CHAPTER 2: Atomic Structure and Interatomic Bonding

ISSUES TO ADDRESS...

- Atomic structure (2.1~2.4)
- What types of bonds are there?
- What properties are inferred from bonding?

Bohr Atom

Nucleus: Z = # protons

= 1 for hydrogen to 94 for plutonium

N = # neutrons

Atomic mass $A \approx Z + N$

Atomic mass unit (amu)

$$M$$
proton $\approx M$ neutron = 1.66 x 10^{-24} g = 1 amu

Atomic Structure (Freshman Chem.)

- atom electrons 9.11 x 10^{-31} kg protons neutrons $\left.\begin{array}{c} 1.67 \times 10^{-27} \text{ kg} \end{array}\right.$
- atomic number (Z) = # of protons in nucleus of atom = # of electrons of neutral species
- A [=] atomic mass unit = amu = 1/12 mass of 12 C

Atomic wt = wt of 6.023×10^{23} molecules or atoms

1 amu/atom = 1 g/mol

C 12.011 H 1.008 etc.

Electronic Structure

- Electrons have wavelike and particulate properties.
 - This means that electrons are in orbitals defined by a probability.
 - Each orbital at discrete energy level determined by quantum numbers.

Quantum

```
n = \text{principal (energy level-shell)}
1 = \text{subsidiary (orbitals)}
m_l = \text{magnetic}
m_s = \text{spin}
```

Designation

```
K, L, M, N, O (1, 2, 3, etc.)

s, p, d, f (0, 1, 2, 3,..., n-1)

1, 3, 5, 7 (-1 to +1)

\frac{1}{2}, -\frac{1}{2}
```

Electron Energy States

Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

Order of Filling Sublevels with Electrons

Element	Symbol	Atomic Number	Electron Configuration
Hydrogen	Н	1	$1s^1$
Helium	Не	2	$1s^2$
Lithium	Li	3	$1s^22s^1$
Beryllium	Be	4	$1s^22s^2$
Boron	В	5	$1s^22s^22p^1$
Carbon	C	6	$1s^2 2s^2 2p^2$
Nitrogen	N	7	$1s^22s^22p^3$
Oxygen	O	8	$1s^22s^22p^4$
Fluorine	F	9	$1s^2 2s^2 2p^5$
Neon	Ne	10	$1s^22s^22p^6$
Sodium	Na	11	$1s^22s^22p^63s^1$
Magnesium	Mg	12	$1s^22s^22p^63s^2$
Aluminum	Al	13	$1s^22s^22p^63s^23p^1$
Silicon	Si	14	$1s^22s^22p^63s^23p^2$
Phosphorus	P	15	$1s^2 2s^2 2p^6 3s^2 3p^3$
Sulfur	S	16	$1s^22s^22p^63s^23p^4$
Chlorine	Cl	17	$1s^22s^22p^63s^23p^5$
Argon	Ar	18	$1s^22s^22p^63s^23p^6$
Potassium	K	19	$1s^22s^22p^63s^23p^64s^1$
Calcium	Ca	20	$1s^22s^22p^63s^23p^64s^2$
Scandium	Sc	21	$1s^22s^22p^63s^23p^63d^14s^2$
Titanium	Ti	22	$1s^22s^22p^63s^23p^63d^24s^2$
Vanadium	V	23	$1s^22s^22p^63s^23p^63d^34s^2$
Chromium	Cr	24	$1s^22s^22p^63s^23p^63d^54s^1$
Manganese	Mn	25	$1s^22s^22p^63s^23p^63d^54s^2$
Iron	Fe	26	$1s^22s^22p^63s^23p^63d^64s^2$
Cobalt	Co	27	$1s^22s^22p^63s^23p^63d^74s^2$
Nickel	Ni	28	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$
Copper	Cu	29	$1s^22s^22p^63s^23p^63d^{10}4s^1$
Zinc	Zn	30	$1s^22s^22p^63s^23p^63d^{10}4s^2$
Gallium	Ga	31	$1s^22s^22p^63s^23p^63d^{10}4s^24p$
Germanium	Ge	32	$1s^22s^22p^63s^23p^63d^{10}4s^24p$
Arsenic	As	33	$1s^22s^22p^63s^23p^63d^{10}4s^24p$
Selenium	Se	34	$1s^22s^22p^63s^23p^63d^{10}4s^24p$
Bromine	Br	35	$1s^22s^22p^63s^23p^63d^{10}4s^24p$
Krypton	Kr	36	$1s^22s^22p^63s^23p^63d^{10}4s^24p$

 $[^]a$ When some elements covalently bond, they form sp hybrid bonds. This is especially true for C, Si, and Ge.

Stable Electron Configurations

Stable electron configurations...

- have complete s and p subshells
- tend to be unreactive.

Z Element Configuration

2	He	1s ²	Adapted from Table 2.2,
10	Ne	1s ² 2s ² 2p ⁶	Callister 6e.
18	Ar	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	
36	Kr	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3	3d104s24p6

 $s^2 p^6$ Completely filled (8 electrons)

valence electrons

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

Element	Atomic #	Electron configuration
Hydrogen	1	$1s^{-1}$
Helium	2	1s ² (stable)
Lithium	3	$1s^{2}2s^{1}$
Beryllium	4	$1s^{2}2s^{2}$
Boron	5	$1s^2 2s^2 2p^1$ Adapted from Table 2.2,
Carbon	6	$1s^2 2s^2 2p^2$ Callister 7e.
•••		
Neon	10	$1s^2 2s^2 2p^6$ (stable)
Sodium	11	$1s^2 2s^2 2p^6 3s^1$
Magnesium	12	$1s^2 2s^2 2p^6 3s^2$
Aluminum	13	$1s^2 2s^2 2p^6 3s^2 3p^1$
•••		
Argon	18	$1s^2 2s^2 2p^6 3s^2 3p^6$ (stable)
•••	•••	•••
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ (stable)
Chloride	17	$1s^2 2s^2 2p^6 3s^2 3p^5$
Sulfur	16	$1s^2 2s^2 2p^6 3s^2 3p^4$

The Periodic Table

• Columns: Similar Valence Structure

Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

Electronegativity

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Larger electronegativity

(1)

2.5 Bonding Forces and Energies

► Ionic: Strong Coulomb interaction among negative atoms (have an extra electron each) and positive atoms (lost an electron).

Example - Na+Cl-

► Covalent: Electrons are shared between the molecules, to saturate the valency.

Example - H₂

► Metallic: The atoms are ionized, loosing some electrons from the valence band. Those electrons form a electron sea, which binds the charged nuclei in place.

Chapter 2 -

Ionic Bonding

(Ionic bond – metal + nonmetal)

- Large difference in electronegativity required.
- Requires electron transfer.
- Occurs between + and ions.
- Example: NaCl

Examples: Ionic Bonding

• Predominant bonding in Ceramics

Ionic Bonding

- Bonding Force
 - -- Attractive, Repulsive and Net force

Ionic Bonding

- Energy minimum energy most stable
 - Energy balance of attractive and repulsive terms

Properties From Bonding: T_m

• Bond length, *r*

• Bond energy, E_0

• Melting Temperature, T_m

 T_m is larger if E_0 is larger.

Properties From Bonding : α

• Coefficient of thermal expansion, a

coeff. thermal expansion $\frac{DL}{T} = a (T_2 - T_1)$

• a ~ symmetry at r_0

a is larger if E_0 is smaller.

Covalent Bonding

- Sharing of electrons between adjacent atoms.
- Two atoms that are covalently bonded will each contribute at least one electron to the bond
- The shared electrons may be considered to belong to both atoms

• Example: CH₄

C: has 4 valence e^{-} , needs 4 more

H: has 1 valence e^- , needs 1 more

Electronegativities are comparable.

EXAMPLES: COVALENT BONDING

• Molecules with nonmetals (e.g., F₂, O₂)

• Molecules with nonmetals (e.g., H₂O, CH₄)

Elemental solids (e.g., Ge, Si)

Compound solids (about column IVA, e.g., GaAs)

Covalent Bonding : Silicon

The covalent bond is directional!

Metallic Bonding

- These valence electrons are not bound to any particular atoms.
- More or less free to drift throughout the entire metal.
- Sea of electrons or an electron cloud.
- Remaining nonvalence electrons and atomic nuclei \rightarrow ion cores.
- Nondirectional
- Group IA and IIA

Concept Check 2.3

Q: Why covalently bonded materials are generally less dense than ionically or metallically bonded ones?

Answer: Covalently bonded materials are less dense than metallic or ionically bonded ones because covalent bonds are <u>directional</u> in nature whereas metallic and ionic are not; when bonds are directional, the atoms cannot pack together in as dense a manner, yielding a lower mass density.

Face-centered cubic

Au, Cu, Al...

Secondary Bonding

- Secondary = van der Waals
- Physical bonds (primary bounds →chemical)
- Weak (10 KJ/mol)
- No e- transferred or shared Interaction of atomic/molecular dipoles
- Inert gases
- Arise from atomic or molecular dipoles

Atomic or molecular dipoles

SECONDARY BONDING

Arises from interaction between **dipoles**

Fluctuating dipoles

• Polar molecule-induced dipoles

-ex: liquid HCl

Secondary Bonding : permanent dipoles

"Hydrogen bond" – secondary bond formed between two **permanent dipoles** in adjacent molecules.

It only happens in molecules where hydrogen bonds with the following: Oxygen (O), Nitrogen (N) and Fluorine (F).

 \rightarrow high electronegativities.

Summary: Bonding

Type Bond Energy Comments

Ionic Large! Nondirectional (ceramics)

Covalent Variable Directional

large-Diamond (semiconductors, ceramics

small-Bismuth polymer chains)

Metallic Variable

large-Tungsten Nondirectional (metals)

small-Mercury

Secondary smallest Directional

inter-chain (polymer)

inter-molecular