

<u>b a s e b a 1 1</u>

• Example:

$$|\psi_0\rangle$$
 $|\psi_1\rangle$ $|\psi_2\rangle$

$$|\Psi_{2}\rangle = 2|\Psi_{1}\rangle = 2\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$| \psi_{0} \rangle | \psi_{1} \rangle | \psi_{2} \rangle$$

$$| \psi_{2} \rangle | \psi_{2} \rangle$$

$$| \psi_{1} \rangle | \psi_{2} \rangle$$

$$| \psi_{2} \rangle$$

qubit
$$|\gamma_6\rangle$$
 $|\gamma_1\rangle$ $|\gamma_1\rangle$ $|\gamma_2\rangle$ $|\gamma_1\rangle$ $|\gamma_2\rangle$ $|\gamma_2\rangle$

$$(\Psi_1) = \frac{10 + 11}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

$$\left|\alpha\right|^{2} = \left(\frac{1}{\sqrt{2}}\right)^{2} = \frac{1}{2} = \left|\beta\right|^{2}$$

**Note: this didn't run properly during lecture -- the math here is correct (so we should have gotten 100% |1>), but my python was having troubles :(

Challenge: Translate our puzzle from last week into a quantum circuit. Write it out using the circuit notation used in lecture, then code the circuit in python! If you're able to do this, I'll give out a prize of some sort

Recall: we made analogies between the quantum circuit and our set up -- use these to translate

between the set up and the circuit

Quantum Circuit	Our Setup		
Qubit	Photon.		
10>	[→>		
lı>	11 >		
Hadamard (H)	Beam Splitter		
Not (X) gate	Mirror.		
Mea sure me nt Devices	A, Box		

This was our set up (this is what you should translate into a quantum circuit):