Theory of Computer Science

G. Röger S. Eriksson Spring Term 2023 University of Basel Computer Science

Exercise Sheet 5 Due: Wednesday, April 5, 2023

Exercise 5.1 (Chomsky Normal Form; 2 Points)

Specify a grammar G' in Chomsky normal form that generates the same language as the context-free grammar $G = \langle V, \Sigma, P, S \rangle$ with $V = \{S, X, Y, Z\}$, $\Sigma = \{a, b\}$, and the following rules in P:

$S \to \varepsilon$	$S \to XY$	$S \to Z$	${\rm X} \rightarrow {\rm Y}$	$X \to \mathtt{a} Z \mathtt{b}$
$\mathrm{Y} \to \mathrm{X}$	$\mathrm{Y} \to \mathtt{b} \mathrm{Y}$	$\mathrm{Z} ightarrow$ bb	$\mathrm{Z} ightarrow \mathrm{Z}$ a	

Specify sufficient intermediate steps, so your construction is understandable.

Exercise 5.2 (Length of Derivations in Chomsky Normal Form; 2 Points)

Let G be a grammar in Chomsky normal form and $w \in \mathcal{L}(G)$ a non-empty word $(w \neq \varepsilon)$, which is generated by G. Show that every derivation of w from the start variable of G consists of exactly 2|w|-1 steps.

Exercise 5.3 (Push-down Automata; 1.5+1.5 points)

Consider the push-down automaton (PDA) $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \{q_7\} \rangle$ with

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\},$
- $\Sigma = \{a, b, c, d\},\$
- $\Gamma = \{X, Y, \#\},$

and the following transition function δ :

- (a) Show that the automaton accepts the word $w = \mathtt{aaadbabacc}$. Remember that specifying a sequence of states is not enough, you also need to specify which input is read and what the status of the stack is in each step.
- (b) What language does this automaton accept? Describe the language in set-builder notation.

Exercise 5.4 (Context-free Languages Closure and Decidability, 1+1+1 points)

Are the following statements true? Briefly justify your answer

- (a) If language L is context-free, then \bar{L} is not context-free.
- (b) The language $L = \mathbf{a}^n \mathbf{b}^n \mathbf{b}^m \mathbf{a}^m$ with $n, m \in \mathbb{N}_0$ is context-free.
- (c) Given two context-free grammars G_1 and G_2 , the question "Is $w \in \mathcal{L}(G_1) \cap \mathcal{L}(G_2)$?" is decidable.