Lab8

N K Sathvik

Submission deadline:october 18,2023

1

if X exp(1) then $W = scale * (X \frac{1}{shape})$ weib(scale,shape) Proof: $P(W \le x) = P(scale * (X \frac{1}{shape}) \le x)$ $= P(X \le (\frac{x}{scale})^(shape))$ $= 1 - e^{-(\frac{x}{\lambda})^k}$

The CDF of weibull distribution is for $x \ge 0$ and 0 for $x \le 0$ The probability that $D_i \ge 1$ is 99.6%

As we are checking for rainfall below 5 centimeters, the probability that the total rain is less than 5 cm is less than 99.6 per cent

n	probability(simple)	probability(strat)	confidence interval(simple)	confidence interval(strat)
100	0.4	0.300	[0.2357,0.4842]	[0.3892,0.3962]
10000	0.3703	0.375	[0.3586, 0.3835]	[0.3782,0.3783]

2

$$X = (X_1, X_2, ..., X_{18}, X_{20},)$$

$$h(y_{19}) = E(f(X,Y)|Y=y_{19}) = \prod_{j=1, j\neq 19}^{38} G_{\alpha_j}(y_{19})$$

Since

 $X=\max(X_1,X_2,X_3,....)$ has a CDF of $F_1F_2F_3...$ from the question in the exam as X_{19} is largest implies Y_{19} is the largest we can use the above formula

calculated myu=0.6065

3

$$(\mu_i, \sigma_i^2) = (0, \sqrt{2ln(i)})$$

The expectation of log-normal distribution is $exp(\mu + \frac{\sigma^2}{2})$ Since $x_i are independent \ E(h(x)) = \frac{1}{5} \prod_{i=1}^5 E(x_i) = \frac{1}{5} \prod_{i=1}^5 i) = 24$ computed $\mu = 3.1182$