前川定理(The Maekawa-Justin Theorem)

潘世维

github: https://github.com/erikpsw website: https://erikpsw.github.io/

Saturday, August 15, 2020

目录

4	推广	6
		5
3	前川定理的证明 3.1 Proof 1:	4
2	平顶点折叠的例子	3
1	简介	2

1 简介

MAEKAWA Jun (前川淳),日本的软件工程师,数学家,折纸艺术家。

前川定理(The Maekawa-Justin Theorem)是一个折纸几何学定理,以日本折纸学会评议员长前川淳之名命名。前川定理指出,平面折纸的每个顶点,峰线数和谷线数在任意方向上都差2。Jacques Justin 以及更早的S. Murata 也发现了同样的折纸公理。

2 平顶点折叠的例子

Figure 3

	M(Mountain)	V(Valley)	M-V
Figure 1	1	3	2
Figure 2	4	2	2
Figure 3	5	3	2

3 前川定理的证明

让M(Mountain)和V(Valley)分别代表平顶点折叠中山折和谷折的数量,则前川定理可以表示为

$$M = V + 2 \quad \text{or} \quad V = M + 2 \tag{1}$$

 $\mathbb{E}|M-V|=2$

3.1 Proof 1 :

由于我们只关心顶点x和周围的折痕,所以可以以x为圆心做一个圆(a),按折痕折叠后形成(b)

从下往上看向顶点x,可以发现圆环形成了一个闭合回路(c)

想象有一个蚂蚁从p点出发在这个闭合回路上爬行,遇到山折便逆时针旋转180°,遇到谷折便顺时针旋转180°,最后回到原点,方向和开始一样,由于沿着闭合回路走了一周,相当于旋转了360°度,即

$$M \times 180^{\circ} + V \times (-180^{\circ}) = 360^{\circ}$$
 (2)

M - V = 2

因为纸有两面,如果从另一面看,原来的山折变成了谷折,原来的谷 折变成了山折,所以有

$$V - M = 2$$

这样便证明了前川定理[1]

3.2 Proof 2 :

这个证明是由Jan Siwanowicz在他还是个高中生的时候提出的

将此前的闭合回路看作一个多边形,把山折看成内角等于0°,谷折看成内角等于360°

由多边形内角和定理

$$\sum_{i=1}^{n} \theta_i = (n-2) \times 180^{\circ}$$

推得在这个多边形中,内角和为

$$M \times 0^{\circ} + V \times 360^{\circ}$$

所以 $V \times 360^{\circ} = (M+V-2)180^{\circ}$
 $M = V+2$ or $V = M+2$

4 推广

$$M + V = 2(V + 1)$$
 or $2(V - 1)$ (3)

得到偶数定理:单顶点折叠中折痕总数必为偶数,角的总数也必为偶数

powered by LATEX made by Erikpsw

zhihu link: https://zhuanlan.zhihu.com/p/184886420

参考文献

[1] Erik D Demaine and Joseph O'Rourke. Geometric folding algorithms: linkages, origami, polyhedra. Cambridge university press, 2007.