Assignment Project Exam Help

https://eduassistpro.github.

Quadratic Form

- Let **A** be some $n \times n$ matrix.

What is Ax? What's the type of the output? What may x Assignment Project Exam Help

- E.g., what if $x_i = 0, 1 ? x_i = [0, 1]? x_i$
- https://eduassistpro.github.i
 - Add WeChat edu_assist_pr

Quadratic Form

- Let **A** be some $n \times n$ matrix.

What is Ax? What's the type of the output? What may x Assignment Project Exam Help

- E.g., what if $x_i = 0, 1 ? x_i = [0, 1]? x_i$
- https://eduassistpro.github.i
 - Add WeChat edu_assist_pr

Unnormalized Graph Laplacian

 Let A is the adjacency matrix of a "normal" (unweighted) undirected graph G. $\mathbb V$ are the vertices of G and $\mathbb E$ are the

Assignment Project Exam, Help $A_{ii} = A_{ii} = 1$.

- https://eduassistpro.github. $d_i = deg(v_i)$?
- * Mont double to the control of the

Assignment Project Exam Help

https://eduassistpro.github.

Example

- 1 is the one vector.
 Add We Chat edu_assist_pr
- $\bullet x^{\top}Lx =$

Binary \mathbf{x} induces a Clustering /1

Assignment Project Exam Help https://eduassistpro.github.

- x =
- *Add WeChat edu_assist_pr

Binary x induces a Clustering /2

Assignment Project Exam Help https://eduassistpro.github.

- . Add WeChat edu_assist_pr

Min Cut vs. Normalized Cut

- Min cuts are not always desirable.
 - Biased towards cutting small sets of isolated nodes.

Assignment Project Exam Help

https://eduassistpro.github.

- *Add Wechat edu_assist_pr

$$ncut(A, B) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)},$$

where
$$vol(A) = \sum_{v_i \in A} d_i) = \sum_{v_i \in A, v_j \in \mathbb{V}} w_{i,j}$$
.

Connection to L

$$ncut(A, B) = cut(A, B) \left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right)$$
• Let $x_i = \frac{1}{vol(A)}$ if $v_i \in A$, and $= \frac{-1}{vol(B)}$ otherwise.

Assignment Project Exam Help
$$v_i \in A, v_j \in B, v_j \in A, v_$$

https://eduassistpro.github.

$$ncut(A, B) = ----$$

Relaxation and Optimization

Assignment Project to Exami, Help

- https://eduassistpro.github.
 - allow **x** to be a real vector?

- Solution: the second smallest eigenvector of the generalized eigen value problem $\mathbf{L}\mathbf{x}=\lambda\mathbf{D}\mathbf{x}$.
- Normalized Laplacian:

$$\mathbf{L}' = \mathbf{D}^{-\frac{1}{2}}(\mathbf{D} - \mathbf{W})\mathbf{D}^{-\frac{1}{2}} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}$$

Spectral Clustering Algorithm Framework

- Algorithm SC_recursive_bin_cut(data, k)
 - ullet Construct the weighted graph G
- Assignable the trades of vertices in a new 1-dimensional space
 - https://eduassistpro.github.
 - Add WeChat edu_assist_pr

Spectral Clustering Algorithm Framework

- Algorithm SC_k_way_cut(data, k)
 - Construct the weighted graph G
- Assignample the malest Contest and his label properties in a new t-dimensional space

https://eduassistpro.github.

Notes on the Algorithms

• How to construct the weighted graph if only *n* objects are given?

Assignment of the initiality of distance mong objects. Help of object o. One can also induce a sparse graph if one caps the

https://eduassistpro.github.

• Normalized graph laplacian $\mathbf{L} = \mathbf{D}^{-\frac{1}{2}}(\mathbf{D} \mathbf{W})\mathbf{D}^{-\frac{1}{2}}$.

Comments on Spectral Clustering

- Pros:
 - Usually better quality than other methods.
- Assignment Project Exam Help

 Freedom to construct a (sparse) G to preserve local
 - https://eduassistpro.github.
 - · Add We Chat edu_assist_pr
 - Assumes clusters are of similar sizes.
 - Does not scale well with large datasets; but more scalable variants exist.
 - One of the relaxation of the original NP-hard problem may not be the tightest relaxation.