University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences

EE 105 Midterm II

Spring 2002

Prof. Roger T. Howe

April 17, 2002

Solverous.	
Your Name (Last, First)	

Guidelines

Closed book and notes; one 8.5" x 11" page (both sides) of *your own notes* is allowed. You may use a calculator.

Do not unstaple the exam.

Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	16	
2	18	
3	16	
Total	50	

1. Junction Field-Effect Transistor (JFE1) Model. [16 points].

Device parameters:

$$I_{DSS} = 125 \text{ }\mu\text{A}$$

 $V_P = -1.5 \text{ }\text{V}$
 $\lambda_n = 0.05 \text{ }\text{V}^{-1}$

A simplified large-signal model for an n-channel JFET is:

$$i_D = \frac{2I_{DSS}}{V_p^2} (v_{GS} - V_p - \frac{v_{DS}}{2}) v_{DS} (1 + \lambda_n v_{DS}) \text{ for } v_{DS} \le v_{GS} - V_p \text{ and } V_p \le v_{GS} \le 0 \text{ V (triode)}$$

$$i_{D_{SM}} = \frac{I_{DSS}}{V_{p}^{2}} (v_{GS} - V_{p})^{2} (1 + \lambda_{n} v_{DS})$$
 for $v_{DS} \ge v_{GS} - V_{p}$ and $V_{p} \le v_{GS} \le 0$ V (saturation)

where V_P is the pinch-off voltage and λ_n is the "fudge factor."

(a) [4 pts.] Sketch the drain characteristics for this JFET on the graph below for $V_{GS} = 0 \text{ V}$, -0.5 V, -1 V, and -1.5 V. You can set $\lambda_n = 0$ for this part. Your current values in saturation should be accurate.

(b) [4 pts.] What is the numerical value of the small-signal transconductance g_m at the operating point Q_1 ($V_{GS} = -0.5$ V, $V_{DS} = 1.5$ V)? Notes: (i) λ_n is not zero for this part, (ii) you don't need the plots in part (a) in order to answer this question.

$$g_{m} = \frac{\partial i_{0}}{\partial V_{GS}} \Big|_{Q_{1}} \qquad \text{ is in saturation once } V_{0S} = 1.5V > V_{0S} - V_{0}$$

$$= -0.5V - (-1.5V)$$

$$i_{0} = \frac{I_{DSS}}{V_{p}^{2}} \Big(V_{eS} - V_{p} \Big)^{2} \Big(1 + \lambda_{n} V_{0S} \Big) \qquad = 1V$$

$$g_{m} = \Big(\frac{2I_{DSS}}{V_{e}^{2}} \Big) \Big(V_{eS} - V_{p} \Big) \Big(1 + \lambda_{n} V_{0S} \Big)$$

$$g_{m} = \Big[\frac{2(125\mu A)}{(-1.5V)^{2}} \Big] \Big(-0.5V - (-1.5V) \Big) \Big(1 + (0.05V^{-1})(1.5V) \Big)$$

$$g_{m} = 119\mu S$$

(c) [4 pts.] What is the numerical value of the small-signal drain resistance r_o at the operating point Q₁ (V_{GS} = -0.5 V, V_{DS} = 1.5 V). Notes: (i) λ_n is not zero for this part, (ii) you don't need the plots in part (a) in order to answer this question.

$$r_{o}^{-1} = \frac{\partial l_{D}}{\partial V_{DS}} \Big|_{Q_{s}} = \left(\frac{I_{DSS}}{V_{p}^{2}}\right) \left(V_{\phi S} - V_{p}\right)^{2} \lambda_{n}$$

$$= \frac{125 \mu A}{(-1.5 V)^{2}} \left(-0.5 V - (-1.5 V)\right) \left(0.05 V^{-1}\right)$$

$$r_{o}^{-1} = 2.76 \mu^{2} \implies r_{o} = 360 k\Omega$$

(d) [4 pts.] What is the numerical value of the small-signal transconductance g_m at the operating point Q₂ (V_{GS} = -0.5 V, V_{DS} = 0.5 V). Again, you don't need the plot in part (a) in order to answer this question.

$$V_{DT} = 0.5 \text{V} < V_{GS} - V_{P} = 0.5 \text{V} - (-1.5 \text{V}) = 1 \text{V} \Rightarrow \text{Triede region}$$

$$g_{N_{2}} = \frac{\partial i_{b}}{\partial v_{bs}} \Big|_{Q_{2}} = \left(\frac{2 I_{DST}}{V_{p}^{2}}\right) V_{DS} (1 + \lambda_{n} V_{DS})$$

$$= \left(\frac{250 \mu A}{(-1.5 V)^{2}}\right) (0.5 V) (1 + (0.05 V^{-1})(0.5 V))$$

MOSFET single stage amplifier [18 pts.]

(a) [3 pts.] Find the numerical value of channel width W in μm in order that the DC output voltage Vour = 1.25 V. Note: the gray boxes indicate small-signal elements that can be neglected for the DC bias analysis.

$$V_{SG} = V_{OVT} - V_{G} = 1.25V - OV = 1.25V$$

$$-I_{Dp} = I_{R_{SUP}} = \frac{2.5V - 1.25V}{54.50} = 250\mu A$$

$$-I_{Dp} = \mu_{F} C_{OK} (W/2L) (V_{SC} + V_{TP})^{2} \implies W = \frac{2L (-I_{Dp})}{\mu_{P} C_{OK} (V_{SC} + V_{Tp})^{2}}$$

$$= \frac{300\mu A}{(62.5\mu A/V^{2})(1.25-1)^{2}}$$
[3 pts.] What is DC power dissipated in the MOSFET in μ W?

4

(b) [3 pts.] What is DC power dissipated in the MOSFET in μW?

(c) [3 pts.] Find the numerical value of the output resistance R_{out} of this amplifier in $k\Omega$. If you couldn't solve part (a), you can assume for this part that the channel width $W = 100 \mu m$ (not the correct answer to (a), of course.)

$$R_{out} = \frac{1}{g_{mn}} I R_{MP} \left(V_{eff} = 0 \implies \text{signore } g_{mf} \text{ generator} \right)$$

$$\frac{1}{g_{mn}} = \frac{1}{u_{p} C_{OX} \left(W/L \right) \left(V_{SC} + V_{TP} \right)} = \frac{1}{(G_{2} - 5\mu A/V^{2}) (12B) \left(1.25 - 1 \right)} = 500 \Omega$$

$$R_{out} = 500 \Omega II 5 k \Omega$$

$$R_{out} = 454 \Omega$$

(d) [3 pts.] Find the numerical value of the two-port parameter A_{ν} , the open-circuit voltage gain, for this amplifier. Again, if you couldn't solve part (a), you can assume for this part that the channel width $W=100~\mu m$ (not the correct answer to (a), of course.)

(e) [3 pts.] Find the overall voltage gain v_{out} / v_s with R_S and R_L present (values of which are given next to the schematic on the previous page). If you couldn't solve (c) or (d), you can assume for this part that R_{out} = 2.5 kΩ, and A_v = 0.85. Needless to say, these are not correct answers to either (c) or (d).

$$V_{5} \stackrel{R_{5}}{\rightleftharpoons} V_{in} \qquad \stackrel{R_{out}}{\rightleftharpoons} V_{out}$$

$$V_{out} / V_{5} = \frac{R_{L}}{R_{out} + R_{L}} = \frac{1000 \Omega}{454 \Omega} + 1000 \Omega$$

$$V_{out} / V_{5} = 0.69$$

(f) [3 pts.] We now remove the small-signal source and its resistance and replace it with a large-signal source v_{IN}; we also remove the load resistor. Assuming the MOSFET remains in the saturation (constant-current) region, find an equation for v_{IN} in terms of v_{OUT}. What is the numerical value of v_{IN} for the case when v_{OUT} = 2 V? If you couldn't solve part (a), you can assume that W = 100 μm for this part.

$$V_{out} = 2.5 \text{V} - (-i_{DD}) R_{SVP}$$

$$-i_{Dp} = \mu_P C_{OX} (W/2L) (V_{SG} + V_{F})^2 (1 + \lambda_N V_{SD})$$

$$V_{SG} = V_{out} - V_{IN}$$

$$V_{SD} = V_{out}$$

$$-i_{Dp} = \mu_P C_{OX} (W/2L) (V_{out} - V_{IN} + V_{FP})^2 (1 + \lambda_N V_{out})$$

$$V_{out} = 2.5 \text{V} - \mu_P C_{OX} R_{SUP} (W/2L) (V_{out} - V_{IN} + V_{FP})^2 (1 + \lambda_N V_{out})$$

$$(\mu_P C_{OX} R_{SVP} (W/2L) (1 + \lambda_N V_{out})) (V_{OUT} - V_{IN} + V_{FP})^2 = 2.5 \text{V} - V_{out}$$

$$V_{out} - V_{IN} + V_{TP} = \sqrt{\frac{2.5 \text{V} - V_{out}}{\mu_P C_{OX} R_{SVP} (\frac{W}{2L}) (1 + \lambda_N V_{out})}}$$

$$V_{out} = 2 \text{V} \implies V_{IN} = (2 \text{V} - 1 \text{V}) - \sqrt{\frac{2.5 \text{V} - V_{out}}{(22.5 \times 10^{-3})(5) (\frac{128}{2}) (1 + 0.05(2))}}$$

$$V_{IN} = 0.85 \text{V}$$

$$v_{IN} = 0.85 \text{V}$$

3. npn bipolar transistors [16 pts.]

Given:

Base width = $W_B = 100 \text{ nm} = 0.1 \mu\text{m}$

Emitter-base junction area = $A_E = 3.5 \mu m^2$

Emitter width = W_E = 75 nm = 0.075 μ m

Base-collector junction area = $A_C = 15 \mu m^2$

Electron diffusion constant in base: $D_n = 10 \text{ cm}^2/\text{s}$

Hole diffusion constant in emitter: $D_p = 5 \text{ cm}^2/\text{s}$

Electron charge: $q = -1.6 \times 10^{-19} \text{ C}$

Intrinsic concentration: $n_i = 10^{10} \text{ cm}^{-3}$

 $V_{th} = 26 \text{ mV}$

 (a) [4 pts.] Find the numerical value of the electron diffusion current density J_{nB} in the base [units μA/μm²]. Neglect the base current I_B for this part.

$$I_C = J_{NB} A_E \qquad I_R = 0 \Rightarrow I_C = -I_E = 25 \mu A$$

$$J_{NB} = \frac{I_C}{A_E} = \frac{25 \mu A}{5 \mu M^2} = 5 \mu A / \mu m^2$$

(b) [4 pts.] What is the numerical value of n_{pB}(x = 0), the minority electron concentration in the base at the edge of the emitter-base depletion region? Again, you can neglect the base current I_B for this part.

$$J_{nB} = \frac{q D_{nB} n_{pB}(x=0)}{w_B} \Rightarrow n_{pB}(x=0) = \frac{J_{nB} W_B}{q D_{nB}}$$

$$= \frac{(5\mu A/\mu n^2)(10^8 m^2/\mu m^2)(10^5 m)}{(1.6 \times 10^{-13} \text{C})(20 \text{ cm}^2/\text{s})}$$

$$n_{pB}(0) = 1.56 \times 10^{15} \text{cm}^{-3}$$

(c) [3 pts.] Find the numerical value of V_{OUT} to 3 significant figures. The base doping is $N_{aB} = 10^{17}$ cm⁻³. You can neglect the base current for this part, too.

$$n_{PB}(x=0) = n_{PB} e^{-C} \frac{V_{BE}/V_{4L}}{} \Rightarrow V_{BE} = V_{4L} l_{PD} \left(\frac{n_{PB}(x=0)}{n_{PB}}\right) = 26mV l_{PD} \left[\frac{1.56 \times 10^{15}}{1000}\right]$$

$$n_{PB} = \frac{n_i^2}{N_{BB}} = \frac{10^{2\pi}}{1 \times 10^{17}} = 10^3 cm^{-3} = 730.0 \, \text{mV}$$

$$V_{OUT} = V_B - V_{BE} = 2 - 0.730 \, \text{V} = 1.270 \, \text{V}$$

(d) [4 pts.] We now increase V_B above 2 V to the point where the minority carrier concentrations in the bipolar transistor are given by the plot below. The value of n_{pB}(0) is unchanged from parts (b) and (c). What is the value of V_B to 3 significant figures? Note: if you can't find the exact value, the answer to 2 significant figures is worth 2 pts.

Exact value: find VBC. from low of the junction

$$n_{pB}(x=W_B) = n_{pB0} e^{V_{BC}/V_{ph}}$$

$$V_{BC} = V_{pB} ln \left(\frac{n_{pB}(W_B)}{v_{lpB0}}\right) = 26mV ln \left(\frac{1.56}{2} \times 10^{15} \frac{1.5}{200 cm^3}\right)$$

$$= 712mV$$

2
$$V_{CE} = V_{CB} + V_{BE} = -V_{BC} + V_{BE}$$

= $-712mV + 730mV$
 $V_{CE} = 18mV$

$$V_{B} = 2.5 - V_{CB} = 2.5V - (-0.712V)$$

$$V_{B} = 3.21V$$