ARGUMENTATION Internal (Execution) Language for Cognitive Programming

- The Logic of Argumentation
 - Argumentation Logic
- Argumentation for Common Sense Reasoning
 - Argumentation for Cognitive Systems
- An Argumentation Framework
 - Logic Programming with Priorities (LPP)
 - GORGIAS system for LPP

Σημασιολογία Γοργία Επιχειρηματολογία

- Λογική Επιχειρηματολογίας
 - Κάθε σύνολο κανόνων αποτελεί ένα επιχείρημα για τα (λογικά) συμπεράσματα που στηρίζει.
 - Επιχειρήματα που στηρίζουν αντίθετα συμπεράσματα αντικρούονται μεταξύ τους.
 - Ποιο επιχείρημα υπερισχύει?

Argumentation - Outline

- □ What is a "good" argument?
- Formalizing Argumentation Abstract
- Formalizing Argumentation Realization
- Application Examples
- Argumentation-Based Agent Deliberation
- Argumentation for Cognitive Systems

Introduction - General

Argumentation

- Role of argumentation in natural human reasoning and dialogue studied in philosophy, linguistics, psychology, communication studies.
 - Example: Recent paper (2011) of Mercier and Sperber
- Argumentation logics formalise defeasible reasoning as construction and comparison of arguments
 - Reasoning with incomplete and conflicting information
- Argumentation theory in AI for autonomous agents, analytics of online debates, cognitive policies and systems

Introduction – An Example

Given the Common Sense Knowledge:

```
(r1): fly(x)\leftarrowbird(x)
(r2): \neg fly(x) \leftarrow penguin(x)
(r3): penguin(x) \leftarrow walkslikepeng(x)
(r4): \neg penguin(x) \leftarrow \neg flatfeet(x)
(r5): bird(x) \leftarrow penguin(x)
(r6): bird(T)
(r7): walkslikepeng(T)
(r8): \negflatfeet(T)
with the priorities r2>r1, r4>r3
```

```
? fly(T)
Argument for:
A1 = \{r6, r1\}
Against A1:
A2 = \{r7, r3, r2\}
Against A2:
A3 = \{r8, r5\}
Yes, fly(T) can
be supported
by \{A1, A3\}
```

Dialectic Process of Argumentation

Introduction - Another Example

- What is a good argument? EXAMPLE
 - Position: Attend this talk
 - Arg: This is the reason we came to the conference
 - C-Arg1: The speaker is known to be boring
 - But the title of the talk is interesting Separate Defence
 - C-Arg2: A friend wants to meet (for coffee I think)
 - But my sense of professional responsibility is generally stronger than that of self satisfaction - Arg is Stronger than C-Arg2
 - C-Arg2': The friend is not well and wants help
 - My sense of social responsibility is generally stronger than professional responsibility - Arg is Weaker than C-Arg2'
 - □ I have been assigned to write up a report on this afternoons talk
 - --Argument for social resp. is weaker than that of professional resp.
 - -- Hence, Arg is Stronger than C-Arg2

Semantics of Argumentation

□ What is a good argument?

- An argument that builds a **coherent case** for its position.
 - □ Δένει καλά μαζί!
- An argument that can defend itself against all its counterarguments
- An argument that renders its counter-arguments incoherent
- □ An argument that has some kind of a stable property in the space of all available arguments

Semantics of Argumentation

- □ What is a good argument?
 - An argument that can defend itself against all its counter-arguments
 - -Admissible arguments

Admissibility can be generalized (see later)

Abstract Argumentation (1)

- An abstract argumentation framework is a pair of a set T of arguments and an attacking relation on arguments
 - AF=<T, Att>, where Att is a binary relation on T

- □ S⊆T is an Admissible Argument iff
 - S it does not attack itself (i.e. it is conflict free), and
 - S attacks (counter-attacks) all its attacks
- This is a simple but powerful definition.

Abstract Argumentation (2)

- □ S⊆T is an Admissible Argument iff
 - S it does not attack itself (i.e. it is conflict free), and
 - S attacks (counter-attacks) all its attacks
- □ Example

- {a2} and {a3} are not admissible.
- But {a2,a5} is admissible.
- \blacksquare {a1}, {a5} are admissible.
- {a1,a2,a5} is maximally admissible.

Argumentation Basics

(Dung, Kakas, Kowalski, Mancarella, Toni)

□ An argument is:

■ A set of sentences/rules, S, in some background logic (L, \vdash): from which we can derive a conclusion (I.e. $S\vdash \varphi$)

Attacking Relation:

- Specifies when one argument (i.e. a set S_1 of rules) attacks another argument S_2 e.g. when:
 - \square they have some contrary conclusion and S_1 is "as strong" as S_2 .

Admissibility/Acceptability criterion:

- Selects appropriate arguments (from a given corpus), called admissible/acceptable, that "behave well" under their attacks
- An argument S is Admissible:
 - S is conflict free (i.e. it does not attack itself) and
 - S attacks (counter-attacks) all its attacks

□ Credulous or Skeptical Reasoning:

A conclusion holds in one or all admissible/acceptable extensions

Argumentation Realization STEP 1

□ Structured argumentation

- How are arguments constructed?
- How is conflict and attack between them recognized?

□ Preference based argumentation

The attacking relation is defined in terms of a priority on the structure on the arguments.

Preference Based Argumentation (Informal Presentation)

- **How do we construct an argumentation framework?**
 - Support a decision via an admissible argument S:
 - S is consistent
 - S refutes every counter-argument
 - **S** is consistent
 - S attacks all its attacks
- What is an attack?

Preference Based Argumentation (2)

- What is an attack on S_1 ?
 - An argument S_2 with contrary claims (either for the original toplevel decision or for the supporting ones)
 - Where S_2 is also **NOT less preferable.**

- What is "less preferable"?
 - Contains weaker components (links)

What is a "weaker component/link"?

Preference Based Argumentation (3)

- What is a "weaker component/link"?
 - This is stated explicitly in the theory/knowledge, eg.
 - "Social responsibility is stronger than personal gain"
 - "Later laws are stronger than earlier ones"
 - "Later events have stronger information than earlier ones"
 - "Specific information is stronger than general information"
 - LOCALLY specified and lifts via the argumentation to give GLOBAL (overall preferred) decisions.
 - => MODULARITY of Knowledge Representation
 - => MODULARITY of Design and Architecture of Cognitive Systems

Preference Based Argumentation (4)

- What is a "weaker component/link"?
 - This weaker/stronger notion is not fixed conditional e.g.:
 - **"A law is stronger than another WHEN this is passed later"**
 - "Accepting a requested task is stronger than carrying out your own task WHEN the request comes from a superior"
 - This dynamic nature of preferences/attacking is vital in a changing environment
 - Adaptability of argumentative reasoning change its decisions

Argumentation Realization STEP 2

- □ Realizations in a logical framework
- □ An argument is a set of sentences to support a conclusion in some background monotonic logic (L, \vdash) :
 - AF = <T, Att>, where T is a theory in some logic
 - Given a subset of sentences S we can derive conclusions $(S \vdash \phi)$
 - These conclusions are the positions of the argument

The Attacking Relation

Specifies when a subset S_1 (of the given theory T) attacks another subset S_2 (e.g. when they derive contrary conclusions)

An attacking relation is realized via:

- 1) Inconsistent conclusions
- 2) A local Priority Relation (<):
 - Encodes locally the relative strength of sentences/rules in the theory: r<r' means that r has lower priority than r'.
 - This lifts up to a global strength relation on arguments
 - It can be reasoned, just like any other predicate, and thus it can be classified as either static or dynamic and first- or higher-order.

□ Strength Relation via Priorities:

The Attacking Relation

- An attacking relation is realized as:
 - 1) ϕ and ψ have a contrary conclusion
 - 2) Strength Relation via Priorities:

Then $Att(\psi, \phi)$, i.e. ψ attacks ϕ .

Strong and Weak attacks.

Basics of the Argumentation Framework

- Extension of LPwNF with dynamic priorities and attacking relation
- \square An argument is tuple (T, P) where P gives priorities to the rules in T
- □ (Extension) of the admissibility semantics

Agent application: roles and context define the dynamic nature of the attacking relation

Logic Programming without Negation as Failure (LPwNF)

Horn background logic:

- Rules: $L \leftarrow L_1, ..., L_n$ where $L, L_1, ..., L_n$ literals $L_i = (\neg)A_i$
- $lue{}$ Contrary given by classical negation \neg
- Priority relation ">" on rules of the theory

Example

 $p \leftarrow q$, not r "p holds if q holds unless r holds"

```
R_1: p \leftarrow q

R_2: \neg p \leftarrow r

R_2 > R_1
```

Attacking relation given by:

■S attacks S' iff there exist L and $S_1 \subseteq S$, $S'_1 \subseteq S'$ s.t.:

```
{}^{\square}\mathsf{B} \cup \mathsf{S}_1 \vdash_{\mathsf{min}} \mathsf{L} \text{ and } \mathsf{B} \cap \mathsf{S}'_1 \vdash_{\mathsf{min}} \neg \mathsf{L}
```

 $\square S_1 \supseteq S'_1$ (If S_1 has a rule of lower priority then it also has one of higher priority)

Applications of Argumentation

Default (Hierarchical) Reasoning (Static Priorities)

```
f1: bird(tweety).
f2: penguin(tweety).
r1(X): fly(X) \leftarrow bird(X).
r2(X): \neg fly(X) \leftarrow penguin(X).
r3(X): r1(X) \leftarrow r2(X).
```

- {f2,r2(tweety),r3(tweety)} is an admissible set (since its only conflicting argument {f1,r1(tweety)} does not qualify as an attack.)
- {f1,r1(tweety)} attacks {f2,r2(tweety)} but when we include r3(tweety) in the latter it does not.

Example: Legal Reasoning

```
"A p
         ucc: perfected ← possesion.
ship
         sma: \neg perfected \leftarrow ship, \neg finstatement.
Acco
inte
coll Basic facts:
Mort
         f1: possession.
ship
         f2: ship.
a st
UCC
         f3: - finstatement.
lega
prin
         f4: newer(ucc,sma).
our
         f5: federal_law(sma).
prin
the
         f6: state_law(ucc).
sinc
-- a Lex Posterior and Lex Superior
         lex_posterior(X,Y): Y < X \leftarrow newer(X,Y).
         lex\_superior(X,Y): X < Y \leftarrow state\_law(X), federal\_law(Y).
     Higher-Order Priority
              r1(X,Y): lex_posterior(X,Y) < lex_superior(X,Y).
```

Temporal Reasoning (Frame Problem)

Arguments in A are:

- generation rules:
 - □ holds $(F,T_2) \leftarrow \text{initiation}(F,T_1), T_1 < T_2$
 - \square \neg holds $(F, T_2) \leftarrow$ termination $(F, T_1), T_1 < T_2$
- persistence rules:
 - □ holds (F,T_2) ← holds (F,T_1) , $T_1 < T_2$
 - \neg holds $(F,T_2) \leftarrow \neg$ holds $(F,T_1), T_1 < T_2$
- **assumption rules:** holds (F,T), \neg holds (F,T)
- Priority < is given by:</p>
 - persistence rules < later(or =) & conflicting generation rules</p>
 - generation rules < later & conflicting generation rules</p>
 - assumptions < conflicting generation rules</p>

Example

- InjectA initiates Protected when {TypeO}
- InjectB initiates Protected when {¬TypeO}
- □ ¬Protected holds-at 0
- InjectA happens-at 2
- InjectB happens-at 3

Computing Argumentation

Construction of admissible trees via derivation of partial trees. Nodes are sets of sentences labelled as 'attack' or 'defence' {sma, f2, f3, lex_superior(ucc,sma), f5, f6, r1(ucc,sma)} {ucc, f1, f4} {ucc,f1,f4,lex_posterior(ucc,sma)} {sma, f2, f3, lex_superior(ucc,sma), f5, f6 } {sma, f2, f3, lex_superior(ucc,sma), f5, f6, r1(ucc,sma)} against Nare added as additional unmarked attack nodes children of the root.

Soundness and Completeness

An Example of Argumentation Theory Policy

Decision policy of a seller agent

```
r1: sell(Prd, Ag, high-price) \leftarrow pay-card(Ag, Prd) r2: sell(Prd, Ag, high-price) \leftarrow pay-install(Ag, Prd) r3: sell(Prd, Ag, low-price) \leftarrow pay-cash(Ag, Prd) r4: \negsell(Prd, Ag, P2) \leftarrow sell(Prd, Ag, P1), P2\neqP1
```

Priority: r1 > r2, r1 > r3, r2 > r3

Argumentation with Roles and Context

- □ Default Context → definition of roles
 - Market: normal, regular customer
- □ Specific Context
 - High season, sales season
- □ Example Agent theory: $T=(T, P_R, P_C)$

R1: h-p(r1(Prd, Ag), r3(Prd, Ag))

R2: h-p(r3(Prd, Ag), r1(Prd, Ag)) \leftarrow regular(Ag), buy_2(Ag, Prd)

R3: h-p(r3(Prd, Ag), r1(Prd, Ag)) \leftarrow regular(Ag), late_del(Ag, Prd)

C1: h-p(R1(Prd, Ag), R2(Prd, Ag)) \leftarrow high-season

C3: h-p(R2(Prd, Ag), R3(Prd, Ag)) \leftarrow special-product(Prd)

MODULARITY of representation

Argumentation for Cognitive Assistants

- □ A Cognitive Assistant has two theories of argumentation:
 - TACTICAL POLICY PART
 - WORLD KNOWLEDGE PART
- □ The Tactical part uses the World Knowledge part as premises to enable its policy arguments
- □ The World Knowledge part helps understand the current state of the world.
 - The World Knowledge part is used to help recognize the current CONTEXT

Argumentation for Cognitive Assistants

□ TACTICAL POLICY

- R1: Normally, allow calls
- R2: Busy with Important project then deny calls
- C1: Family Emergency then allow calls despite work
 - □ R1>R2 when Family Emergency

■ WORLD KNOWLEDGE

- The CEO has asked for the ARCO report today
 - □ HENCE we are in the Busy with important project Context
- Baby not well today and wife is calling repeatedly
 - HENCE we are also in the Family Emergency Context.