

Agenda

- Geofacets Background
- Problem Statement
- Previous work
- Data and proposed solution
- Tooling and code
- Results
- Future work

ELSEVIER

Privacy Policy Terms & Conditions Contact Us About Geofacets

Cookies are set by this site. To decline them or learn more, visit our Cookies page.

RELX Group

Geofacets Demo

How does this work?

- Currently manual processing
- Map inset geolocation at "Area of Interest" level
- Tables and figures geolocated with maps from same article

- Hard to scale this to public data sources
- Can't geo-reference non-cartographic resources

Geocoding (vs Georeferencing)

- Geonames
- Two Fishes (no more demo?)
- Who's on First "Spelu
- Google Maps API
- Yahoo Maps API
- Other sources of Geo Data
 - Library of Congress Subject Headings
 - Getty Thesaurus of Geographic Names

Cratons and Shields

Fennoscandian Shield

Building a geological feature geocoding engine May 14, 2018

San Andreas Fault

Building a geological feature geocoding engine May 14, 2018

A Research Proposal

- Roll our own geolocation engine
- Based on Geofacets data:
 - Polygons for Areas of Interest
 - Captions of map insets
 - Additional article metadata?

Open Source Tools

- Geohash Algorithm
- MySQL
- Elastic Search
- Google Maps API
- Python
 - Pandas
 - Shapely
 - Geohash
 - SpaCy

System Architecture

Starting Data

- Lat / Long Bounding Boxes (Coordinate System Normalized)
- Lat / Long Center Points
- Caption Text
- Other article metadata
- Basin Names

Code Dive!!

- Panda's Lambdas
 - For Named Entities
 - For GeoHashes
 - For GeoNeighbors
- Some Data Cleanup
- Load to Elastic
- Query Elastic
- Dump to Django

SpaCy Lambdas for Noun Phrases

```
df['noun_phrases'] = df.apply (lambda row: getNounPhrases (row) if(pd.notnull(row['CAPTION'])) else row, axis=1)
print("Getting geo noun phrases")
logger.write("Getting geo noun phrases\n")
now = time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime())
print(now)
logger.write(now+"\n")
with open('geoFeatures.lst') as file:
    geotypes = file.read().splitlines()
with open('exceptions.lst') as file:
    exceptions = file.read().splitlines()
df['geo phrases'] = df.apply (lambda row: 1, axis=1)
df['geo_phrases'] = df.apply (lambda row: getGeoNounPhrases (row, geotypes, exceptions), axis=1)
```


Using SpaCy's Noun Chunker

```
def getNounPhrases (row):
45
        nps = []
        pasttoken = None
        doc = nlp(row['CAPTION'])
        for np in doc.noun_chunks:
            nps.append(" " + html.unescape(np.text) + " ")
            if pasttoken and pasttoken.text + " of " + np.text in doc.text:
                doublenp = pasttoken.text + " of " + np.text
                nps.append(" " + html.unescape(doublenp) + " ")
            if any(x in " " + np.text.lower() + " " for x in [" gulf ", " sea ", " valley "]):
                pasttoken = np
            else: pasttoken = None
        return "|||".join(nps)
```


Proper Noun Hack, and in Geo Trigger List

```
# Get Geo specific noun phrases from noun phrases
    def getGeoNounPhrases (row, gts, exceptions):
        try:
            geonps = []
            if isinstance(row['noun_phrases'], str):
                for np in row['noun_phrases'].split("|||"):
                     nothe = np.replace("The", "")
                     if (np.strip() not in exceptions
                        and any(letter.isupper() for letter in nothe)):
                         for geotype in gts:
                             if (" " + geotype + " ") in np.lower():
                                 geonps.append(np.strip())
72
            return [list(set(geonps))]
        except ValueError:
            return None
```


500+ Geological Keywords

	COVCS				
111	crater		fjord	483	shutter ridge
112	crater lake	168	fjords	484	sill
113	crater lakes		flat	485	sinkhole
114	craters	170	flats	486	site
115	craton		floodplain	487	slab
116	creek		flow	488	slide
117	crest		fluvial landform	489	slope
118	crevasse	174	fluvial landforms	490	slopes
119	cuesta		fold	491	snowfield
120	cuestas	176	fold belt	492	sound
121	current		footwall	493	spit
122	cutbank	178	ford	494	spring

GeoHash

- Alphanumeric strings
- 32 Cell Grids
- Represent Lat / Longs
- Longer strings == More Precision
- Up to 12 characters
 (≤ 37.2mm × 18.6mm)

 Image generated at: http://geohash.gofreerange.com

Calculate Approx. Area of Map

```
# Estimate area of each area of interest (in km)
def tryGetArea (row):
    try:
        bl = row[['SW COORD LAT', 'SW COORD LNG']]
        br = row[['SE_COORD_LAT', 'SE_COORD_LNG']]
        tr = row[['NE_COORD_LAT','NE_COORD_LNG']]
        tl = row[['NW_COORD_LAT','NW_COORD_LNG']]
        width = vincenty(bl, br).kilometers
        height = vincenty(bl, tl).kilometers
        area = width*height
        return area
    except ValueError:
        return None
```


Get Geohash For Center

At a precision appropriate to the Map Area

```
df['geohash'] = df.apply (
lambda x: geohash.encode(x.CENTER_COORD_LAT, x.CENTER_COORD_LNG, precision=3) if x.polar == True else
(geohash.encode(x.CENTER_COORD_LAT, x.CENTER_COORD_LNG, precision=2)if x.area > 1500000 else
(geohash.encode(x.CENTER_COORD_LAT, x.CENTER_COORD_LNG, precision=3)if x.area > 100000 else
(geohash.encode(x.CENTER_COORD_LAT, x.CENTER_COORD_LNG, precision=4)if x.area > 5000 else
geohash.encode(x.CENTER_COORD_LAT, x.CENTER_COORD_LNG, precision=5)))), axis=1)
```


Recursively fill out bounding box

Some rather large regions

```
"M_ID": "S0301-9268(83)80003-5_2",
"CAPTION": "Fig. 2. The Rio de la Plata Province in southern Uruguay.",
"geo_phrases": [
  "The Rio de la Plata Province"
"neighbors":
  "69y".
  "6dp",
  "6f1",
  "6f0",
  "6cc".
  "6cb".
 "6dn",
  "69z"
"area": 138996.6025274768,
"NW_COORD_LAT": -32.571869,
"NW_COORD_LNG": -58.391544,
"NE_COORD_LAT": -32.571869,
"NE_COORD_LNG": -53.211308,
"SW_COORD_LAT": -35.2295,
"SW_COORD_LNG": -58.391544,
"SE_COORD_LAT": -35.2295,
"SE_COORD_LNG": -53.211308
```


And some very small regions

```
"M_ID": "S0025-3227(07)00180-6_1",
   "CAPTION": "Fig. 1. Coastal back-barrier sites in south-east Devon showing p
ositions of electrical resistivity survey lines and boreholes. Slapton Sands (A)
 Blackpool Sands (B). © Crown Copyright/Database right 2006. An Ordnance S
urvey/EDINA supplied service. Coordinates are Ordnance Survey of Great Britain N
ational Grid System and Latitude and Longitude.".
   "geo_phrases": [
      "Slapton Sands",
     "Blackpool Sands"
   ],
   "neighbors": [
     "abvah"
   ],
   "area": 7.5509389056,
   "NW_COORD_LAT": 50.294758,
   "NW_COORD_LNG": -3.666299,
   "NE_COORD_LAT": 50.294758,
   "NE_COORD_LNG": -3.635169,
   "SW_COORD_LAT": 50.264175,
   "SW_COORD_LNG": -3.666299,
   "SE_COORD_LAT": 50.264175,
    "SE_COORD_LNG": -3.635169
```


Elastic Search

- Stuff all this JSON in
 - Map the geo_phrases as keywords
 - Map the geohashes as geo_points
- Get a list of all geohashes
- Query every hash, get keyword list and count as aggregations

Reduce and invert

- Reformat this data such that:
 - 1 Row per geological named entity
 - A list of associated hashes / counts:
 the Little Goose Creek
 Complex,c2j2=1|c2j2t=1|9rtmk=1|9rtmh=1|9rtmm=1|9rtm=1|9rtmt=1|9rtms=1,
 - Dump to a really simple Django model

With function to format for Google Maps

```
class Feature(models.Model):
    name = models.CharField(max length=500)
    geos = models.TextField(max_length=2000000)
   def geos_as_list(self):
        hash_list = self.geos.split('|')
        lating_list = []
        for gh in hash_list:
            lating list.append("{location: new google.maps.Lating"
                                +str(geohash.decode(gh.split('=')[0]))
                                +", weight: " + gh.split('=')[1] + "},"
        latlng_list[-1] = latlng_list[-1].rstrip(",")
        return latlng_list
```


Some additional cleanup

- Current dataset is still noisy, partly due to:
 - Noun chunker inconsistencies
 - Case sensitivity
 - Presence in initial articles
 - Stray punctuation symbols
 - Abbreviations tied to map annotations e.g. SAF-San Andreas fault

Geocoding Demo

Statistics

- In the holdout 20% test data:
 - About 1/2 of text strings matched a location
 - About 1/3 of text strings contain a "trigger phrase"
- 285,453 entries in the current Drupal index
 - Still a fair amount of noise and duplication
 - Still likely over 100k unique Geology Entities

Challenges

- Data Cleanup
 - Noun Chunker
 - Punctuation & Case
- Optimal Geohash precision
- Stippled hotspots converted from geohash
- Polar Area Maps

Polar Area Maps

Baltic Shield

Use Cases

- Scaling Geolocation Work
 - Public Domain Data
 - 3rd Party Data Integration
 - Non-Cartographic Content
- AnalogsDocument Analysis

Document Analysis Demo

Conclusion

- Geofacets Product
- Manual Georeferncing of Map Insets from Geology Articles
 - Difficult to Scale to New Data Sources
 - Georeferening, Not Geocoding
- How to build a Geolocation Engine for Text Based Geocoding

Thank you

Please Evaluate the Sessions! Sign in and vote at <u>2018.foss4g-na.org</u>

Corey A Harper – Elsevier Labs <u>@chrpr</u> – <u>c.harper@elsevier.com</u>

Geology Images all CC-BY and CC0

- https://pixabay.com/en/desert-formation-geology-erosion-2480655/
- https://pxhere.com/en/photo/290464
- https://commons.wikimedia.org/wiki/File:Granodiorite_of_the_Fennoscandian_Shield.jpg
- https://commons.wikimedia.org/wiki/File:A_melhor_coisa_pra_fazer_em_Noronha.jpg
- https://www.publicdomainpictures.net/en/view-image.php?image=106887&picture=geology
- https://www.maxpixel.net/Geology-Horseshoe-Desert-High-Angle-Shot-1867005

