(19) World Intellectual Property Organization

International Bureau

THE REPORT OF THE PROPERTY OF

(43) International Publication Date 6 October 2005 (06.10.2005)

PCT

(10) International Publication Number WO 2005/092918 A2

- (51) International Patent Classification⁷: C07K 14/31, A61K 39/085, 48/00, C12N 15/62, C07K 19/00, C12N 5/06, 7/01
- (21) International Application Number:

PCT/GB2005/001084

- (22) International Filing Date: 22 March 2005 (22.03.2005)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0406408.5 0412419.4 22 March 2004 (22.03.2004) GB 3 June 2004 (03.06.2004) GB

- 0412419.4 3 June 2004 (03.06.2004) GB
 (71) Applicant (for all designated States except US): UNI-
- (71) Applicant (for all designated States except US): UNI-VERSITY COLLEGE LONDON [GB/GB]; Gower Street, London WC1E 9BT (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CHAIN, Benjamin, Michael [GB/GB]; 46 Cleveland Street, London W1T 4JF (GB). NAIR, Sean, Paddy [GB/GB]; 256 Grays Inn Road, London, WC1X 8LD (GB).
- (74) Agent: WOODS, Geoffrey, Corlett; J.A. Kemp & Co., 14 South Square, Gray's Inn, London WC1R 5JJ (GB).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TARGETING POLYPEPTIDE

(57) Abstract: A targeting polypeptide is provided that may be used to target a chosen antigen to an antigen presenting cell. Complexes comprising such targeting polypeptide and antigen, nucleic acids and vectors encoding them, and cells comprising the nucleic acids and vectors may be used in methods of immunisation and enhance the immunogenicity of the antigen.

TARGETING POLYPEPTIDE

Field of the Invention

5

10

15

20

25

30

The present invention relates to targeting polypeptides and their use in targeting antigens to antigen presenting cells (APCs).

Background of the Invention

Staphylococcus aureus is a major causative agent of community and hospital acquired infections worldwide. The organism is an important pathogen due to a combination of invasiveness, toxin production, and antibiotic resistance. S. aureus causes a wide variety of clinical syndromes, ranging from uncomplicated infections of the skin to life-threatening toxic shock syndrome (TSS). The bacterium causes disease by producing large numbers of exoproteins or virulence factors. Among the many known virulence factors are two families of staphylococcal pyrogenic superantigens, staphylococcal enterotoxins (SEs) and toxic shock syndrome toxin-1 (TSST-1).

Superantigens bind to major histocompatibility complex (MHC) class-II on antigen presenting cells (B cells, monocytes, and dendritic cells) outside the classical antigen-binding groove, and activate T cells by binding with the variable region of the β chain of T cell receptors (V β -TCR). This cross-linking triggers the non-specific activation and proliferation of T cells, induces the production of high levels of a variety of cytokines, and causes toxic shock syndrome characterized by fever, rash, hypotension and multiple organ failure. Staphylococcal enterotoxins are responsible for many cases of food poisoning (intoxication) associated with ingestion of toxincontaminated food. To date, more than thirteen staphylococcal enterotoxins have been described.

As well as these classical superantigens, *S. aureus* also produces a family of proteins that have sequence homology to the superantigens, these proteins are known as the staphylococcal exotoxin-like proteins (SETs) and are a family of polymorphic paralogs. They were first identified as a genetic locus encoding at least five exotoxin-like proteins (SET1-5). More recently, data from the sequencing of the genomes of several different *S. aureus* strains has revealed a large number of related (36-67%) set genes clustered on a genomic island. This putative pathogenicity island, which is present in all strains of *S. aureus* examined to date, codes for between seven and fourteen set genes, which have varying degrees of sequence homology. In addition,

there appears to be extensive inter-strain allelic polymorphism for each of the *set* genes. The International Nomenclature Committee for Staphylococcal Superantigen Nomenclature (INCSS) has recently recommended that the SETs be renamed staphylococcal superantigen-like exoproteins (SSLs) and numbered from SSL1 to SSL14 in clockwise order from the replication origin of the chromosome based on homology to the full complement of genes found in strain MW2. This nomenclature is essentially as described by Fitzgerald *et al* (*Infect. Immun., 2003, 71, 2827-2838*) except that the numbering of the genes is in the opposite direction. To differentiate between allelic variants the *ssl* gene is prefixed by the strain name.

The three-dimensional structure of one member of the family, SSL5 (previously SET3) has been determined. The crystal structure of this protein shows many of the characteristic structures of the superantigen superfamily, but significant differences also exist. In addition, SSLs do not show the main properties of classical superantigens, such as polyclonal T cell activation, pyrogenicity, or enhancement of endotoxin shock. The function of SSLs is therefore unknown.

Summary of the Invention

5

10

15

20

25

The present invention is based on the finding that Staphyloccal superantigenlike exoproteins (SSLs) are able to target themselves to antigen presenting cells (APCs). This targeting to antigen presenting cells and hence the antigen presentation pathway of these cells means that a chosen antigen can also be targeted to the antigen presenting cell facilitating presentation of the antigen and hence increasing immunogenicity. The invention may also be used to target antigens to antigen presenting cells in order to induce tolerance.

Accordingly, the invention provides for the use of a complex comprising:

- (a) a targeting polypeptide comprising a staphylococcal superantigen-like protein (SSL), a fragment thereof or a variant of either, where the SSL, fragment or variant has the ability to target the complex to an antigen presenting cell; and
- (b) an antigen and/or a nucleic acid molecule encoding an antigen,
- in the manufacture of a medicament for use in immunization or the induction of tolerance.

The invention also provides a complex comprising:

(i) a targeting polypeptide as defined in any one of the preceding claims; and

(ii) an antigen or a nucleic acid encoding an antigen, wherein the antigen or encoded antigen is selected from a pathogenic antigen, auto-antigen, an allergen and a cancer antigen.

The invention also provides a virus comprising a targeting polypeptide of the invention

In addition, the invention provides:

- a nucleic acid molecule comprising a polynucleotide sequence encoding a targeting polypeptide and an antigen selected from a pathogenic antigen, auto-antigen, an allergen and a cancer antigen;
- 10 a vector comprising a nucleic acid of the invention; and
 - a cell comprising a nucleic acid or a vector of the invention or infected with a virus of the invention.

The invention also provides a method of loading antigen presenting cells comprising contacting an antigen presenting cell with a complex or virus of the invention. An antigen presenting cell which has been loaded with a complex or virus is also provided.

The invention additionally provides:

- a pharmaceutical composition comprising a complex of the invention, a nucleic acid encoding a targeting polypeptide and antigen of a complex of the invention, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus of the invention or an antigen presenting cell of the invention and a pharmaceutically acceptable carrier or diluent;
- a vaccine comprising a complex of the invention, a nucleic acid encoding the targeting polypeptide and antigen of a complex of the invention, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus of the invention or an antigen presenting cell of the invention; and
- a complex of the invention, a nucleic acid encoding a targeting polypeptide and antigen of a complex of the invention, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus of the invention, or an antigen presenting cell of the invention for use in a method of treatment of the human or animal body by therapy.

The invention also provides for the use of a nucleic acid encoding a targeting polypeptide and antigen of a complex of the invention, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus of the invention

5

15

20

25

or an antigen presenting cell of the invention in the manufacture of a medicament for use in immunisation.

The invention further provides a method of immunising a subject, the method comprising administering an effective amount of a complex of the invention, a nucleic acid encoding a targeting polypeptide and antigen of a complex of the invention, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus of the invention or an antigen presenting cell of the invention to a subject.

The invention also provides an agent for immunising a subject, the agent comprising a complex of the invention, a nucleic acid encoding a targeting polypeptide and antigen of a complex of the invention, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus of the invention or an antigen presenting cell of the invention.

Brief Description of the Figures

5

10

15

20

25

30

Figure 1 - Panel (a) shows the structure of SSL7, shaded from white (N-terminal) to dark (C-terminal). Panel (b) shows the structure of SSL7 (dark) optimally superposed on that of SSL5 (grey) and the same structure is shown on the right rotated by 90°. Panel (c) shows the structure of SSL7 (dark) optimally superposed on that of SPEC (grey) and the same structure is shown on the right rotated by 90°. Panel (d) shows the SSL7 dimer.

Figure 2 - shows residues in the SSL7 dimer interface with residue numbers being given on the x-axis, and buried surface area (\mathring{A}^2) on the y-axis. The two forms are show by broken and unbroken lines.

Figure 3 – Panel (a) shows the results of FACS analysis of PBMCs (peripheral blood mononuclear cells) incubated with varying concentrations of SSL-7-FITC at 4°C and 37°C. The graph is representative of ten separate experiments carried out with PBMCs from healthy donors. Panel (b) shows the results of competition experiments between SSL9-FITC (top) and SSL7-FITC (bottom) with various molecules for binding to PBMCs. Results shown are from one representative experiment of three.

Figure 4 – shows the results of FACS analysis of PBMC stained with SSL7 (top) or SSL9 (bottom) and various markers. The results shown are representative of five separate experiments.

Figure 5 – shows the results of FACS analysis of PBMC-derived dendritic cells stained with SSL9, SSL7 or no stain. The results are representative of a set of three separate experiments on cells from healthy donors.

Figure 6 – shows that SSL and SSL9 interact selectively with dendritic cells. FACS results for unpurified Dendritic cells incubated with SSL7-FITC or SSL9-FITC and then stained for CD1a are shown. The numbers show the percentage of SSL positive cells that were also CD1a positive.

Figure 7 – shows that SSLs do not alter Dendritic cell morphology or cell surface phenotype. Panel (A) shows the morphology of Dendritic cells treated with SSL proteins. Results for lipopolysaccharide (LPS) and peptidoglycan (PG) are shown as positive controls. Results are representative of three experiments. Panel (B) shows FACS results for phenotypic analysis of dendritic cells treated with SSL proteins. Data are shown for expression of cell surface molecules on Dendritic cells that have been treated with SSL7 or SSL9. LPS and PG were used as positive controls. Expression of the indicated markers is shown by the solid histograms, whereas cells stained with relevant control mAb are indicated by the open line histograms. The numbers on each histogram correspond to the median fluorescence intensity (MFI) of mAb staining. Results shown are from one donor and are representative of similar data obtained from experiments carried out with dendritic cells from four different donors.

Figure 8 – shows endocytosis of FITC-Dextran by Dendritic cells exposed to SSL proteins. The results of one of three separate experiments are shown.

Figure 9 – shows that the effect of SSL protein on the T cell stimulatory capacity of dendritic cells. Panel (A) shows the effect of SSL7 (black bars) or SSL9 (empty bars) or medium alone (grey bars) on stimulation of autologous T cells in the presence or absence (M) of purified protein derivative (PPD). Data shown are mean ± SEM of 3 experiments.

Figure 10 – shows autologous T cell responses to Dendritic cells loaded with SSL7 or SSL9 protein. Data are mean ± SD of triplicate cultures from individual experiments.

Figure 11 – shows the effects of SSL protein on cytokine production. Purified protein derivative is used as control.

Figure 12 – shows antibody responses in human sera. Panel (A) show levels of SSL7 or SSL9 measured by ELISA. Results for a polyclonal rabbit antibody raised

5

10

15

20

25

against purified His-tagged SSL7 are included as a positive control. Data are representative of 3 experiments. Panels (B) and (C) show the results of a competitive ELISA with plates coated with either SSL7 (B) or SSL9 (C) where serum diluted 1:2000 (final dilution) was mixed with varying concentrations of SSL7, SSL9 or Emblp32 as indicated.

Brief Description of the Sequences

5

10

15

20

25

30

SEQ ID No: 1 provides the nucleotide sequence of a genomic fragment comprising the pathogenicity island SaPIn2 from S. aureus strain N315 which includes the ssl1 to ssl5 and ssl7 to ssl11 genes.

SEQ ID Nos: 2 to 11 provide the amino acid sequences of SSL1 to SSL7 and SSL7 to SSL 11 from *S. aureus* strain N315 and also indicate the location of the CDS of the genes in SEQ ID No:1.

SEQ ID No: 12 provides the nucleotide sequence of a genomic fragment from *S. aureus* strain N315, which includes the *ssl12 to ssl14* genes. The sequence indicated is the complement of the coding strand. The order of the genes in the indicated sequence going from 5' to 3' is *ssl14*, *ssl 13* and *ssl*12. The complementary sequence is given by SEQ ID No:103.

SEQ ID Nos: 13 to 15 provide the amino acid sequences of SSL14, SSL 13 and SSL12 respectively from *S. aureus* strain N315 and also indicate the location of the CDS of the genes in SEQ ID No:12. The start of each coding sequence indicated is the higher nucleotide position listed.

SEQ ID No: 16 provides the nucleotide sequence of a genomic fragment comprising the pathogenicity island SaPIn2 from S. aureus strain Mu50, which includes the ssl1 to 3, ssl5 and ssl7 to ssl11 genes.

SEQ ID Nos: 17 to 25 provide the amino acid sequences of SSL1 to SSL3, SSL5 and SSL 7 to 11 respectively from *S. aureus* strain Mu50 and also indicate the location of the CDS of the genes in SEQ ID No: 16.

SEQ ID Nos: 26 to 36 provide the amino acid sequences of SSL1 to SSL11 respectively from *S. aureus* strain MW2 and also indicate the location of the CDS in SEQ ID No: 103.

SEQ ID No: 37 provides the nucleotide sequence of a genomic fragment from S. aureus strain NCTC8325, and includes the sequences of the ssl1 to ssl11 genes. The sequence indicated is the complement of the coding strand. The order of the

genes in the indicated sequence going from 5' to 3' is ssl11 to ssl1. The complementary DNA sequence is given by SEQ ID No: 104.

SEQ ID Nos: 38 to 48 provide the amino acid sequences of SSL1 to 11 respectively from *S. aureus* strain NCTC8325 and also indicate the location of the CDS of the genes in SEQ ID No:37. The start of each coding sequence indicated is the higher nucleotide position listed.

SEQ ID No: 49 provides the nucleotide sequence of a genomic fragment from S. aureus strain NCTC8325, and includes the sequences of the ssl12 to ssl14 genes.

SEQ ID Nos: 50 to 52 provide the amino acid sequences of SSL12 to 14 respectively from *S. aureus* strain NCTC8325 and also indicate the location of the CDS of the genes in SEQ ID No:49.

SEQ ID No: 53 provides the nucleotide sequence of a genomic fragment from S. aureus strain EMRSA 16(252), which includes the sequences of the ssl1 to ssl5, ssl7, ssl9 to ssl11 genes. The sequence indicated is the complement of the coding strand. The order of the genes in the indicated sequence going from 5' to 3' is ssl11 to ssl9, ssl7 and ssl5 to ssl1. The complementary DNA sequence is given by SEQ ID No:105.

SEQ ID Nos: 54 to 62 provide the amino acid sequences of SSL1 to SSL5, SSL7, SSL9 to SSL11 respectively from *S. aureus* strain EMRSA 16(252) and also indicate the location of the CDS of the genes in SEQ ID No:53. The start of each coding sequence indicated is the higher nucleotide position listed.

SEQ ID No: 63 provides the nucleotide sequence of a genomic fragment from S. aureus strain EMRSA 16(252) and includes the sequences of the ssl12 to 14 genes. The sequence indicated is the complement of the coding strand. The order of the genes in the indicated sequence going from 5' to 3' is ssl14 to ssl12. The complementary sequence is given by SEQ ID No:106.

SEQ ID No: 64 to 66 provide the amino acid sequences of SSL12 to 14 respectively from *S. aureus* strain EMRSA 16(252) and also indicate the location of the CDS of the genes in SEQ ID No:63. The start of each coding sequence indicated is the higher nucleotide position listed.

SEQ ID No: 67 provides the nucleotide sequence of a genomic fragment from S. aureus strain MSSA-476 which includes the ssl11 to ssl11 genes.

SEQ ID No: 68 to 78 provide amino acid sequences of SSL1 to SSL11 respectively from *S. aureus* strain MSSA-476 and also indicate the location of the

5

10

15

20

25

CDS of the genes in SEQ ID No:67.

15

20

30

SEQ ID No: 79 provides the nucleotide sequence of a genomic fragment from S. aureus strain MSSA-476 which includes the sequences of the ssl12 to ssl14 genes.

SEQ ID No: 80 to 82 provides the amino acid sequences of SSL12 to SSL 14
from S. aureus strain MSSA-476 and also indicate the location of the CDS of the genes in SEQ ID No:79.

SEQ ID Nos: 83 and 84 provide the nucleotide and amino acid sequences respectively of ssl11 from S. aureus strain COL.

SEQ ID Nos: 85 and 86 provide the nucleotide and amino acid sequences respectively of ssl12 from S. aureus strain COL.

SEQ ID Nos: 87 and 88 provide the nucleotide and amino acid sequences respectively of ssl13 from S. aureus strain COL.

SEQ ID Nos: 89 and 90 provide the nucleotide and amino acid sequences respectively of ssl14 from S. aureus strain COL.

SEQ ID Nos: 91 and 92 provide the nucleotide and amino acid sequences respectively of ssl9 from S. aureus strain COL.

SEQ ID Nos: 93 and 94 provide the nucleotide and amino acid sequences respectively of ssl10 from S. aureus strain COL.

SEQ ID Nos: 95 and 96 provide the nucleotide and amino acid sequences respectively of ssl11 from S. aureus strain COL.

SEQ ID Nos: 97 and 98 provide the nucleotide and amino acid sequences respectively of ssl12 from S. aureus strain COL.

SEQ ID Nos: 99 and 100 provide the nucleotide and amino acid sequences respectively of ssl13 from S. aureus strain COL.

SEQ ID Nos: 101 and 102 provide the nucleotide and amino acid sequences respectively of ssl14 from S. aureus strain COL.

SEQ ID No: 103 provides the complementary sequence to SEQ ID No: 12.

SEQ ID No: 104 provides the complementary sequence to SEQ ID No: 37.

SEQ ID No: 105 provides the complementary sequence to SEQ ID No: 53.

SEQ ID No: 106 provides the complementary sequence to SEQ ID No: 63.

SEQ ID No: 107 provides the nucleotide sequence of a genomic fragment from *S.aureus* strain MW2 which includes the *ssl1* to *ssl11* genes. The amino acid sequences of the encoded proteins are provided by SEQ ID Nos: 26 to 36 which indicate the position of the coding sequences in SEQ ID NO: 107.

Detailed Description of the invention

Throughout the present specification and the accompanying claims the words "comprise" and "include" and variations such as "comprises", "comprising", "includes" and "including" are to be interpreted inclusively. That is, these words are intended to convey the possible inclusion of other elements or integers not specifically recited, where the context allows. In some cases, where specific constituents are recited, the embodiment may, for example, consist essentially of such constituents.

The present invention is based on the finding that SSLs are able to target themselves to antigen presenting cells (APCs). The targeting to antigen presenting cells leads to the SSLs entering the antigen presenting pathway of the antigen presenting cells and being presented on the surface of the antigen presenting cells. This enhances the immunogenicity of the SSLs. The invention uses targeting polypeptides employing, or based on, the sequence of SSLs to target a chosen antigen to antigen presenting cells to enhance the immunogenicity of the chosen antigen. In effect, the targeting polypeptides are used to deliver a chosen antigen to an antigen presenting cell.

In some instances the targeting polypeptides are used to deliver a nucleic acid molecule encoding the antigen, rather than the antigen itself. The nucleic acid molecule will then give rise to expression of the antigen in the antigen presenting cell and the subsequent presentation of the antigen.

The invention employs targeting polypeptides comprising the polypeptide sequence of an SSL, a fragment of an SSL, or a variant sequence based on either, to target a chosen antigen or encoding nucleic acid to an APC. The invention uses complexes comprising the targeting polypeptide and antigen or an encoding nucleic acid to achieve delivery of the chosen antigen to an antigen presenting cell.

Targeting polypeptides

The targeting polypeptides employed comprise a staphylococcal superantigenlike protein (SSL), a fragment thereof or a variant of either, where the SSL, fragment or variant has the ability to target the targeting polypeptide to an antigen presenting cell (APC). The ability to target a polypeptide to an antigen presenting cell is referred to herein as targeting activity.

5

10

15

20

25

The targeting polypeptide may comprise the sequence of any naturally occurring SSL polypeptide. Such polypeptides may typically be isolated from Staphylococcus aureus.

The amino acid sequences of SSLs 1 to 14 from a variety of strains of

Staphylococcus aureus are provided herein and any of these sequences may be present in a targeting polypeptide of the invention. The Table below indicates the corresponding SEQ ID Nos for the SSLs.

Table - SSLs

		ř.					
•		Staphy	lococcus a	<i>ureus s</i> trai	n and SEQ	ID No for	SSL
SSL	N315	Mu50	MW2	NCTC 8325	EMRSA 16(252)	MSSA 476	COL
1	2	17	26	38	54	68	84
2	3	18	27	39	55	69	86
3	4	19	28	40	56	70	88
4	5		29	41	57	71	90
5	6	20	30	42	58	72	
6	\$ 10°		31	43		73	
7	7	21	32	44	59	74	
8	8	22	33	45		75	
9	9	23	34	46	60	76	92
10	10	24	35	47	61	77	94
,		Staphyl	ococcus a	ureus straii	and SEQ	ID No for !	SSL
SSL	N315	Mu50	MW2	NCTC 8325	EMRSA 16(252)	MSSA 476	COL
11	11	25	36	48	62	78	96
12	15			50	64	80	98
13	14			51	65	81	100
14	13			52	66	82	102

The SSL sequence employed may be one or more of SSL1 to SSL 14. In a preferred case where, for example, it is desired to use the sequence of an SSL9, the SSL9 will be have the sequence of one of the SSL9 indicated in Table 1 i.e. will be selected from SEQ ID Nos: 9, 23, 34, 46, 60, 76 and 92. In a preferred instance where is desired to employ the sequence of a SSL5, the SSL5 may be selected from the sequences of SEQ ID Nos: 6, 20, 30, 42, 58, and 72. In another preferred case, where it is desired to employ the sequence of a SSL 7, the SSL7 may be selected from the sequences of SEQ ID No: 7, 21, 32, 42, 59 and 74. Thus Table 1 indicates examples of preferred sequences for a particular SSL.

In a particularly preferred embodiment the SSL sequence employed may be SSL5, SSL7 and/or SSL9 and may preferably be one of the specific SSL 7 and SSL9 molecules whose sequence is provided herein. The SSL sequence may be a fragment of such a sequence. The SSL sequence employed may be a variant of the specific SSL 7 and SSL9 molecules whose sequence is provided herein or may be a variant of a fragment of such a sequence.

In some cases, the SSL employed may be an allelic form of an SSL as SSL genes from different *Staphylococcus aureus* strains vary in sequence. In some instances the SSL may be from one of the *Staphylococcus aureus* strains MW2, NCTC6571, FRI326 or NCTC8325, N315, Mu50, EMRSA 16(252), MSSA-476 or COL. In a particularly preferred embodiment the SSL may be from NCTC6571.

The targeting polypeptide may comprise a fragment of a naturally occurring SSL where the fragment retains the ability to target the targeting polypeptide to an antigen presenting cell. Such fragments may comprise subregions of any one or more of the sequences of any of SSL1 to SSL14 and in particular of the sequences provided herein of particular SSL1 to SSL14 molecules.

The targeting polypeptide may, for example, contain a sub-region of an SSL that is from 25 to 200, preferably from 35 to 175, even more preferably from 50 to 150 and even more preferably 75 to 125 amino acids in length. The targeting polypeptide may comprise a sub-region of an SSL that is 220 or less, preferably 180 or less, more preferably 160 or less, still more preferably 140 or less and even more preferably 120 or less amino acids in length. Such fragments may be derived from any SSL and in particular from the amino acid sequences indicated herein for SSL1 to SSL14. In some cases, the subregion may comprise at least 30, preferably at least 50,

5

10

15

20

25

more preferably at least 75 and even more preferably at least 100 amino acids from the SSL. In a preferred case the fragment may be from SSL5, SSL7 and/or SSL9. In a particularly preferred case the fragment may be from SSL9 and/or SSL7.

5

10

15

20

25

30

The targeting polypeptide may comprise a variant sequence of an SSL or a fragment thereof. Such variant sequences will be able to target themselves to antigen presenting cells. Any suitable variant polypeptide capable of directing the targeting polypeptide to an antigen presenting cell may be employed. In some cases, the variant will have at least 25%, preferably at least 30%, more preferably at least 35%, still more preferably at least 40% and even more preferably at least 45% amino acid sequence identity to an SSL and in particular to an amino acid sequence of any one or more of the specific sequences provided herein for SSL 1 to 14. Thus the variant may have the specified level of sequence identity with the equivalent SSL whose sequence is provided herein.

The level of amino acid sequence identity may be at least 50%, more preferably at least 55%, even more preferably at least 60% and still more preferably at least 65% amino acid sequence identity. The variant may, for example, have at least 75%, preferably at least 80%, more preferably at least 85%, still more preferably at least 90% sequence identity and even more preferably at least 95% sequence identity to an SSL and in particular to one or more of the specific SSL1 to 14 molecules whose sequence is provided herein.

In some cases the SSL employed may be an allelic variant of a known SSL gene including an allele of any of SSLs 1 to 14. Such variants may have a high degree of sequence identity to a known SSL allele and particular to one of those provided herein. Thus in some cases the variant may have at least 85%, preferably at least 95%, more preferably at least 97%, and even more preferably at least 99% sequence identity to any of the SSLs mentioned herein. The amino acid sequences of alleles of SSL5, SSL7 and SSL9 are indicated in Table 1 and the targeting polypeptide may comprise one or more of these sequences.

In instances where the targeting polypeptide comprises a variant sequence, the variant sequence may have one of the levels of sequence identity specified herein to more than one SSL. Thus, for example, the invention encompasses a variant of an SSL or a variant of a fragment of an SSL that has one of the specified levels of sequence identity to all of the SSLs whose sequence is provided herein or to a particular SSL. The sequence may have one of the specified levels sequence identity

to all of the alleles provided herein for a particular SSL whose sequence is provided herein.

In some cases a variant sequence may have one of the specified levels of sequence identity to at least two, preferably at least three, more preferably at least five and even more preferably at least six of the sequences provided herein for a particular SSL. In a preferred embodiment it will have one of the levels of sequence identity specified to all of the sequences provided herein for SSL5, SSL7 and/or SSL9. The variant may in particular have one of the specified levels of sequence identity to all of the sequences provided herein for SSL7 and/or SSL9. In a preferred case, the variant may have the specified level of sequence identity to the alleles from strain NCTC6571.1

The targeting polypeptide may comprise a variant sequence of a fragment of an SSL. Thus the fragment may be any of the lengths referred to herein. It may have any of the degrees of sequence identity referred to herein. In general a variant sequence may have the specified level of sequence identity over the whole of the variant, over at least 20, preferably at least 50, more preferably at least 75, and even more preferably over at least 100 amino acids. In the case of fragments, the sequence identity may be over any of the lengths specified herein and in particular over the entire fragment or targeting sequence. The variant or fragment has to be able to target the polypeptide to an antigen presentation cell. In cases where the targeting polypeptide comprises sequences, other than those responsible for targeting, the level of sequence identity may be over the region corresponding to the SSL, fragment thereof or variant of either. The specified level of sequence identity may be over the minimum region in the polypeptide necessary for targeting to the antigen presenting cell.

The variant may have amino acid substitutions in comparison to the normal sequence of the SSL. For example, it may have from 1, 2, 3 or more substitutions such as from 5 to 10, 10 to 20, 20 to 30 or more amino acid substitutions. The variant may have, in addition or alternatively, such numbers of amino acids deleted or inserted into it in comparison to the normal SSL. The amino acid changes may be conservative substitutions, for example according to the following Table. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other.

5

10

15

20

25

ALIPHATIC	Non-polar	GAP
		ILV
	Polar-uncharged	CSTM
		NQ
	Polar-charged	DE
,		KR
AROMATIC		HFWY

The targeting polypeptide may comprise additional sequences to those responsible for targeting to an antigen presenting cell. In some cases the targeting polypeptide will consist essentially of the targeting sequences. In cases where there are additional sequences present, they may serve a variety of roles. In a particularly preferred embodiment, the targeting polypeptide will also comprise the antigen it is desired to target to the immune cells. The antigen may be any of those discussed herein.

5

10

15

Polypeptide sequences may be present which separate the various regions of the targeting polypeptide. For example, regions may be present to separate the region responsible for targeting from an antigen. Polypeptide sequences may be present which allow for purification of the polypeptide such as, for example, a histidine tag or an antibody recognition site. The targeting polypeptide may include an enzymatic cleavage site and in particular a protease recognition site may be present in the targeting polypeptide. It may be desirable to be able to remove sequences from the polypeptide such as those used to purify the polypeptide and cleavage sites may be employed.

The targeting polypeptide may lack specific sequences, for example because they have been cleaved after they are no longer of use. Thus in a preferred instance the targeting polypeptide may, for example, lack a Histidine tag and hence lack four, five, six, seven, eight, ten or more consecutive histidine residues typically at the terminus of the protein. The targeting polypeptide may lack an antibody recognition sequence used in purification, a reporter sequence and/or sequences such as thioredoxin or Pho A sequences. In some embodiments of the invention such sequences will not be present at any stage and will not be encoded by the nucleic acids of the invention.

The targeting polypeptide may comprise viral sequences. A targeting polypeptide of the invention may be used to target a viral particle to an antigen presenting cell. In such cases, the targeting polypeptide will typically be provided wholly or partially on the surface of the virus to allow the targeting sequence to target the virus to an antigen presenting cell. The targeting polypeptide may increase the affinity of the viral particle for the antigen presenting cell and may mean that the viral particle is more selective in binding to antigen presenting cells as opposed to other cell types.

The viral sequences may be, or comprise sequences from, surface proteins or polypeptide sequences which allow the targeting polypeptide to be displayed on the surface of the virus. The targeting polypeptide may comprise trans-membrane sequences to allow the targeting polypeptide to be present in a membrane and in particular in a viral membrane.

The targeting sequence may comprise linker sequences to allow different domains in the targeting polypeptide to function. In one case the targeting polypeptide may comprise a proline rich linker and in particular all or part of the proline rich sequence from the 4070A protein from a leukaemia virus surface protein. In cases where the targeting polypeptide is employed to target a viral particle to an antigen presenting cell the targeting sequences may be present in the targeting polypeptide together with the sequences necessary for fusion of the membranes of the virus and antigen presenting cell to allow entry of the virus into the cell.

The targeting polypeptide may comprise a protease cleavage site which will allow cleavage of the part of the targeting polypeptide and in particular a protease site which may be cleaved by a protease present on the surface of the antigen presenting cell.

5

10

15

20

25

In a preferred embodiment, the targeting polypeptide may comprise the sequence of SSL 5, 7, or 9 and in a particularly preferred case the sequence of SSL 7 or 9 may be employed. In some cases the sequence of SSL 7 may be employed, particularly where it is desired to target B cells such as CD19⁺ B cells. In other cases, such as for example where it is not desired to target B cells, other SSLs may be employed and in particular SSL9 may be employed. In each case fragments of such sequence or variants of either may be employed including any of those referred to herein.

In a preferred embodiment of the invention the targeting polypeptide comprises:

5

15

- (a) a SSL polypeptide having the amino acid sequence of any of SEQ ID Nos: 2 to 11, 13 to 15, 17 to 36, 38 to 48, 50 to 52, 54 to 66, 68 to 78, 80 to 82, 84, 86,88, 90, 92, 94, 96, 98, 100 and 102;
- (b) a fragment of any of the sequences of (a), the fragment having the ability to target the complex to an antigen presenting cell; and/or
 - (c) a variant polypeptide having at least 30% amino acid sequence identity to any of the polypeptides of (a) or (b) and the ability to target the complex to an antigen presenting cell.
 In another the targeting polypeptide comprises:
- 20 (a) the sequence of SEQ ID No: 7, 21, 32, 44, 59 and/or 74;
 - (b) a fragment of any of the sequences of (a), the fragment having the ability to target the complex to an antigen presenting cell; and/or
 - (c) a variant polypeptide having at least 70 % amino acid sequence identity to any of the polypeptides of (a) or (b) and the ability to target the complex to an antigen presenting cell.
 - In another the targeting polypeptide comprises:
 - (a) the sequence of SEQ ID No: 9, 23, 34, 46, 60, 76 and/or 92;
 - (b) a fragment of any of the sequences of (a), the fragment having the ability to target the complex to an antigen presenting cell; and/or
- 30 (c) a variant polypeptide having at least 70 % amino acid sequence identity to any of the polypeptides of (a) or (b) and the ability to target the complex to an antigen presenting cell.

In some cases a targeting polypeptide may comprise a plurality of sequences which individually would be able to lead to targeting to an antigen presenting cell. A minimal sequence necessary for targeting to an antigen presenting cell may be referred to as a targeting sequence. Such targeting sequences may be any of those discussed herein which have the ability to target a polypeptide to an antigen presenting cell. Thus a targeting polypeptide may comprise, for example, 1, 2, 3, 5 or more such targeting sequences. The targeting polypeptide may comprise any pair of those targeting sequences referred to herein. In some cases the targeting polypeptide may comprise different targeting sequences with different properties.

In some cases the targeting polypeptide will be employed to target a viral particle to an antigen presenting cell. Thus the targeting polypeptide collectively present on the virus will be able to increase the affinity and/or specificity of the viral particle for an antigen presenting cell in comparison to an equivalent virus lacking the targeting polypeptide.

15

20

25

30

10

5

Antigens

The targeting polypeptides of the invention are used to deliver a chosen antigen to an antigen presenting cell. The antigen may be any suitable antigen and typically will be a peptide or a polypeptide antigen. The antigen may, for example, be an antigen selected from a pathogenic antigen, an auto-antigen, an allergen and a cancer antigen

In some cases the invention may be used to deliver a nucleic acid molecule encoding an antigen to an antigen presenting cell. The nucleic acid may then be expressed in the antigen presenting cell to give rise to the antigen and presentation of the antigen. Thus the invention also encompasses the targeting of a nucleic acid molecule encoding any of the antigens mentioned herein to an antigen presenting cell.

In a preferred instance the antigen, may be an antigen from an infectious organism. The antigen may, for example, be derived from a virus, bacterium, parasite, protozoan, fungus, or prion. The antigen may be a surface antigen expressed on the surface of the pathogen or may be an intracellular antigen. The antigen may be from an intracellular pathogen or alternatively an extracellular one.

The antigen may, for example, be from a bacterium. It may be from a gram positive or a gram negative bacterium. The antigen may, for example, be: an antigen

from Mycobacterium (for example from Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansaii, or Mycobacterium gordonae); Pseudomonas; Yersinia; Salmonella (for example from Salmonella typhimurium); Helicobacter (for example from Helicobacter pylori); Borelia (for example from Borelia burgdorferi); Bordetella (for example from Bordtella pertussis or Bordetella parapertussis); Legionella (for example from Legionella pneumophilia); Staphylococcus (for example from Staphylococcus aureus); Neisseria (for example from Neisseria gonorrhoeae or Neisseria meningitides); Listeria (for example from Listeria monocytogenes); or Streptococcus (for example from Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus viridans, Streptococcus faecalis, Streptococcus bovis, or Streptococcus pneumoniae).

In some cases the antigen may be from: a Campylobacter; Enterococcus; Haemophilus (for example from Haemophilus influenzae); Bacillus (for example from Bacillus antracis); Corynebacterium (for example from Corynebacterium diphtheriae); Erysipelothrix (for example from Erysipelothrix rhusiopathiae); Clostridium (for example from Clostridium perfringers, or Clostridium tetani); Vibrio (for example Vibrio cholerae); Enterobacter (for example from Enterobacter aerogenes); Klebsiella (for example from Klebsiella pneumoniae); Pasturella (for example from Pasturella multocida); Bacteroides; Fusobacterium (for example from Fusobacterium nucleatum); Streptobacillus (for example from Streptobacillus moniliformis); Shigella; Escherichia (for example from Escherichia coli); Rickettsia; Treponema (for example from Treponema palladium); Lactococcus; Lactobacillus; Brucella; Aeromona;, Franciesella; Citrobactor; Rhodococcus; Leishmania; or Strongylus (for example from Strongylus vulgaris).

15

20

25

30

Examples of preferred bacterial antigens include: the Shigella sonnei form 1 antigen; the F1 antigen of Yersinia pestis; antigens from Neisseria meningititidis and in particular those encoded by the GNA33, GNA2001, GNA1220 and GNA1946 genes; the O-antigen of V. cholerae Inaba strain 569B; protective antigens of enterotoxigenic E.coli, such as fimbrial antigens including colonisation factor antigens, in particular CFA/I, CFA/II, and CFA/IV and the nontoxic B-subunit of the heat-labile toxin; pertactin of Bordetella pertussis, adenylate cyclase-hemolysin of B. pertussis; fragment C of tetanus toxin of Clostridium tetani and the LT (heat labile enterotoxin) and ST (heat stable toxin) antigens.

In some instances the antigen may be a viral antigen. The antigen may, for example, be a viral coat protein, glycoprotein or other proteins expressed on the surface of a virus. The antigen may be from a Picornaviridae (for example from a polio virus, a hepatitis virus, an enterovirus, a coxsackie virus, a rhinovirus, or an echovirus): Calciviridae : Togaviridae (for example from a equine encephalitis virus or a rubella virus); Flaviridae (for example from a dengue virus, an encephalitis virus, or a yellow fever virus); Coronaviridae (for example from a coronavirus); Rhabdoviridae (for example from a vesicular stomatitis virus, or a rabies virus); Filoviridae (for example from an ebola virus); Paramyxoviridae (for example from a parainfluenza virus, mumps virus, measles virus, or a respiratory syncytial virus); Orthomyxoviridae (for example from an influenza virus such as influenza types A, B and C); Bungaviridae (for example from a Hanta virus, bunga virus, phlebovirus or a Nairo virus); Arena viridae (for example from a hemorrhagic fever virus); Reoviridae (for example a rotavirus); Birnaviridae; Hepadnaviridae (for example a Hepatitis B virus); Parvoviridae; Papovaviridae (for example from a papilloma virus, or polyoma virus); Adenoviridae; Herpesviridae (for example from herpes simplex virus (HSV) 1 or 2, varicella zoster virus, cytomegalovirus or a herpes viruses); Poxviridae (for example from a variola virus, vaccinia virus, or a pox virus); or an Iridoviridae (for example from African swine fever virus).

In a preferred case the antigen may be from a Retroviradae (e. g., HTLV-I; HTLV-11; or HIV-1 (also known as HTLV-111, LAV, ARV, hTLR, etc.)). In a particularly preferred case the antigen may be one derived from HIV and in particular the isolates HIVIIIb, HIVSF2, HTVLAV, HIVLAI, HIVMN; HIV-1CM235, HIV-1; or HIV-2. In a particularly preferred embodiment, the antigen may be a human immunodeficiency virus (HIV) antigen. Examples of preferred HIV antigens include, for example, gpl20, gap 160 gp41, gag antigens such as p24gag and p55gag, as well as proteins derived from the pol, env, tat, vif, rev, nef, vpr, vpu or LTR regions of HIV. In a particularly preferred case the antigen may be HIV gp120 or a portion of HIV gp120. The antigen may be from an immunodeficiency virus, and may, for example, be from SIV or a feline immunodeficiency virus.

In a preferred case the viral antigen may be one from a hepatitis virus such as an antigen from hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), the delta hepatitis virus (HDV), hepatitis E virus (HEV) or hepatitis G virus

5

10

15

20

25

(HGV). In a particularly preferred embodiment the antigen may be from hepatitis B virus (HBV) and may preferably be a surface or core antigen from HBV.

In another preferred case the antigen may be from a herpesvirus family. Particular antigens include those from herpes simplex virus (HSV) types 1 and 2, such as HSV-1 and HSV-2 glycoproteins gB, gD and gH; antigens from varicella zoster virus (VZV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) including CMV gB and gH; and antigens from other human herpesviruses such as HHV6 and HHV7.

5

10

15

20

25

30

The antigen may be a fungal antigen, such as one from Candida or Aspergilus. In particular, it may be from Candida albicans or Aspergillus fumigatus. The antigen may be from Sporothrix (e.g. from Sporothrix schenckii), Histoplasma (e.g. from Histoplasma capsulatum) Cryptococcus (e.g. from Cryptococcus neoformans) or Pneumocystis (e.g. from Pneumocystis carinii). The antigen may be from a parasitic pathogen and may, in particular, be from Taenia, Flukes, Roundworms, Amebiasis, Giardiasis, Cryptosporidium, Schistosoma, Pneumocystis carinii, Trichomoniasis and Trichinosis.

In some cases the antigen may be an antigen from a prion. In particular, the antigen may be one from the causative agent of kuru, Creutzfeldt-Jakob disease (CJD), scrapie, transmissible mink encephalopathy and chronic wasting diseases, or from a prion associated with a spongiform encephalopathy, particularly BSE. The antigen may be from the prion responsible for familial fatal insomnia.

In some cases the antigen may be from a parasitic pathogens including, for example, one from the genera *Plasmodium, Chtamydia, Trypanosome, Giardia, Boophilus, Babesia, Entamoeba, Eimeria, Leishmania, Schistosome, Brugia, Fascida, Dirofilaria, Wuchereria* and *Onchocerea*. Examples of preferred antigens from parasitic pathogens to be expressed as the heterologous antigen include the circumsporozoite antigens of *Plasmodium* species, such as the circumsporozoite antigen of *P. bergerii* or the circumsporozoite antigen of *P. falciparum*; the merozoite surface antigen of *Plasmodium* species; the galactose specific lectin of *Entamoeba histolytica*; gp63 of *Leishmania* species; paramyosin of *Brugia malayi*; the triosephosphate isomerase of *Schistosoma mansoni*; the secreted globin-like protein of *Trichostrongylus colubriformis*; the glutathione-S-transferases of *Frasciola hepatica*, *Schistosoma bovis* and *S. japonicum*; and KLH of *Schistosoma bovis* and *S. japonicum*.

In some cases the antigen may be a cancer antigen and in particular a tumour antigen. Examples of particular cancers that the antigen may be derived include those from cancers of the lung, prostate, breast, colon, ovary, melanoma, a lymphoma and leukaemia. Examples of particular tumour antigens include MART-1, Melan-A, tyrosinase, p97, beta-HCG,GaINAc, MAGE-1, MAGE-2, MAGE-4, MAGE-12, MUC1, MUC2, MUC3, MUC4, MUC18, CEA, DDC, P1A, EpCam, melanoma antigen gp75, Hker 8, high molecular weight melanoma antigen,K19, Tyrl, Tyr2, members of the pMel 17 gene family, c-Met, PSA (prostate antigen), PSM (prostate mucin antigen), PSMA (prostate specific membrane antigen), prostate secretary protein, alpha-fetoprotein, CA125, CA19.9, TAG-72, BRCA-1 and BRCA-2 antigens.

The antigen may be an auto-antigen. In particular, the antigen may an antigen associated with an autoimmune disease. Auto-antigens include those associated with autoimmune diseases such as multiple sclerosis, insulin-dependent type 1 diabetes mellitus, systemic lupus erythematosus (SLE) and rheumatoid arthritis. The antigen may be one associated with, Sjorgrens syndrome, myotis, scleroderma or Raynaud's syndrome. Further examples of auto-immune disorders that the antigen may be associated with include ulcerative colitis, Crohns' disease, inflammatory bowel disorder, autoimmune liver disease, or autoimmune thyroiditis. Examples of specific autoantigens include insulin, glutamate decarboxylase 65 (GAD65), heat shock protein 60 (HSP60), myelin basic protein (MBP), myelin oligodendrocyte protein (MOG), proteolipid protein (PLP), and collagen type II. In cases where the antigen is an autoantigen the antigen will typically be administered in order to promote tolerance to the auto-antigen. Although in some cases models of the diseases may be produced using the invention to be produce an immune response.

In some cases the antigen may be an allergen. The allergenic antigen may be any suitable antigen from an antigen. For example, the allergen may be from Ambrosia artemisiifolia, Ambrosia trifida, Artemisia vulgaris, Helianthus annuus, Mercurialis annua, Chenopodium album, Salsola kali, Parietaria judaica, Parietaria officinalis, Cynodon dactylon, Dactylis glomerata, Festuca pratensis, Holcus lanatus, Lolium perenne, Phalaris aquatica, Phleum pratense, Poa pratensis or Sorghum halepense. The allergen antigen may be from a tree, such as, for example, from Phoenix dactylifera, Betula verrucosa, Carpinus betulus, Castanea sativa, Corylus avellana, Quercus alba, Fraxinus excelsior, Ligustrum vulgare, Olea europea, Syringa vulgaris, Plantago lanceolata, Cryptomeria japonica, Cupressus arizonica.

5

10

15

. 20

25

Juniperus oxycedrus, Juniperus virginiana, or Juniperus sabinoides. In some cases the antigen may be from an antigen from a mite such as, for example, from Acarus siro, Blomia tropicalis, Dermatophagoides farinae, Dermatophagoides microceras, Dermatophagoides pteronyssinus, Euroglyphus maynei, Glycyphagus domesticus, Lepidoglyphus destructor or Tyrophagus putrescentiae.

The allergen antigen may be from an animal such as, for example, from a domestic or agricultural animal. Examples of allergens from animals include those from cattle, horses, dogs, cats and rodents (e.g from rat, mouse, hamster, or guinea pig). In some cases the antigen may be from a food allergen and in others it may be from insect.

The antigen may be one involved in transplant rejection. The invention may be use to induce or promote tolerance to such an antigen in order to ameliorate or prevent transplant rejection.

Homologues of antigens may also be employed. Protein antigens employed may have homology and/or sequence identity with naturally occurring antigens, such as any of the antigens mentioned herein. They may have any of the levels of sequence identity or sequence changes specified herein.

The antigen may be a model antigen. The antigen may be one commonly used in experiments to assess immune responses. For example the antigen may be a lysozyme and in particular chicken egg lysozyme. The antigen may be ovalbumin and in particular chicken ovalbumin. Such model antigens may have the advantage that antigens, T cells and other reagents may be readily available for assessing antigen presentation by the targeted antigen presenting cell.

25 Complexes

5

10

15

20

30

35

The targeting polypeptides of the invention may be used to deliver a chosen antigen to antigen presenting cells (APCs). The targeting polypeptide and antigen are combined in the form of a complex. Thus a complex comprising a targeting polypeptide and an antigen is provided. In particular, the complex may comprise an antigen selected from a pathogenic antigen, auto-antigen, an allergen and a cancer antigen

In some cases a nucleic acid molecule encoding the antigen may be delivered to antigen presenting cells using the targeting polypeptides of the invention. Thus the invention also provides a complex comprising a targeting polypeptide and a nucleic

acid molecule encoding an antigen. The nucleic acid molecule will be delivered to the antigen presenting cell and result in expression of the antigen in the antigen presenting cell. Thus reference herein to an antigen includes a nucleic acid molecule encoding such an antigen.

A complex of the invention may comprise:

- a targeting polypeptide; and
- an antigen and/or a nucleic acid molecule encoding an antigen.

The targeting polypeptide and antigen may be joined together by any suitable means that ensures that the antigen is also targeted to the antigen presenting cell. Preferably, the targeting polypeptide and antigen may be present in the same polypeptide. Thus in some cases the antigen and targeting polypeptide may be directly fused to each other in a single polypeptide. In others the two may be present in the same polypeptide, but separated by an intervening sequence. For example, they may be separated by from 1 to 50, preferably from 5 to 25, more preferably from 10 to 20 amino acids.

In cases where the targeting polypeptide and fusion polypeptide are present in the same polypeptide, the targeting polypeptide may be separated by a sequence designed to be cleaved by a proteases in the antigen presenting cell in order to allow the two to be separated. In some cases where the targeting polypeptide and antigen are present in the same polypeptide, there may be a plurality of antigens in the polypeptide. For example, the same antigenic sequence may be repeated several times in the polypeptide such as from 1 to 50, preferably from 2 to 25, and more preferably from 5 to 10 times. In some cases the polypeptide may therefore comprise repeats of the same epitope or a group of epitopes from a particular antigen. In other cases different antigens may be present in the polypeptide. For example, two, three, four, five or more of any of the antigens mentioned herein may be present in the same polypeptide. The antigens may be from the same source or different source, and may, for example, be from different organisms.

The targeting polypeptide and antigen may not be part of the same polypeptide. For example, they may be joined together by other covalent means. The targeting polypeptide and antigen may be joined together by a covalent bond, such as a covalent bond between side chains, for example by disulphide bridges. The two may be joined by a linker or other bridging molecule. In some cases the targeting polypeptide and antigen may be provided or coated on a moiety and the complex

5

10

15

20

25

including the targeting polypeptide, antigen and moiety may be targeted to antigen presenting cells by virtue of the presence of the targeting polypeptide.

5

10

15

20

25

30

The complex may comprise a plurality of antigens and/or targeting polypeptides. For example, a plurality of antigens may be present and may be linked to a single targeting polypeptide or alternatively multiple antigens may be present in a polypeptide with a single targeting sequence. The complex, may for example comprise one, two, three, five, ten or more antigens. The complex may comprise antigens from different sources such as antigens from different organisms. The complex may comprise antigens from different strains of the same organism, such as from different strains of the same pathogen. In some cases the complex may comprise different allelic or mutant forms of the same antigen. For example, the antigens may be different forms of an antigen that display diversity that leads to strains of that pathogen with differing pathogenicity. The complex may comprise a plurality of copies of a single epitope where the epitope sequence is either present in the same polypeptide as the targeting polypeptide or is joined to it by one of the other means discussed herein.

The complex may comprise a plurality of targeting polypeptides. For example, the complex may comprise 1, 2, 3 or more targeting polypeptides, such as for example from 5 to 50, more preferably from 10 to 25 or even more preferably from 15 to 20 targeting polypeptides. The ratio of targeting polypeptides to antigen and/or epitope may be for example 1:1, 1:2, 1:5, 1:10 or 1:25, in some cases the ratio may be from 1:1 to 1:75, preferably from 1:2 to 1: 50 and more preferably from 1:5 to 1: 25. The ratio of targeting sequences to antigen and/or epitope may have such ratios.

In a particularly preferred embodiment of the invention the targeting polypeptides in the complex may be present in a dimeric form. This may be the case, for example, where the targeting sequence is, or is a fragment thereof or a variant of either of SSL7 and/or 7 and preferably of SSL 7. In a preferred case, where a fragment or variant is employed as well as having targeting activity it may be able to form a dimer.

The complex may be chemically modified, e.g. one or more, or indeed all, of the polypeptide types in the complex may be post-translationally modified. For example, they may be glycosylated or comprise modified amino acid residues. The polypeptides in the complexes and targeting polypeptides of the invention may

comprise amino acid analogs. In some cases, one or more peptides in the complex may have been generated synthetically.

In some cases libraries of different complexes may be generated. The libraries may comprise complexes with different antigens, for example, from different pathogens. In some cases, the library may comprise complexes with antigens from the same source, such as from the same organism including any of those mentioned herein. The libraries may be encoded by libraries of nucleic acids and/or vectors of the invention. Libraries may be generated and then screened to identify those complexes showing advantageous properties.

In some cases the complex may comprise a nucleic acid encoding the antigen rather than the antigen itself. In particular, the complex may comprise a nucleic acid molecule capable of expressing the antigen. Any of the sequences discussed herein for expressing polypeptides may be employed to express the antigen.

The invention therefore provides a viral particle which comprises a targeting polypeptide of the invention. In a particularly preferred instance the complex may comprise a viral particle which comprises:

- (i) a targeting polypeptide;
- (ii) a nucleic acid molecule encoding an antigen.

The targeting polypeptide will preferably be wholly or partially exposed on the surface of the viral particle to allow the virus to be targeted to an antigen presenting cell.

The complex may comprise the nucleic acid in any suitable manner to allow expression of the antigen in the antigen presenting cell. The complex may comprise a liposome with the targeting polypeptide present wholly or partially on the surface of the liposome to allow targeting to antigen presenting cells.

Nucleic acids

The present invention also provides a nucleic acid molecule comprising a polynucleotide sequence encoding a targeting polypeptide and an antigen and in particular an antigen selected from a pathogenic antigen, auto-antigen, an allergen and a cancer antigen.

The targeting polypeptide and antigen may be encoded by separate open reading frames (ORFs) or alternatively the nucleic acid may comprise an open reading frame encoding both the polypeptide and the antigen. In a preferred case, the

5

10

15

20

25

nucleotide sequence encoding the targeting polypeptide and the antigen are present in a single open reading frame.

In a particularly preferred embodiment the nucleic acid will be able to express the targeting polypeptide and antigen in the form of a polypeptide comprising both. As discussed elsewhere herein the targeting polypeptide and antigen may be directly fused or alternatively may be separated by intervening sequences which are also encoded by the nucleic acid.

5

10

15

20

25

30

The nucleic acid sequence may therefore encode any of the targeting polypeptides referred to herein. Thus the nucleic acid may comprise a sequence that encodes any of the SSLs, fragments thereof, or variants of either discussed herein. The nucleic acids may also encode any of the additional polypeptide sequences referred to herein. In a preferred case the nucleic acid molecule may comprise one or more of the polynucleotides sequences of SEQ ID Nos 1, 12, 16, 37, 49, 53, 63, 67, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101 and/or 107. In particular, the nucleic acid may comprise one or more of the regions of SEQ ID Nos 1, 12, 16, 37, 49, 53, 63, 67, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101 and/or 107 indicated herein to represent the CDS of a particular SSL. Thus any of the nucleic acid sequences provided herein which encode one or more of SSL1 to SSL14 may be used. The sequences used from the sequences provided herein may be restricted to the coding regions indicated or may also employ other regions from the gene and in particular the whole gene.

The nucleic acid may comprise the polynucleotide sequence of one or more of the coding sequences provided herein for SSL 1 to SSL14, a fragment of one or more of those sequence or a variant sequence of such a sequence or fragment, where the sequence encodes a targeting sequence able to target the encoded polypeptide to an antigen presenting cell.

The sequence of an SSL may be modified by nucleotide substitutions, insertions or deletions. In particular, the sequences provided herein which encode a SSL may be altered in such a way. The nucleic acid sequence may, for example, comprise from 1, 2, 5, 10 or 20 such substitutions, insertions and/or deletions as long as the encoded polypeptide has targeting activity. The variant sequence may comprise from 1 to 50, preferably from 5 to 25, more preferably from 10 to 15 amino acid insertions, deletions or substitutions as long as the encoded polypeptide displays targeting activity. Degenerate substitutions may be made and/or substitutions may be

made which would result in a conservative amino acid substitution when the modified sequence is translated, for example as shown in the Table above.

The nucleic acid may comprise a sequence that has at least 25%, preferably at least 30%, more preferably at least 35% and even more preferably at least 40% sequence identity to any one or more of SEQ ID Nos 1, 12, 16, 37, 49, 53, 63, 67, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101 and/or 107. In particular, they may have such a level of sequence identity to the region encoding the SSL and/or over the whole gene.

In some cases the nucleic acid may have at least 50%, preferably at least 60%, more preferably at least 70%, even more preferably at least 80% sequence identity to such sequences. In other cases the level of sequence identity may be higher, because, for example, the sequence is a natural allelic variant or an engineered variant. Thus in some instances the sequence may have at least 85%, preferably at least 90%, more preferably at least 95%, even more preferably at least 97% and still more preferably at least 99% sequence identity to any of the sequences provided herein which encode SSL1 to SSL 14. In one case, the nucleic acid molecule will have one of the specified levels of nucleotide sequence identity to all of, three of, or two of the sequences encoding SSL5, SSL7 and/or SSL9 provided herein.

The levels of sequence identity specified may be over the entire sequence encoding the targeting polypeptide or targeting sequence. They may, for example, be over from 25 to 900 nucleotides, preferably over 50 to 700 nucleotides, more preferably over 75 to 350 nucleotides and even more preferably over 100 to 250 nucleotides. Thus in some cases the level of sequence identity specified may be over a region of at least 50, preferably at least 75, for instance at least 100, at least 150, more preferably at least 200 contiguous nucleotides or most preferably over the full length of the nucleic acid encoding the targeting sequence or polypeptide.

The nucleic acid may comprise the nucleotide sequence of one or more of the sequence SSL5, SSL7 and/or SSL9 genes whose sequence is provided herein, a fragment of any of the sequences or a variant of the preceding sequences where the encoded polypeptide displays targeting activity. In a preferred instance, the nucleic acid will comprise the nucleotide sequence of one or more of the sequences provided herein which encode SSL5, SSL7 and/or SSL9. In a preferred case the nucleic acid may comprise the nucleotide sequence of SEQ ID Nos: SSL7 and/or SSL9, a fragment of either or a variant of any such sequence, where the fragment or variant retains targeting ability. In a particularly preferred case the nucleic acid will comprise

5

10

15

20

25

the polynucleotide sequence of a sequence provided herein encoding SSL7 and/or SSL9.

Sequence identity and comparisons may be performed in a number of ways. For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux *et al* (1984) *Nucleic Acids Research* 12, p387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul (1993) J. Mol. Evol. <u>36</u>:290-300; Altschul *et al* (1990) J. Mol. Biol. <u>215</u>:403-10.

5

10

15

20

25

30

Software for performing BLAST analyses is publicly available through the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold (Altschul et al, 1990). These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

The BLAST algorithm performs a statistical analysis of the similarity between two sequences; see e.g., Karlin and Altschul (1993) *Proc. Natl. Acad. Sci.* USA <u>90</u>: 5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is

less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

Any combination of the above mentioned degrees of sequence identity and minimum sizes may be used to define polynucleotides of the invention, with the more stringent combinations (i.e. higher sequence identity over longer lengths) being preferred. Thus, for example, a polynucleotide which has at least 90% sequence identity over 25, preferably over 30 nucleotides forms one aspect of the invention, as does a polynucleotide which has at least 95% sequence identity over 40 nucleotides.

The nucleic acids of the invention may comprise a number of another sequences in addition to that encoding the targeting polypeptide and antigen. For example, the nucleic acid may comprise sequences involved in the expression of the polypeptide it encodes such as those discussed below on the section in vectors. The nucleic acids may comprise primer sites, restriction sites, multiple cloning sites and other sequences to facilitate manipulation. The nucleic acid may comprise enhancer sequences to facilitate gene expression. The nucleic acid may comprise sequences allowing for the secretion of the encoded polypeptide or its targeting to a particular cellular compartment. In some cases the nucleic acids may also comprise a reporter gene or sequences, in other cases they may not.

The nucleic acids of the invention may be used in the production of targeting polypeptides, antigens and/or complexes of the invention. Such production may take place *in vitro*, *in vivo* or *ex vivo*. The polynucleotides may be used in recombinant protein synthesis or indeed as therapeutic agents in their own right. Polynucleotides encoding a targeting polypeptide and not an antigen or alternatively those encoding an antigen, but not a targeting polypeptide may be used to produce targeting polypeptide and/or antigen which can then be utilised to form complexes of the invention.

Vectors

5

10

15

20

25

30

The present invention provides vectors comprising a nucleic acid of the invention. Thus in one instance the invention provides a vector comprising a nucleic acid sequence that encode a targeting polypeptide of the invention and an antigen. The antigen may be one selected from any of those mentioned herein and in particular may be selected from a pathogenic antigen, auto-antigen, an allergen and a cancer antigen. The vector may comprise any of the nucleic acid sequences mentioned

herein. In a preferred instance, the vector may encode the targeting polypeptide and antigen via the same open reading frame (ORF).

The invention also provides vectors which comprise a nucleic acid which encodes the chosen antigen where the nuleic acid will be targeted to an antigen presenting cell using a targeting polypeptide of the invention. Such vectors will preferably be viral vectors.

5

10

15

20

25

30

The vector may, for example, be a cloning, expression and/or viral vector. The vector may, for instance, be a plasmid vector. The vector may be a viral vector. The vector may be a shuttle vector. The vector may comprise a selectable marker, for instance an antibiotic resistance selectable marker.

In particular, expression vectors are provided which are capable of expressing a targeting polypeptide of the invention and an antigen. In a preferred instance, the vector will express a targeting polypeptide of the invention as a fusion protein with the chosen antigen. Thus the vector may be capable of expressing a complex of the invention. Alternatively the targeting polypeptide and antigen may be produced separately and then linked to form a complex or the targeting polypeptide and antigen may be expressed as a single polypeptide and then further processing is carried out to produce a particular complex. For example, individual polypeptides may be linked together or sequences may be cleaved from the expressed polypeptides. In some case sequences used in purification may be removed by cleavage.

Expression vectors are routinely constructed in the art of molecular biology and may for example involve the use of plasmid DNA and appropriate initiators, promoters, enhancers and other elements, such as for example polyadenylation signals which may be necessary, and which are positioned in the correct orientation, in order to allow for protein expression. Other suitable vectors would be apparent to persons skilled in the art. By way of further example in this regard we refer to Sambrook *et al.*, 1989. The expression vector may be a prokaryotic or a eukaryotic expression vector. In some cases the expression vector may be used to produce the encoded protein *in vitro*. In other cases, the expression vector will be intended to generate *in vivo* expression of the encoded protein and may be used, for example, in a method of therapy.

Once coding sequences for desired proteins have been prepared or isolated, such sequences can be cloned into any suitable vector or replicon. Numerous cloning vectors are known to those of skill in the art, and the selection of an appropriate

cloning vector is a matter of choice. Ligations to other sequences may be performed using standard procedures, known in the art. The vector may be, for example, plasmid, virus or phage vectors provided with a origin of replication, optionally a promoter for the expression of the polynucleotide and optionally a regulator of the promoter. The vectors may contain one or more selectable marker genes.

Expression of the targeting polypeptide and/or antigen will typically be driven by a promoter. The promoter will usually be chosen on the basis of the cell the expression vector is to be used in. Thus for prokaryotic expression a prokaryotic promoter will typically be used, whilst for eukaryotic expression a eukaryotic or viral promoter will typically be employed. The promoter employed may be a viral or non-viral promoter. The promoter may be a mammalian promoter, such as a cell or tissue specific promoter or alternatively a promoter expressed in a wide range of cells. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences.

Mammalian promoters, such as β-actin promoters, may be used. Tissue-specific promoters are especially preferred. Viral promoters may also be used, for example the Moloney murine leukaemia virus long terminal repeat (MMLV LTR), the rous sarcoma virus (RSV) LTR promoter, the SV40 promoter, the human cytomegalovirus (CMV) IE promoter, adenovirus, HSV promoters (such as the HSV IE promoters), or HPV promoters, particularly the HPV upstream regulatory region (URR). Viral promoters are readily available in the art.

In one preferred case the promoter employed may be one that is capable of being expressed in an antigen presenting cell. Thus a vector comprising a promoter capable of giving rise to expression of the antigen in an antigen presenting cell is provided. A promoter which is specific for antigen presenting cells may be employed.

Additional sequences may also be present in the open reading frame encoding the targeting polypeptide as well as optionally those encoding the antigen. In some cases, sequences directing secretion or release from the cell of the targeting polypeptide may be included. Peptide sequences allowing purification of the targeting polypeptide may be included. Preferably sequences allowing cleavage may be included and, for example, may be used to release the targeting polypeptide from the sequence used to purify the expressed polypeptide.

5

10

15

20

25

Cells

5

10

15

20

25

30

The invention provides cells comprising a polynucleotide or vector of the invention. Thus the invention provides for a cell comprising a polynucleotide and/or vector encoding a targeting polypeptide and an antigen. The targeting polypeptide and/or antigen may be any of those mentioned herein. Preferably, the cell will express the targeting polypeptide and antigen and in particular will express polypeptides comprising both. The cell may therefore be able to produce complexes of the invention and in one case may secrete them.

The invention also provides for cells that can produce viruses of the invention which have a targeting polypeptide provided on their surface either wholly or partially to allow for targeting of the viral particle to an antigen presenting cell. The invention provides a helper cell line that is capable of expressing the targeting polypeptide in such a way that it is incorporated in a viral particle. Such cells may also comprise the nucleic acid to be incorporated into the viral particles. The invention also provides cells infected with a virus of the invention.

Cells of the invention include transient, or preferably stable higher eukaryotic cell lines, such as mammalian cells or insect cells, produced using, for example, a baculovirus expression system, lower eukaryotic cells, such as yeast or prokaryotic cells such as bacterial cells. Particular examples of cells include mammalian cells such as HEK293T, CHO, HeLa and COS cells. The cells may be human cells. The cells may be, for instance, from any of the species and/or subjects mentioned herein. Preferably the cell line selected may be one which is not only stable, but also allows for normal post-translation modifications, particularly so that the antigen or epitope is in the form it would be naturally expected to be encountered as. The cell may, for example, allow normal glycosylation.

A polypeptide of the invention may be expressed in cells of a transgenic non-human animal. A transgenic non-human animal expressing a polypeptide of the invention is included within the scope of the invention. Such an animal may for example be a rodent (e.g. a mouse or rat). Preferred polypeptides of the invention may also be expressed in *Xenopus laevis* oocytes.

The sequences encoding the targeting polypeptide of the invention and/or the antigen may be introduced into a chosen cell by any suitable technique and may be generally referred to without limitation as "transformation". For eukaryotic cells,

suitable techniques may include calcium phosphate transfection, DEAE-Dextran, electroporation, liposome-mediated transfection and transduction using retrovirus or other virus, e.g. vaccinia or, for insect cells, baculovirus. For example, the calcium phosphate precipitation method of Graham and van der Eb, Virology 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transformations have been described in U.S. Patent No. 4,399,216. For various techniques for transforming mammalian cells, see Keown *et al.*, Methods in Enzymology, 185:527 537 (1990) and Mansour *et al.*, Nature 336:348-352 (1988). Nucleic acids and vectors of the invention may be introduced into target cells both *in vitro* and *in vivo*. In particular, viral based systems may be used to introduce the nucleic acids and/or vectors of the invention into cells, particularly *in vivo*.

Antigen Presenting cells (APCs)

The invention allows a chosen antigen to be delivered to an antigen presenting cell. The targeting polypeptide present in the complexes direct the complex to an antigen presenting cell. The complex is taken up by the antigen presenting cell. This means that the antigen may then be presented by the antigen presenting cell.

The invention also provides for the delivery of a nucleic acid molecule encoding an antigen through the use of a targeting polypeptide of the invention. The targeting polypeptide will preferably be on the surface of a virus. Infection of the antigen presenting cell by the virus results in the production of antigen which may then be presented by the cell.

The antigen presenting cell may be any suitable antigen presenting cell. In particular, it may be a professional antigen processing cell and will typically express MHC molecules. The antigen processing cell will typically express MHC II molecules and the complex will allow the chosen antigen, or peptides derived from it, to be presented via MHC II molecules. In some cases the antigen, or peptides derived from it, may be presented via MHC I. The antigen may be presented by both MHC I and II, typically presentation will be via MHCII. Examples of MHC I and II molecules which may be involved in presentation include HLA-A2, HLA-B62, HLA-Bw62, HLA-B35, HLA-DRB1, HLA-DRB2, HLA-DRB3, HLA-DRB5, HLA-DRB7, HLA-A25, HLA-B8, HLA-B52, HLA-DQB1, HLA-A3, HLA-A11 or HLA-B27.

Examples of antigen presenting cells that the invention may be used to target antigens to include dendritic cells, monocytes, and/or or a B cells. In particular,

5

10

15

20

25

monocytes and/or dendritic cells may be targeted and in a preferred instance the antigen presenting cell is a dendritic cell. The B cells may typically be CD19⁺ B cells. The monocytes may, for example, be CD14⁺ cells and such cells may also be CD2^{lo} cells.

5

In cases where the antigen presenting cell is a dendritic cell it may express cell surface markers known to be characteristic of dendritic ells. In particular the dendritic cell may express CD11c, CD209 (also known as DC sign) and/or CD13. The cell may be CD14^{lo}. In some cases the cell may express all of CD11c, CD209 and CD13 and may also be CD14^{lo}.

10

15

In a preferred instance the antigen presenting cell may be a dendritic cell. Any type of dendritic cell may be targeted. Examples of dendritic cells include a monocyte derived dendritic cell, a plasmacytoid derived dendritic cell or an intersititial dendritic cell. The dendritic cell may be a langerhans cell. The dendritic cell may be one present in an organ or tissue. The dendritic cell may be one from, or present in, a mucosal surface. The dendritic cell may be an intestinal dendritic cell such as one obtained from Peyers patches. The dendritic cell may be one present in, or obtained, from an immune tissue such as from a secondary lymph node. The dendritic cell may be present in, or obtained from the spleen or a lymph node.

20

The term antigen presenting cell covers any cell that can present an antigen targeted to it via a complex of the invention. In some cases antigen presenting cells may have different stages in their development during which they, for example, predominately take up antigen, rather than present it. For example, it is thought that dendritic cells may have immature stages characterised by the uptake of large amounts of potential antigens and more mature stages characterised by lower amounts of antigen uptake, but increased amounts of antigen presentation of the antigens they acquired earlier. The dendritic cell may, for example, be present in the periphery and effectively collect antigen and then move to areas such as secondary lymphoid tissues to present antigens. In one case the invention encompasses targeting of an antigen to an immature antigen presenting cell subsequently capable of presenting the antigen it has taken up, such as to an immature dendritic cell.

30

25

In some cases it may be desirable to target immature dendritic cells in instances where it is desired to induce tolerance. In particular, delivery of antigen by employing a targeting polypeptide of the invention in the absence of a stimuli which induces or promotes dendritic cell maturation can result in tolerance. To achieve

tolerance the targeting polypeptide may preferably be used to deliver the chosen antigen or nucleic acid encoding the antigen in the absence of an adjuvant. An advantage of employing the targeting polypeptide of the invention to induce tolerance is that unlike many methods for inducing tolerance a large dose of antigen is not required. Steinman *et al* (2003) Ann. Rev. Immunol., 21:685-711 discusses the induction of tolerance via dendritic cells and the methods and assays discussed therein may be employed when inducing tolerance using the methods of the invention. In situations where it is desired to induce tolerance peripheral dendritic cells may preferably be targeted.

Conversely, in situations where it is desired to promote an immune response against the antigen, the targeting polypeptide may preferably be employed with an adjuvant and in particular one which induces or promotes stem cell maturation such as aluminium hydroxide.

In some cases the antigen cells may be manipulated *in vitro* and this may allow control of whether the cells are exposed to stimuli which promote dendritic cell maturation. Thus by ensuring that the cells are not exposed to stimuli responsible for inducing maturation the resultant cells may be used to induce tolerance. In other cases the cells will be exposed to stimuli which promote dendritic cell maturation and hence the cells can be used to promote an immune response when they are transferred to a subject.

Antigen presenting cells may be isolated from any suitable source including any of those mentioned herein. For example, such cells may be isolated from the white cells of the blood. Methods based on cell density such as LYMPHOPREPTM and centrifugation may be employed. The cells may be isolated using a variety of techniques including antibody based techniques. The cells may be isolated using negative and positive selection techniques based on surface markers which present and/or those that are not present on antigen presenting cells. In some cases, antigen presenting cells may be obtained by exposing other cells, such as precursor cells, to appropriate stimuli.

Dendritic cells may be obtained by treating monocytes with appropriate stimuli such as GM-CSF and/or IL-4. For example, cells may be culture in the presence of 10 to 500 ng/ml, preferably from 25 to 200 ng/ml, more preferably from 50 to 150 ng/ml and even more preferably in the presence of 100 ng/ml GM-CSF. In particular, human and preferably recombinant human GMCSF may be employed. The

5

10

15

20

25

cells may be cultured in the presence of 10 to 250 ng/ml, preferably from 25 to 150 ng/ml, more preferably from 40 to 70 ng/ml and even more preferably in the presence of 50 ng/ml IL-4. T and B lymphocytes may be removed by appropriate selection such as on the basis of the markers CD3, CD2 and/or CD19.

In other cases plasmacytoid cells may be induced to differentiate into dendritic cells by exposure to IL-3. In some instances immature antigen presenting cells may be induced to mature using appropriate stimuli. Such treatments will typically be performed *in vitro*.

The antigen presenting cells may be treated *ex vivo*. Thus the cells may be recovered from a subject loaded with antigen using the methods of the invention and then used therapeutically. The invention provides loaded antigen presenting cells. The invention provides antigen presenting cells which have been infected by a viral particle of the invention.

15 Assays

5

10

20

25

30

The targeting polypeptides of the invention are utilised to target antigens to antigen presenting cells. This targeting ability and the downstream effects of targeting can be assessed in a number of ways.

The ability of a polypeptide to target itself, and hence a complex, to an antigen presenting cell can be assessed using any suitable technique. In one case *in vitro* assays may be performed to monitor binding of the targeting polypeptide to an antigen presenting cell. The targeting polypeptide may be labelled and the binding to the antigen presenting cell followed. The targeting polypeptide may be labelled with a fluorochrome and its binding to an antigen presenting cell assessed using techniques such as flow cytometry. Binding at 4°C and 37 °C may be compared to help demonstrate that the binding is specific.

The ability of the polypeptide under study to target to an antigen presenting cell may be compared with a polypeptide known to have targeting ability. For example, where the test targeting polypeptide is based on the sequence of a particular SSL the ability to compete against that SSL may be compared using two or more different labels. The ability of a targeting polypeptide to compete against varied concentrations of a polypeptide with known binding activity may be measured. In this way polypeptides with binding activity may be identified and the level of targeting ability that they display quantified. Such assays will typically be performed *in vitro*

but the ability of antigen cells *in vivo* or *ex vivo* conditions to take up test polypeptides and/or complexes may also be measured. Again, labelling may be used to study delivery to antigen presenting cells.

The ability of a targeting polypeptide to enter the antigen presentation pathway may also be assessed. The presence of the targeting polypeptide in a subcelluar compartment associated with antigen presentation may be measured. Labelling may be used to achieve this. Confocal microscopy can be used to confirm that the label, and hence the targeting polypeptide, has entered the cell. Stains for subcellular compartments associated with antigen presentation may be employed. For example, Texas red dextran staining may be employed to identify such compartments and co-staining may be used to confirm the presence of the targeting polypeptide in such compartments. In addition, the association of the complex, or part of it, in the same regions as MHC molecules, particularly MHC II may be examined.

The ability of a particular targeting polypeptide to lead to antigen presentation may be studied. Thus the presence of peptide sequences from the antigen being presented on the cell surface by MHC may be studied. In particular, presentation by MHCII may be examined. Techniques may be used to elute peptides bound to MHC and identify those originating from the chosen antigen. The degree of peptide presented when the antigen is provided on its own and when it is provided as part of a complex may be compared. The ability of particular polypeptides to lead to antigen presentation may be compared including using control polypeptides with known targeting ability. Thus the ability of two polypeptides to lead to presentation of the same antigen may be compared.

In some assays the downstream effects of antigen presentation may be measured. Thus assays may involve an antigen presentation cell being loaded using test polypeptides and then antigen presentation to a second cell may be measured. The ability of different targeting polypeptides and complexes to bring about the downstream effects of antigen presentation may be measured including controls with known activity. Such assays may be performed *in vitro* and, for example, they may be performed using an antigen presenting cell and a T cell known to have a receptor specific for an epitope present in the antigen. The T cell may be any suitable T cell. It may be a CD4⁺ or CD8⁺ T cell and in particular may be a CD4⁺ T cell. The downstream effects of antigen presentation may also be measured *in vivo*

5

10

15

20

25

Downstream effects of antigen presentation include activation of the T cell. Various signal transduction effects associated with activation of the T cell may be measured. The activation may include the differentiation and/or proliferation of the T cell. Thus the number and proliferation of the T cells may be measured, using, for example, suitable labelling techniques or by measuring cell number. The expansion of particular subsets of T cells may be measured. For example, by flow cytometry. Assays involving autologous and/or allogenic T cells may, for instance be employed, including any of those mentioned herein.

5

10

15

20

25

30

The activation of the T cells may lead to the release of cytokines. For example, the activation may lead to the release of interleukins (e.g. II-2, IL-4, IL-5, IL-6 and/or IL-10), IFNγ and/or TNF-β. In some cases antigen presentation may lead to a Th1 type response. Thus the cytokines released may be, or predominately be, IL-2, IFNγ and/or TNF-β. In other cases the response may be a Th2 type response. The cytokines released may be, or predominately be, IL-3, IL-4, IL-5, IL-6 and/or IL-10. The T cells may release factors that stimulate their own proliferation such as IL-2. and/or IL-4. Particular complexes and substances of the invention may be designed to give particular responses such as any of those mentioned herein. The release of such factors can be studied both *in vitro* and *in vivo* using techniques such as ELISA to measure levels of such compounds. In some cases, the cytokine levels measured may be one or more, or indeed all, of IFNγ, IL-10 and IL-13.

The presence and/or number of effector T cells and memory T cells may be assessed. In addition various downstream effects may be measured. The number and activity of CD4⁺ and/or CD8⁺ T cells may be measured and in particular those specific for the chosen antigen. Antibody responses may be assessed in terms of the amount and types of antibody produced. In one preferred instance, the delivery of the chosen antigen using the targeting sequences of the invention leads to an antibody response against the chosen antigen. Any of the assays discussed herein may, for instance, be used to detect such an antibody response. In some cases tolerance may be induced and an antibody response may not be seen and in particular subsequent challenge with the antigen may result in a lower response or no response in comparison to the response seen without the initial induction of tolerance.

The effects on other immune cells may be measured such as on macrophages and/or granulocytes. The skilled person will be aware of appropriate assays for assessing the immune response and immunogenicity.

In some embodiments of the invention a nucleic acid encoding an antigen, rather than the antigen itself, is targeted to the antigen presenting cell. In a particularly preferred embodiment the viral particles comprising targeting polypeptides may be employed in the invention. The ability of the viruses to selectively bind to antigen presenting cells may be measured. Non-antigen presenting cells may be employed as controls to assess the specificity of the viruses.

Standard techniques may be used to monitor the expression of the nucleic acids targeted to antigen presenting cells. For example, test experiments may be done using reported genes in place of an antigen encoding gene. Techniques such as RT-PCR, Northern blotting, Western Blotting and cell staining may be used to monitor expression in antigen presenting cells. Presentation of the antigen may be evaluated.

They may also be used to assess the efficacy of the invention in promoting an immune response against a chosen antigen. The techniques may also be used to assess the efficacy of the substances of the invention in the treatment or prevention of any of the conditions referred to herein. Typically suitable controls will be employed. In some cases standard test antigens and/or targeting polypeptides may be employed and compared to the substance under test.

20 Loading antigen presenting cells

The invention provides for the loading of antigen presenting cells. Thus the invention provides a method of loading an antigen presenting cell, comprising contacting an antigen presenting cell with a complex of the invention. The targeting polypeptide present in the complex directs the complex to the antigen presenting cells. The complex is taken up by the antigen presenting cell and the antigen is presented by the antigen presenting cell as discussed herein. The targeting of the complex to the antigen presenting cell is termed loading of the antigen presenting cell.

The invention also encompasses the loading of antigen presenting cells using a targeting polypeptide of the invention to deliver a nucleic acid encoding an antigen to antigen presenting cells. In particular viral particles comprising the targeting polypeptide may be employed. The invention therefore provides a method of loading an antigen presenting cell comprising using a targeting polypeptide of the invention to deliver a nucleic acid molecule encoding an antigen to the antigen presenting cell. The

5

10

15

25

invention provides for the infection of an antigen presenting cell with a virus of the invention.

5

10

15

20

25

30

The loading of antigen presenting cells or their precursors may be performed in vitro, ex vivo or in vivo. In the case of in vitro loading the antigen presenting cell may simply be contacted with a complex of the invention. The cell may be cultured in the presence of the complex under suitable conditions. The cell and complex may, for example, be contacted for between five minutes and ten days, preferably from an hour to five days, more preferably from five hours to two days and even more preferably from twelve hours to one day. Ex vivo loading may, for instance, be carried out in the same manner once the cells to be loaded have been obtained.

Loading of antigen presenting cells or their precursors may be performed in vivo. Thus the invention provides an in vivo method of loading antigen presenting cells comprising administering to a subject and effective amount of a complex of the invention. Administration may be via any of the routes discussed herein. Loading in vivo may also be achieved by administering a nucleic acid, vector, cell, virus, vaccine or pharmaceutical composition of the invention. The administration of such products results in complexes of the invention coming into contact with antigen presenting cells. Thus the nucleic, vector, virus or cells may lead to the production of a complex of the invention which then loads an antigen presentation cell present in the subject.

In one case antigen presenting cells recovered from a subject are loaded *in* vitro with a complex of the invention. The invention therefore provides an *ex vivo* method of loading antigen presenting cells. The loaded cells may then be returned to a subject and in particular to promote an immune response against the antigen that the cells have been loaded with.

The invention also provides antigen presenting cells which have been loaded using the complexes of the invention. Such antigen presenting cells will typically comprise the complex or breakdown products of the complex and in particular the antigen to be presented. The loaded cells may comprise epitopes of the antigen. The cell may also comprise the targeting polypeptide and/or breakdown products thereof. The invention provides such cells in an isolated form. The loaded cells may comprise a nucleic acid of the invention and in particular may comprise a viral vector of the invention. Preferably, the viral vector will be replication deficient.

Generally the antigen presenting cell of the invention carries peptides, and in particular an antigenic epitope, derived from the chosen antigen on its surface in

conjunction with an MHC class I or class II molecule and in particular in conjunction with an MHC II molecule. In one embodiment the antigen presenting cell has at least 100, preferably at least 200, for example at least or about 500 or 1000, class I and/or class II molecules on its surface loaded with the product and in particular class II molecules. In some cases, the cells may carry a label or be labelled, such as, for example, with thymidine or radioactive chromium. The invention also provides T cells that have been activated by a loaded antigen presentation cell of the invention.

In some cases antigen presenting cells may be recovered from a subject, loaded *in vitro* and then returned to the same subject. In other cases, it may be that T cells are recovered from a subject, exposed to loaded antigen presenting cells of the invention *in vitro* and then returned to the subject.

In one case the invention may provide a composition comprising T cells, antigen presenting cells and a complex of the invention. The T cells or antigen presenting cells may be any of the cells mentioned above. In particular, the antigen presenting cells may be dendritic cells. The T cell:antigen presenting cell ratio may be typically from 500:1 to 1:500. Typically at least 10³, such as (e.g. at least or about) 10⁵, 10⁶, 10⁷, 10⁸, 10⁹ cells are present per millilitre of the composition. The composition typically also comprises a culture medium capable of supporting the T cells or antigen presenting cells, such as RPMI medium. The medium may also comprise cytokines, such as IL-2, IL-4, IL-7 or TNF-α. The T cells and antigen presenting cells may be from the same individual.

The cells employed in the invention, particular the antigen presenting cells and/or T cells, may be autologous cells, or cells which have been partially or fully matched with the subject for MHC class I HLA-A or HLA-B; and/or for MHC class II type. In a preferred case, the cells employed in the invention may be recovered from a subject and utilised *ex vivo* and subsequently returned to the same subject.

Delivery of nucleic acid molecules encoding antigens to antigen presenting cells

The targeting polypeptides of the invention may be used to deliver a nucleic acid molecule which encodes an antigen to an antigen presenting cell. The nucleic acid molecule gives rise to expression of the antigen in the antigen presenting cell and to the subsequent presentation of the antigen by the cell.

5

10

15

20

25

The nucleic acid molecule will preferably comprise a promoter which is operably linked to the sequences encoding the antigen and which is active in antigen presenting cells or which can be induced in antigen presenting cells.

In a particularly preferred embodiment the nucleic acid encoding the antigen may be delivered to the antigen presenting cell via a viral particle which comprises a targeting polypeptide of the invention. The targeting polypeptide will typically be provided wholly or partly on the surface of the virus in order for the polypeptide to be able to target the virus to an antigen presenting cell.

5

10

15

20

25

30

Any suitable virus may be used in such embodiments. The virus may, for example, be a retrovirus, a lentivirus, an adenovirus, an adeno-associated virus, a vaccinia virus or a herpes simplex virus. In a particularly preferred embodiment the virus may be a lentivirus. The lentivirus may be a modified HIV virus suitable for use in delivering genes. The lentivirus may be a SIV, FIV, or equine infectious anemia virus (EQIA) based vector. The virus may be a moloney murine leukaemia virus (MMLV).

The targeting polypeptide may comprise sequences from the virus. For example, the targeting polypeptide may comprise sequences from a viral surface protein. In particular, the targeting sequences may be at the N terminus of the targeting polypeptide and be fused or linked to surface protein sequences. The targeting polypeptide may also comprise a transmembrane domain so that is can be provided in the viral membrane.

In a particularly preferred embodiment the targeting polypeptide may include sequences from a surface protein of the virus. In particular the targeting polypeptide may comprise sequences from a surface protein that is involved in the normal binding of the virus to its target cell. The binding of the targeting polypeptide to the antigen presenting cell may lead to conformational changes allowing the viral surface protein sequences to bind to their target on the cell surface. This may lead to fusion of the viral and cell membranes allowing entry of the virus into the antigen presenting cell. Thus the targeting sequences and surface protein domains may show receptor cooperation to facilitate the entry of the virus specifically into the antigen presenting cells. The targeting polypeptide may include linker sequences which facilitate the cooperation and in particular proline rich sequences present in the viral surface protein may be employed. The proline rich linkers discussed in Martin *et al* (2003) Journal of

Virology 77(4): 2753-2756 and Valsesia-Wittmann *et al* (1997) EMBO Journal, 16(6): 1214-1223 may be employed.

The invention provides a virus comprising a targeting polypeptide as well as a cell infected by such a virus. The virus will typically also comprise a nucleic acid molecule encoding the chosen antigen. The virus may, for instance, be any of those mentioned herein. The nucleic acid molecule may also encode other sequences, for example the nucleic acid sequences may comprise sequences which express proteins which boost the immune response to the antigen. The nucleic acid may encode a cytokine, including any of those mentioned herein and in particular IL-1, IL2 and/or IL12. The nucleic acid may also encode a costimulatory molecule such as a surface polypeptide which enhances the immune response. The nucleic acid may encode, for example, CD80 and/or CD86.

The viruses of the invention are preferably replication deficient. In some cases the nucleic acid sequences encoding the targeting polypeptide will not be included in the viral vector. Thus the invention also provides helper cells which express the targeting polypeptide in such a way that the targeting polypeptide is incorporated into the viral particles. The invention also provides nucleic acid vectors that encode a targeting polypeptide of the invention which comprises viral sequences.

20 Medicaments, methods and therapeutic use

The complexes of the invention and various related aspects of the invention may be used be used in a method of therapy of the human or animal body. Thus the invention provides for the use of a targeting polypeptide, a complex, a nucleic acid, a vector, a cell, a virus, or an antigen presenting cell of the invention in a method of treatment of the human or animal body by therapy.

The invention provides for the use of a complex of the invention, a nucleic acid encoding a targeting polypeptide and antigen of a complex of the invention, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus of the invention or an antigen presenting cell of the invention in the manufacture of a medicament for use in immunisation.

In a preferred case the invention provides for the use of a complex comprising:

(a) a targeting polypeptide comprising a staphylococcal superantigen-like

5

10

15

25

protein (SSL), a fragment thereof or a variant of either, where the SSL, fragment or variant has the ability to target the complex to an antigen presenting cell; and

(b) an antigen or a nucleic acid encoding an antigen,in the manufacture of a medicament for use in immunisation.

5

10

15

20

25

30

In some instances the antigen comprises a polypeptide which is present in the complex as a fusion polypeptide with the targeting polypeptide. In others the antigen and targeting polypeptides are not part of the same polypeptide, but are covalently joined to each other or are joined through a linker. In a preferred case the antigen is a pathogenic antigen, an auto-antigen, an allergen and/or a cancer antigen. In another, the targeting polypeptide is present as a dimer.

Immunisation may result in promoting an immune response against the chosen antigen. Any of the effects resulting from targeting antigen presenting cells mentioned herein may be promoted or achieved. In particular the level of presentation of the chosen antigen will be increased. An increase in presentation via MHC I and/or MHC II molecules and in particular via MHC II molecules may be seen. In a preferred case the level of antigen presentation achieved may be such that when the same antigen is encountered again an increased immune response is seen in comparison to if the initial immunisation had not taken case. In particular a therapeutic and/or protective immune response may be raised. The invention may therefore ensure that a higher level of immune response is seen when the antigen is next encountered.

The invention may be used to enhance the level of antigen presentation or of any of the downstream effects thereof, such as any of those mentioned herein, in comparison to administration of an equivalent amount of antigen in the absence of a targeting polypeptide. The increase may be double, treble, or more fold, in some cases it may be at least ten-fold, preferably at least twenty-fold and even more preferably at least 100 fold, or 1000 fold or more. It may be that a protective, or therapeutic response, is seen whereas in the absence of the use of a targeting polypeptide it is not.

The invention also provides for an agent for immunising a subject, the agent comprising a complex of the invention, a nucleic acid encoding a targeting polypeptide and antigen of a complex of the invention, a vector comprising such a

nucleic acid, a cell comprising such a nucleic acid or vector, or an antigen presenting cell of the invention.

The various diseases and conditions to be prevented or treated may be any of those mentioned herein or associated with an antigen mentioned herein. In particular, the disease may be one associated with a pathogen, such as a bacterium, virus, bacterium, parasite, protozoan, fungus, and/or prion. In some cases the disease may be a cancer such as any of those mentioned herein.

In some instances the invention will be used to induce tolerance to a particular antigen and in particular to an allergen or an auto-antigen In such cases typically the method will involve the delivery of the desired antigen to an antigen presenting cell in the absence of a stimulus which promotes antigen presenting cell maturation. In particular, the antigen may be delivered in the absence of an adjuvant such as aluminium hydroxide. The immunisation methods and vaccines of the invention may be used to induce tolerane to a selected antigen.

The subject on which the method of the invention is performed is generally a vertebrate subject. By "vertebrate subject" is meant any member of the subphylum cordata, particularly mammals, including, without limitation, humans and other primates, as well as rodents, such as mice and rats. The subject may be a non-human animal. The non-human animal may be a domestic animal or an agriculturally important animal. The animal may be a domestic pet. The animal may be a monkey such as a non-human primate. The term subject does not denote a particular age. Thus, both adult and newborn individuals are intended to be covered. In one embodiment the subject is susceptible to or at risk from the relevant disease. For example, the subject may have been exposed, or will be in a region where there is a risk of exposure, to a particular antigen and in particular a pathogen.

The invention also covers the use of the complexes of the invention to promote antigen presentation of a chosen antigen. In some cases the invention may be used to bring about antigen presentation in an animal model, for example to study whether or not a particular immune response can be raised. The efficacy of the invention may be assessed in such non-human animal models. In some cases the invention may be used to help generate an immune response in a non-human animal in order to obtain antibodies against a chosen antigen that can then be recovered. Thus the invention may be used in a method of antibody production.

5

10

15

20

25

The invention may be used in combination with other means of, and substances for, immunisation. In some cases the complexes of the invention may be administered simultaneously, sequentially or separately with antigen which is not part of a complex of the invention. Thus complexes may be administered with the same antigen in a form not linked to a targeting polypeptide. The substances of the invention may be used in combination with existing vaccines for a particular antigen and may, for example, be simply mixed with such vaccines. Thus the invention may be used to increase the efficacy of existing vaccines including, for example, peptide, polypeptide, nucleic acid, viral and/or bacterial based antigens.

10

15

20

25

30

5

Pharmaceutical compositions, vaccines and administration

The invention additionally provides pharmaceutical compositions comprising a complex, nucleic acid, vector and/or cell of the invention and a pharmaceutically acceptable carrier or diluent. The present invention also provides a vaccine composition comprising a complex, nucleic acid, vector and/or cell of the invention. The vaccines and compositions may comprise any of the substances mentioned herein and in particular the complexes, nucleic acid molecules, vectors, viruses and cells of the invention. The invention provides a method of vaccination comprising administering to a subject an effective amount of a vaccine composition of the invention.

The various compositions, vaccines and other substances of the invention may be formulated using any suitable method. Formulation with standard pharmaceutically acceptable carriers and/or excipients may be carried out using routine methods in the pharmaceutical art. For example, an active substance may be dissolved in physiological saline or water for injections. The exact nature of a formulation will depend upon several factors including the particular substance to be administered and the desired route of administration. Suitable types of formulation are fully described in Remington's Pharmaceutical Sciences, 19th Edition, Mack Publishing Company, Eastern Pennsylvania, USA, the disclosure of which is included herein of its entirety by way of reference.

The substances may be administered by enteral or parenteral routes such as via oral, buccal, anal, pulmonary, intravenous, intra-arterial, intramuscular, intraperitoneal, topical or other appropriate administration routes. The substances may in some cases be administered to sites characterised by the presence of antigen

presenting cells. In cases where loaded antigen presenting cells are administered they may be administered, for example, to sites of antigen presentation such as secondary lymph nodes.

Vaccines may be prepared from one or more of the complexes, nucleic acids, vectors, and/ or cells of the invention together with a physiologically acceptable carrier or diluent. Typically, such vaccines are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The preparation may also be emulsified, or the encapsulated in a liposome, particularly in the case of nucleic acids and vectors of the invention. The active ingredient may be mixed with an excipient which is pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, of the like and combinations thereof.

In addition, if desired, the vaccine and/or pharmaceutical compositions of the invention may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, and/or adjuvants which enhance effectiveness.

The complexes of the invention enhance the immunogenicity of a chosen antigen. They may therefore act as adjuvants for a chosen antigen and may be used as adjuvants. In some cases other adjuvants may be present in the various formulations of the invention or be administered simultaneously, separately or sequentially with them. Suitable adjuvants include, for example, any substance that enhances the immune response of the subject to the antigen (including when delivered by the polynucleotide of the invention). They may enhance the immune response by affecting any number of pathways, for example, by stabilizing the antigen/MHC complex, by causing more antigen/MHC complex to be present on the cell surface, by enhancing maturation of APCs, or by prolonging the life of APCs (e. g., inhibiting apoptosis).

Examples of adjuvants that may be employed include cytokines. Certain cytokines, for example TRANCE, fit-3L, and CD40L, enhance the immunostimulatory capacity of antigen presenting cells and may be employed. Non-limiting examples of cytokines which may be used alone or in combination include, interleukin-2 (IL-2), stem cell factor (SCF), interleukin 3 (IL-3), interleukin 6 (IL-6), interleukin 12 (IL-12), G-CSF, granulocyte macrophage-colony stimulating factor

5

10

15

20

25

(GM-CSF), interleukin-1 alpha (IL-1 a), interleukin-11 (IL-11), MIP-la, leukemia inhibitory factor (LIF), c-kit ligand, thrombopoietin (TPO), CD40 ligand (CD40L), tumor necrosis factor-related activation-induced cytokine (TRANCE) and flt3 ligand (flt-3L). Further examples of adjuvants which may be effective include but are not limited to: aluminium hydroxide, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine (CGP 11637, referred to as nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (CGP 19835A, referred to as MTP-PE), and RIBI, which contains three components extracted from bacteria, monophosphoryl lipid A, trehalose dimycolate and cell wall skeleton (MPL+TDM+CWS) in a 2% squalene/Tween 80 emulsion.

5

10

15

20

25

30

In cases where the invention is used to target a nucleic acid which encodes an antigen to an antigen presenting cell, the nucleic acid may also encode molecules capable of acting as an adjuvant. Thus the nucleic acid may lead to the production of any of the adjuvants mentioned herein and in particular a cytokine or costimulatory molecule. The cytokine may, for example be, IL-1, IL2, and/or IL-12 which will preferably be secreted from the antigen presenting cell. The costimulatory molecule may, for example, be CD80 or CD86 which will be preferably expressed on the cell surface of the antigen presenting cell.

The substances of the invention, and in particular, the vaccines, are typically administered parentally, by injection, for example, either subcutaneously or intramuscularly. Additional possible formulations include suppositories, oral formulations and formulations for transdermal administration. For suppositories, traditional binders and carriers may include, for example, polyalkylene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1% to 2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10% to 95% of active ingredient, preferably 25% to 70%. Where the substance is lyophilised, the lyophilised material may be reconstituted prior to administration, e.g. a suspension. Reconstitution is preferably effected in buffer.

Capsules, tablets and pills for oral administration to a patient may be provided

with an enteric coating comprising, for example, Eudragit "S", Eudragit "L", cellulose acetate, cellulose acetate phthalate or hydroxypropylmethyl cellulose. Substances of the invention and in particular nucleic acids and vectors of the invention may be administered by needleless injection, for example, transdermally, may also be used.

The substances of the invention may be formulated as neutral or salt forms. Pharmaceutically acceptable salts include the acid addition salt (formed with free amino groups of the peptide) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids such as acetic, oxalic, tartaric and maleic. Salts formed with the free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine and procaine.

The substances are administered in a manner compatible with the dosage formulation and in such amount will be prophylactically and/or therapeutically effective. The quantity to be administered depends on the subject to be treated, capacity of the subject's immune system to synthesize antibodies, and the degree of protection desired. Precise amounts of active ingredient required to be administered may depend on the judgement of the practitioner and may be peculiar to each subject.

A substance of the invention may be given in a single dose schedule, or preferably in a multiple dose schedule. A multiple dose schedule is one in which a primary course of administration may be 1-10 separate doses, followed by other doses given at subsequent time intervals required to maintain and or reinforce the immune response, for example at 1 to 4 months for a second dose, and if needed, a subsequent dose(s) after several months. The dosage regimen will also, at least in part, be determined by the need of the individual and be dependent upon the judgement of the practitioner. Examples of dosages of complex will may be administered include from 5 µg to 100 mg, preferably from 50µg to 50 mg, more preferably from 250µg to 10 mg.

In some cases the administered substances may comprise cells. The cells may, for example, be those comprising nucleic acids or vectors of the invention. In other cases the cells may be loaded antigen presenting cells or may be T cells that have had antigen presented to them by loaded antigen presenting cells of the invention. Any suitable number of cells may be administered to a subject. For example, at least, or about, 10^5 , 10^6 , 10^7 , 10^8 , 10^9 cells may be administered. As a guide the number of

5

10

15

20

25

cells of the invention to be administered may be from 10^5 to 10^{13} , preferably from 10^7 to 10^{11} . In such cases where cells are administered or present, culture medium may be present to facilitate the survival of the cells. In some cases the cells of the invention may be provided in frozen aliquots and substances such as DMSO may be present to facilitate survival during freezing. Such frozen cells will typically be thawed and then placed in a buffer or medium either for maintenance or for administration.

5

10

15

20

25

The nucleotide sequences of the invention and vectors can also be used administered as outlined above. Preferably, the nucleic acid, such as RNA or DNA, in particular DNA, is provided in the form of an expression vector, which may be expressed in the cells of the individual to be treated. The vaccines may comprise naked nucleotide sequences or be in combination with cationic lipids, polymers or targeting systems. The vaccines may be delivered by any available technique. For example, the nucleic acid may be introduced by needle injection, preferably intradermally, subcutaneously or intramuscularly. Alternatively, the nucleic acid may be delivered directly across the skin using a nucleic acid delivery device such as particle-mediated gene delivery. The nucleic acid may be administered topically to the skin, or to mucosal surfaces for example by intranasal, oral, intravaginal or intrarectal administration.

Uptake of nucleic acid constructs may be enhanced by several known transfection techniques, for example those including the use of transfection agents. Examples of these agents includes cationic agents, for example, calcium phosphate and DEAE-Dextran and lipofectants, for example, lipofectam and transfectam. The dosage of the nucleic acid to be administered can be altered. Typically the nucleic acid is administered in the range of 1pg to 1mg, preferably to 1pg to 10µg nucleic acid for particle mediated gene delivery and 10µg to 1mg for other routes.

The following Examples illustrate the invention.

Examples

5

15

20

25

Example 1

Methods

10 Recombinant protein expression and purification

Recombinant N-terminal histidine tagged SSL7 and SSL9 proteins from S. aureus strain NCTC6571 were produced in E. coli using the expression vector pQE30 containing the genes NCTC6571ssl7 and NCTC6571ssl9 respectively as previously described (Williams,R.J. et al., Infect. Immun. 68, 4407-4415 (2000)). Embp32 from S. epidermidis was also expressed as a recombinant N-terminal histidine tag fusion protein in E. coli and purified as previously described (Williams,R.J. et al., Infect. Immun. 70, 6805-6810 (2002)).

Crystallisation

Crystals of SSL7 were obtained by the hanging drop vapour diffusion technique, at room temperature. Crystals were obtained in two different conditions. For the first condition (form I), the well buffer contained 25-30% (w/v) PEG-MME 2K, 0.2 M ammonium sulphate and 0.1 M MES, pH 6.5. Drops consisted of 1 µl recombinant SSL7 at 10 mg/ml and 1 µl well buffer. Crystals had a flat plate morphology with dimensions up to 0.3x0.2x0.01mm³. The second condition (form II) had the same protein concentration and drop size, but the well buffer in this case consisted of 28% (w/v) PEG 2K and 0.1 M Li₂SO₄ buffered with 0.1M Tricine at pH 8.5. In this case the crystals were rod-shaped with approximate dimensions 0.3x0.05x0.05mm³.

30

X-ray Data Collection

Data were collected from cryocooled crystals following immersion in mother liquor containing 30% (v/v) glycerol (as described in Garmen, E. & Schneider, T. Macromolecular Cryocrystallography. J. Appl. Cryst. 30, 211-237 (1997)).

Form I

5

10

The data were collected to 2.75Å resolution on line BM14 at the European Synchrotron Radiation Facility (ESRF; Grenoble, France), on a Mar Research ccd detector. The data were indexed and integrated with Mosflm (Leslie, *Joint CCP4 and ESF-EAMCB Newsletter on Protein Crystallography* 26, (1992)), and scaled and merged using Scala (Evans *et al.*, 97-103. 1997. CCLRC, Daresbury Laboratory. Ref Type: Conference Proceeding) from the CCP4 suite (*Acta Cryst.* D50, 760-763 (1994)). Subsequent analysis was carried out using programs from the CCP4 suite, unless otherwise stated. Data collection statistics are provided in Table 1.

Table 1: Data Collection and Refinement

Res.				R _{merge} ¹						Completeness			Redundancy	
(Å)	N _{ref}	$N_{ m ref}$)		I/σI			(%)			(%)	
	Meas	Un	i.	All		High ²	A11	Hig	gh	A11		High	All	High
Form I (P4 ₃ 2 ₁ 2)														
45.5-	59980	1260		9.4		46.0	14.6	3.1	3.1		7	99.2	4.5	4.3
2.75														
Form II (P2 ₁ 2 ₁ 2 ₁)														
30.0-	99169	1104		14.0		48.0	4.6	1.5		99.9		99.9	4.5	3.9
2.7														
Protein Wa			Wate	er			R-factor ³ (%)			rmsd				
N	$ ^4B_{ave}(\mathring{A}^2)$ N		N	Bav		ve(Å ²)	Working ⁵		Free ⁶		В	onds(Å)	Angles (°)	
Form I (P4 ₃ 2 ₁ 2)														
3127	43.6		18	30.9		.9	23.5		27.5		0	.008	1.35	
Form II (P2 ₁ 2 ₁ 2 ₁)														
	42.6 24		24	42.5		.5	23.4		29.9		0.	.011	1.3	

 $^{^{1}}$ $R_{merge} = \sum \left|I_{I} - I_{M}\right| / \sum I_{M}$, where $\mathbf{I}_{\mathbf{I}}$ is the observed intensity of a reflection and $\mathbf{I}_{\mathbf{M}}$ is the mean intensity of all related reflections.

² High: highest resolution shell. Form I: 2.9-2.75Å; Form II: 2.85-2.70 Å.

 $^{^{3}}$ R - factor = $\sum \left|F_{obs} - F_{calc}\right| / \sum F_{obs}$.

⁴ Mean B-factor ⁵ For the 95.1% of data included in the refinement.

⁶ For the 4.9% of data randomly selected and excluded from refinment.

Autoindexing indicated that the crystals belonged to pointgroup P422, with cell dimensions a=b=81.66 Å, c=148.04 Å and a Matthews coefficient of 3.1 (corresponding to a solvent content of $60\% \ v/v$) for 2 molecules in the asymmetric unit. There was a significant peak in the native Patterson map at fractional coordinates: 0.000, 0.372, 0.500 and no peaks attributable to non-crystallographic symmetry in the self-rotation function, indicating the presence of two molecules related by a 2-fold rotation parallel to the a-axis in the asymmetric unit.

Form II

5

10

15

25

30

The data were collected to 2.7 Å resolution on line ID14-1 at the ESRF, on an ADSC Quantum 4R ccd detector. Data indexing, integration, scaling and analysis was carried out as for form I. Autoindexing and analysis of systematic absences indicated spacegroup $P2_12_12_1$, with a=51.65 Å, b=71.59 Å, c=103.47 Å, and a Matthews' coefficient of 2.00, corresponding to a solvent content of 40%. There was a peak on the self-rotation function at κ =180°, confirming the presence of two molecules in the asymmetric unit. Data collection statistics are provided in Table 1.

Molecular Replacement

The co-ordinates for one monomer of SSL9 (pdb-id: 1M4V; Arcus et al., J. Biol. Chem. 277, 32274-32281 (2002)) were used for molecular replacement, which was carried out with Molrep (Vagin & Teplyakov, J. Appl. Cryst. 30, 1022-1025 (1997)).

Form I

There was a single clear peak in the rotation function (I/ σ I=5.3, next peak I/ σ I=3.58). Since very few systematic absences were recorded during data collection, molecular replacement was carried out in all nine possible spacegroups to unambiguously identify screw axes. The best solution was for spacegroup P4₃2₁2, for which two molecules could be placed in the asymmetric unit, related by the appropriate translation, with a correlation coefficient of 32.6% (for comparison, the best solution in P4₁2₁2 had a correlation coefficient of 26.4%). Sidechains that differed between the SSL5 and SSL7 proteins were replaced by alanines in the

correctly positioned model, and rigid-body refinement was carried out using CNS version 1.1 (Brunger *et al.*, *Acta Cryst.* **D54**, 905-921 (1998)). At this point, the R-factor was 52.2% and the R_{free}, 54.6%. A round of simulated annealing reduced the R- and R_{free}-factors to 44.6 and 48.9% respectively.

5

10

15

20

25

30

Form II

Molecular replacement was performed as described for form I. The best solution had a correlation coefficient of 37.4% for two molecules in the asymmetric unit. Following rigid-body and simulated annealing refinement in CNS, the R-factor and R_{free} were 34.16 and 42.06% respectively.

Density Modification

For both crystal forms, cross-crystal averaging, non-crystallographic averaging and phase improvement were carried out using Dmmulti (Cowtan, *CCP4 Newsletter on Protein Crystallography* (1994)) in CCP4 (*Acta Cryst.* **D50**, 760-763 (1994)), prior to calculation of maps for manual rebuilding of the model.

Model Building and Refinement

In both cases, manual rebuilding was performed using O (Jones & Kjelgaard, Methods in Enzymology. Charles W.Carter, J. & Sweet, R.M. (eds.), pp. 173-208 (Academic Press, 1997), and in later refinement rounds XtalView (McRee, Practical Protein Crystallography. Academic Press, San Diego, CA (1993)). Refinement was carried out with CNS. Alanine residues in the initial model were exchanged for the correct sidechains where positive Fourier difference density could be seen. At a number of positions the sequence alignment was incorrect and additional rebuilding of the chain was required. For the refinement, an overall anisotropic B-factor correction and bulk solvent scaling with k=0.36, B=26.9 Ų, for form I, and k=0.59, B=101 Ų for form II were applied. Noncrystallographic symmetry restraints were applied throughout refinement except in the later stages where there was clear evidence of a difference between the chains. After all protein residues had been included in refinement, a number of tightly bound waters were added, where there was a 3 rms peak in the difference Fourier, and a 1 rms peak in the 2Fo-Fc map, and

appropriate protein-water hydrogen bonds. At the end of refinement, the R-factor was 23.5% and R_{free}, 27.5%, for form I and R=23.4% and R_{free}=29.9% for form II. A homology model of SSL9 was created using the program MODELLER (Lawkowski *et al.*, *J. Appl. Cryst* **26**, 283-291 (1993)) and both SSL7 and SSL5 as template structures.

Structural illustrations were drawn with Bobscript, ((Esnouf, *Acta Cryst.* **D55**, 938-940 (1999)) a modification of molscript (Kraulis, *J. Appl. Cryst.* **24**, 946-950 (1991) and rendered with Raster 3D (Merritt & Bacon, *Methods in Enzymology* **277**, 505-524 (1997) and Bacon & Anderson, *Journal of Molecular Graphics* **6**, 219-220 (1988)).

FITC labelling of SSLs

5

10

SSL7 and SSL9 were dialysed against labelling buffer (0.2 M NaHCO₃, pH 9.0) overnight at room temperature (RT). 50 µl of 1 mg/ml fluorescein isothiocyanate (FITC, Sigma) in dimethyl sulfoxide (DMSO) was added to 1 ml of a 2 mg/ml protein solution. After 4 hours incubation at room temperature in the dark, unbound FITC was removed by size exclusion chromatography using a PD-10 (SephadexTM) column. The concentration of labelled protein, and the FITC:protein ratio were determined by spectrophotometry. All preparations gave FITC:protein ratios of between 1:1 and 2:1.

Antibodies

The following monoclonal antibodies (MAbs) were used: CD2 (mouse MAb MAS 593, IgG_{2b}; Harlan), CD3 (supernatant mouse MAb UCHT1, IgG₁; obtained from P. C. L. Beverley [Edward Jenner Institute for Vaccine Research, Compton, UK]), CD14 (supernatant mouse MAb HB246, IgG_{2b}; gift from P. C. L. Beverley), and CD19 (supernatant mouse MAb BU12, IgG₁; gift from D. Hardie [Birmingham University, Birmingham, UK]).

30 Cell culture

Human PBMC-derived dendritic cells (DC) were generated from fresh whole blood samples obtained from healthy volunteers (Alderman et al., Cardiovasc. Res.

55, 806-819 (2002) and Newton et al., Clin. Exp. Immunol. 133, 50-58 (2003)). Mononuclear cells separated on Lymphoprep TM (Nycomed Pharma) by centrifugation at 400 g for 30 minutes were incubated in six-well tissue culture plates for 2 h at 37°C in 5% CO₂ in complete medium (CM)(RPMI 1640 medium (Gibco) supplemented with 10% fetal calf serum (FCS; PAA Laboratories), 100 U/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-glutamine (Clare Hall Laboratories, Imperial Cancer Research Fund)). The adherent cells were cultured in fresh complete medium with 100 ng/ml human recombinant granulocyte-macrophage colonystimulating factor (GM-CSF) and 50 ng/ml interleukin (IL)-4 (Schering-Plough Research Institute). On day four of incubation, loosely adherent cells were collected, and contaminating T and B lymphocytes were removed by incubation with CD3, CD2, and CD19 MAbs, followed by anti-mouse IgG-coated immunomagnetic Dynabeads TM (Dynal). The supernatant, containing highly purified DC was cultured for another three days in fresh complete medium with GM-CSF and IL-4. Human PBMC-derived macrophages were obtained using the same procedure for dendritic cell culture, except that 10% human serum was used and no cytokines were added (Swetman et al, Eur. J. Immunol. 32, 2074-2083 (2002)).

Binding and uptake of FITC labelled SSLs by human cells

Binding assays were performed by incubating 10⁶ cells/well in complete medium with various concentrations of SSL-FITC (0.05-1.25 µM) for 1 hour at 4°C or 37°C. In some experiments, 8 µM of unlabelled SSL was added to the cells together with the labelled protein. After incubation, cells were washed three times by centrifugation, and examined by flow cytometry. In some experiments, cells were additionally stained for various surface markers after SSL uptake. Cells were incubated with the relevant MAb for 30 min at 4°C, washed, and then incubated in 1: 25-diluted phycoerythrein-conjugated goat anti-mouse immunoglobulin (PE, Jackson ImmunoResearch) for 30 min at 4°C. Cells were washed, fixed in 2% formaldehyde and examined using a FACScan flow cytometer (Becton Dickinson).

25

5

10

15

Confocal microscopy

10⁵ cells were seeded on 32mm coverslips coated (for dendritic cells only) overnight at 4^oC with 10μg/ml fibronectin (FN, Sigma) in HBSS (Gibco). After 2 hours at 37^oC in complete medium, cells were incubated with SSL-FITC (1.25 μM) and/or Texas Red-dextran (1mg/ml, Molecular Probes) for 1 hour at 37^oC in complete medium. The coverslips were then washed three times in cold HBSS and fixed in 2% paraformaldehyde. The slides were examined on a Bio-Rad Confocal Microscope. Images were acquired from 0.5-μm optical sections of individual cells.

10 Results

5

15

20

25

Structure determination of SSL

Recombinant SSL7, consisting of residues 36-231 of the sequence with accession number AF094826 in GenBank, was crystallised in two different conditions each of which gave rise to a different crystal form.

Form I

The final, 2.75Å resolution, model built into the electron density map contained two SSL7 molecules, representing residues 18-213 of the recombinant SSL7. In addition, eighteen water molecules were included at stereochemically sensible locations. Though the His-Tag and N-terminal tail were disordered and omitted from the density, the majority of the residues had well-defined electron density. The final R-factor and R_{free} were 23.5% and 27.5% respectively, and refinement statistics are given in Table 1. The final model had good stereochemistry, with 98.6% of residues in the most favoured and additionally allowed regions of the Ramachandran plot, and no residues in disallowed regions. The geometry was better than expected for the average 2.75 Å structure according to PROCHECK analyses (Lawkowski *et al.*, *J. Appl. Cryst* 26, 283-291 (1993)).

30 Form II

This model again contained two SSL7 molecules: in this case residues 21-213 or 23-213 of the construct in chains A and B respectively. Twenty-four water

molecules were added in this form. Once again, with the exception of the His-tag and N-terminal tail, the majority of the molecule had well-defined electron density. The final R- and R_{free} -factors were 23.4 and 29.9% respectively. The final model had good stereochemistry with 96.5% of the residues in the two most favoured regions of the Ramachandran plot. The geometry was better than expected for the average 2.7 Å structure according to PROCHECK. Refinement statistics for both crystal forms are provided in Table 1.

The SSL7 structure

5

The structure of the SSL7 monomer is shown in Figure 1(a). As predicted from sequence comparisons, the fold is similar to that of the bacterial superantigens, and consists of two domains. The N-terminal domain (residues 18-110) is an OBfold, a variety of β-barrel associated with oligosaccharide and DNA binding, while the C-terminal domain (111-213) forms a β-grasp domain: a series of β-strands wrapped around a helix.

In total, the structure of four copies of the SSL7 monomer was obtained (two from each crystal form), and they are all very similar, as can be seen from the $C\alpha$ -atom root mean square deviations (rmsds; Table 2).

Table 2: Root Mean Square deviations (Å) between the different copies of the SSL7 monomer.

		Form I		Form II		
		A	В	A	В	
Form I	A	-	0.228	0.701	0.703	
	В		-	0.669	0.642	
Form II	A	-	-	-	0.450	
	В	-	-	-	_	

The only differences between the structures arise from differences in the conformations of flexible loops, and the linker between the N- and C-terminal

domain (residues 106-112). The relative orientation of the two domains to one another, and the orientations of the individual secondary structural elements remain unchanged in the different copies of the monomer. For this reason, unless explicitly stated, one example monomer, chain A from form I, will be used in the comparisons and discussions that follow.

SSL7 and other proteins

5

10

15

20

25

30

When the SSL7 monomer is superposed on the structure of SSL7 (SET3) (the structure of SSL5 is provided by Arcus *et al.*, *J. Biol. Chem.* 277, 32274-32281 (2002)), the other member of the family for which a three dimensional structure is available, the two are seen to share the same fold (Figure 1 (b)), as might be expected for proteins sharing 40% sequence identity. However, when optimally superposed, the rmsd, which is 1.33Å over 157 spatially equivalent Cα atoms, is surprisingly high for two such highly related proteins (a value of about 1.1 Å over the whole structure would be anticipated from sequence identity (Chothia & Lesk, *EMBO J.* 5, 823-6 (1986)).

The high rmsd can be largely accounted for by changes in two regions of the structure. Firstly, there is a change in the twist of the β-sheet in the C-terminal β-grasp domain (Figure 1, (b) right hand structure-indicated by arrow). The change in the twist results in shifts in individual residue positions as large as 6.65 Å (for the Cα atom of G125 in the C-terminal domain). Secondly, there are changes to the conformations of the loops on the external face of the N-terminal OB-fold (Figure 1 (b), left hand structure- indicated by arrow), these loops are associated with a generic low affinity MHCII binding site in superantigens (Jardetzky *et al.*, *Nature* 368, 711-8 (1994) and Kim *et* al., Science 266, 1870-1874 (1994)), and changes in them may indicate differences in function between the two proteins. These large movements account for the low contrast and large R-factor for the initial molecular replacement solution, prior to the simulated annealing which successfully realigned the sheet strands, and some of the loop residues.

The SSL7 structure was also compared to a homology model of SSL9, based on both SSL7 and SSL5 as template structures (not shown). The sequence of SSL9 has a much greater homology to SSL7 (sequence identity 49%) than SSL5 (sequence

identity 35%). This is reflected in the model of SSL9: when the structures are optimally superposed SSL9 has a $C\alpha$ atom rmsd of 0.6 Å over 188 spatially equivalent atoms from SSL7, and 1.4 Å over 177 spatially equivalent atoms from SSL5.

When SSL7, and the superantigen of known structure with which it shares the highest sequence identity (streptococcal pyrogenic exotoxin, SPEC; 29% - Roussel., Nat. Struct. Biol. 4, 635-43 (1997)) are optimally superposed (Figure 3), it is seen that once again the overall fold is conserved. SPEC has some extended loops, but the structures are otherwise very similar. Interestingly, despite the SPEC and SSL7 sequences being far more divergent than SSL7 and SSL5, the two structures superpose nearly as well. The $C\alpha$ atom rmsd for optimally superposed SSL7 and SPEC is 1.48 Å over 134 structurally equivalent atoms. The difference between the structures on this occasion being both a slight change in the orientation of the β -grasp domain (Figure 1, (c) right hand structure, indicated by arrow), but also large differences in the orientations of the strands of the OB-fold (Figure 1, (c), left hand structure-indicated by arrow) the very large changes in conformation in this domain are not unexpected since the SSL proteins do not bind MHC II, and this is the region primarily involved in this interaction in the superantigens.

20 Dimerisation

5

10

15

25

30

In both crystal form I and II there are two molecules in the crystallographic asymmetric unit; these two molecules are related by a proper two-fold, resulting in the formation of an intimate dimer (Figure 1(d)). The dimer is virtually identical in both crystal forms, as can be seen from a comparison of the residues buried in the dimer interface (Figure 2), and the fact that the form I and form II dimers can be superposed with an all Cα atom rmsd of 0.881 Å or 0.902 Å depending on orientation. The remainder of the crystal packing is entirely different for each of the forms, since the crystals grew in different conditions and at markedly different pH; it is unlikely that the dimers formed solely as a result of crystal packing forces.

As can be seen from Figure 1(d) the dimer interface is the result of the two β -grasp domains interacting to create an intermolecular β -sandwich. In the process, 1122 Å² of the monomer surface in form one and 1146 Å² of this surface in form II

are buried: this is in the range seen in biologically relevant dimers (Jones & Thornton, *Progress in Biophysics and Molecular Biology* **63**, 31-59 (1995)). The dimer formation results in the burial of a number of hydrophobic residues (including F119, L128, I132) and a number of neutral polar residues contribute to a hydrogen bonding network between the two monomers, however, no charge-charge interactions are created. It has been shown that protein-protein interaction surfaces differ little from the 'normal' exterior surface of proteins, but that they tend to contain additional neutral polar residues and fewer charged ones (Lo Conte & Janin, *J. Mol. Biol.* **285**, 2177-98 (1999)): the SSL7 dimer interface is entirely consistent with this. Figure 1 (d) also indicated with an arrow the loop with the largest difference between SSL7 and SSL5, the movement of which prevents steric clashes between the two SSL7 molecules in the dimer.

Cellular tropism of SSL7 and SSL9

5

10

15

20

25

30

Peripheral blood mononuclear cells (PBMC) were incubated with various concentrations of SSL7-FITC or SSL9-FITC for 1 hour, and cell-associated fluorescence measured by flow cytometry. Both SSL7 (Figure 3(a)) and SSL9 (not shown) stained a small proportion of PBMC at 37°C, but not at 4 °C. The level of fluorescence was dose-dependent up to a maximum at 1.25 μM protein. The mean percentage of cells stained with SSL7 (9.8±1.8, range 7.1-12.2, n=7) and SSL9 (10.9±1.1, range 9.4-12.6, n=5) was very similar. Mean fluorescence also increased with time between five minutes and a hundred and twenty minutes (not shown) suggesting progressive uptake of SSL protein by the cells.

In order to determine whether the interaction between SSL protein and PBMC was specific, competitive inhibition of SSL-FITC cell labelling by unlabelled SSL was investigated (Figure 3(b)). Excess unlabelled SSL7 was able to completely block uptake of SSL7-FITC. In contrast, neither SSL9, nor an unrelated bacterial protein also carrying a polyhistidine tag (Embp32) had any effect on the SSL7-FITC signal. Conversely, only unlabelled SSL9, but not SSL7 or Embp32, blocked uptake of SSL9-FITC. Interaction between SSL proteins and the PBMC therefore occurs via a saturable specific receptor, and is not mediated by the histidine tag on these

proteins. Furthermore, SSL7 and SSL9 use different receptors, or different sites within one receptor.

The PBMC sub-populations which are the targets for SSL7 and SSL9 were further characterised by immunophenotyping, using monoclonal antibodies to the major surface markers CD2, CD3, CD14, and CD19 (Figure 4). Both SSL7 and SSL9 were taken up by all CD14 positive cells, and by a population of CD2-low cells, a phenotype consistent with that of peripheral blood monocytes (Crawford,K. *et al.*, *J. Immunol.* 163, 5920-5928 (1999)). Neither SSL7 nor SSL9 showed any interaction with CD3 positive T cells. Interestingly, SSL7-FITC but not SSL9-FITC stained a subpopulation of CD19 B cells, providing further evidence that the receptor for these two SSLs is distinct.

Uptake of SSLs by dendritic cells

Peripheral blood monocytes were cultured *in vitro* in the presence of GM-CSF and IL-4, in order to drive their differentiation into myeloid dendritic cells ((Sallusto & Lanzavecchia, *J. Exp. Med.* 179, 1109-1118 (1994)). After depletion of residual lymphocytes, the population obtained after seven days culture consisted of >90% CD1a+ HLA-DR high CD14 low dendritic cells (data not shown).

These cells were incubated for sixty minutes at 37°C with either SSL7-FITC or SSL9-FITC and examined by flow cytometry Figure 5 and confocal microscopy (data not shown). Dendritic cells stained uniformly strongly positive for both SSL7 and SSL9. Confocal microscopy confirmed that fluorescence was predominantly due to intracellular uptake of SSL, rather than surface staining. Both SSL7 and SSL9 were concentrated in small vesicular structures, localised particularly to the perinuclear region of the cell. In order to characterise the nature of these vesicles further, dendritic cells were cultured in the presence of SSL7 or SSL9-FITC and Texas Red dextran (data not shown), which is avidly taken up by dendritic cells via mannose receptors (Sallusto *et al.*, *J. Exp. Med.* 182, 389-400 (1995)). Texas Red dextran strongly labelled a large number of intracellular vesicles throughout the dendritic cell cytoplasm. SSL distribution and dextran distribution partially overlapped, with some intracellular vesicles clearly containing both markers. However, SSL positive dextran negative vesicles were also observed. In a small

5

10

15

20

25

proportion of cells, vesicles containing SSL9 appeared to aggregate, to generate very large vesicles, which contained high concentrations of both SSL and dextran. The very large vesicles observed (which were never seen in the presence of dextran alone) presumably resulted from fusion of many SSL containing vesicles, and may have been driven by intramolecular interactions between SSL molecules (as observed during dimerisation in crystal structure). Similar vesicle distortion is observed in the presence of excess invariant chain, again driven by multiple interactions between invariant chain molecules (Romagnoli *et al.*, *J. Exp. Med.* 177, 583-596 (1993).

In order to determine whether uptake of SSLs was a generalised feature of endocytic cells, peripheral blood monocytes were differentiated into macrophages, via culture in human serum, without added cytokines. Under these culture conditions, the cells develop a completely different phenotype (CD1a-,HLA-DR-,CD14 high) and morphology (lack of dendrite formation) (Swetman *et al, Eur. J. Immunol.* 32, 2074-2083 (2002). Macrophages, like dendritic cells efficiently endocytosed Texas Red dextran, but showed no uptake of either SSL7 or SSL9 (data not shown).

Discussion

5

10

15

20

25

30

One of the most exciting results from the structural studies of SSL7 was the identification of an identical SSL7 homodimer in the asymmetric unit of two otherwise very different crystal forms, grown from very different solution conditions. The dimer has a number of characteristics seen in functionally relevant dimers, and which indicates that the dimer is not purely an artefact of crystallization. Interestingly, the structure of SSL5 did not reveal any such dimer formation (Arcus et al., J. Biol. Chem. 277, 32274-32281 (2002) and the residues making up the interface are not conserved across the different SSL proteins.

The change in the orientation of the β -grasp domain in SSL7 relative to SSL5 is necessary to allow the dimer to form: if a similar dimer is created from SSL5 monomers, clashes occur between residues 110-114 in one monomer and 197-200 in the other, and more seriously between residues 118-125 and 161-165. These clashes are alleviated by the change in the orientation of the β -grasp domain β -strands in SSL7, further suggesting that SSL7 does not form a dimer in the same way.

Since no crystal structure of SSL9 is yet available, a preliminary comparison with SSL7 was carried out using a homology model. As for SSL5, the residues involved in the dimer interface in SSL7 are not conserved between SSL7 and SSL9. However the sequence changes do not create steric or electrostatic clashes between the two monomers; rather they are such that hydrogen-bonding between the two molecules is maintained, and in some cases, new hydrogen-bonds are formed. SSL9 may therefore form a dimer in the same manner as SSL7.

SSL7 and SSL5 show differences in the region of the N-terminal domain that are implicated in a general low-affinity MHCII binding site in superantigens. The homology model reveals that the residues in these loops are in general highly conserved between the SSL7 and SSL9 sequences. However there are some important differences, including the change of P93 in SSL7 to threonine in SSL9. This proline is part of a well ordered β-turn in SSL7, while in SSL5 there is no ordered secondary structural element present here: in fact this in SSL5 loop is rather disordered. The pattern of sequence conservation in the N-terminal loops indicates that the structures of SSL7 and SSL9 are more related to one another than to SSL5 and this may also be reflected in the functional properties of the molecules. However, the small number non-conservative sequence changes between SSL7 and SSL9 are also entirely consistent with differences in their putative receptor binding, as discussed further below.

Studies of the superantigens have shown that their interactions with MHCII and T cell receptor molecules are diverse, encompassing a number of different interaction surfaces and stoichiometries. This includes the formation of functionally important superantigen dimers for some superantigens, for example the Zn²⁺-dependent dimers formed by staphylococcal exotoxin D (Sundstrom *et al.*, *EMBO J.* 15, 6832-40 (1996)), which form via the C-terminal β-grasp domain, in a manner reminiscent of the homodimers seen of SSL7. It also includes the formation of heterodimers using the same surface of the N-terminal OB-fold but different surfaces of MHC molecules (as in the complexes of HLA-DR1 with SEB and TSST-1 respectively - Jardetzky *et al.*, *Nature* 368, 711-8 (1994) and Kim *et al.*, Science 266, 1870-1874 (1994)).

5

10

15

20

25

The functional and structural studies described here show that SSL7 and SSL7, may be functionally active in different quaternary states.

5

10

15

20

25

30

The most significant differences between the structures of SSL7, SSL5 and other superantigens suggest that these molecules may interact with different binding partners, and this is supported by the studies of cellular tropism. The characteristic features of the interaction between SSL7 and SSL9, and PBMC are specificity, temperature dependence and cell selectivity. Specificity, indicative that the interaction is mediated by a cell surface receptor, is shown by the demonstration that unlabelled SSL blocks uptake of SSL-FITC. This competition is observed for both SSL7 and SSL9, ruling out the hypothesis that the results are due to significant differences in affinity of binding between the two.

The lack of reciprocal inhibition between SSL7 and SSL9 indicates that these two molecules have different binding partners on the cell surface, although the possibility that they bind to different sites on the same molecule cannot be ruled out. Although the binding sites of SSL9 and 5 on the cell surface are distinct, both are able to self-target to APCs. Since it was impossible to measure binding in the absence of uptake, true measurements of affinity could not be obtained. The concentrations required to obtain measurable uptake, however, were in the order of 0.1 micromolar, suggesting that the affinity of interaction with any putative receptor is relatively low. This is a characteristic of many classical superantigens (Labrecque et al., Semin. Immunol. 5, 23-32 (1993)).

The temperature and time dependence of SSL interaction are suggestive of receptor mediated uptake rather than simple binding to the cell surface, and this was confirmed by the confocal microscopy studies discussed further below. However, a small amount of surface binding can be detected at 37°C, but not 4°, using indirect labelling of intact cells with an antibody against the histidine tag (not shown). The interaction of SSL with the receptor, as well as its subsequent uptake, is therefore temperature-dependent.

The third characteristic of SSLs observed in these cellular studies with PBMC was the highly selective nature of the target population with which interaction could be detected. In *ex vivo* PBMC, the major target population is the monocyte, characterised by high expression of CD14. Essentially all monocytes were found to

interact with both SSL7 and SSL9. In contrast, neither SSL7 nor SSL9 interacted with T cells, identified by expression of CD3 and high levels of CD2. Interestingly, SSL7, but not SSL9 also bound to a proportion of B cells (in the order of 30% although this varied significantly between individuals), providing further evidence that the receptor for these two molecules is distinct. Since a very significant proportion of T cells, and all human B cells also express class II MHC (e.g. HLADR) this result rules out a direct binding of SSL7 or SSL9 to these molecules, thus clearly distinguishing them from classical superantigens.

Monocytes express both class I and class II MHC molecules, and can act as antigen presenting cells for the activation of CD4 or CD8 T cells. However, the prototype antigen presenting cell, and the only cell type which can activate naïve T cells, is the dendritic cell. It was therefore of interest that both SSL7 and SSL9 were taken up efficiently by monocyte-derived dendritic cell and hence both molecules can self target to this important class of antigen presenting cells. This cell type, which can be obtained by culture of PB monocytes in appropriate cytokines, provides a widely used model for myeloid dendritic cells. In contrast, neither SSL7 nor SSL9 showed any tropism for macrophages, a cell type also produced by *in vitro* culture of monocytes, but which has no antigen presenting capabilities.

Studies indicate that antigen presenting cell activity remains intact in the presence of SSLs. Conversely, self-targeting to antigen presenting cells results in enhancing the immunogenicity of these proteins. The uptake of SSL7 and SSL9 into an endosomal compartment which intersects with the dextran uptake pathway indicates that the SSL7 are successfully targeted to the antigen presentation pathway. This is because uptake via the mannose receptor efficiently targets antigens to the Class II MHC antigen processing pathway (Sallusto *et al.*, *J. Exp. Med.* 182, 389-400 (1995)). Although enhancing immunogenicity would, at first sight, appear to be paradoxical, the generation of an antibody response to a secreted protein is unlikely to confer any advantage in bacterial clearance by the host. On the contrary, the interaction between secreted toxin and specific antibody in the microenvironment of the bacterium may activate complement and hence contribute to the breakdown of the physical barriers that restricts the invasiveness of these bacteria.

5

10

15

20

25

SSLs therefore appear to provide *S. aureus* with an alternative molecular strategy with which to distract the protective adaptive immune response of the host, and contribute to bacterial pathogenicity. Specifically, SSLs achieve this through their ability to target antigen presenting cells.

5

10

15

20

25

Example 2

The work described in Example 1 shows SSLs (*staphylococcal* superantigen like proteins) interact selectively with antigen presenting cells, including dendritic cells. The functional consequences of this interaction are now examined further. We show that SSL uptake does not adversely effect any of the parameters of antigen presenting cell function examined using dendritic cells. SSL7 and 9 were found to have no effect on viability or morphology of dendritic cells. The proteins did not induce dendritic cell maturation, as measured by cell surface phenotype. Exposure to SSL did not alter the ability of dendritic cells to take up FITC-dextran. In addition, exposure to SSLs did not impair the ability of the dendritic cells to stimulate allogeneic or antigen specific T-cell responses.

The ability of antigen presenting cells to present SSLs was also examined. Dendritic cells loaded with SSL7 or 9 were able to stimulate a T-cell proliferative response in three out of eight healthy individuals tested. Sera from nine out of ten individuals tested contained antibodies against both SSL7 and SSL9, and the response to each SSL was specific and not cross-reactive.

The results obtained demonstrate that SSLs can be used to specifically target antigen presenting cells and gain access to the antigen presentation pathway of these cells. SSLs may therefore be utilised to specifically deliver chosen antigens to antigen presenting cells in order to elicit an immune response against the chosen antigen.

Methods

Recombinant protein expression and purification

Recombinant N-terminal histidine tagged SSL7 and SSL9 proteins from S. aureus strain NCTC6571 and Embp32 from S. epidermidis were produced as described above in Example 1. SSL proteins without histidine tag behaved identically to the tagged version in terms of cell binding and uptake (Al Shangiti AM et al., Infect. Immun., 72:4261-70 (2004).

Antibodies

5

The following monoclonal antibodies (MAbs) were used: CD2 (mouse MAb 10 MAS 593, IgG_{2b}; Harlan), CD3 (supernatant mouse MAb UCHT1, IgG₁; gift from P. C. L. Beverley [Edward Jenner Institute for Vaccine Research, Compton, UK]), CD14 (supernatant mouse MAb HB246, IgG_{2b}; gift from P. C. L. Beverley), and CD19 (supernatant mouse MAb BU12, IgG1; gift from D. Hardie [Birmingham University, Birmingham, UK]), HLA-DR (supernatant mouse MAb L243, IgG_{2a}; gift 15 from P. C. L. Beverley), HLA-ABC (W6/32; Serotec), CD86 (supernatant mouse MAb BU63, IgG1; gift from D. Hardie), and CD54 (Mouse IgG MEM-111, gift from Prof. Horejsi, Academy of Science, Prague, Czech Republic). Fluorescein isothiocyanate (FITC) conjugated anti-mouse rabbit polyclonal antibody was purchased from Dako. PE-conjugated anti-CD1a (Monoclonal Mouse IgG1, clone 20 BL6, Immunotech, Marseille, France). The rabbit polyclonal antibody to His-SSL7 was produced under contract by Eurogentec Ltd (Southampton, UK) and validated by Western blot and ELISA.

Dendritic Cell Preparation

Monocyte-derived human dendritic cells (MDDC) were generated from fresh whole blood samples obtained from healthy volunteers as described previously (Al Shangiti *et al.*, (2004), *supra*). Briefly, mononuclear cells separated on LymphoprepTM (Nycomed Pharma) by centrifugation at 400g for 30 mins were incubated in 6-well tissue culture plates at 37°C in 5% CO₂ in complete medium (CM)(RPMI 1640 medium (Gibco) supplemented with 10% fetal calf serum (FCS; PAA Laboratories), 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine (Clare Hall Laboratories, Imperial Cancer Research Fund), 100 ng/ml human

recombinant granulocyte-marcrophage colony-stimulating factor (GM-CSF) and 50 ng/ml interleukin (IL)-4 (Schering-Plough Research Institute). On day four of incubation, loosely adherent cells were collected, and contaminating T and B lymphocytes were removed by incubation with CD3, CD2, and CD19 MAbs, followed by anti-mouse IgG-coated immunomagnetic DynabeadsTM (Dynal). The non-adherent fraction, containing highly purified dendritic cells (less than 5% CD3, CD19 or CD14) was cultured for another three days in fresh culture medium with GM-CSF and IL-4.

10 Cell viability

5

15

20

25

30

 10^5 dendritic cells/group were cultured with SSL7 or SSL9 (4.16 μ M) in a 96-well plate, and the plate was incubated at 37°C in 5% CO₂ overnight. Cell viability was assessed by trypan blue exclusion assay. 10 μ l of cells suspension were diluted in an equal volume of trypan blue solution. 10 μ l of this mix were loaded on a haemocytometer counting chamber placed under the microscope and white live cells (dead cells turn blue) were counted with in a 4 x 4 square grid.

Cell surface phenotype expression

Dendritic cell surface staining was performed by using a panel of monoclonal antibodies (MAbs) directed against surface antigens expressed by dendritic cells and the appropriate specific isotype controls. Briefly, 10⁵ cells were pre-incubated for 24 hours in culture medium with 4.16 µM of SSL7 or SSL9 or with PG (5 µg/ml, from S. aureus, Sigma) or purified LPS (100 ng/ml; Salmonella Minnesota, Sigma) in 96 well U-bottomed plates at 37°C. Cells were resuspended in 100 µl of staining buffer (HBSS, 1% FBS, 0.1% sodium azide), and incubated first with the relevant MAbs for 30 mins at 4°C. Cells were washed, and secondary immunolabeling was performed using FITC-conjugated rabbit anti-mouse immunoglobulin (30 min, 4°C). Cells were washed three times and fixed in 3.8% paraformaldehyde and examined within 5 days on a FACScan flow cytometer (Becton Dickinson). Data were analysed using CellQuest software.

Endocytosis assay

Dendritic cells (10⁵) were incubated in culture medium with or with 4.16 µM of SSL7 or SSL9 for various times (1 or 18 hours) in 96 well U-bottomed plates at 37°C. Different concentrations (1, 3, 10 and 30 µg/ml) of FITC-dextram (40,000 MW) were incubated with the cells. After 1 hour of incubation at 37°C, cells were washed in ice cold HBSS containing 0.1% azide to stop further endocytosis, fixed with 3.7% formaldehyde, and analysed by flow cytometry. The uptake of dextran is expressed as mean fluorescent intensity. For each sample at least 5000 events gated on dendritic cells were analysed.

10

5

T-cell Proliferation Assays

Autologous T-cells were obtained from non-adherent population of peripheral blood mononuclear cell fraction from eight healthy volunteers (age range 20-50, median approximately 30) and Cryopreserved in FCS containing 10% DMSO 15 (Sigma Aldrich) at -70°C. Cells were thawed rapidly (37°C), and B cells, monocytes, and macrophages were depleted by incubation with CD19, HLA-DR and CD14 MoAb for 45 minutes on ice. Cells were washed and then mixed with magnetic microbeads and separated on magnetic columns. T-cells (greater than 90% purity) were used immediately after purification. Allogeneic T-cells used in mixed leucocyte reactions (MLR) were prepared from HLA-mismatched donors in same 20 procedure. Purified dendritic cells (10⁴), either untreated or treated for 18 hours to different concentration of SSL proteins (4.16, 1.25 and 0.42 µM), were incubated at 37°C/5% CO₂ with autologous T-cells (2 x 10⁵ cells/well) in the presence of purified protein derivative (PPD) or with allogeneic T-cells in flat-bottomed 96-well 25 microtiter plates. The dendritic cell autologous and allogeneic T-cell cocultures were incubated 6 days. Both assays were then pulsed with 1 uCi of [3H]thymidine (ICN Biomedical, High Wycombe, United Kingdom) for the final 18 hours of culture. Cells were harvested, and T-cell proliferation was measured by liquid scintillation counting (Microbeta Systems). All assays were performed in triplicate. Results 30 were express as cpm. Error bars represent the standard deviation (SD).

Cytokines assays

Autologous T and dendritic cells were incubated with different concentrations of SSL proteins (4.16, 1.25 and 0.42 μM) at 37°C/5% CO₂ in 24-well plates. After 4 days, cell culture supernatants were centrifuged for the removal of cells and stored at -70°C. Cytokine detection was done by enzyme-linked immunosorbent assay (ELISA) for interleukin-10 (IL-10, Pharmingen, UK), gamma interferon (IFN-γ, Pharmingen, UK) and IL-13 (ImmunoTools, Germany). Purified protein derivative (PPD; 500 U/ml) was used as positive control.

10 Antibody detection

5

15

20

25

30

Human serum was collected from heparinised blood of ten normal individuals (three females, seven males, age range 20-50, median 30). ELISA miscroassay plates were coated for 24 hours with 0.04 µM of SSL proteins dissolved in sodium carbonate buffer 0.1 M, pH = 9.5 at 4°C (100 µl/well). After three successive washes with HBSS containing 0.1% Tween 20TM, blocking was performed with 1% skimmed milk in HBSS for 1 hour at 37°C. The plates were washed again three times, as before, and the tested sera diluted at 1:2000 in HBSS with 0.1% TweenTM were added to the SSL coated plates for 1 hour at 37°C (preliminary studies showed that this diluation of antisera gave no background staining for any serum tested in control wells). After three additional washes, the remaining bound antibodies were incubated for 1 hour at 37°C with alkaline phosphates - conjugated human antibodies diluated at 1:1000 in HBSS with 0.1% Tween 20TM. Excess conjugate was removed by washing as above and a colorimetric reaction was carried out by addition of the chromogen OPD (o-Phenylenediamine dihydrochloride) for 15-20 minutes. The plates were read (405 nm) to detect the optical density (OD) readings. A control well containing no serum was used to detect the background count. A polyclonal rabbit antibody raised against purified His-tagged SSL was included as a positive control (anti-SSL7).

Competitive ELISA was performed by mixing the sera with differing concentrations of SSL or a control bacterial protein Embp32 (0.08, 0.17, 0.33 and 0.42 µM), and then testing binding on SSL-coated plates as above.

Statistical analysis

The means of paired groups were analysed by a 2-tailed Student's t test. The level of significance was <0.05.

5 Results

10

15

20

25

30

The effects of SSL protein on DC viability, morphology and surface phenotype

Monocyte-derived dendritic cells (MDDC) were derived from peripheral
blood monocytes. They showed the characteristic phenotype with low CD14, and
high HLA-DR and high CD1a. As shown in Figure 1, fluoresceinated SSL7 and
SSL9 labelled CD1a expressing cells dendritic cells in unpurified dendritic cell
cultures, while residual contaminating cells (predominantly lymphocytes) did not
show any interaction with either protein. Nevertheless, in order to exclude the
possibility of indirect effects mediated on dendritic cells via some other cell type all
further experiments were performed on purified dendritic cell cultures, containing
less than 5% non-dendritic cells.

Dendritic cells were incubated with SSL7 or SSL9 (4.16 µM) for either 1 or 18 hours at 37°C and cell viability was assessed by trypan blue exclusion. Microscopic analysis revealed that SSL proteins were not cytotoxic as more than 95% of cells appeared viable. Untreated cells were predominantly non-adherent with few dendritic cell processes, typical of immature dendritic cells (Figure 7A, top panel). Neither SSL7 or SSL9 induced any noticeable morphological changes over the time period tested (Figure 7A, middle panels). In contrast dendritic cells treated with the TLR4 bacterial ligand LPS (100 ng/ml) or peptidoglycan (PG) 5 µg/ml) became adherent and extended multiple, long dendritic processes (Figure 7A, bottom panels). The cell-surface expression of a panel of characteristic dendritic cell surface markers was analyzed by flow cytometry. Immature dendritic cells were incubated with 4 µM SSL7 or SSL9, or LPS and PG and the surface phenotype of these dendritic cells was analysed after 18 hours of culture. Neither SSL7 or SSL9 (Figure 7B) induced significant changes in any of the surface molecules measured. In contrast, dendritic cells incubated with either LPS or PG up-regulated surface expression of HLA-DR, HLA-ABC, CD86 and CD54. Thus, in summary, exposure

of dendritic cells to the SSLs protein did not induce dendritic cell maturation, nor indeed any obvious changes in dendritic cell surface phenotype, viability or morphology.

5 The influence of SSLs on endocytosis

10

15

20

25

30

Fluorescein isothiocyanate-labelled dextran (FITC-Dx) is rapidly taken up by dendritic cells via the mannose receptor (Sallusto F., et al., J. Exp. Med., 182:389-400 (1995)). To determine whether SSL protein altered antigen uptake function, dendritic cells were treated with 4.16 µM of SSL7 or SSL9 and incubated for 1 or 18 hours at 37°C. Different concentrations of FITC-Dx (1, 3, 10 and 30µg/ml) were added to the cell and incubated for a further hour at 37°C, and FITC-Dx update by the dendritic cell was then measured by flow cytometry. Figure 8 shows the results obtained with the total cell associated dextran being measured by flow cytometry and expressed as mean fluorescent intensity for a minimum of 5000 dendritic cells. As shown in Figure 8, SSL treated dendritic cell showed rapid update of FITC-Dx, and neither protein had any effect on endocytic activity.

The influence of SSLs on the T-cell stimulatory capacity of dendritic cells

To evaluate the effect of SSL proteins on the stimulatory capacity of dendritic cells in T-cell proliferation, day 6 dendritic cells (10^4) were incubated for 18 hours with different concentrations of SSL proteins (0.42, 1.25, and 4.16 μ M). Residual T-cells were depleted and the functional assays performed using fresh viable purified autologous or allogeneic T-cells (2×10^5). The ability to induce secondary immune responses was unchanged. Figure 9A shows representative experiments eliciting recall responses to tuberculin (PPD – 500 U/ml)). There was no statistical difference in the proliferative responses observed between any of the pre-incubated dendritic cell groups with SSL 7 or SSL9 (37182 \pm 2036 cpm and 36458 \pm 3000 cpm, respectively) and the control (36458 \pm 6151 cpm) after the 6 days co-culture period (P>0.05).

The capacity of SSL-treated dendritic cells (10⁴) to elicit primary T-cell proliferation also was tested in an allogeneic mixed lymphocyte reaction (MLR). The same concentrations of SSL 7 and 9 and number of T cells used in the autologous

assay were emplyed with the allogenic T cells. A similar result was observed (Figure 9B), as proliferation response against allogeneic T-cells (25710 ± 1140 cpm) was unaffected by the treatment of SSL7 or SSL9 (26149 ± 3674 and 25816 ± 3159 cpm, respectively (P>0.05)). Therefore, SSL proteins have no effect on the ability to induce proliferation of allogeneic T-cells. In general, the results of these experiments demonstrate that the antigen presentation capacity of dendritic cells remains intact in the presence of these secreted proteins.

T-cell responses to SSLs in the normal human population

To investigate the ability of SSLs to stimulate a recall T-cell response in healthy volunteers, dendritic cells (10^4) were incubated with autologous T-cells (2×10^5) from normal donors in the presence of different concentrations of SSL proteins (0.42, 1.25, and 4.16 μ M) for 6 days (Figure 10). Purified protein derivative (PPD) was used as a positive control. A recall response against SSL7 was documented in 2/8 individuals and a response to SSL9 in 3/8 individuals. All volunteers showed a good recall response against PPD (70889 \pm 3146 rpm).

The supernatants of three dendritic cell/T-cell/SSL co-cultures (individuals 1, 2 and 8 from Figure 10) were tested for IFN- γ (TH1), IL-13 (TH2) and IL-10 (Treg) after 4 days. All cytokine levels were low (IFN γ < 700pg/ml n=3); IL-13 < 50 pg/ml, n=3) or undetectable (IL-10). The results for the individual with maximum response (individual 1 in Figure 10) at different SSL concentrations are shown in Figure 11.

Antibodies responses to SSLs in the normal human population

In order to see if the presence of a T-cell response correlated with antibody production, sera from ten individuals (including those tested for T-cell responses as shown above) were tested by ELISA against immobilized SSL7 and SSL9 (Figure 12A). Sera was diluted 1:2000 and tested for binding to SSL7 or SSL9 by ELISA as described in the materials and methods section. Nine out of time individuals tested showed antibody responses to both SSL7 and SSL9 at this dilution. Interestingly, competitive ELISA (Figure 12B and C) showed that the antibody response was highly specific for individual SSL isotypes. Increasing concentrations of SSL7

5

10

15

20

25

(Figure 12B) were able to completely block the interaction between SSL7 protein and SSL7 sera. In contrast, neither SSL9, nor an unrelated bacterial protein (Embp32) had any effect on the SSL7 antibody binding. Conversely, only SSL9, but not SSL7 or Embp32, were able to block SSL9-antibody (Figure 12C). Therefore, interaction between SSL proteins and SSL-antibodies were specific and do not cross-react.

Discussion

10

15

20

25

30

5

Dendritic cells as professional antigen presenting cells have a key role in the initiation of the immune response against microbial infections; therefore, many microbial strategies have been described which interfere with dendritic cell function (Moll H., Cell Microbiol., 5:493-500 (2003)). One possibility was that SSLs might interfere with normal function of dendritic cells and therefore impair the protective immune response to *S. aureus*. Such functions have recently been proposed for the anthrax lethal toxin (Agrawal A, *et al.*, Nature, 424:329-34 (2003)) and *E. coli* heat labile toxin (Petrovska L, *et al.*, Vaccine, 21:1445-54 (2003)). The possibility of SSLs inhibiting dendritic cell function was therefore ruled out in the present study.

SSL7 or SSL9 were shown to be non-toxic to antigen presenting cells and did not alter the characteristic morphology of these cells (cf the effect of *Clostridium difficile* toxin B, (Swetman CA *et al.*, Eur. J. Immunol., 32:2074-83 (2002)). Conversely, SSL7 and SSL9 did not induce process extension, or up-regulation of cell surface co-stimulatory and HLA molecules on the dendritic cell, two characteristic signs of activation/maturation responses induced by whole *S. aureus* (Tourkova IL, *et al.*, Immunol. Lett., 78:75-82 (2001)) or bacterial surface components such as peptidoglycan (PG) (Michelsen KS, *et al.*, J. Biol. Chem., 276:25680-6 (2001)). Thus, although SSLs bind to and are taken up by dendritic cells (Figure 6) this interaction does not appear to engage activating receptors on the dendritic cell surface. Previous studies (Williams RJ, *et al.*, Infect. Immun., 68:4407-15 (2000)) indicating that SSLs could activate high levels of inflammatory cytokine release from peripheral blood cells could not be repeated using the highly

purified protein preparations used for this study (data not shown) and may have resulted from trace amounts of contaminating LPS.

In addition to their specialized dendritic morphology and cell surface phenotype, dendritic cells are characterized by extremely rapid endocytosis by both fluid phase and receptor mediated update (Swanson JA, et al., Trends Cell Biol., 5:424-8 (1995) and Levine TP, et al., Adv. Exp. Med. Biol. 329:11-5 (1993)). The uptake of FITC-Dextran, which is believed to be mediated via mannose receptors on the cell surface (Sallusto F, et al., J. Exp. Med., 182:389-400 (1995)) is frequently used to measure the latter. Dendritic cells did indeed show efficient internalization of FITC-Dextran (albeit slightly less well after overnight culture) and this uptake was not altered by exposure to SSL7 or SSL9. Finally, since dendritic cells are distinguished by being the most potent stimulators of both primary and secondary Tcell responses, we tested the effects of SSL7 and SSL9 exposure on dendritic cell function directly. Although dendritic cells stimulated powerful proliferative responses to both PPD (a classical recall secondary response to BCG vaccination) and allogeneic purified T-cells (predominantly a primary response) neither SSL7 nor SSL9 altered the antigen presentation activity of dendritic cells. Taken together, therefore, these data do not provide any evidence that SSL proteins inhibit or modify dendritic cell function.

Further experiments demonstrated that SSL targeted to antigen presenting cells, in particular dendritic cells, actually are delivered to the antigen presentation pathway. This can hence enhance an immune response to these proteins and can also be used to deliver chosen antigens to the same pathway. The immune response to SSLs was analysed in a small panel of healthy human volunteers. Although none of the individuals tested had any known history of clinical *S. aureus* infection, the organism is extremely prevalent in the environment and approximately 30-40% individuals are persistently colonized by *S. aureus*, usually in the nasal mucosa (Nair SP, Williams RJ, Henderson B, Advances in our understanding of the bone and joint pathology caused by *Staphylococcus aureus* infection, Rheumatology, (Oxford), 2000; 39:821-34). Indeed, in eight volunteers tested, three (37%) showed a dose dependent T-cell response to dendritic cells loaded with SSL9 and two to SSL7. The response was detectable with relatively large numbers of T-cells/well (2 x 10⁵) and

5

10

15

20

25

induced the release of a very low level of either TH1 (IFN-γ) or TH2 (IL-13) cytokines, suggesting precursor frequency of T-cell specific for SSL was likely to be low.

Despite a low T-cell precursor frequency, the humoral response to SSL7 and SSL9 was robust. Using solid phase ELISA nine out of ten sera tested showed 5 specific antibody binding to both SSLs. The response measured was IgG (using an anti-IgG detection antibody) suggesting that class switching had occurred and further implicating the activity of SSL-specific T-cells. Interestingly, some individuals (e.g. individuals 2 and 7 in Figures 10 and 11) show antibody responses, but no detectable 10 T-cells responses, perhaps because precursor T-cell frequency has fall below detectable levels in these individuals. One individual showed a T-cell response to SSL9, but no antibody response to either SSL tested, although we cannot rule out that some antibody might be detectable at a lower dilutions. Interestingly, the antibody response to each SSL was highly specific with minimal evidence of cross-SSL reactivity. This data is consistent with the sequence diversity between SSL 15. paralogs, despite a highly conserved three dimension structure (Al Shangiti et al (2004) Supra and Arcus VL, et al., J. Biol. Chem., 277:32274-81 (2002)). The presence of SSL specific immunity in so many individuals, and the existence of so many SSL paralogs in the S. aureus genome, is suggestive of a strong evolutionary interaction between host immunity and this bacterial family of proteins. 20

In conclusion, this study describes a number of functional consequences of the interaction between SSL and dendritic cells. In contrast to some other bacterial exotoxins (Agrawal *et al*, (2003), *Supra* and Petrovska *et al*., (2003) *Supra*) SSLs do not appear to damage dendritic cells, but rather can be taken up by them, and thus stimulate T-cell response in healthy individuals. This means that SSLs may be employed to selectively deliver chosen antigens to antigen presenting cells, in particular to dendritic cells. SSLs may therefore be used to help induce an immune response or tolerance to a selected antigen.

CLAIMS

- 1. Use of a complex comprising:
- a targeting polypeptide comprising a staphylococcal superantigen-like protein (SSL), a fragment thereof or a variant of either, where the SSL, fragment or variant has the ability to target the complex to an antigen presenting cell; and
- (b) an antigen and/or a nucleic acid molecule encoding an antigen,
 in the manufacture of a medicament for use in immunization or the induction of tolerance.
 - 2. Use according to claim 1, wherein the antigen comprises a polypeptide which is present in the complex as a fusion polypeptide with the targeting polypeptide.
 - 3. Use according to Claim 1 or 2, wherein the antigen and targeting polypeptides are not part of the same polypeptide, but are covalently joined to each other or are joined through a linker.
- 4. Use according to any one of the preceding claims, wherein the antigen is a pathogenic antigen, an auto-antigen, an allergen and/or a cancer antigen.
 - 5. Use according to any one of the preceding claims, wherein the targeting polypeptide is present as a dimer.
 - 6. Use according to any one of the preceding claims, wherein the targeting polypeptide comprises:
 - (a) a polypeptide having the amino acid sequence of any of SEQ ID Nos 6, 7, 9, 20, 21, 23, 30, 32, 34, 40, 44, 42, 58, 59, 60 72, 74, and/or76;
- 30 (b) a fragment of any of the sequences of (a), the fragment having the ability to target the complex to an antigen presenting cell; and/or
 - (c) a variant polypeptide having at least 30% amino acid sequence identity

15

to any of the polypeptides of (a) or (b) and the ability to target the complex to an antigen presenting cell.

- 7. Use according to claim 6, wherein the targeting polypeptide comprises:
- 5 (a) the sequence of SEQ ID No: 7, 9, 21, 23, 32, 34, 40, 42, 59, 60, 74, 76 and/or 92;
 - (b) a fragment of any of the sequences of (a), the fragment having the ability to target the complex to an antigen presenting cell; and/or
- (c) a variant polypeptide having at least 70 % amino acid sequence identity to any of the polypeptides of (a) or (b) and the ability to target the complex to an antigen presenting cell.
 - 8. Use according to any one of the preceding claims wherein the medicament is for the induction of tolerance and is to be administered without an adjuvant.

9 A complex comprising:

- (i) a targeting polypeptide as defined in any one of the preceding claims; and
- (ii) an antigen or a nucleic acid encoding an antigen, wherein the antigen or encoded antigen is selected from a pathogenic antigen, auto-antigen, an allergen and
 20 a cancer antigen.
 - 10. A complex according to claim 9, wherein the targeting polypeptide is present as a dimer.
- 25 11 A virus comprising a targeting polypeptide as defined in any one of claims 1 to 8.
- 12. A nucleic acid molecule comprising a polynucleotide sequence encoding a targeting polypeptide and antigen, wherein the targeting polypeptide and antigen are as defined in claim 9.

13. A nucleic acid according to claim 12, wherein the nucleotide sequence encoding the targeting polypeptide and the antigen are present in a single open reading frame.

- 5 14. A vector comprising a nucleic acid according to claim 12 or 13.
 - 15. A vector according to claim 14, comprising a promoter capable of giving rise to expression of both the targeting polypeptide and the antigen in an antigen presenting cell.

16. A cell comprising a nucleic acid according to claim 12 or 13 or a vector according to claim 14 or 15 or infected with a virus according to claim 11.

- 17. A method of loading antigen presenting cells comprising contacting
 an antigen presenting cell or a precursor thereof with a complex as defined in any
 one of claims 1 to 10 or a virus according to claim 11
 - 18. A method according to claim 17, which is an in vitro method.
- 20 19. An antigen presenting cell which has been loaded with a complex as defined in any one of claims 1 to 10 or a virus according to claim 11.
- 20. A pharmaceutical composition comprising a complex as defined in any one of claims 1 to 10, a nucleic acid encoding the targeting polypeptide and antigen of a
 25 complex as defined in any one of claims 1 to 10, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus according to claim 11 or an antigen presenting cell according to claim 19 and a pharmaceutically acceptable carrier or diluent.
- 30 21. A vaccine comprising a complex as a complex as defined in any one of claims 1 to 10, a nucleic acid encoding the targeting polypeptide and antigen of a complex as defined in any one of claims 1 to 10, a vector comprising such a nucleic

acid, a cell comprising such a nucleic acid or vector, a virus according to claim 11 or an antigen presenting cell according to claim 19.

- 22. A complex as defined in any one of claims 1 to 10, a nucleic acid encoding the targeting polypeptide and antigen of a complex as defined in any one of claims 1 to 10, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus according to claim 11, or an antigen presenting cell according to claim 19 for use in a method of treatment of the human or animal body by therapy.
- 23. Use of a nucleic acid encoding the targeting polypeptide and antigen of a complex as defined in any one of claims 1 to 10, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus according to claim 11 or an antigen presenting cell according to claim 19 in the manufacture of a medicament for use in immunisation.

15

20

5

24. A method of immunising a subject, the method comprising administering an effective amount of a complex as defined in any one of claims 1 to 10, a nucleic acid encoding the targeting polypeptide and antigen of a complex as defined in any one of claims 1 to 10, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, a virus according to claim 11 or an antigen presenting cell according to claim 18 to a subject.

25

25. An agent for immunising a subject, the agent comprising a complex as defined in any one of claims 1 to 9, a nucleic acid encoding the targeting polypeptide and antigen of a complex as defined in any one of claims 1 to 9, a vector comprising such a nucleic acid, a cell comprising such a nucleic acid or vector, or an antigen presenting cell according to claim 17.

2/14

Figure 1 (continued)

 $\widehat{\,\,\,\,\,\,\,\,}$

3/14

Figure 3(a

Figure 3 (b)

7/14

Figure 6

Figure 7

Figure 8

PCT/GB2005/001084

3H-Thymidine Incorporation (CPM)

3H-Thymidine Incorporation (CPM)

Figure 9

WO 2005/092918

Figure 10

Figure 13

Figure 14

SEQUENCE LISTING

S. aureus strain N315 taken from GenBank

SEQ ID no:1 143101 tatgaaattt aaagcgatag caaaagcaag tttagcattg ggaatgttag caacaggtgt 143161 aattacatcg aatgtacaat cagtacaagc gaaaacagaa gttaaacaac aaagtgaatc 10 143221 agagttgaaa cactattata ataaaccggt tttagagcgt aaaaatgtta ctggatataa 143281 atatactgaa aaaggtaaag attatataga tgttatagta gacaatcaat attctcaaat 143341 ttctttagtt ggatctgata aagacaaatt taaagatgga gacaactcga atatagatgt 143401 gtttatcctt agagaaggtg acagtagaca agcaacaaat tactcaattg gtggcgtaac 143461 aaaaacaaac agtcaacctt ttattgacta tatacacaca ccaatccttg aaatcaagaa 15 143521 aggtaaagaa gaaccacaaa gtagtttata ccaaatttat aaagaagaca tctcattgaa 143581 agaacttgat tatagattaa gagaacgtgc aatcaaacaa cacggcttgt attcaaatgg 143641 tottaaacaa ggtcaaatta caattacaat gaaagatggc aaatcacata ctatcgattt 143701 aagtcaaaaa cttgaaaaag aacgtatggg tgattctatc gacggcagac aaatacaaaa 143761 aattctagta gaaatgaaat aatactttct aacaacaaag cgctatgttg aatagtgctt 143821 gttatggaaa tatatggaag ttaagcgacg tactgttgct tagcttcttt ttttgagggg 20 143881 aaaagttaca aaactcacac aaacagtcgc accacgcatt atcttttgct taaatagctt 143941 aatcatattt tatgaatagt taaaaacagg ttaatgtgaa tatccgaata cagctcctat 144001 aatatqqqtq tatqqttcaa attacqtaat aaaacaatct aattataata gattggagca 144061 tacaactatq aaaatgaaaa atattgcaaa aataagtttg ttattaggaa tattagcaac 25 144121 aggtqtaaac actacaacgg aaaaaccagt tcatgccgaa aagaaaccta ttgtaataag 144181 tgaaaatagc aaaaaattaa aagcttatta tactcaacct agtattgaat ataaaaatgt 144241 gacaggttat atcagtttca ttcaaccaag tattaaattt atgaatatca tagatggtaa 144301 tictottaat aaccttgctt taattggcaa agataagcaa cattatcata cgggtgtaca 144361 tcgtaatctt aatatatttt acgttaatga ggataagaga tttgaaggtg caaagtactc 144421 tattgggggt atcactagtg caaacgataa agctgtcgac ctaatagcag aagcaagagt 30 144481 tattaaagca gatcatattq qtgaatatga ttatgacttt ttcccattta aaatagataa 144541 agaagcgatg tcattgaaag agattgattt taaattaaga aaatacctta ttgataatta 144601 tggtctttac ggtgaaatga gtacagggaa aattaccgtc aaaaagaaat actatggaaa 144661 gtatacattt gaattggata aaaagttaca agaagaccgt atgtccgatg ttatcaatgt 35 144721 cacagatatt gatagaattg aaatcaaagt tagaaaagct taatacacat acttgacgac 144781 gaaataattt gaaattgaaa tagagaggtt aagtgacgat caaacgttgc ttaacttctt 144841 tttaatgctt aaaaatcatt tcaaaggcac atagaaacgc tatattaacc tcataatcac 144901 tcattatttt ttgcttaaat tacttaataa tacttcaata attgttaaaa agggtttaat 144961 gtgattatct tagaacgcca tctataatga tgttgtatga ttcaaattac gtaaaaagac 40 145021 aatcgaatat aatatagatt ggagtataca attatgaata tgaaaacaat tgctaaaacc 145081 agtttagcac tagggctttt aacaacaggc gcaattacag taacgacgca atcggtcaaa 145141 gcagaaaaa tacaatcaac taaagttgac aaagtaccaa cgcttaaagc agagcgatta 145201 qcaatqataa acataacaqc aggtqcaaat tcagcgacaa cacaagcagc taacacaaga 145261 caaqaacqca cqcctaaact cqaaaaqqca ccaaatacta atgaggaaaa aacctcagct 45 145321 tccaaaatag aaaaaatatc acaacctaaa caagaagagc agaaatcgct taatatatca 145381 gcaacgccag cgcctaaaca agaacaatca caaacgacaa ccgaatccac aacgccgaaa 145441 actaaagtga caacacctcc atcaacaaac acgccacaac caatgcaatc tactaaatca 145501 gacacaccac aatctccaac cataaaacaa gcacaaacag atatgactcc taaatatgaa 145561 gatttaagag cgtattacac gaaaccgagt tttgaatttg aaaagcagtt tggatttttg 50 145621 ctcaaaccat ggacgacggt taggtttatg aatgttattc caaataggtt catctataaa 145681 atagctttag ttggaaaaga tgagaaaaaa tataaagatg gaccttacga taatatcgat 145741 gtatttatcg ttttagaaga caataaatat caattaaaaa aatattctgt cggtggcatc 145801 acqaaqacta ataqtaaaaa aqttqatcac aaaqcaqaat taaqcqttac taaaaaaaqat 145861 aatcaaggta tgatttcacg cgatgtttca gaatacatga ttactaagga agagatttcc 55 145921 ttgaaagagc ttgattttaa attgagaaaa caacttattg aaaaacataa tctttacggt 145981 aacatgggtt caggaacaat cgttattaaa atgaaaaacg gtgggaagta tacgtttgaa 146041 ttacacaaaa aactgcaaga gcatcgtatg gcagatgtca tagaaggtac aaacattgat 146101 aaaattgaag tgaatataaa ataatcatga cgttctctaa atagaagctg acatcggtaa 146161 aacaagaagt taagtgacaa cggtttacat gttgcttagc ttcttttatt atgcgtaatg 60 146221 atgtaaaaga cgaatattca tttgtttgta aaagtggcat ttctatgtct taaaagtgac 146281 gaatceteaa atgtgeeaag tgttgaatea cateaaaate agttttattt aacgaacatt 146341 atggatttct taatttactt aacgatgatt caaatatagt taaacaaggt ttaatgtgaa

```
146401 tggagcaata cgccatctat aataaagctg tatgattcaa tgaatgtaat cgaacaaatc
         146461 taataattac gaatggagca tacaactatg aaaataacaa caattgctaa aacaagttta
         146521 gcactaggcc ttttaacaac gggtgtaatc acaacgacaa cgcaagaagc aaacgcgaca
         146581 acaccatctt ccactaaagt ggaagcacca caatcaacac cgccctcaac taaagtagaa
 5
         146641 gcaccgcaat caaaaccaaa cgcgacaaca ccgccttcaa ctaaagtgga aacaccgcaa
         146701 caaacaccga acgcgacaac accatcttca actaaagtgg aaacaccaca atcgccaacc
         146761 acaaaacaag taccaacaga aataaatcct aaatttaaag atttaagagc gtattatacg
         146821 aaaccaagtt tagaatttaa aaatgagatt ggtattattt taaaaaaatg gacgacaata
         146881 agatttatga atattgttcc agattatttc atatataaaa tagctttagt tggaaaagac
10
         146941 gataaaaaat atgatgaagg agtacatagg aatgtcgatg tatttgtcgt tttagaagaa
         147001 aaaaataaat atggagtgga aagatactcg gtcggtggta tcacaaagag taatagtaaa
         147061 aaagttgatc acaaagcagg agtaagaatt actaaagaag ataataaagg tacaatctct
         147121 catgatgttt cagaattcaa gattactaaa gagcagattt ccttgaaaga acttgattt
         147181 aaattgagaa aacaacttat tgaaaatcat aatctgtacg gtaacgttgg ttcaggtaaa
15
         147241 attgttatta acatgaaaaa cggtggaaag tacacgtttg aattacacaa aaaattacaa
         147301 gaaaatcgca tggcagacgt catagatggc actaatattg ataacattga agtgaatata
         147361 aaataatcat gacattotot aaatagaago tgtcatogga aaaacaagaa gttcaqtgac
         147421 aacggcctac atgttgctta gcttcttttg ttatgttcga tgatttgaga acccgaattt
         147481 tcgatgggtc caaatatgac gtggaagagt cctgaattta tctgtaaatc cctatctatc
20
         147541 gggtgtgaag cacaacggaa tcagttttat ttaacgaaca ttatagattc cttaatttac
         147601 ttaataatga ttcaatgatt attaaagatg gtttaatgtg aaaggtcaaa tacgccaatt
         147661 ataataaagc tgtatgattc aatagacgta agcgaacaaa tctaataatt acgaatggag
         147721 catacaacta tgaaaatggc agcaattgcg aaagcaagtt tagcattagg tattttagca
         147781 acaggaacaa taacgtcatt gcatcaaact gtaaatgcga gtgaacatga agcaaaatat
25
         147841 gaaaatgtga caaaagatat ctttgactta agagattact atagtggcgc aagtaaggaa
         147901 cttaaaaatg ttactggtta tcgttatagc aaaggtggca agcattacct tatctttgat
         147961 aaaaatagaa aattcacaag agtacagata tttggtaaag atattgaaag atttaaagca
         148021 cgcaaaaatc cgggattaga catatttgtt gttaaagaag cagaaaatcg caacggcaca
        148081 gtgttttcat atggtggtgt cactaagaaa aatcaagacg cttattatga ttatataaac
30
         148141 gcaccaagat ttcaaatcaa gagagatgaa ggtgacggta ttgctacgta cggtagagta
        148201 cactacattt ataaagaaga gatttcactt aaagaactcg actttaaatt gagacagtat
        148261 ttaattcaaa attttgatct gtataaaaag tttcctaaag atagtaagat aaaagtgata
        148321 atgaaagatg gcggctatta tacgtttgaa cttaataaaa aattacaaac aaatcgcatg
        148381 agtgatgtca ttgacggtag aaatattgaa aaaatagaag ccaacattag ataattcaat
35
        148441 gaaatatgga taatagtaaa atatggatag tatagaggag ttaggcaaca taagttgctt
        148501 agcttctttt ttgtgttggc gagatgaaaa tgaagcgtat cgatgaataa taaaaacacc
        148561 aataaaactt gtggaaatag ttgatactta tagatgcgtg atgtcgcttt agtgacatga
        148621 aacaatgtgg aaaacataat taaattgagg gaaagtgtga atagttaaaa aattagcatt
        148681 gtgttataaa aaataattaa tactgttagg atttcattaa ctaacttaac gttggttcaa
40
        148741 aaatagttaa aaagaggtta attcatagcg cagtatctcg cttatataat gatagtagat
        148801 tgttcgtatt acgtaattga attaatcata taaaaatata ttaagacaaa atttataaat
        148861 agattgggag aatagtacta tgaaattaaa aacgttagct aaagcaacat tggcattagg
        148921 cttattaact actggtgtga ttacatcaga aggccaagca gtccacgcaa aagaaaagca
        148981 agagagagta caacatttat atgatattaa agacttatat cgatactact catcagaaag
45
        149041 ttttgaattc agtaatatta gtggtaaggt tgaaaactat aacggttcta acgttgtacg
        149101 ctttaaccaa gaaaaacaaa atcaccaatt attcttatta ggaaaagata aagataaata
        149161 taaaaaaggc cttgaaggcc agaatgtctt tgtggtaaaa gaattaattg atccaaacgg
        149221 tagactatct actgttggtg gtgtgactaa gaaaaataac aaatcttctg aaactaatac
        149281 acatttattt gttaataaag tgtatggcgg aaatttagat gcatcaattg actcatttt
50
        149341 aattaataaa gaagaagttt cactgaaaga acttgatttc aaaattagaa agcaattagt
        149401 tgaaaaatat ggtttatata aaggtacgac taaatacggt aagatcacta tcaatttgaa
        149461 agacgagaaa aaggaagtaa ttgatttagg tgataaactg caattcgagc gcatgggtga
        149521 tgtgttgaat agtaaggata ttcaaaatat agcagtgact attaatcaaa tttaaattaa
        149581 acaatcaatg actttaaagt aataaatttg aagcagctta acgatgaaat gttgaataaa
55
        149641 tacgtacatc ctccaaaaag gggcgtatct aaatcaacag tgtcgttagg ctgtttttat
        149701 gttttataac gcagggtatg agcgtactaa aaattcacat tacttctgaa agtgatgtcc
        149761 attgaatatt aattagttet teattaacea tgatttaatt ttaattaaac gagtgttaat
        149821 gtcagtctgt ctcaatgccc tttataataa atgtgtatta ttcaaattac gtaataaaag
        149881 caatccaata tattaagatt ggagcatatg aatatgaaat ttacagcgat agctaaagcg
60
        149941 atatttgtat taggaatatt aacaacaagt gtaatgataa cagaaaatca atcggttaat
        150001 gcaaaaggaa agtatgaaaa aatgaaccgt ttatatgata caaacaagtt acatcaatac
        150061 tattcaggac ctagttatga gttaacaaat gttagtggcc aaagtcaagg ttattatgac
        150121 tctaacgttt tgctttttaa ccaacaaaat caaaagttcc aagtattttt attgggaaaa
        150181 gatgaaaata aatacaaaga aaaaacacat ggtttagatg tctttgcggt accagaatta
65
        150241 gtagatttag atggaagaat atttagtgtt agtggtgtaa cgaagaaaaa cgtaaaatca
```

	1 50001						
					ctagttaaaa		
					aaggaagaag		
	150421	tttaaaataa	gaaaactgtt	gattaaaaaa	tacaaactgt	atgaagggtc	agctgataaa
					aataagtatg		
5					aatagtgaac		
	150601	aatttgaaat	aatcaatgat	atatagaata	aaagcttaag	aagcggttta	ataatcccat
					taaaaacata		
	150721	taagctgctt	ttttgtacac	tttgtatcga	ataacttaag	atctaaaact	aatcggaaag
	150781	aacaatgatt	ccccaaaaa	aatttatgtt	gctattaaaa	atcagttaat	acgaatgtta
10	150841	aaatacgttt	gattttcatt	aataatgatt	caagtttatt	taaatgagcg	ttaatgtcag
					gatagttcaa		
	150961	caatatatca	agattqqagc	aaataaatat	gaaattgact	gcattagcaa	aagcaacatt
					tacagcagaa		
					ttatatcaat		
15					cgttaaaagt		
					tttcaaagtg		
					tgatgtcttt		
					tataacaaag		
					taaaaaagtt		
20					agaagtatcg		
					attgtataaa		
					atatgtaatt		
		-		_	taagcaaatt		_
					taagaagcga	_	
25					gttaaataca		
					tcatcagttg		
					taacctgaac		
					gaggttaatt		
	151981	ttataataaa	aatgtatgat	tcaaattacg	taatgaaaac	aatccaatat	attaagattg
30	152041	gagcaaataa	atatgaaatt	tacagcatta	gcaaaagcaa	cattagcttt	aggaatttta
					tcaggtcatg		
	152161	gtaaataaac	atgacaagga	ggcactatac	cgatactaca	ctggaaagac	tatggaaatg
					aataacttgc		
					aaaagtaaat		
35	152341	gggttagatg	tgttttttgt	tcaagaaaaa	agagataagc	acgatatatt	ttatactgtt
	152401	ggtggtgtaa	tacagaataa	taaaacatct	ggagttgtca	gtgcaccaat	attaaatatt
	152461	tcaaaagaaa	agggtgaaga	tgcttttgtg	aaaggttacc	cttattacat	taaaaaagaa
	152521	aaaataacac	taaaagagct	ggattataag	ttgagaaagc	atctaattga	aaaatacgga
	152581	ctttataaaa	caatctcaaa	agatggtagg	gtcaaaatta	gcttgaaaga	tggcagtttt
40					tttaaatata		
	152701	aaacaaatta	aagatattga	agttaactta	aagtaaataa	ttacgaataa	taaaaagtaa
	152761	ttgaagcggc	ttaacggtga	aatgtaaatt	ggtgcgcata	gcttatacaa	aaaggatgca
	152821	tcaatcgata	tcgtcgttaa	gccgtttttg	tttgtgtgtc	atgaatccta	tcccaatctc
	152881	catgaatata	aaaattccac	caccaacatc	aaaattctcc	acatcgcaac	ataaccaaat
45	152941	gttataataa	atctattaca	caaagagata	aattacttat	tcaaaggcgg	aggaatcaca
	153001	tgtctattac	tgaaaaacaa	cgtcagcaac	aagctgaatt	acataaaaaa	ttatggtcga
					cgagtgaatt		
	153121	tgattttcta	tcgcttctta	tctgaaaaag	cggaacaaga	atatgcagat	gccttgtcag
					cagatgaaga		
50	153241	ctgaattaat	tgatcaagtc	ggttacttca	ttgaaccaca	agatttattc	agtgcgatga
	153301	ttcgtgaaat	tgaaacgcaa	gatttcgata	tcgaacatct	cgcaacggcg	attcgtaaag
					aaaatgactt		
					atgtcaaaga		
	153481	aagttatggt	taaccttgac	gacttaccat	tcgttcacag	tgatatggaa	attgatatgt
55					gctttgcggc		
					agatactggc		
					catgtggttc		
	153721	ttggtaaaga	aacgcaagtg	tatcgttatt	tcggtcaaga	acgtaacaat	accacttaca
					atgtgcgcta		
60					taggcaatac		
					attcaaaatt		
					aagcagactt		
	154021	tacattacct	agacgatgaa	ggtaccatgg	cagttgtact	cccacatggt	gtcttattcc
<i>(E</i>	154081	gtggtgccgc	agaaggcgtc	attcgtcgtt	atttaattga	agaaaagaac	tacttagaag
65	154141	ccgtgattgg	cttaccagtg	aatattttct	atgggacaag	tattccaaca	tgtatcttag

```
154201 tatttaaaaa atgtcgccaa caagacgaca acgtattatt tatcgatgca tccaatgatt
         154261 ttgaaaaagg aaaaaatcaa aaccatttaa gcgatgccca agtcgaacgt attattgaca
         154321 catacaagcg taaagaaaca attgataaat acagttacag tgcgacatta caagagattg
         154381 ccgataacga ttacaaccta aacataccga ggtatgtcga tacattcgaa gaagaagcgc
 5
         154441 caattgattt agatcaagtc caacaagatt tgaaaaatat cgacaaagaa atcgcagaaa
         154501 ttgaacaaga aatcaatgca tacctgaaag aacttggggt gttgaaagat gagtaataca
         154561 caaaagaaaa atgtgccaga gttgagattc ccagggtttg aaggcgaatg ggaagagaag
         154621 cagttggggg atcttacaga tagagtaatt aggaaaaata aaaacttaga atcgaaaaag
         154681 cctttaacaa tatccggaca gttaggttta attgatcaaa cagaatattt tagtaaatca
10
         154741 gtttcgtcga aaaatctaga aaattataca ctaataaaga atggagaatt cgcgtataac
         154801 aaaagttatt ctaatggata cccattaggg gctattaaaa gattaactag atatgatagt
         154861 ggtgtattgt cctctttgta tatttgtttt tctattaaaa gtgaaatgtc taaagacttc
         154921 atggaagcat attttgattc gacacactgg tatagagaag tttctggaat tgcagttgag
         154981 ggtgcaagaa atcacggatt attaaatgtt tctgtgaatg attttttac tattctaatt
15
         155041 aaatatccaa gtttagaaga acagcaaaaa ataggcaagt tcttcagcaa actcgaccga
         155101 caaattgaat tagaagaaca aaagcttgaa ttacttcaac aacagaaaaa aggctatatg
         155161 cagaaaattt tctcacagga actgcgattc aaagatgaga atggtgaaga ttatccagat
         155221 tgggaaaata gcaaaataga aaaatattta aaagagagaa acgaacgttc tgacaaaggg
         155281 caaatgcttt cagtaactat aaatagtggc attataaaat ttagtgaatt ggatagaaaa
20
         155341 gataattcaa gtaaagataa aagtaattat aaagtagtta ggaaaaatga tattgcatat
        155401 aattctatga gaatgtggca aggggctagt ggtaaatcaa attataatgg gattgttagc
        155461 cctgcatata ctgtgcttta tccaacacaa aatactagct cattatttat tggatataag
        155521 tttaaaacac atagaatgat tcataaattt aaaattaatt cacaaggatt aacatcagat
        155581 acatggaact taaaatataa acaattaaaa aatataaata tagatatacc tgtattggag
25
        155641 gaacaagaaa agataggtga tttctttaaa aaaatggata tattgataag taaacagaaa
        155701 atgaaaattg aaatattaga aaaagagaaa caatcctttt tacaaaaaat gttcttataa
        155761 ctttgataaa tacatagatt gcataagaat aaaatttgta taatttaaca taaaagttgt
        155821 aaaagtaaag tgaattaaaa acgaacatta aatttaggca ctgtgaaagc gcagtgtctt
        155881 ttttgtgtcg aaattgtgta cagaataagt agttaaataa agattaagtt gagataaagt
30
        155941 gttattcgta aataaaagag agtagatcga taggaattga atgatattag ttaactattt
        156001 attaaattac ttaataatga ttaattttta gttaaagtaa gtttaatgtg aagcacgacc
        156061 attgctcatt ataatgaatg aggattgttc gtattgcgta atagaataaa tcaaatagac
        156121 taaaaaattgg gagcatagaa ttatgaaatt aaaaaatatt gctaaagcaa gtttagcact
        156181 agggatttta acaacaggta tgattacaac tactgctcag ccagtaaaag caagtacatt
35
        156241 agaggttaga tcacaagcta ctcaagactt gagtgaatat tataaaggga gaggatttga
        156301 attaacaaat gtaacaggat ataaatacgg aaataaagtt acatttatag ataattctca
        156361 acaaattgat gttacattga caggaaatga aaaattaact gttaaagatg atgacgaagt
        156421 ttctaatgtt gacgtgtttg tagtaagaga aggtagtgac aaatcagcta tcacaacatc
        156481 gattggtgga attacaaaga caaatgggac tcaacataaa gatactgttc aaaacqttaa
40
        156541 tttgtcagtt tctaagagta caggtcaaca cactacttct gtgacttcag aatactatag
        156601 catctataaa gaagaaatct cattaaaaga acttgatttt aaattaagaa agcatttaat
        156661 tgataaacat gatctttata agacagaacc taaagacagt aaaattagaa ttactatgaa
        156721 aaacggtggc tattatacat ttgaattaaa taaaaaatta cagcctcatc gcatgggtga
        156781 tacgattgat agtagaaata tagagaaaat tgaagtgaat ttataataat attcgaggga
45
     SEQ ID No:2 - SSL1
50
                          /gene="(set6) N315ss11"
          gene
          CDS
                          143102..143782
                          /gene="(set6) N315ss11"
                          /note="ORFID: SA0382
                           [Pathogenicity island SaPIn2]"
55
                          /codon_start=1
                          /transl table=11
                          /product="(exotoxin 6) SSL1"
                          /protein_id="BAB41610.1"
                          /db xref="GI:13700312"
60
     translation="MKFKAIAKASLALGMLATGVITSNVQSVQAKTEVKQQSESELKH/
```

YYNKPVLERKNVTGYKYTEKGKDYIDVIVDNQYSQISLVGSDKDKFKDGDNSNIDVFI LREGDSRQATNYSIGGVTKTNSQPFIDYIHTPILEIKKGKEEPQSSLYQIYKEDISLK ELDYRLRERAIKQHGLYSNGLKQGQITITMKDGKSHTIDLSQKLEKERMGDSIDGRQI

65

QKILVEMK"

5	SEQ ID No:3 - SSL2					
5	gene	144068144763				
	CDC	/gene="(set7) N315 <i>ss12</i> " 144068144763				
	<u>CDS</u>	/gene="(set7) N315ss12"				
10		/note="ORFID: SA0383				
		[Pathogenicity island SaPIn2]"				
	-	/codon_start=1 /transl table=11				
		/product="(exotoxin 7) SSL2"				
15		/protein_id="BAB41611.1"				
		/db_xref="GI:13700313"				
20	KAYYTQPSIEYKNVTGYISF IFYVNEDKRFEGAKYSIGGI	AKISLLLGILATGVNTTTEKPVHAEKKPIVISENSKKL IQPSIKFMNIIDGNSVNNLALIGKDKQHYHTGVHRNLN TSANDKAVDLIAEARVIKADHIGEYDYDFFPFKIDKEA YGEMSTGKITVKKKYYGKYTFELDKKLQEDRMSDVINV				
25	SEQ ID No:4 - SSL3					
	gene	145054146124				
	<u> 50.10</u>	/gene="(set8) N315 <i>ss13</i> "				
30	CDS	145054146124 /gene="(set8) N315 <i>ss13</i> "				
50		/note="ORFID:SA0384				
		[Pathogenicity island SaPIn2]"				
		<pre>/codon_start=1 /transl table=11</pre>				
35		/product="(exotoxin 8) SSL3"				
		/protein_id="BAB41612.1"				
•		/db_xref="GI:13700314"				
40 45	KAERLAMINITAGANSATTQ QKSLNISATPAPKQEQSQTT QTDMTPKYEDLRAYYTKPSF KYKDGPYDNIDVFIVLEDNK	AKTSLALGLLTTGAITVTTQSVKAEKIQSTKVDKVPTL AANTRQERTPKLEKAPNTNEEKTSASKIEKISQPKQEE TESTTPKTKVTTPPSTNTPQPMQSTKSDTPQSPTIKQA EFEKQFGFLLKPWTTVRFMNVIPNRFIYKIALVGKDEK YQLKKYSVGGITKTNSKKVDHKAELSVTKKDNQGMISR LRKQLIEKHNLYGNMGSGTIVIKMKNGGKYTFELHKKL				
	SEQ ID No:5 - SSL4					
50	gene	146488147366				
50	CDS	/gene="(set9) N315 <i>ss14</i> " 146488147366				
	<u>CD3</u>	/gene="(set9) N315ss14"				
		/note="ORFID:SA0385				
55		[Pathogenicity island SaPIn2]"				
55		<pre>/codon_start=1 /transl table=11</pre>				
		/product="(exotoxin 9) SSL4"				
		/protein_id="BAB41613.1" /db xref="GI:13700315"				
60		/db_xrei="G1:13/00315"				
•	/translation="MKITTIA	AKTSLALGLLTTGVITTTTQEANATTPSSTKVEAPQST				
	PPSTKVEAPQSKPNATTPPST	CKVETPQQTPNATTPSSTKVETPQSPTTKQVPTEINPK				
		ILLKKWTTIRFMNIVPDYFIYKIALVGKDDKKYDEGVH SVGGITKSNSKKVDHKAGVRITKEDNKGTISHDVSEFK				
C		NHNLYGNVGSGKIVINMKNGGKYTFELHKKLQENRMA				

DVIDGTNIDNIEVNIK"

```
SEQ ID No:6 - SSL5
 5
                           147730..148434
          gene
                           /gene="set10 N315ss15"
                           147730..148434
          CDS
                           /gene="set10 N315ss15"
10
                           /note="ORFID:SA0386
                           [Pathogenicity island SaPIn2]"
                           /codon_start=1
                           /transl_table=<u>11</u>
                           /product="(exotoxin 10)SSL5"
15
                           /protein_id="BAB41614.1"
                           /db xref="GI:13700316"
      /translation="MKMAAIAKASLALGILATGTITSLHQTVNASEHEAKYENVTKDI
     FDLRDYYSGASKELKNVTGYRYSKGGKHYLIFDKNRKFTRVQIFGKDIERFKARKNPG
20
     LDIFVVKEAENRNGTVFSYGGVTKKNQDAYYDYINAPRFQIKRDEGDGIATYGRVHYI
     YKEEISLKELDFKLRQYLIQNFDLYKKFPKDSKIKVIMKDGGYYTFELNKKLQTNRMS
     DVIDGRNIEKIEANIR"
25
      SEQ ID No:7 - SSL7
                           148880..149575
           gene
                           /gene="set11 N315ss17"
                           148880..149575
           CDS
                           /gene="set11 N315ss17"
30
                           /note="ORFID:SA0387
                           [Pathogenicity island SaPIn2]"
                           /codon start=1
                           /transl_table=11
                           /product="(exotoxin 11)SSL7"
35
                           /protein_id="BAB41615.1"
                           /db xref="GI:13700317"
      /translation="MKLKTLAKATLALGLLTTGVITSEGQAVHAKEKQERVQHLYDIK
      DLYRYYSSESFEFSNISGKVENYNGSNVVRFNQEKQNHQLFLLGKDKDKYKKGLEGQN
40
      VFVVKELIDPNGRLSTVGGVTKKNNKSSETNTHLFVNKVYGGNLDASIDSFLINKEEV
      SLKELDFKIRKQLVEKYGLYKGTTKYGKITINLKDEKKEVIDLGDKLQFERMGDVLNS
      KDIQNIAVTINQI"
45
      SEQ ID No:8 - SSL8
                            149914..150612
           gene
                            /gene="set12 N315ss18"
                            149914..150612
           CDS
                            /gene="set12 N315ss18"
50
                            /note="ORFID:SA0388
                            [Pathogenicity island SaPIn2]"
                            /codon_start=1
                            /transl table=11
                            /product="(exotoxin 12) SSL8"
55
                            /protein_id="BAB41616.1"
                            /db xref="GI:13700318"
      /translation="MKFTAIAKAIFVLGILTTSVMITENQSVNAKGKYEKMNRLYDTN
      KLHQYYSGPSYELTNVSGQSQGYYDSNVLLFNQQNQKFQVFLLGKDENKYKEKTHGLD
60
      VFAVPELVDLDGRIFSVSGVTKKNVKSIFESLRTPNLLVKKIDDKDGFSIDEFFFIQK
      EEVSLKELDFKIRKLLIKKYKLYEGSADKGRIVINMKDENKYEIDLSDKLDFERMADV
```

65

INSEQIKNIEVNLK"

SEQ ID No:9 - SSL9

	gene	150989151687
_		/gene="set13 N315 <i>ss19</i> "
5	CDS	150989151687
		/gene="set13 N315 <i>ss19</i> "
		/note="ORFID:SA0389
		[Pathogenicity island SaPIn2]"
		/codon start=1
10		/transl table=11
		/product="(exotoxin 13)SSL9"
		/protein id="BAB41617.1"
		/db_xref="GI:13700319"
1.5		
15	/translation="M	KLTALAKATLALGILTTGVFTAESKAVHAKVELDETQ

/translation="MKLTALAKATLALGILTTGVFTAESKAVHAKVELDETQRKYYIN MLHQYYSEESFESTNISVKSEDYYGSNVLNFNQRNKTFKVFLLGDDKNKYKEKTHGLD VFAVPELIDIKGGIYSVGGITKKNVRSVFGFVSNPSLQVKKVDAKHGFSINELFFIQK EEVSLKELDFKIRKMLVEKYRLYKGASDKGRIVINMKDEKKYVIDLSEKLSFDRMFDV MDSKQIKNIEVNLN"

20

40

SEQ ID No:10 - SSL10

25	gene	152053152736 /gene="set14 N315 <i>ssl10</i> "
	CDS	152053152736
		/gene="set14 N315 <i>ss110</i> "
		/note="ORFID:SA0390
30		[Pathogenicity island SaPIn2]"
		/codon start=1
		/transl table=11
		/product="(exotoxin 14)SSL10"
		/protein id="BAB41618.1"
35		/db_xref="GI:13700320"

/translation="MKFTALAKATLALGILTTGTLTTEVHSGHAKQNQKSVNKHDKEA
LYRYYTGKTMEMKNISALKHGKNNLRFKFRGIKIQVLLPGNDKSKFQQRSYEGLDVFF
VQEKRDKHDIFYTVGGVIQNNKTSGVVSAPILNISKEKGEDAFVKGYPYYIKKEKITL
KELDYKLRKHLIEKYGLYKTISKDGRVKISLKDGSFYNLDLRSKLKFKYMGEVIESKQ
IKDIEVNLK"

SEQ ID No:11 - SSL11 .

45	gene	156143156826 /gene="(set15) N315 <i>ss111</i> "
	CDS	156143156826
		/gene="(set15) N315ss111" /note="ORFID:SA0393
50		[Pathogenicity island SaPIn2]"
		/codon_start=1
		/transl_table= <u>11</u>
		/product="(exotoxin 15)SSL11"
55		/protein_id=" <u>BAB41622.1</u> " /db_xref="GI:13700324"

/translation="MKLKNIAKASLALGILTTGMITTTAQPVKASTLEVRSQATQDLS
EYYKGRGFELTNVTGYKYGNKVTFIDNSQQIDVTLTGNEKLTVKDDDEVSNVDVFVVR
EGSDKSAITTSIGGITKTNGTQHKDTVQNVNLSVSKSTGQHTTSVTSEYYSIYKEEIS
LKELDFKLRKHLIDKHDLYKTEPKDSKIRITMKNGGYYTFELNKKLQPHRMGDTIDSR
NIEKIEVNL"

SEQ ID No:12

65 244981 agtgcatgaa gtataagtca ccttcatata ctaatcaaag aggacgtcaa cagttattt

```
245041 attaggattt ttaacataaa catttgctag atctgaatgt aatcttttgc ttaaatcaat
          245101 agtgtagtta ttaccgccac cggtgatctt aagcttacct ttattacgat tttcggtata
          245161 taatatitta tittitatta acgcitctcg tgcacggaaa tcgattictt tcaatqttaa
          245221 tactggttta ttgccttggt atattttatg cgcaccaata atcgtttgta gtttatcttt
 5
          245281 gtattgcaca aaaagattat aagttttatc agaaggtttt gcggctggtg taacqccacc
          245341 tgtaaatgtc tctctataag accaccataa ctgatcagta tctttgtctt ttagtccaaa
          245401 cacatctacg taacgatctt ttaactgatt aatatttccc caactttcag cgccccataa
          245461 agatatatgt gctgaccatg aatatctctt aagttcaaca taaatgtttc cattatcata
          245521 tigatatage catttattig aaaatgaaaa atgaggetgt gtgtaatatt taattaatte
10
          245581 attgatgtta gtttcatctt gaccaatgct ataagcttta gcttcagagt aaaaactaaa
          245641 tactggtttt tgattttgag gtaatacagt acctaatagt aataatgttg tcgttaaaat 245701 tatatttttc gtgatgttct tactcattag aacatctcct ttcagaggaa tcatgatacg
          245761 aggaataaga aatttaaatg tgagcgaagt caatatagta tttgcgatta tttttattaa 245821 ctccattatt attgttagtt tgatttttcg aggataactt caatttttgc attttgaggt
15
          245881 tttttaacat atctatttgc atcagttgat ggcaaccttt tacttaaatc tattgtgtag
          245941 ttattgtctg tacctgttat tttaatttgt cctttattat aagaattatt atataatttt
          246001 ttacttttaa ttaatgtttg acgaatacga aaatctaatt cttttaaagt taaaacaggc
          246061 ttattgcctt cataaactgg aaatccgcca gtaaacgttt ctgctttatc tttatatgtt
          246121 acattcagtt tatagtgttt atcgttagat gttgctgcag gagtaacacc accagtaaac
20
          246181 gtttcttgag ataatgcaaa agaatcaatg gtttcttggt cttttatgcc aaaaatatca
          246241 acgettttat ttettaattg gttgatattg ceceaacttt caggtecata aacttgaata
          246301 tgactatacc aagaaaactg taacaacgtt gcatgaatcg taccgttatc tttttgccat 246361 aacgtactgt tagagaaggt taaatatttt tgcgagtaat atttagttaa ctcattaacg
          246421 ttagtttcgt tttgatttat ataataagct ttcgcttcag atgaagaatt gataggtgta
25
          246481 ttaggaaatt gtgtaaatgc tgtacctaat agtaacaatg ttgttgataa aataattttt
          246541 ttcgtgatgt tattgttcat tcgaatttct cctttgagta ttgttggaat gtttaattat
          246601 aaaaaggggt taattagata attgaaatta toogoattta caaaaggtaa taggttagtt
          246661 agatttttcg agtatgactt caatttgtgc atttttagga tttttaacat aacggtttgt
          246721 gtcagttaat tittaactttt tacttaaatc aatcgtgtaa ttatttccat cagcagttat
30
          246781 cttaatttga cctttattaa attctccgtt atataacttt ttattcttta ttaatgtttg
          246841 acgaatacgg aaatctaatt cttttaaagt taatactggt ttatttcctt tgtaaaattc
          246901 atgtccaccg atgatagttt gttgtttatc actatatttt aaaaatagtc tataaggttt
          246961 atcagatgaa gtagctgctg gcgtaacacc accagtaaat gtttcatcat aagtccagta 247021 accttcaact gtgtcctcat ctttagttcc aaatatatca acgtattat ttcttaactg
35
          247081 attaatgttt ccccaactct cggatccaaa cacttgaata tgactatacc aaacccacgt
          247141 ttgcaatgtt gcatgaatgc taccattggg cttttgccat agccattttc caqataatga
          247201 aaaatgcggc tgagtgtaat atttgattaa ctcattgata ttagtctcgt tttcactgat
          247261 attatagget titgetteag atgaaaaact gattggtgtt ttaggaagtt gtgttgatgt
          247321 ggttcctaaa agtaacaatg ctgttgataa aactaattta ttcatgatgt tcttttcat
40
          247381 atgaaaatct cctttgcgtg aattacccaa agtatataag ctattacacc gattcggaat
          247441 taaataaaag ctaaaactat gttaaataaa cttaaacagt tagtagtgtt atttaagcaa 247501 aacttatcat ttttaagttt tggacagaaa cagtacttaa taaagtaggc gggagttata
          247561 tattaaaaac gacacgttac aattattete taatcaattg cattaaattg titgataatt
          247621 gaattttcta actacttgaa aaatagttat actttaaatg tagtacttat tttaattatt
45
          247681 toctactact taaatttaat attaataaaa tgttcattta attattgata aaatattaca
          247741 aattttaata gtaggttgtg tttattttgt atgcgcttac aatttaggtg taactaaaat
          247801 aaaaggagtt gttattaatg aaaaatttac gaaacagaag ttttttaact ttattagact
          247861 tttcacgaca agaggtagaa ttcttattaa cactctccga ggatttaaaa cqtqctaaat
          247921 atattggcac tgaaaagcct atgttaaaaa ataaaaatat tgcactgtta tttgaaaaag
50
          247981 attctacaag aacgcgatgt gcatttgaag ttgcagcgca tgatcaaggt gcaaatgtaa
          248041 cttatttagg cccaactgga tcacaaatgg gtaaaaaaga aacaactaaa gatactgcac
         248101 gtgtgcttgg tggaatgtat gatggcattg aataccgtgg tttttcacaa agaacagtag
55
      SEQ ID No:13 - SSL14
                                complement (246655..247380)
             gene
                                /gene="SA1011 N315ss114"
                                complement (246655..247380)
             CDS
                                /gene="SA1011 N315ss114"
60
                                /note="ORFID: SA1011"
                                /codon start=1
                                /transl table=11
                                /protein_id="BAB42263.1"
                                /db xref="GI:13700967"
65
                               /product="(SA1011)SSL14
      translation="MKKNIMNKLVLSTALLLLGTTSTQLPKTPISFSSEAKAYNISEN/
      ETNINELIKYYTQPHFSLSGKWLWQKPNGSIHATLQTWVWYSHIQVFGSESWGNINQL
      RNKYVDIFGTKDEDTVEGYWTYDETFTGGVTPAATSSDKPYRLFLKYSDKQQTIIGGH
70
      EFYKGNKPVLTLKELDFRIRQTLIKNKKLYNGEFNKGQIKITADGNNYTIDLSKKLKL
```

TDTNRYVKNPKNAOIEVILEKSN"

SEQ ID No:14 - SSL13

5	gene	complement (245835246560) /gene="(SA1010) N315ss113"
	CDS	complement (245835246560)
		/gene="(SA1010) N315 <i>ss113</i> " /note="ORFID:SA1010"
10		/codon start=1
		/transl_table= <u>11</u>
		/protein_id="BAB42262.1"
		/db_xref="GI:13700966"
		/product="(SA1010)SSL13"

15 /translation="mnnnitkkiilsttlllgtaftqfpntpinssseakayyinqn ETNVNELTKYYSQKYLTFSNSTLWQKDNGTIHATLLQFSWYSHIQVYGPESWGNINQL RNKSVDIFGIKDQETIDSFALSQETFTGGVTPAATSNDKHYKLNVTYKDKAETFTGGF PVYEGNKPVLTLKELDFRIRQTLIKSKKLYNNSYNKGQIKITGTDNNYTIDLSKRLPS TDANRYVKKPQNAKIEVILEKSN"

20 <u>SEQ ID No:15 – SSL12</u>

```
25 complement (245011..245727)
/gene="(SA1009)N315ss112"

complement (245011..245727)
/gene="(SA1009)N315ss112"
/note="ORFID:SA1009"
/codon_start=1
/transl_table=11
/protein_id="BAB42261.1"
/db_xref="GI:13700965"
/product="(SA1009)SSL12"
```

/translation="MSKNITKNIILTTTLLLLGTVLPQNQKPVFSFYSEAKAYSIGQD ETNINELIKYYTQPHFSFSNKWLYQYDNGNIYVELKRYSWSAHISLWGAESWGNINQL KDRYVDVFGLKDKDTDQLWWSYRETFTGGVTPAAKPSDKTYNLFVQYKDKLQTIIGAH KIYQGNKPVLTLKEIDFRAREALIKNKILYTENRNKGKLKITGGGNNYTIDLSKRLHS DLANVYVKNPNKITVDVLFD"

40 S. aureus strain Mu50 taken from GenBank

SEQ ID No:16

45 116881 aaaaatcaaa tttaaataga ttggggctaa aaattatgaa atttaaagcg atagcaa 116941 caagtttagc attgggaatg ttagcaacag gtgtaattac atcgaatgta caatcag 117001 aagcgaaaac agaagttaaa caacaagtg aatcagagtt gaaacactat tataata	tac
117001 aagcgaaaac agaagttaaa caacaaagtg aatcagagtt gaaacactat tataata	aac
117001 aagcgaaaac agaagttaaa caacaaagtg aatcagagtt gaaacactat tataata	aac
	ata
117061 cggttttaga gcgtaaaaat gttactggat ataaatatac tgaaaaaggt aaagatt	
117121 tagatgttat agtagacaat caatattete aaatttettt agttggatet gataaag	aca
117181 aatttaaaga tggagacaac tcgaatatag atgtgtttat ccttagagaa ggtgaca	gta
50 117241 gacaagcaac aaattactca attggtggcg taacaaaaac aaacagtcaa cctttta	ttg
117301 actatataca cacaccaatc cttgaaatca agaaaggtaa agaagaacca caaagta	gtt
117361 tataccaaat ttataaagaa gacatctcat tgaaagaact tgattataga ttaagag	aac
117421 gtgcaatcaa acaacacggc ttgtattcaa atggtcttaa acaaggtcaa attacaa	tta
117481 caatgaaaga tggcaaatca catactatcg atttaagtca aaaacttgaa aaagaac	gta
55 117541 tgggtgattc tatcgacggc agacaaatac aaaaaattct agtagaaatg aaataat.	act
117601 ttctaacaac aaagcgctat gttgaatagt gcttgttatg gaaatatatg gaagtta	agc
117661 gacgtactgt tgcttagctt ctttttttga ggggaaaagt tacaaaactc acacaaa	cag
117721 togoaccaeg cattatettt tgettaaata gettaateat attttatgaa tagttaa:	aaa
117781 caggttaatg tgaatatcog aatacagcto ctataatatg ggtgtatggt tcaaatt	acg
60 117841 taataaaaca atctaattat aatagattgg agcatacaac tatgaaaatg aaaaata	ttg
117901 caaaaataag tttgttatta ggaatattag caacaggtgt aaacactaca acggaaa	aac
117961 cagttcatgc cgaaaagaaa cctattgtaa taagtgaaaa tagcaaaaaa ttaaaag	ctt
118021 attatactca acctagtatt gaatataaaa atgtgacagg ttatatcagt ttcattc	aac
118081 caagtattaa atttatgaat atcatagatg gtaattctgt taataacctt gctttaa	

```
118141 gcaaagataa gcaacattat catacgggtg tacatcgtaa tcttaatata ttttacgtta
        118201 atgaggataa gagatttgaa ggtgcaaagt actctattgg gggtatcact agtgcaaacg
        118261 ataaagctgt cgacctaata gcagaagcaa gagttattaa agcagatcat attggtgaat
        118321 atgattatga ctttttccca tttaaaatag ttaaagaagc gatgtcattg aaagagattg
 5
        118381 attttaaatt aagaaaatac cttattgata attatggtct ttacggtgaa atgagtacag
        118441 ggaaaattac cgtcaaaaag aaatactatg gaaagtatac atttgaattg gataaaaagt
        118501 tacaagaaga ccgtatgtcc gatgttatca atgtcacaga tattgataga attgaaatca
        118561 aagttagaaa agcttaatac acatacttga cgacgaaata atttgaaatt gaaatagaga
        118621 ggttaagtga cgatcaaacg ttgcttaact tctttttaat gcttaaaaat catttcaaag
10
        118681 gcacatagaa acgctatatt aacctcataa tcactcatta ttttttgctt aaattactta
        118741 ataatacttc aataattgtt aaaaagggtt taatgtgatt atcttagaac qccatctata
        118861 tacaattatg aatatgaaaa caattgctaa aaccagttta gcactagggc ttttaacaac
        118921 aggcgcaatt acagtaacga cgcaatcggt caaagcagaa aaaatacaat caactaaagt
15
        118981 tgacaaagta ccaacgctta aagcagagcg attagcaatg ataaacataa cagcaggtgc
        119041 aaattcagcg acaacacaag cagctaacac aagacaagaa cgcacgccta aactcgaaaa
        119101 ggcaccaaat actaatgagg aaaaaacctc agcttccaaa atagaaaaaa tatcacaacc
        119161 taaacaagaa gagcagaaat cgcttaatat atcagcaacg ccagcgccta aacaagaaca
        119221 atcacaaacg acaaccgaat ccacaacgcc gaaaactaaa gtgacaacac ctccatcaac
20
        119281 aaacacgcca caaccaatgc aatctactaa atcagacaca ccacaatctc caaccataaa
        119341 acaagcacaa acagatatga ctcctaaata tgaagattta agagcgtatt acacgaaacc
        119401 gagttttgaa tttgaaaagc agtttggatt tttgctcaaa ccatggacga cggttaggtt
        119461 tatgaatgtt attccaaata ggttcatcta taaaatagct ttagttggaa aagatgagaa
        119521 aaaatataaa gatggacctt acgataatat cgatgtattt atcgttttag aagacaataa
25
        119581 atatcaatta aaaaaatatt ctgtcggtgg catcacgaag actaatagta aaaaagttga
        119641 tcacaaagca gaattaagcg ttactaaaaa agataatcaa ggtatgattt cacqcqatqt
        119701 ttcagaatac atgattacta aggaagagat ttccttgaaa gagcttgatt ttaaattgag
        119761 aaaacaactt attgaaaaac ataatcttta cggtaacatg ggttcaggaa caatcgttat
        119821 taaaatgaaa aacggtggga agtatacgtt tgaattacac aaaaaactgc aagagcatcg
30
        119881 tatggcagat gtcatagaag gtacaaacat tgataaaatt gaagtgaata taaaataatc
        119941 atgacgttct ctaaatagaa gctgacatcg gtaaaacaag aagttaagtg acaacggttt
        120001 acatgttgct tagcttcttt tattatgcgt aatgatgtaa aagacgaata ttcatttgtt
        120061 tgtaaaagtg gcatttctat gtcttaaaag tgacgaatcc tcaaatgtgc caagtgttga
        120121 atcacatcaa aatcagtttt atttaacgaa cattatggat ttcttaattt acttaacgat
35
        120181 gattcaaata tagttaaaca aggtttaatg tgaatggagc aatacgccat ctataataaa
        120241 gctgtatgat tcaatgaatg taatcgaaca aatctaataa ttacgaatgg agcatacaac
        120301 tatgaaaatg gcagcaattg cgaaagcaag tttagcatta ggtattttag caacaggaac
        120361 aataacgtca ttgcatcaaa ctgtaaatgc gagtgaacat gaagcaaaat atgaaaatgt
        120421 gacaaaagat atctttgact taagagatta ctatagtggc gcaagtaagg aacttaaaaa
40
        120481 tgttactggt tatcgttata gcaaaggtgg caagcattac cttatctttg ataaaaatag
        120541 aaaattcaca agagtacaga tatttggtaa agatattgaa agatttaaag cacgcaaaaa
        120601 tccgggatta gacatatttg ttgttaaaga agcagaaaat cgcaacggca caqtqttttc
        120661 atatggtggt gtcactaaga aaaatcaaga cgcttattat gattatataa acgcaccaag
        120721 atttcaaatc aagagagatg aaggtgacgg tattgctacg tacggtagag tacactacat 120781 ttataaagaa gagatttcac ttaaagaact cgactttaaa ttgagacagt atttaattca
45
        120841 aaattttgat ctgtataaaa agtttcctaa agatagtaag ataaaagtga taatgaaaga
        120901 tggcggctat tatacgtttg aacttaataa aaaattacaa acaaatcgca tgagtgatgt
        120961 cattgacggt agaaatattg aaaaaataga agccaacatt agataattca atgaaatatq
        121021 gataatagta aaatatggat agtatagagg agttaggcaa cataagttgc ttagcttctt
50
        121081 ttttgtgttg gcgagatgaa aatgaagcgt atcgatgaat aataaaaaca ccaataaaac
        121141 ttgtggaaat agttgatact tatagatgcg tgatgtcgct ttagtgacat gaaacaatgt
        121201 ggaaaacata attaaattga gggaaagtgt gaatagttaa aaaattagca ttgtgttata
        121261 aaaaataatt aatactgtta ggatttcatt aactaactta acgttggttc aaaaatagtt
        121321 aaaaagaggt taattcatag cgcagtatct cgcttatata atgatagtag attgttcgta
55
        121381 ttacgtaatt gaattaatca tataaaaata tattaagaca aaatttataa atagattggg
        121441 agaatagtac tatgaaatta aaaacgttag ctaaagcaac attggcatta ggcttattaa
        121561 tacaacattt atatgatatt aaagacttat atcgatacta ctcatcagaa agttttgaat
        121621 tcagtaatat tagtggtaag gttgaaaact ataacggttc taacgttgta cgctttaacc
60
        121681 aagaaaaaca aaatcaccaa ttattcttat taggaaaaga taaagataaa tataaaaaag
        121741 gccttgaagg ccagaatgtc tttgtggtaa aagaattaat tgatccaaac ggtagactat
        121801 ctactgttgg tggtgtgact aagaaaaata acaaatcttc tgaaactaat acacatttat
        121861 ttgttaataa agtgtatggc ggaaatttag atgcatcaat tgactcattt ttaattaata
        121921 aagaagaagt ttcactgaaa gaacttgatt tcaaaattag aaagcaatta gttgaaaaat
65
        121981 atggtttata taaaggtacg actaaatacg gtaagatcac tatcaatttg aaagacgaga
```

	122041	aaaannaant	aattoatta	aataataaac	tacaattcaa	acacatagat	gatgtgttga
							aaacaatcaa
							aatacgtaca
							atgttttata
5							ccattgaata
_							atgtcagtct
							agcaatccaa
							cgatatttgt
							atgcaaaagg
10							actattcagg
	122641	acctagttat	gagttaacaa	atgttagtgg	ccaaagtcaa	ggttattatg	actctaacgt
							aagatgaaaa
	122761	taaatacaaa	gaaaaaacac	atggtttaga	tgtctttgcg	gtaccagaat	tagtagattt
							caatatttga
15							gtttttctat
							attttaaaat
							aaggtagaat
							aattagattt
20							tgaatttgaa
20							atgtttaatg
							attaagctgc
							agaacaatga taaaatacgt
							agtctgtttt
25							tccaatatat
							ttagcattag
							aaagtagaac
							tctgaagaaa
							aacgttttaa
30	123781	actttaacca	acgaaataaa	actttcaaag	tgtttctgct	tggtgacgat	aaaaataaat
	123841	ataaagaaaa	aacacatggc	cttgatgtct	ttgcagtacc	tgaattaata	gatataaaag
	123901	gtggcatata	tagcgttggc	ggtataacaa	agaaaaatgt	gagatcagtg	tttggatttg
							tcgataaatg
2.5	124021	agttgttctt	tattcaaaag	gaagaagtat	cgttgaagga	actggatttt	aaaataagaa
35	124081	aaatgttagt	cgaaaaatat	agattgtata	aaggcgcgtc	agataaaggt	agaatcgtta
	124141	ttaatatgaa	agacgaaaag	aaatatgtaa	ttgatttaag	tgaaaaatta	agttttgatc
	124201	gtatgtttga	tgtaatggat	agtaagcaaa	ttaaaaatat	tgaagtgaat	ttgaattagt
	124201	ttgagttaat	agcataatag	cttaagaagc	gacttaacga	caaaatgtga	attgacatct
40	124321	gigicollat	acaaggaact	gtgttaaata	cattactgtt	gttaagttgt	ttttgtaatt
40	124361	aaataaata	atcagagtaa	catcatcagt tttaacctga	cytagtaaac	gataatccag	taaaacaact
	124501	ataattcaac	tatatttaaa	tcgaggttaa	ttatcatata	acacccataca	ccattaaga
	124561	aaaatotato	attcasatta	cgtaatgaaa	acaatccaat	atattaagat	tacaccasat
	124621	aaatatgaaa	tttacagcat	tagcaaaagc	aacattagct	ttaccaagat	taacaacaa
45	124681	aactttaaca	acagaagttc	attcaggtca	tocaaaacaa	aatcaaaagt	cagtasatas
	124741	acatgacaag	gaggcactat	accgatacta	cactggaaag	actatogaaa	tgaaaaatat
	124801	tagtgctttg	aaacatggta	aaaataactt	gcgttttaag	tttagaggta	ttaagattca
	124861	agttttactg	cctggaaatg	ataaaagtaa	atttcaacag	cgtagttatg	aggggttaga
	124921	tgtgttttt	gttcaagaaa	aaagagataa	gcacgatata	ttttatactg	ttggtggtgt
50	124981	aatacagaat	aataaaacat	ctggagttgt	cagtgcacca	atattaaata	tttcaaaaga
	125041	aaagggtgaa	gatgcttttg	tgaaaggtta	cccttattac	attaaaaaag	aaaaaataac
	125101	actaaaagag	ctggattata	agttgagaaa	gcatctaatt	gaaaaatacg	gactttataa
	125161	aacaatctca	aaagatggta	gggtcaaaat	tagcttgaaa	gatggcagtt	tttataacct
E E	125221	tgatttaaga	tctaaattaa	aatttaaata	tatgggggaa	gtcatagaaa	gcaaacaaat
55	125281	taaagatatt	gaagttaact	taaagtaaat	aattacgaat	aataaaaagt	aattgaagcg
	125341	gcttaacggt	gaaatgtaaa	ttggtgcgca	tagcttatac	aaaaaggatg	catcaatcga
	125401	taregreger	aageegtttt	tgtttgtgtg	tcatgaatcc	tatcccaatc	tccatgaata
	105501	Ladadattcc	accaccaaca	tcaaaattct	ccacatcgca	acataaccaa	atgttataat
60	125581	actrasses	ancatanasa	taaattactt acaagctgaa	ttagatage	gyaggaatca	catgtctatt
	125641	gatttaagag	ggaatatgga	tgcgagtgaa	ttccct==++	acattttacc	cttosttt-
	125701	tategettet	tatctgaaaa	agcggaacaa	caatatocao	ataccttate	aggtgaagat
	125761	attacotato	aagaagcatg	ggcagatgaa	gaatatcoto	aagacttaaa	aggigaagai
	125821	attgatcaag	tcggttactt	cattgaacca	caagatttat	tcagtgcgat	gattcgtgae
65	125881	attgaaacgc	aagatttcga	tatcgaacat	ctcgcaacgg	cgattcgtaa	agttgaaaca
		-		-	2 22	5	

```
125941 tcaacactag gtgaagaaag tgaaaatgac tttatcggac tgttcagcga tatggactta
         126001 agttcaacgc gactaggtaa caatgtcaaa gaacgtactg cactaatttc caaagttatg
         126061 gttaaccttg acgacttacc attcgttcac agtgatatgg aaattgatat gttaggtgat
         126121 gcatacgaat ttcttatcgg gcgctttgcg gcgacagcag gtaaaaaaagc aggcgagttc
 5
         126181 tatacaccac aacaagtatc taagatactg gcgaagattg tcacagacgg taaagataaa
         126241 ttacgtcacg tgtatgaccc aacatgtggt tcaggttcat tattgttacg tgttggtaaa
         126301 gaaacgcaag tgtatcgtta tttcggtcaa gaacgtaaca ataccactta caacttagcg
         126361 cgcatgaaca tgttattaca tgatgtgcgc tatgaaaact ttgatatccg taatgatgat
         126421 acgttggaaa atccagcttt cttaggcaat acatttgatg cggttatagc gaacccacca
10
         126481 tacagtgcga aatggactgc agattcaaaa tttgaaaatg atgaacgctt cagtggttac
         126541 ggcaagettg cgccaaaatc caaagcagac tttgccttta ttcaacatat ggtacattac
         126601 ctagacgatg aaggtaccat ggcagttgta ctcccacatg gtgtcttatt ccgtggtgcc
         126661 gcagaaggcg tcattcgtcg ttatttaatt gaagaaaaga actacttaga agccgtgatt
         126721 ggcttaccag tgaatatttt ctatgggaca agtattccaa catgtatctt agtatttaaa
15
        126781 aaatgttgcc aacaagacga caacgtatta tttatcgatg catccaatga ttttgaaaaa
         126841 ggaaaaaatc aaaaccattt aagcgatgcc caagtcgaac gtattattga cacatacaag
         126901 cgtaaagaaa caattgataa atacagttac agtgcgacat tacaagagat tqccqataac
         126961 gattacaacc taaacatacc gaggtatgtc gatacattcg aagaagaagc gccaattgat
         127021 ttagatcaag tccaacaaga tttgaaaaat atcgacaaag aaatcgcaga aattgaacaa
20
        127081 gaaatcaatg catacctgaa agaacttggg gtgttgaaag atgagtaata cacaaaagaa
        127141 aaatgtgcca gagttgagat tcccagggtt tgaaggcgaa tgggaagaga agcagttgag
         127201 ggatcttaca gatagagtaa ttaggaaaaa taaaaactta gaatcgaaaa agcctttaac
         127261 aatatccgga cagttaggtt taattgatca aacagaatat tttagtaaat cagtttcqtc
         127321 gaaaaatcta gaaaattata cactaataaa gaatggagaa ttcgcgtata acaaaagtta
25
        127381 ttctaatgga tacccattag gggctattaa aagattaact agatatgata gtggtgtatt 127441 gtcctctttg tatatttgtt tttctattaa aagtgaaatg tctaaagact tcatggaagc
         127501 atattttgat togacacact ggtatagaga agittotgga attgcagttg agggtgcaag
         127561 aaatcacgga ttattaaatg tttctgtgaa tgatttttt actattctaa ttaaatatcc
         127621 aagtttagaa gaacagcaaa aaataggcaa gttcttcagc aaactcgacc gacaaattga
30
        127681 attagaagaa caaaagcttg aattacttca acaacagaaa aaaggctata tgcagaaaat
         127741 tttctcacag gaactgcgat tcaaagatga gaatggtgaa gattatccag attgggaaaa
         127801 tagcaaaata gaaaaatatt taaaagagag aaacgaacgt tctgacaaag ggcaaatgct
         127861 ttcagtaact ataaatagtg gcattataaa atttagtgaa ttggatagaa aagataattc
        127921 aagtaaagat aaaagtaatt ataaagtagt taggaaaaat gatattgcat ataattctat
35
         127981 gagaatgtgg caaggggcta gtggtaaatc aaattataat gggattgtta qccctgcata
         128041 tactgtgctt tatccaacac aaaatactag ctcattattt attggatata agtttaaaac
         128101 acatagaatg attcataaat ttaaaattaa ttcacaagga ttaacatcag atacatggaa
         128161 cttaaaatat aaacaattaa aaaatataaa tatagatata cctgtattgg aggaacaaga
         128221 aaagataggt gatttcttta aaaaaatgga tatattgata agtaaacaga aaatgaaaat
40
        128281 tgaaatatta gaaaaagaga aacaatcctt tttacaaaaa atgttcttat aactttgata
        128341 aatacataga ttgcataaga ataaaatttg tataatttaa cataaaagtt gtaaaagtaa
        128401 agtgaattaa aaacgaacat taaatttagg cactgtgaaa gcgcagtgtc ttttttgtgt
        128461 cgaaattgtg tacagaataa gtagttaaat aaagattaag ttgagataaa gtgttattcg
        128521 taaataaaag agagtagatc gataggaatt gaatgatatt agttaactat ttattaaatt 128581 acttaataat gattaattt tagttaaagt aagtttaatg tgaagcacga ccattgctca
45
        128641 ttataatgaa tgaggattgt tcgtattgcg taatagaata aatcaaatag actaaaaatt
        128701 gggagcatag aattatgaaa ttaaaaaata ttgctaaagc aagtttagca ctagggattt
        128761 taacaacagg tatgattaca actactgctc agccagtaaa agcaagtaca ttagaggtta
        128821 gatcacaagc tactcaagac ttgagtgaat attataaagg gagaggattt gaattaacaa
50
        128881 atgtaacagg atataaatac ggaaataaag ttacatttat agataattct caacaaattg
         128941 atgttacatt gacaggaaat gaaaaattaa ctgttaaaga tgatgacgaa gtttctaatg
        129001 ttgacgtgtt tgtagtaaga gaaggtagtg acaaatcagc tatcacaaca tcgattggtq
        129061 gaattacaaa gacaaatggg actcaacata aagatactgt tcaaaacgtt aatttgtcag
        129121 tttctaagag tacaggtcaa cacactactt ctgtgacttc agaatactat agcatctata
55
        129181 aagaagaaat ctcattaaaa gaacttgatt ttaaattaag aaagcattta attgataaac
        129241 atgatettta taagacagaa eetaaagaca gtaaaattag aattactatg aaaaaeggtg
        129301 gctattatac atttgaatta aataaaaaat tacagcctca tcgcatgggt gatacgattg
        129361 atagtagaaa tatagagaaa attgaagtga atttataata atattcgagg gagtatatca
60
     SEQ ID No:17 - SSL1
                           /gene="(set6) Mu50ss11"
           Gene
                           116916..117596
           CDS
65
                           /gene="(set6)Mu50ss11"
```

```
/note="Pathogenicity island SaPIn2
                            SAV0422"
                            /codon_start=1
                            /transl_table=<u>11</u>
  5
                            /product="(exotoxin 6) SSL1"
                            /protein id="BAB56584.1"
                            /db xref="GI:14246190"
      /translation="MKFKAIAKASLALGMLATGVITSNVQSVQAKTEVKQQSESELKH
      YYNKPVLERKNVTGYKYTEKGKDYIDVIVDNQYSQISLVGSDKDKFKDGDNSNIDVFI
      LREGDSRQATNYSIGGVTKTNSQPFIDYIHTPILEIKKGKEEPQSSLYQIYKEDISLK
      ELDYRLRERAIKQHGLYSNGLKQGQITITMKDGKSHTIDLSQKLEKERMGDSIDGRQI
      QKILVEMK"
15
      SEQ ID No:18 - SSL2
                            117882..118577
           gene
                            /gene="(set7) Mu50ss12"
           CDS
                            117882..118577
20
                            /gene="(set7) Mu50ss12"
                            /note="Pathogenicity island SaPIn2
                            SAV0423"
                            /codon_start=1
                            /transl_table=11
25
                            /product="(exotoxin 7) SSL2"
                            /protein_id="BAB56585.1"
                            /db_xref="GI:14246191"
      /translation="MKMKNIAKISLLLGILATGVNTTTEKPVHAEKKPIVISENSKKL
30
      {\tt KAYYTQPSIEYKNVTGYISFIQPSIKFMNIIDGNSVNNLALIGKDKQHYHTGVHRNLN}
      IFYVNEDKRFEGAKYSIGGITSANDKAVDLIAEARVIKADHIGEYDYDFFPFKIVKEA
      MSLKEIDFKLRKYLIDNYGLYGEMSTGKITVKKKYYGKYTFELDKKLQEDRMSDVINV
      TDIDRIEIKVRKA"
35
      SEQ ID No:19 - SSL3
                           118868..119938
           gene
                            /gene="(set8) Mu50ss13"
40
                           118868..119938
           CDS
                           /gene="(set8) Mu50ss13"
                            /note="Pathogenicity island SaPIn2
                           SAV0424"
                           /codon_start=1
45
                           /transl_table=11
                           /product="(exotoxin 8)SSL3"
                           /protein id="BAB56586.1"
                           /db_xref="GI:14246192"
50
      translation="MNMKTIAKTSLALGLLTTGAITVTTQSVKAEKIQSTKVDKVPTL/
      KAERLAMINITAGANSATTQAANTRQERTPKLEKAPNTNEEKTSASKIEKISQPKQEE
      QKSLNISATPAPKQEQSQTTTESTTPKTKVTTPPSTNTPQPMQSTKSDTPQSPTIKQA
      QTDMTPKYEDLRAYYTKPSFEFEKQFGFLLKPWTTVRFMNVIPNRFIYKIALVGKDEK
     KYKDGPYDNIDVFIVLEDNKYQLKKYSVGGITKTNSKKVDHKAELSVTKKDNQGMISR
55
     DVSEYMITKEEISLKELDFKLRKQLIEKHNLYGNMGSGTIVIKMKNGGKYTFELHKKL
      QEHRMADVIEGTNIDKIEVNIK"
     SEQ ID No:20 - SSL5
60
                           120302..121006
          gene
                           /gene="(set10) Mu50ss15"
          CDS
                           120302..121006
                           /gene="(set10) Mu50ss15"
                           /note="Pathogenicity island SaPIn2]
65
                           SAV0425"
```

```
/codon_start=1
                           /transl_table=11
                           /product="(exotoxin 10)SSL5"
                           /protein id="BAB56587.1"
 5
                           /db xref="GI:14246193"
      translation="MKMAAIAKASLALGILATGTITSLHQTVNASEHEAKYENVTKDI/
     FDLRDYYSGASKELKNVTGYRYSKGGKHYLIFDKNRKFTRVQIFGKDIERFKARKNPG
     LDIFVVKEAENRNGTVFSYGGVTKKNQDAYYDYINAPRFQIKRDEGDGIATYGRVHYI
10
     YKEEISLKELDFKLRQYLIQNFDLYKKFPKDSKIKVIMKDGGYYTFELNKKLQTNRMS
     DVIDGRNIEKIEANIR"
      SEQ ID No:21 - SSL7
15
                           121452..122147
          gene
                           /gene="(set11) Mu50ss17"
                           121452..122147
          CDS
                           /gene="(set11) Mu50ss17"
                           /note="Pathogenicity island SaPIn2
20
                           SAV0426"
                           /codon_start=1
                           /transl_table=11
                           /product="(exotoxin 11)SSL7"
                           /protein_id="BAB56588.1"
25
                           /db xref="GI:14246194"
      translation="MKLKTLAKATLALGLLTTGVITSEGQAVHAKEKQERVQHLYDIK/
     DLYRYYSSESFEFSNISGKVENYNGSNVVRFNQEKQNHQLFLLGKDKYKKGLEGQN
     VFVVKELIDPNGRLSTVGGVTKKNNKSSETNTHLFVNKVYGGNLDASIDSFLINKEEV
30
     SLKELDFKIRKQLVEKYGLYKGTTKYGKITINLKDEKKEVIDLGDKLQFERMGDVLNS
     KDIQNIAVTINQI"
     SEQ ID No:22 - SSL8
35
                           122486..123184
          gene
                           /gene="(set12) Mu50ss18"
                           122486..123184
          CDS
                           /gene="(set12) Mu50ss18"
40
                           /note="Pathogenicity island SaPIn2
                           SAV0427"
                           /codon_start=1
                           /transl_table=<u>1</u>1
                           /product="(exotoxin 12)SSL8"
45
                           /protein_id="BAB56589.1"
                           /db_xref="GI:14246195"
     /translation="MKFTAIAKAIFVLGILTTSVMITENQSVNAKGKYEKMNRLYDTN
     KLHQYYSGPSYELTNVSGQSQGYYDSNVLLFNQQNQKFQVFLLGKDENKYKEKTHGLD
50
     VFAVPELVDLDGRIFSVSGVTKKNVKSIFESLRTPNLLVKKIDDKDGFSIDEFFFIQK
     EEVSLKELDFKIRKLLIKKYKLYEGSADKGRIVINMKDENKYEIDLSDKLDFERMADV
     INSEQIKNIEVNLK"
     SEQ ID No:23 - SSL9
55
                           123561..124259
          gene
                           /gene="(set13) Mu50ss19"
          CDS
                           123561..124259
                           /gene="(set13) Mu50ss19"
60
                           /note="Pathogenicity island SaPIn2
                           SAV0428"
                           /codon_start=1
                           /transl_table=11
                           /product="(exotoxin 13)SSL9"
65
                           /protein_id="BAB56590.1"
```

/db_xref="GI:14246196"

/translation="MKLTALAKATLALGILTTGVFTAESKAVHAKVELDETQRKYYIN MLHQYYSEESFESTNISVKSEDYYGSNVLNFNQRNKTFKVFLLGDDKNKYKEKTHGLD VFAVPELIDIKGGIYSVGGITKKNVRSVFGFVSNPSLQVKKVDAKHGFSINELFFIQK EEVSLKELDFKIRKMLVEKYRLYKGASDKGRIVINMKDEKKYVIDLSEKLSFDRMFDV MDSKQIKNIEVNLN"

SEQ ID No:24 - SSL10

10

10		
	gene	124625125308
		/gene="(set14) Mu50 <i>ss110</i> "
	CDS	124625125308
		/gene="(set14) Mu50 <i>ss110</i> "
15		/note="Pathogenicity island SaPIn2
		SAV0429"
		/codon_start=1
		/transl table=11
		/product="(exotoxin 14)SSL10"
20		/protein id="BAB56591.1"
		/db xref="GI:14246197"

/translation="MKFTALAKATLALGILTTGTLTTEVHSGHAKQNQKSVNKHDKEA LYRYYTGKTMEMKNISALKHGKNNLRFKFRGIKIQVLLPGNDKSKFQQRSYEGLDVFF VQEKRDKHDIFYTVGGVIQNNKTSGVVSAPILNISKEKGEDAFVKGYPYYIKKEKITL KELDYKLRKHLIEKYGLYKTISKDGRVKISLKDGSFYNLDLRSKLKFKYMGEVIESKQ IKDIEVNLK"

30 <u>SEQ ID No:25 - SSL11</u>

```
gene 128715..129398
/gene="(set15) Mu50ssl11"
128715..129398
/gene="(set15) Mu50ssl11"
/note="Pathogenicity island SaPIn2
SAV0433"
/codon_start=1
/transl_table=11
/product="(exotoxin 15)SSL11"
/protein_id="BAB56595.1"
/db_xref="GI:14246201"
```

/translation="MKLKNIAKASLALGILTTGMITTTAQPVKASTLEVRSQATQDLS
EYYKGRGFELTNVTGYKYGNKVTFIDNSQQIDVTLTGNEKLTVKDDDEVSNVDVFVVR
45 EGSDKSAITTSIGGITKTNGTQHKDTVQNVNLSVSKSTGQHTTSVTSEYYSIYKEEIS
LKELDFKLRKHLIDKHDLYKTEPKDSKIRITMKNGGYYTFELNKKLQPHRMGDTIDSR
NIEKIEVNL"

50 S. aureus strain MW2 taken from GenBank

SEQ ID No:26 - SSL1

```
139029..139709

/gene="(set16)MW2ssl1"

139029..139709
/gene="(set16) MW2ssl1"
/note="ORFID:MW0382
exotoxin homolog [Genomic island nu Sa alpha2]"
/codon_start=1
/transl_table=11
/protein_id="BAB94247.1"
/db_xref="GI:21203547"
```

65 /translation="MKFKAIAKASLALGMLATGVITSNVQSVQAKTEVKQQSEADLKL

YYNGPSFEYKKVTGYGFIEGKDRFIDFIYNGQYNKISLVGSDKDKYNEEVNPDIDVFV VREGNGROADNHSIGGITKTNRGVYYDYIHTPILEIKKGKEEPQSSLYQIYKEDISLK ELDFKLRKQLISQSGLYSNGLKQGQITITMNDGTTHTIDLSQKLEKERMGESIDGRQI QKILVEMK" 5 SEQ ID No:27 - SSL2 139995..140690 gene /gene="(set17) MW2ssl2" 10 CDS 139995..140690 /gene="(set17) MW2ss12" /note="ORFID:MW0383 exotoxin homolog [Genomic island nu Sa alpha2]" /codon_start=1 15 /transl_table=11 /protein_id="BAB94248.1" /db xref="GI:21203548" /translation="MKMKSIVKISLLLGILATGVNTTTEKPVHAEKKPIVISENSKKL 20 KAYYTQPSIEYKNVTGYISFIQPSIKFMNIIDGNSVNNIALIGKDKQHYHTGVHRNLN IFYVNEDKRFEGAKYSIGGITSANDKAVDLIAEARVIKADHIGEYDYDFFPFKIDKEA ${\tt MSLKEIDFKLRKYLIDNYGLYGEMSTGKITVKKKYYGKYTFELDKKLQEDRMSDVINV}$ TDIDRIEIKVRKA" 25 SEQ ID No:28 - SSL3 140981..142051 gene /gene="(set18) MW2ss13" 140981..142051 CDS 30 /gene="(set18) MW2ss13 " /note="ORFID:MW0384 exotoxin homolog [Genomic island nu Sa alpha2]" /codon start=1 /transl_table=11 35 /protein_id="BAB94249.1" /db xref="GI:21203549" translation="MKMRTIAKTSLALGLLTTGAITVTTQSVKAEKIQSTKVDKVPTL/ KAERLAMINITAGANSATTQAANTRQERTPKLEKAPNTNEEKTSASKIEKISQPKQEE 40 QKTLN1SATPAPKQEQSQTTTESTTQQTKMTTPPSTNTPQPMQSTKSDTPQSPTIKQA OTDMTPKYEDLRAYYTKPSFEFEKQFGFLLKPWTTVRFMNVIPNRFIYKIALVGKDEK KYKDGPYDNIDVFIVLEDNKYQLKKYSVGGITKTNSKKVNHKVELSITKKDNQGMISR DVSEYMITKEEISLKELDFKLRKQLIEKHNLYGNMGSGTIVIKMKNGGKYTFELHKKL OEHRMADVIDGTNIDNIEVNIK" 45 SEQ ID No:29 - SSL4 142416..143363 gene /gene="(set19) MW2*ss14* " 142416..143363 50 CDS /gene="(set19) MW2ss14" /note="ORFID:MW0385 exotoxin homolog [Genomic island nu Sa alpha2]" /codon_start=1 55 /transl_table=11 /protein_id="BAB94250.1" /db xref="GI:21203550" translation="MKITTIAKTSLALGLLTTGVITTTTQAANATTPPSTKVETPQQV/ 60 ANATTPSSTKVEAPQQAANATTPSSTKVEAPQSKPNATTPSSTKVEAPQQAANATTPP SSNVDTSPPQSPTTKQVPTEINPKFKDLRAYYTKPSLEFKNEIGIILKKWTTIRFMNV

VPDYFIYKIALVGKDDKKYGEGVHRNVDVFVVLEENNYNLEKYSVGGITKSNSKKVDH KAGVRITKEDNKGTISHDVSEFKITKEQISLKELDFKLRKQLIEKNNLYGNVGSGKIV

IKMKNGGKYTFELHKKLQENRMADVIDGTNIDNIEVNIK"

65

```
SEQ ID No:30 - SSL5
                           143727..144431
           gene
                            /gene="set20 MW2ss15"
 5
           CDS
                            143727..144431
                            /gene="(set20) MW2ss5 "
                            /note="ORFID:MW0386
                           exotoxin homolog [Genomic island nu Sa alpha2]"
                            /codon start=1
10
                            /transl_table=11
                            /protein_id="<u>BAB</u>94251.1"
                           /db xref="GI:21203551"
      translation="MKMAAIAKASLALGILATGTITSLHQTVNASEHEAKYENVTKDI/
15
      FDLRDYYSGASKELKNVTGYRYSKGGKHYLIFDKHQKFTRIQIFGKDIERFKARKNPG
     LDIFVVKEAENRNGTVFSYGGVTKKNQDAYYDYINAPRFQIKRDEGDGIATYGRVHYI
     YKEEISLKELDFKLRQYLIQNFDLYKKFPKDSKIKVIMKDGGYYTFELNKKLQTNRMS
     DVIDGRNIEKIEANIR"
20
     SEQ ID No:31 - SSL6
                           144877..145575
           gene
                           /gene="(set21) MW2ss16"
                           144877..145575
           CDS
25
                           /gene="(set21) MW2ss16"
                           /note="ORFID:MW0387
                           exotoxin homolog [Genomic island nu Sa alpha2]"
                           /codon start=1
                           /transl_table=11
30
                           /protein_id="BAB94252.1"
                           /db xref="GI:21203552"
     /translation="MKLKALAKATLVLGLLATGVITTESQTVKAAESTQGQHNYKSLK
     YYYSKPSIELINVDGLYRQHLTDKGAYVWKNLKDYYIGLLGEDSKKFKSDVYGDLDAF
35
     LVIEEEPVKGRQYSIGGISKTNSKEFKEREVDVKVTRKADRDTTSTKDSKFKITKEEI
     {\tt SLKELDFKLRQKLMKEENLYDAINHRKGKIVVKMEDDKFYTFELTKKLQPHRMGDTID}
     GTKIKEINVELEYK"
     SEQ ID No:32 - SSL7
40
                           145997..146692
          gene
                           /gene="(set22)MW2ss17"
          CDS
                           145997..146692
                           /gene="(set22) MW2ss17"
45
                           /note="ORFID:MW0388
                           exotoxin homolog [Genomic island nu Sa alpha2]"
                           /codon start=1
                           /transl_table=11
                           /protein_id="BAB94253.1"
50
                           /db xref="GI:21203553"
     translation="MKLKTLAKATLALGLLTTGVITSEGQAVQAKEKQERVQHLYDIK/
     DLHRYYSSESFEFSNISGKVENYNGSNVVRFNQENQNHQLFLSGKDKDKYKEGLEGQN
     VFVVKELIDPNGRLSTVGGVTKKNNQSSETNTPLFIKKVYGGNLDASIESFLINKEEV
55
     {\tt SLKELDFKIRQHLVKNYGLYKGTTKYGKITFNLKDGEKQEIDLGDKLQFEHMGDVLNS}
     KDIQNIAVTINQI"
     SEQ ID No:33 - SSL8
60
                           147031..147729
          gene
                           /gene="(set23) MW2ss18"
          CDS
                           147031..147729
                           /gene="(set23) MW2ss11 "
                           /note="ORFID:MW0389
65
                           exotoxin homolog [Genomic island nu Sa alpha2]"
```

```
/codon_start=1
                             /transl_table=11
                             /protein id="BAB94254.1"
                             /db xref="GI:21203554"
 5
      /translation="MKFTAIAKAIFVLGILTTSVMITENQSVNAKGKYEKMNRLYDTN
      KLHQYYSGPSYELTNVSGQSQGYYDSNVLLFNQQNQKFQVFLLGKDENKYKEKTHGLD
      VFAVPELVDLDGRIFSVSGVTKKNVKSIFESLRTPNLLVKKIDDKDGFSYDEFFFIOK
      EEVSLKELDFKIRKLLIKKYKLYEGAADKGRIVINMKDENKYEIDLSDKLGFERMADV
10
      INSEQIKNIEVNLK"
      SEQ ID No:34 - SSL9
                            148108..148806
           gene
15
                            /gene="(set24) MW2ss19"
148108..148806
           CDS
                            /gene="(set24) MW2ss19"
                            /note="ORFID:MW0390
                            exotoxin homolog [Genomic island nu Sa alpha2]"___
20
                            /codon_start=1
                            /transl_table=11
                            /protein id="BAB94255.1"
                            /db_xref="GI:21203555"
25
      translation="MKFTALAKATLALGILTTGVFTTESKAVHAKVELDETQRKYYIN/
      MLHQYYSEESFEPTNISVKSEDYYGSNVLNFKQRNKAFKVFLLGDDKNKYKEKTHGLD
      VFAVPELIDIKGGIYSVGGITKKNVRSVFGFVSNPSLQVKKIDPKHGFSINELFFIOK
      EEVSLKELDFKIRKMLVEKYRLYKGASDKGRIVINMKDEKKYVIDLSEKLSFDRMFDV
      MDSKQIKNIEVNLN"
30
      SEQ ID No:35 - SSL10
                            149165..149848
           gene
                            /gene="(set25) MW2ssl10"
149165..149848
35
           CDS
                            /gene="(set25) MW2ss110"
                            /note="ORFID:MW0391
                            exotoxin homolog [Genomic island nu Sa alpha2]"
                            /codon_start=1
40
                            /transl_table=<u>11</u>
                            /protein_id="<u>BAB94256.1</u>"
                            /db_xref="GI:21203556"
      translation="MKLTAIAKAALALGILTTGTLTTEVHSGHAKONOKSVNKHDKEA/
45
      \verb|LYRYYTGKTMEMKNISALKHGKNNLRFKFRGIKIQVLLPGNDKSKFQQRSYEGLDVFF|
      VQEKRDKHDIFYTVGGVIQNNKTSGVVSAPILNISKEKGEDAFVKGYPYYIKKEKITL
      KELDYKLRKHLIEKYGLYKTISKDGRVKISLKDGSFYNLDLRSKLKFKYMGEVIESKO
      IKDIEVNLK"
50
      SEQ ID No:36 - SSL11
                            153324..154016
           gene
                            /gene="(set26) MW2ss111"
                            153324..154016
55
           CDS
                            /gene="(set26) MW2ss111"
                            /note="ORFID:MW0394
                            exotoxin homolog [Genomic island nu Sa alpha2]"
                            /codon_start=1
/transl_table=11
60
                            /protein id="BAB94259.1"
                            /db xref="GI:21203559"
      translation="MKLKNIAKASLALGILTTGMITTTAQPVKAIEQSRLSVTSKDTQ/
65
     ELKKYYSGTGYNFQNVSGYREGNKMNIIDGPQLNVVTLLGTDKERFKDDEDYEGLDVF
```

VVREGSGKHADNISIGGITKTNKNQYKDPVQNVNLLTSKSNGQNTASVTSEYYSINKE EISLKELDFKLRKQLIDKHDLYKTEPKDSKIKVSMKNGGYYTFELNKKLQPHRMGDTI DSRNIKKIEVNL"

5

S. aureus strain NCTC8325 taken from uncompleted genome project at Oklahoma University via http://pedant.gsf.de

SEQ ID No:37

10									
	45955 C	rgatt G	CTACATTT A	TATTAGAGA T	TAAAGCGTT T	TGATTTTCA G	ATGCTTCTG C	TTGTCCGTT T	GTC
	46025	ATAATA	TATAACATTG	TAATTGCAAC	AGATACTAAA	CCGACTTTCA	TTTTACGTAA	CTTAAAATTT	TCCC
						CTTCAATTTT			
						TTCAAATGTG			
15						AGGTTATGTT			
						TAATTGTATA			
						ATCTTTTACT			
						GATCTATCAG			
						CATTCCCAGT			
20						TCCTGACTGA			
						CTAACCTCTA			
						GTGCTAAACT			
						TTATTCTATT			
						TACTTTAACT			
25						CGATCTACTC			
20						ACACAATTTC			
						TTTACTTTTA			
						TATAAGAACA			
						TTATCAATAT			
30						ATTTATATTT			
50						AATTTATGAA			
						AAAGCACAGT			
						CATAGAATTA			
						TTTCTATCCA			
35						AACGTTCGTT			
55						CTCATCTTTG			
						TCAAGCTTTT			
						CTTCTAAACT			
						TCTTGCACCC			
40									
1 0						AAGTCTTTAG TAGTTAATCT			
						CTTTATTAGT AAACCTAACT			
45						CTGTAAGATC TTTCTTTTGT			
43									
						TTCTGCGATT			
						TCGAATGTAT			
						TGTAGCTATA			
50						TAAATGATTT			
50						TGGCGACATT			
						CAATCACAGC			
						GAATAATACA			
						ATAAAGGCAA			
55	48965					ACTTTGAATC			
33						AAAGGCTGGG			
						ATATTCATGC			
						CTTTACCAAC			
						ACCGTCTGTG			
60						CCCGCTGTCG			
60	49385	CATATG	CATCACCTAA	CATATCAATT	TCCATGTCAC	TGTGAACGAA	TGGTAAGTCG	TCAAGATTAA	CCAT
	49455	GACTTT	AGAGATTAAA	GCAGTACGTT	CTTTGACATT	GTTACCTAGT	CGCGTTGAAC	TCAAATCCAT	ATCG
						CCTAATGTTG			
						TTTCACGAAT			
C =						TTTTAAGTCT			
65	49735	GCTTCT	TGATACGTGA	TGTCTTCACC	TGACAAGGCA	TCTGCATATT	CTTGTTCCGC	TTTTTCAGAT	AAGA
	49805	AGCGAT	AGAAAATCAA	GCCTAAAATG	TAATTACGGA	ATTCACTCGC	ATCCATATTC	CCTCTTAAAT	CATT
	49875	CGCAAT	CGACCATAAT	TTTTTATGTA	ATTCAGCTTG	TTGCTGACGT	TGTTTTTCAG	TAATAGACAT	GTGA
						GTAATAGATT			
70	50015	GATGTG	GAGAATTTTG	ATGTTGGTGG	TGGAAATTTT	ACCTTTATGG	AGATTGGGAT	AGGATTCATG	ACAC
70	50085	ACAAAC	CAAAACGGCT	TAACGACGAT	ATCGATTGAT	GCATCCTTTT	TGTATAAGCT	ATGCGCACCA	ATTT

	- O1 = E	a ca mmm	CACCGTTAAG	CCCCMMCNNM	መን ሮመምምመን አመ	ma mmccma a m	C7 0000 C0000	7 7 Cmm 7 7 Cmm	CAAM
	20122	ACATTT	AATTTGTTTG	COUCTTCAAT	COTTCCCCCAT	AUDUUUUAAA	THE THE TIME TIME	AAGITAACIT	DAGC
			AAACTGCCAT						
			CAATTAGATG						
5			GTAACCTTTC						
J			GATGTTTTAT						
			CAAAGAAAAC						
			TTGAATCTTA						
			ATTTCCATAG						
10			TTTGTTTTGC						
			CGCTTTTGCT						
			GTAATTTGAA						
			ACTTGAATTA						
			TAGTTGTTTT						
15	51135	TACAAA	AACAACTTAA	CAACAGTAAT	GTATTTAACA	CAGTTCCTTA	TATAAGGACA	CAAATGCCAA	TTCA
	51205	CATTTT	GTCGTTAAGC	CGCTTCTTAA	GCTATTATGC	TATTAACTCG	AACTAATTCA	AATTCACTTC	AATA
	51275	TTTTTA	ATTTGCTTAC	TATCCATTAC	ATCAAACATA	CGTTCAAAAC	TTAATTTTTC	ACTTAAATCA	ATTT
	51345		TCTTTTCGTC						
	51415	TTTTTC	GATTAAGAGT	TTTCTTATTT	TAAAGTCCAG	TTCCTTCAAT	GATACTTCTT	CCTTTTGAAT	AAAA
20	51485	AACAAC	TCGTTTATCG	AAAAGCCATT	TTTAGCATCA	ACTTTTTTAA	CTTGTAGACT	TGGATTACTT	AÇAA
	51555	ATCCAA	ACACTGATCT	CACATTTTTC	TTTGTTATAC	CGCCAACGCT	ATATATGCCA	CCTTTTATAT	CTAT
	51625	TAATTC	AGGTACTGCA	AAGACATCAA	GGCCATGTGT	TTTTTCTTTA	TATTTATTTT	TATCGTCACC	AAGT
			ACTTTAAAAG						
~ =			TAATGTTTGT						
25	51835	GCGTTG	TGTCTCATCA	AGTTCTACTT	TCGCGTGACC	AGTTTGACTT	TCTGCTGTAA	ACACACCTGT	AGTT
			CCTAATGCTA						
			ATTGTTATTA						
			GCTCATTTAA						
20			TTTAATAGCA						
30			TGGTTATAAA						
			ACGTATCAAA						
			TTATTTCAAA						
			AATTTATCAC						
25			CTGACCCTTC						
35			CACTTCTTCC						
			AGTAAGTTCG						
			ATATTCTTCC						
			TTTATTTTCA						
40			GAGTCATAAT GTAACTTGTT						
40			TGTTATCATT						
			TTCATGTGCT						
			AAGGGCATTG						
			TTAATATTCA						
45			TAAAACGTAA						
15			ATTCAACATT						
			GTTTCAAAGT						
			TTTATCACCT						
			GTACCTTTAT						
50			CTTCTTCTTT						
			TAAATGTGTA						
	53725	CTACCG	TTTGGATCAA	TTAATTCTTT	TACCACAAAG	ACATCTTTGC	CTTCAATGCC	TTCTTTATAT	TTCT
	53795	CTTTAT	CTTTACCTAA	TAAGAATAAT	TGGTGATTTT	GATTTTCTTG	GTTAAAGCGT	ACAACGTTAG	AACC
	53865	GTTATA	ATTTTCAACC	TTACCACTAA	TATTACTGAA	TTCAAAACTT	TCTGATGAGT	AGTATCGATG	TAAG
55	53935	TCTTTA	ATATCATATA	AATGTTGTAC	TCTCTCTTGC	TTTTCTTTTG	CTTGAACTGC	TTGGCCTTCT	GATG
	54005	TAATCA	CACCAGTAGT	TAATAAGCCT	AATGCCAATG	TTGCTTTAGC	TAACGTTTTT	AATTTCACAG	TACT
			CCAATCTATT						
			ACTATCATTA						
			AGTTAGTTAA						
60			ACTTTCCCTC						
			TATCAACCGT						
			GCTAAGCAAT						
			TAGCTCAACA						
<i></i>			TTTGTAAGTT						
65			CAGCACCATA						
			TTCTTCTTTA						
			TTAACATCGA						
			CATTAACAGT						
70	54915	TTTTTC	AATATCTTTA	CCAAGCAAGC	CAACAAAATA	ATCTTTTCGA	TCCTTCCAAA	CATATACTCC	ATTT
70			ACTTTCTGTC						
			ATTTATAATT						
			AGTAGCTAAC						
	55195	TCCCAA	TCTATTTATA	AATTTTGTCT	TAATATATT	TTATATGATT	ATTTCAATTA	CGTAATACGA	ACAA

						AATTAACCTC			
	55335	TTAAGC	TAATTAATGG	AATCCTAACA	GCGTTAATCT	ATTTTTTAAA	CTTAACGCAG	CTTTTTTAAC	TATT
	55405	CACACT	TTCCCTCAAT	TTAACTATGT	TTTCCACATT	GTTTCATGTC	ACGAAAAGGA	CAACGCGCGA	CTAT
	55475	AAGTAT	CAACTATTTC	CACAAGTTTT	ATTGGTGTTT	TTATTATTCA	TCGATACGCT	TCATTTTCAT	CTCT
5						TAACTCCTCT			
•		CCATAT	TTCATTGAAT						
						GTATAATAGC			
	55755	TCTTAC	TATCTTTAGG	AAACTTTTTA	TACAGATCAA	AATTTTGAAT	TAAATACTGT	CTCAATTTAA	AGTC
	55825	GAGTTC	TTTAAGTGAA	ATCTCTTCTT	TATAAATGTA	GTGTACTCTA	CCGTACGTAG	CAATACCGTC	ACCT
10	55895	TCATCT	CTCTTGATTT	GAAATCTTGG	TGCGTTTATA	TAATCATAAT	AAGCGTCTTG	ATTTTTTCTTA	GTGA
20						CCGCTTCTTT			
						AAATATCTGT			
	56105	TCAAAG	ATAAGGTAAT	GCTTGCCACC	TTTGCTATAA	CGATAACCAG	TAACATTTTT	AAGTTCCTTA	CTTG
	56175	CGCCAC	TATAGTAATC	TCTTAAGTCA	AAGATATCTT	TTGTCACATT	TTCATATTTT	GCTTTATGTT	CACT
15	56245	CGCATT	TACAGTTTGA	TGCAATGACG	TTATTGTTCC	TGTTGCTAAA	ATACCTAATG	CTAAACTTGC	TTTC
	56315	GCAATT	CCTCTCATTT	TCATAGTTGT	ATCCTCCATT	CGTAATTATT	ACATTTCTTC	CCTTACCTCT	አ ጥጥር
						TTTCACATTA			
		CATTAT				TAAATAAAAC			
••	56525	ATAGAT	AGGGATTTAC	AGATAAATTC	AGGTCTCTTC	CACGTCATAT	TTGGACCCAT	CGAAAATTCG	GGTT
20	56595	CTCAAA	TCATCGAACA	TAACAAAAGA	AGCTAAGCAA	CATGTAGGCC	GTTGTCACTT	AACTTCTTGT	TTTT
	56665	CCGATG	ACAGCTTCTA	TTTAGAGAAT	GTCATGATTA	TTTTATATTC	ACTTCAATGT	TATCAATATT	AGTG
	56735	CCATCT	ATGACATOTG	CCATGCGATT	ТТСТТСТААТ	TTTTTGTGCA	ATTCAAACGT	GTACTTTCCA	CCGT
		TTTTCA				TACCGTACAG			
25		TCTCAA				TTCTTTAGTA			
25	56945	GAGATT	GTACCTTTAT	TATCTTCCTT	AGTAATTCTT	ACTCCTGCTT	TGTGATCAAC	TTTTTTACTA	TTAC
	57015	TCTTTG	TGATACCACC	GACAGAATAT	TTTTCCAGAT	TGTAATTATT	TTCTTCTAAA	ACGACAAATA	CATC
	57085	GACATT	CCTATGTACT	CCTTCACCAT	ATTTTTTATC	ATCTTTACCA	ACTAAAGCAA	TTTTATATAT	GAAA
	57155	TAATCT				CATTTTTTTA			
		ATTCTA				CTTTAAATTT			
30									
30	-					AGATTGCATT			
	57365	GGTGTT				TTTGCTGTTT			
	57435	AGGGCG	GTGTTGTCGC	GTTTGGTTTT	GATTGCGGTG	CTTCTATTTT	AGTTGAGGGC	GGTGTTGATT	GTGG
	57505	TGCTTC	CACTTTAGTG	GAAGATAGTG	TTGTCGCGTT	TGCTGCTTGC	GTTGTCGTTG	TGATTACACC	TGTT
	57575	CTTAAA	AGGCCTAGTG	CTABACTTGT	TTTAGCAATC	GTTGTTATTT	TCATACTTCT	ATCCTCCATT	CCTA
35						ACAGCTTTAT			
55									
						TAAGTAAATT		and the second second	
	57785	AAAAT	TGATTTTGAT	GTGATTCAAC	ACTTGGCACA	TTTGAAGTTT	CGTCACTTTT	AAGACATAGA	AATG
	57855	CCACTT	TTACAAACAA	ATGAATATTC	GTCTTTTTAC	ATCATTACGC	ATAATAAAAG	AAGCTAAGCA	ACAT
	57925	GTAAAC	CGTTGTCACT	TAACTTCTTG	TTTTTCCGAT	GACAGCTTCT	ATTTAGAGAA	TGTCATGATT	ATTT
40	57995	TATATT	CACTTCAATG	TTATCAATAT	TAGTGCCATC	TATGACGTCT	GCCATACGAT	GCTCTTGCAG	արարա
						ATTTTAATAA			
						ATTTAAAATC			
						CATACCTTGA		TAGTAATGCT	
	58275	TCTACT	TTGTGATTAA	CTTTTTTACT	ATTAGTCTTC	GTGATGCCAC	CGACAGAATA	TTTTTTCAAT	TGAT
45	58345	ATTTAT	TGTCTTCTAA	AACGATAAAT	ACATCGATAT	TATCGTAAGG	TCCATCTTTA	TATTTTTTCT	CATC
	58415	TTTTCC	AACTAAAGCT	ATTTTATAGA	TGAACCTATT	TGGAATAACA	TTCATAAACC	TAACCGTCGT	CCAT
						AAACTCGGTT			
						TGGTTGGAGA			
50		TTGCAT				TGTCACTTTA		TTGTGGATTC	
50	58695	GTCGTT	TGTGATTGTT	CTTGTTTAGG	CGCTGGCGTT	GCTGATATAT	TAAGCGTTTT	CTGCTCTTCT	TGTT
	58765	TAGGTT	GTGATATTTT	TTCTATTTTG	GAAGCTGAGG	TTTTTTCCTC	ATTAGTATTT	GGTGCCTTTT	CGAG
	58835	TTTAGG	CGTGCGTTCT	TGTCTTGTGT	TAGCTGCTTG	TGTTGTCGCT	GAATTTGCAC	CTGCTGTTAT	GTTT
						TTGTCAACTT			
						TTAAAAGCCC			
55									
33						TTATATTCGA			
						ACATTAAACC			
						GAGATTAATA			
	59255	TAATTT	TTAAGCATTA	AAAAGAAGTT	AAGCAACGTT	TGATCGTCAC	TTAACCTCTC	TATTTCAATT	TCAA
						TAACTTTGAT			
60						TTTATCCAAT			
00									
	39403	TICITI	TIGACIGIAA	TTTTTCCTGT	ACTUATTICA	CCGTAAAGAC	CATAATTATC	AATAAGGTAT	TTTC
	59535	TTAATT	TAAAATCAAT	CTCTTTCAAT	GACATCGCTT	CTTTATCTAT	TTTAAATGGG	AAAAAGTCAT	AATC
						TTCTGCTATT			
	59675	CTCGTG	ATACCCCCAA	TAGAGTACTT	TGCACCTTCA	AATCTCTTAT	CCTCATTAAC	GTAAAATATA	TTAA
65	59745	GATTAC	GATGTACACC	CGTATGATAA	TGTTGCTTAT	CTTTGCCAAT	TAAAGCAATA	TTATTAACAC	AATT
	59815	ACCATC	TATGATATTC	Απαααππαα	TACTTCCTTC	AATGAAACTG	ביים אורכיים ביים אורכיים ביים אורכיים ביים ביים ביים ביים ביים ביים ביים	TOTO TOTO	201121
	59895	עייי ע עיייע ע	CubCCumCym		11101100110	TTGCTATTTT		TORONI I I I I	WHEN T
	22222	CGGCAT	GAACTGGTTT	TTCCGTTGTA	GTGTTTACAC	CTGTTGCTAA	TATTCCTAAT	AACAAACTTA	TTTT
70	60025	TGCAAT	ATTTTTCATT	TTCATAGTTG	TATGCTCCAA	TCTATTATAA	TTAGATTGTT	TTATTACGTA	ATTT
70						TATTCACATT			
	60165	ATATGA	TTAAGCTATT	TAAGCAAAAG	ATAATGCGTG	GTGCGACTGT	TTGTGTGAGT	TTTGTAACTT	TTCC
	60235	CCTCAA	AAAAAGAAGC	TAAGCAACAG	TACGTCGCTT	AACTTCCATA	ΨΑΨΨΨΕΓΑΨΑ	ACAAGCACTA	TTTCA
	60305	אראשאה	CCCAMACAMC	TTACANACTA	THE TOTAL TOTAL	TCTACTAGAA		CHMA CHCCCC	1100
	55555	caing	0301110110	ALDWWDDVIT	IIMIIICMIT	LCIMCTAGAA	TATTATTAAT	CITAGIGCCG	LCGA

פטסטוטי אווט

annennante#a L -

```
60375 TTGACT CACCCATACG TTCTTTTTCA AGTTTTTGAC TTAAATCGAT TGTATGTGTT GTGCCATCAT TCAT
       60445 TGTAAT TGTAATTTGA CCTTGTTTAA GACCATTTGA ATACAAGCCG TGTTGTTTAA TCGCACGTTC TCTT
       60515 ARTCTA TAATCAAGTT CTTTTAATGA GATGTCTTCT TTTGAAATGT AGTAAAAATC TTTAAGTACA TCTT
       60585 CATTAT CTTTCTTGAT TTCTAAAATT GGCGTATTGA TATAATCAAT ATACTGCACA CTATTTGATT TTGT
       60655 AACGCC ACCAATTGAG TAATTTGTTG CTTGTCTACT GTCACCTTCT CTAAGGATAA ACACATCTAT ATTT
5
       60725 GAGTTT TCTCCGTCTT TAAATTTATC TTTATCAGAT CCAAGTAAAG TGATTCGAGA ATGCTGTTGC CCTA
       60795 CTGTGA CTTCTAAATA GTGTTTACCC TCATCAGTAT ATTTAAATCC AGTCACATTT TTACGCTCTA AAAT
       60865 TGGTTT ATTATAATAG TGTTTTAACT CTGATTCACT TTGTTGTTTA ACTTCTGCTT TCGCTTGTAC TGAT
       60935 TGTACA TTCGATGTAA TTACACCTGT TGCTAACATT CCCAATGCTA AACTTGCTTT TGCTATCGCT TTAA
       61005 ATTICA TAATITITAG CCCCAATCTA TITAAATTTG ATTITCAAT TACGTAATAT GAACAATCTA CCTA
61075 CATTAT ATTGAGGCGC TATCCCCTTT CAAATTAAAC CTCATTTAAC TAAACTTGAA TCATTGTTAA GGTA
10
       61145 ATTAAT AAAATGCTAA CTGTTATTAA TCAATTCTTA TCCGTCGAGA CTCTTTTTTA TACAAATCAC ACTT
       61215 TATACC ATTITATTT TAAAAACTGT AAAACTTTCA GACACAAAAC AGACATCATA TTGTCGTAGT ACCT
       61285 GATTAA AATTTTCAAT GATATTAGTG ATACACATCA ACTAAAACGC GTCATTACGG CATTTTCAAC ATTA
       61355 ATAATA TITACGTATT TACTATACAC GTCGACAATA AATACAGATT AGAATTTTTT ATAAAATCAA ATGT
15
       61495 TTAACA GGTGCTACAG GTCATTTAGG CACACATATT ACAAATCAAG CCATTGCAAA TCACATAGAT CATT
       61565 TTCACA TTGGTGTTAG AAATGTTGAG AAAGTTCCAG AAGATTGGCG CGGAAAAGTT CCTGTTCGAC AATT
       61635 AGATTA TTTTAATCAA
20
      SEQ ID No:38 - SSL1
                            60331..61026
           gene
                            /gene=" NCTC8325ss11"
25
                             complement 60331..61026
           CDS
                            /gene="NCTC8325ss11
                            /product="(SET6)SSL1"
      /translation="MGLKIMKFKAIAKASLALGMLATGVITSNVQSVQAKAEVKQQSESELKHYYNKPILERKNVT
     GFKYTDEGKHYLEVTVGQQHSRITLLGSDKDKFKDGENSNIDVFILREGDSRQATNYSIGGVTKSNSVQYIDYINT
      PILEIKKDNEDVLKDFYYISKEDISLKELDYRLRERAIKQHGLYSNGLKQGQITITMNDGTTHTIDLSQKLEKERM
30
      GESIDGTKINKILVEMK"
      SEQ ID No:39 - SSL2
35
                             59350..60045
           gene
                            /gene=" NCTC8325ss12"
                             complement 59350..60045
           CDS
                            /gene="NCTC8325ss12
                            /product="(SET7)SSL2"
      /translation="MKMKNIAKISLLLGILATGVNTTTEKPVHAEKKPIVISENSKKLKAYYNQPSIEYKNVTGYI
40
      SFIQPSIKFMNIIDGNSVNNIALIGKDKQHYHTGVHRNLNIFYVNEDKRFEGAKYSIGGITSANDKAVDLIAEARV
      IKEDHTGEYDYDFFPFKIDKEAMSLKEIDFKLRKYLIDNYGLYGEMSTGKITVKKKYYGKYTFELDKKLQEDRMSD
      VINVTDIDRIEIKVIKA"
45
      SEQ ID No: 40 - SSL3
                             57989..59059
           gene
                            /gene=" NCTC8325ssl3"
                             complement 57989 ...59059
           CDS
50
                            /gene="NCTC8325ss13
                            /product="(similar to SET8)SSL3"
      /translation="MKMRTIAKTSLALGLLTTGAITVTTQSVKAEKIQSTKVDKVPTLKAERLAMINITAGANSAT
      TQAANTROERTPKLEKAPNTNEEKTSASKIEKISQPKQEEQKTLNISATPAPKQEQSQTTTESTTPKTKVTTPPST
      NTPQPMQSTKSDTPQSPTIKQAQTDMTPKYEDLRAYYTKPSFEFEKQFGFMLKPWTTVRFMNVIPNRFIYKIALVG
      KDEKKYKDGPYDNIDVFIVLEDNKYQLKKYSVGGITKTNSKKVNHKVELSITKKDNQGMISRDVSEYMITKEEISL
55
      KELDFKLRKQLIEKHNLYGNMGSGTIVIKMKNGGKYTFELHKKLQEHRMADVIDGTNIDNIEVNIK"
      SEQ ID No:41 - SSL4
60
                             56698..57624
           gene
                            /gene=" NCTC8325ss14"
                             complement 56698..57624
           CDS
                             /gene="NCTC8325ss14
                            /product="(SET9)SSL4"
65
      translation="MKITTIAKTSLALGLLTTGVITTTQAANATTLSSTKVEAPQSTPPSTKIEAPQSKPNATTP/
      PSTKVEAPQQTANATTPPSTKVTTPPSTNTPQPMQSTKSDTPQSPTTKQVPTEINPKFKDLRAYYTKPSLEFKNEI
```

GIILKKWTTIRFMNVVPDYFIYKIALVGKDDKKYGEGVHRNVDVFVVLEENNYNLEKYSVGGITKSNSKKVDHKAG VRITKEDNKGTISHDVSEFKITKEQISLKELDFKLRKQLIEKNNLYGNVGSGKIVIKMKNGGKYTFELHKKLQENR MADVIDGTNI DNIEVNIK"

5

30

SEQ ID No: 42 - SSL5

10 gene 55630..56334
/gene="NCTC8325ss15"
CDS complement 55630..56334
/gene="NCTC8325ss15"

/translation="MKMTAIAKASLALGILATGTITSLHQTVNASEHKAKYENVTKDIFDLRDYYSGASKELKNVT
GYRYSKGGKHYLIFDKNRKFTRVQIFGKDIERFKARKNPGLDIFVVKEAENRNGTVFSYGGVTKKNQDAYYDYINA
PRFQIKRDEGDGIATYGRVHYIYKEEISLKELDFKLRQYLIQNFDLYKKFPKDSKIKVIMKDGGYYTFELNKKLQT
NRMSDVIDGRNIEKIEANIR"

/product="(SET10)SSL5"

20 SEQ ID No:43 - SSL6

gene 54489..55184

/translation="MKLKTLAKATLVLGLLATGVITTESQTVKAAESTQGQHNYKSLKYYYSKPSIELKNLDGLYR QKVTDKGVYVWKDRKDYFVGLLGKDIEKYPQGEHDKQDAFLVIEEETVNGRQYSIGGLSKTNSKEFSKEVDVKVTR KIDESSEKSKDSKFKITKEEISLKELDFKLRKKLMEEEKLYGAVNNRKGKIVVKMEDDKFYTFELTKKLQPHRMGD TIDGTKIKEINVELEYK"

SEQ ID No:44 - SSL7

gene 53373...54068

/translation="MKLKTLAKATLALGLLTTGVITSEGQAVQAKEKQERVQHLYDIKDLHRYYSSESFEFSNISG
KVENYNGSNVVRFNQENQNHQLFLLGKDKEKYKEGIEGKDVFVVKELIDPNGRLSTVGGVTKKNNKSSETNTHLFV
NKVYGGNLDASIDSFSINKEEVSLKELDFKIRQHLVKNYGLYKGTTKYGKITINLKDGEKQEIDLGDKLQFERMGD
VLNSKDINKIEVTLKQI"

45 <u>SEQ ID No: 45 - SSL8</u>

gene 52331...53029

/gene=" NCTC8325ss18"

CDS complement 52331...53029
/gene="NCTC8325ss18

/gene="NCTC8325ss18 /product="(SET12)SSL8"

/translation="MKFTVIAKAIFILGILTTSVMITENQSVNAKGKYEKMNRLYDTNKLHQYYSGPSYELTNVSG QSQGYYDSNVLLFNQQNQKFQVFLLGKDENKYKEKTHGLDVFAVPELVDLDGRIFSVSGVTKKNVKSIFESLRTPN LLVKKIDDKDGFSIDEFFFIQKEEVSLKELDFKIRKLLIKKYKLYEGSADKGRIVINMKDENKYEIDLSDKLDFER MADVINSEQIKNIEVNLK"

SEQ ID No: 46 - SSL9

60 <u>gene</u> 51253....51951 /gene=" NCTC8325ss19" complement 51253....51951 /gene="NCTC8325ss19 /product="(SET13)SSL9"

55

/translation="MKLTTIAKATLALGILTTGVFTAESQTGHAKVELDETQRKYYINMLHQYYSEESFEPTNISV KSEDYYGSNVLNFKQRNKAFKVFLLGDDKNKYKEKTHGLDVFAVPELIDIKGGIYSVGGITKKNVRSVFGFVSNPS LQVKKVDAKNGFSINELFFIQKEEVSLKELDFKIRKLLIEKYRLYKGTSDKGRIVINMKDEKKHEIDLSEKLSFER MFDVMDSKQIKNIEVNLN"

5

SEQ ID No:47 - SSL10

4.0	<u>gene</u>	5020450887
10		/gene=" NCTC8325 <i>ss110</i> "
	CDS	complement 5020450887
		/gene="NCTC8325 <i>ss110</i>
		/product="(SET14)SSL10"

15 /translation="MKFTALAKATLALGILTTGTLTTEVHSGHAKQNQKSVNKHDKEALYRYYTGKTMEMKNISAL KHGKNNLRFKFRGIKIQVLLPGNDKSKFQQRSYEGLDVFFVQEKRDKHDIFYTVGGVIQNNKTSGVVSAPILNISK EKGEDAFVKGYPYYIKKEKITLKELDYKLRKHLIEKYGLYKTISKDGRVKISLKDGSFYNLDLRSKLKFKYMGEVI ESKQIKDIEVNLK"

20

SEQ ID No:48 - SSL11

/translation="MKLKNIAKASLALGILTTGMITTTAQPVKASTLEVRSQATQDLSEYYNRPFFEYTNQSGYKE EGKVTFTPNYQLIDVTLTGNEKQNFGEDISNVDIFVVRENSDRSGNTASIGGITKTNGSNYIDKVKDVNLIITKNI DSVTSTSTSSTYTINKEEISLKELDFKLRKHLIDKHNLYKTEPKDSKIRITMKDGGFYTFELNKKLQTHRMGDVID GRNIEKIEVNL"

```
SEQ ID No: 49
```

```
35
      1047303 TATGAAAA AGAACATCAT GAATAAATTA GTTTTATCAA CAGCATTGTT ACTTTTAGAA ACTACATCAA CA
      1047373 CAACTTCC TAAAACACCA ATCAGTTTTT CATCTGAAGC AAAAGCCTAT AATATCAGTG AAAACGAGAC TA
      1047443 ATATCAAT GAACTAATCA AATATTACAC TCAGCCGCAT TTTTCATTAT CTGGAAAATG GTTATGGCAA AA
1047513 GCCCAATG GTAGCATTCA TGCAACATTG CAAACGTGGG TTTGGTATAG TCATATTCAA GTGTTTGGAT CC
40
      1047583 GAGAGTTG GGGAAACATT AATCAGTTAA GAAATAAATA CGTTGATATA TTTGGAACTA AAGATGAGGA CA
      1047653 CAGTTGAA GGTTACTGGA CTTATGATGA AACATTTACT GGTGGTGTTA CGCCAGCAGC TACTTCATCT GA
      1047723 TAAGCCTT ATAGACTATT TTTAAAATAT AGTGATAAAC AACAAACTAT CATCGGTGGA CATGAATTTT AC
      1047793 AAAGGAAA TAAACCAGTA TTAACTTTAA AAGAATTAGA TTTCCGTATT CGTCAAACAT TAATAAAAAA TA
      1047863 AAAAGTTA TATAACGGAG AATTTAATAA AGGTCAAATT AAGATAACTG CTGATGGAAA TAATTACACG AT
45
      1047933 TGATTTAA GTAAAAAGTT AAAATTAACT GACACAAACC GTTATGTTAA AAATCCTCGT AATGCAGAAA TT
      1048003 GAAGTCAT ACTCGAAAAA TCTAACTAAC CTATTACCTT TTGTAAATGC GGATAATTTC AATTATCTAA TT
      1048073 AACCCCTT TTTATAATTA AACATTCCAA CAATACTCAA AGGAGAAATT CGAATGAACA ATAACATCAC GA
      1048143 AAAAAATT ATTTTATCAA CAACATTGTT ACTATTAGGT ACAGCATCTA CACAATTTCC TAATACACCT AT
      1048213 CAATTCTT CATCTGAAGC GAAAGCTTAT TATATAAATC AAAACGAAAC TAACGTTAAT GAGTTAACTA AA
50
      1048283 TATTACTC GCAAAAATAT TTAACCTTCT CTAACAGTAC GTTATGGCAA AAAGATAACG GTACGATTCA TG
      1048353 CAACGTTG TTACAGTTTT CTTGGTATAG TCATATTCAA GTTTATGGAC CTGAAAGTTG GGGCAATATC AA
      1048423 CCAATTAA GAAATAAAAG CGTTGATATT TTTGGCATAA AAGACCAAGA AACCATTGAT TCTTTTGCAT TA
      1048493 TCTCAAGA AACGTTTACT GGTGGTGTTA CTCCTGCAGC AACATCTAAC GATAAACACT ATAAACTGAA TG
      1048563 TAACATAT AAAGATAAAG CAGAAACGTT TACTGGCGGA TTTCCAGTTT ATGAAGGCAA TAAGCCTGTT TT
      1048633 AACTTTAA AAGAATTAGA TTTTCGTATT CGTCAAACAT TAATTAAAAG TAAAAAATTA TATAATAATT CT
55
      1048703 TATAATAA AGGACAAATT AAAATAACAG GTGCAGACAA TAACTACACA ATAGATTTAA GTAAAAGGTT GC
      1048773 CATCAACT GATGCAAATA GATATGTTAA AAAACCTCAA AATGCAAAAA TTGAAGTTAT CCTCGAAAAA TC
      1048843 AAACTAAC AATAATAATG GAGTTAATAA AAATAATCGC AAATACTATA TTGACTTCGC TCACATTTAA AT
      1048913 TTCTTATT CCTCGTATCA TGATTCCTCT GAAAGGAGAT GTTCTAATGA GTAAGAACAT CACGAAAAAT AT
60
      1048983 AATTTTAA CGACAACATT ATTACTATTA GGTACTGTAT TACCTCAAAA TCAAAAACCA GTATTTAGTT TT
      1049053 TACTCTGA AGCTAAAGCT TATAGCATTG GTCAAGATGA AACTAACATC AATGAATTAA TTAAATATTA CA
      1049123 CACAGCCT CATTTTCAT TTTCAAATAA ATGGCTATAT CAATATGATA ATGGAAACAT TTATGTTGAA CT
      1049193 TAAGAGAT ATTCATGGTC AGCACATATA TCTTTATGGG GCGCTGAAAG TTGGGGGAAAT ATTAATCAGT TA
      1049263 AAAGATCG TTACGTAGAT GTGTTTGGAC TAAAAGACAA AGATACTGAT CAGTTATGGT GGTCTTATAG AG
65
      1049333 AGACATTT ACAGGTGGCG TTACACCAGC CGCAAAACCT TCTGATAAAA CTTATAATCT TTTTGTGCAA TA
      1049403 CAAAGATA AACTACAAAC GATTATTGGT GCGCATAAAA TATACCAAGG CAATAAACCA GTATTAACAT TG
      1049543 AAGGTAAG CTTAAGATCA CCGGTGGCGG TAATAACTAC ACTATTGATT TAAGCAAAAG ATTACATTCA GA
```

5

SEQ ID No:50 - SSL12

10 gene 1047304.. 1048029
/gene=" NCTC8325ss12"

CDS 1047304.. 1048029
/gene="NCTC8325ss112
/product="(similar to SA1011)SSL12"

/translation="MKKNIMNKLVLSTALLLLETTSTQLPKTPISFSSEAKAYNISENETNINELIKYYTQPHF

SLSGKWLWQKPNGSIHATLQTWVWYSHIQVFGSESWGNINQLRNKYVDIFGTKDEDTVEGYWTYDETFTGGVTPAA
TSSDKPYRLFLKYSDKQQTIIGGHEFYKGNKPVLTLKELDFRIRQTLIKNKKLYNGEFNKGQIKITADGNNYTIDL
SKKLKLTDTNRYVKNPRNAEIEVILEKSN"

20 SEQ ID No:51 - SSL13

gene 1048124.. 1048849
/gene=" NCTC8325ss13"

CDS 1048124.. 1048849
/gene="NCTC8325ss113
/product="(similar to SA1010 from strain N315)SSL13"

/translation="MNNNITKKIILSTTLLLLGTASTQFPNTPINSSSEAKAYYINQNETNVNELTKYYSQKYL
TFSNSTLWQKDNGTIHATLLQFSWYSHIQVYGPESWGNINQLRNKSVDIFGIKDQETIDSFALSQETFTGGVTPAA
TSNDKHYKLNVTYKDKAETFTGGFPVYEGNKPVLTLKELDFRIRQTLIKSKKLYNNSYNKGQIKITGADNNYTIDL
SKRLPSTDANRYVKKPQNAKIEVILEKSN"

SEQ ID No:52 - SSL14

35 gene 1048957.. 1049673
/gene=" NCTC8325ss14"

CDS 1048957.. 1049673
/gene="NCTC8325ss114

/product="(similar to SA1009 from strain N315)SSL14"

40 /translation="msknitkniiltttlllgtvlpqnqkpvfsfyseakaysigqdetninelikyytqphf sfsnkwlyqydngniyvelkryswsahislwgaeswgninqlkdryvdvfglkdkdtdqlwwsyretftggvtpaa kpsdktynlfvqykdklqtiigahkiyqgnkpvltlkeidfrarealiknkilynenrnkgklkitgggnnytidl skrlhsdlanvyvknpnkitvdvlfd"

45

30

S. aureus strain EMRSA 16(252) taken from unpublished genome project at the Sanger centre via http://pedant.gsf.de

50 SEQ ID No:53

```
122949 GC CAGCTTTATC AGTTGAAGCT TCTTCCACCT CTTCATCTTC TTCATCTTCA CCTAAATCAG GGCTTGAC
        123019 GA CGAAACCTCA ATTTCTTGAT TATGAACAAT TTTACGATTA TTTAAAGGGT ACTCAAATTC TCCTTTGT
        123089 CA TTTGCTTCAA CAAAACCCAA ACCGCCATTT TCTACTGAAT CCGCACTTTT CCCATCAACT GTTAATAA 123159 AA CATAGTGATT TGGTAAAGTA GTTCCCGTTA TCTTTTGAGC TCCAGGTTTA ATAGTATCTA ATTTAACA
55
        123229 AA GTTCTTATTA GATTCTACTG TTTTTGTTTC TTTTGAATTT TGTTCAGTCT GTGAAACAAC TTTTGATT
        123299 CT TGATTTGTAC TTGGCTTCTC ATTAGCCTCT GATGCTTCTG CTTGTCCGTT TGTCATGATA TATAACAT
        123369 TG TAATTGCAAC AGATACTAAC CCGACTTTCA TTTTACGTAA CTTAAAATTT TCCCTCATGA TATACTCC
        123439 CT CGAATATTAA TATAAATCGA CTTCAATTTT TTCTATATTT CTACCATCAA TTACATCACC CATACGAT
60
        123509 GA GGCTGTAATT TTTTATTTAA TTCAAAAGTA TAGTAGCCGC CACCTTTCAT AGTAATTCTA ATTTTACC
        123579 GT CTTTAGGCTC TGTCTTATAA AGTTCATGAT TTTCAATTAA ATGTTTTCTT AATTTGAAAT CTAATTCT
        123649 TT TAATGAAATT TCTTCTTTAT TAATTCTATA AGTTTCTGCT TGTCTTGTTG CTGTATTATG TCCTGTTG
        123719 GT TTAGTTATTT CTAGACCTAC ATTATTTACG AAATCTTTAT AATCGTTTTT ATTCGTCTTG GTAATTCC
        123789 AC CTATTGAAAT ATTTTCAGCT TGTTTACCTG ATCCTTCTCT GACTACAAAG ACATCTAACC CTTCATAA
        123859 TC ATAGTCATAA TCTTTAAATC TTTCTTTGTC TGTACCAAGT AAAGTAACTA CATTAAGTTG TGTCCCAT 123929 CA ATAATGTTCA TTTTATCCTT TTCTCTATAA CCACTCACAT TTTGAAAATT ATATCCTGTT CCACTGTA
65
```

				TTCTTGCGTG					
				GTAATCATCC					
				TATGCTCCCA GAGCAACGGT					
5				TAGTTAACTA					
				TTAATCTTTA					
				${\tt CTAAATTTAA}$					
				CTTATGCAAC					
10				AATATTTCAA CTTGTTCCTC					
10				TGATGTTAAT					
				AATAATGAGC					
	124839 C	CA.	TTATAATTTG	ATCTACCACT	AGCCCCTTGC	CACATTCTCA	TAGAATTATA	TGCAATATCA	TTTTTCCT
15				ATTACTTTTA					
15				GTTACTGAAA					
				TTTCCCAATG ATAGCCTTTT					
				CTGAAGAAGT					
• •	125259 T	T	TTATTAATTG	CGCTACCTGA	TGTTAAAGCT	CTAGTTGTCA	TAGAACTTTT	TGTAATCATŢ	TCTTTTCT
20				AAAAAAGACA					
				AATCCACTAA					
				CACTAGTCCT AACTTTTCCA					
				GATCCTGAGC					
25				TCTCTTCCCA					
				CTTTCAACAC					
				ATTTTTCAAA					
				GGTATGTTTA TTTCCTTACG					
30				TTTTTCAAAA					
				AAGATACATG					
				TCTTTTCTTC					
				TACAACGGCC					
35				GACTTTGGCG TCGCGCTATA					
55				ATCATCATTA					
				TATGTGGTAT					
				ATGAACCTGA					
40				CAGTATCTTA					
40				CCGATAAGAA CAAGGTTAAC					
				TAAGTCCATA					
	126939 G	ξA	AGTTTCAACT	TTACGAATTG	CCGTCGCCAG	ATGTTCGATA	TCGAAATCTT	GCGTTTCAAT	TTCACGAA
. ~				ATAAATCTTG					
45				TTCATCTGCC TTTTCAGATA					
				CTCTTAAATC					
				AATAGACATG					
	127359 T	rr	ATTATAACAT	TTGGTGGTGT	CGCGATGTTG	AGAATTTTGA	TGTTGATGGT	GGAAATTTTA	TATTCATG
50				GGATTCATAA					
	127499 T	rG	GTAAGGTATA	CGCACCAATT TTCACTTCAA	TACTTTTCAT	CGTTAAGCCG	CTTCAATTAC	TTTTTTATTAT	TCATAATG
	127569 A	Lub 7.T.	DATTTACTTTAAA	TTAAATCAAG	GTTATAAAAG	CTACCATCTT	TCAGACTAAT	TTTAATCCTA	CCATCTTT
	127709 T	rG	AGAGTGTTTT	ATAAAGACCG	TATTTTTCAA	TTAGATGCTT	TCTCAACTTA	AAATCTAACT	CTTTCAAT
55	127779 G	SA	TATTTCTTCT	TTTTTTAATAT	CATAAGGGTA	ACCTTTCACA	AAAGCATCTT	CACCCTTTTC	TTTTGTAA
				GTGTGCTGAC					
				GTCTCTTCTT					
				TCTCCAGGCA AAGCATTAAT					
60				GTTTACTGAC					
•	128199 C	CC	TGTTGTTAAA	ATCCCTAATG	CTAATGTTAC	TTTTGCTAAT	GCTGTCAATT	TCATATTTAT	TTACTCCA
				TGGATTGTTA					
				AACCTCGATT					
65	128409 0	JC ≥m	AGGTTAATTA	ACTTTCACGC CTTTGAAACG	CAAAAAAACAA	CTTGTTTTC	ATTATUTE	TTTCTACAA	CTAATTGT
05	128549 A	7 Z7 2 T	GGTACGGGTG	TCAATGCACA	TTTTATCGTT	AAGCCGCTTT	TTAATTTTTT	ATACTATCAT	CTTTAATT
	128619 A	ΑÆ	TTCAAATTCA	CTTCAATATT	TTTAATCTGC	TTACTATCCA	GCACATCAAA	CATACGATCA	AAACTTAA
	128689 T	T	TTTCACTTAA	ATCAATTTCA	TGTTTCTTTT	CGTCTTTCAT	ATTGATAACA	ATTCTACCTT	TATCTGAC
70	128759 G	SC.	GCCTTTATAC	AATCTATATT	TTTCGACTAA	CATTTTTCTG	TAAAATTTTA	CAAGTTCTTT	CAATGATA
70	128829 C	.T תי	CTCCCCCATC	GAATAAAGAA ACTTACATAG	CAACTCTTTT	ATCGAAAAGC	THE COUNTY OF TH	ATCAACTTTT	CCCTATAT
				GTATCTATTA					
	129039 T	ľΑ	TTTCTATCGT	CGCCAATTAG	AAATACTTTG	AAATTTTTAT	TTCGTTGGTT	AAAGTTTAAA	ACGTTAGA

000010- JAIO 00000004040-1 -

	100100		CAMAAMAAMA					·	_
	129109	CC	CATAATAATC	TTCACTTTT	ACACTAATGT	TTGTTGATTC	ATAGCTTTCT	TGAGAATAGT	AATCTTTT
	129179	ΑG	CATATTTATA	TAATATTTGC	GTTGTGTTTC	ATCCAACTT	' ACTTTCGCGI	TTACAGTTTG	ACTTTCTG
	129249	CT	GTCATCACAC	CTGTTGTTAR	TATTCCTAAT	GCTAATGTT	CTTTAGCTAT	TGCTGTTAAT	TTCATAAT
	129319	TT	ATTGCTCCAA	TCTTAATGTA	TTGGATTGTT	ATGATTACGT	AATTTGAAAC	ATCTGCCTTT	ልጥጥልጥ¤ ል a
5	129389	GT	GCATCGAAAC	AAACTGACAT	TAACGTGCGT	TTAAATAACT	TTGAATCATT	GTTAATGAAC	አ ርርጥን አጥጥ
	129459	ZΔ	TATTCAAAGT	ACGTGGTTTT	AATGAGTGGT	שת כש כשת שת חים ביים ביים ביים ביים	TACTATACTC	GTGACTTGTG	manacana Trocturi
	120520	mc.	מאא א א א א א א כא כ	CCENACCACC	, VCCMMCCCMM	AAAMAACCOMC	CHOTATACIC	ATATACATAT	TIATCAAA
	129329	16	TANANANACAG	CCTAACGACG	ACGIIGCIII	AAATACGCTC	CITIGATAGE	ATATACATAT	TTATTCAA
	129599		TTTCATCGTT	AAGCTGCCTC	: AAAATTTATT	ACTITAAAGI	CATTGATTGC	TTACTTTAAA	TTTGGTTA
10	129669	AT	AGTGACTGAT	ATACCTCTAA	TGTCTTTACT	ATTCAACACA	. TCGCCCATGC	GCTCGAATTG	TAATTTAT
10	129739	CA	CCTAAATCAA	TTTCTACTT	ATTTTCGTCT	TTCAAATTGA	TAATGATTT	ACCGTATTTA	GATGTACC
	129809							TCTTTTAATG	
	129879	TC	TTTTTGGATT	AAAAATGAGT	CAATTGATGC	አ ጥሮሞል አልጥሮባ	ጥርልርርልምምል ል	CTTTATTAAC	777777777
								AGATAGTCTG	
15	130019	AT	CAATTAATTC	TTGTACTACA	AAGACATTT	GGCCTTGTAG	ACCTTCTTTA	TATTGTTCTT	TATCTTTT
13	130089	CC	TAATAAGAAT	AATTGGTGAT	TTTGATCTTT	TGGGTTAAAG	CGTACAACGT	TAGAACCATT	GTAGTTTT
	130159	CA	ACCTTACCAC	TAACATTACT	ATATTCGAAA	CTTTCTGATG	AGTAGTATCG	ATGTAAATCT	CTAATATC
	130229	AT	GTAAATGTTG	TACTCTCTCT	TGTTTTTCTG	CCGCTTGAAC	TGCTTGACCT	TCTGATGTAA	TGACACCA
								TAGTATTATT	
	130369	CT	ATTTTTAAAT	TTTGACTTAA	ԱԾ ԱԾ ԱՇ ԱՎ Ա Ծ	TCTCATTAAT	TCAATTACCT	AATACGAACA	מייכייות
20	130439	TC.	አጥጥአጥአጥአ አ ር	CCCCVMVCmc	CCCGDGCDGC	MA A CCCCMMM	MEN'S CENTRE	CTGAACCAAT	AICIACIA
20	120500	22	ULLY TUTUTURE	CCGGAIACIG	CGCIAIGAAI	TAACCGCTTT	TIMACIATIC	CTGAACCAAT	GTTAAGCT
		AA	TTAATGGAAT	CCTAACAGTA	TTAATCATTT	TTTATAACTC	TATGCTATTT	TTTTCACCAT	TCACACTT
	130579	TC	TTTCAATTTA	ATTATGTTTT	CCACATTGTT	TCATGTCACT	AGTGCGACAC	CGTGCGACTA	TAGGTATC
	130649	AΑ	CTATTTTCAC	AGTTTTTATT	GTCGTTATTA	TCTTTCATCG	ACCCACTTCA	TTTCCGATCG	TAACGACA
	130719	CA	AAAAAGAAGC	TAAGCAACCT	ATGCTGCCTA	GCTCATCTAT	ACTATCCATA	TTTTACTATT	ATCCATGT
25	130789	ΤT	CGTTGAATTA	TCTAATATTG	GCTTCTATTT	TCTCAATATT	TCTGCCATCT	ATGACGTCAC	TCATTCGG
	130859	distrib	TCTTTCTAAC	TOTAL TOTAL CA	CUTCANACCO	TOTOLITICAL TOTOLOGICAL TOTOLOGICA	CCAMCMMMCA	TTGTCACTTT	TOATTOGG
	120000	117	CCMMMACCAA	TITITION	GIICAAACGI	MIMMIAGEEG	CCATCTTTCA	TTGTCACTTT	TATCTTGC
	130929	TA	GCTTTAGGAA	ACTITITATA	CAGATCAAAA	TCTTGAATTA	AATACTGTCG	TAATTTAAAA	TCAAGTTC
	130999	7.7.	TCAGCGAAAT	CTCTTCCTTA	TAAATGTAGT	ATCTTTTAAC	ATGCACAGAA	ACACCTGCAC	CTACTTCT
30	131069	TT	TTTAATAACG	AATCTAGGTG	CGCTTAAGTA	ATCATAGTAA	GCGCCTTGAT	TTTTCTTAGT	AACGCCAC
30	131139	CA	TATGAATACA	CTGTGCCGTT	GCGATTTTCC	GCTTCTTTAA	CTACAAATAT	ATCTAATCCT	GGATTTTT
	131209	AC	GTTTTTTAAT	CCTTTCTATA	TCTTTACCAA	AAATTTGTAT	TCTTGTGAAC	TTTCTATTTT	TATCAAAG
	131279	AΤ	AAGGTAGTGC	TTGCCACCTT	TGCTATAACG	ATACCCACTA	ACATTTTTA A	GTTCCTTACT	TATCAAAG
	131349	מידי	TACTAATCTC	TCAACTCCAA	Cymynchumm	CECACACACE	CAMAMAMACA	TTCATGTTCG	TGCGCGAC
	121/10	117	CACHEROCACO	CCHECKECH	DAIAICIIII	GICACATITI	CATATTTTGA	TTCATGTTCG	CTCGCATT
35	131419	IA	CAGTTTGAGC	CGTTGATGTT	ATAACCCCAG	TCGCTAAAAT	ACTTAGAGCT	AAACTGGCTT	TCGCAATT
33	131489	GC	TGTCATCTTC	ATAGTTGTAT	GCTCCAATCG	TAATTATTAG	ATTTGTTCGA	TTACGTTTAT	TGAATCAT
	131559	AC	AGCTTTATTA	TAGTTGGCGT	ATGTCTCTAT	TCATATTAAA	CCTTGTTTAA	CTATATTTGA	ATCATCGT
	131629	ΤA	ATTAAATTAA	GGAATCCATA	ATGTTCGTTA	AATAAAAATG	ACTTTTGTTG	TACTTCAACG	CTTGATAG
	131699	$\mathbf{T}\mathbf{A}$	TGGTATTTTT	AGACACATTT	AGGACATAAG	CATGTTATGT	GTGGTCAACA	TCAAATATTC	GTCTTCTT
	131769	ΑТ	ACCACTGTGC	AACACGAAAG	AAGCTGAGCA	ACATGTAAAT	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CAACTTCTCG	CTACATIC
40	131839	thith re-	CAACGGTTCT	A TO CO CTATE	CAUCACCAUCA	MONIGIAMAI	TITIGICACI	CTTTCGATAC	GIACAICG
.0	131000	mc T T	CUUCAGIICI	COCAMOCATA	CHICACGAIG	ATTTTAGATT	CACTTCAATT	CTTTCGATAC	TAGTGCCA
	131909	TC	TATGACATCT	GCCATGCGAT	GTTCTTGTAA	TTTTTTATGC	AATTCAAACG	TGTACTTCCC	ACCGTTTT
	131979	TC	GTTTTAATAA	CAATTGTTCC	TGAACCAATA	TTACCGTACA	AATTATGTTG	TTCAATGAGT	TGCTTTCT
	132049	CA	ATTTAAAATC	AAGCTCTTTC	AAGGAAATCT	CTTCTTTAGT	TATCTTATAT	TCTGAATCAT	CGTGTGAG
	132119	AΤ	TTTGCCTTTC	TCATCTTTTT	TAGTAATGCT	TAATTCTGCT	TTGTGATCAA	CTTTTTTACT	ATTTGTCT
45	132189	TC	GTGATACCCC	CGACAGAATA	TTTTTTCAAT	TGATATTTAT	TGTCCTCTAA	AACGATAAAT	ACATCAAT
	132259	ΆT	TATCGTATEG	CCCATCTTTA	արդասարարդար 11111111111111	CAMCMMMMCC	AACTAAACCT	ATTTTATAAA	HCWI CWWI
	132320	ሞር	THECOTATA	MMCARAAACC	MANCHCHICI	CAICIIIICC	AACIAAAGCI	CAAATTGCTT	TGAACCAA
	132323	TC	1 GGI MI MACA	TTCATAAACC	TAACTGTCGT	CCATGGTTTC	AGCATAAAGC	CAAATTGCTT	TTCGAATT
	132399	CT	AAACTCGGTT	TCGTATAATA	TGTTCTTAAA	TCCTTATATT	TAGGGTTTAT	TTCCTTTTGT	GCTTGTTT
50	132469	TG	TGGTTGGCGA	TTGCGGTTGT	TTTGTTTCGA	CATTAGATGA	ATGCGGTGTT	GTTGGGTTTG	GTGTTGGT
50	132539	TG	TGGCGATTGC	GGTTGTACAT	TTGGTGAAGG	CGGAGTTGTT	ACACTTGGTG	TTGGTTGTGG	CGATTGCG
	132609	GT	TGTACATTTG	GTGAAGGCGA	TGTTGTTACT	TTTTGTATTT	TAGATTTTAT	TGCCTGTTCT	GTTTTAAG
	132679	TG	CTGATGCTAC	TTCTGCATTA	GCCGATTGCG	TTGTTACTAT	ACTTGCACCT	GTTGTTAAAA	CTCATACT
	132749	GC	TAAACTGGTT	TTCGCAATTT	CTCTCATTTTT	CATACTTCTA	TOTTOOLOGI	TATTATATTC	CIGNING
	132810	TT TT	my Comp y mmy	CARMCAMACA	OTOICHIIII	CUINGILGIA	TGCTCCAATC	CACATTAAAC	GATTGTTC
55	132013	7 7	TACGIMATIA	GAATCATACA	ACTACATTAT	AGAAGACGTA	TCGGTCTATT	CACATTAAAC	CATGTTTA
33	132889	AC	TATATTTGAA	TCATCGTTAA	GTAATCCATA	ATTTTCGTTA	AATACAGATG	GTTTCGAAGC	GATTCAAC
	132959	GC	TTGCACATTG	GGCATTGCAT	CATTTTCAAG	ACATTGAGAT	GTCACTTTTA	CAAACAAGTG	AATAATTT
	133029	CC	CTTAACATCA	TTACGCAAAA	CAAAAGAAGC	TAAGCAATGA	TGTAGGTCAT	TGTCGCTTAA	CTTCTCAT
	133099	TT	CATCGTTCAA	CGGTTCTATG	TAGTATCCAT	CACGATGATT	TTAGATTCAC	TTCAATTCTA	ጥርያያውያው
	133169	TG	TACCATCAAT	AACATCTGCC	AUCCCAUCTU	CTTCCAATTT	TTTTCTTTTTTTT	TCAAACGTGT	TOWNTALL
60	133239		7 drandrand C 2 dran	TTANTANCO	THE COURT OF T	GIIGCMAIII	CCCCTACTAT	TATGTTGTTC	ACTITICA
00	133300	Cm	WILLITIONII	TIMMIMMOUN	TIGITCCIGA	ACCAATATTA	CCGTACAAAT	TATGTTGTTC	AATGAGTT
	100000	GI	TITCICAATT	TAAAATCAAG	TTCTTTCAAG	GAAATCTCTT	CTTTAGTAAT	CTTGTATTCT	GAAACATC
	133379	ΑT	GTGAGATTGT	ACCTTTTTA	TCTTCTTTAG	TAATACTTAT	TCCAGTTTTG	TAATCAACTT	TCTTTCTA
	133449 '	$_{ m TT}$	TGCTTTTGTG	ATACCACCGA	CCGAGTATTT	GTCTACGCCA	TATTTATTTT	GTTCTAAAAC	CTTALATTA
- -	133519	CA	TCGACATGCC	TATGCACGCC	TTCACCATAT	TTCTTATCAT	CTTTTCCAAC	TAAAGCTATT	ጥጥልጥልጥልጥ
65	133589	GA	AATAATCTGG	AACAATATTC	ATAAATCTTA	TTGTTGTCCA	ТТТТТТСТТ	ATTATACCCA	ፓ ርጥሮ ፓ መመመ
	133659	тт	AAATTCTAAA	C.d.d.CV մասան	ΨΔΨΔΔΨΔΨΩΝ	4.C.4.4.9.9.9.C.C.W	THE TAIL TOUTH	GGTTTATTTC	COMMUNICACI COTOUTII
	133720		անասանանը	4445CCCC24CC	TOTAL STATE	TOTIMAMOUL	TIMMATTTAG	CGGTGTTGTT	CTTTTGTG
	133700	TC.		" TGGCGWIGI	TGGTTGTGGT	GITTCGACAT	1 AGATGAAGG	CGGTGTTGTT	ACACTTGG
	133000	7.0	TIGGITGIGI	IGATIGUGGT	TGTGCATTTG	GTAAAGACTG	AGTTGTTCCG	CTTGGTGCTG	GTTGTGTT
70	T33868 (نات	TTTTTGTATG	TTAGATTTTG	GCGTCTGTTC	TGTTTGAGTT	GAAAGCGATG	TTGATACATT	TTCTGTGT
70	133939 1	ΓA	GACTTTGCCG	CCTGTTCAGG	ATTAGCCGTA	TGATTTTGTT	CTGCGTTCAC	TECTTECCCT	CTCCTTCT
	134009 (ΞA	TTGCGCTTGT	TGATACGTTT	ATCTTTGCTA	ACTGTCCTGC	TTTAAGTGCT	GATGCTACTT	CTCCATTC
	134079	ЭC	CGATTGCGTT	GTTACTATAC	TTGCACCTGT	TGTTACAAGC	CCTAACGCTA	TACTCGCTTT	CCCDDTTC
	134149	ГT	CTTATTTTCA	TAGTTGTATG	CACCYVACCA	77447	OOTUROUS H	CGTAATTAGA	DILAMODUS
				U11G1M1G	CICCAMICGI	DATIATICGA	TIGITCTTTA	CGTAATTAGA	ATCATACA

```
134219 AC TTCATTATAG AGGACATATT GGTCTATTCA CATTAACCCT CGTTTAACAA TTGTTGAAAT ATTATTAA
      134289 GT CATTTAAGCA AAAAATAATG AGTACTTTCG AGGTTTATGT GGTGTTACTA TGTATCTTTG AAATGATT
      134359 TT AAGACATAAA AAAGAAGTTA AGTAACGTTT TATCATCACT TAACCTCACT ATTGCAATTT CAATTCAT
      134429 TA CGACGACCAG TCTAAGCATT ATGCTTTTTT AACTTTGACT TCAATCCTAT CAATATCTAT GACTTTGA
 5
      134499 CG ATATCGGCCA TTCGGTCTTC TTGTAACTTT TTATCCAATT CAATTGTATA CTTGCCATAG TATTTCAT
      134569 TT GGACAGTAAC TGTTCCTGAA CTCATTTCAC CATAAAGACC ATAATGATCA ATAAGATGTT TTCTTATT
      134639 TT AAAATCAACC TCTTTTAATG TCATTGCTTC TTTATCTATT TTAAATGGGA AAAAGTCATA ATCATATT
      134709 CA CCAGTGTGAT CTTCTTTAAT GACTCTTGCT TCTGCTACTT GGTCGACAAC TTTATCGCTT GCTTTTGT
      134779 GA TACCACCAAT CGAGTACTTT GCACCTTCAA ATCTCTTATC CTCATTAACA TAAAATATAT CAAGGTTG
      134849 CG ATGTACACCC GTATGATAGT GTTCCTTATC TTTGCCAACT AAAGCTAGAT TATTAACTGT ATTACCTT
10
      134919 CT ATCATATTCA AAAATTTAGT GCCTGGTTTA GGTTGAATAC TACTGATATA ACCTGTCACA TTTTTATA
      134989 TT CAACACTAGG TTGAGTATAG TACGCTTTTA AATTTTTACT ATTTTGGCTT ACTTGAACAT GTTTATTT
      135059 TC GGCATGCACC GGTTGTTCCG TTACAGTATT TACACCTGTA GCTAAAATAC CCAACACTAA ACTTACTT
      15
      135199 GA ATCATACAAC CATATTATAG GAGCTGTATG CTGATATTCA CATTAACCCT TTTTTAACTA TTCATAAA
      135269 AT ATGATTAAGC TAGTTAAGTA AAAGATAATG CGTGCTGCGA CTGTTTGTG GAGTTTTGTA ACTTTGCC
      135339 CT CAAAAAAGAA GCTAAGCAAC AGTACGTCGC TTAACTTCCA TATATTTCCA TAACAAGCAC GATTCAAC
      135409 AT AGCGCTTTGT CGTTAGAAAG TATTATTTCA TTTCTACTAG AATTTTTTGT ATTTGTCTGC CGTCGATA
      135479 GA ATCACCCATA CGTTCTTTT CAAGTTTTTG ACTTAAATCG ATAGTATGTG ATTTGCCATC TTTCATAG
      135549 TA ATTGTAATTT GACCTTGTTT AAGACCATTT GAATACAATC CGTGTTGTTT GATTGCACGT TCTCGTAA
20
      135619 TC TATAATCAAG TTCTTTTAAT GAGATATTTT CTTTATAAAT TTGATACAGA CTATTTTGTG GTTCTTCA
      135689 TT ACCTTTCTTA ATTTCAAGGA TTGGAGAGTG TATATAGTCG TAATACACTC CTCTATTAGT TTTTGTTA
      135759 CG CCACCAATCG AATGATTATC AGCTTGTCTA CCGTTTCCTT CTCTAACGAC AAACACATCT ATATCTGG
      135829 GT TAACTTCTTC ATTATATTA TCTTTATCAG AACCAACTAA AGATATTTTA TTATATTGTC CATTGTAT
25
      135899 AT AAAATCAATG AATCTATCTT TACCTTCAAT AAATCCATAT CCAGTTACTT TTTTATATTC AAAACTTG
       135969 GT CCATTATAAT AAAGTTTTAA ATCAGCCTCA CTTTGTTGTT TAACTTCTGT TTTCGCTTGT ACTGATTG
      136039 TA TATTCGACGT TATTACACCT GTTGCTAACA TTCCCAATGC TAAACTTGCT TTTGCTATCG CTTTAAAT
      136109 TT CATAATTTTT AGCCCCAATC TATTTAAATT TGATTTTTCA ATTACGTAAT ATGAACAATC TACCTACA
      136179 TT ATATTGAGGC GCTATTCCCT TTCAAATTAA ACCTCATTTA ACTAAACTTG AATCATTGTT AAGGTAAT
30
      136249 TA ATAAAATGCT AACTGTTAAT AATCAATTCT TATCCGTCAA GACTCTTTTT TATACAATTC ACACTTTA
       136319 AA CCATTTTAAT TTTAAAAACT GTAAAACTTT CAGACACAAA AATGACATCA TATCGTCGCA GTACCATG
       136389 TC AAAATTTTCA AAGATCATGG TGACACGCAT CAACTAAAAC GCGTCATTAC GGTATTTTTA ACATTAAT
      136459 AA CATATGCGTA TTTACTATAC ACGGCGACAA TAAATACAGA TTGCAATTTT TTATAAAATC AAATGTTT
      35
      136599 AA CAGGTGCTAC AGGTCATTTA GGCACACATA TTACAAATCA AGCCATTGCA
      SEQ ID No:54 - SSL1
40
      gene
                             135433..136128
                            /gene="EMRSA 16(252)ssl1"
                            complement 135433..136128
           CDS
                             /gene="EMRSA 16(252) ssl1
                            /product="(similar to SET6 from strain Mu50)SSL1"
45
      translation="MGLKIMKFKAIAKASLALGMLATGVITSNIQSVQAKTEVKQQSEADLKLYYNGPSFEYKKVT/
      GYGFIEGKDRFIDFIYNGQYNKISLVGSDKDKYNEEVNPDIDVFVVREGNGRQADNHSIGGVTKTNRGVYYDYIHS
      PILEIKKGNEEPONSLYQIYKENISLKELDYRLRERAIKQHGLYSNGLKQGQITITMKDGKSHTIDLSQKLEKERM
      GDSIDGRQIQKILVEMK"
50
      SEQ ID No:55 - SSL2
                             134449..135150
      gene
55
                            /gene="EMRSA 16(252)ssl2"
                            complement 134449...135150
           CDS
                             /gene="EMRSA 16(252)ss12
                            /product="(similar to SET7 from strain N315)SSL2"
      /translation="MKMKSIAKVSLVLGILATGVNTVTEQPVHAENKHVQVSQNSKNLKAYYTQPSVEYKNVTGYI
60
      SSIOPKPGTKFLNMIEGNTVNNLALVGKDKEHYHTGVHRNLDIFYVNEDKRFEGAKYSIGGITKASDKVVDQVAEA
      RVIKEDHTGEYDYDFFPFKIDKEAMTLKEVDFKIRKHLIDHYGLYGEMSSGTVTVQMKYYGKYTIELDKKLQEDRM
      ADIVKVIDIDRIEVKVKKA"
65
      SEQ ID No:56 - SSL3
                             133130..134161
      gene
                            /gene="EMRSA 16(252)ss13"
```

```
CDS
                            complement 133130..134161
                             /gene="EMRSA 16(252)ss13
                            /product="(similar to SET9 from strain N315)SSL3"
  5
       translation="MKIRTIAKASIALGLVTTGASIVTTQSANAEVASALKAGQLAKINVSTSAITTTAQAVNAEQ/
      \tt NHTANPEQAAKSNTENVSTSLSTQTEQTPKSNIQKATQPAPSGTTQSLPNAQPQSTQPTPSVTTPPSSNVETPQPT
      SPTTKQAQKEINPKFKGLRSYYTKSSLEFKNELGIIIKKWTTIRFMNIVPDYFIYKIALVGKDDKKYGEGVHRHVD
      VFIVLEQNKYGVDKYSVGGITKANRKKVDYKTGISITKEDKKGTISHDVSEYKITKEEISLKELDFKLRKQLIEQH
      NLYGNIGSGTIVIKMKNGGKYTFELHKKLQQHRMADVIDGTNIDRIEVNLKSS"
 10
      SEQ ID No:57 - SSL4
      gene
                             131863..132783
                            /gene="EMRSA 16(252) ss14"
 15
           CDS
                            complement 131863..132783
                             /gene="EMRSA 16(252)ss14
                            /product="(similar to SET8 from strain Mu50)SSE4"
      translation="MKMTQIAKTSLALSLLTTGASIVTTQSANAEVASALKTEQAIKSKIQKVTTSPSPNVQPQSP/
20
      QPTPSVTTPPSPNVQPQSPQPTPNPTTPHSSNVETKQPQSPTTKQAQKEINPKYKDLRTYYTKPSLEFEKQFGFML
      KPWTTVRFMNVIPDWFIYKIALVGKDDKKYKDGPYDNIDVFIVLEDNKYQLKKYSVGGITKTNSKKVDHKAELSIT
      \tt KKDEKGKISHDDSEYKITKEEISLKELDFKLRKQLIEQHNLYGNIGSGTIVIKTKNGGKYTFELHKKLQEHRMADV
      IDGTSIERIE
      VNLKSS"
25
      SEQ ID No:58 - SSL5
      gene
                            130798..131502
30
                            /gene="EMRSA 16(252)ss15"
           CDS
                           complement 130798..131502
                            /gene="EMRSA 16(252)ss15
                           /product="(similar to SET3)SSL5"
35
      translation="MKMTAIAKASLALSILATGVITSTAQTVNASEHESKYENVTKDIFDLRDYYSRASKELKNVT/
      GYRYSKGGKHYLIFDKNRKFTRIQIFGKDIERIKKRKNPGLDIFVVKEAENRNGTVYSYGGVTKKNQGAYYDYLSA
      PRFVIKKEVGAGVSVHVKRYYIYKEEISLKELDFKLRQYLIQDFDLYKKFPKASKIKVTMKDGGYYTFELNKKLQT
      NRMSDVIDGRNIEKIEANIR"
40
      SEQ ID No:59 - SSL7
      gene
                            129656..130351
                           /gene="EMRSA 16(252)ss17"
           CDS
                           complement 129656..130351
45
                            /gene="EMRSA 16(252)ss17
                           /product="(similar to SET1)SSL7"
      translation="MKLKTLAKATLALGLLTTGVITSEGQAVQAAEKQERVQHLHDIRDLHRYYSSESFEYSNVSG/
      KVENYNGSNVVRFNPKDQNHQLFLLGKDKEQYKEGLQGQNVFVVQELIDPNGRLSTVGGVTKKNNKTSETNTPLFV
     NKVNGEDLDASIDSFLIQKEEISLKELDFKIRQQLVNNYGLYKGTSKYGKIIINLKDENKVEIDLGDKLQFERMGD
50
     VLNSKDIRGISVTINOI"
     SEQ ID No: 60 - SSL9
     gene
                            128617..129315
55
                           /gene="EMRSA 16(252)ss19"
          CDS
                           complement 128617..129315
                           /gene="EMRSA 16(252)ss19
                           /product="(similar to SET5)SSL9"
     translation="MKLTAIAKATLALGILTTGVMTAESQTVNAKVKLDETQRKYYINMLKDYYSQESYESTNISV/
60
     KSEDYYGSNVLNFNQRNKNFKVFLIGDDRNKYKELTHGRDVFAVPELIDTKGGIYSVGGITKKNVRSVFGYVSHPG
     LQVKKVDPKDGFSIKELFFIQKEEVSLKELDFKIRKMLVEKYRLYKGASDKGRIVINMKDEKKHEIDLSEKLSFDR
```

65

MFDVLDSKQIKNIEVNLN"

SEQ ID No:61 - SSL10

```
127571..128254
      gene
                              /gene="EMRSA 16(252) ssl10"
            CDS
                               complement 127571..128254
                               /gene="EMRSA 16(252) ss110
 5
                              /product="(similar to SET4)SSL10"
      /translation="MKLTALAKVTLALGILTTGTLTTEAHSGHAKQNQKSVNKHDKEALHRYYTGNFKEMKNIN
      ALRHGKNNLRFKYRGMKTQVLLPGDEYRKYQQRRHTGLDVFFVQERRDKHDISYTVGGVTKTNKTSGFVSTPRLNV
      TKEKGEDAFVKGYPYDIKKEEISLKELDFKLRKHLIEKYGLYKTLSKDGRIKISLKDGSFYNLDLRTKLKFKHMGE
      VIDSKQIKDIEVNLK"
10
      SEQ ID No:62 - SSL11
                               123447..124145
            gene
                               /gene="EMRSA 16(252) ssl11"
15
                               complement 123447..124145
            CDS
                               /gene="EMRSA 16(252) ssl11
                               /product="(similar to SET15 from strain Mu50)SSL11"
      translation="MKLKNIAKASLALGILTTGMITTTAQPVKASEQSRLSVTSNDTQELKKYYSGTGYNFQNV/
      SGYREKDKMNIIDGTQLNVVTLLGTDKERFKDYDYDYEGLDVFVVREGSGKQAENISIGGITKTNKNDYKDFVNNV
20
      GLEITKPTGHNTATRQAETYRINKEEISLKELDFKLRKHLIENHELYKTEPKDGKIRITMKGGGYYTFELNKKLOP
      HRMGDVIDGRNIEKIEVDLY"
      SEQ ID No:63
25
        38500 A CAATGTAAGT TGGGGTGGGG CCCCAACATA GAGAAATTGG GTTACCAATT TCTACAAGCA ATGCAAGTT
        38570 G GGGCGGGCCC AAACCCAGAG AATGACTTGG CATTTCTATT AGACTCCAAA TCGCATTTAA TATTCTGTG
        38640 T ACTABATTAA TGATTGTGTA AGTACTATTG AGACATTTTG TAGTATTACT CABATATTGT TTATCCTTA
        38710 G TATTTACGAT ATAAATCATA CGACCTTATT TAATCAATGA GGACTTCGAC TGTTATTTTT TGAGGATTT
        38780 T TAACATAAAC ATTTGCAAGA TCAGAATGTA ATCTTTTACT CAAATCAATT GTAAAGTCAT TGCCGCCAC
30
        38850 C GGTGATTTTA AGTTTACCTT TATTGCGATT TTCATGATAT AATATTTTAT TTTTAATTAG TGTTTCACG
        38920 T GCTCGAAAAT CAATTTCTTT CAATGTTAAT ATTGGTTTAT TACCTTGGTA CATCTTATGT GCACCAATA
        38990 A TIGITIGIAG TITATCTITG TATIGGACAA AAAGACTATA IGGITITATCA GAAGGIGATG CAGCAGGIG
        39060 T TACACCACCT GTAAATGTAT CACGATATAC CCACCATAAC TGGCTAGTGT CTTCGTCTTT TAAACCAAA
        39130 C ACGTCTACAT AGCGGTCTCT TAATTGATTA ACGTTGCCCC AACTTTCAGC ACCCCATAAT CGTATATGC
35
        39200 G CTGACCAAGA ATAACGCTTA AATTCAACAT AAATGTTGCC GTCATCATAT TGGTATAACC ATCTATTTG
        39270 A AAATGTGAGA GGCAGTTGTG TGTAATATTT AATTAACTCA TTGATGTTCG TTTCGTCTTG GCCAATATG
        39340 A TAAGCTTTAG CGTCTGTAGA AACATTTAAT GGCGAATTAG AGGTTTGTGT AGCTGTTGTT CCTAATAAT
        39410 A ACASTGTTGT CATTAAAATT AACTTTTTCA TAATGCACTT TCTCATTCGA ACTTCTCCTT TCTGCGTAA
        39480 T CATCAATACG AGAATTAACA AATTTAAAAA TGAACGGCGT CAATGTAAAC ATTGTGCTTA TTTCTGTTT
40
        39550 A CTTCGATTTC GATGTTAGCT AGATTTTTCA AGGAGGATTT CGATGTGTGC AGTTTGAGGG TTTTTAACA
        39620 T ATCTATTTGC ATCAGTTGAT TTTAATCTTT TGCTTAAATC TATTGTGTAG TTGTTGCTGC CACCTGTAA
        39690 T CTTAATGTGG CCTTTATTAT AATCACCATT ATATAATTTT TTGTTTTTAA TTAGTGTTTG GCGGATTCG
        39760 G AAATCAACTT CCTTTAAAGT TAAAACTGGT TTATTACCTG TATAAAATTG ATATTCGCCA ATAAATGTT
        39830 C CTGCTTTATC TTTATATGTT ACATTCAATT TATAATGTTT ATCGCTAGGT TTTGCTACTG GTGTAACAC
45
        39900 C GCCAGTAAAT GTTTCTTGGG CTAACATATA AGTGCGCCAG GTTTCATAAT CTTTTAAAGC AAAAATATC
        39970 T ACATATTTAT TTCTTAATTG ATTAATATTA CCCCAACTTT CAGGGCCGAA TACTTGAATA TGACTAAAC
        40040 C ATGATAACTG TAACAATGTT GCATGGATTG TACCATTATC TTTTTGCCAT AGCCATTTAT TTGAAAATG
        40110 T TARATGGCGT TGTGTGTAAT ATTTAGTCAA TTCATTTACA TTCGTTTCGC TTTCACTTAT ATTGTATGC
        40180 T TTTGCTTCAG ATGACATACT AATCGGTGAA TGAGGGGGATT GACTTGTAGC TGTGCCTATC ATAGTCAAT
        40250 G CTATTGATAA AATAATTTTT TTTGTGAGGT TGTTTTTCAT TAGAAAATCT CCTTTACGAG GAATGTTAT 40320 A TGCGAGGAAT AATAAGTTTA TAAAAAGAGA GAAATCAATT AAATCATTCA GTCTATTTGT ATTCACTCA
50
        40390 A TGAATGATAC TAATGAGATT TTTCAAGAAT GACTTCAATT TCTGCATGTC GAGGATTTTT AACATAACT
        40460 G TTTGTGTCAG TTAGTTTTAA CTTTTTACTC AAATCAATCG TATAATGATT ACCACCACCT GTAATCCTA
        40530 A TITGACCTIT ATTAAATTCT CCATTATATA GCTTTTTGTT CTTAATTAAA GTTTGACGTA CGCGGAAAT
55
        40600 C TAGTTCTTTT AAAGTTATTA CTGGTTTATT ACCTTGATAA AACTCAAGTC CACCAATCAT AGTTTGTTG
         40670 T TTATCCTTAT ATTTTAAAAA TAATTTATAA GGCTTATCAG ATGAAGTAGC TGCTGGTGTT ACACCTCCA
        40740 G TAAAGGTTTC ATCATAAGTC CAATAGCCTT CTATAGTATC CTCATCCTTG GTACCAAAAA TATCTACAT
        40810 A TITATCTCTT AATTGATTAA TGTTGCCCCA ACTTTCAGGA CCAAATACTT GAATATGCGT GTACCAAAC
        40880 C CACGTTTGTA ATGTTGCATG TATGGTACCG TTAGGGTTTT GCCATAGCCA TTTTCCAGAA AATGAAAGG
60
        40950 T GTGGCTGCGT GTAATATTTG ATTAATTCAT TGATATTCGT TTCGTTTTCA CTTATATTGT ATGCTTTTG
        41020 C TTCAGATGAA AAACTGATTG GTGCTTTAGG CGGTTGTGTT GATGTAGTTC CTAAAAGTAA CAATGCTGT 41090 T GATAAAACAA TTTTGTTCGT GATGTTCTTT TTCATATGAT AATCTCCTTT GCGTGAATTA CCCATAGTA
        41160 T ATAAGGTATT GCACCGATTC GGAATTAAAT AAAAGCTAAC ACTATGTTAA ATAAACATAA ACAGTTGAA
        41230 C GTGTGATTTA AGTAAAATTT TTCATTTTTA AGCATTGGAA CATTGCCAAT TATAAAATGA AAAGAGTGC
65
        41300 T AATAAATTAA AACTGATGCT AATTATGATA TTAATTGCGT TAAATTAGTT ATTTATTGAA TTTTCTAAC
        41370 T ACTTGAAAAA TAGTTATACT TTAAATGTAG
```

40400..41125

SEQ ID No:64 - SSL12

70

gene

```
/gene="EMRSA 16(252)ss112"
                               complement 40400..41125
             CDS
                                /gene="EMRSA 16(252) ssl2
                               /product="(Similar to SAV1168 of strain Mu50)SSL12"
  5
       translation="MKKNITNKIVLSTALLLLGTTSTOPPKAPISFSSEAKAYNISENETNINELIKYYTOPHLSF/
       SGKWLWQNPNGTIHATLQTWVWYTHIQVFGPESWGNINQLRDKYVDIFGTKDEDTIEGYWTYDETFTGGVTPAATS
       SDKPYKLFLKYKDKQQTMIGGLEFYQGNKPVITLKELDFRVRQTLIKNKKLYNGEFNKGQIRITGGGNHYTIDLSK
       KLKLTDTNSYVKNPRHAEIEVILEKSH"
10
       SEQ ID No:65 - SSL13
       gene
                                39565..40290
                               /gene="EMRSA 16(252)ss113"
15
                               complement 39565..40290
             CDS
                                /gene="EMRSA 16(252)ss13
                               /product="(Similar to SA1010 of strain N315)SSL13"
       /translation="MKNNLTKKIILSIALTMIGTATSQSPHSPISMSSEAKAYNISESETNVNELTKYYTQRHLTF
20
       SNKWLWQKDNGTIHATLLQLSWFSHIQVFGPESWGNINQLRNKYVDIFALKDYETWRTYMLAQETFTGGVTPVAKP
       SDKHYKLNVTYKDKAGTFIGEYQFYTGNKPVLTLKEVDFRIRQTLIKNKKLYNGDYNKGHIKITGGSNNYTIDLSK
       RLKSTDANRYVKNPQTAHIEILLEKSS"
25
       SEQ ID No: 66 - SSL14
      gene
                                38740..39456
                               /gene="EMRSA 16(252)ss114"
            CDS
                               complement 38740..39456
30
                               /gene="EMRSA 16(252)ss14
                               /product="(Similar to SAV1166 of strain Mu50)SSL14"
       translation="MRKCIMKKLILMTTLLLLGTTATQTSNSPLNVSTDAKAYHIGQDETNINELIKYYTQLPLTF"
      SNRWLYQYDDGNIYVEFKRYSWSAHIRLWGAESWGNVNQLRDRYVDVFGLKDEDTSQLWWVYRDTFTGGVTPAASP
35
      SDKPYSLFVQYKDKLQTIIGAHKMYQGNKPILTLKEIDFRARETLIKNKILYHENRNKGKLKITGGGNDFTIDLSK
      RLHSDLANVYVKNPQKITVEVLID"
      S. aureus strain MSSA-476 taken from unpublished genome
      project at the Sanger centre via http://pedant.gsf.de
40
      SEQ ID No:67
       110530 A TTTAAATAGA TTGGGGCTAA AAATTATGAA ATTTAAAGCG ATAGCAAAAG CAAGTTTAGC ATTGGGAAT
       110600 G TTAGCAACAG GTGTAATTAC ATCGAATGTA CAATCAGTAC AAGCGAAAAC AGAAGTTAAA CAACAAAGT
45
       110670 G AGGCTGATTT AAAACTTTAT TATAATGGAC CAAGTTTTGA ATATAAAAA GTAACTGGAT ATGGATTTA
       110740 T TGAAGGTAAA GATAGATTTA TTGATTTTAT ATACAATGGA CAATATAATA AAATATCTTT AGTTGGTTC
       110810 T GATAAAGATA AATATAATGA AGAAGTTAAC CCAGATATAG ATGTGTTTGT CGTTAGAGAA GGAAACGGT
       110880 A GACAAGCTGA TAATCATTCG ATTGGTGGCA TAACAAAAAC TAATAGAGGA GTGTATTATG ACTATATAC
       110950 A CACACCAATC CTTGAAATCA AGAAAGGTAA AGAAGAACCA CAAAGTAGTC TATACCAAAT TTATAAAGA
       111020 A GACATCTCAC TAAAAGAACT TGATTTTAAA TTAAGAAAGC AATTAATTAG TCAAAGTGGC TTGTATTCA
111090 A ATGGTCTTAA ACAAGGTCAA ATTACAATTA CAATGAATGA TGGCACAACA CATACAATCG ATTTAAGTC
50
       111160 A AAAACTTGAA AAAGAACGTA TGGGCGAGTC TATCGATGGC AGACAAATAC AAAAAATTCT AGTAGAAAT
       111230 G AAATAATACT TTCTAACAAC AAAGCGCTAT GTTGAATAGT GCTTGTTATG GAAATATATG GAAGTTAAG
       111300 C GACGTACTGT TGCTTAGCTT CTTTTTTGA GGGGAAAAGT TACAAAACTC ACACAAACAG TCGCACCAC
55
       111370 G CATTATCTTT TGCTTAAATA GCTTAATCAT ATTTTATGAA TAGTTAAAAA CAGGTTAATG TGAATATCT 111440 G AATACAGCTC CTATAATATG GGTGTATGGT TCAAATTACG TAATAAAACA ATCTAATTAT AATAGATTG
       111510 G AGCATACAGC TATGAAAATG AAATCAATTG TAAAAATAAG TTTGTTATTA GGAATATTAG CAACAGGTG
       111580 T AAACACTACA ACGGAAAAAC CAGTTCATGC CGAAAAGAAA CCTATTGTAA TAAGTGAAAA TAGCAAAAA
       111650 A TTAAAAGCTT ATTATACTCA ACCTAGTATT GAATATAAAA ATGTGACAGG TTATATCAGT TTCATTCAA
60
       111720 C CAAGTATTAA ATTTATGAAT ATCATAGATG GTAATTCTGT TAATAATATT GCTTTAATTG GCAAAGATA
       111790 A GCAACATTAT CATACGGGTG TACATCGTAA TCTTAATATA TTTTACGTTA ATGAGGATAA GAGATTTGA
111860 A GGTGCAAAGT ACTCCATTGG CGGTATCACG AGTGCAAACG ATAAAGCTGT CGACCTAATA GCAGAAGCA
```

111930 A GAGTTATTAA AGCAGATCAT ATTGGTGAAT ATGATTATGA CTTTTTCCCA TTTAAAATAG ATAAAGAAG 112000 C AATGTCATTG AAAGAGATTG ATTTTAAATT AAGAAAATAC CTTATTGATA ATTATGGTCT TTACGGTGA

112070 A ATGAGTACAG GGAAAATTAC CGTCAAAAAG AAATACTACG GAAAGTATAC ATTTGAATTG GATAAAAAG 112140 T TACAAGAAGA CCGGATGTCC GATGTTATCA ATGTCACAGA TATTGATAGA ATTGAAATCA AAGTTAGAA

65

	112210 A	AGCATAACAC	ACATACTTGA	CGACGAAATA	ATTTGAAATT	GAAATAGAGA	GGTTAAGTGA	CGATCAAAC
	112280 @	TTGCTTAACT	TCTTTTTAAT	GCTTAAAAAT	CATTTCAAAG	GCACATAGAA	ACGCTATATT	AACCTCATA
	112350 A	TCACTCATTA ATCTTAGAAT	CCCARCRARA	AAATTACTTA	ATAATACTTC	AATAATTGTT	AAAAGGGGTT	TAATGTGAT
5	112420 I	GATTGGAGCA	TACAATTATG	AAAATGAGAA	CARTTACTAA	AACCAGTTA	GCACTACGC	ATATAATAT
-	112560 C	: AGGCGCAATT	ACAGTAACGA	CGCAATCGGT	CAAAGCAGAA	AAAATACAAT	CAACTAAAGT	TGACAAAGT
	112630 A	CCAACGCTTA	AAGCAGAGCG	ATTAGCAATG	ATAAACATAA	CAGCAGGTGC	AAATTCAGCG	ACAACACAA
	112700 G	CAGCTAACAC	AAGACAAGAA	CGCACGCCTA	AACTCGAAAA	GGCACCAAAT	ACTAATGAGG	AAAAAACCT
10	112770 0	AGCTTCCAAA	ATAGAAAAA	TATCACAACC	TAAACAAGAA	GAGCAGAAAA	CGCTTAATAT	ATCAGCAAC
10	112840 G	CCAGCGCCTA CTCCATCAAC	AACAAGAACA	CAACCAAACG	ACAACCGAAT	ATCACAACGCA	GCAAACTAAA	ATGACAACA
	112980 A	ACAAGCACAA	ACAGATATGA	CTCCTAAATA	TGAAGATTTA	AGAGCGTATT	ACACGAAACC	GAGTTTTCA
	113050 A	TTTGAAAAGC	AGTTTGGATT	TTTGCTCAAA	CCATGGACGA	CGGTTAGGTT	TATGAATGTT	ATTCCAAAT
1.5	113120 A	GGTTCATCTA	TAAAATAGCT	TTAGTTGGAA	AAGATGAGAA	AAATATAAA	GATGGACCTT	ACGATAATA
15	113190 T	CGATGTATTT	ATCGTTTTAG	AAGACAATAA	ATATCAATTG	AAAAAATATT	CTGTCGGTGG	CATCACGAA
	113260 G	ACTAATAGTA CACGCGATGT	MAAAAGTTAA TTTCACAATAC	TCACAAAGTA	GAATTAAGCA	TTACTAAAAA	AGATAATCAA	GGTATGATT
	113400 G	AAAACAACTT	ATTGAAAAAC	ATAATCTTTA	CGGTAACATG	GGTTCAGGAA	CAATCGTTAT	TIAAATIGA
	113470 A	AACGGTGGGA	AATATACGTT	TGAATTACAC	AAAAAACTGC	AAGAGCATCG	TATGGCAGAC	GTCATAGAT
20	113540 G	GCACTAATAT	TGATAACATT	GAAGTGAATA	TAAAATAATC	ATGACATTCT	CTAAATAGAA	GCTGTCATC
	113610 G	GAAAAACAAG	AAGTTAAGTG	ACAACGGTTT	ACATGTTGCT	TAGCTTCTTT	TATTATGCGT	AATGATGTA
	113680 A	AAAGACGAAT CCAAGTGTTG	ATTCATTTGT	TTGTAAAAGT	GGCATTTCTA	TGTCTTAAAA	GTGACGAAAC	TTCAAATGT
	113750 G	TGATTCAAAT	ATACTTAAAC	AAAICAIIII	GTGAATGGAG	CAATCCCCCA	TTTCTTAATT	ACCTCTACC
25	113890 A	TTCAATGAAT	GTAATCGAAC	AAATCTAATA	ATTACGAATG	GAGCATACAA	CTATGAAAAT	AACAACAAT
	113960 T	GCTAAAACAA	GTTTAGCACT	AGGCCTTTTA	ACAACAGGTG	TAATCACAAC	GACAACGCAA	GCAGCAAAT
	114030 G	CGACAACACC	GCCTTCAACT	AAAGTGGAAA	CACCGCAACA	AGTAGCAAAT	GCAACAACAC	CATCTTCAA
	114100 C	TAAAGTGGAA	GCACCGCAAC	AAGCAGCAAA	CGCGACAACA	CCATCTTCAA	CTAAAGTAGA	AGCACCGCA
30	1141/U A	TCAAAACCAA CACCACCTTC	AUGUGACAAC CTCTAATCTA	CACACATCTTCA	CACCACAAGTGG	AAGCACCGCA	ACAAGCAGCA	AACGCGACA
50	114240 A	AAATCCTAAA	TTTAAAGATT	TAAGAGCGTA	TTATACGAAA	CCAAGTTTAG	AAACAAGTAC	TCACATTCC
	114380 T	ATTATTTAA	AAAAATGGAC	GACAATAAGA	TTTATGAATG	TTGTCCCAGA	TTATTTCATA	TATAAAATT
	114450 G	CTTTAGTTGG	TAAAGATGAT	AAAAAATATG	GTGAAGGAGT	ACATAGGAAT	GTCGATGTAT	TTGTCGTTT
35	114520 T	AGAAGAAAT	AATTACAATC	TCGAAAAATA	TTCTGTCGGT	GGTATCACAA	AGAGTAATAG	TAAAAAAGT
33	114590 T	GATCACAAAG TCAAGATTAC	CAGGAGTAAG	AATTACTAAG	GAAGATAATA	AAGGTACAAT	CTCTCATGAT	GTTTCAGAA
	114730 A	AAATAATCTG	TACGGTAACG	TTGGTTCAGG	TAAAATTCTT	ATTAAATIG	AGAAAACAAC	TTATTGAAA
	114800 G	TTTGAATTGC	ACAAAAAATT	ACAAGAAAAT	CGCATGGCAG	ATGTCATAGA	TGGCACTAAT	ATTGATAAC
40	114870 A	TTGAAGTGAA	TATAAAATAA	TCATGACATT	CTCTAAATAG	AAGCTGTCAT	CGGAAAAACA	AGAAGTTAA
40	114940 G	TGACAACGGC	CTACATGTTG	CTTAGCTTCT	TTTGTTATGT	TCGATGATTT	GAGAACCCGA	ATTTTCGAT
	115010 G	GGTCCAAATA GGAATCAGTT	TGACGTGGAA	GAGTCCTGAA	TTTATCTGTA	AATCCCTATC	TATCGGGTGT	GGAGCACAA
	115150 A	CATGGTTTAA	TGTGAAAGGT	CAAATACGCC	AATTATAATA	AAGCTGTATG	ATTCAATICAAT	CCTAACCCA
	115220 A	CAAATCTAAT	AATTACGAAT	GGAGCATACA	ACTATGAAAA	TGGCAGCAAT	TGCGAAAGCA	AGTTTAGCA
45	115290 T	TAGGTATTTT	AGCAACAGGA	ACAATAACGT	CATTGCATCA	AACTGTAAAT	GCGAGTGAAC	ATGAAGCAA
	115360 A	ATATGAAAAT	GTGACAAAAG	ATATCTTTGA	CTTAAGAGAT	TACTATAGTG	GCGCAAGTAA	GGAACTTAA
	115430 A	AATGTTACTG CTAGAATACA	GTTATCGTTA	TAGCAAAGGT	GGCAAGCATT	ACCTTATCTT	TGATAAACAT	CAAAAGTTC
	115500 A	TGTTGTTAAA	GAAGCGGAAA	ACCGTAATGG	CACACTCTTTAA	TCATATCCTC	GTGTCACTAA	TAGACATAT
50	115640 A	GACGCTTATT	ATGATTATAT	AAACGCACCA	AGATTTCAAA	TCAAGAGAGA	TGAAGGTGAC	GGTATTGCT
	115710 A	CGTACGGTAG	AGTACACTAC	ATTTATAAAG	AAGAGATTTC	ACTTAAAGAA	CTCGACTTTA	AATTGAGAC
	115780 A	GTATTTAATT	CAAAATTTTG	ATCTGTATAA	AAAGTTTCCT	AAAGATAGTA	AGATAAAAGT	GATAATGAA
	115850 A	GATGGCGGCT	ATTATACGTT	TGAACTTAAT	AAAAAATTAC	AAACAAATCG	CATGAGTGAC	GTCATTGAC
55	115920 G	GTAGAAATAT ATAGTATAGA	CCACTTACCC	AAGCCAACA	CCTTAGATAATG	THE THE PROPERTY OF THE PROPER	TGGATAATAG	TAAAATATG
55	116060 C	GTATCGATGA	ATAATAAAAA	CACCAATAAA	ACTTGTGGGA	ATAGTTGATA	CCTATAGTCG	CCCCTTCTC
	116130 C	TTTTCGTGAC	ATGAAACAAT	GTGGAAAACA	TAATTAAATT	GAGGGAAAGT	GTGAATAGTT	AAAAAAGCT
	116200 G	CGTTAAGTTT	AAAAAATAGA	TTAACGCTGT	TAGGATTCTA	TTAATTAGCT	TAACATTGGT	TCAAAAATA
60	116270 G	TTAAAAAGAG	GTTAATTCAT	AGCTTAGTAT	TCCGCTTATA	TAATGATAGT	AGATTGTTCG	TATTACGTA
UU	116340 A	TTGAAATAAT TAAAAGCGTT	ACCENTACCA	TATATTAAGA	CAAAATTTAT	AAATAGATTG	GGAGAATAGT	ACTATGAAA
	116480 A	AACAGTAAAA	GCGGCAGAAT	CAACTCAAGG	TCAACACAAT	TATAAATCAT	TAAAATAACAA	CAGAAAGTC
	116550 G	CCAAGTATAG	AGTTAATAAA	TGTAGATGGT	CTGTATAGAC	AACATTTAAC	TGATAAAGGT	GCATATGTA
<i>-</i> -	116620 T	GGAAAAATCT	TAAAGATTAT	TATATTGGGC	TACTAGGTGA	AGATAGTAAG	AAATTCAAAT	CAGATGTAT
65	116690 A	CGGGGACCTA	GATGCATTTT	TAGTCATAGA	AGAAGAACCT	GTTAAAGGAA	GACAATATTC	AATTGGCGG
	116760 T	ATAAGTAAGA	CAAATAGTAA	AGAATTTAAA	GAAAGAGAAG	TCGATGTTAA	AGTAACAAGA	AAAGCAGAC
	116000 x	GAGATACTAC TTTTAAATTA	ATCAACTAAA	TCATAGTAAAT	TTAAAATTAC	AAAAGAAGAA	ATCTCGTTAA	AAGAGTTAG
	116970 A	ATTGTAGTTA	AAATGGAAGA	TGATAAGTTT	TATACTTTCG	AACTTACAA	AAAATTACAA	CCGCATCGC
70	117040 A	TGGGTGACAC	GATAGATGGT	ACCAAAATCA	AAGAAATTAA	TGTTGAGCTA	GAATATAAAT	AATCTTTGG
	117110 A	CAAGCAGACT	AGTAATTGTA	GGGAAGTTAA	GCGATAACAT	ATTGCTTAGC	TTCTTTTTTG	TTTTGTTAT
	117180 G	ATGAAAAAAG	GAGCGGGTTT	ATGATCAAGT	TTTTGGAAAA	ACGGTTGATA	CTTATAGTCG	CGCGTTGTC
	TT1250 C	TTTTCGTGAC	ATGAAACAAT	GTGGAAAACA	TAATTAAATT	GAGGGAAAGT	GTGAATAGTT	ATTAAAAAA

	117320	G	TATTGTGTTA	TAAAAAATAA	TTAATACTGT	TAGGATTTCA	TTAACTAACT	TAACGTTGGT	TCAAAAATA
	117390	G	TTAAAAAGAG	GTTAATTCAT	AGCGCAGTAT	CTCACTTATA	TAATGATAGT	AGATTGTTCG	TATTACGTA
	117460	A	TTGAATTAAT	CATATAAAAA	TATATTAAGA	CAAAATTTAT	AAATAGATTG	GGAGAATAGT	ACTGTGAAA
	117530	T	TAAAAACGTT	AGCTAAAGCA	ACATTGGCAT	TAGGCTTATT	AACTACTGGT	GTGATTACAT	CAGAAGGCC
5				GCAAAAGAAA					
				AAAGTTTTGA					
	117740	G	TACGCTTTAA	CCAAGAAAAT	CAAAATCACC	AATTATTCTT	ATCAGGAAAA	GATAAAGATA	AATATAAAG
				GGCCAGAATG					
				CGAAGAAAA					
10				AGATGCATCA					
				AGACAACATT					
				TGAAAGATGG					
				GAATAGTAAG					
				AAGTAATAAA					
15				ATTTAAAACA					
10				ACATTACTTC					
				AAACGAGTGT					
				AAAGCAATCC					
				GTATTAGGAA					
20				AAAAAATGAA					
20				AAATGTTAGT					
				TTCCAAGTGT					
				CGGTACCGGA					
25				ATCAATATTT TATGATGAAT					
20									
				TGTTAATTAA					
				TGAAAATAAG					
				GAACAAATTA					
30				GGTTTAATAA					
50				CGTTATTAAG					
	119420	_	A COMMON NO	ATGATTCCCC	TAAAAAAATT	TATGTTGCTA	TTAAAAATCA	GTTAATACGA	ATGTTAACA
				TTCATTAATA					
				AAGACAGATA					
35	110700	T.	AAATATGAAA	TTTACGGCAT	TAGCAAAAGC	AACATTAGCA	TTAGGAATAT	TAACTACAGG	TGTGTTTAC
55	119700	A	ACAGAAAGTA	AAGCTGTTCA	CGCGAAAGTA	GAACTTGATG	AGACACAACG	CAAATATTAT	ATCAATATG
	119770	C	TACATCAATA	CTATTCTGAA	GAAAGTTTTG	AACCAACAAA	TATTAGTGTT	AAAAGCGAAG	ATTACTATG
				TTAAACTTTA					
	119910	J.	AAATATAAAG	AAAAAACACA	TGGCCTTGAT	GTCTTTGCAG	TACCTGAATT	AATAGATATA	AAAGGTGGC
40	119980	A	TATATAGCGT	TGGCGGTATA	ACAAAGAAAA	ATGTGAGATC	AGTGTTTGGA	TTTGTAAGTA	ATCCAAGTC
40	120050	Τ.	ACAAGTTAAA	AAAATCGATC	CTAAACATGG	CTTTTCGATA	AATGAGTTGT	TCTTTATTCA	AAAGGAAGA
	120120	A	GTATCGTTGA	AGGAACTGGA	TTTTAAAATA	AGAAAAATGT	TAGTCGAAAA	ATATAGATTG	TATAAAGGC
	120190	G	CGTCAGATAA	AGGTAGAATC	GTTATTAATA	TGAAAGACGA	AAAGAAATAT	GTAATTGATT	TAAGTGAAA
	120260	A	ATTAAGTTTT	GATCGTATGT	TTGATGTAAT	GGATAGTAAG	CAAATTAAAA	ATATTGAAGT	GAATTTGAA
45	120330	.T.	TAATTAAGTA	TAATAACTTA	AGAAGCGACT	TAACGACAAA	ATGTGAATTG	ACATGCATGT	CCTTAAATA
43	120400	A	GGAACTGTGT	TAAATACATT	ACTGTTGTTA	AGTTGTTTTT	TGCGTTTCAA	AGAGCAGAAC	AGAGTAACA
	120470	.T.	CATCAGTTGT	AGTAAACGAT	AATCTAGTAA	AACAACTAAA	TGAAATAATG	AAATTCATTT	AACCTGAAC
	120540	A	TTAAAATATA	TTTGTTTTTC	ATTAAGAATA	ATTCAAGTAT	ATTTAAATCG	AGGTTAATTA	TCGTATGAA
	120610	A	CGATGCACGT	AAAATAAAT	ATGTATGATT	CAAATTACGT	AATGAAAACA	ATCCAATATA	TTAAGATTG
50	120680	G	AGCAAAACAA	TATGAAATTA	ACAGCGATAG	CTAAAGCTGC	ATTAGCTTTA	GGAATTTTAA	CAACAGGAA
30	120750	С	TTTAACAACA	GAAGTTCATT	CAGGTCATGC	AAAACAAAAT	CAAAAGTCAG	TAAATAAACA	TGACAAGGA
	120820	A,	GCATTATACC	GATACTACAC	TGGAAAGACT	ATGGAAATGA	AAAATATTAG	TGCTTTGAAA	CATGGTAAA
	120890	A	ATAACTTGCG	TTTTAAGTTT	AGAGGTATTA	AGATTCAAGT	TTTACTGCCT	GGAAATGATA	AAAGTAAAT
	120960	T	TCAACAGCGT	AGTTATGAGG	GGTTAGATGT	GTTTTTTGTT	CAAGAAAAAA	GAGATAAGCA	CGATATATT
55	121030	r	TATACTGTTG	GTGGTGTAAT	ACAGAATAAT	AAAACATCTG	GAGTTGTCAG	TGCACCAATA	TTAAATATT
33	121100	r	CAAAAGAAAA	GGGTGAAGAT	GCTTTTGTGA	AAGGTTACCC	TTATTACATT	AAAAAAGAAA	AAATAACAC
	121170 '	r	AAAAGAGCTG	GATTATAAGT	TGAGAAAGCA	TCTAATCGAA	AAATATGGAC	TTTATAAAAC	AATCTCAAA
	121240 2	A	GATGGTAGGG	TCAAAATTAG	CTTGAAAGAT	GGCAGTTTTT	ATAACCTTGA	TTTAAGATCT	AAATTAAAA
	121310	r	TCAAATATAT	GGGGGAAGTC	ATAGAAAGCA	AACAAATTAA	AGATATTGAA	GTTAACTTAA	AGTAAATAA
60	121380	Г	TACGAATAAT	AAAAAGTAAT	TGAAGCGGCT	TAACGATGAA	AAGTAAATTG	ATGCGCATAC	CTTACCAAA
60	121450	A	GGATGCATCA	ATCGATATCG	TCGTTAAGCT	GTTTTGGTTT	ACGTTTCATG	GATTCTACCC	CAATTTTCA
	121520	r.	AAATATAAAA	ATTCCACCAC	CAACATCAAA	ATTCTCAACA	TCGCAACATA	CCCAAATGTT	ATAATAAAT
	121590 (2	TATTACACAA	AGAGATAAAT	TACTTATTCA	AAGGCGGAGG	AATCACATGT	CTATTACTGA	AAAACAACG
	121660	r	CAGCAACAAG	CTGAATTACA	TAAAAAATTA	TGGTCGATTG	CGAATGATTT	AAGAGGGAAC	ATGGATGCG
65	121730 <i>I</i>	Α.	GTGAATTCCG	TAATTACATT	TTAGGCTTGA	TTTTCTATCG	CTTCTTATCC	GAAAAAGCAG	AACAAGAAT
65	121800 2	Α '	TGCAGATGCG	TTGGCAGGTG	AAGATATCAC	GTATCAAGAG	ACATGGGCAG	ATGAAGAATA	TCGTGAAGA
	121870 (י כ	TTAAAAGCTG	AATTAATTGA	TCAAGTCGGT	TACTTCATTG	AACCACAAGA	TTTATTCAGT	GCGATGATT
	121940 (3 1	GTGAAATTGA	AACGCAAGAT	TTCGATATCG	AACATCTGGC	GACGGCAATT	CGTAAAGTTG	AAACATCAA
	122010 (2 2	ATTAGGTGAA	GAAAGTGAAA	ATGACTTTAT	CGGACTGTTC	AGCGATATGG	ACTTAAGTTC	AACGCGACT
70	122080 Z	4	GGTAACAATG	TCAAAGAACG	TACTGCTTTA	ATCTCTAAAG	TCATGGTTAA	TCTTGACGAT	TTACCATTT
70	122150 (3 '	TTCACAGTGA	TATGGAAATT	GATATGTTAG	GTGATGCATA	TGAATTCCTA	ATTGGGCGCT	ттесессед
	122220 (2	AGCAGGTAAA	AAAGCAGGCG	AGTTCTATAC	ACCACAACAA	GTATCTAAGA	TACTGGCGAA	GATTGTCAC
	122290 1	Ą (GACGGTAAAG	ATAAATTACG	TCATGTGTAC	GACCCAACAT	GTGGTTCCGG	TTCATTATTG	TTACGTGTT
	122360 (3	GTAAAGAAAC	GCAAGTGTAT	CGTTATTTCG	GTCAAGAACG	TAACAATACC	ACTTACAACT	TAGCACGCA

WO 2005/092918

```
122430 T GAACATGTTA TTACATGATG TACGTTATGA AAATTTCGAT ATCCGTAATG ATGACACGTT GGAAAATCC
       122500 A GCCTTTTAG GACATACATT TGATGCGGTT ATTGCGAACC CACCATACAG TGCGAAATGG ACAGCAGAT
       122570 T CAAAATTTGA AAATGACGAA CGATTCAGCG GATACGGCAA ACTTGCGCCA AAGTCCAAAG CAGACTTTG
       122640 C CTTTATTCAA CACATGGTAC ATTACTTAGA CGATGAAGGT ACCATGGCCG TTGTACTCCC ACATGGTGT
 5
       122710 C TTATTCCGTG GTGCTGCAGA AGGTGTCATT CGTCGTTATT TAATTGAAGA AAAGAACTAC TTAGAAGCC
       122780 G TGATTGGCTT ACCAGCCAAT ATTTTCTATG GGACAAGTAT TCCAACATGT ATTTTAGTAT TTAAAAAAT
       122850 G TCGCCAACAA GAAGACTATG TATTATTTAT CGATGCATCC AATGATTTTG AAAAAGGAAA AAATCAAAA
       122920 C CATTTAACCG ATGCCCAAGT CGAACGCATT ATTAACACAT ATAAGCGTAA GGAAACAATT GATAAATAT
       122990 A GCTACAGTGC GACATTACAA GAGATCGCCG ATAACGATTA CAACTTAAAC ATACCGAGAT ATGTCGATA
10
       123060 C ATTCGAAGAA GAAGCACCGA TTGATTTAGA TCAAGTCCAA CAAGATTTGA AAAATATCGA CAAAGAAAT
       123130 C GCAGAAGTTG AACAAGAAAT CAATGCATAC CTGAAAGAAC TTGGGGTGTT GAAAGATGAG TAATACACA
       123200 A AAGAAAATG TGCCAGAGTT GAGGTTCCCA GGGTTTGAAG GCGAATGGGA AGAGAAGAAG TTAGGGGAC
       123270 C TTACTACCAA AATAGGTAGT GGAAAGACTC CCAAAGGTGG AAGTGAAAAC TATACAAACA AAGGCATAC
       15
       123410 T ATAGATGATG AGATGAAAAA TAGTAGAACG TACTATGGTG ATGTTCTTTT AAATATTACA GGAGCATCA
       123480 A TAGGTAGAAC AGCCATTAAT TCGATAGTTG AAATACATGC TAATTTAAAT CAACATGTAT GTATTATTA
       123550 G ATTGAAAAA GAGTATTATT ATAATTTTTT TGGACAGTAT CTATTATCAA GAAAAGGTAA AAGGAAAAT
       123620 T TTCCTTGCAC AAAGTGGAGG TAGTCGAGAA GGACTAAACT TCAAAGAAAT TGCTAATTTA AAAATCTTC
       123690 A CCCCAACTAT ATTTGAAGAG CAGCAAAAAA TAGGCGAATT CATCAGCAAA CTTGACCGAC AAATTGAAT
20
       123760 T AGAAGAACAA AAACTTGAAT TACTTCAGCA ACAGAAAAAA GGCTATATGC AGAAAATCTT CTCGCAAGA
       123830 A TTGCGATTCA AAGATGAGGA AGGTAAAGAT TATCCAGATT GGAAATCAAA ATCAATTCAA GAAATATTT
       123970 G AAGTTATTCT ATAAATAGCA CTTATAATGA TCAAAATATA AGAGTCAATA AAAATAAAAA AACTGAAAA
       124040 A TATATTTTAT CAAAAGGCGA CTTAGCAATG GTATTAAATG ATAAAACAAA AGATGGGAAA ATTATAGGT
25
       124110 A GAAGTATATT TATAGATAAA GATAATCAAT ATATTTATAA TCAAAGAACT GAAAGATTAA TACCATTTG
       124180 C TGAAAATGAT AATAAATTTT TATGGTTCTT AATGAATACA GATTTAATTA GAAATAAAAT AAAAGGTAT
       124250 G ATGCAAGGAG CAACCCAAGT TTATATAAAT TATTCATCTA TTAAATTGAT ATCTATACAA TTGCCACTT
       124320 C TTGAAGAACA ACAGAAAATA AGAGGGTTTC TAGAAGTTTT ATCTGGAATA ACTACTAAAC AATTGCACA
       124390 A GATAGACCAA TTAAAAGAGA GGAAAAAGGC GTTTTTACAG AAAATGTTTA TTTGATTTGT CGCTGCAAT
30
       124460 A TAGTTTTTAT TATTTGTTTA TTTCAGATGT TTCACCATCA TATTGCGTAA CTTTTACAAA TAAGAAATA
       124530 A AGTTCAATGA AATCAAAAAC GAACATTAAA TTTAGGCACT GTGATAGCAC AGTGTCTTTT TTGTGTCGA
       124600 A ATTGTGTACA GAATAAGTAG TTAAATAAAG ATTAAGTTGA GATAAAGTGT TATTCGTAAA TAAAAGAGA
       124670 G TAGATCGATA GGAATTGAAT GATATTAGTT AACTATTTAT TAAATTACTT AATAATGATT AATTTTTAG
       124740 T TAAAGTAAGT TTAATGTGAA GCACGACCAT TGCTCATTAT AATGAATGAG GATTGTTCGT ATTGCGTAA
       124810 T AGAATAAATC AAATAGACTA AAAATTGGGA GCATAGAATT ATGAAATTAA AAAATATTGC TAAAGCAAG
35
       124880 T TTAGCACTAG GGATTTTAAC AACAGGGATG ATTACAACTA CTGCTCAGCC AGTAAAAGCA ATTGAGCAA
       124950 A GCAGATTATC AGTTACTTCA AAAGATACAC AAGAATTAAA AAAATACTAC AGTGGAACAG GATATAATT
       125020 T TCAAAATGTG AGTGGTTATA GAGAAGGTAA TAAAATGAAC ATTATTGATG GACCACAACT TAATGTAGT
       125090 T ACTITACTIG GCACAGACAA AGAAAGGITT AAGGACGAIG AAGAITAIGA AGGACIIGAI GIAITIGII
40
       125160 G TAAGAGAGG GTCAGGTAAA CACGCAGATA ATATATCAAT TGGTGGAATT ACAAAAACAA ATAAGAATC
       125230 A ATATAAAGAC CCTGTACAAA ACGTTAATTT ATTGACTTCT AAGAGTAACG GTCAAAATAC TGCTTCTGT
       125300 G ACTTCAGAAT ACTATAGCAT CAATAAAGAA GAAATTTCAT TAAAAGAACT TGATTTCAAA CTAAGAAAG
       125370 C AATTAATTGA TAAACATGAT CTTTATAAGA CAGAGCCTAA AGACAGCAAA ATTAAAGTTT CTATGAAAA
       125440 A TGGCGGCTAC TATACGTTTG AATTAAATAA AAAATTACAG CCTCATCGCA TGGGTGATAC GATTGATAG
45
       125510 T AGAAATATAA AGAAAATTGA AGTGAATTTA TAATAATATT CGAGGGAGTA TATCATGAGA GAAAATTTT
      SEQ ID No:68 - SSL1
                             110541..111236
           gene
                            /gene=" MSSA-476ss11"
50
                            110541..111236
           CDS
                             /gene="MSSA-476ssl1
                            /product="(Similar to SET6 from strain Mu50)SSL1"
      translation="MGLKIMKFKAIAKASLALGMLATGVITSNVQSVQAKTEVKQQSEADLKLYYNGPSFEYKKVT/
55
      GYGFIEGKDRFIDFIYNGQYNKISLVGSDKDKYNEEVNPDIDVFVVREGNGRQADNHSIGGITKTNRGVYYDYIHT
      PILEIKKGKEEPQSSLYQIYKEDISLKELDFKLRKQLISQSGLYSNGLKQGQITITMNDGTTHTIDLSQKLEKERM
      GESIDGRQIQKILVEMK"
60
      SEQ ID No:69 - SSL2
                             111522..112217
           gene
                            /gene=" MSSA-476ss12"
                            111522..112217
           CDS
65
                            /gene="MSSA-476ss12
                            /product="(Similar to SET7 from strain N315)SSL2"
```

/translation="MKMKSIVKISLLLGILATGVNTTTEKPVHAEKKPIVISENSKKLKAYYTQPSIEYKNVTGYI SFIQPSIKFMNIIDGNSVNNIALIGKDKQHYHTGVHRNLNIFYVNEDKRFEGAKYSIGGITSANDKAVDLIAEARV

IKADHIGEYDYDFFPFKIDKEAMSLKEIDFKLRKYLIDNYGLYGEMSTGKITVKKKYYGKYTFELDKKLOEDRMSD VINVTDIDRIEIKVRKA"

5 SEQ ID No:70 - SSL3

112508..113578 gene /gene=" MSSA-476ss3" 112508..113578 CDS 10 /gene="MSSA-476ss13 /product="(Similar to SET8 from strain Mu50)SSL3"

/translation="MKMRTITKTSLALGLLTTGAITVTTQSVKAEKIQSTKVDKVPTLKAERLAMINITAGANSAT TQAANTRQERTPKLEKAPNTNEEKTSASKIEKISQPKQEEOKTLNISATPAPKQEOSOTTTESTTOOTKMTTPPST 15 NTPQPMQSTKSDTPQSPTIKQAQTDMTPKYEDLRAYYTKPSFEFEKQFGFLLKPWTTVRFMNVIPNRFIYKIALVG KDEKKYKDGPYDNIDVFIVLEDNKYQLKKYSVGGITKTNSKKVNHKVELSITKKDNOGMISRDVSEYMITKEEISL KELDFKLRKQLIEKHNLYGNMGSGTIVIKMKNGGKYTFELHKKLQEHRMADVIDGTNIDNIEVNIK"

20 SEQ ID No:71 - SSL4

30

50

gene 113943..114890 /gene=" MSSA-476ss14" CDS 113943..114890 25 /gene="MSSA-476ss14 /product="(Similar to SET9 from strain N315)SSL4"

/translation="MKITTIAKTSLALGLLTTGVITTTQAANATTPPSTKVETPQQVANATTPSSTKVEAPQQAA NATTPSSTKVEAPQSKPNATTPSSTKVEAPQQAANATTPPSSNVDTSPPQSPTTKQVPTEINPKFKDLRAYYTKPS LEFKNEIGIILKKWTTIRFMNVVPDYFIYKIALVGKDDKKYGEGVHRNVDVFVVLEENNYNLEKYSVGGITKSNSK KVDHKAGVRITKEDNKGTISHDVSEFKITKEQISLKELDFKLRKQLIEKNNLYGNVGSGKIVIKMKNGGKYTFELH KKLQENRMADVIDGTNIDNIEVNIK"

SEQ ID No:72 - SSL5

35 115254..115958 gene /gene=" MSSA-476*ss15*" 115254..115958 CDS /gene="MSSA-476ss15

/product="(Similar to SET10 from strain Mu50)SSL5"

40 /translation="MKMAAIAKASLALGILATGTITSLHQTVNASEHEAKYENVTKDIFDLRDY YSGASKELKNVTGYRYSKGGKHYLIFDKHQKFTRIQIFGKDIERFKARKNPGLDIFVVKEAENRNGTVFSYGGVTK KNQDAYYDYINAPRFQIKRDEGDGIATYGRVHYIYKEEISLKELDFKLRQYLIQNFDLYKKFPKDSKIKVIMKDGG YYTFELNKKLQTNRMSDVIDGRNIEKIEANIR"

45 SEQ ID No:73 - SSL6

gene 116404..117102 /gene=" MSSA-476ss16" CDS 116404..117102 /gene="MSSA-476ss16 /product="(Similar to SET2 from strain NCTC6571)SSL6"

translation="MKLKALAKATLVLGLLATGVITTESQTVKAAESTOGOHNYKSLKYYYSKPSIELINVDGLYR/ QHLTDKGAYVWKNLKDYYIGLLGEDSKKFKSDVYGDLDAFLVIEEEPVKGRQYSIGGISKTNSKEFKEREVDVKVT 55 RKADRDTTSTKDSKFKITKEEISLKELDFKLRQKLMKEENLYDAINHRKGKIVVKMEDDKFYTFELTKKLQPHRMGDTIDGTKIKEINVELEYK"

SEQ ID No:74 - SSL7 60

117524..118219 gene /gene=" MSSA-476ss17" CDS 117524..118219 /gene="MSSA-476ss17 65 /product="(Similar to SET1-C)SSL7"

/translation="MKLKTLAKATLALGLLTTGVITSEGQAVQAKEKQERVQHLYDIKDLHRYYSSESFEFSNISG KVENYNGSNVVRFNQENQNHQLFLSGKDKDKYKEGLEGQNVFVVKELIDPNGRLSTVGGVTKKNNQSSETNTPLFI KKVYGGNLDASIESFLINKEEVSLKELDFKIRQHLVKNYGLYKGTTKYGKITFNLKDGEKQEIDLGDKLQFEHMGD VLNSKDIQNIAVTINQI"

SEQ ID No:75 - SSL8

5

15

20

40

10 gene 118558..119256
/gene=" MSSA-476ss18"

CDS 118558..119256
/gene="MSSA-476ss18
/product="(Similar to SET12 from strain Mu50)SSL8"

/translation="MKFTAIAKAIFVLGILTTSVMITENQSVNAKGKYEKMNRLYDTNKLHQYYSGPSYELTNVSG QSQGYYDSNVLLFNQQNQKFQVFLLGKDENKYKEKTHGLDVFAVPELVDLDGRIFSVSGVTKKNVKSIFESLRTPN LLVKKIDDKDGFSYDEFFFIQKEEVSLKELDFKIRKLLIKKYKLYEGAADKGRIVINMKDENKYEIDLSDKLGFER MADVINSEQIKNIEVNLK"

SEQ ID No:76 - SSL9

30 /translation="MKFTALAKATLALGILTTGVFTTESKAVHAKVELDETQRKYYINMLHQYYSEESFEPTNISV KSEDYYGSNVLNFKQRNKAFKVFLLGDDKNKYKEKTHGLDVFAVPELIDIKGGIYSVGGITKKNVRSVFGFVSNPS LQVKKIDPKHGFSINELFFIQKEEVSLKELDFKIRKMLVEKYRLYKGASDKGRIVINMKDEKKYVIDLSEKLSFDR MFDVMDSKQIKNIEVNLN"

35

 SEQ ID No:77 - SSL10

 gene
 120692..121375

 /gene=" MSSA-476ssl10"

 20692..121375

 /gene="MSSA-476ssl10"

 /gene="MSSA-476ssl10"

 /product="(Similar to SET14 from strain Mu50)SSL10"

/translation="MKLTAIAKAALALGILTTGTLTTEVHSGHAKQNQKSVNKHDKEALYRYYTGKTMEMKNISAL KHGKNNLRFKFRGIKIQVLLPGNDKSKFQQRSYEGLDVFFVQEKRDKHDIFYTVGGVIQNNKTSGVVSAPILNISK EKGEDAFVKGYPYYIKKEKITLKELDYKLRKHLIEKYGLYKTISKDGRVKISLKDGSFYNLDLRSKLKFKYMGEVI ESKQIKDIEVNLK"

/translation="MKLKNIAKASLALGILTTGMITTTAQPVKAIEQSRLSVTSKDTQELKKYYSGTGYNFQNVSG YREGNKMNIIDGPQLNVVTLLGTDKERFKDDEDYEGLDVFVVREGSGKHADNISIGGITKTNKNQYKDPVQNVNLL TSKSNGQNTASVTSEYYSINKEEISLKELDFKLRKQLIDKHDLYKTEPKDSKIKVSMKNGGYYTFELNKKLQPHRM GDTIDSRNIKKIEVNL"

60 SEQ_ID No:79

62000 C CTAAATTGTA AGCGCATACA AAATAAACAC AACCTACTAT TAAAATTTGT AATATTTAT CAATAATTA 62070 A ATGAACATT TATTAATATT AAATTTAAGT AGTAGGAAAT AATTAAAATA AGTACTACAT TTAAAGTAT 62140 A ACTATTTTC AAGTAGTAG AAAATTCAAT TATCAAACAA TTTAATGCAA TTGATTAGAG AATAATTGT 62210 A ACGTGTCGTT TTTAATATAT AACTCCCGCC TACTTTATTA AGTACTGTTT CTGTCCAAAA CTTAAAAAAT

```
62280 G ATAAGTTTTG CTTAAATAAC ACTACTAACT GTTTAAGTTT ATTTAACATA GTTTTAGCTT TTATTTAAT
         62350 T CCGAATCGGT GTAATAGCTT ATATACTTTG GGTAATTCAC GCAAAGGAGA TTTTCATATG AAAAAGAAC
         62420 A TCATGAATAA ATTAGTTTTA TCAACAGCAT TGTTACTTTT AGGAACTACA TCAACACAAC TTCCTAAAA
         62490 C ACCARTCAGT TTTTCATCTG AAGCAAAAGC CTATAATATC AGTGAAAACG AGACTAATAT CAATGAGTT
 5
         62560 A ATARAGTATT ATACACAGCC TCATTTATCA CTATCARATA RATGGTTATG GCARAGCCC RATGGTAGC
         62630 A TTCATGCAAC ATTGCAAACG TGGGTTTGGT ATAGTCATAT TCAAGTGTTT GGATCCGAGA GTTGGGGAA
         62700 A CATTAATCAG TTAAGAAATA AATACGTTGA TATATTTGGA ACTAAAGATG AGGACACAGT TGAAGGTTA
         62770 C TGGACTTATG ATGAAACATT TACTGGTGGT GTTACGCCAG CAGCTACTTC ATCTGATAAG CCTTATAGA
         62840 C TATTTTTAAA ATATAGTGAT AAACAACAAA CTATCATCGG TGGACATGAA TTTTACAAAG GAAATAAAC
10
         62910 C AGTATTAACT TTAAAAGAAT TAGATTTCCG TATTCGTCAA ACATTAATAA AAAATAAAAA GTTATATAA
         62980 C GGAGAATTTA ATAAAGGTCA AATTAAGATA ACTGCTGATG GAAATAATTA CACGATTGAT TTAAGTAAA
         63050 A AGTTAAAATT AACTGACACA AACCGTTATG TTAAAAATCC TAAAAATGCA CAAATTGAAG TCATACTCG
         63120 A AAAATCTAAC TAACCTATTA CCTTTTGTAA ATGCGGATAA TTTCAAttaT CTAATTAACC CCTTTTATA
         63190 A TTAAACATTC CAacaaTACT CAAAGGAGaa AttCGAATga acAATaacaT CaCGaAAAAA ATTATTTTA
15
         63260 T CAACAACATT GTTACTATTA GGTACAGCAT CTACACAATT TCCTAATACA CCTATCAATT CTTCATCTG
        63330 A AGCGAAAGCT TATTATATAA ATCAAAACGA AACTAACGTT AATGAGTTAA CTAAATATTA CTCGCAAAA
        63400 A TATTTAACCT TCTCTAACAG TACGTTATGG CAAAAAGATA ACGGTACGAT TCATGCAACG TTGTTACAG
         63470 T TTTCTTGGTA TAGTCATATT CAAGTTTATG GACCTGAAAG TTGGGGCAAT ATCAACCAAT TAAGAAATA
        63540 A AAGCGTTGAT ATTTTTGGCA TAAAAGACCA AGAAACCATT GATTCTTTTG CATTATCTCA AGAAACGTT
20
        63610 T ACTGGTGGTG TTACTCCTGC AGCAACATCT AACGATAAAC ACTATAAACT GAATGTGACA TATAAAGAT
        63680 A AAGCAGAAAC GTTTACTGGC GGATTTCCAG TTTATGAAGG CAATAAGCCT GTTTTAACTT TAAAAGAAT
        63750 T AGATTTTCGT ATTCGTCAAA CATTAATTAA AAGTAAAAAA TTATATAATA ATTCTTATAA TAAAGGACA
        63820 A ATTAAAATAA CAGGTGCAGA CAATAACTAC ACAATAGATT TAAGTAAAAG GTTGCCATCA ACTGATGCA
        63890 A ATAGATATGT TAAAAAAACCT CAAAATGCAA AAATTGAAGT TATCCTCGAA AAATCAAACT AACAATAAT
25
        63960 A ATGGAGTTAA TAAAAATAAT CGCAAATACT ATATTGACTT CGCTCACATT TAAATTTCTT ATTCCTCGT
        64030 A TCATGATTCC TCTGAAAGGA GATGTTCTAA TGAGTAAGAA CATCACGAAA AATATAATTT TAACGACAA
        64100 C ATTATTACTA TTAGGTACTG TATTACCTCA AAATCAAAAA CCAGTATTTA GTTTTTACTC TGAAGCTAA
        64170 A GCTTATAGCA TTGGTCAAGA TGAAACTAAC ATCAATGAAT TAATTAAATA TTACACACAG CCTCATTTT
        64240 T CATTTTCAAA TAAATGGCTA TATCAATATG ATAATGGAAA CATTTATGTT GAACTTAAGA GATATTCAT
30
        64310 G GTCAGCACAT ATATCTTTAT GGGGCGCTGA AAGTTGGGGA AATATTAATC AGTTAAAAGG TCGTTACGT
        64380 A GATGTGTTTG GACTAAAAGA CAAAGATACT GATCAGTTAT GGTGGTCTTA TAGAGAGACA TTTACAGGT
        64450 G GCGTTACACC AGCCGCAAAA CCTTCTGATA AAACTTATAA TCTTTTTGTG CAATACAAAG ATAAACTAC
        64520 A AACGATTATT GGTGCGCATA AAATATACCA AGGCAATAAA CCAGTATTAA CATTGAAAGA AATCGATTT
        64590 C CGTGCACGAG AAGCGTTAAT AAAAAATAAA ATATTATATA ACGAAAATCG TAATAAAGGT AAGCTTAAG 64660 A TCACCGGTGG CGGTAATAAC TACACTATTG ATTTAAGCAA AAGATTACAT TCAGATCTAG CAAATGTTT
35
        64730 A TGTTAAAAAT CCTAATAAAA TAACTGTTGA CGTCCTCTTT GATTAGTATA TGAAGGTGAC TTATACTTC
        64800 A TGCACTTTAA TTCCAAATCA GATTATTTAA ATGATAATTT TTAAAGTGTA TGATGTATAT AATAGGTAA 64870 A ATTTTCTATA TATTTAAATG GAATTGGGAG TAGGAATGTG ACAGAAATAG TATTTTATAA AATTTATTT
        64940 C GTTGTCACTC CCCAACTTGC ATTGTCTGTA GAATTTCTTT TTGAAATTCT CTATGTTGGG GCCCCGCCA
40
        65010 A CTTGCACATT ATTGTAAGCT GACTTTTCGT CAGCTTCTGT GTTGGGGCCC CGCCTATAAT TGAAAAATG
        65080 C TTGTTACATG GGCATTTTCA TTCGGTCAAC TACTACCAAT ATAATATTGT AGAGCCTAAG ACATTGATT
        65150 T ATTATGTCTT AGGCTCTATT CCTTCATTTA ATGATTCAAT TATTATAGCA ATACTTTATT GTCCCATGA
        65220 T TAGTGTTCTT TTAATGAGAC ATAGTAACTA TAAAGTTTAA TAATCGTTCT AAATCTAGCA TCTTCTAGT
        65290 T TGGTTTTCCC ATTTCTTAAA TCTTGTACTG TTTGATATGG AACTCCTGAA TTTTTCGAAA TTTTATAGC
45
        65360 C TGATTCAGAC TCAAaCAAAG ATTGAAGAGA GTTTATAATA TTATTCAACT CTGTCATTTT TAATCCCCT
        65430 T TCTTGAATTA ACAATATATA ATGTTGTTAT TAAAACAGTC AGTGTATGGA TGATTTCATT TCCTAAAAA
        65500 T
50
      SEQ ID No:80 - SSL12
      gene
                          62408..63133
                               /gene=" MSSA-476ss112"
55
            CDS
                               62408..63133
                               /gene="MSSA-476ssl12
                               /product="(Similar to SAV1168 from strain Mu50)SSL12"
      translation="MKKNIMNKLVLSTALLLLGTTSTQLPKTPISFSSEAKAYNISENETNINELIKYYTOPHLSL/
60
      SNKWLWQKPNGSIHATLQTWVWYSHIQVFGSESWGNINQLRNKYVDIFGTKDEDTVEGYWTYDETFTGGVTPAATS
      SDKPYRLFLKYSDKQQTIIGGHEFYKGNKPVLTLKELDFRIRQTLIKNKKLYNGEFNKGQIKITADGNNYTIDLSK
      KLKLTDTNRYVKNPKNAQIEVILEKSN"
      SEQ ID No:81 - SSL13
65
      gene
                                   63227..63952
                              /gene=" MSSA-476ss113"
            CDS
                              63227..63952
                              /gene="MSSA-476ssl13
70
                              /product="(Similar to SA1010 from strain N315)SSL13"
```

/translation="MNNNITKKIILSTTLLLLGTASTQFPNTPINSSSEAKAYYINQNETNVNELTKYYSQKYLTF
SNSTLWQKDNGTIHATLLQFSWYSHIQVYGPESWGNINQLRNKSVDIFGIKDQETIDSFALSQETFTGGVTPAATS
NDKHYKLNVTYKDKAETFTGGFPVYEGNKPVLTLKELDFRIRQTLIKSKKLYNNSYNKGQIKITGADNNYTIDLSK
RLPSTDANRYVKKPQNAKIEVILEKSN"

```
SEQ ID No:82 - SSL14
gene 64060..64776
/gene=" MSSA-476ssl14"

CDS 64060..64776
/gene="MSSA-476ssl14
/product="(Similar to SAV1166 from strain Mu50)SSL14"
```

- 15 /translation="msknitkniiltttllllgtvlpqnqkpvfsfyseakaysigqdetninelikyytqphfsf snkwlyqydngniyvelkryswsahislwgaeswgninqlkgryvdvfglkdkdtdqlwwsyretftggvtpaakp sdktynlfvqykdklqtiigahkiyqgnkpvltlkeidfrarealiknkilynenrnkgklkitgggnnytidlsk rlhsdlanvyvknpnkitvdvlfd"
- 20 S. aureus strain COL taken from unpublished genome project at The Institute for Genomic Research (TIGR) via ViroloGenome

SEQ ID No:83

25

35

SEQ ID No:84 - SSL1

```
gene 1..681
/gene="COLss11"
40 CDS 1..681
/gene="COLss11
/gene="COLss11
/product="(Similar to SET6 from strain N315)SSL1"
```

- /translation="MKFKAIAKASLALGMLATGVITSNVQSVQAKAEVKQQSESELKHYYNKPILERKNVTGFKYT
 DEGKHYLEVTVGQQHSRITLLGSDKDKFKDGENSNIDVFILREGDSRQATNYSIGGVTKSNSVQYIDYINTPILEI
 KKDNEDVLKDFYYISKEDISLKELDYRLRERAIKQHGLYSNGLKQGQITITMNDGTTHTIDLSQKLEKERMGESID
 GTKINKILVEMK"
- 50 SEQ ID No:85

SEQ ID No:86 - SSL2

gene 1..678 5 /gene=" COLss12" 1..678 CDS

/gene="COLss12

/product="(Similar to SET7 from strain N315)SSL2"

translation="MKMKNIAKISLLLGILATGVNTTTEKPVHAEKKPIVISENSKKLKAYYNQPSIEYKNVTGYI/ SFIQPSIKFMNIIDGNSVNNIALIGKDKQHYHTGVHRNLNIFYVNEDKRFEGAKYSIGGITSANDKAVDLIAEARV 10 IKEDHTGEYDYDFFPFKIDKEAMSLKEIDFKLRKYLIDNYGLYGEMSTGKITVKKKYYGKYTFELDKKLQEDRMSD VINVTDIDRIEIKVIKA"

15 SEQ ID No:87

ATGAAAATGAGAACAATTGCTAAAACCAGTTTAGCACTAGGGCTTTTAACAACAGGCGCAATTACAGTAACGACGCAATCGGTCA AAGCAGAAAAATACAATCAACTAAAGTTGACAAAGTACCAACGCTTAAAGCAGAGCGATTAGCAATGATAAACATAACAGCAGG 20 AAAACCTCAGCTTCCAAAATAGAAAAAATATCACAACCTAAACAAGAAGAAGAACGCTTAATATATCAGCAACGCCAGCGC ACCAATGCAATCTACTAAATCAGACACACCACAATCTCCAACCATAAAACAAGCACAAACAGATATGACTCCTAAATATGAAGAT TTAAGAGCGTATTATACAAAACCGAGTTTTGAATTTGAAAAGCAGTTTGGATTTATGCTCAAACCATGGACGACGGTTAGGTTTA TGAATGTTATTCCAAATAGGTTCATCTATAAAATAGCTTTAGTTGGAAAAGATGAGAAAAAAATATAAAGATGGACCTTACGATAA 25 TATCGATGTATTTATCGTTTTAGAAGACAATAAATATCAATTGAAAAAATATTCTGTCGGTGGCATCACGAAGACTAATAGTAAA AAAGTTAATCACAAAGTAGAATTAAGCATTACTAAAAAAGATAATCAAGGTATGATTTCACGCGATGTTTCAGAATACATGATTA CTAAGGAAGAGATTTCCTTGAAAGAGCTTGATTTTAAATTGAGAAAACAACTTATTGAAAAAACATAATCTTTACGGTAACATGGG TTCAGGAACAATCGTTATTAAAATGAAAAACGGTGGGAAATATACGTTTGAATTACACAAAAAACTGCAAGAGCATCGTATGGCA GGCACTAATATTGATAACATTGAAGTGAATATAAAATAA

30

SEQ ID No:88 - SSL3

1..1059 gene 35 /gene=" COLss13" CDS 1..1059 /gene="COLss13

/product="(Similar to SET8 from strain N315)SSL2"

40

45

/translation="MKMRTIAKTSLALGLLTTGAITVTTQSVKAEKIQSTKVDKVPTLKAERLAMINITAGANSAT TOAANTROERTPKLEKAPNTNEEKTSASKIEKISQPKQEEQKTLNISATPAPKQEQSQTTTESTTPKTKVTTPPST NTPQPMQSTKSDTPQSPTIKQAQTDMTPKYEDLRAYYTKPSFEFEKQFGFMLKPWTTVRFMNVIPNRFIYKIALVG KDEKKYKDGPYDNIDVFIVLEDNKYQLKKYSVGGITKTNSKKVNHKVELSITKKDNQGMISRDVSEYMITKEEISL KELDFKLRKOLIEKHNLYGNMGSGTIVIKMKNGGKYTFELHKKLQEHRMAGTNIDNIEVNIK"

SEQ ID No:89

50 atgaaaataacaacgattgctaaaacaagtttagcactaggccttttaacaacaggtgtaatcacaacgacaacgc aagcagcaaacgcgacaacaccatcttccactaaagtggaagcaccacaatcaacaccgccctcaactaaaataga 55 gttgtcccagattatttcatatataaaattgctttagttggtaaagatgataaaaaatatggtgaaggagtacata ggaatgtcgatgtatttgtcgttttagaagaaaataattacaatctggaaaaatattctgtcqgtggtatcacaaa gagtaatagtaaaaaagttgatcacaaagcaggagtaagaattactaaggaagataataaaggtacaatctctcat gatgtttcagaattcaagattactaaagaacagatttccttgaaagaacttgattttaaattgagaaaacaactta 60 ttgaaaaaaataatctgtacggtaacgttggttcaggtaaaattgttattaaaatgaaaaacggtggaaagtacac gtttgaattgcacaaaaaattacaagaaaatcgcatggcagatgtcattaatagtgaacaaattaaaaacatcgaa gtgaatttgaaa

```
65
      SEQ ID No:90 - SSL4
      aene
                             1..924
                            /gene=" COLss14"
```

CDS 1..924
/gene="COLss14
/product="(Similar to SET9 from strain N315)SSL2"

5 /translation="MKITTIAKTSLALGLLTTGVITTTTQAANATTPSSTKVEAPQSTPPSTKIEAPQSKPNATTP
PSTKVEAPQQTANATTPPSTKVTTPPSTNTPQPMQSTKSDTPQSPTTKQVPTEINPKFKDLRAYYTKPSLEFKNEI
GIILKKWTTIRFMNVVPDYFIYKIALVGKDDKKYGEGVHRNVDVFVVLEENNYNLEKYSVGGITKSNSKKVDHKAG
VRITKEDNKGTISHDVSEFKITKEQISLKELDFKLRKQLIEKNNLYGNVGSGKIVIKMKNGGKYTFELHKKLQENR
MADVINSEQIKNIEVNLK"

10

SEQ ID No:91

25

SEQ ID No: 92 - SSL9

35 /translation="MKLTTIAKATLALGILTTGVFTAESQTGHAKVELDETQRKYYINMLHQYYSEESFEPTNISV KSEDYYGSNVLNFKQRNKAFKVFLLGDDKNKYKEKTHGLDVFAVPELIDIKGGIYSVGGITKKNVRSVFGFVSNPS LQVKKVDAKNGFSINELFFIQKEEVSLKELDFKIRKLLIEKYRLYKGTSDKGRIVINMKDEKKHEIDLSEKLSFER MFDVMDSKQIKNIEVNLN"

40

65

SEQ ID No:93

SEQ ID No:94 - SLL10

1..681 /gene=" COLss110" CDS 1..681 /gene="COLss110"

/product="(Similar to SET14 from strain N315)SSL10"

/translation="MKFTALAKATLALGILTTGTLTTEVHSGHAKQNQKSVNKHDKEALYRYYTGKTMEMKNISAL KHGKNNLRFKFRGIKIQVLLPGNDKSKFQQRSYEGLDVFFVQEKRDKHDIFYTVGGVIQNNKTSGVVSAPILNISK EKGEDAFVKGYPYYIKKEKITLKELDYKLRKHLIEKYGLYKTISKDGRVKISLKDGSFYNLDLRSKLKFKYMGEVI ESKQIKDIEVNLK"

SEQ ID No:95

15

SEQ ID No:96 - SSL11

25 /translation="MKLKNIAKASLALGILTTGMITTTAQPVKASTLEVRSQATQDLSEYYNRPFFEYTNQSGYKE EGKVTFTPNYQLIDVTLTGNEKQNFGEDISNVDIFVVRENSDRSGNTASIGGITKTNGSNYIDKVKDVNLIITKNI DSVTSTSTSTYTINKEEISLKELDFKLRKHLIDKHNLYKTEPKDSKIRITMKDGGFYTFELNKKLQTHRMGDVID GRNIEKIEVNL"

30 SEQ ID No:97

atgaaaaagaacatcatgaataaattagttttatcaacagcattgttacttttagaaactacatcaacaacattc
ctaaaacaccaatcagtttttcatctgaagcaaaagcctataatatcagtgaaaacgagactaatatcaatgaact
aatcaaatattacactcagccgcatttttcattatctggaaaatggttatggcaaaagcccaatggtagcattcat
gcaacattgcaaacgtgggtttggtatagtcatattcaagtgtttggatccgagagttggggaaacattaatcagt
taagaaataaatacgttgatatatttggaactaaagatgaggacacagttgaaggttactggacttatgataaa
caacaaactatcatcggtggacatgaattttacaaaggaaataaaccagtattaactttaaaagaattagattcc
gtattcgtcaaacattaataaaaaaataaaaagttatataaacggagaatttaataaaggtcaaattaagatactgc
tgatggaaataattacacgattgatttaagtaaaaagttaaaattaactgacacaaaccgttatgttaaaaatcct
cgtaatgcagaaattgaagtcatactcgaaaaatctaac

SEQ ID No:98 - SSL12

45

50

/translation="MKKNIMNKLVLSTALLLLETTSTQLPKTPISFSSEAKAYNISENETNINELIKYYTQPHF SLSGKWLWQKPNGSIHATLQTWVWYSHIQVFGSESWGNINQLRNKYVDIFGTKDEDTVEGYWTYDETFTGGVTPAA TSSDKPYRLFLKYSDKQQTIIGGHEFYKGNKPVLTLKELDFRIRQTLIKNKKLYNGEFNKGQIKITADGNNYTIDL SKKLKLTDTNRYVKNPRNAEIEVILEKSN"

55

SEQ ID No:99

atgaacaataacatcacgaaaaaaattattttatcaacaacattgttactattaggtacagcatctacacaatttc
ctaatacacctatcaattcttcatctgaagcgaaagcttattatataaatcaaaacgaaactaacgttaatgagtt
aactaaatattactcgcaaaaatatttaaccttctctaacagtacgttatggcaaaaagataacggtacgattcat
gcaacgttgttacagttttcttggtatagtcatattcaagtttatggacctgaaagttggggcaatatcaaccaat
taagaaataaaagcgttgatatttttggcataaaaagaccaagaaaccattgattcttttgcattatctcaagaaac
gtttactggtggtgttactcctgcagcaacatctaacgataaacactataaactgaatgtaacatataaagataaa

gcagaaacgtttactggcggatttccagtttatgaaggcaataagcctgttttaactttaaaagaattagattttc gtattcgtcaaacattaattaaaagtaaaaaattatataataatattcttataataaaggacaaattaaaataacagg tgcagacaataactacacaatagatttaagtaaaaggttgccatcaactgatgcaaatagatatgttaaaaaaacct caaaatgcaaaaattgaagttatcctcgaaaaatcaaac

5

SEQ ID No:100 - SSL13

/product="(similar to SA1010 from strain N315)SSL13"

/translation="mnnnitkkiilsttlllgtastqfpntpinssseakayyinqnetnvneltkyysqkyl

TFSNSTLWQKDNGTIHATLLQFSWYSHIQVYGPESWGNINQLRNKSVDIFGIKDQETIDSFALSQETFTGGVTPAA
TSNDKHYKLNVTYKDKAETFTGGFPVYEGNKPVLTLKELDFRIRQTLIKSKKLYNNSYNKGQIKITGADNNYTIDL
SKRLPSTDANRYVKKPQNAKIEVILEKSN"

20 SEQ ID No:101

SEQ ID No:102 - SSL14

```
35 <u>gene</u> 714..714
/gene="COLss14"
CDS 714..714
/gene="COLss114
```

/product="(similar to SA1009 from strain N315)SSL14"
/translation="MSKNITKNIILTTTLLLGTVLPQNQKPVFSFYSEAKAYSIGQDETNINELIKYYTQPHF
SFSNKWLYQYDNGNIYVELKRYSWSAHISLWGAESWGNINQLKDRYVDVFGLKDKDTDQLWWSYRETFTGGVTPAA
KPSDKTYNLFVQYKDKLQTIIGAHKIYQGNKPVLTLKEIDFRAREALIKNKILYNENRNKGKLKITGGGNNYTIDL

SKRLHSDLANVYVKNPNKITVDVLFD"

45 SEQ ID No: 103

40

S. aureus strain N315 (SSL12-SSL14) -coding strand

```
50
      1
             CTACTGTTCT TTGTGAAAAA CCACGGTATT CAATGCCATC ATACATTCCA CCAAGCACAC
             GTGCAGTATC TTTAGTTGTT TCTTTTTTAC CCATTTGTGA TCCAGTTGGG CCTAAATAAG
      61
             TTACATTTGC ACCTTGATCA TGCGCTGCAA CTTCAAATGC ACATCGCGTT CTTGTAGAAT
      121
      181
             CTTTTTCAAA TAACAGTGCA ATATTTTTAT TTTTTAACAT AGGCTTTTCA GTGCCAATAT
             ATTTAGCACG TTTTAAATCC TCGGAGAGTG TTAATAAGAA TTCTACCTCT TGTCGTGAAA
      241
55
             AGTCTAATAA AGTTAAAAAA CTTCTGTTTC GTAAATTTTT CATTAATAAC AACTCCTTTT
      301
             ATTTTAGTTA CACCTAAATT GTAAGCGCAT ACAAAATAAA CACAACCTAC TATTAAAATT
      361
      421
             TGTAATATT TATCAATAAT TAAATGAACA TTTTATTAAT ATTAAATTTA AGTAGTAGGA
             AATAATTAAA ATAAGTACTA CATTTAAAGT ATAACTATTT TTCAAGTAGT TAGAAAATTC
      481
             AATTATCAAA CAATTTAATG CAATTGATTA GAGAATAATT GTAACGTGTC GTTTTTAATA
      541
60
      601
             TATAACTCCC GCCTACTTTA TTAAGTACTG TTTCTGTCCA AAACTTAAAA ATGATAAGTT
             TTGCTTAAAT AACACTACTA ACTGTTTAAG TTTATTTAAC ATAGTTTTAG CTTTTATTTA
      661
             ATTCCGAATC GGTGTAATAG CTTATATACT TTGGGTAATT CACGCAAAGG AGATTTTCAT
      721
             ATGAAAAAGA ACATCATGAA TAAATTAGTT TTATCAACAG CATTGTTACT TTTAGGAACC
      781
      841
             ACATCAACAC AACTTCCTAA AACACCAATC AGTTTTTCAT CTGAAGCAAA AGCCTATAAT
65
            ATCAGTGAAA ACGAGACTAA TATCAATGAG TTAATCAAAT ATTACACTCA GCCGCATTTT
      901
             TCATTATCTG GAAAATGGCT ATGGCAAAAG CCCAATGGTA GCATTCATGC AACATTGCAA
      961
            ACGTGGGTTT GGTATAGTCA TATTCAAGTG TTTGGATCCG AGAGTTGGGG AAACATTAAT
      1021
```

	1001	CACTURATION	ATAAATACGT	ͲϹϪͲϪͲϪͲϔͲ	GGAACTAAAG	ATGAGGACAC	AGTTGAAGGT
	1081	CAGITAAGAA	ATGATGAAAC	TOWNSTATE	CCMCMMACCC	CACCACCTAC	ጥጥር አጥ ርጥር አ ጥ
	1141	TACTGGACTT	ATGATGAAAC	ATTTACTGGT	GGIGIIACGC	TARCHOURCAM	CCCDCCACAM
	1201	AAACCTTATA	GACTATTTT	AAAATATAGT	GATAAACAAC	AAACIAICAI	CGGTGGACAI
_	1261	GAATTTTACA	AAGGAAATAA	ACCAGTATTA	ACTTTAAAAG	AATTAGATTT	CCGTATTCGT
5	1321	CAAACATTAA	TAAAGAATAA	AAAGTTATAT	AACGGAGAAT	TTAATAAAGG	TCAAATTAAG
	1381	ATAACTGCTG	ATGGAAATAA	TTACACGATT	GATTTAAGTA	AAAAGTTAAA	ATTAACTGAC
	1441	ACAAACCGTT	ATGTTAAAAA	TCCTAAAAAT	GCACAAATTG	AAGTCATACT	CGAAAAATCT
	1501	AACTAACCTA	TTACCTTTTG	TAAATGCGGA	TAATTTCAAT	TATCTAATTA	ACCCCTTTTT
	1561	ם בע בידיים בידיב	ATTCCAACAA	TACTCAAAGG	AGAAATTCGA	ATGAACAATA	ACATCACGAA
10	1621	ייייי מיייים ממממ	TTATCAACAA	CATTGTTACT	ATTAGGTACA	GCATTTACAC	AATTTCCTAA
10		WWWWWITWII	AATTCTTCAT	CECTACCCAA	ACCREAGEAT	ΔΠΣΣΣΤΓΣΣΣ	ACCAAACTAA
	1681	TACACCTATC	TTAACTAAAT	T T T T T T T T T T T T T T T T T T T	AGCIIAIIAI	A COMMONOUNA	ACACMACCOM
	1741	CGTTAATGAG	TTAACTAAAT	ATTACTCGCA	AAAATATTTA	ACCITCICIA	ACAGTACGTI
	1801	ATGGCAAAAA	GATAACGGTA	CGATTCATGC	AACGTTGTTA	CASTITICIT	GGTATAGTCA
	1861	TATTCAAGTT	TATGGACCTG	AAAGTTGGGG	CAATATCAAC	CAATTAAGAA	ATAAAAGCGT
15	1921	TGATATTTTT	GGCATAAAAG	ACCAAGAAAC	CATTGATTCT	TTTGCATTAT	CTCAAGAAAC
	1981	GTTTACTGGT	GGTGTTACTC	CTGCAGCAAC	ATCTAACGAT	AAACACTATA	AACTGAATGT
	2041	AACATATAAA	GATAAAGCAG	AAACGTTTAC	TGGCGGATTT	CCAGTTTATG	AAGGCAATAA
	2101	CCCTCTTTTT	ACTTTAAAAG	AATTAGATTT	TCGTATTCGT	CAAACATTAA	TTAAAAGTAA
		שמשמשתמממ	AATAATTCTT	ATAATAAAGG	ΣΟΣΣΤΤΣΣΣ	ATAACAGGTA	CAGACAATAA
20	2161	CORCRETE	GATTTAAGTA	VIVALUANCO	VOCUMENT	CCNNNTACNT	מממממתמתים
20	2221	CTACACAATA	GATTTAAGTA	AAAGGTTGCC	AICAMCIGAI	GCHUMIUGUI	VIGITURE.
	2281		GCAAAAATTG				
	2341	TTAATAAAAA	TAATCGCAAA	TACTATATTG	ACTTCGCTCA	CATTTAAATT	TCTTATTCCT
	2401		TTCCTCTGAA				
	2461	ATTTTAACGA	CAACATTATT	ACTATTAGGT	ACTGTATTAC	CTCAAAATCA	AAAACCAGTA
25	2521	TTTAGTTTTT	ACTCTGAAGC	TAAAGCTTAT	AGCATTGGTC	AAGATGAAAC	TAACATCAAT
	2581		AATATTACAC				
	2641		GAAACATTTA				
		THIGHIMAIG	CTGAAAGTTG	CCCANAMAMM	א א שרכא כשישא א	ארבאיירכיידא	CGTAGATGTG
	2701	TIAIGGGGCG	AAGACAAAGA	MA CMCAMCAC	MENTICAGITAA	CEMPAGACACA	CACAMMMACA
20	2761	TTTGGACTAA	AAGACAAAGA	TACTGATCAG	TIMIGGIGGI	CITATAGAGA	DODOON
30	2821		CACCAGCCGC				
	2881		TACAAACGAT				
	2941	TTAACATTGA	AAGAAATCGA	TTTCCGTGCA	CGAGAAGCGT	TAATAAAAAA	TAAAATATTA
	3001	TATACCGAAA	ATCGTAATAA	AGGTAAGCTT	AAGATCACCG	GTGGCGGTAA	TAACTACACT
	3061	ATTGATTTAA	GCAAAAGATT	ACATTCAGAT	CTAGCAAATG	TTTATGTTAA	AAATCCTAAT
35	3121		TTGACGTCCT				
	SEQ ID	No. 104					
40		No. 104 s strain NCTC83	325 (SSL1-SSL1	1) – coding stra	ınd		
40	S. aureus	s strain NCTC83				CGCCAATCTT	CTGGAACTTT
40	S. aureus	s strain NCTC83	TAATCTAATT	GTCGAACAGG	AACTTTTCCG		
40	S. aureus 1 61	s strain NCTC83 TTGATTAAAA CTCAACATTT	TAATCTAATT CTAACACCAA	GTCGAACAGG TGTGAAAATG	AACTTTTCCG ATCTATGTGA	TTTGCAATGG	CTTGATTTGT
40	S. aureus 1 61 121	s strain NCTC83 TTGATTAAAA CTCAACATTT AATATGTGTG	TAATCTAATT CTAACACCAA CCTAAATGAC	GTCGAACAGG TGTGAAAATG CTGTAGCACC	AACTTTTCCG ATCTATGTGA TGTTAACATA	TTTGCAATGG ATATTCATTC	CTTGATTTGT ACTTCATCTC
	S. aureus 1 61 121 181	s strain NCTC8: TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT	TTTGCAATGG ATATTCATTC TTCAAAACAT	CTTGATTTGT ACTTCATCTC TTGATTTTAT
40	S. aureus 1 61 121 181 241	s strain NCTC8: TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT
	S. aureus 1 61 121 181 241 301	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAATG	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ATTGAAAATT
	S. aureus 1 61 121 181 241	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAAT TTAATCAGGT	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ATTGAAAATT ACAGTTTTTA
	S. aureus 1 61 121 181 241 301	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAATG TTAATCAGGT AAATAAAAAT	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA
45	S. aureus 1 61 121 181 241 301 361	TTGATTAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GGTGTATGATA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG
	1 61 121 181 241 301 361 421	TTGATTAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GGTGTATGATA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG
45	1 61 121 181 241 301 361 421 481	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT	AACTTTTCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA ATAATGTAGG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ACTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA
45	5. aureus 1 61 121 181 241 301 361 421 481 541 601	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTAA	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ACTGATTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA
45	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661	S STRAIN NCTCS: TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGGG AATGTTAGCA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTAATTAAT ACTGATTTTAA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA
45	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721	TTGATTAAAA CTCAACATTT AATATGTGTG CTAAACATTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG AATTAATTTG AATTGAAAAAT AAAGCAAGTT GTACAAGCGA	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTAAT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGGG AATGTTAGCA TAAACAACAA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTT TGAAATTTAA TTACATCGAA AGTTAAAACA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT
45 50	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TAGAGCGTAA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGGG AATGTTAGCA TAGATTGGGG AATGTTAGCA TAAACAACAA AAATGTGACT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG GGATTTAAAT	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC
45	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841	TTGATTAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT GTACAGGGA AAACCAATTT TATTTAGAAG	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TAGAGGGTAA TCACAGTAGG	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG GGATTTAAAT TCTCGAATCA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTATT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA
45 50	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901	TTGATTAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT TAATCAGG TTAATACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTTAGAAG GATAAATTTA	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TAGAGGGTAA TCACAGTAGG AAGACGGAGA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAGATTAGCA TAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA ACTGGAATCAG GGATTTAAAT TCTCGAATCA ATAGATGTG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC
45 50	5. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTTAGAAG GATAAAATTTA AGTAGACAAG	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TAGAGCGTAA TCACAGTAGG AAGACGGAGA CAACAAATTA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAATTGGT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG ATAATGTAG CTAAAAATTA ACAGGTGTAA ACAGGTGTAA AGTGAATCAG GGATTTAAAT TCTCGAATCA GGCGTTACAA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA AGTTAAAACA ATTTAACTTGG CTTTACTTGG TTATCCTTAG AATCAAATAG	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT
45 50	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTA ATGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTAGAAG AATAAATTTA AGTAGACAAG AATTGAATATA	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TAGAGCGTAA TCACAGTAGG CAACAAATTA TCAATACGCC	GTCGAACAGG TGTGAAAATG TGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTTCT GTGATTTACC GCGCCTCAAT TAGATTGGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAAATTGGA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCA GGATTTAAAT TCTCGAATCA ATAGATGTGT GGCGTTACAA ATCAAGAAAG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA AGTTAAAACA ATACTGATGA CTTTACTTGG TTACTTGG AATCAAATAG AATCAAATAG AATCAAATAG	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAAT ATTGAAAATT ACAGTTTTAA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACA ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACTTAAA
455055	5. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTA ATGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTAGAAG AATAAATTTA AGTAGACAAG AATTGAATATA	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TAGAGCGTAA TCACAGTAGG AAGACGGAGA CAACAAATTA	GTCGAACAGG TGTGAAAATG TGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTTCT GTGATTTACC GCGCCTCAAT TAGATTGGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAAATTGGA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCA GGATTTAAAT TCTCGAATCA ATAGATGTGT GGCGTTACAA ATCAAGAAAG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA AGTTAAAACA ATACTGATGA CTTTACTTGG TTACTTGG AATCAAATAG AATCAAATAG AATCAAATAG	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAAT ATTGAAAATT ACAGTTTTAA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACA ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACTTAAA
45 50	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTTAGAAG GATTAATTTA GATTAGATTA	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TAGAGCGTAA TCACAGTAGG CAACAAATTA TCAATACGCC	GTCGAACAGG TGTGAAAATG CTGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTTGGGA TAGATTTGGA TAGATTGGA AAATGTGACT GCAACACAA AAATGTGACT CTCAATTGGT AATTTTTAGAA AGAAGACATC	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG GGATTTAAAT TCCGAATCA TCTCGAATCA GGCGTTACAA ATCAAGAAAG TCATTAAAAG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG ATTACATCAAATAG AATCAAATAG AATCAAATAG AATATGAAGA AACTTGATTA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACATTAAA TAGATTAAA
455055	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTG ATTGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTTAGAAG GATAAATTTA AGTAGACAAG AATGATATA AGTTGATATA AGTTGATTAT AGTTGATTAT GATTGATT	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTTGAG AAGCAGAAGT TAGAGCGTAA TCACAGTAGG AAGACGGAGA CCACAAATTA TCAATACGCC ACATTTCAAA	GTCGAACAGG TGTGAAAATG CTGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAATTGGT AATTTTAGAA AGAAGACATC CGGCTTGTAT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG GGATTTAAAT TCTCGAATCA ATAGATGT GGCGTTACAA ATCAAGAAAG TCAAATGGTC	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAAATAG AATCAAATAG AATCAAATAG AACTTGATTA TTAAACAAGG	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTATT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACATTAA TAGATTAAA TAGATTAAAA TAGATTAAAA
455055	S. aureus 1 61 121 181 241 301 361 421 481 541 601 721 781 841 901 961 1021 1081 1141 1201	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT TAATCAGGT AAACAAGTT GTACAAGCGA AAACCAAGTT TATTTAGAAG GATAAATTTA AGTAGACAAG ATTGATATA AGTAGACAAG ATTGATTATA GATTTTTACT GAACGTGCGA ATTACAATGA	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTT AAAGGGGATA CAAATTTAAA TAGCATTGAG AAGCAGAAGT TAGAGCGTAA TCACAGTAGG AAGACGAGA CAACAAATTA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATGGCAC	GTCGAACAGG TGTGAAAATG CTGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGGG AATGTTAGACACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAATTGGT AATTTTAGAA AGAAGACATC CGGCTTGTAT AACACACA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG GGATTTAAAT TCTCGAATCA ATAGATGTGT GGCGTTACAA ATCAAGAAAG TCAACAAAG TCAAATGGTC ATCAAATGGTC	TTTGCAATGG ATATTCATTC TTCAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAACAA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCATAAACA AATCATAAAGA AACTTGATAA TTAAACAAGG GTCAAAAACT	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTATT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACCTTAAA TAGATTAAGA TCAAATTACA TCAAATTACA
455055	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261	TTGATTAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT GTACAAGCGA AAACCAATTT TATTTAGAAG GATAAATTTA AGTAGACAAG GATAAATTTA AGTAGACAAG ATTGATTAATA GATTGATTAATA GATTTTACT GAACGTGCGA ATTACAATGA CGTATGGGTG	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTTGAG AAGCAGAAGT TCACAGTAGG AAGACGGAGA CAACAAATTA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATGGCAC AGTCAATCGA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAATTGGT AATTTTAGAA AGAAGACATC CGGCTTTTAGAA CCGGCTTGTAT AACACATACA	AACTTTTCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG GGATTTAAAT TCTCGAATCA ATAGATGTGT GGCGTTACAA ATCAAGAAG TCAATAAAG TCAATAAAG TCAATAAAG TCAATGAAAG TCAATAAAAG ATCAATGATCAAATGATC ATCGATTTAAAAAAAATTAAAAAAAAAA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAAATAG AATCAAATAG AATCAAATAG ATAATGAAGA TTAAACAAGG GTCAAAAACT TTCTAGTAGA	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACTTAAA TGAATTAAA TCAAATTACA TCAAAATTACA TCAAAAACAA AATGAAATTACA
455055	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTAGAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTTAGAAG GATAAATTTAGTAGAG GATAAATTTAGTAGAG GATAATTTAGTAGAG ATTGATTACT GAACGTGCGA ATTGATGATACA GATTTTTACT GAACGTGCGA CGTATGGGTG TACTTTCTAA	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGG AAGCAGAAGT TAGAGCGTAA TCACAGTAGG AAGACGGAGA CAACAAATTA TCAATACGCC ACATTTCAAA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATGGCAC AGGTCAATCGA CAACAAATCGC CAGCCAATCGA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTGTC GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAATTGGT AATTTTAGAA AGAGACATC CGGCTTGTTA ACACCATACA CGGCACTAAG CTGCACTAAG CTGCACTAAG CTATGTTGAA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG GGATTTAAAT TCTCGAATCA ATAGATGTGT GGCGTTACAA ATCAAGAAAG TCAAATGTCT TCATTAAAG TCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT ATCAAATGTCT	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAAATAG AATCAAATAG AATCAAATAG ATAATGAAGA TTAAACAAGG GTCAAAAACT TTCTAGTAGA TATGGAAATA	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACTTAAA TGAATTACA TCAAATTACA TCAAATTACA TCAAATTACA ATGAAAAAAAAAA
45505560	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT TAATAACAG ATTGAAAATT TATTTAGAAG GATAAATTTA AGTAGACAAG ATTGATTACT GAACGTGCGA ATTCAATGA CGTATGGGTG TACTTTCTAA AAGCGACGTA	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TCACAGTAGG CAACAAATTA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATGGCACA ATGATGGCAC ACTATTCAAA CAACTTCAAA CAACTTCAAA CACACAAATCA ATGATGGCAC CACATTCCAC CACACAAATCA CACACAAACC CTGTTGCTTA	GTCGAACAGG TGTGAAAATG TGTGACACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAAACAACAA AAATGTGACT CAACAGCAT AAACTCAAAT CTCAATTGGT AATTTTAGAA AGAAGACAT CCGGCTTGTTA AACACACAC CCGCTTGTTA CCGCACTAAG CTATGGTGAA GCTTCTTTT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG ATAATGTAG CTAAAATTA ACAGGTGTAA ACAGGTGTAA ACTGAATCA GGATTTAAAT TCCGAATCA ATCAAGATGTGT GGCGTTACAA ATCAAGAAG TCAATGGTC ACCAATCAA ATCAAGAAG TCAATGGTC ATCGATTTAA ATCAATGGTC ATCGATTTAA ATCAATGGTC ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATTTAA ATCGATGTCT TTGAGGGGGAA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA ATACTGATGA CTTTACATGG TTATCCTTAG AATCAAATAG AATCAAATAG AATCAAATAG AATCAAATAG TTAAACAAGG GTCAAAACT TTCTAGTAGA TATGGAAATA AAGTTACAAA	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACATTAAA TAGATTAAA TAGATTAAA AAATTACA TCAAATTACA TCAAATTACA TAGAAATAAA AATGAAATAA TATGGAAGTT ACTCACACAA
455055	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTAACAG GTTTAATTAGAAG AACCAATTT TATTAGAAG ATTAATATAACAG GATAAATTTA AGTAGACAAG ATTGATTACT GAACGTGCGA ATTGATTACT GAACGTGCGA ATTGATTACT GAACGTGCGA ATTGATTATA GATTTTTACT GAACGTGCGA ATTACAATGA CGTATGGGTG TACTTTCTAA AAGCGACGTA AAGCGACGTA AAGCGACGTA ACAGTCGCAC	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TCACAGTAGG CAACAAATTA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATGGCACA ACTCAATCGA CACCAAACCG CCTGTTGCTTA CACGCATTAT CACGCCATTAT	GTCGAACAGG TGTGAAAATG TGTGAACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT ACACACAT ACACACAT CTCAATTGGA AGAAGACATC CGGCTTGTAT AACACATACA CGGCCTAAG CTGCACTAAG GCTTCTTTT CTTTTGCTTA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA ACTGAATCA GGATTTAAAT TCTCGAATCA ATCAAGATGTG GGCGTTACAA ATCAAGAAAG TCATAAAAG TCATAAAAG TCATAAAAG TCAAATGGTC ATCGATTTAA ATCAATGGTC ATCGATTTAA ATTAATAAAA TCAAATGGTC TCGACTTGT TTGAGGGGAA AATAGCTTAA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAATAGA AACTTGATTA TTAAACAAGG GTCAAAAACT TTCTAGTAGA TTCTAGTAGA TTCTAGTAGA TTCTAGTAGA TTCTAGTAGA TATGGAAATA AAGTTACAAA TCATATTTTA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACTTAAA TAGATTACA TCAAATTACA TCAAATTACA TCAAATTACA TCAAAATTACA TATGAAAATAA AATGAAATTA TATGGAAGTT ACTCACACAA TGAATAGTTA
45505560	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 1021 1081 1141 1201 1261 1321 1381 1441 1501	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTTAGAAG GATTAATTTA GATTATTAG ATTGATTATA GATTATTACT GAACGTGCGA ATTACATGA CGTATGGTG ATTACATGA CGTATGGTG ACTATGGTG AAACCAGTT AAGCGACGTA AAGCGACGTA AAGCGACGTA AAACAGGTCCAC AAAACAGGTT	TAATCTAATT CTAACACAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA TAGCATTTAA TAGCATTTAA TAGCATTGAG AAGCAGAAGT TAGAGCGTAA TCAATACAC ACAATATAA TCAATACAC ACATTCAAA TTAAACACA ATGATGCAC ACTCAATCGA CCACCAAACCA CCACCAAACCA CCACCAAACCA CCACCA	GTCGAACAGG TGTGAAAATG CTGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTAGCA AAATGTGACA AAATGTGACT GCAACAAAT CTCAATTGGT AATTTTAGAA AGAAGACAT CCGCCTTGTAT AACACATACA CGGCCTTGTAT CCGCACTAAG CTATGTTAC CGGCACTAAG CTATGTTAC CGGCACTAAG CTATGTTGAA CCTATGTTAT ACCACATACA CCGCACTAAG CTATGTTGAA CCTATGTTGAA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA ACAGGTGTAA ACTGAATCA GGATTTAAAT TCTCGAATCA ATCAAGAAGG TCATAAAAG TCATAAAAG TCATAAAAG TCATAAAAG TCATAAAAA TTAATAAAA ATGAGGTGT ATTAATAAAA ATGAGGTGTA ATTAATAAAA TAGTGCTTGT TTGAGGGGGAA AATAGCTTAA GCTCCTATAA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAAATAG AATCAAATAG AATCAAATAG ATCAAATAG TTAAACAAGG GTCAAAAACT TTCTAGTAGA TATTGGAAATA AAGTTACAAA TATTGGAAATA AAGTTACAAA TATTGGAAATA TATTGGAAATA TCATATTTTA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACATTAAGA TAGATTAAGA TAGATTAAGA TAGATTACA TGAAATTACA TGAAATAAA AATGAAATTACA TGAAATAAA AATGAAATTACA TGAAATAAA TATGGAAGTT ACTCACACAA TGAATAGTTA TGAATTACATTAC
45505560	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT GTACAAGCTA AAACCAAGTT TATTTAGAAG GATAAATTTA AGTAGACAAG ATTGATTATA AGTAGACAAG CGTATGATTATA GATTTTACTA GATTGATTATA AGTAGACGA ATTACAATGA CGTATGGCTA AAACCGTCCAAAACCAATT TACTTTCTAA AAGCGACGTA AAACAGGTT ACAGTCGCAC AAAACAGGTT TACGTAATAA	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA TAGCATTTAAA TAGCATTGGG AAGCAGAAGT TCACAGTAGG AAGACGGAGA CCAACAAATTA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATGGCAC ACGTCAATCGA CCTGTTGCTTA CACCCACTTAT CACCCCACTTAT AATGTGAATA ACCAATTAAA	GTCGAACAGG TGTGAAAATG CTGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTGTA ATTAATTACC GCGCTCAAT TAGATGTGAC AAACTCAAACAA AAATGTGACT CTCAATTGGT AATTTTAGAA AGAAGACAT CAGCTTATT ACCACTTATA ACCACTAAT CTCAATTGGT AATTTTAGAA CTCAATTCGT CTGCTTAT ACCACTACA CTGCTTTAT ACCACTTACA CTGCACTAAG CTTTTTTT CTTTTTTTTT TCCGAATACA TTATAATAGA	AACTTTTCCG ATCTATGTA ATCTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA AGTGAATCAG GGATTTAAAT TCTCGAATCA ATCAAGAAAG TCAATGAAAGTTAA ATCAAGAAAG TCATTAAAAG TCAATGTGT TCGGATTTAA ATCAAGAAAG TCAATTTAA ATCAATGTCT ATCGATTTAA ATTAATAAAA TTAGTGCTTGT TTGAGGGGAA GCTCCTATAA TTGGAGCATA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAATAGA AACTTGATA TTAAACAAGG GTCAAAAACT TTCTAGTAGA TATGGAATA AAGTTACAAA TATGGAAATA AAGTTACAAA TATGGGAAATA TATGGGTGTA CAACTATGAA CAACTATGAA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTATT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACTTAAA TAGATTACA TCAAATTACA TCAAATTACA TCAAATTACA TCAAATTACA TCAAATTACA TGAAAAAGAA AATGAAAATAA TATGGAAGTT ACTCACACAA TGAATTCAAAT TGAATTCAAAT TGAATTCAAAT ATGAATAGATT ACTCACACAA TGAATTCAAAT TGAATTCAAAT ATGAAAAAAT
45505560	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT TTAATACAG GTTTAATTTG ATTGAAAAAT TAATTAGAAGCAATTT TATTTAGAAG GATAAATTTA AGTAGACAAG ATTGATTACT GAACGTGCGA ATTACATGA CGTATGGCTG ATTACATGA CGTATGGCTG ATTACATGA CGTATGGCTA ACAGTCCCA AAACAGGTT TACTTCTAA AAGCGACGTA ACAGTCCCA AAAACAGGTT TACGTAAAAA ATTGCAAAAA	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TCAAGAGGGAGA CCACCAGTAGG AAGACGGAGA TCAACAAATTA TCAATACGC ACATTTCAAA TTAAACAACA ATGATGGCAC ACGCATTTCAAC CCACCAAATCGA CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAAGCG CCACCAATAT CAACCACAAACCA AATGATGAATA AACCACATTAA TAAGTTTGTT	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAATTGGT AATTTTAGA AGAGACATC CGGCTTGTAT AACACATACA CGGCACTAAG CTATGTTGAA GCTTCTTT CTTTTTCTTT CTTTTTCTTA TCCGAATACA ATTAGAATACA ATTAGAATACA	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG ATAATGTAGG CTAAAAATTA ACAGGTGTAA ACAGGTGTAA ACTGAATCA GGATTTAAAT TCTCGAATCA ATCAAGAAG TCATTAAAG TCATTAAAG TCATTAAAG TCATTAAAA TCACATTTAA ATCAATGTC ATCAATTGTC ATCAATTGTC ATCAATTGTC TCACATTTAA ATTAATAAA TAGTGCTTGT TTGAGGGGAA AATAGCTTAA GCTCCTATAA TTGGAGCATA TTGGAGCATA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA ATTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAAAACA AACTTGATAA TTAAATCAAGG GTCAAAAACT TTCTAGTAGA TATGGAAATA AAGTTACAAA TTATGGAAATA AAGTTACAAA TCATATTTTA TATGGGTGTA CAACTATGAA GTGTAAACAC GTGTAAACAC	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT AGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTACCATAAA TGAATTACA TGAAAAAGAA TAAAATTACA TGAAAAAGAA AATGAAATTACA TGAAAAAGAA TATGAAATTACA TGAATGATTA TGTACTTCACAA TGAATAGAT TACAACGGAA TGAATAGAT TAGATTCAAAT TAGAAAAATT ACTACAACGGAA
4550556065	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTTAGAAG GATAAATTTA AGTAGACAAG ATTGATTACT GAACGTGCGA ATTACAATGA CGTATGATTACAATGA CGTATGGTGCGA ATTACAATGA CGTATGCGA ACAGTCGCAC AAAACAGGTT TACTTCTAA AAGCGACGTT ACAGTCGCAC AAAACAGGTT TACGTAAAAA ATTGCTAAAAA AAACCAGTTC	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTT AAAGGGGATA CAAATTTAAA TAGCATTGAG AAGCAGAAGT TAGAGCGTAA TCACAGTAGA CAACAAATTA TCAATACGCC ACATTTCAAA TCAATACGCC ACATTTCAAA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATGGCAC CACCAATTCAA ATGATGGCAC CACCAATTTAAACAACA ATGATGGCAC CACCAAATTA CACCACTTAT CACCACTTAT AACAATCTAA TAAGTTTGTT ATGCCGAAAA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAATTGGT AATTTTAGAA AGAGACATC CGGCTTTAT CTCAATTGGT CTGATTGAA GCTTCTTTT CTTTTTGCTTA TCCGAATACA ATTAGAATACA ATTAGAATA GAAACCTATT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG ATAATGTAGG CTAAAAATTA ACAGGTGTAA ACAGGTGTAA ACAGGTGTAA ATCAAGATCA GGATTTAAAT TCTCGAATCA ATCAAGAAGG TCAATAGATGTC TCATTAAAG TCAAATGTC TCAAATGTC TCACAATGTC ATCAATGTC TCACATTAA ATCAAATGTC TCACATTAA ATCAACTGTC TTGAGGGGAA AATAGCTTAA TGGCCTTAA GCTCCTATAA TTGGCAACAG GTAATAAGTG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA ATTTACATCGAA ATTTACATCGA ATTACTTGG TTATCCTTAG AATCAAATAG AACTTGATTA TTAAACAAGG GTCAAAAACT TTCTAGTAGA TATGGATTA TATGGGAATTA AAGTTACAAA TCATATTTTA AAGTTACAAA TCATATTTTA TATGGGTGTA CAACTATGAA GTGTAAACAC AAAATAGCAA	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAA AGAAGGTGAC ATCTGATAAA AGAAGGTGAC TGTACATCAA TGAAAAAGAA TCAAATTACA TCAAAATTACA TCAAAATTACA TGAAAAGAA AATGAAAATTA TATGGAAGTT ACTCACACAA TGAATACATTA TGAATACATTA TGAATACAATTACA TGAATACATTA TGAATAGTTA TACAACGGAA AAAATTAAAA
45505560	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT GTACAAGCGA AAACCAATTT TATTTAGAAG GATAAATTTA AGTAGACAAG ATTGATTACT GAACGTGCGA ATTACAATGA CGTATGATTACAATGA CGTATGGTGCGA ATTACAATGA CGTATGCGA ACAGTCGCAC AAAACAGGTT TACTTCTAA AAGCGACGTT ACAGTCGCAC AAAACAGGTT TACGTAAAAA ATTGCTAAAAA AAACCAGTTC	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TCAAGAGGGAGA CCACCAGTAGG AAGACGGAGA TCAACAAATTA TCAATACGC ACATTTCAAA TTAAACAACA ATGATGGCAC ACGCATTTCAAC CCACCAAATCGA CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAGCG CCACCAAAAGCG CCACCAATAT CAACCACAAACCA AATGATGAATA AACCACATTAA TAAGTTTGTT	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAATTGGT AATTTTAGAA AGAGACATC CGGCTTTAT CTCAATTGGT CTGATTGAA GCTTCTTTT CTTTTTGCTTA TCCGAATACA ATTAGAATACA ATTAGAATA GAAACCTATT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG ATAATGTAGG CTAAAAATTA ACAGGTGTAA ACAGGTGTAA ACAGGTGTAA ATCAAGATCA GGATTTAAAT TCTCGAATCA ATCAAGAAGG TCAATAGATGTC TCATTAAAG TCAAATGTC TCAAATGTC TCACAATGTC ATCAATGTC TCACATTAA ATCAAATGTC TCACATTAA ATCAACTGTC TTGAGGGGAA AATAGCTTAA TGGCCTTAA GCTCCTATAA TTGGCAACAG GTAATAAGTG	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA ATTTACATCGAA ATTTACATCGA ATTACTTGG TTATCCTTAG AATCAAATAG AACTTGATTA TTAAACAAGG GTCAAAAACT TTCTAGTAGA TATGGATTA TATGGGAATTA AAGTTACAAA TCATATTTTA AAGTTACAAA TCATATTTTA TATGGGTGTA CAACTATGAA GTGTAAACAC AAAATAGCAA	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAA AGAAGGTGAC ATCTGATAAA AGAAGGTGAC TGTACATCAA TGAAAAAGAA TCAAATTACA TCAAAATTACA TCAAAATTACA TGAAAAGAA AATGAAAATTA TATGGAAGTT ACTCACACAA TGAATACATTA TGAATACATTA TGAATACAATTACA TGAATACATTA TGAATAGTTA TACAACGGAA AAAATTAAAA
4550556065	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621 1681	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAT TTAATCAGGT AAATAAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT AAAGCAAGTT TATTTAGAAG GATAAATTTAGTAG GATAAATTTACTAGATATACAGTAGACAAG ATTGATATAC GATTTTTACT GAACGTGCGA ATTACAATGA CGTATGGTGCG TACTTTCTAA AAGCGACGTT AACAGTGCAC AAAACAGGTT TACGTAAAAA AACCAGTTC GAAAAAAAACAGGTT TACGTAAAAA AAACCAGTTC GCTTATTATA	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTT AAAGGGGATA CAAATTTAAA TAGCATTGAG AAGCAGAAGT TAGAGCGTAA TCACAGTAGA CAACAAATTA TCAATACGCC ACATTTCAAA TCAATACGCC ACATTTCAAA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATGGCAC CACCAATTCAA ATGATGGCAC CACCAATTTAAACAACA ATGATGGCAC CACCAAATTA CACCACTTAT CACCACTTAT AACAATCTAA TAAGTTTGTT ATGCCGAAAA	GTCGAACAGG TGTGAAAATG CTGTAGCACC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATTTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATTGGG AATGTTAGCA TAAACAACAA AAATGTGACT CTCAATTGGT AACTCAAAT CTCAATTGGT AACTCAATT CTCAATTGGT AACTCAATT CTCAATTGGT ACCACATACA CGGCACTTAT CTGCTTTTT CTTTTGCTTA TCCGAATACA TTATAATAGAATA GAAACCTATT TATTGAATAT TATTGAATAT TATTGAATAT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG ATAATGTAG ATAACATGA ACAGGTGTAA ACAGGTGTAA ACAGGTGTAA ACAGGTGTAA ACAGGTGTAA ACAGGTGTAA ATCAAATCA ATCAAACATCA ATCAAGAAAG TCAATTAAAA TCAAATGTC ATCGATTTAA ATGATGTC ATCGATTAA ATGATGTC ATCGATTAA ATAACATGTC ATCGATTAA ATAACATGTC ATCGATTAA ATAACATGTC ATCGATTAA ATAGTGCTTGT TTGAGGGGAA AATAGCTTAA GCTCCTATAA TTTAGCAACAG GTAATAAGTG AAAAATGTGA	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAAATAG AATCAAATAG AATCAAATAG ATCAAATAG ATCAAAACA TTCAACAAGG GTCAAAAACT TTCTAGTAGA TATGGAAATA AAGTTACAAA TCATATTTTA TATGGGTGTA CAACTATGAA CAGGTTATAT	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAA AGAAGGTGAC TGTGCAGTAT TGTACATTAAA TGAATTAAA TCAAATTAAA TCAAATTACA TCAAATTACA TGAAAAATAA TATGGAAGTT ACTCACCAA TGAATTACAA TGAATAGTTA TGAATTAAA TATGAAAAAT TACAACGAA AAATTAAAA CAGTTTCATT
4550556065	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741 1801	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAAT TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT TTAATTAGAAG ATTGAAAAAT TATTTAGAAG ATTGATAATTA AGTAGACAAG ATTGATTAT GAACGTGCGA ATTACATGA CGTATGGGTG TACTTTCTAA AAGCGACGTA AACCAGTTC TACTTCTAA AAGCGACGTA ACAGTCGCAC AAAACAGGTT TACGTAATAA AAACCAGTTC CGCTTATTAA AATGCAAAAA AAACCAGTTC CGCTTATTAT CAACCAAGTA	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TCACAGTAGG AAGACGAGA TCACAGAATTA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATCGACC ACTCACCACCACCACCACCACCACCACCACCACCACCACC	GTCGAACAGG TGTGAAAATG CTGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCCTCAAT TAGATGGGG AATGTTAGCA TAAACAACAA AAATGTGACT GCAACAGCAT AAACTCAAAT CTCAAATTGTA AATGTTAGA AGAAGACATC CGGCTTGTAT AACACATACA CGGCACTAAG CTATGTTGAA GCTTCTTTT CTTTTGCTTA TCCGAATACA TTATAATAGA ATTAGAATA TCTCAATTTTT TCTTTTGCTTA TCCGAATACA TTATGAATAT GAAACCTATT TATTGGAATAT GAAACCTATAT	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATGA ATAATGTAGG CTAAAAATTA ACAGGTGTAA ACTGAATCA ACTGAATCA GGATTTAAAT TCCGAATCA ATCAAGAAG TCATAAAAG TCATAAAAG TCATAAAAG TCATTAAAA ATCAACTGTC ATCGATTTA ATTAATAAA TCGAGTTTAA ATTAATAAAA TTGAGGGGAA AATAGCTTAA GCTCCTATAA TTGGAGCATA TTGGAGCATA TTGGAGCATA TTGGAGCATA TTAGCAACAG GTAATAAGTG AAAAATGTGA AAAAATGTGA GATGGTAATT	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATATGAAGA AATATGAAGA AATATGAAGA TTCAAATGAAGA TTCAAATGAAGA TTCTAGTAGA TTCTAGTAGA TTCTAGTAGA TATGGGAATA AAGTTACAAA TCATATTTA TATGGGTGTA CAACTATGAA GTGTAAACAC CAGGTTATAT CAGATAGA CAGGTTATAT CAGATAGA CAGGTTATAT CTGTTAATAA	CTTGATTTGT ACTTCATCTC TTGATTTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTGCAGTAT TGTACATTAAA TAGATTAAA TAGATTAAA TAGATTACA TGAAAAAGAA TATGAAATTACA TGAATAAA TATGAAGTTA TGAATAAAT TACAACGGAA AAAATTAAAA CAGTTTCATT TATTGCTTTA
4550556065	S. aureus 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741 1801	TTGATTAAAA CTCAACATTT AATATGTGTG CTAATCTTTA AAAAAATTCT GTTGAAAATG TTAATCAGGT AAATAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT TTAATAACAG GTTTAATTTG ATTGAAAAAT TAATCAGGT AAACCAAGTT TATTTAGAAG GATAAATTTA AGAGGACGAA ATTGATATA GGATGATATA AGATGGTGCGA ATTACATGA CGTATGGTG TACTTTCTAA AAGCGAGTA AAGCGAGTA AAACCAGTT TACGTAATAA ATTGCAAAAA ATTGCAAAAA AAACCAGTTC GCTTATTTAA ATTGCAAAAA AAACCAGTTC GCTTATTATA ATTGCAAAAA AAACCAGTTA CACCAAGTA ATTGCCAAAG	TAATCTAATT CTAACACCAA CCTAAATGAC TATACATAAC AATCTGTATT CCGTAATGAC ACTACGACAA GGTATAAAGT TTAGCATTTT AAAGGGGATA CAAATTTAAA TAGCATTGGG AAGCAGAAGT TCACAGTAGG AAGACGAGA TCACAGAATTA TCAATACGCC ACATTTCAAA TTAAACAACA ATGATCGACC ACTCACCACCACCACCACCACCACCACCACCACCACCACC	GTCGAACAGG TGTGAAAATG CTGTAGCAC ATAATACTTA TATTGTCGAC GCGTTTTAGT TATGATGTCT GTGATTTGTA ATTAATTACC GCGCTCAAT TAGATTGGGA AAATGTTAGCA TAAACAACAA AAATGTGACT AAACTCAATTGGT AATTTTTAGAA AGAAGACAT CCGCTTGTAT AACACATACA CGGCACTAAG CTAATTGTA CGGCACTAAG CTATGTTAT ACACATACA CTCATTGTAT CTTTTTGCTTA TCCGAATACA TTATAATAGA ATTAGGAATA CAAACCTATT TTTTGATAT GAATATCATA GAATATCATA TATTCATACG	AACTTTTCCG ATCTATGTGA TGTTAACATA TTTGATGGTT GTGTATAGTA TGATGTGTAT GTTTTGTGTC TAAAAAGAG TTAACAATTA ACAGGTGTAA ACAGGTGTAA ACAGGTGTAA ACTGAATCA GGATTTAAAT TCCGAATCA ATCAGAATGA ATCAAGAAAG TCATAAAAG TCATAAAAG TCATAAAAG TCATAAAAG TCATAAAAA TTAATAAAA TAGTGCTTGT TTGAGGGGAA AATAGCTTAA ATTAGCAACAG GTAATAACG GTAATAAGT GTGAATAGT ATTGGAACAG GTAATAGTG GAAAAATGTGA GATGGTAATT GGTGTTACAT GGTGTACAT GGTGTACAT GGTGTACAT GGTGTACAT GGTGTACAT	TTTGCAATGG ATATTCATTC TTCAAAACAT AATACGTAAA CACTAATATC TGAAAGTTTT TCTCGACGGA TTCAAGTTTA TAGATTGTTC TGAAATTTAA TTACATCGAA AGTTAAACA AGTTAAACA ATACTGATGA CTTTACTTGG TTATCCTTAG AATCAATAG AACTTGATTA TTAAACAAGG GTCAAAAACT TTCTAGTAGA TATGGAATT TTGGAAATA AAGTTACAAA TATGGAATA TATGGAATA TATGGAATA TATGGAATA TATGGAATA TATGGAATA TATGGGTGTA CAACTATGAA GTGAAACAC AAAATAGCAA CAGGTTAATA CTGTTAATAA GTAATCTTAA	CTTGATTTGT ACTTCATCTC TTGATTTAT TATTATTAT ATTGAAAATT ACAGTTTTTA TAAGAATTGA GTTAAATGAG ATATTACGTA AGCGATAGCA TGTACAATCA CTATTATAAT GGGTAAACAC ATCTGATAAA AGAAGGTGAC TGTACATTAAAT TGAATTACA TGAAATTACA TGAAATTACA TGAAATTACA TGAAATTACA TGAAATTACA TGAAATTACA TAGAATTACA TAGATTAAAT AATGAAAATTA TACAACGGAA AAATTAAAAT TACAACGGAA AAAATTAAAA CAGTTTCATT TATTGCTTTA TATTGCTTTA TATTATTTTAC

	1981	AACGATAAAG	CTGTCGACCT	AATAGCAGAA	GCAAGAGTTA	TTAAAGAAGA	TCATACTGGT
	2041			CCCATTTAAA			
	2101	ATTGATTTTA	AATTAAGAAA	ATACCTTATT	GATAATTATG	GTCTTTACGG	TGAAATGAGT
_	2161			AAAGAAATAC			
5	2221	AAGTTACAAG	AAGACCGTAT	GTCCGATGTT	ATCAATGTCA	CAGATATTGA	TAGAATTGAA
	2281			ACACATATAC			
	2341			AACGTTGCTT			
	2401			TATTAATCTC			
10	2461			TGTTAAAAGG			
10	2521			CAAATTACGT			
	2581			AGAACAATTG			
	2641			ACGACGCAAT			
	2701 2761			CTTAAAGCAG			
15	2821			CAAGCAGCTA GAGGAAAAA			
10	2881			AAAACGCTTA			
	2941			GAATCCACAA			
	3001			ATGCAATCTA			
	3061			ATGACTCCTA			
20	3121			AAGCAGTTTG			
	3181			AATAGGTTCA			
	3241			CCTTACGATA			
	3301	ATAAATATCA	ATTGAAAAAA	TATTCTGTCG	GTGGCATCAC	GAAGACTAAT	AGTAAAAAAG
~ ~	3361	TTAATCACAA	AGTAGAATTA	AGCATTACTA	AAAAAGATAA	TCAAGGTATG	ATTTCACGCG
25	3421	ATGTTTCAGA	ATACATGATT	ACTAAGGAAG	AGATTTCCTT	GAAAGAGCTT	GATTTTAAAT
	3481	TGAGAAAACA	ACTTATTGAA	AAACATAATC	TTTACGGTAA	CATGGGTTCA	GGAACAATCG
	3541	TTATTAAAAT	GAAAAACGGT	GGGAAATATA	CGTTTGAATT	ACACAAAAAA	CTGCAAGAGC
	3601			GATGGCACTA			
20	3661			AGAAGCTGTC			
30	3721			CTTTTATTAT			
	3781			TCTATGTCTT			
	3841 3901			TTTTTTTTTT			
	3961			AAACAAGGTT GAATGTAATC			
35	4021			GATTGCTAAA			
55	4081			GCAAGCAGCA			
	4141			GCCCTCAACT			
	4201			TAAAGTAGAA			
	4261			AACACCTCCA			
40	4321			ATCGCCAACC			
	4381			GTATTATACG			
	4441			GACGACAATA			
	4501	ATATATAAAA	TTGCTTTAGT	TGGTAAAGAT	GATAAAAAAT	ATGGTGAAGG	AGTACATAGG
4.5	4561			TTTAGAAGAA			
45	4621			TAGTAAAAA			
	4681			AATCTCTCAT			
	4741			TGATTTTAAA			
	4801			AGGTAAAATT			
50	4861 4921			ATTACAAGAA			
50	4921			GAATATAAAA AAGTGACAAC			
	5041			CGAATTTTCG			
	5101			ATCTATCGGG			
	5161			AATTTACTTA			
55	5221			GCTAACTATA			
	5281			AATGGAGCAT			
	5341	GCAAGTTTAG	CATTAGGTAT	TTTAGCAACA	GGAACAATAA	CGTCATTGCA	TCAAACTGTA
	5401	AATGCGAGTG	AACATAAAGC	AAAATATGAA	AATGTGACAA	AAGATATCTT	TGACTTAAGA
	5461	GATTACTATA	GTGGCGCAAG	TAAGGAACTT	AAAAATGTTA	CTGGTTATCG	TTATAGCAAA
60	5521	GGTGGCAAGC	ATTACCTTAT	CTTTGATAAA	AATAGAAAAT	TCACAAGAGT	ACAGATATTT
	5581			TAAAGCACGT			
	5641			TGGCACAGTG			
	5701			TATAAACGCA			
65	5761			TAGAGTACAC			
65	5821			ACAGTATTTA			
	5881			AGTGATAATG			
	5941			TCGCATGAGT			
	6001 6061			ATTCAATGAA			
70	6121			GTTGCTTAGC AAACACCAAT			
70	6181			GACATGAAAC			
	6241			CTGCGTTAAG			
	6301			GGTTCAAAAA			

	6361	TATTACGCTT	ATATAATGAT	AGTAGATTGT	TCGTATTACG	TAATTGAAAT	AATCATATAA
	6421	מיחית מיחית מיחית מי	ACACAAAATT	TATAAATAGA	TTGGGAGAAT	AGTACTATGA	AATTAAAAAC
	6481	CTTACCTAAA	CCAACATTAG	TATTGGGATT	GTTAGCTACT	GGTGTAATAA	CAACAGAAAG
		GIIMGCIAMI	AAAGCGGCAG	AATCAACTCA	AGGTCAACAC	AATTATAAAT	CGTTAAAATA
5	6541 6601	CENCENTRACE	AAGCCAAGTA	TAGAGTTAAA	AAATCTTGAT	GGTTTGTATA	GACAGAAAGT
9		CIMCIMINGO	CCACTATATG	TTTGGAAGGA	TCGAAAAGAT	TATTTTGTTG	GCTTGCTTGG
	6661	GACAGATAAA	CNNNNNTACC	CTCAAGGTGA	GCATGATAAG		
	6721	TAAAGATATT	ACTICTONATO	GAAGACAATA	TTCAATTGGT	GGTTTAAGTA	AGACAAATAG
	6781	CGAGGAGGAA	ACTUITATE	TCGATGTTAA	AGTAACAAGA	AAAATTGATG	AATCATCGGA
10	6841	TAAAGAATTT	AGIMAMGAMG	TTAAAATTAC	TANACANCAN	ATCTCGTTAA	AAGAGTTGGA
10	6901	AAAGTCTAAA	GWIWGIWGT	TGATGGAAGA	ACAAAAATTA	TATEGTECTE	TTAATAATAG
	6961	CTTTAAATTA	VARANCE IN	AAATGGAAGA	TCATAACTTT	TATACTTTCG	AACTTACAAA
	7021	AAAAGGIAAA	CCCCATCCCA	TGGGTGACAC	CATAGATGGT	ACCAAAATCA	AAGAAATTAA
	7081	AAAACTACAA	CCGCAICGCA	AATCTTTGGA	CAAGCAGACT	ACTAATTCTA	GGGAAGTTAA
15	7141	TGTTGAGCTA	GWWIWIWWI	TTCTTTTTTA	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ATGAAAAAAG	GAGCGGGTTT
13	7201	GCGATAACAT	MEMBERCENNNN	ACGGTTGATA	CTTATACTCC	CCCCTTCTCC	TTTTCGTGAC
	7261	ATGATCAAGT	TITIGGMAAA	TAATTAAATT	CACCGAAAGT	GTGAATAGTT	AAAAAATTAG
	7321	ATGAAACAAI	GIGGWWWWCW	TTAATACTGT	TAGCATTTCA		
	7381	TATTGTGTTA	THAMAMATAA	GTTAATTCAT	ACCCCACTAT	CTCACTTATA	TAATGATAGT
20	7441	TCAAAAATAG	TIMAMAMONG	TTGAATTAAT	CATATAAAAA	TATATTAAGA	CAAATTTATA
20	7501	AGATTGTTCG	TATIACGIAA	CTGTGAAATT	CHICITATA	CCTABACCAA	CATTCCCATT
	7561	AATAGATTGG	GAGAATAGTA	TGATTACATC	AMAMAGGIIA	CCACTTCAAC	CANADGANAN
	7621	AGGCTTATTA	ACTACTGGTG	TATATGATAT	MANAGECCAA MANACACTURA	CATCCATACT	ACTCATCAGA
	7681	GCAAGAGAGA	GTACAACATT	TTAGTGGTAA	TAMAGACIIA	TATABLE	CTANCETTET
25	7741	AAGTTTTGAA	TTCAGTAATA	AAAATCACCA	OGIIGAAAAI	THIMMCOGII	VADVOUTOT
25	7801	ACGCTTTAAC	CAAGAAAATC	GCAAAGATGT	ATTATICTIA	1 IAGGIAAAG	TIARROAGAA
	7861	ATATAAAGAA	GGCATTGAAG	GTGGTGTGAC	CILICIGGIA	AMMOMATIMA	CTCDDDCTDD
	7921	CGGTAGATTA	TCTACTGTTG	AAGTGTATGG	CCCAAAMMAA	CARCCARCAA	TOTAL
	7981	TACACATTTA	TTTGTTAATA	AAGTGTATGG	CGGHAHIIIA	CHICCHICAA	CACAACAUTT
20	8041	TTCAATTAAT	AAAGAAGAAG	TTTCACTGAA	AGAACTIGAT	TICAAAATIA	CHARCATTI
30	8101	AGTTAAAAAT	TATGGTTTAT	ATAAAGGTAC AAATTGATTT	DACTAMATAC	GGIAAGAICA	ACCCCAMCGC
	8161	GAAAGATGGA	GAAAAGCAAG	AAATTGATTT	AGGTGATAAA	ACTUTOR	AGCGCAIGGG
	8221	TGATGTGTTG	AATAGTAAGG	ATATTAATAA	GATIGAAGIG	MULTIGHAM	VWWTTTTWWG
	8281	TAAGTAATCA	ATGACTCTAA	AGTAATAAAT	TIGAAGCAGC	CCTTCTTCTTC	ACCOMMUNIT
25	8341		ACCTTACATT	AAGGAGCGTA TATGAGTGAG	TTTAAAACAA	CCTIGICGIT	CUCUUCAAAC
35	8401	TTACGTTTTA	TAACGCAGGT	TATGAGTGAG	CATACTAAAA	ATTTACATTG	CICIIGAAAG
	8461	TGATGCCCAT	TGAATATTAA	TTAGCTCTTC	ATTAACAATG	ATTTAAGTTT	CANAMORCOM
	8521	GTGTTAATGT	CAGTCTGTCT	CAATGCCCTT	TATAATAAAG	GTGTATTATT	CAMATIACGI
	8581	AATAAAAGCA	ATCCAATATA	TTAAGATTGG	AGCACATGAA	TATGAAATIT	CANANTCANT
40	8641	CTAAAGCGAT	ATTTATATTA	GGAATATTAA	CAACAAGTGT	AATGATAACA	DAGAAATCAAT
40	8701	CGGTTAATGC	AAAAGGAAAG	TATGAAAAA	TGAACCGTTT	MARTGATACA	AUCHUG1 IVC
	8761	ATCAATACTA	TTCAGGACCT	AGTTATGAGT	TAACAAATGT	TAGTGGCCAA	CMCMMMMMM
	8821	ATTATGACTC	TAACGTTTTG	CTTTTTAACC	AACAAAATCA	MAAGTTCCAA	GIGITITIAL
	8881		TGAAAATAAA	TACAAAGAAA	AAACACATGG	TITAGATGIC	TITGCGGIAC
1 -	8941	CAGAATTAGT	AGATTTAGAT	GGAAGAATAT	TTAGTGTTAG	TGGTGTAACA	AAGAAAAACG
45	9001		ATTTGAGTCT	CTAAGAACGC	CGAACTTACT	AGTTAAAAAA	MCAMMCAAC
	9061	AAGACGGTTT	TTCTATTGAT	GAATTTTTCT	TTATTCAAAA	GGMAGAAGIG	CALLGAAGG
	9121	AACTTGATTT	TAAAATAAGA	AAACTGTTGA	TTAAAAAATA	CAAACIGIAI	DAAGGGICAG
	9181	CTGATAAAGG	TAGAATTGTT	ATTAATATGA	AAGATGAAAA	TAAGTATGAA	ATTGATTIAA
~ 0	9241	GTGATAAATT	AGATTTCGAG	CGTATGGCAG	ATGTCATTAA	TAGTGAACAA	ATTAAAAACA
50	9301		TTTGAAATAA	TCAATGATAT	ATATAGAATG	AAAGCTTAAG	MAGCGGTTTA
	9361	ATAATCCCAT	GTTTAATGAT	TTTGATACGT	GTTTTTATAA	TAAAAACATA	TUGAACATIG
	9421	ACTACGTTAT	TAAGCTGCTT	TTTTGTACAC	TTTATAACCA	ATAGCTTAAG	ATTIAAAACI
	9481	AATCGGAAAG	AACAATGATT	CACCAAAAA	ATATTTATGT	TGCIAIIAAA	MMDAAMCACC
	9541	TACGAATGTT	AAAATACGTT	TGATTTTCAT	TAATAATGAT	TCAAGTTTAT	TTAAATGAGC
5 <i>5</i>	9601	GTTAATGTCA	. GTCTGTTTTG	ATGCACCTTA	TAATAAAGAC	AGATAGTTCA	AATTACGTAA
	9661	TAATAACAAT	CCAATACATT	AAGATTGGAG	CAAAAAAATA	TGAAATTAAC	AACGATAGCT
	9721	AAAGCAACAT	TAGCATTAGG	AATATTAACT	ACAGGTGTGT	TTACAGCAGA	AAGTCAAACT
	9781	GGTCACGCGA	AAGTAGAACT	TGATGAGACA	CAACGCAAAT	ATTATATCAA	TATGCTACAT
C O	9841	CAATACTATT	' CTGAAGAAAG	TTTTGAACCA	ACAAACATTA	GTGTTAAAAG	TGAAGATTAC
60	9901	TATGGCTCTA	. ACGTTTTAAA	CTTTAAACAA	CGAAATAAAG	CTTTTAAAGT	ATTTTTACTT
	9961	GGTGACGATA	AAAATAAATA	TAAAGAAAA	ACACATGGCC	TTGATGTCTT	TGCAGTACCT
	10021	GAATTAATAG	; ATATAAAAGG	TGGCATATAT	AGCGTTGGCG	GTATAACAAA	GAAAAATGTG
	10081	AGATCAGTGT	TTGGATTTGT	AAGTAATCCA	AGTCTACAAG	TTAAAAAAGT	TGATGCTAAA
~-	10141	AATGGCTTTT	CGATAAACGA	GTTGTTTTT	ATTCAAAAGG	AAGAAGTATC	ATTGAAGGAA
65	10201	CTGGACTTTA	AAATAAGAAA	ACTCTTAATC	GAAAAATATA	GATTGTATAA	AGGAACGTCT
	10261	GATAAAGGTA	GAATTGTTAT	CAATATGAAA	GACGAAAAGA	AGCATGAAAT	TGATTTAAGT
	10321	Gaaaaattaa	GTTTTGAACG	TATGTTTGAT	GTAATGGATA	GTAAGCAAAT	TAAAAATATT
	10381	GAAGTGAATI	TGAATTAGTI	CGAGTTAATA	GCATAATAGC	TTAAGAAGCG	GCTTAACGAC
~ ^	10441	AAAATGTGAA	TTGGCATTTG	: TGTCCTTATA	TAAGGAACTG	TGTTAAATAC	ATTACTGTTG
70	10501	TTAAGTTGTT	TTTGTAATTC	AAAGAGCAGA	ACAGAGTAAC	ATCATCAGTT	GTAGTAAACG
	10561	ATAATCCGGI	AAAACAACTA	AATGAAATAA	TGAAAGTCAT	TTAACCTGAA	CATTAAAATA
	10621			TAATTCAAGT			
	10681	AACGATGCAC	GTTATAATAA	AAATGTATGA	TTCAAATTAC	GTAATGAAAA	CAATCCAATA

	10741						ACATTAGCTT
	10801						GCAAAACAAA
	10861 10921						ACTGGAAAGA CGTTTTAAGT
5	10981						TTTCAACAGC
	11041						CACGATATAT
	11101						AGTGCACCAA
	11161	TATTAAATAT	TTCAAAAGAA	AAGGGTGAAG	ATGCTTTTGT	GAAAGGTTAC	CCTTATTACA
10	11221 11281	TTAAAAAAAGA	AAAAATAACA	CTAAAAGAAC ACAAMCMCAA	TGGATTATAA	GTTGAGAAAG	CATCTAATTG AGCTTGAAAG
10	11341						ATGGGGGAAG
	11401	TCATAGAAAG	CAAACAAATT	AAAGATATTG	AAGTTAACTT	AAAGTAAATC	ATTACGAATA
	11461						AGCTTATACA
15	11521 11581						CATGAATCCT
13	11641						CACATCGCAA TTCAAAGGCG
	11701						TACATAAAAA
	11761	ATTATGGTCG	ATTGCGAATG	ATTTAAGAGG	GAATATGGAT	GCGAGTGAAT	TCCGTAATTA
20	11821						AATATGCAGA
20	11881 11941						AATACCGTGA
	12001			TTGACCAAGT TTGAAACGCA			
	12061			CAACATTAGG			
0.5	12121			GTTCAACGCG			
25	12181			TTAATCTTGA			
	12241 12301			CATATGAATT ATACACCACA			
	12361			TACGTCACGT			
	12421			AAACACAAGT			
30	12481	TACTACATAC	AACTTAGCAC	GCATGAATAT	GTTATTACAT	GATGTGCGTT	ATGAGAACTT
	12541			CATTGGAAAA			
	12601 12661			ATAGTGCGAA GCAAACTTGC			
	12721			TAGACGATGA			
35	12781			CAGAAGGTGT			
	12841			GTTTGCCAGC			
	12901			AATGTCGCCA			
	12961 13021			GAAAAAATCA GTAAGGAAAC			
40	13081			ATTACAACCT			
	13141			TAGATCAAGT			
	13201			AAATCAATGC			
	13261 13321			AATGTGCCAG GATCTTACAG			
45	13381			ATATCCGGAC			
	13441			AAAAATCTAG			
	13501			TCTAATGGAT			
	13561 13621			TCCTCTTTGT			
50	13621			TATTTTGATT			
	13741			AGTTTAGAAG			
		AACTCGACCG					
		AAGGCTATAT					
55		ATTATCCAGA CTGACAAAGG					
-		TGGATAGAAA					
	14101	ATATTGCATA	TAATTCTATG	AGAATGTGGC	AAGGGGCTAG	TGGTAAATCA	AATTATAATG
		GGATTGTTAG					
60	14221 14281	TTGGATATAA TAACATCAGA					
00		CTGTATTGGA					
	14401	GTAAACAGAA					
	14461	TGTTCTTATA	ACTTTGATAA	ATACATAGAT	TGCATAAGAA	TAAAATTTGT	ATAATTTAAC
65	14521	ATAAAAGTTG					
05	14581	CGCAGTGTCT TGAGATAAAG					
	14701	GTTAACTATT					
	14761	GAAGCACGAC	CATTGCTCAT	TATAATGAAT	GAGGATTGTT	CGTATTGCGT	AATAGAATAA
70	14821	ATCAAATAGA	CTAAAAATTG	GGAGCATAGA	ATTATGAAAT	TAAAAAATAT	TGCTAAAGCA
70		AGTTTAGCAC					
		GCAAGTACAT CCGTTCTTTG					
		CCTAATTATC					
					_		-

	15121	GATATTTCTA	ATGTAGATAT	ATTTGTTGTA	AGAGAAAATT	CTGATAGATC	TGGTAATACA
5	15181	GCTTCAATTG	GTGGTATTAC	TAAAACAAAC	GGTTCAAATT	ATATTGATAA	AGTAAAAGAT
	15241	GTAAATTTAA	TAATTACTAA	AAACATCGAT	AGTGTTACAT	CAACGTCAAC	ATCATCTACA
	15301	TATACAATTA	ATAAAGAAGA	AATTTCATTA	AAAGAACTTG	TTAAATT	AAGAAAGCAT
	15361	TTAATTGATA	AACATAACCT	TTATAAGACA	GAACCTAAAG	ACAGTAAAAT	TCGAATTACT
	15421	ATGAAAGATG	GTGGGTTCTA	CACATTTGAA	TTGAATAAAA	AGTTACAAAC	ACACCGTATG
	15481	GGTGATGTTA	TTGATGGCAG	AAATATAGAA	AAAATTGAAG	TGAATTTATA	AAATTATTCG
	15541	AGGGAGCATA	TCATGAGGGA	AAATTTTAAG	TTACGTAAAA	TGAAAGTCGG	TTTAGTATCT
	15601	GTTGCAATTA	CAATGTTATA	TATTATGACA	AACGGACAAG	CAGAAGCATC	TGAAAATCAA
10	15661	AACGCTTTAA	TCTCTAATAT	AAATGTAGAC	AATCAG		
	CEO ID No. 105						

SEQ ID No. 105

15

S. aureus strain EMRSA 16(252) (SSL1-SSL11) -coding strand

	1	THE TANKE COM	ጥር አጥጥጥር ጥ አ አ	TATETETEC	TAAATGACCT	GTAGCACCTG	ΤΤΑΑΓΑΤΑΑΤ
	61	ATTCATTCAC	TTCATCTCCT		TACATAACAT		
	121	CAAAACATTT			TCTGTATTTA		GTATAGTAAA
20	181	TACGCATATG	TTATTAATGT	TAAAAATACC		GTTTTAGTTG	ATGCGTGTCA
20					TGCGACGATA		TTTGTGTCTG
	241	CCATGATCTT	TGAAAATTTT				
	301	AAAGTTTTAC		ATTAAAATGG			
	361		AGAATTGATT	ATTAACAGTT		TAATTACCTT	AACAATGATT
25	421	CAAGTTTAGT	TAAATGAGGT		AGGGAATAGC		AATGTAGGTA
25	481		ATTACGTAAT		AATTTAAATA		
	541				GCATTGGGAA		
	601	ACGTCGAATA			ACAGAAGTTA		
	661				GAATATAAAA		
20	721		AAGATAGATT		ATATACAATG		
30	781	TTAGTTGGTT	CTGATAAAGA	TAATATAAT	GAAGAAGTTA	ACCCAGATAT	AGATGTGTTT
	841		AAGGAAACGG			CGATTGGTGG	
	901	ACTAATAGAG	GAGTGTATTA	CGACTATATA	CACTCTCCAA	TCCTTGAAAT	TAAGAAAGGT
	961	AATGAAGAAC	CACAAAATAG	TCTGTATCAA	ATTTATAAAG	AAAATATCTC	ATTAAAAGAA
	1021	CTTGATTATA	GATTACGAGA	ACGTGCAATC	AAACAACACG	GATTGTATTC	AAATGGTCTT
35	1081	AAACAAGGTC	AAATTACAAT	TACTATGAAA	GATGGCAAAT	CACATACTAT	CGATTTAAGT
	1141	CAAAAACTTG	AAAAAGAACG	TATGGGTGAT	TCTATCGACG	GCAGACAAAT	ACAAAAAATT
	1201	CTAGTAGAAA	TGAAATAATA	CTTTCTAACG	ACAAAGCGCT	ATGTTGAATC	GTGCTTGTTA
	1261	TGGAAATATA	TGGAAGTTAA	GCGACGTACT	GTTGCTTAGC	TTCTTTTTTG	AGGGCAAAGT
	1321	TACAAAACTC	ACACAAACAG	TCGCAGCACG	CATTATCTTT	TACTTAACTA	GCTTAATCAT
40	1381	ATTTTATGAA	TAGTTAAAAA	AGGGTTAATG	TGAATATCAG	CATACAGCTC	CTATAATATG
	1441	GTTGTATGAT	TCAATTTACG	TAATAAAACA	ATCTAATCTA	ATATATTGGA	GCATACAATT
	1501	ATGAAAATGA	AATCAATTGC	AAAAGTAAGT	TTAGTGTTGG	GTATTTTAGC	TACAGGTGTA
	1561				GAAAATAAAC		
	1621	AGTAAAAATT	TAAAAGCGTA	CTATACTCAA	CCTAGTGTTG	AATATAAAA	TGTGACAGGT
45	1681	TATATCAGTA	GTATTCAACC			TGAATATGAT	
	1741				GATAAGGAAC		
	1801		ATATATTTTA			TTGAAGGTGC	
	1861				GTTGTCGACC		
	1921			TGAATATGAT		TCCCATTTAA	
50	1981				AAAATAAGAA		
	2041				GTTACTGTCC		
	2101				GAAGACCGAA		
	2161				AAAAAAGCAT		
	2221				AGTGATGATA		
55	2281		AAAATCATTT		TAGTAACACC		
00	2341	CATTATTTTT	TGCTTAAATG		ATTTCAACAA		
	2401		AATATGTCCT		GTTGTATGAT		
	2461				TGAAAATAAG		
	2521						
60	2581				GTATAGTAAC		
00	2641				TAGCAAAGAT		
					AACAAAATCA		
	2701				CATCGCTTTC		
	2761				CAGCACCAAG		
65	2821				CACCAAGTGT		
03	2881				CCACAAAACA		
	2941				CGAAATCAAG		
	3001	TGGGTATAAT		TGGACAACAA		GAATATTGTT	
	3061				ATGATAAGAA		
70	3121	GGCATGTCGA			ATAAATA		
70	3181				AAGTTGATTA		
	3241	CTAAAGAAGA			ATGATGTTTC		
	3301				AATTGAGAAA		
	3361	ATTTGTACGG	TAATATTGGT	TCAGGAACAA	TCGTTATTAA	AATGAAAAAT	GGTGGAAAGT

	3421	Δ CΔCGΨΨΨGΔ	ATTACACAAA	AAATTGCAAC	AACATCGCAT	GGCAGATGTT	ΔΨΨΕΔΨΕΘΨΔ
	3481			GTGAATCTAA			
	3541			TTAAGCGACA			
	3601			GGAAATTATT			
5	3661			CAATGTGCAA			
_	3721			TTAACGATGA			
	3781			ATAATGTAGT			
	3841			TACAACTATG			
	3901			AGGTGCAAGT			
10	3961			AGAACAGGCA			
- 0	4021			ACCGCAATCG			
	4081			GCAATCGCCA			
	4141			ACAACCGCAA			
	4201			TTTAAGAACA			
15	4261			GAAACCATGG			
	4321			AGCTTTAGTT			
	4381			ATTTATCGTT			
	4441			GAAGACAAAT			
	4501			GAAAGGCAAA			
20	4561			GAAAGAGCTT			
	4621	CAACATAATT	TGTACGGTAA	TATTGGTTCA	GGAACAATTG	TTATTAAAAC	GAAAAACGGT
	4681	GGGAAGTACA	CGTTTGAATT	GCATAAAAAA	TTACAAGAAC	ATCGCATGGC	AGATGTCATA
	4741	GATGGCACTA	GTATCGAAAG	AATTGAAGTG	AATCTAAAAT	CATCGTGATG	GATACTGCAT
	4801	AGAACCGTTG	AACGATGTAC	CGAGAAGTTG	AGTGACAAAA	ATTTACATGT	TGCTCAGCTT
25	4861	CTTTCGTGTT	GCACAGTGGT	ATAAGAAGAC	GAATATTTGA	TGTTGACCAC	ACATAACATG
	4921	CTTATGTCCT	AAATGTGTCT	AAAAATACCA	ATCTATCAAG	CGTTGAAGTA	CAACAAAAGT
	4981	CATTTTTATT	TAACGAACAT	TATGGATTCC	TTAATTTAAT	TAACGATGAT	TCAAATATAG
	5041			ATAGAGACAT			
	5101	ATAAACGTAA	TCGAACAAAT	CTAATAATTA	CGATTGGAGC	ATACAACTAT	GAAGATGACA
30	5161	GCAATTGCGA	AAGCCAGTTT	AGCTCTAAGT	ATTTTAGCGA	CTGGGGTTAT	AACATCAACG
	5221	GCTCAAACTG	TAAATGCGAG	CGAACATGAA	TCAAAATATG	AAAATGTGAC	AAAAGATATC
	5281	TTCGACTTGA	GAGATTACTA	TAGTCGCGCA	AGTAAGGAAC	TTAAAAATGT	TACTGGCTAT
	5341	CGTTATAGCA	AAGGTGGCAA	GCACTACCTT	ATCTTTGATA	AAAATAGAAA	GTTCACAAGA
0.5	5401	ATACAAATTT	TTGGTAAAGA	TATAGAAAGG	ATTAAAAAAC	GTAAAAATCC	AGGATTAGAT
35	5461			GGAAAATCGC			
	5521			TTACTATGAT			
	5581			TTCTGTGCAT			
	5641			TTTTAAATTA			
40	5701			TAGCAAGATA			
40	5761			GTTACAAACA			
	5821			CAATATTAGA			
	5881			TAGGCAGCAT			
	5941			CGATGAAAGA			
45	6001 6061			GTGTCGCACT			
77	6121			ATGGTGAAAA TTAGCTTAAC			
	6181			CTTATATAAT			
	6241			TTAAGTCAAA			
	6301			AAAGCAACAT			
50	6361			GTTCAAGCGG			
50	6421			CGATACTACT			
	6481			AATGGTTCTA			
	6541	ATCACCAATT					
	6601	AAAATGTCTT					
55	6661	GTGTAACGAA					
-	6721	TTAATGGTGA					
	6781	CATTAAAAGA					
	6841	AAGGTACATC					
	6901	TTGATTTAGG					
60	6961	TTAGAGGTAT					
	7021	AATAAATTTT					
	7081	GAGCGTATTT					
	7141	GAGTATACTA					
	7201	GTTCATTAAC					
65	7261	ACTTTATAAT					
	7321	TTGGAGCAAT					
	7381	TTAACAACAG					
	7441	GAAACACAAC					
	7501	GAATCAACAA					
70	7561	AACCAACGAA					
	7621	GAACTGACGC					
	7681	ATATATAGCG	TTGGCGGTAT	AACAAAGAAA	AATGTGAGAT	CCGTGTTTGG	CTATGTAAGT
	7741	CATCCGGGAC	TGCAAGTTAA	AAAAGTTGAT	CCTAAAGATG	GCTTTTCGAT	AAAAGAGTTG

	7801	TTCTTTATTC	: AAAAAGAAG	AGTATCATT	AAAGAACTTO	ATTTTAAAA	r cagaaaaatg
	7861						TGTTATCAAT
	7921						TGATCGTATG
_	7981	TTTGATGTGC	TGGATAGTA	GCAGATTAA	AATATTGAAG	TGAATTTGA	A TTAATTAAAG
5	8041						A CACCCGTACC
	8101						G CGTTTCAAAG
	8161						C GACATGTAAA
	8221						TAATAATTCA
10	8281						TAAGCGTATA
10	8341 8401						ATAAATATGA
	8461						GGAACTTTAA AAACATGACA
	8521						AAACATGACA ATTAATGCTT
	8581	TGAGACATGG	TABAGATAAC	THORCIOGAN	ACTITAGGE	CATCAACACT	CAAGTATTAT
15	8641	TGCCTGGAGA	TGAGTACCGT	AAATATCAAC	AGCGAAGACA	TACGGGCTTA	GATGTGTTTT
	8701						GTAACAAAGA
	8761	CCAATAAAAC	ATCCGGCTTI	' GTCAGCACAC	CAAGATTAAA	TGTTACAAAA	GAAAAGGGTG
	8821	AAGATGCTTT	TGTGAAAGGT	TACCCTTATG	ATATTAAAA	AGAAGAAATA	TCATTGAAAG
20	8881	AGTTAGATTT	TAAGTTGAGA	AAGCATCTAA	TTGAAAAATA	CGGTCTTAT	AAAACACTCT
20	8941	CAAAAGATGG	TAGGATTAAA	ATTAGTCTGA	AAGATGGTAG	CTTTTATAAC	CTTGATTTAA
	9001	GAACTAAATT	AAAATTCAAA	CATATGGGGG	AAGTCATAGA	TAGTAAACAA	ATTAAGGATA
	9061	TTGAAGTGAA	TTTAAAGTAA	ATCATTATGA	ATAATAAAA	GTAATTGAAG	CGGCTTAACG
	9121	ATGAAAAGTA	AATTGGTGCG	TATACCTTAC	CAAAAGGATG	CATCAATCGA	TATCGTCGTT
25	9181 9241	AAGCCGTTTT	TGTTTGCGTG	TTATGAATCC	TATCCCAATC	TCCATGAATA	TAAAATTTCC
23	9301	ACCAT CAACA	CANAMONCOM	DECEMBER	ACACCACCAA	ATGTTATAAT	AAATCTATTA
	9361	ADCCTCACCA	ACAACTACTT	TTT CATA A A A	A DEED DOCUMENT	CATGTCTATT	ACTGAAAAAC GATTTAAGAG
	9421	GGAATATGGA	TGCGAGTGAA	TINCATAAAA	. WHITHIGGIC	CTTCATTCCGAAT	TATCGCTTCT
	9481	TATCTGAAAA	AGCGGAACAA	GAATATGCAG	ATCCCTTCCC	ACCTCAACAT	ATTACATATC
30	9541	AAGAAGCATG	GGCAGATGAA	GAATACCGTG	AAGACTTAAA	AGCAGAATTA	ATTGATCAAG
	9601	TTGGTTACTT	CATTGAGCCA	CAAGATTTAT	TCAGTGCGAT	GATTCGTGAA	ATTGAAACGC
	9661	AAGATTTCGA	TATCGAACAT	CTGGCGACGG	CAATTCGTAA	AGTTGAAACT	TCAACACTAG
	9721	GTGAAGAAAG	TGAAAATGAC	TTTATCGGAC	TGTTCAGCGA	TATGGACTTA	AGTTCAACGC
25	9781	GTTTAGGTAA	CAATGTCAAA	GAACGTACTG	CGTTAATTTC	CAAAGTTATG	GTTAACCTTG
35	9841	ATGACTTACC	ATTCGTTCAC	AGTGATATGG	AAATTGATAT	GTTAGGTGAT	GCATACGAAT
	9901	TTCTTATCGG	GCGCTTTGCG	GCGACAGCGG	GTAAAAAAGC	AGGCGAGTTC	TATACACCAC
	9961	MACAAGTATC	TAAGATACTG	GCGAAGATTG	TCACAGACGG	TAAAGATAAA	TTACGTCATG
	10021 10081	TATATGACCC	AACATGTGGT	TCAGGTTCAT	TACTGTTACG	CGTTGGTAAA	GAGGCAAAAG
40	10141	TGTATCGTTACA	TTTTGGACAA	TANCA A A A TOTAL	ATACCACATA	CAACTTAGCG	CGCATGAACA ACGTTGGAAA
.0	10201	ATCCAGCCTT	TUTTACCACAT	TAIGHAMAII	CCCTTATCCC	TAATGATGAT	TATAGCGCGA
	10261	AATGGACAGC	AGACTCAAAA	TTTGAAAATG	ACGAACGCTT	CACCGGATAC	GGCAAGCTTG
	10321	CGCCAAAGTC	TAAAGCAGAC	TTTGCCTTTA	TTCAACACAT	GGTACATTAC	CTACATCATC
	10381	AAGGTACCAT	GGCCGTTGTA	CTCCCACATG	GTGTCTTATT	CCGTGGTGCC	GCAGAAGGTA
45	10441	TCATTCGTCG	TTATTTAATT	GAAGAAAAGA	ACTACTTAGA	AGCCGTGATT	GGTTTGCCAG
	10501	CGAACATTTT	CTATGGGACA	AGTATTCCAA	CATGTATCTT	AGTATTTAAA	AAATGTCGCC
	10561	AACAAGACGA	CAACGTATTA	TTTATCGATG	CATCCAATGA	TTTTGAAAAA	GGAAAAAACC
	10621	AAAACCATTT	AAGCGATGCC	CAAGTCGAAC	GAATTATAGA	CACATATAAG	CGTAAGGAAA
50	10681	CAATTGATAA	GTATAGCTAC	AGCGCGACAT	TACAAGAGAT	CGCCGATAAC	GATTACAACT
50	10741 10801	TAAACATACC	GAGATATGTC	GATACATTCG	AAGAAGAAGC	GCCAATTGAT	TTAGATCAAG
	10861	CATACCAGA	ACA A COUNCOC	ATCGACAAAG	AAATCGCAGA	AATTGAACAA	GAAATCAATG
	10921	GAGTTGAGAT	TCCCACCCTT	TCAACCCCAA	TCCCAACACA	ACAAACGAA	AAATGTGCCA
	10981	GAATTTAAAA	ATGGTTTAAA	TAAAGGCGAA	CARTATTTTC	CCTCACCARC	COCCARDON
55	11041	AACTTCAAAG	ATGTATTTAA	TAACAGGAGC	TTAAATACAA	ATAATCTCAC	TCCAAAACTT
	11101	AATGTGAATA	GCAAAGAACT	AAAAAATTAT	TCTGTTGAAA	AGGGTGATGT	ተተተተተተተ ተ
	11161	AGGACTAGTG	AGGTAATTGG	TGAAATAGGT	TATCCGTCTG	TAATTTTAAA	TGACCCTGAA
	11221	AATACTGTGT	TTAGTGGATT	TGTATTAAGA	GGGCGGCCTA	AATCAGGAAT	TGATTTAATA
C O	11281	AATAATAATT	TTAAAAGATA	TGTCTTTTTT	ACTAATTCAT	TTAGAAAAGA	AATGATTACA
60	11341	AAAAGTTCTA	TGACAACTAG	AGCTTTAACA	TCAGGTAGCG	CAATTAATAA	AATGAAGGTC
	11401	ATATACCCTG	TTTCGGCTAA	AGAACAGAGA	AAAATAGGTG	ACTTCTTCAG	CAAACTCGAC
	11461	CGACAAATTG	AATTAGAAGA	ACAAAAGCTT	GAATTACTTC	AACAACAAAA	AAAAGGCTAT
	11521	ATGCAGAAAA	TCTTCTCACA	GGAACTGCGA	TTCAAAGATG	AGAATAGTGA	AGATTATCCA
65	11581 11641	CATTGGGAAA	ATAGCAAAAT	AGAAAAATAT	TTAAAAGAGA	GAAACGAACG	TTCTGACAAA
05	11701	GGTCAAATGC AAAGATAATT	CARCTARC	TATAAATAGT	GGCATTATAA	AATTTAGTGA	ATTGGATAGA
	11761	TATAATTCTA	TCACAATCTC	CCAACCCCCD	TATAAAGTAG	TTAGGAAAAA	TGATATTGCA
	11821	AGCCCTGCAT	ATACTGTGCT	でである。 でであった。 でであった。	CDZDZWZCWZ	CAAATTATAA	TGGGATTGTT
	11881	AAGTTTAAAA	CACATAGAAT	GATTCATAAA	TTTAAAATTA	ATTCALIATT	TWITGGWIWI
70	11941	GATACATGGA	ACTTAAAATA	TAAACAATTA	AAAAATATAA	ATATAGATAT	ACCTGTATTG
	12001	GAGGAACAAG	AAAAGATAGG	TGATTTCTTT	AAAAAAATGG	ΑΨΑΨΑΨΨΩΑΨ	ጥልሮጥልልልሮልሮ
	12061	AAAATAAAA	TTGAAATATT	AGAAAAAGAG	AAACAATCCT	ጥጥጥጥልሮልልልል	ことからしょうしょう
	12121	TAACTTTGAT	AAACACATAG	GTTGCATAAG	TTTAAAATAA	GTGTAATTTA	ACATAAAAGT

	12181	TATAAACATA	aagtaaatta	AAAACGAACA	TTAAATTTAG	GCACTGTGAT	AGCACAGTGT
	12241	CTTTTTTGTG	TCGAAATTGT	GTACAGAATA	AGTAGTTAAA	TAAAGATTAA	GTTGAGATAA
	12301	AGTGTTATTC	GTAAATAAAA	GAGAGTAGAT	CGATAGGAAT	TGAATGATAT	TAGTTAACTA
	12361	TTTATTAAAT	CACTTAATAA	TGATTAATTT	TTAGTTAAAG	TAAGTTTAAT	GTGAAGCACG
5	12421	ACCGTTGCTC	ATTATAATGA	ATGAGGATTG	TTCGTATTGC	GTAATAGAAT	AAATCAAATA
	12481	GACTAAAAAT	TGGGAGCATA	GAATTATGAA	ATTAAAAAAT	ATTGCTAAAG	CAAGTTTAGC
	12541	ACTAGGGATT	TTGACAACAG	GGATGATTAC	AACTACTGCT	CAGCCAGTAA	AAGCAAGTGA
	12601	GCAAAGCAGA	TTATCAGTTA	CTTCAAACGA	CACGCAAGAA	TAAAAAAAT	ACTACAGTGG
1.0	12661	AACAGGATAT	AATTTTCAAA	ATGTGAGTGG	TTATAGAGAA	AAGGATAAAA	TGAACATTAT
10	12721	TGATGGGACA	CAACTTAATG	TAGTTACTTT	ACTTGGTACA	GACAAAGAAA	GATTTAAAGA
	12781	TTATGACTAT	GATTATGAAG	GGTTAGATGT	CTTTGTAGTC	AGAGAAGGAT	CAGGTAAACA
	12841	AGCTGAAAAT	ATTTCAATAG	GTGGAATTAC	CAAGACGAAT	AAAAACGATT	ATAAAGATTT
	12901	CGTAAATAAT	GTAGGTCTAG	AAATAACTAA	ACCAACAGGA	CATAATACAG	CAACAAGACA
1 -	12961	AGCAGAAACT	TATAGAATTA	ATAAAGAAGA	AATTTCATTA	AAAGAATTAG	ATTTCAAATT
15	13021	AAGAAAACAT	TTAATTGAAA	ATCATGAACT	TTATAAGACA	GAGCCTAAAG	ACGGTAAAAT
	13081	TAGAATTACT	ATGAAAGGTG	GCGGCTACTA	TACTTTTGAA	TTAAATAAAA	AATTACAGCC
	13141	TCATCGTATG	GGTGATGTAA	TTGATGGTAG	AAATATAGAA	AAAATTGAAG	TCGATTTATA
	13201	TTAATATTCG	AGGGAGTATA	TCATGAGGGA	AAATTTTAAG	TTACGTAAAA	TGAAAGTCGG
20	13261	GTTAGTATCT	GTTGCAATTA	CAATGTTATA	TATCATGACA	AACGGACAAG	CAGAAGCATC
20	13321	AGAGGCTAAT	GAGAAGCCAA	GTACAAATCA	AGAATCAAAA	GTTGTTTCAC	AGACTGAACA
	13381	AAATTCAAAA	GAAACAAAAA	CAGTAGAATC	TAATAAGAAC	TTTGTTAAAT	TAGATACTAT
	13441	TAAACCTGGA	GCTCAAAAGA	TAACGGGAAC	TACTTTACCA	AATCACTATG	TTTTATTAAC
	13501	AGTTGATGGG	AAAAGTGCGG	ATTCAGTAGA	AAATGGCGGT	TTGGGTTTTG	TTGAAGCAAA
0.5	13561	TGACAAAGGA	GAATTTGAGT	ACCCTTTAAA	TAATCGTAAA	ATTGTTCATA	ATCAAGAAAT
25	13621		TCGTCAAGCC	CTGATTTAGG	TGAAGATGAA	GAAGATGAAG	AGGTGGAAGA
	13681	AGCTTCAACT	GATAAAGCTG	GC			

SEQ ID No. 106

30 S. aureus strain EMRSA 16(252) (SSL12-SSL14)

	_						
	1			TTTTTCAAGT		TTCAATAAAT	AACTAATTTA
	61	ACGCAATTAA		AGCATCAGTT	TTAATTTATT	AGCACTCTTT	TCATTTTATA
25	121	ATTGGCAATG	TTCCAATGCT			TAAATCACAC	GTTCAACTGT
35	181	TTATGTTTAT	TTAACATAGT		ATTTAATTCC	GAATCGGTGC	AATACCTTAT
	241	ATACTATGGG	TAATTCACGC			AAAGAACATC	ACGAACAAAA
	301	TTGTTTTATC	AACAGCATTG		GAACTACATC	AACACAACCG	CCTAAAGCAC
	361	CAATCAGTTT	TTCATCTGAA			TGAAAACGAA	ACGAATATCA
40	421	ATGAATTAAT	CAAATATTAC				TGGCTATGGC
40	481	AAAACCCTAA		CATGCAACAT	TACAAACGTG	GGTTTGGTAC	ACGCATATTC
	541	AAGTATTTGG	TCCTGAAAGT				TATGTAGATA
	601	TTTTTGGTAC	CAAGGATGAG		AAGGCTATTG	GACTTATGAT	GAAACCTTTA
	661	CTGGAGGTGT		GCTACTTCAT	CTGATAAGCC	TTATAAATTA	TTTTTAAAAT
45	721	ATAAGGATAA	ACAACAAACT		GACTTGAGTT	TTATCAAGGT	AATAAACCAG
45	781		AAAAGAACTA	GATTTCCGCG	TACGTCAAAC	TTTAATTAAG	AACAAAAAGC
	841	TATATAATGG	AGAATTTAAT	AAAGGTCAAA	TTAGGATTAC	AGGTGGTGGT	AATCATTATA
	901	CGATTGATTT	GAGTAAAAAG	TTAAAACTAA	CTGACACAAA	CAGTTATGTT	AAAAATCCTC
	961	GACATGCAGA	AATTGAAGTC	ATTCTTGAAA	AATCTCATTA	GTATCATTCA	TTGAGTGAAT
50	1021	ACAAATAGAC	TGAATGATTT	AATTGATTTC	TCTCTTTTTA	TAAACTTATT	ATTCCTCGCA
50	1081	TATAACATTC	CTCGTAAAGG			ACCTCACAAA	AAAAATTATT
	1141		CATTGACTAT	GATAGGCACA		AATCCCCTCA	TTCACCGATT
	1201	AGTATGTCAT	CTGAAGCAAA			GCGAAACGAA	TGTAAATGAA
	1261			ACGCCATTTA		ATAAATGGCT	ATGGCAAAAA
<i></i>	1321	GATAATGGTA		AACATTGTTA	CAGTTATCAT	GGTTTAGTCA	TATTCAAGTA
55	1381	TTCGGCCCTG		TAATATTAAT		ATAAATATGT	AGATATTTT
	1441	GCTTTAAAAG	-	CTGGCGCACT		CCCAAGAAAC	ATTTACTGGC
	1501	GGTGTTACAC		ACCTAGCGAT	AAACATTATA	AATTGAATGT	AACATATAAA
	1561		GAACATTTAT	TGGCGAATAT	CAATTTTATA	CAGGTAATAA	ACCAGTTTTA
C O	1621	ACTTTAAAGG		CCGAATCCGC	CAAACACTAA	TTAAAAAACAA	AAAATTATAT
60	1681		ATAATAAAGG	CCACATTAAG	ATTACAGGTG	GCAGCAACAA	CTACACAATA
	1741	GATTTAAGCA		ATCAACTGAT	GCAAATAGAT	ATGTTAAAAA	CCCTCAAACT
	1801	GCACACATCG		TGAAAAATCT	AGCTAACATC	GAAATCGAAG	TAAACAGAAA
	1861	TAAGCACAAT		ACGCCGTTCA	TTTTTAAATT	TGTTAATTCT	CGTATTGATG
<i></i>	1921		AAGGAGAAGT	TCGAATGAGA	AAGTGCATTA	TGAAAAAGTT	AATTTTAATG
65	1981	ACAACATTGT	TATTATTAGG	AACAACAGCT	ACACAAACCT	CTAATTCGCC	ATTAAATGTT
	2041	TCTACAGACG	· · · · · · · · · · · · · · · · · · ·	TCATATTGGC	CAAGACGAAA	CGAACATCAA	TGAGTTAATT
	2101		CACAACTGCC	TCTCACATTT	TCAAATAGAT	GGTTATACCA	ATATGATGAC
	2161		ATGTTGAATT	TAAGCGTTAT	TCTTGGTCAG	CGCATATACG	ATTATGGGGT
70	2221		GGGGCAACGT		AGAGACCGCT	ATGTAGACGT	GTTTGGTTTA
70	2281	AAAGACGAAG		GTTATGGTGG	GTATATCGTG	ATACATTTAC	AGGTGGTGTA
	2341		CATCACCTTC	TGATAAACCA	TATAGTCTTT	TTGTCCAATA	CAAAGATAAA
	2401				TACCAAGGTA	ATAAACCAAT	ATTAACATTG
	2461	AAAGAAATTG	ATTTTCGAGC	ACGTGAAACA	CTAATTAAAA	TTATAAAATA	ATATCATGAA

```
AATCGCAATA AAGGTAAACT TAAAATCACC GGTGGCGGCA ATGACTTTAC AATTGATTTG
2521
       AGTAAAAGAT TACATTCTGA TCTTGCAAAT GTTTATGTTA AAAATCCTCA AAAAATAACA
2581
       GTCGAAGTCC TCATTGATTA AATAAGGTCG TATGATTTAT ATCGTAAATA CTAAGGATAA
2641
       ACAATATTTG AGTAATACTA CAAAATGTCT CAATAGTACT TACACAATCA TTAATTTAGT
2701
       ACACAGAATA TTAAATGCGA TTTGGAGTCT AATAGAAATG CCAAGTCATT CTCTGGGTTT
2761
       GGGCCCGCCC CAACTTGCAT TGCTTGTAGA AATTGGTAAC CCAATTTCTC TATGTTGGGG
CCCCACCCCA ACTTACATTG T
2821
2881
SEQ ID No. 107
```

10

S aureus strain MW2 (SSL 1 -11)

```
139021 taaaaattat gaaatttaaa gcgatagcaa aagcaagttt agcattggga atgttagcaa
     139081 caggtgtaat tacatcgaat gtacaatcag tacaagcgaa aacagaagtt aaacaacaaa
15
     139141 gtgaggctga tttaaaactt tattataatg gaccaagttt tgaatataaa aaagtaactg 139201 gatatggatt tattgaaggt aaagatagat ttattgattt tatatacaat ggacaatata
     139261 ataaaatatc tttagttggt tctgataaag ataaatataa tgaagaagtt aacccagata
     139321 tagatgtgtt tgtcgttaga gaaggaaacg gtagacaagc tgataatcat tcgattggtg
20
     139381 gcataacaaa aactaataga ggagtgtatt atgactatat acacacacca atccttgaaa
     139441 tcaagaaagg taaagaagaa ccacaaagta gtctatacca aatttataaa gaagacatct
     139501 cactaaaaga acttgatttt aaattaagaa agcaattaat tagtcaaagt ggcttgtatt
     139561 caaatggtct taaacaaggt caaattacaa ttacaatgaa tgatggcaca acacatacaa
     139621 tcqatttaaq tcaaaaactt gaaaaagaac gtatgggcga gtctatcgat ggcagacaaa
25
     139681 tacaaaaaat totagtagaa atgaaataat actttotaac aacaaagogo tatgttgaa:
     139741 agtgcttqtt atggaaatat atggaagtta agcgacgtac tgttgcttag cttctttt:
     139801 tgaggggaaa agttacaaaa ctcacacaaa cagtcgcacc acgcattatc ttttgcttaa
     139861 atagettaat catattttat gaatagttaa aaacaggtta atgtgaatat etgaatacag
     139921 ctcctataat atgggtgtat ggttcaaatt acgtaataaa acaatctaat tataatagat
30
     139981 tggagcatac agctatgaaa atgaaatcaa ttgtaaaaat aagtttgtta ttaggaatat
     140041 tagcaacagg tgtaaacact acaacggaaa aaccagttca tgccgaaaag aaacctattg
     140101 taataagtga aaatagcaaa aaattaaaag cttattatac tcaacctagt attgaatata
     140161 aaaatqtqac aqqttatatc aqtttcattc aaccaaqtat taaatttatg aatatcatag
     140221 atggtaattc tgttaataat attgctttaa ttggcaaaga taagcaacat tatcatacgg
35
     140281 gtgtacatcg taatcttaat atattttacg ttaatgagga taagagattt gaaggtgcaa
     140341 agtactccat tggcggtatc acgagtgcaa acgataaagc tgtcgaccta atagcagaag
     140401 caagagttat taaagcagat catattggtg aatatgatta tgactttttc ccatttaaaa
     140461 tagataaaga agcaatgtca ttgaaagaga ttgattttaa attaagaaaa taccttattg
     140521 ataattatgg tctttacggt gaaatgagta cagggaaaat taccgtcaaa aagaaatact
40
     140581 acggaaagta tacatttgaa ttggataaaa agttacaaga agaccggatg tccgatgtta
     140641 tcaatgtcac agatattgat agaattgaaa tcaaagttag aaaagcataa cacacatact
     140701 tgacgacgaa ataatttgaa attgaaatag agaggttaag tgacgatcaa acgttgctta
     140761 acttcttttt aatgcttaaa aatcatttca aaggcacata gaaacgctat attaacctca
     140821 taatcactca ttattttttg cttaaattac ttaataatac ttcaataatt gttaaaaggg
45
     140881 gtttaatgtg attatcttag aatgccatct ataatgatgt tgtatgattc aaattacgta
     140941 aaaagacaat cgaatataat atagattgga gcatacaatt atgaaaatga gaacaattgc
     141001 taaaaccagt ttagcactag ggcttttaac aacaggcgca attacagtaa cgacgcaatc
     141061 ggtcaaagca gaaaaaatac aatcaactaa agttgacaaa gtaccaacgc ttaaagcaga
     141121 gcgattagca atgataaaca taacagcagg tgcaaattca gcgacaacac aagcagctaa
50
     141181 cacaagacaa gaacgcacgc ctaaactcga aaaggcacca aatactaatg aggaaaaaac
     141241 ctcaqcttcc aaaataqaaa aaatatcaca acctaaacaa qaaqaqcaqa aaacqcttaa
     141301 tatatcagca acgccagcgc ctaaacaaga acaatcacaa acgacaaccg aatctacaac
     141361 gcagcaaact aaaatgacaa cacctccatc aacaaacacg ccacaaccaa tgcaatctac
     141421 taaatcagac acaccacaat ctccaaccat aaaacaagca caaacagata tgactcctaa
55
     141481 atatgaagat ttaagagcgt attacacgaa accgagtttt gaatttgaaa agcagtttgg
     141541 attittgete aaaccatgga egaeggttag gtttatgaat gttattecaa ataggtteat
     141601 ctataaaata gctttagttg gaaaagatga gaaaaaatat aaagatggac cttacgataa
     141661 tatcgatgta tttatcgttt tagaagacaa taaatatcaa ttgaaaaaat attctgtcgg
     141721 tggcatcacg aagactaata gtaaaaaagt taatcacaaa gtagaattaa gcattactaa
60
     141781 aaaagataat caaggtatga tttcacgcga tgtttcagaa tacatgatta ctaaggaaga
     141841 gatttccttg aaagagcttg attttaaatt gagaaaacaa cttattgaaa aacataatct
     141901 ttacggtaac atgggttcag gaacaatcgt tattaaaatg aaaaacggtg ggaaatatac
     141961 gtttgaatta cacaaaaaac tgcaagagca tcgtatggca gacgtcatag atggcactaa
     142021 tattgataac attgaagtga atataaaata atcatgacat tctctaaata gaagctgtca
65
     142081 tcggaaaaac aagaagttaa gtgacaacgg tttacatgtt gcttagcttc ttttattatg
     142141 cgtaatgatg taaaaagacg aatattcatt tgtttgtaaa agtggcattt ctatgtctta
     142201 aaagtgacga aacttcaaat gtgccaagtg ttgaatcaca tcaaaatcat ttttatttaa
```

```
142261 cgaacattat ggatttctta atttacttaa cgatgattca aatatagtta aacaaggttt
      142321 aatgtgaatg gagcaatgcg ccatctataa taaagctgta tgattcaatg aatgtaatcg
      142381 aacaaatcta ataattacga atggagcata caactatgaa aataacaaca attgctaaaa
      142441 caagtttagc actaggcctt ttaacaacag gtgtaatcac aacgacaacg caagcagcaa
      142501 atgcgacaac accgccttca actaaagtgg aaacaccgca acaagtagca aatgcaacaa
      142561 caccatcttc aactaaagtg gaagcaccgc aacaagcagc aaacgcgaca acaccatctt
      142621 caactaaagt agaagcaccg caatcaaaac caaacgcgac aacaccatct tcaactaaag
      142681 tggaagcacc gcaacaagca gcaaacgcga caacaccacc ttcgtctaat gtagacacat
      142741 caccaccaca atcgccaacc acaaaacaag taccaacaga aataaatcct aaatttaaag
10
      142801 atttaagagc gtattatacg aaaccaagtt tagaatttaa aaatgagatt ggtattattt
      142861 taaaaaaatg gacgacaata agatttatga atgttgtccc agattatttc atatataaaa
      142921 ttgctttagt tggtaaagat gataaaaaat atggtgaagg agtacatagg aatgtcgatg
      142981 tatttgtcgt tttagaagaa aataattaca atctcgaaaa atattctgtc ggtggtatca
      143041 caaagagtaa tagtaaaaaa gttgatcaca aagcaggagt aagaattact aaggaagata
15
      143101 ataaaggtac aatctctcat gatgtttcag aattcaagat tactaaagaa cagatttcct
      143161 tgaaagaact tgattttaaa ttgagaaaac aacttattga aaaaaataat ctgtacggta
      143221 acgttggttc aggtaaaatt gttattaaaa tgaaaaacgg tggaaagtac acgtttgaat
      143281 tgcacaaaaa attacaagaa aatcgcatgg cagatgtcat agatggcact aatattgata
      143341 acattgaagt gaatataaaa taatcatgac attctctaaa tagaagctgt catcggaaaa
20
      143401 acaagaagtt aagtgacaac ggcctacatg ttgcttagct tcttttgtta tgttcgatga
      143461 tttgagaacc cgaattttcg atgggtccaa atatgacgtg gaagagtcct gaatttatct
      143521 gtaaatccct atctatcggg tgtggagcac aacggaatca gttttattta acgaacatta
      143581 tagattcctt aatttactta ataatgattc aatgattatt aaacatggtt taatgtgaaa
      143641 ggtcaaatac gccaattata ataaagctgt atgattcaat agacgtaagc gaacaaatct
25
      143701 aataattacg aatggagcat acaactatga aaatggcagc aattgcgaaa gcaagtttag
      143761 cattaggtat tttagcaaca ggaacaataa cgtcattgca tcaaactgta aatgcgagtg
      143821 aacatgaagc aaaatatgaa aatgtgacaa aagatatctt tgacttaaga gattactata
      143881 gtggcgcaag taaggaactt aaaaatgtta ctggttatcg ttatagcaaa ggtggcaagc
      143941 attaccttat ctttgataaa catcaaaagt tcactagaat acaaattttt ggtaaagata
30
      144001 tagaaagatt taaagcacgc aaaaatccgg gattagacat atttgttgtt aaagaagcgg
      144061 aaaaccgtaa tggcacagtg ttttcatatg gtggtgtcac taagaaaaat caagacgctt
      144121 attatgatta tataaacgca ccaagatttc aaatcaagag agatgaaggt gacggtattg
      144181 ctacgtacgg tagagtacac tacatttata aagaagagat ttcacttaaa gaactcgact
      144241 ttaaattgag acagtattta attcaaaatt ttgatctgta taaaaagttt cctaaagata
35
      144301 gtaagataaa agtgataatg aaagatggcg gctattatac gtttgaactt aataaaaaat
      144361 tacaaacaaa tcgcatgagt gacgtcattg acggtagaaa tattgaaaaa atagaagcca
      144421 acattagata atgcaatgaa atatggataa tagtaaaata tggatagtat agaggagtta
      144481 ggcaacataa gttgcttagc ttcttttttg tgttggagag atgaaaaaga agcgtatcga
      144541 tgaataataa aaacaccaat aaaacttgtg ggaatagttg atacctatag tcgcgcgttg
40
     144601 tccttttcgt gacatgaaac aatgtggaaa acataattaa attgagggaa agtgtgaata 144661 gttaaaaaag ctgcgttaag tttaaaaaat agattaacgc tgttaggatt ctattaatta
     144721 gcttaacatt ggttcaaaaa tagttaaaaa gaggttaatt catagcttag tattccgctt
      144781 atataatgat agtagattgt tcgtattacg taattgaaat aatcatataa aaatatatta
     144841 agacaaaatt tataaataga ttgggagaat agtactatga aattaaaagc gttagctaaa
45
     144901 gcaacattag tattgggatt gttagctact ggtgtaataa caacagaaag tcaaacagta
     144961 aaagcggcag aatcaactca aggtcaacac aattataaat cattaaaata ctactatagc
     145021 aagccaagta tagagttaat aaatgtagat ggtctgtata gacaacattt aactgataaa
     145081 ggtgcatatg tatggaaaaa tcttaaagat tattatattg ggctactagg tgaagatagt
     145141 aagaaattca aatcagatgt atacggggac ctagatgcat ttttagtcat agaagaagaa
50
     145201 cctgttaaag gaagacaata ttcaattggc ggtataagta agacaaatag taaagaattt
     145261 aaagaaagag aagtcgatgt taaagtaaca agaaaagcag acagagatac tacatcaact
      145321 aaagatagta aatttaaaat tacaaaagaa gaaatctcgt taaaagagtt agattttaaa
     145381 ttaagacaaa aattgatgaa agaagagaat ttatacgatg caattaacca tagaaaaggt
     145441 aaaattgtag ttaaaatgga agatgataag ttttatactt tcgaacttac aaaaaaatta
55
     145501 caaccgcatc gcatgggtga cacgatagat ggtaccaaaa tcaaagaaat taatgttgag
     145561 ctagaatata aataatcttt ggacaagcag actagtaatt gtagggaagt taagcgataa
     145621 catattgctt agcttctttt ttgttttgtt atgatgaaaa aaggageggg tttatgatca
     145681 agtttttgga aaaacggttg atacttatag tcgcgcgttg tccttttcgt gacatgaaac
     145741 aatgtggaaa acataattaa attgagggaa agtgtgaata gttaaaaaat tagtattgtg
     145801 ttataaaaaa taattaatac tgttaggatt tcattaacta acttaacgtt ggttcaaaaa
     145861 tagttaaaaa gaggttaatt catagcgcag tatctcactt atataatgat agtagattgt
     145921 togtattacg taattgaatt aatcatataa aaatatatta agacaaaatt tataaataga
     145981 ttgggagaat agtactgtga aattaaaaac gttagctaaa gcaacattgg cattaggctt
     146041 attaactact ggtgtgatta catcagaagg ccaagcagtg caagcaaaag aaaagcaaga
65
     146101 gagagtacaa catttatatg atattaaaga cttacatcga tactactcat cagaaagttt
```

				ataaaattaa	aaattataac	ggttctaacg	ttgtacgctt
	146161	tgaattcagt	aatattagig	accaattatt	cttatcagga	aaagataaag	ataaatataa
	146221	taaccaagaa	aatcaaaatc	atatettat	ggtaaaagaa	ttaattgatc	caaacggtag
	146281	agaaggeett	gaaggccaga	taacqaaqaa	aaataaccaa	tcttctgaaa	ctaatacacc
5	146401	+++-++-+-	TOTOGEGGG	arggcggaaa	TTTADALUCA	Luaallyaal	Latteraut
3	116161	++	assatttcac.	tgaaagaact	toatttcaaa	attagataat	attlagtlaa
	146501	+-+	necetete++	gtacgactaa	atacootaao	atcactttca	atttyaaaya
	3 4 5 5 0 3	+	annese etta	atttaddtda	taaattocaa	ttcgagcaca	Lgggcgalyl
	116611		~~~~+ a++c	aaaatatagc	actdactatt	aatcaaatti	aaaytaayta
10	1 4 6 7 6 7		-t	aaatttdaad	cadcttaucu	aluadalull	yaa caya cac
10	1 4 67 67		ant anadrace	cotatttaaa	acaaccttgt	COTTAGGCLL	LLLLacyLL
	146001	++=+==cace	agatatage.	otactaaaaa	ttcacattac	ttctgaaagi	gatgtttatt
	146001	+	+=a++c++ca	ttaaccatga	tttaatttta	attaaacyay	Lyttaatytt
	146041	>~+ a+ a+ a+ a+ a	==tacccttt	ataataaato	totattattc	aaattacgta	ataaaaycaa
15	1 47001	+0000+0+0+	taadattdda	gcatatgaat	atgaaattta	cagogatage	Ladaycyala
	147061	tttgtattag	gaatattaac	aacaagtgta	atgataacag	aaaatcaatc	toastactat
	147121	aaaggaaagt	atgaaaaaat	gaaccgttta	tatgatacaa	acaagttaca	ttatgactct
	147181	tcaggaccta	gttatgagtt	aacaaatgtt	agrygecaaa	gtcaaggtta	gggaaaagat
20	147241	aacgttttgc	tttttaacca	acaaaatcaa	t+agetocaay	tgttttatt ttgcggtacc	ggaattagta
20	147301	gaaaataaat	acaaagaaaa	aacacatggt	catataacaa	agaaaaatgt	aaaatcaata
	147361	gatttagatg	gaagaatatt	cagigicage	ottaaaaaaa	tagacgataa	agacggtttt
	147421	tttgagtete	taagaacgcc	tattcaaaac	gaagaagtat	cattgaagga	acttgatttc
	14/481	tegtatgatg	aactottaat	taaaaaatac	aaattotato	aagggcagc	tgataaaggt
25	147501	aaaalaayaa	ttaatatgaa	agatgaaaat	aagtatgaaa	ttgatttaag	tgataaatta
23	1 17 661	aatttcaaac	gtatggcaga	totcattaat	agtgaacaaa	ttaaaaacat	cyaaytyaat
	1 47771	++~~~~+	caatmatata	tatagaatga	aagcttaaga	agcggtttaa	taateceaty
	1/7701	+++==+ca++	ttdatacdtd	ttttaataat	aaaaacatat	cgaacattga	ctacgitati
	1 17 0 11	a a cot cottt	tttatacact	ttatatcaaa	taacttaaqa	tctaaaacta	attiggaaaga
30	1 47001	acaatcatto	ccctaaaaaa	_atttatqttq	ctattaaaaa	tcagttaata	cyaatyttaa
	1 47 0 61	catacattta	attttcatta	ataatqattc	aagtttattt	aaatgagcgt	Laalgleage
	1/0021	ctattttat	gcaccttata	ataaagacag	atagttcaaa	ttacgtaata	ataacaatcc
	1/0001	aatatatraa	gattggagga	aataaatato	aaatttacag	cattagcaaa	agcaacatta
	148141	gcattaggaa	tattaactac	aggtgtgttt	acaacagaaa	gtaaagctgt	tcacgcgaaa
35	148201	gtagaacttg	atgagacaca	acgcaaatat	tatatcaata	tgctacatca	taggtgtatt
	148261	gaagaaagtt	ttgaaccaac	aaatattagt	gttaaaagcg	aagattacta	traccataaa
	148321	gttttaaact	ttaaacaacg	aaataaagct	antatatta	ttttacttgg	attaatagat
	148381	aataaatata	aagaaaaaac	acatggccit	atacasada	cagtacctga aaaatgtgag	atcagtgttt
40	148441	ataaaaggtg	gcatatatay	tctacaaqtt	aaaaaaatco	atcctaaaca	tagetttteg
40	148501	ggatttgtaa	tattattat	tcaaaaaaaa	gaagtatcgt	tgaaggaact	ggattttaaa
	148501	ataaatgagt	tattaatcaa	aaaatataga	ttgtataaag	gcgcgtcaga	taaaggtaga
	1 40 601	>+ <<++ >++ =	atatoaaaa	cgaaaagaaa	tatotaatto	atttaagtga	aaaattaagt
	1/07/1	tttastcata	tatttaatat	. aatggatagt	aagcaaatta	aaaatattga	agigaattig
45	1 4 0 0 0 1	+++	- ctataataac	- ttaagaagcg	acttaacqac	aaaatqtqaa	ttgacatyca
	1/0061	tataattaaa	taaqqaactq	r tottaaatac	attactqttq	ttaagttgtt	ttttgcgttt
	1/0021	casadadcad	aacadadtaa	catcatcagt	. totagtaaac	gataatulay	Laaaacaacc
	1 4 0 0 0 1	aaatraaata	atgaaattga	tttaacctga	acattaaaat	atatttgttt	LLCallaga
	1/00/11	ataattcaan	tatatttaaa	tcgaggttaa	ttatcgtatg	aaacgatgca	cgttataata
50	1/01/01	aaaatotato	attcaaatta	cotaatoaaa	acaatccaat	. atattaagat	tggagcaaaa
	149161	caatatgaaa	ttaacagcga	tagctaaagc	: tgcattagct	ttaggaattt	taacaacagg
	149221	aactttaaca	acagaagtto	: attcaggtca	tgcaaaacaa	aatcaaaagt	tagtadataa
	149281	acatgacaag	gaagcattat	: accgatacta	cactggaaag	actatggaaa	ttaagattca
~ ~	149341	. tagtgctttg	aaacatggta	aaaataactt	gegttttaag	tttagaggta	accountage
55	149401	. agttttactg	cctggaaatg	, ataaaagtaa	allicaded	tttatactg	aggggttaga ttggtggtgt
	149461	. tgtgttttt	gttcaagaaa	aaagagatac	. cactccacca	atattaaata	tttcaaaaga
	149521	. aatacagaat	aataaaaca	tananartt	. cagtgeater	: attaaaaaag	aaaaaataac
	149581	. aaagggtgaa	ctoosttst	, Lyadayyıld anttraras	gcatctaato	gaaaaatato	gactttataa
60	149041	. accadagag	saagatoota	. agetgagaat	tagcttgaaa	gatggcagtt	tttataacct
00	1/0761	tratttaara	totaaattaa	a aattcaaata	ı tatqqqqqaa	ı gtcatagaaa	gcaaacaaat
	149821	taaagatatt	gaagttaact	: taaagtaaat	: aattacgaat	: aataaaaagt	aattgaagcg
	149881	acttaacqat	: gaaaagtaa	a ttgatgcgca	a taccttacca	a aaaggatgca	tcaatcgata
	1/00/1	tcatcattaa	actatttta	tttacqtttc	: atggattcta	a ccccaatttt	cataaatata
65	150001	aaaattcca	caccaacato	aaaattctca	a acatcgcaad	atacccaaat	gttataataa

```
150061 atctattaca caaagagata aattacttat tcaaaggcgg aggaatcaca tgtctattac
     150121 tqaaaaacaa cgtcagcaac aagctgaatt acataaaaaa ttatggtcga ttgcgaatga
     150181 tttaagaggg aacatggatg cgagtgaatt ccgtaattac attttaggct tgattttcta
     150241 tcgcttctta tccgaaaaag cagaacaaga atatgcagat gcgttggcag gtgaagatat
     150301 cacgtatcaa gaggcatggg cagatgaaga atatcgtgaa gacttaaaag ctgaattaat
     150361 tgatcaagtc ggttacttca ttgaaccaca agatttattc agtgcgatga ttcgtgaaat
     150421 tgaaacgcaa gatttcgata tcgaacatct ggcgacggca attcgtaaag ttgaaacatc
     150481 aacattaggt gaagaaagtg aaaatgactt tatcggactg ttcagcgata tggacttaag
     150541 ttcaacgcga ctaggtaaca atgtcaaaga acgtactgct ttaatctcta aagtcatggt
10
     150601 taatctigac gatttaccat ttgttcacag tgatatggaa attgatatgt taggtgatgc
     150661 atatgaattc ctaattgggc gctttgcggc gacagcaggt aaaaaagcag gcgagttcta
     150721 tacaccacaa caagtatcta agatactggc gaagattgtc acagacggta aagataaatt
     150781 acgtcatgtg tacgacccaa catgtggttc cggttcatta ttgttacgtg ttggtaaaga
     150841 aacgcaagtg tatcgttatt tcggtcaaga acgtaacaat accacttaca acttagcacg
15
     150901 catgaacatg ttattacatg atgtacgtta tgaaaatttc gatatccgta atgatgacac
     150961 gttggaaaat ccagcctttt taggacatac atttgatgcg gttattgcga acccaccata
     151021 cagtgcgaaa tggacagcag attcaaaatt tgaaaatgac gaacgattca gcggatacgg 151081 caaacttgcg ccaaagtcca aagcagactt tgcctttatt caacacatgg tacattactt
     151141 agacgatgaa ggtaccatgg ccgttgtact cccacatggt gtcttattcc gtggtgctgc
     151201 agaaggtgtc attcgtcgtt atttaattga agaaaagaac tacttagaag ccgtgattgg
20
     151261 cttaccagcc aatatttct atgggacaag tattccaaca tgtattttag tatttaaaaa
     151321 atgtcgccaa caagaagact atgtattatt tatcgatgca tccaatgatt ttgaaaaagg
     151381 aaaaaatcaa aaccatttaa ccgatgccca agtcgaacgc attattaaca catataagcg
     151441 taaqqaaaca attgataaat atagctacag tgcgacatta caagagatcg ccgataacga
     151501 ttacaactta aacataccga gatatgtcga tacattcgaa gaagaagcac cgattgattt
25
     151561 agatcaagtc caacaagatt tgaaaaatat cgacaaagaa atcgcagaag ttgaacaaga
     151621 aatcaatgca tacctgaaag aacttggggt gttgaaagat gagtaataca Caaaagaaaa
     151681 atgtgccaga gttgaggttc ccagggtttg aaggcgaatg ggaagagaag aagttagggg
     151741 accttactac caaaataggt agtggaaaga ctcccaaagg tggaagtgaa aactatacaa
     151801 acaaaggcat accattttta aggagtcaaa atattagaaa tggtaaatta aatcttaatg
30
     151861 acttagttta tattagtaaa gatatagatg atgagatgaa aaatagtaga acgtactatg
     151921 gtgatgttct tttaaatatt acaggagcat caataggtag aacagccatt aattcgatag
     151981 ttgaaataca tgctaattta aatcaacatg tatgtattat tagattgaaa aaagagtatt
     152041 attataattt tittggacag tatctattat caagaaaagg taaaaggaaa attttccttg
     152101 cacaaagtgg aggtagtcga gaaggactaa acttcaaaga aattgctaat ttaaaaaatct
35
     152161 tcaccccaac tatatttgaa gagcagcaaa aaataggcga attcatcagc aaacttgacc
     152221 gacaaattga attagaagaa caaaaacttg aattacttca gcaacagaaa aaaggctata
      152281 tgcagaaaat cttctcgcaa gaattgcgat tcaaagatga ggaaggtaaa gattatccag
     152341 attggaaatc aaaatcaatt caagaaatat ttgagaataa gggtggcact gctctagaaa
     152401 cagaatttaa ttttgacggt aattataaag ttataagtat aggaagttat tctataaata
40
     152461 gcacttataa tgatcaaaat ataagagtca ataaaaataa aaaaactgaa aaatatattt
     152521 tatcaaaagg cgacttagca atggtattaa atgataaaac aaaagatggg aaaattatag
     152581 gtagaagtat atttatagat aaagataatc aatatatta taatcaaaga actgaaagat
     152641 taataccatt tgctgaaaat gataataaat ttttatggtt cttaatgaat acagatttaa
      152701 ttagaaataa aataaaaggt atgatgcaag gagcaaccca agtttatata aattattcat
45
      152761 ctattaaatt gatatctata caattgccac ttcttgaaga acaacagaaa ataagagggt
      152821 ttctagaagt tttatctgga ataactacta aacaattgca caagatagac caattaaaag
      152881 agaggaaaaa ggcgttttta cagaaaatgt ttatttgatt tgtcgctgca atatagtttt
      152941 tattatttgt ttatttcaga tgtttcacca tcatattgcg taacttttac aaataagaaa
      153001 taaagttcaa tgaaatcaaa aacgaacatt aaatttaggc actgtgatag cacagtgtct
50
      153061 tttttgtgtc gaaattgtgt acagaataag tagttaaata aagattaagt tgagataaag
      153121 tgttattcgt aaataaaaga gagtagatcg ataggaattg aatgatatta gttaactatt
      153181 tattaaatta cttaataatg attaattttt agttaaagta agtttaatgt gaagcacgac
      153241 cattgctcat tataatgaat gaggattgtt cgtattgcgt aatagaataa atcaaataga
      153301 ctaaaaattg ggagcataga attatgaaat taaaaaatat tgctaaagca agtttagcac
55
      153361 tagggatttt aacaacaggg atgattacaa ctactgctca gccagtaaaa gcaattgagc
      153421 aaagcagatt atcagttact tcaaaagata cacaagaatt aaaaaaatac tacagtggaa
      153481 caggatataa ttttcaaaat gtgagtggtt atagagaagg taataaaatg aacattattg
      153541 atggaccaca acttaatgta gttactttac ttggcacaga caaagaaagg tttaaggacg
     153601 atgaagatta tgaaggactt gatgtatttg ttgtaagaga agggtcaggt aaacacgcag
60
      153661 ataatatatc aattggtgga attacaaaaa caaataagaa tcaatataaa gaccctgtac
      153721 aaaacgttaá tttattgact tctaagagta acggtcaaaa tactgcttct gtgacttcag
      153781 aatactatag catcaataaa gaagaaattt cattaaaaga acttgatttc aaactaagaa
      153841 agcaattaat tgataaacat gatctttata agacagagcc taaagacagc aaaattaaag
      153901 tttctatgaa aaatggcggc tactatacgt ttgaattaaa taaaaaatta cagcctcatc
65
```

	152061	gcatgggtga	++	agtagaaata	+=======	tasatasat	ttataataat
	153961	attcgaggga	tacgategat	agragaaata	ttaaaguaaac	taaaataaa	atcaatttaa
	154021	tatcagttgc	gratactary	ttatatata	tanantaa	caaaacgaaa	acatotasa
	154081	tatcagttgc	aattactacy	Lialatatca	tyacaaatyy	cgaagcagaa	gtaccegaag
_	154141	gtagccaaac	tgttaagaac	ccaaaggtga	atguaattga	ayaaattaaa	tttattatt
5	154201	aaccagttca	aaataatcaa	gaagtaagtt	cggaacaaac	aaaaaayaat	tityttaatt
	154261	tagaccccat	taaacctggt	gctcaaaagg	taacagggac	tactttaccc	agccatatta
	154321	ttctaatgaa	tatagatggt	aaaagtgctg	attcagtaga	tggaggaaat	agtgatttag
	154381	tatttgctga	tgaaaacgga	agattcgagt	atccactaca	caatagaaaa	attgttcata
-	154441	atcaagaaat	tgaggtttcg	tcatccagtc	ctgatttagg	tgatgatgaa	gaagatgaag
10	154501	aagtagaaga	agattcaact	gaaaaagctg	gtactgagga	agaaaacaca	gatgctaaag
	154561	ctacatacac	aacaccacga	tatgaaaaag	cgtatgaaat	accgaaagaa	caactaaaag
	154621	aaaaagatgg	acatcaccaa	gttttcatcg	aacctattac	tgaaggttca	ggtattatta
	154681	aaggtcatac	gtctgtaaaa	ggtaaagttg	ctctatctat	taataataaa	tttattaatt
	154741	ttgaagaaag	agctaaagat	ggaattagta	aagaagatac	taaagctagt	tccgatggtg
15	154801	tttggatgcc	tattaatgaa	aaaggatatt	ttgattttga	tttcaaaaaa	aatccttttg
	154861	ataacttaga	gttaaagaaa	aatgatgaaa	tctcattaac	atttgcacct	gatgatgaag
	154921	atgaagcatt	gaagtcatta	attttcaaaa	ctaaagtaac	gagtttagaa	gatattgata
	154981	aagcagaaac	taaatatgac	catactaaag	tggaaaaagt	aaaagtattg	aaagatgtta
	155041	aagaagattt	acatqtaqat	gaaatttatg	gaagtttgta	ccatacagaa	caaggtaaag
20	155101	gtattctcga	taaacaggga	actaaagaaa	ttacaggtaa	gactaaattc	gcgaatgcag
~ -	155161	tagtgaaagt	atattctgac	ttaggtgatg	cacaactatt	tcctgatatt	caagtagatg
	155221	aaaatggtaa	atttagcttt	gatgctgaaa	aagctggttt	cagattacaa	aatggagaaa
	155281	cattgaattt	tacaataatt	aaacctatta	ctggtgagct	attacatcaa	ggattcgttt
	155341	ctaagtatat	coatotttat	gaateteegg	aagaaaagaa	agaacgtgaa	tttgaagaga
25	155401	aacttgaaaa	cacacctaca	tatcataaat	tacatootoa	taaaattoto	ggctatgatg
ر بد	155461	ttcaaggtaa	tccatcaact	taattetate	cattacctca	aaagaaagtt	gaacgtaagg
	T0040T	Licaayyida	LUCALCARCE	cygricials	cattaggtga	uuuguuugtt	9-20902299

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 6 October 2005 (06.10.2005)

(10) International Publication Number WO 2005/092918 A3

(51) International Patent Classification:

 C07K 14/31 (2006.01)
 C07K 19/00 (2006.01)

 A61K 39/085 (2006.01)
 C12N 5/06 (2006.01)

 A61K 48/00 (2006.01)
 C12N 7/01 (2006.01)

 C12N 15/62 (2006.01)
 C12N 7/01 (2006.01)

(21) International Application Number:

PCT/GB2005/001084

(22) International Filing Date: 22 March 2005 (22.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

0406408.5 22 March 2004 (22.03.2004) GB 0412419.4 3 June 2004 (03.06.2004) GB

- (71) Applicant (for all designated States except US): UNI-VERSITY COLLEGE LONDON [GB/GB]; Gower Street, London WC1E 9BT (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CHAIN, Benjamin, Michael [GB/GB]; 46 Cleveland Street, London W1T 4JF (GB). NAIR, Sean, Paddy [GB/GB]; 256 Grays Inn Road, London, WC1X 8LD (GB).
- (74) Agent: WOODS, Geoffrey, Corlett; J.A. Kemp & Co., 14 South Square, Gray's Inn, London WC1R 5JJ (GB).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 27 April 2006

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TARGETING POLYPEPTIDE

(57) Abstract: A targeting polypeptide is provided that may be used to target a chosen antigen to an antigen presenting cell. Complexes comprising such targeting polypeptide and antigen, nucleic acids and vectors encoding them, and cells comprising the nucleic acids and vectors may be used in methods of immunisation and enhance the immunogenicity of the antigen.

ational Application No /GB2005/001084

A. CLASSI	FICATION OF SUBJECT MATTER C07K14/31 A61K39/085 A61K48/0 C12N5/06 C12N7/01	00 C12N15/62	C07K19/00
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	
	SEARCHED		
Minimum de	ocumentation searched (classification system tollowed by classification CO7K A61K C12N	on symbols)	
	tion searched other than minimum documentation to the extent that s		
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search ter	rms used)
EPO-In	ternal, WPI Data, BIOSIS, EMBASE		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
X	US 2002/177551 A1 (DAVID S. TERM/ 28 November 2002 (2002-11-28) page 2, paragraphs 14,19 page 3, paragraphs 21,22 page 8, paragraph 51-57 page 12, paragraph 89 - page 16, 132 page 21, paragraph 180 - paragraph example 3	paragraph	1-25
X Furti	her documents are listed in the continuation of box C.	X Patent family members a	re listed in annex.
'A' docume consic 'E" earlier of filling of 'L' docume which citation 'O' docume other of later the	ent which may throw doubts on priority claim(s) or is clied to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but man the priority date claimed	"Y" document of particular relevar cannot be considered to invo document is combined with o ments, such combination bei in the art. "&" document member of the sam	offict with the application but in the property underlying the underlying the underlying the underlying the underlying the underlying the underlying to be underlying to the considered to enthe document is taken alone underlying the underlying the underlying the underlying the underlying obvious to a person skilled the patent family
ļ	actual completion of the international search	Date of mailing of the internal	ional search report
2	0 February 2006	09/03/2006	
Name and r	malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Montero Lopez	z, B

Form PCT/ISA/210 (second sheet) (January 2004)

۷

national Application No T/GB2005/001084

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Calegory °	Cltation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SHIMIZU MOTOMU ET AL: "A novel method for modification of tumor cells with bacterial superantigen with a heterobifunctional cross-linking agent in immunotherapy of cancer." MOLECULAR BIOTECHNOLOGY, vol. 25, no. 1, September 2003 (2003-09), pages 89-94, XP008052170 ISSN: 1073-6085 abstract page 89, right-hand column, paragraph 2 - page 90, right-hand column, paragraph 1	1-25
A	ERIC MURAILLE ET AL.: "T cell-dependent maturation of dendritic cells in response to bacterial superantigens" JOURNAL OF IMMUNOLOGY, vol. 168, 2002, pages 4352-4360, XP002368601 abstract page 4355, left-hand column, paragraph 2 - right-hand column, paragraph 1 page 4357, left-hand column, paragraph 2 - page 4358, right-hand column, paragraph 1	1-25
А	ALOUF J E ET AL: "Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects" INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, URBAN UND FISCHER, DE, vol. 292, no. 7-8, 2003, pages 429-440, XP004959934 ISSN: 1438-4221 the whole document	1-25
A	WO 03/012111 A (LORANTIS LIMITED) 13 February 2003 (2003-02-13) page 2, last paragraph - page 4, line 15 page 8, line 14 - page 12, line 17 page 39, line 23 - page 40, line 10; example 1	1-25

nternational application No. PCT/GB2005/001084

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claim 17, as far as encompassing an in vivo method, and claim 24 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the composition.
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional sparsh tops were timely as id by the applicant Consequently, this is to be a local Providence
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)

national Application No

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 2002177551	A1	28-11-2002	NONE		
WO 03012111	A	13-02-2003	EP JP US	1419256 A2 2005524381 T 2004213797 A1	19-05-2004 18-08-2005 28-10-2004