HomeWork 3 Math 271A, Fall 2019.

- 1. Show that the conditions of Kolmogorov's extension/consistency theorem is satisfied for the finite dimensional distributions associated with the Brownian motion paths.
- 2. Let \mathbf{B}_t be a two-dimensional Brownian motion and

$$D_{\rho} = \{ \mathbf{x} \in \mathbb{R}^2 \mid |\mathbf{x}| < \rho \}.$$

Compute $\mathbb{P}(\mathbf{B}_t \in D_{\rho})$.

- 3. Let B_t be Brownian motion. Show that
 - a. $Y_t = B_T B_{T-t}$ is Brownian motion on [0, T].
 - b. Show that $Y'_t = -B_t$ is also Brownian motion.
 - c. Show that

$$Y_t'' = \begin{cases} tB_{1/t}; & 0 < t < \infty \\ 0; & t = 0 \end{cases}$$

is Brownian motion.

For part c. you may use that:

$$\lim_{t \to \infty} \frac{B_t}{t} = 0 \quad a.s.$$

4. For τ_i being independent exponentially distributed random variables with parameter λ . Let $S_0 = 0$ and $S_n = \sum_{i=1}^n \tau_i, n \ge 1$. We may then think of S_n as the time at which the n'th customer arrives in a queue, and S_n the inter arrival times. Define as in class

$$N_t = \max(n \ge 0; S_n \le t).$$

- a. Show that the process N_t is right continuous.
- b. Show that N_t is a Poisson random variable with parameter λt .
- 5. For $Y_i, i \geq 1$ being independent centered random variables with variance σ^2 construct the compound Poisson process as in class by

$$X_t = \sum_{i=1}^{N_t} Y_i.$$

- a. Compute the mean and variance of X_t .
- b. Compute the characteristic function for X_t .
- c. Show that the sequence of random variables $Z_n = X_n / \sqrt{\lambda n}$, n = 1, 2, 3... converges weakly to a normal random variable, what is its variance?
- 6. Let $X_t, t \ge 0$ be a Gaussian process with zero mean and with covariance $\mathbb{E}[X_t X_{t+s}] = \exp(-\alpha |s|)$ (this is the Ornstein-Uhlenbeck process). Show that X has a version with continuous paths.

1