```
crossover_point2 = random.randint(crossover_point1, len(target))
crossover_point3 = random.randint(crossover_point2, len(target))
child1 = parent1[:crossover_point1] + parent2[crossover_point2] + parent1[crossover_point2] + parent1[crossover_point2] + parent2[crossover_point2] + pa
```

ALGORITMA GENETIKA

PEMROGRAMAN LANJUTAN

Rismawati(231021002)-Anggitamaya(231021004)-Evei(231061001)

population = next_population

```
child = parent1[:crossover_point1] BAHAN DISKUSI
          Pengertian Algoritma Genetika
                 Bentuk Crossover
                  Bentuk Mutasi
                  Hasil Percobaan
```

```
Algoritma genetika adalah teknik optimisasi
        berbasis populasi yang menggunakan prinsip-
       prinsip seleksi dan genetika untuk menemukan
        solusi yang optimal atau mendekati optimal
            dalam ruang pencarian yang besar.
                   -Mitchell Melone
```

```
child1 = parent1[:crossover_point1] + parent2[crossover_point2] + parent1[crossover_point2:crossover_point] + parent3[crossover_point2] + parent2[crossover_point2:crossover_point2] + parent2[crossover_point2:crossover_point2] + parent2[crossover_point2:crossover_point2:crossover_point2]
                       # Target string yang ingin dicapai
                       target = "PEMROGRAMAN LANJUTAN"
                       # Parameter algoritma genetika
                       population_size = 100
                       mutation_rate = 0.05
                       generations = 100000
```

```
crossover_point2 = random.randint(crossover_point1, len(target))
crossover_point3 = random.randint(crossover_point2, len(target))

child1 = parent1[:crossover_BENTUKsoveCROSSOVER:1[crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_point2:crossover_po
```

```
def mutate(individual, mutation_rate):
    return ''.join(char if random.random() > mutation_rate else random.choice(string.ascii_uppercase + " ") for char in indi
    Pemisalan crossover:
# Fungsi utama algoritma genetika
def genetic_algorithm():
```

population = initialize_population(population_size, len(target))

pemisalan:																					
array	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
cros1	1	1	Ţ	Ţ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
cros2	1	1	1	1	1	1	I	1	1	1	1	1	1	1	1	1	1	1	1	1	1
cros3	1	1	1	1	1	1	I	1	I	1	1	I	I	1	1	1	I	1	1	1	1

```
best_individual = population[fitnesses.index(best_fitness)]
if best_fitness == len(target):
    break
next_population = [best_individual] # Elitisme: mempertahankan individu terbaik
while len(next_population) < population_size:
    parent1, parent2, parent3 = selection(population, fitnesses)
    child1, child2 = crossover(parent1, parent2, parent3)
    next_population.append(mutate(child1, mutation_rate))
    if len(next_population) < population_size:
        next_population.append(mutate(child2, mutation_rate))</pre>
```

BENTUK CROSSOVER

Crossover:

pemisalan:																					
array	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
cros1	1	1	1	I	1	1	1	I	1	1	1	1	1	1	1	1	1	1	1	1	1
cros2	1	- 1	1	1	1	1	1	1	I	1	1	1	1	1	1	1	I	1	1	I	1
cros3	I	1	I	I	I	I	1	I	I	I	I	1	1	1	1	I	I	I	I	I	1

t_1 ndiv	/idual	_ =																		
parent:																				
1	Е	Е	Н	K	W	D	Н	6	М	F	E	W	2	Α	X	V	Н	L	Α	Е
2	Н	J	М	1	K	N	R	J	R	1	S	M	Α	Α	J	N	R	E	Q	X
3	Р	6	E	T	G	I	R	I	S	M	Α	W	Α	Т	I	J	М	Α	Y	Α
child1:																				
1	Ε	Е	Н	K	W	D	Н	6	М	F	E	W	2	Α	X	V	Н	L	Α	Е
2	Н	J	М	I	K	N	R	J	R	1	S	M	Α	Α	J	N	R	E	Q	X
a1	Ε	Е	Н	K	W	N	R	J	R	- 1	E	W	2	Α	Χ	V	R	E	Q	X
child2:																				
2	Н	J	М	I	K	N	R	J	R	I	S	M	Α	Α	J	N	R	E	Q	Х
3	Р	6	E	T	G	I	R	ı	S	M	Α	W	Α	Т	I	J	М	Α	Y	Α
a2	Н	J	М	I	K	I	R	I	S	М	S	М	Α	Α	J	N	М	Α	Y	Α

```
child1 = parent1[:crossover_point1] BENTSUKoin MUTASichild2 = parent2[:crossover_point1]
                                                                                       ya==mutasi
                                         random > laju mutasi(0.05)
                                                                                       tidak==tetap
for generation in range(generations)
                E
                                                  R
                                                                M
                                                                       Α
                                                                                                  Α
                                                                                                         N
                                                                                                                       U
                                                                                                                              Т
                      M
                                           G
                                                         Α
                                                                             N
                                                                                           L
                                                                                                                J
                                                                                                                                    Α
                                                                                                                                           N
        0.7
                      0.09
                             0.5
                                    0.5
                                                  0.2
                                                        0.2
                                                               0.3
                                                                             0.6
                                                                                           0.4
                                                                                                 0.03
                                                                                                         0.6
                                                                                                               0.8
                                                                                                                      0.9
                                                                                                                             0.3
               0.9
                                           0.1
                                                                      0.8
                                                                                    0.9
                                                                                                                                           0.5
                                                                                                                                           X
                                                                                                         X
 a1
                                                                                                                             0.2
        0.5
                                                                                           0.4
                                                                                                 0.01
               0.7
                            0.07
                                           0.3
                                                 0.03
                                                                      0.2
                                                                             0.3
                                                                                    0.5
                                                                                                         0.8
                                                                                                               0.3
                                                                                                                      8.0
                                                                                                                                          0.03
                                                                                    M
                                                                       M
                                                                                                                      M
 A2
                                                                                                                              Α
```

```
crossover_point2 = random.randint(crossover_point1, len(target))
crossover_point3 = random.randint(crossover_point2, len(target))
```

child = parent1[:crossover_poiHASilrosPERCOBAANent1[crossover_point2:cross

def mutate(individual, mutation_rate):

return ''.join(char if random.random() > mutation rate else random.choice(string.ascii uppercase + " ") for char in indiv

Fungsi utama algoritma gene	PERCOBAAN	GENERASI	WAKTU	
<pre>f genetic_algorithm():</pre>	1	32	0.05	
<pre>population = initialize_pa best_individual = ''</pre>	2	68	0.21	
for generation in range(ge	3	35	0.05	
fitnesses = [calculate	4	44	0.06	
<pre>best_fitness = max(fit) best_individual = popu</pre>	5	34	0.06	
<pre>if best_fitness == ler</pre>	6	24	0.01	
break	7	37	0.07	
<pre>next_population = [bes while len(next_population)</pre>	8	39	0.05	
parent1, parent2,	9	78	0.1	
child1, child2 =	10	98	0.13	
next_population.ap if len(next_population)	Jumlah:	489	0.79	
next_population	Hasil jumlah / 10:	48.9	0.079	
population = next populati	on			

```
def mutate(individual, mutation rate):
# Fungsi utama algoritma gene
def genetic_algorithm():
    population = initialize_population(population)
    best_individual = ''
    for generation in range(generations)
        fitnesses = [calculate_fitness(ind) for Ind in population]
                 child1, child2 = crossover(parent1 PEMROGRAMAN LANJUTAN
                next_population.append(mutate(child1, mDosen_Pengampu:
                if len(next_population) < population_size:
    next_population.append(mutate(child2, mutation_rate))</pre>
Mat.
```