ರರದರೆ ಕರರ

CURRENT: September 1967 (1 bar)

PREVIOUS:

Manganese (Mn)	
$A_r = 54.9380$	

REFERENCE STATE

Mn₁(ref)

Standard State Pressure = $p^* = 0.1$ MPa

000 0000 0000

000 0 000 0000

J	$H^{\bullet}-H^{\bullet}(T_{*})$	-4.994	-2.438	0.049 2.798 2.773	8.882 12.149	19.131	24314	28.858 32.690	38.948	41.070	43.279	49.173	50.048 62.106	65.834 70.436	75.039 79.641 84.244	88.846 93.448 98.051	99.640	326.993 329.097	333,338	337.642 339.827	342.039	348.882 351.248	353.665 356.139	358.674 361.275 363.949	369.535 375.472 381.777	388.514	403.386	413.580 437.936
Enthalpy Reference Temperature = T, = 29&15 K	S -[G*-H'(T,)]T	S2.876	34,325 32,010	32.010 33.072 35.152	37.559 40.039	44.896	46.761 46.761	47.70 49.710 52.037	54.253 55.554	56.412	56.673 56.673	58.631	59.045 59.045	61.176 63.679	66.055 68.315 70.470	72.530 74.502 76.393	77.029 77.029	80.842 86.309	91.388	108.283 108.583	112.248	122.077 125.019	127.816	135.451 135.451 137.776	142.141 146.171 149.912	153.399 156.666	159.739	167.993 170.483
emperature	S -[G	8.875		32.173 40.066 46.696	52.362 57.395	66.153	25.51 27.51 27.51 27.51 27.51 27.51	75.945 79.279	82,380	86,953	87.324 88.655	91.413	91.993 99.931	102,322	107.743 110.231 112.592	114.837 116.978 119.024	119.710	217.089 217.948	218.777	221.118 221.858	222.583	224.690 225.376	226.056	228.086 228.763	230.125 231.506 232.907	234,340 235,808	238,860	243.472
ference To	:	0.	26.299	26.347 28.527 30.292	31.899	36.384	37.572	38.116 38.535	38.953	43.430	43.514 45.229	45.982	46.108 46.024	46.024 46.024	46.024 46.024 46.024	46.024 46.024 46.024	46.024 20.951	20.997 21.085	21.198	21.726 21.976	22.269	23.424	25.034	26.370 26.370 27.118	28.772 30.635 32.606	34.798 37.153	39.664 42.327	47.832
Enthalpy Re	τÆ	°8	298.15	888	888	888	980.000	8 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1361.000	1400	1412,000	1500	1519,000	091 1700 1700	1800 2000 2000	2100 2200 2300	2334.526	2400 2500	2600	3000	3100	3500 3500	3600	3900 3900 3900 3900	4400 4600 4600	4800 5000	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	8800
980 K. crystal, alpha		2335 K. Ilquid	occo n meal gas, incharming	Refer to the individual tables for details.																								
0 0 0 0 0	1360 to	1410 10 1517 to	0,000	Refer to th																								

GAMMA <--> DELTA TRANSTION

Т
O
7
=
-

CURRENT: September 1967

																		17	ın		,	/ L	IVI VV	. Onas	JĽ
0.1 MPa	log K _r	ď	Ö	o' c	j c	d d	ာ်ဝ	o' o	o' c	i oʻ	o o			ď	ö	oʻoʻ	<u> </u>	0	Į	ı	o (1 5	6000 442 442		
Standard State Pressure = p = 0.1 MPa	δ,	Ó	ö	o' c	ód	i c	ာ်ဝ	o' e	ರರ	ó	೦೦	Ξ,		oʻ	o' e	ರ ರ	A <> GAMMA	ď	GAMMA <> DELTA	IKANSTIION	0.	0,00	2210 2310 2915		
Standard Sta	l	ó	o'	ರ ರ	ö	i c	ာ်ဝ	o' c	ာ်ဝံ	o'	ರ ರ	0.		ö	ဝံဝ	် ဝံ	BETA <-	o'	GAMMA		U. Del TA	-12.003	-11.904		
K	H*-H*(T,)	-4.994	-4.400	-2.438	ď	0000	38	2.7%	8£.	8.882	15.149	19.131	24314	25.067	28.858	36.565	38.948	42.757	43.279	45.138	50.048	53.811	58.532 63.336 68.221		
Enthalpy Reference Temperature = T, = 298.15 K	$S^{\bullet} - [G^{\bullet} - IP(T_i)]T$	INFINITE	52.876	32.436	32,010	32.010	32.336	33.072	35.152	37.559	42.498	44.896	46.761	47.265	49.710	54.253	55.554	56.412	56.673	20.073	59.045	60.774	62.837 64.827 66.749		
femperature	S - [G	ó	8.875	27.493	32,010	171 55	36.325	40.066	46.696	52,362	61.956	66.153	11.572	72,332	75.945	82.380	84.172	86.953	87.324	60.413	91.993	94.406	97.268 100.013 102.655		
eference	ប	o	14.723	24.948	26.299	26 347	27.516	30,020	30.292	31.899	34.915			37.698	38.116	38.953	39.204 43.095	43.430	0 43.514	45.003	46.108	46.803	47.624 48.446 49.267		
Enthalpy R	7,8	0	88	32	298.15	300	350	84	8	98	888	000086	980,000	<u>80</u>	288	1300	1361,000	1400	1412,000	9	1519,000	1600	1700 1800 1900		
$\Delta_t H^{\circ}(0 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$	$\Delta_{\rm m} H^{\circ}(\alpha \to \beta) = 2.226 \pm 0.21 \text{kJ·mol}^{-1}$	$\Delta_{coll}(b \to \gamma) = 2.122 \pm 0.33 \text{ kJ·mol}$. $\Delta_{coll}(\gamma \to \delta) = 1.879 + 0.33 \text{ kJ·mol}^{-1}$	$\Delta_{e-H}^{*}(6 \rightarrow 1) = 12.058 + 1.0 \text{ k} \cdot \text{mol}^{-1}$						commendations of Hultgren et al. are	0 K),2 Gaumer (0.64-3 K),3 Guthrie et al.	ithalpy study of Naylor (373–1436 K).* As	lues.			isition and fusion temperatures. Ten studies					te " American Contata for Marsh 12 Marsh	All Kein Carlo Society for Metals, Metals				

Manganese (Mn)

adotped. These results are based on the heat capacity studies of Scurlock and Stevens (0.3-1 0 K),2 Gaumer (0 (1.7-4.2 K), Booth et al. (12-20 K), Kelley (52-298 K), and Shomate (52-298 K), and the entlalpy study of N Hultgren et al. 1 states, the study of Naylor was chosen because it covers all forms of Mn in a self consistant mar Hultgren, et al. 1 altered Naylor's equations, which appear more appropriate than the current values. A thorough re examination of the manganese thermal functions is in process. Temporarily, the recommendation Heat Capacity and Entropy $T_{\rm tr}(\alpha \to \beta) = 980 \pm 20 \,\mathrm{K}$ $T_{\rm tr}(\beta \to \gamma) = 1361 \pm 10 \,\mathrm{K}$ $T_{\rm tr}(\gamma - \delta) = 1412 \pm 5 \,\mathrm{K}$ Enthalpy of Formation 7tm(8-1) = 1519 ± 5 K Zero by definition.

CRYSTAL(α, β, γ, δ)

Phase and Fusion Data

As we are temporarily adopting the analysis of Hultgren, et al., 'we rely on his analysis of the transition and fusion are analyzed by Hultgren et al.! The temperatures were adjusted to IPTS-68.

Refer to the ideal gas table for details. Sublimation Data

References ¹R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements," American Soc Park, Ohio, (1973).

R. G. Sculciot, 1772.
 R. G. Sculcioteck and W. N. R. Stevens, Proc. Phys. Soc. 86, 331 (1965).
 R. E. Gaumet, Ohio State University, Ph. D. Thesis, (1959).
 G. L. Guthrie, S. A. Friedburg, and J. E. Goldman, Phys. Rev. 139, 1200 (1965).
 G. L. Booth, F. E. Hoare and B. T. Murphy, Proc. Phys. Soc. 68, 830 (1955).
 K. K. Kelley, J. Am. Chem. Soc. 61, 203 (1939).
 C. H. Shomate, U. S. Bur. Mines Tech. Paper 686, pp. 2-11 (1946).
 B. F. Naylor, J. Chem. Phys. 13, 329 (1945).

PREVIOUS:

 $S^{\circ}(298.15 \text{ K}) = 32.01 \pm 0.08 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Manganese (Mn)

Mn₁(I)

Manganese (Mn)

Ê	
ese (
Idan	
Man	

LIQUID

 $S^{\circ}(298.15 \text{ K}) = [43.499] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{ins}} = 1519 \pm 5 \text{ K}$

The enthalpy of formation of Mn(I), A_rH*(298.15 K) is calculated from that of the crystal by adding A_{ra}H* and the difference in enthalpy. $H^{\circ}(1519 \text{ K})-H^{\circ}(298.15 \text{ K})$, between the crystal and liquid. **Enthalpy of Formation**

Heat Capacity and Entropy

Holtgren¹ adopted C₂(1) = 11.0 cal·K⁻¹-mol⁻¹ based on the recommendation of Kelly.² A glass transition temperature is assumed at 1125 K, below which the heat capacity values of α-Mn(cr) are adopted. a re-examination of Mn(l) is in progress. The entropy at 298.15 K is calculated in a manner analogous to that used for the enthalpy of formation.

Vaporization Data

Mn₁(cr,l)

$\overline{}$
္ပ
_
-
-
-2
_

Enthalpy Re	ference Te	mperature	Enthalpy Reference Temperature = Tr = 298.15 K		Standard State Pressure	te Pressure = p	- 0.1 MPa
7/K	ย		-[G*-H*(T,)]/T	H*-H*(T,)	-Krimot- Δ/H*	δ.	log Kr
٥	9.	0.	INFINITE	-4.994	0.	ö	o'
<u>8</u> 8	23.054	22.133	34375	-4.400 -2.438	o' c	o' c	o c
25	24.948	27.493	32,436	-1236	ö	်ငံ	
298.15	26.299	32.010	32.010	ó	oʻ	oʻ	o'
8	26.347	32.173	32.010	0.049	oʻ (oʻ.	o'
₹ ₹	28.527	4006 6006 6006	33.072	2 8 7 6	ာ်င	o' c	o c
\$	30.020	43.524	34.043	4266	ó	öö	öö
80	30.292	46.696	35.152	5.772	ó	o	o'
88	31.899	52,362	37.559	8.882	o' i	ö	ď
88	33.426	25.5	40.039	12.149	o o	o' c	o o
8	36.384	66.153	44.896	19.131	ó	်ဝံ	ó
000'086	37.545	69300	46.761	22,088	ALPHA	HA <> BETA	
000.086	37.572	71.572	46.761	24.314	-	TRANSITION	
000	37.698	72.332	47.265	25.067	o ·	oʻ	o ·
32	38 535	25.55 57.55	52.032	32,828	o c	o' c	o c
200	38.953	82.380	54.253	36.565	ó	ó	ó
1361.000	39.204	84.172	55.554	38.948	BETA	> GAMMA	
000,1001	26.00	167.68	55.534	41.070	'	IKANSITION	
1412 000	054.54	50.50	20.412	42.157	ö	o :	o'
1412,000	45.229	88.655	56.673	45.158	GAMIN	GAMMA <> DELTA TRANSTITON	
1500	45.982	91.413	58.631	49.173	ď		c
1519,000	46.108	91.993	59.045	50.048		.A <> LIOUI	
1519 000	46.024	99.931	59.045	62.106		TRANSTITION	
8	46.024	102,322	61.176	65.834	oʻ (oʻ	o'
38	40.024	107.743	66.05	75.036	တ်င	o' c	o c
061	46.024	110231	68.315	79.641	ö	ó	i oʻ
7000	40.024	26231	70.470	84.244	o ·	oʻ -	o'
2200	46.024	114.837	72.530	88.846 93.448	o' c	o c	ď
2300	46.024	119.024	76.393	98.051	ó	jo	ó
2334,526	46.024	119.710	77.029	99.640	FUG	FUGACITY - 1 bar	
2400	46.024	120.983	78.211	102.653	-224.340	6.315	-0.137
8 5	47007	700771	95.510	057.101	210,012	15.874	7550-
362	46.024	126.404	83.270	116.460	-216877	34,698	0.00
2800	46.024	128.078	84.841	121.063	-214.417	43.970	-0.820
3000	46.024	131 253	86380	125.665	-211.977	53.155	-0.957
					Ì		
PEVIOUS						CIBBENT Contember 1967	1067
						CORREST	piction 1507

Manganese (Mn)

A_r = 54.9380 Manganese (Mn)

CRYSTAL(α, β, γ, δ)-LIQUID

980 K crystal, alpha 1361 K crystal, beta 1412 K crystal, gamma 1519 K crystal, delta 1519 K liquid

0 to 980 to 1361 to 1412 to above

Refer to the individual tables for details.

Manganese (Mn)

CURRENT: June 1984 (1 bar)

(Mn)
inganese
ž

PREVIOUS:

K) = 282.1 ± 4.2 kJ·mol ⁻¹ K) = 283.3 ± 4.2 kJ·mol ⁻¹ recommended by Hultgren itsov (1045–1168 KJ, ² Pratt 3 KJ, ⁶ McCabe and Hudson		C7 0.0.186 20.78	Imperature S	-T, - 298.15 -H'(T,))/T -H'(T,))/	H*-H'(T,) H*-H'(T,) -6.197 -6.197 -6.197 -1.001 0.0 0.038 1.078	Standard State Pressure A.H. A.G. 28.1538 28.305 28.338 26.312 28.337 24.107 28.327 24.107 28.327 24.107 28.327 24.107 28.327 24.107 28.327 24.107 28.327 24.107 28.327 24.107 28.327 24.107 28.327 24.107 28.127 28.127 28.127 28.127 28.127 19.112 28.127 18.561 27.178 146.24 27.178 146.24 27.178 146.24 27.178 146.24 27.178 146.24 27.178 146.24 27.178 146.24 27.178 146.24 27.178 17.178 27.178 146.24 27.178 146.24 27.178 146.24 27.178 17.178 27.178 146.24 27.178 17.178 27.178 146.24 27.178 17.178 27.178 146.24 27.178 17.178 27.178 146.24 27.178 17.178 27.178	A.G. 1 A.G. 1 A.G. 1 A.G. 1 282.033	ł a
all levels listed by Corliss mpletely. The calculations -8), the cut-off procedure, temperature. The reported rusion of these calculations procedures. Metals, Metals Park, Ohio, [1966).	2000 2100 2100 234526 234526 2500 2500 2500 2500 2500 2500 2500 2		11.2.1.1 11.2.1.1 11.2.1.2.2.2.2.2.2.2.2	194.593 194.633 196.438 198.033 198.866 199.866 199.866 199.866 199.866 201.033 201.03	55.280 57.464 10.560 41.550 41.550 42.350	23-5914 43 23-5934 13 231-874 23 22-53-58 22-58-64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5	3.3.1.48 3.3.018 1.3.121 1.3.121 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
978).	2	7.7118 2.7319 2.6678 2.6678 3.2666 3.3666 3.	28,452 20,122 20,123 20	208.590 208.590 209.583 210.568 210.568 211.524 211.525 212.546 213.566 215.566 215.566 215.566 215.566 215.566 215.566 215.566 215.566 215.566 215.566 215.566	80.693 86.778 86.778 86.778 99.216 95.211 10.523 11.627 11	ರ ರಲ್ಲೆಲ್ ರಲ್ಲಿಲ್ ರಲ್ಲೆಲ್ ರಲ್ಲಿಲ್		o cocc cocc cocc cocc

Manganese (Mn)

IDEAL GAS

 $\Delta_t H^{\circ}(0 \text{ K}$ $\Delta_t H^{\circ} = (298.15 \text{ K}$ 000040 Electronic Levels and Quantum Weights 8 17052.29 €, cm-လို့ ဝိုင်္မရှိ ရှိ အောင်္က IP (Mn, g) = $5981 \pm 1 \text{ cm}^{-1}$ S°(298.15 K) = $173.716 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

The value adopted for the enthalpy of formation of Mn(g), $\Delta_f H'(298.15 \text{ K}) = 283.3 \pm 4.2 \text{ kJ} \cdot \text{mol}^{-1}$, is that re et al. ¹ This value is a weighted mean of sublimation and vaporization studies. The studies are Bogatyrev and Golubt and Spencer (1248-1620 K), ³ Wiedemeier (1269-1448 K), ⁴ Butler et al. (1075-1335 K), ⁵ Woolf, et al. (1523-1823 (1075-1235 K),7 and Baur and Brunner (1587-1987 K).8

17451.52 17568.48 17637.15

7282.00

A reanalysis of the vapor pressure data is in progress.

Heat Capacity and Entropy

The information on electronic energy levels and quantum weights, given by Corliss and Sugar, si incomplete by predicted levels have not been observed. Although we have listed only a few of the lowest lying levels for Mn(g). and the inclusion of 7-9 levels up to 4000 K; the Gibbs energy function showing no significant variations at this tuncertainty in \$7(298.15 K) is due to uncertainties in the relative ionic mass, and the fundamental constants. Extendental to the fundamental constants of the fundamental constants. and Sugar, ⁹ as well as estimated levels, are used in the calculation. The observed levels are too numerous to list cor indicate that for Mn(g), the thermodynamic functions are independent of the estimated missing levels (for n = 4above 6000 K may require consideration of the higher excited states (17-8), and use of different fill and cut-off

References

R. Hultgren, P. D. Desai, et al., "Selected Values for Thermodynamic Properties of Metals," American Society of I

 L. Bogatyrev and I. V. Golubisev, Zh. Fiz. Khim. 40, 938 (1966).
 J. N. Pratt and P. J. Spencer, Q.T.S.R. No. 1, U.S. Dept. of the Army, Contract No. DA-91-591-EVC-3762, (1970).
 J. N. Pratt and P. J. Spencer, Q.T.S.R. No. 1, U.S. Dept. of the Army, Contract No. DA-91-591-EVC-3762, (1971).
 E. Wiedemeier, Z. anorg, allgem. Chem. 320, 225 (1964).
 F. Butler, C. L. McCabe, and H. W. Paxton, Trans. AIME 221, 479 (1951).
 P. L. Woolf, G. R. Zellars, et al., U. S. Bur Mines RI-5634, 10 pp. (1959).
 C. L. McCabe and R. G. Hudson, Trans. AIME, 209, 17 (1957).
 E. Baur and R. Brunner, Helv. Chim. Acta 17, 958 (1974).
 C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 6, 1253 (1977).
 R. Downey, Jr., The Dow Chemical Company. AFOSR-TR-78-0960. Contract No. F44670-75-1-0048 (1977). Corliss and J. Sugar, J. Phys. Chem. Ref. Data 6, 1253 (1977).

R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (19 Mn;(g)

Mr = 54.93745 Manganese, Ion (Mn*)

0 ± 0.	.0 ± 0.6 cm ⁻¹	$97 \pm 0.05 \text{ J K}^{-1} \cdot \text{mol}^{-1}$
IP(Mn ⁺ , g) = 126145.0 \pm 0.6 cm ⁻¹ S°(298.15 K) = 174.997 \pm 0.05 J K ⁻¹ ·mol ⁻	$(Mn^*, g) = 126145.0 \pm 0$	(298.15 K) = 174.997 ±

$\Delta_t H^{\circ}(0 \text{ K}) = 999.6 \pm 0.5 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [10006.986] \text{ kJ} \cdot \text{mol}^{-1}$

Δ _t H°(298.	Weights 8,	7	5	6	•	. 11
	Electronic Level and Quantum Weights State	00:0	9472.97	14325.86		120721.9 126145.0
	Electronic State	⁷ S ₃	Š,	, 0 ,		. й н.

Enthalpy of Formation

 $\Delta_t H^0(Mn^*, g, 0 K)$ is calculated from $\Delta_t H^0(Mn, g, 0 K)^1$ using the spectroscopic value of $H^0(Mn) = 59981 \pm 1$ cm⁻¹ (717.532 \pm 0.012 mol⁻¹) from Corliss and Sugar. The ionization limit is converted from cm⁻¹ to ki-mol⁻¹ using the factor, 1 cm⁻¹ = 0.01196266 ki-mol⁻¹ which is derived from the 1973 CODATA fundamental constants. Rosenstock et al. and Levin and Lias have summarized additional ionization and appearance potential data

 $\Delta H'(Mn^*, g.~298.15~K)$ is calculated from $\Delta H'(Mn, g.~0~K)$ by using IP(Mn) with JANAF' enthalpies, H'(0~K) + H'(298.15~K), for Mn(g), Mn*(g), and e (ref). $\Delta H'(Mn \to Mn^* + e^-, 298.15~K)$ differs from a room temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al $^4\Delta H'(298.15~K)$ should be changed by -6.197~KJ·mol $^{-1}$ if it is to be used in the ion convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

of the estimated missing levels (for n = 4-7), the cut-off procedure, and the inclusion of n<8 levels up to 6000 K; the Gibbs energy function showing no significant variations at this temperature. The reported uncertainty in S°(298.15 K) is due to uncertainties in the relative ionic mass and the fundamental constants. Extension of these calculations above 6000 K may require consideration of the higher excited states (n>7), observed levels are too numerous to list completely. The calculations indicate that for Mn*(g), the thermodynamic functions are independent The information on electronic energy levels and quantum weights, given by Corliss and Sugar, 2 is incomplete because many theoretically and the ionization potential for Mn*(g), all levels listed by Corliss and Sugar,2 as well as estimated levels, are used in the calculation. The predicted levels have not been observed. Although we have listed only the ground, the first excited state, the highest observed excited state, and use of different fill and cut-off procedures.

References

JANET Thermochemical Tables: Mn(g), 6-30-84, e⁻(ref), 3-31-82.
 C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 6, 1253 (1977).
 E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
 H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
 R. D. Levin and S. G. Lias, U. S. Natl. Bur. Stand., NSRDS-NBS-71, 634 pp. (1982).
 R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).

Enthalpy Reference		Temperature =	T, = 298.15	×	Standard State Pressure		p* = 0.1 MPa
7.7	ಚ	S -[G	"H"(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	Δ,Η*	Φ'Q•	log Kr
088	0. 20.786 20.786	0. 152.290 166.698	INFINITE 193.478 176.899	-6.197 -4.119 -2.040	985-866		
28.15	20.786	171.336	175.340	-1.001	1006.986	958 100	-167.855
88	20.786	175.126	174.998	0.038	1007.015	161.750	-166,767
3	20.786	181.106	175.813	2.117	1008,423	949.535	-141.710
\$ §	20.786	183.554	176.540 177.353	3.156 4.196	1009.033 1009.606	932.728 924.219	-108.268 -96.553
88	20.786	189534	779.071	6274	1010.653	907.041	-78.965
288	20.786	195.514	182.474	10.431	1012.283	872.741	-56.952
88	20.787	200.152	185,062	14589	1012.875	854.699 837.144	-49.605 -43.728
8 17 18 18 18 18 18 18 18 18 18 18 18 18 18	20.790 20.795	202.133	186.981	16.668	1011.464	819.731	-38.926
<u>8</u>	20.805 20.821	205.607	189.587	20.827	1012.073	784.815	-31.534
1500	20.846	208.587	191.926	24.991	1007.787	750.184	-26.124
200	20.882 20 932	209.933 211.201	193.010 194.043	27.078 29.168	995.290 994.857	733.668	-23.952
<u>8</u> 8	20.996 21.078	212.399	195.030	31.265	994.430	701.017	-20.343
2000	21.179	214,620	196.880	35.481	993.598	668.461	-17.458
2200	21.301	215.656	197.749	37.605	993.198	652.214	-16223
2300	21.611	217.607	199.392	41.894	992.440	619.774	-14.076
2500	22.011	218.531	200.171	44.06S 46.25S	767.747 769.912	609.894	-13.274 -12.605
2600	22.246	220.293	201.651	48.468	772.090	596.564	-11.985
2800	22.782	221.960	203.043	20.702 52.969	716.479	589.771	-11,410
888	23.080 23.398	222.765	203.709	55.262 57.586	778.689	575.945	-10.374
3100	23.735	224.325	204.989	59.942	783.130	561.813	-9.466
3300	24.457	225.831	206.207	64.761 64.761	782,336	547.394	-9.054 -8.665
3400 3200	24.841 25.238	226.567 227.293	206.795	67.25 69.72	789.805	540.082 532.705	-8.297 -7.950
380	25.648	228.010	207.934	27.273	794.227	\$25.265	-7.621
3800	26.504	229.419	209,028	77.488	798.590	517.763	-7.310 -7.013
400 800 900	26.948 27.402	230.113 230.801	209.559 210.082	80.160 82.878	800.739 802.861	502.586 494.914	-6.731 -6.463
4100	27.866	231.484	210.595	85.641	804.952	487.189	-6.207
8	28.825	232.833	211.598	91.310	809.021	471.590	-5.729
\$ \$	29.822	234.166	212.572	94217	810.992	453.720	-5.205 -5.291
600 4100 6100	30,336	235.485	213.049	100.181	814.809	447.848	-5.085
4800	31.391	236.140	213.983	106.354	818.401	431.815	-4.699
2000	32.485	237.44	214.896	112.741	821.753	415.638	432
\$100 \$200	33.046 33.616	238.093 238.740	215.344	116.017	823.331 824.841	407.500 399.331	-4.174
258 268 268 268 268	34.195	240.030	216.227	122.741	826.278	391.135	-3.855
2500	35.375	240.674	217.093	129.697	828.926	374.664	-3.558
888 800 800 800	35.976 36.583	241.317 241.959	217.520	133,265	830.798	358,040	-3.417
2800	37.195	242.600	218.362	140.581	833,349	349.712	-3.149
0009	38.429	243.882	219.192	148.144	835.713	332,994	-2.899
PREVIOUS:					C	CURRENT: June 1984 (1 bar)	ic 1984 (1 bar)