Trabalho nº 2: Fatorização LU

CPD - Algoritmos Paralelos 2015/2016

ERRO

MÉDIO

Nuno André da Silva Oliveira A67649 Universidade do Minho MIEI a67649@alunos.uminho.pt

Carlos Rafael Cruz Antunes
A67711
Universidade do Minho
MIEI
a67711@alunos.uminho.pt

I. ALTERAÇÕES AO CÓDIGO

Ao código fornecido (BLAS2LU.m e BLAS3LU.m) foram adicionadas as seguintes linhas, que aplicam a pivotação parcial à matriz passada por argumento.

As duas primeiras linhas calculam o pivot e a sua posição na coluna em questão.

$$[M, I] = max(A(i:n, i));$$

linha = I + i - 1;

Seguidamente a linha com o pivot é posicionada no topo das linhas por iterar trocando com a que lá está, caso seja necessário.

```
if(linha > i)
    A = swapLine( A, linha, i);
and
```

II. TESTES

Para calcular o erro dos resultados obtidos usamos a função "lu", que devolve as matrizes L, U e P. Desta forma podemos usar a linha de MatLab "norm(P*A - L*U)" para obter o erro dos cálculos, e compara-lo entre as versões sem e com pivotação parcial.

III. RESULTADOS OBTIDOS

Na Tabela 1 podemos ver o erro associado aos diferentes algoritmos. Neste caso foram amostrados 10 vezes para cada variação. Em geral podemos verificar que os algoritmos sem pivotação mantém um erro superior aos algoritmos com pivotação.

Tabela 1. Erro associado à variação dos algoritmos

BLAS 2		BLAS 3	
Sem	Com	Sem	Com
Pivotação	Pivotação	Pivotação	Pivotação
27,3994	4,0777	13,3434	3,8663
42,356	14,3266	30,5838	7,0623
8,3686	6,1397	65,6565	20,6758
7,9243	17,0141	23,6084	4,6623
25,543	5,7186	7,9309	14,3144
18,1743	6,1737	8,3897	5,0731
17,4787	4,5362	9,1552	4,6047
8,5188	5,8581	68,5438	4,6725
26,2906	3,6303	13,1276	3,8536
11,7414	17,0416	8,1275	29,2442
19,37951	8,45166	24,84668	9,80292

IV. Conclusões

Dados os resultados obtidos nesta pequena experiencia em MatLab, concluímos que a pivotação parcial desempenha de facto um papel importante na precisão numéria do algoritmo de factorização LU. Reduzindo o erro quando é implementada esta pivotação, o que leva a um maior nível de confiança nos resultados obtidos.