TokenScope: Automatically Detecting Inconsistent Behaviors of Cryptocurrency Tokens in Ethereum

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security

Ting Chen¹, Yufei Zhang¹, Zihao Li¹, Xiapu Luo², Ting Wang³, Rong Cao¹, Xiuzhuo Xiao¹, Xiaosong Zhang¹

1: University of Electronic Science and Technology of China

2: The Hong Kong Polytechnic University

3: Pennsylvania State University

Background

- Ethereum: a famous blockchain
 - Account external owned account (EOA) and smart contract account
 - Smart contract developed => compiled => deployed => invoked => emit events
 - Transaction

 a message sent by an account
 all historical transactions can be replayed

Background

- Cryptocurrency
 native assets (*) (*) and tokens (*)
- Token
 a smart contract that records the information of token holders and their shares, and supports token activities.
- Token standard to regulate the interactions between token contracts and users as well as the third-party tools
- ERC20 standard function transferFrom(address_from, address_to, uint256_value) public returns (bool success), transfer(), event Transfer

Problem

- Users usually employ third-party tools to manipulate tokens: wallet, exchange markets, blockchain explorers
- These tools interact with tokens through token standard
- Inconsistent!

```
8 function transfer(address _to, uint256 _value) returns(bool success) {
9    if(...)
...
10    else {return false;}}
//10* else {throw;}}
```

Automatically Detecting Inconsistent Behaviors of Cryptocurrency Tokens in Ethereum

- TokenScope: automatically detect the inconsistent behaviors by contrasting the information from three different sources.
 - manipulations of core data structures
 - the actions indicated by standard interfaces
 - the behaviors suggested by the standard events

Challenges

- 1. how to automatically identify the core data structures that store each token holder's identifier and balance
- 2. how to recognize token transfers that are triggered through inter-contract invocations.

Address the challenges

- 1. how to automatically identify the core data structures that store each token holder's identifier and balance by exploiting how EVM accesses the data structures
- 2. how to recognize token transfers that are triggered through inter-contract invocations recover the execution traces of token contracts by node instrumentation

Workflow

Figure 3: Architecture of TokenScope

Stage 1: Trace Recording

- Trace: <TxHash, invoked smart contract, data, executed instruction>
- Existing approach: debug.traceTransaction() provided by an Ethereum node
- TokenScope: instruments an Ethereum node to record traces

Basic idea

Algorithm 1: M recognition **Inputs:** trace, t. **Output:** Core data structure for maintaining token information, M; Token behaviors suggested by standard methods, B_m; Token behaviors suggested by standard events, B_e. MAP = LocMap(t)//step1 $B_m = ParseStandardMethods(t)$ //step2 $B_e = ParseStandardEvents(t)$ //step3 $M = RecognizeM(MAP, B_m, B_e)$ //step4 return (M, B_m, B_e)

- Step 1: Locating Mapping variables
 - mapping(address => uint256);
 - only less than 1% deployed smart contracts are open-source
 - Idea: exploit how a mapping variable is stored in EVM bytecode and how a mapping variable is manipulated by EVM instructions.

 identify 4 types of mapping variables after manually inspecting 16,248 open-source tokens

- Step 2: Parsing standard methods
 - transfer(_to, _value);
 token: <msg.sender, -value>, <_to, +value>
 - transferFrom(_from, _to, _value);
 token: <_from, -value>, <_to, +value>
 - Idea
 - function signature: unique identifier of the function

- Step 3: Parsing standard events
 - Transfer(_from, _to, value);
 token: <_from, -value>, <_to, +value>
 - Idea
 - Event signature

- Step 4: Recognizing the core data structure M
 - Recall step 1: Locating Mapping variables
 - Goal: distinguish the M from the mapping variables
 - Idea: correlate the modification of a mapping variable with the standard interfaces and the Transfer event.

```
contract Sample {
mapping (address => uint256) a;
mapping (address => uint256) b;
event Transfer(address, address, uint256);
fucntion trasnferFrom(address _from, address _to, uint256 _value) return(bool) {
    a[_from] -= _value;
    a[_to] += _value;
    Transfer(_from, _to, _value);
}
```

```
a:<_from, ->
<_to, +>
Transfer(_from, _to)
```

Stage 3: Detecting Inconsistent Behaviors

Algorithm 3: Inconsistency Detection Inputs: trace, t; Core datastructure for maintaining token information, M; Token behaviors suggested by standard methods, B_m; Token behaviors suggested by standard events, B_e.

Output: Whether an inconsistency happens, bin.

balances[addr] = x;

```
amount = balances[addr];

addr identity → SHA3 | SSTORE |

SLOAD → amount
```

Figure 5: Read amount from <key: addr, value: amount>

Write

Experiments

Dataset: 1~6,066,793 blocks (Jul. 30, 2015 to Aug. 1, 2018)

Table 1: Tokens with different types of M							
Туре	# of tokens	# of inconsistent tokens	# of transactions				
1	56,864/16,248	7,329/2,329	3,199,583/2,069,581				
Ш	58/30	21/16	13,085/12,550				
III	227/92	60/3	38,712/872				
IV	262/92	62/5	7,621/465				
sum	57,411/16,462	7,472/2,353	3,259,001/2,083,468				

Table 2: Number of tokens traded in exchange markets

	Centralized exchange market					Decentralized exchange market			
	Binance	Bitfinex	Poloniex	Kucoin	Huobi	IDEX	EtherDelta	Token Store	Kyber Network
	177/19	99/16	19/10	172/9	25/3	1,349/499	3,848/1,248	219/91	52/20
U	348/24				3,947/1,314				
U	3,947/1,314								

Experiments

- Precision: 99.9%
 manually check all 2,353 open-source inconsistent tokens
 detected by TokenScope
- only 1 false positive:

```
mapping(address => uint256) balances;
address public constant owner = 0x3c...57f;
function mint(address _to, uint256 _value) only0wner {
balances[owner] -= value;
balances[_to] += value;
Transfer(owner, _to, value);
}
balances[addr] = x;
```

```
amount = balances[addr];

SSTORE

addr identity → SHA3 | location → SLOAD → amount
```

Figure 5: Read amount from <key: addr, value: amount>

Write

Reasons of inconsistent behaviors

Table 4: 11 major reasons for inconsistency

Reason	#	Description
Flawed tokens	88	Incorrect implementation of standard event emission or M manipulation.
Incorrect method invocation	34	The unnamed method rather than the standard methods is invoked.
Lack of event/M modification	2,097	The token contract does not emit the standard event or modify M.
Fee	51	The code of fee charging is implemented in a standard method, or in a non-standard method without proper implementation of standard events.
Token minting	654	The code of token minting is implemented in a standard method, or in a non-standard method without proper implementation of standard events.
Token burning	463	The code of token burning is implemented in a standard method, or in a non-standard method without proper implementation of standard events.
Token purchase	246	An account buys tokens in ETH by invoking a standard method, or a non-standard method without proper implementation of standard events.
Token sell	18	An account sells tokens for ETH by invoking a standard method, or a non-standard method without proper implementation of standard events.
Unit conversion	19	Converting the token into a much smaller basic unit, and the code of unit conversion is implemented in a standard method, or in a non-standard method without proper implementation of standard events.
Account changed	50	The balance of a specified account, rather than the account indicated by standard method interfaces or standard events, is modified.
Amount changed	6	The specified amount of tokens, rather than the amount indicated by standard method interfaces or standard events, are transferred.

Conclusion transfer() transferFrom() Transfer() **Token Standard** Inconsistent **Smart Contract** Token Ethereum

Conclusion

Figure 3: Architecture of TokenScope