Lista de Exercícios 6 de Álgebra Linear Computacional

Prof.: Fabrício Murai e Letícia Pereira Pinto

Informações importantes:

- Data de entrega: até 23:59 do dia 07/05/2019.
- Questões podem ser discutidas entre até três alunos. Nomes dos colegas precisam ser listados. Contudo, a escrita das soluções e submissão deve ser feita individualmente.
- Submissão deve ser feita em formato PDF através do Moodle, mesmo que tenham sido resolvidas a mão e escaneadas.
- Todas as soluções devem ser justificadas.
- 1. Dada a matriz $A = \begin{bmatrix} 3 & 0 & 2 \\ 9 & 1 & 7 \\ 1 & 0 & 1 \end{bmatrix}$ e sua inversa $A^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & -3 \\ -1 & 0 & 3 \end{bmatrix}$, calcule o número de condição de A

com relação a cada uma das normas a seguir. Neste exercício, vamos assumir que uma matriz cujo número de condição é maior que 10^6 é mal condicionada.

- (a) Norma-1. É bem condicionado?
- (b) Norma-infinito. É bem condicionado?
- 2. Considere a função f(x) = 0.5 + 2x e os pontos a seguir:

X	0	1	2	3	4
у	0.523	3.275	4.319	5.511	8.052

Calcule o erro do ajuste, segundo:

- (a) o erro máximo $E_{\infty}(f)$;
- (b) o erro médio $E_1(f)$;
- (c) a raiz do erro médio quadrático $E_2(f)$.
- 3. Utilizando o método dos quadrados mínimos, derive as equações que devem ser satisfeitas para fazer o ajuste das seguintes funções:

(a)
$$f(x) = \frac{1}{2\beta}(e^{\beta x} - e^{-\beta x} - 2)$$

(Corrigida) Dica: A equação final deve ser

$$\frac{1}{2\beta^2} \sum_{i} (e^{\beta x_i} - e^{-\beta x_i} - 2)^2 - \frac{1}{2\beta} \sum_{i} (e^{\beta x_i} - e^{-\beta x_i} - 2) x_i (e^{\beta x_i} + e^{-\beta x_i}) = \frac{1}{\beta} \sum_{i} y_i (e^{\beta x_i} - e^{-\beta x_i} - 2) - \sum_{i} y_i x_i (e^{\beta x_i} + e^{-\beta x_i})$$

1

(b)
$$f(x) = \beta x$$

X	2.0	3.5	4.0	5.1	7.0
у	2.2	2.0	3.0	6.0	5.0

- 4. Considere os pontos a seguir:
 - Mostre o diagrama de dispersão destes pontos (pode ser feito à mão ou no computador).
 - Usando o método dos quadrados mínimos, encontre os parâmetros da regressão linear simples $f(x) = \beta_0 + \beta_1 x$. Atenção: você não pode resolver esta questão usando um método que retorne os coeficientes da regressão.
- 5. Considere a série de pontos a seguir:

x	1	2	3	4	5	6
y	-4.501	83.453	112.953	123.824	170.335	183.008

Suponha que a relação entre x e y seja dada por $y=\beta_1x+\beta_2\ln x+\epsilon$. Obtenha os valores de β_1 e β_2 através do método dos quadrados mínimos. (Dica: a função y pode ser vista como uma regressão linear múltipla em x, onde $x_1=x$ e $x_2=\ln x$.)

6. Deseja-se usar a regressão polinomial $f(x_i) = w_0 + w_1 x_i + w_2 x_i^2 + \ldots + w_p x_i^p$ para estimar a relação entre a metragem (em m^2) de um imóvel e o seu preço em um bairro de Belo Horizonte. As figuras abaixo ilustram (não são uma representação exata) os resultados obtidos para p = 3 e p = 7, respectivamente. Qual das regressões possui o menor desvio? Qual dos valores de p é mais adequado e por quê?

7. LEMBRETE: Não deixe de submeter também a lista "Exercícios Práticos 6 (EP6)" pelo Moodle.