0.1 矩阵相似的全系不变量

0.1.1 矩阵相似的判定准则之一: 特征矩阵相抵

回顾定理??中矩阵相似的充要条件.

命题 0.1

设 A, B 是数域 \mathbb{F} 上的 n 阶矩阵, $\lambda I_n - A$ 相抵于 diag $\{f_1(\lambda), f_2(\lambda), \cdots, f_n(\lambda)\}$, $\lambda I_n - B$ 相抵于 diag $\{f_{i_1}(\lambda), f_{i_2}(\lambda), \cdots, f_{i_n}(\lambda)\}$, 其中 $f_{i_1}(\lambda), f_{i_2}(\lambda), \cdots, f_{i_n}(\lambda)$ 是 $f_1(\lambda), f_2(\lambda), \cdots, f_n(\lambda)$ 的一个排列. 求证: $A \subseteq B$ 相似.

证明 对换 λ -矩阵 diag{ $f_1(\lambda)$, $f_2(\lambda)$, \cdots , $f_n(\lambda)$ } 的第 i, j 行, 再对换第 i, j 列, 可将 $f_i(\lambda)$ 与 $f_j(\lambda)$ 互换位置. 由于任一排列都可由若干次对换实现, 故 diag{ $f_1(\lambda)$, $f_2(\lambda)$, \cdots , $f_n(\lambda)$ } 相抵于 diag{ $f_{i_1}(\lambda)$, $f_{i_2}(\lambda)$, \cdots , $f_{i_n}(\lambda)$ }, 于是 $\lambda I_n - A$ 相抵于 $\lambda I_n - B$, 从而 A = B 相似.

例题 0.1 设 n 阶方阵 A,B,C,D 中 A,C 可逆, 求证: 存在可逆矩阵 P,Q, 使得 A=PCQ,B=PDQ 的充要条件是 $\lambda A-B$ 与 $\lambda C-D$ 相抵.

证明 必要性由 $\lambda A - B = P(\lambda C - D)Q$ 即得. 下证充分性.

设 $\lambda A - B = \lambda C - D$ 相抵, 则由 A, C 可逆知, $\lambda I_n - A^{-1}B = \lambda I_n - C^{-1}D$ 相抵, 于是 $A^{-1}B = C^{-1}D$ 相似. 设 Q 为可逆矩阵, 使得 $A^{-1}B = Q^{-1}(C^{-1}D)Q$, 令 $P = AQ^{-1}C^{-1}$, 则 P 可逆且 A = PCQ, B = PDQ.

0.1.2 矩阵相似的判定准则二: 有相同的行列式因子组

回顾定理??中矩阵相似的充要条件和 λ -矩阵的行列式因子相关定义和性质.

命题 0.2

求证: 任一n 阶矩阵 A 都与它的转置 A' 相似.

证明 注意到 $(\lambda I_n - A)' = \lambda I_n - A'$, 并且行列式的值在转置下不改变, 故 $\lambda I_n - A$ 和 $\lambda I_n - A'$ 有相同的行列式因子组, 从而 A 和 A' 相似.

例题 0.2 求证: 对任意的 $b \neq 0, n$ 阶方阵 A(a, b) 均相互相似:

$$A(a,b) = \begin{pmatrix} a & b & \cdots & b & b \\ & a & \ddots & \ddots & b \\ & & \ddots & \ddots & \vdots \\ & & & a & b \\ & & & & a \end{pmatrix}$$

证明 只要证明对任意的 $b \neq 0$,A(a,b) 的行列式因子组都一样即可. 显然 $D_n(\lambda) = (\lambda - a)^n . \lambda I_n - A(a,b)$ 的前 n-1 行、前 n-1 列构成的子式,其值为 $(\lambda - a)^{n-1}$; $\lambda I_n - A(a,b)$ 的前 n-1 行、后 n-1 列构成的子式,其值设为 $g(\lambda)$. 注意到 g(a) 是 n-1 阶上三角行列式,主对角元素全为 -b,从而 $g(a) = (-b)^{n-1} \neq 0$. 因此 $(\lambda - a)^{n-1}$ 与 $g(\lambda)$ 没有公共根,故 $((\lambda - a)^{n-1}, g(\lambda)) = 1$,于是 $D_{n-1}(\lambda) = 1$,从而 A(a,b) 的行列式因子组为 $1, \dots, 1, (\lambda - a)^n$,结论得证. □ 注

- (1) 在上(下)三角矩阵(如 Jordan 块)或类上(下)三角矩阵(如友阵或 Frobenius 块)中, 若上(下)次对 角线上的元素全部非零, 可以尝试计算行列式因子组. 对一般的矩阵(如数字矩阵), 不建议计算行列式因 子组, 推荐使用 λ-矩阵的初等变换计算法式, 得到不变因子组.
- (2) 注意到 $A(a,0) = aI_n$ 的行列式因子组为 $D_i(\lambda) = (\lambda a)^i (1 \le i \le n)$. 因此, 在求相似标准型的过程中, 注意千万不能使用摄动法!

1

0.1.3 矩阵相似的判定准则三:有相同的不变因子组