Análise experimental de algoritmos usando Python

Patricia Mariana Ramos Marcolino

pmrmarcolino@hotmail.com

Eduardo Pinheiro Barbosa

eduardptu@hotmail.com

Faculdade de Computação Universidade Federal de Uberlândia

1 de julho de 2016

Lista de Figuras

2.1	A analise do grafico para 2^{32} segue abaixo para mergesort de vetor aleatorio. Tendo a função $T(n) = 5.3001 * n * ln(n) - 0.0075$ e para o $n = 2^{32}$, $T(2^{32}) = 5.04916 * 10^{11}$	9
2.2	A análise do grafico para 2^{32} segue abaixo para mergesort de vetor aleatorio. Tendo a função $T(n) = 0.1108 * n * ln(n) + 138.4156$ e para o $n = 2^{32}$,	
2.3	$T(2^{32}) = 1.05554 * 10^{10}$	10 11
2.4	A análise do grafico para 2^{32} segue abaixo para mergesort de vetor crescente. Tendo a função $T(n)=0.11083*n*ln(n)-138.4156$ e para o $n=2^{32}$, $T(2^{32})=1.05583*10^{10}$	12
2.5	A análise do grafico para 2^{32} segue abaixo para mergesort de vetor decrescente. Tendo a função $T(n) = 5.2187e - 6 * n * ln(n) - 0.00706$ e para o $n = 2^{32}$, $T(2^{32}) = 4.97162 * 10^5$	13
2.6	A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor crescente. Tendo a função $T(n) = 0.11083*n*ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583*10^{10}$	14
2.7	A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 10%. Tendo a função $T(n) = 5.2357e - 6 * n * ln(n) - 0.0073$ e para o $n = 2^{32}$, $T(2^{32}) = 4.98781 * 10^5$	15
2.8	A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 10%. Tendo a função $T(n) = 0.11083 * n * ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	16
2.9	A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 20%. Tendo a função $T(n) = 5.1840e - 6 * n * ln(n) - 0.0066$ e para o $n = 2^{32}$, $T(2^{32}) = 4.93856 * 10^5$	17
2.10	90	18
2.11	A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 30%. Tendo a função $T(n) = 5.2132e - 6 * n * ln(n) - 0.007$ e para	20
2.12	A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 30%. Tendo a função $T(n) = 0.11083 * n *$	
2.13	$ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	21 22

2.14	A análise numero de comparações do grafico para 2^{32} segue abaixo para mer-	
	gesort de vetor quase crescente 40%. Tendo a função $T(n) = 0.11083 * n *$	
	$ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	23
2.15	A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase	
	crescente 50%. Tendo a função $T(n) = 5.2286e - 6 * n * ln(n) - 0.0071$ e para	
	o $n = 2^{32}$, $T(2^{32}) = 498105$	24
2.16		
	gesort de vetor quase crescente 50%. Tendo a função $T(n) = 0.11083 * n *$	
	$ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	25
2.17	A análise do grafico para 2 ³² segue abaixo para mergesort de vetor quase	
	decrescente 10%. Tendo a função $T(n) = 5.1842e - 6 * n * ln(n) - 0.0068$ e	
	para o $n = 2^{32}$, $T(2^{32}) = 4.93875 * 10^5$	26
2.18	A análise numero de comparações do grafico para 2 ³² segue abaixo para mer-	
	gesort de vetor quase decrescente 10%. Tendo a função $T(n) = 0.11083 * n *$	
	$ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	27
2.19		
	decrescente 20%. Tendo a função $T(n) = 5.4214e - 6 * n * ln(n) - 0.0077$ e	
	para o $n = 2^{32}$, $T(2^{32}) = 5.16472 * 10^5$	28
2.20		
	gesort de vetor quase decrescente 20%. Tendo a função $T(n) = 0.11083 * n *$	
	$ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	29
2.21		
	decrescente 30%. Tendo a função $T(n) = 5.1706e - 6 * n * ln(n) - 0.0067$ e	
	para o $n = 2^{32}$, $T(2^{32}) = 4.92579 * 10^5$	31
2.22	A análise numero de comparações do grafico para 2 ³² segue abaixo para mer-	
	gesort de vetor quase decrescente 30%. Tendo a função $T(n) = 0.11083 * n *$	
	$ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	32
2.23	A análise do grafico para 2 ³² segue abaixo para mergesort de vetor quase	
	decrescente 30%. Tendo a função $T(n) = 5.1621e - 6 * n * ln(n) - 0.0089$ e	
	para o $n = 2^{32}$, $T(2^{32}) = 4.91770 * 10^5$	33
2.24	A análise numero de comparações do grafico para 2 ³² segue abaixo para mer-	
	gesort de vetor quase decrescente 40%. Tendo a função $T(n) = 0.11083 * n *$	
	$ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	34
2.25	A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase	
	decrescente 30%. Tendo a função $T(n) = 5.2936e - 6 * n * ln(n) - 0.0075$ e	
	para o $n = 2^{32}$, $T(2^{32}) = 5.04297 * 10^5$	35
2.26	A análise numero de comparações do grafico para 2 ³² segue abaixo para mer-	
	gesort de vetor quase decrescente 50%. Tendo a função $T(n) = 0.11083 * n *$	
	$ln(n) - 138.4156$ e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$	36

Lista de Tabelas

2.1	caso é a 16	8
2.2	Tabela com vetor teste crescente : a linha de interesse analisada para este caso	
2.3	é a 16	9
2.4	Tabela com vetor teste quase crescente 10%: a linha de interesse analisada para este caso é a 16	10
2.5	Tabela com vetor teste quase crescente 20%: a linha de interesse analisada para este caso é a 16	11
2.6	Tabela com vetor teste quase crescente 30%: a linha de interesse analisada para este caso é a 16	19
2.7	Tabela com vetor teste quase crescente 40%: a linha de interesse analisada para este caso é a 15	19
2.8	Tabela com vetor teste quase crescente 50%: a linha de interesse analisada para este caso é a 16	20
2.9	Tabela com vetor teste quase decrescente 10%: a linha de interesse analisada para este caso é a 16	21
2.10	Tabela com vetor teste quase decrescente 20%: a linha de interesse analisada para este caso é a 16	22
2.11	^	30
2.12	Tabela com vetor teste quase decrescente 40%: a linha de interesse analisada	
2.13	para este caso é a 16	30

Lista de Listagens

A.1	/mergesort/mergesort.py	•		•	 										37
B.1	/mergesort/ensaio.py				 										38

Sumário

Lista de Figuras						
Li	sta de Tabelas	4				
1	Análise 1.0.1 Introdução	7 7 7				
2	Resultados 2.1 Tabelas	8				
A	pêndice	37				
A	${\bf Arquivo}~/{\bf mergesort/mergesort.py}$	37				
В	Arquivo/mergesort/ensaio.py	38				

Capítulo 1

Análise

1.0.1 Introdução

O mergesort, é um algoritmo de ordenação que pode ser obtido especializando a formulação recursiva da divisão e onquista binária, onde divide todo o vetor usando recursividade até chegar ao caso base. após chegar ao caso base ele vem desempilhando comparando menores massas de dados.

Ideia básica:

Dividir: dividir a lista em duas listas com cerca da metade do tamanho.

Conquistar: dividir cada uma das d uas sublistas recursivamente até que tenham tamanho um.

Combinar: fundir as duas sublistas de volta em uma lista ordenada.

1.0.2 Desempenho do mergesort

Primeiramente vamos definir o que é melhor, médio e pior caso para o MergeSort.

Melhor Caso – nunca é necessário trocar após comparações.

Médio Caso – há necessidade de haver troca após comparações.

Pior Caso – sempre é necessário trocar após comparações.

P ara o MergeSort não tem tanta importância se o vetor está no melhor, médio ou pior caso, porque para qualquer que seja o caso ele sempre terá a complexidade de ordem

n * logn

Capítulo 2

Resultados

2.1 Tabelas

n	comparações	tempo(s)
32	31	0.000519
64	63	0.001137
128	127	0.002478
256	255	0.005270
512	511	0.012029
1024	1023	0.026283
2048	2047	0.060780
4096	4095	0.146784
8192	8191	0.398959

Tabela 2.1: Tabela com vetor teste quase aletorio: a linha de interesse analisada para este caso \acute{e} a 16

n	comparações	tempo(s)
32	31	0.000513
64	63	0.001113
128	127	0.002482
256	255	0.005269
512	511	0.011844
1024	1023	0.026106
2048	2047	0.060101
4096	4095	0.145868
8192	8191	0.391886

Tabela 2.2: Tabela com vetor teste crescente : a linha de interesse analisada para este caso é a 16

Figura 2.1: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor aleatorio. Tendo a função T(n) = 5.3001 * n * ln(n) - 0.0075 e para o $n = 2^{32}$, $T(2^{32}) = 5.04916 * 10^{11}$

n	comparações	tempo(s)
32	31	0.000527
64	63	0.001117
128	127	0.002405
256	255	0.005217
512	511	0.011778
1024	1023	0.026174
2048	2047	0.060149
4096	4095	0.148273
8192	8191	0.391649

Tabela 2.3: Tabela com vetor teste decrescente: a linha de interesse analisada para este caso é a 16

Figura 2.2: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor aleatorio. Tendo a função T(n) = 0.1108 * n * ln(n) + 138.4156 e para o $n = 2^{32}$, $T(2^{32}) = 1.05554 * 10^{10}$

n	$comparaç\~{o}es$	tempo(s)
32	31	0.000506
64	63	0.001116
128	127	0.002468
256	255	0.005274
512	511	0.011579
1024	1023	0.026290
2048	2047	0.059959
4096	4095	0.146191
8192	8191	0.393734

Tabela 2.4: Tabela com vetor teste quase crescente 10%: a linha de interesse analisada para este caso é a 16

Figura 2.3: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor crescente. Tendo a função T(n) = 5.2118e - 6 * n * ln(n) - 0.00719 e para o $n = 2^{32}$, $T(2^{32}) = 4.96504 * 10^5$

n	comparações	tempo(s)
32	31	0.000570
64	63	0.001104
128	127	0.002437
256	255	0.005351
512	511	0.011737
1024	1023	0.026590
2048	2047	0.061359
4096	4095	0.148785
8192	8191	0.388701

Tabela 2.5: Tabela com vetor teste quase crescente 20%: a linha de interesse analisada para este caso é a 16

Figura 2.4: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor crescente. Tendo a função T(n)=0.11083*n*ln(n)-138.4156 e para o $n=2^{32}$, $T(2^{32})=1.05583*10^{10}$

Figura 2.5: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor decrescente. Tendo a função T(n) = 5.2187e - 6 * n * ln(n) - 0.00706 e para o $n = 2^{32}$, $T(2^{32}) = 4.97162 * 10^5$

Figura 2.6: A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor crescente.

Figura 2.7: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 10%. Tendo a função T(n) = 5.2357e - 6*n*ln(n) - 0.0073 e para o $n = 2^{32}$, $T(2^{32}) = 4.98781*10^5$

Figura 2.8: A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 10%.

Figura 2.9: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 20%. Tendo a função $T(n)=5.1840\mathrm{e}-6*n*ln(n)-0.0066$ e para o $n=2^{32}$, $T(2^{32})=4.93856*10^5$

Figura 2.10: A análise numero de comparações do grafico para 2³² segue abaixo para mergesort de vetor quase crescente 20%.

n	comparações	tempo(s)
32	31	0.000530
64	63	0.001109
128	127	0.002468
256	255	0.005251
512	511	0.011655
1024	1023	0.025999
2048	2047	0.060406
4096	4095	0.148614
8192	8191	0.391055

Tabela 2.6: Tabela com vetor teste quase crescente 30%: a linha de interesse analisada para este caso é a 16

n	comparações	tempo(s)
32	31	0.000511
64	63	0.001165
128	127	0.002398
256	255	0.005383
512	511	0.011723
1024	1023	0.026041
2048	2047	0.061550
4096	4095	0.147485
8192	8191	0.386246

Tabela 2.7: Tabela com vetor teste quase crescente 40%: a linha de interesse analisada para este caso é a 15

Figura 2.11: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 30%.

 $\textit{Tendo a função } T(n) = 5.2132 e - 6*n*ln(n) - 0.007 \textit{ e para o } n = 2^{32}, \ T(2^{32}) = 4.96638*10^5$

n	comparações	tempo(s)
32	31	0.000517
64	63	0.001173
128	127	0.002439
256	255	0.005322
512	511	0.011837
1024	1023	0.026087
2048	2047	0.060615
4096	4095	0.147344
8192	8191	0.392809

Tabela 2.8: Tabela com vetor teste quase crescente 50%: a linha de interesse analisada para este caso é a 16

Figura 2.12: A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 30%.

n	comparações	tempo(s)
32	31	0.000538
64	63	0.001107
128	127	0.002456
256	255	0.005264
512	511	0.011877
1024	1023	0.026144
2048	2047	0.060374
4096	4095	0.147950
8192	8191	0.388941

Tabela 2.9: Tabela com vetor teste quase decrescente 10%: a linha de interesse analisada para este caso é a 16

Figura 2.13: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 40%. Tendo a função T(n) = 5.1550e - 6 * n * ln(n) - 0.0065 e para o $n = 2^{32}$, $T(2^{32}) = 4.91093 * 10^5$

n	comparações	tempo(s)
32	31	0.000518
64	63	0.001109
128	127	0.002432
256	255	0.005340
512	511	0.011881
1024	1023	0.027017
2048	2047	0.062077
4096	4095	0.150054
8192	8191	0.407999

Tabela 2.10: Tabela com vetor teste quase decrescente 20%: a linha de interesse analisada para este caso é a 16

Figura 2.14: A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 40%. Tendo a função T(n) = 0.11083*n*ln(n) - 138.4156 e para o $n = 2^{32}$, $T(2^{32}) = 1.05583*10^{10}$

Figura 2.15: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 50%.

Tendo a função T(n) = 5.2286e - 6 * n * ln(n) - 0.0071 e para o $n = 2^{32}$, $T(2^{32}) = 498105$

Figura 2.16: A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor quase crescente 50%. Tendo a função T(n) = 0.11083 * n * ln(n) - 138.4156 e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$

Figura 2.17: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase decrescente 10%.

Tendo a função T(n) = 5.1842e - 6*n*ln(n) - 0.0068 e para o $n = 2^{32}$, $T(2^{32}) = 4.93875*10^5$

Figura 2.18: A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor quase decrescente 10%. Tendo a função T(n) = 0.11083 * n * ln(n) - 138.4156 e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$

 ${\bf Figura~2.19:}~A~an\'alise~do~grafico~para~2^{32}~segue~abaixo~para~mergesort~de~vetor~quase~decrescente$ 20%.

Tendo a função T(n) = 5.4214e - 6*n*ln(n) - 0.0077 e para o $n = 2^{32}$, $T(2^{32}) = 5.16472*10^5$

Figura 2.20: A análise numero de comparações do grafico para 2^{32} segue abaixo para mergesort de vetor quase decrescente 20%. Tendo a função T(n) = 0.11083 * n * ln(n) - 138.4156 e para o $n = 2^{32}$, $T(2^{32}) = 1.05583 * 10^{10}$

n	comparações	tempo(s)
32	31	0.000535
64	63	0.001124
128	127	0.002435
256	255	0.005314
512	511	0.011761
1024	1023	0.026343
2048	2047	0.061023
4096	4095	0.147302
8192	8191	0.388036

Tabela 2.11: Tabela com vetor teste quase decrescente 30%: a linha de interesse analisada para este caso é a 16

n	comparações	tempo(s)
32	31	0.000504
64	63	0.001126
128	127	0.002481
256	255	0.005277
512	511	0.011759
1024	1023	0.025893
2048	2047	0.060078
4096	4095	0.146398
8192	8191	0.387558

 $\textbf{Tabela 2.12:} \ \textit{Tabela com vetor teste quase decrescente 40\%: a linha de interesse analisada para este caso \'e a 16$

Figura 2.21: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase decrescente 30%.

 $\textit{Tendo a função } T(n) = 5.1706 e - 6*n*ln(n) - 0.0067 \textit{ e para o } n = 2^{32}, \ T(2^{32}) = 4.92579*10^5$

n	comparações	tempo(s)
32	31	0.000520
64	63	0.001125
128	127	0.002412
256	255	0.005348
512	511	0.011810
1024	1023	0.026291
2048	2047	0.060189
4096	4095	0.147712
8192	8191	0.398088

Tabela 2.13: Tabela com vetor teste quase decrescente 50%: a linha de interesse analisada para este caso é a 16

Figura 2.22: A análise numero de comparações do grafico para 2³² segue abaixo para mergesort de vetor quase decrescente 30%.

Figura 2.23: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase decrescente 30%.

Tendo a função T(n) = 5.1621e - 6*n*ln(n) - 0.0089 e para o $n = 2^{32}$, $T(2^{32}) = 4.91770*10^5$

Figura 2.24: A análise numero de comparações do grafico para 2³² segue abaixo para mergesort de vetor quase decrescente 40%.

Figura 2.25: A análise do grafico para 2^{32} segue abaixo para mergesort de vetor quase decrescente 30%.

Tendo a função T(n) = 5.2936e - 6*n*ln(n) - 0.0075 e para o $n = 2^{32}$, $T(2^{32}) = 5.04297*10^5$

Figura 2.26: A análise numero de comparações do grafico para 2³² segue abaixo para mergesort de vetor quase decrescente 50%.

Apêndice A

Arquivo ../mergesort/mergesort.py

Listagem A.1: ../mergesort/mergesort.py

```
1 import math
3 def intercala(A,p,q,r):
   B = [0] *len(A)
   for i in range(p, (q+1)):
     B[i] = A[i]
    for j in range(q+1, (r+1)):
     B[r+q+1-j] = A[j]
   i = p
   j = r
    for k in range (p, (r+1)):
11
     if(B[i] <= B[j]):
12
        A[k] = B[i]
13
        i = i+1
14
      else:
15
        A[k] = B[j]
16
        j = j−1
18 def merge(A):
    mergesort (A, 0, len(A) - 1)
19
21 @profile
22 def mergesort (A, esquerda, direita):
   if (esquerda<direita):</pre>
     meio = math.floor((esquerda+direita)/2)
     mergesort (A, esquerda, meio)
     mergesort (A, meio+1, direita)
      intercala (A, esquerda, meio, direita)
27
```

Apêndice B

Arquivo ../mergesort/ensaio.py

Listagem B.1: ../mergesort/ensaio.py

```
import numpy as np
import argparse

from mergesort import *

parser = argparse.ArgumentParser()
parser.add_argument("arq_vetor",

help="nome do arquivo contendo o vetor de teste")

args = parser.parse_args()

the contendo o vetor e passado na linha de comando como um
the vetor do Numpy.

the vetor do Numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy.

representador de teste to the comando como um
the vetor do numpy and the comando como um
the vetor do numpy and the comando como um
the vetor do numpy and the comando como um
the vetor do numpy and the comando como um
the vetor do numpy and the comando como um
the vetor do numpy and the comando como um
the vetor do numpy and the comando como um
the vetor do numpy and the comando como um
t
```