Informe Y Análisis de Complejidad O Trabajo Práctico 2

Algoritmos y Estructuras de Datos

Carrozzo Felipe, González Juan Pablo

1) Sala de Emergencia

Para este ejercicio, se implementó la estructura Montículo Binario de Mínimos. Su ventaja principal es que nos permite obtener el elemento mínimo de un conjunto de datos, independientemente del tamaño de n (cantidad de elementos almacenados) en un tiempo constante. Esto quiere decir que sin importar el tamaño de n, el tiempo que tarda en encontrar el mínimo elemento va a ser siempre el mismo.

Complejidad O: inserciones y eliminaciones

Método	Docstring	Orden de complejidad
insertar	Método "insertar" para agregar un ítem a una lista. Añade el elemento al final de la lista. Esto garantiza que se mantendrá la propiedad de estructura completa del árbol. Recibe por parámetro un elemento. Utiliza el método "infilt_arriba".	$O(log_{_{2}}n)$
eliminar_min	Método "eliminar_min" para eliminar la raíz. Este es el elemento más pequeño. No recibe parámetros. Utiliza el método "infilt_abajo".	$O(\log_2 n)$

2) Temperaturas_DB

Complejidad O

Método	Docstring	Orden de complejidad
guardar_temperatura	Método que agrega a la base de datos una clave y un valor (en este caso, fecha y temperatura, respectivamente), los cuales se pasan por parámetro.	0 (log n)
devolver_temperatura	Método que retorna el valor (temperatura) en una fecha exacta. Recibe por parámetro una clave (fecha).	O (log n)
max_temp_rango	Método que retorna, dentro de un rango de fechas, la máxima temperatura registrada. Se pasa por parámetro dos claves (fechas).	O (N log N)
min_temp_rango	Método que retorna, dentro de un rango de fechas, la mínima temperatura registrada. Se pasa por parámetro dos claves (fechas).	O (N log N)
temp_extremos_rango	Método que devuelve la primera y última temperatura en un rango de fechas. Se pasa por parámetro dos claves (fechas).	0 (n)
borrar_temperatura	Método para borrar una temperatura (y por lo tanto una fecha) de la base de datos. Se recibe por parámetro la clave a borrar (fecha).	O (log n)
mostrar_temperaturas	Método para mostrar la totalidad de temperaturas medidas entre una fecha y otra.	O(n)
mostrar_cantidad_muestr as	Método que retorna un entero (int) que representa el tamaño de la base de datos. No recibe ningún dato por parámetro.	0(1)