Método sinal e amplitude/magnitude:

Define-se esse bit para 0 para representar um número positivo, e define-se como 1 para representar um número negativo. Os bits restantes do número representam a magnitude (ou valor absoluto). Assim, em um byte com 8 bits, são utilizados 7 bits para representar o valor e um bit para representar o sinal. Neste caso, o valor pode variar de 0000000 (0) a 1111111 (127). Representando números de -127_{10} a $+127_{10}$, uma vez que você adicione o bit de sinal (o oitavo bit).

Exemplo:

 $+10_{10} = \mathbf{0}_{10102}$ $-10_{10} = \mathbf{1}_{10102}$

Complemento p/ 1:

Para adicionar dois números representados neste sistema, se faz uma adição binária convencional, mas é então necessário adicionar qualquer "vai-um" resultante de volta para a soma resultante. Para ver por que isso é necessário, considere o seguinte exemplo:

 $100_{10} = \mathbf{0}1100100_2$ Inverte-se... $\mathbf{1}0011011_2 = -100_{10}$

Contra:

O problema desta representação é que existe 2 padrões de bits para o 0, havendo assim desperdício de representação: $0_{10} = 000000002 = 11111112$

Complemento p/ 2:

Em complemento para dois, há apenas um zero (0000000). Se nega um número (negativo ou positivo) invertendo-se todos os bits e, em seguida, adicionando 1 ao resultado. A adição de um par números em complemento para dois é o mesmo a adição de um par de números sem-sinal.

Exemplo:

101₁₀ = 01100101₂ Inverte-se... 10011010₂ Soma-se uma unidade... 10011010₂ + 1 = 10011011 = -101₁₀

Prós: Numero mais exato devido a maior capacidade de arquitetura

ANDRE SILVEIRA MACHADO

INTRODUCAO A INFORMATICA