NP úplnosť: osnova

- Rozhodovacie vs. optimalizačné problémy.
- Trieda problémov P.
- Nedeterministické výpočty a trieda problémov NP.
- Polynomiálne transformácie a NP-úplnosť.
- Cookova veta: Existuje NP-úplný problém.
- Ako ukázať, že problém je NP-úplný?
- Základné "portfólio" NP-úplných problémov.

Redukcie

Definícia

Rozhodovací problém A je polynomiálne redukovateľný na problém B ($A \le_p B$) ak existuje funkcia f vypočítateľná v polynomiálnom čase taká, že:

- zobrazuje každý vstup A na nejaký vstup B
- A odpovedá na x áno práve vtedy keď B odpovedá na f(x)
 áno

polynomial-time algorithm to decide A

NP-ťažké a NP-úplné problémy

Problém Q je NP-ťažký akk každý problém $R \in Q$ platí $R \leq_p Q$.

Ak NP-ťažký problém Q patrí do triedy NP, hovoríme, že je NP-úplný.

SAT

Def: SAT (splniteľnosť) Uvažujme booleovské premenné (u_1, \ldots, u_m) a logickú formulu f.

Problém: Existuje priradenie hodnôt premenných také, aby f bola splnená?

Veta (Cook)

SAT je NP-úplný

Náčrt dôkazu:

Potrebujeme dokázať:

- SAT∈NP –alebo– Existuje nedeterministický polynomiálny algoritmus, ktorý rieši SAT.
- 2 SAT je NP-ťažký –alebo– pre ľubovoľný problém $Q \in NP$: $Q \leq_p SAT$

2 SAT je NP-ťažký

Uvažujme $Q \in \mathrm{NP}$ \Longrightarrow existuje polynomiálny nedeterministický algoritmus, ktorý rieši Q

Ako taký algoritmus zapíšeme?

- ▶ Každý register má v sebe uložené číslo konštantnej veľkosti (registre označíme $R_1, R_2, ...$)
- Program je nemeniaca sa postupnosť príkazov s konštantným počtom očíslovaných riadkov
- Na začiatku je vstup uložený v prvých n registroch (n je veľkosť vstupu)
- Program beží nanajvýš p(n) krokov a pristupuje najviac ku q(n) prvým registrom (p(n) a q(n) sú polynómy závisiace od n)

- Sada inštrukcií:
 - ACCEPT
 - ▶ REJECT
 - ▶ GOTO m
 - ▶ IF $R_{\ell} = 0$ THEN GOTO m
 - ► CHOOSE R₁ BETWEEN 0 AND 1
 - ▶ základné aritmetické operácie (napr. $R_{\ell} := R_{u} + R_{v}, R_{\ell} := R_{u} * R_{v}$)
 - nejaký mechanizmus na adresáciu prvých q(n) registrov (detaily sú mierne komplikované, ale dá sa)

2 SAT je NP-ťažký: $Q \leq_{\rho} SAT$

Chceme:

- ▶ Daný je program A, ktorý rieši problém Q v polynomiálnom čase a inštancia $x = x_1, x_2, \dots, x_n$.
- Vyrobíme veľkú logickú formulu f, ktorá "simuluje" program A na vstupe x;

Premenné formuly *f* :

- ightharpoonup Q[i,k] v čase i program vykonáva riadok k
- ► S[i, j, k] v čase i má register R_j hodnotu k

Formula f bude konjunkcia ("AND") niekoľkých menších formúl t.j. všetky tieto menšie formuly musia byť splnené, aby formula f bola splnená

1 "V každom čase *i* program vykonáva práve jeden riadok."

 $\overline{\neg(Q[i,k] \land Q[i,\ell])}$ pre všetky i a $k
eq \ell$

- 3 V čase 0:
 - Program vykonáva riadok 1: Q[0,1]
 - Prvých *n* registrov má hodnoty x_1, \ldots, x_n : $S[0, 1, x_1] \land S[0, 2, x_2] \land \cdots \land S[0, n, x_n]$
 - Ostatné registre majú hodnotu 0:

$$S[0, n+1, 0] \wedge S[0, n+2, 0] \wedge \cdots \wedge S[0, q(n), 0]$$

- $\boxed{4}$ "Po p(n) krokoch program dosiahne riadok s inštrukciou ACCEPT"
 - Q[p(n), k] k je riadok s inštrukciou "ACCEPT"

5 "Stav počítača sa mení v čase v súlade s programom."

k-ty riadok	Formula		
ACCEPT alebo REJECT	$Q[i,k] \Rightarrow Q[i+1,k]$		
GOTO ℓ	$Q[i,k] \Rightarrow Q[i+1,\ell]$		
IF $R_\ell=0$ THEN	$Q[i,k] \wedge S[i,\ell,0] \Rightarrow Q[i+1,m]$		
GOTO m	$Q[i,k] \land \neg S[i,\ell,0] \Rightarrow Q[i+1,k+1]$		
CHOOSE R_ℓ	$Q[i,k] \Rightarrow Q[i+1,k+1] \wedge$		
	$(S[i+1,\ell,0] \vee S[i+1,\ell,1])$		
atď. pre ďalšie inštrukcie			

SAT je NP-ťaždký: zhrnutie

Vyššieuvedeným postup skonštruujeme pre daný algoritmus A a vstup x formulu f:

- Postup možno zrealizovať v polynomiálnom čase v závislosti od n.
- Výsledná formula má polynomiálnu veľkosť v závislosti od n.
- f je splniteľná \iff A akceptuje x

 \Longrightarrow Ukázali sme: $Q \leq_p SAT$ pre ľubovoľné $Q \in NP$

Ako dokázať, že problém Q je NP-ťažký?

- 1. Vyberme si problém N o ktorom už vieme, že je NP-úplný
- 2. Ukážeme $N \leq_P Q$:
 - Navrhneme polynomiálny algoritmus, ktorý prerobí vstup x pre problém N na vstup f(x) pre problém Q.
 - Dokážeme: Ak je x pozitívny vstup pre N, potom
 - f(x) je pozitívny vstup pre Q
 - ▶ Dokážeme: Ak je x negatívny vstup pre N, potom
 - f(x) je negatívny vstup pre Q
 - —ALEBO—
 - Ak f(x) je pozitívny vstup pre Q, potom
 - x je pozitívny vstup pre N
- 3. Keďže N je NP-úplný, Q musí byť NP-ťažký.

Dokončenie dôkazu NP-úplnosti: $Q \in NP$

4a Vytvoríme polynomiálny nedeterministický algoritmus riešiaci Q.

-ALEBO-

- 4b Pre každý vstup zadefinujeme certifikát polynomiálnej veľkosti.
- 5b Vytvoríme polynomiálny algoritmus, ktorý pre daný vstup x a certifikát y overí tento certifikát v polynomiálnom čase.

Sedem základných NP-úplných problémov

SAT	Vstup:	Booleovská formula f	
	Problém:	Je f splniteľná?	
3-SAT	Vstup:	Booleovská formula f vo forme:	
		$(a_{1,1} \lor a_{1,2} \lor a_{1,3}) \land \cdots \land (a_{n,1} \lor a_{n,2} \lor a_{n,3})$	
	Problém:	Je f splniteľná?	
VC	Vstup:	Graf $G = (V, E)$; číslo K	
	Problém:	Existuje množina vrcholov V' veľkosti $\leq K$	
		taká, že pre ľubovoľnú hranu $e=(u,v)\in E$,	
		$u \in V'$ alebo $v \in V'$?	
HAM	Vstup:	Graf $G = (V, E)$	
	Problém:	Existuje v grafe Hamiltonovská kružnica?	

Sedem základných NP-úplných problémov (pokrač.)

TSP-D	Vstup:	Ohodnotený graf $G = (V, E)$; číslo K
	Problém:	Existuje obchôdzka dĺžky $\leq K$?
CLIQUE	Vstup:	Graf $G = (V, E)$; číslo K
	Problém:	Obsahuje G úplný podraf
		o veľkosti $\geq K$ vrcholov?
SUBSET-SUM	Vstup:	n čísel s_1, s_2, \ldots, s_n ; cieľ t
	Problém:	Existuje podmnožina čísel
		s_1, \ldots, s_n so súčtom presne t ?