PERBANDINGAN METODE INTER-BAND CARRIER AGGREGATION DAN INTRA-BAND CARRIER AGGREGATION PADA JARINGAN LTE-ADVANCED UNTUK FREKUENSI 1800 MHZ DAN 2100 MHZ DI AREA CIJERAH BANDUNG

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

Oleh:

TRIA ANANDA

6705184058

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Mengacu pada data tahun 2019-2020 Asosiasi Penyelenggara Jasa Internet Indonesia (APJII) megeluarkan hasil survei yang berisikan bahwa pengguna internet di Indonesia sebanyak 73,3% dari total populasi penduduk di Indonesia [2]. Sementara dari data Badan Pusat Statistik (BPS) mengenai jumlah pelanggan telepon selular pada tahun 2019 statistik pengguna komunikasi selular di Indonesia mengalami kenaikan tiap tahunnya hingga mencapai 63,53% [1]. Sehingga dapat disimpulkan bahwa tingkat mobilitas dan kebutuhan masyarakat semakin meningkat sehingga membutuhkan komunikasi yang semakin fleksibel dan cepat.

Teknologi *mobile broadband* yang sedang berkembang adalah teknologi *Long Term Evolution* (LTE) [4]. Teknologi Komunikasi 4G LTE hadir sebagai solusi atas kebutuhan akan komunikasi data yang semakin meningkat. 3GPP mengeluarkan teknologi LTE-*Advanced* yang mulai diluncurkan pada *Release* 10 [3]. LTE-*Advanced* diharapkan mampu menyediakan efisiensi dalam penggunaan jaringan radio, layanan *mobile broadband* berkualitas tinggi, dan penyediakan akses dengan kecepatan tinggi serta *bandwidth* besar [4].

Pada teknologi LTE-Advanced sudah mendukung metode carrier aggregation, hal ini bertujuan untuk meningkatkan bandwidth dengan cara menyatukan beberapa komponen carrier sehingga dapat menghasilkan data rate yang tinggi dengan cara yang lebih efisien. Pokok utama dalam pengembangan LTE Advanced meliputi peningkatan throughput per user, spectral efficiency, throughput pada cell edge dan pengurangan cost [5]. Penggunaan metode carrier aggregation memiliki keuntungan seperti penggunaan spektrum frekuensi yang lebih efisien hal ini disebabkan karena operator dapat menggabungkan spektrum frekuensi yang kecil, pemanfaatan spektrum frekuensi yang tidak digunakan seperti dengan memanfaatkan spektrum frekuensi unlicensed, peningkatan data rates / throughput, dan kapasitas yang lebih besar [6] . LTE-Advanced memungkinkan agregasi maksimal lima operator dengan bandwidth hingga 20 MHz untuk mencapai total bandwidth transmisi hingga 100 MHz [7].

Terdapat beberapa tipe *carrier aggregation*, meskipun demikian *carrier aggregation* memiliki tujuan yang sama yaitu meningkatkan *data rate / throughput*

yang dapat diterima pengguna dan penggunaan tipe *carrier aggregation* bergantung pada kebutuhan penyedia layanan, hal ini bertujuan untuk meningkatkan efesiensi [4]. Fitur CA terdiri dari 3 tipe yaitu *carrier aggregation intra-band contiguous*, *carrier aggregation intra-band non-contiguous*, dan *carrier aggregation inter-band non-contiguous* [7].

Dalam hal ini kawasan Cijerah yang merupakan bagian dari kota Bandung terletak di ujung barat kota Bandung berbatasan dengan kota Cimahi, yang dimana berdasarkan data OSS operator Indosat diketahui bahwa terjadi permasalahan performansi jaringan yang disebabkan oleh kebutuhan kapasitas jaringan LTE yang terus meningkat sehingga berdampak pada buruknya *throughput* dan SINR yang diterima. Sehingga pada penyusunan proyek akhir ini, dilakukan perencanaan jaringan 4G LTE-*Advanced* 1800 MHz dan 2100 MHz di kawasan tersebut dengan cara mencari skenario terbaik dari perbandingan metode *Inter-Band Carrier aggregation* dan *Intra-Band Carrier aggregation*. Parameter KPI yang dihitung dan diamati diantaranya yaitu RSRP, SINR, *Throughput*.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

				Perbedaan dengan judul PA yang akan
No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan	diangkat
1.	Penetrasi dan Profil Perilaku Pengguna Internet Indonesia	2020	Dalam pustaka ini penulis menjelaskan data hasil survei pengguna internet di Indonesia terus meningkat hingga pada tahun 2020.	Berbeda dengan pustaka [1] yang memberikan informasi data survei pengguna internet di Indonesia hingga tahun 2020, pada penelitian ini akan dibuat perbandingan metode <i>Inter-Band Carrier aggregation</i> dan <i>Intra-Band Carrier</i>
2.	Statistik Telekomunikasi Indonesia 2019	2020	Dalam pustaka ini penulis menjelaskan data statistik pengguna telepon selular di Indonesia mengalami peningkatan hingga pada tahun 2019.	aggregation pada jaringan LTE-A. Berbeda dengan pustaka [2] yang memberikan informasi data statistik pengguna telepon selular di Indonesia hingga tahun 2019, pada penelitian ini akan dibuat perbandingan metode Inter-Band Carrier aggregation dan Intra-Band Carrier aggregation pada jaringan LTE-A.
3.	Performance of LTE Release 8 and Release 10 in Wireless Communications	2012	Dalam jurnal ini penulis membandingkan LTE reales 8 dan reales 10.	Berbeda dengan jurnal [3] yang membandingkan LTE <i>reales</i> 8 dan <i>reales</i> 10 , pada penelitian ini

				akan dibuat perbandingan metode Inter-Band
				Carrier aggregation dan Intra-Band Carrier
				aggregation pada jaringan LTE-A.
4.	Perancangan dan Analisis LTE Advanced	2018	Dalam penelitian ini dilakukan perancangan dan	Berbeda dengan penilitian [4] yang melakukan
	850 Mhz untuk Meningkatkan Penetrasi	2010	analisa pemanfaatan frekuensi 850 MHz pada	perancangan dan analisa pemanfaatan frekuensi
	Mobile Broadband di Indonesia		implementasi teknologi LTE yang lebih terbaru	850 MHz pada implementasi LTE-Advanced
			yaitu LTE-Advanced release 12, untuk dapat	release 12, pada penelitian ini akan dibuat
			meningkatkan penetrasi broadband baik secara	perbandingan metode Inter-Band Carrier
			cakupan juga trafik pengguna di Indonesia.	aggregation dan Intra-Band Carrier aggregation
				pada jaringan LTE-A.
5.	LTE Carrier Aggregation Technology	2014	Dalam pustaka ini penulis membahas fitur	Berbeda dengan pustaka [5] yang membahas
	Development and Deployment Worldwide		utama LTE-Advanced yang memungkinkan	fitur utama LTE-Advanced yaitu
			operator membuat <i>bandwidth</i> operator	memungkinkan metode Carrier Aggregation,
			"virtual" yang lebih besar untuk layanan LTE	pada penelitian ini akan dibuat perbandingan
			dengan menggabungkan alokasi spektrum	metode Inter-Band Carrier aggregation dan
			terpisah.	Intra-Band Carrier aggregation pada jaringan
				LTE-A.
6.	From GSM to LTE-Advanced: an	2014	Dalam pustaka ini penulis membahas	Berbeda dengan pustaka [6] yang membahas
	Introduction to Mobile Networks and		teknologi LTE-Advanced, pokok utama dalam	
	Mobile Broadband, 2 nd Edition			Advanced, pada penelitian ini akan dibuat

			peningkatan throughput per user, spectral	perbandingan metode Inter-Band Carrier
			efficiency, throughput pada cell edge dan	aggregation dan Intra-Band Carrier aggregation
			pengurangan cost.	pada jaringan LTE-A.
	Demonsor Loringon LTE Advanced	2010	Dolom monolition ini dilabutan marangangan	Dambada dangan manilitian [7] yang malakukan
7.	Perancangan Jaringan LTE-Advanced	2018	Dalam penelitian ini dilakukan perancangan	Berbeda dengan penilitian [7] yang melakukan
	Menggunakan Metode Carrier		jaringan LTE-A menggunakan metode Carrier	perancangan menggunakan metode Carrier
	Aggregation Inter Band Non-Contiguous		Aggregation Inter-band Non- Contigous dengan	Aggregation Inter-band Non- Contigous dengan
			frekuensi 900 MHz dan 1800 MHz.	frekuensi 900 MHz dan 1800 MHz, pada
				penelitian ini akan dibuat perbandingan metode
				Inter-Band Carrier aggregation dan Intra-Band
				Carrier aggregation pada jaringan LTE-A untuk
				frekuensi 1800 MHz dan 2100 MHz.
	Analisis Perancangan LTE-A Dengan	2018	Dalam penelitian ini dilakukan perencanaan	Berbeda dengan penilitian [8] yang melakukan
8.	Teknik Carrier Aggregation Interband		jaringan LTE menggunakan teknik carrier	perencanaan menggunakan teknik <i>carrier</i>
	Pada Frekuensi 1800 Mhz Dan 2300 Mhz		aggregation inter-band dengan frekuensi 1800	aggregation inter-band dengan frekuensi 1800
	Di Kota Semarang Tengah (Study Kasus:		MHz dan 2300 MHz. Skenario yang digunakan	MHz dan 2300 MHz, pada penelitian ini akan
	Pt. Telkomsel)		yaitu Skenario Carrier Aggregation Develpoment	dibuat perbandingan metode <i>Inter-Band Carrier</i>
	,		Scenario 2.	aggregation dan Intra-Band Carrier aggregation
				pada jaringan LTE-A untuk frekuensi 1800 MHz
				dan 2100 MHz di <i>Area</i> Cijerah Bandung.
				(Operator Indosat).
				(Operator muosat).
			1	

9.	Analisis Perencanaan	LTE-Advanced	2015	Dalam penelitian ini dilakukan perancangan LTE-	Berbeda dengan penilitian [9] yang melakukan	
	dengan Metoda Carrier A	ggregation Inter-		Advanced dengan metode carrier aggregation	perencanaan menggunakan metode carrier	
	Band Non-Contiguous	dan Intra-Band		inter-band non-contiguous dan intra-band non-	aggregation inter-band non-contiguous dan	
	Non-Contiguous di kota E	Bandar Lampung		contiguous menggunakan bandwidth 20 MHz	intra-band non-contiguous menggunakan	
				dengan membandingkan skenario carrier	bandwidth 20 MHz dengan membandingkan	
				aggregation inter-band non-contiguous pada	skenario carrier aggregation inter-band non-	
				frekuensi 900 MHz dan 1800 MHz serta intra-band	contiguous pada frekuensi 900 MHz dan 1800	
				non-contiguous pada frekuensi 1800 MHz.	MHz serta intra-band non-contiguous pada	
					frekuensi 1800 MHz., pada penelitian ini akan	
					dibuat perbandingan metode Inter-Band Carrier	
					aggregation dan Intra-Band Carrier aggregation	
					pada jaringan LTE-A untuk frekuensi 1800 MHz	
					dan 2100 MHz di <i>Area</i> Cijerah Bandung	

Rancangan Sistem

Pada bab ini dijelaskan mengenai rancangan sistem jaringan LTE-A dengan membandingkan metode *Inter-Band Non Contigous Carrier Aggregation dan Intra-Band Non Contigous Carrier Aggregation* untuk mencari skenario terbaik di kawasan tersebut, dimana tahap awal yaitu menentukan lokasi *Non CA* menggunakan KML 4G kemudian dilakukan *drive test* atau pengukuran kualitas sinyal. Dalam hal ini lokasi Cijerah Bandung memiliki kualitas jaringan yang kurang baik dan belum dilakukan CA untuk operator Indosat. Sehingga dilakukan perencanaan jaringan LTE-A pada lokasi tersebut. Setelah itu dilakukan *reporting* untuk melihat apakah daerah tersebut memiliki kualitas jaringan yang baik atau tidak. Seperti yang digambarkan dalam rancangan sistem dibawah ini:

Gambar 1 Model Rancangan Sistem

Referensi

- [1] Badan Pusat Statistik Indonesia, "Statistik Telekomunikasi Indonesia 2019," BPS, 02 12 2020. [Online]. Available: https://www.bps.go.id/publication/2020/12/02/be999725b7aeee62d84c6660/statistik-telekomunikasi-indonesia-2019.html. [Accessed 25 02 2021].
- [2] Herman, "APJII: Pengguna Internet di Indonesia Capai 196,7 Juta," Berita Satu, 09 11 2020. [Online]. Available: https://www.beritasatu.com/digital/696577/apjii-pengguna-internet-di-indonesia-capai-1967-juta#:~:text=Berdasarkan%20hasil%20survei%20penetrasi%20pengguna,Indonesia%20sekit ar%20266%2C9%20juta.. [Accessed 25 02 2021].
- [3] M. Abdullah and A. Yonis, "Performance of LTE Release 8 and Release 10 in wireless communications," *IEEE*, vol. doi:10.1109, no. cybersec.2012.6246127, pp. 236-241, 2012.
- [4] A. WAHYUDIN, M. A. AMANAF and I. K. RATNASARI, "Perancangan dan Analisis LTE Advanced 850 Mhz untuk Meningkatkan Penetrasi Mobile Broadband di Indonesia," *ELKOMIKA*, vol. Vol.7 No.1, no. ISSN (p): 2338-8323 | ISSN (e): 2459-9638, pp. 57-71, 2019.
- [5] M. Sauter, From GSM to LTE-Advanced: An Introduction to Mobile Networks and Mobile Broadband, Revised, 2nd Edition, Cologne: Wiley, 2014.
- [6] W. K. Prihastanto, A. A. Muayyadi and A. Fahmi, "PERBANDINGAN KINERJA SISTEM LTE-ADVANCED DENGAN PRIORITASISASI CARRIER AGGREGATION DI INTERBAND VERSUS DI NTRA-BAND UNTUK PERENCANAAN BARU DI KOTA JAKARTA BARAT," *E-Proceeding of Engineering*, Vols. Vol.7, No.2, no. ISSN: 2355-9365, pp. 52-59, 2020.
- [7] 4GAmericas, LTE Carrier Aggregation Technology Development and Deployment Worldwide, 4GAmericas, 2014.
- [8] J. N. Sinulingga, A. Wahyudin and M. A. Amanaf, "ANALISIS PERANCANGAN LTE- A DENGAN TEKNIK CARRIER AGGREGATION INTERBAND PADA FREKUENSI 1800 MHz DAN 2300 MHz DI KOTA SEMARANG TENGAH (STUDY KASUS: PT. TELKOMSEL)," Jurnal Elektro Telekomunikasi Terapan, pp. 634-645, 2018.
- [9] D. W. Saputra, U. K. Usman and L. Meylani, "ANALISIS PERENCANAAN LTE-ADVANCED DENGAN METODA CARRIER AGGREGATION INTER-BAND NON-CONTIGUOUS DAN INTRA-BAND NON CONTIGUOUS DI KOTA BANDAR LAMPUNG," *E-Proceeding of Engineering*, Vols. Vol.2, No.2, no. ISSN: 2355-9365, pp. 45-51, 2015.

Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 28 Februari 2021

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : HPT

Nama: Hasanah Putri, S.T., M.T.

CALON PEMBIMBING 2

Kode : -

Nama : Yanuar Christiary (RF Engineer)

Menyatakan bersedia menjadi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705184058

Nama : Tria Ananda

Prodi / Peminatan : D3TT

Calon Judul PA : Perbandingan Metode Inter-Band Carrier Aggregation dan Intra-Band

Carrier Aggregation pada Jaringan LTE-Advanced untuk Frekuensi 1800

MHz dan 2100 MHz di Area Cijerah Bandung.

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Hasanah Putri, S.T., M.T.

Calon Pembimbing 2

Yanuar Christiary

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl. Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk

: 6705184058

Dosen Wali

: HPT / HASANAH PUTRI

Mahasiswa) Nama

: TRIA ANANDA

Program Studi : D3 Teknologi Telekomunikasi

2018/2019 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	А	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	А	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	АВ	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	А	
DUH1A2	LITERASI TIK	ICT LITERACY	2	А	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	А	
	Jumlah SKS				
	3.88				

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	AB	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	А	
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	А	

Jumlah SKS	21	
IPS	3.95	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	А	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	А	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	А	
	Jumlah SKS	21			
	3.95				

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	5	0			
		0			

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	А	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	А	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	А	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	А	
	19				
	3.92				

2019/2020 - GENAP

2019/2020 - GENAP					
Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	АВ	
	21				
	TPS				

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	А	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	А	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	АВ	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А	
	21				
	IPS	3.81			

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	А	
UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А	
UWI3E1	HEI	HEI	1	А	
VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3	А	
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	А	
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	А	
VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	А	
Jumlah SKS			16		
IPS			4		

2020/2021 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UMI4K2	KKN TEMATIK	THEMATIC COMMUNITY SERVICES	2		
VPI3GC	MAGANG	APPRENTICE	12		

Jumlah SKS	18	
IPS	0	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
VTI3F4	PROYEK AKHIR	FINAL PROJECT	4		
Jumlah SKS		18			
IPS			0		

Tingkat I	: 41 SKS	Belum Lulus	IPK: 3.91
Tingkat II	: 91 SKS	Belum Lulus	IPK: 3.9
Tingkat III	: 97 SKS	Belum Lulus	IPK: 3.91
Jumlah SKS	: 97 SKS		IPK : 3.91

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 02 Maret 2021 07:45:03 oleh TRIA ANANDA