Supplementary Materials: Histopathological Image Analysis via Active Learning

Yan Zhu¹, Wei Liu², Shaoting Zhang³, and Dimitris N Metaxas¹

Department of Computer Science, Rutgers University, Piscataway, NJ, USA
² IBM T. J. Watson Research Center, NY, USA

1 Proof of Theorem 1

Lemma 1. (from Lemma 3 in [1]) Let $\mathcal{V} = \{1,...,n\}$, \mathcal{Y} be finite sets; $f: 2^{\mathcal{V} \times \mathcal{Y}} \to \mathbb{N}$ monotonic and submodular, and $P(\mathbf{Y}_{\mathcal{V}})$ such that (f,P) is adaptive submodular. Let $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_m \subseteq \mathcal{V}$, and define for $i \in \{1,...,m\}$, $Z_i = [\mathbf{Y}_{j_1,...,j_l}]$ where $\mathcal{A}_i = \{j_1,...,j_l\}$, and l is a constant integer. Let $\mathcal{W} = \{1,...,m\}$ and $Q(\mathbf{Z}_{\mathbf{W}})$ be the distribution over $Z_1, Z_2, ..., Z_m$ induced by P. Let $\mathcal{Y} = \bigcup_{i \in \mathcal{W}} range(Z_i)$. Define the function

$$\gamma: 2^{\mathcal{W} \times \mathcal{Y}'} \to 2^{\mathcal{V} \times \mathcal{Y}}, \gamma(\{(a_1, \mathbf{z}_1), ..., (a_t, \mathbf{z}_t)\}) = \bigcup_{i=1}^t \{(i, o) : i \in A_j, o = [\mathbf{z}_j]_i\}$$
 (1)

and define $g: 2^{\mathcal{W} \times \mathcal{Y}'} \to \mathbb{N}$ by $g(\mathcal{S}) = f(\gamma(\mathcal{S}))$. Then g is submodular, and (g, Q) is adaptive submodular.

Lemma 2. (from Theorem 7 in [2]) For an adaptive monotonic submodular function $f: 2^E \times \mathcal{Y}^E \to \mathbb{R}_{\leq 0}$ and a p-independent system (E,\mathcal{I}) . Fix a policy π which is α -approximate greedy with respect to f for constraint \mathcal{I} . Then π yields an $\frac{\alpha}{p+\alpha}$ approximation, meaning

$$f_{avg}(\pi) \le \left(\frac{\alpha}{p+\alpha}\right) \max_{feasible \pi^*} f_{avg}(\pi^*)$$
 (2)

where π^* is feasible iff $E(\pi^*, \Phi) \in \mathcal{I}$ for all Φ .

Below is the proof of theorem 1. We adopt the similar proving technique as [1]. Basically, we transfer from a batch mode policy for the original problem to a sequential policy to the superset of the original problem instance.

Proof of Theorem 1

Suppose we are given $f, \mathcal{V}, \mathcal{Y}$ and P satisifying Lemma 1. Also we are given a set of disjoint ground sets $\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_n$ partitioning \mathcal{V} , therefore it gives a partition matroid constraint \mathcal{M} . Let $\{S_1, ... S_M\}$ are the superset of all possible size k subsets, where $M = \binom{n}{k}$. According to Lemma 1, an induced problem instance for $\{S_1, ... S_M\}$ is (g,Q), where Q is the distribution of the observations for all possible size k subsets $\{S_1, ... S_M\}$. From Lemma 1, (g,Q) is adaptive submodular. For every batch mode

Department of Computer Science, University of North Carolina at Charlotte, NC, USA

policy for problem (f, P) subject to \mathcal{M} , there is a corresponding sequential policy for problem (g, Q) subject to \mathcal{M} .

According to Theorem 11 in [3], the greedy policy π satisfies

$$cost_{avg}(\pi) \le OPT_{avg,k}(ln(|\mathcal{H}| - 1) + 1) \tag{3}$$

where $|\mathcal{H}|$ is the size of the hypothesis space, and $OPT_{avg,k}$ is the optimal policy for size k batch selection. However, policy π is assuming that within each batch the seelection is optimal. The proposed algorithm BGAL-PGM greedily select samples within each batch. Notice that a partition matroid constraint is a special case of p-independent systemm when p=1. So According to Lemma 2, the policy adopting BGAL-PMC maximizes function g with a $\frac{1}{2}$ - approximation to the optimal policy. Therefore, we prove that

$$cost_{avg}(\pi_{BGAL-PMC}) \le OPT_{avg,k} \times 2 \times (ln(|\mathcal{H}|-1)+1)$$
 (4)

as stated in Theorem 1. ■

References

- 1. Y. Chen and A. Krause. Near-optimal batch mode active learning and adaptive submodular optimization. In *Proceedings of The 30th International Conference on Machine Learning*, pages 160–168, 2013.
- D. Golovin and A. Krause. Adaptive submodular optimization under matroid constraints. arXiv preprint arXiv:1101.4450, 2011.
- D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. *Journal of Artificial Intelligence Research*, 42(1):427–486, 2011.