8 Linear Regression

- In many business research situations the path to decision making lies in understanding the relationship between two or more variables.
- For example, can the price of airline stock be predicted using a variable like the cost of oil? or how strong a relationship is there between a company's sales figures and their advertising budget?
- Regression Analysis is the process of constructing a mathematical model or function that can be used to predict one variable using another variable (simple linear regression) or variables (multiple linear regression).

Example (Fedbus)

Fedbus have been using radio advertisements to advertise their weekend excursions for the past 8 months.

The managing director has asked the sales team to assess the effect of these ads on the number of bookings

Month	No. of Adverts (X)	No. of bookings (Y)
1	20	61
2	24	77
3	30	72
4	23	66
5	27	85
6	25	77
7	32	90
8	35	100

Figure A

The scatter plot can give some indication on the nature and strength of the relationship between X and Y, but clearly we need a more precise technique to quantify this relationship.

2.1.2 Determining the Regression Equation

Try to imagine a line passing through the points in scatter plot in Figure A. The Regression technique attempts to fit a straight line to represent these points.

The equation of the Regression line takes the form

$$Y = b_0 + b_1 X$$

where

 b_0 = Intercept and b_1 = Slope of the line

b₀ and b₁ are calculated using the *Method of Least Squares*.

Fedbus example

$$Y = 18.67 + 2.22X$$

No. of Bookings = $18.67 + 2.22 \times (No. of Adverts)$

2.1.3 What does the Regression Equation Mean?

- A Regression Equation can be seen as a model of the relationship between Y and X or can be extended and used for prediction purposes.
- In the Fedbus example the following relationship between bookings(Y) and adverts(X) was estimated

$$Y = 18.67 + 2.22X$$

- The slope of the line b₁ tells us that if X increases by one unit then Y will increase by 2.22 units.
- We can also use the equation for prediction purposes
- It is important to note that regression cannot be used reliably for extrapolation

2.2.1 Multiple Linear Regression

- Simple Linear Regression dealt with the relationship between One Dependent Variable Y and One Independent Variable X.
- Rarely will the variations of a business variable depend on only one factor.

Multiple Regression Model

Given Y (Dependent Variable) and X₁,X₂,...X_n (a set of n Independent Variables) then

$$Y = b_0 + b_1X_1 + b_2X_2 + \dots + b_nX_n$$

b_i = Regression Coefficient for Xi.

Example (Automobile Battery Sales)

- Before entering a marketplace it is common for a company to examine the sales potential in that area. One approach is to develop a Regression Model of Sales using data from other regions.
- In this example An Automobile Battery Company have figures on Sales from thirty Sales Areas.

Dependent Variable (Y): Battery Sales

Independent Variables:

Number of Registered Vehicles (X₁)

Average Weekly Earnings (X₂)

Advertising Expenditure (X₃)

Variables:

Sold
$$X_1$$
 = Registered Vehicles

$$X_2$$
 = Advertising Expenditure

$$X_3$$
 = Weekly Earnings

Model:

$$Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3$$

 $Y = -46.6 + .17X_1 + .87X_2 - .03X_3$

or

Battery
$$=$$
 - 46.6

How good is the Regression Model?

Constructing the Regression Model is only the first step in a Regression Analysis. Unfortunately the Regression technique will fit a line to any set of points, even if no strong relationship exists

Here is the relationship between a company's computer sales and rainfall in their region.

We can see that there is no relationship between the two variables, and because of this the Regression line is a very bad fit.

How good is Regression Model?

 So, all Regression models are not necessarily good predictors of the dependent variable Y. This means we need a set of statistical tools to help assess the validity of any model.

(i) Coefficient of determination

(ii) T-test

Battery Example

	В	Sig t
		(P-Value)
(Registered Vehicles)	.17	.157
(Advertising Expend.)	.87	.000
(Weekly Earnings	03	.000

- Weekly Earnings and Advertising Expenditure are the significant independent variables (both p-values are below .05).
- However the test shows that the number of Registered Vehicles is not a significant variable (p-value equal to .15, which is greater than .05)
- Rerun model without Number of Registered Vehicles

2.2.2 Measurements in Regression

- The dependent variable must always be a ratio/interval variable.
- Independent variables should also be ratio.
 Many business analysts however tend to relax these assumptions slightly to include ordinal measurements.
- Nominal data can also be used as independent variables in a Regression Analysis using a technique called dummy variables

2.2.3 Analysis of Residuals

- The difference between the an observed value and the value predicted by a regression equation is called a residual.
- Regression Analysis is based on a number of assumptions
 - If any of these assumptions are violated model may be incorrectly estimated.
 - Important therefore to test that the assumptions have not been violated.
- Most important tool for testing assumptions is called residual analysis.
 - Plotting the residuals and looking for patterns in these plots.
 - If there are any patterns in the residuals one or more of the assumptions may have been violated