Real Analysis

Blabby

January 10, 2025

Contents

0.1	Construction of \mathbb{R}	1
0.2	The Axiom of Completeness	2

0.1 Construction of \mathbb{R}

Definition 1. The *supremum* $\sup(S) = \alpha \in A$ of a set $S \subset A$ is an upper bound of S, where for $\beta < \alpha$, β is not an upper bound for S.

Example. Consider \mathbb{Q}^- ; let $\sup \mathbb{Q}^- = \gamma < 0$ But there exists $\frac{\gamma}{2} < 0$, so $\gamma \neq \sup \mathbb{Q}^-$. It follows that $\sup \mathbb{Q}^- = 0$.

Definition 2. A set S has the *least upper bound property*, or *satisfies the Completeness Axiom*, if every non-empty subset of S with an upper-bound also has a supremum.

Definition 3. A *Dedekind Cut* α is a subset of \mathbb{Q} satisfying:

- 1. $\alpha \neq \emptyset, \mathbb{Q}$.
- 2. If $p \in \alpha$, and $p > q \in \mathbb{Q}$, then $q \in \alpha$ (closed downwards).
- 3. If $p \in \alpha$ then p < r for some $r \in \alpha$.

These cuts are essentially rays on the rationals pointing towards the negative direction, $(-\infty, p)$ for $p \in \mathbb{Q}$.

Example. The set \mathbb{Q}^- is trivially closed downwards, and has no largest member, so it is therefore a Dedekind cut.

Definition 4. The set of all real numbers, \mathbb{R} , is defined as the set $\mathbb{R} := \{\alpha \subset \mathbb{Q} : \alpha \text{ is a Dedekind cut}\}$, where:

- 1. $\alpha < \beta$ if $\alpha \subset \beta$.
- 2. $\alpha + \beta := \{r + s : r \in \alpha \text{ and } s \in \beta\}$
- 3. If $\alpha, \beta \in \mathbb{R}^+$, then $\alpha\beta := \{p : p < rs \text{ for } r, s > 0, r \in \alpha, s \in \beta\}.$

Example. The real number $\sqrt{2}$ is defined as $\alpha = \{x \in \mathbb{Q} : x^2 < 2\}$.

Figure 1: The Dedekind Cut corresponding to $\sqrt{2}$

Theorem 1. \mathbb{R} is an ordered field.

Proof. 1. $\alpha + \beta := \{r + s : r \in \alpha \text{ and } s \in \beta\} = \beta + \alpha := \{s + r : r \in \alpha \text{ and } s \in \beta\}$, because \mathbb{Q} is a field (and therefore commutative). So, addition in \mathbb{R} commutes.

- 2. For γ a Dedekind cut, $(\alpha+\beta)+\gamma=\{(s+r)+t:r\in\alpha,s\in\beta\text{ and }t\in\gamma\}=\{s+(r+t):r\in\alpha,s\in\beta\text{ and }t\in\gamma\}=\alpha+(\beta+\gamma)\text{ because }\mathbb{Q}$ is a field (and therefore associative). So, addition in \mathbb{R} is associative.
- 3. Let $\mathbb{Q}^- =: 0_{\mathbb{R}} \in \mathbb{R}$. $0_{\mathbb{R}} + \alpha = \{s + 0 : s \in \alpha\} = \{s : s \in \alpha\} = \alpha$, so $0_{\mathbb{R}}$ is an additive identity.

The remainder of the proof can be found in Baby Rudin.

0.2 The Axiom of Completeness

Theorem 2. \mathbb{R} contains \mathbb{Q} as a subfield.

Proof. Associate to each $q \in \mathbb{Q}$ the cut $q^* := \{r \in \mathbb{Q} : r < q\}$. Then the map $f : \mathbb{Q} \to \mathbb{R}$ with rule $q \mapsto q^*$ is an injection which preserves the field operations $+, \times$ and the order <. Then $\mathbb{Q}^* = \{q^* : q \in \mathbb{Q}\}$ is a subfield of \mathbb{R} .

Theorem 3. \mathbb{R} satisfies the Axiom of Completeness.

Proof. Let $A \subset \mathbb{R}$ be a collection of cuts with upper bound β . Let $\gamma =$

 $\bigcup_{\alpha\in A}A\subset\mathbb{Q}$. We first prove that γ is a cut. γ is trivially non-empty and not equal to \mathbb{Q} , because it must contain at least one cut, and because it is bounded by β (and therefore properly contained in \mathbb{R}). Now, select some $p,q\in\alpha$, where $\alpha\in A$. If q< p, then $q\in\alpha$, and therefore $q\in\gamma$, so γ is closed downwards. Now select $r\in\alpha$ such that r>p; it then follows that $r\in\gamma$ (since each α can not have a largest element). Hence, γ is a Dedekind cut.

Now, we show that $\sup A = \gamma$. Assume $\delta < \gamma$. Then there is an $s \in \gamma$ such that $s \notin \delta$. Then s must be contained in some α , and thus $\delta < \alpha$. So, δ can not be an upper bound of A, and $\gamma = \sup A$ as a result.

Definition 5. The *infimum* $\inf(S) = \alpha \in A$ of a set $S \subset A$ is a lower bound of S, where for $\beta > \alpha$, β is not a lower bound for S.

Theorem 4. The Archimedean Property: If $x, y \in \mathbb{R}$, with x > 0, then there exists some $n \in \mathbb{Z}^+$ such that nx > y.

Proof. Consider $A = \{nx : n \in \mathbb{Z}^+\}$. Let y bound A. Then A has a least upper bound $\sup A = \alpha$. It is clear that $\alpha - x$ is not an upper bound for A; so for some $m \in \mathbb{Z}^+$, $\alpha - x < mx$. But then $\alpha < mx + x = (m+1)x$, so α can not be an upper bound for A.

Figure 2: A's boundings.

Theorem 5. \mathbb{Q} is dense in \mathbb{R} : For each $x, y \in \mathbb{R}$, there is some $q \in \mathbb{Q}$ such that x < q < y.

Proof. Choose n such that $\frac{1}{n} < y - x$ (Archimedean property); consider multiples of $\frac{1}{n}, \frac{m}{n}$, which grow without bound. Choose the least $\frac{m}{n}$ such that $\frac{m}{n} > x$. We want to show that $\frac{m}{n} < y$; claim the contrary. Then $\frac{m}{n} \ge y$ and $\frac{m-1}{x} < x$. But then

$$-\frac{m-1}{n} > -x \Rightarrow -\frac{m-1+m}{n} = \frac{1}{n} > y-x,$$

a contradiction.

Theorem 6. Properties of suprema: For $\gamma = \sup A$,

- 1. γ is an upper bound for some set A if and only if sup $A \leq \gamma$.
- 2. For all $a \in A$, $a \le \gamma$, $\sup A \le \gamma$.
- 3. For all $a \in A$, $a < \gamma$, $\sup A \leq \gamma$.
- 4. If $\gamma < \sup A$, then there exists an $a \in A$ such that $\gamma < a \le \sup A$.
- 5. If $A \subset B$, then $\sup A \leq \sup B$ (i.e., for all $a \in A, a \in B$, so $a \leq \sup B$).
- 6. To show that $\sup A = \sup B$, show that for all $a \in A$, there exists a $b \in B$ such that $a \leq b$, so $\sup A \leq \sup B$. A similar process applies to showing that $\sup B \in \sup A$, which proves equivalence.