91. (New) An internal combustion engine in accordance with claim 90, wherein said crank chamber and said oil reservoir are separated from each other by a partition wall, and said communicating channel having said flow resistance is a small hole formed in said partition wall.

Remarks

Claims 90-91 have been added, and claims 1-91 are pending in this application. Claims 90-91 are copied from claims 1-2 respectively of pending U.S. Patent Application No. 09/865,544 having Publication No. US2001/0045199 A1. Applicants have herewith filed a request for interference proposing two counts relating to these claims.

New claims 90-91 are supported at various places in the present application, including, but not limited to: page 3, lines 12-19; page 15, lines 4-12; page 21, line 26 – page 23, line 31, and Figs. 1, 8, 8A, 13, 23, 24 and 28.

The present application is a national phase application under 35 USC §371 of PCT Application No. PCT/US00/00841 filed on January 13, 2000, which claims the benefit of U.S. Provisional Application No. 60/117,215, filed January 25, 1999, which also supports the new claims 90-91.

The following tables outline where support for each element of claims 90-91 is found in the present application, and in U.S. Provisional Application No. 60/117,215, which provides the earliest filing date for the present application.

Claim 90	Present Application	Provisional Application
An internal combustion engine,	Page 12, lines 20-21.	Page 9, lines 29-31.
comprising:	Fig. 1, #20.	Fig. 1, #20.
a crankshaft;	Page 14, lines 2-3.	Page 11, line 29.
	Fig. 1, #80.	Fig. 1, #80.
a crank chamber accommodating	Page 14, lines 13-16	Page 12, line 11.
said crankshaft;	Fig. 1, #124.	Fig. 1, #124.
an oil reservoir arranged adjacent to said	Page 14, lines 13-16.	Page 12, line 11.
crank chamber and containing engine	Fig. 1, #126.	Fig. 1, #126.
oil; and		
a communicating channel having a flow	Page 14, lines 13-16.	Page 12, lines 8-13.
resistance between said crank chamber	Page 15, lines 4-12.	Page 13, lines 8-22
and said oil reservoir;	Figs. 1 and 13, #118,	Figs. 1 and 13, #118,
	#120 and #122.	#120 and #122.
wherein said crank chamber and said oil	Page 15, lines 29-31.	Page 14, lines 12-15.
reservoir are in communication with	Figs. 1 and 13, #118,	Figs. 1 and 13, #118,
each other by way of said	#120, #122, #124 and	#120, #122, #124 and
communicating channel,	#126.	#126.
so that said flow resistance in said	Inherent in holes	Inherent in holes page
communicating channel causes a	page 15, line 7.	13, line 14.
pressure in said oil reservoir to change		
with a delay with respect to a change of		
a pressure in said crank chamber,		
a pressure difference between said crank	Page 15, lines 29-31.	Page 14, lines 12-15.
chamber and said oil reservoir causing a	Page 23, lines 2-4	Page 24, lines 18-21.
fluid flow through said communicating	and 22-26.	Page 25, lines 14-20.
channel between said crank chamber and		
said oil reservoir.		

Claim 91	Present Application	Provisional Application
An internal combustion engine in	See table above for	See table above for claim
accordance with claim 90,	claim 90.	90.
wherein said crank chamber and said oil	Page 14, lines 13-14.	Page 12, lines 8-11.
reservoir are separated from each other	Figs. 1 and 13, #118,	Figs. 1 and 13, #118,
by a partition wall, and	#120, #122, #124 and	#120, #122, #124 and
	#126.	#126.
said communicating channel having said	Inherent in holes	Inherent in holes page
flow resistance is a small hole formed in	page 15, line 7.	13, line 14.
said partition wall.		

The undersigned attorney is available for telephone consultation.

Respectfully submitted,

Casimir F. Laska
Res. No. 2005

Reg. No. 30,862

Docket No.: 018367-9780 Michael Best & Friedrich LLP 100 East Wisconsin Avenue Milwaukee, Wisconsin 53202-4108

(414) 271-6560

N:\CLIENT\018367\9780\A0468538.1