





## **ESS302 Applied Geophysics II**

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

**Electrical 4: IP and More...** 

Instructor: Dikun Yang Feb – May, 2019



## Contents

- Induced polarization (IP) effect
- Chargeability inversion
- Partial differential equation governing dc problem
- A circuit perspective
- Research frontier: steel cased wells in oilfield
- Electrical assignment

## Induced Polarization (IP)

Cause overvoltage in measured potentials



## IP Effect in DC Data

- 1) Voltage applied by transmitter
  - $\rightarrow$  instantaneous  $(V_{\sigma})$  increase due to  $\rho$
- 2) Voltage increases as ions accumulate:

$$V_{on}(t) = V_{\sigma} + V_{s} \Big[ 1 - e^{-t/ au} \Big]$$

- 3) Saturation of ionic charges
  - $\rightarrow$  DC voltage ( $V_m = V_{\sigma} + V_{s}$ )
- 4) Voltage from transmitter removed  $\rightarrow$  instantaneous loss in secondary potential (equal to  $V_{\sigma}$ )
- 5) IP voltage discharges during off-time

$$V_{off}(t) = V_s\,e^{-t/ au}$$



|                   | Not chargeable | Chargeable |
|-------------------|----------------|------------|
| Source (Amps)     |                |            |
| Potential (Volts) |                | 7          |

# Chargeability – Capability of Holding Charges





Type 1: Membrane polarization - ions accumulate at pore throat



**Equilibrium State** 



Voltage Applied



Separation of +ve and –ve ions

## Chargeability – Capability of Holding Charges





Type 2: Electrode polarization: Ions accumulate at metals



- Pore space is blocked by metallic particles
- Metallic particles become electrically charged and attract nearby ions
- This is why the waveform of dc survey switches polarity

#### Electric double layer



Hypothetical anomalous ion distribution near a solid-liquid interface.

#### Net electric dipole moment



## Chargeability – A Diagnostic Physical Property

Chargeability is not thoroughly understood in theory but it is often related to:







Clays



Pore-Water Salinity



**Tortuosity** 

#### Use chargeability to characterize the earth:

- Environmental: Contamination, groundwater...
- Mining: Disseminated sulphides (porphyry)
- Oil/gas:





## Time-domain IP Data

Intrinsic chargeability (dimensionless)

$$\eta = \frac{V_s}{V_m}$$



$$d_{IP} = \frac{V_s(t)}{V_m}$$
 mV/V

Integrate over the decay (discharge period)

$$d_{IP} = \frac{1}{V_m} \int_{t_1}^{t_2} V_s(t) dt \quad \text{(msec)}$$



## Frequency-domain IP Data

Percent frequency effect:

$$d_{IP} = PFE = 100 \left( \frac{\rho_{a2} - \rho_{a1}}{\rho_{a1}} \right)$$



Phase:

 $d_{IP} = \text{phase (mrad)}$ 



# IP Modeling



Chargeability: alter conductivity

$$\sigma = \sigma(1 - \eta)$$

$$\phi_{\eta} = \mathcal{F}_{dc}[\sigma(1 - \eta)]$$

Apparent chargeability

$$\eta_{a} = \frac{\phi_{s}}{\phi_{\eta}} = \frac{\phi_{\eta} - \phi_{\sigma}}{\phi_{\eta}}$$

$$\eta_{a} = \frac{\mathcal{F}_{dc}[\sigma(1-\eta)] - \mathcal{F}_{dc}[\sigma]}{\mathcal{F}_{dc}[\sigma(1-\eta)]}$$

## IP Data of Chargeable Blocks



## IP Inversion for Chargeability



## IP Inversion for Chargeability



## IP Inversion for Chargeability



Mt. Isa Mineral Exploration





#### Conductivity pseudo-section



#### Chargeability pseudo-section



# 3D DC/IP Inversion

Apparent resistivity data ( $\rho_a$ )



Resistivity model (ρ)



Integrated chargeability data ( $d_{IP}$ )



Chargeability model (η)



## Consistent Models?

Volume rendered resistivity model



#### Volume rendered chargeability model



## Governing Equation

$$\mathbf{J} = \sigma \mathbf{E}$$

Ohm's Law

$$\mathbf{E} = \nabla V$$

The electric field is the gradient of a scalar potential

$$\nabla \cdot \ \mathbf{J} = -\partial Q/\partial t$$

The divergence of current density equals the rate of change of free charge density

$$\nabla \cdot (\sigma \nabla V) = -\partial Q/\partial t$$

$$\nabla \cdot (\sigma \nabla V) = -I\delta(r-r_s)$$

With two boundary conditions:

- (1) The change of potential across the free surface is zero ( $\partial V/\partial n=0$  at z=0)
- (2) V approaches 0 as r-r<sub>s</sub> approaches infinity



# A circuit perspective

#### A 3D mesh:

• Cell center: conductivity





## A circuit perspective

#### A 3D mesh:

- Cell center: conductivity
- Cell node: potential
- Cell edge: E-field, conductance and current





Conductivity to conductance

$$G = \frac{wh\sigma_0}{\ell}$$



## A circuit perspective

#### Kirchhoff's current law

$$-\mathbf{G}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{G}\phi = \mathbf{I_s}$$

 $\phi$ : electrical potential

G: differential matrix of 1 and -1

 ${f R}$  : resistance diagonal matrix

 $\mathbf{I_S}$  : current source intensity





# Electrical Modeling of Steel Casings





# Monitoring of Injected Fluid



#### Micro-seismic



#### But where is fluid?

- Pumping schedule
- Groundwater contamination
- Induced seismicity

# **Conventional Surface DC Resistivity** V1 R2 **R6**

## Long-electrode DC Resistivity



## Introducing steel casings to earth model

- Short-circuit the earth
- Reduce "resistance depth"
- Enhance sensitivity to injection

# Monitoring Injected Fracturing Fluid with Casings





## Interactive Inversion of Fluid-saturated Zones



## Interactive Inversion of Fluid-saturated Zones



## Summary

#### IP effect

- Physical intuition
- Mechanism of IP
- IP effect in data
- Chargeability inversion

## Governing equation

- Poisson equation (continuous medium)
- Equivalent circuit and KCL (lumped element approximation)

#### Research frontier

Fracturing monitoring using electrical method

## Electrical Assignment: Two-layer Model



$$ρ_2 = 500 Ωm$$

# Four Types of Arrays

#### dipole-dipole



#### pole-dipole







#### Wenner



# dV vs. n-spacing & $\rho_a$ vs. n-spacing





Make such plots for dipole-dipole, pole-dipole, pole-pole and Wenner arrays

- (1) Which type of array has better resolution for the near-surface property? And how can you tell?
- (2) Which type of array has better depth of penetration with the least n-spacing (less expensive field operation)? And how can you tell?
- (3) Which type of array has the best balance between near-surface resolution and depth of penetration? And why?