Universitatea de Vest din Timișoara Facultatea de Matematică și Informatică Departamentul de Informatică

Liliana Brăescu Eva Kaslik Simina Mariş Simona Epure Ioan Rodilă

CURS DE GEOMETRIE

Timişoara 2007

Cuprins

0	Elemente de algebră liniară						
	0.1	Spaţiu	vectorial. Bază. Matrice asociată. Aplicație liniară	5			
	0.2	Forme	e liniare. Forme biliniare. Forme pătratice	7			
	0.3	Spaţii	vectoriale euclidiene	9			
1	Spa	paţii afine euclidiene					
	1.1	Spaţii	afine	12			
		1.1.1	Spaţii afine asociate unui spaţiu vectorial real	12			
		1.1.2	Vectori liberi. Vectori legaţi	13			
	1.2	Reper	e afine. Sisteme de coordonate carteziene	14			
		1.2.1	Repere afine	14			
		1.2.2	Repere carteziene	14			
		1.2.3	Schimbări de repere	15			
	1.3	Spaţii	afine euclidiene. Produse cu vectori liberi sau legați	16			
		1.3.1	Definiția spațiilor afine euclidiene	16			
		1.3.2	Produs scalar a doi vectori liberi sau legați	17			
		1.3.3	Produsul vectorial a doi vectori liberi sau legaţi	19			
		1.3.4	Produsul mixt a trei vectori liberi sau legați	20			
		1.3.5	Produsul dublu vectorial a trei vectori liberi sau legați	22			
	1.4	Mişcăi	ri în spații afine euclidiene	23			
		1.4.1	Translaţia plană şi spaţială	23			
		1.4.2	Rotaţia plană şi spaţială	24			
2	Varietăți liniare (subspații afine)						
	2.1	Dreap	ta	27			
		2.1.1	Dreapta determinată de un punct și o direcție	27			
		2.1.2	Dreaptă determinată de două puncte	28			
	2.2	Planul	l	28			
		2.2.1	Planul determinat de un punct și două direcții	28			
		2.2.2	Planul determinat de trei puncte necoliniare	29			

2.3 Intersecții, proiecții și unghiuri ale varietăților liniare	 30
2.6 Intersecyn, protectin in anginari are varietation innare	 31
2.3.1 Intersecția a două drepte	 31
2.3.2 Intersecția a două plane	 32
2.3.3 Intersecția unei drepte cu un plan	 33
2.3.4 Proiecţia unui punct pe o varietate liniară	 33
2.3.5 Proiecţia unei drepte pe un plan	 34
2.3.6 Unghiul a două varietăți liniare	 35
2.4 Distanța de la un punct la o varietate liniară	 36
2.4.1 Distanța de la un punct la o dreaptă	 36
2.4.2 Distanța de la un punct la un plan	 37
2.4.3 Ecuația normală a planului	 37
2.5 Perpendiculara comună a două drepte. Distanța dintre două drepte $$	 38
2.5.1 Perpendiculara comună a două drepte	 38
2.5.2 Distanța dintre două drepte	 38
3 Sfera. Conice. Cuadrice și suprafețe speciale.	40
3.1 Sfera şi cercul în spaţiu	40
3.1.1 Sfera	40
3.1.2 Coordonate sferice	41
3.1.3 Cercul în spațiu	42
	43
3.1.4 Planul tangent intr-un punct la o siera	44
3.1.4 Planul tangent într-un punct la o sferă	
3.2 Conice şi cuadrice	 44
3.2 Conice şi cuadrice	44 50
3.2 Conice şi cuadrice	 50
3.2 Conice şi cuadrice	 50 56
3.2 Conice şi cuadrice	 50 56 58
3.2 Conice şi cuadrice	 50 56

4	Geo	ometria	a diferențială locală a curbelor plane și a curbelor spațiale	66			
	4.1	Geom	etria diferențială locală a curbelor plane	66			
		4.1.1	Curbe plane. Reprezentări. Elemente de arc	66			
		4.1.2	Tangenta și normala într-un punct regulat la o curbă plană	69			
		4.1.3	Puncte singulare ale curbelor plane	71			
		4.1.4	Curbura unei curbe plane	73			
	4.2	Geom	etria diferențială locală a curbelor spațiale	75			
		4.2.1	Reprezentări ale curbelor spațiale	75			
		4.2.2	Elementul de arc. Lungimea unui arc de curbă	75			
		4.2.3	Dreapta tangentă și planul normal	76			
		4.2.4	Plane tangente și planul osculator	78			
		4.2.5	Triedrul și reperul Frènet asociate unei curbe spațiale	80			
		4.2.6	Curbura și torsiunea unei curbe spațiale	83			
5	Geometria diferențială locală a suprafețelor						
	5.1	Defini	ție. Reprezentări	84			
	5.2	Curbe	coordonate	85			
	5.3	Plan t	angent și dreaptă normală la o suprafață	85			
		5.3.1	Plan tangent la o suprafață într-un punct regulat	85			
		5.3.2	Dreapta normală unei suprafețe într-un punct regulat	88			
	5.4	Prima	formă fundamentală. A doua formă fundamentală	89			
		5.4.1	Prima formă fundamentală	89			
		5.4.2	A doua formă fundamentală	90			
		5.4.3	Aplicații ale formelor fundamentale	91			
6	Curbe și suprafețe Bézier						
	6.1	Curbe	Bézier	95			

0 Elemente de algebră liniară

0.1 Spaţiu vectorial. Bază. Matrice asociată. Aplicaţie liniară.

Definiția 0.1. O mulțime nevidă V se numește spațiu vectorial (spațiu liniar) peste câmpul (corpul) \mathbb{K} , dacă pe V sunt definite două legi de compoziție:

- i) o lege internă notată aditiv \oplus : $s: V \times V \to V, \quad s(\bar{u}, \bar{v}) = \bar{u} \oplus \bar{v}$
- ii) o lege externă notată multiplicativ \odot : $p : \mathbb{K} \times V \to V, \quad p(\alpha, \bar{v}) = \alpha \odot \bar{v}$

astfel încât:

I. în raport cu legea internă, V este grup abelian:

$$I_1. \ \forall \bar{u}, \bar{v}, \bar{w} \in V : (\bar{u} \oplus \bar{v}) \oplus \bar{w} = \bar{u} \oplus (\bar{v} \oplus \bar{w}) \ (asociativitate \ I)$$

$$I_2$$
. $\exists \bar{e} \in V, \forall \bar{u} \in V : \bar{u} \oplus \bar{e} = \bar{e} \oplus \bar{u} = \bar{u} \ (element \ neutru)$

$$I_3. \ \forall \bar{u} \in V, \exists \bar{u}' \in V : \bar{u} \oplus \bar{u}' = \bar{u}' \oplus \bar{u} = \bar{e} \ (element \ simetrizabil)$$

$$I_4. \ \forall \bar{u}, \bar{v} \in V : \bar{u} \oplus \bar{v} = \bar{v} \oplus \bar{u} \ (comutativitate)$$

II. în raport cu legea externă sunt îndeplinite condițiile:

$$II_1. \ \forall \alpha, \beta \in \mathbb{K}, \forall \bar{v} \in V : \alpha \odot (\beta \odot \bar{v}) = (\alpha \cdot \beta) \odot \bar{v} \ (asociativitate \ II)$$

$$II_2. \ \forall \alpha \in \mathbb{K}, \forall \bar{u}, \bar{v} \in V : \alpha \odot (\bar{u} \oplus \bar{v}) = \alpha \odot \bar{u} \oplus \alpha \odot \bar{v} \ (distributivitate \ I)$$

$$II_3. \ \forall \alpha, \beta \in \mathbb{K}, \forall \bar{v} \in V : (\alpha + \beta) \odot \bar{v} = \alpha \odot \bar{v} \oplus \beta \odot \bar{v} \ (distributivitate \ II)$$

$$II_4. \exists 1 \in \mathbb{K}, \forall \bar{v} \in V : 1 \odot \bar{v} = \bar{v}.$$

Dacă mulțimea V este un spațiu vectorial peste \mathbb{K} , vom nota aceasta prin $(V, \oplus, \odot; \mathbb{K})$.

Observația 0.1. Dacă $\mathbb{K} = \mathbb{R}$, spațiul vectorial se numește spațiu vectorial real, iar dacă $\mathbb{K} = \mathbb{C}$, spațiul vectorial se numește spațiu vectorial complex.

Exemplul 0.1. Fie $V = \mathbb{R}^2$ şi $\mathbb{K} = \mathbb{R}$. Pentru $\bar{x}, \bar{y} \in \mathbb{R}^2$, $\bar{x} = (x_1, x_2)$, $\bar{y} = (y_1, y_2)$ şi $\alpha \in \mathbb{R}$, avem:

$$\bar{x} \oplus \bar{y} = (x_1 + x_2, y_1 + y_2)$$

 $\alpha \odot \bar{x} = (\alpha \cdot x_1, \alpha \cdot x_2)$

Se verifică uşor axiomele I_1 - I_4 , II_1 - II_4 , deci \mathbb{R}^2 este spațiu vectorial real în raport cu aceste legi de compoziție.

Exemplul 0.2. Verificați că $(\mathbb{R}^n, \oplus, \odot; \mathbb{R})$ este un spațiu vectorial real. Explicitați operațiile \oplus și \odot .

Definiția 0.2. O mulțime nevidă $U \subset V$ a spațiului vectorial V peste corpul \mathbb{K} este un subspațiu vectorial (subspațiu liniar) dacă:

1. $\forall \bar{u}, \bar{v} \in U : \bar{u} \oplus \bar{v} \in U$

2.
$$\forall \alpha \in \mathbb{K}, \forall \bar{u} \in U : \alpha \odot \bar{u} \in U$$

Exemplul 0.3. $M_3 = \{\bar{x} = (x_1, ..., x_n) \in \mathbb{R}^n \mid x_1 + x_2 = 0\}$ este un subspațiu vectorial al lui \mathbb{R}^n .

Definiția echivalentă a unui subspațiu vectorial

Mulțimea $U\subset V$ este un subspațiu vectorial al spațiului vectorial V peste $\mathbb K$ dacă și numai dacă

$$\forall \alpha, \beta \in \mathbb{K}, \forall \bar{u}, \bar{v} \in U : \alpha \odot \bar{u} \oplus \beta \odot \bar{v} \in U.$$

Exemplul 0.4. Să se arate că $U = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 - x_2 + x_3 = 0\}$ este un subspațiu vectorial al lui \mathbb{R}^3 .

Definiția 0.3. Un vector \bar{v} este o combinație liniară de vectorii sistemului $S = \{\bar{v}_1, ..., \bar{v}_n\} \subset V$ cu coeficienții $\alpha_1, ..., \alpha_n \in \mathbb{K}$ dacă:

$$\bar{v} = \alpha_1 \odot \bar{v}_1 \oplus \alpha_2 \odot \bar{v}_2 \oplus ... \oplus \alpha_n \odot \bar{v}_n$$

Definiția 0.4. Un sistem finit de vectori $S = \{\bar{v}_1, ..., \bar{v}_n\} \subset V$ se numește liniar independent dacă orice combinație liniară de vectori din S este nulă dacă și numai dacă toți coeficienții acesteia sunt nuli, adică

$$\alpha_1 \odot \bar{v}_1 \oplus \alpha_2 \odot \bar{v}_2 \oplus ... \oplus \alpha_n \odot \bar{v}_n = 0 \Leftrightarrow \alpha_1 = \alpha_2 = ... = \alpha_n = 0$$

In caz contrar, S se numește liniar dependent.

Definiția 0.5. Un sistem de vectori $S = \{\bar{v}_1, ..., \bar{v}_n\} \subset V$ se numește sistem de generatori pentru spațiul vectorial V dacă

$$\forall \bar{v} \in V - S, \exists! \alpha_i \in \mathbb{K} (i = \overline{1, n}) \text{ astfel } \hat{n} \hat{c} \hat{a} \hat{v} = \alpha_1 \odot \bar{v}_1 \oplus \alpha_2 \odot \bar{v}_2 \oplus ... \oplus \alpha_n \odot \bar{v}_n$$

Definiția 0.6. Un sistem de vectori $B = \{\bar{b}_1, \bar{b}_2, ..., \bar{b}_n\} \subset V$ se numește bază a spațiului vectorial V dacă:

- B este sistem de generatori pentru V
- B este liniar independent.

Dacă $B = \{\bar{b}_1, \bar{b}_2, ..., \bar{b}_n\} \subset V$ este o bază în V și $\bar{v} \in V$ se scrie:

$$\bar{v} = v_1 \odot \bar{b}_1 \oplus v_2 \odot \bar{b}_2 \oplus \dots \oplus v_n \odot \bar{b}_n$$

atunci matricea asociată vectorului $\bar{v} \in V$ în baza B este:

$$[\bar{v}]_B = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

Dacă vectorii sistemului $S = \{\bar{v}_1, ..., \bar{v}_k\} \subset V$ se scriu

$$\bar{v}_1 = v_{11} \odot b_1 \oplus v_{21} \odot b_2 \oplus \dots \oplus v_{n1} \odot b_n$$

$$\bar{v}_2 = v_{12} \odot b_1 \oplus v_{22} \odot b_2 \oplus \dots \oplus v_{n2} \odot b_n$$

$$\vdots$$

$$\bar{v}_k = v_{1k} \odot b_1 \oplus v_{2k} \odot b_2 \oplus \dots \oplus v_{nk} \odot b_n$$

atunci matricea asociată sistemului S în baza B este

$$[\bar{v}_1, ... \bar{v}_2]_B = \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1k} \\ v_{21} & v_{22} & \cdots & v_{2k} \\ \vdots & \vdots & & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nk} \end{pmatrix}$$

Exemplul 0.5. Fie $B = \{\bar{b}_1 = (2,0,0), \bar{b}_2 = (0,3,0), \bar{b}_3 = (0,0,-1)\} \subset \mathbb{R}^3$ o bază din \mathbb{R}^3 și vectorii $\bar{u} = (-1,0,1) \in \mathbb{R}^3$, $\bar{v} = (5,8,2) \in \mathbb{R}^3$. Se observă uşor că:

$$\bar{u} = -\frac{1}{2} \cdot \bar{b}_1 + 0 \cdot \bar{b}_2 + (-1) \cdot \bar{b}_3$$
$$\bar{v} = \frac{5}{2} \cdot \bar{b}_1 + \frac{8}{3} \cdot \bar{b}_2 + (-2) \cdot \bar{b}_3$$

deci, matricele asociate, în baza B, sunt:

$$[\bar{u}]_B = \begin{pmatrix} -1/2 \\ 0 \\ -1 \end{pmatrix}, \quad [\bar{u}, \bar{v}]_B = \begin{pmatrix} -1/2 & 5/2 \\ 0 & 8/3 \\ -1 & -2 \end{pmatrix}.$$

În baza canonică din \mathbb{R}^3 , vectorul \bar{u} și sistemul de vectori $[\bar{u}, \bar{v}]$ au următoarele matrice asociate:

$$[\bar{u}]_B = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad [\bar{u}, \bar{v}]_B = \begin{pmatrix} -1 & 5 \\ 0 & 8 \\ 1 & 2 \end{pmatrix}.$$

Definiția 0.7. Fie V, W două spații vectoriale peste același corp \mathbb{K} . Aplicația $f:V\to W$ se numește aplicație liniară dacă:

$$i. \ \forall \bar{u}, \bar{v} \in V: f(\bar{u} + \bar{v}) = f(\bar{u}) + f(\bar{v})$$

ii.
$$\forall \alpha \in \mathbb{K}, \forall \bar{u} \in V : f(\alpha \bar{u}) = \alpha f(\bar{u})$$

sau echivalent,

$$\forall \bar{u}, \bar{v} \in V, \forall \alpha, \beta \in \mathbb{K} : f(\alpha \bar{u} + \beta \bar{v}) = \alpha f(\bar{u}) + \beta f(\bar{v}).$$

Exemplul 0.6. Aplicația $f: \mathbb{R}^3 \to \mathbb{R}^2$ dată prin f((x, y, z)) = (x + y, -z) este o aplicație liniară.

0.2 Forme liniare. Forme biliniare. Forme pătratice.

Definiția 0.8. Fie V un spațiu vectorial peste \mathbb{K} . O aplicație liniară $f:V\to\mathbb{K}$ se numește formă (funcțională) liniară pe V.

Exemplul 0.7. Aplicația $f: \mathbb{R}^3 \to \mathbb{R}$ dată prin f(x, y, z) = 2x + 3y - z este o formă liniară.

Definiția 0.9. O aplicație $\varphi: V \times V \to \mathbb{K}$ se numește formă biliniară pe spațiul vectorial V peste corpul \mathbb{K} dacă:

i.
$$\forall \bar{u}, \bar{v}, \bar{w} \in V : \varphi(\bar{u} + \bar{v}, \bar{w}) = \varphi(\bar{u}, \bar{w}) + \varphi(\bar{v}, \bar{w})$$

ii.
$$\forall \bar{u}, \bar{v}, \bar{w} \in V : \varphi(\bar{u}, \bar{v} + \bar{w}) = \varphi(\bar{u}, \bar{v}) + \varphi(\bar{u}, \bar{w})$$

iii.
$$\forall \alpha \in \mathbb{K}, \forall \bar{u}, \bar{v} \in V : \varphi(\alpha \bar{u}, \bar{v}) = \alpha \varphi(\bar{u}, \bar{v})$$

iv.
$$\forall \alpha \in \mathbb{K}, \forall \bar{u}, \bar{v} \in V : \varphi(\bar{u}, \alpha \bar{v}) = \bar{\alpha} \varphi(\bar{u}, \bar{v}), \ (\bar{\alpha} \ reprezent \check{a} \ conjugatul \ lui \ \alpha)$$

sau echivalent:

i.
$$\forall \alpha, \beta \in \mathbb{K}, \forall \bar{u}, \bar{v}, \bar{w} \in V : \varphi(\alpha \bar{u} + \beta \bar{v}, \bar{w}) = \alpha \varphi(\bar{u}, \bar{w}) + \beta \varphi(\bar{v}, \bar{w})$$

ii.
$$\forall \alpha, \beta \in \mathbb{K}, \forall \bar{u}, \bar{v}, \bar{w} \in V : \varphi(\bar{u}, \alpha \bar{v} + \beta \bar{w}) = \bar{\alpha} \varphi(\bar{u}, \bar{v}) + \bar{\beta} \varphi(\bar{u}, \bar{w}).$$

Exemplul 0.8. Aplicația $\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dată prin $\varphi((x_1, y_1), (x_2, y_2)) = x_1y_2 + x_2y_1$ este o formă biliniară.

Exemplul 0.9. Aplicația $\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dată prin $\varphi((x_1, y_1), (x_2, y_2)) = x_1y_2 - 2x_2y_1 + 3x_1y_2$ este o formă biliniară.

Definiția 0.10. Fiind dată o formă biliniară simetrică pe V, adică:

$$i. \ \forall \alpha, \beta \in \mathbb{K}, \forall \bar{u}, \bar{v}, \bar{w} \in V : \varphi(\alpha \bar{u} + \beta \bar{v}, \bar{w}) = \alpha \varphi(\bar{u}, \bar{w}) + \beta \varphi(\bar{v}, \bar{w})$$

ii.
$$\forall \alpha, \beta \in \mathbb{K}, \forall \bar{u}, \bar{v}, \bar{w} \in V : \varphi(\bar{u}, \alpha \bar{v} + \beta \bar{w}) = \bar{\alpha} \varphi(\bar{u}, \bar{v}) + \bar{\beta} \varphi(\bar{u}, \bar{w})$$

iii.
$$\forall \bar{u}, \bar{v} \in V : \varphi(\bar{u}, \bar{v}) = \varphi(\bar{v}, \bar{u})$$

se numește formă pătratică asociată acesteia aplicația $f: V \to \mathbb{K}$ definită prin:

$$f(\bar{v}) = \varphi(\bar{v}, \bar{v}), \ \forall \bar{v} \in V.$$

Exemplul 0.10. Forma biliniară $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dată prin $\varphi((x_1, y_1), (x_2, y_2)) = x_1y_2 + x_2y_1$ este simetrică, iar forma pătratică asociată este $f: \mathbb{R}^2 \to \mathbb{R}$, f(x, y) = 2xy.

Definiția 0.11. Forma pătratică $f: V \to \mathbb{R}$ se numește pozitiv definită dacă $f(\bar{v}) > 0$, $\forall \bar{v} \in V, \ \bar{v} \neq \bar{0}$, și negativ definită dacă $f(\bar{v}) < 0, \ \forall \bar{v} \in V, \ \bar{v} \neq \bar{0}$.

Observația 0.2. Studiul pozitivității (negativității) se poate face cu metoda determinanților de colț. De exemplu, pentru forma pătratică $f: \mathbb{R}^n \to \mathbb{R}$, $f(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$, matricea asociată se scrie

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \dots \\
a_{21} & a_{22} & a_{23} & \dots \\
a_{31} & a_{32} & a_{33} & \dots \\
\dots & \dots & \dots & \dots
\end{pmatrix}$$

cu $a_{ij} = a_{ji}$. Determinanții de colț vor fi:

$$\Delta_1 = a_{11}, \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \dots$$

Dacă $\Delta_1 > 0$, $\Delta_2 > 0$, ..., $\Delta_n > 0$ atunci f este pozitiv definită. Dacă $\Delta_1 < 0$, $\Delta_2 > 0$, $\Delta_3 < 0$, ... (semnul alternează) atunci f este negativ definită.

Exemplul 0.11. Forma pătratică $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$,

$$f((x_1, y_1), (x_2, y_2)) = 3x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$$

este pozitiv definită.

Exemplul 0.12. Forma pătratică $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$,

$$f((x_1, x_2), (y_1, y_2)) = -3x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2$$

este negativ definită.

0.3 Spaţii vectoriale euclidiene

Definiția 0.12. Fie V un spațiu vectorial real și $\varphi: V \times V \to \mathbb{R}$ o formă biliniară. Spunem că φ definește pe V o structură euclidiană dacă:

- i) φ este simetrică, adică: $\varphi(\bar{u}, \bar{v}) = \varphi(\bar{v}, \bar{u}), \ (\forall)\bar{u}, \bar{v} \in V$
- ii) forma pătratică asociată $f: V \to \mathbb{R}, \ f(\bar{v}) = \varphi(\bar{v}, \bar{v})$ este pozitiv definită.

 (V,φ) se numește spațiu vectorial euclidian; se mai notează $E=(V,\varphi)$.

Observația 0.3. Forma biliniară φ care definește structura euclidiană se numește produs scalar pe spațiu vectorial V și se notează: $\langle \bar{u}, \bar{v} \rangle = \varphi(\bar{u}, \bar{v})$.

Definiția 0.13. Fie $E=(V,\varphi)$ un spațiu vectorial euclidian. Produsul scalar pe spațiu vectorial euclidian E este o operație externă pe E față de \mathbb{R} , care asociază fiecărei perechi de vectori $\bar{u}, \bar{v} \in E$ un număr notat $<\bar{u}, \bar{v}>$ care satisface condițiile:

- $|\bar{u}| < \bar{u}, \bar{v}> = <\bar{v}, \bar{u}>, \quad (\forall) \bar{u}, \bar{v} \in E$ (proprietatea de simetrie).
- $ii) < \bar{u}_1 + \bar{u}_2, \bar{v} > = < \bar{u}_1, \bar{v} > + < \bar{u}_2, \bar{v} > \quad (\forall) \bar{u}_1, \bar{u}_2, \bar{v} \in E.$
- $(iii) < \lambda \bar{u}, \bar{v} > = < \bar{u}, \lambda \bar{v} > = \lambda < \bar{u}, \bar{v} >, \quad (\forall) \lambda \in \mathbb{R}, (\forall) \bar{u}, \bar{v} \in E.$
- $|iv\rangle < \bar{v}, \bar{v} >> 0, \quad (\forall) \bar{v} \in V, \bar{v} \neq 0$ (pozitiv definită)

Notație pentru spațiul vectorial euclidian: $E = (V, <\cdot, \cdot>)$

Exemplul 0.13. Să se arate că aplicația $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definită pentru $(\forall)\bar{x} = (x_1, x_2), \bar{y} = (y_1, y_2) \in \mathbb{R}^2$ prin:

$$g(\bar{x}, \bar{y}) = 5x_1y_1 + 2x_1y_2 + 2x_2y_1 + x_2y_2$$

determină pe \mathbb{R}^2 o structură de spațiu vectorial euclidian.

Exemplul 0.14. Să se cerceteze dacă

$$f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \ f(\bar{x}, \bar{y}) = x_1 y_1 + x_1 y_2 + 2x_2 y_1 + 3x_2 y_2$$

este un produs scalar pe \mathbb{R}^2 .

Exemplul 0.15. Arătați că aplicația $h: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \ h(\bar{x}, \bar{y}) = x_1y_1 + x_2y_2$ determină pe \mathbb{R}^2 o structură de spațiu vectorial euclidian . Aplicația h se numește produs scalar canonic (standard).

Definiția 0.14. Se numește lungimea sau norma vectorului $\bar{v} \in E$, numărul real pozitiv notat $\|\bar{v}\| = \sqrt{\langle \bar{v}, \bar{v} \rangle}$.

Observația 0.4.

- i) Un vector se numește unitar sau versor dacă norma lui este 1.
- ii) Versorul unui vector oarecare $\bar{v} \in E$ este $\bar{v}^0 = \frac{1}{\|\bar{v}\|} \cdot \bar{v}$.

Definiția 0.15. Fie $E = (V, <\cdot, \cdot>)$ un spațiu vectorial euclidian. Aplicația

$$\|\cdot\|: E \to \mathbb{R}, \ \|\bar{v}\| = \sqrt{\langle \bar{v}, \bar{v} \rangle}$$

este o normă pe E, numită normă euclidiană, adică $\|\bar{v}\|$ verifică proprietățile:

$$\begin{cases} \|\bar{v}\| > 0, \|\bar{0}\| = 0 \\ \|\lambda \bar{v}\| = |\lambda| \|\bar{v}\| \\ \|\bar{u} + \bar{v}\| \le \|\bar{u}\| + \|\bar{v}\| \end{cases}$$

 $(\forall)\lambda \in \mathbb{R}, (\forall)\bar{u}, \bar{v} \in E.$

Observația 0.5. $(E, \|\cdot\|)$ se numește spațiu vectorial normat.

Exemplul 0.16. Să se scrie norma euclidiană generată de produsul scalar din spațiul vectorial euclidian $E_g = (E, g)$ (o notăm $\|\cdot\|_g$), unde g aplicația produs scalar dată în Exemplul 0.13.

Exemplul 0.17. Să se scrie norma euclidiană generată de produsul scalar din spațiul vectorial euclidian $E_h = (E, h)$ (norma o vom nota cu $\|\cdot\|_h$ și o vom numi normă canonică), unde gh aplicația produs scalar dată în Exemplul 0.15.

Exemplul 0.18. Fie $\bar{u}=(2,3), \bar{v}=(4,1)\in\mathbb{R}^2$. Să se calculeze:

- a) $\|\bar{u}\|_{a}$, $\|\bar{u}\|_{h}$
- b) versorul lui \bar{u} în E_g și E_h .

c)
$$<\bar{u},\bar{v}>_q,<\bar{u},\bar{v}>_h$$

Definiția 0.16. Fie $E = (V, <\cdot, \cdot>)$ un spațiu vectorial euclidian real și $\bar{u}, \bar{v} \in E, \ \bar{u}, \bar{v} \neq 0$. Numărul real $\theta \in [0, \pi]$ definit de egalitatea:

$$\cos \theta = \frac{\langle \bar{u}, \bar{v} \rangle}{\|\bar{u}\| \cdot \|\bar{v}\|}$$

se numește unghiul dintre vectorii \bar{u} și \bar{v} .

Exemplul 0.19. Să se calculeze $\cos(\widehat{\bar{u}}, \overline{\bar{v}})$ în E_h . Pentru ce vector \bar{w} avem $\cos(\bar{u}, \bar{w}) = 0$?

Definiția 0.17. Fie M o mulțime nevidă. Aplicația $d: M \to \mathbb{R}$ se numește distanță sau metrică pe M dacă verifică condițiile:

- $i) \ (\forall)x,y \in M: \ d(x,y) \ge 0; \ d(x,y) = 0 \Leftrightarrow x = y$
- $ii) (\forall) x, y \in M : d(x,y) = d(y,x)$
- $iii) (\forall)x, y, z \in M: d(x, z) \leq d(x, y) + d(y, z)$

Definiția 0.18. Mulțimea M înzestrată cu o distanță sau metrică se numește spațiu metric.

Definiția 0.19. Fie $(E, \|\cdot\|)$ un spațiu vectorial normat. Funcția $d: E \to \mathbb{R}$ definită prin $d(\bar{u}, \bar{v}) = \|\bar{u} - \bar{v}\|$ este o distanță (o metrică pe E), adică verifică condițiile:

- i) $d(\bar{u}, \bar{v}) = \|\bar{u} \bar{v}\| > 0$ pentru $\bar{u} \neq \bar{v}$ și $d(\bar{u}, \bar{v}) = \|\bar{u} \bar{v}\| = 0$ pentru $\bar{u} = \bar{v}$
- ii) $d(\bar{u}, \bar{v}) = d(\bar{v}, \bar{u}), \ (\forall)\bar{u}, \bar{v} \in E$
- $iii) \ d(\bar{u},\bar{w}) \leq d(\bar{u},\bar{v}) + d(\bar{v},\bar{w}), \ (\forall)\bar{u},\bar{v},\bar{w} \in E$

și se numește distanță euclidiană sau metrică euclidiană.

Exemplul 0.20. Explicitați metrica indusă de norma $\|\cdot\|_g$ din spațiul vectorial euclidian E_g .

Exemplul 0.21. Explicitați metrica indusă de norma $\|\cdot\|_h$ din spațiul vectorial euclidian E_h . (Această metrică se numește metrica canonică).

Exemplul 0.22. Să se calculeze $d(\bar{u}, \bar{v})$ în E_h şi E_q .

Exemplul 0.23. Să se arate că $||(6,6)|| \le ||(2,-1)|| + ||(1,3)|| + ||(3,4)||$ în norma canonică.

1 Spaţii afine euclidiene

1.1 Spaţii afine

1.1.1 Spaţii afine asociate unui spaţiu vectorial real

Fie V un spațiu vectorial real de dimensiune finită peste corpul \mathbb{R} şi $\mathcal{A} = \{A, B, C, ..., P, Q, ...\}$ mulțime de puncte, nevidă.

Definiția 1.1. Se numește structură afină pe mulțimea A, asociată spațiului vectorial V, aplicația $\varphi: A \times A \to V$ care satisface următoarele condiții:

- 1) (\forall) $A, B, C \in \mathcal{A} : \varphi(A, B) + \varphi(B, C) = \varphi(A, C)$
- 2) (\forall) $0 \in \mathcal{A}$ fixat, aplicația $\varphi_0 : \mathcal{A} \to V, \varphi_0(A) = \varphi(0, A)$ este bijectivă.

Mulțimea \mathcal{A} , înzestrată cu o structură afină, se numește spațiu afin și se notează $(\mathcal{A}; V, \varphi)$.

Observația 1.1.

- 1) Dacă spațiul V are dimensiune n atunci \mathcal{A} este spațiu afin n-dimensional şi se notează \mathcal{A}^n .
- 2) Elementele lui \mathcal{A} se numesc puncte, iar mulțimea acestora se numește spațiu bază a spațiului afin.
- 3) Elementele lui V se numesc vectori directori (excepție vectorul nul $\bar{0}$), iar V se numește spațiu director al spațiului afin.

Consecința 1.1. Elementele fundamentale ale unui spațiu afin $(A; V, \varphi)$ sunt punctele şi vectorii.

Consecința 1.2. Imaginile perechilor de puncte (distincte sau nu) prin aplicația structură afină φ , sunt vectori din V:

- i) $\varphi(A, B) = \bar{v}$, unde A este origine, B este extremitate;
- $ii) \varphi(B,A) = -\bar{v};$
- $iii) \varphi(A, A) = \bar{0}.$

Observația 1.2.

- 1) Un spațiu afin de dimensiune 0 este $A^0 = \{O\}$ constituit dintr-un singur punct.
- 2) Un spațiu afin de dimensiune 1 este \mathcal{A}^1 și se numește dreaptă afină.
- 3) Un spațiu afin de dimensiune 2 este A^2 și se numește plan afin.

Exemplul 1.1. Fie $\mathcal{A} = V$ şi $\varphi : V \times V \to V, \varphi(\bar{u}, \bar{v}) = \bar{v} - \bar{u}$, operația diferență a doi vectori. Axiomele structurii afine din definiția (1.1) sunt verificate, deci $(V; V, \varphi)$ definește un spațiu afin numit spațiu afin canonic.

1.1.2 Vectori liberi. Vectori legați

Fie $(A; V, \varphi)$ spaţiu afin în care notăm: $\varphi(A, B) \equiv \overrightarrow{AB}, \varphi(O, A) \equiv \overrightarrow{OA}$

Definiția 1.2. Axiomele care definesc structura afină pe A, devin:

1)
$$(\forall)A, B, C \in \mathcal{A} : \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

2)
$$(\forall)O \in \mathcal{A}, (\forall)\bar{v} \in V, (\exists!)A \in \mathcal{A}, \text{ astfel } \hat{n}\hat{c}\hat{a}\hat{t} \overrightarrow{OA} = \bar{v}.$$

Propoziția 1.1. Într-un spațiu afin oarecare au loc relațiile:

1)
$$(\forall)A \in \mathcal{A} : \overrightarrow{AA} = \overline{0},$$

2)
$$(\forall)A, B \in \mathcal{A} : \overrightarrow{AB} = -\overrightarrow{BA},$$

- 3) $Dac\check{a}(A,\bar{v}) \in \mathcal{A} \times V \ atunci(\exists!)B \in \mathcal{A} \ astfel \ \hat{n}c\hat{a}t \ \overrightarrow{AB} = \bar{v},$
- 4) $(\forall)A \in \mathcal{A}, \varphi_A : \mathcal{A} \to V, \varphi_A(B) = \overrightarrow{AB} \text{ este o bijectie.}$

Propoziția 1.2. Aplicația structură afină φ este surjectivă.

Observația 1.3. Pentru că φ nu este injectivă pot exista mai multe perechi de puncte care au aceeași imagine: $\varphi(A,B) = \varphi(E,F) = \dots = \bar{v} \in V$. Două astfel de perechi se numesc echipolente și notăm $(A,B) \sim (E,F)$ sau $\overrightarrow{AB} = \overrightarrow{EF}$

Observația 1.4. Relația de echipolență pe mulțimea $\mathcal{A} \times \mathcal{A}$ este o relație de echivalență.

Propoziția 1.3. Spațiul factor (spațiul cât) $\mathcal{A} \times \mathcal{A}|_{\sim}$ poate fi înzestrat cu o structură de spațiu vectorial.

Într-adevăr, fie [(A,B)] clasa de echivalență a lui (A,B), adică mulțimea perechilor echipolente cu (A,B).

 $\Rightarrow \mathcal{A} \times \mathcal{A}|_{\sim} = \{[(A,B)]|(A,B) \in \mathcal{A} \times \mathcal{A}\}$ este spaţiu vectorial împreună cu adunarea vectorială şi cu inmulţirea cu scalar. Vectorii acestui spaţiu se numesc vectori liberi. Fiecare pereche de puncte determină un singur vector al spaţiului, perechile de puncte ne-echipolente definesc vectori liberi diferiţi: $\bar{v}_1, \bar{v}_2, \dots$.

Operațiile de adunare și înmulțire ale vectorilor liberi se numesc operații afine.

Axiomele 1) și 2) din definiția 1.1 semnifică:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

fixând $O \in \mathcal{A}$, $\varphi_0(A) = \overrightarrow{OA}$ bijecție, se numește vector legat.

Oricare ar fi un vector legat, există un unic punct A care îi servește ca extremitate.

1.2 Repere afine. Sisteme de coordonate carteziene

1.2.1 Repere afine

Fie $\mathcal{A}^n = (\mathcal{A}; V, \varphi)$ un spațiu n-dimensional.

Definiția 1.3. Un sistem de elemente ale lui \mathcal{A}^n de forma $\mathcal{R}_a = \{O; \bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$, unde $O \in \mathcal{A}$ fixat, $\bar{e}_1, \bar{e}_2, ..., \bar{e}_n \in V$ sunt vectorii unei baze a spațiului V, se numește reper afin.

Se spune că O este originea reperului, $B = \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ este baza reperului afin \mathcal{R}_a . Fie \mathbb{R}_a un reper afin al lui \mathcal{A}^n și punctul O fixat. Asociem reperului \mathcal{R}_a spațiul tuturor vectorilor legați în originea reperului O, notat \mathcal{V}_O . Din axioma 2 a definiției (1.1) știm că există un singur vector $\varphi_0(M) = \overrightarrow{OM} \in \mathcal{V}_O$ care este imaginea lui M prin aplicația bijectivă φ_0 . Dacă notăm cu \bar{r}_M vectorul de poziție al punctului M, atunci din teorema unicitate a descompunerii, putem scrie expresia analitică a vectorului de poziție astfel:

$$\bar{r}_M = x^1 \,\bar{e}_1 + x^2 \,\bar{e}_2 + \dots + x^n \,\bar{e}_n,\tag{1}$$

unde numerele reale sau complexe $x^1, x^2, ..., x^n$ reprezintă coordonatele punctului M și se notează $M(x^1, x^2, ..., x^n)$ sau $M(x^i)$, $i = \overline{1, n}$.

1.2.2 Repere carteziene

Fie $\mathcal{R}_a = \{O; \bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ un reper afin al lui \mathcal{A}^n .

Definiția 1.4. Se numește reper cartezian în \mathcal{A}^n asociat reperului afin \mathcal{R}_a , un sistem de n drepte concurente în originea O a reperului $\mathcal{R}_a = \{(Ox^i)\}, i = \overline{1,n}$ astfel încât vectorul director al dreptei (Ox^i) să fie \overline{e}_i .

Dreptele reperului cartezian \mathcal{R}_a se numesc axe de coordonate.

Precizăm că prin "direcția" unei drepte $\Delta = \mathcal{A}^1$ definită de vectorul $v \in V \setminus \{0\}$ înțelegem existența a cel puțin unei perechi de puncte (A, B) pe dreaptă astfel încât segmentul orientat \overrightarrow{AB} să fie un reprezentant al lui \overline{v} ; un astfel de vector director, ca \overline{v} , se numește "vector director" al dreptei Δ .

Figura 1: Vectorul director al unei drepte

Definiția 1.5. Un sistem de n funcții $x^i : \mathcal{A} \to \mathbb{R}$, care asociază fiecărui punct $M \in \mathcal{A}$, numerele reale (x^i) din descompunerea (1) a vectorului său de poziție $\overrightarrow{OM} = \overline{r}_m$ relativ la reperul afin \mathcal{R}_a , se numește sistem de coordonate carteziene.

Figura 2: Sistem de coordonate carteziene

1.2.3 Schimbări de repere

Fie \mathcal{A}^n un spaţiu afin n-dimensional, $\mathcal{R}_a = \{O; \bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}, R'_a = \{O'; \bar{e}'_1, \bar{e}'_2, ..., \bar{e}'_n\}$ două repere şi $M \in \mathcal{A}$.

Coordonatele punctului M în reperele considerate sunt: $M \in \mathcal{A}, M(x^1, x^2, ..., x^n)$ în reperul \mathcal{R}_a și $M(x'^1, x'^2, ..., x'^n)$ în reperul \mathcal{R}'_a .

Trecerea de la un reper la alt reper se numeşte "schimbare de reper", şi se notează simbolic prin $\mathcal{R}_a \mapsto \mathcal{R}'_a$.

Figura 3: Schimbarea de reper

Aceasta poate fi descrisă prin relația vectorială: $\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M}$ adică

$$\bar{r}_M = \bar{r}_O + \bar{r}_M' \tag{2}$$

unde \bar{r}_M , \bar{r}'_M sunt vectorii de poziție ai punctului M relativi la reperele \mathcal{R}_a și \mathcal{R}'_a , iar $\bar{r}_O = \overrightarrow{OO'}$ este vectorul de poziție al originii O' a reperului \mathcal{R}'_a în raport cu reperul \mathcal{R}_a .

$$x^{i} \bar{e}_{i} = x_{0}^{i} \bar{e}_{i} + x^{\prime j} \bar{e}_{j}^{\prime}; i, j = \overline{1, n}$$
(3)

Pentru a putea stabili relația directă între sistemele de coordonate ale lui M trebuie să cunoaștem relațiile de tranziție de la baza B a reperului \mathcal{R}_a la baza B' a reperului \mathcal{R}'_a . De la Algebră liniară se știe că schimbarea de baze $B \to B'$ este dată prin relații de forma:

$$\bar{e}'_j = \alpha^i_j \cdot \bar{e}_i, i, j = \overline{1, n}$$

sau prin matricea de trecere $T = [\alpha_j^i]$. Deci,

$$x^i \,\bar{e}_i = x_0^i \,\bar{e}_i + x'^j \,\alpha_i^i \,\bar{e}_i$$

de unde obţinem:

$$x^{i} = x_0^{i} + \alpha_j^{i} x^{\prime j}, i, j = \overline{1, n}. \tag{4}$$

Descrierea algebrică a schimbării de reper:

$$X = X_0 + T \cdot X' \tag{5}$$

unde,

$$X = \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix}, X_0 = \begin{pmatrix} x_0^1 \\ x_0^2 \\ \vdots \\ x_0^n \end{pmatrix}, T = \begin{pmatrix} \alpha_1^1 & \alpha_2^1 & \cdots & \alpha_n^1 \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^n & \alpha_2^n & \cdots & \alpha_n^n \end{pmatrix}$$

Observația 1.5. Relațiile (4) sau (5) se numesc transformări afine de coordonate (afinități în \mathcal{A}^n .)

Caz particular: $T = I_n$ adică bazele B, B' sunt identice:

$$X = X_0 + X' \Leftrightarrow \begin{cases} x^1 = x'_0 + x'^1 \\ \vdots \\ x^n = x_0^n + x'^n \end{cases}$$
 (6)

Acest caz particular de schimbare de reper se numește translație.

1.3 Spaţii afine euclidiene. Produse cu vectori liberi sau legaţi.

1.3.1 Definiția spațiilor afine euclidiene

Definiția 1.6. Un spațiu afin $(A; V, \varphi)$ se numește spațiu afin euclidian dacă spațiul său director V este un spațiu vectorial euclidian.

Un spațiu afin euclidian de dimensiune n se notează \mathcal{E}^n .

Dacă $(A; V, \varphi) = A^n$ este un spațiu afin n-dimensional, atunci spațiul vectorial $(V, +, \cdot)$ dotat cu operația de produs scalar $\langle \cdot; \cdot \rangle$, devine un spațiu vectorial euclidian, pe care îl notăm: $E^n = (V, \langle \cdot; \cdot \rangle)$, dacă V este de dimensiune n.

Notație: Spațiul afin euclidian $\mathcal{E}^n = (\mathcal{A}; E^n, \varphi)$

Caz particular: Pentru $n=3,~E^3$ este un spațiu vectorial euclidian. Dacă $B^0=\{\bar{e}^0_1,\bar{e}^0_2,\bar{e}^0_3\}=\{\bar{i},\bar{j},\bar{k}\}$ este baza canonică (vectori ortogonali de lungime 1), atunci vectorul de pozițir al punctului M(x,y,z) este:

$$\bar{r}_M = x\,\bar{i} + y\,\bar{j} + z\,\bar{k}$$

K M(x,y,z) \overline{f} V

16

1.3.2 Produs scalar a doi vectori liberi sau legați

Fie $V = E^3$ și \mathcal{E}^3 spațiu afin euclidian.

Definiția 1.7. Se numește produs scalar pe spațiul director $V(\subset \mathcal{E}^3)$ aplicația:

$$\varphi: V \times V \to \mathbb{R}, (\bar{v}_1, \bar{v}_2) \mapsto \langle \bar{v}_1, \bar{v}_2 \rangle$$

definită prin:

$$\langle \bar{v}_1, \bar{v}_2 \rangle := \|\bar{v}_1\| \cdot \|\bar{v}_2\| \cdot \cos \theta, \tag{7}$$

unde $\|\bar{v}_1\|$, $\|\bar{v}_2\|$ sunt normele vectorilor în E^3 , iar $\theta \in [0, \pi]$ este măsura unghiului dintre cei doi vectori.

Observația 1.6. $\langle \bar{v}_1, \bar{v}_2 \rangle$ verifică axiomele produsului scalar(din algebră):

- 1) $\langle \overline{v}_1, \overline{v}_2 \rangle = \langle \overline{v}_2, \overline{v}_1 \rangle$
- 2) $\langle \lambda \, \overline{v}_1, \overline{v}_2 \rangle = \lambda \, \langle \overline{v}_1, \overline{v}_2 \rangle$
- 3) $\langle \overline{v}_1 + \overline{u}, \overline{v}_2 \rangle = \langle \overline{v}_1, \overline{v}_2 \rangle + \langle \overline{u}, \overline{v}_2 \rangle$
- 4) $\langle \overline{v}, \overline{v} \rangle = ||v||^2 > 0, \overline{v} \neq 0$

Egalitatea (7) se obține ușor din relația care definește unghiul $\theta \in [0, \pi]$ a doi vectori din $E^n \setminus \{0\}$:

$$\cos \theta = \frac{\langle \overline{v}_1, \overline{v}_2 \rangle}{\|\overline{v}_1\| \cdot \|\overline{v}_2\|}$$

Definiția 1.8. Fie \bar{u} un vector liber unitar, $\|\bar{u}\| = 1$ ce definește direcția unei drepte $\Delta(\subset \mathcal{E}^3)$.

Definim proiecția ortogonală a vectorului \overline{v} pe dreapta Δ ca fiind vectorul:

$$Pr_{\Lambda}\overline{v} = (\|\overline{v}\| \cdot \cos\theta)\,\overline{u}$$

Scalarul real: $pr_{\Delta}\overline{v} = ||\overline{v}|| \cdot \cos\theta$ se numește proiecție scalară a vectorului \overline{v} pe dreapta Δ .

Figura 5: Proiecția unui vector pe o dreaptă

Propoziția 1.4. Aplicația $pr_{\Delta}: V \to \mathbb{R}$ este o formă liniară:

$$pr_{\Delta}(\overline{v}_1 + \overline{v}_2) = pr_{\Delta}\overline{v}_1 + pr_{\Delta}\overline{v}_2$$

$$pr_{\Delta}(\alpha \overline{v}) = \alpha pr_{\Delta} \overline{v}, (\forall) \alpha \in \mathbb{R}$$

Observația 1.7.

1) Produsul scalar a doi vectori poate fi exprimat în limbaj de proiecții:

$$\langle \overline{v}_1, \overline{v}_2 \rangle = ||\overline{v}_1|| \cdot pr_{\overline{v}_1} \overline{v}_2 \text{ sau } ||\overline{v}_2|| \cdot pr_{\overline{v}_2} \overline{v}_1$$

2) Condiția de ortogonalitate a doi vectori:

$$\overline{v} \perp \overline{v}_2 \Leftrightarrow \langle \overline{v}_1, \overline{v}_2 \rangle = 0$$

adică,
$$\cos \theta = 0 \Leftrightarrow \theta = \frac{\pi}{2}$$

3) Fie $B^0 = \{\overline{i}, \overline{j}, \overline{k}\}$ baza canonică și $\overline{v}_1 = x_1 \overline{i} + y_1 \overline{j} + z_1 \overline{k}, \overline{v}_2 = x_2 \overline{i} + y_2 \overline{j} + z_2 \overline{k}$ doi vectori. Pentru a stabili expresia de calcul direct al produsului scalar $\langle \overline{v}_1, \overline{v}_2 \rangle$ trebuie să cunoaștem produsele scalare ale vectorilor bazei:

$$\begin{array}{c|ccccc} \langle \cdot, \cdot \rangle & \bar{i} & \bar{j} & \bar{k} \\ \hline \bar{i} & 1 & 0 & 0 \\ \hline \bar{j} & 0 & 1 & 0 \\ \hline \bar{k} & 0 & 0 & 1 \\ \end{array}$$

Astfel se obține următoarea formulă de calcul a produsului scalar al vectorilor dați:

$$\langle \overline{v}_1, \overline{v}_2 \rangle = x_1 x_2 + y_1 y_2 + z_1 z_2.$$
 (8)

Folosind relația (8) se obțin relațiile:

$$\|\overline{v}\| = \sqrt{\langle \overline{v}, \overline{v} \rangle} = \sqrt{x^2 + y^2 + z^2},$$

$$\cos \theta = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}},$$

$$pr_{v_2}v_1 = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_2^2 + y_2^2 + z_2^2}}$$

iar condiția de ortogonalitate a vectorilor nenuli \overline{v}_1 și \overline{v}_2 devine:

$$x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$$

1.3.3 Produsul vectorial a doi vectori liberi sau legați

Fie $V = E^3$ spațiu director al spațiului afin euclidian \mathcal{E}^3 .

Definiția 1.9. Se numește produs vectorial pe spațiul director $V(\subset \mathcal{E}^3)$ aplicația:

$$\Psi: V \times V \to V, (\overline{v}_1, \overline{v}_2) \mapsto \overline{v}_1 \times \overline{v}_2$$

definită prin:

$$\overline{v}_1 \times \overline{v}_2 = \|\overline{v}_1\| \cdot \|\overline{v}_2\| \cdot \sin\theta \cdot \overline{v}^0,$$

unde $\|\bar{v}_1\|$ şi $\|barv_2\|$ sunt normele (în E^3) vectorilor \bar{v}_1 şi \bar{v}_2 , $\theta \in [0,\pi]$ este măsura unghiului dintre cei doi vectori, iar \bar{v}^0 este un vector unitar ortogonal atât pe \bar{v}_1 , cât şi pe \bar{v}_2 , având sensul de înaintare al şurubului drept, rotit dinspre primul vector spre cel de-al doilea.

Observația 1.8.

1) Sensul vectorului \overline{v}^0 este determinat de ordinea vectorilor din produs, adică dacă se va schimba ordinea atunci se va inversa sensul rotației și prin urmare, sensul vectorului director: $\overline{v}_1 \times \overline{v}_2 = -\overline{v}_2 \times \overline{v}_1$

Figura 6: Sensul vectorului \overline{v}^0

- 2) Aplicația Ψ este aplicație biliniară antisimetrică.
- 3) Aria paralelogramului determinat de vectorii \bar{v}_1 şi \bar{v}_2 :

Figura 7: Interpretare geometrică

$$\begin{split} \sigma_{[AOB]} &= \frac{1}{2} \|\overline{v}_1\| \cdot \|\overline{v}_2\| \cdot |sin\,\theta| \Rightarrow \sigma_{[AOBM]} = \|\overline{v}_1\| \cdot \|\overline{v}_2\| \cdot |sin\,\theta| = \|\overline{v}_1 \times \overline{v}_2\| \end{split}$$
 Deci,
$$\sigma_{triunghi} = \frac{1}{2} \|\overline{v}_1 \times \overline{v}_2\| \text{ și } \sigma_{paralelogram} = \|\overline{v}_1 \times \overline{v}_2\| \end{split}$$

- 4) Condiția de coliniaritate a vectorilor: $\overline{v}_1 \times \overline{v}_2 = \overline{0}$, (adică $\sigma = 0$)
- 5) Expresia analitică pentru produsul vectorial $n=3, B^0=\{\overline{i},\overline{j},\overline{k}\}, \overline{i}\perp\overline{j}\perp\overline{k}, \|\overline{i}\|=\|\overline{j}\|=\|\overline{k}\|=1,$

$$\overline{v}_1 = x_1 \,\overline{i} + y_1 \,\overline{j} + z_1 \,\overline{k}$$

$$\overline{v}_2 = x_2 \,\overline{i} + y_2 \,\overline{j} + z_2 \,\overline{k}.$$

$$\int_{\bar{I}}^{\bar{K}}$$

Figura 8: Versorii axelor

$$\begin{array}{c|cccc} \times & \overline{i} & \overline{j} & \overline{k} \\ \hline \overline{i} & 0 & \overline{k} & -\overline{j} \\ \overline{j} & -\overline{k} & 0 & \overline{i} \\ \overline{k} & \overline{j} & -\overline{i} & 0 \end{array}$$

Astfel, putem calcula produsul vectorial al vectorilor dați:

$$\overline{v}_1 \times \overline{v}_2 = x_1 y_2 \overline{k} - x_1 z_2 \overline{j} - y_1 x_2 \overline{k} + y_1 z_2 \overline{i} + z_1 x_2 \overline{j} - z_1 y_2 \overline{i} = (y_1 z_2 - z_1 y_2) \overline{i} - (x_1 z_2 - z_1 x_2) \overline{j} + (x_1 y_2 - y_1 x_2) \overline{k}$$

Rezultatul obținut mai sus se poate scrie sub forma unui determinant:

$$\overline{v}_1 \times \overline{v}_2 = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$
 (9)

Din proprietățile determinanților rezultă imediat faptul că: $\overline{v}_1 \times \overline{v}_2 = -\overline{v}_2 \times \overline{v}_1$.

1.3.4 Produsul mixt a trei vectori liberi sau legați

Definiția 1.10. Se numește produs mixt pe spațiul director $V (\in \mathcal{E}^3)$ aplicația:

$$\Phi: V \times V \times V \to \mathbb{R}$$

definită prin: $\Phi(\overline{v}_1, \overline{v}_2, \overline{v}_3) = \langle \overline{v}_1, \overline{v}_2 \times \overline{v}_3 \rangle$.

Observația 1.9.

1) Produsul mixt este o operație compusă dintr-un produs scalar și un produs vectorial $\Phi = \varphi \star \psi$ care asociază fiecărui triplet $(\overline{v}_1, \overline{v}_2, \overline{v}_3)$ un număr real $\langle \overline{v}_1, \overline{v}_2 \times \overline{v}_3 \rangle$.

2) Expresia analitică pentru produsul mixt: fie $n=3, B^0=\{\overline{i},\overline{j},\overline{k}\}, \overline{i}\perp \overline{j}\perp \overline{k}, \|\overline{i}\|=\|\overline{j}\|=\|\overline{k}\|=1,$

$$\overline{v}_1 = x_1 \,\overline{i} + y_1 \,\overline{j} + z_1 \,\overline{k}$$

$$\overline{v}_2 = x_2 \,\overline{i} + y_2 \,\overline{j} + z_2 \,\overline{k}$$

$$\overline{v}_3 = x_3 \,\overline{i} + y_3 \,\overline{j} + z_3 \,\overline{k}.$$

Calculăm produsul vectorial al vectorilor \overline{v}_2 și \overline{v}_3 , cu formula (9), dezvoltând determinantul după elementele primei linii,

$$\overline{v}_2 \times \overline{v}_3 = \left| \begin{array}{ccc} \overline{i} & \overline{j} & \overline{k} \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} \right| = \left| \begin{array}{ccc} y_2 & z_2 \\ y_3 & z_3 \end{array} \right| \overline{i} - \left| \begin{array}{ccc} x_2 & z_2 \\ x_3 & z_3 \end{array} \right| \overline{j} + \left| \begin{array}{ccc} x_2 & y_2 \\ x_3 & y_3 \end{array} \right| \overline{k},$$

iar apoi vom efectua produsul scalar al acestui vector cu primul vector, $barv_1$, și avem:

$$\langle \overline{v}_1, \overline{v}_2 \times \overline{v}_3 \rangle = x_1 \begin{vmatrix} y_2 & z_2 \\ y_3 & z_3 \end{vmatrix} - y_1 \begin{vmatrix} x_2 & z_2 \\ x_3 & z_3 \end{vmatrix} + z_1 \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

Notație:

$$(\overline{v}_1; \overline{v}_2; \overline{v}_3) = \left| \begin{array}{ccc} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} \right|.$$

Propoziția 1.5. Produsul mixt $(\overline{v}_1; \overline{v}_2; \overline{v}_3)$ satisface următoarele egalități:

1)
$$(\overline{v}_1; \overline{v}_2; \overline{v}_3) = (\overline{v}_2; \overline{v}_3; \overline{v}_1) = (\overline{v}_3; \overline{v}_1; \overline{v}_2), (\forall) \overline{v}_1, \overline{v}_2, \overline{v}_3 \in V;$$

2)
$$(\overline{v}_1; \overline{v}_2; \overline{v}_3) = -(\overline{v}_2; \overline{v}_1; \overline{v}_3) = -(\overline{v}_1; \overline{v}_2; \overline{v}_3) = -(\overline{v}_1; \overline{v}_3; \overline{v}_2), (\forall) \overline{v}_1, \overline{v}_2, \overline{v}_3 \in V;$$

3)
$$(\lambda \, \overline{v}_1; \overline{v}_2; \overline{v}_3) = (\overline{v}_1; \lambda \, \overline{v}_2; \overline{v}_3) = (\overline{v}_1; \overline{v}_2; \lambda \, \overline{v}_3) = \lambda \, (\overline{v}_1; \overline{v}_2; \overline{v}_3), \, (\forall) \, \overline{v}_1, \overline{v}_2, \overline{v}_3 \in V, \, (\forall) \lambda \in \mathbb{R};$$

4)
$$(\overline{v}_1; \overline{v}_2; \overline{v}_3 + \overline{v}_4) = (\overline{v}_1; \overline{v}_2; \overline{v}_3) + (\overline{v}_1; \overline{v}_2; \overline{v}_4), (\forall) \overline{v}_1, \overline{v}_2, \overline{v}_3, \overline{v}_4 \in V;$$

5)
$$(\overline{v}_1; \overline{v}_2; \lambda \overline{v}_1 + \mu v_2) = 0, (\forall) \lambda, \mu \in \mathbb{R}, (\forall) \overline{v}_1, \overline{v}_2, \overline{v}_3 \in V = E^3.$$

Aceste egalități pot fi verificate imediat pe baza proprietăților determinanților.

Consecința 1.3.

$$\left(\overline{v}_{1},\overline{v}_{2};\lambda\;\overline{v}_{3}+\mu\;\overline{v}_{3}'\right)=\lambda\left(\overline{v}_{1},\overline{v}_{2},\overline{v}_{3}\right)+\mu\left(\overline{v}_{1},\overline{v}_{2},\overline{v}_{3}'\right)$$

Teorema 1.1. Modulul produsului mixt a trei vectori reprezentați prin segmente orientate, necoplanare cu originea comună, este egal cu volumul paralelipipedului având aceste segmente ca laturi.

Figura 9: Produsul mixt a trei vectori

Demonstrație. Fie $\overline{v}_1 = \overrightarrow{OA}, \ \overline{v}_2 = \overrightarrow{OB}, \ \overline{v}_3 = \overrightarrow{OC}.$

Volumul paralelipipedului este: $\mathcal{V} = A_b \cdot h$

Aria bazei: $A_b = ||\overline{v}_2 \times \overline{v}_3|| = ||\overline{v}||$

Înălţimea: $h = pr_{\overline{v}}\overline{v}_1$

$$\operatorname{Dar} |(\overline{v}_1; \overline{v}_2; \overline{v}_3)| = |\langle \overline{v}_1, \overline{v}_2 \times \overline{v}_3 \rangle| = |\langle \overline{v}_1, \overline{v} \rangle| = ||\overline{v}|| \cdot |pr_{\overline{v}}\overline{v}_1| = ||\overline{v}_1|| \cdot |pr_{\overline{v}_1}\overline{v}| = A_b \cdot h$$

$$\Rightarrow \mathcal{V} = |(\overline{v}_1; \overline{v}_2; \overline{v}_3)|.$$

Observația 1.10.

- 1) Volumul unui tetraedru este dat de formula: $\mathcal{V}_{tetr} = \frac{1}{3!} |(\overline{v}_1; \overline{v}_2; \overline{v}_3)|$.
- 2) Condiția de coplanaritate: $(\overline{v}_1; \overline{v}_2; \overline{v}_3) = 0$

1.3.5 Produsul dublu vectorial a trei vectori liberi sau legați

Definiția 1.11. Se numește produs dublu vectorial pe spațiul director $V(\subset \mathcal{E}^3)$ aplicația:

$$\Psi: V \times V \times V \to V$$

definită prin: $\Psi(\overline{v}_1, \overline{v}_2, \overline{v}_3) = \overline{v}_1 \times (\overline{v}_2 \times \overline{v}_3)$.

Observația 1.11. Produsul dublu vectorial este o operație compusă dintr-un produs vectorial cu un alt produs vectorial care asociază fiecărui triplet $(\overline{v}_1, \overline{v}_2, \overline{v}_3)$ un nou vector $\overline{w} = \overline{v}_1 \times (\overline{v}_2 \times \overline{v}_3)$.

Teorema 1.2. Produsul dublu vectorial a trei vectori se poate exprima cu ajutorul a două produse scalare prin formula:

$$\overline{v}_1 \times (\overline{v}_2 \times \overline{v}_3) = \begin{vmatrix} \overline{v}_2 & \overline{v}_3 \\ \langle \overline{v}_1, \overline{v}_2 \rangle & \langle \overline{v}_1, \overline{v}_3 \rangle \end{vmatrix}. \tag{10}$$

Demonstrație. Prin calcul, exprimându-se produsul vectorial și produsul scalar. \Box

Propoziția 1.6. Produsul dublu vectorial nu este asociativ:

$$\overline{v}_1 \times (\overline{v}_2 \times \overline{v}_3) \neq (\overline{v}_1 \times \overline{v}_2) \times \overline{v}_3.$$

1.4 Mişcări în spații afine euclidiene

Fie \mathcal{E}^n un spațiu afin euclidian.

Definiția 1.12. Se numește mișcare rigidă (sau deplasare) într-un spațiu afin euclidian \mathcal{E}^n o transformare μ a acestui spațiu pentru care are loc egalitatea:

$$d(\mu(M_1), \mu(M_2)) = d(M_1, M_2), (\forall) M_1, M_2 \in \mathcal{E}^n$$

unde $d(M_1, M_2) = \|\overline{r}_{M_2} - \overline{r}_{M_1}\|$ este definită cu ajutorul normei euclidiene.

Observația 1.12. Transformarea $\mu: \mathcal{E}^n \to \mathcal{E}^n$ se numește deformare dacă $(\exists) M_1, M_2 \in \mathcal{E}^n$ astfel încât:

$$d(\mu(M_1), \mu(M_2) \neq d(M_1, M_2))$$

1.4.1 Translaţia plană şi spaţială

Fie \mathcal{E}^n spațiu afin euclidian.

Se știe că o translație este o schimbare de reper afin $\mathcal{R}_a = (O, B) \mapsto \mathcal{R}'_a = (O', B)$ care modifică originea reperului, dar îi conservă baza:

$$\overline{r} = \overline{r}_0 + \overline{r}' \tag{11}$$

Figura 10: Translaţia spaţială

Definiția 1.13. Transformarea $\mu: \mathcal{E}^n \to \mathcal{E}^n$ este o translație de vector \overline{v} , notată $\mu = \tau_{\overline{v}}$ dacă oricare ar fi punctul $M \in \mathcal{E}^n$, acesta are imaginea $\mu(M) \stackrel{not}{=} M'$ cu vectorul de poziție r' definit de ecuația vectorială:

$$\tau_{\overline{v}}: \overline{r}' = \overline{r} + \overline{v},\tag{12}$$

unde \overline{r} este vectorul de poziție al punctului M; punctele M, M' sunt raportate relativ la același reper, \mathcal{R}_a .

Propoziția 1.7. Translațiile sunt mișcări ale spațiului \mathcal{E}^n

Demonstrație. Fie $M_1, M_2 \in \mathcal{E}^n$ și M_1', M_2' imaginile lor prin $\tau_{\overline{v}}$. Folosind metrica euclidiană și relația (12) obținem:

$$d(M'_1, M'_2) = \|\overline{r}'_2 - \overline{r}'_1\| = \|\overline{r}_2 + \overline{v} - (\overline{r}_1 + \overline{v})\| = \|\overline{r}_2 - \overline{r}_1\| = d(M_1, M_2).$$

Observația 1.13.

- 1) Orice translație $\mu = \tau_{\overline{v}}$ de vector $\overline{v} \in \mathcal{E}^n$ este echivalentă cu o schimbare de repere $\mathcal{R}_a \to \mathcal{R}'_a$ care conservă baza dacă vectorul de deplasare al originii este $\overline{r}_O \equiv \overline{OO'} = -\overline{v}$.
- 2) În coordonate, ecuațiile translației $\tau_{\overline{v}}$ se obțin descompunând vectorii din relația (12) după baza $B = {\overline{e}_i}_n$ a reperului:

$$\tau_{\overline{v}}: x^{i\prime} = x^i + v^i, \ (i = \overline{1, n}) \tag{13}$$

Deoarece $\overline{OO'} = -\overline{v}$ rezultă că \overline{v} are coordonatele lui $-\overline{r}_0$, deci ecuația de mai sus devine: $x^{i\prime} = x^i - x_0^i$.

Ecuațiile scalare ale translației:

$$\begin{cases} x = x_0 + x' \\ y = y_0 + y' \end{cases}$$
 (în planul \mathcal{E}^2) (14)

$$\begin{cases} x = x_0 + x' \\ y = y_0 + y' \quad \text{(în spaţiul } \mathcal{E}^3\text{)} \\ z = z_0 + z' \end{cases}$$
 (15)

1.4.2 Rotaţia plană şi spaţială

Rotații în plan

Definiția 1.14. Transformarea $\mu: \mathcal{E}^2 \to \mathcal{E}^2$ este o rotație de unghi θ și centru O, notată $\mu = \rho_{\theta}$, dacă $(\forall) M \in \mathcal{E}^2 \setminus \{0\}$, imaginea sa $M' = \mu(M)$ satisface condițiile:

П

unde \bar{r} și \bar{r}' reprezintă vectorii de poziție ai punctelor M și M'.

Propoziția 1.8. Rotațiile sunt mișcări ale spațiului \mathcal{E}^2 .

Demonstrație. Fie $M_1, M_2 \in \mathcal{E}^2$ și M_1', M_2' imaginile lor prin ρ_{θ} . Notăm $\alpha = m \triangleleft (\overline{OM_1}, \overline{OM_2}) = m \triangleleft (\overline{OM_1'}, \overline{OM_2'})$.

$$d(M'_1, M'_2) = \|\bar{r}'_2 - \bar{r}'_1\| = \sqrt{\langle \bar{r}'_2 - \bar{r}'_1, \bar{r}'_2 - \bar{r}'_1 \rangle} = \sqrt{\langle \bar{r}'_2, \bar{r}'_2 \rangle - 2\langle \bar{r}'_1, \bar{r}'_2 \rangle + \langle \bar{r}'_1, \bar{r}'_1 \rangle}$$

$$= \sqrt{\|\bar{r}'_2\|^2 + \|\bar{r}'_1\|^2 - 2\|\bar{r}'_1\| \|\bar{r}'_2\| \cos \alpha} = \sqrt{\|\bar{r}_2\|^2 + \|\bar{r}_1\|^2 - 2\langle \bar{r}_1, \bar{r}_2 \rangle}$$

$$= \sqrt{\langle \bar{r}_2 - \bar{r}_1, \bar{r}_2 - \bar{r}_1 \rangle} = \|\bar{r}_2 - \bar{r}_1\| = d(M_1, M_2).$$

Observația 1.14. Rotația acționează asupra punctelor lui \mathcal{E}^2 cu excepția originii, mișcându-le pe toate în același sens, care este sensul de mișcare al acelor de ceasornic. Schimbarea sensului rotației implică înlocuirea lui θ cu $-\theta$.

Figura 11: Rotația plană în jurul originii

Observația 1.15. Scrierea formulelor rotației plane ρ_{θ} :

Fie reperul cartezian $\mathcal{R} = (O, B)$, $B = \{\bar{i}, \bar{j}\}$. Fie \bar{r} și \bar{r}' vectorii de poziție ai punctelor M și $M' = \rho_{\theta}(M)$. Avem:

$$\bar{r} = x\bar{i} + y\bar{j}$$
$$\bar{r}' = x'\bar{i} + y'\bar{j}$$

Obţinem:

$$x' = pr_{\overline{i}}\overline{r}' = \|\overline{r}'\|\cos(\alpha - \theta) = \|\overline{r}'\|\cos\alpha\cos\theta + \|\overline{r}'\|\sin\alpha\sin\theta = x\cos\theta + y\sin\theta$$
$$y' = pr_{\overline{i}}\overline{r}' = \|\overline{r}'\|\sin(\alpha - \theta) = \|\overline{r}'\|\sin\alpha\cos\theta - \|\overline{r}'\|\cos\alpha\sin\theta = y\cos\theta - x\sin\theta$$

Formulele rotației de unghi θ sunt:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 (17)

unde matricea $R_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ reprezintă matricea rotației de unghi θ .

Rotații spațiale

Prima și ultima dintre condițiile din definiția rotației plane se păstrează iar condiția referitoare la unghiul de rotație se va înlocui prin condiții specifice tipului de rotație.

Astfel, în \mathcal{E}^3 există două tipuri de rotații:

- rotații în jurul unei drepte Δ , numită "axă de rotație";
- rotații în jurul unui punct O, numit "centru de rotație".

Un punct arbitrar M supus unei rotații spațiale de centru O descrie un arc de curbă situat pe o sferă de rază R = d(M, O).

O rotație de tip ρ_{Δ} , adică de axă Δ , se identifică pentru fiecare punct $M \in \mathcal{E}^3 \setminus \Delta$ cu o rotație plană de centru $pr_{\Delta}M$, obținut prin intersecția dreptei Δ cu un plan care conține

punctul dat și este perpendicular pe axa de rotație; unghiul de rotație este același pentru toate punctele din spațiu.

O rotație de tipul $\rho_{(\theta,\Psi,\varphi)}$ de centru O, se identifică, pentru fiecare punct $M \in \mathcal{E}^3 \setminus \{O\}$ cu o compunere de rotații (de unghiuri θ, Ψ, φ) în jurul axelor de coordonate (Ox), (Oy) și respectiv (Oz), cu care Δ se identifică succesiv. Altfel spus, o rotație spațială de centru O este produsul a trei rotații în jurul unor axe având ca punct comun pe O, centrul de rotație.

Matricele asociate acestor tipuri de rotații sunt:

- pentru rotațiile în jurul axelor de coordonate, ρ_{Δ} :

1. când
$$\Delta = (Ox) : R_{\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix};$$

2. când
$$\Delta = (Oy) : R_{\theta} = \begin{bmatrix} \cos \Psi & 0 & -\sin \Psi \\ 0 & 1 & 0 \\ \sin \Psi & 0 & \cos \Psi \end{bmatrix};$$

3. când
$$\Delta = (Oz) : R_{\theta} = \begin{bmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

- pentru rotațiile în jurul originii axelor de coordonate, $\rho_{(\theta,\Psi,\varphi)}$, cele de centru O:

$$R_{(\theta,\Psi,\varphi)} = R_{\theta} \cdot R_{\Psi} \cdot R_{\varphi}.$$

Coordonatele punctului imagine, M'(x', y', z') printr-o rotație arbitrară de centru O, în funcție de coordonatele punctului dat M(x, y, z), sunt:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R_{(\theta, \Psi, \varphi)} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}, (\theta, \Psi, \varphi \in (-\pi, \pi])$$

Observația 1.16. Oricare ar fi μ una din aplicațiile descrise, aceasta invariază produsul scalar din $V = E^n$, adică avem

$$\langle \mu(u), \mu(v) \rangle = \langle u, v \rangle, \forall u, v \in E^n,$$

ceea ce duce la conservarea normelor vectorilor şi a unghiurilor dintre vectori. O astfel de transformare pe E^n se numeşte izometrie.

2 Varietăți liniare (subspații afine)

Fie spațiul afin $(\mathcal{A}; V, \varphi)$ de dimensiune $n; \mathcal{A}^n$.

Definiția 2.1. Un spațiu afin \mathcal{A}^m se numește varietate liniară (subspațiu afin) al spațiului afin \mathcal{A}^n și notăm $\mathcal{A}^m \leq \mathcal{A}^n$, dacă $\mathcal{A}^m = (\mathcal{S}; U, \varphi|_{\mathcal{S}})$ unde $\mathcal{S} \subseteq \mathcal{A}, U \leq V$, $(U = m \text{ dimensional}, m < n) iar <math>\varphi|_{\mathcal{S}}$ este restricția structurii afine φ la submulțimea considerată \mathcal{S} .

Observația 2.1. O dreaptă afină \mathcal{A}^1 poate fi subspațiu afin sau nu pentru un plan afin \mathcal{A}^2 .

Observația 2.2. Un plan afin \mathcal{A}^2 poate fi subspațiu afin sau nu pentru un spațiu afin \mathcal{A}^3 .

2.1 Dreapta

Fie \mathcal{A}^n un spaţiu afin având dimensiunea $n \geq 1$.

2.1.1 Dreapta determinată de un punct și o direcție

Definiția 2.2. O varietate liniară de dimensiune 1 într-un spațiu afin A^n se numește dreaptă.

Fie $M_0 \in \mathcal{A}^n$, al cărui vector de poziție raportat la un reper afin $\mathcal{R}_a = \{O; \bar{e}_1, ..., \bar{e}_n\}$ este $\bar{r}_0 = \overrightarrow{OM_0}$, iar U un subspațiu de dimensiune 1 al spațiului director V. Relația:

$$L_1: \bar{r} = \bar{r}_0 + U \tag{18}$$

definește o dreaptă ce trece prin M_0 și are direcția subspațiului U. Deoarece $U \leq V$ și $dim_{\mathbb{R}}U = 1$ rezultă că spațiul director al dreptei este generat de un singur vector $\bar{v} \in V - \{0\}$, deci $U = \{t\bar{v} \mid t \in \mathbb{R}\}$ și

$$L_1: \bar{r} = \bar{r}_0 + t\bar{v} \tag{19}$$

Aceasta se numește ecuația vectorială a dreptei determinată de un punct și de o direcție, și se notează $D(M_0, \bar{v})$.

Figura 12: Dreapta determinată de un punct și o direcție

Scriind vectorii din (19) în baza $\{\bar{e}_i\}_n$ avem:

$$\bar{r} = x^i \bar{e}_i; \ \bar{r}_0 = x_0^i \bar{e}_i; \ \bar{v} = l^i \bar{e}_i,$$
 (20)

deci,

$$D_{(M_0,\bar{v})}: x^i = x_0^i + tl^i \quad , i = \overline{1,n}$$
 (21)

numite ecuațiile parametrice ale dreptei determinate de un punct și o direcție.

Dacă se elimină t din ecuația (21) se obțin:

$$D_{(M_0,\bar{v})}: \frac{x^1 - x_0^1}{l^1} = \frac{x^2 - x_0^2}{l^2} = \dots = \frac{x^n - x_0^n}{l^n}$$
 (22)

numite ecuații canonice (carteziene) ale dreptei determinată de un punct și de o direcție.

2.1.2 Dreaptă determinată de două puncte

Din geometria sintetică se știe că două puncte distincte determină o unică dreaptă. Fie $M_1, M_2 \in \mathcal{A}^n$. Dreapta determinată de M_1 și M_2 notată $D(M_1, M_2)$, va avea direcția $\bar{v} = \bar{r_2} - \bar{r_1}$ unde $\bar{r_2}, \bar{r_1}$ sunt vectorii de poziție ai punctelor M_2 respectiv M_1 . Din (19) avem:

$$D_{(M_1,M_2)}: \bar{r} = \bar{r}_1 + t(\bar{r}_2 - \bar{r}_1) \tag{23}$$

care reprezintă ecuația vectorială a unei drepte determinată de 2 puncte. Trecând în coordonate obținem:

$$D_{(M_1,M_2)}: x^i = x_0^i + t(x_2^i - x_1^i) , i = \overline{1,n}$$
 (24)

care reprezintă ecuațiile parametrice a unei drepte determinată de 2 puncte. Eliminând parametrul t obținem:

$$D_{(M_1,M_2)}: \frac{x^1 - x_0^1}{x_2^1 - x_1^1} = \frac{x^2 - x_0^2}{x_2^2 - x_1^2} = \dots = \frac{x^n - x_0^n}{x_2^n - x_1^n}$$
 (25)

care reprezintă ecuațiile canonice a unei drepte determinată de 2 puncte.

Observația 2.3. Direcția dreptei este dată de $l^1 = x_2^1 - x_1^1, ..., l^n = x_2^n - x_1^n$.

2.2 Planul

Fie \mathcal{A}^n un spațiu afin de dimensiune $n \geq 2$.

2.2.1 Planul determinat de un punct și două direcții

Definiția 2.3. O varietate liniară de dimensiune 2 într-un spațiu afin A^n se numește plan.

Fie $M_0 \in \mathcal{A}^n$, al cărui vector de poziție raportat la un reper afin $\mathcal{R}_a = \{O; \bar{e_1}, ..., \bar{e_n}\}$ este $\bar{r}_0 = \overrightarrow{OM_0}$, iar U un subspațiu de dimensiune 2 al spațiului director V. Relația:

$$L_2: \bar{r} = \bar{r}_0 + U \tag{26}$$

definește un plan ce trece prin M_0 și are direcția subspațiului U. Deoarece $U \leq V$ și $dim_{\mathbb{R}}U=2$ rezultă că subspațiul director al unui plan este generat de doi vectori $\bar{v}_1, \bar{v}_2 \in V - \{0\}$, deci $U = \{t^1\bar{v}_1 + t^2\bar{v}_2 \mid t^1, t^2 \in \mathbb{R}\}$. Ecuația (26) devine:

$$L_2: \bar{r} = \bar{r}_0 + t^1 \bar{v}_1 + t^2 \bar{v}_2, \quad t^1, t^2 \in \mathbb{R}$$
 (27)

reprezentând ecuația vectorială a planului determinat de un punct și două direcții. Notăm aceasta prin: $P(M_0, \bar{v}_1, \bar{v}_2)$.

Pentru scrierea parametrică înlocuim expresiile analitice ale vectorilor: $\bar{r}=x^i\bar{e}_i;\ \bar{r}_0=x^i_0\bar{e}_i;\ \bar{v}_1=l^i_1\bar{e}_i;\ \bar{v}_2=l^i_2\bar{e}_i.$ și obținem:

$$P(M_0, \bar{v}_1, \bar{v}_2) : x_i = x_0^i + t^1 l_1^i + t^2 l_2^i \quad t^1, t^2 \in \mathbb{R}$$
(28)

Ecuația carteziană a planului se obține prin eliminarea parametrilor. De exemplu, în cazul n=3, avem următoarele ecuații parametrice:

$$\begin{cases} x = x_0 + t^1 l_1 + t^2 l_2 \\ y = y_0 + t^1 m_1 + t^2 m_2 \\ z = z_0 + t^1 n_1 + t^2 n_2 \end{cases}$$

din care eliminăm parametrii t_1 şi t_2 . Considerând variabilele t^1, t^2 rezultă că avem 3 ecuații si 2 necunoscute; sistemul este compatibil determinat dacă determinantul caracteristic este nul adică dacă

$$\Delta_{c} = 0: \begin{vmatrix} l_{1} & l_{2} & x - x_{0} \\ m_{1} & m_{2} & y - y_{0} \\ n_{1} & n_{2} & z - z_{0} \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow P(M_{0}, \bar{v}_{1}, \bar{v}_{2}): \begin{vmatrix} x - x_{0} & y - y_{0} & z - z_{0} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \end{vmatrix} = 0$$
(29)

care reprezintă ecuația carteziană a planului.

Figura 13: Planul determinat de un punct și două direcții

Observația 2.4. Ecuația (29) poate fi scrisă și ca produs mixt:

$$P(M_0, \bar{v}_1, \bar{v}_2) : (\bar{r} - \bar{r}_0; \bar{v}_1; \bar{v}_2) = 0. \tag{30}$$

2.2.2 Planul determinat de trei puncte necoliniare

Din geometria sintetică se știe că trei puncte necoliniare determină un plan. Fie $M_1, M_2, M_3 \in \mathcal{A}^3$ și $P(M_1, M_2, M_3)$ planul determinat de cele trei puncte. Atunci vectorii $\overrightarrow{M_3M_1} = \overline{v_1}$ şi $\overrightarrow{M_3M_2} = \overline{v_2}$ vor fi necoliniari, deci independenți, şi pot fi luați ca vectori directori pentru plan. Considerând M_3 punctul curent, putem scrie ecuația vectorială a planului:

$$P(M_1, M_2, M_3) : \bar{r} = \bar{r}_3 + t^1(\bar{r}_1 - \bar{r}_3) + t^2(\bar{r}_2 - \bar{r}_3)$$
(31)

sau

$$P(M_1, M_2, M_3) : (\bar{r} - \bar{r}_3; \bar{r}_1 - \bar{r}_3; \bar{r}_2 - \bar{r}_3) = 0$$
(32)

care este echivalent cu:

$$P(M_1, M_2, M_3): \begin{vmatrix} x - x_3 & y - y_3 & z - z_3 \\ x_1 - x_3 & y_1 - y_3 & z_1 - z_3 \\ x_2 - x_3 & y_2 - y_3 & z_2 - z_3 \end{vmatrix} = 0$$
 (33)

sau

$$P(M_1, M_2, M_3): \begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0$$
(34)

În cazul particular în care $M_1(a,0,0) \in Ox$, $M_2(0,b,0) \in Oy$, $M_3(0,0,c) \in Oz$ avem: $P(M_1,M_2,M_3):bcx+acy+abz-abc=0$ sau

$$P(M_1, M_2, M_3) : \frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 = 0$$
(35)

numită ecuația planului prin tăieturi.

2.2.3 Planul determinat de un punct și direcția normală

Fie $M_0 \in \mathcal{E}^3$ şi $\bar{n} \neq \bar{0}$ un vector al spațiului director \mathcal{E}^3 .

Se știe că există un singur plan $P \in \mathcal{E}^3$ care trece printr-un punct și este ortogonal pe o dreaptă dată. Notăm cu $P(M_0, \bar{n})$ planul care conține M_0 și este perpendicular pe \bar{n} .

Avem că pentru orice $M \in P(M_0, \bar{n})$, vectorul $\overrightarrow{M_0M}$ este ortogonal pe \bar{n} adică $\langle \overrightarrow{M_0M}; \bar{n} \rangle = 0$.

Dacă se consideră reperul $\mathcal{R}_a^0 = \{O; \bar{i}, \bar{j}, \bar{k}\}$, atunci ecuația vectorială a planului determinat de punctul M_0 și de direcția normală \bar{n} este:

$$P(M_0, \bar{n}) : <\bar{r} - \bar{r}_0; \bar{n} > = 0 \tag{36}$$

Figura 14: Planul determinat de un punct și direcția normală

Dacă descompunem vectorii avem:

$$<(x-x_0)\bar{i} + (y-y_0)\bar{j} + (z-z_0)\bar{k}; A\bar{i} + B\bar{j} + C\bar{k}> = 0 \Leftrightarrow$$

$$P(M_0, \bar{n}) : A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$
(37)

respectiv

$$P: Ax + By + Cz + D = 0, (38)$$

numită ecuația generală a planului.

Observația 2.5. Direcția normală la plan este dată de $\bar{n}(A, B, C)$.

2.3 Intersecții, proiecții și unghiuri ale varietăților liniare

2.3.1 Intersecția a două drepte

Considerăm dreptele de ecuație:

$$D_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1} \tag{39}$$

şi

$$D_1: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}. (40)$$

Intersecția acestor drepte este determinată de soluția sistemului format din ecuațiile lui D_1 și D_2 :

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \\ A_3x + B_3y + C_3z + D_3 = 0 \\ A_4x + B_4y + C_4z + D_4 = 0 \end{cases}$$

Notând cu A matricea sistemului și cu \bar{A} matricea extinsă, din studiul compatibilității sistemului avem:

- 1. Dacă $rangA < rang\bar{A}$ atunci sistemul este incompatibil (nu are soluție), rezultă $D_1 \cap D_2 = \emptyset$, adică dreptele sunt paralele dacă $\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$ sau sunt drepte necoplanare.
- 2. Dacă $rangA = rang\bar{A} = 3$ atunci sistemul este compatibil determinat, adică avem soluție unică, $D_1 \cap D_2 = \{M\}$.
- 3. Dacă $rangA = rang\bar{A} < 3$ atunci sistemul este compatibil nedeterminat; în acest caz avem o infinitate de soluții care vor depinde de un parametru real, deci $D_1 \equiv D_2$ (este necesar să fie îndeplinită și condiția de paralelism).

2.3.2 Intersecția a două plane

Considerăm planele P_1, P_2 date prin ecuațiile generale:

$$P_1: A_1x + B_1y + C_1z + D_1 = 0$$
 $P_2: A_2x + B_2y + C_2z + D_2 = 0.$

Direcțiile normalel ale celor 2 plane sunt: $\bar{n}_1(A_1, B_1, C_1)$ și $\bar{n}_2(A_2, B_2, C_2)$.

Observația 2.6.

- 1. Dacă $\bar{n}_1 = \lambda \bar{n}_2, \lambda \neq 0$, adică vectorii \bar{n}_1 și \bar{n}_2 sunt colineari, atunci $P_1 \parallel P_2 \Rightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$. Dacă în plus are loc și egalitatea $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}$ atunci planele coincid.
- 2. Dacă $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ este falsă atunci planele nu sunt paralele iar intersecția celor 2 plane ete o dreaptă D, a cărei ecuație carteziană este dată de:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}.$$

Sistemul este compatibil nedeterminat deoarece $rangA = rang\bar{A} = 2$, iar mulţimea soluţiilor reprezintă dreapta de intersecţie.

Pentru a determina ecuațiile canonice ale dreptei aflăm: un punct oarecare $M_0 \in D$ (fixăm un x, înlocuim în sistem și găsim y și z corespunzători); direcția $\bar{v} = \bar{n}_1 \times \bar{n}_2 =$

$$\begin{bmatrix} \bar{i} & \bar{j} & \bar{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{bmatrix} \text{ pentru că } \bar{v} \perp \bar{n}_1 \text{ și } \bar{v} \perp \bar{n}_2.$$

Definiția 2.4. Dacă P_1, P_2 sunt plane date a căror intersecție este dreapta D, atunci combinația liniară

$$P_{\lambda}: A_1x + B_1y + C_1z + D_1 + \lambda(A_2x + B_2y + C_2z + D_2) = 0$$

se numește ecuația fascicolului de plane care are ca bază planele P_1, P_2 .

Relația de mai sus se poate scrie:

$$P_1 + \lambda P_2 = 0,$$
 $\lambda \in \mathbb{R} \cup \{\pm \infty\}$

Observația 2.7.

- 1. pentru $\lambda = 0 \Rightarrow P_1 = 0$, se obține deci unul din planele de bază.
- 2. pentru $\lambda \to \pm \infty$, în acest caz dacă înmulțim relația cu $\frac{1}{\lambda}$ se obține $P_2 = 0$, adică ecuația celui de-al doilea plan de bază.
- 3. dreapta $D = P_1 \cap P_2$ este comună tuturor planelor din familia (P_{λ}) și se numește axa fascicolului de plane.

2.3.3 Intersecția unei drepte cu un plan

Fie planul P: Ax + By + Cz + D = 0 și dreapta $D: \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$. Pentru a studia intersecția planului P cu dreapta D vom considera sistemul de ecuații format din ecuațiile parametrice ale dreptei D și ecuația planului P:

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \\ Ax + By + Cz + D = 0 \end{cases} t \in \mathbb{R}.$$

Înlocuind pe x, y, z din primele 3 ecuații în ecuația planului, se obține ecuația de gradul I:

$$t(Al + Bm + Cn) = -(Ax_0 + By_0 + Cz_0 + D)$$

- 1) Ecuația are soluție unică t_1 dacă $Al + Bm + Cn \neq 0 \Leftrightarrow <(A, B, C); (l, m, n) > \neq 0$. În acest caz intersecția dreptei D cu planul P este un punct.
- 2) Dacă $Al+Bm+Cn=0 \Leftrightarrow <\bar{n},\bar{v}>=0 \Rightarrow \bar{n}\perp\bar{v}$ atunci dreapta D este paralelă cu planul $P,\,D\cap P=\emptyset$.
- 3) Dacă Al + Bm + Cn = 0 și în particular $Ax_0 + By_0 + Cz_0 + D = 0$ atunci ecuația este verificată pentru orice $t \in \mathbb{R} \Rightarrow D \subset P$.

2.3.4 Proiecția unui punct pe o varietate liniară

Fie $M_0 \in \mathcal{E}^3$. Notăm cu M_0' proiecția ortogonală a punctului dat fie pe o dreaptă D, fie pe un plan P.

Coordonatele (x'_0, y'_0, z'_0) ale punctului de proiecție M'_0 , în cazul proiecției punctului M_0 pe dreapta D sunt date de soluția sistemului de ecuații liniare:

$$Pr_D M_0 = M_0'$$
:
$$\begin{cases} \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n} \\ l(x - x_0) + m(y - y_0) + n(z - z_0) = 0 \end{cases}$$

adică, punctul M'_0 este determinat de punctul de intersecție dintre dreapta dată și planul ortogonal pe aceasta care conține punctul M_0 .

Figura 15: Proiecția unui punct pe o dreaptă

Coordonatele (x'_0, y'_0, z'_0) ale punctului de proiecție M'_0 , în cazul proiecției punctului M_0 pe planul P sunt date de soluția sistemului de ecuații liniare:

$$Pr_P M_0 = M_0'$$
:
$$\begin{cases} Ax + By + Cz + D = 0\\ \frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C} \end{cases}$$

adică, punctul M'_0 este determinat de punctul de intersecție dintre planul dat şi dreapta ortogonală pe acesta care conține punctul M_0 .

Figura 16: Proiecția unui punct pe un plan

2.3.5 Proiecția unei drepte pe un plan

Fie o dreaptă D dată prin ecuațiile canonice: $D: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$, un plan P dat prin ecuația generală P: Ax + By + Cz + D = 0, și D' proiecția dreptei D pe planul P notată $D' = Pr_PD$.

În general, proiecția unei drepte pe un plan se obține proiectând două puncte diferite $M_0(x_0, y_0, z_0), M_1(x_1, y_1, z_1)$ ale dreptei D pe planul P. Proiecția dreptei D va fi determinată de cele 2 puncte obținute în urma proiecției $M'_0(x'_0, y'_0, z'_0) = pr_p M_0, M'_1(x'_1, y'_1, z'_1) = pr_p M_1$.

Observația 2.8.

- 1. Dacă dreapta D este ortogonală pe plan, adică vectorii \bar{n}, \bar{v} sunt coliniari $\bar{v} = \lambda \bar{n}$ atunci proiecția se reduce la un punct care se va obține prin simpla intersecție dintre D și P.
- 2. Dacă dreapta D este paralelă cu planul, adică $\langle \bar{v}, \bar{n} \rangle = 0$ atunci proiecția D' a dreptei D se poate determina cu ajutorul proiecției unui singur punct pe plan iar ecuația dreptei de proiecție se scrie ca fiind ecuația dreptei determinată de punctul te proiecție și direcția dreptei D.
- 3. Dacă *D* nu este ortogonală pe plan, şi nu este paralelă cu planul atunci se proiectează un singur punct al dreptei pe plan, iar al doilea se va lua punctul de intersecție dintre dreaptă și plan.

Figura 17: Proiecția unei drepte pe un plan

Unghiul a două varietăți liniare 2.3.6

1. Unghiul a două drepte

Fie dreptele $D_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ şi $D_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$. Putem afla unghiul $\theta \in [0, \frac{\pi}{2}]$ al acestora, determinând mai întâi unghiul $\theta' \in [0, \pi]$ al vectorilor lor directori $\bar{v}_1 = (l_1, m_1, n_1)$ şi $\bar{v}_2 = (l_2, m_2, n_2)$ cu formula cunoscută pentru unghiul a doi vectori într-un spațiu vectorial euclidian: $\cos \theta' = \frac{\langle v_1, v_2 \rangle}{\parallel v_1 \parallel \cdot \parallel v_2 \parallel}$. Avem următoarele cazuri: dacă $\cos \theta' > 0$ atunci $\theta' = \theta$, iar dacă $\cos \theta' < 0$ atunci $\theta' = \pi - \theta$.

Figura 18: Unghiul a două drepte

2. Unghiul unei drepte cu un plan Fie
$$D: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$
 și $P: Ax+By+Cz+D=0$.

Calculăm întâi măsura unghiului θ' dintre vectorul director al dreptei D și vectorul normalei la planul P, folosind formula $\cos\theta' = \frac{<\bar{v},\bar{n}>}{\parallel\bar{v}\parallel\cdot\parallel\bar{n}\parallel}$. Măsura unghiului dintre dreapta D și planul P este $m(\triangleleft D, P) = \theta = \frac{\pi}{2} - \theta'$

Figura 19: Unghiul unei drepte cu un plan

Figura 20: Unghiul a două plane

3. Unghiul dintre 2 plane

Fie $P_1: A_1x + B_1y + C_1z + D_1 = 0$ şi $P_2: A_2x + B_2y + C_2z + D_2 = 0$, cu normalele la plan: $\bar{n}_1(A_1, B_1, C_1)$ şi $\bar{n}_2(A_2, B_2, C_2)$. Avem $m(\triangleleft P_1, P_2) = m(\triangleleft \theta), \ \theta \in [0, \frac{\pi}{2}]$. Calculăm $\cos \theta' = \frac{\langle \bar{n}_1, \bar{n}_2 \rangle}{\|\bar{n}_1\| \cdot \|\bar{n}_2\|}$ şi obţinem unghiul dintre P_1 şi $P_2, \theta = \pi - \theta'$:

2.4 Distanța de la un punct la o varietate liniară

2.4.1 Distanța de la un punct la o dreaptă

Considerăm în \mathcal{E}^3 , $\mathcal{R}_a\{O; \bar{i}, \bar{j}, \bar{k}\}$ un punct $M_1(x_1, y_1, z_1)$ și o dreaptă dată prin ecuația canonică $D: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$.

În cele ce urmează ne propunem să calculăm distanța de la M_1 la dreapta D. Notăm $d(M_1, D) = d$ ($d = 0 \Leftrightarrow M_1 \in D$). Să presupunem că spațiul afin euclidian este dotat cu metrica $d(M_1, M_2) = \|\overline{M_1 M_2}\|$ unde $\|\cdot\|$ este norma euclidiană asociată spațiului vectorial asociat \mathcal{E}^3 . Vom prezenta două metode de calcul a distanței de la un punct la o dreaptă: metoda vectorială și metoda analitică.

Metoda I (Metoda vectorială)

Fie $M_0 \in D$; $\overline{OM_0} = \bar{r}_0 = x_0 \bar{i} + y_0 \bar{j} + z_0 \bar{k}$ și $\overline{OM_1} = \bar{r}_1 = x_1 \bar{i} + y_1 \bar{j} + z_1 \bar{k}$. Vectorul director al dreptei este dat de: $\bar{v} = l\bar{i} + m\bar{j} + n\bar{k}$. Fie $\overline{M_0M_1} = \bar{r}_1 - \bar{r}_0$ și produsul vectorial: $\parallel \overline{M_0M_1} \times \bar{v} \parallel = \parallel \overline{M_0M_1} \parallel \cdot \parallel \bar{v} \parallel \cdot \sin \theta$. Dar $d = \parallel \overline{M_0M_1} \parallel \cdot \sin \theta$, de unde se obține distanța de la punct la dreaptă:

$$d = \frac{\parallel \overrightarrow{M_0 M_1} \times \overline{v} \parallel}{\parallel \overline{v} \parallel} \tag{41}$$

Ecuația de mai sus repezintă formula vectorială a distanței de la un punct la o dreaptă.

Metoda II (Metoda analitică)

În acest caz, pentru determinarea distanței de la un punct la o dreaptă se determină coordonatele proiecției punctului M_1 pe dreapta D, punct pe care îl notăm cu $M'_1(x'_1, y'_1, z'_1)$. Aceste coordonate se determină rezolvând sistemul format din ecuația dreptei D și ecuația planului perpendicular pe dreaptă și care conține punctul $M_1(x_1, y_1, z_1)$:

$$M_1'(x_1', y_1', z_1') : \begin{cases} \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n} \\ l(x - x_1) + m(y - y_1) + n(z - z_1) = 0 \end{cases}$$

Pentru rezolvarea mai simplă a acestui sistem se recomandă scrierea ecuației dreptei sub formă parametrică. Astfel, obținem distanța de la un punct la o dreaptă:

$$d(M_1, D) = d(M_1, M_1') = \sqrt{(x_1 - x_1')^2 + (y_1 - y_1')^2 + (z_1 - z_1')^2}.$$
 (42)

2.4.2 Distanța de la un punct la un plan

Fie $M_0(x_0, y_0, z_0)$ un punct din spaţiul metric (\mathcal{E}^3, d) şi P un plan arbitrar de ecuaţie: P: Ax + By + Cz + D = 0.

Dacă $M_0 \in P$ atunci $d(M_0, P) = 0$.

Dacă $M_0 \notin P$ atunci pentru calculul distanței de la un punct la un plan vom folosi metoda analitică, adică vom determina coordonatele punctului de proiecție a punctului M_0 pe planul P, punct pe care îl notăm cu M'_0 ($M'_0 = pr_P M_0$). Aceste coordonate se determină rezolvând sistemul format din ecuația planului P și ecuația dreptei perpendiculare pe plan și care trece prin punctul M_0 :

$$M_0'(x_0', y_0', z_0') : \begin{cases} Ax + By + Cz + D = 0\\ \frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C} \end{cases}$$

Pentru rezolvarea sistemului scriem ecuația parametrică a dreptei D:

$$\frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C} = t_0,$$

de unde scoțând t_0 și înlocuind în ecuația planului obținem

$$t_0 = -\frac{Ax_0 + By_0 + Cz_0 + D = 0}{A^2 + B^2 + C^2}.$$

Coordonatele lui M'_0 vor fi: $M'_0(x_0 + t_0A, y_0 + t_0B, z_0 + t_0C)$. Astfel,

$$d(M_0, P) = d(M_0, M'_0) = \sqrt{(x_0 - x'_0)^2 + (y_0 - y'_0)^2 + (z_0 - z'_0)^2} = \sqrt{t_0^2 (A^2 + B^2 + C^2)} =$$

$$= \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

2.4.3 Ecuația normală a planului

Fie P: Ax + By + Cz + D = 0 un plan arbitrar. Ecuația normală a planului se obține împărțind ecuația planului P cu $\parallel \bar{n} \parallel = \sqrt{A^2 + B^2 + C^2}$ care reprezintă norma direcției normalei la planul P. Ecuația normală a planului este dată deci de ecuația:

$$P: \pm \frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}} = 0$$

Observația 2.9. Distanța de la un punct M_0 la planul P se calculează înlocuind coordonatele punctului M_0 în ecuația planului.

Fie $\alpha, \beta, \gamma \in [0, \pi]$, dați de relațiile:

$$\cos \alpha = \pm \frac{A}{\sqrt{A^2 + B^2 + C^2}}; \cos \beta = \pm \frac{B}{\sqrt{A^2 + B^2 + C^2}}; \cos \gamma = \pm \frac{C}{\sqrt{A^2 + B^2 + C^2}}$$

Se observă că are loc relația: $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$; $\cos \alpha, \cos \beta, \cos \gamma$ se numesc cosinușii directori ai direcției normale la plan.

2.5 Perpendiculara comună a două drepte. Distanţa dintre două drepte

2.5.1 Perpendiculara comună a două drepte

Perpendiculara comună a două drepte D_1 şi D_2 este o dreptă D care este ortogonală pe ambele drepte, având câte un punct de intersecție cu fiecare dintre ele.

Dacă dreptele date nu sunt paralele, atunci există o unică dreaptă a spațiului care are proprietatea: $D \perp D_1$, $D \perp D_2$, $D \cap D_1 \neq \emptyset$, $D \cap D_2 \neq \emptyset$. Existența și unicitatea perpendicularei comune vor rezulta implicit prin găsirea ecuațiilor sale pe cale analitică.

Dacă dreptele sunt paralele atunci există o infinitate de drepte care au proprietatea de mai sus.

Vom studia analitic primul caz, cel al dreptelor neparalelele. Fie $D_1 \not\parallel D_2$, date de:

$$D_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1} \qquad \text{si} \qquad D_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$$

astfel încât $\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$ să nu fie satisfăcută (aceasta înseamnă că vectorii lor directori $\bar{v}_1(l_1, m_1, n_1)$ și $\bar{v}_2(l_2, m_2, n_2)$ vor fi necoliniari, deci $\bar{v}_1 \times \bar{v}_2 \neq 0$). Vectorul $\bar{v} = \bar{v}_1 \times \bar{v}_2$ va fi ortogonal pe D_1 și D_2 , iar direcția perpendicularei comune va fi dată de:

$$ar{v} = \left| egin{array}{ccc} ar{i} & ar{j} & ar{k} \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{array} \right| \stackrel{not}{=} lar{i} + mar{j} + nar{k}.$$

Considerăm punctele $M_1(x_1,y_1,z_1) \in D_1$ și $M_2(x_2,y_2,z_2) \in D_2$. $(M_1,\bar{v},\bar{v_1})$ determină un plan $P_1 = P(M_1,\bar{v},\bar{v_1})$, iar $(M_2,\bar{v},\bar{v_2})$ determină un plan $P_2 = P(M_2,\bar{v},\bar{v_2})$. Ecuațiile celor două plane sunt date de:

$$P_1: \left| \begin{array}{cccc} x - x_1 & y - y_1 & z - z_1 \\ l_1 & m_1 & n_1 \\ l & m & n \end{array} \right| = 0 \quad \text{si} \quad P_2: \left| \begin{array}{cccc} x - x_2 & y - y_2 & z - z_2 \\ l_2 & m_2 & n_2 \\ l & m & n \end{array} \right| = 0$$

Intersecția celor două plane P_1 și P_2 este o dreaptă D care reprezintă perpendiculara comună a celor două drepte.

2.5.2 Distanța dintre două drepte

Pentru calculul distanței dintre două drepte prezentăm două metode: metoda analitică și metoda vectorială.

Metoda I (analitică)

Fie D_1 , D_2 două drepte arbitrare și D perpendiculara comună. Considerăm că $D \cap D_1 = \{A_1\}$ și $D \cap D_2 = \{A_2\}$, A_1, A_2 picioarele perpendicularei comune. Coordonatele acestor

Figura 21: Perpendiculara comună a două drepte

puncte se pot determina rezolvând următoarele sisteme de ecuații:

$$A_{1} = D \cap D_{1} : \left| \begin{array}{cccc} x - x_{1} & y - y_{1} & z - z_{1} \\ l_{1} & m_{1} & n_{1} \\ l & m & n \end{array} \right| = 0$$

$$A_{1} = D \cap D_{1} : \left| \begin{array}{cccc} x - x_{2} & y - y_{2} & z - z_{2} \\ l_{2} & m_{2} & n_{2} \\ l & m & n \end{array} \right| = 0$$

$$D_{1} : \frac{x - x_{1}}{l_{1}} = \frac{y - y_{1}}{m_{1}} = \frac{z - z_{1}}{n_{1}}$$

şi

$$A_{2} = D \cap D_{2} : \begin{cases} P_{1} : \begin{vmatrix} x - x_{1} & y - y_{1} & z - z_{1} \\ l_{1} & m_{1} & n_{1} \\ l & m & n \end{vmatrix} = 0 \\ P_{2} : \begin{vmatrix} x - x_{2} & y - y_{2} & z - z_{2} \\ l_{2} & m_{2} & n_{2} \\ l & m & n \end{vmatrix} = 0 \\ D_{2} : \frac{x - x_{2}}{l_{2}} = \frac{y - y_{2}}{m_{2}} = \frac{z - z_{2}}{n_{2}}$$

$$A_{1} (x^{*}, x^{*}, x^{*}, x^{*}) = A_{2} (x^{*}, x^{*}, x^{*}) = A_{2} (x^{*}, x^{*}, x^{*}) = A_{3} (x^{*}, x^{*}, x^{*}) = A_{4} (x^{*}, x^{*$$

Obţinem astfel $A_1(x_1^*, y_1^*, z_1^*)$ şi $A_2(x_2^*, y_2^*, z_2^*)$, iar distanţa dintre dreptele D_1 şi D_2 va fi:

$$d(D_1, D_2) = d(A_1, A_2) = \sqrt{(x_1^* - x_2^*)^2 + (y_1^* - y_2^*)^2 + (z_1^* - z_2^*)^2}.$$

Metoda II (vectorială)

Această metodă se bazează pe construcția unui paralelipiped pentru care cele două drepte date D_1 și D_2 sunt situate în plane paralele conținând o pereche de baze opuse. În acest fel $d(D_1, D_2) = h$ reprezintă înăltimea paralelipipedului. Astfel, vom putea determina distanța dintre cele două drepte folosind formula de calcul a volumului paralelipipedului (\mathcal{V}) .

Se știe că
$$\mathcal{V} = \mathcal{A}_b \cdot h$$
. Deoarece $\mathcal{V} = |(\overrightarrow{M_1 M_2}; \overline{v_1}; \overline{v_2})|$ iar $\mathcal{A}_b = ||\overline{v_1} \times \overline{v_2}||$, avem că

$$d(D_1, D_2) = h = \frac{|(M_1 M_2; \bar{v_1}; \bar{v_2})|}{\|\bar{v_1} \times \bar{v_2}\|}$$

3 Sfera. Conice. Cuadrice și suprafețe speciale.

3.1 Sfera şi cercul în spaţiu

3.1.1 Sfera

Fie \mathcal{E}^3 spațiul afin euclidian, în care se consideră reperul afin $\mathcal{R}_a = \{O; \bar{i}, \bar{j}, \bar{k}\}.$

Definiția 3.1. Se numește sferă mulțimea punctelor spațiului \mathcal{E}^3 situate la distanță constantă de un punct dat.

Notăm cu $S_R(C)$ sfera de centru C și rază R, respectiv cu S_R sfera centrată în origine și rază R.

Din definiția sferei, putem scrie:

$$S_R(C) = \{ M \in \mathcal{E}^3 \mid d(M, C) = R \}$$

sau, dacă folosim norma:

$$S_R(C) = \{ M \in \mathcal{E}^3 \mid ||\overrightarrow{CM}|| = R \}.$$

Deoarece

$$\overrightarrow{CM} = \overline{r} - \overline{r}_C$$

unde $\overline{r} = \overrightarrow{OM}$ este vectorul de poziție al unui

Figura 22: Sfera

punct oarecare M de pe sferă, iar $\overline{r}_C = \overrightarrow{OC}$ este vectorul de poziție al centrului sferei, obținem de aici ecuația vectorială a sferei:

$$S_R(C): \langle \overline{r} - \overline{r}_C; \overline{r} - \overline{r}_C \rangle = R^2$$
 (43)

Dacă centrul sferei C are coordonatele (a,b,c), iar punctul M coordonatele (x,y,z), atunci putem scrie:

$$\overline{r}_C = a\,\overline{i} + b\,\overline{j} + c\,\overline{k}, \qquad \overline{r} = x\,\overline{i} + y\,\overline{j} + z\,\overline{k},$$
$$\overline{r} - \overline{r}_C = (x - a)\overline{i} + (y - b)\overline{j} + (z - c)\overline{k}.$$

Folosind definiția produsului scalar, rezultă următoarea ecuație a sferei:

$$S_R(C): (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2,$$
 (44)

numită ecuația canonică a sferei. Ecuația generală a sferei este:

$$S_R(C): \quad x^2 + y^2 + z^2 + mx + ny + pz + q = 0,$$
 (45)

de unde prin identificarea coeficienților între ecuațiile (44) și (45), obținem:

$$\begin{cases}
 m = -2a \\
 n = -2b \\
 p = -2c \\
 q = a^2 + b^2 + c^2 - R^2
\end{cases}$$
(46)

şi:

$$\begin{cases}
C\left(-\frac{m}{2}, -\frac{n}{2}, -\frac{p}{2}\right) \\
R = \frac{1}{2}\sqrt{m^2 + n^2 + p^2 - 4q}
\end{cases}$$
(47)

Ecuațiile parametrice ale sferei pot fi obținute plecând de la ecuația vectorială. Pentru aceasta, considerăm vectorul unitar \overline{u} , coliniar cu \overrightarrow{CM} , dat prin:

$$\overline{u} = \cos\alpha \,\overline{i} + \cos\beta \,\overline{j} + \cos\gamma \,\overline{k}.$$

 α , β şi γ sunt unghiurile pe care vectorul \overline{u} le face cu axele de coordonate Ox, Oy, respectiv Oz; deci $\cos \alpha$, $\cos \beta$, $\cos \gamma$ reprezintă cosinușii directori și verifică egalitatea

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1. \tag{48}$$

În aceste condiții, există un număr real și pozitiv λ , astfel încât

$$\overrightarrow{CM} = \lambda \overline{u}.\tag{49}$$

Trecând la normă și ținând cont că $\|\overline{u}\| = 1$ și $\|\overrightarrow{CM}\| = R$ obținem $\lambda = \pm R$, adică

$$\overrightarrow{CM} = \pm R \, \overline{u}.$$

Deoarece

$$\overrightarrow{CM} = (x-a)\overline{i} + (y-b)\overline{j} + (z-c)\overline{k}$$

rezultă de aici ecuațiile parametrice ale sferei:

$$\begin{cases} x = a \pm R \cos \alpha \\ y = b \pm R \cos \beta \\ z = c \pm R \cos \gamma \end{cases}$$
 (50)

Observația 3.1. Deoarece parametrii α , β , γ satisfac ecuația (48), rezultă că ei nu sunt independenți, deci unul dintre ei se poate exprima în funcție de ceilalți doi. De aici rezultă că ecuațiile parametrice ale sferei se exprimă cu ajutorul a doi parametri independenți. În concluzie, sfera este o varietate de dimensiune 2 în \mathcal{E}^3 (o suprafață).

3.1.2 Coordonate sferice

Vom pune în evidență un alt tip de ecuații parametrice ale sferei de rază R. Pentru aceasta, considerăm sfera centrată în origine și scriem coordonatele polare ale unui punct M(x,y,z) de pe sferă:

$$\begin{cases} x = R \sin \theta \cos \varphi \\ y = R \sin \theta \sin \varphi \\ z = R \cos \theta \end{cases}$$
 (51)

unde $\bar{r} = \overrightarrow{OM}$, $\|\bar{r}\| = R > 0$, $\theta = \widehat{r}, Oz$, $M' = Pr_{Oxy}M$, $\varphi = \widehat{OM'}, Ox$, iar $\theta \in [0, \pi]$, $\varphi \in [0, 2\pi)$.

Notând
$$\theta' = \frac{\pi}{2} - \theta$$
, avem $\theta' \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ şi $\sin \theta' = \cos \theta$, $\cos \theta' = \sin \theta$.

Prin urmare, pentru sfera centrată în origine și de rază $R = \|\overrightarrow{OM}\|$ obținem:

$$\begin{cases} x = R \cos \theta' \cos \varphi \\ y = R \cos \theta' \sin \varphi \\ z = R \sin \theta' \end{cases}$$
 (52)

Dacă notăm $\theta' = u$, $\varphi = v$, atunci obținem ecuațiile parametrice pentru sfera centrată în origine:

$$\begin{cases} x = R \cos u \cos v \\ y = R \cos u \sin v \\ z = R \sin u \end{cases}, u \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], v \in [0, 2\pi).$$
(53)

Figura 23: Coordonate polare

Perechea (u, v) poartă numele de coordonate sferice ale punctului $M \in S_R$ (u și v dau poziția punctului M).

3.1.3 Cercul în spațiu

Definiția 3.2. Cercul în spațiu se definește ca intersecția dintre o sferă și un plan aflat la o distanță de centrul sferei mai mică decât raza sferei.

Fie $S_R(C)$ sfera de centru C(a,b,c) şi rază R>0, şi P: Ax+By+Cz+D=0 un plan în \mathcal{E}^3 . Notăm $S_R(C)\cap P=\Gamma$.

Dacă d(C,P)>R, atunci $\Gamma=\emptyset$, adică planul și sfera nu se intersectează.

Dacă d(C, P) = R, atunci $\Gamma = \{M_0\}$, adică planul este tangent sferei în punctul M_0 .

Dacă d(C, P) < R, atunci Γ este o mulțime infinită de puncte, caracterizată de ecuațiile carteziene:

Figura 24: Cercul în spațiu
$$\begin{cases} (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2 \\ Ax + By + Cz + D = 0 \end{cases}$$
 (54)

Vom determina în continuare coordonatele centrului C' al cercului Γ , precum şi raza r a acestuia. Astfel,

$$d(C, P) = CC' = \frac{|aA + bB + cC + D|}{\sqrt{A^2 + B^2 + C^2}}$$

și din teorema lui Pitagora rezultă

$$r = \sqrt{R^2 - CC^2}. ag{55}$$

Pentru calculul coordonatelor punctului C', remarcăm că acesta este proiecția pe planul P a centrului sferei C, adică va fi soluția sistemului:

$$\begin{cases} Ax + By + Cz + D = 0\\ \frac{x-a}{A} = \frac{x-b}{B} = \frac{x-c}{C} \end{cases}$$

adică,

$$C'(a + t'A, b + t'B, c + t'C)$$
 (56)

unde

$$t' = -\frac{Aa + Bb + Cc + D}{A^2 + B^2 + C^2}.$$

3.1.4 Planul tangent într-un punct la o sferă

Ne propunem în acest paragraf să determinăm ecuația planului tangent la o sferă într-un punct al acesteia.

Fie $S_R(C)$ sfera de rază R, având centrul C(a,b,c) în spațiul afin \mathcal{E}^3 raportat la un reper afin ortonormat $\mathcal{R}_a^O = \{O; \overline{i}, \overline{j}, \overline{k}\}$. Considerăm punctul $M_0(x_0, y_0, z_0) \in S_R(C)$, planul tangent $T_{M_0}(S)$ în punctul M_0 la sferă, şi M un punct curent (oarecare) în acest plan. Notăm $\overline{r}_0 = \overrightarrow{OM_0}$, $\overline{r}_C = \overrightarrow{OC}$, $\overline{r} = \overrightarrow{OM}$.

Observația 3.2. Oricare ar fi punctul $M \in T_{M_0}(S)$, proiecția lui \overrightarrow{CM} pe direcția vectorului $\overrightarrow{CM_0}$ este o constantă pozitivă, și anume raza R a sferei.

Deoarece

$$\operatorname{pr}_{\overrightarrow{CM_0}}\overrightarrow{CM} = R$$

Figura 25: Planul tangent

avem

$$<\overrightarrow{CM}, \overrightarrow{CM_0}> = \|\overrightarrow{CM_0}\| \cdot \operatorname{pr}_{\overrightarrow{CM_0}} \overrightarrow{CM} = R \cdot R = R^2.$$

În consecință, ecuația vectorială a planului tangent la sferă va fi:

$$\langle \overline{r} - \overline{r}_C, \overline{r}_0 - \overline{r}_C \rangle = R^2.$$
 (57)

Dacă descompunem vectorii \overline{r} , \overline{r}_0 , \overline{r}_C , obţinem:

$$\overline{r} - \overline{r}_C = (x - a)\overline{i} + (y - b)\overline{j} + (z - c)\overline{k}$$

$$\overline{r}_0 - \overline{r}_C = (x_0 - a)\overline{i} + (y_0 - b)\overline{j} + (z_0 - c)\overline{k}.$$

Înlocuind acestea în ecuația (57) obținem ecuația carteziană a planului tangent:

$$T_{M_0}(S): (x-a)(x_0-a)+(y-b)(y_0-b)+(z-c)(z_0-c)=R^2.$$
 (58)

Dacă sfera este dată prin ecuația sa generală atunci ecuația (58) devine:

$$T_{M_0}(S): x \cdot x_0 + y \cdot y_0 + z \cdot z_0 + m \cdot \frac{x + x_0}{2} + n \cdot \frac{y + y_0}{2} + p \cdot \frac{z + z_0}{2} + q = 0$$
 (59)

Observația 3.3. Ecuația (59) poate fi obținută și prin procedeul de dedublare, a cărui principiu este următorul

$$\begin{cases} x^2 \mapsto x \cdot x_0 \\ x \mapsto \frac{x + x_0}{2} \end{cases}$$

Procedeul de dedublare poate fi extins la orice suprafață algebrică de gradul al doilea (cuadrică).

3.2 Conice şi cuadrice

3.2.1 Conice date prin ecuația generală

Conicele sunt curbe de gradul al doilea ale planului afin euclidian bidimensional. Ecuațiile conicelor se obțin prin anularea unui polinom de gradul al doilea în două variabile. Deci, conicele sunt varietăți pătratice Γ^2 ale unui plan afin sau euclidian, dar de dimensiune 1. Ecuația generală a unei conice în sistemul de axe ortogonal (Oxy) al spațiului euclidian \mathcal{E}^2 este de forma:

$$\Gamma^2: a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_{13}x + 2a_{23}y + a_{33} = 0, \tag{60}$$

unde coeficienții $a_{ij},\,i,j=\overline{1,3},\,\mathrm{sunt}$ numere reale.

Ecuația generală a conicei se obține prin anularea unei forme pătratice afine

$$H(x,y) = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_{13}x + 2a_{23}y + a_{33}$$

de matrice
$$D = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
.

Considerăm în cele ce urmează și matricea $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$.

Definiția 3.3. Invarianții ortogonali ai unei conice sunt:

- discriminantul mare: $\Delta = \det(D) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$
- discriminantul mic: $\delta = \det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}$
- invariantul: $I = Tr(A) = a_{11} + a_{12}$.

Cu ajutorul invarianților ortogonali se poate stabili natura și genul unei conice. Astfel:

Natura unei conice este determinată de discriminantul mare:

- $\Delta \neq 0$ conica este **nedegenerată** (propriu-zisă)
- $\Delta = 0$ conica este **degenerată** (o pereche de drepte)

Genul unei conice este determinat de discriminantul mic:

- $\delta \neq 0$ conică cu centru
 - $-\delta > 0$ gen **eliptic**
 - $-\delta < 0$ gen **hiperbolic**
- $\delta = 0$ conică fără centru gen parabolic

Vom studia în continuare câteva proprietăți ale conicelor.

A. Conice nedegenerate $(\Delta \neq 0)$

A1. Conice nedegenerate cu centru $(\delta \neq 0)$

Fie o conică de ecuație generală (60) pentru care $\Delta \neq 0$, $\delta \neq 0$. Pentru a o reprezenta grafic, avem nevoie de ecuația redusă (canonică) a conicei relativă la un nou sistem de coordonate carteziene CXY, având originea în C și axele de coordonate CX, CY suprapuse axelor de simetrie ale conicei. **Ecuația redusă** are forma:

$$\alpha X^2 + \beta Y^2 + \gamma = 0. \tag{61}$$

În continuare vom prezenta modul de calcul al ecuației reduse.

Coeficienții α și β sunt valorile proprii ale matricii A, adică rădăcinile polinomului caracteristic

$$p(\lambda) = det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{12} & a_{22} - \lambda \end{vmatrix} = \lambda^2 - I\lambda + \delta$$

Rezulţa că $\alpha = \lambda_1$ si $\beta = \lambda_2$ satisfac relaţiile: $\lambda_1 + \lambda_2 = I$ şi $\lambda_1 \cdot \lambda_2 = \delta$.

Coeficientul γ se află astfel: $\gamma = \frac{\Delta}{\delta}$.

Ecuația canonică izometrică a unei conice cu centru este de forma

$$\lambda_1 X^2 + \lambda_2 Y^2 + \frac{\Delta}{\delta} = 0 \tag{62}$$

sau

$$\frac{X^2}{-\frac{\Delta}{\lambda_1 \delta}} + \frac{Y^2}{-\frac{\Delta}{\lambda_2 \delta}} - 1 = 0. \tag{63}$$

Ecuația (63) reprezintă ecuația unei elipse dacă numitorii ecuației sunt pozitivi, adică rădăcinile λ_1 și λ_2 au semn contrar cu Δ . Dacă alegem coeficienții λ astfel încât $|\lambda_1| < |\lambda_2|$, adică primul numitor să fie mai mare în modul, atunci CX va fi axa mare a elipsei. Rezultă că o elipsă va fi caracterizată de

$$\begin{cases} \delta > 0 \\ I \cdot \Delta > 0 \end{cases} \tag{64}$$

Ecuația (63) reprezintă ecuația unei hiperbole dacă numitorii ecuației (63) au semne contrare, adică λ_1 și λ_2 au semne contrare. Dacă I=0 (adică $|\lambda_1|=|\lambda_2|$), atunci hiperbola este echilateră. Axa transversală (axa CX) a hiperbolei corespunde termenului cu coeficient pozitiv, deci λ_1 trebuie să aibe același semn ca și Δ . Rezultă că o hiperbolă va fi caracterizată de

$$\begin{cases}
\delta < 0 \\
\lambda_1 \cdot \Delta > 0
\end{cases}$$
(65)

Definiția 3.4. Centrul (centrul de simetrie) unei conice este acel punct al planului \mathcal{E}^2 care are proprietatea de a fi mijloc al tuturor coardelor conicei care trec prin el.

Propoziția 3.1. Centrul unei conice se notează $C(x_0, y_0)$ și se obține ca soluție a sistemului:

$$\begin{cases}
 a_{11}x + a_{12}y + a_{13} = 0 \\
 a_{12}x + a_{22}y + a_{23} = 0.
\end{cases}$$
(66)

Figura 26: Elementele elipsei

Figura 27: Elementele hiperbolei

Demonstrație. Fie $C(x_0, y_0)$ centrul conicei. Facem o translație a reperului ortonormat Oxy în C și obținem:

$$\begin{cases}
X = x - x_0 \\
Y = y - y_0
\end{cases}$$
(67)

Ecuația conicei (60) devine atunci:

$$a_{11}(X+x_0)^2 + a_{22}(Y+y_0)^2 + 2a_{12}(X+x_0)(Y+y_0) + 2a_{13}(X+x_0) + 2a_{23}(Y+y_0) + a_{33} = 0$$
 (68)

sau:

$$[a_{11}X^{2} + a_{22}Y^{2} + 2a_{12}XY] + +2 [a_{11}Xx_{0} + a_{22}Yy_{0} + a_{12}Xy_{0} + a_{12}x_{0}Y + a_{13}X + a_{23}Y] + + [a_{11}x_{0}^{2} + a_{22}y_{0}^{2} + 2a_{12}x_{0}y_{0} + 2a_{13}x_{0} + 2a_{23}y_{0} + a_{33}] = 0$$
(69)

Fie $M(X_0, Y_0)$ un punct de pe conică. Atunci $M'(-X_0, -Y_0)$ va aparține și el conicei, deci cele două puncte vor verifica ecuația (69):

$$[a_{11}X_0^2 + a_{22}Y_0^2 + 2a_{12}X_0Y_0] + +2 [a_{11}X_0x_0 + a_{22}Y_0y_0 + a_{12}X_0y_0 + a_{12}x_0Y_0 + a_{13}X_0 + a_{23}Y_0] + + [a_{11}x_0^2 + a_{22}y_0^2 + 2a_{12}x_0y_0 + 2a_{13}x_0 + 2a_{23}y_0 + a_{33}] = 0$$
(70)

şi

$$[a_{11}X_0^2 + a_{22}Y_0^2 + 2a_{12}X_0Y_0] + -2[a_{11}X_0x_0 + a_{22}Y_0y_0 + a_{12}X_0y_0 + a_{12}x_0Y_0 + a_{13}X_0 + a_{23}Y_0] + +[a_{11}x_0^2 + a_{22}y_0^2 + 2a_{12}x_0y_0 + 2a_{13}x_0 + 2a_{23}y_0 + a_{33}] = 0$$
(71)

Scăzând ultimele două ecuații, obținem:

$$a_{11}X_0x_0 + a_{22}Y_0y_0 + a_{12}X_0y_0 + a_{12}x_0Y_0 + a_{13}X_0 + a_{23}Y_0 = 0 (72)$$

pentru orice punct $M(X_0, Y_0)$ de pe conică, deci centrul conicei va verifica ecuațiile:

$$\begin{cases} a_{11}x_0 + a_{12}y_0 + a_{13} = 0\\ a_{12}x_0 + a_{22}y_0 + a_{23} = 0. \end{cases}$$
 (73)

Observația 3.4. Observăm că

$$\frac{\partial H}{\partial x} = 2(a_{11}x + a_{12}y + a_{13}) \tag{74}$$

$$\frac{\partial H}{\partial y} = 2(a_{12}x + a_{22}y + a_{23}) \tag{75}$$

unde H(x,y) este forma pătratică afină care definește conica. Înseamnă că punctul critic al formei pătratice H, adică (x_0, y_0) care verifică $\frac{\partial H}{\partial x}(x_0, y_0) = \frac{\partial H}{\partial y}(x_0, y_0) = 0$, reprezintă coordonatele centrului conicei.

Deoarece prin centrul C al unei conice trec atât axele cât şi asimptotele (dacă ele există), aceste drepte aparțin fascicolului de drepte cu bazele $d_1: \frac{\partial H}{\partial x} = 0$ şi $d_2: \frac{\partial H}{\partial u} = 0$:

$$\frac{\partial H}{\partial x} + k \frac{\partial H}{\partial y} = 0. {(76)}$$

În continuare, ne propunem să determinăm coeficienții unghiulari k astfel încât ecuația (76) să reprezinte ecuațiile axelor de coordonate CX, respectiv CY.

Reducerea la forma canonică se face printr-o translație de ecuație (67) urmată de o rotație de unghi θ , astfel încât noile axe de coordonate să devină axele de simetrie ale conicei. Direcțiile noilor axe CX și CY, sunt date de vectorii

$$\begin{cases}
\overline{e}_1 = \cos\theta \,\overline{i} + \sin\theta \,\overline{j} \\
\overline{e}_2 = -\sin\theta \,\overline{i} + \cos\theta \,\overline{j}
\end{cases}$$
(77)

care reprezintă vectorii proprii corespunzători valorilor proprii λ_1, λ_2 . De aici rezultă:

$$\begin{cases} (a_{11} - \lambda_1)\cos\theta + a_{12}\sin\theta = 0\\ a_{12}\cos\theta + (a_{22} - \lambda_1)\sin\theta = 0 \end{cases}$$
 (78)

şi

$$\begin{cases} -(a_{11} - \lambda_2)\sin\theta + a_{12}\cos\theta = 0\\ -a_{12}\sin\theta + (a_{22} - \lambda_2)\cos\theta = 0. \end{cases}$$
 (79)

Eliminând pe λ_1 din primul sistem, obţinem succesiv:

$$\lambda_1 = a_{12} \operatorname{tg} \theta + a_{11}$$

şi

$$a_{12}\operatorname{tg}^{2}\theta + (a_{11} - a_{22})\operatorname{tg}\theta - a_{12} = 0$$
(80)

sau, dacă notăm $tg\theta=k$, obținem coeficienții unghiulari ai axelor conicei ca soluții ale ecuației

$$a_{12}k^2 + (a_{11} - a_{22})k - a_{12} = 0. (81)$$

Coeficienții unghiulari $k_{1,2}$ ai asimptotelor unei hiperbole se obțin ca soluții ale ecuației:

$$a_{22}k^2 + 2a_{12}k + a_{11} = 0. (82)$$

Observația 3.5. Pentru determinarea ecuației reduse a unei conice cu centru, în afara metodei valorilor proprii, se mai poate folosi și metoda roto-translației, care presupune transformarea reperului Oxy în CXY, unde $C(x_0, y_0)$ este centrul conicei, după ecuațiile:

$$\begin{cases} x = x_0 + X \cos \theta - Y \sin \theta \\ y = y_0 + X \sin \theta + Y \cos \theta. \end{cases}$$
 (83)

A2. Conice nedegenerate fără centru $(\delta = 0)$

Dacă sistemul liniar (66) care defniește centrul conicei este incompatibil, adică $\delta=0$, atunci vorbim de o conică fără centru. Deci, condiția pentru ca o conică nedegenerată să fie parabolă este:

$$\begin{cases} \Delta \neq 0 \\ \delta = 0. \end{cases} \tag{84}$$

Figura 28: Elementele parabolei

Forma redusă a parabolei este

$$Y^2 = 2pX \tag{85}$$

unde dreapta VX: Y=0 reprezintă axa de simetrie a conicei, dreapta VY: X=0 este tangenta dusă prin vârful V al conicei, iar p este parametrul parabolei raportat la reperul (VXY).

Deoarece $\delta=0$, rezultă $a_{12}^2=a_{11}a_{22}$, sau $a_{12}=\sqrt{a_{11}a_{22}}$. Ecuația (60) devine:

$$(\sqrt{a_{11}}x \pm \sqrt{a_{22}}y)^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0$$
(86)

Ecuațiile axei de simetrie și ale tangentei în vârf se obțin egalând cu 0 cele două polinoame de gadul întâi care apar în ecuațiile (85) și (86), făcând în prealabil o corecție cu un termen aditiv λ :

$$(\sqrt{a_{11}}x \pm \sqrt{a_{22}}y + \lambda)^2 = \lambda^2 + 2\lambda(\sqrt{a_{11}}x \pm \sqrt{a_{22}}y) - 2(a_{13}x + a_{23}y) - a_{33}$$
$$Y^2 = 2pX$$

Astfel, ecuația axei de simetrie, Y = 0, va fi:

$$\sqrt{a_{11}}x \pm \sqrt{a_{22}}y + \lambda = 0 (87)$$

iar ecuația tangentei în vârf, X=0, va fi

$$\lambda^2 + 2\lambda(\sqrt{a_{11}}x \pm \sqrt{a_{22}}y) - 2(a_{13}x + a_{23}y) - a_{33} = 0.$$
 (88)

Pentru a găsi parametrul λ , se pune condiția de ortogonalitate a celor două axe, adică:

$$\sqrt{a_{11}}(\lambda\sqrt{a_{11}} - a_{13}) + \sqrt{a_{22}}(\lambda\sqrt{a_{22}} \mp a_{23}) = 0$$
(89)

de unde rezultă

$$\lambda = \frac{\sqrt{a_{11}}a_{13} \pm \sqrt{a_{22}}a_{23}}{a_{11} + a_{22}}. (90)$$

Vârful parabolei se obține intersectând dreptele VX și VY. Parametrul p al parabolei este

$$p = \pm \sqrt{-\frac{\Delta}{I^3}} \tag{91}$$

Rezultă că ecuația redusă a parabolei în sistemul VXY este:

$$Y^2 = \pm \sqrt{-\frac{\Delta}{I^3}} \cdot X. \tag{92}$$

B. Conice degenerate $(\Delta = 0)$

B1. Conice degenerate cu centru $(\delta \neq 0)$

Conicele degenerate cu centru sunt constituite dintr-o pereche de drepte imaginare (pentru $\delta > 0$), sau dintr-o pereche de drepte reale (pentru $\delta < 0$). Dreptele imaginare se intersectează după un punct ale cărui coordonate sunt reale, iar dreptele reale sunt concurente în centrul conicei, şi coincid cu asimptotele conicei.

B2. Conice degenerate cu o infinitate de centre $(\delta = 0)$

Conicele degenerate cu o infinitate de centre corespund conicelor degenerate de tip parabolic, adică ecuația lor se poate scrie:

$$D_1 \cdot D_2 = 0 \tag{93}$$

unde D_1 și D_2 sunt dreptele în care degenerează conica. Sistemul care dă centrul conicei este compatibil nedeterminat, deoarece $\delta = 0$. Rezultă că dreptele care formează conica sunt paralele $(D_1||D_2)$ dacă:

$$\frac{a_{11}}{a_{12}} = \frac{a_{12}}{a_{22}} \neq \frac{a_{13}}{a_{23}}$$

sau sunt identice $(D_1 \equiv D_2)$ dacă:

$$\frac{a_{11}}{a_{12}} = \frac{a_{12}}{a_{22}} = \frac{a_{13}}{a_{23}}.$$

În concluzie, conica are o infinitate de centre colineare (linie de centre).

3.2.2 Cuadrice date prin ecuația generală

Definiția 3.5. Cuadricele sunt suprafețe algebrice de gradul al doilea, adică suprafețe ale spațiului afin euclidian 3-dimensional a căror ecuație se obține prin anularea unui polinom de gradul al doilea în trei variabile.

Observația 3.6. Cuadricele sunt varietăți pătratice de dimensiune 2.

Ecuația generală a unei cuadrice în raport cu un sistem de axe de coordonate (Oxyz) al spațiului \mathcal{E}^3 are forma:

$$\Sigma^2: a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0$$
 (94)

și se obține egalând cu zero forma pătratică afină în \mathcal{E}^3 :

$$H(x, y, z) = F(x, y, z) + 2G(x, y, z) + a_{44}$$
(95)

unde

$$F(x, y, z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

este o formă pătratică afină pe $\mathbb{R}^3 \times \mathbb{R}^3$, iar

$$G(x, y, z) = a_{14}x + a_{24}y + a_{34}z$$

este o formă liniară pe \mathbb{R}^3 .

Observația 3.7. Matricea asociată formei pătratice H este:

$$D = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{12} & a_{22} & a_{23} & a_{24} \\ a_{13} & a_{23} & a_{33} & a_{34} \\ a_{14} & a_{24} & a_{34} & a_{44} \end{pmatrix}$$

$$(96)$$

iar cea asociată formei pătratice F este:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}. \tag{97}$$

Definiția 3.6. Invarianții ortogonali ai unei cuadrice sunt:

- $\Delta = \det D$:
- $\delta = \det A$:
- $\rho = \operatorname{rang} D$;
- $r = \operatorname{rang} A$;
- $p = num \check{a}rul \ de \ p\check{a}trate \ pozitive.$

Observația 3.8. Numărul de pătrate pozitive este mai mic sau egal cu rangul matricei A:

$$p \leq r$$
.

Invarianții ortogonali sunt utili în clasificarea cuadricelor.

In continuare, prezentăm o clasificare a cuadricelor date în forma lor normală.

A. Cuadrice nesingulare (propriu-zise) $(\Delta \neq 0)$

Cuadricele nesingulare pot fi cu centru unic sau fără centru (cu o infinitate de centre).

A1. Cuadrice cu centru unic $(\delta \neq 0, \text{ adică } r = 3)$

Dacă p=3, cuadrica este un elipsoid. Ecuația sa redusă este de forma:

$$(Y_1)^2 + (Y_2)^2 + (Y_3)^2 = 1.$$

De exemplu, cuadrica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

este un elipsoid. Intersecțiile sale cu axele de coordonate sunt punctele de coordonate A(a,0,0), B(0,b,0), C(0,0,c). Intersecțiile sale cu planele Oxy, Oxz, respectiv Oyz sunt elipse. În cazul particular a=b=c obținem o sferă.

Figura 29: Elipsoidul

Dacă p=2, cuadrica este un hiperboloid cu o pânză. Ecuația sa redusă este de forma:

$$(Y_1)^2 + (Y_2)^2 - (Y_3)^2 = 1.$$

De exemplu, cuadrica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

este un hiperboloid cu o pânză. Intersecțiile sale cu axele de coordonate sunt punctele A(a,0,0) şi B(0,b,0). Intersecțiile sale cu planele Oyz şi Oyz sunt hiperbole, iar intersecția cu planul Oxy este elipsă.

Figura 30: Hiperboloidul cu o pânză

Dacă p=1, cuadrica este un hiperboloid cu două pânze. Ecuația sa redusă este de forma:

$$(Y_1)^2 - (Y_2)^2 - (Y_3)^2 = 1.$$

De exemplu, cuadrica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

este un hiperboloid cu două pânze. Intersecția sa cu axele de coordonate este punctul A(a,0,0). Intersecțiile sale cu planele Oxy și Oxz sunt hiperbole, cu planul Oyz nu se intersectează, iar intersecțiile sale cu plane de forma x=m $(m^2>a^2)$ sunt elipse.

Figura 31: Hiperboloidul cu două pânze

A2. Cuadrice fără centru $(\delta = 0 \text{ și } r = 2)$

Dacă p=2, cuadrica este un paraboloid eliptic. Ecuația sa redusă este de forma:

$$(Y_1)^2 + (Y_2)^2 = 2Y_3.$$

De exemplu, cuadrica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz$$

este un paraboloid eliptic. Intersecția sa cu axele de coordonate este punctul O(0,0,0). Intersecțiile sale cu planele Oxz și Oyz sunt parabole, intersecția sa cu planul Oxy este punctul O (originea reperului), iar intersecțiile sale cu plane de forma z = const sunt elipse.

Figura 32: Paraboloidul eliptic

Dacă p=1, cuadrica este un paraboloid hiperbolic. Ecuația sa redusă este de forma:

$$(Y_1)^2 - (Y_2)^2 = 2Y_3.$$

De exemplu, cuadrica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$$

este un paraboloid hiperbolic. Intersecția sa cu axele de coordonate este punctul O(0,0,0). Intersecțiile sale cu planele Oxz și Oyz sunt parabole, iar intersecția sa cu planul Oxy este o pereche de drepte concurente.

Figura 33: Paraboloidul hiperbolic

B. Cuadrice singulare nedegenerate $(\Delta = 0, \rho = 3 \text{ si } \delta \neq 0)$

Cuadricele singulare nedegenerate pot fi cu centru unic, cu o infinitate de centre, sau fără centru.

B1. Cuadrice cu centru de unic (r=3)

Centrul cuadricei este și centru de simetrie.

Dacă p=3, cuadrica este un punct dublu. Ecuația sa redusă este de forma:

$$(Y_1)^2 + (Y_2)^2 + (Y_3)^2 = 0.$$

Dacă p=2, cuadrica este un con. Ecuația sa redusă este de forma:

$$(Y_1)^2 + (Y_2)^2 - (Y_3)^2 = 0$$

sau

$$(Y_1)^2 + (Y_2)^2 = (Y_3)^2.$$

De exemplu, cuadrica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

este un con. Intersecția sa cu axele de coordonate este punctul O(0,0,0), punct care se numește vârful conului. Intersecția sa cu planele Oxy, Oyz, Oxz este punctul O(0,0,0), iar intersecțiile sale cu plane de forma z=const sunt elipse.

Dacă p = 1, ecuația redusă a cuadricei este de forma:

$$(Y_1)^2 - (Y_2)^2 - (Y_3)^2 = 0$$

ceea ce se mai poate scrie și

$$(Y_2)^2 + (Y_3)^2 = (Y_1)^2$$

deci cuadrica va fi un con.

Figura 34: Conul

B2. Cuadrice cu o infinitate de centre $(\delta = 0 \text{ și } r = 2)$

Dacă p=2, cuadrica este un cilindru eliptic, și are ecuația redusă de forma:

$$(Y_1)^2 + (Y_2)^2 = 1.$$

De exemplu, cuadrica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

este un cilindru eliptic. Deși această ecuație pare ecuația unei elipse în planul Oxy, totuși în spațiu ea are următoarea semnificație:

"pentru orice z, are loc
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
"

Intersecțiile cilindrului eliptic cu axele de coordonate sunt punctele A(a, 0, 0) şi B(0, b, 0). Intersecția sa cu planul Oxy şi cu orice plan de forma z = const este o elipsă, iar intersecția sa cu planul Oxz, respectiv Oyz, reprezintă o pereche de drepte paralele.

Figura 35: Cilindrul eliptic

Dacă p=1, cuadrica este un cilindru hiperbolic, a cărui ecuație redusă este:

$$(Y_1)^2 - (Y_2)^2 = 1.$$

De exemplu, cuadrica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

este un cilindru hiperbolic. Deși această ecuație pare ecuația unei hiperbole în planul Oxy, totuși în spațiu ea are următoarea semnificație:

"pentru orice z, are
$$\log \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
"

Intersecțiile cilindrului hiperbolic cu axele de coordonate sunt punctele $A(\pm a, 0, 0)$. Intersecția sa cu planul Oxy și cu orice plan de forma z = const este o hiperbolă, iar intersecția sa cu planul Oxz, respectiv Oyz, reprezintă o pereche de drepte paralele.

Figura 36: Cilindrul hiperbolic

B3. Cuadrice fără centru $(\delta = 0 \text{ si } r = 1)$

Deoarece $\delta = 0$ și r = 1 avem că p = 1, iar cuadrica se va numi cilindru parabolic. Ecuația sa redusă este:

$$(Y_1)^2 = 2(Y_2).$$

De exemplu, cuadrica

$$y^2 = 2px$$

este un cilindru parabolic.

C. Cuadrice singulare degenerate $(\Delta = 0 \text{ și } \rho = 2)$

Cuadricele singulare degenerate pot să nu aibe centru de simetrie, sau pot avea o infinitate de centre de simetrie.

C1. Cuadrice fără centru de simetrie sunt acele cuadrice singulare degenerate pentru care $\delta = 0$ și r = 2.

Dacă p=2 atunci ecuația redusă a cuadricei este de forma

$$(Y_1)^2 + (Y_2)^2 = 0$$

adică se obține o dreaptă dublă.

Dacă p=1 atunci ecuația redusă a cuadricei este de forma

$$(Y_1)^2 - (Y_2)^2 = 0$$

adică se obține o pereche de plane secante.

C2. Cuadrice cu o infinitate de centre de simetrie sunt acele cuadrice singulare degenerate pentru care $\delta = 0$ și r = 1. Deci, p = 1.

Dacă $\rho \neq 1$, atunci ecuația redusă va fi ecuația unei perechi de plane paralele:

$$(Y_1)^2 = 1.$$

Dacă $\rho = 1$, atunci ecuația redusă va fi ecuația unei perechi de plane confundate:

$$(Y_1)^2 = 0.$$

3.2.3 Cuadrice ovale și cuadrice riglate

Definiția 3.7. Se numește cuadrică ovală acea cuadrică pe care nu pot fi așezate în întregime segmente de dreaptă sau drepte.

Elipsoidul, paraboloidul eliptic, hiperboloidul cu două pânze sunt cuadrice ovale.

Definiția 3.8. Se numește cuadrică riglată o cuadrică pe care pot fi așezate segmente de dreaptă sau chiar drepte în întregime.

Definiția 3.9. Dreptele situate pe cuadricele riglate se numesc generatoare rectilinii.

Hiperboloidul cu o pânză și paraboloidul hiperbolic sunt cuadrice riglate.

Determinarea generatoarelor rectilinii

Cazul hiperboloidului cu o pânză Considerăm hiperboloidul cu o pânză de ecuație

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

a cărui ecuație o mai putem scrie și

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{y^2}{b^2}$$

sau

$$\left(\frac{x}{a} + \frac{z}{c}\right) \cdot \left(\frac{x}{a} - \frac{z}{c}\right) = \left(1 + \frac{y}{b}\right) \cdot \left(1 - \frac{y}{b}\right).$$

Rezultă de aici că printr-un punct de coordonate (x, y, z) de pe cuadrică pot trece două drepte, de ecuații generale

$$D_{\lambda}: \begin{cases} \frac{x}{a} - \frac{z}{c} = \lambda \left(1 - \frac{y}{b}\right) \\ \frac{x}{a} + \frac{z}{c} = \frac{1}{\lambda} \left(1 + \frac{y}{b}\right) \end{cases} \quad \text{si } D_{\mu}: \begin{cases} \frac{x}{a} + \frac{z}{c} = \mu \left(1 - \frac{y}{b}\right) \\ \frac{x}{a} - \frac{z}{c} = \frac{1}{\mu} \left(1 + \frac{y}{b}\right) \end{cases}$$

unde λ, μ sunt parametri reali. D_{λ} se numește prima familie de generatoare, iar D_{μ} se numește a doua familie de generatoare.

Cazul paraboloidului hiperbolic Considerăm paraboloidul hiperbolic de ecuație

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$$

a cărui ecuație o mai putem scrie și

$$\left(\frac{x}{a} + \frac{y}{b}\right) \cdot \left(\frac{x}{a} - \frac{y}{b}\right) = 2pz.$$

Rezultă de aici că printr-un punct de coordonate (x, y, z) de pe cuadrică pot trece două drepte, de ecuații generale

$$D_{\lambda}: \begin{cases} \frac{x}{a} - \frac{y}{b} = \lambda \cdot 2p \\ \frac{x}{a} + \frac{y}{b} = \frac{1}{\lambda} \cdot z \end{cases} \quad \text{si } D_{\mu}: \begin{cases} \frac{x}{a} + \frac{y}{b} = \mu \cdot 2p \\ \frac{x}{a} - \frac{y}{b} = \frac{1}{\mu} \cdot z \end{cases}$$

unde λ, μ sunt parametri reali. D_{λ} se numește prima familie de generatoare, iar D_{μ} se numește a doua familie de generatoare.

Exemplul 3.1. Determinați generatoarele rectilinii ale cuadricei

$$9x^2 - 4y^2 + 36z^2 - 36 = 0$$

care tree prin punctul M(2,3,1).

Soluție: Din ecuația cuadricei rezultă

$$9x^2 - 4y^2 = 36 - 36z^2$$

sau

$$(3x - 2y)(3x + 2y) = (6 - 6z)(6 + 6z)$$

De aici rezultă că prima şi a doua familie de generatoare au forma:

$$D_{\lambda}: \begin{cases} 3x - 2y = \lambda(6 - 6z) \\ 3x + 2y = \frac{1}{\lambda}(6 + 6z) \end{cases} \quad \text{si } D_{\mu}: \begin{cases} 3x + 2y = \mu(6 - 6z) \\ 3x - 2y = \frac{1}{\mu}(6 + 6z) \end{cases}.$$

Pentru a determina parametrii λ, μ , să observăm că punctul M de pe cuadrică va verifica ecuațiile pentru prima, respectiv a doua familie de generatoare. Avem astfel:

$$D_{\lambda}: \begin{cases} 3 \cdot 2 - 2 \cdot 3 = \lambda(6 - 6) \\ 3 \cdot 2 + 2 \cdot 3 = \frac{1}{\lambda}(6 + 6) \end{cases} \quad \text{si } D_{\mu}: \begin{cases} 3 \cdot 2 + 2 \cdot 3 = \mu(6 - 6) \\ 3 \cdot 2 - 2 \cdot 3 = \frac{1}{\mu}(6 + 6) \end{cases}.$$

De aici rezultă $\lambda = 1$, iar sistemul D_{μ} este incompatibil. Pentru a rezolva sistemul D_{μ} , renotăm generatoarele, și obținem:

$$D_{\mu}: \begin{cases} 3x + 2y = \frac{1}{\mu}(6 - 6z) \\ 3x - 2y = \mu(6 + 6z) \end{cases} \Leftrightarrow D_{\mu}: \begin{cases} 3 \cdot 2 + 2 \cdot 3 = \frac{1}{\mu}(6 - 6) \\ 3 \cdot 2 - 2 \cdot 3 = \mu(6 + 6) \end{cases} \Leftrightarrow \mu = 0.$$

Rezultă de aici ecuațiile generatoarelor:

$$D_{\lambda}: \begin{cases} 3x - 2y = 6 - 6z \\ 3x + 2y = 6 + 6z \end{cases} \quad \text{si } D_{\mu}: \begin{cases} 6 - 6z = 0 \\ 3x - 2y = 0 \end{cases}.$$

Observația 3.9 (proprietățile generatoarelor).

- 1. Pentru fiecare punct $M_0(x_0, y_0, z_0) \in \Sigma^2$ trece cate o generatoare din familiile D_{λ} şi D_{μ} .
- 2. Orice pereche de generatoare aparținând uneia dintre familiile D_{λ} sau D_{μ} este formată din drepte disjuncte.
- 3. Orice pereche de generatoare aparținând la familii diferite are un punct comun.

3.3 Suprafețe speciale: cilindrice, conice, de rotație

3.3.1 Suprafețe cilindrice

Definiția 3.10. Se numește suprafață cilindrică o suprafață generată de o familie de drepte având o direcție fixă și satisfăcând una din următoarele condiții:

- a) se sprijină pe o curbă dată,
- b) sunt tangente unei suprafețe date.

Determinarea ecuației unei suprafețe cilindrice care se sprijină pe o curbă dată În acest caz se cunosc (se dau):

Figura 37: Suprafete cilindrice

• ecuațiile dreptei D:

$$D: \begin{cases} P_1(x, y, z) = 0 \\ P_2(x, y, z) = 0 \end{cases}$$

unde $P_1(x, y, z) = A_1 x + B_1 y + C_1 z + D_1$ iar $P_2(x, y, z) = A_2 x + B_2 y + C_2 z + D_2$,

• ecuațiile curbei Γ :

$$\Gamma: \left\{ \begin{array}{l} f(x, y, z) = 0\\ g(x, y, z) = 0 \end{array} \right.$$

Ecuațiile generatoarelor rectilinii paralele cu dreapta D sunt

$$\begin{cases} P_1(x, y, z) = \lambda \\ P_2(x, y, z) = \mu \end{cases}$$

iar condiția ca aceste generatoare să intersecteze curba Γ se reduce la compatibilitatea sistemului de 4 ecuații și 3 necunoscute:

$$\begin{cases} P_1(x, y, z) = \lambda \\ P_2(x, y, z) = \mu \\ f(x, y, z) = 0 \\ g(x, y, z) = 0. \end{cases}$$

adică se reduce la o relație între λ și μ , $\varphi(\lambda,\mu)=0$ pentru care sistemul de mai sus să fie compatibil. De aici, înlocuind λ și μ , se obține ecuația suprafeței cilindrice, $\phi(x,y,z)=0$.

Exemplul 3.2. Să se scrie ecuația suprafeței cilindrice care se sprijină pe curba

$$\Gamma: \left\{ \begin{array}{l} 2x^2 + 3y^2 - 1 = 0 \\ x - y + z - 1 = 0 \end{array} \right.$$

și are generatoarele paralele cu dreapta

$$D: \left\{ \begin{array}{l} x - y = 0\\ 2x + 3z = 0 \end{array} \right.$$

Soluție: Ecuațiile generatoarelor sunt

$$\begin{cases} x - y = \lambda \\ 2x + 3z = \mu \end{cases}$$

iar condiția de compatibilitate se pune pentru sistemul

$$\begin{cases} (1) & x - y = \lambda \\ (2) & 2x + 3z = \mu \\ (3) & 2x^2 + 3y^2 - 1 = 0 \\ (4) & x - y + z - 1 = 0. \end{cases}$$

Din ecuațiile (1) și (4) rezultă $z=1-\lambda$. Înlocuind această valoare în ecuațiile (2) și (1) obținem $x=\frac{\mu+3\lambda-3}{2}$ și $y=\frac{\mu+\lambda-3}{2}$, iar din ecuația (3) va rezulta o relație între λ și μ :

$$\varphi(\lambda, \mu) = 2\left(\frac{\mu + 3\lambda - 3}{2}\right)^2 + 3\left(\frac{\mu + \lambda - 3}{2}\right)^2 - 1 = 0$$

sau

$$\varphi(\lambda, \mu) = 5\mu^2 + 18\lambda\mu - 30\mu + 21\lambda^2 - 54\lambda + 41 = 0$$

de unde, înlocuind $\lambda = x - y$, $\mu = 2x + 3z$, obținem ecuația suprafeței cilindrice:

$$45z^2 - 54yz + 114xz - 90z + 21y^2 - 78xy + 54y + 77x^2 - 114x + 41 = 0.$$

Determinarea unei suprafețe cilindrice tangente la o suprafață dată În acest caz se cunosc

• ecuatiile dreptei D:

$$D: \left\{ \begin{array}{l} P_1(x,y,z)=0 \\ P_2(x,y,z)=0 \end{array} \right.$$
 unde $P_1(x,y,z)=A_1\,x+B_1\,y+C_1\,z+D_1$ iar $P_2(x,y,z)=A_2\,x+B_2\,y+C_2\,z+D_2,$

• ecuațiile suprafeței Σ^2 :

$$\Sigma^2: F(x, y, z) = 0.$$

Ecuațiile generatoarelor rectilinii paralele cu dreapta D sunt

$$\begin{cases} P_1(x, y, z) = \lambda \\ P_2(x, y, z) = \mu \end{cases}$$

iar condiția ca aceste generatoare să fie tangente la suprafața Σ^2 se reduce unicitatea soluției ecuației

$$F(x, y, z) = 0$$

adică discriminantul acestei ecuații trebuie să fie zero.

Exemplul 3.3. Să se scrie ecuația cilindrului tangent sferei $x^2 + y^2 + z^2 = 4$ și care are generatoarele paralele cu dreapta

$$D: \frac{x-2}{1} = \frac{y}{-2} = \frac{z}{-1}.$$

Soluţie: În acest caz, două plane care intersectate dau dreapta D sunt:

$$\begin{cases} -x - z + 2 = 0 \\ y - 2z = 0. \end{cases}$$

De aici rezultă că sistemul în λ și μ va fi

$$\begin{cases} (1) & -x - z + 2 = \lambda \\ (2) & y - 2z = \mu \\ (3) & x^2 + y^2 + z^2 = 4. \end{cases}$$

Din ecuațiile (1) și (2) rezultă $x=-z-\lambda+2$ și $y=\mu+2z$, ceea ce, înlocuit în ecuația (3) dă:

$$(-z - \lambda + 2)^2 + (\mu + 2z)^2 + z^2 = 4$$

sau

$$6z^{2} + 2(\lambda + 2\mu - 2)z + (\lambda^{2} - 4\lambda + \mu^{2}) = 0.$$

Condiția de tangență se reduce la existența unei soluții unice a ecuației anterioare, adică:

$$\Delta = [2(\lambda + 2\mu - 2)]^2 - 4 \cdot 6 \cdot (\lambda^2 - 4\lambda + \mu^2) = 0$$

adică

$$-5z^2 + (4y - 2x)z - 2y^2 - 4xy - 5x^2 + 24 = 0.$$

3.3.2 Suprafeţe conice

Definiția 3.11. Se numește suprafață conică o suprafață generată de o familie de drepte având un punct fix V și satisfăcând una din următoarele condiții:

- a) se sprijină pe o curbă dată;
- b) sunt tangente unei suprafete date.

Figura 38: Suprafețe conice

Determinarea ecuației unei suprafețe conice care se sprijină pe o curbă dată În acest caz se cunosc (se dau):

 \bullet ecuațiile vârfului V:

$$D: \begin{cases} P_1(x, y, z) = 0 \\ P_2(x, y, z) = 0 \\ P_3(x, y, z) = 0 \end{cases}$$

unde $P_1(x, y, z) = A_1 x + B_1 y + C_1 z + D_1$, $P_2(x, y, z) = A_2 x + B_2 y + C_2 z + D_2$, iar $P_3(x, y, z) = A_3 x + B_3 y + C_3 z + D_3$. Dacă se dau coordonatele vârfului, atunci

$$V(x_0, y_0, z_0) \Leftrightarrow \begin{cases} x - x_0 = 0 \\ y - y_0 = 0 \\ z - z_0 = 0 \end{cases}$$

• ecuațiile curbei Γ:

$$\Gamma: \left\{ \begin{array}{l} f(x, y, z) = 0\\ g(x, y, z) = 0 \end{array} \right.$$

Ecuațiile generatoarelor rectilinii care au un punct fix V sunt

$$\begin{cases} P_1(x, y, z) = \lambda P_3(x, y, z) \\ P_2(x, y, z) = \mu P_3(x, y, z) \end{cases}$$

iar condiția ca aceste generatoare să intersecteze curba Γ se reduce la compatibilitatea sistemului de 4 ecuații și 3 necunoscute:

$$\begin{cases} P_1(x, y, z) = \lambda P_3(x, y, z) \\ P_2(x, y, z) = \mu P_3(x, y, z) \\ f(x, y, z) = 0 \\ g(x, y, z) = 0. \end{cases}$$

adică la o relație între λ și μ , $\varphi(\lambda, \mu) = 0$, pentru care sistemul de mai sus să fie compatibil. De aici, înlocuind λ și μ , se obține ecuația suprafeței conice, $\phi(x, y, z) = 0$.

Exemplul 3.4. Să se scrie ecuația suprafeței conice având vârful V(0,1,0) și care se sprijină pe curba

$$\Gamma: \left\{ \begin{array}{l} x^2 + z^2 = 1 \\ y = 0 \end{array} \right..$$

Soluţie: Avem:

$$V(0,2,0) \Leftrightarrow \begin{cases} x=0\\ y-2=0\\ z=0. \end{cases}$$

Ecuația fasciculului de drepte care trece prin V este:

$$\begin{cases} x = \lambda(y-2) \\ z = \mu(y-2) \end{cases}$$

Ecuația conicei se determină din condiția de compatibilitate a sistemului

$$\begin{cases} x = \lambda(y-2) \\ z = \mu(y-2) \\ x^2 + z^2 = 1 \\ y = 0 \end{cases}$$

ceea ce se reduce la

$$4\lambda^2 + 4\mu^2 - 1 = 0$$

sau

$$4x^2 + 4z^2 - (y-2)^2 = 0.$$

Determinarea unei suprafețe conice tangente la o suprafață dată În acest caz se cunosc

 \bullet ecuațiile vârfului V:

$$D: \begin{cases} P_1(x, y, z) = 0 \\ P_2(x, y, z) = 0 \\ P_3(x, y, z) = 0 \end{cases}$$

unde $P_1(x, y, z) = A_1 x + B_1 y + C_1 z + D_1$, $P_2(x, y, z) = A_2 x + B_2 y + C_2 z + D_2$, iar $P_3(x, y, z) = A_3 x + B_3 y + C_3 z + D_3$.

• ecuațiile suprafeței Σ^2 :

$$\Sigma^2 : F(x, y, z) = 0.$$

Ecuațiile generatoarelor rectilinii care au un punct fix V sunt

$$\begin{cases} P_1(x, y, z) = \lambda P_3(x, y, z) \\ P_2(x, y, z) = \mu P_3(x, y, z) \end{cases}$$

iar condiția ca aceste generatoare să fie tangente la suprafața Σ^2 se reduce unicitatea soluției ecuației

$$F(x, y, z) = 0$$

adică discriminantul acestei ecuații trebuie să fie zero.

Exemplul 3.5. Să se scrie ecuația suprafeței conice având vârful V(0,0,-2) și care este tangentă sferei cu centrul în origine și de rază 1.

Soluţie: Avem:

$$V(0,0,-2) \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ z + 2 = 0. \end{cases}$$

Ecuația fasciculului de drepte care trece prin V este:

$$\begin{cases} x = \lambda(z+2) \\ y = \mu(z+2) \end{cases}$$

iar ecuația sferei centrată în origine și de rază 1 este:

$$x^2 + y^2 + z^2 = 1.$$

Condiția de tangență se reduce la compatibilitatea sistemului

$$\begin{cases} x = \lambda(z+2) \\ y = \mu(z+2) \\ x^2 + y^2 + z^2 = 1 \end{cases}$$

deci discriminantul ecuației

$$[\lambda(z+2)]^2 + [\mu(z+2)]^2 + z^2 = 1,$$

trebuie să fie nul:

$$\Delta = [4(\lambda + \mu)]^2 - 4(\lambda + \mu + 1)(4\lambda + 4\mu - 1) = 0$$

adică

$$z^2 + 4z - 3y^2 - 3x^2 + 4 = 0.$$

3.3.3 Suprafețe de rotație

Definiția 3.12. Se numește suprafață de rotație suprafața generată de o curbă Γ ale cărei puncte descriu cercuri cu centrele situate pe o dreaptă fixă în plane ortogonale pe aceasta.

Figura 39: Suprafată de rotație

Determinarea unei suprafețe de rotație În acest caz se cunosc:

• ecuația dreptei D

$$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$$

ullet ecuația cercului cu centrul pe D și de rază variabilă, dată ca intersecția dintre o sferă cu centrul pe D, de rază variabilă, și un plan ortogonal pe D în centrul sferei

$$\begin{cases} (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = \lambda^2 \\ lx + my + nz = \mu \end{cases}$$

în funcție de parametrii λ , μ

• ecuația curbei Γ

$$\Gamma: \left\{ \begin{array}{l} f(x,y,z) = 0\\ g(x,y,z) = 0. \end{array} \right.$$

Din compatibilitatea sistemului de 4 ecuații cu 3 necunoscute

$$\begin{cases} (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = \lambda^2 \\ lx + my + nz = \mu \\ f(x, y, z) = 0 \\ g(x, y, z) = 0 \end{cases}$$

se obține o relație $\varphi(\lambda,\mu)=0$ din care, înlocuind $\lambda,\,\mu,$ rezultă ecuația duprafeței de rotație: $\phi(x,y,z)=0.$

Exemplul 3.6. Să se determine suprafața obținută prin rotirea dreptei D în jurul dreptei Δ , unde:

$$D: \left\{ \begin{array}{l} x+y-1=0 \\ z-1=0. \end{array} \right. \Delta: \frac{x-1}{2} = \frac{y+1}{-1} = z.$$

Soluție: Avem $x_0 = 1$, $y_0 = -1$, $z_0 = 0$ și l = 2, m = -1, n = 1. Atunci ecuația suprafeței se determină din condiția de compatibilitate a sistemului:

$$\begin{cases} (x-1)^2 + (y+1)^2 + z^2 = \lambda^2 \\ 2x - y + z = \mu \\ x + y - 1 = 0 \\ z - 1 = 0. \end{cases}$$

Din ultimele 3 ecuații se obține $x=\frac{\mu}{3},\ y=1-\frac{\mu}{3},\ z=1,$ iar din prima ecauție rezultă condiția de compatibilitate:

$$\left(\frac{\mu}{3} - 1\right)^2 + \left(2 - \frac{\mu}{3}\right)^2 + 1 = \lambda^2.$$

Înlocuind acum $\lambda^2=(x-1)^2+(y+1)^2+z^2$ și $\mu=2x-y+z$, obținem ecuația suprafeței de rotație:

$$\left(\frac{2x-y+z}{3}-1\right)^2 + \left(2-\frac{2x-y+z}{3}\right)^2 + 1 = (x-1)^2 + (y+1)^2 + z^2$$

sau

$$8z^{2} + (2y - 4x + 9)z + 8y^{2} + (4x + 9)y + 5x^{2} - 18 = 0.$$

4 Geometria diferențială locală a curbelor plane și a curbelor spațiale

4.1 Geometria diferențială locală a curbelor plane

4.1.1 Curbe plane. Reprezentări. Elemente de arc.

Definiția 4.1. Se numește curbă plană o aplicație $\gamma: I \subseteq \mathbb{R} \to \mathcal{E}^2$ de clasă \mathcal{C}^k , $k \in \mathbb{N}$, definită pe intervalul real I.

Observația 4.1.

- 1. Dacă $\gamma \in C^0(I)$ vom spune că γ este o curbă continuă.
- 2. Dacă $\gamma \in C^k(I), k \geq 1$ vom spune că γ este o curbă diferențiabilă de clasă C^k .
- 3. Dacă $\gamma \in C^{\infty}(I)$, adică γ este o curbă ce admite derivate continue de orice ordin, atunci vom spune ca γ este o curbă netedă.

Mulţimea $\Gamma \stackrel{not}{=} \gamma(I) = Im(\gamma) = \{\gamma(t)|t \in I\}$ se numesţe imaginea geometrică a curbei, şi este o submulţime de puncte din plan:

$$\Gamma = \left\{ M \in \mathcal{E}^2 | \exists t \in I : M = \gamma(t) \right\}.$$

În practică, această multime de puncte imagine se numește curbă.

Reprezentări ale curbelor.

Pentru a obține diferite reprezentări ale unei curbe plane, considerăm un reper afin al spațiului euclidian \mathcal{E}^2 , $\mathcal{R}_a = \{O; \bar{e}_1, \bar{e}_2\}$. Fie $M \in \Gamma(\subset \mathcal{E}^2)$, $\bar{r} = \overrightarrow{OM}$, $t \in I$. Atunci $\bar{r}: I \to \mathcal{E}^2$, $\bar{r}(t) = \overrightarrow{OM}$ este numită o reprezentare parametrică a curbei Γ . Ecuația

$$\bar{r} = \bar{r}(t), \ t \in I$$
 (98)

se numește ecuația vectorială a curbei.

Dacă descompunem vectorii din ecuația (98): $\bar{r} = x\bar{e}_1 + y\bar{e}_2$ și $\bar{r}(t) = x(t)\bar{e}_1 + y(t)\bar{e}_2$ atunci obținem

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad t \in I$$
 (99)

numite ecuații parametrice ale curbei plane Γ .

Prin eliminarea parametrului t se obține o ecuație cateziană de forma

$$F(x,y) = 0 (100)$$

numită ecuație carteziană implicită a curbei.

Dacă putem exprima x = g(y) sau

$$y = f(x) \tag{101}$$

atunci spunem că am obținut ecuația explicită a curbei.

Elementul de arc

Fiind dată Γ o curbă plană dată de reprezentarea vectorială $\bar{r} = \bar{r}(t)$, $t \in I$, considerăm o nouă valoare a parametrului $t' = t + h \in I$, $h \in \mathbb{R}$. Obţinem astfel două puncte ale curbei Γ : $M(\bar{r}(t))$ şi $M'(\bar{r}(t+h))$. Lungimea arcului Γ_{MM} cuprins între punctele M şi M' se aproximează prin

$$l(\Gamma_{MM}') = \parallel \bar{r}(t+h) - \bar{r}(t) \parallel = \parallel \overrightarrow{MM'} \parallel$$

Figura 40: Elementul de arc

Elementul de arc ds este dat de relația:

$$ds = \lim_{h \to 0} \| \bar{r}(t+h) - \bar{r}(t) \| = \| d\bar{r} \|.$$
 (102)

În continuare vom exprima elementul de arc pentru diferite reprezentări ale curbei Γ .

• Dacă curba Γ este dată sub formă parametrică, adică

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad t \in I,$$

atunci elementul de arc este:

$$ds = ||d\bar{r}|| = ||\frac{dx}{dt}\bar{i} + \frac{dy}{dt}\bar{j}|| = \sqrt{[x'(t)]^2 + [y'(t)]^2}dt.$$

• Dacă curba Γ este reprezentată prin *ecuația cateziană*, atunci pentru scrierea elementului de arc vom face o parametrizare naturală, și anume:

$$\begin{cases} x = t \\ y = y(t) \end{cases} \quad t \in I.$$

Înlocuind în relațiile de mai, obținem pentru elementul de arc următoarea relație:

$$ds = \sqrt{1 + [y'(x)]^2} dx.$$

Observația 4.2. Pentru a obține o *reprezentare polară* a elementului de arc, trebuie să exprimăm coordonatele carteziene în coordonate polare, în următorul mod:

$$\left\{ \begin{array}{ll} x = \rho(\varphi)\cos\varphi & \quad \rho > 0 \\ y = \rho(\varphi)\sin\varphi & \quad \varphi \in [0,2\pi] \end{array} \right.$$

Elementul de arc în coordonate polare este:

$$ds = \sqrt{\rho^2 + [\rho']^2} d\varphi.$$

În toate cazurile, lungimea unui arc finit de curbă corespunzător punctelor $M_0(\bar{r}(t_0))$, $M_1(\bar{r}(t_1))$ se calculează cu formula:

$$l(\Gamma_{M_0M_1}) = \int_{t_0}^{t_1} ds \tag{103}$$

Exemplul 4.1. Fie curba plană dată prin ecuația vectorială

$$\Gamma : \bar{r} = (t-1)\bar{i} + (t^2+2)\bar{j}$$

Ecuațiile parametrice asociate curbei sunt:

$$\begin{cases} x = t - 1 \\ y = t^2 + 2 \end{cases} \quad t \in \mathbb{R}$$

iar ecuația carteziană asociată curbei este:

$$y = (x+1)^2 + 2$$

Elementul de arc în cazul parametric este:

$$ds = \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \sqrt{1 + 4t^2} dt$$

iar în cazul cartezian:

$$ds = \sqrt{1 + 4(x+1)^2} dx$$

Dacă comsiderăm punctele $M_0(t_0=0)$ și $M_1(t_1=1)$ de pe curbă, atunci lungimea arcului cuprins între punctele M_0 și M_1 este:

$$l(\Gamma_{M_0M_1}) = \int_{t_0}^{t_1} ds = \int_0^1 (1+4t^2)dt = \frac{7}{3}.$$

4.1.2 Tangenta și normala într-un punct regulat la o curbă plană.

Definiția 4.2. Un punct $M(\bar{r}(t)) \in \Gamma$, corespunzător valorii $t \in I$, se numește punct regulat al curbei dacă satisface condiția $\dot{\bar{r}}(t) \neq 0$.

 $Dac\check{a}\ \dot{\bar{r}}(t) = 0$ atunci punctul M se numește punct singular al curbei.

Observația 4.3. O curbă se zice regulată dacă toate punctele sale sunt regulate.

Fie $M(\bar{r}(t))$ un punct regulat al curbei Γ și $\bar{r}(t) = \overrightarrow{OM}$ vectorul de poziție al punctului M în reperul $\mathcal{R}_a^O = \{O; \bar{i}, \bar{j}\}$, iar $M'(\bar{r}(t+h))$ un alt punct de pe curbă (vezi figura). Dreapta determinată de punctele M și M' este o secantă pentru Γ .

Definiția 4.3. Tangenta la Γ în punctul M este dreapta obținută ca limită a pozițiilor secantelor D(M, M') când cel de-al doilea punct M' tinde spre primul punct M pe Γ :

$$T_M(\Gamma) = \lim_{h \to 0} D(M, M'), \tag{104}$$

i.e. dreapta $T_M(\Gamma)$ va intersecta curba în două puncte confundate.

Figura 41: Tangenta într-un punct regulat al unei curbe plane

Deoarece $\overrightarrow{MM'} = \overline{r}(t+h) - \overline{r}(t)$ este vector director al secantei D(M,M'), prin amplificare cu $\frac{1}{h}$ obţinem că $\frac{\overline{r}(t+h) - \overline{r}(t)}{h}$ este tot vector director al secantei D(M,M'). Trecând la limită, deducem că vectorul

$$\lim_{h \to 0} \frac{\bar{r}(t+h) - \bar{r}(t)}{h} = \dot{\bar{r}}(t).$$

este vector director al tangentei $T_M(\Gamma)$.

Scriem în continuare diferite reprezentări pentru ecuațiile tangentei la curba Γ într-un punct regulat $M_0(\dot{\bar{r}}(t_0) \neq 0)$ al curbei:

- Ecuația vectorială: $T_{M_0}(\Gamma): \vec{R} = \bar{r}(t_0) + \lambda \dot{\bar{r}}(t_0), \qquad \lambda \in \mathbb{R}$
- Ecuațiile parametrice: $T_{M_0}(\Gamma): \left\{ \begin{array}{l} X=x(t_0)+\lambda \dot{x}(t_0) \\ Y=y(t_0)+\lambda \dot{y}(t_0) \end{array} \right. \quad \lambda \in \mathbb{R}$
- Ecuația carteziană: $T_{M_0}(\Gamma)$: $\frac{X x(t_0)}{\dot{x}(t_0)} = \frac{Y y(t_0)}{\dot{y}(t_0)}$ sau $Y y(t_0) = k_T[X x(t_0)]$ unde $k_T = \frac{\dot{y}(t_0)}{\dot{x}(t_0)}$ este panta tangentei.

Observația 4.4. Panta k_T a tangentei $T_{M_0}(\Gamma)$ se mai poate exprima astfel:

- dacă curba Γ este dată prin ecuatîa carteziană implicită F(x,y)=0, atunci $k_T=-\frac{F_x'(x_0,y_0)}{F_y'(x_0,y_0)};$
- dacă curba Γ este dată prin ecuatîa carteziană explicită y = y(x), atunci $k_T = \dot{y}(x_0)$.

Exemplul 4.2. Fie o curbă plană dată prine ecuația vectorială:

$$\bar{r}(t) = (t-1)\bar{i} + (t^2+2)\bar{i}$$

Ecuațiile tangentei la curbă în punctul M(t=1) (adică M(0,3)) sunt:

- Ecuația vectorială: $\bar{R} = \bar{r}(t) + \lambda \dot{\bar{r}}(t) \Leftrightarrow \bar{R} = (t 1 + \lambda)\bar{i} + (t^2 + 2 + 2\lambda t)\bar{j}$. Deoarece t = 1 pentru punctul M, obținem: $\bar{R} = \lambda \bar{i} + (3 + 2\lambda)\bar{j}$
- Ecuațiile parametrice: $\left\{ \begin{array}{l} X = \lambda \\ Y = 3 + 2\lambda \end{array} \right.$
- Eliminând λ , obținem ecuația carteziană: Y = 3 + 2X.

Definiția 4.4. Dreapta normală la curba Γ în punctul M_0 , notată $N_{M_0}(\Gamma)$ este dreapta ortogonală în punctul M_0 pe tangenta $T_{M_0}(\Gamma)$ la curbă în acel punct.

Ecuația normalei la curba Γ în punctul M_0 se scrie punând condiția de perpendicularitate între tangentă și normală: produsul dintre pantele celor două drepte să fie egal cu -1. De aici, deducem că panta normalei $N_{M_0}(\Gamma)$ este $k_N = -\frac{\dot{x}(t_0)}{\dot{y}(t_0)}$. Ecuația carteziană a normalei este deci:

$$N_{M_0}(\Gamma): \quad Y - y(t_0) = k_N[X - x(t_0)]$$

4.1.3 Puncte singulare ale curbelor plane.

Fie c o curbă parametrizată definită astfel: $c: I \subset \mathbb{R} \to \mathbb{R}^2$, c(t) = (x(t), y(t)). Codițiile de regularitate pentru curba c sunt sintetizate prin următoarele:

- i) c este o aplicație injectivă.
- ii) $c \in C^k(I), k \ge 1$ și $\dot{c}(t) \ne 0, \forall t \in I$.

adică c este o curbă regulată dacă orice punct de pe curba c este regulat. Avem regularitate de ordinul I dacă şi numai dacă k = 1. Pentru a avea regularitate de ordinul II se cere în plus $\ddot{c}(t) \neq 0$, $\forall t \in I$.

Definiția 4.5. Dacă există puncte pe curba c astfel încât condițiile i) și ii) nu sunt îndeplinite, atunci aceste puncte se numesc puncte singulare.

Punctele singulare, dacă există, corespund acelor valori ale parametrului real t care sunt soluții ale sistemului

$$\begin{cases} \dot{x}(t) = 0\\ \dot{y}(t) = 0 \end{cases}$$

În general acest sistem este incompatibil, dar vom analiza cazurile in care acest sistem are soluții. Fie $t_0 \in I$ o soluție a sistemului de mai sus. Rezultă că punctul $M_0(t = t_0) = M_0(x_0, y_0)$ este un punct singular al curbei Γ .

Dacă se cunoaște o reprezentare carteziană a curbei: F(x,y) = 0, atunci $M_0 \in \Gamma \Rightarrow F(x(t_0), y(t_0)) = 0$. Prin derivarea în raport cu t_0 se obține:

$$F'_{x}(x_0, y_0) \cdot \dot{x}(t_0) + F'_{y}(x_0, y_0) \cdot \dot{y}(t_0) = 0$$

de unde:

$$\frac{\dot{y}(t_0)}{\dot{x}(t_0)} = -\frac{F'_x(x_0, y_0)}{F'_y(x_0, y_0)} = k_T$$

va reprezenta panta tangentei la curbă în punctul singular M_0 . Dar avem o nedeterminare de tipul $\frac{0}{0}$ ceea ce ne conduce la:

$$F'_x(x_0, y_0) = 0$$
 și $F'_y(x_0, y_0) = 0$

Concluzie: Pentru a afla coordonatele carteziene ale punctelor singulare este suficient să rezolvăm sistemul:

$$\begin{cases}
F(x,y) = 0 \\
F'_x(x_0, y_0) = 0 \\
F'_y(x_0, y_0) = 0
\end{cases}$$
(105)

Sistemul are 3 ecuații și 2 necunoscute, ceea ce înseamnă că este posibil ca el să nu aibă soluții. În acest caz, curba c nu are puncte singulare (toate punctele sunt regulate). În caz de compatibilitate pot exista mai multe soluții, ceea ce înseamnă că c are mai multe puncte singulare.

Natura punctelor singulare. Tangenta în punctele singulare.

Fie $M_0(x_0, y_0) \in \Gamma$ un punct singular pentru curba Γ . Ecuația tangentei în acest punct se scrie:

$$T_{M_0}(\Gamma): \quad Y - y_0 = k_T(X - x_0)$$

unde k_T este panta tangentei. Panta tangentei se poate exprima prin una din următoarele expresii:

- $k_T = y'(x_0)$ dacă curba Γ este dată prin ecuația carteziană explicită y = y(x);
- $k_T = -\frac{F_x'(x_0, y_0)}{F_y'(x_0, y_0)}$ dacă Γ este dată prin ecuația carteziană implicită F(x, y) = 0.

Dacă $M_0(x_0, y_0)$ este un punct singular, atunci: $F'_x(x_0, y_0) = 0$ și $F'_y(x_0, y_0) = 0$.

În cazul în care curba Γ este dată rin ecuația carteziană implicită, în condițiile teoremei funcțiilor implicite, determinarea lui $y'(x_0)$ se face derivând în raport cu x, în punctul (x_0, y_0) , identitatea F(x, y(x)) = 0. Obținem:

$$F'_{x}(x_{0}, y_{0}) + F'_{y}(x_{0}, y_{0})y'(x_{0}) = 0,$$

însă, nu putem rezolva această ecuație pentru a obține $y'(x_0)$, deoarece în punctul (x_0, y_0) , derivatele $F'_x(x_0, y_0)$ și $F'_x(x_0, y_0)$ se anulează.

În acest caz, derivăm de 2 ori relația F(x, y(x)) = 0 și obținem:

$$F_{x'}''(x_0, y_0) + 2F_{xy}''(x_0, y_0)y'(x_0) + F_{y'}''(x_0, y_0)y'(x_0)^2 + F_y'(x_0, y_0)y''(x_0) = 0.$$

Deoarece ultimul termen este identic nul, pentru determinarea lui $y'(x_0)$ rămâne să folosim ecuația:

$$F_{x'}''(x_0, y_0) + 2F_{xy}''(x_0, y_0)y'(x_0) + F_{y'}'(x_0, y_0)y'(x_0)^2 = 0.$$
 (106)

Un punct singular M_0 este punct singular dublu, dacă în ecuația (106), cel puțin unul dintre coeficienți este nenul.

În raport cu natura rădăcinilor ecuației (106), care depinde de valoarea discriminantului $\Delta = 4 \left[(F''_{xy})^2 - F''_{x^2} F''_{y^2} \right]_{(x_0,y_0)}, \text{ avem următoarea clasificare a punctelor singulare duble:}$

- a. Punctul singular dublu se numeşte nod, dacă $\Delta > 0 \Rightarrow k_{1,2} \in \mathbb{R} \cup \{\pm \infty\}$ cu $k_1 \neq k_2$, i.e. avem 2 tangente distincte la curbă în M_0 .
- b. Punctul singular dublu se numește punct de întoarcere, dacă $\Delta = 0 \Rightarrow k_{1,2} \in \mathbb{R} \cup \{\pm \infty\}$ cu $k_1 = k_2$, i.e. avem 2 tangente nedistincte la curbă în M_0 .
- c. Punctul singular dublu se numeşte punct izolat, dacă $\Delta < 0 \Rightarrow k_{1,2} \in \mathbb{R} \cup \{\pm \infty\}$ cu $k_1 \neq k_2$, i.e. nu avem tangente reale în M_0 (cele două tangente sunt imaginare).

Figura 42: Clasificarea punctelor singulare

4.1.4 Curbura unei curbe plane.

Fie $\Gamma \subset \mathcal{E}^2$ dată prin reprezentarea vectorială:

$$\bar{r} = \bar{r}(s), \qquad s \in [0, L]$$

Fie $M \in \Gamma$ un punct regulat de pe curbă al cărui vector de poziție este $\bar{r}(s)$ pentru care $\dot{r}(s) \neq 0$, cu $s = l(\Gamma_{\Omega M})$, unde $\Omega \in \Gamma$ este "punctul origine" al curbei corespunzător lui s = 0.

Fie $M' \in \Gamma$ un punct din vecinătatea lui M având vectorul de poziție $\bar{r}(s')$ astfel încât $|s' - s| < \varepsilon, \ \forall \ \varepsilon > 0$ fixat.

Considerăm tangentele la curbă în punctele M şi M', care formează cu axa Ox unghiurile θ respectiv θ' . Aceasta înseamnă că unghiul φ dintre cele două tangente va fi: $\varphi = \theta' - \theta$.

Figura 43: Curbura unei curbe plane

Definiția 4.6. Numărul real $\frac{\varphi}{l(\Gamma_{MM'})}$ se numește curbură medie a lui Γ în vecinătatea lui M.

Observația 4.5. Lungimea arcului de curbă $l(\Gamma_{MM'}) = const$, iar φ descrește sau crește după cum Γ este mai puțin curbată respectiv mai mult curbată.

Definiția 4.7. Dacă limita $k(s) = \lim_{s' \to s} \frac{\varphi(s, s')}{s - s'}$ există, atunci această limită se numește curbura curbei Γ în punctul M.

Dacă exprimăm prin $\theta = \theta(s)$ dependența unghiului făcut de tangenta la curbă în punctul M cu axa Ox, atunci în M' avem $\theta' = \theta'(s') \Rightarrow \varphi(s, s') = \theta'(s') - \theta(s)$, de unde:

$$k(s) = \frac{d\theta}{ds}$$

Raportul $R_M = \frac{1}{|k(s)|}$ se numește *raza de curbură* în punctul regulat M.

Observația 4.6. Dacă k=0 atunci curba Γ este o dreaptă.

Expresii ale curburii unei curbe plane pentru diferite reprezentări ale acesteia.

• Dacă curba plană este dată prin reprezentarea parametrică:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \tag{107}$$

iar M(x(t),y(t)) este un punct pe curba Γ , atunci panta tangentei în M este $k_T=\tan\theta=\frac{\dot{y}(t)}{\dot{x}(t)}$, de unde avem: $\theta=\arctan\frac{\dot{y}(t)}{\dot{x}(t)}$. Calculăm derivata lui θ în raport cu s și obținem:

$$\frac{d\theta}{ds} = \frac{d\theta}{dt}\frac{dt}{ds} = \frac{\ddot{y}(t)\dot{x}(t) - \ddot{x}(t)\dot{y}(t)}{\dot{x}(t)^2 + \dot{y}(t)^2}\frac{dt}{ds}$$

unde
$$ds = \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} dt \Rightarrow \frac{dt}{ds} = \frac{1}{\sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}}.$$

Astfel, formula curburii pentru o curbă plană este:

$$k = \frac{d\theta}{ds} = \frac{\ddot{y}(t)\dot{x}(t) - \ddot{x}(t)\dot{y}(t)}{[\dot{x}(t)^2 + \dot{y}(t)^2]^{3/2}}$$
(108)

• Dacă curba plană este dată prin ecuația carteziană explicită: y=y(x), atunci trecând la parametrizarea naturală: $\begin{cases} x=t\\ y=y(t) \end{cases}$, calculând derivatele de ordinul I: $\begin{cases} \dot{x}=1\\ \dot{y}=\dot{y}(t) \end{cases}$ și cele de ordinul II : $\begin{cases} \ddot{x}=0\\ \ddot{y}=\ddot{y}(t) \end{cases}$, și înlocuind pe acestea in relația (108) obtinem:

$$k = \frac{\ddot{y}(t)}{\left[1 + \dot{y}^2(t)\right]^{3/2}} \tag{109}$$

• Dacă curba plană este dată prin ecuația carteziană implicită F(x,y)=0 atunci avem $F'_x+F'_y\cdot\dot{y}=0 \Rightarrow \dot{y}=-\frac{F'_x}{F'_y}$ și $\ddot{y}=-\frac{F''_{x^2}}{F''_{y^2}}$; înlocuind acestea în (109) obținem:

$$k = -\frac{(F'_x)^2 \cdot F''_{y^2} - 2 \cdot F'_x \cdot F'_y \cdot F''_{xy} + (F'_y)^2 \cdot F''_{x^2}}{\left[(F'_x)^2 + (F'_y)^2 \right]^{3/2}}$$
(110)

4.2 Geometria diferențială locală a curbelor spațiale

4.2.1 Reprezentări ale curbelor spațiale

Definiția 4.8. Se numește curbă spațială o aplicație $\gamma: I \subset \mathbb{R} \to \mathcal{E}^3$ de clasă C^k , $k \in \mathbb{N}$ pe intervalul I.

Observația 4.7.

- 1. Dacă k=0 atunci $\gamma \in C^0(k)$, deci γ este o curbă continuă.
- 2. Dacă $k \ge 1$, atunci γ este o curbă diferențiabilă de clasă C^k . Dacă k = 2 atunci spunem că γ este o curbă netedă.

Pentru a obţine diferite reprezentări ale curbei spaţiale Γ se consideră un reper afin ortonormal al spaţiului \mathcal{E}^3 , $\mathcal{R}_a^O\left\{O; \bar{i}, \bar{j}, \bar{k}\right\}$. Asociem fiecăriui punct $M = \gamma(t)$ vectorul de poziţie $\bar{r} = \overrightarrow{OM}$. Ecuaţia

$$\Gamma: \bar{r} = \bar{r}(t) \tag{111}$$

se numește ecuația vectorială (ecuația parametrică vectorială) a curbei spațiale. Dacă descompunem vectorii din ecuația (111): $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$ și $\bar{r}(t) = x(t)\bar{i} + y(t)\bar{j} + z(t)\bar{k}$ atunci obținem ecuații parametrice (scalare) ale curbei spațiale Γ :

$$\Gamma: \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} \quad t \in I$$
 (112)

Prin eliminarea parametrului t din sistemul anterior, se obțin ecuațiile carteziane implicite ale curbei spațiale:

$$\Gamma: \begin{cases} f(x,y,z) = 0\\ g(x,y,z) = 0 \end{cases}$$
(113)

Dacă putem exprima y și z în funcție de x, sub forma:

$$\Gamma: \left\{ \begin{array}{l} y = y(x) \\ z = z(x) \end{array} \right. \tag{114}$$

atunci obținem ecuațiile carteziene explicite ale curbei spațiale.

4.2.2 Elementul de arc. Lungimea unui arc de curbă.

Din capitolul curbe plane se știe că elementul de arc notat ds este dat de: $ds = ||d\bar{r}||$, și definește lungimea arcului elementar. Deoarece $d\bar{r} = \dot{r}dt$, în cazul curbelor spațiale avem:

$$d\bar{r} = [\dot{x}(t)\bar{i} + \dot{y}(t)\bar{j} + \dot{z}(t)\bar{k}]dt.$$

Dacă curba spațială este dată prin reprezentarea ei parametrică, atunci elementul de arc este:

$$ds = \sqrt{[\dot{x}(t)]^2 + \dot{y}(t)]^2 + \dot{z}(t)^2} dt.$$
(115)

Dacă $A(t_0)$ şi $B(t_1)$ două puncte de pe curba Γ , atunci lungimea arcului de curbă situat între cele două puncte este dat de:

$$l_{AB} = \int_{t_0}^{t_1} ds = \int_{t_0}^{t_1} \sqrt{[\dot{x}(t)]^2 + \dot{y}(t)]^2 + \dot{z}(t)^2} dt.$$

Dacă curba este dată prin ecuația carteziană explicită, atunci făcând o parametrizare naturală: $\begin{cases} x=t\\ y=y(t) \end{cases} \text{, obținem pentru elementul de arc relația:} \\ z=z(t) \end{cases}$

$$ds = \sqrt{1 + [\dot{y}(x)]^2 + [\dot{z}(x)]^2} dx.$$

4.2.3 Dreapta tangentă și planul normal

Fie $\Gamma: \bar{r} = \bar{r}(t)$, o curbă spațială, $M_0 = \bar{r}(t_0) \in \Gamma$, și dreapta tangentă la curba Γ în punctul M_0 definită ca în cazul curbelor plane (vezi Definiția (4.3)).

Reprezentările tangentei la o curbă spațială în punctul M_0 se obțin la fel ca și în cazul curbelor plane:

• ecuația vectorială:

$$T_{M_0}(\Gamma): \bar{R} = \bar{r}(t_0) + \lambda \dot{\bar{r}}(t_0), \quad \lambda \in \mathbb{R}$$

• ecuațiile parametrice:

$$T_{M_0}(\Gamma): \begin{cases} X = x(t_0) + \lambda \dot{x}(t_0) \\ Y = y(t_0) + \lambda \dot{y}(t_0) \\ Z = z(t_0) + \lambda \dot{z}(t_0) \end{cases} \quad \lambda \in \mathbb{R}$$

• ecuațiile carteziene se obțin din cele parametrice eliminând parametrul λ :

$$T_{M_0}(\Gamma): \frac{X - x(t_0)}{\dot{x}(t_0)} = \frac{Y - y(t_0)}{\dot{y}(t_0)} = \frac{Z - z(t_0)}{\dot{z}(t_0)}$$

Observația 4.8.

- 1. Dacă se cunosc ecuațiile vectoriale sau parametrice ale curbei Γ , atunci vectorul director al tangentei la curbă este: $\dot{\bar{r}}(t_0) = (\dot{x}(t_0), \dot{y}(t_0), \dot{z}(t_0))$.
- 2. Dacă se cunosc ecuațiile carteziene explicite ale lui Γ atunci făcând o parametrizare naturală $\left\{ \begin{array}{l} x=t \\ y=y(t) \\ z=z(t) \end{array} \right. , \text{ obținem vectorul director al tangentei: } (1,\dot{y}(x_0),\dot{z}(x_0)).$
- 3. Dacă se cunosc ecuațiile carteziene implicite ale curbei Γ : $\begin{cases} f(x,y,z) = 0 \\ g(x,y,z) = 0 \end{cases}$, atunci prin diferențiere avem:

$$\begin{cases} f'_x dx + f'_y dy + f'_z dz = 0 \\ g'_x dx + g'_y dy + g'_z dz = 0, \end{cases}$$

Figura 44: Dreapta tangentă și planul normal

Parametrii directori pentru tangenta $T_{M_0}(\Gamma)$ sunt dați de coeficienții mărimilor (dx, dy, dz) obținuți din dezvoltarea după prima linie a determinantului:

$$\begin{vmatrix}
dx & dy & dz \\
f'_x & f'_y & f'_z \\
g'_x & g'_y & g'_z
\end{vmatrix}$$

Notăm:

Astfel, vectorul director al tangentei la curba Γ este: $\left(\frac{D(f,g)}{D(y,z)}, \frac{D(f,g)}{D(z,x)}, \frac{D(f,g)}{D(x,y)}\right)$ iar ecuația tangentei se scrie în acest caz:

$$T_{M_0}(\Gamma): \frac{X - x(t_0)}{\frac{D(f,g)}{D(y,z)}\Big|_{M_0}} = \frac{Y - y(t_0)}{\frac{D(f,g)}{D(z,x)}\Big|_{M_0}} = \frac{Z - z(t_0)}{\frac{D(f,g)}{D(x,y)}\Big|_{M_0}}.$$
 (116)

Definiția 4.9. Planul normal în punctul regulat M_0 la curba Γ , notat $P_{M_0}^n(\Gamma)$, este planul ortogonal pe tangenta la curbă în punctul M_0 .

Ecuația vectorială a planului normal este:

$$P_{M_0}^n(\Gamma) :< \bar{R} - \bar{r}(t); \dot{\bar{r}}(t) >= 0.$$
 (117)

Explicitând vectorii care intervin în ecuația vectorială se obține ecuația carteziană a planului normal:

$$P_{M_0}^n(\Gamma): [X - x(t_0)] \cdot \dot{x}(t_0) + [Y - y(t_0)] \cdot \dot{y}(t_0) + [Z - z(t_0)] \cdot \dot{z}(t_0) = 0; \tag{118}$$

echivalentă cu:

$$P_{M_0}^n(\Gamma): [X - x(t_0)] \frac{D(f,g)}{D(y,z)} \bigg|_{M_0} + [Y - y(t_0)] \frac{D(f,g)}{D(z,x)} \bigg|_{M_0} + [Z - z(t_0)] \frac{D(f,g)}{D(x,y)} \bigg|_{M_0} = 0.$$
(119)

Observația 4.9. Deoarece tangenta este perpendiculară pe planul normal în M_0 , vectorul director al tangentei coincide cu vectorul normal al planului normal, astfel că, dacă se cunoaște ecuația planului normal la curbă în punctul regulat M_0 :

$$P_{M_0}^n(\Gamma): A(x-x_0) + B(y-y_0) + C(z-z_0) + D = 0$$

atunci ecuația tangentei la curbă în același punct este:

$$T_{M_0}(\Gamma): \frac{X - x_0}{A} = \frac{Y - y_0}{B} = \frac{Z - z_0}{C}.$$

4.2.4 Plane tangente și planul osculator

Fie o curbă spațială dată prin ecuația ei vectorială: $\Gamma : \bar{r} = \bar{r}(t), M_0(t_0)$ un punct regulat de pe curbă și $T_{M_0}(\Gamma)$ dreapta tangentă la curbă în punctul M_0 .

Definiția 4.10. Un plan care conține dreapta tangentă $T_{M_0}(\Gamma)$ se numește plan tangent și se notează $\pi_{M_0}(\Gamma)$.

Fie un punct $M'_0(t_0 + k)$ de pe Γ , vecin cu M_0 , k fiind o creştere mică astfel ca $t_0 + k \in I$. Fie $D(M_0, M'_0)$ dreapta determinată de aceste puncte, secantă pentru curba Γ .

Observația 4.10. Dreapta obținută ca limită a pozițiilor secantelor $D(M_0, M'_0)$ când $M_0 \to M'_0$ (adică $k \to 0$) este tangenta la Γ în punctul M_0 .

Definiția 4.11. Planul determinat de dreapta $T_{M_0}(\Gamma)$ și de un punct M'_0 de pe curba Γ din vecinătatea lui M_0 , se numește plan osculator al curbei Γ în punctul M_0 , și se notează $P^o_{M_0}(\Gamma)$.

Planul osculator este determinat de M_0 , direcția tangentei $\dot{\bar{r}}(t_0)$ și de direcția $\overrightarrow{M_0M_0'} = \bar{r}(t_0+k) - \bar{r}(t_0)$. Remarcăm că vectorul $\frac{1}{k}[\bar{r}(t_0+k) - \bar{r}(t_0)]$ este coliniar cu vectorul $\overrightarrow{M_0M_0'}$.

Figura 45: Planul osculator la o curbă spațială

Fie t_k un punct intermediar din intervalul $(t_0, t_0 + k)$. Conform ipotezei că $\bar{r}(t)$ este o funcție de clasă C^2 pe intervalul real I, putem considera aproximarea de ordinul II a expresiei $\bar{r}(t_0 + k)$:

$$\bar{r}(t_0 + k) = \bar{r}(t_0) + k \cdot \dot{\bar{r}}(t_0) + \frac{k^2}{2!} \cdot \ddot{\bar{r}}(t_k)$$
 $t_k \in (t_0, t_0 + k)$

care se obține din formula lui Taylor cu restul Lagrange aplicată funcției vectoriale \bar{r} .

În plus, în baza continuității funcției \ddot{r} , avem $\lim_{k\to 0} \ddot{r}(t_k) = \ddot{r}(t_0)$. Obținem astfel:

$$\frac{\bar{r}(t_0 + k) - \bar{r}(t_0)}{k} = \dot{\bar{r}}(t_0) + \frac{k}{2!} \cdot \ddot{\bar{r}}(t_k).$$

Cum membrul drept al egalității de mai sus este un vector coliniar cu $\overrightarrow{M_0M'_0}$, rezultă că vectorul $\ddot{r}(t_k)$ aparține planului osculator, pentru orice k. Trecând la limită pentru $k \to 0$, obținem că vectorul $\ddot{r}(t_0)$ aparține planului osculator.

Aşadar, cunoaștem doi vectori directori ai planului osculator: $\dot{\bar{r}}(t_0)$ și $\ddot{\bar{r}}(t_0)$. Ecuația vectorială a planului osculator este:

$$P_{M_0}^o(\Gamma): (\bar{R} - \bar{r}(t_0); \dot{\bar{r}}(t_0); \ddot{\bar{r}}(t_0)) = 0$$

iar ecuația carteziană a planului osculator este:

$$P_{M_0}^o(\Gamma): \begin{vmatrix} X - x(t_0) & Y - y(t_0) & Z - z(t_0) \\ \dot{x}(t_0) & \dot{y}(t_0) & \dot{z}(t_0) \\ \ddot{x}(t_0) & \ddot{y}(t_0) & \ddot{z}(t_0) \end{vmatrix} = 0$$

Dacă curba Γ este dată sub formă parametrică, atunci ecuația planului osculator poate fi scrisă sub forma:

$$P_{M_0}^o(\Gamma): \begin{cases} X = x(t_0) + \alpha \cdot \dot{x}(t_0) + \beta \cdot \ddot{x}(t_0) \\ Y = y(t_0) + \alpha \cdot \dot{y}(t_0) + \beta \cdot \ddot{y}(t_0) \\ Z = z(t_0) + \alpha \cdot \dot{z}(t_0) + \beta \cdot \ddot{z}(t_0) \end{cases} \qquad \alpha, \beta - \text{parametrii}$$

sau

$$P_{M_0}^o(\Gamma): A[x-x(t_0)] + B[y-y(t_0)] + C[z-z(t_0)] = 0$$

unde A, B, C sunt complemenții algebrici ai matricei $\begin{bmatrix} \dot{x}(t_0) & \dot{y}(t_0) & \dot{z}(t_0) \\ \ddot{x}(t_0) & \ddot{y}(t_0) & \ddot{z}(t_0) \end{bmatrix}$.

Observația 4.11. Planul osculator al unei curbe plane este chiar planul curbei.

Observația 4.12. Direcția normală a planului osculator $P_{M_0}^o(\Gamma)$ este vectorul

$$\dot{\bar{r}}(t_0) \times \ddot{\bar{r}}(t_0) = \begin{bmatrix} \bar{i} & \bar{j} & \bar{k} \\ \dot{x}(t_0) & \dot{y}(t_0) & \dot{z}(t_0) \\ \ddot{x}(t_0) & \ddot{y}(t_0) & \ddot{z}(t_0) \end{bmatrix} = A\bar{i} + B\bar{j} + C\bar{k}$$

Dreapta normală pe planul osculator (adică dreapta de direcție $\dot{\bar{r}}(t_0) \times \ddot{\bar{r}}(t_0)$) în punctul M_0 se numește binormală, si se notează cu $B_{M_0}(\Gamma)$.

4.2.5 Triedrul şi reperul Frènet asociate unei curbe spațiale

Triedrul Frènet

Fie $\Gamma: \vec{r} = \bar{r}(t)$ o curbă spațială și $M_0 \in \Gamma$ un punct regulat și neinflexionar.

Definiția 4.12. Triedrul Frènet este un triedru mobil de vârf M_0 , format din 3 plane care trec prin M_0 și care sunt ortogonale două câte două.

Figura 46: Triedrul lui Frènet asociat unei curbe spațiale

Elementele triedrului Frènet sunt:

- Muchiile triedrului Frènet sunt:
 - Dreapta tangentă $T_{M_0}(\Gamma)$ dată de (M_0, \bar{t}) ;
 - Dreapta normală principală $N_{M_0}(\Gamma)$ dată de (M_0, \bar{n}) , fiind dreapta de intersecție dintre planul normal și planul osculator;
 - Dreapta binormală $B_{M_0}(\Gamma)$ dată de (M_0, \bar{b}) , fiind dreapta perpendiculară pe planul osculator in punctul M_0 .
- Fețele triedrului Frènet sunt:
 - Planul osculator $P_{M_0}^o(\Gamma)$;
 - Planul normal $P_{M_0}^n(\Gamma)$;
 - Planul rectificator notat $P_{M_0}^r(\Gamma)$, fiind planul perpendicular pe normală principală în punctul M_0 .

Au loc următoarele relații:

- $\bar{t} = \dot{\bar{r}}(t_0)$ este vectorul director al dreptei tangente $T_{M_0}(\Gamma)$;
- $\bar{b} = \dot{\bar{r}}(t_0) \times \ddot{\bar{r}}(t_0)$ este vectorul director al dreptei binormale $B_{M_0}(\Gamma)$, fiind vectorul normal planului osculator $P_{M_0}^o(\Gamma)$;
- $\bar{n} = \bar{b} \times \bar{t}$ este vectorul director al normalei principale $N_{M_0}(\Gamma)$.

Cunoscând vectorii directori ai muchiilor Triedrului Frènet, putem deduce cu uşurință ecuațiile planelor (fețelor) Triedrului Frènet, după cum urmează:

- $P_{M_0}^n(\Gamma)$ este planul determinat de punctul M_0 și direcția normală \bar{t} ;
- $P_{M_0}^o(\Gamma)$ este planul determinat de punctul M_0 și direcția normală \bar{b} ;
- $P_{M_0}^r(\Gamma)$ este planul determinat de punctul M_0 și direcția normală \bar{n} .

Dacă curba Γ este dată prin ecuații parametrice Γ : $\begin{cases} x=x(t) \\ y=y(t) & \text{și } M_0(t_0) \in \Gamma \text{ atunci:} \\ z=z(t) \end{cases}$

$$T_{M_0}(\Gamma) : \frac{X - x(t_0)}{\dot{x}(t_0)} = \frac{Y - y(t_0)}{\dot{y}(t_0)} = \frac{Z - z(t_0)}{\dot{z}(t_0)}$$

$$P_{M_0}^n(\Gamma) : \dot{x}(t_0) \cdot [X - x(t_0)] + \dot{y}(t_0) \cdot [Y - y(t_0)] + \dot{z}(t_0) \cdot [Z - z(t_0)] = 0$$

$$B_{M_0}(\Gamma) : \frac{X - x(t_0)}{A} = \frac{Y - y(t_0)}{B} = \frac{Z - z(t_0)}{C}$$

$$P_{M_0}^o : A \cdot [X - x(t_0)] + B \cdot [Y - y(t_0)] + C \cdot [Z - z(t_0)] = 0$$

$$N_{M_0}(\Gamma) : \frac{X - x(t_0)}{l} = \frac{Y - y(t_0)}{m} = \frac{Z - z(t_0)}{n}$$

$$P_{M_0}^r : l \cdot [X - x(t_0)] + m \cdot [Y - y(t_0)] + n \cdot [Z - z(t_0)] = 0$$

unde A, B, C sunt componentele scalare ale vectorului

$$\bar{b} = \dot{\bar{r}}(t_0) \times \ddot{\bar{r}}(t_0) = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \dot{x}(t_0) & \dot{y}(t_0) & \dot{z}(t_0) \\ \ddot{x}(t_0) & \ddot{y}(t_0) & \ddot{z}(t_0) \end{vmatrix}$$

iar l, m, n sunt componentele scalare ale vectorului

$$ar{n} = ar{b} imes ar{t} = \left| egin{array}{ccc} ar{i} & ar{j} & ar{k} \ A & B & C \ \dot{x}(t_0) & \dot{y}(t_0) & \dot{z}(t_0) \end{array}
ight|$$

Reperul Frènet

Definiția 4.13. Reperul Frènet este un reper ortonormat mobil, având originea în punctul $M_0 \in \Gamma$, iar vectorii unitari sunt cei ce definesc direcțiile muchiilor triedrului Frènet: direcția tangentei, direcția normalei principale și direcția binormalei.

Notând cu \bar{t}^0 versorul tangentei, \bar{n}^0 versorul normalei principale și cu \bar{b}^0 versorul binormalei, reperul lui Frènet poate fi scris astfel: $\mathcal{R}_F = \{M_0; \bar{t}^0, \bar{n}^0, \bar{b}^0\}$.

Reamintim că, un versor \bar{v}^0 oarecare este dat de: $\bar{v}^0 = \frac{\bar{v}}{\|\bar{v}\|}$.

Fie $M_0(t_0) \in \Gamma$ un punct regulat și neinflexionar al curbei. Obținem versorul tangentei:

$$\bar{t}^0 = \frac{\bar{t}}{\parallel \bar{t} \parallel} = \frac{\dot{\bar{r}}(t_0)}{\parallel \dot{\bar{r}}(t_0) \parallel} = \frac{\dot{x}(t_0)\bar{i} + \dot{y}(t_0)\bar{j} + \dot{z}(t_0)\bar{k}}{\sqrt{[\dot{x}(t_0)]^2 + [\dot{y}(t_0)]^2 + [\dot{z}(t_0)]^2}} = \frac{d\bar{r}}{ds}\Big|_{t_0}$$

Versorul binormalei este:

$$\bar{b}^{0} = \frac{\bar{b}}{\|\bar{b}\|} = \frac{\dot{\bar{r}}(t_{0}) \times \ddot{\bar{r}}(t_{0})}{\|\dot{\bar{r}}(t_{0}) \times \ddot{\bar{r}}(t_{0})\|} = \frac{A \cdot \bar{i} + B \cdot \bar{j} + C \cdot \bar{k}}{\sqrt{A^{2} + B^{2} + C^{2}}}$$

Pentru a deduce formula versorului binormalei \bar{b}^0 in funcție de derivatele în raport cu s ale funcției \bar{r} , vom utiliza următoarele relații:

$$\|\bar{t}^0\| = \|\frac{d\bar{r}}{ds}\| = 1 \quad \Rightarrow \quad \langle \frac{d\bar{r}}{ds}, \frac{d\bar{r}}{ds} \rangle = 1 \quad \Rightarrow \quad \langle \frac{d\bar{r}}{ds}, \frac{d^2\bar{r}}{ds^2} \rangle = 0 \quad \Rightarrow \quad \frac{d\bar{r}}{ds} \perp \frac{d^2\bar{r}}{ds^2}$$
$$\dot{\bar{r}} = \frac{d\bar{r}}{dt} = \frac{d\bar{r}}{ds} \cdot \frac{ds}{dt}$$
$$\ddot{\bar{r}} = \frac{d}{dt}\dot{\bar{r}} = \frac{d^2\bar{r}}{ds^2} \cdot \left(\frac{ds}{dt}\right)^2 + \frac{d\bar{r}}{ds} \cdot \frac{d^2s}{dt^2}$$

Din aceste relații rezultă că:

$$\dot{\bar{r}} \times \ddot{\bar{r}} = \left(\frac{ds}{dt}\right)^3 \cdot \left(\frac{d\bar{r}}{ds} \times \frac{d^2\bar{r}}{ds^2}\right)$$

deci

$$\bar{b}^{0} = \frac{\dot{\bar{r}}(t_{0}) \times \ddot{\bar{r}}(t_{0})}{\|\dot{\bar{r}}(t_{0}) \times \ddot{\bar{r}}(t_{0})\|} = \frac{\frac{d\bar{r}}{ds} \times \frac{d^{2}\bar{r}}{ds^{2}}}{\|\frac{d\bar{r}}{ds} \times \frac{d^{2}\bar{r}}{ds^{2}}\|} \bigg|_{t_{0}} = \frac{\frac{d\bar{r}}{ds} \times \frac{d^{2}\bar{r}}{ds^{2}}}{\|\frac{d^{2}\bar{r}}{ds^{2}}\|} \bigg|_{t_{0}}$$

Versorul normalei principale este:

$$\bar{n}^0 = \frac{\bar{n}}{\parallel \bar{n} \parallel} = \frac{l \cdot \bar{i} + m \cdot \bar{j} + n \cdot \bar{k}}{\sqrt{l^2 + m^2 + n^2}} = \frac{\frac{d^2 \bar{r}}{ds^2}}{\parallel \frac{d^2 \bar{r}}{ds^2} \parallel} \bigg|_{t_0}$$

4.2.6 Curbura și torsiunea unei curbe spațiale

Considerăm un punct regulat si neinflexionar $M = \bar{r}(t) \in \Gamma$. Vom nota în continuare **versorii** reperului Frènet în punctul M cu $\bar{t}(t)$, $\bar{n}(t)$ și $\bar{b}(t)$. Are loc următoarea teoremă:

Teorema 4.1 (Formulele Frènet-Serret).

$$\begin{split} \dot{\bar{t}}(t) &= k(t)\nu(t)\bar{n}(t) \\ \dot{\bar{n}}(t) &= -k(t)\nu(t)\bar{t}(t) + \tau(t)\nu(t)\bar{b}(t) \\ \dot{\bar{b}}(t) &= -\tau(t)\nu(t)\bar{n}(t) \end{split}$$

unde $\nu(t) = \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2 + \dot{z}(t)^2} = \frac{ds}{dt}$ este viteza curbei Γ , iar k(t) si $\nu(t)$ sunt curbura și respectiv torsiunea curbei Γ în punctul M.

Pentru curbura k(t) avem următoarele formule:

$$k(t) = \frac{\|\dot{\bar{r}}(t) \times \ddot{\bar{r}}(t)\|}{\|\dot{\bar{r}}(t)\|^3} = \frac{\sqrt{A^2 + B^2 + C^2}}{\left[\sqrt{[\dot{x}(t)]^2 + [\dot{y}(t)]^2 + [\dot{z}(t)]^2}\right]^3}$$

unde A, B, C sunt componentele scalare ale vectorului $\begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \dot{x}(t) & \dot{y}(t) & \dot{z}(t) \\ \ddot{x}(t) & \ddot{y}(t) & \ddot{z}(t) \end{vmatrix}$.

Raza de curbură a curbei Γ în punctul M este $R(t) = \frac{1}{|k(t)|}$.

Pentru torsiunea $\tau(t)$ avem formulele:

$$\tau(t) = \frac{(\dot{\bar{r}}(t); \ddot{\bar{r}}(t); \ddot{\bar{r}}(t))}{\|\dot{\bar{r}}(t) \times \ddot{\bar{r}}(t)\|^2} = \frac{\Delta}{A^2 + B^2 + C^2}$$

unde
$$\Delta = \begin{vmatrix} \dot{x}(t) & \dot{y}(t) & \dot{z}(t) \\ \ddot{x}(t) & \ddot{y}(t) & \ddot{z}(t) \\ \dddot{x}(t) & \dddot{y}(t) & \dddot{z}(t) \end{vmatrix}$$
.

Raza de torsiune în punctul M este $T(t) = \frac{1}{|\tau(t)|}$.

5 Geometria diferențială locală a suprafețelor

5.1 Definiție. Reprezentări.

Definiția 5.1. Se numește suprafață o aplicație $\sigma: D \subset \mathbb{R}^2 \to \mathcal{E}^3$ de clasă C^k , $k \in \mathbb{N}$. Observația 5.1.

- 1. Dacă k=0, atunci $\sigma \in C^0(D)$ se numește suprafață continuă.
- 2. Dacă $k \in \mathbb{N}^*$, atunci $\sigma \in C^k(D)$ se numește suprafață diferențiabilă.
- 3. Dacă $k=\infty$, atunci $\sigma\in C^\infty(D)$ se numește suprafață netedă.

Definiția 5.2. Mulțimea $\Sigma = \sigma(D)$ se numește imaginea geometrică a suprafeței.

Figura 47: Suprafață în \mathcal{E}^3

Observaţia 5.2.
$$\Sigma = \{ M \in \mathcal{E}^3 \, | \, \exists (u^1, u^2) \in D \, , \, \sigma(u^1, u^2) = M \}$$

Reprezentarea vectorială a unei suprafețe este:

$$\Sigma: \quad \overline{r} = \overline{r}(u, v), \qquad \forall (u, v) \in D$$

Ecuațiile parametrice ale suprafeței sunt:

$$\Sigma: \begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases} \forall (u, v) \in D$$

Prin eliminarea lui u și v din ecuațiile parametrice, se obține o ecuație carteziană (explicită sau implicită) a suprafeței. $Ecuația \ carteziană \ implicită$ a unei suprafețe este de forma:

$$\Sigma: F(x,y,z)=0$$

Ecuația carteziană explicită a unei suprafețe este de forma:

$$\Sigma: \quad z = f(x,y)$$

Un punct M_0 de pe suprafața Σ poate fi dat fie prin coodonatele sale carteziene (x_0, y_0, z_0) , fie prin parametrii de suprafață (u_0, v_0) , care verifia relațiile:

$$x_0 = x(u_0, v_0)$$
 ; $y_0 = y(u_0, v_0)$; $z_0 = z(u_0, v_0)$

5.2 Curbe coordonate

Prin orice punct $M_0(u_0, v_0) \in \Sigma$ trec două curbe particulare ale suprafeței, care se obțin făcând constante valorile parametrilor: $u = u_0$ sau $v = v_0$. Aceste curbe se numesc *curbe coordonate*.

Fie I şi J două intervale reale cu proprietatea că $(u_0, v_0) \in I \times J \subset D$. Considerând $u = u_0(=\text{const})$, putem să alegem ca şi parametru al curbei coordonate parametrul v = t şi obţinem ecuatîa vectorială a a primei curbe coordonate prin M_0 :

$$\Gamma(v): \quad \bar{r} = \bar{r}(u_0, t), \qquad \forall t \in J$$

Analog, reprezentarea vectorială a celei de-a doua curbe coordonate prin M_0 , ce se obține considerând $v = v_0(=\text{const})$, este:

$$\Gamma(u): \quad \bar{r} = \bar{r}(t, v_0), \qquad \forall t \in I$$

Figura 48: Curbe coordonate pe o suprafață

5.3 Plan tangent și dreaptă normală la o suprafață

5.3.1 Plan tangent la o suprafață într-un punct regulat

Fie suprafața Σ dată prin

$$\Sigma: \quad \overline{r} = \overline{r}(u, v) \iff \begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases}, \ \forall (u, v) \in D$$

și reperul $\mathcal{R}_a^O = (O; \overline{i}, \overline{j}, \overline{k}).$

Definiția 5.3. Un punct $M_0(u_0, v_0) \in \Sigma$ se numește punct regulat al suprafeței dacă

$$\operatorname{rang} \left[\begin{array}{ccc} x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{array} \right]_{(y_0, y_0)} = 2.$$

 $\hat{I}n$ caz contrar, M_0 se numeşte punct singular.

Propoziția 5.1. Vectorii $\overline{r}'_u(u_0.v_0) = (x'_u \overline{i} + y'_u \overline{j} + z'_u \overline{k})_{(u_0,v_0)}$ și $\overline{r}'_v(u_0,v_0) = (x'_v \overline{i} + y'_v \overline{j} + z'_v \overline{k})_{(u_0,v_0)}$ sunt tangenți în punctul $M_0(u_0,v_0) \in \Sigma$ la curbele coordonate $\Gamma(u)$, $\Gamma(v)$ ale lui Σ prin M_0 , unde

$$\Gamma(u): \left\{ \begin{array}{l} u=t \\ v=v_0=const \end{array} \right.$$
 $\Gamma(v): \left\{ \begin{array}{l} u=u_0=const \\ v=t. \end{array} \right.$

Demonstrație. Se folosește faptul că $\dot{\bar{r}}(t_0)$ este vectorul director al tangentei unei curbe $\Gamma: \bar{r} = \bar{r}(t)$ în punctul $M_0(t_0) \in \Gamma$.

Definiția 5.4. Se numește varietate liniară tangentă la o suprafață Σ mulțimea vectorilor lui \mathcal{E}^3 tangenți tuturor curbelor suprafeței care trec prin punctul M_0 , și se notează cu $T_{M_0}(\Sigma)$.

Propoziția 5.2. Varietatea liniară tangentă la o suprafață Σ într-un punct regulat $M_0(u_0, v_0)$ este un plan determinat de punctul M_0 și cei doi vectori tangenți $\overline{r}'_u(u_0, v_0)$ și $\overline{r}'_v(u_0, v_0)$ ai curbelor coordonate ce trec prin M_0 .

Figura 49: Planul tangent la o suprafață într-un punct regulat

Demonstrație. Fie Π planul determinat de punctul M_0 și vectorii $\overline{r}'_u(u_0, v_0)$ și $\overline{r}'_v(u_0, v_0)$ ai curbelor coordonate ce trec prin M_0 . Trebuie să aratăm că acest plan conține toți vectorii tangenți la toate curbele de pe suprafața Σ ce trec prin puntul M_0 . Fie Γ o asemenea curbă, ecuația ei vectorială fiind:

$$\Gamma: \quad \overline{r} = \overline{r}(u(t), v(t))$$

unde $u(t_0) = u_0$ și $v(t_0) = v_0$. Vectorul tangent la curba Γ in punctul M_0 este

$$\frac{d\overline{r}}{dt}(t_0) = \frac{\partial \overline{r}}{\partial u}(u_0, v_0) \cdot \frac{du}{dt}(t_0) + \frac{\partial r}{\partial \overline{v}}(u_0, v_0) \cdot \frac{dv}{dt}(t_0) = u'(t_0)\overline{r}'_u(u_0, v_0) + v'(t_0)\overline{r}'_v(u_0, v_0)$$

Obţinem că vectorul tangent al curbei Γ este o combinaţie liniară a vectorilor $\overline{r}'_u(u_0, v_0)$ şi $\overline{r}'_v(u_0, v_0)$, deci este coplanar cu aceştia, aflânduse în planul Π . În concluzie, $\Pi = T_{M_0}(\Sigma)$.

Deducem că ecuația vectorială a planului tangent la o suprafață Σ într-un punct $M_0(u_0, v_0)$ al suprafeței este:

$$T_{M_0}(\Sigma): \quad (\overline{R} - \overline{r}(u_0, v_0); \, \overline{r}'_u(u_0, v_0); \, \overline{r}'_v(u_0, v_0)) = 0$$

unde $\overline{r}(u_0, v_0)$ este vectorul de poziție al punctului M_0 , $\overline{r}'_u(u_0, v_0) = (x'_u \overline{i} + y'_u \overline{j} + z'_u \overline{k})_{(u_0, v_0)}$ și $\overline{r}'_v(u_0, v_0) = (x'_v \overline{i} + y'_v \overline{j} + z'_v \overline{k})_{(u_0, v_0)}$.

Ecuația carteziană a planului tangent este deci:

$$T_{M_0}(\Sigma): \begin{bmatrix} X - x_0 & Y - y_0 & Z - z_0 \\ x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{bmatrix}_{(u_0, v_0)} = 0$$

unde (x_0, y_0, z_0) sunt coodonatele carteziene al punctului M_0 iar x'_u, y'_u, z'_u și x'_v, y'_v, z'_v se calculează în (u_0, v_0) .

Mai putem scrie ecuația carteziană a planului tangent în punctul $M_0(u_0, v_0)$ şi prin utilizarea direcției normale la acest plan, dată de vectorul normal

$$\bar{n} = \overline{r}'_u(u_0, v_0) \times \overline{r}'_v(u_0, v_0) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{vmatrix}_{(u_0, v_0)}$$

în cazul în care suprafața Σ este dată vectorial sau parametric.

Dacă suprafața Σ este dată prin ecuația carteziană explicită z=f(x,y), atunci, prin parametrizarea naturală $x=u,\,y=v,\,z=f(u,v)$, pe baza celor de mai sus obținem că vectorul normal este

$$\bar{n} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 1 & 0 & f'_x \\ 0 & 1 & f'_y \end{vmatrix}_{(x_0, y_0)} = -f'_x(x_0, y_0)\bar{i} - f'_y(x_0, y_0)\bar{j} + \bar{k}$$

Dacă suprafața Σ este dată prin ecuația carteziană implicită F(x,y,z)=0, atunci din teorema funcțiilor implicite rezultă că, dacă punctul $M_0(x_0,y_0,z_0)$ este regulat, atunci într-o vecinătate a lui (x_0,y_0) , putem exprima z=f(x,y). Au loc formulele:

$$f'_x(x_0, y_0) = -\frac{F'_x}{F'_z}\Big|_{(x_0, y_0, z_0)}$$
 $f'_y(x_0, y_0) = -\frac{F'_y}{F'_z}\Big|_{(x_0, y_0, z_0)}$

deci vectorul normal este dat de

$$\bar{n} = F'_x(x_0, y_0, z_0)\bar{i} + F'_y(x_0, y_0, z_0)\bar{j} + F'_z(x_0, y_0, z_0)\bar{k}$$

Ecuația carteziană a planului tangent în punctul $M_0(x_0, y_0, z_0)$ al suprafeței Σ se scrie:

$$T_{M_0}(\Sigma): \quad n_1(X-x_0) + n_2(Y-y_0) + n_3(Z-z_0) = 0$$

unde n_1, n_2, n_3 sunt componentele scalare ale vectorului normal \overline{n} .

5.3.2 Dreapta normală unei suprafețe într-un punct regulat

Definiția 5.5. Dreapta spațiului afin euclidian \mathcal{E}^3 ce conține un punct regulat M_0 al suprafeței Σ și are direcția definită de vectorul perpendicular pe planul tangent al suprafeței Σ în M_0 , se numește dreaptă normală la Σ în M_0 și se notează $N_{M_0}(\Sigma)$.

Vectorul director al dreptei normale $N_{M_0}(\Sigma)$ este vectorul normal \overline{n} determinat în paragraful precedent.

Dreapta normală $N_{M_0}(\Sigma)$ la suprafața Σ în punctul regulat $M_0(u_0, v_0) \in \Sigma$ (cu coordonatele carteziene (x_0, y_0, z_0)) poate fi dată prin:

- ecuația vectorială $N_{M_0}(\Sigma)$: $\overline{R} = \overline{r}(u_0, v_0) + \lambda \overline{n}, \quad \lambda \in \mathbb{R}$
- ecuațiile parametrice: $N_{M_0}(\Sigma)$: $\begin{cases} X = x_0 + \lambda n_1 \\ Y = y_0 + \lambda n_2 \\ Z = z_0 + \lambda n_3 \end{cases} \quad \lambda \in \mathbb{R}$
- ecuațiile carteziene: $N_{M_0}(\Sigma)$: $\frac{X-x_0}{n_1} = \frac{Y-y_0}{n_2} = \frac{Z-z_0}{n_3} \text{ (dacă } n_1, n_2, n_3 \neq 0)$

Observația 5.3. 1. Câmpul gradient în M_0 pe suprafață Σ : F(x,y,z)=0 este câmpul vectorial definit de

$$\left(\frac{\partial F}{\partial x}\Big|_{M_0}, \frac{\partial F}{\partial y}\Big|_{M_0}, \frac{\partial F}{\partial z}\Big|_{M_0}\right) \stackrel{not}{=} (\nabla F) (M_0) \stackrel{not}{=} \operatorname{grad} F|_{M_0}.$$

2. În fiecare punct al suprafeței, vectorul ∇F este perpendicular pe planul tangent la suprafață în acel punct.

5.4 Prima formă fundamentală. A doua formă fundamentală.

Oricărei suprafețe $\Sigma \in \mathcal{E}^3$ i se asociază două forme fundamentale I și II care, în fiecare punct $M_0 \in \Sigma$ sunt forme pătratice diferențiabile de variabile du, dv. Acestea sunt utile în studiul local al proprietăților geometrice ale lui Σ în vecinătatea punctului M_0 .

5.4.1 Prima formă fundamentală

Fie suprafața Σ de clasă C^1 , a cărei ecuație vectorială este Σ : $\overline{r} = \overline{r}(u, v)$. Avem

$$d\overline{r} = \overline{r}'_u du + \overline{r}'_v dv$$

şi

$$\langle d\overline{r}, d\overline{r} \rangle = \langle \overline{r}'_u \, du + \overline{r}'_v \, dv \,, \, \overline{r}'_u \, du + \overline{r}'_v \, dv \rangle = \langle \overline{r}'_u, \overline{r}'_u \rangle \, du^2 + 2 \langle \overline{r}'_u, \overline{r}'_v \rangle \, du \, dv + \langle \overline{r}'_v, \overline{r}'_v \rangle \, dv^2.$$

Prima formă fundamentală asociată suprafeței Σ este

$$\mathcal{I} = E du^2 + 2F du dv + G dv^2$$

unde $E \stackrel{not}{=} \langle \overline{r}'_u, \overline{r}'_u \rangle$, $F \stackrel{not}{=} \langle \overline{r}'_u, \overline{r}'_v \rangle$, $G \stackrel{not}{=} \langle \overline{r}'_v, \overline{r}'_v \rangle$ se numesc coeficienții primei forme fundamentale. Matricea primei forme fundamentale este

$$\left(\begin{array}{cc} E & F \\ F & G \end{array}\right)$$

iar determinantul primei forme fundamentale este

$$\Delta_{\mathcal{I}} = \left| \begin{array}{cc} E & F \\ F & G \end{array} \right| = EG - F^2$$

Prima formă fundamentală ne oferă "informația intrinsecă" despre suprafața Σ , adică infomația pe care o obținem dacă "ne-am plimba" pe suprafață și am face măsurători.

Expresii analitice pentru coeficienții primei forme fundamentale

În cazul în care suprafața Σ este dată parametric, coeficienții E, F, G se exprimă astfel:

$$E = \langle \overline{r}'_{u}, \overline{r}'_{u} \rangle = {x'_{u}}^{2} + {y'_{u}}^{2} + {z'_{u}}^{2}$$

$$F = \langle \overline{r}'_{u}, \overline{r}'_{v} \rangle = {x'_{u}} {x'_{v}} + {y'_{u}} {y'_{v}} + {z'_{u}} {z'_{v}}$$

$$G = \langle \overline{r}'_{v}, \overline{r}'_{v} \rangle = {x'_{v}}^{2} + {y'_{v}}^{2} + {z'_{v}}^{2}$$

În cazul în care Σ este dată cartezian explicit prin ecuația z=f(x,y), facem o parametrizare naturală $x=u,\ y=v,\ z=f(u,v)$, și pe baza relațiilor de mai sus, avem

$$E = 1 + (f'_x)^2$$
 $F = f'_x \cdot f'_y$ $G = 1 + (f'_y)^2$

Dacă suprafața Σ este dată prin ecuația carteziană implicită F(x,y,z)=0 și $F_z'\neq 0$, atunci, din relațiile anterioare și din teorema funcțiilor implicite rezultă că

$$E = 1 + \left(\frac{F'_x}{F'_z}\right)^2$$
 $F = \frac{F'_x F'_y}{(F'_z)^2}$ $G = 1 + \left(\frac{F'_y}{F'_z}\right)^2$

5.4.2 A doua formă fundamentală

Considerăm o suprafață Σ de clasă C^2 , a cărei ecuație vectorială este Σ : $\overline{r} = \overline{r}(u,v)$. Avem

$$d\overline{r} = \overline{r}'_u du + \overline{r}'_v dv$$

$$d^2 \overline{r} = \overline{r}''_{u^2} du + 2\overline{r}''_{uv} du dv + \overline{r}''_{v^2} dv$$

Notăm vectorul unitar normal cu:

$$\overline{\nu} = \frac{\overline{r}'_u \times \overline{r}'_v}{\|\overline{r}'_u \times \overline{r}'_v\|} = \frac{\overline{r}'_u \times \overline{r}'_v}{\sqrt{\Delta_I}}$$

A doua formă fundamentală asociată unei suprafeței Σ este

$$\mathcal{II} = -\langle d\overline{\nu}, d\overline{r} \rangle$$

Deoarece $\overline{\nu} \perp d\overline{r}$, rezultă că

$$\langle \overline{\nu}, d\overline{r} \rangle = 0$$

Diferențiind această relație, obținem

$$\langle \overline{\nu}, d^2 \overline{r} \rangle + \langle d \overline{\nu}, d \overline{r} \rangle = 0$$

sau

$$\langle \overline{\nu}, d^2 \overline{r} \rangle = -\langle d \overline{\nu}, d \overline{r} \rangle$$

Astfel, expresia celei de-a doua forme fundamentale devine:

$$\mathcal{II} = \langle \overline{\nu}, d^2 \overline{r} \rangle = \left\langle \frac{\overline{r}'_u \times \overline{r}'_v}{\sqrt{\Delta_I}}, \, \overline{r}''_{u^2} \, du + 2\overline{r}''_{uv} \, du \, dv + \overline{r}''_{v^2} \, dv \right\rangle$$

sau

$$\mathcal{I}\mathcal{I} = L du^2 + 2M du dv + N dv^2$$

unde coeficienții sunt dați de

$$L = \frac{1}{\sqrt{\Delta_{\mathcal{I}}}} \langle \overline{r}'_{u} \times \overline{r}'_{v}, \overline{r}''_{u^{2}} \rangle = \frac{(r'_{u}; r'_{v}; r''_{u^{2}})}{\sqrt{\Delta_{\mathcal{I}}}}$$

$$M = \frac{1}{\sqrt{\Delta_{\mathcal{I}}}} \langle \overline{r}'_{u} \times \overline{r}'_{v}, \overline{r}''_{uv} \rangle = \frac{(r'_{u}; r'_{v}; r''_{uv})}{\sqrt{\Delta_{\mathcal{I}}}}$$

$$L = \frac{1}{\sqrt{\Delta_{\mathcal{I}}}} \langle \overline{r}'_{u} \times \overline{r}'_{v}, \overline{r}''_{v^{2}} \rangle = \frac{(r'_{u}; r'_{v}; r''_{v^{2}})}{\sqrt{\Delta_{\mathcal{I}}}}$$

Matricea celei de-a doua forme fundamentale este

$$\begin{pmatrix} L & M \\ M & N \end{pmatrix}$$

iar determinantul său este

$$\Delta_{\mathcal{I}\mathcal{I}} = \left| egin{array}{cc} L & M \\ M & N \end{array} \right| = LN - M^2.$$

Expresii analitice pentru coeficienții celei de-a doua forme fundamentale

Dacă suprafața Σ este dată parametric, atunci

$$L = \frac{1}{\sqrt{\Delta_{\mathcal{I}}}} \begin{vmatrix} x'_{u} & y'_{u} & z'_{u} \\ x'_{v} & y'_{v} & z'_{v} \\ x''_{u^{2}} & y''_{u^{2}} & z''_{u^{2}} \end{vmatrix} \quad M = \frac{1}{\sqrt{\Delta_{\mathcal{I}}}} \begin{vmatrix} x'_{u} & y'_{u} & z'_{u} \\ x'_{v} & y'_{v} & z'_{v} \\ x''_{uv} & y''_{uv} & z''_{uv} \end{vmatrix} \quad N = \frac{1}{\sqrt{\Delta_{\mathcal{I}}}} \begin{vmatrix} x'_{u} & y'_{u} & z'_{u} \\ x'_{v} & y'_{v} & z'_{v} \\ x''_{v^{2}} & y''_{v^{2}} & z''_{v^{2}} \end{vmatrix}$$

Dacă suprafața Σ este dată cartezian explicit prin ecuația z = f(x, y) avem

$$\Delta_{\mathcal{I}} = \sqrt{1 + (f'_x)^2 + (f'_y)^2}$$

şi

$$L = \frac{f''_{x^2}}{\sqrt{\Delta_{\mathcal{I}}}} \qquad M = \frac{f''_{xy}}{\sqrt{\Delta_{\mathcal{I}}}} \qquad N = \frac{f''_{y^2}}{\sqrt{\Delta_{\mathcal{I}}}}$$

5.4.3 Aplicații ale formelor fundamentale

Elementul de arie. Aria.

Elementul de arie asociat unei suprafețe Σ de clasă C^1 este

$$d\sigma = \sqrt{EG - F^2} \, du \, dv$$

unde E, F, G sunt coeficienții primei forme fundamentale asociate suprafeței.

Aria suprafeței Σ se calculează cu formula:

$$\mathcal{A}_{\Sigma} = \iint_{D} d\sigma = \iint_{D} \sqrt{EG - F^{2}} \, du \, dv$$

unde $D \subset \mathbb{R}^2$ este domeniul căruia îi apațin parametrii de suprafață u, v.

Natura unui punct de pe o suprafață.

Fie M_0 un punct de pe suprafața Σ de clasă C^2 . Dacă:

- $\Delta_{\mathcal{I}\mathcal{I}}(M_0) > 0$, atunci spunem că M_0 este punct eliptic;
- $\Delta_{\mathcal{II}}(M_0) = 0$, atunci spunem că M_0 este punct parabolic;
- $\Delta_{II}(M_0) < 0$, atunci spunem că M_0 este punct hiperbolic;
- $\Delta_{\mathcal{II}}(M_0) > 0$ şi $\frac{E}{L} = \frac{F}{M} = \frac{G}{N}$, atunci spunem că M_0 este punct circular.

Curburile unei suprafețe.

Fie curba Σ de clasă C^2 . Considerăm ecuația

$$(EG - F^{2})k^{2} - (EN + GL - 2FM)k + (LN - M^{2}) = 0$$

cu soluțiile reale k_1 și k_2 astef încât $k_1 < k_2$. Spunem că k_1 , respectiv k_2 sunt *curburile* principale ale curbei Σ (minimă, respectiv maximă).

Curbura medie se defineste ca fiind

$$H = \frac{k_1 + k_2}{2} = \frac{1}{2} \cdot \frac{EN + GL - 2FM}{EG - F^2}$$

iar curbura lui Gauss:

$$K = k_1 \cdot k_2 = \frac{LN - M^2}{EG - F^2}.$$

Dacă H=0 atunci suprafața se zice minimală, iar dacă K=0 suprafața se zice desfăsurabilă.

Exemple.

Exemplul 5.1. Calculați aria unei sfere de rază R, stabiliți natura punctelor de pe sferă precum și curburile sferei.

Soluție: Ecuația parametrică a sferei de rază R este

$$\begin{cases} x = R \cos u \cos v \\ y = R \cos u \sin v \\ z = R \sin u \end{cases} \quad u \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \ v \in [0, 2\pi).$$

Obtinem

$$\begin{cases} x'_u = -R\sin u\cos v \\ y'_u = -R\sin u\sin v \\ z'_u = R\cos u \end{cases} \begin{cases} x'_v = -R\cos u\sin v \\ y'_v = R\cos u\cos v \\ z'_v = 0 \end{cases}$$

de unde, prin calcul, rezultă

$$E = R^2$$
, $F = 0$, $G = R^2 \cos^2 u$, $d\sigma = R^2 \cos u$.

Aria sferei va fi:

$$A = \iint_D d\sigma = \int_0^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} R^2 \cos u = 4\pi R^2.$$

Pentru a determina natura punctelor de pe sferă, calculăm

$$\left\{ \begin{array}{l} x''_{u^2} = -R\cos u\cos v \\ y''_{u^2} = -R\cos u\sin v \\ z''_{u^2} = -R\sin u \end{array} \right. \left\{ \begin{array}{l} x''_{uv} = R\sin u\sin v \\ y''_{uv} = -R\sin u\cos v \\ z''_{uv} = 0 \end{array} \right. \left. \left\{ \begin{array}{l} x''_{v^2} = -R\cos u\cos v \\ y''_{v^2} = -R\cos u\sin v \\ z''_{v^2} = 0 \end{array} \right. \right.$$

de unde

$$L = R$$
, $M = 0$, $N = R\cos^2 u$.

De aici rezultă

$$\Delta_{II} = LN - M^2 = R^3 \cos^2 u > 0$$

deci orice punct de pe sferă este eliptic. În plus,

$$\frac{R^2}{R} = \frac{0}{0} = \frac{R^2 \cos^2 u}{R \cos^2 u}$$

deci toate punctele de pe sferă sunt puncte circulare.

Curburile sferei se obțin rezolvând ecuația

$$R^2 k^2 + 2R k + 1 = 0.$$

De aici, găsim valoarea pentru curbura principală:

$$k = -\frac{1}{R}$$

curbura medie

$$H = -\frac{1}{R}$$

și curbura Gauss:

$$K = \frac{1}{R^2}.$$

Aceste rezultate arată că sfera nu este nici suprafață minimală, nici suprafață desfășurabilă.

Exemplul 5.2. Calculația ria laterală și studiați natura punctelor de pe un cilindru circular de înălțime h.

Soluție: Ecuația parametrică a unui cilindru circular de înălțime h este

$$\begin{cases} x = R \cos u \\ y = R \sin u \\ z = v \end{cases} \quad u \in [0, 2\pi), \ v \in [0, h).$$

De aici rezultă

$$\begin{cases} x'_u = -R\sin u \\ y'_u = R\cos u \\ z'_u = 0 \end{cases} \begin{cases} x'_v = 0 \\ y'_v = 0 \\ z'_v = 1 \end{cases}$$

deci

$$E = R^2, \quad F = 0, \quad G = 1, \quad \Delta_I = R^2$$

și aria laterală a cilindrului:

$$A = \iint_{D} d\sigma = \int_{0}^{2\pi} \int_{0}^{h} R^{2} = 2\pi R h.$$

Deoarece

$$\left\{ \begin{array}{l} x''_{u^2} = -R\cos u \\ y''_{u^2} = -R\sin u \\ z''_{u^2} = 0 \end{array} \right. \quad \left\{ \begin{array}{l} x''_{uv} = 0 \\ y''_{uv} = 0 \\ z''_{uv} = 0 \end{array} \right. \quad \left\{ \begin{array}{l} x''_{v^2} = 0 \\ y''_{v^2} = 0 \\ z''_{v^2} = 0 \end{array} \right.$$

rezultă că

$$L = -R$$
, $M = 0$, $N = 0$

și deci $\Delta_{II} = 0$, adică orice punct de pe un cilindru circular e parabolic.

Curburile cilindrului se obțin din ecuația

$$R^2 k^2 + R k = 0.$$

De aici rezultă valorile pentru curburile principale:

$$k_1 = 0, \quad k_2 = -\frac{1}{R}$$

curbura medie

$$H = -\frac{1}{2R}$$

și curbura Gauss

$$K=0.$$

Rezultă de aici că cilindrul e suprafață desfășurabilă.

Exemplul 5.3. Caracterizați elicoidul, de ecuație

$$\begin{cases} x = u \cos v \\ y = u \sin v \\ z = v \end{cases}$$

Solutie: Avem:

$$\begin{cases} x'_{u} = \cos v \\ y'_{u} = \sin v \\ z'_{u} = 0 \end{cases} \begin{cases} x'_{v} = -u \sin v \\ y'_{v} = u \cos v \\ z'_{v} = 1 \end{cases} \begin{cases} x''_{u^{2}} = 0 \\ y''_{u^{2}} = 0 \\ z''_{u^{2}} = 0 \end{cases} \begin{cases} x''_{uv} = -\sin v \\ y''_{uv} = \cos v \\ z''_{uv} = 0 \end{cases} \begin{cases} x''_{v^{2}} = -u \cos v \\ y''_{v^{2}} = -u \sin v \\ z''_{v^{2}} = 0 \end{cases}$$

$$E = 1$$
, $F = 0$, $G = u^2 + 1$, $L = 0$, $M = -\frac{1}{\sqrt{1 + u^2}}$, $N = 0$

De aici rezultă

$$\Delta_I = 1 + u^2$$

şi

$$\Delta_{II} = -\frac{1}{1+u^2} < 0$$

deci orice punct de pe elicoid e hiperbolic.

Curburile elicoidului sunt rădăcinile ecuației

$$(1+u^2)\,k^2 = 0$$

deci

$$k = 0$$
.

Curbura medie este

$$H = 0$$

deci elicoidul e o suprafață minimală, iar curbura Gauss este

$$K = \frac{1}{(1+u^2)^2}.$$

6 Curbe și suprafețe Bézier

Scopul de bază al graficii asistate de calculator este de a construi imagini cât mai apropiate de realitate. Pentru a desena un obiect real, suprafața sa trebuie mai întâi calculată și stocată în memoria calculatorului ca obiect matematic.

O primă metodă, recursivă, de a construi curbe cât mai aproape de realitate, pornind de la un număr finit de puncte, numite puncte de control, a fost dată de de Casteljau (inginer la Citroën) în 1959.

În 1962, Bézier (inginer la Renault) dă ecuațiile parametrice ale acestor curbe.

O altă metodă, de această dată non-parametrică de a genera suprafețe cât mai reale este metoda liniilor de nivel, dezvoltată de Sethian și Osher.

În acest capitol ne propunem să prezentăm pe scurt câteva aspecte legate de curbele și suprafețele Bézier.

6.1 Curbe Bézier

Fie P_0 , P_1 , ..., P_n , n+1 puncte distincte din spaţiul \mathcal{E}^3 , numite puncte de control sau controale. Poligonul care se formează unind punctele de control începând cu P_0 şi terminând cu P_n se numeşte poligon de control sau poligon Bézier. Poligonul de control nu este unic.

Definiția 6.1. Curba Bézier de grad n corespunzătoare controalelor $P_0, P_1, ..., P_n$ este:

$$B(t) = \sum_{k=0}^{n} P_k b_{k,n}(t)$$

unde $b_{k,n}(t)$ sunt polinoamele Bernstein de grad n şi sunt date de:

$$b_{k,n}(t) = C_n^k t^k (1-t)^{n-k},$$

 $t \in [0, 1]$.

Exemplul 6.1. Pentru n = 1 (două controale: P_0 şi P_1) obținem o curbă Bézier liniară, definită astfel:

$$B(t) = (1 - t) P_0 + t P_1 \quad t \in [0, 1]$$

ceea ce este echivalent cu:

$$x(t) = (1 - t) x_{P_0} + t x_{P_1}$$

$$y(t) = (1 - t) y_{P_0} + t y_{P_1}$$

$$z(t) = (1 - t) z_{P_0} + t z_{P_1}.$$

Exemplul 6.2. Pentru n=2 avem 3 controale, care definesc o curbă Bézier pătratică:

$$B(t) = (1-t)^2 P_0 + 2t(1-t) P_1 + t^2 P_2, \quad t \in [0,1].$$

Exemplul 6.3. Pentru n = 3 (4 controale) obtinem o curbă Bézier cubică:

$$B(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t) P_2 + t^3 P_3, \quad t \in [0,1].$$

Observația 6.1. $B(0) = P_0 \text{ și } B(1) = P_n.$

Interpretare grafică Poziția punctului $B(t_0)$, pentru $t_0 \in (0,1)$ se obține grafic astfel:

- se consideră punctele care împart fiecare segment $P_{i-1}P_i$ în raportul $t_0: 1-t_0$
- se consideră drept controale aceste noi puncte şi se repetă punctul anterior până când rămâne un singur punct. Acest punct este punctul $B(t_0)$.

Exemplul 6.4. Fie punctele $P_0(0,0)$, $P_1(0,2)$, $P_2(2,2)$, $P_3(4,0)$. Să se scrie ecuația parametrică a curbei Bézier definită de aceste 4 controale și să se determine poziția punctului corespunzător lui $t_0 = \frac{1}{2}$ (grafic).

Soluție: Cele 4 controale definesc curba parametrică

$$\begin{cases} x(t) = 6t^2(1-t) + 4t^3 \\ y(t) = 6t(1-t)^2 + 6t^2(1-t) \end{cases}$$

Pentru a afla poziția punctului corespunzător lui $t_0 = \frac{1}{2}$, putem înlocui direct în relația de mai sus, și obținem

$$x\left(\frac{1}{2}\right) = \frac{10}{8}, \quad y\left(\frac{1}{2}\right) = \frac{12}{8}.$$

Grafic, acest rezultat se obține astfel: Se consideră punctele aflate la mijlocul fiecărui segment. Vom obține astfel punctele: $Q_0(0,1),\ Q_1(1,2),\ Q_2(3,1),$ apoi, unind aceste puncte și considerând mijloacele segmentelor obținem un nou set de puncte, $R_0(0.5,1.5)$ și $R_1(2,1.5)$. Unind aceste două puncte și considerând mijlocul segmentului R_0R_1 , obținem punctul $S_0(1.25,1.5)$, ale cărui coordonate sunt tocmai $x\left(\frac{1}{2}\right)$ și $y\left(\frac{1}{2}\right)$.

Figura 50: Curbă Bézier

Proprietăți ale curbelor Bézier

- 1. Capetele curbei sunt tangente segmentelor P_0P_1 respectiv $P_{n-1}P_n$;
- 2. În orice punct al său, o curbă Bézier poate fi împărțită în două curbe Bézier;
- 3. Curba Bézier este inclusă în întregime în acoperirea convexă a punctelor sale de control;
- 4. Prin translația sau rotația unei curbe Bézier se obține tot o curbă Bézier.

6.2 Suprafețe Bézier

Suprafețele Bézier au fost descrise de către autor în 1972. Fie (n+1)(m+1) puncte de control $P_{i,j}$, i=0,...,n, j=0,...,m.

Definiția 6.2. Suprafața Bézier de ordin (n,m) corespunzătoare controalelor $P_{i,j}$, i = 0,...,n, j = 0,...,m este:

$$P(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} b_{i,n}(u) b_{j,m}(v) P_{i,j}$$

unde $b_{i,n}(u)$, respectiv $b_{j,m}(v)$ sunt polinoamele Bernstein de grad n, respectiv m şi sunt date de:

$$b_{i,n}(u) = C_n^i u^i (1-u)^{n-i}, b_{j,m}(v) = C_m^j v^j (1-v)^{m-j},$$

 $u,v\in [0,1].$

Exemplul 6.5. Suprafața Bézier de ordin (1,1), generată de punctele de control $P_{0,0}$, $P_{0,1}$, $P_{1,0}$, $P_{1,1}$ are ecuația:

$$P(u,v) = (1-u)(1-v)P_{0,0} + (1-u)vP_{0,1} + u(1-v)P_{1,0} + uvP_{1,1}$$

adică ecuația parametrică a unui paraboloid hiperbolic.

De exemplu, pentru controalele $P_{0,0}(0,0,0)$, $P_{0,1}(1,0,0)$, $P_{1,0}(0,1,0)$, $P_{1,1}(0,0,1)$ ecuația parametrică a suprafeței Bézier se scrie:

$$x = (1 - u)v$$
$$x = u(1 - v)$$
$$x = uv.$$

Figura 51: Suprafață Bézier

Observația 6.2. $P(0,0) = P_{0,0}$ și $P(1,1) = P_{n,m}$.

Observația 6.3. Orice suprafață algebrică polinomială este o suprafață Bézier.

Proprietăți ale suprafețelor Bézier

- 1. O suprafață Bézier se transformă în același fel ca și punctele sale în urma unei translații;
- 2. O suprafață Bézier este inclusă în întregime în acoperirea convexă a punctelor sale de control;
- 3. P(0,0), P(0,1), P(1,0), P(1,1) sunt puncte de control;
- 4. Curbele pe suprafață u=const și v=const reprezintă curbe Bézier.

BIBLIOGRAFIE

- [Alb06] I. D. Albu. Geometrie. Editura de Vest, 2006.
- [BBCC02] N. Boja, L. Brăescu, B. Căruntu, and L. Cristea. Algebră lineară, geometrie diferențială, matematici speciale. Editura Politehnica, 2002.
- [Boj05] N. Boja. Geometrie analitică și diferențială. Editura Politehnica, 2005.
- [Cra04] M. Craioveanu. Introducere in geometria diferențială. Editura Mirton, 2004.
- [GMP68] Gh. Gheorghiev, R. Miron, and Dan I. Papuc. Geometrie analitică și diferențială, volume 1. Editura Didactică și Pedagogică, 1968.
- [GMP69] Gh. Gheorghiev, R. Miron, and Dan I. Papuc. Geometrie analitică și diferențială, volume 2. Editura Didactică și Pedagogică, 1969.
- [GR79] Gh. Galbură and F. Rado. Geometrie. Editura Didactică și Pedagogică, 1979.
- [Pet01] E. Petrișor. Modelare geometrică algoritmică. Editura Tehnică, 2001.
- [Pop84] I. P. Popescu. Geometrie afină și euclidiană. Editura Facla, 1984.
- [Put05] M. Puta. Varietăți diferențiabile. Editura Mirton, 2005.
- [RM02] D. M. Rendi and I. Mihuţ. Algebră liniară, geometrie analitică și diferențială. Editura Politehnica, 2002.
- [RMCP99] D. M. Rendi, I. Mihuţ, C. Căprău, and D. Popescu. *Matematici superioare pentru ingineri*. Editura Politehnica, 1999.