Autoregressive Conditional Density

Higher Moment Risk

Lindberg

Introduction

Risk management is important.

Market movements are difficult to foresee and rare. They also impact a lot of people.

Volatility—the second moment—is one measure of downside risk but higher moments such as skewness and kurtosis—the third and fourth moment—are of importance as well.

Summary

This thesis is a model comparison.

The models are GARCH and ACD.

They are compared based on their out-of-sample performance with respect to downside risk.

Conclusion: ACD is better.

Outline

- Theory
 - Definitions and Models
 - Value at Risk
 - Forecast Comparison
 - Tests
- Analysis
 - Research question
 - Data & Method
 - Summary of Tests
 - Why does it win?
 - Conclusion
 - Further Research

Theory

Returns

Let P_t be the price of an asset at time t.

The return is given by

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right)$$

Distributions

Just think of NIG distribution as a more flexible Normal distribution.

Distributions

Just think of NIG distribution as a more flexible Normal distribution.

The PDF of Normal distribution is

$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right].$$

The Parameters are μ, σ^2 .

Distributions

Just think of NIG distribution as a more flexible Normal distribution.

The PDF of Normal distribution is

$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right].$$

The Parameters are μ, σ^2 .

The PDF of Normal Inverse Gaussian (NIG) distribution is

$$\frac{\alpha \delta K_1 \left(\alpha \sqrt{\delta^2 + (x - \mu)^2}\right)}{\pi \sqrt{\delta^2 + (x - \mu)^2}} \exp\left[\delta \gamma + \beta (x - \mu)\right]$$

where

 K_1 denotes a modified Bessel function of kind three.

The parameters are μ location α tail heaviness, δ scale parameter, β asymmetry parameter, and $\gamma = \sqrt{\alpha^2 - \beta^2}$.

GARCH model

ARMA(1,1)-GARCH(1,1)-NIG

$$\begin{aligned} r_t &= \mu_t + \varepsilon_t = \mu_t + \sigma_t z_t \\ z_t &\sim \textit{NIG}\left(0, 1, \rho, \zeta\right) \\ \sigma_t^2 &= \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \end{aligned}$$

For μ_t we use an ARMA(1,1).

GARCH is the go to model.

ACD model

ARMA(1,1)-ACD(1,1)-NIG

$$\begin{split} r_t &= \mu_t + \varepsilon_t = \mu_t + \sigma_t z_t \\ z_t &\sim \textit{NIG}\left(0, 1, \rho_t, \zeta_t\right) \\ \sigma_t^2 &= \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \\ \Psi\left(\rho_t\right) &= f\left(\bar{\rho}_t\right) \\ \Psi\left(\zeta_t\right) &= g\left(\bar{\zeta}_t\right) \end{split}$$

For μ_t we use an ARMA(1,1).

GARCH vs ACD

GARCH is Autoregressive Conditional Heteroskedasticity vs

ACD is Autoregressive Conditional *Density*

$$(\mu_t, \sigma_t, \rho, \zeta)$$
 vs $(\mu_t, \sigma_t, \rho_t, \zeta_t)$

So ACD has time varying higher moments.

GARCH vs ACD

GARCH is Autoregressive Conditional Heteroskedasticity vs

ACD is Autoregressive Conditional *Density*

$$(\mu_t, \sigma_t, \rho, \zeta)$$
 vs $(\mu_t, \sigma_t, \rho_t, \zeta_t)$

So ACD has time varying higher moments.

- ullet Both models forecast density of returns distribtion at time t
 - one-day ahead forecasts
 - given information up until time t.
- Want to compare them.
 - As a way of doing this, apply them to tail risk.
 - Why tail risk? Becuase one important application of GARCH is in risk management so if ACD beat GARCH here then it's one piece of evidence that ACD is better than GARCH.

Value at Risk

VaR is a quantile in the returns distribution.

If $r_t < VaR_t$ a violation occured.

Forecast Comparison

Models produce forecasts of the parameters that describe the distribution, hence we forecast the density.

VaR is a quantile in this density. We use 1% and 5% quantile.

How do we compare models? How do we know if they are good? Answer: We backtest their density forecast (and violations).

Forecast Comparison

Models produce forecasts of the parameters that describe the distribution, hence we forecast the density.

VaR is a quantile in this density. We use 1% and 5% quantile.

How do we compare models? How do we know if they are good? Answer: We backtest their density forecast (and violations).

Three tests

- Conditional Coverage test (CC-test)
- VaR Duration test (VaRDur-test)
- Berkowtiz tail test (Berkowitz-test)

1 and 2 are based on violations. 3 is based on density forecast.

Test Summary

- OC-test: correct number of violations and independent.
- VaRDur-test: violations are memoryless.
- Berkowitz-test: the shape of the forecasted tail of the density is the same as the observed tail.

Following slides will provide details.

i) CC-test

 H_0 : correct number of violations **and** independent.

Expected number of violations = $a \cdot w_F = 50$. Test the null markov chain with a LR test.

Want to accept the null, so the higher the p-value the better.

ii) VaRdur-test

 H_0 : violations are memoryless.

Test if the violations sequence follows a Weibull(b=1) distribution, using a LR test.

Want to accept the null, so the higher the p-value the better.

iii) Berkowitz-test

"Loosely speaking, the shape of the forecasted tail of the density is compared to the observed tail." Berkowitz $^{\rm 1}$

Tested using a LR test.

 H_0 : Data is independent and N(0,1) i.e. correctly forecasted.

¹Section 2.2 in Berkowitz, J. 2001, Testing density forecasts, with applications to risk management, *Journal of Business and Economic Statistics*.

Analysis

Background

The GARCH model is heavily used in the financial literature as well as in the practice of financial institutions.

The ACD model extend the GARCH model by allowing for a time varying skewness and shape.

Background

The GARCH model is heavily used in the financial literature as well as in the practice of financial institutions.

The ACD model extend the GARCH model by allowing for a time varying skewness and shape.

Question

In this thesis we compare the predictive abilities

Background

The GARCH model is heavily used in the financial literature as well as in the practice of financial institutions.

The ACD model extend the GARCH model by allowing for a time varying skewness and shape.

Question

In this thesis we compare the predictive abilities — according to measures of downside risk —

Background

The GARCH model is heavily used in the financial literature as well as in the practice of financial institutions.

The ACD model extend the GARCH model by allowing for a time varying skewness and shape.

Question

In this thesis we compare the predictive abilities — according to measures of downside risk — of the GARCH and ACD models

Background

The GARCH model is heavily used in the financial literature as well as in the practice of financial institutions.

The ACD model extend the GARCH model by allowing for a time varying skewness and shape.

Question

In this thesis we compare the predictive abilities — according to measures of downside risk — of the GARCH and ACD models in an out-of-sample setting.

Data & Method

Canadian stock returns from

5066 number of observations. 2000 in w_E and 3066 in w_F .

- Fit a model to the data in w_E .
- ② Create w_F number of density forecasts, with a rolling window.
- 3 Save violations and tail density.
- Backtest using three tests.
- Out p-values of the test in a table.
- Look at three tables. Draw conclusions.

 $^{^2}$ We use both 1% and 5% and two models so there will be ACD(0.01) ACD(0.05) and GARCH(0.01) GARCH(0.05).

Data & Method

Canadian stock returns from

5066 number of observations. 2000 in w_E and 3066 in w_F .

- Fit a model to the data in w_E .
- ② Create w_F number of density forecasts, with a rolling window.
- Save violations and tail density.
- Backtest using three tests.
- Out p-values of the test in a table.
- O Look at three tables. Draw conclusions.

Following three slides will have table from each of the test.

The slide after these will summarize these three tables into one table.

 $^{^2}$ We use both 1% and 5% and two models so there will be ACD(0.01) ACD(0.05) and GARCH(0.01) GARCH(0.05).

i) CC-test

	expected	actual	cc.LRp	cc.Decision
ACD(0.01)	30	30		
GARCH(0.01)	30	30		
ACD(0.05)	153	189	0.0029	Reject H0
GARCH(0.05)	153	190	0.0015	Reject H0

Table 1:CC-test null hypothesis: VaR violations are correct and independent. High p-value in column cc.LRp is good.

ii) VaRdur-test

	b	uLL	rLL	LRp	Decision
ACD(0.01)	1.07	-164.1	-164.2	0.6839	Fail to Reject H0
GARCH(0.01)	1.15	-163.8	-164.2	0.3835	Fail to Reject H0
ACD(0.05)	0.93	-711.7	-712.8	0.1515	Fail to Reject H0
GARCH(0.05)	0.93	-714.6	-715.6	0.1718	Fail to Reject H0

Table 2:VaR Duration Test null hypothesis: VaR violations lack memory. Higher p-value is better. Column b is the Weibull parameter.

iii) Berkowitz-test

	uLL	rLL	LRp	Decision
ACD(0.01)	-154.2	-156.7	0.08403	fail to reject H0
GARCH(0.01)	-153.5	-156.2	0.06325	fail to reject H0
ACD(0.05)	-702.4	-709.6	0.00074	reject H0
GARCH(0.05)	-702.3	-710.2	0.00037	reject H0

Table 3:Berkowitz tail test null hypothesis: Data is N(0,1). High p-value is better.

Summary of Tests

Test Performed	Test Null Hypothesis	а	Model Winner
VaR-test	Viol. are correct and indep.	0.01	None
VaR-test	Viol. are correct and indep.	0.05	None
VaRdur-test	Viol. lack memory i.e. Wei(1)	0.01	ACD
VaRdur-test	Viol. lack memory i.e. Wei(1)	0.05	None
Berkowits-test	Is N(0,1) i.e. Tail is correct.	0.01	ACD
Berkowits-test	Is $N(0,1)$ i.e. Tail is correct.	0.05	None

Table 4:According to column $Model\ Winner$ which is a qualitative statement based on comparing the p-value from the test, ACD model is better than GARCH model for 2/6 test.

Why does it win?

Because higher moments is important for risks.

Skew and shape measure affect the tail (extreme events) and ACD is more sophisticated (see model specifications).

Conclusion

Both models are good.

ACD is better, according to higher p-values, at least for our data set and w.r.t our tests.

Further Research

Do 5 and 10 day ahead forecasts, as well as backtesting it. Because 10 day VaR is used for banks. And because we saw in the bootstrap plot there is difficulty in forecasting 10 days ahead.

Have other assets or even other asset classes. Perhaps their return series behave differently, due to economic reasons, and this will affect the ACD and GARCH model.

Change the model family from standard GARCH to other models such as E-, GJR-, AV-, NAGARCH or apARCH. These models account for assymetric effect (also known as the leverage effect) observed in financial data. The leverage effect arise due to the fact that negative news impact the volatility more than positive news, and this is ignored by the standard GARCH model as seen by its symmetric news impact curve.

Thank you!