Personal knowledge library

Mikael B. Kiste

12. mai 2017

Innhold

Phy		2
1.1	Constant translational acceleration in a straight line	2
1.2	Moores law	2
1.3	Escape velocity	2
1.4	Relativity	2
	1.4.1 Photons	2
Mathematics		
2.1	Complex numbers	3

Physics 1

1.1 Constant translational acceleration in a straight line

$$v(t) = \int a \, \mathrm{d}t = at + v_0 \tag{1}$$

$$s(t) = \int v \, dt = \frac{1}{2}at^2 + v_0t + s_0 \tag{2}$$

(3)

1.2 Moores law

The observation that the number of transistors in a dense integrated circuit doubles approximately every two years

1.3 Escape velocity

$$-E_k = E_p \tag{4}$$

$$-\frac{1}{2}mv^2 = \int_{r_0}^{\infty} -G\frac{Mm}{r^2} \,\mathrm{d}r \tag{5}$$

$$-\frac{1}{2}mv^2 = G\frac{Mm}{r}\bigg|_{r_0}^{\infty} \tag{6}$$

$$-\frac{1}{2}mv^2 = -G\frac{Mm}{r_0} \tag{7}$$

$$v = \sqrt{2\frac{M}{r_0}} \tag{8}$$

1.4 Relativity

$$E^2 = (m_0 c^2)^2 + (pc)^2 (9)$$

$$E^{2} = (m_{0}c^{2})^{2} + (pc)^{2}$$

$$\gamma = \frac{1}{\sqrt{1 - v^{2}/c^{2}}}$$
(9)

1.4.1 Photons

$$m_0 = 0 (11)$$

$$E = pc = h\nu \tag{12}$$

2 Mathematics

2.1 Complex numbers

$$\mathbb{C}\bar{\mathbb{C}} = (a+ib)(a-ib) = a^2 + b^2 = \left(\sqrt{a^2 + b^2}\right)^2 = |\mathbb{C}|^2$$
(13)