Equilibri eterogenei: diagrammi di stato

campi di esistenza (in genere in funzione di P e T), delle fasi di sostanze:

e.g. H_2O (un componente)

Diagramma di stato H₂O:

scala delle P lineare

TABLE 8.4 Critical Temperatures and Pressures of Selected Substances

	Critical temperature	Critical pressure	
Substance	(°C)	(atm)	
He	-268 (5.2 K)	2.3	
Ne	-229	27	
Ar	-123	48	
Kr	-64	54	
Xe	17	58	
H_2	-240	13	
O_2^2	-118	50	
$H_{2}^{2}O$	374	218	
N_2^2	-147	34	
NH_3	132	111	
CO_2	31	73	
CH_4^2	-83	46	
$C_6 \vec{H_6}$	289	49	
F.	-129		

144

Diagrammi di stato

Le linee di un diagramma di stato definiscono le condizioni di equilibrio tra due fasi. Nei punti sulla curva di equilibrio liquido-vapore si ha:

$$\Delta G_{(L \rightarrow V)} = 0$$
 e quindi $G_L = G_V$

Analogamente per punti di altre linee di equilibrio.

Le equazioni delle linee di coesistenza tra le fasi si ottengono dall'equazione di Clausius-Clapeyron:

$$\frac{dP}{dT} = \frac{\Delta S_{trans}}{\Delta V_{trans}} \tag{1}$$

facilmente ricavabile

Sappiamo che
$$H = E + PV$$
 e $G = H - TS$
 $dH = dE + PdV + VdP$ $dG = dH - TdS - SdT$
 $da cui dG = dq_{rev} + dw_{rev} + PdV + VdP - TdS - S dT$
Per variazioni infinitesime si ha $dS = dq_{rev}/T$ e $TdS = dq_{rev}$
Se il sistema può fare solo lavoro di espansione $dw_{rev} = -P dV$
 $da cui dG = dq_{rev} + dw_{rev} + PdV + VdP - TdS - SdT = VdP - SdT$

Ci vogliamo spostare dal punto 1, sulla curva di equilibrio liquido - vapore al punto 2 a distanza infinitesima, sempre sulla curva. Dobbiamo avere: $dG_L = dG_V, \text{ se deve essere mantenuta l'eguaglianza } G_L = G_V$ $Ma \ dG_L = V_L dP - S_L dT = dG_V = V_V dP - S_V dT \text{ e quindi}$ $(V_V - V_L) \ dP = (S_V - S_L) \ dT \text{ e quindi} \quad \frac{dP}{dR} = \frac{\Delta S_{L \to V}}{\Delta S_{L \to V}} \tag{1}$

Diagrammi di Stato: equazione di Clapeyron

$$\frac{dP}{dT} = \frac{\Delta S_{L \to V}}{\Delta V_{L \to V}} = \frac{\Delta H_{ev}}{T \Delta V_{ev}}$$

Analogamente per il passaggio di stato solido vapore:

$$\frac{dP}{dT} = \frac{\Delta S_{S \to V}}{\Delta V_{S \to V}} = \frac{\Delta H_{sub}}{T \Delta V_{sub}}$$

In entrambi i casi, riferendoci ad una mole, si ha: $\Delta V = Vf - Vi \cong Vf = Vgas = RT/P$ (a P ambiente il volume molare dei gas è ca. 24.4L mentre V_M per liquidi e solidi è ~1-100 mL)

$$\frac{dP}{dT} = \frac{\Delta H_{trans}}{T\Delta V_{trans}} = \frac{P \cdot \Delta H_{trans}}{T \cdot RT} = \frac{P \cdot \Delta H_{trans}}{RT^{2}}$$

Notare che tanto $\triangle Hev$, che $\triangle Sev$, $\triangle Hsub$, $\triangle Ssub$, $\triangle Vev$ e $\triangle Vsub$ sono tutti chiaramente > 0. Le derivate dP/dT sono tutte > 0, per queste due transizioni.

Diagrammi di Stato

Equazione di Clausius-Clapeyron

Integrando (e.g. solido-gas o liquido-gas) otteniamo le curve di equilibrio tra le fasi (gas ~ ideale).

Tensioni di vapore per liquidi: aumentano con T

Diagramma di stato dell'acqua

La densità del ghiaccio è inferiore a quella dell'acqua liquida: $\Delta V_{S\rightarrow L}$ <0

Diagramma di stato della CO₂

Caso generale: La densità del solido è maggiore $\Rightarrow \Delta V_{S\rightarrow L}>0$

Regola delle Fasi (Gibbs)

$$V = C - f + 2$$

Uno o più componenti!

V = varianza (gradi di libertà) del sistema. Numero di parametri che posso variare, entro certi limiti, senza alterare il nr. di fasi presenti.

C = nr. dei componenti chimici indipendenti (vanno sottratte le relazioni stechiometriche e di equilibrio all'interno di una singola fase: e.g. $H_2O_{(1)}$, $H_3O^+_{(aq)}$, $OH^-_{(aq)}$)

f = nr. delle fasi presenti in equilibrio

2= nr variabili intensive (T, P) che definisce lo stato del sistema. Per un sistema in isoterma o in condizione isobare va messo 1.

(da requisito che potenziale chimico $\mu_i = \partial G_i/\partial n_i$, per gli *i* componenti indipendenti, sia eguale in fasi in equilibrio)

Applicazioni regola delle fasi: diagramma di stato H₂O

Diagramma di stato dello Zolfo

1 componente!

Diagramma PV per un gas reale: CO₂

1 componente, 1 variabile fisica intensiva! V = C - f + 1

Sistemi a 2 componenti: Legge di Henry

La solubilità di gas in liquidi, e.g. H_2O , dipende dalla loro pressione parziale: $s_x = k_H \cdot p_x$ e quindi $[X]_{eq}/p_{x(eq)} = k_H$ Costanti di Henry in H_2O 20°C

_

Se si aumenta T: solubilità gas in liquidi diminuisce. Per il processo: $X_{(qas)} \leftrightarrows X_{(aq)}$ si ha $\Delta S < 0$, e anche $\Delta H < 0$)

Sistemi a 2 componenti: soluzioni di 2 liquidi miscibili

- Soluzione di due liquidi volatili A e B
- Entrambi i liquidi sono in equilibrio con il loro vapore, ad una data T.
- Soluzione ideale se $\Delta H_{\text{mesc}} = 0$
- Quindi ΔG di mescolamento per soluzioni ideali è: $\Delta G_{\text{mesc}} = -T\Delta S_{\text{mesc}} \Rightarrow$ solo fattori entropici
- Per soluzioni ideali $\Delta S_{\rm mesc}$ > 0 (lo stato miscelato ha più microstati) e $\Delta G_{\rm mesc}$ < 0, sempre.
 - La composizione del liquido e del vapore sono uguali o diverse? Ci aspettiamo che il liquido con la $T_{\rm eb}$ più bassa (più volatile) sia più presente nella fase vapore.

Soluzioni ideali di due liquidi volatili:

Legge di Raoult

$$p_A = x_{A \text{ Liq}} \cdot p_A^{\circ}$$
 $p_B = x_{B \text{ Liq}} \cdot p_B^{\circ}$

$$p_{tot} = x_{A \text{ Liq}} \cdot p^{\circ}_{A} + x_{B \text{ Liq}} \cdot p^{\circ}_{B}$$

Dalton: frazione molare di A vapore

$$x_{A \text{ Vap}} = p_A/p_{tot} = p_A/(p_A + p_B)$$

(poi sostituisco $p_A e p_B da Raoult)$

=
$$x_{A \text{ Liq}} \cdot p^{\circ}_{A} / (x_{A \text{ Liq}} \cdot p^{\circ}_{A} + x_{B \text{ Liq}} \cdot p^{\circ}_{B})$$

$$x_{A \text{ Vap}} = x_{A \text{ Liq}} / (x_{A \text{ Liq}} + x_{B \text{ Liq}} \cdot p^{\circ}_{B} / p^{\circ}_{A})$$

il denominatore è <1 e $\times_{A \text{ Vap}}$ > $\times_{A \text{ liq}}$

Se $p_A^o = p_B^o$ i due liquidi hanno la stessa volatilità e la composizione del vapore è uguale a quella del liquido.

Diagramma Temperatura-Composizione

- tipico diagramma $x_A \to T$ per soluzioni ideali di due liquidi volatili a p° differente con $T_{eb}(A) \times T_{eb}(B) \Rightarrow$ $p^{\circ}(A) \times p^{\circ}(B) \Rightarrow x_{vap}(A) \times x_{liq}(A)$
- regione sotto la linea blu: solo la fase liquida
- regione sopra la linea verde: solo il vapore
- zona intermedia: si ha equilibrio liquido-vapore

Diagramma a 2 componenti, e 1 variabile fisica intensiva!

Diagrammi di stato a due componenti: regola della leva

Nella zona tra le due curve si ha coesistenza (equilibrio) tra le due fasi 1 (vapore) e 2 (liquido).

Per il punto F la fase 1 (vapore) ha concentrazione $x_B^{(1)}$ e la fase 2 (liquido) $x_B^{(2)}$.

La lunghezza del segmento FN è ∞ al nr di moli in fase 1 mentre FM è ∞ al nr di moli in fase 2

Apparecchiatura da laboratorio Thermometer per distillazioni = separazione di due liquidi volatili Condenser Adapter Colonna di Water frazionamento Water Receiving flask Distilling flask Heater

Distillazione di una soluzione ideale

Passi successivi:

- · Parto dal punto a₁: è presente il liquido.
- Innalzo la temperatura e la soluzione bolle a T_2
- · Il vapore ha composizione a2'
- Abbasso la temperatura sino a T_3 e condenso
- Il liquido ottenuto dal distillato ha composizione a₃ più ricca di a₁ del componente più volatile
- Ottengo vapore sempre più puro della componente A, più volatile.
- Il liquido rimasto da distillazione in a₁ si arricchisce in B, meno volatile

Distillazione Frazionata

· Più vicine sono le curve di liquido e di vapore, più passaggi sono necessari

Sistemi a due componenti: soluzioni non ideali di due liquidi volatili.

a) deviazioni positive dalla Legge di Raoult .

a) deviazioni positive dalla Legge di Raoult .
$$p_{tot} > x_{A \text{ Liq}} \cdot p^{\circ}_{A} + x_{B \text{ Liq}} \cdot p^{\circ}_{B}$$

$$\Delta H \text{ mesc} > 0$$

$$E_{A-B} < (E_{A-A} + E_{B-B})/2$$
Ethanol Benzene Composition Composition

b) deviazioni negative dalla Legge di Raoult.

$$p_{tot} < x_{A \text{ Liq}} \cdot p^{\circ}_{A} + x_{B \text{ Liq}} \cdot p^{\circ}_{B}$$

$$\Delta H_{mesc} < 0 \qquad E_{A-B} > (E_{A-A} + E_{B-B})/2$$

Azeotropi

- Soluzioni con deviazione positiva dalla legge di Raoult: le curve del liquido e del vapore si congiungono per il valore minimo di T a composizione b (corrispondente al massimo della tensione di vapore della soluzione). Ho un azeotropo di minimo.
- Il vapore distillato converge a composizione dell'azeotropo
- e.g.: EtOH-H₂O, αl 95.6% EtOH. (p. eb._{EtOH} = 78.4 °C, p.eb._{Az} = 78.2°C)
- L'azeotropo può venire "rotto" aggiungendo una terza componente (ad es. benzene)

Azeotropi

Diagramma a 2 componenti, e 1 variabile fisica intensiva!

- Soluzioni con deviazione negativa dalla legge di Raoult: liquido e vapore hanno identica composizione per il valore massimo di T nel punto b (corrispondente al massimo della tensione di vapore della soluzione).
- Raggiunta questa composizione del liquido, non è più possibile completare la separazione per semplice distillazione: ho un azeotropo di massimo
- La composizione b è detta azeotropica (e.g. HCl-H₂O 20/80, p_{eb} = -84°C HCl e 110°C azeotropo)

Diagrammi di stato e proprietà colligative

Soluzioni di un soluto non volatile:

La Legge di Raoult:
$$p_{tot} = x_{A Liq} \cdot p^{\circ}_{A} + x_{B} \cdot p^{\circ}_{B}$$

se B è un soluto poco volatile, $(p^{\circ}_{B} = 0)$ diventa:
 $p_{sol} = x_{A Liq} \cdot p^{\circ}_{A} = (1 - x_{B}) p^{\circ}_{A} = p^{\circ}_{A} - x_{B} p^{\circ}_{A} \Rightarrow$
 $\Rightarrow p^{\circ}_{A} - p_{sol} = x_{B} p^{\circ}_{A}$
 $ma \Delta p = p^{\circ}_{A} - p_{sol} \Rightarrow \Delta p_{A} = x_{B} p^{\circ}_{A}$

Nell'ipotesi d'idealità, si ha quindi un abbassamento Δp_A della tensione di vapore p^o_A del solvente $A \propto$ alla concentrazione x_B del soluto B (non volatile) e indipendente dal tipo di soluto.

Non c'è riferimento all'entalpia delle interazioni: solo alla concentrazione del soluto, solo fattori entropici

L'energia libera del vapore non viene influenzata dal soluto, che non evapora. L'energia libera del solvente nella soluzione è minore che per il solvente puro $(\Delta S_{mesc} > 0, \Delta G_{mesc} < 0)$

Abbassamento crioscopico

L'energia libera del solvente solido non è influenzata dal soluto, che cristallizza separatamente. G del solvente nella soluzione è minore che per solvente puro ($\Delta S_{mesc} > 0$, $\Delta G_{mesc} < 0$).

Diagrammi di stato e proprietà colligative

La presenza di un soluto espande il campo d'esistenza della fase liquida del solvente aumentandone l'entropia. E' determinante la concentrazione (numero) e non il tipo di particelle di soluto: contano solo fattori entropici.

Diagrammi di stato e proprietà colligative

Abbassamento crioscopico ΔT_c

$$\Delta T_c = K_c \cdot \mathsf{m}$$

Innalzamento ebullioscopico

$$\Delta T_e = K_e \cdot \mathsf{m}$$

m = "molalità colligativa"=

= (moli di particelle di soluto)/(massa solvente (kg)):

Se un soluto si dissocia (e.g. NaCl in H₂O),

m = $m_s \cdot v_s$ = (moli soluto/massa solvente)·(fatt. dissoc. soluto) (v_s = fattore di dissociazione soluto = nr di particelle in cui una unità formula si dissocia: per NaCl e per HCl v = 2, per CaCl₂ v = 3, per glucosio ($C_6O_6H_{12}$) = 1, per HCN $v \approx 1$, (poco >1) perché HCN è un acido molto debole e si dissocia poco.

Punti di fusione, k_{crio}, punti di ebollizione e k_{ebull} per vari solventi

Solvente	pt. fus. (° <i>C</i>)	k _{crio} (°C·kg ·mol ⁻¹)	pt. eb. (°€)	k_{eb} (°C·kg·mol ⁻¹)
acetone	-95.35	2.40	56.2	1.71
benzene	5.5	5.12	80.1	2.53
canfora	179.8	39.7	204	5.61
CCl ₄	-23	29.8	76.5	4.95
cicloesano	6.5	20.1	80.7	2.79
naftalene	80.5	6.94	217.7	5.80
fenolo	43	7.27	182	3.04
acqua	0	1.86	100.0	0.51

L'abbassamento della tensione di vapore, l'abbassamento crioscopico e l'innalzamento ebullioscopico sono proprietà colligative del solvente. Come la pressione osmotica non dipendono dal particolare soluto ma solo dalla concentr. di particelle (molecole, ioni). Dipendono da fattori entropici.

Problemi:

A che temperatura congelerà una soluzione acquosa 0.250 molale di zucchero? (lo zucchero non è un elettrolita) k_{crio} = 1.86 K kg-solvente/mol-soluto ΔT = k_{crio} m = 1.86 K kg-solvente/mol-soluto 0.250 mol-soluto/kg-solvente = 0.465 K T= T_f - ΔT = -0.465 °C

Determinare il punto di ebollizione di una soluzione acquosa contenente 50.0 g di cloruro di magnesio in 1 litro di H_2O $MM(MgCl_2) = 24.3 + 2 \times 35.5 = 75.3g \, mol^{-1} \, moli (MgCl_2) = 50.0g/75.3g \, mol^{-1} = 0.664 \, moli 1 mole di <math>MgCl_2$ forma in acqua 3 moli di ioni: $MgCl_2$ (s) $\rightarrow Mg^{2+}(aq) + 2 \, Cl^{-}$ (aq) $\Delta T = k_{eb} \, m = 0.51 \, K \, kg$ -solvente/mol-soluto $\cdot 0.664 \times 3 \, mol$ -soluto/kg-solvente =1.01 K $T = T_{eb} + \Delta T = 101.01 \, ^{\circ}C$

Pressione osmotica π

Solution $\pi = c RT = n/V RT$

n = moli di soluto

V = volume della soluzione

π = extra-P necessaria su soluzione per avere equilibrio

(soluto non può passare nel contenitore di solvente puro)

Equilibri eterogenei a più componenti: solubilità sali in H_2O

I sali (solidi ionici) sono molto spesso solubili in H_2O . Danno luogo ad equilibri di solubilità: $AgCl_{(s)} = Ag^+_{(aq)} + Cl^-_{(aq)}$

La K di questo equilibrio è :

$$K_{\rm sp}$$
 = $[Ag^+]_{(eq)}[Cl^-]_{(eq)}/a_{AgCl(s)}$ = $[Ag^+]_{(eq)}[Cl^-]_{(eq)}$ = 1.6 10⁻¹⁰ e viene chiamata: prodotto di solubilità.

Perché l'equilibrio sia efficace deve essere presente AgCl(s) precipitato e quindi la soluzione deve essere satura: allora la relazione è valida. La solubilità in H_2O pura s_{AqCl} é:

$$S_{AgCl} = [Ag^+]_{(eq)} = [Cl^-]_{(eq)} = (K_{sp})^{1/2} = 1.3 \cdot 10^{-5} \text{ mol/L}$$

Se la soluzione non è satura $[Ag^+][Cl^-]=Q_{sp} < K_{sp}$

Se la soluzione è sovrasatura $[Ag^+][Cl^-]=Q_{sp}$ K_{sp} e deve precipitare AgCl

Precipitazione di PbI_2 per aggiunta di una soluzione di KI ad una soluzione di $Pb(NO_3)_2$ $(K_{sp}(PbI_2)=[Pb^{2+}][I^-]^2=1.4\ 10^{-8}$

TABLE 11.4 Solubility Products at 25°C

Compound	Formula	$K_{ m sp}$	Compound	Formula	K_{sp}
aluminum hydroxide	$Al(OH)_3$	1.0×10^{-33}	fluoride	PbF ₂	3.7×10^{-8}
antimony sulfide	Sb_2S_3	1.7×10^{-93}	iodate	$Pb(IO_3)_2$	2.6×10^{-13}
barium carbonate	$BaCO_3$	8.1×10^{-9}	iodide	PbI ₂	1.4×10^{-8}
fluoride	BaF ₂	1.7×10^{-6}	sulfate	PbSO ₄	1.6×10^{-8}
sulfate	$BaSO_4$	1.1×10^{-10}	sulfide	PbS	8.8×10^{-29}
bismuth sulfide	Bi_2S_3	1.0×10^{-97}	magnesium		
calcium carbonate	$CaCO_3$	8.7×10^{-9}	ammonium phosphate	$MgNH_4PO_4$	2.5×10^{-13}
fluoride	CaF ₂	4.0×10^{-11}	carbonate	$MgCO_3$	1.0×10^{-5}
hydroxide	$Ca(\tilde{O}H)_2$	5.5×10^{-6}	fluoride	MgF_2	6.4×10^{-9}
sulfate	CaSO ₄	2.4×10^{-5}	hydroxide	$Mg(OH)_2$	1.1×10^{-11}
chromium(III) iodate	$Cr(IO_3)_3$	5.0×10^{-6}	mercury(I) chloride	Hg_2Cl_2	2.6×10^{-18}
copper(I) bromide	CuBr	4.2×10^{-8}	iodide	Hg_2I_2	1.2×10^{-28}
chloride	CuCl	1.0×10^{-6}	mercury(II) sulfide, black	HgS	1.6×10^{-52}
iodide	CuI	5.1×10^{-12}	sulfide, red	HgS	1.4×10^{-53}
sulfide	Cu ₂ S	2.0×10^{-47}	nickel(II) hydroxide	$Ni(OH)_2$	6.5×10^{-18}
copper(II) iodate	$Cu(IO_3)_2$	1.4×10^{-7}	silver bromide	AgBr	7.7×10^{-13}
oxalate	CuC_2O_4	2.9×10^{-8}	carbonate	Ag_2CO_3	6.2×10^{-12}
sulfide	CuS	1.3×10^{-36}	chloride	AgCl	1.6×10^{-10}
iron(II) hydroxide	$Fe(OH)_2$	1.6×10^{-14}	hydroxide	AgOH	1.5×10^{-8}
sulfide	FeS	6.3×10^{-18}	iodide	AgI	8×10^{-17}
iron(III) hydroxide	Fe(OH) ₃	2.0×10^{-39}	sulfide	Ag_2S	6.3×10^{-51}
lead(II) bromide	PbBr ₂	7.9×10^{-5}	zinc hydroxide	$Zn(OH)_2$	2.0×10^{-17}
chloride	$PbCl_2^2$	1.6×10^{-5}	sulfide	ZnS	1.6×10^{-24}

Equilibri di solubilità

$$AgCl_{(s)} \leftrightarrows Ag^+_{(aq)} + Cl^-_{(aq)}$$
 $K_{sp(AgCl)} = 1.6 \ 10^{-10}$ solubilità in H_2O pura $s_{AgCl} = [Ag^+]_{eq} = [Cl^-]_{eq}$ $s_{AgCl} = (K_{sp})^{1/2} = 1.3 \ 10^{-5} \ mol/L$ La solubilità diminuisce per l'effetto "ione comune". Ad esempio, in una soluzione 0.1M di NaCl ho: $[Cl^-] = 0.1M$, quale diventa la solubilità s' di $AgCl$? $K_{sp} = [Ag^+][Cl^-] = s' (0.1 + s') = 1.6 \ 10^{-10}$ e s' è trascurabile rispetto a 0.1 (sarà << 1.3 10^{-5}). $s' \cdot 0.1 = K_{sp}$ $s' = 1.6 \ 10^{-9} \ mol/L$

La forma della K_{sp} dipende dalla stechiometria del sale. PbF_{2(s)} \leftrightarrows Pb²⁺_(aq)+2F⁻_(aq) $K_{sp(PbF2)} = [Pb^{2+}]_{(eq)}[F^{-}]^{2}_{(eq)} = 3.7 \cdot 10^{-8}$ solubilità PbF_{2(s)} in H₂O pura: $s_{PbF2} = [Pb^{2+}]_{eq} = 1/2 \cdot [F^{-}]_{eq}$

Diagrammi di raffreddamento ed eutettici

Miscibilità completa allo stato liquido ma completa immiscibilità allo stato solido

P costante

Diagramma eutettico:

Si ricava da diagrammi di raffreddamento. La conc. eutettica, (in Z' ed E), è di una soluzione di A saturo di B e viceversa.

Diagrammi di raffreddamento:

Le curve da A e B liquidi puri sono ai due estremi. Le curve Z e Z' partono da concentrazioni definite nel diagramma eutettico a sinistra.

Diagrammi di stato liquido-solido

Miscibilità completa allo stato liquido e allo stato solido

P costante

Ad una data T la curva di solido è più ricca del componente B per cui $T_{fusB} > T_{fusA}$, mentre la curva di liquido è più ricca di A.

Diagrammi di raffreddamento:

Le curve da A e B (liquidi puri), sono ai due estremi. Le curva Z parte dalla concentrazione definita nel diagramma a sinistra.

Spiegare come mai il diamante si trasforma in grafite a circa $1600^{\circ}C$ a P ambiente (in assenza di O_2), mentre Si, nelle stesse condizioni, fonde a circa $1400^{\circ}C$.