Interpretable Machine Learning

Permutation Feature Importance (PFI)

Figure: Bike Sharing Dataset

Learning goals

- Understand how PFI is computed
- Understanding strengths and weaknesses

MOTIVATION FOR PFI

- Goal: Assess how important feature(s) X_S are for predictive performance of a fixed trained model \hat{f} on a given dataset \mathcal{D}
- Idea: Estimate change in model performance when X_S is "made uninformative"

MOTIVATION FOR PFI

- Goal: Assess how important feature(s) X_S are for predictive performance of a fixed trained model \hat{f} on a given dataset \mathcal{D}
- ullet Idea: Estimate change in model performance when X_S is "made uninformative"
- Question: Can we make X_S uninformative by removing it from the model? \rightarrow No, \hat{t} was trained with X_S and retraining without X_S gives a different model

MOTIVATION FOR PFI

- Goal: Assess how important feature(s) X_S are for predictive performance of a fixed trained model \hat{f} on a given dataset \mathcal{D}
- Idea: Estimate change in model performance when X_S is "made uninformative"
- Question: Can we make X_S uninformative by removing it from the model?
 → No, f̂ was trained with X_S and retraining without X_S gives a different model
- **Solution:** Simulate feature removal by replacing X_S with a perturbed version \tilde{X}_S that is independent of (X_{-S}, Y) but preserves distribution $\mathbb{P}(X_S)$ \rightsquigarrow Compare baseline predictions $\hat{f}(X)$ with perturbed predictions $\hat{f}(\tilde{X}_S, X_{-S})$

$$\mathsf{PFI}_S := \underbrace{\mathbb{E}\Big[L\big(\hat{f}(\tilde{X}_S, X_{-S}), Y\big)\Big]}_{\mathsf{risk after "destroying"} \, X_S} - \underbrace{\mathbb{E}\Big[L\big(\hat{f}(X), Y\big)\Big]}_{\mathsf{baseline risk}},$$

- How to perturb X_S ?
 - Add random noise: distorts $\mathbb{P}(X_S)$ (not used)
 - Permutation: preserves marginal $\mathbb{P}(X_S)$, breaks dependence with Y (used)

PERMUTATION FEATURE IMPORTANCE (PFI) Pereiman (2001)

Sample estimator (using independent test set $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$)

- Measure the error with feat. values x_S and with permuted feat. values \tilde{x}_S
- Repeat permutation (e.g., *m* times) and average difference of both errors:

$$\widehat{\mathit{PFI}}_{\mathcal{S}} = \tfrac{1}{m} \sum_{k=1}^{m} \left[\mathcal{R}_{\mathsf{emp}}(\hat{f}, \tilde{\mathcal{D}}_{(k)}^{\mathcal{S}}) - \mathcal{R}_{\mathsf{emp}}(\hat{f}, \mathcal{D}) \right]$$

- $\mathcal{D}_{S}^{(k)}$: dataset where column(s) x_{S} are **permuted** once (in repetition k)
- $\mathcal{R}_{emp}(\hat{f}, \mathcal{D}) = \frac{1}{n} \sum_{(x,y) \in \mathcal{D}} L(\hat{f}(x), y)$: Measures performance of \hat{f} using \mathcal{D}
- Average over m permutations to reduce Monte-Carlo variance

Example of permuting feature x_S with $S = \{1\}$ and m = 6 permutations:

	\mathcal{D}				$ ilde{\mathcal{D}}_{(1}^{S}$)		$ ilde{\mathcal{D}}_{(2}^{S}$)		$ ilde{\mathcal{D}}_{(3)}^{S}$: 3)		$ ilde{\mathcal{D}}_{(4)}^{S}$	4)		$ ilde{\mathcal{D}}_{(5)}^{S}$)		$ ilde{\mathcal{D}}_{(6)}^{\mathcal{S}}$)
X ₁	X ₂	X 3	⇒	$\mathbf{x}_{\mathcal{S}}$	X ₂	X 3	$\mathbf{x}_{\mathcal{S}}$	X ₂	X 3	$\mathbf{x}_{\mathcal{S}}$	X ₂	X 3	$\mathbf{x}_{\mathcal{S}}$	X ₂	X 3	$\mathbf{x}_{\mathcal{S}}$	X ₂	X 3	$\mathbf{x}_{\mathcal{S}}$	X ₂	X 3
1	4	7	_	1	4	7	2	4	7	2	4	7	1	4	7	3	4	7	3	4	7
2	5	8		2	5	8	1	5	8	3	5	8	3	5	8	1	5	8	2	5	8
3	6	9		3	6	9	3	6	9	1	6	9	2	6	9	2	6	9	1	6	9

Note: S refers to a subset of features, here |S| = 1 to measure impact of permuting x_1 on performance

		$ ilde{\mathcal{D}}_{0}$	S (k)	${\cal D}$					
i	xs	X ₂	\mathbf{x}_3	X ₁	X ₂	x ₃			
1	2	4	7	1	4	7			
:	1	5	8	2	5	8			
n	3	6	9	3	6	တ			

- **1. Perturbation:** Sample feature values from the distribution of x_S ($P(X_S)$).
 - \Rightarrow Randomly permute feature x_S
 - \Rightarrow Replace x_S with permuted feature \tilde{x}_S and create data $\tilde{\mathcal{D}}^S$ containing \tilde{x}_S

		$ ilde{\mathcal{D}}$	\mathcal{D}					
i	xs	\mathbf{x}_2	\mathbf{x}_3		X ₁	X ₂	X ₃	
1	2	4	7		1	4	7	
:	1	5	8		2	5	8	
n	3	6	9		3	6	9	
		$\frac{\hat{f}}{\hat{f}}$ 0.6 0.6 0.6				$\frac{\hat{f}}{\hat{f}}$ 0.4 0.8 0.6		

- **1. Perturbation:** Sample feature values from the distribution of x_S ($P(X_S)$).
 - \Rightarrow Randomly permute feature x_S
 - \Rightarrow Replace $x_{\mathcal{S}}$ with permuted feature $\tilde{x}_{\mathcal{S}}$ and create data $\tilde{\mathcal{D}}^{\mathcal{S}}$ containing $\tilde{x}_{\mathcal{S}}$
- 2. Prediction: Make predictions for both data, i.e., $\mathcal D$ and $\tilde{\mathcal D}^{\mathcal S}$

		$ ilde{\mathcal{D}}$	S (k)	\mathcal{D}					
i	xs	\mathbf{X}_2	\mathbf{x}_3	X ₁	X ₂	\mathbf{x}_3			
1	2	4	7	1	4	7			
:	1	5	8	2	5	8			
n	3	6	9	3	6	9			
		(\hat{f}, y) 0.9 0.5)		0.25	-			
	L	0.1		0.1					

3. Aggregation:

• Compute the loss for each observation in both data sets

3. Aggregation:

- Compute the loss for each observation in both data sets
- Take the difference of both losses ΔL for each observation

3. Aggregation:

- Compute the loss for each observation in both data sets
- Take the difference of both losses ΔL for each observation
- \bullet Average this change in loss across all observations Note: Same as computing \mathcal{R}_{emp} on both data sets and taking difference

3. Aggregation:

- Compute the loss for each observation in both data sets
- Take the difference of both losses ΔL for each observation
- Average this change in loss across all observations
- Repeat perturbation and average over multiple repetitions

EXAMPLE: BIKE SHARING DATASET

Interpretation:

- yr and temp are most important features using mean absolute error (MAE)
- Destroying information about yr by permuting it increases MAE of model by 816
- Error bars show 5% and 95% quantiles over multiple permutations

• Interpretation: Increase in error when feature's information is destroyed

- Interpretation: Increase in error when feature's information is destroyed
- Results can be unreliable due to random permutations
 - \Rightarrow Solution: Average results over multiple repetitions

- Interpretation: Increase in error when feature's information is destroyed
- Results can be unreliable due to random permutations
 - \Rightarrow Solution: Average results over multiple repetitions
- Permuting features despite correlation/dependence with other features can lead to unrealistic combinations of feature values → Extrapolation issue

- Interpretation: Increase in error when feature's information is destroyed
- Results can be unreliable due to random permutations
 - \Rightarrow Solution: Average results over multiple repetitions
- Permuting features despite correlation/dependence with other features can lead to unrealistic combinations of feature values → Extrapolation issue
- PFI automatically includes importance of interaction effects with other features
 - \Rightarrow Permuting x_i also destroys interactions with permuted feature
 - ⇒ PFI score contains importance of all interactions with permuted feature

- Interpretation: Increase in error when feature's information is destroyed
- Results can be unreliable due to random permutations
 - \Rightarrow Solution: Average results over multiple repetitions
- Permuting features despite correlation/dependence with other features can lead to unrealistic combinations of feature values → Extrapolation issue
- PFI automatically includes importance of interaction effects with other features
 - \Rightarrow Permuting x_i also destroys interactions with permuted feature
 - ⇒ PFI score contains importance of all interactions with permuted feature
- Interpretation of PFI depends on whether training or test data is used

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ are highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3$, $x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0,1)$ and all noise terms ϵ_j are independent
- ullet Fitting a linear model yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ are highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$ and all noise terms ϵ_j are independent
- ullet Fitting a linear model yields $\hat{f}(\mathbf{x}) \approx 0.3 x_1 0.3 x_2 + x_3$

Hexbin plot of (x_1, x_2) before (left) and after (center) permuting x_1 ; PFI scores (right).

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ are highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$ and all noise terms ϵ_j are independent
- Fitting a linear model yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$

- $\Rightarrow x_1, x_2$ cancel in \hat{f} since $x_1 \approx x_2$, hence $0.3x_1 0.3x_2 \approx 0 \rightsquigarrow$ should be irrelevant
- \Rightarrow Permuting x_1 breaks joint structure \rightsquigarrow unrealistic inputs
- \Rightarrow *PFI* > 0 due to extrapolation (PFI evaluates model on unrealistic inputs) $\rightsquigarrow x_1, x_2$ are misleadingly considered relevant

COMMENTS ON PFI - INTERACTIONS

Example: Let x_1, \ldots, x_4 be independently and uniformly sampled from $\{-1, 1\}$ and

$$y := x_1x_2 + x_3 + \epsilon_Y \text{ with } \epsilon_Y \sim N(0,1)$$

Fitting a LM yields $\hat{f}(x) \approx x_1 x_2 + x_3$.

COMMENTS ON PFI - INTERACTIONS

Example: Let x_1, \ldots, x_4 be independently and uniformly sampled from $\{-1, 1\}$ and

$$y := x_1x_2 + x_3 + \epsilon_Y \text{ with } \epsilon_Y \sim N(0,1)$$

Although x_3 alone contributes as much to the prediction as x_1 and x_2 jointly, all three are considered equally relevant.

 \Rightarrow PFI does not fairly attribute the performance to the individual features.

COMMENTS ON PFI - TRAIN VS. TEST DATA

Example:

- x_1, \ldots, x_{20}, y are independently sampled from $\mathcal{U}(-10, 10)$
- Train set: n = 50 (intentionally small) and large test set
- Model: xgboost with default settings (overfits strongly)

- PFI on train data highlights features that the model overfitted to.
- PFI on test data detects no relevant features.

COMMENTS ON PFI - TRAIN VS. TEST DATA

Example:

- x_1, \ldots, x_{20}, y are independently sampled from $\mathcal{U}(-10, 10)$
- Train set: n = 50 (intentionally small) and large test set
- Model: xgboost with default settings (overfits strongly)

- PFI on train data highlights features that the model overfitted to.
- PFI on test data detects no relevant features.

Why? $PFI \neq 0$ if permuting a feature breaks a dependency the model relies on. Model overfits due to spurious feature-target dependencies in train that vanish on test. \Rightarrow To identify features that help the model to generalize, compute PFI on test data.

IMPLICATIONS OF PFI

Can we get insight into whether the \dots

- feature x_i is causal for the prediction?
 - $PFI_j \neq 0 \Rightarrow$ model relies on x_j
 - As the train vs. test data example shows, the converse does not hold

IMPLICATIONS OF PFI

Can we get insight into whether the ...

- feature x_i is causal for the prediction?
 - $PFI_i \neq 0 \Rightarrow$ model relies on x_i
 - As the train vs. test data example shows, the converse does not hold
- 2 feature x_j contains prediction-relevant information?
 - $PFI_j \neq 0 \Rightarrow x_j$ is dependent on y, x_{-j} , or both (due to extrapolation)
 - x_j is not exploited by model (regardless of whether it is useful for y or not)
 ⇒ PFI_i = 0

IMPLICATIONS OF PFI

Can we get insight into whether the ...

- feature x_i is causal for the prediction?
 - $PFI_j \neq 0 \Rightarrow$ model relies on x_j
 - As the train vs. test data example shows, the converse does not hold
- 2 feature x_j contains prediction-relevant information?
 - $PFI_j \neq 0 \Rightarrow x_j$ is dependent on y, x_{-j} , or both (due to extrapolation)
 - x_j is not exploited by model (regardless of whether it is useful for y or not)
 ⇒ PFI_j = 0
- \odot model requires access to x_j to achieve it's prediction performance?
 - As the extrapolation example demonstrates, such insight is not possible

