SUJET 1

Durée : 30 minutes. Aucun document n'est autorisé. La calculatrice collège est tolérée.

La calculatrice collège est tolérée.
Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.
BON COURAGE!
* * * * * * * * * * * * * * * * * * * *
1. Quel numéro de sujet avez-vous?
Spirit 1 Spirit 2
$_{(1)}\square$ Sujet 1 $_{(2)}\square$ Sujet 2
.2 .4
2. On a $\int_1^2 e^{-x^2} dx = \int_1^4 \frac{e^{-u}}{2\sqrt{u}} du$. Quel changement de variable nous avons utilisé?
$ (1)\square x = \sqrt{u} \qquad (2)\square x = u^2 \qquad (3)\square x = 2\sqrt{u} \qquad (4)\square x = 2u $
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
3. Soit f une fonction telle que $\forall \varepsilon > 0 \ \exists A \in \mathbb{R} \ \forall x \in I \ x \geqslant A \Rightarrow f(x) - l \leqslant \varepsilon$. Alors on a :
$\lim_{x \to A} f(x) = l \qquad \text{(2)} \lim_{x \to l} f(x) = +\infty \qquad \text{(3)} \lim_{x \to +\infty} f(x) = l$
$\lim_{x \to +\infty} f(x) = +\infty$ (5) aucune des réponses précédentes n'est correcte.
$x \rightarrow +\infty$
4. Soit a un réel. On dit que :
$f \text{ tend vers } +\infty \text{ en } a \text{ si} \forall A \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in I \ x-a \leqslant \delta \Rightarrow f(x) \geqslant A$
$\begin{array}{ll} \text{(1)} \square & f \text{ tend vers } +\infty \text{ en } a \text{ si} & \forall A \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in I \ x-a \leqslant \delta \Rightarrow f(x) \geqslant A \\ \text{(2)} \square & f \text{ tend vers } +\infty \text{ en } a \text{ si} & \forall \varepsilon > 0 \ \exists A \in \mathbb{R} \ \forall x \in I \ x \geqslant A \Rightarrow f(x)-a \leqslant \varepsilon \end{array}$
$\begin{array}{ll} \text{(3)} \square & f \text{ tend vers } +\infty \text{ en } -\infty \text{ si} & \forall A \in \mathbb{R} \ \exists B \in \mathbb{R} \ \forall x \in I \ x \leqslant B \Rightarrow f(x) \geqslant A \\ \text{(4)} \square & f \text{ tend vers } +\infty \text{ en } -\infty \text{ si} & \forall A \in \mathbb{R} \ \exists B \in \mathbb{R} \ \forall x \in I \ x \geqslant B \Rightarrow f(x) \leqslant A \end{array}$
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
5. Parmi les équivalents suivants, lesquels sont vrais?
$_{(1)}\Box \sin x \underset{0}{\sim} x \qquad _{(2)}\Box \cos x \underset{0}{\sim} x \qquad _{(3)}\Box e^x - 1 \underset{0}{\sim} e^x \qquad _{(4)}\Box \ln(1 + 2\tan x) \underset{0}{\sim} 2x$
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
$\sin(2x)$

6. La valeur de la limite $\lim_{x\to 0} \frac{\sin(2x)}{\sqrt{1+x}-1}$ est ...

 ${}_{(1)}\square \quad 0 \qquad {}_{(2)}\square \quad 1 \qquad {}_{(3)}\square \quad 4 \qquad {}_{(4)}\square \quad +\infty \qquad {}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte.}$

7. Soit f une application définie sur un intervalle ouvert contenant 0. Parmi les propositions suivantes, lesquelles sont équivalentes à

$$\lim_{x \to 0} f(x) = 1$$

- $_{(1)}\square$ $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in I \; |x| \leqslant \varepsilon \Rightarrow |f(x) 1| \leqslant \delta$
- $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in I \; |x 1| \geqslant \delta \Rightarrow |f(x)| \leqslant \varepsilon$
- (3) \Box $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in I \; |x| \leqslant \delta \Rightarrow |f(x) 1| \leqslant \varepsilon$
- $(4) \square \quad \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in I \ |x| \leqslant \delta \Rightarrow |f(x)| \leqslant \varepsilon$
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 8. Donner un équivalent en 0 de $\tan(x \frac{\pi}{4})$.

$$_{(1)}\Box \quad \frac{\pi}{4} \qquad _{(2)}\Box \quad x \qquad _{(3)}\Box \quad x + \frac{\pi}{4} \qquad _{(4)}\Box \quad x - \frac{\pi}{4}$$

- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 9. Calculer $\int_{-1}^{1} \sqrt{1-x^2} \, \mathrm{d}x.$
 - ${}_{(1)}\square \quad 0 \qquad {}_{(2)}\square \quad 1 \qquad {}_{(3)}\square \quad \frac{\pi}{4} \qquad {}_{(4)}\square \quad \frac{\pi}{2} \qquad {}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte.}$
- 10. Soit $f(x) = \frac{1}{1-x} \frac{2}{1-x^2}$ et \tilde{f} son prolongement si il existe.

Parmi les affirmations suivantes lesquelles sont vraies?

- (1) \Box f(x) est prolongeable par continuité en x=1 et $\tilde{f}(1)=-\frac{1}{2}$
- f(x) n'est pas prolongeable par continuité en x=1
- f(x) est prolongeable par continuité en x = -1 et $\tilde{f}(1) = 0$
- f(x) n'est pas prolongeable par continuité en x=-1
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 11. Parmi les affirmations suivantes, lesquelles sont vraies?
 - $_{(1)}\Box$ Au voisinage de $+\infty$, un polynôme est équivalent à son terme de plus bas degré.
 - Au voisinage de $-\infty$, un polynôme est équivalent à son terme de plus bas degré.
 - (3) Au voisinage de 0, un polynôme est équivalent à son terme de plus haut degré.
 - $_{(4)}\square$ Au voisinage de 0, un polynôme est équivalent à un exponentielle.
 - $_{(5)}\square$ $\;\;$ aucune des réponses précédentes n'est correcte.