How is big data analyzed?

One of the best-known methods for turning raw data into useful information is by what is known as MapReduce. MapReduce is a method for taking a large data set and performing computations on it across multiple computers, in parallel. It serves as a model for how to program, and is often used to refer to the actual implementation of this model.

- Components
- How to Hadoop
- Examples/Patterns
- Homework

- Google File System, 2003: http://research.google.com/archive/gfs.html
- Map Reduce, 2004: http://research.google.com/archive/mapreduce.html
- Doug Cutting, Yahoo: 2004. Now with Cloudera

Hadoop

https://www.cloudera.com/products/open-source/apache-hadoop.html

What is Hadoop/MapReduce?

- Programming model for expressing distributed computations at a massive scale
- Execution framework for organizing and performing such computations
- Open-source implementation called Hadoop

MapReduce can refer to...

Usage is usually clear from context!

Apache Hadoop

Apache Hadoop Project : http://hadoop.apache.org/docs/current/

A software stack for reliable, scalable, distributed computing

- Core components
 - Hadoop Common
 - Hadoop Distributed File System HDFS
 - Hadoop YARN
 - Hadoop MapReduce
- Hadoop Related projects: Ambari, Avro, Cassandra, HBase, Hive, Mahout, Pig, Spark, Tez, ZooKeeper, Hue, ...?

Hadoop Architecture - YARN Node Manager Container App Mstr Client Node Resource Manager Manager Client App Mstr Container Node MapReduce Status Manager Job Submission Node Status Resource Request Container Container

Hadoop Architecture/ YARN

Hadoop Architecture/HDFS, MapReduce

HDFS

Hadoop Architecture / HDFS

Hadoop Architecture / HDFS

Distributed File System

- Don't move data to workers... move workers to the data!
 - Store data on the local disks of nodes in the cluster
 - Start up the workers on the node that has the data local
- Why?
 - Not enough RAM to hold all the data in memory
 - Disk access is slow, but disk throughput is reasonable
- A distributed file system is the answer
 - GFS (Google File System) for Google's MapReduce
 - HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

- Commodity hardware over "exotic" hardware
 - Scale "out", not "up"
- High component failure rates
 - Inexpensive commodity components fail all the time
- "Modest" number of huge files
 - Multi-gigabyte files are common, if not encouraged
- Files are write-once, mostly appended to
 - Perhaps concurrently
- Large streaming reads over random access
 - High sustained throughput over low latency

GFS: Design Decisions

- Files stored as chunks
 - Fixed size (64MB)
- Reliability through replication
 - Each chunk replicated across 3+ chunkservers
- Single controller to coordinate access, keep metadata
 - Simple centralized management
- No data caching
 - Little benefit due to large datasets, streaming reads
- Simplify the API
 - Push some of the issues onto the client (e.g., data layout)

HDFS Terminology

HDFS Architecture

- Namenode
- Datanode
- DFS Client
- Files/Directories
- Replication
- Blocks
- Rack-awareness

Hadoop Architecture / HDFS

^{*} Google File System, 2003 http://research.google.com/archive/gfs.html

Hadoop - HDFS

Block Replication

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,5}, ...

Datanodes

Exploring HDFS command line

- Attempt to re-create new dir :
 - + \$ hadoop dfs -mkdir /user/foo
- Create a destination directory using implicit path:
 - + \$ hadoop dfs -mkdir bar
- Auto-create nested destination directories:
 - + \$ hadoop dfs -mkdir dir1/dir2/dir3
- Remove dir:
 - \$ hadoop dfs -rmr /user/foo
- Remove dir:
 - + \$ hadoop dfs -rmr bar dir1

HDFS Example: Import access log data

- Load access log into hdfs:
 - \$ hadoop dfs -put /var/log/apache2/access.log input/access.log
- Verify it's in there:
 - \$ hadoop dfs -ls input/access.log
- View the contents:
 - \$ hadoop dfs -cat input/access.log

Browse HDFS using web UI

Open http://<hadoopIP>:50070

MapReduce

Hadoop Programming

- "strong Java programming" as pre-requisite?
 - Hadoop Streaming: ability to use an arbitrary language to define a job's map and reduce processes

- this class is not about programming!
 - Focus on "thinking at scale" and algorithm design
 - We expect you to pick up Hadoop (quickly)
- How do I learn Hadoop?
 - This session: brief overview
 - White's book
 - Read the docs

Next...

- Map Reduce
 - Functional Programming
 - Map Reduce / Components
 - I/O
- Creating/Running MR Programs
 - Java
 - Streaming / Command Line

- Patterns
 - Word Count
 - Filtering
 - Joins
 - Top K
 - Binning
 - Bloom Filters
 - Page Rank

Hadoop/MapReduce Divide and Conquer

MapReduce

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed file system (HDFS)

Roots in Functional Programming

Map Reduce Framework

Typical Large-Data Problem

- Iterate over a large number of records
- Extract something of interest from each

 Map
- Shuffle and sort intermediate results
- Aggregate intermediate results

 Reduce
- Generate final output

Key idea: provide a functional abstraction for these two operations

Data Types in Hadoop

Binary encoded of a sequence of key/value pairs

SequenceFiles

Complex Data Types in Hadoop

- How do you implement complex data types?
- The easiest way:
 - Encoded it as Text, e.g., (a, b) = "a:b"
 - Use regular expressions to parse and extract data
 - Works, but pretty hack-ish

• The hard way:

- Define a custom implementation of WritableComprable
- Must implement: readFields, write, compareTo
- Computationally efficient, but slow for rapid prototyping

• Alternatives:

- Cloud⁹ offers two other choices: Tuple and JSON
- (Actually, not that useful in practice)

MapReduce

• Programmers specify two functions:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k'', v'' \rangle^*
```

- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

What's "everything else"?

MapReduce "Runtime"

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed FS (later)

MapReduce

• Programmers specify two functions:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k'', v'' \rangle^*
```

- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify:

```
partition (k', number of partitions) → partition for k'
```

- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations
 combine (k', v') → <k', v'>*
- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic

Two more details...

- Barrier between map and reduce phases
 - But we can begin copying intermediate data earlier
- Keys arrive at each reducer in sorted order
 - No enforced ordering across reducers

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, used in production
 - Now an Apache project
 - Rapidly expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.

"Hello World": Word Count

```
Map(String docid, String text):
    for each word w in text:
        Emit(w, 1);

Reduce(String term, Iterator<Int> values):
    int sum = 0;
    for each v in values:
        sum += v;
        Emit(term, value);
```


Anatomy of a Job

- MapReduce program in Hadoop = Hadoop job
 - Jobs are divided into map and reduce tasks
 - An instance of running a task is called a task attempt
 - Multiple jobs can be composed into a workflow
- Job submission process
 - Client (i.e., driver program) creates a job, configures it, and submits it to job tracker
 - JobClient computes input splits (on client end)
 - Job data (jar, configuration XML) are sent to JobTracker
 - JobTracker puts job data in shared location, enqueues tasks
 - TaskTrackers poll for tasks
 - Off to the races...

Basic Hadoop API*

Mapper

- void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)
- void configure(JobConf job)
- void close() throws IOException

Reducer/Combiner

- void reduce(K2 key, Iterator<V2> values, OutputCollector<K3,V3> output, Reporter reporter)
- void configure(JobConf job)
- void close() throws IOException

Partitioner

void getPartition(K2 key, V2 value, int numPartitions)

"Hello World": Word Count

```
Map(String docid, String text):
    for each word w in text:
        Emit(w, 1);

Reduce(String term, Iterator<Int> values):
    int sum = 0;
    for each v in values:
        sum += v;
        Emit(term, value);
```


Three Gotchas

- Avoid object creation, at all costs
- Execution framework reuses value in reducer
- Passing parameters into mappers and reducers
 - DistributedCache for larger (static) data

Input and Output

• InputFormat:

- TextInputFormat
- KeyValueTextInputFormat
- SequenceFileInputFormat
- ...

OutputFormat:

- TextOutputFormat
- SequenceFileOutputFormat
- ...

Recap

- Why large data?
- Cloud computing and MapReduce
- Large-data processing: "big ideas"
- What is MapReduce?
- Importance of the underlying distributed file system

Shuffle and Sort in Hadoop

- Probably the most complex aspect of MapReduce!
- Map side
 - Map outputs are buffered in memory in a circular buffer
 - When buffer reaches threshold, contents are "spilled" to disk
 - Spills merged in a single, partitioned file (sorted within each partition): combiner runs here

Reduce side

- First, map outputs are copied over to reducer machine
- "Sort" is a multi-pass merge of map outputs (happens in memory and on disk): combiner runs here
- Final merge pass goes directly into reducer

Hadoop Workflow

Debugging Hadoop

- First, take a deep breath
- Start small, start locally
- Strategies
 - Learn to use the webapp
 - Where does println go?
 - Don't use println, use logging
 - Throw RuntimeExceptions

Recap

- Hadoop data types
- Anatomy of a Hadoop job
- Hadoop jobs, end to end
- Software development workflow

MapReduce: Recap

Programmers must specify:

map
$$(k, v) \rightarrow \langle k', v' \rangle^*$$

reduce $(k', v') \rightarrow \langle k', v' \rangle^*$

- All values with the same key are reduced together
- Optionally, also:
 - **partition** (k', number of partitions) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations
 combine (k', v') → <k', v'>*
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic
- The execution framework handles everything else...

"Everything Else"

- The execution framework handles everything else...
 - Scheduling: assigns workers to map and reduce tasks
 - "Data distribution": moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - Errors and faults: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing

Tools for Synchronization

- Cleverly-constructed data structures
 - Bring partial results together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Special Topics - Preserving State

Scalable Hadoop Algorithms: Themes

- Avoid object creation
 - Inherently costly operation
 - Garbage collection
- Avoid buffering
 - Limited heap size
 - Works for small datasets, but won't scale!

Importance of Local Aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Shuffle and Sort

Design Pattern for Local Aggregation

- "In-mapper combining"
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner Design

- Combiners and reducers share same method signature
 - Sometimes, reducers can serve as combiners
 - Often, not...
- Remember: combiner are optional optimizations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of all integers associated with the same key

Recap: Tools for Synchronization

- Cleverly-constructed data structures
 - Bring data together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Issues and Tradeoffs

- Number of key-value pairs
 - Object creation overhead
 - Time for sorting and shuffling pairs across the network
- Size of each key-value pair
 - De/serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation varies
 - Combiners make a big difference
 - Combiners vs. in-mapper combining
 - RAM vs. disk vs. network

Debugging at Scale

- Works on small datasets, won't scale... why?
 - Memory management issues (buffering and object creation)
 - Too much intermediate data
 - Mangled input records
- Real-world data is messy!
 - Word count: how many unique words in Wikipedia?
 - There's no such thing as "consistent data"
 - Watch out for corner cases
 - Isolate unexpected behavior, bring local

