Matematika 4 — Logika pre informatikov 2. sada teoretických úloh

Táto sada úloh obsahuje upravenú **hodnotenú časť**, pôvodne zverejnenú v 1. sade úloh. Jej riešenie odovzdajte najneskôr v **pondelok 28. februára 2022 o 9:00**.

Čísla úloh v zátvorkách odkazujú do zbierky¹, kde nájdete riešené príklady a ďalšie úlohy na precvičovanie.

Pri riešení niektorých úloh vám môže pomôcť prieskumník štruktúr².

Cvičenie 2.1. (2.1.1, 2.1.2) Rozhodnite, či nasledujúce postupnosti symbolov sú formulami nad nejakou množinou konštánt $\mathcal{C}_{\mathcal{L}}$ a predikátových symbolov $\mathcal{P}_{\mathcal{L}}$.

Kladnú odpoveď dokážte nájdením množín $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ a vytvárajúcej postupnosti pre formulu. Zápornú odpoveď stručne zdôvodnite.

- a) (žena(Alex) ∧ muž(Alex))
- b) ¬(má_rád(Alex, Alex))
- c) $(\neg(mu\check{z}(Alex) \land \check{z}ena(Alex)) \rightarrow (\neg mu\check{z}(Alex) \lor \neg\check{z}ena(Alex)))$
- d) $(\neg\neg starši(Alex, Edo) \leftrightarrow (starši(Alex, Edo) \neg \land muž(Edo)))$

Vyskúšajte si. Samostatne rozhodnite, či a nad akým jazykom sú postupnosti formulami:

- e) $(starši(Edo, Alex) \rightarrow (\neg starši(Alex, Edo)))$
- f) (Alex ∨ ¬oco)

Cvičenie 2.2. (2.1.3, 2.1.4) Pre nasledujúcu formulu zapíšte vytvárajúcu postupnosť, zakreslite vytvárajúci strom a určte jej stupeň:

$$\begin{split} \big(& (\mathsf{rodi\check{c}}(\mathsf{Bruno}, \mathsf{Hugo}) \land \mathsf{rodi\check{c}}(\mathsf{Bruno}, \mathsf{Tereza})) \to \\ & \big((\neg \check{\mathsf{z}}\mathsf{ena}(\mathsf{Hugo}) \land \mathsf{mu\check{z}}(\mathsf{Hugo})) \to \mathsf{brat}(\mathsf{Hugo}, \mathsf{Tereza}) \big) \big) \end{split}$$

¹ https://github.com/FMFI-UK-1-AIN-412/lpi/blob/master/teoreticke/zbierka.pdf

² https://fmfi-uk-1-ain-412.github.io/structure-explorer/

Cvičenie 2.3. (2.2.1, 2.2.2) V štruktúre $\mathcal{M} = (D, i)$, kde

$$\begin{split} D &= \{1,2,3,4,5,6\},\\ i(\mathsf{Alex}) &= 1, \quad i(\mathsf{Bruno}) = 2, \quad i(\mathsf{Hugo}) = 5, \quad i(\mathsf{Tereza}) = 6,\\ i(\check{\mathsf{zena}}) &= \{1,3,4,6\},\\ i(\mathsf{mu}\check{\mathsf{z}}) &= \{2,4\},\\ i(\mathsf{m\acute{a}_r\acute{a}d}) &= \{(1,1),(1,2),(1,5),(1,6),(2,2),(3,3),(3,4),(4,4),(5,5),(5,6)\},\\ i(\mathsf{brat}) &= \{(1,2),(2,1),(3,1),(4,4),(5,6),(6,1),(6,2),(6,6)\},\\ i(\mathsf{rod}\check{\mathsf{c}}) &= \{(1,1),(2,5),(2,6),(1,5),(3,4),(4,2),(1,6),(5,6),(6,5)\},\\ i(\mathsf{star\check{s}}i) &= \{(2,1),(5,6),(6,5)\}, \end{split}$$

zistite postupom zdola nahor, či sú formuly A_1 a A_2 pravdivé.

- (A_1) (starší(Bruno, Alex) $\rightarrow \neg$ starší(Alex, Bruno))
- (A_2) (\neg má_rád(Alex, Bruno) $\leftrightarrow \neg$ má_rád(Bruno, Alex))

Vyskúšajte si. Tipnite si, či je formula formula A_3 pravdivá v štruktúre \mathcal{M} a overte svoje tip pomocou Henkinovej-Hintikkovej hry (\mathbf{s}) v prieskumníku štruktúr:

$$\begin{split} (A_3) \ & \big((\mathsf{rodi\check{c}}(\mathsf{Bruno}, \mathsf{Hugo}) \land \mathsf{rodi\check{c}}(\mathsf{Bruno}, \mathsf{Tereza})) \to \\ & \big((\neg \check{\mathsf{z}}\mathsf{ena}(\mathsf{Hugo}) \land \mathsf{mu\check{z}}(\mathsf{Hugo})) \to \mathsf{brat}(\mathsf{Hugo}, \mathsf{Tereza}) \big)) \end{split}$$

Cvičenie 2.4. (2.2.3, 2.2.4) Vytvorte štruktúru, ktorá je modelom teórie $T = \{A_1, \dots, A_6\}$:

- (A_1) titul(Sofiina_vol'ba)
- (A_2) kniha(k325)
- (A_3) má autora(Sofiina voľba,Styron)
- (A_4) (titul(Kto_chytá_v_žite) \land má_autora(Kto_chytá_v_žite, Salinger))
- $\begin{array}{l} (A_5) \ \left(\neg \big(\check{\mathsf{c}} (\mathsf{ita}(\mathsf{Adam}, \mathsf{k325}) \land \mathsf{obdivuje}(\mathsf{Dana}, \mathsf{Adam}) \big) \rightarrow \\ \\ \neg \big(\mathsf{m\acute{a}_titul}(\mathsf{k325}, \mathsf{Sofiina_vol'ba}) \lor \mathsf{m\acute{a}_titul}(\mathsf{k325}, \mathsf{Kto_chyt\acute{a}_v_\check{z}ite}) \big) \big) \end{array}$
- $(A_6) \ (\mathsf{m\acute{a}_titul}(\mathsf{k325},\mathsf{Kto_chyt\acute{a}_v_\check{z}ite}) \leftrightarrow \neg \mathsf{m\acute{a}_titul}(\mathsf{k325},\mathsf{Sofiina_vol'ba}))$

Pomôcka. Aby ste zistili, ako majú byť v štruktúre interpretované predikáty, analyzujte význam formúl podľa definície pravdivosti postupom zhora nadol, ako sme ukázali na prednáške. Môže vám v tom pomôcť Henkinova–Hintikkova hra (🗫) v prieskumníku štruktúr.

Cvičenie 2.5. (2.3.1) Sformalizujte nasledujúce výroky ako ucelenú teóriu vo vhodne zvolenom spoločnom jazyku výrokovej časti logiky prvého rádu. Zadefinujte použitý jazyk a vysvetlite význam jeho mimologických symbolov.

- (A_1) Lucia a jej kamarát sú deti.
- (A_2) Luciin kamarát má obľúbené hračky autíčko a koníka Blesk.
- (A_3) Luciina obľúbená hračka je tiež autíčko, Sally, napriek tomu, že je dievča.
- (A_4) Peter je meno spomínaného Luciinho kamaráta.
- (A_5) Lucia je kamarátska, ale Peter je asi taký kamarátsky ako je skromný.
- (A_6) Lucia sa preto hrá buď so svojím obľúbeným autíčkom alebo s Petrovým.
- (A_7) V druhom prípade mu totiž musí to svoje požičať.
- (A_8) S Bleskom sa nemôžu hrať obaja naraz.
- (A_9) Ak je niektorá z menovaných hračiek poškodená, Peter a Lucia sa k nej správajú opatrne.
- (A_{10}) Lucia je šťastná, keď sa s ňou Peter hrá.
- $(A_{11})\,$ Peter je šťastný len za predpokladu, že je šťastná Lucia.

Vyskúšajte si. Samostatne doplňte teóriu formalizáciou nasledujúcich výrokov:

- (A_{12}) Obe Petrove obľúbené hračky sú čierne, ale páčia sa aj Lucii, hoci jej obľúbená farba je modrá.
- (A_{13}) Lucia sa vždy hrá so svojím autíčkom a buď ešte s bábikou Elzou alebo s kamarátovým čiernym koníkom (alebo s oboma naraz).
- $(A_{14})\,$ Luciino autíčko je ale modré.
- (A_{15}) Ak je slnečný deň, Peter sa hrá s loptou.
- (A_{16}) Psa venčí, ak je pekne.
- $(A_{17})\,$ S Luciou sa hrá, jedine ak nie je pekne.
- $(A_{18})\,$ Pod nie je pekne myslíme, že nie je slnečný deň.

Pomôcka. Vo výrokoch sa zjavne hovorí o konkrétnych objektoch (napríklad autíčko Luciinho kamaráta), ktoré ale nemajú mená. Pri formalizácii ich označte vhodnými konštantami. Ďalšou zaujímavosťou je počasie. Čoho by mohlo byť vlastnosťou?

Hodnotená časť

Upravili sme formuláciu zadania v časti a), aby nezvádzala k nezamýšľanej formalizácii vzťahu byť sestrou. Zmenené slová sú vyznačené kurzívou.

Riešenie tejto hodnotenej časti **odovzdajte** najneskôr v pondelok **28. februára 2022 o 9:00** cez odovzdávací formulár pre tu01³. Riešenia odovzdané po termíne sa považujú za opravy neodovzdaných riešení s príslušnými dôsledkami podľa pravidiel⁴.

Odovzdávajte jeden dokument vo formáte PDF s dodatočnými obmedzeniami uvedenými vo formulári. Dokument musí obsahovať **celé riešenie** v textovej forme. Odovzdané riešenia musia byť **čitateľné** a mať primerane **malý** rozsah. Na riešenie sa vzťahujú všeobecné **pravidlá**⁴.

Ak pri riešení použijete prieskumník štruktúr², odovzdajte (povinne) **aj export** z neho. **Pozor!** Informácie nachádzajúce sa **iba v exporte**, ale nie v PDF **nepovažujeme za súčasť riešenia**. Export však výrazne urýchli hodnotenie riešenia.

Úloha 1.6. (2.2.3,2.3.1, 2.3.4)

a) Sformalizujte nasledujúce výroky ako teóriu $T = \{A_1, \dots, A_9\}$ vo vhodne zvolenom jazyku výrokovologickej časti logiky prvého rádu \mathcal{L} . Zapíšte množiny symbolov tohto jazyka a vysvetlite zamýšľaný význam jeho predikátových symbolov.

Snažte sa o to, aby počet predikátových symbolov bol čo najmenší. Zároveň ale nespájajte vzájomne nezávislé vlastnosti a vzťahy do jedného predikátového symbolu. Nevkladajte do formalizácie žiadne ďalšie intuitívne znalosti na pozadí (napr. ak je niekto zlý, nedopĺňajte, že nemôže byť dobrý).

- $(A_1)\,$ V Čiernom lese stojí chalúpka, ktorá je z perníku.
- (A_2) Niekedy sa jej hovorí aj Perníková veža.
- (A_3) V Perníkovej veži býva zlá čarodejnica. A tiež chlapec Janko a Marienka, ktorá je jeho súrodencom.
- (A_4) Janko je chlapec, iba ak Marienka je zlá.
- (A_5) Janko a Marienka sú deti, čarodejnica nie.
- (A_6) Rovnako ako čarodejnica, aj Marienka je silná.
- (A_7) Janko alebo Marienka je chlapec.

³ https://forms.gle/fbPMaE9KyGm6Tnk17

⁴ https://dai.fmph.uniba.sk/w/Course:Mathematics_4/sk#pravidla-uloh

- (A_8) Ak je niekto (zo spomínaných) silný, nie je dievča a Janka ochráni.
- (A_9) Ak by to, že Marienka *je Jankovým súrodencom*, znamenalo, že ho ochráni, tak ho čarodejnica určite nezje.

V jazyku $\mathcal L$ ďalej sformalizujte formulami B_1,B_2 a B_3 výroky:

- (B_1) Marienka je dievča.
- (B_2) Janko je dievča.
- (B_3) Ak je Marienka *Jankovým súrodencom*, čarodejnica zje Janka.
- b) Vytvorte štruktúru $\mathcal M$ pre jazyk $\mathcal L$, ktorá je modelom teórie T.
- c) Pre každú z formúl B_1 , B_2 , B_3 (jednotlivo) rozhodnite, či je možné, aby bola pravdivá v nejakom modeli teórie T.
 - Svoju odpoveď detailne zdôvodnite na základe definície modelu, štruktúry a pravdivosti výrokovologických formúl v nej.