Algorytmy i struktury danych Lista 1

Zadanie 1.

Jaka jest najmniejsza wartość n, dla której algorytm o złożoności $100n^2$ działa (na tej samej maszynie) szybciej od algorytmu o złożoności 2^n ?

Zadanie 2.

Dla każdej funkcji f(n) i czasu t w poniższej tabelce, określ największy rozmiar n danych, dla których algorytm wykona obliczenia w czasie t. Zakładamy, że algorytm rozwiązujący problem potrzebuje f(n) mikrosekund dla danych rozmiaru n.

	1 sek.	1 min.	1 godz.	1 dzień	1 miesiąc	1 rok	1 wiek
$\log(n)$							
\sqrt{n}							
n							
$n\log(n)$							
n^2							
n^3							
2^n							
n!							

Zadanie 3.

Uporządkuj następujące funkcje rosnąco względem porządku O, czyli f jest w porządku z g wtedy i tylko wtedy, gdy $f \in O(g)$. Rozwiązanie uzasadnij.

- \bullet n^{π}
- $\sqrt{2\pi n}$
- n + 13
- 10^n
- 33ⁿ
- $n^2 \log n$
- e^π
- $(\log n)^{11}$

Zadanie 4.

Uporządkuj następujące funkcje rosnąco względem porządku O, czyli f jest w porządku z g wtedy i tylko wtedy, gdy $f \in O(g)$. Rozwiązanie uzasadnij.

- $2^{\sqrt{\log n}}$
- \bullet 2^n
- $n^{4/3}$
- $n(\log n)^3$
- n^{log n}

- 2^{2ⁿ}
- 2^{n^2}