

origin and which grows in you After a time the public reaches at P(n, y, z, t/2 S frame e = \(\sqrt{12} + y^2 + z^2 \) $\eta^2 + \gamma^1 + 2^2 - C^2 E^2 = 0$ S' france $C = \sqrt{3^2 + 4^2 + 2^2}$ $\eta^{1/2} + \gamma^{12} + 29^2 = c^2 \dot{e}^2 = 0$ $\eta^2 + \gamma^2 + 2^2 - C^2 = \eta_0^{12} + \gamma_1^{12} + 2^{12} + 2^{12} + 2^{12} = C^2 = 1$ y'= y _ bcoz we consider motion only along nams $\frac{1}{12} - \frac{12}{12} - \frac{12}$ E is independent of upend of nource and observer deserver unbioduced n = p(n-v+)

	Chame, det mil 2 m
nnjara.	Wen corned from I hady nemolinal
1.	When observed from S prame. det m, v, & m2 v, is the many e whoaty of 2 body regularity
Military Co.	$U_1 = U + W \qquad \qquad U_2 = -U + W$
Today ()	1 + UW 1- UW ez
-	ich ez
	from Mementum Conservation.
	m, v, + m, v, = (m, + m,) to.
-	$m_1(v_1-w)=m_2(w-w_2)$
	my Ju+w - w-Junycy = m2 [W - UW2 + U - W
-	1+ 010.
_	1-000
-	$\frac{1-00}{c^2}$
	m1 1+ UN/c2
	$m_{\lambda} = 1 - \omega \omega/c^{2}$
	again,
	1 - 122/22 1+ 11/1/2
	GIM :
	VI-U,2/c2 1-UW/c2
15	
100	$m_1\sqrt{1-U_1L} - m_2\sqrt{1-U_2^2} - m_3\sqrt{1-U_3^2}$
	$m_1 \sqrt{1 - U_1 L} - m_2 \sqrt{1 - U_2^2} = m_3 \sqrt{1 - U_3^2}$
	V E
	$= m \sqrt{1 - v^2} = m \sqrt{1 - v^2}$
	V C
	$m \sqrt{1-v^2} = m_0$
A CONTRACTOR	V C'
	m, mo
	VI-12 & NSCC WEND
-	

$$W = \int_{m_0}^{m} c^2 dm$$

Lasest mans energy

A show that for a low speed siel. KE aidness to Us classical energy value.

$$= \frac{m_0}{\sqrt{1-v^2}} \cdot c^2 = m_0 c^2$$

$$= m_0 c^2 \left[\left(1 - v_L \right)^{-1} \right]^2 - 1$$

$$= m_0 c^2 \left[1 + 1 v_L \right]^{-1}$$
Ad. RE

mov2

non