Determinants - Class XII

Past Year JEE Questions

Questions

Quetion: 01

 $1 + \sin^2 x \qquad \sin^2 x \qquad \sin^2 x$ The solutions of the equation $\cos^2 x = 1 + \cos^2 x = \cos^2 x$ $= 0, (0 < x < \pi)$, are $4\sin 2x \qquad 4\sin 2x \qquad 1 + 4\sin 2x$

A.
$$\frac{\pi}{L}$$
, $\frac{\pi}{L}$

B.
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$

C.
$$\frac{5\pi}{12}, \frac{7\pi}{12}$$

A.
$$\frac{\pi}{12}$$
 $\frac{\pi}{6}$
B. $\frac{\pi}{6}$, $\frac{5\pi}{6}$
C. $\frac{5\pi}{12}$ $\frac{7\pi}{12}$
D. $\frac{7\pi}{12}$ $\frac{11\pi}{12}$

Solutions

Solution: 01

Explanation

By using $C_1 \rightarrow C_1 - C_2$ and $C_3 \rightarrow C_3 - C_2$ we get

$$\begin{vmatrix} 1 & \sin^2 x & 0 \\ -1 & 1 + \cos^2 x & -1 \\ 0 & 4\sin 2x & 1 \end{vmatrix} = 0$$

Expanding by R_1 we get

$$1(1 + \cos^2 x + 4\sin 2x) - \sin^2 x(-1) = 0$$

$$\Rightarrow 2 + 4 \sin 2x = 0$$

$$\Rightarrow \sin 2x = \frac{-1}{2}$$

$$\Rightarrow 2x = n\pi + (-1)^n \left(\frac{-\pi}{6}\right), n \in \mathbb{Z}$$

$$\therefore 2x = \frac{7/\pi}{6}, \frac{11\pi}{6}$$

$$\Rightarrow x = \frac{7/\pi}{12}, \frac{11\pi}{2}$$