

University of Applied Sciences

FACHBEREICH
INGENIEUR- UND
NATURWISSENSCHAFTEN

Protokoll Strömungslehre

Versuch Rohrwand

Gruppe II (BCUT3)

Teilnehmer:

Carolin Lohmann Willy Messerschmidt Marcus Willbrandt Roman-Luca Zank

Protokollführer: Carolin Lohmann & Roman-Luca Zank

Datum der Versuchsdurchführung: 16.12.2019

Abgabedatum: 13.01.2020

Merseburg den 18. Juni 2020

Inhaltsverzeichnis

1	Einleitung und Versuchsziel	2
2	Versuchsdurchführung	2
3	Ergebnisse 3.1 Versuchsteil 1:	2 11
4	Fehlerbetrachtung	14
5	Diskussion der Ergebnisse	16
6	Zusammenfassung und Fazit	17
Lit	teraturverzeichnis	18
Ar	nhang	19

1 Einleitung und Versuchsziel

Im folgenden Versuch wird das Strömungsverhalten variierender Wasservolumenströme durch unterschiedliche Rohrleitungen und Rohrleitungseinbauten untersucht. Dabei ist vor allem die nicht-lineare Abhängigkeit des Druckverlustes in der Rohrleitung und der Geschwindigkeit des Fluides darzustellen. Die sich daraus ergebenden Rohrreibungskoeffizienten λ sind in Abhängigkeit von der Reynoldszahl Re zu bestimmen, ebenso wie der Einfluss von Messfehlern auf die Ergebnisse.

2 Versuchsdurchführung

Die Versuchsanlage besteht aus mehreren, einzeln absperrbaren Rohrleitungen unterschiedlicher Durchmesser und teils mit Einbauten. Für den Versuch werden je drei Rohrleitungen – eine angeraute Leitung und zwei hydraulisch glatte Leitungen unterschiedlicher Nenndurchmesser – ohne Einbauten sowie je eine Rohrleitung mit eingebautem Schrägsitzventil und einem Muffenschieber untersucht.

Für die rauen und hydraulisch glatten Rohrleitungen werden dazu für je fünf unterschiedliche Wasservolumenströme die Druckverluste in jeder einzelnen Rohrleitung über die Manometer am Ein- und Auslauf ermittelt. Vorher ist das System zu entlüften. Mittels der Druckverluste und der Strömungsgeschwindigkeiten berechnet sich schließlich für jede Rohrleitung eine entsprechende Rohrreibungszahl λ .

Die Rohrleitungen mit Einbauten werden auf die Druckverlustbeiwerte ζ untersucht, die durch die jeweiligen eingebauten Armaturen auftreten. Dazu werden die Druckverluste bei einem konstanten Wasservolumenstrom bestimmt, während die Öffnungsweite des Ventils bzw. des Muffenschiebers verändert wird. Die sich daraus ergebende Ventilkennlinie ist als ζ über den Öffnungswinkel und als kv-Wert über den Ventilhub aufzutragen.

Für die Rohrreibungszahl λ ist zusätzlich eine Fehlerrechnung durchzuführen, da anzunehmen ist, dass die Messwerte des Versuchs mit Fehlern behaftet sind.

Neben der Versuchsanlage mit den Messinstrumenten für Druck und Volumenstrom wurde weiterhin eine Stoppuhr genutzt.

3 Ergebnisse

3.1 Versuchsteil 1:

Die Auswertung des ersten Teilversuchs beläuft sich auf die Berechnung der jeweiligen Rohrreibungszahlen λ für die verschiedenen Rohre unterschiedlicher hydraulischer Glattheit. Dazu müssen zuerst die Volumenströme mittels der gemessenen Wasservolumina und Durchlaufzeiten und damit die mittleren Strömungsgeschwindigkeiten berechnet werden. Im Folgenden sind dazu beispielhaft

Berechnungen aufgezeigt.

Die jeweiligen Druckverluste für jede Messung ergeben sich aus der Differenz der angezeigten Manometerdrücke am Anfang und am Ende der zu untersuchenden Rohrleitungen.

Die berechneten Volumenströme, Geschwindigkeiten und Druckverluste sind die Grundlage für weiterführende Berechnungen hinsichtlich Reynoldszahl Re und Rohrreibungszahl λ , sowie deren grafische Auswertung im Moody-Diagramm (siehe Anhang).

Mit der kinetischen Viskosität können folglich die jeweiligen Reynoldszahlen berechnet werden. Beispielhaft wird die Rechnung für das hydraulisch raue Rohr gezeigt.

Die einzelnen Rohrleitungswiderstände für die zu untersuchenden Rohre berechnen sich nach der folgenden Formel und sind vollständig in Tab. 4 für alle drei Rohrleitungen aufgeführt.

Tab. 1: Messwerte zu Volumen, Zeit und Druck

1ab. 1. Wesswerte zu volumen, Zeit und Druck								
Messpunkt	Volumen [m ³]	Zeit [s]	Druck 1 [bar]	Druck 2 [bar]				
raues Rohr								
1	0,01	37,6	0,07	0,01				
2	0,01	25,2	0,18	0,04				
3	0,01	18,4	0,35	0,10				
4	0,01	16,8	0,45	0,14				
5	0,01	14,9	0,56	0,17				
glattes Rohr								
1	0,01	17,1	0,28	0,05				
2	0,01	15,0	0,36	0,06				
(3)	(0,01)	(12,3)	(0,44)	(0,10)				
4	0,01	13,5	0,43	0,07				
5	0,01	12,6	0,49	0,09				
glattes, dickes	Rohr							
1	0,01	10,6	0,11	0,04				
2	0,01	9,1	0,15	0,07				
3	0,01	7,9	0,23	0,10				
4	0,01	7,3	0,26	0,12				
5	0,01	6,5	0,33	0,16				

Berechnung des Volumenstroms

$$\dot{V} = \frac{V}{t}$$

$$\dot{V}_{1,rau} = \frac{V_{1,rau}}{t_{1,rau}}$$

$$= \frac{0.01 \,\mathrm{m}^3}{37.6 \,\mathrm{s}}$$

$$= 2.66 \cdot 10^{-4} \,\frac{\mathrm{m}^3}{\mathrm{s}} \approx 958 \,\frac{\mathrm{L}}{\mathrm{h}}$$
(1)

Berechnung der mittleren Geschwindigkeit

$$\overline{\omega} = \frac{\dot{V}}{A}$$

$$= \frac{4 \cdot \dot{V}}{\pi \cdot d^2}$$

$$\overline{\omega}_{1,rau} = \frac{4 \cdot \dot{V}_{1,rau}}{\pi \cdot (d_{1,rau})^2}$$

$$= \frac{4 \cdot 2,66 \cdot 10^{-4} \frac{\text{m}^3}{\text{s}}}{\pi \cdot (13,6 \cdot 10^{-3} \text{ m})^2}$$

$$= 1,83 \frac{\text{m}}{\text{s}}$$
(2)

Berechnung des Druckverlustes

$$\Delta p_v = p_{i,rau,1} - p_{i,rau,2}$$

$$\Delta p_{v_{1,rau}} = p_{1,rau,1} - p_{1,rau,2}$$

$$= 0.07 \,\text{bar} - 0.01 \,\text{bar}$$

$$= 0.06 \,\text{bar} \quad (0.056 \,\text{bar})$$
(3)

Tab. 2: Volumenströme, mittlere Geschwindigkeiten und Druckverluste

Messpunkt	Volumenstrom $\left[\frac{L}{min}\right]$	mittlere Geschwindigkeit $\left[\frac{m}{s}\right]$	Druckverlust [bar]					
raues Rohr								
1	958	1,83	0,06					
2	1430	2,73	0,14					
3	1962	3,75	0,25					
4	2139	4,09	0,32					
5	2413	4,61	0,39					
glattes Rohr								
1	2111	4,04	0,23					
2	2406	4,60	0,30					
(3)	(2922)	(5,59)	(0,34)					
4	2667	5,10	0,36					
5	2866	5,48	0,40					
glattes, dickes	Rohr							
1	3403	2,49	0,07					
2	3978	2,91	0,08					
3	4557	3,33	0,13					
4	4932	3,60	0,14					
5	5513	4,03	0,17					

Die folgende Gleichung für die Dichte des Wasser stammt aus linear interpolierten Daten, welche mittels Excel-AddIn für unterschiedlichen Temperaturen bestimmt wurde (siehe [1]). Genutzt wurde dafür die Funktion =densW(T[K],p[bar]) mit der Annahme, dass der Druck konstant 1 bar beträgt. Analog gilt dasselbe für die dynamische Viskosität mittels der Funktion =viscW(T[K],p[bar]) mit der man in Folge die kinetische Viskosität errechnen kann.

In Bezug auf die Dichtefunktion wurde zwischen der maximal und minimal im Versuch gemessenen Temperatur interpoliert. Die interpolierten Werte sind der Tabelle 14 im Anhang unter Abschnitt 6 zu entnehmen, sowie die Gleichung selbst unter Gleichung 4.

$$\rho(T) = -0.2683 \, \frac{\text{kg}}{\text{m}^3 \cdot \text{K}} \cdot T + 1003.8 \, \frac{\text{kg}}{\text{m}^3} \tag{4}$$

Berechnung der kinetischen Viskosität

$$\nu = \frac{\eta}{\rho(T)}$$

$$\nu_{1,rau} = \frac{8,63 \cdot 10^{-4} \,\text{Pa} \cdot \text{s}}{996,7 \,\frac{\text{kg}}{\text{m}^3}}$$

$$= 8,66 \cdot 10^{-7} \,\frac{\text{m}^2}{\text{s}}$$
(5)

Berechnung der Reynoldszahl

$$Re = \frac{\overline{\omega} \cdot d}{\nu}$$

$$Re_{1,rau} = \frac{\overline{\omega}_{1,rau} \cdot d_{1,rau}}{\nu_{1,rau}}$$

$$= \frac{1,83 \frac{m}{s} \cdot 13,6 \cdot 10^{-3} m}{8,66 \cdot 10^{-7} \frac{m^2}{s}}$$

$$\approx \underline{71687}$$
(6)

Tab. 3: Temperaturen, Dichten, kinetische Viskositäten und Reynoldszahlen

Messpunkt	Temperatur	Dichte	kine. Viskosität $[10^{-7}]$	Reynoldszahl				
raues Rohr								
1	26,5	996,7	8,66	28766				
2	26,8	996,6	8,61	43206				
3	27,3	996,5	8,51	59940				
4	27,5	996,4	8,47	65639				
5	26,3	996,7	8,70	72117				
glattes Rohr								
1	26,3	996,7	8,70	63108				
2	26,1	996,8	8,74	71606				
(3)	(25,4)	(997,0)	(8,88)	(85602)				
4	25,9	996,9	8,78	78998				
5	25,6	996,9	8,84	84344				
glattes, dickes	Rohr							
1	27,3	996,5	8,51	64267				
2	27,0	996,6	8,57	74640				
3	26,9	996,6	8,59	85318				
4	26,6	996,7	8,64	91723				
5	26,3	996,7	8,70	101862				

Berechnung des Rohrleitungswiderstandes

$$\lambda = \frac{2 \cdot \Delta p_v \cdot d}{l \cdot \rho(T) \cdot v^2}$$

$$\lambda_{1,rau} = \frac{2 \cdot \Delta p_{v_{1,rau}} \cdot d}{l_{1,rau} \cdot \rho(T)_{1,rau} \cdot (v_{1,rau})^2}$$

$$= \frac{2 \cdot 5600 \,\text{Pa} \cdot 13.6 \cdot 10^{-3} \,\text{m}}{2.5 \,\text{m} \cdot 996.7 \,\frac{\text{kg}}{\text{m}^3} \cdot \left(1.83 \,\frac{\text{m}}{\text{s}}\right)^2}$$

$$= 0.018$$
(7)

Tab. 4: Druckverluste, Volumenströme und Rohrleitungswiderstände

Messpunkt	Volumenstrom	Druckverlust	Rohrleitungswiderstand				
raues Rohr							
1	958	0,06	0,018				
2	1430	0,14	0,020				
3	1962	0,25	0,019				
4	2139	0,32	0,021				
5	2413	0,41	0,020				
glattes Rohr							
1	2111	0,24	0,026				
2	2406	0,30	0,026				
(3)	(2922)	(0,034)	(0,020)				
4	2667	0,36	0,025				
5	2866	0,41	0,025				
glattes, dickes	Rohr						
1	3403	0,07	0,031				
2	3978	0,08	0,029				
3	4557	0,13	0,033				
4	4932	0,14	0,031				
5	5513	0,17	0,031				

Tab. 5: Mittelwerte der Rohrleitungswiderstände

Rohr	Mittlerer Rohrleitungswiderstand
raues Rohr	0.0196
glattes Rohr	0.0254
glattes, dickes Rohr	0.0309

Abb. 1: Druckverlust in Abhängigkeit zum Volumenstrom

Abb. 2: λ zu Druckverlust

Abb. 3: Druckverlust in Abhängigkeit zum Volumenstrom

Glatte Rohre müssten weniger Rohrleitungswiderastand haben, da sich aber Dichte des Wasser verringert und Volumenstrom sehr hoch ist, steigt somit laut Gleichung der Rohrleitungswiderstand

3.2 Versuchsteil 2:

Tab. 6: Grundlegende Daten Schrägventil und Muffenschieber

${f Ventil}$	Rohrdurchmesser	Volumenstrom	Geschwindigkeit
Schrägventil	$40\mathrm{mm}$	$47 \frac{L}{min}$	$0.62 \frac{m}{s}$
Muffenschieber	$40\mathrm{mm}$	$47 \frac{L}{min}$	$0.62 \frac{m}{s}$

Tab. 7: Messwerte Schrägventil

Temperatur	Umdrehungen	Ventilhubstellung	Druck 1	Druck 2
27,3	0	0° 100%	0,015	0,007
27,5	1	$360 \degree \mid 98 \%$	0,015	0,008
27,9	2	$720^{\circ}\mid 96\%$	0,015	0,009
28,2	3	1080° 91 %	0,015	0,009
28,5	4	1440° 87%	0,015	0,009
28,7	5	1800° 78 %	0,018	0,009
28,7	6	$2160^{\circ}\mid 70\%$	0,0,018	0,009
28,8	7	2520° 61 %	0,020	0,008
28,9	8	$2880\degree \mid 52\%$	0,020	0,007
29,0	9	$3240^{\circ}\mid 43\%$	0,025	0,005
29,1	10	$3600^\circ\mid 35\%$	0,040	0,008
29,4	10,5	$3780\degree \mid 26\%$	0,070	0,008
29,7	11	3960° 17%	0,175	0,008
29,8	11,25	$4050^{\circ}\mid 9\%$	0,460	0,009
29,8	11,5	4140° 0%	1,100	0,008

Tab. 8: Messwerte Muffenschieber

Temperatur	Umdrehungen	Ventilhubstellung	Druck 1	Druck 2
29,8	0	0° 100%	0,015	0,015
29,9	1	360° 96%	0,018	0,016
29,9	2	720° 93 %	0,020	0,017
30,0	3	1080° 91 %	0,025	0,017
30,1	4	1440° 87%	0,045	0,017
30,2	5	1800° 70 %	0,143	0,017
30,3	5,25	1890° 52 %	0,240	0,016
$30,\!5$	5,375	1935° 35 %	0,435	0,017
30,7	5,5	1980° 17 %	0,515	0,017
30,8	5,75	2070° 0 %	1,000	0,017

Berechnung des Druckverlustbeiwert

$$\zeta = \frac{2 \cdot \Delta p}{\rho(T) \cdot v^2}$$

$$\zeta_{0,Schr\ddot{a}g} = \frac{2 \cdot \Delta p_{0,Schr\ddot{a}g}}{\rho(T)_{0,Schr\ddot{a}g} \cdot (v_{0,Schr\ddot{a}g})^2}$$

$$= \frac{2 \cdot 800 \,\mathrm{Pa}}{996.5 \,\frac{\mathrm{kg}}{\mathrm{m}^3} \cdot (0.62 \,\frac{\mathrm{m}}{\mathrm{s}})^2}$$

$$= \underline{4.21}$$
(8)

Berechnung des K_v -Wertes

$$K_{v} = \dot{V} \cdot \sqrt{\frac{1 \text{ bar}}{\Delta p} \cdot \frac{\rho(T)}{1000 \frac{\text{kg}}{\text{m}^{3}}}}$$

$$K_{v_{0,Schr\ddot{a}g}} = \dot{V}_{0,Schr\ddot{a}g} \cdot \sqrt{\frac{1 \text{ bar}}{\Delta p_{0,Schr\ddot{a}g}} \cdot \frac{\rho(T)_{0,Schr\ddot{a}g}}{1000 \frac{\text{kg}}{\text{m}^{3}}}}$$

$$= 47 \frac{\text{L}}{\text{min}} \cdot \sqrt{\frac{1 \text{ bar}}{0,008 \text{ bar}} \cdot \frac{996,5 \frac{\text{kg}}{\text{m}^{3}}}{1000 \frac{\text{kg}}{\text{m}^{3}}}}$$

$$\approx 520 \frac{\text{L}}{\text{min}}$$

$$(9)$$

Tab. 9: Berechnete Werte Schrägventil

Umdrehungen	Dichte	Druckverlust	Druckverlustbeiwert	K_v -Wert
0	996,5	0,008	4,2	520
1	996,4	0,007	3,7	556
2	996,3	0,006	3,2	600
3	996,2	0,006	3,2	600
4	996,1	0,006	3,2	600
5	996,1	0,009	4,5	504
6	996,1	0,0,009	4,7	490
7	996,1	0,012	6,3	424
8	996,0	0,013	6,8	408
9	996,0	0,020	10,5	329
10	996,0	0,032	16,8	260
10,5	995,9	0,062	32,6	187
11	995,8	0,167	87,9	114
11,25	995,8	0,451	237,3	69
11,5	995,8	1,092	574,6	45

Tab. 10: Berechnete Werte Muffenschieber

Umdrehungen	Dichte	Druckverlust	Druckverlustbeiwert	K_v -Wert
0	995,8	0,000	0	-
1	995,7	0,0015	0,8	1207
2	995,7	0,0030	1,6	854
3	995,7	0,0080	4,2	523
4	995,7	0,028	14,6	280
5	995,6	0,1255	65,2	132
$5,\!25$	964,6	0,0,2240	116,4	99
5,375	995,5	0,4180	217,3	72
$5,\!5$	995,5	0,4980	258,9	66
5,75	995,5	0,9830	511,0	47

Abb. 4: K_V in Abhängigkeit von der Ventilhubstellung

Gleichungen für die Trendkurven:

- Schrägventil mittels linearer Regression: $f(x) = 5,6824 \cdot x + 53,456$
- Muffenschieber mittels Wachstumsgleichung: $g(x) = 0,000829961 \cdot (1,161889742)^{(x-1,358635786)}$

4 Fehlerbetrachtung

Beispielfehlerrechnung für den ersten Messwert des rauen Rohres:

Tab. 11: Abweichungen und Messwerte für die Fehlerrechnung Messgröße Messwert Abweichung (1, raues Rohr) $\pm 2,5\% + MW \approx 6,65 \cdot 10^{-6} \, \frac{\text{m}^3}{\text{s}}$ $958 \frac{L}{h}$ Volumenstrom 26,5°C $\pm 0.5\,\mathrm{K}$ Temperatur Druckmessungen $0.06 \, \text{bar}$ $2 \cdot \pm 2 \,\mathrm{mmWS} \approx 4079 \,\mathrm{Pa}$ Durchmesser ± 0 $13,6\,\mathrm{mm}$ $2.5\,\mathrm{m}$ Länge ± 0

$$\Delta p_v = \frac{1}{2} \cdot \frac{l}{d} \cdot \rho(T) \cdot v^2$$

$$\lambda = \frac{2 \cdot \Delta p_v \cdot d}{l \cdot \rho(T) \cdot v^2}$$

$$= \frac{2 \cdot \Delta p_v \cdot d}{l \cdot \rho(T) \cdot \left(\frac{\dot{V}}{A}\right)^2}$$
(10)

Im Weiteren ist die eigentliche Fehlerrechnung für den ersten Messwert, der Messreihe des rauen Rohres, von λ über das totale Differential der Gleichung 10 aufgeführt. Wichtig ist dabei zu erwähnen, dass alle Variablen in SI-Einheiten einzusetzen sind bis auf die Temperatur, welche in [°C] eingesetzt wird.

Bildung der Differentiale:

$$\frac{\partial \lambda}{\partial \Delta p_v} = \frac{2 \cdot d \cdot A^2}{l \cdot \rho(T) \cdot \dot{V}^2} = \frac{d^5 \cdot \pi^2}{8 \cdot l \cdot \rho(T) \cdot \dot{V}^2}$$

$$= \frac{1250 \cdot d^5 \cdot \pi^2 \cdot [\mathbf{K} \cdot \mathbf{m}^3]}{l \cdot (-2683 \cdot T + 10038000 \cdot [\mathbf{K}]) \cdot \dot{V}^2 \cdot [\mathbf{kg}]} \tag{11}$$

$$\frac{\partial \lambda}{\partial \dot{V}} = -\frac{4 \cdot \Delta p_v \cdot d \cdot A^2}{l \cdot \rho(T) \cdot \dot{V}^3} = -\frac{\Delta p_v \cdot d^5 \cdot \pi^2}{4 \cdot l \cdot \rho(T) \cdot \dot{V}^3}$$

$$= -\frac{2500 \cdot \Delta p_v \cdot d^5 \cdot \pi^2 \cdot [\text{K} \cdot \text{m}^3]}{l \cdot (-2683 \cdot T + 10038000 \cdot [\text{K}]) \cdot \dot{V}^3 \cdot [\text{kg}]}$$

$$\frac{\partial \lambda}{\partial T} = \frac{3353750 \cdot \Delta p_v \cdot d^5 \cdot \pi^2 \cdot [\text{K} \cdot \text{m}^3]}{l \cdot (-2683 \cdot T + 10038000 \cdot [\text{K}]) \cdot \dot{V}^2 \cdot [\text{kg}]}$$
(12)

Tab. 12: Ergebnisse der einzelnen Differentiale für den Messwert 1 des rauen Rohres

Differenzial	$rac{\partial \lambda}{\partial \Delta p_v}$	$rac{\partial \lambda}{\partial \dot{V}}$	$rac{\partial \lambda}{\partial T}$
	$3,25 \cdot 10^{-6} \frac{\text{m} \cdot \text{s}^2}{\text{kg}}$	$-146,69 \frac{\rm s}{{ m m}^3}$	$5,25 \cdot 10^{-6} \frac{1}{K}$

Berechnung des absoluten Fehlers:

$$\Delta\lambda = \left| \frac{\partial\lambda}{\partial\Delta p_v} \right| \cdot \Delta p + \left| \frac{\partial\lambda}{\partial\dot{V}} \right| \cdot \Delta\dot{V} + \left| \frac{\partial\lambda}{\partial T} \right| \cdot \Delta T$$

$$= \left| 3.25 \cdot 10^{-6} \frac{\text{m} \cdot \text{s}^2}{\text{kg}} \right| \cdot 4079 \,\text{Pa} + \left| -146.69 \,\frac{\text{s}}{\text{m}^3} \right| 6.65 \cdot 10^{-6} \,\frac{\text{m}^3}{\text{s}}$$

$$+ \left| 5.25 \cdot 10^{-6} \,\frac{1}{\text{K}} \right| \cdot 0.5 \,\text{K}$$

$$= 0.0142 \tag{13}$$

Berechnung des relativen Fehlers:

$$\frac{\Delta \lambda}{\lambda} = \frac{0,0142}{0,0182}$$

$$\approx \underline{78\%} \tag{14}$$

Tab. 13: Absolute und relative Fehler von λ

Messpunkt	Rohrleitungswiderstand	Absoluter Fehler [-]	Relativer Fehler $[\%]$
raues Rohr			
1	0,018	0,0142	78
2	0,020	0,0070	34
3	0,019	0,0041	21
4	0,021	0,0037	18
5	0,020	0,0031	16
glattes Rohr			
1	0,026	0,0035	22
2	0,026	0,0029	19
(3)	(0.020)	(0,0020)	(17)
4	0,025	0,0025	17
5	0,025	0,0022	15
glattes, dickes Rohr			
1	0,031	0,211	68
2	0,029	0,0156	54
3	0,033	0,0126	38
4	0,031	0,0108	35
5	0,031	0,0089	29

5 Diskussion der Ergebnisse

Abb. 5: Kennline von Ventilen [2, S.35, Bild 3]

6 Zusammenfassung und Fazit

Abb. 6: Kennline von Ventilen [2, S.35, Bild 3]

Literatur

- [1] Spang, Bernhard: Water 97_v13.xla: Excel Add-In for Properties of Water and Steam. Version: 2002. http://alexmichinel.com/index.php?p=1_9, Abruf: 09.01.2020
- [2] IGNATOWITZ, Dr.-Ing. E.: *Chemietechnik*. 11. Aufl., 1. Dr. Haan-Gruiten: Verl. Europa-Lehrmittel, Nourney, Vollmer, 2013. ISBN 9783808570579

Anhang

Tab. 14: Dichte des Wassers zu unterschiedlichen Temperaturen mittels $\left[1\right]$

Temperatur	Dichte mittels =densW(T,p)
25,4 °C	$996,98 \frac{\text{kg}}{\text{m}^3}$
$25,5^{\circ}\mathrm{C}$	$996,96 \frac{\text{kg}}{\text{m}^3}$
$25,6^{\circ}\mathrm{C}$	$996,93 \frac{\text{kg}}{\text{m}^3}$
$25,7^{\circ}\mathrm{C}$	$996,91 \frac{\text{kg}}{\text{m}^3}$
$25,8^{\circ}\mathrm{C}$	$996,88 \frac{\text{kg}}{\text{m}^3}$
$25,9^{\circ}\mathrm{C}$	$996,85 \frac{\text{kg}}{\text{m}^3}$
$26,0^{\circ}\mathrm{C}$	$996,83 \frac{\text{kg}}{\text{m}^3}$
$26,1^{\circ}\mathrm{C}$	$996,80 \frac{\text{kg}}{\text{m}^3}$
$26,2^{\circ}\mathrm{C}$	$996,77 \frac{\text{kg}}{\text{m}^3}$
$26,3^{\circ}\mathrm{C}$	$996,75 \frac{\text{kg}}{\text{m}^3}$
$26,4^{\circ}\mathrm{C}$	$996,72 \frac{\text{kg}}{\text{m}^3}$
$26,5^{\circ}\mathrm{C}$	$996,69 \frac{\text{kg}}{\text{m}^3}$
$26,6^{\circ}\mathrm{C}$	$996,67 \frac{\text{kg}}{\text{m}^3}$
$26,7^{\circ}\mathrm{C}$	$996,64 \frac{\text{kg}}{\text{m}^3}$
$26.8^{\circ}\mathrm{C}$	$996,61 \frac{\text{kg}}{\text{m}^3}$
$26,9^{\circ}\mathrm{C}$	$996,58 \frac{\text{kg}}{\text{m}^3}$
$27.0^{\circ}\mathrm{C}$	$996,56 \frac{\text{kg}}{\text{m}^3}$
$27,1^{\circ}\mathrm{C}$	$996,53 \frac{\text{kg}}{\text{m}^3}$
$27,2^{\circ}\mathrm{C}$	$996,50 \frac{\text{kg}}{\text{m}^3}$
$27,3^{\circ}\mathrm{C}$	$996,48 \frac{\text{kg}}{\text{m}^3}$
$27,4^{\circ}\mathrm{C}$	$996,45 \frac{\mathrm{kg}}{\mathrm{m}^3}$
27,5 °C	$996,42 \frac{\text{kg}}{\text{m}^3}$