Computability

Rasmus Guldborg Pedersen

January 2015

Deterministic Finite Automata

Define formally a finite automaton and the language accepted by a finite automaton. Describe a language over the alphabet $\{a,b\}$ that can be accepted by a finite automaton. Explain and justify your answer.

A Finite Automaton

```
(Q, \Sigma, q_0, A, \delta)
 Q is a finite set of states;
 \Sigma is a finite input alphabet;
 q_0 \in Q is the initial state;
 A \subseteq Q is the set of accepting states;
 \delta: Q \times \Sigma \to Q is the transition function.
 For q \in Q and \sigma \in \Sigma then \delta(q, \sigma) denotes the state transition from q on input \sigma.
```

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

 $\delta^*(q, y\sigma) = \delta(\delta^*(q, y), \sigma)$

Language accepted by a NFA

$$L(M) = \{x \in \Sigma^* \mid (\delta^*(q_0, x)) \in A\}$$

Example

The language over $\{a, b\}$ containing at least 1 b.

Example

$$M = (Q, \Sigma, q_0, A, \delta)$$

$$Q = \{q_0, q_1\};$$

$$\Sigma = \{a, b\};$$

$$A = \{q_1\} \text{ and } A \subseteq Q;$$

δ is given by the table:

q	$\delta(q,a)$	$\delta(q,b)$
q_0	q 0	q_1
q_1	q_1	q_1

The End

The End