

Subject Code and Title: SEP401 (N06748) Software Engineering Principles

Student Name: Luis Guilherme de Barros Andrade Faria

Student ID: A00187785

Assessment 1, Part B: Software Requirements Specifications

Member Name	Student Id
Luis Guilherme de Barros Andrade Faria	A00187785
Jing Feng Chin	A00178098
Hai Chau Luong	

Project Details

IEEE Software Requirements Specification (SRS)

Project Title: ClinicTrendsAI: Customer Satisfaction Trend Prediction System

Version: 1.0

Date: June 3, 2025

Author: Luis G. B. A. Faria

1. Introduction

1.1 Purpose

ClinicTrendsAI is a software system designed to analyze and forecast customer satisfaction trends using historical survey data (e.g., NPS-style feedback) collected by aesthetic clinics. It leverages basic machine learning techniques to provide predictive insights, identify high-risk satisfaction drops, and support data-driven decision-making by clinic managers.

1.2 Document Conventions

This document uses standard IEEE SRS formatting. All system features are documented in Section 4 using the "shall" notation. UML and data flow diagrams are provided in Appendix B.

1.3 Intended Audience and Reading Suggestions

- **Software Developers**: for implementation guidance
- Stakeholders (clinic managers): for understanding functional deliverables
- QA Engineers: for building test cases
- **Instructors**: for evaluating planning and design rigor

1.4 Product Scope

ClinicTrendsAI will:

- Ingest survey datasets (CSV, JSON)
- Predict future satisfaction scores using regression models
- Display trend graphs and alert flags
- Identify key drivers behind satisfaction changes (feature importance)
- Provide exportable reports for clinic use

1.5 References

- IEEE SRS Format
- Scikit-learn Documentation
- Agile Manifesto
- PMBOK Guide (for risk tracking and change management)

2. Overall Description

2.1 Product Perspective

ClinicTrendsAI is a standalone web-based system, designed with a 2-tier architecture:

- Frontend: Streamlit UI
- **Backend**: Python logic + pandas + scikit-learn

2.2 Product Functions

Upload historical survey data

- Visualize satisfaction trends by date, store, or segment
- Predict next-month satisfaction scores
- Generate risk alerts based on trend projections
- Export PDF or CSV summary reports

2.3 User Classes and Characteristics

- Clinic Manager: Non-technical user seeking insights
- Data Analyst: Interested in feature breakdowns
- **System Admin**: For uploading datasets, managing app state

2.4 Operating Environment

- Web browser (Chrome, Firefox)
- Backend hosted locally or on cloud VM
- Python 3.10+, Streamlit, scikit-learn, pandas

2.5 Design and Implementation Constraints

- Must handle CSVs up to 100MB
- Predictions limited to linear regression and decision tree models in MVP
- Model retraining must occur asynchronously

2.6 User Documentation

- Quick-start guide (PDF)
- Tooltip hints in UI

2.7 Assumptions and Dependencies

- Survey datasets are clean or preprocessed
- Backend runs with access to Python ML environment

3. External Interface Requirements

3.1 User Interfaces

Streamlit dashboard with upload button, chart views, prediction box, and alerts panel.

3.2 Hardware Interfaces

None

3.3 Software Interfaces

• Python packages: scikit-learn, pandas, matplotlib

3.4 Communications Interfaces

Localhost or HTTP (future cloud deployment may require HTTPS)

4. System Features

4.1 Upload Survey Data

• The user shall be able to upload CSV or JSON survey datasets.

4.2 Visualize Historical Trends

- The system shall plot NPS scores over time.
- The system shall allow filtering by store or segment.

4.3 Predict Satisfaction Trends

- The system shall use ML models to predict future satisfaction scores.
- The prediction shall be displayed with confidence intervals.

4.4 Alert System

- The system shall flag trends where predicted score drops below 50.
- The system shall highlight risky features influencing the dip.

4.5 Export Report

• The user shall be able to download a PDF or CSV summary of predictions.

5. Non-functional Requirements

5.1 Performance

• The system shall return predictions within 10 seconds of data upload.

5.2 Usability

• The UI shall be intuitive for non-technical users.

5.3 Reliability

• The system shall handle incomplete rows gracefully.

5.4 Maintainability

• The codebase shall follow PEP8 standards and include documentation.

5.5 Portability

• The system shall run on Windows, macOS, and Linux with Python installed.

Appendix A: Glossary

NPS: Net Promoter ScoreML: Machine Learning

• MVP: Minimum Viable Product

Appendix B: Analysis Models

- Use Case Diagram (to be inserted)
- System Architecture Diagram (2-tier)
- Data Flow Diagram (CSV input → prediction → alert + export)