

Effiziente Modellierung molekularer Interaktionen

BENUTZERHANDBUCH

Inhaltsverzeichnis

lErste Schritte	. 2
1.1Betriebssystem	. 2
1.2Deteiformat	. 2
1.3Ablaufbedingungen	. 2
1.4Programminstallation	. 2
1.5Programmstart	. 2
2Energiefunktionen	4
2.1Polarisierungsenergien	6
2.2Dispersionsenergien	. 4
2.3Elektrostatische Energie	. 5
2.4H-Bruecken-Korrektur	. 5
2.5Berechnung der Lösungsmittelenergien / Lösungsmittelkorrektur	. 6

1 Erste Schritte

1.1 Betriebssystem

Da das Programm auf einem Linux-basiertem Betriebssystem implementiert wurde, sind die in dieser Anleitung genannten Kommandos Befehlsaufrufe im Linux-Terminal.

1.2 Deteiformat

Dafür müssen die Eingabemolekülkomplexe durch Dateien in folgendem emmi-Format repräsentiert werden:

- 1. Zeile: Anzahl der Atome
- 2. Zeile: Kommentarzeile
- 3. Zeile und folgende: Atomtyp x-Koordinate y-Koordinate z-Koordinate

1.3 Ablaufbedingungen

Bei dem Programm handelt es sich um ein Python-Skript, daher muss das System in der Lage sein python 2.7 auszuführen.

1.4 Programminstallation

Das Programm kann mit zugehörigen Dateien an einem beliebigen Ort abgelegt werden.

1.5 Programmstart

Der Aufruf erfolgt über die Kommandozeile im selben Verzeichnis in dem das Programm liegt mit:

mf Pfad zur xyz-Moleküldatei, für welche die Energie berechnet werden soll.

optionale Argumente:

-nod,noDispersion	Dispersionsenergie wird nicht berechnet
-noe,noElectrostatics	Elektrostatische Energie wird nicht berechnet
-nob,noBorn	Born Energie wird nicht berechnet
-noh,noHBondes	H-Brücken-Energy wird nicht berechnet
-nop,noPolarisation	Polarisationsenergie wird nicht berechnet
-dse,displaySingleEnergies	Zeigt die einzelnen Energieterme an
-ncm5,noCM5Correction	CM5-Korrektur wird ausgeschalatet

2 Energiefunktionen

2.1 Dispersionsenergien

Die Berechnung der Dispersionsenergien erfolgt über die Funktion:

Der das Programm wird mit dem Befehl \$./dispersion.py <option> aufgerufen.

Obligatorische Kommandozeilenargumente sind:

<moleculefile></moleculefile>	Paths to the xyz-molecule-file for which the Energy
	shall be calculated. The file must be in the following
	format: <au aa="" =""> <number atoms="" of=""> <comment line=""></comment></number></au>
	Molecule Coordination
<covalentradiifile></covalentradiifile>	Paths to the covalent_radii_file The file must be in
	the following format: <comment line=""> <covalent radii=""></covalent></comment>

each line starts with '.'

Optionale Argumente sind:

-h, --help show this help message and exit

-sdc6, --showDispersionCoefficientc6aa Disables printing of Dispersion coefficient c6aa.

Benoetigt:

Atompositionen: [[float]]

Anzahl der Atome: float

Kovalente Radien der Atome: [float]

Atomtypen: [char]

r2r4: [float]

Referenz Dispersionskoeffiziente: [[float]]

2.2 Elektrostatische Energie

Der Programmaufruf zur Berechnung der elektrostatischen Energie erfolgt über:

\$./electrostatic.py <moleculeFile> <option>

Als Input wird eine Moleküldatei im bereits unter Punkt 1.2. beschriebenen emmi-Format benötigt.

Argumente sind:

<moleculeFile> Pfad zur Moleküldatei im emmi-Format.

Optionale Argumente sind:

-h, --help Zeigt Hilfenachricht an.

-ncm5, --noCM5Correction Schaltet CM5-Korrektur aus.

-spc, --showPartialCharge Zeigt Partiallladungen an.

-noe, --noElectrostaticEnergy Elektrostatische Energie soll nicht angezeigt

werden.

2.3 H-Bruecken-Korrektur

Der Programmaufruf zur H-Brückenkorrektur erfolgt über:

\$./hbond.py elements.txt rcov.dat input.xyz

Als Input wird eine Moleküldatei im bereits unter Punkt 1.2. beschriebenen emmi-Format benötigt. Zusätzlich benötigt man das Periodensystem elements.txt und die die kovalenten Radien rcov.dat

2.4 Berechnung der Lösungsmittelenergien / Lösungsmittelkorrektur Aufruf:

\$./born.py ./input.xyz ./rcov.dat ./elements.txt

Inputdatei: Moleküldatei im .xyz Format

Optionen: keine

zusätzlich verwendete Daten: supplement.py

2.5 Polarisierungsenergien

Aufruf: \$./polarisation.py [-h] [-xyz] mf

Argumente sind:

mf Pfad zu einem inp-Datei.

Optionale Argumente sind:

-h, --help Zeigt Hilfenachricht an.

-xyz, --xyz Wenn die Option -xyz vorhanden ist, wird die Eingabedatei

als xyz-Datei behandelt. Default ist .inp