

Grundlagen der Mathematik und Informatik

Aufbaukurs: Fit für Psychologie WiSe 2022/23

Belinda Fleischmann

Inhalte basieren auf Einführung in Mathematik und Informatik von Dirk Ostwald, lizenziert unter CC BY-NC-SA 4.0

(1) Mengen

Grundlegende Definitionen - Menge

Definition (Mengen und Mengendefinition)

Nach Cantor (1895) ist eine Menge definiert als "eine Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unsere Anschauung oder unseres Denken (welche die Elemente der Menge genannt werden) zu einem Ganzen". Wir schreiben

$$m \in M \text{ bzw. } m \notin M$$
 (1)

um auszudrücken, dass m ein Element bzw. kein Element von M ist. Zur Definition von Mengen gibt es mindestens folgende Möglichkeiten:

- (1) Auflisten der Elemente in geschweiften Klammern, z.B. $M := \{1, 2, 3\}$.
- (2) Angabe der Eigenschaften der Elemente, z.B. $M:=\{x\in\mathbb{N}|x<4\}.$
- (3) Gleichsetzen mit einer anderen eindeutig definierten Menge, z.B. $M:=\mathbb{N}_3.$

Bemerkungen

- $\{x \in \mathbb{N} | x < 4\}$ wird als " $x \in \mathbb{N}$, für die gilt, dass x < 4 ist" gelesen.
- Die Bedeutung von N und N3 wird im Folgenden erläutert.
- Mengen sind *ungeordnet*, d.h. $\{1, 2, 3\} = \{1, 3, 2\} = \{2, 3, 1\}$ etc.

Grundlegende Definitionen - Teilmenge, Mengengleichheit

Definition (Teilmengen und Mengengleichheit)

• Eine Menge A heißt Teilmenge einer Menge B, wenn für jedes Element $a \in A$ gilt, dass auch $a \in B$. Ist A eine Teilmenge von B ist, so schreibt man

$$A \subseteq B$$
 (2)

und nennt A Untermenge von B und B Obermenge von A.

• Eine Menge A heißt echte Teilmenge einer Menge B, wenn für jedes Element $a \in A$ gilt, dass auch $a \in B$, es aber zumindest ein Element $b \in B$ gibt, für das gilt $b \notin A$. Ist A eine echte Teilmenge von B, so schreibt man

$$A \subset B$$
. (3)

• Zwei Mengen A und B heißen gleich, wenn für jedes Element $a \in A$ gilt, dass auch $a \in B$, und wenn für jedes Element $b \in B$ gilt, dass auch $b \in A$. Sind die Mengen A und B gleich, so schreibt man

$$A = B. (4)$$

Beispiel

• Es seien $A:=\{1\},\ B:=\{1,2\},\ C:=\{1,2\}.$ Dann gilt: $A\subset B,\ A\subset C,\ B\subset C,\ C\subset B \text{ und }B=C.$

Grundlegende Definitionen - Kardinalität

Definition (Kardinalität, leere Menge)

Die Anzahl der Elemente einer Menge M heißt Kardinalität und wird mit |M| bezeichnet. Eine Menge mit Kardinalität 0 heißt leere Menge und wird mit \emptyset bezeichnet.

Beispiele

- Für $M := \{1, 2, 3\}$ gilt |M| = 3.
- Für $M := \{a, b\}$ gilt |M| = 2.
- Für $M := \{x, y, z, \pi\}$ gilt |M| = 4.
- Für $M := \emptyset$ gilt |M| = 0.

Grundlegende Definitionen - Potenzmenge

Definition (Potenzmenge)

Die Menge aller Teilmengen einer Menge M heißt $Potenzmenge\ von\ M$ und wird mit $\mathcal{P}(M)$ bezeichnet. Die leere Untermenge von M und M selbst sind immer Elemente von $\mathcal{P}(M)$.

Bemerkung

• Ohne Beweis halten wir fest, dass gilt $|M| = n \Rightarrow |\mathcal{P}(M)| = 2^n$.

Beispiele

- $\bullet \ \, \mathsf{F\"{u}r} \,\, M := \{1,2,3\} \,\, \mathsf{gilt} \,\, \mathcal{P}(M) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$
- $\bullet \ \, \mathrm{F\ddot{u}r} \,\, N := \{5,6\} \,\, \mathrm{gilt} \,\, \mathcal{P}(N) = \{\emptyset,\{5\},\{6\},\{5,6\}\}.$

Verknüpfungen von Mengen - Operationen

Definition (Mengenoperationen)

M und N seien zwei Mengen.

Die Vereinigung von M und N ist definiert als die Menge

$$M \cup N := \{x | x \in M \text{ oder } x \in N\},\tag{5}$$

wobei oder im inklusiven Sinne als und/oder zu verstehen ist.

Der Durchschnitt von M und N ist definiert als die Menge

$$M \cap N := \{x | x \in M \text{ und } x \in N\}. \tag{6}$$

• Die Differenz von M und N ist definiert als die Menge

$$M\setminus N:=\{x|x\in M \text{ und } x\notin N\}. \tag{7}$$

Die symmetrische Differenz von M und N ist definiert als die Menge

$$M\Delta N:=\{x|x\in M \text{ oder } x\in N, \text{ aber } x\notin M\cap N\}, \tag{8}$$

wobei oder hier also im exklusiven Sinne zu verstehen ist.

Beispiel

• Für $M:=\{1,2,3\}$ und $N:=\{2,3,4,5\}$ gilt $M\cup N=\{1,2,3,4,5\}, M\cap N=\{2,3\}, M\setminus N=\{1\}, N\setminus M=\{4,5\}, M\Delta N=\{1,4,5\}.$

Verknüpfungen von Mengen - Partition

Definition (Partition)

M sei eine Menge und $P:=\{N_i\}$ sei eine Menge von Mengen N_i mit i=1,...,n, so dass gilt

$$M = \bigcup_{i=1}^{n} N_i \text{ und } N_i \cap N_j = \emptyset \text{ für } i = 1, ..., n, j = 1, ..., n, i \neq j.$$
 (9)

Dann heißt P eine Partition (oder Zerlegung) von M.

Bemerkung

- ullet $M=\cup_{i=1}^n N_i$ drückt aus, dass die Menge M der $\mathit{Vereinigung}$ aller Teilmengen N_i mit $i=1,\dots,n$ ist.
- N_i ∩ N_j = Ø für i = 1,..., n, j = 1,..., n, i ≠ j drückt aus, dass der *Druchschnitt* aller Teilmengen mit jeweils allen Teilmengen leer (∅) ist. Man sagt auch, die Teilmengen sind *diskunkt*.
- Intuitiv entspricht die Partition einer Menge dem Aufteilen der Menge in disjunkte Teilmengen.

Beispiele

ullet Partitionen von $M:=\{1,2,3,4\}$ sind zum Beispiel

$$P_1 := \{\{1\}, \{2, 3, 4\}\}, P_2 := \{\{1, 2\}, \{3, 4\}\}, P_3 := \{\{1\}, \{2\}, \{3, 4\}\}.$$
 (10)

Spezielle Mengen - Zahlenmengen

Definition (Zahlenmengen)

Es bezeichnen

- $\mathbb{N} := \{1, 2, 3, ...\}$ die natürlichen Zahlen,
- $\mathbb{N}_n := \{1, 2, 3, ..., n\}$ die natürlichen Zahlen der Ordnung n,
- $\mathbb{N}^0 := \mathbb{N} \cup \{0\}$ die natürlichen Zahlen und Null,
- $\mathbb{Z} := \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ die ganzen Zahlen,
- ullet \mathbb{Q} := $\{rac{p}{q}|p,q\in\mathbb{Z},q
 eq 0\}$ die rationalen Zahlen,
- R die reellen Zahlen, und
- $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}, i := \sqrt{-1}\}$ die komplexen Zahlen.

Bemerkungen

- \mathbb{R} umfasst die rationalen Zahlen und die irrationalen Zahlen $\mathbb{R} \setminus \mathbb{Q}$ wie z.B. e, π und $\sqrt{2}$.
- Es gilt $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Spezielle Mengen - Intervalle

Definition (Intervalle)

Zusammenhängende Teilmengen der reellen Zahlen heißen *Intervalle*. Für $a,b\in\mathbb{R}$ unterscheidet man

das abgeschlossene Intervall

$$[a,b] := \{x \in \mathbb{R} | a \le x \le b\},\tag{11}$$

das offene Interval

$$]a, b[:= \{x \in \mathbb{R} | a < x < b\},$$
 (12)

• die halhoffenen Intervalle

$$]a,b] := \{x \in \mathbb{R} | a < x \le b\} \text{ und } [a,b[:= \{x \in \mathbb{R} | a \le x < b\}. \tag{13}$$

Bemerkungen

- Positiv Unendlich (∞) und negativ Unendlich $(-\infty)$ sind keine Elemente von \mathbb{R} .
- Es gilt also immer $]-\infty,b]$ oder $]-\infty,b[$ bzw. $]a,\infty[$ oder $[a,\infty[$, sowie $\mathbb{R}=]-\infty,\infty[$.

Spezielle Mengen - Kartesisches Produkt

Definition (Kartesische Produkte)

M und N seien zwei Mengen. Dann ist das Kartesische Produkt der Mengen M und N die Menge aller geordneten Tupel (m,n) mit $m \in M$ und $n \in N$, formal

$$M \times N := \{(m, n) | m \in M, n \in N\}.$$
 (14)

Das Kartesische Produkt einer Menge M mit sich selbst wird bezeichnet mit

$$M^2 := M \times M. \tag{15}$$

Seien weiterhin $M_1,...,M_n$ Mengen. Dann ist das *Kartesische Produkt der Mengen* $M_1,...,M_n$ die Menge aller geordneten n-Tupel $(m_1,...,m_n)$ mit $m_i\in M_i$ für i=1,...,n, formal

$$\prod_{i=1}^{n} M_i := M_1 \times \dots \times M_n := \{ (m_1, ..., m_n) | m_i \in M_i \text{ für } i = 1, ..., n \}.$$
 (16)

Das n-fache Kartesische Produkt einer Menge M mit sich selbst wird bezeichnet mit

$$M^{n} := \prod_{i=1} M := \{(m_{1}, \dots, m_{n}) | m_{i} \in M\}.$$
(17)

Spzeielle Mengen - reelle Tupel n-ter Ordnung

Definition (Die Menge \mathbb{R}^n)

Das n-fache Kartesische Produkt der reellen Zahlen mit sich selbst wird bezeichnet mit

$$\mathbb{R}^n := \prod_{i=1}^n \mathbb{R} := \{ x := (x_1, \dots, x_n) | x_i \in \mathbb{R} \}$$
 (18)

und "R $\mathit{hoch}\ n$ " gesprochen. Wir schreiben die Elemente von \mathbb{R}^n typischerweise als Spalten

$$x := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \tag{19}$$

und nennen sie n-dimensionale Vektoren. Die Elemente von $\mathbb{R}^1=\mathbb{R}$ nennt man Skalare.

Beispiele

• Ein Bsp für
$$x \in \mathbb{R}^4$$
 ist $x = \begin{pmatrix} 0.16 \\ 1.76 \\ 0.23 \\ 7.10 \end{pmatrix}$, Ein Bsp für $x \in \mathbb{R}^2$ ist $x = \begin{pmatrix} 2.81 \\ 4.22 \end{pmatrix}$.

Selbstkontrollfragen

- 1. Diskutieren Sie die Begriffe Definition, Theorem, Beweis.
- 2. Geben Sie die Definition einer Menge nach Cantor (1895) wieder.
- 3. Nennen Sie drei Möglichkeiten zur Definition einer Menge.
- 4. Für Mengen M,N erläutern Sie die Ausdrücke $m\in M, m\notin N, M\subseteq N, M\subset N$
- 5. Definieren Sie den Begriff der Kardinalität einer Menge.
- 6. Definieren Sie den Begriff der Potenzmenge einer Menge.
- 7. Es sei $M := \{a, b\}$. Bestimmen Sie $\mathcal{P}(M)$.
- 8. Es seien $M:=\{a,b\}, N:=\{a,c,d\}$. Bestimmen Sie $M\cup N, M\cap N, M\setminus N, M\Delta N$.
- 9. Erläutern Sie die Symbole \mathbb{N} , \mathbb{N}_n , und \mathbb{N}^0 .
- Erläutern Sie den Unterschied zwischen N und Z.
- 11. Erläutern Sie den Unterschied zwischen ℝ und ℚ.
- 12. Definieren Sie die Begriffe des abgeschlossenen, offenen, und halboffenen Intervalls.
- 13. Es seien M und N Mengen. Erläutern Sie die Notation $M \times N$.
- 14. Definieren Sie die Menge \mathbb{R}^n .