ALGEBRAIC TOPOLOGY

Dan Margalit Georgia Tech Fall '12 What is algebraic topology?

What kinds of questions does it answer?

1) When are two spaces the Same (or not)?

what about:
$$\mathbb{R}^3 - \mathbb{G}$$
 vs. $\mathbb{R}^3 - \mathbb{G}$

2 Embeddings

What is smallest N s.t. a given manifold embeds in IRN?

Unsolved for IRP".

3 Fixed point theorems

Browner fixed pt theorem: every $D^2 \rightarrow D^2$ has a fixed pt.

Borsuk-Ulam theorem.

4 Actions

Which finite groups act freely on S^n ?

(known in some cases)

Note: 74/17 Cr S^{2k-1} Y n,k.

5 Sections

What is the largest k s.t. a given manifold admits a continuously varying k-plane field?

Hairy ball theorem.

6 Group theory

Every subgroup of a free group is free. [Fn, Fn] is not finitely generated. Braid groups are torsion free.

7) Algebra

Fundamental theorem of algebra (this week!)

Basic idea of homology

Hk(X) = abelian group of k-dim holes in X

computable

computable

from collapsing

example: X = pair of parts (00)

example: $X = pair of parts \bigcirc \bigcirc$ $H_1(X) \cong \mathbb{Z}^2$

 $H^k(X)$ is dual to $H_k(X)$ \longrightarrow consists of functions $H_k(X) \longrightarrow \mathbb{Z}$

Big Goal: Poincaré Duality

For $X = n^{-1}$ fold $H^{k}(X) \cong H_{n-k}(X)$

More precisely: the functions in H^k look like "intersect with this fixed element of Hn-k"

What do we mean by a space?

Cell complexes aka CW complexes

e.g.

C = closure finiteness
(closure of open cell hits
finitely many open cells)
W = weak topology

Quotient topology: $U \subseteq X/n$ is open iff its preimage in X is open.

We build CW complexes inductively

- (i) Start with a discrete set of points X°. The points are regarded as 0-cells.
- (ii) Inductively form n-skeleton X^n from X^{n-1} by attaching n-cells D_{κ} via $Q_{\kappa}: \partial D_{\kappa} \longrightarrow X^{n-1}$

 X^n has quotient topology.

(iii) Either stop at a finite stoge, or continue indefinitely.

In latter case, use weak topology: a set is open iff its intersection with each cell is open.

dim(X) = sup of dim of cells

Examples of CW Complexes

- 1 1-dim CW complexes are graphs.
- 2 (4g+2)-gon with opposite sides identified

- 3 $5^{\circ} = e^{\circ} v e^{\circ}$ $e^{i} = i cell$.
- @ RP" = space of lines in R"

To see this: $\mathbb{RP}^n = \mathbb{RP}^n S^n / \text{antipodal map}$ = $\mathbb{D}^n / \text{antipodal map}$ on $\partial \mathbb{D}^n = S^{n-1}$ So on $\partial \mathbb{D}^n$ see \mathbb{RP}^{n-1} , and we glue \mathbb{D}^n to that.

6 $\mathbb{CP}^n = \mathbb{C}^0 \cup \mathbb{C}^2 \cup \cdots \cup \mathbb{C}^n$ exercise.

Subcomplexes

Subcomplex = dosed subset union of cells.

A subcomplex of a CW complex is a CW complex.

example: K-skeleton.

EQUIVALENCE OF SPACES

Intuition: Two spaces are equivalent if one can be deformed into the other

Special case: A deformation retraction $X \rightarrow A$ is a continuous family $\{f_t: X \rightarrow X \mid t \in I\}$

s.t. $f_0 = id$ $f_1(x) = A$ $f_1(x) = id \quad \forall t$

Continuous means $X \times I \longrightarrow X$ $(x,t) \longmapsto f_t(x)$

is continuous.

Example: Given $f: X \rightarrow Y$, the mapping cylinder is $M_f = (X \times I) \coprod Y / N$

where $(x,1) \sim f(x)$

e.g. X = boundary Y = core

Fact: Mf deformation retracts to Y.

Homotopy Equivalence

A homotopy is a continuous family $\{f_t: X \rightarrow Y \mid t \in I\}$

examples: deformation retraction

A map $f: X \rightarrow Y$ is a homotopy equivalence if there is a $g: Y \rightarrow X$ such that fg = id and gf = id 2 homotopic

Say: X & Y are homotopy equivalent, or X=Y have the same homotopy type.

Exercise: This is an equivalence relation.

Fact: If A is a deformation retract of X, then X≃A

Exercise: 0000 D 00 all homotopy equiv.

Exercise: $\mathbb{R}^n \simeq *$ Say \mathbb{R}^n is contractible.

Read: House with 2 rooms, Hatcher p. 4.

TWO CRITERIA FOR HOMOTOPY EQUIVALENCE

1)
$$(X,A) = CW - pair$$
 (i.e. A subcomplex of X)
A contractible
 $\Rightarrow X \simeq X/A \leftarrow identify A to one point$

$$X/A \cong G^2/\text{north polen}$$

south pole.

$$X/B \cong G^2 \vee S^1$$

(2)
$$(X,A)$$
 CW-pair
 $f,g:A \rightarrow Y$ homotopic (i.e. \exists homotopy f_t , $f_0=f,f_1=g$)
 $\Rightarrow X \coprod_S Y \simeq X \coprod_G Y$

exercise: Do last example using Criterion 2

Proofs of both criteria use Homotopy Extension Property.

Say a pair of spaces (X,A) has the homotopy extension property if whenever we have

$$f_o: X \longrightarrow Y$$

 $f_t: A \longrightarrow Y$ homotopy

we can extend ft to X.

In other words every map $M_i \rightarrow Y$ can be extended to $X \times I \rightarrow Y$ where $M_i = \text{mapping } \text{eye} \text{cylinder of } i : A \rightarrow X$ inclusion.

example.
$$X = \frac{1}{L_A}$$
 $Y = \mathbb{R}^2$

$$f_0 = \int_{t}^{t} f_t = \int_{t}^{t} extension:$$

A retraction of a space X onto a subspace A is $r: X \rightarrow A$ s.t. $r|_{A} = id$.

Prop: (X,A) has HEP \iff Mi is a retract of $X \times I$ where $i:A \to X$ inclusion.

 $\begin{array}{ccc}
\overline{P_{roof}} : & \Longrightarrow & \text{Set } Y = M_i, & f_o = id. \\
& & \swarrow & \times I \xrightarrow{r} M_i \xrightarrow{f_t} Y
\end{array}$

Note: ft deformation retract of X to A $\Rightarrow f_1: X \rightarrow A$ a retraction of X to A

Prop: If (X,A) = CW pair, then Mi is a deformation retract of $X \times I$ (where $i:A \rightarrow X$ incl.)

In particular, (X,A) has HEP.

Proof: First do $X = D^n$ $A = \partial D^n$ via projection:

Retract each n-cell of X^-A^
during [\frac{1}{2}^{n+1}, \frac{1}{2}^n]

Continuous since it is on each cell (no problem near O since each n-skeleton stationary in $[0, \frac{1}{2}^{m_1}]$).

 $\frac{P_{rop}: (X,A) \text{ has I-IEP}}{A \text{ contractible}}$ $\Rightarrow q: X \rightarrow X/A \text{ is a homotopy equivalence}$

Idea: Need inverse to q. Contract A, extend to X_{in} $f_t: X \to X$. Since $f_i(A) = pt$. can regard $f_i: X/A \to X$.

exercise: read/write details.

example. $X = \mathbb{R} \quad A = [-1, 1]$

 $\frac{P_{rop}: (X,A) = CW \text{ pair}}{f,g: A \rightarrow Y \text{ homotopic}}$ $\Rightarrow X \coprod_f Y \cong X \coprod_g Y$

Idea: Show both are deformation retractions of $(X \times I) \coprod_{F} Y$ where $F: A \times I \to Y$ is homotopy from f to g.

example: $X = A Y = D^2$

exercise: write details

note: use existence of deformation retraction $X \times I \rightarrow M_i$ (stronger than HEP).