Комбинаторика 1

Зухба А. В.

Правило суммы и правило произведения

Рассмотрим два непересекающихся множества $A=\{a_1,a_2,\dots a_m\}$ и $B=\{b_1,b_2,\dots b_n\},\ A\cap B=\varnothing$

Правило суммы Если выбрать элемент из множества A можно m способами, а из множества B-n способами, то выбрать элемент из множества A **или** B можно m+n способами

Правило произведения Если выбрать элемент a из множества A можно m способами, и после каждого такого выбора элемент b из B можно выбрать n способами, то выбрать пару (a,b) можно mn способами.

Принцип Дирихле

Если кролики рассажены в клетки, причём число кроликов больше числа клеток, то хотя бы в одной из клеток находится более одного кролика.

+								

Размещения

Последовательный выбор k элементов из n-элементного множества без возвращений называется k-размещение без повторений n-элементного множества и обозначается A_n^k . Читается как A из n по k.

Последовательный выбор k элементов из n-элементного множества с возвращениями называется k-размещение с повторениями n-элементного множества и обозначается \overline{A}_n^k . Читается как A из n по k.

Последовательный выбор n элементов из n-элементного множества без возвращений называется **перестановкой из** n **элементов**.

Последовательный выбор k элементов из n-элементного множества без возвращений называется k-размещение без повторений n-элементного множества и обозначается A_n^k . Читается как A из n по k.

$$A_n^k = n \cdot (n-1) \cdot ... \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Последовательный выбор k элементов из n-элементного множества с возвращениями называется k-размещение с повторениями n-элементного множества и обозначается \overline{A}_n^k . Читается как A из n по k.

$$\overline{A}_n^k = n^k$$

Последовательный выбор n элементов из n-элементного множества без возвращений называется **перестановкой из** n **элементов**.

$$n! = 1 \cdot 2 \cdot ... \cdot n$$
 $0! = 1$

Сочетания

Выбор k элементов без учета порядка из n-элементного множества без возвращений называется k-сочетание без повторений n-элементного множества и бозначается k. Читается как C из n по k.

Выбор k элементов без учета порядка из n-элементного множества с повторениями (возвращениями) называется k-сочетание с повторениями n-элементного множества и бозначается \overline{C}_n^k . Читается как C из n по k.

Выбор k элементов без учета порядка из n-элементного множества без возвращений называется k-сочетание без повторений n-элементного множества и бозначается $n \in \mathbb{R}^n$. Читается как $n \in \mathbb{R}^n$ из $n \in \mathbb{R}^n$ из $n \in \mathbb{R}^n$.

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Выбор k элементов без учета порядка из n-элементного множества с повторениями (возвращениями) называется k-сочетание с повторениями n-элементного множества и бозначается \overline{C}_n^k . Читается как C из n по k.

$$\overline{C}_n^k = C_{n+k-1}^k$$

