Университет ИТМО Учебный центр общей физики ФТФ

Лабораторная работа 1.04 «Изучение равноускоренного вращательного движения»

Группа: Р3114

Студент: Гиниятуллин Арслан Рафаилович

Преподаватель: Куксова Полина Алексеевна

Работа выполнена: 28.04.2022

К работе допущен: Отчёт принят:

1 Цель работы

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

2 Задачи, решаемые при выполнении работы

- 1. Измерить время падения груза при разной массе груза и радиусом положения утяжелителей на крестовине.
- 2. Найти среднее время падения гири для всех масс гири и при всех положениях утяжелителей на крестовине.
- 3. Рассчитать ускорение ${\bf a}$ груза, уголовое ускорение ε крестовины и момент силы M натяжения нити
- 4. Построить график зависимости на основе результатов измерений.

3 Объект исследования

- Маятник Обербека.
- Равноускоренное вращательное движение.

4 Метод экспериментального исследования

Провести многократные косвенные и прямые измерения времени опускания грузов различных масс, связанных со ступицей крестовины, в зависимости от положения утяжелителей на осях крестовины.

5 Используемые формулы

- 1. $a = \frac{2h}{t^2}$, где h расстояние пройденное грузом за время t от начала движения
- 2. $\varepsilon = \frac{2a}{d}$, где d диаметр ступицы
- 3. $M = \frac{md}{2}(g-a)$, где d диаметр ступицы
- 4. $I\varepsilon=M-M_{\mathrm{TP}},$ где $\mathrm{M_{TP}}$ момент силы трения.
- 5. $I = I_0 + 4m_{\rm yr}R^2$, где I_0 сумма моментов инерции крестовины без утяжелителей, $m_{\rm yr}$ масса утяжелитиля, R радиус между центром крестовины и центром утяжелителя
- 6. $M = M_{\rm TD} + I\varepsilon$
- 7. $R = l_1 + (n-1)l_0 + \frac{1}{2}b$, где l_1 расстояние от оси вращения до первой риски; n номер риски, на которой установлены утяжелители; l_0 расстояние между соседним рисками; b размер утяжелителя вдоль спицы

6 Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Шкала	Механический	0 - 0.7 м	0.0005 м
2	Секундомер	Цифровой	0 - 10 с	0.01 с

Таблица 1: Измерительные приборы

7 Схема установка

Рис. 1: Схема измерительного стенда

Наименование	Величина	Значение	Погрешность	Единица измерения
Масса шайбы	m_1	220	0.5	Γ
Расстояние первой риски от оси	l_1	57	0.5	MM
Расстояние между рисками	l_0	25	0.2	MM
Диаметр груза на крестовине	b	40	0.5	MM

Таблица 2: Исходные данные

8 Результаты прямых измерений и их обработки

Magga prayrog p	Положение утяжелителей					
Масса груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	4.00	4.68	5.26	6.12	7.47	8.11
$m_1 = 220r$	4.05	4.50	5.83	6.42	7.35	8.52
$m_1 = 2201$	3.89	4.03	5.35	6.15	7.39	8.32
	3.98	4.70	5.48	6.23	7.40	8.32
	2.86	3.34	3.76	4.66	5.66	6.72
$m_2 = 440r$	2.99	3.56	3.98	4.60	5.46	6.84
$m_2 - 4401$	2.93	3.51	3.69	4.72	5.39	6.76
	2.93	3.47	3.81	4.66	5.50	6.77
	2.45	2,81	3.36	3.71	4.39	5.57
$m_3 = 660$ r	2.40	2.85	3.33	3.69	4.59	5.80
$m_3 = 0001$	2.44	2.82	3.39	3.81	4.66	5.72
	2.43	2.86	3.36	3.74	4.55	5.69
	2.02	2.40	3.04	3.27	3.77	4.43
$m_4 = 880$ r	2.11	2.47	3.24	3.32	3.82	4.37
1114 — 0001	2.07	2.83	3.29	3.31	3.80	4.39
	2.07	2.47	3.26	3.30	3.80	4.42

Таблица 3: Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

9 Расчёт результатов косвенных измерений

		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
$m_1 = 220r$	a	0.088	0.063	0.047	0.037	0.026	0.02
	ε	3.826	2.739	2.043	1.609	1.13	0.87
	Μ	49.241	49.368	49.449	49.499	49.555	49.585
$m_2 = 440r$	a	0.163	0.116	0.096	0.063	0.046	0.031
	ε	7.087	5.043	4.174	2.739	2	1.348
	Μ	97.724	98.199	98.402	98.736	98.908	99.06
	a	0.237	0.171	0.124	0.096	0.068	0.043
$m_3 = 660r$	ε	10.304	7.435	5.391	4.174	2.957	1.87
	Μ	145.462	146.464	147.178	147.603	148.028	148.407
	a	0.327	0.229	0.132	0.128	0.097	0.072
$m_4 = 880r$	ε	14.217	9.957	5.739	5.565	4.217	3.13
	Μ	192.128	194.112	196.075	196.156	196.783	197.289

Таблица 4: Значение ускорения, углового ускорения, момента силы для каждой риски

	R, м	R^2 , M^2	I кг * м ²
1 риска	0.077	0.005929	13.819
2 риска	0.102	0.010404	20.055
3 риска	0.127	0.016129	35.942
4 риска	0.152	0.023104	36.636
5 риска	0.177	0.031329	47.653
6 риска	0.202	0.040804	63.199

Таблица 5: Расчет радиусов и моментов инерции для каждой риски

Найдём ускорение гири a, угловое ускорение крестовины ε , момент силы натяжения нити M для первого значения времени $t_{\rm cp}$

- 1. Ускорение гири:
 - $a = \frac{2h}{t^2}$; h = 0, 7M; t = 3, 98c
 - $a = \frac{2 \cdot 0.7}{3.98^2} = 0.088 \text{m/c}^2$
- 2. Угловое ускорение крестовины:

•
$$\varepsilon = \frac{2a}{d}$$
; $d = 0,046$ м; $a = 0,088$ м/с²
• $\varepsilon = \frac{2 \cdot 0,088}{0.046} = 3,826$ рад/с²

•
$$\varepsilon = \frac{2 \cdot 0.088}{0.046} = 3.826 \text{рад/c}^2$$

- 3. Момент силы натяжения нити:
 - $M = \frac{md(g-a)}{2}$; $a = 0,088 \text{m/c}^2$; m = 220 g; d = 0,046 m
 - $M = \frac{220 \cdot 0.088 \cdot (9.81 0.088)}{2} = 49,241 \text{H} \cdot \text{M}$
- 4. Рассчитаем радиус и его квадрат для каждой риски по формула:

$$R_n=l_1+l_0\cdot(n-1)+rac{1}{2}b; l_1=0,057$$
м, где $l_0=0,025$ м; $b=0,04$ м

- $R_1 = 0,077$ м
- $R_1^2 = 0,005929 \text{M}^2$
- $R_2 = 0,102$ м
- $R_2^2 = 0.010404 \text{m}^2$
- $R_3 = 0,127$ м
- $R_3^2 = 0.016129 \text{m}^2$
- $R_4 = 0,152$ м
- $R_4^2 = 0.023104 \text{m}^2$
- $R_5 = 0,177$ м
- $R_5^2 = 0.031329 \text{M}^2$
- $R_6 = 0,202$ M
- $R_6^2 = 0.040804 \text{m}^2$
- 5. Найдём момент инерции I для каждой риски при помощи МНК и формулы $M=M_{
 m rp}+$ $I\varepsilon$ и запишем в таблицу 5.

Расчёт погрешностей измерений 10

- 1. t_1 cp = 3,98c
 - Вычислим оценку среднего квадратичного отклонения

$$S_{t_1 ext{cp}} = \sqrt{rac{\sum_{i=1}^n (t_i - t^2)}{n(n-1)}} = 0,05 ext{m}; n = 3 ext{mT}$$

• Вычислим доверительный интервал случайной погрешности

$$\Delta_{\bar{t_1}} = t_{0.95,3} \cdot S_{t_1 \text{cp}} = 4, 3 \cdot 0, 05 = 0, 215 \text{c}$$

• Вычислим абсолютную погрешность измерений

$$\Delta_t = \sqrt{{\Delta_{\bar{t_1}}}^2 + (\frac{2}{3} \cdot 0, 2 \cdot t_1 \text{cp})^2} = 0,573\text{c}$$

• Вычислим относительную погрешность измерений
$$\varepsilon_{t_1 \text{cp}} = \frac{\Delta_t}{t_1 \text{cp}} \cdot 100\% = \frac{0.573}{3.98} \cdot 100\% = 14,4\%$$

• $t = (3,98 \pm 0,573)$ c, $\varepsilon_t = 14,4\%$; $\alpha = 0,95$

2.
$$a = \frac{2h}{t^2}$$
; $h = (0.7 \pm 0.01)$ m; $t = (3.98 \pm 0.573)$ c

• Вычислим абсолютную погрешность измерений

$$\Delta_a = \sqrt{(\frac{\delta a}{\delta h} \cdot \Delta_h)^2 + (\frac{\delta a}{\delta t} \cdot \Delta_t)^2} = \sqrt{(\frac{2}{3.98^2} \cdot 0.01)^2 + (\frac{-2 \cdot 0.7}{3.98^2} \cdot 0.573)^2} = 0.0127 \text{m/c}^2$$

• Вычислим относительную погрешность измерений $\varepsilon_a=\frac{\Delta_a}{a}\cdot 100\%=\frac{0.0127}{0.088}\cdot 100\%=14,4\%$

$$\varepsilon_a = \frac{\Delta_a}{a} \cdot 100\% = \frac{0.0127}{0.088} \cdot 100\% = 14,4\%$$

•
$$a = (0.088 \pm 0.0127) \text{m/c}^2$$
, $\varepsilon_a = 14.4\%$, $\alpha = 0.95$

3.
$$\varepsilon = \frac{2a}{d}$$
; $d = (0.046 \pm 0.0005)$ _M; $a = (0.088 \pm 0.0127)$ _M/c²

• Вычислим абсолютную погрешность измерений

$$\Delta_{\varepsilon} = \sqrt{(\frac{\delta \varepsilon}{\delta a} \cdot \Delta_a)^2 + (\frac{\delta \varepsilon}{\delta t} \cdot \Delta_t)^2} = \sqrt{(\frac{2}{0,046} \cdot 0,0127)^2 + (\frac{-2 \cdot 0,088}{0,046^2} \cdot 0,0005)^2} = 0,55$$
рад/с²

• Вычислим относительную погрешность измерений $\varepsilon_{\varepsilon}=\frac{\Delta_{\varepsilon}}{\varepsilon}\cdot 100\%=\frac{0.55}{3.826}\cdot 100\%=14,4\%$

$$\varepsilon_{\varepsilon} = \frac{\Delta_{\varepsilon}}{6} \cdot 100\% = \frac{0.55}{3.826} \cdot 100\% = 14,4\%$$

•
$$\varepsilon = (3,826 \pm 0,55)$$
рад/с², $\varepsilon_{\varepsilon} = 14,4\%, \, \alpha = 0,95$

4. Вычислим абсолютную погрешность измерений

$$M=\frac{md(g-a)}{2}, d=(0,046\pm0,0005)$$
м, $a=(0,088\pm0,0127)$ м/с $^2, m=(220\pm0,5)$ г

• Вычислим абсолютную погрешность измерений

$$\Delta_{M} = \sqrt{(\frac{\delta M}{\delta a} \cdot \Delta_{a})^{2} + (\frac{\delta M}{\delta m} \cdot \Delta_{m})^{2} + (\frac{\delta M}{\delta d} \cdot \Delta_{d})^{2}} = \sqrt{(\frac{220 \cdot 0,046}{2} \cdot 0,0127)^{2} + (\frac{0,447}{2} \cdot 0,5)^{2} + (\frac{2138}{2} \cdot 0,0005)^{2}} = 0,55 \text{H} \cdot \text{M}$$

• Вычислим относительную погрешность измерений $\varepsilon_m = \frac{\Delta_M}{M} \cdot 100\% = \frac{0.55}{49,241} \cdot 100\% = 1,1\%$

$$\varepsilon_m = \frac{\Delta_M}{M} \cdot 100\% = \frac{0.55}{49.241} \cdot 100\% = 1.1\%$$

•
$$M = (49, 241 \pm 0, 55) \text{H} \cdot \text{M}, \varepsilon_M = 1, 1\%, \ \alpha = 0, 95$$

11 Графики

Рис. 2: График зависимости $M(\varepsilon)$

График зависимости $\mathrm{M}(\varepsilon)$ построен при помощи значений из таблицы 5 и МНК по формуле $I\varepsilon=$ $M-M_{\rm TD}$.

Рис. 3: График зависимости $I(\mathbb{R}^2)$

График зависимости $I(R^2)$ построен при помощи значений из таблицы 4 и МНК по формуле $I=I_0+4m_{\rm yr}R^2.$

12 Окончательные результаты

1.
$$t = (3, 9 \pm 0, 6)c, \varepsilon_t = 14, 4\%, \alpha = 0, 95$$

2.
$$a = (0.088 \pm 0.013) \text{ m/c}^2, \varepsilon_a = 14.4\%, \alpha = 0.95$$

3.
$$\varepsilon = (3, 8 \pm 0, 6)$$
рад/ c^2 , $\varepsilon_{\varepsilon} = 14, 4\%$, $\alpha = 0, 95$

4.
$$M = (49, 2 \pm 0, 6) \text{H} \cdot \text{M}, \varepsilon_m = 1, 1\%, \alpha = 0, 95$$

5.
$$m_{\rm vt} = (335, 9 \pm 32, 5) \Gamma, \varepsilon_m = 9, 7\%, \alpha = 0, 95$$

6.
$$I = 7,6 + 1340R^2$$

7.
$$I_0 = (7, 6 \pm 3, 2) \Gamma \cdot M^2, \varepsilon_{I_0} = 42\%, \alpha = 0, 95$$

13 Выводы и анализ результатов работы.

В ходе лабораторной работы было измерено время падения груза при разной массе груза и разном положении утяжелителей на крестовине. Было найдено среднее время падения груза, рассчитано ускорение а, уголове ускорение ε крестовины и момент силы М натяжения нити. Для каждого положения утяжелителей было найдено расстояние МНК были найдены зависимости $M(\varepsilon)$ и $I(R^2)$ и построены графики этих зависимостей с намешением точек из косвенных измерений.