Algorithm Analysis

Kumkum Saxena

Order Analysis

- Judging the Efficiency/Speed of an Algorithm
 - Thus far, we've looked at a few different algorithms:
 - Max # of 1's
 - Linear Search vs Binary Search
 - Sorted List Matching Problem
 - and others
 - But we haven't really examined them, in detail, regarding their efficiency or speed

Order Analysis

- Judging the Efficiency/Speed of an Algorithm
 - We will use Order Notation to approximate two things about algorithms:
 - 1) How much time they take
 - 2) How much memory (space) they use
 - Note:
 - It is nearly impossible to figure out the exact amount of time an algorithm will take
 - Each algorithm gets translated into smaller and smaller machine instructions
 - Each of these instructions take various amounts of time to execute on different computers

Order Analysis

- Judging the Efficiency/Speed of an Algorithm
 - Note:
 - Also, we want to judge algorithms independent of their implementation
 - Thus, rather than figure out an algorithm's exact running time
 - We only want an approximation (Big-O approximation)
 - Assumptions: we assume that each statement and each comparison in C takes some constant amount of time
 - Also, most algorithms have some type of input
 - With sorting, for example, the size of the input (typically referred to as n) is the number of numbers to be sorted
 - Time and space used by an algorithm function of the input

- What is Big O?
 - Big O comes from Big-O Notation
 - In C.S., we want to know how efficient an algorithm is...how "fast" it is
 - More specifically...we want to know <u>how the</u> <u>performance of an algorithm responds to changes</u> <u>in problem size</u>

- What is Big O?
 - The goal is to provide a <u>qualitative</u> insight on the # of operations for a problem size of n elements.
 - And this total # of operations can be described with a mathematical expression in terms of n.
 - This expression is known as Big-O
 - The <u>Big-O</u> notation is a <u>way of measuring the</u> order of magnitude of a mathematical expression.
 - O(n) means "of the order of n"

- Consider the expression:
 - $f(n) = 4n^2 + 3n + 10$
 - How fast is this "growing"?
 - There are three terms:
 - the 4n², the 3n, and the 10
 - As n gets bigger, which term makes it get larger fastest?
 - Let's look at some values of n and see what happens?

n	4n ²	3n	10
1	4	3	10
10	400	30	10
100	40,000	300	10
1000	4,000,000	3,000	10
10,000	400,000,000	30,000	10
100,000	40,000,000,000	300,000	10
1,000,000	4,000,000,000,000	3,000,000	10

- Consider the expression:
 - $f(n) = 4n^2 + 3n + 10$
 - How fast is this "growing"?
 - Which term makes it get larger fastest?
 - As n gets larger and larger, the 4n² term DOMINATES the resulting answer
 - f(1,000,000) = 4,000,003,000,010
 - The idea of behind Big-O is to reduce the expression so that it captures the qualitative behavior in the simplest terms.

- Consider the expression: $f(n) = 4n^2 + 3n + 10$
 - How fast is this "growing"?
 - Look at VERY large values of n
 - <u>eliminate</u> any term <u>whose contribution</u> to the total <u>ceases to be</u> <u>significant as n get larger and larger</u>
 - of course, this <u>also includes constants</u>, as they little to no effect with larger values of n
 - Including constant factors (coefficients)
 - So we ignore the constant 10
 - And we can also ignore the 3n
 - Finally, we can eliminate the constant factor, 4, in front of n²
 - We can approximate the order of this function, f(n), as n²
 - We can say, O(4n² + 3n + 10) = O(n²)
 - In conclusion, we say that f(n) takes O(n²) steps to execute

- Some basic examples:
 - What is the Big-O of the following functions:
 - $f(n) = 4n^2 + 3n + 10$
 - Answer: O(n²)
 - $f(n) = 76,756,234n^2 + 427,913n + 7$
 - Answer: O(n²)
 - $f(n) = 74n^8 62n^5 71562n^3 + 3n^2 5$
 - Answer: O(n⁸)
 - $f(n) = 42n^{4*}(12n^6 73n^2 + 11)$
 - Answer: O(n¹⁰)
 - f(n) = 75n*logn 415
 - Answer: O(n*logn)

- Consider the expression: $f(n) = 4n^2 + 3n + 10$
 - How fast is this "growing"?
 - We can say, $O(4n^2 + 3n + 10) = O(n^2)$
 - Till now, we have one function:
 - $f(n) = 4n^2 + 3n + 10$
 - Let us <u>make a second function</u>, g(n)
 - It's just a letter right? We could have called it r(n) or x(n)
 - Don't get scared about this
 - Now, <u>let g(n) equal n²</u>
 - $g(n) = n^2$
 - So now we have two functions: f(n) and g(n)
 - We said (above) that $O(4n^2 + 3n + 10) = O(n^2)$
 - Similarly, we can say that the order of f(n) is O[g(n)].

- Definition:
 - f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - Think about the two functions we just had:
 - $f(n) = 4n^2 + 3n + 10$, and $g(n) = n^2$
 - We agreed that $O(4n^2 + 3n + 10) = O(n^2)$
 - Which means we agreed that the order of f(n) is O(g(n)
 - That's all this definition says!!!
 - f(n) is big-O of g(n), if there is a c,
 - (c is a constant)
 - such that f(n) is not larger than c*g(n) for sufficiently large values of n (greater than N)

Definition:

- f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - Think about the two functions we just had:
 - $f(n) = 4n^2 + 3n + 10$, and $g(n) = n^2$
 - f is big-O of g, if there is a c such that f is not larger than c*g for sufficiently large values of n (greater than N)
 - So given the two functions above, <u>does there exist</u> some <u>constant</u>, <u>c</u>, that would make the following statement true?
 - f(n) <= c*g(n)
 - $-4n^2 + 3n + 10 <= c*n^2$
 - If there does exist this c, then f(n) is O(g(n))
 - Let's go see if we can come up with the constant, c

- Definition:
 - f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,
 - $f(n) = 4n^2 + 3n + 10$, and $g(n) = n^2$
 - Find the c such that 4n² + 3n + 10 <= c*n²</p>
 - Clearly, c cannot be 4 or less
 - Cause even if it was 4, we would have:
 - $4n^2 + 3n + 10 \le 4n^2$
 - This is <u>NEVER true for any positive value of n!</u>
 - So <u>c must be greater than 4</u>
 - Let us try with c being equal to 5
 - 4n² + 3n + 10 <= 5n²

- Definition:
 - f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,

•
$$f(n) = 4n^2 + 3n + 10$$
, and $g(n) = n^2$

- Find the c such that 4n² + 3n + 10 <= c*n²
 - $-4n^2 + 3n + 10 \le 5n^2$
 - For what values of n, if ANY at all, is this true?

n	4n ² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5

Definition:

- f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,

•
$$f(n) = 4n^2 + 3n + 10$$
, and $g(n) = n^2$

- Find the c such that 4n² + 3n + 10 <= c*n²</p>
 - $-4n^2 + 3n + 10 \le 5n^2$
 - For what values of n, if ANY at all, is this true?

n	4n ² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20

Definition:

- f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,

•
$$f(n) = 4n^2 + 3n + 10$$
, and $g(n) = n^2$

- Find the c such that 4n² + 3n + 10 <= c*n²</p>
 - $-4n^2 + 3n + 10 \le 5n^2$
 - For what values of n, if ANY at all, is this true?

n	4n ² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20
3	4(9) + 3(3) + 10 = 55	5(9) = 45

Definition:

- f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,

•
$$f(n) = 4n^2 + 3n + 10$$
, and $g(n) = n^2$

- Find the c such that 4n² + 3n + 10 <= c*n²</p>
 - $-4n^2 + 3n + 10 \le 5n^2$
 - For what values of n, if ANY at all, is this true?

n	4n ² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20
3	4(9) + 3(3) + 10 = 55	5(9) = 45
4	4(16) + 3(4) + 10 = 86	5(16) = 80

But now let's try larger values of n.

For n = 1 through 4, this statement is NOT true

Definition:

- f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,

•
$$f(n) = 4n^2 + 3n + 10$$
, and $g(n) = n^2$

- Find the c such that 4n² + 3n + 10 <= c*n²</p>
 - $-4n^2 + 3n + 10 \le 5n^2$
 - For what values of n, if ANY at all, is this true?

n	4n ² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20
3	4(9) + 3(3) + 10 = 55	5(9) = 45
4	4(16) + 3(4) + 10 = 86	5(16) = 80
5	4(25) + 3(5) + 10 = 125	5(25) = 125

Definition:

- f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,

•
$$f(n) = 4n^2 + 3n + 10$$
, and $g(n) = n^2$

- Find the c such that 4n² + 3n + 10 <= c*n²</p>
 - $-4n^2 + 3n + 10 \le 5n^2$
 - For what values of n, if ANY at all, is this true?

n	4n ² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20
3	4(9) + 3(3) + 10 = 55	5(9) = 45
4	4(16) + 3(4) + 10 = 86	5(16) = 80
5	4(25) + 3(5) + 10 = 125	5(25) = 125
6	4(36) + 3(6) + 10 = 172	5(36) = 180

- Definition:
 - f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,
 - $f(n) = 4n^2 + 3n + 10$, and $g(n) = n^2$
 - Find the c such that 4n² + 3n + 10 <= c*n²</p>
 - $-4n^2 + 3n + 10 \le 5n^2$
 - For what values of n, if ANY at all, is this true?
 - So when n = 5, the statement finally becomes true
 - And when n > 5, it remains true!
 - So our constant, 5, works for all n >= 5.

Definition:

- f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - PROBLEM: Given our two functions,
 - $f(n) = 4n^2 + 3n + 10$, and $g(n) = n^2$
 - Find the c such that 4n² + 3n + 10 <= c*n²</p>
 - So our constant, 5, works for all n >= 5.
 - Therefore, f(n) is O(g(n)) per our definition!
 - Why?
 - Because there exists positive integers, c and N,
 - Just so happens in this case that c = 5 and N = 5
 - such that f(n) <= c*g(n).</p>

- Definition:
 - f(n) is O[g(n)] if there exists positive integers c and N, such that $\underline{f(n)} <= c*\underline{g(n)}$ for all n>=N.
 - What we can gather is that:
 - c*g(n) is an <u>upper bound</u> on the value of f(n).
 - It represents the worst possible scenario of running time.
 - The number of operations is, at worst, proportional to g(n) for all <u>large values</u> of n.

- Summing up the basic properties for determining the order of a function:
 - If you've got multiple functions added together, the fastest growing one determines the order
 - 2) Multiplicative constants don't affect the order
 - 3) If you've got multiple functions multiplied together, the overall order is their individual orders multiplied together

- Some basic examples:
 - What is the Big-O of the following functions:
 - $f(n) = 4n^2 + 3n + 10$
 - Answer: O(n²)
 - $f(n) = 76,756,234n^2 + 427,913n + 7$
 - Answer: O(n²)
 - $f(n) = 74n^8 62n^5 71562n^3 + 3n^2 5$
 - Answer: O(n⁸)
 - $f(n) = 42n^{4*}(12n^6 73n^2 + 11)$
 - Answer: O(n¹⁰)
 - f(n) = 75n*logn 415
 - Answer: O(n*logn)

- Quick Example of Analyzing Code:
 - Use big-O notation to analyze the time complexity of the following fragment of C code:

```
for (k=1; k<=n/2; k++) {
    sum = sum + 5;
}

for (j = 1; j <= n*n; j++) {
    delta = delta + 1;
}</pre>
```

- Quick Example of Analyzing Code:
 - So look at what's going on in the code:
 - We care about the total number of REPETITIVE operations.
 - Remember, we said we care about the running time for LARGE values of n
 - So in a <u>for loop</u>, with n as part of the comparison value determining when to stop for (k=1; k<=<u>n</u>/2; k++)
 - Whatever is INSIDE that loop will be executed a LOT of times
 - So we examine the code within this loop and see how many operations we find
 - When we say operations, we're referring to mathematical operations such as +, -, *, /, etc.

- Quick Example of Analyzing Code:
 - So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - We have 2 loops,

```
for (k=1; k<=n/2; k++) {
    sum = sum + 5;
}

for (j = 1; j <= n*n; j++) {
    delta = delta + 1;
}</pre>
```

- Quick Example of Analyzing Code:
 - So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - We have 2 loops,
 - The first loop runs n/2 times
 - Each iteration of the <u>first loop</u> results in <u>one operation</u>
 - The + operation in: sum = sum + 5;
 - So there are n/2 operations in the first loop
 - The second loop runs n² times
 - Each iteration of the <u>second loop</u> results in <u>one operation</u>
 - The + operation in: delta = delta + 1;
 - So there are n² operations in the second loop.

- Quick Example of Analyzing Code:
 - So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - The first loop has n/2 operations
 - The second loop has n² operations
 - They are NOT nested loops.
 - One loop executes AFTER the other completely finishes
 - So we simply ADD their operations
 - The total number of operations would be n/2 + n²
 - In Big-O terms, we can express the number of operations as O(n²)

Common orders (listed from slowest to fastest growth)
None

Function	Name
1	Constant
log n	Logarithmic
n	Linear
n log n	Poly-log
n^2	Quadratic
n^3	Cubic
2 ⁿ	Exponential
n!	Factorial

- O(1) or "Order One": Constant time
 - does not mean that it takes only one operation
 - does mean that the work doesn't change as n changes
 - is a notation for "constant work"
 - An example would be finding the smallest element in a sorted array
 - There's nothing to search for here
 - The smallest element is always at the beginning of a sorted array
 - So this would take O(1) time

- O(n) or "Order n": Linear time
 - does not mean that it takes n operations
 - maybe it takes 3*n operations, or perhaps 7*n operations
 - does mean that the work changes in a way that is proportional to n
 - Example:
 - If the input size doubles, the running time also doubles
 - is a notation for "work grows at a linear rate"
 - You usually can't really do a lot better than this for most problems we deal with
 - After all, you need to at least examine all the data right?

- O(n²) or "Order n² ": Quadratic time
 - If input size doubles, running time increases by a factor of 4
- O(n³) or "Order n³ ": Cubic time
 - If input size doubles, running time increases by a factor of 8
- O(n^k): Other polynomial time
 - Should really try to avoid high order polynomial running times
 - However, it is considered good from a theoretical standpoint

- O(2ⁿ) or "Order 2ⁿ": Exponential time
 - more <u>theoretical</u> rather than practical interest because they cannot reasonably run on typical computers for even for moderate values of n.
 - Input sizes bigger than 40 or 50 become unmanageable
 - Even on faster computers
- O(n!): even worse than exponential!
 - Input sizes bigger than 10 will take a long time

O(n logn):

- Only slightly worse than O(n) time
 - And O(n logn) will be much less than O(n²)
 - This is the running time for the better sorting algorithms we will go over (later)
- O(log n) or "Order log n": Logarithmic time
 - If input size doubles, running time increases ONLY by a constant amount
 - any algorithm that halves the data remaining to be processed on each iteration of a loop will be an O(log n) algorithm.

- Practical Problems that can be solved utilizing order notation:
 - Example:
 - You are told that algorithm A runs in O(n) time
 - You are also told the following:
 - For an input size of 10
 - The algorithm runs in <u>2 milliseconds</u>
 - As a result, you can expect that for an input size of 500, the algorithm would run in 100 milliseconds!
 - Notice the input size jumped by a multiple of 50
 - From 10 to 500
 - Therefore, given a O(n) algorithm, the <u>running time should</u> also jump by a multiple of 50, <u>which it does!</u>

- Practical Problems that can be solved utilizing order notation:
 - General process of solving these problems:
 - We know that <u>Big-O is NOT exact</u>
 - It's an upper bound on the actual running time
 - So when we say that an <u>algorithm runs in O(f(n)) time</u>,
 - Assume the EXACT running time is c*f(n)
 - where c is some constant
 - Using this assumption,
 - we can use the information in the problem to solve for c
 - Then we can <u>use this c to answer the question</u> being asked
 - Examples will clarify...

- Practical Problems that can be solved utilizing order notation:
 - Example 1: Algorithm A runs in O(n²) time
 - For an input size of 4, the running time is 10 milliseconds
 - How long will it take to run on an input size of 16?
 - Let $T(n) = c*n^2$
 - T(n) refers to the running time (of algorithm A) on input size n
 - Now, plug in the given data, and find the value for c!
 - $T(4) = c^4 + 4^2 = 10$ milliseconds
 - Therefore, **c** = **10/16** milliseconds
 - Now, answer the question by using c and solving T(16)
 - **T(16)** = $c*16^2$ = $(10/16)*16^2$ = 160 milliseconds

- Practical Problems that can be solved utilizing order notation:
 - Example 2: Algorithm A runs in O(log₂n) time
 - For an input size of 16, the running time is 28 milliseconds
 - How long will it take to run on an input size of 64?
 - Let $T(n) = c*log_2n$
 - Now, plug in the given data, and find the value for c!
 - $T(16) = c*log_2 16 = 10 \text{ milliseconds}$
 - c*4 = 28 milliseconds
 - Therefore, c = 7 milliseconds
 - Now, answer the question by using c and solving T(64)
 - **T(64)** = $c*log_264 = 7*log_264 = 7*6 = 42$ milliseconds

Kumkum Saxena

Big-O Notation

- What is Big O?
 - Big O comes from Big-O Notation
 - In C.S., we want to know how efficient an algorithm is...how "fast" it is
 - More specifically...we want to know <u>how the</u> <u>performance of an algorithm responds to changes</u> <u>in problem size</u>
 - The goal is to provide a qualitative insight on the # of operations for a problem size of n elements.
 - And this total # of operations can be described with a mathematical expression in terms of n.
 - This expression is known as Big-O

- Examples of Analyzing Code:
 - We now go over many examples of code fragments
 - Each of these functions will be analyzed for their runtime in terms of the variable n
 - Utilizing the idea of Big-O,
 - determine the Big-O running time of each

- Example 1:
 - Determine the Big O running time of the following code fragment:

```
for (k = 1; k <= n/2; k++) {
    sum = sum + 5;
}
for (j = 1; j <= n*n; j++) {
    delta = delta + 1;
}</pre>
```

Example 1:

- So look at what's going on in the code:
 - We care about the total number of REPETITIVE operations.
 - Remember, we said we care about the running time for LARGE values of n
 - So in a for loop with n as part of the comparison value determining when to stop $for (k=1; k<=\underline{n}/2; k++)$
 - Whatever is INSIDE that loop will be executed a LOT of times
 - So we examine the code within this loop and see how many operations we find
 - When we say operations, we're referring to mathematical operations such as +, -, *, /, etc.

Example 1:

- So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - We have 2 loops,
 - The first loop runs n/2 times
 - Each iteration of the <u>first loop</u> results in <u>one operation</u>
 - The + operation in: sum = sum + 5;
 - So there are n/2 operations in the first loop
 - The second loop runs n² times
 - Each iteration of the <u>second loop</u> results in <u>one operation</u>
 - The + operation in: delta = delta + 1;
 - So there are n² operations in the second loop.

Example 1:

- So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - The first loop has n/2 operations
 - The second loop has n² operations
 - They are NOT nested loops.
 - One loop executes AFTER the other completely finishes
 - So we simply ADD their operations
 - The total number of operations would be n/2 + n²
 - In Big-O terms, we can express the number of operations as O(n²)

- Example 2:
 - Determine the Big O running time of the following code fragment:

```
int func1(int n) {
    int i, j, x = 0;
    for (i = 1; i <= n; i++) {
        for (j = 1; j <= n; j++) {
            x++;
        }
    }
    return x;
}</pre>
```

Example 2:

- So look at what's going on in the code:
 - We care about the total number of REPETITIVE operations
 - We have two loops
 - AND they are NESTED loops
 - The outer loop runs n times
 - From i = 1 up through n
 - How many operations are performed at each iteration?
 - Answer is coming...
 - The inner loop runs n times
 - From j = 1 up through n
 - And only one operation (x++) is performed at each iteration

Example 2:

- So look at what's going on in the code:
 - Let's look at a couple of iterations of the OUTER loop:
 - When i = 1, what happens?
 - The inner loop runs n times
 - Resulting in n operations from the inner loop
 - Then, i gets incremented and it becomes equal to 2
 - When i = 2, what happens?
 - Again, the inner loop runs n times
 - Again resulting in n operations from the inner loop
 - We notice the following:
 - For EACH iteration of the OUTER loop,
 - The INNER loop runs n times
 - Resulting in n operations

Example 2:

- So look at what's going on in the code:
 - And how many times does the outer loop run?
 - n times
 - So the outer loop runs n times
 - And for each of those n times, the inner loop also runs n times
 - Resulting in n operations
 - So we have n operations per iteration of OUTER loop
 - And outer loop runs n times
 - Finally, we have n*n as the number of operations
 - We approximate the running time as O(n²)

- Example 3:
 - Determine the Big O running time of the following code fragment:

Example 3:

- So look at what's going on in the code:
 - We care about the total number of REPETITIVE operations
 - We have two loops
 - They are NOT nested loops
 - The first loop runs n times
 - From i = 1 up through n
 - only one operation (x++) is performed at each iteration
 - How many times does the second loop run?
 - Notice that i is indeed reset to 1 at the beginning of the loop
 - Thus, the second loop runs n times, from i = 1 up through n
 - And only one operation (x++) is performed at each iteration

Example 3:

- So look at what's going on in the code:
 - Again, the loops are NOT nested
 - So they execute sequentially (one after the other)
- Therefore:
 - Our total runtime is on the order of n+n
 - Which of course equals 2n
- Now, in Big O notation
 - We approximate the running time as O(n)

- Example 4:
 - Determine the Big O running time of the following code fragment:

Example 4:

- So look at what's going on in the code:
 - We have one while loop
 - You can't just look at this loop and say it iterates n times or n/2 times
 - Rather, it continues to execute as long as n is greater than 0
 - The question is: <u>how many iterations will that be?</u>
 - Within the while loop
 - The last line of code divides the input, n, by 2
 - So n is halved at each iteration of the while loop
 - If you remember, we said this ends up running in log n time
 - Now let's look at how this works

Example 4:

- So look at what's going on in the code:
 - For the ease of the analysis, we make a new variable
 - originalN:
 - originalN refers to the value originally stored in the input, n
 - So if n started at 100, originalN will be equal to 100
 - The first time through the loop
 - n gets set to originalN/2
 - If the original n was 100, after one iteration n would be 100/2
 - The second time through the loop
 - n gets set to originalN/4
 - The third time through the loop
 - n gets set to originalN/8

Notice:

After **three** iterations, n gets set to originalN/2³

Example 4:

- So look at what's going on in the code:
 - In general, after k iterations
 - n gets set to originalN/2^k
 - The algorithm ends when originalN/2^k = 1, approximately
 - We now solve for k
 - Why?
 - Because we want to find the total # of iterations
 - Multiplying both sides by 2^k , we get originalN = 2^k
 - Now, using the definition of logs, we solve for k
 - k = log originalN
 - So we approximate the running time as O(log n)

- Example 5:
 - Determine the Big O running time of the following code fragment:

Example 5:

- So look at what's going on in the code:
 - At first glance, we see two NESTED loops
 - This can often indicate an O(n²) algorithm
 - But we need to look closer to confirm
 - Focus on what's going on with i and j

- Example 5:
 - So look at what's going on in the code:
 - Focus on what's going on with i and j
 - i and j clearly increase (from the j++ and i++)
 - BUT, they never decrease
 - AND, neither ever gets reset to 0

Example 5:

- So look at what's going on in the code:
 - And the OUTER while loop ends once i gets to n
 - So, what does this mean?
 - The statement i++ can never run more than n times
 - And the statement j++ can never run more than n times

Example 5:

- So look at what's going on in the code:
 - The MOST number of times these two statements can run (combined) is 2n times
 - So we approximate the running time as O(n)

- Example 6:
 - Determine the Big O running time of the following code fragment:
 - What's the one big difference here???

- Example 6:
 - So look at what's going on in the code:
 - The difference is that we RESET j to 0 a the beginning of the OUTER while loop

Example 6:

- So look at what's going on in the code:
 - The difference is that we RESET j to 0 a the beginning of the OUTER while loop
 - How does that change things?
 - Now j can iterate from 0 to n for EACH iteration of the OUTER while loop
 - For each value of i
 - This is similar to the 2nd example shown
 - So we approximate the running time as O(n²)

- Example 7:
 - Determine the Big O running time of the following code fragment:

Example 7:

- So look at what's going on in the code:
 - First notice that the runtime here is NOT in terms of n
 - It will be in terms of sizeA and sizeB
 - And this is also just like Example 2
 - The outer loop runs sizeA times
 - For EACH of those times,
 - The inner loop runs sizeB times
 - So this algorithm runs sizeA*sizeB times
 - We approximate the running time as O(sizeA*sizeB)

- Example 8:
 - Determine the Big O running time of the following code fragment:

Example 8:

- So look at what's going on in the code:
 - Note: we see that we are calling the function binSearch
 - As discussed previously, a single binary search runs in O(log n) time
 - where n represents the number of items within which you are searching
- Examining the for loop:
 - The for loop will execute sizeA times
 - For EACH iteration of this loop
 - a binary search will be run
 - We approximate the running time as O(sizeA*log(sizeB))

And More Algorithm Analysis

Kumkum Saxena

- Examples of Analyzing Code:
 - Last time we went over examples of analyzing code
 - We did this in a somewhat naïve manner
 - Just analyzed the code and tried to "trace" what was going on
 - This Lecture:
 - We will do this in a more structured fashion
 - We mentioned that summations are a tool for you to help coming up with a running time of iterative algorithms
 - Today we will look at some of those same code fragments, as well as others, and show you how to use summations to find the Big-O running time

Example 1:

- Determine the Big O running time of the following code fragment:
 - We have two for loops
 - They are NOT nested
 - The first runs from k = 1 up to (and including) n/2
 - The second runs from j = 1 up to (and including) n²

```
for (k = 1; k <= n/2; k++) {
    sum = sum + 5;
}
for (j = 1; j <= n*n; j++) {
    delta = delta + 1;
}</pre>
```

Example 1:

- Determine the Big O running time of the following code fragment:
 - Here's how we can express the number of operations in the form of a summation:

$$\sum_{k=1}^{n/2} 1 + \sum_{j=1}^{n^2} 1$$

The constant value, 1, inside each summation refers to the one, and only, operation in each for loop.

```
for (k = 1; k <= n/2; k++) {
    sum = sum + 5;
}
for (j = 1; j <= n*n; j++) {
    delta = delta + 1;
}</pre>
```

Now you simply solve the summation!

Example 1:

- Determine the Big O running time of the following code fragment:
 - Here's how we can express the number of operations in the form of a summation:

$$\sum_{k=1}^{n/2} 1 + \sum_{j=1}^{n^2} 1$$
 You use the formula:
$$\sum_{i=1}^n k = k * n$$

$$\sum_{k=1}^{n/2} 1 + \sum_{j=1}^{n^2} 1 = \frac{n}{2} + n^2$$

- This is a <u>CLOSED FORM</u> solution of the summation
- So we approximate the running time as O(n²)

- Example 2:
 - Determine the Big O running time of the following code fragment:
 - Here we again have two for loops
 - But this time they are nested

```
int func2(int n) {
    int i, j, x = 0;
    for (i = 1; i <= n; i++) {
        for (j = 1; j <= n; j++) {
            x++;
        }
    }
    return x;
}</pre>
```

Example 2:

- Determine the Big O running time of the following code fragment:
 - Here we again have two for loops
 - But this time they are nested
 - The outer loop runs from i = 1 up to (and including) n
 - The inner loop runs from j = 1 up to (and including) n
 - The sole (only) operation is a "x++" within the inner loop

Example 2:

- Determine the Big O running time of the following code fragment:
 - We express the number of operations in the form of a summation and then we solve that summation:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 1$$
 You use the formula:
$$\sum_{i=1}^{n} k = k * n$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} n = n^{2}$$

All we did is apply the above formula twice.

- This is a <u>CLOSED FORM</u> solution of the summation
- So we approximate the running time as O(n²)

- Example 3:
 - Determine the Big O running time of the following code fragment:
 - Here we again have two for loops
 - And they are nested. So is this O(n²)?

```
int func3(int n) {
    sum = 0;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n * n; j++) {
            sum++;
        }
    }
}</pre>
```

- Example 3:
 - Determine the Big O running time of the following code fragment:
 - Here we again have two for loops
 - And they are nested. So is this O(n²)?
 - The outer loop runs from i = 0 up to (and not including) n
 - The inner loop runs from j = 0 up to (and not including) n^2
 - The sole (only) operation is a "sum++" within the inner loop

Example 3:

- Determine the Big O running time of the following code fragment:
 - We express the number of operations in the form of a summation and then we solve that summation:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n^2-1} 1$$
 You use the formula:
$$\sum_{i=1}^n k = k * n$$

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n^2-1} 1 = \sum_{i=0}^{n-1} n^2 = n^2 \sum_{i=0}^{n-1} 1 = n^3$$
 All we did is apply the above formula twice.

- This is a **CLOSED FORM** solution of the summation
- So we approximate the running time as O(n³)

Example 4:

- Write a summation that describes the <u>number of</u> <u>multiplication operations</u> in this code fragment:
 - Here we again have two for loops
 - Pay attention to the limits (bounds) of the for loop

```
int func3(int n) {
    bigNumber = 0;
    for (i = 100; i <= 2n; i++) {
            for (j = 1; j < n * n; j++) {
                bigNumber += i*n + j*n;
            }
    }
}</pre>
```

Example 4:

- Write a summation that describes the <u>number of</u> <u>multiplication operations</u> in this code fragment:
 - Here we again have two for loops
 - Pay attention to the limits (bounds) of the for loop
 - The outer loop runs from i = 100 up to (and including) 2n
 - The inner loop runs from j = 1 up to (and not including) n^2
 - Now examine the number of multiplications
 - Because this problem specifically said to "describe the number of multiplication operations, we do not care about ANY of the other operations
 - bigNumber += i*n + j*n;
 - There are TWO multiplication operations in this statement

Example 4:

- Write a summation that describes the <u>number of</u> <u>multiplication operations</u> in this code fragment:
 - We express the number of multiplications in the form of a summation and then we solve that summation:

$$\sum_{i=100}^{2n} \sum_{j=1}^{n^2-1} 2^{-1}$$

$$\sum_{i=100}^{2n} \sum_{j=1}^{n^2-1} 2 = \sum_{i=100}^{2n} 2(n^2-1) = 2(n^2-1) \sum_{i=100}^{2n} 1 = 2(n^2-1)(2n-99)$$

- This is a <u>CLOSED FORM</u> solution of the summation
- Shows the number of multiplications