

Project Initialization and Planning Phase

Date	25 June 2025	
Team ID	SWTID1749974387	
Project Title	Neural Networks Ahoy: Cutting-edge Ship Classification for Maritime Mastery	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) report

Project Overview		
Objective	To build a machine learning model that classifies ships into predefined categories (Cargo, Military, Carrier, Cruise, Tanker) using image data.	
Scope	Data preprocessing and visualization Image classification using deep learning Five-class classification task Evaluation through visualizations and metrics	
Problem Statemen	nt	
Description	Given an image of a ship, predict its correct category from among five types: Cargo, Military, Carrier, Cruise, and Tanker. The task involves handling image data and training a computer vision model to perform accurate classification.	
Impact	Such a model could aid in automated ship identification, potentially useful in maritime traffic monitoring, naval intelligence, and port management.	
Proposed Solution	ı	
Approach	Load and label image data from a CSV, Visualize class distribution, Use TensorFlow/Keras for image preprocessing and modeling.	
Key Features	- Class-wise sample visualization	

 Use of class mapping Data exploration using Seaborn and Matplotlib CNN-based image classification 	
---	--

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU		
Memory	RAM specifications	8 GB		
Storage	Disk space for data, models, and logs	1 TB SSD		
Software				
Frameworks	Tensorflow/Keras	Flask		
Libraries	Additional libraries	pandas, numpy, matplotlib, seaborn, PIL		
Development Environment	IDE	Jupyter Notebook, pycharm		
Data				
Data	Source, size, format	Google Drive File, 83.85Mb, csv		