Animation & Simulation

He Wang (王鹤)

- Very formidable task
 - Too familiar (uncanny valley)

- Very formidable task
 - Too familiar (uncanny valley)
 - High Complexity
 - > 200 bones, > 600 muscles, approx. 200 Dofs, deformable skins
 - Human-like motion is not computationally defined
 - What makes a natural motion natural?
 - No definitive motion that is human-like
- Virtual human representation
 - Skins
 - Bones, muscles, tissues and fat
 - Hairs
 - Clothing

- Virtual human representation
 - Representing body geometry
 - Polygons (triangles) or Patches (non-uniform rational b-splines, NURBs)
 - Normally in off-shell modelling tools
 - If speed is important, polygons; otherwise patches

- Virtual human representation
 - Geometric Data Acquisition
 - Scanner, point clouds->patches->surfaces
 - Video images->surfaces (https://www.microsoft.com/en-us/mixed-reality/capture-studios)
 - Geometry deformation
 - Decomposed into multiple rigid body parts
 - A single mesh, FFD
 - More elaborate deformation->skinning, Linear Blending, Dual-quaternions, etc

- Virtual human representation
 - Surface details (from artists)
 - Layered approach
 - Muscle layer + skin layer, coupled, two systems of FFD

- Animation Clips
 - Skinning

- Animation Clips
 - Skinning
 - Mesh vertex
 - A weighted combination of joints

- Animation Clips
 - Skinning
 - Mesh vertex
 - · One-joint skeleton

- Animation Clips
 - Skinning
 - Mesh vertex
 - One-joint skeleton

$$\mathbf{v}_{j} = \mathbf{v}_{M}^{B} \mathbf{B}_{M \to j}$$

$$\mathbf{v}_{M}^{C} = \mathbf{v}_{j} \mathbf{C}_{j \to M}$$

$$= \mathbf{v}_{M}^{B} (\mathbf{B}_{j \to M})^{-1} \mathbf{C}_{j \to M}$$

$$= \mathbf{v}_{M}^{B} \mathbf{K}_{j}.$$

1. Transform into joint space

2. Move joint into current pose

v_M v_M v_M

x_M

3. Transform back into model space

 $\mathbf{K}_{j} = (\mathbf{B}_{j \to M})^{-1} \mathbf{C}_{j \to M}$ is known as a *skinning matrix*.

- Animation Clips
 - Skinning
 - Mesh vertex
 - One-joint extends to multiple joints: a weighted combination
 - Matrix pallete

$$\mathbf{v}_{\mathrm{M}}^{\mathrm{C}} = \sum_{i=0}^{N-1} w_{ij} \mathbf{v}_{\mathrm{M}}^{\mathrm{B}} \mathbf{K}_{i}$$

- Virtual human representation
 - Geometric Data Acquisition
 - Scanner, point clouds->patches->surfaces
 - Video images->surfaces (https://www.microsoft.com/en-us/mixed-reality/capture-studios)
 - Geometry deformation
 - Decomposed into multiple rigid body parts
 - A single mesh, FFD
 - More elaborate deformation->skinning, Linear Blending, Dual-quaternions, etc

- Reaching and Grasping
 - Arm modelling
 - IK does not enforce joint limits
 - Even if enforced, still under-constrained
 - Can optimise so that the motion is smooth
 - How?
 - Compute intermediate postures or positions
 - Minimise velocity/acc change
 - Subject to valid joint ranges: a < joint < b
 - Quadratic Programming & Lagrangian Multiplier

minimize
$$\frac{1}{2}\mathbf{x}^{\mathrm{T}}Q\mathbf{x} + \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

subject to $A\mathbf{x} \leq \mathbf{b}$,

Synthesis of Complex Dynamic Character Motion from Simple Animations, SIGGRAPH 2002. An Energy-Driven Motion Planning Method for Two Distant Postures, IEEE TVCG 2015.

- Reaching and Grasping
 - Arm modelling
 - IK does not enforce joint limits
 - Even if enforced, still under-constrained
 - Can optimise so that the motion is smooth
 - Other factors: comfort, habit and styles, etc.

- Reaching and Grasping
 - Shoulder & Hand

- Reaching and Grasping
 - Coordinated motion
 - More Dofs involved, more difficult
 - Reaching around obstacles
 - Potential field

- Reaching and Grasping
 - Coordinated motion
 - More Dofs involved, more difficult
 - Reaching around obstacles
 - Potential field
 - Global path planning (Probabilistic roadmaps, PRMs, Rapidly-exploring random trees, RRTs)

- Reaching and Grasping
 - Coordinated motion
 - More Dofs involved, more difficult
 - Reaching around obstacles
 - Potential field
 - Global path planning (Probabilistic roadmaps, PRMs, Rapidly-exploring random trees, RRTs)
 - Strength
 - Once reached, need to be able generate enough force for manipulation
 - A good criterion for motion naturalness
 - Given a posture, needs to be able to evaluate the maximal torques/forces output

- Walking
 - Complex, difficult to model, extensive trial-and-error
 - Cyclic/acyclic motions, multiple purposes (e.g. transport figure and keep balance)
 - Dynamically stable but not statically stable
 - Style variations

- Walking
 - The mechanics
 - Walk cycle

- Walking
 - The mechanics
 - Run cycle

- Walking
 - The mechanics
 - Pelvic Transport

- Walking
 - The mechanics
 - Pelvic Rotation

- Walking
 - The mechanics
 - Pelvic list to reduce lift

- Walking
 - The mechanics
 - Knee flexion

- Walking
 - The mechanics
 - Ankle and Toe joints

- Walking
 - The kinematics of the walk
 - Key-frame joint angles (foot sliding)
 - Inverse Kinematics (unnatural motions)
 - Take a lot of effort
 - Try it in Maya

- Walking
 - The dynamics of the walk (Yin et al. Siggraph 2007)

DYNAMICAL SYSTEM fastrun crouchwalk scissor run skip (F Pendulum C Acrobot $40 \rightarrow 41 \rightarrow 42 \rightarrow 43$ 24->25 20-> 29

(" Luen Ϋ́F ŤR † W ☐ Biped-5 (5 tex) ☐ Biped-7 (7 tex) 27€ 26 31←30 35← 34 39←30 47-46-45-44 Cart-and-Fole ← Biped-5a r Car r Truck forwback cossack stop stand (* Hopper 56->57 60 $40 \rightarrow 49$ 52->53 U 51← 50 59€ 50 63 SMULATION Start/Stop backflip 63 Reset 64 > 65 > 66 > 67 > 60 Quit highstep halfbent slowwalk backlean walk bigstep 20->21 (0)→(1) 16-> 17 †c I † A Ť a † D ↓ ŤН (11←(10 (15€—(14) 19← 19 234-22 Console Fire Bott Heap Testario di Sensonia Rossonia 2014 - CONTROLONO DE COMP

- Walking
 - The dynamics of the walk (Liu et al. Siggraph 2005)

- Walking
 - The dynamics of the walk (Liu et al. Siggraph 2005)

• Clothing (Berthouzoz et al. Siggraph 2013)

• Clothing (Pons-Moll et al. Siggraph 2017)

- Hair
 - Beam and simulation

Data-driven (Chai et al. Siggraph 2017)

