

Trigonometry

> Trigonometric values of different angles

Angles (In Degrees)	0°	30°	45°	60°	90°	180°	270°	360°
Angles (In Radians)	0°	π/6	π/4	$\pi/3$	π/2	π	$3\pi/2$	2π
sin	0	1/2	1/√2	$\sqrt{3/2}$	1	0	-1	0
cos	1	$\sqrt{3/2}$	1/√2	1/2	0	-1	0	1
tan	0	1/√3	1	√3	∞	0	∞	0
cot	∞	√3	1	1/√3	0	∞	0	∞
csc	∞	2	$\sqrt{2}$	2/√3	1	∞	-1	∞
sec	1	2/√3	$\sqrt{2}$	2	∞	-1	∞	1

> Periodicity Identities (in Radians)

- $\sin (\pi/2 A) = \cos A \& \cos (\pi/2 A) = \sin A$
- $\sin (\pi/2 + A) = \cos A \& \cos (\pi/2 + A) = -\sin A$
- $\sin (3\pi/2 A) = -\cos A \& \cos (3\pi/2 A) = -\sin A$
- $\sin (3\pi/2 + A) = -\cos A \& \cos (3\pi/2 + A) = \sin A$
- $\sin (\pi A) = \sin A \& \cos (\pi A) = -\cos A$
- $\sin (\pi + A) = -\sin A \& \cos (\pi + A) = -\cos A$
- $\sin(2\pi A) = -\sin A \& \cos(2\pi A) = \cos A$
- $\sin (2\pi + A) = \sin A \& \cos (2\pi + A) = \cos A$

> Sum & Difference Identities

- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
- cos(x+y) = cos(x)cos(y) sin(x)sin(y)
- $tan(x+y) = (tan x + tan y)/(1-tan x \cdot tan y)$
- $\sin(x-y) = \sin(x)\cos(y) \cos(x)\sin(y)$
- cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
- tan(x-y) = (tan x-tan y)/(1+tan x tan y)

Double Angle Identities

•
$$\sin(2x) = 2\sin(x) \cdot \cos(x) = [2\tan x/(1+\tan^2 x)]$$

•
$$\cos(2x) = \cos^2(x) - \sin^2(x) = [(1 - \tan^2 x)/(1 + \tan^2 x)]$$

•
$$\cos(2x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

•
$$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$$

•
$$\sec(2x) = \sec^2 x/(2-\sec^2 x)$$

•
$$\csc(2x) = (\sec x \cdot \csc x)/2$$

> Triple Angle Identities

• Sin
$$3x = 3\sin x - 4\sin^3 x$$

•
$$\cos 3x = 4\cos^3 x - 3\cos x$$

• Tan
$$3x = [3\tan x - \tan^3 x]/[1-3\tan^2 x]$$

> Product identities

- $\sin x \cdot \cos y = (\sin(x+y) + \sin(x-y))/2$
- $\cos x \cdot \cos y = (\cos(x+y) + \cos(x-y)/2$
- $\sin x \cdot \sin y = (\cos(x-y) \cos(x+y))/2$

Sum to Product Identities

- $\sin x + \sin y = 2\sin(x+y/2)\cos(x-y/2)$
- $\sin x \sin y = 2\cos(x+y/2)\sin(x-y/2)$
- $\cos x + \cos y = 2\cos(x + y/2)\cos(x y/2)$
- $\bullet \quad \cos x \cos y = -2\sin(x+y/2)\sin(x-y/2)$

> Inverse Trigonometry Formulas

•
$$\sin^{-1}(-x) = -\sin^{-1}x$$

•
$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

•
$$tan^{-1}(-x) = -tan^{-1}x$$

•
$$\csc^{-1}(-x) = -\csc^{-1}x$$

•
$$\sec^{-1}(-x) = \pi - \sec^{-1}x$$

•
$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

Practice Questions

1. Minimum value of $5 \sin^2 \emptyset + 4 \cos^2 \emptyset$

a)1

b)2

c)3

d)4

2. If $\sin (A-B) = \frac{1}{2}$ and $\cos(A+B) = \frac{1}{2}$, where A & B are positive acute angles then

a) $A = 45^{\circ}$, $B = 15^{\circ}$

b) $A=15^{\circ}$, $B=45^{\circ}$ c) $A=60^{\circ}$, $B=15^{\circ}$

3. If $\tan A + \cot A = 4 \tanh \tan^4 A + \cot^4 A$ is equal to

a) 110

b) 191

c) 80

d) 194

4. If A > 0, B > 0 and A + B =, then the minimum value of tan $A + \tan B$

a) $\sqrt{3} - \sqrt{2}$

b) $4 - 2\sqrt{3}$

c) 2 - $\sqrt{3}$

d) none

5. If $\tan x = -3/4$ and $3\pi/2 < x < 2\pi$, then the value of $\sin 2x$ is

a)7/25

b)-7/25

c)24/25

d)-24/25

6. If $\cos\theta = 4/5$ and $\cos\phi = 12/13$, θ and ϕ both in the fourth quadrant, the value of $\cos(\theta + \phi)$ is

a)-16/65

b)-33/65

c)33/65

d)16/65

7. Express $(\cos 5x - \cos 7x)$ as a product of sines or cosines or sines and cosines,

a)2 cos4x cos x

b)2sin4x sinx

c)2 sin6x sin x

d)2 cos 6x cosx

8. The value of is $\tan (45 + A/2)$

a) tan A- sec A

b) tan A +sec A

c) cot A –sec A

d) cot A +sec A

9. The value of $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}$ is

a) ½

b) 1/4

c) 3/4

d) 1/8

10. $\sin 15^{\circ} + \cos 105^{\circ} =$

a) 2 sin 15°

b) $\cos 15^{\circ} + \sin 15^{\circ}$ c) 0

d) $\sin 15^{\circ} - \cos 15^{\circ}$

11. $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos 180^{\circ} =$

a) 0

- b) -1
- c) 2

d) 1

12. If $\tan A = 1/2$ and $\tan B = 1/3$ then value of A+B

- a) 45
- b) 60
- c) 30

d) 90

13. If $\sin x + \sin^2 x = 1$, then the value of $\cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x - 2$ is equal to (14)

- a) 0
- b) 2

- c) -1
- d) 1

14. $tan^2 A + cot^2 A$ is equal to (60)

- $a) \ge 2$
- $b) \leq 2$
- c)) ≥ -2
- d) none

15. Value of x for maximum value of x $(\sqrt{3} \sin x + \cos x)(67)$

- a) 30
- b) 45
- c) 60
- d) 90

16. If $f(x) = \cos^2 x + \sec^2 x$ then (99)

- a) f(x) < 1
- b) f(x)=1
- c) 1 < f(x) < 2
- d) $f(x) \ge 2$

17. The minimum value of $3\cos^2 x + 2\sin^2 x$ is ?

- a) 0
- b) 3
- c) 2
- d) in a ture

18. The value $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \dots \cos 179^{\circ}$ is ?

a) 0

- b) 1/2
- c) 1

d) 1/4

19. $\sin A = 0.7 \text{ then } \cos A$, 0 < A < 90 is

- a) 0.3
- b) 0.7
- c) $\sqrt{0.51}$
- d) $\sqrt{0.9}$

20. If $\tan \theta + \cot \theta = 5$ then $\tan^2 \theta + \cot^2 \theta$ is

- a) 23
- b) 24
- c) 25
- d) 26

21. If x, y are acute angles, 0 < x+y < 90 and $\sin(2x-20) = \cos(2y+20)$ then the value of $\tan(x+y)$ is

a) 1

- b) 0.5
- c) 1.732
- d) 0.866

a) ½

b) 1/3

c)3

d)2

23. If cot $\{(\pi/2) - \theta\} = \sqrt{3}$ then the value of cos θ is

a) 0

b) 1/2

c) 1

d) ∞

24. The value of (sin 300° tan 330° sec 420° / cot 135° cos 210° cosec 315°) is :

a) $(\sqrt{3}/2)$

b) $-(\sqrt{3}/2)$

c) (2/3)

d) $-\sqrt{(2/3)}$

25. If $\tan\Theta + \cot\Theta = 16$, then find the ratio of $\tan^2\Theta + \cot^2\Theta$ to $\tan^2\Theta + \cot^2\Theta + \cot^2\Theta + \cot^2\Theta$

a) 64:65

b) 129:137

c) 27:29

d) 127:137

26. If $7 \sin^2 \theta + 3 \cos^2 \theta = 4$ and $0 \le \theta \le (\pi/2)$, then the value of $\tan \theta$ is:

a) $\sqrt{(3/7)}$

b) $\sqrt{(2/7)}$

c) $1/\sqrt{3}$

d) $1/\sqrt{7}$

27. If $\cos\Theta + \sec\Theta = 2$, then the value of $\cos^{68}\Theta + \sec^{68}\Theta$ equal to

a)2

b)2

c)3

d)68

28. Find the value of $(\cos 60^{\circ} / \sin 30^{\circ}) + (\cos 65^{\circ} \cdot \csc 25^{\circ} / \tan 10^{\circ} \cdot \tan 30^{\circ} \cdot \tan 45^{\circ} \cdot \tan 60^{\circ})$

a)1

b)-1

c)0

d)2

29. The value of cot $(2\pi / 20)$. cot $(4\pi / 20)$. cot $(5\pi / 20)$. cot $(6\pi / 20)$. cot $(8\pi / 20)$ is

a) 2

b) 0

c) 1

d) 3

30. The least value of $9 \csc^2 A + 16 \sin^2 A$ is

a)7

b)24

c)25

d)14

> Solutions:

1. Let
$$f(x) = 5\sin^2 x + 4\cos^2 x = 4 + \sin^2 x$$

Thus
$$f(x) \ge 4 + 0$$

$$\therefore$$
 Minimum value of $f(x) = 4$ (as $\sin^2 x \ge 0$)

2. Short cut: In such examples, substitute values from the options to check which one satisfy the condition Here A= 45 and B=15 satisfy both conditions.

Also
$$\sin (A-B) = 1/2 = \sin 30 => A-B = 30....i$$

and cos (A-B) =
$$\frac{1}{2}$$
 = > A+B = 60....ii)

Solving for the two equations i) & ii) A=45 and B=15

3. $\tan A + \cot A = 4$

$$\Rightarrow$$
 tan²A +cot ²A +2 tan A cot A= 16

$$\Rightarrow$$
 tan²A +cot ²A = 14

$$\Rightarrow \tan^4 A + \cot^4 A + 2 = 196$$

$$\Rightarrow$$
 tan²A +cot ²A= 194

4. Solution : On differentiating

$$x = \tan A + \tan(\pi/6 - A)$$

we get :

$$dx/dA = sec^2A - sec^2(\pi/6 - A)$$

now putting dx/dA=0

we get

$$\cos^2(A) = \cos^2(\pi/6-A) \text{ so } 0 \le A \le \pi/6$$

therefore

 $A=\pi/6$ -A from here we get $A=\pi/12=B$

so minimum value of that function is

 $2\tan \pi/12$ which is equal to $2(2-\sqrt{3})$

5. Solution

Given that
$$\tan x = \frac{-3}{4}$$
 and $\frac{3\pi}{2} < x < 2\pi$

means \boldsymbol{x} lies in fourth quadrant

Then
$$\sin x = -\frac{3}{5}$$
 and $\cos x = \frac{4}{5}$

Now $\sin 2x = 2 \sin x \cdot \cos x$

$$\sin 2x = -2 \times \frac{3}{5} \times \frac{4}{5}$$

$$\sin 2x = \frac{-24}{25}$$

6.

Given that
$$cos\theta=\frac{4}{5},cos\phi\frac{12}{13}$$
 Given than $\theta,$ and ϕ both lies in fourth quadrant then

$$\begin{split} &\sin\theta = \frac{-3}{5} \text{ and } \sin\varphi = \frac{-5}{13} \\ &\text{Now, } \cos\left(\theta + \phi\right) = \cos\theta \cos\varphi - \sin\theta \sin\varphi \\ &= \frac{4}{5} \times \frac{12}{13} - \left(\frac{-3}{5}\right) \left(\frac{-5}{13}\right) \end{split}$$

$$=\frac{4}{5} \times \frac{12}{13} - \left(\frac{-3}{5}\right) \left(\frac{-5}{13}\right)$$

$$=\frac{48}{65} - \frac{15}{65} = \frac{33}{65}$$

7.

$$\cos C - \cos D = 2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{D-C}{2}\right)$$

$$\therefore \cos 5x - \cos 7x = 2 \sin \left(\frac{5x + 7x}{2}\right) \sin \left(\frac{7x - 5x}{2}\right)$$

 $= 2 \sin 6x \sin x$

$$\frac{1+tan\frac{A}{2}}{1-tan\frac{A}{2}}$$

$$\frac{1 + \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}}{1 - \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}}$$

$$=\frac{\cos\frac{A}{2}+\sin\frac{A}{2}}{\cos\frac{A}{2}-\sin\frac{A}{2}}$$

$$=\frac{(\cos\frac{A}{2}+\sin\frac{A}{2})^2}{\cos^2\frac{A}{2}-\sin^2\frac{A}{2}}$$

$$=\frac{\cos^2\frac{A}{2}+\sin^2\frac{A}{2}+2\cos\frac{A}{2}\sin\frac{A}{2}}{\cos A}$$

$$=\frac{1+sinA}{cosA}$$
 $=\frac{1}{cosA}+\frac{sinA}{cosA}$ $=secA+tanA$

9.

```
\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}
= \sin 10^{\circ} \cos (90^{\circ} - 50^{\circ}) \cos (90^{\circ} - 70^{\circ}).
= 2\sin 10^{\circ} \cos 10^{\circ} \cos 40^{\circ} \cos 20^{\circ} / 2\cos 10^{\circ}
= 2\sin 20^{\circ} \cos 20^{\circ} \cos 40 / 4 \cos 10^{\circ}
= 2\sin 40^{\circ} \cos 40 / 8 \cos 10^{\circ}
= \sin 80 / 8 \cos 10
= \cos 10 / 8\cos 10
= 1 / 8.
```

10. As
$$\cos (90+A) = -\sin A$$

Thus $\sin 15 + \cos 105 = \sin A + \cos (90+15)$
 $\Rightarrow \sin 15 - \sin 15$
 $\Rightarrow 0$

The Career Signature

12.
$$tan (A+B) = (tan A + tan B) / (1 - tan A .tan B)$$

= $(\frac{1}{2} + \frac{1}{3}) / (1 - \frac{1}{2} .\frac{1}{3})$
= $\frac{5}{6} / \frac{5}{6}$
= $1 = A + B = 45$

13.
$$\sin x + \sin^2 x = 1$$
, then the value of $\cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x - 2$?
 $\sin x + \sin^2 x = 1 = \sin x = 1 - \sin^2 x = \cos^2 x$
 $\therefore \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x - 2$
 $=> \sin^6 x + 3 \sin^5 x + 3 \sin^4 x + \sin^3 x - 2$
 $=> (\sin^2 x)^3 + 3 (\sin^2 x)^2 * \sin x + 3 (\sin^2 x) * \sin x^2 + \sin^3 x - 2$
 $=> (\sin^2 x + \sin x)^3 - 2$
 $=> 1 - 2 \quad \text{as } \sin x + \sin^2 x = 1$
 $=> -1$

14. As(
$$x - \frac{1}{x}$$
)² = $x^2 + (\frac{1}{x})^2 - 2 \ge 0$ Put $x = \tan A$ in this equation
Thus $\tan^2 A + \cot^2 A - 2 \ge 0$
 $\tan^2 A + \cot^2 A \ge 2$

15.
$$x(\sqrt{3}\sin x + \cos x)$$
 the maximum value of equation is 2 as $\sqrt{(3) + 1} = 2$.
It will be obviously at $x = 60$

- 16. Same as example no 14.
- 17. Answer: Option C

Solution:

Let
$$x = 2\sin^2\theta + 3\cos^2\theta$$

$$\Rightarrow$$
 x = $2\sin^2\theta + 2\cos^2\theta + \cos^2\theta$

$$\Rightarrow$$
 x = $2(\sin^2\theta + \cos^2\theta) + \cos^2\theta$

$$\Rightarrow$$
 x = 2 + $\cos^2\theta$ [since $\sin^2\theta + \cos^2\theta = 1$]

Therefore x will be the minimum when $\cos\theta = 0$. i.e. minimum value of x will 2

Alternative Solution:

$$2\sin^2\theta + 3\cos^2\theta$$

Minimum value is 2,

[If $x \sin^2 \theta + y \cos^2 \theta$, If x > y, then x will be always maximum value and y is minimum if y > x, vice versa will happen]

areer Signature

$$=\cos 90^{\circ}$$

$$= 0[0 \text{ will make whole series } 0]$$

= 0

19. Answer: Option C

Solution:

$$\sin\theta = 0.7 \Rightarrow \sin 2\theta + \cos 2\theta = 1 \Rightarrow (0.7)2 + \cos 2\theta = 1 \Rightarrow 0.49 + \cos 2\theta = 1 \Rightarrow \cos 2\theta = 1 - 0.49 \Rightarrow \cos \theta = \sqrt{0.51}$$

20. Answer: Option A

Solution:

Given, $\tan\theta + \cot\theta = 5 \Rightarrow \tan\theta + \cot\theta = 5 \Rightarrow (\tan\theta + \cot\theta)^2 = 5^2$ (Squaring both sides)

 \Rightarrow tan2 θ +cot2 θ +2tan θ cot θ =25

 $\Rightarrow \tan 2\theta + \cot 2\theta = 25 - 2[\because \tan \theta . \cot \theta = 1]$

 $\Rightarrow \tan 2\theta + \cot 2\theta = 23$

21. Answer: Option D

Solution:

$$\sin(2x-20\circ)=\cos(2y+20\circ)\Rightarrow(2x-20\circ)+(2y+20\circ)=90\circ$$

[If $\sin A = \cos B$, then $A+B=90\circ$]

 \Rightarrow 2(x+y)=90 \Rightarrow x+y=45 \circ :tan(x+y)=tan45 \circ =1

22. Dividing numerator and denominator by $\sin \theta$

$$\Rightarrow \left[\left\{ (2\sin\theta - \cos\theta) / \sin\theta \right\} / \left\{ (\cos\theta + \sin\theta) / \sin\theta \right\} \right] = 1$$

$$\Rightarrow \{(2 - \cot \theta) / (1 + \cot \theta)\} = 1$$

$$\Rightarrow$$
 2 cot $\theta = 1 + \cot \theta$

$$\Rightarrow$$
 cot $\theta = 1 / 2$

23. $\cot \{(\pi/2) - \theta\} = \sqrt{3}$ are er Signature

$$\Rightarrow \tan \theta = \sqrt{3}$$

$$[\because \cot \{(\pi/2) - \theta\} = \tan \theta]$$

$$\therefore \theta = 60^{\circ}$$

Hence, $\cos 60^{\circ} = 1/2$.

 $24. = \left[\left\{ \sin \left(360^{\circ} - 60^{\circ} \right) \tan \left(360^{\circ} - 30^{\circ} \right) \sec \left(360^{\circ} + 60^{\circ} \right) \right\} / \left\{ \cot \left(180^{\circ} - 45^{\circ} \right) \cos \left(180^{\circ} + 30^{\circ} \right) \csc \left(360^{\circ} + 10^{\circ} \right) \right\}$ 45°)}]

 $= \{(-\sin 60^{\circ}) (-\tan 30^{\circ}) (\sec 60^{\circ})\} / \{(-\cot 45^{\circ}) (-\cos 30^{\circ}) (-\csc 45^{\circ})\}$

 $= - \left[\left\{ (\sqrt{3}) / 2 \times 1 / (\sqrt{3}) \times 2 \right\} / \left\{ 1 \times (\sqrt{3}) / 2 \times \sqrt{2} \right\} \right] = -\sqrt{(2/3)}$

25. Given,
$$\tan\Theta + \cot\Theta = 16$$

Squaring both sides, we get $\tan^2\Theta + 2\tan\Theta \cdot \cot\Theta + \cot^2\Theta = 256$
or, $\tan^2\Theta + \cot^2\Theta = 256 - 2$
 $\tan^2\Theta + \cot^2\Theta = 254$
Now, $\tan^2\Theta + \cot^2\Theta + 20\tan\Theta \cdot \cot\Theta$
 $= (\tan^2\theta + \cot^2\theta + 20\tan\theta \times (1 / \tan\theta))$
 $= 254 + 20 = 274$

26.
$$7 \sin^2 \Theta + 3 \cos^2 = 4$$

 $\Rightarrow 7 \sin^2 \Theta + 3(1 - \sin^2 \Theta) = 4 \Rightarrow \sin^2 \Theta = 1/4$, so, $\sin \Theta = (1/2)$
 $\therefore \cos \Theta = \sqrt{(1 - \sin^2 \Theta)} = \sqrt{(1 - 1/4)} = (\sqrt{3} / 2)$
 $\therefore \tan \Theta = \sin \Theta / \cos \Theta = (1 / 2 \times 2\sqrt{3}) = 1/\sqrt{3}$

 \therefore Reqd. ratio= (254 / 274) = (127 / 137) = 127 : 137

$27. \cos\Theta + \sec\Theta = 2$

```
or, \cos^2\Theta + 1 = 2\cos\Theta

or, \cos^2\Theta - 2\cos\Theta + 1 = 0

or, (\cos\Theta - 1)^2 = 0

\therefore \cos\Theta = 1

\therefore \sec\theta = 1/\cos\theta = 1

Now, \cos^{68}\Theta + \sec^{68}\Theta = 1 + 1 = 2
```

or, $\cos\theta + 1/\cos\theta = 2$

$$28. \left(\cos 60^{\circ} / \sin 30^{\circ}\right) + \left(\cos 65^{\circ} \cdot \csc 25^{\circ} / \tan 10^{\circ} \cdot \tan 30^{\circ} \cdot \tan 45^{\circ} \cdot \tan 60^{\circ} \cdot \tan 80^{\circ}\right) \\ \left\{\cos \left(90^{\circ} - 30^{\circ}\right) / \sin 30^{\circ}\right\} + \left\{\cos 65^{\circ} \cdot \csc \left(90^{\circ} - 65^{\circ}\right) / \tan 10^{\circ} \cdot \tan 30^{\circ} \cdot \tan 45^{\circ} \cdot \cot 30^{\circ}\right\} \\ \left(\sin 30^{\circ} / \sin 30^{\circ}\right) + \left(\cos 65^{\circ} \cdot \sec 65^{\circ} / \tan 10^{\circ} \cdot \tan 30^{\circ} \cdot \tan 45^{\circ} \cdot \cot 30^{\circ} \cdot \cot 10^{\circ}\right) \\ = 1 + \left\{\cos 65 \left(1 / \cos 65^{\circ}\right) / \tan 10^{\circ} \cdot \tan 30^{\circ} \cdot \tan 45^{\circ} \cdot \cot 30^{\circ} \cdot \cot 10^{\circ}\right\} \\ = 1 + 1/2 = 2$$

- 29. **Given expression:** $\cot (2\pi / 20) \cdot \cot (4\pi / 20) \cdot \cot (5\pi / 20) \cdot \cot (6\pi / 20) \cdot \cot (8\pi / 20)$ $= \cot (\pi / 10) \cdot \cot (\pi / 5) \cdot \cot (\pi / 4) \cdot \cot (3\pi / 10) \cdot \cot (2\pi / 5)$ $= \cot (180^{\circ} / 10) \cdot \cot (180^{\circ} / 5) \cdot \cot (180^{\circ} / 4) \cdot \cot \{(3 \times 180^{\circ}) / 10\} \cdot \cot \{(2 \times 180^{\circ}) / 5\}$ $= \cot 18^{\circ} \cdot \cot 36^{\circ} \cdot \cot 45^{\circ} \cdot \cot 54^{\circ} \cdot \cot 72^{\circ}$ [we know that (18, 72) and (36, 54) are complementary angles, so $\cot (90^{\circ} \Theta) = \tan \Theta$ or, $\cot 54^{\circ} = \tan (90^{\circ} 54) = \tan 36^{\circ}$] $= (1 / \tan 18^{\circ}) \times (1 / \tan 36^{\circ}) \times \cot 45^{\circ} \cdot \tan 36^{\circ} \cdot \tan 18^{\circ}$ $\Rightarrow \cot 45^{\circ} = 1$
- 30. $9 \csc^2 A + 16 \sin^2 A$ = $(9 / \sin^2 A) + 16 \sin^2 A$ = $(3 / \sin A)^2 + (4 \sin A)^2$ [$\because a^2 + b^2 = (a - b)^2 + 2ab$] Let $a = (3 / \sin A), b = 4 \sin A$ = $\{(3 / \sin A) - 4\sin A\}^2 + 2 \times (3 / \sin A) \times 4 \sin A$ = $\{(3 - 4 \sin^2 A) / \sin A\}^2 + 24$ for the least value of $\{(3 - 4\sin^2 A) / \sin A\}$ should be 0.
 - ∴ The least value will be 24.

The Career Signature