$11a_{259} (K11a_{259})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{43} + u^{42} + \dots + b - u, \ u^{43} + u^{42} + \dots + a - 2, \ u^{44} + 2u^{43} + \dots - 3u - 1 \rangle$$

$$I_2^u = \langle b + 1, \ u^3 + a - 2u + 1, \ u^5 + u^4 - 2u^3 - u^2 + u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{43} + u^{42} + \dots + b - u, \ u^{43} + u^{42} + \dots + a - 2, \ u^{44} + 2u^{43} + \dots - 3u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{43} - u^{42} + \dots + 6u + 2 \\ -u^{43} - u^{42} + \dots + 3u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{43} - 2u^{42} + \dots + 7u + 3 \\ -u^{43} - u^{42} + \dots + 11u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9} + 4u^{7} - 5u^{5} + 2u^{3} - u \\ -u^{11} + 5u^{9} - 8u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3u^{43} - 3u^{42} + \dots + 6u + 3 \\ -u^{43} - u^{42} + \dots - 17u^{4} + 6u^{3} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^{43} + 4u^{42} + \cdots + u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4	$u^{44} - 6u^{43} + \dots + 3u - 1$
c_2, c_7	$u^{44} - u^{43} + \dots + 32u + 32$
c_5, c_9, c_{10}	$u^{44} + 2u^{43} + \dots - 3u - 1$
c_6	$u^{44} - 6u^{43} + \dots + 175u + 53$
c_8, c_{11}	$u^{44} + 6u^{43} + \dots - 57u - 9$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4	$y^{44} - 46y^{43} + \dots - 17y + 1$
c_2, c_7	$y^{44} - 33y^{43} + \dots - 512y + 1024$
c_5, c_9, c_{10}	$y^{44} - 42y^{43} + \dots + y + 1$
c_6	$y^{44} - 18y^{43} + \dots - 41755y + 2809$
c_8, c_{11}	$y^{44} + 42y^{43} + \dots - 3555y + 81$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.899130 + 0.176754I		
a = 0.521391 + 0.292332I	-6.64112 - 0.04136I	-14.06391 - 0.57797I
b = 1.43714 + 0.02392I		
u = -0.899130 - 0.176754I		
a = 0.521391 - 0.292332I	-6.64112 + 0.04136I	-14.06391 + 0.57797I
b = 1.43714 - 0.02392I		
u = 0.425086 + 0.710647I		
a = 1.05109 - 1.91783I	-11.4356 - 8.9717I	-12.8397 + 6.3159I
b = 1.56049 + 0.28855I		
u = 0.425086 - 0.710647I		
a = 1.05109 + 1.91783I	-11.4356 + 8.9717I	-12.8397 - 6.3159I
b = 1.56049 - 0.28855I		
u = 0.553555 + 0.613338I		
a = 1.044040 - 0.369018I	-11.90460 + 4.53656I	-13.93261 - 0.49755I
b = 1.57148 - 0.25916I		
u = 0.553555 - 0.613338I		
a = 1.044040 + 0.369018I	-11.90460 - 4.53656I	-13.93261 + 0.49755I
b = 1.57148 + 0.25916I		
u = -0.460055 + 0.640339I		
a = -1.73542 - 1.22014I	-6.79823 + 2.11103I	-12.35870 - 3.20933I
b = -1.47584 + 0.02352I		
u = -0.460055 - 0.640339I		
a = -1.73542 + 1.22014I	-6.79823 - 2.11103I	-12.35870 + 3.20933I
b = -1.47584 - 0.02352I		
u = 0.433137 + 0.657379I		
a = -0.966620 + 0.943319I	-4.52260 - 4.83043I	-11.16325 + 6.23604I
b = -0.550396 - 0.837192I		
u = 0.433137 - 0.657379I		
a = -0.966620 - 0.943319I	-4.52260 + 4.83043I	-11.16325 - 6.23604I
b = -0.550396 + 0.837192I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.479430 + 0.610552I		
a = 0.236070 + 0.053486I	-4.71947 + 0.64919I	-11.99618 + 0.22434I
b = -0.609155 + 0.800806I		
u = 0.479430 - 0.610552I		
a = 0.236070 - 0.053486I	-4.71947 - 0.64919I	-11.99618 - 0.22434I
b = -0.609155 - 0.800806I		
u = -1.233270 + 0.075682I		
a = 0.824540 + 0.353873I	-2.14292 + 0.55015I	-5.79202 + 0.I
b = 0.058722 - 0.367772I		
u = -1.233270 - 0.075682I		
a = 0.824540 - 0.353873I	-2.14292 - 0.55015I	-5.79202 + 0.I
b = 0.058722 + 0.367772I		
u = -0.156977 + 0.697187I		
a = -0.81527 + 1.27945I	-4.26770 + 3.54538I	-9.88379 - 4.33460I
b = 1.42769 - 0.10914I		
u = -0.156977 - 0.697187I		
a = -0.81527 - 1.27945I	-4.26770 - 3.54538I	-9.88379 + 4.33460I
b = 1.42769 + 0.10914I		
u = 1.315480 + 0.178595I		
a = -0.371113 + 0.634542I	-3.43627 - 4.29473I	0
b = -0.262321 - 0.630465I		
u = 1.315480 - 0.178595I		
a = -0.371113 - 0.634542I	-3.43627 + 4.29473I	0
b = -0.262321 + 0.630465I		
u = -0.359435 + 0.567287I		
a = 0.738087 + 0.401907I	-0.76310 + 1.71420I	-4.36493 - 4.23791I
b = 0.328694 - 0.089361I		
u = -0.359435 - 0.567287I		
a = 0.738087 - 0.401907I	-0.76310 - 1.71420I	-4.36493 + 4.23791I
b = 0.328694 + 0.089361I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.334190 + 0.073613I		
a = -0.545890 - 0.301912I	-5.28913 - 0.51604I	0
b = -0.878617 + 0.388577I		
u = 1.334190 - 0.073613I		
a = -0.545890 + 0.301912I	-5.28913 + 0.51604I	0
b = -0.878617 - 0.388577I		
u = 1.323300 + 0.265801I		
a = 1.05667 - 1.60928I	-8.90196 - 7.03042I	0
b = 1.43422 + 0.16711I		
u = 1.323300 - 0.265801I		
a = 1.05667 + 1.60928I	-8.90196 + 7.03042I	0
b = 1.43422 - 0.16711I		
u = -1.345120 + 0.133766I		
a = -2.19486 - 1.55848I	-6.11126 + 2.71120I	0
b = -1.237690 + 0.186516I		
u = -1.345120 - 0.133766I		
a = -2.19486 + 1.55848I	-6.11126 - 2.71120I	0
b = -1.237690 - 0.186516I		
u = -0.107997 + 0.549878I		
a = 0.469723 - 1.325100I	0.99729 + 1.64755I	-2.31020 - 6.18875I
b = -0.192197 + 0.469108I		
u = -0.107997 - 0.549878I		
a = 0.469723 + 1.325100I	0.99729 - 1.64755I	-2.31020 + 6.18875I
b = -0.192197 - 0.469108I		
u = 1.43477 + 0.21962I		
a = 1.086810 - 0.327306I	-6.51912 - 4.63399I	0
b = 0.432601 + 0.117164I		
u = 1.43477 - 0.21962I		
a = 1.086810 + 0.327306I	-6.51912 + 4.63399I	0
b = 0.432601 - 0.117164I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.46361		
a = 2.48778	-13.6319	0
b = 1.56570		
u = -1.47141 + 0.23987I		
a = -1.43868 - 0.10244I	-10.66990 + 8.11106I	0
b = -0.545081 + 0.886664I		
u = -1.47141 - 0.23987I		
a = -1.43868 + 0.10244I	-10.66990 - 8.11106I	0
b = -0.545081 - 0.886664I		
u = -1.47725 + 0.21569I		
a = -0.386925 - 0.779700I	-11.03430 + 2.36395I	0
b = -0.663066 - 0.832758I		
u = -1.47725 - 0.21569I		
a = -0.386925 + 0.779700I	-11.03430 - 2.36395I	0
b = -0.663066 + 0.832758I		
u = 1.47753 + 0.22911I		
a = -2.97141 + 1.15676I	-13.05820 - 5.28645I	0
b = -1.50758 - 0.04579I		
u = 1.47753 - 0.22911I		
a = -2.97141 - 1.15676I	-13.05820 + 5.28645I	0
b = -1.50758 + 0.04579I		
u = -1.47671 + 0.26167I		
a = 2.44784 + 1.62296I	-17.5761 + 12.5201I	0
b = 1.56869 - 0.31082I		
u = -1.47671 - 0.26167I		
a = 2.44784 - 1.62296I	-17.5761 - 12.5201I	0
b = 1.56869 + 0.31082I		
u = -1.50093 + 0.19538I		
a = 2.44900 + 0.53318I	-18.5896 - 1.6346I	0
b = 1.60536 + 0.25067I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.50093 - 0.19538I		
a = 2.44900 - 0.53318I	-18.5896 + 1.6346I	0
b = 1.60536 - 0.25067I		
u = 0.132479 + 0.398765I		
a = -0.14251 + 2.47920I	-1.44721 - 0.71558I	-5.57948 - 1.23300I
b = -1.082710 - 0.136687I		
u = 0.132479 - 0.398765I		
a = -0.14251 - 2.47920I	-1.44721 + 0.71558I	-5.57948 + 1.23300I
b = -1.082710 + 0.136687I		
u = -0.304939		
a = 0.799083	-0.758185	-13.9250
b = -0.406553		
-	0.100100	10.0200

II.
$$I_2^u = \langle b+1, u^3+a-2u+1, u^5+u^4-2u^3-u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} + 2u - 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} + 2u \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} + 2u - 1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} + 2u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^3 + u^2 + 8u 15$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^5$
c_2, c_7	u^5
c_3, c_4	$(u+1)^5$
c_5	$u^5 + u^4 - 2u^3 - u^2 + u - 1$
c_6	$u^5 - 3u^4 + 4u^3 - u^2 - u + 1$
c_8	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
c_9, c_{10}	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
c_{11}	$u^5 + u^4 + 2u^3 + u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4	$(y-1)^5$
c_2, c_7	y^5
c_5, c_9, c_{10}	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_6	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$
c_{8}, c_{11}	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.21774		
a = -0.370286	-4.04602	-9.19250
b = -1.00000		
u = 0.309916 + 0.549911I		
a = -0.128779 + 1.107660I	-1.97403 - 1.53058I	-11.97286 + 4.76366I
b = -1.00000		
u = 0.309916 - 0.549911I		
a = -0.128779 - 1.107660I	-1.97403 + 1.53058I	-11.97286 - 4.76366I
b = -1.00000		
u = -1.41878 + 0.21917I		
a = -1.18608 - 0.87465I	-7.51750 + 4.40083I	-16.4309 - 2.8075I
b = -1.00000		
u = -1.41878 - 0.21917I		
a = -1.18608 + 0.87465I	-7.51750 - 4.40083I	-16.4309 + 2.8075I
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{44} - 6u^{43} + \dots + 3u - 1)$
c_2, c_7	$u^5(u^{44} - u^{43} + \dots + 32u + 32)$
c_3, c_4	$((u+1)^5)(u^{44} - 6u^{43} + \dots + 3u - 1)$
c_5	$ (u^5 + u^4 - 2u^3 - u^2 + u - 1)(u^{44} + 2u^{43} + \dots - 3u - 1) $
c_6	$ (u^5 - 3u^4 + 4u^3 - u^2 - u + 1)(u^{44} - 6u^{43} + \dots + 175u + 53) $
<i>c</i> ₈	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)(u^{44} + 6u^{43} + \dots - 57u - 9)$
c_9, c_{10}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)(u^{44} + 2u^{43} + \dots - 3u - 1)$
c_{11}	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)(u^{44} + 6u^{43} + \dots - 57u - 9)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4	$((y-1)^5)(y^{44} - 46y^{43} + \dots - 17y + 1)$
c_2, c_7	$y^5(y^{44} - 33y^{43} + \dots - 512y + 1024)$
c_5, c_9, c_{10}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)(y^{44} - 42y^{43} + \dots + y + 1)$
c_6	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)(y^{44} - 18y^{43} + \dots - 41755y + 2809)$
c_{8}, c_{11}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)(y^{44} + 42y^{43} + \dots - 3555y + 81)$