Die Festlegung der Koordinatensysteme gemäß Denavit-Hartenberg-Konventionen

- 1. Nummerierung die Armteile Der festgeschraubte Fuß ist Armteil 0, das erste drehbare Armteil ist Armteil 1 usw. Das letzte Armteil ist der Handflansch/Effektor als Armteil N.
- 2. Kennzeichnung der Achsen Die Bewegungsachsen können Linearachsen (Gleitachsen) oder Rotationsachsen (Drehachsen) sein. Armteil 1 bewegt sich um bzw. entlang Bewegungsachse 1, Armteil zwei um bzw. entlang Bewegungsachse 2 usw.

In jedes Armteil wird ein Koordinatensystem gelegt. In Armteil 0 liegt Koordinatensystem K_0 , in Armteil 1 Koordinatensystem K_1 usw. Jedes Koordinatensystem wird so gelegt, dass die z-Achse mit der Drehachse des nachfolgenden Armteiles übereinstimmt. Es liegt also die z_0 -Achse in der Bewegungsachse 1, die z_1 -Achse in der Bewegungsachse 2 usw. Die Festlegung der Koordinatensysteme richtet sich grundsätzlich nach der Lage des vorhergehenden Koordinatensystems. K_1 wird also nach K_0 ausgerichtet, K_2 wird also nach K_1 usw. Die x_i -Achse zeigt immer in Richtung auf das nächste Armteil. (Abb.1.1)

Abbildung 1.1: Beispiele für Koordinatensysteme in Armteilen, die gemäß Denavit-Hartenberg-Konvention gelegt wurden .

3. Festlegung des Basis-Koordinatensystems K_0 Dies ist das raumfeste Koordinatensystem, das fest mit dem Fuß (Armteil 0) verbunden ist. Die z_0 -Achse liegt in der ersten Gelenkachse, die x_0 - und die y_0 -Achsen sind frei und werden möglichst sinnvoll gelegt. x_0 - die y_0 -Achse müssen mit der z_0 -Achse ein Rechtssystem bilden. Man kann K_0 in den Fußpunkt des Roboters legen. Wenn man es so legt, dass eine der K_0 -Achsen den Ursprung von K_1 schneidet, vereinfachen sich die Transformationsgleichungen.

4. Festlegung der Koordinatensysteme $K_1 \dots K_{N-1}$ Es gibt drei Fälle:

1. Wenn sich die Bewegungsachsen i und i+1 (entsprechend z_{i-1} und z_i) nicht schneiden und auch nicht parallel verlaufen, wird die gemeinsame Normale (kürzeste Verbindung) zwischen diesen beiden Bewegungsachsen gesucht. Der Ursprung wird in den Schnittpunkt dieser Normalen mit der Gelenkachse i+1 gelegt. Die z_i -Achse liegt in der Bewegungsachse i+1; es kann eine von beiden Richtungen ausgewählt werden. Die x_i -Achse wird entlang der gemeinsamen Normalen, zu z_{i+1} weisend, gelegt. Oft ist dies die Richtung der mechanischen Verbindung des Armteiles zwischen den Gelenkachsen i und i+1. Die y_i -Achse wird so gelegt, dass sich ein Rechtssystem ergibt. (s. Abb. 1.2)

Abbildung 1.2: Die Festlegung des Koordinatensystems wenn die Gelenkachse die vorige Gelenkachse nicht schneidet und nicht parallel dazu verläuft.

2. Wenn die Bewegungsachsen i und i+1 sich schneiden, liegt der Ursprung von K_i im Schnittpunkt der Achsen. Die z_i -Achse liegt in der Bewegungsachse i+1, die x_i -Achse wird senkrecht zu beiden Achsen (parallel oder antiparallel zum Vektor des Kreuzproduktes $z_i \times z_{i-1}$), zu z_{i+1} weisend, gelegt. Die y_i -Achse wird so gelegt, dass sich ein Rechtssystem ergibt. (Abb. 1.3)

Abbildung 1.3: Die Festlegung des Koordinatensystems wenn die Bewegungsachsen sich schneiden.

3. Wenn die Bewegungsachsen i und i+1 parallel verlaufen, gibt es unendlich viele gemeinsame Normalen. Darunter wird entweder die kürzeste Verbindung zu K_{i-1} oder zu K_{i+1} ausgewählt. Der Schnittpunkt dieser Verbindung mit der Bewegungsachse i+1 ist der Ursprung von K_i . Die z_i -Achse liegt wieder in der Bewegungsachse i+1, die y_i -Achse wird so gelegt, dass sich ein Rechtssystem ergibt. (Abb. 1.4 und 1.5)

Abbildung 1.4: Die Festlegung des Koordinatensystems wenn die Bewegungsachsen parallel verlaufen und die kürzeste Verbindung zu K_{i-1} benutzt wird.

Abbildung 1.5: Die Festlegung des Koordinatensystems wenn die Bewegungsachsen parallel verlaufen und die kürzeste Verbindung zu K_{i+1} benutzt wird.

5. Koordinatensystem K_N (Handflansch/Effektorkoordinaten) Hier ist die kinematische Kette zu Ende, man hat daher mehr Freiheit. Das Koordinatensystem K_N muss so gelegt werden, dass es entsprechend den nachfolgenden Transformationsregeln aus K_{N-1} erzeugt werden kann. Dazu muss x_i senkrecht zu z_{N-1} gelegt werden. z_N kann die Annäherungsrichtung des Effektors sein.

Die Denavit-Hartenberg-Parameter

Zwei benachbarte und nach obigen Konventionen festgelegte Koordinatensysteme können durch Transformationen ineinander transformiert werden. Aus K_{i-1} wird K_i durch folgende vier Operationen in dieser Reihenfolge:

- 1) Eine Drehung um die Achse x_{i-1} um den Winkel α_i . Dieser Parameter beschreibt die Verdrehung der Achse z_i gegenüber z_{i-1}
- 2) Eine Translation um a_i in Richtung der Achse x_{i-1} . Dieser Parameter beschreibt die Länge des Verbindungsgliedes
- 3) Eine Translation um d_i in Richtung der Achse z_{i-1} . Dieser Parameter beschreibt den Versatz der Gelenke in z-Richtung oder eine Linearachse.
- 4) Eine Rotation um den Drehwinkel θ_i um das Gelenk i (Achse z_{i-1}). Dieser Parameter beschreibt eine Drehachse oder den Drehwinkel um aufeinanderfolgende x-Achsen gleich auszurichten.

Abbildung 1.6: Roboterzelle mit Effektor und Werkobjekt

Übungsaufgabe In einer Fertigungsstraße steht ein Lackierroboter hinter einer Autokarosserie. Die Bezüge zwischen Weltkoordinaten, Basiskoordinaten, Effektorkoordinaten und Objektkoordinaten sind wie folgt gegeben:

- Das Basiskoordinatensystem geht aus den Weltkoordinaten hervor durch eine Translation um $(20,30,0)^T$
- Das Objektkoordinatensystem geht aus den Weltkoordinaten hervor durch eine Rotation um 180° um die z-Achse und eine anschließende Translation um $(350, 0, 130)^{T}$.
- Das Effektorkoordinatensystem geht aus den Basiskoordinaten hervor durch eine Rotation um 135^o um die y-Achse und eine anschließende Translation um $(150, 0, 125)^T$.
- \bullet Ein PunktPist in Objektkoordinaten gegeben durch $^oP=(200,25,-10)^T$

Bestimmen Sie die Koordinaten des Punktes P in Weltkoordinaten, Basiskoordinaten und Effektorkoordinaten!