Processos Estocásticos

São os processos geradores de variáveis aleatórias.

Por exemplo:

Observa-se uma série temporal $\{Y_1, Y_2, Y_3... Y_n\}$ decorrente de uma variável aleatória Y. Essa série temporal é uma possível realização do processo estocástico gerador de dados.

Série de dados: resultados do lançamento de um dado, realizado diariamente por uma semana.

Variável aleatória: resultado do lançamento do dado, com chance, probabilidade de 1/6 para cada número

Processo estocástico: lançamento diário dos dados.

Série temporal: conjunto dos resultados obtidos.

Estacionariedade

Estacionariedade Fraca

Os dois primeiros momentos da variável aleatória (média e variância) constantes ao longo do tempo

1) $E|Y_t|^2 < \infty$

Variância deve ser finita

2) $E(Y_t) = \mu$

Média Igual para todo período

3) $E(Y_t - \mu)(Y_{t-i} - \mu) = \gamma_i$ Variância é sempre igual para todo período

Estacionariedade Estrita

Todos os momentos da variável aleatória (média, variância, assimetria e curtose) constantes ao longo do tempo

Séries Estacionárias e Não Estacionárias

Séries temporais estacionárias: estacionariedade fraca.

Séries temporais não estacionárias: não flutuam em torno de uma média e nem apresentam uma variância constante. Ex. possuem tendência

Série temporal não estacionária

Série Temporal Estacionaria

Ergodicidade

A média da série temporal converge para o valor esperado do processo estocástico.

$$\overline{y} \equiv E(y_t)$$

Uma sequência $\{\varepsilon_t\}$ é um ruído branco se:

```
1) E(\varepsilon_t) = 0, \forall t Possuir média zero
```

2)
$$\mathbf{E}(\varepsilon_t^2) = \sigma^2 \quad \forall t$$
 Variância constante

3) $E(\varepsilon_t \varepsilon_{t-j}) = 0$, todo $j \neq 0$ Autocorrelação zero, não possui correlação com valores pasados

Sua representação é: $RB(0, \sigma^2)$

Distribuições de Probabilidade SãoJudas

Normal: as variáveis aleatórias se distribuem em torno do seu valor médio. Dsitribuição é unimodal e simétrica.

Distribuições de Probabilidade Sãojudas

Uniforme: as frequências das variáveis aleatórias se distribuem uniformemente.

Revisão

#Carregando e Instalando Pacotes

Revisão

#Criando Gráficos

```
plot(br$PIB)
plot(br$PIB, type = "l")

dados <- ts(br, start = 1950, frequency = 1)

plot(dados, col="blue", main="Dados Barsileiros", xlab="Ano", plot.type = "single")

write.csv(br,file = "br.csv")</pre>
```



```
rm(list = ls())
getwd()
[1] "c:/EconometriaA"
> setwd("c:/EconometriaA")
> getwd()
[1] "c:/EconometriaA"
```


Import Text Data		
File/Url:	Brow	wse
Data Preview:		
Skip: 0	Row as Names Delimiter: Comma Escape: None Spaces Quotes: Default Comment: Default Default Locale: Configure NA: Default Code Preview: [library(readr) dataset <- read_csv(NULL) view(dataset)	
Reading rectangular data using readr	Import Ca	ancel

library("readr")
br <- read.csv("c:/EconometriaA/br.csv")
view(br)</pre>

*	x	PIB [‡]	Trabalho [‡]	Câmbio [‡]
1	BRA-1950	86574.06	2042.00	7.894073e-15
2	BRA-1951	90813.68	2051.02	7.929792e-15
3	BRA-1952	99449.22	2060.08	7.929792e-15
4	BRA-1953	104503.14	2069.18	8.560842e-15
5	BRA-1954	113076.08	2078.31	1.309726e-14
6	BRA-1955	120375.32	2087.49	1.785989e-14
7	BRA-1956	124745.03	2096.71	2.059841e-14
8	BRA-1957	137270.13	2105.97	2.178907e-14
9	BRA-1958	146030.66	2115.27	2.750423e-14
10	BRA-1959	157291.12	2124.62	4.345908e-14
11	BRA-1960	169499.83	2134.00	8.096485e-14
12	BRA-1961	193353.92	2135.10	1.166846e-13

br <- br[,-1]

colnames(br)[3] <- "Cambio"</pre>

$\langle \neg \neg \rangle$	🖅 🖓 Filter				
*	PIB [‡]	Trabalho [‡]	Cambio [‡]		
1	86574.06	2042.00	7.894073e-15		
2	90813.68	2051.02	7.929792e-15		
3	99449.22	2060.08	7.929792e-15		
4	104503.14	2069.18	8.560842e-15		
5	113076.08	2078.31	1.309726e-14		
6	120375.32	2087.49	1.785989e-14		
7	124745.03	2096.71	2.059841e-14		
8	137270.13	2105.97	2.178907e-14		
9	146030.66	2115.27	2.750423e-14		
10	157291.12	2124.62	4.345908e-14		
11	169499.83	2134.00	8.096485e-14		
12	193353.92	2135.10	1.166846e-13		

PIB <- ts(br\$PIB, start = 1950, frequency = 1) plot(PIB)

Essa série temporal é estacionária?

hist(PIB)

Histogram of PIB

Essa série temporal segue um distribuição normal?