Table 1: Mathematical Symbols and Their Usage

Symbol	Name	Description	Example
{ }	set	used to define a set	$S = \{1, 2, 3, 4, \ldots\}$
E	in, element of	used to denote that an element is	$1 \in \{1, 2, 3\}$
		part of a set	
∉	not in, not an element of	used to denote than an element	$4 \not\in \{1,2,3\}$
—S—	cardinality	is not part of a set used to describe the size of a set	$S = \{1, 2, 2, 2, 3, 4, 5, 5\}, S = 5$
5 ·	such that	used to denote a condition	$\{x^2: x+3 \text{ is prime}\}\$
·, , , _	subset	set A is a subset of set B when	$A = \{1, 2\}, B = \{2, 1, 4, 3, 5\},$
_		each element in A is also in B	$A \subseteq B$
\subset	proper subset	set A is a proper subset of set B when each element in A is in B	$A = \{1, 2, 3, 4, 5\}, B = \{2, 1, 4, 3, 5\}$
		and $A \neq B$	
\supseteq	superset	set A is a superset of set B when	$A = \{2, 4, 6, 7, 8\}, B = \{2, 4, 8\},$
		B is a subset of A	$A\supseteq B$
U	union	a set with elements in set A or in set B	$A = \{1, 2\}, B = \{2, 3, 5\}, A \cup B = \{1, 2, 3, 5\}$
\cap	intersection	a set with elements in set A and	$A = \{1, 2\}, B = \{2, 3, 5\}, A \cap$
Ø	empty set	in set B the set with no elements	$B = \{2\} $ $\{1, 2, 3\} \cap \{4, 5, 6\} = \emptyset$
\	set difference	elements in set A that are not in	$A = \{1, 2, 3, 4\}, B = \{2, 3, 5, 8\},$
\		B	$A \setminus B = \{1, 4\}$
×	Cartesian product	all possible combinations of elements from A and B	$A = \{1, 2\}, B = \{3, 4\}, A \times B = \{(1, 3), (2, 3), (1, 4), (2, 4)\}$
A^c	complement	elements of universe U not in set	$U = \{1, 2, 3, 4, 5\}, A = \{2, 4\},$
$f: A \to B$	function	A maps elements of set A to set B	$A^c = \{1, 3, 5\}$ $f(x) = x^2 + 5 \text{ is } f : \mathbb{R} \to \mathbb{R}$
$f: X \mapsto x^3$	mapping	maps any x to x^3	$f(x) = x + 5 \text{ is } f \cdot x = 7 \text{ is}$ $f: x \mapsto x^2 + 5$
N	natural numbers	set of natural numbers starting at 1	$\mathbb{N} = \{1, 2, 3, \ldots\}$
N_0	whole numbers	set of whole numbers starting at 0	$\mathbb{N}_0 = \{0,1,2,3,\ldots\}$
Z	integers	whole numbers with their nega-	\mathbb{Z} =
	-	tives	$\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
Q	rational numbers	all $\frac{p}{q}$ where $p, q \in \mathbb{Z}, q \neq 0$	$\{\frac{1}{2}, \frac{5}{14}, \frac{-17}{3}\} \subset \mathbb{Q}$
\wedge	conjunction	$P \wedge Q$ true if both P, Q true	P = (2 is prime), Q =
\	1:_:	DV 0 + if -41	(8 is cube)
V	disjunction	$P \vee Q$ true if either P,Q true	P = (2 is prime), Q = (4 is square)
¬	negation	$\neg P$ true if P false	if $P = (35 \text{ is prime})$ then $\neg P$ is
		_	true
\Longrightarrow	implication	if P then Q	if $P = (x \text{ div by } 4), Q =$
\iff	if and only if	$P \implies Q \text{ and } Q \implies P$	(x even) $P = (new year), Q = (Lenvery 1)$
A	for all	refers to all elements in a set	(January 1) if $A = \{2, 4, 10\}$ then $x \in \mathbb{N} \ \forall x \in A$
3	there exists	at least one exists	$\exists x \in \mathbb{N}_0 : x = -x$
\oplus	XOR	either P or Q true but not both	$P \oplus Q$ true for one Democrat
		<u>-</u>	<u> </u>