

Università di Pisa

Dipartimento di Informatica Corso di Laurea Triennale in Informatica

Corso 2° anno - 6 CFU

Statistica

Professore: Prof. Francesco Grotto

Autore: Filippo Ghirardini

${\bf Contents}$

1	Statistica	descrittiva	3
	1.0.1	Campioni statistici	3
	1.0.2	Istogramma	3
	1.0.3	Indici statistici	3
	1.0.4	Quantili	4
	1.0.5	Dati multi-variati	4
			6
2	2 Probabilità e indipendenza		

CONTENTS 1

Statistica

Realizzato da: Filippo Ghirardini

A.A. 2023-2024

1 Statistica descrittiva

La statistica si occupa dello studio dei dati, ovvero della sua **raccolta**, **analisi** ed **interpretazione**. Le risposte dipendono dai dati e dalla conoscenza pregressa del problema, quindi da eventuali ipotesi ed assunzioni.

- Statistica descrittiva: quando i dati vengono analizzati senza fare assunzioni esterne per evidenziarne la struttura e rappresentarli in modo efficace
- Inferenza statistica: studia i dati utilizzando un modello probabilistico, ovvero supponendo che i dati siano valori assunti da variabili aleatorie con una certa distribuzione di probabilità dipendente da parametri non noti che devono essere stimati. Il modello potrà poi fare previsioni.

1.0.1 Campioni statistici

Definizione 1.0.1 (Popolazione). Insieme di oggetti o fenomeni che si vuole studiare su ognuno dei quali si può effettuare una stessa misura, ovvero un **carattere**. Può essere **ideale** o **reale**.

Definizione 1.0.2 (Campione statistico). Un sottoinsieme della popolazione scelto per rappresentarla.

Definizione 1.0.3 (Dati). Misure effettuate sul campione statistico.

Definizione 1.0.4 (Frequenza). Può essere:

- Assoluta: il numero di volte in cui questo esito compare nei dati
- Relativa: frazione di volte in cui questo esito compare sul totale dei dati

In generale dipendono dai dati e quindi non coincidono su tutta la popolazione.

Note 1.0.1. La scelta del campione in modo che sia rappresentativo è importante ma non verrà trattata.

1.0.2 Istogramma

Consiste in una serie di colonne ognuna delle quali ha per base un intervallo numerico e per area la frequenza relativa dei dati contenuti nell'intervallo.

Osservazione 1.0.1. La scelta delle ampiezze degli intervalli di base è cruciale. Un buon compromesso deve essere individuato sulla base della numerosità dei dati e sulla loro distribuzione.

Può avere varie forme:

- Normale se ha la forma di una campana simmetrica
- Unimodale se si concentra su una colonna più alta o bimodale se su due. Può essere asimmetrica a destra o a sinistra in base alla concentrazione dei dati in base al picco
- Platicurtica se i dati sono concentrati in un certo intervallo o leptocurtica se sono composti da un gruppo centrale e da molti *outliers*

1.0.3 Indici statistici

Dato un vettore $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ di dati numerici gli indici statistici sono quantità che riassumono alcune proprietà significative.

Definizione 1.0.5 (Media campionaria). La media aritmetica dei dati:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

Definizione 1.0.6 (Mediana). Il dato x_i tale che la metà degli altri valori è minore o uguale ad esso e l'altra metà maggiore o uguale.

Osservazione 1.0.2. La mediana è utile nel caso di dati molto asimmetrici ed è robusta rispetto alle code delle distribuzione. Al contrario la media campionaria viene facilmente spostata da dati molto piccoli o grandi.

Definizione 1.0.7 (Varianza campionaria). Si usa per misurare la dispersione dei dati attorno alla media campionaria.

$$var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 (2)

È nulla se i dati sono tutti uguali. Possiamo mappare x diversamente:

- $x \mapsto x^2$ misura la media dei punti della media campionaria
- ullet $x\mapsto x^3$ misura la **sample skewness**, ovvero l'asimmetria della distribuzione

$$b = \frac{1}{\sigma} \cdot \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3 \tag{3}$$

• $x \mapsto x^4$ misura la piattezza della distribuzione dei dati, ovvero la **curtosi**

Definizione 1.0.8 (Scarto quadratico medio o deviazione standard).

$$\sigma(x) = \sqrt{var(x)} \tag{4}$$

Proposizione 1.0.1. Dato un campione di dati x ed un numero positivo d:

$$\frac{\#\{x_i: |x_i - \bar{x}| > d\}}{n - 1} \le \frac{var(x)}{d^2} \tag{5}$$

Il termine a sinistra è la frazione di dati che differiscono dalla media campionaria più di d.

1.0.4 Quantili

Definizione 1.0.9 (Funzione di ripartizione empirica). Dato $x = (x_1, \dots, x_n) \in \mathbb{R}^n$:

$$F_e(t) = \frac{\#\{i | x_i \le t\}}{n} \tag{6}$$

Per ogni $t \in \mathbb{R}$ restituisce la frequenza relativa dei dati minori o uguali a t. È sempre **non decrescente** $e F_e(-\infty) = 0$, $F(+\infty) = 1$.

Definizione 1.0.10 (β -quantile). Il dato x_i tale che:

- almeno βn dati siano $\leq x_i$
- almeno $(1 \beta)n$ dati siano $\geq x_i$

Inoltre:

- Se βn non è intero vale $x_{(\lceil \beta n \rceil)}$
- Se βn è intero è la media aritmetica tra $x_{(\beta n)}$ e $x_{(\beta n+1)}$

1.0.5 Dati multi-variati

Consideriamo coppie di dati bivariati del tipo

$$(x,y) = ((x_1,y_1), \dots, (x_n,y_n))$$

Definizione 1.0.11 (Covarianza campionaria).

$$cov(x,y) = \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{n-1}$$
 (7)

Definizione 1.0.12 (Coefficiente di correlazione). Dati $\sigma(x) \neq 0$ e $\sigma(y) \neq 0$:

$$r(x,y) = \frac{cov(x,y)}{\sigma(x)\sigma(y)} \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{t})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(8)

Misura la presenza di una relazione lineare tra i dati x e y quantificata dalla retta di regressione.

Proposizione 1.0.2 (Disuguaglianza di Cauchy-Scwarz).

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \le \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$
(9)

e quindi

$$|r(x,y)| \le 1\tag{10}$$

La **retta di regressione** è un'approssimazione dei dati con y_i con una combinazione lineare affine a $a + bx_i$, ottenuta cercando il minimo della distanza dai dati da questa retta con i quadrati degli scarti. L'obiettivo è quindi di cercare i parametri a e b calcolando

$$\inf_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - a - bx_i)^2 \tag{11}$$

Teorema 1.0.1 (Retta di regressione). Se $\sigma(x) \neq 0$ e $\sigma(y) \neq 0$, esiste un unico minimo al variare di $a, b \in \mathbb{R}$ della quantità 11, dato da:

$$b^* = \frac{(n-1)cov(x,y)}{n \cdot var(x)} \qquad a^* = -b^* \bar{x} + \bar{y}$$
 (12)

e vale

$$\min_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - a - bx_i)^2 = (1 - r(x,y)^2) \sum_{i=1}^{n} (y_i - \bar{y})^2$$
(13)

Quanto più r(x,y) è vicino a 1, tanto più i valori tendono ad allinearsi con la retta. Se vale 1 vuol dire che i punti sono tutti sulla retta. Il segno di r(x,y) corrisponde al segno del coefficiente angolare. Se è prossimo a zero allora non è una buona approssimazione.

2 Probabilità e indipendenza

La probabilità serve per quantificare l'incertezza misurando la fiducia che un evento possa accadere.

Definizione 2.0.1 (Spazio campionario). Lo spazio di probabilità Ω è l'insieme di tutti gli esiti possibili (eventi elementari) ω dell'esperimento. Ogni affermazione sulle misure corrisponde ad un sottoinsieme $A \subset \Omega$ degli esiti che la soddisfa. Ognuna delle affermazioni può essere combinata logicamente con le operazioni insiemistiche.

Definizione 2.0.2 (Eventi incompatibili).

$$A \cap B = \emptyset \tag{14}$$

Definizione 2.0.3 (Esperimento composto). Se un esperimento è composto da una successione ordinata di n sotto-esperimenti, il suo spazio campionario è

$$\Omega = \{(\omega_1, \omega_2, \dots, \omega_n) | \omega_1 \in \Omega_1, \dots, \omega_n \in \Omega_n\}$$
(15)

dove Ω_i è l'insieme degli esiti dell'i-esimo sotto-esperimento.

Definizione 2.0.4 (σ -algebre). L'insieme di tutti i sottoinsiemi di Ω che sia chiuso per le operazioni logiche come unione e intersezione.

Osservazione 2.0.1. Se due eventi sono incompatibili la probabilità che si realizzi uno qualsiasi dei due è la somma delle probabilità dei singoli eventi.

Definizione 2.0.5 (Probabilità). È il grado di fiducia che un evento si realizzi. È compreso tra 0 e 1. Più precisamente, dato Ω un insieme e F una σ -algebra di parti di Ω , è una funzione $\mathbb{P}: F \to [0,1]$ tale che:

- l'evento certo ha probabilità $\mathbb{P}(\Omega) = 1$
- $(\sigma$ -addittività) se $(A_n)_{n=1,2,...}$ è una successione di eventi a due a due disgiunti, vale

$$\mathbb{P}\left(\bigcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} \mathbb{P}(A_n) \tag{16}$$

e nel caso di finiti sottoinsiemi disqiunti

$$\mathbb{P}\left(\bigcup_{n=1}^{N} A_n\right) = \sum_{n=1}^{+N} \mathbb{P}(A_n)$$
(17)

Note 2.0.1. Si dice trascurabile un evento A tale che $\mathbb{P}(A) = 0$ e quasi certo un evento A tale che $\mathbb{P}(A) = 1$.

Proposizione 2.0.1. Proprietà della probabilità:

- $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ e di conseguenza $\mathbb{P}(\emptyset) = 0$
- $B \subset A \Longrightarrow \mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(B)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \mathbb{P}(A \cap B) \mathbb{P}(A \cap C) \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$

Proposizione 2.0.2 (Limite di una successione di eventi). Data una successione di eventi A_1, \ldots, A_n, \ldots , questa può essere:

- Crescente: $A_n \subseteq A_{n+1}$ e quindi $A = \bigcup_{n=1}^{+\infty} A_n = \lim_{n \to \infty} A_n$
- **Decrescente**: $A_n \supseteq A_{n+1}$ e quindi $A = \bigcap_{n=1}^{+\infty} A_n = \lim_{n \to \infty} A_n$

In entrambi i casi vale:

$$\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n) \tag{18}$$