BÀI GIẢNG TOÁN CAO CẤP A1 ĐẠI HỌC (Số đvhp: 2 – số tiết: 30)

Chương 1. Giới hạn hàm số một biến

Chương 2. Phép tính vi phân hàm số một biến

Chương 3. Phép tính tích phân hàm số một biến

Chương 4. Chuỗi số và Chuỗi lũy thừa

Biên soạn: Đoàn Vương Nguyên

TÀI LIÊU THAM KHẢO

- 1. Nguyễn Phú Vinh Giáo trình Toán cao cấp A1 C1 ĐH Công nghiệp TP. HCM.
- 2. Nguyễn Đình Trí Toán cao cấp (Tập 2) NXB Giáo dục.
- 3. Đỗ Công Khanh *Toán cao cấp* (Tập 1, 4) NXB ĐHQG TP.HCM.
- 4. Nguyễn Viết Đông Toán cao cấp (Tập 1) NXB Giáo dục.
- 5. Nguyễn Thừa Hợp Giải tích (Tập 1) NXB ĐHQG Hà Nội.
- 6. James Stewart, Calculus Early Transcendentals, Sixth Edition Copyright © 2008,

2003 Thomson Brooks

7. Robert Wrede, Murray. R. Spiegel, *Theory and Problems of Advanced Calculus*, Second Edition – Copyright © 2002, 1963 by The McGraw-Hill Companies, Inc

Chương 1. GIỚI HẠN HÀM SỐ MỘT BIẾN

Bài 1. Giới hạn hàm số

Bài 2. Hàm số liên tục và tiệm cận của đồ thị

Bài 3. Đại lượng Vô cùng bé

Bài 1. GIỚI HẠN HÀM SỐ

1.1. Bổ túc về hàm số

1.1.1. Định nghĩa

Xét hai tập con khác rỗng D và Y của \mathbb{R} . Hàm số f là một quy tắc (hay *ánh xạ*) cho tương ứng mỗi phần tử $x \in D$ với duy nhất một phần tử $y \in Y$, ký hiệu là f(x)

$$f: \mathbb{R} \supset D \to Y \subset \mathbb{R}$$

 $x \mapsto y = f(x)$

- Tập D được gọi là miền xác định (MXĐ domain) của hàm số f , ký hiệu là $D_{\scriptscriptstyle f}$.
- Tập $f(D_{\!{}_f}) = \{f(x) \mid x \in D_{\!{}_f}\}$ được gọi là miền giá trị (range) của hàm f .
- $\bullet \ D \hat{o} \ thi \ (\text{graph}) \ \text{của hàm} \ f \ \text{có MX-} D \ \text{là tập hợp điểm} \ \left\{ \left(x, f(x) \right) \middle| \ x \in D \right\} \ \text{trên mặt phẳng} \ Oxy \ .$

- Nếu hàm f thỏa mãn $f(-x)=f(x), \forall x\in D_{_f}$ thì f được gọi là hàm số chẫn.
- Nếu hàm f thỏa mãn $f(-x)=-f(x), \forall x\in D_f$ thì f được gọi là hàm số lẻ.

• Hàm f được gọi là đồng biến trên (a;b) nếu $f(x_1) < f(x_2)$ khi $x_1 < x_2$ với $x_1, x_2 \in (a;b)$; f được gọi là g nghịch biến trên (a;b) nếu $f(x_1) > f(x_2)$ khi $x_1 < x_2$ với $x_1, x_2 \in (a;b)$.

1.1.2. Hàm số hợp

Giả sử hai hàm số f và g thỏa mãn $G_g \subset D_f$. Khi đó, hàm số $h(x) = (f \circ g)(x) = f(g(x))$ được gọi là hàm số hợp của f và g.

VD. Xét $f(x) = 3x^2$ và g(x) = x - 1, ta có:

- Hàm số hợp của f và g là $f(g(x)) = 3(g(x))^2 = 3x^2 6x + 3$.
- Hàm số hợp của g và f là $g(f(x)) = f(x) 1 = 3x^2 1$.

1.1.3. Hàm số ngược

- Hàm số f được gọi là song ánh (one-to-one function) nếu $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$.
- Xét hàm song ánh f có MXĐ D và miền giá trị G. Khi đó, hàm số ngược của f, ký hiệu là f^{-1} , có MXĐ G và miền giá trị D được định nghĩa

$$f^{-1}(y) = x \Leftrightarrow f(x) = y \ (x \in D, y \in G).$$

VD. Nếu $f(x) = 2^x$ thì $f^{-1}(x) = \log_2 x \ (x > 0)$.

■ Chú ý

- MXĐ của $f^{-1} = \text{miền giá trị của } f$, và miền giá trị của $f^{-1} = \text{MXĐ của } f$.
- Đồ thị của hàm $y=f^{-1}(x)$ đối xứng với đồ thị của hàm y=f(x) qua đường thẳng y=x .

1.1.4. Hàm số Lượng giác ngược

1.1.4.1. Hàm số $y = \arcsin x$

$$\arcsin x = y \Leftrightarrow \sin y = x, \ y \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

VD. Tính $\arcsin\left(-\frac{1}{2}\right)$ và $\cot\left(\arcsin\frac{1}{4}\right)$.

Giải.

- Ta có $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$, vì $\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$ và $-\frac{\pi}{6} \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.
- Đặt $\arcsin \frac{1}{4} = \varphi$, ta được $\sin \varphi = \frac{1}{4}$ và $\varphi \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.

Vậy, ta c
ớ $\cos\varphi=\sqrt{1-\frac{1}{16}}=\frac{\sqrt{15}}{4}$, và $\cot\!\left(\arcsin\frac{1}{4}\right)=\cot\varphi=\frac{\cos\varphi}{\sin\varphi}=\sqrt{15}$.

1.1.4.2. Hàm số $y = \arccos x$

$$\arccos x = y \Leftrightarrow \cos y = x, \ y \in [0; \ \pi]$$

VD. $\arcsin 0 = \frac{\pi}{2}$; $\arccos(-1) = \pi$; $\arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}$; $\arccos(-\frac{1}{2}) = \frac{2\pi}{3}$.

1.1.4.3. Hàm số $y = \arctan x$

$$\arctan x = y \Leftrightarrow \tan y = x, \ y \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$$

Quy ước

$$\arctan(+\infty) = \frac{\pi}{2}, \arctan(-\infty) = -\frac{\pi}{2}$$

VD.
$$\arctan(-1) = -\frac{\pi}{4}$$
; $\arctan \sqrt{3} = \frac{\pi}{3}$.

1.1.4.4. Hàm số $y = \operatorname{arccot} x$

$$\operatorname{arccot} x = y \Leftrightarrow \cot y = x, \ y \in (0; \pi)$$

Quy ước

$$\operatorname{arccot}(+\infty) = 0, \operatorname{arccot}(-\infty) = \pi$$

VD.
$$\operatorname{arccot}(-1) = \frac{3\pi}{4}$$
; $\operatorname{arccot}\sqrt{3} = \frac{\pi}{6}$.

1.2. Giới hạn của hàm số

1.2.1. Giới hạn tổng quát

Ta viết $\lim_{x\to a} f(x) = L$ và đọc là "giới hạn của f(x), khi x tiến đến a, bằng L" nếu ta có thể làm cho giá trị của f(x) rất gần với L bằng cách cho x tiến gần đến a (kể cả hai phía của a) nhưng không bằng a.

■ Định nghĩa

Xét hàm f xác định trên khoảng chứa điểm a. Ta nói rằng giới hạn của f(x) khi x tiến đến a là L, và ta viết $\lim_{x\to a} f(x) = L$ nếu với mọi $\varepsilon > 0$ tồn tại $\delta > 0$ thỏa mãn:

nếu
$$0 < |x - a| < \delta$$
 thì $|f(x) - L| < \varepsilon$.

1.2.2. Giới hạn một phía

Ta viết $\lim_{x\to a^-} f(x) = L$ và đọc là "giới hạn bên trái của f(x) khi x tiến đến a bằng L" nếu ta có thể làm cho giá trị của f(x) rất gần với L bằng cách cho x tiến sát đến a và x nhỏ hơn a. Tương tự, nếu ta cho x tiến đến (và lớn hơn) a, ta được "giới hạn bên phải của f(x) khi x tiến đến a bằng a0 và viết là $\lim_{x\to a^+} f(x) = L$ 0.

- Chú ý. Ký hiệu " $x \to a^-$ " nghĩa là ta chỉ xét x < a, và " $x \to a^+$ " nghĩa là x > a.
- Định nghĩa
- $\lim_{x \to a^-} f(x) = L$ nếu với mọi $\varepsilon > 0$ tồn tại $\delta > 0$ thỏa mãn:

nếu
$$a - \delta < x < a \,$$
 thì $\mid f(x) - L \mid < \varepsilon$.

• $\lim_{x\to a^+} f(x) = L$ nếu với mọi $\varepsilon>0$ tồn tại $\delta>0$ thỏa mãn:

nếu
$$a < x < a + \delta$$
 thì $\mid f(x) - L \mid < \varepsilon$.

■ Định lý

$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

1.2.3. Giới hạn vô cùng

Xét hàm f(x) xác định trên khoảng chứa điểm a. Khi đó, $\lim_{x\to a} f(x) = -\infty$ hay $\lim_{x\to a} f(x) = +\infty$ có nghĩa là giá trị tuyệt đối của f(x) vô cùng lớn khi x tiến đến a, nhưng khác a. Có 4 dạng sau

■ Định nghĩa

• Giả sử hàm số f xác định trên khoảng chứa điểm a . Khi đó $\lim_{x\to a} f(x) = +\infty$ có nghĩa là với mọi giá trị dương M tồn tại δ thỏa mãn

nếu
$$0 < |x - a| < \delta$$
 thì $f(x) > M$.

• Giả sử hàm số f xác định trên khoảng chứa điểm a. Khi đó $\lim_{x\to a} f(x) = -\infty$ có nghĩa là với mọi giá trị âm N tồn tại δ thỏa mãn

nếu
$$0 < |x - a| < \delta$$
 thì $f(x) < N$.

1.2.4. Quy tắc giới hạn

Giả sử k là hằng số và $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$ tồn tại. Khi đó

1)
$$\lim_{x \to a} [k.f(x)] = k. \lim_{x \to a} f(x)$$

2)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

3)
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

4)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ n\'eu } \lim_{x \to a} g(x) \neq 0$$

■ Định lý

Nếu $f(x) \leq g(x)$ khi x tiến đến a ($x \neq a$) và $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ tồn tại thì $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

Định lý kẹp giữa

Nếu $f(x) \leq h(x) \leq g(x)$ khi x tiến đến a ($x \neq a$) và $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$ thì $\lim_{x \to a} h(x) = L$.

■ Chú ý

$$\boxed{\frac{1}{0^{+}} = +\infty, \, \frac{1}{0^{-}} = -\infty, \, \frac{1}{\pm \infty} = 0}$$

■ Một số kết quả giới hạn cần nhớ

1)
$$\lim_{\alpha(x)\to 0} \frac{\sin\alpha(x)}{\alpha(x)} = \lim_{\alpha(x)\to 0} \frac{\tan\alpha(x)}{\alpha(x)} = 1$$

2)
$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} = e$$

3)
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n, \ n \in \mathbb{Z}^+$$

4)
$$\lim_{x \to a} \left\{ [f(x)]^{g(x)} \right\} = \left[\lim_{x \to a} f(x) \right]^{\lim_{x \to a} g(x)}$$
 nếu $\lim_{x \to a} f(x) > 0$

5)
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$$
, $n\in\mathbb{Z}^+$ (nếu n lẻ, ta giả sử rằng $\lim_{x\to a} f(x)>0$)

6)
$$\lim_{x\to +\infty} \frac{\ln x}{x^{\alpha}} = \lim_{x\to +\infty} \frac{x^{\alpha}}{\beta^x} = 0 \text{ n\'eu } \alpha \geq 1, \ \beta > 1.$$

1.2.5. Một số ví dụ

VD 1. Cho hàm $f(x) = \begin{cases} 4 - x \\ \sqrt{x} \end{cases}$	$\frac{-2x}{x-2}$, $x < 2$, xét sự tồn tại của $\lim_{x \to 2} f(x)$.
VD 2 Chứng tổ $\lim_{x\to 0} 2x+1$	$\frac{2}{2}$ không tồn tại
VD 2. Chứng tổ $\lim_{x \to -6} \frac{2x+1}{\mid x+6 \mid}$	Kilong ton tại.
VD 3. Chứng tổ rằng $\lim_{x\to 0} x^2$	$\sin\frac{1}{x} = 0.$
VD 4. Tính $L = \lim_{x \to -\infty} \left(2x - \frac{1}{x}\right)$	$\sqrt{x^2-3x}$.
<i>1</i> →−∞ (

VD 5. Tính $L = \lim_{x \to 2} \frac{x - \sqrt{4x + 1 + 1}}{x - 2}$.
VD 6. Tính $L = \lim_{x \to +\infty} \left(\sqrt{2x^2 - x} - x\sqrt{2} \right)$.
VD 7. Tính $L = \lim_{x \to -\infty} \left(\sqrt{3x^2 - 2} + x \right)$.
VD 8. Tính $L = \lim_{x \to 1} \frac{\sqrt{5x - 1} - \sqrt[3]{8x}}{x - 1}$.
VD 9. Tính $L=\lim_{x o -\infty} \biggl(-rac{\sqrt{4x^2+3}}{\sqrt[3]{x^3-2}}\biggr)^{rac{2x}{3x-1}}.$

Bài 2. HÀM SỐ LIÊN TỤC VÀ TIỆM CẬN CỦA ĐỒ THỊ

2.1. Hàm số liên tục

2.1.1. Định nghĩa

Hàm số f được gọi là liên tực tại điểm a nếu

$$\lim_{x \to a} f(x) = f(a).$$

3)
$$\lim_{x \to a} f(x) = f(a)$$
.

2.1.2. Liên tục một phía

■ Định nghĩa

Hàm số f được gọi là liên tục bên phải tại điểm a nếu $\lim_{x\to a^+} f(x) = f(a)$, và liên tục bên trái tại điểm a nếu $\lim_{x\to a^+} f(x) = f(a)$.

VD 3. Chứng tỏ hàm số sau không liên tục bên phả	i tại $x=0$, nhưng liên tục bên trái tại $x=0$:
[

$$f(x) = \begin{cases} \cos x, & x < 0 \\ 1, & x = 0 \\ \sin x, & x > 0 \end{cases}$$

.....

2.1.3. Liên tục trên khoảng

■ Định nghĩa

Hàm số f được gọi là liên tực trên khoảng (a;b) nếu f liên tực tại mọi điểm thuộc (a;b). (Nếu f liên tực phải tại a và liên tực trái tại b thì f liên tực trên đoạn [a;b]).

VD 4. Chứng tỏ $f(x) = 1 - \sqrt{1 - x^2}$ liên tục trên đoạn [-1; 1].

......

2.1.4. Các định lý

■ Định lý 1

Nếu f và g liên tục tại a và k là hằng số thì k.f, $f\pm g$, f.g, $\frac{f}{g}$ ($g(a)\neq 0$) cũng liên tục tại a .

■ Định lý 2

- Mọi đa thức đều liên tục trên $\mathbb{R}=(-\infty;+\infty)$.
- Mọi hàm số sơ cấp đều liên tục trên miền xác định của nó.

■ Định lý 3

Nếu hàm f liên tục tại b và $\lim_{x\to a}g(x)=b$ thì $\lim_{x\to a}f(g(x))=f(b)$. Nghĩa là

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

VD 5. Tính
$$\lim_{x\to 1} \arcsin\left(\frac{\sqrt{x}-1}{x-1}\right)$$
.

.....

.....

2.2. Tiệm cận của đồ thị

2.2.1. Tiệm cận đứng

■ Định nghĩa

Đường thẳng x=a được gọi là tiệm cận đứng của đồ thị hàm số y=f(x) nếu

$$\lim_{x \to a} f(x) = \pm \infty$$
 hoặc $\lim_{x \to a^{\pm}} f(x) = \pm \infty$.

 $\mathbf{VD.} \ \text{Do} \ \lim_{x \to 2^-} \frac{3x+1}{x-2} = -\infty \ \text{ và } \lim_{x \to 2^+} \frac{3x+1}{x-2} = +\infty \text{, nên } x=2 \ \text{là tiệm cận đứng của đồ thị hàm số}$

$$y = \frac{3x+1}{x-2}.$$

VD 6. Tìm tất cả các tiệm cận đứng của đồ thị hàm số $f(x) = \frac{\sqrt{4-x^2}}{x^2+2x-3}$.

2.2.2. Tiệm cận ngang

Định nghĩa

Đường thẳng y=L được gọi là tiệm cận ngang của đồ thị hàm số y=f(x) nếu

$$\lim_{x \to -\infty} f(x) = L$$
 hoặc $\lim_{x \to +\infty} f(x) = L$.

■ Chú ý

Đường cong y = f(x) có miền xác định đóng thì không có tiệm cận ngang.

Chẳng hạn, đường cong $y = \frac{\ln(1-x^2)}{x+2}$ không có tiệm cận ngang.

VD 7. Tìm tất cả các tiệm cận ngang của đồ thị hàm số $f(x) = \frac{\sqrt{x^2+1}}{x-1}$.

.....

2.2.3. Tiệm cận xiên

■ Định nghĩa

Đường thẳng y = ax + b được gọi là tiệm cận xiên của đồ thị hàm số y = f(x) nếu

$$\lim_{x\to\pm\infty}\frac{f(x)}{r}=a\quad \text{và}\quad \lim_{x\to\pm\infty}\Big[f(x)-ax\Big]=b\,.$$

VD 8. Tìm tất cả các tiệm cận xiên của đồ thị hàm số $f(x) = \frac{3x^2 - 2x + 4}{x - 1}$.

Đoàn Vương Nguyên	Bài giảng Toán Cao cấp A1 Đại học
	••••••
■ Chú ý. Ta viết $f(x) = \frac{3x^2 - 2x + 4}{x - 1} = 3x + 1 + \frac{5}{x - 1}$ và $\frac{5}{x - 1}$	$\xrightarrow{x \to \pm \infty} 0$.
Vì vậy, tiệm cận xiên cần tìm là $y = 3x + 1$.	
VD 9. Tìm tất cả các tiệm cận xiên của đồ thị hàm số $y = \sqrt[3]{x^2(x-1)}$.	
VD 10. Tìm tất cả các tiệm cận xiên hoặc ngang của đồ thị hàm số $y=x$	$+\sqrt{x^2-4x+5}.$
	••••••
Bài 3. ĐẠI LƯỢNG VÔ CÙNG BÉ	
3.1. Các định nghĩa	
3.1.1. Định nghĩa 1	
Đại lượng $\alpha(x)$ được gọi là $v\hat{o}$ cùng $b\acute{e}$ (viết tắt là VCB) khi x tiến	đến a nếu $\lim_{x \to a} \alpha(x) = 0$.
VD. $\alpha(x) = \tan^3 \left(\sin \sqrt{1-x} \right)$ là VCB khi $x \to 1^-$; $\beta(x) = \frac{1}{\ln^2 x}$ là VCB	B khi $x \to +\infty$.
3.1.2. Định nghĩa 2	
Giả sử $\alpha(x),\ \beta(x)$ là hai vô cùng bé khi x tiến đến a . Ta có:	
• $\alpha(x)$ là vô cùng b é b ậc cao hơn $\beta(x),$ ký hiệu là $\alpha(x)=O(\beta(x)),$ nếu	$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 0.$
• $\alpha(x)$ là vô cùng bé <i>cùng bậc</i> với $\beta(x)$ nếu $0 \neq \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} \neq \pm \infty$.	
• $\alpha(x)$ là vô cùng bé <i>tương đương</i> với $\beta(x)$, ký hiệu là $\alpha(x)\sim\beta(x)$, nếu	$ \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 1. $

VD

- $1 \cos x$ là vô cùng bé cùng bậc với x^2 khi $x \to 0$, vì $\lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}$.
- $\sin^2 3(x-1) \sim 9(x-1)^2$ khi $x \to 1$.

3.2. Tính chất

Giả sử $\alpha_i(x)$ (i=1,2,3,4) là các vô cùng bé khi x tiến đến a. Ta có:

- 1) $\alpha_1(x) \sim \alpha_2(x) \Leftrightarrow \alpha_1(x) \alpha_2(x) = O(\alpha_1(x)) = O(\alpha_2(x))$
- 2) Nếu $\alpha_1(x) \sim \alpha_2(x)$ và $\alpha_2(x) \sim \alpha_2(x)$ thì $\alpha_1(x) \sim \alpha_2(x)$
- 3) Nếu $\alpha_1(x) \sim \alpha_2(x)$ và $\alpha_2(x) \sim \alpha_4(x)$ thì $\alpha_1(x)\alpha_2(x) \sim \alpha_2(x)\alpha_4(x)$
- 4) Nếu $\alpha_1(x) = O(\alpha_2(x))$ thì $\alpha_1(x) + \alpha_2(x) \sim \alpha_2(x)$.

3.3. Quy tắc ngắt bỏ vô cùng bé cấp cao

Nếu $\alpha(x)$ và $\beta(x)$ là tổng của những vô cùng bé khác cấp khi $x \to a$ thì $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)}$ bằng giới hạn tỉ số của vô cùng bé $c\hat{a}p$ thấp nhất của $\alpha(x)$ và $\beta(x)$.

VD 1. Tính $L = \lim_{x \to 0} \frac{x^3 - \cos x + 1}{x^4 + x^2}$.

• Ghi nhớ. Khi $x \to 0$, ta có các công thức vô cùng bé tương đương sau:

- 1) $\sin x \sim x$
- 2) $\tan x \sim x$
- 3) $\arcsin x \sim x$
- 4) $\arctan x \sim x$

- 5) $1 \cos x \sim \frac{x^2}{2}$ 6) $e^x 1 \sim x$ 7) $\ln(1+x) \sim x$ 8) $\sqrt[n]{1+x} 1 \sim \frac{x}{n}$.

■ Chú ý

- 1) Nếu u(x) là vô cùng bé khi $x \to 0$ thì ta có thể thay x bởi u(x) trong 8 công thức trên.
- 2) Các công thức vô cùng bé tương đương trên không áp dụng được cho hiệu hoặc tổng của các vô cùng bé nếu chúng làm triệt tiêu tử hoặc mẫu của phân thức.

VD.
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2} = \lim_{x \to 0} \frac{(e^x - 1) + (e^{-x} - 1)}{x^2} = \lim_{x \to 0} \frac{x + (-x)}{x^2} = 0$$
 (sai!).

Kết quả đúng là $\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{x^2} = 1$ (xem bài quy tắc L'Hospital ở chương 2).

VD 2. Tính
$$L = \lim_{x \to 0} \frac{\ln(1 - 2x \sin^2 x)}{\sin x^2 \cdot \tan x}$$
.

Đoàn Vương Nguyên	Bài giảng Toán Cao cấp A1 Đại học
$\sqrt[3]{x+1} + \arctan^2 x -$	1
VD 3. Tính $L = \lim_{x \to 0} \frac{\sqrt[3]{x+1 + \arctan^2 x} - \cos x}{\cos^3 x - \cos x + 2x}$	1 .
005 2 005 2 2	
	2
${f VD}$ 4. Cho hàm số $y=f(x)$ được xác định	
Khi $x \to 0$, chứng minh rằng $f(x) \sim$	$\frac{x^2}{x^2}$
Kin $x \to 0$, enough minimag $f(x) \to 0$	4
, ,	
VD 5. Tìm giá trị của α để hàm số sau đây 1	liên tục tại $x = 0$:
	$3\tan^2 x + \sin^2 \sqrt{x}$
$f(x) = \left\{\right.$	$\frac{3\tan^2 x + \sin^2 \sqrt{x}}{2x}, \ x > 0$ $\alpha \qquad , \ x \le 0$
	$\alpha \qquad \qquad , \ x \le 0$
-	
VD 6. Tìm giá trị của α để hàm số sau đây 1	liên tục tại $x = 0$:
$f(x) = \int$	$\frac{\ln(\cos x)}{\arctan^2 x + 2x^2}, x \neq 0$ $2\alpha - 3 \qquad , x = 0$
$f(x) = \frac{1}{x}$	$2a - 2 \qquad a = 0$
	x = 0 , $x = 0$

Chương 2. PHÉP TÍNH VI PHÂN HÀM SỐ MỘT BIẾN

Bài 1. Đạo hàm và Vi phân

Bài 2. Định lý Giá trị trung bình và quy tắc L'Hospital

Bài 3. Giá trị lớn nhất – Giá trị nhỏ nhất

Bài 4. Công thức Taylor

Bài 1. ĐẠO HÀM VÀ VI PHÂN

1.1. Các định nghĩa

1.1.1. Định nghĩa 1

Đạo hàm của hàm số f tại a, ký hiệu bởi f'(a), là

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

nếu giới hạn trên tồn tại.

Tương tự, nếu thay a bởi x, ta được

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Định lý

Nếu f có đạo hàm (còn được gọi là kha vi) tại a thì f liên tục tại a

Chứng minh. Vì f khả vi tại a, nên ta có:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Mặt khác

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}.(x - a) (x \neq a)$$

$$\Rightarrow \lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.\lim_{x \to a} (x - a) = f'(a).0 = 0.$$

$$\mathbf{V}\mathbf{\hat{a}y},\ \lim_{x\to a} f(x) = \lim_{x\to a} \{f(a) + [f(x) - f(a)]\} = \lim_{x\to a} f(a) + \lim_{x\to a} [f(x) - f(a)] = f(a) \blacksquare$$

1.1.2. Định nghĩa 2

• Đạo hàm bên phải của f tại a được xác định bởi

$$f'_{+}(a) = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h}$$

nếu giới hạn trên tồn tại.

• Đạo hàm bên trái của f tại a được xác định bởi

$$f'_{-}(a) = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h}$$

nếu giới hạn trên tồn tại.

■ Chú ý

Hàm số f có đạo hàm (khả vi) tại a nếu và chỉ nếu $f'_{-}(a) = f'_{+}(a)$.

VD 1. Chứng tỏ rằng hàm số sau đây liên tục tại x = 1, nhưng không khả vi tại x = 1:

$$f(x) = \begin{cases} x + 1, & x \le 1 \\ 2x^2, & x > 1 \end{cases}$$

1.1.3. Định nghĩa 3

- Hàm số được gọi là khả vi trên một khoảng nếu nó khả vi tại mọi điểm thuộc khoảng đó.
- Hàm số f được gọi là khả vi trên đoạn [a;b] nếu f khả vi trên khoảng (a;b) và tồn tại $f'_+(a)$ và $f'_-(b)$.
- Hàm số được gọi là khả vi liên tục nếu nó có đạo hàm và đạo hàm đó liên tục.
 - Ghi nhớ

Phương trình tiếp tuyến của đường cong y = f(x) tại điểm (a; f(a)) được cho bởi công thức

$$y - f(a) = f'(a)(x - a)$$

1.1.4. Định nghĩa 4

Nếu đặt $\Delta x = dx$ là số gia của x thì $\Delta y = f(x + \Delta x) - f(x)$ được gọi là số gia của y = f(x). Nếu hàm số f khả vi liên tục trên một khoảng chứa x thì

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$\Rightarrow \Delta y = f'(x)dx + \varepsilon dx \ (\varepsilon \to 0 \text{ khi } \Delta x \to 0).$$

Đại lượng

$$dy = f'(x)dx$$

được gọi là vi phân của y hay f(x).

■ Chú ý

$$dy = f'(x)dx \Leftrightarrow f'(x) = \frac{dy}{dx}$$

1.2. Quy tắc đạo hàm

1.2.1. Các quy tắc tính đạo hàm

Giả sử f, g và h là các hàm số khả vi, ta có:

1)
$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x), \text{ hay}$$
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

2)
$$\frac{d}{dx}[C.f(x)] = C.\frac{d}{dx}f(x) \ (C \in \mathbb{R})$$
, hay
$$\overline{[Cf(x)]' = C.f'}$$

3)
$$\frac{d}{dx}[f(x)g(x)] = \frac{d}{dx}f(x).g(x) + f(x).\frac{d}{dx}g(x), \text{ hay}$$

$$[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)$$

$$d[f(x)] = \frac{d}{dx}f(x).g(x) - f(x).\frac{d}{dx}g(x)$$

4)
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{d}{dx} f(x) \cdot g(x) - f(x) \cdot \frac{d}{dx} g(x)}{[g(x)]^2}, \text{ hay}$$

$$\left[\frac{f(x)}{g(x)} \right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \left(g(x) \neq 0 \right)$$

5) Nếu
$$y=f(u)$$
 với $u=g(x)$ thì $\frac{dy}{dx}=\frac{dy}{du}.\frac{du}{dx}$, hay
$$\boxed{y'(x)=y'(u).u'(x)}$$

6) Nếu
$$y = f(x)$$
 và $x = f^{-1}(y)$ thì $\frac{dy}{dx} = \frac{1}{dx / dy}$, hay

$$y'(x) = \frac{1}{x'(y)}$$

7) Nếu
$$y=f(x)$$
 cho bởi $x=\varphi(t)$ và $y=\psi(t)$ thì $\frac{dy}{dx}=\frac{dy \ / \ dt}{dx \ / \ dt}=\frac{\psi'(t)}{\varphi'(t)},$ hay
$$\boxed{y'(x)=\frac{y'(t)}{x'(t)}}$$

1.2.2. Đao hàm của các hàm số sơ cấp

1) (-\alpha)/\alpha-1	$(^{\alpha})'$ $^{\alpha-1}$
$1) (x^{\alpha})' = \alpha x^{\alpha - 1}$	$(u^{\alpha})' = \alpha . u' . u^{\alpha - 1}$
$2)\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
$3) (\sin x)' = \cos x$	$(\sin u)' = u' \cdot \cos u$
$4) (\cos x)' = -\sin x$	$(\cos u)' = -u'.\sin u$
5) $(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$	$(\tan u)' = \frac{u'}{\cos^2 u} = u'(1 + \tan^2 u)$
6) $(\cot x)' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$	$(\cot u)' = -\frac{u'}{\sin^2 u} = -u'(1 + \cot^2 u)$
$7) (e^x)' = e^x$	$(e^u)' = u'e^u$
$8) (a^x)' = a^x . \ln a$	$(a^u)' = u'.a^u.\ln a$
$9) \left(\ln x \right)' = \frac{1}{x}$	$\left(\ln u \right)' = \frac{u'}{u}$
$10) \left(\log_a x \right)' = \frac{1}{x \cdot \ln a}$	$\left(\log_a u \right)' = \frac{u'}{u \cdot \ln a}$
11) $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$
12) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	$(\arccos u)' = -\frac{u'}{\sqrt{1 - u^2}}$

13) $(\arctan x)' = \frac{1}{1+x^2}$	$(\arctan u)' = \frac{u'}{1+u^2}$
14) $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$	$(\operatorname{arccot} u)' = -\frac{u'}{1+u^2}$

1.2.3. Các ví dụ
VD 2. Tính $df(-1)$ của hàm số $f(x) = x^2 e^{3x}$.
${f VD}$ 3. Tính các đạo hàm một phía của hàm số sau tại $x=4$:
$f(x) = \begin{cases} \frac{1}{5-x}, & x < 4\\ 5-x, & x \ge 4 \end{cases}$
$ \begin{cases} 5 - x, & x \ge 4 \end{cases} $
VD 4. Tính vi phân của hàm số $y = 2^{\ln(\arcsin x)}$.
VD 5. Tính $y'(x)$ của hàm số cho bởi $x=2t^2-1,\ y=4t^3\ (t\neq 0)$.

 ${\bf VD}$ 6. Tính $y'(x_{_{\! 0}})\,$ tại $\,x_{_{\! 0}}=1\,$ của hàm số cho bởi $\,x=e^t,\,y=t^2-2t\,.$

1.3. Đạo hàm của hàm số ẩn

1.3.1. Định nghĩa

Xét phương trình F(x,y)=0 (*). Nếu y=y(x) là một hàm số sao cho khi thay y bởi y(x) vào (*), ta được đẳng thức đúng trong một khoảng nào đó thì y(x) được gọi là hàm số ẩn xác định bởi (*).

VD. Xét phương trình $x^2 + y^2 = 1$, ta xác định được hai hàm số ẩn sau:

$$y = \sqrt{1-x^2} \text{ n\'eu } -1 < x < 1 \text{ , và khi đó } 0 < y \le 1;$$

$$y = -\sqrt{1-x^2} \text{ n\'eu } -1 < x < 1 \text{ , và khi đó } -1 \le y < 0 \text{ .}$$

1.3.2. Công thức và các ví dụ

Nếu y(x) là hàm số ẩn được xác định bởi F(x,y) = 0 thì

$$y'(x) = -\frac{dF(x,y) / dx}{dF(x,y) / dy}$$

VD 7. T	ính $y'(x)$, với	y(x) được xác	định bởi $\ln \sqrt{x^2}$	$\overline{+y^2} = \arctan \frac{y}{x}$	
				• • • • • • • • • • • • • • • • • • • •	
VD 8. T	ính $y'(0)$, với	y(x) được xác	định bởi $y^3 = e^x$		
• • • • • • • • •					
•••••					

■ Chú ý

Ta có thể xem hàm ẩn y(x) như là hàm số hợp u(x), và áp dụng công thức đạo hàm của hàm số hợp.

VD. Đạo hàm hai vế $y^3 = e^x y + x \ln y$ theo x, ta được

$$3y'y^{2} = e^{x}y + e^{x}y' + \ln y + \frac{xy'}{y} \Rightarrow y'(x) = \frac{e^{x}y^{2} + y \ln y}{3y^{3} - e^{x}y - x}.$$

1.4. Đạo hàm cấp cao

• Xét hàm f khả vi thì f' cũng là một hàm số. Nếu f' có đạo hàm, ký hiệu là (f')' = f'', thì hàm số mới f'' được gọi là đạo hàm cấp hai của f. Xét y = f(x), ta được:

$$y'' = f''(x) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$

• Đạo hàm cấp ba $\,f'''\,$ là $\,f'''=(f'')'\,.$ Xét $\,y=f(x)\,,$ ta được:

$$y''' = f'''(x) = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$

• Tổng quát, đạo hàm cấp $n \ (n \geq 4)$ của f , ký hiệu $f^{(n)}$, là $f^{(n)} = (f^{(n-1)})'$. Xét $y = f(x)$, ta được:
$y^{(n)}=f^{(n)}(x)=rac{d^ny}{dx^n}$
VD 9. Cho hàm số $f(x) = \frac{x^2}{e^x}$, tính $f'''(0)$.
VD 10. Cho hàm số $f(x) = \cos^2 x$, tính $f^{(4)}(\pi)$.
VD 11. Cho hàm số $f(x) = \ln(\cos x)$, tính $d^4 f(0)$.
VD 12. Tính $f^{(4)}(0)$, với $f(x) = \ln \sqrt[3]{3x+1}$.
VD 13. Tính $f'''(1)$, với $f(x) = \frac{1}{x^2 - 3x - 4}$.
VD 14. Cho hàm số $y = (3-x)^{n+1}$, tính $y^{(n)}$.
VD 15. Cho hàm số $y = \frac{x+3}{x^2-3x+2}$, tính $d^{(n)}y$.

Bài 2. ĐỊNH LÝ GIÁ TRỊ TRUNG BÌNH VÀ QUY TẮC L'HOSPITAL

2.1. Định lý giá trị trung bình (tham khảo)

2.1.1. Bổ đề Fermat

Giả sử hàm số $f:(a,b)\to\mathbb{R}$ đạt cực trị địa phương tại $c\in(a,b)$. Nếu f khả vi tại c thì f'(c)=0.

2.1.2. Định lý Rolle

Nếu hàm f liên tục trên [a,b], khả vi trên (a,b) và f(a)=f(b) thì tồn tại $c\in(a,b)$ thỏa mãn f'(c)=0.

2.1.3. Định lý giá trị trung bình

Nếu hàm số f liên tục trên [a,b], khả vi trên (a,b) thì tồn tại $c \in (a,b)$ thỏa mãn $f'(c) = \frac{f(b) - f(a)}{b-a}$.

2.1.4. Định lý Cauchy

Nếu hai hàm số f và g liên tục trên [a,b], khả vi trên (a,b) thì tồn tại $c \in (a,b)$ thỏa mãn

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)} \ (g(a) \neq g(b)).$$

2.2. Quy tắc L'Hospital

Nếu $\lim_{x\to x_0} f(x)$ và $\lim_{x\to x_0} g(x)$ đồng thời bằng 0 (hoặc bằng vô cùng) thì $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ được gọi là dạng vô định 0 / 0 (hoặc ∞ / ∞). Các dạng giới hạn này được giải quyết nhờ quy tắc L'Hospital sau

• Nếu f(x) và g(x) khả vi trên (a,b) (có thể không khả vi tại x_0) và $g'(x) \neq 0$ với $x \neq x_0$ thì

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

■ Chú ý

Các dạng vô định: $0.\infty$, $\infty^{\scriptscriptstyle 0}$, $0^{\scriptscriptstyle 0}$, $1^{\scriptscriptstyle \infty}$, và $\infty-\infty$ đều có thể biến đổi để áp dụng quy tắc L'Hospital.

VD 1. Tính $L = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2}$.	
VD 2. Tính $L = \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \cdot \arctan^2 x}$.	

VD 3. Tinh $L = \lim_{x \to 0^+} (x^3 \ln x) (0 \times \infty)$.
$\begin{pmatrix} & 1 \end{pmatrix}$
VD 4. Tính $L = \lim_{x \to 0} \left[\cot x - \frac{1}{x} \right] (\infty - \infty).$
VD 5. Tính $L = \lim_{x \to \infty} x^{\frac{1}{x-1}}$ (1 $^{\infty}$).
VD 3. Timil $L = \min_{x \to 1} x^{x-1}$ (1).
$\frac{1}{2}$
VD 6. Tính $L = \lim_{x \to +\infty} (x + 3^x)^{\frac{1}{x}} (\infty^0)$.
VD 7 Tiph $I = \lim_{n \to \infty} (n - \ln^2 n)$ (as $n \to \infty$)
VD 7. Tính $L = \lim_{x \to +\infty} (x - \ln^2 x) (\infty - \infty).$

Bài 3. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT

3.1. Cực trị địa phương và điểm uốn

3.1.1. Hàm số đơn điệu

■ Định lý 1

Nếu f'(x) > 0 trên (a,b) thì f đồng biến trên (a,b); f'(x) < 0 trên (a,b) thì f nghịch biến trên (a,b).

■ Chú ý

Hàm số f đồng biến (hoặc nghịch biến) trên (a,b) thì f được gọi là đơn điệu trên (a,b).

VD 1. Tìm các khoả	ing đơn điệu của hà	$\mathbf{m} \mathbf{s} \hat{\mathbf{o}} y = \ln(x^2 + 1)$	•	
				• • • • • • • • • • • • • • • • • • • •
				• • • • • • • • • • • • • • • • • • • •

.....

VD 2. Tìm các khoảng đơn điệu của hàm số $f(x) = \frac{x^2 + 1}{(x-1)^2}$.	

VD 3. Tìm các khoảng đơn điệu của hàm số $y = \frac{1}{\sqrt{x^2 - 2x}}$.

 ${f VD}$ 4. Tìm các khoảng đơn điệu của hàm số $y=y(x)\colon x=t^3,\ y=t^3-3t^2$.

.....

.....

3.1.2. Cực trị địa phương

Định nghĩa

Giả sử hàm số f(x) liên tục trong (a;b) chứa x_0 .

- Nếu $f(x_0) < f(x)$, $\forall x \in (a;b) \setminus \{x_0\}$ thì hàm số f(x) đạt *cực tiểu* tại x_0 .
- Nếu $f(x_{_0})>f(x)$, $\forall x\in(a;b)\setminus\{x_{_0}\}$ thì hàm số f(x) đạt cực đại tại $x_{_0}$.

■ Định lý 2

Giả sử f(x) có đạo hàm đến cấp $2n \ (n \in \mathbb{Z}^+)$ trên (a;b) chứa x_0 thỏa $f'(x_0) = \ldots = f^{(2n-1)}(x_0) = 0$ và $f^{(2n)}(x_0) \neq 0$. Khi đó:

- Nếu $f^{(2n)}(x_0) > 0$ thì f(x) đạt cực tiểu tại x_0 ,
- Nếu $f^{(2n)}(x_0) < 0$ thì f(x) đạt cực đại tại x_0 .

VD 5.	Tìm	cực trị	của hà	im sô <i>f</i>	f(x) = -	$-x^{\circ}-2x$	$x^3 + 3$.						
• • • • • •		• • • • • •	• • • • • • •	• • • • • •		• • • • • • •	• • • • • • •	• • • • • • • • •	• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • •
• • • • • •		• • • • • •	• • • • • •	• • • • • •	• • • • • • •	• • • • • • •	• • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • • •	• • • • • • • •
• • • • • •		•••••	• • • • • •	• • • • • •	• • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • • •	•••••	• • • • • • •	• • • • • • • •

3.1.3. Điểm uốn

• Định nghĩa

- Nếu mọi tiếp tuyến của đồ thị (C): y=f(x) đều nằm phia duới (tương tự, phia trên) (C) trên (a;b) thì đồ thị (C) được gọi là $l\~om$ (tương tự, $l\~oi$) trên (a;b).
- Điểm $M_{_0}\in (C)$: y=f(x) nằm giữa phần lõm và lồi được gọi là $\emph{diểm}$ uốn của đồ thị (C) .

■ Định lý

- Nếu f''(x) > 0 (hay f''(x) < 0) với mọi $x \in (a;b)$ thì đồ thị hàm số y = f(x) $l \tilde{o} m$ (hay $l \hat{o} i$) trên (a;b).
- Nếu $f''(x_0)=0$ và f''(x) đổi dấu khi x chuyển từ trái sang phải qua x_0 thì $M_0(x_0;y_0)$ là điểm uốn của đồ thị hàm số y=f(x).

VD. Tim cac khoang loi, lom va diem uon cua do thi ham so $y = \arccos x$.	
	•••••
•••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••	•••••

3.2. Giá trị lớn nhất – Giá trị nhỏ nhất

3.2.1. Định nghĩa

Xét hàm số y = f(x) và $X \subset D_{_{\! f}}.$

• Số M được gọi là $\emph{giá trị lớn nhất}$ của hàm số f(x) trên X , ký hiệu $M = \max_{x \in X} f(x)$, nếu

$$\exists x_{\scriptscriptstyle 0} \in X: f(x_{\scriptscriptstyle 0}) = M \ \, \mathrm{va} \ \, f(x) \leq M, \, \, \forall x \in X \, .$$

• Số m được gọi là $\emph{giá trị nhỏ nhất}$ của hàm số f(x) trên X , ký hiệu $m=\min_{x\in X}f(x)$, nếu

$$\exists x_{\scriptscriptstyle 0} \in X: f(x_{\scriptscriptstyle 0}) = m \ \, \mathrm{va} \ \, f(x) \geq m, \, \, \forall x \in X \, .$$

- Chú ý
- \bullet Hàm số có thể không đạt max hoặc min trên $X\subset D_{\scriptscriptstyle f}$.
- $\forall x \in X : \min_{x \in X} f(x) \le f(x) \le \max_{x \in X} f(x)$.

3.2.2. Phương pháp tìm max - min

• Hàm số liên tục trên đoạn [a; b]

Xét hàm số y=f(x) liên tục trên [a;b]. Để tìm $\max_{x\in[a;b]}f(x)$ và $\min_{x\in[a;b]}f(x)$, ta thực hiện các bước sau:

- Bước 1. Giải f'(x)=0 . Giả sử có n nghiệm $x_1,...,x_n\in [a;b]$. (loại các nghiệm nằm ngoài [a;b]).
- Bước 2. Tính các giá trị f(a), $f(x_1)$,..., $f(x_n)$, f(b).
- Bước 3. Giá trị lớn nhất, nhỏ nhất trong các giá trị đã tính ở bước 2 là các giá trị max, min cần tìm.

VD 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $f(x) = \frac{zx}{1}$, -
	• • • • • • • • • • • • • • • • • • • •

- Chú ý
- Nếu đề bài chưa cho đoạn [a;b] thì ta phải tìm MXĐ của hàm số trước khi làm bước 1.
- Ta có thể đổi biến t=t(x) và viết y=f(x)=g(t(x)). Nếu gọi T là miền giá trị của hàm t(x) thì $\max_{x\in X}f(x)=\max_{t\in T}g(t)\,,\; \min_{x\in X}f(x)=\min_{t\in T}g(t)\,.$

VD 7. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $f(x) = \sqrt{-x^2 + 5x + 6}$.

${f VD}$ 8. Tìm max, min của hàm số $f(x)=$	
• • • • • • • • • • • • • • • • • • • •	
•••••	
•••••	
• • • • • • • • • • • • • • • • • • • •	

• Hàm số liên tục trên khoảng (a; b)

Xét hàm số y=f(x) liên tục trên (a;b) (a,b) có thể là ∞). Để tìm $\max_{x\in(a;b)}f(x)$ và $\min_{x\in(a;b)}f(x)$, ta thực hiện các bước:

- Bước 1. Giải f'(x)=0 . Giả sử có n nghiệm $x_1,...,x_n\in(a;b)$. (loại các nghiệm nằm ngoài (a;b)).
- Bước 2. Tính $f(x_1),...,\ f(x_n)$ và hai giới hạn $L_1=\lim_{x\to a^+}f(x),\ L_2=\lim_{x\to b^-}f(x)$.
- Bước 3. Kết luận:
 - 1) Nếu $\max\{f(x_1),...,f(x_n)\}>\max\{L_1,L_2\}$ thì $\max_{x\in(a;b)}f(x)=\max\{f(x_1),...,f(x_n)\}$;
 - 2) Nếu $\min\{f(x_{_{\! 1}}),...,f(x_{_{\! n}})\}<\min\{L_{_{\! 1}},L_{_{\! 2}}\}$ thì $\min_{x\in(a;b)}f(x)=\min\{f(x_{_{\! 1}}),...,f(x_{_{\! n}})\}$;
 - 3) Nếu không thỏa 1) (hoặc 2)) thì hàm số không đạt max (hoặc min).
 - Chú ý

Ta có thể lập bảng biến thiên của f(x) thay cho bước 3.

VD 9. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $f(x) = \frac{x^3}{x^2 - 1}$ trên khoảng $(1; +\infty)$.
•••••••••••••••••••••••••••••••••••••
VD 10. Tìm max, min của hàm số $f(x) = \frac{x}{\sqrt{x^2 + 2} - 1}$.

Bài 4. CÔNG THÚC TAYLOR

4.1. Công thức khai triển Taylor

Cho hàm số f(x) liên tục trên [a;b] có đạo hàm đến cấp n+1 trên (a;b) với $x, x_0 \in (a;b)$ ta có các khai triển sau

• Khai triển Taylor với phần dư Lagrange

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$
 với $c \in (a;b)$.

• Khai triển Taylor với phần dư Peano

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + O((x - x_0)^n)$$

• Khai triển Maclaurin

Khai triển Taylor với phần dư Peano tại $x_0=0\,$ được gọi là khai triển Maclaurin

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + O(x^{n})$$

Hay

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + O(x^n)$$

VD	1. K	Cha	i tri	iển	Ma	cla	urii	1 CI	ủа	f(x)	r) =	= 1	tar	$\mathbf{n} x$	đ	ếη	x^3										
• • • •																											
••••																											

4.2. Các khai triển Maclaurin cần nhớ

1)
$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + O(x^n)$$
.

2)
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + O(x^n)$$
.

3)
$$\ln(1+x) = \frac{x}{1} - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n!} + O(x^n)$$
.

4)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + O(x^{2n}).$$

5)
$$\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + O(x^{2n+1}).$$

6)
$$(1+x)^m = 1 + m\frac{x}{1!} + m(m-1)\frac{x^2}{2!} + \dots + m(m-1)\dots(m-n+1)\frac{x^n}{n!} + O(x^n)$$
.

■ Chú ý

Nếu u(x) là vô cùng bé khi $x \to 0$ thì ta có thể thay x trong các công thức trên bởi u(x).

VD 2. Tìm khai triển Maclaurin của hàm số $y = \frac{1}{x^2 - 3x + 1}$ đến x^3 .
Bài tập. Tìm khai triển Maclaurin của hàm số $y = \frac{4}{x^2 - 2x + 3}$ đến x^3 .
VD 3. Tìm khai triển Maclaurin của hàm số $y = \ln(1-2x^2)$ đến x^6 .
Bài tập. Tìm khai triển Maclaurin của hàm số $y = \ln(3 + 2x^2)$ đến x^6 .
${f VD}$ 4. Tìm khai triển Maclaurin của hàm số $y=2^x$ đến x^3 .
Bài tân . Tìm khai triển Maclaurin của hàm số $u=5^{(3x-2)^2}$ đến x^7

Đoàn Vương Nguyên	Bài giảng Toá	in Cao cấp A1 Đại học
VD 5. Tìm khai triển Maclaurin của hàm s	$y = e^{\sin x}$ đến x^3 .	
	•••••	•••••
	••••••	•••••
		•••••
4.3. Ứng dụng tính đạo hàm cấp c		
4.5. Ong dụng thín đạo năm cấp c)	
VD 6. Cho hàm $f(x) = x^3 \cos 2x$. Giá trị	a $f^{(7)}(0)$ là:	
$\mathbf{A} = \mathbf{f}^{(7)}(\mathbf{O}) = \mathbf{A} \mathbf{O} \qquad \mathbf{D} = \mathbf{f}^{(7)}(\mathbf{O}) = \mathbf{A} \mathbf{O}$	560. C. $f^{(7)}(0) = 3360$. D. $f^{(7)}(0) = 3360$.	(0) - 6720
A. $f^{**}(0) \equiv 480$. B. $f^{**}(0) \equiv$	$C. f^{(1)}(0) = 3300.$ D. $f^{(2)}(0)$	(0) = 0720.
		• • • • • • • • • • • • • • • • • • • •
		•••••
	•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••
VD 7. Cho hàm số $f(x) = \frac{1 + x + x^2}{1 - x + x^2}$, tír	$f^{(4)}(0)$	
$1 - x + x^2$	<i>j</i> (0).	
		•••••
•••••		• • • • • • • • • • • • • • • • • • • •
Bài tập. Cho hàm số $f(x) = \frac{5x^2 - 2x + 3}{x^2 - 1}$	$f(0) = f^{(7)}(0)$	
$\frac{x^2-1}{x^2-1}$	$\lim_{t\to\infty} f(t)$.	

Chương 3. PHÉP TÍNH TÍCH PHÂN HÀM MỘT BIẾN

Bài 1. Tích phân bất định

Bài 2. Tích phân xác định

Bài 3. Ưng dụng của tích phân xác định

Bài 4. Tích phân suy rộng

Bài 1. TÍCH PHÂN BẤT ĐỊNH

1.1. Định nghĩa

Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên khoảng (a;b), ký hiệu là $\int f(x)dx$, nếu $F'(x) = f(x), \forall x \in (a;b).$

■ Nhân xét

Nếu F(x) là một nguyên hàm của f(x) thì F(x) + C cũng là nguyên hàm của f(x), nghĩa là

$$\int f(x)dx = F(x) + C$$

Tính chất

1)
$$\int k.f(x)dx = k \int f(x)dx$$
, $k \in \mathbb{R}$; 2) $\int f'(x)dx = f(x) + C$;

$$2) \int f'(x)dx = f(x) + C;$$

3)
$$\frac{d}{dx} \int f(x) dx = f(x);$$

4)
$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx.$$

MỘT SỐ NGUYÊN HÀM CẦN NHỚ

1)
$$\int a.dx = ax + C, \ a \in \mathbb{R};$$

2)
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1;$$

$$3) \int \frac{dx}{x} = \ln|x| + C;$$

4)
$$\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C;$$

$$5) \int e^x dx = e^x + C ;$$

$$6) \int a^x dx = \frac{a^x}{\ln a} + C;$$

$$7) \int \cos x \, dx = \sin x + C;$$

8)
$$\int \sin x \, dx = -\cos x + C;$$

9)
$$\int \frac{dx}{\cos^2 x} = \tan x + C;$$

$$10) \int \frac{dx}{\sin^2 x} = -\cot x + C;$$

11)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$
;

11)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C;$$
 12) $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, \ a > 0;$

13)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C;$$
 14) $\int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C;$

14)
$$\int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C$$

15)
$$\int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C$$

15)
$$\int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C;$$
 16) $\int \frac{dx}{\sqrt{x^2 + a}} = \ln \left| x + \sqrt{x^2 + a} \right| + C;$

17)
$$\int \sqrt{x^2 + a} \ dx = \frac{x}{2} \sqrt{x^2 + a} + \frac{a}{2} \ln \left| x + \sqrt{x^2 + a} \right| + C$$
;

18)
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{|a|} + C.$$

1.2. Phương pháp đổi biến

1.2.1. Định lý

Nếu $\int f(x)dx = F(x) + C$ và hàm số $x = \varphi(t)$ khả vi thì $\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + C$.

VD 2. Tính tích phân $I = \int \frac{\cot x}{2\sin^4 x + 3} dx$.

1.2.2. Một số dạng tích phân đổi biến cần biết

• Dạng 1:
$$I = \int \frac{\alpha x + \beta}{(ax+b)^2} dx$$
.

Cách giải. Biến đổi $I = \int \left(\frac{p}{ax+b} + \frac{q}{(ax+b)^2}\right) dx$.

VD.
$$\int \frac{4x+3}{4x^2+4x+1} dx = \int \frac{2(2x+1)+1}{(2x+1)^2} dx = \int \left(\frac{2}{2x+1} + \frac{1}{(2x+1)^2}\right) dx$$
$$= \ln\left|2x+1\right| - \frac{1}{2(2x+1)} + C.$$

■ Dạng 2:
$$I = \int \frac{\alpha x + \beta}{ax^2 + bx + c} dx \ (\Delta > 0)$$
.

 $\textit{Cách giải.} \text{ Biến đổi } I = \frac{1}{a} \int \biggl(\frac{p}{x-x_{\text{\tiny 1}}} + \frac{q}{x-x_{\text{\tiny 2}}} \biggr) dx \ \ (x_{\text{\tiny 1}}, x_{\text{\tiny 2}} \text{ là nghiệm của } ax^2 + bx + c \,).$

VD.
$$\int \frac{3x+2}{2x^2+3x-5} dx = \frac{1}{2} \int \frac{3x+2}{(x-1)\left(x+\frac{5}{2}\right)} dx = \int \left(\frac{5}{7} \cdot \frac{1}{x-1} + \frac{11}{7} \cdot \frac{1}{2x+5}\right) dx$$
$$= \frac{5}{7} \ln\left|x-1\right| + \frac{11}{14} \ln\left|2x+5\right| + C.$$

■ Dạng 3:
$$I = \int \frac{\alpha x + \beta}{ax^2 + bx + c} dx \ (\Delta < 0)$$
.

Cách giải. Biến đổi $I=\int\!\left(\!\frac{X}{X^2+\gamma}+\frac{p}{X^2+\gamma}\!\right)\!dx$.

VD.
$$I = \int \frac{2x+1}{4x^2-4x+5} dx = \int \frac{(2x-1)+2}{(2x-1)^2+4} dx = \underbrace{\int \frac{2x-1}{(2x-1)^2+4} dx}_{I} + \underbrace{\int \frac{2}{(2x-1)^2+4} dx}_{I}$$

•
$$I_1 = \frac{1}{4} \int \frac{d[(2x-1)^2+4]}{(2x-1)^2+4} = \frac{1}{4} \ln[(2x-1)^2+4] + C$$

$$\bullet \ I_2 = \frac{1}{2} \int \frac{d \left(\frac{2x-1}{2} \right)}{1 + \left(\frac{2x-1}{2} \right)^2} = \frac{1}{2} \arctan \left(\frac{2x-1}{2} \right) + C \,.$$

Vậy
$$I = \frac{1}{4}\ln\left(4x^2 - 4x + 5\right) + \frac{1}{2}\arctan\left(\frac{2x - 1}{2}\right) + C$$
.

Dạng 4: Tích phân hàm hữu tỉ bậc cao.

Cách giải. Biến đổi hàm dưới dấu tích phân về các phân thức tối giản.

VD.
$$\int \frac{dx}{x(x^3+3)} = \frac{1}{3} \int \left(\frac{1}{x} - \frac{x^2}{x^3+3} \right) dx = \frac{1}{3} \ln |x| - \frac{1}{9} \int \frac{d(x^3+3)}{x^3+3} = \frac{1}{9} \ln \left| \frac{x^3}{x^3+3} \right| + C.$$

VD. Tính tích phân
$$I = \int \frac{x^2 + 4x + 4}{x(x-1)^2} dx$$
.

Giải. Phân tích:
$$\frac{x^2 + 4x + 4}{x(x-1)^2} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$
.

Quy đồng mẫu số, ta được: $x^2 + 4x + 4 = A(x-1)^2 + Bx(x-1) + Cx$ (*).

Từ (*) ta có: $x=0 \Rightarrow A=4, x=1 \Rightarrow C=9, x=2 \Rightarrow B=-3.$

$$\text{V\^{a}y } I = 4 \int \frac{dx}{x} - 3 \int \frac{dx}{x-1} + 9 \int \frac{dx}{\left(x-1\right)^2} = 4 \ln \mid x \mid -3 \ln \mid x-1 \mid -\frac{9}{x-1} + C \; .$$

■ Dạng 5: Tích phân hàm lượng giác $I = \int R(\sin x, \cos x) dx$.

Cách giải

• Nếu $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, ta đặt $t = \cos x$.

- Nếu $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, ta đặt $t = \sin x$.
- Nếu $R(-\sin x, -\cos x) = R(\sin x, \cos x)$ thì ta hạ bậc.

$$\bullet \ \text{N\'eu} \ R(\sin x,\cos x) = \frac{1}{a\sin x + b\cos x + c} \ \text{thì ta d\~at} \ t = \tan\frac{x}{2} \Rightarrow \sin x = \frac{2t}{1+t^2}, \ \cos x = \frac{1-t^2}{1+t^2}.$$

VD. Tính tích phân
$$I = \int \frac{dx}{\sin^2 x + \sin 2x - \cos^2 x}$$
.

Giải. Đặt
$$t=\tan x\Rightarrow x=\arctan t\Rightarrow dx=\frac{dt}{1+t^2},\ \sin x=\frac{\tan x}{\sqrt{1+\tan^2 x}}=\frac{t}{\sqrt{1+t^2}},\ \cos x=\frac{1}{\sqrt{1+t^2}}$$

$$\Rightarrow I = \int \frac{dt}{t^2 + 2t - 1} = \int \frac{d(t+1)}{(t+1)^2 - 2} = \frac{1}{2\sqrt{2}} \ln \left| \frac{t + 1 - \sqrt{2}}{t + 1 + \sqrt{2}} \right| + C = \frac{1}{2\sqrt{2}} \ln \left| \frac{\tan x + 1 - \sqrt{2}}{\tan x + 1 + \sqrt{2}} \right| + C.$$

VD. Tính tích phân
$$I = \int \frac{dx}{4\sin x + 3\cos x + 5}$$
.

Giải. Đặt
$$t = \tan \frac{x}{2} \Rightarrow x = 2 \arctan t \Rightarrow dx = \frac{2dt}{1+t^2}$$
, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$.

$$\text{Vây } I = \int \frac{1}{\frac{8t}{1+t^2} + \frac{3-3t^2}{1+t^2} + 5} \cdot \frac{2dt}{1+t^2} = \int \frac{dt}{t^2 + 4t + 4} = -\frac{1}{t+2} + C = -\frac{1}{\tan\frac{x}{2} + 2} + C \; .$$

1.3. Phương pháp tích phân từng phần

Công thức

$$\int u dv = uv - \int v du$$

- Các dạng tích phân từng phần thường gặp
- Đối với dạng tích phân $\int P(x)e^{\alpha x}\,dx$ thì ta đặt $u=P(x),\,dv=e^{\alpha x}dx$.
- \bullet Đối với dạng tích phân $\int P(x) \ln^{\alpha} x \, dx$ thì ta đặt $u = \ln^{\alpha} x, \, dv = P(x) dx$.

${f VD}$ 4. Tính tích phân $I=$	$\int \frac{x}{2^x} dx$
---------------------------------	-------------------------

Chú ý

Đối với tích phân khó, ta phải đổi biến trước khi lấy từng phần hoặc tách thành tổng của các tích phân.

VD 5. Tính tích phân $I = \int \cos^3 x \, e^{\sin x} dx$.

.....

.....

.....

VD. Tính tích phân $I = \int \cos(\ln x) dx$.

Giải. Đặt
$$t = \ln x \Rightarrow x = e^t \Rightarrow dx = e^t dt$$

$$\Rightarrow I = \int e^t \cos t \, dt = \int e^t \, d(\sin t) = e^t \sin t + \int e^t d(\cos t)$$

$$\Rightarrow I = e^t (\sin t + \cos t) - \int e^t \cos t \, dt \Rightarrow I = \frac{1}{2} e^t (\sin t + \cos t) + C$$

Vậy
$$I = \frac{1}{2}e^{\ln x}[\sin(\ln x) + \cos(\ln x)] + C$$
.

VD. Tính tích phân $I = \int \cos \sqrt[3]{x} \, dx$.

Giải. Đặt
$$t = \sqrt[3]{x} \Rightarrow x = t^3 \Rightarrow dx = 3t^2 dt$$

$$\Rightarrow I = 3 \int t^2 \cos t \, dt = 3 \int t^2 \, d(\sin t) = 3t^2 \sin t + 6 \int t d(\cos t)$$

$$= 3t^2 \sin t + 6t \cos t - 6 \sin t + C = \left(3\sqrt[3]{x^2} - 6\right) \sin \sqrt[3]{x} + 6\sqrt[3]{x} \cos \sqrt[3]{x} + C.$$

	phân $I = \int (2x^2 + x + 1)$		
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

Bài 2. TÍCH PHÂN XÁC ĐỊNH

2.1. Định nghĩa

 \bullet Cho hàm số f(x) xác định trên đoạn $[a;\,b]\,.$

Ta chia đoạn $[a;\,b]$ thành n đoạn nhỏ bởi các điểm chia $x_{_{\!0}}=a < x_{_{\!1}} < \ldots < x_{_{\!n-1}} < x_{_{\!n}}=b$.

Trên mỗi đoạn $[x_k;\,x_{k+1}]$ ta lấy điểm tùy ý $x=\xi_k$, $k=\overline{0,\,n-1}$.

Gọi
$$\Delta x_k = x_{k+1} - x_k$$
 và $d = \max_k \left\{ \Delta x_k \right\}$. Lập tổng tích phân (Riemann) $\sigma = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k$.

• Giới hạn hữu hạn (nếu có) $I=\lim_{d\to 0}\sigma\,$ được gọi là tích phân xác định của f(x) trên đoạn [a;b], ký hiệu

$$I = \int_{a}^{b} f(x)dx$$

■ Tính chất

1)
$$\int_{a}^{b} k.f(x)dx = k \int_{a}^{b} f(x)dx, k \in \mathbb{R};$$

2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
;

3)
$$\int_{a}^{a} f(x)dx = 0$$
; $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$;

4)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx, c \in [a; b];$$

5)
$$f(x) \ge 0$$
, $\forall x \in [a; b] \Rightarrow \int_a^b f(x)dx \ge 0$;

6)
$$f(x) \le g(x), \forall x \in [a; b] \Rightarrow \int_a^b f(x)dx \le \int_a^b g(x)dx;$$

7)
$$a < b \Rightarrow \left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f(x) \right| dx;$$

8)
$$m \le f(x) \le M, \ \forall x \in [a; b] \Rightarrow m(b-a) \le \int_a^b f(x)dx \le M(b-a);$$

9) Nếu f(x) liên tục trên đoạn [a;b] thì $\exists c \in [a;b]$ sao cho $\int_a^b f(x)dx = f(c)(b-a)$.

2.2. Công thức Newton – Leibnitz

2.2.1. Tích phân với cận trên thay đổi

Cho hàm f(x) khả tích trên [a;b], với mỗi $x \in [a;b]$ thì hàm số $\varphi(x) = \int\limits_a^x f(t)dt$ liên tục tại $\forall x_0 \in [a;b]$ và $\varphi'(x) = f(x)$.

VD. Với hàm số $\varphi(x)=\int\limits_0^x e^{t^2}dt \ (x>0)$ thì ta có $\varphi'(x)=e^{x^2}$.

VD 1. Tìm giới hạn $L = \lim_{x \to +\infty} \frac{\int\limits_0^{\infty}}{\int\limits_0^{\infty}}$	$\frac{(\arctan t)^2 dt}{\sqrt{x^2 + 1}}.$
• • • • • • • • • • • • • • • • • • • •	

Boan Vương Nguyen	Bai giang Ioan Cao cap AI Đại học
$\sin x$	$\sqrt{2}t$ dt
VD 2. Tìm giới hạn $L = \lim_{x \to 0^+} \frac{\displaystyle\int\limits_{\tan x}^{\sin x}}{\displaystyle\int\limits_{0}^{\tan x}} \sqrt{\frac{1}{1000}}$	$\frac{1}{\sqrt{\sin t}} \frac{dt}{dt}$
•••••	••••••
•••••	••••••
2.2.2. Công thức Newton – Leibn	itz
Nếu hàm số $f(x)$ liên tục trên $[a; a]$	$f(x) = \varphi(x) + C$ với $\varphi(x) = \int_{-\pi}^{x} f(t)dt$ là nguyên hàm của $f(x)$
trên $[a;b]$. Vậy ta có:	$\int_{a}^{b} f(x)dx = F(x)\Big _{a}^{b} = F(b) - F(a)$
■ Chú ý	
• Có hai phương pháp tính tích phâ	n như bài 1.
• Nếu $f(x)$ liên tục và $l \mathring{e}$ trên $[-\alpha;$	$lpha] hin \int\limits_{-lpha}^{lpha} f(x) dx = 0 .$
• Nếu $f(x)$ liên tục và $ch{\tilde{a}}n$ trên $[-$	$-\alpha; \alpha] \text{ thì } \int_{-\alpha}^{\alpha} f(x)dx = 2\int_{0}^{\alpha} f(x)dx.$
• Để tính tích phân $\int_{a}^{b} f(x) dx$ ta d	ùng bảng xét dấu của $f(x)$.
Trường hợp đặc biệt: Nếu $f(x)$	$\neq 0, \forall x \in (a;b) \text{ thi } \int_a^b \left f(x) \right dx = \left \int_a^b f(x) dx \right .$
VD 3. Tính tích phân $I = \int\limits_{-3}^{3} \left \mid x \mid^{3} \right $	$-4 \mid x \mid dx$.
•••••	

Bài 3. ÚNG DỤNG CỦA TÍCH PHÂN

3.1. Tính diện tích hình phẳng

3.1.1. Biên hình phẳng cho trong tọa độ Descartes

3.1.1.1. Biên hình phẳng cho bởi hàm tường minh

• Diện tích hình phẳng S giới hạn bởi đường $y=f_{\!_1}(x)$ và $y=f_{\!_2}(x)$ là

$$S = \int_{\alpha}^{\beta} \left| f_1(x) - f_2(x) \right| dx$$

trong đó $x=\alpha, \ x=\beta\,$ là nghiệm nhỏ nhất và lớn nhất của phương trình $f_{\!\scriptscriptstyle 1}(x)=f_{\!\scriptscriptstyle 2}(x)\,$ $(\alpha<\beta)$.

• Diện tích hình phẳng $S\,$ giới hạn bởi đường $\,x=g_{_{\! 1}}(y)\,$ và $\,x=g_{_{\! 2}}(y)\,$ là

$$S = \int\limits_{\alpha}^{\beta} \left|g_{\scriptscriptstyle 1}(y) - g_{\scriptscriptstyle 2}(y)\right| dy$$

trong đó $y=\alpha, \ y=\beta$ là nghiệm nhỏ nhất và lớn nhất của phương trình $g_{_1}(y)=g_{_2}(y) \ (\alpha<\beta)$.

. 1 6	giới hạn bởi các đường $y = e^x - 1$,	
	$y = x^2 - 4 x + 3 v$	

3.1.1.2. Biên hình phẳng cho bởi phương trình tham số

Hình phẳng S giới hạn bởi đường cong $x=x(t),\,y=y(t)$ với $t\in [\alpha;\beta]$ thì

$$S = \int_{\alpha}^{\beta} |y(t)x'(t)| dt$$

VI) 3	3. [Γír	ıh	di	ện	tíc	h I	hìı	ıh	el	ip	S	3:	$\frac{a}{a}$	2	+	$\frac{g}{b}$	2	<	≦ .	1.																											
• • •	• •	• •		• •		• •	• •	••	• •	· • •	• •	• •	• •	• •	• •	• •			• •		• •		 	• •	• •		• •	 • •	• •	• •	•	• •		٠.	 	•	 • •	• •			 • •	• •	• •	• •	• •	• •	• •	• •	•
• • •	• •	• •		• •	• • •	• •	• • •	••	• •	· • •	• •	• •	• •	• •	• •	• •	• •		• •		• •	٠.	 	• •	• •	٠.	• •	 • •	• •	• •	•	• •	٠.	٠.	 • •	•	 • •	• •	٠.	• •	 • •	• •	• •	• •	• •	• •	• •	• •	•
• • •	• •	• •		• •	• • •	• •	• • •	••	• •	· • •	• •	• •	• •	• •	• •	• •	• •		• •		• •	٠.	 	• •	• •	٠.	• •	 • •	• •	• •	•	• •	٠.	٠.	 • •	•	 • •	• •	٠.	• •	 • •	• •	• •	• •	• •	• •	• •	• •	•

3.1.2. Diện tích hình quạt cong trong tọa độ cực

3.1.2.1. Hệ tọa độ cực

Trong mặt phẳng ta chọn điểm O cố định gọi là c u c và tia O x gọi là tia c u c. Vị trí điểm M tùy ý trong mặt phẳng hoàn toàn xác định bởi r = O M và $\varphi = (\overrightarrow{O x}, \overrightarrow{O M})$. Khi đó, cặp (r, φ) được gọi là toa độ c u c của điểm M.

Mối liên hệ giữa tọa độ cực và tọa độ Descartes là

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

3.1.2.2. Phương trình đường cong trong toa đô cực

- Phương trình đường cong trong tọa độ cực có dạng $r=f(\varphi)$.
- Cho đường cong (C) trong tọa độ Descartes có phương trình F(x,y)=0. Thay $x=r\cos\varphi$ và $y=r\sin\varphi$ vào (*) ta được $F(r\cos\varphi,r\sin\varphi)=0$. Giải r theo φ thì ta thu được phương trình của (C) trong tọa độ cực.
- **VD.** Xét đường tròn (C): $x^2+y^2-2ax-2by=0$. Thay $x=r\cos\varphi$ và $y=r\sin\varphi$ vào (C), ta được: $r^2\cos^2\varphi+r^2\sin^2\varphi-2a(r\cos\varphi)-2b(r\sin\varphi)=0$. Vây phương trình của (C) trong toa đô cực là $r=2(a\cos\varphi+b\sin\varphi)$.

VD. Xét đường thẳng (d): x+y=0. Thay $x=r\cos\varphi$ và $y=r\sin\varphi$ vào (d), ta được: $r\cos\varphi+r\sin\varphi=0 \Rightarrow \tan\varphi=-1 \Rightarrow (d): \varphi=-\frac{\pi}{4} \text{ hoặc } \varphi=\frac{3\pi}{4}.$

3.1.2.3. Diện tích hình quạt cong trong tọa độ cực

Diện tích hình quạt cong S có biên được cho trong tọa độ cực giới hạn bởi $r=r(\varphi),\,\varphi\in[\alpha;\beta]$ là

VD 5. Tính diện tích hình quạt cong S giới hạn bởi $r=2\cos 4\varphi,\, \varphi\in \left[0;\, \frac{\pi}{8}\right].$

.....

VD 6. Tính diện tích hình quạt cong S giới hạn bởi: $y = 0$, $y = \sqrt{3} x$ và $x^2 + y^2 - 2x = 0$.
VD 7. Tính diện tích hình quạt cong S giới hạn bởi: $x=0,\ y=x$ và $x^2+y^2+2y=0$.
3.2. Tính độ dài đường cong phẳng
3.2.1. Đường cong trong tọa độ Descartes
3.2.1.1. Đường cong có phương trình $y = f(x)$
Độ dài \widehat{AB} có phương trình $y=f(x)~(a\leq x\leq b)$ là
- , , , , , , , , , , , , , , , , , , ,
$l_{\widehat{AB}} = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$
VD 8. Tính độ dài l của cung $y = \ln(\cos x), \ 0 \le x \le \frac{\pi}{4}$.
VD 9. Tính độ dài cung $y = \frac{x^2}{2}$ từ điểm $O(0;0)$ đến điểm $M\left[1;\frac{1}{2}\right]$.
3.2.1.2. Đường cong có phương trình tham số
Độ dài $\stackrel{\frown}{AB}$ có phương trình tham số: $x=x(t),\ y=y(t)\ (\alpha\leq t\leq\beta)$ là
$l_{\widehat{AB}} = \int\limits_{lpha}^{eta} \sqrt{[x'(t)]^2 + [y'(t)]^2} \ dt$
VD 10. Tính độ dài l của cung có phương trình: $\begin{cases} x = \sqrt{t^2 + 1} \\ y = \ln\left(t + \sqrt{t^2 + 1}\right), \ t \in \left[0; 1\right]. \end{cases}$

Đoàn Vương Nguyên	Bài giắng Toán Cao cấp A1 Đại học
2.2.2. Denker a same of allowers a taken	L 4
3.2.2. Đường cong có phương trình	
Độ dài cung AB có phương t	rình trong tọa độ cực $r = r(\varphi), \varphi \in [\alpha; \beta]$ là
	$\int_{\Gamma} \int_{\Gamma} \frac{\beta}{2(-1)^{1/2}} \int_{\Gamma} \frac{1}{2(-1)^{1/2}} \int_{\Gamma} \frac{\beta}{2(-1)^{1/2}} \int_{\Gamma} \frac{1}{2(-1)^{1/2}} \int_{\Gamma} \frac{1}{2(-1)^{1/2}$
	$l_{\widehat{AB}} = \int_{lpha}^{eta} \sqrt{r^2(arphi) + [r'(arphi)]^2} \ darphi$
	α
${f VD}$ 11. Tính độ dài l của cung: $r=$	$3 + 3\cos\varphi, \ \varphi \in [0; \pi].$
3.3. Tính thể tích vật thể tròn	Y09V
-	Avuy
3.3.1. Vật thể quay quanh Ox	
Thể tích V của vật thể do miền phẳn	ng S giới hạn bởi $y = f_{\!_1}(x)$, $y = f_{\!_2}(x)$, $x = a$, $x = b \ (a < b)$ quay
quanh Ox là	
	$V = \pi \int_{a}^{b} \left f_1^2(x) - f_2^2(x) \right dx$
	$V = \pi \int_{a} J_1(x) - J_2(x) dx$
${f VD}$ 12. Tính thể tích V do hình phẳ	ng S giới hạn bởi $y = \sqrt{\ln x}, y = 0, x = 1, x = e$ quay quanh Ox .
	•••••
$x^2 - u^2$	
VD 13. Tính V do $(E): \frac{x^2}{a^2} + \frac{y^2}{b^2} =$	1 quay quanh Ox .
u v	
	•••••
3.3.2. Vật thể quay quanh <i>Oy</i>	
5.5.2. Vật thể quay quanh Oy	
ullet Thể tích V của vật thể do miền ph	ẳng S giới hạn bởi $x = g_1(y),\; x = g_2(y),\; y = c,\; y = d \;\; (c < d)$
quay quanh Oy là	
	$V=\pi\int\limits_{0}^{d}\leftert g_{_{1}}^{^{2}}(y)-g_{_{2}}^{^{2}}(y) ightert dy ightert$
	$ v = \pi \int g_1(y) - g_2(y) dy$

Page 40

• Thể tích V của vật thể do miền phẳng S giới hạn bởi $y=f(x),\ y=0\,,\ x=a\,$ và $x=b\,$ quay quanh $Oy\,$ là

$$V = 2\pi \int_{a}^{b} x.f(x)dx$$

 ${f VD}$ 14. Tính thể tích V do hình phẳng S giới hạn bởi $y=2x-x^2$ và y=0 quay xung quanh Oy .

Bài 4. TÍCH PHÂN SUY RỘNG

Khái niệm mở đầu

• Cho hàm số $f(x) \ge 0$, $\forall x \in [a; b]$. Khi đó, diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục hoành là

$$S = \int_{a}^{b} f(x)dx.$$

• Cho hàm số $f(x) \geq 0$, $\forall x \in [a; +\infty)$ ($b \to +\infty$). Khi đó, diện tích S có thể tính được cũng có thể không tính được. Trong trường hợp tính được hữu hạn thì

$$S = \int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

4.1. Tích phân suy rộng loại 1

4.1.1. Định nghĩa

Cho hàm số f(x) xác định trên $[a;+\infty)$, khả tích trên mọi đoạn [a;b]. Giới hạn (nếu có) $\lim_{b\to +\infty}\int\limits_a^b f(x)dx$ được gọi là *tích phân suy rộng loại* 1 của f(x) trên $[a;+\infty)$, ký hiệu là

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Định nghĩa tương tự:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{\substack{b \to +\infty \\ a \to -\infty}} \int_{a}^{b} f(x)dx$$

■ Chú ý

- Nếu các giới hạn trên tồn tại hữu hạn, ta nói tích phân hội tụ; ngược lại là tích phân phân kỳ.
- Nghiên cứu về tích phân suy rộng là khảo sát sự hội tụ và tính giá trị hội tụ (nếu được).

VD 1. Khảo sát sự hội tụ của tích phân $I = \int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$.

- Trường hợp $\alpha = 1$: $I = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{x} = \lim_{b \to +\infty} \left(\ln x \Big|_{1}^{b} \right) = +\infty$ (phân kỳ).
- $\bullet \textit{Trường hợp } \alpha \textit{ khác } 1: \ I = \lim_{b \to +\infty} \int\limits_1^b \frac{dx}{x^{\alpha}} = \frac{1}{1-\alpha} \lim_{b \to +\infty} \left(x^{1-\alpha} \Big|_1^b \right) = \frac{1}{1-\alpha} \lim_{b \to +\infty} \left(b^{1-\alpha} 1 \right) = \begin{cases} \frac{1}{\alpha-1}, \ \alpha > 1 \\ +\infty, \ \alpha < 1. \end{cases}$

Vậy

$$\alpha > 1: tích phân hội tụ và $I = \frac{1}{\alpha - 1}$

$$\alpha \leq 1: tích phân phân kỳ và $I = +\infty$$$$$

VD 2. Tính tích phân $I = \int\limits_{-\infty}^{0} \frac{dx}{(1-x)^2}$.

.....

Chú ý

- Nếu tồn tại $\lim_{x\to +\infty} F(x) = F(+\infty)$, ta dùng công thức $\int_a^{+\infty} f(x) dx = F(x) \Big|_a^{+\infty}$.
- Nếu tồn tại $\lim_{x\to -\infty} F(x) = F(-\infty)$, ta dùng công thức $\int\limits_{-\infty}^b f(x) dx = F(x)\Big|_{-\infty}^b$.
- Turong ty: $\int_{-\infty}^{+\infty} f(x) dx = F(x) \Big|_{-\infty}^{+\infty}.$

VD 3. Tính tích phân
$$I = \int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$
.

4.1.2. Các tiêu chuẩn hội tụ

4.1.2.1. Tiêu chuẩn 1

$$\begin{cases} 0 \le f(x) \le g(x), \forall x \in [a; +\infty) \\ \int_{a}^{+\infty} g(x) dx \ h \hat{\rho} i \ t \dot{u} \end{cases} \Rightarrow \int_{a}^{+\infty} f(x) dx \ h \hat{\rho} i \ t \dot{u}$$

Các trường hợp khác tương tự.

Doan Vương Nguyen	Bai giảng Toàn Cao cấp AI Đại học
VD 4. Xét sự hội tụ của tích phân $I = \int\limits_{1}^{+\infty} e^{-x^{10}} dx$.	
4.1.2.2. Tiêu chuẩn 2	
$\int_{a}^{+\infty} \left f(x) \right dx \; h \hat{o} i \; t \dot{u} \Rightarrow \int_{a}^{+\infty} f(x) dx \; h \hat{o} i \; t \dot{u}$	
Các trường hợp khác tương tự.	
VD 5. Xét sự hội tụ của tích phân $I = \int\limits_{1}^{+\infty} e^{-x} \cos 3x dx$.	
4.1.2.3. Tiêu chuẩn 3	
Giả sử $f(x),g(x)$ liên tục, dương trên $[a;+\infty)$ và $\lim_{x\to +\infty} \frac{f(x)}{g(x)}=k$.	
• Nếu $0 < k < +\infty$ thì $\int\limits_a^{+\infty} f(x) dx$ và $\int\limits_a^{+\infty} g(x) dx$ cùng hội tự hoặc phân k	ŷ.
• Nếu $k=0$ và $\int\limits_a^{+\infty}g(x)dx$ hội tụ thì $\int\limits_a^{+\infty}f(x)dx$ hội tụ.	
$\begin{cases} k = +\infty \\ \bullet \text{ N\'eu} \end{cases} \text{ thì } \int_{-\infty}^{+\infty} f(x) dx \text{ phân kỳ}.$	

• Nếu
$$\begin{cases} k = +\infty \\ \int\limits_{a}^{+\infty} g(x) dx \; ph \hat{a} n \; k \hat{y} \end{cases} \text{ thì } \int\limits_{a}^{+\infty} f(x) dx \; ph \hat{a} n \; k \hat{y}.$$

• Các trường hợp khác tương tự.

VD 6. Xét sự hội tụ của tích phân $I = \int\limits_{1}^{+\infty} \frac{dx}{1+x^2+2x^3}$.

■ Chú ý

Nếu
$$f(x) \sim g(x)$$
 khi $x \to +\infty$ thì $\int\limits_a^{+\infty} f(x) dx$ và $\int\limits_a^{+\infty} g(x) dx$ có cùng tính chất.

VD 7. Xét sự hội tụ của tích phân $I = \int\limits_{1}^{+\infty} \frac{dx}{1+\sin x + x}$.

VD 8. Điều kiện của α để $I=\int\limits_{1}^{+\infty}\frac{dx}{x.\sqrt[3]{\ln^{\alpha}x+1}}$ hội tụ là:

Kiện của
$$lpha$$
 để $T=\int\limits_{1}^{\infty} \frac{1}{x\sqrt[3]{\ln^{lpha}x+1}}$ nội tụ là

A.
$$\alpha > 3$$
; B. $\alpha > \frac{3}{2}$; C. $\alpha > 2$; D. $\alpha > \frac{1}{2}$.

VD 9. Tìm điều kiện của α để $I = \int_{-\infty}^{+\infty} \frac{(x^2+1)dx}{2x^{\alpha}+x^4-3}$ hội tụ?

4.2. Tích phân suy rộng loại 2

4.2.1. Định nghĩa

Giả sử hàm số f(x) xác định trên [a;b), $\lim_{x\to b^-}f(x)=\infty$ và khả tích trên mọi đoạn $[a;b-\varepsilon]$ $(\varepsilon>0)$.

Giới hạn (nếu có) $\lim_{\varepsilon \to 0} \int f(x) dx$ được gọi là *tích phân suy rộng loại* 2 của f(x) trên [a;b), ký hiệu là

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx$$

Định nghĩa tương tự:

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx \left(\lim_{x \to a^{+}} = \infty \right); \quad \int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b-\varepsilon} f(x)dx \left(\lim_{x \to a^{+}} = \infty, \lim_{x \to b^{-}} = \infty \right)$$

Chú ý

Nếu các giới hạn trên tồn tại hữu hạn thì ta nói tích phân hội tụ; ngược lại là tích phân phân kỳ.

VD 10. Khảo sát sự hội tụ của tích phân $I = \int_{-\infty}^{\infty} \frac{dx}{x^{\alpha}}, b > 0$.

$$\bullet \ \textit{Trường hợp} \ \alpha = 1 \colon I = \lim_{\varepsilon \to 0^+} \int\limits_{\varepsilon}^{b} \frac{dx}{x} = \lim_{\varepsilon \to 0^+} \biggl(\ln x \Big|_{\varepsilon}^{b} \biggr) = \ln b - \lim_{\varepsilon \to 0^+} \ln \varepsilon = +\infty \ .$$

$$\bullet \; \textit{Trường hợp a khác 1:} \; I = \lim_{\varepsilon \to 0} \int\limits_{\varepsilon}^{b} \frac{dx}{x^{\alpha}} = \lim_{\varepsilon \to 0} \int\limits_{\varepsilon}^{b} x^{-\alpha} dx = \frac{1}{1-\alpha} \lim_{\varepsilon \to 0} \left(x^{1-\alpha} \Big|_{\varepsilon}^{b} \right)$$

$$=\frac{1}{1-\alpha}\lim_{\varepsilon\to 0}\left(b^{1-\alpha}-\varepsilon^{1-\alpha}\right)=\begin{cases} \frac{b^{1-\alpha}}{1-\alpha},\ \alpha<1\\ +\infty,\ \alpha>1.\end{cases}$$

Vậy

 $\alpha < 1: \textit{tích phân hội tụ và } I = \frac{b^{1-\alpha}}{1-\alpha}$ $\alpha \geq 1: \textit{tích phân phân kỳ và } I = +\infty$

VD 11. Tính tích phân suy rộng $I=\int\limits_{1/6}^{1/3}\frac{3}{\sqrt{1-9x^2}}dx$.
•••••••••••••••••••••••••••••••••••••
VD 12. Tính tích phân suy rộng $I = \int\limits_{1}^{e} \frac{dx}{x \sqrt[3]{\ln^2 x}}$.
VD 13. Tính tích phân suy rộng $I = \int_{1}^{2} \frac{dx}{x^2 - x}$.
4.1.2. Các tiêu chuẩn hội tụ
Các tiêu chuẩn hội tụ như tích phân suy rộng loại 1.
• Chú ý Nếu $f(x) \sim g(x)$ khi $x \to b$ (với b là cận suy rộng) thì $\int\limits_a^b f(x) dx$ và $\int\limits_a^b g(x) dx$ có cùng tính chất.
VD 14. Tích phân suy rộng $I = \int_0^1 \frac{x^{\alpha}}{\sqrt{x(x+1)(2-x)}} dx$ hội tụ khi và chỉ khi:
A. $\alpha < -1$; B. $\alpha < -\frac{1}{2}$; C. $\alpha > -\frac{1}{2}$; D. $\alpha \in \mathbb{R}$.

VD 15. Tích phân suy rộng $I=\int\limits_0^1 \frac{x^\alpha+1}{\sqrt{(x^2+1)\sin x}} dx$ phân kỳ khi và chỉ khi:

A.
$$\alpha \leq -1$$

B.
$$\alpha \leq -\frac{1}{2}$$

B.
$$\alpha \le -\frac{1}{2}$$
 C. $\alpha \ge -\frac{1}{2}$

D.
$$\alpha \in \mathbb{R}$$
.

■ Chú ý

Giả sử $I=I_{\scriptscriptstyle 1}+I_{\scriptscriptstyle 2}$ với $I,\,I_{\scriptscriptstyle 1},\,I_{\scriptscriptstyle 2}$ là các tích phân suy rộng ta có:

1) I_1 và I_2 hội tụ $\Rightarrow I$ hội tụ.

$$2) \begin{cases} I_{_1} \rightarrow -\infty (ph \hat{a} n \ k \hat{y}) \\ I_{_2} \leq 0 \end{cases} \text{ hoặc } \begin{cases} I_{_1} \rightarrow +\infty (ph \hat{a} n \ k \hat{y}) \\ I_{_2} \geq 0 \end{cases} \text{ thì } I \text{ phân kỳ}.$$

3)
$$\begin{cases} I_1 \to -\infty (ph \hat{a} n \ k \hat{y}) \\ I_2 > 0 \end{cases} \text{ hoặc } \begin{cases} I_1 \to +\infty (ph \hat{a} n \ k \hat{y}) \\ I_2 < 0 \end{cases} \text{ thì ta chưa thể kết luận } I \text{ phân kỳ.}$$

VD 16. Tích phân $I=\int\limits_0^1 \frac{x^\alpha+1}{\sqrt{x^2\sin x}} dx$ phân kỳ khi và chỉ khi:

A.
$$\alpha \leq \frac{1}{4}$$

A.
$$\alpha \leq \frac{1}{4}$$
 B. $\alpha \leq -\frac{1}{4}$

C.
$$\alpha \leq -\frac{1}{2}$$

D.
$$\alpha \in \mathbb{R}$$
.

VD. Xét tích phân $I = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx$, ta có: $I = -\frac{\cos x}{x} \Big|_{x=-\infty}^{+\infty} + \int_{-\infty}^{+\infty} \frac{\sin x}{x^2} dx$.

$$\bullet - \frac{\cos x}{x} \bigg|_{1}^{+\infty} = -\lim_{x \to +\infty} \frac{\cos x}{x} + \cos 1 = \cos 1 \tag{1}$$

•
$$\int_{1}^{+\infty} \left| \frac{\sin x}{x^2} \right| dx \le \int_{1}^{+\infty} \frac{dx}{x^2} \Rightarrow \int_{1}^{+\infty} \frac{\sin x}{x^2} dx \text{ hội tụ}$$
 (2).

Từ (1) và (2) ta suy ra I hội tụ.

Chương 4. CHUỖI SỐ VÀ CHUỖI LỮY THỪA

Bài 1. Khái niệm cơ bản về chuỗi số

Bài 2. Chuỗi số dương

Bài 3. Chuỗi số có dấu tùy ý

Bài 4. Chuỗi lũy thừa

Bài 1. KHÁI NIỆM CƠ BẢN VỀ CHUỖI SỐ

1.1. Định nghĩa

• Cho dãy số có vô hạn các số hạng $u_1, u_2, ..., u_n, ...$. Biểu thức

$$u_1 + u_2 + \ldots + u_n + \ldots = \sum_{n=1}^{\infty} u_n$$

được gọi là chuỗi số.

- Các số $u_1,\ u_2,...,\ u_n,...$ là các số hạng và u_n được gọi là số hạng tổng quát của chuỗi số.
- Tổng n số hạng đầu tiên $S_n = u_1 + u_2 + ... + u_n$ được gọi là tổng riêng thứ n của chuỗi số.
- Nếu dãy $\left\{S_n\right\}_{n\in\mathbb{N}}$ hội tụ đến số S hữu hạn thì ta nói chuỗi số hội tự và có tổng là S , ta ghi là

$$\sum_{n=1}^{\infty} u_n = S.$$

Ngược lại, ta nói chuỗi số phân kỳ.

VD 1. Xét sự hội tụ của chuỗi số $\sum_{i=1}^{\infty} aq^{n-1}$ ($a \neq 0$).

- Trường hợp $q=1\colon S_{_n}=na\to +\infty \Rightarrow$ chuỗi phân kỳ.
- $\bullet \ \textit{Trw} \\ \textit{ing hop } \ q \neq 1 \colon S_{\scriptscriptstyle n} = u_{\scriptscriptstyle 1}. \\ \frac{1-q^{\scriptscriptstyle n}}{1-q} = a. \\ \frac{1-q^{\scriptscriptstyle n}}{1-q} \, .$

Nếu $\mid q \mid < 1$ thì $S_{_n} \to \frac{a}{1-q} \Rightarrow$ chuỗi hội tụ; nếu $\mid q \mid > 1$ thì $S_{_n} \to +\infty \Rightarrow$ chuỗi phân kỳ. Vậy

$$\sum_{n=1}^{\infty} aq^{n-1} \; h \hat{o}i \; t \dot{u} \; \Leftrightarrow \mid q \mid < 1$$

VD 2. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

VD 3. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$.

Đoàn Vương Nguyên	Bài giảng Toán Cao cấp A1 Đại học
VD 4. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.	
	•••••
	•••••
	•••••
1.2. Điều kiện cần để chuỗi số hội tụ	
Nếu chuỗi $\sum_{n=1}^\infty u_n^{}$ hội tụ thì $\lim_{n\to\infty}u_n^{}=0$, ngược lại nếu $\lim_{n\to\infty}u_n^{}\neq 0$ th	$\sum_{n=1}^{\infty} u_n$ phân kỳ.
VD 5. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{n^4}{3n^4 + n + 2}$.	
VD 6. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{n^5}{n^4 + 1}$.	
1.3. Tính chất	
$1) \ \text{N\'eu} \ \sum_{n=1}^\infty u_n, \ \sum_{n=1}^\infty v_n \ \text{ h\'oi tụ thì } \sum_{n=1}^\infty (u_n + v_n) = \sum_{n=1}^\infty u_n + \sum_{n=1}^\infty v_n \ .$	
2) Nếu $\sum_{n=1}^\infty u_n$ hội tụ thì $\sum_{n=1}^\infty \alpha u_n = \alpha \sum_{n=1}^\infty u_n$.	
3) Tính chất hội tụ hay phân kỳ của chuỗi số không đổi nếu ta thêm	n hoặc bớt đi hữu hạn số hạng.

Bài 2. CHUỐI SỐ DƯƠNG

2.1. Định nghĩa

Chuỗi số $\sum_{\scriptscriptstyle n=1}^{\infty}u_{\scriptscriptstyle n}$ được gọi là $chu \tilde{\delta i}$ số dương nếu $\,u_{\scriptscriptstyle n} \geq 0, \,\, \forall n\,.$

Khi $\,u_{_{n}}>0,\;\forall n\,$ thì chuỗi số là dương thực sự.

2.2. Các định lý so sánh

■ Định lý 1

Giả sử hai chuỗi số $\sum_{n=1}^\infty u_n,\,\sum_{n=1}^\infty v_n$ thỏa $0\leq u_n\leq v_n, \forall n\geq n_0$. Khi đó:

- Nếu $\sum_{n=1}^{\infty} v_n$ hội tụ thì $\sum_{n=1}^{\infty} u_n$ hội tụ.
- Nếu $\sum_{n=1}^{\infty} u_n$ phân kỳ thì $\sum_{n=1}^{\infty} v_n$ phân kỳ.

VD 1. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$.

.....

VD 2. Xét sự hội tụ của chuỗi điều hòa $\sum_{n=1}^{\infty} \frac{1}{n}$ bằng cách so sánh với $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n}\right)$.

■ Định lý 2

Giả sử hai chuỗi số $\sum_{n=1}^\infty u_{_n},\;\sum_{n=1}^\infty v_{_n}$ thỏa mãn $\,u_{_n}>0\,$ và $\,v_{_n}>0\,$ với $\,n\,$ đủ lớn và $\,\lim_{n\to\infty}\frac{u_{_n}}{v_{_n}}=k\,.$

- k = 0: $\sum_{n=1}^{\infty} u_n \ ph \hat{a} n \ k \dot{y} \Rightarrow \sum_{n=1}^{\infty} v_n \ ph \hat{a} n \ k \dot{y}$.
- $k=+\infty$: $\sum_{n=1}^{\infty}u_{n}$ hội tụ $\Rightarrow\sum_{n=1}^{\infty}v_{n}$ hội tụ.
- $0 < k < +\infty$: $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ cùng tính chất.

VD 3. Xét sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{2^n(n+1)}{n \cdot 3^{n+1}}$ bằng cách so sánh với $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$.

■ Chú ý

Chuỗi số $\sum_{r=1}^{\infty} \frac{1}{n^{\alpha}}$ hội tụ khi $\alpha>1$ và phân kỳ khi $\alpha\leq 1$.

VD 4. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{2n^5+3}}$.

Đoàn Vương Nguyên	Bài giảng Toán Cao cấp A1 Đại học
2.3. Các tiêu chuẩn hội tụ	
2.3.1. Tiêu chuẩn D'Alembert	
Cho chuỗi số dương $\sum_{n=1}^{\infty}u_{_{n}}$ và $\lim_{n\rightarrow\infty}\frac{u_{_{n+1}}}{u}=D$. Ta có:	
• Nếu $D < 1$ thì $chu\tilde{\delta i}$ số hội tụ;	
• Nếu $D > 1$ thì chuỗi số phân kỳ;	
ullet Nếu $D=1$ thì ta chưa thể kết luận.	
VD 5. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{1}{n}\right)^n$.	
••••••	
VD 6. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{5^n (n!)^2}{(2n)!}$.	
2.3.2. Tiêu chuẩn Cauchy	
Cho chuỗi số dương $\sum_{n=1}^{\infty}u_{n}$ và $\lim_{n\to\infty}\sqrt[n]{u_{n}}=C$. Ta có:	
• Nếu $C < 1$ thì $chu\tilde{\tilde{o}}i$ số hội tụ;	
• Nếu $C > 1$ thì chuỗi số phân kỳ;	
• Nếu $C=1$ thì ta chưa thể kết luận.	
• Neu C = 1 un ta chua the ket luan.	
VD 7. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n^2}$.	
VD 8. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{n^n}{3^n}$.	
	•••••

2.3.3. Tiêu chuẩn Tích phân Maclaurin - Cauchy

Giả sử hàm số f(x) liên tục, $f(x) \geq 0$ và giảm trên $[k; +\infty), k \in \mathbb{N}$. Ta có:

$$\sum_{n=k}^{\infty} f(n) \ h \hat{o} i \ t \dot{u} \Leftrightarrow \int_{k}^{+\infty} f(x) dx \ h \hat{o} i \ t \dot{u}$$

Bài 3. CHUỗI SỐ CÓ DẤU TÙY Ý

3.1. Chuỗi số đan dấu

3.1.1. Định nghĩa

Chuỗi số $\sum_{n=1}^{\infty} (-1)^n u_{_n} \,$ được gọi là $chu \tilde{\delta i}$ số đan dấu nếu $\,u_{_n}>0, \forall n\,.$

VD.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 và $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n+1}{2^{n+1}}$ là các chuỗi số đan dấu.

3.1.2. Định lý Leibnitz

Nếu dãy $\left\{u_{_{n}}\right\}_{n\in\mathbb{N}}\,$ giảm và $\lim_{n\to\infty}u_{_{n}}=0$ thì chuỗi số $\sum_{n=1}^{\infty}(-1)^{n}u_{_{n}}\,$ hội tụ. Khi đó, ta gọi chuỗi số là $chuỗi\,Leibnitz$.

VD 1. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. **VD 2.** Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} (-1)^n \frac{2^n+1}{2^{n+1}}$.

VD 3. Xét sự hội tụ của chuỗi số $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.
3.2. Chuỗi số có dấu tùy ý 3.2.1. Định nghĩa
\bullet Chuỗi số $\sum_{n=1}^\infty u_n^{}(u_n^{}\in\mathbb{R})$ được gọi là $chu\~oi$ có dấu tùy ý.
• Chuỗi số $\sum_{n=1}^{\infty}u_n$ được gọi là <i>hội tụ tuyệt đối</i> nếu chuỗi số $\sum_{n=1}^{\infty} u_n $ hội tụ.
• Chuỗi số $\sum_{n=1}^{\infty}u_n$ được gọi là $bán$ $hội$ tự nếu chuỗi $\sum_{n=1}^{\infty}u_n$ hội tự và chuỗi $\sum_{n=1}^{\infty} u_n $ phân kỳ.
VD. Chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ là bán hội tụ vì $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ hội tụ (VD 1) và $\sum_{n=1}^{\infty} \left \frac{(-1)^n}{n} \right = \sum_{n=1}^{\infty} \frac{1}{n}$ phân kỳ.
3.2.2. Định lý Nếu chuỗi số $\sum_{n=1}^{\infty} u_n hội tụ$ thì chuỗi có dấu tùy ý $\sum_{n=1}^{\infty} u_n hội tụ$.
VD 4. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{\cos(n^n)}{n^2}$.
VD 5. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n + (-2)^{n+1}}{3^n}$.

Bài 4. CHUÕI LŨY THÙA

4.1. Khái niệm chung về chuỗi hàm

 • Cho dãy hàm $u_{_1}(x),\,u_{_2}(x),...,\,u_{_n}(x),...$ cùng xác định trên $D\subset\mathbb{R}$. Tổng hình thức

$$u_1(x) + u_2(x) + ... + u_n(x) + ... = \sum_{n=1}^{\infty} u_n(x)$$
 (1)

được gọi là chuỗi hàm số hay $\mathit{chuỗi}$ hàm trên $D \subset \mathbb{R}$.

- Nếu tại $x_0 \in D$, chuỗi số $\sum_{n=1}^{\infty} u_n(x_0)$ hội tụ (hay phân kỳ) thì x_0 được gọi là điểm hội tụ (hay phân kỳ) của chuỗi (1).
- Tập hợp các điểm hội tụ x_0 của chuỗi (1) được gọi là $mi \stackrel{\circ}{e} n \, h \stackrel{\circ}{\rho} i \, t \mu$ của chuỗi (1).
- Chuỗi (1) được gọi là $h \hat{o} i$ tự tuyệt đối tại $x_{_0} \in D$ nếu chuỗi $\sum_{n=1}^{\infty} \left| u_{_n}(x_{_0}) \right|$ hội tụ.
- Tổng $S_n(x)=u_1(x)+u_2(x)+\ldots+u_n(x)$ được gọi là tổng riêng thứ n của chuỗi (1). Trong miền hội tụ của chuỗi (1), tổng $S_n(x)$ hội tụ về một hàm số f(x) nào đó.
- Hàm $f(x)=\lim_{n\to\infty}S_n(x)$ xác định trong miền hội tụ của chuỗi (1) được gọi là tổng của chuỗi (1). Ta viết là $\sum_{n=1}^\infty u_n(x)=f(x)$. Khi đó, $R_n(x)=f(x)-S_n(x)$ được gọi là $phần\ dw$ của (1) và tại mỗi x thuộc miền hội tụ thì $\lim_{n\to\infty}R_n(x)=0$.

VD. Tìm miền hội tụ của chuỗi hàm $\sum_{n=1}^{\infty} ne^{-nx}$.

Giải.

- Với $x_0>0$, ta có: $\lim_{n\to\infty} \sqrt[n]{ne^{-nx_0}}=e^{-x_0}<1\Rightarrow {
 m chuỗi}$ số $\sum_{n=1}^\infty ne^{-nx_0}$ hội tụ.
- Với $x_0 \leq 0$, ta có: $ne^{-nx_0} \not\to 0 \ \Rightarrow \ \mathrm{chu}$ ỗi số $\sum_{r=1}^\infty ne^{-nx_0} \ \mathrm{phân}$ kỳ.

Vậy miền hội tụ của chuỗi hàm $\sum_{n=1}^{\infty} ne^{-nx}$ là $(0;+\infty)$.

VD. Tìm miền hội tụ của chuỗi hàm $\sum_{n=1}^{\infty} \frac{x^{2n}}{n!}$.

Giải.

- Với $x_0=0$, ta có: chuỗi số $\sum_{n=1}^{\infty}\frac{1}{n!}$ hội tụ.
- Với $x_0 \neq 0$, ta có: $\frac{x_0^{2(n+1)}}{(n+1)!}: \frac{x_0^{2n}}{n!} = \frac{x_0^2}{n+1} \to 0 \implies \text{chuỗi số} \sum_{n=1}^{\infty} \frac{x_0^{2n}}{n!} \text{ hội tụ.}$

Vậy miền hội tụ của chuỗi hàm $\sum_{n=1}^{\infty} \frac{x^{2n}}{n\,!}$ là $\,\mathbb{R}\,.$

4.2. Chuỗi lũy thừa

4.2.1. Định nghĩa

Chuỗi hàm $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ với a_n và x_0 là các hằng số được gọi là $chu \tilde{o}i \ l \tilde{u} y \ thừ a.$

■ Nhận xét

- \bullet Đặt $x'=x-x_{\scriptscriptstyle 0}\Rightarrow\,$ chuỗi lũy thừa có dạng $\sum_{\scriptscriptstyle n=0}^{\infty}a_{\scriptscriptstyle n}x^{\scriptscriptstyle n}$.
- \bullet Miền hội tụ của chuỗi $\sum_{n=0}^{\infty}a_{n}x^{n}\,$ chứa $x=0\,$ nên khác rỗng.

4.2.2. Bổ đề Abel

Nếu chuỗi hàm $\sum_{n=0}^{\infty}a_{n}x^{n}\,$ hội tụ tại $x=\alpha\neq0\,$ thì chuỗi hội tụ tuyệt đối tại mọi điểm $x\in\left(-\mid\alpha\mid;\mid\alpha\mid\right).$

Hệ quả

Nếu chuỗi hàm $\sum_{\scriptscriptstyle n=0}^{\infty}a_{\scriptscriptstyle n}x^{\scriptscriptstyle n}\,$ phân kỳ tại $x=\beta\,$ thì phân kỳ tại mọi $\,x\,$ thỏa $\mid x\mid \,>\mid \beta\mid$.

4.2.3. Bán kính hội tụ

4.2.3.1. Định nghĩa

- Số thực R>0 sao cho chuỗi $\sum_{n=0}^{\infty}a_nx^n$ hội tụ tuyệt đối trên (-R;R) và phân kỳ tại $\forall x:|x|>R$ được gọi là bán kính hội tụ.
- \bullet Khoảng $(-R;\,R)$ được gọi là $\it khoảng~hội~tụ$ của chuỗi lũy thừa $\sum_{n=0}^\infty a_n x^n$.

■ Nhận xét

- Nếu chuỗi lũy thừa $\sum_{n=0}^\infty a_n x^n$ hội tụ với mọi $x\in\mathbb{R}~$ thì $R=+\infty$.
- Nếu chuỗi lũy thừa $\sum_{n=0}^{\infty}a_{n}x^{n}$ phân kỳ với mọi $x\neq 0$ thì R=0 .

4.2.3.2. Phương pháp tìm bán kính hội tụ

$$ullet$$
 Nếu tồn tại $\lim_{n o \infty} \left| rac{a_{n+1}}{a_n}
ight| = r$ hoặc $\lim_{n o \infty} \sqrt[n]{|a_n|} = r$ thì

$$R = \begin{cases} 0, & r = +\infty \\ \frac{1}{r}, & 0 < r < +\infty \\ +\infty, & r = 0 \end{cases}$$

• Tìm miền hội tụ của chuỗi lũy thừa

Bước 1. Tìm bán kính hội tụ $R \Rightarrow$ khoảng hội tụ của chuỗi lũy thừa là (-R; R).

					~	,			
Bước 2.	Xét su	' hôi tu	của	các	chuôi	sô	tai	x =	$\pm R$.

Bước 3. Kết luân:

- 1) Nếu các chuỗi số phân kỳ tại $x=\pm R$ thì miền hội tụ của chuỗi lũy thừa là (-R;R);
- 2) Nếu các chuỗi số hội tụ tại $x=\pm R$ thì miền hội tụ của chuỗi lũy thừa là [-R;R];
- 3) Nếu chuỗi số phân kỳ tại x=R và hội tụ tại x=-R thì miền hội tụ của chuỗi lũy thừa là $[-R;\,R)$;
- 4) Nếu chuỗi số phân kỳ tại x=-R và hội tụ tại x=R thì miền hội tụ của chuỗi lũy thừa là (-R;R].

VD 1. Tìm miền hội tụ của chuỗi lũy thừa	1
VD 2. Tìm miền hội tụ của chuỗi lũy thừa	$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \cdot 2^n} .$
VD 3. Tìm miền hội tụ của chuỗi lũy thừa	$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} x^n .$

• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	•	• •	• •	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	• •	•	• •	• •	•	• •	• •	• •	•	• •	• •	• •	•	• •	• •	•	• •	• •	• •	• •
• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	•	• •	• •	•	• •	• •	• •	•	• •	•	• •	•	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	• •	• •	• •	• •	• •	. •	• •	• •	• •	• •
						٠.				•								•		•		•		•		•			•		•		•		•		•		•		•		•			•			•				•				• •							
• •		• •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	•	• •	• •	•	٠.	•	• •	•	• •	•	٠.	•	•	• •	•	• •	•	• •	٠	• •	•	• •	•	• •	•	• •	•	• •	•	• •	• •	• •	• •	• •	٠	• •	• •	• •	•	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	• •
• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	•	• •	• •	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	• •	• •	•	• •	• •	•	• •	• •	• •	• •

VD 4. 11m mien noi tụ của chuối lu	funta $\sum_{n=0}^{\infty} 3^n (x+2)^n$.
•••••	

 $\sum_{n=0}^{\infty} 2n(n+n)^{n^2}$

.....Hết.....