Université de Genève Autumn term 2022

Statistical Methods in Physics (14P058)

Prof. Federico Sánchez (federico.sancheznieto@unige.ch)
Dr. Hepeng Yao (hepeng.yao@unige.ch)
Dr. Knut Zoch (knut.zoch@unige.ch)

Final project I – One-dimensional Harmonic Oscillator

Submission due on: 3 February 2023

The harmonic oscillator is a widely used model in both classical and quantum physics. For low temperature atomic physics, gases are usually trapped by a harmonic potential formed by laser beams or magnetic fields.

In this project, we will study the statistics of a one-dimensional ideal gas in the presence of a harmonic trap. Consider a system which contains a large number of 40 K atoms with mass $m=40\,m_0$, where m_0 is the atomic mass unit. The potential energy E_ω follows the probability density function

$$f(E_{\omega}) = \frac{A}{\sqrt{E_{\omega}}} e^{-\beta E_{\omega}} \tag{1}$$

where $\beta = 1/(k_B T)$ denotes the inverse energy scale related to the temperature T, and A is a pre-factor related to the properties of the system. Let's consider $T = 30 \,\mathrm{K}$ and $A = \sqrt{\beta/\pi}$.

Task 1: Basic statistical properties

Equation (1) fulfils the properties of a probability distribution function. The first task is to assess basic statistical properties of the distribution with the help of Monte Carlo (MC) processes.

- a) Demonstrate that Eq. (1) is a probability density function.
 - *Hint:* You can answer this question either analytically or numerically.
- b) Build a MC process to generate this probability density function for a large number of data points, $N \gg 1$. Fill your results in a histogram, plot them and verify their correctness by comparing them with the curve of the analytical form in Eq. (1).
 - *Hint:* In principle, the value ϵ can take the range $[0, +\infty)$. Here, you should choose a cutoff according to the shape of Eq. (1).
- c) According to the equipartition theorem, the expectation value of E_{ω} should follows

$$\mathbb{E}\left[E_{\omega}\right] = \frac{1}{2}k_{B}T\tag{2}$$

Compute the sample mean $\langle E_{\omega} \rangle$ and compare with the expectation value.

- d) Use another Monte Carlo method to compute $\langle E_{\omega} \rangle$ and compare the efficiency with the previous one.
- e) Compute the variance, skewness and kurtosis of the distribution and comment.

Task 2: Convergence

If the experiment is repeated N_{exp} times, it can be seen that the sample means $\langle E_{\omega} \rangle$ of the experiments are distributed according to a Gaussian distribution. In the following sub-tasks, we will look at the convergence behaviour of $\langle E_{\omega} \rangle$. Each of the N_{exp} experiments still contains $N \gg 1$ data points generated with the MC process.

- a) Take $N_{exp} = 1$ and show the law of large numbers based on the data points you generated.
- b) Given one experiment composed of many measurements, compute the variance of $x = \sqrt{2E_{\omega}/m\omega^2}$, where ω is a constant value. Compare it with what is expected from the analytical formula and comment.
- c) Take $N_{exp} \gg 1$ and show the validity of the central limit theorem for $\langle E_{\omega} \rangle$. Compute the variance of $\langle E_{\omega} \rangle$ and compare it with the value you expect.

Task 3: χ^2 distribution

By filling the numbers generated from the MC process into a histogram, we can study the χ^2 properties of the distribution. For now, we fix $N_{exp} = 1$ and $N \gg 1$, according to the probability density function in Eq. (1). Fill the obtained E_{ω} values in a histogram.

- a) What is the expected p.d.f. for the number of entries per bin?
- b) Show that the χ^2 of the obtained entries per bin follows a χ^2 distribution. Instead of calculating the empirical mean value per bin from the experiments, use the nominal value from the p.d.f. formula per bin as the mean value per bin.
- c) How does the χ^2 distribution change with the number of bins?

Task 4: Parameter estimation

We will now use three different methods to perform parameter estimation and compare the results from the different methods. Let's again start with one single experiment $(N_{exp} = 1)$ with $N \gg 1$ data points according to the probability density function in Eq. (1).

- a) Compute the log likelihood $\ln L(E_{\omega,1}, E_{\omega,2}, ..., E_{\omega,N} | T)$ at a given T. Then, use the maximum likelihood method to estimate T and its variance.
- b) Compute the goodness of fit at various T and use the least squares method to estimate T and its variance.
- c) The parameter T can also be estimated by computing the sample mean $\langle E_{\omega} \rangle$ of Eq. (1) with the MC integral. Perform this estimation of T and its corresponding variance.
- d) Compare the results from the three questions above and discuss them.

Task 5: Hypothesis testing

Generate $N_{exp} = 200$ experiments and combine them into pairs, that is, forming a total of 100

pairs of experiments. Now let's assume we obtained these datasets in actual experiments and we would like to – for each pair – test the hypothesis that the two sets of experimental data originate from the same distribution. Set a threshold for the hypothesis testing and perform Kolmogorov tests for all dataset pairs. Then, comment on your outcome with respect to the threshold you set.

Task 6: Bonus question

Generate N_{exp} number of experiments with N data in each. Compute the exact Fisher information with the equation

$$I_X(T) = \mathbb{E}\left[-\frac{\partial^2 \ln L(X|T)}{\partial^2 T} \bigg|_{T=T_0} \right]$$
 (3)

Compare your results with the variance $V(\hat{T}-T)$ and discuss.

N.B. This task is not required for your report, but if you hand in a solution, it can be accredited for bonus points.