

Politécnico de Coimbra

Sistemas Digitais

CTeSP Tecnologias e Programação de Sistemas de Informação (Cantanhede)

Professor: João Leal

joao.leal@isec.pt

Somadores

 Os somadores são importantes em computadores e também noutros tipos de sistemas digitais nos quais dados numéricos são processados.

 Uma compreensão da operação básica de um somador é fundamental no estudo de sistemas digitais.

Relembrar as regras básicas para a adição binária...

 As operações são realizadas por um circuito lógico chamado de meio-somador.

 O meio-somador aceita dois dígitos binários nas suas entradas e produz dois dígitos binários nas suas saídas, um bit de soma e um bit de carry.

 Um meio-somador soma dois bits e produz um resultado (soma) e um carry de saída.

Lógica do Meio-Somador: A partir da operação do meio-somador expressa Tabela, podemos deduzir na expressões para a soma (resultado) e para o carry de saída como funções das entradas. Observe que o carry de saída (C_{out}) é 1 apenas quando A e B são 1s; portanto, C_{out} pode expresso como uma operação AND entre as variáveis de entrada.

Α	В	C_{out}	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C_{out} = AB$$

 $A \in B = \text{variáveis de entrada (operandos)}$

 $\Sigma = soma$

 $C_{cut} = carry de saída$

Diagrama Lógico de um Meio-somador

A segunda categoria de somadores é o somador-completo.

 O somador-completo aceita dois bits de entrada e um carry de entrada, e gera uma saída de soma e um carry de saída.

 A diferença básica entre um somador-completo e um meiosomador é que o somador-completo aceita um carry de entrada.

Um somador-completo tem um carry de entrada, enquanto que um meio-somador não tem.

 Tabela-verdade do somador-completo

Α	В	C_{in}	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\rm in}$ = carry de entrada, algumas vezes indicado como CI

 C_{out} = carry de saída, algumas vezes indicado como CO

 $\Sigma = soma$

A e B = variáveis de entrada (operandos)

• Circuito Lógico do Somador-Completo: O somador-completo soma os dois bits de entrada e o carry de entrada. A partir do meiosomador sabemos que a soma dos bits de entrada A e B é a EX-OR

(a) Lógica necessária para construir um somador de três bits.

(b) Circuito lógico completo para um somador-completo (cada meio-somador se encontra numa área sombreada).

Somador-completo implementado com meio-somadores.

(a) Associação de dois meio-somadores para construir um somador-completo.

Somador-completo implementado com meio-somadores.

(b) Símbolo lógico do somador-completo.

Resumindo...

Politécnico de Coimbra

Entradas		Saída de Carry	Soma
Α	В	C _{out}	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Ent	radas	Entrada de	Saída de Carry	Soma
Α	В	Carry C _{in}	C _{out}	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 Para cada um dos três somadores-completos na Figura, determine as saídas para as entradas mostradas.

(a) Os bits de entrada são A = 1, B = 0 e $C_{in} = 0$.

$$1 + 0 + 0 = 1$$
 sem carry

Portanto, $\Sigma = 1$ e $C_{\text{out}} = 0$.

(b) Os bits de entrada são A = 1, B = 1 e $C_{in} = 0$.

1 + 1 + 0 = 0 com carry de 1

Portanto, $\Sigma = 0$ e $C_{\text{out}} = 1$.

(c) Os bits de entrada são A = 1, B = 0 e $C_{in} = 1$.

1 + 0 + 1 = 0 com carry de 1

Portanto, $\Sigma = 0$ e $C_{\text{out}} = 1$.

Exercícios

1. Quais são as saídas de um somador-completo para A = 1, B = 1 e $C_{in} = 1$?

$$\Sigma = 1, C_{\text{out}} = 1$$

Exercícios

2. Determine a soma (\sum) e o carry de saída (C_{out}) de um meio-somador para

cada um dos conjuntos de bits de entrada a seguir:

(b) 00
$$\sum = 0, C_{\text{out}} = 0$$

(c) 10
$$\sum = 1, C_{\text{out}} = 0$$

(d) 11
$$\sum = 0, C_{\text{out}} = 1$$

3. Um somador-completo tem $C_{in} = 1$. Quais são a soma (Σ) e o carry de saída (Cout) quando A = 1 e B = 1?

$$\Sigma = 1$$
, $C_{\text{out}} = 1$

 Dois ou mais somadores-completos podem ser conectados para construir somadores binários paralelos.

 Um único somador-completo é capaz de somar dois números de 1 bit e um carry de entrada.

 Para somar números binários com mais de 1 bit, temos que usar somadores-completos adicionais.

Quando um número binário é somado a outro, cada coluna gera um bit de soma e um bit de carry (que pode ser 1 ou 0) para a próxima coluna à esquerda, conforme ilustrado a seguir com números de dois bits.

Bit de carry da coluna à direita

11

+ 01

100

Nesse caso,
o bit de carry

 Para somar dois números binários, é necessário um somadorcompleto para cada bit do número.

 Assim, para números de dois bits, são necessários dois somadores; para números de 4 bits, são usados quatro somadores; e assim sucessivamente.

 A saída de carry de cada somador é conectada à entrada de carry do próximo somador de maior ordem, conforme mostra a figura para um somador de dois bits.

 Atenção que um meio-somador pode ser usado na posição menos significativa ou um somador-completo com a entrada de carry colocada em 0 (GND) porque não existe entrada de carry na posição do bit menos significativo.

Nota: Na Figura o bit menos significativo (LSB) dos dois números são representados por A_1 e B_1 . Os próximos bits de ordem maior são representados por A_2 e B_2 . E os três bits de soma são Σ_1 , Σ_2 e Σ_3 . O carry de saída do somadorcompleto mais à esquerda se torna o bit mais significativo (MSB) do resultado (soma), Σ_3 .

 Determine a soma gerada pelo somador paralelo de 3 bits visto na figura e mostre os carries intermediários quando os números binários 1010 e 011 são somados.

• Determine a soma gerada pelo somador paralelo de 3 bits visto na figura e mostre os carries intermediários quando os números binários 1010 e 011 são somados.

Os LSBs dos dois números são somados no somador-completo mais à direita. Os bits do resultado e os carries intermediários são indicados em cinza.

Um grupo de quatro bits é denominado de nibble.

 Um somador paralelo de 4 bits básico é implementado com quatro estágios de somadores-completos como mostra a figura.

(a) Diagrama em bloco

Os bits LSB (A₁ e B₁) em cada número são somados pelo somadorcompleto mais à direita; os bits de ordem mais alta são inseridos sucessivamente nos **somadores de ordem mais alta**, com os MSBs $(A_4 \ e \ B_4)$ em cada número inseridos no somador-completo mais à esquerda.

A saída de carry de cada somador é conectada à entrada de carry para o próximo somador de ordem mais alta conforme indicado. Esses são denominados de carries internos.

(b) Símbolo lógico

• De acordo com as folhas de dados dos fabricantes, a entrada denominada de C_0 é o carry de entrada do bit menos significativo do somador; no caso do quatro bits, C_4 é o carry de saída do bit mais significativo do somador; e \sum_1 (LSB) até \sum_4 (MSB) são as saídas do resultado (soma).

 Em termos do método usado para operar com carries em somadores paralelos, existem dois tipos: o somador com carry ondulante (ripple carry) e o somador com carry antecipado (lookahead carry).

Tabela-verdade para cada estágio de um somador paralelo de 4 bits

C_{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• Use a tabela-verdade do somador paralelo de 4 bits para determinar a soma e o carry de saída para a adição dos seguintes números de 4 bits se o carry de entrada (C_{n-1}) for 0:

$$A_4A_3A_2A_1 = 1100$$
 e $B_4B_3B_2B_1 = 1100$

Use a tabela-verdade do somador paralelo de 4 bits para determinar a soma e o carry de saída para a adição dos seguintes números de 4 bits se o carry de entrada (C_{n-1}) for 0:

$$A_4A_3A_2A_1 = 1100$$
 e $B_4B_3B_2B_1 = 1100$

C_{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
1	1 1	0	0	

 $A_4A_3A_2A_1 = 1100$ e $B_4B_3B_2B_1 = 1100$

C_{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Para n = 1: $A_1 = 0$, $B_1 = 0$ e $C_{n-1} = 0$. A partir da 1ª linha da tabela,

$$\Sigma_1 = 0$$

$$\Sigma_1 = 0$$
 e $C_1 = 0$

 $A_4A_3A_2A_1 = 1100$ e $B_4B_3B_2B_1 = 1100$

C_{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Para n = 1: $A_1 = 0$, $B_1 = 0$ e $C_{n-1} = 0$. A partir da 1ª linha da tabela,

$$\Sigma_1 = \mathbf{0}$$
 e $C_1 = 0$

Para n = 2: $A_2 = 0$, $B_2 = 0$ e $C_{n-1} = 0$. A partir da 1ª linha da tabela,

$$\Sigma_2 = 0$$
 e $C_2 = 0$

 $A_4A_3A_2A_1 = 1100$ e $B_4B_3B_2B_1 = 1100$

C_{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Para n = 3: $A_3 = 1$, $B_3 = 1$ e $C_{n-1} = 0$. A partir da 4^a linha da tabela,

$$\Sigma_3 = 0$$

$$\Sigma_3 = 0$$
 e $C_3 = 1$

 $A_4A_3A_2A_1 = 1100$ e $B_4B_3B_2B_1 = 1100$

C_{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Para n = 3: $A_3 = 1$, $B_3 = 1$ e $C_{n-1} = 0$. A partir da 4ª linha da tabela,

$$\Sigma_3 = 0$$
 e $C_3 = 1$

Para n = 4: $A_4 = 1$, $B_4 = 1$ e $C_{n-1} = 1$. A partir da última linha da tabela,

$$\Sigma_4 = 1$$
 e $C_4 = 1$

 C_4 carry de saída: a soma de 1100 e 1100 é 11000.

Exercícios

4. Use a tabela-verdade para determinar o resultado da adição dos números binários 1011 e 1010.

C_{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somadores Paralelos de Quatro Bits (74LS283)

 Um exemplo de um somador paralelo de 4 bits que é comercializado é o CI 74LS283.

VCC é o pino 16 e GND é o pino 8, que é uma configuração padrão.

 O digrama de pinos e o símbolo lógico para o dispositivo são mostrados na figura (com os números os pinos em parênteses no símbolo lógico).

Somadores Paralelos de Quatro Bits (74LS283)

Politécnico de Coimbra

(b) Símbolo lógico do 74LS283

 A função básica de um comparador é comparar as magnitudes de dois números binários para determinar a relação comparativa entre eles.

 Na sua forma mais simples, um circuito comparador determina se dois números são iguais.

 A porta EX-OR pode ser usada como um comparador básico porque a sua saída é nível 1 se os dois bits de entrada forem diferentes e é 0 se os bits de entrada forem iguais

Operação de um comparador básico:

- Para comparar números binários com dois bits cada um, é necessário mais uma porta EX-OR.
- Os dois bits menos significativos (LSBs) dos dois números são comparados pela porta G1 e os dois bits mais significativos (MSBs) são comparados pela porta G2.
- Se os dois números forem iguais, os bits correspondentes são iguais, sendo a saída de cada porta EX-OR nível zero. Se o conjunto correspondente de bits não forem iguais, a saída da porta EX-OR é nível 1.

Formato geral: Número binário $A \rightarrow A_1A_0$ Número binário $B \rightarrow B_1B_0$

- Considerando os seguintes conjuntos de números binários e o circuito comparador mostrado na figura, determine a saída do circuito para cada conjunto.
 - **(a)** 10 e 10
 - **(b)** 11 e 10

 (a) A saída é nível 1 para as entradas 10 e 10.

$$A_0 = 0$$

$$B_0 = 0$$

$$1 \rightarrow \text{igual}$$

$$A_1 = 1$$

$$B_1 = 1$$
(a)

 (b) A saída é nível 0 para as entradas 11 e 10.

Exercícios

5. Repita o processo para as entradas binárias 01 e 10.

Formato geral: Número binário $A \rightarrow A_1A_0$ Número binário $B \rightarrow B_1B_0$

 Além da saída de igualdade, muitos CIs comparadores têm saídas adicionais que indicam qual dos dois números binários comparados é maior.

Assim, existe uma saída que indica quando o número A é maior que o número B (A > B) e uma saída que indica quando o número A é menor que o número B (A < B), como mostra o símbolo lógico para um comparador de 4 bits</p>

- Para determinar uma desigualdade dos números binários A e B, temos que examinar primeiro o bit mais significativo de cada número. As seguintes condições são possíveis:
 - 1. Se $A_3 = 1$ e $B_3 = 0$, o número A é maior que o número B.
 - 2. Se $A_3 = 0$ e $B_3 = 1$, o número A é menor que o número B.
 - 3. Se $A_3 = B_3$, então temos que examinar a desigualdade do próximo bit da posição mais inferior.
- Essas três operações são válidas para a posição de cada bit nos números.

 Determine as saídas A = B, A > B e A < B para os números de entradas mostrados no comparador visto na Figura:

 O número nas entradas A é 0110 e o número nas entradas B é 0011.

 A saída A > B é nível ALTO e as outras saídas são nível BAIXO.

Exercícios

6. Quais são as saídas do comparador quando

$$A_3A_2A_1A_0 = 1001 \text{ e } B_3B_2B_1B_0 = 1010$$
?

