

Student Satellite Project Indian Institute of Technology, Bombay Powai, Mumbai - 400076, INDIA

Website: www.aero.iitb.ac.in/satlab

README - 4-Star Matching Algorithm: Preprocessing

Guidance, Navigation and Controls Subsystem

st_constants_4SM.m

Code Type: MATLAB - Script
Code author: KT Prajwal Prathiksh

Created on: 26/04/2020 **Last modified:** 29/04/2020

Reviewed by: NOT YET REVIEWED!

Description:

This script generates all the constants required for 4-Star Matching Algorithm as well as the Reference Star Catalogue. It also saves the values of the constants and catalogue.

The constants are as follows:

- 1. **Focal_Length**: (Float) The focal length of the optics system. Units in mm
- 2. **st_M_EPS**: (Float) The machine epsilon of the platform where the algorithm will be executed
- 3. st_n_GC: (Integer) The number of stars (= number of rows) in the Guide Star Catalogue
- 4. **st_n_RC**: (Integer) The number of star-pairs (= number of rows) in the Reference Star Catalogue
- 5. **st_DELTA**: (Float) The δ constant that determines the tolerance of the size window when searching for an angular distance value in the Reference Star Catalogue
- 6. **st_M**: (Float) The slope of the Z-vector line
- 7. st_Q : (Float) The y-intercept of the Z-vector line
- 8. **es_N_EST**: (Integer) The minimum number of pairs of body-frame (b_i and inertial-frame r_i vectors required by *Estimation block* to provide the attitude within the accuracy requirements
- 9. **st_ITER_MAX_4SM**: (Integer) The max number of iterations of 4-Star Matching that will be allowed to execute irregardless of whether all the stars match or not owing to the time constraint on the *Star-Matching block*

Formula & References: –

Input parameters:

1. write_csv: (Boolean) If true, saves the Reference Star Catalogue as a csv file

Output:

- Writes constants in ./Star_Matching/4_Star_Matching/Preprocessing/st_ constants_4SM.mat directory
- 2. Writes Reference Star Catalogue in ./Star_Matching/4_Star_Matching/Preprocessing/ Reference_Star_Catalogue_4SM.csv directory

st_RF_SC_4SM.m

Code Type: MATLAB - Script Code author: KT Prajwal Prathiksh

Created on: 26/04/2020 **Last modified:** 29/04/2020

Reviewed by: NOT YET REVIEWED!

Description:

This script generates the Reference Star Catalogue as required by 4-Star Matching Algorithm, which has the following columns:

1. **SSP_ID_1** - The SSP-ID of i^{th} star

- 2. **SSP_ID_2** The SSP-ID of j^{th} star
- 3. **K**_Vec The K-Vector value determined uniquely using the dot product of the Cartesian unit vector corresponding to the i^{th} and j^{th} star $(i \neq j, \forall i, j)$

Note: This script should be run only by **st_constants_4SM.m!** The script will throw an error if run by itself!

Formula & References: – Input parameters: – Output:

1. Writes Reference Star Catalogue in ./Star_Matching/4_Star_Matching/Preprocessing/Reference_Star_Catalogue_4SM.csv directory

st_gnrt_K_Vec.m

Code Type: MATLAB - Function **Code author:** KT Prajwal Prathiksh

Created on: 26/04/2020 Last modified: -/-/---

Reviewed by: NOT YET REVIEWED!

Description:

This function generates the K-Vector for a given array.

Formula & References:

Reference: The original k-vector searching technique - Mortari, D. Neta, Beny. (2000). k-Vector Range Searching Technique. 105.

Input parameters:

1. $\mathbf{c}_{-}\mathbf{y}$: ((N, 1) - Matrix) - The array for which K-vector has to be generated

- 2. **st_M_EPS** : (Float) The machine epsilon of the platform where the algorithm will be executed
- 3. **is_sorted**: (boolean) If true, implies the array is sorted

Output:

- 1. **K_Vec**: ((N, 1) Matrix) The K-vector of the given array
- 2. st_M : (Float) The slope of the Z-vector line
- 3. st_Q : (Float) The y-intercept of the Z-vector line
- 4. I_Vec: ((N, 1) Matrix) The integer vector associated with sorting