MÉTODOS NUMÉRICOS

INTERPOLAÇÃO MÉTODO DE NEWTON

INTERPOLAÇÃO: MÉTODO DE NEWTON

Como dito nos Métodos de Lagrange e por sistemas lineares, interpolar uma função f(x) consiste em aproximar essa função por uma outra função P(x), escolhida entre uma classe de funções definida a priori e que satisfaça algumas propriedades. A função P(x) é então usada em substituição à função P(x).

As formas polinomiais vistas até agora não são muito utilizadas nos problemas reais onde temos n pontos observados com n grande e variável. Isso porque no método por sistemas lineares, dependendo da quantidade de pontos utilizados, o sistema pode ficar muito grande, como um sistema 100 x 100, por exemplo. E o método de Lagrange tem a desvantagem de ter um custo computacional alto se quiséssemos aumentar os pontos de interpolação. Ou seja, no método de Lagrande, se você aumenta 1 ponto a mais nos n pontos existentes, passando a ter n + 1 pontos, teríamos que montar o polinômio do zero, sem aproveitar o que já foi construído para os n pontos.

Já o método de Newton é um método que não necessita resolver sistemas lineares e tem a vantagem sobre o método de Lagrange quando aumentamos os nós (pontos) de interpolação. Teremos somente que adicionar um termo ao polinômio obtido anteriormente.

Outra vantagem da forma polinomial de Newton na interpolação polinomial, é que com esta forma é possível deduzir facilmente o erro da interpolação polinomial.

MÉTODO DE NEWTON

O polinômio de Newton que interpolar f(x) nos (n + 1) pontos distintos $x_0, x_1, x_2, x_3, \dots, x_n$ é definido por:

$$P_2(x) = d_0 + (x - x_0)d_1 + (x - x_0)(x - x_1)d_2 + (x - x_0)(x - x_1)(x - x_2)d_3 + \dots + (x - x_0)(x - x_1)(x - x_2)\dots + (x - x_0)(x - x_1)d_n$$

Chamamos o vetor $(d_0, d_1, d_2, ..., d_n)$ de *operador diferenças divididas* (ODD) pois os coeficientes d_i , i = 0, 1, 2,...,n, são obtidos por uma razão entre diferenças. Estes operadores são assim definidos:

$$d_0 = f[x_0] = f(x_0)$$
 (ordem 0)

$$d_1 = f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 (ordem 1)

$$d_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$
 (ordem 2)

$$d_3 = f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$
 (ordem 3)

$$d_n = f[x_0, x_1, x_2, x_3, \dots, x_n] = \frac{f[x_1, x_2, x_3, \dots, x_n] - f[x_0, x_1, x_2, \dots, x_{n-1}]}{x_n - x_0}$$
 (ordem n)

Assim, utilizando o Teorema 1, visto na apostila de **interpolação pelo método de sistemas lineares**, onde diz que o grau do polinômio interpolador é um a menos do que o número de pontos tabelados, para um polinômio de grau 4, por exemplo, temos que calcular até a diferença dividida d_4 . Um polinômio de grau 10, temos que calcular até d_{10} , e assim sucessivamente.

Enunciaremos novamente o Teorema 1.

TEOREMA 1- Existe um único polinômio $P_n(x)$ de **grau menor ou igual** a n tal que $P_n(x_k) = f(x_k)$, para $k = 0, 1, 2 \dots$, n, desde que $x_i \neq x_k$, $j \neq k$.

Esse teorema afirma a existência do polinômio interpolador e sua unicidade. Além disso ele informa o grau do polinômio:

• Se temos (n+1) pontos distintos $(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), \dots, (x_n, f(x_n))$ o grau do polinômio será de **grau n**. Por exemplo, se temos 5 pontos distintos, o grau será no máximo 4, um a menos do que a quantidade de pontos.

TABELA DE DIFERENÇAS DIVIDIDAS

O desenvolvimento das expressões dos d_i torna-se cada vez mais complexo. Assim, é comum apresentar as diferenças divididas em um a tabela, conforme abaixo. Os valores de di, i = 1, 2, 3,...n estão na diagonal hachurada.

Dizemos que $f[x_0, x_1, x_2, ..., x_k]$ é a diferença dividida de ordem k da função f(x) sobre os k+1 pontos $x_0, x_1, x_2, ..., x_k$.

Assim, dada uma função f(x) e conhecidos os valores que f(x) assume nos pontos distintos $x_0, x_1, x_2, ..., x_k$, podemos construir a seguinte tabela de diferenças divididas.

\mathbf{X}_0	$f[\mathbf{x}_0] = d_0$			Ordem 2		Ordem n
	0 - 0 -					
		$f[\mathbf{x}_0, \mathbf{x}_1] = \mathbf{d}_1$				
X ₁ 3	$f[\mathbf{x}_1]$		$f[\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2] = \mathbf{d}_2$			
		$f[\mathbf{x}_1, \mathbf{x}_2]$		$f[x_0, x_1, x_2, x_3] = d_3$	•	
X ₂ 3	$f[\mathbf{x}_2]$		$f[\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]$		٠	
		$f[\mathbf{x}_2, \mathbf{x}_3]$		$f[\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4]$	•	
X ₃	$f[\mathbf{x}_3]$		$f[\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4]$	•	•	$f[x_0, x_1, x_2, x_3,, x_n] = d_n$
		$f[\mathbf{x}_3, \mathbf{x}_4]$	•	•	•	
X 4	$f[\mathbf{x}_4]$		•	•	•	
•	•	•	•	$f[\mathbf{X}_{n-3}, \mathbf{X}_{n-2}, \mathbf{X}_{n-1}, \mathbf{X}_n]$		
•	•	•	$f[\mathbf{X}_{n-2}, \mathbf{X}_{n-1}, \mathbf{X}_n]$			
	•	$f[\mathbf{X}_{n-1}, \mathbf{X}_n]$				
\mathbf{X}_n	$f[\mathbf{x}_n]$					

Exemplo - Usando a forma de Newton, encontrar o polinômio P(x) que interpola f(x) nos pontos dados.

X	-1	0	2
f(x)	4	1	-1

- Solução-

1º PASSO

• **Grau do polinômio** - Temos 3 pontos conhecidos: (-1, 4), (0,1) e (2,-1). Logo, pelo Teorema 1 (ver apostila com o Método por sistemas lineares), o grau do polinômio é 2. Assim, o polinômio é da forma

$$P_2(x) = d_0 + (x - x_0).d_1 + (x - x_0)(x - x_1).d_2$$

 ${\bf 2^o\,PASSO}$ — Encontrar as diferenças divididas $\,d_0^{}$, $\,d_1^{}\,\,e\,\,d_2^{}\,$. Para isso, vamos montar a tabela.

x	Ordem 0	Ordem 1	Ordem 2
-1	$f[\mathbf{x}_0] = d_0$		
		$f[\mathbf{x}_0, \mathbf{x}_1] = \mathbf{d}_1$	
0	$f[\mathbf{x}_1]$		$f[\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2] = \mathbf{d}_2$
		$f[\mathbf{x}_1, \mathbf{x}_2]$	
2	$f[\mathbf{x}_2]$		

Calculando as diferenças divididas, temos:

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1 - 4}{0 - (-1)} = -3$$

$$f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{-1 - 1}{2 - 0} = -1$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{-1 - (-3)}{2 - (-1)} = \frac{2}{3}$$

x	Ordem 0	Ordem 1	Ordem 2
-1	4		
	_	-3	
0	1		2/3
	_	4	
2	-1		

3º PASSO - Montar o polinômio

$$P_2(x) = d_0 + (x - x_0).d_1 + (x - x_0)(x - x_1).d_2$$

$$P_2(x) = 4 + (x - (-1)) \cdot (-3) + (x - (-1))(x - 0) \cdot \frac{2}{3}$$

$$P_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

Como dito no início, uma das vantagens do método de Newton é a possibilidade de construir um novo polinômio acrescentando novos pontos aos pontos já conhecidos, mas sem precisar voltar à estaca zero. Por exemplo, vamos acrescentar o ponto $(x_3, f(x_3))$. O polinômio $P_3(x)$ interpolador de f nos nós x_0, x_1, x_2, x_3 é definido por

$$P_3(x) = d_0 + (x - x_0).d_1 + (x - x_0)(x - x_1).d_2 + (x - x_0)(x - x_1).(x - x_2).d_3$$

Observe que $d_0 + (x - x_0) \cdot d_1 + (x - x_0)(x - x_1) d_2$ é exatamente o polinômio de grau 2, ou seja, $P_2(x)$. Então, ao acrescentar mais um ponto aos dados tabelados, observe que precisamos apenas montar o termo $(x - x_0)(x - x_1)(x - x_1)d_3$. Assim,

$$P_3(x) = d_0 + (x - x_0).d_1 + (x - x_0)(x - x_1)d_2 + (x - x_0)(x - x_1)(x - x_1)d_3$$

$$P_3(x) = P_2(x) + (x - x_0)(x - x_1)(x - x_1)d_3$$

Precisamos então só computar $f[x_0, x_1, x_2, x_3] = d_3$, isso significa construir na tabela triangular toda a linha associada a x_3 .

EXEMPLO 2 – A velocidade do som na água varia com a temperatura. Usando os valores da tabela abaixo, determinar o valor aproximado da velocidade do som na água a 100°C.

Temperatura (°C)	Velocidade (m/s)
93,3	1548
98,9	1544
104,4	1538
110,0	1532

A tabela das diferenças dividas a ser montada está abaixo.

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3
93,3	$f[\mathbf{x}_0]$			
		$f[\mathbf{x}_0,\mathbf{x}_1]$	_	
98,9	$f[\mathbf{x}_1]$		$f[\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2] $	
		$f[x_1, x_2]$		$f[\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]$
104,4	$f[\mathbf{x}_2]$		$f[x_1, x_2, x_3]$	
		$f[x_2, x_3]$		
110,0	$f[\mathbf{x}_3]$			

- Solução-

1º PASSO - Grau do polinômio - Temos 4 pontos conhecidos. Pelo Teorema 1, o grau do polinômio é 3. Assim, o polinômio é da forma

$$P_3(x) = d_0 + (x - x_0).d_1 + (x - x_0)(x - x_1).d_2 + (x - x_0)(x - x_1).(x - x_2).d_3$$

2º PASSO – Encontrar as diferenças divididas d_0 , d_1 , d_2 e d_3 . Para isso, vamos montar a tabela.

$$f[\mathbf{x}_0, \mathbf{x}_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1544 - 1548}{98, 9 - 93, 3} = -0,71429$$

$$f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{1538 - 1544}{104, 4 - 98, 9} = -1,09091$$

$$f[x_2, x_3] = \frac{f(x_3) - f(x_2)}{x_3 - x_2} = \frac{1532 - 1538}{110 - 104, 4} = -1,07143$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{-1,09091 - (-0,71429)}{104, 4 - 93, 3} = -0,03393$$

$$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = \frac{-1,07143 - (-1,09091)}{110 - 98, 9} = 0,00176$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{0,00176 - (-0,03393)}{110 - 93,3} = 0,00214$$

Montando a tabela com as diferenças divididas, temos:

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
93,3	$d_0 = 1548$			
		$d_1 = -0.71429$		
98,9	1544		$d_2 = -0.03393$	
		-1,09091		$d_3 = 0,00214$
104,4	1538		0,00176	
		-1,07143		
110,0	1532			

3º PASSO - Montar o polinômio

$$P_3(x) = d_0 + (x - x_0).d_1 + (x - x_0)(x - x_1).d_2 + (x - x_0)(x - x_1).(x - x_2).d_3$$

$$P_3(x) = 1548 + (x - 93,3).(-0,71429) + (x - 93,3).(x - 98,9)(-0,03393) + (x - 93,3).(x - 98,9).(x - 104,4).(0,00214)$$

$$P_3(x) = 0,00214 x^3 - 0,066863 x^2 + 68,494 x - 759,98$$

Logo, este é o polinômio de grau 3 que interpola os pontos tabelados.

Desejamos saber a velocidade do som na água com temperatura de 100 °C. Basta substituir este valor no polinômio de Newton.

$$P_3(100) = 0,00214(100)^3 - 0,66863(100)^2 + 68,494(100) - 759,98$$

 $P_3(100) = 1543,12 \, m / s$

Portanto, a 100 °C, a velocidade do som na água é de 1543,12 m/s.

EXERCÍCIOS

1- Determina-se empiricamente o alongamento de uma mola em milímetros, em função da carga P kgf que sobre ela atua, obtendo-se:

X	5	10	15
P(x)	49	105	172

Interpolando adequadamente por meio de polinômios de terceiro grau os seguintes alongamentos na mola:

- (a) Encontre o polinômio interpolador utilizando o método de Newton.
- **(b)** Encontre a carga que produzem 12 mm de alongamento.

Respostas: (a)
$$P_2(x) = 4 + 7.9x + .0.22x^2$$

2- Determine uma aproximação para f(0), usando o método de Newton.

X	1	-1	-2
f(x)	0	-3	-4

Resposta: f(0) = -5/3

3- Considere a tabela.

X	-2	-1	1	2
f(x)	0	1	-1	0

- (a) determinar o polinômio de interpolação usando a fórmula Newton (diferenças divididas).
- **(b)** calcular f(0,5).

Resposta: (a)
$$P_3(x) = \frac{1}{3}(x^3 - 4x)$$
 (b) $f(0) = -0.625$

4- Dada a tabela de diferenças divididas abaixo, encontre os valores que estão nos pontos de interrogação.

x_i	f_i	d1	d2	d3	d4
1	800				
		755			
3	2310		-91.25		
		390		?	
5	3090		8.75		?
		425		-0.956637	
7	3940		-7.512821		
		312.307692			
20	8000				

Resposta: d3 = 16,66666 e d4 = -0,927542

5- A resistência de um certo fio de metal, f(x), varia com o diâmetro desse fio x. Foram medidas as resistências de 5 fios diversos diâmetros.

Encontre a resistência do fio, quando o diâmetro for de 2,5 mm. Utilize o método de Newton

X	1,5	2,0	3,5
f(x)	2,5	3,1	7,0

Resposta: f(2,5) = 4,05

6- Para um tanque de água, são fornecidos valores de temperatura, T, em função da profundidade, P, conforme a tabela a seguir:

P (m)	1,5	2,0	2,5	3,0
T (°C)	52	18	11	10

- (a) Estime um polinômio interpolador que forneça a temperatura, utilizando o método de Newton.
- (b) Qual a temperatura para uma profundidade de 2,2 metros.

Resposta: (a)
$$P_3(x) = 52 - (x - 1, 5).68 + (x - 1, 5)(x - 2).54 - (x - 1, 5)(x - 2).(x - 2, 5).28$$

7- Considere a tabela de diferenças divididas de uma função f(x):

x_i	d0	d1	d2
1	0		
-1	?	3/2	?
-2	-4		

- (a) Complete a tabela.
- (b) Determine uma aproximação para f(0), usando interpolação linear

Resposta: (a) Na ordem das colunas: -3, 1 e 1/6 (b) f(0) = -5/3