Approaches to Machine Translation: Rule-based, Statistical and Hybrid

Rule-based Machine Translation

History (I)

- First RBMT systems developed in the 1970s:
 - Systran http://www.systran.de/
 - Japanese MT systems
 - » Toshiba Solutions http://hon-yaku.toshiba-sol.co.jp/
 - » NEC http://www.nec.co.jp/middle/meshplus/
 - » Fujitsu http://software.fujitsu.com/jp/atlas/
 - » LogoVista http://www.logovista.co.jp/
 - » IBM http://www-06.ibm.com/jp/software/internet/king/
 - » etc.

History (II)

- EUROTRA (1978-1992, European Commission)
 - http://www-sk.let.uu.nl/stt/eurotra.html
 - MT for the 7-9 official languages

Current Popular System

Licences and sources

	License	Source available	
APERTIUM	GPL	YES	All programs and language data free and open source
SYSTRAN	Commercial	NO	Hybrid: rule-based & SMT

Source: http://en.wikipedia.org/wiki/Comparison_of_machine_translation_applications

Components (Transfer)

Apertium: Block diagram

SOURCE TEXT

De-formatter

- Separates text from format information
- Based on finite-state techniques
- Available for: plain text, html, rtf, openoffice, word, ppt, excel, MediaWiki, QuarkXPress

\$ echo "this is a test" | apertium-deshtml []this is[<\/em>]a[]test.[][<\/b>]

Morphological analyser

- Segments the source text in surface forms (SFs)
- Assigns to each SF one or more lexical forms (LFs): lemma, lexical category, morphological inflection information
- Processes contractions

Categorial disambiguator

- Picks one of the LFs corresponding to each ambiguous SF according to context
- Uses hidden Markov models and hand-written constraint rules
- Is trained using representative corpora for the source language

Structural transfer

- Rules have a pattern-action form
- It detects LF patterns to be processed using a left-to-right longest-match strategy
- It executes the actions associated to each pattern in the rule file to generate the corresponding LF pattern for the TL

More complex structural transfer

- For language pair with longer reorderings:
 - Patterns of LFs (chunks) are detected, processed and marked
 - Patterns of chunks are detected and processed:
 this interchunk processing allows for longer-range reorderings

Lexical transfer module

Reads each SL LF and generates the corresponding TL LF

Morphological generator

 Generates from each TL LF a TL SF after adequately inflecting it

Post-generator

- Performs some TL orthographical transformations such as contractions
 - Can+not =cannot

Re-formatter

Integrates format information into the translated text

Example of dictionaries

Monolingual (Spanish)

Monolingual (Catalan)

```
<e lm="cósmico">
     <i>cósmic</i>
     <par n="absolut/o__adj"/>
</e>
```

```
<e lm="còsmic">
     <i>còsmi</i>
     <par n="acadèmi/c_adj"/>
</e>
```

Bilingual dictionary (Spanish → Catalan)

Example of transfer rule

This rule reorders

adjective + noun

Into

noun + adjective

In Chinese-to-Spanish

```
< rule comment = "RU LE : adj nom" >
< pattern >
< pattern - itemn = "adi"/>
< pattern - itemn = "nom"/>
</pattern>
< action >
< call - macron = "f - concord2" >
< with - parampos = "2"/>
< with - parampos = "1"/>
</call - macro >
< out >
< chunkname = "i n"case = "caseF irstW ord" >
        < tags >
                < tag >< lit - tagv = "SN"/></tag >
                < tag >< clip pos = "2" side = "tl" part = "gen" / >< /tag >
                < tag >< clip pos = "2" side = "tl" part = "nbr" / >< /tag >
                < tag > < lit - tagv = "p3" / > < /tag >
        </tags>
< lu >
        < clip pos = "2"side = "tl"part = "whole"/>
</lu>
< b pos = "1"/>
        < lu >
                < clip pos = "1" side = "tl" part = "lem" / >
                < clip pos = "1" side = "tl" part = "a adj" / >
                < clip pos = "1" side = "tl" part = "gen"/>
                < clip pos = "1" side = "tl" part = "nbr"/>
</lu>
</chunk>
</out>
</action >
</rule>
```

Question

(1) Given the following rule

```
<rule>
<pattern>
<pattern-item n="determinant"/>
<pattern-item n="adjectius"/>
<pattern-item n="nom"/>
</pattern>
<action>
<out>
<lu>
<cli>pos="1" side="tl" part="lem"/>
<cli>pos="1" side="tl" part="a det"/>
<cli>pos="3" side="tl" part="gen"/>
<cli>pos="3" side="tl" part="nbr"/>
</lu>
<b/>
<cli>pos="3" side="tl" part="lem"/>
<cli>pos="3" side="tl" part="a nom"/>
<cli>pos="3" side="tl" part="gen"/>
<clip pos="3" side="tl" part="nbr"/>
</lu>
<b/>
<cli>pos="2" side="tl" part="lem"/>
<cli>pos="2" side="tl" part="a adj"/>
<cli>pos="3" side="tl" part="gen"/>
<cli>pos="3" side="tl" part="nbr"/>
</lu>
</out>
</action>
</rule>
```

(2) Choose one interpretation

- Agreement between determinant, adjective and noun in terms of number
- Agreement between determinant, adjective and noun in terms of number and gender
- Reordering between noun and adjective and agreement between determinant, adjective and noun in terms of number and gender

Question

(1) Given the following rule

```
<rule>
<pattern>
<pattern-item n="determinant"/>
<pattern-item n="adjectius"/>
<pattern-item n="nom"/>
</pattern>
<action>
<out>
<lu>
<cli>pos="1" side="tl" part="lem"/>
<cli>pos="1" side="tl" part="a det"/>
<cli>pos="3" side="tl" part="gen"/>
<cli>pos="3" side="tl" part="nbr"/>
</lu>
<b/>
<cli>pos="3" side="tl" part="lem"/>
<cli>pos="3" side="tl" part="a nom"/>
<cli>pos="3" side="tl" part="gen"/>
<cli>pos="3" side="tl" part="nbr"/>
</lu>
<b/>
<cli>pos="2" side="tl" part="lem"/>
<cli>pos="2" side="tl" part="a adj"/>
<cli>pos="3" side="tl" part="gen"/>
<cli>pos="3" side="tl" part="nbr"/>
</lu>
</out>
</action>
</rule>
```

(2) Choose one interpretation

- Agreement between determinant, adjective and noun in terms of number
- Agreement between determinant, adjective and noun in terms of number and gender
- Reordering between noun and adjective and agreement between determinant, adjective and noun in terms of number and gender

What next?

Statistical Machine Translation

