Neural networks and Backpropagation

Charles Ollion - Olivier Grisel

Neural Network for classification

Vector function with tunable parameters θ

$$\mathbf{f}(\cdot;\theta): \mathbf{R}^N \to (0,1)^K$$

Neural Network for classification

Vector function with tunable parameters θ

$$\mathbf{f}(\cdot;\theta): \mathbf{R}^N \to (0,1)^K$$

Sample s in dataset S:

- input: $\mathbf{x}^s \in \mathbf{R}^N$
- expected output: $y^s \in [0, K-1]$

Neural Network for classification

Vector function with tunable parameters θ

$$\mathbf{f}(\cdot;\theta): \mathbf{R}^N \to (0,1)^K$$

Sample s in dataset S:

- input: $\mathbf{x}^s \in \mathbb{R}^N$
- expected output: $y^s \in [0, K-1]$

Output is a conditional probability distribution:

$$\mathbf{f}(\mathbf{x}^{s}; \theta)_{c} = P(Y = c | X = \mathbf{x}^{s})$$

Artificial Neuron

Artificial Neuron

$$z(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

$$f(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x} + b)$$

- x, f(x) input and output
- $z(\mathbf{x})$ pre-activation
- w, b weights and bias
- g activation function

Layer of Neurons

Layer of Neurons

$$\mathbf{f}(\mathbf{x}) = g(\mathbf{z}(\mathbf{x})) = g(\mathbf{W}\mathbf{x} + \mathbf{b})$$

• W, b now matrix and vector

- $\mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^{o}(\mathbf{x}) = \mathbf{W}^{o}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{o}$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

- $\mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^{o}(\mathbf{x}) = \mathbf{W}^{o}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{o}$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

- $\mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^{O}(\mathbf{x}) = \mathbf{W}^{O}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{O}$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

- $\mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^{o}(\mathbf{x}) = \mathbf{W}^{o}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{o}$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

Alternate representation

Keras implementation

Element-wise activation functions

• blue: activation function

Softmax function

$$softmax(\mathbf{x}) = \frac{1}{\sum_{i=1}^{n} e^{x_i}} \cdot \begin{bmatrix} e^{x_1} \\ e^{x_2} \\ \vdots \\ e^{x_n} \end{bmatrix}$$

$$\frac{\partial softmax(\mathbf{x})_i}{\partial x_j} = \begin{cases} softmax(\mathbf{x})_i \cdot (1 - softmax(\mathbf{x})_i) & i = j \\ -softmax(\mathbf{x})_i \cdot softmax(\mathbf{x})_j & i \neq j \end{cases}$$

Softmax function

$$softmax(\mathbf{x}) = \frac{1}{\sum_{i=1}^{n} e^{x_i}} \cdot \begin{bmatrix} e^{x_1} \\ e^{x_2} \\ \vdots \\ e^{x_n} \end{bmatrix}$$

$$\frac{\partial softmax(\mathbf{x})_i}{\partial x_j} = \begin{cases} softmax(\mathbf{x})_i \cdot (1 - softmax(\mathbf{x})_i) & i = j \\ -softmax(\mathbf{x})_i \cdot softmax(\mathbf{x})_j & i \neq j \end{cases}$$

- vector of values in (0, 1) that add up to 1
- $p(Y = c | X = \mathbf{x}) = \operatorname{softmax}(\mathbf{z}(\mathbf{x}))_c$
- the pre-activation vector $\mathbf{z}(\mathbf{x})$ is often called "the logits"

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative** log likelihood (or <u>cross entropy</u>)

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative** log likelihood (or <u>cross entropy</u>)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^{S}; \theta), y^{S}) = nll(\mathbf{x}^{S}, y^{S}; \theta) = -\log \mathbf{f}(\mathbf{x}^{S}; \theta)_{y^{S}}$$

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative** log likelihood (or <u>cross entropy</u>)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^{S}; \theta), y^{S}) = nll(\mathbf{x}^{S}, y^{S}; \theta) = -\log \mathbf{f}(\mathbf{x}^{S}; \theta)_{y^{S}}$$

example
$$y^s=3$$

$$l(\mathbf{f}(\mathbf{x}^s;\theta),y^s)=l\left(\begin{bmatrix}f_0\\ \dots\\ f_3\\ \dots\\ f_{K-1}\end{bmatrix}, \begin{bmatrix}0\\ \dots\\ 1\\ \dots\\ 0\end{bmatrix}\right)=-\log\ f_3$$

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative** log likelihood (or <u>cross entropy</u>)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^{S}; \theta), y^{S}) = nll(\mathbf{x}^{S}, y^{S}; \theta) = -\log \mathbf{f}(\mathbf{x}^{S}; \theta)_{y^{S}}$$

The cost function is the negative likelihood of the model computed on the full training set (for i.i.d. samples):

$$L_{S}(\theta) = -\frac{1}{|S|} \sum_{s \in S} \log \mathbf{f}(\mathbf{x}^{s}; \theta)_{y^{s}}$$

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative** log likelihood (or <u>cross entropy</u>)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^{s}; \theta), y^{s}) = nll(\mathbf{x}^{s}, y^{s}; \theta) = -\log \mathbf{f}(\mathbf{x}^{s}; \theta)_{y^{s}}$$

The cost function is the negative likelihood of the model computed on the full training set (for i.i.d. samples):

$$L_{S}(\theta) = -\frac{1}{|S|} \sum_{s \in S} \log \mathbf{f}(\mathbf{x}^{s}; \theta)_{y^{s}} + \lambda \Omega(\theta)$$

 $\lambda\Omega(\theta) = \lambda(||W^h||^2 + ||W^o||^2)$ is an optional regularization term.

Initialize θ randomly

Initialize θ randomly

For *E* epochs perform:

• Randomly select a small batch of samples $(B \subset S)$

Initialize θ randomly

For *E* epochs perform:

- Randomly select a small batch of samples $(B \subset S)$
 - Compute gradients: $\Delta = \nabla_{\theta} L_{B}(\theta)$

Initialize θ randomly

For *E* epochs perform:

- Randomly select a small batch of samples $(B \subset S)$
 - \circ Compute gradients: $\Delta = \nabla_{\theta} L_{R}(\theta)$
 - \circ Update parameters: $\theta \leftarrow \theta \eta \Delta$
 - \circ $\eta > 0$ is called the learning rate

Initialize θ randomly

For *E* epochs perform:

- Randomly select a small batch of samples $(B \subset S)$
 - \circ Compute gradients: $\Delta = \nabla_{\theta} L_{R}(\theta)$
 - Update parameters: $\theta \leftarrow \theta \eta \Delta$
 - \circ $\eta > 0$ is called the learning rate
- Repeat until the epoch is completed (all of S is covered)

Initialize θ randomly

For *E* epochs perform:

- Randomly select a small batch of samples $(B \subset S)$
 - Compute gradients: $\Delta = \nabla_{\theta} L_{R}(\theta)$
 - Update parameters: $\theta \leftarrow \theta \eta \Delta$
 - \circ $\eta > 0$ is called the learning rate
- Repeat until the epoch is completed (all of S is covered)

Stop when reaching criterion:

nll stops decreasing when computed on validation set

Computing Gradients

Output Weights: $\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial W_{i,j}^o}$

Output bias: $\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial b_i^o}$

Hidden Weights: $\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial W_{i,j}^h}$

Hidden bias: $\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial b_i^h}$

Computing Gradients

Output Weights:
$$\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial W_{i,j}^o}$$
 Output bias: $\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial b_i^o}$

Hidden Weights:
$$\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial W_{i,j}^h}$$
 Hidden bias: $\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial b_i^h}$

- The network is a composition of differentiable modules
- We can apply the "chain rule"

chain-rule

$$\frac{\partial z}{\partial x} = \sum_{j} \frac{\partial z}{\partial v_{j}} \frac{\partial v_{j}}{\partial x}$$

chain-rule

$$\frac{\partial z}{\partial x} = \sum_{j} \frac{\partial z}{\partial v_{j}} \frac{\partial v_{j}}{\partial x} = \nabla u \cdot \frac{\partial \mathbf{v}}{\partial x}$$

chain-rule

$$\frac{\partial z}{\partial x_i} = \sum_{j} \frac{\partial z}{\partial v_j} \frac{\partial v_j}{\partial x_i} = \nabla u \cdot \frac{\partial \mathbf{v}}{\partial x_i}$$

Backpropagation

Backpropagation

Compute partial derivatives of the loss

$$\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{\partial -\log \mathbf{f}(\mathbf{x})_y}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{-1_{y=i}}{\mathbf{f}(\mathbf{x})_y} = \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_i}$$

Backpropagation

Compute partial derivatives of the loss

•
$$\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{\partial -\log \mathbf{f}(\mathbf{x})_y}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{-1_{y=i}}{\mathbf{f}(\mathbf{x})_y} = \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_i}$$

$$\bullet \ \frac{\partial l}{\partial \mathbf{z}^o(\mathbf{x})_i} = ?$$

$$\frac{\partial l}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} = \sum_{j} \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_{j}} \frac{\partial \mathbf{f}(\mathbf{x})_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}$$
 Chain rule!

softmax

 $= \sum_{j} \frac{-1_{y=j}}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} \qquad \frac{\partial \mathbf{f}(\mathbf{x})_{i}}{\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^{o}(\mathbf{x}))}$

 $\frac{\partial l}{\partial \mathbf{z}^o(\mathbf{x})_i} = \sum_i \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_j} \frac{\partial \mathbf{f}(\mathbf{x})_j}{\partial \mathbf{z}^o(\mathbf{x})_i}$

$$\mathbf{z}^{o}(\mathbf{x})$$
 $\mathbf{f}(\mathbf{x})$ $l(\mathbf{f}(\mathbf{x}), \frac{1}{39/74})$

softmax

 $\frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{-1_{y=i}}{\mathbf{f}(\mathbf{x})_y}$

$$\begin{split} &= \sum_{j} \frac{-1_{y=j}}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} \\ &= -\frac{1}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{y}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} \end{split}$$

 $\frac{\partial l}{\partial \mathbf{z}^o(\mathbf{x})_i} = \sum_i \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_j} \frac{\partial \mathbf{f}(\mathbf{x})_j}{\partial \mathbf{z}^o(\mathbf{x})_i}$

softmax

$$\frac{\partial l}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} = \sum_{j} \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_{j}} \frac{\partial \mathbf{f}(\mathbf{x})_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}$$

$$= \sum_{j} \frac{-1_{y=j}}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}$$

$$= -\frac{1}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{y}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}$$

 $= \begin{cases} -\frac{1}{\mathbf{f}(\mathbf{x})_y} softmax(\mathbf{z}^o(\mathbf{x}))_y (1 - softmax(\mathbf{z}^o(\mathbf{x}))_y) & \text{if } i = \\ \frac{1}{\mathbf{f}(\mathbf{x})_y} softmax(\mathbf{z}^o(\mathbf{x}))_y softmax(\mathbf{z}^o(\mathbf{x}))_i & \text{if } i \neq \end{cases}$

$$\frac{1}{\mathbf{f}(\mathbf{x})_y} softmax(\mathbf{z}^o(\mathbf{x}))_y softmax(\mathbf{z}^o(\mathbf{x}))_i \qquad \mathbf{i}$$

$$= \begin{cases}
-1 + \mathbf{f}(\mathbf{x})_y & \mathbf{if } i = y \\
\mathbf{f}(\mathbf{x})_i & \mathbf{if } i \neq y
\end{cases}$$

$$softmax$$

$$\mathbf{z}^{o}(\mathbf{x}) \qquad \boxed{l(\mathbf{f}(\mathbf{x}), y)}$$

$$\frac{\partial l}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} = \sum_{j} \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_{j}} \frac{\partial \mathbf{f}(\mathbf{x})_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}$$

$$= \sum_{j} \frac{-1_{y=j}}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}$$

$$= -\frac{1}{\mathbf{f}(\mathbf{x})_y} \frac{\partial softmax(\mathbf{z}^o(\mathbf{x}))_y}{\partial \mathbf{z}^o(\mathbf{x})_i}$$

$$-\frac{1}{\mathbf{f}(\mathbf{x})}$$

$$= \begin{cases} -\frac{1}{\mathbf{f}(\mathbf{x})_y} softmax(\mathbf{z}^o(\mathbf{x}))_y (1 - softmax(\mathbf{z}^o(\mathbf{x}))_y) \\ \frac{1}{\mathbf{f}(\mathbf{x})_y} softmax(\mathbf{z}^o(\mathbf{x}))_y softmax(\mathbf{z}^o(\mathbf{x}))_i \end{cases}$$

$$\frac{\mathbf{f}(\mathbf{x})_y}{1+\mathbf{f}(\mathbf{x})_y}$$
 $\mathbf{f}(\mathbf{x})_i$

$$1+\mathbf{f}(\mathbf{x})_y \ \mathbf{f}(\mathbf{x})_i$$

$$= \begin{cases} -1 + \mathbf{f}(\mathbf{x})_y & \text{if } i = y \\ \mathbf{f}(\mathbf{x})_i & \text{if } i \neq y \end{cases}$$

$$\mathbf{if} \ i \neq y$$

$$\mathbf{e}(y)$$

$$softmax$$

$$egin{array}{ll} \left(\mathbf{f}(\mathbf{x})_i & ext{if } i
eq y
ight. \ &
abla_{\mathbf{z}^o(\mathbf{x})} l(\mathbf{f}(\mathbf{x}), y) = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y) \end{array}$$

e(y): one-hot encoding of y

$$\mathbf{z}^{o}(\mathbf{x})$$
 $\mathbf{f}(\mathbf{x})$ $l(\mathbf{f}(\mathbf{x})$

if i =

if $i \neq$

Backpropagation

Gradients

•
$$\nabla_{\mathbf{z}^o(\mathbf{x})} \mathbf{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

•
$$\nabla_{\mathbf{h}^o} \mathbf{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

Backpropagation

Partial derivatives related to \mathbf{W}^{o}

•
$$\frac{\partial \boldsymbol{l}}{\partial W_{i,j}^o} = \sum_{k} \frac{\partial \boldsymbol{l}}{\partial \mathbf{z}^o(\mathbf{x})_k} \frac{\partial \mathbf{z}^o(\mathbf{x})_k}{\partial W_{i,j}^o}$$

•
$$\nabla_{\mathbf{W}^o} \mathbf{l} = (\mathbf{f}(\mathbf{x}) - \mathbf{e}(y)). \ \mathbf{h}(\mathbf{x})^{\top}$$

Backprop gradients

Compute activation gradients

•
$$\nabla_{\mathbf{z}^o(\mathbf{x})} \mathbf{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

Backprop gradients

Compute activation gradients

•
$$\nabla_{\mathbf{z}^{o}(\mathbf{x})} \mathbf{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

Compute layer params gradients

- $\nabla_{\mathbf{W}^o} \mathbf{l} = \nabla_{\mathbf{z}^o(\mathbf{x})} \mathbf{l} \cdot \mathbf{h}(\mathbf{x})^{\mathsf{T}}$
- $\nabla_{\mathbf{b}^o} \mathbf{l} = \nabla_{\mathbf{z}^o(\mathbf{x})} \mathbf{l}$

Backprop gradients

Compute activation gradients

•
$$\nabla_{\mathbf{z}^o(\mathbf{x})} \mathbf{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

Compute layer params gradients

- $\nabla_{\mathbf{W}^o} \mathbf{l} = \nabla_{\mathbf{z}^o(\mathbf{x})} \mathbf{l} \cdot \mathbf{h}(\mathbf{x})^{\top}$
- $\nabla_{\mathbf{b}^o} \mathbf{l} = \nabla_{\mathbf{z}^o(\mathbf{x})} \mathbf{l}$

Compute prev layer activation gradients

- $\bullet \ \nabla_{\mathbf{h}(\mathbf{x})} \mathbf{l} = \mathbf{W}^{o\top} \nabla_{\mathbf{z}^o(\mathbf{x})} \mathbf{l}$
- $\nabla_{\mathbf{z}^h(\mathbf{x})} \mathbf{l} = \nabla_{\mathbf{h}(\mathbf{x})} \mathbf{l} \odot \sigma'(\mathbf{z}^h(\mathbf{x}))$

Loss, Initialization and Learning Tricks

Discrete output (classification)

• Binary classification: $y \in [0, 1]$

$$\circ Y|X = \mathbf{x} \sim Bernoulli(b = f(\mathbf{x}; \theta))$$

• output function:
$$logistic(x) = \frac{1}{1+e^{-x}}$$

- loss function: binary cross-entropy
- Multiclass classification: $y \in [0, K-1]$

$$\circ Y|X = \mathbf{x} \sim Multinoulli(\mathbf{p} = \mathbf{f}(\mathbf{x}; \theta))$$

- output function: *softmax*
- loss function: categorical cross-entropy

Continuous output (regression)

• Continuous output: $y \in \mathbb{R}^n$

$$\circ Y|X = \mathbf{x} \sim N(\mu = \mathbf{f}(\mathbf{x}; \theta), \sigma^2 \mathbf{I})$$

- output function: Identity
- loss function: square loss
- Heteroschedastic if $\mathbf{f}(\mathbf{x}; \theta)$ predicts both μ and σ^2
- Mixture Density Network (multimodal output)

$$\circ Y | X = \mathbf{x} \sim GMM_{\mathbf{x}}$$

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- Initializing W^h and W^o :
 - Zero is a saddle point: no gradient, no learning

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- Initializing W^h and W^o :
 - Zero is a saddle point: no gradient, no learning
 - Constant init: hidden units collapse by symmetry

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- Initializing W^h and W^o :
 - Zero is a saddle point: no gradient, no learning
 - Constant init: hidden units collapse by symmetry
 - \circ Solution: random init, ex: $w \sim N(0, 0.01)$

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- Initializing W^h and W^o :
 - Zero is a saddle point: no gradient, no learning
 - Constant init: hidden units collapse by symmetry
 - \circ Solution: random init, ex: $w \sim N(0, 0.01)$
 - Better inits: Xavier Glorot and Kaming He & orthogonal

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- Initializing W^h and W^o :
 - Zero is a saddle point: no gradient, no learning
 - Constant init: hidden units collapse by symmetry
 - Solution: random init, ex: $w \sim N(0, 0.01)$
 - Better inits: Xavier Glorot and Kaming He & orthogonal
- Biases can (should) be initialized to zero

- Very sensitive:
 - \circ Too high \rightarrow early plateau or even divergence
 - Too low → slow convergence

- Very sensitive:
 - \circ Too high \rightarrow early plateau or even divergence
 - Too low → slow convergence
 - \circ Try a large value first: $\eta = 0.1$ or even $\eta = 1$
 - Divide by 10 and retry in case of divergence

- Very sensitive:
 - \circ Too high \rightarrow early plateau or even divergence
 - Too low → slow convergence
 - \circ Try a large value first: $\eta = 0.1$ or even $\eta = 1$
 - Divide by 10 and retry in case of divergence
- Large constant LR prevents final convergence
 - multiply η_t by $\beta < 1$ after each update

- Very sensitive:
 - \circ Too high \rightarrow early plateau or even divergence
 - Too low → slow convergence
 - \circ Try a large value first: $\eta = 0.1$ or even $\eta = 1$
 - Divide by 10 and retry in case of divergence
- Large constant LR prevents final convergence
 - \circ multiply η_t by $\beta < 1$ after each update
 - \circ or monitor validation loss and divide η_t by 2 or 10 when no progress
 - See <u>ReduceLROnPlateau</u> in Keras

Momentum

Accumulate gradients across successive updates:

$$m_{t} = \gamma m_{t-1} + \eta \nabla_{\theta} L_{B_{t}}(\theta_{t-1})$$

$$\theta_{t} = \theta_{t-1} - m_{t}$$

 γ is typically set to 0.9

Momentum

Accumulate gradients across successive updates:

$$m_{t} = \gamma m_{t-1} + \eta \nabla_{\theta} L_{B_{t}}(\theta_{t-1})$$

$$\theta_{t} = \theta_{t-1} - m_{t}$$

 γ is typically set to 0.9

Larger updates in directions where the gradient sign is constant to accelerate in low curvature areas

Momentum

Accumulate gradients across successive updates:

$$m_{t} = \gamma m_{t-1} + \eta \nabla_{\theta} L_{B_{t}}(\theta_{t-1})$$

$$\theta_{t} = \theta_{t-1} - m_{t}$$

 γ is typically set to 0.9

Larger updates in directions where the gradient sign is constant to accelerate in low curvature areas

Nesterov accelerated gradient

$$m_{t} = \gamma m_{t-1} + \eta \nabla_{\theta} L_{B_{t}} (\theta_{t-1} - \gamma m_{t-1})$$

$$\theta_{t} = \theta_{t-1} - m_{t}$$

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling
- Adam: adaptive learning rate scale for each param
 - \circ Global η set to 3e-4 often works well enough
 - Good default choice of optimizer (often)

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling
- Adam: adaptive learning rate scale for each param
 - \circ Global η set to 3e-4 often works well enough
 - Good default choice of optimizer (often)
- But well-tuned SGD with LR scheduling can generalize better than Adam (with naive l2 reg)...

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling
- Adam: adaptive learning rate scale for each param
 - \circ Global η set to 3e-4 often works well enough
 - Good default choice of optimizer (often)
- But well-tuned SGD with LR scheduling can generalize better than Adam (with naive l2 reg)...
- Active area of research: K-FAC stochastic second-order method based on an invertible approximation of the Fisher information matrix of the network.

The Karpathy Constant for Adam

4:01 AM - 24 Nov 2016

3e-4 is the best learning rate for Adam, hands down.

101 Retweets 408 Likes

Optimizers around a saddle point

Credits: Alec Radford

Lab 2: back in 15min!