Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

Listing of Claims

- (Currently Amended) A method for storing a digital value to memory in a 1 1. 2 pipelined instruction processor, wherein the digital value is read from memory in 3 response to a conditional jump instruction to determine if the condition of the conditional 4 jump instruction is satisfied, the method comprising: 5 generating at least one status bit based on the digital value to be stored, the at least 6 one status bit relating to a particular condition of a conditional jump instruction and 7 specifying indicating if the particular a predetermined condition of [[a]] the conditional 8 jump instruction is satisfied or not; and 9 storing the digital value and the at least one status bit to memory. 1 2. (Currently Amended) The method recited in claim 1, wherein the conditional jump instruction reads the digital value and the at least one status bit from 2 3 memory to determine if the condition of the conditional jump instruction is satisfied 4 without having to submit the condition of the conditional jump instruction to an 5 arithmetic logic stage of the pipelines instruction processor. 1 3. (Previously Presented) The method recited in claim 1, wherein the
- 2 at least one status bit is read from memory at the same time as the digital value.

1	4.	(Previously Presented)	The method recited in claim 1, wherein the
2	memory has o	one or more addressable location	ons, and the at least one status bit is stored at
3	the same addr	ressable location as the corresp	onding digital value.
1	5.	(Previously Presented)	The method recited in claim 1, wherein the
2	at least one st	atus bit is set high if the digital	l value is zero.
1	6.	(Previously Presented)	The method recited in claim 1, wherein the
2	at least one st	atus bit is set high if the digital	I value is a positive value.
		,	
1	7.	(Previously Presented)	The method recited in claim 1, wherein the
2	at least one st	atus bit is set high if the digital	l value is negative.
1			
1	8.	(Previously Presented)	The method recited in claim 1, wherein the
2	at least one st	atus bit is set high if the digita	l value is a non zero value.
1			
1	9.	(Previously Presented)	The method recited in claim 1, wherein the
2	at least one s	status bit is set high based or	the value of the least significant bit of the
3	digital value.		
1	10.	(Currently Amended) In a pi	pelined instruction processor that executes
2	instructions in	ncluding conditional jump inst	ructions, one or more of the conditional jump

3 instructions reading a digital value from memory to determine if the condition of the 4 conditional jump instruction is satisfied, the improvement comprising: 5 a status bit generator for generating at least one status bit based on a digital value, 6 the at least one status bit relating to a particular condition of a conditional jump instruction and specifying indicating if a predetermined the particular condition of [[a]] 7 8 the conditional jump instruction is satisfied or not; and 9 storing means for storing the digital value and the at least one status bit to the 10 memory. 1 11. (Currently Amended) The pipelined instruction processor recited in claim 2 10, wherein a selected conditional jump instruction reads the digital value and the at least 3 one status bit from memory to determine if the condition of the conditional jump 4 instruction is satisfied without having to submit the condition of the conditional jump 5 instruction to an arithmetic logic stage of the pipelines instruction processor. 1 12. (Previously Presented) The pipelined instruction processor recited 2 in claim 10, wherein the at least one status bit is read from the memory at the same time 3 as the digital value is read. 1 13. (Previously Presented) The pipelined instruction processor recited 2 in claim 10, wherein the memory has one or more addressable locations, and the at least

3	one status b	it is stored at the same add	ressable location as the corresponding digital
4	value.		
1	14.	(Previously Presented)	The pipelined instruction processor recited
2	in claim 10, v	wherein the at least one status	bit is set high if the digital value is zero.
1	15.	(Previously Presented)	The system recited in claim 10, wherein the
2	at least one s	tatus bit is set high if the digit	tal value is a positive value.
1	16.	(Previously Presented)	The system recited in claim 10, wherein the
2	at least one s	tatus bit is set high if the digit	tal value is negative.
1	17.	(Previously Presented)	The system recited in claim 10, wherein the
2	at least one s	tatus bit is set high if the digit	al value is a non zero value.
1	18.	(Previously Presented)	The system recited in claim 10, wherein the
2	at least one	status bit is set high based of	on the value of the least significant bit of the
3	digital value.		
1	19.	(Previously Presented)	In a pipelined instruction processor that
2	executes ins	tructions including condition	onal jump instructions, one or more of the

3	conditional jump instructions reading a digital value from memory to determine if the
4	condition of the conditional jump instruction is satisfied, the improvement comprising:
5	a plurality of addressable registers, each of the addressable registers storing a
6	value that includes a digital value and at least one jump status bit;
7	logic to access a current instruction, wherein the current instruction includes an
8	address and a corresponding jump field, the address identifies one of the addressable
9	registers and the corresponding jump field identifies a jump status bit of the at least one
10	jump status bits within the identified addressable register;
11	a jump look-ahead controller for generating a jump look-ahead signal using the
12	address that identifies one of the addressable registers and the jump field that identifies a
13	jump status bit within the identified addressable register, the jump look-ahead signal is a
14	function of the identified jump status bit;
15	tracking logic for tracking the addresses of a predetermined number of previous
16	instructions in the pipelined instruction processor and comparing the addresses of each
17	previous instruction to the address of the current instruction to generate a series of jump
18	disable signals; and
19	conflict detection logic for generating a jump early signal using the jump look-
20	ahead signal and the series of jump disable signals, the jump early signal initiates the
21	conditional jump depending on the values of the jump disable signals.

1	20. (.	Fleviously Fleschied)	The pipermed instruction processor as
2	recited in claim	19, wherein each jump status	s bit is dependent on the digital value stored
3	in the correspon	ding addressable register.	
1			
1	21. (Previously Presented)	The pipelined instruction processor as
2	recited in claim	19, further comprising a bit s	status generator for generating the
3	corresponding ju	ump status bits.	
1	22. (Previously Presented)	The pipelined instruction processor as
2	recited in claim	19, further comprising a prec	liction logic block responsive to the jump
3	early signal for	implementing a prediction al	gorithm to predict the conditional jump
4	depending on th	e values of the jump disable	signals.
1	23. (Previously Presented)	The pipelined instruction processor as
2	recited in claim	19, wherein the tracking logi	ic includes a queue for sequentially storing a
3	pre-determined	number of instructions prior	to sequentially piping the pre-determined
4	number of instru	actions through a read stage a	and decode stage in a pre-fetch pipeline.
1	24. (Previously Presented)	The pipelined instruction processor as
2	recited in claim	23, wherein the pre-determin	ned number of instructions are sequentially

3	piped through an execution pipeline after being piped through a pre-fetch pipeline, the		
4	execution pipeline includes a write-back stage.		
1			
1	25. (Previously Presented) The pipelined instruction processor as		
2	recited in claim 24, wherein the addressable register is written during the write-back		
3	stage.		
1	26. (Previously Presented) The pipelined instruction processor as		
2	recited in claim 25, wherein the execution pipeline further includes an address generation		
3	stage, a present address stage, an output operand stage, a capture data stage, and an		
4	arithmetic operation stage, all before the write-back stage.		
1	27. (Previously Presented) A method for determine if a condition of		
2	a conditional jump instruction is satisfied in a pipelined instruction processor, the		
3	method comprising:		
4	storing a digital value and one or more jump status bits that are based on the		
5	digital value in each of a plurality of address locations in an addressable memory;		
6	accessing a current instruction, the current instruction having an address and a		
7	jump field, the address identifies a selected address location of the addressable		
8	memory, and the jump field identifies a selected jump status bit of the selected		
9	address location:		

10	generating a jump look-ahead signal that is a function of the selected jump
11	status bit read from the selected address location of the addressable memory, the
12	identified jump status bit is accessed using the address and the jump field of the
13	current instruction;
14	tracking the addresses of a predetermined number of previous instructions in
15	the pipelined instruction processor and comparing the addresses to the address of the
16	current instruction to generate a series of jump disable signals; and
17	generating a jump early signal using the jump-look ahead signal and the series
18	jump disable signals, the jump early signal initiates a conditional jump depending on
19	the value of the jump disable signals.