```
import numpy as np
import pandas as pd
# Loading the dataset
df = pd.read csv('D:/ibm/datafile 02.csv')
print(df.columns)
df.head()
Index(['Port', 'Traffic in Eleventh Plan (MT) (2011-12)Proj.',
       'Traffic in Eleventh Plan (MT) (2011-12) Ach.',
       'Traffic in Eleventh Plan (MT) (2011-12) %',
       'Total Capacity in Eleventh Plan (MT) (2011-12) Proj.',
       'Total Capacity in Eleventh Plan (MT) (2011-12) Ach.',
       'Total Capacity in Eleventh Plan (MT) (2011-12) %'],
      dtype='object')
            Port Traffic in Eleventh Plan (MT) (2011-12)Proj.
0
         Kolkata
1
          Haldia
                                                            4450
2
        Paradeep
                                                            7640
3
                                                            8220
  Visakhapatnam
          Ennore
                                                            4700
   Traffic in Eleventh Plan (MT) (2011-12) Ach.
0
                                            1223
1
                                            3101
2
                                            5425
3
                                            6742
4
                                            1496
   Traffic in Eleventh Plan (MT) (2011-12) % \
0
                                         9100
1
                                         7000
2
                                         7100
3
                                         8200
4
                                         3200
   Total Capacity in Eleventh Plan (MT) (2011-12) Proj. \
0
1
                                                 6340
2
                                                10640
3
                                                10810
4
                                                 6420
   Total Capacity in Eleventh Plan (MT) (2011-12) Ach. \
0
                                                 1635
1
                                                 5070
2
                                                 7650
3
                                                 7293
4
                                                 3100
```

```
Total Capacity in Eleventh Plan (MT) (2011-12) %
0
                                                   5100
1
                                                   7900
2
                                                   7100
3
                                                   6700
4
                                                   4800
# Preprocessing the dataset
# Renaming the columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-
12) Proj.': 'Traffic_Projected', 'Traffic in Eleventh Plan (MT) (2011-12)
Ach.': 'Traffic_Achieved', 'Total Capacity in Eleventh Plan (MT)
(2011-12) Proj.': 'Total Capacity Projected', 'Total Capacity in
Eleventh Plan (MT) (2011-12) Ach.': 'Total Capacity Achieved'}, inplace
= True)
df
                    Traffic Projected
                                        Traffic Achieved
             Port
0
          Kolkata
                                  1343
                                                     1223
1
           Haldia
                                  4450
                                                     3101
2
         Paradeep
                                  7640
                                                     5425
3
    Visakhapatnam
                                  8220
                                                     6742
4
           Ennore
                                  4700
                                                     1496
5
          Chennai
                                  5750
                                                     5571
6
        Tuticorin
                                  3172
                                                     2810
7
           Cochin
                                  3817
                                                     2010
8
             NMPT
                                  4881
                                                     3294
9
                                  4455
                                                     3900
         Mormugao
10
           Mumbai
                                  7105
                                                     5618
11
              JNPT
                                  6604
                                                     6575
12
           Kandla
                                  8672
                                                     8250
    Traffic in Eleventh Plan (MT) (2011-12) %
Total_Capacity_Projected \
                                           9100
3145
1
                                           7000
6340
                                           7100
10640
3
                                           8200
10810
                                           3200
6420
```

```
8900
6
6398
                                             5300
5475
                                             6800
8
6050
9
                                             8800
6690
10
                                             7900
9191
11
                                            10000
9560
12
                                             9500
12220
Total_Capacity_Achieved Total Capacity in Eleventh Plan (MT) (2011-12) %
0
                         1635
5100
1
                         5070
7900
                         7650
7100
3
                         7293
6700
                         3100
4800
                         7972
11000
                         3334
6
5200
7
                         4098
7400
8
                         5097
8400
                         4190
6200
10
                         4453
4800
                         6400
11
6600
12
                         8691
7100
# Perparing the Calculations:
Traffic Percent =
round((df.Traffic_Achieved/df.Traffic_Projected)*100,2)
Traffic_Percent
```

```
0
      91.06
1
      69.69
2
      71.01
3
      82.02
4
      31.83
5
      96.89
6
      88.59
7
      52.66
8
      67.49
9
      87.54
10
      79.07
11
      99.56
      95.13
12
dtype: float64
Total Percent =
round (df.Total Capacity Achieved/df.Total Capacity Projected)*100,2)
Total Percent
0
       51.99
1
       79.97
2
       71.90
3
       67.47
4
       48.29
5
      110.26
6
       52.11
7
       74.85
8
       84.25
9
       62.63
10
       48.45
       66.95
11
12
       71.12
dtype: float64
# Replacing the existing columns with newly created columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)
%':'Traffic_Percent','Total Capacity in Eleventh Plan (MT) (2011-12)
%':'Total_Percent'}, inplace = True)
df.iloc[:,3:4] = Traffic Percent
df.iloc[:,6:] = Total Percent
df
             Port Traffic_Projected Traffic_Achieved
Traffic_Percent \
          Kolkata
                                 1343
                                                    1223
91.06
           Haldia
                                 4450
                                                    3101
1
69.69
         Paradeep
                                 7640
                                                    5425
71.01
                                 8220
                                                    6742
  Visakhapatnam
```

82.02 4	Ennore	4700	1496	
31.83 5	Chennai	5750	5571	
96.89 6	Tuticorin	3172	2810	
88.59 7	Cochin	3817	2010	
52.66 8	NMPT	4881	3294	
67.49 9	Mormugao	4455	3900	
87.54 10	Mumbai	7105	5618	
79.07 11	JNPT	6604	6575	
99.56 12 95.13	Kandla	8672	8250	
	tal Capacity Projec	cted Total_Capaci	ty Achieved Total	al_Percent
0		3145	1635	51.99
1 2 3 4 5 6 7		6340	5070	79.97
2		9640 9810	7650 7293	71.90 67.47
4		6420	3100	48.29
5	•	7230	7972	110.26
6		6398	3334	52.11
8		5475 6050	4098 5097	74.85 84.25
9				
9		6690	4190	62.63
10	9	9191	4453	48.45
	9			

df.shape

(13, 7)

Checking for null values

df.isnull().sum()

Port	0
Traffic_Projected	0
Traffic_Achieved	0
Traffic_Percent	0
Total_Capacity_Projected	0
Total_Capacity_Achieved	0
Total_Percent	0
dtype: int64	

Summary of Dataset

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 13 entries, 0 to 12 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Port	13 non-null	object
1	Traffic_Projected	13 non-null	int64
2	Traffic_Achieved	13 non-null	int64
3	Traffic_Percent	13 non-null	float64
4	Total_Capacity_Projected	13 non-null	int64
5	Total_Capacity_Achieved	13 non-null	int64
6	Total_Percent	13 non-null	float64
	67 . 64/0\ 64/4\	1 ' ' (4)	

dtypes: float64(2), int64(4), object(1)
memory usage: 856.0+ bytes

df.describe()

Traffic_Projected	Traffic_Achieved	Traffic_Percent	\
13.000000	$\overline{1}3.000000$	$1\overline{3}.000000$	
5446.846154	4308.846154	77.887692	
2133.280019	2212.894855	19.382398	
1343.000000	1223.000000	31.830000	
4450.000000	2810.000000	69.690000	
4881.000000	3900.000000	82.020000	
7105.000000	5618.000000	91.060000	
8672.000000	8250.000000	99.560000	
	13.000000 5446.846154 2133.280019 1343.000000 4450.000000 4881.000000 7105.000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5446.846154 4308.846154 77.887692 2133.280019 2212.894855 19.382398 1343.000000 1223.000000 31.830000 4450.000000 2810.000000 69.690000 4881.000000 3900.000000 82.020000 7105.000000 5618.000000 91.060000

ieved
90000
84615
54796
90000
90000
90000
90000
90000
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

cor = df.corr

cor

	method DataF			Port	Tra	ffic_Projected
Traffi 0	c_Achieved Ti Kolkata	raffic_Per	cent \ 1343		1223	
91.06	Ual di a		4450		2101	
1 69.69	Haldia		4450		3101	
2	Paradeep		7640		5425	
	sakhapatnam		8220		6742	
82.02 4	Ennore		4700		1496	
31.83						
5 96.89	Chennai		5750		5571	
6	Tuticorin		3172		2810	
88.59 7	Cochin		3817		2010	
52.66 8	NMPT		4881		3294	
67.49						
9 87.54	Mormugao		4455		3900	
10	Mumbai		7105		5618	
79.07 11	JNPT		6604		6575	
99.56 12	Kandla		8672		8250	
95.13						
To	tal_Capacity_I		Total_Cap			Total_Percent
0		3145 6340			1635 5070	51.99 79.97
1 2 3		10640			7650	71.90
		10810		• ·	7293	67.47
4		6420			3100	48.29
5 6		7230 6398			7972 3334	110.26 52.11
7		5475			4098	74.85
8		6050			5097	84.25
9		6690			4190	62.63
10		9191			4453	48.45
11 12		9560 12220			6400 8691	66.95 71.12
>		12220		`	2001	, 1, 12

#Finding Outliers anr replacing the outliers

import matplotlib.pyplot as plt
import seaborn as sns

sns.boxplot(x='Port',y='Traffic_Projected',data=df)

```
plt.rcParams["figure.figsize"] = [17.50, 3.50]
plt.rcParams["figure.autolayout"] = True
```


Check For Categorical Columns and do encoding

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
print(df.Port.value_counts())
df.Port = le.fit transform(df.Port)
print(df.Port.value_counts())
Kolkata
                  1
Haldia
                  1
Paradeep
                  1
Visakhapatnam
                  1
Ennore
                  1
Chennai
                  1
Tuticorin
                  1
Cochin
                  1
NMPT
                  1
                  1
Mormugao
                  1
Mumbai
JNPT
                  1
Kandla
Name: Port, dtype: int64
6
      1
```

```
10
      1
12
      1
2
      1
      1
0
      1
11
      1
1
9
      1
7
      1
8
      1
4
      1
      1
Name: Port, dtype: int64
# Classification
#y = df.Traffic_Percent
#print(y)
#df.drop(['Traffic Percent'],axis=1)
df.head()
                                                  Traffic_Percent
   Port
         Traffic Projected Traffic Achieved
                        1343
0
      6
                                           1223
                                                             91.06
      3
1
                        4450
                                           3101
                                                             69.69
2
     10
                        7640
                                           5425
                                                             71.01
3
                                                             82.02
     12
                                           6742
                        8220
4
      2
                        4700
                                           1496
                                                             31.83
                               Total Capacity_Achieved
   Total_Capacity_Projected
                                                          Total_Percent
0
                         3145
                                                    1635
                                                                   51.99
1
                         6340
                                                    5070
                                                                   79.97
2
                        10640
                                                    7650
                                                                   71.90
3
                        10810
                                                    7293
                                                                   67.47
                         6420
                                                    3100
                                                                   48.29
ddf = df.drop(['Traffic Percent'],axis=1)
ddf
    Port
          Traffic Projected
                              Traffic Achieved
Total_Capacity_Projected
                         1343
                                            1223
3145
       3
                         4450
1
                                            3101
6340
      10
                         7640
                                            5425
10640
      12
                         8220
                                            6742
```

10810 4	2	470	00	1496	
6420 5	0	57!	50	5571	
7230 6	11	317	72	2810	
6398 7	1	38:	17	2010	
5475 8	9	488	31	3294	
6050 9 6690	7	445	55	3900	
10 9191	8	710)5	5618	
11 9560	4	660)4	6575	
12 12220	5	867	72	8250	
0 1 2 3 4 5 6 7 8 9 10 11 12	df.i	Capacity_Achieve 163 503 769 729 310 793 333 409 509 419 449 640 869	35 51 70 79 50 71 93 67 90 48 72 110 34 52 98 74 97 84 90 62 53 48 90 66	.99 .97 .90 .47 .29	
T 0 1 2 3 4 5 6 7 8 9 10	raff	ic_Projected Tra 1343 4450 7640 8220 4700 5750 3172 3817 4881 4455 7105	affic_Achieved 1223 3101 5425 6742 1496 5571 2810 2010 3294 3900 5618	Total_Capac	ity_Projected \

```
11
                  6604
                                      6575
                                                                  9560
12
                  8672
                                      8250
                                                                 12220
    Total Capacity Achieved
                               Total Percent
0
                         1635
                                        51.99
1
                         5070
                                        79.97
2
                         7650
                                        71.90
3
                         7293
                                        67.47
4
                                        48.29
                         3100
5
                                       110.26
                         7972
6
                         3334
                                        52.11
7
                         4098
                                        74.85
8
                         5097
                                        84.25
9
                                        62.63
                         4190
10
                                        48.45
                         4453
11
                                        66.95
                         6400
12
                                        71.12
                         8691
y = df.iloc[:,2:3]
print(y)
    Traffic_Achieved
0
                 1223
1
                 3101
2
                 5425
3
                 6742
4
                 1496
5
                 5571
6
                 2810
7
                 2010
8
                 3294
9
                 3900
10
                 5618
11
                 6575
12
                 8250
#1. Logistic Regression
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test =
train test split(x,y,test size=0.2,random state=0)
print(x_train.shape
print(x_test.shape)
print(y train.shape)
print(y_test.shape)
(10, 5)
(3, 5)
(10, 1)
(3, 1)
```

```
from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)
LinearRegression()
x_test[0:5]
    Traffic_Projected Traffic_Achieved
                                         Total_Capacity_Projected \
6
                 3172
                                    2810
                                                               6398
11
                 6604
                                    6575
                                                               9560
4
                 4700
                                    1496
                                                               6420
    Total Capacity Achieved Total Percent
6
                       3334
                                      52.11
11
                                      66.95
                       6400
4
                       3100
                                      48.29
y_test[0:5]
    Traffic Achieved
6
                2810
11
                6575
                1496
mlr.predict(x_test[0:5])
array([[2810.],
       [6575.],
       [1496.]])
from sklearn.metrics import r2 score
r2_score(mlr.predict(x_test),y_test)
1.0
from sklearn.metrics import mean squared error
a = mlr.predict(x test)
mean_squared_error(a,y_test)
6.376183888429589e-25
```