

planetmath.org

Math for the people, by the people.

proof that a Euclidean domain is a PID

Canonical name ProofThatAEuclideanDomainIsAPID

Date of creation 2013-03-22 12:43:11 Last modified on 2013-03-22 12:43:11

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 7

Author rm50 (10146)

Entry type Result Classification msc 13F07

Related topic PID Related topic UFD

Related topic IntegralDomain
Related topic EuclideanValuation

Let D be a Euclidean domain, and let $\mathfrak{a} \subseteq D$ be a nonzero ideal. We show that \mathfrak{a} is principal. Let

$$A = \{ \nu(x) : x \in \mathfrak{a}, x \neq 0 \}$$

be the set of Euclidean valuations of the non-zero elements of \mathfrak{a} . Since A is a non-empty set of non-negative integers, it has a minimum m. Choose $d \in \mathfrak{a}$ such that $\nu(d) = m$. Claim that $\mathfrak{a} = (d)$. Clearly $(d) \subseteq \mathfrak{a}$. To see the reverse inclusion, choose $x \in \mathfrak{a}$. Since D is a Euclidean domain, there exist elements $y, r \in D$ such that

$$x = yd + r$$

with $\nu(r) < \nu(d)$ or r = 0. Since $r \in \mathfrak{a}$ and $\nu(d)$ is minimal in A, we must have r = 0. Thus d|x and $x \in (d)$.