

74LVQ373

OCTAL D-TYPE LATCH WITH 3 STATE OUTPUTS NON INVERTING

- HIGH SPEED: t_{PD} = 6 ns (TYP.) at V_{CC} = 3.3V
- COMPATIBLE WITH TTL OUTPUTS
- LOW POWER DISSIPATION:
 Icc = 4 μA (MAX.) at TA = 25 °C
- LOW NOISE: $V_{OLP} = 0.4V$ (TYP.) at $V_{CC} = 3.3V$
- 75Ω TRANSMISSION LINE OUTPUT DRIVE CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 12 mA (MIN)
- PCI BUS LEVELS GUARANTEED AT 24mA
- BALANCED PROPAGATION DELAYS:
 tplh ≅ tphl
- OPERATING VOLTAGE RANGE:
 V_{CC} (OPR) = 2V to 3.6V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 373
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The LVQ373 is a low voltage CMOS OCTAL D-TYPE LATCH with 3 STATE OUTPUTS NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. It is ideal for low power and low noise 3.3V applications.

These 8 bit D-Type latchs are controlled by a latch enable input (LE) and an output enable

input (OE).

While the LE input is held at a high level, the Q outputs will follow the data input precisely.

When the LE is taken low, the Q outputs will be latched precisely at the logic level of D input data. While the (\overline{OE}) input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.

It has better speed performance at 3.3V than 5V LS-TTL family combined with the true CMOS low power consuption.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

February 1999 1/10

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	ŌĒ	3 State Output Enable Input (Active LOW)
2, 5, 6, 9, 12, 15, 17, 18	D0 to D7	Data Inputs
3, 4, 7, 8, 13, 14, 17, 18	Q0 to Q7	3 State Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

TRUTH TABLE

	OUTPUTS		
ŌĒ	LE	D	Q
Н	Х	Х	Z
L	L	X	NO CHANGE *
L	Н	L	L
L	Н	Н	Н

X: Don't care

LOGIC DIAGRAM

X: High impedance
* Q output are latched at the time when the LE input is taken low logic level.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 400	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage (note 1)	2 to 3.6	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature:	-40 to +85	°C
t _r , t _f	Input Rise and Fall Time (V _{CC} = 3V) (note 2)	0 to 10	ns/V

¹⁾ Truth Table guaranteed: 1.2V to 3.6V 2) V_{IN} from 0.8V to 2V

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions		Value					Unit	
		Vcc			T,	A = 25 °	,C	-40 to	85 °C	
		(V)			Min.	Тур.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	3.0 to			2.0			2.0		V
VIL	Low Level Input Voltage	3.6					0.8		0.8	V
V _{OH}	High Level Output	3.0	V _I ^(*) =	I _O =-50 μA	2.9	2.99		2.9		
	Voltage		V _{IH} or	I _O =-12 mA	2.58			2.48		V
			VIL	I _O =-24 mA				2.2		
V _{OL}	Low Level Output	3.0	V _I ^(*) =	I _O =50 μA		0.002	0.1		0.1	
	Voltage		V _{IH} or	I _O =12 mA		0	0.36		0.44	V
			V _{IL}	I _O =24 mA					0.55	
II	Input Leakage Current	3.6	$V_I = V$	CC or GND			±0.1		±1	μΑ
I _{OZ}	3 State Output Leakage Current	3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$				±0.25		±2.5	μА
Icc	Quiescent Supply Current	3.6	$V_I = V_{CC}$ or GND				4		40	μΑ
I _{OLD}	Dynamic Output Current	3.6	V _{OLD} =	0.8 V max				36		mA
lohd	(note 1, 2)		Vohd	= 2 V min				-25		mA

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value				Unit	
		Vcc		T,	a = 25 °	,C	-40 to	85 °C	
		(V)		Min.	Тур.	Max.	Min.	Max.	
V _{OLP}	Dynamic Low Voltage	3.3			0.4	0.8			
V _{OLV}	Quiet Output (note 1, 2)			-0.8	-0.5				
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	3.3	C _L = 50 pF			2			V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	3.3		0.8					

¹⁾ Worst case package

4/10

¹⁾ Maximum test duration 2ms, one output loaded at time 2) Incident wave switching is guaranteed on transmission lines with impedances as low as 50 Ω .

^(*) All outputs loaded.

²⁾ Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n -1) outputs switching and one output at GND 3) max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3.3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). f=1MHz

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}, R_L = 500 \Omega$, Input $t_r = t_f = 3 \text{ ns}$)

Symbol	Parameter	Te	st Condition	Value				Unit	
		Vcc		T,	_A = 25 °	C.	-40 to	85 °C	
		(V)		Min.	Тур.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay Time	2.7			8.0	17.0		18.0	ns
t _{PHL}	LE to Q	3.3 ^(*)			6.5	11.0		12.0	115
t _{PLH}	Propagation Delay Time	2.7			7.5	15.0		16.0	ns
t _{PHL}	D to Q	3.3 ^(*)			6.0	10.0		11.0	110
t _{PLZ}	Output Disable Time	2.7			8.5	20.0		21.0	ns
t _{PHZ}		3.3 ^(*)			7.0	14.0		15.0	110
t _{PZL}	Output Enable Time	2.7			9.0	18.0		19.0	ns
t _{PZH}		3.3 ^(*)			7.0	12.0		13.0	113
t _w	LE pulse Width, HIGH	2.7			2.0	5.0		6.0	ns
		3.3 ^(*)			1.5	4.0		4.0	110
t _{sL}	Setup Time D to LE	2.7			0.0	3.0		4.0	ns
t _{sH}	HIGH or LOW	3.3 ^(*)			0.0	2.0		3.0	113
t _{hL}	Hold Time D to LE	2.7			0.0	1.5		2.0	ns
t _{hH}	HIGH or LOW	3.3 ^(*)			0.0	1.5		2.0	110
toslh	Output to Output Skew	2.7			0.5	1.0		1.5	ns
toshl	Time (note 1, 2)	3.3 ^(*)			0.5	1.0		1.5	

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (tosuh = |touhm - tohling), toshl = |tohling - tohling - to

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions			Value				
		Vcc		T,	T _A = 25 °C		-40 to	85 °C	
		(V)		Min.	Тур.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	3.3			5				рF
Соит	Output Capacitance	3.3			10				рF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3	f _{IN} = 10 MHz		10				pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/8$ (per Latch)

²⁾ Parameter guaranteed by design

^(*) Voltage range is $3.3V \pm 0.3V$

TEST CIRCUIT

TEST	SWITCH
tplh, tphl	Open
t _{PZL} , t _{PLZ}	2V _{CC}
t _{PZH} , t _{PHZ}	Open

C_L = 50 pF or equivalent (includes jig and probe capacitance)

 $R_L = R_1 = 500\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM 1: LE TO Qn PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn TO LE SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

6/10

WAVEFORM 3: Dn TO Qn PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
С		0.50			0.020	
c1			45	(typ.)		
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
М			0.75			0.029
S			8 (r	max.)		

57

TSSOP20 MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.1			0.433	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.85	0.9	0.95	0.335	0.354	0.374	
b	0.19		0.30	0.0075		0.0118	
С	0.09		0.2	0.0035		0.0079	
D	6.4	6.5	6.6	0.252	0.256	0.260	
Е	6.25	6.4	6.5	0.246	0.252	0.256	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°	4°	8°	0°	4°	8°	
L	0.50	0.60	0.70	0.020	0.024	0.028	

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

577