Chapter 9: Rationality and utility DIT410/TIN172 Artificial Intelligence

Peter Ljunglöf modifed from slides by Poole & Mackworth

(Licensed under Creative Commons BY-NC-SA v4.0)

8 May, 2015

Outline

- 1 Preferences and Utility (9.1)
 - Rationality
 - Are humans rational?

Outline

- 1 Preferences and Utility (9.1)
 - Rationality
 - Are humans rational?

Outcomes and preference

- An outcome is the result of an action.
- To be able to choose between actions, an agent has to have a preference of some actions over others.
 - if the agent does not have preferences over anything, it does not matter what the agent does

Example

- what are the outcomes of the travel-in-Romania problem?
- what are the preferences of these outcomes?

Formalising outcomes

 \succeq is the basic relation over outcomes: $o_1 \succeq o_2$ means that outcome o_1 is (at least) as desirable as outcome o_2 .

From this we can define the following relations:

- $o_1 \sim o_2$ is defined as $o_1 \succeq o_2$ and $o_2 \succeq o_1$
- $o_1 \succ o_2$ is defined as $o_1 \succeq o_2$ and $o_2 \npreceq o_1$

Note that outcomes do not have to be numbers – they can be arbitrarily complex objects!

Lotteries

A lottery is a probability distribution over outcomes:

$$[p_1:o_1,p_2:o_2,\ldots,p_k:o_k]$$

(where o_i are outcomes, and $p_i \geq 0$, and $\sum p_i = 1$)

- This lottery specifies that outcome o_i occurs with probability p_i .
- We will assume that outcomes include lotteries, i.e., that a lottery can be an outcome itself.

Outline

- 1 Preferences and Utility (9.1)
 - Rationality
 - Are humans rational?

Rational agents

An agent is rational if it obeys the axioms of rationality:

Completeness $o_1 \succeq o_2$ or $o_2 \succeq o_1$ (for all o_1, o_2)

Transitivity if $o_1 \succeq o_2$ and $o_2 \succeq o_3$, then $o_1 \succeq o_3$

Monotonicity if $o_1 \succ o_2$ and p > q, then

$$[p:o_1,1-p:o_2]\succeq [q:o_1,1-q:o_2]$$

Decomposability an agent is indifferent between lotteries that have the same probabilities over the same outcomes, even if one or both is a lottery over lotteries

Continuity if $o_1 \succeq o_2$ and $o_2 \succeq o_3$, then there is a p such that $o_2 \sim [p:o_1, 1-p:o_3]$

Substitutability if $o_1 \sim o_2$ then the agent is indifferent between lotteries that only differ by o_1 and o_2

8 May. 2015

Rational agents and utility

If an agent is rational, its preferences can be measured by a real-valued utility function over outcomes.

Theorem

For every rational agent there is a utility function u, such that:

- $o_i \succeq o_j$ if and only if $u(o_i) \geq u(o_j)$, and
- utilities are linear with probabilities:

$$egin{aligned} u([p_1:o_1,p_2:o_2,\ldots,p_k:o_k]) \ &= p_1\cdot u(o_1) + p_2\cdot u(o_2) + \cdots + p_k\cdot u(o_k) \end{aligned}$$

8 May. 2015

Risks

Most people are *risk averse* when it comes to money:

- would you prefer 100 000 kr in your hand, or
- 50% chance of winning 150 000 kr?

But if the reward is big enough, you might prefer to gamble:

- would you prefer 100 000 kr in your hand, or
- 50% chance of winning 1 000 000 kr?

Risks and utility

A risk averse agent can be simulated using a *concave* utility function:

Risk averse vs. risk seeking

Risk averse vs. risk neutral vs. risk seeking utility functions:

Outline

- 1 Preferences and Utility (9.1)
 - Rationality
 - Are humans rational?

Are you rational?

Which would you prefer, A or B?

- A: 11% chance of winning 1 000 000 kr 89% risk of getting nothing at all
- B: 10% chance of winning 1 500 000 kr 90% risk of getting nothing at all

Are you rational? (part 2)

Which would you prefer, A or B?

A: to receive 1 000 000 kr

B: 10% chance of winning 1 500 000 kr 89% chance of winning 1 000 000 kr 1% risk of getting nothing at all

Humans are not rational

Maurice Allais tried this experiment in 1953 and showed that people preferred B over A in the first case, but A over B in the second case.

This is impossible to catch in a utility function – both cases are instances of this one:

```
A is a lottery [0.89: x, 0.11: 1000000]
B is a lottery [0.89: x, 0.10: 1500000, 0.01: 0]
```

In the first case, x = 0, and in the second case, x = 1000000.

- People seem to have a preference for certainty
- It is inconsistent with the rationality axioms to have B₁ ≻ A₁ and A₂ ≻ B₂
- This is called the *Allais paradox*

Tversky and Kahneman tried the following experiment in 1974:

Example

A disease is expected to kill 600 people. Which of the following two alternative programs for handling this would you favour?

Program A: 200 people will be saved

Program B: with probability 1/3, 600 people will be saved, and with probability 2/3, no one will be saved

Tversky and Kahneman tried the following experiment in 1974:

Example

A disease is expected to kill 600 people. Which of the following two alternative programs for handling this would you favour?

Program C: 400 people will die

Program D: with probability 1/3, no one will die, and with probability 2/3, 600 will die

Tversky and Kahneman tried the following experiment in 1974:

Example

A disease is expected to kill 600 people. Which of the following two alternative programs for handling this would you favour?

Program A: 200 people will be saved

Program B: with probability 1/3, 600 people will be saved, and with probability 2/3, no one will be saved

In Tversky's and Kahneman's experiment, 72% chose A over B

Tversky and Kahneman tried the following experiment in 1974:

Example

A disease is expected to kill 600 people. Which of the following two alternative programs for handling this would you favour?

Program C: 400 people will die

Program D: with probability 1/3, no one will die, and with probability 2/3, 600 will die

In Tversky's and Kahneman's experiment, 72% chose A over B, but only 22% chose C over D.

Tversky and Kahneman tried the following experiment in 1974:

Example

A disease is expected to kill 600 people. Which of the following two alternative programs for handling this would you favour?

Program C: 400 people will die

Program D: with probability 1/3, no one will die, and with probability 2/3, 600 will die

In Tversky's and Kahneman's experiment, 72% chose A over B, but only 22% chose C over D. However, these are exactly the same choice, only described in a different way!

Why rationality?

So, humans behave irrationally...

- ... but we already knew that
- the axioms of rationality are still very useful in many scenarios
- utility theory is a nice and simple mathematical theory

However, there are alternatives, such as prospect theory

