

Applied Linear Algebra

MATH363

Dr. McKenzie Gonzaga University

EDITED BY
CAMERON WILLIAMSON

Contents

Linear Algebraic Systems

Vector Spaces and Bases

§2.1 Real Vector Spaces

A vector space is the abstract reformulation of the quintessential properties of n-dimensional Euclidean Space \mathbb{R}^n , which is defined as the set of all real (column) vectors with n entries. The basic laws of vector addition and scalar multiplication in \mathbb{R}

Definition 2.1.1

A vector space is a set of V equipped with two operations:

- Addition: adding any pair of vectors \mathbf{v} , $\mathbf{w} \in V$ produces another vector $\mathbf{v} + \mathbf{w} \in V$;
- Scalar Multiplication: multiplying a vector $\mathbf{v} \in V$ by a scalar $c \in \mathbb{R}$ produces a vector $c\mathbf{v} \in V$

These are subject to the following axioms, valid for all u, v, w $\in V$ and all scalars $c, d \in \mathbb{R}$:

- Commutativity of Addition: v + w = w + v.
- Associativity of Addition: u + (v + w) = (u + v) + w.
- Additive Identity: There is a zero element $0 \in V$ satisfying v + 0 = v = 0 + v.
- Additive Inverse: For each $v \in V$ there is an element $-v \in V$ such that v+(-v)=0=(-v)+v.
- Distributivity: (c+d)v=(cv)+(dv), and c(v+w)=(cv)+(cw).
- Assosiativity of Scalar Multiplication: $c(d\mathbf{v}) = (cd)\mathbf{v}$.

• Unit for Scalar Multiplication: the scalar $1 \in \mathbb{R}$ satisfies 1v=v.

Theorem 2.1.1

Let V be a vector space.

- $0 \times \vec{V} = \vec{0}$
- $\bullet \quad -1\vec{V} = -\vec{V}$
- $c \times \vec{0} = \vec{0}$
- If $c \times \vec{V} = \vec{0}$, then c = 0 or $\vec{V} = \vec{0}$

Here are some examples of vector spaces:

- $\mathbb{R}^n = \left\{ \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix} \middle| r_1, r_2, r_n \in \mathbb{R} \right\}$
- $M_{m \times n} = \text{The } m \text{ by } n \text{ matrices over } \mathbb{R}.$
- \mathbb{P}^n = the polynomials of degree $\leq n$.

Definition 2.1.2

Let V be a vector space over F. $W \leq V$ is a subspace of V if W is a vector space over F under the same operation as V.

An example of definition (2.1.2). Let $V = \mathbb{R}^3 = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$. V is a vector space. If we let $W = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$, then W is a subspace of V.

Theorem 2.1.2

et V be a vector space. Let $W \leq V$. W is a subspace of V if

- $w \neq 0$
- $\forall w_1 w_2 \in W; w_1 + w_2 \in W$
- $\forall c \in F; \vec{W} \in W; c \cdot \vec{W} \in W$

If we were to let $V = \mathbb{R}^3$ for $\begin{pmatrix} a \\ b \end{pmatrix}$. We can determine the following:

- $\{\vec{0}\}$ is a subspace of V.
- $\left\{ \begin{pmatrix} a \\ 0 \\ c \end{pmatrix} \middle| a, c \in \mathbb{R} \right\}$ is a subspace of V.
- Consider the equation $\left\{ \begin{pmatrix} x \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\} = W$ Show that W is a subspace of V.
 - $-\begin{pmatrix} 0\\0\\0 \end{pmatrix} \in W \text{ so } W \neq 0.$
 - $-\begin{pmatrix} x \\ x \\ 0 \end{pmatrix}, \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} \in W. \text{ Then } \begin{pmatrix} x \\ x \\ 0 \end{pmatrix} + \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} x+y \\ x+y \\ 0 \end{pmatrix}$
 - $-\begin{pmatrix} x \\ x \\ 0 \end{pmatrix} \in W$, then $c \times \begin{pmatrix} x \\ x \\ 0 \end{pmatrix} = \begin{pmatrix} cx \\ cx \\ 0 \end{pmatrix} \in W$.
 - Therefore we know that W is a subspace of V with respect to scalar multiplication and addition.
- $W = \left\{ \begin{pmatrix} x \\ y \\ 2x+3y \end{pmatrix} \middle| x, y \in \mathbb{R} \right\}$. W is a subspace of V.

 \mathbb{R}^3 only has 4 kinds of subspaces. \mathbb{R}^3 , $\{\vec{0}\}$, planes passing through the origin and lines that are passing through the origin.

§2.2 Subspaces

Definition 2.2.1

Let I be an interval in \mathbb{R} . Let $\mathbb{F}(I)$ be the vector space of functions $\mathbb{F} = I \to \mathbb{R}$.

- $\mathbb{C}^0(I)$ = the continuous functions from $I \to \mathbb{R}$ is a subspace.
- $\mathbb{P}^n(I)$ = polynomials of degree $\leq n$ restricted to $\mathbb{F}(I)$. This is a subspace of $C^0(I)$.
- $\mathbb{P}^{\infty}(I)$ = all polynomials on I. This is a subspace of $\mathbb{F}(I)$.
- $\mathbb{C}^n(I)$ = the set of functions $f: I \to \mathbb{R}$ such that $f', f''...f^{(n)}$ all exist and are continuous.

- $\mathbb{C}^{\infty}(I)$ = functions from $I \to \mathbb{R}$ such that f', f'', f''' all exist and are smooth functions.
- A(I) = the functions in $\mathbb{C}^{\infty}(I)$ such that all $A \in I$, the power series $f(a) + \frac{f'(a)(x-a)}{1!} + \frac{f''(a)(x-a)^2}{2!} + \dots$ converges for all $x \in I$ sufficiently close to a.

Problem 1. Show that $v = \begin{pmatrix} x \\ y \\ 2x+y \end{pmatrix}$ is a subspace of \mathbb{R}^3 .

- Because $\begin{pmatrix} 0 \\ 0 \\ 2(0)+0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ is in v, v is not empty.
- Let $\vec{v_1} = \begin{pmatrix} x_1 \\ y_1 \\ 2x_1 + y_1 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} x_2 \\ y_2 \\ 2x_2 + y_1 \end{pmatrix} \in V$

$$v_1 + v_2 = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ 2x_1 + y_1 + 2x_2 + y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ 2(x_1 + x_2) + (y_1 + y_2) \end{pmatrix} \in V (2.1)$$

so v is closed with respect to addition.

• Let $r \in \mathbb{R}$ and $\begin{pmatrix} x \\ y \\ 2x+y \end{pmatrix} = \vec{v} \in v$

§2.3 Span and Linear Independence

If we let V be a vector space over \mathbb{R} and let $\vec{v_1}, \ldots, \vec{v_n} \in V$, then we can determine that the

$$span(\{\vec{v_1}, \dots, \vec{v_n}\}) = \{c_1\vec{v_1} + \dots + c_n\vec{v_n}|c_1, \dots, c_n \in \mathbb{R}\}$$
 (2.2)

Proposition 2.3.1

The span of $\{\vec{v_1}, \vec{v_2}\}$ is a subspace of V.

Proof.

$$c_1\vec{v_1} + \dots + c_n\vec{v_n} \tag{2.3}$$

$$k_1 \vec{v_1} + \dots + k_n \vec{v_n} \in span \tag{2.4}$$

(2.5)

If we add together both of the equations above we get

$$(c_1 + k_1)\vec{v_1} + \dots + (c_n + k_n)\vec{v_n} \in span.$$
 (2.6)

$$r(c_1\vec{v_1} + \dots + c_n\vec{v_n}) \tag{2.7}$$

$$= rc_1\vec{v_1} + \dots + rc_n\vec{v_n} \in span \tag{2.8}$$

Problem 2. Let $V \in \mathbb{R}^3$. Also we are going to let

$$\vec{v_1} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, span(\vec{v_1}) = \left\{ c \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \middle| c \in \mathbb{R} \right\}$$
 (2.9)

 $\begin{pmatrix} 1\\2\\0 \end{pmatrix}$ is a vector in 3-space. $c \times \begin{pmatrix} 1\\2\\0 \end{pmatrix}$ expands, contracts, changes direction. This is a line which goes through $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$.

$$c \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \tag{2.10}$$

is in the xy-plane, let's solve for y to find the equation of the line that is drawn by the vector:

$$\begin{pmatrix} c \\ 2c \\ 0 \end{pmatrix} \tag{2.11}$$

$$x = c \tag{2.12}$$

$$y = 2c \tag{2.13}$$

$$\frac{1}{2}y = c \tag{2.14}$$

$$x = c$$

$$y = 2c$$

$$\frac{1}{2}y = c$$

$$\Rightarrow x = \frac{1}{2}y$$

$$\Rightarrow y = 2x$$

$$(2.12)$$

$$(2.13)$$

$$(2.14)$$

$$(2.15)$$

$$(2.16)$$

$$(2.17)$$

(2.17)

Now we are going to let $\vec{v_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Consider the span of $(\{\vec{v_1}, \vec{v_2}\})$. The span of $(\{\vec{v_1}\vec{v_2}\})$ is a plane.

In \mathbb{R}^3 , if $\vec{0} \neq \vec{v} \in \mathbb{R}$, then the span \vec{v} is a line.

Problem 3. Let $v = \mathbb{P}^2$. v is the set of polynomials of degree $\leq 2 \in \mathbb{R}$.

- $span(1, x, x^2) = \mathbb{P}^2$
- $span(4,2x) = \mathbb{P}^1$, which means all polynomials of degree ≤ 1

Definition 2.3.1

Let v be a vector space. $\vec{v_1}, \dots, \vec{v_n}$ are linearly dependant if there exists c_1, \ldots, c_n are not all zero, such that $c_1 \vec{v_1} + \cdots + c_n \vec{v_n} = \vec{0}$, otherwise, $\vec{v_1}, \ldots, \vec{v_n}$ are linearly independent.

If we let $\vec{v_1} = \binom{1}{2}$, $\vec{v_2} = \binom{2}{4}$, we can do a simple test to see if they are linearly independent. We know that $2\vec{v_1} = \vec{v_2}$, which means that $2\vec{v_1} + -1\vec{v_2} = 0$. Because we can make $\vec{v_1} + \vec{v_2}$ by using a simple scalar value, these functions are linearly dependent.

Problem 4. Consider the following three matrices

$$\vec{v_1} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 8 \\ 1 \\ 11 \end{pmatrix}$$
 (2.18)

Are these matrices linearly dependent or independent from each other? The following equation will let us set up a matrix to determine the results:

$$c_1\vec{v_1} + c_2\vec{v_2} + c_3\vec{v_3} = \vec{0} \tag{2.19}$$

We must try to see if there are any c_n values that are not zero to make this true.

$$\begin{pmatrix} 1 & 2 & 8 \\ 2 & -1 & 1 \\ 1 & 3 & 11 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{2.20}$$

$$= \begin{pmatrix} 1 & 2 & 8 & \vdots & 0 \\ 2 & -1 & 1 & \vdots & 0 \\ 1 & 3 & 0 & \vdots & 0 \end{pmatrix} \tag{2.21}$$

By doing some elementary row operations, we can find that in row echelon form, the matrix from equation (2.21) can be written as

$$\begin{pmatrix}
1 & 2 & 8 & \vdots & 0 \\
9 & 1 & 3 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0
\end{pmatrix}$$
(2.22)

And from here we can solve for the different c_n values.

$$1c_1 + 2c_2 + 8c_3 = 0 (2.23)$$

$$c_1 + 3c_3 = 0 (2.24)$$

(2.25)

$$c_3 = -3c_3 (2.26)$$

$$c_1 = -2c_3 (2.27)$$

$$c_3 = c_3$$
 (2.28)

Because we have this relationship where c_1, c_2, c_3 all depend on each other, we can tell that this is linearly independent.

§2.3.1 Linear Independence and Dependence

§2.4 Basis and Dimension

Definition 2.4.1

A basis of a vector space v is a collection of vectors $\vec{v_1}, \ldots, \vec{v_n}$ that 1. span v and 2. are linearly dependent.

Problem 5. If we are looking at \mathbb{R}^2 , with $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ We can tell that this is a basis of \mathbb{R}^2 . We can tell this because the span of v is linearly independent. We can also see this because:

$$a \times e_1 + b \times e_2 = \begin{pmatrix} a \\ b \end{pmatrix} \tag{2.29}$$

Problem 6. Now we are going to look at an example in \mathbb{R}^3 , with $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $e_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. We can figure out that this is a basis by doing the same technique as we did before:

$$c_1\vec{e_1} + c_2\vec{e_2} + c_3\vec{e_3} = 0 (2.30)$$

$$c_1 = c_2 = c_3 = 0 (2.31)$$

Because c_1 , c_2 , and c_3 are all equal to zero, $\vec{e_1}$, $\vec{e_2}$, and $\vec{e_3}$ form a basis.

Theorem 2.4.1

If a vector space v has a basis with n elements, then every basis of v has n elements. We say v has dimension n. We write down v = n

Theorem 2.4.2

If the dimension of v is n, then any collection of n+1 or more vectors must be linearly dependent.

Theorem 2.4.3

Suppose v = n

- 1. Every collection of more than n vectors is linearly dependent.
- 2. No set of fewer than n vectors spans v.
- 3. A set of n vectors is a basis if and only if it spans v.
- 4. A set of n vectors is a basis if and only if it is linearly dependent.

Problem 7. Assume $1, x, x^2$ is a basis for \mathbb{P}^2 . We are going to multiply 1×5 , $x \times 6$, and $x^2 \times 2$.

$$5 + 6x + 2x^2 \tag{2.32}$$

$$c_1 \times 1 + c_2 \times x + c_3 \times x^2 = 0 \tag{2.33}$$

$$dim(\mathbb{P}^2) = 3 \tag{2.34}$$

(2.35)

Theorem 2.4.4

 $\vec{v_1}, \dots, \vec{v_2}$ form a basis of v if and only if for all $\vec{v} \in v$, there exist unique c_1, \dots, c_n such that $\vec{v} = c_1 \vec{v_1} + \dots c_n \vec{v_n}$

Problem 8. Let $v = \mathbb{R}^2$. Let $\vec{v} = \binom{4}{3}$. We know from previous problems that $\binom{1}{0}\binom{0}{1}$ is a basis of \mathbb{R}^2 . We can also figure out what our basis is by trying to figure out what our c_1 and c_2 values should be. Because the matrices we know are a basis consist of 1's and 0's, we can see that

$$4 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}. \tag{2.36}$$

The coordinates of \vec{v} with respect to this basis, are (4,3). Let's consider a different basis. We are now going to look at the basis,

$$\left\{ \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\} \tag{2.37}$$

Now we need to figure out the a and b values for this basis respectively.

$$a \begin{pmatrix} 1 \\ -3 \end{pmatrix} + b \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \tag{2.38}$$

The coordinates of \vec{v} with respect to this basis are (4,3). Let's consider the same problem but with the following basis:

$$\left\{ \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\} \tag{2.40}$$

Now, we are going to do the same thing as before, where we solve for a and b in the following equation

$$a\begin{pmatrix} 1\\ -3 \end{pmatrix} + b\begin{pmatrix} 2\\ -1 \end{pmatrix} = \begin{pmatrix} 4\\ 3 \end{pmatrix} \tag{2.41}$$

We can setup this to be a system of equations that we can turn into a matrix

$$\begin{cases} 1a + 2b = 4 \\ -3a + (-1)b = 3 \end{cases} \rightarrow \begin{bmatrix} 1 & 2 & \vdots & 4 \\ -3 & -1 & \vdots & 3 \end{bmatrix}$$
 (2.42)

And now we can use the basic row operation $R_2 = R_2 + 3R_1$ in order to solve for a and b:

$$\begin{bmatrix} 1 & 2 & \vdots & 4 \\ 0 & 5 & \vdots & 5 \end{bmatrix} \tag{2.43}$$

$$5b = 15 a + 2b = 4 (2.44)$$

$$b = 3 1 + 2 * 3 = 4 (2.45)$$

$$a = -2 \tag{2.46}$$

§2.5 The fundamental Matrix Subspaces (Kernel and Image)

Definition 2.5.1

The image of an $m \times n$ matrix A is the subspace spanned by the columns of A.

Problem 9. Let's consider the following equation.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 (2.47)

When we multiply our the matrix, we see that the span of the columns give us all the possible $\begin{bmatrix} x \\ y \end{bmatrix}$ values. The span of the matrix

$$\begin{bmatrix} 1 \times r_1 & 2 \times r_2 & 3 \times r_3 \\ 4 \times r_1 & 5 \times r_2 & 6 \times r_3 \end{bmatrix}$$
 (2.48)

would be the values $\left[\begin{smallmatrix}1\\4\end{smallmatrix}\right]$, $\left[\begin{smallmatrix}2\\5\end{smallmatrix}\right]$, and $\left[\begin{smallmatrix}3\\6\end{smallmatrix}\right]$

Definition 2.5.2

A space, A, is an $m \times m$ matrix, The kernel of A is

$$A = Ker(A) \tag{2.49}$$

$$= \{\vec{x} | A\vec{x} = \vec{0}\} \tag{2.50}$$

Using definition (2.5.2), if $A = \begin{bmatrix} 1 & 0 \\ 5 & 0 \end{bmatrix}$, then

$$\vec{x_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \vec{x_2} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}. \tag{2.51}$$

Something to keep in mind: If $\vec{x_1}, \vec{x_2} \in Ker(A)$, then $r_1\vec{x_1} + r_2\vec{x_2} \in Ker(A)$. So the kernel of A is a subspace of the domain of the function.

Theorem 2.5.1

Assume $\vec{x_1}$ solves $A\vec{x} = \vec{b}$. Then, $\vec{x_2}$ is another solution to $A\vec{x} = \vec{b}$ if and only if $\vec{x_2} = \vec{x_1} + \vec{z}$, where $z \in Ker(A)$

Proposition 2.5.1

Let A be an $m \times n$ matrix. The following are true:

- 1. $Ker(A) = {\vec{0}}$
- 2. rank(A) = n
- 3. $A\vec{x} = \vec{b}$ has a unique solution for any \vec{b} in the integer of A.
- 4. $A\vec{x} = \vec{b}$ has no free variables.
- 5. A is non-singular.

Definition 2.5.3

Let A be $m \times n$.

$$coimg(A) = img(A^T) (2.52)$$

$$coker(A) = ker(A^{T}) (2.53)$$

(2.54)

The image of A is the span of its collumns. Thus the coimage is the span of its radius. Also the \vec{r} in the cokernel of A are those \vec{r} such that $r \times A = \vec{0}^T$ since

$$(r \cdot A)^T = (\vec{0}^T)^T$$
 (2.55)
 $A^T \cdot r^T = \vec{0}$ (2.56)

$$A^T \cdot r^T = \vec{0} \tag{2.56}$$

Theorem 2.5.2

The Fundamental Theorem of Linear Algebra: Let A be an mxn matrix and let r be its rank. Then

$$dim(coimg(A)) = dim(img(A)) = rank(A) = rank(A^{T}) = r$$
 (2.57)

$$span(A_{rows}) = span(A_{columns})$$
 (2.58)

$$dim(ker(A)) = n - r (2.59)$$

$$dim(coker(A)) = m - r (2.60)$$

Let's take a look at an example using the fundamental theorem of linear algebra. Let

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 1 & -1 & 0 & 2 \\ -1 & 1 & 0 & -2 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$
 (2.61)

Let's do some row operations to get this matrix into row echelon form:

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (2.62)

From this form, we can tell that v_3 and v_4 both depend on v_1 and v_2 . Because there are only two pivot points within A that are filled with values other than 0, rank(A) = 0. We also know that the dimension of the column space is equal to the dimension of the row space. Let's find the dimension of the kernel of A:

$$dim(ker(A)) + rank = n (2.63)$$

$$dim(key(A)) + 2 = 4 \tag{2.64}$$

(2.65)

From here, we know that both y and z are free variables.

$$w + 2x + 3y - z = 0 (2.66)$$

$$-3x - 3y + 3z = 0 (2.67)$$

$$x + y - z = 0 (2.68)$$

$$x = -y + z \tag{2.69}$$

$$w = -2x - 3y + z (2.70)$$

$$= -2(-y+z) - 3y + z (2.71)$$

$$= -y - z \tag{2.72}$$

Now we need to determine the basis for ker(A).

$$\begin{pmatrix} -y - z \\ -y + z \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ -y \\ -y \\ 0 \end{pmatrix} + \begin{pmatrix} -z \\ z \\ 0 \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 (2.73)

Our basis for ker(A) is $\begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

Inner Products and Norms

§3.1 Inner Products

Dot products are a form of inner product.

Let's apply the dot product to the vectors $\langle v_1, v_2, \ldots, v_n \rangle \cdot \langle w_1, w_2, \ldots, w_3 \rangle$ to show that the dot product is an inner product.

$$= v_1 w_1 + v_2 w_2 + \ldots + v_n w_n \tag{3.1}$$

Therefore, $v \times v$ goes to \mathbb{R} . So we know that

$$\vec{v} \cdot \vec{v} = v_1^2 + v_2^2 + \ldots + v_n^2 \tag{3.2}$$

In general, we can assume that $||\vec{v}|| = \sqrt{\vec{v}\vec{v}}$. We should also keep in mind that $\vec{v} \cdot \vec{w} = ||\vec{v}|| ||\vec{w}|| \cos \theta$

Definition 3.1.1

An inner product of V is a function $<,>: v \times v \to \mathbb{R}$ such that

•

$$< c\vec{u} + d\vec{v}, w > = c < \vec{u}, \vec{v} > + d < \vec{v}, \vec{u} >$$
 (3.3)

$$<\vec{u}, c\vec{v} + d\vec{w} = c < \vec{u}, \vec{v} > +d < \vec{u}, \vec{w} >$$
 (3.4)

- $<\vec{v},\vec{w}>=<\vec{w},\vec{v}>$
- $\langle \vec{v}, \vec{v} \rangle >_0$ while $\langle 0, 0 \rangle = \vec{0}$.

A vector space with an inner product is an inner product space.

Definition 3.1.2

If V is an inner product space, then it's magnitude is

$$||\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle} \tag{3.5}$$

Let's take a look at a weighted inner product on \mathbb{R}^3 . We are going to let $r_1, r_2, r_3 > 0$. We can define $\langle \vec{v}, \vec{w} \rangle$ as $r_1v_1w_1 + r_2v_2w_2 + r_3v_3w_3$

Problem 10. Let's define $[a, b] \leq \mathbb{R}$. Consider $\mathbb{C}^0[a, b]$. This is a vector space. Define

$$\langle f(x), g(x) \rangle = \int_{a}^{b} f(x)g(x)dx \tag{3.6}$$

This is an inner product, so we also know that

$$||f|| = \sqrt{\int_a^b (f(x))^2 dx}$$
 (3.7)

This equation is the L^2 norm.

§3.2 Inequalities

Recall that $\vec{v} \cdot \vec{w} = ||\vec{v}|| ||\vec{w}|| \cos \theta$, where θ is the angle between \vec{v} and \vec{w} . Now $-1 \le \cos \theta \le_1$, so we know that

$$||\vec{v} \cdot \vec{w}|| \le ||\vec{v}|| ||\vec{w}|| \tag{3.8}$$

This is the Cauchy-Shuartz inequality.

Theorem 3.2.1

For any inner product space

$$|| < \vec{v}, \vec{w} > || \le ||\vec{v}|| ||\vec{w}||$$
 (3.9)

Definition 3.2.1

If $\vec{v}, \vec{w} \in V$, we say \vec{v} and \vec{w} are orthogonal if $\langle \vec{v}, \vec{w} \rangle = 0$

Problem 11. Let's look at an example of checking orthogonality of two equations $x, x^2 - y \in \mathbb{C}^0[0, 1]$. In order to do this we need to find the L^2 norm of the equations.

$$\left\langle x, x^2 - \frac{1}{2} \right\rangle = \int_0^1 x \left(x^2 - \frac{1}{2} \right) dx$$
$$= \int_0^1 \left(x^3 - \frac{1}{2} x \right) dx$$
$$= \frac{1}{4} x^4 - \frac{1}{4} x^2 \Big|_0^1 = 0.$$

Because the result of the inner product was zero, we know that $x, x^2 - \frac{1}{2}$ are orthogonal in the L^2 norm.

Theorem 3.2.2

The triangle inequality states that if V is an inner product space,

$$|| \langle \vec{v}, \vec{w} \rangle || = ||\vec{v}|| + ||\vec{w}||$$
 (3.10)

Because we know that if we take the dot product of the same vector itself, $\langle a, b, c \rangle \cdot \langle a, b, c \rangle$, we get all of the items squared $\langle a^2, b^2, c^2 \rangle$, and because we know that $||\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$, we get an idea of size. So we can define the unit ball to be

$$\{\vec{v} \in V \middle| ||\vec{v}|| = 1\} \tag{3.11}$$

§3.3 Norms

Equation (3.5) gives us the "size" of \vec{V} .

Definition 3.3.1

A norm on V is a function $||\cdot||:V\to\mathbb{R}$ such that

• $||\vec{v}|| = 0$ if and only if $\vec{v} = 0$

- $||c\vec{v}|| = |c| \cdot ||\vec{v}||$
- $||\vec{v} + \vec{w}|| \le ||\vec{v}|| + ||\vec{w}||$

If $||<\vec{v},\vec{w}>||\leq ||\vec{v}||||\vec{w}||$, then that is a norm. There are other norms to learn about.

Problem 12. Consider $V = \mathbb{R}^n$. We know that the magnitude of \vec{V}_p is

$$\sqrt[p]{|\vec{v_1}|^p + |\vec{v_2}|^p + |\vec{v_3}|^p}. (3.12)$$

So if $v = \mathbb{R}^2$, p = 2 we have

$$||\langle x, y \rangle||_2 = \sqrt{x^2 + y^2}.$$
 (3.13)

But if we were to have p = 3, we would have

$$||\langle x, y \rangle||_3 = \sqrt[3]{x^3 + y^3}$$
 (3.14)

In $||\cdot||_3$, the size is $\sqrt[3]{3^3+4^3} \approx_4 .5$

In the 4 term, $||\cdot||_4$, the unit circle is the (x,y)'s such that $\sqrt[4]{x^4\cdot Y_4}=1$

$$x^4 + y^4 = 1 (3.15)$$

Another norm on \mathbb{R}^n is the super-norm. This is where

$$||\langle x_1, x_2, \dots, x_n \rangle||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$
 (3.16)

Here's a quick example: The super-norm for < 3, 4 > is

$$|| < 3, 4 > ||_{\infty} = 4 \tag{3.17}$$

because the maximum value in the set is 4. Something to keep in mind is || < x, y > || = |x| + |y|.

Theorem 3.3.1

Let $||\cdot||_A$ and $||\cdot||_B$ be two norms on \mathbb{R}^n . Then there exists positive

numbers 0 < c < k such that

$$c \cdot ||\vec{v}||_A < ||\vec{v}||_B < k \cdot ||\vec{v}||_A \tag{3.18}$$

Let's consider $V \in \mathbb{R}^2$. Let's take a look at $||\cdot||_2$ and $||\cdot||_{\infty}$. Where $\vec{V} = \langle v_1, v_2 \rangle$.

$$\frac{1}{\sqrt{2}} \cdot ||\vec{v}||_2 \le ||\vec{v}||_{\infty} < 1 \cdot ||\vec{v}||_2 \tag{3.19}$$

We can also define norms on matrices.

Theorem 3.3.2

If $||\cdot||$ is a norm on \mathbb{R}^2 and A is an $m \times n$ matrix, then

$$||A|| = max\{||A \cdot \vec{u}|| |||\vec{u}|| = 1$$
 (3.20)

These matrix norms satisfy the following:

- 1. $||A \cdot \vec{v}|| \le ||A|| \cdot ||\vec{v}||$
- 2. $||A \cdot B|| \le ||A|| \cdot ||B||$
- 3. $||A^k|| \le ||A||^k$

Let's take a quick look at $||A||_{\infty}$

Definition 3.3.2

The i^{th} absolute row sum of A is the sum of the absolute values of the entries in the i^{th} row.

Theorem 3.3.3

 $||A||_{\infty}$ the maximum absolute row sum.

Here's an example of using the $||A||_{\infty}$ value. Let $A = \binom{-3}{5} \binom{2}{4}$. We can determine that the maximum absolute row sum of A is 8. This is because we can do

$$|-3|+|2|=5 (3.21)$$

$$|5| + |3| = \boxed{8} \tag{3.22}$$

§3.4 Positive Definite Matrices

Consider the following two equations:

$$\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + \ldots + x_n \vec{e_n} \tag{3.23}$$

$$\vec{y} = y_1 \vec{e_1} + y_2 \vec{e_2} + \ldots + v_n \vec{e_n} \tag{3.24}$$

We can analyze this as

$$\langle \vec{x}, \vec{y} \rangle = [x_1, x_2, \dots, x_n] \cdot \begin{bmatrix} k_{11} & \dots & k_{1n} \\ \vdots & \ddots & \vdots \\ k_{n_1} & \dots & k_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots y_n \end{bmatrix}$$
 (3.25)

$$k_{ij} = \langle e_i, e_j \rangle \tag{3.26}$$

$$= \vec{x}^T k \vec{y} \tag{3.27}$$

$$k = k^T (3.28)$$

This means that k is symmetrical across the diagonal.

$$\begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{12} & k_{22} & k_{23} \\ k_{13} & k_{23} & k_{33} \end{bmatrix}$$
(3.29)

Definition 3.4.1

A $n \times n$ matrix A is a symmetrical positive definite matrix if $A = A^T$ and $x^t k < x > 0$.

Theorem 3.4.1

Every inner product on \mathbb{R}^n is given by $\langle x,y \rangle = \vec{x}^T k \vec{y}$ where k is a symmetrical positive definite matrix. So $\langle \vec{x}, \vec{y} \rangle$ is a dot product or a weighted product.

$$\langle \vec{x}, \vec{y} \rangle = \vec{x}^T k \vec{y} \tag{3.30}$$

$$k^T = k (3.31)$$

$$\vec{v}^T k \cdot \vec{v} > 0 \tag{3.32}$$

$$\vec{v} \neq_0 \tag{3.33}$$

Let's take a look at an example for this:

Problem 13. Let $k = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. First we need to check to see if $k^T = k$. By just looking at k, we can see that $k^T = k$. Next we need to do the following calculation to see if $\begin{bmatrix} x \\ y \end{bmatrix}$ is the weighted inner product of the matrix k.

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2x \\ 3x \end{bmatrix}$$
 (3.34)

$$=2x^2 + 2y^2 > 0 (3.35)$$

Therefore we know that

Problem 14. Let's consider the following problem

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \tag{3.37}$$

If we let A be the numerical matrix, we can see that $A^T = A$. Let's simplify the equation from before

$$[x y] \begin{bmatrix} 4x - 2y \\ -2x + 3y \end{bmatrix} = 4x^2 - 2xy - 2xy + 3x^2$$

$$= 4x^2 - 4xy + 3y^2$$
(3.38)

$$=4x^2 - 4xy + 3y^2 (3.39)$$

$$= 4x^{2} - 4xy + 3y^{2}$$

$$(2x - y)^{2} + 2y^{2} > 0 \begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(3.40)$$

Now we can see that this is a positive definite matrix.

If we are given a symmetric matrix, k, the polynomial x^Tkx is a quadratic form of k.

Problem 15. Let's consider $k = \begin{bmatrix} 1 & -3 \\ -3 & 2 \end{bmatrix}$. Let's find the quadratic form of k. First we need to write k like so:

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} x - 3y \\ -3x + 2y \end{bmatrix}$$
 (3.41)

$$= x^3 - 3xy - 3xy + 2y^2 (3.42)$$

$$= x^3 - 6xy + 2y^2 (3.43)$$

(3.44)

Therefore we know that the quadratic form of k is $x^3 - 6xy - 2y^2$.

For a positive definite matrix, $k = k^T$ and $x^T k x > 0$ for all $\vec{x}0$

Theorem 3.4.2

Every inner product in \mathbb{R}^n is given by

$$\langle x, y \rangle = x^T k y \text{ for } x y \in \mathbb{R}^n$$
 (3.45)

Let v be an inner product space and $\vec{v_1}, \ldots, \vec{v_2}$. The gram matrix of v

is

$$K = \begin{bmatrix} \langle v_1, v_2 \rangle & \langle v_1, v_2 \rangle & \dots & \langle v_1, v_n \rangle \\ \langle v_2, v_1 \rangle & \langle v_2, v_2 \rangle & \dots & \langle v_2, v_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v_n, v_1 \rangle & \langle v_n, v_2 \rangle & \dots & \langle v_n, v_n \rangle \end{bmatrix}$$
(3.46)

Definition 3.4.2

A is a matrix that is $n \times n$. A is a positive semidefinite matrix if $A^T = A$ and $\vec{x}^T A \vec{x} \ge 0$

Theorem 3.4.3

All gram matrices are positive semi-definite. They are positive definite if and only if $\vec{v_1}, \dots, \vec{v_n}$ are linearly independent.

Suppose we are in R^m and the inner produt is the dot product. Let $\vec{v_1}, \dots \vec{v_n} \in \mathbb{R}^m$

Let $A = [v_1, v_2, v_3, \dots, v_n]$. Then $K = A^T$. Let A be a gram matrix generated by v_1, \dots, v_n with the dot product.

$$K = A^T A = \begin{bmatrix} \vec{v_1} \\ \vec{v_2} \\ \vdots \\ \vec{v_n} \end{bmatrix} \begin{bmatrix} \vec{v_1} & \vec{v_2} & \dots & \vec{v_n} \end{bmatrix}$$

$$(3.47)$$

$$= \begin{bmatrix} \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle & \dots & \langle v_1, v_n \rangle \\ \langle v_2, v_1 \rangle & \langle v_2, v_2 \rangle & \dots & \langle v_2, v_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v_n, v_1 \rangle & \langle v_n, v_2 \rangle & \dots & \langle v_n, v_n \rangle \end{bmatrix}$$
(3.48)

Proposition 3.4.1

Given an $m \times n$ matrix A. The following are true

- 1. The $m \times n$ matrix $k = A^T A$ is positive definite.
- 2. A has linearly independent columns.

- 3. rank(A) = n
- 4. $Ker(A) = \{0\}$

Theorem 3.4.4

Every inner product on \mathbb{R}^n is given by

$$\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \cdot c\vec{y} \tag{3.49}$$

where C is a symetric, positive definite $n \times n$ matrix.

Let $\vec{v_1}, \dots, \vec{v_n} \in \mathbb{R}^n$. Let $A = [\vec{v_1} : \vec{v_2} : \dots : \vec{v_n}]$. Then $K = A^T C A$ is the gram matrix with respect to the inner product $\vec{v}^T C \vec{w}$.

Theorem 3.4.5

Suppose A is an $m \times n$ matrix with linearly independent collumns. Suppose C is any positive definite $m \times m$ matrix. Then $\vec{v}^T C \vec{w}$

Definition 3.4.3

The hilbert matrix $H = (h_{ij})$ where $h_{ij} = \frac{1}{i+j-1}$

The 3×3 hilbert matrix:

$$\begin{bmatrix}
\frac{1}{1} & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{bmatrix}$$
(3.50)

Problem 16. Make a gram matrix, not in \mathbb{R}^m . Let $V = \mathbb{C}^0[0,1]$. Use the L^2 inner product.

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx.$$
 (3.51)

 $1, x, x^2$ are linearly independent.

$$\langle v_i, v_k \rangle = \int_0^1 x^{i-1} x^{j-1} dx$$

$$= \int_0^1 x^{i+j-2} dx$$

$$= \frac{1}{i+j-1} x^{i+j-1}$$

$$= \frac{1}{i+j-1}$$
(3.52)
$$(3.53)$$

$$(3.54)$$

$$= \int_0^1 x^{i+j-2} dx \tag{3.53}$$

$$=\frac{1}{i+j-1}x^{i+j-1} \tag{3.54}$$

$$=\frac{1}{i+j-1} \tag{3.55}$$

$$\rightarrow \begin{bmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix} .$$
(3.56)

Orthogonality

Mimimization and Least Squares

Equilibrium

Linearity

Eigenvalues and Singular Values

Iteration

Dynamics