Matching Local Self-Similarities across Images and Videos

Eli Shechtman & Michal Irani The Weizmann Institute of Science Israel

> Thomas Tiel Groenestege Jorn Engelbart

Matching Local Self-Similarities

Matching Local Self-Similarities

Matching Local Self-Similarities

GLOH

Shape Context

Template matching

- Template image F to target image G
- Not the same size
- Similarity not in appearance, but structure
- · Local self-similarity

Self-similarity descriptors

- Sum of Square Differences
- $S_q(x, y) = \exp\left(-\frac{SSD_q(x, y)}{\max(var_{noise}, var_{auto}(q))}\right)$

Self-similarity descriptors

• 20 angles for 4 intervals = 80 bins

Self-similarity descriptors

Self-similarity descriptors

- Very local
- Takes maximal values for bins
- Accounts for small affine transformations
- · Patch over pixel

Matching ensembles of descriptors

- · Creating "ensembles"
- Relative positions of descriptors
- Filter out non-information

Matching ensembles of descriptors

- Similarity with sigmoid of L1 distance
- Likelihood map of the template
- Gaussian image pyramid, normalisation

Results

- 60 challenging image pairs
- Other methods failed in majority of cases
- LSS 86% correct

Other methods

Pose sketches

Video

Object classification

Cross-modal matching

Deep learning

Discussion

• No extensive evaluation on good dataset

Questions?