الجداء السلمي في الفضاء و تطبيقاته

<u>I-الحداء السلمى</u>

1- تعرىف

. $\vec{v} = \overrightarrow{AC}$ و $\vec{u} = \overrightarrow{AB}$ حيث $\vec{u} = \overrightarrow{AB}$ و \vec{v} نقط من الفضاء حيث $\vec{u} \cdot \vec{v}$ و \vec{v}

A و B و B و من النقط A و B و الفضاء يمر من النقط A

 $\vec{u}\cdot\vec{v}$ نرمز له بـ \vec{v} نرمز له بـ ألفضاء هو الجداء السلمي للمتجهتين \vec{v} في الفضاء هو الجداء السلمي للمتجهتين الفضاء هو الجداء السلمي الفضاء الفضاء هو الجداء السلمي الفضاء هو الجداء الفضاء هو الجداء الفضاء هو الجداء الفضاء الفضاء هو الجداء الفضاء الف

ملحوظة

جميع خاصيات الجداء السلمي في المستوى تمدد إلى الفضاء

<u>2- نتائج</u>

لتكن \vec{u} متجهتين من الفضاء، و A و B و نقط من الفضاء

$$\vec{u}\cdot\vec{v}=AB imes AC imes \cos\widehat{BAC}$$
 فان $\vec{u}\neq\vec{0}$ فان $\vec{v}\neq\vec{0}$ إذا كان $\vec{v}\neq\vec{0}$

$$\vec{u} \cdot \vec{v} = 0$$
 فان $\vec{v} = \vec{0}$ أو $\vec{v} = \vec{0}$ فان *

$$\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AC}'$$
 فان $\vec{u} \neq \vec{0}$ ځان *

حيث'C المسقط العمودي لـ C على (AB)

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (AB^2 + AC^2 - BC^2) *$$

 $(\vec{u} + \vec{v})^2 = \vec{u}^2 + \vec{v}^2 + 2\vec{u} \cdot \vec{v}$ متطابقات هامة

 $(\vec{u} - \vec{v})^2 = \vec{u}^2 + \vec{v}^2 - 2\vec{u} \cdot \vec{v}$

 $(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$

3- منظم متحهة

 $\vec{u} = \overrightarrow{AB}$ متجهة وB و B نقطتين من الفضاء حيث \vec{u}

 $ec{u}^2 = AB^2$ العدد الحقيقي $ec{u} \cdot ec{u}$ يسمى المربع السلمي لـ الع

 $\|\vec{u}\| = \sqrt{\vec{u}^2}$ بنكتب \vec{u} نكتب ألعدد الحقيقي الموجب $\sqrt{\vec{u}^2}$ بسمى منظم المتجهة

ملاحظة وكتابة

$$\|\vec{u}\|^2 = \vec{u}^2 \quad *$$

 $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos\left(\widehat{\vec{u};\vec{v}}\right)$ فان $\vec{u} \neq \vec{0}$ و $\vec{v} \neq \vec{0}$ خان *

4- خاصيات

$$\forall (\vec{u}, \vec{v}, \vec{w}) \in V_3^3 \qquad \forall \alpha \in \mathbb{R}$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} *$$

$$(\vec{v} + \vec{w}) \cdot \vec{u} = \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u} *$$

$$\vec{u} \cdot \alpha \vec{v} = \alpha \vec{u} \cdot \vec{v} = \alpha \times (\vec{u} \cdot \vec{v})$$

<u>5- تعامد متحهتىن</u> :

تعريف

لتكن $ec{u}$ و متجهتين من الفضاء $ec{u}$

 $\vec{u} \perp \vec{v}$ نکتب $\vec{u} \cdot \vec{v} = 0$ تکون $\vec{u} \cdot \vec{v} = 0$ نکتب إذا وفقط إذا کان

 V_3 ملاحظة المتجهة $ec{0}$ عمودية على أية متجهة من الفضاء

<u>تمرین</u>

a الذي طول حرفه $\overrightarrow{ABCDEFGH}$ الذي طول $\overrightarrow{AG}.\overrightarrow{EB}$ و $\overrightarrow{AE}.\overrightarrow{AG}$ و

II- صــــغ تحلىلىــــــة

1- الأساس و المعلم المتعامدان الممنظمان

تعريف

لتكن \vec{k} و \vec{V} ثلاث متجهات غير مستوائـــية من الفضاء \vec{V} و \vec{V} نقطة من الفضاء.

 V_3 أسا س للفضاء $(\vec{i}; \vec{j}; \vec{k})$

 $ec{k}$ و $ec{j}$ و $ec{i}$ الأساس ($ec{i};ec{j};ec{k}$) متعامد (أو المعلم ($ec{i};ec{j};ec{k}$) متعامدة مثنى مثنى.

يكون الأساس $(\vec{i}; \vec{j}; \vec{k})$ متعامد و ممنظم (أو المعلم $(\vec{j}; \vec{k}; \vec{j}; \vec{k})$ تعامد وممنظم) إذا وفقط إذا كانت

 $\|\vec{i}\| = \|\vec{j}\| = \|\vec{k}\| = 1$ المتجهات \vec{i} و \vec{i} متعامدة مثنى مثنى و 1

2- الصبغة التحليلية للحداء السلمي

أ- <u>خاصىة</u>

 $\overline{(O;\vec{i}\;;\vec{j}\;;\vec{k}\;)}$ الفضاء منسوب إلى معلم.م.م

$$\vec{u} \cdot \vec{v} = xx' + yy' + zz'$$
 فان $\vec{v} \left(x'; y'; z' \right)$ $\mathcal{U} \left(x; y; z \right)$ إذا كانت

ملاحظة إذا كانت $\vec{u}(x;y;z)$ بالنسبة للمعلم.م.م $\vec{u}(x;y;z)$ فان

$$\vec{u} \cdot \vec{i} = x$$
 ; $\vec{u} \cdot \vec{j} = y$; $\vec{u} \cdot \vec{k} = z$

ب-الصبغة التحليلية لمنظم متحهة والمسافة بين نقطتين

 $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$ فان $(o; \vec{i}; \vec{j}; \vec{k})$ بالنسبة للمعلم.م.م $(a; \vec{i}; \vec{j}; \vec{k})$ بالنسبة للمعلم.

 $(o;\vec{i}\;;\vec{j};\vec{k})$ و $Aig(x_B;y_B;z_Big)$ و النسبة للمعلم.م.م $Aig(x_A;y_A;z_Aig)$ اذا كانت $Aig(x_A;y_A;z_Aig)$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$
 فان

تمرين

$$C\left(-1;-1;-\sqrt{2}\right)$$
 و $B\left(\sqrt{2};-\sqrt{2};0\right)$ و $A\left(1;1;\sqrt{2}\right)$

بين أن ABC مثلث متساوي الساقين وقائم الزاوية

 $\overrightarrow{u}.\overrightarrow{MA}=k$ من الفضاء بحيث محموعة النقط M

لتكن u(a;b;c) نقطة من الفضاء لتكن u(a;b;c)

M(x;y;z)نعتبر

$$\overrightarrow{u}.\overrightarrow{MA} = k \Leftrightarrow \dots \Leftrightarrow ax + by + cz + d = 0$$

خاصىة

لتكن $\vec{u}(a;b;c)$ متجهة غير منعدمة و $\vec{u}(a;b;c)$

مجموعة النقط M من الفضاء بحيث $\vec{u}.\overrightarrow{MA}=k$ هي مستوى معادلته M=0 مجموعة النقط عدد حقيقي

مثاك نقطة من الفضاء aig(1;-1;2ig) متجهة و $ec{u}ig(2;-1;1ig)$ نقطة من الفضاء

 $\vec{u}.\overrightarrow{MA} = -1$ حدد مجموعة النقط M من الفضاء بحيث

<u>III- تطبيقات الحداء السلمي في الفضاء</u>

<u>1- تعامد المستقيمات و المستويات في الفضاء</u>

<u>ا- تعامد مستقىمىن</u>

ليكن (D1) و (D2) مستقيمــين من الفضاء موجهين بالمتجهتين \vec{u}_1 و على التوالي $(D_1) \perp (D_2) \Leftrightarrow \vec{u_1} \cdot \vec{u_2} = 0$

ب- تعامد مستقیم و مستوی

<u>خاصىة</u>

 $\vec{u_3}$ ليكن (P) مستوى موجه بالمتجهتين $\vec{u_1}$ و $\vec{u_1}$ و $\vec{u_2}$ المتجهة (P) مستوى موجه بالمتجهة $(D) \perp (P) \Leftrightarrow \vec{u_1} \perp \vec{u_3}$ و $\vec{u_2} \perp \vec{u_3}$

ج- ملاحظات واصطلاحات

- .(P) العمودي على مستوى (P) العمودي على مستوى (P) العمودي على أ الموجهة لمستقيم $ec{u}$
 - (P) فان کل متجهة $ec{v}$ مستقيمية مع $ec{u}$ تکون منظمية للمستوی (P) اذا کانت $ec{u}$ منظمية للمستوی
- (P') (P') (P') و \vec{v} منظمیة لمستوی (P') و \vec{v} منظمیة لمستوی (P') و انتا \vec{v} و اذا کانت \vec{v} منظمیة لمستوی (P') و \vec{v} منظمیة لمستوی (P') و \vec{v} متوازیان
 - $\vec{u} \perp \overrightarrow{AB}$ فان $(P) \in (A;B) \in (P)^2$ إذا كان $(A;B) \in (P)^2$
 - $(O;\vec{i};\vec{j};\vec{k})$.م. معلم معلى الفضاء المنسوب إلى معلم الفضاء المنسوب
- حدد تمثيل بارامتري للمستقيم (D) المار من(D) المار من(P) و العمودي على المستوى (P) الموجه بالمتجهتين حدد $\vec{v}(2;1;1)$ و $\vec{u}(1;-1;1)$

<u>تمرين</u>

في الفضاء المنسوب إلى معلم .م. $(O;\vec{i}\;;\vec{j}\;;\vec{k}\;)$ نعتبر المستوى

$$\begin{cases} x=2\ t \\ y=1+3\ t \end{cases}$$
 $t\in IR$ و المستقيم (D) تمثيله بارامتري $ax-2y+z-2=0$ الذي معادلته $z=-2+bt$

- 1- حدد متجهتین موجهتین للمستوی (P)
 - $(D)\bot(P)$ حدده وd لکي يکون -2

د- <u>تعامد مستوسن</u>

تذكير يكون مستويان متعامدين اذا و فقط اذا اشتمل أحدهما على مستقيم عمودي على المستوى الآخر.

ليكن (P') و (P') مستويين من الفضاء و \vec{u} و \vec{v} متجهتين منظميتين لهما على التوالي $\vec{u} \perp \vec{v}$ اذا وفقط اذا كان $\vec{v} \perp \vec{v}$

2- <u>معادلة مستوى محدد بنقطة و متحهة منظمية عليه</u> a. <u>مستوى محدد بنقطة و متحهة منظمية عليه</u>

مبرهنة

لتكن $ec{u}$ متجهة غير منعدمة و A نقطة من الفضاء

- $\overrightarrow{AM} \cdot \overrightarrow{u} = 0$ من الفضاء حيث A المستوى المار من A و المتجهة \overrightarrow{u} منظمية له هو مجموعة النقط
 - مجموعة النقط M من الفضاء حيث $\vec{u}=0$ المستوى المار من M مجموعة *

d.<u>معادلة مستوى محدد بنقطة و متحهة منظمية عليه</u> خاصية

ax + by + cz + d = 0 في الفضاء و $\vec{u}(a;b;c)$ منظمية عليه يقبل معادلة ديكارتية من نوع (P) في الفضاء و $(a;b;c) \neq (0;0;0)$ هي معادلة مستوى * كل معادلة ديكارتية من نوع $\vec{u}(a;b;c) + cz + d = 0$ هي معادلة مستوى * الفضاء بحيث $\vec{u}(a;b;c)$ منظمية عليه

<u>تمرىن</u>

(D):
$$\begin{cases} x+y-2z+1=0 \\ x-y+z-2=0 \end{cases}$$
 (P) : $2x-y+3z+1=0$

- منظمیة علی (P) ونقطة منه. \vec{u} منظمیة علی (-1
- 2- حدد معادلة ديكارتية للمستوى المار من $\vec{n}(1,2,1)$ ه (2;0;3) منظمية عليه.
 - 3- حدد معادلة ديكارتية للمستوى المار من(2;0;3) A' (2;0;3) على (D)
 - 4- حدد معادلة ديكارتية للمستوى المار من(2;0;3) A و الموازي لـ (P)

3- مسافة نقطة عن مستوى

1- تعریف و خاصیة

 $(o;\vec{i};\vec{j};\vec{k})$ الفضاء منسوب إلى معلم.م.م مسافة نقطة A عن مستوى (P) هي المسافة AH حيثH المسقط العمودي لـ A على(P) نكتب

$$d(A;(P)) = AH = \frac{|\overrightarrow{AB} \cdot \overrightarrow{u}|}{\|\overrightarrow{u}\|}$$

(P)حیث $B \in (P)$ حیث $B \in (P)$

ليكن (P) مستوى معادلته
$$ax + by + cz + d = 0$$
 نقطة من الفضاء

$$d(A;(P)) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

<u>مثال</u>

A (1;2;0) مستوی مار من
$$B(2;1;3)$$
 و $\vec{u}(1;-1;\sqrt{2})$ مستوی مار من $B(2;1;3)$

$$d\left(A;\left(P\right)\right)$$
 حدد

في فضاء منسوب إلى معلم متعامد ممنظم.

نعتبر (1;1-1;1) و (B(3;1;-1) و (P) المستوى ذا المعادلة 2x-3y+2z=0 و (D) المستقيم الممثل

$$\left\{ egin{aligned} x = 3t \ x = -2 - 3t \ z = 2 + 4t \end{aligned}
ight.$$
 $t \in \mathbb{R}$ بارا متریا ب

1- حدد معادلة ديكارتية للمستوى (Q) المار من A والعمودي على المستقيم (D) حدد معادلة ديكارتية للمستوى (Q') المار من A و B والعمودي على المستوى (P)

2- احسب ((A;(P) و (d(A;(D)

3- حدد معادلة ديكارتية للمستوى (' 'Q') المار من B و الموازي للمستوى (P)

في فضاء منسوب إلى معلم متعامد ممنظم.

نعتبر المستوى(P) ذا المعادلة 3x+2y-z-5=0 و (D) المستقيم المعرف بـ

$$\begin{cases} x - 2y + z - 3 = 0 \\ x - y - z + 2 = 0 \end{cases}$$

1- حدد تمثيلا بارا متريا للمستقيم (D)

حدد معادلة ديكارتية للمستوى (P') الذي يتضمن (D) و العمودي على (P)

IV- معادلة فلكة

 $\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;
ight)$ الفضاء منسوب إلى معلم متعامد ممنظم

معادلة فلكة معرفة بمركزها وشعاعها

لتكن $S(\Omega;r)$ و $r\in\mathbb{R}^{*+}$ و (E) الفلكة $\Omega(a;b;c)$ الفلكة التی مرکزها Ω و شعاعها r

(E) ليكن
$$M(x;y;z)$$
 من الفضاء $(x-a)^2+(y-b)^2+(z-c)^2=r^2 \Leftrightarrow \Omega M=r \Leftrightarrow M \in S(\Omega;r)$

. $(o;\vec{i};\vec{j};\vec{k})$ الفضاء المنسوب إلى معلم متعامد ممنظم

r معادلة ديكارتية للفلكة $S(\Omega;r)$ التي مركزها $\Omega(a;b;c)$ و شعاعها

 $(x-a)^2+(y-b)^2+(z-c)^2=r^2$

ملاحظات و اصطلاحات

* إذا كان A و B نقطتين من الفلكة $S(\Omega;r)$ حيث Ω منتصف S(B) فان S(B) قطرا للفلكة

r=1/2 AB و شعاعها [A;B] مركزها Ω منتصف [A;B] و شعاعها *

 δ و و و α و α عادلة ديكارتية من شكل α حيث α حيث α حيث α عادلة ديكارتية من شكل α اعداد حقىقىة.

 $x^2+y^2+z^2=r^2$ الفلكة S(0; r) حيث S(0; r) اصل المعلم

r و شعاعها $\Omega(a;b;c)$ لتكن $S(\Omega;r)$ و فلكة التي مركزها

M(x;y;z) التي مركزها $\Omega(a;b;c)$ و شعاعها $\Omega(\Omega;r)$ هي مجموعة النقط $B(\Omega;r)$

 $(x-a)^2+(y-b)^2+(z-c)^2 \le r^2$ حيث 2- معادلة فلكة معرفة بأحد أقطارها

S فلكة أحد اقطارها [A;B]

 $AM \cdot BM = 0 \Leftrightarrow \mathsf{M} = \mathsf{B}$ أو $\mathsf{M} = \mathsf{B}$ زاوية قائمة أو $\mathsf{M} = \mathsf{A}$

A و B نقطتان مختلفان في الفضاء

 $[\mathsf{A};\mathsf{B}]$ في الفضاء مجموعة النقط M التي تحقق $0=M\cdot BM$ هي فلكة التي أحد اقطارها

خاصية

اذا كانت A(xA;yA;ZA) و B(xB;yB;ZB) نقطتين مختلفتين فان معادلة الفلكة التي أحد اقطارها [A;B] $(x - x_A)(x - x_B) + (y - y_A)(y - y_B) + (z - z_A)(z - z_B) = 0$

تمرين

 $\mathsf{B}(4;1;2)$ في الفضاء المنسوب إلى معلم متعامد ممنظم $(O;\vec{i}\;;\vec{j}\;;\vec{k}\;)$ ، نعتبر $\Omega(1;2;-1)$ و $\Omega(2;1;2)$

A حدد معادلة ديكارتية للفلكة S التي مركزها Ω و المار من S

2- حدد معادلة ديكارتية للفلكة ´S التي قطرها [A;B]

(1): x²+y²+z²-2ax-2by-2cz+d=0 دراسة المعادلة -3

لتكن E مجموعة النقط (x;y;z التي تحقق المعادلة (1)

 $(x-a)^2+(y-b)^2+(z-c)^2=a^2+b^2+c^2-d$ \Leftrightarrow

لتكن (a;b;c)

 $E = \emptyset$ فان $a^2 + b^2 + c^2 - d < 0$ فان -*

و شعاعها منعدم Ω فان $E=\{\Omega\}$ فان $a^2+b^2+c^2-d=0$ *- اذا کان

 $a^2+b^2+c^2-d = r^2$ حیث $E=S(\Omega;r)$ فان $a^2+b^2+c^2-d > 0$ *- اذا کان

a و b و d و c و b أعداد حقيقية

تكون مجموعة النقط M(x;y;z) التي تحقق المعادلة x²+y²+z²-2ax-2by-2cz+d=0 فلكة

اذا وفقط اذا كان a²+b²+c²-d ≥0

 $x^2+y^2+z^2+4x-2y-6z+5=0$ التي تحقق المعادلة M(x;y;z) مجموعة النقط النقط التي تحقق المعادلة التي تحقق المعادلة

بين إن E فلكة محددا عناصرها المميزة

تمرين حدد مجموعة النقط M التي تحقق M(2;0;-1) حيث A(2;0;-1) و (1;1;-1) و B(-1;1;-1)

II – تقاطع مستوى و فلكة

تقاطع للف<u>لكة (S(Ω;r) و المستوى (P)</u>

في الفضاء العمودي لـ Ω على المستوى (P) و النقطة Η المسقط العمودي لـ Ω على المستوى (P) على المستوى (P) $d(\Omega;(P)) = H\Omega = d$ نضع

ليكن (P) مستوى في الفضاء و S فلكة مركزها Ω و شعاعها r و H المسقط العمودي لـ Ω على المستوى(P) یکون تقاطع (P) و S :

 $d(\Omega;(P))$ < r دائرة مركزها $d(\Omega;(P))$ و شعاعها $\sqrt{r^2-d^2\left(\Omega;(P)\right)}$ اذا كان *

* نقطة اذا كان d(Ω;(P))= r في هذه الحالة نقول (P) مماس للفلكة S عند النقطة H

 $d(\Omega;(P))>r$ المجموعة الفارغة اذا كان *

2- مستوى مماس لفلكة في أحد نقطها

لتكن A نقطة من الفلكة (S(Ω;r)

نقول إن المستوى (P) مماس للفلكة S عند النقطة A اذا كان (P) عمودي على (ΩA) في A

خاصية

لتكن A نقطة من الفلكة (S(Ω;r

$$\forall M \in (P) \qquad \overrightarrow{\Omega A} \cdot \overrightarrow{AM} = 0$$

(P) مماس على S(Ω;r) في A \Leftrightarrow

تمرين في فضاء منسوب إلى معلم متعامد ممنظم $(O;\vec{i}\;;\vec{j}\;;\vec{k}\;)$ ، نعتبر S_1 الفلكة التي معادلتها

المستوى الذي Ω_2 و شعاعها 2 , و (P) المستوى الذي S_2 الفلكة التي مركزها Ω_2 و شعاعها 2 , و (P)و (P') المستوى الذي معادلته P') . 2x-y-2z-1=0 معادلته x-2y+z+1=0

1- تأكد أن (P) و S_1 يتقاطعان وفق دائرة محددا عناصرها المميزة.

2- أدرس تقاطع (P´) و S₂ .

A(1;1;3) عند النقطة S_1 عند المماس عادلة المستوى المماس للفلكة -3

<u>3-- تقاطع مستقيم و فلكة </u>

 (Δ) و النقطة H المسقط العمودي لـ Ω على المستقيم (Δ) و النقطة S $(\Omega;r)$ في الفضاء $d(\Omega;(\Delta)) = H\Omega = d$ نضع

d > r

d > r

المستقيم (Δ) يخترق الفلكة فى نقطتين مختلفتين

 $d \prec r$

(S

(A)

 (Δ) الفلكة يتقاطعان في النقطةH

H

تقاطع المستقيم (Δ) الفلكة هو المجموعة الفارغة

 $S: x^2+y^2+z^2-2y+4z+4=0$

is in the first series of the first series
$$(D_3)$$
:
$$\begin{cases} x = \frac{-1}{2} + 2t \\ y = \frac{1}{3} + 3t \\ z = -2 \end{cases}$$

$$t \in \mathbb{R} \quad (D_2)$$
:
$$\begin{cases} x = 3t \\ y = 2 \\ z = -2 + t \end{cases}$$

$$t \in \mathbb{R} \quad (D_1)$$
:
$$\begin{cases} x = 1 + 2t \\ y = 1 + t \\ z = -3 + t \end{cases}$$

 (D_3) و (D_2) و (D_1) و حدد تقاطع S مع كل من

(Δ)

<u>تمرين1</u>

 $\left(O; \vec{i}; \vec{j}; \vec{k} \; \right)$ في فضاء منسوب إلى معلم متعامد ممنظم

 $\vec{u}(-1;2;1)$ و المار من C(0;-1;1) و المستقيم (D) و المستقيم (C(0;-1;1) و B(0;0;1) و عتبر (A(1;0;1) و المستقيم (D) المار من $\vec{u}(-1;2;1)$

- 1- بين أن مجموعة النقط M حيث MA=MB=MC مستقيم وحدد تمثيلا بارا متريا له
 - 2- حُدد معادلة ديكارتية للمستوى (P) العمودي على (D) في C
 - 3- استنتج معادلة ديكارتية للفلكة S المارة من Aو B و المماسة لـ (D) في C

<u>تمرين2</u>

C(1;5;-3) و B(0;7;-3) و A(0;3;-5) نعتبر $O(\vec{i};\vec{j};\vec{k})$ و معامد ممنظم متعامد ممنظم

- 1- أعط معادلة ديكارتية للمستوى (ABC)
- عليه معادلة ديكارتية للمستوى (Q) المار من A حيث $\vec{u}(-1;2;1)$ منظمية عليه -2
 - x+y+z=0 المستوى المحدد بالمعادلة (P) المستوى -3
 - أ- تأكد أن (P)و (ABC) يتقاطعان وفق مسنقيم (D)
 - ب- حدد تمثیلا بارا متریا لـ (D)
 - $\begin{cases} x^2 + z^2 + 10z + 9 = 0 \\ y = 0 \end{cases}$ نعتبر في الفضاء الدائرة (C) التي المحددة بـ -4
 - أ- حدد معادلة للفكة S التي تتضمن الدائرة (C) و ينتمي مركزها إلى (ABC) ب حدد تقاطع S و (AC)

<u>تمرين3</u>

في فضاء منسوب إلى معلم متعامد ممنظم مباشر نعتبر A(1;-1;1) و B(3;1;-1) و (P) المستوى ذا

$$\begin{cases} x=3t \\ x=-2-3t & t\in\mathbb{R} \end{cases}$$
 المعادلة (D) 2x-3y+2z=0 المعادلة $z=2+4t$

- 1- حدد معادلة ديكارتية للمستوى (Q) المار من A و B والعمودي على المستقيم (D)
- (P) إلمار من A و B والعمودي على المستوى (Q') إلمار من A حدد معادلة ديكارتية للمستوى
 - 3- أحسب ((A;(P)) و d(A;(P)
 - 4- حدد معادلة ديكارتية لُلُمستوى (′′Q) المار من B و الموازي للمستوى (P)

<u>تمرين4</u>

في فضاء منسوب إلى معلم متعامد ممنظم نعتبر المستوى (P) ذا المعادلة 3x+2y-z-5=0

$$\begin{cases} x - 2y + z - 3 = 0 \\ x - y - z + 2 = 0 \end{cases}$$
 و (D) المستقيم المعرف بـ

- 1- حدد تمثيلا بارا متريا للمستقيم (D)
- 2- حدد معادلة ديكارتيّة للمستوى (P ´) الذي يتضمن (D) و العمودي على (P).

<u>تمرين5</u>

في فضاء منسوب إلى معلم متعامد ممنظم نعتبر المستوى (P) ذا المعادلة (x+y+z+1=0

و المستوى (Q) ذا المعادلة 0=5-2x-2y

- $x^2+y^2+z^2-2x+4y+6z+11=0$ و (S) مجموعة النقط (x;y;z) التي تحقق (S) و
 - 1- بین أن (S) فلكة محددا مركزها و شعاعها
 - 2- تأكد أن (P) مماس للفلكة و حدد تقاطعهما
- 3- حدد تمثيلا بارامتريا للمستقيم (D) المار من (C):(C) و العمودي على (P) حدد تمثيلا بارامتريا للمستقيم (D) المار من (C):(C) مار (D) المار من (C):(C)
 - (Q) و (P) و أعط تمثيلا بارامتريا للمستقيم (P) (D') و أعط تمثيلا بارامتريا (P)

<u>تمرین6</u>

المستوى (P) ذا المعادلة 8 (S) x+2y-2z+15 التيتحقق التيتحقق

$$\begin{cases} x^2 + y^2 - 2x - 8 = 0 \\ z = 0 \end{cases}$$
 و (C) الدائرة التي معادلتها $x^2 + y^2 + z^2 - 2x + 6y + 10z - 26 = 0$

- 1- بين أِن (S) فلكة محددا عناصرها المميزة
- بین أن (P) و (S) يتقاطعان وفق دائرة كبرى (C') و حددها
- 3- حدد معادلتي المستوين المماسين للفلكة (S) و الموازيين لـ (P)
 - 4- أكتب معادلة الفلكة (S') المار من A المتضمن للدائرة (C)

الجداء المتجهي

I⁻ توجيه الفضاء

<u>- مُعلم موجه في الفضاء</u>

 $(O;\vec{i};\vec{j};\vec{k})$ ننسب الفضاء E إلى معلم

 $\overrightarrow{OK} = \overrightarrow{k}$ $\overrightarrow{OJ} = \overrightarrow{j}$ $\overrightarrow{OI} = \overrightarrow{i}$ حيث غير المحادث المحادث

« رجل أمبير » للمعلم $\left(O;ec{i}\;;ec{j}\;;ec{k}\;
ight)$ هو رجل خيالي رأسه في النقطة K وينظر

إلى I

,النقطة J إما توجد على يمين« رجل أمبير » أو على يساره .

تعریف :

 $\overrightarrow{OK} = \vec{k}$ $\overrightarrow{OJ} = \vec{j}$ $\overrightarrow{OI} = \vec{i}$ نقط حيث $\overrightarrow{OI} = \vec{i}$. لتكن I ولا و الغضاء منسوب إلى معلم $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$ معلم مباشر إذا وجدت I على يسار $(O; \vec{i}; \vec{j}; \vec{k})$ *: نقول إن

« معلم غیر مباشر إذا وجدت $\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;\right)$ معلم غیر مباشر ا

معلم مباشر $\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;\right)$ معلم مباشر *

معلم غیر مباشر $\left(O\,;\vec{i}\,;\vec{j}\,;-\vec{k}\,
ight)$ معلم غیر مباشر معلم غیر مباشر

معلم مباشر $\left(O\,;ec{j}\,;ec{k}\,;ec{i}\,
ight)$

معلمان مباشران ($A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE}$) ; $(B; \overrightarrow{BC}; \overrightarrow{BA}; \overrightarrow{BF})$

معلمان غیر مباشرین $\left(A;\overrightarrow{AD};\overrightarrow{AB};\overrightarrow{AE}\right)$, $\left(E;\overrightarrow{EA};\overrightarrow{EF};\overrightarrow{EH}\right)$

يمكننا توجيه الفضاء وV , اذا وجهنا جميع أساساته

<u>تعریف</u>

نقول إن الأساس المتعامد الممنظم $\left(ec{i}\,;ec{j}\,;ec{k}
ight)$ مباشر ادا كان $\left(o;ec{i}\,;ec{j}\,;ec{k}
ight)$ مرمرم مباشر مهما كانت النقطة 0 من الفضاء

<u>3- توجيه المستوى</u>

(P) مستوى في الفضاء و \vec{k} متجهة واحدية و منظمية على (P) , و O نقطة من المستوى (P) ليكن (P) م.م.م للمستوى (P) م.م.م للمستوى (P)

 E لدينا $\left(O; \vec{i}; \vec{j}; \vec{k} \right)$ معلم متعامد ممنظم للفضاء

يكون المعلم المتعامد الممنظم $\left(O;ec{i}\;;ec{j}
ight)$ في المستوى (P) معلما مباشرا اذا كان المعلم المتعامد

الممنظم
$$\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;\right)$$
 مباشرا

تیم توجیه مستوی (P) بتوجیه متجهة منظمیة علیه.

كلُ المستويات الموازية لـ(P) له نفس توجيه المستوى (P)

II – الحداء المتحهي

<u>1- تعرىف</u>

 $\vec{u}=\overrightarrow{OA}$ $\vec{v}=\overrightarrow{OB}$ بحيث E بحيث B و B و V3 و V3 و كا و \vec{v} و \vec{v} و \vec{v} و الفضاء الخداء المتجهي للمتجهتين من الفضاء \vec{v} و \vec{v} في هدا الترتيب ,هو المتجهة التي لها ب

. $\vec{u} \wedge \vec{v} = \vec{o}$ فان \vec{v} و \vec{v} مستقیمیتین *

: أَذَا كَانَتَا \vec{v} وَ \vec{v} غير مستقيميتين فان \vec{v} هي المتجهة التي تحقق*

 \vec{v} و \vec{u} مودي على كل من $\vec{u} \wedge \vec{v}$ -

. أساس مباشر $(ec{u}\,;ec{v}\,;ec{u}\,\wedge\,ec{v})$ -

 $\left[\widehat{AOB}\right]$ حيث heta قياس الزاوية $\left\|ec{u}\wedgeec{v}
ight\|=\left\|ec{u}
ight\|\left\|ec{v}
ight\|\sin heta$ -

مثلة * نعتبر $(O;\vec{i};\vec{j};\vec{k})$ معلم متعامد ممنظم مباشر

$$\vec{i} \wedge \vec{i} = \vec{j} \wedge \vec{j} = \vec{k} \wedge \vec{k} = \vec{0}$$

$$\vec{i} \wedge \vec{j} = \vec{k} \qquad \vec{j} \wedge \vec{k} = \vec{i} \qquad \vec{k} \wedge \vec{i} = \vec{j}$$

$$\vec{j} \wedge \vec{i} = -\vec{k} \qquad \vec{k} \wedge \vec{j} = -\vec{i} \qquad \vec{i} \wedge \vec{k} = -\vec{j}$$

. أساس مباشر ($ec{u}; ec{v}; ec{u} \wedge ec{v}$) أساس مباشر *

 $\|\vec{u}\| = 5$ $\|\vec{v}\| = 2$ $\vec{u} \cdot \vec{v} = -5$ $(\overline{\vec{u}}; \overline{\vec{v}}) = \theta$ $\theta \in]0; \pi[$ نحسب $\|\vec{u} \wedge \vec{v}\|$ علما أن

<u>2- خاصيات</u>

أ- خاصية

منظمية على المستوى (ABC). إذا كانت $\overrightarrow{AB} \wedge \overrightarrow{AC}$ منظمية على المستوى (ABC).

C لتكن \bigcap BوB و \bigcap ثلاث نقط غير مستقيمية من الفضاء \bigcap قياس الزاوية

$$\|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = AB \cdot AC \cdot \sin \theta$$
 $HC = AC \cdot \sin \theta$ $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = AB \times HC$

خاصية

 $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$ هو نصف ABC مساحة المثلث

<u>نتىحة</u>

 $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$ هي الأضلاع ABDC مساحة متوازي الأضلاع

<u>د- خاصىة</u>

لتكن $ec{v}$ و $ec{v}$ متجهتين من الفضاء

یکون $ec{v} \wedge ec{v}$ منعدما أداو فقط کان $ec{u}$ و $ec{v}$ مستقیمیتین

<u>البرهان</u> *⇒(بديهي – التعريف-)

$$\vec{u} \wedge \vec{v} = \vec{0} \Leftrightarrow \|\vec{u} \wedge \vec{v}\|$$

$$\Rightarrow \|\vec{u}\| \|\vec{v}\| \sin \theta = 0$$

$$\Leftrightarrow \|\vec{u}\| = 0 \quad \lor \quad \|\vec{v}\| = 0 \quad \lor \quad \sin \theta = 0$$

$$\Leftrightarrow \vec{u} = \vec{0} \quad \lor \quad \vec{v} = \vec{0} \quad \lor \quad \vec{u}et\vec{v} \quad sont \ li\acute{e}s$$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \vec{0} \quad \Leftrightarrow \quad \vec{a}$$
Be A

<u>ج- الحداء المتحهى والعمليات(نقبل)</u>

 $\forall (\vec{u}; \vec{v}; \vec{w}) \in V_3^3$ $\forall \alpha \in \mathbb{R}$ $(\vec{u} + \vec{v}) \wedge \vec{w} = \vec{u} \wedge \vec{w} + \vec{v} \wedge \vec{w}$ $(\alpha \vec{u}) \wedge \vec{v} = \alpha (\vec{u} \wedge \vec{v})$ $\vec{u} \wedge \vec{v} = -(\vec{v} \wedge \vec{u})$ $\vec{u} \wedge \vec{u} = \vec{0} \wedge \vec{u} = \vec{u} \wedge \vec{0} = \vec{0}$

<u>تمرين</u>

. معلم متعامد ممنظم مباشر $(o; \vec{i}; \vec{j}; \vec{k})$

 $(2\vec{i} - \vec{j}) \wedge (3\vec{i} + 4\vec{j})$ $(\vec{i} + \vec{j} - 2\vec{k}) \wedge \vec{k}$ $(\vec{i} + 2\vec{k}) \wedge \vec{j}$ $\vec{i} \wedge 3\vec{j}$

 $\vec{a} \wedge \vec{c} = \vec{b} \wedge \vec{d}$; $\vec{a} \wedge \vec{b} = \vec{c} \wedge \vec{d}$

بین إن $ec{d} - ec{c}$ و $ec{d} - ec{d}$ مستقیمیتان

3- الصبغة التحليلية للحداء المتجهى في م.م.م مياش

معلم متعامد ممنظم مباشر $\left(o;\vec{i};\vec{j};\vec{k}\right)$

$$\vec{u}(x; y; z) \qquad \vec{v}(x'; y'; z')$$

$$\vec{u} \wedge \vec{v} = (x\vec{i} + y\vec{j} + z\vec{k}) \wedge (x'\vec{i} + y'\vec{j} + z'\vec{k})$$

$$= (yz' - zy')\vec{i} + (zx' - xz')\vec{j} + (xy' - yx')\vec{k}$$

الفضاء E منسوب إلى معلم متعامد ممنظم مباشر $\vec{v}\left(x(;y';z')\right)$ و $\vec{u}\left(x;y;z\right)$ و متجهتان

من۷3

حيث (X;Y;Z) عو $\left(\vec{i}\,;\vec{j}\,;\vec{k}\,\right)$ حيث إحداثيات الجداء المتجهي بالنسبة للأساس

$$X = yz' - zy'$$
 $Y = zx' - xz'$ $Z = xy' - yx'$

 $\vec{v}(-2;-1;1)$ نعتبر

 $\vec{u} \wedge \vec{v}$ حدد

أحسب مساحة المثلث (ABC)

III – تطبيقات الحداء المتحو

1- معادلة مستوى معرف ىثلاث نقط غير مستقيمية

لتكن AوB وC ثلاث نقط غير مستقيمية من فضاء منسوب الى معلم متعامد ممنظم مباشر $M \in (ABC) \Leftrightarrow (AB \land AC) \cdot AM$

نعتبر (1;2;3) و (1;-1;1) و (2;1;2) حدد معادلة المستوى (ABC)

2- تقاطع مستوسن

نعتبر في فضاء منسوب الى معلم متعامد ممنظم مباشر

$$(P) : ax+by+cz+d=0$$

$$(P')$$
: a'x+b'y+c'z+d'=0

$$(P')$$
 منظممية لـ $\vec{n}'(a';b';c')$ منظممية لـ $\vec{n}(a;b;c)$ لدينا

$$\vec{n} \wedge \vec{n}$$
' موجه بـ (P´) و(P´) و(P´) اذا كان (P) متقاطعين فان المستقيم

$$\vec{n} \wedge \vec{n}'$$
 فان (P') متقاطعان وفق مستقیم موجه ب $\vec{n} \wedge \vec{n}' \neq 0$ اذا کان $\vec{n} \wedge \vec{n}' \neq 0$

<u>3- مسافة نقطة عن مستغ</u>

(D) مستقيم مار من Aو موجه بـ \vec{u} بقطة من الفضاء و A مسقطها العمودي على (D) مستقيم مار من $\overrightarrow{AM} \wedge \overrightarrow{u} = \left(\overrightarrow{AH} + \overrightarrow{HM}\right) \wedge \overrightarrow{u} = \overrightarrow{HM} \wedge \overrightarrow{u}$

$$\|\overrightarrow{AM} \wedge \overrightarrow{u}\| = \|\overrightarrow{HM} \wedge \overrightarrow{u}\| = HM.\|\overrightarrow{u}\| \sin \frac{\pi}{2} = HM.\|\overrightarrow{u}\|$$

$$HM = \frac{\|\overrightarrow{AM} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|}$$

في الفضاء (D) مستقيم مار من Aو موجه بـ \vec{u} , نقطة من الفضاء.

$$d\left(M;\left(D
ight)
ight)=\dfrac{\left\|\overrightarrow{AM}\wedge\overrightarrow{u}
ight\|}{\left\|\overrightarrow{u}
ight\|}$$
 هي (D) مسافة النقطة M عن المستقيم

<u>تمرين</u>

$$d(A;(D)) = ? (D): \begin{cases} x = 2 - t \\ y = 2t \\ z = 1 + t \end{cases} A(3;2;-1)$$

تمرين

في فضاء منسوب إلى معلم متعامد ممنظم مباشر نعتبر (1;2;1) و (D) المستقيم الذي

$$\begin{cases} x - 2y + z - 3 = 0 \\ 2x + 3y - z - 1 = 0 \end{cases}$$

معادلته

(OAB) حدد $\overrightarrow{OA} \wedge \overrightarrow{OB}$ ثم حدد معادلة ديكارتية للمستوى $\overrightarrow{OA} \wedge \overrightarrow{OB}$

d(A;(D)) حدد

3- أعط مُعادلُهُ `ديكارتية للفلكة (S)التي مركزها A و مماسة للمستقيم (D)