		Introduction	Camlin Page Date
	Analysis of Algo	erithm.	
	Sum of frest	N Natural Number	
5_1)_	1x(n+1) 2	2) Sum: 0 for (i in range of (n): Sum t=1	0
	0(1)	O(n)	Jorj in kangg Sum += j O(n²)
10	Order	of Growth	
	A function $lin \\ n \to \infty$	f(n) is said to be growing g(n) = 0 f(n)	g faster than g(n) if
15		lower ower tern lending constant	
20	How do we k	Chow which terms are lower $N < \log N < n^{\frac{1}{3}} < n^{\frac{1}{2}} < n < \infty$	$n^2 < n^3 < n^4 < 2^n < n^n$
25			
30			

* *		Caroliniu
		Camlin(Page
	Best Average and Worst case of Aysmpto	
•		
	unt getsum (int arr [], int n)	
	y (n/2!=0)	
	returno; -> Best case:	Constant
	s else Average case	2: Linear
	& sum: 0; Cunder ass	sumption that even
	for (inti=0; i < n; i++) and odd a	re likely distributed
	sun=sun+arr[i]; → Worst case:	Linear
	return sun;	
	12 %	
	Big O: Represent exact bond or upper bono	
	Theta: Represent exact bound	
	onego: Represent exact or lower bound	
	15	
	Big O Notation:	
	0	
	Mathematical Expression:	
	We say $f(n) = O(g(n))$ if there exist constant	Cand No Such
	that $f(n) \leq c g(n)$ for all $n \geq n_0$	
	0 0	
	Eocomple	
	f(n)= 2n+3 can be written as O(n)	
	$f(n) \leq cg(n)$ for all $n \geq n_0$	
	2n+3 < Cn for all n=no C must be greater than 2 here to hold the	
	C must be greater than 2 here to hold the	us condition true
	2n+3 <3n for n = 3 thu condition will h	old true
	3 < n	<u> </u>
	$n \ge 3$ $n \ge 3$ $cg(n)$	
		5(n)=2n+3
	1	
	<u> </u>	

- 1) $\begin{cases} n, n, 2n, 3n, 2n+3, n^2, \dots & n^n \end{cases}$ $C \Omega(n)$ 2) If 5(n) = 12(g(n) then g(n) = 0(4(n)) 3) Omega notation is useful when we have lower bound on time complexity. eg: Game Thetha Notation (Excat order of growth) Mothematical Defination: f(n) = B(g(n)) iff there exist positive constraint C_1, C_2 and C_3 such that $0 < = C_1g(n) < = f(n) < = C_2g(n)$ for all $n > = n_0$ example: f(n) = 2n+3 order of growth $C_1 = 1$ as $C_2 < f(n)$ = $\Theta(n)$ $C,g(n) \leq f(n) \leq C_2 g(n)$ for all $n \geq n_0$.C29(n)=3n 1xn < 2n+3 < 3xn Mor of this two is 3 1) If $f(n) = \Theta(g(n))$ then f(n) = O(g(n)) and f(n) = O(g(n)) and g(n) = O(f(n)) andg(n)= 2 (+(n)) 2) Theta is useful to represent time complexity when we know exerct
 - . Eg. TC to find . Sun, more and min in an array is . O(n)

Camli	1	Page		
Date	1		1	

3)
$$\begin{cases} n^2, n^2, \dots, 2n^2, 2n^2 + 1000n, \dots \end{cases}$$
 $G(n^2)$

Analysis of Common Loop Loop

Q(1/c) $\Theta(n)$

i) for (int i=0; i<n; i+c)
{//some D() work}

2) for (int i=n; i>o; i=i-c)

10; & // some O() worky

3) for (inti=1; i<n; i=i+c) O(logn)

{ //same O() work}

In general it will work 1, C, C, C, C, C, C, C,

K < log_n+1 2 1) for (int i=n; i>1; i=4c)

{ //some OCD worky

5) for (int i=2; i<π; i=pow(i,c)) Θ(log & //some O(1) worky

2 ck-1 ck-1 < log_n K-1 < log_log_n

Example 2=10 C=2 1=02468

0(n)_ i= 10, 86,4,2 n=32, c=2 → 1= 1,2,4,8,16 [2] 1=33, C=2 - i= 1,2,4,8,16,32

where it must be $c^{K-1} < n$ Note: Here base of log K-1 < logen do not matter n=32, c=2 -> 32, 16, 8, 4, 2

n=32, c=2 -> 2,4,16

In general it will work 2, 2°, (5°), ... (2°)

K < log log_n+1

O(logn)

n=33, C=2 -> 33, 16, 8, 4, 2

Camlin Page Analysis of Recursion Void fun (int n) Let the TCbe T(n) : T(n)= 2T(2)+0(n) y (n <= 1) return; For T(1)=1 (Base case) for (inti-0:1<n;i+t)] o(n) print ("Hi") Sun (1/2) - T (1/2) tun (1/2) " Recursion Free Method We will non- recursive part as root of tree and recursive part as children we will keep expanding children until we see a pattern T()=C T(n): 2T(2) + Cn Nan-Recursive -> Work Done is Co - Here Height of Iree is This tree will stop to expand when base case is reached Here total work done in above tree's CatCatCat ---- los a times.

CD
$$\times \log_2 n$$
 $\therefore \theta (n \log n)$

Feample 2:

 $T(n) = 2T(n-1) + C \rightarrow \text{Here as it is constant and not disorded}$
 $\sigma(n) = \sigma(n \log n)$
 $\sigma(n) = \sigma(n \log n)$

Example 3:

 $\sigma(n) = \sigma(n \log n)$
 $\sigma(n) =$

Space Complexity Order of growth of Memory (Or RAM) Space in terms of input size int getsum (int n) int getsum (int n) { int sum=0; & return nx (nt)/23 for (inti=0; LE=D; it) return sun; 3 Constant Sc. O(1) or O(1) SC: O(1) or O(1) int aresum (int arr[] inta) { int sum=0; Here as in this program we do not for (int i=0; Kn; 1++) < require extraspare so Sum = Sum + arr []; return sun; auxillary space is SC: O(n) Aux space: O(1) Auxilory space: ilory space: Order of growth of extra space or temperory space in terms of input size Sum of first N natural number using recursion. 15 int fun (int n) { f 6<=0) return o return n+ fun(n-1); (Jun3) <- All these function are store in function Call Stack

Here total n+1 call are stored in function call stack

| Sun(9) |
| Sun(1) |
| Sun(2) | Here 6 call are stored in |
| sun(3) | Stack |
| tun(4) |

So space complexity is $\Theta(n)$

Space complicity of Elbonaci Numbers using recursion

int flocint n

ful (n==0 || n==1)

return file (n-v) + file (n-2)

July (111) (111)

Jun(5)

Here SC is obtained by height of three. So Here SC is $\Theta(n)$

50