

Complex Numbers

Lecture 01

Complex Numbers

DEFINITION OF COMPLEX NUMBERS

A complex number is an expression of the form

$$a + bi$$

where a and b are real numbers and $i^2 = -1$. The **real part** of this complex number is a and the **imaginary part** is b. Two complex numbers are **equal** if and only if their real parts are equal and their imaginary parts are equal.

Definition

Addition

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

Arithmetic Operations

Subtraction

$$(a + bi) - (c + di) = (a - c) + (b - d)i$$

Multiplication

$$(a+bi)\cdot(c+di) = (ac-bd) + (ad+bc)i$$

Express the following in the form a + bi.

(a)
$$(3+5i)+(4-2i)$$

(b)
$$(3+5i)-(4-2i)$$

(c)
$$(3 + 5i)(4 - 2i)$$

(d)
$$i^{23}$$

Dividing Complex Numbers

DIVIDING COMPLEX NUMBERS

To simplify the quotient $\frac{a+bi}{c+di}$, multiply the numerator and the denominator by the complex conjugate of the denominator:

$$\frac{a+bi}{c+di} = \left(\frac{a+bi}{c+di}\right) \left(\frac{c-di}{c-di}\right) = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$

Express the following in the form a + bi.

(a)
$$\frac{3+5i}{1-2i}$$
 (b) $\frac{7+3i}{4i}$

Square Root of a Negative Number

SQUARE ROOTS OF NEGATIVE NUMBERS

If -r is negative, then the **principal square root** of -r is

$$\sqrt{-r} = i\sqrt{r}$$

The two square roots of -r are $i\sqrt{r}$ and $-i\sqrt{r}$.

(a)
$$\sqrt{-1} = i\sqrt{1} = i$$

(a)
$$\sqrt{-1} = i\sqrt{1} = i$$
 (b) $\sqrt{-16} = i\sqrt{16} = 4i$ (c) $\sqrt{-3} = i\sqrt{3}$

(c)
$$\sqrt{-3} = i\sqrt{3}$$

Modules of a Complex Number

MODULUS OF A COMPLEX NUMBER

The modulus (or absolute value) of the complex number z = a + bi is

$$|z| = \sqrt{a^2 + b^2}$$

Find the moduli of the complex numbers 3 + 4i and 8 - 5i.

POLAR FORM OF A COMPLEX NUMBER

POLAR FORM OF COMPLEX NUMBERS

A complex number z = a + bi has the polar form (or trigonometric form)

$$z = r(\cos\theta + i\sin\theta)$$

where $r = |z| = \sqrt{a^2 + b^2}$ and $\tan \theta = b/a$. The number r is the **modulus** of z, and θ is an **argument** of z.

Regions in Argand Plane

$$\{z = a + bi \mid a \le 0, b \ge 0\}$$

$$\{z = a + bi \mid a > 1, b > 1\}$$

$$\{z \mid |z| = 3\}$$

$$\{z \mid |z| < 2\}$$

$$\{z = a + bi \mid a + b < 2\}$$

$$\{z = a + bi \mid a \ge b\}$$

THE END