

MACHINE LEARNING

UNSUPERVISED LEARNING I

AGENDA

01 K-means clustering

Algorithm, applications, convergence

O2 Expectation maximization

Mixture of Gaussians, Jensen's Inequality, Naïve Bayes

03 Factor Analysis

K-MEANS CLUSTERING THE ALGORITHM

We are given a training set $\{x^{(1)}, \dots, x^{(m)}\}$, and want to **group** the **data** into a few cohesive "clusters." Now, we **don't have** any **labels** $y^{(i)}$. The algorithm works as follows:

- 1. Initialize cluster centroids $\mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n$ randomly.
- **2.** Repeat until convergence{

For every i, set (Assign point $x^{(i)}$ to cluster j)

$$c^{(i)} \coloneqq \arg\min_{j} \left\| x^{(i)} - \mu_{j} \right\|^{2}$$

For every *j*, set (**Update cluster centroids**)

$$\mu_j := \frac{\sum_{i=1}^m 1\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)}=j\}}$$

K-MEANS CLUSTERING

THE ALGORITHM

In the algorithm k is the **parameter**, which represents the **number** of **clusters** we want to find.

The cluster centroids μ_j represent the estimations we make for the positions of the cluster centers.

The **initialization** of the **cluster centroids** is calculated by **choosing k training examples** randomly and **setting** the **cluster centroids** to be **equal** to the **values** of these **k examples**.

K-MEANS CLUSTERING

- In Biology we need to find clusters of genes.
- In Marketing we would like to segment markets.
- In Journalism display common related articles.
- In Computer Vision we would like to do Image Segmentation.

K-MEANS CLUSTERING CONVERGENCE

Let us define the **distortion function** to be:

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^{2}$$

Which measures the sum of squared distances between each training example $x^{(i)}$ and the cluster centroid $\mu_{c^{(i)}}$.

We can see that the **k-means algorithm** is **coordinate descent** on J by **minimizing** the distortion function **with respect** to c while **holding** μ **fixed**.

Thus, **J** must **monotonically decrease**, and the value of **J must converge**.

Even though, **because** *J* is a **non-convex function**, it is possible that *J* **doesn't converge** to a **global minimum**.

K-MEANS CLUSTERING CONVERGENCE

K-MEANS CLUSTERING PARAMETERK

Choosing the right number of clusters k may be ambiguous. It depends on the application.

EXPECTATION MAXIMIZATION MIXTURES OF GAUSSIANS

We are given a training set $\{x^{(1)}, \dots, x^{(m)}\}$. Again, we don't have any labels $y^{(i)}$.

Now, we want to **model** the **data** by **estimating** its probability **distribution** (**DENSITY ESTIMATION**): P(x)

This density estimation will help us detect outliers. Thus, it allows to compute the likelihood of new data points arriving. A problem known as Anomaly Detection.

It is important to note, that many distributions may not be known distributions (Gaussian, Poisson, etc.)

EXPECTATION MAXIMIZATION MIXTURES OF GAUSSIANS

Let us look at an **example**, where $x^{(i)} \in \mathbb{R}$. The **density distribution** of our **training set** may look like the sum of two Gaussians:

We may think that the data set may have come from two separate Gaussians, but we don't know from which Gaussian each of the data points came from.

MIXTURES OF GAUSSIANS

Let us imagine that there is a **latent** (**hidden** / unobserved) random variable z and $x^{(i)}$, $z^{(i)}$ have a **joint distribution**:

$$pig(x^{(i)},z^{(i)}ig)=pig(x^{(i)}/z^{(i)}ig)\,pig(z^{(i)}ig)$$

We will **assume** that $z^{(i)} \sim Multinomial(\phi)$ (for 2 Gaussians this will be Bernoulli), where

- $\phi_j \geq 0$
- $\sum_{j=1}^k \phi_j = 1$
- $\phi_j = p(z^{(i)} = j)$

Also, we will assume that $x^{(i)}/z^{(i)}=j$ is distributed Gaussian $N(\mu_j, \Sigma_j)$.

VERY SIMILAR TO GAUSSIAN DISCRIMINANT ANALYSIS (y is known, z is not)

MIXTURES OF GAUSSIANS

The main difficulty resides in the fact that we don't know $z^{(i)}$. Even though, let us assume that we know them so we can write the joint log likelihood of our data as:

$$l(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{i=1}^{m} \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z}^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$l(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{i=1}^{m} \log p(x^{(i)}/z^{(i)}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z^{(i)}; \boldsymbol{\phi})$$

We make the same calculations that we have done for maximum likelihood estimation in **Gaussian Discriminant Analysis.**

MIXTURES OF GAUSSIANS

The results of maximum likelihood estimation are:

$$\phi_j = \sum_{i=1}^m \frac{1(z^{(i)} = j)}{m}$$

$$\mu_{j} = \frac{\sum_{i=1}^{m} \mathbf{1}(\mathbf{z}^{(i)} = \mathbf{j}) \mathbf{x}^{(i)}}{\sum_{i=1}^{m} \mathbf{1}(\mathbf{z}^{(i)} = \mathbf{j})}$$

$$\Sigma j = \frac{\sum_{i=1}^{m} \mathbf{1}(z^{(i)} = j) (x^{(i)} - \mu_j) (x^{(i)} - \mu_j)^T}{\sum_{i=1}^{m} \mathbf{1}(z^{(i)} = j)}$$

In here $z^{(i)}$ represent which of the k Gaussians each $x^{(i)}$ had come from $\{0, 1, ..., k\}$.

The problem is that we don't know $z^{(i)}$.

EXPECTATION MAXIMIZATION MIXTURES OF GAUSSIANS

The solution is the EM algorithm is an iterative algorithm, which has two main steps:

- 1. E-step: "guess" the values of the $z^{(i)}s$.
- 2. M-step: updates parameters of the model based on previous guesses.

Repeat until convergence{

(E-step) For every
$$i, j$$
 set $w_j^{(i)} \coloneqq p(z^{(i)} = j/x^{(i)}; \phi, \mu, \Sigma)$

(M-step) Update the parameters

$$\phi_{j} = \frac{1}{m} \sum_{i=1}^{m} w_{j}^{(i)}$$

$$\mu_{j} = \frac{\sum_{i=1}^{m} w_{j}^{(i)} x^{(i)}}{\sum_{i=1}^{m} w_{j}^{(i)}}$$

$$\Sigma = \frac{\sum_{i=1}^{m} w_{j}^{(i)} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} w_{j}^{(i)}}$$

EXPECTATION MAXIMIZATION MIXTURES OF GAUSSIANS

The "guess" $p(z^{(i)} = j/x^{(i)}; \phi, \mu, \Sigma)$ is calculated by evaluating the density of a Gaussian with mean μ_i and covariance Σ_i at $x^{(i)}$ (the posterior).

$$w_j^{(i)} := p(z^{(i)} = j/x^{(i)}; \phi, \mu, \Sigma) = \frac{p(x^{(i)}/z^{(i)} = j; \mu, \Sigma) p(z^{(i)} = j)}{\sum_{l=1}^{k} p(x^{(i)}/z^{(i)} = l; \mu, \Sigma) p(z^{(i)} = l; \phi)}$$

$$w_j^{(i)} := p(z^{(i)} = j/x^{(i)}; \phi, \mu, \Sigma) = \frac{Gaussian(\mu, \Sigma) \phi_j}{P(X)}$$

Like K-means, this algorithm is also susceptible to local optima, so reinitializing at several different initial parameters may be a good idea.

EXPECTATION MAXIMIZATION JENSEN'S INEQUALITY

THEOREM

Let f be a convex function (if $f''(x) \ge 0$; $\forall x \in R$ or its Hessian is positive semi-definite for vector inputs) whose domain is the set of real numbers and let X be a random variable. Then:

$$E[f(X)] \ge f(EX)$$

If f is strictly convex (f''(x) > 0), then E[f(X)] = f(EX) holds true if and only if X = E[X] with probability 1 (the expected value does not change).

EXPECTATION MAXIMIZATION JENSEN'S INEQUALITY

E M A L G O R I T H M

Suppose we have an **estimation problem** in which we have a **training set** $\{x^{(1)}, \dots, x^{(m)}\}$ consisting of m independent examples.

The **objective** will be to **fit** the **parameters** of a **model** p(x, z; w) to the **data**, where the **likelihood** is given by:

$$l(w) = \sum_{i=1}^{m} log(p(x^{(i)}; w))$$

$$l(w) = \sum_{i=1}^{m} log \sum_{z} p(x^{(i)}, z^{(i)}; w)$$

We want to find the maximum likelihood estimates of the parameters w.

E M A L G O R I T H M

Again, finding the parameters w with MLE is not an easy task because we don't know the latent $z^{(i)}$'s. The EM algorithm will help us overcome the problem.

- Repeatedly construct a lower-bound on l (E-step).
- Optimize that lower-bound (M-step).

ALGORITH

Thus we have the following:

$$l(w) = \sum_{i=1}^{m} log \sum_{z} p(x^{(i)}, z^{(i)}; w)$$

We will build a probability distribution Q_i over the latent variables $z^{(i)}$, where $Q_i(z^{(i)})$ and $\sum Q_i(z^{(i)}) = 1$.

$$l(w) = \sum_{i=1}^{m} log \sum_{z} \frac{Q_{i}(z^{(i)}) p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)})}$$

$$l(w) = \sum_{i=1}^{m} log \sum_{z} E_{z^{(i)} \sim Q_i} \left[\frac{p(x^{(i)}, z^{(i)}; w)}{Q_i(z^{(i)})} \right]$$

E M A L G O R I T H M

Now, we can see that the **log function** is **concave**, which allow us to **define** the **following**:

$$\log \sum_{\mathbf{z}} E_{\mathbf{z}^{(i)} \sim Q_{i}} \left[\frac{p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)}; \mathbf{w})}{Q_{i}(\mathbf{z}^{(i)})} \right] \geq \sum_{\mathbf{z}} E_{\mathbf{z}^{(i)} \sim Q_{i}} \left[\log \frac{p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)}; \mathbf{w})}{Q_{i}(\mathbf{z}^{(i)})} \right]$$

E M A L G O R I T H

Expanding out we have:

$$\sum_{i=1}^{m} log \sum_{z} E_{z^{(i)} \sim Q_{i}} \left[\frac{p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)})} \right] \geq \sum_{i=1}^{m} \sum_{z} E_{z^{(i)} \sim Q_{i}} \left[log \frac{p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)})} \right]$$

$$\sum_{i=1}^{m} log \sum_{z} Q_{i}(z^{(i)}) \left[\frac{p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)})} \right] \geq \sum_{i=1}^{m} \sum_{z} Q_{i}(z^{(i)}) log \frac{p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)})}$$

$$l(w) \ge \sum_{i=1}^{m} \sum_{z} Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)})}$$

We observe that we have a lower bound over the likelihood l(w).

E M A L G O R I T H M

What we want is the inequality to turn into an equality for a current value of w. Thus, when we optimize the lower bound, we are also optimizing the true l(w).

The objective is to find probability distribution Q_i that will transform the inequality to equality.

The only way of doing this is to take the **expectation** of a **constant value** (remembering Jensen's inequality).

$$\frac{p(x^{(i)}, z^{(i)}; w)}{Q_i(z^{(i)})} = c$$

ALGORITH

Elaborating further in the **equation**, we have:

$$Q_i(z^{(i)}) = \frac{p(x^{(i)}, z^{(i)}; w)}{c}$$

$$Q_i(z^{(i)}) \propto p(x^{(i)}, z^{(i)}; w)$$

Since we **know** that $\sum Q_i(z^{(i)}) = 1$

$$1 = \frac{p(x^{(i)}, z^{(i)}; w)}{Q_i(z^{(i)}) c}$$

$$\frac{1}{\sum Q_{i}(z^{(i)})} = \frac{p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)}) c}$$

$$\frac{Q_i(z^{(i)})}{\sum Q_i(z^{(i)})} = \frac{p(x^{(i)}, z^{(i)}; w)}{c}$$
$$c = \sum p(x^{(i)}, z^{(i)}; w)$$

E M A L G O R I T H M

In conclusion we have that:

$$Q_{i}(z^{(i)}) = \frac{p(x^{(i)}, z^{(i)}; w)}{\sum_{z} p(x^{(i)}, z^{(i)}; w)}$$

$$Q_i(z^{(i)}) = \frac{p(x^{(i)}, z^{(i)}; w)}{p(x^{(i)}; w)}$$

$$Q_i(z^{(i)}) = p(z^{(i)}/x^{(i)}; w)$$

The distribution $Q_i(z^{(i)})$ is just the **posterior distribution** of the **latent random** variables $z^{(i)}$'s given we have observed the data.

E M A L G O R I T H M

The **EM algorithm** therefore is as follows:

Repeat until convergence {

1. (E-step): for each *i*, set the lower bound

$$Q_i(z^{(i)}) := p(z^{(i)}/x^{(i)}; w)$$

2. (M-step): optimize the lower bound

$$w \coloneqq \underset{w}{\operatorname{arg\,max}} \sum_{i=1}^{m} \sum_{z} Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)})}$$

}

E M A L G O R I T H M

We can **define**:

$$J(w,Q) = Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; w)}{Q_{i}(z^{(i)})}$$

$$l(w) \leq J(w, Q)$$

Thus, the **EM** algorithm can be viewed as **coordinate** ascent on J, in which the **E-step maximizes** with respect to Q and the **M-step maximizes** it with respect to W.

EM AND MIXTURE OF GAUSSIANS

As we have seen, we can estimate the probability density distribution of a set of data points $\{x^{(1)}, \dots, x^{(m)}\}$ using a mixture of Gaussians.

$$pig(x^{(i)},z^{(i)}ig)=pig(x^{(i)}/z^{(i)}ig)\,pig(z^{(i)}ig)$$

 $z^{(i)} \sim Multinomial(\phi)$

$$x^{(i)}/z^{(i)} = j \sim N(\mu_j, \Sigma_j)$$

NOTE: the **mixture** Gaussians model applicable when $m \gg n$.

EXPECTATION MAXIMIZATION EM AND MIXTURE OF GAUSSIANS

E-STEP:

Applying the **EM algorithm to** the problem of the **mixture** of **Gaussians** we can **perform** the **E step** by getting the **posterior** of the **latent variables**:

$$Q_i(z^{(i)}) := p(z^{(i)}/x^{(i)}; w)$$

$$w^{(i)}_{j} = Q_{i}(z^{(i)} = j) = p(z^{(i)} = j/x^{(i)}; \phi, \mu, \Sigma)$$

Where $Q_i(z^{(i)} = j)$ denotes the **probability** of $z^{(i)}$ taking the value j under the distribution Q_i .

EM AND MIXTURE OF GAUSSIANS

E-STEP:

Expanding the **formula** of the **E** step by **using Bayes' rule**:

$$w^{(i)}_{j} = Q_{i}(z^{(i)}) := p(z^{(i)}/x^{(i)}; w)$$

$$Q_{i}(z^{(i)} = j) = \frac{p(x^{(i)}/z^{(i)} = j)P(z^{(i)} = j)}{\sum_{k} p(x^{(i)}/z^{(i)} = k)P(z^{(i)} = k)}$$

We know that $p(x^{(i)}/z^{(i)}=j)\sim Gaussian$ and $P(z^{(i)}=j)\sim Multinomial$

$$Q_{i}(z^{(i)} = j) = \frac{\frac{1}{(2\pi)^{n/2}|\Sigma|^{\frac{1}{2}}}e^{-\frac{1}{2}(x^{(i)} - \mu_{j})^{T}\Sigma_{j}^{-1}(x^{(i)} - \mu_{j})}\phi_{j}}{\sum_{k} \frac{1}{(2\pi)^{n/2}|\Sigma|^{\frac{1}{2}}}e^{-\frac{1}{2}(x^{(i)} - \mu_{k})^{T}\Sigma_{k}^{-1}(x^{(i)} - \mu_{k})}\phi_{k}}$$

EXPECTATION MAXIMIZATION EM AND MIXTURE OF GAUSSIANS

M-STEP:

For the M step we need to maximize with respect to the parameters ϕ , μ , Σ the following:

 $w^{(0)}w^{(1)}w^{(2)}w^{(3)}$

$$w \coloneqq \arg\max_{w} \sum_{i=1}^{m} \sum_{z} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \phi, \mu, \Sigma)}{Q_i(z^{(i)})}$$

$$\sum_{i=1}^{m} \sum_{z} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \phi, \mu, \Sigma)}{Q_i(z^{(i)})}$$

$$\text{Lower bound of log likelihood}$$

EXPECTATION MAXIMIZATION EM AND MIXTURE OF GAUSSIANS

M-STEP: maximize for μ

Expanding terms out we have:

$$\sum_{i=1}^{m} \sum_{z} Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \phi, \mu, \Sigma)}{Q_{i}(z^{(i)})} = \sum_{i=1}^{m} \sum_{j=1}^{k} w^{(i)}{}_{j} \log \frac{\frac{1}{(2\pi)^{n/2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x^{(i)} - \mu_{j})^{T} \Sigma_{j}^{-1}(x^{(i)} - \mu_{j})} \phi_{j}}{w^{(i)}{}_{j}}$$

Simplifying:

$$= \sum_{i=1}^{m} \sum_{j=1}^{k} w^{(i)}_{j} \left[log \left(\frac{1}{w^{(i)}_{j} (2\pi)^{n/2} |\Sigma|^{\frac{1}{2}}} \right) + log \left(e^{-\frac{1}{2} (x^{(i)} - \mu_{j})^{T} \Sigma_{j}^{-1} (x^{(i)} - \mu_{j})} \phi_{j} \right) \right]$$

EXPECTATION MAXIMIZATION EM AND MIXTURE OF GAUSSIANS

M-STEP: maximize for μ

Taking the derivative with respect to μ_l we have:

$$\nabla_{\mu_{l}} \sum_{i=1}^{m} \sum_{j=1}^{k} w^{(i)}_{j} \left[log \left(\frac{1}{w^{(i)}_{j} (2\pi)^{n/2} |\Sigma|^{\frac{1}{2}}} \right) + log \left(e^{-\frac{1}{2} (x^{(i)} - \mu_{j})^{T} \Sigma_{j}^{-1} (x^{(i)} - \mu_{j})} \phi_{j} \right) \right]$$

$$= \nabla_{\mu_l} \sum_{i=1}^m \sum_{j=1}^k w^{(i)}_j \left[-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j) \right]$$

$$= -\frac{1}{2} \sum_{i=1}^{m} w^{(i)}{}_{l} \nabla_{\mu_{l}} \left[-2\mu_{l}{}^{T} \Sigma_{l}^{-1} x^{(i)} + \mu_{l}{}^{T} \Sigma_{l}^{-1} \mu_{l} \right]$$

EXPECTATION MAXIMIZATION EM AND MIXTURE OF GAUSSIANS

M-STEP: maximize for μ

$$= -\frac{1}{2} \sum_{i=1}^{m} w^{(i)}{}_{l} \nabla_{\mu_{l}} \left[-2\mu_{l}{}^{T} \Sigma_{l}^{-1} x^{(i)} + \mu_{l}{}^{T} \Sigma_{l}^{-1} \mu_{l} \right]$$

$$= -\frac{1}{2} \sum_{i=1}^{m} w^{(i)}_{l} \left[-2\Sigma_{l}^{-1} x^{(i)} + 2\mu_{l}^{T} \Sigma_{j}^{-1} \right]$$

$$\sum_{i=1}^{m} w^{(i)}_{l} \left[\Sigma_{l}^{-1} x^{(i)} - \mu_{l}^{T} \Sigma_{j}^{-1} \right] = 0$$

$$\sum_{i=1}^{m} w^{(i)}_{l} \Sigma_{l}^{-1} x^{(i)} - \sum_{i=1}^{m} w^{(i)}_{l} \mu_{l}^{T} \Sigma_{j}^{-1} = 0$$

EXPECTATION MAXIMIZATION EM AND MIXTURE OF GAUSSIANS

M-STEP: maximize for μ

$$\sum_{i=1}^{m} w^{(i)}_{l} \mu_{l}^{T} \Sigma_{j}^{-1} = \sum_{i=1}^{m} w^{(i)}_{l} \Sigma_{l}^{-1} x^{(i)}$$

$$\mu_l^T \sum_{i=1}^m w^{(i)}_l = \Sigma_l^{-1} \sum_{i=1}^m w^{(i)}_l x^{(i)}$$

$$\mu_{l}^{T} = \Sigma_{l} \Sigma_{l}^{-1} \frac{\sum_{i=1}^{m} w^{(i)}_{l} x^{(i)}}{\sum_{i=1}^{m} w^{(i)}_{l}}$$

$$\mu_{l}^{T} = \frac{\sum_{i=1}^{m} w^{(i)}_{l} x^{(i)}}{\sum_{i=1}^{m} w^{(i)}_{l}}$$

EM AND MIXTURE OF GAUSSIANS

M-STEP: maximize for ϕ

$$\sum_{i=1}^{m} \sum_{j=1}^{k} w^{(i)}_{j} \log \frac{\frac{1}{(2\pi)^{n/2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x^{(i)} - \mu_{j})^{T} \Sigma_{j}^{-1}(x^{(i)} - \mu_{j})} \phi_{j}}{w^{(i)}_{j}}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{k} w^{(i)}_{j} \left[log \left(\frac{1}{w^{(i)}_{j} (2\pi)^{n/2} |\Sigma|^{\frac{1}{2}}} \right) + log \left(e^{-\frac{1}{2} (x^{(i)} - \mu_{j})^{T} \Sigma_{j}^{-1} (x^{(i)} - \mu_{j})} \phi_{j} \right) \right]$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{k} w^{(i)}_{j} \left[\frac{1}{2} (x^{(i)} - \mu_{j})^{T} \Sigma_{j}^{-1} (x^{(i)} - \mu_{j}) + log(\phi_{j}) \right]$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{k} w^{(i)}_{j} log(\phi_{j})$$

EM AND MIXTURE OF GAUSSIANS

M-STEP: maximize for ϕ

Because $\phi \sim Multinomial$ we have an additional constraint that $\sum_{j=1}^{k} \phi_j = 1$. Thus we need to construct our Lagrangian:

$$L(\phi) = \sum_{i=1}^{m} \sum_{j=1}^{k} w^{(i)}_{j} \log(\phi_{j}) + \beta \left(\sum_{j=1}^{k} \phi_{j} - 1\right)$$

$$\frac{\partial L(\phi)}{\partial \phi} = \sum_{i=1}^{m} \frac{w^{(i)}_{j}}{\phi_{j}} + \beta = 0$$

$$\phi_j = \sum_{i=1}^m \frac{w^{(i)}_j}{-\beta}$$

M-STEP: maximize for ϕ

Using the constraint $\sum_{i=1}^{k} \phi_i = 1$. we have:

$$\phi_j = \sum_{i=1}^m \frac{w^{(i)}_j}{-\beta}$$

$$\sum_{j=1}^{k} \phi_j = \sum_{j=1}^{k} \sum_{i=1}^{m} \frac{w^{(i)}_{j}}{-\beta}$$

$$1 = \sum_{j=1}^{k} \sum_{i=1}^{m} \frac{w^{(i)}_{j}}{-\beta}$$

$$1 = \sum_{i=1}^{m} \frac{1}{-\beta} \rightarrow -\beta = m$$

EXPECTATION MAXIMIZATION EM AND MIXTURE OF GAUSSIANS

M-STEP: maximize for ϕ

Finally we have that:

$$\phi_j = \sum_{i=1}^m \frac{w^{(i)}_j}{-\beta}$$

$$\phi_j = \frac{1}{m} \sum_{i=1}^m w^{(i)}_j$$

EM AND NAÏVE BAYES

As we have seen, Naïve Bayes classifier runs for input training examples that take discrete values.

Therefore, given a training set $\{x^{(1)}, \dots, x^{(m)}\}$ where $x^{(i)} \in \{0, 1\}^n$ and $x^{(i)}_i =$ 1{word j appears in document i}.

Suppose we want to find two clusters $z^{(i)} = \{0, 1\}$ ("spam" or "not spam").

The **assumptions** are the following:

- $z^{(i)} \sim Bernoulli(\phi) \rightarrow$ probability that document i comes from cluster 1 or 2.
- $x^{(i)} \sim Multinomial$.
- $P(x^{(i)}/z^{(i)}) = \prod_{i=1}^{n} P(x_i^{(i)}/z^{(i)})$ the appearance of words is independent from each other.
- $P(x_i^{(i)} = 1/z^{(i)} = 0) = \phi_{j/z=0}$

EXPECTATION MAXIMIZATION EM AND NAÏVE BAYES

Computing the **EM algorithm** we **find** that:

• E-Step: find the posterior distribution (estimate where the document comes from).

$$w^{(i)}_{j} = Q_{i}(z^{(i)}) := p(z^{(i)} = 1/x^{(i)}; \phi_{j/z}, \phi)$$

M-Step: maximize the lower bound.

 $w^{(i)}$ captures uncertainty of cluster membership

$$\phi_{j/z=1} = \frac{\sum_{i=1}^{m} w^{(i)} \mathbf{1} \left\{ x_{j}^{(i)} = 1 \right\}}{\sum_{i=1}^{m} w^{(i)}} = \frac{\text{\# times word j is in documents that we think are in cluster 1}}{\text{\# documents (estimated) we think are in cluster 1}}$$

$$\phi_{j/z=0} = \frac{\sum_{i=1}^{m} (1 - w^{(i)}) 1 \left\{ x_j^{(i)} = 1 \right\}}{\sum_{i=1}^{m} (1 - w^{(i)})}$$

$$\phi_{j/z=0} = \frac{\sum_{i=1}^m w^{(i)}}{m}$$

Given a training set $\{x^{(1)}, \dots, x^{(m)}\}$ where $x^{(i)} \in \mathbb{R}^n$ it would be **very difficult** to **model data** with a **mixture** of **Gaussians** when $n \gg m$.

If we model the data as a Gaussian, and estimate the mean and covariance using the usual maximum likelihood estimators we would find that the matrix Σ is singular $\left(\frac{1}{|\Sigma|^{1/2}} = \frac{1}{0}\right)$.

Thus, the maximum likelihood estimates of the parameters result in a Gaussian that places all its probability in the affine space spanned by the data, resulting in a singular covariance matrix.

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = rac{\exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{\mathrm{T}}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)}{\sqrt{(2\pi)^k|oldsymbol{\Sigma}|}}$$

Contours are infinitely thin and infinitely large

Unless $m \gg n$, by a reasonable amount, the maximum likelihood estimates of the mean and covariance may be quite poor.

Factor analysis will be used when $m \approx n$ or when $n \gg m$. We are going to look at **two restrictions** on Σ that will **allow us** to **fit** Σ with **small amounts** of **data**.

1. Constrain Σ to be diagonal.

$$oldsymbol{arSigma} oldsymbol{arSigma} = egin{pmatrix} oldsymbol{\sigma}_1^2 & oldsymbol{0} & oldsymbol{\sigma}_2^2 & ... & oldsymbol{0} \ dots & dots & \ddots & dots \ oldsymbol{0} & oldsymbol{0} & ... & oldsymbol{\sigma}_n^2 \end{pmatrix}$$

2. The diagonal entries must be equal: $\Sigma = \sigma^2 I$.

1. CONSTRAIN Σ TO BE DIAGONAL

The maximum likelihood estimate would be:

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} \left(x_j^{(i)} - \mu_j \right) \left(x_j^{(i)} - \mu_j \right)^T$$

$$\Sigma_{jj} = \frac{1}{m} \sum_{i=1}^{m} \left(x_j^{(i)} - \mu_j \right)^2$$

The **main problem** is that you are **removing** all **correlations** between **features**. → We are **assuming** that the **features** are **independent between them**.

Major axes are axis-aligned.

2. THE DIAGONAL ENTRIES MUST BE EQUAL: $\Sigma = \sigma^2 I$.

The **maximum likelihood** estimate **would be**:

$$\sigma^{2} = \frac{1}{mn} \sum_{i=1}^{n} \sum_{i=1}^{m} \left(x_{j}^{(i)} - \mu_{j} \right)^{2}$$

If we are **fitting** a **full**, **unconstrained**, covariance matrix Σ to data, it is necessary that $m \ge n + 1$ for the **maximum likelihood** estimate of Σ **not** to be **singular**.

Under either of the two restrictions presented, we may obtain a non-singular Σ when $n \geq 2$.

The **problem** is that in **many occasions** we **want** to be able to **capture** some **interesting correlation structure** in the data.

MARGINALS AND CONDITIONALS OF GAUSSIANS

Before talking about the factor analysis model, we will discuss how to find conditional and marginal distributions of random variables with a joint multivariate Gaussian distribution.

Suppose we have a vector-valued random variable:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Where $x_1 \in \mathbb{R}^r$, $x_2 \in \mathbb{R}^s$, and $x \in \mathbb{R}^{r+s}$. Suppose $x \sim N(\mu, \Sigma)$, where:

$$m{\mu} = egin{bmatrix} m{\mu}_1 \ m{\mu}_2 \end{bmatrix} \qquad m{\Sigma} = egin{bmatrix} m{\Sigma}_{11} & m{\Sigma}_{12} \ m{\Sigma}_{21} & m{\Sigma}_{22} \end{bmatrix}$$

 x_1 and x_2 are jointly distributed multivariate Gaussian

 $\mu_1 \in \mathbb{R}^r$, $\mu_2 \in \mathbb{R}^s$, $\Sigma_{11} \in \mathbb{R}^{rxr}$, $\Sigma_{12} \in \mathbb{R}^{rxs}$, $\Sigma_{21} \in \mathbb{R}^{sxr}$ and $\Sigma_{22} \in \mathbb{R}^{sxs}$.

MARGINALS AND CONDITIONALS OF GAUSSIANS

To obtain the marginal distribution of x_1 , we can see that:

$$E[x_1] = \mu_1$$

$$Cov[x_1] = E[(x_1 - \mu_1)(x_1 - \mu_1)] = \Sigma_{11}$$

To demonstrate the previous statement, we can see the joint covariance of x_1 and x_2 :

$$Cov[x] = \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} = E[(x - \mu)(x - \mu)^T]$$

$$Cov[x] = E\left[\begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}^T \right] = E\left[\begin{pmatrix} (x_1 - \mu_1)(x_1 - \mu_1)^T & (x_1 - \mu_1)(x_2 - \mu_2)^T \\ (x_2 - \mu_2)(x_1 - \mu_1)^T & (x_2 - \mu_2)(x_2 - \mu_2)^T \end{pmatrix}$$

Therefore the marginal distribution of x_1 is $N(\mu_1, \Sigma_{11})$.

MARGINALS AND CONDITIONALS OF GAUSSIANS

We can also obtain the marginal conditional distribution of x_1/x_2 :

$$P(x_1/x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{N(\mu, \Sigma)}{N(\mu_2, \Sigma_{22})}$$

Substituting the **formulas** for **both gaussians**, the **joint** and the **marginal** of x_2 , you would **obtain** the **following** (these **computations** are **non-trivial**):

$$x_1/x_2 \sim N(\mu_{1/2}, \Sigma_{1/2})$$
 $\mu_{1/2} = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2)$ $\Sigma_{1/2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$

FACTOR ANALYSIS MODEL

We will **create** a **joint distribution** (x, z) by **assuming** that:

- There is a **latent random variable** $z \sim N(0, I)$, where $z \in \mathbb{R}^k$ such that k < m.
- $x/z \sim N(\mu + \Lambda z, \Psi)$
- $x = \mu + \Lambda z + \varepsilon$, where $\varepsilon \sim N(0, \Psi)$

Therefore, the **parameters** of the **model** are:

• $\mu \in \mathbb{R}^n$, $\Lambda \in \mathbb{R}^{n \times k}$, $\Psi \in \mathbb{R}^{n \times n}$ and Ψ is diagonal (usually k < n).

FACTOR ANALYSIS MODEL

Let us give an **example**.

- $z \in \mathbb{R}^1$
- $x \in \mathbb{R}^2$
- $\Lambda = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- $\Psi = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
- $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

FACTOR ANALYSIS MODEL

Let us give another **example**.

- $z \in \mathbb{R}^2$
- $x \in \mathbb{R}^3$

FACTOR ANALYSIS MODEL

In as **summary**:

- Each datapoint $x^{(i)}$ is generated by sampling a k dimension multivariate Gaussian $z^{(i)}$.
- Then, it is mapped to a *n*-dimensional affine space of \mathbb{R}^n by computing $\mu + \Lambda z^{(i)}$.
- Lastly, $x^{(i)}$ is generated by adding covariance Ψ noise to $\mu + \Lambda z^{(i)}$.

FACTOR ANALYSIS MODEL

We will work out exactly what distribution our model defines using marginal and conditional distributions.

Our random variables z and x have a joint Gaussian distribution:

$$\begin{bmatrix} z \\ x \end{bmatrix} \sim N(\mu_{zx}, \Sigma)$$

We want to find μ_{zx} and Σ .

FACTOR ANALYSIS MODEL

To find μ_{zx} , let us remember that E[z] = 0 because $z \sim N(0, I)$.

Also we can **compute** the **expected value** of x:

$$E[x] = E[\mu + \Lambda z + \varepsilon] = E[\mu] + \Lambda E[z] + E[\varepsilon]$$

$$E[x] = \mu$$

Therefore we have:

$$\mu_{zx} = \begin{bmatrix} E[z] \\ E[x] \end{bmatrix} = \begin{bmatrix} \vec{0} \\ \mu \end{bmatrix}$$

FACTOR ANALYSIS MODEL

To **find** Σ , we need to compute:

•
$$\Sigma_{zz} = E[(z - E[z])(z - E[z])^T]$$

•
$$\Sigma_{zx} = E[(z - E[z])(x - E[x])^T]$$

•
$$\Sigma_{xx} = E[(x - E[x])(x - E[x])^T]$$

• Σ_{xz} (it is **not needed** because Σ_{zx} and Σ_{zx} are **symmetric** $\Sigma_{zx} = \Sigma_{xz}^T$).

Since $z \sim N(0, I)$ we have $\Sigma_{zz} = I$.

FACTOR ANALYSIS MODEL

Now we find Σ_{zx} :

$$egin{aligned} oldsymbol{arSigma}_{zx} &= E[(z-E[z])(x-E[x])^T] \ oldsymbol{arSigma}_{zx} &= Eig[ig(z-ar{\mathbf{0}}ig)(x-\mu)^Tig] \ oldsymbol{arSigma}_{zx} &= Eig[ig(z)(x-\mu)^Tig] \ oldsymbol{arSigma}_{zx} &= Eig[ig(z)(\mu+\Lambda z+\varepsilon-\mu)^Tig] \ oldsymbol{arSigma}_{zx} &= oldsymbol{arSigma}^T Eig[zz^Tig] + Eig[zarepsilon^Tig] \end{aligned}$$

Because z and ε are independent $E[z\varepsilon^T] = E[z]E[\varepsilon^T] = 0$. Also we have $E[zz^T] = Cov(z) = I$:

$$\Sigma_{zx} = \Lambda^T$$

FACTOR ANALYSIS MODEL

Now we find Σ_{xx} :

$$\Sigma_{xx} = E[(\mu + \Lambda z + \varepsilon - \mu)(\mu + \Lambda z + \varepsilon - \mu)^{T}]$$

$$\Sigma_{xx} = E[(\Lambda z + \varepsilon)(\Lambda z + \varepsilon)^{T}]$$

$$\Sigma_{xx} = E[\Lambda z z^{T} \Lambda^{T} + \varepsilon z^{T} \Lambda^{T} + \Lambda z \varepsilon^{T} + \varepsilon \varepsilon^{T}]$$

$$\Sigma_{xx} = E[\Lambda z z^{T} \Lambda^{T}] + E[\varepsilon z^{T} \Lambda^{T}] + E[\Lambda z \varepsilon^{T}] + E[\varepsilon \varepsilon^{T}]$$

$$\Sigma_{xx} = E[\Lambda z z^{T} \Lambda^{T}] + \Lambda^{T} E[\varepsilon] E[z^{T}] + \Lambda E[z] E[\varepsilon^{T}] + E[\varepsilon \varepsilon^{T}]$$

$$\Sigma_{xx} = \Lambda E[z z^{T}] \Lambda^{T} + 0 + 0 + Cov(\varepsilon)$$

$$\Sigma_{xx} = \Lambda \Lambda^{T} + \Psi$$

FACTOR ANALYSIS MODEL

With Σ_{xx} , Σ_{zz} , Σ_{zx} , and Σ_{xz} we can now build Σ :

$$\Sigma = \begin{bmatrix} \Sigma_{zz} & \Sigma_{zx} \\ \Sigma_{xz} & \Sigma_{xx} \end{bmatrix} = \begin{bmatrix} I & \Lambda^T \\ \Lambda & \Lambda\Lambda^T + \Psi \end{bmatrix}$$

Therefore, the **joint distribution** of (z, x) is **defined** as:

$$\begin{bmatrix} \mathbf{z} \\ \mathbf{x} \end{bmatrix} \sim N \left(\begin{bmatrix} \vec{\mathbf{0}} \\ \boldsymbol{\mu} \end{bmatrix}, \begin{bmatrix} \mathbf{I} & \boldsymbol{\Lambda}^T \\ \boldsymbol{\Lambda} & \boldsymbol{\Lambda}\boldsymbol{\Lambda}^T + \boldsymbol{\Psi} \end{bmatrix} \right)$$

And the **marginal distribution** of x would be:

$$x \sim N(\mu, \Lambda \Lambda^T + \Psi)$$

FACTOR ANALYSIS MODEL

The **parameters** of our **model** would be μ , Λ , and Ψ .

Therefore, given a training set $\{x^{(1)},...,x^{(m)}\}$ we would like to make maximum likelihood estimation for the parameters.

$$l(\mu, \Lambda, \Psi) = \log \prod_{i=1}^{m} P(x^{(i)}) = \log \prod_{i=1}^{m} Gaussian(\mu, \Lambda \Lambda^{T} + \Psi)$$

The procedure would be the same, take derivatives with respect to each parameter, equal to 0 and solve for each parameter.

But maximizing this formula explicitly is hard, we have not found an algorithm that does it in closed-form.

EM FOR FACTOR ANALYSIS: E-STEP

We will use the **EM algorithm** instead of **maximum likelihood estimation**.

We need to compute $Q_i(z^{(i)}) = p(z^{(i)}/x^{(i)}; \mu, \Lambda, \Psi)$. We already know how to compute a conditional probability for a Gaussian.

$$\mathbf{z}^{(i)}/\mathbf{x}^{(i)} \sim N\left(\mu_{\mathbf{z}^{(i)}/\mathbf{x}^{(i)}}, \Sigma_{\mathbf{z}^{(i)}/\mathbf{x}^{(i)}}\right)$$

$$\mu_{1/2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2) \rightarrow \mu_{z^{(i)}/x^{(i)}} = \Lambda^T (\Lambda \Lambda^T + \Psi)^{-1} (x^{(i)} - \mu)$$

$$\Sigma_{1/2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} \to \Sigma_{z^{(i)}/x^{(i)}} = I - \Lambda^T (\Lambda\Lambda^T + \Psi)^{-1}\Lambda$$

EM FOR FACTOR ANALYSIS: E-STEP

Therefore, we have that distribution $Q_i(z^{(i)})$ is defined as:

$$z^{(i)}/x^{(i)} \sim N\left(\mu_{z^{(i)}/x^{(i)}}, \Sigma_{z^{(i)}/x^{(i)}}\right)$$

$$Q_i(z^{(i)}) = \frac{1}{(2\pi)^{k/2} |\Sigma_{z^{(i)}|x^{(i)}}|^{1/2}} \exp\left(-\frac{1}{2} (z^{(i)} - \mu_{z^{(i)}|x^{(i)}})^T \Sigma_{z^{(i)}|x^{(i)}}^{-1} (z^{(i)} - \mu_{z^{(i)}|x^{(i)}})\right)$$

EM FOR FACTOR ANALYSIS: M-STEP

Remember that the joint log likelihood was expressed as follows.

$$l(w) = \sum_{i=1}^{m} \sum_{z} Q_{i}(z^{(i)}) log\left(\frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_{i}(z^{(i)})}\right)$$

Because now, z is a **continuous variable**, we have that the **joint log likelihood** will be **defined** as:

$$l(w) = \sum_{i=1}^{m} log \int_{z^{(i)}} Q_{i}(z^{(i)}) log \left(\frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_{i}(z^{(i)})} \right) dz^{(i)}$$

We want to maximize this expression.

EM FOR FACTOR ANALYSIS: M-STEP

We will expand the logarithm.

$$l(w) = \sum_{i=1}^{m} \int_{z^{(i)}} Q_i(z^{(i)}) \log \left(\frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_i(z^{(i)})} \right) dz^{(i)}$$

$$l(w) = \sum_{i=1}^{m} \int_{\mathbf{z}^{(i)}} \mathbf{Q}_{i}(\mathbf{z}^{(i)}) \left[log(p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)}; \boldsymbol{\mu}, \boldsymbol{\Lambda}, \boldsymbol{\Psi})) - log(\mathbf{Q}_{i}(\mathbf{z}^{(i)})) \right] d\mathbf{z}^{(i)}$$

We know that $p(x^{(i)}, z^{(i)}) = p(x^{(i)}/z^{(i)})p(z^{(i)})$:

$$l(w) = \sum_{i=1}^{m} \int_{z^{(i)}} Q_{i}(z^{(i)}) \left[log \left(p(x^{(i)}/z^{(i)}; \mu, \Lambda, \Psi) p(z^{(i)}) \right) - log \left(Q_{i}(z^{(i)}) \right) \right] dz^{(i)}$$

EM FOR FACTOR ANALYSIS: M-STEP

Expanding the **equation** we have:

$$l(w) = \sum_{i=1}^{m} \int_{z^{(i)}} Q_i(z^{(i)}) \left[log\left(p(x^{(i)}/z^{(i)}; \mu, \Lambda, \Psi)p(z^{(i)})\right) - log\left(Q_i(z^{(i)})\right) \right] dz^{(i)}$$

$$l(w) = \sum_{i=1}^{m} \int_{\mathbf{z}^{(i)}} Q_i(\mathbf{z}^{(i)}) \left[log\left(p(\mathbf{x}^{(i)}/\mathbf{z}^{(i)}; \boldsymbol{\mu}, \boldsymbol{\Lambda}, \boldsymbol{\Psi})\right) + log\left(p(\mathbf{z}^{(i)})\right) - log\left(Q_i(\mathbf{z}^{(i)})\right) \right] d\mathbf{z}^{(i)}$$

Applying the definition of the expected value of $z^{(i)}$ under the distribution Q_i :

$$\begin{split} E_{z^{(i)} \sim Q_i} \big[z^{(i)} \big] &= \int\limits_{z^{(i)}} Q_i \big(z^{(i)} \big) \, z^{(i)} dz^{(i)} \\ l(w) &= \sum_{i=1}^m E_{z^{(i)} \sim Q_i} \left[log \left(p \big(x^{(i)} / z^{(i)}; \mu, \Lambda, \Psi \big) \right) + log \left(p \big(z^{(i)} \big) \right) - log \left(Q_i \big(z^{(i)} \big) \right) \right] \end{split}$$

EM FOR FACTOR ANALYSIS: M-STEP

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[log \left(p(x^{(i)}/z^{(i)}; \mu, \Lambda, \Psi) \right) + log \left(p(z^{(i)}) \right) - log \left(Q_i(z^{(i)}) \right) \right]$$

Substituting the distributions we notice that the only term depending on the parameters is:

$$log(p(x^{(i)}/z^{(i)};\mu,\Lambda,\Psi)).$$

Notice that $Q_i(z^{(i)})$ is a fixed Gaussian (known parameters that resulted from the previous maximization or initialization).

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[log \left(p(x^{(i)}/z^{(i)}; \mu, \Lambda, \Psi) \right) + log \left(Gaussian(\vec{0}, I) \right) - log \left(Gaussian(\mu_{z^{(i)}/x^{(i)}}, \Sigma_{z^{(i)}/x^{(i)}}) \right) \right]$$

EM FOR FACTOR ANALYSIS: M-STEP

We drop the terms not depending on the parameters:

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[log \left(p(x^{(i)}/z^{(i)}; \mu, \Lambda, \Psi) \right) + log \left(Gaussian(\vec{0}, I) \right) - log \left(Gaussian(\mu_{z^{(i)}/x^{(i)}}, \Sigma_{z^{(i)}/x^{(i)}}) \right) \right]$$

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[log \left(p(x^{(i)}/z^{(i)}; \mu, \Lambda, \Psi) \right) \right]$$

Where we know that:

$$x^{(i)}/z^{(i)} \sim Gaussian(\mu_{x^{(i)}/z^{(i)}}, \Sigma_{x^{(i)}/z^{(i)}})$$

EM FOR FACTOR ANALYSIS: M-STEP

We obtain the mean and covariance matrix of the distribution of $x^{(i)}/z^{(i)}$:

$$x^{(i)}/z^{(i)} \sim Gaussian(\mu_{x^{(i)}/z^{(i)}}, \Sigma_{x^{(i)}/z^{(i)}})$$

$$\begin{bmatrix} \mathbf{z} \\ \mathbf{x} \end{bmatrix} \sim N \left(\begin{bmatrix} \vec{\mathbf{0}} \\ \boldsymbol{\mu} \end{bmatrix}, \begin{bmatrix} \mathbf{I} & \boldsymbol{\Lambda}^T \\ \boldsymbol{\Lambda} & \boldsymbol{\Lambda}\boldsymbol{\Lambda}^T + \boldsymbol{\Psi} \end{bmatrix} \right)$$

$$\mu_{2/1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1) \rightarrow \mu_{x^{(i)}/z^{(i)}} = \mu + \Lambda I (z^{(i)} - \vec{0}) = \mu + \Lambda I z^{(i)}$$

$$\Sigma_{2/1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \rightarrow \Sigma_{\chi^{(i)}/z^{(i)}} = \Lambda \Lambda^T + \Psi - (\Lambda I^{-1} \Lambda^T) = \Psi$$

EM FOR FACTOR ANALYSIS: M-STEP

Substituting the mean and covariance matrix in the function that we want to maximize:

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[log \left(p(x^{(i)}/z^{(i)}; \mu, \Lambda, \Psi) \right) \right]$$

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[log \left(Gaussian(\mu_{x^{(i)}/z^{(i)}}, \Sigma_{x^{(i)}/z^{(i)}}) \right) \right]$$

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} [log(Gaussian(\mu + \Lambda z^{(i)}, \Psi))]$$

EM FOR FACTOR ANALYSIS: M-STEP

Representing the explicit form of the Gaussian:

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} [log(Gaussian(\mu + \Lambda z^{(i)}, \Psi))]$$

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[log \left(\frac{1}{\sqrt{2\pi} |\Psi|^{1/2}} exp \left(-\frac{1}{2} \left(x^{(i)} - \mu - \Lambda z^{(i)} \right)^T \Psi^{-1} \left(x^{(i)} - \mu - \Lambda z^{(i)} \right) \right) \right) \right]$$

$$l(w) = \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[-\frac{1}{2} log(|\Psi|) - \frac{1}{2} log(2\pi) - \frac{1}{2} \left[\left(x^{(i)} - \mu - \Lambda z^{(i)} \right)^T \Psi^{-1} \left(x^{(i)} - \mu - \Lambda z^{(i)} \right) \right] \right]$$

$$l(w) = \sum_{i=1}^{m} -E_{z^{(i)} \sim Q_i} \left[\frac{1}{2} log(|\Psi|) + \frac{1}{2} \left[\left(x^{(i)} - \mu - \Lambda z^{(i)} \right)^T \Psi^{-1} \left(x^{(i)} - \mu - \Lambda z^{(i)} \right) \right] \right]$$

EM FOR FACTOR ANALYSIS: M-STEP

Maximizing with respect to Λ :

$$\nabla \sum_{i=1}^{m} -E_{z^{(i)} \sim Q_{i}} \left[\frac{1}{2} log(|\Psi|) + \frac{1}{2} \left[\left(x^{(i)} - \mu - \Lambda z^{(i)} \right)^{T} \Psi^{-1} \left(x^{(i)} - \mu - \Lambda z^{(i)} \right) \right] \right] = 0$$

$$\nabla \sum_{i=1}^{m} -E_{z^{(i)} \sim Q_i} \left[\frac{1}{2} \left[\left(x^{(i)} - \mu - \Lambda z^{(i)} \right)^T \Psi^{-1} \left(x^{(i)} - \mu - \Lambda z^{(i)} \right) \right] \right] = 0$$

Distributing operations and getting only results depending only on Λ we have:

$$\nabla \sum_{i=1}^{m} -E_{z^{(i)} \sim Q_{i}} \left[\frac{1}{2} \left[-x^{(i)^{T}} \Psi^{-1} \Lambda z^{(i)} + \mu^{T} \Psi^{-1} \Lambda z^{(i)} - z^{(i)^{T}} \Lambda^{T} \Psi^{-1} x^{(i)} + z^{(i)^{T}} \Lambda^{T} \Psi^{-1} \mu + z^{(i)^{T}} \Lambda^{T} \Psi^{-1} \Lambda z^{(i)} \right] \right] = 0$$

EM FOR FACTOR ANALYSIS: M-STEP

Reducing terms:

$$\nabla \sum_{i=1}^{m} -E_{\mathbf{z}^{(i)} \sim Q_{i}} \left[\frac{1}{2} \left[-x^{(i)^{T}} \Psi^{-1} \Lambda \mathbf{z}^{(i)} + \mu^{T} \Psi^{-1} \Lambda \mathbf{z}^{(i)} - \mathbf{z}^{(i)^{T}} \Lambda^{T} \Psi^{-1} x^{(i)} + \mathbf{z}^{(i)^{T}} \Lambda^{T} \Psi^{-1} \mu + \mathbf{z}^{(i)^{T}} \Lambda^{T} \Psi^{-1} \Lambda \mathbf{z}^{(i)} \right] \right] = \mathbf{0}$$

$$\nabla \sum_{i=1}^{m} -E_{z^{(i)} \sim Q_{i}} \left[\frac{1}{2} \left[z^{(i)^{T}} \Lambda^{T} \Psi^{-1} \Lambda z^{(i)} + 2 z^{(i)^{T}} \Lambda^{T} \Psi^{-1} \mu - 2 z^{(i)^{T}} \Lambda^{T} \Psi^{-1} x^{(i)} \right] \right] = 0$$

$$\nabla \sum_{i=1}^{m} -E_{z^{(i)} \sim Q_{i}} \left[\frac{1}{2} \left[z^{(i)^{T}} \Lambda^{T} \Psi^{-1} \Lambda z^{(i)} + 2 z^{(i)^{T}} \Lambda^{T} \Psi^{-1} (\mu - x^{(i)}) \right] \right] = 0$$

$$\nabla \sum_{i=1}^{m} E_{z^{(i)} \sim Q_{i}} \left[-\frac{1}{2} z^{(i)^{T}} \Lambda^{T} \Psi^{-1} \Lambda z^{(i)} + z^{(i)^{T}} \Lambda^{T} \Psi^{-1} (x^{(i)} - \mu) \right] = 0$$

EM FOR FACTOR ANALYSIS: M-STEP

We apply the following properties $\nabla_x b^T x = b$ and $\nabla_x x^T A x = 2Ax$:

$$\nabla \sum_{i=1}^{m} E_{z^{(i)} \sim Q_{i}} \left[-\frac{1}{2} z^{(i)^{T}} \Lambda^{T} \Psi^{-1} \Lambda z^{(i)} + z^{(i)^{T}} \Lambda^{T} \Psi^{-1} (x^{(i)} - \mu) \right] = 0$$

$$\nabla \sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[-\frac{1}{2} \Lambda^T \Psi^{-1} z^{(i)} z^{(i)}^T \Lambda + \Psi^{-1} (x^{(i)} - \mu) z^{(i)}^T \Lambda \right] = 0$$

$$\sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[-\frac{1}{2} 2 \left(\Psi^{-1} z^{(i)} z^{(i)}^T \Lambda \right) + \Psi^{-1} \left(x^{(i)} - \mu \right) z^{(i)}^T \right] = 0$$

$$\sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[-\Psi^{-1} z^{(i)} z^{(i)^T} \Lambda + \Psi^{-1} (x^{(i)} - \mu) z^{(i)^T} \right] = 0$$

EM FOR FACTOR ANALYSIS: M-STEP

We **distribute** the **expected value** and the **sum**:

$$\sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[-\Psi^{-1} z^{(i)} z^{(i)}^T \Lambda + \Psi^{-1} (x^{(i)} - \mu) z^{(i)}^T \right] = 0$$

$$-\sum_{i=1}^{m} E_{z^{(i)} \sim Q_{i}} \left[\Psi^{-1} z^{(i)} z^{(i)^{T}} \Lambda \right] + \sum_{i=1}^{m} E_{z^{(i)} \sim Q_{i}} \left[\Psi^{-1} \left(x^{(i)} - \mu \right) z^{(i)^{T}} \right] = 0$$

$$\Psi^{-1}\Lambda \sum_{i=1}^{m} E_{z^{(i)} \sim Q_{i}} \left[z^{(i)} z^{(i)^{T}} \right] = \Psi^{-1} \sum_{i=1}^{m} (x^{(i)} - \mu) E_{z^{(i)} \sim Q_{i}} \left[z^{(i)^{T}} \right]$$

$$\Lambda \sum_{i=1}^{m} E_{z^{(i)} \sim Q_{i}} \left[z^{(i)} z^{(i)^{T}} \right] = \sum_{i=1}^{m} (x^{(i)} - \mu) E_{z^{(i)} \sim Q_{i}} \left[z^{(i)^{T}} \right]$$

EM FOR FACTOR ANALYSIS: M-STEP

We solve for Λ :

$$\Lambda \sum_{i=1}^{m} E_{z^{(i)} \sim Q_{i}} \left[z^{(i)} z^{(i)^{T}} \right] = \sum_{i=1}^{m} (x^{(i)} - \mu) E_{z^{(i)} \sim Q_{i}} \left[z^{(i)^{T}} \right]$$

$$\Lambda = \left(\sum_{i=1}^{m} (x^{(i)} - \mu) E_{z^{(i)} \sim Q_i} \left[z^{(i)^T}\right]\right) \left(\sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[z^{(i)} z^{(i)^T}\right]\right)^{-1}$$

It is **interesting** to **note** the **close relationship between this equation** and the **normal equation** that we'd **derived** for **least squares regression**:

$$w^T = (y^T X)(X^T X)^{-1}$$

EM FOR FACTOR ANALYSIS: M-STEP

The analogy is that here, the x's are a linear function of the z's (plus noise).

Given the "guesses" for z that the E-step has found, we will now try to estimate the unknown linearity Λ relating the x's and z's.

$$w^T = (y^T X)(X^T X)^{-1}$$

$$\Lambda = \left(\sum_{i=1}^{m} \left(x^{(i)} - \mu\right) E_{z^{(i)} \sim Q_i} \left[z^{(i)^T}\right]\right) \left(\sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[z^{(i)} z^{(i)^T}\right]\right)^{-1}$$

The final step is to work out the expectations $E_{z^{(i)} \sim Q_i} \left[z^{(i)}^T \right]$ and $E_{z^{(i)} \sim Q_i} \left[z^{(i)} z^{(i)}^T \right]$.

EM FOR FACTOR ANALYSIS: M-STEP

The expectation $E_{z^{(i)} \sim Q_i}[z^{(i)^T}]$ we already have it from our previous definition:

$$\boldsymbol{E}_{\boldsymbol{z}^{(i)} \sim \boldsymbol{Q}_{i}} \left[\boldsymbol{z}^{(i)^{T}} \right] = \boldsymbol{\mu}_{\boldsymbol{z}^{(i)}/\boldsymbol{x}^{(i)}}^{T}$$

$$E_{z^{(i)} \sim Q_i} \left[z^{(i)^T} \right] = \left(\Lambda^T \left(\Lambda \Lambda^T + \Psi \right)^{-1} \left(x^{(i)} - \mu \right) \right)^T$$

For the expectation $E_{z^{(i)} \sim Q_i} \left[z^{(i)} z^{(i)}^T \right]$, we have the following definition:

$$Cov(Y) = E[YY^T] - E[Y]E[Y]^T$$

$$E_{z^{(i)} \sim Q_i} \left[z^{(i)} z^{(i)}^T \right] = \mu_{z^{(i)}/x^{(i)}} \mu_{z^{(i)}/x^{(i)}}^T + \Sigma_{z^{(i)}/x^{(i)}}$$

EM FOR FACTOR ANALYSIS: M-STEP

Substituting both expectations back in the **expression** of Λ we have:

$$\Lambda = \left(\sum_{i=1}^{m} (x^{(i)} - \mu) E_{z^{(i)} \sim Q_i} \left[z^{(i)^T}\right]\right) \left(\sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[z^{(i)} z^{(i)^T}\right]\right)^{-1}$$

$$\Lambda = \left(\sum_{i=1}^{m} (x^{(i)} - \mu) \mu_{z^{(i)}/x^{(i)}}^{T}\right) \left(\sum_{i=1}^{m} \mu_{z^{(i)}/x^{(i)}} \mu_{z^{(i)}/x^{(i)}}^{T} + \Sigma_{z^{(i)}/x^{(i)}}^{T}\right)^{-1}$$

In this last equation $\Sigma_{z^{(i)}/x^{(i)}}$ is the covariance matrix of the posterior, which represents the uncertainty of our estimations.

EM FOR FACTOR ANALYSIS: M-STEP

Now, that we have the parameter Λ , we want to maximize with respect to μ :

$$\nabla \sum_{\mu} \sum_{i=1}^{m} -E_{z^{(i)} \sim Q_{i}} \left[\frac{1}{2} \left[\left(x^{(i)} - \mu - \Lambda z^{(i)} \right)^{T} \left(x^{(i)} - \mu - \Lambda z^{(i)} \right) \right] \right] = 0$$

To save time in the computations, the result of the maximization for is μ :

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

An important thing is that this parameter does not change as the parameters vary, which is different for the parameter Λ which we have just calculated.

Therefore, μ can be calculated just once and needs not be further updated as the algorithm is run.

EM FOR FACTOR ANALYSIS: M-STEP

Finally, if you **maximize** for Ψ you **obtain** the **following matrix**:

$$\Phi = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^{T}} - x^{(i)} \mu_{z^{(i)}/x^{(i)}}^{T} \Lambda^{T} - \Lambda \mu_{z^{(i)}/x^{(i)}} x^{(i)^{T}} + \Lambda \left(\mu_{z^{(i)}/x^{(i)}} \mu_{z^{(i)}/x^{(i)}}^{T} + \Sigma_{z^{(i)}/x^{(i)}} \right) \Lambda^{T}$$

The diagonal of Ψ is obtained by setting $\Psi_{ii} = \Phi_{ii}$

EXPECTATION MAXIMIZATION

AND FACTOR ANALYSIS

EM FOR FACTOR ANALYSIS: SUMMARY

- 1. Initialize parameters μ , Λ , and Ψ .
- 2. Estimate the posterior distribution $Q_i(z^{(i)})$:

$$\mu_{\mathbf{z}^{(i)}/\mathbf{x}^{(i)}} = \Lambda^{T} (\Lambda \Lambda^{T} + \boldsymbol{\Psi})^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu})$$

$$\Sigma_{\mathbf{z}^{(i)}/\mathbf{x}^{(i)}} = I - \Lambda^{T} (\Lambda \Lambda^{T} + \boldsymbol{\Psi})^{-1} \Lambda$$

$$z^{(i)}/x^{(i)} \sim N\left(\mu_{z^{(i)}/x^{(i)}}, \Sigma_{z^{(i)}/x^{(i)}}\right)$$

$$E_{z^{(i)} \sim Q_i} \left[z^{(i)} \right] = \mu_{z^{(i)}/x^{(i)}}^T$$

$$\mathbf{z}^{(i)}/\mathbf{x}^{(i)} \sim N\left(\boldsymbol{\mu}_{\mathbf{z}^{(i)}/\mathbf{x}^{(i)}}, \boldsymbol{\Sigma}_{\mathbf{z}^{(i)}/\mathbf{x}^{(i)}}\right) \qquad \qquad \mathbf{E}_{\mathbf{z}^{(i)} \sim Q_i}\left[\mathbf{z}^{(i)^T}\right] = \left(\boldsymbol{\Lambda}^T (\boldsymbol{\Lambda} \boldsymbol{\Lambda}^T + \boldsymbol{\Psi})^{-1} (\boldsymbol{x}^{(i)} - \boldsymbol{\mu})\right)^T$$

$$Q_i(z^{(i)}) = \frac{1}{(2\pi)^{k/2} |\Sigma_{z^{(i)}|x^{(i)}}|^{1/2}} \exp\left(-\frac{1}{2} (z^{(i)} - \mu_{z^{(i)}|x^{(i)}})^T \Sigma_{z^{(i)}|x^{(i)}}^{-1} (z^{(i)} - \mu_{z^{(i)}|x^{(i)}})\right)$$

3. Compute parameters and go back to step 2 (repeat until convergence):

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \qquad \Lambda = \left(\sum_{i=1}^{m} (x^{(i)} - \mu) E_{z^{(i)} \sim Q_i} \left[z^{(i)^T} \right] \right) \left(\sum_{i=1}^{m} E_{z^{(i)} \sim Q_i} \left[z^{(i)} z^{(i)^T} \right] \right)^{-1} \qquad \Psi_{ii} = \Phi_{ii}$$
Check provious

Computed only one time

EM FOR FACTOR ANALYSIS: SUMMARY

To **compute** the **probability** of a **new sample** we would have $x^{(i)}$:

$$x/z\sim N(\mu + \Lambda z, \Psi)$$

$$p(x) = \frac{1}{\sqrt{2\pi} |\Psi|^{1/2}} exp\left(-\frac{1}{2} \left(x^{(i)} - \mu - \Lambda z^{(i)}\right)^T \Psi^{-1} \left(x^{(i)} - \mu - \Lambda z^{(i)}\right)\right)$$