Cursus Ingénieur Machine Learning

Vincent Jugé

Soutenance Projet n°6

07/2022

Stackoverflow

Classez des images à l'aide d'algorithmes de Deep Learning

Overview

Aperçu général des étapes:

Environnement d'éxécution

- On a besoin d'avoir un GPU compatible CUDA / TensorCores pour tirer pleinement parti de Tensorflow
- On utilise Google Collaboratory (plan payant avec des ressources GPU)

Dataset

- On utilise le dataset "Stanford Dogs" qui est disponible via l'API tensorflow_datasets
 - o https://www.tensorflow.org/datasets/catalog/stanford.dogs
 - Il contient l'ensemble des images, labels et permet de faire un train/test split facilement
 - Il ne nécessite pas de télécharger les archives des images
 - c'est une extension de la classe générique DataSets
 - cette API permet de batcher le dataset, lors de son utilisation par le modèle (phase d'apprentissage)
- On a 120 classes de chiens différentes
- Environ 20'000 samples

Data Preprocessing & Augmentation

Preprocessing

- Afin d'avoir des entrées de taille identique pour notre modèle, on effectue un resizing
- On effectue un One Hot encoding sur les labels

Augmentation

- On ne dispose pas d'une grande variété de données, on doit donc en "créer" de nouvelles
- transformation des images par rotation et flip horizontal
- Pour une image du dataset, on en obtient neuf

Création de modèles CNN

Création de CNN - Fonctions communes

Pour la suite, on choisit des paramètres communs à tous nos modèles:

- optimizer: Adam
- loss: CategoricalCrossEntropy
- metrics: Categorical Accuracy, Precision, Recall

- Par défaut 20 epochs pour l'apprentissage
- Early stopping par défaut à 8 epochs
- Adaptation du learning rate: diminution au fur et à mesure de l'apprentissage

CNN basique - cnn1

Pour commencer on crée un modèle CNN à une seule couche de convolution

C'est une approche très basique, mais qui permets de voir les évolutions pour

la suite

Model: "sequential_6"		
Layer (type)	Output Shape	Param #
rescaling_4 (Rescaling)	 (None, 299, 299, 3)	0
conv2d_10 (Conv2D)	(None, 297, 297, 32)	896
<pre>max_pooling2d_7 (MaxPooling 2D)</pre>	(None, 148, 148, 32)	
dropout_7 (Dropout)	(None, 148, 148, 32)	
flatten_2 (Flatten)	(None, 700928)	
dense_8 (Dense)	(None, 128)	89718912
dense_9 (Dense)	(None, 120)	15480
Total params: 89,735,288 Trainable params: 89,735,288 Non-trainable params: 0		

cnnl

Évidemment, le modèle est très peu performant et n'apprends pas grand

chose

CNN à 3 couches - cnn3

On ajoute quelques couches de convolution, pour voir la différence:

Layer (type)	Output Shape	Param #
rescaling_5 (Rescaling)		
conv2d_11 (Conv2D)	(None, 297, 297, 32)	896
<pre>max_pooling2d_8 (MaxPooling 2D)</pre>	(None, 148, 148, 32)	
dropout_8 (Dropout)	(None, 148, 148, 32)	
conv2d_12 (Conv2D)	(None, 146, 146, 64)	18496
<pre>max_pooling2d_9 (MaxPooling 2D)</pre>	(None, 73, 73, 64)	
dropout_9 (Dropout)	(None, 73, 73, 64)	
conv2d_13 (Conv2D)	(None, 71, 71, 128)	73856
dropout_10 (Dropout)	(None, 71, 71, 128)	
flatten_3 (Flatten)	(None, 645248)	
dense_10 (Dense)	(None, 128)	82591872
dropout_11 (Dropout)	(None, 128)	
dense 11 (Dense)	(None, 120)	15480

cnn3

Là aussi, les performances ne sont pas bonnes, pratiquement identiques à cnn1

Optimisation de cnn3 - cnn3v2

On optimize cnn3 en ajoutant des éléments:

- Dropout en sortie des couches de convolution : permet d'ajouter du 'bruit' et donc d'éviter l'over fitting
- Normalisation
- Couches d'activation en sortie des couches cachées
- Suppression de la couche de flattening

Layer (type)	Output Shape	Param #
rescaling_4 (Rescaling)	 (None, 299, 299, 3)	 0
conv2d_12 (Conv2D)	(None, 299, 299, 16)	448
<pre>batch_normalization_12 (Bat chNormalization)</pre>	(None, 299, 299, 16)	48
activation_6 (Activation)	(None, 299, 299, 16)	0
max_pooling2d_8 (MaxPooling 2D)	(None, 75, 75, 16)	0
dropout_6 (Dropout)	(None, 75, 75, 16)	0
conv2d_13 (Conv2D)	(None, 75, 75, 32)	4640
<pre>batch_normalization_13 (Bat chNormalization)</pre>	(None, 75, 75, 32)	96
activation_7 (Activation)	(None, 75, 75, 32)	0
max_pooling2d_9 (MaxPooling 2D)	(None, 37, 37, 32)	0
dropout_7 (Dropout)	(None, 37, 37, 32)	0
conv2d_14 (Conv2D)	(None, 37, 37, 64)	18496
<pre>batch_normalization_14 (Bat chNormalization)</pre>	(None, 37, 37, 64)	192
global_average_pooling2d_4 (GlobalAveragePooling2D)	(None, 64)	0
dense_8 (Dense)	(None, 128)	8320
dense_9 (Dense)	(None, 120)	15480
Total params: 47,720 Trainable params: 47,496		=======

cnn3v2

Cette fois, notre modèle apprends, même si la performance est encore assez faible (25% d'accuracy)

Optimisation des hyper parametres de cnn3v2

On va encore plus loin en optimisant certains parametres du modèle cnn3v2

- taille des filtres de convolution
- ajout ou non de Dropout

On utilise pour cela l'api Keras Tuner

 sur la phase de recherches des meilleurs hyper parametres, on utilise qu'une partie du dataset, afin de réduire le temps de calcul

cnn3v2 optimisé - TensorBoard & Best Model

TensorBoard permet de voir les différents scénarios de keras tuner et leur impact

Le meilleur modèle trouvé est le suivant

Layer (type)	Output Shape	Param #
rescaling_2 (Rescaling)	(None, 299, 299, 3)	0
conv2d_6 (Conv2D)	(None, 299, 299, 64)	1792
<pre>batch_normalization_6 (Batc hNormalization)</pre>	(None, 299, 299, 64)	192
activation_4 (Activation)	(None, 299, 299, 64)	0
max_pooling2d_4 (MaxPooling 2D)	(None, 75, 75, 64)	0
dropout_4 (Dropout)	(None, 75, 75, 64)	0
conv2d_7 (Conv2D)	(None, 75, 75, 64)	36928
batch_normalization_7 (BatchNormalization)	(None, 75, 75, 64)	192
activation_5 (Activation)	(None, 75, 75, 64)	0
max_pooling2d_5 (MaxPooling 2D)	(None, 37, 37, 64)	0
dropout_5 (Dropout)	(None, 37, 37, 64)	0
conv2d_8 (Conv2D)	(None, 37, 37, 64)	36928
batch_normalization_8 (BatchNormalization)	(None, 37, 37, 64)	192
global_average_pooling2d_2 (GlobalAveragePooling2D)	(None, 64)	0
dense_4 (Dense)	(None, 128)	8320
dense_5 (Dense)	(None, 120)	15480
Total params: 100,024 Trainable params: 99,640 Non-trainable params: 384		

cnn3v2 optimisé

Le modèle est plus performant, on obtient un gain d'accuracy (30%).

Malgré tout, la structure restant très simple, les performances brutes sont

assez faibles

Transfer Learning

Transfer Learning

Le Transfer Learning permet de réutiliser des réseaux profonds pré entrainé, et les adapter à un probleme spécifique.

Dans notre cas, on va réutiliser des modèles CNN entrainés sur le dataset ImageNet

L'API Keras propose un grand nombre de modèles, par la suite on choisi ResNet50V2 et Xception

Transfer Learning

Le principe du Transfer Learning est

- utiliser un modèle
- remplacer la couche supérieure (TOP)
- ajouter éventuellement quelques couches de convolution
- modifier éventuellement l'input shape

Résultats ResNet50V2

Le modèle arrête de progresser à l'epoch 40 et n'est pas performant (12% accuracy)

Il n'est pas très performant, peut être parce que:

- l'input shape serait à revoir
- les couches ajoutées ne sont pas pertinentes

Layer (type)	Output Shape	Param #	
input_3 (InputLayer)	[(None, 299, 299, 3)]	0	
sequential (Sequential)	(None, 299, 299, 3)	0	
resnet50v2 (Functional)	(None, 10, 10, 2048)	23564800	
global_average_pooling2d_1 (GlobalAveragePooling2D)	(None, 2048)	Θ	
dropout_1 (Dropout)	(None, 2048)	0	
dense_2 (Dense)	(None, 120)	245880	
=			

Résultats Xception

Ce modèle est capable d'apprendre très rapidement et obtient un très bon niveau de performance (> 93% accuracy)

Vérification Xception

Certaines prédictions sont fausses, en vérifiant les résultats on comprend facilement que la distinction est ténue.

Par exemple le modèle 'confonds' parfois ces couples de races:

Application

Application

On utilise Gradio, qui permet de rapidement proposer une interface

