Olimpiada de Matematică

Etapa județeană și a Municipiului București 11 Martie 2006

CLASA A XI-A – SOLUŢII şi BAREM ORIENTATIV

Problema 1. Fie x > 0 un număr real și A o matrice pătrată de ordin 2, care are elemente reale și verifică relația

$$\det(A^2 + xI_2) = 0.$$

Demonstrați că $det(A^2 + A + xI_2) = x$.

Soluție. Din ipoteză obținem $\det(A+i\sqrt{x}I_2)\cdot\det(A-i\sqrt{x}I_2)=0$ de unde, notând cu d determinantul matricei A și cu t urma acestei matrice, rezultă că d = x și t = 0, deci $A^2 + xI_2 = 0_2$(6 puncte)

Astfel, $\det(A^2 + A + xI_2) = \det(A) = x$(1 punct)

Problema 2. Considerăm două numere întregi $n, p \geq 2$ și o matrice pătrată A de ordin n, care are elemente reale și verifică relația $A^{p+1} = A.$

- a) Demonstrați că rang(A) + rang $(I_n A^p) = n$.
- b) Demonstrați că dacă, în plus, p este prim atunci

$$rang(I_n - A) = rang(I_n - A^2) = \dots = rang(I_n - A^{p-1}).$$

Soluţie. a) Din inegalitatea lui Sylvester avem rang(A)+rang $(I_n$ - A^p) $\leq \operatorname{rang}(A(I_n - A^p)) + n = n.$

Pe de altă parte, $\operatorname{rang}(A) + \operatorname{rang}(I_n - A^p) \ge \operatorname{rang}(A^p) + \operatorname{rang}(I_n - A^p)$ A^p) $\geq \operatorname{rang}(A^p + (I_n - A^p)) = n.$ (2 puncte)

b) Folosim observația: dacă $k, m \in \mathbb{N}^*$ și $k \mid m$ atunci rang $(I_n A^k$) $\geq \operatorname{rang}(I_n - A^m)$

Într-adevăr, $I_n - A^m$ se poate scrie ca produs de două matrice, dintre care una este $I_n - A^k$, iar rang $(XY) \leq \operatorname{rang}(X)$ pentru orice matrice X, Y.

Fie acum $k \in \mathbb{N}, 1 \leq k \leq p-1$. Din ipoteză avem $A^{kp+1} = A$ pentru orice $k \in \mathbb{N}$. Observăm apoi că, deoarece p este prim, resturile împărțirii numerelor $p+1, 2p+1, \ldots, kp+1$ la k sunt două câte două distincte. De aceea, unul dintre numerele precedente, fie el t = qp + 1, este divizibil cu k. Astfel, rang $(I_n - A) \ge \text{rang}(I_n - A^k) \ge \text{rang}(I_n - A^k)$

Problema 3. Fie $(x_n)_{n\geq 0}$ un şir de numere reale care verifică relația

$$(x_{n+1} - x_n)(x_{n+1} + x_n + 1) \le 0, \ n \ge 0.$$

- a) Demonstrați că șirul este mărginit.
- b) Este posibil ca șirul să nu fie convergent?

Soluție. a) Din ipoteză avem $x_{n+1}^2 + x_{n+1} \le x_n^2 + x_n$, deci şirul dat de $y_n = x_n^2 + x_n$ este descrescător. (2 puncte)

Cum (y_n) este și mărginit inferior, el este convergent. De aceea, (x_n) este mărginit (în caz contrar șirul (y_n) ar avea un subșir nemărginit).

Problema 4. Spunem că o funcție $f : \mathbb{R} \to \mathbb{R}$ are proprietatea (P) dacă, pentru orice x real,

$$\sup_{t \le x} f(t) = x.$$

- a) Dați un exemplu de funcție care are proprietatea (P) și este discontinuă în fiecare punct real.
- b) Demonstrați că dacă f este continuă și are proprietatea (P) atunci f este funcția identică.

Soluţie. a)

$$f(x) = \begin{cases} x & \operatorname{dacă} x \in \mathbb{Q} \\ x - 1 & \operatorname{dacă} x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

.....(2 puncte)

b) Observăm că $\sup_{t \le x} f(t) = \sup_{y \le t \le x} f(t)$, pentru orice $y \le x$

ûntrucât f este continuă, pentru orice $n \in \mathbb{N}^*$, există $x_n < x$, astfel încât

$$|f(t) - f(x)| < \frac{1}{n},$$

$$\left|\sup_{x_n \le t \le x} f(t) - f(x)\right| \le \frac{1}{n},$$