

Genetics of Blood GroupSystems

Basic Terminology

- Gene: Section of DNA on chromosome
- Locus: Specific location of gene on chromosome
- Allele: One form of gene at locus
- Antithetical: antigens that represent different forms of a gene product from the same locus
 - Ex. Blood type A and B

Genotype vs. Phenotype

- Genotype: Sequence of DNA inherited (Pp)
- Phenotype: Anything produced by genotype (enzyme, antigen, eye color, hormone levels, etc.)
 - Rh positive
- Amorph: "silent gene"- does not produce any detectable trait
 - O blood group

Homozygous vs. Heterozygous

- Homozygous: 2 of the same allele
- Heterozygous: 2 different alleles
- Codominant: both alleles are expressed and seen phenotypically
 - Most blood group genes are codominant
- Ex. Heterozygous AB has both A and B antigen on RBCs
- Dosage Effect:
 - Stronger reactions with homozygous expression

Genetics of Blood Group Systems

- Each blood group system is controlled by a single gene or a few very closely linked homologous genes
- Each of these genes demonstrates 1 or more antigens
- Antigens are mostly glycoproteins with either a carbohydrate epitope or amino acid/protein epitope
- Antigens are usually the result of a single nucleotide polymorphism (SNP)
- Currently 38 blood group systems

System Name	Gene(s)	Number of Antigens
ABO	ABO	4
Rh	RHD, RHCE	55
MNS	GPA, GPB	49
P1PK	A4GALT	3
Kell	KEL	36
Lewis	FUT3	6
Duffy	ACKR1	5
Kidd	SLC14A1	3
Lutheran	BCAM	25
1	GCNT2	1

Single Nucleotide Polymorphism (SNP)

- A difference in a single DNA nucleotide substitution
 - Missense changes a codon altering amino acid
 - Nonsense changes a codon to form a stop codon
- Most common type of genetic variation among people
 - Occur almost once in every 1,000 nucleotides
- To qualify as a SNP it must occur in at least
 1% of the population
- Usually have no effect on health or development

Duplications and Deletions

- Duplication
 - Whole set of DNA duplicated
 - Can cause pseudogenes
 - Ex. Glycophorin A (M and N antigens) duplicated to form glycophorin B
 - Added 2 antigens (S and s) to red cells
- Deletion
 - Delete part of a gene or a single nucleotide
 - Ex. In ABO blood grouping, single nucleotide deletion causes nonfunctional transferase protein
 - Unable to form blood type "A" or "B"
 - Result is blood type "O"

Inheritance

- Inheritance of blood group genes follow the principles of independent segregation and independent assortment
 - Only 1 member of an allelic pair from each parent is passed to the next generation
 - Genes for different blood group systems are inherited separately from each other

Law of independent segregation

Hardy-Weinberg Equation

- Allows us to calculate the genotype frequency and gene frequency in a population
- Gene (or allele) frequencies tend to remain constant over generations
 p² + 2pq + q² = 1

$$p + q = 1$$
B
b

p= gene (allele) frequency of dominant
allele (B)
q= gene (allele) frequency of recessive
allele (b)

p²⁼ % of homozygous dominant (BB) q²⁼ % of homozygous recessive (bb) 2pq= % of heterozygous (Bb)

Different types of Frequencies

- Gene or Allele frequency
 - how frequently allele appears in population (W or w)
 - Values of p or q
- Genotype frequency
 - How often we see each allele combination in the population (WW, Ww, or ww)
 - Values of p², 2pq, or q²
- Phenotype frequency
 - How often we see the phenotype in the population (purple or white flowers)
 - Values of p² + 2pq = Purple
 - Values of q² = White
 - If codominant, then phenotype 1 would be p² + 2pq and phenotype 2 q² + 2pq

$$p^2 + 2pq + q^2 = 1$$

 $p + q = 1$

Hardy-Weinberg Example 1

In a population of 1000 people, the frequency of DD and Dd (Rh positive) is 84%. The frequency of dd (Rh negative) is 16%. What is the gene frequency of the D allele?

Always start by figuring out what values you are given and what value you are trying to find.

We are given the following:

- Phenotype frequency of Rh positive (84%) p² + 2pq
- Phenotype and genotype frequency of Rh negative (16%) q²

We are looking for:

The gene frequency of the D allele – value of p

Hardy-Weinberg Example 1 Cont

In a population of 1000 people, the frequency of DD and Dd (Rh positive) is 84%. The frequency of dd (Rh negative) is 16%. What is the gene frequency of the D allele?

```
q^2= dd which is 0.16

q = \sqrt{0.16} = 0.4

p^2 + 2pq + q^2 = 1

p + q = 1

p + q = 1

p = 1 - q

p = 1 - 0.4 = 0.6 \times 100 = 60\%
```


Hardy-Weinberg Example 2

Determine the gene frequencies of the K and k alleles in a population where the K+ phenotype is observed in 9% of individuals tested. Determine the genotype frequencies of those that are KK, Kk, and kk. Assume these alleles are codominant.

We are given the following:

• Phenotype frequency of K+ = 9% ($p^2 + 2pq$)

We are looking for the following:

- Gene frequency of K (p) and k (q)
- Genotype frequencies of KK (p²), Kk (2pq), and kk (q²)

Hardy-Weinberg Example 2 continued

- Start by finding the values of K and k (p and q)
- Have the value of $p^2 + 2pq = 9\%$ or 0.09

$$p^{2} + 2pq + q^{2} = 1$$
 $p + q = 1$
 $0.09 + q^{2} = 1$ $p = 1-q$
 $q^{2} = 1 - 0.09 = 0.91$ $p = 1-.95$
 $q = \sqrt{0.91} = 0.95$ $p = 0.05$

- K (or p) = 0.05 or 5%
- k (or q) = .95 or 95%

Hardy-Weinberg Example 2 continued

- Next find the genotype frequencies for KK, Kk, and kk
- We now know K (or p) = 5% and k (or q) = 95%

$$KK = p^2$$

 $KK = (0.05)^2$
 $KK = 0.0025 \text{ or } 0.25\%$

$$Kk = 2pq$$
 $Kk = 2(0.05)(0.95)$
 $Kk = 0.0950 \text{ or } 9.5\%$

$$kk = q^2$$

 $kk = (0.95)^2$
 $kk = 0.9025 \text{ or } 90\%$

Cleveland Clinic

Every life deserves world class care.

