

Prepared by: Team Tuk-Muk

Lecturer: Mr. Chan Sophal

Course: Information Visualization

Date: 21st November 2023

Our Amazing Team

Pun Solita

Som Deborah

Kong Darachin

Table of contents

- Introduction
- II Dataset Overview
- **III** Implementation
- IV Conclusion & Recommendation
- **V** Reference

Introduction

I. Introduction

Extract valuable insights from dataset containing airports, passenger traffic, fare statuses which can be used to enhance efficiency of workers, improve customer's experience and provide effective resource allocations.

Data Overview

01. Data Source

Kaggle allows users to find datasets they want to use in building AI models, publish datasets, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

II. Data Overview

02. Dataset Overview

travel.sqlite (109.53 MB)		平 :: >
Table	Total Rows	Total Columns
aircrafts_data	9	3
airports_data	104	5
boarding_passes	579686	4
bookings	262788	3
flights	33121	10
seats	1339	3
ticket_flights	1045726	4
tickets	366733	3

II. Data Overview

03. Data Relation

01	Connecting Dataset to PowerBl
02	Clean and prepare data for visualization
03	Arrival City
04	Total Destination
05	Total Number of flights
06	Airport that has the most flights
07	Overall Flights each day
08	City that have most airports
09	Airplane fly the most each month
10	The Percentage of Flight Status

N

O1 Dataset to Powerbi

Using SQL:

- 1. Open Wamp Server
- 2. Open PowerBi
- 3. Click on Get Data
- 4. Choose MYSQL database
- 5. Input server name and database name
- 6. Then click ok

MySQL	. database	
Server		
localhost		
Database		
aircraftdb	_	_

Using API and Python:

- 1. Create python project folder with dataset file
- 2. Using pandas, sqlite3, jsonify and SocketIO
- 3. Read sqlite file and convert to dataframe use pandas
- 4. Convert dataframe to json format
- 5. Create app with flask and define route for each tables
- 6. Return json data with flask and connect to power bi

02 Clean Data and Preparing

Convert from dictionary to string

{"en": "Bombardier CRJ-200", "ru": "Бомбардье CRJ-200"}

9 CR2

2700

02 Clean Data and Preparing

Handling with missing value

From

KIA

actual_arrival ~	actual_departure -	aircraft_code =	arrival_airport =	departure_airport =	flight_id =	flight_no 💌	scheduled_arrival *	scheduled_departure =	status
7/19/2017 2:28:00 PM	7/19/2017 12:24:00 PM	CN1	KJA	OVB	9940	PG0204	7/19/2017 2:25:00 PM	7/19/2017 12:20:00 PM	Arrived
8/15/2017 3:40:00 PM	8/15/2017 1:34:00 PM	CN1	KJA	OVB	9945	PG0205	8/15/2017 3:35:00 PM	8/15/2017 1:30:00 PM	Arrived
7/23/2017 2:27:00 PM	7/23/2017 12:23:00 PM	CN1	KJA	OVB	9949	PG0204	7/23/2017 2:25:00 PM	7/23/2017 12:20:00 PM	Arrived
7/25/2017 3:35:00 PM	7/25/2017 1:31:00 PM	CN1	KJA	OVB	9950	PG0205	7/25/2017 3:35:00 PM	7/25/2017 1:30:00 PM	Arrived
7/19/2017 3:42:00 PM	7/19/2017 1:34:00 PM	CN1	KJA	OVB	9951	PG0205	7/19/2017 3:35:00 PM	7/19/2017 1:30:00 PM	Arrived
8/8/2017 3:39:00 PM	8/8/2017 1:33:00 PM	CN1	KJA	OVB	9953	PG0205	8/8/2017 3:35:00 PM	8/8/2017 1:30:00 PM	Arrived
7/26/2017 6:42:00 PM	7/26/2017 4:36:00 PM	CN1	KJA	OVB	9955	PG0205	7/26/2017 3:35:00 PM	7/26/2017 1:30:00 PM	Arrived
7/22/2017 3:35:00 PM	7/22/2017 1:30:00 PM	CN1	KJA	OVB	9957	PG0205	7/22/2017 3:35:00 PM	7/22/2017 1:30:00 PM	Arrived
8/14/2017 2:29:00 PM	8/14/2017 12:25:00 PM	CN1	KJA	OVB	9959	PG0204	8/14/2017 2:25:00 PM	8/14/2017 12:20:00 PM	Arrived
8/15/2017 2:28:00 PM	8/15/2017 12:22:00 PM	CN1	KJA	OVB	9962	PG0204	8/15/2017 2:25:00 PM	8/15/2017 12:20:00 PM	Arrived
8/2/2017 2:27:00 PM	8/2/2017 12:22:00 PM	CN1	KJA	OVB	9964	PG0204	8/2/2017 2:25:00 PM	8/2/2017 12:20:00 PM	Arrived
8/5/2017 2:30:00 PM	8/5/2017 12:24:00 PM	CN1	KJA	OVB	9969	PG0204	8/5/2017 2:25:00 PM	8/5/2017 12:20:00 PM	Arrived

9970 PG0205

8/5/2017 3:35:00 PM

8/5/2017 1:30:00 PM Arrived

OVR

8/5/2017 3:37:00 PM 8/5/2017 1:31:00 PM CN1

General Dashboard

Date: July 2017 - September 2017

Location: Russia

03 Arrival City

Airports in cities of Russia

04 Total Destination

There are 104 Destination of City.

05 Total Number of Flights

Overall Flights

33K

06 Airport that has the most Flights

07 Overall flights each day

08 City that has the most airports

Airports in cities of Russia

09 Airplane fly the most each month

In august there are twice as many flights compared to other months, with Cessna 208 Caravan having the highest number of passengers.

10 The Percentage of Flight Status

Most flights are able to arrive safely and on schedule, only a small percentage of flights get canceled or delayed.

Conclusion

In conclusion, from data we can compare values and give a straightforward and clear summary of the data like which aircraft is most popular, which months have the highest ticket sales and which fare is most bought so that we can take actions according to the data to make the most profit for the company.

Recommendation

Enhance efficiency

By optimizing leet composition to better align with passenger's demand and route characteristic

Improve customer satisfaction

Using data to implement more proactive measures which can mitigate flight delays and cancellations

Airport and Airline collaboration

To streamline check-in and boarding processes to optimize passenger flow and reduce waiting time

Reference

https://www.kaggle.com/datasets/saadharoon27/airlines-dataset

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

