# **Chapter: 19. GRAPHS OF TRIGONOMETRIC FUNCTIONS**

Exercise: 19

Question: 1

Draw the graph of

#### **Solution:**

To draw the graph of the curve sin(3x) assume some standard angle measures which will help in locating the points and drawing the curve.

| X     | $\frac{\pi}{6}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | п | $\frac{3\pi}{2}$ | 2π |
|-------|-----------------|-----------------|-----------------|---|------------------|----|
| Sin3x | 1               | 0               | -1              | 0 | 1                | 0  |

Therefore, the graph of curve sin(3x) can be drawn as



Here, the frequency of the function sin(x) is increased by 3 times.

Question: 2

Draw the graph of

### **Solution:**

To draw the graph of the curve  $3\sin(x)$  assume some standard angle measures which will help in locating the points and drawing the curve.

| X       | $\frac{\pi}{6}$ | $\frac{\pi}{3}$       | $\frac{\pi}{2}$ | п | $\frac{3\pi}{2}$ | 2π |
|---------|-----------------|-----------------------|-----------------|---|------------------|----|
| 3sin(x) | 3 2             | $\frac{3\sqrt{3}}{2}$ | 3               | 0 | -3               | 0  |

Therefore, the graph of curve 3sin(x) can be drawn as



Here, the amplitude of the function sin(x) is increased by 3 times.

# **Question: 3**

To draw the graph of the curve 2sin(3x) assume some standard angle measures which will help in locating the points and drawing the curve

| X        | $\frac{\pi}{2}$ | п | $\frac{3\pi}{2}$ | 2π |
|----------|-----------------|---|------------------|----|
| 2sin(3x) | 2               | 0 | 2                | 0  |

The graph looks like:



# **Question: 4**

Draw the graph of

#### **Solution:**

To draw the graph of the curve  $2\cos(3x)$  assume some standard angle measures which will help in locating the points and drawing the curve.

| X        | $\frac{\pi}{6}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | п  | $\frac{3\pi}{2}$ | 2π |
|----------|-----------------|-----------------|-----------------|----|------------------|----|
| 2cos(3x) | 0               | -2              | 0               | -2 | 0                | 2  |

Therefore, the graph of curve 2cos(3x) can be drawn as



Here, the amplitude and frequency of the function  $\cos(x)$  is increased by 2 and 3 times respectively.

# Question: 5

Draw the graph of

### **Solution:**

To draw the graph of the curve  $\sin(x/2)$  assume some standard angle measures which will help in locating the points and drawing the curve.

| x        | $\frac{\pi}{6}$                | $\frac{\pi}{3}$ | $\frac{\pi}{2}$      | п | $\frac{3\pi}{2}$     | 2π |
|----------|--------------------------------|-----------------|----------------------|---|----------------------|----|
| sin(x/2) | $\frac{\sqrt{3-1}}{2\sqrt{2}}$ | $\frac{1}{2}$   | $\frac{1}{\sqrt{2}}$ | 1 | $\frac{1}{\sqrt{2}}$ | 0  |

Therefore, the graph of curve  $2\cos(3x)$  can be drawn as



Here, the frequency of the function sin(x) is decreased by 0.5 times.

# Question: 6

Draw the graphs o

# **Solution:**

For sinx

| x    | $\frac{\pi}{6}$ | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | п | $\frac{3\pi}{2}$ | 2π |
|------|-----------------|----------------------|-----------------|---|------------------|----|
| Sinx | $\frac{1}{2}$   | $\frac{\sqrt{3}}{2}$ | 1               | 0 | -1               | 0  |

For cosx

| х    | $\frac{\pi}{6}$      | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | п  | $\frac{3\pi}{2}$ | 2π |
|------|----------------------|-----------------|-----------------|----|------------------|----|
| cosx | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$   | 0               | -1 | 0                | 1  |



The green line represents curve for sin(x) and blue for cos(x) for  $[0,2\pi]$ .

# **Question:** 7

Draw the graphs o

# **Solution:**

For cosx

| x    | $\frac{\pi}{6}$      | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | П  | $\frac{3\pi}{2}$ | 2π |
|------|----------------------|-----------------|-----------------|----|------------------|----|
| cosx | $\frac{\sqrt{3}}{2}$ | 1 2             | 0               | -1 | 0                | 1  |

# For cos(2x)

| x       | $\frac{\pi}{6}$ | $\frac{\pi}{3}$     | $\frac{\pi}{2}$ | П | $\frac{3\pi}{2}$ | 2π |
|---------|-----------------|---------------------|-----------------|---|------------------|----|
| Cos(2x) | $\frac{1}{2}$   | - <del>1</del><br>2 | -1              | 1 | -1               | 1  |

The graph is:-



Blue line depicts curve cos(2x)

Purple lines depict cos(x).