Solution Manual

prepared by

Dhruv Kohli

for

Introduction to Topological Manifolds, 2nd ed.

by

John M. Lee

2. Topological Spaces

Ex. 2.4

(a) (\Longrightarrow) For all $x\in M$ and every r>0, $B^d_r(x)$ is open ball in M with respect to d. Both d and d' generate the same topology on M which implies that $B^d_r(x)$ must be open with respect to d'. Therefore, $\exists \ r_1>0$ s.t. $B^{d'}_{r_1}(x)\subseteq B^d_r(x)$. By symmetry, $\exists \ r_2>0$ s.t. $B^d_{r_2}(x)\subseteq B^{d'}_r(x)$.

(\iff) Let $A \subseteq M$ be open in M with respect to d. Then, $\forall x \in A, \exists r > 0$ s.t. $B^d_r(x) \subseteq A$. Also, $\exists r_1 > 0$ s.t. $B^{d'}_{r_1}(x) \subseteq B^d_r(x)$. Therefore, $\forall x \in A, \exists r_1 > 0$ s.t. $B^{d'}_{r_1}(x) \subseteq A$. Hence, A is also open in M with respect to d'. Similarly, every open subset of M with respect to d' is also open with repect to d. Hence, d and d' generate same topology on M.

(b) $\forall x \in M, \forall r > 0$ and for $r_1 = rc > 0$ and $r_2 = \frac{r}{c} > 0$, $B^{d'}_{r_1}(x) = B^d_r(x)$ and $B^{d'}_r(x) = B^d_{r_2}(x)$. Then use (a).

(c)
$$d'(x,y) < d(x,y) < \sqrt{n}d'(x,y)$$

 $\forall x \in M, \forall r > 0 \text{ s.t. for } r_1 = \frac{r}{\sqrt{n}} > 0 \text{ and } r_2 = r > 0, \ B^{d'}_{r_1}(x) \subseteq B^d_r(x) \text{ and } B^{d'}_r(x) \subseteq B^d_{r_2}(x).$ Then use (a).

(d) $\forall x \in X, B_{0.5}^d(x) = \{x\}$. Therefore, every subset of X is open with respect to d. Then, d generates discrete topology on X.

(e)
$$\forall x \in \mathbb{Z}, B_{0.5}^d(x) = \{x\} = B_{0.5}^{d'}(x).$$

Ex. 2.5

$$\mathcal{T} = \{ U \subseteq Y \text{ and } U \text{ is open in } X \}$$

- (i) $U = \phi$ and $U = Y \in \mathcal{T}$.
- (ii) $U_1, \ldots, U_n \in \mathcal{T} \implies U_i \subseteq Y$ and U_i is open in $X \implies \bigcap_{i=1}^n U_i \subseteq Y$ and $\bigcap_{i=1}^n U_i$ is open in X by definition.
- (iii) $\forall \alpha \in A, U_{\alpha} \in \mathcal{T} \implies \forall \alpha \in A, U_{\alpha} \subseteq Y \text{ and } \forall \alpha \in A, U_{\alpha} \text{ is open in } X \implies \bigcup_{\alpha \in A} U_{\alpha} \subseteq Y \text{ and } \bigcup_{\alpha \in A} U_{\alpha} \text{ is open in } X \text{ by definition.}$

Ex. 2.6

- (i) $\phi \in \mathcal{T}_{\alpha}$ and $X \in \mathcal{T}_{\alpha} \implies \phi \in \bigcap_{\alpha \in A} \mathcal{T}_{\alpha}$ and $X \in \bigcap_{\alpha \in A} \mathcal{T}_{\alpha}$.
- $(ii) U_1, \dots, U_n \in \cap_{\alpha \in A} \mathcal{T}_{\alpha} \implies \forall i, U_i \in \mathcal{T}_{\alpha} \implies \cap_{i=1}^n U_i \in \mathcal{T}_{\alpha} \implies \cap_{i=1}^n U_i \in \mathcal{T}_{\alpha}$ $\cap_{\alpha \in A} \mathcal{T}_{\alpha}.$

 $(iii) \ \forall \beta \in B, U_{\beta} \in \cap_{\alpha \in A} \mathcal{T}_{\alpha} \implies \forall \beta \in B, U_{\beta} \in \mathcal{T}_{\alpha} \implies \cup_{\beta \in B} U_{\beta} \in \mathcal{T}_{\alpha} \implies \cup_{\beta \in B} U_{\beta} \in \mathcal{T}_{\alpha}.$

Ex. 2.9

- (a) (\Longrightarrow) Suppose $p \in \text{Int } A$. Then by definition of Int A, $\exists C \subseteq A$ and C is open in X s.t. $p \in C$. (\Longleftrightarrow) Suppose C is a neighbourhood (open in X) of a point p s.t. $C \subseteq A$. Then by definition of Int A, $C \subseteq \text{Int } A$. Hence, $p \in C \subseteq \text{Int } A \Longrightarrow p \in \text{Int } A$.
- (b) First note that $\operatorname{Ext} A = X \setminus \overline{A} = \bigcup \{X \setminus B \text{ where } B \supseteq A \text{ and } B \text{ is closed in } X\}$ which can further be simplified as $\operatorname{Ext} A = \bigcup \{D \text{ where } X \setminus D \subseteq X \setminus A \text{ and } D \text{ is open in } X\}$. Now, use a similar argument as in (a).
- (c) Suppose $p \in \partial A$, then, $p \not\in \operatorname{Int} A \cup \operatorname{Ext} A$ which implies that $\not\supseteq C$ neighbourhood (open in X) of p s.t. $C \subseteq A$ or $X \setminus C \subseteq X \setminus A$ which further implies that every neighbourhood of p contains both a point of A and a point of $X \setminus A$. (\iff) Suppose every neighbourhood of $p \in X$ contains both a point of A and a point of A and a point of A, then, by definition of A and A a
- (**d**) Negate (**b**).
- (e) First note that X is the disjoint union of $\operatorname{Int} A, \partial A$ and $\operatorname{Ext} A$. Using (a), (b) and (c), conclude that $p \in \operatorname{Int} A \cup \partial A \iff$ every neighbourhood of p has a point in A. Using (d), conclude that $\bar{A} = \operatorname{Int} A \cup \partial A$. Using $\operatorname{Int} A \subseteq A \subseteq \operatorname{Int} A \cup \partial A \implies A \cup \partial A = \operatorname{Int} A \cup \partial A$, conclude that $\bar{A} = A \cup \partial A = \operatorname{Int} A \cup \partial A$.
- (f) Use (a), (b), Ext $A = X \setminus \overline{A}$, $\partial A = X \setminus \text{Int } A \cup \text{Ext } A$, the fact that union of two open sets is open and the complement of a closed (open) set is open (closed).
- (g) and (h) follows from above derived results.

Ex. 2.10

(\Longrightarrow) Note that \bar{A} contains all limit points (using $\mathbf{2.9(b)}$ and $\mathbf{2.9(d)}$) and if A is closed then by using $\mathbf{2.9(h)}$, $A = \bar{A}$. (\Longleftrightarrow) Suppose $p \in \partial A$, then, p can either be an isolated point or a limit point. If p is isolated then $p \in A$ by definition. Since A contains all its limit points, therefore, if p is a limit point then also $p \in A$. Hence, the boundary ∂A is contained in A. Using $\mathbf{2.9(h)}$ conclude that A is closed.

Ex. 2.11

 (\Longrightarrow) If $\bar{A}=X$, then, by using $\mathbf{2.9(d)}, \forall x\in X$, every neighbourhood of x

contains a point in A. Suppose B be any non-empty open subset of X and let $y \in B \subseteq X$ then B is a neighbourhood of y, hence, contains a point in A. (\iff) $\forall x \in X$, every neighbourhood of x is an open subset of X (by definition of neighbourhood). Since every open subset of X contains a point in A, therefore, every neighbourhood of x contains a point in A and by using $\mathbf{2.9(d)}$ $x \in A$. Hence, A = X.

Ex. 2.12

Neighbourhood of $x \in X \equiv B_r^d(x)$ for some r > 0. Every neighbourhood of $x \equiv \forall r > 0, B_r^d(x)$.

Ex. 2.13

 $\forall x \in X, \{x\}$ is a neighbourhood of x. Therefore, by definition of convergence of sequence, $\exists N \in \mathbb{N} \text{ s.t. } \forall i \geq N, x_i \in \{x\}$. In other words, $\exists N \in \mathbb{N} \text{ s.t. } \forall i \geq N, x_i = x$. Therefore, for every sequence (x_i) converging to $x \in X, x_i = x$ for all but finitely many i.

Ex. 2.14

By definition of convergence of sequence, for every neighbourhood U of $x \in X$, $\exists N \in \mathbb{N} \text{ s.t. } \forall i \geq N, x_i \in U$ where x_i is a point in A. In other words, every neighbourhood of $x \in X$ contains a point in A and by using $\mathbf{2.9(d)}, x \in \overline{A}$.

Ex. 2.16

Method (i) (\Longrightarrow) Let $A\subseteq Y$ be closed in Y. Then $Y\setminus A\subseteq Y$ will be open in Y. Since f is a continuous function, $f^{-1}(Y\setminus A)$ is open in X. Note that $f^{-1}(Y\setminus A)=X\setminus f^{-1}(A)$, which implies that $X\setminus f^{-1}(A)$ is open in X, hence, $f^{-1}(A)$ is closed in X. (\Longleftrightarrow) Let $A\subseteq Y$ be open in Y. Then $Y\setminus A\subseteq Y$ will be closed in Y and $f^{-1}(Y\setminus A)$ is closed in X. By proposition, $f^{-1}(Y\setminus A)=X\setminus f^{-1}(A)$ is closed in X, hence, $f^{-1}(A)$ is open in X. Therefore, by definition of continuous function, f is continuous.

Method (ii) (\Longrightarrow) Let $A \subseteq Y$ be closed in Y. Consider a sequence (x_i) where $x_i \in f^{-1}(A)$ converging to $x \in X$. Define a new sequence (y_i) where $y_i = f(x_i) \in A$. Since f is continuous, the sequence (y_i) converges to y = f(x). Since f is closed, by using **2.14**, f (f (f (f)) Proof of converse is same as in f (f).

Ex. 2.18

(a) The constant map is given by f(x) = y where $y \in Y$. Consider $U \subseteq Y$ s.t. U is open in Y. If $y \in U$, then $f^{-1}(U) = X$ where X is open in X. If $y \notin U$, then $f^{-1}(y) = \phi$ where ϕ is again open in X. Therefore, the preimage of every open subset of Y is open in X and thus, by definition of continuous function, f is continuous.

- (b) The identity map is given by $\operatorname{Id}_X(x) = x$ where $x \in X$. Let $U \subseteq X$ be open in X. Then, $\operatorname{Id}_X^{-1}(U) = U$. Conclude that Id_X is continuous using definition of continuous function.
- [verify] (c) Let $U \subseteq X$ be open in X. The restriction of f to U is given by $f|_U: U \to Y$. Let $A \subseteq Y$ be open in Y, then, $f|_U^{-1}(A) = \{x \in U: f(x) \in A\} = f^{-1}(A) \cap U$. Since, f is continuous, $f^{-1}(A)$ is open in X and therefore, $f^{-1}(A) \cap U$ is open in X (and is open in U with respect to subspace topology on U).

Ex. 2.20

- (i) $X \approx X$ because Id_X is a continuous bijective function with continuous inverse.
- (ii) Suppose $X \approx Y$ with f as the homeomorphism from X to Y. Then, $f^{-1}: Y \to X$ is a continuous bijective function with continuous inverse $((f^{-1})^{-1} = f)$ and thus, is a homeomorphism from Y to X. Therefore, $Y \approx X$.
- (iii) Suppose $X \approx Y$ with respect to $f, Y \approx Z$ with respect to g then $g \circ f: X \to Z$ is a continuous bijective function with continuous inverse $((g \circ f)^{-1} = f^{-1} \circ g^{-1})$ because f^{-1} and g^{-1} are continuous. Thus, $g \circ f$ is a homeomorphism from X to Z. Therfore, $X \approx Z$.

Ex. 2.21

 (\Longrightarrow) f is a homeomorphism from X_1 to X_2 then f and f^{-1} are continuous. Let $U\subseteq X_1$ be open in X_1 , then the preimage of U in f^{-1} , f(U), will be an open subset of X_2 . Similarly, let $U\subseteq X_2$ be open in X_2 , then the preimage of U in f, $f^{-1}(U)$, will be an open subset of X_1 . In other words, if $V=f^{-1}(U)$ then $f(V)\subseteq X_2$ being open in X_2 implies that $V\subseteq X_1$ is open in X_1 . (\Longleftrightarrow) The condition $U\in \mathcal{T}_1\iff f(U)\in \mathcal{T}_2$ which is equivalent to $f^{-1}(U)\in \mathcal{T}_1\iff U\in \mathcal{T}_2$ implies, by definition of continuous function, that f and f^{-1} are continuous. Since f is already bijective, implies that f is a homeomorphism from X_1 to X_2 .

Ex. 2.22

 $U\subseteq X$ is open in X and f is a homeomorphism from X to Y. Continuity of f^{-1} implies f(U) is open in Y. Since f is bijective from X to Y implies that $f|_U$ is bijective from $U\subseteq X$ to $f(U)\subseteq Y$. Let $V\subseteq f(U)$ be open in f(U) (with respect to subspace topology on f(U)) then $f|_U^{-1}(V)=\{x\in U: f(x)\in V\}=f^{-1}(V)\cap U$. Since f is continuous, $V\subseteq f(U)\subseteq Y$ is open in Y and f is continuous implies that $f^{-1}(V)\subseteq U\subseteq X$ is open in X, thus, intersection of $f^{-1}(V)$ and U is open in X (and in U with

respect to subspace topology on U) which implies that $f|_U$ is continuous. Now, let $A \subset U$ (with respect to subspace topology on U) be open in U then $f|_U(A) = \{f(x) \in f(U) : x \in A\} = f(A) \cap f(U)$ which is open in Y (and in f(U)) by a similar argument, which implies that $f|_U^{-1}$ is continuous. So, $f|_U$ is a continuous bijective function from U to f(U) which has continuous inverse. Hence, $f|_U$ is a homeomorphism from U to f(U).

Ex. 2.23

Note that the identity function in the question is different from the identity function defined from (X, \mathcal{T}) to (X, \mathcal{T}) which is always continuous (and in fact, is a homeomorphism from X to itself).

 (\Longrightarrow) Let $U \in \mathcal{T}_2$. Since Id_X is continuous, preimage of U in Id_X , $\mathrm{Id}_X^{-1}(U) = U$, must blie in \mathcal{T}_1 i.e. $U \in \mathcal{T}_1$. Therefore, $\mathcal{T}_2 \subseteq \mathcal{T}_1$, making \mathcal{T}_1 finer than \mathcal{T}_2 . (\Longleftrightarrow) Let $U \in \mathcal{T}_2$, then, $U = \mathrm{Id}_X^{-1}(U) \in \mathcal{T}_1$. By definition of continuous function, Id_X is continuous.

For Id_X (which is already a bijective map) to be a homeomorphism from (X, \mathcal{T}_1) to (X, \mathcal{T}_2) , Id_X and Id_X^{-1} must be continuous which is the case if and only if $\mathcal{T}_2 \subseteq \mathcal{T}_1$ and $\mathcal{T}_1 \subseteq \mathcal{T}_2$, respectively. Thus, Id_X and Id_X^{-1} are continuous (and hence, Id_X is a homeomorphism from (X, \mathcal{T}_1) to (X, \mathcal{T}_2)) if and only if $\mathcal{T}_1 = \mathcal{T}_2$.

Ex. 2.27

$$\varphi(x, y, z) = \frac{(x, y, z)}{\sqrt{x^2 + y^2 + z^2}} = (x', y', z') \text{ where } \max\{|x|, |y|, |z|\} = 1$$

$$\max\{|x|, |y|, |z|\} = 1 \implies \max\{|x'|, |y'|, |z'|\} = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

$$\therefore \varphi^{-1}(x', y', z') = \frac{(x', y', z')}{\max\{|x'|, |y'|, |z'|\}}$$

Ex. 2.28

Define $s(x): [0,1) \to \mathbb{S}^1$ as $s(x) = e^{2\pi i x}$ and its inverse as $x(s) = \frac{\log(s)}{2\pi i}$. Observe that $\text{Re}(s(x)) = \cos(2\pi x)$ and $\text{Im}(s(x)) = \sin(2\pi x)$ are continuous functions of $x \in [0,1)$ making s(x) a continuous function of $x \in [0,1)$. However, x(s) is discontinuous at s=1+0i. Note that $x(1+0^-i)$ will be close to 1, while x(1+0i)=0.

Ex. 2.29

(a) \Longrightarrow (b) and (a) \Longrightarrow (c): Since f is a homeomorphism, f^{-1} is continuous. By the definition of continuous function, let $U \subseteq X$ be open in X,

then, $(f^{-1})^{-1}(U) = f(U)$ will be open in Y making f an open map. Similarly, use **2.16** to conclude that f is a closed map.

- (b) \Longrightarrow (a) Since f is an open map, by definition of continuous function, f^{-1} is continuous. Therefore, f is continuous and bijective with continuous inverse, hence, f is a homeomorphism from X to Y.
- $(c) \implies (a)$ Use **2.16** and an argument similar to $(b) \implies (a)$.

Ex. 2.32

- (a) Let $f: X \to Y$ be a homeomorphism from X to Y. Let $x \in X$ and $U \subseteq X$ be a neighbourhood of x, then, f(U) is open subset of Y because f^{-1} is continuous. By using $\mathbf{2.22}$, $f|_{U}: U \to f(U)$ is a homeomorphism from U to f(U), thus, a local homeomorphism.
- (b) (Continuity): Let $U \subseteq Y$ be open in Y. We must show that $f^{-1}(U)$ is open. Let $x \in f^{-1}(U)$. Then, by definition of local homeomorphism, $\exists \ V_x \subseteq X$ which is a neighbourhood of x s.t. $f(V_x)$ is open and $f|_{V_x}: V_x \to f(V_x)$ is a homeomorphism. Since U and $f(V_x)$ are open in Y, then, so is $U \cap f(V_x)$ is open in Y. Since, $f|_{V_x}$ is continuous,
- $f\big|_{V_x}^{-1}(U\cap f(V_x))=\{x\in V_x: f(x)\in U\cap f(V_x)\}=V_x\cap f^{-1}(U) \text{ is open in }X.$ But $V_x\cap f^{-1}(U)$ is a neighbourhood of x contained in $f^{-1}(U)$ and because $x\in f^{-1}(U)$ is arbitrary, therefore, $f^{-1}(U)=\cup_{x\in f^{-1}(U)}(V_x\cap f^{-1}(U))$ is open in X. Hence, f is continuous. (Open): Let $A\subseteq X$ be open in X. By the defintion of local homeomorphism, for every $x\in A$, $\exists U_x\subseteq X$ which is a neighbourhood of x in X s.t. $f(U_x)$ is open in Y and $f\big|_{U_x}:U_x\to f(U_x)$ is a homeomorphism. Since $Y_x\cap A$ is open in Y_x , therefore, $Y_x\cap A$ is open in Y_x , therefore, $Y_x\cap A$ is open in Y_x , so is $Y_x\cap A$ is open in Y_x , so is $Y_x\cap A$ is open in Y_x , so is $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ is open in $Y_x\cap A$ and $Y_x\cap A$ is open in $Y_x\cap A$ in $Y_x\cap A$ is open in $Y_x\cap A$ is open
- (c) Bijective local homeomorphism is bijective, continuous and open, thus, homeomorphism by (2.29).

Ex. 2.33

Let (y_i) be any sequence in Y which converges to some $y \in Y$. The only neighbourhood of y is Y itself and since, $\forall i \geq 1, y_i \in Y, y$ can take any value in Y. Thus, every sequence in Y converges to every point of Y.

Ex. 2.35

Let $f^{-1}(0) = \{p\}$ for some $p \in X$. Let $q \in X$ s.t. $q \neq p$ and $f(q) = a \neq 0$. Then, $f^{-1}((-a/2, a/2))$ is a neighbourhood of p and $f^{-1}((3a/2, 4a/2))$ is a neighbourhood of q s.t. they are disjoint. Note that no point of X can lie in both neighbourhoods.

Ex. 2.38

Since the finite set X has Hausdorff topology, every finite subset of X is closed and its complement is open. Therefore, every subset of X is both closed and open. Therefore, the topology on X is discrete.

Ex. 2.40

 (\Longrightarrow) Let $U\subseteq X$ be open, then, $\forall p\in U, \exists\ C\subseteq U$ s.t. C is open in X and $p\in C$. By definition of basis, $C=\cup_{\alpha\in A}B_{\alpha}$. Since $p\in C, \exists\ B\in \{B_{\alpha}: \alpha\in A\}$ s.t. $p\in B\subseteq C\subseteq U$. (\Longleftarrow) The proof of converse follows directly from the definition of open set.

Ex. 2.42

We must show that the an element of \mathcal{B} is an open subset of X and every open subset of X is the union of some collection of elements of \mathcal{B} .

- (a) Let $p \in C_s(x)$, then, define $s^* = \min_{i=1}^n (\min(|x_i + s/2 p_i|, |p_i (x_i s/2)|))$ and conclude that $C_{s^*}(p)$ is a neighbourhood of p contained in $C_s(x)$. Therefore, $C_s(x)$ is open in X. Let A be an open subset of \mathbb{R}^n . Then, A is a union of open balls contained in it. If $B_r(p)$ is such a ball, then, $C_{\sqrt{2}r}(p) \subseteq B_r(p)$. Therefore, $A = \bigcup_{x \in A} B_{r_x}(x) = \bigcup_{x \in A} C_{\sqrt{2}r_x}(x)$. Thus, A is a union of open cubes. Hence, \mathcal{B}_1 is a basis for the Euclidean topology on \mathbb{R}^n .
- (b) First, note that we can always find a rational number between two irrational numbers and a rational number between a rational and an irrational number. Here, is a sketch of proof. Let m and n are two irrational numbers s.t. m > n > 0. Define r = m - n, then, by Archimedes property, we can find a t such that $\frac{1}{r} < t$. Therefore, $rt > 1 \implies mt > nt + 1$ and we can find $p \in \mathbb{N}$ s.t. $mt > p > nt \implies m > \frac{p}{t} > n$. Now, let $B_r(x)$ be an open ball with rational r and x has rational coordinates. By definition, it is open. Let A be an open subset of \mathbb{R}^n and for some arbitrary $y \in A$, let $B_s(y) \subseteq A$ be an arbitrary open ball containing y. We must find a ball with rational radius and coordinates s.t. it contains y and is contained in or equal to $B_s(y)$. If y and s are rational then take $B_{r_y}(x_y) = B_s(y)$. If s and y are irrational (workout the case when one of them is rational in a similar manner), we find a rational x_y s.t. $x_y \in B_{s/2}(y)$ and a rational r_y s.t. $|x_y - y| < r_y < s/2$. Define x_y s.t $x_{y_i} \in (y_i, y_i + s/2)$ is rational and define r_y s.t. $r_y \in (|x_y - y|, s/2)$ is rational (this is possible based on the argument in beginning). Based on this construction, $B_{r_y}(x_y)$ contains y and is contained in $B_s(y)$. Finally, $A = \bigcup_{y \in A} B_s(y) = \bigcup_{y \in A} B_{r_y}(x_y)$. Therefore, \mathcal{B}_2 is a basis.

Ex. 2.45

(i) By property 1 of basis, $B \subseteq X$, therefore, $\bigcup_{B \in \mathcal{B}} B \subseteq X$. By property 2 of basis, since X is open in X, $X = \bigcup_{\alpha \in A} B_{\alpha} \subseteq \bigcup_{B \in \mathcal{B}} B$. Therefore, $X = \bigcup_{B \in \mathcal{B}} B$.

(ii) $B_1, B_2 \in \mathcal{B}$, then $B_1 \cap B_2$ is open subset of X. Then $B_1 \cap B_2$ satisfy the basis criterion with respect to \mathcal{B} i.e. for every $x \in B_1 \cap B_2$, $\exists B_3 \in \mathcal{B}$ s.t. $x \in B_3 \subseteq B_1 \cap B_2$.

Ex. 2.51

Let $\{B_{\alpha}, \alpha \in A\}$ be the countable basis. Form a subset D of X in the following manner - Take any one x_{α} from B_{α} and put it in D. Then, $D = \{x_{\alpha}, \alpha \in A\}$ is a countable dense subset of X because, for every $x \in X$, and for every neighbourhood of x, there exist a collection of basis, the union of which forms the neighbourhood and thus, every neighbourhood of x has a point in D making x to be in closure of D. Thus, $\overline{D} = X$.

Ex. 2.54

 (\Longrightarrow) Let M be a 0-manifold. Let $p\in M$, then, \exists neighbourhood U of p s.t. U is homeomorphic to a single point. This can only be the case when $U=\{p\}$. Adding or removing an element to U makes sure that there is no bijection from U to a single point. Since p was arbitrary, for every point p in M, $\{p\}$ is an open subset of M. Since M is second countable, therefore, countably many points p exist in M. Using the the properties of a topology, arbitrary union of single the point sets $\{p\}$ are also open, making M to be a countable discrete space. (\iff) Let M be a countable discrete space, then it is locally Euclidean of dimension 0, since every point p has a neighbourhood $\{p\}$ which is homeomorphic to single point. It is also second countable, since the basis is the collection of all single point sets $\{p\}$ in M. Finally, M is Hausdorff because $\{p_1\} \cap \{p_2\} = \phi$ when $p_1 \neq p_2$, where $\{p_1\}$ and $\{p_2\}$ are neighbourhoods of p_1 and p_2 . Therefore, M is a 0-manifold.

3. New Spaces from Old

Ex. 3.1

- (i) $V = \phi$ gives $U = \phi$ and V = X gives U = S.
- (ii) Let $(U_i)_{i=1}^n$ be open subsets of S, then, $\exists (V_i)_{i=1}^n$ which are open subsets of X s.t. $U_i = S \cap V_i$. Since $\bigcap_{i=1}^n V_i$ is open in X, $\bigcap_{i=1}^n U_i = \bigcap_{i=1}^n (S \cap V_i) = S \cap (\bigcap_{i=1}^n V_i)$ is open in S.
- (iii) Let $U_{\alpha}, \alpha \in A$ be open subsets of S, then, $\exists V_{\alpha}, \alpha \in A$ which are open subsets of X s.t. $U_{\alpha} = S \cap V_{\alpha}$. Since $\cup_{\alpha \in A} V_{\alpha}$ is open in X, $\cup_{\alpha \in A} U_{\alpha} = \cup_{\alpha \in A} S \cap V_{\alpha} = S \cap (\cup_{\alpha \in A} V_{\alpha})$ is open in S.

Ex. 3.2

(⇒) Let $B \subseteq S$ be closed in S. Then $S \setminus B$ will be open in S. Therefore, $\exists \ V \subseteq X \text{ s.t. } V$ is open in X and $S \setminus B = S \cap V$. Then, $B = S \setminus (S \cap V) = S \cap (X \setminus S \cup X \setminus V) = S \cap X \setminus V$, where $X \setminus V$ is closed in X. (⇒) Let $B = S \cap V$ where Y is closed in X. Then, $S \setminus B = S \cap (X \setminus V)$, where $X \setminus V$ is open in X. Thus, $S \setminus B$ is open in S and hence, S is closed in S.

Ex. 3.3

Ex. 3.6

- (a) Since U is open in S, $U = S \cap V$ where V is open in X. Because, S is also open in X and U is the intersection of two open subsets of X, hence, U is open in X. Similarly, using $\mathbf{3.2}$, U is closed in S, then, $U = S \cap V$ where V is closed in X. Since, S is closed in X and U is the intersection of two closed subsets of X, hence, U is closed in X.
- (b) Since $U \subseteq S$, $U = S \cap U$. By definition of subspace topology, if U is open in X then U is open in S and by using **3.2**, if U is closed in X, then U is closed in S.

Ex. 3.7

(a) Let $p \in S$ s.t. $p \in$ closure of U in S. Therefore, every relative neighbourhood of p contains a point in U. Let V be an arbitrary neighbourhood of p in X. Then, $S \cap V$ is a relative neighbourhood of p which contains a point in U. Since, $S \cap V \subseteq V$, V contains a point in U. Since, V is arbitrary neighbourhood of P in X which contains a point in U, $P \in \overline{U}$, and hence, $P \in \overline{U} \cap S$. Thus, closure of U in $S \subseteq \overline{U} \cap S$.

Now, let $p \in \overline{U} \cap S$. Then, $p \in S$ and every neighbourhood of p in X contains a point in U. Let A be an arbitrary relative neighbourhood of p, then, $A = S \cap V$ where V is open in X. Note that $p \in A$ implies that $p \in V$ and therefore, V is a neighbourhood of p in X. Since, $U \subseteq S$ and V contains a

point in U, therefore, $A = S \cap V$ contains a point in U. Since, A was arbitrary, $p \in \text{closure of } U \text{ in } S$. Thus, $\bar{U} \cap S \subseteq \text{closure of } U \text{ in } S$.

(b) Let $p \in \text{Int } U \cap S$, then, $p \in S$ and $\exists V \subseteq U$ s.t. V is open in X and $p \in V$. Therefore, $p \in S \cap V$. Since $V \subseteq U$ and V is open in X, $S \cap V \subseteq U$ and is open in S. Therefore, $p \in \text{interior of } U$ in S. Thus, $\text{Int } U \cap S \subseteq \text{interior of } U$ in S.

Following example shows that interior of U in $S \nsubseteq \operatorname{Int} U \cap S$: Consider $S = [0,2] \subseteq \mathbb{R}$. Let U = [0,1). Then U is relatively open in S (because $U = S \cap (-1,1)$) and therefore the interior of U in S is U itself. But, Int U = (0,1) and Int $U \cap S = (0,1)$. Now, $0 \in \operatorname{Interior}$ of U in S but $0 \notin \operatorname{Int} U \cap S$.

Ex. 3.12

- (c) (\Longrightarrow) Let $p_i \to p$ in S. Then, for every relative neighbourhood U of p, $\exists \ N \in \mathbb{N}$ s.t. $\forall i \geq N, p_i \in U$. Let V be an arbitrary neighbourhood of p in X. Since, $S \cap V$ is a relative neighbourhood of p in S, $\exists \ N \in \mathbb{N}$ s.t. $\forall i \geq N, p_i \in S \cap V \subseteq V$, implies, $\exists \ N \in \mathbb{N}$ s.t. $\forall i \geq N, p_i \in V$. Since, V is arbitrary, $p_i \to p$ in X. (\Longleftrightarrow) Let $p_i \to p$ in X. Then, for every neighbourhood V of p, $\exists \ N \in \mathbb{N}$ s.t. $\forall i \geq N, p_i \in V$. But $p_i \in S$, therefore, for every neighbourhood V of p, $\exists \ N \in \mathbb{N}$ s.t. $\forall i \geq N, p_i \in S \cap V$. Let U be a relative neighbourhood of p, then, $\exists \ V \subseteq X$ open in X s.t. $U = S \cap V$. Also, $p \in U$ implies $p \in V$ and therefore, V is a neighbourhood of p in X. By above argument, $\exists \ N \in \mathbb{N}$ s.t. $\forall i \geq N, p_i \in U$. Since, U was arbitrary, $p_i \to p$ in S.
- (d) Let $p_1, p_2 \in S \subseteq X$. Since X is Hausdorff, $\exists U_1$ and U_2 neighbourhood of p_1 and p_2 in X s.t. $U_1 \cap U_2 = \phi$. Define relative neighbourhoods of p_1 and p_2 as $S \cap U_1$ and $S \cap U_2$, respectively. Then, $S \cap U_1 \cap S \cap U_2 = S \cap (U_1 \cap U_2) = S \cap \phi = \phi$. Therefore, S is also Hausdorff.
- (e) Let $p \in S \subseteq X$. Since X is first countable, there exists a countable collection of neighbourhoods of p in X, \mathcal{B}_p , such that for every neighbourhood V of p in X, $\exists B \in \mathcal{B}_p$ s.t. $B \subseteq V$. Define a new collection of relative neighbourhoods of p in S as $\mathcal{B}_{S_p} = \{S \cap B : B \in \mathcal{B}_p\}$. Consider an arbitrary relative neighbourhood U of p in S. Then, $\exists V \subseteq X$, a neighbourhood of p in X s.t. $U = S \cap V$. Since, $\exists B \in \mathcal{B}_p$ s.t. $B \subseteq V$, therefore, $S \cap B \subseteq S \cap V = U$ where $S \cap B \in \mathcal{B}_{S_p}$. Since U and p are arbitrary, we conclude that for every $p \in S$, there exists a collection of relative neighbourhood of p in S, \mathcal{B}_{S_p} s.t. for every relative neighbourhood U of p, there exists $B \in \mathcal{B}_{S_p}$ s.t. $B \subseteq U$. Finally, note that $|\mathcal{B}| = |\mathcal{B}_{S_p}|$, therefore, S is first countable.
- (f) Let \mathcal{B} be the countable set of basis for X and \mathcal{B}_S be the basis for S. Using (b), $|\mathcal{B}_S| = |\mathcal{B}|$, therefore, \mathcal{B}_S is countable and hence, S is second countable.

$\mathbf{Ex.} \ \mathbf{3.13}$

 $\eta_S: S \hookrightarrow X$ be the inclusion map from S to X.

- (i) Injective: $\eta_S(x_1) = \eta_S(x_2) \implies x_1 = x_2$.
- (ii) Continuous: Let $A \subseteq X$ be open in X, then, $\eta_S^{-1}(A) = S \cap A$ which is open in S with respect to subspace topology on S.
- (iii) Homeomorphism onto its image: $\eta'_S: S \to \eta_S(S)$ where $\eta_S(S) = S$ is nothing but Id_S which is a homeomorphism from S with subspace topology to itself with same topology.

Ex. 3.17

Let S = [0, 1) and $\eta_S : S \hookrightarrow \mathbb{R}$ be an inclusion map. Note that S is both open and closed in S but $\eta_S(S) = [0, 1)$ is neither open nor closed in \mathbb{R} . Therefore, η_S is neither an open nor a closed map but it is still a topological embedding using **3.13**.

Ex. 3.19

Image of a surjective map is same as the codomain. Therefore, by definition of topological embedding, a surjective topological embedding is a homeomorphism.

Ex. 3.25

- $(i) \cup_{B \in \mathcal{B}} B = \cup_{U_i \subset X_i \text{ is open in } X_i} (U_1, \dots, U_n) = (X_1, \dots, X_n).$
- (ii) Let (A_1, \ldots, A_n) be open in (X_1, X_2, \ldots, X_n) then note that (A_1, \ldots, A_n) is already in \mathcal{B} .

Ex. 3.26

Ex. 3.29

Let U be open in X_i . Then $\pi_i^{-1}(U) = (X_1, \dots, X_{i-1}, U, X_{i+1}, \dots, X_n)$. Since, X_j is open in X_j and U is open in X_i , $\pi_i^{-1}(U)$ is open in (X_1, \dots, X_n) , π_i is continuous.

Ex. 3.32

- (a) The basis of the three topologies are same.
- (b) Injective: $f(x) = f(x') \implies (x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n) = (x_1, \ldots, x_{i-1}, x', x_{i+1}, \ldots, x_n) \implies x = x'$. Continuous: Let $U = (U_1, \ldots, U_n)$ be open in (X_1, X_2, \ldots, X_n) . Then $f^{-1}(U) = U_i$ is open in X_i by definition. Continuous and injective onto image follows from Corollary 3.10. Surjective onto image implies bijective onto image. Let U_i be open in X_i , then, $f(U_i) = (X_1, \ldots, X_{i-1}, U_i, X_{i+1}, \ldots, X_n)$ is open in (X_1, X_2, \ldots, X_n) .

- (c) Let $U = (U_1, \ldots, U_n)$ be open in (X_1, X_2, \ldots, X_n) . Then $\pi_i(U) = U_i$ is open in X_i , hence, π_i is an open map.
- (d) Let $(p_1, \ldots, p_n) \in (U_1, \ldots, U_n)$, where U_i is open in X_i , then, $p_i \in U_i$ and by basis criterion, $\exists B_i \in \mathcal{B}_i$ s.t. $p_i \in B_i \subseteq U_i$. Therefore, $(p_1, \ldots, p_n) \in (B_1, \ldots, B_n) \subseteq (U_1, \ldots, U_n)$ and (U_1, \ldots, U_n) satisfies basis criterion with respect to basis $\{(B_1, \ldots, B_n) : B_i \in \mathcal{B}_i\}$
- (e) Product topology basis: $\{(U_1, \ldots, U_n) \text{ where } U_i \text{ is open in subspace } S_i \text{ i.e.}$ $\exists V_i \text{ open in } X_i \text{ s.t. } U_i = S_i \cap V_i \}$. Subspace topology basis: $\{(U_1, \ldots, U_n) : (U_1, \ldots, U_n) = (S_1, \ldots, S_n) \cap (V_1, \ldots, V_n) \text{ for } V_i \text{ open in } X_i \}$. Here, also, $U_i = S_i \cap V_i$.
- (f) Let $p=(p_1,\ldots,p_n)$ and $p'=(p'_1,\ldots,p'_n)$ are points in (X_1,\ldots,X_n) . Since, X_i is Hausdorff, $\exists U_i$ and U'_i neighbourhood of p_1 and p'_1 s.t. $U_i\cap U'_i=\phi$. Define neighbourhoods of p and p' as (U_1,\ldots,U_n) and (U'_1,\ldots,U'_n) , then, their intersection is $(U_1\cap U'_1,\ldots,U_n\cap U'_n)=(\phi,\ldots,\phi)=\phi$. Therefore, (X_1,\ldots,X_n) is Hausdorff.
- (g) Define a collection of neighbourhoods of $p = (p_1, \ldots, p_n)$ as $\mathcal{B}_p = \{(B_1, \ldots, B_n) : B_i \in \mathcal{B}_{p_i}\}$. Since \mathcal{B}_{p_i} is countable, then, so is \mathcal{B}_p because $|\mathcal{B}_p| = \prod_{i=1}^n |\mathcal{B}_{p_i}|$.
- (h) From (d), $|\mathcal{B}| = \prod_{i=1}^{n} |\mathcal{B}_i|$. Since $|\mathcal{B}_i|$ is countable and n is finite, then, so is $|\mathcal{B}|$. Therefore, (X_1, \ldots, X_n) is second countable.

Ex. 3.34

Ex. 3.40

- (i) ϕ and $\sqcup_{\alpha \in A} X_{\alpha}$ are open.
- (ii) Let $(U_i)_{i=1}^n$ be open in $\sqcup_{\alpha \in A} X_{\alpha}$, then, $U_i = \sqcup_{\alpha \in A} U_{i_{\alpha}}$ where $U_{i_{\alpha}}$ is open in X_{α} . Since $\cap_{i=1}^n U_{i_{\alpha}}$ is open in X_{α} , therefore, $\cap_{i=1}^n U_i = \cap_{i=1}^n \sqcup_{\alpha \in A} U_{i_{\alpha}} = \sqcup_{\alpha \in A} \cap_{i=1}^n U_{i_{\alpha}}$ is open in $\sqcup_{\alpha \in A} X_{\alpha}$.
- (iii) Let $(U_{\beta})_{\beta \in B}$ be open in $\sqcup_{\alpha \in A} X_{\alpha}$, then, $U_{\beta} = \sqcup_{\alpha \in A} U_{\beta_{\alpha}}$ where $U_{\beta_{\alpha}}$ is open in X_{α} . Since $\cup_{\beta \in B} U_{\beta_{\alpha}}$ is open in X_{α} , therefore, $\cup_{\beta \in B} U_{\beta} = \cup_{\beta \in B} \sqcup_{\alpha \in A} U_{\beta_{\alpha}} = \sqcup_{\alpha \in A} \cup_{\beta \in B} U_{\beta_{\alpha}}$ is open in $\sqcup_{\alpha \in A} X_{\alpha}$.

Ex. 3.43

(a) (\Longrightarrow) Let $U = \sqcup_{\alpha \in A} U_{\alpha}$, where U_{α} is the intersection of U with X_{α} , be a closed subset of $\sqcup_{\alpha \in A} X_{\alpha}$, then, $\sqcup_{\alpha \in A} X_{\alpha} \setminus \sqcup_{\alpha \in A} U_{\alpha} = \sqcup_{\alpha \in A} X_{\alpha} \setminus U_{\alpha}$ is open in $\sqcup_{\alpha \in A} X_{\alpha}$. Therefore, $X_{\alpha} \setminus U_{\alpha}$ is open in X_{α} , implying that, U_{α} is closed in X_{α} . (\Longleftrightarrow) Let $U = \sqcup_{\alpha \in A} U_{\alpha} \subseteq \sqcup_{\alpha \in A} X_{\alpha}$ where U_{α} is the intersection of U with X_{α} which is closed in X_{α} . Then,

 $\sqcup_{\alpha\in A}X_{\alpha}\setminus U=\sqcup_{\alpha\in A}X_{\alpha}\setminus \sqcup_{\alpha\in A}U_{\alpha}=\sqcup_{\alpha\in A}X_{\alpha}\setminus U_{\alpha}$, the intersection of which with X_{α} is $X_{\alpha}\setminus U_{\alpha}$ which is open in X_{α} . Therefore, $\sqcup_{\alpha\in A}X_{\alpha}\setminus U$ is open in $\sqcup_{\alpha\in A}X_{\alpha}$, hence, U is closed in $\sqcup_{\alpha\in A}X_{\alpha}$.

- (b) (Injective): $\eta_{\alpha}(x_1) = \eta_{\alpha}(x_2) \Longrightarrow x_1 = x_2$. (Continuous): Let $U = \sqcup_{\alpha \in A} U_{\alpha}$ be open subset of $\sqcup_{\alpha \in A} X_{\alpha}$, then, U_{α} is open subset of X_{α} . Since, $\eta_{\alpha}^{-1}(U) = U_{\alpha}$ which is open in X_{α} , therefore, η_{α} is continuous. (Open map): Let U_{α} be open in X_{α} , then $\eta_{\alpha}(U_{\alpha}) = (U_{\alpha}, \alpha)$, the intersection of which with X_{α} is U_{α} which is open X_{α} and the intersection with $X_{\alpha'}, \alpha' \neq \alpha$ is ϕ which is again open in $X_{\alpha'}$. Therefore, $\eta_{\alpha}(U_{\alpha})$ is open in $\sqcup_{\alpha \in A} X_{\alpha}$ and thus, η_{α} is an open map. (Closed map): Proceed in a similar manner as for (Open map). By proposition (3.16), η_{α} is a topological embedding.
- (c) Let $x_1=(p_1,\alpha_1)$ and $x_2=(p_2,\alpha_2)$ are point in $\sqcup_{\alpha\in A}X_{\alpha}$. If $\alpha_1\neq\alpha_2$, then $X_{\alpha_1}=(X_{\alpha_1},\alpha_1)$ and $X_{\alpha_2}=(X_{\alpha_2},\alpha_2)$ are open neighbourhoods containing x_1 and x_2 with empty intersection. If $\alpha_1=\alpha_2$, then, since X_{α} is Hausdorff, $\exists \ U_1$ and U_2 , neighbourhoods of p_1 and p_2 in X_{α} s.t. $U_1\cap U_2=\phi$, we define neighbourhoods $V_1=(U_1,\alpha_1)$ and $V_2=(U_2,\alpha_1)$ in $\sqcup_{\alpha\in A}X_{\alpha}$ whose intersection is $(U_1\cap U_2,\alpha_1)=(\phi,\alpha_1)=\phi$.
- (d) Let \mathcal{B}_{α_p} be the countable collection of neighbourhoods for $p \in X_{\alpha}$ s.t. for every neighbourhood of p, $\exists B_{\alpha} \in \mathcal{B}_{\alpha_p}$ s.t. B_{α} is contained in the neighbourhood. Then, $(\mathcal{B}_{\alpha_p}, \alpha)$ is the countable collection of neighbourhood of (p, α) in $\sqcup_{\alpha \in A} X_{\alpha}$ s.t. for every neighbourhood of (p, α) , $\exists (B_{\alpha}, \alpha) \in (\mathcal{B}_{\alpha_p}, \alpha)$ s.t. (B_{α}, α) is contained in the neighbourhood.
- (e) Let \mathcal{B}_{α} be the basis of X_{α} , then $\mathcal{B} = \bigsqcup_{\alpha \in A} \mathcal{B}_{\alpha}$ is the basis of $\bigsqcup_{\alpha \in A} X_{\alpha}$ where $|\mathcal{B}| = \sum_{\alpha \in A} |\mathcal{B}_{\alpha}|$ which is countable if \mathcal{B}_{α} is countable and A is countable.

Ex. 3.44

 (\Longrightarrow) If $\sqcup_{\alpha\in A}X_{\alpha}$ is an n-manifold, then it is second countable. By using $\mathbf{3.43(e)}$, we have $\sum_{\alpha\in A}\mathcal{B}_{\alpha}$ is countable. We are given that \mathcal{B}_{α} is countable and conclude that A shouble be countable. (\Longleftrightarrow) Converse follows directly from $\mathbf{3.43(e)}, (\mathbf{d})$ and the fact that (p,α) has a neighbourhood which is homeomorphic to an open subset of \mathbb{R}^n because p has a neighbourhood in X_{α} which is homeomorphic to an open subset of \mathbb{R}^n and $(X_{\alpha}, \alpha) \approx X_{\alpha}$.

Ex. 3.45

An element of (X,Y) is (x,y) for some $x \in X$ and $y \in Y$ and an element of $\sqcup_{y \in Y} X$ is (x,y) where $x \in X$ and $y \in Y$. So, the two spaces are same. Let U be an open subset of X, then (U,y) is an open subset of (X,Y). By definition of disjoint topology, (U,y) is open in $\sqcup_{y \in Y} X$ because the intersection of it, with X is U which is open in X. Converse follows in a similar manner.

Ex. 3.46

- (i) $q^{-1}(\phi) = \phi$ and $q^{-1}(Y) = X$ because q is surjective.
- (ii) Let $(V_i)_{i=1}^n$ be open in Y, then, $\forall i \in \{1, \ldots, n\}, q^{-1}(V_i)$ is open in X. Since, $q^{-1}(\cap_{i=1}^n V_i) = \cap_{i=1}^n q^{-1}(V_i)$ which is open in X, therefore, $\cap_{i=1}^n V_i$ is open in Y.
- (iii) Let $(V_{\alpha})_{\alpha \in A}$ be open in Y, then, $\forall \alpha \in A, q^{-1}(V_{\alpha})$ is open in X. Since, $q^{-1}(\bigcup_{\alpha \in A} V_{\alpha}) = \bigcup_{\alpha \in A} q^{-1}(V_{\alpha})$ is open in X, therefore, $\bigcup_{\alpha \in A} V_{\alpha}$ is open in Y.

Ex. 3.55

Let $(X_{\alpha})_{\alpha \in A}$ be a collection of Hausdorff spaces. Let p be the point where all the base points $(p_{\alpha})_{\alpha \in A}$ collapse to form wedge sum $\bigvee_{\alpha \in A} X_{\alpha}$. Let p_1 and p_2 be two distinct points in $\bigvee_{\alpha \in A} X_{\alpha}$.

If $p_1 \neq p$ and $p_2 \neq p$, then two cases arise - (i) $p_1, p_2 \in X_{\alpha}$, then, since X_{α} is Hausdorff, $\exists U_1, U_2$ neighbourhoods of p_1 and p_2 such that $U_1 \cap U_2 = \phi$, (ii) $p_1 \in X_{\alpha}$ and $p_2 \in X_{\beta}$, then, let U_1 be a neighbourhood of p_1 which does not contain p (which certainly exist because X_{α} is Hausdorff). Similarly, let U_2 be the neighbourhood of p_2 which does not contain p. Then, $U_1 \subseteq X_{\alpha}$ and $U_2 \subseteq X_{\beta}$ where $p \notin U_1$ and $p \notin U_2$, therefore, $U_1 \cap U_2 = \phi$.

If one of $p_i = p$, then use argument in (ii), and finally, conclude that $\bigvee_{\alpha \in A} X_{\alpha}$ is Hausdorff.

Ex. 3.59

- (a) \Longrightarrow (b), (c), (d) Since U is saturated, $\exists \ V \subseteq Y$ s.t. $U = q^{-1}(V)$. Then, q(U) = V and therefore, $U = q^{-1}(q(U))$. Also, $V = \cup_{y \in V} \{y\}$, thus, $U = q^{-1}(\cup_{y \in V} \{y\}) = \cup_{y \in V} q^{-1}(y)$. Let $x \in U$ and x' be any arbitrary point in X s.t. q(x) = q(x'). Since $q(x) \in V$, then $q(x') \in V$, implies that, $x' \in q^{-1}(V) = U$.
- (b) \implies (a) Take V = q(U).
- (c) \implies (a) $U = \bigcup_{y \in V} q^{-1}(y) = q^{-1}(\bigcup_{y \in V} \{y\}) = q^{-1}(V)$.
- (d) \Longrightarrow (a) Let q(U) = V, then, $U \subseteq q^{-1}(V)$. We show that $q^{-1}(V) \subseteq U$. Let $x' \in q^{-1}(V)$, then, $q(x') \in V$. Since, V = q(U), $\exists \ x \in U \text{ s.t. } q(x) \in V \text{ and } q(x) = q(x')$. By the given condition, $x' \in U$, therefore, $q^{-1}(V) \subseteq U$. Hence, $U = q^{-1}(V)$.

Ex. 3.61

 (\Longrightarrow) Let $U\subseteq X$ s.t. U is saturated and open in X, then, $\exists\ V\subseteq Y$ s.t. $U=q^{-1}(V)$. Given that $q^{-1}(V)$ is open, by definition of quotient map, V is open in Y. Similarly, let $U\subseteq X$ s.t. U is saturated and closed in X, then, $\exists\ V\subseteq Y$ s.t. $U=q^{-1}(V)$. Given that $X\setminus q^{-1}(V)=q^{-1}(Y)$ is open, by

surjectivity of quotient map, $X \setminus q^{-1}(V) = q^{-1}(Y) \setminus q^{-1}(V) = q^{-1}(Y \setminus V)$ and by definition of quotient map, $Y \setminus V$ is open in Y, thus, V is closed in Y. (\longleftarrow) Let $U \subseteq Y$ be open in Y, then $q^{-1}(U)$ is open in X due to continuity of q. Now, let $U = q^{-1}(V)$ be open in X for some $V \subseteq Y$. Since, U is saturated and open, by the proposition, q(U) = V is open subset of Y, therefore, q is a quotient map. OR Let $U = q^{-1}(V)$ be open in X, then, $X \setminus U = X \setminus q^{-1}(V)$ is closed in X. Using surjectivity of q, $X \setminus q^{-1}(V) = q^{-1}(Y) \setminus q^{-1}(V) = q^{-1}(Y \setminus V)$. Given that $q^{-1}(Y \setminus V)$ is closed in X, by proposition, $Y \setminus V$ is closed subset of Y and therefore, V is open subset of Y. Hence, Y is a quotient map.

Ex. 3.63

- (a) Let $q_i: X_i \to X_{i+1}$ be a quotient map for all $i \in \{1, \ldots, n\}$. Then, $q: X_1 \to X_{n+1}$ be their composition given by $q = q_n \circ \ldots \circ q_1$. Let U be open subset of X_{n+1} , then $q^{-1}(U) = q_1^{-1}(q_2^{-1}(\ldots(q_n^{-1}(U))\ldots))$ is open subset of X_1 by iteratively applying the definition of quotient map. Similarly, let $q^{-1}(U) = q_1^{-1}(q_2^{-1}(\ldots(q_n^{-1}(U))\ldots))$ be open subset of X_1 for some U in X_{n+1} . Using definition of quotient map q_1 , we have $q_1(q^{-1}(U)) = q_2^{-1}(\ldots(q_n^{-1}(U))\ldots)$ is open in X_2 . Similarly, applying the defintion of quotient maps q_2, \ldots, q_n in an iterative fashion, we get, U is open in X_{n+1} .
- (b) Injective quotient map, q, is bijective. Continuity of q follows from the preimage of any open subset of Y being open in X. Injectivity of q ensures that $\forall V \subseteq X, \exists \ U \subseteq Y$ s.t. $V = q^{-1}(U)$. Let $V = q^{-1}(U)$ be open in X, then, by using defintion of quotient map, q(V) = U is open in Y. Thus, q^{-1} is continuous and q is a homeomorphism.
- (c) (\Longrightarrow) Let $K\subseteq Y$ be closed in Y, then, $Y\setminus K$ is open in Y. By definition of quotient map, $q^{-1}(Y\setminus K)$ is open in X. By surjectivity of q, $q^{-1}(Y\setminus K)=q^{-1}(Y)\setminus q^{-1}(K)=X\setminus q^{-1}(K)$ which is open in X, therefore, $q^{-1}(K)$ is closed in X. (\Longleftrightarrow) Let $q^{-1}(K)$ be closed in X for some $K\subseteq Y$, then, $X\setminus q^{-1}(K)$ is open in X. By surjectivity of q, $X\setminus q^{-1}(K)=q^{-1}(Y)\setminus q^{-1}(K)=q^{-1}(Y\setminus K)$ which is open in X. By definition of q, $Y\setminus K$ is open in Y, therefore, $K\subseteq Y$ is closed in Y.
- (d) Let $U\subseteq X$ be saturated and open in X. Let $V\subseteq q(U)$, then, $q\big|_U^{-1}(V)=U\cap q^{-1}(V)\subseteq U$. Note that $q\big|_U^{-1}(V)$ open in U, implies that $U\cap q^{-1}(V)$ is open in U i.e. $U\cap q^{-1}(V)=U\cap A$ for some open A in X. If U would not have been saturated, we wouldn't be able to say anything (open or closed) about $q^{-1}(V)$, and therefore, couldn't conclude that V is open. However, U is saturated, therefore, $q^{-1}(V)\subseteq U$ and $U\cap q^{-1}(V)=q^{-1}(V)$ is open. Using the definition of q, V is open in Y. Since $V\subseteq q(U)$ where q(U) is open in Y, V is open in q(U). Now, let $V\subseteq q(U)$ open in q(U), therefore, $V=q(U)\cap A$ where A is open in Y. Using definition of q, $q^{-1}(A)$ is open in

X and $q|_U^{-1}(V) = U \cap q^{-1}(A)$ is then open in U. Also, $q|_U$ is surjective by definition, therefore, is a quotient map. Proceed similarly if U is closed saturated subset of X.

(e) Let U be open subset of $\sqcup_{\alpha}Y_{\alpha}$, then, $U = \sqcup_{\alpha}U_{\alpha}$ where $U_{\alpha} = U \cap Y_{\alpha}$ is open in Y_{α} and $q^{-1}(U) = \sqcup_{\alpha}q_{\alpha}^{-1}(U_{\alpha}) \subseteq \sqcup_{\alpha}X_{\alpha}$. By definition of q_{α} , $q^{-1}(U) \cap X_{\alpha} = q_{\alpha}^{-1}(U_{\alpha})$ is open subset of X_{α} , therefore, $q^{-1}(U)$ is an open subset of $\sqcup_{\alpha}X_{\alpha}$. Let U be a subset of $\sqcup_{\alpha}Y_{\alpha}$, then, $U = \sqcup_{\alpha}U_{\alpha}$ where $U_{\alpha} = U \cap Y_{\alpha} \subseteq Y_{\alpha}$. Let $q^{-1}(U) = \sqcup_{\alpha}q_{\alpha}^{-1}(U_{\alpha}) \subseteq \sqcup_{\alpha}X_{\alpha}$ be open in $\sqcup_{\alpha}X_{\alpha}$, then $q^{-1}(U) \cap X_{\alpha} = q_{\alpha}^{-1}U_{\alpha}$ is open in X_{α} . By the definition of q_{α} , $U_{\alpha} = U \cap Y_{\alpha}$ is open in Y_{α} , making U to be open in $\sqcup_{\alpha}Y_{\alpha}$. Finally, surjectivity of q follows by observing that $y \in Y_{\alpha} \stackrel{q_{\alpha}}{\longleftarrow} x \in X_{\alpha} \iff (y,\alpha) \in \sqcup_{\alpha}Y_{\alpha} \stackrel{q}{\longleftarrow} (x,\alpha) \in \sqcup_{\alpha}X_{\alpha}$ Thus, q is a quotient map.

Ex. 3.72

Let Y_q be the set with quotient topology and Y_g be the same set with different topology satisfying the characteristic property of quotient topology. Let $\mathrm{Id}_{qg}:Y_q\to Y_g$ and $\mathrm{Id}_{gq}:Y_g\to Y_q$. Note that $\mathrm{Id}_{qg}=\mathrm{Id}_{gq}^{-1}$. Using the characteristic property, we have, Id_{gq} is continuous because $\mathrm{Id}_{gq}\circ q=q$ is continuous and Id_{qg} is continuous because $\mathrm{Id}_{qg}\circ q=q$ is continuous. Therefore, Id_{qg} is a continuous bijective map from Y_q to Y_g with continuous inverse, hence, Id_{qg} is a homeomorphism from Y_q to Y_g . Thus, Y_g has same topology as Y_q which is the quotient topology.

Ex. 3.83

Ex. 3.85

4. Connectedness and Compactness

Ex. 4.3

Suppose $Y = \{[x_{\alpha}] : \alpha \in A\}$ be the set of equivalence classes where |A| > 1 and $\forall \alpha \in A, [x_{\alpha}]$ is open. Let q be the quotient map corresponding to the equivalence relation, then, $q^{-1}([x_{\alpha}])$ is open subset of X. Since $q^{-1}(Y) = X$, define $U_1 = [x_1]$ and $U_2 = \{[x_{\beta}] : \beta \in A - \{1\}\}$. Note that both U_1 and U_2 are open in Y, so are $q^{-1}(U_1)$ and $q^{-1}(U_2)$ in X by defintion of quotient map. Now, $q^{-1}(U_1) \cap q^{-1}(U_2) = \phi$ and $q^{-1}(U_1) \cup q^{-1}(U_2) = q^{-1}(Y) = X$ implies that X is disconnected, reaching a contradiction. Hence, |A| = 1 and there is only one equivalence class, namely X itself.

Ex. 4.4

(\Longrightarrow) Let X be disconnected, then, $\exists U_1, U_2 \subseteq X$ which are non-empty open subsets of X s.t. $U_1 \cap U_2 = \phi$ and $U_1 \cup U_2 = X$. Define a function $f: X \to \{0,1\}$ as

$$f(x) = \begin{cases} 0 & x \in U_1 \\ 1 & x \in U_2 \end{cases}$$

Then, f is a non-constant function which is continuous because the preimage of open subsets ϕ , $\{0\}$, $\{1\}$ and $\{0,1\}$ of $\{0,1\}$ are ϕ , U_1 , U_2 and X respectively, which are open in X. (\iff) Let the given function be $g: X \to \{0,1\}$, then, define $U_1 = g^{-1}(\{0\})$ and $U_2 = g^{-1}(\{1\})$ (both must be non-empty other wise function is constant) and note that U_1 and U_2 are preimages of open subsets of $\{0,1\}$ in a continuous function, hence, are open subsets of X with $U_1 \cap U_2 = \phi$ and $U_1 \cup U_2 = f^{-1}(\{0,1\}) = X$ implying that X is disconnected.

Ex. 4.5

 (\Longrightarrow) Follows from definition of disconnected topological space. (\longleftarrow) Let $f: X \to \sqcup_{\alpha \in A} V_{\alpha}$, where $|A| \ge 2$, be a homeomorphism. Define $U_1 = f^{-1}(V_1)$ and $U_2 = f^{-1}(\sqcup_{\alpha \in A - \{1\}} V_{\alpha})$, then U_1 and U_2 are open in X because they are preimages of open subsets of $\sqcup_{\alpha \in A} V_{\alpha}$ in a continuous function, with $U_1 \cap U_2 = \phi$ and $U_1 \cup U_2 = X$, implying that X is disconnected.

Ex. 4.10

For the sake of argument, let M_U and M_L represent the same connected manifold M with nonempty boundary where U and L imply that they are homeomorphic to upper half space and lower half space, respectively. Let D(M) be disconnected. Then, $\exists~U,V\neq\phi$ such that U and V are open in $D(M),~U\cap V=\phi$ and $U\cup V=D(M)$. Since both M_U and M_L are closed connected subsets of D(M), using $\mathbf{4.9(a)},~M_U\subseteq U$ or $M_U\subseteq V$ and $M_L\subseteq U$ or $M_L\subseteq V$. If both M_U and M_L are subsets of U, then, $D(M)=M_U\cup M_L\subseteq U$, which contradicts that $V\neq\phi$. By symmetry, if M_U and M_L are subsets of V, then contradicts that $U\neq\phi$. Finally, if $M_U\subseteq U$ and $M_L\subseteq V$, then, $dM_U=dM_L=M_U\cap M_L\subseteq U\cap V$, contradicting

 $U \cap V = \phi$. Therefore, our assumption that D(M) is disconnected is wrong, hence, D(M) is connected.

Ex. 4.14

- (a) Let X be a path connected space, therefore, $\forall p,q \in X, \exists f_{p,q}: I \to X$ s.t. $f_{p,q}$ is continuous, $f_{p,q}(0) = p$ and $f_{p,q}(1) = q$. Let $g: X \to g(X)$ be continuous. Then, $\forall a,b \in g(X)$, define $h: I \to g(X)$ as $h = g \circ f_{p',q'}$ for some $p' \in g^{-1}(\{a\})$ and $q' \in g^{-1}(\{b\})$. Then, h is continuous because it is a composition of continuous maps, $h(0) = g(f_{p',q'}(0)) = g(p') = a$ and $h(1) = g(f_{p',q'}(0)) = g(q') = b$. Therefore, h is a path in g(X) from a to b. Since a and b were arbitrary, g(X) is path-connected.
- (b) Let $p,q \in \bigcup_{\alpha \in A} B_{\alpha}$ be arbitrary where a is a common point of the path-connected subspaces. If $p,q \in B_{\beta}$ for some $\beta \in A$, then, since B_{α} is path-connected, there is a path in B_{α} from p to q, hence a path in $\bigcup_{\alpha \in A} B_{\alpha}$ from p to q. If $p \in B_1$ and $q \in B_2$, then define a path in $\bigcup_{\alpha \in A} B_{\alpha}$ from p to q as $h: I \to \bigcup_{\alpha \in A} B_{\alpha}$ given by,

$$h(u) = \begin{cases} f_{p,a}(2u) & 0 < u \le 0.5\\ g_{a,q}(2u-1) & 0.5 < u \le 1 \end{cases}$$

Note that h is continuous at u=0.5, hence, continuous in I, $h(0)=f_{p,a}(0)=p$ and $h(1)=g_{a,q}(1)=q$. Since p and q were arbitrary, $\bigcup_{\alpha\in A}B_{\alpha}$ is path-connected.

- (c) Let $p = (p_1, \ldots, p_n), q = (q_1, \ldots, q_n) \in (X_1, \ldots, X_n)$, then $f_{p_1,q_1} \times \ldots \times f_{p_n,q_n}$ is the required path from p to q.
- (d) Use the fact that quotient map is continuous and surjective and argument in (a).

Ex. 4.22

- (a) We must show that path components are disjoint and their union is X. Let U and V be distinct path components of X. Suppose $x \in U \cap V$, then by $\mathbf{4.13(b)}\ U \cup V$ is path-connected. By maximality of U and V we get $U \cup V = U = V$, hence, U and V are not distinct, a contradiction. Therefore, $U \cap V = \phi$. Now, let $x \in X$, then $\{x\}$ is a path-connected subset of X containing x. Let B_x be the set of all path-connected subsets containing x, then, their union is path-connected and it certainly is maximal, so it is a path-component containing x. Since x was arbitrary, therefore, union of path-components is X.
- (b) A path-connected subset is connected. Therefore, every path-component which is a path-connected subset, is also a connected subset of X, hence is contained in a single component. Path components are disjoint as proved in (a). Let U be a component and $x \in U$. Then, there is a path component

which contains x (from (a)), which itself is contained U, therefore, a component is disjoint union of path components.

(c) Since components cover X and from (b), path-components cover X. Let A be a path-connected subset of X, then it has a point common with some path component B. Using 4.13(b), $A \cup B$ is path-connected. By maximality of B, $A \cup B = B$, therefore A is contained in B.

Ex. 4.24

Using 4.8 and 4.13(a) every space homeomorphic to a (path-)connected space is (path-)connected. Consider a manifold M with or without boundary. Since, every basis B of M is homeomorphic to an open subset of \mathbb{R}^n or an open subset of \mathbb{H}^n which are (path-)connected, therefore, B is (path-)connected. So, M is locally connected and locally path-connected.

Ex. 4.28

 (\Longrightarrow) Let \mathcal{U}_X be an open cover of A containing open subsets of X whose union contains A. Define a cover \mathcal{U}_A as $\mathcal{U}_A = \{A \cap U : U \in \mathcal{U}_X\}$ which contains open subsets of A whose union is A. Since A is compact in the subspace topology, then, there is a finite subcover i.e. $\exists V_1, \ldots, V_k \in \mathcal{U}_A$ s.t. $\cup_{i=1}^k V_i = A$. Note that $V_i = A \cap U_i$, therefore, the corresponding U_i 's form a finite subcover of \mathcal{U}_X containing A. (\Longleftrightarrow) Let \mathcal{U}_A be an open cover containing open subsets of A whose union is A. Then, for each $U_\alpha \in \mathcal{U}_A$, $\exists V_\alpha$ which is an open subset of X, s.t., $U_\alpha = A \cap V_\alpha$. The collection of all V_α 's form an open cover of A containing open subsets of X whose union contains A. So, \mathcal{U}_X has a finite subcover, i.e., $\exists V_1, V_2, \ldots, V_k$ s.t. $A \subseteq \cup_{i=1}^k V_k$. The collection of corresponding U_i 's where $U_i = A \cap V_i$ is a finite subcover of A containing open subsets of A whose union is A.

Ex. 4.29

Let $(A_i)_{i=1}^n$ be finitely many compact subsets of X. Let \mathcal{U}_{A_i} be an open cover containing open subsets of A_i whose union is A_i . Then, $\bigcup_{i=1}^n \mathcal{U}_{A_i}$ is an open cover of $\bigcup_{i=1}^n A_i$. Since, A_i 's are compact, there exists finite subcovers, i.e., $\exists (U_{A_{i_j}})_{j=1}^{k_i} \in \mathcal{U}_{A_i}$ whose union is A_i . Then, a collection of these finite subcovers is a subcover of $\bigcup_{i=1}^n \mathcal{U}_{A_i}$. Since this collection is finite, therefore, using $\mathbf{4.28}$, $\bigcup_{i=1}^n A_i$ is compact.

Ex. 4.37

Let q be the quotient map from $M \sqcup M$ to $D(M) = M \cup_h M$. Since, M is compact, $M \sqcup M$ is compact. Using **4.36(d)**, D(M) is compact.

Ex. 4.38

Suppose $\cap_n F_n = \phi$, then $\cup_n X \setminus F_n = X$. Since F_i is closed, therefore, $X \setminus F_i$ is open and $\{X \setminus F_n : n \in \mathbb{N}\}$ is an open cover of X. Since X is compact, there

exists a finite subcover, $\{X \setminus F_{n_i} : i \in \{1, 2, \dots, k\}\}$. Since, $F_i \supseteq F_{i+1}$, therefore, $X \setminus F_i \subseteq X \setminus F_{i+1}$ and we get $X \setminus F_{n_k} = X$, which implies $F_{n_k} = \phi$ which is a contradiction (because $F_i \neq \phi$). So, $\bigcap_n F_n \neq \phi$.

Alternatively,

Note that (using **4.36(a)**) F_i is compact. Let $\bigcup_{n\geq 1}F_n=\phi$, then, $\bigcup_{n\geq 2}X\setminus F_n\supseteq F_1$, therfore, $\{X\setminus F_i:i\geq 2\}$ is an open cover of F_1 . So, it has a finite subcover, say, $\{X\setminus F_{k_i}:i\in \{1,2,\ldots,m\}\}$ where $F_{k_i}\supseteq F_{k_{i+1}}$. Therefore, $F_1\subseteq \bigcup_{i=1}^m X\setminus F_{k_i}\subseteq X\setminus F_{k_m}$. So, $F_1\cap F_{k_m}=\phi$, but $F_{k_m}\subseteq F_1$, which means, $F_1\cap F_{k_m}=F_{k_m}=\phi$. This contradicts the fact that F_{k_m} is non empty. Therefore, $\bigcup_{n\geq 1}F_n\neq \phi$.

Ex. 4.49

(4.46) Let (p_k) be an arbitrary bounded sequence in \mathbb{R}^n . Then, $\exists M > 0$ s.t. $p_k \in [-M, M]^n$ for all k.

- $[-M, M]^n$ is a closed and bounded subset of $\mathbb{R}^n \implies$ it is compact.
- Compactness \implies Limit point compactness.
- For first countable Hausdorff spaces, limit point compactness \implies Sequential compactness.

Note that \mathbb{R}^n , being a metric space (equipped with some metric (*)), is first countable and Hausdorff, and so is its subset $[-M, M]^n$ in the subspace topology. By above arguments, $[-M, M]^n$ is sequentially compact. Hence, by the definition of sequential compactness, the sequence (p_k) has a subsequence which converges to a point in $[-M, M]^n$.

- (*) Same metric which is being used to evaluate convergence. A direct argument based on the following results is also possible:
 For metric spaces, compactness, limit point compactness and sequential compactness are all equivalent properties. Subset of a metric space is a metric subspace with metric inherited from the original space.
- (4.47) (\Longrightarrow) Let A be a subset of \mathbb{R}^n which is a complete metric space and x be a limit point of A. Then, \exists a Cauchy sequence (x_k) s.t. $x_k \in A$ and $x_k \to x$. Since, A is complete, $x \in A$. Therefore, A contains all of its limit points, hence is closed. (\Longleftrightarrow) Let A be closed in \mathbb{R}^n and (x_k) be a Cauchy sequence in s.t. $x_k \in A$. Since, a Cauchy sequence is bounded, (x_k) is bounded and hence, by 4.46, has a convergent subsequence. A Cauchy sequence with convergent subsequence is convergent. Therefore, (x_k) converges to say x, where x is a limit point of A. Since, A is closed, $x \in A$. Therefore, A is a complete metric space. Finally, \mathbb{R}^n is closed in \mathbb{R}^n , therefore, is a complete metric space.
- (4.48) Let X be a compact metric space and (x_k) be a Cauchy sequence s.t. $x_k \in X$. By 4.45, X is sequentially compact, therefore, (x_k) has a convergent

subsequence. A Cauchy sequence with a convergent subsequence is convergent (to some point in X). Therefore, X is complete.

Ex. 4.58

 $A = \mathbb{S}^n \setminus \{0, 0, \dots, 0, 1\}$ is an open subset of \mathbb{S}^n and is homeomorphic to \mathbb{B}^n . The closure of A is given by $\bar{A} = \mathbb{S}^n$ but $\bar{A} \not\approx \bar{\mathbb{B}}^n$.

Ex. 4.61

Clearly, $\phi_i^{-1}(B_r(x))$ is an open subset of X because ϕ_i is continuous. Now, let $p \in U_i$ be mapped to $x \in \hat{U}_i$ where x is irrational. Since \hat{U}_i is open, $\exists r(x) > 0$ s.t. $B_{r(x)}(x) \subseteq \hat{U}_i$. Now, even if r(x) is irrational, $\exists x'$ and r' s.t. both x' and r' are rational and $x \in B_{r'}(x')$. And therefore, $\phi_i^{-1}(B_{r'}(x'))$ which is an element of the basis, contains x. Finally, we conclude that $U_i = \bigcup_{x \in \hat{U}_i} \phi^{-1} B_r(x)$ where r and x are rational.

Ex. 4.67

Let X_1, X_2, \ldots, X_n be locally compact spaces and (X_1, \ldots, X_n) be the corresponding product space. Let $p = (p_1, \ldots, p_n) \in (X_1, \ldots, X_n)$, then, for each $i, \exists U_i$ which is open in X_i such that there is V_i which is compact in X_i and $p_i \in U_i \subseteq V_i$. Then, (U_1, \ldots, U_n) is a neighbourhood of p and is open in (X_1, \ldots, X_n) . Since, finite product of compact spaces is compact, (V_1, \ldots, V_n) is compact in (X_1, \ldots, X_n) . Also, $p \in (U_1, \ldots, U_n) \subseteq (V_1, \ldots, V_n)$, therefore, (X_1, \ldots, X_n) is locally compact.

Ex. 4.70

Let X be a Baire space and A be a meager subset. Then, $A = \bigcup_{\alpha \in A} U_{\alpha}$ where U_{α} is nowhere dense. Note that $U_{\alpha} \subseteq \bar{U}_{\alpha}$, therefore, $X \setminus U_{\alpha} \supseteq X \setminus \bar{U}_{\alpha}$ and $X \setminus A \supseteq \bigcap_{\alpha \in A} X \setminus \bar{U}_{\alpha}$. Since, X is a Baire space, $\bigcap_{\alpha \in A} X \setminus \bar{U}_{\alpha}$ is dense. So, $X \setminus A$ is dense, hence, A has dense complement.

Ex. 4.73

Let $x \in X$, then choose $A \in \mathcal{A}$ such that $x \in A$. Since A intersects only finitely many other sets in \mathcal{A} , X is locally finite.

Ex. 4.78

Let X be a compact Hausdorff space. Let A and B be disjoint closed subsets of X. Then, by **4.36(a)**, A and B are compact. Finally, by **4.34**, there are disjoint open subsets $U, V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$. Therefore, X is normal.

Ex. 4.79

Let X be a normal space and A be a closed subspace of X. Let U_1 and U_2 be disjoint closed subset of in A. Then, U_1 and U_2 are disjoint and closed in X (by **3.5(a)**). Since, X is normal, \exists disjoint open subsets $V_1, V_2 \subseteq X$ such that

 $U_1 \subseteq V_1$ and $U_2 \subseteq V_2$. Then, $A \cap V_1$ and $A \cap V_2$ are disjoint and open in A such that $U_1 \subseteq A \cap V_1$ and $U_2 \subseteq A \cap V_2$. Therefore, A is normal.