

Department of Electrical, Computer, & Biomedical Engineering

Faculty of Engineering & Architectural Science

Course Title:	Signals and Systems II
Course Number:	ELE632
Semester/Year (e.g.F2016)	W2022

Instructor:	Dimitri Androutsos

Assignment/Lab Number:	2
Assignment/Lab Title:	Time-Domain Analysis of Discrete-Time Systems - Part 2

Submission Date:	Tuesday, February 20 th , 2022
Due Date:	Tuesday, February 20 th , 2022

Student LAST Name	Student FIRST Name	Student Number	Section	Signature*
Fahmy	Ahmad	500913092	9	A.K.

^{*}By signing above, you attest that you have contributed to this submission and confirm that all work you have contributed to this submission is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a "0" on the work, an "F" in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at:

https://www.ryerson.ca/senate/policies/pol60.pdf

Appendix

A) Unit Impulse Response	3
Part 1 - Filter to Recieve Unit Impulse Response	3
Function I	3
Function II	4
Part 2 - Hand Calculations	6
Part 3 - Comparison of Hand & MATLAB Calculations	8
B) Zero Input Response	9
C) Zero State Response	10
D) Total Response	11
Part I - Total response	10
Part II - Total response by Summation of Zero Input and Zero state	12
Responses	12
E) Convolution and System Stability	13
Part I - conv command	13
Part II	14
Part III	15
F) Moving Average Filter	15
Part I - Constant Coefficient Difference Equation with h[n] Impulse	15
Response	15
Part II & III - MATLAB Function for N-point moving-average filter	15

A) Unit Impulse Response

Part 1 - Filter to Receive Unit Impulse Response

Function I

```
n = 0:10;
b = [1/3 \ 0 \ 0];
a = [1 \ 1/6 \ -1/6];
% delta = 1.0.*((n)==0);
delta = (n) == 0;
% figure;
% stem(n, delta);
% title('Part A.1 - Unit Impulse')
% axis([-0.5 0.5 -0.1 1.2])
% xlabel('n')
h = filter(b, a, delta);
figure;
stem(n, h, 'k');
title('Part A.1 - Function I Unit Impulse Response')
axis([-0.5 10.5 -0.1 0.5])
xlabel('n')
ylabel(\hbox{\it '}h[n]\hbox{\it '})
```


Function II

```
n = 0:10;

b = [1 0 0];
a = [1 0 1/4];
delta = (n)==0;

h = filter(b, a, delta(n));
clf;

stem(n, h, 'k');
title('Part A.1 - Function II Unit Impulse Response')
axis([-0.5 10.5 -0.3 1.1])
xlabel('n')
ylabel('h[n]')
```


Part 2 – Hand Calculations

$$0 = (1 - (2)(0.5j) + (2(-0.5j))$$

$$0 = 0.5 j + (2(-0.5j) + (2(-0.5j))$$

$$-0.5 j = 2 (2(-0.5j))$$

$$(2) -0.5 j = (2 - 0.5j)$$

$$(3) -0.5 j = (2 - 0.5j)$$

$$h[n] = \left[\frac{1}{2}(0.5)^n + \frac{1}{2}(-0.5)^n\right] U[n]$$

Part 3 – Comparison of Hand & MATLAB Calculations

A. 2 - Function I

$$h[n] = \begin{cases} \frac{2}{15} (||3|^n + ||5| (-1|2)^n) \\ ||1| ||1| \\ ||1| ||1| \end{cases} = \begin{cases} \frac{2}{15} (||3|^n + ||5| (-1|2)^n) \\ ||1| ||1| \\ ||1| ||1$$

Therefore, the h[3] values match accordingly.

B) Zero Input Response

```
n = 0:50;

b = [2 0 0];
a = [1 -3/10 -1/10];

z_i = filtic(b, a, [1 2]);
y_0 = filter(b, a, zeros(size(n)), z_i);

figure
stem(n, y_0, 'k');
title('Part B - Zero Input Response')
axis([-2 10.5 -0.3 1.1])
xlabel('n')
ylabel('y0[n]')
```


C) Zero State Response

```
\begin{split} n &= -50.50; \\ u &= (\text{mod}(n,1) == 0)*1.0.*(n >= 0); \\ u2 &= (\text{mod}(n,1) == 0)*1.0.*(n >= 10); \\ b &= [2\ 0\ 0]; \\ a &= [1\ -3/10\ -1/10]; \\ x &= 2.*\cos((2.*pi.*n)./6).*(u-u2); \\ z\_i &= \text{filtic}(b,\ a,\ 0); \\ y\_0 &= \text{filter}(b,\ a,\ x,\ z\_i); \\ figure \\ \text{stem}(n,\ y\_0,\ k'); \\ \text{title}(\text{Part C - Zero State Response'}) \\ \text{axis}([-2\ 18\ -4\ 4.1]) \\ \text{xlabel}('n') \\ \text{ylabel}('y0[n]') \end{split}
```


D) Total Response

Part I - Total response

```
n = -50:50;

u = (mod(n,1)==0)*1.0.*(n>=0);

u2 = (mod(n,1)==0)*1.0.*(n>=10);

b = [2 0 0];

a = [1 -3/10 -1/10];

x = 2.*cos((2.*pi.*n)./6).*(u-u2);

z_i = filtic(b, a, [1 2]);

y_0 = filter(b, a, x, z_i);

figure

stem(n, y_0, k');

title(Part D.I - Total Response')

axis([-1 18 -4 4.1])
```

xlabel('n')
ylabel('y0[n]')

Part II - Total response by Summation of Zero Input and Zero state Responses

```
n = -50.50;
u = (mod(n,1)==0)*1.0.*(n>=0);
u2 = (mod(n,1)==0)*1.0.*(n>=10);
b = [2 \ 0 \ 0];
a = [1 -3/10 -1/10];
x = 2.*\cos((2.*pi.*n)./6).*(u-u2);
z_{i} = filtic(b, a, [1 \ 2]);
y_{0} = filter(b, a, zeros(size(n)), z_{i});
z_{i} = filtic(b, a, 0);
y_{0} = filter(b, a, x, z_{i});
y_{0} = filter(b, a, x, z_{i});
```

```
figure

stem(n, y_0, 'k');

title('Part D.II - Total Response by Summation')

axis([-1 18 -4 4.1])

xlabel('n')

ylabel('y0[n]')
```


E) Convolution and System Stability

Part I - conv command

```
 \begin{aligned} n &= 0.50; \\ u &= (\text{mod}(n,1) == 0) * 1.0. * (n >= 0); \\ u2 &= (\text{mod}(n,1) == 0) * 1.0. * (n >= 10); \\ b &= [2 \ 0 \ 0]; \\ a &= [1 \ -3/10 \ -1/10]; \\ x &= 2. * \cos((2. * \text{pi}. * \text{n})./6). * (u - u2); \\ \% \text{delta} &= @ \ (n) \ 1.0. * (n == 0); \\ \\ \text{delta} &= (n) == 0; \\ \\ \text{h} &= \text{filter}(b, a, \text{delta}(n)); \end{aligned}
```

```
y = conv(x, h);

n = 0:100;

figure
stem(n, y, 'k');
title('Part E - Zero State Response with Conv Function')
axis([-1 18 -4 4.1])
xlabel('n')
ylabel('y0[n]')
```


Part II

Yes, the results in the plots "Part E-Zero State Response with Conv Function" and "Part C-Zero State Response" are the same.

Part III

Yes, the system is asymptomatically stable, this is because the system's Characteristic Equation has two real roots $(E^2 - (3/10)E - (1/10) \rightarrow E_1 = 0.5$ and $E_2 = -0.2)$ within the unit circle in the Complex Plane which is shown as a decreasing cone shaped trajectory in the plot "Part E - Zero State Response with Conv Function".

F) Moving Average Filter

Part I - Constant Coefficient Difference Equation with h[n] Impulse Response

$$\frac{P_{x}t + \frac{1}{N}}{y + (1)x + (1)x + (1)x + (1)x + (1)x + (1)x + (1)}$$

Part II & III - MATLAB Function for N-point moving-average filter

```
n = 0:1:45;
d = (n-30) = 0;
d2 = (n-35) == 0;
a = 1;
x = cos((pi.*n)./5)+d-d2;
%original function
figure
stem(n, x);
title('Part F - x[n]')
axis([0 45 -4 4.1])
xlabel('n')
ylabel('h[n]')
%N=4
filter N = 4;
b = (1/filterN)*ones(1, filterN);
h = filter(b, a, x);
figure
stem(n, h);
title('Part F - x[n] after Moving Average Filter of Window Size 4')
axis([0 45 -4 4.1])
```

```
xlabel('n')
ylabel([h[n]])
%N=8
filter N = 8;
b = (1/filterN)*ones(1, filterN);
h = filter(b, a, x);
figure
stem(n, h);
title('Part F - x[n] after Moving Average Filter of Window Size 8')
axis([0 45 -4 4.1])
xlabel('n')
ylabel('h[n]')
%N=12
filter N = 12;
b = (1/filterN)*ones(1, filterN);
h = filter(b, a, x);
figure
stem(n, h);
title('Part F - x[n] after Moving Average Filter of Window Size 12')
axis([0 45 -4 4.1])
xlabel('n')
ylabel([h[n]])
```

As the window size (filterN) of the moving-average filter increases the amplititude of the resulting sinusoidal signal decreases. This is due to the filter taking ana verage over a larger number of data points while the number of repeting y-values and the number of y-value that cancel out increases. This is a common method to smooth out noisy data (outlier data) that would otherwise give an incorrect representation of trajectory of the actual signal.

