Problem Sheet 7

Math40002, Analysis 1

- 1. Prove that if $f:[a,b] \to [0,\infty)$ is continuous and $f(c) \neq 0$ for some $c \in [a,b]$, then $\int_a^b f(x) dx > 0$.
- 2. Suppose for some $f:[a,b]\to\mathbb{R}$ and integer $n\geq 1$ that the *n*th power f^n of f is integrable. Prove that if n is odd, then f is integrable. Why doesn't this work for n even, and can you find additional hypotheses on f that make it true in that case?
- 3. Let C[a,b] denote the set of continuous functions $f:[a,b]\to\mathbb{R}$, and define a function $d:C[a,b]\times C[a,b]\to\mathbb{R}$ by

$$d(f,g) = \int_{a}^{b} |f(x) - g(x)| dx.$$

- (a) Prove that d(f,g) = d(g,f) for all $f,g \in C[a,b]$.
- (b) Prove that $d(f,g) \ge 0$, with equality if and only if f = g.
- (c) Prove the triangle inequality $d(f,g) + d(g,h) \ge d(f,h)$.

These properties say that d is a metric, which is a notion of distance on C[a, b].

- (d) Prove that if $f_n \to f$ uniformly on [a, b], then $\lim_{n \to \infty} d(f_n, f) = 0$.
- 4. In problem sheet 5 we constructed a smooth (i.e., infinitely differentiable) function $f: \mathbb{R} \to [0, \infty)$ such that f(x) > 0 if and only if $x \in (0, 1)$.
 - (a) Construct a smooth, monotone increasing function $g: \mathbb{R} \to [0, \infty)$ such that g(x) = 0 for all $x \leq 0$ and g(x) = 1 for all $x \geq 1$.
 - (b) Given a < b < c < d, construct a smooth function $h : \mathbb{R} \to [0, \infty)$ satisfying

$$h(x) = 0$$
 for all $x \notin [a, d]$, $h(x) = 1$ for all $x \in [b, c]$,

and with h monotone increasing on $(-\infty, b]$ and decreasing on $[c, \infty)$.

1

- 5. (a) Check that the derivative of $x \log(x) x$ is $\log(x)$.
 - (b) Use Darboux sums to prove for all integers $n \geq 1$ that

$$\log((n-1)!) \le \int_1^n \log(x) \, dx \le \log(n!).$$

(c) Evaluate the integral in (b) and deduce that

$$\frac{1}{n} \le \frac{\log(n!)}{n} - \log\left(\frac{n}{e}\right) \le \log\left(1 + \frac{1}{n}\right) + \frac{\log(n+1)}{n}$$

for all $n \geq 1$.

(d) Conclude that $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e$.

Remark: this is a weak version of Stirling's formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

- 6. (*) Let $f:[N,\infty)\to[0,\infty)$ be a nonnegative, monotone decreasing function.
 - (a) Let $S_n = \sum_{k=N}^n f(k)$ for all integers $n \geq N$. Use Darboux sums to prove that

$$S_n - f(N) \le \int_N^n f(x) \, dx \le S_{n-1}.$$

(b) Prove that the series $\sum_{k=N}^{\infty} f(k)$ converges if and only if the limit

$$\int_{N}^{\infty} f(x) dx \stackrel{def}{=} \lim_{x \to \infty} \int_{N}^{x} f(t) dt$$

(called an improper integral) exists. This is the integral test for convergence.

- (c) Prove that if the series $S = \sum_{k=N}^{\infty} f(k)$ converges, so $I = \int_{N}^{\infty} f(x) dx$ exists, then $I \leq S \leq I + f(N)$.
- 7. Consider for any real s the series $\sum_{n=1}^{\infty} \frac{1}{n^s}$.
 - (a) Prove that this series is not convergent if $s \leq 0$.
 - (b) Use the integral test to prove that for s>0, the series converges if and only if s>1. If s>1, show that $\frac{1}{s-1}<\zeta(s)<\frac{s}{s-1}$.
 - (c) Prove for any a > 1 that the series converges uniformly to a continuous function on $[a, \infty)$, and hence it defines a continuous function $\zeta : (1, \infty) \to \mathbb{R}$ called the *Riemann zeta function*. Can it be extended continuously to $[1, \infty)$?
 - (d) (Harder!) Prove that $\zeta(s)$ is continuously differentiable, and compute its derivative. It may help to first show that $\lim_{x\to\infty}\frac{\log(x)}{x^\epsilon}=0$ for any $\epsilon>0$.

2