

PRESCRIPTIVE ANALYTICS

Diego Mansilla

Prescriptive analytics: Literature review and research challenges

Katerina Lepenioti^a, Alexandros Bousdekis^a, Dimitris Apostolou^{a,b}, Gregoris Mentzas^{a,*,1}

b Department of Informatics at the University of Piraeus, Greece

Fig. 1. The business value of analytics with respect to time (Source: Adapted from (Krumeich et al., 2016)).

Análisis descriptivo ¿Qué conocemos?

Análisis predictivo ¿Qué pasará?

Análisis prescriptivo ¿Qué hacer?

a Information Management Unit of the Institute of Communication and Computer Systems, Greece

MÉTODOS/MODELOS DE ANÁLISIS PRESCRIPTIVO:

Probabilísticos:

Machine learning/data mining:

Computación evolucionaria:

MÉTODOS/MODELOS DE ANÁLISIS PRESCRIPTIVO:

Programación matemática:

Mixed Integer Program.

Linear Program.

Binary Quadratic Program.

Non-Linear Program.

Binary Linear Integer Program.

Stochastic Optim.

Conditional Stochastic Optim.

Constrained Bayesian Optim.

Fuzzy Linear Optim.

Robust and Adaptive Optim.

Dynamic Program.

Optimal searcher path

Basados en lógica:

Simulación:

COMBINACIÓN DE CATEGORÍAS, EJEMPLOS:

EVOLUTIONARY COMPUTATION AND MACHINE LEARNING/ DATA MINING

Asignar piezas de equipos eléctricos teniendo en cuenta el comportamiento del cliente y la política de la empresa.

MACHINE LEARNING/ DATA MINING AND LOGIC-BASED MODELS

Realice una optimización de los procesos de negocio basada en recomendaciones, además, de un almacén de procesos holístico.

MATHEMATICAL PROGRAMMING AND PROBABILISTIC MODELS

Crear aplicaciones de inteligencia empresarial con capacidades de análisis predictivo y prescriptivo.

CONCLUSIONES MÁS IMPORTANTES DEL INFORME 1:

- 1: El desarrollo de sistemas de información en tiempo real basados en sensores y algoritmos recursivos puede promover la aplicación de análisis prescriptivos en problemas a gran escala.
- 2: El análisis prescriptivo puede beneficiarse de la informática distribuida para procesar grandes cantidades de datos.
- 4: Es necesario abordar la incertidumbre introducida por las predicciones, los datos incompletos y ruidosos y la subjetividad en el juicio humano.
- 7: Los modelos de análisis prescriptivo tienen el potencial de volverse menos dependientes del conocimiento experto en el dominio y más dependientes del análisis de big data.
- 12: El análisis prescriptivo puede permitir la automatización de decisiones, siempre que los desafíos de la incertidumbre, la dinámica y la complejidad se enfrenten de manera efectiva.

PRESCRIPTIVE ANALYTICS: A SURVEY OF APPROACHES AND METHODS

Katerina Lepenioti^{1(\infty)}, Alexandros Bousdekis¹, Dimitris Apostolou^{1,2}, and Gregoris Mentzas¹

EJEMPLOS DE USO "INDUSTRY 4.0"

Contexto:

Empresa busca saber el mejor momento para realizar el mantenimiento de una máquina.

ANÁLISIS DESCRIPTIVO

Ver estado actual del sistema de fabricación a través, de diversos sensores.

ANÁLISIS PREDICTIVO

Generar predicciones sobre el futuro estado del equipo.

ANÁLISIS PRESCRIPTIVO

Sugerir la óptima decisión sobre qué acción tomar sobre el equipo en un tiempo determinado (mantención, cambio de piezas, que continue en funcionamiento, etc).

CICLO DE VIDA DE UN MODELO PRESCRIPTIVO:

CONTRUCCIÓN DEL MODELO

A través de la data recolectada envuelta en casos pasados impulsados por esta si la interferencia de alguna persona, como los modelos de las diapositivas pasada.

RESOLVER EL MODELO

Entregar/sugerir la solución óptima.

ADAPTAR EL MODELO

Reconstruir y entrenar el modelo basado en la data del análisis prescriptivo, cambiar parámetros o incluso cambiar el modelo.

Prescriptive Analytics for Big Data

Reza Soltanpoor $^{1(\boxtimes)}$ and Timos Sellis²

¹ RMIT University, Melbourne, Australia reza.soltanpoor@rmit.edu.au Swinburne University of Technology, Melbourne, Australia

tsellis@swin.edu.au

Business Analytics				
Descriptive Analytics	Predictive Analytics	Prescriptive Analytics		
- What has happened? - Why did it happen (Diagnostic Analytics)?	- What will happen? - Why will it happen?	- What should be done? - Why should it be done?		
- Statistical Analytics - Data Integration - Data Augmentation - Data Reduction 	- Data Mining - Machine Learning 	- Optimization - Simulation - Operations Research - Management Science		
- Reports on the historical data - Extracted insight from the raw data 	- Future opportunities - Future risks 	- Recommended business decisions - Optimal courses of actions 		

Desde la unidad prescriptiva hasta los datos, las reglas comerciales (business rules) y predictivas están etiquetadas como " β ".

Fig. 2. Proposed federated prescriptive analytics architecture

RESUMEN DE ESQUEMA

Paso 1: Data es recolectada de "data generator model" y las reglas del juego es recolectada de "business generator model" para luego, ser transferida a "data integration and argumentation" (donde se limpia la data, la deja lista para ser operada) para luego, ser pasada a "descriptive module" donde se realiza el análisis descriptivo, donde luego pasa a "DWH" (data warehouse).

Paso 2: De DWH pasa a "predictive module" donde se realiza se crean modelos predictivos con la data histórica, a través, de esto extrapola los datos para generar los posibles futuros con su probabilidad (tendencias, predicciones) para finalmente pasar devuelta a DWH.

Paso 3: Finalmente de DWH llega al modulo de "prescriptive analytics", este tiene 3 elementos claves, optimización, simulación y evaluación, donde basados en los resultados de los modelos se escoge el mejor "what if" que da como resultado lo que se debería hacer y porqué tengo que hacerlo, el resultado puede ser en tipo decisión (si/no), valores o plan de producción completo.

A survey on various applications of prescriptive analytics

S. Poornima*, M. Pushpalatha

Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, India

Fig. 1. Usage of different analytics by companies [42].

LOS 5 PILARES DEL ANÁLISIS DESCRIPTIVO:

ALGORITMOS ADAP<u>TATIVOS:</u>

Como el volumen, velocidad y variedad de la data cambia constantemente, el algoritmo debe recalibrarse y adaptarse constantemente.

PREDICCIONES Y PRESCRIPCIONES INTEGRADAS:

Es clave que trabajen en conjunto para la lograr el objetivo.

PRESCRIPCIONES Y EFECTOS SECUNDARIOS

Prescripciones que recomiendan acciones orientadas al tiempo para mejorar el futuro utiliza varios métodos.

MECANISMO DE FEEDBACK:

Esto es para estimar 1 o mas problemas u oportunidades.

DATA HÍBRIDA:

Es la fusión de datos estructurados y no estructurados.

APLICACIONES

Table 1
Comparative analysis on prescriptive analysis.

Application	Quantitative methods	Infrastructure
Data Provisioning in Streaming Networks	Autonomic systems base architecture [2]	IOT infrastructure
Research and	5W1H aspect [4]	Mentoring System
Development	Standardized Influential	Automated report generation
•	Factors [9]	in InSciTe Advisory system
	1. AS-IS function in SWOT analysis	Mentoring System
	2. TO-BE function in 5W1H aspect [10]	
	Researcher-Centric	InSciTe Advisory system,
	Prescriptive	ElsvierScival System
	Analytics Framework [20]	
	Strategic Plan with four	InSciTe Advisory system on
	steps [21]	5W1H question, ElsvierScival
		System
Health Analytics	Health analytics architectural framework [5]	Health Dataset
Electrical Power	Wood pole risk prediction	Overall health score of electric
Grid	[15]	power grids
Clinical Studies	Poppers' scientific epistemology [22]	Clinical Research Data
Information Fusion	Unified Bayesian	Warranty cost estimation,
	framework [6]	material aware manufacturing
		and consumer pricing data
Sales Problem	Comprehensive Approach [7]	Sales Force Assignment
		-

Application	Quantitative methods	Infrastructure
Business Process	Recommendation-based business process optimization [16]	Real Time data
	Comprehensive Framework [17]	Supply Chain Management
	Hadoop-eco System [19]	Market Scenario Planning
Knowledge Base	Reusable Knowledge base architecture [8]	Car Manufacturing Process
Synthetic Data	Synthetic base	Communication, power,
	transportation network	health, other synthetic data
	[11]	like disaster resilience.
SCADA System	Adaptive Middleware Concept [12]	Ad-hoc Data analytics
Decisioning	Automated decision making	Statistica [28] Enterprise
Systems	by combining hardware and software [25]	Decisioning Platform
Other Areas	Project Management [30]	Not evaluated in any systems,
	Knowledge management	however, these schemes can
	[31]	be used in prescriptive
		analytics in future.
	2 × 2 factorial design [33]	realistic job preview for more
		new candidate adaptation in a job
Additive	out-of-plane deformation	Out-of-Plane Deformation
Manufacturing	control [40]	Model, Cylindrical basis
		function and Cookie-cutter
		modeling framework.

A JOURNEY FROM BIG DATA TOWARDS PRESCRIPTIVE ANALYTICS

S. Poornima and M. Pushpalatha
Department of Computer Science and Engineering, SRM University, Tamilnadu, India
E-Mail: pushpalatha.m@ktr.srmuniv.ac.in

DATOS IMPORTANTES

- Entrega información redundante (ya explicada) respecto al análisis prescriptivo, por ende, lo omito.
- Solo el 3% de la empresas hace uso del análisis prescriptivo, esto hace que pierdan valor añadido de los datos recolectados.
- Las diversas aplicaciones que puede tener el análisis prescriptivo hace que tenga un potencial enorme, entre las que están:

Negocios, finanzas, salud, deportes, sistemas de ingeniera.

Bibliografia

-Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57-70.

-Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2019). Prescriptive analytics: a survey of approaches and methods. In Business Information Systems Workshops: BIS 2018 International Workshops, Berlin, Germany, July 18–20, 2018, Revised Papers 21 (pp. 449-460). Springer International Publishing.

-Soltanpoor, R., & Sellis, T. (2016). Prescriptive analytics for big data. In Databases Theory and Applications: 27th Australasian Database Conference, ADC 2016, Sydney, NSW, September 28-29, 2016, Proceedings 27 (pp. 245-256). Springer International Publishing.

-Poornima, S., & Pushpalatha, M. (2020). A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks, 1, 76-84.

-Poornima, S., & Pushpalatha, M. (2016). A journey from big data towards prescriptive analytics. ARPN J. Eng. Appl. Sci, 11(19), 11465-11474.

AGRADEZCO SU ATENCIÓN.