Low Voltage Battery System CANBUS Protocol V1.3

CAN 总线规格 CAN Bus:

采用标准帧,速率:500kbps,数据发送周期 1s。

Use standard frame, communication rate: 500kbps, data transmission cycle: 1s.

逆变器每秒回复数据:

Inverterreplyeverysecond: 0x305: 00-00-00-00-00-00-00

Little endian.

CAN ID: 0x359 + adr * 0x1000

Byte 0	Protection	Table 1	
Byte 1	Protection	Table 2	
Byte 2	Alarm	Table 3	
Byte 3	Alarm	Table 4	
Byte 4	Modulenumbers		8bits unsigned char
Byte 5	"P"	0x50	
Byte 6	"N"	0x4E	
Byte 7	-		

Table 1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit 0
Discharge					Cell or	Cell or	
Discharge			Cell under	Cell over	module	module	
over			temperature	temperature	under	over	
current					voltage	voltage	

Table 2

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit 0
				System orrer			Chargeover
				System error			current

Table 3

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit 0
Discharge			Cell low	Cell high	Cell or	Cell or	
high				temperature	module low	module high	
current			temperature	temperature	voltage	voltage	

Table 4

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit 0
				Internal			Charge
				communication			high
				fail			current

CAN ID: 0x351

Byte 0	Battery charge voltage	Unit: 0.1V	16 bits unsigned int			
Byte 1	建议充电电压	OIIIL O.1V	To pits unsigned int			
Byte 2	Charge current limit	Unit: 0.1A	16 bits signed int, 2's			

Byte 3	充电限流		complement	
Byte 4	Discharge current limit	Unit: 0.1A	16 bits signed int, 2's	
Byte 5	放电限流	Offit. U.1A	complement	
Byte 6	Discharge limit voltage	Unit: 0.1V	16 hits signed int	
Byte 7	建议放点截止电压	UIIIL. U.IV	16 bits signed int	

CAN ID: 0x355

Byte 0	SOCof single module or	Unit: 1%	16bit unsigned int
Byte 1	average value of system	Offit. 1%	Tobit unsigned int
Byte 2	SOH of single module or	Unit: 1%	16bit unsigned int
Byte 3	average value of system	Offit. 176	Tobit drisigned int
Byte 4			
Byte 5			
Byte 6			
Byte 7			

CAN ID:0x356

Byte 0	Voltageof single module or				
Byte 1	average module voltage of system 单模块的电压或系统平均电 压	Unit: 0.01V	16 bits signed int, 2's complement		
Byte 2	Module or system total		16 bits signed int. 2's		
Byte 3	current 单台或系统总电流	Unit: 0.1A	16 bits signed int, 2's complement		
Byte 4	Averagecelltemperature	Unit: 0.1℃	16 bits signed int, 2's		
Byte 5	电芯平均温度	Unit: 0.1 C	complement		
Byte 6					
Byte 7					

CAN ID: 0x35C

Byte 0	Requestflag	Table5	
Byte 1			

Table 5

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit 0
Chargo	Discharge	Request force	Request force	Request full			
Charge	Discharge	charge I*	charge II*	charge**			
enable	enable	强充标记1	强充标记 2	满充标记			

Bit 5 is designed for inverter allows battery to shut down, and able to wake battery up to charge it.

Bit 4 is designed for inverter doesn't want battery to shut down, able to charge battery before shut down to avoid low energy. We suggest inverter to use this bit,

In this case, inverter itself should set a threshold of SOC: after force charge, only when battery SOC is higher than this threshold then inverter will allow discharge, to avoid force charge and discharge status change frequently.

**Request full charge:

Reason: when battery is not full charged for long time, the accumulative error of SOC calculation will be too high and may not able to be charged or discharged as expected capacity.

Logic: if SOC never higher than 97% in 30 days, will set this flag to 1. And when the SOC is \geq 97%, the flag will be 0.

How to: we suggest inverter to charge the battery by grid when this flag is 1.

CAN ID: 0x35E

Byte 0	Manufacturer Name	ASCII
Byte 1	ivianulacturei ivaine	ASCII

Multiple Strings Instruction:

并柜说明:

When multiple strings in parallel via the LV-HUB (in this case upper controller is communicating with the LV-HUB). The Hub will allocate each string address according to the ADD switch setting of each string's master battery:

系统根据主机设备的拨码开关的位置,配置系统的组别地址,设置如下:

Dip 2	Dip 3	Dip 4	Address/组别地址
0	0	0	0
1	0	0	1
0	1	0	2
1	1	0	3
0	0	1	4
1	0	1	5
0	1	1	6
1	1	1	7

The address shall add offset as: 0x1000 * Adr.

For instance:

- 1. Single string:Address 0, then can id = can id + 0x1000 * 0, which is default CAN ID.
- 2. Forth string:Address 4, then can id = can id + 0x1000 * 4(i.e. 0*4355 is the forth adr string SOC&SOH) 例:
- 1) 单组别使用时,组别地址为 0, can id = can id + 0x1000 * 0, 即为默认 can id。
- 2) 组别为 4 时, can id = can id + 0x1000 * 4, 如 0x4355 为第 4 组地址 soc 和 soh。