

Theorem

Let $\frac{\mathbf{T}}{\mathbf{I}}$ be a linear function over a finite dimensional linear space V

H(0) = 0

Let $\frac{T}{U}$ be a linear function over a finite dimensional linear space V whose $\frac{T}{U}$ where $\frac{T}{U}$ where $\frac{T}{U}$ is a linear space $\frac{T}{U}$ is a linear space $\frac{T}{U}$ where $\frac{T}{U}$ is a linear space $\frac{T}{U}$ where $\frac{T}{U}$ is a linear space $\frac{T}{U}$ is a linear space $\frac{T}{U}$ where $\frac{T}{U}$ is a linear space $\frac{T}{U}$ is a linear space $\frac{T}{U}$ where $\frac{T}{U}$ is a linear space $\frac{T}{U}$ is a linear space $\frac{T}{U}$ where $\frac{T}{U}$ is a linear space \frac{T}

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N(p_i^{(i)}(T))$ for each $1 \le i \le k$. Then

- **2** For each $1 \leq i \leq k$, $T(W_i) \subseteq W_i$.
- **3** The minimal polynomial of $T_i = \frac{T \upharpoonright_{W_i}}{t}$ is $\frac{p_i(x)}{t}$.

(Department of CE

Lecture #25

3 / 1

Minimal Polynomials for Vectors

Definition

Let $A \in M_n(\mathbb{F})$, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and $v \in \mathbb{F}^n$. We say that a monic polynomial p(x) with coefficients in \mathbb{F} is a minimal polynomial for v with respect to A if

- \odot deg $p \le \deg M$ pr any non-zero polynomial m(x) with $\underline{m(A)v} = 0$.

F(A) =0 FLA) V=0

(Department of CE

Lecture #2

4 / 15

ACMN(F) 12, 12 12 f

W; =N(H; t- T)

 $f(n) = (x - \lambda_1)^{h_1} - (x - \lambda_n)^{h_n}$ $p(n) = (x - \lambda_1)^{h_1} - (x - \lambda_n)^{h_n}$ $p(n) = (x - \lambda_1)^{h_1} - (x - \lambda_n)^{h_n}$

PA(A) V=0

Minimal Polynomials for Vectors

Similarly, minimal polynomial may be defined for a vector with respect to a linear function.

Definition

Let T be a linear function on linear space V on \mathbb{F} where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and $v \in V$. We say that a monic polynomial p(x) with coefficients in \mathbb{F} is a minimal polynomial for v with respect to T if

- p(T)v = 0,
- \bigcirc deg $m \leqslant$ deg p for any non-zero polynomial m(x) with m(T)v = 0.

(Department of CE

Lecture #25

5 / 18

Lemma.

f(Thrs+ f P Fin) = q(1) P(n) + (Rin) R(n) = 0 P(1) ~ 5 ~ = f(1) ~ = q(1) P(T) ~ + m-1 (Rit) ~

Lemma

Suppose that T is a linear function on linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Then

- Each vector $\mathbf{v} \in V$ has a minimal polynomial with respect to T.
- ullet The minimal polynomial for ${\color{red} v}$ with respect to ${\color{red} T}$ is unique.
- Take a vector $v \in V$ and assume that f(x) is a polynomial with coefficients in \mathbb{F} such that f(T)v = 0, then $p(x) \mid f(x)$ where p(x) is the minimal polynomial for v with respect to T.
- Let f(x) and g(x) be two coprime polynomials. Then

かれ、かし

 $N\big(f(T)\big)\cap N\big(g(T)\big)=\{0\}.$

- DEC

(Department of CE

Lecture #25

/25

Lemma. AB=BA NIA) n N(B) 5 ()

AIBEMILIR)

N(AB) = N(A) (D) N(B)

Lemma

Let T, S be two linear functions on linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} such that $T \circ S = S \circ T$ and $N(T) \cap N(S) = \{0\}$. Then

- n=[TTB' BSCT)B
- ② If V id finite dimensional, then $\dim N(T \circ S) \leq \dim N(T) + \dim N(S)$ and consequently, $N(T \circ S) = N(T) \oplus N(S)$.

NIA) = N(A) + N(B) = N (AB)

YAV= 0 BAV= 6

ABIN+W)= 0

ABIN+W)= 0

NB (7+0) -→ ~+0 E N (AB)

V+WE

di W(AR) =a

7 + 5 5 17 17 WY

=> GW, + -- GW, EN(A)

C, W, + .. - C, W = & dil.

V: 5 Zdir, + 2ciwi

AR SBA NIAM MBI S[0]

Lemma.

Let T_1, \ldots, T_k be linear functions on a finite dimensional linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} such that

- $\bullet \ T_i \circ T_j = T_j \circ T_i,$
- $N(T_i) \cap N(T_i) = \{0\}$

for each $1 \le i < j \le k$. Then $N(T_1 \circ \cdots \circ T_k) = N(T_1) \oplus \cdots$

ABIVE)5.

{v1, -7 ~ n} = 5 N (A) lui, ¬νe) → N(B)

Edin N(AB) () VIII-IVA, VIII-IVA (CN/AB) 8Almi)=ONIAB)

ABINIONABO N'SENIABO

Proof.

YEN (AB)

BYENIA)

NIAB) = (C(B) / NIA) + NIB)

v&NIB)

(Department of CE)

Lecture #2

10 / 15

Lemma.

Lemma

Let T be a linear functions on a finite dimensional linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

• Let f(x) be a polynomial with coefficient in \mathbb{F} and $f(x) = f_1(x)^{n_1} \cdots f_k(x)^{n_k}$ such that f_1, \ldots, f_k mutually coprime. Then

$$N(f(A)) = N(f_1(A)^{n_1}) \oplus \cdots \oplus N(f_k(A)^{n_k}).$$

② If the minimal polynomial T is factorized as $p(x) = p_1(x)^{n_1} \cdots p_k(x)^{n_k}$ where p_1, \dots, p_k are mutually coprime, then

$$V = N(p_1(A)^{n_1}) \oplus \cdots \oplus N(p_k(A)^{n_k}).$$

(Department of CE)

Lecture #2

11 / 1

Proof.

(Department of CE

Lecture #2

12 / 1

Proof.

(Department of CE.)

Lecture #2

13 / 15

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N\left(p_i^{r_i}(T)\right)$ for each $1 \le i \le k$. Then

- ② For each $1 \leq i \leq k$, $T(W_i) \subseteq W_i$.
- **3** The minimal polynomial of $T_i = T \upharpoonright_{W_i}$ is $p_i(x)$.

Thank You!