sept 7KEL

Name:	ID #:

As always you need to show your work. Fill in the appropriate blanks

1. A pair
$$(\lambda, v)$$
 is an eigen pair if

$$AV = \lambda V$$
 and $V \neq 0$

2. A matrix A is
$$\text{Dicy} \text{and}$$
 iff it has n LI eigenvectors M and $A = PPP^{-1}$

3. For
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
.

$$(1-x)^2 - 2^2 = 0$$
 => $1-x = \pm 2$

$$\lambda = 1 \pm 2 = -1$$

$$D = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$A = 3I = \begin{pmatrix} -2 & 7 \\ 2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 \\ 1 \\ 2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix}$$

$$M + I = \begin{pmatrix} 22 \\ 22 \end{pmatrix} \sim \begin{pmatrix} 10 \\ 00 \end{pmatrix} \qquad \chi = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

4. For
$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
.

$$(00)$$
 $2-(-1)$

$$(1-\lambda)^2 + z^2 = 0 \Rightarrow (1-\lambda)^2 = -4$$

 $\Rightarrow 1-\lambda = \pm \sqrt{-4} = \pm 2I$
 $\lambda = 1 \pm 2I$

$$V_{i} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + I \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

4.2. Compute the eigenvectors of A
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \pm \begin{pmatrix} 6 \\ 1 \end{pmatrix} \pm \begin{pmatrix} 6$$

$$-IX, +Xz = 0$$

$$\lambda_i = 1 + ZI$$

$$\lambda_{1} = 1 + ZI$$

$$A - \lambda_{1}Id = \begin{pmatrix} 1 - (1 + 2I) & Z \\ -Z & 1 - (1 + 2I) \end{pmatrix} = \begin{pmatrix} -2I & 2 \\ -2 & -2I \end{pmatrix} \sim \begin{pmatrix} -I & 1 \\ 0 & 0 \end{pmatrix}$$

sept 26th

Name:	ID #:	

As always you need to show your work. Fill in the appropriate blanks

1. The
$$NU_{CQ}$$
 of A is NNP^{-1} where $P = (V_1, \dots, V_n)$ and $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

2. The matrix
$$A = \begin{pmatrix} a - b \\ b & a \end{pmatrix}$$
 is a scaling by $r = \sqrt{a^2 + b^2}$ and a rotation by $a = \sqrt{a^2 + b^2}$

3. A scaling by rand a rotation by angle
$$\phi$$
 has matrix $A = \begin{pmatrix} r & O \\ O & r \end{pmatrix} \begin{pmatrix} ccs(f) \\ \end{pmatrix}$ i

4. The matrix
$$A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$
 is a scaling by $\sqrt{1+4}$ and a rotation by $atm(2)$

4. The matrix
$$A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$
 is a scaling by $\sqrt{1+4}$ and a rotation by $atm(2)$
5. For $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$ $det(A - \lambda T) = (6 - \lambda) \begin{vmatrix} 2 - \lambda 4 \\ 4 & 2 - \lambda \end{vmatrix} = (6 - \lambda) ((1 - \lambda)^2 - 4^2)$
5. For $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$ $11 = 0 \Rightarrow 6 - \lambda = 0 \Rightarrow (2 - \lambda)^2 = 4^2$
5.1. Compute the eigenvalues of $A = \begin{pmatrix} 2 & 0 & 1 \\ 4 & 0 & 2 \end{pmatrix}$ $\lambda = C \Rightarrow (2 - \lambda)^2 = 4^2$
 $\lambda = C \Rightarrow (2 - \lambda)^2 = 4^2$

5.1. Compute the eigenvalues of A
$$6$$
, 6 , -2 $\lambda = 6$ $\lambda = 2 \pm 4 = 6$, $\lambda = 2 \pm 4 = 6$

5.2. compute the eigenvectors of A
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$(A-6I) = \begin{pmatrix} -404 \\ 000 \\ 40-4 \end{pmatrix} \sim \begin{pmatrix} -101 \\ 000 \\ 000 \end{pmatrix} \times_{1} = \times_{3} \qquad v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$A+2I = \begin{pmatrix} 404 \\ 080 \\ 404 \end{pmatrix} \sim \begin{pmatrix} 101 \\ 010 \\ 000 \end{pmatrix} \qquad v = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$V = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

$$V = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

6. The matrix
$$A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$
 is a scaling by $\sqrt{1^2 + 1^2}$ and a rotation by $atm(1)$