Kombinatorika - zapsiski s predavanj prof. Konvalinka

Tomaž Poljanšek

jesen/zima 2021

Kazalo

1	Osn	Osnovni principi kombinatorike										
	1.1	Funkcije in štetje	1									
	1.2	Dirichletovo načelo (princip)										
	1.3	Načelo vsote in produkta	2									
	1.4	Permutacije	3									
2	Pod	lmnožice in načrti	4									
	2.1	Binomski koeficienti	4									
	2.2	Pascalov trikotnik	6									
	2.3	Binomski izrek	6									
	2.4	Izbori	7									
	2.5	Kompozicije	8									
	2.6	Načelo vključitev in izključitev (NVI)	9									
	2.7	Eulerjeva funkcija $\varphi(\phi)$	11									
	2.8	Multinomski koeficienti	12									
	2.9	Načrti in t-načrti	13									
3	Per	mutacije, razdelitve, razčlenitve	17									
	3.1	Stirlingova števila prve vrste	17									
	3.2	Stirlingova števila druge vrste	19									
	3.3	Lahova števila	21									
	3.4	Razčlenitve naravnih števil in Eulerjev petkotniški izrek										
	3.5	Dvanajstera pot										
4	Roc	lovne funkcije	29									

4.1	Uvod	29
4.2	Formalne potenčne vrste	31
4.3	Uporaba rodovnih funkcij pri reševanju rekurzivnih enačb	35
4.4	Binomska vrsta	38
4.5	Uporaba rodovnih funkcij	40
•	yeva teorija	41
5.1	Permutaciiske grupe	41

1 Osnovni principi kombinatorike

1.1 Funkcije in štetje

Definicija 1.1 (Funkcija).

- injektivna (y je slika največ enega x) / $(x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$
- surj ektivna (y je slika vsaj enega x) / $(\forall y \in Y \exists x \in X : f(x) = y)$
- bijektivna /y je slika natanko enega x) / (injektivna in surjektivna)

 $\exists injektivnost: f: X \to Y: |X| \leq |Y|$

 $\exists surjektivnost: f: X \rightarrow Y: |X| \geqslant |Y|$

 $\exists \ bijektivnost: f: X \rightarrow Y: |X| = |Y|$

f: X \rightarrow Y lahko interpretiramo kot razporejanje kroglic (X) v škatle (Y). Oznake:

$$\mathbb{N} = \{0, 1, 2, \dots\}$$
$$[n] = \{1, 2, \dots, n\}$$
$$|[n]| = n$$
$$2^{X} = \{A \subseteq X\} (= P(x))$$
$$Y^{X} = \{f : X \to Y\}$$

Binomski izrek:

$$\sum_{k=0}^{n} \binom{n}{k} x^k = (1+x)^n$$

1.2 Dirichletovo načelo (princip)

Če obstaja injektivna preslikava

$$f: X \to Y \implies |X| \leqslant |Y|$$

Ekvivalentno:

$$|X| > |Y| \implies \neg \exists inj. \ f: X \to Y$$

Ekvivalentno:

Če damo n
 kroglic v k škatel, n > k, sta v vsaj eni škatli vsaj dve kroglici.

1.3 Načelo vsote in produkta

$$A \cap B = \emptyset$$
$$|A \cup B| = |A| + |B|$$

V splošnem (načelo vključitev in izkjučitev):

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Načelo produkta:

$$|A \times B| = |A| \cdot |B|$$

Kako uporabljamo ti dve načeli?

- načelo vsote: dve (disjunktni) možnosti, obarvamo vsako posebej, rezultata seštejemo
- načelo produkta: naredimo dve <u>neodvisni</u> izbiri, število možnosti za eno in drugo zmnožimo

Trditev 1.2. $|2^X| = 2^{|X|}$

Dokaz 1.3.

formalen:

$$\begin{split} \Phi(A) &= (\varepsilon_1,...,\varepsilon_n), A \subseteq X \\ \varepsilon_i &= \begin{cases} 0: & x_i \notin A \\ 1; & x_i \in A \end{cases} \\ \Psi : \{0,1\}^n \to 2^X \\ \Psi(\varepsilon_1,...,\varepsilon_n) &= \{x_i:\varepsilon_i = 1\} \end{split}$$

$$\begin{split} \Psi \circ \Phi &= id_{2^X} \\ \Phi \circ \Psi &= id_{\{0,1\}^n} \\ \Longrightarrow \Phi \text{ je bijekcija} \\ |\{0,1\}^n| &= 2^n \text{ po načelu produkta} \implies |2^X| = 2^{|X|} \end{split}$$

 $\Phi = 2^X \to \{0,1\} \times \{0,1\} \times ... \times \{0,1\} \ (n-krat)$

Intuitivni dokaz:

za \forall od n elementov imamo dve izbiri (damo / ne damo v podmn.), izbire so neodvisne, imamo $2 \cdot 2 \cdot \dots \cdot 2 = 2^n$ izbir.

Trditev 1.4. $|Y^X| = |Y|^{|X|}$

Dokaz 1.5.

$$\Phi: Y^{X} \to Y^{|X|}$$

$$X = \{x_{1}, ..., x_{n}\}$$

$$\Phi(f) = (f(x_{1}), ..., f(x_{n}))$$

$$\Psi(y_{1}, ..., y_{n}) = f$$

$$f(x_{i}) = y_{i}$$

Intuitivno:

Za vsak element iz X imamo |Y| izbir, izbire so neodvisne, torej imamo $|Y|\cdot |Y|\cdot ...\cdot |Y|=|Y|^{|X|}$ izbir.

Trditev 1.6. Število injektivnih preslikav v Y^X je $|\mathbf{Y}|$ ($|\mathbf{Y}|$ - 1) ... ($|\mathbf{Y}|$ - $|\mathbf{X}|+1)$

Dokaz 1.7. Za sliko prvega elementa imamo $|\mathbf{Y}|$ izbir, za drugega ($|\mathbf{Y}|$ - 1)

. . .

Opomba: tu smo uporabili varianto pravila produkta - izbire niso neodvisne, je pa neodvisno število izbir.

Velja tudi za
$$|X| > |Y| (= 0)$$

1.4 Permutacije

Definicija 1.8. Bijektivna preslikava iz X samo vase se imenuje PERMUTACIJA. Množica permutacij:

$$S(x) = S_x$$

$$S_n := S([n])$$

(Relacija R $\subseteq X \times Y, (x, y) \in R \ ali \ xRy$)

Relacija f je preslikava, če velja:

$$\forall x \in X \; \exists ! y \in Y : x f y$$

Pišemo y = f(x).

Trditev 1.9.

$$|S_n| = n!$$

Dokaz 1.10. Za sliko 1 imamo n možnosti, za sliko 2 (n - 1) možnosti ... ■

Kompozicija:

$$426135 \cdot 361254 = 654231$$

je asociatovnoa, ni komutativna.

Enota:

$$id = 12...n$$

Inverz:

$$426135^{-1} = 425163$$

 (S_n, \cdot) je simetrična grupa.

Naj bo $\pi \in S_n, i \in [n]$

$$i, \pi(i), \pi^2(i), \pi^3(i), \dots$$

Po Dirichletovem principu $\exists j,j',j < j': \pi^j(i) = \pi^{j'}(i) \implies i = \pi^{j'-j}(i)$

$$(i\ \pi(i)\ \pi^2(i)\ ...\ \pi^{n-1}(i))$$

Permutacijo lahko zapišemo kot produkt disjunktnih ciklov

$$\pi = 426135 = (14)(2)(365)$$

2 Podmnožice in načrti

2.1 Binomski koeficienti

 2^A potenčna množica

$$2^A = \{B \subseteq A\}$$

$$\binom{A}{k} = \{B \subseteq A : |B| = k\} \ (A \ nad \ k)$$

 $\binom{n}{k}$ binomski koeficient

$$\binom{n}{k} = |\binom{[n]}{k}|$$

(n nad k ("n choose k")) }} $\binom{n}{k}$ = število k-elementnih podmnožic množice z n elementi = število načinov, da izberemo k izmed n elementov.

$$\binom{[4]}{2} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$$

Trditev 2.1.

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k!}$$

 $n^{\underline{k}}$ "n na k padajoče"= n(n-1)...(n-k+1) $n^{\overline{k}}$ "n na k naraščajoče" = (n)(n+1)...(n+k-1)

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n^{\underline{k}}}{k!} = \begin{cases} \frac{n!}{k!(n-k)!} : & 0 \le k \le n \\ 0 : & \text{sicer} \end{cases}$$

Dokaz 2.2.

1. način:

Izberemo k števil izmed n števil brez ponavljanja, vrstni red je pomemben. Torej: izberemo k-terico različnih števil

$$n(n-1)...(n-k+1)$$

Po drugi strani: $\binom{n}{k}$ (izberemo k-elementno podmnožico v [n]), k! (izberemo vrstni red)

$$\implies \binom{n}{k}k! = n^{\underline{k}}$$

$$\implies \binom{n}{k} = \frac{n^{\underline{k}}}{k!}$$

Če k < 0 ali k > n \Longrightarrow očitno $\binom{n}{k} = 0$ n! ... število permutacij [n]

Vsako k-podmnožico dobimo k!(n-k)!-krat

$$\implies \frac{n!}{k!(n-k)!}$$

Trditev 2.3 (Rekurzivna formula).

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Dokaz 2.4.

1. način:

k-elementarno podmnožico [n]

- vsebuje n $\binom{n-1}{k-1}$ vsebuje k-1 element iz [n-1])
- ne vsebuje n $\binom{n-1}{k-1}$ izmed n-1 izberemo k
- 2. način:

$$\Phi: \binom{[n]}{k} \to \binom{[n-1]}{k-1} \cup \binom{[n-1]}{k}$$

$$\Phi(A) = A \setminus \{n\}$$

$$\text{inverz}: \Psi(B) = \begin{cases} B \cup \{n\} : |B| = k-1 \\ B : |B| = k \end{cases}$$

3. način:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)^{\frac{k-1}{2}}}{(k-1)!} + \frac{(n-1)^{\frac{k}{2}}}{k!} = \frac{(n-1)^{\frac{k-1}{2}}(k+n-k)}{k!} = \frac{n^{\frac{k}{2}}}{k!}, \ k \geqslant 1$$

2.2 Pascalov trikotnik

2.3 Binomski izrek

Definicija 2.5.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Dokaz 2.6.

1. način: (indukcija na n)

$$n = 0 : OK(1 = \binom{0}{0}a^{0}b^{0} = 1)$$

$$n - 1 \to n$$

$$(a + b)^{n} = (a + b)^{n-1}(a + b) = (\sum_{k=0}^{n-1} \binom{n-1}{k}a^{n-1-k}b^{k})(a + b) =$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k}a^{n-k}b^{k} + \sum_{k=0}^{n-1} \binom{n-1}{k}a^{n-1-k}b^{k+1} =$$

$$= \sum_{k'=k+1}^{n-1} \sum_{k=0}^{n-1} \binom{n-1}{k}a^{n-k}b^{k} + \sum_{k'=1}^{n-1} \binom{n-1}{k'-1}a^{n-k'}b^{k'} =$$

$$= \sum_{k'=k}^{n} \binom{n-1}{k}a^{n-k}b^{k} + \sum_{k=0}^{n} \binom{n-1}{k-1}a^{n-k}b^{k} =$$

$$= \sum_{k=0}^{n} (\binom{n-1}{k} + \binom{n-1}{k-1})a^{n-k}b^{k} =$$

$$= \sum_{k=0}^{n} (\binom{n-1}{k} + \binom{n-1}{k-1})a^{n-k}b^{k} =$$

$$= \sum_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}$$

2. način (isti!)

Namesto $\sum_{k=0}^{n-1}$ oz. podobno se uporabi kar \sum_k - vsi ostali členi so po definiciji binomskih koeficientov enaki 0. Postopek je podoben, samo vse skupaj je malo hitreje, ker preskočimo vmesne razmiselke.

3. način: (boljši!)

$$(a+b)\cdot(a+b)\cdot\ldots\cdot(a+b)$$

Po distributivnosti iz vsakega oklepaja izberemo a ali b. Če smo b izbrali k-krat, smo a izbrali (n-k)-krat in dobimo $a^{n-k}b^k$. Kolikokrat dobimo $a^{n-k}b^k$? $\binom{n}{k}$ -krat, ker izberemo k oklepajev, v katerih izberemo b.

2.4 Izbori

Na voljo imamo b oštevilčenih kroglic. Na koliko načinov lahko izberemo k kroglic?

Ali dovolimo ponavljanje? Je vrstni red pomemben?

7

	s ponavljanjem	brez ponavljanja
vrstni red <u>je</u> pomemben		$n^{\underline{k}}$
vrstni red <u>ni</u> pomemben	$\binom{n+k-1}{k}$	$\binom{n}{k}$

OP.: v prvi vrstici gre za VARIACIJE, v drugi pa za KOMBINACIJE

$$1 \leqslant i_1 \leqslant \dots \leqslant i_k \leqslant n$$

Želimo prešteti rešitve tega sistema neenačb.

$$n = 4, k = 3$$

Ideja:

$$j_1 = i_1, \ j_2 = i_2 + 1, \ j_3 = i_3 + 2, \ ..., \ j_k = i_k + k - 1$$

2.5 Kompozicije

Definicija 2.7.

Kompozicija naravnega števila n je $\lambda = (\lambda_1, ..., \lambda_l), \lambda_i > 0$, da velja

$$\lambda_1 + \lambda_2 + \dots + \lambda_l = n$$

Primer: (3, 1, 5, 2) je kompozicija števila 11.

 $\lambda_1,...,\lambda_l$ členi kompozicije l...... dolžina kompozicije

n velikost kompozicije

Trditev 2.8. Obstaja 2^{n-1} kompozicij števila n (n $\geqslant 1$) in obstaja $\binom{n-1}{k-1}$ kompozicij števila n s k členi.

Dokaz 2.9. Kompozicijo lahko predstavimo s k kroglicami in pregradami:

$$3+1+5+2: \ \, O \ \, O|O|O|O \ \, O \ \, O|O|O$$

n - 1 prostorov za pregrado \implies 2 izbiri za vsako pregrado $(\exists, \not\equiv)$ k - 1 pregrad na n - 1 mestih: $\binom{n-1}{k-1}$

Definicija 2.10. Šibka kompozicija

Šibka kompozicija števila n je $\lambda = (\lambda_1, ..., \lambda_l)$,

$$\lambda_i \geqslant 0, \ \lambda_1 + \dots + \lambda_l = n$$

Šibkih kompozicij števila n je ∞ . Primer: (0, 0, 3, 1, 0, 5, 0, 2).

Trditev 2.11. Število šibkih kompozicij n s k členi je $\binom{n+k}{k-1}$.

Dokaz 2.12.

1. način:

Štejemo rešitve $\lambda_1 + \lambda_2 + ... + \lambda_k = n, \ \lambda_1 \geqslant 0.$

$$\mu_i = \lambda_i + 1$$

$$\mu_1 + \ldots + \mu_k = n + k, \mu_i \geqslant 1$$

$$\binom{n+k}{k-1} \text{ je rešitev.}$$

2. način:

Šibko kompozicijo predstavino s kroglicami in pregradami.

$$0 + 0 + 3 + 1 + 0 + 5 + 0 + 2$$
: ||O O O|O||O O O O O||O O

Imamo n + (k - 1) objektov, izberemo položaje pregrad na $\binom{n+k-1}{k-1}$ načinov. OP.: Kombinacije s ponavljanjem (n kroglic, izberemo jih k) x_i ... kolikokrat smo izbrali kroglico:

$$x_i \geqslant 0, \quad i = 1, ..., n$$

$$x_i + x_2 + \dots + x_n = k$$

 \equiv šibke kompozicije k z n členi = $\binom{k+n-1}{n-1} = \binom{n+k-1}{k}$

2.6 Načelo vključitev in izključitev (NVI)

(Dodaj sliko (2 množici))

$$|A \cup B| = |A| + |B| - |A \cap B|$$

(Dodaj sliko (3 množice))

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Izrek 2.13 (NVI).

$$|A_1 \cup ... \cup A_n| = \sum_{j=1}^n (-1)^{j-1} \sum_{1 \le i_1 \le ... \le i_j \le n} |A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_j}|$$

$$A_I := \bigcap_{i \in I} A_i$$

$$A_{\{1,4,6,7\}} = A_1 \cap A_4 \cap A_6 \cap A_7$$

$$|\bigcup_{i=1}^{n} A_i| = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|-1} |A_i|$$

$$A_1, ... A_n \subseteq A$$

$$A_{\emptyset} = \{ a \in A : a \in A_i : za \forall i \in \emptyset \} = A$$

$$|\bigcap_{i=1}^{n} A_i^c| = |(\bigcup_{i=1}^{n} A_i)^c| = |A| - |\bigcup_{i=1}^{n} A_i| = |A_{\emptyset}| \sum_{\emptyset \neq I \subset [n]} (-1)^{|I|} (A_I)$$

Torej:

$$|\bigcap_{i=1}^{n} A_i^c| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_I|$$

Lema 2.14 ($k \ge 1$).

$$\sum_{j=0}^{k} (-1)^j \binom{k}{j} = 0$$

Dokaz 2.15 (lema).

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

x = -1

$$(1-1)^n = \sum_{j=0}^k \binom{k}{j} x^j = 0$$

OPOMBA: Lema pravi $\sum_{jsod} \binom{k}{j} = \sum_{jlih} \binom{k}{j}$ oziroma število sodih podmnožic = število lihih podmnožic.

 $\varphi: \{sodepodmno\texttt{z}ica[k]\} \rightarrow \{lihepodmno\texttt{z}ice[k]\}$

$$\varphi(S) = \begin{cases} S \setminus \{k\} : & k \in S \\ S \cup \{k\} : & k \notin S \end{cases}$$

Dokaz 2.16 (NVI).

$$a \in \bigcup_{i=1}^n A_i,$$
a vsebovana v natanko k množicah

Dokazati želimo, da je doprinos a-ju k vsoti na desni = 1.

$$k - \binom{k}{2} + \binom{k}{3} - \dots + (-1)^{k-1} \binom{k}{k} = \sum_{j=1}^{k} (-1)^{j-1} \binom{k}{j} = -(\sum_{j=0}^{k} (-1)^{j} \binom{k}{j} - 1) = 1$$

k ... doprinos v prvi vrstici $\binom{k}{2}$... doprinos v drugi vrstici

$$\sum_{j=0}^{k} (-1)^j \binom{k}{j} = 0 \text{ (po lemi)}$$

2.7 Eulerjeva funkcija φ (ϕ)

$$\phi(n)=|\{i\in[n]:\gcd(i,n)=1\}|$$

Trditev 2.17.

$$\sum_{a|n} \phi(a) = n$$

(= število števil med 1 in n, ki so tuje n)

Dokaz 2.18.

Zapišimo $\frac{1}{n},\,\frac{2}{n},\,\frac{3}{n},\,...,\,\frac{n}{n}$ in jih pokrajšajmo.

Ulomkov je n, imenovalci so delitelji števila n, števci so števila, ki so \leq a in tuja proti a.

$$\sum_{a|n} \phi(a) = n$$

$$\begin{aligned} A &= [\mathbf{n}], \ \mathbf{n} = p_1^{\alpha_1}...p_k^{\alpha_k}, \ \alpha_i > 0 \\ A_i &= \{\mathbf{j} \in [\mathbf{n}]: \ p_i \mid \mathbf{j}\} \\ &|A_i| = \frac{n}{n_i} \end{aligned}$$

$$|A_{i} \cap A_{j}| = \frac{n}{p_{i}p_{j}}$$

$$|A_{I}| = \frac{n}{\prod_{i \subseteq I} p_{i}}$$

$$\phi(n) = \sum_{I \subseteq [k]} (-1)^{|I|} \frac{n}{\prod_{i \in I} p_{i}}$$

$$k = 2$$

$$n(1 - \frac{1}{p_{1}} - \frac{1}{p_{2}} + \frac{1}{p_{1}p_{2}}) = n(1 - \frac{1}{p_{1}})(1 - \frac{1}{p_{2}})$$

$$\phi(n) =_{\text{distributivnost}} n(1 - \frac{1}{p_{1}})(1 - \frac{1}{p_{2}})...(1 - \frac{1}{p_{k}})$$

$$\phi(n) = n \prod_{p \mid p} (1 - \frac{1}{p})$$

2.8 Multinomski koeficienti

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \ 0 \leqslant k \leqslant n$$

Imamo a enic in b ničel. Premešamo jih lahko na

$$\binom{a+b}{a} = \binom{a+b}{b} = \frac{(a+b)!}{a!b!}$$

načinov.

$$a_1 \times 1, a_2 \times 2, ..., a_n \times n \ (111223333334)$$

Premešamo jih lahko na

$$\begin{pmatrix} a_1 + a_2 + \dots + a_n \\ a_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 + a_3 \dots + a_n \\ a_2 \end{pmatrix} \cdot \begin{pmatrix} a_3 + a_4 + \dots + a_n \\ a_3 \end{pmatrix} \dots$$

V prvem binomu izberemo enke, v drugem dvojke, v tretjem trojke ... To razpišemo kot

$$\frac{(a_1+a_2+\ldots+a_n)!}{a_1!(a_2+a_3+\ldots+a_n)!}\cdot\frac{(a_2+a_3+\ldots+a_n)!}{a_2!(a_3+a_4+\ldots+a_n)!}\cdot\frac{(a_3+a_4+\ldots+a_n)!}{a_1!(a_4+a_5+\ldots+a_n)!}\cdots\frac{(a_{n-1}+a_n)!}{a_{n-1}!a_n!}=$$

$$= \frac{(a_1 + a_2 + \dots + a_n)!}{a_1! a_2! \dots a_n!} = \frac{(\sum_{i=1}^n a_i)!}{\prod_{i=1}^n a_i!} = \binom{a_1 + a_2 + \dots + a_n}{a_1, a_2, \dots, a_n}$$

Drug dokaz: dodamo indekse $1_11_21_32_12_23_13_23_33_43_54_1$. Premešamo na

$$\frac{(a_1 + a_2 + \dots + a_n)!}{a_1!a_2!\dots a_n!}$$

načinov. (premešamo na $(a_1 + a_2 + ... + a_n)!$ načinov, z $a_i!$ izbrišemo indekse) OP:

$$\binom{a+b}{a,b} = \frac{(a+b)!}{a!b!} = \binom{a+b}{a} = \binom{a+b}{b}$$

Izrek 2.19 (Multinomski izrek).

$$(x_1 + x_2 + \dots + x_n)^m = \sum_{\substack{(a_1, \dots, a_n) \text{ sibka kompozicija m} \\ a_1, \dots, a_n}} \binom{m}{a_1, \dots, a_n} x_1^{a_1} \dots x_n^{a_n}$$

Dokaz 2.20.

$$(x_1 + x_2 + \dots + x_n)(x_1 + x_2 + \dots + x_n)\dots(x_1 + x_2 + \dots + x_n)$$

Iz vsakega oglepaja izberemo x_i , kar skupaj pride $x_1^{a_1}x_2^{a_2}...x_n^{a_n}$, pri čemer je $\sum_{i=1}^n a_i = m, \ a_i \geqslant 0$. Koeficient je očitno $\binom{a_1+a_2+...+a_n}{a_1,a_2,...,a_n}$.

$$x_1 = x_2 = \dots = x_n$$

$$n^{m} = \sum_{(a_{1},\dots,a_{n})_{\text{sibka kompozicija m}}} \binom{m}{a_{1},\dots,a_{n}}$$

2.9 Načrti in t-načrti

Podjetje proizvaja več različic izdelka, želi jih testirati pri potrošnikih. Vsak potrošnik mora testirati enako število različic, vsako različico mora testirati enako število potrošnikov.

8 različic, 6 potrošnikov, vsak potrošnik testira 4, vsako različico testirajo 3 potrošniki.

Definicija 2.21.

B = $\{B_1, ..., B_b\}$ je narčt s parametri (v, k λ), če so $B_1, ..., B_b \subseteq [v], |B_1| = ... = |B_b| = k, \forall i \in [v]$ se pojavi v natanko λ množicah (B_i blokih).

Naš primer je načrt s parametri (8, 4, 3).

vsakem stolpcu tako dobimo k kljukic, skupaj k·b, v vsaki vrstici dobimo λ kljukic, skupaj λ ·v. \implies k·b = λ ·v

$$\implies b = \frac{\lambda v}{k}$$

Velja še b
$$\leqslant \binom{v}{k}$$

$$\frac{\lambda v}{k} \leqslant \frac{v!}{k!(v-k)!}$$

Pokrajšamo $\frac{v}{k}$ na obeh straneh neenačbe in dobimo

$$\lambda \leqslant \frac{(v-1)!}{(k-1)!(v-k)!} = \binom{v-1}{k-1}$$

Izrek 2.22.

Načrt s parametri (v, k, λ) obstaja natanko tedaj, ko velja k $|v\lambda|$ in $\lambda \leqslant \binom{v-1}{k-1}$

Dokaz 2.23.

 (\Rightarrow) Že dokazano.

 (\Leftarrow) Izberemo $\frac{\lambda v}{k}$ k-elementnih podmnožic množice [v]. To lahko naredimo, ker je $\frac{\lambda v}{k} \leqslant \binom{v-1}{k-1} \frac{v}{k} = \binom{v}{k}$.

 $v = 8, k = 4, \lambda = 3$

$$\frac{\lambda v}{k} = 6 \Rightarrow 1234, 1356, 1567, 1568, 2356, 3457$$

To ni nujno načrt.

 λ_i ... v koliko blokih je vsebovan i

$$\lambda_1 = 4, \lambda_2 = 2, \lambda_3 = 4, \lambda_4 = 2, \lambda_5 = 5, \lambda_6 = 4, \lambda_7 = 2, \lambda_8 = 1$$

Naredimo isto tabelo kot prej in ugotovimo, da je $\lambda = \frac{\sum_{i=1}^{v} \lambda_i}{v}$. Če to ni načrt zagotovo obstajata i, j, da je $\lambda_i > \lambda > \lambda_j$.

Bloki so 4 tipov:

- (I) vsebujejo i in j
- (II) vsebujejo i, ne pa j
- (III) vsebujejo j, ne pa i
- (IV) ne vsebujejo ne i ne j

Bloki tipa (I) in (IV) vsebujejo enako i-jev in j-jev.

$$\lambda_i = \text{blokov tipa I} + \text{II}$$

$$\lambda_i = \text{blokov tipa I} + \text{III}$$

Sledi, da je več blokov tipa II kot III. Iz tega sledi, da obstaja blok tipa II, tako da po zamenjavi i z n ne dobimo že obstoječega bloka.

1234, 1356, **2**567, 1568, 2356, 3457

V splošnem: $\lambda_i - 1, \lambda_i + 1$

Postopek ponovimo, dokler ni $\lambda_1 = \lambda_2 = ... = \lambda_6$

1234, 1456, 2567, 1568, 2356, 3457

1234, 1457, 2567, 1568, 2356, 3457

1234, 1457, 2678, 1568, 2356, 3457

1234, 1478, 2678, 1568, 2356, 3457

kar je načrt.

Na vsakem koraku se zmanjša $\sum_{i=1}^{v} (\lambda_i - \lambda)$ za 2, po končno korakih je to = 0 in dobimo načrt.

Definicija 2.24 (t-načrt).

B = $\{B_1, ..., B_b\}$ je t-narčt s parametri (v, k λ_t), če je $B_1, ..., B_b \subseteq [v], |B_1|$ = ... = $|B_b|$ = k, vsaka t-elementna podmnožica [v] je vsebovana v točno λ_t blokih.

(1-načrt = načrt)

124, 137, 156, 235, 267, 346, 457

je 2-načrt (7, 3, 1)

OP: Tudi načrt s parametri (7, 3, 3) NI 3-načrt!!

Favnova ravnina:

(Image will be added soon (upam))

Izrek 2.25.

Če je B t-načrt s parametri (v, k, λ_t), je tudi (t-1)-načrt s parametri (v, k, λ_{t-1}

$$\lambda_{t-1} = \lambda_t \cdot \frac{v - t + 1}{k - t + 1}$$

Dokaz 2.26. $S \subseteq [v], |S| = t - 1$

S vsebovana v λ_s blokih. Narišemo tabelo

S, S $\cup \{i\} \subseteq B_j$. Skupno je: (stolpci)

- $S \setminus B_j$: 0 kljukic
- $S \subseteq B_i$: k t + 1 kljukic skupaj: $\lambda_s(k-t+1)$

(vrstice)

- $i \in S$: 0 kljukic
- $i \notin S$: λ_t kljukic skupaj: $\lambda_t(v-t+1)$

$$\Rightarrow \lambda_s = \frac{(v - t + 1)\lambda_t}{k - t + 1}$$

3 Permutacije, razdelitve, razčlenitve

3.1 Stirlingova števila prve vrste

 $\pi \in S_n$ lahko zapišemo kot produkt disjunktnih ciklov

$$14635827 = (1)(243687)(5)$$

Definicija 3.1.

Stirlingovo število prve vrste c(n, k) je število permutacij v S_n , ki imajo k ciklov.

Za c(n, k) ni 'lepe' formule. Vemo c(n, n) = 1, $c(n, n-1) = \binom{n}{2}$ (transpozicija), c(n, 0) = 0 (n > 0) oziroma 1, če je n = 0. Vemo tudi c(n, 1) = (n-1)!, c(n, k) = 0 za k > n ali k < 0 ter

$$\sum_{k} c(n, k) = n!$$

Trditev 3.2 (Rekurzivna zveza).

$$c(n,k) = c(n-1,k-1) + c(n-1,k) \cdot (n-1)$$

Dokaz 3.3. Permutacije v S_n s k cikli:

- n negibna točka: c(n-1, k-1)
- n ni negibna točka: c(n-1, k) · (n-1) ((izbrišem n, dobim permutacijo v S_{n-1} s k cikli) · (vsako dobimo (n-1)-krat))

Tabela Stirlingovih števil 1. vrste:

$n \setminus k$	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	1	1	0	0	0
3	0	2	3	1	0	0
4	0	6	11	6	1	0
5	0	24	50	36	10	1

Opomba: konstruiramo tako, da najprej damo diagonalne elemente na 1, naddiagonalne na 0, 1. stoplec na 0 (razen prvega, ki je že 1), za ostale pa

uporabimo rekurzivno forumlo (seštejemo element levo zgoraj in (n-1) krat zgornji)

Trditev 3.4 (Rekurzivna zveza).

$$\sum_{k} c(n,k)x^{k} = x^{\overline{n}}$$

Dokaz 3.5.

indukcija na n:

$$n = 0: OK(1x^{0} = x^{0})$$

$$n - 1 \to n$$

$$x^{\overline{n}} = x^{\overline{n-1}}(x+n-1) = \sum_{k} c(n-1,k)x^{k}(x+n-1) =$$

$$= \sum_{k} c(n-1,k)x^{k+1} + \sum_{k} c(n-1,k)x^{k}(n-1) =$$

$$\sum_{k} c(n-1,k-1)x^{k} + \sum_{k} c(n-1,k)x^{k}(n-1) =$$

$$= \sum_{k} c(n,k)x^{k}$$

Opomba: dokaz lahko tudi v obratni smeri

$$x \leftrightarrow -x$$

$$\sum_{k} c(n,k)(-1)^{k} x^{k} = (-x)^{\overline{n}}$$

$$\sum_{k} (-1)^{n-k} c(n,k) x^{k} = x^{\underline{n}}$$

 $s(n,k) := (-1)^{n-k}c(n,k)$ predznačeno stirlingovo število prve vrste

$$\sum_{k} s(n,k)x^{k} = x^{\underline{n}}$$

3.2 Stirlingova števila druge vrste

Definicija 3.6.

Razdelitev množice A (tudi razbitje, particija) je $\{B_1 \cdots B_n\}$, pri čemer $B_i \neq \emptyset i = 1 \cdots k$ $B_i \cap B_j = 0$ za $i \neq j$ $\bigcup_{i=0}^k B_i = A$

 $B_1 \dots B_n$ so bloki razdelitve

npr. $A=[8]:\{\{1,4,5\}\{2\}\{3,6,7,8\}\}\equiv 145-2-3678\equiv 2-415-8763$ Opomba: r ekvivalenčna relacija na A (refleksivna, simetrična, tranzitivna). Množica ekvivalenčnih razredov je ravno razdelitev množice A.

Definicija 3.7.

S(n,k) (Stirlingovo število druge vrste) je število razdelitev [n] s k bloki B(n) (Bellovo število) je število razdelitev n

Pozor: $B(n) \neq B_n : B_n \dots$ Bernoulijevo število

Vemo: S(n,n) = 1, $S(n,n-1) = \binom{n}{2}$, $S(n,1) = 1 - \delta_{n0}$,

 $S(n,0) = \delta_{n0}, S(n,k) = 0$ za k < 0 ali k > n ter

$$S(n,k) \le c(n,k)$$

Preproste formule za S(n,k) in B(n) ni :(

Trditev 3.8.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

Dokaz 3.9.

Razdelitve [n] s k bloki:

- n je (samostojen) blok: S(n-1, k-1)
- n je v bloku velikosti ≥ 1 : kS(n-1,k) (n lahko vstavimo v katerega koli izmed k blokov: n vstavimo nazaj na k načinov)

$n \setminus k$	0	1	2	3	4	5	B(n)
0	1	0	0	0	0	0	1
1	0	1	0	0	0	0	1
2	0	1	1	0	0	0	2
2 3 4 5	0	1	3	1	0	0	5
4	0	1	7	6	1	0	15
5	0	1	15	25	0 0 0 0 1 10	1	52

Opomba: konstruiramo tako, da najprej damo diagonalne elemente na 1, naddiagonalne na 0, 1. stoplec na 0 (razen prvega, ki je že 1), za ostale pa uporabimo rekurzivno forumlo (seštejemo element levo zgoraj in k krat zgornji)

$$B(n) = \sum_{k} S(n, k)$$

Trditev 3.10. S(n,k) je število ekvivalenčnih relacij na [n] s k ekvivalenčnimi razredi.

B(n) je število ekvivalenčnih relacij na [n]

Trditev 3.11. Število surjekcij $[n] \rightarrow [k]$ je $k! \cdot S(n, k)$

Dokaz 3.12.

Naj bo f: $[n] \rightarrow [k]$ surjekcija

Množica $\{f^{-1}(1), f^{-1}(2) \cdots f^{-1}(k)\}$

 $(f^{-1}(i)=\{j:f(j)=i\}$ praslika i-ja) je razdelitev [n] s k bloki. Vsaka razdelitev [n] s k bloki nam da k! surjekcij (bloke linearno uredimo).

Ekvivalentno: urejena razdelitev ≡ surjekcija

Posledica:

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n = \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{j! (k-j)!}$$

Trditev 3.13.

$$\sum_{k} S(n,k) x^{\underline{k}} = x^{n}$$

Dokaz 3.14.

1. način: z indukcijo (na vajah, DN?)

2. način: naj bo $x \in \mathbb{N}$

 x^n : število preslikav iz [n] v [k]

Vsaka preslikava je surjekcija na svojo sliko (zalogo vrednosti)

$$x^{n} = \sum_{T} |T|! S(n, |T|) = \sum_{k} k! S(n, k) {x \choose k}$$

kjer je T slika preslikave, $\binom{x}{k} = \frac{x^k}{k!}$ pa predstavlja število k elementnih podmnožic od [x].

Dva polinoma stopnje \leq n, ki se ujemata v n+1 točkah, sta enaka (razlika je polonom stopnje \leq n z n+1 ničlami, torej je ekvivalentna 0) $\sum_k S(n,k)x^{\underline{k}}$ in x^n sta polinoma stopnje n, ujemata se v neskončno točkah (ker gremo v vsoti po vseh $x \in \mathbb{Z}(\mathbb{N})$), torej sta enaka. Velja tudi:

$$\sum_{k} (-1)^{n-k} S(n,k) x^{\overline{k}} = x^n$$

Trditev 3.15.

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k)$$

Dokaz 3.16.

Izberemo razdelitev [n+1] (k je število elementov), ki so v istem bloku kot n+1

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(n-k)$$

 $\binom{n}{k}$: izbira elementov, ki so v istem bloku (skupaj z n+1). B(n-k): izberemo razdelitev na preostalik n-k elementih (ta izbira je neodvisna in takih je B(n-k)).

$$k \to n - k$$
: $B(n+1) = \sum_{k=0}^{n} {n \choose k} B(k)$

3.3 Lahova števila

L(n,k) je število razdelitev [n] na k linearno urejenih blokov. S(n,k) je število razdelitev [n] na k blokov, C(n,k) pa število razdelitev [n] na k ciklično urejenih blokov.

Vemo:
$$L(n,n) = 1$$
, $L(n,n-1) = 2 \binom{n}{2} = n(n-1)$, $L(n,0) = \delta_{n0}$, $L(n,1) = n!$ $L(n,k) = 0$ za $k < 0$ ali $k > n$ $S(n,k) \le c(n,k) \le L(n,k)$

Trditev 3.17.

$$L(n,k) = \frac{n!}{k!} \binom{n-1}{k-1}$$

Dokaz 3.18.

Preštejemo urejene razdelitve [n] s k linearno urejenimi bloki: $k!L(n,k) = n!\binom{n-1}{k-1}$ k!: uredimo bloke, n!: premutacija, $\binom{n-1}{k-1}$ kompozicija

Trditev 3.19.

$$L(n,k) = L(n-1,k-1) + (n-1+k)L(n-1,k)$$

Dokaz 3.20.

Ekvivalentno kot ostale rekurzije, samo "podrobnost" (n-1+k): n vstavimo za obstoječim številom (n-1) ali pa na začetek bloka (k)

Primerjamo rekurzije:

Trditev 3.21.

$$\sum_{k} L(n,k) x^{\underline{k}} = x^{\overline{n}}$$

Dokaz 3.22.

Dokaz bomo prepustili bralcu za vajo

Primerjamo:

$$\sum_{k} \binom{n}{k} x^{k} = (1+x)^{n}$$

$$\sum_{k} C(n,k) x^{k} = x^{\overline{n}} \quad \sum_{k} (-1)^{n-k} C(n,k) x^{k} = x^{\underline{n}}$$

$$\sum_{k} S(n,k) x^{\underline{k}} = x^{n} \quad \sum_{k} (-1)^{n-k} S(n,k) x^{\overline{k}} x^{n}$$

$$\sum_{k} L(n,k) x^{\underline{k}} = x^{\overline{n}} \quad \sum_{k} (-1)^{n-k} L(n,k) x^{\overline{n}} x^{\underline{k}}$$

3.4 Razčlenitve naravnih števil in Eulerjev petkotniški izrek

Definicija 3.23.

Razčlenitev (particija) naravnega števila n je $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$

$$\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_l > 0$$

 $\lambda_1+\lambda_2+\ldots+\lambda_l=n$... λ_i so členi razčlenitve, n je velikost razčlenitve, l je dolžina razčlenitve.

(5, 4, 4, 2, 1, 1) je razčlenitev števila $17 ext{ s 6 členi}$.

Oznake tudi:

$$5+4+4+2+1+1$$
 $5\ 4\ 4\ 2\ 1\ 1$

Ferrersov diagram:

• • • • •

• • • •

• • • •

• •

•

•

Youngov diagram:

Definicija 3.24.

p(n) ... število vseh razčlenitev n

 $p_k(n)$... število razčlenitev n s k členi

 $\overline{p_k}(n)$... število razčlenitev n
 z \leqslant k členi

n = 0: (), p(0) = 1, $p_0(0) = 1$

n = 1: 1

n = 2: 2, 11

n = 3: 3, 2, 1, 1, 1, 1

$$\begin{array}{l} n=4;\ 4,\ 3\ 1,\ 2\ 2,\ 2\ 1\ 1,\ 1\ 1\ 1 \\ n=5;\ 5,\ 4\ 1,\ 3\ 2,\ 3\ 1\ 1,\ 2\ 2\ 1,\ 2\ 1\ 1\ 1,\ 1\ 1\ 1\ 1 \end{array}$$

$$\begin{array}{l} p(n):\,1,\,1,\,2,\,3,\,5,\,7,\,11,\,15\,\ldots\\ p_2(5)=2\\ \overline{p_3}(5)=5 \end{array}$$

Definicija 3.25 (Konjugirana razčlenitev λ'). (transponiramo diagram)

$$5 \ 4 \ 4 \ 2 \ 1 \ 1' = 6 \ 4 \ 3 \ 3 \ 1$$
$$\lambda'_{i} = |\{i : \lambda_{j} \geqslant i\}| = \max\{j : \lambda_{j} \geqslant i\}$$
$$\lambda'' = \lambda$$
$$\lambda'_{1} = l(\lambda)$$
$$l(\lambda') = \lambda_{1}$$

Ni lepe formule za p(n), $p_k(n)$, $\overline{p_k}(n)$.

Trditev 3.26.

1.
$$p_k(n) = \overline{p_{k-1}}(n-k)$$

2.
$$p_k(n) = p_{k-1}(n-1) + p_k(n-k)$$

3.
$$\overline{p_k}(n) = \overline{p_{k-1}}(n) + p_k(n) = \overline{p_{k-1}}(n) + \overline{p_k}(n-k)$$

Dokaz 3.27.

- 1. Izbrišemo / dodamo prvi stolpec / stolpec dolžine k
- 2. Imamo razčlenitev n s k členi: $\lambda_l = 1 \ (p_{k-1}(n-1))$ in $\lambda_l \geqslant 2 \ (p_k(n-k))$

3. Očitno

OPOMBA (do zdaj obravnavane rekurzivne formule):

$$\bullet \quad \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

•
$$c(n, k) = c(n - 1, k - 1) + (n - 1) c(n - 1, k)$$

•
$$S(n, k) = S(n - 1, k - 1) + k S(n - 1, k)$$

•
$$L(n, k) = L(n-1, k-1) + (n+k-1) L(n-1, k)$$

•
$$p_k(\mathbf{n}) = p_{k-1}(\mathbf{n} - 1) + p_k(\mathbf{n} - \mathbf{k})$$

•
$$\overline{p_k}(\mathbf{n}) = \overline{p_{k-1}}(\mathbf{n}) + \overline{p_k}(\mathbf{n} - \mathbf{k})$$

 $p_k(\mathbf{n})$:

1 ()								
$n \setminus k$	0	1	2	3	4	5	6	$\sum_{k} p_k(n) = p(n)$
					0			
1	0	1	0	0	0	0	0	1
2	0	1	1	0	0	0	0	2
3	0	1	1	1	0	0	0	3
4	0	1	2	1	1	0	0	5
5	0	1	2	3	1	1	0	7
6	0	1	3	3	2	1	1	11

POSTOPEK ZA IZPOLNITEV TABELE: Diagonalni elementi so enice, ko je k > n (nad diagonalo) so ničle, v prvem stolpcu so ničle, ostali so izračunani z rekurzivno formulo $p_k(\mathbf{n}) = p_{k-1}(\mathbf{n} - 1) + p_k(\mathbf{n} - \mathbf{k}).$

Kaj pa rekurzija za p(n)?

Kaj pa rekurzija za p(n):

$$A = \text{razčlenitve n} = \bigcup_{i=1}^{n} A_{i}$$

$$A_{i} = \text{razčlenitve n} \text{ ki vseb}$$

 $A_i = \text{razčlenitve n, ki vsebujejo i kot člen}$

$$|A_i| = p(n-i)$$

$$|A_i \bigcap_{i \neq j} A_j| = p(n-i-j)$$

$$|A_I| = p(n - \sum_{i \in I} i)$$

$$|\bigcup_{i=1}^{n} A_{i}| = |A_{1}| + \dots + |A_{n}|$$

$$-|A_{1} \bigcap A_{2}| - |A_{1} \bigcap A_{3}| \dots$$

$$+|A_{1} \bigcap A_{2} \bigcap A_{3}| \dots$$

$$- \dots$$

$$+ \dots$$

$$\begin{split} p(n) = & p(n-1) + p(n-2) + \underline{p(n-3)} + \underline{p(n-4)} + \underline{p(n-5)} + \dots \\ & - \underline{p(n-1-2)} - \underline{p(n-1-3)} - \underline{p(n-2-3)} - \underline{p(n-1-4)} - \dots \\ & + p(n-1-2-3) + p(n-1-2-4) + \dots \\ & - p(n-1-2-3-4) - \dots \\ & + \dots \end{split}$$

Torej očitno: $p(n) = \sum_{m=1}^{\infty} ? p(n - m)$

Relevantne so razčlenitve m z različnimi členi

$$7 = 7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1$$

 $\alpha(\mathbf{m})$... število razčlenitev m z lihomnogo različnimi členi $\beta(\mathbf{m})$... število razčlenitev m z sodo mnogo različnimi členi p(n) = $\sum_{m=1}^{\infty} (\alpha(m) - \beta(m)$ p(n - m)

Trditev 3.28.

$$\alpha(m) - \beta(m) = \begin{cases} (-1)^{k-1}: & m = \frac{k(3k\pm 1)}{2} \\ 0: & sicer \end{cases}$$

$$\frac{k(3k-1)}{2}: 1, 5, 12, 22, \dots$$

$$\frac{k(3k+1)}{2}: 2, 7, 15, 26, \dots$$

Posledica: (Eulerjev petkotniški izrek)

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - p(n-22) - p(n-26) \dots$$

$$p(n) = \sum_{k=1}^{\infty} (-1)^{k-1} \left(p(n - \frac{k(3k-1)}{2}) + p(n - \frac{k(3k+1)}{2}) \right)$$

Dokaz 3.29 (Dokaz trditve).

Iščemo 'skoraj bijekcijo'

 ${\text{razčlenitve m z liho mnogo členi}} \iff {\text{razčlenitve m z sodo mnogo členi}}$ m = 10:

 $\mathbf{s}(\lambda)\coloneqq \lambda_{l(\lambda)}$ najmanjši člen

Recimo diagonali, ki se pojavi ob koncu prvih treh vrstic, **bok**.

$$b(\lambda) := \max\{i : \lambda_i = \lambda_1 - i + 1\}$$

- 1. Če je $s(\lambda) > b(\lambda)$: bok postavimo pod najmanjši člen
- 2. Če je $s(\lambda)\leqslant b(\lambda)$: najmanjši člen postavimo desno od boka

Zakaj to ni vselej bijekcija? (dodaj sliko) Prvo pravilo ne deluje, če

$$b(\lambda) = l(\lambda) = s(\lambda) - 1 = k$$

$$(k+1) + (k+2) + \dots + (k+k) = \frac{2k(2k+1)}{2} - \frac{k(k+1)}{2} = \frac{k(3k+1)}{2}$$

Drugo pravilo ne deluje, če

$$b(\lambda) = l(\lambda) = s(\lambda) = k$$

$$k + (k+1) + (k+2) + \dots + (k+k-1) = \frac{(2k-1)2k}{2} - \frac{(k-1)k}{2} = \frac{k(3k-1)}{2}$$

Torej:

• če m $\neq \frac{k(3k\pm 1}{2}$, smo našli bijekcijo, $\alpha(m)$ - $\beta(m)=0$.

• če m = $\frac{k(3k\pm 1)}{2}$, imamo biječcijo, če odstavimo eno razčlenitev s k členi.

k sod: $\alpha(m) - \beta(m) = -1$

k lih: $\alpha(\mathbf{m}) - \beta(\mathbf{m}) = 1$ Torej: $\alpha(\mathbf{m}) - \beta(\mathbf{m}) = (-1)^{k-1}$

OPOMBA: (dodaj sliko petkotnikov)

3.5 Dvanajstera pot

Imamo n kroglic in k škatel. Zanimajo nas razporeditve teh kroglic v škatle, torej preslikave:

• injektivna preslikava: v vsaki škatli je največ ena kroglica

• surjektivna preslikava: v vsaki škatli je vsaj ena kroglica

Zanima nas tudi, če med sabo ločimo kroglice in škatle.

N	K	vse	injektivne	surjektivne
L	L	k^n	$k^{\underline{n}}$	k! s(n, k)
N	L	$\binom{n+k-1}{k-1}$	$\binom{k}{n}$	$\binom{n-1}{k-1}$
L	N	$\sum_{i \leqslant k} s(n, i)$	$\begin{cases} 1: & k \geqslant n \\ 0: & sicer \end{cases}$	s(n, k)
N	N	$\overline{p_k}(n)$	$\begin{cases} 1: & k \geqslant n \\ 0: & k < n \end{cases}$	$p_k(\mathbf{n})$

- 1. vrstica: šteje preslikave
- 2. vrstica: f, g: $\{1, 2, 3\} \rightarrow \{a, b, c, d\}$

$$f: \frac{1,2}{a} \ \overline{b} \ \frac{3}{c} \ \overline{d}$$

$$g: \frac{1,3}{a} \ \overline{b} \ \frac{2}{c} \ \overline{d}$$

Velja, da sta f \sim_N g za ekvivalentno relacijo:

$$f \sim_N g$$
, če $\exists \pi \in S(n)$, da je $f = g \circ \pi$

- 3. vrstica: $f \sim_K g$, če $\exists \ \sigma \in \mathcal{S}(\mathcal{K}), \ f = \sigma \circ g$
- 4. vrstica: $f \sim_{N,K} g$, če $\exists \pi \in S(N), \exists \sigma \in S(K), f = \sigma \circ g \circ \pi$

4 Rodovne funkcije

4.1 Uvod

Zaporedja:

$$a_n = 2^n$$
 $b_n = n!$ F_n Fibonaccijeva števila

Kako lahko 'predstavimo' zaporedje?

1. Z eksplicitno formulo

$$a_n = 2^n$$
 $b_n = n!$ $F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right)$

2. Z rekurzivno zvezo

$$a_n = F_{n \ge d}(a_{n-1}, a_{n-2}, ...) + \text{začetni členi } a_0, ... a_{d-1}$$

$$a_n = 2a_{n-1}, \ a_0 = 1$$
 $b_n = nb_{n-1}, \ n \geqslant 1, \ b_0 = 1$ $F_n = F_{n-1} + F_{n-2}, \ n \geqslant 2, \ F_0 = 1, \ F_1 = 1$

3. Z asimptotsko formulo

$$a_n \sim b_n$$

 $(a_n$ je asimptotsko enako preprostejšemu $b_n)$

po definiciji:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

Primer:

$$F_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1}$$
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Tipično: $a_n \sim An^B C^n$

$$2^{64} = (((((2^2)^2)^2)^2)^2)^2$$
$$2^{100} = ((2^{24}2)^2)^2$$

Potence računamo v logaritmu eksponenta (število operacij). n! je počasno.

4. Z rodovno funkcijo

$$\sum_{n=0}^{\infty} 2^n x^n = \frac{1}{1 - 2x}, \ (|x| < \frac{1}{2})$$

Zaporedje "zakodiramo" v funkcijo

$$\sum_{n=0}^{\infty} n! x^n$$

Spomnimo se iz analize: $\sum_{n=0}^{\infty} a_n x^n$ je potenčna vrsta in konvergira na (-R, R), kjer je R konvergenčni polmer, divergira pa na (- ∞ , -R) \cup (R, ∞), v x = \pm R konvergira ali divergira.

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
, če limita obstaja

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} \in [0, \infty)$$

Za $\sum_{n=0}^{\infty}a_nz^n,$ z $\in\mathbb{C}$ velja podobno: konvergira za $|\mathbf{z}|<\mathbf{R},$ divergira za $|\mathbf{z}|>\mathbf{R}.$

•
$$\sum_{n=0}^{\infty} 2^n x^n$$
, $R = \lim_{n \to \infty} \left(\frac{2^n}{2^{n+1}}\right) = \frac{1}{2}$, $\frac{1}{\limsup_{n \to \infty} \sqrt[n]{|2^n|}} = \frac{1}{2}$

• $\sum_{n=0}^{\infty} n! x^n$, R = $\lim_{n\to\infty} \left(\frac{n!}{(n+1)!}\right) = 0$, divergira za x $\neq 0$, $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$

Drugače:

- $\sum_{n=0}^{\infty} a_n x^n$ je (običajna) rodovna funkcija $(a_n)_n$
- $\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$ je eksponentna rodovna funkcija $(a_n)_n$

$$\sum_{n=0}^{\infty} \frac{n!}{n!} = \frac{1}{1-x}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n!} = e^{2x}$$

4.2 Formalne potenčne vrste

Polinomi: realni($\mathbb{R}[x]$) / kompleksni($\mathbb{C}[x]$)

$$\mathbb{R}[x] = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n : a_0, \dots, a_n \in \mathbb{R}\}\$$

$$\sum_{i=0}^{n} a_i x^i + \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{\max(n,m)} (a_i + b_i) x^i$$

$$(a_i = 0: i > n; b_j = 0, j > m)$$

Druga definicija:

$$\mathbb{R}[x] = \{(a_0, ..., a_n) : a_n \in \mathbb{R}.lekon\check{c}nomnogoa_n \neq 0\}$$

realna zaporedja = $\mathbb{R}^{\mathbb{N}}$

$$\lambda_{\lambda \in \mathbb{R}}(a_0 + a_1 x + \dots + a_n x^n) = \lambda a_0 + \lambda a_1 x + \dots + \lambda a_n x^n$$

 $(\mathbb{R}[x],\,+,\,\cdot)$ je (neskončnorazsežen) vektorski prostor (za · množenje s skalarjem)

 $\mathbb{R}_n[\mathbf{x}] = \{a_0 + a_1 x + ... + a_n x^n : a_0, ..., a_n \in \mathbb{R}\}$ polinomi stopnje \leq n vektorski prostor ((n + 1) - dimenzionalen)

 $1, x, x^2, ..., x^n$... standardna baza $\mathbb{R}_n[x]$

$$1,x^{\underline{1}},x^{\underline{2}},...,x^{\underline{n}}$$
 in $1,x^{\overline{1}},x^{\overline{2}},...,x^{\overline{n}}$ tudi bazi

$$\sum_{k} c(n, k) x^{n} = x^{\overline{n}}$$

[c(n, k)] prehodna matrika

$$\sum_{k} S(n,k) x^{\overline{n}} = x^{n}$$

$$(a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_mx^m) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + (a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0)x^3 + \dots + a_nb_mx^{n+m}$$

Koeficienti pri
$$x^k$$
: $a_0b_k + a_1b_{k-1} + \dots + a_kb_0 = \sum_{i=0}^k a_ib_{k-i} = \sum_{\substack{i,j\geqslant 0\\i+i=k}} a_ib_j$ Temu

rečemo konvolacijsko množenje

 $(\mathbb{R}[x], +, \cdot)$ komutativen kolobar (za · množenje polinomov)

 $\mathbb{R}[\mathbf{x}]$, z vsemi temi operacijami, je komutativna algebra ($\mathbb{R}^{n \times n}$ nekomutativna algebra, $\mathcal{C}([0, 1])$ komutativna algebra)

Definicija 4.1.

Algebra formalnih potenčnih vrst $\mathbb{R}[[x]]$: elementi so zaporedja v \mathbb{R} .

$$\mathbb{R}[[x]] = \{(a_0, a_1, a_2, \dots) : a_i \in \mathbb{R}\} = \mathbb{R}^{\mathbb{N}}$$

$$(a_n)_n + (b_n)_n = (a_n + b_n)_n$$
$$\lambda(a_n)_n = (\lambda a_n)_n$$
$$(a_n)_n(b_n)_n = (\sum_{k=0}^n a_k b_{n-k})_n$$

 $\mathbb{R}[[x]]$ komutativna algebra in $\mathbb{R}[x]$ podalgebra

OZNAKA: namesto $(a_n)_n$ ali a_0, a_1, a_2, \dots pišemo $\sum_{n=0}^{\infty} a_n x^n$ oziroma $a_0 + a_1 x + a_2 x^2 + \dots$

V tem primeru x ni spremenljivka, x^n ni potenciranje, · ni množenje in + ni seštevanje \to so samo oznaka.

$$(a_0 + a_1x + a_2x^2 + \dots)(b_0 + b_1x + b_2x^2 + \dots) = a_0b_0 + (a_0b_1 + a_1b_0)x + \dots$$

Enota za množenje:

$$1 + 0x + 0x^2 + \dots = 1$$

Velja tudi

$$(1+x+x^2+...)(1-x)=1$$

torej sta $(1+x+x^2+...)$ in (1-x) inverzna za množenje.

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Trditev 4.2.

$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$
 ima inverz za množenje $\iff a_0 \neq 0$

Dokaz 4.3.

 (\Longrightarrow)

$$\sum_{n=0}^{\infty} a_n x^n \cdot \sum_{n=0}^{\infty} b_n x^n = 1$$

$$a_0b_0 = 1$$

$$a_0b_1 + a_1b_0 = 0$$

$$a_0b_2 + a_1b_1 + a_2b_0 = 0$$
... = 0

 (\Longrightarrow)

Skonstruiramo inverz $G(x) = \sum_{n=0}^{\infty} b_n x^n$

$$b_0 = \frac{1}{a_0}$$

$$b_1 = -\frac{a_1 b_0}{a_0}$$

$$b_2 = -\frac{a_1 b_1 + a_2 b_0}{a_0}$$

...

OZNAKE:

$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$[x^n]F(x) := a_n$$

$$\mathbf{f}(0) \coloneqq [x^0]\mathbf{F}(\mathbf{x}) \ (\mathbf{F}(1), \ \mathbf{F}(\frac{1}{2}) \implies \mathrm{samo} \ \mathbf{F}(0)$$
- začetna vrednost)

$$(F \cdot G)(0) = F(0) \cdot G(0)$$

Iz analize:
$$f(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$

 $V \mathbb{R}[[x]]$ to ni smiselno

Definicija 4.4 (Odvajanje).

$$F(x) = \sum_{n} a_n x^n$$

$$F'(x) := \sum_{n} (n+1)a_{n+1}x^n$$

$$(a_0, a_1, a_2, ...) \longmapsto (a_1, 2a_2, 3a_3, ...)$$

$$(F(x)G(x))' = F'(x)G(x) + F(x)G'(x)$$

Dokaz 4.5.

Gledamo $[x^n]$

L:
$$(n+1)(a_0b_{n+1} + a_1b_n + \dots + a_{n+1}b_0)$$

D: $a_1b_n + 2a_2b_{n-1}3a_3b_{n-2} + \dots + (n+1)a_{n+1}b_0$
 $+a_0(n+1)b_{n+1} + a_1nb_n + a_2(n-1)b_{n-1} + \dots + a_nb_1 =$
 $= (0+n+1)(a_0b_{n+1}) + (1+n)(a_1b_n) + (2+n-1)(a_2b_{n-1}) + \dots +$
 $+(n+1)(a_nb_1) + (n+1+0)(a_{n+1}b_0)$

Definicija 4.6.

$$e^{\lambda x} := \sum_{n} \frac{\lambda^{n}}{n!} x^{n}$$
 Velia $e^{\lambda x} \cdot e^{\mu x} = e^{(\lambda + \mu)x}$

Dokaz 4.7.

$$\sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \frac{\mu^{n-k}}{(n-k)!}? = \frac{(\lambda + \mu)^{n}}{n!}$$

Ce zgornjo enačbo delimo z n!, dobimo

$$\sum_{k=0}^{n} \binom{n}{k} \lambda^k \mu^{n-k} = (\lambda + \mu)^n$$

kar pa je res po binomskem izreku.

OPOMBA:

Imamo tudi $\mathbb{C}[[x]]$ in $\mathbb{Q}[[x]]$

Splošneje: K[[x]], k komutativen obseg (= polje (= field))

(K, +) abelova grupa, $(K \setminus \{0\}, \cdot)$ abelova grupa in velja distributivnost.

Končna polja: npr. \mathbb{Z}_p , p praštevilo.

Izrek 4.8.

Polje velikosti n obstaja natanko tedaj, ko je n potenca praštevila (n = n^p). To polje je do izomorfizma samo eno.

V \mathbb{Z}_5 : 1+1+1+1+1=0. \mathbb{Z}_5 ima karakteristiko 5. Končna polja imajo karakteristiko p, če so velikosti p^k .

Obseg ima karakteristiko 0, če $1+1+\ldots+1\neq 0$ ($\mathbb{Q}, \mathbb{R}, \mathbb{C}$).

$$V \mathbb{Z}_5 : 5! = 6! = ... = 0$$

V obsegu s karakteristiki > 0 $\frac{1}{n!}$ ni nujno definiran. Zato se omejimo na obsege s karakteristiko 0.

4.3 Uporaba rodovnih funkcij pri reševanju rekurzivnih enačb

OPOMBA: Dejanski primeri v tem poglavju niso vključeni. Parcialni ulomki:

Pri analizi:

$$\int \frac{x+1}{(2x-1)(x-1)} dx = \int (\frac{A}{2x-1} + \frac{B}{x-1}) dx$$

Pri kombinatoriki:

$$\frac{1+x}{1-3x+2x^2} = \frac{1+x}{(1-2x)(1-x)} = \frac{A}{1-2x} + \frac{B}{1-x}$$

Drugi način: podčrtano enakost pomnožimo z (1 - 2x) in vstavimo $x = \frac{1}{2}$. Dobimo A = 3. Pomnožimo z (1 - x) in vstavimo x = 1. Dobimo B = -2.

$$F(x) = \frac{3}{1 - 2x} - \frac{2}{1 - x}$$
$$a_n = 3 \cdot 2^n - 2$$

Pri analizi:

$$ax^{2} + nx + c = a(x - x_{1})(x - x_{2}), \ x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Pri kombinatoriki:

$$c + bx + ax^2 = c(1 - y_1x)(1 - y_2x)$$

kjer sta $\frac{1}{y_1}$, $\frac{1}{y_2}$ ničli $c + bx + ax^2$.

$$c + b\frac{1}{y} + a\frac{1}{y^2} = 0 / y^2$$

$$a + by + cy^2 = 0$$

 $y_{1,2}$ sta torej ničli obratnega polinoma.

Trditev 4.9.

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n$$

Dokaz 4.10.

$$\frac{1}{1-x} \cdot \frac{1}{1-x} \cdot \dots \cdot \frac{1}{1-x} = (1+x+x^2+\dots)(1+x+x^2+\dots)(1+x+x^2+\dots)$$

(tako na levi kot na desni strani je k členov)

Če pogledamo primer $k = 3, [x^5]$:

$$x^5 \cdot x^0 \cdot x^0$$

$$x^3 \cdot x^1 \cdot x^1$$

$$x^1 \cdot x^2 \cdot x^2$$

Dobimo šibke kompozicije.

Dokaz 4.11 (Dokaz z indukcijo).

Dokaz z indukcijo je bralcu prepuščen za vajo.

$$\frac{1}{1-x} = \sum_{n} x^{n}$$

$$\frac{1}{(1-x)^{2}} = \sum_{n} (n+1)x^{n}$$

$$\frac{1}{(1-x)^{3}} = \sum_{n} \binom{n+2}{2} x^{n}$$

Izrek 4.12 (recept za reševanje homogene linearne rekurzivne enačbe s konstantnimi koeficienti).

$$c_{d}a_{n} + c_{d-1}a_{n-1} + \dots + c_{0}a_{n-d} = 0 \quad n \geqslant d$$

$$c_{d}\lambda^{d} + c_{d-1}\lambda^{d-1} + \dots + c_{0} \quad (c_{d}, c_{0} \neq 0, c_{i} \in \mathbb{C})$$
(karakteristični polinom)
$$\lambda_{1}, \dots \lambda_{k} \text{ ničle s kratnostmi } \alpha_{1}, \dots \alpha_{k}$$

$$a_{n} = \sum_{i=1}^{k} p_{i}(n)\lambda_{i}^{n}, \qquad deg(p_{i}) < \alpha_{i}$$

Dokaz 4.13.

$$c_d a_n + c_{d-1} a_{n-1} + \dots + c_0 a_{n-d} = 0$$
 $/x^n / \sum_{n=d}^{\infty} F(x) = \sum_{n=0}^{\infty} a_n x^n$

$$C_d(F(x) - a_0 - a_1x - \dots - a_{d-3}x^{d-3} - a_{d-2}x^{d-2} - a_{d-1}x^{d-1})$$

$$+ C_{d-1}x(F(x) - a_0 - a_1x - \dots - a_{d-3}x^{d-3} - a_{d-2}x^{d-2})$$

$$+ C_{d-2}x^2(F(x) - a_0 - a_1x - \dots - a_{d-3}x^{d-3})$$

$$+ \dots + c_1x^{d-1}(F(x) - a_0) + c_0x^df(x) = 0$$

$$F(x)(c_d + c_{d-1}x + c_{d-2}x^2 + \dots + c_1x^{d-1} + c_0x^d) = P(x) \text{ polinom stopnje} < d$$

$$F(x) = \frac{P(x)}{c_d + c_{d-1}x + c_{d-2}x^2 + \dots + c_1x^{d-1} + c_0x^d}$$

Karakteristični polinom: $c_d\lambda^d+c_{d-1}+\lambda^{d-1}+...+c_0$ z ničlami $\lambda_1,...,\lambda_k$

$$F(x) = \frac{P(x)}{c_d \prod_{i=1}^k (1 - \lambda_i x)^{\alpha_i}} =$$

$$= \sum_{i=1}^k \sum_{j=1}^{\alpha_i} \frac{A_{i,j}}{(1 - \lambda_i x)^j} =$$

$$= \sum_{i=1}^k \sum_{j=1}^{\alpha_i} A_{ij} \sum_{n=0}^\infty \binom{n+j-1}{j-1} \lambda_i^n x^n$$

$$a_n = \sum_{i=1}^k (\sum_{j=1}^{\alpha_i} A_{ij} \binom{n+j-1}{j-1}) \lambda_i^n = \sum_{i=1}^k p_i(n) \lambda_i^n$$

$$\binom{nj-1}{j-1} = \frac{(n+j-1)(n+j-2)...(n+1)}{(j+1)!}$$
 polinom stopnje (j - 1) $\implies deg(p_i) < \alpha_i$

Izrek 4.14 (Reševanje nekaterih nehomogenih rekurzivnih enačb).

$$c_d a_n + c_{d-1} a_{n-1} + \dots + c_0 a_{n-d} = q(n) \lambda^n$$

Rešitev je vsota rešitve homogene enačbe in partikularne rešitve, ki jo poiščemo z nastavkom

$$a_n = n^{\alpha} r(n) \lambda^n$$

 $deg(r(n)) \leq deg(q)$, α kratnost λ v karakterističnem polinomu,

$$\alpha \geqslant 0, \alpha = 0 \iff \lambda$$
 ni ničla

Dokaz 4.15. prepuščen bralcu.

4.4 Binomska vrsta

$$\binom{n}{k} = \frac{n^{\underline{k}}}{k} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!}$$

Posplošeni binomski koeficient:

$$\binom{\lambda}{n} = \frac{\lambda^{\underline{n}}}{n!} = \frac{\lambda \cdot (\lambda - 1) \cdot \dots \cdot (\lambda - n + 1)}{n!}$$

 $\lambda \in K$, K konvergentni obseg s karakteristiko 0, npr \mathbb{R}^2 ali \mathbb{C}^2

$$\binom{\frac{5}{2}}{3} = \frac{\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}}{6} = \frac{5}{16}$$
$$\binom{i}{2} = \frac{i(i-1)}{2} = \frac{-1-i}{2}$$
$$\binom{-1}{n} \frac{(-1)(-2)...(-n)}{n!} = (-1)^n$$

 $k \in \mathbb{N}$:

$$\binom{-k}{n} = \frac{-k(-k-1)...(-k-n+1)}{n!} = \frac{(-1)^n(n+k-1)...(k+1)k}{n!} \cdot \frac{(k-1)!}{(k-1)!} = \frac{(-1)^n(n+k-1)...(k+1)k}{n!} \cdot \frac{(k-1)^n(n+k-1)...(k+1)k}{n!} \cdot \frac{(k-1)^$$

$$= \frac{(-1)^n (n+l+k-1)!}{n!(k-1)!} = (-1)^n \binom{n+k-1}{k-1}$$

BINOMSKA VRSTA

$$B_{\lambda}(x) = \sum_{n=0}^{\infty} {\lambda \choose n} x^n$$
$$= 1 + \lambda x + \frac{\lambda(\lambda - 1)}{2} x^2 + \frac{\lambda(\lambda - 1)(\lambda - 2)}{6} x^3 + \dots$$

Če je $\lambda = n \in \mathbb{N}$:

$$B_n(x) = \sum_{k=0}^{\infty} {n \choose k} x^k = \sum_{k=0}^{n} {n \choose k} x^k = (1+x)^n$$

POZOR: B_{λ} (x) = $\sum_{n=0}^{\infty} {\lambda \choose n} x^n$ je narobe! Lahko je $\sum_{n\in\mathbb{N}_0}$, $\sum_{n=0}^{\infty}$ ali pa $\sum_{n=0}^{\lambda}$.

Vemo že:

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n$$

Za $k \in \mathbb{N}$:

$$B_{-k}(x) = \sum_{n=0}^{\infty} {\binom{-k}{n}} x^n = \sum_{n=0}^{\infty} (-1)^n {\binom{n+k-1}{k-1}} x^n = (1+x)^{-k}$$

Ali je smiselno $B_{\lambda}(x) = (1+x)^{\lambda}$? To je smiselno, če velja

$$B_{\lambda}(x) \cdot B_{\mu}(x) = B_{\lambda+\mu}(x)$$

Dokaz 4.16.

Koeficient pri x^n :

$$\sum_{k=0}^{n} \binom{\lambda}{k} \binom{\mu}{n-k} \stackrel{?}{=} \binom{\lambda+\mu}{n}$$

Pomnožimo z n!. Potem dokažimo

$$(\lambda + \mu)^{\underline{n}} = \sum_{k=0}^{n} \binom{n}{k} \lambda^{\underline{k}} \mu^{\underline{n-k}}$$

z indukcijo. n = 0: 1 = 1 \checkmark n - 1 \rightarrow n:

$$(\lambda + \mu)^{\underline{n}} = (\lambda + \mu)^{\underline{n-1}}(\lambda + \mu - n + 1) =$$

$$\stackrel{IP}{=} \sum_{k} \binom{n-1}{k} \lambda^{\underline{k}} \mu^{\underline{n-1-k}}(\lambda - k + \mu + k - n + 1) =$$

$$= \sum_{k} \binom{n-1}{k} \lambda^{\underline{k+1}} \mu^{\underline{n-1-k}} + \sum_{k} \binom{n-1}{k} \lambda^{\underline{k}} \mu^{\underline{n-k}} =$$

$$= \sum_{k} \binom{n-1}{k-1} \lambda^{\underline{k}} \mu^{\underline{n-k}} + \sum_{k} \binom{n-1}{k} \lambda^{\underline{k}} \mu^{\underline{n-k}} =$$

$$= \sum_{k} \binom{n}{k} \lambda^{\underline{k}} \mu^{\underline{n-k}}$$

 $(1+x)^{\lambda} \cdot (1+x)^{\mu} = (1+x)^{\lambda+\mu}$ $((x+1)^{\frac{1}{2}})^2 = (1+x)^{\frac{1}{2}+\frac{1}{2}} = 1+x$ $((1+x)^{\lambda})' = \lambda(1+x)^{\lambda-1}$

Dokaz 4.17.

$$(n+1)\binom{\lambda}{n+1} \stackrel{?}{=} \lambda \binom{\lambda-1}{n}$$

$$(n+1)\frac{\lambda^{n+1}}{(n+1)!} = \lambda \frac{(\lambda-1)^n}{n!} \quad \checkmark$$

4.5 Uporaba rodovnih funkcij

(1) Rodovna funkcija je pogosto "lepa", tudi če za zaporedje nimamo "lepe" formule,

npr.
$$\sum_{k} c(n,k)x^k = x^{\overline{n}}$$

(2) Rodovno funkcijo se da pogosto zapisati iz kombinatoričnega problema (več v komb 2), npr.

$$i_n$$
 število involucij v S_n , torej $\pi^2 = id$ $\sum i_n \frac{x^n}{n!} = e^{x + \frac{x^2}{2}}$

pomen: e na nekaj: sestavljeno iz, x: cikli dolžine 1, $\frac{x^2}{2}$: cikli dolžine 2

(3) V rodovni funkciji so "skriti" vsi drugi zapisi zaporedja

$$\sum_{n} F_{n} x^{n} = \frac{1}{1 - x - x^{2}} \to (1 - x - x^{2}) \sum_{n} F_{n} x^{n} = 1$$
$$[x^{n}] : F_{n} - F_{n-1} - F_{n-2} = 0$$

asimptotika: vzamemo singularnost (x_0) , ki je najbližje izhodišču

$$F_n \sim A n^B (\frac{1}{x_0})^n$$

(4) Iz rodovnih funkcij lahko izračunamo še drugo: povprečje, varianco ... npr. koliko elementov ima v povprečju podmnožica [n]?

$$\frac{\sum_{S \subseteq [n]} |S|}{2^n} = \frac{\sum_k k \cdot \binom{n}{k}}{2^n} = \frac{n2^{n-1}}{2^n} = \frac{n}{2}$$

5 Pólyeva teorija

Primer: Prištejemo ogrlice s 4 koraldami in 2 barvama: ogrlici sta enaki, če eno iz druge dobimo z rotacijo. Splošno?

Kaj pa zapestnice? Zapestnici sta enaki, če eno iz druge dobimo z rotacijo ali zrcaljenjem.

5.1 Permutacijske grupe

 (G, \circ) je grupa, če veljajo asociativnost, enota, inverz.

Simetrična grupa S_n : {permutacija $[n] \to [n]$ }

Permutacijska grupa: podgrupa simetrične grupe. $H \leq G$ je podgrupa, če $e \in H, a, b \in H \implies a \circ b \in H$ in $a \in H \implies a^{-1} \in H$

Cayleyev izrek: vsaka končna grupa je izomorfna permutacijski grupi

npr. ciklična grupa
$$C_n = \{(12 \dots n)^i \mid 0 \le i \le n-1\}, |C_n| = n$$

$$\mathbb{Z}_n\cong C_n\cong \text{pomeni izomorfnost:}$$
 $\phi:\mathbb{Z}_n\to C_n\quad \phi(i)=(12\dots n)^i \text{ to je (očitno) izomorfizem}$

G permutacijska grupa, $G \leq S_x$

$$x \in X, \quad Gx := \{gx \mid g \in G\} \subseteq X$$
je orbita elementa x
$$X/G = \{\text{orbite}\}$$

Orbite so ekvivalenčni razredi za relacijo \sim , kjer

$$x \sim y \iff \exists g \in G: gx = y$$

Stabilizator

$$x \in X$$

$$G_x = \{g \in G \mid gx = x\} \subseteq G$$

Izrek 5.1.

Dokaz 5.2.

id
$$\in G_x$$
, saj id $x = x \forall x$
 $g, h \in G_x \implies ghx = x \implies gh \in G_x$
 $g \in G_x \implies g^{-1} \in G_x (gx = x / \cdot g^{-1})$

Opomba: $H \triangleleft G$ podgrupa edinka, če $H \leq G$ in $gHg^{-1} \subseteq H$ G_x v splošnem ni podgrupa edinka. Spomnimo se: $H \subseteq G, g \in G$

$$gH := \{gh|h \in H\}$$
 levi odsek

Levi odseki so disjunktni in enako močni $(eH \to gH \quad h \to gH)$ bijekcija $a \in gH \cap g'H \quad a = gh = g'h'$

$$h, h' \in H \implies g^{-1}g' = hh'^{-1} \in H \implies g' \in gH$$

 $\implies g'H \subseteq gH \subseteq g'H \implies gH = g'H$

 $G/H = \{$ levi odseki $\}$ kvocientna množica

Kdaj je G/H grupa

$$gH \cdot g'H := gg'H$$

To je dobro definirano samo če $H \triangleleft G$ Vedno: $|G/H| = \frac{|G|}{|H|}$

Izrek 5.3.

$$|Gx| \cdot |G_x| = |G|$$

Dokaz 5.4. Trdimo $|Gx| = \frac{|G|}{|G_x|} = |G/G_x|$ Iščemo bijekcijo $\phi: Gx \to G/G_x \quad gx \mapsto gGx$ Dokazati moramo dobro definiranost

$$gx = g'x \ (g \neq g') \iff gGx = g'Gx$$
$$gx = g'x \iff g'^{-1}gx = x \iff g'^{-1}g \in Gx \iff$$
$$\iff g'^{-1}gGx = Gx \iff gGx = g'Gx$$

Dokazali smo tudi injektivnost Surjektivnost: gGx = $\phi(gx)$