Módulo de Círculo Trigonométrico

Relação Fundamental da Trigonometria

1^a série E.M.

Círculo Trigonométrico Relação Fundamental da Trigonometria.

1 Exercícios Introdutórios

Exercício 1. Se sen x = 1/3, determine $\cos x$.

Exercício 2. Se $\cos x = -1/4$, determine $\sin x$.

Exercício 3. Seja x um arco do terceiro quadrante. Se $\operatorname{tg} x = 3/4$, determine $\cos x$ e $\sin x$.

Exercício 4. Sabendo que $0 < x < \pi/2$ e sen x = 3/5, determine $\cos x$.

2 Exercícios de Fixação

Exercício 5. Sabendo que x é um arco do quarto quadrante e $6 \operatorname{sen}^2 x - \operatorname{sen} x - 1 = 0$, determine $\cos x$.

Exercício 6. Se $\cos x = 2 \sin x$, sendo x um arco do primeiro quadrante, determine $\sin x$ e tg x.

Exercício 7. Se $\cos 72^{\circ} = \frac{\sqrt{5} - 1}{4}$, determine $\cos 18^{\circ}$.

Exercício 8. Demonstre a igualdade $1 - 2 \operatorname{sen}^2 x + \operatorname{sen}^4 x = \cos^4 x$.

Exercício 9. Se x é a medida de um arco em radianos e a um número real, determine a sabendo que sen $x=\sqrt{3-a}$ e $\cos x=\frac{a-2}{2}$.

Exercício 10. Demonstre a igualdade $\frac{\cos x}{1 + \sin x} = \frac{1 - \sin x}{\cos x}$.

Exercício 11. Demonstre a igualdade $\frac{1-2\cos^2 x}{\sin x \cdot \cos x} = \operatorname{tg} x - \frac{1}{\operatorname{tg} x}.$

Exercício 12. Mostre que $\frac{\sin x \cdot \cos x}{\cos^2 x - \sin^2 x}$ é igual a $\frac{\operatorname{tg} x}{1 - \operatorname{tg}^2 x}$.

Exercício 13. Mostre que $(\operatorname{tg} x - \operatorname{sen} x)^2 + (1 - \cos x)^2$ é igual $\left(\frac{1}{\cos x} - 1\right)^2$.

3 Exercícios de Aprofundamento e de Exames

Exercício 14. Sabendo que $9 \operatorname{sen} x + 3\sqrt{5} \operatorname{cos} x = 11$, com $0 < x < \pi/2$, determine tg x.

Exercício 15. Se $\operatorname{tg} x + \operatorname{tg}(\pi/4) = 2\operatorname{sen}(\pi/4)$, determine $\operatorname{sen} x \cdot \operatorname{cos} x$, sendo x um arco do terceiro quadrante.

Exercício 16. Para que valores de x vale a equação $(\cos x + \sin x)^4 - (\cos x - \sin x)^4 = 2[(\cos x + \sin x)^2 - (\cos x - \sin x)^2]$?

Respostas e Soluções.

1. Sabemos que sen² $x + \cos^2 x = 1$. Daí, segue

$$\left(\frac{1}{3}\right)^2 + \cos^2 x = 1$$

$$\cos^2 x = 1 - \left(\frac{1}{3}\right)^2$$

$$\cos^2 x = \frac{8}{9}$$

$$\cos x = \pm \frac{2\sqrt{2}}{3}.$$

Outra maneira de resolver este tipo de problema, que é muito comum em questões de trigonometria, é utilizar o dado fornecido (sen x=1/3) para a construção de um triângulo retângulo, como o da figura.

Figura 1

Perceba que, em relação ao ângulo x, o cateto oposto vale 1 e a hipotenusa vale 3. Pelo Teorema de Pitágoras, obtemos $2\sqrt{2}$ para o cateto adjacente. Basta agora calcular o cosseno de x, que é $\frac{cateto\ adjacente}{hipotenusa} = \frac{2\sqrt{2}}{3}.$ Não podemos nos esquecer de analisar o sinal do cosseno. Como no enunciado não foi especificado o quadrante do arco, usamos tanto positivo quanto negativo.

2.

$$\left(\frac{-1}{4}\right)^2 + (\sin x)^2 = 1$$

$$(\sin x)^2 = 1 - \left(\frac{-1}{4}\right)^2$$

$$(\sin x)^2 = \frac{15}{16}$$

$$\sin x = \pm \frac{\sqrt{15}}{4}.$$

3. Um triângulo retângulo, no qual a tangente de um dos ângulos é 3/4, pode ser observado na figura. Observe que a hipotenusa pode ser facilmente calculada utilizando-se o Teorema de Pitágoras.

Lembrando que x é um arco do terceiro quadrante, temos então sen x=-3/5 e $\cos x=-4/5$.

4.

$$\left(\frac{3}{5}\right)^2 + \cos^2 x = 1$$

$$\cos^2 x = 1 - \left(\frac{3}{5}\right)^2$$

$$\cos^2 x = \frac{16}{25}$$

$$\cos x = \pm \frac{4}{5}.$$

Como x é um arco do primeiro quadrante, $\cos x = 4/5$.

5. Fazendo uma simples substituição de incógnitas, sen x=y, temos a equação do segundo grau $6y^2-y-1=0$, que tem como raízes, -1/3 e 1/2. Como x é um arco do quarto quadrante, sen x=-1/3. Usando a relação fundamental da trigonometria, temos

$$\left(\frac{-1}{3}\right)^2 + \cos^2 x = 1$$

$$\cos^2 x = 1 - \left(\frac{-1}{3}\right)^2$$

$$\cos^2 x = \frac{8}{9}$$

$$\cos x = \pm \frac{2\sqrt{2}}{3}.$$

como $x \in 4^{\circ}$ quadrante, $\cos x = \frac{2\sqrt{2}}{3}$.

6. Elevando a equação ao quadrado, temos

$$(\cos x)^2 = 4(\sin x)^2$$

$$1 - (\sin x)^2 = 4(\sin x)^2$$

$$(\sin x)^2 = \frac{1}{5}$$

$$\sin x = \pm \frac{\sqrt{5}}{5}.$$

Como x é um arco do primeiro quadrante, sen $x = \frac{\sqrt{5}}{5}$. Utilizando o triângulo da figura abaixo, obtém-se tgx = 1/2.

7. Como 72° e 18° são complementares, $\cos 72^\circ=\sin 18^\circ=\frac{\sqrt{5}-1}{4}$. Pela relação fundamental da trigonometria, temos

$$(\frac{\sqrt{5} - 1}{4})^2 + \cos^2 18^\circ = 1$$

$$\cos^2 18^\circ = 1 - \frac{6 - 2\sqrt{5}}{16}$$

$$\cos^2 18^\circ = \frac{10 + 2\sqrt{5}}{16}$$

$$\cos 18^\circ = \frac{\sqrt{10 + 2\sqrt{5}}}{4} .$$

8.

$$1 - 2(\sin x)^{2} + (\sin x)^{4} = [1 - (\sin x)^{2}]^{2}$$
$$= (\cos^{2} x)^{2}$$
$$= \cos^{4} x.$$

9.

$$(\sin x)^{2} + (\cos x)^{2} = 1$$

$$(\sqrt{3-a})^{2} + (\frac{a-2}{2})^{2} = 1$$

$$3 - a + \frac{a^{2} - 4a + 4}{4} = 1$$

$$12 - 4a + a^{2} - 4a + 4 = 4$$

$$a^{2} - 8a + 12 = 0.$$

Resolvendo a equaão anterior, como $3-a \ge 0$, temos a=2.

10.

$$\frac{\cos x}{1 + \sin x} = \frac{\cos x}{1 + \sin x} \cdot \frac{1 - \sin x}{1 - \sin x}$$

$$= \frac{(\cos x)(1 - \sin x)}{1 - \sin^2 x}$$

$$= \frac{(\cos x)(1 - \sin x)}{\cos^2 x}$$

$$= \frac{1 - \sin x}{\cos x}.$$

11.

$$\frac{1 - 2\cos^2 x}{\sin x \cdot \cos x} = \frac{1 - \cos^2 x - \cos^2 x}{\sin x \cdot \cos x}$$

$$= \frac{1 - \cos^2 x}{\sin x \cdot \cos x} - \frac{\cos^2 x}{\sin x \cdot \cos x}$$

$$= \frac{\sin^2 x}{\sin x \cdot \cos x} - \frac{\cos x}{\sin x}$$

$$= \operatorname{tg} x - \frac{1}{\operatorname{tg} x}.$$

12.

$$\frac{\operatorname{sen} x \cdot \cos x}{\cos^2 x - \operatorname{sen}^2 x} = \frac{\frac{\operatorname{sen} x \cdot \cos x}{\operatorname{sen} x \cdot \cos x}}{\frac{\cos^2 x - \operatorname{sen}^2 x}{\operatorname{sen} x \cdot \cos x}}$$

$$= \frac{1}{\frac{\cos x}{\operatorname{sen} x} - \frac{\operatorname{sen} x}{\cos x}}$$

$$= \frac{1}{\frac{1}{\operatorname{tg} x} - \operatorname{tg} x}$$

$$= \frac{\operatorname{tg} x}{1 - \operatorname{tg}^2 x}.$$

13. Fazendo $E = (\operatorname{tg} x - \operatorname{sen} x)^2 + (1 - \cos x)^2$, temos

$$E = (\operatorname{tg} x)^{2} - 2\operatorname{tg} x \cdot \operatorname{sen} x + (\operatorname{sen} x)^{2} + 1 - 2\operatorname{cos} x + \operatorname{cos}^{2} x$$

$$= (\operatorname{tg} x)^{2} - 2\operatorname{tg} x \operatorname{sen} x - 2\operatorname{cos} x + 2$$

$$= \frac{\operatorname{sen}^{2} x}{\operatorname{cos}^{2} x} - \frac{2\operatorname{sen}^{2} x}{\operatorname{cos} x} - 2\operatorname{cos} x + 2$$

$$= \frac{\operatorname{sen}^{2} x - 2\operatorname{sen}^{2} x \cdot \operatorname{cos} x - 2\operatorname{cos}^{3} x + 2\operatorname{cos}^{2} x}{\operatorname{cos}^{2} x}$$

$$= \frac{\operatorname{sen}^{2} x + 2\operatorname{cos}^{2} x - 2\operatorname{cos} x(\operatorname{sen}^{2} x + \operatorname{cos}^{2} x)}{\operatorname{cos}^{2} x}$$

$$= \frac{\operatorname{sen}^{2} x + 2\operatorname{cos}^{2} x - 2\operatorname{cos} x}{\operatorname{cos}^{2} x}$$

$$= \frac{1 + \operatorname{cos}^{2} x - 2\operatorname{cos} x}{\operatorname{cos}^{2} x}$$

$$= \frac{(1 - \operatorname{cos} x)^{2}}{\operatorname{cos}^{2} x}$$

$$= \left(\frac{1}{\operatorname{cos}^{2} x} - 1\right)^{2}.$$

14. Chamando $\cos x=a$, temos $\sin x=\frac{11-3\sqrt{5}a}{9}$. Substituindo estes valores na relação fundamental da trigonometria, chegamos à equação $63a^2-33\sqrt{5}+20=0$, onde suas raízes são $\sqrt{5}/3$ e $4\sqrt{5}/21$. Porém, com $a=4\sqrt{5}/21$,

teríamos sen x > 1. Assim, tomando $a = \sqrt{5}/3$, temos:

$$tg x = \frac{\sin x}{\cos x}$$

$$= \frac{\frac{11 - 3\sqrt{5}a}{9}}{a}$$

$$= \frac{11 - 3\sqrt{5}\frac{\sqrt{5}}{3}}{\frac{\sqrt{5}}{3}}$$

$$= \frac{18\sqrt{5}}{5}.$$

15.

$$tg x + tg(\pi/4) = 2 \operatorname{sen}(\pi/4)$$

$$tg x = 2 \operatorname{sen}(\pi/4) - tg(\pi/4)$$

$$tg x = 2 \frac{\sqrt{2}}{2} - 1$$

$$tg x = \sqrt{2} - 1.$$

Usando o triângulo retângulo da figura, cuja t
g $x=\sqrt{2}-1,$ podemos calcular sen xe co
sx.

Temos então:

$$sen x \cdot cos x =
= \frac{\sqrt{2} - 1}{\sqrt{4 - 2\sqrt{2}}} \cdot \frac{1}{\sqrt{4 - 2\sqrt{2}}}
= \frac{\sqrt{2} - 1}{4 - 2\sqrt{2}}
= \frac{\sqrt{2} - 1}{2(2 - \sqrt{2})}.$$

16. Note que $(\cos x + \sin x)^2 + (\cos x - \sin x)^2 = 2$. Assim, pela diferença de quadrados, com $A = (\cos x + \sin x)^2$ e $B = (\cos x - \sin x)^2$, temos

$$(\cos x + \sin x)^4 - (\cos x - \sin x)^4 = A^2 - B^2$$

= $(A - B)(A + B)$
= $2(A - B)$.

Assim, a igualdade é válida qualquer que seja o valor de \boldsymbol{x} .

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com