Homework 6

Wang Xinshi 661975305

1. Use the formal definition of convergent sequence (and theorem 4.1.8) to prove that the sequence $\left(\frac{5n^2+3n}{4n^2-2n}\right)$ converges to $\frac{5}{4}$.

Proof: Let $\epsilon > 0$ be given. By the archmedian property we can choose $N \in \mathbb{N}$ so $N > \frac{11}{\epsilon}$.

If $n \in \mathbb{N}$ and $n \ge N$ then $n \ge \max\{N, 2\}$ which means $n \ge N$ and $n \ge 2$ so $\frac{11}{n} < \epsilon$. So if $n \in \mathbb{N}$ and $n \ge N$ and $n \ge 2$ then $|S_n - S| = \left|\frac{5n^2 + 3n}{4n^2 - 2n} - \frac{5}{4}\right| = \left|\frac{20n^2 + 12n}{4(4n^2 - 2n)} - \frac{20n^2 - 10n}{4(4n^2 - 2n)}\right| = \left|\frac{22n}{4(4n^2 - 2n)}\right|$. Since $n \ge 2$, then $n^2 \ge 2n$ and $4n^2 - 2n \ge 3n^2$. Therefore $\left|\frac{22n}{4(4n^2 - 2n)}\right| \le \frac{22n}{4(3n^2)} = \frac{11}{6n} \le \frac{11}{n} \le \frac{11}{N} < \epsilon$.

- 2. Suppose that $\lim s_n = s$ with s > 0. Prove there exists $N \in \mathbb{N}$ such that $s_n > 0$ for all $n \geq N$.

Proof: Our goal here is to show there exists $N \in \mathbb{N}$ such that $s_n > 0$ for all $n \geq N$. Since $\lim s_n = s$ with s>0, by definition we have for all $\epsilon>0$, there exists $N_1\in\mathbb{N}$ such that for all $n\in\mathbb{N}$, $n\geq N_1$ implies $|s_n - s| < \epsilon$. Assume there exists an $N = N_1$ and we need to show $s_n > 0$ for all $n \ge \mathbb{N}$. We consider three exhuastive cases. (i). $s_n > s$ for all $n \ge N$ (ii). $s_n < s$ for all $n \ge N$.

Since $s_n > s$ for all $n \ge N$ and s > 0, $s_n > 0$ for all $n \ge N$.

If $s_n < s$ for all $n \ge N$, then $|s_n - s| = s - s_n < \epsilon$. Rearranging the terms gives us $s_n > s + \epsilon$. since s > 0 and $\epsilon > 0$, $s + \epsilon > 0$. Thus $s_n > s + \epsilon > 0$.

If $s_n = s$, since s > 0, $s_n > 0$

Thus we have shown there exists an $N = N_1$ such that $s_n > 0$ for all $n \ge \mathbb{N}$.

3. Use the definition of a sequence (s_n) diverging to $-\infty$ to prove that $\lim \left(\frac{2+n-n^2}{2+3n}\right) = -\infty$.

Proof: Given any $M \in \mathbb{R}$, take $N > \max\{1, \frac{2}{M}\}$. Then $n \geq N$ implies that n > 1 and $n > \frac{2}{M}$. Since n > 1, we have $n - n^2 < 0$. Thus for $n \ge N$ we have

$$\frac{2+n-n^2}{2+3n} \le \frac{2+0}{3n} \le \frac{2}{n} < M$$

Hence $\lim \left(\frac{2+n-n^2}{2+3n}\right) = -\infty$.