4.5 The Intermediate Value Theorem

April 18, 2018

Exercise 4.5.3. Is there a continuous function on all of \mathbb{R} with range $f(\mathbb{R}) = \mathbb{Q}$?

Answer: No, \mathbb{Q} is not connected. If the function had 1 and 2 in its domain, then by the IVT, its range must contain $\sqrt{2}$ (or any other irrational point.).

Exercise 4.5.4. A function f is increasing on A if f(x) < f(y) for all x < y in A. Show that the IVT does have a converse if we assume f is increasing on [a, b].

Proof: We want to show that this function is continuous given that it satisfies the IVP. Since f is increasing. then we have f(a) < f(c). If $f(c) - \epsilon < f(a)$, then set $x_1 = a$, if $f(c) - \epsilon \le f(a)$, then, by the IVP, we know that there exists a $x_1 < c$ s.t $f(x_1) = f(c) - \epsilon$. In either case we have for $x \in (x_1, c]$

$$f(c) - \epsilon \le f(x_1) \le f(x) \le f(c)$$

In a similar fashion we can find $x_2 > c$, s.t. for $x \in [c, x_2)$ we have

$$f(c) \le f(x) \le f(x_2) \le f(c) + \epsilon$$

Now we choose $\delta = \min[c - x_1, x_2 - c]$, we thus have

$$|x - c| < \delta \Longrightarrow |f(x) - f(c)| < \epsilon$$

We can thus conclude that f is continuous and as such the converse is true.

Exercise 4.5.5. Finish the proof of the IVT using the AoC started previously.

Proof: Suppose f(c) > 0. Set $\epsilon_0 = f(c)$, then the continuity of f implies that there exists a δ_0 for which $x \in V_{\delta_0}(c)$ implies $f(x) \in V_{\epsilon_0}(c)$, but that in turn implies that f(x) > 0 and thus $x \notin K$ for all $x \in V_{\delta_0}(c)$. This means that if c is an upper bound on K, then $c - \epsilon$ is a smaller upper bound, which violates the defintion of a supremum, thus $f(c) \not> 0$.

Now, suppose f(c) < 0. The continuity of f allows to construct a neighborhood $V_{\delta_0}(c)$ where $x \in V_{\delta_0}(c)$ implies f(x) < 0. But this implies that there exists a

point s.t. $c+\frac{\delta}{2}$ is an element of K, violating the fact that c is an upper bound for K. Thus, f(c)<0 is impossible.

We conclude that f(c) = 0 as desired.

This proves the IVT for the special case L=0. To prove the more general version, we use an auxiliary function h(x)=f(x)-L. We know that h(c)=0 for some $c \in (a,b)$ from which it follows that f(c)=L.

Exercise 4.5.7. Let f be a continuous function on a closed interval [0,1] with range also contained in [0,1]. Prove that f must have a fixed point; that is, show that f(x) = x for at least one value $x \in [0,1]$.

Proof: We start by constructing an auxiliary function g(x) = f(x) - x. Now, since the range of f is contained in [0,1], then $g(0) = f(0) \ge 0$ and $g(1) = f(1) - 1 \le 0$. By the IVT, we can find an x s.t. g(x) = 0, which completes the proof.