## Sequential decisions

- A sequential decision problem is a sequence of decisions, where for each decision we consider:
  - what actions are available to the agent
  - what information is, or will be, available to the agent when it will perform the action
  - effects of the actions
  - desirability of the actions

## Decision processes

- Indefinite and infinite horizon problems
  - ongoing processes or it is unknown how many actions are required
- Wide range of applications
  - robotics (e.g., control)
  - investments (e.g., portfolio management)
  - computational linguistics (e.g., dialogue management)
  - operations research (e.g., inventory management)

## Markov decision process (MDP)

#### Definition

- Set of states: S
- Set of actions (i.e., decisions): A
- Transition model:  $P(S_t | A_{t-1}, S_{t-1})$
- Reward model (i.e., utility):  $R(S_t, A_{t-1}, S_{t-1})$
- Discount factor:  $0 \le \gamma \le 1$
- Horizon (i.e., # of time steps): h
- Goal: find optimal policy

# Decision network representing a finite part of an MDP



### Transition model

Markov assumption

$$P(S_{t+1} | S_t, ..., S_0) = P(S_{t+1} | S_t)$$

• Stationary: the transition probabilities are the same for each time point

 $P(S_0)$  specifies initial conditions

 $P(S_{t+1} | A_t, S_t)$  specifies the dynamics, which is the same for each  $t \ge 0$ 

#### Reward model

- Why so many utility nodes in decision network?
- $U(S_0, S_1, S_2,...)$ 
  - infinite process  $\rightarrow$  infinite utility function
- Solution: additive preferences
  - $R(S_t, A_{t-1}, S_{t-1})$ immediate reward from doing action  $A_{t-1}$  and transitioning from state  $S_{t-1}$  to state  $S_t$
  - $U(S_0, S_1, S_2,...) = \Sigma_t R(S_t, A_{t-1}, S_{t-1})$

#### Discounted Rewards

- If process infinite, isn't  $\Sigma_t R(S_t, A_{t-1}, S_{t-1})$  infinite?
- Solution: discounted rewards
  - − Discount factor:  $0 \le \gamma \le 1$
  - Finite utility:  $\Sigma_t \gamma^t R(S_t, A_{t-1}, S_{t-1})$  is a geometric sum
  - γ is like an inflation rate
  - Intuition: prefer utility sooner than later

## Policy

- Choice of action at each time step
- Formally:
  - Mapping from states to actions
  - i.e.,  $\delta(state) = action$
  - Assumption: fully observable states
    - allows next action to be chosen only based on current state
- Optimal policy:
  - Policy  $\delta^*$  with highest expected utility
  - EU(δ) ≤ EU(δ\*) for all δ

## Example: Inventory Management

- Markov decision process
  - States: inventory levels
  - Actions: {doNothing, orderWidgets}
  - Transition model: stochastic demand
  - Reward model: Sales Costs (Storage)
  - Discount factor: 0.999
  - Horizon: ∞
- Tradeoff: increasing supplies decreases odds of missed sales but increases storage costs

# Other representations for decision processes

- Dynamic decision networks
  - MDP is a state-based representation
  - here: describe states in terms of random variables
- Partially observable Markov decision process (POMDP)
  - states are not fully observable
  - partial/noisy observations of the state