Back to Supervised Learning

Legression	rees
10000	11000

Basic idea

- 1) break up feature space into a collection of rectangles by successively spritting dimensions
- 2) Fit a simple model to each rectargle (predict avs. value of train data in each rectorgle)

 $\hat{y} = \hat{f}(x) = C_i$ where $x \in R_i$

uny de ve call flix a tree? Can represent as a Lineary decision tree.

Goal: Build a good tree.
Need to decide
-> (1) uhich voviable to split?
-> (2) where do I split this variable?
(3) when do I stop (how many splits?)
Optimal Approach:
Consider all possible trees and choose the best.
Optimal Approach: Consider all possible trees and choose the best. Not computationally tractible.
Actually vse is some (Somethert) greedy approach.
Define R,(j,t) and Rz(j,t) to be the
half-spaces formed by splitting on var X; af
$Q_{r}(\hat{\mathbf{j}},t)$ $Q_{z}(\hat{\mathbf{j}},t)$
'

futherman let

$$A = RSS(j,t) = RSS(R_{j}(j,t)) + RSS(R_{j}(j,t))$$

$$= \sum_{i: \chi_i \in R_i(j,t)} (y_i - c_2)^2$$

$$i: \chi_i \in R_i(j,t)$$

$$i: \chi_i \in R_i(j,t)$$

vals predicted in Right ad Left

turns at to minimize, $C_1 = avg of ys in R_1$ $C_2 = avg of ys in R_2$

Also: Need to choose j, t.

- 1) For <u>each var.</u> de a search over possible t ad cale RSS(j,t)
- (2) Chour jet to minmize RSS(jet).

ad male that split
(2) Recurrely de this for split data.
Landa Ad MAR (CHAN)
> too many splits (very flexible method) worry: overfitting
-> too few splits (inflexible method)
Worry: underfitting
Bad strategy very greedy approach. Set some threshold and split until ar RSS decreves by less than threshold.
problen: a had split might lead to a befor split dan the road
Beller: Ograw a really large tree (over fit)

(2) reduce its size (pruning)

Su optimed trees over valves of & are nested.

If I have a seg

 $X_1 \leq X_2 \leq X_3 \leq \cdots \leq X_N$

 $T_1 \supset T_2 \supset T_3 \supset --- \supset T_N$

1 hested sig of optment of a

Can easily compute optimal CC trees over a sig of &s.

Classification Trees

almust all red o

50/50 split

Node (mpunty Measures

pct. M node of class k Pa uter maj. class

(1) mis class rate: impure 2/K

L=# classes

(2) Gini-Index Z Ph(I-Pk) pure 20 h=1 Ph(I-Pk) impure 2/4

3) Entropy - Z Pr los Ph pre & O impre ~/K

two class

Lentropy gini ms, clos

