Chapter 1: roadmap

- What *is* the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models
- Security
- History

Protocol "layers" and reference models

Networks are complex, with many "pieces":

- devices
 - hosts, routers, switches, ...
- links of various media
 - wired, wireless
 - PAN, LAN, WAN, ...
- applications/services
 - · web, video, audio, ...
 - network management
- protocols
- each piece may come and go

Question: how to organize structure of network?

- lavering
- division of labor
 - and cooperation between different

51

50

Example: organization of air travel

ticket (purchase)	ticketing service	ticket (complain)	
baggage (check)	baggage service	baggage (claim)	
gates (load)	gate service	gates (unload)	
runway takeoff	runway service	runway landing	
airplane routing	routing service	airplane routing	

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Example: organization of air travel

end-to-end transfer of person plus baggage

ticket (purchase) ticket (complain) baggage (check) baggage (claim) gates (load) gates (unload) runway takeoff runway landing airplane routing airplane routing

airplane routing

the system of airline travel is a series of steps, involving many services

Why layering?

Approach to designing/discussing complex systems:

- explicit structure allows identification, relationship of system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change in layer's service *implementation*: transparent to the rest of system
 - change in one layer doesn't affect rest of system

Layered Internet protocol stack

- application: supporting network applications
 HTTP, IMAP, SMTP, DNS
- transport: process-to-process data transferTCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"

application message
transport segment
network datagram
link frame
physical bits (symbol)

52

Services, Layering and Encapsulation

Services, Layering and Encapsulation

44

53

ISO/OSI reference model

Two layers not found in Internet protocol stack!

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, *if needed*, must be implemented in application
 - needed?

application
presentation
session
transport
network
link
physical

The seven layer OSI/ISO reference model