EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

HAFTA 10 – DERS 1 22 Nisan 2025

Dr. Sibel ÇİMEN

ARDIŞIL DEVRELER (SEQUENTIAL LOGIC CIRCUIT)

İçinde flip-flop bulunduran lojik devrelerdir. Bundan dolayı kombinezonsal devreler gibi çıkışları girişleri ile yegane olarak belirlenen devreler <u>değildir</u>. Flip-Flopların çıkışları durum değişkenleri olarak adlandırılır. Ardışıl devrelerin çıkış ifadeleri giriş değişkenlerine ve durum değişkenlerine bağlı olarak belirlenirler. Flip-Floplar kullanıldığı için ardışıl devreler yapısı itibariyle hafızalı devreler olarak da adlandırılırlar. Çeşitli lojik değerler enerji kesilmediği müddetçe flip-floplarda devre yapısına bağlı olarak tutulur ve istenildiği zaman bu durumlar (değerler) kullanılır.

İki farklı tip ardışıl devre modeli (ardışıl devre makinesi) vardır.

- Mealy modeli (makinesi), - Moore modeli (makinesi)

Mealy modeli

Çıkışlar: f(şimdiki durum, girişler)

Moore modeli

Ardışıl Devre Analizi Örneği:

Mealy modeli devresi

Durum veya Bellek: Q1Q0

Bir giriş: X; Bir çıkış: Z

Çıkışları yazmak kolay! Devre diyagramından bakılırsa:

$$Z = Q_1Q_0X$$

Mealy modeli devresi !!!

Bu örnek için, flip-flop giriş denklemleri:

$$J_1 = X' Q_0$$

$$K_1 = X + Q_0$$

$$J_0 = X + Q_1$$

$$K_0 = X'$$

Şimdiki	i Durum	Giriş		FF Gir	rişleri		Gelecek Durum		Çıkış
Q_1	\mathbf{Q}_0	X	J_1	K_1	J_0	K_0	Q_1	Q_0	Z
0	0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	1	0	0
0	1	1	0	1	1	0	0	1	0
1	0	0	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0	1	0
1	1	0	1	1	1	1	0	0	0
1	1	1	0	1	1	0	0	1	1

Ardışıl Devre Analizi Örneği:

<u>Adım 1:</u>

Flip-flop girişleri için Boole fonksiyon ifadeleri bul.

Adım 2:

Bu fonksiyon ifadelerini kullanarak gerçek flip-flop giriş değerlerini bul (şimdiki durum ve girişler üzerinden olası bütün kombinasyonlar için)

Yani, durum tablosunda arada yeni kolonlar oluştur.

Adım 3:

Flip-flop karakteristik tablosunu veya denklemlerini kullanarak gelecek durum değerlerini bul (şimdiki durumlar ve girişlere bakarak elde edilmiş olan flip-flop giriş değerlerini kullanarak)

$$J_1 = X' Q_0$$
 $J_0 = X + Q_1$
 $K_1 = X + Q_0$ $K_0 = X'$

X'-J1 J	Q Q1
X K1 K	Q
X J0 J C	Q Q0
х' ко к	Q >-

Şimdik	Şimdiki Durum		Flip-flop Girişleri			
Q_1	Q_0	Х	J_1	K ₁	J_0	K ₀
0	0	0	0	0	0	1
0	0	1	0	1	1	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
1	0	0	0	0	1	1
1	0	1	0	1	1	0
1	1	0	1	1	1	1
1	1	1	0	1	1	0

Ardışıl Devre Analizi Örneği:

Adım 4: Devredeki flip-flop olan JK flip-flop karakteristik tablosu veya denklemlerini yardımıyla, şimdiki durum ve giriş değerlerine bakarak her bir flip-flop'un gelecek durumunu bul.

$$Q(t+1) = K'Q(t) + JQ'(t)$$

J	K	Q(†+1)	İşlem
0	0	Q(†)	Değişmez
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Tümleme

Şimdik	i Durum	Giriş	FF Girişler			Gelece	k Durum	
Q_1	Q_0	X	J_1	K ₁	J_0	K ₀	Q_1	Q_0
0	0	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0	1
0	1	0	1	1	0	1	1	0
0	1	1	0	1	1	0	0	1
1	0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	0	1
1	1	0	1	1	1	1	0	0
1	1	1	0	1	1	0	0	1

Ardışıl Devre Analizi Örneği:

- Durum diyagramı çizerek durum tablosunu grafiksel olarak ifade edebiliriz.
- Bu örneğe ait durum diyagramı:

Şimdik	i Durum	Giriş Gelecek Durum			Çıkış
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Ardışıl Devre Analizi Örneği: ARDIŞIL DEVRE ANALİZİ

Zaman Diyagramını Çizelim.

Ardışıl Devre Analizi Örneği:

Moore Modeli Örneği

Bu devrenin analizini yapalım.

$$J_0 = x$$

$$K_0 = x. \overline{Q_1}$$

$$J_1 = x$$

$$K_1 = x \oplus \overline{Q_0}$$

$$z = Q_0 Q_1$$

Ardışıl Devre Analizi Örneği:

Moore Modeli Örneği

$$J_0 = x$$

$$J_1 = x$$

$$z = Q_0 Q_1$$

$$J_0 = x$$
 $J_1 = x$
 $K_0 = x \cdot \overline{Q_1}$ $K_1 = x \oplus \overline{Q_0}$

$$K_1 = x \oplus \overline{Q_0}$$

Şimdik	i Durum	Girişler	FF Girişleri			Gelecek	Çıkışlar		
Q_1	Q_0	X	J_1	K_1	J_0	K ₀	Q_1	Q_0	Z
0	0	0	0	1	0	0	0	0	0
0	0	1	1	0	1	1	1	1	0
0	1	0	0	0	0	0	0	1	0
0	1	1	1	1	1	1	1	0	0
1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	1	0	1	1	0
1	1	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	1	1

Ardışıl Devre Analizi Örneği:

Şimdiki	Durum	Girişler	FF Girişleri			Gelecek	Çıkışlar		
Q_1	Qo	X	J_1	K ₁	Jo	K ₀	Q_1	Q_0	Z
0	0	0	0	1	0	0	0	0	0
0	0	1	1	0	1	1	1	1	0
0	1	0	0	0	0	0	0	1	0
0	1	1	1	1	1	1	1	0	0
1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	1	0	1	1	0
1	1	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	1	1

Zaman diyagramı çizilir.

Durum diyagramı

Ardışıl Devre Analizi Örneği:

Bir durum: A

Dikkat edilirse Z= A, yani sadece şimdiki duruma bağlı bir fonksiyon

Durum Tablosu									
Present state	Inp	uts	Next state	Output					
Α	X	Y	Α	Z					
0	0	0	0	0					
0	0	1	1	0					
0	1	0	1	0					
0	1	1	0	0					
1	0	0	1	1					
1	0	1	0	1					
1	1	0	0	1					
1	1	1	1	1					

REFERANSLAR:

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, http://tuncayuzun.com/Dersnot_LDT.htm, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.
- 3. M. Morris Mano, Sayısal Tasarım (Çeviri), Literatür Yayıncılık: İstanbul, 2003.