Práctico 6

Prueba de Programas

- Programas Funcionales -

Objetivos: Extraer programas funcionales a partir de pruebas. Probar la corrección de programas con respecto a una especificación: terminación de la recursión y corrección propiamente dicha. Especificación de programas.

Principales tácticas a utilizar en estos ejercicios:

```
Extraction Language ...Extraction "..." IDlema (y variantes)Functional Scheme, Function, functional induction.
```

Principales bibliotecas a consultar

- [-] theories\RELATIONS\WELLFOUNDED\ y en particular Inverse_Image.v.
- [-] theories\ARITH\ y en particular Wf_nat.v.

Principales herramientas automáticas

- Hint
- Auto
- Omega

Ejercicio 6.1.

1. Demuestre en Coq el siguiente lema que especifica la función predecesor para números naturales:

```
Lemma predspec : forall n : nat, \{m : nat \mid n = 0 / m = 0 / n = S m\}.
```

2. Realice la siguiente secuencia de pasos para extraer su programa Coq en un programa Haskell.

```
Extraction Language Haskell.
Extraction "predecesor" predspec.
```

3. Inspeccione el archivo predecesor. ha para ver el código extraído. Puede cargarlo llamando al compilador de Haskell.

Ejercicio 6.2.

1. Considere las definiciones de árbol binario y espejo del práctico 4. Demuestre que para todo árbol binario existe otro que es su espejo, o sea,

- 2. Redemuestre el lema anterior usando (verificando) la función inverse del práctico 4 (la cual, dado un árbol binario construye otro que es su espejo). Considere la declaración:

 Hint Construtors mirror, y analice la táctica "functional induction".
- 3. Extraiga su programa Coq en un program Haskell llamado mirror_function.hs e inspeccione el archivo para ver el código extraído.

Ejercicio 6.3.

1. Considere la siguiente simplificación de los tipos del ejercicio 5.4 del práctico anterior.

y los siguientes programas de evaluación (ansiosa y perezosa) de expresiones.

```
Fixpoint beval (e : BoolExpr) : Value :=
  match e with
   bbool b => b
  or e1 e2 =>
    match beval e1, beval e2 with
        | false, false => false
        _, _ => true
    end
  | bnot el => if beval el then false else true
Fixpoint sbeval (e : BoolExpr) : Value :=
  match e with
    bbool b => b
  or e1 e2 => match sbeval e1 with
            | true => true
            _ => sbeval e2
            end
  | bnot el => if sbeval el then false else true
  end.
```

Demuestre sendos lemas de corrección (bevalc y sbevalc) que establezcan que los

```
programas beval y sbeval son correctos con respecto a la especificación: forall e:BoolExpr, {b:Value | (BEval e b)}.
```

- 2. Redemuestre los lemas poniendo en Hint los constructores de la relación BEval.
- 3. Extraiga de los lemas de corrección código Haskell de los evaluadores demostrados.
- 4. Regenere el archivo Haskell del punto anterior de forma que el tipo bool de Coq sea extraído como el tipo bool de Haskell.

Ejercicio 6.4.

Considere las siguientes definiciones que formalizan la relación de permutación entre listas:

```
Section list_perm.
```

Hint Constructors perm.

- 1. Defina una función reverse que dada una lista retorne la lista invertida.
- 2. Pruebe que la función reverse de una lista es una implementación de la siguiente especificación:

```
Lemma Ej6_4: forall 1: list, {12: list | perm 1 12}.
...
End list_perm.
```

Ejercicio 6.5.

1. Defina los predicados Le:nat->nat->Prop y Gt:nat->nat->Prop que representan las relaciones *menor o igual* y *mayor* entre números naturales respectivamente.

- 2. Demuestre que el orden entre números naturales es decidible probando el siguiente lema: Le_Gt_dec: forall n m:nat, {(Le n m)}+{(Gt n m)}. Para ello, escriba un programa leBool:nat->nat->bool que "decida" si un número natural es menor o igual que otro y utilícelo junto con la táctica functional induction en la prueba del lema.
- 3. Considere la función leBool definida en la parte anterior. Demuestre el lema de decidibilidad le_gt_dec: forall n m:nat, {(le n m)}+{(gt n m)} donde le y gt son las relaciones de la biblioteca Coq. Para hacer la prueba emplee la táctica functional induction e intente demostrar los objetivos aritméticos con la táctica omega (incluya previamente el módulo omega).

Ejercicio 6.6.

Considere la siguiente especificación de la división euclideana vista en el curso:

```
Definition spec_res_nat_div_mod (a b:nat) (qr:nat*nat) :=
  match qr with
    (q,r) => (a = b*q + r) /\ r < b
  end.

Definition nat_div_mod :
    forall a b:nat, not(b=0) -> {qr:nat*nat | spec_res_nat_div_mod a b qr}.
```

Derive a partir de la especificación anterior un algoritmo para la división. Sugerencia: considere en la prueba la lógica de la siguiente solución (con b>0):

```
    0 divmod b = (0,0)
    (n+1) divmod b = let (q,r) = n divmod b
        in if r < b-1
        then (q,r+1)
        else (q+1,0)</li>
```

Incorpore al contexto los siguientes módulos:

```
Require Import Omega.
Require Import DecBool.
Require Import Compare_dec.
Require Import Plus.
Require Import Mult.
```

Ejercicio 6.7.

Considere las siguientes definiciones que permiten formalizar una relación de subárbol entre árboles binarios.

```
Inductive tree (A:Set) : Set :=
   | leaf : tree A
   | node : A -> tree A -> tree A.
```

Pruebe que la relación tree_sub es un orden bien fundado.

```
Theorem well_founded_tree_sub : forall A:Set, well_founded (tree_sub A).
```

Ejercicio 6.8.

Considere los tipos value, BoolExpr y BEval definidos en el ejercicio 3.

1. Defina un orden bien fundado elt (*Expresions Less Than*) que justifique la terminación de los programas que evalúan expresiones (de forma ansiosa y perezosa) definidos en el ejercicio 3. Defina el orden a partir de una función size de tipo BooExpr->nat, como sigue:

```
Definition elt (e1 e2 : BoolExpr) := size e1 < size e2.
```

2. Demuestre que el orden elt es bien fundado. Sugerencia: utilice los módulos wf_nat e Inverse_Image.

Ejercicio 6.9.

Defina en Coq el algoritmo de la división por restas sucesivas. Tener en cuenta que este algoritmo no se define por recursión estructural y es necesario considerar un orden bien fundado que asegure la terminación.

```
    if a < b then (a divmod b) = (0,a)</li>
    else (a divmod b) = let (q,r) = (a-b divmod b)
    in ((S q),r)
```

Ejercicio 6.10 (difícil).

Considere lista de naturales y la función insert_sort del práctico 4. Demuestre que dicha función es una implementación correcta de la siguiente especificación:

Nota: considere la variante de la definición de permutaciones entre listas del ejercicio 4 que

Desarrollo Interactivo de Programas Certificados

sigue:

Sustituir el constructor:

```
|perm_app: forall a l, perm (cons a l) (append l (cons a nil))
por el constructor:
|p_ccons: forall a b l (perm (cons a (cons b l)) (cons b (cons a l)))
```

Ejercicio 6.11 (adicional).

Leer el caso de estudio planteado en el capítulo 11 del libro "*Interactive Theorem Proving and Program Development (Coq'Art)*", Yves Bertot – Pierre Casterán.

Ejercicios a entregar: <u>6.3</u>, <u>6.4</u>, <u>6.5</u>, <u>6.6</u>, <u>6.7</u>, <u>6.8</u>.

Ver fecha de envío en el calendario de entregas, en el sitio web del curso.

El archivo a entregar (NombreApellido.v) debe compilar correctamente en Coq.