Kaggle CTR 预估竞赛统计文档 (新浪门户广告算法组)

文档名称	版本号	作者	修改&评审人
Kaggle CTR	1.0	周永	

1. 解决思路

我们主要从以下 4 个主要思路来解决这个问题,即挖掘特征,尝试 LR、FTRL、SVM、NB、LibFM等不同的预估模型,后续使用 Random Forest,GBDT等集成方法做模型 Ensemble,最后通过调参、交叉验证等工作优化指标。下面分别阐述:

1.1 特征挖掘

我们提取了6大类主要的特征:

(1). Basic Sparse Features

基本的稀疏特征,采用 one-hot encoding 方法对连续型特征进行编码,得到稀疏特征,具体的编码过程见 2.1 第 1 版提交 结果。

(2). Click-Through Rate Features

统计每一个特征平滑之后对应的历史 pseudo-ctr 值,作为 ctr 特征。

(3). Discretized-CTR Features

为提高不同 feature 的 pseudo-ctr 值的区分度,将(2)生成的历史 ctr 特征,进行**特征离散化**。

(4). Numerial Features + Normalization

在原始数据中,通过分析提取**数值类特征**,包括 C21~C14, C1 匿名类特征、广告位置 banner_pos, 广告相对位置 relative_pos 等, 对数值类特征做了特征归一化.

(5). 组合特征: Two-Combined Features

数据中明显有 app, site, device 三类特征, 通过**两两特征组合**, 得到 app-site, app-device, site-device **3 大类组合特征**和基于广告位的两两特征组合。

(6). 组合特征: Multi-Combined Features

在两两组合特征的基础上,获取多个特征的组合。

1.2 预估模型

在原始数据和挖掘的特征数据基础上,我们尝试了很多 regression, classification, libfm 分解机器等方法,具体的预估模型尝试结果见第 2 部分的提交结果。

1.3 集成方法

通常多模型预估结果与单一模型的预估结果相比,其 variance 和稳定性都要好,同时也借鉴了 Kaggle 历届数据挖掘竞赛的相关经验,我们尝试了

RandomForest, GBDT, Boosting 等集成方法,通过调参获取每一个模型的最优结果。

1.4 交叉验证与特征选择

通过划分验证集的方式,根据模型、参数在验证集上的表现,作为进一步调参的依据。

2. 提交结果

2.1 第1版提交

版本号		1	提交日期	2014-11-27				
		技术	细节					
	(1). Basic Sparse Features:							
	1	在原有 23 个 catego	orical feature 中,选	择 18 个 feature ,				
	进行	one-hot 编码 ,编码	马后的 sparse binar	y features 数量为				
	26238 维。18 个特征情况:							
	(1) 匿名离散特征:0	C1 , C14 ~ C21 ;					
	(2) 广 告 位特征:bar	nner_pos;					
	(3) 站点特征:site_i	d, site_domain, site	e_category;				
	(4) app 特征:app_	id, app_domain, ap	p_category;				
	(5) device 特征:device_type, device_conn_type.							
	(2). 未使用特征:							
 特征方面	(1) adid 特征:由于训练集中每个 ad 仅对应一条记录,							
ואו רליחו הו	one-hot 维度太高,且对结果无意义;							
	(2) time 特征 : 特征值类型 yymmddhh, training data 日期							
	与 testing data 日期无重合,暂且不用,下一版会提取 hh 字段,							
	然后再 one-hot 编码;							
	((3) device_id, devic	e_ip, device_model	:每个特征取值				
	有数百万,三个 device 特征 one-hot 编码后,超过 1000 万维,							
	在 spark 上跑 LR 时 , 耗时太长且容易跑崩 , 暂且没用。后续会用							
	统计平滑方法得到这三个特征的历史 CTR 值;							
	(3). ‡	其它:						
	4	持征编码中涉及 生成	<feature,index>時</feature,index>	射表 ,生成编码后				
	的训练	练数据和测试数据等						
模型方面	Logi	stic Regression : 🤊	利用 Spark 上的 LR	训练模型,生成提				

	交结果。						
	(在10m ⁴	(在 10m 特征下,没跑成功,可能是对 spark RDD 使用不够深					
	入,亦有可	能特征维度太高	,需要特殊	处理一下,比如	加降维 or 特		
	征 hashing	征 hashing 等。)					
	评估结果 当时排名						
提交	LogLoss	C	312				
离线	LogLoss	暂时无	AUC	暂时无	312		

2.2 第 2 版提交

版本号	·							
	技术细节							
	(1). Bas	(1). Basic Sparse Features:						
	在第1版特征 one-hot 编码基础上,添加 hour 和							
	device_	_ model one-hot	:编码特征,第	新增 24	+8303=	=8327 维特		
特征方面	征;							
付加力阻	(2). Click-Through Rate Features:							
	For each feature,计算平滑之后的历史 CTR (pseudo-ctr) ,							
	总共得到	到 22 维特征 ;						
	目前	前为止总的特征数	:34587维					
模型方面 模型方面	Logisti	c Regression : 🤊	利用 Spark 上	的 LR	训练模型	型,生成提		
保空刀田	交结果。							
	评估结果 当时排名					当时排名		
提交	LogLos	ss	0.4316984			385		
离线	LogLos	ss 0.4401297	AUC	0.69	5723	303		

2.3 第 3 版提交

版本号	反本号 3 提交日期 2014-12				
技术细节					
	(1). B	Basic Sparse Featu	res (34565 维):		
除 device_id 和 device_ip 非常稀過			ice_ip 非常稀疏的特	征外,其它全部特	
特征方面	征用	于生成 one-hot 编码	9特征;		
(2). Click-Through Rate			e Features (22 维):		
	F	For each feature,计	算平滑之后的历史 C ⁻	ΓR (pseudo-ctr) ,	

总共得到 22 维特征;

(3). Discretized-CTR Features (872维):

为提高不同 feature 的 pseudo-ctr 值的区分度 , 将(2)生成 的历史 ctr 特征, 进行特征离散化, 得到了872维 ctr 离散化后 的特征。

目前为止总的特征数:35459 维。

模型方面

Logistic Regression:利用 Spark 上的 LR 训练模型,生成提 交结果。

当时排名	评估结果					
416	0.0063427	提升	0.4253557	LogLoss	提交	
410	0.714115	AUC	0.4255774	LogLoss	离线	

2.4 第 4 版提交 (高翔)

2.5 第 5 版提	交 (原	周永)				
版本号		5	提交日期	2014-12-09		
		技术	细节			
	(1). B	asic Sparse Featu	res (34565 维):			
		除 device_id 和 dev	ice_ip 非常稀疏的特	征外,其它全部特		
	征用	于生成 one-hot 编码	9 特征;			
	(2). C	lick-Through Rate	e Features (22 维):			
	For each feature,计算 平滑 之后的历史 CTR (pseudo-ctr) ,					
	总共得到 22 维特征 ;					
	(3). Discretized-CTR Features (872 维):					
特征方面	为提高不同 feature 的 pseudo-ctr 值的区分度 , 将(2)生成					
は近い面	的历史 ctr 特征, 进行 特征离散化 , 得到了 872 维 ctr 离散化后					
	的特	征。				
	(4) N	lumerial Features	+ Normalization ((13维)		
	7	生原始数据中,通过 ⁴	分析提取 数值类特征	,包括 C21~C14 .		

仕原始致据中,通过分析提取**数值类特征**,包括 C21~(C1 匿名类特征、广告位置 banner_pos, 广告相对位置 relative_pos 等,对数值类特征做了特征归一化,得到了13维数 值特征。

目前为止总共的特征数:35472 维。

模型方面

Logistic Regression:利用Spark上的LR训练模型,生成提 交结果。

	当时排名						
提交	LogLoss	0.4243063	提升	0.0010494	480		
离线	LogLoss	0.4256732	AUC	0.7108962	400		
	添加的数值	i类特征,在原有	参数不变的	的情况下,指标	从 0.425 提		
	升至 0.424, 效果不是很明显。分析一下,原始数据都是一些						
」	category 特征,这里只是把一些用整数表示特征的离散值当做连						
知比	续值使用,然后做了归一化,效果提升不明显在意料之中。但如						
	果数据中有	连续值特征,抽耳	双数值类特	征在 feature e	ngineering		
		中是不	可缺少的-	步。			

2.6 第 6 版提交

版本号	版本号 6 提交日期 2014-12-1					
技术细节						
	(1). Basic Sparse Features (34565 维):					
		除 device_id 和 dev	ice_ip 非常稀疏的特	征外,其它全部特		
	征用·	于生成 one-hot 编码	9 特征;			
	(2). C	lick-Through Rate	e Features (22 维):			
	F	For each feature,计算	算 平滑 之后的历史 C	TR (pseudo-ctr)		
	总共	得到 22 维特征 ;				
	(3). Discretized-CTR Features (872维):					
 特征方面	>	为提高不同 feature f	的 pseudo-ctr 值的[区分度 , 将(2)生成		
141111771日	的历	史 ctr 特征 , 进行 特 律	征离散化 ,得到了8	72 维 ctr 离散化后		
	的特	征。				
	(4) Numerial Features + Normalization (13维)					
	在原始数据中,通过分析提取 数值类特征 ,包括 C21~C14,					
	C1 匿名类特征、广告位置 banner_pos, 广告相对位置					
	relative_pos 等, 对数值类特征做了特征归一化, 得到了13维数					
	值特征。					
	E	目前为止总共的特征	数: 35472 维 。			
	Logi	stic Regression : 7	利用 Spark 上的 LR	训练模型,生成提		
模型方面	交结	果。				
	调参	:调整正则化项系数	, regParam=0.08	(之前为 0.1)		
		评估结果		当时排名		

提交	LogLoss	0.4226858	提升	0.0016205	655
离线	LogLoss	0.42300388	AUC	0.7194154	033
	这一版主要	要是调参,特征总	9维度是35	472, 而训练数	据是 4000
	万条记录,	使用像 Ir 这种线	性模型作为	5预估模型,过	拟合的可能
结论	性比较小。	因此这里降低正	则化项的比	比重(减小正则	化因子系数
	的值),发	现预估效果有提	升,下一组	5继续调正则化	因子系数,
		Ķ	见察结果。		

2.7 第 7 版提交

版本号			7	提交日期	朝	201	4-12-15
技术细节							
	(1). B a	asic S	parse Featu	res (34565 ≰	隹,20	列):	
	ß	余 dev	ice_id 和 dev	ice_ip 非常稀	疏的特	征外,其	艾它全部特
	征用	于生成	one-hot 编码	9 特征;			
	(2). Cl	lick-T	hrough Rate	e Features (2	22维,	22 列):	
	F	or eac	:h feature,计	算 平滑 之后的	历史 C	ΓR (pse	udo-ctr) ,
	总共行	导到 22	2维特征;				
	(3). D	iscret	ized-CTR Fe	atures (872	维,22	2列):	
特征方面	<u>ナ</u>	」提高	不同 feature f	的 pseudo-ct	r 值的[区分度,	将(2)生成
1寸1正刀Щ	的历5	史 ctr‡	寺征,进行 特	征离散化 ,得	到了87	72维ct	r 离散化后
	的特征。						
	(4) Numerial Features + Normalization (13维,13列)						
	在原始数据中,通过分析提取 数值类特征 ,包括 C21~C14,						
	C1 匿名类特征、广告位置 banner_pos, 广告相对位置						
	relative_pos 等, 对数值类特征做了 特征归一化 , 得到了13维数						
	值特征	Œ.					
	E	前为」	上总共的特征	数: 35472 维	Ì .		
	Logis	stic R	egression : 🤊	利用 Spark 上	的 LR	训练模型	型,生成提
### 大	交结果。						
模型方面	调参	:调整	正则化项系数	, regParam	=0.05	(之前为	0.08)
	训练集: 验证集 = 9.9:0.1						
			评估结果				当时排名
提交	Logl	oss	0.4194096	提升	0.003	32762	629

离线	LogLoss	0.41572516	AUC	0.7370057		
西 线	平均 ctr	0.175208				
	再次降低正	则化因子系数(即 regPara	am),从0.08	降到 0.05 ,	
」 结论	发现,预估效果又有了比较大的提升,验证了之前的想法,就是					
石比	说,对于线性模型,当样本数(行数)远大于特征数(列数)时,					
	过拟合的可能性就越小,对应的正则化项的作用就越小。					

2.8 第 8 版提交

2.0 分 0 /以]处	<u> </u>	ı		1			
版本号		8	提交日期	朝	201	4-12-16	
		技术细	带				
	(1). Basic Sparse Features (34565 维, 20 列):						
	除 dev	vice_id 和 devic	e_ip 非常稀	疏的特征	证外,其	其它全部特	
	征用于生成	one-hot 编码	持征;				
	(2). Click-T	hrough Rate F	eatures (2	22维,2	22 列):		
	For ea	ch feature,计算	平滑 之后的	历史 CT	R(pse	eudo-ctr),	
	总共得到 2	2 维特征 ;					
	(3). Discret	tized-CTR Feat	tures (872	维,22	列):		
<u>+</u> +∠ 	为提高	不同 feature 的	pseudo-ct	r值的区	公度,	将(2)生成	
特征方面 	的历史 ctr	的历史 ctr 特征, 进行 特征离散化 , 得到了 872 维 ctr 离散化后					
	的特征。						
	(4) Numerial Features + Normalization (13维,13列)						
	在原始数据中,通过分析提取 数值类特征 ,包括 C21~C14,						
	C1 匿名类特征、广告位置 banner_pos, 广告相对位置						
	relative_pos 等 , 对数值类特征做了 特征归一化 , 得到了 13 维数						
	<u> </u>						
	目前为	止总共的特征数	: 35472 斜	Ì .			
	Logistic R	egression:利	用 Spark 上	的 LR i	川练模型	型,生成提	
14+ TU - 1	交结果。						
模型方面 	调参:调整	正则化项系数,	regParam	=0.05	(之前为	0.08)	
	训练	集:验证集 = 9	9:1				
	1	评估结果				当时排名	
提交	LogLoss	0.4194104	提升	没有	提升	640	
离线	LogLoss	0.41572516	AUC	0.737	0057	649	

	平均 ctr	0.175223					
	这里在原有	基础上,调整训	练集与验证	集的比例,参数	放置为 9:1		
	时,验证集	时,验证集的样本数与测试集的样本数基本一致,分别观察离线					
结论	和在线的lo	和在线的 logloss 值,发现离线评估结果和线上结果基本相同,					
	这说明验证集与测试集的数据分布是一致的,从训练集中抽10%						
		的数据用于	F离线预测:	是合理的.			

2.9 第 9 版提交

2.9 弗 9 W捉	义						
版本号		9	提交日期	朝 20:	14-12-17		
		技术细	节				
	(1). Basic Sparse Features (34565 维, 20 列):						
	除 device_id 和 device_ip 非常稀疏的特征外, 其它全部特						
	征用于生成	one-hot 编码 特	寺征;				
	(2). Click-T	hrough Rate F	eatures (2	22 维 , 22 列)	:		
	For eac	ch feature,计算 :	平滑 之后的	历史 CTR (ps	eudo-ctr),		
	总共得到 2	2 维特征 ;					
	(3). Discret	tized-CTR Feat	ures (872	维,22列):			
# + ⟨ ⊤ → → →	为提高	不同 feature 的	pseudo-ct	r 值的区分度	将(2)生成		
特征方面 	的历史 ctr 特征, 进行 特征离散化 , 得到了 872 维 ctr 离散化后						
	的特征。						
	(4) Numerial Features + Normalization (13维,13列)						
	在原始数据中,通过分析提取 数值类特征 ,包括 C21~C14,						
	C1 匿名类特征、广告位置 banner_pos, 广告相对位置						
	relative_pos 等 , 对数值类特征做了 特征归一化 , 得到了 13 维数						
	值特征。						
	目前为.	止总共的特征数	:35472 绐	፟			
	Logistic R	egression:利/	 用 Spark 上	 的 LR 训练模	型,生成提		
1###J- 1	交结果。						
模型方面	调参:调整正则化项系数 , regParam=0.03 (之前为 0.05)						
	训练	集:验证集 = 9	9:1				
	•	评估结果			当时排名		
提交	LogLoss	0.4161412	提升	0.0032684	621		
离线	LogLoss	0.40588654	AUC	0.7584057	021		

	平均 ctr	0.175065				
结论	原有基础上	, 再次降低正则	化项的比]	直,参数设置为	0.03.	效果
501C		又	提升一些。			

2.10 第 10 版提交

版本号		10/27	提交日期 2014-12-			4-12-17		
	·	技术组	带					
	(1). Basic Sparse Features (34565 维, 20 列):							
	(2). Click-Through Rate Features (22 维, 22 列):							
特征方面	(3). Discret	tized-CTR Fea	tures (872	维,22	列):			
	(4) Numei	rial Features -	- Normaliz	ation (13维	, 13列)		
	目前为	止总共的特征数	ኒ : 35472 ዿ	崖 。				
	Logistic R	egression:利	J用 Spark 上	的 LR 训	练模型	型,生成提		
 模型方面	交结果。							
次土/J田	调参:调整正则化项系数,regParam=0.01 (之前为 0.03)							
	训练	集:验证集 =	9:1					
		评估结果		1		当时排名		
提交	LogLoss	0.4111210	提升	0.0050	0202	624		
 	LogLoss	0.38018302	AUC	0.8024	6755	024		
本 级	平均 ctr	0.175832						
	原有基础上	,再次降低正原	则化项的比重	重,参数:	设置为	0.01. 效果		
	又提升一些, 提交版本的平均 ctr 有所上升, 这说明了平均 ctr 的							
	大小与最后提交的 logloss 结果无必然关系。							
结论								
	同样尝试了 regParam = 0.02, 9:1 的结果:记录如下:							
	提交 LogL	oss : 0.413884	14;离线 lo	gloss : C).7753	00625 ; 离		
	线 AUC:	0.39720846;	平均 ctr:0	.175317	。(第2	26 次提交)		

【20141217】Spark LR 调参

RegParam: 正则化项系数;

Train:CV:训练集与验证集的比例;

regParam	Train:CV	离线 log	Auc	平均 ctr	提交 log
0.02	9:1	0.39720846	0.7753006	0.175317	0.4138844
0.01	9:1	0.38018302	0.80246755	0.175832	0.4111210

0.0005	9:1	0.31300838	0.86732296	0.172219	0.4298685					
当 regParam	当 regParam=0.0005 时,提交的 logloss 变大了,过拟合?									
		2014	月218 结果							
0.005	9:1	0.36180885	0.82567285	0.175805	0.4103477					
0.002 (30)	9:1				0.4135403					
当 regParam	n=0.002时,同	同样出现了提交	的 logloss 值变	医大的情况,看:	来是过拟合了?					
0.004 (31)	9:1			0.175623	0.4107100					
0.006 (33)	9:1	0.3666868	0.81991194	0.175845						
0.005 (32)	9.99:0.01	0.36118534	0.83098283	0.173389	0.4079313					
32 次提交是用了 combined 特征, 5 大类特征~, 32 之前和 33 都是 4 大类 feature。										

2.11 第 11 版提交

版本号		11/29	提交日	期 201	4-12-18				
	技术细节								
	(1). Basic Sparse Features (34565 维, 20 列):								
	(2). Click-Through Rate Features (22 维, 22 列):								
特征方面	(3). Discret	tized-CTR Fea	tures (872	维 , 22 列):					
	(4) Numei	rial Features +	Normaliz	ation(13维)	, 13 列)				
	目前为	止总共的特征数	:35472 约	Ė .					
	Logistic R	egression : 利	用 Spark 上	的 LR 训练模型	型,生成提				
 模型方面	交结果。	交结果。							
 	调参:调整正则化项系数 , regParam=0.005 (之前为 0.01)								
	训练	集:验证集 = 5	9:1						
	T	评估结果		T	当时排名				
提交	LogLoss	0.4103477	提升	0.0007733	628				
 	LogLoss	0.36180885	AUC	0.82567285	020				
内北	平均 ctr	0.175805							
	原有基础上,再次降低正则化项的比重,参数设置为0.01.效果								
	又提升一些, 提交版本的平均 ctr 有所上升, 这说明了平均 ctr 的								
结论		大小与最后提交	돈的 logloss	无必然关系。					
>==10									
	同样尝	试了 regParam	= 0.02, 9:	1的结果:记录	:如下:				
	提交 LogL	oss: 0.413884	4;离线 lo	gloss : 0.7753	00625 ; 离				

线 AUC:0.39720846;平均 ctr:0.175317。

2.12 第 12 版提交

版本号		12/32	提交日期	期 201	L4-12-19			
		技术细	节					
	(1). Basic Sparse Features (34565 维, 20 列):							
	(2). Click-Through Rate Features (22 维, 22 列):							
	(3). Discretized-CTR Features (872 维, 22 列):							
	(4) Numei	rial Features +	Normaliz	ation(13 维	, 13 列)			
	(5) Two-C	ombined Featı	ures (110	572维,21列	J)			
	数据中	明显有 app,sit	e , device	三类特征,通	过 两两特征			
	组合 ,得到	J app-site, app-	device, sit	e-device 3 大	类组合特征。			
	具体地:							
	app: {a	pp_id, app_do	main, app	_category};				
性红土面	site: {s	ite_id, site_dom	nain, site_c	ategory};				
特征方面 	device	device: {device_type, device_conn_type}						
	总共 获得 21 个组合特征 ,onehot 编码后 ,转换得到 110572							
	维 sparse binary features.							
	下一步,原始特征中还有 hour, banner_pos, C1, C14-C21							
	匿名特征等未使用,下一步会抽取 广告位 banner_pos 与							
	app,site,device 三类特征之间的组合特征。							
	后续,会分析两两特征之间和多个特征之间的 相关性 ,抽取相							
	关性较大的多特征之间的组合特征。得到 相关性特征 和 多维组合							
	特征。							
	目前为	止总共的(稀疏)特	寺征数:146	5 044 维。				
	Logistic R	egression:利	用 Spark 上	的 LR 训练模	型 , 生成提			
 模型方面	交结果。							
次主/J田	调参:调整正则化项系数,regParam=0.005							
训练集:验证集 = 9:1								
		评估结果			当时排名			
提交	LogLoss	0.4079313	提升	0.0024164	631			
卤件	LogLoss	0.36118534	AUC	0.83098283	031			
离线	平均 ctr	0.173389						

结论

与上一版相比,在原有参数不变的情况下,添加 two-combined 特征,提交的 logloss 值变小,说明该部分组合特征对于 click 是有效果的。

版次	regParam	Train:CV	离线 log	Auc	平均 ctr	提交 log				
以下都是	以下都是包含 combined 特征的 5 大类特征 ,									
32	0.005	9.99:0.01	0.36118534	0.83098283	0.173389	0.4079313				
34	0.006	9.99:0.01	0.36588799	0.82566676	0.173557	0.4077505				
35	0.01	9.99:0.01			0.173625	0.4080480				
【2014	1229】34与:	35 相比 , 正原	则化项提升至0	.01 后 , 指标变	得更差。说明	月 regParam				
在 0.00	在 0.006~0.01 之间。									

2.13 第 13 版提交

版本号	13/36	提交日期	2014-12-29
	技术	细节	

- (1). Basic Sparse Features (34565 维, 20 列):
- (2). Click-Through Rate Features (22 维, 22 列):
- (3). Discretized-CTR Features (872 维, 22 列):
- (4). Numerial Features + Normalization (13维, 13列)
- (5). Two-Combined Features (110572 维, 21 列)
- (6). Banner_pos-based two-combined features (31128 维,17列)

特征方面

从原始数据中抽取与广告位 banner_pos 相关的组合特征。 B中的特征类型:

数据中的特征类型:

app: {app_id, app_domain, app_category};

site: {site_id, site_domain, site_category};

device: {device_type, device_conn_type};

匿名类 (anony) :{C1, C14, C15, ..., C21}

抽取的广告位组合特征有: banner pos-app,

banner_pos-site, banner_pos-device, banner_pos-anony. 基于广告位的两两组合特征列数: 3+3+2+9=17 个。转换得到 31128 维 sparse binary features.

	后续,会	会分析两两特征は	之间和多个	特征之间的 相关	性 ,抽取相			
	关性较大的多特征之间的组合特征。得到 相关性特征 和 多维组合							
	特征。							
	目前为	止总共的(稀疏)特	诗征数: 17 7	7 172 维。				
	Logistic R	Regression:利用	围 Spark 上	的 LR 训练模型	型,生成提			
 模型方面	交结果。							
保空 刀囬	调参:调整正则化项系数,regParam=0.01							
	训绮	集:验证集 = 9	.99:0.01					
		评估结果			当时排名			
提交	LogLoss	0.4070954	提升	0.0006551	751			
离线	LogLoss	0.382434297	AUC	0.80070664	731			
西 级	平均 ctr	0.172440						
	与上一版相	北,在原有参数	不变的情况	元,添加 two	-combined			
结论	冷 特征, 提交的 logloss 值变小, 说明该部分组合特征对于 clid							
		有效果的。						

【20141229】Spark LR 调参

使用我们生成的 6 组特征进行试验

版次	regParam	Train:CV	离线 log	Auc	平均 ctr	提交 log		
以下都是	是包含 combir	ned 特征的 6	大类特征,					
37	0.006	9: 1	0.36501926	0.81890896	0.172189	0.4068321		
提升:0	0.0002633							
38	0.008	9.99:0.01	0.37681751	0.80821919	0.172386	0.4068399		
【2014	【20141229】34 与 35 相比,正则化项提升至 0.01 后,指标变得更差。说明 regParam							
在 0.006~0.01 之间。								
39	0.005	9.99:0.01	0.36468953	0.82345866	0.172292			

2.14 第 14 版提交

版本号		14/40 提交日期 201		5-01-10			
	技术细节						
特征方面	原始数据	原始数据					
模型方面	模型方面 FTRL: 调参 L2=0.5 (之前是 1)						
评估结果						当时排名	
提交	LogLoss	0.3956172	提升	0.011	2149	458	

郊灶	LogLoss		AUC	
离线	平均 ctr	0.172956		
结论				

2.15 FTRL 预估模型调参系列: 【20150112】

特征代号:

原始: 最初的原始特征

F2: onehot_pseudoctr

F3: onehot_pseudoctr_discretization

F4: onehot_pseudoctr_discretization_numerical

F5: onehot pseudoctr discretization numerical combined

	<u> </u>			<u> </u>	_	
特征	D(hash)	L1	L2	alpha	Mean_ctr	Logloss
原始	2 ** 20	1.0	0.5	0.1	0.172956	0.3956172
原始	2 ** 20	1.0	2.0	0.1	0.172339	0.3955296
原始	2 ** 25	1.0	1.0	0.1	0.172810	0.3948784
原始	2 ** 25	1.0	2.0	0.1	0.172401	0.3948551
原始	2 ** 25	2.0	2.0	0.1	0.170493	0.3947960
原始	2 ** 25	1.0	4.0	0.1	0.171660	0.3948192
原始	2 ** 25	2.0	4.0	0.1	0.169918	0.3947821

分析: L1=2 时要比 L1=1 时效果更好,这说明 L1 权重越大,解决稀疏性就越好,同时也说明了数据是稀疏的,因此可以将 L1=4 再查看结果....

原始 51	2 ** 25	4.0	4.0	0.1	0.3949060
原始 52	2 ** 25	8.0	4.0	0.1	

分析:从51次提交来看,L1=4时效果又不好了,可能过了,因此L1=3时,再试试,L1=3时效果更高

原始 53	2 ** 25	3.0	4.0	0.1		0.3947748
原始 54	2 ** 25	2.5	4.0	0.1	0.169239	0.3947758
原始 55	2 ** 25	2.5	8.0	0.1		0.3947748,
原始 56	2 ** 25	3.5	4.0	0.1		

分析:53 次对应的 L1=2.5,说明效果又提升,下面尝试 L1=3 即 53 的情况

- I	* ** = ***					
F2	2 ** 20	1.0	2.0	0.1	0.170918	0.4025958
F2	2 ** 20	0.1	0.1	0.1		0.4030509
F2	2 ** 20	0.1	0.0	0.1		0.4030612

F2(54)	2 ** 20	1.0	4.0	0.1		
F2						
F5		1.0	1.0	0.1	0.170809	0.5557508

结果很糟糕.....

分析:之所以对原始数据的 L1 和 L2 增大,是因为特征数在百万级,为了防止过拟合;而使用我们的编码数据,特征维数为数万,如果还使用之前的 L1 和 L2 的惩罚力度,可能会导致欠拟合,也许这是导致 FTRL+F5 效果不好的原因。因此,调整 L1 和 L2 的系数,使之比重下降。

F5		1.0	2.0	0.1		
----	--	-----	-----	-----	--	--

2.16 模型组合: RandomForest && LibFMC (20150113~) (正在总结中...)

【失败尝试】GBRT 的失败尝试

使用 xgboost 开源库中的 gradient boosting regression tree(GBRT)算法,用我们生成的数据 one-hot + pseudo_ctr 特征,训练模型,统计结果:

序号	tree_depth	num_round	logloss	Mean_ctr
1	20	2	0.5246676	0.190957
2	10	10	0.5984752	
3	6	6	0.5551602	
4	50	6	0.71**	

说明序号 4: 当 tree_depth=50, 在 cv 阶段, logloss 值先变小后变大, 说明模型可能过拟合。得到的结果是 0.71^* , 这说明模型过拟合了。因此需要减少树的 depth.