D

$$\rho(X=0) = 0.4, \quad \rho(X=1) = 0.6$$
 $\rho(Y=0) = 0.65, \quad \rho(Y=1) = 0.35$

E)

No

c)
$$E(X) = 0.6$$
, $E(Y) = 0.35$
d) $P(X = 0 | Y = 1) = \frac{3}{7}$, $P(X = 1 | Y = 1) = \frac{5}{7}$

(a)
$$p(Y_{4}=0) = (Y_{1}P)^{2}$$

$$p(Y_{4}=1) = 4p(Y_{1}P)^{2}$$

$$p(Y_{4}=1) = 4p^{2}(Y_{1}P)^{2}$$

$$p(Y_{4}=3) = 4p^{3}(Y_{1}P)^{2}$$

$$p(Y_{4}=3) = p^{2}$$

$$p(Y_{4}=3) = 1 - (Y_{1}P)^{2} + 4p^{3}(Y_{1}P) + p^{2}$$

$$p(Y_{4}=1) = 6p^{2}(Y_{1}P)^{2} + 4p^{3}(Y_{1}P) + p^{2}$$

$$p(Y_{4}=1) = 6p^{2}(Y_{1}P)^{2}$$

$$p(Y_{4}=1) = 6p^{2}(Y_{4}P)^{2}$$

$$p($$

$$F(2) = [-e^{-\lambda z}, 27e^{-\lambda z}]$$
(a) $f(a) = \lambda e^{-\lambda z}, 27e^{-\lambda z}$
(b) $E(2) = \int_{0}^{\infty} z \cdot \lambda e^{-\lambda z} dz = \frac{1}{\lambda^{2}}$
(c) $E(2) = \int_{0}^{\infty} z \cdot \lambda e^{-\lambda z} dz = \frac{1}{\lambda^{2}}$

$$(d) Z_{1}, 2z \sim \exp(\lambda), indep$$

$$S = 2_{1} + 2z$$

$$P(S \leq s) = P(2_{1} + 2z \leq s)$$

(5(5)) (-Ax.) e dy Axdy ALL XHET $= \int_{0}^{S} -\lambda e^{-\lambda y} e^{-\lambda x \left| \frac{s-y}{s} \right|} dy$ = (s - le ly (e - l(s-3) -1) dz $=-\lambda/2$ $= -\lambda \left(se^{-\lambda s} + \frac{1}{\lambda} e^{-\lambda s} - \frac{1}{\lambda} \right)$ $= 1 - e^{-\lambda s} - \lambda s e^{-\lambda s}$ $f(s) = \lambda e^{-\lambda s} - \lambda \left(e^{-\lambda s} - \lambda s e^{-\lambda s} \right)$ $= \lambda^2 s e^{-\lambda s} (s > 0)$ $E(S) = \frac{2}{\lambda}$, $Var(S) = \frac{2}{\lambda^2}$

$$P(k) = \frac{\lambda^{k}e^{-\lambda}}{k!}, kze(\lambda > 2)$$

$$P(k) = \frac{\lambda^{k}e^{-\lambda}}{k!}, kze(\lambda > 2)$$

$$P(k) = \frac{\lambda^{k}e^{-\lambda}}{k!} = e^{-\lambda} \frac{\lambda^{k}e^{-\lambda}}{k!} = 1.$$

$$P(k) = \frac{\lambda^{k}e^{-\lambda}}{k!} = e^{-\lambda} \frac{\lambda^{k}e^{-\lambda}}{k!} = e^{-\lambda} \frac{\lambda^{k}e^{-\lambda}}{k!} = 1.$$

$$P(k) = \frac{\lambda^{k}e^{-\lambda}}{k!} = e^{-\lambda} \frac{\lambda^{k}e^{-\lambda}}{k!} = e^{-\lambda} \frac{\lambda^{k}e^{-\lambda}}{k!} = 1.$$

$$P(k) = \frac{\lambda^{k}e^{-\lambda}}{k!} = e^{-\lambda} \frac{\lambda^{k}e^{-\lambda}}{k!} = e^{-\lambda} \frac{\lambda^{k}e^{-\lambda}}{k!} = 1.$$

$$P(k) = \frac{\lambda^{k}e^{-\lambda}}{k!} = \frac{\lambda^{k}e^{-\lambda}}{k!} = \frac{\lambda^{k}e^{-\lambda}}{k!} = 1.$$

$$P(k) = \frac{\lambda^{k}e^{-\lambda}}{k!} = \frac{\lambda^{k}e^{$$

(5)
a)
$$\frac{6}{10}$$
b) $\frac{2x}{3} = \frac{2}{3}$
c) $\frac{2}{3}x + \frac{1}{3}x = \frac{4}{3}$
d) $\frac{2}{3}x + \frac{1}{3}x + \frac{1}{3}x = \frac{4}{3}$

Ac first noll, 25 -> 5top, <5 -> keep going At second roll, 24 - Stop, <4 -> keep going Below is reasoning. 4) Stop

b) Expectation of payoff is $\frac{6}{3} + \frac{7}{3} \times \frac{7}{4} = \frac{14}{3}$.

c) max (X.Y.2)=/: 23 2: 33 - 63 3: -33 - 33 41 (3) 3 - 23 $S: \left(\frac{5}{5}\right)^3 - \left(\frac{5}{3}\right)^5$ 6: 1-(=) $E(max(X,4.2)) = \frac{119}{24} > \frac{14}{3}$

- Amended game has the higher expected payaff.

price possesson X choice Y emply door 2 Pr (X=2/(21, 2=3) P(2=3|X=2,Y=1) P(X=2|Y=1) 17(2=3177) P(X=21/=1) = 10 $P(2=3) \cdot (=1) = \frac{1}{6} \left(\frac{1}{9} + 0 + \frac{1}{8} \times 8 \right) = \frac{1}{9}$ Ly If you don't change

: You should choose another,

 $\begin{array}{lll}
\text{M. M. M. an of } & (x-y) &$

-

•

proh of frompy Ersangle if ocxege/ (1X19)=2 should less than t Mox That means, xct, y-xct,

1

(1)
$$\int_{0}^{1} (xy^{2}) dx dy dy = \int_{0}^{1} (1-a^{2})$$

(1) $\int_{0}^{1} (xy^{2}) dx dy dy = \int_{0}^{1} (1-a^{2})$

(1) $\int_{0}^{1} (xy^{2}) dx dy dy = \int_{0}^{1} (1-a^{2})$

(3) a)
$$|X = a| = \int_{0}^{a} (10xy^{2} dy dx) = \frac{3}{3} (10xy^{2} dy dx) = \frac{1}{3} (5a^{2} - 2a^{2})$$

$$|X = \frac{1}{3} (10xy^{2} dy dx) = \frac{1}{3} (5a^{2} - 2a^{2})$$

$$|X = \frac{1}{3} (10xy^{2} dy dx) = \frac{1}{3} (15a^{2} - 2a^{2})$$

$$|X = \frac{1}{3} (10xy^{2} dy dx) = \frac{1}{3} (15a^{2} - 2a^{2})$$

$$|X = \frac{1}{3} (10xy^{2} dy dx) = \frac{1}{3} (15a^{2} - 2a^{2})$$

$$|X = \frac{1}{3} (10xy^{2} dy dx) = \frac{1}{3} (15a^{2} - 2a^{2})$$

$$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$$

(3) b)
$$P(Y \in a) = \begin{cases} a & y \\ 0 & x \\$$

$$= \left(\begin{array}{c} \pm (X | Y = y) \\ \pm (X | Y = y) \end{array} \right) = \frac{2y}{3y}$$

$$E(Y|X=Y)$$

$$= \begin{cases} 1 & f(X,Y) \\ y & f(Y) \end{cases}$$

$$= \begin{cases} 1 & -X \\ 1 & -X \end{cases}$$

$$= \frac{3}{4} \frac{1-X^{3}}{1-X^{3}}$$

 $\begin{array}{ll}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(X-c\right)^{2}\right) \\
&= \left(\left(\begin{array}{c}
\left(X-c\right)^{2}\right) \\
&= \left(\left(\begin{array}{c}
\left(X-c\right)^{2}\right) \\
&= \left(\begin{array}{c}
\left(X-c\right)^{2} \\
&= \left(\begin{array}{c}
\left(X-c\right)^{2} \\
&= \left(\begin{array}{c}
\left(X-c\right)^{2} \\
&= \left(\begin{array}{c}
\left(X-c\right)^{2} \\
&= \left(\begin{array}{c}
X-c\right)^{2} \\
&= \left(\begin{array}{c}
X-c\right) \\
&= \left(\begin{array}{c}
X-c\right)$

in Coelly

.

 $c d e^{-k x^2}$ o fixi dx = c) o te - kixi dx TRE E - EX EXY= Fix e d S-Cardord: (1) \(\alpha \times \tau \) \(\alpha \times \times \times \(\alpha \times \t $\frac{1}{2k^2} = 1 \qquad : \qquad c = 2k^2$ $(2) E(X) = \int_{a}^{a} c x^{2} e^{-k^{2}X^{2}} dx = \sqrt{R}$ $E(x') = \int_{0}^{\infty} Cx^{3}e^{-kx'}dx = \frac{1}{k^{2}} \left(\frac{\text{Eniolog}}{c} \right)$ 1 Var (x) 2 ((- 1/4) 1/2

Discrete am: 3x + 1x + -2x = 1 - 1 = 0The a far game.

.

.

(00 CM) 99 Jn.M draw, 10 emes toss
Given 10 heads -> unfur com $\frac{1}{100} \times 1 = 91\%$ $\frac{99}{100} \left(\frac{1}{5}\right)^{10} + \frac{1}{100} \times 1$

Dy (ACRCCCD) =?

PV (ACRCCCD) =?

Soly = 50.48 Jero = 24

expectation: Ly - 27 Co No

1f 100 cords: Same

911/ 97/L 1 309/ 47/1 he) 2 E(9N2)= 2+ 4+8+...=1 (16m) = 4 + 8 + 78 + ··· = 1