RS/Conference2019

San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-W10

MODERATOR: Bart Preneel

Professor, COSIC KU Leuven

Bart.Preneel@esat.kuleuven.be, @cosic.be

PANELISTS: Dan Boneh

Professor

Stanford University

Maria Raykova

Research Scientist

Google

Nigel Smart

Professor
COSIC KU Leuven
@SmartCryptology

ARTIFICIAL INTELLIGENCE

Engineering of making Intelligent Machines and Programs

MACHINE LEARNING

Ability to learn without being explicitly programmed

DEEP LEARNING

Learning based on Deep Neural Network

Machine Learning

Training

Evaluation

airplane

What could you protect?

- The individual data used to train the model
- The model itself
- The input data to evaluation
- The output of evaluation

Different parties want to protect different things!

Secure Computation

- Multi Party Computation
 - A set of parties perform the computation together via a protocol
 - Relatively efficient for some functions
- Homomorphic Encryption
 - One party computes a function on data of another set of parties
 - Decryption by the party who gets output
- Differential Privacy
 - Adds randomness to the output to protect individual training samples
 - Can either add randomness to the trained model and/or the output of the evaluation

Secure Machine Learning

- Are you securing training or evaluation phase?
- Who gets output?
- Programming is hard
 - Branching for example is very difficult
 - Try writing programs which do few "if-then-else" statements!
- Accuracy will drop from processing clear data
- What about adversarial input to training phase
 - Adversarial learning

Adversarial machine learning

Benefits

- Data as a valuable resource
 - Why? analyze and gain insight
 - Extract essential information
 - Build predictive models
 - Better understanding and targeting
 - Value often comes from putting together different private data sets
- Data use challenges
 - Liability security breaches, rogue employees, subpoenas
 - Restricted sharing policies and regulations protecting private data
 - Source of discrimination unfair algorithms

- Reduce liability
- Enable new services and analysis
- Better user protection

Two Scenarios

Few Input Parties

- Equal computational power
- Connected parties
- Availability

Federated Learning

- Weak devices
- Star communication
- Devices may drop out

Secure Neural Networks Evaluation Example

Compute binary neural network (BNN) prediction without revealing more about the model or the input

Classification result

Two Party Passive Secure MPC Using Garbled Circuits

- + Conditional Oblivious Addition
- + Customized BNNs
- Evaluation: MNIST dataset 60000 (28x28) images of digits

BNN Architecture	Runtime (s)	Communication (MB)	Accuracy
3FC layers + binary activation	0.13	4.27	97.6%
1-Conv and 3-FC layers + binary activation	0.16	38.28	98.64%
2-Conv, 2-MP and 3-FC layers + binary activation	0.15	32.13	99%

[RSCLLK19] XONN:XNOR-based Oblivious Deep Neural Network Inference, Riazi, Samragh, Chen, Laine, Lauter, Koushanfar, 2019

Also see talks on Friday at 08.30 for active MPC on CIFAR datasets

Input

RS/Conference2019

San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-W10

MODERATOR: Bart Preneel

Professor, COSIC KU Leuven

Bart.Preneel@esat.kuleuven.be, @cosic.be

PANELISTS: Dan Boneh

Professor

Stanford University

Maria Raykova

Research Scientist

Google

Nigel Smart

Professor
COSIC KU Leuven
@SmartCryptology