Κρυπτογραφία 2º Φυλλάδιο Ασκήσεων

Άσκηση 1:

Αρχικά θα αποδειχθεί ότι, εάν κάποιος αριθμός έχει αντίστροφο ως προς modulo, τότε αυτός είναι μοναδικός στον αντίστοιχο δακτύλιο. Συγκεκριμένα:

Έστων $m, a \in \mathbb{N}$. Αν $\exists a^{-1} \in \mathbb{N}$: $aa^{-1} \equiv 1 \mod m$, τότε ο a^{-1} είναι μοναδικός $mod\ m$ $\forall \ b \colon\! ab \equiv 1 \bmod m \Rightarrow b \equiv b(aa^{-1}) \Rightarrow b \equiv (ba)a^{-1} \Rightarrow b \equiv a^{-1}$

Από το μικρό θεώρημα Fermat προκύπτει ότι, για κάθε πρώτο p, ακέραιο α με $p \nmid a$ ισχύει $a^{p-1} \equiv 1 \mod p \Leftrightarrow a^{p-2}a \equiv 1 \mod p$, δηλαδή κάθε ακέραιος α αμοιβαία πρώτος με τον p έχει αντίστροφο ως προς mod p. Επιπλέον, αν a < p, η ισοτιμία $a^2 \equiv 1 \mod p$ επαληθεύεται μόνο για a = 1 και a = p - 1, αφού $a^2 \equiv 1 \mod p \Rightarrow (a^2 - 1)|p \Rightarrow (a - 1)|p \lor (a + 1)|p$.

Επομένως, συνδυάζοντας τα δύο παραπάνω συμπεραίνουμε ότι για κάθε πρώτο p, οι αριθμοί 2 έως και p - 2 μπορούν να διαταγθούν με μοναδικό τρόπο σε ζεύγη αβ τέτοια, ώστε $\alpha\beta \equiv 1 \mod p$. Άρα $1 \cdot 2 \cdot \dots \cdot (p-2)(p-1) \equiv 1 \cdot (p-1) \equiv -1 \mod p$. Ειδικά για τους 2 και 3 δείχνουμε ότι $(2-1)! = 1 \equiv -1 \mod 2$ και $(3-1)! = 2 \equiv -1 \mod 3$.

<u>Άσκηση 3:</u>

```
Αναζητούμε λύση στην ισοτιμία 25x \equiv 1 \mod 77
\begin{cases} 25x \equiv 1 \mod 7 \\ 25x \equiv 1 \mod 11 \end{cases} \Leftrightarrow \begin{cases} 4x \equiv 1 \mod 7 \\ 3x \equiv 1 \mod 11 \end{cases} \Leftrightarrow \begin{cases} x \equiv 2 \mod 7 \\ x \equiv 4 \mod 11 \end{cases}
```

Οι απλοποιήσεις των ισοτιμιών γίνονται μέσω απλούστατων παρατηρήσεων. Στο παραπάνω σύστημα μπορεί να εφαρμοστεί το CRT αφού (7,11) = 1. Άρα έχει μοναδική λύση στον δακτύλιο \mathbb{Z}_{77} .

```
Θεωρούμε M_1 = \frac{M}{m_1} = \frac{77}{7} = 11 και αντιστοίχως M_2 = 7
```

$$\exists N_1 \in \mathbb{Z}_{m_1} \colon N_1 M_1 \equiv 1 \bmod m_1 \Rightarrow 11 N_1 \equiv 1 \bmod 7 \Rightarrow N_1 = 2,$$

αντιστοίχως
$$7N_2 \equiv 1 \bmod 11 \Rightarrow N_2 = 8$$

αντιστοίχως $7N_2\equiv 1\ mod\ 11\Rightarrow N_2=8$ Μία λύση είναι η $y=\sum_{i=1}^2N_iM_ia_i=2\cdot 11\cdot 2+8\cdot 7\cdot 4=44+224=268$, άρα η αντίστοιχη στον δακτύλιο είναι 268 mod 77 = 37

$$25 \cdot 37 = 925 \equiv 1 \mod 77$$

Άσκηση 4:

- α.) Έστω G κυκλική ομάδα με γεννήτορα G, και έστω G υποομάδα της G. Aν G = G τότε G
- $\langle e \rangle$ είναι κυκλική. Αν $H \neq \{e\}$ τότε $a^n \in H$ για κάποιον $n \in \mathbb{N}$. Έστω m ο μικρότερος θετικός

ακέραιος για τον οποίο ισχύει $a^m \in H$. Θα αποδειχθεί ότι ο $c=a^m$ είναι γεννήτωρ της H. Πρέπει, συνεπώς, να αποδειχθεί ότι κάθε $b\in H$ είναι δύναμη του c. Αφού $b\in H$ και $H\leq G$, ισχύει $b=a^n$ για κάποιον n. Εφαρμόζοντας ευκλείδεια διαίρεση έχουμε $n=qm+r\Rightarrow a^n=a^{m+r}\Rightarrow a^n=(a^m)^q\cdot a^r\Rightarrow a^r=(a^m)^{-q}\cdot a^n$ Εφ' όσον $a^n\in H$, λόγω ιδιοτήτων ομάδας αληθεύουν $(a^m)^{-q}\in H$ και $a^n\in H$. Άρα $(a^m)^{-q}\cdot a^n\in H$, δηλαδή $a^r\in H$. Όμως, από υπόθεση $m=\min\{i\in \mathbb{Z}^+: a^i\in H\}$ και επίσης r< m, άρα θα πρέπει r=0. Τότε n=qm και $b=a^{qm}=(a^m)^q=c^q$.

Άσκηση 5:

return res

Ο έλεγχος πρώτων αριθμών Fermat για ακέραιο η γίνεται επιλέγοντας τυχαίο $a \in \mathbb{Z}_n$ και εξετάζοντας αν $a^{n-1} \not\equiv 1 \ mod \ n$, οπότε ο η είναι οπωσδήποτε σύνθετος, αλλιώς ίσως είναι πρώτος.

Για την εκτέλεση του ελέγχου πρέπει να γίνονται υπολογισμοί της μορφής $x^y \mod m$ αποδοτικά για μεγάλους αριθμούς. Προς τον σκοπό αυτό θα μπορούσαμε να χρησιμοποιήσουμε την παρακάτω μέθοδο Python που εκτελεί την -γνωστή- απαιτούμενη αυτήν διαδικασία,

```
## (x ^ y) % p
def modexp(x, y, p):
    res = 1

    x %= p
    if(x == 0): return 0

while(y > 0):
        if(y % 2 == 1): res = (res * x) % p

        y /= 2
        x = (x ** 2) % p
```

όμως αυτό δεν χρειάζεται, καθώς υπάρχει η προκατασκευασμένη μέθοδος pow, η οποία έχει την ίδια δυνατότητα: https://docs.python.org/3/library/functions.html#pow ("if the third argument mod is present, return base to the power exp, modulo mod, computed more efficiently than pow(base, exp) % m"). Άρα υλοποιούμε τον έλεγχο ως εξής:

```
def singleTest(a, n):
    return pow(a, n - 1, n) == 1

def fermat(n):
    print(f"{n} {('might be' if singleTest(2, n) else 'is not')} prime")
```

Και στην συνέχεια λαμβάνουμε τα αποτελέσματα με διαδοχικές χρήσεις της μεθόδου:

```
fermat(67280421310721)
fermat(170141183460469231731687303715884105721)
fermat(pow(2, 2281) - 1)
fermat(pow(2, 9941) - 1)
fermat(pow(2, 19939) - 1)

67280421310721 might be prime
170141183460469231731687303715884105721 is not prime
2<sup>2281</sup> - 1 might be prime
2<sup>9941</sup> - 1 might be prime
2<sup>19939</sup> - 1 is not prime
```

Το πρόγραμμα ως έχει θα εκτύπωνε όλους τους αριθμούς ολογράφως. Πρέπει να επισημανθεί ότι για τον έλεγχο έχει χρησιμοποιηθεί ως βάση μόνο το 2 χάριν ταχύτητας. Για πιό αξιόπιστα αποτελέσματα, στις περιπτώσεις όπου το υπόλοιπο προκύπτει 1, μπορεί να επαναληφθεί ο έλεγχος για άλλες τιμές του α, λαμβάνοντας N τυχαία διακριτά δείγματα του \mathbb{Z}_n ως εξής: import random

```
random.sample(range(1, n - 1), N)
```

<u>Άσκηση 7:</u>

Τα ζητούμενα ψηφία προκύπτουν από την πράξη 1707 $\uparrow\uparrow$ 1783 $mod\ 10^{17}$. Ο υπολογισμός αυτός μπορεί να γίνει με χρήση του θεωρήματος υπολοίπων Euler: αν (a,m)=1 τότε $a^b\ mod\ m=a^{b\ mod\ }\varphi^{(m)}\ mod\ m$. Υλοποιώντας αναδρομικά αυτόν τον τύπο σε Python λαμβάνουμε το αποτέλεσμα 70080500540924243.

```
import sys
from sympy.ntheory.factor_ import totient as phi
sys.setrecursionlimit(4000)

## a^^b mod m
def hyperexp(a, b, m):
    if(b == 1): return a % m
    return pow(a, hyperexp(a, b - 1, phi(m)), m)

print(hyperexp(1707, 1782, 10**17))
```

Ο υπολογισμός των τιμών της συνάρτησης φ του Euler γίνεται με χρήση έτοιμης βιβλιοθήκης, ωστόσο μπορεί να υπολογιστεί ως εξής: $\varphi(n)=n\prod_{i=1}^k\left(1-\frac{1}{p_i}\right)$, όπου p_1,\ldots,p_k οι διαφορετικοί πρώτοι παράγοντες του n.

Άσκηση 6:

```
Χρησιμοποιώντας το ίδιο θεώρημα με την άσκηση 7 προκύπτει:
548^{1998000^{100^{10}}} \ mod \ 10^3 = 548^{1998000^{100^{10}}} \ mod \ \varphi(10^3) \ mod \ 10^3 =
                  = 548^{1998000^{100^{10}} \mod \varphi(\varphi(10^3))} \mod \varphi(10^3) \mod 10^3 =
                  = 548^{1998000^{100^{10}} \mod \varphi(40)} \mod 400 \mod 10^3
                  = 548^{1998000^{100^{10}} \mod 160} \mod 400 \mod 10^3
\varphi(10^3) = 10^3 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 400 \text{ km} \ \varphi(400) = 400 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 160
100^{10} = 100^4 \cdot 100^6 = (2 \cdot 5^2)^4 \cdot 100^6 = 2^4 \cdot 5^8 \cdot 100^6
Άρα 160|100<sup>10</sup>, επομένως
548^{1998000^{100^{10}} \bmod 160} \ mod \ 10^3 = 548^{1998000^0} \ mod \ 10^3 = 548^{1 \ mod \ 400} \ mod \ 10^3 = 548^{1 \ mod \ 40} \ mod \ 10^3
= 548 \mod 10^3 = 548
Άσκηση 10:
Εξετάζουμε τις τιμές των μεταβλητών κατά τις διαδοχικές εκτελέσεις του βρόχου παραγωγής
ψευδοτυχαίων αριθμών (PRGA):
i = 0; j = 0
while next key needed:
         i = (i + 1) \mod 256; j = (j + P[i]) \mod 256
         swap(P[i], P[j])
         K_o = P[(P[i] + P[j]) \mod 256]
         return Ko
Πρώτη εκτέλεση
i = 0, j = 0
i = 1, j = P[1]
swap(P[1], P[P[1]])
```

Δεύτερη

 $K_0 = \dots$

 $i = 2, j = (1 + P[2]) \mod 256 = 1$

swap(P[1], P[2])

 $K_0 = P[(P[1] + P[2]) \mod 256] = P[P[2] \mod 256]$ (αφού P[1] = 0) = $P[P[2]] \neq 0$ γιατί στο P[2] έχει ανατεθεί η προηγούμενη τιμή P[P[1]] όπου $P[1] \neq 2$ άρα $P[P[2]] \neq P[2]$.