Запускаем четырнадцатую работу, нажимаем старт, видим первое задание:

Нам нужно определить, какой регистр изменится после команды, что в нём будет, и куда сместится указатель IP.

ADD op1, op2 означает, что в первый операнд op1 поместится сумма op1 и op2, то есть: op1 = op1+ op2.

SUB op1, op2 означает, что в первый операнд op1 поместится разность op1 и op2, то есть: op1 = op1 – op2.

В нашем случае SP = SP + SI = 9882 + 49ea = e26c. Выбираем регистр SP и вписываем e26c.

Далее посчитаем, куда сместится IP. Любая команда вида: <команда> op1, op2 берёт **2 байта**, если op1 и op2 – регистры, а не числа.

В нашем случае оба операнда — регистры, поэтому IP сместится на 2 байта: IP = be62 + 2 = be64. Вписываем это в поле IP, задание выполнено.

Вторая команда:

Суть задания абсолютно та же, только второй операнд – не регистр, а просто число (в разных случаях размером либо байт, либо слово).

В нашем случае DH = DH - 3a = 96 - 3a = d0. Выбираем регистр DX и вписываем d0b6 (так как изменяется лишь старшая часть регистра, младшая остаётся прежней):

Далее посчитаем, куда сместится IP. В нашем случае первый операнд — регистр, но второй — число, поэтому IP сместится на 2 + 1 байт (сама команда + число-байт): IP = 0ce0 + 3 = 0ce3. Вписываем это в поле IP, задание выполнено.

Третья команда:

Тут уже действует смещение в оперативную память. Квадратные скобки [XX+XX+...] означают, что в регистре содержатся не данные, а адрес в оперативной памяти, где они размещаются. При этом, если в квадратных скобках указан регистр ВР, то надо ещё просуммировать выражение в скобках с регистром SS, при этом SS берётся как SS*2^4, то есть число хххх превращается в хххх0. Если регистр ВР в квадратных скобках не указан, то суммируем с DS, при этом DS берётся как DS*2^4, то есть число хххх превращается в хххх0.

В нашем случае [BX + SI + d6ae]. Вычислим это выражение: [BX + SI + d6ae] = [c453 + 0abe + d6ae] = [1a5bf]. Единица отбрасывается, поскольку у нас только четыре разряда.

Далее, поскольку у нас в команде нигде не присутствует BP, то берём значение регистра $DS*2^4$ и суммируем с получившимся выражением: [a5bf + 6e3c0] = [7897f].

Теперь, по аналогии с четвёртой работой, ищем этот адрес в оперативной памяти. Это и будет наш операнд 2:

-оп									
78960	79	8f	20	5f	db	d6	63	c2	
78968	7Ь	Ь1	Ь1	7c	eb	63	a4	9d	
78970	Ь5	5Ь	de	ьо	a1	32	ba	30	
78978	37	8c	3d	2a	f3	9c	16	2ь	
78980	СС	2d	a6	ed	21	2d	c1	03	
Указатель Текущий IP: 2e8f			Ячей © 7	ки ОП 897f				Cerмeнты	
IP:			0					○ SS 2ce7	

Поскольку у нас первый операнд – это двойное слово (BX), то берутся две ячейки. Причём адрес 7897f указывает на младшую часть разряда, а следующая ячейка – на старшую. То есть в нашем случае операнд два имеет значение cc2b.

Осталось вычесть из BX значение из оперативной памяти и записать результат в BX: BX = BX - cc2b = c453 - cc2b = f828. Выбираем регистр BX и вписываем f828:

Далее посчитаем, куда сместится IP. В нашем случае первый операнд – регистр, но во втором есть число, причем размером два байта, поэтому IP сместится на 2+2 байта (сама команда + число – слово): IP = 2e8f + 4 = 2e93. Вписываем это в поле IP, задание выполнено.

Четвёртая команда:

На этот раз квадратные скобки в первом операнде, то есть результат команды ADD запишется не в регистр, а в оперативную память. Определим адрес по аналогии с предыдущим заданием. Поскольку регистра BP нет, то используем регистр DS: [BX + 8d52] = b4fb + 8d52 = 1424d. Отбрасываем единицу. Просуммируем с DS: $424d + DS*2^4 = 424d + 5ef20 = 6316d$.

Теперь ищем этот адрес в оперативной памяти. Это и будет наш операнд 1:

Поскольку у нас DH, а не DX, то есть величина — слово, то используем только одну ячейку 6316d, то есть значение аа. Прибавим к этому DH и запишем в ячейку ОП: аа + DH = аа + c2 = 16C. Единицу отбрасываем и записываем в ячейку результат:

Вторую ячейку ОП не трогаем.

Далее посчитаем, куда сместится IP. В нашем случае второй операнд — регистр, но в первом есть число размером 2 байта, поэтому IP сместится на 2 + 2 байт (сама команда + число): IP = 600 + 4 = 604. Вписываем это в поле IP, задание выполнено.

Следующая (и последняя) команда:

Иногда добавляется byte ptr, которое сокращает операнд на байт, но это по сути ничего особо не меняет.

Квадратные скобки в первом операнде, то есть результат команды SUB запишется не в регистр, а в оперативную память по указанному адресу. Определим адрес по аналогии с предыдущим заданием. Поскольку регистра BP нет, то используем регистр DS: [BX + eeh] = 8ff. Просуммируем с DS: $8ff + DS*2^4 = 8ff + 8af70 = 8b86f$.

Теперь ищем этот адрес в оперативной памяти. Это и будет наш операнд 1:

Поскольку мы вычитаем слово, то и брать надо слово. То есть мы берём не 9a, а берём a59a, вычитаем число 24ad и записываем в ячейки ОП именно так: a59a - 24ad = 80ed:

Далее посчитаем, куда сместится IP. В нашем случае в первом операнде есть число размером байт, а во втором размером два байта, поэтому IP сместится на 2+3 байта (сама команда +3 байта): IP = 027f+5=0284. Вписываем это в поле IP, задание выполнено.

Всё выполнено.