ISCTE-IUL Licenciatura em Ciência de Dados

Trabalho Individual II

Exercício realizado no âmbito da Unidade Curricular de Optimização Heurística do 2º ano da Licenciatura em Ciência de Dados

André Plancha, 105289

Andre_Plancha@iscte-iul.pt

27 maio 2023 Versão 1.0.0

Indice																												
a)																												. 2
b)																												. 2
c)																												. 2
d)																												. 3
e)																												• 4
f)																												. 4
g)																												
h)																												. 5
۲,																												4

a)

Uma solução S diz-se admissível se satisfaz todas as condições do problema. Para este problema, uma solução admissível é uma solução que: admite a cada cientista C_i um projeto P_j , cada projeto tem apenas um cientista, e todos os projetos têm um cientista, $i,j\in\{1...10\}$. Ou seja, sendo A o conjunto de soluções admissíveis, U o conjunto de soluções, e $C_\alpha\mapsto P_\beta$ o alocamento do cientista α ao projeto β :

$$\forall S\in U:S\in A \Leftarrow S=\left\{C_1\mapsto P_a,C_2\mapsto P_b,...,C_{10}\mapsto P_j\right\}$$
 , a .. $j,\alpha,\beta\in\{1$.. $10\}\land a\neq b\neq...\neq j$, $A\subset U.$

Como há apenas 10 cientistas e apenas 10 projetos, todos os cientistas vão ter projetos e todos os projetos vão ter cientistas.

b)

Uma possível heurística construtiva seria admitir como líder do projeto P_i o cientista C_i , $i \in \{1 ... 10\}$. Ou seja,

$$S = \{C_1 \mapsto P_1, C_2 \mapsto P_2, ..., C_{10} \mapsto P_{10}\}$$

Esta heurística, embora simples e produtora de uma solução admissível, não é interessante para **Lusa_med**, sendo que é equivalente a uma heurística que escolhe os líderes de forma aleatória (sem reposição). Desta forma, uma heurística construtiva alternativa seria alocar para o cientista C_i o projeto P_j que tenha a melhor aptidão, entre as ainda não alocadas, $j \in \{1 \dots 10\}$. Ou seja, sendo $a(C_i, P_j)$ a aptidão do cientista C_i ao projeto P_j , e \boldsymbol{P} os projetos:

$$\begin{split} S &= \Big\{ \\ C_1 &\mapsto P_{\text{argmax}\{a(C_1,p):p \in \textbf{\textit{P}}\}}, \\ C_2 &\mapsto P_{\text{argmax}\{a(C_2,p):p \in \textbf{\textit{P}} \setminus \{p \leftrightarrow C_1\}\}}, \\ C_3 &\mapsto P_{\text{argmax}\{a(C_3,p):p \in \textbf{\textit{P}} \setminus \{p \leftrightarrow C_1,p \leftrightarrow C_2\}\}}, \\ & \cdots, \\ C_{10} &\mapsto P_{\text{argmax}\{a(C_{10},p):p \in \textbf{\textit{P}} \setminus \{p \leftrightarrow C_1,p \leftrightarrow C_2,\dots,p \leftrightarrow C_9\}\}} \Big\} \\ \Big\} \end{split}$$

c)

Para construir a solução, o Algoritmo 1 pode ser usado.

```
Recebe: Cientistas {m C}, Projetos {m P}, função aptidão a(C,P) Devolve: Solução {m S}

1: {m para todos}\ C_i em {m C}\ {m fazer}

2: {m j} \leftarrow {m argmax}\{a(C_i,p):p\in {m P}\}

3: {m adicionar}\ (C_i\mapsto P_j) a {m S}

4: {m remover}\ P_j de {m P}
```

Algoritmo 1: Heurística construtiva

A solução resultante do algoritmo neste problema é a seguinte:

$$S_{0} = \{$$

$$C_{1} \mapsto P_{9},$$

$$C_{2} \mapsto P_{5},$$

$$C_{3} \mapsto P_{2},$$

$$C_{4} \mapsto P_{8},$$

$$C_{5} \mapsto P_{1},$$

$$C_{6} \mapsto P_{3},$$

$$C_{7} \mapsto P_{7},$$

$$C_{8} \mapsto P_{10},$$

$$C_{9} \mapsto P_{6},$$

$$C_{10} \mapsto P_{4}$$

$$\}$$

, para uma aptidão total de 832.

d)

Uma estrutura de vizinhança para este problema pode ser definida como a troca de projetos entre dois cientistas, para todos os cientistas. Ou seja,

$$\begin{split} V(S) = \left\{S' \in A : S' = \left(S \setminus \left\{C_{\alpha} \mapsto P_{i}, C_{\beta} \mapsto P_{j}\right\}\right) \cup \left\{C_{\alpha} \mapsto P_{j}, C_{\beta} \mapsto P_{i}\right\} \\ & \wedge \left\{C_{\alpha} \mapsto P_{i}, C_{\beta} \mapsto P_{j}\right\} \subset S \\ \right\} \end{split}$$

Isto pode ser implementado com o Algoritmo 2.

```
Recebe: Solução S

Devolve: Vizinhança V

1: para todos C_{\alpha} \mapsto P_{i} em S fazer:

2: para todos C_{\beta} \mapsto P_{j} em (S \setminus C_{\alpha} \mapsto P_{i}) fazer:

3: S' \leftarrow S

4: tirar C_{\alpha} \mapsto P_{i} e C_{\beta} \mapsto P_{j} de S'

5: adicionar C_{\alpha} \mapsto P_{j} e C_{\beta} \mapsto P_{i} a S'

6: adicionar S' a V
```

Algoritmo 2: Estrutura de vizinhança

e)

Uma solução vizinha pode ser a solução que troca os projetos de $C_1 \leftrightarrows C_2$, sendo essa:

$$\begin{split} S_1 &= \{ \\ C_1 &\mapsto P_5, \\ C_2 &\mapsto P_9, \\ C_3 &\mapsto P_2, \\ C_4 &\mapsto P_8, \\ C_5 &\mapsto P_1, \\ C_6 &\mapsto P_3, \\ C_7 &\mapsto P_7, \\ C_8 &\mapsto P_{10}, \\ C_9 &\mapsto P_6, \\ C_{10} &\mapsto P_4 \\ \} \end{split}$$

, para uma aptidão total de 804.

f)

A lista tabu é uma lista de movimentos que o algoritmo tabu tem que evitar em cada iteração, de forma ao algoritmo não ficar preso num máximo local não global. Esta lista começa vazia no início do algoritmo, aumentando o seu tamanho a cada iteração, até um máximo t, dimensão da lista tabu, ou tempo de permanência ($t \in \mathbb{N}_0$). Este parâmetro do algoritmo é definido *a priori*. A cada iteração, o algoritmo adiciona na lista tabu uma representação do movimento da solução anterior para o vizinho escolhido, e retira o movimento mais velho se a dimensão da lista exceder t.

Desta forma, o algoritmo será forçado a potencialmente explorar vizinhos com pior aptidão, em vez de vizinhos previamente visitados, de forma a sair do máximo local e explorar outro máximo.

Uma outra forma de interpretar o parâmetro é vê-lo como tempo de permanência, ou seja, t representa o número de iterações que o movimento fica inválido. Este conceito é equivalente ao conceito anterior, sendo que uma dimensão t significa que o movimento m_i irá sair da lista em i+t iterações porque m_i será o mais velho.

Um t demasiado alto pode fazer com que o algoritmo não visite soluções que poderiam ter maior aptidão total (nos mesmos vizinhos mas por caminhos alternativos), e um t demasiado baixo pode fazer com que o algoritmo não saia do máximo local. Devido a esse facto, se o algoritmo não conseguir chegar ao mínimo de aptidão desejado, serão tentados tempos diferentes. Para a primeira tentativa, admite-se que t=4.

g)

À lista tabu T vai ser adicionada uma representação da diferença entre a solução anterior e o vizinho escolhido, independentemente do valor de aptidão da solução anterior. Aqui, vai ser escolhido representar a diferença com a troca do projeto que os cientistas fizeram, independentemente do projeto que trocaram. Ou seja, usando o vizinho definido na alínea e), e sendo i a iteração do algoritmo,

$$\forall t>0: T_1 = [C_1 \leftrightarrows C_2]^T$$

Neste caso, a lista tabu é uma matriz de dimensão $t \times 1$, sendo que cada movimento tem apenas uma (1) troca de projetos.

h)

Os movimentos tabu são as tais representações da diferença entre a solução anterior e o vizinho escolhido, aqui representado como $C_i \leftrightarrows C_j$. Ou seja, na escolha do vizinho durante o algoritmo tabu, um movimento não é válido se o vizinho tiver os projetos de C_i e C_j trocados. Por exemplo, se a lista tabu for a apresentada na alínea g), e a solução for a apresentada na alínea e), o movimento criado pelo vizinho S_0 e movimentos equivalentes (qualquer movimento $C_1 \leftrightarrows C_2$), seria um movimento inválido, independente dos projetos trocados, mesmo se esses tivessem uma aptidão maior; logo o algoritmo teria que escolher outro vizinho na iteração em causa.

i)

O algoritmo tabu com os critérios de paragem especificados é implementado com o Algoritmo 3, m=850, M=100, t=4.

```
Recebe:
    Solução inicial S_0,
    Mínimo de aptidão m,
    Máximo de iterações M,
    Tempo de permanência t,
    Estrutura de vizinhança V(S)
    Definição de movimento \Delta(S_a, S_b)
     Função de aptidão a(S)
 Devolve: Melhor solução encontrada S_O
 1: T \leftarrow \text{uma matriz } t \times 1
 2: h = 0
 3: para i de 1 a M fazer
       V_i \leftarrow V(S_i)
       Remover de V_i todos S onde \Delta(S,S_i) é uma das linhas de T
 5:
       S_i \leftarrow o S de \mathring{V}_i com maior aptidão
 7:
       se a(S_i) > a(S_O) então
          S_O \overset{\iota}{\leftarrow} S_i se a(S_O) > m então acabar Algoritmo
 8:
 9:
        h \leftarrow h + 1
10:
       T_{h,1} \leftarrow \Delta(S_i, S_{i-1})
11:
       se h > t então h \leftarrow 0
12:
```

Algoritmo 3: Algoritmo Tabu

Cada iteração do algoritmo pode ser dividido em cinco partes:

- A construção da vizinhança [4]
- Escolha do melhor vizinho que não esteja na lista tabu [5,6]
- Critério de Aspiração [7,8]
- Critério de paragem [3,9]
- Atualização da lista tabu [10 12]

Ao implementar o algoritmo para o nosso S_0 , o algoritmo revelou a seguinte solução:

```
S_{O} = \{
C_{1} \mapsto P_{9}
C_{2} \mapsto P_{5}
C_{3} \mapsto P_{2}
C_{4} \mapsto P_{8}
C_{5} \mapsto P_{1}
C_{6} \mapsto P_{10}
C_{7} \mapsto P_{7}
C_{8} \mapsto P_{3}
C_{9} \mapsto P_{6}
C_{10} \mapsto P_{4}
\}
```

, com uma aptidão de 865, encontrada na primeira iteração ($S_{O}=S_{1}$).

Para efeitos ilustrativos, foi feito o mesmo algoritmo, mas com m=1001, uma aptidão impossível de chegar, para deixar o algoritmo correr durante as 100 iterações. O algoritmo encontrou a seguinte solução:

$$S_O = \{$$

$$C_1 \mapsto P_9$$

$$C_2 \mapsto P_2$$

$$C_3 \mapsto P_6$$

$$C_4 \mapsto P_8$$

$$C_5 \mapsto P_7$$

$$C_6 \mapsto P_4$$

$$C_7 \mapsto P_{10}$$

$$C_8 \mapsto P_3$$

$$C_9 \mapsto P_1$$

$$C_{10} \mapsto P_5$$

$$\}$$

, com uma aptidão de 902.

O gráfico da Figura 1 mostra a evolução da aptidão ao longo das iterações.

Figura 1: Evolução da aptidão, t=4

Como se pode observar, o algoritmo parece ficar num ciclo de vizinhos na iteração 23, o que significa que o algoritmo não está a explorar outras soluções que podem ser melhores, devido ao facto da dimensão da lista tabu t ser demasiado pequena.

O gráfico da Figura 2 mostra o mesmo algoritmo, mas com t=5.

Figura 2: Evolução da aptidão, $t=5\,$

Perante este resultado, o algoritmo parece procurar mais soluções, sem ficar preso num ciclo de vizinhos, embora este se comece a formar entre as iterações 25 e 80. No entanto, uma aptidão de 902 deve ser completamente apropriada para a **Lusa_Med**, e baseado nestas duas execuções, como o problema não é muito complexo, será razoável dizer que qualquer solução que tenha uma aptidão de 902 é uma solução ótima. Isto podia ser verificado ao experimentar todas as soluções admissíveis, algo que seria computacionalmente dispendioso, devido ao número demasiado elevado de soluções para analisar.