

www.preparadorinformatica.com

DOSIER RESISTENCIAS ELÉCTRICAS

Contenido

1. Resistencias	3
1.1. Códigos de colores de las resistencias	3
1.2 Codificación de resistencias SMD	,

1. Resistencias

La resistencia eléctrica es la oposición que ejerce un material al paso de la corriente eléctrica. Se mide en ohmios (Ω) . El componente eléctrico encargado de introducir este efecto en un circuito eléctrico se denomina resistencia eléctrica.

1.1. Códigos de colores de las resistencias

Para identificar el valor de una resistencia se utiliza un código de colores:

Color de la banda		Cifra	Multiplicador	Tolerancia	C. Térmico	
Negro		0	1	_	_	
Marrón		1	10	±1%	100 ppm/°C	
Rojo		2	100	±2%	50 ppm/°C	
Naranja		3	1000	_	15 ppm/°C	
Amarillo		4	10 000	4%	25 ppm/°C	
Verde		5	100 000	±0,5%	_	
Azul		6	1000000	±0,25%	10 ppm/°C	
Violeta		7	_	±0,1%	5 ppm/°C	
Gris		8	_	_	_	
Blanco		9	_	_	1 ppm/°C	
Dorado		_	0,1	±5%	_	
Plateado		_	0,01	±10 %	_	
Ninguno		_	_	±20 %	_	

Cada resistencia tiene entre 4 y 6 bandas de varios colores que representan su valor, su tolerancia y, en el caso de tener 6 bandas, también su coeficiente térmico.

A continuación, se muestran varios ejemplos de resistencias con diferentes bandas:

Ejemplo: Resistencia con 4 bandas

Ejemplo: Resistencia con 5 bandas

Ejemplo: Resistencia con 6 bandas

1.2. Codificación de resistencias SMD

Para circuitos integrados, como las placas base, se utiliza más el modelo SMD (Surface Mount Component). Se trata de resistencias fijas de montaje en superficie.

Este tipo de resistencias, en lugar de bandas de colores, emplean una codificación de 3 o 4 cifras para codificar el valor de la resistencia.

Ejemplo: Resistencia SMD

Valor: $47 \times 100 = 4,7 \text{ K}\Omega$

Códigos de tres cifras

Los dos primeros dígitos son el valor numérico mientras que el tercer dígito es el multiplicador, es decir, la cantidad de ceros que debemos agregar al valor.

Resistencias SMD con código de 3 dígitos

EJEMPLOS

$$100 | 10 + _ = 10 Ω$$

101
$$10 + 0 = 100 \Omega$$

221
$$22 + 0 = 220 \Omega$$

$$472 \quad 47 + 00 = 4.7K$$

Códigos de tres cifras en resistencias con valores menores de 10 ohms

Con el sistema descripto anteriormente, el valor de resistencia menor que se puede codificar es de 10Ω y que equivale al código "100" (10 + ningún cero).

Con valores de resistencia menores de 10 Ω se utiliza otra notación que usa la letra "R" que equivale a una coma.

Códigos de cuatro cifras (resistencias de precisión)

En el caso de las resistencias de precisión, los tres primeros dígitos son el valor numérico mientras que el cuarto dígito es el multiplicador, es decir, la cantidad de ceros que debemos agregar al valor.

El disponer de tres dígitos para codificar el valor permite una mayor variedad y precisión de los valores.

Resistencis SMD de precisión con código de 4 cifras. Valores iguales o mayores de 100 Ω

EJEMPLOS

1000 100 + = 100
$$\Omega$$

$$4700$$
 $470 + _ = 470 Ω$

1001
$$100 + 0 = 1$$
ΚΩ

$$3301 330 + 0 = 3,3KΩ$$

1002
$$100 + 00 = 10$$
 K Ω

$$4703$$
 $470 + 000 = 470 ΚΩ$

Código EIA-96 (resistencias de precisión)

Debido a que han ido apareciendo resistencias con un alto valor, en lugar del formato tradicional se utiliza la codificación EIA-96.

A diferencia de los códigos vistos anteriormente donde con el número impreso se dispone de toda la información necesaria para conocer el valor de resistencia, el código EIA-96 es bastante más complicado de descifrar si no se tiene la tabla de referencia. En el EIA-96 las primeras dos cifras del número leído es un número índice de una tabla en la que encontraremos el valor equivalente mientras que la letra final equivale al multiplicador.

Código	Valor	Código	Valor	Código	Valor	Código	Valor
01	100	25	178	49	316	73	562
02	102	26	182	50	324	74	576
03	105	27	187	51	332	75	590
04	107	28	191	52	340	76	604
05	110	29	196	53	348	77	619
06	113	30	200	54	357	78	634
07	115	31	205	55	365	79	649
08	118	32	210	56	374	80	665
09	121	33	215	57	383	81	681
10	124	34	221	58	392	82	698
11	127	35	226	59	402	83	715
12	130	36	232	60	412	84	732
13	133	37	237	61	422	85	750
14	137	38	243	62	432	86	768
15	140	39	249	63	442	87	787
16	143	40	255	64	453	88	806
17	147	41	261	65	464	89	825
18	150	42	267	66	475	90	845
19	154	43	274	67	487	91	866
20	158	44	280	68	499	92	887
21	162	45	287	69	511	93	909
22	165	46	294	70	523	94	931
23	169	47	301	71	536	95	953
24	174	48	309	72	549	96	976