Chapter 16 Application of derivatives

EE24BTECH11063 - Y.Harsha Vardhan Reddy

G: Comprehension Based Questions

PASSAGE-1

If a continuous function f defined on the real line R, assumes positive and negative values in R then

the equation $f(x) = 0$ has a root in R . positive at some point and its minimum	For example, if it is known that a continuous value is negative then the eequation $f(\cdot)$	inuos function f on R is
Consider $f(x) = ke^x - x$ for all real x where k is a real constant. 1) The line $y = x$ meets curve $y = ke^x$ for $k \le 0$ at		(2007 - 4marks)
a) no point	b) one point	
c) two points	d) more than two points	
2) The positive value of k for which $ke^x - x = 0$ has only one root is		(2007 - 4 marks)
a) $\frac{1}{e}$	b) 1	
c) e	d) $\log_e 2$	
3) For $k > 0$, the set of all values $(2007 - 4marks)$	of k for which equation $ke^x - x = 0$ h	nas two distinct roots is
a) $(0, \frac{1}{e})$	b) $\left(\frac{1}{e},1\right)$	
c) $\left(\frac{1}{e},\infty\right)$	d) (0,1)	
	PASSAGE-2	
	all $x \in \mathbb{IR}$ and let $g(x) = \int_1^x \left(\frac{2(t-1)}{t+1} - \ln t\right)$.	$f(t) dt$ for all $x \in (1, \infty)$.
4) Consider the statements: P: There exists some $x \in \mathbb{R}$ such that	that $f(x) + 2x = 2(1 + x^2)$	
Q: There exists some $x \in \mathbb{R}$ such	that $2f(x) + 1 = 2x(1+x)$	
Then		(2012)
a) both P and Q are trueb) P is true and Q is false		
c) P is false and Q is true		
d) both P and Q are false		
5) Which of the following is true?		(2012)
a) g is increasing on $(1, \infty)$ b) g is decreasing on $(1, \infty)$		
c) g is increasing in $(1, \infty)$	easing on $(2, \infty)$	
	•	

d) g is decreasing in (1,2) and increasing on $(2,\infty)$

PASSAGE-3

Let $f(x): [0,1] \to \mathbb{R}$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0) = f(1) = 0 and satisfies

$$f''(x) - 2f'(x) + f(x) \ge e^x, x \in [0, 1]. \tag{1}$$

6) Which of the following is true for interval

? (*JEEAdv*.2013)

a) $0 < f(x) < \infty$

b) $-\frac{1}{2} < f(x) < \frac{1}{2}$

c) $-\frac{1}{4} < f(x) < 1$

- d) $-\infty < f(x) < 0$
- 7) If the function $e^{-x}f(x)$ assumes its minimum in the interval [0, 1] at $x = \frac{1}{4}$, which of the following is true?

(JEEAdv.2013)

- 1) f'(x) < f(x), $\frac{1}{4} < x < \frac{3}{4}$
- 2) f'(x) > f(x), $0 < x < \frac{1}{4}$
- 3) f'(x) < f(x), $0 < x < \frac{1}{4}$
- 4) $f'(x) < f(x), \frac{3}{4} < x < 1$

I:INTEGER VALUE CORRECT TYPE

1) The maximum value of the function $f(x) = 2x^3 - 15x^2 + 36x - 48$ on the set $A = \{x|x^2 + 20 \le 9x\}$ is

(2009)

- 2) Let p(x) be a polynomial of degree 4 having extremum at x = 1, 2 and $\lim_{x \to 0} \left(1 + \frac{p(x)}{x^2}\right) = 2$. Then the value of p(2) is
- 3) Let f be a real-valued differentiable function on $\mathbf{R}(thesetofall real numbers)$ such that f(1) = 1. If the y-intercept of the tangent at any point P(x, y) on the curve y = f(x) is equal to the cube of the abscissa of P, then find the value of f(-3)

(2010)