2025.08.25 Комплекс «GPS Avatar» Евгений Гладышев

Предисловие от автора

Раньше, после изобретения транзисторов и компьютеров, но ДО эпохи нейросетей, мир делился на две, почти независимых друг от друга части:

- 1. Электроника магнитофоны, телевизоры, радиоприемники и так далее, работающие по простейшей, один раз заложенной логике;
- 2. Компьютеры устройства, в которых «за экраном» жила магия результат работы программ, а в дальнейшем интернет, музыка, картинки но все это за «стеклом экрана», в «потустороннем мире».

Конечно, существовали промышленные решения, когда компьютер «управлял» специализированным оборудованием — но их разрабатывали целые институты, под огромные бюджеты и многочисленные штаты разработчиков. Да и по структуре это была по сути та же простая логика, но с «современным» добавлением «новшества» в виде компьютеров, часто просто в виде «красивой картинки» для инвесторов.

Все это было очень далеко от обычных людей, которые хотели разговаривать с обычными домашними вещами — холодильником, пылесосом, чайником — но видели это только в фантастических фильмах про будущее.

И вот будущее наступило! И имя ему – «Интернет вещей», или «IoT»!

В чем суть в двух словах?

Это предельно простая технология, наделяющая любую вещь, имеющую отношение к электричеству — мощью Искуственного Интеллекта! Иными словами, это «мостик» между миром обычных, реальных вещей и «магией», находящейся «по ту сторону экрана» компьютеров.

При этом «разработчику» нужно уметь в основном только одно — грамотно писать промпты для нейросети. Все!)

Конечно, вещи сами себя не соберут и не спаяют, но объем работ и обучения, нужный для этого — сократился по отношению к прошлому веку — в тысячи, даже может быть, в миллионы раз!

И именно это я и хочу показать моим проектом, в действии!

Описание проекта - «прототип MVP Программно-Аппаратного Комплекса для путешественников», который рассказывает при помощи видео с девушкой-ИИ аватаром, какие интересные объекты находится именно сейчас территориально рядом с вами.

1. Описание проекта

1.1. Цель проекта:

Показать в действии, насколько просто создать «умное» устройство — например в данном случае - небольшую коробочку с кнопкой, которая определяет, где мы находимся, и отправляет нам на смартфон в Телеграм видео с ИИ-аватаром, который рассказывает от интересных объектах рядом с нами. Причем, если мы будем перемещаться, скажем, на машине, то естественно «описания» будут каждый раз разными, что будет интересным для путешественников.

Суть такова:

- 1. Дешевая маленькая микросхема собирает данные любых датчиков координат, температуры, давления, голос с микрофона все что угодно, и отправляет это в нейросеть.
- 2. Нейросеть обрабатывает данные на основании **промптов**, при необходимости задействуя самые разные вычислительные мощности от картографии до обработки звука, прогнозов погоды, и так далее и возвращает результат на «исполнительное устройство».
- 3. «Исполнительное устройство» выполняет то, что указано нейросетью воспроизводит звук (ответ голосом), включает/выключает что либо, показывает что-то на экране, приводит в движение электромоторы и так далее.

Итак, в рамках этого проекта мы создадим аппаратно-программный комплекс, который при нажатии кнопки на небольшом устройстве, определяет при помощи сигналов с космических спутников геолокации GPS наше местонахождение, отправляет его в ИИ (Яндекс GPT), который ищет в своем картографическом сервисе, какие интересные объекты находятся рядом с нами, формирует короткий текст с описанием этих объектов, озвучивает этот текст и создает видео, в котором девушка — цифровой аватар, рассказывает нам об этих объектах, и отправляет это видео в мессенджере Телеграм в группу путешественников, и его можно просмотреть на любом смартфоне.

1.2. Используемые технологии:

- Микроконтроллер ESP32 с платой разработчика (прототипирование)
- GPS модуль Neo-6M (определение координат)
- Python / C++ (язык не имеет значения, нейросеть пишет код на любом языке, совместимом с вашим процессором)
- Make nocode (среда интеграции)
- Wi-Fi (взаимодействие устройства с Интернет)
- Webhook (передача данных для Make от микроконтроллера)
- ИИ Яндекс GPT (обработка запросов по API, поиск интересных локаций)
- НеуGen API (озвучка текста ответа и синхронная генерация видеоаватаров)
- Telegram bot (как консоль для просмотра видео)

1.3 Среда для разворачивания:

Среда разработки Arduino IDE – простой и мощный современный комплекс для работы с различными микропроцессорными устройствами. Имеет огромное коммьюнити и множество библиотек;

Среда интеграции «Маке» – объединяет Webhook, возможность API вызовов ко множеству сервисов и всю внутреннюю логику;

2. Основные функции комплекса в целом:

2.1.1. При запросе (нажатии кнопки) – происходит определение текущего местонахождения, формирование и отправка в группу Телеграм краткого видео-рассказа с описанием расположенных рядом достопримечательностей:

2.2. Ключевые технические детали

2.2.1. Архитектура:

2.2.1.1. Аппаратная часть:

- 1. Аппаратный модуль для приема сигналов спутников GPS Neo-6M;
- 2. Аппаратный модуль микроконтроллер на основе процессора ESP32 (Wemos D1R32) с встроенным Wi-Fi, оперативной и постоянной памятью для хранения программы;
- 3. Набор для беспаечной сборки прототипов;

Все это продается на Алиэкспресс и в местных магазинах электроники.

2.2.1.2. Программная часть:

Аккаунт на платформе «Маке» – интегратор логики; Аккаунт на платформе «Яндекс» – консоль для управления АРІ, биллинг, настройки прав доступа к ИИ Яндекс GPT;

2.2.2. Структура логики

2.2.2.1. Структура аппаратной логики:

- 1. Постоянное отслеживание географических координат;
- 2. При запросе (нажатии кнопки) передача факта запроса и координат через Webhook в Маке через Wi-Fi;

Консоль отладки микропроцессорной части:

```
## Description Fig. 1 | September | Septe
```

2.2.2.2. Структура программной логики:

- 1. Ожидание запроса модулем Make Webhook;
- 2. Передача в Яндекс GPT запроса через API «расскажи, что находится рядом с координатами «Х» и «Y», кратко, без лишних слов и приветствий, не указывай сами координаты в ответе»;
- 3. После получения ответа от Яндекс GPT, ответ распарсивается на значения полей модулем JSON, извлекается текст ответа;
- 4. В Телеграм-бот передается текст ответа от Яндекс GPT, для контроля, что нейросеть ответила. Этот модуль можно убрать, он скорее для отладки.
- 5. Текст ответа передается <u>через API</u> на платформу HeyGen для формирования аудио и видео с заранее заданными параметрами внешний вид ИИ-девушки аватара, голос, интонации и другие параметры.
- 6. После этого ждем, когда видео будет сформировано, и когда получим ответ «completed» тогда передаем Телеграм-боту HTTP-ссылку на видео и идентификатор группы, в соответствии с условиями обработки Телеграм-ботами файлов мультимедиа. Бот скачивает видео-ответ, и помещает его в указанную группу, и его можно сразу посмотреть на любом смартфоне.

Важно!

При выполнении всего проекта, НЕ ИСПОЛЬЗОВАЛИСЬ иностранные ресурсы, требующие VPN или других средств обхода блокировок. Оплата биллинга Яндекс GPT производилась Российской картой.

3. Выводы:

Пользуясь тем же самым механизмом «под капотом» – очень легко создать, к примеру «умный холодильник» – который просто разговаривает с вами голосом, знает что в него положили, а что достали, помнит ваши предпочтения, может посоветовать рецепт, может предложить что можно сделать из того, что в нем лежит, или посчитает ваши калории:)

И так далее, от домашних устройств – и до автомобильной промышленности, любое устройство, все что угодно, ограничено только вашей фантазией!

И создавать такие прототипы можно прямо дома, за считанные часы!

Все это стало возможно благодаря появлению нейросетей и новой специальности – промпт-инжинер!

4. Примеры применения IoT, которые можно сделать уже сегодня:

Многое уже существует, но это можно сделать по новому, в тысячи раз сокращая издержки и оптимизируя процессы!

- **1. Умный дом с предиктивной адаптацией:** IoT-датчики в доме собирают данные о привычках жильцов (освещение, температура, движение), а мощный ИИ анализирует их для автоматической оптимизации энергопотребления, создания персонализированных сценариев (например, предугадывание возвращения домой и подготовка ужина) и предотвращения аварий, как утечки воды.
- 2. Персонализированный мониторинг здоровья в быту: Носимые IoTустройства (браслеты, кольца) в реальном времени отслеживают биометрические данные, а ИИ прогнозирует потенциальные проблемы со здоровьем, предлагая рекомендации по питанию или вызывая помощь, интегрируясь с домашними системами для напоминаний о лекарствах.
- 3. **Автоматизированное сельское хозяйство**: IoT-сенсоры в почве и на растениях мониторят влажность, питательные вещества и вредителей, а ИИ на основе этих данных управляет дронами для точного полива или опрыскивания, предсказывая урожайность и минимизируя потери от погодных факторов.
- **4. Умные города с динамическим управлением трафиком:** IoT-камеры и датчики на улицах фиксируют поток транспорта и пешеходов, ИИ анализирует

данные для реального времени корректировки светофоров, предотвращения пробок и оптимизации общественного транспорта, включая предиктивное распределение электросамокатов.

- **5. Автономный общественный транспорт:** IoT в автобусах и поездах собирает данные о пассажиропотоке и состоянии транспортных средств, ИИ прогнозирует загруженность маршрутов, автоматически корректирует расписание и обеспечивает безопасность через распознавание аномалий, как усталость водителя.
- **6. Предиктивное обслуживание в логистике:** IoT-датчики на грузовиках и контейнерах отслеживают вибрации, температуру и местоположение, ИИ предсказывает поломки, оптимизирует маршруты доставки для снижения выбросов и интегрируется с складскими системами для автоматической сортировки грузов.
- **7. Энергетические сети с самооптимизацией:** IoT в солнечных панелях и ветряках мониторит производство энергии, ИИ анализирует погодные данные и потребление, балансируя нагрузку в сети, предсказывая пики спроса и интегрируя с домашними аккумуляторами для хранения излишков.
- **8. Роботизированное производство:** На заводах IoT-датчики на конвейерах и роботах фиксируют производительность и износ, ИИ использует эти данные для предиктивного ремонта, оптимизации процессов сборки и адаптации под изменения в заказах, минимизируя простои.
- **9. Мониторинг окружающей среды в промышленности**: IoT-сенсоры в фабриках отслеживают выбросы, шум и качество воздуха, ИИ прогнозирует экологические риски, автоматически регулирует оборудование для соблюдения норм и генерирует отчеты для устойчивого развития.
- 10. Автоматизированная тяжелая промышленность: В шахтах или нефтяных платформах IoT-датчики на оборудовании (буровые установки, конвейеры) собирают данные о вибрациях и температурах, ИИ предсказывает аварии, управляет автономными дронами для инспекций и оптимизирует добычу ресурсов для повышения безопасности и эффективности.