

DAVIDSON LABORATORY

Technical Report SIT-DL-85-9-2328

March 1985

DEVELOPMENT OF WATERJET PROPULSION UNIT

SELECTE MAY 6 1985

by

John K. Roper

STEVENS INSTITUTE OF TECHNOLOGY

AD-A153 292

DIE FILE COPY

CASTLE POINT STATION HOBOKEN, NEW JERSEY 07030 Prepared for

Code 112
David W. Taylor
Naval Ship Research and Development Center

Under Office of Naval Research Contract NOO014-80-D-0890 Delivery Order 4, Item 1

(DL Project 4982/134)

80 02 08 038

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

K-7370

REPRODUCED AT GOVERNMENT EXPENSE

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
SIT-DL-85-9-2328						
4. TITLE (and Subtitie)		S. TYPE OF REPORT & PERIOD COVERED				
DEVELOPMENT OF WATERJET PROPULSION (JNIT	FINAL REPORT September 1981-July 1983				
		6. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(a)				
JOHN K. ROPER		N00014-80-D-0890				
		Delivery Order 4, Item 1				
	. — —	Project NR 062-669				
9. PERFORMING ORGANIZATION NAME AND ADDRESS Davidson Laboratory		10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS				
Stevens Institute of Technology	'					
Hoboken, NJ 07030						
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
Office of Naval Research		March 1985				
800 N. Quincy Street		13. NUMBER OF PAGES				
Arlington, VA 22217		14 + 129 in Appendix				
14. MONITORING AGENCY NAME & ADDRESS(II dilleren David W. Taylor Naval Ship Research	from Controlling Office)	15. SECURITY CLASS. (of this report)				
and Development Center		UNICLACCIFIED				
Bethesda, MD 20084		UNCLASSIFIED				
Attn: Code 112		150. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)						
Approved for public re						
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessers an	d Ident's by block number)					
Waterjet						
Amphibian						
20. ABSTRACT (Continue on reverse elde if necesses) and axial-flow pump was designe vehicle; it shows significant advan efficiency, thrust output and system provide cavitation-free performance of 40 to 50 percent for a proposed run at a water speed of 20 mph. Stwas used wherever possible to reduc	d to be used in tages over the em weight. Also, at propulsive chigh-speed amphiate-of-the-art c	xisting waterjet unit in two pumps were designed to oefficients in the region bious vehicle designed to omposite material technology				
mes used wherever possible to reduc	C HOIGHT	,				

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 15 CTT . FT C S/N 0102-014-6601

UNCLASSIFIED

STEVENS INSTITUTE OF TECHNOLOGY **DAVIDSON LABORATORY** Castle Point Station, Hoboken, New Jersey 07030

Technical Report SIT-DL-85-9-2328 March 1985

DEVELOPMENT OF WATERSET PROPULSION UNIT

Ву

John K. Roper

for

David W. Taylor Naval Ship Research and Development Center Code 1120

under

Office of Naval Research Contract N00014-80-D-0890 Delivery Order 4, Item 1 DL Project 4982/134

APPROVED:

Daniel Savitsky

Director

TABLE OF CONTENTS

SUM	1AR	Υ.		•		•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	٠,٧
INT	ROD	UC	T	10N	١.	•		•					•	•	•	•	•	•					•	•	•	. 1
FEAS	–	. –	-			_		-	_	OMI		SI.	TE	PL •	AS.	TI	C	•			•	•	•	•	•	. 2
DES																	F0				•		•	•	•	. 4
DESI																			•	•	•	•		•	•	.9
DESI																			CLE		•	•	•	•	•	12
REFE	RE	NC	ES	.		•							•		•		•	•		•	•	•		•	•	14
APPE	END	١x	F	١																						
APPE	ND	١x	E	3																						
APPE	ND	ιx	C	;																						

SUMMARY

Designs of three waterjet propulsion systems have been developed for application to amphibious vehicles. The first system was an axial-flow pump designed to be used in an existing amphibious vehicle, an LVTP-7A1 and it shows significant advantages over the existing waterjet unit in efficiency, thrust output and system weight.

The other two systems were to be used to propel a proposed high-speed amphibious vehicle. These pumps were designed to provide cavitation-free performance at propulsive coefficients in the region of 40 to 45 percent at a vehicle water speed of 20 mph. State-of-the-art composite material technology was used wherever possible to reduce weight.

INTRODUCTION

The U. S. Marine Corps plans to improve the mobility of amphibious vehicles. One aspect which requires attention is the need to increase the efficiency of existing waterjet propulsion units, along with improving the durability and reducing the cost of these units.

Existing waterjet installations in typical amphibious vehicles have low efficiencites due to numerous design constraints associated with their present stern locations. One of the contributors to their relatively poor performance is the location of the water intakes to an area which is seriously obstructed by the tracks. Although this is but one influence on total performance, it is desirable to define the sources of blockage, interference, ventilation, etc., in the intake area of presently installed waterjets and to then use these results to recommend suitable design changes which will ameliorate the undesirable effects.

It is also appropriate to consider a redesign of the present waterjet units using modern high strength plastic materials being developed by AMRAC at the Watertown Arsenal. These plastics should have a high resistance to erosion by sand or debris which can pass through the impeller and hence result in a more durable and potentially less costly propulsion unit.

This design effort proceeded through the following phases:

- 1. Feasibility study of composite plastic waterjet propulsion unit.
- 2. Design study of a waterjet unit with improved propulsion efficiency for:
 - a. An existing slow-speed-in-water amphibious vehicle
 - b. A proposed high-speed-in-water vehicle

FEASIBILITY STUDY OF COMPOSITE PLASTIC WATERJET UNIT

In order to evaluate the practicality of constructing a composite plastic waterjet pump and to obtain expert advice on likely materials and fabrication methods, discussions were held with Mr. A. Alisio of the Army Materials Research Laboratory of Watertown, MA and Mr. A. Macander of the Naval Research & Development Center at Annapolis, MD.

There is no doubt that the concept is well within the state-of-theart. Indeed, similar components such as composite plastic pump casings, impellers and large valves are in production and are used extensively in many industries. The question is whether the tooling costs, which are likely to be high, can be justified by the small number of units to be produced. This question can only be answered by obtaining cost estimates from manufacturers for specific components.

On the basis of advice received so far, the propeller duct, Figure 1, would be layed up of "pre-preg" fabric over a male mold or perhaps filament-wound. The propeller, support strut, rudder bearings and other small parts would be injection or transfer molded.

While composites of carbon fiber with polyurethane resin have been recommended because of their stiffness and abrasion resistance, it appears that components similar to those shown in Figure 1, have been fabricated successfully using glass fibers with a variety of other resins such as acetal, polycarbonate, epoxy, etc., and that these composites should be investigated further.

FIGURE 1 PROPOSED WATERJET PROPULSION SYSTEM FOR LVTP-7A1

DESIGN OF WATERJET PROPULSION SYSTEM FOR LVTP-7A1 AMPHIBIOUS VEHICLE

The general objective was to design an axial flow pump, two of which would generate sufficient thrust to propel an existing amphibious vehicle - an LVTP-7Al - at a cruise speed of 8 mph with a propulsive efficiency higher than that of the existing propulsor.

Figure 1 shows the configuration of the proposed propulsion system in the aft end of an LVTP-7Al. A 20-inch diameter impeller is to be housed in a horizontal cylindrical duct, and water would be drawn from the track well through a horizontal rectangular inlet. There is a transition from the 8 sq ft horizintal inlet area to a 22-inch by 24-inch vertical opening, and thence to the 20-inch nominal diameter of the cylindrical duct. A rudder and a reversing elbow are located at the duct outlet.

For purposes of calculating system performance, the impeller is assumed to be a marine screw propeller with wide tips, having a blade area ratio that is commercially available. Reference I presents open water characteristics of such a screw propeller in an axial cylinder. Figure 2 shows charts adapted from Reference I (Figures 28 and 29, respectively).

A matrix of design calculations involving the primary variables of pump input power, pump flow rate, and vehicle speed was completed to determine:

- (a) The pump head rise which can be produced by a given pump input horsepower for a range of flow rates.
- (b) The pump head rise at which cavitation begins to affect pump performance at given vehicle speeds for a range of flow rates.
- (c) The pump head rise required to produce a given flow rate through the duct system over a range of vehicle speeds.

Fig. 28 Results of open-water tests with Ka 4-70 screw series in an axial cylinder

ig. 29 Relation between velocity of "screw + cylinder" combination and velocity in cylinder

Appendix A presents the details of these calculations.

Figure 3 is a chart of pump head H_p versus flow rate Q in the form in two families of curves showing the results of calculations (b) and (c) above, with vehicle speed as a parameter. Equilibrium flow rate and pump head rise were determined for a given vehicle speed at the intersection of the Required H_p and Available H_p curves for that speed.

Figure 4 is a chart of H_p versus Q showing results of calculations (a) and (c) above, with input power SHP and vehicle speed V_Q , respectively, as parameters of the two families of curves. Entering Figure 4 with the equilibrium flow rate for a given speed from Figure 3, permits the determination of input power SHP required at equilibrium.

From the equilibrium flow rate Q cu ft/sec and the exit duct area, the exit jet velocity $V_{\rm J}$ was calculated. Jet thrust T, the time rate of change of fluid momentum, was then determined:

$$T = \rho Q(V_J - V_o)$$

The ratio of output power, $TV_O/550$, to input SHP was then the propulsive coefficient, P.C.

Having determined hydrodynamic loads, required input power, and propeller operating conditions, a structural analysis of propeller, shaft, rudder and duct was performed to determine required sizes. Finally, weight estimates were made assuming (a) aluminum construction and (b) composite materials construction of the waterjet system.

From known characteristics of the existing waterjet system in the LVTP-7Al amphibious vehicle, the following comparison was developed:

		Existing System	Proposed System	
At 8 mph:	Thrust, 1b	2369	2846	
	Flow, gpm	14020	33346	
	P. C.	.25	.30	
At 0 mph:	Thrust, lb	3025	4278	
Dry Weight	: , 1b	435		(aluminum) (composites)

DESIGN OF PROPULSION PUMP SYSTEM FOR HIGH-SPEED AMPHIBIAN

The general objective was to design an axial flow pump suitable for use in a multiple unit waterjet propulsion system in a high-speed amphibious vehicle to achieve a 20 mph speed.

Figure 5 shows an elevation sketch of such a unit which would draw water through a 42 inch x 20 inch rectangular port in the flat bottom of the amphibian. The flow then passes through a 24 inch x 20 inch inlet to a short transition and finally through a cylindrical duct with a nominal diameter of 20 inches in which the 20 inch diameter pump impeller is located.

For purposes of calculating system performance, the pump impeller was assumed to be a marine screw propeller with wide tips and a largest commercially-available blade area ratio. Appendix B presents details of calculations of:

- (a) Pump head rise versus flow rate for selected input powers, i.e., power-limited head rise.
- (b) Pump head rise versus flow rate for selected vehicle speeds, such that pump performance is not affected by cavitation, i.e., cavitation-limited head rise.
- (c) Pump head rise versus flow rate for selected vehicle speeds required to overcome system head losses.

These calculations made use of propeller performance data in cylindrical ducts, Figure 2 (from Reference I), and a curve of inlet ram pressure recovery ratio in Appendix B, page B-22.

Equilibrium flow rate and pump head rise were determined, for a given vehicle speed, at the intersection of the curve of cavitation-limited head rise with the corresponding curve of head rise required to overcome system head losses.

FIGURE 5 SKETCH OF 20 INCH DIAMETER PUMP

Knowing the equilibrium head rise and flow rate Q at a given vehicle speed, calculation procedure (a) was used to determine input power SHP. Jet thrust T was calculated after finding jet velocity from Q and the exit duct area. Finally, at a given vehicle speed, the ratio of thrust horsepower output to input SHP gave propulsive coefficient P.C.

Having determined hydrodynamic loads, required input power and propeller operating conditions for cavitation-free performance with an area ratio of 1.0, structural analyses of propeller, shafting and casing were performed to determine required sizes. Then weight estimates were made assuming (a) an aluminum casing, and (b) a composite-materials casing; aluminum alloy shafting and Ni-Al bronze propeller were used in each case. Selected performance characteristics were:

At zero mph:	Thrust	4507 16
At 20 mph	Thrust Flow Input SHP P.C.	2365 lb 40,080 gpm 284 hp .445

Composite construction of the casing reduced the dry weight of the waterjet system to 169 lb from a 239 lb weight for aluminum construction.

DESIGN OF 15-INCH DIAMETER PROPULSION PUMP SYSTEM FOR HIGH-SPEED AMPHIBIAN

The general objective was to design an axial flow pump suitable for installation in a multiple unit waterjet propulsion system in a high-speed amphibious vehicle to achieve a 20 mph speed.

Figure 6 is an elevation sketch of the proposed unit which would draw water through a $31\frac{1}{2}$ inch x 15 inch rectangular port in the flat bottom of the amphibian. The flow then passes through an 18 inch x 15 inch inlet to a short transition and finally through a cylindrical duct with a nominal diameter of 15 inches in which a 15 inch diameter pump impeller is located.

This 15 inch diameter impeller is to provide at least the same propulsive thrust as the 20 inch diameter propeller described in the previous section because the same vehicle is involved. To meet this loading requirement requires a significant increase in impeller blade area ratio if cavitation is to be avoided. Thus, the calculations in Appendix C include consideration of projected area ratios, PAR \approx 1.0, 1.5, 2.0, 2.5 and 3.0. By contrast the largest commercially available PAR is about 1.0.

Assuming a projected area ratio of 3.0 as an upper limit for extended cavitation-free operation, structural analyses of propeller, shaft and ducting were performed to determine required sizes. Weight estimates were made assuming (a) aluminum casing, and (b) a composite materials casing; Acquamet 22 shafting and Ni-Al bronze impeller were used in each case. Selected performance characteristics were:

Αt	zero	mph:	Thrust, 1b	5,403
Αt	20	mph:	Thrust, 1b	3,703
			Flow, gpm	30,120
			Input SHP	462
			P.C.	.428

Composite construction of the casing reduced the dry weight of the waterjet system to 134 lb from a 167 lb weight for aluminum construction.

The next step in design would require consideration of available engine powers, and the thrust needed to overcome vehicle drag in order to settle on a practical area ratio for the impeller.

FIGURE 6 SKETCH OF 15 INCH DIAMETER PUMP

REFERENCES

- 1. van Manen, J.D. and Oosterveld, M.W.C., "Analysis of Ducted-Propeller Design," <u>Trans</u>. SNAME, Vol. 74, 1966.
- 2. "Flow of Fluids Through Valves, Fittings and Pipe," Crane Company Technical Paper 410.
- Conolly, J.E., "Strength of Propellers," Trans. Royal Institution of Naval Architects, 1960.

APPENDIX A

OBJECTIVES:

- O Design a replacement propulsion system for an LVTP-7A1 amphibious vehicle.
- O Determine performance, weight and dimensional characteristics of propulsion system.
- O Use simple "propeller-in-tube" approach
- O Limit blade area ratio to that available is existing propeller series.
- O Investigate use of composite materials.

PROPOSED WATERJET PROPULSION SYSTEM FOR LVTP-7AI

PERFORMANCE CONSTERETICS

- · PONER LINEITE
- · CAVITATION LIMITE
- · System PEROCHONE
- · REVERSE OPERATION
- · During gos willing

CALCULATE! NOTE:

D = PINTAND = 20' = 1

Ap = 22: ARES : . TIS [(00)) - (32)) - 2.0942 = 2

Az = 1112 1111 (1/2) = 3,667 FT =

deve - ADVANCE RATTO BASED ON VELOCITY WEIDE TUBE

N'C = ALVAND: LATTO BASE'S ON VELOCITY DUTSIDE TURE

 $\frac{\text{deye}}{\text{Je}} = \frac{Ax}{Ap} = \frac{3.667}{2.0992} = 1.7570$

P/D - PROP. PITCH DIAM. PATIO

Jeyl = f (Pb, Jeyl) = .895

(Vow Losceen - Fic. 1)

de = Vere/(Jere) = .895/1.7510 = . 7111

20 = PROPOLEION REPRESENCY OF DE RETURN COMB. = f (No. 7/5) (FR. 2)

TRE = PROP. RELATIVE ROTATIVE 177 CON TIME !

20 = Pump EFFICIENCY = Vov. 7. 1

SHP = PUND NOTOT INNE

Q = FLOW 11 7 1 1.

HART PUMPING IN SSO SHP DP PJ Q

3.8.8. 32.8. 32.8. 32.8. B SHD 370 2 % 766 * .5111 200 268. 3 199 1.00 200 'SC' 3467 4 2.0942 0 1.667 A

88885

32.09 28.45 28.65 25.96 23.60 5 2 8 8 8

83855 200

18.54 18.54 18.54 18.59 18.50

A-5

CAVITATION LINET

CALCULATION NOTEL

D = POP. 24/1/2 = 20" = 1.669"

Ap = PROP. DIOC 4/1/2 1000 [(140)) - (1533) = 2.0942772

Az = MET MIR (10) . 3.667 ET

Veys + ADVANCE RATIO ET : - ON VELDELTY INSIDE TUES

We = ADMANCE RATIO BAT OF VELOCITY OUTSIDE TUBE

dext = At = 3.667 = 1,7510

Pb = PROP. PITCH DIAM. RATIO

Voye = f (Pb, Jey)

(VON LAMBER - FIL. 1)

Q = FRON RATE - ET /SEC

M = PROP, SOFT = Q Ap Veys D

HLZ = INLET NEAD LOSS = , 000553 Q2

(DERIVATION "1)

VI = WLET VELDESTY : O/D=

Visens TRANCE NEIGH VERY BY OF JER CORE INTER

Vine = TOTAL MILDERY AT DEAD ENDING. TO THE YOUR

HATM = MEAD DUE TO 1.

H2 = MEGAD DUE TO EXILIENCE

HY = MEAD DUE TO VAPOR PRES.

Continue 1 . 1

CALCULATION NOTE (CONT.)

Vo = FREE STREAM VI. TO JE CHATTERING

RPR = RAM DRESS. RECOL., RATIO = ,50 (GUES)

46 - PAM FRETS, RECOVERS - (RPR) 16

HE, = INLET STATIC MEAD (ABOVE VAP. PETS.) = HAM + Hz - HV + HO - HLE - VI

Pr. = INLEY STATIC PREELS. (AEDE VAP. PRESS) = Pg HIS

OTH = LOCAL CAV. NO. AT. DING = PIS 1/2 VINE

Temas = PROP. LOAD CORE. AT CAY, WHIT = , 70.72 (GANN)

EAR = PROP. EXPANDED AREA RATION 1.18 (MIN. CAM. . MAIL.)

PAR = PROP. PROVERTED ARMA & ATTO - 1.01 (DURANTAN # 3)

HPCOI = PUMP HEAD RISE AT CAV, XIMIT = (FMY) (POC) (VOL) (P)

		مري المجترينية	1	REVERSE CPERFICA
15:51	13.56 13.56 14.56 14.57 17.59 17.59	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	\$12.50 \$12.50 \$12.50 \$12.50 \$12.50 \$12.50 \$13.50 \$1	24.25 24.25 24.35 24.35
N.	101			10/
रेंद्र	<u>»</u>			\dot \.
رني	1201 1201 1201 1201 1201	15.70 10.50	272 187 2083 2083 2083 2083 2083 2083	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
Pi	6100 6100 6701 9451	HE (0') HE (0') HE (0') HE (0')	234L 1,23 24L7 24L7 24L7 24L7 24L7 24L7 24L7 24L7	4 3 3 5
12	1538 143. 1530 1533 1573	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.6.7 6.7	2023 2037 2037
143.5	2000年の第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		200 C C C C C C C C C C C C C C C C C C	32 41 32 41 32 52 32 53
3 2,	0	•	3 4	۲,
BPR	8,	ø.	8 8	0
29	0	٠ ١٠	30%	0
3	3			e.
*	3			8.
1,61	3.0 EE			30'66
्या <u>त</u>	3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			4 4 2/3
3	25.50 25.50 25.50 25.50 25.50 25.50			20 24 24 24 24 24 24 24 24 24 24 24 24 24
The state of the s	9355 1035 1035 1035			#33 42 23 42 42 42 42 42
\sim	25.55 25.55 25.55 25.55 25.55 25.55			66.00
{}	2 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5			843;
\mathcal{S}_{i}^{i}	25.50 25.50 37.51 37.51			4. 2. 4. C.
G	83835	83°6 8	83535 897555	6 36 3
	13.			
15	8			
4	136.1			
77	5.5			
C. CRETAN	G 2002 G			
5	Ŋ			

CAVIC TON KINIT

CALCULATION NOTES

· REQUIRED PUMP HEAD RISE

(DERIVATION & C)

· ESTIMATED THRUST (PONE: LIMIT)

· ESTIMATED THRUST (COVITATION LINES)

(POWER LIMIT CALC.)

A-9

COLONIE TIDALE

· REQUIRED PUMP HER TOP

1/0	a	Homa					
O	20	16.61					
	80	21.70					
	90	27.46					
	100	33,90					
	110	41.02	•				
5.68	20	16,34)				
	80	21.43	(
	90	27.19	>	NOT	2/077	D (con	171
			\	,,,,	, 20,,0		,
	100	33.63)				
	110	40.75					
11.76	20	15.53					
	80	20.62			-		
	90	26.38					
	100	32,82					
	110	39.94	,				
12.64	20	14.18					
, , , , ,	80	19.2)					
	90	25.03					
	100	31.47					
	110	38 59					

· Por

CALCULATIONS (CONT.)

· ESTIMATED THEUST (PONER LIVER)

Vo	SHP	QEQ	As	1/2	工	P.C.
0	500	985	2.404	40.97	8071	0
	400	91.4		38.02	6950	0
	300	£3.2		34.61	5759	0
	€00	22.7		30,24	4397	0
11.76	500	99.6		41.43	5910	,2527
8.4pH	400	92.6		38.52	4956	.2649
	300	84.4		35.11	3941	,ZYO9
	200	24.0		30.78	2815	,3009
12.64	500	100.8		41.93	4897	,3141
12mpu	400	94.0		39.10	4034	,3235
	EX	86.0		35.00	3118	.3333
	200	26.0		31.61	2123	.3405

Chicorations (Cour)

· ESTIMATES THRUST (CAVITATION LIMIT)

 Vo
 Qua
 Ao
 Vo
 T
 Hora
 3e
 SHP
 P.C.

 0
 21.7
 2.404
 29.43
 42.78
 17.4
 .76
 192
 0

 11.76
 24.3
 30.91
 28.46
 17.6
 201
 .3027

 19.64
 27.6
 32.28
 22.72
 18.0
 215
 3389

1 22-116 - CROSS SECTION 20 SQUARES TO INCH A-15

ENVITATION LIMIT

A-17

و برانست

$$H_{R} = H_{R} + H_{L} - H_{O}$$

$$H_{R} = .0666 Q^{2}$$

$$H_{L} = .000533 Q^{2}$$

$$H_{O} = 0$$

CANITATION LIMIT (SEL CAN, LIMIT CAICS.)

21.F2

Econo 15 11 11

Item down wind her way

Ser. 110.1.

1513 LAMEREN FILL ! MOLS: TESTS OF PROP. IN AXIAL CYLINDER

DENVOTIONS

- # / ESTIMATO'S MILEY, CRIMY & REVLESS EYSTEM LOSSES
- " 2 RIQUEOR FULL MEN EN
 - E PROPELLE & BASE GASE

Fig. 29 Relation between velocity of "screw + cylinder" combination and velocity in cylinder

Fig. 30 Relation between thrust coefficient CT and thrust ratio + of nozzle no. 19a

figure have been obtained by substituting nozzles with different length-diameter ratios by systems of annular vortexes and calculating the induced velocities in the screw disk.

If the radial displacement of the streamlines is small, we can consider the streamlines as lying approximately on cylindrical planes. If internal friction and turbulence are neglected, the radial

Analysis of Ducted-Propeller Design

VON LAMEREN A-20

Fig. 28 Results of open-water tests with Ka 4-70 screw series in an axial cylinder

been obtained from the experiments with the Ka 4-70 screw series in an axial circular cylinder and from the application of the momentum theorem

From the comparison of the axial velocities ob tained with these methods, we see that

- 1 The velocities agree reasonably well at high loadings of the ducted propeller system $(C_r > 1)$
- 2 The difference between the axial velocities becomes very large at low loadings ($C_T < 1$). In regard to the second conclusion, the following remark may be made. From Fig. 13 it can be seen that the nozzle drag due to friction becomes substantial at low loadings of the ducted-propeller system. Then, it is no longer permitted to neglect the effect of friction on the force action between nozzle and fluid.

The design of a screw in a nozzle may now be carried out as follows:

With given thrust T or power P, intake velocity V_n , and number of revolutions n, the B_P and consequently the optimum diameter coefficient D can be determined with the aid of open-water test results of the nozzle considered, in combination with a systematic screw series (see, for instance, Fig. 24). In addition, the thrust coefficient C_T and the propeller thrust-total thrust ratio τ can be determined. With the aid of the experiments

of the systematic screw series in the axial circular cylinder or using the momentum theorem, the axial velocity V_P in the way of the screw can be found. In addition, the mean axial velocity in the vicinity of the screw due to the nozzle action, U_K , and due to the screw action U_P , can be calculated.

The pressure difference created by the screw becomes

$$\Delta p = \frac{T_p}{\frac{\pi}{A} (D^2 - d_h^2)}$$

In order to avoid an excessive loading of the inner radii of the screw blades, the usual assumption for axial pumps that the head is constant for all radii is abandoned. The following radial $\Delta p(r/R)$ distribution is suggested for the screws in nozzle no. 19a:

$$\Delta p(r/R) = [4.88 - 4r/R] \cdot [r/R - 0.133] \Delta p$$

The radial distribution of the axial and tangential velocities at the screw may be approximated as follows:

A reasonable radial distribution of the axial velocities due to the nozzle action can be determined from Fig. 32. The results given in this

Analysis of Ducted-Propeller Design

VON LAMEREN A-21

Mis & Mandel

WLET FRICTION Y BEND

$$R_{e} = \frac{1901}{2} \cdot \frac{19132}{2} = \frac{19132}{2} \cdot \frac{19132}{2} = \frac{19132}{2} \cdot \frac{19132}{2} = \frac{19132}{12} \cdot \frac{19132}{12} = \frac{1$$

$$L_{E} = 2 \left(\frac{1}{2} \right)_{E} \left(\frac{1}{2} \right)_{E}$$

$$IIL = f\left(\frac{L}{2e}\right)\left(\frac{V_{2}}{2c}\right) - (.00975)\left(\frac{22.13}{1.9122}\right)\left(\frac{20.05}{2(37.1)}\right) = .732'$$

Enning 19 10 1

SHAFT

TRANSITION

Browns Tues

$$HL = \frac{D}{P_0^2 P_0} = \frac{10.64}{(2)(22.2)(2.09.12)} = .0289'$$

STOUTS

· 12 / NART LOSS.

INC. T ENTRANCE	2,0479
LILLY FRICTION 4 FINE	.73 20
La training	.0/32
Tre Willow	.0301
Br. 19 Tue:	.0) 89
$C_{2r} \circ S_{r}$	0983
HLI	= 2.9992
	$\frac{1/2}{Q_{min}} = \frac{2.9992}{(75)} = .000533$
HLz =	= .000FFE Q E

<u>~</u>.

Com or Freezes

CASING DIVERGENCE

Espera Charles

Z.ii

Toma Course Loss

CASING FRICTION
CALING DIVE GENET
RUNDEL

43274

RELEACE ELZON

$$K = 205^{\circ} CO^{\circ} R_{\circ} = 1 + 1.5^{\circ} = 5.5^{\circ} \qquad (579 + 845 \times 0000 - 00000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 00000 - 0000 - 0000 - 0000 - 0000 - 00000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 000$$

TOTAL REVENCE SYTEM LOW.

RED VIETE

Phone = HLS + Him willy - 1%

HL = 18

1's = Q/As

As = 2,404 ====

 $HL_{J} = \frac{Q^{2}}{(2.404)^{2}(2)(32.2)} = .00269 Q^{2}$

HLE = .000 555 Q DECMATION 41

HLE = .000 101 Q DECMATION 41

Hhe = .000/5/ Q \mathcal{L}

RPC = .50

46 = (.5) Vo = .0018 Vo2

HPREQ = .00269 Q2+.0005==Q2+.000171Q2-.0008 V62 = .00339 Q2-.0008 V62

Property Link

1 yranous older

n	<u>c</u>	T.H.	£(4,)
2	10.70	1/2	سيحة ك
3	12,25	/	12,25
4	13.70	/	13,70
5	14.94	/	14.94
6	16,00	/	16,00
2	16 90	/	16 90
8	17.50	1	17.50
9	12,85	1	17.55
10	15,00	1/2	9.00
-			123.47

PROJECTA: AREA

<u>r</u>	C_	c/	Cona'	7.14.	7(0.)
.2	0.00	-77,816	5.69	1/2	2.84
3	12,25	-11,00	8,40	/	8.40
4	12,20	38,51	10,72	/	177,72
سی	11:27	.11	12,1.0	1	
4	16:00	27.95	14.13	1	4. 3
)	16 13	1.17.11	15.25	/	• , •
8	12,0	21,70	16,24	/	•
?	1: 1:	9,11	16,83	,	_•
,: 7		,2.11	17.15		
	•				17.50

$$PAR = \frac{317.27}{314} = 1.01$$

& = ARC TAN(P)/r.

= DECTAN (20) /r

= ARE TAN 3,1831/r

STRUCTURAL Pol.

- · PROPELLER
- · SHAFT
- · RUDDER
- · Dect

PLOPELLER CONTENTS

$$Q = \frac{2irR}{R} = \frac{2ir(10)}{30} = 3.1416$$

$$A_{i} = f(a, x) \qquad " \qquad II$$

$$A_2 = f(a, x)$$
 "

$$B_i = f(a, x)$$

$$B_2 = f(a,x)$$

$$C_1 = f(x)$$

$$O_0 = CHORD NISE ZENDING STRESS = \frac{ZK}{2CK} \left[B_1 \left(\frac{2KT}{P} \right) + B_2 \left(\frac{Q}{R} \right) \right]$$

$ \mathcal{S}_{o} $	4286 4286 4286 4286 4286 4286 4286 4386 4386 4386 4386 4386 4386 4386 43			
13	93.64 19.25 19.69 19.59 19.59 19.59 19.59 19.59 19.59			
6	20.24 20.39 20.39 20.58 20.58 20.58 20.58 20.58			
84	95%6 9192 8208 3208 25,008 52,008 52,008			2222 244 244 2527 2536 254 2537 2537 2537 2537 2537 2537 2537 2537
*	22. 536 250 250 200 200 200 200 200 200 200 200		1)	
Ų	00.00 12.35 14.94 16.90 17.55	•	Lrusy	9633 9226 8750 8230 7603 5275 3075
4	5).42 31.12 31.13 20.13 20.03 20.04 50.03 20.32	Springer	69	46 14 2 2 2 2
Q)	8.94 7.7.7 7.7.6 9.00 10.7.7 10.7.7 10.7.7 10.7.7	_1	Pol	3169 4236 4934 5265 4601 3633 2,21
¥	\$05/. \$00/. \$00/. \$1.90. \$1.90. \$1.00.	CONPINED	Pa	9526 6143 8208 5355 7565 7565
8	8 8 3 18 3 6 8 8	Cox	1/8	8 8 8 8 8 8 8
الم	3.14%			
B	0/0/		• • !	47642767
K	3118	RESC	ان	1 mx 6 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
a)	08	44 Sy	K	3 6 3 3 3 6 3 8
m	m	ENTRIFUGAL SPRESS	>	35
N	08.01	CENT	N	0.61

Jan Salar

TORSIONAL STATE

WHIRLING FREQUENCY

STRUCTUS.

PRATE

<u>Stock</u>

F1006.

Q = TORSION IN RUDDER STOCK = 143301

d = STOCK DIAM = 2,00" r= 1.00"

= FLANGE THICKNESS - .25"

AS = SHEAR AREA IN FLANGE = 17 of + 17 (2)(25) = 1:5708 IN

 $A_{S} = 3HEAR$ STREES IN FLANCE = $\frac{Q}{4_{S1}} = \frac{143.50}{(1.52850)} = 9123$ per $\frac{Q}{4_{S1}} = \frac{143.50}{(1.52850)} = 9123$ per $\frac{Q}{4_{S1}} = \frac{143.50}{(1.52850)} = 9123$ per $\frac{Q}{4_{S1}} = \frac{143.50}{(1.52850)} = 9123$

ATTACH BOLTS

A = DESIGN DRESSURE = 10.36 pm

8 = RUDDER AREA = (20)(26) = 52010 L

F = 20AD NORMAL TO RUDDER: p 5 = (10.36)(520) = 5387#

AT = TENSILE AREA IN BOLTS = 6(-047)= . 2820, Nº 12, 5/16-18 BOLTS

 $A_{r} = TENDIE GRESS IN EDUTS = \frac{F}{A_{r}} = \frac{5387}{,2820} = 19103. prince$

FACTOR OF GATETY = 30000 = 1.50 ON YIELD (316 STAINLESS)

PLATE

Vernenz Loover C

$$P = DEUGN PRESENT = 10.36 MEL$$

$$L = SPAN = 5"$$

$$A = CHORD = 5"$$

$$M = BENDENS ADDRENT = PL'C = (0.36)(5)(5) = 100.90 m3$$

$$I = PLAT THICKNESS = .18354$$

$$Z = SECTION ADDRENS = LOS = .0293 m3$$

$$A = BENDENS, SPICES = .18354 = .0293 m3$$

$$A = BENDENS, SPICES = .1639 = .3683 PLL$$

$$EACTOR OF SAFETY = .19000 = 5.116 ON INCIDED VICID (5086-HILL)$$

Horrana Loures

$$\begin{array}{lll}
\beta &=& DCSSGN & PRESSURE &=& 10.36 & pin \\
2 &=& CPIN &=& 13" \\
\delta &=& PNNEL MIDTH &=& 5" \\
\delta &=& DNEL MIDTH &=& 5" \\
\delta &=& DNEL MIDTH &=& 5" \\
M &=& DNEL MIDTH &=& 12" &=& 1.72 \\
M &=& DNEL MIDTH &=& 12" &=& 1.72 \\
M &=& DNEL MIDTH &=& 12" &=& 1.75 & 12" &=& 1346 IN" \\
2 &=& CRIMN MODULUS &=& (INTS)(2)^2 &=& .125 IN^3 \\
N &=& DINDING STRESS &=& M &=& 1346 &=& 10768 & pill \\
CACTOR OF BAFETY &=& 1900 &=& 1.76 & ON NELDED VIEW (501L - MILL)
\end{array}$$

Eman Crawing (END'EDE 1 / 1800)

H = REQUIRED HOMENT = 135881,000

Acyl = CYL. AREA = (,765)(2,50) = 4.9063,0

Paye = Cyl. Petis, = 1000 por

Feyl = AVAILABLE CYL. FORCE - Peyl Reyl (1000) 4,9013) = 4936

n = clank radius = 3.50"

D = TOTAL TRAVEL = 450

Q = EFFECTIVE MOMENT ARM = 1 CON Q = (3.50) CON 22.5° = 3,23"

 $M_{\text{AMR}} = \left(\frac{T_{\text{CYL}}}{c_{\text{MAL}}} \right) (a) = (4906)(3.23) - 15846$ (0. K.)

lreq = REQ. STROKE = 2 min = = 2 (3.50) in 22.5 = 2.68" (O.K.)

ESTUINTED ITOMOS

State Branch Barry

A = (20) 3 - (16) / 144 = 6.9:13 = 5.18 =

BACKING RING

 $\nabla = .785 \left[(2.75)^{2} - (20.875)^{2} \right] (1) = 64.21 10^{3}$ $11 = 64.21 (.02.) = 6.16^{4}$

FLANGE

 $V = .785 [(22.75)^2 - (20.75)^2](5) = 34.15,13^2$ $W = .096 \#/m^2$ $W = (34.15)(.09.) = 3.28^{\#}$

01/1/25

T = 4(4)(300)(01)(0) = 34,08 m3 W = .096 = /m 1/1 = 34,08 (00) = 3,27#

Benende Turi

43.20 H(4) V = 4(21.43) - (8)(185)(2.625) - (4)(185)(2.1) - 66. 5.28 1: 6 4,00 W = 6.39. 4.00 15 6 12.56 9.62 1/2 9.62 3,50 2.97 2.15 31.43

TOTALS

W = 36,16 $\times 1.90/2.66$ 6.16
3.28
3.27
6.39
55.26

Gaux, PLAST.

Chrone Lin-

RECTANGULAR DET

TRANSITION DUCT

$$A = (62.832 + 69.1328) 10/14 = 4.5821 = 200 = 5.18 = 12 = 200 =$$

REVERSE DUCT

REVERSE DOCT FLOWER.

$$A_{i} = 20(4+5) - (286)(6)^{2} - (22)(4) = 106.88$$

$$A_{i} = 20(2) = 240$$

$$A_{i} = 410.88 / 144 = 2.8533 = 7$$

$$A_{i} = 5.18 = 7.72$$

$$A_{i} = (2.8533)(5.18) - 14.28 = 14.28$$

REVERSE Ducy Louves (HORIZ.)

Relie Mary Mr. (VELL)

A = 3(20)(4)/144 = 1.667 = = 1.728 */er = 1.728 */er = (.125)(144)(.092) = 1.728 */er = 1.000 = 1

DUCT CONNECTOR

A = (20.15) 1-(4)/144 = 1.8108 FT -10 = 5.18 1/-- = (1.8108) (5.18) = 9.38#

TOTALS

_		
W = 6.78	x 1.50/2.66	3,8-2
/2.43	25	2.01
23.74	,,	13,39
27.48	<i>.</i> ·	15.50
14.78		8,33
1.40	y 1,23	1.40
2.84	"	2.88
232	•,	9.38
98,87		61.71
10,07		

Conv. Prasme

BLADES

\propto		*	a	T.H.	f(r)	_
,20	10,70	,225	5.51	火	2,76	$\nabla = 3(1)(30.13) = 92.19 \text{ m}^{3}$
,30	12.25	,438	6,55	1	5.55	w= .096 1/123
.40	13.70	.550	5,35	1	5.35	W = (92.19)(.096) = 8.85#
.57	14.94	.463	4.91	1	4.91	
.40	16,00	,325	4,26	1	4,26	
, 20	16.90	,288	3,46	1	3,46	
, ED	17.50	,201	2,50	1	2,5>	
.75	12.85	.113	1,43	1	1.43	
1.00	18.00	.080	1.02	1/2	_,51	
					30.23	

$$\nabla = (10)(.765)(4)^{2} - (6)(.765)(1.25)^{2} - (4)(.765)(3.25)^{2} = 78.01 \text{ m}^{3}$$

$$W = (.78.01)(.096) = 7.49^{41}$$

10.

14 7 19

week and

8.60*

Deast.

PRATE

A = (00)(16) /144 = 3,4 = 10.37 /FF = 4 = .75", W = (25)(14) (.094) - 10.37 /FF = W = (3.611)(10.37) = 32.44 =

FLANGE'S

 $A = \left[\frac{(2+2)}{2} \right] 9+2(12)(2) \left[\frac{2}{104} \right] = 1.5417 = 12$ $A = \left[\frac{(2+2)}{25} \right] 9+2(12)(2) \left[\frac{(2+2)}{25} \right] (10.08) = 10.08^{\frac{1}{2}} \left[\frac{1}{100} \right]$ $W = \left(\frac{(2+2)}{25} \right) \left(\frac{(2+2)}{25} \right) \left(\frac{(2+2)}{25} \right) \left(\frac{(2+2)}{25} \right) = 10.08^{\frac{1}{2}} \left[\frac{(2+2)}{25} \right]$ $W = \left(\frac{(2+2)}{25} \right) \left(\frac{(2+2)}{25} \right) \left(\frac{(2+2)}{25} \right) = 10.08^{\frac{1}{2}} \left[\frac{(2+2)}{25} \right]$

Socks

L = (8.0 + 1.5)/12 = .7917' L = (.765)(2)(.2)(.28) = 10.5504 = 1/2 W = (.7917)(0.5504) = 8.35 = 10.5504

Tornes

 $W = 39.44 \times 1.00/2.00 19.71 \\ 155.54 \times 1.00 \\ \frac{9.35}{43.60}$

Composite

Surve

265,27

Comes of support)

$$\nabla = (4)(555)(4^2-2^2) + 2(2)(3)(5) = 31.68m^3$$

$$10 = .096 = 1m^3$$

$$11 = (31.68)(.096) = 3.04 = 3.04$$

$$\nabla = (3.6)(.25)(6.50) + (5.50 - 3.60)(.25)(4)^{2} - (5.5)(.25)(2)^{2} = 125.99 / 2^{-1}$$

$$W = (.096)(.250) = .054 = 1/2.3$$

$$W = (.25.99)(.054) \cdot 6.80^{-1}$$

TOTALS

<u>Ern</u>	oes.	a.	T.H.	
2	11.5	276	1/2	13.81
/	9	216	1	216
2	6	144	/	147
3	3,25	25	/	20
47	1.21	30	1	ر ع
5	0	5	1/2	
•				475

 $7 = (1.5(60)/100) = 4.2/25^{3}$ $10 = 6^{7/25}$ $14 = (4.2)(6) = 25.26^{45}$

DUCT FAIRING

$$\nabla = (12)[24)(24) - (785)(20)^{2}](41) = 2107,3 = 1.22 = 7^{3}$$

$$W = 80^{26}/r, 2$$

$$W = (1.22)(20) = 36.60^{2}$$

164 - 1-

•

61.86-

Burrens.

W: 293.58 - 10.08 - 2.05 - 1.50 = 249.54 V = 249.54/166 = 1.50 = 7 E = (64)(1.50) = 96

(; ····

71 = 10.08 + 8.35 = 18.42 # 7 = 18.43 /484 = .0381 A = 15 = 1.0381)(4) - 2.44 =

WET FAIRING

V = 4.21 = 3 B = (4.21)(64) = 267.111 #

Dust FARRING

7 - 1,22 x, 2 2 - (1,22)(2)(1 - 1)8.

10TALS

8 96,50 4,63,77 28,08 445,96

I'm de COMET & VOINT	42 3.5
Dr le Sunty Cover	12,00
ATT U-VOINT SUPPORT	2.90
Ar. DRIVE CHART	34,04
Ware de - Assertany	304,75
Flance Deer	18,50
Marie	11.00
	43536 363

CONDOSTE CONST.	The state of the s	Payessic- Gos. Com History, Gro		Parycac3 - 30% GLASS	POLYETTO - GLOT COST TO THE	Acus, (1051-72)	Town Order, Thun Some or his	13.28/		ch, cos +	
Conpo	4	31,16	16.13	07.8	<i>₩</i>	36,15	19'51	_58'%/	15/86 25/51	18725	
Contradition Coust	1,657	Ann, (2025-11116)	`	A.cory (35 73)	(2001-73)	i,					
Carve	137.	55,26		he'9/	•	473	-1		345.44	-100,52	
		PROP, DUCT	Roses Duct	PROPELLER	Rupar	Super	Msc.		FAIRNCS	Buoyaney	

EXISTING PURIF

- · STATIC FRANCE !
- · Charet Penrale de
- · Compacisons

27/2/11

STATIC PER MILANCE

$$T_{STAT} = 3005^{-1}/RJIIII \qquad (KNOWN)$$

$$P_{0} = (765)(10.66)^{2}/144 = .645377^{2} \qquad (KNOWN)$$

$$V_{0} = \sqrt{T_{STAT}} \qquad \sqrt{\frac{2025}{2(.055)}} = 48.41 \, \text{Fr/SEC}$$

$$Q = V_{0}Q_{0} = (48.41)(.6453) = 31.24 \, \text{gr}^{2}/\text{SEC} = 14020 \, \text{GPM}$$

$$H_{0} = H_{0} + H_{0} - H_{0}$$

$$H_{0} = \frac{V_{0}}{2^{6}} = \frac{(48.41)^{2}}{2(.275)} = 36.29^{4}$$

$$H_{0} = 0 \qquad (57.000)$$

$$H_{0} = 36.39 + .52 - 0 = 36.91^{4}$$

$$WHP = \frac{P_{0}}{2} Q_{0} H_{0} = (2)(32.3)(31.24) = 135$$

$$SHP = 000$$

Prime + NORLE : WHP = 12 = 150 SEEMS LOW PERMANE

SHIP = 12 = 150 SEEMS LOW PERMANE

PUMP IS NOT US NOT PERMANE

OMNEABLE FINEA

CRUISE PROFESSION

$$V_0 = 8 \text{ MpN} = 11.71 \text{ Tyr.}$$

$$PPR = .50$$

$$H_0 = (RPR) \frac{V_0^2}{22g} = (.50) \frac{11.21}{2000} = 1.00^{1}$$

$$H_1 = H_0 - HL_E + H_0 = 30.91 - .52 + 1.00 = 30.46^{1}$$

$$V_0 = \sqrt{2gH_3} = \sqrt{2(322)(3246)} = 49.12 \text{ Fr/sec.}$$

$$Q = V_0 A_1 = (49.12)(.6452) = 31.70 \text{ Fr/sec.}$$

$$T = PQ(V_0 - V_0) = 2(31.20)(49.12 - 11.26) = 2369^{44}$$

$$P.C. = TV_0 = (2309)(11.26) = .2533$$

$$SJOSHP = (530)(2000)$$

A - 53

	Fixe System	The Market Start
THRUST AT CLASH	2842.	2369
P.C. OT 8MPH	,30	.25
FLOW RATE OF ELLY	35746 G111	14020 GP14
STATIC THRUST	4278	3025°
DRY WEIGHT	29:1 CONV. CONST.	435
·	193 51 Carpo, Caret	

APPENDIX B

OBJECTIVES:

- O Determine performance, weight and dimensional characteristics of a propulsion pump, about the same size as the PJ-16, for use in a high-speed (20 mph) amphibian.
- O Use simple "propeller-in-tube" approach.
- O Limit blade area ratio to that available in existing propeller series.
- O Investigate use of composite materials.

SKETCH OF 20 INCH DIAMETER PUMP

PERFORMANCE CONTACTERISTICS

- a POWER LIMITS
- · CAVITATION LIMITE
- · SyciTH PERFORMANCE
- " China Our mark
- · DEEVATIONS + REF. MATE.

CALOURATION / boxx

FOWER LIMIT

CALCULATION

46.99 41.10 336.53 32.56 39.59 a SHP B 9 .22 Lee 126. 200 Ŋ 3 63 500: 1.661 2.9942 8:833 1.5915 1.301 3/4 12 1 P

400

37.58 32.88 89.23 26.30 23.91 8 2 8 8 8 28.18 24.66 21.92 79.73 30

P-5

5 8 8 8 8 8

18.79

38

Same of the

CALCULATION NOT: 0

D = DROP. DIAM. = 20" = 1.66)

An = DROP, DISC AREA = .765 [(1.667) - (333)] = 2.0942-7

As = INLET AREA = (1.667)(2.00) = 3.333 FT =

VOYL - ADVANCE RATIO BASED ON VELOCITY INSIDE TUBE

NE = ADVANCE RATIO BASES ON VELUCAY OUTSIDE THE

Very = Ar = 5.333 = 1.5915

Pb = PROP. PITEN DIAM. RATIO

Jeyl = f (P/D, Jeyl)

(VON LAMEREN - FIG. 1)

Q = FLOW RATE 2 FET 3/SEC

M = PROP. SPEED = On Voye D

HLE = INLET HEAD LOSS Q .

(DERIVATION #1)

VE TO MET VELOCITY " O / DE ...

NOW IT TRUGENTIAL VELOCITY OF DEAD, OF PEOP, = , 37-DM

Vise Torre VELOCAY OF DEC. OF FROD. = VELL Kiems

Harry 10 200 10 10

HE HEAD DUE TO EXPLANATION

HAY = HEAD DUE TO MAR FREELS.

CALCULATION NOTE: (CONT.)

Vo = FREE STREAM VELOCITY = CRAFT SALL

RPR = RAM PRESS. RECOVERY RATIO = .70 (VACULLI - FIG. 3)

HO = RAM HEAD RECOVERED = (RPR) 1/2

HIS = INLET STATIC HEAD (ABOVE VAD. PRESS.) = HOTH + HO-HV + HO-HLI-VI

PIS - INLET STATIC PRESS. (ABOVE MAP. PACS) = Pg HIS

One = LOCAL CAV. NO. AT. JRAD. = PEG

Temay = PROP. LOAD COEF, AT CAV, LIMIT = ,) OTR (GANN)

EAR = PROP. EXPANDED AREA PATIO = 1.18 (MAY. AVAILABLE)

PAIR + 71 / PROJECTED AFTER THE TO 1.01 (DECIVATION #3)

HPCAN, = DUMP HEAD RISE AT CAN, LIMIT = (Temax)(PAR)(VIR) (%)

Carcoug man

																		NC	71 <u>4</u> 17	12. 12.	13d0 14S
Hoear	A.39	2.50	01.11	421.47	60.67	(('(65.51	13.17	36.	22 th	30.05	1650	8	11.85	26.36	24.42	27.72	78.61	20.50	19.24 7	L EC.CI
र्य	10.1																				
8	7.1																				
湖	325.	0,000	0400	***	6781	4060.	A 92.	5	Jour.	71,72	.// 33	1210.	6450	34.52	0831	1338	È.	(710.	3.39	2325	8
P	25'05. 17'5'1.	P351.	15.80	כנכני.	AST.	1381	7860.	0490	Y216.	SM2	1619	6(11.	7480	36.35	¥197.	1161.	017.	×01.	.5199	238.5	₹; ·
α	; \$ \$	1430	0/0/	250	3601	619	6141	%	222	2043	1881	1685	1464	1950	2403	4222	305	1804	30 30 30 30 30 30 30 30 30 30 30 30 30 3	1352	100
777	24.93	12.22	15.69	35.3%	25.92	25.14	22.9	18.62	34.46	32.01	29.20	26.16	22.04	39.26	32.32	さん	31.44	26.0%	10.50	27.21	25.05
\$	r,			Ç					Ç					7.7/12					0		
88	Ŗ.			8					8					Ś							
*	δ. Σ.			22.05					e9.40					36.35					0		
*									•										•		
*																			,		
1	33.0k																		1 . 20.68		
717	74.2	11.92	16.31																8	ŝ	78.7
7	63.9	19.67	31.15																4992	21.41	કાસ
7	61.14 92.12	104 VK 1/6.03	کناردر																EC 15	cite	77.5
24	81.8 24.8	છ છે. છે ક	3.																æ,5,	a. 11	8 :
***	317	2.7	e.																, ,	3.	١٠٠٧
٤	25,32	3,50	31.1																15,13	66.81	<u>ئ</u> پر
0	2 2	s 6	0//	8	<u>,2</u>	90	á	0//	ઠ	3	8	8	01	ત	Ċŝ	રે:	१	0:1	9	9	ጸ
170	S06.																				
MA	8																				
41	31651																				
0	3.333																				
9	2006																				
19	3																				

Syram Park State

CALCULATION NOTES

· REQUIRED Pup HEAD

(DECENTION #2)

· ESTIMATED THOUST (1) TOTON KINT)

(PONKE LIMIT CALE.)

B-9

Comment Proposition

CALCULATIONS

· REQUIRED DUMP HEAD

1/5	Q HOREQ
14.72	20 16.31 \$0 22,03 90 28.51 100 35,74 110 43,75
2225	70 13.37 80 19.08 90 25.56 10 32.80 110 40.80
29.40	70 9.25 80 14.96 90 21.44 100 28.68 110 36.68
36,75	70 3.95 80 9.66 90 16.14 150 23.38 150 31.38

System Francisco

CALCULATIONS (CONT.)

· ESTIMATED THRUST (PONES KIND)

16	SHF	<u> </u>	As	<u>K</u> _	工	<u> </u>
14.70	500	97.4	2.0942	46.51	6197	,3313
	400	90.7		43.31	5190	.3468
	300	83.0		39.63	4138	,3587
	200	23.ک		34.95	2965	.3962
22,05	500	100.0		42.75	5140	.4121
	400	93.Z		44.50	4185	.4195
		86.2		41.16		.4403
	200			36.67	2246	5054.
29.40	500	103.8		49.57	4189	dx44.
	400	92.7		46.65	3371	.4505
	30)	90.7		43.31	2523	.4496
	200	82.0		39.16	1601	.4279
36.75	500	108.8		51.95	3308	,4421
	400	102.9		49.14	2550	.५२८७
	300	96.2		45.94	1768	.3938
	200			42.12	947	.3164

Cycrain Francis

CALCULATIONS (CONT.)

· ESTIMATED THRUST (CONTROL VILLE)

Vo	Qua As	Vs	Z	Hpea	20	3410	PC
14.70	04.3 2.0942	<i>35.</i> 48	3088	18.6	.22	210	.3930
22,05	80.7	38,54	2661	<i>A.</i> 5		239	.4464
29.40	89.3	42,64	2365	20,9		084	,4451
36.75	98.8	47.18	2061	22.5		338	4004 .

FARIC Operation)

REQUIRED PUMP 1/200

Q Henia

50 9,52

GO 13.72

10 18:67

CAVITATION LIMIT (SEE CAVITATION LIMIT CALCS.)

Q Hoens

50 20,0

60 19.24

20 12,73

ESTMATED THRUST

QEQ A, V, TSTOT. HARMS H2 HLS AS VI 28 HS. BS.

C8.7 2.0942 32.80 4507 33.00 1 1.10 3.333 20.61 6.60 26.38 16.99

USE TO THE SALE OF AT

								بسو	, 					٠. ـ		,)	4	; 	: •	;		! .		
								•	Ľ4	ι,				(//- 	-			: ! . !	1.111 1.111			::::	
							::::		9/	7.7	:		62	ررر	7			111						
			\prod									<u></u>										1::::		
			\blacksquare				-					! ! .:.	: . : :::											1
			Ⅲ													• • • • • • • • • • • • • • • • • • • •	: :::::			Æ.		E		
												- 	1			-		1		===				71111
			##		Ш						171		[1111 Time			: '								-
		1111	Ш				4				<u> </u>											-1 -		
			##																	!	13		<u>:</u>	
!!!!!!			##								111	111											;	11
							1		, 	団														
			##										:⊣.									11.11.	-	
		: [] :	<u> </u>	Hit	1111		===			4::	11.11		: <u>-</u> .											
		 		1:1-	1:1:,		ŦE.L	量	-															
	HHE.		誧	Ħ							冊	曲	: : : : : : :											
	Fi Hill		ፗ		群		###				THE	111									•			
			卌		鼺				==				12 11 - 1											
			#	#							11111 [-	-	<u> </u>											
			#													-							-	
			TN.									==:		Ŀ										
									====													· · ·		
			#														 		•					
							- 7												-		 -	1		
				世														: : : : : : : :	===	1			.: 11:	
								1				#			<u>.</u>	ż	-					: . 		
			₩Ş	豔				#	==	t-::-			Un	C 6 5		٠,							- : `: -	
		###												-: : !	-	: -		•		•		,	-	
																								•
		1#	= 3	馬													~	_	-					. ·
			E										· · · · ·									11	_ :::	-
									====		_										' : : <u> </u>			-
			 3		10			įää		-5.5			11						*	:-	· · · · · · · · · · · · · · · · · · ·		.i .	
									==	•			m/fi		-					: : :				
			- 1												: -			. : . . : : : : :		<u>.</u>	: . <u>:</u> -		*	÷
												1	:: +					-: 	L				<u> ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>	:
				Ш			Ш					1	-1::											•
		Ш		Ш		Ш						##				里								_
			##				#	11:1				ijĒ.	٠	_	1 : 1				-				-	
::::::::::			##				#:		ح:	(2	11		-6	نــــــــــــــــــــــــــــــــــــ									- : : - : :	-
- 1##			##	Ш					====				===											
				#					21	1	R	92	Ζ.,	٠,	<u> </u>	ر بر	FZ	Q -2/	1	e.	<u> </u>		=:	
					鼺		##	HH				品		-									1	
					11.1				E	17:17						. 121 			,	:				
· · · · · · · · · · · · · · · · · · ·	****	7:11:	::::::	17.5	:::::		T-1:	-111	** .	12:22			:: ;		1	المنة ،				:				

21. VETTONE 4 ...

Reri I fare.

VON LAMEREN FIB. 1 MODEL TO THE TOTAL ANIAL EYE.

Uneuzzi Fic. 3 Mazzar de loure

DERIVATIONS

/ ESTIMATED INLET & CALIN; LOSSES

2 REQUIRED PUMP HEAD ZISE

#3 PROPELLER BLADE ARCA

Fig. 29 Relation between velocity of "screw" + cylinder" combination and velocity in cylinder

Fig. 30 Relation between thrust coefficient C1 and thrust ratio 7 of nozzle no. 194

figure have been obtained by substituting nozzles with different length-diameter ratios by systems of annular vortexes and calculating the induced velocities in the screw disk.

If the radial displacement of the streamlines is small, we can consider the streamlines as lying approximately on cylindrical planes. If internal friction and turbulence are neglected, the radial

546

Analysis of Ducted-Propeller Design

VON LAMERIN

Fig. 28 Results of open-water tests with Ka 4-70 screw series in an axial cylinder

been obtained from the experiments with the Ka 4-70 screw series in an axial circular cylinder and from the application of the momentum theorem.

From the comparison of the axial velocities obtained with these methods, we see that

- 1 The velocities agree reasonably well at high loadings of the ducted propeller system $(C_r > 1)$.
- 2 The difference between the axial velocities becomes very large at low loadings ($C_r < 1$). In regard to the second conclusion, the following remark may be made. From Fig. 13 it can be seen that the nozzle drag due to friction becomes substantial at low loadings of the ducted-propeller system. Then, it is no longer permitted to neglect the effect of friction on the force action between nozzle and fluid.

The design of a screw in a nozzle may now be carried out as follows:

With given thrust T or power P, intake velocity V_s , and number of revolutions n, the B_r and consequently the optimum diameter coefficient D can be determined with the aid of open-water test results of the nozzle considered, in combination with a systematic screw series (see, for instance, Fig. 24). In addition, the thrust coefficient C_r and the propeller thrust-total thrust ratio r can be determined. With the aid of the experiments

of the systematic screw series in the axial circular cylinder or using the momentum theorem, the axial velocity V_P in the way of the screw can be found. In addition, the mean axial velocity in the vicinity of the screw due to the nozzle action, U_N , and due to the screw action U_P , can be calculated.

The pressure difference created by the screw becomes

$$\Delta p = \frac{T_p}{\frac{\pi}{4} \left(D^2 - d_h^2\right)}$$

In order to avoid an excessive loading of the inner radii of the screw blades, the usual assumption for axial pumps that the head is constant for all radii is abandoned. The following radial $\Delta p(r/R)$ distribution is suggested for the screws in nozzle no. 19a:

$$\Delta p(r/R) = [4.88 - 4r/R] \cdot [r/R - 0.133] \Delta p$$

The radial distribution of the axial and tangential velocities at the screw may be approximated as follows:

A reasonable radial distribution of the axial velocities due to the nozzle action can be determined from Fig. 32. The results given in this

545

Analysis of Ducted-Propeller Design

VON LAMERIN

COMPARISON OF RECTANDIBLAR AND ELLIPTICAL INLET RAM RECOVERY VARIATIONS WITH INLET VELOCITY RATIO

(Laboratory Water Channel Test of 2-inch Eye Diameter Waterjet Inlet Models)

SYM	CONFIGURATION
	RECTANGULAR -
0	ELLIPTICAL - 0.3 IN. AFT LIP RADIUS

- Estimated Performance of Jacuzzi Inlet Configuration

$$\eta_i = 1 - \frac{(P_{T_\infty} - \overline{P_i})}{q_\infty}$$

when they are the comment of

War French & BOD

$$412 - f\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = (.00925)\left(\frac{20.19}{1.0152}\right)\left(\frac{20}{2}\right)^{2} = 1.9118^{1}$$

SHAFT

$$HL = \frac{D}{\rho g Q_{\pm}} = \frac{11.9C}{(2)(21)(5.333)} = .0557$$

1RANSITTON

$$A_{z} = c_{ROSS} s_{ECTION} pres = \frac{3.328 + 0.0342}{2} = 2.3138 m^{-1}$$
 $V_{T} = v_{EROCITY} = Q/A_{T} = 100/2.3138 + 36.85 er/sc_{C}$
 $de = Equiv. Diay. = \sqrt{\frac{2.2138}{.785}} = 1.8593'$

BEARING TUER

C12 373

Toma heave loss.

1 to man (man) to

CREING

Comme

$$H_{LS} = H_{LS} + H_{LZ} + H_{C} - H_{O}$$

$$H_{LS} = \frac{V_0^2}{28}$$

$$V_0 = Q/Q_S$$

Exposure chie

n	<u> </u>	T.H.	$f(\Omega_{\mathbf{x}})$
2	10.70	1/2	535
3	12,25	/	12,25
4	13.70	1	13,70
5	14.94	/	14,94
6	16,00	1	16,00
2	16,90	/	16 90
8	12.50	/	12.50
9	17,85	1	17.55
10	18.00	1/2	9.00
			123,49

$$Lige : \frac{320.42}{314} = 1.18$$

Proventes AREA

17.	12	<	63-0	7.11	-(64)	
3	,2,20	57,86	5.69	1/2	2,84	Q = ARC TAN(P)/r
<u> ج</u>	12,25	46,70	8,40	/	8,40	
4	15,20	38,51	10,72	1	10,72	= ARR TAN (ZO)
		52,118	12,60	/	15.16	<u>.</u>
6	1.17	27.95	14.13	/	17.13	= ALE TAN 3.1831/n
•	** *	24.45	15.25	/	·	
4%		21.70	16,26	1	14.2.	
7		19,48	16,83	, ·	: 7 =	•
100		17.66	17.15	经	8.58	
			•		105.74	•

$$PAR = \frac{317.27}{314} = 1.01$$

STRUCTURAL PHARYSES

- · PROPELLER
- · CHAFT
- e Preing

PROPERIES STEERS IN MINION / MINIS

$$\chi = r/R$$

$$A_{i} = f(a, x) \qquad \qquad T$$

$$A_2 = f(a, \pi)$$

$$Q_{R} = SANDINS EZENDINS STREED = \frac{RK}{ECT} \left[\frac{Q_{1}(2\pi ET)}{P} + \frac{Q_{1}(Q')}{R} \right]$$

PROPELLER STREET CONTRATION

BENDING GREESEES

91	45.5%
1	19.30 19.30 19.50
M	30 m m m m m m m m m m m m m m m m m m m
B	\$152 \$3007 \$2007 \$2587 \$1414 \$254 \$254 \$254 \$254 \$254
*	255 555 556 557 556 556 565 565 565 565 5
Q	8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50
4	25.62 25.62 25.63
4	6.50 6.50 7.50 6.50 6.50 6.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7
¥	5027. 601. 601. 601. 761.0. 71.0. 71.0.
X	8 5 5 5 5 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6
8	3////
[0]	100
N	6/80
A	8
m	w
N	8.

CENTRIFUGAL STRISS

Limake	3455	ьеьс	2000	1517	3621	0301	440	77/
DIMAX	4266	2006	4648	5196	22.55	4317	4928	9840
8	0001	273	219	4%	399	<i>608</i>	6/0	121
Pa	6030	श्रे १३१ १	4493	4759	1658	4.5%	7384	C161
Pal	4578	8303	2887 2887	2413	9549	803	4759	8100
M	B	8,	ક.	જ્	09.	۵	2	8
8	000/	. 273	612	761	349	38	613	727
0								1.9
K	750	.30	3	'9	97	0	£ 5	8.
>	16%							

FLORESCE CONTE

Ton Wader Spine

FACTOR OF BACKTY = 20000 = 2.98 ON BHEAR YIELD (6061-TL)

WHIRLING FREQUENCY

Buch to Bu July

WEET CASING DECICES PROSEUM!

NOTE: MINIMUM HIS OCCURS DURING BTATIC OPERATION AT CAN LIMIT

INLET-CASING STREES

ESTIMATED WEIGHTS

Ch. 1

$$A = \left[2 \left(\frac{34.5}{2} \right) \left(24 \right) + \left(20 \right) \left(\frac{34.5}{3} \right) + 2 \left(\frac{35}{320} \right) \left(155 \right) \left(42 \right)^{2} + \left(\frac{35}{320} \right) \left(149 \right) \left(20 \right) \right] \frac{1}{144} = 15.0$$

$$A = \left[2 \left(\frac{34.5}{2} \right) \left(24 \right) + \left(\frac{35}{320} \right) \left(149 \right) \left(20 \right) + \left(\frac{35}{320} \right) \left(149 \right) \left(20 \right) \right] \frac{1}{144} = 15.0$$

$$A = \left[2 \left(\frac{34.5}{2} \right) \left(24 \right) + \left(20 \right) \left(\frac{34.5}{320} \right) + 2 \left(\frac{35}{320} \right) \left(149 \right) \left(20 \right) \right] \frac{1}{144} = 15.0$$

$$A = \left[2 \left(\frac{34.5}{320} \right) \left(24 \right) + \left(\frac{35}{320} \right) \left(149 \right) \left(20 \right) \right] \frac{1}{144} = 15.0$$

$$A = \left[2 \left(\frac{34.5}{320} \right) \left(24 \right) + \left(\frac{35}{320} \right) \left(149 \right) \left(20 \right) \right] \frac{1}{144} = 15.0$$

$$A = \left[2 \left(\frac{34.5}{320} \right) \left(24 \right) + \left(\frac{35}{320} \right) \left(149 \right) \left(20 \right) \right] \frac{1}{144} = 15.0$$

$$A = \left[2 \left(\frac{34.5}{320} \right) \left(24 \right) + \left(\frac{35}{320} \right) \left(149 \right) \left(20 \right) \right] \frac{1}{144} = 15.0$$

$$A = \left[2 \left(\frac{34.5}{320} \right) \left(\frac{34.5}{320} \right) + \left(\frac{35}{320} \right) + \left(\frac{35}{320} \right) \left(\frac{34.5}{320} \right) + \left(\frac{35}{320} \right) + \left($$

TRANSITION

$$A = \left[\frac{2(24+70) + 207}{2}\right] \frac{10}{144} = 5.24 = 7$$

$$A = \left[\frac{375}{2}\right] \frac{10}{144} = 5.24 = 7$$

$$W = \left(5.24\right)\left(5.18\right) = 27.14$$

PROPELLER CASING

- 1 107 TUE

$$\frac{E_{1}}{1} \frac{d}{4.00} \frac{d}{12.56} \frac{7.11.}{1/2} \frac{f(\nabla)}{6.24} = 4(31.43) - 8(765)(2.125)^{2} - 4(765)(2.125)^{2} = 66.55 N^{2}$$

$$\frac{2}{3} \frac{4.00}{3.50} \frac{12.56}{9.62} \frac{1}{12.56} \frac{2.97}{12.36} = 66.55)(.096) = 6.39^{-1}$$

$$\frac{2}{31.43} \frac{2.97}{31.43}$$

CASING YOTAL

$$W = 77.80 + 27.14 + 45.20 + 3.27 + 6.39 = 160^{\#} conv. const.$$

$$= (60)(\frac{150}{2.66}) = 90^{\#} composite$$

$$B-35$$

23.00 W

BLAIK =

×	C	*	a	T.H.	1(V)	4)4 \ n n n 3
,20	10,70	,225	5.57	1/2	2.74	V = 3()(30.73) = 92.19.23
.30	12,25	.638	5,23	1	5.5	w= ,28 #/1×3
.40	13.00	.530	5.35	1	5,3	W = (92.19\(\).26) = 25.81
,50	14.94	.463	4.91	1	4.91	
.60	16,00	.375	4.26	1	7,26	
, 20	16.90	,268.	3.46	/	3.62	
. 80	17.50	,201	2.50	1	<i>2,5</i>	
, , ?,5	17.85	.113	1.43	/	1.42	
1.00	18,00	.080	1,02	1/2		
•					80.33	

$$\nabla = (0)(xs)(4)^{2} - (s)(xs)(xs)^{2} - (4)(xs)(3.25)^{2} = 78.01.03$$

$$W = (28.01)(xs) = 21.84^{\#}$$

SHAFTING MICH

SHAET

$$L = \frac{68}{12} = \frac{5.67}{12}$$

$$W = \frac{(3.5)(2)^{2}(12)(.092)}{(3.62)} = \frac{3.62}{12}$$

$$W = \frac{(5.65)(3.62)}{12} = \frac{21}{12}$$

TRANSITION

$$\nabla = \left[\frac{(24)(10) + (10)^{2}}{2} \right] = 3970 \text{ m}^{3}$$

PROPELLEY CASING

10TALS

$$\nabla_{yy} = 11797 + 3970 + 6280 = 22047 , N^3 = 12.76 \text{ M}^3$$

$$W = 647/4.5$$

1.

90 Payestai - Gass CLOTE 16 Mac de- Fr. 31 Am (6061-74) Composite Const # 691 (27-160h) Min (6061-76) 160 13 m. (sort out) Cley Mr. PROPELLER SHA FTING Work CASING

986 813

APPENDIX C

OBJECTIVES:

- O Determine performance, weight and dimensional characteristics of a propulsion pump suitable for a multiple unit "tailgate" installation, using a 15-inch diameter impeller, in a highspeed (20 mph) amphibian.
- O Use simple "propeller-in-tube" approach.
- Examine higher blade area ratios than available in existing propeller series data.

SKETCH OF 15 INCH DIAMETER PUMP

PERFORMANCE CHARACTERNITICS

- · POWER LIMITS
- · CAVITATION LIMITS
- · System Performance
- · STATIC OPERATION
- · DEEVATIONS + REE. HATE.

PONER LIMIT

CALCULATION NOTES

\$2.70 52/10 411.10 9 8 8 S SHP g 2 5 3/4 20 Ŗ 5325 Jere 306. 196 8/ 4 6 1.2651 188% 1.25 1.175 N

43.82 \$ 0 8 **₹**8

49.32 32.88 24.66 933 300

32.5% 21.92 16.4 \$ 3 8 200

100

12.5/ 10.96 12.28 388

C-5

CAVITATION LAND

CALCULATION NOTES

CAVITATION LIMIT

CALCULATION NOTI - (CONT) $V_0 = PREE STREAM VELOCITY = CRAFT-SPEED$ PPC = RAM PREES, RECONETY RATIO = .70 (Vacuzzi - Fig.3) $H_0 = RAM HEAD RECOVERED = (RPR) \frac{16^{2}}{2g}$ $H_{2} = INLET STATIC HEAD (ABOVE VAR. PRESS) = Hamy + H2 - HV + H0 - HH2 - <math>\frac{16^{2}}{2g}$ $P_{2} = INLET STATIC PREES. (ABOVE VAR. PRESS.) = Pg H_{2}$ $O_{1}R = LOCAL CAV, NO, AT. DEAD = \frac{P_{2}}{P_{2}V_{1}R}$ $O_{2} = PROPA LOAD CORE, AT CAV, LIMIT = .70 O_{1}X (GANN)$ PAR = PROPA PROPARECTED AREA RATIO $H_{2} = PROPA PROPARECTED AREA RATIO$ $H_{2} = PROPA PROPARECTED AREA RATIO$ $O_{3} = PROPA PROPARECTED AREA RATIO$ $O_{4} = PROPA PROPARECTED AREA RATIO$ $O_{5} = PROPA PROPARECTED AREA RATIO$ $O_{6} = PROPARECTED AREA PROPARECTED$

Time Liver	

20.301.300

1.02 Mars	30.00		c ₇	37 66	2 2	દૂ		36.01	2) 12	34%	Š	7 7	04.61				1/2.1		02.17	26.5	•	78.0	65.54	15.03	8	te h.s	60.52	3	(4:3)	05.78	ا بر د		3 43
(1)	(3.7	!															300	,	9.												~	,	
3	رن ن	13/3	2 + 5	22 45	61.51	20.5		708	10.0%	2.40	6	2 4	9:				1000	,	8.2		£	4	36 €€	ئر د	78 67	45,50	14.50	25.56	34.45	8.60			
4	(2)																&		ð.			•											
الأج	Cost	Cisa	3000	1484	03.48	1110		12451	2100	2110.	ć	055	(250.	14	2.60	3				پ	745	05.54	36.08	70.01	75 G	30,10	03.50	70.	75 Eh	23.20			
P.	27.17	P\$ (4.	3	7.27	First	ا يا		3203	C101	e2.50	26.24	1227	(980)	.23.73	35.3		Mical			י זי	4	7	8	Ś	ઝ	3,	ζ,	35	7	23			
ď	:+22			2065		463				876	20,70				(50)	£.	3.5		9.6														
1123) }			4.0				3.	\$ }			, PC 35		-6	ۇبل ئىل		(031.	Ciso.	. 00 rt	2,00,	9,10	0111	***	2,00	10.10	Š	0,00	(3.5)		1111	1.03
100	2.35			,52%	વ			٠. ·	•	`	, XO		`	in in	`	•	P.		2552	PE (a.	£ 00.	7	24.50	hs lo	\$2.03		05 20	,	1	(180			} # 3
RPR 1	8.			2				٥.									ď.				402	١		763	213,	11.43	226	ć		890/	,	1250	
2	01.41			18.5		•	,	¥.			1000			٥			1/53		£3,14	(('8)	٠ در	,		2.0			1E %	•	, ,	65.7		25 35 26 36	÷ ;
7	3			,•				•									%		2.35			3						<u>}</u>	5			o	
1/2	3.83																BPR		8.			ş	<u>.</u>		ķ								
1/2	3,0.86																2	1	01.41			ļ	3		3	1		,	3			0	
~ M 27	206	06:31	24.23																														
7	??	38.62/	45.6																														
3	36.38		1979																														
\h <u> </u>	21, 33																																
1///			ž.																														
5	€0 4€	to si	9 0.09																														
α	\$	j	${\mathfrak T}$	3	. .	Ç		ů	3	ં	3	Ċ,	ß	ş	3	63																	

54,24,24,

CALCULATION NOTES

· REQUIRED PUMP HEAD RISE

(DEENATION # 2)

· ESTIMATES THOUSE (PONER LIMIT)

· ESTIMATED THRUST (CAVITATION LIMIT)

(Power Linis Care.)

System H. Formoles.

CALCULATIONS

· REQUIRED FUND HEAD RISE

1/0 (4) (me)	a	Hoesa	
14.70	40	12.00	
	60	41,20	
	80	25.08	
22,05°	40 60 80	14.06 38,26 92,14	
29.40	40 69 89	9.94 34.14 68.02	
F6.35	49 69 87	4.64 28.84 62.72	

C-13

Company 116 - CROUS SECTION - 20 SQUARES TO INCH

CALCULATIONS (CONTI)

· ESTIMATED TAKUET (POWER LIMIT)

V6 44 /200	SHP	PER	<u>As</u>	<u>Vi</u>	工	P.C.
14.70	500	65.6	1.1775	55.71	5381	.2876
	400	61.2		51.97	4562	.3048
	300	56,1		42.64	3696	.32.93
•	200	49.7		42,21	2734	.3654
	100	<i>3</i> 9.7	•	33.72	1510	.403L
22,05	500	66.7		58.65	4616	וסכצ.
	400	62.Y		£2.99	3861	.3671
	300	57.4		48.75	3065	.4096
	200	51.3		43.57	220°C	.4426
	100	41.8		35,50	1124	.4506
•••	_			. .	-0.	
29,40	500	68.4		58.09	3925	• • • •
	120	64.2		54.52	3225	.4310
	310	59.4		50.45	2501	.4456
	200	S3.60		45,52	1728	.4618
	1 20	45.1		38,30	४०३	,4292
70	, e. e. e.			40.01	27.62	aldes t
£3,27	110	20.7		60.04	3293	1046,
	4 W	45		56.48 55.55	2624	.4323
	<i>:</i> ,	97		52.57	1951	4363
		المسترا بالمستوي		47.98	1297	.4240
	. 7	11.9		41.53	467	1150

DVOTELL OF LINE HOLES

CALCULATIONS (CONT.)

· ESTIMATED THRUST (CAVITATION LIMIT)

PAR	Vo	QEQ	4.	1/3	工	Hory	20	SHA	P.C.
1.00	14.70	42.5	1.1775	34.09	1818	19.6	,כר.	/27	.3826
	22,05	46.2		39.24	1588	20.4		143	.4452
	29.40	50.9		43.23	1408	21.8		169	.4453
	36.75	52.3		47.81	1245	<i>2</i> 3.3		199	.4180
2.00	14,70	53.2		45.18	3243	31,7		256	.3386
	22,05	563		47.81	2901	<i>33</i> ,		284	.4095
	29.40	60.9		51.72	2719	35.5		329	.4418
	36.25	66.1		52.14	2563	3K.3		385	.4448
3.00	14,20	59.2		<i>5</i> 0,28	42/3	40.2		362	, 3)
	22,05	42,7		53.25	3912	42.4		404	.3862
	29.40	67.1		56.99	<i>3</i> 203	45.3		462	.4284
	36.75			61.40	3564	48.)		535	1244.

22 116 - CROSS SECTION | 20 50 (40) 5 10 (NOH |

C-15

Amad: 22 116 - CROSS SECTION 20 SQUARES TO 15 4 C-16

STATIC OF 112N

REQUIRED PUMP HEAD RISE

Houra = .0121 Q2

Q Hoo. ?

40 19.36

60 43.56

80 22.44

CAVITATION LIMIT

(SEE CAVITATION LIMIT CALCE.)

Q HPEN

10 56.25

60 34.43

80 3,93

ESTIMATED THRUST

Qey As Vs Terr Harmer He 1/6, As Vx Z2 Hz. Ps.

DESIGN PRESS. (ETRUCT)

AMPAGE 22-116 - CROSS SECTION - 20 SQUARES TO INCH

C-18

DERVEY DE YOLL STATE

Kar 11.72.

VON LAMEREN FIG. 1 MODEL TELTE OF PROP. IN ANIAL CYL.

F19. 2

FIG. 2 MODEL TELT OF INLET NACUZZI

DECLYATIONS

ESTIMATED INLET Y CALING LOSSES

REQUIRED PUMP HEAD RICE

Fig. 29 Relation between velocity of "screw + cylinder" combination and velocity in cylinder

Fig. 30 Relation between thrust coefficient CF and thrust ratio + of nozzle no. 194

figure have been obtained by substituting nozzles with different length-diameter ratios by systems of annular vortexes and calculating the induced velocities in the screw disk.

If the radial displacement of the streamlines is small, we can consider the streamlines as lying approximately on cylindrical planes. If internal friction and turbulence are neglected, the radial

546

Analysis of Ducted-Propeller Design

VON LAMEREN

Fig. 28 Results of open-water tests with Ka 4-70 screw series in an axial cylinder

been obtained from the experiments with the Ka 4-70 screw series in an axial circular cylinder and from the application of the momentum theorem.

From the comparison of the axial velocities obtained with these methods, we see that

1 The velocities agree reasonably well at high loadings of the ducted propeller system $(C_r > 1)$.

2 The difference between the axial velocities becomes very large at low loadings $(C_r < 1)$. In regard to the second conclusion, the following remark may be made. From Fig. 13 it can be seen that the nozzle drag due to friction becomes substantial at low loadings of the ducted-propeller system. Then, it is no longer permitted to neglect the effect of friction on the force action between nozzle and fluid.

The design of a screw in a nozzle may now be carried out as follows:

With given thrust T or power P, intake velocity V_s , and number of revolutions n, the B_r and consequently the optimum diameter coefficient D can be determined with the aid of open-water test results of the nozzle considered, in combination with a systematic screw series (see, for instance, Fig. 24). In addition, the thrust coefficient C_r and the propeller thrust-total thrust ratio r can be determined. With the aid of the experiments

of the systematic screw series in the axial circular cylinder or using the momentum theorem, the axial velocity V_P in the way of the screw can be found. In addition, the mean axial velocity in the vicinity of the screw due to the nozzle action, U_N , and due to the screw action U_P , can be calculated.

The pressure difference created by the screw becomes

$$\Delta p = \frac{T_p}{\frac{\pi}{4} (D^2 - d_h^2)}$$

In order to avoid an excessive loading of the inner radii of the screw blades, the usual assumption for axial pumps that the head is constant for all radii is abandoned. The following radial $\Delta p(r/R)$ distribution is suggested for the screws in nozzle no. 19 α :

$$\Delta p(r/R) = [4.88 - 4r/R] \cdot [r/R - 0.133] \Delta p$$

The radial distribution of the axial and tangential velocities at the screw may be approximated as follows:

A reasonable radial distribution of the axial velocities due to the nozzle action can be determined from Fig. 32. The results given in this

Analysis of Ducted-Propeller Design

VON LAMEREN

545

INLET RAM RECOVERY VARIATIONS WITH INLET VELOCITY RATIO

(Laboratory Water Channel Test of 2-inch Eye Diameter Waterjet Inlet Models)

SYM	CONFIGURATION
0	RECTANGULAR -
0	ELLIPTICAL - 0.3 IN. AFT LIP RADIUS

--- Estimated Performance of Jacuzzi Inlet Configuration

$$\eta_i = 1 - \frac{(P_{T_{\infty}} - \overline{P_{T_i}})}{q_{\infty}}$$

1111 1 FEORDO 4 554 1/2

SHOFT

TENNY, ON

$$A_{\tau} = ceoss section area = 1.875 + 1.10)5 = 1.5263 \, \text{f}^2$$

$$V_{\tau} = velocity = Q/A_{\tau} = 60/1.5263 = 39.31 \, \text{et/sec}$$

$$de = equiv. \, Diant. = \sqrt{1.5263} = 1.39'$$

$$Re = \frac{V_{\tau} de}{1.24 \times 10^{5}} = \frac{(39.31 \times 1.39)}{1.24 \times 10^{5}} = 4.41 \times 10^{6}$$

$$eff = relative \, roughness = .0000035$$

$$f = relative \, roughness = .0093$$

$$L_{\tau} = Teansition \, relative = 2.5'' = .625'$$

$$4L = f(\frac{L}{Re}) \frac{V_{\tau}}{Z(32)} = (0093) \frac{(.625)}{(.525)} \frac{(39.31)}{(.533)} = .100'$$

BEARING TUBE

$$\begin{aligned}
\Omega_{0} &= c_{ROSS}, c_{ICCTION} \text{ AREA} &= (.96)(.545)(.125)^{2} = 1.1525 \text{ FT} \\
V_{0} &= VELDCITY &= Q/A_{P} = 60/1.1735 = 50.96 \text{ FT/SEC} \\
Q &= 7025 11.00TH = 1.25^{2}
\end{aligned}$$

$$\begin{aligned}
\Omega_{0} &= c_{ROSS}, c_{ICCTION} \text{ AREA} &= (.96)(.545) = 50.96 \text{ FT/SEC} \\
Q &= 7025 11.00TH = 1.25^{2}
\end{aligned}$$

$$\begin{aligned}
\Omega_{0} &= c_{ROSS}, c_{ICCTION} \text{ AREA} &= (.96)(.125) = 50.96 \text{ FT/SEC} \\
Q &= 7025 11.00TH = 1.25^{2}
\end{aligned}$$

$$\begin{aligned}
\Omega_{0} &= c_{ROSS}, c_{ICCTION} \text{ AREA} &= (.96)(.1125) = 50.96 \text{ FT/SEC} \\
Q &= 7025 11.00TH = (.25)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.125)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.125)(.125)(.125) = .98 \text{ FT/SEC} \\
Q &= 7026 11.00TH = (.25)(.12$$

Smurs.

TOTAL INLET LOSS

$$k = \frac{Hk_{\rm F}}{Q_{\rm non}} = \frac{2.257}{(60)^2} = .000766$$

CASING

()

$$H_{PREZ} = \frac{V_{13}}{20} + \frac{V_{12}}{20} = -\frac{10}{0}$$

$$H_{14} = \frac{V_{13}}{(1.177)^{2}(2)(21.1)} = .0112 Q^{2}$$

$$H_{15} = \frac{Q^{2}}{(1.177)^{2}(2)(21.1)} = .0112 Q^{2}$$

$$H_{15} = .000766 Q^{2} \qquad (DEENMITAN *1)$$

$$H_{16} = (2PR) \frac{V_{1}}{20}$$

$$2PR = .00$$

$$H_{16} = (.20) \frac{V_{1}}{20} = .0109 V_{1}^{2}$$

$$H_{17} = .0112 Q^{2} + .000766 Q^{2} + .00010 Q^{2} - .009 V_{1}^{2}$$

$$= .012 Q^{2} - .0109 V_{1}^{2}$$

STRUCTURAL ANALYSES

- · Casury

DISPERILLE COMET

TORSIONAL STRESS

$$N = Pagp. Speed = \frac{600e0}{ApJe, D} = \frac{(5)(62.1)}{(1.1775)(905)(125)} = 3022 RAH$$

$$SHP = 462$$

$$Q' = Pagp Tokque = 63024 SHP = (63024)/462 = 9635 N = Page 3002$$

$$A = SHAFF DIAM, = 1.50", N = .75"$$

$$V = POLAR HOH. OF INERTA = \frac{17}{2} N" = (\frac{17}{2})(.75)^{4} - .4970$$

$$A = Toksichal Strees = Q'N = (9635)(.75) = 14540 pai'$$

$$FACTOR OF SAFETY = 20000 = 4/51 on shear year (Againet 22)$$

WHIRLING FREQUENCY

Noes = 3022 RAM

CADING STOUCTULE

fines - Caring DECIEN DERSEURS

$$= (33.08 + 3.00 - 19.57) \frac{64}{141/} = 2.33 \text{ pm}$$

NOTE: MINIMUM HIS OCCURS DURING BIATIC OPERATION OF CAY, LIMIT

INLET CASING STEESS

ESTIMATED WATERITE

Crising Warry

1.217 Casing

$$A = \left[2(25.85)(8) + (15)(25.85) + 2(\frac{35}{340})(185)(36) + (\frac{35}{340}) \right] (36)(6) = 8.44 = 7^{2}$$

$$A = .3125'', w = (.3125)(44)(.092) = 4.32'' / = 7^{2}$$

$$W = (8.44)(4.32) = 36.46'''$$

TRANSITION

$$A = \left[\frac{2(15416) + 1517}{2}\right] \frac{2.5}{144} = 2.95 ET$$

$$A = \frac{3.25}{2} = 4.32.7 = 4.$$

PROPELLER CANY

$$A = 157 (15)/144 = 4.91 = 7$$

 $f = .3125", w = 4.32 = 72$
 $W = (4.91)(4.32) = 21.21 = 72$

STOURS

$$\nabla = 4(3)(3125)(71)(6) = 15.98.2$$

 $W = .0967/2$
 $W = (5.98)(.096) = 1.53$

BEARING TURE

$$\frac{S_{79}}{1} = \frac{Q}{3.00} = \frac{7.11}{2.86} = \frac{f(7)}{3.53} = \frac{3(10.10) - 6(10.10)(2) - 3(10.10)(10.10)^{2}}{2 + 3.00} = \frac{3(10.10) - 6(10.10)(2)}{2 + 3.00$$

CABING YOTAL

PROPERTY 186

$$W = (47.65) \left(\frac{15}{20}\right) \left(\frac{PR^{3}}{1.01}\right) = 19.90(PAR)$$

$$PAR = 3.00$$

$$= (19.90)(3) \cdot 60^{2} \quad Conv. Const.$$

$$= (60) \left(\frac{1.50}{2.66}\right) = 34^{2} \quad composite Const.$$

Suprains Mant

SMAFT

Works WEIGHT

$$\nabla = (16)(25,46)(18) + (35)(24)^{2}(15) = 4974 \times^{3}$$

TRANSITION

PRODELLER CASING

LOTALS

$$\nabla = 4974 + 2012 + 2649 = 9635.0^2 = 5.58 = 7^3$$

$$10 = (5.56)(64) = 357*$$

VEIGHT SUMMON

, . •	CONVETTORME CONST.	Compositio Const
•	W+ Mars.	Wr MATE.
Casus	75 Arun, (5046-4116)	42 Payesse - Ganss Com
Pagewox	60 Maver A. Be.	34. Parycors GLASS
Suamons	32 Howare 22	32 HOUNNEY 22
DRy Wassur	* (9/	# 801
Warer	(SE	CE
Wer Whianr	the tres	* 57h

DISTRIBUTION LIST

(Contract N00014-80-D-0890)

Copies

7 David W. Taylor Naval Ship Research And Development Center Bethesda, MD 20084 S.S. Scharf, Code 1240 J.G. Stricker, Code 2721 Library, Code 522 Office of Naval Research 800 N. Quincy Arlington, VA 22217 Attn: Scientific Officer, Code 438 Office of Naval Research Resident Representative 715 Broadway, 5th. Floor New York, New York 10003 Defense Technical Information Center Building 5, Cameron Station

Alexandria, VA 22314