CALON EVR 75 1977 CII

(I)

CARBONATE AQUIFER POLLUTION ORIGINATING FROM MULTIPLE SOURCES NEAR WOODSTOCK ONTARIO

April, 1977

Ministry of the Environment

D. A. McTavish Director Southwestern Region Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

CA20N EVR 95 1977 CII

THE ONTARIO MINISTRY OF THE ENVIRONMENT SOUTHWESTERN REGION Technical Support Section

CARBONATE AQUIFER POLLUTION
ORIGINATING FROM MULTIPLE SOURCES
NEAR WOODSTOCK, ONTARIO

by

Blagoje Novakovic

April, 1977 LONDON

TABLE OF CONTENTS

			Page
List of	Figures		v
List of	Photographs		vii
Summary			ix
CHAPTER	1	INTRODUCTION	1
	1.1	Location	1
	1.2	Present Operation of the Denby Landfill Site	1
	1.3	Background	2
	1.4	Drainage and Topography	6
	1.5	Previous Investigation	6
	1.6	Field Work	7
	1.7	Geology	8
	1.7.1	Bedrock Geology	8
	1.7.2	Surficial Deposits	10
CHAPTER	2	HYDROGEOLOGY	15
	2.1	Hydrostratigraphic Units	15
	2.1.1	Bedrock Hydrostratigraphic Unit	15
	2.1.2	Till Complex Unit	16
	2.1.3	Surface Gravel and Sand Unit	18
	2.1.4	Glaciolacustrine Sediments	18
	2.1.5	Recent Alluvial Sediments	20
	2.2	Groundwater Flow in the Bedrock	20
	2.3	Hydrogeology in the Vicinity of the Denby Landfill	21

			Page
CHAPTER	3	GENERATION ATTENUATION AND MOVEMENT OF LEACHATE	26
CHAPTER	4	GROUNDWATER QUALITY	28
	4.1	Previous Investigation into the Contamination of Domestic Wells in the Study Area	28
	4.2	Potential Sources of Groundwater Contamination	30
	4.3	Deterioration of Water Quality in the Bedrock Aquifer	32
	4.3.1	Subarea 1	32
	4.3.2	Subarea 2	36
	4.3.3	Schoeller Chemical Diagrams	40
	4.3.4	Nitrate and Potassium Concentra- tions in the Bedrock Aquifer	42
	4.4	Additional Interpretation of Groundwater Quality	46
CHAPTER	5	DISCUSSION AND CONCLUSIONS	48
	5.1	Iron*	49
	5.2	Phenols	50
	5.3	Chloride	50
	5.4	Sodium	51
	5.5	Hardness	51
	5.6	Nitrate and Organic Nitrogen	52
	5.7	Conclusions	.53
CHAPTER	6	ALTERNATE SOURCES OF WATER SUPPLY	55
CHAPTER	7	RECOMMENDATIONS	57
		ACKNOWLEDGEMENTS	59

		Page
REFERENCES		60
APPENDIX A:	SUMMARY OF WATER WELL RECORDS	63
APPENDIX B:	SUMMARY OF CHEMICAL ANALYSES OF GROUNDWATER	69
APPENDIX C:	SUMMARY OF CHEMICAL ANALYSES OF THE LANDFILL LEACHATE AND SOIL	120
APPENDIX D:	SEMI-LOGARITHMIC DIAGRAMS OF CHEMICAL ANALYSES FROM THE BED- ROCK AQUIFER	128
APPENDIX E:	HYDROGEOCHEMICAL MAPS OF CHEMICAL CONSTITUENTS DISTRIBUTION IN THE BEDROCK AQUIFER	132
APPENDIX F:	SUMMARY OF BACTERIOLOGICAL ANALYSES OF GROUNDWATER	138
APPENDIX G:	SUMMARY OF BACTERIOLOGICAL ANALYSES OF THE LANDFILL LEACHATE	157

LIST OF FIGURES

	Figure	Page
1.	Location map.	3
2.	Bedrock geology and bedrock surface topography.	9
3.	Distribution and thickness of surficial deposits.	11
4.	Vertical section A-A showing sequence and distribution of hydrostratigraphic units.	17
5.	Vertical section B-B showing sequence and distribution of hydrostratigraphic units.	19
6.	Potentiometric map of the bedrock aquifer system.	22
7.	Hydrogeochemistry of water from bedrock aquifer and of landfill leachate.	31
8.	Semi-logarithmic diagram of the chemical analyses of water from the bedrock aquifer.	33
9.	Semi-logarithmic diagram of the chemical analyses of water from the bedrock aquifer and of landfill leachate.	35
10.	Hydrogeochemical map of chemical oxygen demand (a), total iron (b) and phenols (c) distribution in the bedrock aquifer and in the landfill leachate.	37
11.	Hydrogeochemical map of chloride (a), sodium (b) and potassium (c) distribution in the bedrock aquifer and in the landfill leachate.	39
12.	Hydrogeochemical map of total hardness (a), calcium (b) and magnesium (c) distribution in the bedrock aquifer and in the land-fill leachate.	41
13.	Hydrogeochemical map of total dissolved solids (a), total alkalinity (b) and conduct-ivity (c) distribution in the bedrock aquifer and in the landfill leachate.	43

45

LIST OF PHOTOGRAPHS

Photograph		Page
1.	Looking southeast across the floodplain of Thames River. almost entire study area is shown by this photograph.	5
2.	Zorra Till outcrops over considerable surface area and is classified as an aquitard - a part of till complex unit.	13
3.	Glaciofluvial outwash deposits occur in the terrace along the Thames River. This is an aquifer material and forms the surface gravel and sand unit.	13
4.	The Denby landfill site looking north. Refuse is piled up and compacted in the norther portion of the site and periodically covered with sand, silt and gravel.	24
5.	Septic tank effluent is spread on the land during the winter months also.	24

I shall be telling this with a sigh Somewhere ages and ages hence:

Two roads diverged in a wood, and I - I took the one less travelled by,

And that made all the difference.

Robert Frost (1875-1963)

SUMMARY

Investigation by staff of the Ministry of the Environment into complaints of contamination of domestic water supplies has identified the Denby landfill site as a major source of groundwater quality degradation. The landfill is located in a worked-out gravel pit, upslope of strip development along highway 2, west of the City of Woodstock, Ontario. Domestic and commercial solid wastes have been disposed of at this landfill for the past 20 years.

Domestic water supplies in the vicinity of the landfill are obtained from the upper portion of the bedrock consisting of a cherty, fractured limestone. The bedrock is overlain by silty tills and glaciofluvial sands and gravels of which the deposits forming the gravel pit are a part. In the area of domestic well development, the silty till deposits are discontinuous. Leachate from wastes placed in the landfill have moved through sand and gravel deposits into the fractured bedrock. Sampling has identified pollutants related to landfilling as well as contaminants from road salting and from individual subsurface waste disposal system.

Water quality impact from de-icing operations and from septic tanks effluent were noted in a 1972 Ministry's report and have likely been affecting local water supplies for some considerable period. The introduction of leachate from the Denby landfill, however is a relatively recent and highly visable occurrence causing unpleasant taste and odour as well as discolouration of well water supplies. While all three sources are responsible for identifiable pollutants in local water supplies, the landfill leachate must be regarded as the most critical input.

The landfill operation should be terminated as soon as possible, and properly covered to minimize leachate production. The means of restoring individual water supplies has yet to be worked out between staff of the Ministry of the Environment, the individuals concerned and officials of Oxford County.

CHAPTER 1

INTRODUCTION

1.1 Location

The Denby sanitary landfill site is located about 3700 feet (1128 m) southwest of the Woodstock city limits by road. It occupies the central portion of lot 1, Broken Front Concession, South-West Oxford Township, Oxford County. The area encompassed by this study is indicated in Figure 1.

The site is located in an abandoned sand and gravel pit and occupies approximately 4 acres (1.6 ha). The site is zoned M5 (Disposal Industrial Zone) for which the permitted use is a garbage dump or a disposal area in accordance with Bylaw 1158. This zoning was approved by the Ontario Municipal Board on August 21, 1967.

Access to the site is provided by a gravel road about 1100 feet (335 m) in length which connects to provincial highway 2 (Figure 1). The landfill is well isolated by natural topography and vegetation.

1.2 Present Operation of the Denby Landfill Site

Presently, the Denby landfill site is operated by Denby and Sons Sanitation of R. R. # 1, Woodstock. Refuse is piled up and compacted in the northern portion of the site

(Photo 4). It is sometimes pushed northward taking advantage of the natural slope of the terrain. The refuse is periodically covered with sand, gravel and some silt which is obtained from an open face at the west margin of the A perforated drainage tile four inches in diameter is buried about 2 feet (0.6 m) deep at the northern margin of the landfill. The leachate collection system was installed last spring after problems were reported and was neither designed or approved by this Ministry. It collects a small amount of leachate and directs it into a concrete structure (septic tank) which is two-thirds buried at the northeastern corner of the site (Figure 1). When this tank is filled with leachate, the liquid is trucked to the wooded area southwest of the landfill site (Figure 1). However the tank sometimes overflows and the leachate moves overland for several tens of feet along a shallow depression where it quickly disappears into sand and gravel. This situation was observed during the site visit on September 30, 1976.

A solid waste survey carried out during the summer of 1976 indicated that domestic refuse taken to the site is collected from Beachville, Innerkip, Embro, Sweaburg, Folden Corners, small rurual areas around Woodstock and Ingersoll, from the Poole Company of Woodstock, and from Dominion Stores at Woodstock and Ingersoll.

1.3 Background

According to the present site operator, Mr. J. Denby (of Denby and Sons Sanitation, R. R. # 1 Woodstock) the site operation commenced some 20 to 25 years ago when the east portion of the present site was used (Figure 1).

The earliest available information on this Ministry's file concerning the Denby sanitary landfill site dates from January, 1971. At that time, a site inspection report by an inspector of the Waste Management Branch of the former Ontario Department of Energy and Resources Management notes that site operation was unsatisfactory. This was reportedly because (a) the site was operated as an open dump and (b) the location was unacceptable. It was therefore recommended that site operation be improved by (a) the implementation of a rodent extermination programme and (b) the application of at least two feet (0.6 m) of cover material.

"Provisional Certificate of Approval for Waste Disposal Site" was first issued on June 25, 1971 to the late E. Denby (father of the present site operator). The Provisional Certificate was issued by the former Ontario Department of Energy and Resources Management and it expired after one year. The supporting information to the original application to operate this solid waste disposal site dated February 10, 1971 indicated that: (a) the site was about 10 acres in size, (b) location of the site was in a worked out portion of a sand and gravel pit the west side of which had a 40-foot (12 m) open face, (c) the refuse would be comprised of 75 percent domestic and 25 percent commercial wastes, (d) the total daily disposal would be four tons, (e) the site would serve about 3000 people and (f) the refuse would be disposed of in 4-foot (1.2 m) deep trenches with a maximum height of fill above ground surface of about 20 feet (6 m).

Periodic site inspections and reports subsequently revealed that the site was poorly operated; failure to cover and garbage burning were common practices. Provisional Certificates of Approval to operate this site continued to be issued on an annual basis to Denby and Sons Sanitation.

Photo 1. Looking southeast across the floodplain of Thames River, almost the entire study area is shown by this photograph.

1.4 Drainage and Topography

The Thames River and its associated meltwater channels are deeply incised into morainic terrain. The floodplain is relatively narrow and valley sides are quite steep. Erosional valleys have developed perpendicular to the Thames River (Photo 1). However, these are essentially dry and they are not developed in the floodplain areas due to the limited catchments and the permeable sand and gravel deposits which extend well up the valley sides.

The landfill is located in one such erosional valley about 115 feet (35 m) above river level. Drainage is toward the northwest, and the Thames River is the focus for surface and groundwater discharges. Maximum relief in the area is about 300 feet (91 m). The average topographic gradient is about 0.062 ft/ft.

1.5 Previous Investigation

A number of publications describing geologic aspects of the general area are available; a few of these are mentioned here but specific articles are detailed in the appropriate sections of the text.

Caley (1941) mapped the Paleozoic rocks underlying the Woodstock area. More recently, information obtained from wells drilled for oil and gas has led to some revision of Caley's contacts, particularly through the use of information outlining the topography of the bedrock surface beneath the glacial drift. Bedrock formations and their economic aspects are described in Hewitt (1960; 1964). Sanford (1969) also mapped Paleozoic rocks underlying the area.

Chapman and Putnam (1951) carried out small scale physiographic mapping and provided a synthesis of the deglaciation of southern Ontario. A comprehensive report and maps dealing with Pleistocene deposits and their economic aspects in the Woodstock area have been recently published (Cowan, 1975).

Wicklund and Richards (1961) published a map and report of the agricultural soils of Oxford County.

An interim report summarizing the investigation into gasoline contamination of private wells was published by the Ontario Ministry of the Environment (Pitts, 1972). This investigation was carried out in 1970 and included a small portion of the present study area.

1.6 Field Work

Field work with respect to this investigation commenced in April, 1976 after area residents approached this Ministry's Regional Office in London and complained that the quality of their domestic well water supplies had deteriorated. Field work consisted of collecting numerous water samples from domestic wells in the area, inspection of these wells, gathering information pertinent to well construction and examining the exact locations and positions of wells in relation to all the potential sources of contamination. It also included interviews of the local residents whose domestic wells are polluted and examination of the local geology and the landfill site operation.

Figure 1 shows locations of the sampled domestic wells. They are concentrated on both sides of provincial highway 2. Four digit well numbers indicate those wells

for which records are on file with the Ontario Ministry of the Environment (MOE). Wells numbered 1 to 18 inclusive are those for which there is no well record on MOE file, but for which chemical and bacteriological analyses are available.

1.7 Geology

1.7.1 Bedrock Geology

Bedrock outcrops in the Thames River bed, but at the landfill site the bedrock is overlain by about 100 feet (30 m) of surficial deposits.

According to Hewitt (1960), the bedrock formation within the study area is of Middle Devonian Age and is part of the Bois Blanc Formation. However, according to Sanford (1969), the bedrock in the study area belongs to the Amherstburg Formation of the Detroit River Group. In this study the work of Hewitt has been adopted. According to Hewitt (1960), the Bois Blanc Formation is about 125 feet (38 m)thick at Ingersoll (about 12 miles (19.2 km) southwest from the study area) and thins in a southerly direction. It consists of medium brownish- grey, medium crystalline, medium to thin-bedded cherty and highly fractured limestone. These strata are reported to dip to the southwest at a rate of about 25 feet per mile (12 m per km).

In general, the bedrock surface in this part of the Province is south sloping and flat to gently rolling with few drainage indentations. However, in the study area

and its vicinity a local bedrock valley is present and coincides with the present position of the Thames River with an elevation just below 900 feet (279 m; Figure 2). Several hundred feet south of the study area a local dome-shaped bedrock structure occurs with an elevation a little over 1000 feet (305 m).

In the study area, the bedrock surface slopes north-west, towards the Thames River (South Branch). Where data are abundant, the minor irregularities of the bedrock surface become more apparent. Minor bedrock channels are associated with existing surface topographic "lows" which are perpendicular to the Thames River (Figure 2).

1.7.2 Surficial Deposits

Surficial deposits of Pleistocene age mantle the bedrock and form unconsolidated sediments in the area. The distribution of unconsolidated deposits is indicated in Figure 3.

The study area includes terrain referred to as the interlobate zone, i.e. an area located in the central part of the southern Ontario peninsula affected by glaciers flowing out of the Huron basin, the Erie-Ontario basin and perhaps Georgian Bay (Cowan 1975). The net result of lobes alternately invading the interlobate zone is an overall mixing of sediments originally having distinct source areas and lithologies and the production of lithologically similar tills.

Surficial deposits are of Late Wisconsinan age and consist of silt to sandy, silt tills, glaciofluvial gravels,

FIGURE 3 . DISTRIBUTION AND THICKNESS OF SURFICIAL DEPOSITS.

sands with some silt, minor glaciolacustrine or pond deposits and modern alluvium. A description of surficial deposits identified in Figure 3 follows.

Zorra Till is a very stiff, commonly fissile, stony, silt or sandy, silt till, locally quite clayey near its base (Photo 2). It is usually leached of carbonates to a depth of about one foot and partially leached to a depth of 3.5 feet (1.5 m). Mean grain size falls within the coarse to fine silt range. The till is very poorly sorted. It occurs as ground moraine or in drumlins and is usually less than 20 feet (6 m) thick.

Ice-contact stratified drift consists mainly of gravel, sand and silt. These deposits directly underlies the Denby sanitary landfill site.

Glaciofluvial outwash deposits occur as sand and gravel (Photo 3) in the terrace along the major meltwater channel in the area (now occupied by Thames River). Gravel in these deposits varies from coarse cobble or boulder gravel, containing up to 20 percent sand, to fine pebble gravel and gravelly sand. Sorting is highly variable. Sands vary from very coarse to fine in mean grain size and are poorly sorted to well sorted (Cowan, 1975).

Glaciolacustrine or pond deposits are the results of deposition in small glacial lakes and the infilling of small postglacial ponds with slopewash or other locally derived materials. The delineation of these deposits in the study area is based on the information from water well records. These deposits are identified at three localities and confined within the small area (Figure 3) and consist of clayey silt. They may attain a thickness of up to 10 feet (3 m).

Photo 2. Zorra Till outcrops over considerable surface area and is classified as an aquitard - a part of till complex unit.

Photo 3. Glaciofluvial outwash deposits occur in the terrace along the Thames River. This is an aquifer material and forms the surface gravel and sand unit.

Modern alluvium consists of silt, sand, gravel and some clay and occurs along the floodplain of the Thames River. These sediments are locally derived and reflect the nature of the surrounding glacial sediments in composition. They are usually less than 10 feet (3 m) thick.

Throughout the study area, drift or overburden thickness varies from 0 to 300 feet (0 to 91 m; Figure 3). In the deeply incised Thames River Valley, drift generally ranges from 20 to 45 feet (6 to 74 m) in thickness; at the southeastern margin of the study area it reaches up to 300 feet (91 m) in thickness.

CHAPTER 2

HYDROGEOLOGY

2.1 Hydrostratigraphic Units

The cross sections shown in Figures 4 and 5 illustrate the distribution of hydrostratigraphic units in the broader area of the landfill site and along provincial highway 2. Existing lithologic units were grouped according to their common hydrogeologic characteristics to form three distinctive hydrostratigraphic units. The term hydrostratigraphic unit is defined as bodies of rock with considerable lateral extent with common hydrogeologic properties. It should be pointed out, that much of the following discussion is based on geological and hydrogeological information obtained from water well records as completed by independent drillers, and thus may be subject to some errors of interpretation. The following four hydrostratigraphic units underlie the area.

2.1.1 Bedrock Hydrostratigraphic Unit

A few feet, or a few tens of feet of the upper part of the bedrock are permeable and are considered to comprise a single hydrostratigraphic unit.

Bedrock is comprised of medium crystalline, thin-bedded cherty limestone. It is characterized by a fracture type of porosity irregularly distributed through the rock. The fractures in such type of rock are likely the result of ice stresses applied to the brittle rock.

Before the Pleistocene Epoch, the bedrock surface was exposed and subjected to extensive weathering. Atmospheric water containing carbon dioxide percolated through the original interstices, widening and deepening these joints and cracks by solution. During the Pleistocene Epoch the bedrock surface was overridden by successive ice sheets and was covered by glacial drift.

In carbonate rock of this sort several types of openings commonly contribute to permeability: (1) vertical joints in the ancient weathered zone within 10 to 20 feet (3 to 6 m) of the bedrock surface, (2) bedding joints within and below the ancient weathered zone, (3) primary intergranular permeability, perhaps enhanced by solution and (4) permeability of minor importance developed along leached gypsum stringers.

of 47 wells in the area, 29 have water well records on file with this Ministry (Appendix A), and all of these reportedly obtain water from the bedrock. Information from the water well records indicates that that depth of well penetration into the bedrock varies from 3 to 45 feet (1 to 13.7 m; Figure 5). Furthermore, when hydraulic heads in these bedrock wells are contoured, the uniform pattern of piezometric lines suggests continuity between all points. Therefore, it is reasoned that the upper several tens of feet of the bedrock represents a continuous artesian aquifer system.

2.1.2 Till Complex Unit

This hydrostratigraphic unit includes all tills of the study area whether exposed or buried. The silt to sandy silt Zorra Till (Photo 2) outcrops over a considerable

FIGURE 4 . VERTICAL SECTION A-A' SHOWING SEQUENCE AND DISTRIBUTION OF HYDROSTRATIGRAPHIC UNITS.

Section location is shown in Figure 1.

surface area. It is considered that the Zorra Till overlies clayey, silt Port Stanley Till. The stony, sandy, silt Catfish Creek Till may be buried over much of the area by both of the above tills. The textures of such silty and clayey tills causes them to have very low permeabilities and they are collectively classified as an aquitard. However, small lenses and beds of sand and gravel are present in these tills and may yield water sufficient for domestic needs. The thickness of this unit may reach up to 300 feet (91 m) (Figures 3 and 4).

2.1.3 Surface Gravel and Sand Unit

This unit includes ice-contact stratified deposits consisting mainly of gravel and glaciofluvial outwash gravel and gravelly sand (Photo 3), frequently overlain by several feet of sand and silt (Figures 4 and 5). In some places it contains a considerable amount of silt which reduces permeability. Drillers have reported the thickness of this unit up to 47 feet (14 m), but water has not been reported in any of the wells which had penetrated this granular material. This raises the question as to whether this highly permeable aquifer material is saturated or not. The likelihood is that it is unsaturated due to its hypsometric position. Because of the high permeability of this unit, it provides an excellent conduit for pollutants originating at the ground surface to reach the bedrock aquifer.

2.1.4 Glaciolacustrine Sediments

Confined within a small area at the ground surface these deposits are comprised of clayey silt and may reach up

FIGURE 5 . VERTICAL SECTION B-B' SHOWING SEQUENCE AND DISTRIBUTION OF HYDROSTRATIGRAPHIC UNITS.

Section location is shown in Figure 1.

to 10 feet (3 m) in thickness. The importance of this unit is viewed as an attenuating medium for the septic tank effluent and for any other pollutants which may originate at the ground surface. The correlation between the presence of this unit and the amount of nitrate in corresponding well waters is established further on in this report.

2.1.5 Recent Alluvial Sediments

Mixtures of sand, gravel, silt and some clay comprise this unit which occupies a limited area along the floodplain of the Thames River. It may also contain channel and bar gravels overlain by floodplain silts, sands, and muck. This material is poorly sorted and has low permeability.

2.2 Groundwater Flow in the Bedrock

In order to have flow in a groundwater reservoir, the water must have an initial store of mechanical energy in the form of fluid potential (Hubbert, 1940). Hence, groundwater flows under the influence of gravity following the most direct route from points of higher potential to points of lower potential. Contours of equal potential in the bedrock aquifer system give the direction of groundwater flow as well as the distribution of recharge and discharge zones.

Information obtained from water well records penetrating bedrock and filed with the Ontario Ministry of the Environment (MOE) were used to infer directions of groundwater flow in the bedrock aquifer.

Potential distribution in the bedrock aquifer as inferred from water well records is shown in Figure 6. It indicates that the landfill site is located in a recharge-transient zone of the bedrock aquifer system. Groundwater, generally moves downward and then horizontally in a north-westerly direction. The Thames River is considered to be the discharge zone for the bedrock aquifer flow system in this area.

Figure 6 also indicates that the deeply incised "valleys" into overburden deposits influence the hydraulic head distribution in the bedrock aquifer system. This situation is apparent in the area between the Denby landfill site and the Thames River (Figure 6), where the potentiometric contours have formed a local "potentiometric valley" which is more pronounced than the physiographic valley at the ground surface.

2.3 Hydrogeology in the Vicinity of the Denby Landfill

The vertical cross section shown in Figure 4 illustrates the distribution of geological and hydrogeological units at and below the landfill site and in the nearby wells. It is not certain, however, whether the till complex unit is continuous as shown in Figure 4. The location of well No. 2204 which indicates the absence of the aquitard material at the bedrock surface has not been confirmed. Therefore, information from this well has not been utilized in constructing Figure 4.

Information from water well records indicates the absence of water in the overburden in the vicinity of the landfill site and in the study area in general. It is therefore reasoned that the same situation prevails at the Denby landfill (Figure 4). Hence, the refuse was initially buried in trenches probably less than 10 feet (3 m) in depth under unsaturated conditions. However, a large amount of solid wastes were deposited at and above ground surface, then compacted and covered by granular material (Photo 4).

As shown by studies in Illinois (Hughes, Landon and Farvolden, 1971), infiltration through landfill covers does occur resulting in groundwater mounds within the landfill. Evidence of mounding at the Denby sanitary landfill site has not been observed. However, slight leakage and ponding of "leachate" was observed in the northwestern portion of the landfill site (Photo 4). A fluid sample was collected from this point (2L in Figure 1 and Appendix C) and analysed. It is considered that this occurrence of "leachate" at the ground surface was of a local significance only and was not a part of an extensive groundwater mound development.

The movement of leachate from the refuse toward the bedrock constitutes a pollution hazard for the bedrock aquifer system. The thickness of granular material at the Denby site is about 40 feet, while the underlying till deposits are about 60 feet in thickness. Assuming a permeability of the granular material of 5.5×10^{-3} cm/sec and a permeability of the till complex unit of 1.0×10^{-6} cm/sec, the travel time for leachate to reach the bedrock is about 9 years. This calculation assumes that the values of permeability apply over the entire thickness of the respective hydrostratigraphic units and that the leachate moves downward vertically. However, it is reasoned that the lateral movement of leachate toward the Thames River occurs before it initially

Photo 4. The Denby landfill site looking north. Refuse is piled up and compacted in the northern portion of the site and periodically cover with sand, silt and gravel.

Photo 5. Septic tank effluent is spread on the land during the winter months also.

reaches the bedrock. The interface between the silty gravel and sand unit and the underlying till unit is most likely the zone where lateral movement of leachate first occurs. The movement of leachate is futher influenced by: (a) the thickness of the saturated zone in the overburden, (b) the presence or absence of aquitard material resting directly on the bedrock and (c) by anomalous hydraulic head distribution in the bedrock aquifer system. Whichever complex path leachate movement takes, there is no doubt that the general direction is toward the Thames River, which is considered to be a discharge zone of the bedrock aquifer system.

CHAPTER 3

GENERATION, ATTENUATION AND MOVEMENT OF LEACHATE

The physico-chemical interaction between the leachate and the intervening glacial materials renovates the leachate and thereby reduces the impact on groundwater quality. The evidence shows that attenuation does occur as the leachate passes through the overburden, however this process appears to be insufficient to totally renovate the leachate with the result that the leachate enters the bedrock aquifer and pollutes the potable water supply.

A minor amount of leachate is derived shortly after emplacement of refuse during the initial compaction and settlement; however, most of it is produced at a later time when decomposition of the refuse reaches its maximum. The intensity of refuse decomposition depends on the initial waste composition, the presence or absence of oxygen, the time of burial, the age of the landfill, the degree of compaction, the temperature and the moisture content (Hughes, Landon and Farvolden, 1971). Water originating from precipitation will accelerate decomposition and will leach various organic and inorganic substances present in the refuse. The decomposition of refuse is aerobic in the early stages, but soon becomes anaerobic.

In the course of the migration through the ground the leachate is attenuated by dilution due to the infiltration of uncontaminated water, ion exchange, dispersion, diffusion, mechanical filtration, sorption, chemical precipitation, gaseous exchange and microbial activity. Although research is currently in progress in this regard, it is not

yet possible to understand fully the manner in which these attenuation processes function. Fine-grained sediments have a high capacity for attenuating contaminants, whereas sands and gravels have a lesser capacity. The rates of groundwater flow through fractured rocks are relatively high, but the rock can attenuate relatively small amounts of the components of the landfill leachate.

A literature review on the impact of leachate on ground-water quality reveals that the most obvious changes to be expected are increases in total hardness, alkalinity, calcium, magnesium, sodium, potassium, chloride and sulphate (Zonini, 1973). Other parameters such as iron, chemical oxygen demand (COD) and biological oxygen demand (BOD) may also show increases. Results of a recent investigation shows increases in total organic carbon (TOC), tannins and lignins and phenols but decreases in sulphate concentrations in conjunction with the presence of sulphate reducing bacteria in those wells affected by landfill leachate (Novakovic, 1976).

The most important gases generated by the landfill are carbon dioxide, methane, nitrogen and oxygen. They are released both to the atmosphere through cover material and to the surrounding ground and groundwater.

If the refuse in a landfill is placed above the water table then the amount of leachate produced will be approximately equal to the amount of infiltration into the landfill. In this area, there is a difference of approximately 12 inches (30 cm) between the average annual precipitation and the mean annual potential evapotranspiration. Considering that permeable granular material has been used to cover the solid wastes it is considered the 12 inches (30 cm) of infiltration is realistic. Applying this value over the 4-acre (1.6 ha) site would result in the production of 2 igpm (0.15 l/sec) of leachate on a continuous basis.

CHAPTER 4

GROUNDWATER QUALITY

In order to establish groundwater quality in the area of the landfill site, a water quality survey of the bedrock aquifer commenced in April, 1976. No special investigation such as drilling and establishing water quality monitoring wells at the landfill was carried out. Instead, the existing domestic wells completed into the bedrock were used to obtain water samples from the bedrock aguifer system.

In this section, reference is made to several of the existing wells by their particular number as they are shown in Figure 1. This is more practical than referring to the owner of any particular well. The corresponding names of the well owners are given in the Appendices of this report.

The summary of the chemical analyses is provided in Appendices B and C, while the bacteriological analyses are summarized in Appendices F and G.

Several wells which penetrated more than 15 feet (4.5 m) into the rock reported sulphurous water at the time of well completion, including 2207, 2210, 2280 and 3582.

4.1 Previous Investigation into the Contamination of Domestic Wells in the Study Area

The report entitled "Gasoline Contamination of Private Wells, Township of West Oxford" (Pitts, 1972) was issued by the Ontario Ministry of the Environment. The report summ-

arizes findings of an investigation into gasoline contamination of domestic wells carried out in 1970. The area investigated includes a portion of the present study area and extends about 1200 feet (366 m) east and 800 feet (244 m) west along highway 2 from the junction of the landfill access road to the Denby site and highway 2 (Figure 1).

The former report indicates three possible sources of gasoline, however the source of gasoline which had affected these domestic wells was not identified.

The report also concludes that increases in nitrate observed in a number of domestic wells likely originated from:

- i) Domestic septic tank effluent.
- ii) Spreading of the septic tank effluent on the land (as indicated in Figure 1 of this report; Photo 5).
- iii) Disposal of septic tank effluent in the abandoned gravel pit (presently the Denby landfill site).
- iv) A manure pile located at the southwest corner of the junction of highway 2 and the access road to the landfill.

The last three possible sources of nitrate contamination were owned or operated by the late E. Denby of R. R. # 1 Woodstock (of Denby and Sons Sanitation).

The report also notes that several domestic wells located north of highway 2 contained abnormally high concentrations of chloride due to road salt utilized on the highway.

4.2. Potential Sources of Groundwater Contamination

The characterization of background water quality in the bedrock aquifer is complicated by the present ongoing chemical reactions in the bedrock aquifer and by the existence of several potential pollution sources in the area. Some of these sources have been there for many years. These include:

- Septic tank effluent disposal fields associated with every household.
- Application of salt to highway 2 which passes through the residential area.
- 3. Operation of the Denby sanitary landfill site.
- 4. Spreading of septic tank effluent on the parcel of land located close to the domestic wells of several residences (Photo 5).
- 5. The barn manure and its associated pollutants, located uphill and upgradient of several residences.
- 6. The landfill leachate collected from the Denby sanitary landfill and disposed of in the wooded area southwest of the landfill site.
- 7. Installation of a private water treatment unit by several residents in the study area, which increases the concentration of sodium and chloride in the consumed water. Such water enters the groundwater system through septic tank disposal fields. Where water treatment is used, a representative water sample could not be obtained.

PERCENTAGE EQUIVALENTS PER MILLION

EXPLANATION

ANALYSES OF WATER		ANALYSES OF LEACHATE	
SYMBOL	DATE SAMPLED	SYMBOL	DATE SAMPLED
	07/ 07/ 70 , 30/ 09/ 70 , or	A	04/11/76 and 23/11/76
	14/12/70		
	21/04/76 or 08/06/76		
0	30/09/76 or 04/10/76		
Δ	04/11/76,15/11/76, or		
	23/ 11/76		

- 2201 Water well number; location is shown in Figure 1

FIGURE 7. HYDROGEOCHEMISTRY OF WATER FROM BEDROCK AQUIFER AND OF LANDFILL LEACHATE.

Further analyses demonstrated that the last three potential sources of pollution have had no discernible effect on groundwater quality. However, the first three pollution sources and to a lesser extent the fourth source are adversely affecting water quality in the bedrock.

4.3 Deterioriation of Water Quality in the Bedrock Aquifer

The chemical analyses are presented in three modes: (1) the complete chemical analyses (those which include major cations and anions) are plotted on the trilinear diagrams (Piper, 1964) in Figure 7, (2) the complete chemical analyses are plotted on the semi-logarithmic diagrams (Figures 8 and 9, and Appendix D) as introduced by Schoeller (1937) and (3) each chemical constitutent is plotted in the chronological order of sampling on maps (Figures 10 to 14 and Appendix E).

One of the more obvious indicators of groundwater pollution is chemical oxygen demand (COD). This parameter is shown first in Figure 10 because it gives an instant overview of the number of wells whose quality has been affected. They are generally concentrated around the junction of the landfill access road and highway 2.

The chemical quality of water from wells located east of an imaginary line parallel with the landfill access road is similar. This portion of the study area is designated as subarea 1 (Figure 1), and is discussed separately.

4.3.1 Subarea 1

As expected, the water chemistry plotted on the Piper

DATE SAMPLED: September 30 or October 4,1976

FIGURE 8.SEMI-LOGARITHMIC DIAGRAM OF THE CHEMICAL ANALYSES OF WATER FROM THE BEDROCK AQUIFER.

diagram indicates groundwater in the bedrock aquifer to be calcium-bicarbonate in type (Figure 7). No substantial changes in water quality occurred in the wells monitored during 1976, however the diagram does indicate that the chemical analyses from several wells fall within the central portion of the rhombohedron. These wells are confined within a small area along highway 2 and the majority of them are located on the north side (downslope) of it. A further examination of these analyses indicates that they contain relatively large amounts of sodium and chloride which are components of common salt.

An examination of chloride and sodium concentrations in domestic wells from subarea 1 reveals that they are elevated during late spring and early summer (Figure 11). However, the concentration gradually decreases during the summer and early autumn indicating a non-permanent source. It is therefore postulated that chloride and sodium are indirectly introduced into the bedrock aquifer system by highway deicing during the winter months. The fact that the concentrations of sodium and chloride decrease at varying rates from their spring-time peaks is explained by: (i) variations in local lithology (ii) variation in the intensity and occurrence of precipitation (iii) distances of the various wells from the road (iv) differing topographic gradient and (v) differing groundwater gradients.

Increases in sodium and chloride concentrations in groundwater are reflected by the position of the chemical analyses on the triangular diagram in Figure 7. Using chloride and sodium as indicators of groundwater pollution originating from salt used on the road, wells designated by the following numbers (Figure 1) have been affected: 1, 4, 2276, 2210, 2879, 3680, 5, 3069, 2202, 11, 2200. The degree to which these wells have been affected varies, but the

KEY
..... Landfill Leachate ---- Subarea 1 (wells) ---- Subarea 2 (wells

DATE SAMPLED: November 15 or November 23, 1976

FIGURE 9.SEMI-LOGARITHMIC DIAGRAM OF THE CHEMICAL ANALYSES OF WATER FROM THE BEDROCK AQUIFER AND OF LANDFILL LEACHATE.

concentration of chloride and several other chemical constituents in number of these wells does exceed the recommended limit of 250 mg/l for drinking water set by the Ministry of the Environment (1973).

4.3.2 Subarea 2

This area includes wells located west of the landfill access road (on both sides of highway 2) and it is bounded on the west by an imaginary northwest-southeast line passing approximately through well 15 (Figure 1).

The concentrations of chloride and sodium in the wells located in this subarea show an entirely different pattern than wells located in subarea 1 (Figure 11). Both chloride and sodium are slightly increased above the background concentrations, which are approximately 5 mg/l for chloride and 4 mg/l for sodium. However, during the monitoring period (from April to November, 1976) very slight variations (decrease then increase) of both ions were observed, indicating a persistent source (Figure 11).

Another difference from wells in subarea 1 is the increased concentrations of iron and phenols in all wells located in this subarea (except in those located north of Highway 2, Figure 10). The degree to which the water quality in these wells has changed varies throughout the year and it also depends on the locations of particular wells. The greatest changes are experienced in well 12. This well seems to be located in the "main avenue" of the movement of polluted groundwater.

Analyses of the local hydrogeological environments and the distribution of the hydraulic potential in the bedrock

FIGURE 10. HYDROGEOCHEMICAL MAP OF CHEMICAL OXYGEN DEMAND (A), TOTAL IRON (B) AND PHENOLS (C) DISTRIBUTION IN THE BEDROCK AQUIFER AND IN THE LANDFILL LEACHATE.

aquifer (Figure 6) supports the pattern of groundwater quality changes observed in the domestic wells in subarea 2. Hence, the deterioration of groundwater quality in subarea 2 is due to the introduction of landfill leachate components into the groundwater. The leachate is being generated at the Denby landfill. The sequence and the distribution of the hydrostratigraphic units at the landfill and in the nearby wells (Figure 4) explains why the water quality in well 3582 (the nearest to the landfill) has not deteriorated as badly as that in well 12. Although the 10 feet (3 m) of silty clay (till complex unit) resting on the bedrock surface was reported in only two wells along the line of cross section shown in Figure 4, it is certain that its presence plays an important role in defining the movement of the leachate and in determining the impact of leachate on water quality in nearby wells and in the carbonate aquifer in general.

That the components of landfill leachate are moving towards the Thames River is supported by other observations. For example, tannins and lignins were detected only in the well nearest to the landfill (well 3582). Furthermore, analyses of the soil samples taken from the well pit (well 3582; about 6 feet (1.8 m) below ground surface) indicates the presence of hardness, phenols, iron and sulphate in higher than normal concentrations. This soil enrichment in these chemical parameters is due to the leachate which has moved through it.

Although it is difficult to assess the degree to which individual domestic wells have been contaminated by landfill leachate, it is considered that the following wells (Figure 1) represent the core of the adversely affected areas: 3582, 12, 13 14, 2203, 2211 and 15. This contamination is experienced to a lesser degree in the wells located on the periphery of subarea 2 such as in wells 2280, 2206, 2208 and perhaps 2200.

FIGURE 11 . HYDROGEOCHEMICAL MAP OF CHLORIDE (A), SODIUM (B) AND POTASSIUM (C) DISTRIBUTION IN THE BEDROCK AQUIFER AND IN THE LANDFILL LEACHATE.

In several of the affected wells the concentrations of iron, phenols, total dissolved solids and total organic carbon exceed the recommended limits for drinking water (Figures 10, 13 and 14).

4.3.3 Schoeller Chemical Diagrams

The Schoeller plot (Schoeller, 1937), depicts the 7 major dissolved ions on equidistant verticals. By joining the points on the vertical lines a single analyses is represented in linear fashion. Waters of similar composition plot as nearly parallel lines. This graph is especially useful for comparing waters which do not differ greatly in composition.

Two Schoeller plots, shown in Figures 8 and 9 were prepared from the analytical results of waters collected from wells in the study area in September or October, 1976 and November 1976. The complete chemical analyses collected on other dates are also presented by use of Schoeller diagrams and are shown in Appendix D. In these diagrams contaminated well waters are identified by convex traces of analyses from wells 2879, 3680, 4, 3069 and 5. However, deviations from the general pattern are often due to changes in the local lithology, or to the presence of sulphate reducing bacteria in the wells. Such is the case in well 12 in Figure 8 and in the leachate sample 1L(a) in Figure 9. Mixing of the background quality water (containing low sodium chloride concentrations) with the sodium chloride water is apparent in the systematically decreasing slopes of the lines representing the water quality.

FIGURE 12. HYDROGEOCHEMICAL MAP OF HARDNESS (A), CALCIUM (B)
AND MAGNESIUM (C) DISTRIBUTION IN THE BEDROCK AQUIFER
AND IN THE LANDFILL LEACHATE.

Background water quality is represented by chemical analyses from wells 3092, 4002 and 2201 (Figure 9). The concave-shaped diagrams of the chemical analyses from these wells is apparent.

4.3.4 Nitrates and Potassium Concentrations in the Bedrock Aquifer

Nitrate is the end product of the aerobic stabilization of ammonia, organic nitrogen and nitrate, and as such it occurs in polluted waters that have undergone aerobic biological processes. Nitrate also occurs in percolating groundwater as a result of excessive applications of fertilizer or leaching from septic tank systems.

The Ontario Ministry of the Environment's Guidelines and Criteria (1973) for drinking waters recommends a limit of 10 mg/l nitrate as nitrogen. This limit was established because of the relationship between high nitrates in water and infant methemoglobinemia.

Infant methemoglobinemia, a disease characterized by certain specific blood changes and cyanosis, may be caused by high nitrate concentrations in water used for preparing feeding formulae. It seems likely that not all infants are susceptible to nitrate poisoning, but some are predisposed to it by physiological conditions. Many well waters containing over 500 mg/l of nitrate, as nitrogen have never been linked with reported cases (McKee and Wolf, 1963).

The background concentration of nitrate in unaffected wells is less than 0.01 mg/l. However, in many sampled wells it shows a considerable increase, the highest reported

FIGURE 13.HYDROGEOCHEMICAL MAP OF TOTAL DISSOLVED SOLIDS (A),
TOTAL ALKALINITY (B) AND CONDUCTIVITY (C) DISTRIBUTION
IN THE BEDROCK AQUIFER AND IN THE LANDFILL LEACHATE.

concentration being 8.1 mg/l (Figure 14). The elevated concentration of nitrate in domestic wells is indirectly related to the leaching of septic tank effluent into the bedrock aguifer.

Potassium also shows an increase in numerous domestic The background concentration of potassium in unaffected wells is up to 1.0 mg/l whereas the highest reported concentration of potassium in a contaminated well is 16.2 mg/l (Figure 11). Both nitrate and potassium show similar trends in the wells such as: (1) both parameters increase downgradient from the sampled septic effluent disposal fields, (2) where the low permeability sediments are present (either resting on the bedrock, or at the ground surface) no significant increase in either chemical parameter The same situation applies to organic nitrogen, which, in many wells exceeds the recommended limit of 0.15 mg/l for drinking waters (Figure 14). This is obvious supportive evidence that the sources of these nitrogen compounds and potassium are related to domestic septic tank systems.

It is also noted that there is no obvious increase in nutrients and potassium in the wells located in the immediate vicinity of the portion of land used for spreading of the septic tank effluent. This leads to the conclusion that this practice has had no discernible effect on the quality of the bedrock aquifer system.

It has been calculated that the residents in the study area (excluding the Dorland Subdivision) generate 51,150,000 lb/year (23,250,000 kg/year) of domestic sewage. After it passes through field tile beds this effluent contains 3.4 mg/l of organic nitrogen and 17 mg/l of nitrate (Bond, Straub and Prober, 1974). Using these figures, the calculation

FIGURE 14. HYDROGEOCHEMICAL MAP OF NITRATE (A), ORGANIC NITROGEN
(B) AND TOTAL ORGANIC CARBON (C) DISTRIBUTION IN THE
BEDROCK AQUIFER AND IN THE LANDFILL LEACHATE.

shows that a yearly input into the bedrock aquifer from these sources is 176 lb (80 kg) of organic nitrogen and 880 lbs (400 kg) of nitrate.

The concentrations of the nutrients and other chemical species entering the bedrock aquifer are controlled by: (1) the dilution capabilities of the aquifer itself, (2) dilution by a large amount of infiltration reaching the aquifer through overlying gravel and sand deposits, (3) dilution by a large amount of groundwater which flows from upgradient direction through the study area and discharges into the Thames River and (4) numerous additional attenuating processes.

4.4 Additional Interpretation of Groundwater Quality

The hydrochemical distribution suggests that the dominant controlling mechanisms may be: (1) dilution, (2) a combination of carbonate buffering and sulphate reduction and (3) the existing hydrogeologic framework. However the observed changes in groundwater chemistry point to a minor chemical reaction which may be partially superimposed on the carbonate equilibrium system.

The chemical reaction which is taking place in several wells is sulphate reduction. This process is incompletely understood and depends in part on the form of available organic carbon. Interpretative difficulties are experienced here due to the reported natural presence of hydrogen sulphide in several wells. Nevertheless, the correlation between sulphate concentration and the presence of sulphate reducing bacteria has been established (Appendix E) in several wells, including two wells located close to the landfill site (wells 12 and 3582 in Figure 1). This confirms earlier findings (Novakovic, 1976) that the reducing

environment within the landfill has been introduced into the bedrock aquifer and has engulfed the nearest domestic wells, thus stimulating the observed ongoing sulphate reduction.

The increases in hardness, alkalinity, total dissolved solids and to a minor extent calcium and magnesium (Figures 12 and 13) are related to the introduction of salt components in subarea 1 and by the introduction of landfill leachate in subarea 2. The highest reported concentrations of these components in the monitored wells was in late spring and early summer. The decreasing concentrations in total hardness, alkalinity and total dissolved solids towards the late autumn is not supported by an apparent decrease in calcium and magnesium concentrations. It is reasoned however, that this inconsistency is associated with the calcite-dolomite equilibria in the carbonate aquifer.

CHAPTER 5

DISCUSSION AND CONCLUSIONS

Several residents in the study area have experienced serious deterioration of their well water quality. Their complaints to the London Regional Office of this Ministry resulted in an extended well water sampling program. The analytical results of this program have indicated that there are three measurable sources of the carbonate aquifer pollution: (1) the Denby landfill, (2) salt used to remove the ice from provincial highway 2 and (3) septic tank effluent. There is evidence that pollutants originating from these sources are entering the bedrock aquifer system, resulting in contamination of individual domestic well water supplies.

Water quality impacts from de-icing operations and from septic tanks effluent were noted in a 1972 Ministry's report and have likely been affecting local water supplies for some considerable period. The introduction of leachate from the Denby landfill, however is a relatively recent and highly visible occurrence causing unpleasant taste and odours as well as discolouration of well water supplies. While all three sources are responsible for identifiable pollutants in local water supplies, the landfill leachate must be regarded as the most critical input.

The wells sampled are located in the area overlain by gravel and sand deposits of glaciofluvial origin that are highly permeable. Underlying this surficial material at depths ranging from 15 to 47 feet (4.5 to 14 m) is highly factured limestone bedrock of the Bois Blanc Formation of Paleozoic age. The bedrock aquifer from which all sampled wells obtain water yields hard, but good quality water.

However, hydrogen sulphide was reported in several wells at the time of their completion. The potable bedrock groundwater is particularly vulnerable to the infiltration of pollutants because of the permeable nature of the overburden materials.

There is no evidence as to whether the permeable material is saturated or not. Groundwater movement in the bedrock aquifer system is in the northwesterly direction with the Thames River as the discharge zone. Hence, the Denby landfill is situated such that it is a potential source of pollution to those water wells located downgradient from it.

The contaminated wells contain anomalously large concentrations of iron, phenols, chemical oxygen demand, total organic carbon, chloride, sodium, potassium, hardness, total dissolved solids and organic nitrogen.

5.1 Iron

It is characteristic for the wells in the immediate vicinity of the landfill to exhibit an increased iron concentrations. The recommended limit of 0.3 mg/l of iron is exceeded in these wells; however, in several wells located in the broader area, the natural concentration of iron is also elevated. Limits of iron in drinking water are not based upon physiological considerations, since iron in trace amounts is essential for nutrition. Indeed, large quantities of iron are taken for therapeutic purposes. The daily nutritional requirement is 1 to 2 mg and most diets contain 7 to 35 mg per day with an average of 16 mg.

The limit of 0.3 mg/l is based on esthetic and taste considerations. Iron tends to precipitate in hydroxide form and stain laundry and porcelain fixtures. It has also been reported that ferric iron combines with the tannin in tea to produce a dark violet colour. The highest reported iron concentration in a contaminated well is 4.4 mg/l.

5.2 Phenols

The ingestion of concentrated solutions of phenols can result in severe pain, renal irritation, shock and possibly death. It is not likely, however, that harmful concentrations of phenols will be consumed in drinking water because such concentrations are much higher than taste considerations would allow. A permissible limit for the concentration of phenolic compounds of 0.001 mg/l has been set because of tastes resulting from the action of chlorine on such waters.

The domestic wells in which phenolic compounds are present are confined to a small area immediately downslope from the sanitary landfill site. The highest reported concentration of phenols in a containedated well was 0.049 mg/l.

5.3 Chloride

Chloride ions are present in all natural waters and because of their physico-chemical characteristics they are transported by water through most rock materials, undergoing

relatively little retardation or loss. While the chloride concentrations in several sampled wells exceed the taste threshold, it is doubtful that the choride ion itself is physiologically harmful at anything but extremely high concentrations. Chloride criteria applied by various regulatory agencies seem to be based primarily on taste threshold values. In general, it is assumed that it is the cations (calcium, magnesium, sodium or potassium) associated with chloride that produce a harmful effect. Background chloride concentrations in the study area average 5 mg/l which is approximately 84 times less than the concentration of chloride in the well most affected by road salting but 8 times less than in the wells affected by the landfill.

5.4 Sodium

Sodium too is found in measurable amounts in all natural waters. It does, however, enter into ion exchange reactions making it unsuitable as a tracer ion. Large concentrations of sodium ions in drinking water may be harmful to persons suffering from cardiac, renal and circulatory diseases. While recommended limits vary from 10 to 115 mg/l it should be assumed that water from several of the affected wells (maximum reported sodium concentration was 290 mg/l) may be considered unfit for human consumption where "salt free" diets have been recommended by physicians.

5.5 Hardness

The increased hardness of water in the study area is directly related to the entrance of excess sodium, chloride, calcium and magnesium ions into the aquifer. In general,

the water in the study area is hard. With an increase of hardness due to the introduction of several chemical parameters in the carbonate aquifer system, the water has become excessively hard, and by some standards unsuitable for general domestic purposes. Hard water requires a considerable amount of soap to produce lather, and it usually deposits scale in hot water piping systems. Physiologically, however, hardness is not considered to be harmful to health.

Several residents have begun to use water softeners as a result of the increased hardness. In the water softener, calcium and magnesium ions are exchanged for sodium ions. Thus, softening water causes an increase in sodium ions. The discharge of this softened water water via septic tank systems into the aquifer results in further ion exchange reactions, and therefore a slight increase of hardness in the aquifer waters may be expected.

5.6 Nitrate and Organic Nitrogen

Increased concentrations of nitrate and organic nitrogen in the bedrock aquifer, in the absence of excessive use of fertilizer applications must be related to the leaching of septic tank effluent into the aquifer. In almost every sampled well, the concentration of the organic nitrogen (total kjeldahl minus free ammonia equals organic nitrogen) exceeds the recommended criterion of 0.15 mg/l set by this Ministry. However, the concentration of nitrate does not exceed the recommended limit of 10 mg/l for drinking water in any of the sampled wells. Concentrations of nitrate over the recommended limit is of concern because infant methemoglobinemia (blue babies), irritation of the mucous linings of the gastrointestinal tract and bladder and symptoms of

diarrhea and diuresis are all linked to the presence of excessive nitrate in drinking water (McKee and Wolf, 1963). The source of increased organic nitrogen and nitrate contamination are local septic tank systems, however it is also possible that a small amount of nitrate may originate from the spreading of septic tank effluent practiced on a nearby portion of land.

5.7 Conclusions

Calculations have shown that a large amount of water originating from precipitation infiltrates into the bedrock aquifer and that a considerable amount of groundwater flows through the affected area. These waters dilute the contaminants originating from the landfill and the other sources of pollution, therefore lessening the degradation of domestic water supplies and of the carbonate aquifer system in general. The supportive evidence of a relatively short flush-out time for the bedrock aquifer system is that petroleum hydrocarbons reported to be present in several wells in 1970 were not detected in the samples collected from the same wells in 1976.

Through the use of the Piper and Schoeller diagrams and maps showing the distribution of various chemical constituents, it has been demonstrated that the contaminants originate from three sources: (1) landfill leachate, (2) road salting and (3) septic tank effluent. A relatively small amount of nutrients originating from septic tank effluent spreading on the land may also be entering the bedrock aquifer system.

It is our opinion that Section 17 of the Ontario Environmental Protection Act, 1971 and Sections 31 and 32 of the Ontario Water Resources Act, 1970 have been violated.

The presence of the Denby sanitary landfill site poses a further threat to other domestic wells in the area because the pollution front is expected to continue to spread and to adversely affect additional domestic water supplies. The continuation of salt application to the road during the winter months will continue to elevate chloride and sodium levels in domestic wells particularly during the late spring and early summer.

CHAPTER 6

ALTERNATE SOURCES OF WATER SUPPLY

There are several alternatives available to restore affected water supplies. These include:

- Reverse osmosis equipment could be installed to treat drinking and cooking water supplies. However this would be an expensive alternative and it may not guarantee the total removal of phenols.
- Water could be hauled to the residences. However, this alternative is not a permanent solution of the problem which will persist for several years to come.
- 3. Suitable water supplies for domestic purposes could be obtained from a deeper bedrock aquifer. In this case, wells may yield water having a strong hydrogen sulphide odour, but otherwise water would be of suitable quality for domestic use. The hydrogen sulphide could be removed by appropriate treatment. A special well construction technique and procedure would be required if this alternative is pursued in order to shut out the shallow polluted water. The extent of a deeper bedrock aquifer in this area is not known, however.
- 4. A communal bedrock well could be constructed. The well should be located in an area where: (a) the bedrock aquifer is unaffected from the quality point of view, (b) the bedrock aquifer is protected by at least 20 feet (6 m) of overlying clayey material, (c) the pollution potential is minimal and (d) a sufficient elevation is

present so that gravitational feed is possible. The area southeast of the Dorland Subdivision would meet all these requirements. Well yield and water quality should be supported by a pumping test and chemical analyses. The difficulties concerning maintenance and control in establishing a private water supply system might be solved by incorporating it into the existing water supply system serving the Dorland Subdivision.

5. Since the affected domestic water supplies are located on the outskirts of the City of Woodstock the extension of the water main into the area of affected residences is an alternative.

The alternatives for restoring affected domestic water supplies should be also weighed by both economical and time factors.

CHAPTER 7

RECOMMENDATIONS

It is recommended that the operator of the Denby sanitary landfill site terminate use of the present site. In
order to lessen potential contamination of neighbouring
domestic wells and of groundwater in general, it is recommended
that efforts be directed to reducing the amount of leachate
which the site generates. In this regard, a planted and
compacted clay cover (instead of sand and gravel presently
used) is recommended together with an appropriately contoured
and finished grade and a planted vegetative cover. This will
reduce infiltration into the landfilled wastes and the
generation of leachate.

In order to minimize the amount of leachate entering the bedrock aquifer the existing leachate collection system should be improved and its operation better maintained.

Although there is no direct evidence that the spreading of the septic tank effluent on the land has affected water quality in any sampled well in the area, it is recommended that this practice be terminated. The land used for spreading is located in a hydrogeologically sensitive environment.

Salt application on highway 2 is used to provide winter safety to travellers. The reduction of salt use will improve water quality in wells located downslope from the highway, but on the other hand, it will pose a greater threat to those using the highway in the winter. Perhaps the residences whose water quality is affected by salt should not have been built there in the first place. Ontario Regulation 502/72

(Amendment to the Environmental Protection Act 1971) states that any road authority which uses any substances on a highway for the purpose of keeping the highway safe for traffic under conditions of snow or ice that is a contaminant is exempt from the Act.

It is recommended that the operator of the landfill site should make an effort to restore affected water supplies. To this end, it is also recommended that a qualified hydrogeologist be hired to deal with resolving the problem. Details and procedures of remedial measures to restore water supplies should be be worked out in close consultation with the technical staff of this Ministry.

Monitoring should be continued by the Ministry to determine whether groundwater quality is affected over larger areas with passage of time.

ACKNOWLEDGEMENTS

The initial investigation into this problem was carried out by Steve Check. His participation in the well sampling program and in gathering other information in the field continued after the author became involved in September, 1976. Capable assistance with data compilation and drafting was provided by Cindy Riediger and Tom Ervasti.

REFERENCES

- Bond, R. G., Straub, C. P., and Prober, R. (Eds.) 1974.

 Handbook of environmental control, Volume IV:

 Wastewater: Treatment and Disposal. CRC Press.
- Caley, J. F., 1941. Paleozoic geology of the Brantford area, Ontario; Geol. Surv. Canada, Mem. 226.
- Chapman, L. T. and Putnam, D. F., 1951. The physiography of southern Ontario; University of Toronto Press, 284 p. Accompanied by 4 maps, scale 1 inch to 3.95 miles.
- Cowan, W. R., 1975. Quaternary geology of the Woodstock area, southern Ontario; Ontario Ministry of Natural Resources, Division of Mines, Geol. Report 119; 91 p. Accompanied by 2 maps, scale 1 inch to 1 mile.
- Hewitt, D. F., 1960. The limestone industries of Ontario; Ontario Dept. Mines IMC5, Accompanied by Map 1960c, scale 1 inch to 20 miles and Map 1960d scale 1 inch to 1 mile.
- Hewitt, D. F. 1964. The limestone industries of Ontario, 1958-1963; Ontario Dept. Mines IMR13. Accompanied by Map 2059, scale 1 inch to 16 miles.
- Hubbert, M. King, 1940. The theory of groundwater motion, S. Geol, 48, pp. 785-944.

- Hughes, G. M. London, R. A. and Farvolden, R. N., 1971.

 Hydrogeology of solid waste disposal sites in northeastern Illinois, U. S. Environmental Protection
 Agency, Solid Waste Management Branch.
- McKee, J. E. and Wolf, H. W., (Eds.) 1963. Water quality criteria, 2nd edition. The Resources Agency of California, State Water Quality Control Board, Publication No. 3-A.
- Novakovic, B. 1976. Impact of the Owen Sound sanitary landfill on domestic water supplies, Derby Township, Grey County. The Ontario Ministry of the Environment, Southwestern Region, Technical Support Section.
- Ontario Ministry of the Environment, 1973. Guidelines and criteria for water quality management in Ontario.
- Piper, A. M., 1944. A graphic procedure in the geochemical interpretation of water analyses. Am. Geophys. Union Trans., W. 25, pp. 914 923.
- Pitts, L. V., 1972. Report on gasoline contamination of private wells, Township of West Oxford. The Ontario Ministry of the Environment (Interim Report).
- Sanford, B. V., 1969. Geology, Toronto-Windsor area, Ontario; Geol Surv. Canada, Map 1263A, scale 1:250,000.
- Schoeller, H., 1937. The chemical quality of water for human consumption in desert region. Chron Mines Coloniales 6, 552 Water Pollution Abstract 12 (Jan. 1939).

- Wicklund, R. and Richards, N. R., 1961. Soil survey of Oxford County, Ontario Soil Survey Rept.
- Zonini, A. E., 1973. Potential for groundwater pollution from land disposal of solid wastes. C. R. C. Critical Reviews in Environmental Control, May, pp 225 260.

APPENDIX A

SUMMARY OF WATER WELL RECORDS

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6V 1V3

COUNTY: OXFORD

TOWNSHIP (S): SOUTH - WEST OXFORD

DATE COMPILED: 09/12/76 COMPILER: T. ERVASTI

													11 -	-0			W COMMENT I. ERVISIT
WELL 1	LO	CAT	ION	ELEV.	OWNER	DOILL CO	DATE	TH OF	MEIT	WELL		STATIC		ING TE	EST	WATER	1.00 410 05140140
NO.	TWP.	LOT	CON.	(FT)	OWNER	DRILLER	A 18	CAS	(IN)	DEPTH (FT.)	FOUND (FT)	LEVEL (FT.)	DRAW- DOWN (FT.)	G.P.M.	HRS.	TYPE	LOG AND REMARKS
2279	S.W.O.	Gore	B.F.	932	FRED VALE	D. McLEOD	19/09/60			35	30	24	0	05	02	FRESH	GRAVEL AND STONES 0-20 LIMESTONE ROCK 20-35
22 76	S.W.O.	Gore	B.F.	920	A. RADFORD	D. McLEOD	23/09/60	23	04	38	38	25	0	05	02	FRESH	SAND 0-10 GRAVEL 10-23 LINESTONE 23-38
2210	S.W.O.	1	B.F.	928	L. HIPO (present owner) K. LINDSAY	K. McLEOD	23/01/66	. 17	44	50	50	20	23	04	04	Su _{ГР} ни́в	CLAY 0-6 SAND 6-17 ROCK 17-50
2879	5.W.O.	1	B.F.	932	D. NANCE KIVELL R. (present Millard owner)	R. RANSOME	09/69/69	21	05	38	37	23	01	04	1/2	FRESH	DUG BY HAND 0-21 LIMESTONE 21-38
3680	S,w.o.	1	B.F.	932	J. ELLIOT	N. STEINMAN	07/06/73	23	05	32	30	22	01	015	2 1/2	FRESH	GRAVEL AND STONES 0-23 LIMESTONE 23-32
3069	5.w.o.	1	B.F.	937	F. NEILL	R. McLEOD	03/09/70	26	04	34	34	25	0	ෘ	02	FRESH	TOPSOIL 0-2 BOULDERS & GRAVEL 2-20 GRAVEL & HARDPAN 20-26 LIMESTONE 26-34
2280	S.W.a	1	B.F.	940	F. NEILL JIM'S TRAILER PARK	E. JOSH	25/04/46	30	4%	45	45	20	0	03	02	SULPHU	GRAVEL 0-15 HARPPAN 15-30 LIMESTONE 30-45
2206	5.wo.	1	B.F.	932	A. YOUNG (present owner) C. GEE	A. GHENT	01/06/56	25	05	38	37	10	02	06	04	FRESH	GRAVEL 0-25 LIMESTONE 25-38
2208	5.W.O.	1	B.F.	930	A.E. SLATER	D. McLÉOD	27/09/60	25	04	35	34	20	04	05	02	FRESH	GRAVEL & SAND 0-25 LIMESTONE 25-35
		X															

LOCATION IS SHOWN IN FIGURE 1.

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6V 1V3

COUNTY: OXFORD

TOWNSHIP (S): SOUTH-WEST OXFORD

DATE COMPILED: 09/12/76 COMPILER: T. ERVASTI

													., -				The same of the same same same same same same same sam
WELL1	LO	CAT	ION	ELEV.	ON MED	500.50	EE	4 0 Z = 0 C = 1	WELL		WATER	STATIC	PUMP	ING TE	ST	WATER	
NO.	TWP	LOT	CON.	(FT)	OWNER	DRILLER	DATE	LENGTH OF CASING (FEET)	OW. (IN)	DEPTH (FT:)	FOUND (FT)	LEVEL (FT.)	DRAW- DOWN (FT.)	G.P.M.	HRS.	TYPE	LOG AND REMARKS
2275	5.W,Q.	GORE	B.F.	960	WESTMOUNT HOTEL N. De LEON	S. REMICK	06/05/50		45/8	52	52	35	12	09	03	FRESH	GRAVEL & BOULDERS 0-47 ROCK 47-52
2278	5.W.O.	GORE	B.F.	947	G. RADFORD J. RADFORD	N. STEINMAN	12/69/57	38	4 ½	41	38	26	08	010	04	FRESH	GRAVEL \$ BOULDERS 0-38 LIMESTONE 38-41
3414	5.W.O.	Gore	B.F.	947	G. RADFORD J. RADFORD	N. STEINMAN	11/04/12	37	05	40	40	23	01	020	02	FRESH	CLAY & STONES 0-19 GRAVEL 19-37 LIMESTONE 37-40
2202	5.W.O.	1	B.F.	935	J. LOWES Can-Tario (present Precast Ltd owner)	E. JOSH	16/05/50	33	04	42	42	18	_	03	01	FRESH	SAND & GRAVEL 0-33 ROCK 33-42
2200	5:w.o.	1	B.F.	950	E. DENBY	E. Josh	26/09/46	32	04	48	47	20	-	03	02	FRESH	SAND 0-5 STONES & SAND 5-15 SAND 15-30 ROCK 30-48
2204	5.W.O.	1	B.F.	956	J. DENBY	E. JOSH	10/11/50	36	4/2	52	52	21	04	03	01	FRESH	GRAVEL & STONES 0-20 SAND 20-33 ROCK 33-52
3582	S.W.O.	1	B.F.	964	J. DENBY	N. STEINMAN	13/10/72	45	05	69	65	49	02	014	02	SULPHU	LIMESTONE 45-69
2207	S.WO.	1	B.F.	968	J. DENBY	N. STEINMAN	15/06/59	45	04	90	47 85	47	16	08	03	TRACE OF SULPHUR	OPEN PIT 0-5 BOULDER & GRAVEL 5-33 CLAY 33-45 UMESTONE 46-90 82
2203	S.W.O.	1	B.F.	941	C. JEFFERIES	E. Josh	03/11/50	33	44	53	52	22	03	03	01	FRESH	GRAVEL ₹ STONES 0-20 SAND 20-40 ROCK 40-53
2211	S.W.0	1	B.F.	945	J. HEASLIP	E. JOSH	18/08/67	32	44	40	40	30	05	06	03	FRESH	SAND & GRAVEL 0-30 LIMESTONE 30-40
2201	5,w.0.	1	B.F.	947	J. FRASER	E. J05H	14/04/50	33	04	48	48	18	-	03	01	FRESH	SAND 0-33 ROCK 33-48

¹ LOCATION IS SHOWN IN FIGURE 1.

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6V 1V3

COUNTY: OXFORD

TOWNSHIP (S): SOUTH - WEST OXFORD

DATE COMPILED: 09/12/76 COMPILER: T. ERVASTI

													11 -			- 17. 7.	OUT WILLIAM TO PET
WELL 1	LO	CAT	ION	ELEV.	OWNER	DRILLER	ED	TH OF	WELL	WELL		STATIC		ING TI	EST	WATER	LOC AND DEMANCE
NO.	TWP	LOT	CON.	(FT)	OWNER	DRILLER	DATE	CASI	(IN)	DEPTH (FT)	FOUND (PT)	LEVEL (FT.)	DRAW- DOWN (FT.)	G.P.M.	HRS.	TYPE	LOG AND REMARKS
2277	S.w.o.	1	B.F.	942	L. RIED P. KNOPP J. Streef kerk (present owner)	K. McLEOD	30/03/54		. 1		48	24	01	06	03	FRESH	TOP SOIL HARDPAN ÉSTONES 2-10 GRAVEL É STONES 10-33 LIMESTONE 33-49
2220	S.W.O.	1	B.F.	943	F. NISON W. HARTLEY	A. GHENT	28/03/56	28½	5	50	49	22	02	06	03	FRESH	CLAY BONLDERS & SAND 0-28 LIME STONE 28-50
2205	S.W.O.	1	B.F.	946	B. CHALMERS	E. Josh	05/12/50	34	44	63	62	20	05	03	01	FRESŲ	GRAVEL \$ STONES 0-20 GRAVEL 20-34 ROCK 34-62
2213	S.W.O.	2	B.F.	945	V. LOWES	S. REMICK	08/06/49		4%	60	60	26	04	05	03	FRESH	LIMESIONE 20 40
2217	S.W.O.	2	B.F.	946	F. KENNY	E. Josh	03/12/51	35	04	55	55	18	07	03	01	FRESH	ROCK 35-55
2214	S.W.O.	2	B.F.	990	J. DORLAND	E. JOSH	30/05/47	96	05	124	124	66	_	03	02	FRESH	HARDPAN 76-96 ROCK 96-124
2221	S,w.O.	2	B.F.	990	DORLAND SUBDIVISION	K. McLEOD	17/03/60	94	5岁	135	125	60	25	020	01	FRES	CLAY 0-20
4002	5.W.O.	1	I	1205	H. KARN	N. STEINMAN	05/08/14	306	05	366	340	223	57	012	25	FRESH	CLAY 0-84 SHALE 297-306 GRAVEL 84-96 LIMESTONE 306- HARDPAN 96-219 LIMESTONE 306- CLAY 219-286 HARDPAN 286-297
1	S.W.O.	GORE	B.F.	929	B. BERTRAND B. CRYNEN (present owner)												Well terminated in bedrock (no well record)
2	6.WO.	GORE	B.F.	931	A. DeZUTTER												Bedrock well
3	SW.0.	GORE	B.F.	932	D. HARBURN												u .

¹ LOCATION IS SHOWN IN FIGURE 1.

1 | acation is shown in Figure 1

SUMMARY OF WATER WELL RECORDS

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6V 1V3

COUNTY: OXFORD

TOWNSHIP (S): SOUTH-WEST OXFORD

DATE COMPILED: 20/1/77 COMPILER: C. RIEDIGER

WELL 1	LO	CAT	ION	ELEV.			u A	th of	MEIT	WELL	WATER	STATIC	PUMP	ING T	EST	WATER			
NO.	TWP	LOT	CON.	(FT)	OWNER	DRILLER	DATE	Leng Casin	DIA.	(FT.) DEPTH WELL	FOUND (FT)	LEVEL (FT.)	DRAW- DOVAN (FT.)	G.P.M.	HRS.	TYPE	LOG AND	REMARKS	
4	S,W0.	GORE	BF.	928	E. ENTRONMENT G.MATERN D. HARMER (present owner)				5	22.7							Bedroc	× well	
5	S.W.O.	1	BF.	933	ME. ELLIOT				4	27.8							н	p	
6	S.WO.	GORE	B.F.	948	H. ROBILLARD												Ŋ	- 4	
7	SW.O.	GORE	B.F.	947	J. BOWMAN												ц	n	
8	SWO.	GORE	B.F.	944	T. McGINNIS												11	h	
9	s.wo.	Gore	B.F.	949	F. TILLEY							11					n	и	
10	5W.O.	GORE	B.F.	944	J. HIBNER												(1)	ίι	
11	Swo.	1	B.F.	942	G. BLAIS												71	(1	
12	S.w.O.	1	B.F.	949	K. ELLERY					55							Lt	11	
13	5.W.O.	1	B.F.	947	E. KEATINGS												11	11	
14	S.W.O.	1	B.F.	945	E. SEAGRIST)1	l ₁	

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6V 1V3

COUNTY: OXFORD

TOWNSHIP (S): SOUTH-WEST OXFORD

DATE COMPILED: 20/1/77 COMPILER: C.RIEDIGER

									-								
WELL 1	LO	CAT	ION	ELEV.		50	, A	th of g(ft)	MEIT	WELL		STATIC		ING TI	EST	WATER	
NO.	TWP	LOT	CON.	(FT)	OWNER	DRILLER	DATE	Leng	DIA. (IV.)	DEPTH (FT.)	FOUND (FT)	LEVEL (FT.)	DRAW- DOWN (FT.)	G.P.M.	HRS.	TYPE	LOG AND REMARKS
15	S.W.O.	1 .	B.F.	945	J. FEATHERSTONE												Bedrock well
16	SWD.	4	3.F.	946	R. GUNN												II II
17	SWD.	2	B.F.	986	J. WATLING												li ii
18	SWO.	2	B.F.	1010	J. STANSFIELD												11 (
3092	S.W.O.	2	BF.	1185	D. KARN	N. STEINMAN	05/10/7	248	07	281	278	156	26	17	3	FRESH	BROWN STONEY CLAY 0-23 CLAYEY GRAYEL 13-145 GREY GRITTY CLAY 145-205 GREY CLAY 205-248 GREYISH-BROWN LIMESTONE 248-281
1																	

APPENDIX B

SUMMARY OF CHEMICAL ANALYSES OF GROUNDWATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

	County: OXF	ORE)			Tov	vnship :	SOUTH	-WEST	OXF	ORD	Da	te co	ompile	ed : 16	12/	16	C	ompi	ler:	T. ER	vA ST	I AN	10 C.	RIED	IGER
<u></u>			34 -	led		as CaCO ₃	as CaCO ₃	e 25°C		or in	ts	Ca	Mg	Na	×	C	SO ₄	HCO	Nitr	ogen	as N		Phospi as P		(gdd)	Fe
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness	Alkalinity	Conductance micromhos/cm-25°C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois	Iron
	B. Bertrand	. ~		1.1	ppm	380	313		7.48					290	1.5	420	48								41	0.10
1	B Crynen (present owner)	GOK	B.F.	21/06/16																						
	(present owner)				%epm																					
					ppm																					
					epm						-															
	-				%epm				1- 1-		-						- 0									0.1
	Α.		0.5		ppm	308	254	600	7.45		-					14.0	38								<u> </u>	0.06
2	Dezutter	SORE	D.F.	15/06/16	-					-	-															
	-				%epm					-	-	-			-					-						
				21/06/76	ppm					-	-	-								-						\vdash
11	11	n	п	21/00/10	-					-									-						_	-
	-				% epm					-	-															-
					ppm						-	-														-
					epm					-	+	-		-	-											
		_			% epm	10.0				-	-			L.,						-						
l _	D.	0.00	05	11.1.	ppm	420	250		7.4	-	 	123	27		1.4	142		364.8	0.01	0.10	0.003				3	0.10
3	Harburn	GOME	D,r.	14/12/10					-	-	-	6.138			0.036					-	-	0.393			_	\vdash
					%epm			111	700	-	-	60.3	21.82	17.52	0,35	41.43		51.61							-	
				1-1-	ppm	260	254	600	7.78		+	-	-	-			42	-		0.370	1		0.006		2	0.07
17	-11	п	- (1	26/05/70							+	-			-						 					\vdash
			_		%epm	222	240	E10	-	-	-	-			-		24.6			-					1	0.15
		ч	11	15/06/71	ppm	292	248	560	7.6	-	-	-	-	-	-	7.5	34.5	-	-	-			-		41	0.07
n	10	ч		Lipolci	epm %epm					-	+	+	-	-	-	-	-	-	-	-	-	-			-	\vdash
	+	-		-	ppm		-	-	-	-	+	-	_	-	-			-	-	-		-		-	-	\vdash
ly.	1	п	n	21/06/11				-		1	+-	+	 	1	-	 	-	 	 	-		 			-	+
	, ,			1	%epm						1		-	†	 										-	

¹Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; | ppm = | mg/l = 1 lb/100,000 lmp. gal.

(cont'd)

Southwestern Region Technical Support Section

Results reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

Township: SOUTH-WEST OXFORD County: OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND CRIEDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand ; 5-Day	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
1.	B.Bertrand B.Crynen (present owner)	Gore	B.F.	21/06/76		0.16	۷٥.0۱		LO.02			(4)	Z0.02		39	78	6	84	N.D.			1156	
	1																						1/
2	A. DeZutter	GORE	B.F.	15/06/76									ζ0.02		10	65	1	66	N.D.			370	
11	ļī	ij	11	21/06/76		0.53	0.05		∠0.02				19										
																	,						
3	D. Harburn	GORE	B.F.	14/12/70	ž																0.1		
u		ηt	ī,	26/05/16										0.4	42.0						L0.1		
11	£1	ņ	ţt.	15/06/76									40.02		4	63	2	65	N.D.			336	
h.	IV.	п	şl	21/06/76		0.30	0.02		ZO.02	=													

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

County: OXFORD

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C. RIEDIGER

ç				pel		as CaCO ₃	as CaCO ₃			or in	ts		Mg	Na	×	ਹ	SO4	E S H	Nitr		as N		Phosp as F	horus	(qdd)	F.
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness C	Alkalinity c	Conductance micromhos/cm-25°C	pH at lab	Apparent Cole Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron
	Ę.				ppm							138	15	104	10.3		41									
4	Entronment	GORE	B.F.	07/07/70	epm																					
1					% epm																					
					ppm	524	395		7.1			180	18.0	190	6.8	336	51	4-81.6	0.01	0.27	0.002	6.5			4	0.2
11	G	II	ηì	14/12/10	epm							8.982	1.480	8.265	0.173	9.478	1.061	7.893				0.464				
	Matern			1	%epm							47.52				51.42	5.75	42.82								
					ppm	392	381		7.24					84	16.2	54	48								41	0.01
i,	и	11	10	21/06/76	epm															-						
				1	%epm																					
					ppm	388	376	1010	7.47	45	0.30	125	18.8	55	17.2	56	46	458.42	0.015	0.245	0.001	8.0	0.009	0.008	41	40.01
N	11	11	n:	04/10/16		0.00						6.238	1.546	2.392	0.439	1.579	0.958	7.513				0.57		0.000		
			1	4-1-1	%epm							58.77	14.56		4.14	15.71	9.53	74.75								
	D.				ppm	430	377	1100	7.48	45	0.30		18.4			90	39.0	459.6	0.005	0.20	40.00	6.9	0.011	0.004	7	0.02
h	Harmer	Ni.	11	23/11/16			3.7	1100		-	1 3-	6.986	1.514	2.588	0.251	2.539	0,812	7.573	0.005	0.20		0.493		0,100,1		0.02
	Harmer (present owner)	31	13	23/11/10	% epm					<u> </u>	 	61.61				23.33		69.21				0.415				
	0,0)	+			ppm				 	+-	 	0	70000	26 02		23.37	2240	61.21								-
					epm				 	 				-		-									-	
					%epm				 	-	 	-	-			-			-				-		-	-
		+	\vdash		ppm				-	-	├─	-	-	-	-	-									-	-
					epm			-	 	\vdash	-	+			-	-							-		-	-
					%epm					-		-	-	-	-	-						-	-	-	-	-
		\vdash			ppm					-	-			-	-	-		-			-	-			-	-
					epm					-				-	-											-
					%epm				-	1	-	+				-							-	-	-	-
		+		-	nnm	424	410	-	7.21	+		+	-	230	9.8	280	53				-				41	0.02
2276	Radford	Chec	BF	21/06/21	epm	121	1,10		11.21	-		-		200	1.0	200	33	201.4.4					 			10.02
1210	Kadford	OOLE		120/16	%epm	A				 		+	-	-		-		-		-	-		-		-	-

¹Location is shown in Figure 1; N.D. – Not detected; < – Refers to less than; | ppm=| mg/l=| lb/100,000 lmp. gal.

(cont'd)

Southwestern Region

Results reported in mg/l unless otherwise indicated

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST ONFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND C. REDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
4	E. Entronment	Go#€	B.F.	07/07/70															N.D.				
11	G. Matern	d	ij	14/12/10																	0.1		7
11	11	n.	w	21/06/16		0.08	0.07		۷٥٠٥٤				40.02		9. 7	112	4	116	N . D.			682	73
h	П	П	n	04/10/76											3.9							550	
И	D. Harner (present owner)	ī	n	23/11/76									ž Ž										
					2-																		
																							-
	^																						-
2276	A. Radford	Gore	B.F.	21/06/76		0.27	0.50		LO.02				< 0.02		47	120	4	124	N.D.			1064	

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region Technical Support Section

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date compiled : 12/12/76

Compiler: T. ERVASTI AND C. RIEDIGER

	ounty. Oxpored					100	viisnip .	JULIA		~~~	-,-	Da	te co	mpile	ea . /	10/10-1	ıψ		ompi	ler .	/						
<u> </u>	uo a			led		as CaCO ₃	as caco ₃	e 25°C		or in	ts	Ca	Mg	Na	×	ប	SO4	НСО	Nitr	ogen	as N		Phosp as P	horus	(qdd)	Fe	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness _C	Alkalinity _C	Conductance micromhos/cm-25 ^o C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO ₃	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron	
	34				ppm																						1
	1				epm																						1
					%epm			7																			1
	R.J.		25	1.1	ppm							59	28	19	1.7		48									_	1
2210	Corew	1	R.	07/07/10	epm					 																<u> </u>	4
					%epm	2/ 4			7.6							-				. (0		1) 01			/1		1
	я				ppm	268	257		7.5	-		ļ		-		3		_	20.01	0.13	0.001	0.01			4	0.2	4
18	K	t(11	30/09/10	epm										-		k = = =							-		-	1
		-	-		%epm	E/1	//0/		7.2		 	<u> </u>	-	245	1.9	335	91				-				41	0.3	H
1.	Κ.			21/06/16	ppm epm	564	491		1.2	-				243	1.7	222	06				-	-			1	0.3	ř
G	K. Lindsay (present owner)	1	ч	2/06/	%epm					_		-			 	-						-		\vdash		 	1
					ppm	292	277	630	7.46	5	2.7	71.0	29.0	28.4	1.4	14.5	50	2277	/\ Λ5¢	0.195	0.00	0.05	0.045	0.03	11	0.3	1
tr	jt.	li	ı	04/10/76		- 1-		000	,,,,	-			2.385	1.235	0.035					0.763	0.00	0.004		0,03		10.0	1
1 "				O POPO	% epm						1	49.21										0.00,					1
					ppm	260	250		7.56			1 10.21	00.11	20.0			48	7,3-1	_				-	-	41	0.2	7
l tr	п	įŧ	įi.	15/11/76												110	10		†	<u> </u>		—				10.0	7
,				, ,	%epm															-							1
					ppm							1				1			1							T	1
1					epm											1											1
1					%epm															111111111							1
					ppm																						1
					epm																						
					%epm																					1_	_
				ic ii	ppm							-	-											<u> </u>		-	4
					epm				ļ		-	-	-		-	-		-								+-	4
		L_			%epm						<u> </u>		<u> </u>			1		<u> </u>									

 $^{^{1}\}text{Location is shown in Figure 1} \hspace*{0.2cm} ; \hspace*{0.2cm} \text{N.D.} - \hspace*{0.2cm} \text{Not detected} \hspace*{0.2cm} ; \hspace*{0.2cm} < -\hspace*{0.2cm} \text{Refers to less than} \hspace*{0.2cm} ; \hspace*{0.2cm} | \hspace*{0.2cm} \text{ppm} \hspace*{0.2cm} = \hspace*{0.2cm} | \hspace*{0.2cm} \text{Imp.} \hspace*{0.2cm} | \hspace*{0.2cm} \text{N.D.} \hspace*{0.2cm} | \hspace*{0.2cm} \text{Imp.} \hspace*{0.2cm} | \hspace*{0.2cm} \text{Refers to Imp.} \hspace*{0.2cm} | \hspace*{0.2cm} \text{Imp.} \hspace*{0.2cm} | \hspace*{0.2cm} | \hspace*{0.2cm} \text{Imp.} \hspace*{0.2cm} | \hspace*{0.2cm} \text{Imp.} \hspace*{0.2cm} | \hspace*{0.2cm} \text{Imp.} \hspace*{0.2cm} | \hspace*{0.2cm} \text{Imp.} \hspace*{0.2cm} | \hspace*{0$

Te

Southwestern Region Technical Support Section

Results reported in mg/I unless otherwise indicated

(cont'd)

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND C. RIEDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
																					_		
2210	R.J. Careu	1	B.F.	סר/דט/דט							ge .								N.D.				1
lı.	11	ħ	ti	30/01/10																			,
ų	K. LINDSAY (present owner)	u	U	21/06/76		0.34	0.10		∠o•02				۷٥.02		23	140	4	144	N.Q.	O		1310	
n	N	и	ti	04/10/76											2.0	68	5	73		0		328	
ĮΙ	ţ,	a	ti	15/11/76											L1.9								
																	y.						1
						,																	1
1.												<u> </u>					L		L	<u></u>	I	L	_

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region

Technical Support Section

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C. RIEDIGER

(County: OXF	OKL	,			Tov	vnship:	South.	- M E 2	1 0	HORD	Da	te co	mpile	ed: 10	0/12/7	9	C	ompi	ler : T	T. ER	VASI	MINI	J C.1	CIEDI	GER	ب
u				led		as caco ₃	as caco ₃	e - 25°C		or in	ts	Ça	Mg	Na	¥	ច	2O ₄	НСО	Nitr	ogen	as N		Phosp as P		(ppb)	Fe	
Identification Number ¹	Numb Numb Owner Sourc			Date Sampled	Units	Hardness _C	Alkalinity _C	Conductance micromhos/cm-25 ⁰ C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron	
E.	D.				ppm							173	27	121	2.5		58		0.01	0.08	0.39	15.0	0.037		20		
287 9	Nancekivell	1	BF.	07/07/20	epm																						
	rancetaven	-	L,		% epm																						
į u				1.1	ppm	540	427		7.0	 _						233			0.07	0.24	0.44	4.6			_5	0.2	l
1 1	п	ŋ	14	30/09/10	epm %epm							-			-								-		لبسا		1
-	<u> </u>	┿	-	-	ppm	1000	491	4350	7.13	-	-				-		180		.3 006	∩ 3EE	0.033		0.007		2	0.11	
	R.	n	n	26/05/16		1000	471	4350	161 3								180		0.005	0.305	0.033		0.001			0.11	1
l,	Millard			word.	%epm						-			-													
		T			ppm													-									
: 11	1.1	п	и	23/06/16	epm																						ı
1					% epm																						1
					ppm	556	473	2040	7.40	45	0.40	212	25.2	216	2.3	310	112	576.69	0.015	0.295	0.035	7.4	0.010	0.067	1	0.03	1
1 31	h.	h	-t-	04/10/1	epm							10.579	2.073			8.745	2-332	9.452				0.529					
					% epm							47.85	9.38	42.50	0.27	42.60	11.36	46.04									
					ppm	516	419		7.07					128	2.1	203	96								1	40.01	
1 11	n	N	ч	15/11/16]
4					%epm	-			a .																		
,					ppm			4																			1
		1			epm						<u> </u>					-											1
		1	_		%epm										_											↓	1
					ppm					-		-	-											-		-	1
					epm %epm					-		 			-	-		-								├	1
,		\vdash	-		%epm ppm					-	-		 		-			-				-					1
				1	epm		-				-	—	1											_		<u> </u>	1
**	1	10			%epm		1					1	1	1													1
			-																								4

¹Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 ppm=1 mg/l=11b/100,000 lmp. gal.

76

Southwestern Region

Technical Support Section

Ontario

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C. RIEDIGER

	County: OXF	OKL	_			Tov	vnship :	South	- 40 00	. 9	FURD	Da	te co	mpile	ed ; 14	0/12/1	9		ompi	ler:	1. 6.	VASI	, ,		HED.	40.0	1
				led		as caco ₃	as CaCO ₃	-25°C		or in	ts	Ca	Mg	Na	¥	ರ	\$0°	ξ	Nitr	ogen	as N		Phosp as P		(qdd)	Fe	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness C	Alkalinity _C	Conductance micromhos/cm-25 ⁰ C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenols (p	Iron	
4	D.				ppm							173	27	121	2.5		58		0.01	0.08	0.39	15.0	0.037		20		
287 9	Nancekivell	1	BF.	07/07/20	epm																						
	Nancerival		L,		% epm																						
				1.1	ppm	540	427		7.0							233			0.07	0.24	0.44	4.6			5	0.2	
: 11	"	0	ч	30/09/10																							
<u></u>		_			%epm															0.045			- 70				
į	R.	Ti.		1-64	ppm	1000	491	4350	7.13								180		U.005	O.355	0.033		0.007		2	0.11	
l _t	Millard	"	1"	26/05/16																							'
<u>-</u>		╀	-	 	%epm							-	-									-					
		iτ	-11	23/06/16	ppm epm			-			-					 			-								ĺ
j M	10			23/00/16	% epm			-		 	-	 										-				$\vdash \vdash$	l
-		+	\vdash	-	ppm	556	473	2040	7.40	45	0.40	212	25.2	211-	2.3	210	11.2	571 10	0.015	o. 295	0.035	7.1	(2.014	0.067	- , -	0.03	
1	le le	16	l v	04/10/1		306	713	2010		- J	0.40	10-579	2.073	9. 3%	0.059	8.745	2.332	9.452	02013	0.213	0.000	0.529	0.010	0,001		0.03	
i (1				CHIOIN	% epm					100		47.85		42.50	0.27	42.60	11.36	46.04									
-	 	+	+		ppm	516	419		7.07	_	<u> </u>		1.50	128	2.1			101							1	40.01	
1	ti ti	k	1	15/11/16		214	,,,							120		~~~	,,,									10.0	l
! 10	1		1	,,,,,,	%epm						1																l
		\vdash	1		ppm																						ĺ
			į.	1	epm																						
			ı	İ	%epm																						ı
		1			ppm																						l
	,				epm																						l
					%epm																						l
					ppm						-		ļ														
1					epm				<u> </u>		-		-			-										-	ı
1					%epm																						

¹Location is shown in Figure 1; N.D. – Not detected; < – Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

76

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND C. RIEDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand ; 5-Day	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
2879	D. Nancekivell	1	B.F.	סר ר ס ר ס															24		0.04		
n	u	14	u	30/09/70																			
n n	R. Millard	i,	ţ)	26/05/76										0.4	46						LO.1	2888	
Vf	11	и	н	23/06/76		0.05	0.10		LO.01														
t _l	U	t	ij	04/10/26		×									69	132	10	142		0		1120	
Į į	Įt.	fş	jı	15/11/76											54						э		
																			je!				
												,											
													. =										

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/I=1 lb/100,000 lmp. gal.

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

Ontario

All analyses except pH reported in mg/l unless otherwise indicated

County: OxFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C.RIEDIGER

	county, on	-	-					000.11	AC-16/					, iiipiik		0/12/			Cilipi	<u> </u>						
c				e d		as CaCO ₃	as caco ₃	e -25 ⁰ င	ж.	or in	ts	င်ခ	B	Ra	¥	ច	SO4	S S E	Nitro	ogen	as N		Phosp as P	horus	(qdd)	Fe
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness _{Ca}	Alkalinity	Conductance micromhos/cm-25°C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron
	J.				ppm	408	308	1180	7.48	45	0.50	122	22.8	88	1.8	125		375.52	0.005	0.105	0.007	8-1	0.009	0.009	1	40.01
3680	Elliot	1	B.	30/09/76	epm							6.087	1-875	3.828	0.046	3.53	1.582	6.155				0.579				
		_			% epm							51.42	15.84	32.34	0.38	31.30	14-04	544								
		T	Γ		ppm	304	348		7.14					80	1.9	125	80								41	LO.01
М	h	ŭ	æ	15/11/76	epm																					
					%epm						1															
		T			ppm																					
1					epm																					
					%epm																					
		Т	Т		ppm																					
	1		1		epm																					
					%epm																					
		1	T		ppm																					
1	l				epm																					
l		1	1		% epm																					
	м.		1		ppm	r																			4	
5	Elliot	1	101	F04/03/69	epm							1													,	
	Elliot	1	10.	1	%epm																					
		+	+		ppm							125	24	74	1.6		66		0.01	0.18	0.21	2.4	0.049		12	\Box
σ	II	1.	ū	סד/דס/דם	-																					
		1 4	1	0.77.0	%epm																					\Box
		†	+	1	ppm	460	367		7.3	†	t	 	-		†	140			0.12	0.39	0.15	1.5	-		13	0.15
M	v.			30/09/20			, ve .			1						1										
	,	μ	4	30,01,10	%epm																					\Box
					ppm	388	305	850	7.31	45	0.30	115	23.8	27.0	1.1	42	64	371.86	0.005	0.155	0.001	5.6	0.019	0.012	41	ZO.04
100	Tr.	V)	w	30/09/16								5.738	1.957	1.174	0.028	1.184	1.332	6.094				0.40				
	1			1 ' '	%epm							64.49	21.99	13.19	0.31	13.75	15.47	70.77								

 $^{^{1}}Location is shown in Figure 1; N.D.-Not detected; <-Refers to less than; lppm=lmg/l=1lb/100,000 lmp. gal.$

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD Township: 50

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND CRIEDIGER

																		U1. / 2				
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic A.B.S. Detergent A.B.S.	Total Dissolved Solids
3680	J. Elliot	1	B.F.	30/ 09/76											31	90	7	97		0		730
X F	\frac{1}{2}	и	u	23/11/76											29		_					
				1																		
													,,									
5	M. Elliot	1	B.F.	04/03/69																		
(I	().	n	7	סד/ ניס/נים															38		0.06	
и	ш	10	ø	30/09/70																		
Ti .	a	Ŧ,	Ų.	30/09/76							1		, e		17	88	8	96		0		550

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

Ontario

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/16 Compiler: TOWNSHIP: SOUTH-WEST OXFORD Date compiled: 16/12/16

E C				led		as CaCO ₃	as CaCO ₃	25°C		or in	ts	ß	₽	Na	¥	ธ	SO ₄		Nitre		as N		Phosp as P		(qdd)	Fe
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness _C	Alkalinity _C	Conductance micromhos/cm-25 ⁰ C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO ₃	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron
	М.				ppm																					
	Elliot	1	BF	04/10/16	epm																					
	EITIOC				% epm																					
					ppm	384	321		7.18					24.6	2.5	35.0	64								41	40-01
-13	(I	ч	11	15/11/76	epm																					
		_			%epm																					
		1			ppm																ļ					
					epm																ļ					
-		-	Ш		%epm																-	-				-
					ppm																 					-
					epm											-					-	├	-	-		-
		+			% epm																	-				-
		1			ppm											ļ	-				-	-	-	<u> </u>		<u> </u>
					epm			_		-		_		-			-					├	-			-
		+-			% epm	// /	227		77	-		101	- 1	105	0 7	210	1.5	0.10.0		- 10	-	-			-	-
	F.	1	0-	30/09/10	epm	440	337	<u> </u>	7.3	-		136	24	195	2.7		35	4108		0.12	0.011				3	0.30
3069	Neill	1	Dr	مارا دادد	%epm				 			6.786	1.7/4	8.482	0.061	8.998	0.728	6.134				0.784	1	_		-
		+-	-		ppm					<u> </u>		39.36	11.45	47-17	0,40	54.66	4.42	40.91			-	├			-	<u> </u>
.1		ū		22/06/76	-			-	 	-		-	H=			 	├			-	╂	-	 	-	-	-
11	1/		ii.	22/06/16	%epm		-		 		<u> </u>			_	 	 	-	-	-	-	+	\vdash	\vdash	-	-	-
		+	-	-	ppm ppm	336	312	900	7.46	45	0.40	102.5	19.7	60	2.9	56	55	3001	0.005	0 149	0.00	1, 7	0 010	0.005	-	0.01
1(is.	10	п	30/09/76		300	ULL	700	7.70	- 5	0.10						1.145			0.140	, 0.00	0.479		0.005	<u> </u>	10.01
.,				المالية المح	%epm							54.52	16-83	27-82	0.78	17.62	12.70	69.59				3. ,,,	+			
		+			ppm	240	284		7.29		-	34.03	,0.05	56.5	3.0	64	53	01.01				-	†		41	(0.0
TI	11	11	Ţŧ.	15/11/76	epm		-01							30.0	1	1	55									1
				,,,,	%epm																	1				

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=|mg/l=|lb/100,000 | lmp. gal.

Southwestern Region

(cont'd)

Technical Support Section

Results reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTY AND C. RIEDIGER

Identification Number ¹	Owner	Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
5	M. Ellio	+	1	B.F.	04/10/76		3'													N.D.				
11	ıı		и	h	15/11/76											14						i.		81
			,,																					
3069	F. Neill		1	BF.	30/09/10																			
4	И		u	и	22/06/76		0.39	0.02		0.02							80	l	81	N.D.				
it	1(jı.	u	30/09/16											18	85	8	93		0		548	
It	A.	,	n	ņ	15/µ/76											9.6								

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/16 Compiler: T. ERVASTI AND C. RIEDIGER

Ē				led		as CaCO ₃	as caco ₃	е -25 ⁰ С		or in	ts	Ca	Mg	Na	~	C	SO ₄	H S	Nitro	ogen	as N		Phosp as P	horus	(pdd)	Fe	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness Ca	Alkalinity _{Ca}	Conductance micromhos/cm-25 ^o C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO ₃	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron	
					ppm																						
				-	epm																						
					%epm																					_	1
	11=				ppm																						1
					epm						-															-	1 ~
		\vdash	\dashv		%epm						-															<u> </u>	28
					ppm epm		-			-	-	-														 	1
					%epm					-	 	-														-	1
	Jim's	\vdash			ppm	396	-	760		_	-	100	27.0				26.0		0.005	0-575	KO+001	40.01			,	0.88	1
2280	Trailer	1	RF	21/05/76	epm	376		760		-	 	700	21.0				-0.0	-	0,003	0000	10.00	20.01				0.86	1
12200	Park	-	יט		% epm					1	t^-				-												1
					ppm	380	368	750	7.70	\vdash	1						14.0								1	1.17	1
11	п	ū	ηŁ	26/05/16			1																				1
					% epm																						1
					ppm	388	320	740	7,49					20.2	1,4	20.5	60								41	0.86	
ji.		11	ŋ	22/06/16	epm																						1
					% epm]
					ppm	328	296	670	7.53	10	27	86.0		20.0		13.5	58	360.89	0.050	0.225	20.00	40.01	0.017	0.002	41	0.60	4
l t	1.1	d	ti.	30/09/76	epm					ļ	ļ	4.291	2.270	0.870	0.012	0.380					<u> </u>		<u> </u>			<u> </u>	4
		_			%epm	- 0.0				_	L	57.65	30.50	11.69	0.16	5.07	16.1	78.84				ļ	L		<u></u>	L-	4
		Į.i	π		ppm		290	670	7,58	15	33	82.5	26.4	17.6	1.3		64	353.5 5.80	0.06	0.185	10.00	120.01	10.009	0.002	1	0.92	4
le .	(t	"	1.	23/11/76	epm %epm				-	+	+	4.11	2.17	10.74	0.03	0.35	1.33	77.47			 				-	+-	1
		-	\vdash		ppm		-	 		+	+-	100.10	30.61	10.14	0.42	4.07	11.82	11.4/		-	+	+	+		-	\vdash	1
l					epm		·			1																	1
					%epm					T																	1
												4		-							-	-					-

 $^{^{1}\}text{Location is shown in Figure 1} \quad \text{; N.D.-Not detected; } < -\text{Refers to less than; } \\ 1 \text{ ppm=1 mg/l=1 lb/100,000 lmp. gal.}$

Ministry of the **Environment**

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section 985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T ERVASTI AND C. RIEDIGER

		UAI	_										Date t					Compi	ique i gr	EKVH		NU L.K		_
Identification Number ¹	Owner	Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand ; 5-Day	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
										·														
	g g											*												86
	,														>+									١
2280	JIM'S TRAILER PARK		1	BF.	21/05/76								17		10.8	105						0.1	458	
u	ţı.		u	ù	26/05/16										6.1	78						0.2		
t,	a		li .	μ	22/06/16		0.03	40.01		40.01				0.51		17	82	2	84	N.D.			452	
u	u		11	ıı	30/09/76											9.2	78	6	84		0		412	
И	ч	1	ıı.	и	23/11/76																			
																1.								

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region Technical Support Section

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C.RIEDIGER

	County. On			D		as CaCO ₃	as CaCO ₃			<u>.</u> <u>E</u>		ဒ္ဓ	£ 6 ∑	e N	¥	ס <i>ו</i>	SO ₄	The same of the sa			as N		Phosp as F		(ddd)	e l
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness cac	Alkalinity as	Conductance micromhos/cm-25 ^o C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units		Magnesium I	Sodium	Potassium	Chloride (Sulphate	Bicarbonate HCO	nia	Total Kjeldahl			Total	Soluble	Phenois (pp	Iron F
					ppm	~																				
					epm																					
					% epm		2														1					
					ppm																					
					epm																					
					%epm																					
	C.			11	ppm	8	366	860	7.27					206	0.4	26	38.5								41	0.09
2206	Gee	1	BF.	22/06/76	epm																_					\Box
					%epm																					
					ppm	424	375	880	7.34	45	0.55	102.5	41.4	22.4	1.5	29.5	39.0	457.21	0.025	0.29	0.011	5.8	0.003	0.003	1	<0.01
М	D.	h	It	30/09/76								5.114	3.405	0.974	0.038	0.832	0.811	7.493				0.414		-		
					% epm							53.66	35.73	10.22	0.40	9.10	8.87	82.01								
					ppm																					
		1			epm																					
					% epm																					
					ppm																					
					epm																					
					%epm				¥-																	
		T			ppm																					
					epm																					
					%epm																					
	A.E.		1		ppm	564	280		7.6			106	72	8	0.9	21	45	341.38	0.02	0.18	0.00	6.5			4	trace
2208	Slater	1	BE	14/12/70								5.289	5.922	0.348	0.02	8.31	0.936	5.595				0.46				
	3,0.0.				%epm							45.66	51.13	3.00	0.19	8.31	13.14	78.54								
					ppm		276	660	7.68					8.2	0.9	7.0	48								41	0.05
h	1.1	i	ti	22/06/76	epm							-				-				-	-	1	-	-	-	\perp
					%epm																1					

¹Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: BOUTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND C. RIEDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
														7									85
2206	c. Gee	1	B.F.	22/06/26		۷٥.0۱	0.02		10.01				20.02		16	92	2	94	N.D.			532	
II	W	tı	ū	30/09/76											22	102	12	114		0		552	
											×												
		100																					
2208	A.E. Slater	1	B.F.	14/12/20			±,														0.1		
u	tt	м	h	22/06/76		0.30	0.02		۷٥.0۱				20.02		7.7	71	ı	72	N.D.			4 32	1

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

Compiler: T. ERVASTI AND C. RIEDIGER Date compiled: 16/12/76 Township: SOUTH-WEST OXFORD County: OXFORD Bicarbonate HCQ micromhos/cm-25°C **Phosphorus** (qdd) Nitrogen as N Ra \overline{c} as P ¥ Apparent Color Identification Conductance Magnesium Hazen Units .⊑ Concession at lab Potassium **Alkalinity** Number 1 Hardness Calcium Turbidity Sulphate Chloride **Phenols** Sodium Formazin Source Kjeldahl Nitrate Soluble Nitrite Owner Units Date Total ron Total 292 A.E. 690 45 0.50 104.5 7.5 0.8 8.5 54 35601 0.005 0.110 0.001 360 7-61 24.0 4.1 0.005 0.004 0.01 BF. 30/09/76 1.974 0.326 0.020 0.239 5.214 1.124 5.835 epm 2208 Slater 69.20 26.20 4.32 0.26 3.32 15.61 81.06 % epm ppm epm % epm ppm % epm ppm epm % epm 328 ppm 261 640 7.54 1.8 14.0 46 41 0.05 10.4 GORE BF 14/06/76 6 ерп Robillard % epm ppm 11 21/06/18 11 epm % epm ppm epm Westmount 236 7.78 ppm 465 0.3 3.0 15.0 41 1.14 119 GORE BF. 14/06/76 2275 epm DeLeon %epm Westmount ppm Motel F. Karn (present own 1 21/06/76 epm %epm

¹ Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 ppm = 1 mg/l = 1 lb/100,000 lmp. gal.

Ministry of the Environment

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Ter

Southwestern Region
Technical Support Section

Results reported in mg/l unless otherwise indicated

(cont'd)

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: 50UTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND C. RIEDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
220%	A.E. Slater	1	B.F.	30/09/76											18	77	4	81		0		460	
																							87
																,]
6	H. Robillard	GORE	B.F.	14/06/76						r			<i>L0</i> ,02		6	67	1	68	N.D.			406	
ď.	11	ti	μ,	21/06/26	ie	0.08	0.02		40.02														
												0											
2275	DC LOUIT	GORE	в.F.	14/06/76									40.02		4	58	2	60	N.D.			288	
1.	Westmount Motel F. Karn (present owner)	μ	p	21/06/76		0.14	۷٥٠٥١		۷٥ . 02						B								

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C. RIEDIGER

	county.	7	_				Thomp.						ile ci	nipiie	-	-11-11			Cilip							
Ę				eq		as CaCO ₃	as caco ₃	e - 25°C		or in	ts	င်ခ	Mg	Na	¥	ਹ	\$0 ⁴	<u> </u>	Nitr	ogen	as N		Phosp as F	horus	(qdd)	a e
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness C	Alkalinity c	Conductance micromhos/cm - 25°C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO3	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron
					ppm																					
	98	1 1			epm																					
	3				% epm																					
	丁.				ppm	222	235	467	7.74					17.3	0.9	2.0	16.0								41	0.10
7	Bowman	GORE	BF.	22/06/16																						
	GOVERNORY				%epm																					1
					ppm															L .		.	L		<u> </u>	\coprod
	•				epm					<u></u>		-				-	<u> </u>				ļ		<u> </u>		├ ─	\vdash
		\vdash			%epm	200	1.10	E (0	7 / 5		<u> </u>		<u> </u>	2.0	0 /	1 -	0				-		-	-	1	0.43
2278	丁.	C ~0C	ac	14/06/76	ppm epm	308	240	560	7.65				-	2.9	0.6	4.5	32.0	-		-				-	Z1	0.67
3414	Radford	GUAL	۵.	14/00/15	% epm					<u> </u>		-	 			1		-	 			+	-	-	├	\vdash
	_	+	Н		ppm					-					-	 	 	-	-		-	+	-	-	 	\vdash
n	n	σ	ı,	21/06/76												†	<u> </u>	<u> </u>	 		-	-	-	<u> </u>	-	
, i				-1,-4,10	% epm						†									†	-	†		\vdash		\vdash
		\vdash			ppm					 	 	_	 			<u> </u>	t	 			 	+	\vdash		 	\vdash
					epm													1				1		1		
					%epm																					
	T.				ppm	278	239		7.54					2.2	0.6	15	28.0								41	0.11
8	McGinnis	GORE	B.F.	21/06/76	epm																					
1	11 4.1.1.0				%epm																					
					ppm																					
1					epm						_	-		L								<u> </u>	<u></u>	L		
		1			%epm	0.00	2.55	66.	7 /2	<u> </u>		-		ل			100	-				-	-	ļ.,	<u> </u>	1
a	F.	COR	RE	14/06/76	ppm epm	292	252	550	7.63	\vdash		-	-	6.3	0.8	4	40	+	-	-	-	-		-	141.	0.15
9	Tilley	CORE	D).	14/06/76	%epm					-		1	+	-		+			<u> </u>			+	-		-	1
					%ehu		1	<u> </u>	1						<u> </u>	1										

¹Location is shown in Figure 1; N.D. – Not detected; < -Refers to less than; 1 ppm=1 mg/l=11b/100,000 lmp. gal.

Ministry of the Environment

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

(cont'd)

Southwestern Region

Results reported in mg/l unless otherwise indicated

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND C.RIEDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
										×													
7	J. Bowman	CORE	ß.F.	22/06/16		0.06	0.02		۷٥.0۱				۷0.02		7.8	60	ł	61	N.D.			254	
																							3
2278 3414	J. Radford	GORE	B.F.	14/06/16									40.02		2	59	1	60	N.D.			380	
lv	И	R	tı	21/06/16		0.07	0.06		0.04														
													1										
ч	T. M ^c Ginnis	Core	BF.	21/06/76		0.47	0.02		L0.02				40.02		42.0	64	1	65	N.D.			348	
								,															
9	intey	GORE	BF.	14/06/16					2	_			∠ <i>0.</i> 02		4	61	I	62	N.D.			356	

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region
Technical Support Section

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

Compiler: T. ERVASTI AND C.RIEDIGER Township: SOUTH-WEST OXFORD County: OXFORD Date compiled : 16/12/76 Bicarbonate HCO3 **Phosphorus** (qdd) Alkalinity as caco₃ Nitrogen as N Apparent Color i Hazen Units Identification Conductance Magnesium Turbidity in Concession Potassium pH at lab Hardness Calcium Chloride Sulphate Number 1 Sodium **Phenols** Soluble Ammonia K jeldahl Source Nitrate Nitrite Owner Total GORE B.F. 21/06/76 epm Tilley ррп epm 277 4.8 2.8 6.5 630 7.46 48 348 010 ppm 41 GORE B.F. 14/06/76 10 ерп Hibner % epn 21/06/76 epm epn ppm epm epm 289 7.5 22 4.0 27 18 352.35 ppm 0.3 Lowes 1.810 1.392 0.375 5.775 BF. 07/07/70 0-102 0.762 epn 2202 TRANSPORT 20.48 1.50 11.01 5.41 83.57 ppm 272 255 7.4 0.02 0. 16 0.002 1-2 0 0-15 BF. 30/09/70 epm d %epm 65 con-Torio ppm 424 291 940 7.33 88 41 0.31 8.F. 14/06/76 epm Precast Ltd. N ppm BF 21/06/76 11 epm 11 %epm

Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 ppm=1 mg/l=1/b/100,000 lmp. gal.

(cont'd)

Southwestern Region Technical Support Section

Results reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/16

Compiler: T. ERVASTI AND C.RIEDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
9	F. Tilley	GORE	B.F.	21/06/76		0.32	۷٥.0۱		∠ <i>0.</i> 02														
																							TE
10	J. Hibner	GORE	BF.	14/06/76									40.02		4	73	1	74	N.D.			416	-
11	()	11	v	21/06/16		0.19	0.02		40.02														
															=								-
2202	Lowes Transport	1	BF.	07/50/10															10				¥
t)	П	h	11	30/04/70																			T
()	Can-Tario Precast Ltd.	11	N	14/06/76									<0.02		15	79	1	80	N.D.			622	
(I	U	h	ij	21/06/78		0.48	0.56		20.02				,	ing.									T

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/I=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C.RIEDIGER

	5			D		as CaCO ₃	as CaCO ₃	25°C		.E		g	Mg	Na	×	ਹ	SO ₄		Nitr	ogen	as N		Phosp as F		(qdd)	F.
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness as	Alkalinity a	Conductance micromhos/cm-	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units		Magnesium I	Sodium	Potassium 1	Chloride	Sulphate	Bicarbonate HCO3	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (pp	Iron F
	Can-Tario		Н		ppm	274	256	580	7.61	< 5	0.45	75.2	19.4	15.4	2.4	8.5	43	312-12				0.50	0.007	0.006	ī	0.74
2202	Precast	1	BF.	23/11/26	epm		- 54	3 0 -				3.752	1.596	0.670	0.06	0.240	0.895	5.116				0.036				i
	Precast Ltd.	_		-4 10	%epm							61.72	26.25	11-02	1.00	3.84	14.32	81.84								
					ppm																					
				2	epm																					
					%epm																					
					ppm																					
1					epm																					
					%epm																					
					ppm																					
1					epm																					
1					%epm																					
	G				ppm	404	288	840	7.39					23.0	1.5	25.5	72								41	0.11
11		1	BF.	14/06/76	epm																					
1	Blais	_			% epm																					
					ppm																					
h	ıı,	- II	п	21/06/16																						
				, ,	%epm							1														
					ppm	360	269	690	7.65	45	0.5	95.0	24.2	13.4	1.1	11.5	66	327.97	0.005	0.135	40.00	5.1	0.005	0.003	21	0.03
11	B	ij	ū	30/09/2												0.324		5.375		1		0.364	-			300
	l		ı"	0 1011	%epm							64.56				4.58		75.99				1 30.				
					ppm		256	Marine - 1 Table	7-35	1		1		10.4		8.0	63				1				21	40.01
11	н	Į!	и	15/4/76																						
					%epm																					
					ppm											T										
					epm																					
					%epm				N 7 8 7 85																	

¹Location is shown in Figure 1; N.D. – Not detected; < – Refers to less than; 1 ppm=1 mg/l=11b/100,000 lmp. gal.

Ministry of the Environment

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD Date Compiled: 16/12/16

Compiler: T. ERVASTI AND C. RIEDIGEL

			-				_															_
Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
Can-tario Precast Ltd.	1	B.F.	23/11/76							1)												
4 .																						20
			-																			and the second second second
																-						A
G. Blais	1	BF.	14/06/76									10.02		11	73	1	74	N.D.			592	
l)	π	ıJ	21/06/16		0.35	0.03		L0.02														Anna Inches
TI.	u	n	30/09/76											18	73	4	77		0		466	
N	Ŋ	ŢĬ.	15/n/76											7.7								-
																						THE PERSON NAMED AND POST OFFICE ADDRESS OF THE PERSON NAMED AND POST OF T
	Can-tario Precast Ltd. G. Blais	Can-tario Precast 1 Ltd. G. Blais 1	Cantaria Precast 1 B.F. Ltd. 1 B.F. Blais 1 B.F. 1 II II II	G. Blais 1 BF. 14/06/76 11 11 11 30/09/76	G. Blais 1 BF. 14/06/76	G. Blais 1 BF. 14/06/16 11 11 11 30/09/76	Concession Perecast 1 β.Ε. 23/11/76 Concession Precast 1 β.Ε. 23/11/76 Concession 21/16 Concession Conces	G. Blais 1 BF. 14/06/76 11 11 11 30/09/76	G. Blais 1 BF. 14/06/16 11 11 11 21/06/16 11 11 11 30/09/16 11 11 11 30/09/16	G. Blais 1 BF. 14/06/76 1 BF. 14/06/76 1 U 1 30/04/76 1 U 1 30/04/76	G. Blais 1 BF. 14/06/16 Concession Wanganese Mn Copper Concession Copper G. Blais 1 BF. 14/06/16 11 11 11 30/04/16 11 11 11 30/04/16	G. Blais 1 85 14/06/16 1 1 1 1 1 1 30/04/16 1 1 1 1 1 30/04/16	G. Blais 1 85. 14/06/16 0.35 0.03 4.002	G. Blais 1 BF 14/06/76 11	G. Blais 1 BF. Mohite 0x36 on 1 1 1 7 3	Ga. Blais 1 85. 14/04/18 1 10 12 (2 arbo) 1 1 10 12 (2 arbo) 1 1 10 13 (2 arbo) 1 1 1 1 1 1 1 1 1 30/4/18 1 1 1 1 1 1 1 1 30/4/18 1 1 1 1 1 1 1 1 30/4/18 1 1 1 1 1 1 1 1 1 30/4/18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ga. Blais 1 BF 4/06/18 1 0 1 10 1 1 10 1 10 10 10 10 10 10 10 1	Palmer P	Date Date	Can-torio Permand Pe	Pate Patricia Pa	

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

Ontario

All analyses except pH reported in mg/l unless otherwise indicated

4	County: OXI	FOR	D		۳	Tov	wnship :	SOUTH	1-WES	T 0,	KFORD	Da	te co	mpile	ed : /	6/12/	76	C	ompi	ler :	T. E	RUA	SΠ	AND C	.RIE	DIGE
				pel		as CaCO ₃	as CaCO ₃			.E		င္မ	Mg	Na	×	ت	SO4	НСО			as N		Phosp as F	horus	(ddd)	Fe
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness C	Alkalinity c	Conductance micromhos/cm-25 ⁰ C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron
					ppm epm									1												
	8				% epm																	-	-			_
			-		ppm																					-
		1			epm																					
					%epm																					
	E.				ppm	280	246		7.5			78	20	5	0.7	6	37	299.93	40.01	0.11	0.002	1.1			3	trace
2200	benby	1	BF.	30/09/70	epm							3.892	1.645	0.218	0.018	0.169	0.770	4.916				0.079				
					%epm							67.42	28.49	3.76	0.30	2.89	13.15	83.96								
2200	E.Denby (A.Drysdale residence)	F.F		26/05/76	ppm epm	444	302	930	7.52							33.5	75			0.585			0.005	-	2	0.11
2200	residence)	1,	u	26/03/16	%epm					-						 		-	 		-	 				-
		-	-	-	ppm	416	287	840	7.36	-					-	24.5	68		-	-	 	-	-	-	41	0.0
11	10	1,	N-	15/06/76				0.0	1000	 						27.5	00	<u> </u>			 	†				0.0
			"	-11.0	% epm																					
					ppm																\vdash				** *****	
n	n	п	10	21/06/76	epm																				_	
					%epm																					
				, ,	ppm	340	270	680	7.44	45	0.90	97.5	24.4	13.8	0.4	11-0	62	329.19	0.005	0.130	0.001			0.006	1	0.
i i	α	tı	14	30/09/76	epm							4.865	2.007	0.600	0.010	0-310	1.291	5.395				0.35				
					%epm							65.02	26.82		0.13	4.43		77.12								
				-11.	ppm	272	260	-	7.38	<u> </u>	ļ	<u> </u>		10.7	1.0	8.0	62						-		2	0.0
n	41	tt	п	15/11/76	epm %epm					-		-						 		-		 				—
	+	-	-		ppm					-	-	-	-				-	 			-		-			-
					epm						† —	 				 										-
					%epm		1					!									1	1	1	 		†

¹Location is shown in Figure 1; N.D. – Not detected; < – Refers to less than; l ppm=l mg/l=1lb/100,000 lmp. gal.

Ministry of the Environment

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Compiler: T. ERVASTI AND C.RIEDIGER

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand ; 5-Day	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
																		*					
																							95
2200	001109	1	B.F.	30/09/76												n							
2200	E. Denby (A. Drysdale residence	11.	tı	26/05/16										0.3	28						40.1		
И	и	- 41	S)	15/06/16				ē					0.23		12	74	l	75	N.D.			566	
Ŋ	μ	ч	w	21/06/76		0.70	ر٥.0١		<0.02														
\i	, (ų	u	30/09/76					_						1.8	71	5	76		0		448	
11	11	u	L1	15/11/76											3.9								

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

County: OXFORD

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C.RIEDIGER

ç				led		as caco ₃	as CaCO ₃	e -25°C		or in	ts	င္မ	Mg	Na	¥	ರ	SO ₄	НСО	Nitre	ogen	as N		Phosp as P		(pdd)	Fe
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness C	Alkalinity _C	Conductance micromhos/cm-25 ⁰ C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO3	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron
					ppm																					
					epm																					
		_	_		%epm																					igwdown
l i					ppm epm				-	-						ļ							-			
1 1					%epm					-						-					-					\vdash
		\vdash			ppm	390	315		7.7	-		114	25	11	2.3	13	40	201 10	0.01	0.17	0.002	5.5	-		0	0.05
2204	E.	1	QE	30/09/10		310	313		1.1		-	5.689		0.479	0.059	0.367	1-020	584.00 6.295	0.01	0.17	0.002	0.393				0.05
220 1	Denby	1	ינס	35/5//10	%epm								24.83		0.71	4.78	13.28	81.94				0.5.3				
					ppm										77.75											
					epm																					
					%epm																					
	J.				ppm	260	260		7.6			54	30	20	1.6	3	39	317.00	0.13	0.30	0.002	0.01			5	0.10
22070		1	BF	30/09/70	epm							2.695	2.468	0.87	0.041	0.085		5.195								
220 10	Dello	_			% epm							44.37	40.63	14.32	0.68	1-40	13.33	85.26								
					ppm		258		7.5			54	30	20	1.5					0.28	0.002	0.02			12	0.15
22076	11	и	u	30/09/10	epm						1		2.468			0.113										
	DUPLICATE			-1-1	epm %epm							44.4	40.7	14.3	0.6	1.86		85.08								
	J.				ppm	364	344	716	7.72			80	35.2	20.0						0.680	0.001	0.08				1.26
3582	Denby	1	BJ:	21/04/76		_				├		3.992		0.87		0.494					<u> </u>					
	00.10	_	_		%epm		201	(2	7 / 0		-	51.25	37.18	14.17	0.40			90.36		2 - 2 -			1		 	- 00
		l		1-1	ppm	340	338	660	7.63	-	-	+	-		 	14.5		-	0.135	0.725	0.00	 	0.040	0.004	121	0.39
11	11	ų	u	12/05/2	epm %epm					-	-	-	-					-			-	-	-			-
		-	\vdash		ppm	328	340	650	7.73	-	+	+	+	-	-	14.5	10.0		0.125	0.329	0.001	(0.0	0.031		2	0.27
lv.	St.	11	VI.	26/05/76	epm	2~0	1		1							1	12.0			3.5-		1	1		1	1
,,			23	4-4	%epm								1		T			T								

¹Location is shown in Figure 1; N.D. – Not detected; < – Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region Technical Support Section

Results reported in mg/l unless otherwise indicated

(cont'd)

985 Adelaide St. South, London N6E 1V3

Township: SOUTH-WEST OXFORD Date Compiled: 16/12/76 County: OXFORD Compiler: T. ERVASTI AND C. RIEDIGER H_2S A.B.S. Date Sampled Manganese Mn Pb Zn C Cg Biological Oxygen Chemical Oxygen Demand င် Total Dissolved Solids Ξ Identification Demand; 5-Day Total Organic Hydrocarbons Concession Chromium Suspended Solids Cadmium Sulphide Petroleum Anionic Detergent Number¹ Inorganic Copper Source Tannins Owner Lignins Nickel Carbon Carbon Carbon Lead Zinc Total ŏ Lot B.F. 30/09/70 Denby 2204 J. BF 30/09/70 2207 Denby 11 30/09/10 DUPLICATE BF. 21/04/18 >14.4 466 3582 Denby 11 12/05/16 8.2 41 3 11 - 11 11 26/05/76 3.2 18 1) 398 (0.1 11

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.; > - Refers to greater than

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

Compiler: T. ERVA STI AND C. RIEDIGER Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 County: OXFORD Bicarbonate HCO **Phosphorus** (qdd) Alkalinity as Mg Nitrogen as N Sampled Apparent Color Hazen Units Identification Conductance Magnesium ₽. Potassium pH at lab Hardness Calcium Chloride Sulphate Number 1 Turbidity Sodium Phenols Soluble Ammonia Source Kjeldahl Nitrate Nitrite Owner 293 600 7.57 9.0 300 21.0 BF 15/06/76 ерп 3582 Denby % epn ppn 11 21/06/76 11 %epm 4.7 65.5 33.0 18.0 7.5 36.0 349.91 0.285 0.475 0.001 287 ppm 300 600 7.58 10 30/09/76 3.268 2.715 0.783 0.033 0.212 0.750 5.735 epn 11 (RAW) 11.52 0.49 3.17 11.20 85.64 %epm 185 0.12 820 7.38 45 33.0 340.16 0.010 0.100 0.001 KO.01 0.007 0.001 ppn 42 279 040 0.8 0.681 5.515 8.048 0.020 2.031 0.090 30/09/16 (TREATED) 8.28 % epn 282 590 60.5 8.5 0.32 0.460 0.001 ppm 288 7.61 20 23 40.01 0.033 0.004 2.4 0.033 0.240 0.77 5.635 23/11/16 2.435 0.792 epn 11 12.61 0.53 3.61 epm 38.78 11.59 84.80 PDIT ерп % epn epn ррп epm 56 40.01 0.12 0.002 1.3 329.20 336 270 20 10 5.5 0.05 ppm 7.4 0 BF. 30/09/7d 1.645 0.435 0.033 0.310 1.166 12 0.393 5.396 epm Ellery epm

¹Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 ppm=1 mg/l=11b/100,000 lmp. gal.

Southwestern Region **Technical Support Section**

Results reported in mg/l unless otherwise indicated

(cont'd)

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

																	Compi						
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
3582	J. Denby	1	BF.	15/06/76	¥								۷٥.02		14	76	1	77	N.D.			368	
n	11	η	rt	21/06/76		0.02	۷٥٠٥١		L0,02														
И	(RAW)	ĸ	u	30/09/75											7.3	82	9	88		0.5		366	
11	II (TREATED)	ŋ	и	30/09/76											28							498	
и	ď	tr	n	23/11/76									0.22										
																					l.		
12	K. Ellery	1	B.F.	30/09/7K			,																

¹ Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/16 Compiler: T. ERVASTI AND C.RIEDIGER

				ъ		°C	33	_၁ ၀၄		.Ξ		Ca	Mg	Sa		ರ	SO4		Nitra		as N		Phosp	horus	<u> </u>	a)	
ion			_	ple		as caco ₃	as caco ₃	Ce H-2		Color	in Units	0		z	×	0	Ñ	te H	14111	ogen	43 14		as P		(qdd)	Fe	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness	Alkalinity	Conductance micromhos/cm-25 ⁰ C	pH at lab	Apparent Co Hazen Units	Turbidity in Formazin Un	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate		Free Ammonia		Nitrite	Nitrate	Total	Soluble	Phenois	Iron	
	Κ.				ppm	464	408	880	7.75			124		20.0	1.2	37.0	26.5	497.44	(0.005	1.30	40.001	40.01				3.30	4
12	Ellery	1	B.F.	21/04/76	epm							6.188	2.550	0.870	0.031	1.044	0.552	8.153									1
	Litery	_			%epm							64.20	26.46	9.03	0.32	10.71	5.66	83.63									1
				1.1	ppm	76	436	940	7.5										<0.005		(0.001	40.01	0.030	40.001	35	0.82	.
11	11	n	И	12/05/76	epm																						100
		_			%epm	. =1											2 -									_	4
				1-1-	ppm	476		920				76	30				2.5		0.010	-	40.001	40.01			47	28	1
p	II.	111	11	21 /05/76							-	-				-						-	-			-	1
		-			%epm	A / A	120	0.00	7 77	-						10	2 -						0.005		40	11 40	H
		D	11			464	439	920	7.72		-			-		42	3.5		<0.005	0.075	<0.001	40.01	0.025		49	4.40	-
h	11	1	,,	26/05/16			-	-	-	-	-	-		-	-	-					-	-	-		_	_	1
	 	-			% epm ppm	448	442	880	7 10	-	-	-		-		21 5	2.5		-		-	-			AF	2.00	4
	li li		n	15/06/76		44 8	442	000	7.49		-	-				06.5	0.5	-			-	 	-		45	3.80	4
11	1	П	10	13/00/10	% epm						-	-			-	-			-	-		-	-		-	-	1
	ļ.	\vdash	_		ppm			 												-	-	-	-			-	4
Ti.	¢1	Ţ.		22/06/16						-	-				-	 			-		-		-			├	+
(.)		,,	М	22/06/16	%epm											 		 		 	 	\vdash	_	-	-	_	1
		-	-		ppm	408	393	810	7.35	25	32	112.5	29.6	36.0	0.8	315	14.0	170 15	0.05	0.59	0.00	40.01	0.066	0.001	2	2.70	
I.	rt	u	11	30/09/76		40 8	313	810	1.00	20	102	5.614				0.889	0.333	7.853	0.03	0.57	10.00	10.07	0.000	0.00	-		7
1				54011 10	%epm						<u> </u>				0.20			86.54			 	1			 	!	1
	†	\vdash	-		ppm	THE RESERVE OF THE PERSON NAMED IN	387	-	7.23	-	—	201.20	23.0	22.2	1.0	35.5	22.0	00-01				+			2	2.00	5
H	II.	ū	D	15/11/76					1					T		1				<u> </u>		1					1
				7. 10	%epm																						1
					ppm]
					epm																						
					%epm																						

¹Location is shown in Figure 1; N.D.—Not detected; < -Refers to less than; | ppm=| mg/l=| lb/100,000 lmp. gal.

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand ; 5-Day	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
12	K. Ellery	1	BF.	21/04/76										61								562	
Ŋ	()	u	u	12/05/16								9		75	239								101
10 "	11	d	u	21/05/16								23		120	617					2	0.15	608	
ħ	O	Ir	Đ	26/05/H					3					67	521						0.25	608	
и	(t	и	и	15/06/76									0.23		111	98	40	138	N.D.			548	
t.	10	u	u	22/06/76		0.13	0.06		L0.01								: =-a-, A						
II.	W	u	II	30/09/76											24	110	14	124		0		478	
W	îΙ	ıt	μ	15/11/26											19					i e			

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

	County: ひん	COR	2D			Tov	vnship:	S0UT4	- WEST	r oxi	FORD	Da	te co	mpile	ed : 16	12/	16	С	ompi	ler :	To ER	LVASTI	7 4N	5 (.1	216011	GER
ב				led		as CaCO ₃	as aco ₃	e 25°C		or in	ts	Ca	Mg	Na	×	CI	SO4	HCG	Nitr	ogen	as N		Phosp as F	horus	(gdd)	Fe
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness _C	Alkalinity as	Conductance micromhos/cm-25 ^o C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO ₃	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble) slouayd	Iron
					ppm																					
					epm																					\vdash
		-	_		%epm ppm																	-			-	\vdash
					epm							-					-					-	-		_	\vdash
-					%epm						-		-					-		-		-				
	E.	+			ppm	416	370	820	7.62					18.3	1-1	20.5	37.5								5	0.36
13	Keatings	1	BF	14/06/76	epm	.,,_	010	020						10.0			0,00									
	3				%epm																					
					ppm	428	377	860	7.31	10	6.3		31.4	19.0	1.1	25.0	39.5	459.64	0.035	0.35	0.007	4.9	0.028	0.002		2.10
11	η	11	η	30/09/76								5.988		0.827	0.028	0.765						0.350				
		1_	L		%epm							63.53	27.40		0.30		9.07	83.15								
					ppm	248	321		7.19			-		18.3	1.1	28.0	40			ļ		-			41	0.76
Д	n	II	ti.	15/11/76	epm						-	-	ļ									-			-	\vdash
	 	-	_		% epm						├	1			<u> </u>											\vdash
					ppm					-	├	┼								<u> </u>				-	-	\vdash
					epm %epm						-	┼	-	-	-	-				 	-	-	-	-	-	\vdash
		\vdash	\vdash		ppm					-	┼	+-	-		├──	├─	-			-	-	-	-	 	-	\vdash
					epm						<u> </u>	+	-		 	†				 		1		_	_	
					%epm						\vdash	1			 					1	<u> </u>	 			—	\vdash
	1	+	-		ppm						†	1	-		_	\vdash					-	+		-		
					epm																	Ī				
					%epm																					
	E.			-1-1	ppm	492	414	960	7.35			1		18.3	1.0	32.5	35.0								6	0.65
14	Seagrist	1	BF	14/06/26	epm					 		-		_		-		<u> </u>			-	-	<u> </u>	-	-	
	1 200321				%epm							1									<u> </u>	0				

¹Location is shown in Figure 1; N.D. – Not detected; < – Refers to less than; l ppm=l mg/l=1lb/100,000 lmp. gal.

Southwestern Region Technical Support Section

Results reported in mg/l unless otherwise indicated

(cont'd)

985 Adelaide St. South, London N6E 1V3

County: OXEORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ní	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
																							T03
13	E. Keatings	1	BF.	14/06/76		٠							۷۰.02		28				N-D.			546	
15	и	ħ	u	30/09/76											17	98	0	98		0		544	
h	11	R	ti	15/11/76											14								
14	E Seagrist	1	B _F .	14/08/18											34				N.D.			628	

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

С	ounty: OXF	ORT)			Tov	vnship :	SOUTH	I-WES	T 0)	(FORD	Da	te co	mpile	ed : /	6/12/	76	C	ompi	ler :	T₀ €	RVAS	577	CUA	C.RIE	DIG	R
uc	8			led		as caco ₃	as CaCO ₃	е 1-25°С		or in	its	င္မ		Na	×	C	SO4	, нсо	Nitr	ogen	as N		Phosp as f	horus	(ppb)	Fe	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness _C	Alkalinity _C	Conductance micromhos/cm-25°C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium Mg	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO	Free Ammonia	Total Kjeldahi	Nitrite	Nitrate	Total	Soluble) spenols	Iron	
	€.	4		1.1	ppm																						1
14	Seagrist	1 1	BF.	23/06/76	epm																						1
		Ш			%epm		25.	0.4.0	7.00		-	-		1/ 0		-5-44-6											1
		١ ا		. 1.1.	ppm	428	376	840	7.39	5	4.4	120		16.0	0.9				0.005	0.265	0-010			0.002	1	0.5	4
п	11	111	11	30/09/76	epm						ऻ	5.988		0.696		0.677			-	-		0.236	-	-		-	1
		\vdash			%epm	400		000	7.20	-	- 1	65.26	26.90			7.54		83.66	0.016	2.74	0.00/	. 10	0.005	0.001	-		1
1				-al L.	ppm	420	378	820	7.39	5	5.4	5.589	29.0		0.9	0.860	35.0	7 663	0.015	0.24	0.006	0.084	0.005	0.001		0.68	ł
11.	11	и	II.	23/11/76	epm					-		1362	2716	8.96	0.025	0.000	707	82.62			-	0.087					1
		\vdash	_		%epm ppm				 	-	-	65.62	27.10	9.10	0.20	4.41	7.97	82.62				-					1
					epm							-				-			-			├		-	-	 	1
					%epm					-	-	+			-	-	-	 		-	 	 			_	-	1
		Н	_		ppm					-	┼	+		_		 		-				-				-	1
					epm					\vdash	+	 	 	-		-				-	 	-	-		-	-	1
					% epm					\vdash	 	 	<u> </u>								 	 	-	-	-	-	1
		\vdash			ppm					-	-	-	-			-		-	-	-	-	+	-		-	├─	┨
		H			epm					-	+	-		 		1	-	-					 	<u> </u>		-	┨
					%epm					 	+	+	\vdash	 		1						+		†	†	-	1
	0		_		pom	416	376	800	7.51	1	1	+	 	 	 	24.5	34.5		ZO-005	0.110	0.011	0.16	0.012		3	1.60	7
2207	c. Jefferies	11	BF	26/05/16	epm	110	314		1.5	1	\dagger	-	 	 		1	0 113				1				J	1.00	1
2203	Jetterns			7 /	%epm				†	1	\vdash		†		1			—			-	-	 				1
					ppm	432	405	820	7.39		_			20.6	1.2	27.5	16.0	†		 	+	-	-	+	6	6.4	đ
į t	0	h	ĮI.	14/06/76	epm																						1
					%epm											1											1
			П		ppm]
Ü	(1	h	11	22/06/2																							
					%epm												i				1						I

¹ Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; | ppm=1 mg/l=1/b/100,000 lmp. gal.

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region
Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

RD Date

Date Compiled: 16/12/76

			_						-														400
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand ; 5-Day	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
14	E. Seagrist	1	B.F.	23/06/76		4.2	0.04		ZO.01														
π	a .	h	н	30/0 9 /16											29	112	8	120		0		522	50T
11	T)	n	ц	23/11/76									10.02										
						·																	
															8.								
2 <i>2</i> 03	c. Jefferies	1	BF	26/05/76										5.9	151						0.15		
п	i s	b	н	14/05/76											30				N.D.			518	
tı	и	n	11	22/04/76		2.2	0.06		0.01														1

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

Ontario

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C. RIEDIGER

	ounty.						vnsnip .							mpne		بنسنم			Cilipi		7		_			
5				led		as CaCO ₃	as CaCO ₃	e 25 ⁰ င		or in	ts	ပ္မ	Mg	N a	×	ರ	\$0°	HCO	Nitr	ogen	as N		Phosp as F		(qdd)	Fe
ficatio	. 0		ssion	Sampled				ctanc	at lab	nt Col Units	ty in in Units	Ē	sium	Ε	sium	de	ate	onate	ia	=		o.		υ U		
Identification Number ¹	Owner or Source	Ę	Concession	Date	Units	Hardness	Alkalinity	Conductance micromhos/cm-25°C	pH at	Apparent Color Hazen Units	Turbidity Formazin	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO	Free Ammon	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenols	Iron
	С.				ppm	384	342	750	7.32	30	12	104	29.8	15.0	1.1	18.5	47	416.97	0.035	0.330	0.007	4.8	0.014	0.002	ı	2.40
2203	Jefferies	1	BF	30/09/76	epm							5.140	2.451	0.653	0.028	0.522	0.979	6.834				0.343				
	361 161 160		Ů.,		% epm						.79	62.36			0.34	6.25	11.75	81.99							100	
					ppm	396	335	760	7.39	5	5.3	103			1.3	23.5	54	408.44	0.015	0.285	0.004	0.55	0.008	0.001	1	0.94
11	11	h	ц	28/11/76	epm										0.033	0.663	1.124	6.694				0.039				
					%epm							63.67	28.33	7.59	0.41	7.82	13.25	78.93								
					ppm																					
					epm																					
				Ī	%epm																					
					ppm																					
					epm																					
					%epm																					
					ppm																	_				
					epm																					
					% epm																					
	L.			a v	ppm	400	367	780	7.65			95.0	34.0	18.8	1.2	23.5	29.0	447.45	0.08	0.705	0.01	0.04			2	6.8
2211	Heaslip	1	BF	08 06 76	epm							4.741	2.797	0.818	0.031	0.663	0.604	7.334								
2211	псазир	1		1 1	%epm							56.53	33.35	9.75	0.37	7.71	7.02	85.27								
					ppm	420	3 56	760	7.39							22.0	30.5								1	3.50
п	(r	u	H	15/06/76	epm																					
				' '	%epm																					
					ppm																					
ųί	10	u	ų.	22/66/16	epm																					
					%epm																					
				, ,	ppm	352	303	660	7.51	20	5.6	80.0	31.8	15.9	1.1	14.0	45.0	369.42	0.295	0.495	0.00	0.08	0.015	0.003	41	1.0
ĥ	u	11	U	04/10/16										0.692	0.028	0.395	0.937	6.05								
					%epm							54.48	35.69	9.44	0.38	5.35	12.68	81.97								

¹Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; | ppm = | mg/l = | lb/100,000 lmp. gal.

Ministry of the Environment

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

(cont'd)

Southwestern Region
Technical Support Section

Untario

Results reported in mg/l unless otherwise indicated

)

985 Adelaide St. South, London N6E 1V3

County: OXFORD Date Compiled: 16/12/76 Township: 50UTH-WEST OXFORD Compiler: To ERVASTI AND C.RIEDIGER H₂S A.B.S. Date Sampled Pb Zn S Manganese Mn S Biological Oxygen Chemical Oxygen Demand Ö ź Total Dissolved Solids Identification Demand; 5-Day Total Organic Hydrocarbons Concession Chromium Suspended Solids Cadmium Sulphide Detergent Inorganic Petroleum Number Copper Source Nickel Tannins Owner Carbon Anionic Carbon Lignins Carbon Lead Zinc Total Lot BF 30/09/20 96 164 462 8 2203 15 0 Jefferies 23/1/76 <0.02 11 11 B.F. 08/06/16 424 22 7.2 2211 Heaslip 462 11 15/06/76 40.02 N.D. 18 95 11 100 22/06/16 0.19 <0.01 11 40.01 11 11 04/19/16 366 42.0 86 11 82 4 \circ 1)

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

	County: OXF	OR	D			Tov	vnship :	SOUTH	-WEST	OXI	FORD	Da	te co	mpile	ed : ا	1/12/7	ھا	С	ompi	ler:	r. El	RVAS	TI A	AND C	. R1E	DIGER
				pe		as caco ₃	as aco ₃	e -25 ⁰ C		or in	ts	Ca	Mg	Na	X	ರ	SO ₄	Ş.	Nitr	ogen	as N		Phosp as P		(pdd)	Fe
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness G	Alkalinity as	Conductance micromhos/cm-25 ^o C		Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO ₃	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenois (p	Iron
	L.			.,	ppm	292	292		7.43					16.4	1.1	13.0	39.0								41.0	1.00
2211	Heaslip	11	B.F.	15/1/76	epm																					
	1100	1	<u> </u>		% epm																					_
		1			ppm epm																					
	10										ļ			<u> </u>												08
		╁	-	-	%epm ppm				-								-							(4)		
1	l				epm						 	-							-							
1					%epm						 	-		-						-						
-	 	+-	\vdash	 	ppm		 				-									<u> </u>	—					-1
1					epm						-										†					
1					%epm																					
	J.N.	T	T		ppm	360	296	650	7.44						-	9.0	46				†				41	2.4
15	Featherstone	1	BF.	15/06/76	epm																					
1	realners jone	1		1	% epm																					
		T			ppm					-					1											
¥ E	11	l a	ij	23/06/76	epm					-																
	,				%epm																					
					ppm	340	297	670	7.75	5	3.1	94.5	26.8	10.0	0.9	12.5	53	362.11	0.025	0.195	0.003	0.64	0.021	0.009	1	0.88
it	te	n	n	04/19/76								4.716	2.205	0.435	0.023	0.353	1.103	5.935				0.046				
					%epm							63.91	29.88	5.90	0.31			80.30								
		T		, ,	ppm		290		7.33					10.7	1.0	12.0	52								1	1.10
10	ц	N	11	15/11/76																		!				
		_	L		%epm																					
					ppm				<u> </u>				-		-	-										
			1		epm				-		-	-			-					-	-	-				
1		1	1	1	%epm			1		l	1		1	i	1					1	1	1			. '	

¹Location is shown in Figure 1; N.D.—Not detected; < —Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region Technical Support Section

Results reported in mg/l unless otherwise indicated

(cont'd)

985 Adelaide St. South, London N6E 1V3

County: OXFORD OXFORD Date Compiled: 16/12/76 Compiler: T. ERVASTI AND C. RIEDIGER Township: SOUTH-WEST H_2S A.B.S. Date Sampled Pb S Manganese Mn Zn S Biological Oxygen Chemical Oxygen Demand င် Total Dissolved Solids Ē Identification Total Organic Hydrocarbons Concession Chromium Suspended Solids Cadmium Number¹ Sulphide Petroleum Inorganic Detergent Tannins or Source Copper Nickel Demand Owner Carbon Anionic Lignins Carbon Carbon Zinc Total Lot BF 15/11/76 41.9 2211 Heaslip J.N. BF 15/06/76 430 15 71 Featherstone N.O. 14 40.02 70 23/06/16 0.48 <0.01 11 40.01 04/19/16 368 3.9 86 11 80 15/11/16 11 7.7

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ministry of the Environment

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

	County: 0	XFOR	D			To	wnship :	SOUTH	- WEST	Ох	FORD	Da	te co	mpile	ed: II	0/12/	16	C	ompi	ler:	Te E	RVAS	5Π <i>I</i>	AND C	RIED	NGER
uc				led		as caco ₃	as aco ₃	e 1-25 ⁰ င		or in	ıts	င်ခ	Mg	Na	×	ᄗ	SO ₄	н Н	Nitr	ogen	as N		Phosp as P		(ppb)	Fe
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness _C	Alkalinity as	Conductance micromhos/cm-25 ^o C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO3	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenols (Iron
		1			ppm																					
	,				epm																1					
	!		_		%epm																					
	1	ı	1		ppm																					
			1		epm			أستعصيت		-																
		-	╀		%epm	201	0.70	600	7,7							4 5	= -		7 - 225	0.180	0.024	/ OF	2 226		71	0.00
	G.A.	1	loc	24/05/76	ppm epm	324	276	600	7.67							4.5	50		₹0.005	0.110	0.024	1.05	0.008		<1	0.03
2201	Fraser	- 1	Dr	7407 16	%epm				-	-						-						-				
		+-	╁			344	268	600	7.56	-	 			AL	0.6	3.5	46						\vdash		∠ 1	0.17
и	l n	й	l n	14/06/76	epm	344	268	600	7.56					1100	0.0	0. 7	40				-				- 41	0.17
		"	"	יין טיין יי	%epm		-			-		-					-								-	\vdash
		+-	╁		ppm		├				-				-											-
rt	l)	n	l n	22/06/76			 					-		-						-						1
		1 "	1"	/-9/	% epm	 -	†			<u> </u>						-			<u> </u>	_			-			
		+-	+	-	ppm	248	275	600	7.50	45	0.25	70.5	22.4	4.8	0.7	3.5	51	225 %	0.005	0.10	5 0-00l	0.93	0.001	/n /n 1	1	<0.01
n	ū	и	6	15/11/76	epm							3,518	1.843	0-209	0.018	0.099	1.062	5.495	0.00	0.0		0.066		40,001	-	1024
				7",7"	%epm		İ					62.96	32.98	3.74	0.32	1.49	15.96		-						-	
		+	1		ppm		1				—	1						-		-			T -			
					epm								-							-		-				
		1	İ		%epm		1																			
		1	1		ppm																					
					epm																	Company of				
					%epm																					
					ppm							L.					ام ندی		المعمد					•		
			1		epm															-						
	1				%epm						1	1						. 9								

¹Location is shown in Figure 1; N.D.—Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ministry of the Environment

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

(cont'd)

Southwestern Region Technical Support Section

Results reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand ; 5-Day	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
2201	G.A. Fraser	1	BF.	26/05/76										0.3	<2 . 0						۷٥٠١		
IJ	11	11	Υt	14/06/76							a II				8				N.D.			384	
ii.	11	11	tı	22/04/16		0.20	<0.01		0.02														
и	υ	n	u	15/11/76												68	8	76					
																				7			
																	-						

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: To ERVASTI AND C. RIEDIGER

Bicarbonate HCO Alkalinity as **Phosphorus** micromhos/cm-25°C (pdd) Σg Nitrogen as N Apparent Color Hazen Units ¥ Turbidity in Formazin Units as P dentification Magnesium Concession Potassium pH at lab Number 1 Hardness Calcium Sulphate Chloride Sodium Soluble Ammonia Kjeldahl Nitrate Nitrite Owner Units Date 348 273 600 7.53 3.0 0.8 49.0 0.24 ppm 41 1 BF 14/06/76 16 epm Gunn % epm ppm 1 22/06/76 11 epm %epm 340 7.5 0.9 8.5 ppm 285 7.40 <1 0.08 11 11 15/11/76 epm 11 11 % epm ppm epm % epm ppm epm epm ppm epm epm 43 348.70 0-1 0.15 342 286 7.4 0.9 0.18 0.001 2.4 BF 14/12/70 1.892 0.261 epm 0.0230.226 0.895 5.715 0.171 2277 Knopp 26.78 3.69 0.33 3.31 13.09 83.6 %epm 69.20 360 299 8.0 42 ppm 660 7.45 1.0 <1 0.05 14/06/76 Streetkerk epm %epm ppm 22/06/76 11 epm %epm

¹ Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; | ppm = 1 mg/l = 1 lb/100,000 lmp. gal.

Ministry of the Environment Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

(cont'd)

Southwestern Region **Technical Support Section**

985 Adelaide St. South, London N6E 1V3

Results reported in mg/l unless otherwise indicated

Date Compiled: (6/12/76 Township: SOUTH- WEST OXFORD Compiler: T. ERVASTI AND C. RIEDIGER County: OXFORD

		_												1000									
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
16	R. Gunn	1	B.E.	14/06/76									1		6				N.D.			386	
ιį	Jt	11	и	22/06/76		0.48	0.01		۷٥.0۱														113
11	n	"	и	15/11/76											5.7								
1277	P. Knopp	1	B.F.	14/12/20																	0.1		
n	J. Streefkerk	ti	IX	14/06/16											9				N.O.			412	
þ	ij	N	Į,	12/06/76		0.07	0.07		۷٥.0۱														

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

Ontario

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOWTH- WEST OXFORD Date compiled: 16/12/76 Compiler: To LRVASTI AND C.RIEUIGER

	Sounty: OA	T	ĪΤ	ъ			ε _C			Ξ.		ca	B	S S		ס	SO ₄		Nitr		as N	-	Phosp	horus	(0	a)	
5				<u> </u>		as caco ₃	as CaCO ₃			lor	in Units	٥		z	×	0	S	Ī		90	1		as F		(qdd)	Fe	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Units	Hardness	Alkalinity _C	Conductance micromhos/cm-25 ^o C	pH at lab	Apparent Color Hazen Units	Turbidity in Formazin Un	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO3	Free Ammonia	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	Phenols (Iron	
		T	П		ppm																						1
		1			epm																						
					%epm																						
					ppm]_
		1			epm																						114
		L			%epm																						Ţ
					ppm												ļ					ļ				<u> </u>	1
			1		epm																					_	1
		1	\sqcup		%epm	1					ļ										<u> </u>						1
	Wm.	1.		1.1.	ppm	356	287	620	7.59		<u> </u>			6.3	0.9	4.0	34				ļ				<1	0.03	4
2220	Hartley	1	BF	14/06/76	epm																-	-	-			↓	1
		_			% epm						<u> </u>						-					-				1	4
					ppm						ļ	-				<u> </u>	ļ				-		<u> </u>				4
1					epm						<u> </u>		 			-			-	-						-	4
	ļ	╀-	\sqcup		% epm		2	1 ~ 5	7-1		<u> </u>				-	1	1.5				<u> </u>		-			_	4
2017	S.		or	1.1.	ppm		302	675	7.54		├		├	7.7	1.8	9.0	42		<u> </u>	├	-	-	-		1	0.0	4
2213	Bruce	12	Qr.	14/04/76	epm						├	-				-		-	-		-	+	-	-	-	┼	1
		-	+		%epm						-	├	-			-				├ ─			┼		-	+	4
		l		1.1.	ppm epm						.	-	+	-	-			-	├	├		├ ─	}	 	-	╁	+
II.	it	11	H	22/06/76				-	-	-	-	-	├		_	-	-		-		+	+			-	+	+
		\vdash	\vdash		%epm					-	-		-	├			-		├	-	+	┼	-		-	+	4
					ppm epm						-	+	-	 	 	-	 	-	 	+	+	+	†	ļ	+	+	1
				E.	%epm						-	1	-	-		1	+	-	-	-	+	+-	†	-	-	+-	1
		+-	\vdash		ppm	324	269	600	7.32	 	 	+	 	4.1	4.6	7.0	30.0	 		 	+	+		!	1	0.12	7
2217	R.	12	BF.	14/06/16	epm							T			1,			†		1		1				1	1
	Kenny			1,55/10	%epm																						1

¹Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; l ppm = l mg/l = 1 lb/100,000 lmp. gal.

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region **Technical Support Section**

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
								-															115
								,															
22.20	Wm. Hartle	1 1	BF:	14/06/76											2				N.D.			398	
														,									
2213	S. Bruce	2	BF	14/04/76											6				N.O.			444	
η	(l	μ	u	22/06/76		4.9	0.02		0.03														
				9																			
2217	R. Kenny	2	BF.	14/66/76											2	68	2	70	N.D.			384	

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXPORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C. RIEDIGER

	Journey.	·					viisiiip .						ie ci	nipiic		•			omp		1				3 31 0		
<u>_</u>				pel		as CaCO ₃	as CaCO ₃	е -25°С		or in	t s	Ca	Мв	Na	×	5	SO ₄	H S	Nitr	ogen	as N		Phosp as F	horus	(qdd)	Fe	
Identification Number ¹	Owner or Source		Concession	e Sampled	Units	Hardness _C	Alkalinity _C	Conductance micrombos/cm-25°C	at lab	Apparent Color Hazen Units	Turbidity in Formazin Units	Calcium	Magnesium	Sodium	Potassium	Chloride	Sulphate	Bicarbonate HCO	s nonia	Total Kjeldahl	ite	Nitrate	al	Soluble	Phenois (p	E	
Nur	Owner or Source	Lot	S	Date	nn	Har	Ak	S E	Нd	A pp Haz	Tur	ပ္မီ	Ma	So	Po	ర్	Su	Bic	Free Amm	Tota Kjel	Nitrite	N.	Total	Sol	Pho	Iron	
	R.			1.1	ppm																						
2217	Kenny	2	BF	22/06/76																							1
	1101111				%epm																						1
1 1					ppm																						116
					epm					ļ											-						9
			Ш		%epm		- 10					<u> </u>				-						سيبا					1
l	J. Watling			1.1.	ppm	270	248	510	7.56					4.6	0.4	1.5	30.0				ļ	 			<1	0.04	1
17	Watling	2	BF.	22/06/76	epm							ļ				-	ļ		ļ	ļ	ļ	-				<u> </u>	ł
	7	_			%epm	_					├	-				<u> </u>	ļ				-	-					4
					ppm							-	 			-					<u> </u>					-	ł
					epm							├	├			-					-					-	1
		_	_		% epm		000	422		<u> </u>	ļ	—	-			1/0				-		-				1 0	Į.
	J.	_	or	and day	ppm	176	233	433	7.6		ļ	-	-	31.4	0.9	1.0	1.0			-			-		41	0.9	4
18	Stansfield	1	Dr.	22/04/16	epm																	-	-				1
		<u></u>			% epm						-	-		-								-					4
					ppm					-	ļ	-		}		 	-		<u> </u>		-	-	-				4
					epm ° epm															-	-		-		-		1
		-	_		%epm ppm	278	2 59	540	7.5		ļ	+				1 0	21.0			-	-	-	-	<u> </u>	-37	0.09	4
2221	DORLAND SUBDIVISION	_	2-	and to be		218	251	540	1.5		├	+	 	-		4.0	31.0			-	╁		 		<1	0.01	1
2214	Wright	1	Dr.	15/06/76	%epm						 	-	-			-	-			 	┼	+	-		-		-
	DOPLAND	-	-	-	ppm %epm					├		+	-	-	-	+				-	-	-		-	-	-	1
a	DORLAND SUBDIVISION R.Ellis	ti	u	22/06/16	epm					 	 	+	-	 		 			 		+	-	1		<u> </u>		1
"	R.Ellis	"		7-7.0	%epm					 		1		†		1-			1		+	+	+	\vdash	 		1
		-			ppm	-				 	1			_		1	 	 	\vdash	1	 	+		•			1
					epm																					1	1
					%epm																						1

¹Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ministry of the **Environment** Ontario

SUMMARY OF THE CHEMICAL ANALYSES OF WATER

(cont'd)

Southwestern Region **Technical Support Section**

Results reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
2217	KENNY R.	2	BF	22/06/76		1.3	0.02		<0.01														
																							117
17	J. Watling	2	ВF	22/06/76		0.42	20.01		<0.01				<0 . 62		5.8	66	2	68	N.D.			286	
18	J. Stansfield	2	BF	22/06/76		0.10	<0 . 01		20.01				<i>20.</i> 02		9.7	58	4	62	ND.			248	
	DoguAND																						
2221 2214	DORLAND SUBDIVISION A. Wright	12	BF	15/06/76									<0.02		6	66	l	67	N.D.			324	
ц	DORLAND SUBDIVISION R. Ellis	ņ	ıı	22/06/26		0.33	0.01		<0.01														
						,																	

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

Southwestern Region

Technical Support Section

Ontario

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3 Compiler: T. ERVASTI AND C. RIEDIGER

Date compiled: 16/12/76 Township: SOUTH-WEST OXFORD County: OXFORD micromhos/cm-25°C Bicarbonate HCO **Phosphorus** as CaCO₃ (qdd) Nitrogen as N Date Sampled \overline{c} Apparent Color Hazen Units Identification Conductance Magnesium Concession at lab Potassium **Alkalinity** Hardness Calcium Sulphate **Phenols** Number 1 Turbidity Chloride Sodium Formazin Soluble Ammonia Kjeldahl Nitrate Source Owner Total ron 7.56 10.7 0.9 4.0 34.5 299.93 0.155 0.295 40.001 0-66 252 246 520 20 8.1 25.4 40.01 ppm D. 3092 BE 15/11/76 2.089 0.465 0.023 0.113 0.718 4.916 epm 3.069 Karn 54.36 37.00 8.24 0.41 1.97 12 49 85.54 % epm ppm 41 1 23/11/76 %epm epm % epm 2.5 20.0 302.3 0.215 0.395 0.001 < 0.01 0.026 0.004 224 248 478 7.62 100 20 50.5 21.8 19.0 ppm 1.0 2.520 1.793 0.827 0.026 0.071 0.416 4.956 4002 15/11/76 epm Karn 0.50 1.29 7.64 91.05 48.78 34.71 16.01 % epm 41 ppm 1 23/11/76 11 epm 11 % epm ppm epm % epm ppn epm ppm epm %epm ppm epm %epm

Location is shown in Figure 1; N.D. - Not detected; < - Refers to less than; lppm=lmg/l=lib/100,000 lmp. gal.

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

		119					
Total Dissolved Solids							
Anionic A.B.S.							
Tannins and Lignins							
Petroleum Hydrocarbons							
Total Carbon	66			66			
Total Organic Carbon	6			7			
Inorganic Carbon	60		1	59			,
Chemical Oxygen Demand							
Biological Oxygen Demand							
Sulphide H ₂ S				S.			
Suspended Solids		8					
Cadmium Cd					90		
Nickel Ni							÷
Chromium Cr							
Manganese Mn							
Copper Cu							
Zinc Zn							
Lead Pb					2		
Date Sampled	15/11/76	23/11/76		15/11/76	23/11/76		
Concession	BF	ъ		I	I		
Lot	2	n		1	1		
Owner or Source	D. Karn	(I)		H. Karn	ŧı		· ,
Identification Number ¹	3092	Ц		4002	Ĺτ		

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

APPENDIX C

SUMMARY OF CHEMICAL ANALYSES
OF THE LANDFILL LEACHATE AND SOIL

SUMMARY OF THE CHEMICAL ANALYSIS OF LEACHATE

Southwestern Region Technical Support Section

All analyses except pH reported in mg/l unless otherwise indicated

985 Adelaide St. South, London N6E 1V3

Date compiled: 16/12/76 Compiler: T. ERVASTI and C. Riediger County: OXFORD Township: SOUTH-WEST OXFORD Bicarbonate HCO3 micromhos/cm-25°C **Phosphorus** (qdd) as CaCO₃ Alkalinity as caco3 β Nitrogen as N Sampled \overline{c} Apparent Color Hazen Units ¥ as P Identification Conductance Magnesium Concession .⊑ Potassium pH at lab Chloride Hardness Sulphate Number 1 Formazin Calcium Turbidity Sodium **Phenols** Ammonia Total Soluble Kjeldahl Nitrate Source Nitrite Owner Units Date Total Lot 1370 1351 7.04 3460 31 1500 128 182 penby 1L Collection BH15/06/76 epm Basin ppn 1 21/06/76 11 1600 730 147 2.50 40.05 1460 195 4350 325 340 27 113 2545 7.22 175 3102 130 0.04 40.1 ppm 04/11/76 14.138 4.475 9.591 0.562 50.842 36.427 12.092 epm 11 1L(0) 18.01 0.92 83.35 54.26 21.06 15.72 1586 7.58 315 200 365 1933.6 136 140 0.02 40.1 0.50 0.15 850 31.5 4010 188 33 ppm 940 250 23/11/76 9.953 16.312 5.114 10,297 0.687 9.381 31.692 epm 1L(b) 11 24.42 40.02 12.55 24.13 23.02 1.61 74.26 % epm ppm ерп % epm ppm epm %epm ppm epm epm ppm epm ppm epm epm

Location is shown in Figure 1; N.D.—Not detected; < -Refers to less than; l ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ministry of the Environment

SUMMARY OF THE CHEMICAL ANALYSIS OF LEACHATE

(cont'd)

Southwestern Region Technical Support Section

985 Adelaide St. South, London N6E 1V3

Results reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXFORD Date Compiled: 16/12/76

_																						
Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
Denby Collector Basin	1	B.F.	15/06/16							,		20.02		4474	1240	200	1440	N.D.			3438	Agricultural desired
M	a	n	21/06/16		0.18	0.04		0.11				ZO.02										T22
И	ţt	Ü	04/11/76					-				L0.02										
																						-
																						Antanapara Majoraniana
																						Total Carlotte Control Control
	Denby Collector Basin	Denby Collector Basin	Denby Collector 1 B.F. Basin 1 a a	Denby Collector 1 B.F. 15/06/16 Basin 1 21/06/16	Source Sampled Date Sampled Pb	Denby Collector 1 8.F. 15/06/16 Basin 11 21/06/16 0.18	Denby Collector Basin Cobb Collector 1 8.F. 15/06/16 II 21/06/16 O.18 O.04	Denby Collector Basin O O Date Date O O O O O O O O O O O O O O O O O O O	Denby Collector Basin O Date Date Date O.18 O.18 O.10 O.11	Denby Collector Basin Nicke Manga Con 1 1 8.F. 15/06/16 0.18 0.04 0.11	Owner Source Source Source Source Source Source Source Source Source Collector Date Sampled Collector Basin Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper	Owner Source Source Concession Copper Cu Copper Cu Copper Cu Nickel Ni Suspended Solids	Owner Solids Sulphide H2S Owner Cadmium Cd Nickel Ni Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession	Owner Source Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Conc	Owner Source Source Source Corposion Comparison Concession Concession Copper Concession Copper Concession Nickel Ni Nickel Ni Suspended Solids Solids Solids Chemical Oxygen Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Demand Dema	Owner Source Concession Cadmium Cr Nickel Ni Nickel Ni Collector Basin Owner Suspended Solids Sulphide H2S Ovn Omand Omand Carbon Omand Carbon Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic Organic	Owner Source Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Conc	Owner Collector Basiu Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon C	Owner Source Concession Concession Concession Concession Copper Curromium Cr Copper Curromium Cr Copper Carbon Nickel Ni Nickel Ni Collector Demand Carbon Carbon Hydrocarbons	Owner Source Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Copper Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromi	Owner Source Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Concession Conc	Owner Solids Owner Carbon Owner Carbon Tannins and Lignins Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Carbon Owner Car

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

Ministry of the Environment

SUMMARY OF THE CHEMICAL ANALYSIS OF LEACHATE

Southwestern Region

(cont'd)

Results reported in mg/l unless otherwise indicated

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH - WEST OXFORD

Date Compiled: 16/12/76

<u> </u>					ed	Pb	Zn	, C	Ē	ວັ		10		H ₂ S			Triaz	ines (Carba (pr	mates o 5.)	D	
Identification Number ¹	Owner	Source	Lot	Concession	Date Sampled	Lead	Zinc	Copper	Manganese Mn	Chromium	300'aq	Polychlorinated Biphenyls	Solids	Sulphide	Prometone	Atrazine	Simazine	Cyprazine	De-ethyl. Atrazine	Metribuzin	Thio Carbamates	N-methyl Carbamates	Total Dissolved Solids	
							н		8			is .					2 500,001 000000							T 2 3
																,								
1 Lub	Denb Collect Bas	ctor in	1	B.F.	23/4/76						0.003	0.25		۷٥.02	N.D. (Z 0.I)	1.0	trace (LO.1)	N.D.	trace	N .D.	EPTC 60	N.D. (41.0)		

															,									
								D																

¹Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

SUMMARY OF THE CHEMICAL ANALYSIS OF LEACHATE

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

County: OXFORD Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 Compiler: T. ERVASTI AND C. RIEDIGER

principal de la company de la	oouney.					101	viionip.			_		Du			.u , 10	/		-		101 . 1		A STREET WATER			_	_
_				ed		as caco ₃	as CaCO ₃	Conductance micromhos/cm-25 ^o C		or in	ts	Ca	Mg	Na	×	CI	SO4	Bicarbonate HCO ₃	Nitr	ogen	as N		Phosp as P	horus	(qdd)	Fe
Identification Number ¹			Concession	Sampled			ن ج	Conductance micromhos/cm-	ab	Apparent Color Hazen Units	in Units	_	Magnesium		Potassium	a)	o)	nate							- 1	
Identifica Number ¹	8		ess		ا _د	Hardness	Alkalinity	uct	pH at lab	Apparent Hazen Ur	Turbidity Formaz in	Calcium	sət	Sodium	SSi	Chloride	Sulphate	,po	Free Ammonia	ahi	ø	te		ole	Phenols	
ent Im	Owner or Source	1 =	S	Date	Units	ardı	Ka	ond	I	ppa	rmi	alc	agı	odi	ota	임	dh	car	Free	Total Kjeldahl	Nitrite	Nitrate	Total	Soluble	her	Iron
Ďź	Ó Ğ	۲	ŏ	Õ	>	Ϋ́	A	ŬΕ	٦	AH	J_ 6	O	Σ	S	مَ	S	S	B	Fr	δ Ä	ž	ž	2	Š	۵	=
	Denby				ppm	412	344	720	7.45							3.5	54								2	1.34
2L	Denby at N.W. corner	1	BF	15/06/76	epm																					_
	corner		4		%epm																					
					ppm						-															
					epm					-																
		_	1		%epm		_						_									-	-			-
					ppm				ļ								<u> </u>									_
-					epm			-		-	-	-				-			-			-	-	\vdash	\vdash	-
		├-	\vdash		% epm																		-	\vdash		-
					ppm									-					-			-	-		\vdash	_
					epm		-		-	-	-	-	-	-	-		-		-	_	_	-		\vdash		-
		-	\vdash		%epm					-	-	-										-				-
					ppm						-	-	-			-		-				-	-			-
					epm			-	-	-	-						-	-				-	-			-
		_			% epm						-	-											-			
		-			ppm					-	-	-		-	-		-	-					-		-	-
	_				epm					├	-	-	-			-		-				-	-			-
		_			%epm	_					-								_			-				<u> </u>
· ·					ppm					-		-	-		-	-		-	<u> </u>				-	_		-
					epm				-	-	-	-	-	<u> </u>			-	-	-			├	-	-	-	-
		_			%epm					-	-	-	-	-		-		-		-		-	-			-
	2				ppm			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+		-	+-
					epm ° epm		-		-	-	-	+	-	-	-	-	-	-	-	-		-	+	-	-	+-
-	-	-	\vdash		%epm		-		-	-	+	+	-	-	-	 	-	+	-	-	-	+	-	+	-	\vdash
					ppm epm		-	-	-	-	 	-	+	+	-	-	-	1	-	-	-	+	+	-	-	+-
					%epm		 		-	-	+	+	-	+-	 	-	-	1	 	 	 	+	+	-	-	1
L					lochill.					1	1											1	1			

 $^{^{1}}Location is shown in Figure 1 ; N.D.-Not detected; <-Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.$

SUMMARY OF THE CHEMICAL ANALYSIS OF LEACHATE

Southwestern Region

Results rep

Results reported in mg/l unless otherwise indicated

Technical Support Section

(cont'd)

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

	County ; on					10111131						Date C	10.10	α. πορι.	7.14		Compi	er. . E	KINO	11 ///	, C. K	ie diger	_
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel Ni	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
2∟	at N.W. corner	1	B.F.	15/06/76									L0.02		12	88	6	94	N.D.			442	A
						10 10 20																	T 2 5
														٠									
				20 2																			-
	1																						_
,											8												4
																		-					1
						j.	5-1-1-17																-
																							-
لبا																							

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; 1 ppm=1 mg/l=1 lb/100,000 lmp. gal.

SUMMARY OF THE CHEMICAL ANALYSES OF SOIL

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

All analyses except pH reported in mg/l unless otherwise indicated

Compiler: T. ERVASTI AND C. RIEDIGER Township: SOUTH-WEST OXFORD Date compiled: 16/12/76 County: OXFORD micromhos/cm-25°C Bicarbonate HCO Phosphorus (qdd) Alkalinity as Mg Nitrogen as N Date Sampled Apparent Color Identification Conductance Magnesium .⊑ Concession Hazen Units Potassium pH at lab Sulphate Hardness Chloride Turbidity Number 1 Calcium Sodium **Phenols** Formazin Soluble Kjeldahl Nitrate Source Nitrite Owner Units Total Total J. Denby 970 28573 69 277 Well pit epm 2540 210 ppm 140 270 20 2700 11 23/11/76 %epm ppm %epm epm ррп ерп % epm ррп epn epm epm %epm

epm %epm

¹Location is shown in Figure 1; N.D. – Not detected; < – Refers to less than; | ppm=1 mg/l=1 lb/100,000 lmp. gal.

SUMMARY OF THE CHEMICAL ANALYSES OF SOIL

Results reported in mg/l unless otherwise indicated

(cont'd)

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6E 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD

Date Compiled: 16/12/76

	oounty.											Jake C		. 16/12				CI. 1. L		1 118		TEDIGE	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Lead Pb	Zinc Zn	Copper Cu	Manganese Mn	Chromium Cr	Nickel	Cadmium Cd	Suspended Solids	Sulphide H ₂ S	Biological Oxygen Demand	Chemical Oxygen Demand	Inorganic Carbon	Total Organic Carbon	Total Carbon	Petroleum Hydrocarbons	Tannins and Lignins	Anionic Detergent A.B.S.	Total Dissolved Solids	
15	J. Denby Well Pit	1	B.F.	30/09/76																			
ls.	11	n	u	23/11/76													*			0			121
,						×																	
																		>					
							-																

¹ Location is shown in Figure 1; N.D. - Not detected; < -Refers to less than; | ppm=| mg/l=| lb/100,000 lmp. gal.

APPENDIX D

SEMI-LOGARITHMIC DIAGRAMS OF CHEMICAL ANALYSES FROM THE BEDROCK AQUIFER

DATE SAMPLED: July, September, or December, 1970

DATE SAMPLED: September or December, 1970

DATE SAMPLED: April or June, 1976

APPENDIX E

HYDROGEOCHEMICAL MAPS OF CHEMICAL CONSTITUENTS DISTRIBUTION IN THE BEDROCK AQUIFER

HYDROGEOCHEMICAL MAP OF TOTAL CARBON (A), INORGANIC CARBON (B) AND SULPHIDE (C) DISTRIBUTION IN THE BEDROCK AQUIFER AND IN LANDFILL LEACHATE.

dumping area

(C) Sulphide

HYDROGEOCHEMICAL MAP OF FREE AMMONIA (A), TOTAL KJELDAHL (B) AND NITRITE (C) DISTRIBUTION IN THE BEDROCK AQUIFER AND IN LANDFILL LEACHATE.

Landfill

Leachate

dumping

area

(C) Nitrite

6 - September or October, 1976

f - November, 1976

HYDROGEOCHEMICAL MAP OF SULPHATE (A), SULPHATE REDUCING BACTERIA (B) AND TANNINS AND LIGNINS (C) DISTRIBUTION IN THE BEDROCK AQUIFER AND IN LANDFILL LEACHATE.

dumping

(C) Tannins and Lignins

HYDROGEOCHEMICAL MAP OF TOTAL PHOSPHORUS (A), SOLUBLE PHOSPHORUS (B) AND PETROLEUM HYDROCARBONS (C) DISTRIBUTION IN THE BEDROCK AQUIFER AND IN LANDFILL LEACHATE.

C - I dumping

(C) Petroleum Hydrocarbons

HYDROGEOCHEMICAL MAP OF ZINC (A), COPPER (B) AND CHROMIUM (C) DISTRIBUTION IN THE BEDROCK AQUIFER AND IN LANDFILL LEACHATE.

[-] dumping area

(C) Chromium

APPENDIX F

SUMMARY OF BACTERIOLOGICAL ANALYSES OF GROUNDWATER

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

Results per 100 mis.

County: OXFORD Township:

Township: SOUTH-WEST OXFORD Date Compiled: 22/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
1	B. Crynen	Gore	BF:	21/06/76	0	1000	26	66		40
							E			
2	A. DeZutter	Gore	BF.	15/06/76	0	0	0	0		<30
3	D. Harburn	Gore	BF.	26/05/76	0	0	0	0		
T.	u	η	ij	15/06/76	0	0	0	0		۷ 30
					·					

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

Results per 100 mls.

County: OXFORD

Township: South-WEST OXFORD Date Compiled: 22/12/76

	Jounty: Ortion						ilplied. 2-ji-11e		iler. 1. Eller.	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate
			2 2)			
4	G. Matern	Gore	B.F.	21/06/76	0	0	0	0		430
ls	ſ,	D	- 11	04/10/76						< 30
ti.	D. Harmer	Gore	BF	23/11/76	۷2	<2	< 2	< 2		
2276	A. Radford	Gore	B.F.	21/06/76	0	0	0	0		<30

Results per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD Township: SOUTH-WI

Township: South-WEST OXFORD Date Compiled: 22/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
2210	K. Lindsay	1	B.F.	21/06/76	>10,000	30	0			150
Ц	D	Įŧ	(t	04/10/76						90
		, AG								
2879	D. Nance kivell	1	B.F.	30/09/70		8	2			
ΙĮ	R. Millard	h	ч	26/05/76	0	0	0	0		
l e	П	l,	(ı	04/10/76						<30

Location is shown in Figure 1 ; < - Refers to less than; > - Refers to greater than

Results per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD

Township: SOUTH - WEST OXFORD Date Compiled: 22/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
5	M.E. Elliot	1	B.F.	04/10/76						< 30
	,									
3069	F. Neill	1	₿F.	04/10/76						< 30
2280	Jim's Trailer Park	1	B.F.	21/05/76	0	0	0	0	×	
i I	(1	h	es	26/05/76	O	0	0	4	v	
Τı	Į (h	Q.	22/06/76	0	0	0	0		90

Results per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD Date Compiled: 22/12/76

	odiny: On on				,, oo a		, , , , , , , , , , , , , , , , , , ,		Her. II DIGIAG	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
2280	Jim's Trailer Park	1	3F	04/10/76						2100
Ĺ	1,4	IS	i.	23/11/76	< 2	۷2	42	<2		
2206	C. Gee	1	B.F.	22/06/76	0	0	0	0		430
lı	Įι	n	ti.	04/10/76						430
2208	A.E. Slater	1	BF.	22/06/76	0	0	0	0	-	< 30

Southwestern Region Technical Support Section 985 Adelaide St. South, London N6V 1V3

Results per 100 mis.

	County: OXFOR	D		Township	: SOUTH-WEST (OXFORD Date Cor	npiled: 22/12/76	Comp	iler: T. ERVAS	STI
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
2208	A.E. Slater	1	B.F.	04/10/76						< 30
		*								
6	н. Robillard	Gore	B.F.	14/06/76	0	40	0	0		< 30
2275	Westmount Motel N. DeLeon	Gore	BF.	14/06/76	0	0	0	٥		90

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

Results per 100 mls.

County: OXFORD

Township: SOUTH-WEST OXFORD Date Compiled: 22/12/76

	County: UNPUR				1. JOHN: WEST ON				iler. I. ERVA	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
7	J. Bowman	Gore	B.F.	22/06/76	0	0	0	0		430
								1		
2278 3414	T Radford	Gore	B.F.	14/06/76	0	0	0	0		430
					-					
8	T. McGinnis	Gore	B.F.	21/06/76	0	42	0	0		<30

Results per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD Date Compiled: 22/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background Colonies	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
9	F. Tilley	Gore	BF.	14/06/76	0	0	0	0		<30
0	J. Hibner	Gore	B.F.	14/06/76	0	0	0	0		< 30
	ž.			-						
2202	Con-Tario Precast Ltd.	1	B.F.	14/06/76	0	860	0	0		430
- 11	u .	11	η	04/10/76						<30
h	l (Įī	Į,	23/11/76	۷ 2	1400	192	6		

Results per 100 mls.

Southwestern Region Technical Support Section 985 Adelaide St. South, London N6V 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD Date Compiled: 12/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
11	g. Blais	1	B.F.	14/06/76	0	0	0	0		430
{1	()	ti.	ii	04/10/76						430
2200	A. Drysdale	1	B.F.	26/05/76	0	0	. 0	0		
r t	((tt	α	15/06/76	٥	0	0	0		<3 <i>0</i>
11)1	Įι	Ļĸ	04/10/76						< 3 <i>0</i>

Location is shown in Figure 1 ; <-Refers to less than

Results per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD

Township: SOUTH-WEST OXFORD Date Compiled: 22/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
3582	J. Denby	1	B.F.	21/04/76	0	0	O	0		
Įτ	D.	A	h	12/05/76	0	28	0	0		
11	h	и	11	26/05/76	0	12	0	0		
ħ	u	11	11	15/06/76	0	110	0	0		2100
Įí	ij	ts	u	04/10/76						430
\1	Q	lı	tx	23/11/76	۷2	4	< 2	42		
				,						

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6V 1V3

Results per 100 mls.

County: OXFORD

Township: South-WEST OXFORD Date Compiled: 22/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
12	K. Ellery	1	BF.	21/04/76	0	0	O	0		
(x	tr	ij.	h	12/05/76	<4	0	0	4	0	
u	п	h	11	21/05/76	< 4	<4	∠ 4	<4		
11	\1	u	lı	26/05/76	0	. 0	0	0		
lı	11	įι	W	15/06/76	0	0	0	0		40
(1	r)	Į 1	Ţr	04/10/76						230

Results per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD

Township: South-WEST OXFORD Date Compiled: 22/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
13	E. Keatings	1	BF.	14/06/76	0	4	0	0		.40
ft	Li	n,	n	04/10/76						430
14	E. Seagrist	1	B.F.	14/06/76	0	0	0	0		430
n	·li	V	n	23/11/76	< 2	<2	< 2	< 2		
2203	C. Jefferies	1	B.F.	26/05/76	0	32	0	0		

Southwestern Region

Technical Support Section

985 Adelaide St. South, London N6V 1V3

Results per 100 mls.

County: OXFORD

Township: SouTH - WEST OXFORD Date Compiled: 22/12/76

									IICITT. ERUAD	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background Colonies	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
2203	C. Jefferies	1	B.F.	14/06/76	0	6	0	0		90
1.1	(ı	a	U	04/10/76						40
tı .	ţı	tı	lı	23/11/76	<2	<2	<2	< 2		
2211	L. Heaslip	1	BF.	08/06/76	0	130	0	0	0	
l)	ļī.	(i	ts .	15/06/76	<4	20	<4	<4		430
11	tı	И	ħ	04/10/76						⟨30
		l e								

sults per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD

Township: South- WEST OXFORD Date Compiled: 22/12/76

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
15	J.N. Featherstone	1	BF.	15/06/76	4	32	4	<4		< 30
ft.	n	ti	tr	04/10/76						430
2201	G.A. Fraser	1	B.F.	26/05/76	0	0	0	0		
11	(1	(t	Ιι	14/06/76	O	0	0	0		430

Results per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD Township: SOUTH-WEST OXFORD Date Compiled: 22/12/16

	zounty: on on				71 000(111 7 25. 9)			Comp		
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal	Background Colonies	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
16	R. Gunn	1	B.F.	14/06/76	0	4	0	0		<30
2277	J. Streef kerk	1	B.F.	14/06/76	0	0	0	0		< 30
									,	
	\u/m									
2220	Wm. Hartley	1	B.F.	14/06/76	0	8	0	0		< 30

Southwestern Region
Technical Support Section

985 Adelaide St. South, London N6V 1V3

Results per 100 mls.

County: OXFORD

Township: SOUTH-WEST OXFORD Date Compiled: 22/12/76

2/12/76 Compiler: T. ERVASTI

Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
2213	s. Bruce	2	BF.	14/06/76	0	10	0	0		< 30
	.19									
2217	R. Kenny	2	B,F	14/06/76	0	4	0	0		< 30
				M.						
17	J. Watling	2	BF.	22/06/76	0	0	0	. 0		< 30

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

Results per 100 mls.

County: OXFORD

Township: SouTH-WEST OXFORD Date Compiled: 22/12/76

		_								
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
18	J. Stansfield	2	B.F.	22/06/76	0	0	0	0		۷30
						1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
2221	Dorland Subdivision A. Wright	2	B.F.	15/06/76	0	0	0	0		430
				,						
4002	H. Karn	1	ī	23/11/76	42	<2	< 2	42		
									,	

Results per 100 mls.

Southwestern Region
Technical Support Section
985 Adelaide St. South, London N6V 1V3

County: OXFORD

Township: South-WEST OXFORD Date Compiled: 22/12/76

	County. Oxford				, south west on		inplication (in the control of the c	Joinp	iler: 1. ERVA	711
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
3092	p. Karn	2	B.F.	23/11/76	<2	42	42	<2		
									·	
									,	

APPENDIX G

SUMMARY OF BACTERIOLOGICAL ANALYSES
OF THE LANDFILL LEACHATE

BACTERIOLOGICAL ANALYSES OF LEACHATE

Southwestern Region Technical Support Section 985 Adelaide St. South, London N6V 1V3

100 mls.

Township: South-WEST OXFORD Date Compiled: 22/12/76 County: OxFORD Compiler: T. ERVASTI

	oddity. Oxion), bout 11 11 01				Her. I. ERVASI	
Identification Number ¹	Owner or Source	Lot	Concession	Date Sampled	Fecal Coliform	Background	Coliform Bacteria	Enterococcus	Pseudomonas Aeruginosa	Sulphate Reducers
1L	Denby Collector Basin	1	B.F.	15/06/76	190	>10,000	2100	200		1,100,000
u	11	п	a	23/11/76	140	45,000	4200	500	inconclusive result	
2L	Denby at N.W. corner	1	B.F.	15/06/76	1500	1,400,000	62,000	1200		430
									,	
							-			
,										

