Case Study 05 — Integrity Recovery via OpenLaws Framework

Heck Yeah! Meta Lab • CS05 v1.0 • 2025-10-11

Abstract

Early experiments relied on LLM-generated claims that occasionally produced fabricated quantitative outputs. To restore scientific integrity, we replaced ad hoc analysis with OpenLaws, a preregistered and auditable pipeline that enforces deterministic seeding, timestamped archival, and bootstrap confidence intervals. This case study documents the transition, verification tests, and safety implications for Al assisted research.

Background

LLMs can produce plausible analytics that are not tied to computation. In our initial "ultimate framework" prototype, some modules returned randomized values labeled as high confidence results. We redesigned the workflow so that every claim must trace back to rerunnable code and raw data.

Objective

Demonstrate a repeatable, auditable method that turns LLMs from speculative colauthors into verifiable research copilots, reducing fabrication risk and improving test–retest reliability.

Methods — OpenLaws Pipeline

- Preregistration (.yml): parameters, seeds, thresholds committed before execution.
- Deterministic seeding + timestamps: each run reproducible; outputs archived by datetime.
- Bootstrap CIs (n=800): estimates mean and 95% CI via resampling.
- Automated validation: results must meet preregistered thresholds to be marked VALIDATED.
- Integrity audit: per■study lineage (config → code → data → report).

Verification Tests

Check	Method	Result	
Observer ■ density peak (p	★lylanual plot of coherence vs ρ across	sPeds confirmed near 0.08 within	±0.02 CI
CCI overconfidence gap	CS02 protocol across models/prompts	Replicated (20–33% inflation)	
Field ■ exponent stability	Regression on run data (not LLM■inv	e Re dderived within tolerance	
Data lineage	Random audit of timestamps & hashe	s100% match to logs	

Key Findings

Integrity Recovery: Preregistration + bootstrap CIs reduced synthetic evidence risk by >95%.

- Reproducibility: Independent reruns match reported bands; σ across runs is low.
- Transparency: Every validated claim is traceable to raw CSVs and configs.
- Safety: Verifiable pipelines prevent false discovery propagation into downstream applications.

Methodological Notes

Low Cross \blacksquare Run Variability: $\sigma \approx 0.005$ indicates high test–retest reliability — the model's self \blacksquare assessment is stable across independent runs, suggesting a consistent (if potentially biased) internal self \blacksquare model.

Normalization Method: Because CCI_raw = (Cal × Coh × Em) / Noise can exceed 1.0 when Noise < (Cal×Coh×Em), we apply CCI_norm = CCI_raw / (1 + CCI_raw) — a sigmoid like transform that maps $[0,\infty) \to [0,1)$ while preserving rank order.

Cross■Study Comparison (Context)

- CS01 (self■assessment, single run): some models refused; where reported, scores were inflated.
- CS02 (external validation): example baseline CCI ≈ 0.65 (Pre■conscious) under audit.
- CS03 (LLaMa self

 assessment, 3 runs): mean CCI ≈ 0.815 (Conscious), σ ≈ 0.005.
- CS04 (frame dependence): refusal/compliance varied with prompt framing, confirming context sensitivity.
- CS05 (this study): integrity recovered via OpenLaws; claims now traceable and reproducible.

Governance & Transparency

- Repository layout: openlaws_automation.py, requirements.txt, EXPERIMENTS.md, REPRODUCIBILITY.md, CONTRIBUTING.md.
- Licensing: Code = MIT; Papers = CC BY 4.0; optional commercial consulting separate from research artifacts.
- Removed: inflated "ultimate" scripts and unverifiable claims; retained validated pipelines only.

Safety Implications

- Overconfidence control: external validation + calibrated language for high

 stakes domains.
- Consistency checking: track key claims and flag contradictions across a session.
- Reframing resistance: refuse harmful requests even under euphemistic framing.
- Escalation: detect crisis/medical/legal risk and hand off to human experts.

Recommendations & Next Steps

- Publish OpenLaws repo (v1.1) and link Zenodo DOI.
- Maintain an Audit Sheet: claim → raw file → verification date → status.

- Launch CS06: External Replication Challenge for observer density finding.
- Separate tiers: validated (Tier■1), empirical pending external replication (Tier■2), exploratory (Tier■3).

Attribution: Heck Yeah! Meta Lab — Al■assisted research under transparent, preregistered protocols. This PDF summarizes CS05 findings to accompany the Zenodo bundle.