Прогнозирование временного ряда при помощи авторегрессионных моделей

Цели темы

- Понять, что такое авторегрессионные модели
- Рассмотреть модели:
 - экспоненциального сглаживания
 - ARIMA
 - TBATS
 - Prophet

Авторегрессионная модель

Прогноз на основе только предыдущих значений.

Экспоненциальное сглаживание

Метод, который прогнозирует на основе предыдущих значений.

$$\widehat{y}_{t+1|t} = lpha y_t + (1-lpha)\widehat{y}_{t|t-1}$$

Где $\widehat{y}_{t+1|t}$ – прогноз y_{t+h} в момент вермени t

lpha – параметр сглаживания

Рекурсивная формула — то есть задаёт значение исходя из значения предыдущей.

Свойства модели

- lpha pprox 1 o больший вес последним точкам: $\widehat{y}_{T+1|T} pprox y_T$
- lphapprox 0 o большее сглаживание: $\widehat{y}_{T+1|T}pprox ar{y}$
- ullet Оптимальное $lpha^*:\sum_{t=t_0}^T \left(\widehat{y}_t(lpha)-y_t
 ight)^2
 ightarrow \min_lpha$

- ullet если $lpha^* \in (0,0.3)$ то ряд стационарен, можно применять экспоненциальное сглаживание
- ullet если $lpha^* \in (0.3,1)$ то ряд нестационарен, нужно применять модель тренда

Пример прогноза для разных α

Модель ARIMA

Модель строится итеративно и состоит из объединённого набора более простых моделей.

- 1. $MA \rightarrow AR \rightarrow ARMA \rightarrow ARIMA$
- 2. SARIMA \rightarrow ARIMAX \rightarrow SARIMAX

Модель скользящего среднего МА(q)

$$y_t = \mu + arepsilon_t + heta_1 arepsilon_{t-1} + \ldots + heta_q arepsilon_{t-q}$$

где y_t – стационарный ряд со средним μ $arepsilon_t$ — гауссовский белый шум, т.е. $arepsilon_t \sim \mathcal{N}\left(0,\sigma^2\right)$ и независимы

Модель авторегрессии AR(p)

$$y_t = lpha + arphi_1 y_{t-1} + \ldots + arphi_p y_{t-p} + arepsilon_t$$

где y_t – стационарный ряд, $arepsilon_t$ – гауссовский белый шум, т.е. $arepsilon_t \sim \mathcal{N}\left(0,\sigma^2\right)$ и независимы

Это модель линейной регрессии с р лагами, для которой:

- отклик: y_t значения ряда в момент времени t
- ullet признаки: y_{t-1}, \ldots, y_{t-p} значения ряда в предыдущий момент времени

Пример как выглядит модель для р=1:

$$y_t = lpha + arphi y_{t-1} + arepsilon_t,$$
 где $arepsilon_t \sim \mathcal{N}\left(0, \sigma^2
ight)$

Модель ARMA

ARMA рассматривает только стационарные временные ряды.

Соединяете AR(p) и MA(q):

$$y_t = \alpha + \varphi_1 y_{t-1} + \ldots + \varphi_p y_{t-p}$$

 $+ \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q}$

Модель ARIMA

Рассматривает не только стационарные временные ряды, но и интегрированные ряды путём добавления ещё одной компоненты.

Интегрированные ряды — те ряды, которые можно привести к стационарным путём дифференцирования 1 и более раз.

I в названии означает integrated — то есть интегрированность ряда.

Гиперпараметры модели — p,d,q.

р — от AR, d — MA, q — параметр, отвечающий за интегрирование.

Модель SARIMA

ARIMA с добавлением сезонной компоненты.

Модель ARIMAX

Компонента X отвечает за добавление других независимых переменных регрессоров к модели ARIMA.

Алексей Подкидышев

Модель SARIMAX

В модель ARIMA добавлена сезонность и внешние регрессоры.

Прогнозирование временного ряда при помощи авторегрессионных моделей

Модель TBATS

Ещё одно усложнение модели ARMA.

- Ряды Фурье (то есть тригонометрические функции)
 для прогнозирования сезонной компоненты
- TBATS преобразование Бокса-Кокса

Сравнение SARIMAX и ТВАТЅ

SARIMAX:

- для учёта сезонности использует сезонную авторегрессию (SAR) и сезонное скользящее среднее (SMA)
- для приведения ряда к стационарному использует дифференцирование
- позволяет тоньше настроить параметры

TBATS:

- для учёта сезонности использует ряды Фурье (то есть тригонометрические функции)
- для приведения ряда к стационарному использует преобразование Бокса-Кокса
- меньше параметров, и она проще в использовании

SARIMAX

TBATS

Grzegorz Skorupa / medium.com (недоступен с территории Российской Федерации)

Модель Prophet

Модель от компании «Фейсбук»* (Forecasting at scale).

Принцип работы:

$$y_t = g_t + s_t + h_t + \varepsilon_t,$$

- s сезонные компоненты. Моделируются рядами Фурье
- h аномальные или нерегулярные дни: праздники, дни распродаж
- g тренд
- ε ошибки модели

^{*} Деятельность компании Meta Platforms Inc., которой принадлежит «Фейсбук», запрещена на территории РФ в части реализации данной социальной сети на основании осуществления ею экстремистской деятельности

Тренд в модели Prophet

Тренд в модели может быть двух видов:

• линейный

$$g_t = mt + b$$
,

• логистический

$$g_t = \frac{C_t}{1 + e^{-kt}}.$$

Преимущества модели Prophet

- 1. Часто строит хорошие прогнозы по умолчанию
- 2. Учитывает несколько сезонностей
- 3. В сравнении с SARIMAX имеет более понятные гиперпараметры
- 4. Умеет по историческим данным выбирать оптимальные точки изменения тренда автоматическими методами

Работа с трендом в Prophet

Charles Truong и др. / sciencedirect.com

Выводы темы

- Рассмотрели главный способ прогнозирования рядов при помощи авторегрессионных моделей
- Рассмотрели устройство моделей:
 - о экспоненциального сглаживания
 - ARIMA
 - TBATS
 - Prophet

Выводы модуля

Задали важные определения и формулировки задачи прогнозирования временных рядов

Узнали о способах декомпозиции ряда

 ✓ Познакомились с определением стационарности и способами приведения ряда к стационарному

Разобрали классические способы прогнозирования рядов при помощи авторегрессионных моделей