$$M=R^n$$
 (R:1D)

$$PF O \longrightarrow M \longrightarrow M/\ell(M) \longrightarrow O SPIITS,$$

50
$$M = \Psi(M) \oplus M/\Psi(M)$$
, but M hussay,
rank as $\Psi(M) = M/\Psi(M) = 0$.

Fimitely generated Modules over PID: (Pil: Z, FGJ, ZCi)

Theorem: Let R be a PID, let $M = R^m$, and let N be a Subno dule of M. Then $N = R^m$ for some $n \leq m$.

Moreover, \exists a basis $\{u_1, ..., u_m\}$ of M telements $a_1, ..., a_n \in R$ s.t. $\{a_1u_1, ..., a_nu_n\}$ is a basis of N and $a_1 | a_2 | ... | a_k$.

Note: I = (x,y) in F(x,y) = R is a submodule of R, but I is nit free.

Example: M= 22, N= 2. {(1), (-1)}

put $u_1 = \binom{1}{2}$, $u_2 = \binom{0}{2}$. Then $\{u_1, u_2\}$ is a basis in M, and full, 2423 is a basisin N.

Proof Let n=rankM, K=rankN.

Risa Noetherian ving if every ideal in R is finitely generated, OR Any System of ideals in R has a maximal element I. s.t. Threisno other ideal I s.t. I. F. I.

Any PID is Noetherian.

Induction on n. If n=1, $M \cong R$, $N \cong$ an Ideal in R. So N = (a). {1] - basis in M, fa] - basis in N.

 $\forall f \in \mathbb{N}^*, \text{ ut } I_f = f(N) = \{f(u), u \in N\}.$

Then I_f is an ideal in R. Let $h \in M^*$ be s.t.

In is max'e in & If: fein* }. Let a, ER

S.L. In= (a.).

be the dral basis. Then f, (u)=c, + o.

a, e [so] v, eN se a = h(vi).

clarin: a. (f(vi) & f & M*.

indered, let] = V, (M*) = {f(v,): f \in M*}.

Then $I \stackrel{\text{ideal}}{\leq} R$ so I = (b). Then $\alpha_1 = h(v_1) \in I$ so $b \mid \alpha_1$.

But $b = f(v_i)$ for some f, so $b \in I_f$.

So $I_{h}=(\alpha_{i})\in(p)=I\subseteq J_{f}$ So $I_{h}=I_{f}=I$.

(in fact, this shows a, I for \ \fem, ve N).

So V_1 , as an element of M^{**} is div. by α_1 . $[V_1(f) = f(V_1) - div. by \alpha_1],$

So 3 u, ∈ M** = M s.t. V, = a, u,.

(or, coordinates of Vi are all divity ai, put hi= 1/a.).

Let K = Kerh. $(h(v_i) = a_i, h(u_i) = 1)$.

 $\forall u \in M, u = h(u)u, + (u - h(u)u,)$. $\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

So M = Ru, ok

 $|P \quad U \in N, \qquad h(u) = \frac{h(u)}{a_i} \cdot a_i, \text{ so } U = C \cdot V_l + (u - h(u)u_l)$

So also N= Rv, & (K,N).

Induction on K = rank N:

rank (KnN) = K-1 So by induction, it is free, so N is free

We proved that every submodule of M is free.

So qui,..., un 3 is a basis of M, and fairi,..., a rung is one for N.
Now to prove: ailaz.

define $f(\chi_1 u_1 + \cdots + \chi_n u_n) = \chi_1 + \chi_2$, $f \in M^*$.

then $f(a_1u_1) = a_1$

So $a_i \in f(N)$, so $(a_i) = I_h \subseteq I_f \Rightarrow I_h = I_f$

And $f(a_2u_2)=a_2$, so $a_2 \in I_f = (a_1)$ so $a_1 \mid a_2$.