# Terry Tao



#### Formula Electric Racing (MRacing) | Autonomous Director

SEPT 2022 - PRESENT

- Started and leading the development of the first ever autonomous car at MRacing
- Managed sponsorships of over \$30,000 worth of sensor / processing hardware
- Branch and pruned my way to the current architecture I had to research and test and fail and make compromises until I landed on a super good enough solution for each of these questions:

| Processing power     | Should we use a Jetson or x86? What's the GPU vs CPU load for our algorithms?                             |
|----------------------|-----------------------------------------------------------------------------------------------------------|
| Lidar selection      | How does resolution affect cone detection range? Can we trust intensity measurements at any distance?     |
| Camera selection     | Is a stereo camera needed or is it extra mass? At what distance does accuracy decline? Is global shutter  |
|                      | needed or does the car go too slow to warrant it?                                                         |
| Cone detection       | Is YOLO the best? How does it perform with low horizon sunlight? Do we need keypoint detection for PNP or |
|                      | can we use bounding box size for monocular distance? Does patchwork++ work or can we RANSAC? What         |
|                      | clustering thresholds work best for a typical Formula Student track?                                      |
| Controller selection | Should we use auto differentiation MPC or sampling based MPPI? How can we validate our vehicle model      |
|                      | using real car data and simulation? Cross-track error or distance from cones for track limit constraints? |
| GNSS                 | How reliant should we be on the data from our INS sensor? What happens when we lose RTK service? How      |
|                      | can we operate the INS outside of the MDOT CORS network?                                                  |
| E-brakes             | How do we ensure at least 50% braking functionality in case of a single point failure?                    |
| Power steering       | Torque and power for the actuator? How do we keep the disengagement mechanism rules compliant?            |
| Car interface        | Should we use the existing pedal map and send the ECU a single throttle command or send one per wheel?    |
| Creativity           | Where should we strictly follow the rules and where can we bend the interpretation?                       |

### H3D Gamma | ANN ARBOR, MI

May 2024 - Present

#### **SLAM Intern**

- Automated extrinsic lidar-camera alignment for H3D's Jetson environment using a targetless method.
- Compared different GNSS receivers and evaluated the viability of using GNSS as a source of odometry within Cartographer
- Decreased Cartographer CPU runtime by 50% by building OpenBLAS from source with ARMv8 optimizations
- Fixed inconsistent ORBSLAM3 orientation on initialization, fixed ORBSLAM3 segfault bugs.
- Used Nav2 and gazebo to make a radiation simulator for a future radiation mapping robot. Developed a frontier exploration policy to search any indoor environment for radiation in simulation.

## Ford Motor Company | ALLEN PARK, MI ADAS L3 Self Driving Intern

May 2023 – August 2023

- Developed a kinematics-based model to flag Duty of Care (safety envelope) violation events during L3 test drives
- Developed safety metrics used to compare different driving policies based on DOC violation frequency
- Automated data acquisition and post processing to compare CAN logs with GNSS-RTK logs with MATLAB

University of Michigan | ANN ARBOR, MI B.S. Robotics Engineering

AUG 2022 - APRIL 2025

#### **Ground Effect Plane Controls | Class Project**

2023-PRESENT

- Used MATLAB and Simulink to create a 6DOF EOM solver with additional ground effect dynamics
- Designed decoupled altitude, airspeed, and heading controllers, tuned nested PID controllers
- Applied waypoint following, result is a plane capable of navigating any set of waypoints in order, at a setpoint altitude of 5m above water under reasonable wave and wind disturbances

#### **SLAM Robot | Class Project**

2023-PRESENT

- Tuned wheel velocity PID and trajectory following PID, applied differential drive wheel odometry
- Applied action model state estimator, LiDAR occupancy grid mapping, particle filter for fusing