READ ONLYデータベースによる、

高速・大規模・低コストの

検索・ダウンロードサービス実現の試み

2020年2月14日

「巨大時系列データの高速アクセスに関する研究」チーム 古庄晋二・生座本義勝・山本幸生・早部秀一

背景:経緯

- Apollo 11~17号が月に設置した地震計データの ダウンロードサービスの高速化に取り組んだ。
- ビッグデータからサブビッグデータを抽出する 処理である。
- このための良いソリューションが見当たらず、 今回、その解決を図った。

背景: 「Read Only」という救い

- Apolloのデータベースは、
 - A) 「データの蓄積・管理」サブシステムと、
- B) 「**オンライン検索・分析・ダウンロード**」サブシステムに、

分割できる。

- A に使用されるデータベースは処理時間の制約が少なく、実現が可能。
- 一方、Bのデータベースは高速なレスポンスが要求されるが、 Read Only で構わない。
 - ⇒ Read Only 前提だと、高速・大規模を実現する解法がある。

検索の高速化:2段階の検索が必要

- 「初段の検索」検索対象を絞り込む
 - 例: Apollo 12号の 1 月のデータの中から・・・
- 「次段の検索」初段で絞り込まれた範囲を、多項目の範囲条件で検索する
 - 例: 10≦ x ≦12, 20≦ y ≦22, 30≦ z ≦32
- 「初段」、「次段」ともに既存のインデックスでは低速。

検索の高速化:初段の検索の課題

- 大規模データの必要領域を素早く検索したいが、、
 - 範囲の検索に対応する良いインデックスがない
 - 範囲なのでハッシュは使えない
 - B-treeの発案者であるRudolf Bayerは次のように発言している
 If the world was perfectly static, such a performance could also be achieved with other indexing techniques.
 - 膨大な検索結果集合を一瞬で記録できない
 - Read Only なら解決策がある。
 検索結果集合の空間のヒット区間を記憶するだけで良い。
 - ベンチマークでは、40億行のテーブルから5億行を検索するのに 1ミリ秒以下で済んだ。

検索の高速化:次段の検索の課題

- 既存インデックス技術では、
 - 良い部分インデックスがない
 - 多数の範囲をカバーしにくい
 - コンパクトにしにくい
 - 複数項目の範囲の検索が遅い (複合インデックスでは複数項目の範囲の検索は遅い ⇒ 次ページ)
- Read Only なら解決策がある。
 - (Read Only前提の)転置インデックスをカスケードする手法で
 - ベンチマークでは、1000万行のテーブルから、x/y/z座標の範囲を検索 すると、16ミリ秒~

※ 複合インデックスを用いて複数項目の範囲を検索すると、 インデックス上のヒット区間が分散する。

その結果、インデックスの重大なパフォーマンス低下が発生する。

テーブルの分割・組換:メリット

- テーブルが大規模化すると、
 - システムが大きく・高価・低速になり、
 - データの管理も難しくなる。
- テーブルを分割できると、
 - ストレージの増設だけで大規模なデータに対応できることが期待できる。
- 分割したテーブルを自由に選択し、所望の順序で 仮想的にUNIONできれば、
 - ユーザ/サービス毎に最適なデータセットを作れるので、 サービスの多様化・高度化ができる。

テーブルの分割・組換: テーブル組換対応インデックス

テーブルの分割・組換は、「仮想UNION」機能を 使って行う。

「仮想UNION」機能は、1テーブル1ファイル形式のテーブルファイル群から、必要なテーブルファイルを選んで、任意の順番で仮想的にUNIONテーブルを作成する機能。

• 「仮想UNION」機能に対応するインデックスが、 「テーブル組換対応インデックス」である。

Read Only 環境が前提になる。

ベンチマーク1

初段の検索:テーブル組換対応インデックス

- 1. 表 1 に示す、Apollo $11\sim16$ 号の、 項目(時間、lpx、lpy、lpz)からなる テーブル 5 つを「仮想UNION」し、 4 0 億レコードのテーブルを作った。
- 2. その上で、x/y/z 個別に検索範囲を指定し、検索を行った。(次ページ)

表 1

分類	レコード数
Apollo 11号	11,436,480
Apollo 12号	1,301,101,200
Apollo 14号	1,010,464,200
Apollo 15号	948,976,200
Apollo 16号	797,193,720
11~16号合計	4,069,171,800

スキーマ

名称	型
time	64bit整数
Ірх	64bit整数
Гру	64bit整数
lpz	64bit整数

4,069,171,800行より 1項目の区間を指定して検索

	検索条件	検索前レコード数	ヒットレコード数	所要	時間(mSec)
				1回目	0.291
1	$517 \le x \le 519$	4,069,171,800	115,229,394	2回目	0.058
				3回目	0.055
	522 ≤ x ≤ 522	4,069,171,800	84,781,885	1回目	0.067
2				2回目	0.063
				3回目	0.103
				1回目	0.079
3	$520 \le x \le 521$	4,069,171,800	142,464,693	2回目	0.060
				3回目	0.080
				1回目	0.280
4	514 ≦ y ≦ 517	4,069,171,800	311,907,582	2回目	0.081
				3回目	0.078
		4,069,171,800	196,663,395	1回目	0.070
5 524	$524 \le y \le 526$			2回目	0.075
				3回目	0.081
		4,069,171,800	307,228,343	1回目	0.067
6	$523 \le y \le 527$			2回目	0.068
				3回目	0.080
	502 ≤ z ≤ 504	4,069,171,800	29,213,381	1回目	0.281
7				2回目	0.093
				3回目	0.089
	514 ≦ z ≦ 518	4,069,171,800	374,244,303	1回目	0.107
8				2回目	0.063
				3回目	0.072
	518 ≦ z ≦ 523	4,069,171,800	570,110,773	1回目	0.083
9				2回目	0.086
				3回目	0.067
				最大	0.291
				最小	0.055
				平均	0.099

4 0 億行から数億行 を検索

最大: 0.291 mSec

最小:0.055 mSec

平均: 0.099 mSec

デモ1:仮想UNIONと検索 (テーブル組換対応インデックス)

ベンチマーク2: 次段の検索:複数項目範囲インデックス

既存の「複合インデックス」では、多項目の範囲の検索は遅い。 その理由は多項目の検索を<u>1次元の大小関係に基づくインデックス</u>で行うため。

多項目の検索を効率よく行うには、<u>多次元の大小関係に基づくインデックス</u>が必要。

10M行より 3項目(x/y/z)の区間を指定して検索

16 mSec \sim 520 mSec

10M		X	Υ	Z	Hit件数	Search	Export
00000000.D5A		^	Ť	2		mSec	mSec
	1回目	5%条件	5%条件	5%条件	15,940	23.40	44.25
0	2回目	5%条件	5%条件	5%条件	15,940	20.96	38.91
	3回目	5%条件	5%条件	5%条件	15,940	22.35	52.29
	1回目	10%条件	5%条件	5%条件	2,184	20.55	10.02
1	2回目	10%条件	5%条件	5%条件	2,184	19.05	9.75
	3回目	10%条件	5%条件	5%条件	2,184	18.92	10.11
	1回目						
	2回目						
	3回目						
	1回目	5%条件	5%条件	10%条件	571	33.49	4.47
9	2回目	5%条件	5%条件	10%条件	571	33.61	4.50
	3回目	5%条件	5%条件	10%条件	571	34.22	4.34
	1回目						
	2回目						
	3回目						
18	1回目	5%条件	5%条件	20%条件	303	67.31	3.36
	2回目	5%条件	5%条件	20%条件	303	67.78	30.01
	3回目	5%条件	5%条件	20%条件	303	68.96	20.96
	1回目						
	2回目						
	3回目						

参考文献の紹介

- 特許文献 US7,801,903 B2: パラレルソート

 (複数項目範囲インデックスのSSDキャッシュミス低減に使用)

 https://patents.google.com/patent/US7801903?oq=7%2c801%2c903
- 特許文献 US8,065,337 B2: パラレルソート

 (複数項目範囲インデックスのSSDキャッシュミス低減に使用)

 https://patents.google.com/patent/US8065337B2/en?oq=US8%2c065%2c337
- [3] テーブル組換対応インデックスの動画
 Zap-Over: The Big Data's Browser across Clouds,
 https://www.youtube.com/watch?v=2Pg9tVocb9M&feature=youtu.be
- [4] テーブル組換対応インデックス(Zap-Over)を含む解説資料
 Create The Global Usage Cycle of Big Data,
 https://drive.google.com/file/d/1QeJewtThOQy437x6Cib4pS4NGJlx2V1F/view
- [5] 特許出願明細書(テーブル組換対応インデックス)
 http://turbodata.sakura.ne.jp/Zap-Over%20Pat%20Application.pdf