Introdução ao Pandas II

Patrícia Novais

Sumário

- » Operações com Dataframes
- » União de dataframes: merge e concat
- » Agrupamentos: groupby
- » Agregações: agg

Operações com Dataframes

- » Os dataframes do Pandas são estruturas muito versáteis pois permitem uma série de operações que ajudam nas análises dos dados. Veremos agora as seguintes operações:
 - » contagem de valores
 - » média
 - » soma
 - » valores únicos
 - » limpeza de dados duplicados
 - » limpeza de dados faltantes

Value_counts

» Não poucas vezes precisaremos saber a frequência com que uma dada informação se repete. Para obter tal informação de uma dada variável no Pandas podemos utilizar a função pd.value_counts().

```
df.educacao.value counts()
secondary
             23202
tertiary
             13301
primary
              6851
unknown
             1857
Name: educacao, dtype: int64
df['estado civil'].value_counts()
                                                                Quantidade de dados com
married
           27214
single
           12790
                                                               estado civil casado, solteiro e
divorced
            5207
                                                                         divorciado.
Name: estado civil, dtype: int64
```

» Veremos em mais detalhes nas próximas aulas, mas podemos obter a média simples dos dados utilizando a função pd.mean().

```
df.balance.mean()

1362.2720576850766

df.duracao.mean()

258.16935840707964

df[['balance','duracao']].mean()

balance 1362.272058
duracao 258.169358
dtype: float64
```

Soma

» Quando precisamos saber a soma dos valores de uma determinada variável podemos usar a função pd.sum().

Unique e nunique

» Outra importante função é a pd.unique(), que nos mostra todos os valores únicos em uma dada variável.

» Já a função pd.nunique() nos mostra a quantidade de valores únicos em uma variável.

```
df.Profissao.nunique()
12
```

Dados duplicados

» Outra importação ação aos analisar dados é verificar se há duplicidade nas informações, evitando assim que tiremos conclusões errôneas sobre os dados. Para verificar a existência de duplicidade, podemos usar a função pd.duplicated() e pd.sum().

```
df.duplicated().sum()
10
```

» Para saber quais os valores duplicados podemos utilizamos o loc.

df.loc	[df.o	duplicated()	True	·]									
	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	can
45211	44	technician	single	secondary	no	29	yes	no	NaN	5	may	151.0	
45212	33	entrepreneur	married	secondary	no	2	yes	yes	NaN	5	may	76.0	
45213	38	technician	married	secondary	no	557	yes	no	cellular	16	nov	1556.0	

Dados duplicados

» Para criar um novo dataframe sem os dados duplicados utilizamos a função pd.drop_duplicated()

df.	2.hea	ad()											
	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaig
0	58	management	married	tertiary	no	2143	yes	no	NaN	5	may	261.0	
1	44	technician	single	secondary	no	29	yes	no	NaN	5	may	151.0	
2	33	entrepreneur	married	secondary	no	2	yes	yes	NaN	5	may	76.0	
3	47	blue-collar	married	unknown	no	1506	yes	no	NaN	5	may	92.0	
4	33	unknown	single	unknown	no	1	no	no	NaN	5	may	198.0	
∢													*

Dados faltantes ou nulos

- » Dados faltantes ou nulos podem enviesar as análises, por isso é sempre importante eliminá-los ou substituí-los (de acordo com o contexto de análise).
- » Uma maneira de saber a quantidade de dados faltantes é utilizando a função pd.isna ou pd.isnull com a função pd.sum().

Dados faltantes ou nulos

» Para criar um novo dataframe sem os dados faltantes ou nulos utilizamos a função pd.dropna()

Dados faltantes ou nulos

» Quando for necessário substituir os dados faltantes por um novo valor, podemos usar a função pd.fillna()

df	4 = 0	df.fillna("d	esconhec	ido")									
df	4.hea	ad()											
	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	cai
0	58	management	married	tertiary	no	2143	yes	no	desconhecido	5	may	261	
1	44	technician	single	secondary	no	29	yes	no	desconhecido	5	may	151	
2	33	entrepreneur	married	secondary	no	2	yes	yes	desconhecido	5	may	76	
3	47	blue-collar	married	unknown	no	1506	yes	no	desconhecido	5	may	92	
4	33	unknown	single	unknown	no	1	no	no	desconhecido	5	may	198	

Existem várias maneiras de preencher os valores nulos. Para conhecê-los, consulte a documentação da função.

Exercícios – Operações

- » Qual a média do score_felicidade?
- » Qual a soma do PIB?
- » Qual a soma do freedom e corrupcao?
- » Há dados duplicados? Quantos? Verifique quais são eles.
- » Verifique a quantidade de dados faltantes.
- » Crie um novo dataframe onde os valores faltantes de score_felicidade sejam substituídos por -9999.
- » Quantas e quais são regions existentes nos dados?
- » Verifique a frequência dos dados segundo suas regiões. Qual a região com maior quantidade de dados? E a região com a menor quantidade?

Unindo amostras de dados

» É muito comum precisarmos unir dados de diferentes conjuntos de dados. O esquema abaixo exemplifica bem alguns tipos de união.

Unindo amostras de dados

» Com o Pandas temos alguns métodos para unir dados de datasets distintos, dentre os quais podemos citar:

- concat: função que une os datasets ao longo de um eixo.
- merge: método que combina um ou mais datasets baseado em uma coluna em comum.

Veremos o básico de ambos a seguir.

Dataframes

» Vamos antes criar os dataframes que iremos utilizar:

```
dados1 = {
        'ID': ['1', '2', '3', '4', '5'],
        'nome': ['Paula', 'Claudia', 'Joao', 'Carlos', 'Ana'],
        'sobrenome': ['Pereira', 'Silva', 'Silveira', 'Bezerra', 'Souza']}
df1 = pd.DataFrame(dados1, columns = ['ID', 'nome', 'sobrenome'])
display('df1')
display(df1)
dados2 = {
        'ID': ['4', '5', '6', '7', '8'],
        'nome': ['Eder', 'Joana', 'Paulo', 'Pedro', 'Bete'],
        'sobrenome': ['Silva', 'Bezerra', 'Fernandes', 'Brito', 'Oliveira']}
df2 = pd.DataFrame(dados2, columns = ['ID', 'nome', 'sobrenome'])
display('df2')
display(df2)
notas - {
        'ID': ['1', '2', '3', '4', '5', '7', '8', '9', '10', '11'],
        'notas_id': [51, 15, 15, 61, 16, 14, 15, 1, 61, 16]}
df_notas = pd.DataFrame(notas, columns = ['ID', 'notas_id'])
display('df_notas')
display(df_notas)
```

Dataframes

» Vamos antes criar os dataframes que iremos utilizar:

'd	f1'		
	ID	nome	sobrenome
0	1	Paula	Pereira
1	2	Claudia	Silva
2	3	Joao	Silveira
3	4	Carlos	Bezerra
4	5	Ana	Souza

'd	f2'		
	ID	nome	sobrenome
0	4	Eder	Silva
1	5	Joana	Bezerra
2	6	Paulo	Fernandes
3	7	Pedro	Brito
4	8	Bete	Oliveira

"d	f_no	otas'
	ID	notas_id
0	1	51
1	2	15
2	3	15
3	4	61
4	5	16
5	7	14
6	8	15
7	9	1
8	10	61
9	11	16

concat

» A função pd.concat() irá unir os dados ao longo de um eixo (o default é pelo índice).

	1		concat([df1
	ID	nome	sobrenome
0	1	Paula	Pereira
1	2	Claudia	Silva
2	3	Joao	Silveira
3	4	Carlos	Bezerra
4	5	Ana	Souza
0	4	Eder	Silva
1	5	Joana	Bezerra
2	6	Paulo	Fernandes
3	7	Pedro	Brito
4	8	Bete	Oliveira

concat

» Unindo pelas colunas, utilizando o parâmetro axis=1:

```
df_1_2 = pd.concat([df1,df2], axis=1)
df_1_2
```

	ID	nome	sobrenome	ID	nome	sobrenome
0	1	Paula	Pereira	4	Eder	Silva
1	2	Claudia	Silva	5	Joana	Bezerra
2	3	Joao	Silveira	6	Paulo	Fernandes
3	4	Carlos	Bezerra	7	Pedro	Brito
4	5	Ana	Souza	8	Bete	Oliveira

concat

» Unindo pelas colunas, utilizando o parâmetro axis=1:

```
df_1_notas = pd.concat([df1,df_notas], axis=1)
df_1_notas
```

	ID	nome	sobrenome	ID	notas_id
0	1	Paula	Pereira	1	51
1	2	Claudia	Silva	2	15
2	3	Joao	Silveira	3	15
3	4	Carlos	Bezerra	4	61
4	5	Ana	Souza	5	16
5	NaN	NaN	NaN	7	14
6	NaN	NaN	NaN	8	15
7	NaN	NaN	NaN	9	1
8	NaN	NaN	NaN	10	61
9	NaN	NaN	NaN	11	16

» A função pd.merge também une datasets, porém utilizando explicitamente a coluna de interesse.

» A função pd.merge permite fazer diversos tipos de união, como os mostrado no diagrama anterior, bastando ajustar o parâmetro how:

Merge method	SQL Join Name	Description
left	LEFT OUTER JOIN	Use keys from left frame only
right	RIGHT OUTER JOIN	Use keys from right frame only
outer	FULL OUTER JOIN	Use union of keys from both frames
inner	INNER JOIN	Use intersection of keys from both frames

```
pd.merge(df_esq, df_dir, on='coluna_em_comum', how='metodo de junção')

pd.merge(df_esq, df_dir, on='coluna_em_comum', how='left')

pd.merge(df_esq, df_dir, on='coluna_em_comum', how='right')

pd.merge(df_esq, df_dir, on='coluna_em_comum', how='outer')

pd.merge(df_esq, df_dir, on='coluna_em_comum', how='inner')
```

Documentações

- » Todas os tipos de possibilidades de união de dados, por si só, já renderia um curso.
- » Existe uma extensa documentação sobre os usos e especificidades das funções pd.concat() e pd.merge(). Estudar essas documentações te fará um melhor analista de dados.
- » Material do Pydata: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Exercícios – Unindo dataframes

- 1. Crie um dataframe para cada um dos arquivos nba_2015_a.csv, nba_2015_b.csv, nba_2015_c.csv, e bust_nba_2015.csv. Chame esses dataframes de df_a, df_b, df_c, bust, respectivamente.
- 2. Visualize o head() de cada um dos dataframes.
- 3. Concatene os arquivos df_a, df_b e df_c usando a função concat() usando os índices. Salve um dataframe chamado df_total.
- 4. Faça a concatenação do dataframe df_total com o dataframe bust utilizando a função merge() e a variável ID.
- 5. Busque a documentação das funções concat() e merge() e veja que outros parâmetros podem ser utilizados.

Agrupando os dados: groupby

- » Diversas vezes precisamos analisar os dados agrupados, ao invés de um a um, para entender o comportamento do todo.
- » Podemos querer saber a soma de valores, a frequência com que eles ocorrem, as médias agrupadas, dentre outras operações.
- » No Pandas temos uma função excelente para isso, a função pd.groupby(), que agrupa os dados, calcula algumas propriedades dos grupos formados e sumariza os resultados.

Agrupando os dados: groupby

» Para apenas separarmos os dados de acordo com uma variável:

```
Agrupando pela variável emprestimo
df.groupby('emprestimo')
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000018DC4F17E80>
                                                                     Visualizando os grupos
df.groupby('emprestimo').groups
{'no': Int64Index([
                                  3,
                                                5,
                                                             8,
                            1,
0.
              11,
            45209, 45210, 45211, 45213, 45214, 45215, 45216, 45217, 45218,
            45219],
           dtype='int64', length=37975),
 'yes': Int64Index([ 2, 6, 20, 22, 24, 27, 29,
32,
              54,
            45074, 45103, 45108, 45122, 45151, 45153, 45194, 45205, 45212,
            45220].
           dtype='int64', length=7246)}
```

Agrupando pelas variáveis

Agrupando os dados: groupby

» Para apenas separarmos os dados de acordo com <u>múltiplas</u> variáveis, usando uma lista de variáveis:

```
emprestimo e profissao.
df.groupby(['emprestimo', 'profissao'])
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000018DC00388D0>
df.groupby(['emprestimo', 'profissao']).groups
{('no',
  'admin.'): Int64Index([
                           10,
                                  11,
                                         16,
                                                25,
     60,
               80,
             45142, 45144, 45147, 45162, 45167, 45171, 45173, 45176, 45177,
             45202],
           dtype='int64', length=4180),
 ('no',
  'blue-collar'): Int64Index([ 3, 17,
                                              33,
                                                     36,
58,
      62,
               64,
             45100, 45124, 45127, 45135, 45174, 45178, 45181, 45190, 45199,
             45209],
           dtype='int64', length=8048),
 ('no',
  'entrepreneur'): Int64Index([
                                              172.
                                                    222.
264, 273,
              357,
```

Agrupando os dados: groupby

» Podemos ainda aplicar funções sobre os agrupamentos

Agrupando os dados: groupby

» Podemos ainda aplicar funções sobre os agrupamentos

df.groupby	(['empres	timo','es	tado civil']).mean()	ſ,	Médi	a dos val	01
		idade	balance	dia	duracao	campanha	pdays	F
emprestimo	estado civil							
no	divorced	46.012133	1278.097993	15.688521	262.818585	2.602193	43.178721	(
	married	43.663446	1548.183990	15.810647	255.551408	2.838305	38.417136	(
	single	33.708034	1400.515277	15.700036	266.525791	2.628325	46.095884	(
yes	divorced	44.716612	717.111835	16.298588	261.144408	2.764387	30.870793	(
	married	42.185368	834.025531	16.061360	243.327039	2.863120	35.792534	(
	single	33.686899	637.957332	15.752404	266.291040	2.792668	35.171875	(

Agrupando os dados: Groupby e aggregation

» Podemos ainda querer mais do que apenas uma informação dos grupos, então podemos usar a função agg().

			idade		bala	nce		dia	
		mean	sum	me	an s	um	mean	sum	me
emprestimo	housing								
no	no	43.264280	744535	1737.4515	66 29899	804 16	.061538	276403	257.9042
	yes	39.144130	812867	1256.4594	53 26091	637 15	518251	322252	260.9834
yes	no	42.417449	122035	752.7132	43 2165	556 16	.093848	46302	249.4928
	yes	39.329366	171830	788.2485	69 3443	858 15	.972305	69783	251.7665
									•
df.groupby	(['empre:	stimo','h	ousing']).agg(['(count','	nean']))		•
df.groupby	(['empre:	stimo','h	ousing']]).egg(['0	count','r	nean'])		la	
df.groupby	(['empre:	stimo','h]).agg(['c		nean'])			du
df.groupby	(['empre:		idade		balance		d		dui et r
		count	idade	count	balance		d	an coun	du rt r
emprestimo	housing	count 17209 43	idade mean	count 17209 17	balance mean	count	d mea	sm coun 38 1720	dui nt r 7 257.90

Agrupando os dados: Groupby e aggregation

	emprestimo		no		yes
	housing	no	yes	no	yes
idade	count	17209.000000	20766.000000	2877.000000	4369.000000
	mean	43.264280	39.144130	42.417449	39.329366
balance	count	17209.000000	20766.000000	2877.000000	4369.000000
	mean	1737.451566	1256.459453	752.713243	788.248569
dia	count	17209.000000	20766.000000	2877.000000	4369.000000
	mean	16.061538	15.518251	16.093848	15.972305
duracao	count	17207.000000	20759.000000	2875.000000	4369.000000
	mean	257.904225	260.983429	249.492870	251.766537
campanha	count	17209.000000	20766.000000	2877.000000	4369.000000
	mean	2.822767	2.689926	2.980188	2.738384
pdays	count	17209.000000	20766.000000	2877.000000	4369.000000
	mean	27.902144	52.228643	16.828989	47.006180
previous	count	17209.000000	20766.000000	2877.000000	4369.000000

 » Para facilitar a visualização, podemos usar a função transposta T.

Exercícios - Agrupando os dados

- 1. Abra o arquivo preferencias.csv como um dataframe chamado pref.
- 2. Visualize os 5 primeiras linhas do arquivo.
- 3. Agrupe os dados pela variável Gender (gênero).
- 4. Verifique a contagem de itens por cada gênero.
- 5. Agrupe os dados pelas variáveis Gender e Favorite Color (cor favorita).
- **6.** Quantos itens de gênero <u>F</u> também possuem cor favorita <u>Cool</u>?
- 7. Agrupe os dados pelas variáveis Gender e Favorite Color e Favorite Beverage (bebida favorita).
- 8. Verifique a quantidade de itens de gênero <u>M</u> que têm cor preferida <u>Warm</u> e que preferem <u>Beer</u>.