Corrigé du DS 9 Version B

Problème A. Sur la notion de fonction génératrice.

1. (a) Soit $t \in \mathbb{R}$. La formule du transfert appliquée avec $f: x \mapsto t^x$ (définie sur \mathbb{N}) amène

$$G_X(t) = E(t^X) = \sum_{k \in X(\Omega)} P(X = k)t^k,$$

(b) Les variables X et Y ont même loi si et seulement si

$$\forall k \in [0, n] \quad P(X = k) = P(Y = k).$$

Les nombres ci-dessus sont les coefficients des polynômes G_X et G_Y . Or, deux polynômes sont égaux si et seulement si leurs suites de coefficients sont égales. On a donc bien que X et Y ont même loi si et seulement si $G_X = G_Y$.

- 2. On donne juste les réponses.
 - (a) $X \sim \mathcal{B}(p)$. $G_X(t) = (1-p) + pt$.
- (b) $U \sim \mathcal{U}([1, n])$. $G_U(t) = \frac{1}{n} \sum_{k=1}^n t^k = \begin{cases} \frac{t}{n(1-t)} (1-t^n) & \text{si } t \neq 1 \\ 1 & \text{si } t = 1 \end{cases}$.
- (c) $Y \sim \mathcal{B}(n, p)$. $G_Y(t) = (1 p + pt)^n$.
- 3. (a) On a, pour tout t réel,

$$G_X(t) = \sum_{k \in X(\Omega)} P(X=k)t^k \quad \text{d'où} \quad G_X'(t) = \sum_{k \in X(\Omega)} P(X=k)kt^{k-1}.$$

Évaluons en 1, on a

$$G'_X(1) = \sum_{k \in X(\Omega)} P(X = k)k = E(X).$$

(b) Si Y suit une loi $\mathcal{B}(n,p)$, on a vu que pour tout $t \in \mathbb{R}$, $G_Y(t) = (1-p+pt)^{n-1}$. Dérivons :

$$G'_Y(t) = np(1 - p + pt)^{n-1}.$$

Ainsi, en évaluant en 1,

$$E(Y) = G_Y'(1) = np.$$

4. (a) Soit t un réel. On a par définition,

$$G_{X+Y}(t) = E\left(t^{X+Y}\right) = E\left(t^X t^Y\right).$$

D'après le cours, puisque X et Y sont indépendantes, les variables t^X et t^Y le sont aussi. On a donc

$$G_{X+Y}(t) = E\left(t^X t^Y\right) = E\left(t^X\right) E\left(t^Y\right) = G_X(t)G_Y(t).$$

(b) Ici, X et Y suivent la loi uniforme sur [1, 6], de sorte que, pour tout t réel,

$$G_X(t) = G_Y(t) = \frac{1}{6} \sum_{k=1}^{6} t^k.$$

D'après la question a), puisque X et Y sont indépendantes, $G_{X+Y} = G_X \times G_Y$; on développe :

$$G_{X+Y}(t) = \left(\frac{1}{6} \sum_{k=1}^{6} t^k\right)^2$$

$$= \frac{1}{36} \left(t^2 + 2t^3 + 3t^4 + 4t^5 + 5t^6 + 6t^7 + 5t^8 + 4t^9 + 3t^{10} + 2t^{11} + t^{12}\right)$$

Comme on l'a compris dès le début de ce problème, le coefficient devant t^k vaut P(X + Y = k), ce qui nous permet de donner la loi de la somme.

k	2	3	4	5	6	7	8	9	10	11	12
P(X+Y=k)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

(c) Calculons la fonction génératrice de X+Y, où X et Y sont les deux variables de l'énoncé. Comme elles sont indépendantes, la question précédente s'applique et on peut écrire le produit G_XG_Y . Rappelons qu'on a calculé la fonction génératrice d'une variable de loi binomiale en question 1 (c). On a, pour $t \in \mathbb{R}$

$$G_{X+Y}(t) = G_X(t)G_Y(t) = (1-p+pt)^m(1-p+pt)^n = (1-p+pt)^{m+n}.$$

On obtient la fonction génératrice d'une variable de loi $\mathcal{B}(m+n,p)$. Or, d'après la question (a), deux variables aléatoires ayant même fonction génératrice ont la même loi. Ceci prouve que $X + Y \hookrightarrow \mathcal{B}(m+n,p)$.

Exercice.

- 1. C'est fait dans le cours.
- 2. (a) On a

$$S_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ b & d \end{pmatrix}, a, b, c \in \mathbb{R} \right\} = \left\{ aE_{1,1} + bS + dE_{2,2} \mid a, b, c \in \mathbb{R} \right\} = \text{Vect}(\mathcal{F}).$$

Le calcul amène

$$\langle E_{1,1}, E_{2,2} \rangle = \langle E_{1,1}, S \rangle = \langle E_{2,2}, S \rangle = 0$$

La famille est bien orthogonale, et elle est composée de vecteurs non nuls : elle est libre.

 \mathcal{F} est une base de F et elle est orthogonale.

(b) On calcule:

$$||E_{1,1}|| = 1$$
, $||E_{2,2}|| = 1$, $||S|| = \sqrt{2}$.

 \mathcal{F} n'est donc pas orthonormée... mais la famille $\left(E_{1,1}, E_{2,2}, \frac{1}{\sqrt{2}}S\right)$ l'est.

3. On utilise la base orthonormée obtenue par renormalisation de ${\mathcal F}$:

$$p_F(M) = \langle M, E_{1,1} \rangle E_{1,1} + \langle M, E_{2,2} \rangle E_{2,2} + \langle M, \frac{1}{\sqrt{2}} S \rangle \frac{1}{\sqrt{2}} S$$
$$= \langle M, E_{1,1} \rangle E_{1,1} + \langle M, E_{2,2} \rangle E_{2,2} + \frac{\langle M, S \rangle}{2} S$$
$$= E_{1,1} + 3E_{2,2} + \frac{2+4}{2} S$$

On obtient $p_F(M) = \begin{pmatrix} 1 & 3 \\ 3 & 3 \end{pmatrix}$

4. D'après le cours, $d(M,F) = ||M - p_F(M)||$. Or, on a $M - p_F(M) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Ceci donne

$$d(M,F) = \sqrt{2}$$