Derivative

by Sven Nilsen, 2020

In this paper I describe the notation for derivative of functions in standard path semantics.

The notation for the derivative in traditional mathemantics has always been messy, because of the intuition e.g. "with respect to some variable `x`" when other variables are held constant.

To make this precise, one can look at the `line` function:

$$\vdots \qquad line_A := \langle (a : A, b : A) = \langle (x : real) = x * (b - a) + a \rangle$$

The variables `a` and `b` are captured by the closure, such that they are constants in the function:

$$\therefore$$
 line_A(a, b) : real \rightarrow A

The derivative is a higher order function defined as following:

$$d_A(f: real \rightarrow A) = (x: real) = \lim_{x \to 0} h \rightarrow 0 \{ (f(x+h) - f(x)) / h \}$$

$$\therefore$$
 d_A: (real \rightarrow A) \rightarrow (real \rightarrow A)

The `A` is a type and should not be confused with a variable.

For example, in Euler's notation for the derivative operator:

However, when annotating `D` with some variable for clarification, e.g. `D_x`:

$$D_x f \leq > d_T(f)$$

$$f : real \rightarrow T$$

This notation is invariant with respect to the name of the argument.

Also, notice that d_T is applied to f. If d_T was composed with f, then f would be higher order:

- : f: U \rightarrow (real \rightarrow T)
- $d_T \cdot f : U \rightarrow (real \rightarrow T)$

To find the n-th derivative with respect to \hat{x} of $\hat{f}(a, b, x)$ one can use function currying:

$$d^{n}/dx^{n} f \le d^{n}(((a, b) = (x) = f(a, b, x))(a, b)) \le d^{n}(f(a, b))$$

$$\therefore$$
 f: A × B × real \rightarrow T