┃ 올리브영 리뷰 요약 데이터를 활용한 ┃ 추천시스템 성능 개선

최종 발표

4조

이영현 강채원 김주은 임세은

목 차

- 1. 팀 소개
- 2. 주제 선정
- 3. **데이터 수집**
- 4. 전처리 & EDA
- 5. **리뷰 데이터 처리**
 - a. summarization : Kobart, lexrank, chatGPT
 - b. Embedding: tfidf, kobart, word2vec
- 6. GNN 기반 추천 시스템
- 7. 실험 결과
- 8. 프로젝트 의의 & 활용 방안

팀 소개

이영현 분석 20기

강채원 분석 20기

김주은 분석 20기

임세은 분석 20기

주제 선정

기존 추천 시스템 - ex) MovieLens 100k movie ratings

사용자 정보

id, 성별, 연령, 직업 등

아이템 정보

id, 제목, 개봉일, 장르별 원핫인코딩 컬럼

구매 정보

사용자 id, 아이템 id, 평점, timestamp

자연어 데이터를 크게 활용하지 않음

" 추천 시스템에 리뷰 데이터를 활용할 수는 없을까? "

- KoBART를 이용한 요약
- Lexrank를 이용한 요약
- Word2Vec를 이용한 임베딩
- TF-IDF를 이용한 임베딩

...

데이터 수집

상품 정보 ↑ > 스킨케어 ∨ > 토너/로션/올인원 ∨ 아누아 > [단독기획] 아누아 어성초 77 수딩 토너 35 Oml 기획(+토너40ml+패드2매+선크림10 ml 증정) 22,800원 혜택정보 ② 75명이 보고있어요 내용물의용량또는중량 토너350ml+패드2매+토너40ml+선크림10ml 제품주요사양 모든 피부용. 총 6,136 건 4.7 A 会会会会 자극도 피부타입 피부고민 건성에 좋아요 보습에 좋아요 자극없이 순해요 복합성에 좋아요

사용자 정보 및 구매 정보

상품 376개, 사용자 3576명, 구매 정보 5427건에 대한 데이터 수집

구매 정보

리뷰자	상품명	작성일자	평점	리뷰
eHNCNmFVY1ladXNQ V21xcS9zT0J1QT09	라운드랩 자작나무 수분 마스크 1매	2023.05.18	4	이벤트 할때 한장사서.써보고 괜찮아 서 다시 구입합니다저는 지성피부예 요나이 50인데도 아직 피부가.번들거 리죠(생략)

- 리뷰자 id 및 상품명 : 숫자로 매핑
- 상품명이 상품 정보에 존재하는 경우만 사용

상품 정보

goodsno	상품명	브랜드	가격	용량	주요사양	성분	평점	증정 여부
A000000 006564	우르오스 스킨로션 200ml	우르오스	23,700	200ml	지복합성 피부를 위한 워터타입 스킨케어 [2 in 1]	정제수, 에탄올, 펜틸렌글라이콜, 글리세린, 베타인, 피이지-6, 피이지-32,	4.8	0

- One hot encoding
 - ㅇ 성분 : 30번 이상 등장하는 성분
 - ㅇ 브랜드
- 평점 : 최소값으로 fillna
- 총 152개 feature

사용자 정보

리뷰자	type1	type2	type3	type4	랭킹	리뷰
eHNCNmFVY1ladXNQV21xcS9zT0J1QT09	지성	웜	모	트러블	0.056	이벤트 할때 한장사서.써보고 괜찮아서 다시 구입합니다저는 지성 피부예요나이 50인데도 아직 피부가.번들거리죠(생략)

• type1: 피부타입(건성, 지성, 복합성...)

• type2 : 퍼스널컬러(웜톤, 쿨톤, 겨울쿨톤...)

type3 & 4: 피부고민 → 합치기

• One-hot encoding : type 1 ~ 4

• 랭킹 : 숫자가 클수록 순위가 높도록

• 리뷰 : 구매 정보의 리뷰를 사용자별로 groupby

사용자 피부타입 분포

• 복합성 > 건성 > 지성 > 민감성 > 트러블성 > 중성 > 약건성

사용자 피부 고민

모공 > 각질 > 민감성 > 미백 > 블랙헤드 > 다크서클 > 잡티> 트러블 > 주름 > 탄력 > 아토피 > 홍조 > 피지과다

상품별 평균 평점

- 평균 평점이 4.8 이상인 상품: 약 52.25 %
- 전반적으로 높은 평점

카테고리 분포

● 스킨/토너 > 올인원 = 로션/에멀젼 > 스킨케어 세트

리뷰 데이터 처리

Embedding 결과 : 사용자별 Feature로 사용

리뷰 데이터 처리

Summarization

KoBART : 사전학습된 huggingface 모델

• ChatGPT : OpenAI의 API

• Lexrankr : Lexrank의 한국어 버전

○ Google의 초기 검색엔진에 적용되었던 PageRank 알고리즘 적용

extractive summarization

○ 문장 간 유사도 및 중요도를 기반으로 요약에 포함할 문장 추출

■ TF-IDF 기반 코사인 유사도 계산

■ 유사도가 높은 문장 = 중요도가 높은 문장

○ 전처리 시 주의사항

■ 문장을 추출하기 때문에 텍스트에 escape string \n이 포함되어야

본문	KoBART	ChatGPT	Lexrankr
처음 바를때는 따가웠는데 자고일어나도 유분기 없이 보송하게되어서좋고		처음 바를 때 따가웠지만 자고 일어나면 보송하게 되어 좋고, 대용량이라 더 좋아용	처음 바를때는 따가웠는데 대용량이라 더 좋아용
엄마 선물로 사드렸는데 보 습력도 좋고 향도 만족한다 며 좋아하시네요	며 좋아하시네요 가격도 용	엄마 선물로 샀는 보습력과 향이 만족하며 가격도 용량 대비 괜찮은 제품이라 엄마	엄마 선물로 사드렸는데 가 격도 용량 대비 괜찮은 거 같애요 엄마 선물로 샀어요
신랑이 꾸준히 사용하는 미 프 올인원로션이에요 가성 비 넘치는 구성이라 이낌없 이 팍팍 사용해도 부담없는 알찬구성이에요	잘 쓰더라구요 보습도 좋아	신랑이 꾸준히 사용하는 미 프 올인원로션은 가성비가 뛰어나고 끈적임 없고 자극 없이 순하고 복합성 피부가 무난하게 사용할 수 있어 여름철까지 잘 쓸 수 있다.	신랑이 꾸준히 사용하는 미 프 올인원로션이에요 넘 좋 습니다 끈적임 없어 기초제 품 꾸준히 못쓰는 신랑도 미프는 잘 쓰더라구요

리뷰 데이터 처리

Embedding

- TF-IDF: shape (3576, 3000+)
- KoBART : last hidden state의 평균값 사용
 - o shape (3576, 768)

- Word2Vec : 단어 벡터의 평균값 사용
 - o shape (3576, 100)

```
def get_features(words, model, num_features):
 # 출력 벡터 초기화
 feature vector = np.zeros((num features), dtype=np.float32)
 num words = 0
 # 어휘사전 준비
 index2word_set = set(model.wv.index to key)
 for w in words:
   if w in index2word set:
     num words +=1
     # 사전에 해당하는 단어에 대해 단어 벡터를 더함
     feature vector = np.add(feature vector, model.wv[w])
 # 문장의 단어 수만큼 나누어 단어 벡터의 평균값을 문장 벡터로 함
 feature_vector = np.divide(feature_vector, num_words)
 return feature vector
def get dataset(reviews, model, num features):
 dataset = list()
 for s in reviews:
   dataset.append(get features(s, model, num features))
 reviewFeatureVecs = np.stack(dataset)
 return reviewFeatureVecs
```

GNN(Graph Neural Network)

<GNN Layer>

Graph 데이터 구성

GNN Task: Link Prediction

GNN Task: Link Regression

Heterogeneous GNN Model

GNN Task: Link Prediction

- Metric: AUC(higher is better)
- Baseline 과 비슷한 성능
- Review Embedding의 차원이 클수록 성능이 떨어짐
- Summarize에서는 chatGPT
- Embedding에서는 word2vec

GNN Task: Link Regression

- Metric : RMSE(lower is better)
- 대체적으로 Review embedding을 추가 했을 때 RMSE가 낮음

- Review Embedding의 차원은 32
- Summarize에서는 비슷한 성능
- Embedding에서는 word2vec과 koBART

GNN Task: Link Regression(Baseline)

<pre>1 result_df[result_df.target==5.0]</pre>									
✓ 0.0s									
	userId	productId	rating	target					
1	152	1	3.633228	5.0					
2	1548	60	4.464217	5.0					
3	2606	225	4.844783	5.0					
4	399	40	4.218954	5.0					
5	168	1	5.000000	5.0					
537	1956	77	5.000000	5.0					
538	3109	133	5.000000	5.0					
539	1773	385	4.571058	5.0					
540	162	1	3.633228	5.0					
541	1952	346	5.000000	5.0					

- 대부분의 rating이 5점이며, 낮은 rating의 데이터가 많지 않음
- Baseline 모델은 **낮은 rating의 데이터에 대해 잘 예측하지 못하는** 편

GNN Task: Link Regression(kobart_kobart)

• Review embedding을 추가했을 때, 낮은 rating의 데이터에 대해 Baseline 대비 상대적으로 잘 예측

프로젝트 의의 & 활용 방안

Conclusion

- GNN 기반 추천시스템에, 사용자의 Review 데이터를 추가하여 예측 성능을 비교
- Link Prediction에서는 성능향상이 없었으며, 기존 데이터만으로도 좋은 성능을 보임
- Link Regression에서는 Baseline 대비 낮은 RMSE를 보였으며, 상대적으로 낮은 rating을 잘 예측
- Summarize 방법은 비슷한 성능들을 보였으며, Embedding 방법은 word2vec이 준수한 성능을 보임

활용방안

- 일반적으로 사용자들은 높은 rating을 주기 때문에, **낮은 rating을 받은 상품에 대한 데이터가 적음**
- 사용자의 Review 데이터를 통해 성향을 파악하고, 낮은 rating에 대한 예측성능을 향상시킴으로써 잘못된 추천의 비율을 낮출 수 있을 것으로 기대

참고 자료

- 설진석, 이상구.(2016).lexrankr: LexRank 기반 한국어 다중 문서 요약.한국정보과학회 학술발표논문집,(),458-460.
- https://excelsior-cjh.tistory.com/194
- https://heung-bae-lee.github.io/2020/01/30/NLP_04/

감사합니다