Algebra z geometria analityczna

dr Joanna Jureczko

Zestaw 5

Wielomian, pierwiastki wielomianów Rozkład wielomianów na czynniki nierozkładalne Rozkład funkcji wymiernych na ułamki proste

- **5.1.** Obliczyć sumy i różnice wielomianów:
- a) $P(x) = 1 x^2$,
- $Q(x) = -1 + 5x + x^2;$
- b) $P(x) = 2x^5 5x^2 + x$, $Q(x) = 2x^2 2x + 3$;
- c) $W(z) = (1+i)z^2 2z$, $V(z) = iz^3 z^2 1 + 5i$.
- **5.2.** Obliczyć iloczyny wielomianów:
- a) $P(x) = 4 x^2$, $Q(x) = 1 + 2x^2$;
- b) P(x) = 1 x, $Q(x) = x^5 + x^3 + x + 1$;
- c) $W(z) = z^2 + i$, $V(z) = (1 i)z^3 + iz + 3 2i$.
- 5.3. Obliczyć ilorazy i reszty powstałe z dzielenia wielomianów:
- a) $P(x) = 8x^4 + 3x^2 + 5x 6$, Q(x) = x + 1;

- b) $P(x) = x^3 + 27$, $Q(x) = x^2 3x + 9$; c) $W(z) = iz^3 + 2z 1 + 3i$, V(z) = z 2i;
- d) $W(z) = z^4 + 1$.
- $V(z) = z^2 i$.
- **5.4.** Nie wykonując działań obliczyć reszty z dzielenia wielomianu P przez wielomian Q:

- a) $P(x) = x^4 1$, Q(x) = x 2; b) $P(x) = x^{100} + 4x^2 + 1$, $Q(x) = x^2 1$;
- c) $P(x) = x^{99} + 5x$,
- $Q(x) = x^2 + 1$:
- 5.5. Znając jeden z pierwiastków podanych wielomianów znależć ich pozostałe pierwiastki:

- b) $W(x) = x^3 4x^2 + x + 6,$ $x_1 = -1;$ b) $W(x) = x^4 + x^3 3x^2 5x 2,$ $x_1 = 2;$ c) $W(z) = z^3 + 5z^2 7$
- c) $W(z) = z^3 + 5iz^2 7z 3i$,
 - $z_1 = -3i$.
- 5.6. Znaleźć krotności pierwiastków wielomianów:
- a) $z_0 = 2$, $W(z) = z^2 3z + 2$,

- b) $z_0 = 0$, $W(z) = z^5 4z^3$, c) $z_0 = \sqrt{2}$, $W(z) = z^4 4z^2 + 4$, d) $z_0 = -i$, $W(z) = (z^2 + 1)^4$.
- 5.7. Znaleźć pierwiastki całkowite wielomianów:
- a) $x^3 + x^2 4x 4$,
- b) $3x^3 7x^2 + 4x 4$,
- c) $x^5 2x^4 4x^3 + 4x^2 5x + 6$,
- d) $x^4 + 3x^3 x^2 + 17x + 99$.

5.8. Znaleźć pierwiastki wymierne wielomianów:

a)
$$x^3 - \frac{7}{6}x^2 - \frac{3}{2}x - \frac{1}{3}$$
,

a)
$$x^3 - \frac{7}{6}x^2 - \frac{3}{2}x - \frac{1}{3}$$
,
b) $4x^4 + 4x^3 + 3x^2 - x - 1$,

c)
$$4x^3 + x - 1$$
,

d)
$$x^5 + \frac{4}{3}x^3 - x^2 + \frac{1}{3}x - \frac{1}{3}$$
.

5.9. Znajac niektóre pierwiastki wielomianów rzeczywistych, znaleźć pozostałe:

a)
$$W(x) = x^3 - 3\sqrt{2}x^2 + 7x - 3\sqrt{2},$$
 $x_1 = \sqrt{2} + i,$
b) $W(x) = x^4 - 2x^3 + 7x^2 + 6x - 30,$ $x_1 = 1 - 3i,$

$$x_1 = \sqrt{2} + i,$$

b)
$$W(x) = x^4 - 2x^3 + 7x^2 + 6x - 30$$
,

$$x_1 = 1 - 3i,$$

c)
$$W(x) = x^4 - 6x^3 + 18x^2 - 30x + 25,$$
 $x_1 = 2 + i.$

$$x_1 = 2 + i.$$

5.10.* Obliczyć sumę kwadratów i iloczyn wszystkich pierwoastków zespolonych wielomianu

a)
$$3z^5 - z^3 + z + 2$$
,

a)
$$3z^5 - z^3 + z + 2$$
, b) $z^n + az^{n-1} + b$, $n \ge 3$.

5.11.* Obliczyć sume odwrotności pierwoastków zespolonych wielomianu

a)
$$3z^2 + 2z^2 - 1$$
, b) $z^4 - z^2 - z - 1$.

b)
$$z^4 - z^2 - z - 1$$
.

5.12. Wielomiany zespolone przedstawić w postaci iloczynu dwumianów:

a)
$$z^2 - 2iz - 10$$
. b) $z^4 + 5z^2 + 6$. c) $z^3 - 6z - 9$.

b)
$$z^4 + 5z^2 + 6$$

c)
$$z^3 - 6z - 9$$

5.13. Podane wielomiany przedstawić w postaci iloczynu wielomianów rzeczywistych nierozkładalnych:

a)
$$W(x) = x^3 - 8$$

b)
$$W(x) = x^4 + 16$$
,

c)
$$W(x) = x^4 - 3x^2 + 2$$

d)
$$W(x) = x^4 + 4$$

a)
$$W(x) = x^3 - 8$$
,
b) $W(x) = x^4 + 16$,
c) $W(x) = x^4 - 3x^2 + 2$,
d) $W(x) = x^4 + 4$,
e) $W(x) = x^4 + 4$,
f) $W(x) = x^6 + 27$.

f)
$$W(x) = x^6 + 27$$

5.14.* Podane zespolone funkcje wymierne właściwe rozłożyć na sumę zespolonych ułamków prostych:

a)
$$\frac{2z}{z^2+9}$$

b)
$$\frac{z+4}{(z+i)^2}$$

c)
$$\frac{1}{z^2 + 2iz - 4}$$
,

a)
$$\frac{2z}{z^2+9}$$
, b) $\frac{z+4}{(z+i)^2}$, c) $\frac{1}{z^2+2iz-4}$, d) $\frac{z^3-2z^2-4z-8}{z^4-16}$.

5.15. Podane rzeczywiste funkcje wymierne właściwe rozłożyć na sumę rzeczywistych ułamków prostych pierwszego i drugiego rodzaju: a) $\frac{1}{x^2(x-1)^2}$, b) $\frac{x^2}{x^3+2x^2+2x+1}$, c) $\frac{2x^2+3x-1}{x^3-x}$, d) $\frac{2x^2-6x+9}{x^4+6x^3+9x^2}$. e) $\frac{10x+3}{x^3+27}$, f) $\frac{x}{(x^2+1)^2}$, g) $\frac{4x}{(x+1)(x^2+1)^2}$, h) $\frac{x^2+1}{x^3(x+1)^2}$.

a)
$$\frac{1}{x^2(x-1)^2}$$
,

b)
$$\frac{x^2}{x^3 + 2x^2 + 2x + 1}$$

c)
$$\frac{2x^2+3x-1}{x^3-x}$$

d)
$$\frac{2x^2-6x+9}{x^4+6x^3+9x^2}$$
,

e)
$$\frac{10x+3}{x^3+27}$$
,

f)
$$\frac{x}{(x^2+1)^2}$$

g)
$$\frac{4x}{(x+1)(x^2+1)^2}$$

h)
$$\frac{x^2+1}{x^3(x+1)^2}$$
.

5.16.* Funkcje wymierne (rzeczywiste lub zespolone) rozłożyc na sumy wielomianów oraz funkcji wymiernych właściwych: a) $\frac{z^5-3z^2+z}{z^3+4z^2+1},$ b) $\frac{x^5+3}{x^4+4},$ c) $\frac{x^4+2x^3+3x^2+4x+5}{x^3+2x^2+3x+4}.$

a)
$$\frac{z^5 - 3z^2 + z}{z^3 + 4z^2 + 1}$$

b)
$$\frac{x^5+3}{x^4+4}$$
,

c)
$$\frac{x^4+2x^3+3x^2+4x+5}{x^3+2x^2+3x+4}$$

ODPOWIEDZI

- **5.1.** a) suma 5x, różnica $-2x^2-5x+2$; b) suma $2x^5-3x^2-x+3$, różnica $2x^5-7x^2+3x-3$;
- c) suma $iz^3 + iz^2 2z 1 + 5i$, różnica $-iz^3 + (2+i)z^2 2z + 1 5i$.
- **5.2.** a) $-2x^4 + 7x^2 + 4$, b) $-x^6 + x^5 x^4 + x^3 x^2 + 1$,
- c) $(1-i)z^5 + (1+2i)z^3 + (3-2i)z^2 z + 2 + 3i$.
- **5.3.** a) iloraz $8x^3 8x^2 + 11x 6$, reszta 0, b) iloraz x + 3, reszta 0,
- c) iloraz $iz^2 2z + 2 4i$, reszta 7 + 7i, d) iloraz $z^2 + i$, reszta 0.
- **5.4.** a) 15, b) 6, c) 4x.
- **5.5.** a) $x_2 = 2, x_3 = 3$, b) $x_2 = x_3 = x_4 = -1$, c) $z_2 = z_3 = -i$.
- **5.6.** a) 1, b) 3, c) 2, d) 4.
- **5.7.** a) -1, 2, -2, b) 2, c) 1, -2, 3, d) wielomian nie ma pierwiastków całkowitych.
- **5.8.** a) $2, -\frac{1}{2}, -\frac{1}{3}$, b) $\frac{1}{2}, -\frac{1}{2}$, c) $\frac{1}{2}$, d) wielomian nie ma pierwiastków wymiernych,
- **5.9.** a) $\sqrt{2} i$, $\sqrt{2}$, b) 1 + 3i, $\sqrt{3}$, $-\sqrt{3}$, c) 2 i, 1 2i, 1 + 2i.
- **5.10.** a) $\frac{2}{3}$ i $-\frac{2}{3}$, b) a^2 i $(-1)^n b$.
- **5.11.** a) 2, b) -1.
- **5.12.** a) (z (3+i))(z + (3-i)), b) $(z \sqrt{2}i)(z + \sqrt{2}i)(z \sqrt{3}i)(z + \sqrt{3}i)$,
- c) $(z-3)(z+(\frac{3}{2}-i\frac{\sqrt{3}}{2}))(z+(\frac{3}{2}+i\frac{\sqrt{3}}{2})).$ **5.13.** a) $(x-2)(x^2+2x+4)$, b) $(x^2-2\sqrt{2}x+4)(x^2+2\sqrt{2}x+4)$,
- c) $(x-1)(x+1)(x-\sqrt{2})(x+\sqrt{2})$, d) $(x^2+2x+2)(x^2-2x+2)$, e) $(x^2-x+1)(x^2+x+1)$,
- f) $(x^2 3x + 3)(x^2 + 3x + 3)(x^2 + 3)$.
- **5.14.** a) $\frac{1}{z+3i} + \frac{1}{z-3i}$, b) $\frac{1}{z+i} + \frac{4-i}{(z+i)^2}$, c) $\frac{1}{2\sqrt{3}(z-\sqrt{3}+i)} \frac{1}{2\sqrt{3}(z+\sqrt{3}+i)}$, d) $-\frac{1}{z-2} + \frac{1}{z+2} + \frac{1-i}{2z-4i} + \frac{1-i}{2z-4i}$
- **5.15.** a) $\frac{2}{x} + \frac{1}{x^2} \frac{2}{x-1} + \frac{1}{(x-1)^2}$, b) $\frac{1}{x+1} \frac{1}{x^2+x+1}$, c) $\frac{1}{x} \frac{1}{x+1} + \frac{2}{x-1}$, d) $\frac{5}{(x+3)^2} + \frac{4}{3(x+3)} + \frac{1}{x^2} \frac{4}{3x}$, e) $-\frac{1}{x+3} + \frac{x+4}{x^2-3x+9}$, f) to jest ułamek prosty, g) $\frac{-1}{x+1} = \frac{x-1}{x^2+1} + \frac{2x+2}{(x^2+1)^2}$,

- h) $\frac{4}{x} \frac{2}{x^2} + \frac{1}{x^3} \frac{4}{x+1} \frac{2}{(x+1)^2}$. **5.16.** a) $z^2 4z + 16 + \frac{-68z^2 + 5z 16}{z^3 + 4z^2 + 1}$, b) $x + \frac{-4x + 3}{x^4 + 4}$, c) $x + \frac{5}{x^3 + 2x^2 + 3x + 4}$.