Zusammenfassung: Logik für die Informatik

Rico Klimpel

January 29, 2020

Contents

- I Aussagenlogik
- II Prädikatenlogik
- 1 S-Signatur

Informationen

- Zusammenfassung der Vorlesung Logik für die Informatik an 1 der CAU Kiel aus dem Wintersemester 2019/2020, gehalten von Prof. Dr. Thomas Wilke. Ein Versuch die wichtigsten Aussagen ohne enorm lange Formalitäten drum herum knapp
- 2 zu Papier zu bringen. Kein Anspruch auf Vollständigkeit. Geschrieben in LATEX.

2

Part I

Aussagenlogik

Hier kommt alles zur Aussagenlogik rein.

Ja

Stimmt

Schon ganz viel hier!

Part II

Prädikatenlogik

1 S-Signatur

Eine Signatur S besteht aus eine Menge S von Symbolen und einer Funktion $\Sigma \colon S \to \mathbf{N} \cup \mathbf{N} \times \{1\}$.

The Elemente von S werden Symbole genannt und wie folgt eingeteilt:

• Ein Symbol f mit $\Sigma(f) = \langle n, 1 \rangle$ für n > 0 ist eine Funktionssymbol.

Menge dieser Symbole: \mathcal{F}_{Σ} oder einfach \mathcal{F} .

• Ein Symbol R mit $\Sigma(R)=n$ für n>0 ist ein Relationssymbol.

Menge dieser Symbole: \mathcal{R}_{Σ} oder \mathcal{R} .

• Ein Symbol c mit $\Sigma(c) = \langle 0, 1 \rangle$ ist ein Symbol für eine Konstante.

Menge dieser Symbole: \mathcal{C}_{Σ} oder \mathcal{C} .

• Symbol b mit $\Sigma(b)=0$ ist ein Symbol für einen boolschen Wert.

Menge dieser Symbole: \mathcal{B}_{Σ} or simply \mathcal{B} .

Im all gemeinen werden Signaturen mit $\mathcal{B} \neq \emptyset$ ignoriert (Signaturen ohne boolsche Werte).

Beispiele:

$$S = \{\text{zero, one, add, mult}\}\$$

$$\Sigma = \{\text{zero} \mapsto \langle 0, 1 \rangle, \text{one} \mapsto \langle 0, 1 \rangle, \text{add} \mapsto \langle 2, 1 \rangle, \text{mult} \mapsto \langle 2, 1 \rangle\}\$$

Vereinfacht aufgeschrieben:

$$S = \{\text{zero, one, add}//2, \text{mult}//2\}$$