Resampling methods

02-14-2020

library(tidyverse)
library(rsample)

Resampling methods

- we discuss two resampling methods: cross-validation and the bootstrap.
- these methods refit a model of interest to samples formed from the training set, in order to obtain additional information about the fitted model.
- For example, they provide estimates of test-set prediction error, and the standard deviation and bias of our parameter estimates

K-fold Cross-validation

- Widely used approach for estimating test error.
- Estimates can be used to select best model, and to give an idea of the test error of the final chosen model.
- Idea is to randomly divide the data into K equal-sized parts. We leave out part k, fit the model to the other K-1 parts (combined), and then obtain predictions for the left-out kth part.
- This is done in turn for each part k and then the results are combined.

1	2	3	4	5	
Validation	Train	Train	Train	Train	

Details

- Let the K parts be C_1, \ldots, C_k , where C_k denotes the indices of the observations in part k. There are n_k observations in part k.
- the cross-validation error is

$$CV_K = \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in C_k} (y_i - \hat{f}_{-k}(x_i))^2$$

where $\hat{f}_{-k}(x_i)$ is the prediction of y_i based on the data with part k removed.

- if K = 2: split-sample cross-validation. Our CV error estimates are going to be biased upwards, because we are only training on half the data each time
- Setting K = n yields n-fold or leave-one out cross-validation (LOOCV).

How to choose K

- This is a hard quesiton.
- The choices K = 5 or K = 10 are pretty much the standards, and people believe that these give good estimates of prediction error, but there is not really any theory supporting this

A example

[1] 10.58877

The Bootstrap

- The bootstrap is a flexible and powerful statistical tool that can be used to quantify the uncertainty associated with a given estimator or statistical learning method.
- It can provide an estimate of the standard error of a coefficient, or a confidence interval for that coefficient.

In the ideal world

- For example, we have an estimator $\hat{\alpha}$ of α and we are interested in its s.d. (to construct confidence interval)
 - $-\hat{\alpha}$ is a function of the observations $(x_i, y_i), i = 1, \ldots, n$
 - To estimate the standard deviation of $\hat{\alpha}$, we could simulate observations $(\tilde{x}_i, \tilde{y}_i)$, $i = 1, \ldots, n$ which have the same distribution as (x_i, y_i) .
 - A new estimate of α is obtained, called it $\tilde{\alpha}$
 - repeat the process 1000 times, we have 1000 $\tilde{\alpha}$'s and the sample deviations of those 1000 $\tilde{\alpha}$'s can be used to estimate the s.d. of $\hat{\alpha}$.
- The procedure outlined above cannot be applied, because for real data we cannot generate new samples from the original population.

Now back to the real world

However, the bootstrap approach allows us to use a computer to mimic the process of obtaining new
data sets, so that we can estimate the variability of our estimate without generating additional samples.

- Rather than repeatedly obtaining independent data sets from the population, we instead obtain distinct data sets by repeatedly sampling observations from the original data set with replacement.
- Each of these 'bootstrap data sets' is created by sampling with replacement, and is the same size as our original dataset. As a result some observations may appear more than once in a given bootstrap data set and some not at all.

Example with just 3 observations

Notations

- Denoting the first bootstrap data set by Z^{*1} , we use Z^{*1} to produce a new bootstrap estimate for α , which we call $\hat{\alpha}^{*1}$
- this procedure is repeated B times for some large value of B (say 100 or 1000)
- we have B different bootstrap data sets, Z^{*1}, \ldots, Z^{*B} , and B corresponding α estimates, $\hat{\alpha}^{*1}, \ldots, \hat{\alpha}^{*B}$
- We estimate the standard error of these bootstrap estimates using the formula

$$SE_B(\hat{\alpha}) = \sqrt{\frac{1}{B-1} \sum_{r=1}^{B} (\hat{\alpha}^{*r} - \bar{\hat{\alpha}}^*)^2}$$

where $\hat{\alpha}^*$ is the average of $\hat{\alpha}^{*r}$'s.

• This serves as an estimate of the standard error of $\hat{\alpha}$ estimated from the original data set.

A general picture for the bootstrap

A example

```
mtcars %>%
summarize(r = cor(mpg, hp)) %>%
pull(r)
```

```
## [1] -0.7761684
```

To get the "classical" confidence interval

```
with(mtcars, cor.test(mpg, hp)) %>%
  tidy()
```

```
## # A tibble: 1 x 8
    estimate statistic p.value parameter conf.low conf.high method
                                                                         alternative
                           <dbl>
                                                        <dbl> <chr>
##
        <dbl>
                  <dbl>
                                     <int>
                                              <dbl>
                                                                         <chr>
      -0.776
                  -6.74 1.79e-7
                                        30
                                             -0.885
                                                       -0.586 Pearson'~ two.sided
## 1
```

Use bootstrap to obtain a confidence interval

```
boots <- bootstraps(mtcars, times = 1000)</pre>
```

Primarily used to obtain standard errors of an estimate. To get the classical boostrap confidence interval

```
## [1] -0.8681583 -0.6841785
```

Bootstrap Percentile confidence interval

- Also provides approximate confidence intervals for a population parameter.
- Consider the 2.5th and 97.5 percentile of $\hat{\alpha}^{*1}, \dots, \hat{\alpha}^{*B}$
- The above interval is called a Bootstrap Percentile confidence interval. It is the simplest method (among many approaches) for obtaining a confidence interval from the bootstrap.
- It usually gives better results for heavily skewed distributions.

```
boots %>%
  pull(splits) %>%
  map_dbl(
    ~ {
      train_data <- analysis(.)
      with(train_data, cor(mpg, hp))
    }
    %>%
  quantile(p = c(0.025, 0.975))

## 2.5% 97.5%
## -0.8758900 -0.6964816
```

Using parallel to do bootstrap

library(parallel)
cl <- makeCluster(4)</pre>

##

2.5%

97.5%

First thing first, we don't want to use bootstraps() function for parallel processing because it will make deep copy of the bootstrap datasets. We will do a more primitive resampling using sample.int.

```
B <- 1000
clusterEvalQ(cl, {
    # read the data in each worker
    data(mtcars)
    n <- nrow(mtcars)
    NULL
}) %>% invisible()

rs <- parSapply(cl, seq_len(B), function(i) {
    index <- sample.int(n, n, replace = TRUE)
    x <- mtcars$mpg[index]
    y <- mtcars$hp[index]
    cor(x, y)
})

rs %>% quantile(c(0.025, 0.975))
```

```
## -0.8748818 -0.6839671

stopCluster(cl) # stop the cluster finally
```

Using pbdMPI to do bootstrap

See question 3 of assignment 4.

Reference

- $\bullet \ \ rsample: \ https://tidymodels.github.io/rsample/$
- Chapter 5 of An Introduction to Statistical Learning http://faculty.marshall.usc.edu/gareth-james/ISL/