

Name:	
Matrikelnummer:	

Hochschule Karlsruhe – Technik und Wirtschaft Klausur Technische Informatik I (WS 2015/16)

Aufgabe	1	2	3	4	5	Summe
Punkte	12	10	12	12	14	60
Erreicht						

Ergebnis:

Note	
------	--

Zeit: 60 Minuten

Erlaubte Hilfsmittel: keine

Tragen Sie auf das **Titelblatt Ihren Namen und auf alle Blätter Ihre Matrikelnummer** ein. Fragen Sie bei Unklarheiten in der Aufgabenstellung sofort nach. Tragen Sie Ihre Lösungen in die Aufgabenblätter ein und verwenden Sie auch die Rückseite. Sollte der Platz nicht ausreichen, so erhalten Sie weitere Blätter. Lösungen auf eigenem Papier werden nicht akzeptiert. Alle Aufgabenblätter müssen abgegeben werden. Verwenden Sie **keinen Bleistift** und auch **keinen roten Stift**.

Viel Erfolg!

WS 2015/16

Prof. Dr. Dirk Hoffmann

Name: _			
			_

Matrikelnummer:

Aufgabe 1: Boolesche Algebra (12 Punkte)

Vereinfachen Sie die folgenden Ausdrücke mithilfe der Rechenregeln für boolesche Algebren. Geben Sie dabei in jedem Schritt den Namen der angewendeten Regel an.

$$\phi = \overline{x}yz \lor z\overline{w} \lor \overline{x} \lor \overline{z}$$

$$\psi = \overline{x}\overline{y} \lor \overline{x}y\overline{z} \lor \overline{x} \lor \overline{z}$$

Ψ	

WS 2015/16

Prof. Dr. Dirk Hoffmann

Name:	
Matrikelnumme	r:

Aufgabe 2: Bitmasken (10 Punkte)

8 /
Mit welcher Bitmaske und welchem Logikoperator müssen Sie den Inhalt eines 8-Bit-Registers verknüpfen, wenn Sie das am weitesten links stehende Bit setzen wollen? Geben Sie die Bitmaske in hexadezimaler Darstellung an.
Mit welcher Bitmaske und welchem Logikoperator müssen Sie den Inhalt eines 8-Bit-Registers verknüpfen, wenn Sie das zweite Bit von links löschen wollen? Geben Sie die Bitmaske in hexadezimaler Darstellung an.
Mit welcher Bitmaske und welchem Logikoperator müssen Sie den Inhalt eines 8-Bit-Registers verknüpfen, wenn Sie die rechten vier Bits kippen wollen? Geben Sie die Bitmaske in hexadezimaler Darstellung an.
Entspricht der Rechts-Shift einer Zahl, die im Zweierkomplement dargestellt ist, der Integer-Division durch 2? Begründen Sie Ihre Antwort.

WS 2015/16

Prof. Dr. Dirk Hoffmann

Name:	

Matrikelnummer: _____

Aufgabe 3: Schaltnetze (12 Punkte)

Die Funktionen y und z seien durch die folgende Wahrheitstabelle gegeben:

а	b	c	y	Z
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

ι)	Erzeugen Sie für y und z jeweils eine disjunktive Minimalform.						

WS 2015/16

Prof. Dr. Dirk Hoffmann

Name:	

Matrikelnummer: _____

b) In der folgenden Schaltung steht der unbeschriftete Kasten für ein Schaltnetz, das die oben definierten Funktionen y und z implementiert. Stellen Sie die Wahrheitstabelle für die Funktion f auf.

WS 2015/16

Prof. Dr. Dirk Hoffmann

Name:		
	-	-

Matrikelnummer: _____

Aufgabe 4: Minimierung (12 Punkte)

Die folgenden beiden KV-Diagramme repräsentieren beide die Funktion y. Das Diagramm ist zweimal abgebildet, damit Sie auf zwei verschiedene Weisen Blöcke eintragen können.

a)	Erzeugen Sie eine disjunktive Minimalform (DMF) von y.

rzeugen Sie	eine konjunkt	ive Minima	lform (KMF)	von y.	

WS 2015/16

Prof. Dr. Dirk Hoffmann

Matrikelnummer:

Aufgabe 5: Schaltwerke (14 Punkte)

Gegeben sei die folgende Schaltung:

	ie Übergangsta	belle fur un	ose Schartan	5 441.		
7 ' 1 ' 0'	1 11' 1	A , ,	1 1' 0	1 1, 1	1 11 /	
Zeichnen Sie	e den endlichen	Automaten	, der diese S	chaltung bes	chreibt.	
Zeichnen Sie	e den endlichen	Automater	, der diese S	chaltung bes	chreibt.	
Zeichnen Sie	e den endlichen	Automater	, der diese S	chaltung bes	chreibt.	
Zeichnen Sie	e den endlichen	Automater	, der diese S	chaltung bes	chreibt.	
	e den endlichen Sie in Worten,					