X מבחן באלגברה לינארית תש"ף סמסטר ב

יש לענות על 5 שאלות מתוך 6 השאלות הבאות. יש לנמק את התשובות באופן מלא

שאלה 1. (20 נקודות) אין קשר בין סעיפים א,ב

א. (8 נקודות) פתרו את מערכת המשוואות שהמטריצה המורחבת שמתאימה לה היא

$$\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & -1 & 1 \\
0 & 0 & 1 & 7 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

ב. (12 נקודות) נתונה מערכת המשוואות הבאה

$$\begin{cases} x + 2y + z = 4 \\ 3x + 7y + (k-1)z = 3k+5 \\ 2x + (3k-1)y + (k-2)z = 7 \end{cases}$$

מצאו את הערכים של הפרמטר הממשי k עבורם יש למערכת פתרון יחיד, אינסוף פתרונות או אין פתרון (אין צורך למצוא את הפתרון באף אחד מהמקרים).

שאלה 20) נתונה הקבוצה

$$B = \left\{ \begin{pmatrix} 2\\0\\1\\4 \end{pmatrix}, \begin{pmatrix} 0\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 4\\-1\\1\\0 \end{pmatrix} \right\}$$

- \mathbb{R}^4 א. (10 נקודות) הוכיחו כי הקבוצה B היא בסיס של
- ב. (מון נתונה העתקה לינארית בתונה העתקה לינארית בתונה העתקה לינארית בתונה העתקה לינארית בתונה העתקה בתונה העתקה לינארית בתונה העתקה בתונה העתקה בתונה בתונ

$$T\begin{pmatrix} 2\\0\\1\\4 \end{pmatrix} = \begin{pmatrix} 3\\0\\2 \end{pmatrix}, T\begin{pmatrix} 0\\2\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\0\\1 \end{pmatrix}, T\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 2\\1\\2 \end{pmatrix}, T\begin{pmatrix} 4\\-1\\1\\0\\2 \end{pmatrix} = \begin{pmatrix} 3\\0\\2 \end{pmatrix}$$

 \mathbb{R}^3 של הבסיס הסטנדרטי של $[T]_{St}^B$ לפי הבעתקה מטריצה המייצגת של ההעתקה (i)

$$St = E = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

T מצאו מימדים של הגרעין והתמונה של (ii)

שאלה 3. (20 נקודות) נתונה הקבוצה

$$S = \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-a\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\a \end{pmatrix} \right\}$$

עבור כל ערך של הפרמטר a מצאו את המימד של עבור כל ערך של הפרמטר

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} \in \mathbf{Span}(S).$$

שאלה 4. (20 נקודות) קבעו האם המטריצה הבאה לכסינה. אם כן, מצאו מטריצה הפיכה P ומטריצה עאלה 5. אלכסינה. מדוע היא לא לכסינה ($A=PDP^{-1}$ כלומר בירו מדוע היא לא לכסינה. $D=P^{-1}AP$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -3 & -2 \\ 3 & -1 & -2 \end{pmatrix}$$

שאלה 5. (20 נקודות) אין קשר בין סעיפים א, ב

את ישבו $A=\begin{pmatrix}a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3\end{pmatrix}\in M_{3 imes3}(\mathbb{R})$ חשבו את א. (10) נקודות נתונה המטריצה $B=\begin{pmatrix}4a_1&4c_1&8b_1\\-3a_2&-3c_2&-6b_2\end{pmatrix}$

$$B = \begin{pmatrix} 4a_1 & 4c_1 & 8b_1 \\ -3a_2 & -3c_2 & -6b_2 \\ a_3 & c_3 & 2b_3 \end{pmatrix}$$

Bx=0 וקבעו כמה פתרונות יש למשוואה

ב. מטריצה כי הוכיחו כי לא קיימת מטריצה אפיכות מסריצות מטריצות מטריצה $A,B\in M_{3 imes3}(\mathbb{R})$ הוכיחו נקודות ב. (10) ממשית כך שמתקיים השוויון C

$$A^3B = -AB^{-1}C^2$$

תהי T:V o V העתקה לינארית. 20 בקודות תהי T:V o Vאין קשר בין סעיפים א, ב

- א. $\{v_1,v_2\}$ אזי $\{T(v_1),T(v_2)\}$ ת"ל, אזי $\{v_1,v_2\}$ ת"ל, אזי $\{v_1,v_2\}$ ת"ל.
 - $\operatorname{Ker} T \neq \operatorname{Im} T$ אי זוגי, אזי לווגי כי אם הוכיחו ב. (10 נקודות) ב.

מבחן באלגברה לינארית תש"ף סמסטר ב שאלון X בתרון

יש לענות על 5 שאלות מתוך 6 השאלות הבאות. יש לנמק את התשובות באופן מלא

שאלה 1. (20 נקודות) אין קשר בין סעיפים א,ב

א. (8 נקודות) פתרו את מערכת המשוואות שהמטריצה המורחבת שמתאימה לה היא

$$\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & -1 & 1 \\
0 & 0 & 1 & 7 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

ב. (12 נקודות) נתונה מערכת המשוואות הבאה

$$\begin{cases} x + 2y + z = 4 \\ 3x + 7y + (k-1)z = 3k+5 \\ 2x + (3k-1)y + (k-2)z = 7 \end{cases}$$

מצאו את הערכים של הפרמטר הממשי k עבורם יש למערכת פתרון יחיד, אינסוף פתרונות או אין פתרון (אין צורך למצוא את הפתרון באף אחד מהמקרים).

פתרון

א. המטריצה הנתונה היא מטריצה מדורגת קנונית, ולכן אין צורך להמשיך לדרג אותה. מערכת המשוואות המתאימה למטריצה היא

$$\begin{cases} x + 2y & - w = 1 \\ z + 7w = 3 \end{cases}$$

ולכן הפתרונות של המערכת הם

$$\left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} s + \begin{pmatrix} 1 \\ 0 \\ -7 \\ 1 \end{pmatrix} t : s, t \in \mathbb{R} \right\}$$

ב. למערכת יש פתרון יחיד אם ורק אם הדטרמיננטה של המטריצה המצומצמת שמתאימה למערכת היא שונה מ־0. נחשב את הדטרמיננטה המתאימה

$$\begin{vmatrix} 1 & 2 & 1 \\ 3 & 7 & k-1 \\ 2 & 3k-1 & k-2 \end{vmatrix} \underbrace{=}_{C_3 \to C_3 - C_1} \begin{vmatrix} 1 & 2 & 0 \\ 3 & 7 & k-4 \\ 2 & 3k-1 & k-4 \end{vmatrix} = (k-4) \begin{vmatrix} 1 & 2 & 0 \\ 3 & 7 & 1 \\ 2 & 3k-1 & 1 \end{vmatrix}$$

$$\underbrace{=}_{R_3 \to R_3 - R_2} (k-4) \begin{vmatrix} 1 & 2 & 0 \\ 3 & 7 & 1 \\ -1 & 3k-8 & 0 \end{vmatrix} = -(k-4) \begin{vmatrix} 1 & 2 \\ -1 & 3k-8 \end{vmatrix} = -(k-4)(3k-6) = -3(k-4)(k-2)$$

 $.k \neq 2,4$ אם"ם אם ולכן ,|A| = -3(k-2)(k-4) עבור k=2 נקבל כי מערכת המשוואות היא

$$\begin{cases} x + 2y + z = 4 \\ 3x + 7y + z = 11 \\ 2x + 5y = 7 \end{cases}$$

נדרג את המטריצה המורחבת שמתאימה למערכת ונקבל כי

$$\begin{pmatrix}
1 & 2 & 1 & | & 4 \\
3 & 7 & 1 & | & 11 \\
2 & 5 & 0 & | & 7
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 2R_1}
\begin{pmatrix}
1 & 2 & 1 & | & 4 \\
3 & 7 & 1 & | & 11 \\
0 & 1 & -1 & | & -1
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 3R_1}
\begin{pmatrix}
1 & 2 & 1 & | & 4 \\
0 & 1 & -2 & | & -1 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - R_2}$$

קיבלנו כי הדרגה של המטריצה המצומצמת שווה לדרגת המטריצה המורחבת ושווה ל2, כלומר קטנה ממספר המשתנים, ולכן למערכת יש אינסוף פתרונות. עבור k=4 נקבל כי מערכת המשוואות היא

$$\begin{cases} x + 2y + z = 4 \\ 3x + 7y + 3z = 17 \\ 2x + 11y + 2z = 7 \end{cases}$$

נדרג את המטריצה המורחבת שמתאימה למערכת ונקבל כי

$$\begin{pmatrix}
1 & 2 & 1 & | & 4 \\
3 & 7 & 3 & | & 17 \\
2 & 11 & 2 & | & 7
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 2R_1}
\begin{pmatrix}
1 & 2 & 1 & | & 4 \\
3 & 7 & 3 & | & 17 \\
0 & 7 & 0 & | & -1
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 3R_1}$$

$$\begin{pmatrix}
1 & 2 & 1 & | & 4 \\
0 & 1 & 0 & | & 5 \\
0 & 7 & 0 & | & -1
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 7R_2}
\begin{pmatrix}
1 & 2 & 1 & | & 4 \\
0 & 1 & 0 & | & 5 \\
0 & 0 & 0 & | & -36
\end{pmatrix}$$

קיבלנו כי דרגת המטריצה המצומצמת קטנה מדרגת המטריצה המורחבת, ולכן למערכת אין פתרונות. נסכם

- יחיד יחיד. $k \neq 2, 4$ עבור (i)
- . עבור k=2 למערכת יש אינסוף פתרונות (ii)
 - עבור k=4 למערכת אין פתרונות. (iii)

שאלה 2. (20 נקודות) נתונה הקבוצה

$$B = \left\{ \begin{pmatrix} 2\\0\\1\\4 \end{pmatrix}, \begin{pmatrix} 0\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 4\\-1\\1\\0 \end{pmatrix} \right\}$$

- \mathbb{R}^4 א. בסיס של B היא כי הקבוצה הוכיחו (נקודות 10).
- ב. (מון נתונה העתקה לינארית $T:\mathbb{R}^4 \to \mathbb{R}^3$ ב. נקודות) נתונה העתקה לינארית

$$T\begin{pmatrix} 2\\0\\1\\4 \end{pmatrix} = \begin{pmatrix} 3\\0\\2 \end{pmatrix}, T\begin{pmatrix} 0\\2\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\0\\1 \end{pmatrix}, T\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 2\\1\\2 \end{pmatrix}, T\begin{pmatrix} 4\\-1\\1\\0\\2 \end{pmatrix} = \begin{pmatrix} 3\\0\\2 \end{pmatrix}$$

 \mathbb{R}^3 של הבסיס הסטנדרטי של $[T]^B_{St}$ ההעתקה של המטריצה המטריצה את ושבו (i)

$$St = E = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

T מצאו מימדים של הגרעין והתמונה של (ii)

פתרון

א. קבוצת עמודות היא בסיס של \mathbb{R}^4 אם"ם המטריצה שהן עמודותיה היא מטריצה הפיכה. נחשב אם כן את הדטרמיננטה של מטריצה זו

$$\begin{vmatrix} 2 & 0 & 1 & 4 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 4 & -1 & 1 & 0 \end{vmatrix} \xrightarrow{R_1 \to R_1 - 2R_3} \begin{vmatrix} 0 & 0 & 1 & 2 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & -4 \end{vmatrix} =$$

$$(-1) \begin{vmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & 1 & -4 \end{vmatrix} \xrightarrow{R_3 \to R_3 - R_1} (-1) \begin{vmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & 0 & -6 \end{vmatrix} = (-1)^2 (2 \cdot (-6) - 1 \cdot (-1)) = -11$$

 \mathbb{R}^4 קיבלנו כי הדטרמיננטה שונה מאפס, כלומר המטריצה הפיכה ולכן הקבוצה היא בסיס

ב. (i) כדי למצוא את המטריצה המייצגת נעזר בנוסחה

$$[T]_{St}^{B} = \begin{pmatrix} | & | & \cdots & | \\ [T(u_1)]_{St} & [T(u_2)]_{St} & \cdots & [T(u_n)]_{St} \\ | & | & \cdots & | \end{pmatrix}$$

מכיוון שוקטור הקואורדינטות של וקטור כלשהו לפי הבסיס הסטנדרטי הוא הוקטור עצמו, נקבל כי המטריצה המייצגת היא

$$\begin{pmatrix} 3 & 1 & 2 & 3 \\ 0 & -1 & 1 & 0 \\ 2 & 0 & 2 & 2 \end{pmatrix}$$

(ii) כדי למצוא את מימדי הגרעין והתמונה נדרג את המטריצה המייצגת:

$$\begin{pmatrix}
3 & 1 & 2 & 3 \\
0 & -1 & 1 & 0 \\
2 & 0 & 2 & 2
\end{pmatrix}
\xrightarrow{R_3 \to \frac{1}{2}R_3}
\begin{pmatrix}
3 & 1 & 2 & 3 \\
0 & -1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{pmatrix}
\xrightarrow{R_1 \leftrightarrow R_3}
\begin{pmatrix}
1 & 0 & 1 & 1 \\
0 & -1 & 1 & 0 \\
3 & 1 & 2 & 3
\end{pmatrix}
\xrightarrow{R_3 \leftrightarrow R_3 - 3R_1}$$

$$\begin{pmatrix}
1 & 0 & 1 & 1 \\
0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0
\end{pmatrix}
\xrightarrow{R_3 \leftrightarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & 1 & 1 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

קיבלנו כי דרגת המטריצה היא 2, ולכן 2 רולפן אווו $\dim {
m Im} T={
m rank}([T]_{St}^B)=2$, ולכן 2, ולכן ברגת המטריצה היא 2 לנו כי המטריצה היא 2 לכן ברגת המטריצה

שאלה 3. (20 נקודות) נתונה הקבוצה

$$S = \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-a\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\a \end{pmatrix} \right\}$$

עבור האם $\operatorname{Span}(S)$ של המימד את מצאו a הפרמטר של עבור כל ערך של

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} \in \mathbf{Span}(S).$$

פתרון נמצא את התלויות הלינאריות של איברי הקבוצה, ואת התלות של העמודה הנוספת בהן ע"י דירוג שלהן כעמודות מטריצה:

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 & 2 \\ 1 & 1 & -a & -1 & 1 \\ 1 & 1 & 1 & a & 3 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1 \atop R_4 \to R_4 - R_1} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & -2 & 0 & 1 \\ 0 & 2 & 0 & a - 1 & 2 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2 \atop R_4 \to R_4 - R_2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & -a - 1 & -2 & 0 \\ 0 & 2 & 0 & a - 1 & 2 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2 \atop R_4 \to R_4 - R_2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & -a - 1 & -2 & 0 \\ 0 & 2 & 0 & a - 1 & 2 \end{pmatrix} \xrightarrow{R_4 \to R_4 - \frac{1-a}{2}R_3} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 3 \\ 0 & 0 & -2 & a - 1 & 1 \\ 0 & 0 & 0 & \frac{a^2 - 2a - 3}{2} & \frac{a - 3}{2} \end{pmatrix}$$

מכיוון שפעולות אלמנטריות שומרות על תלויות לינאריות של העמודות, ניתן להסיק את הדברים הבאים מהמטריצה המדורגת:

- א. כאשר הראשונות הראשונות של המטריצה העבור $a \neq -1,3$ עבור $a^2-2a-3=(a+1)(a-3) \neq 0$ א. כאשר א. כאשר $a \neq -1,3$ כלומר עבור $a^2-2a-3=(a+1)(a-3) \neq 0$ הוא האחרונה תלויה קבוצה בת"ל, ולכן גם בתחילת הדירוג היא בת"ל ולכן המימד של $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} \in \mathrm{Span}(S)$ לינארית באיברי $a \neq -1,3$ כלומר העמודה $a^2-2a-3=(a+1)(a-3) \neq 0$ היא המטריצה האחרונה האחרונה העמודה $a \neq -1,3$ המימד של ולכן המימד האחרונה העמודה $a \neq -1,3$ המימד של ולכן המימד האחרונה העמודה $a \neq -1,3$ המימד של ולכן המימד האחרונה האחר
- ב. כאשר a=3 שלוש העמודות הראשונות (של המטריצה המדורגת, ולכן) של המטריצה לפני הדירוג הן קבוצה בלתי מכל אר העמודות תלויות לינארית בה, ולכן המימד של $\operatorname{Span}(S)$ הוא $\operatorname{Span}(S)$ העמודה $. \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} \in \operatorname{Span}(S)$ האחרונה תלויה לינארית באיברי S, כלומר העמודה S
- ג. כאשר a=-1 שלוש העמודות הראשונות (של המטריצה המדורגת, ולכן) של המטריצה לפני הדירוג הן קבוצה בלתי תלויה לינארית שהעמודה הרביעית תלויה לינארית בה, אבל העמודה החמישית לא, ולכן המימד של

$$.\begin{pmatrix}1\\2\\1\\3\end{pmatrix}\not\in \mathbf{Span}(S)$$
 הוא העמודה האחרונה לא תלויה לינארית באיברי S רית באיברי לא תלויה האחרונה לא הוא הוא הוא האחרונה לא האחרונה לא האחרונה לא האחרונה לא הוא הוא הוא הוא הוא הוא הוא הוא הוא ה

שאלה 4. (20 נקודות) קבעו האם המטריצה הבאה לכסינה. אם כן, מצאו מטריצה הפיכה P ומטריצה אלכסונית D בקודות) עו האם המטריצה המטריצה אלכסונית D בקודות (כלומר D בעו האם המטריצה אלכסונית D בירו מדוע היא לא לכסינה.

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -3 & -2 \\ 3 & -1 & -2 \end{pmatrix}$$

בתרון נמצא תחילה את הערכים העצמיים ע"י חישוב הפולינום האפייני:

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 & 0 \\ 2 & -3 - \lambda & -2 \\ 3 & -1 & -2 - \lambda \end{vmatrix} = (1 - \lambda)((-3 - \lambda)(-2 - \lambda) - 2) - 2(2(-2 - \lambda) + 6) = \lambda(1 - \lambda)(\lambda + 5)$$

3 imes 3 הערכים העצמיים הם הערכים עבורם הפולינום האפייני מתאפס, כלומר $\lambda=0,1,-5$ מכיוון שהמטריצה מסדר ויש לה שלושה ערכים עצמיים שונים המטריצה לכסינה. נמצא את הוקטורים העצמיים:

א. עבור $\lambda=0$: נמצא את מרחב הפתרונות של

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & -3 & -2 \\ 3 & -1 & -2 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 0 \\ 0 & -7 & -2 \\ 0 & -7 & -2 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 1 & 2 & 0 \\ 0 & -7 & -2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \to -\frac{1}{7}R_2} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & \frac{2}{7} \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - 2R_2} \begin{pmatrix} 1 & 0 & -\frac{4}{7} \\ 0 & 1 & \frac{2}{7} \\ 0 & 0 & 0 \end{pmatrix}$$
 מהדירוג נקבל כי בסיס למרחב הפתרונות של A הוא A הוא A הוא A

ב. עבור $\lambda=1$ נמצא את מרחב הפתרונות של

$$A - I = \begin{pmatrix} 0 & 2 & 0 \\ 2 & -4 & -2 \\ 3 & -1 & -3 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 0 & 2 & 0 \\ 2 & -4 & -2 \\ 1 & 3 & -1 \end{pmatrix} \xrightarrow{R_3 \to R_1} \begin{pmatrix} 1 & 3 & -1 \\ 2 & -4 & -2 \\ 0 & 2 & 0 \end{pmatrix} \xrightarrow{R_3 \to \frac{1}{2}R_3} \begin{pmatrix} 1 & 3 & -1 \\ 0 & -10 & 0 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - 3R_3} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

 $egin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ הוא A-I של הפתרונות מל כי בסיס למרחב מהדירוג נקבל כי בסיס למרחב הפתרונות ה

ג. עבור $\lambda=-5$: נמצא את מרחב הפתרונות של

$$A+5I = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 2 & -2 \\ 3 & -1 & 3 \end{pmatrix} \xrightarrow{R_2 \to \frac{1}{2}R_2} \begin{pmatrix} 3 & 1 & 0 \\ 1 & 1 & -1 \\ 3 & -1 & 3 \end{pmatrix} \xrightarrow{R_1 \to R_1 - 3R_2} \begin{pmatrix} 0 & -2 & 3 \\ 1 & 1 & -1 \\ 0 & -4 & 6 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 2R_1} \begin{pmatrix} 0 & -2 & 3 \\ 1 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_2} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{3}{2} \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{3}{2} \\ 0 & 1 & 0 \end{pmatrix}$$
 and
$$\begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} \text{ and } A \text{ for } A \text{$$

ולכן עבור

$$P = \begin{pmatrix} 4 & 1 & -1 \\ -2 & 0 & 3 \\ 7 & 1 & 2 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -5 \end{pmatrix}$$

 ${m L} D = P^{-1} A P$ מתקיים כי

שאלה 5. (20 נקודות) אין קשר בין סעיפים א, ב

את . $|A|=rac{1}{6}$ כי מתקיים מתקיים $A=egin{pmatrix} a_1&b_1&c_1\a_2&b_2&c_2\a_3&b_3&c_3 \end{pmatrix}\in M_{3 imes3}(\mathbb{R})$ חשבו את את נתונה המטריצה ווער.

$$B = \begin{pmatrix} 4a_1 & 4c_1 & 8b_1 \\ -3a_2 & -3c_2 & -6b_2 \\ a_2 & c_2 & 2b_2 \end{pmatrix}$$

Bx=0 וקבעו כמה פתרונות יש למשוואה

ב. (מטריצה הוכיחו כי לא קיימת מטריצות הפיכות עם מקדמים מטריצה $A,B\in M_{3 imes 3}(\mathbb{R})$ הוכיחו כי לא קיימת מטריצה ב. ממשית כך שמתקיים השוויון מטריצה ממשית כי לא קיימת מטריצה מטריצה ממשית כי שמתקיים השוויון

$$A^3B = -AB^{-1}C^2$$

פתרון

:B א. נחשב את הדטרמיננטה של המטריצה.

$$\begin{vmatrix} 4a_1 & 4c_1 & 8b_1 \\ -3a_2 & -3c_2 & -6b_2 \\ a_3 & c_3 & 2b_3 \end{vmatrix} \stackrel{R_1 \to \frac{1}{4}R_1}{=} \begin{matrix} a_1 & c_1 & 2b_1 \\ a_2 & c_2 & 2b_2 \\ a_3 & c_3 & 2b_3 \end{vmatrix} \stackrel{C_3 \to \frac{1}{2}C_3}{=} (-12) \cdot 2 \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix} \stackrel{C_2 \leftrightarrow C_3}{=}$$

$$24 \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix} = \frac{24}{6} = 4$$

קיבלנו כי המטריצה B הפיכה (כי הדטרמיננטה שלה שונה מ־ $oldsymbol{0}$), ולכן למערכת Bx=0 יש פתרון יחיד.

 A^{-1} ב. נניח כי קיימת BA^{-1} שמקיימת את השוויון ב $A^3B=-AB^{-1}C^2$ נכפול את שמקיימת משמאל ונקבל כי $-C^2=BA^2B$ נחשב את הדטרמיננטה של שני הצדדים ונקבל כי

$$(-1)^3|C|^2 = |B| \cdot |A|^2 \cdot |B| \leftrightarrow -|C|^2 = |A|^2|B|^2$$

ומכיוון שהמטריצה C היא מטריצה ממשית נובע כי בצד שמאל של השוויון ישנו מספר שלילי, ובצד ימין יש מספר חיובי (שונה מאפס), וזו סתירה, ולכן אין C כזו.

. העתקה לינארית. (בקודות) תהי $T:V \to V$ תהי לינארית. אין קשר בין סעיפים א, ב

- א. $\{v_1,v_2\}$ אזי אזי $\{T(v_1),T(v_2)\}$ ית"ע, ורT אם הוכיחו הוכיחו (10) א.
 - $\operatorname{Ker} T \neq \operatorname{Im} T$ אי זוגי, אזי לי מות כי אם הוכיחו ב. (10 נקודות) ב.

פתרון

- ב. נניח כי $\dim \mathrm{Ker} T = \dim \mathrm{Im} T$ ממשפט המימד נקבל כי , $\ker T = \mathrm{Im} T$ ב. נניח כי עניח כי $\dim V = \dim \mathrm{Ker} T + \dim \mathrm{Im} T = 2\dim \mathrm{Ker} T$

בהצלחה