

Younghoon Kim (nongaussian@hanyang.ac.kr)

SET SIMILARITY JOIN USING MAPREDUCE

A Traditional Brute-force Algorithm

- Enumerate every pair of records and compute their similarities
- Expensive for large datasets

Similarity Joins using Inverted Lists

- Make an inverted lists for all items in set data
- Generate candidates by considering every pair of record IDs in each inverted list
- Find similar pairs by verifying each candidate
 - Relationship between Jaccard and Overlap similarity measures

 $Jaccard(x, y) \ge \sigma \Leftrightarrow Overlap(x, y) \ge \sigma / (1+\sigma) \cdot (|x| + |y|) = \alpha$

- We call α the overlap threshold
- Check overlap(x,y) $\geq \alpha$ instead of Jaccard(x,y) $\geq \sigma$

Building Inverted Lists

- With each record in a map function
 - Output the identifier of the record (RID) to generate the inverted lists in reduce functions

RID	Items
R ₁	C,D,F
R_2	A, B, E, F, G
R_3	A, B, C, D, E
R_4	B, C, D, E, F
R ₅	A, E, G

Item	RIDs
Α	R_2
В	R_2
С	R ₁
D	R ₁
E	R_2
F	R_1 , R_2
G	R_2

Building Inverted Lists

- With each record in a map function
 - Output the identifier of the record (RID) to generate the inverted lists in reduce functions

RID	Items
R ₁	C, D, F
R_2	A, B, E, F, G
R_3	A, B, C, D, E
R_4	B, C, D, E, F
R ₅	A, E, G

Item	RIDs
Α	R_2 , R_3 , R_5
В	R_2 , R_3 , R_4
C	R ₁ , R ₃ , R ₄
D	R ₁ , R ₃ , R ₄
Е	R_2 , R_3 , R_4 , R_5
F	R_1 , R_2 , R_4
G	R_2 , R_5

Generating Candidates

- Generate candidates by making every RID pair in the each inverted list entry
 - Increase the overlap of the candidate pair

Item	RIDs		Candidate pair	Overlap
Α	R_2 , R_3 , R_5		(R_2, R_3)	1
В	R_2 , R_3 , R_4	1/2	(R_3, R_5)	1
С	R_{1} , R_{3} , R_{4}		(R_2, R_5)	1
D	R_{1} , R_{3} , R_{4}			
E	R_{2} , R_{3} , R_{4} , R_{5}			
F	R_1 , R_2 , R_4			
G	R_2 , R_5			

Generating Candidates

- Generate candidates by making every RID pair in the each inverted list entry
 - Increase the overlap of the candidate pair

Item	RIDs		Candidate pair	Overlap
Α	R_2 , R_3 , R_5	A	(R_2, R_3)	2
В	R_2 , R_3 , R_4		(R_3, R_5)	1
C	R_1 , R_3 , R_4		(R_2, R_5)	1
D	R_{1}, R_{3}, R_{4}	1/3	(R_3, R_4)	1
Е	R_2 , R_3 , R_4 , R_5	Est de la constant de	(R_{2}, R_{4})	1
F	R_1 , R_2 , R_4			
G	R_2 , R_5			

Generating Candidates

- Generate candidates by making every RID pair in the each inverted list entry
 - Increase the overlap of the candidate pair

ltem	RIDs
Α	R_2 , R_3 , R_5
В	R_2 , R_3 , R_4
C	R_1 , R_3 , R_4
D	R_{1} , R_{3} , R_{4}
E	R_2 , R_3 , R_4 , R_5
F	R_1 , R_2 , R_4
G	R_2 , R_5

	Candidate pair	Overlap
	(R_2, R_3)	3
	(R_3, R_5)	2
7N	(R_2, R_5)	3
	(R_3, R_4)	4
	(R_2, R_4)	3
	(R_1, R_3)	2
	(R_1, R_4)	3

Candidate pair	Overlap
(R_4, R_5)	1
(R_1, R_2)	1

Finding Similar Pairs

Jaccard coefficient threshold $\sigma = 0.6$ Recall Jaccard(x, y) $\geq \sigma \Leftrightarrow O(x, y) \geq \alpha = \sigma/(1+\sigma)(|x| + |y|)$

Substitute σ We values of

We need the size of each record

Candidate pair	Overlap	Overlap threshold c
(R_2, R_3)	3	3.75
(R_3, R_5)	2	
(R_2, R_5)	3	
(R_3, R_4)	4	
(R_2, R_4)	3	
(R_1, R_3)	2	
(R_1, R_4)	3	
(R_{4}, R_{5})	1	
(R_1, R_2)	1	

RID	Size
R ₁	3
\overline{R}_2	5
R_3	5
R_4	5
R ₅	3

Calculate each record size

Verifying Candidates

Recall Jaccard(x, y) $\geq \sigma \Leftrightarrow O(x, y) \geq \alpha = \sigma/(1+\sigma)(|x| + |y|)$

Pseudocode of Map/Reduce Functions

- Spark is more suitable for implementing this algorithm!
- RDD
 - .flatMap(lambda s: /* list of (item, set id) */)
 - .groupByKey().mapValues(lambda x: list(x))
 - .flatMap(lambda inv: /* list of (set id pair, 1) */)
 - .reduceByKey(lambda x,y: x+y)
 - .filter(lambda t: /* if count >= alpha(x,y) */

Trouble

- If there exists a long inverted list,
 - It generates too many candidates
 - Any trick to reduce the size of inverted list?

Item	RIDs		Candidate pair	Overlap
А	R_{1} , R_{2} , R_{3} , R_{4} , R_{5}		(R_1, R_2)	1
В	R_2 , R_3 , R_4		(R_1, R_3)	1
C	R_{1}, R_{3}, R_{4}		(R_1, R_4)	1
D	R_{1}, R_{3}, R_{4}		(R_1, R_5)	1
Е	R_2 , R_3 , R_4 , R_5		(R_2, R_3)	1
F	R_1 , R_2 , R_4	/3	(R_2, R_4)	1
G	R_2 , R_5	A	(R_2, R_5)	1

:

Problem 1.

Given

- facebook_combinied.txt
 - ID1, ID2: ID1과 ID2는 친구
 - Undirected graph
- Similarity threshold: τ
 - 0.9, 0.8, 0.7, 0.6

Goal

- 아직 친구가 아닌 모든 사용자 쌍 중에서
- 공통되는 친구의 비율이 τ 이상인 아이디의 쌍을 모두 찾으시오.
- _ 즉,
 - F(u): u의 친구 집합
 - $\forall (u, v) \in U \times U$, $s.t.u \notin F(v) \land v \notin F(u) \land \frac{|F(u) \cap f(v)|}{|F(u) \cup F(v)|} \ge \tau$

[심화학습] SET SIMILARITY JOIN: CANDIDATE REDUCTION

Reference

- A primitive operator for similarity joins in data cleaning
 - S. Chaudhuri, V. Ganti, and R. Kaushik
 - In ICDE, 2006.
- Efficient Similarity Joins for Near Duplicate Detection
 - Chuan Xiao, et al.
 - In WWW, 2008

A sorted vocabulary

 Examine if two sets of size 4 are similar than a given threshold

A sorted vocabulary

Examine if two sets of size 4 are similar than a given threshold

What if the first two elements do not overlap at all?

A sorted vocabulary

Examine if two sets of size 4 are similar than 2 in

terms of overlap size α

Even if the following two elements are all identical, they cannot share more than 2 common elements

 $|A \cap B| \le 2$

A sorted vocabulary

 Examine if two sets of size 4 are similar than 0.6 in terms of Jaccard coef.

$$-Y$$
 C D E F

$$\frac{|X \cap Y|}{|X \cup Y|} \le \frac{2}{|X| + |Y| - 2} \le \frac{2}{|X| + 1 - 2} = \frac{2}{4} = 0.5 < 0.6$$

Even if the following two elements are all identical, their similarity cannot larger than 0.5

Prefix Filtering

 $\operatorname{Jaccard}(x, y) \ge \sigma \Leftrightarrow \operatorname{O}(x, y) \ge \alpha = \sigma/(1+\sigma)(|x| + |y|)$

- **Lemma.** If $O(x, y) \ge \alpha$, then the $(|x| \alpha + 1)$ -prefix of x and the $(|y| \alpha + 1)$ -prefix of y must share at least one token
 - Contraposition. if the $(|x| \alpha + 1)$ -prefix of x and the $(|y| \alpha + 1)$ -prefix of y do not have any common token, $O(x, y) < \alpha$
 - Proof.
 - 1) $O(x, y) \le |x| (|x| \alpha + 1) = \alpha 1 < \alpha$
 - 2) $O(x, y) \le |y| (|y| \alpha + 1) = \alpha 1 < \alpha$

Building Inverted Lists

- With each record,
 - Insert the identifier of the record (RID) into the inverted list entries of its items in prefix only

$$\operatorname{Jaccard}(x, y) \ge \sigma \Leftrightarrow \operatorname{O}(x, y) \ge \alpha = \sigma/(1+\sigma)(|x| + |y|)$$

Q: How can we determine the prefix size?

RID	Items
R ₁	C, D, F
R_2	A, B, E, F, G
R_3	A, B, C, D, E
R ₄	B, C, D, E, F
R ₅	A, E, G

Item	RIDs
Α	
В	
С	R ₁
D	R ₁
E	
F	
G	

How to Determine Prefix Size

- Use the longest prefix for each record x, $|x| [\sigma \cdot |x|] + 1$
- Proof.

$$- O(x, y) \le |x| - (|x| - [\sigma \cdot |x|] + 1) = [\sigma \cdot |x|] - 1 < \sigma \cdot |x|$$

$$- \ O(x, y) \le |y| - (|y| - [\sigma \cdot |y|] + 1) = [\sigma \cdot |y|] - 1 < \sigma \cdot |y|$$

$$- O(x,y) < \frac{\sigma}{2}(|x| + |y|) \le \frac{\sigma}{1+\sigma}(|x| + |y|) = \alpha$$

Building Inverted Lists & Counting Candidates

- With each record,
 - Insert the identifier of the record (RID) into the inverted list entries of its items in prefix only

RID	Items	$ x - [\sigma \cdot x] + 1$
R ₁	C, D, F	2
R ₂	A, B, E, G	3
R ₃	A, B, C, D, E	3
R ₄	B, C, D, E, F	3
R ₅	A, E, G	2

Item	RIDs			
Α	R_2 , R_3 , R_5			
В	R_2 , R_3 , R_4			
C	R ₁ , R ₃ , R ₄			
D	R ₁ , R ₄			
Е	R_2 , R_5			
F We cannot count exact				
	overlapping tokens between			

Building Inverted Lists

- With each record,
 - Insert the identifier of the record (RID) into the inverted list entries of its items in prefix only

Index items with actual records

RID	Items	$ x - [\sigma \cdot x] + 1$
R ₁	C, D, F	2
R ₂	A, B, E, G	3
R ₃	A, B, C, D, E	3
R ₄	B, C, D, E, F	3
R ₅	A, E, G	2

Item	RIDs
Α	$R_2 = \{A, B, E, G\},\$ $R_3 = \{A, B, C, D, E\}$ $R_5 = \{A, E, G\}$
В	R_2 , R_3 , R_4
C	R ₁ , R ₃ , R ₄
D	R ₁ , R ₄
Е	R_2 , R_5
F	
G	

Building Inverted Lists

- With each inverted list,
 - Investigate Jaccard similarity between all possible pairs of sets if they satisfy the threshold

Item	RIDs			
A	$R_2 = \{A, B, E, G\},\$ $R_3 = \{A, B, C, D, E\}$ $R_5 = \{A, E, G\}$			
В	R_2 , R_3 , R_4	RID	Items	
C	R_1 , R_3 , R_4	R ₁	<u>C, D</u> , F	
D	R_1, R_4	R ₂	<u>A, B, E</u> , G	
E	R_2 , R_5	R ₃	<u>A, B, C</u> , D, E	
F		R ₄	<u>B, C, D</u> , E, F	
G		R ₅	<u>A, E</u> , G	

Candidate pair Sim						
Candidate pair	S	im				
(R_2, R_2)		/6				
(Fandidate pa	ir	Sim				
(F (R ₁ , R ₃)		2/6				
(R_1, R_4)		3/5				
(F Candidate	pair	S	im			
(Candidate	e pa	ir	Sim			
(R_2, R_5)			3/4			

A Heuristic

- Sort items in the increasing order of frequency
 - Prefix may include more infrequent items and it can result in producing smaller candidate pairs
 - G(2), F(2), A(3), B(3), C(3), D(3), E(4)

Item	RIDs			
Α	$R_2 = \{G, A, B, E\},\$ $R_3 = \{A, B, C, D, E\}$ $R_5 = \{G, A, E\}$			
В	R_2 , R_3 , R_4	RID	Items	
С	R_1 , R_3 , R_4	R ₁	<u>F, C</u> , D	
D		R ₂	<u>G, A, B</u> , E	
E		R ₃	<u>A, B, C</u> , D, E	
F		R ₄	<u>F, B, C</u> , D, E	
G	R_2 , R_5	R ₅	<u>G, A</u> , E	

Can	didate pair	Sim		
(F	andidate pair	3	im /6	
(F (f	Candidate pa	air	Sim	
(F	(R₁, R₃)		2/6	
	(R Candidate	pai	r Sir	n
	(R_2, R_5)		3/4	4