Question number	Scheme	Marks
3 (a)	$\overrightarrow{PQ} = -(5\mathbf{i} + 6\mathbf{j}) + (3\mathbf{i} - 4\mathbf{j}) = -2\mathbf{i} - 10\mathbf{j}$	M1A1
		(2)
(b)	$ \overrightarrow{PQ} = \sqrt{(-2)^2 + (-10)^2} (= \sqrt{104})$ oe	
(0)	,	M1
	Unit vector parallel to \overrightarrow{PQ} : $\overrightarrow{XY} = \frac{1}{\sqrt{104}} (-2\mathbf{i} - 10\mathbf{j})$	A1
	or $\overrightarrow{XY} = -\frac{1}{\sqrt{104}} \left(-2\mathbf{i} - 10\mathbf{j} \right)$ or $\frac{1}{\sqrt{104}} \left(2\mathbf{i} + 10\mathbf{j} \right)$ oe eg $\pm \frac{\left(\mathbf{i} + 5\mathbf{j} \right)}{\sqrt{26}}$	(2)
	$\int_{0}^{10} \sqrt{104} \left(\frac{21}{104} + \frac{10}{104} \right) = \sqrt{104} \left(\frac{21}{104} + \frac{10}{104} \right) = \sqrt{26}$	
(c)		
(6)	$\overrightarrow{QR} = \overrightarrow{QP} + \overrightarrow{PR}$	
	$5(2\mathbf{i}+10\mathbf{j}) = (2\mathbf{i}+10\mathbf{j}) + (8\mathbf{i}+\mathbf{j}(a-6))$	
	$\Rightarrow 50 = 10 + a - 6 \Rightarrow a = 46$	M1
	$\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ}$	A1 (2)
	$5(2\mathbf{i}+10\mathbf{j}) = (13\mathbf{i}+a\mathbf{j})-(3\mathbf{i}-4\mathbf{j})$	[6]
	$\Rightarrow 50 = a + 4 \Rightarrow a = 46$	
	ALT	
	$\sqrt{(13-3)^2 + (a-4)^2} = 5 \times 2\sqrt{26}$ $\sqrt{10^2 + (a+4)^2} = 10\sqrt{26}$	
	$\sqrt{10^2 + (a+4)^2} = 10\sqrt{26}$	M1
	$100 + (a+4)^2 = 2600 \Rightarrow (a+4) = \pm 50$	101 1
	a > 0, so $a = 46$	
		A1cao
	Allow column vectors throughout. Deduct max 2A marks if final ve	ectors
(a)	are column vectors inc i , j	
(a) M1	Attempt $\overrightarrow{PO} + \overrightarrow{OQ}$ (oe)	
A1	Correct answer	
(b) M1		1 1
1VI I	Attempt the modulus of their \overline{PQ} using +/- their components squared and added	
A1	Correct unit vector in any equivalent form. (parallel or anti-parallel)	
(c)	Any complete correct method that leads to a value of <i>a</i> (value to be shown)	
M1 A1cao	a = 46	