(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-130434

(43)公開日 平成10年(1998) 5月19日

審査請求 未請求 請求項の数2 FD (全7頁)

(21)出願番号 特願平8-305510

(22)出願日 平成8年(1996)11月1日

(71)出願人 393025921

デュポン株式会社

東京都目黒区下目黒1丁目8番1号

(71)出願人 000104814

クニミネ工業株式会社

東京都千代田区岩本町1丁目10番5号

(72)発明者 高橋 辰宏

神奈川県横浜市都筑区早渕2-2-1 デ

ュポン株式会社中央技術研究所内

(72)発明者 小林 俊一

神奈川県横浜市都筑区早渕2-2-1 デ

ュポン株式会社中央技術研究所内

(74)代理人 弁理士 谷 義一 (外1名)

最終頁に続く

(54) 【発明の名称】低密度ポリエチレンー層状珪酸塩複合材料およびその製造方法

(57)【要約】

【課題】 低密度ポリエチレンー層状珪酸塩複合材料およびその製造方法を提供することを目的とする。

【解決手段】 層状珪酸塩の層間に室温で液状の界面活性剤を挿入せしめたマスターバッチを低密度ポリエチレンと溶融混練することにより、前記層状珪酸塩層の珪酸塩層間に前記低密度ポリエチレンを挿入した低密度ポリエチレンー層状珪酸塩複合材料とする。

幽面代用写真

【特許請求の範囲】

【請求項1】 低密度ポリエチレンと、層状珪酸塩と、 室温で液状の界面活性剤とを含み、前記低密度ポリエチ レンが前記層状珪酸塩の珪酸塩層間に挿入されてなるこ とを特徴とする低密度ポリエチレン - 層状珪酸塩複合材 料。

【請求項2】 層状珪酸塩の層間に室温で液状の界面活性剤を挿入せしめたマスターバッチを調製し、該マスターバッチを低密度ポリエチレンと溶融混練することにより、前記層状珪酸塩層の珪酸塩層間に前記低密度ポリエ 10 チレンを挿入することを特徴とする低密度ポリエチレンー層状珪酸塩複合材料の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、低密度ポリエチレンと層状珪酸塩との複合材料に関し、さらに詳しくは層状珪酸塩の珪酸塩層間に低密度ポリエチレンを挿入することにより、低密度ポリエチレンに層状珪酸塩を良好に分散せしめた透明性に優れた複合材料に関する。本発明の低密度ポリエチレンー層状珪酸塩複合材料から成形さ 20れたフィルムは、透明であり且つガスパリア性に優れ、また、射出成形品は、表面光沢を維持しつつ剛性を向上させることができるため、例えば、自動車のパンパーやOA機器などの優れた表面光沢の外観とともに剛性が必要とされる成形品に好適に使用される。

[0002]

【従来の技術】従来より層状珪酸塩を構成する珪酸塩層に有機高分子材料を挿入した複合材料を得ようとする試みがなされていた。それらの試みは、加藤忠蔵(高分子、1970年、Vol.19、No.222、p758-764)や加藤忠蔵、黒田一幸(粘土科学、1986年、Vol.26、No.4、p292-305)等の総説にまとめられている。しかしながら、珪酸塩層に有機高分子材料を挿入して層間距離を拡大することや層間の平行性を減少させて粘土鉱物を分散させることが困難であった。

【0003】この問題を解決するために開発された複合材料のひとつとして、膨潤性粘土鉱物を構成する珪酸塩層に、必要に応じて、アルキルアミン系の膨潤化剤を処理して、さらにモノマーを含浸させ重合することを特徴40とする粘土鉱物/ポリアミド樹脂組成物がある(特開昭58-35542号公報)。また、層状珪酸塩を構成する珪酸塩層の厚さが7-12人(オングストローム)で層間距離が30人以上である珪酸塩層にポリアミドを含む樹脂を混入し、ポリアミドの高分子鎖の一部と珪酸塩層がイオン結合してなる複合材料も報告されている(特開昭62-74957号公報)。これらの複合材料の製造方法は、製造工程に重合工程が含まれるため、必ずしも容易ではないという問題がある。50

【0004】製造工程の困難を解決するものとしては、層状珪酸塩とアルキルアミン系膨潤化剤とを水中に分散させ乾燥させることにより得られた層状珪酸塩/アルキルアミン系膨潤化複合材料をポリアミドと溶融混練することにより、層間距離を30人以上に拡大することや層間の平行性を減少させた複合材料含有樹脂組成物が報告されている(米国特許第5385776号公報)。

【0005】さらに、本願出願人は、簡易な製造方法であり、しかもポリアミド以外の有機高分子材料であっても層状珪酸塩を分散せしめる熱安定性の複合材料の製造方法として、水に溶解、あるいは分散可能であり、溶融可能な極性有機高分子材料を、層状珪酸塩と極性溶媒中で分散、混合、乾燥、粉砕する複合材料の製造方法を開発した(特願平8-65355号)。

【0006】上記の技術が層状珪酸塩を、ポリアミドやアイオノマーのような有機高分子中に極性基を有するポリマーに、分散させた複合材料に関するものであることからもわかるように、従来の開発は、主として極性ポリマーを用いた複合材料に向けられていた。これは層状珪酸塩が極性を有しているため、無極性のポリマーとの親和性が乏しく、良好に分散することができず、したがって透明性が損なわれるためである。

【0007】しかし、近年、層状珪酸塩を無極性ポリマーであるポリプロピレンに分散させる研究が行われている。例えば、ポリプロピレンにモンモリロナイトを分散せしめた複合材料の製造方法として、ナトリウム型モンモリロナイトを水中でシステアリルジメチルアンモニウムでイオン交換し、洗浄し、粉砕し、乾燥し、有機化モンモリロナイトとした後、さらに有機溶媒中でポリプロピレンとモンモリロナイトの双方に親和性のあるオリゴマで反応処理した後に洗浄乾燥し、ポリプロピレンと溶融混練する方法が報告されている(1995年秋、高分子加工技術討論会、予稿集、p53-54、PPクレイハイブリッドの合成と特性)。

【0008】上記の方法は、優れた分散性が得られているものの、製造工程が多く複雑であり、実用性に乏しい。

【0009】また、軟質で加工性に優れ透明であるため にフィルム等に使用される低密度ポリエチレンに、極め て簡易な方法により層状珪酸塩を分散せしめた複合材料 は未だ開発されていない。

[0010]

【発明が解決しようとする課題】そこで、本発明は、層 状珪酸塩を無極性のポリマーの1種である低密度ポリエ チレンに分散せしめた複合材料、およびその簡易な製造 方法を提供することを目的とする。

[0011]

【課題を解決するための手段】本発明は、低密度ポリエ チレンー層状珪酸塩複合材料に関するものであって、低 80 密度ポリエチレンと、層状珪酸塩と、室温で被状の界面

等開平10-130434

活性剤とを含み、この界面活性剤の作用により前記低密 度ポリエチレンが前記層状珪酸塩の珪酸塩層間に挿入さ れてなることを特徴とするものである。

【0012】さらに、本発明は、低密度ポリエチレンー 層状珪酸塩複合材料の製造方法に関するものであって、 層状珪酸塩の層間に室温で液状の界面活性剤を挿入せし めたマスターバッチを調製し、該マスターバッチを低密 度ポリエチレンと溶融混練することにより、前記層状珪 酸塩層の珪酸塩層間に前記低密度ポリエチレンを挿入す ることを特徴とするものである。

[0013]

【発明の実施の形態】本発明の低密度ポリエチレンは、 エチレンを高温 (180~200℃) および高圧 (10 00~2000気圧)で酸素のようなラジカル重合触媒 の存在下で重合させると得られる。

【0014】本発明で用いる層状珪酸塩の珪酸塩層の厚 みは通常7~15人で、珪酸マグネシウム、珪酸アルミ ニウム層により形成される。具体的には、モンモリロナ イト、サポナイト、バイデライト、ノントロナイト、ヘ クトライト、ステイプンサイト等のスメクタイト系粘土 20 鉱物や、バーミキュライト、ハロサイト、マイカなどが あり、天然のものでも合成されたものでもよい。さらに また、膨潤性フッ素マイカ等も挙げられる。なかでもス メクタイト系層状珪酸塩が好ましく、特にモンモリロナ イトが好ましい。

【0015】本発明で用いる界面活性剤は、室温で液状 でなければならない。室温で固体の界面活性剤、例え ば、長鎖アルキルアミンを層状珪酸塩の層間に挿入する には、長鎖アルキルアミンを水中に分散させ、溶解させ て用いることが必要であり、その後に水分を除去する工 30 程も必要となる。そこで、本発明においては、水などの 溶媒に分散溶解させる必要のない室温で液状の界面活性 剤を用いる。界面活性剤にはカチオン性、アニオン性、 および非イオン性の界面活性剤があり、例えば、長鎖ア ルキルアミンであるステアリルアミンが室温で固体であ るように、カチオン性およびアニオン性の界面活性剤の 多くは、室温で固体である。したがって、非イオン性界 面活性剤が好適に用いられる。非イオン性界面活性剤の 親水基としてよく用いられるのは酸化エチレン基(-C H, CH, O-) である。疎水性のアルキル基をRとす 40 ると、エーテル型 (RO (CH, CH, O)。H) とエ ステル型 (RCOO (CH, CH, O), H) がある。 アルキル基としては、ラウリル基、バルミチル基、ステ アリル基、オレイル基等が挙げられる。なかでもポリエ チレングリコールオレイルエーテルが好ましい。ポリエ チレングリコールオレイルエーテルが室温で液状である ためには、ポリエチレングリコールの重合度はn=2~ 50である。

【0016】さらにまた、本発明の複合材料はその特性 を損なわない程度で前記成分に加えて、界面活性剤と無 50 ルを用いた以外は実施例3と同様に複合材料を得た。そ

極性ポリマーの双方に親和性のあるパラフィンを配合し てもよい。室温で液状の界面活性剤と層状珪酸塩を混合 すると粘度の高い液状になるため、融点が50℃程度の パラフィンを配合することにより、低密度ポリエチレン との混合の際の取り扱いを容易にすることができる。

【0017】本発明の複合材料の製造方法において、各 成分を一緒に溶融混練してもよいが、層状珪酸塩を低密 度ポリエチレンに良好に分散させるには、上述の層状珪 酸塩および界面活性剤を2本ロールまたは3本ロールな 10 どの混練機を用いて混合し、層状珪酸塩の層間に界面活 性剤を挿入せしめたマスターバッチを調製し、それを低 密度ポリエチレンと溶融混練する製造方法が好ましい。 パラフィンや他の添加剤を配合する場合には、マスター バッチを調製する際に配合することが好ましい。溶融混 練は従来公知のいかなる方法で行ってもよいが、良好に 分散せしめるためには強い溶融混練能力を有する混練機 械を使用することが望ましい。具体的には、二軸(同方 向回転、違方向回転) 混練機、ヤブスニーダー、2本ロ ール混練機などが好ましい。

[0018]

【実施例】本発明を実施例を挙げて説明するが、本発明 は本実施例のみに限定されるものではない。

【0019】 (実施例1) モンモリロナイト (クニミネ 工業株式会社製クニピアF (商品名)) 4.0gとポリ エチレングリコールオレイルエーテル(ポリエチレング リコールの重合度n=2)8.0gを、3本ロールにお いて室温で約10分間撹拌してマスターパッチを調製し た、2本ロール混練機にて、得られたマスターバッチを 低密度ポリエチレン(ユニオンポリマー株式会社製低密 度ポリエチレン339 (商品名)) のペレット88gと 溶融混練し、複合材料を得た。その透明性を光学顕微鏡 で目視観察し、また写真に記録した(図1)。

【0020】(実施例2)ポリエチレングリコールオレ イルエーテル(ポリエチレングリコールの重合度n= 7) を用いた以外は、実施例1と同様に複合材料を得 た。その透明性を光学顕微鏡で目視観察し、また写真に 記録した(図2)。

【0021】 (実施例3) モンモリロナイト (クニミネ 工業株式会社製クニピアF(商品名))4.0g、ポリ エチレングリコールオレイルエーテル(ポリエチレング リコールの重合度 n = 2) 4.0g、およびパラフィン (融点50℃) 4.0gを、3本ロールにおいて室温で 約10分間撹拌してマスターバッチを調製した。2本ロ ール混練機にて、得られたマスターパッチを低密度ポリ エチレン(ユニオンポリマー株式会社製低密度ポリエチ レン339 (商品名)) のペレット88gと溶融混練 し、複合材料を得た。その透明性を光学顕微鏡で目視観 察し、また写真に記録した(図3)。

【0022】 (実施例4) 室温で液状のパラフィンオイ

,

の透明性を光学電子顕微鏡で自視観察し、また写真に記録した(図4)。

【0023】(対照例1)実施例で使用したと同一の低密度ポリエチレン(ユニオンポリマー株式会社製低密度ポリエチレン339(商品名))自体の透明性を光学電子顕微鏡で目視観察し、また写真により(図5)、それ自体はもともと透明であることを確認した。

【0024】(比較例1)2本ロール混練機にて、モンモリロナイト(クニミネ工業株式会社製クニピアF(商品名))4.0gと低密度ポリエチレン(ユニオンポリ 10マー株式会社製低密度ポリエチレン339(商品名))のペレット96gとを溶融混練した。その透明性を光学顕微鏡で目視観察し、また写真に記録した(図6)。

【0025】図6の電子顕微鏡写真よりわかるように、比較例1のように層状珪酸塩のみを低密度ポリエチレンに分散させた場合、大きな塊が確認でき、透明性も良好ではないが、実施例1および2のように層状珪酸塩を界面活性剤を用いて低密度ポリエチレンに分散させた場合、大きな塊が確認できず、透明性も良好であった。さらに、実施例3および4のように添加剤としてパラフィンを配合しても、分散性が損なわれないことが確認できた。

[0026]

【発明の効果】以上説明したように、層状珪酸塩に室温 で液状の界面活性剤を配合するだけで、水などの溶媒を 用いることなく、したがって水を蒸発させて乾燥粉砕す るという工程がなく、簡単にマスターパッチを作成することができ、そのマスターパッチを低密度ポリエチレン に溶融混練することにより、複雑な製造方法によること なく、低密度ポリエチレンに層状珪酸塩を良好に分散せ しめた複合材料を提供することができる。本発明によ り、低密度ポリエチレンー層状珪酸塩複合材料の透明性 を改良することができる。

【図面の簡単な説明】

【図1】本発明の実施例1で得られた複合材料の透明性 を示す電子顕微鏡写真であり、拡大率は100倍であ る。

【図2】本発明の実施例2で得られた複合材料の透明性 を示す電子顕微鏡写真であり、拡大率は100倍である。

【図3】本発明の実施例3で得られた複合材料の透明性を示す電子顕微鏡写真であり、拡大率は100倍である。

【図4】本発明の実施例4で得られた複合材料の透明性を示す電子顕微鏡写真であり、拡大率は100倍である。

【図5】本発明の実施例5で得られた複合材料の透明性 を示す電子顕微鏡写真であり、拡大率は100倍であ る。

【図6】本発明の実施例6で得られた複合材料の透明性 を示す光学顕微鏡写真であり、拡大率は100倍であ る。

[図1]

20

図面代用写真

BEST AVAILABLE CUPY

[図2]

図面代用写真

【図3】

図面代用写真

BEST AVAILABLE COPY

[図4]

図面代用写真

【図5】

BEST AVAILABLE COPY

【図6】

図面代用写真

フロントページの続き

(72)発明者 門馬 恒視 福島県いわき市小名浜岡小名字作23

(72)発明者 荒井 隆幸 茨城県取手市西 2 - 9 - 10

BEST AVAILABLE COPY