Tópico 02 – Sinais discretos no tempo

Amostragem no tempo

Considere um sinal contínuo no tempo x(t) do tipo senoidal:

$$x(t) = A\cos(\omega t + \theta)$$

 $-\infty < t < +\infty$

t : tempo em s *A* : amplitude

 ω : frequência em rad/s

 θ : fase em rad

Figura adaptada de Proakis; Manolakis (1996).

Propriedades:

- a. Trata-se de um sinal periódico.
- b. Sinais de frequências diferentes são distintos.
- c. À medida que a frequência aumenta, aumenta a quantidade de oscilações por unidade de tempo, sem limitação.

Considere agora um sinal discreto no tempo, do tipo senoidal:

$$x(kT) = A\cos(\omega kT + \theta) \qquad -\infty < k < +\infty$$

k : índice (número inteiro)

A: amplitude

 ω : frequência em rad/s

T : período de amostragem

 $\omega_s = \frac{2\pi}{T}$: frequência de amostragem em rad/s

 θ : fase em rad.

Figura adaptada de Proakis; Manolakis (1996).

Propriedades:

a. Trata-se de um sinal periódico apenas se a razão entre frequência ω do sinal e a frequência de amostragem ω_s for um número racional

Um sinal discreto no tempo é periódico com período $T_p = NT > 0$ (N é um número inteiro) se:

$$x(kT + NT) = x(kT)$$
 para todo k

Assim, para ser periódico, um sinal de frequência ω deve satisfazer:

$$x(kT) = A\cos(\omega kT + \theta)$$

$$x(kT + NT) = A\cos[\omega(kT + NT) + \theta] = A\cos(\omega kT + \omega NT + \theta)$$

$$x(kT+NT)=x(kT)$$
 \Rightarrow $\omega NT=2n\pi$, com $n=0,1,2,3,4,\cdots$

$$\omega NT = 2n\pi$$
 \Rightarrow $\omega \frac{T}{2\pi} = \frac{n}{N}$

Lembrando que $\frac{T}{2\pi} = \frac{1}{\omega_s}$

$$\frac{\omega}{\omega_s} = \frac{n}{N}$$

Ou seja, a razão entre frequência ω do sinal e a frequência de amostragem ω_s deve ser a razão entre dois números inteiros.

b. Sinais de frequências diferentes não são, necessariamente, distintos:

Seja um sinal senoidal amostrado no tempo $\cos(\omega kT + \theta)$, tal que $-\frac{\omega_s}{2} \le \omega \le \frac{\omega_s}{2}$.

Usando $T = \frac{2\pi}{\omega_s}$, e adotando um número inteiro p:

$$\cos(\omega kT + \theta) = \cos\left(\omega k\frac{2\pi}{\omega_s} + \theta\right) = \cos\left(2\pi\frac{\omega}{\omega_s}k + \theta\right) = \cos\left(2\pi\frac{\omega}{\omega_s}k + \theta + kp2\pi\right) =$$

$$= \cos\left[2\pi\left(\frac{\omega}{\omega_s} + p\right)k + \theta\right] = \cos\left[2\pi\left(\frac{\omega}{\omega_s} + p\frac{\omega_s}{\omega_s}\right)k + \theta\right] = \cos\left[\frac{2\pi}{\omega_s}(\omega + p\omega_s)k + \theta\right] =$$

$$= \cos\left[(\omega + p\omega_s)kT + \theta\right]$$

$$\cos(\omega kT + \theta) = \cos[(\omega + p\omega_s)kT + \theta]$$

Ou seja, um sinal amostrado no tempo de frequência ω é idêntico ao sinal amostrado no tempo de frequência $\omega + p\omega_s$, onde p é um número inteiro, e ω_s é a frequência de amostragem.

c. À medida que a frequência aumenta, aumenta a quantidade de oscilações por unidade de tempo, até um limite.

Considere o seguinte sinal como exemplo:

$$x(kT) = \cos(\omega kT + \theta)$$

Fazendo a frequência ω variar entre 0 e $\frac{\omega_s}{2}$, adotando, para efeito de ilustração,

$$\omega = 0, \frac{\omega_s}{16}, \frac{\omega_s}{8}, \frac{\omega_s}{4}, \frac{\omega_s}{2}$$

Figura adaptada de Proakis; Manolakis (1996).

O que ocorre se aumentarmos a frequência, tal que $\frac{\omega_s}{2} \le \omega \le \omega_s$:

Vamos considerar dois sinais de frequências ω e $\omega_1 = \omega_s - \omega$:

$$\cos(\omega_1 kT) = \cos[(\omega_s - \omega)kT] = \cos(\omega_s kT - \omega kT) = \cos\left(\omega_s k \frac{2\pi}{\omega_s} - \omega kT\right) =$$

$$= \cos(k2\pi - \omega kT) = \cos(-\omega kT) = \cos(\omega kT)$$

Como consequência, e lembrando que estamos examinando $\frac{\omega_s}{2} \le \omega \le \omega_s$, temos que, neste intervalo, se aumentarmos ω , a frequência efetiva é $\omega_1 \le \omega$, ou seja, a frequência diminui.

Temos uma frequência máxima $\omega = \frac{\omega_s}{2}$.

Comparando:

Sinal senoidal contínuo no tempo $x(t) = A\cos(\omega t + \theta)$	Sinal senoidal amostrado no tempo $x(kT) = A\cos(\omega kT + \theta)$
a) Trata-se de um sinal periódico.	a) O sinal só é periódico se $\frac{\omega}{\omega_s} = \frac{n}{N}$.
b) Sinais de frequências diferentes são distintos.	b) Sinais de frequências diferentes podem ser idênticos: $\cos(\omega kT + \theta) = \cos[(\omega + p\omega_s)kT + \theta]$ para $\frac{\omega}{\omega_s} \ge \frac{1}{2}$
c) À medida que a frequência aumenta, aumenta a quantidade de oscilações por unidade de tempo, sem limitação.	, <u>.</u>

É uma outra maneira de observar o critério de seleção da frequência de amostragem, que precisa ser mais que o dobro da frequência máxima do sinal a ser amostrado.

VAZAMENTO ("LEAKAGE")

Antes, de entrar no tópico propriamente dito, uma propriedade da Transformada de Fourier que será útil:

Propriedade da transformada de Fourier para a convolução:

Convolução no tempo

$$\mathscr{F}[f_1(t)*f_2(t)] = \mathscr{F}[f_1(t)] \cdot \mathscr{F}[f_2(t)] = F_1(\omega)F_2(\omega)$$
 onde a convolução é definida como:

$$f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau = \int_{-\infty}^{+\infty} f_2(\tau) f_1(t-\tau) d\tau = f_2(t) * f_1(t)$$

Convolução na frequência:

$$\mathscr{F}[f_1(t)f_2(t)] = \frac{1}{2\pi}\mathscr{F}[f_1(t)] * \mathscr{F}[f_2(t)] = \frac{1}{2\pi}F_1(\omega) * F_2(\omega).$$

onde a convolução é definida como:

$$F_1(\omega) * F_2(\omega) = \int_{-\infty}^{+\infty} F_1(\lambda) F_2(\omega - \lambda) d\lambda = \int_{-\infty}^{+\infty} F_2(\lambda) F_1(\omega - \lambda) d\lambda = F_2(\omega) * F_1(\omega)$$

Convolução - ilustração

$$y(t) = g(t) * u(t) = \int_{-\infty}^{+\infty} g(\tau)u(t-\tau)d\tau$$

O valor de y(t) nesse instante é a área parte hachurada figura

Voltando ao tópico Vazamento ("leakage")

Considere a seguinte situação:

Sinal contínuo no tempo x(t):

$$x(t) = \cos(\omega_a t)$$

Transformada de Fourier $X(\omega)$:

$$X(\omega) = \pi \left[\delta(\omega - \omega_a) + \delta(\omega + \omega_a) \right]$$

Só há componentes de frequência ω_a

Janela retangular:

$$f(t) = rect\left(\frac{t}{T_c}\right)$$

Transformada de Fourier da janela retangular:

$$F(\omega) = T_c \operatorname{sinc} \frac{\omega T_c}{2}$$

Função truncada:

$$x_T(t) = x(t) \cdot f(t)$$

$$x_T(t) = \cos(\omega_a t) \cdot rect \left(\frac{t}{T_c}\right)$$

Transformada de Fourier do sinal truncado:

$$X_T(\omega) = X(\omega) * F(\omega)$$

É a convolução das funções.

Como é preciso iniciar e terminar um ensaio experimental em um tempo finito, o truncamento e os picos adicionais são inevitáveis (se bem que algumas vezes são imperceptíveis) - é o vazamento ("leakage"). Tais picos adicionais são devido ao truncamento, e não ao fenômeno que está sendo estudado, e, portanto, precisam ser minimizados de alguma forma.

FALSEAMENTO ("ALIASING")

O objetivo é analisar o efeito da amostragem no tempo de um sinal. A ferramenta de análise disponível é a transformada de Fourier, porém ela não se aplica a um sinal amostrado no tempo. Mas pode-se usar um modelo da amostragem, que é a amostragem por impulso. Obviamente não é a mesma coisa, mas retém a característica principal que queremos analisar, que é a amostragem.

Sinal contínuo no tempo:

Sinal amostrado:

Trem de impulsos

Modelo do sinal amostrado: sinal amostrado por impulso:

Nomeando:

$$X(\omega) = \mathscr{F}[x(t)]$$

$$X_{s}(\omega) = \mathscr{F}[x_{s}(t)] = \mathscr{F}\left[x(t) \cdot \sum_{k=-\infty}^{+\infty} \delta(t-kT)\right] = \frac{1}{2\pi} X(\omega) * \omega_{s} \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_{s})$$

$$X_s(\omega) = \frac{1}{T}X(\omega) * \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_s)$$
 - convolução

Resultado:

$$X_s(\omega) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} X(\omega - n\omega_s)$$

Caso 1:

Transformada de Fourier $X(\omega)$ de x(t):

 $X(\omega)$ é contínua em ω , com $\omega_b < \frac{\omega_s}{2}$

Transformada de Fourier $X_s(\omega)$ de $x_s(t)$:

$$X_{s}(\omega) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} X(\omega - n\omega_{s})$$

A amplitude é amplificada pelo fator $\frac{1}{T}$, e se trata de uma função periódica!

Se usarmos apenas a função no intervalo $\left[-\frac{\omega_s}{2},\frac{\omega_s}{2}\right]$, multiplicada por T, teremos exatamente $X(\omega)$, que é a transformada de Fourier do sinal contínuo no tempo, sem ser amostrado.

Ou seja, se a maior frequência que ocorre no espectro de frequências do sinal original, contínuo no tempo, for menor que a metade da frequência de amostragem ω_s , então é possível reconstruir completamente o sinal original apenas com a informação do sinal amostrado.

Caso 2:

Transformada de Fourier $X(\omega)$ de x(t):

 $X(\omega)$ é contínua em ω , com $\omega_b > \frac{\omega_s}{2}$

Transformada de Fourier $X_s(\omega)$ de $x_s(t)$:

$$X_s(\omega) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} X(\omega - n\omega_s)$$

Nesse caso há perda de informação, e não é mais possível reconstruir o sinal original apenas com o sinal amostrado.

Avaliando o efeito da amostragem no tempo – usando a função cosseno como exemplo:

A cada imagem abaixo, está se aumentando ω_0 , e mantendo-se ω_s constante:

Aparece essa frequência que não existe no sinal não amostrado.

Bibliografia recomendada

- OGATA, K. Discrete-Time Control Systems, 2nd ed., Englewood Cliffs, Prentice Hall, 1995, 745p.
- PHILLIPS, C.L.; PARR, J.M. **Signals, Systems, and Transforms**, 2nd Edition. Upper Saddle River: Prentice Hall. 1998. 663 p.
- PROAKIS, J.G; MANOLAKIS, D.G. Digital Signal Processing: Principles, Algorithms, and Applications. 3rd Edition. Upper Saddle River: Prentice-Hall International Inc., 1996.