Raisonnement par récurrence:

1. «
$$n^2 + n + 2$$
 est pair pour $n \in \mathbb{N}$ »

2. «
$$2^n \ge n^2$$
 , $n \ge 4$ »

3. «
$$\sum_{k=0}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
, $n \in \mathbb{N}$ »

4. «
$$\sum_{k=0}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
, $n \in \mathbb{N}$ »

5. «
$$(1+a)^n \ge 1 + n \cdot a$$
 »

- 6. Soit (u_n) la suite définie par $u_1=0.4$ et pour tout entier $n\geq 1, u_{n+1}=0.2\cdot u_n+0.4.$
 - Démontrer que la suite (u_n) est croissante.
- 7. Soit la suite (u_n) définie par $u_0=0$ et pour tout entier naturel n, $u_{n+1}=\frac{u_n+3}{4\cdot u_n+4}$.

On considère la fonction f définie sur

$$]-1;+\infty[U]-1;+\infty[$$
 par $f(x)=\frac{x+3}{4x+4}$.

- 1) Étudier les variations de f.
- 2) Démontrer par récurrence que pour tout entier naturel n,

$$0 \le u_n \le 1$$

A Regarder le corrigé après avoir terminé tous les exercices.

1. Soit $\mathcal P$ la propriété : « n^2+n+2 est pair avec $n\in\mathbb N$ ». Démontrons cette propriété par récurrence.

Initialisation:

Tout d'abord, on démontre que cette propriété est valable pour n=0. Pour $n=0:0^2+0+2=2 \rightarrow \text{pair}$ $\mathcal{P}(0)$ est alors vrai.

Hérédité:

Soit un entier naturel quelconque p, tel que $\mathcal{P}(p)$ vraie, démontrons alors que $\mathcal{P}(p+1)$ est vraie, c'est-à-dire que $(p+1)^2 + (p+1) + 2$ est pair.

$$(p+1)^2 + (p+1) + 2 = p^2 + 2p + 1 + p + 1 = p^2 + p + 2 + 2p + 2$$

La propriété $\mathcal{P}(p)$ est vraie, donc p^2+p+2 est pair.

2p est pair car $p \in \mathbb{N}$, et 2 est également pair donc la somme est pair

La somme de 2 nombres pairs est paire.

 $\mathcal{P}(p+1)$ est donc également vraie.

Conclusion:

La propriété $\mathcal P$ est alors pour tout $n\in\mathbb N$ vraie.

2. Soit $\mathcal P$ la propriété : « $2^n \ge n^2$, $n \ge 4$ ». Démontrons cette propriété par récurrence.

Initialisation:

Tout d'abord, on démontre que cette propriété est valable pour n=4.

Pour
$$n = 3: 2^3 = 8$$
 et $3^2 = 9 \rightarrow 8 < 9$

Pour
$$n = 4 : 2^2 = 16$$
 et $4^2 = 16 \rightarrow 16 \ge 16$

 $\mathcal{P}(4)$ est alors vrai.

Hérédité:

Soit un entier naturel supérieur ou égal à 4 quelconque p, tel que $\mathcal{P}(p)$ vraie, démontrons alors que $\mathcal{P}(p+1)$ est vraie, c'est-à-dire que $2^{p+1} \geq (p+1)^2$.

On sait que:

$$2^p \geq p^2$$
 Le sens reste pareil car on multiplie par 2 $2^{p+1} \geq 2p^2$

Si on démontre que $2p^2$ est plus grand que $(p+1)^2$ on aura alors démontré que $2^{p+1} \ge 2p^2 \ge (p+1)^2$. On calcule la différence :

$$2p^2 - (p+1)^2 = 2p^2 - p^2 - 2p - 1 = p^2 - 2p - 1$$

Trinôme du second degré avec $p \in \mathbb{N}$

$$\Delta = 2^2 - 4 \cdot 1 \cdot (-1) = 8 > 0$$

Il existe alors 2 solutions:

$$p_1=\frac{2-\sqrt{8}}{2\cdot 1}<0$$
 La racine est négative, elle nous intéresse pas
$$p_2=\frac{2+\sqrt{8}}{2\cdot 1}\approx 2{,}414$$

x	0	2,414	4	+∞
Signe de			1	
la				
différence		$ \psi$	\top	

Pour $p \ge 4$, le trinôme est positif, donc $2p^2 \ge (p+1)^2$. On a alors $2^{p+1} \ge (p+1)^2$.

 $\mathcal{P}(p+1)$ est donc également vraie.

Conclusion:

La propriété \mathcal{P} est alors pour tout $n \in \mathbb{N}$ vraie.

3. Soit \mathcal{P} la propriété : « $\sum_{k=0}^n k = 1+2+3+\cdots+n = \frac{n(n+1)}{2}$, $n \in \mathbb{N}$ ». Démontrons cette propriété par récurrence.

Initialisation:

Tout d'abord, on démontre que cette propriété est valable pour n=0.

Pour
$$n = 0$$
: $\frac{0(0+1)}{2} = 0$ et $\sum_{k=0}^{0} k = 0$

 $\mathcal{P}(0)$ est alors vrai.

Hérédité:

Soit un entier naturel quelconque p, tel que $\mathcal{P}(p)$ vraie, démontrons alors que $\mathcal{P}(p+1)$ est vraie, c'est-à-dire que $1+2+\cdots+p+(p+1)=\frac{(p+1)(p+2)}{2}$.

$$1 + 2 + 3 + \dots + p + (p + 1) = \frac{p(p + 1)}{2} + (p + 1)$$

La propriété $\mathcal{P}(p)$ est vraie donc $1+2+3+\cdots+p=\frac{p(p+1)}{2}$

$$1 + 2 + 3 + \dots + p + (p+1) = \frac{p(p+1) + 2(p+1)}{2}$$
$$= \frac{(p+2)(p+1)}{2}$$

 $\mathcal{P}(p+1)$ est donc également vraie.

Conclusion:

La propriété \mathcal{P} est alors pour tout $n \in \mathbb{N}$ vraie.

4. Soit \mathcal{P} la propriété :

«
$$\sum_{k=0}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
, $n \in \mathbb{N}$ ».

Démontrons cette propriété par récurrence.

Initialisation:

Tout d'abord, on démontre que cette propriété est valable pour n=0.

Pour
$$n = 0$$
: $\frac{0(0+1)(2\cdot 0+1)}{6} = 0$ et $\sum_{k=0}^{0} k^0 = 0$

 $\mathcal{P}(0)$ est alors vrai.

Hérédité:

Soit un entier naturel quelconque p, tel que $\mathcal{P}(p)$ vraie, démontrons alors que $\mathcal{P}(p+1)$ est vraie, c'est-à-dire que $1^2+2^2+3^2+\cdots+(p+1)^2=\frac{(p+1)(p+2)(2p+3)}{4}$.

$$1^{2} + 2^{2} + 3^{2} + \dots + p^{2} + (p+1)^{2} = \frac{p(p+1)(2p+1)}{6} + (p+1)^{2}$$

La propriété
$$\mathcal{P}(p)$$
 est vraie donc $1^2+2^2+3^2+\cdots+p^2=\frac{p(p+1)(2p+1)}{6}$

$$1^{2} + 2^{2} + 3^{2} + \dots + p^{2} + (p+1)^{2} = \frac{p(p+1)(2p+1) + 6(p+1)^{2}}{6}$$
$$= \frac{(p+1)[p(2p+1) + 6(p+1)]}{6}$$

Trinôme du second degré avec $p \in \mathbb{N}$

$$\Delta = 1$$

$$p_1 = -2$$

$$p_2 = \frac{3}{2}$$

On factorise le trinôme :

$$= \frac{(p+1)(2p^2+7p+6)}{6}$$

$$= \frac{(p+1)\left(2(p-\frac{3}{2})(p+2)\right)}{6}$$

$$= \frac{(p+1)(p+2)(2p+3)}{6}$$

 $\mathcal{P}(p+1)$ est donc également vraie.

Conclusion:

La propriété \mathcal{P} est alors pour tout $n \in \mathbb{N}$ vraie.

5. Soit \mathcal{P} la propriété : « $(1+a)^n \geq 1+an$, $n \in \mathbb{N}$ et $a \geq 0$ » connue comme *l'inégalité de Bernoulli*. Démontrons cette propriété par récurrence.

Initialisation:

Tout d'abord, on démontre que cette propriété est valable pour n=0. Pour n=0: $(1+a)^0=1$ et $1+a\cdot 0=1 \to 1 \ge 1$ $\mathcal{P}(0)$ est alors vrai.

Hérédité:

Soit un entier naturel quelconque p, tel que $\mathcal{P}(p)$ vraie, démontrons alors que $\mathcal{P}(p+1)$ est vraie, c'est-à-dire que $(1+a)^{p+1} \geq 1 + (p+1)a$. On sait que :

$$(1+a)^p \ge 1+pa$$

$$(1+a)\cdot (1+a)^p \ge (1+a)\cdot (1+pa)$$

$$(1+a)^{p+1} \ge 1+(p+1)a+a^2$$
On ne change pas le signe de l'inégalité car $1+a>0$

Or
$$a^2 \ge 0$$
, alors $1 + (p+1)a + a^2 \ge 1 + (p+1)a$, donc :
$$(1+a)^{p+1} \ge 1 + (p+1)a$$

 $\mathcal{P}(p+1)$ est donc également vraie.

Conclusion:

La propriété \mathcal{P} est alors pour tout $n \in \mathbb{N}$ vraie.

6. Soit $\mathcal P$ la propriété : « la suite (u_n) est croissante ou $u_{n+1}>u_n$, $n\geq 1$ ». Démontrons cette propriété par récurrence.

Initialisation:

Tout d'abord, on démontre que cette propriété est valable pour n=1. Pour n=1: $u_1=0.4$ et $u_2=0.2\cdot 0.4+0.4 \rightarrow u_2>u_1$ $\mathcal{P}(1)$ est alors vrai.

Hérédité:

Soit un entier naturel quelconque p, tel que $\mathcal{P}(p)$ vraie, démontrons alors que $\mathcal{P}(p+1)$ est vraie, c'est-à-dire que $u_{p+2}>u_{p+1}$.

On sait que:

$$u_{p+1}>u_p \\ 0,2\cdot u_{p+1}>0,2\cdot u_p \\ 0,2\cdot u_{p+1}+0,4>0,2\cdot u_p+0,4$$
 On ne change pas le signe de l'inégalité car $0,2>0$ On ne change pas le signe de l'inégalité (somme)
$$u_{p+2}>u_{p+1}$$

 $\mathcal{P}(p+1)$ est donc également vraie.

Conclusion:

La propriété \mathcal{P} est alors pour tout $n \in \mathbb{N}$ vraie.

7. 1) La fonction est dérivable sur D_f :

$$f'(x) = \frac{(4x+4)-4(x+3)}{(4x+4)^2} = \frac{-8}{(4x+4)^2}$$

Le dénominateur est toujours positif, cependant le numérateur est négatif, le signe de la dérivée est alors négatif et le sens de variation est décroissant sur D_f .

2) Soit \mathcal{P} la propriété : « $0 \le u_n \le 1$, $n \in \mathbb{N}$ ». Démontrons cette propriété par récurrence.

Initialisation:

Tout d'abord, on démontre que cette propriété est valable pour n=0.

Pour
$$n = 0 : u_0 = 0 \to 0 < u_0 < 1$$

 $\mathcal{P}(0)$ est alors vrai.

Hérédité:

Soit un entier naturel quelconque p, tel que $\mathcal{P}(p)$ vraie, démontrons alors que $\mathcal{P}(p+1)$ est vraie, c'est-à-dire que $0 \leq u_{p+1} \leq 1$.

On sait que:

$$0 \le u_p \le 1$$

$$f(0) \ge f(u_p) \ge f(1)$$

$$1 \ge \frac{3}{4} \ge u_{p+1} \ge \frac{1}{2} \ge 0$$

$$0 \le u_{p+1} \le 1$$

 $\mathcal{P}(p+1)$ est donc également vraie.

Conclusion:

La propriété $\mathcal P$ est alors pour tout $n\in\mathbb N$ vraie.