Problem A: Modular Fibonacci

The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...) are defined by the recurrence:

$$F_0 = 0$$

 $F_1 = 1$
 $F_i = F_{i-1} + F_{i-2}$ for $i > 1$

Write a program which calculates $M_n = F_n \mod 2^m$ for given pair of n and m. $0 \le n \le 2147483647$ and $0 \le m < 20$. Note that $a \mod b$ gives the remainder when a is divided by b.

Input and Output

Input consists of several lines specifying a pair of n and m. Output should be corresponding M_{n_i} one per line.

Sample Input

11 7 11 6

Sample Output

89

25

Arun Kishore