

Machine Learning Introduction

Ali Gooya a.gooya@leeds.ac.uk

Why bother about Machine Learning?

Source: https://www.itjobswatch.co.uk

What is Machine Learning?

Machine Learning (ML):

The field of study that gives computers the ability to learn without being explicitly programmed.

Arthur Lee Samuel was an American pioneer in the field of computer gaming and artificial intelligence. He popularized the term "machine learning" in 1959.

Further resources on definition: https://www.youtube.com/watch?v=ukzFI9rgwfU

How do you use Machine Learning in your everyday life?

Some Examples

Spam filtering

Face detection

Pedestrian detection

Movie recommendation

Regression

Task: predict a continuous dependent variable y (e.g. weight) given an independent variable x (e.g. height)

Dependent variables are also called target variables.

X	у
160 154 187 174	61 53 79 70
165	?

Classification

Task: determine the discrete variable y (chair/table) given x (image)

Clustering

Task: cluster the data (e.g. height/weight) into coherent groups.

Reinforcement learning

Goal: At any state S_t , the agent learns to take the best action a_t to maximize the reward r_t .

Goals

- Know the foundation behind the most popular learning algorithms
- Code and apply those algorithms to datasets.

Machine Learning Process

Data Collection:
For example, many images
of various iris flowers

Feature Selection: E.g., length/widths of petal and sepal in each flower

Sepal.Length Sepal.Length Petal.Length Petal.Width

5.5 6.5 7.5

Iris Data (red=setosa,green=versicolor,blue=virginica)

Machine Learning Process

Model choice

Training

Evaluation

		PredictedClass		
		Setosa	Versicolor	Virginica
Actual Class	Setosa	14		1
	Versicolor	1	11	3
	Verginica	1	3	10

Machine Learning Process

Data Collection

Feature Selection

Model choice

Training

Evaluation

Most of this class

Other information

- Lectures: online on Zoom, recordings will be available on Minerva
- Tutorials: will follow the lecture, in-person, every other week (2, 4, ..) unless otherwise said.
- Labs: drop-in, DEC10
- Support: Use Teams page, PGR students
- Assessment plan (<u>tentative</u>):
 - Programming project Python (20%)
 - In-course online test Gradescope (30%)
 - Final online test Gradescope (50%)
- Text books:
 - Machine Learning, An Algorithmic Perspective, Stephen Marsland,
 - Pattern Recognition and Machine Learning, Christopher Bishop