Física I Turno H

Apuntes de Clase 5

Turno H Prof. Pedro Mendoza Zélis Conociendo las leyes de Newton pudimos hasta el momento determinar la aceleración de una partícula sometida a una fuerza haciendo uso de la "Dinámica". En esta clase abordaremos el estudio de la "Cinemática" que nos permitirá predecir el movimiento de dicha partícula:

Supongamos una partícula que se mueve en una dimensión y que está sometida a una fuerza constante: Objetivo: predecir su posición y su velocidad en cualquier instante:

Introducción a la Cinemática

Supongamos que sobre una partícula de masa m, que se mueve en una sola dimensión (arbitrariamente elegimos x), se aplica una fuerza F en dicha dirección. Sabiendo que en el instante $t_0=0$, su posición es x_0 y su velocidad v_0 podemos predecir su posición y velocidad en cualquier instante t:

$$a_{x} = \frac{F_{x}}{m}$$

$$v_x(t) = v_{0,x} + a_x t$$
$$x(t) = x_0 + v_{0,x}t + \frac{1}{2}a_x t^2$$

Se arroja una pelota hacia arriba en dirección vertical con $v_0 = 20$ m/s desde un edificio de 50 m de altura. Hallar: a) tiempo para llegar a la máxima altura; b) máxima altura desde el piso; c) tiempo total de vuelo; d) velocidad al llegar al piso e) posición y velocidad un segundo después de que la pelota fue arrojada.

Se arroja una pelota hacia arriba en dirección vertical con v_0 = 20 m/s desde un edificio de 50 m de altura. Hallar: a) tiempo para llegar a la máxima altura; b) máxima altura desde el piso; c) tiempo total de vuelo; d) velocidad al llegar al piso e) posición y velocidad un segundo después de que la pelota fue arrojada.

$$a_y = -9.8 \frac{m}{s^2}$$

$$v_y(t) = v_{0,y} + a_y t$$

$$y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2$$

$$a_y = -9.8 \frac{m}{s^2}$$

$$v_y(t) = v_{0,y} + a_y t$$

$$y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2$$

Tiempo	Posición	Velocidad	
0s	50m	20m/s	punto inicial
2s	70.4m	0m/s	máxima altura
5.8s	0m	-36.8m/s	instante previo a llegar al suelo

Tiempo | Posición | Velocidad

0s 50m 20m/s punto inicial

2s 70.4m 0m/s máxima altura

5.8s 0m -36.8m/s instante previo a llegar al suelo

$$a_y = -9.8 \frac{m}{s^2}$$

$$v_y(t) = v_{0,y} + a_y t = 20 \frac{m}{s} - 9.8 \frac{m}{s^2} t$$

$$a_y = -9.8 \frac{m}{s^2}$$

$$v_y(t) = v_{0,y} + a_y \ t = 20 \frac{m}{s} - 9.8 \frac{m}{s^2} t$$

$$y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 = 50m + 20 \frac{m}{s}t - \frac{1}{2}9.8 \frac{m}{s^2}t^2$$

Cinemática

Recordando que
$$\vec{a} = \frac{d \vec{v}}{dt}$$
 \rightarrow $d \vec{v} = \vec{a}(t) dt$

Integrando queda:
$$\int_{v_0}^{v} d \ \vec{v} = \int_{t_0}^{\tau} \vec{a}(t) \ dt$$

$$\vec{v} = \vec{v}_0 + \int_{t_0}^t \vec{a}(t) \ dt$$

Si
$$\vec{a}(t) = \vec{a} = cte$$
 \rightarrow $\vec{v} - \vec{v}_0 = \vec{a} \int_{t_0}^{t} dt = \vec{a} (t - t_0)$

$$\vec{v}(t) = \vec{v}_0 + \vec{a} (t - t_0)$$

Cinemática

$$\vec{v}(t) = \vec{v}_0 + \vec{a} (t - t_0)$$

Expresión vectorial

3 ecuaciones escalares!!!!
comp. "x", comp. "y", comp. "z"

$$v_x(t) = v_{0,x} + a_x (t - t_0)$$

$$v_y(t) = v_{0,y} + a_y (t - t_0)$$

$$v_z(t) = v_{0,z} + a_z (t - t_0)$$

$$v_y(t) = v_{0,y} + a_y (t - t_0)$$

$$v_z(t) = v_{0,z} + a_z (t - t_0)$$

Los valores de velocidad en cada eje dependen de los valores iniciales en ese eje, de la aceleración en ese mismo eje y del tiempo transcurrido.

Conociendo $\vec{v}(t) = \frac{d\vec{r}(t)}{dt}$ podremos determinar la

coordenada de una partícula para un dado tiempo t:

$$\int_{\vec{r}_0}^{\vec{r}} d\vec{r}(t) = \int_{t_0}^{t} \vec{v}(t) dt = \int_{t_0}^{t} [\vec{v}_0 + \vec{a}(t - t_0)] dt$$

Recordando que estudiamos el caso $\vec{a}(t) = \vec{a} = cte$

$$\vec{r}(t) = \vec{r}_0 + \vec{v}_0(t - t_0) + \vec{a} \frac{(t - t_0)^2}{2}$$

$$\vec{r}(t) = \vec{r}_0 + \vec{v}_0(t - t_0) + \vec{a} \frac{(t - t_0)^2}{2}$$

Expresión vectorial!!!

3 ecuaciones escalares!!!

$$x(t) = x_0 + v_{0x}(t - t_0) + \frac{1}{2}a_x(t - t_0)^2$$

$$y(t) = y_0 + v_{0y}(t - t_0) + \frac{1}{2}a_y(t - t_0)^2$$

$$z(t) = z_0 + v_{0z}(t - t_0) + \frac{1}{2}a_z(t - t_0)^2$$

Las coordenadas dependen de los valores iniciales en cada eje, de la velocidad inicial en cada eje y de la aceleración en cada eje.

Cinemática

Si estudiamos una partícula cuya aceleración es constante:

$$\vec{a}(t) = \vec{a} = cte$$

Y conocemos su posición \vec{r}_0 y su velocidad \vec{v}_0 en un instante inicial t_0 =0, podemos determinar su posición y velocidad en cualquier instante t:

$$\vec{v}(t) = \vec{v}_0 + \vec{a} t$$

$$\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$

Se arroja una pelota en la dirección indicada ($\alpha = 30^{\circ}$), con $v_0 = 20$ m/s desde un edificio de 50 m de altura. Hallar: a) tiempo para llegar a la máxima altura; b) máxima altura desde el piso; c) velocidad en el punto de máxima altura; d) tiempo total de vuelo; e) coordenada D al llegar al piso; f) velocidad al impactar contra él.

$$\alpha$$
= 30°, v_0 = 20 m/s, h = 50 m

- a) tiempo para llegar a la máxima altura
- b) máxima altura desde el piso
- c) velocidad en el punto de máxima altura
- d) tiempo total de vuelo
- e) coordenada D al llegar al piso
- f) velocidad al impactar contra él

Condiciones iniciales a t=0

Eje x:
$$\begin{cases} v_x(t=0) = v_{0x} = v_0 \cos a \\ x(t=0) = x_0 = 0m \end{cases}$$

Eje y:
$$\begin{cases} v_y(t=0) = v_{0,y} = v_0 sen \ a \\ y(t=0) = y_0 = 50m \end{cases}$$

Eje x:
$$\begin{cases} a_x = 0 \\ v_x(t) = v_{0x} = v_0 \cos a \\ x(t) = v_{0x}t = v_0 \cos a t \end{cases}$$

$$a_y = -g = -9.8 \frac{m}{s^2}$$
 Eje y:
$$v_y(t) = v_{0,y} + a_y \ t = v_0 sena - gt$$

$$y(t) = y_0 + v_0 sena \ t - \frac{1}{2}gt^2$$

Otro ejemplo: ¿D?

Otro ejemplo: ¿D?

Condiciones iniciales a t=0

Otro ejemplo: ¿D?

$$\begin{cases} a_x = 0 \\ v_x(t) = v_{0x} = v_0 \\ x(t) = v_{0x} t \end{cases}$$

$$a_y = -9.8 \frac{m}{s^2}$$

$$y(t) = h - \frac{1}{2}g t^2$$

$$v_y(t) = -g t$$

Otro ejemplo:

Si t_v es el tiempo total de vuelo:

Analogías entre cinemática lineal y circular

Analogías entre cinemática lineal y circular

$$\vec{a} = \frac{d\vec{v}}{dt}$$

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$\vec{\alpha} = \frac{d\vec{w}}{dt}$$

$$\vec{\omega} = \frac{d\vec{\theta}}{dt}$$

Cinemática lineal con a = cte	Cinemática de rotación con $\alpha = cte$	
$v = v_0 + at$	$\omega = \omega_0 + \alpha t$	
$x = x_0 + v_0 \ t + \frac{1}{2} a \ t^2$	$\theta = \theta_0 + \omega_0 \ t + \frac{1}{2} \alpha \ t^2$	