Lecture 24

Simple Linear Regression: Confidence/Prediction Intervals and **Hypothesis Testing**

Text: Chapter 11

STAT 8010 Statistical Methods I April 16, 2020

> Whitney Huang Clemson University

otes		

Agenda

- Review of Last Class
- Confidence/Prediction Intervals
- 3 Hypothesis Testing

Notes		

Simple Linear Regression (SLR)

Y: dependent (response) variable; X: independent (predictor) variable

• In SLR we assume there is a linear relationship between X and Y:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i,$$

where $\mathrm{E}(\varepsilon_i)=0$, and $\mathrm{Var}(\varepsilon_i)=\sigma^2, \forall i.$ Furthermore, $Cov(\varepsilon_i, \varepsilon_j) = 0, \forall i \neq j$

Least Squares Estimation:

$$\begin{aligned} & \operatorname{argmin}_{\beta_0,\beta_1} \sum_{i=1}^n (Y_i - (\beta_0 + \beta_1 X_i))^2 \Rightarrow \\ & \bullet \ \hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} \end{aligned}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$

• Residuals: $e_i = Y_i - \hat{Y}_i$, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

Simple Linear Regression: Confidence/Pre- diction Intervals and Hypothesis Testing
CLEMS N
Review of Last Class

Notes			

Residual Analysis

- Residual Analysis: To check the appropriateness of SLR model
 - Is the regression function linear?
 - Do ε_i 's have constant variance σ^2 ?
 - Are ε_i 's indepdent to each other?

We plot residuals e_i 's against X_i 's (or \hat{Y}_i 's) to assess these aspects

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Notes

How (Un)certain We Are?

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

Notes			
-			

Normal Error Regression Model

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \sim \mathrm{N}(0,\sigma^2) \Rightarrow Y_i \sim \mathrm{N}(\beta_0 + \beta_1 X_i,\sigma^2)$
- With normality assumption, we can derive the sampling distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\begin{split} & \bullet \quad \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}} \\ & \bullet \quad \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_0} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)} \end{aligned}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

	Notes				
-					

Confidence Intervals

• Recall $\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}_{\hat{\beta}_1}}\sim t_{n-2}$, we use this fact to construct **confidence intervals (CIs)** for β_1 :

$$\left[\hat{\beta}_1 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_1}, \hat{\beta}_1 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_1}\right],$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the $1-\alpha/2$ percentile of a student's t distribution with n-2 degrees of freedom

• Similarly, we can construct CIs for β_0 :

$$\left[\hat{\beta}_0 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}, \hat{\beta}_0 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}\right]$$

Simple Linear Regression: Confidence/Prediction Intervals and Hypothesis Testing

Review of Last Class
Confidence/Prediction Intervals
Hypothesis Testing

Notes

Notes

Interval Estimation of $\mathrm{E}(Y_h)$

- We often interested in estimating the **mean** response for a particular value of predictor, say, X_h . Therefore we would like to construct CI for $\mathrm{E}[Y_h]$
- We need sampling distribution of \hat{Y}_h to form CI:
 - $\bullet \ \ \frac{\hat{Y}_h Y_h}{\hat{\sigma}_{\hat{Y}_h}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{Y}_h} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)}$

• CI

$$\left[\hat{Y}_h - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{Y}_h}\right]$$

• Quiz: Use this formula to construct CI for β_0

24.8

Prediction Intervals

- Suppose we want to predict the response of a future observation given $X = X_h$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{\text{h(new)}} = E[Y_h] + \varepsilon_h$)
- $\bullet \text{ Replace } \hat{\sigma}_{\hat{Y}_h} \text{ by } \hat{\sigma}_{\hat{Y}_{\text{h(new)}}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)} \text{ to } \\ \text{construct CIs for } Y_{\text{h(new)}}$

inear sion: e/Pre- ervals thesis	Notes
S S N N N N N N N N N N N N N N N N N N	
/Prediction	

Maximum Heart Rate vs. Age Revisited

The maximum heart rate ${\tt MaxHeartRate}$ (${\tt HR}_{\it max}$) of a person is often said to be related to age ${\tt Age}$ by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Construct the 95% CI for β_1
- $\begin{tabular}{ll} \bf Compute the estimate for mean $\tt MaxHeartRate$ \\ given $\tt Age = 40$ and construct the associated 90% CI \\ \end{tabular}$
- Construct the prediction interval for a new observation given Age = 40

CLEMS#N

Class

Hypothesis Testing

24.10

Notes		

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

- **1** $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$
- **o** Compute **P-value**: $P(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- **①** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Simple Linear Regression: Confidence/Prediction Intervals and Hypothesis Testing

CLEMS#N

Review of Last Class

Confidence/Prediction Intervals

Hypothesis Testing

....

No	ites			
_				
_				
_				

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

- **1** $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- **3** Compute **P-value**: $P(|t^*| \ge |t_{obs}|) \simeq 0$
- **①** Compare to α and draw conclusion:

Reject H_0 at $\alpha=.05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Simple Linear Regression: Confidence/Prediction Intervals and Hypothesis Testing

Notes

CLEMS#N

Review of Last Class

Confidence/Predictio

Hypothesis Testina

Hypothesis Tests for $\beta_{\rm age} = -1$

$$H_0:eta_{\mathsf{age}}=-1$$
 vs. $H_a:eta_{\mathsf{age}}
eq -1$

Test Statistic:
$$\frac{\hat{eta}_{age}-(-1)}{\hat{\sigma}_{\hat{eta}_{age}}}=\frac{-0.79773-(-1)}{0.06996}=2.8912$$

P-value: $2 \times \mathbb{P}(t^* > 2.8912) = 0.013$, where $t^* \sim t_{df=13}$

Simple Linear Regression: Confidence/Pre- diction Intervals and Hypothesis Testing
CLEMS#N
Confidence/Prediction Intervals
Hypothesis Testing
24 13

Notes

Summary

In this lecture, we learned

- Normal Error Regression Model and statistical inference for β_0 and β_1
- Confidence/Prediction Intervals
- Hypothesis Testing

Next time we will talk about

- Analysis of Variance (ANOVA) Approach to Regression
- $\textbf{ @ Correlation } (r) \textbf{ \& Coefficient of Determination } (\mathbf{R}^2)$

Notes

Notes		