# Definizione formale

## Grammatica:

$$G = (V, T, S, P)$$

Insieme delle variabili

Insieme simboli terminali Start variabile Insieme delle produzioni

$$G = (V, T, S, P)$$

Tutte le produzioni *P* sono della forma:

$$A \rightarrow S$$

Stringhe di Variabili e non terminali

# Linguaggio di una grammatica:

Per una grammatica G con start S

$$L(G) = \{ w : S \Rightarrow w, w \in T^* \}$$

Stringhe di terminali o  $\lambda$ 

terminali

## Grammatica lineare

Le grammatiche con al massimo una variabile sul lato destro della produzione

# Esempio:

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

## Grammatica non lineare

Grammatica 
$$G: S o SS$$
  $S o \lambda$   $S o aSb$   $S o bSa$ 

$$L(G) = \{w: n_a(w) = n_b(w)\}$$

Numeri di a nella stringa w

# Grammatica lineare

Grammatica 
$$G: S \to A$$
 
$$A \to aB \mid \lambda$$
 
$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

# Grammatica lineare a destra

Tutte le produzioni hanno la forma

$$A \rightarrow xB$$

$$A \to x$$

esempio:

$$S \rightarrow abS$$

$$S \rightarrow a$$

Stringa di terminali

## Grammatiche lineare sinistra

Tutte le produzioni hanno la forma:

$$A \rightarrow Bx$$

0

$$A \rightarrow x$$

Esempio:

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

Stringhe di terminali

# Grammatica regolare

# Grammatiche regolari

Una grammatica regolare è qualsiasi grammatica lineare a destra o a sinistra

# Esempio:

$$G_1$$
  $G_2$   $S \rightarrow abS$   $S \rightarrow Aab$   $A \rightarrow Aab \mid B$   $B \rightarrow a$ 

# I linguaggi generati da una grammatica regolare è un linguaggio regolare

# Examples:

$$G_1$$

$$S \rightarrow abS$$

$$S \rightarrow a$$

$$L(G_1) = (ab) * a$$

$$G_2$$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

$$L(G_2) = aab(ab)*$$

# Grammatiche regolari generano linguaggi regolari

### Teorema

Linguaggi
Generati da
grammatiche
regolari



### Teorema - Part 1

Linguaggi
Generati da
grammatiche
regolari

Linguaggi
regolari

Ogni grammatica regolare Genera un liguaggio generale

### Teorema - Part 2

 Linguaggi

 Generati da

 grammatiche

 regolari

 Linguaggi

 regolari

Ogni linguaggio regolare È generato da una grammatica regolare

# Proof - Part 1

Linguaggi
Generati da
grammatiche
regolari
Linguaggi
regolari

Il linguaggio L(G) generato da Una grammatica regolare G è regolare

## Il caso della Grammatica

sia G una right-linear grammatica

proveremo: L(G) è regolare

idea: costruiamo una NFA M con L(M) = L(G)

# Grammatica G è right-linear

Esempio: 
$$S \rightarrow aA \mid B$$

$$A \rightarrow aa B$$

$$B \rightarrow b B \mid a$$

# Construiamo NFA M tale che ogni stato è una variabile della grammatica :





# Addizioniamo un arco per ogni produzione:



 $S \rightarrow aA$ 



 $S \rightarrow aA \mid B$ 



$$S \rightarrow aA \mid B$$
 $A \rightarrow aa \mid B$ 







 $S \Rightarrow aA \Rightarrow aaaB \Rightarrow aaabB \Rightarrow aaaba$ 

## NFA M



### Grammatica

G

$$S \rightarrow aA \mid B$$

$$A \rightarrow aa B$$

$$B \rightarrow bB \mid a$$

L(M) = L(G) = aaab\*a + b\*a

## In Generale

una right-linear grammatica G

Ha le variabili: 
$$V_0, V_1, V_2, \dots$$

E le produzioni: 
$$V_i \rightarrow a_1 a_2 \cdots a_m V_j$$

or

$$V_i \rightarrow a_1 a_2 \cdots a_m$$

# Costruiamo un NFA $_{M}$ tale che:

Ogni variabile  $V_i$  corrisponde ad un nodo:



stato finale

per ogni produzione:  $V_i \rightarrow a_1 a_2 \cdots a_m V_j$ 

Addizioniamo transizioni e nodi intermedi

$$V_i$$
  $a_1$   $a_2$   $a_2$   $a_m$   $V_j$ 

per ogni produzione:  $V_i \rightarrow a_1 a_2 \cdots a_m$ 

### Addizioniamo transizioni e nodi intermedi



# otteniamo NFAM come questo:



Vale che:

$$L(G) = L(M)$$

# Il caso di una Left-Linear grammatica

Fate voi

### dimostrazione - Part 2

Linguaggi
Generati da
grammatiche
regolari

Linguaggi
regolari

ogni linguaggio regolare L è generato da qualche grammatica regolare  $\sim$ 

# qualsiasi linguaggio regolare $\ L$ è generato da una grammatica regolare $\ G$

### idea:

$$sia$$
  $M$  NFA  $con$ 

$$L = L(M)$$
.

costruiamo da 
$$M$$
 una grammatica  $G$  regolare tale che  $L(M) = L(G)$ 

# Poichè L è regolare è un NFA M tale che L=L(M)

# Esempio:



L = ab \* ab(b \* ab) \*

$$L = L(M)$$

convertiamo M in una right-linear grammatica b





 $q_0 \rightarrow aq_1$   $q_1 \rightarrow bq_1$   $q_1 \rightarrow aq_2$ 





$$L(G) = L(M) = L$$

G $q_0 \rightarrow aq_1$  $q_1 \rightarrow bq_1$  $q_1 \rightarrow aq_2$  $q_2 \rightarrow bq_3$  $q_3 \rightarrow q_1$ 



### In Generale

per qualsiasi transizione:



# addizioniamo la produzione:



per qualsiasi stato finale:  $(q_f)$ 

Addizioniamo la produzione:

$$q_f \to \lambda$$

# Since G è right-linear grammatica

G è grammatica regolare

con

$$L(G) = L(M) = L$$