Data Mining

Chapter 5 Association Analysis Basic Concepts

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

3/8/2021

Introduction to Data Mining, 2nd Edition

1

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\begin{aligned} & \{ \text{Diaper} \} \rightarrow \{ \text{Beer} \}, \\ & \{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs,Coke} \}, \\ & \{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \}, \end{aligned}$

Implication means co-occurrence, not causality!

3/8/2021

Introduction to Data Mining, 2nd Edition

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - ◆ Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

3/8/2021

Introduction to Data Mining, 2nd Edition

3

3

Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Items

2

3

4

5

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow \{Beer\}$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

3/8/2021

Introduction to Data Mining, 2nd Edition

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

3/8/2021

Introduction to Data Mining, 2nd Edition

5

5

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 ${\text{Milk,Diaper}} \rightarrow {\text{Beer}} \ (\text{s=0.4, c=0.67}) \ {\text{Milk,Beer}} \rightarrow {\text{Diaper}} \ (\text{s=0.4, c=1.0}) \ {\text{Diaper,Beer}} \rightarrow {\text{Milk}} \ (\text{s=0.4, c=0.67}) \ {\text{Beer}} \rightarrow {\text{Milk,Diaper}} \ (\text{s=0.4, c=0.67}) \ {\text{Diaper}} \rightarrow {\text{Milk,Beer}} \ (\text{s=0.4, c=0.5}) \ {\text{Milk}} \rightarrow {\text{Diaper,Beer}} \ (\text{s=0.4, c=0.5})$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

3/8/2021

Introduction to Data Mining, 2nd Edition

7

7

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

3/8/2021

Introduction to Data Mining, 2nd Edition

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

3/8/2021

Introduction to Data Mining, 2nd Edition

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

3/8/2021

Introduction to Data Mining, 2nd Edition

11

11

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

3/8/2021

Introduction to Data Mining, 2nd Edition

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - ◆ Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - ◆ Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

3/8/2021

Introduction to Data Mining, 2nd Edition

21

21

Candidate Generation: Brute-force method Candidate Generation Frequent Beer, Bread, Diaper, Eggs Itemset 2-itemset Beer, Coke, Diaper, Milk {Beer, Bread, Cola} Itemset {Beer, Bread, Diapers} Beer, Diapers) Bread, Coke, Diaper, Milk {Beer, Bread, Eggs} {Bread, Diapers} {Beer, Bread, Milk} {Bread, Milk} {Beer, Cola, Diapers} (Diapers, Milk) Item {Beer, Cola, Eggs} Candidate Beer {Beer, Cola, Milk} Pruning {Beer, Diapers, Eggs} Itemset Cola {Beer, Diapers, Milk} {Bread, Diapers, Milk} Diapers {Beer, Eggs, Milk} Eggs {Bread, Cola, Diapers} Milk {Bread, Cola, Eggs} {Bread, Cola, Milk} {Bread, Diapers, Eggs} {Bread, Diapers, Milk} {Bread, Eggs, Milk} {Cola, Diapers, Eggs} {Cola, Diapers, Milk} {Cola, Eggs, Milk} {Diapers, Eggs, Milk} Figure 5.6. A brute-force method for generating candidate 3-itemsets. 3/8/2021 Introduction to Data Mining, 2nd Edition 22

Candidate Generation: Merge Fk-1 and F1 itemsets

Figure 5.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

3/8/2021

Introduction to Data Mining, 2nd Edition

23

23

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if their first (k-2) items are identical
- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - Merge($\underline{\mathbf{AB}}$ C, $\underline{\mathbf{AB}}$ D) = $\underline{\mathbf{AB}}$ CD
 - Merge($\underline{\mathbf{AB}}$ C, $\underline{\mathbf{AB}}$ E) = $\underline{\mathbf{AB}}$ CE
 - Merge(<u>AB</u>D, <u>AB</u>E) = <u>AB</u>DE
 - Do not merge(<u>ABD</u>,<u>ACD</u>) because they share only prefix of length 1 instead of length 2

3/8/2021

Introduction to Data Mining, 2nd Edition

Candidate Pruning

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABCE,ABDE} is the set of candidate
 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABCE because ACE and BCE are infrequent
 - Prune ABDE because ADE is infrequent
- After candidate pruning: L₄ = {ABCD}

3/8/2021

Introduction to Data Mining, 2nd Edition

25

25

Candidate Generation: Fk-1 x Fk-1 Method Frequent Itemset (Beer, Diapers) {Bread, Diapers} {Bread, Milk} Candidate Candidate {Diapers, Milk} Generation Pruning Itemset Itemset {Bread, Diapers, Milk} {Bread, Diapers, Milk] Frequent 2-itemset Itemset {Beer, Diapers} {Bread, Diapers} {Bread, Milk} {Diapers, Milk} **Figure 5.8.** Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets. 3/8/2021 26 Introduction to Data Mining, 2nd Edition

Alternate $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.
- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - Merge(ABC, BCD) = ABCD
 - Merge(ABD, BDE) = ABDE
 - Merge(A \overline{CD} , $\overline{CD}E$) = A $\overline{CD}E$
 - Merge(B \underline{CD} , \underline{CD} E) = B \underline{CD} E

3/8/2021

Introduction to Data Mining, 2nd Edition

Candidate Pruning for Alternate $F_{k-1} \times F_{k-1}$ Method

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABDE because ADE is infrequent
 - Prune ACDE because ACE and ADE are infrequent
 - Prune BCDE because BCE
- After candidate pruning: L₄ = {ABCD}

3/8/2021

Introduction to Data Mining, 2nd Edition

29

29

Support Counting of Candidate Itemsets

- Scan the database of transactions to determine the support of each candidate itemset
 - Must match every candidate itemset against every transaction, which is an expensive operation

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

3/8/2021

Introduction to Data Mining, 2nd Edition

Support Counting of Candidate Itemsets

- To reduce number of comparisons, store the candidate itemsets in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

3/8/2021

Introduction to Data Mining, 2nd Edition

31

31

Support Counting: An Example

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

How many of these itemsets are supported by transaction (1,2,3,5,6)?

3/8/2021

Introduction to Data Mining, 2nd Edition

Support Counting Using a Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

- · Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

3/8/2021

Introduction to Data Mining, 2nd Edition

33

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

3/8/2021

Introduction to Data Mining, 2nd Edition

Rule Generation

 In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \to D) \geq c(AB \to CD) \geq c(A \to BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

3/8/2021

Introduction to Data Mining, 2nd Edition

41

Association Analysis: Basic Concepts and Algorithms

Algorithms and Complexity

3/8/2021

Introduction to Data Mining, 2nd Edition

43

43

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
- Dimensionality (number of items) of the data set
- Size of database
- Average transaction width

-

3/8/2021

Introduction to Data Mining, 2nd Edition

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set

_

Size of database

Average transaction width

_

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

3/8/2021

Introduction to Data Mining, 2nd Edition

45

45

Impact of Support Based Pruning

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41 With support-based pruning, 6 + 6 + 4 = 16

Minimum Support = 2

If every subset is considered, ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} + {}^{6}C_{4}$ 6 + 15 + 20 + 15 = 56

3/8/2021

Introduction to Data Mining, 2nd Edition

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of itemsets
 - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
- Average transaction width

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

3/8/2021

Introduction to Data Mining, 2nd Edition

47

47

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of itemsets
 - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
 - run time of algorithm increases with number of transactions
- Average transaction width

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

3/8/2021

Introduction to Data Mining, 2nd Editio

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of itemsets
 - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
 - run time of algorithm increases with number of transactions
- Average transaction width
 - transaction width increases the max length of frequent itemsets
 - number of subsets in a transaction increases with its width, increasing computation time for support counting

3/8/2021

Introduction to Data Mining, 2nd Edition

49

Compact Representation of Frequent Itemsets

 Some frequent itemsets are redundant because their supersets are also frequent

Number of frequent itemsets
$$= 3 imes \sum\limits_{k=1}^{10} \binom{10}{k}$$

Need a compact representation

3/8/2021

Introduction to Data Mining, 2nd Edition

51

Closed Itemset

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

3/8/2021

Introduction to Data Mining, 2nd Edition

59

59

Closed Itemset

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	{A,B,D}
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	2
$\{A,B,C,D\}$	2

3/8/2021

Introduction to Data Mining, 2nd Edition

Example question

 Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions

- a. What is the number of frequent itemsets for each dataset? Which dataset will produce the most number of frequent itemsets?
- b. Which dataset will produce the longest frequent itemset?
- c. Which dataset will produce frequent itemsets with highest maximum support?
- d. Which dataset will produce frequent itemsets containing items with widely varying support levels (i.e., itemsets containing items with mixed support, ranging from 20% to more than 70%)?
- e. What is the number of maximal frequent itemsets for each dataset? Which dataset will produce the most number of maximal frequent itemsets?
- f. What is the number of closed frequent itemsets for each dataset? Which dataset will produce the most number of closed frequent itemsets?

3/8/2021 Introduction to Data Mining, 2nd Edition

71

71

Pattern Evaluation

- Association rule algorithms can produce large number of rules
- Interestingness measures can be used to prune/rank the patterns
 - In the original formulation, support & confidence are the only measures used

3/8/2021

Introduction to Data Mining, 2nd Edition

Computing Interestingness Measure

• Given $X \rightarrow Y$ or $\{X,Y\}$, information needed to compute interestingness can be obtained from a contingency table

Contingency table

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	N

 f_{11} : support of X and Y f_{10} : support of X and \overline{Y} f_{01} : support of $\overline{\underline{X}}$ and $\underline{\underline{Y}}$ f_{00} : support of $\overline{\underline{X}}$ and $\overline{\underline{Y}}$

Used to define various measures

support, confidence, Gini, entropy, etc.

3/8/2021

Introduction to Data Mining, 2nd Edition

73

73

Drawback of Confidence

Custo mers	Tea	Coffee	
C1	0	1	
C2	1	0	
C3	1	1	
C4	1	0	

	Coffee	\overline{Coffee}	
Tea	150	50	200
\overline{Tea}	650	150	800
	800	200	1000

Association Rule: Tea → Coffee

Confidence \cong P(Coffee|Tea) = 150/200 = 0.75

Confidence > 50%, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

3/8/2021

Introduction to Data Mining, 2nd Edition

Drawback of Confidence

	Coffee	Coffee	
Tea	150	50	200
Tea	650	150	800
	800	200	1000

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 150/200 = 0.75

but P(Coffee) = 0.8, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!

 \Rightarrow Note that P(Coffee|Tea) = 650/800 = 0.8125

3/8/2021

Introduction to Data Mining, 2nd Edition

75

75

Drawback of Confidence

Custo mers	Tea	Honey	
C1	0	1	
C2	1	0	
C3	1	1	
C4	1	0	

	Honey	\overline{Honey}	
Tea	100	100	200
\overline{Tea}	20	780	800
	120	880	1000

Association Rule: Tea → Honey

Confidence \cong P(Honey|Tea) = 100/200 = 0.50

Confidence = 50%, which may mean that drinking tea has little influence whether honey is used or not

So rule seems uninteresting

But P(Honey) = 120/1000 = .12 (hence tea drinkers are far more likely to have honey Introduction to Data Mining, 2^{nd} Edition

Measure for Association Rules

- So, what kind of rules do we really want?
 - Confidence(X → Y) should be sufficiently high
 - ◆ To ensure that people who buy X will more likely buy Y than not buy Y
 - Confidence(X → Y) > support(Y)
 - Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction
 - Is there any measure that capture this constraint?
 - Answer: Yes. There are many of them.

3/8/2021

Introduction to Data Mining, 2nd Edition

77

77

Statistical Relationship between X and Y

 The criterion confidence(X → Y) = support(Y)

is equivalent to:

- P(Y|X) = P(Y)
- $P(X,Y) = P(X) \times P(Y)$ (X and Y are independent)

If $P(X,Y) > P(X) \times P(Y) : X \& Y$ are positively correlated

If $P(X,Y) < P(X) \times P(Y) : X \& Y$ are negatively correlated

3/8/2021

Introduction to Data Mining, 2nd Edition

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$
 lift is used for rules while interest is used for itemsets
$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

3/8/2021

Introduction to Data Mining, 2nd Edition

79

79

Example: Lift/Interest

	Coffee	Coffee	
Tea	150	50	200
Tea	650	150	800
	800	200	1000

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.8

 \Rightarrow Interest = 0.15 / (0.2×0.8) = 0.9375 (< 1, therefore is negatively associated)

So, is it enough to use confidence/Interest for pruning?

3/8/2021

Introduction to Data Mining, 2nd Edition

There are lots of measures proposed in the literature

Measure (Symbol)	Definition
Correlation (ϕ)	$\frac{Nf_{11} - f_{1+} f_{+1}}{\sqrt{f_{1+} f_{+1} f_{0+} f_{+0}}}$
Odds ratio (α)	$(f_{11}f_{00})/(f_{10}f_{01})$
Kappa (κ)	$\frac{Nf_{11} + Nf_{00} - f_{1+}f_{+1} - f_{0+}f_{+0}}{N^2 - f_{1+}f_{+1} - f_{0+}f_{+0}}$
Interest (I)	$(Nf_{11})/(f_{1+}f_{+1})$
Cosine (IS)	$(f_{11})/(\sqrt{f_{1+}f_{+1}})$
Piatetsky-Shapiro (PS)	$\frac{f_{11}}{N} - \frac{f_{1+}f_{+1}}{N^2}$
Collective strength (S)	$\frac{f_{11}+f_{00}}{f_{1+}f_{+1}+f_{0+}f_{+0}} \times \frac{N-f_{1+}f_{+1}-f_{0+}f_{+0}}{N-f_{11}-f_{00}}$
Jaccard (ζ)	$f_{11}/(f_{1+}+f_{+1}-f_{11})$
All-confidence (h)	$\min\left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$

3/8/2021

Introduction to Data Mining, 2nd Edition

81

81

Comparing Different Measures

10 examples of contingency tables:

Example	f ₁₁	f ₁₀	f ₀₁	f ₀₀
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154
E10	61	2483	4	7452

Rankings of contingency tables using various measures:

	ϕ	α	κ	I	IS	PS	S	ς	h
E_1	1	3	1	6	2	2	1	2	2
E_2	2	1	2	7	3	5	2	3	3
E_3	3	2	4	4	5	1	3	6	8
E_4	4	8	3	3	7	3	4	7	5
E_5	5	7	6	2	9	6	6	9	9
E_6	6	9	5	5	6	4	5	5	7
E_7	7	6	7	9	1	8	7	1	1
E_8	8	10	8	8	8	7	8	8	7
E_9	9	4	9	10	4	9	9	4	4
E_{10}	10	5	10	1	10	10	10	10	10

3/8/2021

Introduction to Data Mining, 2nd Edition

Property under Null Addition

	B	\overline{B}			B	\overline{B}	
\overline{A}	700	100	800	 A	700	100	800
\overline{A}	100	100	200	\overline{A}	10	1100	1200
	800	200	1000		800	1200	2000

Invariant measures:

cosine, Jaccard, All-confidence, confidence

Non-invariant measures:

correlation, Interest/Lift, odds ratio, etc

3/8/2021

Introduction to Data Mining, 2nd Edition

85

85

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	30	20	50
Low	40	10	50
	70	30	100

	Male	Female	
High	60	60	120
Low	80	30	110
	140	90	230
	\	\	
	2x	3x	

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Odds-Ratio $((f_{11+}f_{00})/(f_{10+}f_{10}))$ has this property

3/8/2021

Introduction to Data Mining, 2nd Edition

Property under Row/Column Scaling

Relationship between Mask use and susceptibility to Covid:

	Covid- Positive	Covid- Free			Covid- Positive	Covid- Free	
Mask	20	30	50	Mask	40	300	340
No- Mask	40	10	50	No- Mask	80	100	180
	60	40	100		120	400	520
			2x 10x				

Mosteller:

Underlying association should be independent of the relative number of Covid-positive and Covid-free subjects

Odds-Ratio $((f_{11+}f_{00})/(f_{10+}f_{10}))$ has this property 3/8/2021 Introduction to Data Mining, 2nd Edition

87

87

Different Measures have Different Properties

Symbol	Measure	Inversion	Null Addition	Scaling
ϕ	ϕ -coefficient	Yes	No	No
α	odds ratio	Yes	No	Yes
κ	Cohen's	Yes	No	No
I	Interest	No	No	No
IS	Cosine	No	Yes	No
PS	Piatetsky-Shapiro's	Yes	No	No
S	Collective strength	Yes	No	No
ζ	Jaccard	No	Yes	No
h	All-confidence	No	Yes	No
s	Support	No	No	No

3/8/2021

Introduction to Data Mining, 2nd Edition

Simpson's Paradox

- Observed relationship in data may be influenced by the presence of other confounding factors (hidden variables)
 - Hidden variables may cause the observed relationship to disappear or reverse its direction!
- Proper stratification is needed to avoid generating spurious patterns

3/8/2021

Introduction to Data Mining, 2nd Edition

89

89

Simpson's Paradox

Recovery rate from Covid

Hospital A: 80%Hospital B: 90%

• Which hospital is better?

3/8/2021

Introduction to Data Mining, 2nd Edition

Simpson's Paradox

- Recovery rate from Covid
 - Hospital A: 80%Hospital B: 90%
- Which hospital is better?
- Covid recovery rate on older population
 - Hospital A: 50%Hospital B: 30%
- Covid recovery rate on younger population
 - Hospital A: 99%Hospital B: 98%

3/8/2021

Introduction to Data Mining, 2nd Edition

91

91

Simpson's Paradox

- Covid-19 death: (per 100,000 of population)
 - County A: 15County B: 10
- Which state is managing the pandemic better?

3/8/2021

Introduction to Data Mining, 2nd Edition

Simpson's Paradox

- Covid-19 death: (per 100,000 of population)
 - County A: 15
 - County B: 10
- Which state is managing the pandemic better?
- Covid death rate on older population
 - County A: 20
 - County B: 40
- Covid death rate on younger population
 - County A: 2
 - County B: 5

3/8/2021

Introduction to Data Mining, 2nd Edition

93

Effect of Support Distribution

- Difficult to set the appropriate minsup threshold
 - If minsup is too high, we could miss itemsets involving interesting rare items (e.g., {caviar, vodka})
 - If minsup is too low, it is computationally expensive and the number of itemsets is very large

3/8/2021

Introduction to Data Mining, 2nd Edition

95

95

Cross-Support Patterns

A cross-support pattern involves items with varying degree of support

• Example: {caviar,milk}

How to avoid such patterns?

3/8/2021

Introduction to Data Mining, 2nd Edition

A Measure of Cross Support

• Given an itemset, $X = \{x_1, x_2, ..., x_d\}$, with d items, we can define a measure of cross support,r, for the itemset

$$r(X) = \frac{\min\{s(x_1), s(x_2), \dots, s(x_d)\}}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$

where $s(x_i)$ is the support of item x_i

- Can use r(X) to prune cross support patterns

3/8/2021

Introduction to Data Mining, 2nd Edition

97

97

Confidence and Cross-Support Patterns

Observation:

conf(caviar→milk) is very high
but
conf(milk→caviar) is very low

Therefore,

min(conf(caviar→milk), conf(milk→caviar))

is also very low

3/8/2021

Introduction to Data Mining, 2nd Edition

H-Confidence

- To avoid patterns whose items have very different support, define a new evaluation measure for itemsets
 - Known as h-confidence or all-confidence
- Specifically, given an itemset $X = \{x_1, x_2, ..., x_d\}$
 - h-confidence is the minimum confidence of any association rule formed from itemset X
 - hconf(X) = min(conf($X_1 \rightarrow X_2$)), where $X_1, X_2 \subset X, X_1 \cap X_2 = \emptyset, X_1 \cup X_2 = X$

For example: $X_1 = \{x_1, x_2\}, X_2 = \{x_3, ..., x_d\}$

3/8/2021

Introduction to Data Mining, 2nd Edition

99

99

H-Confidence ...

- But, given an itemset $X = \{x_1, x_2, ..., x_d\}$
 - What is the lowest confidence rule you can obtain from X?
 - Recall conf(X_1 → X_2) = $s(X_1 \cup X_2)$ / support(X_1)
 - The numerator is fixed: $s(X_1 \cup X_2) = s(X)$
 - Thus, to find the lowest confidence rule, we need to find the X₁ with highest support
 - Consider only rules where X_1 is a single item, i.e., $\{x_1\} \rightarrow X \{x_1\}, \{x_2\} \rightarrow X \{x_2\}, ..., \text{ or } \{x_d\} \rightarrow X \{x_d\}$

$$hconf(X) = \min \left\{ \frac{s(X)}{s(x_1)}, \frac{s(X)}{s(x_2)}, \dots, \frac{s(X)}{s(x_d)} \right\}$$

$$= \frac{s(X)}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$

3/8/2021

Introduction to Data Mining, 2nd Edition

Cross Support and H-confidence

By the anti-montone property of support

$$s(X) \le \min\{s(x_1), s(x_2), ..., s(x_d)\}\$$

 Therefore, we can derive a relationship between the h-confidence and cross support of an itemset

$$hconf(X) = \frac{s(X)}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$

$$\leq \frac{\min\{s(x_1), s(x_2), \dots, s(x_d)\}}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$

$$= r(X)$$

Thus, $hconf(X) \le r(X)$

3/8/2021

Introduction to Data Mining, 2nd Edition

101

101

Cross Support and H-confidence...

- Since, $hconf(X) \le r(X)$, we can eliminate cross support patterns by finding patterns with h-confidence < h_c , a user set threshold
- Notice that

$$0 \le \operatorname{hconf}(X) \le r(X) \le 1$$

- Any itemset satisfying a given h-confidence threshold, h_c, is called a hyperclique
- H-confidence can be used instead of or in conjunction with support

3/8/2021

Introduction to Data Mining, 2nd Edition

Properties of Hypercliques

- Hypercliques are itemsets, but not necessarily frequent itemsets
 - Good for finding low support patterns
- H-confidence is anti-monotone
- Can define closed and maximal hypercliques in terms of h-confidence
 - A hyperclique X is closed if none of its immediate supersets has the same h-confidence as X
 - A hyperclique X is maximal if $hconf(X) \le h_c$ and none of its immediate supersets, Y, have $hconf(Y) \le h_c$

3/8/2021

Introduction to Data Mining, 2nd Edition

103

103

Properties of Hypercliques ...

- Hypercliques have the high-affinity property
 - Think of the individual items as sparse binary vectors
 - h-confidence gives us information about their pairwise Jaccard and cosine similarity
 - Assume x₁ and x₂ are any two items in an itemset X
 - Jaccard $(x_1, x_2) \ge \text{hconf}(X)/2$
 - $cos(x_1, x_2) \ge hconf(X)$
 - Hypercliques that have a high h-confidence consist of very similar items as measured by Jaccard and cosine
- The items in a hyperclique cannot have widely different support
 - Allows for more efficient pruning

3/8/2021

Introduction to Data Mining, 2nd Edition

Example Applications of Hypercliques

- Hypercliques are used to find strongly coherent groups of items
 - Words that occur together in documents
 - Proteins in a protein interaction network

In the figure at the right, a gene ontology hierarchy for biological process shows that the identified proteins in the hyperclique (PRE2, ..., SCL1) perform the same function and are involved in the same biological process

3/8/2021

Introduction to Data Mining, 2nd Edition