Obsah

	Úvod	4
1.	Číselná osa, supremum a infimum	
1.1.	Základní číselné množiny	5
1.2.	Vlastnosti číselných množin	6
1.3.	Supremum a infimum	
1.4.	Několik vět o reálných číslech a číselných množinách	
1.5.	Klasifikace bodů vzhledem k množině	10
1.6.	Rozšířená reálná osa	12
2.	Číselné posloupnosti	
2.1.	Pojem posloupnosti	14
2.2.	Základní vlastnosti číselných posloupností	15
2.3.	Limita posloupnosti	15
2.4.	Nulové posloupnosti	
2.5.	Posloupnost aritmetická a posloupnost geometrická	18
2.6.	Některé významné limity	19
2.7.	Číslo e	20
3.	Pojem funkce	
3.1.	Definice funkce	22
3.2.	Řešení rovnic a nerovnic	24
3.3.	Vlastnosti funkcí	25
3.4.	Operace s funkcemi	26
3.5.	Funkce inverzní	27
3.6.	Rozšíření pojmu funkce	28
4.	Elementární funkce	
4.1.	Přehled elementárních funkcí	30
4.2.	Algebraické funkce	31
4.3.	Goniometrické funkce a funkce cyklometrické	34
4.4.	Funkce exponenciální a logaritmické	38
4.5.	Funkce hyperbolické a hyperbolometrické	
5.	Limita funkce	
5.1.	Limita funkce Limita funkce podle Heineho	12
5.2.	Věty o limitách funkcí	
	•	
5.3.	Výpočet limit	
5.4.	Limita funkce podle Cauchyho	45
6.	Spojitost funkce	
6.1.	Pojem spojitosti funkce	47
6.2.	Funkce spojité na množině	48
6.3.	Vlastnosti funkcí spojitých na intervalu	49
6.4.	Stejnoměrná spojitost	

7.	Derivace funkce	
7.1.	Pojem derivace funkce	52
7.2.	Vlastnosti derivací	54
7.3.	Derivace elementárních funkcí	55
7.4.	Diferenciál funkce	55
7.5.	Derivace a diferenciály vyšších řádů	
7.6.	Derivace různých typů funkcí	58
8.	Základní věty diferenciálního počtu	
8.1.	Úvod	61
8.2.	Věty o střední hodnotě	
8.3.	Některé důsledky vět o střední hodnotě	
8.4.	Taylorův vzorec	65
9.	Užití diferenciálního počtu	
9.1.	Monotónnost funkce	68
9.2.	Lokální extrémy	
9.3.	Největší a nejmenší hodnota funkce na intervalu	
9.4.	Konvexnost a konkávnost	
9.5.	Inflexe a inflexní body	
9.6. 9.7.	Asymptoty	
9.7. 9.8.	Průběh funkce	
		13
10.	Metody integrace pro funkce jedné proměnné	
10.1.	Základní vzorce	
10.2. 10.3.	Integrace užitím substitucí	
10.3.	Metoda per partes Integrace racionálních funkcí	
10.4.	Integrace některých iracionálních funkcí	
10.6.	Eulerovy substituce	
10.7.	Integrace goniometrických a hyperbolických funkcí	
10.8.	Goniometrické a hyperbolické substituce	
10.9.	Užití Eulerových vzorců pro výpočet některých integrálů	85
11.	Riemannův určitý integrál	
11.1.	Definice Riemannova integrálu	87
11.2.	Newtonův vzorec	
11.3.	Základní vlastnosti určitého integrálu	90
11.4.		
11.5.	Další vlastnosti určitého integrálu	93
12.	Užití Riemannova integrálu	
12.1.	Přibližné metody výpočtu Riemannova integrálu	95
12.2.	Užití určitého integrálu v geometrii	96
12.3.	Technické křivky	
12.4	Užití určitého integrálu ve fyzice	10

13.	Nevlastní integrály	
13.1.	Nevlastní integrál vlivem meze	103
13.2.	Nevlastní integrál vlivem funkce	104
13.3.	Vlastnosti nevlastních integrálů	
13.4.	Kriteria konvergence nevlastních integrálů	106
14.	Elementární metody řešení obyčejných diferenciálních rovnic	
14.1.	Základní pojmy	108
14.2.	Základní problémy	109
14.3.	Separace proměnných	110
14.4.	Užití substitucí	
14.5.	Lineární diferenciální rovnice 1. řádu	
14.6.	Ortogonální a izogonální trajektorie	117
14.7.	Užití diferenciálních rovnic	119
15.	Číselné řady	
15.1.	Základní pojmy	123
15.2.	Některé vlastnosti číselných řad	124
15.3.	Řady s nezápornými členy	125
15.4.	Řady s libovolnými členy, absolutní konvergence	130
15.5.	Alternující řady	
15.6.	Přerovnávání číselných řad	
15.7.	Mocninné řady	134
15.8	Násobení řad	135

Literatura

Brabec, J.- Martan, F.- Rozenský, Z.: Matematická analýza I, SNTL, Praha 1989.

Fichtengolc, G.M.: Kurs diferencialnogo i integralnogo isčislenija. GIFML, Moskva 1962.

Gillman, L.- McDowell, R.H.: Matematická analýza. SNTL, Praha 1983.

Jarník, V.: Diferenciální počet I (libovolné vydání).

Jarník, V.: Integrální počet I (libovolné vydání).

Úvod

Tento učební text je záznamem přednášky z Matematické analýzy pro 1. ročník učitelského dvojoborového studia kombinace M-X. Pojetí textu je dáno tím, že jde o úvodní přednášku z matematické analýzy, která navazuje na středoškolská studia. Je zpracována jako nadhled nad středoškolským učivem matematiky, a jako díl (vedle algebry a geometrie) profesního vzdělání budoucích učitelů. Věnuje se proto pozornost logice učiva a jeho srozumitelnosti a názornosti, i když z technických důvodů nebylo možno text doprovodit nezbytnými obrázky. Předpokládá se, že s motivacemi učiva, obrázky a s více aplikacemi budou studenti seznámeni v rámci výuky matematické analýzy. (Náplň cvičení není součástí tohoto učebního textu.)

Způsob zpracování byl volen racionální, s častým použitím matematické symboliky i v rámci textů. Při použití symboliky se však vždy v prvé řadě sledovala srozumitelnost a čitelnost textu (nikoli důslednost v používání symbolů). K větám jsou uváděny důkazy nebo jejich nástiny, pokud však důkazy jsou spíše pracné než přínosné nebo nejde-li o hlavní nit učiva, jsou vynechány s tím, že je případný zájemce může nalézt v literatuře.

Z časových a technických důvodů byly voleny co nejjednodušší typy písma a i když některé písmeno tak má více funkcí, nikdy nedochází k možnosti záměny těchto funkcí. Předpoklady a podmínky jsou často zjednodušovány, ale tak, aby zůstaly srozumitelné.

Text je zveřejněn na www stránce pod adresou:

http://kag.upol.cz/travnicek/1-MatAn

Text nebyl důsledně zrevidován, prosím o sdělení případných připomínek.

Přeji studentům, aby se jim s tímto učebním textem dobře pracovalo.

Olomouc 31.3.2000

St. Trávníček

V říjnu 2006 byla provedena částečná revize textu, opravy a technické úpravy, ale styl textu byl ponechán prakticky beze změny.

Autor: Doc. RNDr. Stanislav Trávníček, CSc. Katedra algebry a geometrie Přírodovědecké fakulty UP Olomouc

travnice@inf.upol.cz