Was ist ein Geschäftsprozess?

Beispiele:

- Bearbeitung eines Schadensfalls in einer Versicherung
- Kreditüberprüfung in einer Bank
- Ausschreibung, Vergabe eines Bauprojekts in der Stadtverwaltung
- Reklamationsprozess in einem Versandhaus
- Wartung eines technischen Geräts in einem Kraftwerk
- Entwicklung von Software in einem Systemhaus
- Just-in-Time Logistik eines Automobilzulieferers
- •

Was ist ein Geschäftsprozess?

Ein Geschäftsprozess ist eine Folge von Aktivitäten, die

- in einem logischen Zusammenhang stehen,
- inhaltlich abgeschlossen sind und
- unter Zuhilfenahme von Ressourcen
- und eingehenden Informationen
- durch Menschen und/ oder Maschinen
- auf ein Unternehmensziel hin ausgeführt werden.

Beispiel Versandhaus

Beispiel Versandhaus

Beispiel Versandhaus

Eigenschaften eines Geschäftsprozesses

- Ein Geschäftsprozess
 - ist ein Vorgang in Wirtschaftseinheiten,
 - kann funktions-, hierarchie- und standortübergreifend ablaufen.
- Ein Geschäftsprozess zeichnet sich aus durch:
 - einen definierten Anfang/ definiertes Ende,
 - erforderliche Eingaben (z.B. Kundenwünsche),
 - produzierte Ergebnisse (z.B. Befriedigung der Kundenwünsche).

Wozu Geschäftsprozesse?

Existieren unabhängig von unserer Wahrnehmung

Bewusste Wahrnehmung (= Modellierung) gestattet

- Analyse, Optimierung, Umgestaltung, Automatisierung
- Reaktion auf neue Wettbewerbssituation, rechtliche Rahmenbedingungen etc.
- Höhere Qualität (ISO 9000)
- Bessere Ausschöpfung der Ressourcen
- Größere Produktvielfalt

Was ist ein Workflow?

- Ein Workflow
 - ist eine z.T. automatisiert ablaufende Gesamtheit von Aktivitäten,
 - wird von einem Workflow-Management-System gesteuert/überwacht,
 - bezieht sich auf Teile eines Geschäftsprozesses,
 - besteht aus Vorgangsabschnitten (Sub-Workflows).
- Ein Workflow ist die informationstechnische Realisierung eines Geschäftsprozesses.

Unterschiede der Modellierung

- Geschäftsprozessmodellierung
 - Fokus:
 - Betriebliche Systeme/ Strukturen
 - Ziele:
 - Analyse (Wirtschaftlichkeit)
 - Gestaltung (Dokumentation)
 - Optimierung (BPR, CPI)
 - Struktur:
 - Hierarchische
 Detaillierungs-stufen

- Workflow-Modellierung
 - Fokus:
 - Informationssysteme/ Anwendungen
 - Ziele:
 - Realisierung (build time)
 - Ausführung (run time)
 - Optimierung (Performance)
 - Struktur:
 - Technische
 Modellhierarchie

Was ist Workflow-Management?

Was ist Workflow-Management?

- Workflow-Management ist die IT-basierte Unterstützung von Geschäftsprozessen. Dazu zählt:
 - Das Spezifizieren (Geschäftsprozessmodellierung)
 - Das Optimieren (Business Process Reengineering)
 - durch Simulation, Analyse und Reorganisation
 - Das Implementieren (Workflow-Modellierung)
 - Das Ausführen (Workflow-Management-System)
 - Die Qualitätssicherung (ISO 9000x)

Workflow-Management-System

- Ein Workflow-Management-System (WFMS) ist:
 - ein universelles Softwaresystem
 - zur Steuerung des Arbeitsflusses (Workflows)
 - nach den Vorgaben einer Spezifikation (Workflow-Modell).

Ausführung eines Workflows

Workflow-Management-System

- Ein Workflow-Management-System (WFMS) unterstützt:
 - die Entwicklung (Modellierungskomponente),
 - die Ausführung (Laufzeitkomponente),
 - die Überwachung (Monitor-Komponente).

Architektur eines WFMS

Workflow-Anwendung

- Eine Workflow-Anwendung ist:
 - eine implementierte und eingeführte Lösung
 - zur Steuerung des Arbeitsflusses (Workflows)
 - mit einem Workflow-Management-System.

Struktur einer Workflow-Anwendung

Eine WFA umfasst:

- das Workflow-Management-System,
- die Workflow-Modelle und Daten,
- die angebundenen Anwendungen.

Vorteile von Workflow-Management

- Automatisierung von Routineaufgaben
- Qualitätssicherung der Prozesse
- Nachweis der Protokolle
- Möglichkeit der statistischen Auswertung
- Strukturierung, Rationalisierung und Kontrolle der Abläufe
- Synchronisation verteilter Prozesse
- Motivation der Mitarbeiter
- ➤ Schneller! Besser! Billiger! Flexibler! ⇒ Erfolgreicher!

Nachteile von Workflow-Management

- Hardware-Kosten
- Software-Kosten + Kosten f
 ür Tailoring
- Schulungskosten
- Wartungskosten + Kosten für Reorganisation
- Medienbrüche
- Probleme der Akzeptanz bzw. Motivation
- Rechtliche Schwierigkeiten
- Datenschutz
- Genaue Nutzen/Kosten-Analyse + Einbindung der MA

Was ist ein Service?

Beispiel: Geschäftsprozess "Online-Aktienhandel" ist Zusammenspiel folgender Services:

- Wertpapierservice: nennt handelbare Papiere
- Marktdatendienst: Papier→aktueller Kurs
- Depotdienst: Daten zu Depot des Anwenders
- Orderdienst: Abwicklung von Kauf/Verkauf
- Archivdienst: Protokollierung der Abläufe

(Quelle: de.wikipedia.org "Serviceorientierte Architektur")

Was ist ein Service?

Ein Service ist

- eine Komponente, die
- eine wohldefinierte Funktionalität
- über eine standardisierte Schnittstelle

anderen Services bzw. Anwendungen zur Verfügung stellt.

Wozu Services?

- Strukturierung organisationsübergreifender Zusammenarbeit
- Leichte Austauschbarkeit der Komponenten
- Leichte Aggregation vorhandener zu neuen Services ("virtuelle Unternehmen")
- Kapselung der Funktionalität
- Beherrschung heterogener Infrastrukturen

Übersicht Vorlesungsinhalt

- 1. Modellierungssprachen für Geschäftsprozesse *EPK, Aktivitätsdiagramme, Petrinetze*
- 2. Analysemethoden für Petrinetze Techniken für GP-spezifische Eigenschaften
- 3. Modellierung und Analyse quantitativer Aspekte zeitbewertete, stochastische Petrinetze
- 4. Workflow-Mining

 Auf Basis von Petrinetzen
- 5. Modellierung von Services WSDL, BPEL, ..., Transformation in Petrinetze
- 6. Algorithmen für Services Bedienungsanleitungen, Austauschbarkeit, ...

Teil 1

Modellierungssprachen für Geschäftsprozesse

Elemente eines Prozessmodells

- Aktivitäten, z.B.
 - Angebot erstellen
 - Rechnung ausstellen
 - Angebot akzeptieren
- Ereignisse, z.B.
 - Angebot eingetroffen
 - Kreditwürdigkeit bestätigt
- Kausale Abhängigkeiten zwischen diesen, z.B.
 - vor
 - nach
 - nebenläufig zu
 - alternativ zu

Eigenschaften eines Prozessmodells

```
Ereignisgesteuert (event driven)
   im Gegensatz zu
        - getaktet

    zeitgesteuert (time triggered)

Diskret
    im Gegensatz zu
       - kontinuierlich
       - hybrid
Ressourcenorientiert (produzieren, konsumieren)
    im Gegensatz zu
       - Wertorientiert (lesen, schreiben)
```

Ereignisgesteuerte Prozessketten (EPK)

- Semiformal (ohne mathematisch präzise Semantik)
- Werkzeugunterstützt (ARIS Toolset, SAP Business workflow)
- In kleinen und mittleren Unternehmen weit verbreitet für
 - Business Process Reengineering
 - Activity based costing
 - Dokumentation (für ISO 9000)
 - Spezifikation und Steuerung von Workflows
- Prof. A.-W. Scheer: ARIS Modellierungsmethoden, Metamodelle, Anwendungen. 3. Auflage, Springer, Berlin 1998

Geschäftsprozesse mit EPK's

Modellierung

Eine EPK

- ist ein gerichteter Graph
- besteht aus aktiven und passiven Komponenten,
- Knoten sind
 - Funktionen,
 - Ereignisse,
 - Konnektoren.
- Kanten beschreiben
 - Daten- und Kontrollfluss,
 - sowie Zuordnungen

Grundelemente

- Grundelemente:
 - Ereignis

Funktion

- Verknüpfung
- $\sqrt{}$
- Kontrollfluss

- Erweiterungen
 - Informationsobjekte
 - Informationsfluss
 - Organisationseinheit en
 - Zuordnung
 - Prozesswegweiser

Funktionen

Aktive Komponenten

- Zugriff auf Daten
 - Konsumieren,
 - Transformieren,
 - Transportieren,
 - Produzieren
- Besitzen Entscheidungskompetenz
- Verbrauchen Zeit

Anforderungen bearbeiten

Attribute von Funktionen

- Basisattribute
 - Name, ID
 - Beschreibung/Definition
 - ...
- Zuordnung
 - intern/extern
 - ...
- Bearbeitungsart
 - automatisiert, manuell
 - ...

- Dauer
 - Bearbeitungszeit
 - Liegezeit
 - ...
- Kosten
 - Materialkosten
 - Personalkosten
 - ...

Ereignisse

Passive Komponente

- Repräsentiert Zustandes eines Informationsobjekts
- löst Funktionen aus,
- ist Ergebnis von Funktionen,
- ist auf einen Zeitpunkt bezogen,
- beeinflusst weiteren Ablauf des Geschäftsprozesses

Attribute von Ereignissen

- Basisattribute
 - Name, ID
 - ...
- Ereignisherkunft
 - intern/extern
 - ...
- Ereignisart
 - automatisiert, manuell
 - ...

- Klassifikation
 - Trigger
 - Nebenbedingung
 - Zustand
 - ...
- Rolle
 - Start-/Zwischen-/Endereignis
 - Auslöse-/Bereitstellungsereignis
 - ...

Arten von Ereignissen

- Erzeugung eines neuen Prozessobjekts (Create)
 - Beispiel: "Stammsatz ist angelegt"
- Finaler Status eines Prozessobjekts (Delete)
 - Beispiel: "Auftrag ist erledigt "
- Attributänderung eines Prozessobjekts (Update)
 - Beispiel: "Rechnung ist geprüft"
- Eintreffen eines bestimmten Zeitpunkts
 - Beispiel: "Mahntermin ist erreicht"
- Bestandsänderung, die einen Prozess(schritt) auslöst
 - Beispiel: "Kreditlimit ist überschritten"

Abstraktions- vs. Ausprägungsebene

Abstraktionsebene **Ereignistyp**

Antrag eingetroffen

Funktionstyp

Antragsdaten erfassen

Ereignistyp

Antragsdaten erfasst

Abstraktions- vs. Ausprägungsebene

Abstraktionsebene **Ereignistyp**

Antrag eingetroffen

Funktionstyp

Antragsdaten erfassen

Ereignistyp

Antragsdaten erfasst

Ausprägungsebene **Ereignis**

Peter Becker aus Klingenbach hat einen Kreditantrag gestellt

Tanja Müller aus Beeringen hat einen Kreditantrag gestellt **Funktion**

Name: Peter Becker Ort: Klingenbach

Alter: 36

Kredit: 150.000 in Kundendatei

eintragen

Name: Tanja Müller

. . . .

in Kundendatei eintragen

Ereignis

Die Daten über Peter Becker sind in der Kundendatei enthalten

Die Daten über Tanja Müller sind in der Kundendatei enthalten

Prozessmodellierung betrachtet Abstraktionsebene

Gliederung

- Hintergrund ✓
- Modellierung
 - Grundelemente ✓
 - Kontrollstrukturen
 - Regeln der Modellierung
- Erweiterte Konzepte

Verknüpfungen: Sequenz

EPK sind bipartite Graphen:

- Ereignisse lösen Funktionen aus.
- Funktionen erzeugen Ereignisse.

Verknüpfungen: AND-Split

 Nach der Funktion treten zwei Ereignisse auf

 Ein Ereignis ist Auslöser für zwei Funktionen

Verknüpfungen: AND-Join

 Das Ereignis tritt nach zwei Funktionen auf

 Zwei Ereignisse sind Auslöser für die Funktionen

Verknüpfungen: OR-Split

 Nach der Funktion sind mehrere Fortsetzungen möglich

- Nicht erlaubt
- Ereignisse haben keine Entscheidungskompetenz

Verknüpfungen: OR-Join

 Das Ereignis tritt nach mindestens einer Funktion auf

 Mindestens ein Ereignis ist Auslöser für die Funktionen

Verknüpfungen: XOR-Split

 Nach der Funktionen ist genau eine Fortsetzung möglich

- Nicht erlaubt
- Analog zum OR-Split

Verknüpfungen: XOR-Join

 Das Ereignis tritt nach genau einer der beiden Funktionen auf

 Genau ein Ereignisse ist Auslöser der Funktionen

- Jede EPK beginnt und endet mit mindestens je einem Ereignis.
- Ausnahme: Verweis auf eine andere EPK.

- Jede Kante verbindet zwei Knoten von jeweils unterschiedlichem Typ
- Ausnahme: Auf einen Konnektor darf ein Konnektor folgen.

 Kontrollfluss verzweigt und vereinigt sich nur an Konnektoren.

 Auf Ereignisse dürfen keine OR- bzw. XOR-Konnektoren folgen.

 Alle Ein-/ Ausgänge der Konnektoren sind vom gleichen Typ.

 Konnektoren verbinden stets Ereignisse mit Funktionen bzw. Funktionen mit Ereignissen.

• Eine Funktion kann durch eine weitere EPK verfeinert werden.

Erweiterte EPK (eEPK)

Prozeßwegweiser

Organisationseinheit

Informationsobjekt

Informationsfluß

Zuordnung von Systemorganisationseinheiten

Der *Prozeßwegweiser* zeigt die Verbindung von einem zu einem anderen Prozeß (Navigations hilfe).

Die *organisatoris*che *Enheit* beschreibt die Gliederungsstruktur eines Unternehmens.

Ein Informationsobjekt ist eine Abbildung eines Gegenstands der realen Welt (Business Object). Der Informationsfluß beschreibt, ob von einer Funktion gelesen, geändert oder geschrieben wird.

Die Zuordnung von Systemorganisation seinheiten beschreibt, welche Einheit (Mitarbeiter) die Funktion bearbeitet.

Erweiterte EPK (eEPK)

Erweiterung der EPK

- Input-Output-Beziehung von Daten
- Verbindung von Funktionen mit Organisationseinheiten
- Anwendungssysteme für automatisierte Funktionen
- Medien für Kommunikation, Speicherung usw. (z.B. Fax, Drucker, ...)
- materielle und immaterielle Leistungen, Ergebnisse

Datenmodellierung

- ER-Diagramm:
 - Objekte
 - Attribute
 - − Beziehung€

Integration von Daten

- Input- und Output-Parameter
- Datenfluss
 - Datencontainer
 - Dokumente

Organisationsstruktur

Integration der Org.-Struktur

- Zuordnung von
 - Rolle,
 - Kompetenz,
 - Berechtigung,
 - Verantwortung,
 - Organisationseir
- zu Funktionen.

Vorgangskettendiagramm (VKD)

Nachteil: Prozesse mit vielen Verzweigungen und Schleifen sind aufgrund der Spaltenanordnung schlecht darstellbar

Zusammenfassung EPK

- Vorteile:
 - HoheAnschaulichkeit
 - Gute Integration verschiedenerSichten
 - Realitätsgetreue und exakte Abbildung der Geschäftsprozesse
 - GuteToolunterstützung(ARIS Toolset)

- Nachteile:
 - Statische Sicht auf Prozessstrukturen
 - Simulation nur mit Erweiterungen
 - Keine mathematische Fundierung
 - Keine Möglichkeiten zur Bewertung/Optimierung

Zusammenfassung

- Ereignisgesteuerte Prozessketten haben sich in der Praxis - zumindest im deutschsprachigen Raum - als Beschreibungsmittel für betriebliche Abläufe etabliert.
- EPK's sind nur informal eingeführt worden, es gibt keine exakte Semantikdefinition.
- Weitergehende Arbeiten versuchen die anschaulichen EPK's mit Analysemethoden (Simulation, Validierung, Verifikation) zu verbinden.

UML-Aktivitätsdiagramme

→<u>www.oose.de</u>

Petri Netze

1. Beispiel: Bibliothek

Pfeile: Direkte Verbindung; Zugriff

Also: User haben keinen direkten Zugriff zum Lager

Passive Komponente

Aktive Komponente

Verschiedene Aktivitäten von Nutzern

2. Passive und Aktive Komponenten

Passive Komponente

- Anwesendes (Dinge, Information, Bits...)

active component

- Ändert passive
 Komponenten
- produziert Dinge
- konsumiert Dinge
- verschiebt Dinge

3. Dynamik

Definitionen

Petrinetz:

S – endliche Menge von Stellen

T – endliche Menge von *Transitionen*

F – Menge von *Bögen*

W – Bogen vielfachheiten

m₀ – Anfangs*markierung*

 $S \cap T = \emptyset$

 $F \subseteq (SxT) \cup (TxS)$

W: $F \rightarrow N \setminus \{0\}$

 $[S,T,F,W,m_0]$

Elemente von S ∪ T heißen *Knoten*

Markierung:

Verteilung von Marken auf Stellen

m: $S \rightarrow N \cup \{0\}$

Definitionen

Vorbereich eines Knoten x:

$$\bullet x = \{ y \mid [y,x] \in F \}$$

Nachbereich eines Knoten x:

$$x \bullet = \{ y \mid [x,y] \in F \}$$

Transition t ist aktiviert (hat Konzession) in Markierung m:

Für alle
$$s \in \bullet x : W([s,t] \le m(s)$$

Transition t schaltet/feuert in m und führt zu m':

t ist aktiviert in m und für alle s:

$$m'(s) = m(s) - W([s,t]) + W([t,s])$$
(Annahme: W([x,y]) = 0 für [x,y] \notin F)
$$m [t> m' m m']$$

Definitionen

Erreichbarkeit

- ... mit Transitionssequenz w
- m [ε> m
- Wenn m [w>m₁ und m₁[t>m' so m [wt>m'
- ... beliebig m[*>m' falls es ein w gibt mit m[w>m'

Menge der von m erreichbaren Markierungen $R_N(m) = \{m' | m[*>m']\}$

Erreichbarkeitsgraph des Netzes [S,T,F,W,m₀]: Gerichteter, beschrifteter Graph [V,E] $V = R_N(m_0)$ $[m,t,m'] \in E$ gdw. m[t>m'

Beispiel

World of Petri nets

http://www.daimi.au.dk/PetriNets

Dort:

... /Introductions/aalst/

Beispiele für Netze, Schalten, Erreichbarkeitsgraphen

Erste Erkenntnis: Monotonie des Schaltens

```
Satz:
m[w>m' und m_1 \ge m \rightarrow es gibt ein m_1' \ge m' mit m_1[w>m_1']
Beweis: (Induktion über T*)
A) m[\varepsilon>m und m_1[\varepsilon>m_1
Vor) m[w>m' und m_1 \ge m \rightarrow es gibt ein m_1' \ge m' mit m_1[w>m_1']
Beh) m[wt>m' und m_1 \ge m \rightarrow es gibt ein m_1'' \ge m' mit m_1[wt>m_1'']
Beweis:
Sei m[wt>m´ und m₁≥m . D.h., es gibt ein m´ mit m[w>m´ und m´[t>m´, also m´ = m´ - W(.,t) + W(t,.)
Nach Ivor. ex. m₁´≥m´ mit m₁[w>m₁´. Außerdem ist m´≥W(.,t), also
Erst recht m₁′≥W(.,t). Demnach ist t bei m₁′ aktiviert. Schließlich ist
mit m_1'' := m1' - W(.,t) + W(t,.)
1. m₁''≥m'' und
2. m_1 (t>m_1), also auch m_1 (wt>m_1).
q.e.d.
```

Eigenschaften

Erreichbarkeit einer Markierung m' von m m[*>m'

Transition t **tot** bei m bei keinem m' in $R_N(m)$ ist t aktiviert

Transition t **lebendig** bei m von jedem m' in $R_N(m)$ ist ein m' erreichbar, wo t aktiviert ist

Stelle s **k-beschränkt** bei m Bei allen m' in $R_N(m)$ ist m'(s) \leq k **sicher** = 1-beschränkt

Markierung m ist **Home-state** m ist von jedem m' aus $R_N(m_0)$ aus erreichbar

Eigenschaften

N verklemmungsfrei

in jedem m aus R_N(m₀) ist mindestens eine Transition aktiviert

N lebendig

alle Transitionen in N lebendig

N reversibel

von jedem m aus $R_N(m_0)$ ist m_0 erreichbar

N k-beschränkt

jede Stelle in N ist k-beschränkt

N beschränkt

es gibt ein k so, dass N k-beschränkt

Beispiele

Einige Beziehungen

- N lebendig, |T|≥1 → N verklemmungsfrei
- N reversibel → jede Transition ist bei m₀ entweder tot oder lebendig
- Beweis: Sei t nicht tot bei m₀. Z.z. t ist lebendig.
- t nicht tot bei m_0 heißt: es gibt m^* : $m_0[*>m^*$ und t aktiviert bei m^* .
- t lebendig heißt: für jedes m gibt es ein m': m[*>m'und t aktiviert
- bei m'.
- Sei m erreichbar. Wegen Reversibilität: m[*>m₀, und nach Voraussetzung m₀[*>m*, also m[*>m*,
- also gilt Behauptung mit m'=m*.

Weitere Beziehungen

N reversibel gdw. m₀ ist Home State

N reversibel gdw. alle erreichbaren Zustände sind Home States

N beschränkt gdw. $R_N(m_0)$ endlich.

Workflow-Netze

Ein Workflow-Netz

- ist ein Petrinetz N = (S, T, F) (d.h. ein S/T-Netz),
- hat genau einen Anfang mit leerem Vorbereich (i∈P, •i = ∅),
- hat genau ein Ende mit leerem Nachbereich (o∈P, o • = ∅)
- und, ergänzt um Transition t*, stark zusammenhängend.

Wichtige Eigenschaft für Workflownetze

Soundness

Ideen:

- Jeder angefangene Vorgang kann beendet werden
- Bei Ende eines Vorgangs alles aufgeräumt
- Jede Aktivität möglich

Soundness formal:

- Für alle m, erreichbar von [i] gilt: Von m ist [o] erreichbar
- Für alle m mit m(o) > 0: m(p) = 0 für alle p ≠ o
- Für alle t ex. m, von i erreichbar, bei dem t aktiviert ist

- Verbindung zu klassischen PN-Eigenschaften:
 - N ist sound gdw. zugrundeliegendes Petrinetz ist lebendig und beschränkt.

Eigenschaften und Erreichbarkeitsgraph

Dazu muss man wissen:

Stark zusammenhängende Komponenten:

Sei [V,E] gerichteter Graph.

Knoten v,v′ sind stark zusammenhängend (v~v′), falls v→* v′ und v′→* v.

~ ist Äquivalenzrelation. Klassen heißen SZK.

Eine SZK heißt terminal (TSZK), falls von ihr aus keine andere SZK erreichbar ist.

Eigenschaften und Erreichbarkeitsgraph

Sei N Petrinetz und $[R_N(m_0),E]$ sein Erreichbarkeitsgraph.

- N beschränkt gdw. R_N(m₀) endlich
- m erreichbar gdw. m $\in R_N(m_0)$
- N verklemmungsfrei gdw. jeder Knoten hat Nachfolger
- N reversibel gdw. R_N(m₀) ist (T)SZK
- t lebendig gdw. t kommt in jeder terminalen SZK vor.
- N hat Home States gdw. N hat genau eine TSZK.

Beschränktheit

Wenn m_0 [*> m [*> m' und m' > m, dann ist N unbeschränkt.

Umkehrung gilt auch:

Wenn N unbeschränkt ist, dann gibt es m und m' mit m_0 [*> m [*> m' und m' > m.

m' > m heißt: für alle s m'(s) \geq m(s) und für mindestens ein s m'(s) > m(s).

Beweis

Haben Graph, der

- von m₀ zusammenhängend ist,
- unendlich viele Knoten hat (N unbeschränkt)
- aber jeder Knoten endlich viele Nachfolger hat (T endlich)

In einem solchen Graph gibt es einen unendlichen, wiederholungsfreien Weg. ("Königs Graphenlemma")

Beweisidee: wenigstens von einem der Nachfolger müssen unendlich viele andere Knoten erreichbar sein, diesen Nachfolger wählen wir und gehen weiter.

Beweis

Haben also unendliche Markierungsfolge mit lauter verschiedenen Markierungen.

Behauptung: in einer solchen Folge gibt es eine schwach monoton wachsende Teilfolge

Beweis:

In jeder unendlichen Zahlenfolge gibt es eine schwach monoton wachsende Teilfolge:

Entweder ein Wert kommt unendlich oft vor → nehmen den Oder alle Werte kommen nur endlich oft vor → nach endlich vielen Auswahlen stehen immer noch unendlich viele weitere Werte (also auch größere als bisher verbraucht) zur Verfügung

Beweis

Sei S =
$$\{s_1 ... s_n\}$$

Wählen nun aus der unendlichen Markierungsfolge erst eine unendliche Teilfolge, die auf s₁ schwach monoton

- wächst, dann daraus eine, die auf s_2 wächst, usw. bis s_n .
- → unendliche Teilfolge (m₁, m₂, ...), die auf allen Stellen schwach monoton wächst.
- $\rightarrow m_0$ [*> m_1 [*> m_2 , $m_1 \le m_2$ und $m_1 \ne m_2$

 \rightarrow q.e.d.

ω-Markierungen

 $\mu : S \rightarrow N \cup \{\omega\}$ heißt ω -Markierung

Fassen ω -Markierungen auf als Grenzwert einer Folge von (erreichbaren) Markierungen

 $(m_i)_{i\in N}$ konvergiert gegen μ , falls für jedes k ein n existiert so dass für alle j > n und alle $s \in S$ gilt:

$$m_j(s) = \mu(s)$$
, falls $\mu(s) \neq \omega$
 $m_j(s) > k$, falls $\mu(s) = \omega$

→ Auf den "endlichen" Stellen ist Folge ab einer bestimmten Stelle konstant

Überdeckbarkeitsgraph

Ziel: endlicher Graph (auch für unbeschränkte Netze), mit

- Knoten sind ω-Markierungen
- Zu jeder konvergenten Folge von erreichbaren
 Markierungen ist der Grenzwert im Graph überdeckt

Def: μ1 überdeckt μ2, falls μ1 ≥ μ2

Dabei:
$$\omega \ge k$$

 $\omega + k = \omega$
 $\omega - k = \omega$, falls $k \ne \omega$
 $\omega - \omega$ undefiniert

Sei
$$\Omega \mu = \{s \mid \mu(s) = \omega\}$$

Konstruktion Überdeckbarkeitsgraph

VAR C: SET OF ω-Markierung

```
Cover(\emptyset,m<sub>0</sub>);
Cover(M, \mu):
     C = C \cup \{\mu\};
     FOR ALL t, t aktiviert in μ DO
        \mu' = \mu - W(.,t) + W(t,.)
        IF exists \mu^* in M: \Omega \mu^* = \Omega \mu', \mu^* < \mu' THEN
                FOR ALL s, \mu^*(s) < \mu'(s) DO \mu'(s) = \omega END
         END
        IF \mu' \notin C THEN
                Cover(M \cup \{\mu\}, \mu');
         END
      END
```

Beispiel

$$(1,0,0,0) \xrightarrow{t1} (0,1,0,0) \xrightarrow{t2} (0,0,0,0)$$

$$t3\downarrow \\ (1,0,\omega,0) \xrightarrow{t1} (0,1,\omega,0) \xrightarrow{t2} (0,0,\omega,0)$$

$$t4\downarrow \\ (0,1,\omega,\omega) \xrightarrow{t2} (0,0,\omega,\omega)$$

Simultan unbeschränkt: t32k t1 t4k

Noch ein Beispiel

Beide unbeschränkt, aber nicht simultan

2. Aussage

Satz: Zu jeder erreichbaren Markierung m gibt es im Überdeckbarkeitsgraphen eine Markierung μ mit $\mu \ge m$.

```
Beweis (Induktion über T*)
A) m_0 [\epsilon> m, also m = m_0, m_0 ist enthalten im Überdeckbarkeitsgraph. Vor: Zu m mit m_0[w>m gibt es ein \mu mit \mu \geq m.
Beh: Zu m mit m_0[w>m[t>m gibt es ein \mu mit \mu \geq m.
Beweis: t aktiviert in m, also erst recht in \mu.

\mu = W(.,t) + W(t,.) (= \mu^*) \geq m, weil m[t>m und \mu \geq m.

t-Nachfolger von \mu ist gleich \mu^* oder entsteht daraus durch Einfügen neuer \omega
\Rightarrow dieser Knoten überdeckt m. q.e.d.
```

Folgerung: Jede schaltbare Sequenz kann man auch im Ü-Graph ablaufen

3. Aussage

Satz: Für jedes Netz ist der Überdeckbarkeitsgraph endlich.

Beweis: können sonst wieder monotone Teilsequenz auszeichnen

- → überdeckende Markierungen
- \rightarrow neue ω

aber: neue ω können, da S endlich, nur endlich oft dazukommen und verschwinden nie.

4. Aussage

Satz: Zu jeder konvergenten Folge (einer, die einen Grenzwert besitzt) erreichbarer Markierungen gibt es einen Knoten im Überdeckbarkeitsgraph, der den Grenzwert überdeckt.

Beweis

- Jedes Folgenglied ist überdeckt, insgesamt können aber nur endlich viele Knoten an den Überdeckungen beteiligt sein
- → Ein Knoten überdeckt unendlich viele Folgenglieder
- → Dieser Knoten überdeckt wg. Konvergenz ab irgendeinem Folgenglied alle weiteren.
- → Dieser Knoten überdeckt auch den Grenzwert.

Überdeckbarkeitsgraph und Eigenschaften

- Wenn m erreichbar, so gibt es ein μ im Ü-graph mit μ≥m
- t genau dann nicht tot, wenn t im Ü-graph aktiviert.
- s genau dann beschränkt, wenn kein Knoten μ mit μ (s)= ω im Ü-Graph existiert
- Zu jeder beschränkten Stelle s ist MAX{ μ (s) | μ im Ü-graph} das kleinste k, so dass s k-beschränkt ist.
- Q⊆S genau dann simultan unbeschränkt, falls ein Knoten im Ü-graph existiert, bei dem alle Knoten aus Q den Wert ω haben
- Wenn Ü-Graph eine TSZK enthält, in der eine Transition t nirgends aktiviert ist, so ist t nicht lebendig
- Ist N beschränkt, so stimmen Ü-Graph und Erreichbarkeitsgraph überein.

Umkehrungen gelten nicht

- Obwohl im Ü-graph alle Knoten Nachfolger haben, ist N nicht verklemmungsfrei
- Obwohl t2 in jeder TSZK, ist t2 nicht lebendig

Übungsaufgabe: Gegenbeispiel für Umkehrung der Reversibilitätsaussage, Home states

Die Stubborn-Set-Methode

(eine Variante von Partial Order Reduction)

Ziel: Erreichbarkeitsgraph unter Bewahrung vorgegebener Eigenschaften verkleinern

Mittel: Lokalität der Transitionen

Beziehungen zwischen Transitionen

Nebenläufigkeit

- unabhängige Transitionen sind immer nebenläufig
- Hintereinanderausführung nebenläufiger Transitionen führt zum gleichen Zustand m-W(.,t1)-W(.,t2)+W(t1,.)+W(t2,.), unabhängig von Reihenfolge
- aber: Zwischenzustände sind meist verschieden:
 m-W(.,t1)+W(t1,.)
 m-W(.,t2)+W(t2,.)

Beispiel

Idee von Stubborn sets

Sei m Markierung. stubborn(m) ist eine (wenn möglich) nichtleere Teilmenge von Transitionen

→ Reduziertes Transitionssystem: verfolge bei m nur die aktivierten Aktionen in stubborn(m)

Reduziertes Transitionssystem

Reduktion durch Symmetrie

Grundgedanke: symmetrisch strukturierte Systeme haben symmetrisches Verhalten

Wenn Verhalten bei m bekannt und m' symmetrisch zu m, braucht Verhalten bei m' nicht mehr untersucht werden

technisch: Äquivalenzrelation; Quotienten-Transitionssystem

Beispiel 2

Netzreduktion

- Lokale, eigenschaftserhaltende Ersetzungsregeln
- Eigenschaften hier: Lebendigkeit, Beschränktheit
- Ziel: kleineres Netz, kleinerer Erreichbarkeitsgraph

Eigenschaftserhaltung:

N erfüllt Eigenschaft gdw. N' erfüllt Eigenschaft oder die Eigenschaft kann für N sicher entschieden werden

Verabredungen:

- Alle Bogenvielfachheiten 1
- Altes Netz N, neues Netz N´
- gestrichenes rot, eingefügtes grün, bleibendes blau

Erste Regel: Transitionen ohne Vorplatz

Voraussetzung: Es gibt ein t mit ●t = ∅

Anwendung: Streiche t und alle Stellen in to

Aussagen:

- -t lebendig
- -Alle Stellen in to unbeschränkt
- -Alle anderen Stellen beschränkt in N´ gdw. beschränkt in N
- -Alle anderen Transitionen in N' lebendig gdw. in N

Beweis

- Satz 1: Wenn m [w> m' in N, so $m_{|S'}$ [w-t> $m'_{|S'}$ in N' (w-t = w, wo alle t gestrichen sind)
- Beweis: Die Token, die t in N produziert, werden in N' nicht mehr benötigt.
- Satz 2: Wenn m [w> m' in N', so m* [$t^{length(w)}$ w>m*' in N, wobei m*_{|S} = m und m*'_{|S'}=m'
- Beweis: tlength(w) produziert ausreichend Token für die nachfolgenden Transitionen
- Folgerung: Bewahrung von Lebendigkeit und Beschränktheit

Zweite Regel: Stellen ohne Vortransition

Voraussetzung: Es gibt ein s mit m(s) = 0 und \bullet s= \varnothing

Anwendung: Streiche s und s•

Aussagen

- -s beschränkt
- -Alle Nachtransitionen nicht lebendig (sogar tot)
- -Alle anderen Stellen beschränkt in N gdw. in N'
- -Alle anderen Transitionen lebendig in N gdw. in N'

Beweis

Da die gestrichenen Transitionen tot sind, sind die Erreichbarkeitsgraphen von N und N' isomorph

Bem: Bedingung m(s) = 0 ist wichtig!

Dritte Regel: Parallele Knoten

Voraussetzung: Es gibt Knoten x,y mit ●x=●y und x●= y● ("x, y parallel")

Anwendung: Falls x,y Stellen mit m(x)<m(y) sind, streiche y, sonst streiche x.

Aussagen

- Transition x,y lebendig in N gdw. y lebendig in N'
- -Stelle x,y beschränkt in N gdw. x (bzw. y) beschränkt in N'
- -Alle anderen Knoten ... wie üblich.

Beweis

Wenn gestrichene Stelle nicht ausreichend Marken hat, so die verbliebene erst recht nicht.

In jeder Schaltsequenz können Transitionen x,y beliebig gegenseitig ausgetaucht werden

Vierte Regel: Äquivalente Stellen

```
Voraussetzung: Es gibt Stellen s1,s2 mit s1●={t1}, s2●={t2}
   t1● = t2●, ●t1\{s1} = ●t2\{s2}

Anwendung: Verbinde alle Vortransitionen von t2 mit t1, (bei schon existierenden Bögen: Vielfachheit erhöhen)
Erhöhe m0(s1) um m0(s2)
```

Streiche s2,t2

Aussagen

Wenn s1 unbeschränkt in N, so s2 unbeschränkt in N'
Wenn s1,s2 beschränkt in N, so s1 beschränkt in N'
Wenn t1 oder t2 nicht lebendig in N, so sind
Vortransitionen von s1 nicht lebendig in N'
Wenn t2 lebendig in N, so t1 lebendig in N'

Fünfte Regel: Zusammenfassung einer Sequenz über einzelne Stelle

```
Voraussetzung: Es gibt ein s mit s \neq \emptyset, s \neq \emptyset, s = \emptyset, s \neq \emptyset, s \neq
```


Aussagen, Beweis

Wenn s unbeschränkt in N, so ist ein Nachplatz einer neuen Transition in N' unbeschränkt Alte Transitionen lebendig gdw. die zugehörigen neuen

Beweisidee: Sequenz ...t...u... kann zu Sequenz ...tu..... transformiert werden (Argument wie bei Stubborn sets: u zu keiner Transition in Konflikt!)

Sechste Regel: Zusammenfassen einer Sequenz mit einzelner Starttransition

Voraussetzung: Es gibt eine Stelle s mit \bullet s={t}, t \bullet ={s}, s \bullet ≠∅, s \bullet ∩ \bullet s=∅, m $_{0}$ (s)=0, (\bullet t) \bullet ={t}

Anwendung: Streiche s,t, Leite alle Bögen zu t zu allen Nachtransitionen von s um (ggf. Vielfachheit erhöhen)

Aussagen: Übung

Beweisidee:

t nicht im Konflikt zu anderen Transitionen → Schalten von t kann verzögert werden bis zum Schalten einer Nachtransition von s

Letzte Regel: Sequenz mit einzelner Endtransition

Voraussetzung: Es gibt ein t mit ●t={s}, ●s≠∅, t●≠∅,s∉t●,

$$m_0(s)=0$$

Anwendung: Addiere Effekt von t zu den Vortransitionen

von s, Streiche s,t

Aussagen, Beweis: Übung

Zusammenfassung Reduktion

Regeln verkleinern Netz und oft auch Zustandsraum

Schönes Ziel wäre: Regeln, mit denen jedes Netz zu einem von endlich vielen Netzen reduziert werden kann.

bislang nicht erreicht.

Dipl.-Thema: Implementation und Weiterentwicklung der Regeln, Erarbeitung eines Konzeptes, um Zeugenpfade aus N' in Zeugenpfade für N umzuwandeln.

Strukturanalyse

- Ausnutzung linearer Algebra
- Studium spezieller Netzklassen
- Ausnutzung topologischer Strukturen

Markierungen, Transitionen als Vektor

$$\underline{m}_0$$
: (4,0,0,1,0)

$$\underline{t}_2 = (-1, 1, 1, -1, 0)$$

Wenn $m_0 \xrightarrow{t_2} m_1$ so $\underline{m_0} + \underline{t_2} = \underline{m_1} = (3, 1, 1, 0, 0)_{29}$

Inzidenzmatrix

$$C = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 \end{pmatrix}$$

Die Zustandsgleichung

Wenn
$$m_0 \xrightarrow{\underline{t} \ \underline{t} \ \underline{t$$

Parikh-Vector von t₂ t₃ t₅ t₁ t₃

- →Wenn $m_0 \xrightarrow{w} m$ so $\underline{m}_0 + C \cdot Parikh(w) = \underline{m}$
- → Markierung m ist höchstens dann erreichbar, wenn

$$\mathbf{C} \cdot \mathbf{\underline{x}} = (\mathbf{\underline{m}} - \mathbf{\underline{m}_0})$$
 eine Lösung für nat. $\mathbf{\underline{x}}$ hat

Beispiel

erreichbare Mark.: passende Lösungen der Zst-gleichung

$$(1,0,0,0,0)$$
 $(0,0,0,0,0)$, $(1,0,1,0,1)$, ... $(0,1,0,1,1,0)$ $(1,0,0,0,0)$, ... $(0,0,1,1,0)$ $(0,1,0,0,0)$, ... $(1,0,1,0,0)$, ... $(1,0,1,0,0)$, $(0,1,0,1,0)$, ...

Stellen-Invarianten

Prozess 1 Bsp.: gegenseitiger Ausschluss

Prozess 2

mutex: m erreichbar \rightarrow m(s₂) + m(s₄) \leq 1

mit Stellen-Inva<u>riante</u>

Beweis: 1.
$$m(s_2) + m(s_3) + m(s_4) = 1$$
 initial wahr

2.
$$m(s_2) + m(s_3) + m(s_4) = 1$$
 ist stabil

3.
$$m(s_2) + m(s_3) + m(s_4) = 1 \rightarrow m(s_2) + m(s_4) \le 1$$

Stelleninvariante i

Def. 1: Für alle t,
$$\sum_{[s,t]\in F} W([s,t]) \cdot i(s) = \sum_{[t,s]\in F} W([t,s] \cdot i(s))$$

Def. 2: für alle t, $i \cdot t = 0$

Def. 3: $\underline{i} \cdot C = (0,...,0)$

Wenn m erreichbar von m_0 , so $\underline{i} \cdot \underline{m} = \underline{i} \cdot \underline{m}_0$

Beweis:
$$m_0 \xrightarrow{w} m \xrightarrow{} \underline{m}_0 + C \cdot Parikh(w) = \underline{m}$$

 $\rightarrow \underline{i} \cdot \underline{m}_0 + \underline{i} \cdot C \cdot Parikh(w) = \underline{i} \cdot \underline{m}$
 $(= 0)$
 $\rightarrow i \cdot m_0 = i \cdot m$

Stellen-Invarianten

Prozess 1 Prozess 2

(0,1,1,1,0) ist Stellen-Invariante

$$\rightarrow \underline{i} \cdot \underline{m}_{\underline{0}} = 1 = \underline{i} \cdot \underline{m} = m(s_2) + m(s_3) + m(s_4)$$

für alle erreichbaren m
 $\rightarrow m(s_2) + m(s_3) + m(s_4) = 1$ ist stabil.

Weitere Stellen-Invarianten

Prozess 1 Prozess 2


```
(0,1,1,1,0) gegenseitiger Ausschluss
```

$$(0, 1, 1, 0, -1)$$
 $m(s_2) + m(s_3) = m(s_5)$
 \rightarrow Wenn s_2 markiert, so s_5 markiert

$$(1, 1, 0, 0, 0)$$
 $m(s_1) + m(s_2) = 1$
 $\rightarrow m(s_1) \le 1$, $m(s_2) \le 1$, s_1, s_2 beschränkt

Lebendigkeit

```
Für alle Petrinetze,
```

- -lebendig
- -ohne isolierte Stellen

für alle Stellen-Invarianten i

- ohne neg. Komponenten
- mit mind. einer pos. Komp. s

(sonst wären Transitionen verbunden mit s tot)

Prozess 1

Prozess 2

 $: \quad \underline{\mathbf{i}} \cdot \underline{\mathbf{m}}_0 > 0$

(0,1,1,1,0) (1,1,0,0,0) (0,0,0,1,1)

137

Beschränktheit

Wenn Stellen-Invariante i ex.

→ s ist beschränkt

Beweis: m erreichbar

Prozess 1

Prozess 2

Beschränktheit

Satz: Zu jedem ganzzahligen Vektor δ gibt es genau dann eine Markierung m, von der die Markierung m+ δ erreichbar ist, wenn $Cx=\delta$ eine nichtnegative Lösung hat.

Folgerung: Zu einem Netz gibt es genau dann eine Anfangsmarkierung, bei der N unbeschränkt ist, wenn Cx>0, x>0 lösbar ist.

Transitions-Invarianten

= Lösungen von $C \cdot y = (0,...,0)$

Prozess 1

Prozess 2

$$(1,1,0,0)$$
 $(0,0,1,1)$ $(2,2,1,1)$

$$m_0 \xrightarrow{w} m \rightarrow m_0 = m \text{ gdw Parikh(w) ist}$$

Transitions-Invariante

Lebendigkeit, Beschränktheit

N

Ex. Transitions-Invariante j

- lebendig
 - endig -

- für alle t, j(t) > 0

- beschränkt

Beweis:

Wg. Beschränktheit: für irgendein i < j: $m_i = m_j$

$$\rightarrow m_i \xrightarrow{w_{i+1} \cdots w_j} m_j = m_i$$

 \rightarrow Parikh(w_{i+1} w_i) ist Transitions-Invariante.

Berechnung von Invarianten

$$\underline{x}C=\underline{0}, C\underline{y}=\underline{0}$$

Ganzzahlige Invarianten: normale Eliminationsverfahren

 ganzzahlige homogene Systeme haben immer rationales, also auch ganzzahliges Erzeugendensystem

Positive Invarianten:

... sind Lösungen eines Ungleichungssystems

→ Methoden der linearen Optimierung

Struktureigenschaften

Weiter:

- Spezielle Netzklassen
- Topologische Eigenschaften

Vereinbarung: N zusammenhängend, alle Vielfachheiten 1 (nicht zusammenhängende Komponenten können isoliert betrachtet werden)

Damit schon mal ein Resultat:

Jedes lebendige und beschränkte Netz ist stark
zusammenhängend

Beweis

SZK1

t lebendig → s muss immer wieder Marken produzieren. Von SZK 2 gehen aber keine Marken zurück nach SZK 1 →Statt t zu schalten, können wir die Marken auf s liegen lassen → s unbeschränkt t lebendig, keine Rückkopplung mit SZK 1 → s unbeschränkt

Zustandsmaschinen

Def.: Ein Petrinetz, wo jede Transition genau einen Vorund genau einen Nachplatz hat.

Wesentliche Eigenschaft: Markenzahl bleibt konstant

- \rightarrow (1,....,1) ist S-Invariante.
- → Jede Zustandsmaschine ist beschränkt
- (1,...,1) ist sogar die einzige S-Invariante (bis auf Faktor):
- Vor- und Nachplätze müssen jeweils gleiches Gewicht haben, und Netz ist nach Vor. zusammenhängend 145

Lebendigkeit in Zustandsmaschinen

Satz: Eine Zustandsmaschine ist lebendig gdw. sie stark zusammenhängend ist und $m_0 > \underline{0}$ ist Beweis

"→" Weil lebendig, und sowieso beschränkt → stark zus.

"←" Sei t Transition und m Markierung. Wg. Invariante (1,...,1) ist m > 0. Sei s bei m markiert. Wg starkem Zusammenhang gibt es einen Weg von s nach t.

Die Folge der Transition auf diesem Weg ist realisierbar,

weil die Stellen auf dem Weg jeweils einzige Vor- und ₁₄₆ Nachplätze der Transition sind.

Synchronisationsgraphen

Def.: Jede Stelle hat genau eine Vor- und genau eine Nachtransition

Wesentliche Eigenschaften:

- keine Konflikte
- Einzige Transitionsinvariante (bis auf Faktor): (1,....,1)

Reden jetzt viel über Kreise:

= Folge $x_1,...,x_n$ von verschiedenen Knoten, wo für alle i < n $[x_i,x_{i+1}]$ in F, sowie $[x_n,x_1]$ in F.

Synchronisationsgraphen und Kreise

Satz: In jedem Kreis eines Synchronisationsgraphen bleibt die Markenzahl konstant

Beweis:

- Sei t eine Transition mit einer Stelle des Kreises in ihrer Umgebung. Dann ist sie einzige Vor- oder Nachtransition dieser Stellen, also selbst Teil des Kreises, also hat sie sowohl genau einen Vor- als auch genau einen Nachplatz auf dem Kreis
- → sie konsumiert genau eine Marke und produziert genau
 - eine Marke auf dem Kreis

Beispiele

Lebendigkeit

Satz: Ein Synchronisationsgraph ist lebendig gdw. jeder Kreis initial markiert ist.

Beschränktheit

Satz: Wenn Synchronisationsgraph N stark zusammenhängend ist, so ist N beschränkt

Satz: Wenn Sy.-Graph N lebendig ist, so ist N beschränkt gdw. jede Stelle auf einem Kreis liegt.

Free Choice Netze

Def: Wenn Transitionen Vorplätze teilen, teilen sie alle Vorplätze.

Satz: Jeder Synchronisationsgraph ist ein FC-Netz.

Konfusion

Def.: Eine Situation, wo die Frage, ob t1 und t2 in Konflikt stehen, von einem zu t1 nebenläufigen t3 abhängen

→ FC-Netze sind konfusionsfrei

N-Konfusion (aktivierende Konfusion)

M-Konfusion (deaktivierende Konfusion) 153

Konfliktcluster

Def.: Enthält einen Netzknoten x und

- zu jeder Stelle alle Nachtransitionen
- zu jeder Transition alle Vorplätze.

Satz: Die Menge alle Konfliktcluster ist eine Zerlegung von

 $S \cup T$.

In FC-Netzen ist zu einem Cluster C immer $S_C \times T_C \subseteq F$ Ist eine Transition eines Clusters aktiviert, sind es alle.

Konfliktcluster

Siphons (strukturelle Deadlocks)

Def.: $\emptyset \neq D \subseteq S$ heißt Siphon falls $\bullet D \subseteq D \bullet$.

Wichtigste Eigenschaft:

Einmal leer – immer leer.

Beweis: Ist D leer, so ist keine Transition aktivierbar, die Marken nach D schaffen kann.

Siphons und Verklemmungen

Satz: In jeder toten Markierung eines (beliebigen!) Netzes gibt es einen unmarkierten Siphon.

Beweis:

Sei m tote Markierung und D = $\{s|m(s) = 0\}$

Da bei m keine Transition aktiviert ist, gilt D● = T.

Damit ist $\bullet D \subseteq D \bullet$.

Folgerung: Jedes Netz ohne Siphons ist verklemmungsfrei.

Hilft aber nicht: In jedem stark zusammenhängenden Netz ist S Siphon.

Beispiel

Fallen

Def: Q⊆S heißt Falle, wenn Q•⊆•Q.

Wichtigste Eigenschaft: Einmal nicht leer, immer nicht leer.

Folgerung: Jedes Netz, in dem jeder Siphon eine initial markierte Falle enthält, ist verklemmungsfrei.

Wissenswertes über Siphons und Fallen

- Vereinigung von Siphons (Fallen) ist Siphon (Falle)
- Jeder Siphon enthält eindeutig bestimmte max. Falle (ggf. leer)
- N verklemmungsfrei wenn die max. Falle in jedem min. Siphon initial markiert ist.
- Kreis in Synchronisationsgraph ist Siphon und Falle
- Zu jeder nichtneg. S-Invariante i ist supp(i) Siphon und Falle

Commoners Theorem

Satz: Ein FC-Netz ist lebendig gdw jeder Siphon eine initial markierte Falle enthält.

Gegenbeispiele

lebendig, aber max. Falle im markierten Siphon ist leer, also nicht markiert.

einziger Siphon (S) ist markierte Falle, t aber nicht lebendig

Letztes Resultat im Kapitel Strukturelle Analyse

Das Rang-Theorem:

Zu einem FC-Netz N gibt es eine Anfangsmarkierung, bei der N lebendig und beschränkt ist gdw.

- (a) N ist stark zusammenhängend, hat mind. eine Stelle, eine Transition
- (b) N hat eine strikt positive S-Invariante
- (c) N hat eine strikt positive T-Invariante
- (d) Rang der Inzidenzmatrix = Anzahl der Konfliktcluster 1.
- → In Polynomialzeit entscheidbar!

Beispiel

rang= 5 S-Inv.(1,1,1,1,1,1,1) T-Inv (1,1,1,1,1,1,2)

strukturell L&B

nicht strukturell L&B

Zusammenfassung Strukturtheorie

- 1. Lineare Algebra
- Zustandsgleichung → notw. Kriterium für Erreichbarkeit
- S-Invarianten → Erreichbarkeit (notw.)
- Beschränktheit (hinr.)
- Lebendigkeit (notw.)

```
Für alle Petrinetze,
```

- -lebendig -
- -ohne isolierte Stellen

```
für alle Stellen-Invarianten i
```

- ohne neg. Komponenten
- mit mind. einer pos. Komp. s
- T-Invarianten → L&B (notw.)
- Rangtheorem → L&B in Free-Choice Netzen (hinr+notw.)

 $: \quad \underline{\mathbf{i}} \cdot \underline{\mathbf{m}}_0 > 0$

Zusammenfassung Strukturtheorie

2. Netzklassen

- Zustandsmaschinen
- Synchronisationsgraphen
- Free-Choice Netze

3. Netzstrukturen

- Siphons
- Fallen
- S-Komponenten
- T-Komponenten

Strukturelle Resultate: Beschränktheit

Allgemein: hinr.: Existenz strikt pos. S-Invariante

hinr.: Überdeckbarkeit mit S-Komponenten

Zustandsmaschinen: immer beschränkt

leb. Synchronisationsgraphen: notw.+hinr.: Überdeckbarkeit mit Kreisen

leb. FC-Netze: notw.+hinr.: Existenz strikt pos. S-Invariante

notw.+hinr.: Überdeckbarkeit mit S-Komponenten

Strukturelle Resultate: Lebendigkeit

Zustandsmaschinen: notw.+hinr.: starker Zusammenhang

Synchronisationsgraphen: notw.+hinr.: alle Kreise markiert

FC-Netze: notw.+hinr.: jeder Siphon enthält markierte Falle

strukturelle Resultate: L&B

Allgemein: notw.: Existenz strikt pos. T-Invariante

notw.: starker Zusammenhang

Zustandsmaschinen: notw.+hinr.: starker Zusammenhang

Synchronisationsgraphen: notw.+hinr.:von markierten Kreisen überdeckt

FC-Netze: notw: von S-Komponenten überdeckt

notw.: von T-Komponenten überdeckt

notw.+hinr.: Rangtheorem

Modellierung und Analyse quantitative Aspekte

Zeitnetze

Ziel: Echtzeitverhalten

Echtzeit; Typisches Beispiel Bahnübergang:

Zug passiert Sensor → Schranke schliesst sich

Viele Zeitkonzepte

Uhren an Marken: neue Marken unreif, reifen (ggf. verfallen)

Uhren an Stellen: so ähnlich

Uhren an Bögen: Bögen nur in einem Zeitfenster durchlässig

Uhren an Transitionen: Schaltdauer oder Schaltfenster ab Zeitpunkt der Aktivierung

Immer: gewisser Schaltzwang ("Sofortschaltregel")

Netze mit Schaltdauer

```
[S,T,F,W,d,z0] d: T \rightarrow Nat \setminus \{0\} z0: S \rightarrow Nat, T \rightarrow Nat \cup \{\#\} z0(t) = \# z(s) – Markierung z(t) = \# schaltet nicht z(t) = \# schaltet noch k Einheiten
```

Übergang = Schalten + 1 Tick Zeitverlauf:

- 1. Für alle t mit z(t) = 0, produziere die Marken für t und setze z(t) auf #
- 2. Wähle eine max. Menge U von Transitionen t mit z(t) = #, die gemeinsam aktiviert sind.
- 3. Entferne die durch U konsumierten Marken.
- 4. Setze z(t) auf d(t) für t aus U
- 5. Subtrahiere 1 von allen z(t) ≠ #

Schaltregeln

Hatten bei Petrinetzen: Einzelschaltregel: m[t>t'

Auch möglich: Schritt-Regel: Schalte immer eine Menge gemeinsam aktivierter Transitionen (gemeisam aktiviert = genug Marken für alle da)

→ gleiche Menge erreichbarer Markierungen, mehr Bögen im Erreichbarkeitsgraph

Max-Schritt-Regel: Schalte immer Mengen von Transitionen, die maximal sind bzgl. Inklusion.

Schaltdauer und Max-Schritt-Regel

- Netz, bei dem alle Schaltdauern 1 sind, ist äq. zum zugrundeliegenden Netz bei Max-Schritt-Schaltregel.
- Schaltdauernetz kann zu äq. Petrinetz unter Max-Schritt-Regel umgeformt werden

Schaltdauer und Entscheidbarkeit

Netze mit Schaltdauer können Zählerautomaten simulieren, Erreichbarkeit unentscheidbar **k**1 Reg. j T&DEC

Beschränkte Schaltdauernetze

Beschränkte Schaltdauernetze haben endlichen Zustandsgraph

Wenn zugrundeliegendes PN beschränkt, so auch das Zeitdauernetz (Umkehrung gilt nicht)

Erreichbarkeit, Invarianten etc.: Problem sind Marken im "Bauch" der Transitionen

Aber: Jede im Dauernetz erreichbare Markierung ist im zugrundeliegenden Petrinetz überdeckbar.

Schaltdauer und Free Choice

Satz: jedes lebendige FC-Netz ist bei jeder Schaltdauerzuordnung lebendig.

Zeigen: N mit einer Schaltdauer nicht lebendig → leerer Siphon (also Originalnetz nicht lebendig)

Wählen z so, dass bei z jede Transition und jede Stelle entweder tot oder lebendig ist.

D := Menge der toten Stellen bei z

Sei t ∈ •D → t tot. → t muss toten Vorplatz haben, da Marken von den Vorplätzen nur von den Transitionen

konsumiert werden können, die gleichzeitig mit t aktiviert sind.

Also: alle Vorplätze lebendig → t aktivierbar, Wid.

Also: t ∈ D•, also ex. leerer Siphon, im Originalnetz realisierbar

→ N nicht lebendig

Intervallnetze

```
[S,T,F,W,eft,lft,z0] \qquad eft: T \to Nat Ift: T \to Nat \cup \{\infty\} \qquad eft(t) \leq Ift(t) z(s) - Markierung
```

 $z(t) \in [0,lft(t)] \cup \{\#\}$ z(t) = 0, falls t aktiviert, # sonst.

Verhalten

- (A) Schalten einer Transition
 - Vor.: t aktiviert, z(t) ∈ [eft(t),lft(t)]
 - → schalte t,

```
für alle t' \in t \bullet \bullet \cup (\bullet t) \bullet : z(t') := 0, falls t' aktiviert, z(t') = \#, sonst.
```

- (B) Zeitverlauf (reelles(!!!) $\tau > 0$)
 - Vor.: für kein t ist $z(t) + \tau > Ift(t)$
 - \rightarrow für alle t mit z(t) \neq #: z(t) := z(t) + τ .

Intervallnetze können Dauernetze simulieren

also: Erreichbarkeitsproblem etc. unentscheidbar

Erreichbarkeitsanalyse für beschränkte Intervallnetze

2 Ansätze:

- 1. Integrer Erreichbarkeitsgraph
- 2. Zeitzonen

Integrer Erreichbarkeitsgraph

Betrachten nur Zeitverläufe mit ganzzahligen τ.

Rechtfertigung: Zu jeder Sequenz, die bei ganzzahliger Uhrenstellung beginnt und bei ganzzahliger Uhrenstellung endet, gibt es eine, die nur über ganzzahlige Zwischenzustände verläuft.

$$z(t) = \sum\nolimits_{i=j}^k \tau i$$

$$z'(t) = \sum_{i=j}^{k} \tau i'$$

Falls z(t) ganzzahlig, so z(t)=z'(t), sonst $\lfloor z(t) \rfloor \leq z'(t) \leq \lceil z(t) \rceil$

Also: $z(t) \in [eft(t), lft(t)]$

gdw. $z'(t) \in [eft(t), ft](t)$

Folgerungen

- Qualitative Eigenschaften können am integren Graph abgelesen werden.
- Minima, Maxima (kürzeste/längste Wege) liegen auf ganzzahligen Zeiten
- Wenn N beschränkt und alle lft≠∞, so ist integrer Graph endlich

Zonengraph

Idee: Ein Zustand repräsentiert eine Markierung m und viele Uhrenstellungen U, durch Ungleichungen abgegrenzt

Übergang von [m,U] = Schalten einer Transition t und beliebiger Zeitverlauf, beginnend bei jeder Uhrenstellung aus U, wo t aktiviert ist.

Bedingung: Die Menge der Uhrenstellungen, bei der taktiviert ist, ist nicht leer.

Neue Markierung – klar

Neue Uhrenstellungen - interessant

Neue Uhrenstellungen

Geg. Ungleichungssystem E, das U beschreibt. Ungleichungen haben Form $k1 \le z(t) \le k2$ und $k1 \le z(t) - z(t') \le k2$, für aktivierte t,t'. (k2 kann ∞ sein), oder z(t) = #, für inaktive t.

t aktiviert heißt $z(t) \ge eft(t) \rightarrow$ neue Ungleichung. Wenn neues Ungleichungssystem lösbar, gibt es also Uhrenstellungen in U, wo t schalten kann.

Neue Uhrenstellungen

Haben: Ungleichungssystem U1, das alle Uhrenstellungen beschreibt, bei denen t schalten kann.

Nun: Effekt des Schaltens und Zeitverlaufs

Ersetze für alle frisch aktivierten Transitionen t die Ungleichung $k1 \le z(t) \le k2$ durch $0 \le z(t) \le lft(t)$ und alle Ungleichungen $k1 \le z(t) - z(t') \le k2$ durch diejenige Ungleichung $k1^* \le z(t') - z(t) \le k2^*$, für die $k1^* \le z(t') \le k2^*$ in U' vorkommt (analog z(t) - z(t')) \rightarrow neues Ungleichungssystem

Zonengraph

1. Aktivierung von t

Uhr auf 0 stellen

Zeitverlauf

Abgrenzung gegen Ifts

Implementation von Zonen

bisher: Zone = Konjunktion von Constraints

Problem: Eine Zone hat viele Darstellungen

Lösung: Normalform

- für jedes t,t'∈T∪{0} genau ein Constraint der Form
 z(t1) z(t2) ≤ k
- jeweils das kleinstmögliche k

geometrische Veranschaulichung

Berechnung engerer Constraints

Normalisierung

Algorithmus:

- 1. Wandle Constraints $z(t) \le k$ in Constraints $z(t) 0 \le k$ und/oder $0 z(t) \le -k$ um
- 2. Für jedes t,t' aus $T \cup \{0\}$ behalte das engste Constraint bzw. füge $c_i c_i \le \infty$ ein
- 3. Wiederhole, bis nix Neues: Für jedes $z(t1) - z(t2) \le k_1$, $z(t2) - z(t3) \le k_2$, füge $z(t1) - z(t3) \le k_1 + k_2$ ein, falls es enger ist als das vorhandene Constraint für z(t1) - z(t3);

Shortest Path Closure

= Graphalgorithmus für Normalisierung

geg: Graph G mit "Kosten" für jede Kante

ges: Graph G', wo an jeder Kante [a,b] die Kosten des billigsten

Weges von a nach b in G stehen

Stochastische Petrinetze

Schalten einer Transition ist Ereignis, das stochastischen Gesetzmäßigkeiten folgt

- → Aufenthaltswahrscheinlichkeiten für Markierungen
- → Durchsatz von Transitionen
- → Durchschnittliche Markenzahl auf Stelle
- $\rightarrow \dots$

```
Zufallsvariable = Variable mit ungewissem Wert, aus bekanntem Wertebereich
```

Experiment = Bestimmung des Wertes einer Zufallsvariable

Ereignis = Menge von Werten aus dem Wertebereich

P(A) = Wahrscheinlichkeit, dass Ereignis A bei einem Experiment eintritt

Beispiel: Zufallsvariable = Augenzahl eines Würfels

Experiment = einmal würfeln

Ereignisse: - Eine Sechs!

- Augenzahl ungerade

P(Sechs) = 1/6 $P(ungerade) = \frac{1}{2}$

A,B ausschließend, falls $A \cap B = \emptyset$.

A1...Ak **erschöpfend**, falls A1∪... ∪ Ak = Wertebereich

Bedingte Wahrscheinlichkeit P(A|B):

Wahrscheinlichkeit, dass A eintritt, falls vom (gleichen) Experiment schon bekannt ist, dass B eintrat

Beispiel: P(sechs) = 1/6 P(sechs|gerade) = 1/3

Satz: $P(A|B) = P(A \cap B)/P(B)$

A,B stochastisch unabhängig, falls $P(A \cap B) = P(A)P(B)$. Wenn A,B stoch. unabh., dann P(A|B) = P(A)

Diskrete Zufallsvariablen = Wertebereich abzählbar

Beispiel: geometrische Verteilung

Wertebereich: Nat

Parameter p<1

$$P(x=n) = (1-p)^{n-1}p$$

z.B.: Wie oft muss ich bis zur ersten 6 würfeln? p = 1/6

Eigenschaft: Gedächtnislosigkeit

$$P(x=n+m| x\ge m) = P(x=n)$$

Kontinuierliche Zufallsvariablen x

Wertebereich: reelle Zahlen

x heißt stetig, falls ex. f mit
$$F_x(a) = P(x < a) = \int_{-\infty}^{a} f(x) dx$$
.
 $(\rightarrow \int_{-\infty}^{\infty} f(x) dx = 1)$

f = Dichte

Beispiel: neg. Exponentialverteilung $f(x) = \lambda e^{-\lambda x}$ für $x \ge 0$ und f(x) = 0 für x < 0

Eigenschaften der neg. Exponentialverteilung

Erwartungswert: 1/λ

Gedächtnislosigkeit: $P(x>a+b\mid x>b) = P(x>a)$

Stochastischer Prozess

- = Familie {x(t) | t∈T} von Zufallsvariablen
- T = Nat → diskrete Zeit
- $T = [0, \infty) \rightarrow \text{dichte Zeit}$

Wertebereich der Zufallsvariablen diskret "Kette" Bei uns: Wertebereich = erreichbare Markierungen

homogener Markov-Prozess = gedächtnisloser stoch. Prozess:

$$P(x(t) = k|x(t1)=k1,...,x(tn)=kn) (t1<...
= $P(x(t) = k|x(tn)=kn)$$$

Markov-Ketten

(Homogene) Markov-Kette = gedächtnisloser stoch. Prozess mit diskretem Wertebereich:

-
$$P(x(t) = k \mid x(t1) = k1,...,x(tn) = kn) (t1 < ... < tn < t)$$

$$= P(x(t) = k \mid x(tn) = kn)$$

-
$$P(x(t+s) = k | x(tn+s) = kn) = P(x(t) = k | x(tn) = kn)$$

Übergangswahrscheinlichkeiten

diskrete Markov-Ketten:

$$qij(s) = P(x(n+s) = j | x(n) = i) \rightarrow Matrix Q(s)$$

Satz: $qij(s) = \sum_{k} qik(m) qkj(s-m)$ für m<s

Also: Q(s) = Q(m)Q(s-m)

$$\rightarrow$$
 Q(s) = Q(1)s

Aufenthaltswahrscheinlichkeiten

$$\pi j(n) = P(x(n) = j)$$

$$\pi j(n) = \sum_i \pi i(0) qij(n)$$

$$\pi(n) = \pi(0) Q(1)^n$$

Beispiel

$$Q=Q(1) = 0.3 \ 0 \ 0.7$$
$$0.2 \ 0.3 \ 0.5$$

$$\pi(0) = (1,0,0)$$
 $\pi(1) = \pi(0)Q = (0,.5,.5)$ $\pi(2) = \pi(1)Q = (.25,.15,.6)$

Stationäre Aufenthaltswahrscheinlichkeiten

Wahrscheinlichkeitsverteilung π für den Aufenthalt in den einzelnen Zuständen des Wertebereichs heißt stationär, falls

$$\pi Q = \pi$$
 und $\sum_{i} \pi i = 1$

Falls Wertebereich stark zusammenhängend, endlich, aperiodisch

so ex. eindeutig bestimmte stationäre Verteilung und ist gleich $\lim_{n\to\infty}\pi(0)$ Qⁿ , also $\lim_{n\to\infty}\pi(n)$ für beliebige Startverteilung $\pi(0)$. "Das eingeschwungene Verhalten"

Gegenbeispiele

periodisch

unendlich

nicht stark zus.

(0,2/3,1/3,0,0)(0,0,0,1/3,2/3)

mehrere stat. Verteilungen, abh. von $\pi(0)$

Jetzt zusätzlich: diskrete Aufenthaltsdauern

τij: Aufenthaltsdauer in i, falls nächster Zustand j ist

Folgt gedächtnisloser Wahrscheinlichkeitsverteilung sij(m) = $P(\tau ij=m) = (1-a)^{m-1}a$ für einen Parameter a

Wartezeit in i: τi, unabhängig vom nächsten Zustand

$$P(\tau i=m) = \sum_{j} qij sij(m)$$

Zeitlicher Prozessverlauf

Q beschreibt Schritte, sagt noch nicht über Zeit

φij(n) = Wahrscheinlichkeit, dass Prozess nach n Zeittakten in j, falls jetzt in i (egal, wie lange schon, gedächtnislos!)

Zwei Möglichkeiten:

- (1) i=j und i wird nicht vor Zeit n verlassen
- (2) i wird verlassen, j später betreten

Verweilwahrscheinlichkeit (1)

$$\delta ij = 1$$
, falls $i=j$, $\delta ij=0$, sonst

Verweilwahrscheinlichkeit

=
$$\delta$$
ij P(τ i > n)
= δ ij (1 - $\sum_{m=0}^{n} \sum_{j}$ qij sij(m))
=: Wij(n)

Ubergangswahrscheinlichkeit (2)

Sei
$$\Phi = (\phi ij)$$

i wird zu irgendeiner Zeit m ≤ n das erste Mal verlassen, zu irgendeinem Zustand k.

$$\rightarrow \sum_{m=0}^{n} \sum_{k} qik P(\tau ik=m) \phi kj(n-m)$$

$$= \sum_{m=0}^{n} \sum_{k} qik sik(m) \phi kj(n-m)$$

=
$$\sum_{m=0}^{n} (Q \bullet S(m)) \Phi(n-m)$$
 •: komponentenweise Mult.

(1)+(2)
$$\rightarrow \Phi(n) = W(n) + \sum_{m=0}^{n} (Q \bullet S(m)) \Phi(n-m)$$
 (rekursiv berechenbar)

Jetzt: kontinuierliche Zeiten

Analog zu diskreten Zeiten, nur:

statt geometrischer Verteilung

1-Schritt-

Übergangs-

Übergangsmatrix Q

neg. exp. Verteilung

Infinitesimale

wahrscheinlichkeiten

$$\lim_{\epsilon \to 0} P(x(t+\epsilon)=j | x(t)=i)$$

$$\pi(n) = \pi(0) Q^n$$

$$\pi(t) = \pi(0) e^{\int 0...t Q(u)du}$$

eingeschwungen:

$$\pi Q = \pi$$
 $\pi Q = 0$

Stochastische Petrinetze

```
[S,T,F,W,m0,λ] λ: T → Real λ(t) = Schaltrate von t
= Parameter einer
neg.exp.Verteilung,
die die Schaltver-
zögerung von t
beschreibt
```

Motivation für neg.exp. Verteilung

- 1. gedächtnislos
- Markov-Theorie anwendbar
- 3. viele Verteilungen mittels neg.exp. Verteilung approximierbar

.75 s3 1.2 t3 **s**5 **s**4 t5

Beispiel

Schaltregel

In Markierung m, wählt jede Transition ti eine Schaltverzögerung xti entsprechend ihrer neg. exp. Verteilung

Die Transition mit der niedrigsten Verzögerung schaltet, ihre Verzögerung bestimmt die Aufenthaltszeit in m

Übersetzung in Markov-Prozess

Wertebereich = Menge der erreichbaren Markierungen

```
Seien t1...tn aktiviert in m
P(ti hat geringste Schaltverzögerung) =
P(xti<xt1 & ... & xti < xtn) = \lambda(ti)/(\lambda(t1)+...+\lambda(tn))
```

mittlere Verweildauer in m: $1/(\lambda(t1)+...+\lambda(tn))$ Verweildauer neg. exp.-verteilt

- → haben Markov-Prozess mit kontinuierlicher Zeit
- → Aufenthaltswahrscheinlichkeiten, Durchsatz

Process Mining

Anliegen

- Modelle entstehen oft losgelöst von den tatsächlichen Prozessen
- Ereignisprotokolle (event logs) stehen vielfach als Abbild der tatsächlichen Abläufe zur Verfügung
- Idee: Aus den Logs automatisch die zugrundeliegenden Prozesse rekonstruieren
- Ziele
 - realistischere Prozesse
 - Vergleich mit den "ausgedachten" Prozessen

Logs

- Vor: kein Rauschen
- Log enthält normalerweise: case id und task id's
- zusätzlich oft: Ereignistyp,
 Zeit, Ressourcen, Daten
- Im Beispiel: 4 Sequenzen


```
case 1 : task A
case 2 : task A
case 3 : task A
case 3 : task B
case 1 : task B
case 1 : task C
case 2 : task C
case 4: task A
case 2 : task B
case 2 : task D
case 5 : task E
case 4: task C
case 1 : task D
case 3 : task C
case 3 : task D
case 4: task B
case 5: task F
case 4: task D
```

Erster Algorithmus: α − Relationen >,→,||,#

- Direkte Folge: x>y gdw x in einem Fall direkt von y gefolgt.
- Kausal: x→y gdw x>y und nicht y>x.
- Parallel: x||y gdw x>y und y>x
- Unbezogen: x#y gdw weder x>y noch y>x.

 $x \rightarrow y$, $x \rightarrow z$, und y||z

 $x \rightarrow y$, $x \rightarrow z$, und y # z

 $x\rightarrow z$, $y\rightarrow z$, und x||y

α-Algorithmus

Sei W log über T. α (W) ist wie folgt definiert.

- 1. $T_W = \{ t \in T \mid \exists_{\sigma \in W} t \in \sigma \},$
- 2. $T_1 = \{ t \in T \mid \exists_{\sigma \in W} t = first(\sigma) \},$
- 3. $T_O = \{ t \in T \mid \exists_{\sigma \in W} t = last(\sigma) \},$
- 4. $X_W = \{ (A,B) \mid A \subseteq T_W \land B \subseteq T_W \land \forall_{a \in A} \forall_{b \in B} a \rightarrow_W b \land \forall_{a1,a2 \in A} a_1 \#_W a_2 \land \forall_{b1,b2 \in B} b_1 \#_W b_2 \},$
- 5. $Y_W = \{ (A,B) \in X \mid \forall_{(A',B') \in X} A \subseteq A' \land B \subseteq B' \Rightarrow (A,B) = (A',B') \},$
- 6. $P_W = \{ p_{(A,B)} \mid (A,B) \in Y_W \} \cup \{i_W,o_W\},$
- 7. $F_W = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_W \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_W \land b \in B \} \cup \{ (i_W,t) \mid t \in T_I \} \cup \{ (t,o_W) \mid t \in T_O \}, and$
- 8. $\alpha(W) = (P_W, T_W, F_W)$.

Beispiel

Bewertung

- Falls Log vollständig ist bzgl. ">", kann eine Klasse von FC-Netzen korrekt erkannt werden
- Structured Workflow Nets (SWF-nets)
 - keine impliziten Stellen
 - kein Vorkommen von:

Beschränkungen

- Problematic constructs
 - Short loops
 - Synchronization of OR-join places
 - Duplicate Tasks
 - Implicit Places
 - Non-free Choice

Kurze Schleifen

B>B und nicht B>B impliziert B→B (unmöglich!)

A>B und B>A impliziert A||B und B||A anstelle A \rightarrow B and B \rightarrow A

Mining auf der Basis der Regionentheorie

- Regionentheorie konstruiert ein Petrinetz aus einem Transitionssystem ("seinem Erreichbarkeitsgraph")
- Anwendung im Mining: Logs in irgendein Transitionssystem übersetzen (z.B. Baum), Netz konstruieren, ggf. iterativ verbessern oder approximieren

Problemstellung

- geg: gerichteter, endlicher, von einem Knoten v0 zusammenhängender, an den Bögen beschrifteter Graph G = [V,E,b] mit Beschriftungen aus einer Menge T.
- ges: Petrinetz, dessen Transitionsmenge T ist und dessen Erreichbarkeitsgraph isomorph zu G ist.
 (jetzt insbesondere: Bogen e mit e(b) = t wird realisiert durch Schalten von t im Petrinetz).
- 1. Frage: geht das immer?

Antwort: Geht nicht immer

Beispiel 1:

Beispiel 2:

a ändert Markierung nicht, also sind Quelle und Ziel von a nicht verschieden.

Beispiel 3

Sei s nicht ausreichend markiert für b in m₁.

(1)
$$m_0(s) \ge W([s,b])$$

(2) W([s,b]) >
$$m_0(s) + \underline{a}(s)$$

(3)
$$m_0(s) + 2 \underline{a}(s) \ge W([s,b])$$

geht nicht immer...

.... mit sicheren Netzen:

Beispiel:

... sicheren, schleifenfreien Netzen:

a entzieht b Aktivierung, also gibt es geteilten Vorplatz s. Dann kann aber a nicht nach b, weil dabei 2 Marken von s abzuziehen wären.

Jetzt zur Lösung

Einschränkung (zur Vereinfachung): suchen sicheres Petrinetz, das geg. Graph realisiert. Varianten: mit und ohne Schleifen.

Ansatz: müssen im Graph Stellen wiederfinden, d.h., die

Zustandsmengen, wo eine Stelle markiert bzw. unmarkiert

ist.

Vorteil von *sicher*. Stelle unmarkiert = Komplementärstelle markiert (oBdA: Netz voll durchkomplementiert).

→ suchen Zustandsmengen, bei denen Stelle markiert ist.

Stellen im Erreichbarkeitsgraph

Sei G Erreichbarkeitsgraph eines sicheren Petrinetzes, s eine Stelle und M = {m | m Knoten in G, m(s) = 1}

Sei m [t>m'.

```
Wenn t \in \bullet s, t \in s \bullet, so m \in M, m' \in M
Wenn t \in \bullet s, t \notin s \bullet, so m \notin M, m' \in M
Wenn t \notin \bullet s, t \in s \bullet, so m \in M, m' \notin M
Wenn t \notin \bullet s, t \notin s \bullet, so m \in M, m' \in M
oder m \notin M, m' \notin M
```

Regionen

Sei R Knotenmenge. Bogen [v,v']

- betritt R, falls v ∉R, v'∈R
- verlässt R, falls v ∈ R, v' ∉ R

Knotenmenge R heißt Region, falls für alle t:

- wenn ein mit t beschrifteter Bogen R betritt, betreten alle mit t beschrifteten Bögen R
- wenn ein mit t beschrifteter Bogen R verlässt, verlassen alle mit t beschrifteten Bögen R

Beispiel

Das Regionennetz

Sei G= [V,E,b] gerichteter Graph, R Menge der Regionen.

Dann ist $N_G = [R,T,F,m_0]$ mit $[R,t] \in F$ gdw. t verlässt R $[t,R] \in F$ gdw. t betritt R $m_0(R) = 1$, falls $v_0 \in R$, = 0, sonst

das Regionennetz zu G.

Weitere Beispiele

Satz

Wenn G isomorph zum Ereichbarkeitsgraph eines sicheren, schleifenfreien Petrinetzes ist, dann ist G isomorph (~) zum Erreichbarkeitsgraph von N_G.

Zwischenfazit

Prozedur:

Geg.: Graph G.

- 1. Berechne Regionen
- 2. Bilde Regionennetz
- 3. Berechne dessen Erreichbarkeitsgraph
- 4. Vergleiche mit G

isomorph → Ergebnis

nicht isomorph → Es gibt kein sicheres schleifenfreies Netz

Beispiele, wo es nicht ging

Vorbedingung von b nicht exakt widergespiegelt

So geht es:

- Damit

 Isomorphismus wird:
 - **Zustandsseparation:**
 - Zu je zwei Knoten v,v′ gibt es eine Region R mit v∈R,v′∉R
- Damit Vorbedingungen exakt widergespiegelt werden:
 - **Ereignisseparation:**
 - Zu jedem t ist

$$\bigcap_{\text{t verlässt R}} R = \{v \mid \text{ex. v' mit } [v,v'] \in E, b([v,v'])=t\}$$

Charakterisierung synthetisierbarer Graphen

Satz: Zu einem Graph G gibt es genau dann ein sicheres schleifenfreies Netz N mit EG_N ~ G, wenn die Eigenschaften Zustands- und Ereignisseparation in G erfüllt sind.

Der Fall mit Schleifen

Wie verhalten sich t und R_s? Alle t-Bögen haben Quelle und Ziel in R_s!

Def.: t heißt intern zu Region R, falls für alle [v,v'] mit b([v,v'])=t gilt: $v,v'\in R$.

→neue Konstruktion:

Regionen wie bisher. Regionennetz wie bisher, aber zusätzlich: Für jede Region R, zu der t intern ist, ziehe Schleife zwischen t und R.

$\begin{array}{c} 0 & a \rightarrow 0^{1} \\ b & a \rightarrow 0_{3} \end{array}$

Hurra, es klappt.

Beispiel

Warum klappt es?

Durch die Schleifen ändert sich das Kriterium der Ereignisseparation:

t verlässt R oder ist intern zu R

= $\{v \mid ex. \ v' \ mit \ [v,v'] \in E, \ b([v,v'])=t\}$

Minimale Regionen

Ziel: Nicht so viele sinnlose Stellen einbauen

Region R ist minimal, falls keine nichtleere Teilmenge von

R Region ist.

Satz: Jede nichtleere Region ist disjunkte Vereinigung minimaler Regionen.

Folgt aus: Wenn R1 \subseteq R2 Regionen sind, so auch R2\R1.

Nichtminimale Regionen können weggelassen werden

Sei R nicht minimal im Vorbereich von t. Also: t verlässt R.

Dann gibt es auch eine min. Region R'⊆ R, die von t verlassen wird. Wenn R' markiert, dann auch R markiert,

weil $R' \subset R$. Also ist R redundant.

Beispiel

Anwendung im Mining: z.B. Approximation

 Problem der Regionentheorie: Logs sind normalerweise unvollständig, synthetisiertes Netz spiegelt aber EXAKT das gegebene Transitionssystem wider.

→sollten approximieren

Idee: Netz vereinfachen, dabei keine Sequenzen deaktivieren (ggf., aber welche aktivieren)

Mittel: Kriterium der Ereignisseparation weglassen.

Beispiel

Sprachbasierte Regionentheorie

- Geg.: Sprache
- Ges.: Petrinetz, das diese Sprache realisiert
- Idee:
 - Transitionen gegeben (vorkommende Buchstaben)
 - Plätze unterteilbar in gute und schlechte
 - gut: Elemente der Sprache werden nicht behindert
 - schlecht: Elemente der Sprache werden behindert
 - Nimm einfach ALLE guten Plätze mit jeweils eindeutig bestimmbarer minimaler Anfangsmarkierung

Beispiel

geg: abc,bac

gute Plätze (Auswahl) schlechte Plätze (Auswahl)

Problem: zu viele Plätze (mit Vielfachheiten: unendlich viele) Lösung: 1. Lasse Plätze weg, von denen klar ist, dass sie nicht gebraucht werden

2. Lasse weitere Plätze weg (Überapproximation) 256

Flexibilisierung mit ADEPT

Hintergrund

ADEPT Prozessmodell

Prozess als gerichteter, strukturierter Graph, d.h.

- typisierte Knoten (Aktivitäten, Datenobjekte, Strukturelemente)
- typisierte Knoten (Kontrol- & Datenfluss, Synchronisation, Loop,

Grundelemente

Knoten:

- Aktivität
- Strukturelement
- AND-Split
- AND-Join
- OR-Split
- OR-Join

Strukturelemente:

- StartFlow- & EndFlow-Knoten
- StartLoop- & EndLoop-Knoten
- Failure- & Restart-Knoten

Grundelemente

Kanten:

- Kontrollfluss
- LOOP ——
- Fehler ——
- Synchronisation -----
 - ----
- Datenfluss

Kantentypen:

- Control_E
- Loop_E
- Failure_E
- Strict_Sync_E
- Soft_Sync_E
- Data_E

Start und Ende

- Jeder Prozess hat genau einen Start- und genau einen End-Knoten
- Jeder Knoten liegt auf einem Pfad zwischen diesen beiden

Verknüpfung von Aktivitäten

- Sequentielle Ausführung wird durch Kontrollflusskanten abgebildet
- Verzweigung nur mit Split und Join
- Verwendung dreier Grundmuster

Symmetrische Parallelisierung

Symmetrische Alternative

Parallelisierung mit Auswahl

Schleifen

- Kontrollflusskanten zyklenfrei
- LOOP zwischen StartLoop- & EndLoop-Knoten
- LOOP umfasst abgeschlossenen Block

Synchronisation

- Synchronisation nur zwischen parallelen Aktivitäten
- Synchronisation darf LOOP nicht verlassen

Die Dynamik

- Zustände eine Aktion
 - NotActivated
 - Activated
 - Running
 - Completed
 - Failed
 - Skipped

- Zustände eine Kante
 - NotSignaled
 - TrueSignaled
 - FalseSignaled

Auswerten einer Sync-Kante

Auswerten einer Sync-Kante

Rücksetzen eines LOOP-Blocks

- NS = ACTIVATED
- √ NS = COMPLETED
- ES = TRUE_SIGNALED
- ES = FALSE_SIGNALED

NT : node type

ET: edge type

Rücksetzen eines LOOP-Blocks

- NS = ACTIVATED
- √ NS = COMPLETED
- ES = TRUE SIGNALED
- ES = FALSE_SIGNALED

NT : node type

ET : edge type

Flexibilisierung

- Reale Prozesse definieren das Verhalten.
- Regelfall ist die Ausnahme.
- Modifikation durch EDV-Laien.
- ➤ Alle Operationen überführen das Prozessmodell in syntaktisch korrekten und legalen Zustand.

Flexibilisierung

- Strukturelle Änderungen am Workflow
 - Einfügen von Aktionen
 - Löschen von Aktionen
 - **—** ...
- Dynamische Änderungen am Workflow
 - Auslassen von Aktionen
 - Vorziehen von Aktionen
 - ...
- Satz der Operationen minimal & vollständig

Beispiel: Insert X between {C, D} and {F}

• M_{before} = {C, D}, M_{after} = {F}

Beispiel: Insert X between {C, D} and {F}

1. Finde den minimalen Block, der C, D und F enthält.

Beispiel: Insert X between {C, D} and {F}

 Füge Hilfsknoten vor und nach dem Block ein. Füge X zwischen den Hilfsknoten ein. Synchronisiere X mit C, D und F.

Beispiel: Insert X between {C, D} and {F}

3. Vereinfache den Kontrollflussgraphen.

Regeln der Vereinfachung

Insert X between D and G \Rightarrow M_{before} = {D}, M_{after} = {G}

- NS = ACTIVATED
- NS = RUNNING
- ✓ NS = COMPLETED
- * NS = SKIPPED

- ES = TRUE_SIGNALED
- o ES = FALSE_SIGNALED

- NS = ACTIVATED
- NS = RUNNING
- ✓ NS = COMPLETED
- * NS = SKIPPED

- ES = TRUE_SIGNALED
- ES = FALSE SIGNALED

- Syntaktische Korrektheit und legaler Zustand
 - nachfolgende Aktionen im Zustand NotActivated / Activated
- Einfügen hat Vorrang vor Ausführung
- Nach Einfügen wird Systemzustand re-evaluiert
- Datenkonsistenz muss beachtet werden
 - Änderungsmanagement notwendig
 - Fehlende Inputs bereitstellen

Löschen von Aktivitäten - "on the fly"

- Legaler Zustand beachten
 - Löschen im Zustand NotActivated / Activated
- Aktivitäten bleibt als NullTask übrig
 - keine Änderung der Struktur
- Möglichkeiten bei fehlenden Daten:
 - alle abhängigen Aufgaben löschen
 - Einfügen einer die Daten erzeugenden Aktivitäten
 - Angabe einer anderen Quelle (z.B. Dialog-Maske)
 - Verbot der Löschung

Löschen von Aktivitäten - "on the fly"

Änderung des Datenflusses

Löschen von Aktivitäten - "on the fly"

Änderung des Datenflusses

Löschen von Aktivitäten - "on the fly"

Löschen von Aktivitäten - "on the fly"

Änderung des Datenflusses

Löschen von Aktivitäten - "on the fly"

 Änderung des Datenflusses Variante Variante II Variante II

Umordnen von Aktivitäten

Temporäre vs. permanente Änderungen

- Permanente Änderung gilt für Prozessmodell.
- Temporäre Änderung gilt für Prozessinstanz.
- Änderungsmanagement notwendig
 - Reglung der Zugriffsrechten
 - Protokollierung der Änderungen (Logging)
- Rücksetzung von temporären Änderungen möglich
- Permanente Änderungen dürfen nicht von temporären Änderungen abhängen.

Modelle für (Web) Services

Verteilte Geschäftsprozesse

- Dezentralisierung
- Modularisierung
- Standardisierung

Virtuelle Unternehmen

Firmen in Nordland:

- (1) Nordic Airways
- (2) Nordland Inn Hotel
- (3) Nordland Festspiele
- (4) NordTour Car rental
- (5) Club Nord Golf Club

Virtuelle Unternehmen

Definition

Ein *Virtuelles Unternehmen* ist eine zeitlich befristete, zwischenbetriebliche Kooperation mehrerer, rechtlich unabhängiger Unternehmen in einem informationstechnisch unterstützten Netzwerk, das:

- innerhalb kürzester Zeit für einen bestimmten Auftrag entsteht,
- dem Kunden durch die Integration der Kernkompetenzen individualisierte Produkte und Dienstleistungen erstellt und
- ohne physische und juristische K\u00f6rperschaften auskommt.

Ein Virtuelles Unternehmen tritt Dritten gegenüber wie ein einheitliches Unternehmen auf.

Der Web-Service-Ansatz

Ein Web Service ist ein

- inhaltlich abgeschlossenes,
- beliebig komplexes und
- selbsterklärendes

Anwendungsmodul im Internet.

Ein Web Service

- kapselt einen lokalen Geschäftsprozess,
- kommuniziert über eine standardisierte Schnittstelle.

Paradigma: Web Services

Web Service Technology Stack

BPEL-Einführung

Was ist BPEL?

 Business Process Execution Language for Web Services (früher: BPEL4WS, jetzt: WS-BPEL)

 "BPEL ist eine XML-basierte Sprache zur Beschreibung von Geschäftsprozessen, deren einzelne Aktivitäten durch Webservices implementiert sind.

Weiterhin kann mit BPEL ein Webservice selbst beschrieben werden."

Webservice ist BPEL?

```
Kontroll-
Fluss
neuer
Webservice
```

```
<process>
    <variables>
    <variable name="request" />
    <variable name="answer" />
    </variables>
    <sequence>
    <flow>
        <reveive partnerLink="A" />
        </flow>
        <invoke partnerLink="C" />
        </sequence>
    </process>
```

"<mark>Program</mark>mieren im Größen" "Service-Orchestrierung"

Aktivitäten: Kommunikation

- Receive: Anfragen annehmen
- Invoke: Webservices aufrufen
- Reply: Anfragen beantworten

Sequence: sequentielle Ausführung

Flow: nebenläufige Ausführung

Switch: bedingte Ausführung (Daten)

• Pick: bedingte Ausführung (Nachrichten, Zeit)

While: wiederholte Ausführung

Nachrichten und Daten

- Einheitliches Datenmodell
- Alles ist XML:
 - Nachrichten
 - Daten
 - Vergleiche

Instanzen

- BPEL-Datei als "Bauplan"
- Correlation Sets als "Schlüsselwort"

Fehler

Webservice

Webservice

- Fehlerbehandlung mittels Fault Handler
- Webservices = "long running transactions"
- Kompensation mittels Compensation Handler

Kapselung

- Fehlerbehandlung
- Kompensation
- Namensräume

Links

... nur ein halbgeordneter Ablauf

Etwas detaillierter ...

- Link verbindet eine source-Aktivität mit einer target-Aktivität
- Status := Links → {W,F,undef}
 - Status jedes Link zu Prozessbeginn undef
 - A abgearbeitet → Status(AB) = W
 - B aktiviert und Status eines Link wahr → starte B

Dead-Path-Elimination (DPE)

- Verklemmung, da Status(BC) = undef
- Lösung: Status(BC) = F
- C wird übersprungen
- Status(CD) = F
- DPE: Falsch zügig propagieren und so "tote Pfade" auf der Engine zu eliminieren
- Auslöser sind switch und pick

Mehrere eingehende Links

- C startet, wenn
 - Status aller
 eingehenden Links
 definiert ist
 - join condition wahr ist
- join condition ist bool.
 Ausdruck

wahr: starte C

falsch: überspringe C

 Status(Link) ist Wert der transition condition der source-Aktivität

Anwendung von DPE

- Sei Status(AC) = F
- AC ∧ DC = F
- C wird übersprungen, setzt aber
 Status(CE) = F
- wenn Status(BE) = W, startet E

Bis jetzt

- Aktivität (source) abarbeiten
- Link-Status setzen (Wert der transition cond.)
- join condition auswerten
 - wertet Status aller eingehenden Links aus
 - z.B.: m aus n, 1 aus n (Standard), n aus n, ...
 - Wahr : target-Aktivität startet
 - Falsch: target-Aktivität überspringen, DPE
 suppressJoinFailure = "yes"

Alles? Leider nein ...

Falsch: target-Aktivität wirft Fehler, DPE
 suppressJoinFailure = "no"

SuppressJoinFailure = "no"

- Sei Status(AC) = F
- AC ∧ DC = F
- C wirft Fehler, setzt
 aber Status(CE) = F
- Fehlerbehandlung beendet gekapselten Bereich

Einschränkungen für Links

Fehlerbehandlung

Sichtbarkeitsbereich

- Beende alle Aktivitäten, die im Sichtbarkeits-bereich von E sind
- 2. FH behandelt den Fehler

Konventionen

- Sichtbarkeitsbereich = Scope
- S1 ist *Elternscope* von S2
- S2 ist Kindscope von S1

Nutzerdefinierte Fehlerbehandlung

- Fehlertyp über Namen,
 Fehlerdaten identifizierbar
- catch behandelt ausgewählte Fehler
- catchAll behandelt jeden Fehler
- nach Fehlerbehandlung wird Scope beendet
- kein passendes catch bzw. kein catchAll
 - → Standard-FH wird ausgeführt

Standard-Fehlerbehandlung

- Unabhängig vom Fehlertyp
- Rufe alle CH der
 Kindscopes in umgekehrter
 Reihenfolge ihrer
 Abarbeitung auf
- Hier: CH(S3), CH(S2)
- S1 ist äußerster Scope
- → Ja: Beende Prozessinstanz

Standard-Fehlerbehandlung (Forts.)

- Unabhängig vom Fehlertyp
- Rufe alle CH der
 Kindscopes in umgekehrter
 Reihenfolge ihrer
 Abarbeitung auf
- Hier: CH(S3), CH(S2)
- S1 ist äußerster scope
- → Ja: Beende Prozessinstanz
- → Nein: Reiche Fehler an FH des Elternscope

Beenden eines Scope

- A wirft Fehler
- S2 muss beendet werden
- forcedTermination-FH in S2 wird aktiviert
- Verhalten analog zu Standard-FH
 - Aktivitäten beenden
 - Kompensieren

Fehler bei der Fehlerbehandlung

- Fehler beim Kompensieren (Standard-FH)
- → später
- Aktivität im catch wirft Fehler (nutzerdef. FH)
- → 2 Fälle

Fehler im catch (Fall 1a)

- FH von S2 behandelt den Fehler
- Fehler in S1 nicht sichtbar

Fehler im catch (Fall 1b)

- FH von S2 behandelt den Fehler nicht
- Beende Prozessinstanz

Fehler im catch (Fall 2)

Reiche Fehler an FH von S0

Links und Fehlerbehandlung

- Fehlerbehandlung erfolgreich
 - Fehler nicht an FH von S1 weiterreichen
 - Setze Status aller ausgehenden Links von S2 auf W
 - Setze Status aller ausgehenden Links aller nicht abgearbeiteten Aktivitäten von S2 auf F

Links und Fehlerbehandlung

- Fehlerbehandlung *nicht* erfolgreich
 - Fehler an FH von S1 weiterreichen
 - Setze Status aller ausgehenden Links von S2 auf
 - Setze Status aller ausgehenden Links aller nicht abgearbeiteten Aktivitäten von S2 auf F

Kompensation von Scopes

- Compensation Handler (CH)
 - in v1.1 nur "Hülle"
 - Effekte ausgeführter Aktivitäten rückgängig machen
 - Sieht "Schnappschuss" aller geänderten Variablen des Scope

1. Wann wird kompensiert?

- Umgebender Scope vollständig und fehlerfrei abgearbeitet
 - andernfalls macht CH nichts
- FH des Scope war nicht aktiv
- Scope wird nur einmal kompensiert

2. Wie wird der CH aufgerufen?

- Standard-FH des Elternscope
- nutzerdefinierter FH des Elternscope

3. Arten der Kompensation?

- Standard-CH
 - analog zur Standard-Fehlerbehandlung
 - rufe alle CH der Kindscopes in umgekehrter Reihenfolge ihrer Abarbeitung auf
- Nutzerdefinierte Kompensation
 - spezifiziert Aktivität
 - Möglichkeit CH von Kindscope direkt aufzurufen (Aktivität compensate)

4. Fehler beim Kompensieren? (1)

nur im nutzerdefinierten CH möglich **S**0 • FH von S2 analog zum FH behandelt Fehler **S1** Kontrollfluss geht **S2** in FH von S0 FΗ weiter FΗ CH **Fehler** Fehler CH 340

4. Fehler beim Kompensieren? (2)

4. Fehler beim Kompensieren? (3)

nur im nutzerdefinierten CH möglich

 Fehler an FH von S0 gereicht

WS-BPEL v2.0

validate

- validate
- repeatUntil

- validate
- repeatUntil
- forEach
 - sequentiell

- validate
- repeatUntil
- forEach
 - sequentiel
 - parallel

- validate
- repeatUntil
- forEach
 - sequentiell
 - parallel
- rethrow

Executable vs. Abstract Process

- Ausführbare Prozesse:
 - konkrete Implementation von Geschäftsprozessen
 - ein ausführbarer BPEL-Prozess beschreibt einen Geschäftsprozess
- Abstrakte Prozesse:
 - abstrakte Sicht auf Geschäftsprozesse
 - beschreiben Klassen von BPEL-Prozessen
 - Abstract Process = Common Base + Profile

Common Base abstrakter Prozesse

- beschreibt syntaktisches Universum abstrakter Prozesse:
 - WS-BPEL XML Schema ist verbindlich
 - alle Konstrukte aus ausführbaren Prozessen sind erlaubt
 - plus zusätzliche explizite und implizite Konstrukte zum Verstecken von Informationen (opaque language extensions, omission)
 - "createInstance"-Aktivität muss nicht spezifiziert sein
 - abstractProcessProfile-Attribut muss gesetzt sein 350

Opaque-Konstrukte

- <opaqueActivity>:
 expliziter Platzhalter für ausgelassene Aktivitäten
- Opaque Expressions:
 z.B. Verstecken der Entscheidungslogik

```
<if ... >
     <condition opaque="yes"/>
     <then> ... </then>
</if>
```

 Opaque Assignments:
 Zuweisen versteckter Werte (bzw. Nicht-Determinismus)

```
<from opaque="yes"/>
```

Omission-Shortcut

- Alternativ zur Verwendung von opaque können Elemente eines BPEL-Prozesses weggelassen werden, wenn:
 - sie syntaktisch erforderlich sind
 - und keinen default-Wert besitzen, z.B.

```
<validate />
```

Äquivalent zu:

Abstract Process Profile

- ermöglicht Interpretation des abstrakten Prozesses
- definiert, wie der abstrakte Prozess zu einem ausführbaren Prozess vervollständigt werden kann:
 - Dürfen Aktivitäten hinzugefügt werden?
 (z.B. Erweiterung eines abstrakten Kommunikationsschemas)
 - Wenn ja, welche?(z.B. Verwendung von Links verbieten)
 - Oder dürfen nur Opaque Token ersetzt werden?
 (z.B. in Template-Profilen)
 - Welche Opaque Token sind überhaupt zulässig?
 (z.B. joinConditions mit opaque="yes" verbieten)

WS-BPEL Standard Profile

- Abstract Process Profile for Observable Behavior:
 - Modellierung des Interaktionsverhaltens eines Prozesses
 - Abstrahiert von Datenmanipulationen (Nicht-Determinismus)
 - Nur Elemente die sich auf Daten beziehen dürfen opaque sein (z.B. assign, variable-Attribute, nicht jedoch z.B. joinCondition)
- Abstract Process Template Profile:
 - Abstrahiert von Details der Ausführung (z.B. endpoints)
 - Nur explizite Opacity erlaubt (kein Omission-Shortcut)
 - Executable Prozess darf (fast) keine Aktivitäten hinzufügen
 - Alle Startaktivitäten müssen ausgezeichnet sein (createInstance)
 - <documentation>-Tags für Erläuterungen des Designers

Übersetzung von BPEL in Petrinetze

Ziele:

- 1. Formale Semantik geben (Schwächen in der Spezifikation)
- 2. Anwendung formaler Methoden ermöglichen

Beispiel einer Basisaktivität: Receive

Semantik einer strukturierten Aktivität: Flow

357

Links (Quelle)

Links (Ziel, join failure suppressed)

Scope

Default Fault Handler

Interessante Fragestellungen an das Verhalten von Services

Generelles Bild

Passende Services

- (1) Interfaces match (Typing, Semantic web, Standards)
- (2) Kontrollfluss matches (keine Deadlocks, Livelocks,...)
- (3) Semantik matches (Semantic Web, Standards)
- (4) Quality of Service matches

Problem 1: Compatibility

Geg: Services P, R

Ist P+R deadlock-frei bzw. livelock-frei?

Problem 2: Controllability

Geg.: Service P

Ex. einn R so dass P+R deadlock-frei bzw. livelock-frei?

Eigentlicher Wert: Partnersynthese

Charakterisiere alle R, für die P+R deadlock-frei bzw. livelock-frei!

Wertvolle Zutat: Synthesisierter Partner Eigentlicher Wert: Bedienungsanleitung

Problem 4: Exchangeability

Geg.: Services P, P'

Ist jeder Partner von P auch ein Partner von P'?
Wertvolles Werkzeug: Bedienungsanleitung

Problem 5: Runtime Exchangeability

Geg.: Services P, P'

Ex. → so dass P austauschbar ist mit P+P'+ →
Wertvolles Werkzeug: Bedienungsanleitung

Problem 6: Migration

Geg.: Service P und Zustand

Wie lange müsse Nachrichten an alte URI weitergeleitet werden an neue URI? Wertvolles Werkzeug: Petrinetz-Theor³⁷⁰

Problem 7: Public view

Geg.. service P

Finde ein kanonisches P' mit selben Partnern

Problem 8: Mediation/Adaptation

Geg.: Services P, R

Ex. ein Service A so, dass P+A+R deadlock-frei bzw. livelock-frei

Wertvolles Werkzeug: Partnersynthese

Eigentlicher Wert: Adapter A

Problem 9: Discovery

Geg.: Repository S, Service R

Enthält S einen zu R kompatiblen Service?

Wertvolle Werkzeuge: Bedienungsanleitung, Public Vie₩3

Problem 10: Composition

Geg.: Repository S, service R

Enthält **S** services, die zu einem mit R kompatiblen komponiert werden können? Wertvolles Werkzeug: Mediation

Variationen für viele Probleme

Sicherzustellende Eigenschaft

- -Deadlock freedom+ livelock freedom
- -Eventual termination

-...

Kommunikationsmodell

- -Asynchron
- -Synchron (oder gemischt)
- -Abhängigkeiten (leeres Formular vs. ausgefülltes Formular)

Zusätzliche Spezifikationen

- Verbiete/erzwinge Aktionen/Nachrichten

Variationen für viele Probleme

Natur der Ungebung

- -Zentral
- -Dezentral
- Autonom

Andere Aspekte

- -Transactionen
- -Policies
- -Fault Handling
- -Compensation

-...

Problem 1: Compatibility

Geg: Services P, R

Ist P+R deadlock-frei bzw. livelock-frei?

BPEL

- beschreibt EINE Service Orchestration
- ... oder einen EINZELNEN Service
- Verhalten der gerufenen Services' NICHT spezifiziert

BPEL4Chor

topology

behaviors

grounding

Beispiel

• Ein Reisenderer, ein Büro, mehrere Fluglinien

Was analysieren?

- "Klassische" Eigenschaften:
 - deadlock-freedom, livelock-freedom, no dead activities (a.k.a. Soundness)
- Nachrichten:
 - Kann jemals mehr als eine Nachricht auf einem Kanal liegen?
 - Min/Max Nachrichten bis zum Ende
- Verhalten:
 - Wird Request immer beantwortet?
 - Kann Teilnehmer Aktivität erzwingen/ausschließen?

Übersetzen BPEL4Chor → Petrinetze

um Instanziierung und Komposition

Result

Choreography can deadlock!

- Jeder Teilnehmer für sich ist korrekt (controllable, sound…)
- deadlock subtil!

Case Study

airline instances

	1	5	10	100	1000
places	20	63	113	1013	10013
transitions	10	41	76	706	7006
states 0	14	3483	9806583 -	exponenti al growth	
states 2	14	561	378096		
states 3	11	86	261	18061	1752867
states 4	11	30	50	410	4010

- complete/unreduced
- 2 symmetry reduction
- 9 partial order reduction
- symmetry reduction and partial order reduction
- out of memory (>2 GB)

Problem 2: Controllability

Geg.: Service P

Ex. einn R so dass P+R deadlock-frei bzw. livelock-frei?

Eigentlicher Wert: Partnersynthese

Operating Guidelines for Finite-State Service

Karsten Wolf
Institut für Informatik
Universität Rostock

Niels Lohmann, Peter Massuthe Institut für Informatik Humboldt-Universität zu Berlin

Service

Getränkeautomat

Service

Kunde

Verhalten eines einzelnen Service

Service automaton

Konstruktion endlich wg. k-limit

Kanonizoität von R*

 Jeder deadlock-freie und k-limitierte Partner hat eine Simulationsrelation zu R* (alles, was der andere kann, kann R* auch)

Charakterisiere alle R, für die P+R deadlock-frei bzw. livelock-frei!

Wertvolle Zutat: Synthesisierter Partner Eigentlicher Wert: Bedienungsanleitung

Bedienungsanleitung

= R* + Annotationen

Annotation = Boolesche Kodierung von "no deadlocks here"

Resulte

Tool: FIONA

Service	Р	Т	States in OG	Time (s)
Purchase Order	38	23	168	0
Loan Approval	48	35	7	0
Olive Oil Ordering	21	15	14	0
Help Desk Service	33	28	8	2
Travel Service	517	534	320	7
Database Service	871	851	54	7583
Identity card service	149	114	280	216
Registration office	187	148	7	0
SMTP	206	215	362	200

Matching

= Simulationsrelation to R* und Erfüllung der Annotationen

Problem 4: Exchangeability

Geg.: Services P, P'

Ist jeder Partner von P auch ein Partner von P'?
Wertvolles Werkzeug: Bedienungsanleitung

-oWFN
-weakly sound
-Leeres Interface

Limit Ltd.
Corpus Corp.
Park Bank

Contract→Public View

Limit Ltd.

Park Bank

Public view → Private view

Park Bank

Private views -> Tatsächliches System

Ziel: System weakly sound (= weakly terminating),

Kriterien lokal zu jeder Transformation public private

Lösung

Kriterium: Strat(Public view) ⊆ Strat(Private View)

Beweis: Wissen: Pu₁⊕Pu₂⊕... ⊕Pun ist weakly sound

- \rightarrow Pu₂ \oplus ... \oplus Pu_n \in Strat(Pu₁)
- \rightarrow Pu₂ \oplus ... \oplus Pu_n \in Strat(Pr₁)
- \rightarrow Pr₁ \oplus Pu₂ \oplus ... \oplus Pu_n ist weakly sound
- \rightarrow Pr₁ \oplus Pu₃ \oplus ... \oplus Pu_n \in Strat(Pu₂)
- $\rightarrow Pr_1 \oplus Pu_3 \oplus ... \oplus Pu_n \in Strat(Pr_2)$
- \rightarrow Pr₁ \oplus Pr₂ \oplus Pu₃ \oplus ... \oplus Pu_n ist weakly sound
- **→** ...
- \rightarrow Pr₁ \oplus Pr₂ \oplus ... \oplus Pr_n ist weakly sound

Implementation

Strat(Public view) ⊆ Strat(Private View)

gdw OG(Public View) kann so in OG(Private View) eingebettet werden, dass Annotationen sich gegenseitig implizieren

Problem 7: Public view

Geg.. service P

Finde ein kanonisches P' mit selben Partnern

Lösungsvorschlag: Rückübersetzung aus Bedienungsanlestung

Problem 8: Mediation/Adaptation

Geg.: Services P, R

Ex. ein Service A so, dass P+A+R deadlock-frei bzw. livelock-frei

Wertvolles Werkzeug: Partnersynthese

Eigentlicher Wert: Adapter A

Wozu Adapter?

Zur Überbrückung semantischer Unstimmigkeiten

Wozu Adapter?

• Zur Überbrückung von Verhaltensunstimmigkeiten

Spezifikation elementarer Aktivititäten (SEA)

create a	→ a
copy a	a → a,a
delete a	a →
transform a into b	$a \rightarrow b$
split a into b,c,d	a → b,c,d
merge a,b,c into d	$a,b,c \rightarrow d$
recombine a,b,c to d,e,f	$a,b,c \rightarrow d,e,f$

Beispiel

Adaptersynthese I - Respektiere SEA

DEuro → MEuro

→ MCoffeeButton

→ MTeaButton

MServedCoffee → DServedCoffee

Adaptersynthese II: Partnersynthese

Adaptersynthese– Resultat

Pros und Cons

- ✓ Synthese eines liberalsten Adapters
- ☑ können semantische Werkzeuge über SEA importieren

Viele Regeln, große Interfaces → Laufzeit noch zu groß

- Teil 1: Geschäftsprozesse (geschlossene Systeme)
- Teil 2: Services (offene Systeme)
- Modellierung mit prozessorientierten Sprachen
 - typische Konstrukte: Aktivitäten, Sequenz, Parallele Ausführung, Splits & Joins (AND,OR,XOR)
 - Ressourcen spielen wichtige Rolle
 - semiformal bis formal

- Modellierung gestattet
 - (semi)automatische Ausführung
 - Analyse
 - Dokumentation
 - Verbesserung und Veränderung
 - Synthese
 - auf fundierter Grundlage

- Analyse
 - qualitativ: z.B. Soundness (Geschäftsprozesse)
 oder Controllability (Services)
 - Methoden: Zustandsraumbasiert oder strukturell
 - quantitativ (Dauern, Zeitfenster oder stochastisch)

- Synthese
 - Process Mining
 - Partner-, Adaptersynthese

 Fazit: (z.T.) theoretisch fundierte Methoden produktiv einsetzbar in praktisch relevantem Kontext