generación («g»)
 Tiempo requerido para que se complete
 un ciclo de fisión binaria

 Cada nuevo ciclo de fisión aumenta la población en un factor 2 (crecimiento logarítmico o exponencial)

Number

of cells

Time →

Tiempo de duplicación o generación Velocidad de crecimiento de la población microbiana

- Tiempo de duplicación o de generación («g»)
 Tiempo requerido para que se complete
 un ciclo de fisión binaria
- Cada nuevo ciclo de fisión aumenta la población en un factor 2 (crecimiento logarítmico o exponencial)
- El tiempo de generación puede ser desde minutos a días (especie – condiciones de crec.)
 - Velocidad de crecimiento ("v")
 Nº de generaciones por unidad de tiempo
 (determinar condiciones óptimas de crecimiento)

Duplicación de la población

	Tiempo		Células / Mililitro Notación	
Minutos	Horas	Número	Científica	Logaritmo
0	0	1.000	10^{3}	3,0
<mark>20</mark>	0,33	2.000	2×10^{3}	3,301
40	0,66	4.000	4×10^{3}	3,602
<mark>60</mark>	1,00	8.000	$8x10^{3}$	3,903
<mark>80</mark>	1,33	16.000	$1,6X10^4$	4,204
100	1,66	32.000	$3,2x10^4$	4,505
120	2,00	64.000	6,4 x 10 ⁴	4,806
140	2,33	128.000	$1,28 \times 10^5$	5,107
160	2,66	256.000	$2,56 \times 10^5$	5,408
180	3,00	512.000	$5,12 \times 10^5$	5,709
200	3,33	1.024.000	$1,02 \times 10^6$	6,010

2ⁿ

$$N_f = N_0 . 2^n$$

 $Log N_f - log N_0 = n log 2$

Duplicación de la población

		Tiempo		Células / Mililitro	
				Notación	
	Minutos	Horas	Número	Científica	Logaritmo
	0	0	1.000	10^{3}	3,0
1	20	0,33	2.000	2×10^{3}	3,301
2	40	0,66	4.000	4×10^{3}	3,602
3	60	1,00	8.000	$8x10^{3}$	3,903
4	80	1,33	16.000	$1,6X10^4$	4,204
5	100	1,66	32.000	$3,2x10^4$	4,505
6	120	2,00	64.000	$6,4 \times 10^4$	4,806
7	140	2,33	128.000	$1,28 \times 10^5$	5,107
8	160	2,66	256.000	$2,56 \times 10^5$	5,408
9	180	3,00	512.000	$5{,}12 \times 10^{5}$	5,709
10	200	3,33	1.024.000	$1,02 \times 10^6$	6,010

$$N_f = N_0 . 2^n$$

 $Log N_f - log N_0 = n log 2$

Cálculo de «n»

(«n»: n° de generaciones)

$$n = (Log N_f - log N_0)/ log 2$$

$$n = (6-3)/0,3$$

$$n = 10$$
 (10 generaciones)

Cálculo de «g»

(«g»: tiempo de generación)

(cada duplicación insume 20')

Cálculo de «v»

(«v»: velocidad de duplicación)

Duplicación de la población

$$N_f = N_0 \cdot 2^n$$

$$Log N_f - log N_0 = n log 2$$

 $g = tiempo (t - t_0) / n$

 $v = n / tiempo (t - t_0)$ v = 1 / g

.3

Si se considera la célula bacteriana del ejemplo previo, con tiempo de generación de **20 minutos**, y que está creciendo en forma exponencial ...

... Tras 48 horas de incubación, la población bacteriana será de 2 144 bacterias ...

Dado que el peso de una célula bacteriana (vol $\approx 1 \ \mu m^3$) es $\approx 10^{-12}$ g, el peso de la masa bacteriana tras 48 h de crecimiento exponencial será $\approx 10^{-25}$ toneladas ...

Curva de Crecimiento de población bacteriana

composición medios de cultivo

Cultivos «batch»

CRECIMIENTO DIÁUXICO

CULTIVO CONTINUO QUIMIOSTATO

Control sobre el n° de células y velocidad de crecimiento

REQUERIMIENTOS NUTRICIONALES

NUTRICIÓN

Proceso por el cual los seres vivos toman del medio donde habitan las sustancias químicas (<u>nutrientes</u>) que necesitan para crecer y son utilizadas para actividades celulares metabólicas (fines energéticos y biosintéticos)

Composición Química

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Analysis of the Chemical Composition of an Escherichia coli Cell				
	% Total Weight	% Dry Weight		% Dry Weight
Organic Compounds Proteins Nucleic acids RNA DNA Carbohydrates Lipids	15 6 1 3 2	20 3 10 Not determined	Elements Carbon (C) Oxygen (O) Nitrogen (N) Hydrogen (H) Phosphorus (P) Sulfur (S)	50 20 14 8 3
Miscellaneous Inorganic Compounds Water All others	70 1	Not determined	Potassium (K) Sodium (Na) Calcium (Ca) Magnesium (Mg) Chlorine (Cl) Iron (Fe) Manganese (Mn), zinc (Zn), molybdenum (Mo), copper (Cu), cobalt (Co), zinc (Zn)	1 0.5 0.5 0.5 0.2 0.3

Célula bacteriana compuesta por moléculas orgánicas e inorgánicas, siendo las más abundantes agua (70%) y proteínas (15%).

Proteínas: C-H-O-N-S Ácidos Nucleicos: C-H-O-N-P

Carbohidratos: C-H-O Lípidos: C-H-O-P

Definiciones

Nutrientes

Sustancias necesarias para el crecimiento microbiano que se usan en la biosíntesis y producción de energía

Macronutrientes

Elementos (10) captados por los microorganismos en cantidades relativamente grandes. 95% la célula microbiana. Función estructural y metabólica

Micronutrientes

Elementos que se requieren en cantidades muy pequeñas.

Rol enzimático – Estructura proteica

Factores de Crecimiento (orgánicos)

Sustancias precursoras de componentes **orgánicos** que el **m.o. es incapaz de sintetizar**. Generalmente se requieren en pequeñas concentraciones.

NUTRIENTES

MACRONUTRIENTES

(g o mg/L)

- Carbono
- Oxígeno
- Nitrógeno
- > Hidrógeno
- > Fósforo
- > Azufre
- > Potasio
- > Magnesio
- > Calcio
- > Sodio

MICRONUTRIENTES

(trazas)

- > Cromo
- > Cobalto
- > Cobre
- > Manganeso
- > Molibdeno
- Níquel
- > Zinc
- > Hierro

Macronutrientes

NUTRIENTE	Función	Fuente	
CARBONO	Material celular (50 % p.seco)	Azúcares, péptidos, ac. grasos, CO ₂	

Micronutrientes

	Trazas inorgánicas
NUTRIENTE	Función
СКОМО	
COBALTO	
COBRE	
MANGANESO	

MOLIBDENO

NÍQUEL

ZINC

Citocromos, catalasas, peroxidasas, nitrogenasas, SOD, cofactor **Sideróforos** Fuente de energía (Fe⁺²)

HIERRO

Función fisiológica de sales inorgánicas

FACTORES DE CRECIMIENTO

Sustancias precursoras de **componentes orgánicos** que el m.o. es incapaz de sintetizar. Generalmente se requieren en pequeñas concentraciones.

- VITAMINAS
- · AMINOÁCIDOS
- PURINAS Y PIRIMIDINAS
- ÁCIDOS GRASOS
 - M.o. protótrofos: sintetizan sus F.C.
 - M.o. auxótrofos: requieren fuente exógena de F.C.

Factor o vitamina	Funciones principales		
p-aminobenzoico (PABA)	precursor en biosíntesis del ácido fólico		
Acido fólico	metabolismo de compuestos C ₁ , transferencia de grupos metilo, coenzima en síntesis de bases y AA .		
Biotina (vitamina B _{8/7})	biosíntesis de ácidos grasos ; fijación de CO₂. (S) - GP		
Cobalamina (vitamina B ₁₂)	reducción y transferencia de compuestos C ₁ ; síntesis de desoxirribosa GP		
Niacina (ácido nicotínico)	precursor del NAD; transferencia de electrones en reacciones redox.		
Riboflavina	precursor de FAD y FMN (transporte e).		
Ácido pantoténico	precursor de la CoA (metabolismo del piruvato); activación de acetilos. Oxidación de ácidos grasos.		
Tiamina (vitamina B ₁)	descarboxilaciones; transcetolasas; transaminasas, S		
Complejo B ₆ (piridoxal, piridoxamina)	transformaciones de aminoácidos y cetoácidos. GP		
Grupo Vitamina K, quinonas	transportadores de electrones (ubiquinonas, menaquinonas, etc.). Liposoluble.		

Categorías (tipos) nutricionales de microorganismos

- Fuente de Energía
 - Luz (fotótrofos)
 - Comp. Químicos (quimiótrofos)
 (oxidación de compuestos químicos reducidos)
- Fuentes de Carbono (que constituya sus macromoléculas)
 - CO₂ (autótrofos)
 - Carbono orgánico (heterótrofos)

Clasificación de los microorganismos según fuentes de Energía y Carbono utilizadas

		FUENTE DE ENERGÍA		
		LUZ (<u>Foto</u> -)	Compuestos químicos (Quimio-)	
CARBONO	Dióxido de Carbono <i>(auto-)</i>	<u>Foto</u> autótrofos	<u>Quimio</u> autótrofos	
FUENTE DE CARBONO	Compuestos orgánicos (hetero-)	<u>Foto</u> heterótrofos	<u>Quimio</u> heterótrofos	

Categorías (tipos) nutricionales

de microorganismos				
Categoría nutricional	Fuentes de energía, Fuente de Carbono	Ejemplos		
Fotoautótrofo	LUZ (fuente de energía) CO ₂ (fuente de C)	Algas, bacterias verdes y púrpuras, Cianobacterias		
Fotoheterótrofo	LUZ (fuente de energía)	Bacterias no		

sulfurosas púrpuras Fuente de C orgánica y verdes Quimiautótrofo Energía química Bacterias (generalmente inorgánica) sulfooxidantes,

nitrificantes CO₂ (fuente de C)

Quimioheterótrofo Mayoría de bacterias, Energía química (generalmente orgánica) hongos, protozoos Fuente de C orgánica

30

Medios de cultivo

Soluciones acuosas (líquidas o gelificadas) que contienen, en forma equilibrada y en concentraciones adecuadas, los nutrientes necesarios para el crecimiento de los microorganismos de interés.

AGUA + C + N + (macro-micro) + F. Crec.

Medios de cultivo Clasificación según composición química

Definidos: composición química exacta (masa de cada compuesto químico)

Nutriente	E. coli	
Glucosa	4-10 g	
KH ₂ PO ₄	2 g	
(NH ₄) ₂ SO ₄	1 g	
MgSO₄	0,2 g	

Complejos: constituidos por sustancias complejas de origen animal, vegetal o fúngico (peptona, extracto de levadura, extracto de carne, etc.), usualmente complementadas por la adición de minerales y otras sustancias.

No se conocen todos los componentes químicos ni las cantidades exactas presentes de cada uno de ellos.

REQUERIMIENTOS NUTRICIONALES Ejemplo

Nutriente	Medio definido	Medio complejo	Medio definido
	E. coli	E. coli y L. mesenteroides	L. mesenteroides
Glucosa	4-10 g	15 g	25 g
Extracto de levadura		5 g	
Peptona		5 g	
KH ₂ PO ₄	2 g	2 g	0,6 g
(NH ₄) ₂ SO ₄	1 g		1 g
MgSO ₄	0,2 g		0,2 g
Aminoácidos			Alanina, arginina, asparragina, aspartato, histidina, lisina y otros, 100-200ug c/u
Purinas y Pirimidinas			Adenina, guanina, uracilo, xantina, 10 mg c/u
Vitaminas			Biotina, ac, nicotinico, piridoxina, riboflavina, tiamina y otros 0,01-0,1 mg c/u

Medios de cultivo Clasificación según función

Medios generales

Medios de enriquecimiento: <u>medios líquidos</u> que favorecen el crecimiento de un tipo de microorganismo en particular, permitiendo aumentar su número. Usualmente contienen una o más sustancias inhibidoras del crecimiento de los microorganismos con excepción de los que se quieren cultivar.

Medios selectivos: parecidos a los de enriquecimiento, están diseñados para el aislamiento de microorganismos específicos: poseen agentes selectivos que impiden el desarrollo de la microbiota acompañante.

Medios diferenciales: <u>medios sólidos</u> que contienen indicadores de productos derivados de la actividad metabólica de los microorganismos, tal que permiten diferenciar el desarrollo de microorganismos diferentes

C.A.P. 1

PLATE COUNT AGAR (Tryptone Glucose Yeast Agar)

For laboratory use only

500g makes 28.5 litres

Typical formula (g/l) $ph 7.0 \pm 0.2$ at 25°C Enzymatic digest of casein 5.0; Yeast extract 2.5; Glucose 1.0; Agar 9.0.

REQUERIMIENTOS AMBIENTALES

- Velocidad de crecimiento
- Distribución
- Control

Definiciones

Crecimiento vs. Tolerancia

"- filo": crecimiento ("afinidad")

"-tolerante": supervivencia

"bacteria termofilica # termotolerante"

Obligado (estricto) vs. Facultativo

"Obligado": Condición requerida para el crecimiento

"Facultativo": puede haber crecimiento, pero la condición no es requerida

PRINCIPALES PARÁMETROS

TEMPERATURA

- pH
- ACTIVIDAD ACUOSA (Aw)
- OXÍGENO

(Luz, presiones)

TEMPERATURA

TEMPERATURA

TEMPERATURAS CARDINALES

- Características de c/especie

- Rangos 30 - 40°C (entre mínima y máxima)

Temperatura Reacciones enzimáticas a la máxima velocidad posible Tasa de Crecimiento Óptima Reacciones enzimáticas incrementando sus velocidades de reacción Mínima Máxima **Temperatura** Desnaturalización de Gelificación de membrana: proceso de transporte Proteinas; demasiado lento para Colapso de la membrana: soportar el crecimiento citoplasmática; lisis térmica

TEMPERATURA Clasificación de los microorganismos

Grupo	Mínima ºC	Óptima ºC	Máxima ºC
Hipertermófilos	50 – 75	80 – 100	105 - 113
Termófilos	40 - 45	55 – 75 (> 45 °C)	60 - 90
Mesófilos	5 - 15	30 – 45 (20 – 40)	35 - 47
Psicrófilos	-5 - +5	12 – 15	15 – 20

TEMPERATURA Clasificación de los microorganismos

PSICRÓFILOS

Adaptaciones bioquímicas

- enzimas resistentes
- sistemas de transporte adaptados
- AGI en fosfolípidos de membrana

TERMÓFILOS

Adaptaciones bioquímicas

- enzimas y ribosomas termorresistentes
- -AGS en membrana
- Fosfolípidos con enlaces éter
- -Solutos termoprotectores (diinositol fosfato, di glicerol fosfato, manosilglicerato, poliaminas)

TEMPERATURA Clasificación de los microorganismos

Grupo	Mínima ºC	Óptima ºC	Máxima ºC
Hipertermófilos <i>Pyrolobus fumarii</i>	50 – 75 (90°C)	80 – 100 (105°C)	105 - 113 (113°C)
Termófilos	40 - 45	55 - 75	60 - 90
Mesófilos	5 - 15	30 - 45	35 - 47
Psicrótrofos («psicrotolerantes»)	<i>-5 -</i> +5	20 - 30	30 - 35
Psicrófilos Polaromonas vacuolata	-5 - +5	12 – 15 (4°C)	15 – 20 (14°C)

Tasa de crecimiento de *E.coli* a distintas temperaturas

Temperaturas óptimas de crecimiento

46

pH

$$pH = -log[H^+]$$

Doodle - 29 de mayo de 2018 - Søren P. L. Sørensen

CLASIFICACIÓN	рН	Ambientes
	1	Suelos y aguas volcánicas
	2	Fluido gástrico
	3	Drenaje de minas
ÁCIDOS	4	Tomates
	5	Quesos, coles
	6	Guisantes, maíz, salmón
NEUTROS	7	Agua pura
	8	Agua de mar
	9	Suelos alcalinos (carbonatos)
	10	Lagos alcalinos, jabones
ALCALINOS	11	Amoníaco doméstico
	12	Lagos sódicos
	13	Cal, sol. saturada
	14	

	CLASIFICACIÓN	1	рН	Ambientes
		7 (1	Suelos y aguas volcánicas
	ACIDÓFILOS		2	Fluido gástrico
		1	3	Drenaje de minas
	pHi: 6,5		4	Tomates
		-	5	Quesos, coles
			6	Guisantes, maíz, salmón
N	NEUTRÓFILOS pHi 7,5	1	7	Agua pura
		7	8	Agua de mar
	ALCALÓFILOS		9	Suelos alcalinos (carbonatos)
		4	10	Lagos alcalinos, jabones
	pHi: 9		11	Amoníaco doméstico
	P		12	Lagos sódicos
			13	Cal, sol. saturada
			14	

RANGO DE pH para CRECIMIENTO MICROBIANO

Microorganismo	Óptimo	Extremo
Bacterias	6 - 8	4 – 9
Levaduras	4,5 - 6	1,5 – 8
Mohos	3 - 5	1,5 – 11

- -Membrana citoplasmática: poco permeable a H+ y OH-
- -Neutralidad en citoplasma
- -Regulación de pHi mediante sistema de transporte de electrones ATP dependiente.

¿Fuera de rango?

Inestabilidad de membrana citoplasmática Inhibición de enzimas Alteración transporte de nutrientes

Efecto nocivo directo
Acidificación o alcalinización
Proteínas
Ácidos nucleicos

Efecto nocivo indirecto
Ionización de nutrientes
Inhibición
de transporte

Acidificación

Ácidos fuertes (inorgánicos) y ácidos débiles (orgánicos)

Ácidos fuertes

Alteración conformación de enzimas

(de pared o de membrana plasmáticas)

Ácidos débiles (orgánicos) y pH celular

pН

- Membrana citoplasmática
- Neutralidad en citoplasma
- Sistema de transporte de electrones ATP dependiente

- Efectos nocivos
- Ácidos fuertes (inorgánicos) y débiles (orgánicos)
- Modificación de pH del medio por crecimiento celular
- Respuesta de tolerancia a stress por acidez
- Sistemas tampón en medios de cultivo (K₂HPO₄/KH₂PO₄)

pH

Microorganismo	рH		
(procariotas)	Mínimo	Óptimo	Máximo
Escherichia coli	4,4	6-7	9
Proteus vulgaris	4,4	6-7	8,4
Enterobacter aerogenes	4,4	6-7	9
Pseudomonas aeruginosa	5,6	6,5-7	8
Erwinia carotovora	5,6	7,1	9,3
Clostridium sporogenes	5,4	6-7,6	8,5-9
Nitrosomonas spp.	7,4	8-8,8	9,4
Natronobacterium spp.	8,5	10	12
Acidithiobacillus thiooxidans	1	2-2,8	4-6
Lactobacillus acidophilus	4,3	5,8-6,6	6,8 54

ACTIVIDAD ACUOSA (Aw)

ACTIVIDAD ACUOSA (Aw)

- Medida de la disponibilidad de agua en el medio
- Aw ≠ Humedad (%)

Presión de vapor del agua de la solución (P)

- Aw = -----

Presión de vapor del agua pura (Po)

Aw = 0 - 1

ACTIVIDAD ACUOSA (Aw)

Aw	Ambientes	Microorganismos
1,000	Agua pura	<i>Spirillum</i> sp.
0,995	Sangre humana	Streptococcus sp., Escherichia sp.,
0,980	Agua de mar	Pseudomonas sp., Vibrio sp.
0,950	Pan	Bacilos Gram positivos
0,900	Jamón	Cocos Gram Positivos
0,855	Chorizo	Levaduras
0,800	Mermeladas	Levaduras <i>, Penicillium</i> sp.
0,750	Pescado salado	Halobacterium, Halococcus
0,700	Cereales, frutos secos	Xeromyces bisporus, Hongos xerófilos

ACTIVIDAD ACUOSA EN ALIMENTOS Y MICROORGANISMOS

	ACTIVIDAD ACUOSA (aw)	ALIMENTOS	MICROORGANISMOS
1	0,98 y superior	Carnes y pescados frescos, verduras, leche.	Se multiplican la mayoría de los gérmenes alterantes y todos los patógenos transmitidos por alimentos.
0,98	0,98 – 0,93	Leche evaporada, pan, embutidos cocidos.	Se multiplican <u>enterobacterias</u> incluyendo <i>Salmonella</i> en los niveles superiores del rango y microbiota de alteración como las <u>bacterias lácticas</u> .
0,85	0,93 – 0,85	Carne vacuna desecada, leche condensada edulcorada.	Se multiplican <u>Staphylococcus</u> <u>aureus</u> y hongos productores de micotoxinas. <u>Levaduras y mohos</u> de alteración.
0,60	0,85 – 0,60	Harina, cereales, frutas secas	No se multiplican bacterias patógenas. Alteración por microorganismos xerófilos, osmófilos y halófilos.
0,00	Inferior a 0,60	Productos de repostería, fideos secos, galletitas, leche y huevo en polvo.	No se multiplican los microorganismos, pero pueden permanecer viables por mucho tiempo.

PATÓGENOS Y ACTIVIDAD ACUOSA

Valor mínimo de aw para el desarrollo de microorganismos productores de E.T.A. (bacterias) a pH y temperaturas óptimas.

Patógeno	a w
Campylobacter jejuni	0,990
Aeromonas hydrofila	0,970
Clostridium botulinum E	0,970
Shigella sp.	0,960
Yersinia enterocolitica	0,960
Clostridium botulinum G	0,965
Clostridium botulinum A y B	0,945
Clostridium perfringens	0,950
Vibrio parahemolyticus	0,940
Salmonella sp.	0,940
Escherichia coli	0,935
Listeria monocytogenes	0,930
Bacillus cereus	0,930
Bacillus subtilis	0.910
Staphylococcus aureus (anaerobiosis)	0,910
Staphylococcus aureus (aerobiosis)	0.860

MICROORGANISMOS QUE CRECEN A BAJA aw

- HALÓFILOS (Halotolerantes)
- SACARÓFILOS (Osmófilos)

XERÓFILOS (Xerotolerantes)

Efecto de la Concentración de CINa

Osmosis

- Difusión de solvente (generalmente, agua) a través de membrana permeable pero selectiva
- El agua tiende a moverse hacia zonas con mayor concentración de solutos

Tonicidad

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cells with Cell Wall

Isotonic

Hypertonic

Water concentration is equal inside and outside the cell, thus rates of diffusion are equal in both directions.

Net diffusion of water is into the cell; this swells the protoplast and pushes it tightly against the wall. Wall usually prevents cell from bursting.

Water diffuses out of the cell and shrinks the protoplast away from the cell wall; process is known as plasmolysis.

Rates of diffusion are equal in both directions. Diffusion of water into the cell causes it to swell, and may burst it if no mechanism exists to remove the water.

Water diffusing out of the cell causes it to shrink and become distorted.

condiciones osmóticas: soluciones isotónicas, hipotónicas e hipertónicas

Células en

diferentes

Relación **Aw** y **presión** osmótica

ACTIVIDAD ACUOSA EFECTO SOBRE LOS MICROORGANISMOS

BAJA a_w (Plasmólisis)

Incorporación/síntesis solutos compatible

Consumo de energía

Célula bacteriana

Agua

Célula bacteriana

Solutos compatibles

Soluto compatible: molécula o ión que se acumula en el citoplasma para regular a_w.

No inhibe procesos bioquímicos. Osmoprotectores

Solutos Compatibles

Microorganismo	Principales solutos acumulados	Aw minima p/crecimiento
Bacterias no fotótrofas	Glicina, prolina, glutamato	0,97-0,90
Cianobacterias de agua dulce	Sacarosa, Trehalosa	0,90
Cianobacterias marinas	Alfa- glucosilglicerol	0,92
Algas marinas	Manitol, prolina, glicósidos	0,90
Bacterias halófilas extremas Halobacterium sp.	KCI	0,75
Dunaliella sp. (alga verde halófila)	Glicerol	0,75
Levaduras xerófilas	Glicerol	0,83-0,62
Mohos xerófilos	Glicerol	0,72-0,61

Efecto de la reducción de a_w

- Inhibición del crecimiento
- Inhibición de la germinación de esporas
- Aumento de la fase de latencia (lag)
- Disminución de la velocidad del crecimiento
- Disminución del número final de microorganismos
- Inhibición de síntesis de toxinas; retraso de reacciones enzimáticas

OXÍGENO

«HE TENIDO UN DÍA OCUPADÍSIMO TRANSFORMANDO EL OXÍGENO EN DIÓXIDO DE CARBONO.»

OXÍGENO

Clasificación	Relación con el O ₂	Microorganismos	Hábitat
Aerobios estrictos	Necesario	Micrococcus luteus	Piel, polvo
Anaerobios facultativos	No necesario, crecen mejor con O ₂	Escherichia coli	Intestino
Microaerófilos	Necesario a bajas tensiones	Spirillum volutans	Lagos
Anaerobios aerotolerantes	No necesario, no crecen mejor con O ₂	Streptococcus pyogenes	Tracto respiratorio superior
Anaerobios estrictos	Dañino o Letal	Methanobacterium formicicum	Sedimentos anóxicos

Clasificación de los microorganismos de acuerdo a su tolerancia al O₂

Cultivos en caldo Tioglicolato (resazurina)

- a) Aerobios estrictos
- b) Anaerobios estrictos
- c) Anaerobios facultativos
- d) Microaerófilos
- e) Anaerobios aerotolerantes

Reducción del O₂ a H₂O Generación de formas tóxicas del oxígeno

$$O_2 + e^- \rightarrow O_2^-$$
 Superoxide
 $O_2^- + e^- + 2 H^+ \rightarrow H_2O_2$ Hydrogen peroxide
 $H_2O_2 + e^- + H^+ \rightarrow H_2O + OH^-$ Hydroxyl radical
 $OH^- + e^- + H^+ \rightarrow H_2O$ Water

Overall:
$$O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$$

Figure 6-27 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

La respuesta de un organismo al O_2 depende de la presencia de varias enzimas que reaccionan con él y con varios radicales generados por las células.

Por ejemplo, la oxidación de las flavoproteínas da origen a la formación de H_2O_2 como el producto mayoritario y pequeñas cantidades del radical superóxido que es aún más tóxico. Por lo tanto, todos los organismos que pueden vivir en presencia del O_2 (ya sea que lo utilicen o no), contienen superoxido dismutasa. Además la mayoría de estos organismos (aerobios) contienen la enzima catalasa capaz de descomponer el peróxido, o alguna enzima equivalente en el caso de los anaerobios aerotolerantes (peroxidasa).

Los anaerobios obligados han perdido la superóxido dismutasa y catalasa y/o peroxidasa por lo que la presencia del oxigeno es letal.

Reacciones enzimáticas

•
$$H_2O_2 + H_2O_2 \xrightarrow{Catalasa} 2 H_2O + O_2$$

•
$$H_2O_2$$
 +NADH + H⁺ \longrightarrow 2 H_2O + NAD + Peroxidasa

•
$$O_2^- + O_2^- + 2H^+ \longrightarrow H_2O_2^- + O_2^-$$

Superóxido dismutasa (SOD)

Prueba de la catalasa

negativa

positiva

Figure 6-29 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

$$\begin{array}{c} \textbf{catalasa} \\ H_2O_2 + H_2O_2 & \longrightarrow 2 H_2O + O_2 \end{array}$$

Group	Superoxide dismutase	Catalase	Peroxidase
Obligate aerobes and most facultative anaerobes (e.g. Enterics)	+	+ (<u>-</u>
Most aerotolerant anaerobes (e.g. Streptococci)	+	-	+
Obligate anaerobes (e.g. Clostridia, Methanogens, Bacteroides)	-	_	_

ENZIMAS

Clasificación	Presencia de Catalasa	Presencia de superoxido dismutasa	Microorganismo
Aerobios estrictos	Presente	Presente	Pseudomonas aeruginosa
Anaerobios facultativos ("aerobios facultativos")	Presente	Presente	Escherichia coli Staphylococcus aureus
Microaerófilos	Presente	Presente	Campylobacter jejuni
Anaerobios aerotolerantes ("aerodúricos")	Ausente (función cumplida por peroxidasas)	Presente	Streptococcus pneumoniae
Anaerobios estrictos	Ausente	Ausente	Clostridium sp.

75

Relación Oxígeno - Microorganismos

Table 6.4 Oxyg	en relationships of microor	ganisms		
Group	Relationship to O ₂	Type of metabolism	Example ^a	Habitat ^b
Aerobes				
Obligate Facultative	Required Not required, but growth	Aerobic respiration Aerobic respiration, anaerobic	Micrococcus luteus (B) Escherichia coli (B)	Skin, dust Mammalian large
better with O ₂		respiration, fermentation		intestine
Microaerophilic Required but at levels lower than atmospheric		Aerobic respiration	Spirillum volutans (B)	Lake water
Anaerobes				
Aerotolerant	Not required, and growth no better when O_2 present	Fermentation	Streptococcus pyogenes (B)	Upper respiratory tract
Obligate	Harmful or lethal	Fermentation or anaerobic respiration	Methanobacterium (A) formicicum	Sewage sludge digestors, anoxic lake sediments

^a Letters in parentheses indicate phylogenetic status (B, *Bacteria*; A, *Archaea*). Representatives of either domain of prokaryotes are known in each category. Most eukaryotes are obligate aerobes, but facultative aerobes (for example, yeast) and obligate anaerobes (for example, certain protozoa and fungi) are known.

Table 6-4 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

^b Listed are typical habitats of the example organism.

Relación Oxígeno – Microorganismos quimiótrofos								
Clasificación Relación con		Enzimas			Metabolismo energético	Ejemplo	Crec. en caldo	
	Oxígeno	Catalasa	Peroxidasa	SOD			tioglicolato	
Aerobios estrictos						Pseudomonas		
Anaerobios facultativos "aerobios facultativos"						E. coli; S. aureus; Levaduras	Value 7	

Campylobacter

Bacterias

(Lactobacillus)

Clostridium

lácticas

Microaerófilos

Anaerobios

aerotolerantes

"aerodúricos"

Anaerobios estrictos

Relación Oxígeno – Microorganismos quimiótrofos								
Clasificación Relación Enzim		Enzimas	Metabolismo Ejemplo energético		Crec. en caldo			
	Oxígeno	Catalasa	Peroxidasa	SOD			tioglicolato	
Aerobios estrictos	Necesario	+	+/-	+	Respiración aeróbica	Pseudomonas		
Anaerobios facultativos "aerobios facultativos"	No necesario, crecen mejor con O ₂	+	+/-	+	Respiración Aeróbica Respiración Anaeróbica Fermentación	E. coli; S. aureus; Levaduras	V 3: 3: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4:	
Microaerófilos	Necesario a bajas tensiones	+	+/-	+	Respiración aeróbica	Campylobacter	******	

Fermentación

Respiración

Anaeróbica Fermentación **Bacterias**

(Lactobacillus)

Clostridium

lácticas

estrictos		•	17	•	aeróbica		
Anaerobios facultativos "aerobios facultativos"	No necesario, crecen mejor con O ₂	+	+/-	+	Respiración Aeróbica Respiración Anaeróbica Fermentación	E. coli; S. aureus; Levaduras	

Anaerobios

aerotolerantes

"aerodúricos"

Anaerobios

estrictos

No

necesario,

no crecen

mejor con O_2

Dañino o

Letal

Cultivo de microorganismos anaerobios

(a) Candle jar. Plates and tubes inoculated with, for example, Neisseria meningitidis are placed in a jar with a lighted candle, and the jar is sealed. The burning candle reduces the O₂ concentration to a point where the flame goes out. This will provide a CO₂ atmosphere of approximately 3%.

(b) ${\bf CO_2}$ -generating packet. The packet consists of a bag containing a Petri plate and a ${\bf CO_2}$ gas generator. The gas generator is crushed to mix the chemicals it contains and start the reaction that produces ${\bf CO_2}$. This gas reduces the ${\bf O_2}$ concentration in the bag to about 5% and provides a ${\bf CO_2}$ concentration of about 10%.

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

(a)

Anaerobiosis

Técnicas de cultivo anaeróbicas: (a) cámara anaerobica, (b) jarra anaerobica

TIPOS Y EJEMPLOS DE EXTREMÓFILOS

TIPOS Y EJEMPLOS DE EXTREMÓFILOS

Extremo	Término descriptivo	Género/ especie	Dominio	Hábitat	Mínimo	Óptimo	Máximo
Temperatura elevada	_	Pyrolobus fumarii Geogemma barossii Methanopyrus kandl		Caliente, fuentes hidrotermales submarinas	90°C	106ºC	113°C 122 °C
Temperatura baja	Psicrófilo	Polaromonas vacuolata	Bacteria	Hielo marino	0°C -12 °C	4ºC 5 °C	12ºC
pH bajo	Acidófilo	Picrophilus oshimae	Archaea	Fuentes termales ácidas	- 0,06	0,7 ^b	4
pH alto	Alcalófilo	Natronobacterium gregoryi	Archaea	Lagos carbonatados	8,5	10°	12
Presión	Barófilo	Moritella yayanosiii	Bacteria	Sedimentos oceánicos profundos	500 atm	700 atm	> 1000 atm
Sal (NaCl)	Halófilo	Halobacterium salinarum	Archaea	Salinas	15 %	25 %	32 % (saturación)

AUTOEVALUACIÓN

- Explique el proceso de división binaria
- Explique la diferencia entre velocidad de crecimiento y tiempo de generación y cómo se calcula cada uno de estos parámetros.
- 3) Un cultivo en un medio de cultivo rico se inicia con 4 células bacterianas/ml, presenta un tiempo de latencia de 1 hora y un tiempo de generación de 20 minutos. ¿Cuántas células habrá en 1 litro de ese cultivo tras 1 hora de incubación? ¿Y tras 2 horas?
- 4) Calcule el tiempo de generación en un experimento de crecimiento en el que el medio se inoculó con 5 x 10⁶ cel/ml de *E. coli* y después de una hora de fase de adaptación creció exponencialmente durante 5 horas, siendo entonces la población de 5,4 x 10⁹ cel/ml.
- 5) En una curva de crecimiento de *E. coli* en cultivo batch, a) indique en qué fase de la curva se dividen las células de una manera regular y ordenada; b) ¿Cuándo puede no presentarse fase de latencia?; ¿por qué entran las células en fase estacionaria y qué cambios se producen en ellas?
- 6) Explique las diferencias entre un sistema cerrado de cultivo y un quimiostato
- 7) ¿Cuáles son las temperaturas cardinales de E. coli? ¿Cómo se clasifica por su temperatura óptima de crecimiento?
- 8) Explique las diferencias entre psicrófilo psicrótrofo hipertermófilo.
- 9) Explique las adaptaciones a las bajas y a las altas temperaturas de los microorganismos psicrófilos e hipertermófilos, respectivamente.
- 10) ¿Qué es la Taq polimerasa y por qué es importante?
- 11) ¿Qué son los tampones y para que se usan?
- 12) ¿Qué es un soluto compatible? Mencione un soluto compatible en especies de Halobacterium
- 13) Explique las diferencias entre una bacteria anaerobia facultativa y una anaerobia aerotolerante, y señale una especie de cada una de ellas.

Duplicación de la población

n

$$N_f = N_0 . 2^n$$

 $Log N_f - log N_0 = n log 2$

 $v = n / tiempo (t - t_0)$ v = 1 / g

Bibliografía

Brock, Thomas D. y Madigan, Michael T.. Microbiología; 6a ed. México, D.F. : Prentice Hall, 1993.

Código de Biblioteca: 576.8/B928a

Madigan M., Martinko J., Parker J. Brock Biología de los microorganismos. Prentice Hall. 8° Ed. en adelante ...

Tortora, Gerard J., Funke, Berdell R. y Case, Christine L.. Introducción a la microbiología. Buenos Aires: Ed. Médica Panamericana, 2017. Cap. 6

http://aulacidta5.usal.es/aulavirtual/Demos/microbiologia/unidades/documen/uni_02/58/texthtml/cap802.htm

http://www.ugr.es/~eianez/Microbiologia/index.htm

Libros digitales disponibles

Madigan M., Martinko J., y otros. 2015. 14°Ed

Brock. Biología de los microorganismos.

Crecimiento microbiano: Cap. 5

Metabolismo microbiano: Cap. 3

Tortora G., Funke B. y Case C. 2007. 9° Ed Introducción a la microbiología.

Introducción y estructura procariotas: Cap. 4

Crecimiento microbiano: Cap. 6 (Control: Cap. 7)

Metabolismo microbiano: Cap. 5

Nos vemos ...

Metabolismo y otras cuestiones...

