

METODY ITERACYJNE

Na tych laboratoriach skupimy się na rozwiązaniu układu równań:

$$Ax = b$$

W tym celu rozpatrzymy kilka metod, których działanie sprawdzimy na układzie równań otrzymanym na poprzednich zajęciach dzięki metodzie MES.

Naszym celem będzie napisanie funkcji Solve, która zastąpi funkcję Gauss i wyznaczy wartość wektora \mathbf{x} . Nie będziemy jednak tego układu rozwiązywać metodą bezpośrednią, taką jak eliminacja Gaussa, ale **metodą iteracyjną**. Skonstruujemy ciąg (\mathbf{x}^k) , którego elementy \mathbf{x}^k będą dążyły do rozwiązania dokładnego \mathbf{x} .

Niezbędne definicje

• Wektorem błędu w k-tym kroku nazywamy:

$$e^k = x - x^k$$

• Wektorem residualnym (**residuum**) w k-tym kroku nazywamy:

$$\mathbf{r}^k = \mathbf{b} - \mathbf{b}^k$$

Łatwo zauważyć, że zachodzi zależność $\mathbf{r}^k = \mathbf{A}\mathbf{e}^k$. Widać także, że skoro \mathbf{x}^k dąży do \mathbf{x} to \mathbf{r}^k dąży do zera.

Zadanie

Wyznacz residuum dla zadania z poprzednich zajęć. Następnie oblicz i wyświetl jego normę: $\|\mathbf{r}\| = \sqrt{\mathbf{r}^T \mathbf{r}}$ (napisz funkcję liczącą normę wektora norm(int, double *)). Ile wynosi ta norma przed i po rozwiązaniu układu metodą eliminacji Gaussa?

Początki

1

Weźmy dowolny wektor \mathbf{x}^0 i obliczmy odpowiadający mu wektor prawych stron $\mathbf{b}^0 = \mathbf{A}\mathbf{x}^0$. Różnica między "prawdziwym" wektorem \mathbf{b} a przybliżeniem jest wtedy równa

$$\mathbf{r}^0 = \mathbf{b} - \mathbf{b}^0 = \mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{x}^0 = \mathbf{A}\mathbf{e}^0$$

Zatem różnica między "prawdziwym" rozwiązaniem a przybliżonym $\mathbf{e}^0 = \mathbf{A}^{-1}\mathbf{r}^0$. Co ostatecznie pozwala nam zapisać: $\mathbf{x} = \mathbf{x}^0 + \mathbf{A}^{-1}\mathbf{r}^0$. Nie mamy jednak \mathbf{A}^{-1} (w tym rzecz). Zamiast niej użyjemy macierzy \mathbf{M}^{-1} . Wtedy jednak nie dostaniemy dokładnej wartości 1 \mathbf{x} a jedynie przybliżenie. Prowadzi to nas do wzoru:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{p}^k = \mathbf{x}^k + \mathbf{M}^{-1}\mathbf{r}^k$$

Wektor \mathbf{p}^k jest "poprawką" w k-tej iteracji a macierz \mathbf{M} nazywamy **preconditioner'em**. Najlepiej byłoby gdyby macierz \mathbf{M} była "podobna" do macierzy \mathbf{A} a jednocześnie łatwo odwracalna.

Rozpatrzmy układ $\mathbf{r}^k = \mathbf{A}\mathbf{p}^k$. Widać, że jeśli pominiemy większość jego elementów:

$$\begin{cases} A_{11}p_1^k & + & A_{12}p_2^k & + & A_{13}p_3^k & + & \dots & + & A_{1N}p_N^k & = & r_1^k \\ A_{21}p_1^k & + & A_{22}p_2^k & + & A_{23}p_3^k & + & \dots & + & A_{2N}p_N^k & = & r_2^k \\ A_{31}p_1^k & + & A_{32}p_2^k & + & A_{33}p_3^k & + & \dots & + & A_{3N}p_N^k & = & r_3^k \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ A_{N1}p_1^k & + & A_{N2}p_2^k & + & A_{N3}p_3^k & + & \dots & + & A_{NN}p_N^k & = & r_N^k \end{cases}$$

dostaniemy prosty wzór na \mathbf{p}^k :

$$p_i^k = \frac{1}{A_{ii}} r_i^k$$

Jest to równoważne z wzięciem za macierz ${\bf M}$ diagonalnej części macierzy ${\bf A}$. Ten prosty schemat iteracji z powyższą poprawką nazywamy ${\bf metodq}$ ${\bf Jacobiego}$.

Zadania

- 1. Zaimplementuj metodę Jacobiego i wykonaj np. 1000 iteracji zaczynając od $\mathbf{x}^0 = 0$. W każdej iteracji wyświetl normę residuum. Napisz także funkcję res_draw(double), która posłuży do wykonania wykresu zbieżności.
- 2. Taki proces iteracyjny nie zbiega się. Wprowadź współczynnik α , który "przytłumi" wykonywane iteracje:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha \mathbf{p}^k$$

- 3. Sprawdź zbieżność tego schematu dla różnych wartości α . Sprawdź liczby 0.5, 0.9, 1.1 i 2.
- 4. Wydziel z funkcji Solve część odpowiedzialną za mnożenie przez A: Mult(int N, double **A, double *x, double *r) i preconditioner: Precond(int N, double **A, double *x, double *p).

¹I tak nie dostalibyśmy dokładnej wartości ze względu na błędy numeryczne.

Spróbujmy poprawić nasz schemat biorąc lepszy preconditioner. Zauważmy, że obliczając p_2^k mamy już obliczone p_1^k i możemy go użyć. Nie musimy zatem pomijać elementów układu "pod diagonalą":

$$\begin{cases} A_{11}p_1^k + A_{12}p_2^k + A_{13}p_3^k + \dots + A_{1N}p_N^k = r_1^k \\ A_{21}p_1^k + A_{22}p_2^k + A_{23}p_3^k + \dots + A_{2N}p_N^k = r_2^k \\ A_{31}p_1^k + A_{32}p_2^k + A_{33}p_3^k + \dots + A_{3N}p_N^k = r_3^k \\ \vdots & \vdots & \vdots \\ A_{N1}p_1^k + A_{N2}p_2^k + A_{N3}p_3^k + \dots + A_{NN}p_N^k = r_N^k \end{cases}$$

Daje nam to prosty wzór na \mathbf{p}^k :

$$p_i^k = \frac{1}{A_{ii}} \left(r_i - \sum_{j=1}^{i-1} A_{ij} p_j^k \right)$$

Gdy $\alpha = 1$ schemat taki nazywamy **metodą Gaussa-Seidla**.

Zadania

1. Wypróbuj nowy wzór na **p**. Sprawdź różne wartości α .

Schematy, dla których $\alpha>1$ nazywamy metodami Successive Over-Relaxation (SOR).

Dobieramy α

Widać wyraźnie, że zbieżność bardzo zależy od wartości współczynnika α i jasnym jest, że najlepiej byłoby dobierać ten współczynnik w każdej iteracji:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{p}^k$$

Zastanówmy się teraz jak będzie się zmieniało residuum w zależności od kroku. Jeśli pomnożymy powyższy wzór przez $-\mathbf{A}$ a następnie dodamy \mathbf{b} i skorzystamy z definicji residuum otrzymamy:

$$\mathbf{r}^{k+1} = \mathbf{r}^k - \alpha^k \mathbf{A} \mathbf{p}^k$$

Kwadrat normy tego residuum jest równy:

$$\|\mathbf{r}^{k+1}\| = (\mathbf{r}^{k+1})^T \mathbf{r}^{k+1} = (\mathbf{r}^k - \alpha^k \mathbf{A} \mathbf{p}^k)^T (\mathbf{r}^k - \alpha^k \mathbf{A} \mathbf{p}^k) =$$

$$(\mathbf{r}^k)^T \mathbf{r}^k - 2\alpha^k (\mathbf{r}^k)^T \mathbf{A} \mathbf{p}^k + (\alpha^k)^2 (\mathbf{A} \mathbf{p}^k)^T \mathbf{A} \mathbf{p}^k$$

Widać, że kwadrat normy jest kwadratową funkcją α^k a współczynnik przed $(\alpha^k)^2$ jest dodatni. Oznacza to, że funkcja ta ma minimum. Obliczamy pochodną po α^k :

$$\frac{d}{d\alpha^k} (\|\mathbf{r}^{k+1}\|) = -2(\mathbf{r}^k)^T \mathbf{A} \mathbf{p}^k + 2\alpha^k (\mathbf{A} \mathbf{p}^k)^T \mathbf{A} \mathbf{p}^k$$

i przyrównujemy do zera co ostatecznie daje wartość:

$$\alpha^k = \frac{(\mathbf{r}^k)^T \mathbf{A} \mathbf{p}^k}{(\mathbf{A} \mathbf{p}^k)^T \mathbf{A} \mathbf{p}^k}$$

Schemat z taką wartością α^k nazywamy **metodą najmniejszych residuów** (Minimal Residual Method — **MINRES**).

Zadania

- 1. Sprawdź zbieżność dla nowego α^k . W tym celu:
 - Wyznacz wektor \mathbf{Ap}^k .
 - Zauważ, że wyrażenie typu $\mathbf{a}^T \mathbf{b}$ to iloczyn skalarny dwóch wektorów $\mathbf{a}^T \mathbf{b} = \mathbf{a} \cdot \mathbf{b}$. Napisz funkcję skal(int, double *, double *) liczącą iloczyn skalarny i oblicz α^k z powyższego wzoru.

Wykorzystujemy historię

Do tej pory ignorowaliśmy informację o poprawkach z poprzednich iteracji i poprawkę w k-tym kroku obliczaliśmy ze wzoru

$$\mathbf{p}^k = \mathbf{M}^{-1} \mathbf{r}^k$$

Zmienimy to przez wykorzystanie informacji o poprawce z k-1 kroku:

$$\mathbf{p}^k = \mathbf{p}^k - \beta^k \mathbf{p}^{k-1}$$

Teraz wzór na nowe residuum będzie miał postać:

$$\mathbf{r}^{k+1} = \mathbf{r}^k - \alpha^k \mathbf{A} \left(\mathbf{p}^k - \beta^k \mathbf{p}^{k-1} \right)$$

Musimy jeszcze wyznaczyć wartość nowego współczynnika β^k .

Zadania

1. Wypisz wzór na $\|\mathbf{r}^{k+1}\|$ i zróżniczkuj go po współczynniku β^k . Przyjmij, że $(\mathbf{r}^{k+1})^T \mathbf{A} \mathbf{p}^k = 0$ (wynika to z poprzedniej iteracji).

Schemat, w którym współczynniki α^k i β^k obliczane są po przez minimalizację residuów nazywamy **uogólnioną metodą najmniejszych residuów** (Generalized Minimal Residual Method — **GMRES**).

Zadania

- 1. Zmodyfikuj proces iteracji według schematu:
 - oblicz residuum $\mathbf{r}^k = \mathbf{b} \mathbf{A}\mathbf{x}^k$
 - oblicz poprawkę $\mathbf{p}^k = \mathbf{M}^{-1}\mathbf{r}^k$
 - jeżeli nie jest to pierwsza iteracja: oblicz β^k i nową poprawkę $\mathbf{p}^k = \mathbf{p}^k \beta^k \mathbf{p}^{k-1}$
 - oblicz α^k
 - wyznacz nowe rozwiazanie $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{p}^k$
 - ullet zachowaj starą poprawkę $\mathbf{p}^k = \mathbf{p}^{k-1}$ (opłaca się też zachować wektor $\mathbf{A}\mathbf{p}^{k-1}$).

Jeśli macierz A jest symetryczna i dodatnio określona...

W przypadku naszego zadania MES możemy wykorzystać fakt, że macierz **A** jest symetryczna i dodatnio określona. Wtedy zamiast minimalizować $(\mathbf{r}^{k+1})^T \mathbf{r}^{k+1}$ możemy zminimalizować pewien specjalny funkcjonał:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{b}^T \mathbf{x}$$

Zadania

5

- 1. Odwołując się do fizyki naszego przypadku, odpowiedz na poniższe pytania:
 - Czym jest funkcjonał $f(\mathbf{x})$?
 - Dlaczego macierz A jest symetryczna?
 - Dlaczego A jest dodatnio określona?

- 2. Podstaw w powyższym wzorze $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{p}^k$, zróżniczkuj i oblicz α^k . Zauważ, że $\frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} \mathbf{b}^T \mathbf{x} = \text{const.} + \frac{1}{2}(\alpha^k \mathbf{p}^k)^T \mathbf{A}(\alpha^k \mathbf{p}^k) \mathbf{r}^T(\alpha^k \mathbf{p}^k)$.
- 3. Analogicznie jak w poprzednim punkcie, podstaw $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \left(\mathbf{p}^k \beta^k \mathbf{p}^{k-1} \right)$, zróżniczkuj względem β^k i wyznacz β^k (tym razem $(\mathbf{p}^{k-1})^T \mathbf{r}^k = 0$).

Zadanie

Zastosuj identyczny schemat iteracji jak w poprzednim punkcie ale zmień α^k i β^k . Zbadaj zbieżność.

Taki schemat nazywamy metodą **gradientu sprzężonego** (Conjugate Gradient Method — \mathbf{CG}).

Uwaga: Aktualnie zbieżność jest bardzo słaba. Wynika to z faktu, że choć \mathbf{A} jest symetryczna to preconditioner z metody Gaussa-Seidla \mathbf{M}^{-1} już nie jest.

Zadanie

Zbadaj zbieżność z preconditionerem diagonalnym, lub wyrażeniem $\mathbf{p}^k = \mathbf{r}^k$ (brakiem preconditionera).

Uwaga: Metodę Conjugate Gradient można zaimplementować w bardziej "zwartej" formie. Taki schemat można znaleźć na Wikipedii, bądź w notatkach z wykładu.