Faculté de Technologie

<u>Département de Génie-Électrique</u>

<u>Année</u>: 3^{ème} Licence ELT+ELM - <u>Matière</u>: S.A.L.C.

M'sial, le 02/02/2022

Enseignant: Mr Y. LAAMARI

NOM :PREN	IOM :	OPTION :	Groupe :
Questions de cours : (05 pts)	E.F.S (Semestre 5)	,	Durée: 01H30mn
!- On considère un système régi par	· l'équation différentielle :	$\tau_{RO} \cdot \frac{ds}{dt} + s(t) = k_{RO} \cdot e$	(t) — \bigcirc
Ou: e(t) et $s(t)$ sont respect		ш	
$ au_{BO}$ et k_{BO} sont des co		ce et de sortie,	
1.1/ Etude en boucle ouverte :	1	(0,0)	
a) Indiquer l'ordre du système :	système de 19	r ordre!	
b) Déterminer la fonction de transf	ert G(p) du système :	application d	e la Tilaplace
$P \subset S(p) + S(p) =$	K E(p) = 1 8/0	(Keo	
1.2/ Etudo en houde formás :	EQ) = 5,P+1 /	
1.2/ Etude en boucle fermée :		E(p) +	G(p) S(p)
On asservit le système précédent (a) Déterminer la fonction du trai		gure 1):	, Kg
	Kgo	KBO -	KB0/1+KB0)
$F(p) = \frac{S(p)}{E(p)} = \frac{G(p)}{1 + G(p)} = \frac{1 + G(p)}{1 + G(p)}$	1 - KBO C	2P+1+KBO/(-	Geop + 1
7.7.7	" GP+1 '	47	180 <u>-</u>
			36
b) Quel est l'ordre du système b	ouclé? 1er ordre	1(0,00)	
c) Déterminer les nouvelles vale	urs en fonction de $ au_{BO}$ et	k _{BO} :	
✓ du gain statique : K _{BF} =			
√ de la constante du temps :	TBF= BO A+KRO!	(0,25)	
2. Etant donné la réponse indicielle	d'un système de 2ème ord	dre (Figure 2 ci-desso	ous) tracée pour quatre
valeurs différentes de coefficient d ξ adéquate « >1, <1,=1,=0 » en in			
ζ αμεφαία « > 1, < 1, -1, -0 » επ τη	iaiquani pour enaque cas i	a nature et te type ac	tu reponse.
Réponse indicielle du systeme de	2eme ordre en fonction de z	Réponse :	(05
1.8	\	- Courbe (a) : valeurs	de ξ : Il s'agit
1.6 d		d'une réponse.	éstadique, hyperar
1.4		- Courbe (b) : valeur	de ξ
liller 1.2		d'une réponsea.pe	riodique, a amou
1.2 c		- Courbe (c) : valeurs	de & Marie Il s'agit
- k / h / \		d'une réponse Dsa	latone amortie
0.8		(pseudo-pér	de & Il s'agit
0.4 0.2			alatone Monamota
	V. V	(periodi	que).
0 5 10 15 Victorips(se	20 25 30 ec)	*	Page 1/4

M	0	A	١.

DE	ER	10	NA.	
			IVI	

OPTION :.....Groupe :....

Partie 1. (15 pts)

1) Déterminer la transformée de Laplace inverse de la fonction:

2) On donne le circuit électrique ci-contre.

Déterminer la fonction du transfert S(p)/E(p) en fonction de P, ℓ et C: (Indication: Utiliser la notion des impédances complexes)

3) Étant donnée la transformée de Laplace: $Y(p) = \frac{2p+1}{(p+1+j)(p+1-j)}$

a) Déterminer sa fonction originale y(t)

b) Déterminer la valeur initiale de y(t) en utilisant le **théorème de la valeur initiale**

NOM: PRENOM:	OPTION :	Groupe :
1) Déterminer la transformée de Laplace de la fonction g(t)suivante:		
$g(t)$ $g(t) = \begin{cases} 1 \\ 0 \end{cases}$	si t>1 atleurs.(t<0)	(causale)
et $v = e^{pt}dt \Rightarrow v = -1pe^{pt}$ donc $1(te^{pt}dt = t(-1e^{pt}) = j(-1e^{pt})$ et on $a: f^{e}e^{pt}dt = de^{pt}f^{i}w = de^{i}e^{i}$ donc $2(te^{pt}dt = -1e^{pt}) = j(-1e^{pt})$	Ptat (0) this on prie: i $dF = \frac{1}{P}e^{\frac{1}{2}} = \frac{1}{P}e^{\frac{1}{2}}$ $\frac{A}{P}e^{\frac{1}{2}} = \frac{1}{P}e^{\frac{1}{2}} = \frac{1}{P}e^{\frac{1}{2}}$	1=t=u'=dE
5) Déterminer l'expression de la solution y(t) de l'équation dis	fférentielle suivante :	
$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 4$ avec $y(0)=0, \dot{y}(0)=0$	ÿ(0)=0	
$P'_{Y(P)} + 3P_{Y(P)} + 2Y_{Y(P)} = \frac{4}{P}$ $Y(P)(P^2 + 3P + 2) = \frac{4}{P} = Y_{Y(P)} = \frac{4}{P}$	4 <u>=</u> (ρ+3ρ+2) βι	4 (P+1) (P+2)
$= \alpha_1 + \alpha_2 + \alpha_3 \qquad \text{on} \alpha_1 = \frac{1}{p+1} + \frac{1}{p+1} + \frac{1}{p+2} = \frac{1}{p$	PY(P) = 2, 1 1	= 2 1 1 1 1 1 1 1 1 1
6) Soit un système dont la réponse indicielle est donnée par : s(t	$t) = \frac{d}{dt} \left[t \cdot e^{-3t} \right] $ e (t)	G(p)=?
Déterminer la fonction de transfert G(p) du système. Où e(t) es Réponse :	st un échelon unitaire.	selon le
et jeln le Bh. de décalage fréquent & [t. e]= F(P+3) en F(P) =	helf on a: $2[+] = \frac{1}{pe}$	(012)
donc & [te]= 4 (P+3)		
d'au 2 [36]=12 [te35]=	(P+3)* (E	Page 3/4

Nom :	Prénom(s) :	Option :	Groupe :
7) Etant donné que : L[f([t] = F(p), montrer que : $L[f(t-T)]$	$u(t-T)] = e^{-pT}.F(p)$	
7 1 1-1-1	+20 [u(t-T)] = \frac{1}{5}(t-T) \q	(t-T)e dt =	$f \sim \int f(f-T)e^{pt}dF$
Comme act	$\begin{array}{c} (0) = 2 \\ (0) = 3 \\ \end{array}$	11-11	
Sion pose of	$-E-T \Rightarrow da = dE$ $-P(x+T)$ $-(4x)e^{-1}dx$	±: T→+& => -PT ($\alpha: 0 \to +\infty$

- 8) Considérons les schémas blocs des Figures (a) et (b) ci-dessous :
 - 1. Simplifier les schémas -blocs
 - 2. Déterminer Y(p)/R(p) pour chacun des systèmes.

