Esame scritto ALAN 21-01-2022, prima parte.

- 1) Data la matrice $A = \begin{pmatrix} 1 & 2 & 4 & -1 \\ 0 & 3 & -2 & 1 \\ 3 & -6 & 20 & -7 \end{pmatrix} \in M_{3,4}(\mathbb{R})$
 - a) calcolare rk(A).
- b) determinare, se esistono, le soluzioni $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ tali che $x_1 + x_2 + x_3 + x_4 = 1$ del sistema lineare omogeneo AX = 0.
- 2) Siano $\lambda \in \mathbb{R}$, $A = \begin{pmatrix} 1 & 0 & \lambda \\ 2 & -\lambda & 1 \\ 3 & -\lambda & \lambda \end{pmatrix} \in M_3(\mathbb{R}) \in B = \begin{pmatrix} 2 \\ 1 \\ 6 \lambda \end{pmatrix} \in M_{3,1}(\mathbb{R}).$
 - a) Dire per quali $\lambda \in \mathbb{R}$ la matrice A è invertibile.
 - b) Esistono valori di $\lambda \in \mathbb{R}$ per i quali il sistema AX = B non ammette soluzioni?
 - c) Nel caso in cui $\lambda = 1$, determinare la lunghezza del vettore $A \cdot B \in \mathbb{R}^3$.
- 3) Date due matrici triangolari superiori $A = (a_{ij}) \in M_3(\mathbb{R})$ e $B = (b_{ij}) \in M_3(\mathbb{R})$ (cioè $a_{ij} = b_{ij} = 0$ se i > j), dimostrare le seguenti affermazioni:
 - a) A + B è triangolare superiore.
 - b) $A \cdot B$ è triangolare superiore.
 - c) $\det A = a_{11}a_{22}a_{33}$.
- 4) Dati i vettori $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, v_5 = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix} \text{ di } \mathbb{R}^3,$
- a) individuare i sottoinsiemi $A\subseteq\{1,2,3,4,5\}$ tali che i vettori v_i con $i\in A$ formano una base di \mathbb{R}^3 .
 - b) v_1, v_2, v_5 formano una base ortogonale di \mathbb{R}^3 ?

Corso di Laurea in Informatica Algebra Lineare e Analisi Numerica Esame del 21/1/2022 (6 CFU + seconda parte per 9 CFU)

Cognome CATIANEO Nome KEVIN Email 543443826 studenti.

- 1. Si supponga di dover calcolare $f(x) = \frac{2x-1}{2x+1} \frac{x-2}{x+2}$ per valori di x molto grandi.
 - (a) Determinare (e discutere) il condizionamento del problema del calcolo di f(x).
 - (b) Studiare l'errore di arrotondamento nei seguenti algoritmi per il calcolo di f(x):

(b1):
$$x \mapsto f1 := \frac{2x-1}{2x+1}, \ f2 := \frac{x-2}{x+2} \mapsto y1 := f1 - f2$$

(b2):
$$x \mapsto n := 6x, d := 2x^2 + 5x + 2 \mapsto y2 := n/d$$

2. Determinare una sequenza di rotazioni di Givens che porti il vet-

Determinare una sequenza di rotazioni di Givens che porti il vettore
$$x = \begin{pmatrix} 0 \\ 1 \\ -3 \\ 0 \\ -2 \end{pmatrix}$$
 nella forma $\begin{pmatrix} 0 \\ 0 \\ \gamma \\ 0 \\ 0 \end{pmatrix}$, con γ opportuno (esplicitare le matrici di rotazione). Dare inoltre un'interpretazione geometrica dell'accompini quello.

dell'esercizio svolto.

3. Determinare i parametri a,b,c della funzione scritta nella forma

$$g(x) = a |x| + b x + c$$

che approssima ai minimi quadrati i seguenti dati:

Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

4. Verificare che $\lambda=0$ è un autovalore di molteplicità 2 della matrice

$$A = \left(\begin{array}{rrrr} 1 & -2 & -1 \\ -2 & 4 & 2 \\ -1 & 2 & 1 \end{array}\right)$$

e calcolare, se esiste, una diagonalizzazione di ${\cal A}.$

Calcolare le prime 3 iterazioni del metodo delle potenze a partire dal

vettore iniziale $v = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e dire se il metodo delle potenze è convergente.

5. Si considerino la matrice
$$A=\begin{pmatrix}1&0&-1\\0&1&0\\-100&0&101\end{pmatrix}$$
 e i vettori

$$x = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, b = A \cdot x \in \delta b = \begin{pmatrix} 10^{-2} \\ -10^{-2} \\ 10^{-2} \end{pmatrix}.$$

- (i) Verificare che $A^{-1} = \begin{pmatrix} 101 & 0 & 1 \\ 0 & 1 & 0 \\ 100 & 0 & 1 \end{pmatrix}$.
- (ii) Calcolare i condizionamenti $\mu_1(A)$ e $\mu_{\infty}(A)$ relativi alle norme $\|\cdot\|_1$ e $\|\cdot\|_{\infty}$ rispettivamente.
- (iii) Calcolare le norme $\|\cdot\|_2$ e $\|\cdot\|_\infty$ per ognuno dei vettori $x,\,b$ e $\delta b.$
- (iv) Calcolare una maggiorazione dell'errore $\|\tilde{x} x\|_{\infty}$ per la soluzione del sistema lineare perturbato $A\tilde{x} = b + \delta b$.