

cat_train

1

x_train_1

2

x_train_2

3

x_train_3

4

x_train_4

5

x_train_5

MinMaxScaler

x_train_1_s

cat_test

x_test_1

x_test_2

x_test_3

x_test_4

x_test_5

Normalización

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Matriz de confusión

Positivo -> Anormal

Negativo -> Normal

Matriz de confusión FN Actual Negative FP TN Negative Positive

Predicted

$$precision = \frac{TP}{TP + FP}$$

Exactitud: "qué proporción de los que etiqueté como positivos, realmente lo son"

Matriz de confusión Positive TΡ FΝ Actual Negative FΡ Positive Negative Predicted

$$recall = \frac{TP}{TP + FN}$$

Sensitividad: "de todos las positivos, cuántos logré identificar"

"Mide la proporción de anormales que fueron detectados correctamente como anormales. Una sensitividad del 100% detectará a todos los pacientes enfermos"

Matriz de confusión TP FN Actual Negative FΡ TΝ Positive Negative Predicted

$$especificidad = \frac{TN}{TN + FP}$$

Especificidad: "de todos las negativos, cuántos logré identificar"

"Mide la proporción de normales que fueron detectados correctamente como normales. Una especificidad del 100% detectará a todos los pacientes sanos"