화학 General Chemistry 034.020-005

2018 Spring Semester

Tue/Thr 9:30~10:45 Building 028-302

송윤주 woonjusong@snu.ac.kr

Chapter 1. Atom (electrons; atomic orbitals)

Chapter 2. Chemical Bondings (ionic vs covalent bonding)

Chapter 3. Molecular Structures and Shapes

Lecture 3. Structure and Shape of Molecules

- 1) VSEPR (Valence Shell Electron Pair Repulsion) model
- 2) VB (Valance Bond) theory
- 3) MO (Molecular Orbital) theory

1) Valance Shell Electron Pair Repulsion (VSEPR)

Lewis structure shows the linkages and lone pairs 2-dimensionally.

VSEPR model suggests the **3D arrangement** of atoms and shape of molecules

- 1. Only the positions of atoms are considered to identify the molecular shape.
- 2. Treat multiple bond as a single region with high electron density.
- 3. Minimize repulsions between <u>lone pair (LP) LP (1)</u>, <u>bonding pair (BP) LP (2)</u>, <u>or BP BP (3)</u>. Arrange them as far as possible.

Valence Shell Electron Pair Repulsion:

The structure around a given atom is determined *principally* by minimizing <u>electron pair</u> repulsions.

3.1. VSEPR Model

Steric Number of the central atom

SN = # of atoms bonded to c.a. + # of lone pairs on c.a.

Number of Electron Pairs	Arrangeme	Example	
2	Linear	A	9 9 9
3	Trigonal planar	A	
4	Tetrahedral	A	
5	Trigonal bipyramidal	120°	
6	Octahedral	90° A A	

Examples

 PCl_5 (5+5x(7)=40 valence electrons)

PCl₄⁺ (5+4(7)-1=32 valence electrons) 4-electron pairs

→ tetrahedron

PCI₆- (5+6(7)+1=48 valence electrons), 6-electron pairs

→ octahedral

3.2. VSEPR Model for Lone Pairs on the Central Atom

н-ö-н 4-electron pairs (including lone pairs)

Lone pair against lone pair

Lone pair against bonding pair

Bonding pair against bonding pair

Stronger repulsion

SN = 2, 3, and 4

SN = 6

Sb: 5s²5p³ Sb²⁻: 5s²5p⁵

Molecular Shape is determined by the number of atoms and lone pairs (= Steric Number)

3.3. Polar Molecules

Cl:Cl

A nonpolar covalent bond

$$^{\delta+}H-Cl^{\delta-}$$

[H:Cl]

-A polar covalent bond.

The bonding electrons are attracted more strongly by Cl than by H.

Dipole moment

$$\mu = qR$$

$$1 D = 3.336 \times 10^{-30} C m$$

Partial Charge & Percent of Ionic Character

 $\delta^{-} = -0.178$

ts of Diatomic Molecules

	ond Length (Å)	Dipole Moment (D)	(100 δ)	
	0.751	0	0	
	1.131	0.112	2	
•	1.154	0.159	3	
l	1.620	0.448	6	
F	1.632	0.888	11	
Br	1.424	0.828	12	
Cl	1.284	1.109	18	
F	0.926	1.827	41	
ε F	2.347	7.884	70	
CI	2.027	7.129	73	
Н	1.604	5.882	76	
Br	2.824	10.628	78	
aCl	2.365	9.001	79	
CI	2.671	10.269	82	
F	2.176	8.593	82	
F	1.570	6.327	84	
aF	1.931	8.156	88	

% Ionic Character

Net Dipole

27 Carbon dioxide, CO₂

28 Water, H₂O

29 cis-Dichloroethene, C₂H₂Cl₂

30 trans-Dichloroethene, C₂H₂Cl₂

nonpolar

polar

polar

nonpolar

(a)

(c)

 $\mu_{tot} = 0$

(d)

(b)

Correction)

molecule.

one.

Valence Bond Theory

- An approximate <u>Quantum Theory</u> that solves problem of Lewis/VSEPR.
- A bond is formed by the two electrons placed in the overlapped region of <u>atomic orbitals</u> of two atoms.

Valance Bond Theory explains covalent bonding with atomic orbitals

3.4. Orbital Overlap: Bonding!

σ bond:

- No nodal plane including bond axis
- Cylindrical or sausage shape

- Nodal plane including bonding axis
- lobes

Examples

Multiple bond = one σ bond + the other π bonds

Comparison of VB and Lewis/VSEPR

- In Lewis/VSEPR theory, shapes of molecules are determined by bond-bond repulsion
- In VB, shapes are determined by the orientation of overlapped orbitals.

3.5. Hybridization of Orbitals

all the C-H bonds are equivalent.

Electron promotion and Hybrid orbital

Electron promotion: electron relocation to a higher-energy orbital

Hybrid orbital: hybridizing orbitals

General Rules for Hybridization

Number of hybrid orbitals
 = number of atomic orbitals used (one s + three p orbitals = four sp³

orbitals).

- To form covalent bonds, hybrid orbitals may overlap either with atomic or hybrid orbitals.
- Molecular shape is determined by the shapes and orientations of hybrid orbitals, which are different from the shapes and orientations of atomic orbitals.
- Therefore, CH_4 is in <u>tetrahedral shape</u> even though the atomic orbitals of the carbon atom are <u>perpendicular</u> each other (90°).

Bonding in NH₃

1) sp³ hybridization

4 sp³ hybrids

$$h_1 = \frac{1}{2}(s + px + py + p_z)$$

$$h_2 = \frac{1}{2} (s + px - p_y - p_z)$$

$$h_3 = \frac{1}{2} (s - p_x + p_y - p_z)$$

$$h_4 = \frac{1}{2} (s - p_y - p_y + p_z)$$

2) sp² & sp hybridization

3 sp² hybrids

$$h_1 = s + 2^{1/2} p_y$$

$$h_2 = s + (3/2)^{1/2} p_x - (1/2)^{1/2} p_y$$

$$h_3 = s - (3/2)^{1/2} p_x - (1/2)^{1/2} p_y$$

2 sp hybrids

$$h_1 = s + p_z$$

$$h_2 = s - p_z$$

$C 1s^2 2s^2 2p^2$

$$C 1s^2 2s^2 2p^2$$

T A B L E 3.5

Three Types of Carbon–Carbon Bonds

Bond	Molecule	Bond Length (Å)	Bond Energy (kJ mol ⁻¹)
С—С	C ₂ H ₆ (or H ₃ CCH ₃)	1.536	345
c=c	C_2H_4 (or H_2CCH_2)	1.337	612
C≡C	C ₂ H ₂ (or HCCH)	1.204	809

Pi bond—p orbital overlap

Broken bond—no *p* orbital overlap

(a) The σ-bond framework

(b) Formation of π -bonds by the overlap of half-filled 2p orbitals

(c) Hybridization and bonding scheme

In Lewis structure,

double bond == two identical single bonds

In VB theory,

double bond = sigma bond + pi bond

Triple bond = sigma bond + two pi bonds

3) sp³d & sp³d² hybridization

Hybridization Schemes

Electron arrangement around the central atom	Hybrid orbitals (number)	Angle(s) between σ-bonds	Example(s) [underlined atom]
Linear	sp (two)	180°	$\underline{\text{Be}}\text{Cl}_2, \underline{\text{C}}\text{O}_2$
Trigonal planar	sp^2 (three)	120°	$\underline{\mathbf{B}}\mathbf{F}_{3},\underline{\mathbf{C}}\mathbf{H_{3}}^{+}$
Tetrahedral	sp^3 (four)	109.5°	$\underline{CCl_4}, \underline{NH_4}^+$
Trigonal bipyramidal	sp^3d (five)	120°, 90°, and 180°	PCl ₅
Octahedral	sp^3d^2 (six)	90° and 180°	<u>S</u> F ₆

Q) Hybrid orbital only for sigma bonding?

: The shape/directionality of the hybrid orbitals allows only sigma bonding.

Q) What is the orbital of the Nitrogen in N_2 ?

: Again, use the hybrid orbital only when it is necessary. In fact, we rarely use the hybrid orbital for the terminal atoms and diatomic molecules.

Egg and Chicken probem: How do we know which hybrid scheme to use?

 Hybridization in itself CANNOT predict molecular shape.
 It can only explain which atomic orbital contributes to the bond.

Example)

Known tetrahedral shape of methane

 \rightarrow sp³ hybrid \rightarrow bonding of sp³ and H atoms