TD 2 – Intégrale de fonctions mesurables positives

ightharpoonup Exercice 1. Soit $(u_{k,l})_{(k,l)\in\mathbb{N}^2}$ une double suite de rééls positifs. Montrer que

$$\sum_{l\in\mathbb{N}}\sum_{k\in\mathbb{N}}u_{k,l}=\sum_{k\in\mathbb{N}}\sum_{l\in\mathbb{N}}u_{k,l}$$

ightharpoonup Exercice 2. Soit f mesurable de $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et positive. Soit δ_0 la mesure de Dirac en 0 définie sur $\mathcal{B}(\mathbb{R})$ par :

$$\delta_0: \ \mathcal{B}(\mathbb{R}) \to \overline{\mathbb{R}}_+$$

$$A \mapsto \delta_0(A) = \begin{cases} 1 \text{ si } 0 \in A \\ 0 \text{ sinon} \end{cases}.$$

Déterminer $\int_{\mathbb{R}} f d\delta_0$.

▷ Exercice 3. Inégalité de Markov

Soit (X, \mathcal{A}, μ) un espace mesuré. Soit f mesurable de (X, \mathcal{A}) dans $(\bar{\mathbb{R}}, \mathcal{B}(\bar{\mathbb{R}}))$ et positive. Montrer que

$$\forall a>0, \quad \mu(\{f>a\}) \leq \frac{1}{a} \int_X f d\mu$$

ightharpoonup Exercice 4. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $f: X \to \overline{\mathbb{R}}_+$ mesurable positive telle que:

$$\mu(f^{-1}(\{+\infty\}) = 0.$$

f est-elle intégrable sur X?

ightharpoonup Exercice 5. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n \in \mathbb{N}}$ une suite décroissante de fonctions mesurables positives. Soit $f = \inf_{n \in \mathbb{N}} f_n$.

5.1. Montrer que:

$$\int_X f d\mu \le \lim_{n \to +\infty} \int_X f_n d\mu$$

5.2. Montrer que si $\exists N \in \mathbb{N}, \text{ t.q. } \int_X f_N d\mu < +\infty, \text{ alors }$

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$$

ightharpoonup Exercice 6. Soit $(\mathbb{R}_+,\mathcal{B}(\mathbb{R}_+),\mu)$ un espace mesuré avec μ la mesure de Lebesgue. On pose :

$$\forall n \in \mathbb{N}, \quad f_n: \quad \mathbb{R}_+ \quad \to \quad \mathbb{\bar{R}}$$

$$x \quad \mapsto \quad \frac{ne^{-x}}{\sqrt{1+n^2x^2}}$$

mesurable de $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ dans $(\bar{\mathbb{R}}, \bar{\mathcal{B}(\mathbb{R})})$. Montrer que

$$\int_{\mathbb{R}_+} f_n d\mu \underset{n \to +\infty}{\longrightarrow} +\infty.$$

 $Indication: \mbox{ on admettra que } \int_{\mathbb{R}_+} \frac{e^{-x}}{|x|} d\mu = +\infty.$

ightharpoonup Exercice 7. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(B_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} deux à deux disjoints et de réunion $B = \bigcup_{n \in \mathbb{N}} B_n$. Soit f mesurable de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R})$ positive.

Montrer que

$$\int_{B} f d\mu = \sum_{n=1}^{+\infty} \int_{B_n} f d\mu$$

