Wzbudzenia termiczne nośników

1. Chcemy obliczyć liczbę nośników ładunku w temperaturze T w prostym półprzewodniku. Prawdopodobieństwo obsadzenia stanu o energii ε to

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T}} \tag{1}$$

Wartość μ jest ustalona przez właściwą liczbę cząstek w układzie. Potrzebujemy także gęstości stanów dla pasma przewodnictwa oraz walencyjnego:

pasmo przewodnictwa
$$\rho(\varepsilon) = \frac{V}{2\pi^2\hbar^3} (2m_e)^{3/2} \sqrt{\varepsilon - E_G}$$
 (2)

i

pasmo walencyjne
$$\rho(\varepsilon) = \frac{V}{2\pi^2\hbar^3} (2m_e)^{3/2} \sqrt{-\varepsilon}$$
 (3)

Wykreślić gęstość stanów i funkcję Fermiego na jednym wykresie.

Jeśli $\varepsilon - \mu \gg k_B T$, znaleźć przyblizenie $f(\varepsilon)$. Użyć tego do znalezienia liczby elektronów w paśmie przewodnictwa

$$n = \frac{1}{V} \int_{E_G}^{\infty} f(\varepsilon) \rho(\varepsilon) d\varepsilon, \tag{4}$$

i zapisać odpowiedź korzystając z $N_C=2(2\pi m_e k_B T/h^2)^{3/2}$. Następnie obliczyć liczbę dziur w paśmie walencyjnym

$$p = \frac{1}{V} \int_{-\infty}^{0} [1 - f(\varepsilon)] \rho(\varepsilon) d\varepsilon, \tag{5}$$

i zapisać odpowiedź korzystając z $N_V = 2(2\pi m_h k_B T/h^2)^{3/2}$.

Pokazać że np jest niezależne od wartości potencjału chemicznego μ .