un des

Introduction à la technologie des thermostats

2.2 LA CONSTRUCTION

2.2.1 MATIERE DES CONTACTS

Avant la mise au point des systèmes de contacts électriques en argent, les premiers thermostats électriques utilisaient du mercure. Le mercure liquide, enfermé dans ampoule en verre comportant deux électrodes, établissait le contact entre celles-ci par basculement, ou plus simplement, une aiguille métallique venait, par son déplacement, établir la contact avec la surface du mercure.

La matière la plus courante actuellement est l'argent pur, ou faiblement allié à d'autres métaux ou oxydes (Cadmium, Nickel, Etain,)

Cette matière a été choisie parce que c'est le meilleur conducteur de la chaleur et de l'électricité connu. Un contact s'use par micro vaporisation de l'argent à chaque cycle d'ouverture et fermeture. Cette vaporisation est proportionnelle à la puissance et à la durée de l'arc électrique qui se forme.

La conductibilité thermique de l'argent lui permet d'évacuer très rapidement le pic de température se produisant lors de l'ouverture des contacts.

Sa très bonne conductibilité électrique permet de réaliser des appareils avec une très faible résistance de contact, en général inférieure à 3 milli-ohms.

Cependant il n'est pas inoxydable, et se couvre progressivement d'une mince couche d'oxyde d'argent, qui n'est pas conductrice de l'électricité.

Cette couche est facilement vaporisée lors d'utilisations dans les voltages domestiques courants (240 V, 300V). Cependant, pour des utilisations en très basse tension (moins de 12 volts) et des courants très faibles (quelques milli-ampères), l'arc électrique créé lors de l'ouverture du contact n'est plus suffisant pour vaporiser le contact.

Pour des circuits de faible puissance, les contacts sont protégés contre cette oxydation par une fine couche d'or.

2.2.2 L'ECARTEMENT

Après l'ouverture, les contacts sont écartés l'un de l'autre. Cet écartement, selon les systèmes, peut varier de 1/10ème de mm à 3mm ou plus. Une valeur courante dans les thermostats est de 0.3 à 0.4 mm qui correspond à ce que les normes appellent la micro-disconnetion.

Un écartement faible, qui est la conséquence d'appareils avec faible différentielle (voir la définition plus loin) ne permettra pas l'utilisation dans des voltages importants, car, bien qu'il n'y ait pas contact mécanique, un arc électrique peut spontanément se créer : il suffit de conditions atmosphériques défavorables telle qu'une forte humidité relative.

Une méthode permettant d'augmenter la distance d'écartement des contacts sans obliger les thermostats à fournir des déplacements importants est la double coupure, utilisée sur certains thermostats à réarmement manuel, ce qui limite aussi le risque de collage des contacts

2.3 CONDITIONS D'UTILISATION ET DUREE DE VIE

Dans les spécifications d'un thermostat électromécanique, la durée de vie probable est décrite en termes de durée de vie mécanique et durée de vie électrique.

Durée de vie électrique:

Ceci est spécifié comme un nombre minimum de cycles (action d'ouverture et de fermeture) que le contact fera en ouvrant et fermant le circuit sous la charge spécifiée sans se coller ou se souder, et en restant dans les caractéristiques électriques de l'appareil.

Durée de vie mécanique:

Il s'agit du nombre d'opérations qu'un thermostat peut être appelé à accomplir en conservant son intégrité mécanique. La durée de vie mécanique est normalement testée sans charge ni tension appliquée aux contacts, et son étude ne fait pas partie du présent document.

Les pouvoirs de coupure sont fonction de nombreux paramètres tels que la configuration des contacts, leur composition, la vitesse de rupture, la fréquence de rupture, les conditions environnementales température, humidité, altitude etc.... Les normes IEC61058-1, (Interrupteurs pour appareils) UL 1054, CSA22.55 ont tenté de normaliser les pouvoirs de coupure généraux. Les normes IEC 60730-x ont défini des méthodes d'essai et des classes différentes de durée de vie (nombre de cycles) pour les appareils de régulation et de sécurité.

Ces classes sont: 300 000, 200 000, 100 000, 30 000, 20 000, 10 000, 6 000, 3 000 (1), 1000(1), 300 (2), 30(2)(4), 1(3).

- 1) N'est pas applicable aux thermostats de régulation et autres appareils cyclant rapidement
- 2) Applicable uniquement aux appareils à réarmement manuel
- 3) Applicable uniquement aux appareils dont il est nécessaire de remplacer une pièce après chaque déclenchement
- 4) Peut être uniquement réarmé par une intervention du constructeur

Ces durées de vie nominales sont à considérer comme les valeurs de base maximales pour la plupart des applications. Ci-dessous sont décrites les limitations qui s'appliquent pour des applications différentes.

Le pouvoir de coupure des thermostats est donné dans leurs fiches techniques pour une application sur une charge résistive en 250 ou (et) 400V, et un nombre de cycles donné. Lorsque la place est suffisante, ces valeurs sont imprimées sur l'appareil. Dans la plupart des cas seules les valeurs obligatoires sont indiquées, et le nombre de cycles n'est qu'exceptionnellement précisé alors que c'est un paramètre essentiel pour évaluer la durée de vie de l'appareil.

