MAST20022 Group Theory and Linear Algebra Assignment 3

Due: 4pm Friday October 18

- ⊳ Submission is by file upload on the LMS. Scans or photos must be of good quality. You are responsible for checking that your file(s) has uploaded correctly.
- ▶ Include your name, student number and tutorial time at the top of every page.
- > All answers should be fully justified.
- \triangleright Soliciting answers to assignment questions from internet forums (or elsewhere) is strictly forbidden.
- 1. For each of the following pairs determine whether or not the two groups are isomorphic. In each case you should either give an isomorphism or explain why none exist.
 - (a) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$

(c) $\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$ and $\mathbb{Z} \times (\mathbb{Z}/4\mathbb{Z})$

(b) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/8\mathbb{Z}$

- (d) $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$
- 2. Let G be a group and $X \subseteq G$ a non-empty subset. Define

$$H = \{x_1^{\epsilon_1} x_2^{\epsilon_2} \dots x_n^{\epsilon_n} \mid n \in \mathbb{N}, x_i \in X, \epsilon_i = \pm 1\} \subseteq G$$

- (a) Show that H is a subgroup of G.
- (b) Show that $H = \langle X \rangle$ (the subgroup of G generated by X).
- 3. Let $A = \begin{bmatrix} 1 & 1+i \\ 1-i & 3 \end{bmatrix} \in M_2(\mathbb{C})$ and let $\mathcal{B} \subset \mathbb{C}^2$ be a basis of \mathbb{C}^2 .
 - (a) Show that the following defines an inner product on \mathbb{C}^2 :

$$\langle u, v \rangle = [u]_{\mathcal{B}}^t A \overline{[v]_{\mathcal{B}}}$$

- (b) Let $f: \mathbb{C}^2 \to \mathbb{C}^2$ be the linear transformation determined by $[f]_{\mathcal{B}} = \begin{bmatrix} i & 0 \\ 0 & 2i \end{bmatrix}$. Find the matrix $[f^*]_{\mathcal{B}}$. (Note that the adjoint is defined using the inner product from part (a))
- 4. Let $f: V \to V$ be a normal linear transformation on an inner product space.
 - (a) Prove that any eigenvector of f is also an eigenvector of f^* .
 - (b) Suppose that $u, v \in V$ are eignevectors of f having different eigenvalues. Show that $\langle u, v \rangle = 0$