Polar form of z

Let $z = re^{i\theta}$.

$$|z| = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = r$$

 θ is called the *argument of z*. Denoted as arg(z).

It is a multi-valued function from $\mathbb{C}^* \to \mathbb{R}$.

The *principal value* of arg(z) is the unique value of arg(z) satisfying $-\pi < arg(z) \le \pi$. It is denoted as Arg(z).

Properties of arg(z)

- $re^{i\theta} = r'e^{i\theta'} \iff r = r' \text{ and } \theta = \theta' + 2n\pi$.
- $arg(z_1z_2) = arg(z_1) + arg(z_2) \pmod{2\pi}$.
- $\bullet \ \operatorname{arg}(\frac{z_1}{z_2}) = \operatorname{arg}(z_1) \operatorname{arg}(z_2) (mod \ 2\pi)$

Polar form of z

Let $z = re^{i\theta}$.

$$|z| = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = r$$

 θ is called the *argument of z*. Denoted as arg(z).

It is a multi-valued function from $\mathbb{C}^* \to \mathbb{R}$.

The *principal value* of arg(z) is the unique value of arg(z) satisfying $-\pi < arg(z) \le \pi$. It is denoted as Arg(z).

Properties of arg(z)

- $re^{i\theta} = r'e^{i\theta'} \iff r = r' \text{ and } \theta = \theta' + 2n\pi$.
- $arg(z_1z_2) = arg(z_1) + arg(z_2) \pmod{2\pi}$.
- $arg(\frac{z_1}{z_2}) = arg(z_1) arg(z_2) \pmod{2\pi}$

Polar form of z

Let $z = re^{i\theta}$

$$|z| = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = r$$

 θ is called the argument of z. Denoted as arg(z).

It is a multi-valued function from $\mathbb{C}^* \to \mathbb{R}$.

The principal value of arg(z) is the unique value of arg(z) satisfying $-\pi < \arg(z) \le \pi$. It is denoted as $\operatorname{Arg}(z)$.

Properties of arg(z)

- $re^{i\theta} = r'e^{i\theta'} \iff r = r' \text{ and } \theta = \theta' + 2n\pi$.
- $\arg(z_1z_2) = \arg(z_1) + \arg(z_2) \pmod{2\pi}$. $\arg(\frac{z_1}{z_2}) = \arg(z_1) \arg(z_2) \pmod{2\pi}$

If
$$x + iy = re^{i\theta}$$
 and $-\pi/2 < \theta < \pi/2$ then $\tan \theta = (y/x)$.

Recover x, θ

from $x, y ??$
 $\tan \theta = \frac{y}{x}$
 $\sin x + iy = re^{i\theta}$
 $\sin x + iy = re^{i\theta$

If $x+iy=re^{i\theta}$ and $\pi/2<\theta<\pi/2$ then $\tan\theta=(y/x)$.

RECALL

If $x+iy=re^{i\theta}$ and $-\pi/2<\theta<\pi/2$ then $\tan\theta=(y/x)$.

If
$$x+iy=r\mathrm{e}^{i\theta}$$
 and $-\pi/2<\theta<\pi/2$ then $\tan\theta=(y/x)$.

If $x+iy=r\mathrm{e}^{i\theta}$ and $-\pi/2<\theta<\pi/2$ then $\tan\theta=(y/x)$.

If $x+iy=r\mathrm{e}^{i\theta}$ and $-\pi/2<\theta<\pi/2$ then $\tan\theta=(y/x)$.

If
$$x+iy=r\mathrm{e}^{i\theta}$$
 and $-\pi/2<\theta<\pi/2$ then $\tan\theta=(y/x)$.

If
$$x+iy=r\mathrm{e}^{i\theta}$$
 and $-\pi/2<\theta<\pi/2$ then $\tan\theta=(y/x)$.

If
$$x+iy=re^{i\theta}$$
 and $-\pi/2<\theta<\pi/2$ then $an heta=ig(y/xig)$.

If $x + iy = re^{i\theta}$ and $-\pi/2 < \theta < \pi/2$ then $\theta = \tan^{-1}(y/x)$. Since $\frac{y}{y} = \frac{-y}{y}$, so,

Convention $\operatorname{Arg}(z) = \begin{cases} \frac{\tan^{-1}(y/x), & \text{if } x > 0}{\pi + \tan^{-1}(y/x), & \text{if } x < 0, y \ge 0} \\ -\pi + \tan^{-1}(y/x), & \text{if } x < 0, y < 0 \\ -\frac{\pi}{2}, & \text{if } x = 0, y < 0 \\ \frac{\pi}{2}, & \text{if } x = 0, y > 0 \end{cases}$ (1)if x = 0, y > 0

