Light Source Detection in images

Overview

- Objectives
- Steps & Algorithms
- Results
- More in the paper

Objective

Current Objectives

To estimate the number of lights N and their respective azimuthal angles ϕ_n with the help of diffuse lighting equation

02 To estimate the zenith angles θ_n of the lights and their relative intensities

O3 To replicate the paper: Compositing images through light source detection (Moreno et al)

Some Initial Assumptions & Coordinate System

- By crowd-sourcing, I already know the estimate of number of lights in the image
- Any object in the image can be used as a virtual light probe
 as long as it covers a reasonable area in the image
- Assumed that surface normals of the object at the silhouette lie in the image plane
- Globally convex assumption used while estimating the zenith angles

Source: Compositing images through light source detection

Steps & Algorithms

Estimating Azimuth Angles

Analyzed the silhouette assuming the surface normals lie in the image plane.

Let's say there are N discrete lights with unknown luminance L_j and unknown direction ω_i , assuming nominal Lambertian surface.

 L_i^{v} : Known luminance of pixel i, Correcting, I have assumed K_i^{d} to be light's luminance.

$$L_i^{\nu} = \sum_{j=1}^{N} \Omega_{ij} L_j$$

$$\Omega_{ij} = \Omega(\mathbf{n}_i, \omega_j) = \begin{cases} 0 & \text{if } \mathbf{n}_i \cdot \omega_j < 0 \\ K_i^d \mathbf{n}_i \cdot \omega_j & \text{if } \mathbf{n}_i \cdot \omega_j \ge 0 \end{cases}$$

Source: Compositing images through light source detection

Contour Voting Algorithm

Voting method based on the Ω function to form 'fuzzy' clusters.

```
10:
                                                                                                                                                         for all j \in [1 \dots N] do
1:
             sort(\mathbf{L}^{\nu}, \mathbf{n}, \boldsymbol{\phi}^n) {sort by decreasing luminances}
                                                                                                                                                             \omega_j \leftarrow [0, \sin(\phi_j^l), \cos(\phi_j^l)]^T \{\text{current direction}\}
                                                                                                                                    11:
             \phi^l \equiv \{\phi_i^l\} | j \in [1...N]  {azimuth coordinates of the lights}
                                                                                                                                    12:
                                                                                                                                                             \alpha_{ij} \leftarrow L_i^{\nu} \Omega(\mathbf{n}_i, \omega_i) / \Omega_i^{\oplus} {weight of normal i}
3:
             seed(\phi^l)
                                                                                                                                    13:
                                                                                                                                                             \phi_i^l \leftarrow \alpha_i^{\oplus} \phi_i^l + \alpha_{ii} \phi_i^n {update direction}
4:
             \alpha^{\oplus} \equiv \{\alpha_i^{\oplus}\} | j \in [1 \cdots N]  {aggregate of weights per light}
                                                                                                                                    14:
                                                                                                                                                             \alpha_i^{\oplus} \leftarrow \alpha_i^{\oplus} + \alpha_{ij}
5:
             \alpha^{\oplus} \leftarrow 0
                                                                                                                                    15:
                                                                                                                                                             \phi_i^l \leftarrow \phi_i^l/\alpha_i^{\oplus}
6:
             Repeat
                                                                                                                                    16:
                                                                                                                                                         end for
7:
                 for all L_i^v \in \mathbf{L}^v do
                                                                                                                                    17:
                                                                                                                                                     end for
8:
                      \omega_i \leftarrow [0, \sin(\phi_i^l), \cos(\phi_i^l)]^T \{\text{current direction}\}\
                                                                                                                                    18:
                                                                                                                                                 until convergence(\phi^{l})
                      \Omega_i^{\oplus} \leftarrow \sum_i \Omega(\mathbf{n}_i, \omega_i)  {total weight}
9:
                                                                                                                                    19:
                                                                                                                                                 return \phi^l
```

a b

Estimating Zenith angles(1/2)

Directional Derivative: $\omega_j \ddot{\forall} L^v$ at silhouette pixel is the main indicator of the shading from particular light j aligned to its direction.

Case 1:

If positive, light directed towards camera from the image. Luminance increases if we march along the straight line along this direction. First local maxima p_i^{hi}

Therefore, $\theta_i = \theta^n(p_i^{hi})$ (Surface Normal to the ellipse points in the direction of the light)

Case 2:

If negative, it is an indication of backlighting. Luminance successively decrease if we march along the straight line along the directional derivative. Change in sign $\mathbf{p_i}^{lo}$

Therefore, $\theta_i - \theta^n(p_i^{lo}) = \pi/2$ ($\theta_i < 0$) (Surface Normal to the ellipse perpendicular to light direction)

Results

Apple 1

2 lights can be approximated.

	Light 1		Light 2	
	ф	θ	ф	θ
Real	-15 or 345	40	165	-40
Value returned	276.21	73.99	210.17	-155.26
Error	68.79	33.99	45.17	115.26

Apple 1 (on increasing the size of silhouette)

2 lights can be approximated.

	Light 1		Light 2	
	ф	θ	ф	θ
Real	-15 or 345	40	165	-40
Value returned	279.71	46.83	202.62	-69.15
Error	65.29	6.83	37.62	29.15

Apple 1 (on increasing the number of lights)

No of lights	Azimuth Angles observed		
1	[275.09]		
2	[279.71 202.62]		
3	[196.86 273.37 279.64]		
4	[212.89 279.73 277.22 221.60]		

Observed Results in paper

	Light 1		Light 2		Light 3	
	φ	θ	ϕ	θ	φ	θ
Apple	1					
R	-15.00	40.00	165.00	-40.00		-
Α	5.71	35.31	162.25	-64.03	-	-
E	20.71	4.69	2.75	24.03	_	_
Apple	2					
R	90.00	-70.00	=	-	-	-
Α	94.54	-65.70	-	-	-	_
E	4.54	4.3	_	_	_	_

Apple 2 & Synthetic Ball

Apple 2	Light 1		
	ф	θ	
Real	90	-70	
Value returned	138.20	-82.89	
Error	48.20	12.89	

	Light 1		Light 2	
	ф	θ	ф	θ
Value returned	167.71	134.94	134.58	120.02

Thank You

