CBAM(Convolution Block Attention Module)

CBAM 요약

• 요약 : 기존의 Conv Layer에 Attention module을 덧붙여, 간략하게 Attention Block을 구성함.

일반적인 conv에 적용될 수 있어 **간단**하고, 적은 추가 파라미터, 유의미한 성능 향상

CBAM Attention

• 직관 : 이미지의 중요한 부분(채널_channel, 혹은 공간적_spatial)에 집중해서 보겠다.

- spatial attention의 예시
- 이전의 연구: Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507 (2017)
 - -> Avg Pooling을 이용한 Channel-wise Attention을 제안하였음.

CBAM 전체 모듈

$$\mathbf{F}' = \mathbf{M_c}(\mathbf{F}) \otimes \mathbf{F},$$

 $\mathbf{F}'' = \mathbf{M_s}(\mathbf{F}') \otimes \mathbf{F}',$

⊗ element-wise multiplication

CBAM Channel Attention 모듈

해당 Attention 모듈은 "무엇"이 중요한지 규명함. (각 C의 Feature Map은, 특정 Feature를 Detect 한다고 여겨짐)

where r is the reduction ratio.

$$\begin{aligned} \mathbf{M_c}(\mathbf{F}) &= \sigma(MLP(AvgPool(\mathbf{F})) + MLP(MaxPool(\mathbf{F}))) \\ &= \sigma(\mathbf{W_1}(\mathbf{W_0}(\mathbf{F_{avg}^c})) + \mathbf{W_1}(\mathbf{W_0}(\mathbf{F_{max}^c}))), \end{aligned} \qquad \qquad \\ & \bigoplus_{\mathbf{W_0} \in \mathbb{R}^{C/r \times C}, \text{ and } \mathbf{W_1} \in \mathbb{R}^{C \times C/r}.} \end{aligned}$$

CBAM Spatial Attention 모듈

해당 Spatial 모듈은 "어디"가 중요한지 규명함. (채널축을 따라서, 즉 한 개의 채널 내에서 규명)

$$\begin{aligned} \mathbf{M_s}(\mathbf{F}) &= \sigma(f^{7\times7}([AvgPool(\mathbf{F}); MaxPool(\mathbf{F})])) & f^{7\times7} \text{ filter size 7 Conv} \\ &= \sigma(f^{7\times7}([\mathbf{F_{avg}^s}; \mathbf{F_{max}^s}])), & \vdots & \text{Concatnate} \end{aligned}$$

CBAMArrangement

• 왜 이렇게 순차 (Mc->Ms)로 쌓았나? : 성능이 가장 좋아서.

Mc 와 Ms가 각각 "무엇", "어디 " 에 해당하므로 sequential / parrell하게 놓아야 하는데 Seq가 Par 보다 성능이 좋았다. 그리고 Seq 에서도 Mc 가 먼저 오는게 더 성능이 좋았음.

CBAM Improvement

Architecture	Param.	GFLOPs	Top-1 Error (%)	Top-5 Error (%)
ResNet18 [5]	11.69M	1.814	29.60	10.55
ResNet18 [5] + SE [28]	11.78M	1.814	29.41	10.22
ResNet18 [5] + CBAM	11.78M	1.815	29.27	10.09
ResNet34 [5]	21.80M	3.664	26.69	8.60
ResNet34 [5] + SE [28]	21.96M	3.664	26.13	8.35
ResNet34 [5] + CBAM	21.96M	3.665	25.99	8.24
ResNet50 [5]	25.56M	3.858	24.56	7.50
ResNet50 [5] + SE [28]	28.09M	3.860	23.14	6.70
ResNet50 [5] + CBAM	28.09M	3.864	22.66	6.31
ResNet101 [5]	44.55M	7.570	23.38	6.88
ResNet101 [5] + SE [28]	49.33M	7.575	22.35	6.19
ResNet101 [5] + CBAM	49.33M	7.581	21.51	5.69
WideResNet18 [6] (widen=1.5)	25.88M	3.866	26.85	8.88
WideResNet18 [6] (widen=1.5) + SE [28]	1		26.21	8.47
WideResNet18 [6] (widen=1.5) + CBAM			26.10	8.43
WideResNet18 [6] (widen=2.0)	45.62M		25.63	8.20
WideResNet18 [6] (widen=2.0) + SE [28]		l	24.93	7.65
WideResNet18 [6] ($widen=2.0$) + CBAM	45.97M	6.697	24.84	7.63
ResNeXt50 [7] (32x4d)	25.03M		22.85	6.48
ResNeXt50 [7] (32x4d) + SE [28]	27.56M	3.771	21.91	6.04
ResNeXt50 [7] (32x4d) + CBAM	27.56M	3.774	21.92	5.91
ResNeXt101 [7] (32x4d)	44.18M	7.508	21.54	5.75
ResNeXt101 [7] (32x4d) + SE [28]	48.96M	7.512	21.17	5.66
ResNeXt101 [7] (32x4d) + CBAM	48.96M	7.519	21.07	5.59

* all results are reproduced in the PyTorch framework. Table 4: Classification results on ImageNet-1K. Single-crop validation errors are reported.

ImgNet 1K Classification 결과 :

