Mediation Analysis in R for Binary Outcome (PROCESS Method)

Notes

• 1. The author accepts no responsibility for the topicality, correctness, completeness, or quality of the information provided.

• 2. This pdf is part of a YouTube tutorial: https://youtu.be/LBMznGHIn U

• 3. This pdf is for your own personal use only. Please do not distribute.

So far.....

 I have published a tutorial using the "mediation" package for mediation analysis in R for binary outcome.

 However, Hayes PROCESS can also do it, but it uses log odds ratio approach for b path.

I have published a tutorial about it using SPSS.

Often, we use first partial derivatives to model indirect effects.

(Reference is provided in the video description.)

Mediation Analysis for Continuous Outcome

Mediation Analysis for Continuous Outcome

Sample Data:

- X (IV) is continuous.
- M is continuous.
- Y (DV) is continuous.

a and b paths:

• (1) $X \rightarrow M$ (a path)

• (3)
$$X + M \rightarrow Y$$
 (b path)

•
$$M = a_0 + a_1 X$$

$$\frac{\partial M}{\partial X} = a_1$$

•
$$Y = b_0 + b_1 M + c' X$$

$$\frac{\partial Y}{\partial M} = b_1$$

Indirect effect: $a_1 * b_1$

Mediation Analysis for Binary Outcome

Mediation Analysis for Binary Outcome

Sample Data:

- X (IV) is continuous.
- M is continuous.
- Y (DV) is binary.

a and b paths:

• (1) $X \rightarrow M$ (a path)

$$M = a_0 + a_1 X$$

$$\frac{\partial M}{\partial X} = a_1$$

• (3) $X + M \rightarrow Y$ (b path)

$$P(Y=1) = \frac{e^{(b_0 + b_1 M + c'X)}}{1 + e^{(b_0 + b_1 M + c'X)}}$$

Logistic Function (or, expit) Format

$$P(Y=1) = \frac{e^{(b_0 + b_1 M + c'X)}}{1 + e^{(b_0 + b_1 M + c'X)}}$$

$$\frac{\partial P(Y=1)}{\partial M} = \frac{b_1 e^{(b_0 + b_1 M + c'X)}}{(1 + e^{(b_0 + b_1 M + c'X)})^2}$$

Log odds (or, logit) Format

$$\log \frac{P(Y=1)}{1 - P(Y=1)} = b_0 + b_1 M + c' X$$

$$\frac{\partial \log \frac{P(Y=1)}{1 - P(Y=1)}}{\partial M} = b_1$$

PROCESS in SPSS calculates the indirect effect: $a_1 * b_1$

A side note: For non-linear regression (a or b path), different packages in R might use different methods to calculate the indirect effect.