Ordenação em tempo linear

CLRS cap 8

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre $1 \in k$.

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre $1 \in k$.

Devolve um vetor B[1..n] com os elementos de A[1..n] em ordem crescente.

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre $1 \in k$.

Devolve um vetor B[1..n] com os elementos de A[1..n] em ordem crescente.

```
CountingSort(A, n)
     para i \leftarrow 1 até k faça
        C[i] \leftarrow 0
 3 para i \leftarrow 1 até n faça
         C[A[i]] \leftarrow C[A[i]] + 1
 5
    para i \leftarrow 2 até k faca
         C[i] \leftarrow C[i] + C[i-1]
     para j \leftarrow n decrescendo até 1 faça
 8
         B[C[A[i]]] \leftarrow A[i]
 9
         C[A[i]] \leftarrow C[A[i]] - 1
     devolva B
10
```

linha	consumo na linha
1	$\Theta(k)$
2	O(k)
3	$\Theta(n)$
4	O(n)
5	$\Theta(\frac{k}{k})$
6	O(k)
7	$\Theta(n)$
8	O(n)
9	O(n)
10	$\Theta(1)$
total	????

linha	consumo na linha
1	$\Theta(k)$
2	O(k)
3	$\Theta(n)$
4	O(n)
5	$\Theta(k)$
6	O(k)
7	$\Theta(n)$
8	O(n)
9	O(n)
10	$\Theta(1)$
total	$\Theta(k+n)$

```
COUNTINGSORT(A, n)
           para i \leftarrow 1 até k faça
               C[i] \leftarrow 0
       3
          para i \leftarrow 1 até n faça
               C[A[i]] \leftarrow C[A[i]] + 1
       5
          para i \leftarrow 2 até k faça
               C[i] \leftarrow C[i] + C[i-1]
           para j \leftarrow n decrescendo até 1 faça
               B[C[A[i]]] \leftarrow A[i]
               C[A[i]] \leftarrow C[A[i]] - 1
       9
      10
           devolva B
Consumo de tempo: \Theta(k+n)
Se k = O(n), o consumo de tempo é \Theta(n).
```

Algoritmo usado para ordenar

- ▶ inteiros não-negativos com *d* dígitos
- cartões perfurados
- registros cuja chave tem vários campos

Algoritmo usado para ordenar

- ▶ inteiros não-negativos com d dígitos
- cartões perfurados
- registros cuja chave tem vários campos

dígito 1: menos significativo dígito d: mais significativo

Algoritmo usado para ordenar

- inteiros não-negativos com d dígitos
- cartões perfurados
- registros cuja chave tem vários campos

dígito 1: menos significativo dígito d: mais significativo

```
RADIXSORT(A, n, d)

1 para i \leftarrow 1 até d faça

2 ORDENE(A, n, i)
```

Algoritmo usado para ordenar

- inteiros não-negativos com d dígitos
- cartões perfurados
- registros cuja chave tem vários campos

dígito 1: menos significativo dígito d: mais significativo

```
RADIXSORT(A, n, d)

1 para i \leftarrow 1 até d faça

2 ORDENE(A, n, i)
```

ORDENE(A, n, i): ordena A[1..n] pelo i-ésimo dígito dos números em A por meio de um algoritmo estável.

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Isso só é relevante quando temos informação satélite.

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Isso só é relevante quando temos informação satélite.

Quais dos algoritmos que vimos são estáveis?

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Isso só é relevante quando temos informação satélite.

Quais dos algoritmos que vimos são estáveis?

- inserção direta? seleção direta? bubblesort?
- mergesort?
- quicksort?
- heapsort?
- countingsort?

Depende do algoritmo ORDENE.

Depende do algoritmo ORDENE.

Se cada dígito é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Depende do algoritmo ORDENE.

Se cada dígito é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Neste caso, o consumo de tempo é $\Theta(d(k+n))$.

Depende do algoritmo ORDENE.

Se cada dígito é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Neste caso, o consumo de tempo é $\Theta(d(k+n))$.

Se d é limitado por uma constante (ou seja, se d = O(1)) e k = O(n), então o consumo de tempo é $\Theta(n)$.

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

A .47 .93 .82 .12 .42 .03 .62 .38 .77 .91

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Devolve um vetor C[1..n] com os elementos de A[1..n] em ordem crescente.

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Devolve um vetor C[1...n] com os elementos de A[1...n] em ordem crescente.

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

B[0]:	.03	
B[1]:	.12	
B[2]:		
B[3]:	.38	
B[4]:	.47	.42
B[5]:		
B[6]:	.62	
B[7]:	.77	
B[8]:	.82	
B[9]:	.93	.91

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91
			B[0] :	.03				
			B[1]:	.12				
			B[:	2]:					
			B[:	3] :	.38				
			B[·	4] :	.42	.47			
			B[.	5] :					
			B[6] :	.62				
			B[7]:	.77				
			B[8] :	.82				
			B[9] :	.91	.93			

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91

B[0]:	.03	
B[1]:	.12	
B[2]:		
B[3]:	.38	
B[4]:	.42	.47
B[5]:		
B[6]:	.62	
B[7]:	.77	
B[8]:	.82	
B[9]:	.91	.93

0.2	10	20	40	17	60	77	00	.91	0.2
.03	.12		.42	.41	.02	.//	.02	.91	.93
				I				1	

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Devolve um vetor C[1...n] com os elementos de A[1...n] em ordem crescente.

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Devolve um vetor C[1...n] com os elementos de A[1...n] em ordem crescente.

```
BUCKETSORT(A, n)
1 para i \leftarrow 0 até n-1 faça
2 B[i] \leftarrow_{\mathrm{NIL}}
3 para i \leftarrow 1 até n faça
4 \mathrm{INSIRA}(B[\lfloor nA[i] \rfloor], A[i])
5 para i \leftarrow 0 até n-1 faça
6 \mathrm{ORDENELISTA}(B[i])
7 C \leftarrow \mathrm{CONCATENE}(B, n)
8 devolva C
```

```
BUCKETSORT(A, n)
1 para i \leftarrow 0 até n-1 faça
2 B[i] \leftarrow_{\mathrm{NIL}}
3 para i \leftarrow 1 até n faça
4 \mathrm{INSIRA}(B[\lfloor nA[i] \rfloor], A[i])
5 para i \leftarrow 0 até n-1 faça
6 \mathrm{ORDENELISTA}(B[i])
7 C \leftarrow \mathrm{CONCATENE}(B, n)
8 devolva C
```

INSIRA(p, x): insere x na lista apontada por p

```
BUCKETSORT(A, n)
     para i \leftarrow 0 até n-1 faça
         B[i] \leftarrow_{\text{NIL}}
 3 para i \leftarrow 1 até n faça
         INSIRA(B[|nA[i]|], A[i])
 5 para i \leftarrow 0 até n-1 faça
    ORDENELISTA(B[i])
 7 C \leftarrow \text{CONCATENE}(B, n)
     devolva C
```

INSIRA(p, x): insere x na lista apontada por pORDENELISTA(p): ordena a lista apontada por p

BUCKETSORT(A, n)

```
para i \leftarrow 0 até n-1 faça
              B[i] \leftarrow_{\text{NIL}}
          para i \leftarrow 1 até n faça
              INSIRA(B[|nA[i]|], A[i])
       5 para i \leftarrow 0 até n-1 faça
             ORDENELISTA(B[i])
         C \leftarrow \mathsf{Concatene}(B, n)
           devolva C
INSIRA(p, x): insere x na lista apontada por p
ORDENELISTA(p): ordena a lista apontada por p
Concatene(B, n): devolve a lista obtida da
concatenação das listas apontadas por B[0], \ldots, B[n-1].
```

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o ORDENELISTA seja o INSERTIONSORT.

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o ORDENELISTA seja o INSERTIONSORT.

Seja X_i o número de elementos na lista B[i].

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o ORDENELISTA seja o INSERTIONSORT.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o OrdeneLista seja o InsertionSort.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Observe que $X_i = \sum_j X_{ij}$.

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o OrdeneLista seja o InsertionSort.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Observe que $X_i = \sum_j X_{ij}$.

 Y_i : número de comparações para ordenar a lista B[i].

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

 X_i : número de elementos na lista B[i]

$$X_{ij} = \left\{ egin{array}{ll} 1 & ext{se o } j ext{-\'esimo elemento foi para a lista } B[i] \\ 0 & ext{se o } j ext{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{array}
ight\}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \left\{ egin{array}{ll} 1 & ext{se o } j ext{-\'esimo elemento foi para a lista } B[i] \\ 0 & ext{se o } j ext{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{array}
ight\}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$\begin{split} \mathrm{E}[(\sum_{j}X_{ij})^{2}] &= \mathrm{E}[\sum_{j}\sum_{k}X_{ij}X_{ik}] \\ &= \mathrm{E}[\sum_{i}X_{ij}^{2} + \sum_{i}\sum_{k\neq i}X_{ij}X_{ik}] \end{split}$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \left\{ egin{array}{ll} 1 & ext{se o } j ext{-\'esimo elemento foi para a lista } B[i] \\ 0 & ext{se o } j ext{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{array}
ight\}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$E[(\sum_{j} X_{ij})^{2}] = E[\sum_{j} \sum_{k} X_{ij} X_{ik}]$$
$$= E[\sum_{j} X_{ij}^{2}] + E[\sum_{j} \sum_{k \neq j} X_{ij} X_{ik}]$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$E[(\sum_{j} X_{ij})^{2}] = E[\sum_{j} \sum_{k} X_{ij} X_{ik}]$$
$$= \sum_{j} E[X_{ij}^{2}] + \sum_{j} \sum_{k \neq j} E[X_{ij} X_{ik}]$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Observe que $Y_i \leq X_i^2$. Ademais,

$$\mathrm{E}[Y_i] \leq \sum_{j} \mathrm{E}[X_{ij}^2] + \sum_{j} \sum_{k \neq j} \mathrm{E}[X_{ij} X_{ik}].$$

Observe que X_{ij}^2 é uma variável aleatória binária.

 X_i : número de elementos na lista B[i]

$$X_{ij} = \left\{ egin{array}{ll} 1 & ext{se o } j ext{-}\'esimo elemento foi para a lista } B[i] \\ 0 & ext{se o } j ext{-}\'esimo elemento n\~ao foi para a lista } B[i]. \end{array}
ight\}$$

 Y_i : número de comparações para ordenar a lista B[i].

Observe que $Y_i \leq X_i^2$. Ademais,

$$\mathrm{E}[Y_i] \leq \sum_{j} \mathrm{E}[X_{ij}^2] + \sum_{j} \sum_{k \neq j} \mathrm{E}[X_{ij} X_{ik}].$$

Observe que X_{ij}^2 é uma variável aleatória binária.

Vamos calcular sua esperança:

$$E[X_{ij}^2] = Pr[X_{ij}^2 = 1] = Pr[X_{ij} = 1] = \frac{1}{n}.$$

Para calcular $\mathbb{E}[X_{ij}X_{ik}]$ para $j \neq k$, primeiro note que X_{ij} e X_{ik} são variáveis aleatórias independentes.

Para calcular $\mathrm{E}[X_{ij}X_{ik}]$ para $j \neq k$, primeiro note que X_{ij} e X_{ik} são variáveis aleatórias independentes.

Portanto, $E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}].$

Para calcular $\mathrm{E}[X_{ij}X_{ik}]$ para $j \neq k$, primeiro note que X_{ij} e X_{ik} são variáveis aleatórias independentes.

Portanto, $E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}].$

Ademais, $E[X_{ij}] = Pr[X_{ij} = 1] = \frac{1}{n}$.

Para calcular $\mathrm{E}[X_{ij}X_{ik}]$ para $j \neq k$, primeiro note que X_{ij} e X_{ik} são variáveis aleatórias independentes.

Portanto, $E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}].$

Ademais, $E[X_{ij}] = Pr[X_{ij} = 1] = \frac{1}{n}$.

Logo,

$$E[Y_i] \leq \sum_{j} \frac{1}{n} + \sum_{j} \sum_{k \neq j} \frac{1}{n^2}$$

$$= \frac{n}{n} + n(n-1) \frac{1}{n^2}$$

$$= 1 + (n-1) \frac{1}{n}$$

$$= 2 - \frac{1}{n}.$$

Agora, seja $Y = \sum_i Y_i$.

Agora, seja $Y = \sum_i Y_i$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Agora, seja $Y = \sum_i Y_i$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim $\mathrm{E}[Y]$ é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do BUCKETSORT.

Agora, seja $Y = \sum_i Y_i$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim $\mathrm{E}[Y]$ é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do BUCKETSORT.

Mas então $\mathrm{E}[Y] = \sum_i \mathrm{E}[Y_i] \leq 2n - 1 = \mathrm{O}(n)$.

Agora, seja $Y = \sum_i Y_i$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim $\mathrm{E}[Y]$ é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do BUCKETSORT.

Mas então $E[Y] = \sum_i E[Y_i] \le 2n - 1 = O(n)$.

O consumo de tempo esperado do BUCKETSORT quando os números em A[1..n] são uniformemente distribuídos no intervalo [0,1) é O(n).

Exercícios

Exercício 7.A

Desenhe a árvore de decisão para o SelectionSort aplicado a A[1...3] com todos os elementos distintos.

Exercício 7.B [CLRS 8.1-1]

Qual o menor profundidade (= menor nível) que uma folha pode ter em uma árvore de decisão que descreve um algoritmo de ordenação baseado em comparações?

Exercício 7.C [CLRS 8.1-2]

Mostre que $\lg(n!) = \Omega(n \lg n)$ sem usar a fórmula de Stirling. Sugestão: Calcule $\sum_{k=n/2}^{n} \lg k$. Use as técnicas de CLRS A.2.

Exercícios

Exercício 7.D [CLRS 8.2-1]

Simule a execuçãao do CountingSort usando como entrada o vetor $A[1..11] = \langle 7, 1, 3, 1, 2, 4, 5, 7, 2, 4, 3 \rangle$.

Exercício 7.E [CLRS 8.2-2]

Mostre que o CountingSort é estável.

Exercício 7.F [CLRS 8.2-3]

Suponha que o para da linha 7 do CountingSort é substituído por

7 para
$$j \leftarrow 1$$
 até n faça

Mostre que o ainda funciona. O algoritmo resultante continua estável?