

VLSI Design EE 523 Spring 2025

Shahid Masud Lecture 9

Topics for lecture 9

- CMOS characteristics Non-Ideal effects
 - Velocity Saturation and Mobility Degradation
 - Subthreshold Conduction
 - Tunnelling
 - Temperature and Geometry Effects
 - Junction Leakage
 - Body Effect Equation
 - Channel Length Modulation Equation
- Transfer characteristics of CMOS Inverter
- Regions of MOS operation in an Inverter
- Noise Margin of CMOS Inverter
- Quiz next week

PMOS VDS vs ID plot

Figure 6.12 Characterisitics of a long-channel PMOS device.

Body Effect - Pictorially

To qualitatively understand the origin of the body effect, consider the MOSFET cross-sectional view seen in Fig. 6.15. As the source potential rises above the bulk (substrate) potential (represented by V_{SB} in the figure), electrons are attracted towards the positive terminal of V_{SB} from the MOSFET's channel. To keep the surface inverted, a larger V_{GS} must be applied to the MOSFET. Thus the effect of the body stealing charge from the channel is an increase in the MOSFET's threshold voltage.

Figure 6.15 Qualitative description of body effect.

CMOS Inverter as Switch

Figure 14.16 The VTC of an ideal inverter.

Figure 14.17 (a) The simplest implementation of a logic inverter using a voltage-controlled switch; **(b)** equivalent circuit when v_I is low; **(c)** equivalent circuit when v_I is high. Note that the switch is assumed to close when v_I is high.

Basic Inverter Operation – Vout vs Vin

Figure 11.2 The CMOS inverter transfer characteristics.

Figure 14.15 Typical voltage-transfer characteristic (VTC) of a logic inverter, illustrating the definition of the critical points.

The maximum output "high" voltage is labeled V_{OH} and the minimum output "low" voltage, V_{OL} . Points A and B on this curve are defined by the slope of the transfer curves equaling -1. Input voltages less than or equal to the voltage V_{IL} , defined by point A, are considered a logic low on the input of the inverter. Input voltages greater than or equal to the voltage V_{IH} , defined by point B, are considered a logic high on the input of the inverter. Input voltages between V_{IL} and V_{IH} do not define a valid logic voltage level. Ideally, the difference in V_{IL} and V_{IH} is zero; however, this is never the case in real logic circuits.

Noise Margin Definitions

$$NM_L = V_{IL} - V_{OL} \tag{2.58}$$

The value of NM_H is the difference between the minimum HIGH output voltage of the driving gate and the minimum HIGH input voltage recognized by the receiving gate. Thus,

$$NM_H = V_{OH} - V_{IH}$$
 (2.59)

where

 V_{IH} = minimum HIGH input voltage

 V_{IL} = maximum LOW input voltage

 V_{OH} = minimum HIGH output voltage

 V_{OL} = maximum LOW output voltage

FIGURE 2.29 Noise margin definitions

Voltage and Current Plotted together for Inverter

Figure 11.3 Transfer characteristics of a minimum-size inverter used in Example 11.1.

I-V Characteristics of a CMOS Inverter

FIGURE 2.26 Graphical derivation of CMOS inverter DC characteristic

CMOS Inverter Voltages - Explained

Figure 14.25 The voltage-transfer characteristic of the CMOS inverter when Q_{ν} and Q_{ν} are matched.

Operating Regions for MOSFETs in Inverter

A CMOS inverter

2.5.1 Static CMOS Inverter DC Characteristics

Let us derive the DC transfer function ($V_{\rm out}$ vs. $V_{\rm in}$) for the static CMOS inverter shown in Figure 2.25. We begin with Table 2.2, which outlines various regions of operation for the n- and p-transistors. In this table, V_{tn} is the threshold voltage of the n-channel device, and V_{tp} is the threshold voltage of the p-channel device. Note that V_{tp} is negative. The equations are given both in terms of V_{gs}/V_{ds} and $V_{\rm in}/V_{\rm out}$. As the source of the nMOS transistor is grounded, $V_{gsn} = V_{\rm in}$ and $V_{dsn} = V_{\rm out}$. As the source of the pMOS transistor is tied to V_{DD} , $V_{gsp} = V_{\rm in} - V_{DD}$ and $V_{dsp} = V_{\rm out} - V_{DD}$.

TABLE 2.2 Relationships between voltages for the three regions of operation of a CMOS inverter

	Cutoff	Linear	Saturated
nMOS	$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
	$V_{\rm in} < V_{tn}$	$V_{\rm in} > V_{tn}$	$V_{\rm in} > V_{tn}$
		$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
		$V_{\rm out} < V_{\rm in} - V_{tn}$	$V_{\rm out} > V_{\rm in} - V_{tn}$
pMOS	$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
	$V_{\rm in} > V_{tp} + V_{DD}$	$V_{\rm in} < V_{tp} + V_{DD}$	$V_{\rm in} < V_{tp} + V_{DD}$
		$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
		$V_{\rm out} > V_{\rm in} - V_{tp}$	$V_{\rm out} < V_{\rm in} - V_{tp}$

PMOS and NMOS Regions of Operation in Inverter

TABLE 2.3 Summary of CMOS inverter operation

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\text{out}} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \leq V_{DD} - \left V_{tp} \right $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\text{out}} = 0$

Inverter Switching Current

Figure 11.5 Transfer characteristics of the inverter showing the switching point.

Inverter Switching Point

Consider the transfer characteristics of the basic inverter as shown in Fig. 11.5. Point C corresponds to the point on the curve when the input voltage is equal to the output voltage. At this point, the input (or output) voltage is called the *inverter switching point voltage*, V_{SP} , and both MOSFETs in the inverter are in the saturation region. Since the drain current in each MOSFET must be equal, the following is true:

$$\frac{\beta_n}{2}(V_{SP} - V_{THN})^2 = \frac{\beta_p}{2}(VDD - V_{SP} - V_{THP})^2$$
 (11.3)

Solving for V_{SP} gives

$$V_{SP} = \frac{\sqrt{\frac{\beta_n}{\beta_p}} \cdot V_{THN} + (VDD - V_{THP})}{1 + \sqrt{\frac{\beta_n}{\beta_p}}}$$
(11.4)

Example 11.2

Estimate β_n and β_p so that the switching point voltage of a CMOS inverter designed in the long-channel CMOS process is 2.5 V (= VDD/2).

Solving Eq. (11.4) with $V_{SP} = 2.5$ V for the ratio β_n/β_p gives a value of approximately unity. That is,

$$\beta_n = \beta_p = KP_n \frac{W_1}{L_1} = KP_p \frac{W_2}{L_2}$$

Since $KP_n = 3KP_p$, the width of the PMOS device must be three times the width of the NMOS, assuming equal-length MOSFETs. For $V_{SP} = 2.5$ V, this requires

$$W_2 = 3W_1$$

Reading and Book

- Textbook can be downloaded online "CMOS VLSI Design by Weste and Harris, 4th Edition"
- Readings from Chapter 2