

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

123. Proposed by W. J. GREENSTREET, M. A., Editor of The Mathematical Gazette, Stroud, Gloucestershire, England.

Two equal uniform rods AB, BC are freely hinged at B; C rests on a rough horizontal plane, and A is attached to a point above it. When C is as far as possible from A for equilibrium, AB, BC make angles α , β . respectively, with the vertical. Find the coefficient of friction between the rod at C and the plane.

** Solutions of these problems should be sent to B. F. Finkel not later than July 10.

AVERAGE AND PROBABILITY.

107. Proposed by L. C. WALKER, Assistant Professor of Mathematics. Leland Stanford Jr. University, Palo Alto, Cal.

Two points are taken at random in the curved surface of a hemisphere. Show (1) that the average length of the straight therein is $\frac{32r}{9\pi}$; and (2) that the average length of the arc of a great circle, which joins them, is $\frac{4r}{\pi}$.

108. Proposed by A. H. HOLMES, Brunswick. Me.

Required the average area of the quadrilateral whose sides are a, b, c, and d.

109. Proposed by G. B. M. ZERR, A. M., Ph. D., Professor of Chemistry and Physics, The Temple College, Philadelphia, Pa.

A cylinder pierces a sphere in such a manner that the cylinder is tangent internally to the projection of the sphere in the plane xy. Find (1) the average surface, (2) the average volume of the sphere included within the cylinder.

*** Solutions of these problems should be sent to B. F. Finkel not later than July 10.

MISCELLANEOUS.

108. Proposed by G. B. M. ZERR, A. M., Ph. D., Professor of Chemistry and Physics, The Temple College, Philadelphia, Pa.

To divide the arc of a cardioid into eight equal parts.

109. Proposed by J. SCHEFFER, A. M., Hagerstown, Md.

Find the latitude of the place where the sun's centre remains above the horizon for a hundred successive days.

In problem 105, Miscellaneous, April Number, Vol. VIII, No. 4,

$$\frac{2x}{a} = \frac{c}{a} l^{y/a} + \frac{a}{c} l^{-y/a} \text{ should be } \frac{2x}{a} = \frac{c}{a} e^{y/a} + \frac{a}{c} e^{-y/a}.$$

** Solutions of these problems should be sent to J. M. Colaw not later than July 10.