ÁLGEBRA 1

CURSO 20-21

RELACIÓN DE EJERCICIOS 2

2.1. Construir todas las aplicaciones del conjunto $X = \{a, b, c\}$ en el conjunto $Y = \{1, 2\}$ y clasificarlas según sean inyectivas, sobreyectivas, biyectivas ó de ninguno de estos tipos.

2.2. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 5x - 3. Demostrar que existe $g: \mathbb{R} \to \mathbb{R}$ tal que $g \circ f = 1_{\mathbb{R}}$. ¿Es cierto también que $f \circ g = 1_{\mathbb{R}}$?

2.3. Sean $f: X \to Y$ una aplicación y $A \subseteq X$, $B \subseteq Y$. Demostrar:

i) $f_*(f^*(B)) \subseteq B$ y se da la igualdad si f es sobrevectiva.

ii) $A \subseteq f^*(f_*(A))$ y se da la igualdad si f es inyectiva.

2.4. Se consideran las aplicaciones

$$A \xrightarrow{f} B \xrightarrow{g} C \text{ y } X \xrightarrow{h} Y \xrightarrow{k} Z$$
.

Demostrar que f y h inducen una única aplicación $f \times h : A \times X \to B \times Y$ verificando que

$$f \circ p_1 = p_1 \circ (f \times h)$$
 y $h \circ p_2 = p_2 \circ (f \times h)$.

Demostrar que $(g \times k) \circ (f \times h) = (g \circ f) \times (k \circ h)$.

2.5. Sea $f: X \to Y$ una aplicación, $A \subseteq X$ y $B \subseteq Y$. Demostrar

$$f_*(A \cap f^*(B)) = f_*(A) \cap B$$

2.6. Dada una aplicación $f: X \to Y$ y $A \subseteq X$, se llama saturación de A al conjunto $f^*(f_*(A))$. Se dice que A es saturado si $A = f^*(f_*(A))$.

- i) Caracterizar los subconjuntos saturados de f si $X = Y = \mathbb{R}$ y f es la aplicación definida por $f(x) = x^2 + 1$.
- ii) Hallar la saturación del conjunto $\{\pi\}$ si $X=Y=\mathbb{R}$ y f es la aplicación coseno.

- **2.7.** Sea $f: X \to Y$ una aplicación. Demostrar que son equivalentes las siguientes afirmaciones:
 - i) f es inyectiva
 - ii) $\forall A, B \in P(X), f_*(A \cap B) = f_*(A) \cap f_*(B).$
- **2.8.** Sean $f:X\to Y$ y $g:Y\to Z$ dos aplicaciones y sea $h=g\circ f$ la composición de dichas aplicaciones. Demostrar:
- i) Si h es inyectiva entonces f es inyectiva.
- ii) Si h es sobreyectiva entonces g es sobreyectiva.
- iii) Si h es inyectiva y f es sobreyectiva entonces g es inyectiva.
- iv) Si h es sobreyectiva y g es inyectiva entonces f es sobreyectiva.
- **2.9.** Sean las aplicaciones $f: X \to Y$, $g: Y \to Z$ y $h: Z \to X$ tales que $h \circ g \circ f$ es inyectiva, $g \circ f \circ h$ es inyectiva y $f \circ h \circ g$ es sobreyectiva. Demostrar que las aplicaciones f, g y h son biyectivas.