UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

ELT330 – SISTEMAS DE CONTROLE I Prof. Tarcísio Pizziolo

10^a Lista de Exercícios

Métodos de Ziegler-Nichols para Sintonia PID

1) Seja a resposta de uma planta $G_p(s)$ ao degrau unitário em malha aberta dada pelo gráfico abaixo.

- a) Determine um controlador PID aproximado pelo 1^{o} Método de Ziegler-Nichols (malha aberta) para que seja aplicado em série com $G_p(s)$ em um sistema de controle de malha fechada com realimentação unitária negativa.
- b) Plote no MatLab a resposta do sistema de controle sem a aplicação do controlador PID determinado.
- c) Plote no MatLab a resposta do sistema de controle com a aplicação do controlador PID determinado.
- 2) Seja o sistema de controle em malha fechada dado a seguir.

- a) Determine um controlador PID para o sistema de controle dado aplicando o 1º Método de Ziegler-Nichols (malha aberta).
- b) Plote no MatLab as curvas de saída para o sistema sem a aplicação do controlador PID determinado.
- c) Plote no MatLab as curvas de saída para o sistema com a aplicação do controlador PID determinado.

3) Considere o seguinte sistema:

Figura 3: Diagrama de blocos do sistema

- a) Considere inicialmente que Gc(s) seja um controlador PID com Ki = Kd = 0. Nessas condições determine o erro estacionário do sistema para uma referência degrau unitário.
- b) Faça um estudo da estabilidade do sistema em função do Ganho Proporcional pela Matriz de Routh.
- c) Determine a frequência de oscilação do sistema na Margem de Estabilidade.
- 4) Seja uma Planta modelada pela Função de Transferência $G_p(s) = \frac{1}{s(s+1)(s+3)}$ conectada em malha fechada em um sistema de controle com realimentação unitária negativa.

Projetar um controlador **PID** utilizando o 2^{o} **Método de Ziegler-Nichols** (**malha fechada**) para sintonia dos parâmetros K_{p} , K_{i} e K_{d} para ser conectado em série com a Planta para controlar o sistema dado.

5) Considere o seguinte sistema de controle:

Determine os parâmetros PID do sistema utilizando o 2º Método de Ziegler-Nichols (malha fechada).