Математическая логика

Михайлов Максим

2 октября 2022 г.

Оглавление стр. 2 из 55

Оглавление

Леки	ия 1	12 февраля 4
0	Мот	ивация
	0.1	Математикам
	0.2	Программистам
1	Исч	исление высказываний
	1.1	Язык 5
	1.2	Метаязык и предметный язык
	1.3	Сокращения записи
	1.4	Теория моделей
	1.5	Теория доказательств
	1.6	Правило Modus Ponens и доказательство
Лекц	ия 2	19 февраля
2	Инт	уиционистская логика
	2.1	ВНК-интерпретация (Brouwer–Heyting–Kolmogorov)
Лекц	ия 3	26 февраля 13
	2.2	Естественный (натуральный) вывод
	2.3	Теория решеток
Леки	ия 4	5 марта 17
	2.4	Табличные модели
	2.5	Модели Крипке
Леки	ия 5	12 марта 20
3	Изо	морфизм Карри-Ховарда
	3.1	Алгебраические типы
	3.2	Применение восьмой аксиомы интуиционистской логики 21
4	Исч	исление предикатов
	4.1	Язык исчисления предикатов
	4.2	Теория моделей
	4.3	Теория доказательств
Леки	ия 6	19 марта 25
	4.4	Вхождение
	4.5	Свобода для подстановки
Лекц	ия 7	2 апреля 28
	4.6	Полнота исчисления предикатов
Лекп	ия 8	9 апредя 32

Оглавление стр. 3 из 55

	4.7 Теорема Гёделя о полноте исчисления предикатов	32
	4.8 Неразрешимость исчисления предикатов	
Леки	ия 9 16 апреля	36
5	Теория первого порядка	36
	5.1 Аксиоматика Пеано	
	5.2 Формальная арифметика	38
Леки		40
6	Арифметизация математики	40
	6.1 Рекурсивные функции	40
	6.2 Проблема останова	
Леки	ия 11 7 мая	45
7	Гёделева нумерация	45
		46
Леки		49
8	Теория множеств	49
Леки	ия 13 21 мая	53
	8.1 Аксиома выбора	53
	8.2 Мощность множеств	

Лекция 1

12 февраля

0 Мотивация

0.1 Математикам

Аксиома (Архимеда). Для любого k > 0 найдётся n, такое что kn > 1.

Под эту аксиому не подходят бесконечно малые числа и это является проблемой. Например, $\lim_{x\to +\infty} \frac{1}{x} = 0 = \lim_{x\to +\infty} \frac{1}{x^2}$, но мы хотим уметь различать эти два числа. Ньютон предложил идею бесконечно малых чисел, откуда пошли последовательности. Возникает вопрос — что такое последовательность и что такое число?

Общепринятое определение целых чисел $\mathbb N$ происходит из теории множеств. Однако эта теория содержит в себе множество фундаментальных парадоксов, от которых нельзя избавиться.

Возникает вопрос — а что такое множество? Посмотрим на некоторое множество $A=\{x\mid x\notin x\}$. Содержит ли оно себя, $A\in A$? На этот вопрос нельзя ответить, это называется парадокс Рассела. Есть простой способ его разрешить — запретить ставить такой вопрос. Нет вопроса — нет парадокса. Существование такого парадокса ставит под вопрос существование любого множества — а существует ли \mathbb{N} ? Может быть его существование парадоксально, просто мы не нашли этот парадокс. Пришло чуть более умное решение парадокса — запретим множества, содержащие себя. Таким образом вывели аксиоматику теории множеств (Цермело — Френкеля).

Пример. Рассмотрим множество всех чисел, которые можно задать в ≤ 1000 слов русского языка. Фраза "наименьшее число, которое нельзя задать в ≤ 1000 слов" содержит ≤ 1000 слов, т.е. такое число принадлежит искомому множеству — парадокс.

Возникает идея — человеческий язык порождает парадоксы, поэтому нужно задать новый язык, который их не порождает. Этот язык и является математической логикой.

0.2 Программистам

Математическая логика применяется в двух областях (для программистов):

- 1. Языки программирования
- 2. Формальные доказательства

Для языков программирования матлогика применима как теория типов (переменных).

Формальные доказательства нужны например для smart-контрактов, где корректность программы критически важна, т.к. если в нём есть ошибка, у вас злоумышленник заберет все деньги, а вы не сможете этот контракт откатить.

1 Исчисление высказываний

1.1 Язык

Определение. Язык содержит в себе:

1. Пропозициональные переменные

 A_i' — большая буква начала латинского алфавита, возможно с индексом и/или штрихом.

2. Связки

Пусть α, β — высказывания. Тогда $(\alpha \to \beta), (\alpha \& \beta), (\alpha \lor \beta), (\neg \alpha)$ — высказывания. α, β называются **метапеременными**.

Примечание. Математическая логика алгеброподобна (а не анализоподобна), т.к. в ней много определений и мало доказательств.

1.2 Метаязык и предметный язык

У нас есть два различных языка — **предметный язык** и **метаязык**. Метаязык — русский, предметный язык мы определили выше.

Пример. $\alpha \to \beta$ — метавыражение; $A \to (A \to A)$ — предметное выражение.

Обозначение. Метапеременные обозначаются различными способами в зависимости от того, что они обозначают:

- Буквы греческого алфавита ($lpha,eta,\gamma,\ldots,arphi,\psi$) выражения
- Заглавные буквы конца латинского алфавита (X,Y,Z) произвольные переменные

Пример. $X \to Y \Rightarrow A \to B$ — подстановка переменных. Этот синтаксис не формален, мы будем записывать так:

$$(X \to Y)[X := A, Y := B] \equiv A \to B$$

Соглашение. символы логических операций не пишутся в метаязыке.

Пример.

$$(\alpha \to (A \to X))[\alpha := A, X := B] \equiv A \to (A \to B)$$
$$(\alpha \to (A \to X))[\alpha := (A \to P), X := B] \equiv (A \to P) \to (A \to B)$$

1.3 Сокращения записи

- $\vee, \&, \neg$ скобки слева направо (лево-ассоциативные операции) (не коммутативные)
- \rightarrow правоассоциативная.

Примечание. Здесь операторы записаны в порядке их приоритета

Пример. Расставим скобки в следующем выражении:

$$A \rightarrow B \& C \rightarrow D$$

$$A \rightarrow ((B \& C) \rightarrow D)$$

1.4 Теория моделей

Модель состоит из:

Обозначение.

- P некоторое множество предметных переменных
- au множество высказываний предметного языка
- V множество истинностных значений. Классическое $\{\Pi, \Pi\}$
- $[\![\,]\!]: au o V$ оценка высказывания (высказывание ставится в скобки).
- 1. $[\![x]\!]: P \to V$ задается при оценке.
- 2. $[\![\alpha\star\beta]\!]=[\![\alpha]\!]\star[\![\beta]\!]$, где \star есть логическая операция (\vee , &, \neg , \rightarrow), а \star определено естественным образом как элемент метаязыка.

1.5 Теория доказательств

Определение. Схема высказывания — строка, соответствующая определению высказывания + метапеременные.

Пример.

$$(\alpha \to (\beta \to (A \to \alpha)))$$

10 схем аксиом:

1.
$$\alpha \to \beta \to \alpha$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \rightarrow \beta \rightarrow \alpha \& \beta$$

4.
$$\alpha \& \beta \rightarrow \alpha$$

5.
$$\alpha \& \beta \rightarrow \beta$$

6.
$$\alpha \rightarrow \alpha \vee \beta$$

7.
$$\beta \to \alpha \vee \beta$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

1.6 Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) есть конечная последовательность высказываний $\alpha_1 \dots \alpha_n$, где α_i — либо аксиома, либо $\exists k, l < i : \alpha_k \equiv \alpha_l \to \alpha_i$ (правило Modus Ponens)

Пример. $\vdash A \to A$

1.
$$A \rightarrow A \rightarrow A$$
 cx. akc. 1

2.
$$A \rightarrow (A \rightarrow A) \rightarrow A$$
 cx. akc. 1

3.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A)$$
 cx. akc. 2

4.
$$(A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A)$$
 M.P. 1, 3

5.
$$A \rightarrow A$$
 M.P. 2, 4

Определение. Доказательство $\alpha_1 \dots \alpha_n$ доказывает выражение β , если $\alpha_n \equiv \beta$

Лекция 2

19 февраля

Обозначение. Большая греческая буква середины греческого алфавита (Γ, Δ, Σ) — список высказываний.

Определение (следование). α следует из Γ (обозначается $\Gamma \vDash \alpha$), если $\Gamma = \gamma_1 \dots \gamma_n$ и всегда, когда все $[\![\gamma_i]\!] = \mathcal{U}$, то $[\![\alpha]\!] = \mathcal{U}$.

Пример. $\models \alpha - \alpha$ общезначимо.

Определение. Теория Исчисление высказываний корректно, если при любом α из $\vdash \alpha$ следует $\models \alpha$.

Определение. Исчисление **полно**, если при любом α из $\models \alpha$ следует $\vdash \alpha$.

Теорема 1 (о дедукции).

$$\Gamma, \alpha \vdash \beta \Leftrightarrow \Gamma \vdash \alpha \to \beta$$

Доказательство.

- \Leftarrow Пусть $\Gamma \vdash \alpha \to \beta$, т.е. существует доказательство $\delta_1 \dots \delta_n$, где $\delta_n \equiv \alpha \to \beta$ Построим новое доказательство: $\delta_1 \dots \delta_n$, α (гипотеза) , β (М.Р.). Эта новая последо-
 - Построим новое доказательство: $\delta_1 \dots \delta_n$, α (гипотеза) , β (М.Р.). Эта новая последовательность доказательство Γ , $\alpha \vdash \beta$
- \Rightarrow Рассмотрим $\delta_1 \dots \delta_n$, $\Gamma, \alpha \vdash \beta$. Рассмотрим последовательность $\sigma_1 = \alpha \to \delta_1 \dots \sigma_n = \alpha \to \delta_n$. Это не доказательство.

Но эту последовательность можно дополнить до доказательства, так что каждый σ_i есть аксиома, гипотеза или получается через М.Р. Докажем это.

Доказательство. **База**: n = 0 — очевидно.

Переход: пусть $\sigma_0 \dots \sigma_n$ — доказательство. Покажем, что между σ_n и σ_{n+1} можно добавить формулы так, что σ_{n+1} будет доказуемо.

У нас есть 3 варианта обоснования δ_{n+1}

1. δ_{n+1} — аксиома или гипотеза, $\not\equiv \alpha$

Будем нумеровать дробными числами, потому что нам ничто это не запрещает, т.к. нам нужна только упорядоченность.

$$n+0.2$$
 δ_{n+1} — верно, т.к. это аксиома или гипотеза

$$n+0.4$$
 $\delta_{n+1} \rightarrow \alpha \rightarrow \delta_{n+1}$ (аксиома 1)

$$n+1$$
 $\alpha \to \delta_{n+1}$ (M.P. $n+0.2, n+0.4$)

2.
$$\delta_{n+1} \equiv \alpha$$

$$n+0.2, 0.4, 0.6, 0.8, 1$$
 — доказательство $\alpha \to \alpha$

3.
$$\delta_k \equiv \delta_l \rightarrow \delta_{n+1}, \ k, l \leq n$$

$$k \quad \alpha \to (\delta_l \to \delta_{n+1})$$

$$l \quad \alpha \to \delta_l$$

$$n+0.2 \quad (\alpha \to \delta_l) \to (\alpha \to (\delta_l \to \delta_{n+1})) \to (\alpha \to \delta_{n+1})$$
 (аксиома 2)

$$n+0.4 \quad (\alpha \to \delta_l \to \delta_{n+1}) \to (\delta \to \delta_{n+1}) \text{ (M.P. } n+2,l)$$

$$n+1 \quad \alpha \to \delta_{n+1} \ (\text{M.P.} \ n+0.4, k)$$

Теорема 2. Пусть $\vdash \alpha$. Тогда $\models \alpha$.

Доказательство. Индукция по длине доказательства: каждая $[\![\delta_i]\!]=$ И, если $\delta_1\dots\delta_n-$ доказательство α

Рассмотрим n и пусть $[\![\delta_1]\!] = \mathbb{U}, \dots [\![\delta_n]\!] = \mathbb{U}.$

Тогда рассмотрим основание δ_{n+1}

1. δ_{n+1} — аксиома. Это упражнение.

Пример.
$$\delta_{n+1} \equiv \alpha \rightarrow \beta \rightarrow \alpha$$

$$\sphericalangle \llbracket \alpha \to \beta \to \alpha \rrbracket^{\llbracket \alpha \rrbracket := a, \llbracket \beta \rrbracket := b} = \mathbf{M}$$

a	b	$\beta \to \alpha$	$\alpha \to \beta \to \alpha$
Л	Л	И	И
Л	И	И Л	И
И	Л И Л И	И	И
И	И	И	И

Аналогично можно доказать для остальных аксиом.

2.
$$\delta_{n+1}$$
 – M.P. $\delta_k = \delta_l \rightarrow \delta_{n+1}$

Фиксируем оценку. Тогда $[\![\delta_k]\!] = [\![\delta_l]\!] =$ И. Тогда:

$\llbracket \delta_k \rrbracket$	$\llbracket \delta_{n+1} \rrbracket$	$\left[\!\left[\delta_k\right]\!\right] = \left[\!\left[\delta_l \to \delta_{n+1}\right]\!\right]$
Л	Л	И
Л	И	И
И	Л	Л
И	И	И

Первых трёх вариантов не может быть в силу $[\![\delta_k]\!] = [\![\delta_l]\!] = \mathsf{U}$. Таким образом, $[\![\delta_{n+1}]\!] = \mathsf{U}$.

Теорема 3 (о полноте). Пусть $\models \alpha$. Тогда $\vdash \alpha$.

Фиксируем набор переменных из α : $P_1 \dots P_n$.

Рассмотрим $\llbracket \alpha \rrbracket^{P_1:=x_1...P_n:=x_n} = \mathsf{И}$

Обозначение.
$$[\beta]\alpha \equiv \begin{cases} \alpha, & \llbracket\beta\rrbracket = \mathbf{H} \\ \neg\alpha, & \llbracket\beta\rrbracket = \mathbf{J} \end{cases} \mathbf{M}_{[x]}\alpha \equiv \begin{cases} \alpha, & x = \mathbf{H} \\ \neg\alpha, & x = \mathbf{J} \end{cases}$$

Докажем, что
$$\underbrace{_{[x_1]}P_1,\dots _{[x_n]}P_n}_{\Pi}\vdash {_{[\alpha]}}\alpha$$

Доказательство. По индукции по длине формулы:

База:
$$\alpha = P_{i\ [P_i]}P_i \vdash_{[P_i]}P_i$$
, значит $\Pi \vdash_{[P_i]}P_i$

Переход: пусть $\eta, \zeta: \Pi \vdash_{[\eta]} \eta, \Pi \vdash_{[\zeta]} \zeta$ (по индукционному предположению). Покажем, что $\Pi \vdash_{[\eta\star\zeta]} \eta \star \zeta$, где \star — все связки

Лемма 1. $\Gamma, \eta \vdash \zeta, \Gamma, \neg \eta \vdash \zeta$. Тогда $\Gamma \vdash \zeta$.

Доказательство.

1.
$$\alpha$$
 $(\in \Gamma)$
2. $\alpha \to (\neg \beta \to \alpha)$ $(a. 1)$
3. $\neg \beta \to \alpha$ $(M.P. 1,2)$
4. $\neg \alpha$ $(\in \Gamma)$
5. $\neg \alpha \to (\neg \beta \to \neg \alpha)$ $(a. 1)$
6. $\neg \beta \to \neg \alpha$ $(M.P. 4,5)$
7. $(\neg \beta \to \alpha) \to (\neg \beta \to \neg \alpha) \to \neg \neg \beta$ $(a. 9)$
8. $(\neg \beta \to \neg \alpha) \to \neg \neg \beta$ $(M.P. 3,7)$
9. $\neg \neg \beta$ $(M.P. 6,8)$
10. $\neg \neg \beta \to \beta$ $(a. 10)$
11. β $(M.P. 9,10)$

Доказательство теоремы о полноте. $\models \alpha$, т.е. $_{[x_1]}P_1\dots _{[x_n]}P_n \vdash _{[\alpha]}\alpha$. Но $[\![\alpha]\!] = \Pi$ при любой оценке. Тогда $_{[x_1]}P_1\dots _{[x_n]}P_n \vdash \alpha$ при все x_i .

Лемма 2 (об исключении допущения). Если $_{[x_1]}P_1\dots _{[x_n]}P_n \vdash \alpha$ и $_{[x_1]}P_1\dots _{[x_n]} \neg P_n \vdash \alpha$, то $_{[x_1]}P_1\dots _{[x_{n-1}]}P_{n-1} \vdash \alpha$

$$\underbrace{ \left. \begin{smallmatrix} [x_1]P_1 \dots [x_{n-1}]P_{n-1}, P_n \vdash \alpha \\ [x_1]P_1 \dots [x_{n-1}]P_{n-1}, \neg P_n \vdash \alpha \end{smallmatrix} \right\}}_{[x_1]P_1 \dots [x_{n-1}]P_{n-1} \vdash \alpha$$

2 Интуиционистская логика

2.1 ВНК-интерпретация (Brouwer-Heyting-Kolmogorov)

Определим выражения:

- $\alpha \& \beta$ есть α и β
- $\alpha \vee \beta -$ есть α либо β и мы знаем, какое
- $\alpha \to \beta$ есть способ перестроить α в β
- \perp конструкция без построения (bottom)
- $\neg \alpha \equiv \alpha \rightarrow \perp$

П

Теория доказательств есть классическая логика без десятой схемы аксиомы, вместо нее $\alpha \to \neg \alpha \to \beta$

Теория моделей — теория, в которой $[\![\alpha]\!]$ — открытое множество в Ω — топологическом пространстве.

В ней определено следующее:

$$\begin{bmatrix} \alpha & \beta \end{bmatrix} = [\alpha] \cap [\beta] \\
 [\alpha \lor \beta] = [\alpha] \cup [\beta] \\
 [\alpha \to \beta] = ((X \setminus [\alpha]) \cup [\beta])^{\circ} \\
 [\bot] = \varnothing \\
 [\neg \alpha] = (X \setminus [\alpha])^{\circ}$$

Лекция 3

26 февраля

2.2 Естественный (натуральный) вывод

Рассмотрим новый способ записи доказательств — в виде деревьев, называемый естественным выводом.

Тогда язык будет состоять из переменных $A\dots Z, \vee, \&, \bot, \vdash, -$

У нас используются следующие правила вывода:

1.
$$\overline{\Gamma \vdash \gamma, \gamma \in \Gamma}$$
 (аксиома)

2.
$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$
 (введение \to)

3.
$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \& \psi}$$
 (введение &)

4.
$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \ \ (\text{удаление} \to)$$

5.
$$\frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \varphi}$$
 (удаление &)

6.
$$\frac{\Gamma \vdash \varphi \ \& \ \psi}{\Gamma \vdash \psi}$$
 (удаление &)

7.
$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \psi \lor \varphi}$$
 (введение \lor)

8.
$$\frac{\Gamma \vdash \psi}{\Gamma \vdash \psi \lor \varphi}$$
 (введение \lor)

9.
$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}$$
 (удаление \bot)

2.3 Теория решеток

Определение.

- **Частичный порядок** рефлексивное, транзитивное, антисимметричное отношение.
- Линейный порядок сравнимы любые два элемента.
- Наименьший элемент S такой $k \in S$, что если $x \in S$, то $k \le x$
- Минимальный элемент S такой $k \in S$, что нет $x \in S$, что $x \le k$
- Множество верхних граней a и $b : \{x \mid a < x \& b < x\}$.
- Множество нижних граней a и b : $\{x \mid x \le a \& x \le b\}$.
- a+b наименьший элемент множества верхних граней (может не существовать).
- $a \cdot b$ наибольший элемент множества нижних граней.
- Решетка множество + отношение, где для каждых a, b есть как a + b, так и $a \cdot b$.
- Дистрибутивная решетка если всегда $a\cdot(b+c)=a\cdot b+a\cdot c$

Лемма 3. В дистрибутивной решетке $a + b \cdot c = (a + b)(a + c)$

Определение.

- Псевдодполнение a и b обозначается $a \to b$ и равно наибольшему элементу множества $\{c \mid a \cdot c \leq b\}$
- Импликативная решетка решетка, где $\forall a,b \; \exists a \to b$
- 0 наименьший элемент решетки.
- 1 наибольший элемент решетки.
- Псевдобулева алгебра (алгебра Гейтинга) импликативная решетка с нулём.
- Булева алгебра псевдобулева алгебра, такая что $a + (a \to 0) = 1$

Пример.

$$\begin{array}{ccc}
1 & \longrightarrow & b \\
\downarrow & & \downarrow \\
a & \longrightarrow & 0
\end{array}$$

$$a \cdot 0 = 0$$
$$1 \cdot b = b$$
$$a \cdot b = 0$$
$$a + b = 1$$

Лемма 4. В импликативной решетке всегда есть 1.

Доказательство. Возьмём $a \to a = 1$ для некоторого a.

$$a \to a = \mathbf{H}\{x \mid a \cdot x \le a\} = \mathbf{H}(A)$$

Таким образом, A имеет наибольший элемент и это $a \to a$

Теорема 4.

- Любая алгебра Гейтинга модель интуиционистского исчисления высказываний.
- Любая булева алгебра модель классического исчисления высказываний.

Определение (топология). Рассмотрим множество X, называемое "носитель" и $\Omega \subset \mathcal{P}(X)$ — подмножество подмножеств X, называемое "топология", такое что:

- 1. $\bigcup_{\alpha} x_i \in \Omega$, где $x_i \in \Omega$
- 2. $\bigcap_{i=1}^n x_i \in \Omega$, где $x_i \in \Omega$
- 3. $\emptyset \in \Omega, X \in \Omega$

 $\mbox{\it Пример.}$ Пусть X — узлы дерева, Ω — все множества узлов, которые содержат узлы вместе со всеми потомками.

Определение.

$$X^{\circ} \stackrel{\text{def}}{=} \text{наиб}\{w \mid w \subseteq X, w - \text{открыто}\}$$

Теорема 5. Пусть (X,Ω) — топологическое пространство, $a+b=a\cup b, a\cdot b=a\cap b, a\to b=((X\setminus a)\cup b)^\circ, a\le b\Leftrightarrow a\subseteq b,$ тогда (Ω,\le) есть алгебра Гейтинга.

Пример. Дискретная топология — $\Omega = \mathcal{P}(X)$. Тогда (Ω, \leq) — булева алгебра.

1.
$$X^{\circ} = X$$

2.
$$a \to 0 = (X \setminus a \cup \varnothing) = X \setminus a$$

Таким образом, $a+(a \rightarrow 0)=a+X\setminus a=X$

Определение. Пусть X — все формулы логики. Определим отношение порядка $\alpha \leq \beta$ это $\alpha \vdash \beta$. Будем говорить, что $\alpha \approx \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$.

 $(X/_{\approx}, \leq)$ есть алгебра Гейтинга.

Определение. $(X/_{\approx}, \leq)$ — алгебра Линденбаума, где X, \approx из интуиционистской логики.

Теорема 6. Алгебры Гейтинга — полная модель интуиционистской логики.

 \mathcal{A} оказательство. $\models \alpha$ — истинно в любой алгебре Гейтинга, в частности в $(X/_{\approx}, \leq)$. $\llbracket \alpha \rrbracket = 1$, т.е. $\llbracket \alpha \rrbracket = \llbracket A \to A \rrbracket$, т.е. $\alpha \in [A \to A]_{\approx}$, т.е. $A \to A \vdash \alpha$.

Лекция 4. 5 марта стр. 17 из 55

Лекция 4

5 марта

Определение. Полный порядок — линейный, где в каждом подмножестве есть наименьший элемент. Множество с полным порядком называют **вполне упорядоченным**.

Пример. \mathbb{N} — вполне упорядоченное множество

 \mathbb{R} — не вполне упорядоченное множество, т.к. (a,b) не имеет наименьшего $\forall a,b.$ Кроме того, \mathbb{R} не имеет наименьшего.

Определение. Предпорядок — транзитивное, рефлексивное отношение.

Как мы знаем из домашнего задания, по предпорядку можно построить частичный порядок, сжав компоненты связности в классы эквивалентности.

2.4 Табличные модели

Определение. Табличная модель для интуиционистского исчисления высказываний:

- V множество истинностных значений
- $f_{\rightarrow}, f_{\&}, f_{\lor}: V^2 \rightarrow V$
- Выделенное истинное значение $T \in V$
- Оценка переменных $[\![P_i]\!] \in V, f_{\mathcal{P}} : P_i \to V$

$$M [P_i] = f_{\mathcal{P}}(P_i), [\alpha \star \beta] = f_{\star}([\alpha], [\beta]), [\neg \alpha] = f_{\neg}([\alpha])$$

 $\models \alpha$ означает, что $\llbracket \alpha \rrbracket = T$ при любой $f_{\mathcal{P}}$

Определение. Конечная табличная модель — табличная модель с конечным V.

Теорема 7. У интуиционистского исчисления высказываний не существует корректной полной конечной табличной модели.

Лекция 4. 5 марта стр. 18 из 55

Неформально эта теорема говорит, что нельзя считать, что в интуиционистской логике есть три значения — истинна, ложь и "неизвестно".

2.5 Модели Крипке

Идея моделей Крипке следующая: общезначимое утверждение истинно во всех мирах.

Определение (модели Крипке).

- 1. $W = \{W_i\}$ множество миров
- 2. \leq частичный порядок на W
- 3. Отношение вынужденности $W_i \Vdash P_i$, где P_i переменная, т.е. $(\Vdash) \subset W \times \mathcal{P}$

При этом, если $W_i \Vdash P_i$ и $W_i \leq W_k$, то $W_k \Vdash P_i$

Определение.

- $W_i \Vdash \alpha$ и $W_i \Vdash \beta$, тогда (и только тогда) $W_i \Vdash \alpha \& \beta$
- $W_i \Vdash \alpha$ или $W_i \Vdash \beta$, тогда (и только тогда) $W_i \Vdash \alpha \vee \beta$
- Пусть во всех $W_i \leq W_j$ всегда, когда $W_j \Vdash \alpha$, имеет место $W_j \Vdash \beta$. Тогда $W_i \Vdash \alpha \to \beta$
- $W_i \Vdash \neg \alpha$ значит, что α не вынуждено нигде, начиная с W_i : $W_i \leq W_j \Rightarrow W_j \nVdash \alpha$

Теорема 8. Если $W_i \Vdash \alpha$ и $W_i \leq W_j$, то $W_j \Vdash \alpha$

Определение. Если $W_i \Vdash \alpha$ при всех $W_i \in W$, то $\models \alpha$

Теорема 9. ИИВ корректно в моделях Крипке.

Доказательство. Рассмотрим (W,Ω) — топологию, где $\Omega = \{w \subset W \mid \text{если } w_i \in w, w_i \leq w_j, \text{ то } w_j \in w\}$. Это можно представить как множество подлесов, где любая вершина входит со своими потомками.

 $\{W_k \mid W_k \Vdash P_i\}$ — открытое множество, что очевидно из определения Ω и \Vdash .

Примем $[\![P_i]\!] = \{W_k \mid W_k \Vdash P_j\}$ и аналогично $[\![\alpha]\!] = \{W_k \mid W_k \Vdash \alpha\}$. Корректность этого определения докажем в ДЗ.

Поскольку любая топология является корректной моделью ИИВ, искомое доказано.

Доказательство теоремы о нетабличности. Предположим обратное, т.е. существует конечная табличная модель, |V|=n.

Рассмотрим следующую формулу:

$$\varphi_n = \bigvee_{\substack{1 \le i, j \le n+1 \\ i \ne j}} (P_i \to P_j \& P_j \to P_i)$$

1. $ot \vdash \varphi_n$. Почему? Рассмотрим последовательность миров, таких что $W_i \Vdash P_i$, состоящую из n+1 мира. Тогда $W_i \nVdash (P_i \to P_j) \& (P_j \to P_i)$, т.к. $W_i \nVdash P_j$, но $W_i \Vdash P_i$, таким образом $ot \nvDash (P_i \to P_j) \& (P_j \to P_i)$ и $ot \Vdash \bigvee (P_i \to P_j) \& (P_j \to P_i)$, а значит $ot \vdash \varphi_n$

2. $\models \varphi_n$ в V по принципу Дирихле: $\exists i \neq j : [\![P_i]\!] = [\![P_j]\!]$, а значит $[\![P_i \to P_j]\!] = \mathsf{И}$, и соответственно $[\![\varphi_n]\!] = \mathsf{I}\mathsf{I}$.

Т.к. $\models \varphi_n$, то $\vdash \varphi_n$, но это не так — противоречие.

Теорема 10 (Дизъюнктинвость ИИВ). $\vdash \alpha \lor \beta$ влечет $\vdash \alpha$ или $\vdash \beta$

Определение. Алгебра Гёделя — алгебра Гейтинга, в которой из a+b=1 следует a=1 или b=1

Определение. Пусть \mathcal{A} — алгебра Гейтинга. Тогда $\Gamma(\mathcal{A})$ получается переименовыванием 1 в ω и добавлением нового элемента $1_{\Gamma(\mathcal{A})}$, являющегося единицей для новой алгебры.

Теорема 11. $\Gamma(A)$ есть алгебра Гейтинга и $\Gamma(A)$ Гёделева.

Доказательство. Очевидно.

Определение. Гомоморфизм алгебр Гейтинга — отображение $\varphi: \mathcal{A} \to \mathcal{B}$, где \mathcal{A}, \mathcal{B} — алгебры Гейтинга, $\varphi(a \star b) = \varphi(a) \star \varphi(b)$, $\varphi(1_{\mathcal{A}}) = 1_{\mathcal{B}}$, $\varphi(0_{\mathcal{A}}) = 0_{\mathcal{B}}$

Теорема 12. Если $a \leq b$, то $\varphi(a) \leq \varphi(b)$

Определение. Пусть α — формула ИИВ, f,g — оценки ИИВ, где f: ИИВ $\to \mathcal{A},g:$ ИИВ $\to \mathcal{B}.$ Тогда φ согласовано с f,g, если $\varphi(f(\alpha))=g(\alpha)$

Теорема 13. Если $\varphi: \mathcal{A} \to \mathcal{B}$ согласована с f, g и $[\![\alpha]\!]_g \neq 1_{\mathcal{B}}$, то $[\![\alpha]\!]_f \neq 1_{\mathcal{A}}$

Доказательство теоремы 10. Рассмотрим алгебру Линденбаума \mathcal{L} , $\Gamma(\mathcal{L})$ и $\varphi:\Gamma(\mathcal{L})\to\mathcal{L}$ — гомоморфизм.

$$arphi(x) = egin{cases} 1_{\mathcal{L}}, x = \omega \ 1_{\mathcal{L}}, x = 1_{\Gamma(\mathcal{L})} \ x,$$
 иначе

Пусть $\vdash \alpha \lor \beta$. Тогда $[\![\alpha \lor \beta]\!]_{\Gamma(\mathcal{L})} = 1_{\Gamma(\mathcal{L})}$, но по Гёделевости $\Gamma(\mathcal{L})$ $[\![\alpha]\!] = 1$ или $[\![\beta]\!] = 1$.

Пусть $ot \vdash \alpha$ и $ot \vdash \beta$. Тогда $\varphi(\llbracket \alpha \rrbracket) \neq 1_{\mathcal{L}}$ и $\varphi(\llbracket \beta \rrbracket) \neq 1_{\mathcal{L}}$. Тогда $\llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} \neq 1_{\mathcal{L}}, \llbracket \beta \rrbracket \neq 1_{\mathcal{L}} -$ противоречие.

Лекция 5

12 марта

3 Изоморфизм Карри-Ховарда

Примечание. Эта тема в нашем курсе рукомахательная.

Пусть p — программа, т.е. функция, принимающая α и возвращающая β , т.е. $p:\alpha\to\beta$

Можем посмотреть на это с другой стороны: p доказательство, что из α следует β , например в Haskell f a=a гласит, что f доказывает, что A -> A, где подразумевается $\forall A$.

Такое сопоставление программам доказательств и высказываниям типов называется изоморфизмом Карри-Ховарда:

логическое исчисление	типизированное λ -исчисление
логическая формула	тип
доказательство	программа
доказуемая формула	обитаемый тип
\rightarrow	функция
&	упорядоченная пара
V	алгебраический тип <i>(тип-сумма)</i>

Примечание. Обитаемый тип — тип, у которого есть хотя бы один экземпляр.

Несложно заметить, что логика, соответствующая λ -исчислению, является интуиционистской, поэтому мы её в основном изучаем.

3.1 Алгебраические типы

Рассмотрим следующее определение списка в Pascal:

```
type list : record
   nul: boolean:
   case nul of
      true:;
     false: next ^list
   end
end;
Рассмотрим то же самое в C, опустив bool и скажем, что nul = (next == null) (это в
какой-то степени костыльно):
struct list {
   next: *list;
}
Определим таким же способом дерево:
struct tree {
   tree* left:
   tree* right;
   int value;
}
Это ещё более костыльно, т.к. то, является ли вершина листом, закодировано в неявном
```

Это ещё более костыльно, т.к. то, является ли вершина листом, закодировано в неявном виде.

Определение. Отмеченное (дизъюнктное) объединение множеств A, B обозначается $A \sqcup B$ или $A \uplus B^{-1}$ и равно $\{\langle ``A", a \rangle \mid a \in A\} \cup \{\langle ``B", b \rangle \mid b \in B\}$.

Примечание. Это определение интуиционистское по своей сути, т.к. если дано $s \in A \sqcup B$, то мы знаем, из какого множества s.

Определение. Тип, соответствующий такому объединению множеств, называется **ал- гебраическим**

```
Пример. В C++ такой тип реализован как std::variant < ... > Пример. Список в Haskell: data List a=nil \mid Cons\ a (List a)
```

3.2 Применение восьмой аксиомы интуиционистской логики

Вспомним восьмую аксиому интуиционистской 2 логики и запишем её как правило натурального вывода:

¹ или ещё десятком других символов

 $^{^{2}}$ и классической

$$\frac{\Gamma \vdash \alpha \to \gamma \qquad \Gamma \vdash \beta \to \gamma \qquad \Gamma \vdash \alpha \vee \beta}{\Gamma \vdash \gamma}$$

Рассмотрим программу в Haskell, которая преобразует список в строку:

```
let rec string_of_list l =
  match l with
     Nil -> "Nil"
     Cons(head, tail) -> head ^ ":" ^ string_of_list tail
```

Подставим в рассматриваемую аксиому соответствующие значения:

$$\frac{\Gamma \vdash Nil \rightarrow string \quad \Gamma \vdash list \rightarrow string \quad \Gamma \vdash Nil \lor list}{\Gamma \vdash string}$$

Несложно заметить, что эта аксиома описывает match в Haskell- мы даем выражения после "->", т.е. правила Nil -> string, list -> string и элемент Nil или list, а match возвращает string.

4 Исчисление предикатов

4.1 Язык исчисления предикатов

Выражения в этом языке бывают двух видов:

- 1. Логические выражения, называемые "предикаты" или "формулы"
- 2. Предметные выражения, называемые "термы"

 θ — метапеременная для термов.

Термы бывают двух видов:

- Атомы:
 - Предметные переменные обозначаются буквами $a, b, c \dots$
 - Метапеременные обозначаются буквами x, y, z
- Применение функциональных символов:
 - Функциональные символы: f,g,h и записывается $f(\theta_1\dots\theta_n)$
 - Метапеременная тоже обозначается f

Логические выражения:

- Применение предикатных символов $P(\theta_1, \dots \theta_n)$, где P метапеременная для предикатных символов, а предикатный символ $A, B, C \dots$
- Связки $\&, \lor, \neg, \to c$ правилами из языка классической логики.

• Кванторы 3 $\forall x. \varphi$ или $\exists x. \varphi$, где φ — любое логическое выражение.

Мы используем жадность кванторов. 4 Это значит, что квантор берет в φ все, пока не встретит конец выражения или скобку, которая оканчивает этот квантор.

Пример.
$$\forall x.P(x) \& \forall y.P(y) \equiv \forall x.(P(x) \& (\forall y.P(y)))$$

4.2 Теория моделей

Определим оценку формулы в исчислении предикатов:

- 1. Фиксируем D предметное множество, $V = \{ {\tt И}, {\tt Л} \}$
- 2. Каждому $f_i(x_1\dots x_n)$ сопоставим функцию $f_{f_n}:D^n o D$
- 3. Каждому $P_j(x_1\dots x_m)$ сопоставим функцию 5 $f_{p_m}:D^m\to V$
- 4. Каждой x_i сопоставим $f_{x_i} \in D$
- $\llbracket x \rrbracket = f_{x_i}$
- $[\![\alpha \star \beta]\!]$ так же, как в исчислении высказываний.
- $\llbracket P_i(\theta_1 \dots \theta_n) \rrbracket = f_{p_i}(\llbracket \theta_1 \rrbracket \dots \llbracket \theta_n \rrbracket)$
- $\llbracket f_j(\theta_1 \dots \theta_n) \rrbracket = f_{f_j}(\llbracket \theta_1 \rrbracket \dots \llbracket \theta_m \rrbracket)$
- $[\![orall x. arphi]\!] = egin{cases} \mbox{\tt И}, & \mbox{\rm если} \ [\![arphi]\!] = \mbox{\tt И} \ \mbox{при всех} \ k \in D \\ \mbox{\tt Л}, & \mbox{\rm иначе} \end{cases}$

Пример. $\forall x. \forall y. E(x,y)$

Пусть
$$D=\mathbb{N},$$
 $E(x,y)=egin{cases} \mathbb{M}, & x=y\\ \mathbb{J}, & x\neq y \end{cases}$

$$[\![orall x. orall y. E(x,y)]\!]_{x:=1,y:=2} =$$
 Л, т.к. $[\![E(x,y)]\!] =$ Л.

Вспомним определение предела последовательности из матанализа:

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |a_n - a| < \varepsilon$$

³ По записи кванторов нет общепринятого соглашения.

 $^{^4}$ В отношении жадности кванторов также нет соглашения; встречается запись, где квантор — унарная операция, аналогичная \neg

 $^{^{5}}$, называемую предикат

Перепишем это определение с богомерзкого языка матанализа на православный язык исчисления предикатов. 6

Пусть
$$(>)(a,b) = G(a,b), |a| = m_1(a), (-)(a,b) = m_-(a,b), m_a : n \mapsto a_n, 0() = m_0$$

$$\forall \varepsilon.\varepsilon \to 0 \ \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

$$\forall \varepsilon.\varepsilon \to 0 \ \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

$$\forall e. G(e, m_0) \ \exists n_0. \forall n. G(n, n_0) \to G(e, m_1(m_-(m_a(n), a))) < \varepsilon)$$

4.3 Теория доказательств

Все аксиомы исчисления высказываний + Modus Ponens + две схемы аксиом + два правила:

- 1. $(\forall x.\varphi) \to \varphi[x := \theta]$
- 2. $\varphi[x := \theta] \to \exists x. \varphi$

Обе эти схемы применимы только если θ свободен для подстановки вместо x в φ , т.е. никакое свободное вхождение x в θ не станет связным.

Пример.

```
int f(int x) {
    x = y;
}
```

После замены y := x код станет следующим:

```
int f(int x) {
    x = x;
}
```

И код потеряет свой смысл.

Правила следующие:

1.
$$\frac{\varphi \to \psi}{\varphi \to (\forall x. \psi)}$$
 (правило \forall)

2.
$$\frac{\psi \to \varphi}{(\exists x. \psi) \to \varphi}$$
 (правило \exists)

 $[\]overline{^{6}$ Это термины лектора, все претензии от адептов матанализа и других религий — к нему.

Лекция 6

19 марта

 Π ример. $\frac{arphi o\psi}{\exists x.(arphi o\psi)}$ — возможно доказуемо, но это не правило вывода для \exists .

Определение. $\alpha_1 \dots \alpha_n$ — **доказательство**, если выполняется одно из:

- 1. α_i аксиома
- 2. Существует j,k < i, такие что $\alpha_k = \alpha_j \to \alpha_i$
- 3. Существует j, такое что $\alpha_j=\varphi\to\psi$ и $\alpha_i=(\exists x.\varphi)\to\psi$, причём x не входит свободно в ψ .
- 4. Существует j, такое что $\alpha_j=\psi \to \varphi$ и $\alpha_i=\psi \to \forall x. \varphi$, причём x не входит свободно в ψ .

4.4 Вхождение

Рассмотрим некоторую формулу и рассмотрим вхождения x в неё:

$$(P(\underbrace{x}_1) \lor Q(\underbrace{x}_2)) \to (R(\underbrace{x}_3) \& (\underbrace{\forall \underbrace{x}_4.P_1(\underbrace{x}_5)}))$$

- Вхождение 4 связывающее
- Вхождение 5 связано вхождением 4
- Вхождения 1-3 свободны.

Случай множественного связывания:

Область действия
$$\forall$$
 по x

$$\forall x. \forall y. \ \forall x. \forall y. \ \forall x. P(x)$$
Область действия \forall по x

Определение. Вхождение свободно, если не связано.

Примечание. Свободно входящие переменные нельзя переименовывать, т.к. к формуле могут приписать кванторы, которые используют данные имена переменных. Это ограничение не распространяется на связанные переменные.

Любая аксиома есть предикат.

4.5 Свобода для подстановки

Определение. θ свободен для подстановки вместо x в φ , если никакая свободная переменная в θ не станет связанной в $\varphi[x:=\theta]$

 $\textit{Обозначение. } \varphi[x := \theta]$ — заменить все свободные вхождения x в φ на θ

Пример.

$$(\forall x. \forall y. \forall x. P(x))[x := y] \equiv \forall x. \forall y. \forall x. P(x)$$
$$P(x) \lor \forall x. P(x)[x := y] \equiv P(y) \lor \forall x. P(x)$$
$$(\forall y. x = y)[x := y] \equiv \forall y. y = y$$

В этой формуле новый y связался.

Примечание. В определении можно опустить "*свободная*" в нашем исчислении, но это не верно в достаточно извращенных исчислениях.

Лемма 5. Пусть $\vdash \alpha$. Тогда $\vdash \forall x.\alpha$

Доказательство. Т.к. $\vdash \alpha$, то существует $\gamma_1 \dots \gamma_n : \gamma_n \equiv \alpha$

Создадим новое доказательство.

Лемма 6.
$$(\alpha \to \varphi \to \psi) \to \alpha \& \varphi \to \psi$$

Лемма 7.
$$(\alpha \& \varphi \rightarrow \psi) \rightarrow (\alpha \rightarrow \varphi \rightarrow \psi)$$

Доказательство двух лемм. По теореме о полноте исчисления высказываний. \Box

Теорема 14 (о дедукции). Пусть даны Γ, α, β .

- 1. Если $\Gamma, \alpha \vdash \beta$, то $\Gamma \vdash \alpha \to \beta$ при условии, если в доказательстве $\Gamma, \alpha \vdash \beta$ не применялись правила для \forall, \exists по переменным, входящим свободно в α .
- 2. Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$.

Доказательство. По индукции. Пусть доказано $\alpha \to \delta_i$ для $i \in [1,n]$, докажем $\alpha \to \delta_{n+1}$. Рассмотрим случаи:

- 1. Схемы аксиом 1-10 аналогично¹.
- 2. М.Р. аналогично
- 3. Аксиомы 11-12 аналогично первому пункту.
- 4. Пусть δ_{n+1} получено правилом $\forall:\delta_{n+1}\equiv\varphi\to \forall x.\psi$ и существует $\delta_k\equiv\varphi\to\psi$ и $k\leq n$, причём x не входит свободно в φ .

При этом в новом доказательстве уже доказано $lpha o \delta_k$

Примечание. Доказательство пункта 2 аналогично исходному доказательству для исчисления высказываний.

¹ доказательству ИВ

Лекция 7

2 апреля

Определение. Будем говорить, что $\Gamma \vDash \alpha$, т.е. α следует из Γ , если при всех оценках, таких что все $\gamma \in \Gamma$ $[\![\gamma]\!] = \mathcal{U}$, выполнено $[\![\alpha]\!] = \mathcal{U}$

Пример (странный случай). $x=0 \vdash \forall x.x=0$, но $x=0 \nvDash \forall x.x=0$

Условие для корректности: правила для кванторов по свободным переменным из Γ запрещены. Тогда $\Gamma \vdash \alpha$ влечёт $\Gamma \models \alpha$ и $\llbracket \alpha \llbracket x := \Theta \rrbracket \rrbracket = \llbracket \alpha \rrbracket^{x := \llbracket \Theta \rrbracket}$

Примечание. Здесь и далее мы предполагаем условие корректности.

4.6 Полнота исчисления предикатов

Определение. Γ — непротиворечивое. если $\Gamma \nvdash \alpha \ \& \ \neg \alpha$ ни при каком α

Пример.

- Непротиворечивое: \emptyset , $A \vee \neg A$
- Противоречивое: $A \& \neg A$

Мы будем рассматривать непротиворечивое множество замкнутых бескванторных формул и обозначать (...).

Пример.

- $\{A\}$
- $\{0 = 0\}$

Определение. Моделью для (\ldots) Γ называется такая модель, что каждая формула из Γ оценивается в И.

Определение. (...) Γ называется **полным**, если для каждой замкнутой бескванторной формулы α либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$.

Аналогично определяется для не бескванторного множества.

Теорема 15. Если Γ (\dots) и α — замкнутая бескванторная формула, то либо $\Gamma \cup \{\alpha\}$, либо $\Gamma \cup \{\neg \alpha\} - (\dots)$

Аналогичное верно для не бескванторного множества.

Доказательство. Пусть и $\Gamma \cup \{\alpha\}$, и $\Gamma \cup \{\neg \alpha\}$ — противоречивы, т.е.:

$$\Gamma, \alpha \vdash \beta \& \neg \beta \quad \Gamma, \neg \alpha \vdash \beta \& \neg \beta$$

$$\begin{cases} \Gamma \vdash \alpha \to \beta \& \neg \beta \\ \Gamma \vdash \neg \alpha \to \beta \& \neg \beta \end{cases} \Rightarrow \Gamma \vdash \beta \& \neg \beta$$

Т.е. Γ — противоречиво. Это противоречие.

Теорема 16. Если $\Gamma - (...)$ и в языке счётное количество формул¹, то можно построить $\Delta -$ полное (...), такое что $\Gamma \subset \Delta$.

Аналогичное верно для не бескванторного множества.

Доказательство. Пусть $\varphi_1, \varphi_2 \dots$ — замкнутые бескванторные формулы исчисления предикатов.

$$\Gamma_0 := \Gamma$$

 $\Gamma_1:=\Gamma_0\cup\{arphi_1\}$ или $\Gamma_0\cup\{\lnotarphi_1\}$ — смотря что непротиворечиво

 $\Gamma_2 := \Gamma_1 \cup \{ arphi_2 \}$ или $\Gamma_1 \cup \{ \lnot arphi_2 \}$ — смотря что непротиворечиво

:

 $\Gamma^* := \bigcup_i \Gamma_i$, тогда Γ^* — полное и непротиворечивое. Первое очевидно, покажем второе.

Пусть $\Gamma^* \vdash \beta \& \neg \beta$. Это конечное доказательство $\delta_1 \dots \delta_s$ использует конечное число гипотез, пусть они $\gamma_1 \dots \gamma_k$ и $\gamma_i \in \Gamma_{R_i}$. Возьмём $\Gamma_{\max(R_i)}$. Тогда $\Gamma_{\max(R_i)} \vdash \beta \& \neg \beta$ — противоречие.

Теорема 17. Любое полное (\ldots) Γ имеет модель, т.е. существует оценка $[\![]\!]$, такая что если $\gamma \in \Gamma$, то $[\![\gamma]\!] = \mathsf{И}$

Доказательство. Пусть D — все записи из функциональных символов:

$$[\![f_0^n]\!]^2\Rightarrow "f_0^n"$$

 $^{^{1}}$ В исчислении предикатов это верно.

 $^{^2}$ константа

$$[\![f_k^n(\theta_1\dots\theta_k)]\!] \Rightarrow "f_k^n("+[\![\theta_1]\!]","+\dots+","+[\![\theta_n]\!]+")"$$

Предикатные символы:
$$[\![P(\theta_1\dots\theta_n)]\!] = egin{cases} \mathtt{M}, & P(\theta_1\dots\theta_n) \in \Gamma \\ \mathtt{JI}, & \mathtt{uhave} \end{cases}$$

Свободных предметных переменных нет, поэтому для них не нужно придумывать оценку.

Так построенная модель — модель для Γ . Докажем это по индукции по количеству связок: любая формула α , имеющая $\leq n$ связок, истинно $\Leftrightarrow \alpha \in \Gamma$.

База. Очевидно.

Переход. Рассмотрим случай $\alpha \& \beta$.

- 1. Если $[\![\alpha]\!]=$ И и $[\![\beta]\!]=$ И, то α & $\beta\in\Gamma$
- 2. Если $\llbracket \alpha \rrbracket \neq \mathsf{И}$ или $\llbracket \beta \rrbracket \neq \mathsf{И}$, то $\alpha \& \beta \notin \Gamma$

Определение. Предварённая нормальная форма — форма, где $\forall \exists \forall \dots (\tau)$, где τ — формула без кванторов.

Теорема 18. Если φ — формула, то существует ψ в предварённой нормальной форме и при этом $\varphi \to \psi$ и $\psi \to \varphi$.

Теорема 19 (Гёделя о полноте исчисления предикатов). Если Γ — полное непротиворечивое множество замкнутых формул, то оно имеет модель.

Доказательство. План таков: рассмотрим Γ — полное непротиворечивое множество замкнутых формул. Построим по нему Γ^Δ — п.н.м. бескванторных з.ф. Построим по нему по теореме о существовании модели модель M^Δ и покажем, что M^Δ — модель для Γ :

$$\begin{array}{ccc} \Gamma & M \\ \text{без кванторов} & id \\ \Gamma^{\Delta} & \xrightarrow{\text{теорема}} & M^{\Delta} \end{array}$$

Рассмотрим $\Gamma_0\subset \Gamma_1\dots\Gamma_i\dots\subset \Gamma^*$ и $\Gamma^*=\bigcup_i\Gamma_i$, а также $\Gamma_0=\Gamma$, где все формулы в предварённой нормальной форме. Определим переход $\Gamma_i\to\Gamma_{i+1}$.

Построим семейство функциональных символов d^i_j , которые нигде ранее не использовались.

Рассмотрим случаи того, чем является $\varphi_i \in \Gamma_i$.

1. φ_{i} без кванторов — не трогаем.

- 2. $\varphi_j \equiv \forall x. \psi$ добавим все формулы вида $\psi[x:=\theta]$, где θ терм, составленный из $f, d_0^l, d_1^{l'}, \dots d_{i-1}^{l'\cdots l'}$
- 3. $\varphi_j \equiv \exists x. \psi$ добавим формулу $\psi[x:=d_i^j]$

Таким образом, мы получим $\Gamma_{i+1} = \Gamma_i \cup \{$ все добавленные формулы $\}.$

Следствие 19.1. Пусть $\models \alpha$ и α замкнута, тогда $\vdash \alpha$.

Доказательство. Пусть $\models \alpha$, но не $\not\vdash \alpha$. Значит, $\{\neg \alpha\}$ — непротиворечивое множество замкнутых формул.

Почему непротиворечиво? $\neg \alpha \vdash \beta \& \neg \beta, \beta \& \neg \beta \vdash \alpha$, следовательно $\neg \alpha \vdash \alpha$, но ещё и $\alpha \vdash \alpha$. Таким образом, $\vdash \alpha$.

Значит, у $\neg \alpha$ есть модель M, $[\![\neg \alpha]\!]_M =$ И. Значит, $\not \vdash \alpha$

Теорема 20. Если Γ_i непротиворечиво, то Γ_{i+1} непротиворечиво.

Теорема 21. Γ^* непротиворечиво.

 $\Gamma^{\Delta} = \Gamma^*$ без формул с \forall,\exists

 \Box

Лекция 8

9 апреля

4.7 Теорема Гёделя о полноте исчисления предикатов

Теорема 22. Если φ — замкнутая формула исчисления предикатов, то найдётся ψ — замкнутая формула исчисления предикатов, такая что $\vdash \varphi \to \psi$ и $\psi \to \varphi$, при этом ψ с поверхностными кванторами.

Доказательство. В домашних заданиях.

Рассмотрим Γ — непротиворечивое множество замкнутых формул. Рассмотрим Γ' — полное расширение Γ . Пусть φ — формула из Γ' , тогда найдётся $\psi \in \Gamma'$, что ψ — с поверхностными кванторами и $\vdash \varphi \to \psi, \vdash \psi \to \varphi$.

Рассмотрим новое множество констант d^i_j . Построим семейство $\{\Gamma_j\}$: $\Gamma' = \Gamma_0 \subset \Gamma_1 \subset \Gamma_2 \subset \cdots \subset \Gamma_j \subset \cdots$

Опишем переход $\Gamma_j \Rightarrow \Gamma_{j+1}$.

Рассмотрим все формулы из $\Gamma_j:\{\gamma_1,\gamma_2,\dots\}$.

- 1. γ_i формула без кванторов оставим как есть.
- 2. $\gamma_i \equiv \forall x. \varphi$ добавим в Γ_{j+1} все формулы вида $\varphi[x := \theta]$, где θ составлен из всех функциональных символов исчисления предикатов и констант вида $d_1^k \dots d_j^k$.
- 3. $\varphi_i \equiv \exists x. \varphi$ добавим $\varphi[x := d^i_{j+1}]$

Утверждение. Γ_{i+1} непротиворечиво, если Γ_i непротиворечиво.

Доказательство. От противного. Пусть $\Gamma_{i+1} \vdash \beta \& \neg \beta$

$$\Gamma_i, \gamma_1 \dots \gamma_n \vdash \beta \& \neg \beta, \gamma_i \in \Gamma_{i+1} \setminus \Gamma_i$$

 $^{^{1}}$ Слово "замкнутая" не нужно, но мне нравится — Д.Г.

$$\Gamma_i \vdash \gamma_1 \to \gamma_2 \to \cdots \to \gamma_n \to \beta \& \neg \beta$$

Докажем, что $\Gamma_i \vdash \beta \& \neg \beta$ по индукции. $\Gamma_i \vdash \gamma \to \varepsilon^2$, т.е. γ получен из $\forall x.\xi \in \Gamma_i$ или $\exists x.\xi \in \Gamma_i$

Покажем, что $\Gamma_i \vdash \varepsilon$.

Рассмотрим случай $\forall x.\xi$. Заметим, что $\Gamma_i \vdash \forall x.\xi$, т.к. $\forall x.\xi \in \Gamma_i$. По индукционному предположению $\Gamma_i \vdash \gamma \to \varepsilon$. $\Gamma_i \vdash (\forall x.\xi) \to \underbrace{(\xi[x := \theta])}_{\text{7 по}}$ — по аксиоме 11. Очевидно, что

 $(\forall x.\xi) \to \varepsilon$ и у нас есть гипотеза $\forall x.\xi$, поэтому по М.Р. ε .

В случае $\exists x.\xi$ аналогично доказать не получится. Поэтому мы будем делать странное, без этого в теореме Гёделя никак³.

Рассмотрим $\Gamma_i \vdash \underbrace{\xi[x:=d^k_{i+1}]}_{\gamma} \to \varepsilon$. Заметим, что d^k_{i+1} не входит в ε . Заменим все d^k_{i+1} в

доказательстве на y — новую переменную. Это будет доказательством $\Gamma \vdash \xi[x:=y] \to \varepsilon$. Тогда $\exists y. \xi[x:=y] \to \varepsilon^4$. По ДЗ можно заметить, что $(\exists x. \xi x) \to (\exists y. \xi[x:=y])$ и по лемме $(\exists x. \xi) \to \varepsilon$ и у нас есть гипотеза $\exists x. \xi$, поэтому по М.Р. ε .

Таким образом, $\Gamma_i \vdash \beta \& \neg \beta$ — противоречие.

$$\Gamma^* := \bigcup_i \Gamma_i$$

Утверждение. Γ^* непротиворечиво.

Доказательство. Предположим обратное: $\Gamma_0 \vdash \gamma_1 \to \cdots \to \gamma_n \to \beta \& \neg \beta$, где $\gamma_i \in \Gamma_i$. $\Gamma_{\max_i} \vdash \beta \& \neg \beta$, значит Γ_{\max} противоречиво — противоречие.

Пусть $\Gamma^\Delta - \Gamma^*$ без кванторов. По утверждению у Γ^Δ есть модель M.

Утверждение. Если $\gamma \in \Gamma'$, то $[\![\gamma]\!]_M = \mathsf{U}$.

Доказательство. Докажем по индукции; база очевидна.

Переход — рассмотрим два случая:

1.
$$\gamma \equiv \forall x.\delta$$

 $^{^2}$ что-то

³ Это цитата.

 $^{^{4}}$ Правило можно применять, т.к. y не входит в правую часть.

 $[\![\![} \forall x.\delta]\!] = \mathsf{И},$ если $[\![\![} \delta]\!]^{x:=k} = \mathsf{I}\mathsf{I},$ $k \in D^5$. Рассмотрим $[\![\![} \delta]\!]^{x:=k},$ $k \in D.$ k осмысленно в некотором Γ_p . δ добавлено на шаге q. Рассмотрим шаг $\Gamma_{\max(p,q)}$. В шаге $\Gamma_{\max(p,q)+1}$ добавлено $\delta[x:=k]$. $\delta[x:=k]$ меньше на один квантор, чем γ , и соответственно $[\![\![} \delta[x:=k]\!]\!] = \mathsf{I}\mathsf{I}$.

2. $\gamma \equiv \exists x.\delta$ — аналогично.

4.8 Неразрешимость исчисления предикатов

Теорема 23. Исчисление предикатов неразрешимо.

Определение. Язык — множество слов.

Определение. Язык $\mathcal L$ разрешим, если существует алгоритм A такой, что по слову w A(w) останавливается в "1", если $w \in \mathcal L$

Проблема останова: не существует алгоритма, который по программе машины Тьюринга ответит, остановится она или нет. Альтернативная формулировка: пусть \mathcal{L}' — язык всех останавливающихся программ для машин Тьюринга. \mathcal{L}' неразрешим.

Доказательство. Вспомним операцию конкатенации элементов cons.

Пусть A — алфавит ленты 6 . Создадим два набора функциональных нульместных символов: $S_x, x \in A$ и e — nil. Также создадим c(a,b) — двухместный функциональный символ, которому соответствует cons.

Пусть S — множество состояний, тогда b_s , если $s \in S$ — функциональный символ для состояния. b_0 — начальное состояние, b_Δ — допускающее.

Создадим предикат $R(\alpha, w, b_s)$, гласящий, придет ли машина Тьюринга в состояние b_s , при этом слева от головки (u под ней) строка α , справа строка w. В частности, $R(\alpha, e, b_0)$ истинно, т.к. это начальное состояние при запуске на строке α .

Машина Тьюринга совершает переходы вида $(s_x,b_s) \to (s_yb_t,a)$, где a — одно из действий "передвинуться влево", "перевдинуться вправо", "не двигаться". x — буква на ленте, s — текущее состояние. То же самое, но в терминах предиката :

1. Не двигаться:

$$\forall z. \forall w. R(c(s_x, z), w, b_s) \rightarrow R(c(s_x, z), w, b_t)$$

2. Передвинуться влево:

$$\forall z. \forall w. R(c(s_x, z), w, b_s) \rightarrow R(z, c(s_y, w), b_t)$$

⁵ все записи из функциональных символов

⁶ машины Тьюринга

3. Передвинуться вправо:

$$\forall z. \forall w. R(z, (s_u, w), b_s) \rightarrow R(c(s_u, z), w, b_t)$$

Мы опустили некоторые технические шаги — описать начальное и завершающее состояния.

Взяв & по всем формулам, мы получим некоторую формулу φ . Эта формула описывает машину Тьюринга и из неё выводится завершающее состояние: $\varphi \to \exists z. \exists w. R(z,w,b_\Delta)$. Таким образом, разрешимость этой формулы эквивалентна разрешимости машины Тьюринга.

Лекция 9

16 апреля

5 Теория первого порядка

Это исчисление предикатов + нелогические функциональные предикатные символы + нелогические (математические) аксиомы.

- Теория нулевого порядка без кванторов
- Теория первого порядка кванторы по предметным переменным
- Теория второго порядка кванторы по предикатам
- Теория третьего порядка кванторы по предикатам от предикатов

И так далее. Чем больше порядок, тем о большем количестве вещей мы можем судить. Теория нулевого порядка описывает объекты, первого — множества, второго — множества множеств и т.д.

Теория первого порядка нам нужна, чтобы зафиксировать некоторый набор аксиом. Можно их всегда писать перед " \vdash ", но мы не хотим. В какой-то степени это похоже на программы, где мы используем стандартную библиотеку $U\Pi$ и навешиваем свои функции.

5.1 Аксиоматика Пеано

Это первая попытка формализации чисел. Будем говорить, что N соответствует аксиоматике Пеано, если:

- 1. Задана (') : $N \to N$ иньективная функция.
- 2. Задан $0 \in N$: нет такого $a \in N$, что a' = 0

¹ рукомахательная

3. Если P(x) — некоторое утверждение, зависящее от $x \in N$, такое, что P(0) и всегда, когда P(x), также и P(x'), тогда P(x). Это свойство индукции.

 Π римечание. Мы неявно зависим от множества вещей — что такое равенство, что такое утверждение и т.д.

Утверждение. 0 единственный.

Доказательство. Пусть 0 и n нули. Тогда нет x:x'=0 и x'=n. Рассмотрим утверждение P(x)=x=0, либо существует t:t'=x. Рассмотрим случаи:

- 1. $P(0): 0 = 0 o\kappa$.
- 2. Пусть P(x) выполнено, докажем P(x'). Заметим, что t=x.

Таким образом, P(x) при всех $x \in N$.

Определение.

$$a+b = \begin{cases} a, & b=0\\ (a+c)', & b=c' \end{cases}$$

Пример.

$$2+2=0''+0''=(0''+0')'=((0''+0)')'=((0'')')'=0''''=4$$

Определение.

$$a \cdot b = \begin{cases} 0, & b = 0\\ (a \cdot c) + a, b = c' \end{cases}$$

$$a^b = \begin{cases} 1, & b = 0\\ (a^c) \cdot a, & b = c' \end{cases}$$

Утверждение. a + 0 = 0 + a

Доказательство. Пусть $P(a) \equiv a + 0 = 0 + a$.

База: P(0) = 0 + 0 = 0 + 0

Переход: $P(x) \rightarrow P(x')$

$$0 + x' \stackrel{\text{onp.}}{=}^{+} (0 + x)' \stackrel{\text{инд.}}{=}^{\text{предп.}} (x + 0)' \stackrel{\text{инд.}}{=} x' + 0$$

Утверждение. a + b' = a' + b

Доказательство. При b = 0:

$$a' + 0 = a' = (a + 0)' = a + 0'$$

При b = c' есть a + c' = a' + c. Докажем a + c'' = a' + c'

$$(a+c')' = (a'+c)' = a'+c$$

Утверждение. a+b=b+a

Доказательство. База: b = 0 — утверждение 5.1

Переход: a + c'' = c + a, если a + c' = c' + a

$$a+c'' \stackrel{\text{orp.}\,+}{=} (a+c')' \stackrel{\text{инд.}}{=} (c'+a)' \stackrel{\text{orp.}\,+}{=} c'+a'$$

5.2 Формальная арифметика

Рассмотрим следующую теорию первого порядка: исчисление предикатов, в которое добавили следующие символы:

- 0-местный функциональный символ 0
- 1-местный функциональный символ '
- 2-местные функциональные символы $(\cdot), (+)$
- 2-местный предикатный символ (=)

И добавили следующие 8 аксиом:

1.
$$a = b \to a' = b'$$

2.
$$a = b \rightarrow a = c \rightarrow b = c$$

3.
$$a' = b' \to a = b$$

4.
$$\neg a' = 0$$

5.
$$a + b' = (a + b)'$$

6.
$$a + 0 = a$$

7.
$$a \cdot 0 = 0$$

8.
$$a \cdot b' = a \cdot b + a$$

9. Схема аксом индукции:

$$(\psi[x := 0]) \& (\forall x. \psi \rightarrow (\psi[x := x'])) \rightarrow \psi$$

Если x входит свободно в ψ

Определение. $\exists ! x. \varphi(x) \equiv (\exists x. \varphi(x)) \& \forall p. \forall q. \varphi(p) \& \varphi(q) \rightarrow p = q$

Определение. $a \le b$ — сокращение для $\exists n.a + n = b$

Определение.

$$0^{(n)} = \begin{cases} 0, & n = 0 \\ 0^{(n-1)'}, & n > 0 \end{cases}$$
$$\overline{n} = 0^{(n)}$$

Определение. Пусть $W \subset \mathbb{N}_0^n$. W — выразимое в формальной арифметике отношение, если: (пусть $k_1 \dots k_n \in \mathbb{N}$)

1.
$$(k_1 \dots k_n) \in W$$
, тогда $\vdash w[x_1 := \overline{k_1} \dots x_n := \overline{k_n}]$

2.
$$(k_1 \dots k_n) \notin W$$
, тогда $\vdash \neg w[x_1 := \overline{k_1} \dots x_n := \overline{k_n}]$

Определение. $f:\mathbb{N}^n \to \mathbb{N}$ представима в формальной арифметике, если найдётся φ — формула с n+1 свободной переменной $k_1\dots k_{n+1}\in\mathbb{N}$

1.
$$f(k_1 \dots k_n) = k_{n+1}$$
, to $\vdash \varphi(\overline{k_1} \dots \overline{k_{n+1}})$

$$2. \vdash \exists ! x. \varphi(k_1 \ldots k_n, x)$$

Лекция 10

30 апреля

6 Арифметизация математики

Это идея того, все содержательное в математике может быть выражено как арифметика. Мы к ней подойдём издалека

6.1 Рекурсивные функции

Рассмотрим следующие примитивы, чтобы определить рекурсивные функции:

- 1. $Z: \mathbb{N} \to \mathbb{N}: Z(x) = 0$
- 2. $N: \mathbb{N} \to \mathbb{N}: N(x) = x+1$
- 3. $S_k: \mathbb{N}^m \to \mathbb{N}$ подстановка

$$S_k\langle g, f_1 \dots f_k \rangle (x_1 \dots x_m) = g(f_1(\overline{x}), f_2(\overline{x}) \dots f_k(\overline{x}))$$

, где
$$\overline{x}\equiv x_1\dots x_m$$
 и если $f_1\dots f_k:\mathbb{N}^m\to\mathbb{N}$ и $g:\mathbb{N}^k\to\mathbb{N}$

- 4. $P_k^l: \mathbb{N}^k o \mathbb{N}: P_k^l(x_1 \dots x_k) = x_l$ при $l \leq k$ проекция
- 5. $R\langle f,g \rangle: \mathbb{N}^{m+1} \to \mathbb{N}$, если $f: \mathbb{N}^m \to \mathbb{N}, g: \mathbb{N}^{m+2} \to \mathbb{N}$

$$R\langle f, g \rangle (y, x_1 \dots x_m) = \begin{cases} f(x_1 \dots x_m), & y = 0 \\ g(y - 1, R\langle f, g \rangle (y - 1, x_1 \dots x_m), x_1 \dots x_m), & y > 0 \end{cases}$$

R называется **примитивной рекурсией**.

R можно воспринимать как цикл for с переменной цикла y.

Пример.

- (a) $R\langle f,g\rangle x = f(x)$
- (b) $R\langle f, g \rangle x = g(0, f(x), x)$
- (c) R(f,g) = g(1,g(0,f(x),x),x)

Определение. $f: \mathbb{N}^m \to \mathbb{N}$ — **примитивно-рекурсивная**, если найдётся выражение f через примитивы Z, N, S, P, R.

Пример.

1.
$$1(x) = 1$$

$$1 = S \langle N, Z \rangle$$

2.
$$(+2)(x) = x + 2$$

$$(+2) = S \langle N, N \rangle$$
$$S \langle N, N \rangle (x) = g(f(x)) = N(N(x)) = x + 2$$

3.

$$(+3) = S \langle N, S \langle N, N \rangle \rangle$$

4. $(\times 2)$

Промежуточная функция:

$$(\times 2_a) = R \left\langle P_1^1, S \left\langle N, P_3^2 \right\rangle \right\rangle$$
$$(\times 2) = S \left\langle (\times 2_a), P_1^1, P_1^1 \right\rangle$$

Добавим новый примитив "минимизация":

6. $M\langle f\rangle:\mathbb{N}^m\to N$ при $f:\mathbb{N}^{m+1}\to\mathbb{N}$

 $M\left\langle f\right\rangle (x_1\dots x_m)=y$ — минимальный y такой, что $f(y,x_1\dots x_m)=0$. Если $f(y,x_1\dots x_m)>0$ при всех y, результат неопределён.

Теорема 24. $(+), (\cdot), (x^y), (:), (\sqrt{})$, деление с остатком, числа Фибоначчи — примитивнорекурсивные функции.

Пусть $p_1, p_2 \dots$ — простые числа.

Утверждение. $p(i): \mathbb{N} \to \mathbb{N}, p(i) = p_i$ — примитивно-рекурсивная функция.

 $2^{k_1} \cdot 3^{k_2} \cdot 5^{k_3} \cdot \ldots \cdot p_i^{k_i}$ — примитивно-рекурсивно

$$p\log_n k = \max t : k \equiv 0 \mod n^t$$

Пример.

- 1. $plog_5 120 = 1$
- 2. $plog_2 120 = 3$

 $plog_k p$ — примитивно-рекурсивная функция.

Тогда мы можем кодировать $\langle k_1 \dots k_n \rangle$ как $2^{k_1} \cdot 3^{k_2} \cdot 5^{k_3} \cdot \dots \cdot p_i^{k_i}$ и перевод в любую сторону примитивно-рекурсивен. С помощью такого подхода проще создавать примитивно-рекурсивные функции.

Определение (Функция Аккермана).

$$A(m,n) = \begin{cases} n+1, & m=0\\ A(m-1,1), & m>0, n=0\\ A(m-1,A(m,n-1)), & m>0, n>0 \end{cases}$$

Утверждение. A(m, n) не примитивно-рекурсивно.

Доказательство. Общая идея: если некоторый текст длины n задал число k, то добавление одного символа не позволяет получить число больше, чем k^k , т.к R не может совершить больше R итераций.

Теорема 25. f — рекурсивная функция. Тогда f представима в формальной арифметике.

Теорема 26. f представима в формальной арифметике. Тогда f рекурсивна.

Доказательство. Пусть $\vdash \varphi$ и $\delta_1 \dots \delta_n \equiv \varphi$ — доказательство φ в формальной арифметике. Пусть C — рекурсивная функция, проверяющая доказательство в формальной арифметике.

[О. доказательство корректно]

тике, т.е. $C(p,x)= egin{cases} 0, & \text{доказательство корректно} \\ \neq 0, & \text{доказательство некорректно} \end{cases}$, где x- запись доказательства формулы p.

По теореме 25 получим формулу σ , для которой верно $\vdash \sigma(p,x,0)$, если p — доказательство формулы x.

6.2 Проблема останова

Пусть есть программа $P(p,x)= egin{cases} 0, & \mbox{если } p(x) \mbox{ останавливается} \\ 1, & \mbox{если } p(x) \mbox{ не останавливается} \end{cases}$

Рассмотрим программу Q:

```
Q(p)
if P(p) = 1
return 0
else
while true do;
```

Чему равно Q(Q)? Ни 0, ни 1. Это противоречие.

Мы аналогичным образом сломаем наше доказательство — создадим формулу "для меня нет доказательства".

Теорема 25.А. Примитивы Z, N, S, P представимы в формальной арифметике.

Доказательство.

1.
$$Z: \xi := x_1 = x_1 \& x_2 = 0$$

2.
$$N: \nu := x_2 = x_1'$$

3.
$$P_k^l: \pi_k^l:=x_1=x_1 \& x_2=x_2 \& \cdots \& x_l=x_{k+1} \& \cdots \& x_k=x_k$$

4.
$$S\langle g, f_1 \dots f_k \rangle : g \leftrightarrow \gamma, f_i \leftrightarrow \varphi_i$$
.

$$\exists r_1. \exists r_2.... \exists r_k. \varphi_1(x_1...x_m, r_1) \& \varphi_2(x_1...x_m, r_2) \& \cdots \& \varphi_k(x_1...x_m, r_k) \& \gamma(r_1...r_k, x_{m+1})$$

6.
$$M \langle f \rangle$$

$$\varphi(x_{m+1}, x_1 \dots x_m, \overline{0}) \& \forall y. y < x_{m+1} \to \neg \varphi(y, x_1 \dots x_m, \overline{0})$$

5. β -функция Гёделя:

$$\beta(b, c, i) = b\%(1 + c \cdot (i + 1))$$

Теорема 25.В. $a_0 \dots a_n$ — некоторые значения $\in \mathbb{N}$. Тогда найдутся b c такие, что $\beta(b,c,i)=a_i$

Доказательство.

Утверждение. Если $i \neq j$, то 1 + c(i + 1) взаимно просто с 1 + c(j + 1).

Доказательство. $c := \max(a_0 \dots a_n, n)!$.

Пусть есть некоторый простой $p: 1 + c(i+1) \equiv 0 \mod p$ и $1 + c(j+1) \equiv 0 \mod p$. Тогда $c(i+1-j-1) \equiv 0 \mod p$ и $c(i-j) \equiv 0 \mod p -$ противоречие.

Утверждение. По китайской теореме об остатках найдётся b с нужными свойствами.

 β примитивно-рекурсивна и представима в формальной арифметике:

$$B(b, c, i, q) = (\exists p.b = p \cdot (1 + c \cdot (1 + i)) + q) \& q < b$$

Тогда для $R\langle f,g\rangle$, если $f\leftrightarrow \varphi,g\leftrightarrow \gamma$:

$$\exists b. \exists c. \exists f. \varphi(x_1 \dots x_n, f) \& B(b, c, \overline{0}, f) \& \forall y. y < x_{n+1} \to \exists r_{y-1}. B(b, c, y - 1, r_{y-1}) \\ \& \exists r_{y+1}. B(b, c, y + 1, r_{y+1}) \& \varphi(y, r_y, x_1 \dots x_n, r_{y+1}) \\ \& B(b, c, x_{n+1}, x_{n+2})$$

Лекция 11. 7 мая стр. 45 из 55

Лекция 11

7 мая

7 Гёделева нумерация

Это кодировка для строк.

Определение (\sqcap).

x	$\lceil x \rceil$
(3
)	5
,	7
&	9
V	11
_	13
\rightarrow	15
\forall	17
3	19
	21
f_n^k	$23 + 6 \cdot 2^n \cdot 3^k$
P_n^k	$25 + 6 \cdot 2^n \cdot 3^k$
x_k	$27 + 6 \cdot 2^k$

Пример. Для формальной арифметики: $(=) = P_0^2$, $(0) = f_0^0$, $(') = f_0^1$, $(+) = f_0^2$, $(\cdot) = f_1^2$ Определение. $\lceil a_0 a_1 \dots a_{n-1} \rceil = 2^{\lceil a_0 \rceil} \cdot 3^{\lceil a_1 \rceil} \cdots p_n^{\lceil a_{n-1} \rceil}$, где $p_i - i$ -тое простое число. Определение. $\lceil S_0 \dots S_n \rceil = 2^{\lceil S_0 \rceil} \cdots p_n^{\lceil S_{n-1} \rceil}$, где S_i — некоторая строка.

Лекция 11. 7 мая стр. 46 из 55

Несложно заметить, что символы всегда нечетные, а строки всегда чётные, что упрощает жизнь. Это не содержательно и сделано только для удобства вычисления "руками", т.к. это было сделано до компьютеров.

Таким образом, мы можем взять любую формулу или доказательство и закодировать.

Пример.
$$\lceil a = 0 \rceil = 2^{27+6} \cdot 3^{25+6\cdot 4} \cdot 5^{23+6}$$

Теорема 27. Рассмотрим функцию

$$Proof(\underbrace{x}_{ extstyle au^{\gamma}},p) = egin{cases} 0, & \text{если } p-\text{гёделев номер доказательства } \chi \\ 1, & \text{иначе} \end{cases}$$

Proof рекурсивна.

Теорема 28. Если функция представима в формальной арифметике, то она рекурсивна.

Доказательство. Рассмотрим $f: \mathbb{N} \to \mathbb{N}$, представимую в формальной арифметике. Тогда существует φ с n+1 свободной переменной $(x_1 \dots x_{n+1})^1$.

Если $f(k_1 \dots k_n) = k_{n+1}$, то $\vdash \varphi(\overline{k_1} \dots \overline{k_{n+1}})$, т.е. существует доказательство $\delta = \delta_1 \dots \delta_t$.

$$Proof(\lceil \varphi(\overline{k_1} \dots \overline{k_{n+1}}) \rceil, \lceil \delta \rceil) = 0$$

Найдём δ и $\overline{k_{n+1}}$. Переберем y и будем подставлять $\operatorname{plog}_2 y$ вместо $\overline{k_{n+1}}$ и $\operatorname{plog}_3 y$ вместо δ . Таким образом, мы переберем все возможные комбинации:

$$S\left\langle \mathsf{plog}_2, M\left\langle S\left\langle Proof, S\left\langle Subst_{n+1}, \ulcorner \varphi \urcorner, P_{n+1}^2, P_{n+1}^3 \dots P_{n+1}^{n+1}, S\left\langle \mathsf{plog}_2, P_{n+1}^1\right\rangle \right\rangle, S\left\langle \mathsf{plog}_3, P_{n+1}^1\right\rangle \right\rangle \right\rangle$$

- $S\left\langle \mathrm{plog}_2, P^1_{n+2} \right\rangle$ то же самое, что и $\mathrm{plog}_2 y.$
- $Subst_i$ берёт i-тый аргумент x_i и заменяет все вхождения x_i в во всех аргументах, кроме последнего, на значение последнего аргумента.

Объяснение: M найдёт минимальное y, такое что при вышеуказанной подстановке Proof = 0. Т.к. нам нужно получить k_{n+1} , то мы берём $plog_2$.

7.1 Самоприменение

Определение. $W_1(\lceil \chi \rceil, \lceil p \rceil) = 0$ тогда и только тогда, когда p — доказательство самоприменения χ , т.е. доказательство $\chi[x_0 := \lceil \chi \rceil]$; иначе $W_1 = 1$.

 $^{^{1}}$ и т.д., см. определение представимой в формальной арифметике функции

² что нам не нужно, но пусть будет

Лекция 11. 7 мая стр. 47 из 55

Представление W_1 в формальной арифметике через Subst очевидно, обозначим его ω_1 . Формула $\sigma(x) = \forall p. \neg \omega_1(x,p)$ утверждает "самоприменение x недоказуемо". Доказуемо ли $\sigma(\lceil \overline{\sigma} \rceil)$?

Примечание. Эта тема несколько архаична.

Определение. Теория ω -непротиворечива, если для любой $\varphi(x)$: если $\vdash \varphi(\overline{0}), \vdash \varphi(\overline{1}) \dots$, то $\nvdash \exists x. \neg \varphi(x)$

Теорема 29. Если теория ω -непротиворечива, то она непротиворечива.

Доказательство. Рассмотрим
$$\varphi(x):=x=x$$
. Т.к. $\vdash \overline{0}=\overline{0}, \vdash \overline{1}=\overline{1}\dots$, то по ω -непротиворечивости $\not\vdash \exists x. \neg (x=x)$.

Теорема 30 (Гёделя о неполноте арифметики №1).

- 1. Если формальная арифметика непротиворечива, то $\nvdash \sigma(\ulcorner \sigma \urcorner)$
- 2. Если формальная арифметика ω -непротиворечива, то $\nvdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$

Доказательство.

- 1. Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$, т.е. существует p гёделев номер доказательства $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Тогда $\vdash \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. С другой стороны, $W_1(\ulcorner \sigma \urcorner, p) = 0$, т.е. $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$ противоречие.
- 2. Пусть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$, но при этом $\vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{0})$ и то же самое для любого числа, т.к. иначе $\vdash \sigma(\lceil \overline{\sigma} \rceil)$ и получается противоречие.

Но по ω -непротиворечивости $\vdash \sigma(\overline{\ulcorner \sigma \urcorner})$ — противоречие.

Следствие 30.1. Формальная арифметика со стандартной интерпретацией неполна.

Доказательство. По определению $\vdash \omega_1(x,p)$ тогда и только тогда, когда p — доказательство x(x). Ясно, что $\not\vdash \omega_1(\lceil \sigma \rceil,p)$ для любого p. Тогда $[\![\omega_1(\lceil \overline{\sigma} \rceil,p)]\!] = Л$, следовательно $[\![\nabla p.\neg \omega_1(\lceil \overline{\sigma} \rceil,p)]\!] = И$. Но $\not\vdash \sigma(\lceil \overline{\sigma} \rceil)$ — противоречие.

Есть формулировка этой теоремы без ω -непротиворечивости.

Теорема 31 (Гёделя о неполноте арифметики №1 в форме Россера).

$$W_2(x,p) = \begin{cases} 0, & p-\text{доказательство } \neg x(\ulcorner x \urcorner) \\ 1, & \text{иначе} \end{cases}$$

$$\rho(x) = \forall p.\omega_1(x, p) \to \exists q.q$$

Лекция 11. 7 мая стр. 48 из 55

То есть ρ гласит, что если мы найдём доказательство самоприменения x, то мы найдём доказательство отрицания самоприменения x, при этом данное доказательство будет иметь меньший номер.

- 1. Если формальная арифметика непротиворечива, то $\nvdash \rho(\overline{\ulcorner \rho \urcorner})$
- 2. Если формальная арифметика непротиворечива, то $\nvdash \neg \rho(\overline{\ulcorner \rho \urcorner})$

Примечание. Эта теорема формализована на Соq в 18 тысяч строк.

Определение. $Consis \equiv \forall p. \neg \pi(\overline{1} = 0 \overline{\ }, p),$ где π есть арифметизированное Proof. Неформально Consis эквивалентно тому, что арифметика непротиворечива.

Теорема 32 (Гёделя о неполноте арифметики №2). $\vdash Consis \to \sigma(\overline{\ulcorner \sigma \urcorner})$

Примечание. Теорема гласит, что если доказать Consis, то докажется $\sigma(\lceil \overline{\sigma} \rceil)$, из чего следует противоречивость формальной арифметики. Следовательно, внутри Φ .А. доказать непротиворечивость Φ .А. невозможно.

Доказательство. Полного доказательства не будет, оно убийственное 3 .

Если вдуматься, то доказывать нечего, т.к. теорема гласит, что если формальная арифметика непротиворечива, то не существует доказательства самоприменения σ , т.е. $\forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. Таким образом, это просто первый пункт теоремы Γ ёделя о неполноте арифметики \mathbb{N}° 1, но формализованный.

 $[\]frac{-}{3}$ Это цитата.

Лекция 12. 14 мая стр. 49 из 55

Лекция 12

14 мая

8 Теория множеств

Примечание. Обычно фокус в курсе матлогики делается именно на теории множеств, т.к. она более полезна для математики.

Определение. Теория множеств — теория первого порядка с нелогическим предикатом "принадлежность" (\in) и нижеуказанными схемами аксиом.

Определение. $a \subseteq b$, если $\forall x.x \in a \rightarrow x \in b$

Примечание. Моделью для теории множеств является конструкция в стиле алгебры Линденбаума.

Определение (пара).

$$\begin{split} \langle a,b\rangle &= \{\{a\},\{a,b\}\} \\ fst\, \langle a,b\rangle &= \bigcup \left(\bigcap \langle a,b\rangle\right) \\ snd\, \langle a,b\rangle &= \bigcup \left(\bigcup \langle a,b\rangle \setminus \bigcap \langle a,b\rangle\right) \end{split}$$

Определение. $B \subseteq X^2$ — бинарное отношение на X.

Что такое равенство?

- Принцип Лейбница (неразличимость): A=B, если для любого "предиката" P выполнено $P(A) \leftrightarrow P(B)$
- Принцип объёмности: A и B состоит из одинаковых элементов.

Сокращение: $a \leftrightarrow b$, если $(a \rightarrow b) \& (b \rightarrow a)$

 $[\]frac{1}{1}$ Множество $\{x \mid P(x)\}$

Лекция 12. 14 мая стр. 50 из 55

Определение. a=b, если $a\subseteq b\ \&\ b\subseteq a$

Примечание. То есть мы используем принцип объемности. Из него следует принцип Лейбница.

Аксиома 1 (равенства). Равные множества содержатся в одних и тех же множествах.

$$\forall abc. a = b \& a \in c \rightarrow b \in c$$

Аксиома 2 (пустого множества). Существует $\varnothing : \forall x. \neg x \in \varnothing$

Примечание. Также можно определить пустое множество как константу теории.

Аксиома 3 (пары). Если $a \neq b$, то $\{a, b\}$ — множество.

В формальном виде:

$$\forall a. \forall b. a \neq b \rightarrow \exists p. a \in p \& b \in p \& \forall t. t \in p \rightarrow t = a \lor t = b$$

Примечание. Иначе мы можем получать нечто похожее на открытые множества в топологии стрелки, где у нас нет конечного множества, содержащего некоторый элемент.

Аксиома 4 (объединения). Если x — непустое множество, то $y = \bigcup x$ — множество.

В формальном виде:

$$\forall x. \underbrace{\exists (y.y \in x)}_{\text{xhenyctoe}} \rightarrow \exists p. \forall y. y \in p \leftrightarrow \exists s. y \in s \ \& \ s \in x$$

Аксиома 5 (степени). Для множества x существует $\mathcal{P}(x)$ — множество всех подмножеств.

В формальном виде:

$$\forall x. \exists p. \forall y. y \in p \leftrightarrow y \subseteq x$$

Пример.

$$\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$

Аксиома 6 (схема выделения). Если a — множество, $\varphi(x)$ — формула, в которую не входит свободно b, то $\{x \mid x \in a \& \varphi(x)\}$ — множество.

В формальном виде:

$$\forall x. \exists b. \forall y. y \in b \leftrightarrow y \in x \& \varphi(y)$$

Примечание. Это схема аксиомы, т.к. здесь присутствует метапеременная φ .

Аксиома 7 (бесконечности). Существует множество N такое, что:

$$\varnothing \in N \& \forall x.x \in N \to x \cup \{x\} \in N$$

Лекция 12. 14 мая стр. 51 из 55

Теорема 33. Если x — множество, то $\{x\}$ — множество, т.е. $\exists t.a \in t \leftrightarrow a = x$

Доказательство. Рассмотрим случаи:

- 1. $x = \emptyset$. Тогда $t = \mathcal{P}(x)$.
- 2. $x \neq \emptyset$. Тогда $s = \{x, \emptyset\}$ существует по аксиоме пары, $t = \{z \mid z \in s \& z \neq \emptyset\}$.

Теорема 34. Если a, b — множества, то $a \cup b$ — множество.

Доказательство. Рассмотрим случаи:

- 1. a=b. Тогда $a\cup b=a$
- 2. $a \neq b$. Тогда $a \cup b = \{a, b\}$ существует по аксиоме пары

Oбозначение. a,b — множества. Тогда $a \cup b$ — такое c, что:

$$a \subseteq c \& b \subseteq c \& \forall t.t \in c \rightarrow t \in a \lor t \in b$$

Определение. $a' = a \cup \{a\}$

Обозначение (ординальные числа).

- $\overline{0} = \emptyset$
- $\overline{1} = \varnothing' = \{\varnothing\}$
- $\overline{2} = \varnothing'' = \{\varnothing, \{\varnothing\}\}\$
- $\overline{3} = \varnothing''' = \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\$

Определение. Множество S транзитивно, если:

$$\forall a. \forall b. a \in b \& b \in S \rightarrow a \in S$$

Определение. Множество s вполне упорядоченно отношением " \in ", если:

- 1. $\forall a. \forall b. a \in s \ \& \ b \in s \rightarrow a \in b \lor b \in a \lor a = b$ линейность
- 2. $\forall t.t \subseteq s \to \exists a.a \in t \& \forall b.b \in t \to b = a \lor a \in b$ в любом подмножестве есть наименьший элемент

Определение. Ординал — вполне упорядоченное отношением " \in " транзитивное множество.

Лекция 12. 14 мая стр. 52 из 55

Определение. Предельный ординал — непустой ординал, не имеющий предшественника:

$$\forall p.p' \neq s$$

Пример.

$$\omega = \{\varnothing, 1, 2 \dots\}$$

Очевидно, что $\omega \subseteq N$

Теорема 35. ω — множество.

Определение.

$$a+b=egin{cases} a,&b=0\ (a+c)',&b=c'\ \sup_{c\in b}(a+c),&b-\mbox{предельный} \end{cases}$$

Определение. $\sup t$ — минимальный ординал, содержащий все элементы t.

 $\mbox{\it Пример.}\ a=\{0,1,3\}$ — не ординал, т.к. транзитивность не выполнена, т.к. $2\in 3,$ но $2\notin a.$ $\sup\{0,1,3\}=\{0,1,2,3\}$

Пример.

$$1 + \omega = \sup_{c \in \omega} (1 + c) = \sup\{0 + 1, 1 + 1 \dots\} = \sup\{1, 2 \dots\} = \omega$$

Пример.

$$\omega + 1 = \omega' = \{0, 1, 2, \dots \omega\}$$

Лекция 13. 21 мая стр. 53 из 55

Лекция 13

21 мая

8.1 Аксиома выбора

Аксиома 8. Эквивалентны следующие формулировки:

- На любом семействе непустых множеств $\{A_S\}_{S\in\mathbb{S}}$ можно определить функцию $f:\mathbb{S}\to\bigcup_S A_S$, которая мо множеству возвращает его элемент.
- Любое множество можно вполне упорядочить.
- Для любой сюрьективной функции $f:A\to B$ найдётся частично обратная $g:B\to A$, т.е. g(f(x))=x.

Примечание. Эта аксиома странная, т.к. по третьей формулировке любую хеш-функцию можно сломать. Конечно, они все ломаются перебором, но это не относится к реальному миру.

Примечание. Эта аксиома не конструктивна — сказано, что можно построить функцию/порядок, но не сказано, как.

Примечание. Аксиома выбора не даёт парадоксов.

Примечание. Можно рассматривать теорию множеств без этой аксиомы, она тоже часто используется и обозначается \mathbf{ZF}^2 , а с аксиомой выбора обозначается \mathbf{ZFC}^3 .

Определение. Дизъюнктное семейство множеств — семейство непересекающихся подмножеств. 4

$$D(y): \forall p. \forall q. p \in y \& q \in y \rightarrow p \cap q = \emptyset$$

¹ Это синоним слову "множество".

² Zermelo-Fraenkel

³ Zermelo-Fraenkel-Choice

 $^{^4}$ Кажется, в формализации ошибка, т.к. если p=q, то всё ломается. Нужно в конец добавить $\vee p=q$.

Лекция 13. 21 мая стр. 54 из 55

Определение (прямое произведение дизъюнктного множества).

$$X = \{t \mid \forall p.p \in S \leftrightarrow \exists! c.c \in p \& c \in t\}$$

Формулировка аксиомы выбора, которую мы будем использовать:

Аксиома (выбора). Если D(y) & $\forall t.t \in y \to t \neq \emptyset$, то $X \neq \emptyset$

Примечание. В матанализе аксиома выбора используется для эквивалентности предела по Коши и по Гейне.

Теорема 36 (Диаконеску). Рассмотрим ZF поверх ИИП 5 . Если добавить аксиому выбора, то $\vdash \alpha \lor \neg \alpha$.

Аксиома 9 (фундирования).

$$\forall x.x = \varnothing \lor \exists y.y \in x \& y \cap x = \varnothing$$

Иными словами, в каждом непустом множестве есть элемент, не пересекающийся с ним.

Примечание. Эта аксиома запрещает самосодержащие множества.

Примечание. Без аксиомы фундирования нельзя определить $\{a, \{a, b\}\}$ как пару, но можно $\{\{a\}, \{a, b\}\}$.

Аксиома 10 (схема подстановки, Френкеля). Если S — множество, f — функция, т.е. существует формула $\varphi(x,y): \forall x \in S. \exists ! y. \varphi(x,y)$, то f(S) — множество.

8.2 Мощность множеств

Определение. Множества a и b равномощны, если существует биекция $a \to b$ и обозначается |a| = |b|.

Определение. Кардинальное число t — ординал x, такой что для всех $y \in x \ |y| \neq |x|$

Определение. Мощность |x| — такое кардинальное число t, что |t| = |x|.

Определение (строго большая мощность). |a| < |b|, если существует $f: a \to b-$ инъективно, но нет биекции.

Утверждение. Если a, b — кардиналы и |a| = |b|, то a = b.

- $\overline{0},\overline{1},\ldots$ конечные кардиналы.
- $\aleph_0 = |\omega|$
- \aleph_1 следующий кардинал за \aleph_0 .
- . :

⁵ а не КИП

Лекция 13. 21 мая стр. 55 из 55

Пример. $|\omega| = |\omega + 1|$, следовательно $|\omega + 1|$ не кардинал, т.к. $\omega \in \omega + 1$.

Теорема 37 (Кантора). Рассмотрим множество S и $\mathcal{P}(S)$. Тогда $|\mathcal{P}(S)| > |S|$

Доказательство. Пусть $f: S \to \mathcal{P}(S)$ — биекция. Построим $x \in \mathcal{P}(S)$, не имеющий прообраза. Это можно сделать диагональным методом: $t = \{s_k \in S \mid s_k \notin f(s_k)\}$.

Напоминание: \aleph_1 — наименьший кардинал такой, что $\aleph_1 > \aleph_0$. Существует ли он? Да, т.к. $|\mathcal{P}(\aleph_0)| > \aleph_0$ по теореме кантора.

Является ли $\aleph_1 \mathcal{P}(\aleph_0)$? Это континуум-гипотеза, и её отрицание нельзя доказать.

Теорема 38 (Кантора-Бернштейна). Если a,b — множества, $f:a\to b$ и $g:b\to a$ инъективны, то существует биекция $a\to b$.