

جلسه : **سوم** مدرس : **الهام یوسفی**

C++ ibitatiiT

تعریف ثابت تبدیل نوع توابع کتابخانهای

تعريف ثابت

مقادیر متغیرها می توانند در طول اجرا تغییر کنند. اما گاهی لازم است مقادیری داشته باشیم که در طول برنامه تغییر نکنند مانند عدد p در محاسبات ریاضی. در اینصورت ثابت ها بصورت زیر باید تعریف شوند:

```
# define مقدار نام متغیر const نوع ;
```

- در استفاده از پیش پردازنده define عملاً متغیری تعریف نمی شود بلکه فقط یک جای گذاری ساده انجام می شود.
 - در const یک متغیر است که هم آدرس دارد و هم دارای همه ویژگی های متغیر با این تفاوت که ایستا است.

مثال:

```
# define P 3.14

const float Pi = 3.14;
```

تبديل نوع (CASTING)

- وقتی یک نوع متغیر را به نوع دیگر تبدیل کنیم آن را Cast کرده ایم.
 - انواع تبدیل صریح:
 - تبدیل مقدار i به عدد اعشاری (float) i •
 - تبدیل مقدار اعشار f به عدد صحیح (int) f •
- تبدیل مقدار کاراکتر c به کد اسکی (که یک عدد صحیح است) نتبدیل مقدار کاراکتر c
 - عادل معادل عادل: (char) a تبدیل مقدار صحیح a به کاراکتر معادل

مثال:

• یک برنامه ای بنویسید که : (فایل Class3 Casting.cpp •

```
• عدد اعشاری را بصورت ثابت تعریف کرده سپس در خروجی مقدار صحیح ان چاپ شود.
#include <iostream>
using namespace std;
                                                             • سیس دو عدد صحیح دریافت کند و حاصل تقسیم آنها را بصورت اعشار چاپ کند.
#define pi 3.14159
const float p=3.14159;
main()
                                                                                      • عددی دریافت کند کاراکتر معادل آن را نمایش دهد.
    int a,x,y;
                                                                                       • کاراکتری دریافت نماید و کد اسکی آن را چاپ کند.
     char b;
     cout <<"Define Pi = " <<pi <<"\nConstant Pi = " <<p;</pre>
    cout <<"\nChange to int Number = " << (int)p;</pre>
    //p++; //Error
                                                 ییام خطا میدهد زیرا p ثابت است و نمیتوان به آن یکی اضافه کرد.//
     cout << "\n\nEnter x,y : ";
     cin >> x >> y;
     cout \langle \langle x/y \rangle \rangle = \langle \langle x/y \rangle \langle \langle \rangle \rangle (float)x/y;
     cout << "\n\nEnter a number : ";</pre>
     cin >> a;
     cout <<"Character = " <<(char)a;
     cout << "\n\nEnter a character : ";</pre>
     cin >> b:
     cout <<"ASCII code = " <<(int)b;</pre>
```

Define Pi = 3.14159 Constant Pi = 3.14159Change to int Number = 3Enter x,y:7x/y = 3Change to float : 3.5 Enter a number : 97 Character = a Enter a character : A ASCII code = 65

توابع

- دو نوع تابع وجود دارد :
 - توابع كتابخانهاي
- توابع نوشته شده توسط کاربر

🗖 توابع کتابخانهای

- این توابع از پیش ساخته شده هستند.
- برنامه نویس می تواند با فراخوانی توابع کتابخانه ای از آن ها استفاده کند و احتیاجی به پیاده سازی نیست.

فایل سرآیند	توضيح	نام تابع
math.h	جذر x	sqrt(x)
math.h	x به توان p	pow(x,p)
math.h	قدر مطلق X	abs(x)
iomanip	ایجاد i کاراکتر فاصله	setw(i)
iomanip	نمایش عدد اعشار با دقت i (با درنظر گرفتن خود اعشار) در صورت نیاز عدد گرد می شود.	setprecision(i)

مثال

- استفاده از تابع (setpreciosion برای نمایش عدد اعشاری: (فایل Class3_setpreciosion.cpp)
- دقت 0 و 1 در تابع هیچ اعشاری نمایش نمی دهد اما در قسمت صحیح عدد گرد شده نمایش داده می شود.
- در تمام موارد استفاده از تابع، با توجه به قسمت اعشاری عدد، در خروجی عدد گرد شده است. (حتماً اعشار خواهد داشت)

```
#include <iostream>
                                                   • اگر دقت اعشار منفی در نظر گرفته شود، در نمایش اعشار عدد تاثیری نخواهد داشت.
#include <iomanip>
using namespace std;
const float x=1.87654;
main()
    cout <<x;
    cout <<endl<<setprecision(0) <<x;</pre>
                                                                     1.87654
    cout <<endl<<setprecision(1) <<x;</pre>
    cout <<endl<<setprecision(2) <<x;</pre>
    cout <<endl<<setprecision(3) <<x;</pre>
                                                                      .88
    cout <<endl<<setprecision(4) <<x;</pre>
                                                                     1.877
    cout <<endl<<setprecision(5) <<x;</pre>
                                                                     1.8765
    cout <<endl<<setprecision(-1) <<x;</pre>
                                                                     1.87654
    cout <<endl<<setprecision(-2) <<x;</pre>
                                                                     1.87654
```

مثال

• برنامه ای بنویسید که دو عدد از ورودی دریافت کند سپس از توابع کتابخانه ای صفحه قبل استفاده نمایید. (فایل Class3_Function_Lib.cpp)
- بعد از پیام مورد نظر، X به توان y نمایش داده می شود.

x نمایش داده می شود سپس یک فاصله x نمایش داده می شود سپس یک فاصله x کاراکتری ایجاد می شود و بعد از پیام، جذر x نمایش داده می شود.

```
#include <iostream>
                                                                          ٣- مانند دستور قبل است با این تفاوت که دقت اعشار مشخص شده است.
#include <math.h>
#include <iomanip>
                                  ۴- به جای دستور بالا می توان از دو دستور Comment شده استفاده کرد. یک بار از تابع setpreciosion استفاده
using namespace std;
                                                                            کرد و تمام دستورات بعدی اعشار با دقت مورد نظر نمایش داده شود.
main()
                                                                              X ابتدا منفی متغیر X نمایش داده می شود سپس قدر مطلق منفی X
    int x,y;
    cout << "Enter x , y =";
    cin >> x>>y;
    cout \langle \langle Pow(x,y) \rangle \rangle = \langle \langle pow(x,y) \rangle \rangle //
    cout <<"\nSqrt(x) = " << sqrt(x) <<setw(30) <<"Sqrt(y) = " <<sqrt(y);
    cout <<"\nSqrt(x) = " << setprecision(3) <<sqrt(x) <<setw(30) <<"Sqrt(y) = " <<setprecision(3) <<sqrt(y); // /
    /*cout << setprecision(3);</pre>
    cout <<" \setminus nSqrt(x) = " << sqrt(x) << setw(30) << "Sqrt(y) = " << sqrt(y);*/
    cout <<"\n-x = " << -x << " \t" << "\-x\ = " << abs(-x);
```

تمرين

ا برنامه ای بنویسید که عدد صحیح a را دریافت کند و عبارت زیر را با استفاده از توابع محاسبه نماید. (جواب بصورت اعشار با a رقم اعشار)

$$\frac{a^3}{a^2+a+1}$$

۲- برنامه ای بنویسید که دو عدد از ورودی دریافت کرده و حاصلضرب قدرمطلق آنها را در خروجی چاپ کند.

۳- برنامه ای بنویسید که شعاع دایره را دریافت کند سپس مساحت و محیط دایره را با فاصله ۵۰ کاراکتر از هم چاپ نماید. (عدد P بصورت ثابت تعریف شود)

۴- برنامه ای بنویسید که یک کاراکتر دریافت کرده سپس کد اسکی آن را نمایش دهد. همچنین یک عدد دریافت کند و کاراکتر معادل آن را چاپ کند.