Structure of pHs ThieleSmall

Antoine Falaize¹ and Thomas Helie²

 $^1\mathrm{Project\text{-}team}$ S3*, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France $^2\mathrm{Project\text{-}team}$ S3†, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France

October 8, 2016

1 System netlist

line	label	dictionary.component	nodes	parameters
ℓ_1	IN	electronics.source	('A', 'ref')	{ type voltage
ℓ_2	R	electronics.resistor	('A', 'B')	R ('R', 1000.0)
ℓ_3	L	electronics.inductor	('B', 'C')	L ('L', 0.05)
ℓ_4	G	connectors.gyrator	('C', 'ref', 'D', 'ref')	$\left\{\begin{array}{ll} \text{alpha} & ('Bl', 5) \end{array}\right.$
ℓ_5	M	mechanics.mass	('D', 'E')	M ('M', 0.1)
ℓ_6	K	mechanics.stiffness	('E', 'F')	K ('K', 5000.0)
ℓ_7	Α	mechanics.damper	('F', 'ref')	A ('A', 1)

$$\dim(\mathbf{x}) = n_{\mathbf{x}} = 3;$$

$$\dim(\mathbf{w}) = n_{\mathbf{w}} = 2;$$

$$\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;$$

$$\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$$

^{*}http://s3.ircam.fr

[†]http://s3.ircam.fr

Figure 1: Graph of system ThieleSmall.

2 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\mathrm{M}} \\ x_{\mathrm{L}} \\ x_{\mathrm{K}} \end{pmatrix}$$
;
Dissipation variable $\mathbf{w} = \begin{pmatrix} w_{\mathrm{R}} \\ w_{\mathrm{A}} \end{pmatrix}$;
Input $\mathbf{u} = \begin{pmatrix} u_{\mathrm{IN}} \end{pmatrix}$;
Output $\mathbf{y} = \begin{pmatrix} y_{\mathrm{IN}} \end{pmatrix}$;

3 Constitutive relations

$$\begin{split} & \text{Hamiltonian } \mathbf{H}(\mathbf{x}) = 0.5 \cdot \mathbf{K} \cdot x_{\mathbf{K}}^2 + \frac{0.5}{\mathbf{M}} \cdot x_{\mathbf{M}}^2 + \frac{0.5}{\mathbf{L}} \cdot x_{\mathbf{L}}^2; \\ & \text{Hamiltonian gradient } \nabla \mathbf{H}(\mathbf{x}) = \begin{pmatrix} \frac{1.0}{\mathbf{M}} \cdot x_{\mathbf{M}} \\ \frac{1.0}{\mathbf{L}} \cdot x_{\mathbf{L}} \\ 1.0 \cdot \mathbf{K} \cdot x_{\mathbf{K}} \end{pmatrix}; \\ & \text{Dissipation function } \mathbf{z}(\mathbf{w}) = \begin{pmatrix} \mathbf{R} \cdot w_{\mathbf{R}} \\ \mathbf{A} \cdot w_{\mathbf{A}} \end{pmatrix}; \\ & \text{Jacobian of dissipation function } \mathcal{J}_{\mathbf{z}}(\mathbf{w}) = \begin{pmatrix} \mathbf{R} & 0 \\ 0 & \mathbf{A} \end{pmatrix}; \end{split}$$

4 System parameters

4.1 Constant

parameter	value (SI)
Bl:	5
R:	1000.0
L:	0.05
A:	1
K:	5000.0
M:	0.1