Asie 2017. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A: étude d'un cas particulier

1) La fonction C est dérivable sur $[0, +\infty[$ et pour tout réel positif t,

$$C'(t) = 12 \times \left(-\left(-\frac{7}{80}e^{-\frac{7}{80}t}\right)\right) = \frac{21}{20}e^{-\frac{7}{80}t}.$$

La fonction C' est strictement positive sur $[0, +\infty[$ et donc la fonction C est strictement croissante sur $[0, +\infty[$.

2) $\lim_{t\to +\infty}e^{-\frac{7}{80}t}=\lim_{x\to -\infty}e^x=0$ et donc $\lim_{t\to +\infty}C(t)=12(1-0)=12$. Le traitement de ce patient n'est pas efficace.

Partie B: étude de fonctions

1) La fonction f est dérivable sur $]0, +\infty[$ en tant que produit de fonctions dérivables sur $]0, +\infty[$ et pour tout réel strictement positif x,

$$\begin{split} f'(x) &= 105 \left(-\frac{1}{x^2} \left(1 - e^{-\frac{3}{40}x} \right) + \frac{1}{x} \left(-\left(-\frac{3}{40} e^{-\frac{3}{40}x} \right) \right) \right) \\ &= 105 \left(\frac{-1 + e^{-\frac{3}{40}x}}{x^2} + \frac{\frac{3}{40} e^{-\frac{3}{40}x}}{x} \right) = \frac{105}{x^2} \left(-1 + e^{-\frac{3}{40}x} + \frac{3}{40} x e^{-\frac{3}{40}x} \right) \\ &= \frac{105g(x)}{x^2}. \end{split}$$

2) La fonction g est strictement décroissante sur $[0, +\infty[$ et g(0) = 0. Donc, pour tout x de $]0, +\infty[$, g(x) < 0. On en déduit que pour tout x de $]0, +\infty[$, $\frac{105g(x)}{x^2} < 0$ ou encore que pour tout x de $]0, +\infty[$, f'(x) < 0. La fonction f est strictement décroissante sur $]0, +\infty[$.

3) $f(1) = 105 \left(1 - e^{-\frac{3}{40}}\right) = 7,7...$ et donc f(1) > 5,9. $f(80) = \frac{105}{80} \left(1 - e^{-6}\right) = 1,3...$ et donc f(80) < 5,9. f est continue et strictement décroissante sur [1,80]. On sait que pour tout réel k de l'intervalle [f(80),f(1)], l'équation f(x) = k a une solution et une seule dans l'intervalle [1,80]. Puisque 5,9 a partient à l'intervalle [f(80),f(1)], l'équation f(x) = 5,9 a une solution et une seule dans l'intervalle [1,80].

Si 0 < x < 1, puisque f est strictement décroissante sur $]0, +\infty[$, f(x) > f(1) > 5,9 et en particulier, $f(x) \neq 5,9$. Si x > 80, f(x) < f(80) < 5,9 et en particulier, $f(x) \neq 5,9$. Ceci montre que l'équation f(x) = 5,9 a une solution et une seule dans l'intervalle $]0, +\infty[$ et de plus cette solution, notée α , appartient à l'intervalle [1,80].

La calculatrice fournit $f(8,1)=5,901\ldots$ et $f(8,2)=5,88\ldots$ Donc, f(8,1)>5,9>f(8,2). Puisque f est strictement décroissante sur $]0,+\infty[$, on en déduit que $8,1<\alpha<8,2$. Ainsi, $\alpha=8,1$ à 10^{-1} près par défaut.

Partie C: détermination d'un traitement adéquat

1) a)
$$C(6) = \frac{105}{a} \left(1 - e^{-\frac{\alpha}{80} \times 6} \right) = \frac{105}{a} \left(1 - e^{-\frac{3\alpha}{40}} \right) = f(\alpha).$$

b) $C(6) = 5,9 \Leftrightarrow f(a) = 5,9 \Leftrightarrow a = \alpha$. Une valeur approchée à 10^{-1} près de la clairance est 8,1 litres par heure.

2) $\lim_{t\to +\infty} C(t) = \frac{d}{\alpha}(1-0) = \frac{d}{\alpha}$. Ensuite, $\frac{d}{\alpha} = 15 \Leftrightarrow d = 15\alpha$. Pour un débit de 121,5 micromoles par heure, le traitement du patient est efficace.

EXERCICE 2

- 1) Dans la case B3, on écrit =(A2+1)/(2*A2+4)*B2.
- 2) a) Il semble que pour tout entier naturel n, $\nu_n = \frac{1}{2^n}$.
- $\mathbf{b)}\ \nu_0=1\times \mathfrak{u}_0=1.\ \mathrm{Ensuite},\ \mathrm{pour}\ \mathfrak{n}\in\mathbb{N},$

$$\nu_{n+1} = (n+2)u_{n+1} = (n+2) \times \frac{(n+1)}{2(n+2)}u_n = \frac{1}{2}(n+1)u_n = \frac{1}{2}\nu_n.$$

Ainsi, (ν_n) est la suite géométrique de premier terme $\nu_0=1$ et de raison $q=\frac{1}{2}$. On sait alors que pour tout $n\in\mathbb{N}$, $\nu_n=\nu_0\times q^n=1\times\left(\frac{1}{2}\right)^n=\frac{1}{2^n}$.

3) Pour tout entier naturel $n, u_n = \frac{1}{n+1} \nu_n$. D'une part, $\lim_{n \to +\infty} \frac{1}{n+1} = 0$. D'autre part, puisque $-1 < \frac{1}{2} < 1$, $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$. Donc, $\lim_{n \to +\infty} u_n = 0 \times 0 = 0$.

EXERCICE 3

1) On note T l'événement « on choisit le dé truqué » et S l'événement « on obtient le six ». Représentons la situation par un arbre de probabilités.

La probabilité demandée est P_S(T). D'après la formule des probabilités totales,

$$P_S(T) = \frac{P(T) \times P_T(S)}{P(T) \times P_T(S) + P\left(\overline{T}\right) \times P_{\overline{T}}(S)} = \frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{6}} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{12}} = \frac{1}{1 + \frac{1}{3}} = \frac{1}{4/3} = \frac{3}{4}.$$

La probabilité que le dé soit truqué est égale à $\frac{3}{4}$. La proposition 1 est fausse.

2)
$$x_M = \operatorname{Re}(z_M) = 2\cos\left(-\frac{\pi}{3}\right) = 2 \times \frac{1}{2} = 1$$
. $z_N = \frac{3-i}{2+i} = \frac{(3-i)(2-i)}{(2+i)(2-i)} = \frac{6-3i-2i-1}{2^2+1^2} = \frac{5-5i}{5} = 1-i$ et donc $x_N = \operatorname{Re}(z_N) = 1$.

Les points M et N ont la même abscisse et donc la droite (MN) est parallèle à l'axe des ordonnées. L'affirmation 2 est vraie.

3) Un vecteur directeur de la droite d est le vecteur $\overrightarrow{u}(1,0,2)$. Les coordonnées du vecteur \overrightarrow{AB} sont (2,-1,-1) et les coordonnées du vecteur \overrightarrow{AC} sont (6,0,-3).

$$\overrightarrow{u}.\overrightarrow{AB} = 1 \times 2 + 0 \times (-1) + 2 \times (-1) = 2 - 2 = 0,$$

et

$$\overrightarrow{u}.\overrightarrow{AB} = 1 \times 6 + 0 \times 0 + 2 \times (-3) = 6 - 6 = 0.$$

Le vecteur \overrightarrow{u} est orthogonal aux vecteurs \overrightarrow{AB} et \overrightarrow{AC} . Donc, la droite d est orthogonale aux droites (AB) et (AC) qui sont deux droites sécantes du plan (ABC). On en déduit que la droite d est orthogonale au plan (ABC). L'affirmation 3 est vraie.

4) Les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires iu encore les droites d et Δ ne sont pas parallèles. On en déduit que les droites d et Δ sont sécantes ou non coplanaires.

La droite Δ admet pour représentation paramétrique $\begin{cases} x=1+2u \\ y=4+u \\ z=1+3u \end{cases}$. Soient alors $M(1+t,2,3+2t), t \in \mathbb{R},$ un point de d et $N(1+2u,4+u,1+3u), u \in \mathbb{R},$ un point de Δ .

$$M = N \Leftrightarrow \begin{cases} 1+t=1+2u \\ 2=4+u \\ 3+2t=1+3u \end{cases} \Leftrightarrow \begin{cases} u=-2 \\ t=2u \\ 3+4u=1+3u \end{cases} \Leftrightarrow \begin{cases} u=-2 \\ t=-4 \end{cases}$$

Les droites d et Δ ont donc un point commun. En particulier, les droites d et Δ sont coplanaires et la proposition 4 est fausse.

EXERCICE 4.

Partie A : valeur exacte de l'intégrale I

1) La fonction $x \mapsto \frac{1}{1+x}$ est continue et positive sur [0,1]. Donc, I est l'aire, exprimée en unités d'aire, du domaine du plan compris entre l'axe des abscisses et la courbe représentative de la fonction $x \mapsto \frac{1}{1+x}$ d'une part, et les droites d'équations respectives x = 0 et x = 1 d'autre part.

2)
$$I = \int_0^1 \frac{1}{1+x} dx = [\ln(1+x)]_0^1 = \ln(2) - \ln(1) = \ln(2).$$

Partie B: estimation de la valeur de J

1) Algorithme complété.

Variables	n, c, f, i, x, y sont des nombres					
Traitement	Lire la valeur de n c prend la valeur 0 Pour i allant de 1 à n faire x prend une valeur aléatoire entre 0 et 1 y prend une valeur aléatoire entre 0 et 1 Si $y \le 1/(1+x^2)$ alors c prend la valeur $c+1$ Fin si Fin pour f prend la valeur c/n					
Sortie	Afficher f					

2) Un intervalle de confiance au niveau de confiance de 95% de la valeur exacte de J est

$$\left[f - \frac{1}{\sqrt{n}}, f + \frac{1}{\sqrt{n}}\right] = \left[0,781 - \frac{1}{\sqrt{1000}}, 0,781 + \frac{1}{\sqrt{1000}}\right] = [0,749; 0,813]$$

en arrondissant de manière à élargir un peu l'intervalle.

3) L'amplitude de l'intervalle est $\frac{2}{\sqrt{n}}$.

$$\frac{2}{\sqrt{n}} \leqslant 0,02 \Leftrightarrow \frac{2}{0,02} \leqslant \sqrt{n} \Leftrightarrow 100 \leqslant \sqrt{n} \Leftrightarrow n \geqslant 10 000.$$

La valeur minimum de $\mathfrak n$ pour que l'amplitude de l'intervalle de confiance soit inférieure ou égale à 0,02 est $10\,000$.

EXERCICE 5.

Partie A: ligne de transmission

1) a) Soient a, b, c et d quatre réels puis $Q = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$.

$$PQ = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a+b & c+d \\ a-b & c-d \end{pmatrix}.$$

Par suite,

$$\begin{split} PQ &= I_2 \Leftrightarrow \left(\begin{array}{c} a+b & c+d \\ a-b & c-d \end{array} \right) = \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \Leftrightarrow \left\{ \begin{array}{c} a+b=1 \\ a-b=0 \\ c+d=0 \\ c-d=1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} b=a \\ a=\frac{1}{2} \\ d=-c \\ c=\frac{1}{2} \end{array} \right. \\ \Leftrightarrow a &= \frac{1}{2}, \ b=\frac{1}{2}, \ c=\frac{1}{2} \ \mathrm{et} \ d=-\frac{1}{2} \Leftrightarrow Q = \left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{array} \right). \end{split}$$

D'autre part, $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Ainsi, on a trouvé une matrice carrée Q telle que $PQ = QP = I_2$.

On en déduit que la matrice P est inversible et que $P^{-1} = Q = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$.

b)

$$\begin{split} PDP^{-1} &= \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 2p-1 \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{array}\right) = \left(\begin{array}{cc} 1 & 2p-1 \\ 1 & -2p+1 \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{array}\right) \\ &= \left(\begin{array}{cc} \frac{1+2p-1}{2} & \frac{1-2p+1}{2} \\ \frac{1-2p+1}{2} & \frac{1+2p-1}{2} \end{array}\right) = \left(\begin{array}{cc} p & 1-p \\ 1-p & p \end{array}\right) = A. \end{split}$$

- c) Montrons par récurrence que pour tout $n \ge 1$, $A^n = PD^nP^{-1}$.
 - \bullet $PD^1P^{-1}=PDP^{-1}=A$ d'après la question précédente. L'égalité à démontrer est vraie quand $\mathfrak{n}=1.$
 - Soit $n \ge 1$. Supposons que $A^n = PD^nP^{-1}$. Alors

$$\begin{split} A^{n+1} &= A^n \times A \\ &= PD^nP^{-1}PDP^{-1} \text{ (par hypothèse de récurrence)} \\ &= PD^nI_2DP^{-1} = PD^nDP^{-1} \\ &= PD^{n+1}P^{-1}. \end{split}$$

On a montré par récurrence que pour tout $n\geqslant 1,$ $A^n=PD^nP^{-1}.$

d) Soit $n \in \mathbb{N}$. Puisque $\binom{p_n}{q_n} = X_n = A^n X_0$, on lit dans que la copie d'écran :

$$q_n=\frac{-(2p-1)^n+1}{2}.$$

Le calcul à la main fournit rapidement ce résultat :

$$\begin{pmatrix} p_n \\ q_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & (2p-1)^n \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & (2p-1)^n \\ 1 & -(2p-1)^n \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{(2p-1)^n+1}{2} & \frac{-(2p-1)^n+1}{2} \\ \frac{-(2p-1)^n+1}{2} & \frac{(2p-1)^n+1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{(2p-1)^n+1}{2} \\ \frac{-(2p-1)^n+1}{2} \end{pmatrix}.$$

2) Soit $n \in \mathbb{N}^*$. On veut $q_n \leq 0, 25$.

$$\begin{split} q_n \leqslant 0, 25 &\Leftrightarrow \frac{-(2\times 0, 98-1)^n + 1}{2} \leqslant 0, 25 \Leftrightarrow -(0, 96)^n + 1 \leqslant 0, 5 \Leftrightarrow -(0, 96)^n \leqslant -0, 5 \\ &\Leftrightarrow 0, 96^n \geqslant 0, 5 \Leftrightarrow \ln{(0, 96^n)} \geqslant \ln{(0, 5)} \text{ (par stricte croissance de la fonction exponentielle sur } \mathbb{R}) \\ &\Leftrightarrow n \ln{(0, 96)} \geqslant \ln{(0, 5)} \\ &\Leftrightarrow n \leqslant \frac{\ln{(0, 5)}}{\ln{(0, 96)}} \text{ (car } \ln{(0, 96)} < 0) \\ &\Leftrightarrow n \leqslant 16, 9 \dots \\ &\Leftrightarrow n \leqslant 16 \text{ (car } n \text{ est un entier)}. \end{split}$$

On peut aligner au maximum 16 lignes de transmission.

Partie B: étude d'un code correcteur, le code de Hamming (7,4)

- 1) a) Le reste de la division euclidienne d'un entier par 2 est un entier naturel strictement inférieur à 2 et est donc égal à 0 ou 1. Donc, c_1 , c_2 et c_3 ne peuvent prendre comme valeurs que 0 ou 1.
- b) $b_1 = 1$, $b_2 = 0$, $b_3 = 0$ et $b_4 = 1$. Donc,
 - $b_2 + b_3 + b_4 = 1$ puis $c_1 = 1$,
 - $b_1 + b_3 + b_4 = 2$ puis $c_2 = 0$,
 - $b_1 + b_2 + b_4 = 1$ puis $c_3 = 0$.

La clé de contrôle associée au mot 1001 est 100. Le message transmis est donc 1001100.

- 2) Si on modifie b_1 , $b_2 + b_3 + b_4$ est inchangé et donc c_1 est inchangé. Par contre, $b_1 + b_3 + b_4$ et $b_1 + b_2 + b_4$ sont augmentés de 1 ou diminués de 1. Dans tous les cas, ces deux nombres changent de parité et donc c_2 et c_3 sont modifiés.
- 3) On obtient le tableau suivant

Bit erroné Bit de contrôle calculé	b ₁	b ₂	\mathfrak{b}_3	b ₄	c ₁	c_2	c ₃	Aucun
c_1	J	F	F	F	F	J	J	J
c ₂	F	J	F	F	J	F	J	J
c ₃	F	F	J	F	J	J	F	J

- 4) Dans le tableau précédent il n'y a pas deux colonnes identiques et donc chaque erreur possible est totalement identrifiée.
- 5) Pour le message A, on doit avoir $c_1 = 1$, $c_2 = 0$ et $c_3 = 1$. En comparant au message reçu, on est dans la situation FFF c'est-à-dire la situation où b_4 est erroné. Le message A correct est 0101010.

Pour le message B, on doit avoir $c_1 = 0$, $c_2 = 0$ et $c_3 = 1$. En comparant au message reçu, on est dans la situation JJJ c'est-à-dire la situation où tout est correct. Le message B est correct.