



DE LA RECHERCHE À L'INDUSTRIE

Bernard Amadon CEA, DAM, DIF, F-91297 Arpajon, France



### **DFT+DMFT Scheme**



#### Scheme implemented in ABINIT

- L.V. Pourovskii, B. Amadon, S. Biermann, A. Georges Phys. Rev. B 76, 235101 (2007)
- B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. Wehling and A. I. Lichtenstein Phys. Rev. B 77, 205112 (2008)
- B. Amadon, Journal of Physics: Condensed Matter 24, 075604 (2012).
- J. Bieder and B. Amadon Phys. Rev. B 89 (19), 195132 (2014).

#### Two important points

- Definition of correlated Wannier orbitals
- Resolution of Anderson model (Continuous Time Quantum Monte Carlo)



### Introduction

#### Three topics:

- Improved calculation of Projected Wannier functions: orthonormalization.
- Continuous Time Quantum Monte Carlo for DMFT
  - Calculation of Green's function with Legendre Polynomials.
  - Calculation of occupations of atomic configurations.



### Three topics:

- Improved calculation of Projected Wannier functions: orthonormalization.
- Continuous Time Quantum Monte Carlo for DMFT
  - Calculation of Green's function with Legendre Polynomials.
  - Calculation of occupations of atomic configurations.



### **Projected Local Orbital Wannier functions**

• We define  $|\tilde{\chi}^{\mathbf{R}}_{\mathbf{k}m}\rangle$  as a sum over a limited number of KS states in the window energy  $\mathcal{W}$  of projection of KS states over atomic orbitals.

$$|\tilde{\chi}_{\mathbf{k}m}^{\mathbf{R}}\rangle \equiv \sum_{\nu \in \mathcal{W}} \langle \Psi_{\mathbf{k}\nu} | \chi_{\mathbf{k}m}^{\mathbf{R}} \rangle | \Psi_{\mathbf{k}\nu} \rangle = P_{m\nu}^{\mathbf{R}}(\mathbf{k})^* | \Psi_{\mathbf{k}\nu} \rangle$$



### Projected Local Orbital Wannier functions

• We define  $|\tilde{\chi}^{\mathbf{R}}_{\mathbf{k}m}\rangle$  as a sum over a limited number of KS states in the window energy  $\mathcal{W}$  of projection of KS states over atomic orbitals.

$$|\tilde{\chi}_{\mathbf{k}m}^{\mathbf{R}}\rangle \equiv \sum_{\nu \in \mathcal{W}} \langle \Psi_{\mathbf{k}\nu} | \chi_{\mathbf{k}m}^{\mathbf{R}} \rangle | \Psi_{\mathbf{k}\nu} \rangle = P_{m\nu}^{\mathbf{R}}(\mathbf{k})^* | \Psi_{\mathbf{k}\nu} \rangle$$

•  $|\tilde{\chi}^{\mathbf{R}}_{\mathbf{k}m}\rangle$  need to be orthonormalized to give true Wannier functions  $|w^{\mathbf{R}}_{\mathbf{k}m}\rangle$ .

$$O_{m,m'}^{\mathbf{R},\mathbf{R}'}(\mathbf{k}) = \langle \tilde{\chi}_{\mathbf{k}m}^{\mathbf{R}} | \tilde{\chi}_{\mathbf{k}m'}^{\mathbf{R}'} \rangle = \sum_{\nu} P_{m\nu}^{\mathbf{R}}(\mathbf{k}) P_{m'\nu}^{\mathbf{R}'}(\mathbf{k})^*$$
(1)

or 
$$O_{m,m'}^{\mathbf{R},\mathbf{R}'} = \langle \tilde{\chi}_{\mathbf{T}m}^{\mathbf{R}} | \tilde{\chi}_{\mathbf{T}m'}^{\mathbf{R}'} \rangle = \sum_{\nu,\mathbf{k}} P_{m\nu}^{\mathbf{R}}(\mathbf{k}) P_{m'\nu}^{\mathbf{R}'}(\mathbf{k})^*$$
 (2)



## **Projected Local Orbital Wannier functions**

• We define  $|\tilde{\chi}_{km}^{\mathbf{R}}\rangle$  as a sum over a limited number of KS states in the window energy  $\mathcal{W}$  of projection of KS states over atomic orbitals.

$$|\tilde{\chi}_{\mathbf{k}m}^{\mathbf{R}}\rangle \equiv \sum_{\nu \in \mathcal{W}} \langle \Psi_{\mathbf{k}\nu} | \chi_{\mathbf{k}m}^{\mathbf{R}} \rangle | \Psi_{\mathbf{k}\nu} \rangle = P_{m\nu}^{\mathbf{R}}(\mathbf{k})^* | \Psi_{\mathbf{k}\nu} \rangle$$

•  $|\tilde{\chi}^{\mathbf{R}}_{\mathbf{k}m}\rangle$  need to be orthonormalized to give true Wannier functions  $|w^{\mathbf{R}}_{\mathbf{k}m}\rangle$ .

$$O_{m,m'}^{\mathbf{R},\mathbf{R}'}(\mathbf{k}) = \langle \tilde{\chi}_{\mathbf{k}m}^{\mathbf{R}} | \tilde{\chi}_{\mathbf{k}m'}^{\mathbf{R}'} \rangle = \sum_{\nu} P_{m\nu}^{\mathbf{R}}(\mathbf{k}) P_{m'\nu}^{\mathbf{R}'}(\mathbf{k})^*$$
(1)

or 
$$O_{m,m'}^{\mathbf{R},\mathbf{R}'} = \langle \tilde{\chi}_{\mathbf{T}m}^{\mathbf{R}} | \tilde{\chi}_{\mathbf{T}m'}^{\mathbf{R}'} \rangle = \sum_{\nu,\mathbf{k}} P_{m\nu}^{\mathbf{R}}(\mathbf{k}) P_{m'\nu}^{\mathbf{R}'}(\mathbf{k})^*$$
 (2)

•  $|w_{{\bf k}m}^{{\bf R}}\rangle$  is thus obtained though:

$$|w_{\mathbf{k}m}^{\mathbf{R}}\rangle = \sum_{\mathbf{R}',m'} \left\{ [O]^{-1/2} \right\}_{m,m'}^{\mathbf{R},\mathbf{R}'} |\tilde{\chi}_{\mathbf{k}m'}^{\mathbf{R}'}\rangle$$

For several atoms, default choice is now choice (1) (variable dmft\_wanorthnorm=2)



### Three topics:

- Improved calculation of Projected Wannier functions: orthonormalization.
- Continuous Time Quantum Monte Carlo for DMFT
  - Calculation of Green's function with Legendre Polynomials.
  - Calculation of occupations of atomic configurations.



### CTQMC calculation: role of noise

• The output of the CTQMC calculation is the Green's function  $G(\tau)$ .



## Green function in imaginary time





# Green function in imaginary frequency

#### Fourier transformation gives :





### CTQMC calculation: role of noise

- It is a quantity that can be noisy
- Legendre polynomial expansion is a possible solution proposed by L. Boehnke et al Phys. Rev. B 84, 075145 (2011).
  - Based upon a filtering of large component of the expansion.



## Legendre expansion of Green's function

Legendre Polynomials expansion:

$$G(\tau) = \sum_{l \ge 0} \frac{\sqrt{2l+1}}{\beta} P_l(x(\tau)) G_l,$$
  
$$G_l = \sqrt{2l+1} \int_0^\beta d\tau P_l(x(\tau)) G(\tau).$$

where  $x(\tau)=2\tau/\beta-1$  and  $G_l$  denote the coefficients of  $G(\tau)$  in the Legendre basis.

### Legendre expansion of Green's function

Legendre Polynomials expansion:

$$G(\tau) = \sum_{l \ge 0} \frac{\sqrt{2l+1}}{\beta} P_l(x(\tau)) G_l,$$

$$G_l = \sqrt{2l+1} \int_0^\beta d\tau P_l(x(\tau)) G(\tau).$$

where  $x(\tau) = 2\tau/\beta - 1$  and  $G_l$  denote the coefficients of  $G(\tau)$  in the Legendre basis.

The  $G_l$  can be computed directly in the Monte Carlo simulation.



### Legendre expansion of Green's function

The Green's function in imaginary frequency can be computed directly by taking analytically the Fourier transform:

$$G(i\omega_n) = \sum_{l\geq 0} G_l \frac{\sqrt{2l+1}}{\beta} \int_0^\beta d\tau \ e^{i\omega_n \tau} P_l(x(\tau))$$
$$= \sum_{l\geq 0} T_{nl} G_l.$$

where the unitary transformation  $T_{nl}$  can be shown to be

$$T_{nl} = (-1)^n i^{l+1} \sqrt{2l+1} j_l \left(\frac{(2n+1)\pi}{2}\right)$$



## Green function in imaginary time





## Green function in imaginary frequency





### Three topics:

- Improved calculation of Projected Wannier functions: orthonormalization.
- Continuous Time Quantum Monte Carlo for DMFT
  - Calculation of Green's function with Legendre Polynomials.
  - Calculation of occupations of atomic configurations.



# Occupations of atomic configurations

#### H<sub>2</sub> molecule





## Occupations of atomic configurations

#### H<sub>2</sub> molecule



bonding state 
$$|\sigma_g
angle=rac{1}{\sqrt{2}}|a
angle+rac{1}{\sqrt{2}}|b
angle$$

With U=0, the wavefunction is :

$$\begin{split} |\Psi_t\rangle &=& |\sigma_g\sigma_g\rangle = \left(\frac{1}{\sqrt{2}}|a\rangle + \frac{1}{\sqrt{2}}|b\rangle\right) \left(\frac{1}{\sqrt{2}}|a\rangle + \frac{1}{\sqrt{2}}|b\rangle\right) \\ &=& \frac{1}{2}|aa\rangle + \frac{1}{2}|ab\rangle + \frac{1}{2}|ba\rangle + \frac{1}{2}|bb\rangle \quad \Rightarrow \text{Occup. of config} \ \ a^0 \colon 0.25 \ \mid \ a^1 \colon 0.50 \ \mid \ a^2 \colon 0.25 \end{split}$$



## Occupations of atomic configurations

H<sub>2</sub> molecule



bonding state  $|\sigma_g\rangle = \frac{1}{\sqrt{2}}|a\rangle + \frac{1}{\sqrt{2}}|b\rangle$ 

With U=0, the wavefunction is :

$$\begin{split} |\Psi_t\rangle &= |\sigma_g\sigma_g\rangle = \left(\frac{1}{\sqrt{2}}|a\rangle + \frac{1}{\sqrt{2}}|b\rangle\right) \left(\frac{1}{\sqrt{2}}|a\rangle + \frac{1}{\sqrt{2}}|b\rangle\right) \\ &= \frac{1}{2}|aa\rangle + \frac{1}{2}|ab\rangle + \frac{1}{2}|ba\rangle + \frac{1}{2}|bb\rangle \quad \Rightarrow \text{Occup. of config} \ \ a^0 \colon 0.25 \ \mid \ a^1 \colon 0.50 \ \mid \ a^2 \colon 0.25 \end{split}$$

If *U* is non zero, and goes to infinity, the wavefunction is

$$|\Psi_t
angle \hspace{0.5cm} = \hspace{0.5cm} \frac{1}{\sqrt{2}}|ab
angle + \frac{1}{\sqrt{2}}|ba
angle \hspace{0.5cm} \Rightarrow ext{Occup. of config} \hspace{0.5cm} a^0 : 0.00 \hspace{0.5cm} | \hspace{0.5cm} a^1 : 1.00 \hspace{0.5cm} | \hspace{0.5cm} a^2 : 0.00 \hspace{0.5cm} | \hspace{0.5cm} a^2 : 0.00 \hspace{0.5cm} | \hspace{0.5cm} a^3 : 0.00 \hspace{0.5cm} | \hspace{0.5cm} a^4 : 1.00 \hspace{0.5cm} | \hspace{0.5cm} a^5 : 0.00 \hspace{0.5cm} | \hspace{0.5cm} a^5 :$$



### Method of calculation





## Exemple of cerium



RIXS data: Rueff et al PRL 96, 237403 (2006)



# Conclusion and perspectives

- Wannier function orthonormalization: usefull also for cRPA.
- Reduction of noise with Legendre Polynomial.
  - Also possible: direct calculation of the self-energy
- Calculation of configurations occupations
  - Might be generalized to identify configurations with different quantum numbers

### **Projects**

- Forces in DFT+DMFT
- Extension of SOC.

#### Thanks to

J.B. Morée, and R. Outerovitch