# Advanced Signal Processing Introduction to Estimation Theory

Danilo Mandic,

room 813, ext: 46271



Department of Electrical and Electronic Engineering Imperial College London, UK

d.mandic@imperial.ac.uk, URL: www.commsp.ee.ic.ac.uk/~mandic

#### Aims of this lecture

- To introduce the notions of: Estimator, Estimate, Estimandum
- To discuss the bias and variance in statistical estimation theory, asymptotically unbiased and consistent estimators
- Performance metric: the Mean Square Error (MSE)
- The bias-variance dilemma and the MSE in this context
- To derive a feasible MSE estimator
- A class of Minimum Variance Unbiased (MVU) estimators
- Extension to the vector parameter case
- Point estimators, confidence intervals, statistical goodness of an estimator, the role of noise

#### Role of estimation in signal processing

(try also the function specgram in Matlab)

- o An enabling technology in many electronic signal processing systems
  - 1. Radar
- 4. Image analysis
- 7. Control

- 2. Sonar 5. Biomedicine
- 8. Seismics

- 3. Speech 6. Communications
- 9. Almost everywhere ...

- Radar and sonar: range and azimuth
- Image analysis: motion estimation, segmenation
- Speech: features used in recognition and speaker verification
- Seismics: oil reservoirs
- Communications: equalization, symbol detection
- Biomedicine: various applications

#### Statistical estimation problem

for simplicity, consider a DC level in WGN,  $x[n] = A + w[n], \ w \sim \mathcal{N}(0, \sigma^2)$ 

**Problem statement:** We seek to determine a set of parameters  $\boldsymbol{\theta} = [\theta_1, \dots, \theta_p]^T$  from a set of data points  $\mathbf{x} = [x[0], \dots, x[N-1]]^T$  such that the values of these parameters would yield the highest probability of obtaining the observed data. In other words,

$$\max_{span \ \theta} p(\mathbf{x}; \boldsymbol{\theta})$$
 reads: " $p(\mathbf{x})$  parametrised by  $\theta$ "

- The unknown parameters may be seen as deterministic or random variables
- There are essentially two alternatives to the statistical case
  - No a priori distribution assumed: Maximum Likelihood
  - A priori distribution known: Bayesian estimation
- $\circ$  Key problem  $\hookrightarrow$  to estimate a group of parameters from a discrete-time signal or dataset.

#### Estimation of a scalar random variable

Given an N - point dataset  $x[0], x[1], \ldots, x[N-1]$  which depends on an unknown parameter  $\theta$ , (scalar), define an "estimator" as some function, g, of the dataset, that is

$$\hat{\theta} = g(x[0], x[1], \dots, x[N-1])$$

which may be used to estimate  $\theta$  (single parameter case).

(in our DC level estimation problem,  $\theta = A$ )

- This defines the problem of "parameter estimation"
- $\circ$  Also need to determine  $g(\cdot)$
- Theory and techniques of statistical estimation are available
- Estimation based on PDFs which contain unknown but deterministic parameters is termed classical estimation
- o In **Bayesian estimation**, the unknown parameters are assumed to be random variables, which may be prescribed "a priori" to lie within some range of allowable parameters (or desired performance)

### The stastical estimation problem First step: to model, mathematically, the data

• We employ a Probability Desity Function (PDF) to describe the inherently random measurement process, that is

$$p(x[0], x[1], \dots, x[N-1]; \theta)$$

which is "parametrised" by the unknown parameter  $\theta$ 

**Example:** for N=1, and  $\theta$  denoting the mean value, a generic form of PDF for the class of Gaussian PDFs with any value of  $\theta$  is given by

$$p(x[0];\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{1}{2\sigma^2}(x[0] - \theta)^2\right]$$



Clearly, the observed value of x[0] impacts upon the likely value of  $\theta$ .

#### Estimator vs. Estimate

The parameter to be estimated is then viewed as a **realisation of the** random variable  $\theta$ 

Data are described by the joint PDF of the data and parameters:

$$p(x,\theta) = \underbrace{p(x \mid \theta)}_{(conditional\ PDF)\ (prior\ PDF)} \underbrace{p(\theta)}_{(prior\ PDF)}$$

- o An estimator is a rule that assigns a value of  $\theta$  from each realisation of  $\underline{x} = \mathbf{x} = [x[0], \dots, x[N-1]]^T$
- o An estimate of, i.e.  $\hat{\theta}$  (also called 'estimandum') is the value obtained for a given realisation of  $\mathbf{x} = [x[0], \dots, x[N-1]]^T$  in the form  $\hat{\theta} = g(\mathbf{x})$

**Example:** for a noisy straight line:  $p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A - Bn)^2\right]}$ 

 Performance is critically dependent upon this PDF assumption - the estimator should be robust to slight mismatch between the measurement and the PDF assumption

#### **Example:** finding the parameters of straight line

Specification of the PDF is critical in determining a good estimator

In practice, we choose a PDF which fits the problem constraints and any "a priori" information; but it must also be mathematically tractable.

Assume that "on the Data: straight line embedded in average" the data are increasing random noise  $w[n] \sim \mathcal{N}(0, \sigma^2)$ 



$$x[n] = A + Bn + w[n]$$
$$n = 0, 1, \dots, N - 1$$

$$p(\mathbf{x}; A, B) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A - Bn)^2\right]}$$

$$A, B \Leftrightarrow \boldsymbol{\theta} \equiv [A \quad B]^T$$

Careful: what would be the effects of bias in A and B?

#### Bias in parameter estimation

**Estimation theory (scalar case):** estimate the value of an unknown parameter,  $\hat{\theta}$ , from a set of observations of a random variable described by that parameter

$$\hat{\theta} = g(x[0], x[1], \dots, x[N-1])$$

**Example:** given a set of observations from Gaussian distribution, estimate the mean or variance from these observations.

• Recall that in linear mean square estimation, when estimating a value of random variable y from an observation of a related random variable x, the coefficients a and b in the estimation y = ax + b depend upon the mean and variance of x and y as well as on their correlation.

The difference between the expected value of the estimate and the actual value  $\theta$  is called the bias and will be denoted y B.

$$B = E\{\hat{\theta}_N\} - \theta$$

where  $\hat{\theta}_N$  denotes estimation over N data samples,  $x[0], \dots, x[N-1]$ 

#### **Asymptotic unbiasedness**

If the bias is zero, then the expected value of the estimate is equal to the true value, that is

$$E\{\hat{\theta}_N\} = \theta \qquad \equiv \qquad B = E\{\hat{\theta}_N\} - \theta = 0$$

and the estimate is said to be unbiased.

If  $B \neq 0$  then the estimator  $\hat{\theta} = g(\mathbf{x})$  is said to be **biased**.

**Example**: Consider the **sample mean estimator** of the signal  $x[n] = A + w[n], \ w \sim \mathcal{N}(0,1)$ , given by

$$\hat{A} = \bar{x} = \frac{1}{N+2} \sum_{n=0}^{N-1} x[n] \qquad \text{that is} \quad \theta = A$$

Is the above sample mean estimator of the true mean A biased?

**More often:** an estimator is **biased but** bias  $B \to 0$  when  $N \to \infty$ 

$$\lim_{N \to \infty} E\{\hat{\theta}_N\} = \theta$$

Such as estimator is said to be asymptotically unbiased.

#### How about the variance?

- It is desirable that an estimator be either unbiased or asymptotically unbiased (think about the power of estimation error due to DC offset)
- o For an estimate to be meaningful, it is necessary that we use the available statistics effectively, that is,

$$Var \to 0$$
 as  $N \to \infty$ 

or in other words

$$\lim_{N \to \infty} var\{\hat{\theta}_N\} = \lim_{N \to \infty} \left\{ |\hat{\theta}_N - E\{\hat{\theta}_N\}|^2 \right\} = 0$$

If  $\hat{\theta}_N$  is unbiased then  $E\{\hat{\theta}_N\}=\theta$ , and from Tchebycheff inequality  $\forall\,\epsilon>0$ 

$$Pr\{|\hat{\theta}_N - \theta| \ge \epsilon\} \le \frac{var\{\hat{\theta}_N\}}{\epsilon^2}$$

 $\Rightarrow$  if  $Var \to 0$  as  $N \to \infty$ , then the probability that  $\hat{\theta}_N$  differs by more than  $\epsilon$  from the true value will go to zero (showing consistency).

In this case,  $\hat{\theta}_N$  is said to converge to  $\theta$  with probability one.

#### Mean square convergence

Another form of convergence, **stronger** than convergence with probability one is **mean square convergence**.

An estimate  $\hat{\theta}_N$  is said to converge to  $\theta$  in the mean–square sense, if

$$\lim_{N \to \infty} \underbrace{E\{|\hat{\theta}_N - \theta|^2\}}_{\text{mean square error}} = 0$$

- For an unbiased estimator this is equivalent to the previous condition that the variance of the estimate goes to zero
- An estimate is said to be consistent if it converges, in some sense, to the true value of the parameter
- $\circ$  We say that the estimator is **consistent** if it is **asymptotically** unbiased and has a variance that goes to zero as  $N \to \infty$

### Example: Assessing the performance of the Sample Mean as an estimator

Consider the estimation of a DC level,  ${\cal A}$  in random noise, which could be modelled as

$$x[n] = A + w[n]$$

 $w[n] \sim$  some zero mean random process.

- $\circ$  Aim: to estimate A given  $\{x[0], x[1], \dots, x[N-1]\}$
- o Intuitively, the **sample mean** is a reasonable estimator

$$\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

**Q1:** How close will  $\hat{A}$  be to A?

**Q2:** Are there better estimators than the sample mean?

#### Mean and variance of the Sample Mean estimator

$$x[n] = A + w[n]$$
  $w[n] \sim \mathcal{N}(0, \sigma^2)$ 

Estimator = f(random data),  $\Rightarrow a random variable itself$ 

⇒ its performance must be judged statistically

#### (1) What is the mean of $\hat{A}$ ?

$$E\left\{\hat{A}\right\} = E\left\{\frac{1}{N}\sum_{n=0}^{N-1}x[n]\right\} = \frac{1}{N}\sum_{n=0}^{N-1}E\left\{x[n]\right\} = A \quad \hookrightarrow \quad \text{unbiased}$$

#### (2) What is the variance of $\hat{A}$ ?

Assumption: The samples of w[n]s are uncorrelated

$$E\{\hat{A}^{2}\} = Var\{\hat{A}\} = Var\{\frac{1}{N}\sum_{n=0}^{N-1}x[n]\}$$
$$= \frac{1}{N^{2}}\sum_{n=0}^{N-1}Var\{x[n]\} = \frac{1}{N^{2}}N\sigma^{2} = \frac{\sigma^{2}}{N}$$

Notice the variance  $\to 0$  as  $\mathbb{N} \to \infty$   $\hookrightarrow$  consistent (see your P&A sets)

#### Minimum Variance Unbiased (MVU) estimation

**Aim:** to establish "good" estimators of unknown deterministic parameters **Unbiased estimator**  $\hookrightarrow$  "on the average" yields the true value of the unknown parameter independent of its particular value, i.e.

$$E(\hat{\theta}) = \theta \qquad a < \theta < b$$

where (a,b) denotes the range of possible values of  $\theta$ 

Example: Unbiased estimator for a DC level in White Gaussian Noise (WGN). If we are given

$$x[n] = A + w[n]$$
  $n = 0, 1, \dots, N - 1$ 

where A is the unknown, but deterministic, parameter to be estimated which lies within the interval  $(-\infty, \infty)$ , then the sample mean can be used as an estimator of A, namely

$$\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

#### Careful: the estimator is parameter dependent!

#### An estimator may be unbiased for certain values of the unknown parameter but not all, such an estimator is not unbiased

Consider another sample mean estimator:

$$\hat{\hat{A}} = \frac{1}{2N} \sum_{n=0}^{N-1} x[n]$$

Therefore: 
$$E\left\{\hat{\hat{A}}\right\} = 0$$
 when  $A = 0$ 

$$\quad \text{when } A=0$$

but

$$E\left\{\hat{\hat{A}}\right\} = \frac{A}{2}$$

 $E\left\{\hat{A}\right\} = \frac{A}{2}$  when  $A \neq 0$  (parameter dependent)

Hence  $\hat{\hat{A}}$  is **not** an **unbiased estimator** 

- A biased estimator introduces a "systemic error" which should not generally be present
- o Our goal is to avoid bias if we can, as we are interested in stochastic signal properties and bias is largely deterministic

#### Remedy

#### (also look in the Assignment dealing with PSD in your CW )

Several unbiased estimates of the same quantity may be averaged together, i.e. given the  $\cal L$  independent estimates

$$\left\{\hat{\theta}_1,\hat{\theta}_2,\ldots,\hat{\theta}_L\right\}$$

We may choose to average them, to yield

$$\hat{\theta} = \frac{1}{L} \sum_{l=1}^{L} \hat{\theta}_l$$

Our assumption was that the individual estimators are unbiased, with equal variance, and uncorrelated with one another.

Then (NB: averaging biased estimators will not remove the bias)

$$E\left\{\hat{\theta}\right\} = \theta$$

and

$$Var\left\{\hat{\theta}\right\} = \frac{1}{L^2} \sum_{l=1}^{L} Var\left\{\hat{\theta}_l\right\} = \frac{1}{L} Var\left\{\hat{\theta}_l\right\}$$

Note, as  $L \to \infty, \hat{\theta} \to \theta$  (consistent)

### Effects of averaging for real world data Problem 3.4 from your P/A sets: heart rate estimation

The heart rate, h, of a patient is automatically recorded by a computer every 100ms. In one second the measurements  $\left\{\hat{h_1},\hat{h_2},\dots,\hat{h_{10}}\right\}$  are averaged to obtain  $\hat{h}$ . Given than  $E\left\{\hat{h_i}\right\}=\alpha h$  for some constant  $\alpha$  and  $var(\hat{h_i})=1$  for all i, determine whether averaging improves the estimator if  $\alpha=1$  and  $\alpha=1/2$ .

$$\hat{h} = \frac{1}{10} \sum_{i=1}^{10} \hat{h}_i[n],$$

$$E\left\{\hat{h}\right\} = \frac{\alpha}{10} \sum_{i=1}^{10} h = \alpha h$$

If  $\alpha=1$ , unbiased, if  $\alpha\stackrel{i=1}{=}1/2$  it will not be unbiased unless the estimator is formed as  $\hat{h}=\frac{1}{5}\sum_{i=1}^{10}\hat{h}_i[n]$ .

$$var\left\{\hat{h}
ight\} = rac{1}{L^2} \sum_{i=1}^{10} var\left\{\hat{h}_i
ight\}$$



#### Minimum variance criterion

⇒ An optimality criterion is necessary to define an optimal estimator

#### Mean Square Error (MSE)

$$MSE(\hat{\theta}) = E\left\{ \left(\hat{\theta} - \theta\right)^2 \right\}$$

measures the average mean squared deviation of the estimator from the true value.

This criterion leads, however, to unrealisable estimators - namely, ones which are not solely a function of the data

$$MSE(\hat{\theta}) = E\left\{ \left[ \left( \hat{\theta} - E(\hat{\theta}) \right) + \left( E(\hat{\theta}) - \theta \right) \right]^2 \right\}$$

$$= Var(\hat{\theta}) + E\left\{(\hat{\theta}) - \theta\right\}^2 = Var(\hat{\theta}) + B^2(\hat{\theta})$$

#### ⇒ MSE = VARIANCE OF THE ESTIMATOR + SQUARED BIAS

#### Example: An MSE estimator with 'gain factor'

Consider the following estimator for DC level in WGN

$$\hat{A} = a \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

**Task:** Find a which results in minimum MSE

Given

$$E\left\{\hat{A}\right\} = aA$$
 and

$$Var(\hat{A}) = \frac{a^2 \sigma^2}{N}$$

we have

$$MSE(\hat{A}) = \frac{a^2 \sigma^2}{N} + (a-1)^2 A^2$$

Of course, the choice of a=1 removes the mean and minimises the variance

#### Continued: MSE estimator with 'gain'

But, can we find a analytically? Differentiating with respect to a yields

$$\frac{\partial MSA}{\partial a}(\hat{A}) = \frac{2a\sigma^2}{N} + 2(a-1)A^2$$

and setting the result to zero gives the optimal value

$$a_{opt} = \frac{A^2}{A^2 + \frac{\sigma^2}{N}}$$

#### but we do not know the value of A

- $\circ$  The optimal value depends upon A which is the unknown parameter
- Comment any criterion which depends on the value of the unknown parameter to be found is likely to yield unrealisable estimators
- Practically, the minimum MSE estimator needs to be abandoned, and the estimator must be constrained to be unbiased

## A counter-example: A little bias can help (but the estimator is difficult to control)

**Q:** Let  $\{y[n]\}, n = 1, ..., N$  be iid Gaussian variables  $\sim \mathcal{N}(0, \sigma^2)$ . Consider the following estimate of  $\sigma^2$ 

$$\hat{\sigma}^2 = \frac{\alpha}{N} \sum_{n=1}^{N} y^2[n] \quad \alpha > 1$$

Find  $\alpha$  which minimises the  $MSE^{n=1} \hat{\sigma}^2$ .

**S:** It is straightforward to show that  $E\{\sigma^2\} = \alpha \sigma^2$  and

$$MSE(\hat{\sigma}^2) = E\{(\hat{\sigma}^2 - \sigma^2)^2\} = E\{\hat{\sigma}^4\} + \sigma^4(1 - 2\alpha)$$
$$= \frac{\alpha^2}{N^2} \sum_{n=1}^{N} \sum_{s=1}^{N} E\{y^2[n]y^2[s]\} + \sigma^4(1 - 2\alpha)$$

$$= \frac{\alpha^2}{N^2} \left( N^2 \sigma^4 + 2N \sigma^4 \right) + \sigma^4 (1 - 2\alpha) = \sigma^4 \left[ \alpha^4 (1 + \frac{2}{N}) + (1 - 2\alpha) \right]$$

The MMSE is obtained for  $\alpha_{min} = \frac{N}{N+2}$  and has the value

 $\min MSE(\hat{\sigma}^2) = \frac{2\sigma^4}{N+2}$ . Given that the minimum variance of an unbiased estimator (CRLB, later) is  $2\sigma^4/N$ , this is an example of a biased estimator which obtains a lower MSE than the CRLB.

#### Desired: minimum variance unbiased (MVU) estimator

Minimising the variance of an unbiased estimator concentrates the PDF of the error about zero  $\Rightarrow$  estimation error is therefore less likely to be large

Existence of the MVU estimator



The MVU estimator is an unbiased estimator with minimum variance for all  $\theta$ , that is,  $\theta_3$  on the graph.

#### Methods to find the MVU estimator

- The MVU estimator may not always exist
- A **single unbiased estimator may not exist** in which case a search for the MVU is fruitless!
- 1. Determine the Cramer-Rao lower bound (CRLB) and find some estimator which satisfies
- 2. Apply the Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem
- 3. Restrict the class of estimators to be not only unbiased, but also linear (BLUE)
- 4. Sequential vs. block estimators
- 5. Adaptive estimators

#### Extensions to the vector parameter case

o If  $\boldsymbol{\theta} = \left[\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_p\right]^T \in \mathbb{R}^{p \times 1}$  is a vector of unknown parameters, an estimator is unbiased if

$$E(\hat{\theta}_i) = \theta_i$$
  $a_i < \theta_i < b_i$  for  $i = 1, 2, \dots, p$ 

and by defining

$$E(\boldsymbol{\theta}) = \begin{bmatrix} E(\theta_1) \\ E(\theta_2) \\ \vdots \\ E(\theta_p) \end{bmatrix}$$

an unbiased estimator has the property within the p- dimensional space of parameters

• An MVU estimator has the additional property that  $Var(\hat{\theta}_i)$  for  $i=1,2,\ldots,p$  is minimum among all unbiased estimators

#### **Summary and food for thoughts**

- We are now equipped with performance metrics for assessing the goodnes of any estimator (bias, variance, MSE)
- $\circ$  Since MSE =  $var + bias^2$ , some biased estimators may yield low MSE. However, we prefer the minimum variance unbiased (MVU) estimators
- Even a simple Sample Mean estimator is a very rich example of the advantages of statistical estimators
- The knowledge of the parametrised PDF p(data;parameters) is very important for designing efficient estimators
- We have introduced statistical "point estimators", would it be useful to also know the "confidence" we have in our point estimate
- o In many disciplines it is useful to design so called "set membership estimates", where the output of an estimator belongs to a pre-definined bound (range) of values
- We will next address linear, best linear unbiased, maximum likelihood, least squares, sequential least squares, and adaptive estimators

#### Homework: Check another proof for the MSE expression

$$MSE(\hat{\theta}) = var(\hat{\theta}) + bias^2(\theta)$$

Note: 
$$var(x) = E[x^2] - [E[x]]^2$$
 (\*)

**Idea**: Let 
$$x = \hat{\theta} - \theta \rightarrow \text{substitute into } (*)$$

to give 
$$\underbrace{var(\hat{\theta} - \theta)}_{\text{term (1)}} = \underbrace{E[(\hat{\theta} - \theta)^2]}_{\text{term (2)}} - \underbrace{[E[\hat{\theta} - \theta]]^2}_{\text{term (3)}}$$
 (\*\*)

Let us now evaluate these terms:

$$(1) var(\hat{\theta} - \theta) = var(\hat{\theta})$$

(2) 
$$E[\hat{\theta} - \theta]^2 = MSE$$

(3) 
$$\left[ E[\hat{\theta} - \theta] \right]^2 = \left[ E[\hat{\theta}] - E[\theta] \right]^2 = \left[ E[\hat{\theta} - \theta] \right]^2 = \operatorname{bias}^2(\hat{\theta})$$

Substitute (1), (2), (3) into (\*\*) to give

$$var(\hat{\theta}) = MSE - bias^2 \implies MSE = var(\hat{\theta}) + bias^2(\hat{\theta})$$

#### **Recap: Unbiased estimators**

Due to the linearity properties of the  $E\{\cdot\}$ , that is

$$E\{a + b\} = E\{a\} + E\{b\}$$

the sample mean operator can be simply shown to be unbiased, i.e.

$$E\left\{\hat{A}\right\} = \frac{1}{N} \sum_{n=0}^{N-1} E\left\{x[n]\right\} = \frac{1}{N} \sum_{n=0}^{N-1} A = A$$

 $\circ$  In some applications, the value of A may be constrained to be positive

a component value such as an inductor, capacitor or resistor would be

positive (prior knowledge)

 For N data points in random noise, unbiased estimators generally have symmetric PDFs centred about their true value, i.e.

$$\hat{A} \sim \mathcal{N}(A, \sigma^2/N)$$

#### Notes



#### Notes

