WaveNet

Von: Jonas Zimmer Seminar Deep-Learning Fakultät INFM Hochschule Offenburg

Text To Speech before Wavenet

Concatenative

Parametric

What makes WaveNet so interesting?

- Conditioning to different features:
 - Speech
 - Speaker
 - Music

Overview

similar to PixelCNN

based on previous data points

Probability of successive data points

CNN

 faster trained then RNNs or LSTMs for 1-D Sequences

- Multiple Dilated causal Convolution layers stacked on top of each other
- → longer time dependencies

Softmax Distribution

Categoric distribution

Similar to Sigmoid

Problem:

- raw-audio is 16Bit (-32,768 to 32,767)
- For every timestep 65.535 possible Values

Mu-law

Reduce bitdepth

Logarithmic digitalization

Why?

- Problem with low amplitudes when rounding off
- more quantization steps at lower amplitudes

Gated Activations

previously Relu

 After experiments: tan-hyperbolic gated with Sigmoid-Activation works better

$$\mathbf{z} = \tanh (W_{f,k} * \mathbf{x}) \odot \sigma (W_{g,k} * \mathbf{x})$$

 Reduction of Convergence time with residual and skip connections

Conditioning

- By additional Input variable
- Global
 - With one feature

Speaker

 \rightarrow

Multi-Speaker Audio

- Local
 - With multiple features

Speech

 \rightarrow

Text to Speech

Testing WaveNet

- With Voice
 - After 12 hours of training:

– After 3 days of training:

Batch-size: 1 Learning Rate: 0.0001

Testing WaveNet

With Music

- Violin

Piano

Batch-Size: 1-20 Learning Rate: 0.0001-1

Epochs: 10

Layers: 10

How it can sound

Examples from the Web

- No Language
- English
- Mandarin

Piano

Summary

Learning probability distributions

With Data of the previous Timesteps

 And a Input variable to condition on different Characteristics

Sources

- https://towardsdatascience.com/wavenet-google-assistantsvoice-synthesizer-a168e9af13b1
- https://github.com/vincentherrmann/pytorch-wavenet
- https://github.com/ibab/tensorflow-wavenet
- https://deepmind.com/blog/article/wavenet-generativemodel-raw-audio
- https://arxiv.org/pdf/1609.03499.pdf