representation of words and documents.

We train Context-GPU and set θ and σ to 0.7 and 0.8 respectively based on a grid search of values in [0.5, 0.6, 0.7, 0.8, 0.9] using 5-fold cross validation. We set the maximum number of Gibbs sampling iterations to 1500. We compare Context-GPU with the following baselines:

- LDA. We use the LDA implementation in MALLET⁶ with the default settings and perform hyperparameter optimization every 200 iterations.
- Generalized Pólya urn (GPU) model (?). We implemented this algorithm by modifying the LDA implementation in the MALLET library.
- Topic Vec (?). We use the available implementation with the default configuration, increasing the maximum iteration number.
- TPM (?). We implemented the Topical Phrase Model which extracts medical topics using both MedTagger and a hierarchy of Pitman-Yor processes. It outperformed other topical phrase extraction models.

Topic coherence

We assess the generated topics by evaluation of their topic coherence. We adopt the topic coherence measure proposed in Mimno et al. (?), which relies on the co-occurrence statistics collected from the analyzed corpus; this allows us to directly measure the coherence of topics with topical phrases (e.g. short_of_breath).

Figure 1: Topic coherences vs. number of topics.

In our evaluations, we compute the topic coherence on the top 10 words/phrases using the implementation provided in the Palmetto library⁸ (?). In Figure 1 we report the topic coherence computed by averaging the coherences resulting for each topic. A peak of coherence is obtained around 60/70 topics for every model, suggesting a potentially suitable number of topics to discriminate the documents. GPU with only local context incorporated outperforms LDA, but its performance is worse compared to TopicVec or TPM. Context-GPU gives superior results over all the baseline models, in particular around 60 and 70 topics. This shows that additionally incorporating global context is essential to achieve better topic coherence results compared to only

considering local context. Also, our proposed Context-GPU only involves simple modifications to GPU, but it appears to be more effective than more complicated ways of incorporating word embeddings into topics models (such as Topic Vec) or assuming word generation following the HPYP process (such as TPM).

To extract topical phrases from text, we have explored a few different ways in learning word/phrase representations such as learning directly from our data using SVD, training a combined Wikipedia/clinical report data using SGNS or FastText. In Figure 2 we compare these word/phrase embedding learning results over our Context-GPU. We can observe that SVD and SGNS perform similarly in most cases and SVD even slightly outperforms SGNS when the topic number is set to 80 or 90. FastText outperforms the other two word/phrase embedding learning methods especially when the topic number is lower than 80. This shows that FastText built on character n-grams is more effective in capturing phase sub-structures.

Figure 2: Context-GPU with different word/phrase embedding learning methods vs. number of topics.

Finally, we compare in Figure 3 the execution time needed to train the models, excluding the constant time required by each model to load the embeddings. We did not plot the training time for TPM in the figure as it required significantly more time (over 12 hours) compared to all the other models, showing that modeling phrase generation using HPYP is very expensive. For the remaining models, TopicVec is computationally more complex than the others. Both GPU and Context-GPU have no noticeable difference and they both required three-fold the training time of LDA. Overall, Context-GPU appears to be more effective compared to TopicVec and TPM.

Figure 3: Execution time vs. number of topics.

⁶http://mallet.cs.umass.edu

⁷https://github.com/askerlee/topicvec

⁸https://github.com/dice-group/Palmetto

Topic 1	Topic 2	Topic 3	Topic 4
TopicVec			
carotid coronary artery magnesium saphenous vein graft potassium chloride coronary artery bypass grafting mitral insufficiency mitral regurgitation potassium	diuresis torsemide cardiomyopathy shortness of breath torsemide 100 mg spironolactone 25 mg diuretic aldactone pleural effusion	dyspnea on exertion ejection fraction pulmonary atrial fibrillation diuresed congestive heart failure ischemia diabetes mellitus propafenone	congestive heart failure fibrillation ejection fraction insufficiency calcium intubation thyroid vascular congestion tricuspid regurgitation
substernal	pulmonary edema Contex	volume overloaded	right knee
pregnancy ultrasound postpartum hemorrhage endometrial biopsy total abdominal hysterectomy postpartum vomiting salpingo oophorectomy physical examination fibroid	mitral regurgitation digoxin pleural effusion orthopnea dilated cardiomyopathy plavix 75 mg shortness of breath dyspnea on exertion tachyarrhythmia pulmonary edema	coronary artery disease cardiac transplant cardiomyopathy right coronary artery pravachol 20 mg paroxysmal atrial fibrillation cyclosporine herpes zoster fenofibrate tricor right coronary artery	congestive heart failure pulmonary edema orthopnea nonischemic diastolic dysfunction cardiomyopathy heart failure shortness of breath cardiac catheterization atrial fibrillation

Table 1: Topics generated by TopicVec and Context-GPU in 70-topic runs.

Topic Qualitative Assessment

We report in Table 1 some topics generated in a 70-topics run. For the sake of brevity, we report only the topics of TopicVec and Context-GPU since TopicVec gives similar coherence scores as TPM but requires significantly less training time compared to TPM. TopicVec inference learns both word and topic embeddings simultaneously. It allows the model to take into account the local context of words, which in turn, alleviates the lack of global statistic for a term. Both the topics of TopicVec and Context-GPU are able to generate topical phrases. However, in several topics of Context-GPU, we can distinguish a gradual definition of the analyzed themes, which reflect better semantic coherence. For example, in Topic 4, it can be observed a gradual topic refinement under Context-GPU from the general purpose terms such as felt or insufficiency to more characterizing words/phrases such as shortness of breath, atrial fibrillation. In addition, we can observe under the same topic symptom and medication, such as cardiomyopathy and plalix 75 mg. As a result, the overall expressiveness of topics extracted by the Context-GPU outperforms Topic Vec, both thanks to their internal coherence and to the improved expressiveness of the adopted words/phrases.

Conclusion

We have described a new approach which aims to effectively combine the local and global context of words and phrases. It first detects high reliable phrases and then generates topics using our proposed Context-aware Pólya urn model. This statistical model combines the word semantic encoded by the context-based and corpus-based embeddings. In particular, we have exploited the LSA and FastText embeddings. The former improved the ties of a word to the corpus themes; the latter allowed a fine-grained use of a word depending on the phrase in which it occurs. An experimental comparison with the state-of-the-art methods has shown an improved coherence of final topics and a decreased computational cost.