Data Structures and Algorithms ¹

BITS-Pilani K. K. Birla Goa Campus

¹Material for the presentation taken from Cormen, Leiserson, Rivest and Stein, *Introduction to Algorithms, Third Edition*;

Suppose we use roll number as the key.

- Suppose we use roll number as the key.
- Data Structures seen so far :
 - Queues
 - Priority Queues
 - Red-black Trees

- Suppose we use roll number as the key.
- Data Structures seen so far :
 - Queues
 - Priority Queues
 - Red-black Trees
- ▶ It is not possible to search a key in constant time.

- Suppose we use roll number as the key.
- Data Structures seen so far :
 - Queues
 - Priority Queues
 - Red-black Trees
- It is not possible to search a key in constant time.
- ▶ Hash tables is a datastructure that allows us to perform SEARCH operation in O(1) time.

- Suppose we use roll number as the key.
- Data Structures seen so far :
 - Queues
 - Priority Queues
 - Red-black Trees
- It is not possible to search a key in constant time.
- ▶ Hash tables is a datastructure that allows us to perform SEARCH operation in O(1) time.
- Neverage time to perform any operation (INSERT, SEARCH and DELETE) should be O(1).

Satellite Data related to keys

Roll : 1023
Name : Ravi

YOB: 2000

Roll : **0912**

Name : Lata

YOB: 2000

Roll : **1756**

Name : Sagar

YOB: 1999

Roll: 1504

Name: Mohit

YOB: 1999

Roll : **1393**

Name: Maya

YOB: 1999

▶ Direct-address Table is an array T[0...m-1], where each slot corresponds to a key in the universe U.

- ▶ Direct-address Table is an array T[0...m-1], where each slot corresponds to a key in the universe U.
- ► Works well if :

- ▶ Direct-address Table is an array T[0...m-1], where each slot corresponds to a key in the universe U.
- Works well if :
- 1. The universe U of keys is small. $U = 0, 1, \dots, m-1$

- ▶ Direct-address Table is an array T[0...m-1], where each slot corresponds to a key in the universe U.
- Works well if :
- 1. The universe U of keys is small. U = 0, 1, ..., m-1
- 2. No two elements in the dynamic set have the same key.

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

 $1 \quad T[x.key] = x$

DIRECT-ADDRESS-DELETE (T, x)

1 T[x.key] = NIL

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

$$1 \quad T[x.key] = x$$

DIRECT-ADDRESS-DELETE (T, x)

$$1 \quad T[x.key] = NIL$$

▶ Each of the operations take O(1) time.

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

$$1 \quad T[x.key] = x$$

DIRECT-ADDRESS-DELETE (T, x)

$$1 \quad T[x.key] = NIL$$

- ▶ Each of the operations take O(1) time.
- What are the problems?

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

 $1 \quad T[x.key] = x$

DIRECT-ADDRESS-DELETE (T, x)

- $1 \quad T[x.key] = NIL$
 - ▶ Each of the operations take O(1) time.
 - What are the problems?
 - 1. m cannot be large.

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

 $1 \quad T[x.key] = x$

DIRECT-ADDRESS-DELETE (T, x)

- $1 \quad T[x.key] = NIL$
 - **Each** of the operations take O(1) time.
 - What are the problems?
 - 1. *m* cannot be large.
 - 2. Two elements cannot have the same key.

Satellite Data related to keys

Roll : 1023
Name : Ravi

YOB : 2000

Roll : **0912**

Name : Lata

YOB: 2000

Roll : **1756**

Name : Sagar

YOB: 1999

Roll : **1504**

Name: Mohit

YOB: 1999

Roll: 1393

Name : Maya

YOB: 1999

• Using the hash value we can search an item in O(1) time.

- ▶ Using the hash value we can search an item in O(1) time.
- ▶ However, two keys can hash to the same slot (collision)

A Hash table has m slots T[0 ... m-1] similar to Direct-address table.

- A Hash table has m slots T[0...m-1] similar to Direct-address table.
- ▶ However, m is usually much less than |U|.

- A Hash table has m slots T[0 ... m-1] similar to Direct-address table.
- ▶ However, m is usually much less than |U|.
- An element with key k is stored in slot h(k), where h is the hash function.

- A Hash table has m slots T[0...m-1] similar to Direct-address table.
- ▶ However, m is usually much less than |U|.
- An element with key k is stored in slot h(k), where h is the hash function.
- ▶ h is a mapping from the universe of keys U to the slots of the hash table.

$$h: U \to 0, 1, ..., m-1$$

- A Hash table has m slots T[0...m-1] similar to Direct-address table.
- ▶ However, m is usually much less than |U|.
- An element with key k is stored in slot h(k), where h is the hash function.
- ▶ h is a mapping from the universe of keys U to the slots of the hash table.

$$h: U \to 0, 1, ..., m-1$$

 \blacktriangleright h(k) is called the hash value of key k

Hash table vs. Direct-address table

Storage requirements of Direct-address table is $\Theta(|U|)$ with no collisions.

Hash table vs. Direct-address table

- Storage requirements of Direct-address table is $\Theta(|U|)$ with no collisions.
- Storage requirements of Hash table is only $\Theta(m)$, but collisions may occur.

1. Minimizing collision:

1. Minimizing collision: Choose a suitable hash function h such that h appears to be random. That is, each slot has the same number of preimages in the universe U.

- 1. Minimizing collision: Choose a suitable hash function *h* such that *h* appears to be random. That is, each slot has the same number of preimages in the universe *U*.
- 2. Resolving collision:

- 1. Minimizing collision: Choose a suitable hash function *h* such that *h* appears to be random. That is, each slot has the same number of preimages in the universe *U*.
- 2. Resolving collision: Use chaining

- 1. Minimizing collision: Choose a suitable hash function *h* such that *h* appears to be random. That is, each slot has the same number of preimages in the universe *U*.
- Resolving collision: Use chaining
 In chaining, we place all the elements that hash to the same slot into the same linked list.

Collision resolution by chaining

Collision resolution by chaining

▶ Each slot contains pointer to the head of the linked list.

Operations on Hash table with chaining

CHAINED-HASH-INSERT (T, x)

1 LIST-PREPEND (T[h(x.key)], x)

CHAINED-HASH-SEARCH (T, k)

1 **return** LIST-SEARCH(T[h(k)], k)

CHAINED-HASH-DELETE (T, x)

1 LIST-DELETE (T[h(x.key)], x)

```
CHAINED-HASH-INSERT (T, x)

1 LIST-PREPEND (T[h(x.key)], x)

CHAINED-HASH-SEARCH (T, k)

1 return LIST-SEARCH (T[h(k)], k)

CHAINED-HASH-DELETE (T, x)

1 LIST-DELETE (T[h(x.key)], x)
```

► For searching, the worst case running time is proportional to the length of the list.

```
CHAINED-HASH-INSERT (T, x)

1 LIST-PREPEND (T[h(x.key)], x)

CHAINED-HASH-SEARCH (T, k)

1 return LIST-SEARCH (T[h(k)], k)

CHAINED-HASH-DELETE (T, x)

1 LIST-DELETE (T[h(x.key)], x)
```

- ► For searching, the worst case running time is proportional to the length of the list.
- ▶ We can insert an element in O(1) time.

```
CHAINED-HASH-INSERT (T, x)

1 LIST-PREPEND (T[h(x.key)], x)

CHAINED-HASH-SEARCH (T, k)

1 return LIST-SEARCH (T[h(k)], k)

CHAINED-HASH-DELETE (T, x)

1 LIST-DELETE (T[h(x.key)], x)
```

- ► For searching, the worst case running time is proportional to the length of the list.
- We can insert an element in O(1) time. We are assuming that the key is not already present in the list.

```
CHAINED-HASH-INSERT (T, x)

1 LIST-PREPEND (T[h(x.key)], x)

CHAINED-HASH-SEARCH (T, k)

1 return LIST-SEARCH (T[h(k)], k)

CHAINED-HASH-DELETE (T, x)

1 LIST-DELETE (T[h(x.key)], x)
```

- ► For searching, the worst case running time is proportional to the length of the list.
- We can insert an element in O(1) time. We are assuming that the key is not already present in the list.
- An element can be deleted in O(1) time if we have a pointer to the element.


```
CHAINED-HASH-INSERT (T, x)

1 LIST-PREPEND (T[h(x.key)], x)

CHAINED-HASH-SEARCH (T, k)

1 return LIST-SEARCH (T[h(k)], k)

CHAINED-HASH-DELETE (T, x)

1 LIST-DELETE (T[h(x.key)], x)
```

- ► For searching, the worst case running time is proportional to the length of the list.
- We can insert an element in O(1) time. We are assuming that the key is not already present in the list.
- An element can be deleted in O(1) time if we have a pointer to the element. This is because we are using a doubly linked list.

▶ How long does it take to search an element with a given key?

- How long does it take to search an element with a given key?
- ightharpoonup Suppose we store n elements in a hash table having m slots.

- ▶ How long does it take to search an element with a given key?
- \triangleright Suppose we store n elements in a hash table having m slots.
- ▶ Load factor $\alpha = n/m$

- How long does it take to search an element with a given key?
- ightharpoonup Suppose we store n elements in a hash table having m slots.
- ▶ Load factor $\alpha = n/m$
- ▶ Our analysis will be in terms of α .

- How long does it take to search an element with a given key?
- \triangleright Suppose we store n elements in a hash table having m slots.
- ▶ Load factor $\alpha = n/m$
- ightharpoonup Our analysis will be in terms of α .
- ▶ Worst-case running time $\Theta(n)$.

▶ Depends on how well the hash function distributes the set of keys among the *m* slots.

- ▶ Depends on how well the hash function distributes the set of keys among the *m* slots.
- ▶ Independent uniform hashing : any given key *k* is equally likely to hash into any of the *m* slots independent of other keys.

- ▶ Depends on how well the hash function distributes the set of keys among the *m* slots.
- ▶ Independent uniform hashing : any given key *k* is equally likely to hash into any of the *m* slots independent of other keys.
- ▶ Let length of the linked list at slot T[j] be denoted by n_j .

- ▶ Depends on how well the hash function distributes the set of keys among the *m* slots.
- ▶ Independent uniform hashing : any given key *k* is equally likely to hash into any of the *m* slots independent of other keys.
- ▶ Let length of the linked list at slot T[j] be denoted by n_j.
- Expected value of n_j , $E[n_j] = \alpha = n/m$

- Depends on how well the hash function distributes the set of keys among the m slots.
- ▶ Independent uniform hashing : any given key *k* is equally likely to hash into any of the *m* slots independent of other keys.
- ▶ Let length of the linked list at slot T[j] be denoted by n_j .
- Expected value of n_j , $E[n_j] = \alpha = n/m$
- ▶ Time required to search an element with key k depends linearly on the length $n_{h(k)}$ of the list T[h(k)].

Hashing with chaining: SEARCH average-case time

Theorem: (Unsuccessful search)

In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time $\Theta(1+\alpha)$, under the assumption of independent uniform hashing.

Hashing with chaining: SEARCH average-case time

Theorem: (Unsuccessful search)

In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time $\Theta(1+\alpha)$, under the assumption of independent uniform hashing.

Theorem: (Successful search)

In a hash table in which collisions are resolved by chaining, a successful search takes average-case time $\Theta(1+\alpha)$, under the assumption of independent uniform hashing.

▶ What makes a good hash function?

What makes a good hash function? Independent uniform hashing

- What makes a good hash function? Independent uniform hashing
- ▶ E.g. Suppose we know that the keys k are uniformly distributed in the range $0 \le k < 1$.

- What makes a good hash function? Independent uniform hashing
- ▶ E.g. Suppose we know that the keys k are uniformly distributed in the range $0 \le k < 1$.

Then $h(k) = \lfloor km \rfloor$ satisfies independent uniform hashing.

- What makes a good hash function? Independent uniform hashing
- ▶ E.g. Suppose we know that the keys k are uniformly distributed in the range $0 \le k < 1$.
 - Then $h(k) = \lfloor km \rfloor$ satisfies independent uniform hashing.
- Goal : Come up with heuristic methods to achieve independent uniform hashing.

Creating Hash functions

Compiler's symbol table

Creating Hash functions

- Compiler's symbol table
- Closely related symbols (pt and pts) often occur in the same program.

Creating Hash functions

- Compiler's symbol table
- Closely related symbols (pt and pts) often occur in the same program.
- ► The computed hash value should be independent of any pattern that might exist in the keys.

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

Most hash functions assume that the universe of keys is the set of natural numbers.

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

Approach : Find a way to interpret non-integer keys as natural numbers.

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

- Approach : Find a way to interpret non-integer keys as natural numbers.
- For example: variable pt

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

- Approach : Find a way to interpret non-integer keys as natural numbers.
- For example: variable ptWe can think of this as a radix-128 integer

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

- Approach : Find a way to interpret non-integer keys as natural numbers.
- For example: variable pt
 We can think of this as a radix-128 integer
 ASCII values of p and t are 112 and 116

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

- Approach : Find a way to interpret non-integer keys as natural numbers.
- For example: variable pt
 We can think of this as a radix-128 integer
 ASCII values of p and t are 112 and 116
 112 × 128¹ + 116 × 128⁰

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

- Approach : Find a way to interpret non-integer keys as natural numbers.
- For example: variable pt
 We can think of this as a radix-128 integer
 ASCII values of p and t are 112 and 116
 112 × 128¹ + 116 × 128⁰ = 14452

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

- Approach : Find a way to interpret non-integer keys as natural numbers.
- ► For example: variable **pt**We can think of this as a radix-128 integer

 ASCII values of p and t are 112 and 116

 112 × 128¹ + 116 × 128⁰ = 14452
- In our discussion, we will assume that keys are natural numbers.

The division method

$$h(k) = k \mod m$$

The division method

► $h(k) = k \mod m$ E.g. If m = 12 and k = 100, then h(k) = 4.

The division method

- ► $h(k) = k \mod m$ E.g. If m = 12 and k = 100, then h(k) = 4.
- m should not be a power of 2

- ► $h(k) = k \mod m$ E.g. If m = 12 and k = 100, then h(k) = 4.
- ▶ m should not be a power of 2 If $m = 2^p$, then $k \mod m$ will be just p lower-order bits of k.

- ► $h(k) = k \mod m$ E.g. If m = 12 and k = 100, then h(k) = 4.
- ▶ m should not be a power of 2 If $m = 2^p$, then $k \mod m$ will be just p lower-order bits of k. If k = 15 and $m = 2^3$, then $h(k) = (15 \mod 2^3) = 7$.

- ► $h(k) = k \mod m$ E.g. If m = 12 and k = 100, then h(k) = 4.
- ▶ m should not be a power of 2 If $m = 2^p$, then $k \mod m$ will be just p lower-order bits of k. If k = 15 and $m = 2^3$, then $h(k) = (15 \mod 2^3) = 7$.
- ▶ A good choice for *m* : A prime number that is not too close to any power of 2.

Suppose n = 2000 and $\alpha = \frac{n}{m} = 3$.

- Suppose n = 2000 and $\alpha = \frac{n}{m} = 3$.
- ► m = 701 could be a good choice because it is a prime number close to $\frac{n}{\alpha} = \frac{2000}{3}$

- Suppose n = 2000 and $\alpha = \frac{n}{m} = 3$.
- ▶ m = 701 could be a good choice because it is a prime number close to $\frac{n}{\alpha} = \frac{2000}{3}$

Also, m = 701 is not close to any power of 2.

$$h(k) = \lfloor m(kA \bmod 1) \rfloor$$

- $h(k) = \lfloor m(kA \bmod 1) \rfloor$
- 1. We multiply k with a constant A in the range 0 < A < 1.

- $h(k) = \lfloor m(kA \bmod 1) \rfloor$
- 1. We multiply k with a constant A in the range 0 < A < 1.
- 2. We extract the fractional part of kA.

- $h(k) = \lfloor m(kA \bmod 1) \rfloor$
- 1. We multiply k with a constant A in the range 0 < A < 1.
- 2. We extract the fractional part of kA.
- 3. We multiply the fractional part with m and take the floor of the result.

- $h(k) = \lfloor m(kA \bmod 1) \rfloor$
- 1. We multiply k with a constant A in the range 0 < A < 1.
- 2. We extract the fractional part of kA.
- 3. We multiply the fractional part with *m* and take the floor of the result.
- ► The value of *m* is not critical. It is typically chosen to be a power of 2.

- $h(k) = \lfloor m(kA \bmod 1) \rfloor$
- 1. We multiply k with a constant A in the range 0 < A < 1.
- 2. We extract the fractional part of kA.
- 3. We multiply the fractional part with m and take the floor of the result.
- ► The value of *m* is not critical. It is typically chosen to be a power of 2.
- ▶ The fraction A should be an irrational number.

- $h(k) = \lfloor m(kA \bmod 1) \rfloor$
- 1. We multiply k with a constant A in the range 0 < A < 1.
- 2. We extract the fractional part of kA.
- 3. We multiply the fractional part with m and take the floor of the result.
- ► The value of *m* is not critical. It is typically chosen to be a power of 2.
- The fraction A should be an irrational number.
- Nuth has suggested A be $\frac{\sqrt{5}-1}{2}$. (It is inverse of the golden ratio.)

- $h(k) = \lfloor m(kA \bmod 1) \rfloor$
- 1. We multiply k with a constant A in the range 0 < A < 1.
- 2. We extract the fractional part of kA.
- 3. We multiply the fractional part with m and take the floor of the result.
- ► The value of *m* is not critical. It is typically chosen to be a power of 2.
- ▶ The fraction A should be an irrational number.
- Nuth has suggested A be $\frac{\sqrt{5}-1}{2}$. (It is inverse of the golden ratio.)

$$\frac{\sqrt{5}-1}{2}=0.6180339887\dots$$

► Suppose *A* is a rational number. Then *kA* will also be a rational number.

- ► Suppose *A* is a rational number. Then *kA* will also be a rational number.
- ► E.g. $543 \times \frac{322}{555} = 315.0378378378...$

- ► Suppose *A* is a rational number. Then *kA* will also be a rational number.
- ► E.g. $543 \times \frac{322}{555} = 315.0378378378...$ (Recurring number)

- ► Suppose *A* is a rational number. Then *kA* will also be a rational number.
- ► E.g. $543 \times \frac{322}{555} = 315.0378378378...$ (Recurring number)
- So, the fraction part of kA is not uniformly distributed in the interval (0,1).

- ► Suppose *A* is a rational number. Then *kA* will also be a rational number.
- ► E.g. $543 \times \frac{322}{555} = 315.0378378378...$ (Recurring number)
- So, the fraction part of kA is not uniformly distributed in the interval (0,1).
- ▶ When *A* is an irrational number, the pattern in the fractional part of *kA* becomes less predictable (there is no recurring pattern).

Multiply-shift Method

Product (2-w bit value) = $r_1 2^w + r_0$

Multiply-shift Method

- Product (2-w bit value) = $r_1 2^w + r_0$
- $h_a(k) = (k a \mod 2^w) \ggg (w l)$

Static Hashing vs. Random Hashing

Static Hashing vs. Random Hashing

- ▶ Division method : $h(k) = k \mod m$
- ▶ Multiplication method : $h(k) = \lfloor m(kA \mod 1) \rfloor$
- ► Multiply-shift method :

Static Hashing vs. Random Hashing

- ▶ Division method : $h(k) = k \mod m$
- ▶ Multiplication method : $h(k) = \lfloor m(kA \mod 1) \rfloor$
- ► Multiply-shift method :

► $h(k) = (k(2^w A) \mod 2^w) \gg (w - l)$

Take first I bits of remainder(result of mod)

Motivation for Random Hashing

Denial-of-service attack based on Session IDs.

Motivation for Random Hashing

- Denial-of-service attack based on Session IDs.
- ► Hash value of IP address.

▶ $h_{ab}(k) = ((ak + b) \mod p) \mod m$ where $a \in \{1, ..., p - 1\}$ and $b \in \{0, 1, ..., p - 1\}$.

▶ $h_{ab}(k) = ((ak + b) \mod p) \mod m$ where $a \in \{1, \dots, p - 1\}$ and $b \in \{0, 1, \dots, p - 1\}$. $\mathbb{Z}_p^* = \{1, \dots, p - 1\}, \ \mathbb{Z}_p = \{0, 1, \dots, p - 1\}$

- ▶ $h_{ab}(k) = ((ak+b) \mod p) \mod m$ where $a \in \{1, \dots, p-1\}$ and $b \in \{0, 1, \dots, p-1\}$. $\mathbb{Z}_p^* = \{1, \dots, p-1\}$, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$
- Example, p = 19, m = 8, a = 2 and b = 3: What is $h_{2,3}(10)$?

- ▶ $h_{ab}(k) = ((ak+b) \mod p) \mod m$ where $a \in \{1, \dots, p-1\}$ and $b \in \{0, 1, \dots, p-1\}$. $\mathbb{Z}_p^* = \{1, \dots, p-1\}$, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$
- Example, p = 19, m = 8, a = 2 and b = 3: What is $h_{2,3}(10)$? 4

- ▶ $h_{ab}(k) = ((ak+b) \mod p) \mod m$ where $a \in \{1, \dots, p-1\}$ and $b \in \{0, 1, \dots, p-1\}$. $\mathbb{Z}_p^* = \{1, \dots, p-1\}$, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$
- Example, p = 19, m = 8, a = 2 and b = 3: What is $h_{2,3}(10)$? 4
- ▶ p is chosen large enough such that every possible key $k \in \mathbb{Z}_p$.

- ▶ $h_{ab}(k) = ((ak+b) \mod p) \mod m$ where $a \in \{1, \dots, p-1\}$ and $b \in \{0, 1, \dots, p-1\}$. $\mathbb{Z}_p^* = \{1, \dots, p-1\}$, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$
- Example, p = 19, m = 8, a = 2 and b = 3: What is $h_{2,3}(10)$? 4
- ightharpoonup p is chosen large enough such that every possible key $k \in \mathbb{Z}_p$.
- Family of hash functions : $\mathcal{H} = \{h_{ab} : a \in \mathbb{Z}_p^* \text{ and } b \in \mathbb{Z}_p\}$

- ▶ $h_{ab}(k) = ((ak+b) \mod p) \mod m$ where $a \in \{1, \dots, p-1\}$ and $b \in \{0, 1, \dots, p-1\}$. $\mathbb{Z}_p^* = \{1, \dots, p-1\}$, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$
- Example, p = 19, m = 8, a = 2 and b = 3: What is $h_{2,3}(10)$? 4
- ightharpoonup p is chosen large enough such that every possible key $k \in \mathbb{Z}_p$.
- Family of hash functions : $\mathcal{H} = \{h_{ab} : a \in \mathbb{Z}_p^* \text{ and } b \in \mathbb{Z}_p\}$
- ▶ What is $|\mathcal{H}|$?

▶ Let h be a hash function that is picked uniformly randomly from H_{pm}:

A family \mathcal{H}_{pm} is universal if for any distinct keys k_1 and k_2 in U, the probability that $h(k_1) = h(k_2)$ is at most 1/m.

- Let h be a hash function that is picked uniformly randomly from \mathcal{H}_{pm} :
 - A family \mathcal{H}_{pm} is universal if for any distinct keys k_1 and k_2 in U, the probability that $h(k_1) = h(k_2)$ is at most 1/m.
- **Theorem :** The family \mathcal{H}_{pm} of hash functions defined below is universal.

$$h_{ab}(k) = ((ak + b) \mod p) \mod m$$
, where $a \in \mathbb{Z}_p^*$ and $b \in \mathbb{Z}_p$.

$$\mathcal{H}_{pm} = \{h_{ab} : a \in \mathbb{Z}_p^* \text{ and } b \in \mathbb{Z}_p\}$$

▶ **Theorem :** The family \mathcal{H}_{pm} of hash functions defined below is universal.

$$h_{ab}(k) = ((ak + b) \mod p) \mod m$$
, where $a \in \mathbb{Z}_p^*$ and $b \in \mathbb{Z}_p$.

$$\mathcal{H}_{pm} = \{h_{ab} : a \in \mathbb{Z}_p^* \text{ and } b \in \mathbb{Z}_p\}$$

▶ **Theorem :** The family \mathcal{H}_{pm} of hash functions defined below is universal.

$$h_{ab}(k) = ((ak + b) \mod p) \mod m$$
, where $a \in \mathbb{Z}_p^*$ and $b \in \mathbb{Z}_p$.

$$\mathcal{H}_{pm} = \{h_{ab} : a \in \mathbb{Z}_p^* \text{ and } b \in \mathbb{Z}_p\}$$

Proof:

- ► SHA-256 (Secure Hash Algorithm 2)
 - Produces a 256-bit (32 byte) output for any input.

- ► SHA-256 (Secure Hash Algorithm 2)
 - Produces a 256-bit (32 byte) output for any input.
 - Same 256-bit hash value for same input (deterministic algorithm).

- ► SHA-256 (Secure Hash Algorithm 2)
 - Produces a 256-bit (32 byte) output for any input.
 - ► Same 256-bit hash value for same input (deterministic algorithm).
 - ► SHA-256 is designed to be computationally efficient.

- ► SHA-256 (Secure Hash Algorithm 2)
 - Produces a 256-bit (32 byte) output for any input.
 - Same 256-bit hash value for same input (deterministic algorithm).
 - ▶ SHA-256 is designed to be computationally efficient.
- $h(k) = SHA-256(k) \mod m$

- ► SHA-256 (Secure Hash Algorithm 2)
 - Produces a 256-bit (32 byte) output for any input.
 - Same 256-bit hash value for same input (deterministic algorithm).
 - SHA-256 is designed to be computationally efficient.
- $h(k) = SHA-256(k) \mod m$
- Family of hash functions:

$$h_a(k) = \mathsf{SHA}\text{-}256(a \parallel k) \mod m$$

Syllabus

▶ Only Sections 11.1, 11.2 and 11.3 will be part of CS F211 syllabus.

Syllabus

- ▶ Only Sections 11.1, 11.2 and 11.3 will be part of CS F211 syllabus.
- Open addressing (Section 11.4) will not be part of CS F211 syllabus.