Chapitre 8 : Changement de corps en algèbre linéaire

But:

Dans tout le texte, K désigne un corps et L une extension de K.

On va étudier les problèmes :

- (1) Soit \mathbb{K} un corps, $P \in \mathbb{K}[X]$ un polynôme. Peut-on trouver une extension \mathbb{L} de \mathbb{K} dans laquelle P admet au moins une racine? Dans laquelle P est scindé?
- (2) En changeant de corps, change t'on les propriétés d'une matrice ?

IR-similitude et C-similitude

Théorème:

Deux matrices réelles A, B sont R-semblables si et seulement si elles sont C-semblables.

Démonstration:

Si $A = PBP^{-1}$ où $P \in GL_n(\mathbb{R})$, alors A et B sont \mathbb{C} -semblables car $GL_n(\mathbb{R}) \subset GL_n(\mathbb{C})$.

Réciproquement, supposons que $A = PBP^{-1}$ où $P \in GL_n(\mathbb{C})$.

On peut écrire $P = P_1 + iP_2$ où P_1 et P_2 sont réelles (pas forcément inversibles).

Comme $A(P_1 + iP_2) = B(P_1 + iP_2)$, on a $AP_1 = BP_1$ et $AP_2 = BP_2$.

Si l'une des deux matrices réelles est inversible, on peut conclure.

Sinon, il existe $x \in \mathbb{R}$ tel que $P_1 + xP_2$ est inversible (réelle), et on peut encore conclure.

En effet, $f(x) = \det(P_1 + xP_2)$ est une fonction polynomiale réelle, et n'est pas nulle car $f(i) = \det(P) \neq 0$, donc elle prend des valeurs non nulles sur \mathbb{R} .

II Invariance du rang

Théorème:

On a $M_{n,p}(\mathbb{K}) \subset M_{n,p}(\mathbb{L})$ et le rang d'une matrice $A \in M_{n,p}(\mathbb{K})$ est le même que l'on considère que A est à coefficients dans \mathbb{K} ou dans \mathbb{L} .

Ainsi, le rang d'une matrice à coefficients dans $\mathbb K$ peut s'obtenir aussi bien à l'aide d'opérations élémentaires à coefficients dans $\mathbb K$ que dans $\mathbb L$.

Démonstration :

On note r le rang de A sur \mathbb{K} . On a alors $A = PJ_{r}Q$ avec $P \in GL_{n}(\mathbb{K}) \subset GL_{n}(\mathbb{L})$ et $Q \in GL_{n}(\mathbb{K}) \subset GL_{n}(\mathbb{L})$ donc le rang de A sur \mathbb{L} est aussi r.

Corollaire:

Soit AX = 0 un système de n équations à p inconnues à coefficients dans \mathbb{K} de rang r. Si $(X_1,...X_{p-r}) \in \mathbb{K}^p$ est une base de l'espace des solutions dans \mathbb{K} , c'en est aussi une de l'espace des solutions dans \mathbb{L} . Démonstration:

Les X_i sont aussi des solutions à coefficients dans $\mathbb L$ et la matrice P représentant $(X_1,...X_{p-r})$ dans la base canonique de $\mathbb L^p$ est aussi celle qui représente $(X_1,...X_{p-r})$ dans la base canonique de $\mathbb K^p$. P est donc de rang p-r sur $\mathbb L$. Autrement dit, $(X_1,...X_{p-r})$ est libre dans le $\mathbb L$ -ev $\mathbb L^p$; c'est donc une base de l'espace des solutions de AX=0 dans $\mathbb L^p$ puisque cet espace est aussi de dimension p-r car le rang de A est le même sur $\mathbb K$ et $\mathbb L$.

III Invariance du polynôme caractéristique et du polynôme minimal

Théorème:

On a $M_n(\mathbb{K}) \subset M_n(\mathbb{L})$ et les polynômes caractéristique et minimal de $A \in M_n(\mathbb{K})$ sont les mêmes que l'on considère que A est à coefficients dans \mathbb{K} ou dans \mathbb{L} .

Démonstration :

Pour le polynôme caractéristique, c'est évident...

Soit $m \in \mathbb{K}[X] \subset \mathbb{L}[X]$ le polynôme minimal de A sur \mathbb{K} et M son polynôme minimal sur \mathbb{L} . On a $\widetilde{m}(A) = 0$, donc M divise m dans $\mathbb{L}[X]$.

Par ailleurs, si d est le degré de m, la famille $(I_n,A,...A^{d-1})$ est libre dans le \mathbb{K} -ev $M_n(\mathbb{K})$, donc la matrice $P \in M_{n^2,d}(\mathbb{K})$ qui représente cette famille dans la base canonique est de rang d. Mais P représente aussi la famille $(I_n,A,...A^{d-1})$ dans la base canonique de $M_n(\mathbb{L})$ (les deux bases sont constituées des mêmes matrices $E_{i,j}$). La propriété d'invariance du rang montre alors que le rang de P sur \mathbb{L} est aussi d donc que $(I_n,A,...A^{d-1})$ est libre dans le \mathbb{L} -ev $M_n(\mathbb{L})$, et donc A n'a pas de polynôme annulateur non nul dans $\mathbb{L}_{d-1}[X]$, ce qui impose deg M=d et donc M=m

IV Extension du I.

Théorème :

Si \mathbb{K} est infini, deux matrices A, B de $M_n(\mathbb{K})$ semblables sur \mathbb{L} sont semblables sur \mathbb{K} .

L'autre sens est toujours aussi évident.

Démonstration:

Supposons A et B \mathbb{L} -semblables. Alors le système AP = PB est un système de N^2 équations à coefficients dans \mathbb{K} d'inconnues les coordonnées $(P_{i,j})$ de P dans la base canonique. Comme ce système est représenté par une matrice à coefficients dans \mathbb{K} (dépendants des coefficients de A et B), le rang est le même que l'on regarde les solutions $P \in M_n(\mathbb{K})$ ou dans $M_n(\mathbb{L})$.

Soit $P_1,...P_N$ une base de solutions du système AP=PB dans $M_n(\mathbb{K})$. La matrice qui représente $(P_1,...P_N)$ dans la base canonique de $M_n(\mathbb{K})$ est de rang N donc la matrice qui représente $(P_1,...P_N)$ dans la base canonique de $M_n(\mathbb{L})$ aussi. Ainsi, $(P_1,...P_N)$ est un système libre de solutions de AP=PB dans $M_n(\mathbb{L})$. Comme le système est de rang N, c'en est une base.

Autrement dit, toute solution $P \in M_n(\mathbb{L})$ de AP = PB s'écrit $P = \sum_{i=1}^N x_i P_i$ avec $x_i \in \mathbb{L}$.

Or, ce système a une solution inversible donc la fonction polynomiale $f(x_1,...x_N) = \det\left(\sum_{i=1}^N x_i P_i\right)$ n'est pas la fonction nulle sur \mathbb{L}^N , ce qui veut dire que $f(x_1,...x_N)$

est somme de termes $ax_1^{n_1}...x_N^{n_N}$ (où $a \in \mathbb{K}$ car s'exprimant à l'aide des P_j) dont au moins l'un est non nul. On conclut en utilisant le lemme :

Lemme:

Si $f \in \mathbb{K}[X_1,...X_n]$ est un polynôme non nul et si \mathbb{K} est infini, alors la fonction polynomiale $\widetilde{f}: \mathbb{K}^N \to \mathbb{K}$ n'est pas identiquement nulle.

En effet, montrons le résultat par récurrence sur N:

Le cas N = 1 est connu pour \mathbb{K} infini.

Soit $N \ge 2$, supposons la propriété vraie pour N-1. Soit $f \in \mathbb{K}[X_1,...X_n]$. On écrit alors $f = \sum_{i=1}^d P_i X_N^i$ avec $P_i \in \mathbb{K}[X_1,...X_{N-1}]$. L'un au moins des P_i est non nul.

Donc, par hypothèse de récurrence, on peut fixer $a = (a_1, ... a_{n-1})$ tel que $\sum_{i=1}^d P_i(a) X_N^i$ ne soit pas le polynôme nul; alors, comme $\mathbb K$ est infini, il existe x tel que $\sum_{i=1}^d P_i(a) x^i \neq 0$, et dans ce cas $f(a_1, ... a_{n-1}, x) \neq 0$ ce qui achève la récurrence.

Ainsi, pour en revenir au théorème, le lemme montre que AP = PB a une solution inversible, disons $P = \sum_{i=1}^{N} x_i P_i$ où $\forall i \in [1, n], x_i \in \mathbb{K}$

Donc $A = PBP^{-1}$ pour une matrice $P \in GL_n(\mathbb{K})$.

V Construction de corps

Théorème:

Soit \mathbb{K} un corps, et $P \in \mathbb{K}[X]$. Alors il existe une extension \mathbb{L} de degré fini de \mathbb{K} dans laquelle P est scindé.

Démonstration:

Par récurrence (forte) sur $d = \deg P - m$ où m est la somme des multiplicités des racines de P dans \mathbb{K} .

Pour d = 0, P est scindé sur \mathbb{K} , donc $\mathbb{L} = \mathbb{K}$ convient.

Soit $d \ge 1$, supposons la propriété vraie pour tout corps $\mathbb K$ et tout d' < d et soit $P \in \mathbb K[X]$ tel que $d = \deg P - m$. Soit R un facteur irréductible de P de degré $r \ge 2$. Alors l'anneau quotient $\mathbb L = \mathbb K[X]/(R.\mathbb K[X])$ est un corps, et c'est une extension de dimension r de $\mathbb K$, dont $1, \overline{X}, ... \overline{X}^{r-1}$ est une $\mathbb K$ -base. En plus, on a $\overline{P} = 0$ dans $\mathbb L$ donc \overline{X} est racine de P.

Ainsi, sur \mathbb{L} , P a une racine de plus et on peut appliquer l'hypothèse de récurrence à $P \in \mathbb{L}[X]$: on peut trouver une extension finie \mathbb{M} de \mathbb{L} , donc aussi de \mathbb{K} dans laquelle P est scindé.

VI Applications

- Pour toute matrice $A \in M_n(\mathbb{K})$, il existe \mathbb{L} , extension finie de \mathbb{K} , dans laquelle A est trigonalisable.
- Le polynôme minimal d'une matrice $A \in M_n(\mathbb{K})$ divise son polynôme caractéristique (Cayley–Hamilton); de plus, les deux ont les mêmes facteurs irréductibles dans $\mathbb{K}[X]$.

Démonstration :

Soit R un facteur irréductible de \min_A dans $\mathbb{K}[X]$ et \mathbb{L} une extension finie de \mathbb{K} dans laquelle R est scindé. Si a est une racine de R, on a alors $\min_A(a) = 0$, donc a est une valeur propre de A dans \mathbb{L} (car \min_A est aussi le polynôme minimal de A sur \mathbb{L}) et a est donc une racine de χ_A . Ainsi, R et χ_A ne sont pas premiers entre eux dans $\mathbb{K}[X]$ (on ne peut pas écrire une relation de Bézout puisque $R(a) = \chi_A(a) = 0$) donc R, qui est irréductible, divise χ_A .

D'où le résultat

• Soit $M \in M_{n,p}(\mathbb{Z}_i)$. On suppose que MX = 0 a une solution non nulle à coefficients réels positifs. Alors il a une solution non nulle à coefficients dans \mathbb{N} .

Démonstration:

Quitte à supprimer des colonnes de M, on peut supposer que MX = 0 a une solution à coefficients strictement positifs.

Soit $V_1,...V_N \in \mathbb{Q}^p$ une base de solutions rationnelles de MX = 0. Selon le corollaire du \coprod , $V_1,...V_N \in \mathbb{Q}^p$ est aussi une base de l'espace des solutions réelles de MX = 0. Par hypothèse, il existe donc des réels $x_1,...x_N$ tels que $X = \sum_{i=1}^N x_i V_i$ est à coefficients strictement positifs. Prenons pour tout $i \in [1,n]$ une suite $(r_i(n))_{n \in \mathbb{N}}$ de rationnels tendant vers x_i . Pour n assez grand, $\sum_{i=1}^N r_i(n)V_i$, qui tend vers X, est un vecteur rationnel à coefficients strictement positifs. En multipliant par un dénominateur commun des $r_i(n)$, on obtient une solution non nulle à coefficients dans \mathbb{N} .