Requirement ID	Type	Object Tost	Status	Task ID	Review ID								
CS_ID_01		Hardware (nput (HI)		1									
CS_ID_02	Definition	The starting of the cruise system begins here, when the hardware input along with the data is set the system enter the cruise control mode.	Proposed	- 1									
CS_ID_03	Comments	Cruise mode is intialized here.	Proposed	1									
CS_ID_04		Fetch the hardware input (Push-Pull Switch) from the user for the initialization of the cruise control.	Proposed	1									
CS_ID_05		2. The Hardware input data obtained from the user is stored in the EEPROM memory Byte 4 at bit 0 and bit 1	Proposed	1									
CS_ID_06		3. Along with the Hardware input the speed data from the user is also obtained which is stored in the EEPROM memory byte 1 for further usage.	Proposed	1									
CS_ID_07	Heading	Cruise Status (CS)		2									
CS_ID_08	Definition	The Cruise status tells us whether the system is in cruise mode or in normal mode.	Proposed	2									
CS_ID_09	Comments	The System will be in normal mode until the Cruise is ON.	Proposed	2									
CS_ID_10		The Cruise status data at the EEPROM memory location Byte 4 is checked for the status of the system.	Proposed	2									
CS_ID_11		2. Based on the data from the EEPROM memory location Byte 4 the indication lamp is turned ON or OFF.	Proposed	2									
		3. The cruise status data from the EEPROM memory location Byte 4 is transmitted through the CAN bus for Dasboard ECU with the message ID 0x75.	Proposed	2									
CS ID 12	Heading	Near Range Camera Sensor (NRCS)		3									
CS_ID_13	Definition	This is a sensor which give the information about any obstacles or disturbance in the path is identified and reopted to the ECU.	Proposed	3									
CS_ID_14	Comments	Camera Sensor, Lidar or Radar sensor are used for this purpose.	Proposed	3									
CS_ID_15		The Message from the NRCS is obtained from the CAN Bus at high priority.	Proposed	3									
CS_ID_16	Requirements	2. The Message obtained from the NRCS is stored in the EEPROM memory location at Byte 6 in Bit 0	Proposed	3									
CS_ID_17	Requirements	3. If there is no input from the NRCS even after the hardware input then the NRCS status lamp will be ON, After the input is obtained it goes to OFF state.	Proposed	3									
		 The NRCS data from the EEPROM memory location Byte 6 is trasmitted throught the CAN bus to the Dasboard ECU using the message ID 0x78. 	Proposed										
CS_ID_18	Heading	Cruise control		4									
			Proposed	4									
CS_ID_20		Used frequently during the long distsance travel.	Proposed	4									
CS_ID_21		Felching the Actual speed of the vehicle from the wheel speed sensor thought the CAN bus.	Proposed	4									
CS_ID_22	Requirements 3	The data obtained from the wheel speed sensor is stored in the EEPROM memory location Byte 0.	Proposed	4									
CS_ID_23		3. Fetch the Reference speed data from the EEPROM memory Byte 1.	Proposed	4									
		Comparing the Actual speed data and the Reference speed data.	Proposed	4									
CS_ID_25		4. If the actual speed is Higher than the reference speed then send a message to the break ECU to reduce the speed.	Proposed	4									
CS_ID_26		5. If the actual speed is low than the reference speed then send the message to the Engine ECU to increase the acceleration.	Proposed	4									
CS_ID_27		6. The data obtained after the comparition of actual and reference speed is stored in the EEPROM memorylocation Byte 2.	Proposed	4									