

Compuertas lógicas

Breve descripción:

Las compuertas lógicas son elementos básicos de los circuitos digitales, responsables de realizar operaciones booleanas como *AND, OR* y *NOT*. Estas se integran en circuitos integrados (CI), dispositivos compactos que agrupan múltiples compuertas para procesar información binaria. Son fundamentales en tecnologías como computadoras, telecomunicaciones y sistemas automatizados, permitiendo diseños eficientes y funcionales.

Tabla de contenido

Intro	oducción	1
1.	Representaciones de las compuertas lógicas	2
2.	Las compuertas lógicas y los circuitos integrados (CI)	8
Sínto	esis	10
Mat	erial complementario	11
Glos	sario	12
Refe	erencias bibliográficas	13
Créd	litos	14

Introducción

Las compuertas lógicas son elementos fundamentales en el mundo de los circuitos digitales, ya que permiten procesar información binaria a través de operaciones booleanas como la conjunción (*AND*), disyunción (*OR*) y negación (*NOT*). Estos componentes son esenciales para el diseño y funcionamiento de sistemas electrónicos, desde dispositivos simples hasta complejos equipos computacionales.

A su vez, las compuertas lógicas se integran en componentes más sofisticados conocidos como circuitos integrados (CI), que agrupan varias compuertas en un solo dispositivo compacto y eficiente. Los CI han revolucionado la tecnología al permitir el desarrollo de circuitos más pequeños, rápidos y económicos, usados en aplicaciones tan diversas como la informática, las telecomunicaciones y la automatización industrial.

En este tema, se explorarán las características, funcionamiento y aplicaciones de las compuertas lógicas, así como su integración en los circuitos integrados, destacando su importancia en el diseño de sistemas digitales.

1. Representaciones de las compuertas lógicas

Las compuertas lógicas son elementos esenciales para construir circuitos combinacionales, ya que permiten implementar funciones booleanas.

A continuación, se realiza las diferentes representaciones de cada una de las puertas lógicas:

COMPUERTA NOT (Inversor). Su función es negar el estado lógico que tiene a la entrada.

Figura 1. Símbolo lógico y normalizado de compuerta *NOT*

Tabla 1. Tabla de verdad

Entrada	Salida
А	Ā o A′
0	1
1	0

Función lógica

$$A = \overline{A} = A'$$

COMPUERTA *OR* **(O)**. Su función es realizar la operación "+" con los estados lógicos.

Figura 2. Símbolo lógico y normalizado de compuerta OR

Tabla 2. Tabla de verdad

Entrada	Entrada	Salida
А	В	S = A + B
0	0	0
0	1	1
1	0	1
1	1	1

Función lógica

$$S = A + B$$

• **Dato importante**: las compuertas lógicas pueden tener más de dos entradas lógicas.

COMPUERTA AND (Y). Su función es realizar la operación " . " con los estados lógicos.

Figura 3. Símbolo lógico y normalizado de compuerta AND

Tabla 3. Tabla de verdad

Entrada	Entrada	Salida
А	В	S = A . B
0	0	0
0	1	0
1	0	0
1	1	1

Función lógica

S = A . B

COMPUERTA XOR (Or Exclusiva). La compuerta XOR, conocida como O Exclusiva, es un elemento lógico que realiza la operación de disyunción exclusiva. Su salida es verdadera (1) únicamente cuando las entradas son diferentes entre sí; es decir, cuando una entrada es 1 y la otra es 0.

Figura 4. Símbolo lógico y normalizado de compuerta XOR

Tabla 4. Tabla de verdad

Entrada	Entrada	Salida
А	В	$S = A \oplus B$
0	0	0
0	1	1

Entrada	Entrada	Salida
1	0	1
1	1	0

Función lógica

$$S = A \oplus B$$

$$A \bigoplus B = A \cdot \overline{B} + \overline{A} \cdot B$$

COMPUERTA *NOR* (No O). Su función es realizar negación a la salida de la operación OR ó "+".

Figura 5. Símbolo lógico y normalizado de compuerta NOR

Tabla 5. Tabla de verdad

Entrada	Entrada	Salida
А	В	$S = \overline{A} + \overline{B}$
0	0	1
0	1	0
1	0	0
1	1	0

Función lógica

$$S = \overline{A} + \overline{B} = (A + B)'$$

Es también igual a:

Figura 6. Representación lógica de la compuerta NOR

COMPUERTA NAND (No Y). Su función es realizar negación a la salida de la operación *AND* o ".".

Figura 7. Símbolo lógico y normalizado de compuerta NAND

Tabla 6. Tabla de verdad

Entrada	Entrada	Salida
А	В	$S = \overline{A} \cdot \overline{B}$
0	0	1
0	1	1
1	0	1
1	1	0

Función lógica

$$\mathsf{S} = \overline{\mathsf{A}} \ . \ \overline{\mathsf{B}} = (\mathsf{A} \ . \ \mathsf{B})'$$

Es también igual a:

Figura 8. Representación lógica de la compuerta NAND

COMPUERTA X-NOR (NOR Exclusiva). Su función es realizar negación a la salida de la operación OR ó "+".

Figura 9. Símbolo lógico y normalizado de compuerta X-NOR

Tabla 7. Tabla de verdad

Entrada	Entrada	Salida
А	В	$S = \overline{A} \oplus \overline{B}$
0	0	1
0	1	0
1	0	0
1	1	1

Función lógica

$$S = \overline{A} \oplus \overline{B} = (A \oplus B)'$$

Es también igual a:

Figura 10. Representación lógica de la compuerta X-NOR

 $A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$

2. Las compuertas lógicas y los circuitos integrados (CI)

Las compuertas lógicas son los bloques fundamentales que permiten realizar operaciones booleanas en circuitos digitales. Estas compuertas se integran en dispositivos conocidos como circuitos integrados (CI), los cuales son componentes electrónicos que agrupan múltiples compuertas lógicas en una estructura compacta y funcional. Los CI son esenciales para el diseño y funcionamiento de sistemas digitales, ya que ejecutan tareas lógicas y computacionales mediante la interacción de sus elementos internos.

Figura 11. Circuito integrado 7400

Figura 12. Configuración interna de compuertas

VCC 14 13 12 11 10 9 8 1 1 2 3 4 5 6 7 GND

Numeración de los pines para establecer entradas y salidas de las puertas lógicas.

La configuración interna del circuito y el tipo de compuertas que lo integran.

A continuación, se presenta la configuración interna de las compuertas lógicas de algunos circuitos integrados:

Figura 13. Familia de circuitos integrados

Síntesis

A continuación, se muestra un mapa conceptual con los elementos más importantes desarrollados en este componente.

Material complementario

Tema	Referencia	Tipo de material	Enlace del recurso
Representaciones de las compuertas lógicas.	Manik. (2022). COMPUERTAS LÓGICAS (desde cero) - Explicación detallada. [Archivo de video] YouTube.	Video	https://www.youtube.com /watch?v=shcAMLESVrE&a b channel=Manik
Representaciones de las compuertas lógicas.	Ivan Espinoza. (2022). Electrónica digital básica, compuerta lógica <i>NOT</i> , CI 74LS04. [Archivo de video] YouTube.	Video	https://www.youtube.com /watch?v=C3RoKyfvS- 4&list=PLDSIUVDiODhJkm- 847DEJZtNJR4C8uuR8&ab channel=IvanEspinoza
Representaciones de las compuertas lógicas.	McGraw Hill. (s.f.). Introducción a los sistemas digitales: Unidad 1.	Documento	http://www.mcgraw- hill.es/bcv/guide/capitulo/ 844817156X.pdf

Glosario

Álgebra de *Boole*: base matemática que sustenta las operaciones lógicas utilizadas en circuitos digitales.

Circuito integrado (CI): dispositivo electrónico compacto que agrupa varias compuertas lógicas.

Compuerta AND: compuerta lógica que devuelve 1 si todas las entradas son 1.

Compuerta lógica: elemento básico de un circuito digital que realiza operaciones booleanas.

Compuerta *NOT*: compuerta lógica que invierte el valor de la entrada.

Compuerta *OR*: compuerta lógica que devuelve 1 si al menos una entrada es 1.

Compuerta XOR: compuerta lógica que devuelve 1 si las entradas son diferentes.

Configuración interna: disposición de compuertas lógicas dentro de un circuito integrado.

Operaciones booleanas: procesos lógicos basados en álgebra de Boole, como *AND, OR y NOT*.

Tabla de verdad: representación que muestra todas las combinaciones posibles de entradas y salidas de una compuerta lógica.

Referencias bibliográficas

McGraw Hill. (s.f.). Introducción a los sistemas digitales: Unidad 1.

http://www.mcgraw-hill.es/bcv/guide/capitulo/844817156X.pdf

Créditos

Nombre	Cargo	Centro de Formación y Regional
Milady Tatiana Villamil Castellanos	Responsable del ecosistema	Dirección General
Olga Constanza Bermúdez Jaimes	Responsable de línea de producción	Centro de Servicios de Salud - Regional Antioquia
Magda Melissa Rodríguez Celis	Experto temático	Centro de Desarrollo Agroempresarial - Regional Cundinamarca
Paola Alexandra Moya Peralta	Evaluadora instruccional	Centro de Servicios de Salud - Regional Antioquia
Blanca Flor Tinoco Torres	Diseñador de contenidos digitales	Centro de Servicios de Salud - Regional Antioquia
Jhon Jairo Urueta Álvarez	Desarrollador full stack	Centro de Servicios de Salud - Regional Antioquia
Luis Gabriel Urueta Álvarez	Validador de recursos educativos digitales	Centro de Servicios de Salud - Regional Antioquia
Jaime Hernán Tejada Llano	Validador de recursos educativos digitales	Centro de Servicios de Salud - Regional Antioquia
Margarita Marcela Medrano Gómez	Evaluador para contenidos inclusivos y accesibles	Centro de Servicios de Salud - Regional Antioquia
Daniel Ricardo Mutis Gómez	Evaluador para contenidos inclusivos y accesibles	Centro de Servicios de Salud - Regional Antioquia