Theoretical Studies on *Ab Initio* Models for O-H-O Hydrogen Bonds

Advisor: Prof. Yuan-Chung Cheng

Speaker: De-Wei Ye

August 4, 2016

Outline

- Introduction
 - McKenzie's 1D Model

- 2 Ab Initio Model
 - PES
 - Atomic Charges
- Summary

IR Frequencies vs. O-O Distance

There is a relationship in the O-O distance and the O-H-O asymmetric stretching frequencies.¹

¹Gilli, G.; Gilli, P. J. Mol. Struct. **2000**, 552, 1–15.

A Two-Morse-Potential Model

Hamiltonian describing the two interacting diabatic state is:2,3

$$H = \begin{pmatrix} V_D(r) & \Delta_{DA}(R,\phi) \\ \Delta_{DA}(R,\phi) & V_A(r^*) \end{pmatrix}$$
 (1)

where *V* is the Morse potential for the 2 O-H bonds:

$$V_i(r) = D_i \Big(\exp\big(-2a_i(r - r_{0i}) \big) - 2\exp\big(-a_i(r - r_{0i}) \big) \Big)$$
 (2)

The coupling term:

$$\Delta_{DA}(R,\phi) = \Delta_0 \cos(\phi) \cos(\phi^*) \exp(-bR)$$
 (3)

 ϕ and ϕ^* : the two O-O-H angles respectively. Two fitting parameters: Δ_0 and b.

²McKenzie, R. H. Chem. Phys. Lett. **2012**, 535, 196–200.

³McKenzie, R. H.; Bekker, C.; Athokpam, B.; Ramesh, S. G. J. Chem. Phys. **2014**, 140, 174508.

Adiabatic Potential

$$V_{\pm}(r,R) = \frac{1}{2}(V_D(r) + V_A(R-r)) \pm \frac{1}{2} \left((V_D(R) - V_A(R-r))^2 + 4\Delta_{DA}(R)^2 \right)^{\frac{1}{2}} \enskip (4)$$

where the H displacement is r - R/2

Use the lower eigenvalue as electronic effective PES to solve the proton motion on the O-O axis:

$$\left(-\frac{\hbar^2}{2M}\frac{d^2}{dr^2} + V_{-}(r,R)\right)\Psi_n(r) = E_n\Psi_n(r)$$
 (5)

O-H Stretching vs. IR Experimental Data

- Repeat the calculation for R form 2.4 Å to 2.9 Å.
- Use the ΔE of states with different parity (+ even, odd) to simulate the absorption frequency.

• Compare with the experimental data from various O-H-O hydrogen

Ab Initio Model

• Optimized structure:

System	O-O distance	O-H distance	O-H distance	νOHO_{asym}
$H_5O_2^+$	2.40	1.20	1.20	10024
H_4O_2	2.92	1.95	0.97	37555

De-Wei Ye (NTU) Ab Initio Model PES August 4, 2016

7/16

⁴Roscioli, J. R.; McCunn, L. R.; Johnson, M. A. Science **2007**, 316, 249–254.

⁵Mineo, H.; Niu, Y. L.; Kuo, J. L.; Lin, S. H.; Fujimura, Y. *J. Chem. Phys.* **2015**, *143*, 084303.

PES Scan

- G09 program
- Relaxed Scan:
 - Fix the O-O distance as 2.4, 2.5, 2.7, 2.9 Å respectively.
 - Move the H atom within the O-H-O bond and perform partial geometry optimization to obtain the optimized geometries via DFT methods (ωB97X-D/Aug-cc-pVTZ).
 - **1** Use **CCSD(T)/Aug-cc-pVTZ** to calculate energetic properties.

Solve Schrödinger Equations on *Ab Initio* PES (H₅O₂⁺)

- —Eigenenergy
- —Even eigenstate
- —Odd eigenstate

Solve Schrödinger Equations on *Ab Initio* PES (H₄O₂)

- —Eigenenergy
- —Even eigenstate
- —Odd eigenstate

Spectrum of *Ab Initio* Model $(H_5O_2^+ \text{ and } H_4O_2)$

It is probably that including charges into the effective potential model will be a way to find a better and physically acceptable potential model.

Idea

- Add 1 electron into the O-H-O hydrogen bond, and analyze where the charge will move to.
- Compare different optimized structure with different O-O distance to observe the move of charge.
- Method and basis set: ω B97X-D/6-31+G(d,p), ESP charges.

Add 1 Electron to the O-H-O Hydrogen Bond

Model	1	2	3	4	5	6	7	sum 126	sum 26
H ₅ O ₂ ⁺	-0.67	-0.67	0.46	0.49	0.45	0.49	0.46	-0.89	-0.22
H_4O_2	-0.76	-0.80	0.39	0.38	0.39	0.39	none	-1.17	-0.41
difference	-0.09	-0.13	-0.06	-0.11	-0.06	-0.10	-0.46	-0.28	-0.19

Different Functional Groups

R = hydrocarbyl, phenyl, halogen, halocarbon, carboxyl

Atomic Charges in Different Kinds of HBs

• 2 or more substitutions

Summary

- Atomic charges in different O-H-O hydrogen bonds and O-O distance are almost independence.
- More attempts is needed to find a better and physically acceptable potential model.