

Urban Sound Challenge

CO2V - Keller Patrick, Kocaj Alen

Inhaltsverzeichnis

- + Problemstellung
- + Methodik
- + Feature Engineering
 - Mel-Frequency Spectrum Analysis
- + Gridsearch
 - DNN
 - CNN
 - LSTM
- + Ergebnisse & Resultate
- + Aussicht

Problemstellung

- Urban Sound Challenge: Multi-Klassen Klassifikation von kurzen Audio-Samples
- 3680 Datenpunkte mit leicht unbalanciertem Datensatz
- Feature-Extraktion mittels Python-basierter libROSA Bibliothek
- Klassifikation mittels verschiedenen neuronalen Netzen Modellen.
 - Aus dem Bereich der DNNs, CNNs, RNNs bzw. LSTMs
- Vergleich der Modelle anhand typischer ML-Metriken (Precision, Recall, Accuracy)

Methodik I

- Verwendung des großen Datensatzes zur Extraktion und Vorverarbeitung der Features
- Split in Training-, Test- und Validierungsdaten
- Schrittweise Annäherung der Hyperparameter anhand Validierungsaccuracy
- Systematisches Testen verschiedener Hyperparameterkombinationen mittels Gridsearch
- Auswertung finaler Modelle mithilfe Metriken & Visualisierungen

Methodik II

- Extraktion erfolgt mithilfe der Python-Libraries Numpy, Pandas & libROSA
- Programmierung, Training & Auswertung erfolgt in Google Colaboratory
 - `Jupyter Notebook auf Anabolika`
- Training geschieht mit Keras
- Auswertung & Darstellung mithilfe Scikit-Learn & Matplotlib

Feature Engineering - MFCC

- <u>M</u>el-<u>F</u>requency <u>C</u>eptral <u>C</u>oefficients
- Kompakte Darstellung des Frequenzraumes
- Mel-Frequenzen beschreiben die Tonhöhe
- Cepstrum = inverse-FFT des logarithmierten Frequenzspektrums (Fourier-Raum)
- Mel entstehen durch Skalierung des Frequenzspektrums anhand des menschlichen Gehör (manche Frequenzen sind für Menschen wichtiger als andere) → nicht lineare Fenster-funktion
- Anzahl der MFCCs = Anzahl der Fenster, die gelegt werden (initial: 40)

Gridsearch

Gridsearch

- Unromantische Herangehensweise, aber effektiv
- Für DNN, CNN, LSTM die bestmöglichen Hyperparameter herausfinden
- Training erfolgte auf Google Colab mit shared GPU (Nvidia K80s, T4s, P4s and P100s)

Netzwerkagnostische Parameter wurden wie folgt variiert

- Lernrate (0.01, 0.001)
- Dropout (0.2, 0.5)
- Batch Size (10, 20, 40)

Gridsearch - DNN - I

Folgende Parameter wurden fix gesetzt:

- Dropout Layer nach jeder versteckten Schicht
- ReLU als Akt.Fun

Variiert wurden folgende Parameter:

- Anzahl versteckten Schichten (1, 2)
- Anzahl der Neuronen (128, 256, 512)
- → mit allen anderen Variationen: ~180 Tests
- → Dauer: ~3h

Gridsearch - DNN - II

architecture	learning_rate	dropout	batch_size	accuracy	precision	recall	f1-score
l2_512_256_relu	0.001	0.5	20	93.939	0.949	0.939	0.937
l1_512_relu	0.001	0.2	10	90.909	0.934	0.909	0.910
l2_256_512_relu	0.001	0.2	10	90.909	0.929	0.909	0.908
l2_128_512_relu	0.001	0.2	20	90.909	0.912	0.909	0.907
I2_128_512_relu	0.001	0.2	40	90.909	0.944	0.909	0.912
l2_512_512_relu	0.01	0.2	40	3.030	0.001	0.030	0.002
l2_128_128_relu	0.01	0.5	10	3.030	0.001	0.030	0.002
l2_256_128_relu	0.01	0.5	10	3.030	0.001	0.030	0.002
l2_128_512_relu	0.01	0.5	40	3.030	0.001	0.030	0.002
l2_512_128_relu	0.01	0.5	40	3.030	0.001	0.030	0.002

- → Zwei hidden Layer > ein hidden Layer
- → Wichtigster Faktor: learning rate
- → Kein Overfitting mit breiterem & tieferem Netzwerk

Gridsearch - CNN - I

Folgende Parameter wurden fix gesetzt:

- Kein Pooling Layer, weil stichprobenweise keine Verbesserung
- Batch-Normalization Layer wie empfohlen in AlexNet (Krizhevsky et al. 2012)
- Leaky-ReLU in Konvolution Layer
- Dropout Layer vor DNN

Variiert wurden folgende Parameter:

- Kernelgröße (3x3, 5x5, 7x7) mit Padding = Stride = 1 des Konvolutionslayers
- Anzahl der hidden layers (1, 2)
- → mit allen anderen Variationen: ~430 Tests
- → Dauer: ~12h

Gridsearch - CNN - II

architecture	learning_rate	dropout	batch_size	accuracy
I1_k3_d128_relu	0.01	0.2	10	93.939
I1_k3_d128_relu	0.01	0.2	40	93.939
I1_k7_d128_relu	0.01	0.2	20	90.909
I1_k5_d128_relu	0.001	0.2	20	90.909
l2_k3_k7_d128_relu	0.01	0.2	10	90.909
l2_k3_k5_d128_relu	0.01	0.2	10	27.273
l2_k5_k5_d128_relu	0.001	0.2	10	27.273
l2_k7_k7_d128_relu	0.01	0.5	20	24.242
l2_k7_k7_d128_relu	0.01	0.5	40	24.242
l2_k7_k7_d128_relu	0.01	0.5	10	18.182

- → Ein hidden convolution layer mit Kernel 3x3, einem DNN mit 128 Neuronen & ReLU als Akt.funk
- → Dropout von 20%, während Batch-Size keinen Einfluss hat
- → Hohe learning rate bringt besseres Ergebnis

Gridsearch - LSTM - I

Folgende Parameter wurden fix gesetzt:

- Ein versteckter Layer + anschließendem Dropout

Variiert wurden folgende Parameter:

- Anzahl der LSTM Einheiten (16, 32, 48)
- → sehr langsames Training
- → mit allen anderen Variationen: ~50 Tests
- → Dauer: ~8h

Gridsearch - LSTM - II

architecture	learning_rate	dropout	batch_size	accuracy	precision	recall	f1-score
I1_lstm48_relu	0.001	0.5	20	87.879	0.919	0.879	0.886
I1_lstm48_relu	0.001	0.2	40	84.848	0.899	0.848	0.856
I1_lstm48_relu	0.001	0.2	20	81.818	0.889	0.818	0.829
I1_Istm48_relu	0.001	0.2	10	78.788	0.883	0.788	0.802
I1_lstm32_relu	0.001	0.2	40	78.788	0.884	0.788	0.797
I1_lstm32_relu	0.01	0.5	40	39.394	0.339	0.394	0.321
I1_lstm32_relu	0.01	0.2	10	36.364	0.454	0.364	0.374
I1_lstm48_relu	0.01	0.2	10	36.364	0.499	0.364	0.363
I1_Istm16_relu	0.01	0.5	10	30.303	0.398	0.303	0.302
I1_lstm32_relu	0.01	0.5	10	21.212	0.155	0.212	0.158

- → Mehr LSTM Units = besseres Modell
- → Dropout und Batch Size kaum Einfluss
- \rightarrow Learning Rate niedriger als bei CNN

Gridsearch - Final

type	learning_rate	learning_rate	dropout	batch_size	accuracy	precision	recall	f1-score
dnn	l2_512_256_relu	0.001	0.5*	20	93.939	0.949	0.939	0.937
cnn	I1_k3_d128_relu	0.01	0.2*	10	93.939	-	-	-
Istm	l1_lstm48_relu	0.001	0.5*	20	87.879	0.919	0.879	0.886

^{*} Finale Dropout-rate wurde auf 0.3 geändert

Ergebnisse & Resultate

Testset

Klassenverteilung Test Samples

→ daher werden gewichtete Metriken verwendet. Gewichtung erfolgt nach Anzahl der Samples

Samples 0.9% des **Datensets**

Ergebnisse & Resultate - DNN I

Basis: NN mit 156K Parameter

Accuracies:

- Training: 97.00% - Test: 90.90%

Aggregierte gewichtete Metriken:

Precision: 92.40%Recall: 90.90%

⇒ Positive Klasse wird eher erkannt, als relevante Ergebnisse

Ergebnisse & Results - DNN II

Beispiel: Autohupen wurde falsch positiv als Hundebellen klassifiziert (FP in Relation zur Klasse `dog bark`), während es falsch negativ in Relation zur Klasse `car horn` klassifiziert wurde

`Dog bark` Prec: 1/2 = 0.5 `Car horn` Rec: 2/3 = 0.67

Ergebnisse & Resultate - DNN III

Kaum Auffälligkeiten beim Training: leichtes Overfitting, kurze Phase wo Val.Acc > Train.Acc

Ergebnisse & Resultate - CNN I

Basis: CNN mit 6.3K Parameter

Accuracies:

- Training: 84.22% - Test: 93.94%

Aggregierte gewichtete Metriken:

- Precision: 94.80% - Recall: 93.90%

⇒ Positive Klasse wird knapp eher erkannt, als relevante Ergebnisse

Ergebnisse & Results - CNN II

Beispiel: Schusswaffe wurde falsch positiv als Presslufthammer klassifiziert (FP in Relation zur Klasse 'jackhammer'), während es falsch negativ in Relation zur Klasse 'gun shot' klassifiziert wurde

`Jackham..` Prec: 6/7 = 0.86 `Gun shot` Rec: 1/2 = 0.5

Man achte auf Gewichtung der Samples!

Ergebnisse & Resultate - CNN III

Modell auf Validierungsdaten immer besser als bei Trainingsdaten \rightarrow inhärente Eigenschaft der Daten & CNN 1D

Ergebnisse & Resultate - LSTM I

Basis: LSTM mit 9.6K Parameter

Accuracies:

- Training: 79.44% - Test: 81.81%

Aggregierte gewichtete Metriken:

Precision: 86.60%Recall: 81.80%

⇒ Positive Klasse wird eher erkannt, als relevante Ergebnisse

Ergebnisse & Results - LSTM II

Beispiel: Straßenmusik wurde zweimal falsch negativ als andere Klassen klassifiziert (Engine im Leerlauf & Schusswaffe), während Kinderspielen falsch positiv als Straßenmusik klassifiziert wurde

`Street M..` Prec: 3 / 4 = 0.75

`Street M..` Rec: 3/5 = 0.6

Ergebnisse & Resultate - LSTM III

Training in "Ordnung": schlechte Genauigkeit und am Schluss Divergenz zwischen Train.Loss & Val.Loss. Grundsätzlich kein Overfitting vorhanden.

Schwaches Modell musste genommen werden, um starkes Overfitting zu verhindern

Ergebnisse & Resultate - Final

type	train.accuracy	test.accuracy	precision	recall
dnn	97.00	90.90	92.40	90.90
cnn	84.22	93.94	94.80	93.90
Istm	79.44	81.81	86.60	81.80

Wir gratulieren CNN zum Sieg in der Urban Sound Challenge! 🎺 鎽 💪

Aussicht I

- CNN und DNN beste Arten von neuronalen Netzen, um Audiodaten zu klassifizieren
 - DNN kann durch breitere Neuronenanzahl gut fitten
 - CNN besitzt inhärente Eigenschaften um 2D (Bild) bzw. 1D (Audio) Daten zu vorverarbeiten, um dann selbst mittels DNN zu klassifizieren
- LSTM ist sehr mächtig, aber overfittet schnell ⇒ daher schwaches Modell genommen
 - Mehr Zeit in Hyperparameter-Tuning investieren
 - Zusätzlicher Layer an LSTM-Units brächte zusätzliche Mächtigkeit
 - Mit Dropout "regularisieren"

Aussicht II

- Weiteres Feature Engineering durch diverse Features:
 - Einfach: Root-Mean-Square jedes Frames
 - Chromagram der Audio-Welle
 - Mel-skaliertes Spectrogram
 - Koeffizienten zum Fitten eines n-th Polynom an der Audio-Welle
 - Spektral "Flachness" & "Kontrast"
 - Rhythmus: Tempogram
- Andere Anzahl an Ceptral Koeffizienten

Vielen Dank für Ihre Aufmerksamkeit

