Data science for "Caisse Nationale des Allocations Familiales" (CNAF)

Supervisors : Clémentine NEMO, Luc CHAMPALLE

Tutor: Lionel FILLATRE

09-2017

Introduction

Context

- ► Enterprise: Atos
 - Informatics services consultancy
- Client: CNAF
 - 50 Atos collaborators working for them
- ▶ 1st semester:
 - ½ time in a team → functional work
 - ½ time autonomous work for Data Science integration
- ▶ 2nd semester
 - Data Science project for CNAF
- No Data Science at Atos Sophia → Technically autonomous

Subject

From Open Data to ticketing system

- 1st semester: Open data CNAF (data.caf.fr)
- Proposition open data:
 - Data visualizations
 - Improve open data with semantic web
 - Emotion analysis on tweets
- During meeting presenting solutions:
 - Visualizations & improving Open Data → Team already work on it
 - Tweets → Text analysis → data with text → Ticketing system

Subject

- Subject:
 - « Analysis of CNAF ticketing system»

Issue

- ▶ 300 000 tickets on 5 years
- ▶ Issue: «Overwork on the system. Improvement possible thanks to Data Science ?»
- Problems identified thanks to visualizations
- ► Multiple duplicates and not always identified or sometimes late in the process Solution → SIMILARITY PREDICTION
- Process to redirect ticket to team able to solve the ticket.
- Redirection is not always easy and some tickets are long to solve because of it.

Solution → TEAM PREDICTION

The purpose of every solution suggested is to help decision

From ideas to realizations

- Research work to find solutions for problems identified
- Read papers, find solutions on similar problems

Suggested solutions:

Siamese BLSTM

Categorical variables

One hot encoding

variables

From ideas to realizations

- ▶ Meeting with CNAF statisticians → Focus on text only to reuse it
- Suggested solutions:

Scientific approach

- Why deep learning?
 - Better results
 - Known algorithm thanks to previous internship
- ► CNAF statistician → No knowledge on deep learning

Comparison between classic approach and deep learning algorithms

Technical realization

Deep learning basics

Model

From words to vectors Embedding model (Skip gram)

Model

Predictive model

Recurrent Neural Network (RNN) and bidirectional RNN

Recurrent neuron Recurrent neuron unrolled

Team prediction

Tricks to improve learning

Introduction Subject Technical realization Conclusion

Finetuning

Results

▶ +700 teams

Model	Train accuracy (%)	Test accuracy (%)
Hazard following distribution	1,84	1.21
Most represented team	7,34	4.54
Traditional approach (no deep learning)	65,61	23.26
Proposed approach before finetuning	51,02	32,07
Proposed approach after finetuning	67,24	47.12

- ▶ Good results and research project to be continued...
- ► Research report available ask by mail: <u>turpaultn@gmail.com</u>
- ► Github available soon: https://github.com/turpaultn/CnafSAXO

Traditional method?

Introduction Subject Technical conclusion

					tnis,
NI _ 1	· Thic	ico	contonco	uniarama	is,
II = I	. 111112	15 a	sentence	unigrams:	a,
					sentence

t = term d = document

Term-Frequency	erm(1)	Term(2)	Term(3)	Term(4)	Term(5)	Term(6)	Term(n)
Docume (1)	260	300	0	0	0	25	0
cumen	78	87		1	0	175	0
cument(3)		13.	7/7	V	237	0	21
Document		J	101	0	0	0	0
Pocumen 5)	3	15	0	24	0	48	87
ent(v)	0	0	71	0	0	0	0
cument(n)	109	0	901	221	331	441	551

Inverse Document Frequency (IDF)

Give more weight to a term occurring in less documents

$$IDF(t) = \log rac{|D|}{df(t)}$$
 $df(t) : Term$ $df(t) : Document frequency of t $|D| : Number of documents in $D$$$

Presentations

- Introduction to Data Science
- Monthly meeting with CNAF (alone from ATOS)

Presentation Deep learning at ATOS with CNAF and ATOS collaborators (\sim 40 pers) (September, 7^{th} 2017)

- Introduction to Deep Learning to ATOS and CNAF (video)
- Project presentation to present a concrete use case of Deep Learning (<u>video</u>)
- Feedback on Deep Learning School (<u>video</u>)
- Feed back on Sophia Conf (video)

Experiencing difficulties

- Adapt speech to audience
- Collaborators new to deep learning
- ▶ Long to define subject and begin to code the solution
- ▶ Evaluate time

Acquired skills

- Technical skills:
 - Developing a concrete solution
 - Research writing
 - Github
 - Define a problem
 - Vulgarization
- Non technical skills:
 - Develop concrete ideas
 - Oral skills
 - adapt speech to audience
 - Vulgarization
 - Consulting work

Conclusion

Wonderful experience

▶ I thank ATOS and CNAF for their confidence during this aprenticeship

- ► Future: PhD at LORIA Nancy:
 - Deep learning for sound analysis in real environments

Thanks

For more information please contact:

T+ 33 1 98765432

F+ 33 1 88888888

M+ 33 6 44445678

first name. last name @atos.net

