Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Fall 2018

Instructor: Dr. Sateesh Mane

© Sateesh R. Mane 2018

15 Homework lecture 15

- Please email your solution, as a file attachment, to Sateesh.Mane@qc.cuny.edu.
- Please submit one zip archive with all your files in it.
 - 1. The zip archive should have either of the names (CS361 or CS761):

StudentId_first_last_CS361_hw15.zip StudentId_first_last_CS761_hw15.zip

- 2. The archive should contain one "text file" named "hw15.[txt/docx/pdf]" and one cpp file per question named "Q1.cpp" and "Q2.cpp" etc.
- 3. Note that not all homework assignments may require a text file.
- 4. Note that not all questions may require a cpp file.

15.1 Euler integration 1: explicit

15.1.1 Forward integration

• You are given the following differential equation (c is a positive constant)

$$\frac{dy}{dx} = x - cy. ag{15.1.1}$$

- The integration begins at $x_0 = 0$.
- The initial condition is $y_0 = 1$.
- You are given that the exact solution $y^{ex}(x)$ is as follows.

$$y^{\text{ex}}(x) = \left(1 + \frac{1}{c^2}\right)e^{-cx} + \frac{x}{c} - \frac{1}{c^2}.$$
 (15.1.2)

- You do NOT have to derive the above solution (but you can if you want to).
- The integration stepsize is h (a constant), hence $x_i = ih$.
- Use the explicit Euler method to derive the following.

$$y_{i+1} = y_i + h(x_i - cy_i) = y_i(1 - hc) + hx_i. (15.1.3)$$

- Set h = 1/n.
- Show that $x_n = 1$ after n steps.
- Set c=2.
- Compute the value of the exact solution $y^{ex}(x)$ for x=1 and c=2.
- Compute the value of the numerical solution y_n at $x_n = 1$ and fill the following table of values.
 - 1. Compute the values of $y^{ex}(1)$ and y_n to 5 decimal places.
 - 2. In the last column, calculate the value of $n(y^{ex}(1) y_n)$ to 2 decimal places.

n	$y^{\mathrm{ex}}(1)$	y_n	$y^{\mathrm{ex}}(1) - y_n$	$n(y^{\rm ex}(1) - y_n)$
10	5 d.p.	5 d.p.	5 d.p.	2 d.p.
100	5 d.p.	5 d.p.	5 d.p.	2 d.p.
1000	5 d.p.	5 d.p.	5 d.p.	2 d.p.

- If you have done your work correctly, the numbers in the last column should be approximately equal.
- This is because Euler integration is a first order method.

15.1.2 Reverse integration

- We now reverse the direction of integration and integrate backwards to $x_0 = 0$.
- The differential equation is therefore

$$\frac{dy}{dx} = -(x - cy). ag{15.1.4}$$

- The integration stepsize is still h = 1/n.
- Let the steps be indexed by $i = n + 1, \dots, 2n$.
- You are given that now

$$x_i = x_n - (i - n)h = 2 - ih$$
 $(i = n + 1, ..., 2n).$ (15.1.5)

- The initial condition is $y = y_n$ (the computed numerical solution) at i = n.
- Use the explicit Euler method to derive the following.

$$y_{i+1} = y_i - h(x_i - cy_i)$$

= $y_i(1 + hc) - hx_i$. (15.1.6)

- Show that $x_{2n} = 0$ after 2n steps.
- The exact solution will return to the initial value $y_0 = 1$ but the numerical solution will not.
- Compute the value of the numerical solution y_{2n} at $x_{2n} = 0$ and fill the following table of values.
 - 1. Compute the value of y_{2n} to 5 decimal places.
 - 2. In the last column, calculate the value of $n(1-y_{2n})$ to 2 decimal places.

2n	$y^{\mathrm{ex}}(0)$	y_{2n}	$1 - y_{2n}$	$n(1-y_{2n})$
20	1	5 d.p.	5 d.p.	2 d.p.
200	1	5 d.p.	5 d.p.	2 d.p.
2000	1	5 d.p.	5 d.p.	2 d.p.

- If you have done your work correctly, the numbers in the last column should be approximately equal.
- This is because Euler integration is a first order method.

15.1.3 Indexing for forward and reverse integration

- There seems to be confusion about the notation and indexing, especially for the reverse integration.
- Let me use n = 10 as an example. Then h = 1/n = 0.1.
- Then the value of x_i is, for $i = 0, \ldots, n, \ldots 2n$:

$$x_0 = 0,$$
 $x_1 = 0.1,$
 $x_2 = 0.2,$
 \vdots
 $x_9 = 0.9,$
 $x_{10} = 1.0,$
 $x_{11} = 0.9,$
 $x_{12} = 0.8,$
 \vdots
 $x_{19} = 0.1,$
 $x_{20} = 0.$

• For the forward integration, the loop goes from i = 0 through i = 9 (ten equations)

$$i = 0:$$
 $y_1 = y_0(1 - hc) + hx_0$ $= 1(1 - hc) + h \times 0$, (15.1.8a)
 $i = 1:$ $y_2 = y_1(1 - hc) + hx_1$ $= y_1(1 - hc) + h \times 0.1$, (15.1.8b)
 $i = 2:$ $y_3 = y_2(1 - hc) + hx_2$ $= y_2(1 - hc) + h \times 0.2$, (15.1.8c)
 \vdots (15.1.8d)
 $i = 9:$ $y_n = y_{10} = y_9(1 - hc) + hx_9$ $= y_9(1 - hc) + h \times 0.9$. (15.1.8e)

• For the reverse integration, the loop goes from i = 10 through i = 19 (ten equations) We simply change sign $h \to -h$, so h = -0.1.

```
y_{11} = y_{10}(1+hc) - hx_{10} = y_{10}(1+hc) - h \times 1.0
i = 10:
                                                                                           (15.1.9a)
                      y_{12} = y_{11}(1 + hc) - hx_{11} = \mathbf{y_{11}}(1 + hc) - h \times \mathbf{0.9},
i = 11:
                                                                                           (15.1.9b)
                      y_{13} = y_{12}(1+hc) - hx_{12} = y_{12}(1+hc) - h \times 0.8
i = 12:
                                                                                           (15.1.9c)
                                                                                           (15.1.9d)
                     y_{19} = y_{18}(1+hc) - hx_{18} = y_{18}(1+hc) - h \times 0.2,
i = 18:
                                                                                           (15.1.9e)
               y_{2n} = y_{20} = y_{19}(1 + hc) - hx_{19} = y_{19}(1 + hc) - h \times 0.1.
i = 19:
                                                                                           (15.1.9f)
```

• Note the indexing and the value of x_i for the reverse integration.

15.2 Euler integration 2: implicit

15.2.1 Forward integration

• The differential equation is given by eq. (15.1.1)

$$\frac{dy}{dx} = x - cy. ag{15.2.1}$$

- The integration begins at $x_0 = 0$.
- The initial condition is $y_0 = 1$.
- The exact solution $y^{\text{ex}}(x)$ is given by eq. (15.1.2).
- The integration stepsize is h (a constant), hence $x_i = ih$.
- Use the implicit Euler method to derive the following.

$$y_{i+1} = y_i + h(x_{i+1} - cy_{i+1}). (15.2.2)$$

• Process the above equation to derive the following.

$$y_{i+1} = \frac{y_i + hx_{i+1}}{1 + hc} \,. \tag{15.2.3}$$

- 1. This is an important lesson to learn.
- 2. The denominator 1 + hc divides the term in x_{i+1} not just y_i .
- Set h = 1/n.
- Show that $x_n = 1$ after n steps.
- Set c=2.
- Recall the value of the exact solution $y^{ex}(x)$ for x=1 and c=2.
- Compute the value of the numerical solution y_n and fill the following table of values.
 - 1. Compute the values of $y^{ex}(1)$ and y_n to 5 decimal places.
 - 2. In the last column, calculate the value of $n(y^{ex}(1) y_n)$ to 2 decimal places.

n	$y^{\mathrm{ex}}(1)$	y_n	$y^{\mathrm{ex}}(1) - y_n$	$n(y^{\rm ex}(1) - y_n)$
10	5 d.p.	5 d.p.	5 d.p.	2 d.p.
100	5 d.p.	5 d.p.	5 d.p.	2 d.p.
1000	5 d.p.	5 d.p.	5 d.p.	2 d.p.

- If you have done your work correctly, the numbers in the last column should be approximately equal.
- This is because Euler integration is a first order method.

15.2.2 Reverse integration

- We now reverse the direction of integration and integrate backwards to $x_0 = 0$.
- The differential equation is given by eq. (15.1.4)

$$\frac{dy}{dx} = -(x - cy). ag{15.2.4}$$

- Let the steps be indexed by $i = n + 1, \dots, 2n$.
- The integration stepsize is still h = 1/n.
- You are given that now $x_i = 1 (i n)h$.
- Use the implicit Euler method to derive the following.

$$y_{i+1} = y_i - h(x_{i+1} - cy_{i+1}) (15.2.5)$$

Process the above equation to derive the following.

$$y_{i+1} = \frac{y_i - hx_{i+1}}{1 - hc} \,. \tag{15.2.6}$$

- Show that $x_{2n} = 0$ after 2n steps.
- The exact solution will return to the initial value $y_0 = 1$ but the numerical solution will not.
- Compute the value of the numerical solution y_{2n} and fill the following table of values.
 - 1. Compute the value of y_{2n} to 5 decimal places.
 - 2. In the last column, calculate the value of $n(1-y_{2n})$ to 2 decimal places.

2n	$y^{\mathrm{ex}}(0)$	y_{2n}	$1-y_{2n}$	$n(1-y_{2n})$
20	1	5 d.p.	5 d.p.	2 d.p.
200	1	5 d.p.	5 d.p.	2 d.p.
2000	1	5 d.p.	5 d.p.	2 d.p.

- If you have done your work correctly, the numbers in the last column should be approximately equal.
- This is because Euler integration is a first order method.

Indexing for forward and reverse integration

- Let me use n = 10 as an example. Then h = 1/n = 0.1.
- The value of x_i is the same as previously listed.
- For the *forward integration*, the loop goes from i = 0 through i = 9 (ten equations)

$$i = 0: y_1 = \frac{y_0 + h x_1}{1 + hc} = \frac{1 + h \times 0.1}{1 + hc}, (15.2.7a)$$

$$i = 1: y_2 = \frac{y_1 + h x_2}{1 + hc} = \frac{y_1 + h \times 0.2}{1 + hc}, (15.2.7b)$$

$$i = 2: y_3 = \frac{y_2 + h x_3}{1 + hc} = \frac{y_2 + h \times 0.3}{1 + hc}, (15.2.7c)$$

$$i = 1:$$
 $y_2 = \frac{y_1 + h x_2}{1 + h c} = \frac{y_1 + h \times 0.2}{1 + h c},$ (15.2.7b)

$$i = 2:$$
 $y_3 = \frac{y_2 + h \mathbf{x_3}}{1 + hc} = \frac{y_2 + h \times \mathbf{0.3}}{1 + hc},$ (15.2.7c)

$$i = 9:$$

$$y_n = y_{10} = \frac{y_9 + hx_{10}}{1 + hc} = \frac{y_2 + h \times 1.0}{1 + hc}.$$
 (15.2.7e)

• For the reverse integration, the loop goes from i=10 through i=19 (ten equations) We simply change sign $h \rightarrow -h$, so h = -0.1.

$$i = 10: y_{11} = \frac{y_{10} - hx_{11}}{1 - hc} = \frac{y_{10} - h \times 0.9}{1 - hc}, (15.2.8a)$$

$$i = 11: y_{12} = \frac{y_{11} - hx_{12}}{1 - hc} = \frac{y_{11} - h \times 0.8}{1 - hc}, (15.2.8b)$$

$$i = 12: y_{13} = \frac{y_{12} - hx_{13}}{1 - hc} = \frac{y_{11} - h \times 0.7}{1 - hc}, (15.2.8c)$$

$$i = 11:$$
 $y_{12} = \frac{y_{11} - hx_{12}}{1 - hc} = \frac{y_{11} - h \times 0.8}{1 - hc},$ (15.2.8b)

$$i = 12:$$
 $y_{13} = \frac{y_{12} - nx_{13}}{1 - hc} = \frac{y_{11} - n \times 0.7}{1 - hc},$ (15.2.8c)

$$(15.2.8d)$$

$$i = 18:$$
 $y_{19} = \frac{y_{18} - hx_{19}}{1 - hc} = \frac{y_{18} - h \times 0.1}{1 - hc},$ (15.2.8e)
 $i = 19:$ $y_{2n} = y_{20} = \frac{y_{19} - hx_{20}}{1 - hc} = \frac{y_{19} - h \times 0}{1 - hc}.$ (15.2.8f)

$$i = 19:$$
 $y_{2n} = y_{20} = \frac{y_{19} - hx_{20}}{1 - hc} = \frac{y_{19} - h \times 0}{1 - hc}.$ (15.2.8f)

• Note the indexing and the value of x_i for the reverse integration.

15.3 Euler integration 3

• You are given the following differential equation

$$\frac{dy}{dx} = 2x. (15.3.1)$$

- The integration begins at $x_0 = 0$.
- The initial condition is $y_0 = 0$.
- The exact solution $y^{ex}(x)$ is given as follows:

$$y^{\text{ex}}(x) = x^2. {15.3.2}$$

- The integration stepsize is h (a constant), hence $x_i = ih$.
- Denote the explicit numerical solution by $y_i^{\exp} = y^{\exp}(x_i)$.
- Denote the implicit numerical solution by $y_i^{\text{imp}} = y^{\text{imp}}(x_i)$.
- Use the explicit Euler method to derive the following.

$$y_{i+1}^{\exp} = y_i^{\exp} + 2hx_i. {15.3.3}$$

• Show the following, for i = 1:

$$y_1^{\text{exp}} = 0. (15.3.4)$$

• Use the implicit Euler method to derive the following.

$$y_{i+1}^{\text{imp}} = y_i^{\text{imp}} + 2hx_{i+1}$$
. (15.3.5)

• Show the following, for i = 1:

$$y_1^{\text{imp}} = 2h^2. (15.3.6)$$

- Set h = 1/n.
- The value of the exact solution is $y^{ex}(1) = 1$ for x = 1.
- Compute the value of the numerical solutions y_n^{exp} and y_n^{imp} and fill the following table of values.

n	y_n^{exp}	y_n^{imp}	$n(1-y_n^{\text{exp}})$	$n(1-y_n^{\mathrm{imp}})$
10	5 d.p.	5 d.p.	2 d.p.	2 d.p.
100	5 d.p.	5 d.p.	2 d.p.	2 d.p.
1000	5 d.p.	5 d.p.	2 d.p.	2 d.p.

- If you have done your work correctly, the numbers in the last two columns should be approximately independent of n.
- This is because Euler integration is a first order method.

15.4 Euler integration 4

- Let us modify the differential equation in eq. (15.3.1).
- We know the exact solution is $y^{ex}(x) = x^2$ so let us integrate the following differential equation

$$\frac{dy}{dx} = 2\sqrt{y} \,. \tag{15.4.1}$$

- The integration begins at $x_0 = 0$.
- The initial condition is $y_0 = 0$.
- The exact solution is still $y^{ex}(x) = x^2$.
- The integration stepsize is h (a constant), hence $x_i = ih$.
- Denote the explicit numerical solution by $y_i^{\text{exp}} = y^{\text{exp}}(x_i)$.
- Denote the implicit numerical solution by $y_i^{\text{imp}} = y^{\text{imp}}(x_i)$.
- Use the explicit Euler method to derive the following.

$$y_{i+1}^{\text{exp}} = y_i^{\text{exp}} + 2h\sqrt{y_i^{\text{exp}}}$$
 (15.4.2)

• Compute using eq. (15.4.2) with h = 1/n for n = 10, 100, 1000 and show that:

$$y_n^{\text{exp}} = 0$$
 $(n = 10, 100, 1000)$. (15.4.3)

• The explicit Euler solution never leaves zero!

• Use the implicit Euler method to derive the following.

$$y_{i+1}^{\text{imp}} = y_i^{\text{imp}} + 2h\sqrt{y_{i+1}^{\text{imp}}}$$
 (15.4.4)

• Process eq. (15.4.4) to derive the following.

$$y_{i+1}^{\text{imp}} - 2h\sqrt{y_{i+1}^{\text{imp}}} = y_i^{\text{imp}}.$$
 (15.4.5)

- We have our first example of a nontrivial implicit equation.
- Show that $y_i^{\text{imp}} = 0$ (for all i) is a solution of eq. (15.4.5).
- However, it is not the only solution of eq. (15.4.5). There is another solution.
 - 1. I will derive the formula for the integration step for you.
 - 2. We process eq. (15.4.5) to obtain the following:

$$\left(\sqrt{y_{i+1}^{\text{imp}}} - h\right)^{2} = h^{2} + y_{i}^{\text{imp}}$$

$$\sqrt{y_{i+1}^{\text{imp}}} - h = \sqrt{h^{2} + y_{i}^{\text{imp}}}$$

$$\sqrt{y_{i+1}^{\text{imp}}} = h + \sqrt{h^{2} + y_{i}^{\text{imp}}}.$$
(15.4.6)

• From the above we obtain the following expression:

$$y_{i+1}^{\text{imp}} = \left(h + \sqrt{h^2 + y_i^{\text{imp}}}\right)^2.$$
 (15.4.7)

- Set h = 1/n.
- The value of the exact solution is $y^{ex}(1) = 1$ for x = 1.
- Compute the value of the numerical solution $y_n^{\rm imp}$ using eq. (15.4.7) and fill the following table of values.

n	y_n^{imp}	$n(1-y_n^{\mathrm{imp}})$
10	5 d.p.	2 d.p.
100	5 d.p.	2 d.p.
1000	5 d.p.	2 d.p.

- If you have done your work correctly, the numbers in the last column should be approximately independent of n.
- This is because Euler integration is a first order method.
- This example teahes us various lessons.
 - 1. We need to pay more attention to the conditions for the existence of a solution of a differential equation.
 - 2. For an implicit integration algorithm, there can be more than one solution of the implicit equation, and a root finding algorithm might converge to the wrong root.