#### Institutionen för Matematik



SF1624 Algebra och geometri Läsåret 2022-23

# Modul 1

## 1. Uppgifter att börja med

**Uppgift 1.** Bestäm en enhetsvektor som är parallell med vektorn  $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ . Finns det mer än en?

**Uppgift 2.** Låt 
$$\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 och  $\vec{v} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ .

- (a) Beräkna  $\vec{u} + \vec{v}$ . Rita även figur.
- (b) Beräkna  $\vec{u} \vec{v}$ . Rita även figur.
- (c) Beräkna  $-2\vec{u}$ . Rita även figur.

**Uppgift 3.** Låt  $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ . Beräkna  $\vec{u} \cdot \vec{u}$  och förklara vad detta tal har att göra med  $\|\vec{u}\|$ .

**Uppgift 4.** Punkterna A och B delar sträckan mellan punkterna (1,4,2) och (4,1,5) i tre lika delar. Bestäm A och B.

**Uppgift 5.** Bestäm de båda enhetsvektorer som är ortogonala mot vektorerna (2, -6, -3) och (4, 3, -1).

**Uppgift 6.** Visa att vektorerna u+v och u-v är ortogonala om och endast om vektorerna u och v har samma längd.

**Uppgift 7.** Låt L vara linjen genom punkterna (1,0,-1) och (2,3,-5).

- (a) Bestäm en parameterframställning av L.
- (b) Bestäm en parameterframställning av linjen genom origo som är parallell med L.

**Uppgift 8.** Bestäm en parameterform för den linje genom origo i  $\mathbb{R}^3$  som är ortogonal mot planet med ekvation x + 2y + 3z = 5.

**Uppgift 9.** Bestäm en parameterform för planet genom punkterna (1, 2, 0), (2, 1, 1) och (0, -1, 5).

**Uppgift 10.** Bestäm en parameterform för planet som innehåller både punkten (1, 1, 0) och linjen med parameterform

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, \quad t \in \mathbb{R}.$$

**Uppgift 11.** Bestäm en parameterform för en linje som ligger i planet x + y + z = 1.

**Uppgift 12.** Bestäm en parameterform för en linje som inte skär planet x + y + z = 1.

**Uppgift 13.** Låt linjen  $L_1$  ha parameterframställningen

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, \quad t \in \mathbb{R},$$

och låt linjen  $L_2$  ha parameterframställningen

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + s \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \quad s \in \mathbb{R}.$$

Avgör om linjerna  $L_1$  och  $L_2$  skär varandra.

**Uppgift 14.** Bestäm alla eventuella skärningspunkter mellan planet x + 2y - z = 1 och linjen med parameterframställning

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + t \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \quad t \in \mathbb{R}.$$

**Uppgift 15.** Låt  $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$  och  $\vec{v} = \begin{pmatrix} -1 \\ 1 \\ a \end{pmatrix}$ . Bestäm talet a så att vinkeln mellan  $\vec{u}$  och  $\vec{v}$  blir rät.

**Uppgift 16.** Låt 
$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 och  $\vec{v} = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 0 \end{pmatrix}$ . Bestäm vinkeln mellan  $\vec{u}$  och  $\vec{v}$ .

**Uppgift 17.** Bestäm en vektor vars vinklar med positiva x-, y- och z-axlarna är  $\pi/3$ ,  $3\pi/4$  resp  $2\pi/3$  och vars längd är 2.

**Uppgift 18.** Betrakta planet med ekvation z = 19 - 2x - 3y.

- (a) Avgör om punkten (2, 1, 12) ligger i planet.
- (b) Bestäm en normalvektor till planet.
- (c) Bestäm avståndet till planet från punkten (2, 3, 13).

**Uppgift 19.** Bestäm en ekvation för ett plan som skär planet x + 2y + 2z = 0 under rät vinkel.

**Uppgift 20.** Skriv upp ett ekvationssystem vars lösningar är skärningspunkterna mellan planen med ekvationer x+y+z=1 och x+2y+2z=0. Kan du lösa ekvationssystemet och hitta skärningspunkterna?

Uppgifter 21–25 är överkurs just nu, men man måste behärska dem om ett par veckor:

**Uppgift 21.** Låt  $\vec{v}=\begin{pmatrix}1\\3\end{pmatrix}$  och  $\vec{w}=\begin{pmatrix}-1\\5\end{pmatrix}$ . Bestäm projektionen av  $\vec{v}$  på  $\vec{w}$ .

**Uppgift 22.** Låt  $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ . Bestäm projektionen av  $\vec{v}$  på linjen genom origo med riktningsvektor  $\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ .

**Uppgift 23.** Skriv vektorn  $\vec{v} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$  som en summa av två vektorer, den ena parallell med vektorn  $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$  och den andra ortogonal mot samma vektor. )

**Uppgift 24.** Skriv vektorn  $\vec{w} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$  som en summa av två vektorer, den ena parallell

 $\ \, \operatorname{med \ vektorn} \, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \, \operatorname{och \ den \ andra \ ortogonal \ mot \ samma \ vektor.}$ 

**Uppgift 25.** Bestäm avståndet från punkten (1,5) till linjen med ekvation y=3x.

**Uppgift 26.** Bestäm avståndet från punkten (5,4,2) till planet med ekvation x+2y-2z=6.

### 2. Lite längre uppgifter

Följande uppgifter förses inte med svar. Diskutera gärna lösningar med övningsassistenterna!

**Uppgift 2.1.** Punkterna A=(1,1,-1), B=(0,3,0) och C=(2,-4,2) bestämmer en triangel som har en trubbig vinkel  $\theta$ .

- (a) Vid vilket av hörnen i triangeln (A, B eller C) ligger vinkeln  $\theta$ ?
- (b) Är  $\theta$  mindre än  $3\pi/4$ , lika med  $3\pi/4$ , eller större än  $3\pi/4$ ?

# **Uppgift 2.2.** Tre punkter i rymden är givna:

$$A = (0,0,1), B = (-1,1,3), D = (2,1,-1).$$

- (a) Bestäm koordinaterna för punkten C sådan att ABCD är en parallellogram.
- (b) Beräkna längderna av parallelogramets sidor.
- (c) Beräkna cosinus av vinkeln mellan vektorerna  $\vec{AB}$  och  $\vec{AD}$ .

**Uppgift 2.3.** Betrakta punkterna  $A=(1,2,0),\,B=(-1,0,1)$  och C=(3,4,-1), samt planet P som ges av ekvationen

$$2x - y + 2z = 3.$$

- (a) Bestäm en parameterform till linjen L som går genom A och B.
- (b) Går linjen L genom punkten C?
- (c) Avgör om P och L skär varandra. Bestäm koordinater för skärningen i så fall.

### 3. FÖRSLAG PÅ ARBETSUPPGIFTER TILL SEMINARIUM 1

Dessa uppgifter kan användas som arbetsmaterial/diskussionsuppgifter vid seminariet.

**Uppgift 3.1.** Till varje tal t betrakta triangeln T med hörn A = (1, 2, 3), B = (1, 0, -2), C = (t, t, 1).

- (a) För vilket värde på t har T en rät vinkel vid A?
- (b) För detta värde på t bestäm längder av sidorna AC och BC.
- (c) För samma värde på t beräkna cosinus av vinkeln vid C. Avgör om denna vinkel är större, lika med eller mindre än  $\pi/4$ .
- **Uppgift 3.2.** (a) Bestäm en ekvation för det plan som består av alla punkter med lika långt avstånd till punkten A=(1,2,3) som till punkten B=(3,-2,-1). (Ledning: Mittpunkten på sträckan mellan A och B ligger i planet.)
  - (b) Bestäm konstanten c så att punkten P = (3, -2, c) ligger i detta plan.
- **Uppgift 3.3.** (a) Bestäm en ekvation på parameterform för skärningslinjen L mellan planen x + 2y z = 0 och 2x + y + z = 0.
  - (b) Bestäm avståndet mellan punkten P = (2, 4, 4) och linjen L;

### FÖR DISKUSSION

Här är några andra moment som är viktiga och intressanta att diskutera.

- Vad är den förväntade skärningen av två plan i  $\mathbb{R}^3$ , i  $\mathbb{R}^4$  och i  $\mathbb{R}^5$ ?
- Vad kan menas med vinkeln mellan en linje och ett plan eller mellan två plan i  $\mathbb{R}^3$ ? Hur kan man beräkna denna vinkel?

### 4. FACIT OCH LÖSNINGSTIPS

Titta inte i facit förrän du har löst uppgifterna så bra du kan!

- 1. Det finns två:  $\begin{pmatrix} 3/5 \\ -4/5 \end{pmatrix}$  och  $\begin{pmatrix} -3/5 \\ 4/5 \end{pmatrix}$ .
- 2. (a)  $\binom{3}{8}$
- 2. (b)  $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$
- 2. (c)  $\begin{pmatrix} -4 \\ -6 \end{pmatrix}$
- 3.  $\vec{u} \cdot \vec{u} = 14$  vilket är detsamma som  $||\vec{u}||^2$ .
- 4. (2,3,3) och (3,2,4).
- 5.  $\pm \frac{1}{7}(3, -2, 6)$ .
- 6. –
- 7. (a) Till exempel (det finns många möjliga rätta svar)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}, \quad t \in \mathbb{R}.$$

(b) Till exempel

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}, \quad t \in \mathbb{R}.$$

(Du kan kolla ditt svar på (a) genom att se om det finns t-värden som ger de två punkterna i uppgiften. Ditt svar på (b) bör ha samma riktningsvektor som (a) och samtidigt ge punkten (0,0,0) för något t-värde )

8. Till exempel

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad t \in \mathbb{R}$$

(Planets normalvektor bör bli riktningsvektor för din linje!)

9. Till exempel

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + t \begin{pmatrix} -1 \\ -3 \\ 5 \end{pmatrix}, \quad s, t \in \mathbb{R}.$$

10. Till exempel

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, \quad s, t \in \mathbb{R}.$$

(Obs att linjen går genom origo, så då måste planet också göra det)

11. Till exempel

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad t \in \mathbb{R}.$$

(Ett sätt att lösa uppgiften är först hitta två punkter som ligger i planet och sedan skriva upp en parameterframställning av linjen genom dessa punkter. Jag tog punkterna (1,0,0) och (0,1,0) men det finns ju fler.....)

12. Till exempel

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad t \in \mathbb{R}.$$

- 13. Nej. (En eventuell skärningspunkt (x, y, z) måste uppfylla båda parameterframställningarna för något värde på s och något värde på t. Speciellt måste x = -t och samtidigt x = 1 s, och y = 0 och samtidigt y = 2 + 2s, och z = 2t och samtidigt z = 2. Dessa villkor går inte att lösa för s och t.)
- 14. En enda skärningspunkt: (5/3,2/3,2). (Eventuella skärningspunkter (x,y,z) måste uppfylla både planets ekvation och linjens parameterframställning. Man kan alltså ta uttrycken för x, y och z på linjen och stoppa in dem i planets ekvation och se om det går att bestämma t så att det funkar.)
- 15. a = -1/2 (Skalärprodukten ska bli 0)
- 16. 60 grader. (Använd att  $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$ . Vilken vinkel är det som har cosinusvärdet 1/2?)

17. 
$$(1, -\sqrt{2}, -1)$$
.

18. (a) Ja.

8

(b) T ex 
$$\begin{pmatrix} 2\\3\\1 \end{pmatrix}$$
 (c)  $\sqrt{7/2}$ 

19. Till exempel 2x - y = 0

20.

$$\begin{cases} x + y + z = 1\\ x + 2y + 2z = 0 \end{cases}$$

Lösningarna är linjen med parameterframställning

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

21. 
$$\binom{-7/13}{35/13}$$
.

22. 
$$\begin{pmatrix} 4/9 \\ 2/9 \\ -4/9 \end{pmatrix}$$
.

23.

24.

$$\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$

25. 
$$\sqrt{2/5}$$

26. 1