09 classification metrics

February 28, 2024

1 Evaluating a classification model

Lesson 9 from Introduction to Machine Learning with scikit-learn

Note: This notebook uses Python 3.9.1 and scikit-learn 0.23.2. The original notebook (shown in the video) used Python 2.7 and scikit-learn 0.16.

1.1 Agenda

- What is the purpose of **model evaluation**, and what are some common evaluation procedures?
- What is the usage of **classification accuracy**, and what are its limitations?
- How does a **confusion matrix** describe the performance of a classifier?
- What **metrics** can be computed from a confusion matrix?
- How can you adjust classifier performance by **changing the classification threshold**?
- What is the purpose of an **ROC curve**?
- How does Area Under the Curve (AUC) differ from classification accuracy?

1.2 Review of model evaluation

- Need a way to choose between models: different model types, tuning parameters, and features
- Use a **model evaluation procedure** to estimate how well a model will generalize to out-of-sample data
- Requires a model evaluation metric to quantify the model performance

1.2.1 Model evaluation procedures

1. Training and testing on the same data

 Rewards overly complex models that "overfit" the training data and won't necessarily generalize

2. Train/test split

- Split the dataset into two pieces, so that the model can be trained and tested on different data
- Better estimate of out-of-sample performance, but still a "high variance" estimate
- Useful due to its speed, simplicity, and flexibility

3. K-fold cross-validation

- Systematically create "K" train/test splits and average the results together
- Even better estimate of out-of-sample performance
- Runs "K" times slower than train/test split

1.2.2 Model evaluation metrics

- Regression problems: Mean Absolute Error, Mean Squared Error, Root Mean Squared Error
- Classification problems: Classification accuracy

1.3 Classification accuracy

Pima Indians Diabetes dataset originally from the UCI Machine Learning Repository

```
[1]: # added empty cell so that the cell numbering matches the video
```

```
[3]: # print the first 5 rows of data pima.head()
```

```
[3]:
        pregnant
                                      insulin
                                                       pedigree
                   glucose bp
                                skin
                                                 bmi
                                                                  age
                                                                       label
     0
               6
                            72
                                                33.6
                                                          0.627
                                                                   50
                                                                           1
                       148
                                   35
                                             0
     1
               1
                                   29
                                                          0.351
                                                                           0
                        85 66
                                             0
                                                26.6
                                                                   31
     2
               8
                       183 64
                                   0
                                             0
                                                23.3
                                                          0.672
                                                                   32
                                                                           1
     3
               1
                        89
                            66
                                   23
                                            94
                                                28.1
                                                          0.167
                                                                   21
                                                                           0
     4
                0
                                                43.1
                                                          2.288
                                                                   33
                                                                           1
                       137
                            40
                                   35
                                           168
```

Question: Can we predict the diabetes status of a patient given their health measurements?

```
[4]: # define X and y
feature_cols = ['pregnant', 'insulin', 'bmi', 'age']
X = pima[feature_cols]
y = pima.label
```

```
[5]: # split X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
```

```
[6]: # train a logistic regression model on the training set
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(solver='liblinear')
logreg.fit(X_train, y_train)
```

[6]: LogisticRegression(solver='liblinear')

```
[7]: # make class predictions for the testing set
y_pred_class = logreg.predict(X_test)
```

Classification accuracy: percentage of correct predictions

```
[8]: # calculate accuracy
     from sklearn import metrics
     print(metrics.accuracy_score(y_test, y_pred_class))
     0.69270833333333334
     Null accuracy: accuracy that could be achieved by always predicting the most frequent class
 [9]: # examine the class distribution of the testing set (using a Pandas Series
      ⇔method)
     y_test.value_counts()
 [9]: 0
          130
           62
     Name: label, dtype: int64
[10]: # calculate the percentage of ones
     y_test.mean()
[10]: 0.3229166666666667
[11]: # calculate the percentage of zeros
     1 - y_test.mean()
[11]: 0.6770833333333333
[12]: | # calculate null accuracy (for binary classification problems coded as 0/1)
     max(y_test.mean(), 1 - y_test.mean())
[12]: 0.6770833333333333
[13]: | # calculate null accuracy (for multi-class classification problems)
     y_test.value_counts().head(1) / len(y_test)
[13]: 0
          0.677083
     Name: label, dtype: float64
     Comparing the true and predicted response values
[14]: # print the first 25 true and predicted responses
     print('True:', y_test.values[0:25])
     print('Pred:', y_pred_class[0:25])
     True: [1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0]
     Conclusion:
```

• Classification accuracy is the easiest classification metric to understand

- But, it does not tell you the underlying distribution of response values
- And, it does not tell you what "types" of errors your classifier is making

1.4 Confusion matrix

Table that describes the performance of a classification model

[15]: # IMPORTANT: first argument is true values, second argument is predicted values print(metrics.confusion_matrix(y_test, y_pred_class))

[[118 12] [47 15]]

	Predicted:	Predicted:
n=192	0	1
Actual:		
0	118	12
Actual:		
1	47	1 5

- Every observation in the testing set is represented in **exactly one box**
- It's a 2x2 matrix because there are 2 response classes
- The format shown here is **not** universal

Basic terminology

- True Positives (TP): we correctly predicted that they do have diabetes
- True Negatives (TN): we correctly predicted that they don't have diabetes
- False Positives (FP): we incorrectly predicted that they do have diabetes (a "Type I error")
- False Negatives (FN): we *incorrectly* predicted that they *don't* have diabetes (a "Type II error")

```
[16]: # print the first 25 true and predicted responses
print('True:', y_test.values[0:25])
print('Pred:', y_pred_class[0:25])
```

```
[17]: # save confusion matrix and slice into four pieces
    confusion = metrics.confusion_matrix(y_test, y_pred_class)
    TP = confusion[1, 1]
    TN = confusion[0, 0]
    FP = confusion[0, 1]
    FN = confusion[1, 0]
```

	Predicted:	Predicted:	
n=192	0	1	
Actual:			
0	TN = 118	FP = 12	130
Actual:			
1	FN = 47	TP = 1 5	62
	165	27	

1.5 Metrics computed from a confusion matrix

Classification Accuracy: Overall, how often is the classifier correct?

```
[18]: print((TP + TN) / (TP + TN + FP + FN))
print(metrics.accuracy_score(y_test, y_pred_class))
```

- 0.69270833333333334
- 0.6927083333333334

Classification Error: Overall, how often is the classifier incorrect?

• Also known as "Misclassification Rate"

```
[19]: print((FP + FN) / (TP + TN + FP + FN))
print(1 - metrics.accuracy_score(y_test, y_pred_class))
```

- 0.3072916666666667
- 0.3072916666666663

Sensitivity: When the actual value is positive, how often is the prediction correct?

- How "sensitive" is the classifier to detecting positive instances?
- Also known as "True Positive Rate" or "Recall"

```
[20]: print(TP / (TP + FN))
print(metrics.recall_score(y_test, y_pred_class))
```

- 0.24193548387096775
- 0.24193548387096775

Specificity: When the actual value is negative, how often is the prediction correct?

• How "specific" (or "selective") is the classifier in predicting positive instances?

```
[21]: print(TN / (TN + FP))
```

0.9076923076923077

False Positive Rate: When the actual value is negative, how often is the prediction incorrect?

```
[22]: print(FP / (TN + FP))
```

0.09230769230769231

Precision: When a positive value is predicted, how often is the prediction correct?

• How "precise" is the classifier when predicting positive instances?

```
[23]: print(TP / (TP + FP))
print(metrics.precision_score(y_test, y_pred_class))
```

- 0.55555555555556
- 0.55555555555556

Many other metrics can be computed: F1 score, Matthews correlation coefficient, etc.

Conclusion:

- Confusion matrix gives you a more complete picture of how your classifier is performing
- Also allows you to compute various classification metrics, and these metrics can guide your model selection

Which metrics should you focus on?

- Choice of metric depends on your business objective
- Spam filter (positive class is "spam"): Optimize for **precision or specificity** because false negatives (spam goes to the inbox) are more acceptable than false positives (non-spam is caught by the spam filter)
- Fraudulent transaction detector (positive class is "fraud"): Optimize for sensitivity because false positives (normal transactions that are flagged as possible fraud) are more acceptable than false negatives (fraudulent transactions that are not detected)

1.6 Adjusting the classification threshold

```
[0.48658459, 0.51341541],
             [0.72321388, 0.27678612],
             [0.32810562, 0.67189438]])
[26]: # print the first 10 predicted probabilities for class 1
      logreg.predict_proba(X_test)[0:10, 1]
[26]: array([0.36752429, 0.28356344, 0.28895886, 0.4141062, 0.15896027,
             0.17065156, 0.49889026, 0.51341541, 0.27678612, 0.67189438
[27]: # store the predicted probabilities for class 1
      y_pred_prob = logreg.predict_proba(X_test)[:, 1]
[28]: # allow plots to appear in the notebook
      %matplotlib inline
      import matplotlib.pyplot as plt
[29]: # histogram of predicted probabilities
      plt.hist(y_pred_prob, bins=8)
      plt.xlim(0, 1)
      plt.title('Histogram of predicted probabilities')
      plt.xlabel('Predicted probability of diabetes')
      plt.ylabel('Frequency')
```


[29]: Text(0, 0.5, 'Frequency')

Decrease the threshold for predicting diabetes in order to increase the sensitivity of the classifier

```
[30]: # predict diabetes if the predicted probability is greater than 0.3
      from sklearn.preprocessing import binarize
      y_pred_class = binarize([y_pred_prob], threshold=0.3)[0]
[31]: # print the first 10 predicted probabilities
      y_pred_prob[0:10]
[31]: array([0.36752429, 0.28356344, 0.28895886, 0.4141062, 0.15896027,
             0.17065156, 0.49889026, 0.51341541, 0.27678612, 0.67189438])
[32]: # print the first 10 predicted classes with the lower threshold
      y pred class[0:10]
[32]: array([1., 0., 0., 1., 0., 0., 1., 1., 0., 1.])
[33]: # previous confusion matrix (default threshold of 0.5)
      print(confusion)
     [[118 12]
      [ 47 15]]
[34]: # new confusion matrix (threshold of 0.3)
      print(metrics.confusion_matrix(y_test, y_pred_class))
     [[80 50]
      [16 46]]
[35]: # sensitivity has increased (used to be 0.24)
      print(46 / (46 + 16))
     0.7419354838709677
[36]: # specificity has decreased (used to be 0.91)
      print(80 / (80 + 50))
```

0.6153846153846154

Conclusion:

- Threshold of 0.5 is used by default (for binary problems) to convert predicted probabilities into class predictions
- Threshold can be **adjusted** to increase sensitivity or specificity
- Sensitivity and specificity have an inverse relationship

1.7 ROC Curves and Area Under the Curve (AUC)

Question: Wouldn't it be nice if we could see how sensitivity and specificity are affected by various thresholds, without actually changing the threshold?

Answer: Plot the ROC curve!

```
[37]: # IMPORTANT: first argument is true values, second argument is predicted
□ probabilities

fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred_prob)
plt.plot(fpr, tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.title('ROC curve for diabetes classifier')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.grid(True)
```


- ROC curve can help you to **choose a threshold** that balances sensitivity and specificity in a way that makes sense for your particular context
- You can't actually see the thresholds used to generate the curve on the ROC curve itself

```
print('Sensitivity:', tpr[thresholds > threshold][-1])
print('Specificity:', 1 - fpr[thresholds > threshold][-1])
```

[39]: evaluate_threshold(0.5)

Sensitivity: 0.24193548387096775 Specificity: 0.9076923076923077

[40]: evaluate_threshold(0.3)

Sensitivity: 0.7258064516129032 Specificity: 0.6153846153846154

AUC is the **percentage** of the ROC plot that is **underneath the curve**:

```
[41]: # IMPORTANT: first argument is true values, second argument is predicted

→probabilities

print(metrics.roc_auc_score(y_test, y_pred_prob))
```

0.7245657568238213

- AUC is useful as a **single number summary** of classifier performance.
- If you randomly chose one positive and one negative observation, AUC represents the likelihood that your classifier will assign a **higher predicted probability** to the positive observation.
- AUC is useful even when there is **high class imbalance** (unlike classification accuracy).

```
[42]: # calculate cross-validated AUC
from sklearn.model_selection import cross_val_score
cross_val_score(logreg, X, y, cv=10, scoring='roc_auc').mean()
```

[42]: 0.7378233618233618

Confusion matrix advantages:

- Allows you to calculate a variety of metrics
- Useful for multi-class problems (more than two response classes)

ROC/AUC advantages:

- Does not require you to set a classification threshold
- Still useful when there is high class imbalance

1.8 Confusion Matrix Resources

- Blog post: Simple guide to confusion matrix terminology by me
- Videos: Intuitive sensitivity and specificity (9 minutes) and The tradeoff between sensitivity and specificity (13 minutes) by Rahul Patwari
- Notebook: How to calculate "expected value" from a confusion matrix by treating it as a cost-benefit matrix (by Ed Podojil)
- Graphic: How classification threshold affects different evaluation metrics (from a blog post about Amazon Machine Learning)

1.9 ROC and AUC Resources

- Video: ROC Curves and Area Under the Curve (14 minutes) by me, including transcript and screenshots and a visualization
- Video: ROC Curves (12 minutes) by Rahul Patwari
- Paper: An introduction to ROC analysis by Tom Fawcett
- Usage examples: Comparing different feature sets for detecting fraudulent Skype users, and comparing different classifiers on a number of popular datasets

1.10 Other Resources

- scikit-learn documentation: Model evaluation
- Guide: Comparing model evaluation procedures and metrics by me
- Video: Counterfactual evaluation of machine learning models (45 minutes) about how Stripe evaluates its fraud detection model, including slides

1.11 Comments or Questions?

• Email: kevin@dataschool.io

• Website: https://www.dataschool.io

• Twitter: @justmarkham

© 2021 Data School. All rights reserved.