Laboratorio de Física 1 - segundo semestre 2023

Universidad de San Andrés

Práctica 3: Coeficiente de rozamiento dinámico y adquisición asistida por Arduino

En esta práctica se busca familiarizarse con la medición de un sistema a partir de la 2da Ley de Newton y de nuevas herramientas como el microcontrolador Arduino para obtener variables de movimiento. En este contexto, se propone determinar el coeficiente de rozamiento dinámico de un sistema compuesto por un plano y un objeto deslizando sobre la superficie del mismo atado mediante una soga y una polea a una masa.

1. Objetivo

Caracterización de las fuerzas de rozamiento dinámica del sistema y del coeficiente entre distintas superficies disponibles.

2. Introducción

A continuación presentamos algunas preguntas generales que pueden orientar su trabajo en el laboratorio. Les sugerimos que vuelvan a ellas mientras realizan las experiencias y eligen el *setup*, después de obtener los datos, en el momento del análisis, etc.

- ¿La fuerza de rozamiento es constante o variable?
- ¿De qué parámetros depende?
- ¿Depende de alguna variable como posición o velocidad?
- ¿Cómo puedo estimarla mediante la posición?

3. Propuesta: fuerza de rozamiento dinámica

Plano horizontal + sensor de posición

El montaje experimental está esquematizado en la figura 1. Un trineo / cuna de plástico de masa m es apoyado sobre un plano nivelado y atado a una masa complementaria M para ponerlo en movimiento. Se registra la posición del bloque con el sensor de posición.

- Midan la aceleración del trineo m. Grafiquen la posición en función del tiempo y determinen la aceleración. ¿Cuál es la velocidad inicial?
- Varíen m (pueden cargar al trineo con objetos) y M. ¿Cómo depende la aceleración del valor de m?
- Estimen μ_d a partir de las cuentas (planteen y resuelvan el problema) y los datos.
- **Distintos coeficientes:** peguen papel al trineo (y a la mesa si desean). Calculen distintos coeficientes para las superficies. ¿Hay datos en Internet que den similar a sus estimaciones?

Figura 1: Esquema experimental para la propuesta. La masa m y M son variables.

4. Coeficiente estático

Esta propuesta es **opcional**, ¿se les ocurre cómo podrían medir el coeficiente de rozamiento estático?

5. Adquisición de datos

Esta vez para adquirir datos vamos a usar el microcontrolador Arduino Mega, al que le conectaremos un sensor de posición de ultrasonido ¹. Este aparato envia ondas sonoras desde el transmisor, que luego rebotan en un objeto y regresan al receptor. Se puede determinar qué tan lejos está algo por el tiempo que tardan las ondas sonoras en regresar al sensor.

Las conexiones para ponerlo a funcionar se encuentran en la figura 2.

Para obtener los datos, les sugerimos utilizar la IDE v1 ² de Arduino con el código proporcionado por la cátedra. El script les devolverá valores de tiempo de adquisición y de *posición* en la terminal Serial Monitor de la IDE. Pueden luego copiar esos datos a un .csv y analizarlos.

Es importante **calibrar** los datos que proporciona el sensor, que en principio no sabemos en qué unidades están o a qué corresponden. Para eso ideen un experimento con una distancia conocida y tomen los datos para poder hacer la conversión correcta. Revisen también la altura óptima a la que debe estar el sensor para captar al trineo.

6. Entrega

Deberán escribir un informe técnico reportando los resultados de los experimentos, el cual debe contar con una introducción, descripción de los métodos experimentales, análisis de los resultados y conclusiones. No olviden detallar las consideraciones que tomaron para realizar cada medición, y de reportar todas las magnitudes con su incerteza. La fecha de entrega del mismo es **en una semana** y no debe superar **10 páginas** de largo.

¹HC-SR04 Ultrasonic Sensor

²La IDE v2 tiene un *bug* en su terminal que no permite copiar muchas líneas.

Figura 2: Conexiones para utilizar el sensor de ultrasonido. Las líneas punteadas corresponden a las patas del sensor. Recomendamos hacer el setup con el sensor mirando para el otro lado (cuidado ahí con el orden de las conexiones).