May 28 th

Suppose S is bounded set. $a = \sup S$ if $x \le a \ \forall x \in S \ \forall \varepsilon > 0 \ \exists \ x \in S \ s.t. \ a - \varepsilon < x$

Supremum (alugys exist) by complete.

 $\alpha = \max(S)$, $\alpha \in S, \forall x \in S, x \leq \alpha$

maximum

(may not exist) if exists, must be the boundary point

P33. #6. distance between two sets UV CRn is defined to be e.g d(10],/f1))=0 d((1,2),(3,4))=1 $d(U,V)=\inf\{|\overline{X}-\overline{Y}|:\overline{X}\in U,\overline{Y}\in V\}$

(a) Show that d(UV)=0 if either of the sets UV contains a paint in the

closure of the other one.

*(b). Show if U is compact. V is closed. UNV = Ø, then d(U,V)>0.

(c). Give an eg. of two closed sets U & V in R2 that no point in common but satisfy d(U,V)=0.

(a). Suppose $a \in U$, $a \in V$ WLOG-We can choose $|X_n| \in U$, $|X_n - a| \longrightarrow 0$ $0 \le d(U, V) \le |X_n - a| \longrightarrow 0$ hence d(U, V) = 0.

(b). Proof by contradiction. Suppose not, in other word, i.e. U compact, V closed, $U \cap V = \emptyset$ but d(U, V) = 0.

def of inf : $\forall \epsilon > 0$, $\exists x \in S$, s.t. inf $+\epsilon > \chi$

Then $\forall \epsilon > 0$, $\exists \alpha \in U, y \in V$, s.t. $|x-y| < \epsilon$

Take $E = \frac{1}{100}$, find a sequence of points [χ_n] in U and [χ_n] in V s.t. $|\chi_n - \chi_n| < \frac{1}{100}$

Since U is compact, \exists a subsequence $\{X_n\}$ in X_n s.t. $[X_n] - a] \rightarrow 0$

 $|y_{n_j} - \alpha| \le |y_{n_j} - x_{n_j}| + |x_{n_j} - \alpha|$ cuproaches o also approaches o

2 sequential compact

hence $|y_n - \alpha| \rightarrow 0$ $\alpha \in V$

So $a \in U \cap V$ contradicts the condition $U \cap V = \emptyset$.

1

- (c). consider graph of fix= 4 D Show U.V closed.

 $\bigvee = \{x - axis\}$

(a). $S \subset \mathbb{R}^n$ closed $f : \mathbb{R}^n \to \mathbb{R}^m$, find a f(S) not closed. S has to be unbounded! Why? b/c S compact, f cont. then f(S) compact.

 $(-\infty,0] \longrightarrow (\cdot \cdot \cdot \cdot]$

e.g.
$$f(\alpha) = -\frac{1}{2} \cdot x \in S = (-\infty, -1]$$

- 6). SCR open . f cont. f(S) not open?
- eg. Constant function (a "point " is closed)
- e.g. sine function f(s) ∈ [-1,1]

