

Soutenance finale

Théo Ripoll - Tom Genlis - Arnaud Baradat - Quentin Fisch Dataset Presentation
Chosen dataset

01

Analysis - Physical

Methods and processes

EDA NO

Exploratory data analysis

Demo

Key results & adversarial attack

Analysis - Network

Methods and processes

03

Conclusion

Recap of results and takeaways

01 Dataset Presentation

Chosen dataset

Hardware In The Loop

Physical and network data from a Water Distribution Testbed, simulating water flow with real and virtual components to analyze effects of cyber and physical attacks in a 2-hour period.

Timeline of attacks

Timeline of attacks (2)

Physical sensors behavior

02

EDA

Exploratory Data Analysis

Labels - Binary class

Density Plot of Network Dataset Labels

Density Plot of Physical Dataset Labels

Labels - Multi-class

Quick rewind to our timeline

Network features

Density Plot of Network Dataset Numerical Features

Network features (2)

Network features (3)

Physical Features

Physical Features (2)

03 Analysis -Network

Methods and processes

Process

- Focus on multi-class classification
- Use a StandardScaler
- Separate analysis:
 - Using full contextual information
 - Without contextual information
- Use the following metrics:
 - Accuracy
 - Recall
 - o **F1**
 - o MCC
 - Balanced accuracy
- Plot and analyse feature importance
- Same for network and physical datasets

Non-supervised Algorithms

Isolation Forest

- Without a fixed contamination rate:
 - **12505** outliers detected (5%)
 - 7695 are real anomalies
 - o 61.5% of precision
- Contamination rate at 27.5%:
 - 66k anomalies to find
 - 37940 real anomalies detected
 - o **57.7%** of precision

Local Outlier Factor

- Too slow for any production use
- Contamination rate at 27.5%:
 - 30919 outliers detected (12%)
 - Only 3599 are real anomalies

Deep Learning

Neural network

- Tried multiple architectures
- Final one has:
 - o 3 hidden layers (1024, 256, 64)

LSTM

Similar results to the neural network

Classifiers - Decision Tree

With contextual information

No contextual information

Classifiers - Random Forest

With contextual information

No contextual information

04 Analysis Physical

Methods and processes

Non-supervised Algorithms

Isolation Forest

- Without a fixed contamination rate:
 - o 6177 outliers detected
 - 1180 are real anomalies
 - o 19% of precision
- Contamination rate at 16%:
 - 66k anomalies to find
 - 37940 real anomalies detected
 - o **57.7%** of precision

Local Outlier Factor

- Too slow for any production use
- **71** outliers detected (12%)
- Only **24** are real anomalies

Deep Learning

Neural network

- Tried multiple architectures
- Final one has:
 - 3 hidden layers (1024, 256, 64)

LSTM

• Similar results to the neural network

Classifiers - Decision Tree

With contextual information

No contextual information and with balanced classes

Classifiers - Random Forest

With contextual information and balanced classes

Classifiers - XGBoost

With contextual information and balanced classes

05 Demo

Key results & adversarial attack

06 Conclusion

Recap of results and takeaways

Conclusion

XGBoost is the best

92.3% accuracy on the network test set

Security breach

The network models would still let attacks go through if used in production, so they need to be used carefully

Adversarial Attack

We showed how easy it can be to change the data (and not the model !) and drastically confuse a model => security breach