

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-208763

(43)公開日 平成8年(1996)8月13日

(51) Int.Cl. ⁶ C 0 8 F 232/08 212/12	識別記号 M N V M J U	庁内整理番号 F I	技術表示箇所
---	------------------------	---------------	--------

審査請求 未請求 請求項の数10 O L (全12頁)

(21)出願番号 特願平7-271398
(22)出願日 平成7年(1995)10月19日
(31)優先権主張番号 3 2 5 7 6 3
(32)優先日 1994年10月19日
(33)優先権主張国 米国(US)

(71)出願人 591020249
ハーキュリーズ・インコーポレーテッド
HERCULES INCORPORATED
アメリカ合衆国デラウェア州19894-0001,
ウィルミントン, ノース・マーケット・ストリート 1313 ハーキュリーズ・プラザ
(72)発明者 ノーマン・エドワード・ドーエンボーグ
アメリカ合衆国ペンシルバニア州15145,
タートル・クリーク, ハイランド・アベニュー 684
(74)代理人 弁理士 湯浅 恒三 (外5名)

最終頁に続く

(54)【発明の名称】 热重合されたジシクロペンタジエン/ビニル芳香族樹脂

(57)【要約】

【課題】 低コストのD C P D供給原料をベースとした、比較的低分子量及び比較的高軟化点の、反応器内で時間とともに実質的に変化しない熱重合樹脂を提供する。

【解決手段】 (1) (a) 全モノマー重量基準で約40%~90重量%の、少なくとも約50重量%のジシクロペンタジエンを含む環式ジオレフィン成分、及び (b) 全モノマー重量基準で約60%~10重量%の、特定のビニル芳香族成分から本質的に成る混合物を熱重合すること、及び

(2) 約70°C~約150°Cの環球軟化点、最大値約4000のMz、最大値約2500のMw、及び最大値約3.0のPdを有する生成物を回収することによって炭化水素樹脂が製造される。この樹脂の水素化は、接着剤中の粘着付与剤として有用な淡い着色の熱安定性の生成物を生成する。

1

【特許請求の範囲】

【請求項1】 (1) 全モノマー重量基準で約40%～90重量%の、少なくとも約50重量%のジシクロペンタジエンを含む環式ジオレフィン成分、及び(2)全モノマー重量基準で約60%～10重量%の、式

【化1】

(式中、R₁はメター若しくはパラー位置にある、Hまたは1～10の炭素の直鎖もしくは分岐鎖のアルキル基であり、そしてR₂は1～10の炭素の直鎖もしくは分岐鎖のアルキル基または2-メチル-2-フェニルプロピル基である)を有する少なくとも1種のビニル芳香族成分から製造される熱重合されたコポリマーから本質的に成る炭化水素樹脂であって、

前記樹脂が約70℃～約150℃の環球軟化点、最大値約4000のMz、最大値約2500のMw、及び最大値約3.0の多分散性(Pd)を有する、前記の炭化水素樹脂。

【請求項2】 環式ジオレフィン成分が、シクロペンタジエンと、メチルシクロペンタジエン、イソブレン、ブタジエン、及びビペリレンより成る群から選択される少なくとも1種の化合物とのコダイマーをも含む、請求項1に記載の樹脂。

【請求項3】 ビニル芳香族成分がモノマーの全重量基準で15重量%以下の、スチレン及び直鎖若しくは分岐鎖の脂肪族基で環置換されたスチレンより成る群から選択される化合物をも含む、請求項1に記載の樹脂。

【請求項4】 成分(1)の成分(2)に対する比が1:1またはそれ以上である、請求項1に記載の樹脂。

【請求項5】 成分(2)のアルキル基がメチル、エチル、イソプロピル、及びt-ブチル基より成る群から選択される、請求項1に記載の樹脂。

【請求項6】 ビニル芳香族成分が、アルファーメチルスチレン、パラ-メチル-アルファーメチルスチレン、2,4-ジフェニル-4-メチル-1-ベンテンより成る群から選択される、請求項1に記載の樹脂。

【請求項7】 (a) (1) 全モノマー重量基準で約40%～90重量%の、少なくとも約50重量%のジシクロペンタジエンを含む環式ジオレフィン成分、及び(2)全モノマー重量基準で約60%～10重量%の、式

【化2】

2

(式中、R₁はメター若しくはパラー位置にある、Hまたは1～10の炭素の直鎖もしくは分岐鎖のアルキル基であり、そしてR₂は1～10の炭素の直鎖もしくは分岐鎖のアルキル基または2-メチル-2-フェニルプロピル基である)を有する少くとも1種のビニル芳香族成分から本質的に成る混合物を得ること、(b)この混合物を熱重合すること、並びに(c)約70℃～約150℃の環球軟化点、最大値約4000のMz、最大値約2500のMw、及び最大値約3.0の多分散性(Pd)を有する生成物を回収することを含んで成る、請求項1～6のいずれかに記載の炭化水素樹脂の製造方法。

【請求項8】 樹脂が統いて、周期表の第VIII族、IB、IIB、VIB及びVIB族より成る群から選択される金属を含んで成る触媒の存在下に水素化される、請求項7に記載の方法。

【請求項9】 樹脂生成物中に存在する低分子量オリゴマーが除去され、そしてそれがさらなる反応のために成分(1)及び(2)の混合物に添加される、請求項7に記載の方法。

【請求項10】 請求項8に記載の方法によって製造された水素化樹脂を含んで成る接着剤。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明はジシクロペンタジエン及びビニル芳香族化合物の熱重合されたコポリマー、そのコポリマーの製造方法、及びそれらの水素化された生成物に関する。

【0002】 ジシクロペンタジエン(DCPD)供給原料を熱的に重合及び共重合する方法及びそのコポリマー生成物を水素化する方法は公知である。例えば、米国特許第4,650,829号は90℃未満の軟化点を有し、そしてシクロペンタジエン単独から誘導されるかまたはシクロペンタジエン+アルキル-置換シクロペンタジエン、非環式ジエン、ビニル芳香族及びこれらの混合物から成るクラスのコモノマーから誘導される少なくとも40重量%のモノマー単位を含む水素化樹脂を開示する。米国特許第5,171,793号はスチレン及びインデン及びこれらのアルキル化誘導体の混合物を含むビニル芳香族成分と、シクロペンタジエンとの270℃の温度での2時間の熱重合を開示する。暗色の樹脂生成物を溶解希釈剤と混合し、そして水素化して100℃より高い軟化点を有する樹脂を製造する。米国特許第3,040,009号は、炭化水素ガスの高温熱分解によって得られる通常は液体混合物であるドリポレン(dripen)の底画分の再蒸留による淡色の樹脂の製造を開示す

る。熱重合した樹脂を多孔質の支持体上に分布した金属ニッケルから成る触媒を使用して水素化する。

【0003】

【発明が解決しようとする課題】過去には、シクロペンタジエンをベースとした樹脂の分子量は、メチルシクロペンタジエン、ブタジエン、イソブレンまたはビペリレンのようなジエンとシクロペンタジエンとのコダイマーを含めることによって、そしてこれらと同じ線状ジエンを直接重合工程に加えることによって制御されていた。これらの方法において、250℃より低い反応温度において不溶性のロウ様ポリマーがしばしば得られた。軟化点及び分子量制御の他の方法は温度のみならず、初期モノマー濃度及び反応器内の時間を含む。インデン流れ及び／またはC-9流れがDCPD流れと共に重合されるときの、最終接着剤における利点が請求されている。しかし、これらのC-9及びインデン流れは、その後に続く水素化工程中に触媒の早期の毒作用による問題を起こしえ得る硫黄を含むことが知られている。

【0004】炭化水素樹脂の得られた系統、すなわち同じ供給原料をベースとするものの全てにおいて、軟化点が上昇するにつれて分子量及び多分散性(polydispersity)も上昇する傾向があることが知られている。ジシクロペンタジエンの熱重合の間の反応時間及び温度が増加するときに、より高い軟化点及び分子量に向く傾向があることも知られている。さらに、アルファーメチルスチレン以外のビニルモノマー(例えばスチレン並びにt-ブチルスチレン及びビニルトルエンのような他の環-置換スチレン)がDCPD供給原料を変性するために使用されるとき、高い分子量及び多分散性が生じる。

【0005】低成本のDCPD供給原料をベースとした、比較的低分子量及び比較的高軟化点の、反応器内で時間とともに実質的に変化しない熱重合樹脂を提供することが望ましい。これらの樹脂は好ましくは相当する水素化された無色の熱安定性誘導体に容易に転化すべきである。

【0006】

【課題を解決するための手段】本発明の炭化水素樹脂は(1)全モノマー重量基準で約40%～90重量%の、少なくとも約50重量%のジシクロペンタジエンを含む環式ジオレフィン成分、及び(2)全モノマー重量基準で約60%～10重量%の、式

【化3】

(式中、R₁はメター若しくはパラー位置にある、Hまたは1～10の炭素の直鎖もしくは分岐鎖のアルキル基であり、そしてR₂は1～10の炭素の直鎖もしくは分

岐鎖のアルキル基または2-メチル-2-フェニルプロピル基である)を有する少なくとも一種のビニル芳香族成分から製造される熱重合されたコポリマーから本質的に成り、この樹脂は約70℃～約150℃の環球軟化点、最大値約4000のMz、最大値約2500のMw、及び最大値約3.0のPdを有する。アルファーメチルスチレン；バラーメチル-アルファーメチルスチレン；2,4-ジフェニル-4-メチル-1-ベンテン、またはこれらの混合物は本発明における使用の芳香族化合物の内のものである。熱重合は有機的に結合したハロゲンを含む樹脂を生成するフリーデルークラフツ触媒の必要性を回避するので、本樹脂は本質的にハロゲンを含まない。

【0007】さらに本発明にしたがい、熱重合樹脂は水素化されて接着剤用の粘着付与剤として有用な樹脂を生成する。好ましい水素化樹脂は色彩について無色であり、そして熱的に安定である。一態様において、水素化触媒の最小の毒作用で効率よく水素化できる樹脂が比較的硫黄不含のDCPD供給原料から製造される。

【0008】特定された芳香族成分の使用は分子量及び軟化点を熱重合の間制御することを可能にする。したがって、重合工程の間に分子量を急速に増加させずに、適切に高い軟化点を有する樹脂を得ることが可能である。

【0009】本発明の炭化水素樹脂の製造における環式ジオレフィン成分(1)としての使用に適切なモノマーは、純粋なDCPD(少なくとも95重量%の純モノマー)、またはジシクロペンタジエンと、シクロペンタジエンとメチルシクロペンタジエン、イソブレン、ブタジエン、及びビペリレンの少なくとも1種とのコダイマーとの混合物(例えば50%～95%以上のジシクロペンタジエンを含む混合物)を本質的に含む。特に有用なDCPD供給原料はリオンデルペトロケミカルカンパニー(米国テキサス州ホーストン)から入手できるDCPD

101及び／またはDCPD 108であり、これらは<1 ppmの硫黄を有する。低硫黄のDCPD供給原料は、触媒に毒作用する硫黄がほとんど存在しないのでさらに効率的な水素化を可能にする。しかし、低硫黄の供給原料の使用は本発明の実施に不可欠ではない。硫黄含有DCPD供給原料から製造された樹脂は、硫黄からの触媒への毒作用の影響を克服する方法があるので水素化できる。

【0010】ビニル芳香族モノマーは式

【化4】

(式中、R₁はメター若しくはパラー位置にある、Hまたは1～10の炭素の直鎖もしくは分岐鎖のアルキル基

(例えばメチル、エチル、イソプロピルまたはt-ブチル基)であり、そしてR₂は1~10の炭素の直鎖もしくは分岐鎖のアルキル基または2-メチル-2-フェニルプロピル基である]を有する少なくとも1種の化合物を含んで成る。アルファーメチルスチレン(AMS); パラ-メチル-アルファーメチルスチレン; 2, 4-ジフェニル-4-メチル-1-ペンテン(AMSの不飽和ダイマー)、またはこれらの混合物が実用的なものである。AMSが最も好ましい。全モノマーの約15重量%までが、上に特定したもの[例えばスチレン並びに直鎖若しくは分岐鎖の脂肪族基によって環-置換されたスチレン(例えばビニルトルエン及びt-ブチルスチレン)]以外のビニル芳香族モノマーであることができる。

【0011】本樹脂生成物は、全モノマーの重量基準で約40~90重量%の環式ジオレフィン成分及び全モノマーの重量基準で約60~10重量%のビニル芳香族成分から本質的に成り、全量は100%に等しい。最も効率的な反応のためには、環式ジオレフィン成分(1)のビニル芳香族成分(2)に対する比が好ましくは1:1かまたはそれ以上である。ビニル芳香族成分の量が50%を越えると、すべてのビニル芳香族成分と反応するのに十分なDCPDがないので収率は減少する。上に与えた式によって定義されるAMS及び他のビニルモノマーはホモ重合しない。樹脂生成物の軟化点は約70℃~150℃であり、好ましくは約80℃~140℃である。

【0012】反応は溶液中または混ぜ物なし(neat)で行うことができる。溶媒が使用されるときは、それは脂肪族または芳香族である。共重合は連続法またはバッチモードで行える。

【0013】本重合は約210~300℃、さらに好ましくは約215~280℃、そして最も好ましくは約225~275℃の温度で行われる。反応圧力は自生であり、そして典型的には0~約150psigである。反応時間は、反応温度において典型的には約10分~約16時間である。

【0014】140℃±5℃の環球(R&B)軟化点を有する本発明の樹脂は約4000の最大Mz、約2500の最大Mw、及び約3.0の最大Pdを有する。125℃±5℃の環球軟化点を有する樹脂は約3000の最大Mz、約2000の最大Mw、及び約2.5の最大Pdを有する。100℃±5℃の環球軟化点を有する樹脂は約2000の最大Mz、約1000の最大Mw、及び約2.0の最大Pdを有する。

【0015】Mz(Z平均分子量)は樹脂中の高分子量のテイル(tail)の指標を与え、そして接着剤用ベースポリマー中の樹脂の相溶性に対して著しい影響を有する。高いMzが一般に好ましくない。Mw(重量平均分子量)は樹脂の平均分子量の指標である。Mn(数平均分子量)は樹脂の低分子量部分に関する情報を提供

する。Pd(多分散性)は分子量分布の広さを記述し、そしてMw/Mnの比である。Mz、Mn及びMwは屈折率検出器を使用したサイズ排除クロマトグラフィーによって決定される。

【0016】特定されたビニル芳香族モノマーの使用は、炭化水素樹脂が生成できるとともに分子量及び軟化点が時間とともに実質的に増加することを妨げる、合理的に長い期間、すなわち数時間を選択された温度において提供する。したがって、方法操作パラメーターを厳重な制御下に維持する必要はない。例えば、80/20の比のDCPD/AMSが脂肪族溶媒中で60%の初期モノマー濃度において240℃で熱反応するとき、反応時間は4~6時間であり、そして245℃では反応時間は2~5時間であってその間に軟化点は99~106℃、Mz及びMwはそれぞれ平均1304及び555のままであり、そしてPdはほぼ2.0またはそれ以下である。

【0017】同様のモノマーから製造されたカチオン性重合生成物に似ず、熱重合されたDCPD-ベースの樹脂は種々の方法でさらに反応できる二重結合を保持している。水素化前に蒸留によって樹脂生成物から除去される低分子量オリゴマーも反応性である。これらのオリゴマーを再循環して、新しいモノマーと共に反応工程に戻し、モノマーの樹脂生成物への転化を効率的に増加することができる。オリゴマーの再循環は収率を典型的な50%~60%から90%付近に8回再循環において効率的に高め、一方軟化点及び分子量をほぼ一定に維持する。

【0018】非水素化樹脂は色において暗くなる傾向があるが、これらは初期の色が重要でない接着剤系における粘着付与剤として使用できる。これらはまたコーティングコンパウンド、シーラント、印刷インキ、防水組成物、およびワックスコンパウンド中にも使用できる。樹脂はいくつかの反応性不飽和を保持しているので、これらの樹脂は他のモノマーとカチオン的に反応して「グラフト化」ターポリマーまたは「ブロック」コポリマー樹脂を与えることができる。

【0019】本発明のコポリマーから最も高品質の接着剤用粘着付与剤を得るために、コポリマーを水素化して色を淡色化しそしていくつかのまたは本質的にすべての不飽和(脂肪族及び芳香族)を除去することが好ましく、このことは次にコポリマーの熱安定性を改善する。ハロゲン及び硫黄は本発明の好ましい炭化水素樹脂中に本質的には存在しない。供給原料は本質的に硫黄を含まないように選択でき、そして熱重合は、樹脂生成物へ有機的に塩素が結合する原因となる塩化アルミニウムのようなフリーデルークラフツ触媒の必要性を回避する。本樹脂は次に周知の水素化触媒によって経済的に水素化されることができる。

【0020】本発明のコポリマー樹脂の水素化のための

7

触媒は、周期表の第V III、I B、II B、VI B及びV I I B族より成る群から選択される金属を含んで成り、アルミニシリケート、アルミナ、炭素、木炭、または多孔質珪藻土のような支持体上で使用される。第V I I 族の触媒が好まく、ニッケル触媒が最も好ましい。バッチオートクレープ中でスラリー化触媒を使用して硫黄不含樹脂の水素化が行われるときに、特に有用な触媒は米国ニュージャージー州アイセリンのエンゲルハードコーポレーション、ケミカルキャタリストグループから入手できるN 1 5 1 3 6 P 及びN 1 5 2 5 6 P、並びに米国ケンタッキー州ルーライビルのユナイテッドキャタリストから入手できるG-96である。水素化工程は、連続攪拌反応器または固定床触媒反応器のいずれかを利用した連続式であることもできる。

【0021】水素化は混ぜ物なしに、または溶液中で行える。溶媒が使用されるときは、脂肪族及び／またはナフテン系溶媒が好ましい。水素化の温度は約100℃～300℃、好ましくは約150℃～290℃、そして最も好ましくは約160℃～280℃である。反応時間は典型的には約5分～10時間、好ましくは約10分～8時間、そして最も好ましくは約15分～6時間である。

【0022】淡色の水素化樹脂は良好な熱安定性を有し、これは例えば米国ニューヨーク州ホーソンのチバーガイギーから入手できるヒンダードフェノールであるIRGANOX 1010（登録商標）のような酸化防止剤の少量の添加によってさらに改善できる。IRGANOX 1010（登録商標）はテトラキス[メチレン(3,5-ジ-第3-ブチル-4-ヒドロキシヒドロシンナメート)]メタンである。

【0023】水素化された樹脂は接着剤、コーティングコンパウンド、およびシーラント用の粘着付与剤として；ペイント、ラベル及びテープ類中で；プラスチック、印刷インキ、オーバープリントワニス及び他の透明コーティング用の調節剤、エキステンダー及び加工助剤として；繊維ドライサイズ剤、セラミックタイルグラウト、ワニス、防水組成物及びワックスコンパウンド中で有用である。

【0024】以下の実施例において、OMSCPは無臭ミネラルスピリット塗り点を意味し、これは次の手順によって決定される。10重量%の樹脂を試験管中で無臭ミネラルスピリットと混合する。次に試験管を透明溶液が形成されるまで加熱する。溶液を濁りが得られるまで冷却する。最初の濁りの開始が初期塗り点として記録される。視覚が完全に遮られるまで試験管の冷却を継続する。最終の塗り点が非可視性点として記録される。

【0025】MMPAは混合メチルシクロヘキサンアニリン塗り点であり、これは修正されたASTMD-611-82 [1987] 手順を使用して決定される。標準の試験手順において使用されるヘプタンをメチルシクロヘキサンに代える。この手順は樹脂/アニリン

8

/メチルシクロヘキサンを1/2/1 (5 g / 10 mL / 5 mL) の比率で使用し、そして塗り点は3成分の加熱した透明なブレンドを完全な濁りが起こるまで冷却することによって決定される。樹脂の不飽和部分、特に芳香族性不飽和の水素化はMMPAの増加を生じる。

【0026】R & B軟化点は環球軟化点であって、ASTM E 28-67にしたがって決定される。

【0027】ガードナーカラー(G)を決定するために、50重量%の樹脂を試葉級のトルエンと室温において溶解するまで混合した。樹脂溶液の着色を米国マリーランド州シルバースプリングスのBKYガードナーインコーポレーテッドから入手できるガードナーデルタモデル211-Aカラーコンパレーター上の一組の標準と比較する。着色値は1～18の範囲で変化し、18が最も暗い。記号ガードナー1-（ガードナー1未満）は無色の溶液を示すために使用される。

【0028】黄色度指数(YID)はBKYガードナー社から入手できるパシフィックサイエンティフィックスペクトロガード（登録商標）カラーシステムからの、

20 5.0 cmのパス長さの測定セルを使用した直接の読みによって得られる。黄色度指数はガードナー1よりも淡い着色を識別するために有用である。YODが0に近い程、着色は淡い。ガードナーカラーとYIDとの間には直接の相関はないが、経験によれば両者が樹脂の50%トルエン溶液として測定されかつYIDが5.0 cmのパス長さの測定セルで測定されたときには、ガードナー1がYID 4.0 にほぼ等しいことが示される。

【0029】UV α は水素化のレベルの目安である。これはシクロヘキサン溶液中で、スペクトルを約300 nmから下へ、シクロヘキサンが丁度吸収し始める点へと走査することによって決定される。UV α は300 nmとシクロヘキサンの最初の吸収との間の走査において最大吸収が起こる点において決定される。完全に水素化された樹脂は例えば約0.05～0.10の非常に低いUV α 値を示す。

【0030】実験室熱重合試験を、電気的に制御された内部冷却ループを備えておりかつ電気加熱マントルで外部的に加熱された、慣用の攪拌された1リットルオートクレープ（米国イリノイ州、モーリンのパールインストルメントカンパニーから入手できる）中で行った。

【0031】モノマーのブレンド、及び使用するときは溶媒をオートクレープに装填し、そして密閉する前に装置を空素でバージした。攪拌しながら、装置を望まれる反応温度にした。温度上昇速度は重要ではなく、1時間未満～12時間が示される。実験室での便宜上、素早い温度上昇が好ましい。反応温度での望まれる時間の後、反応器及び内容物を冷却した。溶媒及び未反応の物質の空素流れ下での210℃以下での除去並びに次の水蒸気下での225℃における低分子量オリゴマーの除去を含む慣用の技術を使用して樹脂が分離された。流れストリ

ッピングは熱反応性ポリマー中の分子量の増加を防止するのを補助するために種やかなものであった（凝縮水蒸気水50mLあたりわずか2mLの油が蓄積）。

【0032】実験室での水素化はパールの1リットルオートクレーブを利用して実験した。手順の概要は、樹脂（及び必要ならば溶媒）及び触媒を装填することである。窒素雰囲気を保証するためにフラッシングした後、1400KPaゲージ（200psi_g）の水素を開始のために使用した。160°Cにおいて、水素圧を6200KPa（900psi_g）に調節し、そして最終反応温度を達成し、そして必要に応じて加熱／冷却を選択的に維持した。望まれる反応時間が完了したとき、混合物を冷却し、ガス抜きし、そして空素を流した。触媒を濾過によって除去し、そして次に水素化された生成物を、溶媒及びオリゴマーの蒸留による除去によって単離した。最終の蒸留を水蒸気下に実施した。他の特定の条件*

*は実施例中に与えられる。

【0033】

【比較実施例1】本試験はジシクロペントジエンのホモ重合を記述する。ビニル芳香族モノマーは存在しない。

【0034】上述の反応手順を使用して、360.0gのDCPD 101及び240.0gの再循環脂肪族溶媒を望まれる反応温度へ約1時間で加熱した。米国テキサス州ホーストンのリオンデルペトロケミカルカンパニーから入手できるDCPD 101は85%のDCPD及び<1ppmの硫黄を含む。反応時間及び温度並びに樹脂生成物の特性を表1に示す。240°C及び245°Cの反応温度並びに短い反応時間において形成される望ましくないロウ類はほとんどの慣用の溶媒に不溶性である。

【0035】

【表1】

表1						
反応温度	特性	1.0時間	2.0時間	3.0時間	4.0時間	6.0時間
240°C	収率(%)	37.4	39.6	59.6	58.0	77.9
	軟化点(T) (150)★		(>180)★	112	115	151
	Mz	483	-	1106	1234	2944
	ロウ?	あり	あり	なし	なし	なし
245°C	収率(%)	35.4	44.4	51.4	57.2	74.8
	軟化点(T) (160)★		(140)★	116	110	156
	Mz		424	817	969	2653
	ロウ?	あり	あり	なし	なし	なし
250°C	収率(%)			75.7	63.7	
	軟化点(T)			140	155	
	Mz			2793	2375	
	ロウ?			なし	なし	

* 標準の環球軟化点法を使用したおおよそのロウの融点

【0036】

【比較実施例2】本試験はジシクロペントジエンと本発明において請求されるものの以外のビニル芳香族モノマーとの共重合を記述する。ビニル芳香族成分、モノマー濃度、反応温度及び反応時間は、表2に示すように全て変

化した。モノマー濃度は部数で与えられ、残りは溶媒である（全量=100）。

【0037】

【表2】

表2

試料	ビニル芳香族 モノマー (VA)	DCPD/VA	モノマー濃度 (部)	反応温度 (°C)	反応時間 (分)	収率 (%)	軟化点 (°C)	Mz	Mw	Pd	ガードナー カラー
1	ステレン	85/15	60	275	15	55.2	85	1560	617	2.03	7+
2	ステレン	85/15	60	275	45	66.1	100	1828	656	2.19	7-
3	ステレン	75/25	60	275	30	54.9	97	4349	939	2.81	8-
4	ステレン	60/40	60	275	30	42.5	81	11888	1798	4.99	5
5	ステレン	50/50	50	250	480	77.8	105	18591	3021	5.32	10+
6	ステレン	40/60	60	275	45	72.9	92	19651	3266	5.39	8+
7	ビニルトルエン	50/50	60	250	240	78.3	94	15277	2920	5.11	7+
8	t-ブチルスチレン	50/50	60	250	240	75.1	108	9636	2063	3.82	6+

【0038】

【実施例3】本試験はジシクロペンタジエンとアルファ-メチルスチレン(AMS)との、種々のモノマー比(50/50以下)における共重合を記述する。モノマー比、初期モノマー濃度、反応温度、及び反応時間の影響を表3に示した。

【0039】ビニル芳香族(VA)コモノマーとしてステレンではなくAMSを使用した影響は、表3の試料7(AMS)と表2の試料5(ステレン)との比較によつてわかる。VAモノマーを除き他は同一の条件下での50/50のDCPD/VA比において、8.0時間の反

応後でさえAMSはMzを2292に、そしてPdを2.2に制限したが、ステレンは18591のMz及び5.32のPdを生成した。

【0040】表3の試料12は、全モノマーの重量基準で約15%までの他のビニル芳香族モノマーを含めることは、残りのビニル芳香族成分がAMSである限り受け入れられることを示す。したがって、制御された分子量のターポリマーの製造が可能である。

30 【0041】

【表3】

表3

試料	ビニル芳香族モノマー(VA)	DCPD/VA	モノマー濃度(部)	反応温度(℃)	反応時間(分)	收率(%)	軟化点(℃)	Mz	Mw	Pd	ガードナー カラー
1	AMS	85/15	60	275	45	37.5	105	1404	599	1.96	10-
2	AMS	85/15	60	240	300	60.4	107	1362	516	1.99	8+
3	AMS	80/20	60	250	300	66.7	118	1919	814	2.20	10+
4	AMS	50/50	60	225	240	38.9	81	1015	524	1.71	11
5	AMS	50/50	60	237	240	40.5	80	1084	561	1.74	12-
6	AMS	50/50	60	246	240	49.7	93	1511	735	1.92	14+
7	AMS	50/50	50	250	480	64.2	101	2292	1084	2.20	18
8	AMS	50/50	60	275	180	63.0	110	3402	1420	2.71	16+
9	AMS	50/50	80	237	240	50.9	84	1327	645	1.88	12+
10	AMS	50/50	100	230	240	54.4	92	1462	693	1.9	12-
11	AMS	50/50	100	250	240	73.5	110	3541	1497	2.78	>18
12	AMS/ステレン	70/15/15	60	275	15	62.5	84	2193	665	2.17	8

【0042】

【実施例4】本試験は、分子量及び軟化点が実質的に変化しない特定の反応温度におけるジシクロペンタジエン／アルファーメチルスチレン(AMS)コポリマーを製造するために必要な操作条件を記述する。

【0043】それぞれの反応についてジシクロペンタジエン 101 (288.0 g)、72.0 g のAMS、及び 240.0 g の再循環溶媒をオートクレーブに入れ、そして迅速に 170 ℃とした。DCPD 101 は 85 % のDCPD 及び <1 ppm の硫黄を含み、米国テ

キサス州ホーリストンのリオンデルペトロケミカルカンパニーから入手できる。次に反応温度を表4中に特定した望まれる値にした。その温度における特定の反応時間の後、反応生成物を 35 分間で 170 ℃に冷却し、ストリッピングフラスコに注ぎ入れ、そしてフィニッシュ(finish)し、210 ℃以下で窒素下に溶媒蒸留し、そして最後に 225 ℃において水蒸気で処理した。

【0044】

【表4】

表4

反応温度	特性	1.0時間	2.0時間	3.0時間	4.0時間	5.0時間	6.0時間	7.0時間	8.0時間
235°C	収率(%) 軟化点(℃) OMSCP(℃) MMAP(℃) カラー Mz Mw Pd								66.8 105 55/-38 43/37 10- 1700 715 2.08
240°C	収率(%) 軟化点(℃) OMSCP(℃) MMAP(℃) カラー Mz Mw Pd			45.3 (135)* 125/-25 115/30	50.3 99 135/-30 102/33 7+ 834 393 1.64	60.7 101 52/-50 47/34 7+ 1063 1290 490 1.76	61.8 106 87/-50 40/37 9+ 1423 574 1.92		62.3 111 56/-50 39/37 10 1689 682 2.12
245°C	収率(%) 軟化点(℃) OMSCP(℃) MMAP(℃) カラー Mz Mw Pd	33.1 (141)* 125/-30 115/35	44.5 101 136/-40 116/30	49.7 101 59/-50 65/36	58.4 104 40/-42 40/37 8+ 1243 1553 498 1.90	59.3 105 60/-50 38/36 9+ 1589 632 2.00	62.3 112 44/-45 40/37 9+ 1695 632 2.02	69 129 68/45 46/38 10 2432 1030 2.10	66.3 127 45/26 43/40 12 2188 928 2.32
250°C	収率(%) 軟化点(℃) OMSCP(℃) MMAP(℃) カラー Mz Mw Pd				54.4 99 32/-50 38/35 9-	62.1 117 15/-32 47/36 10+	65.7 118 18/-3 46/40 10+	67.5 124 30/2 41/40 11-	

★標準の環球軟化点を使用したおおよそのロウの融点

【0045】

【実施例3】本試験は、モノマーの樹脂への転化率を増加するために低分子量オリゴマーが再循環される、ジシクロペンタジエンとアルファーメチルスチレンとの共重合を記述する。

【0046】306.0 gのDCPD 101、54.0 gのAMS、及び240.0 gの再循環脂肪族溶媒の混合物を攪拌されたオートクレーブ中で迅速に170°Cにした。DCPD 101は米国テキサス州ホーストンのリオンデルペトロケミカルカンパニーから入手でき、85%のDCPD及び<1 ppmの硫黄を含む。この時点から、反応器温度は20分間で275°Cに上昇した。

175°Cで45.0分後、反応器を約5分間で素早く170°Cへ冷却した。重合した樹脂溶液をガラス製ストリ*

* ッピング装置に移した後、樹脂を加熱（最初に窒素下、次に水蒸気下）によって単離して、「0」循環樹脂を得た。樹脂から除去された全ての揮発分を集めて「再循環プール」を形成した。再循環番号1はオリジナルの再循環プールからの揮発物240.0 g、306.0 gの新しいDCPD及び54 gのAMSを混合し、そして275°Cでの時間を15分間に短縮したこと除き初期反応方法の工程を正確に繰り返すことによって製造した。この樹脂を単離し、揮発物質を再び再循環プールに加えた。さらに7つの試験を同様の方法で実施し、下に列挙した選択された循環からのデータを得た。

【0047】

【表5】

表5

再循環番号	揮発物収率(%全装填)	収率(モノマー装填の%)	樹脂の特性					
			軟化点(℃)	ガードナー	Mz	Mw	Pd	
0	55.6	37.5	105	10-	1404	599	1.96	
1	57.6	57.8	96	9+	1335	550	1.92	
2	43.4	67.7	102	9+	1403	590	1.96	
4	44.6	81.2	98	11-	1636	654	2.11	
8	39.0	89.9	103	12+	2108	892	2.34	

モノマーの樹脂への全転化率は反応器装填物の一部として40%のレベルの再循環揮発物を利用したとき少なくとも80~90%であり、Mzは2000に近い。分子

量及び収率の調節は、利用する再循環揮発物の%、重合温度、及び反応時間の変化によって影響され得る。

50 【0048】

【実施例6】本試験はシクロペンタジエン原料としてのDCPD 108(95%純度のDCPD)の使用を例示し、そして(重合反応混合物からの望まれるベース樹脂の単離なしの溶液水素化が後に続く)混ぜものなしの重合をも示す。DCPD 108は米国テキサス州ホーストンのリオンデルペトロケミカルカンパニーから入手でき、95%のDCPD及び<1 ppmの硫黄を含む。

【0049】250gのDCPD 108及び250gのAMSを含む混合物を2つの1リットルのオートクレーブのそれぞれに入れた。それぞれの混合物を3.4時間の昇温時間の後、250°Cで4時間反応させた。150°C以下に冷却した後、オートクレーブの内容物を合わせて333gの脂肪族溶媒と混合した。米国ニュージャージー州アイセリンのエンゲルハードコーポレーション、ケミカルキャタリストグループから入手できるN15136P(3.13g)をこの組み合わせた樹脂溶液500gに1リットルのオートクレーブ中で室温において加えた。これに続く昇温の後、ベース樹脂の分子量増加を防ぐために全水素圧を加えた。水素化を265°Cで5.0時間、900psigの水素圧で行った。冷却、窒素でのバージ、及び触媒を除くための濾過の後、次の特性を有する無色の生成物が得られた: 収率67.7%(オリジナルのモノマー装填量を比例的に基準として); 軟化点 111°C; MMAP 78°C; 着色 G-1-及びYID 11.5(双方ともトルエン中50重量%で測定し、YIDは5.0cmパス長さのセル中で決定); Mz 1647; Mw 843; Mn 424、及びPd 1.99。

【0050】

【実施例7】本実施例はDCPD/AMS樹脂の初期比80/20での水素化を例示する。

【0051】DCPD 101を表6に列挙した全ての試験において使用した。DCPD 101は米国テキサス州ホーストンのリオンデルペトロケミカルカンパニーから入手でき、85%のDCPD及び<1 ppmの硫黄を含む。AMSはビニル芳香族モノマーであり、そして全ての重合反応は溶媒中60%モノマー(初期濃度)で行った。水素化のための全ての他の方法変数を表6に示す。

【0052】試料1及び2を実験室内で245°Cの反応温度を使用して熱重合した(表4中の4.0及び5.0時間試料)。単離した樹脂を次に脂肪族溶媒に再溶解し、そして表6に記述される条件下で水素化した。表6中に特定されない他の方法条件は実施例6と同じである。これらの試験におけるN15136P(試料1)及びN15256P(試料2)の明らかな同等性に注意されたい。N15136P及びN15256Pは米国ニュージャージー州アイセリンのエンゲルhardtコーポレーション、ケミカルキャタリストグループから入手できる。表中、Gはガードナーカラーである。

【0053】ベース樹脂試料3~6は実験室内で樹脂を製造するために使用したものと類似した方法条件を使用して、50ガロンのパイロットプラント熱反応器内で製造した。溶媒及びオリゴマーを真空中に180~200°Cの温度で除去した。試料の水素化を異なる3つの温度、3つの触媒レベル及び2つの異なった時間で行い、これらの変数の影響を評価した。熱着色安定性はこれらのタイプの水素化DCPDベース樹脂について極めて良好である。

【0054】

【表6】

表6

試料	1	2	3	4	5	6
ベース樹脂						
軟化点(℃) OMSCP(℃) MMA P(℃)	104 40/-40 40/37	105 69/-50 38/36	103 25/12 43/40	103 25/12 43/40	103 25/12 43/40	103 25/12 43/40
カラー(ガードナー) Mz Mw Mn Pd	9+ 1553 624 312 2.00	9+ 1589 632 313 2.02	10+ 2181 819 348 2.35	10+ 2191 819 348 2.35	10+ 2191 819 348 2.35	10+ 2191 819 348 2.35
水素化樹脂						
重量樹脂(g) 触媒 %触媒 脂肪族溶媒 時間(時) 温度(℃) 水素 圧力(KPa) 收率 軟化点(℃) OMSCP(℃) MMA P(℃) カラー(GYD) %Irgafos 1010 24時間加熱安定性 (ガードナー-カラー) Mz Mw Mn Pd UV α 臭素価	165.0 Ni5136P 1.50 335.0 4.0 250 6200 (900psig)	165.0 Ni5256P 1.50 335.0 4.0 250 6200 (900psig)	165.0 Ni5136P 1.50 335.0 4.0 250 6200 (900psig)	165.0 Ni5136P 1.50 335.0 4.0 250 6200 (900psig)	165.0 Ni5136P 1.00 335.0 3.0 225 6200 (900psig)	165.0 Ni5136P 0.50 335.0 3.0 225 6200 (900psig)
★ 2 CMセル ★★ 軟化点ヘストリップ ★★★ ストリップされたバイロットプラント樹脂	98.6 115 -12/-50 73/71 1-10.0 0.15	96.2 117 13/-50 74/70 1-8.7 0.15	95.9 109 [†] -30/-50 82/57 1-79.01 0.30	95.4 112 [†] -33/-50 76/71 1-6.39 0.30	100.8 109 [†] -25/-50 76/70 1-17.30 0.30	100.0 103 [†] -20/-50 74/70 2/20.44 0.30

【0055】

【実施例8】本実施例はジシクロペンタジエンとアルファーメチルスチレンとのShell DCPD (<5 ppmの硫黄)を使用した共重合を示す。

【0056】288.0 gの7.5%DCPD (米国テキサス州ホーストンのシェルケミカルカンパニーから入手できる)、72.0 gのAMS及び240.0 gの脂肪族溶媒を1リットルのバールのオートクレーブに加え、窒素でフラッシュし、そして30分間かけて170℃とした。温度を1時間かけて245℃に上昇させ、245℃にさらに4時間維持した。樹脂を溶媒及び未反応の物質を窒素下で210℃以下で蒸留することによって単離した。225℃での水蒸気ストリッピングによって低分子量のオリゴマーを除去し、次の物理特性を有する57.9%收率の樹脂が残った：軟化点106℃；着色G-9+；OMSCP 65/-42℃；MMA P 65/36；Mz 1267；Mw 535；Pd 1.96。この樹脂は米国テキサス州ホーストンのリオンデルペトロケミカルカンパニーからのDCDP 101を使用した同じ条件下で製造したDCPD/AMS 80/20樹脂とほとんど同一の物理特性を有することに注意されたい(表4を参照)。

【0057】

【実施例9】本試験は、硫黄-含有供給原料(米国ニューヨーク州のホワイトプレインズのペトロプラスチックカルコーポレーションから入手できる8.5%DCPD)を使用した、ジシクロペンタジエンとアルファーメチル

スチレンとの共重合を示す。ペトロプラスチック(DCPD(試料2)中の0.15%の硫黄による毒作用が後に続く。毒作用はより低いレベルの水素化及びより暗い水素化樹脂の着色によって示される。米国テキサス州ホーストンのリオンデルペトロケミカルカンパニーから入手できるDCPD 101を使用して同一条件下で製造した樹脂(表7の試料1)によって比較を行った。

【0058】表7中に示したように、上述の混合物を同じ条件を使用してそれぞれ重合した。得られた樹脂溶液を室温に冷却し、オートクレーブを開けた。Ni 5136Pを各々の混合物に加え、オートクレーブを再び密閉し、窒素でフラッシュし、そして示したように同一の水素化を行った。Ni 5136Pは米国ニュージャージー州アイセリンのエンゲルハードコーポレーション、ケミカルキャタリストグループから入手できる。水素化サイクルの最後に、生成物を170℃に冷却し、濾過して触媒を除き、通常の方法でフィニッシュし、最後に225℃において水蒸気処理した。硫黄-含有供給原料から製造した試料2は純度の高い供給原料よりも低い水素化を受けるという証拠は、より低いMMA P、より高いUV α 及び臭素価の全てが、試料2が試料1よりも脂肪族性が低いことを示すのである。この2つの生成物には着色の著しい差異もあり、硫黄-含有供給原料が着色の減少がわずかガードナー3+を生じ、これは無色にはほど遠い。

【0059】

【表7】

表7

試料	1	2
Lyondell DCPD 101(<1 ppm S)	288.0g	-
Petroplast DCPD (1500 ppm S)(g)	-	288.0
AMS(g)	72.0	72.0
脂肪族溶媒(g)	240.0	240.0
重合		
温度(℃)	245	245
時間(時)	4.0	4.0
水素化		
Ni 5136P(g)	3.00	3.00
時間(時)	3.0	3.0
温度(℃)	225	225
樹脂収率(%)	53.3	60.8
軟化点(℃)	96	108
MMA P(℃)	74/66	66/62
ガードナーカラー(50%トルエン)	1-	3+
YID(2cmセル)	25.4	49.0
UV α	0.067	0.218
臭素価	0.41	1.01
分子量		
Mz	1081	1231
Mw	485	540
Mn	270	286
Pd	1.79	1.89

本明細書中に示した実施例は本発明を限定すると解釈されるべきではなく、これらは本発明の特定の態様のいく

つかを例示するために示される。添付の請求の範囲から逸脱することなく種々の修正及び変更がなされ得る。

フロントページの続き

(72)発明者 デイン・ジョージ・グッドフェロー
アメリカ合衆国ペンシルバニア州15204,
ピッツバーグ, アレンデイル・サークル
3755

(72)発明者 デボラ・アン・リードル
アメリカ合衆国ペンシルバニア州15129,
ライブラリー, スクワイアーズ・メイナー
ー・レーン 2007