(Thm 6.11 of Rudin) Let f be a bounded function on [a, b], write $m \leq f \leq M$, such that $f \in \mathcal{R}(\varphi)$. Then $\phi(f) \in \mathcal{R}(\varphi)$ on [a, b], if ϕ is continuous on [m, M].

Strategy: By Thm 6.6 of Rudin, it is alternative to prove $g = \phi(f) \in \mathcal{R}(\varphi)$ by showing $\forall \varepsilon > 0, \exists \Gamma \subset [a,b]$ s.t. $U(\Gamma,g,\varphi) - L(\Gamma,g,\varphi) < \varepsilon$. It is clear that if f is continuous on [a,b], then we can complete the proof by uniform continuity of g on [a,b]. Hence, the main difficulty would be how to estimate $(M(g)-m(g))\Delta\varphi$, when f contains discontinuity of δ . Although the existence of R-S integral tolerate discontinuity of f and φ , it suffices to squeeze the size of $\Delta\varphi$ by another arbitrary parameter η .

proof: we may assume $\varphi(a) < \varphi(b)$, m < M, and $K = \sup_{[m,M]} \phi - \inf_{[m,M]} \phi > 0$, otherwise the theorem hold trivially. $\forall \varepsilon > 0$, let $\xi = \varepsilon/2 (\varphi(b) - \varphi(a)) > 0$, then we choose $\delta > 0$ by uniform continuity of ϕ on [m,M], such that if $s,t \in [m,M]$ and $|s-t| < \delta$, then $|\phi(s) - \phi(t)| < \xi$. For the given $\delta > 0$, we choose $\eta = \varepsilon/2K > 0$ (where K is finite, due to continuity of ϕ on [m,M]), then there exists a partition Γ of [a,b] s.t $\sum_{i=1}^{n} (M_i(f) - m_i(f)) \Delta \varphi_i < \delta \eta$, since $f \in \mathcal{R}(\varphi)$. We divide the index $\{1,...,n\}$ into $A = \{1 \le i \le n : M_i(f) - m_i(f) < \delta\}$ and $B = \{1,...,n\} - A$. Since $M_i \ge m_i$ and $\Delta \varphi_i \ge 0$, $\forall i$, for $i \in B$, we have

$$\delta \sum_{i \in B} \Delta \varphi_i \le \sum_{i \in B} (M_i(f) - m_i(f)) \Delta \varphi_i \le \sum_{i=1}^n (M_i(f) - m_i(f)) \Delta \varphi_i < \delta \eta$$

further, since $M_i(g) - m_i(g) \leq K$, $\forall i$, we have

$$\sum_{i \in B} (M_i(g) - m_i(g)) \Delta \varphi_i \le K \sum_{i \in B} \Delta \varphi_i < K \eta = \frac{\varepsilon}{2}$$

If $i \in A$, then $|f(x) - f(y)| \le M_i(f) - m_i(f) < \delta$, and $|g(x) - g(y)| < \xi, \forall x, y \in [x_{i-1}, x_i]$, where $g = \phi(f)$ for simplicity. It follows that $M_i(g) - m_i(g) \le \xi$, and

$$\sum_{i \in A} (M_i(g) - m_i(g)) \Delta \varphi_i \le \xi \sum_{i \in A} \Delta \varphi_i \le \frac{\varepsilon}{2}$$

We conclude the proof by Thm 6.6 that $\phi(f) \in \mathcal{R}(\varphi)$, since there exists a partition Γ of [a, b] such that

$$U(\Gamma, \phi(f), \varphi) - L(\Gamma, \phi(f), \varphi) = \sum_{i=1}^{n} (M_i(g) - m_i(g)) \Delta \varphi_i < \varepsilon$$