Tacotron 2 & WaveNet

Neural text-to-speech

Russel Shawn Dsouza

Electronics and Communications Engg. National Institute of Technology Karnataka Surathkal, India - 575025

October 9, 2019

Overview

Speech synthesis

Artificial production of human speech

Figure: A typical text-to-speech system¹

¹Andy0101, A typical text-to-speech system, https://commons.wikimedia.org/wiki/File:TTS_System.svg, [Online; accessed 10/08/2019], 2010.

History of speech synthesis

Concatenative

 Extract samples from large database of human speech

Parametric

 Simulate human voice using a parametric function

Neural

 Artificially generate human voice using neural networks

Approaches in Neural text-to-speech

- ► LSTM
- ▶ WaveNet
- ► WaveNet based

WaveNet

A deep neural network for generating raw audiowaveforms.

- ▶ Probabilistic
- ► Autoregressive
- Beats all previously known methods

Figure: Time domain representation of 1 second of generated speech

WaveNet: Architecture

- ► Dilated convolution
- $\blacktriangleright \ \mu$ law companding
- ► Gated activation
- ► Residual and skip connection
- ► Conditional wavenets

1. Dilated Convolution

Figure: Stack of dilated causal convolution layers²

²A. v. d. Oord, S. Dieleman, H. Zen, et al., "WaveNet: A Generative Model for Raw Audio," en, arXiv:1609.03499 [cs], Sep. 2016, arXiv: 1609.03499. [Online]. Available: http://arxiv.org/abs/1609.03499 (visited on 10/08/2019).

2. μ -law companding

$$f(x_t) = {\rm sign}(x_t) \frac{\ln(1+\mu|x_t|)}{\ln(1+\mu)}$$

$$-1 < x_t < 1 \text{ is the time domain speech signal,}$$

$$\mu = 255$$

3. Gated activation

$$\mathbf{z} = \tanh(W_{f,k} * \mathbf{x}) \circledast \sigma(W_{g,k} * \mathbf{x})$$

 $* \rightarrow convolution,$

 $\circledast \rightarrow$ element-wise multiplication,

 $\sigma(.) \rightarrow \text{sigmoid function},$

 $k \rightarrow layer index$,

 $f \rightarrow \text{filter}$,

 $g \rightarrow \mathsf{gate}$,

 $W \rightarrow \text{learnable convolution filter}^3$

³A. v. d. Oord, N. Kalchbrenner, O. Vinyals, et al., "Conditional Image Generation with PixelCNN Decoders," arXiv:1606.05328 [cs], Jun. 2016, arXiv: 1606.05328. [Online]. Available: http://arxiv.org/abs/1606.05328 (visited on 10/08/2019).

4. Residual and skip connections

Figure: Overview of residual block and entire architecture⁴

⁴A. v. d. Oord, S. Dieleman, H. Zen, et al., "WaveNet: A Generative Model for Raw Audio," en, arXiv:1609.03499 [cs], Sep. 2016, arXiv: 1609.03499. [Online]. Available: http://arxiv.org/abs/1609.03499 (visited on 10/08/2019).

5. Conditional WaveNets

Given an additional input \mathbf{h} , WaveNets can model the conditional distribution $p((x)|\mathbf{h})$ of the audio given the input.

$$p(\mathbf{x}|\mathbf{h}) = \prod_{t=1}^{T} p(x_t|x_1,\ldots,x_{t-1},\mathbf{h})$$

WaveNet: Pros and Cons

Pros

► Fast training

Cons

► Slow inference

Tacotron 2: Architecture

Figure: Block diagram of Tacotron 2 system architecture⁵

⁵J. Shen, R. Pang, R. J. Weiss, *et al.*, "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions," en, *arXiv:1712.05884* [cs], Dec. 2017, arXiv: 1712.05884. [Online]. Available: http://arxiv.org/abs/1712.05884 (visited on 10/08/2019).

Mel spectrogram

- Related to the short-time Fourier transform (STFT) magnitude
- Obtained by applying a nonlinear transform to the frequency axis of the STFT
- Emphasizes details in lower frequencies
- ► De-emphasizes high frequency details

Features derived from the mel scale have been used as an underlying representation for speech recognition for many decades.⁶

⁶S. Davis and P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences," *IEEE transactions on acoustics, speech, and signal processing*, vol. 28, no. 4, pp. 357–366, 1980.

Tacotron 2: Training

Feature detection

- Maximum likelihood training procedure
- ▶ Batch size = 64 on a single GPU
- ► Adam optimizer w/ $\beta_1 = 0.9, \ \beta_2 = 0.999,$ $\epsilon = 10^{-6}$
- ► LR = 10^{-3} , exponentially decaying to 10^{-5}
- ► Warmup training till 50,000 iterations
- ► L2 regularization with weight 10⁻⁶

WaveNet

- ► Batch size = 128 on 32 GPUs
- Adam optimizer w/ $\beta_1=0.9,\ \beta_2=0.999,\ \epsilon=10^{-8}$
- Fixed LR = 10⁻⁴
- Exponentially-weighted moving average of the network parameters over update steps with a decay of 0.9999
- ► Scaling by 127.5
- ► US English dataset

Tactron 2: Evaluation

- ▶ 100 random examples from test set sent to Mechanical Turk
- ► Each sample is rated by atleast 8 raters
- ► Scores on a scale of 1 to 5 with 0.5 increments

Tacotron 2: Reported results

System	MOS
Parametric	3.492 ± 0.096
Tacotron (Griffin-Lim)	4.001 ± 0.087
Concatenative	4.166 ± 0.091
WaveNet (Linguistic)	4.341 ± 0.051
Ground truth	4.582 ± 0.053
Tacotron 2 (this paper)	4.526 ± 0.066

Figure: Mean Opinion Score (MOS) evaluations

7

⁷J. Shen, R. Pang, R. J. Weiss, *et al.*, "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions," en, *arXiv:1712.05884* [cs], Dec. 2017, arXiv: 1712.05884. [Online]. Available: http://arxiv.org/abs/1712.05884 (visited on 10/08/2019).

Conclusions and future strategies

- ► More general models
- ► More languages
- ► Names, abbreviations, context require more work
- ► Better evaluation and testing required