Stochastic Neighborhood Embedding

Weekly AI pills

Fabio Brau.

2020-11-13

SSSA, Emerging Digital Technologies, Pisa.

Summary

- 1. Entropy and Kullback–Leibler divergence
- 2. From SNE to t-SNE
- 3. Application for Visualization
- 4. Issues

1

Introduction

(t)-Stochastic Neighborhood Embedding

Aims

- Dimensionality
 Reduction
- · Data Visualization
 - 1. Exploration
 - 2. Visual Clustering

Example of Data Visualization taken from (Tasic et al., 2018)

Algorithm

Algorithm: Workflow

1. Represent each sample $x_i \in \mathcal{X}$ with $y_i \in \mathcal{Y}$ in a low-dimensional space

$$\Phi: \underset{\subseteq \mathbb{R}^n}{\mathcal{X}} \longrightarrow \underset{\subseteq \mathbb{R}^2}{\mathcal{Y}}$$

2. Convert Geometrical Information to Probabilistic Distribution

$$p_{i|j}$$
: "Probability that x_i is $similar$ to x_j " $q_{i|j}$: "Probability that y_i is $similar$ to y_j "

- 3. Compare distribution ${\mathcal P}$ of ${\mathcal X}$ to distribution ${\mathcal Q}$ of ${\mathcal X}$
- 4. Adjust the representation Φ to make distributions closer.

Observation

The embedding Φ is defined **point-wise**, i.e Φ is only defined over \mathcal{X} through the definition $\Phi(x_i) = y_i$. Another way to say " y_i are the parameters of Φ ".

Algorithm: Workflow

1. Represent each sample $x_i \in \mathcal{X}$ with $y_i \in \mathcal{Y}$ in a low-dimensional space

$$\Phi: \underset{\subseteq \mathbb{R}^n}{\mathcal{X}} \longrightarrow \underset{\subseteq \mathbb{R}^2}{\mathcal{Y}}$$

2. Convert Geometrical Information to Probabilistic Distribution

$$p_{i|j}$$
: "Probability that x_i is $similar$ to x_j " $q_{i|j}$: "Probability that y_i is $similar$ to y_j "

- 3. Compare distribution ${\mathcal P}$ of ${\mathcal X}$ to distribution ${\mathcal Q}$ of ${\mathcal X}$
- 4. Adjust the representation Φ to make distributions closer.

Observation

The embedding Φ is defined **point-wise**, i.e Φ is only defined over \mathcal{X} through the definition $\Phi(x_i) = y_i$. Another way to say " y_i are the parameters of Φ ".

Definition (Similarity with Gaussian Kernel)

For each x_i we consider the similarity

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)}$$
 (\$\mathcal{P}_i\$)

where σ_i is an hyper-parameter depending on x_i .

How σ_i impacts on $p_{i|j}$

Definition (Similarity with Gaussian Kernel)

For each x_i we consider the similarity

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

where σ_i is an hyper-parameter depending on x_i .

How σ_i impacts on $p_{i|j}$?

Definition (Similarity with Gaussian Kernel)

For each x_i we consider the similarity

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

where σ_i is an hyper-parameter depending on x_i .

How σ_i impacts on $p_{i|j}$?

Definition (Similarity with Gaussian Kernel)

For each x_i we consider the similarity

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

where σ_i is an hyper-parameter depending on x_i .

How σ_i impacts on $p_{i|j}$?

Similarity to (0,0) for sigma=0.5

Definition (Similarity with Gaussian Kernel)

For each x_i we consider the similarity

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

where σ_i is an hyper-parameter depending on x_i .

How σ_i impacts on $p_{i|j}$?

Definition (Similarity with Gaussian Kernel)

For each x_i we consider the similarity

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

where σ_i is an hyper-parameter depending on x_i .

How σ_i impacts on $p_{i|j}$?

In the same manner we can define similarity in \mathcal{Y} .

$$\forall j \neq i, \quad q_{i|j} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$
 (Q_i)

Observation

 \mathcal{P}_i and \mathcal{Q}_i are probability distributions for each i.

- 1. $0 \le p_{i|j}, q_{i|j} \le 1$ for each $j \ne i$
- 2. $\sum_{j \neq i} p_{i|j} = \sum_{j \neq i} q_{i|j} = 1$

Algorithm: Kullback-Leibler Divergence

Definition (K.L Divergence)

Let $\mathcal{P} = \{p_1, \cdots, p_n\}$ and $\mathcal{Q} = \{q_1, \cdots, q_n\}$ distributions

$$KL(\mathcal{P}, \mathcal{Q}) = \sum_{i} p_{i} \log_{2} \left(\frac{p_{i}}{q_{i}}\right)$$
 (1)

We can compare \mathcal{P}_i , \mathcal{Q}_i for each i by taking

$$C(\mathcal{Y}) := \sum_{i} KL(\mathcal{P}_{i}, \mathcal{Q}_{i})$$
 (2)

Observation: The cost function C is differentiable in y_i

$$\frac{\partial C}{\partial y_i} = 2 \sum_{j \neq i} \left[\left(p_{i|j} + p_{j|i} \right) (y_i - y_j) \right] - \left[\left(q_{i|j} + q_{j|i} \right) (y_i - y_j) \right]$$
Attractive Repulsive

Intepretation: C penalizes close x_i , x_j and far y_i , y_j

Algorithm: Kullback-Leibler Divergence

Definition (K.L Divergence)

Let $\mathcal{P} = \{p_1, \cdots, p_n\}$ and $\mathcal{Q} = \{q_1, \cdots, q_n\}$ distributions

$$KL(\mathcal{P}, \mathcal{Q}) = \sum_{i} p_{i} \log_{2} \left(\frac{p_{i}}{q_{i}}\right)$$
 (1)

We can compare \mathcal{P}_i , \mathcal{Q}_i for each i by taking

$$C(\mathcal{Y}) := \sum_{i} KL(\mathcal{P}_{i}, \mathcal{Q}_{i})$$
 (2)

Observation: The cost function C is differentiable in y_i

$$\frac{\partial C}{\partial y_i} = 2 \sum_{j \neq i} \left[\left(p_{i|j} + p_{j|i} \right) (y_i - y_j) \right] - \left[\left(q_{i|j} + q_{j|i} \right) (y_i - y_j) \right]$$
Repulsive (3)

Interretation: C penalizes close x_i , x_j and far y_i , y_j .

Algorithm: Summary

SNE Algorithm

- 1. Choose $\Phi^{(0)}$ embedding, i.e choose $\{y_i^{(0)}\}$
- 2. Compute \mathcal{P}_i and \mathcal{Q}_i distributions.
- 3. Minimize $C(\mathcal{Y})$ through Gradient Descent with momentum

$$y_{i}^{(t+1)} = y_{i}^{(t)} - \eta \frac{\partial C}{\partial y_{i}} + \alpha \left(y_{i}^{(t)} - y_{i}^{(t-1)} \right), \quad \forall i$$

How to find σ_i ?

Algorithm: Summary

SNE Algorithm

- 1. Choose $\Phi^{(0)}$ embedding, i.e choose $\{y_i^{(0)}\}$
- 2. Compute \mathcal{P}_i and \mathcal{Q}_i distributions.
- 3. Minimize $C(\mathcal{Y})$ through Gradient Descent with momentum

$$y_{i}^{(t+1)} = y_{i}^{(t)} - \eta \frac{\partial C}{\partial y_{i}} + \alpha \left(y_{i}^{(t)} - y_{i}^{(t-1)} \right), \quad \forall i$$

How to find σ_i ?

Perplexity

Perplexity: Shannon Entropy and Neighborhood

Let
$$\mathcal{P} = \{p_1, \cdots, p_n\}$$
 be a distribution

Shannon Entropy
$$\mathbb{H}(\mathcal{P}) = -\sum_i p_i \log_2(p_i)$$
 Perplexity
$$Perp(\mathcal{P}) = 2^{\mathbb{H}(\mathcal{P})}$$

Perplexity
$$extit{Perp}(\mathcal{P}) = 2^{\mathbb{H}(\mathcal{P})}$$

How σ_i and Perplexity are related to each other?

Perplexity measures the number of samples in a neighborhood.^a

^aOriginal paper doesn't provide a proof, let us take it as an intuition.

Perplexity: Derivation of σ

Observation

Perplexity of \mathcal{P}_i is continuous monotonic in σ_i .

```
Binary Search: Find \sigma_i such that Perp(\mathcal{P}_i(\sigma_i)) = K
\sigma^{(l)} such that Perp(\mathcal{P}_i(\sigma^{(l)})) < K;
\sigma^{(r)} such that Perp(\mathcal{P}_i(\sigma^{(r)})) > K;
while |\sigma^{(r)} - \sigma^{(l)}| < \varepsilon do
      \bar{\sigma} \leftarrow (\sigma^{(l)} + \sigma^{(l)})/2;
      p \leftarrow Perp(\mathcal{P}_i(\bar{\sigma}));
      if p < K then
       \sigma^{(l)} \leftarrow \bar{\sigma}:
       else
       \sigma^{(r)} \leftarrow \bar{\sigma}:
       end
end
return \bar{\sigma}
```

t-SNE is t+SNE

t-SNE: Symmetric + Student

In order to achieve better results Maaten & Hinton modified SNE by

1. Using Student t-distribution for ${\cal Y}$

$$\forall i, \quad q_{i|j} = \frac{(1 + ||y_i - y_j||)^{-1}}{\sum_{k \neq i} (1 + ||y_i + y_j||)^{-1}}, \quad \forall j \neq i$$

2. Using symmetric versions of $p_{i|j}$, $q_{i|j}$ by defining

$$p_{ij} = (p_{i|j} + p_{j|i})/(2n), \quad q_{ij} = (q_{i|j} + q_{j|i})/(2n)$$

so that $\mathcal{P} = \left\{ p_{ij} \right\}$ and $\mathcal{Q} = \left\{ q_{ij} \right\}$ are joint probabilities.

3. The cost function becomes

$$C(\mathcal{Y}) = KL(\mathcal{P}, \mathcal{Q})$$

Examples

t-SNE on cortex's cells

An hand made hierarchical clustering of cortex's cell is visualized through t-SNE. PCA is able to find the main three clusters but not to distinguish the sub-clusters.

t-SNE on cortex' cells: Metrics Evaluations

• KNN: local metric. For each samples $x_i \in \mathcal{X}$ and its image $y_i \in \mathcal{Y}$ we take the first k-closest points K_i and H_i and we evaluate

$$KNN := \frac{1}{|\mathcal{X}|} \sum_{i} \frac{|H_i \cap \Phi(K_i)|}{k}$$

- KNC: Cluster metric. The same as KNN but applied to c_1, \dots, c_s cluster's centroids.
- CPD: Global metric. Defined as the Spearmen correlation.

Looking at figure 3 locally t-SNE performs better, globally PCA performs better.

t-SNE on MNIST

Image taken from Maaten - Hinton paper

