Построение остовного дерева графа с большим количеством листьев

Н.В.Гравин

Аннотация

Известно, что в графе на n вершинах с мимимальной степенью 4 существует остовное дерево, содержащее не менее $\frac{2}{5} \cdot n$ листьев [4], что является асимптотически точной оценкой для таких графов. В нашей работе приводиться полиномиальный алгоритм, находящий в графе с k вершинами степени хотя бы четыре и k' вершинами степени три, остовное дерево с количеством висячих вершин, по крайней мере $\lceil \frac{2}{5} \cdot k + \frac{2}{15} \cdot k' \rceil$.

1 Введение

В. Г. Визинг [1] в 1968 году поставил задачу поиска в связном графе остовного дерева с наибольшим числом висячих вершин. В 1973 году В. Zelinka [2] предложил не полиноми-альный алгоритм находящий дерево с масимальным количеством висячих вершин. Известно, что задача поиска остовного дерева с наибольшим количеством висячих вершин является NP-полной даже в классе кубических графов. Задача поиска остовного дерева с максимальным количеством листьев рассматривалась многими авторами [6, 5, 9, 7, 8].

Определим $\mathcal{L}(G)$, как максимум количества висячих вершин в остовных деревьях графа G. В 1981 году Storer в своей работе [3] заявил, что $\mathcal{L}(G) \geq \frac{1}{4}N + 2$ для всех 3-регулярных графов на N вершинах. Затем N. Linial [10] выдвинул гипотезу, что $\mathcal{L}(G) \geq \frac{\delta-2}{\delta+1}N + c_{\delta}$ для графов с минимальной степенью хотя бы δ , где c_{δ} зависит только от δ . В работе [4] была доказана гипотеза для $\delta = 4, \delta = 5$ (для $\delta = 3$ гипотеза была доказана еще раньше в работе [5] с помощью метода "мертвых вершин"). Там же, в работе [4], построена бесконечная серия примеров показывающая, что эта оценка асимптотически точна для $\delta = 4, \delta = 5, \delta = 3$ и $c_{\delta} = 2$. Для $\delta = 6$ и выше, задача оказалась существеено труднее, в связи с чем возникли сомнения, что гипотеза верна в общем случае. При помощи вероятностного метода в работе [11] было показано существование графов с $\mathcal{L}(G) = (1 - (1 + o(1)) \frac{\ln(\delta+1)}{\delta+1})N$, что опровергает гипотезу для больших δ (более подробно см. [12] и [13]).

В настоящей работе оценка доказывается для **произвольного** графа, в отличие от предыдущих работ, без ограничений на минимальную степень. Таким образом, если пытаться оценить $\mathcal{L}(G)$ через количество вершин степени хотя бы 4, то вершины степени 2 и 1 "не мешают" в этой оценке, а вершины степени 3 даже немного увеличивают количество висячих вершин. В нашей работе предъявляется алгоритм, работающий полиномиальное время, на выходе выдающий остовное дерево, количество висячих вершин которого удовлетворяет неравенству из аннотации.

2 Обозначения

Дадим несколько необходимых нам определений и обозначений. Через E(G) мы будем обозначать множество всех ребер графа G. Пусть $S \subset V(G)$, тогда через G(S) обозначим индуцированный подграф графа G на множестве вершин S. Через d(x) будем обозначать степень вершины x в графе G.

Определение 1. Назовем *помеченным графом* пару (G, S), где G — граф, а $S \subset V(G)$, при этом множество S вершин графа назовем *помеченными вершинами*. Пусть $\mathcal{G} = (G, S)$ помеченный граф и $P \subseteq V(G)$, тогда *индуцированным помеченным подграфом* на множестве вершин P назовем помеченный граф $(G(P), S \cap P)$.

Определение 2. Помеченное дерево — это корневое дерево, корень которого — помеченная вершина. Для помеченного графа $\mathcal G$ назовем помеченным остовным лесом любой остовный лес состоящий только из помеченных деревьев.

Определение 3. Определим величину L(T) в помеченном дереве T вычисляемую по следующему правилу.

- 1) Если |V(T)| > 1, то L(T) это количество некорневых висячих вершин в дереве T минус один.
 - 2) Если |V(T)| = 1, то L(T) := 0.

Для помеченного леса \mathcal{F} определим величину $\mathcal{L}(\mathcal{F}) = \sum L(T_i)$, где сумма берется по всем деревьям T_i в \mathcal{F} .

Пусть $S_1 \subset V(G)$ таково, что граф $G(S_1)$ связен. Рассмотрим множество $S_2 \subset V(G)$, состоящее из всех вершин не из S_1 , смежных хотя бы с одной вершиной из S_1 . Определим S_3 , как $V(G) \setminus (S_1 \cup S_2)$. Тогда из S_3 в S_1 нет ребер.

Определение 4. Назовем пару множеств (S_1, S_2) древесной парой, а множество S_3 назовем остаточным множеством пары.

3 Алгоритм

3.1 Общая схема

Вместо поиска остовного дерева в графе G мы пометим только одну вершину, и будем искать помеченный остовный лес в помеченном графе G. Наш алгоритм будет действовать следующим образом:

- 1. Пытаемся выбрать в связном помеченном графе \mathcal{G} "хорошую" древесную пару множств (S_1, S_2) с небольшим количеством вершин $(|S_1| + |S_2|)$ не больше некоторой константы). Точное определение "хорошей" пары мы привидем в конце текущей секции. В секции 4 мы докажем:
 - Либо существование такой пары.
 - Либо найдем в \mathcal{G} "хорошее" помеченое дерево состоящее из одной вершины. В этом случае мы выкидываем эту вершину из \mathcal{G} и помечаем всех ее соседей. После чего опять повторям шаг 1.

Рис. 1: Пример допустимого расширения.

- Либо найдем "хороший" помеченный остовный лес. В последнем случае алгоритм прекращает работу для данного графа \mathcal{G} .
- 2. Пока это возможно пытаемся расширить (S_1, S_2) до другой древесной пары (S'_1, S'_2) следующим допустимым типом расширений.

Если в S_2 есть вершина v, смежная, по крайней мере с двумя вершинами остаточного множества S_3 . Пусть v смежна в S_3 с v_1, v_2, \ldots, v_i . Положим $(S_1' = S_1 \cup \{v\}, S_2' = S_2 \setminus \{v\} \cup \{v_1, v_2, \ldots, v_i\})$. (См. рис. 1)

В конце мы получим некотрую древесную пару (P_1, P_2) , для которой нельзя более применить никакое из расширений допустимого вида.

- 3. Удалим из графа все вершины $P_1 \cup P_2$ и пометим вершины, которые были смежны с P_2 . Тем самым, говоря неформально, помеченность вершины v будет означать в нашем случае, что когда-то раньше мы построили дерево, к которому можно подвесить v. Для каждой новой помеченной вершины запомним произвольного ее предка в P_2 . После чего для каждой из оставшихся компонент связности запустим по очереди шаг 1.
- 4. Если в $V(\mathcal{G})$ остались только непомеченные вершины степени не больше 2 и помеченные степени не больше 1, выбирем произвольный помеченный остовный лес.
- 5. В конце алгоритма мы получим помеченный остовный лес, из которого потом будет легко изготовить остовное дерево в исходном графе G с нужным количеством листьев.

3.2 Анализ алгоритма

Помимо случая, когда наш исходный граф G содержит ровно одну помеченную вершину, наш алгоритм с тем же успехом можно применять к графу $\mathcal G$ с произвольным числом помеченных вершин.

Определение 5. Для множества $V(\mathcal{G})$ в помеченном графе \mathcal{G} определим несколько величин:

ullet g_4 количество вершин множества $V(\mathcal{G})$ степени, по крайней мере 4.

- \dot{g}_3 количество помеченных вершин множества $V(\mathcal{G})$ степени 3.
- g_3 количество непомеченных вершин степени 3.
- \dot{g}_2 количество помеченных вершин степени 2.

Докажем, следующую теорему.

Теорема 1. Пусть в связном помеченном графе $\mathcal{G} = (G, S)$ есть, по крайней мере, одна помеченная вершина, тогда наш алгоритм найдет в нем помеченный остовный лес \mathcal{F} с

$$\mathcal{L}(\mathcal{F}) \ge \lceil \frac{2}{5}g_4 + \frac{4}{15}\dot{g}_3 + \frac{2}{15}\dot{g}_2 + \frac{2}{15}g_3 \rceil.$$

Доказательство. Пусть N = |V(G)|. Будем доказывать нашу теорему индукцией по N из предположения, что для всех помеченных графов с меньшим количеством вершин выполняется утверждение теоремы.

База индукции. В качестве базы разберем случай, когда $\lceil \frac{2}{5}g_4 + \frac{4}{15}\dot{g}_3 + \frac{2}{15}\dot{g}_2 + \frac{2}{15}g_3 \rceil = 0$. Заметим, что по определению $L(T) \geq 0$ для любого дерева T из остовного леса. Поэтому, выбрав любое остовное дерево в \mathcal{G} , с корнем в помеченной вершине, мы получим остовный лес \mathcal{F} с $\mathcal{L}(\mathcal{F}) \geq 0$.

Переход. В следующей части доказательства мы определим достаточное условие того, что древесная пара (S_1, S_2) "хорошая", и завершим индукционный переход при наличии в помеченном графе $\mathcal{G} = (G, S)$ "хорошей" тройки.

Обозначим через P_3 остаточное множество древесной пары (P_1, P_2) . Построим дерево T' на множестве вершин $P_1 \cup P_2$ с множеством висячих вершин, содержащем P_2 .

Пусть $P_3^1, P_3^2, \ldots, P_3^m$ — компоненты связности графа $G(P_3)$, а B — множество всех непомеченных вершин из P_3 в \mathcal{G} , которые смежны хотя бы с одной вершиной из P_2 (в шаге 2 алгоритма B это множество новых помеченных вершин, когда мы удалили $P_1 \cup P_2$). Применим предположение индукции для компонент связности $P_3^1, P_3^2, \ldots, P_3^m$ помеченного графа $\mathcal{G}(P_3)$. В каждой из компонент мы получим помеченный остовный лес \mathcal{F}_i . В этих лесах рассмотрим множество всех помеченных деревьев T_1, T_2, \ldots, T_t , у которых корень лежит в B. Из каждого корня такого дерева ведет ребро в множество P_2 , "подвесим" тогда все эти деревья к T' (см. рис. 2). Получится новое дерево T, которое вместе с оставшимися деревьями даст нам некторый "частично" помеченный лес F (все деревья кроме T будут помеченными) в исходном помеченном графе \mathcal{G} .

- 1. Если среди вершин из множества P_1 есть помеченная вершина, то T будет помеченным деревом и тогда F будет помеченным остовным лесом.
- 2. Если в T найдется помеченная вершина, то будем считать ее корнем T.
- 3. В противном случае найдется помеченное дерево T_x , смежное с деревом T. Проведем ребро между T и T_x .

Получившийся помеченный остовный лес обозначим за \mathcal{F} . Попытаемся оценить $\mathcal{L}(\mathcal{F})$. В случаях 2 и 3 $\mathcal{L}(\mathcal{F})$ будет не более чем на один меньше, чем в случае 1, если бы мы пометили в дереве T какую-нибудь вершину из P_1 .

Рис. 2: Дерево Т.

Рассмотрим подробно случай 1. Тогда T — помеченное дерево. Пусть t' это количество вершин в P_2 , к которым "подвесили" помеченные деревья $T_1, T_2, ..., T_t$. Понятно, что $t \geq t'$. Получаем тогда

$$L(T) \ge |P_2| - 1 + \sum_{i=1}^{t} L(T_i) + t - t' \ge |P_2| - 1 + \sum_{i=1}^{t} L(T_i).$$

Таким образом, мы нашли помеченный остовный лес \mathcal{F} , для которого

$$\mathcal{L}(F) \ge \sum \mathcal{L}(\mathcal{F}_i) + |P_2| - 1. \tag{1}$$

Аналогично числам $g_4, \dot{g}_3, g_3, \dot{g}_2$ определим в исходном графе \mathcal{G} для множества P_3 величины $p_4, \dot{p}_3, p_3, \dot{p}_2$ и для множества $P_1 \cup P_2$ величины $a_4, \dot{a}_3, a_3, \dot{a}_2$. Кроме того, в $P_1 \cup P_2$ обозначим через a_1 количество непомеченных вершины степени не больше чем 2 и вершин степени 1. Ясно, что $a_4 + \dot{a}_3 + a_3 + \dot{a}_2 + a_1 = |P_1| + |P_2|$.

Пусть r — количество ребер графа \mathcal{G} ведущих из P_2 в P_3 . Тогда, приминив индукционное предположение для каждой компоненты связности P_3^i , получим следующее неравенство:

$$\sum \mathcal{L}(\mathcal{F}_i) \ge \lceil \frac{2}{5} p_4 + \frac{4}{15} \dot{p}_3 + \frac{2}{15} \dot{p}_2 + \frac{2}{15} p_3 - \frac{2}{15} r \rceil. \tag{2}$$

Объясним, почему в правой части формулы (2) стоит именно такое число. Заметим, что при удалении одного ребра $\{u,v\} \in E(\mathcal{G})$, где $u \in P_2, v \in P_3$, и добавлении v в множество помеченных вершин (если, конечно, v не была помеченной) сумма всех p_i и \dot{p}_i с соответсвующими коэффициентами уменьшается не более чем на $\frac{2}{15}$. Действительно, вершина степени 4 становится помеченной вершиной степени 3, помеченная вершина степени 3 становится помеченная вершиной степени 2, помеченная вершина степени 2 становится вершиной степени 1, непомеченная вершина степени 3 становится помеченной вершиной степени 2.

Из неравенств (1) и (2) следует, что $\mathcal{L}(\mathcal{F})$ не меньше, чем

$$\lceil \frac{2}{5}p_4 + \frac{4}{15}\dot{p}_3 + \frac{2}{15}\dot{p}_2 + \frac{2}{15}p_3 - \frac{2}{15}r \rceil + |P_2| - 1.$$

Нам нужно доказать, что это количество не меньше чем

$$\lceil \frac{2}{5}(p_4 + a_4) + \frac{4}{15}(\dot{p}_3 + \dot{a}_3) + \frac{2}{15}(\dot{p}_2 + \dot{a}_2) + \frac{2}{15}(p_3 + a_3) \rceil = \lceil \frac{2}{5}g_4 + \frac{4}{15}\dot{g}_3 + \frac{2}{15}\dot{g}_2 + \frac{2}{15}g_3 \rceil.$$

Для этого достаточно показать, что

$$\frac{2}{5}p_4 + \frac{4}{15}\dot{p}_3 + \frac{2}{15}\dot{p}_2 + \frac{2}{15}p_3 - \frac{2}{15}r + |P_2| - 1 \ge$$
$$\frac{2}{5}(p_4 + a_4) + \frac{4}{15}(\dot{p}_3 + \dot{a}_3) + \frac{2}{15}(\dot{p}_2 + \dot{a}_2) + \frac{2}{15}(p_3 + b_3).$$

То есть, что

$$|P_2| - \frac{2}{15}r - 1 - (\frac{2}{5}a_4 + \frac{4}{15}\dot{a}_3 + \frac{2}{15}\dot{a}_2 + \frac{2}{15}a_3) \ge 0 \tag{3}$$

Обозначим через $\Delta_1 := |P_2| - |P_1|$ и $\Delta_2 := |P_2| - r$.

В силу того, что из любой вершины P_2 ведет не более одного ребра, Δ_2 равно числу вершин P_2 не смежных ни с чем в P_3 .

Легко проверить, что в процессе расширения древесной пары (S_1, S_2) следующие две величины не будут уменьшаться.

$$\Delta_1(S_1, S_2) := |S_2| - |S_1|.$$

 $\Delta_2(S_1, S_2)$ — количество вершин в S_2 , не смежных ни с чем кроме вершин из S_1 .

Таким образом $\Delta_1 \ge \Delta_1(S_1, S_2)$ и $\Delta_2 \ge \Delta_2(S_1, S_2)$. Перепишем неравенство (3).

$$\frac{2}{15}\Delta_2 + \frac{6}{15}(|P_2| + |P_1|) + \frac{6}{15}\Delta_1 + \frac{1}{15}|P_2| - 1 - (\frac{2}{5}a_4 + \frac{4}{15}\dot{a}_3 + \frac{2}{15}\dot{a}_2 + \frac{2}{15}a_3) \ge 0$$

Как мы знаем $|P_1|+|P_2|=a_4+\dot{a}_3+\dot{a}_2+a_3+a_1$. Переписывая последнее неравенство получаем:

$$\frac{2}{15}\Delta_2 + \frac{6}{15}\Delta_1 + \frac{1}{15}|P_2| + \frac{2}{15}\dot{a}_3 + \frac{4}{15}\dot{a}_2 + \frac{4}{15}a_3 + \frac{6}{15}a_1 \ge 1 \tag{\dagger}$$

Мы знаем, что при расширении древестной пары (S_1, S_2) величины Δ_1 и Δ_2 могут только увеличиваться. Не трудно видеть, что аналогичное утверждение верно для всех отсальных слагаемых в левой части последнего неравенства.

Таким образом, если взять исходную древесную пару (S_1, S_2) , удовлетворяющую (\dagger) , кроме того содержащую в S_1 помеченную вершину, то мы докажем переход индукции, и значит мы можем назвать пару (S_1, S_2) "хорошей".

Применив те же самые рассуждения, что и в случае 1, для случаев 2 и 3 получаем, что если нам удастся найти древесную пару (S_1, S_2) , такую что

$$\frac{2}{15}\Delta_2 + \frac{6}{15}\Delta_1 + \frac{1}{15}|S_2| + \frac{2}{15}\dot{a}_3 + \frac{4}{15}\dot{a}_2 + \frac{4}{15}a_3 + \frac{6}{15}a_1 \ge 2,\tag{\ddagger}$$

то тогда индукционный переход будет доказан. Тем самым мы можем назвать древесную пару "хорошей", если она удовлетворяет (\ddagger) и не обязательно содержит помеченную вершину. Кроме того, мы можем называть пару "хорошей", если сама она не удовлетворяет условию (\dagger) или соответсвенно (\ddagger), но про получающуюся из нее пару (P_1, P_2) можно точно сказать, что она удовлетворяет (\dagger) или (\dagger).

Для завершения доказательства теоремы нам остлось показать, что в графе найдется **хорошая** древесная пара, либо для него уже выполнено предположение базы индукции, либо найдется помеченное дерево, состоящее из одной вершины, при удалении которой из графа, сумма $\frac{2}{5}g_4 + \frac{4}{15}\dot{g}_3 + \frac{2}{15}\dot{g}_2 + \frac{2}{15}g_3$ для оставшегося графа не уменьшится.

4 Нахождение хорошей древесной пары

Определение 6. Определим для древесной пары (S_1, S_2) функцию $X(S_1, S_2)$.

$$X(S_1, S_2) := \frac{2}{15}\Delta_2 + \frac{6}{15}\Delta_1 + \frac{1}{15}|S_2| + \frac{2}{15}\dot{a}_3 + \frac{4}{15}\dot{a}_2 + \frac{4}{15}a_3 + \frac{6}{15}a_1.$$

Где a_i и \dot{a}_i обозначают количества помеченных и непомеченных вершин разных степеней в множестве $S_1 \cup S_2, \ \Delta_1 = \Delta_1(S_1, S_2)$ и $\Delta_2 = \Delta_2(S_1, S_2)$.

Мы будем искать древесную пару (S_1,S_2) с подходящим значением $X(S_1,S_2)$. Если среди вершин S_1 есть помеченная вершина, то для завершения доказательства достаточно $X(S_1,S_2)\geq 1$, если же в S_1 нет помеченной вершины, то достаточно $X(S_1,S_2)\geq 2$. Пусть таких пар (S_1,S_2) нет. Рассмотрим несколько случаев. Разбирая каждый случай мы полагаем, что не могут выполняться условия каждого из предыдущих.

1. Предположим, что в \mathcal{G} есть две смежные вершины u и v, с которыми смежно не мение шести отличных от них вершин. Тогда возьмем $S_1=(u,v)$, по S_1 однозначно построим S_2 . Тогда $\Delta_1=|S_2|-|S_1|\geq 4, \, |S_2|\geq 6$. Подставив $\Delta_1=4,\, S_2=6$, мы получим

$$X(S_1, S_2) \ge \frac{6}{15}4 + \frac{1}{15}6 \ge 2.$$

2. Предположим, что в \mathcal{G} есть вершина u такая, что $d(u) \geq 6$. Тогда, взяв $S_1 = \{u\}$, мы получим $\Delta_1 \geq 5, |S_2| \geq 6$ и

$$X(S_1, S_2) \ge \frac{6}{15}5 + \frac{1}{15}6 > 2.$$

Таким образом, можно считать, что степень любой вершины ${\cal G}$ не превосходит пяти.

3. Предположим, что в \mathcal{G} есть помеченная вершина u такая, что $d(u) \geq 3$. Положим $S_1 = \{u\}$. Тогда $\Delta_1 \geq 2$, $|S_2| \geq 3$, следовательно,

$$X(S_1, S_2) \ge \frac{6}{15}2 + \frac{1}{15}3 \ge 1.$$

Так как u помеченная вершина, то случай разобран.

- 4. Пусть в $\mathcal G$ есть помеченная вершина u степени 2. Рассмотрим случаи.
 - (а) Среди двух вершин, смежных с u, есть вершина $v:d(v)\leq 3$. Тогда либо v непомеченная и d(v)=3, либо $d(v)\leq 2$. (Иначе получаем случай 3). Взяв $S_1=\{u\}$, имеем $\Delta_1=1, |S_2|=2$. Кроме того, u дает 1-ый вклад в \dot{a}_2 и v дает 1-ый вклад в одно из слагаемых \dot{a}_2, a_1, a_3 . Значит,

$$X(S_1, S_2) \ge \frac{6}{15}1 + \frac{1}{15}2 + \frac{4}{15}2 > 1.$$

В S_1 есть помеченная вершина, следовательно, случай разобран.

(b) Пусть u смежна с v_1 и v_2 , а среди v_1 , v_2 есть вершина v, смежная хотя бы с тремя вершинами в графе $G\setminus\{u,v_1,v_2\}$ (см. рис. 3). Возьмем $S_1=\{u,v\}$, получим $\Delta_1\geq 2,\,|S_2|\geq 4,\,\dot{a}_2\geq 1$ и в S_1 есть помеченая вершина.

$$X(S_1, S_2) \ge \frac{6}{15}2 + \frac{1}{15}4 + \frac{4}{15}1 > 1.$$

Рис. 3: Случай 4b.

- (c) Из предыдущих случаев 4a и 4b следует, что v_1 и v_2 смежны и $d(v_1)=d(v_2)=4$.
 - Предположим, что есть смежная с v_1 или с v_2 вершина w такая, что d(w)=5. Не умаляя общности, будем считать, что w смежна с v_1 . Тогда есть пять вершин, смежных с v_1 или w и отличных от них: u и четыре отличные от v_1 вершины смежных с w. Если w или v_1 смежна еще с какими—то вершинами, то мы приходим к случаю 1 (см. рис. 4). Следовательно, таких вершин нет, а значит, w смежна со всеми отличными от u вершинами, смежными с v_1 , в частности, с v_2 . Тогда мы получаем вершину w степени 5, смежную с v_1 и v_2 , которые, в свою очередь, смежны с u, d(u) = 2. Рассмотрим $S_1 = \{w, v_1\}$ (см. рис. 5). Проведя аналогичное рассуждение для v_1 и w, получаем, что v_2 не смежно ни с чем, кроме $S_1 \cup S_2$. Вершина u смежна только с вершинами из $S_1 \cup S_2$, следовательно, $\Delta_2 \geq 2$. Легко видеть, что $\Delta_1 = 3$, $|S_2| = 5$, $\dot{a}_2 \geq 1$. Тогда

$$X(S_1, S_2) \ge \frac{2}{15}2 + \frac{6}{15}3 + \frac{1}{15}5 + \frac{4}{15}1 > 2.$$

• Предположим, что есть вершина w, $d(w) \leq 3$, смежная с v_1 или с v_2 . Не умаляя общности, предположим, что w смежна с v_2 . Рассмотрим $S_1 = \{u, v_2\}$ (см. рис. 6). Тогда $\Delta_1 = 1$, $|S_2| = 3$, u дает 1-ый вклад в \dot{a}_2 , а w дает 1-ый вклад в одно из слагаемых \dot{a}_2 , a_1 , a_3 , \dot{a}_3 . Вершина w не может быть помеченной вершиной степени 3 (см. случай 3). Тогда

$$X(S_1, S_2) \ge \frac{6}{15}1 + \frac{1}{15}3 + \frac{4}{15}1 + \frac{2}{15}1 = 1.$$

Так как в S_1 есть помеченная вершина, то случай разобран.

• Осталось рассмотреть случай, когда вершины v_1 и v_2 смежны; $d(v_1) = d(v_2) = 4$; смежные с v_1 вершины w_1 и w_2 таковы, что $d(w_1) = d(w_2) = 4$ (см. рис. 7). В случае, если вершина w_1 или вершина w_2 смежны с какими-то тремя вершинами не из множества $\{w_1, w_2, v_1, v_2, u\}$ (см. рис. 8), эта вершина (на рисунке это w_1) и v_1 попадают под случай 1.

Рис. 7:

Рис. 8:

Рис. 9:

• Если каждая из вершин w_1 , w_2 смежна не более чем с одной вершиной из множества $G\setminus\{w_1,w_2,v_1,v_2,u\}$, тогда, так как $d(w_1)=d(w_2)=4$, то w_1 смежна с w_2 и v_2 , а w_2 смежна с w_1 и v_2 (см. рис. 9). Пусть $S_1=\{v_1\}$, тогда $\Delta_1=3,\ |S_2|=4,\ \dot{a}_2\geq 1,\ \Delta_2\geq 2$ (две вершины u и v_2 смежны только с вершинами из множетсва $S_1\cup S_2$, так как v_2 имеет степень 4 и смежна с u,v_1,w_2,w_1). Имеем

$$X(S_1, S_2) \ge \frac{2}{15}2 + \frac{6}{15}3 + \frac{1}{15}4 + \frac{4}{15}1 = 2.$$

• Значит, либо w_1 , либо w_2 смежна с двумя вершинами из множества $G \setminus \{w_1, w_2, v_1, v_2, u\}$. Не умаляя общности, пусть это w_1 и эти две вершины x_1 и x_2 . Тогда получаем случай, изображенный на рис. 10. Обозначим через

Рис. 10:

Рис. 11:

Рис. 12:

Z множество $V(\mathcal{G})\setminus\{x_1,x_2,w_1,v_2,v_1,w_2,u\}$. Взяв $S_1=\{v_1,w_1\}$, получим $\Delta_1=3,\,|S_2|=5,\,\Delta_2\geq 1,\,\dot{a}_2\geq 1.$ Имеем

$$X(S_1, S_2) \ge \frac{2}{15}1 + \frac{6}{15}3 + \frac{1}{15}5 + \frac{4}{15}1 = \frac{29}{15}.$$

Заметим, что если $(P_1,P_2) \neq (S_1,S_2)$, то $X(P_1,P_2) > X(S_1,S_2)$. Из определения $X(S_1,S_2)$ следует, что $X(S_1,S_2) = \frac{c}{15}$, где $c \in \mathbb{Z}$. Тогда $X(P_1,P_2) \geq 2$ и случай разобран (пара (S_1,S_2) хорошая). Пусть $X(S_1,S_2) = \frac{29}{15}$, тогда можно считать, что $|S_2| = 5$, $S_1 = P_1$, $S_2 = P_2$, $\Delta_2 = 1$, $d(x_1) \geq 4$, $d(x_2) \geq 4$, каждая из вершин x_1, x_2, w_2, v_2 смежна ровно с одной вершиной из множества Z (иначе либо $\Delta_2 > 1$, либо можно выполнить допустимое расширение).

- Пусть $d(x_1) = 5$. Так как из x_1 в Z ведет одно ребро, и она не смежна ни с u, ни с v_1 , то x_1 смежна с x_2, w_1, v_2, w_2 , следовательно, v_2 и x_1 удовлетворяют условиям из случая 1 (см. рис. 11).
- Таким образом, $d(x_1) = 4$ и, аналогично, $d(x_2) = 4$, вершина x_1 смежна с двумя вершинами из множества $\{x_2, w_2, v_2\}$ и x_2 смежна с двумя вершинами из множества $\{x_1, w_2, v_2\}$. Если x_2 и x_1 не смежны, то тогда x_1 смежна с w_2

и v_2 , а также x_2 смежна с w_2 и v_2 , откуда $\Delta_2 \geq 2$, так как из v_2 нет ребер вне $S_1 \cup S_2$ (см. рис. 12). А значит $X(S_1, S_2) > \frac{29}{15}$, откуда мы заключаем, что (S_1, S_2) была хорошей парой.

- Значит, x_2 и x_1 смежны. Аналогично предыдущему случаю ($\Delta_2 \geq 2$) получаем, что v_2 не может быть смежна одновременно с x_1 и x_2 (см. рис. 13).
- Пусть x_1 и x_2 смежны с w_2 . Тогда вершины w_2 и v_1 удовлетворяют случаю 1 (см. рис. 14).
- Таким образом, каждая из вершин x_2 и x_1 смежна ровно с одной вершиной из пары w_2 , v_2 , причем для x_2 и x_1 эти вершины разные. Не умаляя общности, пусть x_2 смежна с w_2 , а x_1 смежна с v_2 (см. рис. 15).
- Так как каждая из вершин v_2 и w_2 смежна ровно с одной вершиной из Z, то v_2 не смежна с w_2 и, следовательно, w_2 смежна с w_1 , так как $d(w_2) = 4$ (см. рис. 16).

 v_1 w_2

Рис. 13:

Рис. 16:

Рис. 17:

Рис. 18:

• Пусть вершины x_1, x_2, v_2 смежны в Z не с одной и той же вершиной. Положим $S_1 = \{x_1, x_2, v_2\}$ (см. рис. 17), тогда $\Delta_1 \geq 3, |S_2| \geq 6, \Delta_2 \geq 2$ (вершины u и v_1 смежны только с вершинами из $S_1 \cup S_2$), $\dot{a}_2 \geq 1$. Имеем

$$X(S_1, S_2) \ge \frac{2}{15}2 + \frac{6}{15}3 + \frac{1}{15}6 + \frac{4}{15}1 > 2.$$

- Пусть w_2 и x_2 имеют разные смежные вершины в Z, положим $S_1 = \{x_2, w_2, v_1\}$ (см. рис. 18). Тогда $\Delta_1 \geq 3$, $|S_2| \geq 6$, $\Delta_2 \geq 2$ (вершины u и w_1 смежны только с вершинами из $S_1 \cup S_2$), $\dot{a}_2 \geq 1$, откуда $X(S_1, S_2) \geq 2$.
- Значит, x_1, x_2, v_2, w_2 смежны с общей вершиной z из Z. Если d(z)=5, то z и v_2 удовлетворяют условиям из случая 1. Значит, d(z)=4. Тогда рассмотрим $S_1=\{w_2,w_1,v_1\}$ (см. рис. 19). Имеем $\Delta_1=2, |S_2|=5, \Delta_2=5, \dot{a}_2=1$. Далее

$$X(S_1, S_2) = \frac{2}{15}5 + \frac{6}{15}2 + \frac{1}{15}5 + \frac{4}{15}1 > 2.$$

Рис. 20:

Рис. 19:

На этом разбор случая, когда в графе $\mathcal G$ есть помеченная вершина степени 2, закончен.

- 5. В графе \mathcal{G} есть какая-то помеченная вершина u. Если d(u) = 0, то из-за связности $G\ V(G) = \{u\}$. Тогда u образует "хороший" остовный лес, для которого выполнены условия теоремы 1.
- 6. Остается разобрать случай d(u) = 1.
 - Если u смежна с вершиной v степени по крайней мере четыре, тогда положим $S_1 = \{v\}$ (см. рис. 20). Получаем $\Delta_1 \geq 3$, $|S_2| \geq 4$, $\Delta_2 \geq 1$, $a_1 \geq 1$. Значит

$$X(S_1, S_2) \ge \frac{2}{15}1 + \frac{6}{15}3 + \frac{1}{15}4 + \frac{6}{15}1 = 2.$$

- Если d(v) = 1, то $V(\mathcal{G}) = \{u, v\}$ и тогда ребро (u, v) образует хороший остовный лес графа \mathcal{G} .
- Осталось разобрать случай, когда u смежна с непомеченной вершиной v, для которой $3 \ge d(v) > 1$. Добавим к нашему частично построенному лесу "хорошее" помеченное дерево $\{u\}$. Удалим из $\mathcal G$ вершину u и пометим v. Заметим что для оставшегося графа сумма $\frac{2}{5}g_4 + \frac{4}{15}\dot{g}_3 + \frac{2}{15}\dot{g}_2 + \frac{2}{15}g_3$ не измениться и применив предположение индукции для оставшегося графа мы докажем переход индукции.

На этом разбор всех случаев завершен, теорема доказана.

Следствие 1. Пусть в графе G есть k вершин степени хотя бы 4 и k' вершин степени 3, тогда в этом графе можно выделить остовное дерево с количеством висячих вершин не менее $\left\lceil \frac{2}{5} \cdot k + \frac{2}{15} \cdot k' \right\rceil$.

Доказательство. Возьмем любую вершину в нашем графе и будем считать, что она помеченна. Применим к этому графу теорему 1. Так как в графе только одна помеченная вершина, то мы получим остовное дерево исходного графа. □

Замечание 1. Заметим, что исходя из доказательства теоремы 1 легко можно построить полиномиальный алгоритм, который будет выделять остовный лес с нужным количеством висячих вершин. Действительно, вначале алгоритм должен находить хорошую древесную пару (S_1, S_2) с небольшим количеством вершин, а потом, пока это возможно, пытаться эту пару расширить жадным образом.

5 Заключение

В связи с тем, что гипотеза Линиала оказалась не верной для больших значений δ , однако при $\delta=3,4,5$ она попрежнему выполняется, естественно возникает вопрос: для какого максимального δ утверждение гипотезы все еще выполняется? Кроме того, в свете нынешней работы, хотелось бы получить результат для произвольных графов, который бы учитывал с разными коэффициентами степени всех вершин в графе. В идеале, хотелось бы иметь полиномиальный алгоритм, находящий остовное дерево с количеством висячих вершин по крайней мере $\frac{1}{2}k_5 + \frac{2}{5}k_4 + \frac{1}{4}k_3$.

Автор выражает благодарность Д.В.Карпову за плодотворные обсуждения и за большое количество замечаний по улушению статьи.

Список литературы

- [1] В. Г. Визинг. *Некоторые нерешенные задачи в теории графов.* Успехи мат. наук т.23 (1968), стр. 117–134.
- [2] B. Zelinka. Finding a Spanning Tree of a Graph with Maximal Number of Terminal Vertices. Kybernetika v.9 (1973), №5, p. 357–360.
- [3] J. A. Storer, Constructing full spanning trees for cubic graphs, Inform. Process. Lett. 13 (1981), №1, p. 8-11.
- [4] Jerrold, R. Griggs, Mingshen Wu. Spanning trees in graphs of minimum degree 4 or 5, Discreet Mathematics 104 (1992) p. 167–183.
- [5] D. J. Kleitman и D. B. West. Spanning trees with many leaves, SIAM J. Discrete Math. 4 (1991), №1, p. 99-106.
- [6] P. S. Bonsma, T. Brueggermann, G. J. Woenginger, A faster FPT algorithm for finding spanning trees with many leaves. Lect. Notes Computer Sci. 2747 (2003), 259-268
- [7] F. V. Fomin, F. Grandoni, D. Kratsch Solving Connected Dominating Set Faster than $O(2^n)$. Algorithmica 52 (2008), 153-166.
- [8] M. R. Fellows, C. McCartin, F. A. Rasamond, U. Stege Coordinated kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. Lect. Notes Comput. Sci 1974 (2000), 240-251.
- [9] G. Galbiati, A. Morzenti, F. Maffioli On the approximability of some maximum spanning tree problems. Theoretical Computer Scinece 181 (1997), 107-118.
- [10] N. Linial и D. Sturtevant (1987) Необубликованный результат.
- [11] N. Alon Transversal numbers of uniform hypergraphs. Graphs and Combinatorics 6 (1990), 1-4.
- [12] Y. Caro, D. B. West, R. Yuster Connected domination and spanning trees with many leaves. SIAM J. Discrete Math. 13 (2000), 202-211.
- [13] N. Alon, J. Spencer The Probabilistic Method. Second Edition. Wiley, NY, 2000.