Abstract Mathematics Homework 3

Jacob Huesman, 03 Feb 2016

1 Book Problems

1.1 Problem 3.2

- (a) Let x be an integer. Prove that if x is odd, then x^2 is odd. Make sure you state your assumption as the first line and your conclusion as the last line.
- (b) State the contrapositive of what you just proved.
- (c) Combining the result of part (a) with Theorem 3.3 gives a stronger result. Say precisely what that result is.

Proof.

Since x is odd, we know that for some integer n, x = 2n + 1.

We can then state the following:

$$x^{2} = (2n+1)^{2} = 4n^{2} + 4n + 1 = 2(2n^{2} + 2n) + 1$$
 (1)

So $x^2 = 2(2n^2 + 2n) + 1$, where $2n^2 + 2n$ is an integer k.

Therefore $x^2 = 2k + 1$, which matches the definition of an odd number.

We can then conclude that if x is odd, then x^2 is odd.

The contrapositive of this statement is, if x^2 is even, then x is even.

DO C

1

1.2 Problem 3.3

For each of the following, write out the contrapositive and the converse of the sentence.

- (a) If you are the President of the United States, then you live in a white house.
- (b) If you are going to bake a soufflé, then you need eggs.
- (c) If x is a real number, then x is an integer.
- (d) If x is a real number, then $x^2 < 0$.

1.2.1 If you are the President of the United States, then you live in a white house.

Contrapositive: If you don't live in a white house, you are not the President of the United States.

Converse: If you live in a white house, you are the President of the United States.

1.2.2 If you are going to bake a soufflé, then you need eggs.

Contrapositive: If you don't need eggs, then you are not going to bake a soufflé.

Converse: If you need eggs, you are going to bake a soufflé.

1.2.3 If x is a real number, then x is an integer.

Contrapositive: If x is not an integer, then x is not a real number.

Converse: If x is an integer, then x is a real number.

1.2.4 If x is a real number, then $x^2 < 0$

Contrapositive: If x is not an integer, then x is not a real number.

Converse: If x is an integer, then x is a real number.

1.3 Problem 3.14

Let n be an integer. Prove that if 3n is odd, then n is odd.

Proof.

The contrapositive of the above statement is, if n is even, then 3n is even.

An even number is defined as x = 2m, where $m \in \mathbb{Z}$.

So 3n = 3(2m) = 2(3m) = 2q where $q \in \mathbb{Z}$.

Knowing $q \in \mathbb{Z}$, we find that if n is even, then 3n is even.

The above statement being the contrapositive of what we were trying to prove, we conclude that if 3n is odd, then n is odd.

1.4 Problem 3.15

Let x be a natural number. Prove that if x is odd, then $\sqrt{2x}$ is not an integer. *Proof.*

The contrapositive of the above statement is, if $\sqrt{2x}$ is an integer, then x is even.

If x is odd and $x \in \mathbb{N}$, x = 2n + 1 for $n \in \mathbb{N}$

Substituting this into $\sqrt{2x}$, you get $\sqrt{2(2n+1)}$, where (2n+1) is clearly an integer.

An integer multiplied by an integer will always return an integer, so 2(2n+1) is also an integer.

$$\sqrt{2(2n+1)} = \sqrt{4(k+1/2)} = 2\sqrt{k+1/2} \tag{1}$$

From the above equation we conclude that $\sqrt{k+1/2}$ is not an integer and therefore if x is odd, then $\sqrt{2x}$ is not an integer.

1.5 Problem 3.16

Let x and y be real numbers. Show that if $x \neq y$ and $x, y \geq 0$, then $x^2 \neq y^2$. *Proof.*

We start by taking the contrapositive of the above statement.

If
$$x^2 = y^2$$
, then $x = y$ and $x, y \ge 0$.

For a to equal b, $\frac{a}{b}$ must equal 1.

If follows that
$$\frac{x^2}{y^2} = (\frac{x}{y})^2 = 1$$
.

If we take the square root of both sides we get $\frac{x}{y} = 1$.

Therefore if
$$x^2 = y^2$$
, then $x = y$.

We conclude via contrapositive that if $x \neq y$ and $x, y \geq 0$, then $x^2 \neq y^2$.

2 Group Problem