Journal of Chemical Theory and Computation

Hydrogen Interaction in Ti-Doped LiBH₄ for Hydrogen Storage: A Density Functional Analysis

Jianjun Liu and Qingfeng Ge*

Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901

Received June 4, 2009

Abstract: Density functional theory studies have been carried out to investigate the energetics and structures of Ti-doped LiBH₄ (001), (100), and (010) surfaces. The possibilities of Ti occupying various positions at these surfaces leading to substitution, surface adsorption, and interstitial insertion are examined. Among all possible structures, a Ti atom energetically prefers to occupy interstitial positions involving three or four BH₄ hydrides and to stay above the top layer of B atoms. The most stable species on the three surfaces have a similar local structure, described as $TiB_2H_8-nBH_4$ (n=1, 2), with varying spin states. Molecular orbital analysis for the local structures showed that the structural stability could be attributed to the symmetryadapted orbital overlap between Ti and "inside" B-H bonds. Furthermore, the hydrogen desorption energies from many positions in these local complex structures were reduced significantly with respect to that from the clean surface. The most favorable hydrogen desorption pathways are found to lead to triplet dehydrogenation products. Therefore, the triplet TiB₂H₈-BH₄ in (001) and TiB₂H₈-2BH₄ in (010) can desorb hydrogen in molecular form, while the quintet TiB₂H₈-BH₄ in (100) must first desorb hydrogen atoms, followed by the formation of a hydrogen molecule in the gas phase. The catalytic effect of Ti doped in LiBH₄ has been compared with that in NaAlH₄.

1. Introduction

Many attempts have been made to develop new materials with high hydrogen storage capacities in order to meet the demand of commercial vehicles powered by H₂/O₂ proton exchange membrane fuel cells. 1-3 Lithium borohydride (LiBH₄) has been an attractive candidate due to its intrinsically high gravimetric and volumetric hydrogen capacities (18.2 wt %, 121 kg/m³).² Unfortunately, pure LiBH₄ material is too stable and only liberates 2% of the hydrogen even at the melting point (541-559 K).⁴ For LiBH₄, the partial decomposition to LiH(s) + B(s) + $3/2H_2(g)$ has a standard enthalpy of 100.3 kJ/mol.⁵ The highly endothermic reaction indicates that dehydrogenation of LiBH₄ must be performed at elevated temperatures. The experimental results of Züttel et. al showed that a significant hydrogen desorption peak started at 673 K and reached its maximum value around 773 K.6 In order to use LiBH₄ as a practical hydrogen storage

Many compounds which bind strongly to borohydrides or provide a source to allow partial substitution of Li cations have been mixed with LiBH₄. Züttel et al. found that 75% LiBH₄ mixed with 25% SiO₂ can reduce the initial hydrogen release temperature from 673 to 523 K.⁶ On the other hand, the rehydrogenation reaction will not occur under mild conditions. The same authors reported that synthesizing LiBH₄ from its elements under conditions up to 923 K and 150 bar of H₂ pressure was unsuccessful.⁶ Mixing compounds with cations of similar size to Li but having a higher valence, such as Mg²⁺, was also attempted.⁷ The temperature of the dehydrogenation reaction was lowered by approximately 30 K when Li in LiBH₄ was partially substituted by Mg²⁺. Vajo et al. reported a more complicated mixture of LiBH₄ and LiH + 0.5MgB₂, doped with 2-3 mol % TiCl₃. They showed that 9 wt % hydrogen was adsorbed at 627 K

material, the enthalpy of the dehydrogenation reaction has to be reduced, by either stabilizing the dehydrogenated state or destabilizing the hydrogenated state.

^{*} Corresponding author e-mail: qge@chem.siu.edu.

and 100 bar, neglecting the weight of TiCl₃. Their P-C-T isotherms demonstrated that the addition of MgH2 reduced the rehydrogenation/dehydrogenation enthalpy by ~25 kJ/ (mol H₂) compared with the pure LiBH₄ material. A finding relevant to the present study is that their initial experiments without TiCl₃ displayed poor kinetic performance. Recently, Au et al. showed that LiBH4 modified by metal oxides or metal chlorides, such as TiO₂ and TiCl₃, could reduce the dehydrogenation temperature and achieve rehydrogenation under moderate conditions.^{9,10} Modified LiBH₄ releases 9 wt % H₂, starting as low as 473 K, which is significantly lower than the hydrogen-releasing temperature of 673 K for pure LiBH₄. After being dehydrogenated, the modified LiBH₄ can absorb 7-9 wt % H₂ at 873 K and 70 bar, a significant improvement from 923 K and 150 bar for pure LiBH₄. Very recently, Fang et al. reported that a mechanically milled 3LiBH₄/TiF₃ mixture released 5-6 wt % hydrogen at temperatures of 343-363 K.11 Similarly, the use of other dopants has been attempted to reduce the hydrogen desorption temperature of MgH₂. ^{12,13} Clearly, the addition of Ti compounds (TiO2, TiCl3, and TiF3) results in a strong improvement for hydrogen desorption and, to a lesser extent, for rehydrogenation. On the other hand, the improvement brought by these additives to LiBH₄ is not sufficient to make LiBH₄ viable as a practical hydrogen storage medium in spite of its structural similarity to NaAlH₄. Chemically, boron holds onto its hydrogen atoms tighter in LiBH4 than aluminum does in NaAlH₄. A comparative study of Ti-doped LiBH₄ and NaAlH₄ would provide some insights into the effect of doped Ti on hydrogen interactions in these materials. Previously, we identified an interstitial TiAl₃H₁₂ complex structure to be the most stable species in both Ti-doped NaAlH₄(001) and (100) surfaces. ^{14,15} Hydrogen desorption energies from many positions of the TiAl₃H₁₂ complex structure were reduced considerably as compared with that from an undoped surface. Our prediction of the complex structure was confirmed subsequently by an experimental study: the interstitial structure was shown to account for 75% of all Ti doped in NaAlH₄. ¹⁶ Furthermore, we studied 3dtransition-metal (TM)-doped NaAlH₄(001) and found that the stability of TMAl₃H₁₂ and its desorption energies correlate with the 18-electron rule. 17 The coordination chemistry of a transition metal with tetrahydroborate ligands has been extensively discussed in the literature. 18-23 The electron-counting rule and electronic structure analysis were used to explain the stability of molecular complexes such as $Ti(BH_4)_3$. 18,20,23,24 Considering that $Ti(BH_4)_n$ may be formed in Ti-doped LiBH₄, it is expected that the explanation and analysis applied in Ti(BH₄)₃ can be helpful in understanding the stability of local structures in Ti-doped LiBH₄. On the other hand, we expect some discrepancies between $Ti(BH_4)_n$ in Ti-doped $LiBH_4$ and the complex $Ti(BH_4)_3$ because of the different ligand charge. Furthermore, electron redistribution in a saltlike solid-state complex may cause the electron-counting rule to be different from that of the isolated clusters. The creation of the surface will further change the local environment of the ions, especially in regions close to the surface.

Herein, we explored the effect of added Ti to the B–H interaction in LiBH₄ on the basis of various surface models. We examined the structures and the stabilities of LiBH₄ (001), (100), and (010) surfaces doped with a Ti atom. On the basis of the most stable structures, we computed the hydrogen desorption energies and compared them with those of undoped LiBH₄ surfaces. We also compared the effect of doped Ti in LiBH₄ surfaces with that in NaAlH₄ surfaces and identified key differences between the two systems.

2. Computational Details

Periodic density functional theory (DFT) calculations with spin-polarization were carried out using the VASP code. 25,26 The electron—ion interactions were described by the projector augmented wave (PAW). 27 The valence electrons of Li $2s^12p^0$, B $2s^22p^1$, H $1s^1$, and Ti $3d^34s^1$ were treated explicitly with a plane-wave basis set at a cutoff energy of 400 eV. The exchange-correlation energy was calculated with the PBE form of the generalized gradient-corrected functional. 28,29 The surface Brillouin zone was sampled with the K points generated by the Monkhorst—Pack scheme and with a space less than 0.05 Å $^{-1}$. Similar parameters have been used in our previous calculations, in which test results were consistent with experimental observation. 14,15,17,31,32

The supercell structures of clean LiBH₄ surfaces were built from the optimized bulk structure.³² The vacuum spaces in all surface calculations are larger than 15 Å along the z direction. The geometries of slabs were optimized by the quasi-Newton or conjugate-gradient method as implemented in VASP. A Gaussian electronic smearing of 0.1 eV was employed to improve the convergence of electronic selfconsistent cycles. The convergence criteria for energy and force are 1.0×10^{-6} eV and 0.05 eV/Å, respectively. Six layers of B atoms were included in the slabs, simulating the surfaces. The Li and B atoms in the bottom two layers of the slab were fixed at their corresponding bulk positions, while the Li and B atoms in the top four layers as well as all of the hydrogen atoms were allowed to relax according to the Hellman-Feynman forces. The total energies of the relaxed slabs were used as references to calculate the binding energy for Ti doped in different positions. The reference energy of the Ti atom was calculated by placing a Ti atom in a large box with spin-polarization. The converged selfconsistent field cycles resulted in a Ti atom with a quintet multiplicity, consistent with the electronic ground state of the Ti atom.³³ The electronic structures of local structures were calculated using Gaussian03 without further optimization and analyzed with GaussView 3.0.34 The atomic electronic charges were determined according to the Bader's scheme implemented by Henkelman and Jonsson.³⁵

3. Results and Discussion

3.1. Energetics and Structures of Ti-Doped LiBH₄. A number of experimental studies of TiCl₃-doped sodium alanates indicated that Ti was reduced to zero valence and dispersed into the host materials.^{36–42} We therefore chose to study the Ti atom interaction with the LiBH₄ surfaces. The slabs of three clean surfaces, that is, (001), (100), and

(010), were optimized first. The unit cells of these surfaces have lateral dimensions of 7.1065×8.6532 , $8.6532 \times$ 6.6140, and 6.6140 \times 7.1065 Å², respectively.³² The clean (100) and (010) surfaces have a surface energy of \sim 0.12 J/m² and are significantly more stable than the (001) surface.³² On the basis of the relaxed clean surfaces, several possible positions for adding Ti in the LiBH4 surfaces were considered. The relaxed structures are shown in Figure 1a, the (001) surface, 1b, the (100) surface, and 1c, the (010) surface. The binding energy and Bader charge of Ti are also given in each structure. In all of the structures, Ti loses electrons and becomes positively charged. Furthermore, the Bader charge on Ti depends on its depth/position and coordination with the BH₄ units. According to the final position of the Ti atom, the relaxed structures were classified as interstitial insertion, surface adsorption, and substitution of Li, which were prefixed with *Inter*, *Surf*, and *Sub*, respectively. We note that Surf corresponds to the structures in which Ti interacts with BH₄⁻ through H only. In order to account for the local geometric structures, we categorized the arrangements of the BH₄⁻ ligands around the Ti atom into T-shape, linear, triangle, and square. The binding energies, the depth of the Ti atom with respect to the surface layer B atoms, as well as the local geometric shape are all summarized in Table 1.

For Ti-doped LiBH₄ (001) surface, *Inter_1*, with a binding energy of -2.598 eV, is energetically the most stable among all relaxed structures of the Ti-doped LiBH₄ (001) surface. In *Inter_1*, Ti connects with two BH₄ units in the first layer via Ti-B and Ti-H bonds and interacts with a third BH₄ unit in the second layer through a Ti-H bond, as shown in Figure 1a. The local structure of Inter_1 is referred to as TiB₂H₈-BH₄, distinguishing the BH₄ unit in the second layer from those in the top layer. The Ti atom and three BH₄⁻ ligands form a T-shape geometric arrangement. *In*ter_5, which has a similar local structure to Inter_1, is 1.374 eV less stable. The obvious difference between Inter_5 and *Inter 1* is the location of the Ti in the former with respect to the surface: Ti is situated 4.387 Å below the first layer B atoms in *Inter_5*, whereas the Ti depth is only 0.343 Å in *Inter_1*. In fact, there is a correlation between the depth of Ti in the slab and the stability of the structure for the same type of doping mode (interstitial insertion, surface absorption, and substitution) in the same surface.

The slab representing the LiBH₄ (100) surface has a double-layered arrangement, that is, the layer spacing alternates between large and small. This resulted in two possible slab models for the surface: one with an arrangement of a small interlayer spacing between the top and second layers and a large one between the second and the third layers and another with the reversed arrangement. Our results show that the first one is 0.121 eV more stable than the second. Therefore, we chose the first arrangement as our model for the (100) surface.

Doped Ti interacts primarily with the BH₄⁻ units in the first two layers. Again, Inter_1 is the most stable structure among all of the relaxed structures of the Ti-doped LiBH₄ (100) surface and has a binding energy of -1.608 eV. Three surrounding BH₄ units and the Ti atom form a T-shape local arrangement. We note that the local structure of *Inter 1* in the (100) surface is very similar to that of Inter_1 in the (001) surface and can also be denoted as TiB₂H₈-BH₄. As shown in Figure 1b, the substitutional doping (Sub 1 and Sub_2) seems to result in local structures similar to those in interstitial insertion. However, these structures are much less stable. The reduced stabilities of these structures are related to the displacement of Li cations, which costs a significant amount of energy. The weaker electron-donating ability of Ti relative to that of Li causes fewer electrons to be donated from Ti to the sp³ orbitals of BH₄⁻, leading to an incomplete occupancy of the bonding orbitals.

The results of doping Ti in the LiBH₄ (010) surface are similar; that is, the interstitial insertion is energetically the most favorable doping mode. In *Inter_1* formed on the (010) surface, two BH₄⁻ units in the second layer share their interactions with the two BH₄ units in the top layer, forming a TiB₂H₈-2BH₄ local complex. The binding energy of this structure is -1.709 eV. Geometrically, TiB₂H₈-2BH₄ forms a square arrangement.

In summary, doped Ti prefers the interstitial position formed by three or four BH₄⁻ units, forming a TiB₂H₈-BH₄ complex in the (001) and (100) surfaces and a TiB₂H₈-2BH₄ complex in (010). In the most stable structures, Ti sits in the first layer of the LiBH4 surface. The detailed local structures are replotted in Figure 2 by removing other Li atoms and other BH₄⁻ units that are not directly connected to the Ti atom. The atoms in those structures are numbered in Figure 2 and will be referred to as such in the following sections. Although TiB₂H₈-BH₄ (T-shape) and TiB₂H₈-2BH₄ (square) have different geometric arrangements, the main part of the structures, TiB₂H₈, is very similar in the three structures. In fact, the linear TiB₂H₈ is the main constituent of the structure and determines the stability of the structures. This analysis is supported by the fact that the binding energies of Inter_1 and Inter_2 in the Ti-doped LiBH₄ (001) surface only differ by 0.189 eV. However, these binding energies are much smaller than that of Ti in the TiAl₃H₁₂ structure formed upon doping Ti in NaAlH₄ (-4.182 eV). 14 We showed that doping Ti in NaAlH₄ would become thermodynamically unfavorable if bulk Ti was used as a reference state.¹⁷ Doping Ti in LiBH₄ will be more endothermic than in NaAlH₄.

3.2. Hydrogen Desorption from TiB₂H₈-BH₄ and TiB₂H₈-2BH₄. Many experiments showed that the Ticontaining compounds in alanate-based materials enhanced the dehydrogenation kinetics and improved the rehydrogenation conditions. 16,37,40,43-46 We attributed the reduction in dehydrogenation temperatures to the formation of the TiAl₃H₁₂ complex. We showed that hydrogen desorption energies from many positions of the complex were reduced compared to the undoped surfaces. Furthermore, our analyses indicated that the effect was not localized to the complex structure. Herein, we examined the effect of doped Ti in LiBH₄ on dehydrogenation on the basis of the most stable structures: TiB₂H₈-BH₄ on (001) and (100) and TiB₂H₈- $2BH_4$ on (010).

We note that the most stable structures carry net magnetic moments. Our further analyses of local spin-density showed

Figure 1. The DFT-GGA relaxed structures of Ti doped in the (a) (001), (b) (100), and (c) (010) surface of LiBH₄. The binding energy and net Bader charge of Ti are given in the top-left and bottom-left corners of each structure, respectively. The white, peach, purple, and gray balls represent H, B, Li, and Ti atoms, respectively. The yellow ball in the substitution structures represents the Li atom substituted by the Ti atom.

that the magnetic moments were largely localized to Ti, with some residual spins (1 to 2 orders of magnitude lower than on Ti) on the neighboring BH_4^- units but limited to the $TiB_2H_8-nBH_4$ (n=1,2) local structures. The resulting

magnetic moments are integers in most cases. Even in the few cases of noninteger values, they are within 0.01 from the closest integer. Therefore, we borrowed the terms that have been used to describe isolated molecules and considered

Table 1. Binding Energies, Depth of Ti with Respect to the First Layer of B, and Shape of Local Structures in the Ti-Doped LiBH₄ (001), (100), and (010) Surfaces

-			bind	ing energy	(eV)					
species	depth	ligand	singlet	triplet	quintet					
		Ti-Doped Li	BH ₄ (001)							
Inter_1	-0.343	T-shaped	-2.256	-2.598	-2.580					
Inter_2	+0.233	linear	-2.181	-2.409	-2.205					
Inter_3	-0.743	square	-1.475	-1.660	-1.716					
Inter_4	-2.048	linear	-1.261	-1.442	-1.581					
Inter_5	-4.387	T-shaped	-1.154	-1.224	-1.205					
Sub_1	-2.053	triangle		-1.432	-1.422					
Sub_2	-0.445	linear	-1.048	-1.315	-1.322					
Surf_1	-0.547	square		-2.132	-2.233					
		Ti-Doped Li	BH₄ (100)							
Inter_1	-0.059	T-shaped	-1.010	-1.392	-1.608					
Inter_2	-0.937	T-shaped	-0.598	-0.870	-1.101					
Sub_1	-0.095	T-shaped	-0.987	-1.187	-0.834					
Sub_2	-1.233	triangle	-0.873	-1.005	-0.881					
Surf_1	+1.148	linear	-0.213	-0.922	-0.790					
Surf_2	+1.233	triangle	-0.242	-0.481	-0.904					
Ti-Doped LiBH ₄ (010)										
Inter 1	-0.907	square	-1.594	-1.709	-1.444					
Inter 2	-2.399	T-shape	-1.093	-1.330	-1.270					
Inter_3	-0.699	triangle	-0.670	-0.924	-1.081					
Inter_4	-4.431	T-shape	-0.779	-0.999	-0.408					
Sub_1	-1.920	triangle	-1.106	-1.276	-1.060					
Surf_1	+0.226	linear	-0.655	-0.872	-1.046					

the unit cell in a singlet (zero unpaired electron), triplet (two unpaired electrons), or quintet (four unpaired electrons) state.

We expected that the spin states would play some roles in hydrogen desorption. We calculated the hydrogen desorption energies from various positions of the TiB₂H₈-nBH₄ complex structures. We considered the products in different spin states and listed the desorption energies accordingly in Table 2. The numbering of hydrogen atoms in Table 2 was labeled in the local structures shown in Figure 2. For clarity, the lower-energy and, therefore, favorable product states are given in bold. We stress that all of our calculations have been done with the periodic boundary condition using the VASP program. The cluster structures were used for clarity in the presentations. Following the convention that we developed in treating the TiAl₃H₁₂ complex, the hydrogen atoms were classified into outside hydrogen atoms (H₅~H₈), inside hydrogen atoms ($H_9 \sim H_{12}$), and mixed hydrogen atoms $(H_1 \sim H_4)$, according to their relative positions to Ti. As a reference, the hydrogen desorption energies from the undoped (001), (100), and (010) surfaces were calculated as 3.676, 3.856, and 3.768 eV, respectively, and all led to a singlet product state.³² In general, all hydrogen desorption energies listed in Table 2 are significantly lower than those of the corresponding clean surfaces. The lower desorption energies may favor a quick release of hydrogen from the system, which is consistent with the experimental observation. 11 We believe that the doped Ti in LiBH₄ can improve the thermodynamics by reducing dehydrogenation energies and may enhance the dehydriding and rehydriding kinetics through the complex active centers. Although the activation barrier of the elementary step provides some kinetics information about the process, an overall kinetic description needs all of the steps involved in the complicated network of reactions. These steps include hydrogen recombination and desorption as well as hydrogen migration and phase transition. This is beyond the scope of the present paper.

We used S, T, and Q to denote the singlet, triplet, and quintet states, respectively, and summarized possible reactions involved in dehydrogenation into the following reactions:

$$S \rightarrow S + H_2$$
 (R1)

$$S \rightarrow S + H + H \rightarrow S + H_2$$
 (R2)

$$T \rightarrow T + H_2$$
 (R3)

$$T \rightarrow S + H + H \rightarrow S + H_2 \tag{R4}$$

$$Q \rightarrow Q + H_2$$
 (R5)

$$Q \rightarrow T + H + H \rightarrow T + H_2 \tag{R6}$$

Reactions R1, R3, and R5 represent one-step pathways for forming a hydrogen molecule, while eqs R2, R4, and R6 are two-step pathways which involve desorbing atomic hydrogen first and recombining the desorbed hydrogen atoms in the gas phase. Along the two-step pathways, the spin state may change as the reaction progresses. For example, triplet TiB_2H_8 -BH₄ on the (001) surface and TiB_2H_8 -2BH₄ on the (010) surface can form a singlet product following the H atom desorption, R4, whereas the quintet TiB₂H₈-BH₄ on the (100) surface can lead to a triplet product, R6. The desorption energies listed in Table 2 are the overall reaction energies of R3–R6. A triplet product state is energetically more favorable than the singlet product state in the Ti-doped LiBH₄ (001) surface. Therefore, we expect that the dehydrogenation of triplet TiB₂H₈-BH₄ on the (001) surface will follow the one-step mechanism described in reaction R3 and desorb a hydrogen molecule from the Ti catalytic center. As shown in Table 2, the inside hydrogen atoms (H9–H12) have a much higher desorption energy than those from other positions but are still lower than that of the undoped clean surface. As discussed later, the structural stability really depends on the orbital overlap between inside B-H bonds and Ti. Desorption of inside hydrogen atoms results in a relatively higher desorption energy due to the reduced orbital overlap between Ti and inside B-H bonds.

In contrast, from the quintet TiB₂H₈—BH₄ of the Ti-doped LiBH₄ (100) surface, the triplet product state upon desorbing hydrogen is favored. Therefore, the quintet TiB₂H₈—BH₄ on surface (100) may have a two-step dehydrogenation mechanism, described in reaction R6. Hydrogen atoms are first released from the TiB₂H₈—BH₄ cluster and then combine to form a hydrogen molecule in the gas phase. An exception is that some inside hydrogen pairs such as H10—H11 and H10—H12 show much lower desorption energies than the corresponding pairs in the Ti-doped LiBH₄ (001) surface. A careful examination revealed that hydrogen desorption from these positions of TiB₂H₈—BH₄ in the (100) surface led to outside hydrogen atoms being transferred to inside positions. In contrast, a similar hydrogen transfer was not found in the triplet TiB₂H₈—BH₄ in the (001) surface.

For the triplet TiB₂H₈-2BH₄ of the Ti-doped LiBH₄ (010) surface, the majority of hydrogen desorption pathways still led to triplet states. Desorption of H1-H2, H3-H4, and

Figure 2. Local structures of the most stable species in the Ti-doped (a) LiBH₄(001), (b) LiBH₄ (100), and (c) LiBH₄ (010).

Table 2. Hydrogen Desorption Energies (unit: eV) of the Most Stable Species in Ti-Doped LiBH₄ (001), (100), and (010) Surfaces

	triplet TiB ₂ H ₈	triplet TiB ₂ H ₈ -BH ₄ (001)		quintet TiB ₂ H ₈ -BH ₄ (100)		triplet TiB ₂ H ₈ -2BH ₄ (010)	
	singlet	triplet	triplet	quintet	singlet	triplet	
H1-H2	1.092	0.915	-0.028	1.749	0.210	0.389	
H3-H4	N/A	1.193	0.587	1.664	0.150	0.387	
H5-H6	2.477	2.312	0.698	1.896	0.473	0.403	
H5-H7	1.363	1.070	0.463	2.520	0.550	0.459	
H6-H7	1.217	1.095	0.513	2.246	0.759	0.718	
H6-H8	1.219	1.088	0.557	2.790	0.185	0.221	
H9-H10	N/A	N/A	N/A	2.324	0.568	0.480	
H9-H11	1.510	1.269	2.089	2.532	0.594	0.527	
H10-H11	2.101	1.901	0.551	2.079	0.859	0.718	
H10-H12	2.182	2.248	0.528	2.182	0.431	0.320	

H6—H8 resulted in singlet states. We consider the singlet and triplet states as the competitive hydrogen desorption pathways due to the very similar desorption energies. We would point out that the triplet TiB₂H₈—2BH₄ in the (010) surface has lower desorption energies than the triplet and quintet TiB₂H₈—BH₄ in the (001) and (100) surfaces, respectively.

3.3. Comparison of Ti-Doped LiBH₄ with Ti-Doped NaAlH₄. As we stated in the Introduction, the improvement by adding Ti compounds in LiBH₄ is not as efficient as doping Ti compounds in NaAlH₄. A comparison of Ti-doped LiBH₄ and Ti-doped NaAlH₄ will help to understand the changes that Ti induces in B—H interactions and how these changes affect subsequent dehydriding/rehydriding reactions. Our previous studies of Ti-doped NaAlH₄ showed that doped Ti prefers to occupy the interstitial site and interacts with surrounding AlH₄⁻, forming a TiAl₃H₁₂ species. ^{14,15} We further suggested the role of the TiAl₃H₁₂ complex in dehydriding and hydriding sodium alanate-based hydrogen storage materials. ¹⁷

First of all, our results indicate that Ti energetically prefers to occupy the interstitial positions in both NaAlH₄ and LiBH₄ surfaces, although the detailed structures of the local complexes in LiBH₄ are different from that of Ti-doped NaAlH₄. We used TiB₂H₈-nBH₄ to represent the complex structures formed from doping Ti in LiBH₄. The stability of these species may play an important role in their reactivity for the dehydriding/hydriding reactions. On the other hand, hydrogen desorption energies in both Ti-doped LiBH₄ and NaAlH₄ were also reduced significantly with respect to that from their corresponding undoped clean surfaces. Dehydriding the TiB₂H₈-nBH₄ (n=1-2) species would lead to the formation of TiB_n (n=2-3), which is consistent with the experimental observation.

There are also distinctive discrepancies between Ti-doped NaAlH₄ and Ti-doped LiBH₄. First, the bond activation by Ti in LiBH₄ is much less dramatic than that in NaAlH₄. In Ti-doped LiBH₄, the inside B-H bonds were only slightly elongated (about 0.02-0.04 Å) compared with the B-H bond in the clean surface. In contrast, two inside A-H bonds in TiAl₃H₁₂ of Ti-doped NaAlH₄ surfaces were broken, and the dissociated H atoms were transferred to Ti. 14,15 To understand the electronic origin of the difference, we analyzed the densities of state (DOSs) of the most stable interstitial structures (Inter_1) on each Ti-doped LiBH₄ surface. The DOSs of TiB₂H₈-BH₄ in the (001) surface, TiB₂H₈-BH₄ in the (100) surface, and TiB₂H₈-2BH₄ in the (010) surface were plotted in Figure 3a-c. In each DOS plot, we included the Ti atom, the boron atoms (B1 and B2) of the neighboring BH₄⁻ units, and the hydrogen atoms (H4, H9, and H10) connected with Ti. The bond-activation difference can be attributed to the back-donation of electrons from the d orbitals of Ti to antibonding orbitals of the B-H bond. In the previous analysis of Ti-doped NaAlH4, we attributed some new peaks at -2 to 0 eV in Al1- and Al2-DOS to electron backdonation from Ti d orbitals to A-H antibonding orbitals.¹⁷ However, similar electron backdonation was not found in the Ti-doped LiBH₄ surfaces, although electron donation from bonding orbitals of B-H to the empty orbital of Ti occurred, as shown in low-energy regions ($-8\sim-6$ eV) of Ti-DOS. A lack of backdonation in Ti-doped LiBH4 may be due to the considerable gap between the occupied orbital of Ti and virtual orbitals of BH₄⁻. We have demonstrated that the electron back-donation played a dominant role in H-H and A-H bond activation in transition-metal-catalyzed NaAlH₄. ¹⁷ In the case of Tidoped LiBH4, the weak backdonation is the main reason for the observed low reactivity. 9,10 Fe and Mo, which have a

Figure 3. Local densities of state (DOSs) of the H, B, and Ti atoms in the most stable structures, that is, triplet TiB₂H₈-BH₄ in the (001) surface, quintet TiB₂H₈-BH₄ in the (100) surface, and triplet TiB₂H₈-2BH₄ in the (010) surface.

stronger backdonation capability from their occupied orbitals to the virtual orbitals of BH4-, may be better catalysts to activate the B-H bonds. 47,48

Another difference in the two systems lies in the correlation of stability of local structures with the 18-electron rule. The XH_4^- (X = B, Al) ligands can act as a two-, four-, and six-electron donor by coordination of Ti through one, two, or three X-H bonds. 17,19,20,49 Usually, the stability of relaxed structures can be simply predicted by applying the electroncounting rule. 50,51 The total number of electrons surrounding Ti can be calculated by adding its valence electrons and the electrons shared with the ligands. For Ti, 18 electrons are needed to fill the five d orbitals, one s orbital, and three p orbitals in order to reach a closed-shell configuration. In some cases, the complex in a high-spin state accommodates fewer electrons. For example, a 16-electron complex in a triplet state is the most stable. Deviation from this number resulted in less stable structures and, therefore, lower binding energies. 18,19 Unfortunately, the stability order of relaxed structures in the Ti-doped LiBH₄ (001) surface does not follow this electron-counting rule. There are a total of 14 electrons surrounding the Ti atom in the most stable structure *Inter 1* of the (001) surface. However, the triplet state is the lower-energy spin-state for Inter_1. Similarly, both Inter_3 and Inter_4 in the (001) surface have 16 electrons and are in the quintet state instead of the triplet state. Therefore, the electron-counting rule is not strictly applicable in predicting the structural stability of Ti-doped LiBH₄. However, in the TM-doped NaAlH4, the stability of most structures was found to follow the 18-electron rule. ¹⁷ The difference between Ti-doped LiBH4 and NaAlH4 could be understood by comparing the DOSs of the two systems. In the Ti-doped NaAlH₄, there is a very small gap (about 1.5 eV) from the bonding orbitals of Al-H to the d orbitals of Ti. Electrons in these orbitals can be shared, thereby

satisfying the closed-shell requirement. On the other hand, there is about a 4 eV gap between the bonding orbitals of B-H and the d orbitals of Ti, as shown in the DOS figures of the Ti-doped LiBH₄ surfaces. The large gap makes the electrons in the B-H bond less available to the empty d orbitals of Ti.

We explored further the relationship of stability with the coordination modes of the local structures. First of all, we focus on a linear TiB₂H₈ structure (Inter 2) with a double η^2 coordinate mode. Figure 4 shows schematically the molecular orbital overlap between two BH₄⁻ ligands and the central Ti atom. We did not display the low-energy orbitals formed by the B s orbital and the four remaining H s ones because they were localized mainly on the ligands and interact poorly with transition metals. We only showed the overlaps between Ti d orbitals and ligand orbitals constructed by B p and H s. Under D_{2h} symmetry, two BH₄⁻ units generate three types of orbitals with the symmetry b_{1g} , b_{2u} , and b_{3u} . According to the orbital symmetry-adapting rule, the ligand orbitals with the symmetries of b_{2u} and b_{3u} only interact poorly with Ti 4s or 4p orbitals. Therefore, the ligand orbitals of b_{2u} and b_{3u} contribute little to the stability of TiB₂H₈. Although symmetrically allowed, the molecular orbital HOMO-1 that is constructed by the Ti d orbital and "outside" B—H bonding orbitals only shows a weak overlap. On the other hand, the molecular orbital HOMO-5 exhibits a significant orbital overlap between Ti d_{xz} and "inside" B-H bonding orbitals. Such an orbital overlap contributes significantly to the stability of the structure.

Another linear TiB₂H₈ structure, *Inter_4* in Ti-doped LiBH₄ (001), has a double η^3 coordination mode with a smaller binding energy (-1.581 eV) than that of *Inter_2* (double η^2 , -2.409 eV). We also displayed its molecular orbitals, showing the interaction between Ti and two ligands in Figure 4. Under D_{3h} symmetry, two BH_4^- units generate

Figure 4. Schematic frontier molecular orbitals of TiB₂H₈ in *Inter_2* and *Inter_4* of Ti-doped LiBH₄(001). *Inter_2* and *Inter_4* have a double η^2 coordinate with D_{2h} symmetry and a double η^3 coordinate with D_{3h} symmetry, respectively.

three types of orbitals with the symmetries a_1' , e', and e''. However, we expect the ligand orbitals with symmetries a_1' and e' not to make a major contribution to the structural stability. Only e'' orbitals generated by the two ligands are able to overlap with π -type orbitals of Ti. These orbital overlaps are very small because the ligand orbitals are not symmetric and some of the electrons are distributed in the terminal atoms. Therefore, the calculated binding energies of $Inter_4$ are much smaller than that of $Inter_2$. For the isolated complexes such as $Ti(BH_4)_3$, ab initio calculations have shown that η^2 and η^3 structures are not much different in binding energy for some transition metals. $^{23,52-55}$ Obviously, there is a large difference of stability related to η^2 and η^3 ligands between the isolated complexes $Ti(BH_4)_3$ and $TiB_2H_8-nBH_4-$ in a solid-state environment.

Finally, $TiB_2H_8-nBH_4$ (n=1,2) in Ti-doped LiBH₄ surfaces is isolated from neighboring BH_4^- units. This is in direct contrast with the $TiAl_3H_{12}$ structure formed in Ti-doped NaAlH₄ which links to the neighboring AlH_4^- units and facilitates hydrogen desorption and transfer. This structure difference may offer an explanation for the different amounts of added Ti in NaAlH₄ and LiBH₄. Experimentally, only \sim 4 mol % TiCl₃ was needed for NaAlH₄, $^{38,43,56-58}$ whereas 25 mol % TiCl₃ or TiO₂ was required to achieve significant reduction in the hydrogen desorption temperature for LiBH₄. 9,10

4. Conclusions

In the present paper, we have studied the energetics and structures of Ti-doped LiBH₄ (001), (100), and (010) surfaces using DFT-PBE methods with the plane-wave basis set and PAW potential. On the basis of our results and analysis, we conclude the following:

- (1) Ti prefers occupying the interstitial positions among three or four BH₄⁻ hydrides, forming local complex structures of TiB₂H₈-*n*BH₄ (*n* = 1, 2) with the highspin states. The stability of these structures can be explained by orbital overlap between Ti and "inside" B-H bonds.
- (2) The desorption energies from many positions of these stable complex structures are reduced significantly with respect to those from the clean surface. The triplet TiB₂H₈-BH₄ in (001) and TiB₂H₈-2BH₄ in (010) can desorb hydrogen in the form of a H₂ molecule, while the quintet TiB₂H₈-BH₄ in (100) preferably desorbs atomic hydrogen.
- (3) A comparison between Ti interaction with B-H and A-H revealed that the low reactivity of Ti-doped LiBH₄ is a result of the weak back-donation from d orbitals of Ti to the antibonding orbitals of BH₄⁻.

Acknowledgment. This work was supported by U.S. Department of Energy, Basic Energy Science grant DE-FG02-05ER46231.

References

- (1) Seayad, A. M.; Antonelli, D. M. Adv. Mater. 2004, 16, 765.
- (2) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353.
- (3) Orimo, S.; Nakamura, Y.; Eliseo, J. R.; Züttela, A.; Jensen, C. M. Chem. Rev. 2007, 107, 4111.
- (4) Fedneva, E. M.; Alpatova, V. L.; Mikheeva, V. I. Russ. J. Inorg. Chem. 1964, 9, 826.
- (5) Lide, D. R. *CRC Handbook of Chemistry and Physics*; CRC Press: Boca Raton, FL, 2004; Vol. 84.
- (6) Züttel, A.; Rentsch, S.; Fischer, P.; Wenger, P.; Sudan, P.; Mauron, P.; Emmenegger, C. J. Alloys Compd. 2003, 356–357, 515.
- (7) Orimo, S.; Nakamori, Y.; Züttel, A. Mater. Sci. Eng. 2004, B108, 51.
- (8) Vajo, J. V.; Skeith, S. L.; Mertens, F. J. Phys. Chem. B 2005, 109, 3719.
- (9) Au, M.; Jurgensen, A.; Zeigler, K. J. Phys. Chem. B 2006, 110, 26482.
- (10) Au, M.; Jurgensen, A. J. Phys. Chem. B 2006, 110, 7062.
- (11) Fang, Z. Z.; Ma, L. P.; Kang, X. D.; Wang, P. J.; Wang, P.; Cheng, H. M. *Appl. Phys. Lett.* **2009**, *94*, 044104.
- (12) Kelkar, T.; Pal, S. J. Mater. Chem. 2009, 19, 4348.
- (13) Kelkar, T.; Pal, S.; Kanhere, D. G. *ChemPhysChem* **2008**, 9, 928.
- (14) Liu, J.; Ge, Q. Chem. Commun. 2006, 1822.
- (15) Liu, J.; Ge, Q. J. Phys. Chem. B 2006, 110, 25863.
- (16) Balde, C. P.; Stil, H. A.; van der Ederden, A. M. J.; de Jong, K. P.; Bitter, J. H. J. Phys. Chem. B. 2007, 111, 2797.

- (17) Liu, J.; Han, Y.; Ge, Q. Chem.—Eur. J. 2009, 15, 1685.
- (18) Volatron, F.; Duran, M.; Lledos, A.; Jean, Y. *Inorg. Chem.* 1993, 32, 951.
- (19) Lledos, A.; Duran, M.; Jean, Y.; Volatron, F. *Inorg. Chem.* 1991, 30, 4440.
- (20) Dain, C. J.; Downs, A. J.; Goode, M. J.; Evans, D. G.; Nicholls, K. T.; Rankin, D. W. H.; Robertson, H. E. J. Chem. Soc., Dalton Trans. 1991, 4, 967.
- (21) Hitchkock, A. P.; Hao, N.; Werstiuk, N. H.; Mcglinchey, M. J.; Ziegler, T. *Inorg. Chem.* 1982, 21, 793.
- (22) Mancini, M.; Bougeard, P.; Burns, R. C.; Mlekuz, M.; Sayer, B. G.; Thompson, J. I. A.; Mcglinchey, M. J. *Inorg. Chem.* 1984, 23, 1072.
- (23) Jarid, A.; Lledos, A.; Jean, Y.; Volatron, F. *Inorg. Chem.* 1993, 32, 4695.
- (24) Íñiguez, J.; Yildirim, T.; Udovic, T. J.; Sulic, M.; Jensen, C. M. Phys. Rev. B 2004, 70, 060701(R).
- (25) Kresse, G.; Furthmiiller, J. Comput. Mater. Sci. 1996, 6, 15.
- (26) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
- (27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 70, 1758.
- (28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- (29) Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B: Condens. Matter 1996, 54, 16533.
- (30) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
- (31) Liu, J.; Ge, Q. J. Alloys Compd. 2007, 446-447, 267.
- (32) Ge, Q. J. Phys. Chem. A. 2004, 108, 8682.
- (33) Philipsen, P. H. T.; Baerends, E. J. Phys. Rev. B 1996, 54, 5326.
- (34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T. K. K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C. 02; Gaussian, Inc: Wallingford, CT, 2004.

- (35) Henkelman, G. A., A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354.
- (36) Balema, V. P.; Wiench, J. M.; Dennis, K. W.; Pruski, M. J. Alloys Compd. 2001, 329, 108.
- (37) Sandrock, G.; Gross, K. J.; Thomas, G. J. Alloys Compd. 2002, 339, 299.
- (38) Majzoub, E. H.; Gross, K. J. J. Alloys Compd. **2003**, 356–357, 363.
- (39) Bellosta von Colbe, J. M.; Bogdanovic, B.; Felderhoff, M.; Pommerin, A.; Schüth, F. J. Alloys Compd. 2004, 370, 104.
- (40) Felderhoff, M.; Klementiev, K.; Grünert, W.; Spliethoff, B.; Tesche, B.; Bellosta von Colbe, J. M.; Bogdanovic, B.; Härtel, M.; Pommerin, A.; Schüth, F.; Weidenthaler, C. *Phys. Chem. Chem. Phys.* **2004**, *6*, 4369.
- (41) Graetz, J.; Reilly, J. J.; Johnson, J.; Ignatov, A. Y.; Tyson, T. A. Appl. Phys. Lett. 2004, 85, 500.
- (42) Leon, A.; Kircher, O.; Rothe, J.; Fichtner, M. J. Phys. Chem. B. 2004, 108, 16372.
- (43) Bogdanovic, B.; Schwickardi, M. J. Alloys Compd. 1997, 253–254, 1.
- (44) Streukens, G.; Bogdanovic, B.; Felderhoff, M.; Schuth, F. Phys. Chem. Chem. Phys. 2006, 8, 2889.
- (45) Bogdanovic, B.; Felderhoff, M.; Germann, M.; Hartel, M.; Pommerin, A.; Schuth, F.; Weidenthaler, C.; Zibrowius, B. J. Alloys Compd. 2003, 350, 246.
- (46) Kircher, O.; Fichtner, M. J. Alloys Compd. 2005, 404–406, 339.
- (47) McNamara, W. F.; Duesler, E. N.; Paine, R. T.; Ortiz, J. V.; Kolle, P.; Noth, H. *Organometallics* **1986**, *5*, 380.
- (48) Khasnis, D. V.; Toupet, L.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1987, 230.
- (49) Demachy, I.; Volatron, F. Inorg. Chem. 1994, 33, 3965.
- (50) Langmuir, I. Science 1921, 54, 59.
- (51) Mingos, D. M. P. J. Organomet. Chem. 2004, 689, 4420.
- (52) Ariafard, A.; Amini, M. M. J. Orgamomet. Chem. 2005, 690, 84.
- (53) Xu, Z.; Lin, Z. Inorg. Chem. 1996, 35, 3964.
- (54) Musaev, D. G.; Morokuma, K. Organometallics 1995, 14, 3327.
- (55) Goebbert, D. J.; Hernandez, H.; Francisco, J. S.; Wenthold, P. G. J. Am. Chem. Soc. 2005, 127, 11684.
- (56) Bogdanovic, B.; Brand, R. A.; Marjanovic, A.; Schwickardi, M.; Tolle, J. J. Alloys Compd. 2000, 302, 36.
- (57) Gross, K. J.; Guthrie, S.; Takara, S.; Thomas, G. J. Alloys Compd. 2000, 297, 270.
- (58) Gross, K. J.; Majzoub, E. H.; Spangler, S. W. J. Alloys Compd. 2003, 356–357, 423.
 CT900287R