Metodi Matematici per l'Informatica (secondo canale) — 18 Dicembre 2024 Soluzioni di Andrea Princic. Cartella delle soluzioni.

- Es 1. Vero o Falso? (N.B. Le lettere A, B, C variano su proposizioni arbitrarie nel linguaggio della logica proposizionale). Se $A \to B$ ha valore vero, allora
 - $\boxtimes_V \square_F \mathbf{A}. (A \vee C) \to (B \vee C)$ ha valore vero
 - $\boxtimes_V \square_F$ **B.** $(A \wedge C) \to (B \wedge C)$ ha valore vero
 - $\square_V \square_F \mathbf{C} \cdot (\neg A \wedge B) \leftrightarrow (A \vee B)$ ha valore vero

È falso nel caso in cui A e B sono entrambe vere

- Es 2. Indicare se le seguenti affermazioni sono vere o false, dove A, B, C variano su proposizioni arbitrarie nel linguaggio della logica proposizionale
 - $\boxtimes_V \square_F$ **A.** $A, B \models C$ se e solo se $A \models (C \lor \neg B)$
 - $\boxtimes_V \square_F$ B. Se $A \vDash B$ o $A \vDash C$ allora $A \vDash (B \lor C)$
 - $\boxtimes_V \square_F$ C. Se $A \vDash \neg A$ allora $\neg A$ è una tautologia

Se $\neg A$ non fosse una tautologia allora A potrebbe essere vero, ma in tal caso avremmo $V \vDash F$

- Es 3. Formalizzare i seguenti enunciati usando il linguaggio proposizionale composto da variabili a_i e b_i con $i \in \{1,2,3\}$ con significato intuitivo $i \in A$ e $i \in B$ rispettivamente
 - A. A è un sottoinsieme non vuoto di $\{1, 2, 3\}$

$$a_1 \vee a_2 \vee a_3$$

B. A e B sono sottoinsiemi non vuoti di $\{1,2,3\}$ tali che $A \cap B = \emptyset$

$$(a_1 \vee a_2 \vee a_3) \wedge (b_1 \vee b_2 \vee b_3) \wedge (a_1 \leftrightarrow \neg b_1) \wedge (a_2 \leftrightarrow \neg b_2) \vee (a_3 \leftrightarrow \neg b_3)$$

C. A e B sono sottoinsiemi non vuoti di $\{1,2,3\}$ tali che $A \cup B = \{1,2,3\}$

$$(a_1 \vee a_2 \vee a_3) \wedge (b_1 \vee b_2 \vee b_3) \wedge (a_1 \vee b_1) \wedge (a_2 \vee b_2) \vee (a_3 \vee b_3)$$

- Es 4. Consideriamo il linguaggio composto da una costante c, da un simbolo relazionale a due posti S(x,y) e da un simbolo di relazione a tre posti R(x,y,z). Per ognuno degli enunciati seguenti descrivere una interpretazione in cui l'enunciato è vero e una in cui è falso
 - **A.** $\forall x \exists y \forall z (S(x,c) \rightarrow R(x,y,z))$

Per enunciato vero	Per enunciato falso
Dominio: N	Dominio: $\{c\}$
R(x, y, z) = vero	S(x,y) = x è uguale a c
	R(x, y, z) = falso

B. $\exists y \forall x \forall z (S(x,c) \rightarrow R(x,y,z))$

Per enunciato vero	Per enunciato falso
Dominio: N	Dominio: $\{c\}$
R(x, y, z) = vero	S(x,y)=x è uguale a c
	R(x, y, z) = falso

C. $\forall x \forall y (S(x,y) \rightarrow S(y,x))$

Per enunciato vero	Per enunciato falso
Dominio: N	Dominio: N
S(x,y) = vero	S(x,y) = x < y