Introductory Course on Non-smooth Optimisation

Lecture 01 - Gradient methods

Jingwei Liang

Department of Applied Mathematics and Theoretical Physics

Table of contents

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Convexity

Convex set

A set $S \subset \mathbb{R}^n$ is convex if for any $\theta \in [0,1]$ and two points $x,y \in S$,

$$\theta x + (1 - \theta)y \in S$$
.

Convex function

Function $F : \mathbb{R}^n \to \mathbb{R}$ is convex if dom(F) is convex and for all $x, y \in \text{dom}(F)$ and $\theta \in [0, 1]$,

$$F(\theta x + (1 - \theta)y) \le \theta F(x) + (1 - \theta)F(y).$$

- Proper convex: $F(x) < +\infty$ at least for one x and $F(x) > -\infty$ for all x.
- 1st-order condition: F is continuous differentiable

$$F(y) \ge F(x) + \langle \nabla F(x), y - x \rangle, \ \forall x, y \in dom(F).$$

2nd-order condition: if F is twice differentiable

$$\nabla^2 F(x) \succeq 0, \ \forall x \in \text{dom}(F).$$

Problem

Unconstrained smooth optimisation

$$\min_{x\in\mathbb{R}^n}F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

• Optimality condition: let x^* be an minimiser of F(x), then

$$0 = \nabla F(x^*).$$

Example: quadratic minimisation

Quadratic programming

General quadratic programming problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} + \mathbf{b}^\mathsf{T} \mathbf{x} + \mathbf{c},$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Optimality condition:

$$0=Ax^{\star}+b.$$

Special case least square

$$||Ax - b||^2 = x^T (A^T A)x - 2(A^T b)^T x + b^T b.$$

Optimality condition

$$A^{\mathsf{T}}Ax^{\star}=A^{\mathsf{T}}b.$$

Example: geometric programming

Geometric programming

$$\min_{x \in \mathbb{R}^n} \log \bigl(\textstyle \sum_{i=1}^m \exp(a_i^T x + b_i) \bigr).$$

Optimality condition:

$$0 = \frac{1}{\sum_{i=1}^{m} \exp(a_{i}^{T} x^{*} + b_{i})} \sum_{i=1}^{m} \exp(a_{i}^{T} x^{*} + b_{i}) a_{i}.$$

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex function
- 4 Gradient descen
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical systen

Consider minising

$$\min_{x\in\mathbb{R}^n}F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

Consider minising

$$\min_{x\in\mathbb{R}^n}F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

■ The set of minimisers, i.e.

$$Argmin(F) = \{x \in \mathbb{R}^n : F(x) = \min_{x \in \mathbb{R}^n} F(x)\}$$

is non-empty.

- However, given $x^* \in Argmin(F)$, no closed form expression.
- Iterative strategy to find one $x^* \in Argmin(F)$: start from x_0 and generate a train of sequence $\{x_k\}_{k\in\mathbb{N}}$ such taht

$$\lim_{k\to\infty}x_k=x^\star\in \operatorname{Argmin}(F).$$

Consider minising

$$\min_{x\in\mathbb{R}^n}F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

Descent methods

Iterative scheme

For each k = 1, 2, ..., find $\gamma_k > 0$ and $d_k \in \mathbb{R}^n$ and then

$$x_{k+1} = x_k + \gamma_k d_k,$$

where

- \bullet d_k is called search/descent direction.
- \bullet γ_k is called step-size.

Descent methods

An algorithm is called descent method, if there holds

$$F(x_{k+1}) < F(x_k).$$

NB: if $x_k \in Argmin(F)$, then $x_{k+1} = x_k$...

Conditions

From convexity of F, we have

$$F(x_{k+1}) \geq F(x_k) + \langle \nabla F(x_k), x_{k+1} - x_k \rangle,$$

which gives

$$\langle \nabla F(x_k),\, x_{k+1}-x_k\rangle \geq 0 \ \Longrightarrow \ F(x_{k+1}) \geq F(x_k).$$

Since $x_{k+1} - x_k = \gamma_k d_k$, the direction d_k should be such that

$$\langle \nabla F(x_k), d_k \rangle < 0.$$

Jingwei Liang, DAMTP

General descent method

General descent method

initial: $x_0 \in dom(F)$;

repeat:

- 1. Find a descent direction d_k .
- 2. Choose a step-size γ_k : line search.
- 3. Update $x_{k+1} = x_k + \gamma_k d_k$.

until: stopping criterion is satisfied.

Stopping criterion: $\epsilon > 0$ is the tolerance,

- Function value: $F(x_{k+1}) F(x_k) \le \epsilon$ (can be time consuming).
- Sequence: $||x_{k+1} x_k|| \le \epsilon$.
- Optimality condition: $\|\nabla F(x_k)\| \le \epsilon$.

Exact line search

Exact line search

Suppose that the direction d_k is given. Choose γ_k such that F(x) is minimised along the ray $x_k + \gamma d_k, \gamma > 0$:

$$\gamma_k = \operatorname{argmin}_{\gamma > 0} F(x_k + \gamma d_k).$$

- Useful when the minimistion problem for γ_k is simple.
- γ_k can be found analytically for special cases.

Backtracking/inexact line search

Backtracking line search

Suppose that the direction d_k is given. Choose $\delta \in]0, 0.5[$ and $\beta \in]0, 1[$, let $\gamma = 1$

while
$$F(x_k + \gamma d_k) > F(x_k) + \delta \gamma \langle \nabla F(x_k), d_k \rangle$$
: $\gamma = \beta \gamma$.

- Reduce F enough along the direction d_k .
- Since d_k is a descent direction

$$\langle \nabla F(x_k), d_k \rangle < 0.$$

Stopping criterion for backtracking:

$$F(x_k + \gamma d_k) \leq F(x_k) + \delta \gamma \langle \nabla F(x_k), d_k \rangle.$$

 \blacksquare When γ is small enough

$$F(x_k + \gamma d_k) \approx F(x_k) + \gamma \langle \nabla F(x_k), d_k \rangle < F(x_k) + \delta \gamma \langle \nabla F(x_k), d_k \rangle$$

which means backtracking eventually will stop.

Backtracking/inexact line search

Backtracking line search

Suppose that the direction d_k is given. Choose $\delta \in]0,0.5[$ and $\beta \in]0,1[$, let $\gamma = 1$

while
$$F(x_k + \gamma d_k) > F(x_k) + \delta \gamma \langle \nabla F(x_k), d_k \rangle$$
: $\gamma = \beta \gamma$.

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Monotonicity

Monotonicity of gradient

Let $F: \mathbb{R}^n \to \mathbb{R}$ be proper convex and smooth differentiable, then

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge 0, \ \forall x, y \in \text{dom}(F).$$

• C^1 : proper convex and smooth differentiable functions on \mathbb{R}^n .

Proof Owing to convexity, given $x, y \in dom(F)$, we have

$$F(y) \ge F(x) + \langle \nabla F(x), y - x \rangle$$

and

$$F(x) \ge F(y) + \langle \nabla F(y), x - y \rangle.$$

Summing them up yields

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge 0.$$

NB: Let $F \in C^1$, F is convex if and only if $\nabla F(x)$ is monotone.

Lipschitz continuous gradient

Lipschitz continuity

The gradient of F is L-Lipschitz continuous if there exists L > 0 such that

$$\|\nabla F(x) - \nabla F(y)\| \le L\|x - y\|, \ \forall x, y \in \text{dom}(F).$$

• C_L^1 : proper convex functions with *L*-Lipschitz continuous gradient on \mathbb{R}^n .

If $F \in C_L^1$, then

$$H(x) \stackrel{\text{def}}{=} \frac{L}{2} ||x||^2 - F(x)$$

is convex.

Hint: monotonicity of $\nabla H(x)$, *i.e.*

$$\begin{split} \langle \nabla H(x) - \nabla H(y), \, x - y \rangle &= L \|x - y\|^2 - \langle \nabla F(x) - \nabla F(y), \, x - y \rangle \\ &\geq L \|x - y\|^2 - L \|x - y\|^2 \\ &= O. \end{split}$$

Descent lemma, quadratic upper bound

Let $F \in C_l^1$, then there holds

$$F(y) \le F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \ \forall x, y \in \mathsf{dom}(F).$$

Proof Define H(t) = F(x + t(y - x)), then

$$\begin{split} F(y) - F(x) &= H(1) - H(0) = \int_0^1 \nabla H(t) \mathrm{d}t = \int_0^1 (y - x)^T \nabla F(x + t(y - x)) \mathrm{d}t \\ &\leq \int_0^1 (y - x)^T \nabla F(x) \mathrm{d}t + \int_0^1 \left| (y - x)^T \left(\nabla F(x + t(y - x)) - \nabla F(x) \right) \right| \mathrm{d}t \\ &\leq (y - x)^T \nabla F(x) + \int_0^1 \|y - x\| \|\nabla F(x + t(y - x)) - \nabla F(x)\| \mathrm{d}t \\ &\leq (y - x)^T \nabla F(x) + \|y - x\| \int_0^1 t L \|y - x\| \mathrm{d}t \\ &= (y - x)^T \nabla F(x) + \frac{L}{2} \|y - x\|^2. \end{split}$$

NB: first-order condition of convexity for $H(x) \stackrel{\text{def}}{=} \frac{1}{2} ||x||^2 - F(x)$.

Descent lemma: consequences

Corollary

Let $F \in C_L^1$ and $x^* \in Argmin(F)$, then

$$\tfrac{1}{2L}\|\nabla F(x)\|^2 \leq F(x) - F(x^\star) \leq \tfrac{L}{2}\|x - x^\star\|^2, \forall x \in \mathsf{dom}(F).$$

Proof Right-hand inequality: $\nabla F(x^*) = 0$,

$$F(x) \leq F(x^*) + \langle \nabla F(x^*), x - x^* \rangle + \frac{L}{2} \|x - x^*\|^2, \ \forall x \in \mathsf{dom}(F).$$

Left-hand inequality:

$$F(x^*) \le \min_{y \in \text{dom}(F)} \left\{ F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} \|y - x\|^2 \right\}$$
$$= F(x) - \frac{1}{2L} \|\nabla F(x)\|^2.$$

The corresponding y is $y = x - \frac{1}{l} \nabla F(x)$.

Co-coercivity of gradient

Co-coercivity

Let $F \in C_1^1$, then

$$\langle x - y, \nabla F(x) - \nabla F(y) \rangle \ge \frac{1}{L} \|\nabla F(x) - \nabla F(y)\|^2.$$

- Co-coercivity implies Lipschitz continuity
- For $F \in C_L^1$, $H(x) \stackrel{\text{def}}{=} \frac{L}{2} ||x||^2 F(x)$

Lipschitz continuity of $\nabla F \implies$ Convexity of H(x)

 \implies Co-coercivity of $\nabla F(x)$

 \implies Lipschitz continuity of ∇F

Co-coercivity of gradient

Co-coercivity

Let $F \in C_1^1$, then

$$\langle x - y, \nabla F(x) - \nabla F(y) \rangle \ge \frac{1}{L} \|\nabla F(x) - \nabla F(y)\|^2.$$

Proof Define $R(z) = F(z) - \langle \nabla F(x), z \rangle$, then $\nabla R(x) = 0$.

Recall the lemma

$$F \in C_L^1 \text{ and } x^* \in \text{Argmin}(F): \frac{1}{2L} \|\nabla F(x)\|^2 \le F(x) - F(x^*) \le \frac{L}{2} \|x - x^*\|^2.$$

Then we have

$$F(y) - F(x) - \langle \nabla F(x), y - x \rangle = R(y) - R(x) \ge \frac{1}{2L} \|\nabla R(y)\|^2$$

= $\frac{1}{2L} \|\nabla F(y) - \nabla F(x)\|^2$.

Similarly, define $S(z) = F(z) - \langle \nabla F(y), z \rangle$, then

$$F(x) - F(y) - \langle \nabla F(y), x - y \rangle = S(y) - S(x) \ge \frac{1}{2!} \|\nabla F(x) - \nabla F(y)\|^2$$
.

Strongly convex function

Strong convexity

Function $F : \mathbb{R}^n \to \mathbb{R}$ is strongly convex if dom(F) is convex and for all $x, y \in dom(F)$ and $\theta \in [0, 1]$, there exists $\alpha > 0$ such that

$$F(\theta x + (1-\theta)y) \le \theta F(x) + (1-\theta)F(y) - \frac{\alpha}{2}\theta(1-\theta)\|x-y\|^2.$$

• F is strongly convex with parameter $\alpha > 0$ if

$$G(x) \stackrel{\text{def}}{=} F(x) - \frac{\alpha}{2} \|x\|^2$$

is convex.

Monotonicity:

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge \alpha ||x - y||^2, \ \forall x, y \in \text{dom}(F).$$

■ Second-order condition for strong convexity: if $F \in C^2$,

$$\nabla^2 F(x) \succeq \alpha \operatorname{Id}, \ \forall x \in \operatorname{dom}(F).$$

Quadratic lower bound

Quadratic lower bound

Let $F \in C^1$ and strongly convex, then

$$F(y) \ge F(x) + \langle \nabla F(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|^2, \ \forall x, y \in \text{dom}(F).$$

Proof First-order condition of convexity for $G(x) \stackrel{\text{def}}{=} F(x) - \frac{\alpha}{2} ||x||^2$.

Corollary

Let $F \in C^1$ be α -strongly convex and $x^* \in Argmin(F)$, then

$$\frac{\alpha}{2}\|x-x^{\star}\|^{2} \leq F(x) - F(x^{\star}) \leq \frac{1}{2\alpha}\|\nabla F(x)\|^{2}, \forall x \in \mathsf{dom}(F).$$

Proof Left-hand inequality: quadratic lower bound.

Right-hand inequality:

$$F(x^*) \ge \min_{\mathbf{y} \in \text{dom}(F)} \left\{ F(\mathbf{x}) + \langle \nabla F(\mathbf{x}), \, \mathbf{y} - \mathbf{x} \rangle + \frac{\alpha}{2} \|\mathbf{y} - \mathbf{x}\|^2 \right\}$$
$$= F(\mathbf{x}) - \frac{1}{2\alpha} \|\nabla F(\mathbf{x})\|^2.$$

Extension of co-coercivity

If $F \in C^1$ and α -strongly convex, then

$$G(x) \stackrel{\text{def}}{=} F(x) - \frac{\alpha}{2} \|x^2\|$$

is convex, and ∇G is $L - \alpha$ -Lipschitz continuous.

The co-coercivity of ∇G yields

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge \frac{\alpha L}{\alpha + L} \|x - y\|^2 + \frac{1}{\alpha + L} \|\nabla F(x) - \nabla F(y)\|^2$$

for all $x, y \in dom(F)$.

 $S_{\alpha,L}^1$: functions in C_L^1 that are α -strongly convex.

Rate of convergence

• Sequence x_k converges linearly to x^* if

$$\lim_{k \to +\infty} \frac{\|x_{k+1} - x^{\star}\|}{\|x_k - x^{\star}\|} = \rho$$

holds for $\rho \in]0,1[$, and ρ is called the rate of convergence.

- If x_k converges, let $\rho_k = \frac{\|x_{k+1} x^*\|}{\|x_k x^*\|}$,
 - if $\lim_{k\to+\infty} \rho_k = 0$: super-linear convergence.
 - if $\lim_{k\to+\infty} \rho_k = 1$: sub-linear convergence.
- Superlinear convergence: *q* > 1

$$\lim_{k\to+\infty}\frac{\|\mathbf{x}_{k+1}-\mathbf{x}^\star\|}{\|\mathbf{x}_k-\mathbf{x}^\star\|^q}<\eta$$

for some $\eta \in]0,1[$.

- q = 2: quadratic convergence.
- q = 3: cubic convergnce.

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Unconstrained smooth optimisation

Consider minimising

$$\min_{x\in\mathbb{R}^n}F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

Assumptions:

- $\mathbf{F} \in C^1$ is convex.
- $\nabla F(x)$ is *L*-Lipschitz continuous for some L > 0.
- Set of minimisers is non-empty, *i.e.* Argmin $(F) \neq \emptyset$.

Gradient descent

Descent direction: let $d = -\nabla F(x)$, then

$$\langle \nabla F(x), d \rangle = -\|\nabla F(x)\|^2 \leq 0.$$

Gradient descent

initial: $x_0 \in dom(F)$;

repeat:

- 1. Choose step-size $\gamma_k > 0$
- 2. Update $x_{k+1} = x_k \gamma_k \nabla F(x_k)$

until: stopping criterion is satisfied.

Convergence analysis: constant step-size

Owing to the quadratic upper bound

$$F(x_{k+1}) \leq F(x_k) + \langle \nabla F(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

$$= F(x_k) - \gamma \|\nabla F(x_k)\|^2 + \frac{\gamma^2 L}{2} \|\nabla F(x_k)\|^2$$

$$= F(x_k) - \gamma (1 - \frac{\gamma L}{2}) \|\nabla F(x_k)\|^2.$$

Hence

$$F(x_k) - F(x_{k+1}) \ge \gamma (1 - \frac{\gamma L}{2}) \|\nabla F(x_k)\|^2.$$

■ Let $\gamma \in]0, 2/L[$,

$$\gamma(1-\tfrac{\gamma L}{2}) \textstyle \sum_{i=0}^k \|\nabla F(x_i)\|^2 \leq F(x_0) - F(x_{k+1}) \leq F(x_0) - F(x^\star).$$

- $F(x^*) > -\infty$, rhs is a positive constant.
- for lhs, let $k \to +\infty$,

$$\lim_{k\to+\infty}\left\|\nabla F(x_k)\right\|^2=0.$$

NB: convexity is not required here.

Convergence analysis: constant step-size

■ Let $\gamma \in]0, 1/L]$, then $\gamma(1 - \frac{\gamma L}{2}) \ge \frac{\gamma}{2}$, and

$$\begin{split} F(x_{k+1}) & \leq F(x_k) - \frac{\gamma}{2} \|\nabla F(x_k)\|^2 \\ (\text{cvx of F at } x_k) & \leq F(x^*) + \langle \nabla F(x_k), \, x_k - x^* \rangle - \frac{\gamma}{2} \|\nabla F(x_k)\|^2 \\ & = F(x^*) + \frac{1}{2\gamma} \big(\|x_k - x^*\|^2 - \|x_k - x^* - \gamma \nabla F(x_k)\|^2 \big) \\ & = F(x^*) + \frac{1}{2\gamma} \big(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \big). \end{split}$$

■ Summability of $F(x_k) - F(x^*)$,

$$\begin{split} \sum_{i=1}^k & \left(F(x_k) - F(x^\star) \right) \le \frac{1}{2\gamma} \sum_{i=1}^k \left(\|x_{i-1} - x^\star\|^2 - \|x_i - x^\star\|^2 \right) \\ &= \frac{1}{2\gamma} \left(\|x_0 - x^\star\|^2 - \|x_{k+1} - x^\star\|^2 \right) \\ &\le \frac{1}{2\gamma} \|x_0 - x^\star\|^2. \end{split}$$

■ Since $F(x_k) - F(x^*)$ is decreasing

$$F(x_k) - F(x^*) \le \frac{1}{k} \left(\sum_{i=1}^k (F(x_k) - F(x^*)) \right) \le \frac{1}{2\gamma k} \|x_0 - x^*\|^2$$

Convergence analysis: strongly convex F

- Besides the basic assumptions, let's further assume $F \in S^1_{\alpha,L}$.
- Recall that, for all $x, y \in dom(F)$

$$\langle \nabla F(x) - \nabla F(y), \, x - y \rangle \geq \frac{\alpha L}{\alpha + L} \|x - y\|^2 + \frac{1}{\alpha + L} \|\nabla F(x) - \nabla F(y)\|^2.$$

■ Analysis for constant step-size: let $\gamma \in]0,2/(\alpha+L)[$

$$\begin{split} \|x_{k+1} - x^{\star}\|^2 &= \|x_k - \gamma \nabla F(x_k) - x^{\star}\|^2 \\ &= \|x_k - x^{\star}\|^2 - 2\gamma \langle \nabla F(x_k), x_k - x^{\star} \rangle + \gamma^2 \|\nabla F(x_k)\|^2 \\ (\nabla F(x^{\star}) &= 0) \leq \left(1 - \frac{2\gamma\alpha L}{\alpha + L}\right) \|x_k - x^{\star}\|^2 + \gamma \left(\gamma - \frac{2}{\alpha + L}\right) \|\nabla F(x_k)\|^2 \\ &\leq \left(1 - \frac{2\gamma\alpha L}{\alpha + L}\right) \|x_k - x^{\star}\|^2. \end{split}$$

Convergence analysis: strongly convex F

Distance to minimiser: $\rho = 1 - \frac{2\gamma\alpha L}{\alpha + L}$

$$||x_k - x^*||^2 \le \rho^k ||x_0 - x^*||^2$$
.

- linear covnergence
- for $\gamma = \frac{2}{\alpha + L}$,

$$\rho = \left(\frac{L - \alpha}{L + \alpha}\right)^2.$$

Convergence rate of objective function value:

$$F(x_k) - F(x^*) \le \frac{L}{2} \|x_k - x^*\|^2 \le \frac{\rho^k L}{2} \|x_0 - x^*\|^2.$$

Numer of iterations k needed for $F(x_k) - F(x^*) \le \epsilon$

- $\bullet F \in C_L^1: O(1/\epsilon).$
- $F \in S^1_{\alpha,L}$: $O(\log(1/\epsilon))$.

Limits on convergence rate of gradient descent

First-order method: x_k is an element from the set

$$x_0 + \mathrm{span} \big\{ \nabla F(x_0), ..., \nabla F(x_i), ..., \nabla F(x_{k-1}) \big\}. \tag{4.1}$$

Problem class: C_L^1

Nesterov's lower bound

For every integer $k \le (n-1)/2$ and every x_0 , there exist functions in the problem class such that for any first-order method satisfies (4.1),

$$\begin{split} F(x_k) - F(x^\star) &\geq \frac{3}{32} \frac{L \|x_0 - x^\star\|^2}{(k+1)^2}, \\ \|x_k - x^\star\|^2 &\geq \frac{1}{8} \|x_0 - x^\star\|^2. \end{split}$$

- Suggests O(1/k) is not the optimal rate.
- Accelerated gradient methods can achieve $O(1/k^2)$ rate.

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Observations

Gradient descent:

$$-\gamma \nabla F(x_k) = x_{k+1} - x_k.$$

Consider the angle: $\theta_k \stackrel{\text{def}}{=} \operatorname{angle}(\nabla F(x_{k+1}), \nabla F(x_k)),$

$$\lim_{k\to+\infty}\theta_k=0.$$

Exercise: prove this claim for least square.

Let a > 0 be some constant,

$$-\nabla F(x_{k+1}) \approx a(x_{k+1}-x_k).$$

Jingwei Liang, DAMTP

Heavy-ball method (Polyak)

Initial: $x_0 \in \text{dom}(F)$ and $\gamma \in]0, 2/L[;$

$$y_k = x_k + a_k(x_k - x_{k-1}), a_k \in [0, 1],$$

 $x_{k+1} = y_k - \gamma \nabla F(x_k).$

Jingwei Liang, DAMTP

Heavy-ball method

Heavy-ball method (Polyak)

Initial: $x_0 \in \text{dom}(F)$ and $\gamma \in]0, 2/L[$;

$$y_k = x_k + a_k(x_k - x_{k-1}), \ a_k \in [0, 1],$$

 $x_{k+1} = y_k - \gamma \nabla F(x_k).$

- $x_k x_{k-1}$ is called the inertial term or momentum term.
- \blacksquare a_k is called the inertial parameter.
- Convergence can be proved by studying the Lyapunov function

$$\mathcal{E}(x_k) \stackrel{\text{def}}{=} F(x_k) + \frac{a_k}{2\gamma} \|x_k - x_{k-1}\|^2.$$

■ In general, no convergence rate for $F \in C_L^1$. Local rate for $F \in S_{\alpha,L}^2$.

Convergence rate

Theorem

Let x^* be a (local) minimiser of F such that $\alpha \text{Id} \preceq \nabla^2 F(x^*) \preceq \text{LId}$ and choose a, γ with $a \in [0,1[,\gamma\in]0,2(1+a)/L[$. There exists $\underline{\rho}<1$ such that if $\underline{\rho}<\rho<1$ and if x_0,x_1 are close enough to x^* , one has

$$||x_k - x^*|| \le C\rho^k.$$

Moreover, if

$$a = \left(\frac{\sqrt{L} - \sqrt{\alpha}}{\sqrt{L} + \sqrt{\alpha}}\right)^2, \ \gamma = \frac{4}{(\sqrt{L} + \sqrt{\alpha})^2} \ \text{ then } \ \underline{\rho} = \frac{\sqrt{L} - \sqrt{\alpha}}{\sqrt{L} + \sqrt{\alpha}}.$$

- Starting points need to close enough to x^*
- Almost the optimal rate can be achieve by gradient method (or first-order method)
- Gradient descent

$$\underline{\rho} = \frac{L - \alpha}{L + \alpha}$$
.

Convergence rate: proof

Taylor expansion

$$X_{k+1} = X_k + a(X_k - X_{k-1}) - \gamma \nabla^2 F(X^*)(X_k - X^*) + o(\|X_k - X^*\|).$$

■ Let $z_k = (x_k - x^*, x_{k-1} - x^*)^T$ and $H = \nabla^2 F$, then

$$z_{k+1} = \underbrace{\begin{bmatrix} (1+a)\mathsf{Id} - a\mathsf{H} & -a\mathsf{Id} \\ \mathsf{Id} & \mathsf{O} \end{bmatrix}}_{\mathsf{M}} z_k + o(\|z_k\|).$$

• Spectral radius $\rho(M)$, $\eta = 1 - \gamma \alpha$

$$0 = \rho^2 - (a + \eta)\rho + a\eta.$$

• $\rho(M)$ is a function of a and η (essentially γ).

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical systen

Convergence rate of gradient descent

Gradient descent with constant step-size:

$$F \in C_L^1$$

$$F(x_k) - F(x^*) \le \frac{L\|x_0 - x^*\|^2}{k+4}.$$

 $F \in S^1_{\alpha,L}$

$$F(x_k) - F(x^*) \leq \frac{L}{2} \left(\frac{L-\alpha}{L+\alpha}\right)^2 \|x_0 - x^*\|^2.$$

Optimal scheme with constant step-size

initial: Choose $x_0 \in \mathbb{R}^n$, $\phi_0 \in]0,1[$; Let $y_0 = x_0$ and $q = \alpha/L$.

repeat:

1. Compute $\phi_{k+1} \in]0,1[$ from equation

$$\phi_{k+1}^2 = (1 - \phi_{k+1})\phi_k^2 + q\phi_{k+1}.$$

Let $a_k = \frac{\phi_k(1-\phi_k)}{\phi_k^2+\phi_{k+1}}$ and

$$y_k = x_k + a_k(x_k - x_{k-1}).$$

2. Update x_{k+1} by

$$x_{k+1} = y_k - \frac{1}{I} \nabla F(y_k).$$

until: stopping criterion is satisfied.

Convergence rate

Convergence rate

Let $\phi_0 \geq \sqrt{\alpha/L}$, then

$$\begin{split} F(x_k) - F(x^\star) &\leq \min \Big\{ \Big(1 - \sqrt{\frac{\alpha}{L}}\Big)^k, \frac{4L}{(2\sqrt{L} + k\sqrt{\nu})^2} \Big\} \\ &\times \big(F(x_0) - F(x^\star) + \frac{\nu}{2} \|x_0 - x^\star\|^2 \big), \end{split}$$

where $\nu = \frac{\phi_0(\phi_0 L - \alpha)}{1 - \phi_0}$.

Parameter choices:

 $F \in C_1^1$: $\phi_0 = 1$.

$$q = 0, \ \phi_k pprox rac{2}{k+1} o 0 \quad \text{and} \quad a_k pprox rac{1-\phi_k}{1+\phi_k} o 1.$$

 $\blacksquare \ \ \mathsf{F} \in \mathsf{S}^1_{\alpha,\mathsf{L}} \colon \phi_0 = \sqrt{\alpha/\mathsf{L}}$

$$q = \sqrt{\frac{\alpha}{L}}, \ \phi_k \equiv \sqrt{\frac{\alpha}{L}} \quad \text{and} \quad a_k \equiv \frac{\sqrt{L} - \sqrt{\alpha}}{\sqrt{L} + \sqrt{\alpha}}.$$

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex function:
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Dynamical system of gradient descent

From gradient descent

$$\frac{x_{k+1}-x_k}{\gamma}=-\nabla F(x_k).$$

Let γ be small enough

$$\dot{X}(t) + \nabla F(X(t)) = 0.$$

Discretisation

■ Explicit Euler method

$$\dot{X}(t) = \frac{X(t+h) - X(t)}{h}.$$

■ Implicit Euler method

$$\dot{X}(t) = \frac{X(t) - X(t-h)}{h}.$$

Dynamical system of inertial schemes

Given a 2nd order dynamical system

$$\ddot{X}(t) + \lambda(t)\dot{X}(t) + \nabla F(X(t)) = 0.$$

Discretisation:

2nd order term

$$\ddot{X}(t) = \frac{X(t+h)-2X(t)+X(t-h)}{h^2}.$$

■ Implicit Euler method

$$\dot{X}(t) = \frac{X(t) - X(t-h)}{h}.$$

Combine together:

$$X(t+h) - X(t) - (1-h\lambda(t))(X(t) - X(t-h)) + h^2 \nabla F(X(t)) = 0.$$

Choices:

- Heavy-ball: $h\lambda(t) \in]0,1[$.
- Nesterov: $\lambda(t) = \frac{d}{t}$, d > 3.

Reference

- S. Boyd and L. Vandenberghe. "Convex optimization". Cambridge university press, 2004.
- B. Polyak. "Introduction to optimization". Optimization Software, 1987.
- Y. Nesterov. "Introductory lectures on convex optimization: A basic course". Vol. 87. Springer Science & Business Media, 2013.
- W. Su, S. Boyd, and E. Candès. "A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights". Advances in Neural Information Processing Systems. 2014.