Longest Common Subsequence

February 25, 2023

Bangladesh University of Enginnering and Technology

What is LCS

Recursive Formulation

Using Dynamic Programming

What is LCS

Problem Definition

Given two strings text1 and text2, return the length of their longest common subsequence

What is a sub-sequence?

A sub-sequence is a sequence that can be obtained by deleting elements from the original sequence without changing order of the elements.

A sub-sequence is a sequence that can be obtained by deleting elements from the original sequence without changing order of the elements.

Let str = "ABCDE" be a sequence

A sub-sequence is a sequence that can be obtained by deleting elements from the original sequence without changing order of the elements.

Let str = "ABCDE" be a sequence

Then some subsequnce of str are: ABC

A sub-sequence is a sequence that can be obtained by deleting elements from the original sequence without changing order of the elements.

Let str = "ABCDE" be a sequence

A B C D E F

Then some subsequnce of str are: ABC ACE

4

A sub-sequence is a sequence that can be obtained by deleting elements from the original sequence without changing order of the elements.

Let str = "ABCDE" be a sequence

Then some subsequnce of str are: ABC ACE BEF etc.

4

Longest Common Subsequence

From the two given sequences, we have to find a subsequence that is present in both of them and is the longest.

$$\begin{split} S_1 &= ACCGGTCGAGTGCGCGGAAGCCGGCCGAA \\ S_2 &= GTCGTTCGGAATGCCGTTGCTCTGTAAA \end{split}$$

Longest Common Subsequence

 $S_3 = GTCGTCGGAAGCCGGCCGAA$

How to approach?

Break it down into smaller subproblems.

Suppose we have two sequences

$$X = ABCADE$$

$$Y = ACBE$$

7

Suppose we have two sequences

$$X = ABCADE$$

$$Y = ACBE$$

7

Suppose we have two sequences

$$X = ABCADE$$

$$Y = ACBE$$

Suppose we have two sequences

$$X = ABCADE$$

$$Y = ACBE$$

Suppose we have two sequences

$$X = ABCADE$$

$$Y = ACBE$$

Suppose we have two sequences

$$X = ABCADF$$

$$Y = ACBE$$

Suppose we have two sequences

$$X = ABCADF$$

$$Y = ACBE$$

Suppose we have two sequences

$$X = ABCADF$$

$$Y = ACBE$$

Suppose we have two sequences

$$X = ABCADF$$

$$Y = A C B E$$

Suppose we have two sequences

$$X = ABCADF$$

$$Y = ACBE$$

Recursion

If we have two sequences

$$X = [1 \cdot \cdot \cdot \cdot \cdot \cdot m]$$
 $Y = [1 \cdot \cdot \cdot \cdot \cdot \cdot n]$

Recursion

If we have two sequences

$$X = \begin{bmatrix} 1 \cdot \cdot \cdot a \cdot \cdot m \end{bmatrix}$$
 $Y = \begin{bmatrix} 1 \cdot \cdot b \cdot \cdot \cdot n \end{bmatrix}$

Let LCS(a, b) denote the longest common subsequence of $x_1x_2...x_a$ and $y_1y_2...y_a$.

Recursion

If we have two sequences

$$X = [1 \cdot \cdot \cdot \cdot \cdot \cdot m]$$
 $Y = [1 \cdot \cdot \cdot \cdot \cdot \cdot n]$

Let LCS(a, b) denote the longest common subsequence of $x_1x_2...x_a$ and $y_1y_2...y_a$.

Our goal is to find LCS(m, n)

8

$$X = [123 \cdots m] Y = [123 \cdots n]$$

$$X = [1 \ 2 \ 3 \ \cdots \ m] \quad Y = [1 \ 2 \ 3 \cdots \ n]$$

When
$$X[m] == Y[n]$$

g

$$X = \begin{bmatrix} 1 & 2 & 3 & \cdots & m \end{bmatrix}$$
 $Y = \begin{bmatrix} 1 & 2 & 3 & \cdots & n \end{bmatrix}$

When
$$X[m] == Y[n]$$

$$LCS(m,n) = LCS(m-1,n-1) + 1$$

9

$$X = [123 \cdots m] Y = [123 \cdots n]$$

When X[m] = Y[n]

$$X = [123 \cdots m] \quad Y = [123 \cdots n]$$

When
$$X[m] = Y[n]$$

$$LCS(m,n) = max\{LCS(m,n-1),$$

$$X = \begin{bmatrix} 1 & 2 & 3 & \cdots & m \end{bmatrix}$$
 $Y = \begin{bmatrix} 1 & 2 & 3 & \cdots & n \end{bmatrix}$

When
$$X[m] = Y[n]$$

$$LCS(m,n) = max\{LCS(m,n-1),LCS(m-1,n)\}$$

$$X = [123 \cdots m] Y = [123 \cdots n]$$

The recursion solution:

$$LCS(m,n) = \begin{cases} LCS(m-1,n-1) + 1 & X[m] == Y[n] \\ max\{LCS(m-1,n),LCS(m,n-1)\} & X[m]! = Y[n] \end{cases}$$

What about the base case?

Recursive Formulation

If
$$m == o$$
 then LCS $(m,n) = o$

If
$$n == o$$
 then LCS(m,n) = o

Recursive Formulation

The final recursion solution:

$$LCS(m,n) = \begin{cases} 0 & m == 0 || n == 0 \\ LCS(m-1,n-1) + 1 & X[m] == Y[n] \\ max\{LCS(m-1,n),LCS(m,n-1)\} & X[m]! = Y[n] \end{cases}$$

```
LCS(m,n) = \begin{cases} 0 & \text{if } m = 0 \text{ or } n = 0 \\ LCS(m-1,n-1) + 1 & \text{if } X[m] = Y[n] \\ MAX(LCS(m-1,n),LCS(m,n-1)) & \text{if } X[m]! = Y[n] \end{cases}
\text{def } LCS(X[1..m], Y[1..n]) :
\text{if } m = 0 \text{ or } n = 0
\text{return } 0
```

```
LCS(m,n) = \begin{cases} 0 & \text{if } m = 0 \text{ or } n = 0 \\ LCS(m-1,n-1)+1 & \text{if } X[m] = Y[n] \\ MAX(LCS(m-1,n),LCS(m,n-1)) & \text{if } X[m]! = Y[n] \end{cases}
def \ \ LCS(X[1..m], \ Y[1..n]) : \\ \text{if } m = 0 \text{ or } n = 0 \\ \text{return } 0 \end{cases}
if \ X[m] = Y[n] : \\ \text{result} = LCS(m-1, n-1) + 1
```

```
LCS(m, n) = \begin{cases} 0 & \text{if } m = 0 \text{ or } n = 0 \\ LCS(m - 1, n - 1) + 1 & \text{if } X[m] = Y[n] \\ MAX(LCS(m - 1, n), LCS(m, n - 1)) & \text{if } X[m]! = Y[n] \end{cases}
       def LCS(X[1..m], Y[1..n]) :
              if m = 0 or n = 0
                     return 0
              if X[m] = Y[n]:
                     result = LCS(m-1, n-1) + 1
              else:
                     result = \max(LCS(m-1, n), LCS(m, n-1))
```

```
LCS(m, n) = \begin{cases} 0 & \text{if } m = 0 \text{ or } n = 0 \\ LCS(m - 1, n - 1) + 1 & \text{if } X[m] = Y[n] \\ MAX(LCS(m - 1, n), LCS(m, n - 1)) & \text{if } X[m]! = Y[n] \end{cases}
       def LCS(X[1..m], Y[1..n]) :
              if m = 0 or n = 0
                    return 0
              if X[m] = Y[n]:
                    result = LCS(m-1, n-1) + 1
              else :
                    result = max(LCS(m-1, n), LCS(m, n-1))
              return result
```

Frame Title

Frame Title

So the time complexity is $O(2^n)$

Memoized Algorithm

```
LCS(m, n) = \begin{cases} 0 & \text{if } m = 0 \text{ or} \\ LCS(m - 1, n - 1) + 1 & \text{if } X[m] = Y[n] \\ MAX(LCS(m - 1, n), LCS(m, n - 1)) & \text{if } X[m]! = Y[n] \end{cases}
                                                      if m = 0 or n = 0
      def LCS(X[1..m], Y[1..n]) :
            if m = 0 or p = 0
                  return 0
            if LCS memo[m][n] != -INF:
                  return LCS memo[m][n]
            else if X[m] = Y[n]:
                  result = LCS(m-1, n-1) + 1
            else:
                  result = max(LCS(m-1, n), LCS(m, n-1))
            LCS memo[m][n] = result
            return result
```

Memoized Algorithm

```
LCS(m, n) = \begin{cases} 0 & \text{if } m = 0 \text{ or} \\ LCS(m - 1, n - 1) + 1 & \text{if } X[m] = Y[n] \\ MAX(LCS(m - 1, n), LCS(m, n - 1)) & \text{if } X[m]! = Y[n] \end{cases}
                                                         if m = 0 or n = 0
      def LCS(X[1..m], Y[1..n]):

if m = 0 or n = 0

Time complexity is O(mn)
                   return 0
             if LCS memo[m][n] != -INF:
                   return LCS memo[m][n]
             else if X[m] = Y[n]:
                   result = LCS(m-1, n-1) + 1
             else:
                   result = max(LCS(m-1, n), LCS(m, n-1))
```

LCS memo[m][n] = result

return result

Using Dynamic Programming


```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```



```
If m=o or n=o
    LCS(m,n) = o

Else if X[m] = Y[n]
    LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max(LCS(m-1,n), LCS(m, n-1))
```



```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```

Dynamic Programming


```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```

Dynamic Programming


```
If m=0 or n=0

LCS(m,n) = 0

Else if X[m] = Y[n]

LCS(m,n) = LCS(m-1, n-1) + 1

Else

LCS(m,n) = max( LCS(m-1,n), LCS(m, n-1))
```

Simulated Annealing (SA)


```
def dp_lcs(x[1..m], y[1..n]):
   for i = 0 to m:
       L[i, 0] = 0
   for j = 0 to n :
       L[0, j] = 0
   for i = 1 to m:
       for j = 1 to n :
           if x[i] == y[j]:
               L[i, j] = L[i-1, j-1] + 1
            else if L[i-1, j] >= L[i, j-1]:
               L[i, j] = L[i-1, j]
            else :
               L[i, j] = L[i, j-1]
```

return L[m, n]

What if we want to find the

subsequence too?

If m=o or n=o LCS(m,n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m,n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m,n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m.n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m,n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m,n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m,n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m.n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m.n) = 0

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

If m=o or n=o LCS(m,n) = o

Else if X[m] = Y[n] LCS(m,n) = LCS(m-1, n-1) + 1

Find LCS String

Function LCS-Genarate-String(X[1...m], Y[1...n]):

Find LCS String

Function LCS-Genarate-String(X[1...m], Y[1...n]):

```
Matching Characters
for i \leftarrow 1 to m do
      for i \leftarrow 1 to n do
            /* If current characters match, add 1 to LCS
            if X[i] = Y[i] then
                  L[i][j] \leftarrow L[i-1][j-1]+1
                  D[i][j] = 1;
            end
            else
                  /* If they don't match, take the maximum of the LCS
                  if L[i-1][j] \ge L[i][j-1] then
                        L[i][j] \leftarrow L[i-1][j]
                        D[i][i] = 2:
                  end
                  else
                        L[i][j] \leftarrow L[i][j-1]
                        D[i][j] = 3;
                  end
            end
                                                                                                                      20
      end
```

