SNE3002 Linear Algebra – 2025 Spring

Scalars, Vectors, Matrices

Scalars and Arrays

> Scalars: numbers

Ex. 25.773,
$$\sqrt{175}$$
, 0, -4.8, π^2 , 2.99999..., ∞

> Arrays: scalars that have been organized somehow into lists

25.773	$\sqrt{101}$	е
25.774	$\sqrt{103}$	π
25.802	$\sqrt{107}$	i
25.103	$\sqrt{109}$	e^{3i}

Def. Vectors and \mathbb{R}^n

A n-dimensional **column vector**, often simply called a vector, is an ordered list of n real numbers, written as a column within square brackets:

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
.

Likewise, row vector is an ordered list of n real numbers arranged in a single row:

$$\begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^{\top} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

We write \mathbb{R}^n for the set of all n-dimensional column vectors. It is also known as **n-dimensional Euclidean space**.

Remark. Points vs Vectors

Algebraically, they seem to be almost the same thing because they are both an ordered pair of real numbers. Geometrically, a point is a location in space, and has neither a length nor direction, whereas a vector has length and direction, but is not fixed at any location.

> Zero vector: a vector with all elements equal to zero

$$-0_n = [\underbrace{0 \quad \cdots \quad 0}_{n}]^{\mathsf{T}}$$

> Unit vector: a vector with all elements equal to zero, except on element which is equal to one.

$$-e_1 = [1 \quad 0 \quad 0]^{\mathsf{T}}, \ e_2 = [0 \quad 1 \quad 0]^{\mathsf{T}}, \ e_3 = [0 \quad 0 \quad 1]^{\mathsf{T}}$$

> Ones vector: a vector with all elements equal to one

$$-1_n = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^\mathsf{T}$$

Def. Addition of Vectors in \mathbb{R}^n

For vectors $\mathbf{u} = [u_1 \quad \cdots \quad u_n]^{\mathsf{T}}, \mathbf{v} = [v_1 \quad \cdots \quad v_n]^{\mathsf{T}} \in \mathbb{R}^n$, the sum $\mathbf{u} + \mathbf{v}$ is defined by

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1 \quad \cdots \quad u_n + v_n]^{\mathsf{T}}.$$

Remark. Properties of Vector Addition

- 1) The commutative law of addition: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 2) The associative law of addition: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 3) The existence of an additive unit: $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 4) The existence of an additive inverse: $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Def. Scalar Multiplication of Vectors in \mathbb{R}^n

If $k \in \mathbb{R}$ is a scalar and $u \in \mathbb{R}^n$ is a vector, then their scalar multiplication $ku \in \mathbb{R}$ is defined by

$$k\mathbf{u} = [ku_1 \quad \cdots \quad ku_n]^{\mathsf{T}}.$$

Remark. Properties of Scalar Multiplication

- 1) The distributive law over vector addition: $k(\mathbf{u} + \mathbf{v}) = k\mathbf{v} + k\mathbf{u}$
- 2) The distributive law over scalar addition: $(k + l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$
- 3) The associative law for scalar multiplication: $k(l\mathbf{u}) = (kl)\mathbf{u}$
- 4) The rule for multiplication by 1: $1\mathbf{u} = \mathbf{u}$

Def. Matrix

A **matrix** is a rectangular array of numbers

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix},$$

where the a_{ij} are scalars, called the entries or components of A. The size or dimension of a matrix is defined as $m \times n$, where m and n are the number of rows and columns, respectively.

Def. Square Matrix

A matrix of size $n \times n$ is called a square matrix.

Remark. Properties of Scalar Multiplication

A matrix of size $n \times 1$ is called a column vector.

A matrix of size $1 \times n$ is called a row vector.

Def. Addition of Matrices in \mathbb{R}^n

Let $A=[a_{ij}]$, and $B=[b_{ij}]$ be two $m\times n$ -matrices. Then A+B=C where C is the $m\times n$ -matrix $C=[c_{ij}]$ defined by

$$c_{ij} = a_{ij} + b_{ij}$$

Def. Scalar Multiplication of a Matrix in \mathbb{R}^n

If k is a scalar and $A = [a_{ij}]$ is a matrix, then $kA = [ka_{ij}]$

Remark. Concatenation of Matrices

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times p}$, horizontal concatenation $C = [A|B] \in \mathbb{R}^{n \times (m+p)}$

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{p \times m}$, vertical concatenation $C = \begin{bmatrix} A \\ B \end{bmatrix} \in \mathbb{R}^{(n+p) \times m}$

Def. Matrix Multiplication

Let $A = [a_{ij}] \in \mathbb{R}^{m \times n}$ and $B = [b_{jk}] \in \mathbb{R}^{n \times p}$. Then their product is the $m \times p$ -matrix $AB = [c_{ik}]$ whose (i, k)-entry is defined by

$$c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}$$

> Q. Compute $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 9 & 6 \\ 8 & 5 \\ 7 & 4 \end{bmatrix}$

$$> Q.$$
 $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} [1 2 1 0]$

> Q.
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

$$> Q. \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}?$$

- > Square matrix: size $n \times n$ matrix
 - The diagonal of the square matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \iff \operatorname{diag}(A) = \begin{bmatrix} a_{11} & a_{22} & \cdots & a_{nn} \end{bmatrix}$$

- Other elements? Off-diagonal
- > Identity matrix has ones along the diagonal, zeros everywhere else.
 - Other words, I = $[\delta_{ij}]$ where δ is a Kronecker delta function.

$$\begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$I_{1} \qquad I_{2} \qquad I_{3} \qquad I_{4}$$

Remark. Properties of Matrix Multiplication

- 1) The associative law of multiplication: (AB)C = A(BC)
- 2) The existence of multiplicative units: $I_m A = A = A I_n$, $A \in \mathbb{R}^{m \times n}$
- 3) Compatibility with scalar multiplication: (rA)B = r(AB) = A(rB)
- 4) The distributive laws of multiplication over addition

$$A(B+C) = AB + AC$$
$$(B+C)A = BA + CA$$

> Q.
$$\begin{bmatrix} 4 & 2 & 6 \end{bmatrix}$$
 $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 5 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 & 0 \\ 7 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}$

> The determinant is a function that maps a square matrix to a real number.

-
$$\det([a]) = a$$

$$- \det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \operatorname{ad} - \operatorname{bc}$$

$$-\det\begin{pmatrix}\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \end{pmatrix} = a \cdot \det\begin{pmatrix}\begin{bmatrix} e & f \\ h & i \end{bmatrix} \end{pmatrix} - b \cdot \det\begin{pmatrix}\begin{bmatrix} d & f \\ g & i \end{bmatrix} \end{pmatrix} + c \cdot \det\begin{pmatrix}\begin{bmatrix} d & e \\ g & h \end{bmatrix} \end{pmatrix}$$
$$= a(ei - hf) - b(di - fg) + c(dh - eg)$$

> Q. compute
$$det(A)$$
, where $A = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$

> For higher dimensional matrix, det(A) can be calculated by picking a row or column.

>
$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

or $\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$

- > C_{ij} is a **cofactor** defined by **minor** M_{ij} : $C_{ij} = (-1)^{i+j} M_{ij}$
- > Minor M_{ij} is the determinant of the $(n-1)\times (n-1)$ -matrix that is obtained by deleting the ith row and the jth column of A.

$$egin{bmatrix} M_{12} \ + & - & + & - \ - & + & - & + \ + & - & + & - \ - & + & - & + \ \end{bmatrix} \quad egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \ \end{bmatrix}$$

> Q.
$$\det \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 2 & 3 \\ 0 & 3 & 0 & 5 \\ 3 & 0 & 3 & 2 \end{bmatrix} \end{pmatrix}$$

$$> Q. \det \left(\begin{bmatrix} 15 & 1 & 6 & 36 \\ 7 & 0 & 6 & 12 \\ 0 & 0 & 0 & 3 \\ 3 & 0 & 1 & 62 \end{bmatrix} \right)$$

Note

> AlphaTensor by DEEPMIND finds new Algorithms for Matrix Multiplication