Введение в математическую статистку

Содержание

1	Введение в математическую статистику. Первичная обработ-					
	ка данных					
	1.1	Вместо введения	2			
	1.2	Вариационный ряд	4			
	1.3	Эмпирическая функция распределения	٦			
2	Вве	Введение в теорию оценивания				
	2.1	Выборочные характеристики	7			
	2.2	Понятие оценки				
	2.3	Несмещенные оценки	Ć			
	2.4	Состоятельность оценки	11			
3	Некоторые способы построения оценок					
	3.1	Метод моментов	13			
	3.2	Метод максимального правдоподобия	14			
4	Сравнения различных оценок					
	4.1	Среднеквадратичный подход к сравнению оценок	16			
	4.2	Эффективные оценки. Неравенство Рао-Крамера	20			
	4.3	О доказательстве регулярности модели	25			
	4.4	Экспоненциальное семейство	26			
5	Усл	овное математическое ожидание	28			
6	Способы построения оценок					
	6.1	Достаточные статистики	33			
	6.2	Модели с выборочным пространством, зависящем от параметра θ	41			

7	Асимптотические свойства оценки максимального правдоподобия.						
8 Асимптотически доверительный интервал.							
9	Проверка статистических гипотез						
	9.1	Основные понятия	50				
	9.2	Проверка гипотезы о виде распределения	54				
		9.2.1 Критерий согласия Колмогорова	55				
		9.2.2 Критерий согласия хи-квадрат	58				
	9.3	Гипотеза и критерии однородности	63				
		9.3.1 Критерий однородности Смирнова	63				
		9.3.2 Критерий однородности хи-квадрат	64				
	9.4	Выбор из двух простых гипотез. Критерий Неймана-Пирсона .	65				
10	Сло	ожные гипотезы	74				
	Лит	гература76					

Введение в математическую статистику. Первичная обработка данных

1.1 Вместо введения

Математическая статистика является направлением в математике, исследующим способы обработки, представления, систематизации данных для получения практических выводов.

Математическая статистика тесно связана с теорией вероятности, в виду того, что использует аналогичные методы и приемы рассуждений. В то же время, задачи математической статистики в некотором смысле являются двойственными к задачам теории вероятностей.

В теории вероятностей с использованием понятий случайных событий и случайных величин определяется модель явления и исследуются его свойства. В математической статистике известны реализации некоторых случайных величин, которые называются статистическими данными, и определяются как совокупность числовых (как правило) или качественных характеристик, порожденных некоторым источником.

Математическую статистику можно определить как раздел математики, в котором для математических моделей процессов порождения статистических данных изучаются методы систематизации, обработки, методы использования результатов для научных и (или) практических выводов.

Данный курс представляет собой лишь введение в математическую статистику и рассматривает следующие задачи:

- оценивание неизвестных параметров распределений;
- проверка статистических гипотез о виде распределения;
- прогнозирование.

Введем основные понятия математической статистики: наблюдение, выборка, реализация выборки.

Определение 1.1. *Наблюдение* — это значение, которое приняла случайная величина.

Определение 1.2. Выборкой будем называть случайный вектор $X = (X_1, \ldots, X_n)$, компонентами которого является наблюдаемые случайные величины.

Будем говорить, что выборка X из распределения ξ (или $\mathcal{L}(\xi)$), если компоненты вектора X есть независимые, одинаково распределенные случайные величины, имеющие такое же распределение, как и случайная величина ξ .

Определение 1.3. Реализацией выборки будем называть набор из n наблюдений $x = (x_1, \dots, x_n)$.

Можно рассматривать реализацию выборки как наблюдение за выборкой.

Определение 1.4. Выборочным пространством будем называть множество всех возможных значений реализаций выборки вместе с σ -алгеброй измеримых подмножеств этого пространства.

В теории вероятностей каждая случайная величина $\eta: \Omega \to B$, определенная на вероятностном пространстве $(\Omega, \mathcal{F}, \mathsf{P})$ порождает на пространстве (B, \mathcal{B}) вероятностные меры $\mathsf{P}_{\eta} = \mathsf{P}\,(\eta \in C), \, C \in \mathcal{B}$, определяемые функцией распределения F_{η} . В математической статистике в большинстве случаев на выборочном пространстве определяется не одна мера, а конечное или бесконечное семейство вероятностных мер.

Определение 1.5. Семейством вероятностных мер (или параметрическим семейством), заданных на пространстве (B, \mathcal{B}) будем называть множество $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$, где Θ — некоторое множество параметров.

Наверное самым часто используемым понятием (после выборки) в курсе будет понятие статистики.

Определение 1.6. Статистикой будем называть произвольное отображение

$$T(X) = (T_1(X), \dots, T_l(X)) : \Omega^n \to \mathbb{R}^l,$$

 $\operatorname{гde} T_i(X):\Omega^n\to\mathbb{R}$ — произвольное измеримое отображение.

1.2 Вариационный ряд

Рассмотрим выборку $X = (X_1, \ldots, X_n)$ из распределения $\mathcal{L}(\xi)$, а $x = (x_1, \ldots, x_n)$ — реализация этой выборки. Вектору x можно поставить в соответствие упорядоченную последовательность:

$$x_{(1)}\leqslant x_{(2)}\leqslant\cdots\leqslant x_{(n)},$$
 где $x_{(1)}=\min\left\{x_1,x_2,\ldots,x_n
ight\},$ $x_{(i)}=\min\left\{x_1,x_2,\ldots,x_n
ight\}\setminus\left\{x_{(1)},\ldots,x_{(i-1)}
ight\},$ $x_{(n)}=\max\left\{x_1,x_2,\ldots,x_n
ight\}.$

Обозначим через $X_{(i)}$ случайную величину, которая для каждой реализации выборки x принимает значение $x_{(i)}$.

Определение 1.7. Упорядоченную последовательность случайных величин $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$, полученную по выборке X будем называть вариационным рядом выборки, а сами значения $X_{(i)}$ — порядковыми статистиками. Значения $X_{(1)}$ и $X_{(n)}$ будем называть минимальными и максимальными значениями выборки, а величину $\rho = X_{(n)} - X_{(1)}$ будем называть размахом выборки.

Определение 1.8. Медианой выборки будем называть величину, равную $X_{(k+1)}$, если n=2k+1 и $\frac{1}{2}\left(X_{(k)}+X_{(k+1)}\right)$, если n=2k.

1.3 Эмпирическая функция распределения

Пусть имеется выборка $X = (X_1, \dots, X_n)$ из распределения $\mathcal{L}(\xi)$. Функцию распределения (теоретическую функцию распределения) случайной величины ξ будем обозначать F(y).

Определение 1.9. Для каждого $y \in \mathbb{R}$ рассмотрим случайную величину

$$\mu_n(y) = \sum_{i=1}^n \operatorname{Ind}(X_i \le y),$$

равную числу элементов выборки X меньшх или равных y. Функцию $\widehat{F}_n(y) = \frac{\mu_n(y)}{n}$ будем называть эмпирической функцией распределения (э.ф.р.), соответствующей выборке X.

Заметим, что эмпирическая функция распределения является случайной величиной и принимает следующие значения:

$$\left\{0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n}{n}\right\}.$$

При этом, используя равенство $P(X_i \leq y) = F(y)$, легко показать, что $\widehat{F}_n(x)$ принимает значение равное k/n с вероятностью:

$$\mathsf{P}\left(\widehat{F}_n(x) = \frac{k}{n}\right) = \binom{n}{k} F^k(x) \left(1 - F(x)\right)^{n-k}.$$

Заметим, что для каждой реализации выборки x функция $\widehat{F}_n(x)$ однозначно определена и очевидным образом обладает следующими свойствами, присущими теоретическим функциям распределения:

- $0 \leqslant \widehat{F}_n(x) \leqslant 1$,
- $\widehat{F}_n(x)$ является не убывающей функцией,
- $\widehat{F}_n(x)$ непрерывна справа.

Докажем теорему, показывающую, что для произвольного фиксированного $y \in \mathbb{R}$ э.ф.р. $\widehat{F}_n(y)$ с увеличением объема выборки n стремиться к значению функции распределения F(y).

Теорема 1.10. Для $\forall x \in \mathbb{R} \ u \ \partial$ ля $\forall \varepsilon > 0 \ npu \ n \to \infty$

$$P\left(\left|\widehat{F}_n(x) - F(x)\right| < \varepsilon\right) \to 1$$

(mo ecmb $\widehat{F}_n(x) \xrightarrow{\mathsf{P}} F(x)$).

Доказательство. Введем обозначение для последовательности независимых, одинаково распределенных случайных величин $\eta_j = \operatorname{Ind}(X_j \leq x)$, где $j = \overline{1,n}$. Тогда, М $\eta_j = \mathsf{P}\left(\eta_j \leq x\right) = F(x)$, а D $\eta_j = F(x)(1 - F(x))$. Заметим, что

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \eta_i$$

Тогда, согласно закону больших чисел:

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \eta_i \stackrel{\mathsf{P}}{\to} F(x)$$

Оценим скорость сближения э.ф.р. и теоретической функции распределения. Найдем математическое ожидание и дисперсию $\widehat{F}_n(y)$

$$\mathsf{M}\,\widehat{F}_n(y) = \mathsf{M}\,\frac{1}{n}\sum_{i=1}^n\eta_i = F(x),$$

$$\mathsf{D}\,\widehat{F}_n(x) = \mathsf{D}\,\frac{1}{n}\sum_{i=1}^n\eta_i = \frac{1}{n^2}\sum_{i=1}^n\mathsf{D}\,\eta_i = \frac{1}{n}F(x)(1-F(x)).$$

Используя неравенство Чебышева:

$$P(|\xi - M\xi| > \varepsilon) \le \frac{D\xi}{\varepsilon^2}$$

получаем следующую оценку:

$$P\left(\sqrt{n}\left|\widehat{F}_n(x) - F(x)\right| > t\right) \le \frac{F(x)(1 - F(x))}{t^2}.$$

Приведем без доказательства теорему, которую можно использовать для оценивания скорости сходимости выборочной функции распределения к её теоретическому аналогу.

Теорема 1.11 (Теорема Колмогорова). Рассмотрим функцию

$$D_n = D_n(X) = \sup \left| \widehat{F}_n(x) - F(x) \right|.$$

Если F(x) – непрерывная функция распределения, то $\forall t > 0$:

$$\lim_{n \to \infty} P(\sqrt{n}D_n \le t) = K(t) = \sum_{j = -\infty}^{\infty} (-1)^j \cdot e^{-2j^2t^2}.$$

Статистику K(t) называют распределением Колмогорова, которое не зависит от вида функции распределения.

Теорема Колмогорова дает асимптотическую оценку и использование статистики Колмогорова возможно при объеме выборки $n \geqslant 20$. Помимо предельного результата Колмогоров в работе [?] предложены рекуррентные соотношения для конечных n. На русском языке доказательство теоремы можно найти, например в [?].

Следующая теорема, которая также дается без доказательства, также дает важное представление о свойствах э.ф.р.

Теорема 1.12 (Теорема Смирнова). Пусть $\widehat{F}_{1n}(x)$, $\widehat{F}_{2m}(x)$ – две эмпирические функции распределения построенные на двух независимых выборках n и m соответствено. И $D_{n,m} = \sup_{x \in \mathbb{R}} \left| \widehat{F}_{1n}(x) - \widehat{F}_{2m}(x) \right|$, а F(x) – непрерывная функция распределения. $\forall t > 0$:

$$\lim_{n,m\to\infty} P\left(\sqrt{\frac{n\cdot m}{n+m}}D_{n,m} \le t\right) = K(t).$$

2 Введение в теорию оценивания

2.1 Выборочные характеристики

Пусть имеется выборка $X=(X_1,\ldots,X_n)$ из распределения $\mathscr{L}(\xi)$.

Определение 2.1. Выборочными характеристиками будем называть измеримые функционалы от эмпирического распределения (то есть функции от выборки).

Определение 2.2. Выборочным моментом порядка k называется величина

$$\widehat{\alpha}_k = \frac{1}{n} \sum_{i=1}^n X_i^k = \int_{-\infty}^{\infty} t^k d\widehat{F}_n(t),$$

Иногда, для краткости, выборочный момент 1 порядка обозначают \overline{X} .

Определение 2.3. Выборочным центральным моментом порядка k называется величина, определенная формулой:

$$\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n (X_i - \widehat{\alpha}_1)^k = \int_{-\infty}^{\infty} (t - \widehat{\alpha}_1)^k d\widehat{F}_n(t)$$

Определение 2.4. $\widehat{\alpha}_1$ будем называть выборочным средним, $\widehat{\mu}_2$ будем называть выборочной дисперсий

2.2 Понятие оценки

Одним из направлений математической статистики является разработка «рациональных» методов оценивания неизвестных истинных значений характеристик наблюдаемых случайных величин. Понятие статистической оценки использовалось ранее (хоть и не называлось), когда говорилось, что значение э.ф.р. $\widehat{F}_n(x)$ в каждой точке x можно рассматривать в качестве приближенного значения (оценки) для теоретической функции распределения (см. теорему 1.10). При этом, для выборок большого объема значительная разница между значениями выборочной и теоретической характеристиками маловероятна (см. теорему 1.11).

Оценка истинного значения g_0 некоторой характеристики $g = g(\xi)$ случайной величины ξ по выборке $X = (X_1, X_2, \dots, X_n)$ из параметрического семейства $\mathcal{F} = \{F_\theta, \theta \in \Theta\}$ подразумевает построение такой функции $T_n = T_n(X)$, значение которой t при наблюдавшейся в эксперименте реализации выборки является приближением (в некотором смысле) для g_0 . Нестрого можно написать, что $g_0 \approx t$. В этом случае говорят, что статистика T_n оценивает g или что T_n есть оценка для g и обозначают: $\widehat{g} = T_n(X)$. Такая оценка называется mочечной оценкой.

Приведем пример построения оценок. Пусть $x = (x_1, \dots x_n)$ — реализация выборки из равномерного распределения $R(0, \theta]$. Очевидно, что следующие функции являются оценками на неизвестный параметр θ .

$$\widehat{\theta}_1 = \left(\frac{1}{n} \sum_{j=1}^n x_j\right) \cdot 2,$$

$$\widehat{\theta}_2 = x_{(n)} = \max\{x_1, \dots, x_n\}.$$

Эти оценки являются функциями от выборки и не зависят от θ . При $n \to \infty$ обе оценки «должны» должны приближаться к истинному значению θ .

2.3 Несмещенные оценки

Любая оценка T = T(X), где T — измеримая функция, является случайной величиной. Для произвольной случайной величины определены понятия математического ожидания и дисперсии.

Рассмотрим параметрическую модель

$$\mathcal{F} = \{ F_{\theta}, \, \theta \in \Theta \}$$

которое задает распределение вероятностей на выборочном пространстве.

Нижним индексом θ при символах математического ожидания будем обозначать то, что соответствующие величины вычисляются для распределения F_{θ} . Обозначим $\mathsf{M}_{\theta}\,T(X)$ и $\mathsf{D}_{\theta}\,T(X)$ соответственно математическое ожидание и дисперсию статистики T в случае, когда функция распределения реализации выборки $\overline{x}=(x_1,x_2,\ldots,x_n)$ есть

$$F_{X,\theta}(X) = F_{\xi,\theta}(x_1) \cdot \ldots \cdot F_{\xi,\theta}(x_n).$$

Математическое ожидание выписывается по определению:

$$\mathsf{M}_{\theta}(T(x)) = \int_{B} T(t)dF_{\theta}(t),$$

что в непрерывном случае соответствует формуле:

$$\int_{\mathbb{R}^n} T(t) f_{\theta}(x_1) \cdot \ldots \cdot f_{\theta}(x_n) dx_1 \ldots dx_n,$$

где f(x) — плотность случайной величины ξ , и в дискретном случае соответствует:

$$\sum_{x \in B} T(t) p_{\theta}(x_1) \cdot \ldots \cdot p_{\theta}(x_n),$$

где p(x) соответствует значению вероятности $\mathsf{P}\left(\xi=x\right)$.

Определение 2.5. Статистика T = T(X) называется несмещенной в среднем (или просто несмещенная) оценкой для заданной параметрической

функции $\tau(\theta)$, если она удовлетворяет условию

$$\mathsf{M}_{\theta} T(x) = \tau(\theta), \forall \theta \in \Theta,$$

которое называется уравнением несмещенности.

Определение 2.6. Смещением оценки T(X) неизвестного параметра $\tau(\theta)$ будем называть величину

$$b(\theta) = \mathsf{M}_{\theta} T(X) - \tau(\theta).$$

Если смещение равно 0, то оценка несмещенная.

Найдем математическое ожидание выборочного среднего и выборочной дисперсии.

$$\mathsf{M}_{\theta} \, \widehat{\alpha}_1 = \mathsf{M}_{\theta} \, \frac{1}{n} \sum_{i=1}^n X_i = \frac{1}{n} \sum_{i=1}^n \mathsf{M}_{\theta} \, X_i = \mathsf{M}_{\theta} \, X_1 = \mathsf{M}_{\theta} \, \xi.$$

Получили, что выборочное среднее является несмещенной оценкой для математического ожидания случайной величины ξ .

Введем обозначение $Y_i = X_i - \alpha_1$, где $\alpha_1 = \mathsf{M}\,\xi$, и найдем математическое ожидание выборочной дисперсии. Для начала преобразуем выражение для выборочной дисперсии:

$$\widehat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n (X_i \pm \alpha_1 - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2 - \overline{Y}^2.$$

Так как $\mathsf{M}_{\theta} Y_i = 0$, $\mathsf{M}_{\theta} Y_i^2 = \mu_2$, $\mathsf{M}_{\theta} Y_i Y_j = \mathsf{M}_{\theta} Y_i \mathsf{M}_{\theta} Y_j = 0$, где $\mu_2 = \mathsf{D} \xi$. Если $i \neq j$, верно следующее:

$$M\overline{Y}^2 = \frac{1}{n^2} \sum_{i,j=1}^n M_\theta Y_i Y_j = \frac{1}{n^2} \sum_{i=1}^n M_\theta Y_i^2 = \frac{\mu_2}{n},$$

Так как

$$\frac{n\mu_2}{n} - \frac{\mu_2}{n} = \frac{n-1}{n}\mu_2,$$

при $n \to \infty$ значение выборочной дисперси хоть и сходится к значению дисперсии случайной величины ξ , но является смещенной оценкой.

Можно построить несмещенную оценку дисперсии:

$$\widehat{\mu}_2' = \frac{n}{n-1}\widehat{\mu}_2.$$

Пример 2.7. Несмещенные оценки не всегда существуют. Пусть $\xi \sim \text{Pois}(\theta)$. Покажем, что ни для одной функции T = T(X) не будет выполнено равенство $\mathsf{M}_{\theta} T(X) = \theta^{-1}$. Предположим обратное:

$$\frac{1}{\theta} = \mathsf{M}_{\theta} T(X) = \sum_{k=0}^{\infty} T(k) \cdot \frac{\theta^k}{k!} \cdot e^{-\theta}.$$

Тогда будет верно равенство:

$$\sum_{k=0}^{\infty} T(k) \cdot \frac{\theta^{k+1}}{k!} = e^{\theta} = \sum_{r=0}^{\infty} \frac{\theta^r}{r!}, \forall \theta > 0.$$

Такой функции T(x) не существует (можно показать устремив θ к 0).

2.4 Состоятельность оценки

Определение 2.8. Статистика $T_n = T_n(X)$ называется состоятельной оценкой для неизвестного параметра $\tau(\theta)$ случайной величины ξ , если при $n \to \infty$:

$$T_n(X) \xrightarrow[n \to \infty]{\mathsf{P}} \tau(\theta).$$

Утверждение 2.9. Пусть элементы выборки $X = (X_1, ... X_n)$ являются независимыми одинаково распределенными случайными величинами и $\mathsf{M}\,|X_1| < \infty$. Тогда при $n \to \infty$ выборочные моменты порядка k сходятся k-ым моментам случайной величины X_1 :

$$\widehat{\alpha}_k \stackrel{\mathsf{P}}{\to} \mathsf{M}\,X_1^k.$$

Доказательство. Рассмотрим статистику

$$S = S(X) = \int g(x)d\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n g(x_i).$$

Статистика S представляет собой сумму независимых одинаково распределенных случайных величин, при этом $\mathsf{M}\,g(X_1) = \int g(t) dF(t)$. По закону больших чисел:

$$S \stackrel{P}{\to} \mathsf{M} \, g(x_i),$$

что и заканчивает доказательство утверждения.

Верно и более сильное утверждение, что любая непрерывная функция от выборочных моментов сходится по вероятности к значению этой функции от соответствующих моментов случайной величины.

Теорема 2.10. Пусть случайные величины $\eta_1(n), \ldots, \eta_k(n)$ сходятся по вероятности при $n \to \infty$ к некоторым константам c_1, \ldots, c_k . Тогда для любой непрерывной функции $\varphi(x_1, \ldots, x_k)$ случайная величина $\varphi(\eta_1(n), \ldots, \eta_k(n))$ сходится по вероятности к $\varphi(c_1, \ldots, c_k)$.

Доказательство. По условию теоремы φ — непрерывная функция. Тогда $\forall \varepsilon>0 \; \exists \delta=\delta(\varepsilon)$:

$$|\varphi(x_1,\ldots,x_k)-\varphi(c_1,\ldots,c_k)|<\varepsilon$$
 при $|x_i-c_i|<\delta,\ i=\overline{1,k}.$

Пусть $B_i = \{ |\eta_i(n) - c_i| < \delta \}$. Рассмотрим событие $B = B_1 \cdot \ldots \cdot B_k$. Выполнение события B влечет за собой выполнение события

$$C = \{ |\varphi(\eta_1(n), \dots, \eta_k(n)) - \varphi(c_1, \dots, c_k)| < \varepsilon \}.$$

Рассмотрим следующую последовательность неравенств:

$$\mathsf{P}(C) \geqslant \mathsf{P}(B) = 1 - \mathsf{P}(\overline{B}) = 1 - \mathsf{P}(\overline{B}_1 \cup \dots \cup \overline{B}_k) \geqslant 1 - \sum_{i=1}^k \mathsf{P}(\overline{B}_i).$$

Так как $\eta_i(n) \stackrel{\mathsf{P}}{\to} c_i$, то для фиксированного δ для произвольного $\gamma > 0$ существует номер $n_i = n_i(\gamma)$ такой, что для всех $n \geqslant n_i$ выполняется

$$P\{|\eta_i(n) - c_i| \ge \delta\} \le \frac{\gamma}{k}.$$

Пусть $n_0=\max\{n_1,\dots,n_k\}$. Тогда для любого $n\geqslant n_0$ верно неравенство: $\mathsf{P}(\overline{B}_i)<\frac{\gamma}{k}$ и

$$\mathsf{P}(C) \geqslant 1 - \gamma.$$

Отсюда и от произвольности выбора γ следует доказательство теоремы.

Заметим, что для проверки состоятельности несмещенной оценки T_n для неизвестного параметра $\tau(\theta)$ достаточно убедиться, что ее дисперсия стремиться к 0 при $n \to \infty$. Действительно, по неравенству Чебышева

$$P(|T_n(X) - \tau(\theta)| \ge \varepsilon) \le \frac{D_\theta T_n(X)}{\varepsilon} \to 0,$$

что говорит о сходимости по вероятности. Таким образом, легко показать, что значение э.ф.р. в произвольной точке y есть состоятельная оценка для функции распределения в точке y.

3 Некоторые способы построения оценок

3.1 Метод моментов

Пусть имеется выборка $X=(X_1,\ldots,X_n)$ из распределения $\mathscr{L}(\xi),\,\mathscr{L}(\xi)\in \mathcal{F}=\{F_\theta,\theta\in\Theta\},$ где $\theta=(\theta_1,\ldots,\theta_r)\in\mathbb{R}^r.$

Рассмотрим один из простейших способов построения состоятельных оценок. Пусть у случайной величины ξ имеются первые r моментов, т.е. $\alpha_k = \mathsf{M}_{\theta}\left(\xi^k\right) < \infty$, являющиеся функциями от неизвестного θ : $\alpha_k = \alpha_k(\theta)$, $k = \overline{1,r}$.

Рассмотрим следующую систему:

$$\left\{\alpha_k(\theta) = \widehat{\alpha}_k, \ k = \overline{1,r}\right\}$$

в которой ровно r неизвестных $\theta_1, \ldots, \theta_r$.

Пусть эта система однозначно разрешима и ее решением являются $\widehat{\theta}_1,\dots,\widehat{\theta}_r,\,\widehat{\theta}_i=\phi_i(\widehat{\alpha}_1,\dots,\widehat{\alpha}_k),\,\phi_i$ — некоторая функция.

Оценки $\widehat{\theta}_i = \phi_i(\widehat{\alpha}_1, \dots, \widehat{\alpha}_k)$ будем называть оценками, построенными по методу моментов. Заметим, что если функция ϕ_i является непрерывной функцией, то по теореме 2.10 оценка $\widehat{\theta}_i$ является состоятельной.

Заметим, что метод напрямую неприменим, когда выборочный момент не существует — $\mathsf{M}_{\theta}\left(\xi^{k}\right)=\alpha^{k}=\infty.$

Пример 3.1. Рассмотрим выборку из распределения $\mathcal{L}(\xi) \sim N(\theta_1, \theta_2^2)$. Известно, что $\mathsf{M}(\xi) = \theta_1$, и $\mathsf{D}(\xi) = \theta_2 = \mathsf{M}(\xi^2) - (\mathsf{M}(\xi))^2$. При этом $\mathsf{M}(\xi^2) = \alpha_2$, $(\mathsf{M}(\xi))^2 = (\alpha_1)^2$.

Тогда легко получить следующие оценки методом моментов $\widehat{\theta}_1=\widehat{\alpha}_1,\,\widehat{\theta}_2=\sqrt{\widehat{\alpha}_2-(\widehat{\alpha}_1)^2}.$ При этом, данные оценки будут состоятельными.

3.2 Метод максимального правдоподобия

Рассмотрим еще один метод построения оценок неизвестных параметров. Оценки полученные методом, рассмотренным в этом разделе принято называть оценками максимального правдоподобия.

Пусть есть выборка $X = (X_1, \ldots, X_n)$ из распределения $\mathcal{L}(\xi)$. Пусть $f_{\theta}(x)$ — функция плотности случайной величины ξ , которая известна с точностью до параметра из распределения; (в дискретном случае вместо функции плотности берем функцию вероятности $\mathsf{P}_{\theta}(\xi = x)$). Пусть \overline{x} — реализация выборки, $\overline{x} = (x_1, \ldots, x_n)$.

Определение 3.2. Функцию, заданную равенством $L(\overline{x};\theta) = \prod_{i=1}^{n} f_{\theta}(x_{i})$ будем называть функцией правдоподобия.

Фактически функция правдоподобия совпадает с плотностью \overline{x} как вектора.

Если для двух значений параметра $\theta_1, \theta_2 \in \Theta$ $L(\overline{x}; \theta_1) > L(\overline{x}; \theta_2)$, то говорят, что θ_1 более правдоподобна, чем θ_2 .

Определение 3.3. Оценкой максимального правдоподобия называется построенная по реализации выборки \overline{x} значение $\widehat{\theta} = \arg\max_{\theta \in \Theta} L(\overline{x}; \theta)$.

То есть, чтобы найти оценку максимального правдоподобия (о.м.п.), надо найти такое значение θ , при котором функция правдоподобия принимает максимальное значение.

Если для каждого \overline{x} из выборочного пространства максимум $L\left(\overline{x};\theta\right)$ достигается в некоторой внутренней точке и $L\left(\overline{x};\theta\right)$ дифференцируема по θ , то $\widehat{\theta}\left(\overline{x}\right)$ удовлетворяет условию

$$\frac{\partial L(\overline{x};\theta)}{\partial \theta} = 0.$$

В случае векторного параметра $\theta = (\theta_1, \theta_2, \dots, \theta_r)$ условие на максимум функции правдоподобия представляется системой

$$\left\{ \frac{\partial L\left(\overline{x};\theta\right)}{\partial \theta_{i}} = 0, i = \overline{1,r}. \right.$$

Вместо функции правдоподобия для простоты часто рассматривают следующую функцию $\ln L\left(\overline{x};\theta\right)=\sum\limits_{i=1}^{n}\ln f_{\theta}(x_{i}).$

Пример 3.4. Рассмотрим выборку из распределения $\mathcal{L}(\xi) \sim N(\theta_1, \theta_2^2), \, \overline{x}$ — реализация выборки.

$$f_{\theta}(x_i) = \frac{1}{\theta_2 \cdot \sqrt{2\pi}} \cdot \exp\left(\frac{-\frac{1}{2} \cdot (x_i - \theta_1)^2}{\theta_2^2}\right).$$

Выпишем функцию правдоподобия:

$$L(\overline{x};\theta) = \frac{1}{\theta_2^n \cdot (2\pi)^{n/2}} \cdot \prod_{i=1}^n \exp\left(\frac{-\frac{1}{2} \cdot (x_i - \theta_1)^2}{\theta_2^2}\right)$$

и прологарифмируем ее:

$$\ln L(\overline{x}; \theta) = -n \cdot \ln \theta_2 - \frac{n}{2} \cdot \ln[2\pi] - \frac{1}{2} \cdot \sum_{i=1}^n \frac{(x_i - \theta_1)^2}{\theta_2^2}.$$

Продифференцировав по θ_1 и θ_2 получаем систему уравнений:

$$\begin{cases} \frac{\partial(\ln[L(\overline{x};\theta)])}{\partial\theta_1} = \frac{1}{\theta_2^2} \cdot \sum_{i=1}^n (x_i - \theta_1) = 0\\ \frac{\partial(\ln[L(\overline{x};\theta)])}{\partial\theta_2} = -\frac{n}{\theta_2} + \frac{1}{\theta_2^3} \cdot \sum_{i=1}^n (x_i - \theta_1)^2 = 0\\ \begin{cases} \widehat{\theta}_1 = \frac{1}{n} \cdot \sum_{i=1}^n x_i = \widehat{\alpha}_1,\\ \widehat{\theta}_2^2 = \frac{1}{n} \cdot \sum_{i=1}^n (x_i - \theta_1)^2; \end{cases} \\ \begin{cases} \widehat{\theta}_1 = \widehat{\alpha}_1,\\ \widehat{\theta}_2 = \sqrt{\widehat{\alpha}_2 - 2\widehat{\alpha}_1^2 + \widehat{\alpha}_1^2} = \sqrt{\widehat{\alpha}_2 - \widehat{\alpha}_1^2}; \end{cases}$$

Заметим, что система имеет одно решение, поскольку точка экстремума единственная и при $\theta_1, \theta_2 \to \infty$ получаем, что $L(\overline{x}; \theta) \to 0$, то есть на концах отрезка функция правдоподобия убывает.

Оценка, полученная методом моментов, совпала с оценкой максимального правдоподобия, однако это не всегда так.

Важным свойством оценок максимального правдоподобия является их инвариантность относительно преобразований параметра. Это означает, что если $q=q(\theta)$ — произвольная функция, взаимно однозначно отображающая параметрическое множество Θ рассматриваемой модели в некоторое множество Q, то о.м.п. в Q будет $\widehat{q}=q\left(\widehat{\theta}\right)$, где $\widehat{\theta}$ — о.м.п. в параметрическом семействе Θ . Принцип инвариантности позволяет в каждой конкретной задаче выбирать наиболее удобную параметризацию, а о.м.п. получать затем с помощью соответствующих преобразований.

4 Сравнения различных оценок

В предыдущем разделе были рассмотрены различные подходы к построению статистических оценок. В данном разделе ответим на вопрос как сравнивать различные оценки.

4.1 Среднеквадратичный подход к сравнению оценок

Пусть заданно параметрическое семейство распределений: $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$, $X = (X_1, X_2, \dots, X_n)$ — выборка. Пусть получены две оценки T_1, T_2 неизвестного параметра $\tau = \tau(\theta)$.

Определение 4.1. Будем говорить что оценка T_1 , лучше оценки T_2 в среднеквадратическом смысле, если

$$\mathsf{M}_{\theta} \left(T_1 - \tau \right)^2 < \mathsf{M}_{\theta} \left(T_2 - \tau \right)^2.$$

Определение 4.2. Функцию $r = \sqrt{\mathsf{M}_{\theta}(T-\tau)^2}$ называют среднеквадратическим отклонением оценки T.

Определение 4.3. Среднеквадратической ошибкой оценки T параметра $\tau(\theta)$ будем называть величину $\Delta T = \mathsf{M}_{\theta}(T-\tau)^2$

Заметим, что ΔT порождает критерий оптимальности оценок. Класс несмещенных оценок параметра τ будем обозначать \mathcal{T}_{τ} .

Определение 4.4. Оценку минимизирующую среднеквадратическое отклонение в классе несмещенных оценок будем называть оптимальной оценкой $T^* = \arg\min \Delta T$.

Утверждение 4.5. Для несмещенной оценок среднеквадратическая ошибка совпадает с ее дисперсией, а для смещенной оценки больше ее дисперсии.

Доказательство.

$$\begin{split} \mathsf{M}_{\theta}(T-\tau)^2 &= \mathsf{M}_{\theta}(T-\mathsf{M}_{\theta}\,T+\mathsf{M}_{\theta}\,T-\tau)^2 = \\ &= \underbrace{\mathsf{M}_{\theta}(T-\mathsf{M}_{\theta}\,T)^2}_{\mathsf{D}_{\theta}\,T} + \mathsf{M}_{\theta}\underbrace{(\mathsf{M}_{\theta}\,T-\tau)^2 + 2\underbrace{\mathsf{M}_{\theta}(T-\mathsf{M}_{\theta}\,T)(\mathsf{M}_{\theta}\,T-\tau)}_{0} = \\ &= \mathsf{D}_{\theta}\,T + b^2. \end{split}$$

Теорема 4.6. Пусть T_1 и T_2 две оптимальные оценки для неизвестного параметра $\tau = \tau(\theta)$. Тогда $T_1 = T_2$.

Доказательство. Пусть $D=\mathsf{D}_{\theta}\,T_1=\mathsf{D}_{\theta}\,T_2$. Обозначим $\Delta_k=T_k-\tau,\,k\in\overline{1,2}$. Рассмотрим оценку

 $\widehat{T} = \frac{T_1 + T_2}{2}.$

Очевидно, что \widehat{T} также будет несмещенной оценкой.

$$\left(\frac{\Delta_1 + \Delta_2}{2}\right)^2 + \left(\frac{\Delta_1 - \Delta_2}{2}\right)^2 = \frac{\Delta_1^2}{2} + \frac{\Delta_2^2}{2}.$$

Рассмотрим подробнее выражения в скобках:

$$\frac{\Delta_1 + \Delta_2}{2} = \frac{T_1 - \tau + T_2 - \tau}{2} = \widehat{T} - \tau;$$

$$\frac{\Delta_1 - \Delta_2}{2} = \frac{T_1 - \tau - T_2 + \tau}{2} = \frac{T_1 - T_2}{2}.$$

После подстановки и вычисления математического ожидания от левой и правой части получаем:

$$\mathsf{M}_{\theta} \left(\widehat{T} - \tau \right)^{2} + \frac{1}{4} \, \mathsf{M}_{\theta} \left(T_{1} - T_{2} \right)^{2} = D.$$

Так как $\mathsf{M}_{\theta}\left(\widehat{T}-\tau\right)^{2}\geqslant D$, то получаем, что $\mathsf{D}\left(T_{1}-T_{2}\right)=0$, что доказывает теорему.

Пример 4.7. Рассмотрим выборку $X = (X_1, ..., X_n)$ из $\mathcal{L}(\xi)$, $\xi \sim Bi(1,\theta)$, $\theta \in (0,1)$. Хотим оценить параметр θ . Напомним, что $\mathsf{M}\,X_i = \theta$, $\mathsf{D}\,X_i = \theta(1-\theta)$.

Множество несмещенных оценок не пусто. Действительно, статистика $\frac{1}{n}\sum_{i=1}^n x_i = \widehat{\alpha}$ как известно является несмещенной оценкой параметра θ :

$$M \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \sum_{i=1}^{n} M X_i = \frac{n}{n} \theta = \theta.$$

Эта оценка является состоятельной:

$$D \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n^2} \sum_{i=1}^{n} D X_i = \frac{n\theta(1-\theta)}{n^2} = \frac{\theta(1-\theta)}{n} \to 0, n \to \infty.$$

Заметим, что таких оценок бесконечно много. Пусть $b_1 + \ldots + b_n = n$. Рассмотрим статистику T вида

$$T(X) = \frac{1}{n} \sum_{i=1}^{n} b_i X_i,$$

которая является как несмещенной так и состоятельной:

$$\operatorname{D} T(X) = \frac{1}{n^2} \sum_{i=1}^n b_i^2 \theta(1-\theta) \le \frac{b^2}{n^2} n \theta(1-\theta) \le \frac{b^2}{n} \to 0, n \to \infty,$$

где $b = \max(b_1, \ldots, b_n)$.

Покажем, что для любой оценки

$$\mathsf{D}_{\theta} \geqslant \frac{\theta(1-\theta)}{n} \ \forall \theta \in (0,1),$$

то есть $\widehat{\alpha}_1$ является оптимальной и несмещенной оценкой.

Для начала выпишем функцию правдоподобия:

$$L(\overline{x};\theta) = \theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{n-\sum_{i=1}^{n} x_i},$$

где \overline{x} — реализация выборки. Очевидно, что

$$\sum_{\overline{x}} L(\overline{x}; \theta) = 1.$$

Пусть T — произвольная несмещенная оценка

$$\theta = \mathsf{M}_{\theta} T(X) = \sum_{\overline{x}} T(\overline{x}) L(\overline{x}; \theta).$$

Продифференцируем первое равенство по θ :

$$0 = \sum_{\overline{x}} \frac{\partial L(\overline{x}; \theta)}{\partial \theta} = \sum_{\overline{x}} \frac{\partial \ln L(\overline{x}; \theta)}{\partial \theta} L(\overline{x}; \theta) = \mathsf{M}_{\theta} \left(\sum_{\overline{x}} \frac{\partial \ln L(\overline{x}; \theta)}{\partial \theta} \right), \quad (1)$$

пользуясь следующими равенствами:

$$\frac{\partial \ln f(x)}{\partial x} = \frac{1}{f(x)} \frac{\partial f(x)}{\partial x};$$

$$\frac{\partial f(x)}{\partial x} = \frac{\partial \ln f(x)}{\partial x} f(x).$$

Аналогично продифференцируем второе равенство:

$$1 = \sum_{\overline{x}} T(\overline{x}) \frac{\partial L(\overline{x}; \theta)}{\partial \theta} = \mathsf{M}_{\theta} \left(T(\overline{x}) \frac{\partial \ln L(\overline{x}; \theta)}{\partial \theta} \right). \tag{2}$$

Так как $M(a \cdot b) \leq \sqrt{M a^2 \cdot M b^2}$, то вычтя из (2) умноженное на θ значение (1) получим:

$$1 = \mathsf{M}_{\theta} \left((T(X) - \theta) \frac{\ln(L(X; \theta))}{\partial \theta} \right) \leq \sqrt{\mathsf{M}_{\theta} (T(X) - \theta)^2 \, \mathsf{M}_{\theta} \left(\frac{\partial \ln(L(X; \theta))}{\partial \theta} \right)^2}.$$

И после возведения левой и правой части в квадрат:

$$1 \le \mathsf{M}_{\theta}(T(X) - \theta)^2 \cdot \mathsf{M}_{\theta} \left(\frac{\partial \ln(L(X; \theta))}{\partial \theta} \right)^2$$

Так как $\mathsf{M}_{\theta}(T(X) - \theta)^2 = \mathsf{D}_{\theta} T(X)$, то

$$\mathsf{D}_{\theta} T(X) \ge \frac{1}{\mathsf{M}_{\theta} \left(\frac{\partial \ln(L(X;\theta))}{\partial \theta} \right)^2} \ \forall \theta \in (0;1).$$

Осталось найти значение математического ожидания в знаменателе. Рассмотрим величину:

$$\frac{\partial \ln(L(\bar{x};\theta))}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\sum_{i=1}^{n} x_i \ln \theta + (n - \sum_{i=1}^{n} x_i) \ln(1 - \theta) \right) =$$

$$= \frac{\sum_{i=1}^{n} x_i}{\theta} - \frac{n - \sum_{i=1}^{n} x_i}{1 - \theta} = \frac{(1 - \theta) \sum_{i=1}^{n} x_i - \theta_n + \theta \sum_{i=1}^{n} x_i}{\theta(1 - \theta)} = \frac{1}{\theta(1 - \theta)} \sum_{i=1}^{n} (x_i - \theta).$$

$$\mathsf{M}_{\theta} \left(\frac{\partial \ln(L(X;\theta))}{\partial \theta} \right)^2 = \frac{1}{\theta^2 (1-\theta)^2} \cdot \mathsf{M}_{\theta} \left(\sum_{i=1}^n (X_i - \theta) \right)^2 = \frac{n \cdot \mathsf{D}_{\theta} X_i}{\theta^2 (1-\theta)^2} = \frac{n}{\theta (1-\theta)}.$$

Теорема 4.8. Относительная частота произвольного события является оптимальной несмещенной оценкой для вероятности этого события.

Следствие 4.9. Значение эмперической функции $\widehat{F}_n(x)$ в каждой точке x является оптимальной несмещенной оценкой для значения F(x).

4.2 Эффективные оценки. Неравенство Рао-Крамера.

Пусть заданно параметрическое семейство распределений: $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$, $X = (X_1, X_2, \dots, X_n)$ — выборка, $\overline{x} = (x_1, \dots, x_n)$ — реализация выборки.

Определение 4.10. Параметрическое семейство $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$ называется регулярным (по Рао-Крамеру), если выполнены следующие условия, которые в дальнейшем будем называть условиями регулярности:

- 1. $L(\bar{x}; \theta) > 0$ для всех значений $\bar{x} \in B$ из выборочного пространства и дифференцируема по $\theta, \forall \theta \in \Theta \ (\Theta napamempuческое множество).$
- 2. Случайная величина $V(X;\theta)$, называемая функцией вклада выборки и определенная равенством

$$V(X;\theta) = \frac{\partial \ln(L(X;\theta))}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \ln(f_{\theta}(X_{i}))}{\partial \theta},$$

имеет ограниченную дисперсию:

$$0 < \mathsf{M}_{\theta} V^2(X; \theta) < \infty.$$

При этом значение $\frac{\partial \ln(f_{\theta}(X_i))}{\partial \theta}$ будем называть вкладом i-го наблюдения выборки.

3. $\forall \theta \in \Theta \ \forall \ cmamucmuku \ T(X)$ верно равенство:

$$\frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} T(\bar{x}) L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} T(\bar{x}) \frac{\partial L(\bar{x}; \theta)}{\partial \theta} d\bar{x}.$$

Рассмотрим некоторые свойства вклада выборки $V(\bar{x};\theta)$. Воспользуемся известным равенством:

$$\int_{\mathbb{D}^n} L(\bar{x}; \theta) d\bar{x} = 1.$$

Откуда продифференцировав по θ получаем:

$$0 = \frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial L(\bar{x}; \theta)}{\partial \theta} d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln(L(\bar{x}; \theta))}{\partial \theta} L(\bar{x}; \theta) d\bar{x} = \int_{\mathbb{R}^n} \frac{\partial \ln$$

Для регулярных моделей определена $\mathsf{D}_{\theta}\,V(X)$ корректно и равна $\mathsf{M}_{\theta}\,V^{2}\,(X)$.

Определение 4.11. Функцию $i_n(\theta)$, определенную равенством:

$$i_n(\theta) = \mathsf{D}_{\theta} V(X; \theta) = \mathsf{M}_{\theta} V^2(X; \theta)$$

будем называть информацией Фишера.

Заметим, что верно равенство:

$$i_n(\theta) = \mathsf{D}_{\theta} V(X; \theta) = \sum_{i=1}^n \mathsf{D} f(x_i; \theta) = n \cdot i_1(\theta) = n \cdot i(\theta)$$

Теорема 4.12. *Неравенство Рао-Крамера.*

Пусть $\tau(\theta)$ — неизвестный параметр в регулярной модели $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$ и θ — скалярный параметр. Пусть также $\tau(\theta)$ — дифференцируема по θ .

Тогда для любой оценки T=T(X) параметр $\tau(\theta), T\in \mathcal{T}_{\tau}$ справедливо неравенство:

 $\mathsf{D}_{\theta} T(X) \ge \frac{[\tau'(\theta)]^2}{n \cdot i(\theta)}.$

При этом равенство выполняется тогда и только тогда, когда:

$$T(X) - \tau(\theta) = a(\theta) \cdot V(X; \theta),$$

 $r\partial e \ a(heta) \ - \ некоторая \ функция.$

Доказательство.

$$\mathsf{M}_{\theta} T(X) = \int_{\mathbb{R}^n} T(\bar{x}) L(\bar{x}; \theta) d\bar{x} = \tau(\theta)$$

так как оценка несмещенная. В виду регулярности модели:

$$\tau'(\theta) = \int_{\mathbb{R}^n} T(\bar{x}) \frac{\partial \ln(L(\bar{x};\theta))}{\partial \theta} L(\bar{x};\theta) d\bar{x} = \mathsf{M}_{\theta} \left(T(\bar{x}) \cdot \frac{\partial \ln(L(\bar{x};\theta))}{\partial \theta} \right) =$$
$$= \mathsf{M}_{\theta} (T(X)V(X;\theta)).$$

$$\begin{split} \tau'(\theta) &= \mathsf{M}_{\theta}(T(X)V(X;\theta)) = \mathsf{M}_{\theta}((T(X) + \tau(\theta) - \tau(\theta)) \cdot V(X;\theta)) = \\ &= \mathsf{M}_{\theta}((T(X) - \tau(\theta))V(X;\theta)) + \tau(\theta)\,\mathsf{M}_{\theta}\,V(X;\theta) = \\ &= \mathsf{M}_{\theta}(T(X) - \tau(\theta)) \cdot (V(X;\theta) - \mathsf{M}_{\theta}\,V(X;\theta)) = \mathsf{cov}_{\theta}(T(X);V(X;\theta)). \end{split}$$

Используя неравенство Коши-Буняковского $cov(\xi, \eta)^2 \leq D \xi D \eta$:

$$\tau'(\theta)^2 \leq \mathsf{D}_{\theta} T(X) \cdot \mathsf{D}_{\theta} V(X, \theta) = \mathsf{D}_{\theta} T(X) \cdot i_n(\theta)$$

Напомним, что неравенство Коши-Буняковского превращается в равенство, если ξ, η линейно связаны: $\xi = a\eta + b$. В нашем случае:

$$T(X) = aV(X; \theta) + b.$$

Вычислим математическое ожидание от левой и правой части:

$$b = \mathsf{M}_{\theta} T(X) - a \, \mathsf{M}_{\theta} \, V(X; \theta)$$

Так как $\mathsf{M}_{\theta} T(X) = \tau(\theta)$ и $\mathsf{M}_{\theta} V(X; \theta) = 0$, то:

$$T(X) = aV(X; \theta) + \tau(\theta).$$

Следовательно для любого значения θ существует такое $a=a(\theta)$, что завершает доказательство теоремы.

Следствие 4.13. Если $D_{\theta} T(X) = \frac{[\tau'(\theta)]^2}{n \cdot i(\theta)}$, то в этом случае $D_{\theta} T(X) = a(\theta) \cdot \tau'(\theta)$

Доказательство.

$$cov_{\theta}(T(X); V(X; \theta)) = \tau'(\theta)$$

$$\mathsf{cov}_{\theta}(T(X); V(X; \theta)) = \mathsf{M}_{\theta}\left(T(X) \cdot V(X; \theta)\right) - \mathsf{M}_{\theta} \, T(X) \cdot \mathsf{M}_{\theta} \, V(X; \theta)$$

Так как $\mathsf{M}_{\theta} T(X) \cdot \mathsf{M}_{\theta} V(X; \theta) = 0$, то

$$\mathsf{M}_{\theta}\left(T(X)\cdot V(X;\theta)\right) = \mathsf{M}_{\theta}\left(T(X)\cdot \frac{T(X)-\tau(\theta)}{a(\theta)}\right) = \frac{1}{a(\theta)}\,\mathsf{M}_{\theta}\left(T^2(X)-T(X)\right),$$

откуда получаем:

$$\tau'(\theta) = \frac{1}{a(\theta)} \, \mathsf{D} \, T(X).$$

Замечание 4.14. Если T(X) - смещенная оценка, $\mathsf{M}_{\theta}\,T(X) = \tau(\theta) + b(\theta),$ то

$$\mathsf{D}_{\theta} T(X) \leq \frac{[\tau'(\theta) + b'(\theta)]^2}{n \cdot i(\theta)}.$$

Следствие 4.15. *Если* T(X) *является несмещнной оценкой для* θ , *то:*

$$\mathsf{D}_{\theta} T(X) \le \frac{1}{n \cdot i(\theta)}.$$

Определение 4.16. Эффективностью оценки T = T(X) параметра $\tau(\theta)$ будем называть величину

$$e(T) = \frac{(\tau'(\theta))^2}{i_n(\theta) \mathsf{D}_{\theta} T}, \ 0 \le e(T) \le 1.$$

Eсли выполняется равенство e(t)=1, то в этом случае оценка T(X) называется эффективной.

Заметим, что ранее, в частности было показано, что

$$\frac{\theta(1-\theta)}{n}V(X;\theta) = \overline{X} - \theta.$$

Тогда положив $\tau(\theta) = \theta$ и $a(\theta) = \theta(1-\theta)/n$ получим, что статистика \overline{X} является эффективной оценкой параметра в модели $Bi(1,\theta)$. Рассмотрим еще примеры эффективных статистик.

Пример 4.17. Рассмотрим выборку $X = (X_1, \dots X_n)$ из $\mathcal{L}(\xi), \xi \sim N(\theta, \sigma^2)$. Выпишем вклад оного наблюдения:

$$V(X_1,\theta) = \frac{\partial \ln f_{\theta}(X_1)}{\partial \theta} = \frac{\partial}{\partial \theta} \ln \left(\left(\frac{1}{\sqrt{2\pi}\sigma} \right) \exp \left(-\frac{(X_1 - \theta)^2}{2\sigma^2} \right) \right) = \frac{X_1 - \theta}{\sigma^2}.$$

Заметим, что $f_{\theta}(X_1)$ — дважды дифференцируема и $\mathsf{M}_{\theta}(V(X, \theta)) = 0,$ откуда:

$$\begin{split} \frac{\partial}{\partial \theta} \, \mathsf{M}_{\theta} \left(V(X, \theta) \right) &= \frac{\partial}{\partial \theta} \int\limits_{\mathbb{R}^n} \frac{\partial \ln f_{\theta}(\overline{x})}{\partial \theta} f_{\theta}(\overline{x}) d\overline{x} = \\ &= \int\limits_{\mathbb{R}^n} \frac{\partial^2 \ln f_{\theta}(\overline{x})}{\partial^2 \theta} f_{\theta}(\overline{x}) d\overline{x} + \int\limits_{\mathbb{R}^n} \left(\frac{\partial \ln f_{\theta}(\overline{x})}{\partial \theta} \right)^2 f_{\theta}(\overline{x}) d\overline{x}, \end{split}$$

откуда получаем, что $\mathsf{M}_{\theta} \, \frac{\partial^2 \ln f_{\theta}(X_1)}{\partial^2} = -i_1(\theta)$ — информация Фишера. Таким образом доказано следующее

Утверждение 4.18. Если плотность случайной величины ξ дважды дифференцируема, то

$$-\mathsf{M}_{\theta} \frac{\partial^{2} \ln f_{\theta}(X_{1})}{\partial^{2}} = i_{1}(\theta).$$

Вернемся к примеру и воспользуемся доказанным утверждением:

$$\frac{\partial^2 \ln f_{\theta}(X_1)}{\partial \theta^2} = -\frac{1}{\sigma^2}.$$

Откуда получаем, что $i(\theta) = \frac{1}{\sigma^2}$.

Рассмотрим статистику

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

и покажем, что она эффективная оценка параметра θ . Действительно,

$$\frac{1}{ni(\theta)} = \frac{\sigma^2}{n} = \mathsf{D}_{\theta} \, \overline{X}.$$

Также можно заметить, что

$$\frac{\sigma^2}{n}V(X;\theta) = \overline{X} - \theta.$$

4.3 О доказательстве регулярности модели

Для доказательства регулярности модели необходимо показать возможность перестановки знаков дифференцирования и интегрирования. Напомним следующую теорему из курса математической статистики, которая в большинстве случаев помогает доказать свойство регулярности:

Теорема 4.19. Пусть функция $f(x,\theta)$, определенная в прямоугольнике [a,b;c,d], будет непрерывна по x в [a,b] при любом постоянном θ в [c,d]. Предположим, что во всей области существует частная производная $\frac{\partial f(x,\theta)}{\partial \theta}$, непрерывная как функция двух переменных. Тогда при любом θ из [c,d] имеет место формула

$$\frac{\partial}{\partial \theta} \int_{a}^{b} f(x,\theta) dx = \int_{a}^{b} \frac{\partial f(x,\theta)}{\partial \theta} dx.$$

Аналогично для несобственного интеграла:

Теорема 4.20. *Если:*

- функции $f(x,\theta), \frac{\partial f(x,\theta)}{\partial \theta}$ непрерывны на множестве $\{(x,\theta)\in\mathbb{R}^2 \,|\, x\in[a,\omega), \theta\in[c,d]\},$
- интеграл

$$\Phi(\theta) = \int_{a}^{\omega} \frac{\partial f(x,\theta)}{\partial \theta} dx$$

cxodumcя равномерно на множестве Y = [c,d],

• интеграл

$$F(\theta) = \int_{a}^{\omega} f(x,\theta) dx$$

сходится хотя бы при одном значении $\theta_0 \in Y$,

то он сходится и даже равномерно на всем множестве Y, при этом функция $F(\theta)$ оказывается дифференцируемой и справедливо равенство

$$\frac{\partial F(\theta)}{\partial \theta} = \int_{a}^{\omega} \frac{\partial f(x,\theta)}{\partial \theta} dx.$$

В эквивалентной форме условия регулярности можно переписать следующим образом:

- Существует такое множество C, что $\mathsf{P}_{\theta}(\xi)=1$, что при каждом $y\in C$ функция $\sqrt{f_{\theta}(y)}$ непрерывно дифференцируема по θ всюду в области Θ ,
- информация Фишера $i_n(\theta)$ существует, положительна и непрерывна по θ во всех точках $\theta \in \Theta$.

4.4 Экспоненциальное семейство

Определение 4.21. Параметрическое семейство $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$ называется экспоненциальным, если плотность $f_{\theta}(x)$ имеет следующий вид:

$$f_{\theta}(x) = \exp \left\{ A(\theta) \cdot B(x) + C(\theta) + D(x) \right\}.$$

Заметим, что следующие модели очевидно являются экспоненциальными: $N(\theta, \sigma^2), N(\mu, \theta^2), \Gamma(\theta, \lambda), Bi(k, \theta), \overline{Bi}(r, \theta), Pois(\theta), R(0, \theta).$

Надем вклад выборки для экспоненциальной модели:

$$V(X;\theta) = \frac{\partial \ln \prod_{i=1}^{n} f_{\theta}(X_i)}{\partial \theta} = A'(\theta) \sum_{i=1}^{n} B(X_i) + nC'(\theta) =$$
$$= nA'(\theta) \left(\frac{1}{n} \sum_{i=1}^{n} B(X_i) + \frac{C'(\theta)}{A'(\theta)} \right).$$

Рассмотрим статистику

$$T(X) = \frac{1}{n} \sum_{i=1}^{n} B(X_i)$$

и покажем, что T(X) является эффективной оценкой параметра

$$\tau(\theta) = -\frac{C'(\theta)}{A'(\theta)}.$$

Действительно, пользуясь неравенством Рао-Крамера получаем, что

$$T(x) - \tau(\theta) = \underbrace{\frac{1}{nA'(\theta)}}_{a(\theta)} \cdot V(X; \theta).$$

Таким образом в случае регулярности параметрического семейства статистика T(X) является эффективной оценкой для параметрической функции $\tau(\theta)$. Более того, согласно следствию 4.13 к теореме Рао-Крамера получаем:

$$\mathsf{D}_{\theta} T = \frac{\tau'(\theta)}{nA'(\theta)}.$$

Пример 4.22. Заметим, что условие регулярности здесь играет очень важную роль. Действительно, легко показать, что параметрическое семейство $R(0,\theta)$ является экспоненциальным, однако оно не является регулярным. Покажем, что семейство $R(0,\theta)$ не является регулярным. Воспользуемся тождеством

$$\int_{0}^{\theta} \frac{dx}{\theta} = 1.$$

Если модель регулярна, то должно выполнятся следующее равенство:

$$\int_{0}^{\theta} \frac{\partial}{\partial \theta} \frac{dx}{\theta} = 0,$$

что неверно.

На самом деле верно и обратное утверждение: если существует эффективная оценка для некоторой функции $\tau(\theta)$, то семейство является регулярным. Чтобы доказать это воспользуемся равенством из теоремы Рао-Крамера:

$$(T(X) - \tau(\theta)) \cdot a^{-1}(\theta) = V(X; \theta)$$

и проинтегрируем его по θ :

$$A_1(\theta)T(X) + C_1(\theta) + D_1(X) = \ln L(X; \theta).$$

Отсюда однозначно определяется вид плотности распределения.

Для регулярных экспоненциальных семейств функцию информации можно вычислить по следующей формуле:

$$i(\theta) = \frac{(\tau'(\theta))^2}{\mathsf{D}_{\theta} T(X)} = \frac{(\tau'(\theta))^2}{a(\theta) \cdot \tau'(\theta)} = \tau'(\theta) \cdot A'(\theta) = \left(-\frac{C'(\theta)}{A'(\theta)}\right)' \cdot A'(\theta) = \frac{C''(\theta)A''(\theta)}{A'(\theta)} - C'''(\theta).$$

5 Условное математическое ожидание

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathsf{P})$ и заданную на нем случайную величину ξ . В курсе теории вероятности определялось понятие условной вероятности события $C \in \mathcal{F}$ при условии, что происходит некоторое событие $B \in \mathcal{F}$:

$$P(C|B) = \frac{P(CB)}{P(B)}.$$

Если событие B фиксировано, то совокупность условных вероятностей $P(C|B), C \in \mathcal{F}$, задает на измеримом пространстве (Ω, \mathcal{F}) новую вероятностную меру $P_B, P_B(C) = P(B|C)$, сосредоточенную на множестве B:

$$\mathsf{P}_B(B) = 1, \mathsf{P}_B(\Omega \backslash B) = 0.$$

Пусть ξ — случайная величина: заданная на $(\Omega, \mathcal{F}, \mathsf{P})$ и принимающая значения из конечного или счетного множества $X = \{x_1, x_2, \ldots\}$. Этой случайной величине соответствует разбиение $\{A_1, A_2, \ldots\}$ пространства Ω на непересекающиеся \mathcal{F} -измеримые множества

$$A_k = \{ \omega \in \Omega \colon \xi(\omega) = x_k \} \in \mathcal{F}, k \geqslant 1,$$

порождающие σ -алгебру $\sigma(\xi)$. В этом случае математическое ожидание ξ можно вычислить как относительно основного разбиения P :

$$\mathsf{M}\,\xi = \sum_{\omega \in \Omega} \xi(\omega)\mathsf{P}(\omega) = \sum_{k \geqslant 1} x_k \mathsf{P}(A_k),$$

так и относительно условного распределения P_B :

$$\mathsf{M}\left(\xi|B\right) = \sum_{\omega \in \Omega} \xi(\omega) P(\omega|B) = \sum_{k \geqslant 1} x_k P\left(A_k \mid B\right).$$

Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство и $\mathcal{B} = \{B_1, B_2, \ldots\}$ — измеримое разбиение Ω на множества положительной меры. Заметим, что здесь и далее все разбиения будем считать измеримыми, не оговаривая это специально.

Рассмотрим произвольное событие $C \in \mathcal{F}$. Для данного события определены условные вероятности $P(C|B_k)$, $k \geqslant 1$. Введем случайную величину, опредлив измеримую функцию на Ω , которая на множестве B_k принимает значение $P(C|B_k)$:

$$\xi_{\mathcal{B}} = \xi_{\mathcal{B}}(\omega) = \sum_{k \geqslant 1} \mathsf{P}(C | B_k) \operatorname{Ind}(\omega \in B_k) = \mathsf{P}(C | \mathcal{B}).$$

Случайная величина $\xi_{\mathcal{B}}(\omega)$ называется условной вероятностью события C относительно разбиения \mathcal{B} .

Такое определение позволяет сравнивать условные вероятности относительно разных разбиений, поскольку эти условные вероятности являются функциями с общей областью определения Ω . Например, пусть ξ и η — независимые случайные величины, принимающие значения $\{x_1, \ldots, x_n\}$ и $\{y_1, \ldots, y_m\}$ и порождающие разбиения $\mathcal{A} = \{A_1, \ldots, A_n\}$ и $\mathcal{B} = \{B_1, \ldots, B_m\}$,

$$P(\xi = x_i) = p_i, i \in \overline{1,n},$$

$$P(\eta = y_i) = q_j, j \in \overline{1,m}.$$

Тогда при любом $i \in \overline{1,n}$

$$P(A_i | \mathcal{B}) = P(\xi = x_i | \mathcal{B}) = P(\xi = x_i) = p_i.$$

В тоже время

$$P(A_i | \mathcal{A}) = P(\xi = x_i | \mathcal{A}) = Ind(x \in A_i),$$

то есть условные вероятности относительно разбиения \mathcal{B} являются константами со значениями p_1, \ldots, p_n (что соответствует независимости событий), а относительно разбиения \mathcal{A} — ступенчатыми функциями, принимающими только два значения: 0 и 1.

В терминах условных вероятностей стандартная формула полной вероятности

$$P(C) = \sum_{k \geqslant 1} P(C|B_k) P(B_k), B_i \cap B_j = \emptyset, i \neq j, \bigcup_{k \geqslant 1} B_k = \Omega,$$

принимает другой вид. Заменим в ней $P(B_k)$ на $M \operatorname{Ind}(\omega \in B_k)$ и воспользуемся аддитивностью математического ожидания:

$$\begin{split} \mathsf{P}(C) &= \sum_{k \geqslant 1} \mathsf{P}\left(C \left| B_k \right.\right) \mathsf{P}(B_k) = \sum_{k \geqslant 1} \mathsf{P}\left(C \left| B_k \right.\right) \mathsf{M} \operatorname{Ind}(\omega \in B_k) = \\ &= \mathsf{M} \sum_{k \geqslant 1} \mathsf{P}\left(C \left| B_k \right.\right) \operatorname{Ind}(\omega \in B_k) = \mathsf{M} \, \mathsf{P}\left(C \left| \mathcal{B} \right.\right), \end{split}$$

где $\mathcal{B} = \{B_1, B_2, \ldots\}$ — разбиение, или

$$P(C) = MP(C|\mathcal{B}).$$

Если разбиение \mathcal{B} порождается случайной величиной η , то говорят, об условной вероятности относительно случайной величины η или относительно порожденной ею σ -алгебры $\sigma(\eta)$:

$$P(C|\eta) = P(C|\sigma(\eta)) = P(C|\eta)(\omega).$$

Замечание 5.1. Так как случайная величина η на каждом элементе порожеденного ей разбиения постоянна, то условная вероятность $P(C|\eta)$ есть суть функция от C и $\eta(\omega)$.

Рассмотрим теперь аналогичную конструкцию для случайных величин. Пусть на вероятностном пространстве $(\Omega, \mathcal{F}, \mathsf{P})$ заданы:

- разбиение $\mathcal{B} = \{B_1, B_2, \ldots\};$
- случайная величина ξ с конечным или счетным множеством значений $x_1, x_2, \ldots \in \mathbb{R};$
- порожденное случайной величиной разбиение $\mathcal{A} = \{A_1, A_2, \ldots\}$ пространства Ω на непересекающиеся множества

$$A_k = \{ \omega \in \Omega \colon \xi(\omega) = x_k \} \in \mathcal{F}, k \ge 1.$$

Условные вероятности

$$P(A_k | \mathcal{B}) = P(A_k | \mathcal{B})(\omega) = P(\xi = x_k | \mathcal{B})(\omega), \omega \in \Omega,$$

определены для всех $k \geqslant 1$, и для каждого $\omega \in \Omega$ они образуют вероятностное распределение на множестве $\{x_1, x_2, \ldots\}$ значений ξ , зависящее от ω . Определим условное математическое ожидание ξ относительно разбиения \mathcal{B} как функцию, отображающую Ω в \mathbb{R} (т.е. как случайную величину):

$$\mathsf{M}\left(\xi|\mathcal{B}\right)(\omega) = \sum_{k\geq 1} x_k \mathsf{P}\left(A_k \left| \mathcal{B}\right)(\omega) = \sum_{k\geq 1} x_k \mathsf{P}\left(\xi = x_k \left| \mathcal{B}\right)(\omega)\right).$$

Преобразуем последнюю формулу:

$$\mathsf{M}\left(\xi|\mathcal{B}\right)(\omega) = \sum_{k\geqslant 1} x_k \mathsf{P}\left(A_k \mid \mathcal{B}\right)(\omega) = \sum_{k\geqslant 1} x_k \sum_{j\geqslant 1} \mathsf{P}\left(A_k \mid B_j\right) \operatorname{Ind}(\omega \in B_j) =$$

$$= \sum_{j\geqslant 1} \operatorname{Ind}(\omega \in B_j) \sum_{k\geqslant 1} x_k \mathsf{P}\left(A_k \mid B_j\right) = \sum_{j\geqslant 1} \operatorname{Ind}(\omega \in B_j) \,\mathsf{M}\left(\xi \mid B_j\right).$$

Таким образом, условное математическое ожидание ξ относительно разбиения \mathcal{B} есть случайная величина, принимающая на каждом элементе B_j этого разбиения постоянное значения равное $\mathsf{M}\left(\xi|B_j\right)(\omega)$. Отсюда следует, что $\mathsf{M}\left(\xi|\mathcal{B}\right)(\omega)$ — функция измеримая относительно разбиения \mathcal{B} . Действительно, для любого \mathcal{B} -измеримого множества D событие $\{\omega\colon \mathsf{M}\left(\xi|\mathcal{B}\right)\in D\}$ является объединением множеств B_j , то есть принадлежит σ -алгебре, порожденной разбиением \mathcal{B} .

Пример 5.2. Пусть $\Omega = [0,1), \, \xi(\omega) = \omega$ и σ -алгебра \mathcal{B} порождается множествами $\left[0,\frac{1}{5}\right), \, \left[\frac{1}{5},\frac{2}{5}\right), \, \left[\frac{2}{5},\frac{3}{5}\right), \, \left[\frac{3}{5},\frac{4}{5}\right), \, \left[\frac{4}{5},1\right)$. Тогда случайную величину $\mathsf{M}(\xi|\mathcal{B})$ можно описать таблицей

B_j	$\left[0,\frac{1}{5}\right)$	$\left[\frac{1}{5},\frac{2}{5}\right)$	$\left[\frac{2}{5},\frac{3}{5}\right)$	$\left[\frac{3}{5},\frac{4}{5}\right)$	$\left[\frac{4}{5},1\right)$
$M\left(\xi \mathcal{B}\right)\left(\omega\right)$	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{1}{2}$	$\frac{7}{10}$	$\frac{9}{10}$

Утверждение 5.3. Для любой случайной величины ξ и для любого события C, измеримого относительно разбиения $\mathcal{B} = \{B_1, B_2, \ldots\}$, справедлива формула

$$\mathsf{M}\,\mathrm{Ind}\,(\omega\in C)\cdot\xi(\omega)=\mathsf{M}\,(\mathrm{Ind}\,(\omega\in C)\cdot\mathsf{M}\,(\xi|\mathcal{B}))\,.$$

 \mathcal{A} оказательство. Действительно, так как C измеримо относительно \mathcal{B} , то

$$C = \bigcup_{j: B_j \in C} B_j$$

И

$$\begin{split} \mathsf{M} \operatorname{Ind} \left(\omega \in C \right) \cdot \xi(\omega) &= \sum_{j \colon B_j \in C} \sum_{\omega \in B_j} \xi(\omega) \mathsf{P}(\omega) = \\ &= \sum_{j \colon B_j \in C} \sum_{\omega \in B_j} \xi(\omega) \mathsf{P} \left(\omega \left| B_j \right. \right) \mathsf{P}(B_j) = \sum_{j \colon B_j \in C} \mathsf{M} \left(\xi \middle| B_j \right) \mathsf{P}(B_j) = \\ &= \sum_{j \colon B_j \in C} \mathsf{M} \left(\xi \middle| B_j \right) \sum_{\omega \in B_j} \mathsf{P}(\omega) = \sum_{\omega \in C} \mathsf{M} \left(\xi \middle| \mathcal{B} \right) \left(\omega \right) \mathsf{P}(\omega) = \mathsf{M} \left(\operatorname{Ind} \left(\omega \in C \right) \cdot \mathsf{M} \left(\xi \middle| \mathcal{B} \right) \right). \end{split}$$

Следствие 5.4. Для любой случайной величины ξ и любого разбиения \mathcal{B} справедлива формула полного математического ожидания:

$$M \xi = M M(\xi | \mathcal{B}).$$

Аналогично (хоть и использованием много более сложного математического аппарата) определяется условное математическое ожидание, когда разбиение \mathcal{B} порождаются величинами, имеющими непрерывные распределения. В этом случае условное математическое ожидание случайной величины ξ относительно σ -алгебры \mathcal{B} называется случайная величина $\mathsf{M}(\xi|\mathcal{B})$, измеримая относительно \mathcal{B} и удовлетворяющая тождеству:

$$\int_{C} \xi d\mathsf{P} = \int_{C} \mathsf{M}(\xi|\mathcal{B}) d\mathsf{P}$$

для любого события $C \in \mathcal{B}$.

Это равенство аналогично определению плотности абсолютно непрерывного распределения — определяется с точностью до множеств, имеющих меру 0.

Для условных математических ожиданий можно доказать следующие свойства:

1. Линейность: для любых случайных величин ξ , η с конечными математическими ожиданиями и чисел a,b справедливо равенство:

$$M(a\xi + b\eta | \mathcal{B}) = a M(\xi | \mathcal{B}) + b M(\eta | \mathcal{B}).$$

- 2. Если существует $M \xi$, то $M(\xi | \{\emptyset, \Omega\}) = M \xi$.
- 3. Если распределение случайной величины ξ вырождено, т.е. $P(\xi = C = \mathrm{const}) = 1$, то $M(\xi | \mathcal{B}) = C$.
- 4. $\mathsf{M}(\mathrm{Ind}(A)|\mathcal{B}) = \mathsf{P}(A|\mathcal{B})$ для любого $A \in \mathcal{F}$. Действительно, если \mathcal{B} порождается разбиением $\{B_1, B_2, \ldots\}$, то в силу свойства (1):

$$\begin{split} \mathsf{M}(\mathrm{Ind}(A)|\mathcal{B}) &= \mathsf{M}\left(\left.\sum_{i\geqslant 1}\mathrm{Ind}(AB_i)\right|\mathcal{B}\right) = \\ &= \sum_{i\geqslant 1}\mathsf{M}\left(\left.\mathrm{Ind}(AB_i)\right|B_i\right)\mathrm{Ind}(B_i) = \sum_{i\geqslant 1}\mathsf{P}\left(A\left|B_i\right)\mathrm{Ind}(B_i) = \mathsf{P}\left(A\left|\mathcal{B}\right.\right). \end{split}$$

5. Если $\mathsf{P}(\xi\leqslant\eta)=1,$ то $\mathsf{M}(\xi|\mathcal{B})\leqslant\mathsf{M}(\eta|\mathcal{B}).$ Действительно, для любого $A\in\mathcal{B}$:

$$\int_{A} \mathsf{M}(\xi|\mathcal{B}) d\mathsf{P} = \mathsf{M}\,\mathsf{M}(\xi|\mathcal{B})\,\mathrm{Ind}(A) = \mathsf{M}\,\xi\,\mathrm{Ind}(A) \le$$

$$\leqslant \mathsf{M}\,\eta\,\mathrm{Ind}(A) = \int_{A} \mathsf{M}(\eta|\mathcal{B}) d\mathsf{P},$$

поэтому $P(M(\eta|\mathcal{B}) - M(\xi|\mathcal{B}) \geqslant 0) = 1.$

6. Для условных математических ожиданий верны теоремы сходимости, справедливые для обычных математических ожиданий, в частности, теорема о монотонной сходимости и теорема о мажорируемой сходимости.

6 Способы построения оценок

6.1 Достаточные статистики

Определение 6.1. Статистика T = T(X) называется достаточной для параметра $\tau(\theta)$ (в модели $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$), если для любого события $A \subset \mathcal{B}$ условная вероятность $\mathsf{P}_{\theta}(X \in A|T(X) = t)$ не зависит от θ .

Это свойство означает, что статистика T содержит всю информацию о параметре θ , содержащуюся в выборке. Иными словами: статистика T достаточна, если условная плотность $L(\overline{x}|t;\theta)$ выборки $X=(X_1,\ldots,X_n)$ при условии T(X)=t не зависит от параметра θ . Очевидно, что сама выборка X, очевидно, является достаточной статистикой так как $P_{\theta}(X\in A|X=\overline{x})$ при любом θ есть либо 1, если $\overline{x}\in A$, либо 0 в противном случае.

Обычно стараются найти достаточную статистику наименьшей размерности, представляющую данные в наиболее сжатом виде. При наличии достаточной статистики все статистические выводы об исследуемой модели в конечном итоге формулируются в терминах этой статистики.

Пример 6.2. Рассмотрим выборку $X = (X_1, X_2, ..., X_n)$ из распределения $\mathcal{L}(\xi), \xi \sim \operatorname{Pois}(\lambda)$.

Покажем, что $T(X) = \sum_{i=1}^{n} X_i$ является достаточной статистикой. Выпишем условную вероятность вектора:

$$\mathsf{P}(X=\overline{x}|T(X)=t)=egin{cases} \mathsf{P}(X=\overline{x}), & \sum\limits_{i=1}^n x_i=t \ 0, & ext{в противном случае}. \end{cases}$$

где $\overline{x} = (x_1, x_2, \dots, x_n).$

$$\mathsf{P}(X=\overline{x}|T(X)=t) = \frac{\mathsf{P}(X=\overline{x},T(X)=t)}{\mathsf{P}(T(X)=t)} = \frac{\mathsf{P}(X=\overline{x})}{\sum\limits_{\overline{x}:T(\overline{x})=t}\mathsf{P}(\overline{x})} = \frac{\mathsf{P}(X=\overline{x})}{\mathsf{P}\left(\sum\limits_{i=1}^{n}x_{i}=t\right)}.$$

Так как $\sum\limits_{i=1}^n X_i \sim \operatorname{Pois}(\lambda n)$ получаем, что

$$P(X = \overline{x}|T(X) = t) = \frac{\prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda}}{\frac{(n\lambda)^t}{t!} e^{-n\lambda}}$$

Так как $\prod_{i=1}^n \lambda^{a_i} e^{-\lambda} = \lambda^t e^{-n\lambda}$, то все выражения с параметром λ сокращаются. Таким образом искомая условная вероятность не зависит от λ и статистика T(X) является достаточной.

Теорема 6.3 (Критерий факторизации). Для того, чтобы статистика T = T(X) была достаточной, необходимо и достаточно, чтобы функция правдоподобия $L(\overline{x};\theta)$ имела следующий вид:

$$L(\overline{x};\theta) = g(T(\overline{x});\theta) \cdot h(\overline{x}),$$

 $\mathit{rde}\ g\ u\ h\ -\ \mathit{нeompuqamerbhie}\ \mathit{функции},\ u\ \mathit{функция}\ h\ \mathit{he}\ \mathit{зasucum}\ \mathit{om}\ \theta.$

Доказательство. Если статистика T достаточна, то для любого t из области значений T(X) функция $L(\overline{x}|t;\theta)$ не зависит от θ и ее можно записать в виде $h(\overline{x};t)$.

Пусть $\mathsf{P}_{\theta}(T(X)=t)=g(t;\theta)$ и $T\left(\overline{x}\right)=t.$ Тогда событие $\{X=\overline{x}\}\subseteq\{T(X)=t\},$ поэтому

$$L(\overline{x};\theta) = \mathsf{P}_{\theta}(X = \overline{x}) = \mathsf{P}_{\theta}(X = \overline{x}, T(x) = t) =$$

$$= \mathsf{P}_{\theta}(T(x) = t) \cdot \mathsf{P}_{\theta}(X = \overline{x}|T(X) = t) = g(t;\theta) \cdot L(\overline{x}|t;\theta) = g(t;\theta) \cdot h(\overline{x};t).$$

Доказательство в обратную сторону проведем только для дискретной модели. Пусть имеет место разложение (факторизация). Тогда для любого \overline{x} такого, что $T(\overline{x}) = t$ верно:

$$\begin{split} L(\overline{x}|t;\theta) &= \mathsf{P}_{\theta}(X = \overline{x}|T(X) = t) = \frac{\mathsf{P}_{\theta}(X = \overline{x}, T(X) = t)}{\mathsf{P}_{\theta}(T(X) = t)} = \\ &= \frac{L(\overline{x};\theta)}{\sum\limits_{\overline{x}:T(\overline{x}) = t} L(\overline{x};\theta)} = \frac{g(T(\overline{x});\theta) \cdot h(\overline{x})}{\sum\limits_{\overline{x}} g(T(\overline{x});\theta) \cdot h(\overline{x})} = \frac{h(\overline{x})}{\sum\limits_{\overline{x}} h(\overline{x})} \end{split}$$

— не зависит от θ .

Следствие 6.4. Эффективная оценка является достаточной.

Доказательство. Пользуясь доказанной теоремой Рао-Крамера:

$$T(\overline{x}) - \tau(\theta) = a(\theta) \frac{\partial \ln L(\overline{x}; \theta)}{\partial \theta}.$$

Так как:

$$\frac{\partial \ln L(\overline{x};\theta)}{\partial \theta} = \frac{1}{L(\overline{x};\theta)} \cdot \frac{\partial L(\overline{x};\theta)}{\partial \theta},$$

ТО

$$L(\overline{x};\theta) = \frac{a(\theta)\frac{\partial L(\overline{x};\theta)}{\partial \theta}}{T(x) - \tau(\theta)}.$$

Для завершения доказательства осталось ввести следующие обозначения:

$$\frac{a(\theta)}{T(\overline{x}) - \tau(\theta)} = g(T(\overline{x}); \theta),$$

$$\frac{\partial \ln L(\overline{x}; \theta)}{\partial \theta} = h(\overline{x}).$$

Следствие 6.5. Если $T = T(X) - \partial$ остаточная статистика параметра $\tau(\theta)$, то о.м.п. является функцией от T.

Доказательство.

$$\widehat{Q}(x) = \operatorname*{arg\,max}_{\theta} L(\overline{x};\theta) = \operatorname*{arg\,max}_{\theta} g(T(\overline{x});\theta) h(x) = \operatorname*{arg\,max}_{\theta} g(T(\overline{x});\theta).$$

Пример 6.6 (Равномерная модель и достаточная статистика для нее). Пусть $X = (X_1, \ldots, X_n)$ — выборка из равномерного распределения $R(0,\theta)$. Выпишем плотность равномерного распределения:

$$f_{\theta}(x) = \theta^{-1} \operatorname{Ind} (0 \leqslant x \leqslant \theta)$$

и найдем плотность X как случайного вектора:

$$L(\overline{x};\theta) = \prod_{i=1}^{n} f_{\theta}(x_i) = \theta^{-n} \prod_{i=1}^{n} \operatorname{Ind}(0 \leqslant x_i \leqslant \theta) = \theta^{-n} \operatorname{Ind}(x_{(n)} \leqslant \theta) \operatorname{Ind}(x_{(1)} \geqslant 0).$$

Отсюда следует, что в данном случае достаточной статистикой является максимальное значение выборки $X_{(n)}$.

Теорема 6.7 (Рао-Блекуэлла-Колмогорова). Оптимальная оценка, если существует, является функцией от достаточной статистики.

Доказательство. Пусть T = T(X) - достаточная статистика, T_1 - произвольная несмещенная оценка заданной параметрической функции (она существует по условию теоремы).

Рассмотрим функцию

$$H(t) = \mathsf{M}_{\theta}(T_1|T=t) = \int_{\mathcal{B}} T_1(\overline{x}) \cdot L(\overline{x}|t;\theta) d\overline{x}.$$

Эта функция не зависит от θ , так как условная плотность $L(\overline{x}|t;\theta)$ не зависит от параметра θ . Докажем, что H(T(X)) будет являться несмещнной оценкой для $\tau(\theta)$. Действительно, пользуясь следствием 5.3:

$$\mathsf{M}(H(T(X))) = \mathsf{M}(\mathsf{M}(T|T_1)) = \mathsf{M}(T_1) = \tau(\theta).$$

Покажем, что

$$\mathsf{D}_{\theta}(H(T)) \leqslant \mathsf{D}_{\theta}(T_1), \, \forall \theta,$$

причем равенство имеет место в том и только в том случае, когда $T_1 = H(T)$. Для доказательства заметим, что

$$\begin{split} \mathsf{D}_{\theta}(T_1) &= \mathsf{M}_{\theta}(T_1 - \tau(\theta) + H(T) - H(T))^2 = \\ &= \mathsf{M}_{\theta}[(T_1 - H(T)]^2 + 2\,\mathsf{M}_{\theta}[(T_1 - H(T))(H(T) - \tau(\theta))] + \mathsf{M}_{\theta}[-\tau(\theta) - H(T))]^2 = \\ &= \mathsf{M}_{\theta}[T_1 - H(T)]^2 + D(H(T)) \geqslant \mathsf{D}(H(T)), \end{split}$$

поскольку в силу следствия 5.3

$$\begin{split} \mathsf{M}_{\theta}[(T_{1} - H(T))(H(T) - \tau(\theta))] &= \mathsf{M}_{\theta}[H(T) \cdot (T_{1} - H(T))] = \\ &= \mathsf{M}_{\theta} \, \mathsf{M}_{\theta}[H(T) \cdot (T_{1} - H(T))|T] = \mathsf{M}_{\theta}[H(T) \cdot \mathsf{M}_{\theta}(T_{1} - H(T)|T)] = \\ &= \mathsf{M}_{\theta}[H(T) \cdot (\mathsf{M}_{\theta}(T_{1}|T) - H(T))] = 0 \end{split}$$

Таким образом, для любой несмещенной оценки функции $\tau(\theta)$, не являющейся функцией от достаточной статистики, всегда можно указать несмещенную оценку, которая зависит от достаточной статистики и имеет дисперсию меньшую, чем исходная оценка. Следовательно, оптимальную оценку надо искать среди функций от достаточной статистики.

Определение 6.8. Достаточная статистика T = T(X) называется полной, если для любой функции φ из того, что

$$\mathsf{M}_{\theta}\,\varphi(T)=0$$

следует, что $\varphi \equiv 0$ на всем множестве значений статистики T.

Теорема 6.9. Если существует полная достаточная статистика, то произвольная функция от нее будет являться оптимальной оценкой своего математического ожидания.

Доказательство. Пусть T = T(X) — полная достаточная статистика и H(T) — произвольная функция от T. Обозначим

$$\mathsf{M}_{\theta}(H(T)) = \tau(\theta),$$

и покажем, что H(T) — единственная функция от T с математическим ожиданием $\tau(\theta)$.

Предположим противное — пусть $H_1(T)$ — другая такая функция, тогда

$$\mathsf{M}(H_1(T) - H(T)) = 0, \forall \theta,$$

т.к. T - полная статистика. Значит $H_1(T) = H(T)$.

По теореме 6.7 оптимальную оценку для $\tau(\theta)$ необходимо искать в классе функций, зависящих от T. Но H(T) — единственная функция от T, несмещенно оценивающая $\tau(\theta)$ и она является искомой оптимальной оценкой. \square

Пример 6.10. Пусть $X = (X_1, \ldots, X_n)$ — выборка из равномерного распределения $R(0,\theta)$. Из примера 6.6 известно, что $T(X) = X_{(n)}$ является достаточной статистикой. Покажем, что T(X) является полной.

Пусть φ такова, что

$$\mathsf{M}_{\theta}\,\varphi(T(X))\equiv 0,\,\forall\theta\in(0,\infty).$$

Выпишем плотность статистики T(x):

$$f_{X_{(n)}}(y) = \frac{\partial}{\partial y} F_{X_{(n)}}(y) = \begin{cases} \frac{ny^{n-1}}{\theta^n}, & y \in [0, \theta] \\ 0, & \text{иначе.} \end{cases}$$

Тогда:

$$\mathsf{M}_{\theta}\,\varphi\left(X_{(n)}\right) = \int_{0}^{\theta} \varphi(y) \frac{ny^{n-1}}{\theta^{n}} dy \equiv 0 \Rightarrow \int_{0}^{\theta} \varphi(y) y^{n-1} dy \equiv 0.$$

Продифференцируем последнее равенство по θ :

$$\varphi(\theta)\theta^{n-1} \equiv 0,$$

отсюда следует, что

$$\varphi(\theta) \equiv 0 \ \forall \theta \in (0, \infty).$$

Доказали полноту.

Согласно теореме 6.9 она является оптимальной статистикой для своего математического ожидания:

$$\mathsf{M}_{\theta} X_{(n)} = \int\limits_{\mathbb{R}} y f_{X_{(n)}}(y) dy = \frac{n}{n+1} \theta.$$

Отсюда следует, что $X_{(n)}$ является смещенной оценкой θ . Найдем оптимальную оценку для θ . По теореме 6.9 необходимо найти такую функцию H, что $\mathsf{M}_{\theta}\,H(T)=\theta$. Очевидно, что такая функция

$$H(x) = \frac{n+1}{n}x.$$

Таким образом, оценка

$$\widehat{\theta} = \frac{n+1}{n} X_{(n)}$$

является оптимальной оценкой параметра θ .

Найдем дисперсию $X_{(n)}$:

$$\mathsf{M}_{\theta} X_{(n)}^2 = \int\limits_{\mathbb{R}} y^2 f_{X_{(n)}}(y) dy = \frac{n\theta^2}{n+2}.$$

Откуда

$$DX_{(n)} = \frac{n\theta^2}{(n+2)(n+1)^2}.$$

Α

$$\mathsf{D}\,\widehat{\theta} = \frac{\theta^2}{(n+2)n}.$$

Если бы выполнялись условия регулярности (см. пример 4.22) и $\widehat{\theta}$ являлась бы регулярной оценкой, то ее дисперсия была бы ограничена снизу величиной $(ni(\theta))^{-1}$, которая имеет порядок малости n^{-1} . Полученная выше

оценка имеет порядок малости n^{-2} . Такие оценки иногда называют $ceepx extit{-}\phi - \phi e \kappa m u e h u m u$.

Задача 6.11. Показать, что в случае $X = (X_1, \dots, X_n)$ — выборка из равномерного распределения $R(0,\theta)$, оценка $2\overline{X}$ является несмещенной и найти условия, когда она является оптимальной оценкой.

Резюмируем все вышесказанное. Пусть в рассматриваемом семействе $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$ существует полная и достаточная статистика T и требуется оценить параметрическую функцию $\tau(\theta)$. Тогда:

- если существует какая-то несмещенная оценка $\tau(\theta)$, то существует и несмещенная оценка, являющаяся функцией от T (в противном случае класс несмещенных оценок пуст);
- оптимальная оценка, когда она существует, всегда является функцией от T и определяется уравнением $\mathsf{M}_{\theta}(H(T)) = \tau(\theta);$
- оптимальную оценку можно искать по формуле

$$H(T) = \mathsf{M}_{\theta}(T_1|t),$$

исходя из любой несмещенной оценки T_1 функции $\tau(\theta)$. (Однако это используется редко в виду значительных аналитических сложностей вычисления условного математического ожидания).

Пример 6.12. Ранее, в примере 6.2 было показано, что статистика $T(X) = \sum_{i=1}^{n} X_i$ является достаточной статистикой в случае, когда распределение из $\mathcal{L}(\xi), \ \xi \sim \operatorname{Pois}(\theta)$. Покажем, что она является полной. Напомним, что $T(X) \sim \operatorname{Pois}(n\theta)$. Пусть

$$\mathsf{M}_{\theta}\,\varphi(T(X)) = \sum_{k=0}^{\infty} \varphi(k) \exp\{-n\theta\} \frac{(n\theta)^k}{k!} = 0 \ \forall \theta \in \Theta.$$

Рассмотрим последнее выражение при $\theta = 0$. Так как $\mathsf{M}_{\theta}\,\varphi(T(X)) = \varphi(0)$, то $\varphi(0) = 0$.

Умножим последнее выражение на θ^{-1} и устремим θ к 0 и получим, что $\varphi(1)=0$. Аналогично получим, что $\varphi(x)=0, x\geqslant 2$. Таким образом показали, что $\varphi\equiv 0$.

Приведем без доказательства следующую теорему.

Теорема 6.13 (О полноте экспоненциальных семейств). Пусть $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$ — экспоненциальное семейство, определенное в 4.21, и функция $A(\theta)$ и параметрическое пространство Θ таковы, что $A(\theta)$ содержит некоторый отрезок, когда θ пробегает множество Θ . Тогда T(X) = B(X) является полной и достаточной статистикой.

Пример 6.14. Пусть $X = (X_1, \dots, X_n)$ — выборка из гамма-распределения $\Gamma\left(\frac{1}{\theta}, 1\right)$. Покажем, что

 $T(X) = \frac{n}{n+1}\overline{X}^2$

является оптимальной оценкой θ^2 .

Выпишем функцию правдоподобия:

$$L(X;\theta) = \frac{1}{\theta^n} \exp\{-\frac{n}{\theta} \overline{X}\}.$$

По теореме о полноте экспоненциальных семейств \overline{X} — полная и достаточная статистика, поэтому любая измеримая функция от \overline{X} является оптимальной оценкой своего математического ожидания. В частности, T(X) оптимальная оценка для

$$\begin{split} \mathsf{M}_{\theta}(T(X)) &= \frac{n}{n+1} \, \mathsf{M}_{\theta} \, \overline{X}^2 = \frac{n}{n+1} \left(\mathsf{D}_{\theta} \, \overline{X} + \left(\mathsf{M}_{\theta} \, \overline{X} \right)^2 \right) = \\ &= \frac{n}{n+1} \left(\frac{1}{n} \, \mathsf{D}_{\theta} \, X_1 + \left(\mathsf{M}_{\theta} \, X_1 \right)^2 \right) = \frac{n}{n+1} \left(\frac{\theta^2}{n} + \theta^2 \right) = \theta^2. \end{split}$$

6.2 Модели с выборочным пространством, зависящем от параметра θ

Пусть $a \in \mathbb{R}$, $X = (X_1, \dots, X_n)$ из параметрического семейства $\mathcal{F} = \{F_{\theta}, \theta \in \mathbb{R}, \theta > a\}$, при этом плотность случайных величин из рассматриваемых семейств равна:

$$f_{\theta}(x) = \begin{cases} Q_1(\theta)M_1, & x \in [a,\theta) \\ 0, & x \notin [a,\theta) \end{cases}$$

Где функция $Q_1 \ge 0$ для всех $\theta > a$ и дифференцируема.

Найдем ограничение на вид функции M_1 :

$$1 = \int_{a}^{\theta} f_{\theta}(x)dx = \int_{a}^{\theta} Q_{1}(\theta)M_{1}(x)dx = Q_{1}(\theta)\int_{a}^{\theta} M_{1}(x)dx \Rightarrow$$

$$\Rightarrow \frac{1}{Q_{1}(\theta)} = \int_{a}^{\theta} M_{1}(x)dx. \quad (3)$$

Возьмем производную от обоих частей (3):

$$-\frac{Q_1'(\theta)}{Q_1^2(\theta)} = M_1(\theta). \tag{4}$$

Найдем достаточную статистику. Пусть \overline{x} — реализация выборки нашего распределения, тогда функция правдоподобия равна:

$$L(\overline{x}; \theta) = \prod_{i=1}^{n} f_{\theta}(x) = Q_{1}^{n}(\theta) \prod_{i=1}^{n} (M_{1}(x_{i}) \operatorname{Ind}(a \leq x_{i} \leq \theta)) =$$

$$= Q_{1}^{n}(\theta) \prod_{i=1}^{n} (M_{1}(x_{i}) \operatorname{Ind}(x_{(1) \geq a}) \operatorname{Ind}(x_{(n)})).$$

Воспользуемся критерием факторизации для того, чтобы найти достаточную статистику:

$$L(\overline{x},\theta) = g(T(x);\theta)h(x)$$

То есть $T(x) = x_{(n)}$ — достаточная статистика.

Воспользуемся (3) и найдем ее функцию распределения:

$$F_{x_{(n)}}(y) = P(x_{(n)} \le y) =$$

$$= \prod_{i=1}^{n} (P(x_i \le y)) = P^n(x_1 \le y) = \left(\int_a^y Q_1(\theta) M_1(x)\right)^n =$$

$$= Q_1(\theta)^n \left(\frac{1}{Q_1(y)}\right)^n = \left(\frac{Q_1(\theta)}{Q_1(y)}\right)^n.$$

Откуда с использованием (4) получим выражение для плотности:

$$f_{x_{(n)}}(y) = \frac{-nQ_1(\theta)^n Q_1'(\theta)}{Q_1(y)^{n-1}} = Q_1^n(\theta)nQ_1(y)^{(-n-1)}M_1(y)Q_1^2(y).$$

Зная плотность, можем проверить полноту. Для этого необходимо доказать, что из

$$\int_{a}^{\theta} \varphi(y) f_{x_{(n)}}(y) dy = 0$$

следует, что $\varphi(y) \equiv 0$. Действительно:

$$\int_{a}^{\theta} \varphi(y)Q_{1}^{n}(\theta)nQ_{1}(y)^{(-n-1)}M_{1}(y)Q_{1}^{2}(y)dy = 0,$$

откуда:

$$\int_{a}^{\theta} \varphi(y)Q_1(y)^{(-n+1)}M_1(y)dy = 0$$

Возьмем производную от левой и правой части:

$$\varphi(\theta)Q_1(\theta)^{(-n+1)}M_1(\theta)$$

Значит $\varphi(\theta) \equiv 0$ и статистика $T(x) = X_{(n)}$ полная. Тогда для любой функции H статистика $H(x_{(n)})$ будет оптимальной статистикой своего математического ожидания:

$$\int_{a}^{\theta} H(t)g(t,\theta)dt = \tau(\theta).$$

Предполагая дифференцируемость функции au найдем выражение для H(x):

$$\int_{a}^{\theta} H(y)nQ_{1}(\theta)^{n}Q_{1}(y)^{-n+1}M_{1}(y)dy = \tau(\theta) \Rightarrow$$

$$\Rightarrow n \int_{a}^{\theta} H(yQ_{1}(y)^{-n+1}M_{1}(y)dy = \frac{\tau(\theta)}{Q_{1}(\theta)^{n}} \Rightarrow$$

$$\Rightarrow nH(\theta)Q_{1}(\theta)^{-n+1}M_{1}(\theta) = \frac{\tau'(\theta)Q_{1}(\theta)^{n} - nQ_{1}(\theta)^{n-1}\tau(\theta)}{Q_{1}(\theta)^{2n}}.$$

Воспользуемся (4):

$$H(\theta) = \frac{\tau(\theta)'Q(\theta) - n\tau(\theta)Q_1'(\theta)}{nQ_1(\theta)^{n+1}Q_1(\theta)^{-n+1}M_1(\theta)}$$

$$H(\theta) = \frac{\tau(\theta)'Q(\theta) - n\tau(\theta)Q_1'(\theta)}{nQ_1(\theta)^2}M_1(\theta) = \tau(\theta) + \frac{\tau'(\theta)}{nQ_1(\theta)M_1(\theta)}.$$

Или:

$$H(\theta) = \tau(\theta) + \frac{\tau'(\theta)}{n f_{\theta}(\theta)}$$

Пусть дана выборка из распределения $\mathcal{R}[0;\theta)$. Найдем оптимальную оценку для параметрической функции $\tau(\theta) = \theta^r$. В этом случае $Q_1(\theta) = \theta^{-1}$, $M_1(x) = 1$ и оптимальной оценкой для θ^r является:

$$X_{(n)}^r + \frac{r}{n} X_{(n)}^r.$$

Заметим, что для случая r=1 эта оценка ранее была получена нами.

Используя аналогичные рассуждения можно показать, что в случае, когда

$$f_{\theta}(x) = Q_2(\theta) \cdot M_2(x), \ \theta \leqslant x \leqslant b,$$

для некоторого фиксированного b. В этом случае оптимальной оценкой произвольной дифференцируемой функции $\tau(\theta)$ является статистика:

$$\tau \left(X_{(1)} - \frac{\tau'(X_{(1)})}{n \cdot f_{X_{(1)}}(X_{(1)})} \right).$$

7 Асимптотические свойства оценки максимального правдоподобия.

Пусть здесь и далее $X=(X_1,X_2,\ldots,X_n)$ — некоторая выборка из распределения $\mathscr{L}(X_i)\sim \xi,\, \overline{x}=(x_1,x_2,\ldots,x_n)$ — реализация выборки.

Определение 7.1. Пусть имеется последовательность случайных величин $\{\xi_n\}_{n\geqslant 1}$, и при $n\to\infty$ $\xi_n\to\xi$ по распределению, $\xi\sim\mathcal{N}(\mu,\sigma^2)$. Тогда будем говорить, что случайная величина ξ_n асимптотически нормальна с параметрами μ_n , σ_n^2 .

Определение 7.2. Пусть $T_n(X)$ является оценкой параметра $\tau(\theta)$, пусть также T_n — асимптотически нормальная с параметрами $\tau(\theta)$, $\frac{\sigma^2(\theta)}{n}$ (иными словами $L(T_n; \theta) \to \mathcal{N}\left(\tau(\theta), \frac{\sigma^2(\theta)}{n}\right)$).

Асимптотической эффективностью такой оценки будем называть величину

$$\varepsilon_0(T_n, \theta) = \frac{[\tau'(\theta)]^2}{i(\theta)\sigma^2(\theta)}.$$

Оценку будем называть асимптотически эффективной, если $\varepsilon_0(T_n;\theta)=1.$

Теорема 7.3. Пусть выполнены следующие условия:

- 1. $\theta \in \Theta, \Theta$ невырожденный замкнутый интервал на \mathbb{R} .
- 2. Существуют производные:

$$\frac{\partial \ln f_{\theta}(x)}{\partial \theta}$$
, $\frac{\partial^2 \ln f_{\theta}(x)}{\partial \theta^2}$, $\frac{\partial^3 \ln f_{\theta}(x)}{\partial \theta^3} \ \forall \theta \in \Theta$.

3. Для всех $\theta \in \Theta$ существуют интегрируемые на \mathbb{R} функции H_1 , H_2 и функция H, такая, что:

$$\mathsf{M}_{\theta} H = \int_{\mathbb{R}} H(x) f_{\theta}(x) dx < M,$$

rde не зависит от θ и

$$\left| \frac{\partial \ln f_{\theta}(x), \theta}{\partial \theta} \right| \leqslant H_{1}(x),$$

$$\left| \frac{\partial^{2} \ln f_{\theta}(x)}{\partial \theta^{2}} \right| \leqslant H_{2}(x),$$

$$\left| \frac{\partial^{3} \ln f_{\theta}(x)}{\partial \theta^{3}} \right| \leqslant H(x).$$

 $To\ ecmb,\ bce\ mpu\ npousbodные\ orpanuчeны\ no\ x.$

4.
$$0 < i(\theta) = \int\limits_{\mathbb{R}} \left(\frac{\partial \ln L(\overline{x}, \theta)}{\partial \theta} \right)^2 L(\overline{x}, \theta) dx < \infty.$$

Тогда оценка максимального правдоподобия обладает следующими свойствами:

- 1. Такая оценка состоятельна;
- 2. Такая оценка асимптотически нормальна;
- 3. Такая оценка асимптотически эффективна.

Условие теоремы содержит в себе условие регулярности. Таким образом, везде далее считаем, что рассматриваемая модель регулярна.

Π ема 7.4. Π усть

$$B_0 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial \ln f_{\theta}(x_i)}{\partial \theta} \right) \bigg|_{\theta = \theta_0},$$

$$B_1 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial^2 \ln f_{\theta}(x_i)}{\partial \theta^2} \right) \Big|_{\theta = \theta_0},$$

$$B_2 = \frac{1}{n} \sum_{i=1}^{n} H(x_i).$$

Tог ∂a

1.
$$B_0 \xrightarrow[n \to \infty]{\mathsf{P}} 0$$
,

2.
$$B_1 \xrightarrow[n \to \infty]{P} -k^2$$
, $\epsilon \partial e \ k^2 = i(\theta)$,

3.
$$B_2 \xrightarrow[n \to \infty]{\mathsf{P}} \mathsf{M}(H(x_1)) < M$$
.

$$\frac{1}{n} \sum \xi_i \overset{\mathsf{P}}{\underset{n \to \infty}{\longrightarrow}} \mathsf{M} \, \xi$$

Поэтому, в частности, очевидно, что $B_2 \xrightarrow[n \to \infty]{\mathsf{P}} \mathsf{M}(H(x_1)) < M$.

Докажем лемму для B_0 . В условиях регулярности можем менять пределы интегрирования и дифференцирования:

$$\mathsf{M} \frac{\partial \ln f_{\theta}(\xi)}{\partial \theta} = \int_{\mathbb{R}} \frac{\partial \ln f_{\theta}(x)}{\partial \theta} f_{\theta}(x) dx =$$

$$= \int_{\mathbb{R}} \frac{1}{f_{\theta}(x)} \frac{\partial f_{\theta}(x)}{\partial \theta} f_{\theta}(x) dx = \frac{\partial}{\partial \theta} \int_{\mathbb{R}} f_{\theta}(x) dx = \frac{\partial}{\partial \theta} 1 = 0.$$

Докажем лемму для B_1 :

$$\begin{split} \mathsf{M} \, \frac{\partial^2 \ln f_\theta(x)}{\partial \theta^2} &= \int\limits_{\mathbb{R}} \frac{\partial}{\partial \theta} \left(\frac{\partial \ln f_\theta(x)}{\partial \theta} \right) f_\theta(x) dx = \int\limits_{\mathbb{R}} \frac{\partial}{\partial \theta} \left(\frac{1}{f_\theta(x)} \frac{\partial f_\theta(x)}{\partial \theta} \right) f_\theta(x) dx = \\ &= \int\limits_{\mathbb{R}} \frac{(-1)}{f_\theta^2(x)} \left(\frac{\partial f_\theta(x)}{\partial \theta} \right)^2 f_\theta(x) dx + \int\limits_{\mathbb{R}} \frac{\partial^2 f_\theta(x)}{\partial \theta^2} \frac{1}{f_\theta(x)} f_\theta(x) dx = \\ &= -\int\limits_{\mathbb{R}} \frac{1}{f_\theta(x)} \left(\frac{\partial f_\theta(x)}{\partial \theta} \right)^2 dx + \underbrace{\frac{\partial^2}{\partial \theta^2} \int\limits_{\mathbb{R}} f_\theta(x) dx}_{=0} = \\ &= -\int\limits_{\mathbb{R}} \left(\frac{\partial \ln f_\theta(x)}{\partial \theta} f_\theta(x) \right)^2 \frac{1}{f_\theta(x)} = \\ &= -\int\limits_{\mathbb{R}} \left(\frac{\partial \ln f_\theta(x)}{\partial \theta} \right)^2 f_\theta(x) dx = -i(\theta) = -k^2. \end{split}$$

Лема 7.5 (без доказательства). Пусть X_n, Y_n, Z_n — последовательности случайных величин такие, что:

1.
$$X_n \xrightarrow[n \to \infty]{d} X$$
, $Y_n \xrightarrow[n \to \infty]{P} 0$, $mor\partial a X_n + Y_n \xrightarrow[n \to \infty]{d} X$,
2. $X_n \xrightarrow[n \to \infty]{d} X$, $Z_n \xrightarrow[n \to \infty]{P} 1$, $mor\partial a X_n \cdot Z_n \xrightarrow[n \to \infty]{d} X$; $X_n/Z_n \xrightarrow[n \to \infty]{d} X$.

Доказательство. Пользуясь данными леммами, докажем теорему. Разложим в ряд Тейлора с остаточным членом в форме Лагранжа плотность распределения:

$$\frac{\partial \ln f_{\theta}(x)}{\partial \theta} = \frac{\partial \ln f_{\theta}(x)}{\partial \theta} \bigg|_{\theta=\theta_0} + \frac{\partial^2 \ln f_{\theta}(x)}{\partial \theta^2} \bigg|_{\theta=\theta_0} (\theta - \theta_0) + \frac{1}{2} \frac{\partial^3 \ln f_{\theta}(x)}{\partial \theta^3} \bigg|_{\theta-\theta^*} (\theta - \theta_0)^2,$$

где θ^{\star} лежит между θ_0 и θ).

Можно показать, что существует $0 \le \tau \le 1$ такое, что

$$\frac{1}{2} \frac{\partial^3 \ln f_{\theta}(x)}{\partial \theta^3} \bigg|_{\theta = \theta^*} (\theta - \theta_0)^2 = \frac{1}{2} \tau H(\xi) (\theta - \theta_0)^2.$$

Пусть

$$A(\theta) = \frac{\partial \ln L(\overline{x}; \theta)}{\partial \theta} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial \ln f_{\theta}(x_i)}{\partial \theta} \right).$$

Тогда $A(\theta) = B_0 + (\theta - \theta_0)B_1 + \frac{1}{2}\tau(\theta - \theta_0)^2B_2$.

Для нахождения оценки максимального правдоподобия необходимо решить уравнение

$$\frac{1}{n}\frac{\partial \ln L(\overline{x};\theta)}{\partial \theta} = 0$$

относительно θ .

Фиксируем $\varepsilon > 0$, $\delta > 0$ — некоторые достаточно малые числа и выберем $n > n_0(\epsilon; \delta)$ так, что выполнены следующие неравенства (по условию леммы 7.4 это возможно):

- $P(|B_0| \geqslant \delta^2) < \frac{\varepsilon}{3}$
- $P(|B_1| \geqslant -\frac{k^2}{2}) < \frac{\varepsilon}{3}$
- $P(|B_2| \geqslant 2M) < \frac{\varepsilon}{3}$.

Рассмотрим событие:

$$S = \left\{ x \colon |B_0| < \delta^2, B_1 < -\frac{k^2}{2}, |B_2| < 2M \right\}.$$

Тогда, при $n > n_0 : \mathsf{P}(S) > 1 - \varepsilon$.

Пусть $x \in S$. Рассмотрим $\theta \in [\theta_0 - \delta; \theta_0 + \delta]$: Оценим $A(\theta)$:

$$\left| B_0 + \frac{1}{2} \tau \delta^2 B_2 \right| \leqslant \delta^2 \left(\frac{1}{2} M + 1 \right).$$

Тогда так как $\theta \in [\theta_0 - \delta; \theta_0 + \delta]$:

$$A(\theta) = B_0 + \delta B_1 + \frac{1}{2}\tau \delta^2 B_2.$$

В этом случае знак $A(\theta)$ определяется слагаемым $B_1\delta$.

Тогда $A(\theta) \in (\theta_0 - \delta; \theta_0 + \delta)$ и точка максимума θ^* с вероятностью не меньшей $1 - \varepsilon$ будет лежать в интервале $(\theta_0 - \delta; \theta_0 + \delta)$, а это как раз и показывает состоятельность оценки.

Покажем асимптотическую нормальность. $A\left(\theta^{*}\right)=0,$ тогда:

$$\theta^* - \theta_0 = \frac{B_0}{-B_1 - \frac{1}{2}\tau(\theta^* - \theta_0)B_2},$$

откуда

$$\frac{\theta^* - \theta_0}{\frac{1}{\sqrt{nk^2}}} = \frac{\frac{1}{\sqrt{nk^2}} \sum_{i=1}^n \frac{\partial \ln f_{\theta}(X_i)}{\partial \theta}}{-\frac{B_1}{k^2} + \frac{1}{2}\tau \frac{\theta^* - \theta_0}{k^2} B_2}.$$

Введем случайную величину: $Y_i = \frac{\partial \ln f(X_i)}{\partial \theta}$, при этом

$$M Y_i = 0, D Y_i - MY_i = k^2.$$

Используя центральную предельную теорему:

$$\frac{1}{\sqrt{nk^2}} \sum \frac{\partial \ln f(X_i)}{\partial \theta} \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1)$$

Пользуясь леммой 7.4:

$$B_1 \xrightarrow[n \to \infty]{\mathsf{P}} -k^2,$$

$$B_2 \underset{n \to \infty}{\overset{\mathsf{P}}{\longrightarrow}} \mathsf{M}(H(\xi_1)) < M \Rightarrow \frac{1}{2} \tau \frac{\theta^* - \theta_0}{k^2} B_2 \leqslant \frac{1}{2} \frac{M}{k^2} (\theta^* - \theta_0) \to 0, \ (\theta^* - \theta_0) < \delta \to 0,$$

получаем:

$$\frac{B_1}{-k^2} + \frac{1}{2}\tau \frac{\theta^* - \theta_0}{k^2} B_2 \underset{n \to \infty}{\overset{\mathrm{P}}{\longrightarrow}} 1, \text{ при } \delta \to 0.$$

Используя лемму 7.5, получаем доказательство асимптотической нормальности.

Отсюда следует, что $\sqrt{nk^2}(\theta^* - \theta_0)$ асимптотически нормальна с $\mathcal{N}(0,1)$, а θ^* — с параметрами $\mathcal{N}\left(\theta_0,\frac{1}{nk^2}\right)$.

Дисперсия $nk^2 = i_n(\theta)$, что доказывает эффективность оценки.

8 Асимптотически доверительный интервал.

Пусть заданы $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$. Ранее мы занимались построением точечных оценок неизвестного параметра $\tau(\theta)$. Такие оценки могут быть не очень интересны с практической точки зрения (например в непрерывных распределениях, когда вероятность конкретной точки всегда равна 0). В данном разделе рассмотрим иной подход, основная идея которого заключается в построении доверительного множества, в котором с повышенной вероятностью лежит оцениваемый параметр.

Определение 8.1. Будем называть γ -доверительным интервалом параметрической функции $\tau(\theta)$ такой случайный интервал $(T_1(x), T_2(x)),$ $T_1(x) < T_2(x),$ который удовлетворяет условию:

$$P_{\theta}(T_1(x) < \tau(\theta) < T_2(x)) \ge \gamma \ \forall \theta \in \Theta.$$

В данном курсе рассмотрим только так называемые асимптотические доверительные интервалы.

Пусть имеется асимптотически нормальная оценка $T_n = T_n(X)$ для параметра $\tau(\theta)$. То есть иными словами: пусть при $n \to \infty$ имеет место соотношение:

$$\mathcal{L}_{\theta}\left(\sqrt{n}(T_n - \tau(\theta))\right) \to N\left(0, \sigma_n^2(\theta)\right) \ \forall \theta \in \Theta,$$

причем $\sigma_n^2(\theta)$ непрерывна по θ . Тогда

$$\mathcal{L}_{\theta}\left(\frac{\sqrt{n}(T_n-\tau(\theta))}{\sigma_n(\theta)}\right) \to N(0,1).$$

Для стандартного нормального распределения легко показать, что для заданной вероятности интервал минимальной дляны будет иметь вид (-t,t). Построим такой интервал:

$$P\left(\sqrt{n} \cdot \left| \frac{T_n - \tau(\theta)}{\sigma_n(\theta)} \right| < c_\gamma \right) = P\left(\tau(\theta) \in \left(T - \frac{c_\gamma \sigma_n(\theta)}{\sqrt{n}}, T + \frac{c_\gamma \sigma_n(\theta)}{\sqrt{n}}\right)\right) = \Phi(c_\gamma) - \Phi(-c_\gamma) = 2\Phi(c_\gamma) - 1 = \gamma,$$

где Φ - функция распределения случайной величины, имеющей стандартное нормальное распределение.

!!!!!!!!Добавить классный пример про доверительный интервал для параметра бернулиевской модели (стр 285)

9 Проверка статистических гипотез

9.1 Основные понятия

Одним из основных направлений математической статистики является теория проверки статистических гипотез. Неформально статистическую гипотезу можно понимать как некоторое предположение о виде или параметрах

распределения. Необходимо уметь подтверждать или опровергать гипотезы о виде распределения, о зависимости данных, об однородности выборок и многие другие.

Пусть как и ранее X — выборка, \mathfrak{X} — выборочное пространство, \mathcal{F} — совокупность априори доступных распределений выборки X.

Задачу проверки статистических гипотез можно сформулировать следующим образом. Дана выборка X из неизвестного распределения $F_X \in \mathcal{F}$. Выделим подмножество $\mathcal{F}_0 \subset \mathcal{F}$, где \mathcal{F}_0 . По реализации выборки X необходимо проверить справедливо ли утверждение:

$$F_X \in \mathcal{F}_0$$

или ложно, то есть верно, что

$$F_X \in \mathcal{F}_1, \, \mathcal{F}_1 = \mathcal{F} \backslash \mathcal{F}_0.$$

При этом говорят о проверке гипотез.

- гипотеза H_0 основная гипотеза (нулевая гипотеза), заключается в том, что $F_X \in \mathcal{F}_0$;
- гипотеза H_1 альтернативная гипотеза, заключается в том, что $F_X \in \mathcal{F}_1$.

Если определены гипотезы H_0 и H_1 , то говорят о проверке гипотезы H_0 против альтернативы H_1 .

Определение 9.1. Если множество \mathcal{F}_0 состоит из одного распределения, то говорят, что H_0 — простая гипотеза, иначе H_0 - сложная гипотеза.

Определение 9.2. Если множество \mathcal{F}_1 состоит из одного распределения, то говорят, что H_1 - простая гипотеза, иначе H_1 - сложная гипотеза.

Пример 9.3. Пусть $\mathcal{F} \in \{\mathcal{N}(\mu, \sigma^2), \mu, \sigma \in \mathbb{R}\}$. В качестве примера простой основной гипотезы $H_0 \colon F_X = \mathcal{N}(0,1)$, и сложной альтернативы $H_1 \colon F_X \neq \mathcal{N}(0,1)$.

Пример 9.4. Пример простой основной и альтернативной гипотезы: $\mathcal{F} = \{\mathcal{N}(0,1), \mathcal{N}(1,1)\}$, то $H_0: F_X = N(0,1)$ и $H_1: F_X = N(1,1)$.

Определение 9.5. Статистический критерий - это правило, по которому каждой реализации выборки ставится в соответствие решение: принимаем гипотезу H_0 или отвергаем ее (то есть принимаем гипотезу H_1).

Определение 9.6. Иногда альтернативу H_1 не конкретизируют, то есть задана только гипотеза H_0 (множество распределений \mathcal{F}_0). В этом случае говорят о согласии данных X с нулевой гипотезой. Такой критерий называется критерием согласия.

Пример 9.7. Примеры критериев согласия:

- выборка X из распределения Пуассона: $H_0: F_X \in \{ Pois(\lambda), \lambda > 0 \},$
- выборка X из распределения Пуассона с параметром λ_0 : H_0 : $F_X = \mathrm{Pois}(\lambda_0)$.

Зачастую множество распределений ${\cal F}$ есть некоторое параметрическое семейство:

$$\mathcal{F} = \{ F_{\theta}, \theta \in \Theta \}.$$

Тогда основную и альтернативную гипотезы можно определить следующим образом:

- гипотеза H_0 : $\theta \in \Theta_0 \subset \Theta$;
- гипотеза H_1 : $\theta \in \Theta_1$, $\Theta_1 = \Theta \setminus \Theta_0$.

В данном случае говорят о параметрических гипотезах и параметрических критериях.

Говоря о критерии, подразумеваем некоторое правило, согласно которому по каждому $X \in \mathfrak{X}$ говорим верна ли гипотеза H_0 . Таким образом, статистический критерий может задаваться двумя множествами:

- $\mathfrak{X}_0 \subset \mathfrak{X}$ принимается H_0 , \mathfrak{X}_0 называется областю принятия гипотезы;
- $\mathfrak{X}_1 = \mathfrak{X} \backslash \mathfrak{X}_0$ принимается H_1 , \mathfrak{X}_1 называется критической областю.

Тогда $\mathfrak{X}_0 \sqcup \mathfrak{X}_1 = \mathfrak{X}$ и задача построения статистического критерия равносильна построению критического множества \mathfrak{X}_1 . В дальнейшем будем отождествлять понятие статистического критерия и критического множества.

Определение 9.8. Если $x \in \mathfrak{X}_0$, то говорят, что H_0 соглашается c данными или данные не противоречат гипотезе H_0

Определение 9.9. Если $x \in \mathfrak{X}_1$, то говорят, что данные противоречат гипотезе H_0 .

Рассмотрим возможные варианты:

	\mathfrak{X}_0	\mathfrak{X}_1
верна H_0	определили правильно	отвергаем истину
верна H_1	принимаем ложь за истину	определили правильно

Очевидно ходим, чтобы вероятность $P(x \in \mathfrak{X}_1|H_0)$ была как можно меньше. При построении критерия фиксируют некоторе малое значение α , которое называется уровнем значимости критерия, так, чтобы

$$P(x \in \mathfrak{X}_1 | H_0) \leqslant \alpha.$$

Если это неравенство выполняется, то говорят, что критерий \mathfrak{X}_1 имеет уровень значимости α и обозначается $\mathfrak{X}_{1,\alpha}$. При этом, очевидно, существуют различные критические области с одинаковым уровнем значимости.

В случае, когда H_0 и H_1 — простые гипотезы, вводятся понятия ошибок критерия. Критерий описывается вероятностями:

- 1. $P(X \in \mathfrak{X}_1|H_0) = \alpha oшибка 1 poda;$
- 2. $P(X \in \mathfrak{X}_0|H_1) = \beta ouu \delta \kappa a \ 2 \ po \partial a$.

Определение 9.10. Функцией мощности критерия W назовем функционал на множестве допустимых распределений \mathcal{F} и выборке X.

$$W(F_X) = W(F_X; \mathfrak{X}_{1,\alpha}) = P(X \in \mathfrak{X}_{1,\alpha}|F_X),$$

где $P(x \in \mathfrak{X}_{1,\alpha}|F_X)$ - вероятность попасть в $\mathfrak{X}_{1,\alpha}$, если F_X - истинное распределение.

Через функцию мощности критерия легко можно выразить вероятности ошибок первого и второго рода:

$$\alpha = W(F_X), \beta = 1 - W(F_X).$$

Аналогично уровень значимости определяется:

$$\alpha = \sup_{F \in \mathcal{F}_0} W(F).$$

Среди всех критериев с уровнем значимости α нас интересует наиболее мощный критерий, то есть тот, который минимизирует величину:

$$\beta = \sup_{F \in \mathcal{F}_1} \left(1 - W(F) \right).$$

Пример 9.11. Пусть ${\cal F}$ состоит из двух распределений:

- 1. случайная величина принимает значение 0 с вероятностью p_0 и значение 1 с вероятностью p_1 ;
- 2. случайная величина принимает значение 1 с вероятностью q_1 и значение 2 с вероятностью q_2 .

При этом $p_1, q_1 \neq 0, p_1, q_1 \neq 1, p_0 + p_1 = 1 = q_1 + q_2$. В качестве основной гипотезы H_0 рассмотрим распределение Бернулли с вероятностью успеха p_1 .

Критическая область задается следующим образом:

$$\mathfrak{X}_1 = \left\{ X_i = 1, \forall i = \overline{1,n} \right\}.$$

Иными словами: если есть хотя бы один 0, то выбираем гипотезу H_0 , иначе H_1 .

Тогда

$$\alpha = P\{H_1|H_0\} = p_1^n,$$

$$\beta = P\{H_0|H_1\} = 0.$$

Если же задать критическую область иначе:

$$\mathfrak{X}_1 = \{ \exists i \colon X_i = 2 \},\,$$

или принимаем \mathfrak{X}_1 , если есть хотя бы одна 2. В этом случае:

$$\alpha = P\{H_1|H_0\} = 0,$$

$$\beta = P\{H_0|H_1\} = q_1^n.$$

9.2 Проверка гипотезы о виде распределения

Рассмотрим задачу проверки гипотезы о виде распределения. Пусть дана выборка $X = (X_1 \dots X_n)$ из распределения $\mathcal{L}(\xi)$ и F_{ξ} - неизвестное распределение. Рассмотрим основную гипотезу $H_0: F_{\xi} = F(x)$, при этом никак не конкретизируем альтернативную гипотезу $(H_1 - \text{сложная гипотеза})$.

9.2.1 Критерий согласия Колмогорова

Критерий Колмогорова основан на теореме Колмогорова (см. 1.10). Статистика критерия определяется формулой:

$$D_n = D_n(X) = \sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - F(x) \right|,$$

где D_n — это отклонение эмпирической функции распределения от теоретической функции распределения.

Мы знаем, что \widehat{F}_n является оптимальной, несмещенной и состоятельная оценкой для F(x). Отсюда следует, что D_n не должно «сильно» отклоняться от 0.

По теореме Колмогорова для непрерывных функций распределения F и при $n\geqslant 20$:

$$P\left(\sqrt{n}D_n \ge \lambda_{\alpha}|H_0\right) = 1 - K(\lambda_{\alpha}) = \alpha.$$

При этом по значению α возможно однозначно определить величину $\lambda_{\alpha}.$

Критерий формулируется следующим образом. Проверяем, выполняется ли неравенство: $\sqrt{n}D_n \geq \lambda_{\alpha}$, если да, то отвергаем гипотезу H_0 . Данному критерию соответсвует критическая область

$$\mathfrak{X}_1 = \left\{ \overline{x} : D_n(\overline{x}) \sqrt{n} \ge \lambda_\alpha \right\}.$$

Вместо статистики $\sqrt{n}D_n \ge \lambda_\alpha$ при малых значениях $n\ (n\geqslant 20)$ рекомендуется использовать статистику

$$S_n = \frac{6nD_n + 1}{6\sqrt{n}}$$

(см. напр. [?]), которая также сходится к распределению Колмогорова.

Опишем способ вычисления значения $D_n = \sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - F(x) \right|$. Вычисление супремума функции, вообще говоря, не является тривиальной задачей. Однако в виду того, что $\widehat{F}_n(x)$ принимает конечное число значений: $\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right\}$, задача нахождения супремума функции сильно упрощается.

Пусть имеется вариационный ряд реализации выборки: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$. Определим следующие две функции:

$$D_n^+ = \max_{1 \le k \le n} \left| \frac{k}{n} - F\left(x_{(k)}\right) \right|,$$

$$D_n^- = \max_{1 \le k \le n} \left| F(x_{(k)}) - \frac{k-1}{n} \right|.$$

Тогда вычислить значение D_n можно следующим образом:

$$D_n = \max\{D_n^-, D_n^+\}.$$

Однако критерий Колмогорова обладает рядом минусов:

1. Функция $D_n = \sup_{x \in R} \left| \widehat{F}_n(x) - F(x) \right|$ не зависит от вида функции распределения F(x), только в случае, когда F(x) — непрерывная функция. Встает вопрос, что делать если F(x) имеет точки разрыва.

Утверждение 9.12. Пусть Y_1, \ldots, Y_n — независимые, одинаково распределенные случайные величины, $Y_i \sim \mathcal{R}[0,1], X_1, \ldots, X_n$ — выборка из некоторого распределения, функция которого имеет точки разрыва. Построим следующую случайную величину:

$$U_i=F(X_i-)+Y_i[F(X_i-F(X_i-)],$$
 где $F(x_i-)=\lim_{z\downarrow 0}F(x_i-z)$. Тогда случайная величина $U_i\sim \mathcal{R}[0,1]$.

- 2. В случае сложных гипотез распределение $D_n(\theta)$, зависит как от вида априорных распределений, так и от способа получения оценок, размера выборки n, вида Θ . Существуют два подхода к проверке гипотезы о виде распределения в этом случае:
 - Для проверки гипотезы $H_0: F_{\xi}(x) \in \mathcal{F}_0 = \{F_{\theta}(x), \theta \in \Theta\}$ сначала вычисляется оценка $\widehat{\theta}$ неизвестных параметров. Имея оценку вычислить значение статистики Колмогорова K_n (или S_n). Критическую область определить по предвычисленным таблицам в зависимости от распределения, количества и вида параметров.
 - В случае достаточно большой выборки, можно разбить ее на две части: по одной получить оценки на неизвестные параметры, по второй проверить гипотезу о виде распределения.

Определение 9.13. Пусть случайные величины $\xi_1, \xi_2, \dots, \xi_n$ имеют стандартное нормальное распределение, тогда случайная величина:

$$\chi_n^2 = \sum_{i=1}^n \xi_i^2$$

имеет распределение, которое называется распределением хи-квадрат с п степенями свободы

Аналогичным образом определяется критерий Смирнова. Пусть дана выборка X_1, \ldots, X_n .

$$D_{Sm}^{+} = \sup_{x \in R} \left| \widehat{F}_n(x) - F(x) \right|,$$

$$D_{Sm}^{-} = -\inf_{x \in R} \left| \widehat{F}_n(x) - F(x) \right|.$$

$$Sm_n = \frac{(6nD_{S_n}^{+} + 1)^2}{9n}.$$

Известно, что эта статистика имеет следующее распределение:

$$\mathcal{L}(S_m) = \chi_2^2.$$

Рассмотрим вопрос об оценке вероятности ошибки второго рода при применении критерия согласия Колмогорова. Обозначим функцию распределения, соответствующую гипотезе $H_0 - F_0(x)$, а функцию распределения, соответствующую альтернативной гипотезе, $F_1(x)$.

$$\beta = \mathsf{P}\left(\sqrt{n}D_n \leqslant \lambda_{\alpha} \middle| H_1\right) = \mathsf{P}\left(\sqrt{n}\sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - F_0(x) \right| \leqslant \lambda_{\alpha} \middle| H_1\right)$$

Выберем некоторых x_0 . Для данного значения верно, что событие $\left\{\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F_0(x)\right|\leqslant a\right\}\subset \left\{\left|\widehat{F}_n(x_0)-F(x_0)\right|\leqslant a\right\}$, соответственно верно

$$\beta \leqslant \mathsf{P}\left(\sqrt{n} \, \left| \widehat{F}_n(x_0) - F(x_0) \right| \leqslant \lambda_\alpha \right| H_1 \right) = \\ = \mathsf{P}\left(\sqrt{n} \, \left| \widehat{F}_{1n}(x_0) - F_0(x_0) \right| \leqslant \lambda_\alpha \right) = \\ = \mathsf{P}\left(\sqrt{n} \frac{\left| \widehat{F}_{1n}(x_0) - F_0(x_0) - F_1(x_0) + F_1(x_0) \right|}{\sqrt{F_1(x_0)} \left(1 - F_1(x_0)\right)}} \leqslant \frac{\lambda_\alpha}{\sqrt{F_1(x_0)} \left(1 - F_1(x_0)\right)} \right) = \\ = \mathsf{P}\left(\frac{-\lambda_\alpha + \sqrt{n} \left(F_0(x_0) - F_1(x_0)\right)}{\sqrt{F_1(x_0)} \left(1 - F_1(x_0)\right)}} \leqslant \frac{\lambda_\alpha + \sqrt{n} \left(F_0(x_0) - F_1(x_0)\right)}{\sqrt{F_1(x_0)} \left(1 - F_1(x_0)\right)}} \right) \approx \\ \leqslant \sqrt{n} \frac{\widehat{F}_{1n}(x_0) - F_1(x_0)}{\sqrt{F_1(x_0)} \left(1 - F_1(x_0)\right)}} \leqslant \frac{\lambda_\alpha + \sqrt{n} \left(F_0(x_0) - F_1(x_0)\right)}{\sqrt{F_1(x_0)} \left(1 - F_1(x_0)\right)}} \approx$$

$$\approx 1 \frac{1}{\sqrt{2\pi}} \int_{\frac{-\lambda_{\alpha} + \sqrt{n}(F_{0}(x_{0}) - F_{1}(x_{0}))}{\sqrt{F_{1}(x_{0})(1 - F_{1}(x_{0}))}}}} \int_{\frac{-\lambda_{\alpha} + \sqrt{n}(F_{0}(x_{0}) - F_{1}(x_{0}))}{\sqrt{F_{1}(x_{0})(1 - F_{1}(x_{0}))}}}} e^{-\frac{t^{2}}{2}} dt$$

Несложно видеть, что с ростом n пределы интегрирования будут одновременно стремится к бесконечности (к положительной или отрицательной зависит от знака разности $F_0(x_0) - F_1(x_0)$). То есть с ростом n значение интеграла будет стремиться к нулю, что свидетельствует о состоятельности критерия.

9.2.2 Критерий согласия хи-квадрат

Утверждение 9.14. Пусть $\bar{\xi}$ - случайный вектор $\bar{\xi} = (\xi_1, \dots, \xi_n)$, $u \; \xi_i \sim \mathcal{N}(0,1)$. И, вектор $\bar{\xi}$ имеет единичную матрицу ковариаций. Пусть также $\bar{c} = (c_1, c_2, \dots, c_n) \in \mathbb{R}^n$, такой что $|\bar{c}| = 1$.

Рассмотрим проекцию $\overline{\xi}^{(c)}$ на гиперплоскость $L_{\overline{c}}=\{x\in\mathbb{R}^n:(\overline{x},\overline{c})=0\},$ которая ортогональна вектору \overline{c} . Тогда

• вектор $\overline{\xi}^{(c)}$ имеет математическое ожидание равное $\theta = (0, \dots, 0)$ и матрицу ковариации

$$C(\overline{\xi}^{(c)}) = E - \parallel c_i c_j \parallel_{i,j=1}^n,$$

• квадрат длины вектора $\overline{\xi}^c$ имеет расспределение χ^2_{n-1} (хи-квадрат с n-1 степенью свободы)

 \mathcal{A} оказательство. Выпишем представление вектора $\overline{\xi}$ в исходном базисе:

$$\overline{\xi} = \overline{e}_1 \xi_1 + \ldots + \overline{e}_{n-1} \xi_{n-1} + \overline{e}_n \xi_n.$$

Так как $|\overline{c}|=1$ мы можем рассмотреть ортонормированный базис $\overline{e'}_1\ldots,\overline{e'}_{n-1},\overline{e'}_n$, где $\overline{e'}_n=\overline{c}$:

$$\overline{\xi} = \overline{e'}_1 \xi'_1 + \ldots + \overline{e'}_{n-1} \xi'_{n-1} + \overline{c} \xi'_n.$$

Из-за перехода от одного ортонормированного базиса к другому $\xi_i' \sim \mathcal{N}(0,1)$. Действительно, пусть матрица перехода от одного базиса к другому равна

¹Интегральная теорема Муавра-Лапласа для последовательности бернуллевских случайных величин.

 $A = \|a_{i,j}\|_{i,j=1}^n$. Тогда

$$\mathsf{M}\xi_i' = \mathsf{M}\left(a_{1,i}\xi_1 + \ldots + a_{n,i}\xi_n\right) = 0.$$

Так как оба базиса ортонормированны, то $A \cdot A^T = E$. Найдем $\mathsf{D} \, \xi_i'$:

$$\mathsf{D}\,\xi_i' = D\,(a_{1,i}\xi_1 + \ldots + a_{n,i}) = \sum_{i=1}^n a_{j,i}^2 = 1.$$

Аналогично доказывается $cov(\xi'_i, \xi'_j) = 0, i \neq j.$

Выпишем проекцию вектора ξ на плоскость $L_{\overline{c}}$:

$$\overline{\xi}^c = \overline{e'}_1 \xi'_1 + \ldots + \overline{e'}_{n-1} \xi'_{n-1} \overline{e'}_1 \xi'_1 + \ldots + \overline{e'}_{n-1} \xi'_{n-1}$$

и рассмотрим квадрат длины проекции $\overline{\xi}^c$. Так как базис $\overline{e'}_1\dots,\overline{e'}_{n-1}$ ортонормированный, получим следующее:

$$\left|\overline{\xi}^{(c)}\right|^2 = (\xi_1')^2 + \ldots + (\xi_{n-1}')^2,$$

то есть $\left|\overline{\xi}^{(c)}\right|^2$ имеет распределение хи-квадрат с n-1 степенью свободы. Очевидно, что

$$\mathsf{M}\left(\overline{\xi}^{(c)}\right) = \overline{0}.$$

Найдем ковариационную матрицу:

$$C\left(\overline{\xi}\right) = C\left(\overline{\xi}^{(c)} + \xi'_n e'_n\right) = C\left(\overline{\xi}^{(c)}\right) + C\left(\xi'_n \overline{e'}_n\right).$$

Найдем $C\left(\xi_n'\overline{e'}_n\right)$:

$$C\left(\xi_{n}^{\prime}\overline{e^{\prime}}_{n}\right)=C\left(\xi_{n}^{\prime}\overline{c}\right)=\left\|\operatorname{cov}\left(\xi_{n}^{\prime}c_{i},\xi_{n}^{\prime}c_{j}\right)\right\|.$$

Учитывая то $\mathsf{cov}(\xi_i'c_i, \xi_j'c_j) = c_ic_j$ получим:

$$C\left(\overline{\xi}^{(c)}\right) = E - \parallel c_i c_j \parallel_{i,j=1}^n.$$

Пусть $\xi_1, \ldots \xi_n$ — независимые одинаково распределенные случайные величины, которые принимают значения $1, \ldots, N$ с вероятностью p_1, \ldots, p_n .

Введем случайную величину

$$\nu_k^{(n)} = \sum_{i=1}^n \operatorname{Ind}(\xi_i = k).$$

Величину $\nu_k^{(n)}$ называют частотой встречаемости значения k. Определим случайный вектор частот, имеющий полиномиальное распределение:

$$\overline{\nu^{(n)}} = \left(\nu_1^{(n)}, \dots, \nu_N^{(n)}\right),\,$$

$$P\left(\nu_i^{(n)} = m_i, i = \overline{1,N}\right) = \frac{n!}{m_1! \dots m_N!} p_1^{m_1} \dots p_N^{m_N}.$$

Рассмотрим следующую статистику:

$$X_N^2 = \sum_{i=1}^N \frac{\left(\nu_i^{(n)} - np_i\right)^2}{np_i} = \sum_{i=1}^N \frac{\left(\nu_i^{(n)}\right)^2}{np_i} - n,$$

которую будем называть статистикой Пирсона или статистика хи-квадрат.

Заметим, что $\frac{\nu_k^{(n)}}{n} \to p_k$ и значение статистики Пирсона должно стремится к 0 при выборке из рассматриваемого распределения. Тогда критерий можно сформулировать следующим образом:

$$\mathfrak{X}_{1\alpha} = \left\{ X_N^2 \ge t_\alpha \right\}.$$

Остается вопрос о том, как правильно выбрать t_{α} .

Теорема 9.15 (Предельное распределение статистики Пирсона). Пусть случайный вектор частот $\overline{\nu^{(n)}} = \left(\nu_1^{(n)}, \ldots, \nu_N^{(n)}\right)$ имеет полиномиальное распределение с параметрами n и $\overline{p} = (p_1, \ldots, p_N)$. Если вектор \overline{p} фиксирован, а $n \to \infty$, то распределение статистики Пирсона сходится к распределению χ^2 с N-1 степенью свободы.

Доказательство. Вектор частот $\overline{\nu^{(n)}} = \left(\nu_1^{(n)}, \dots, \nu_N^{(n)}\right)$ можно представить в виде суммы n независимых одинаково распределенных случайных векторов

$$\overline{\nu^{(n)}} = \sum_{t=1}^{N} (\operatorname{Ind}\{\xi_t = 1\}, \dots, \operatorname{Ind}\{\xi_t = n\}).$$

Математическое ожидание очевидно равно (p_1, \ldots, p_n) , а матрица ковариаций равна

$$C\left(\overline{\nu^{(n)}}\right) = \operatorname{diag}(p_1, \dots, p_N) - \parallel p_i p_j \parallel_{i,j=1}^N.$$

По этому согласно многомерной центральной предельной теореме распределение вектора

$$\left(\frac{\nu_1^{(n)} - np_1}{\sqrt{n}}, \dots, \frac{\nu_N^{(n)} - np_N}{\sqrt{n}}\right) \tag{5}$$

при $n \to \infty$ сходится к нормальному распределению с нулевым средним и матрицей ковариации $c\left(\overline{\nu^{(n)}}\right)$. Статистику Пирсона можно интерпретировать как квадрат длины вектора

$$\left(\frac{\nu_1^{(n)} - np_1}{\sqrt{np_1}}, \dots, \frac{\nu_N^{(n)} - np_N}{\sqrt{np_N}}\right),\tag{6}$$

который получается из (5) линейным преобразованием: делением j-ой координаты на $\sqrt{p_j}$. При этом математическое ожидание останется нулевым, а в матрице ковариаций элемент i-ой строки и j-го столбца делится на $\sqrt{p_i p_j}$. Тогда распределение векторов (6) сходится к нормальному распределению с нулевым вектором средних и матрицей ковариаций

$$E-\|\sqrt{p_ip_j}\|$$
.

Заметим, что для $\overline{c} = \left(\sqrt{p_1}, \dots, \sqrt{p_N}\right)$ верно равенство:

$$\sum_{j=1}^{N} \frac{\nu_j^{(n)} - np_j}{\sqrt{np_j}} \cdot \sqrt{p_j} = 0.$$

Тогда распределение квадрата длины такого случайного вектора имеет распределение хи-квадрат с N-1 степенью свободы. Поскольку квадрат длины — непрерывная функция, то распределение ее значения от допредельных векторов (6) сходится к распределению ее значений от случайного вектора. \square

На практике критерий хи-квадрат можно использовать для расчетов с хорошим приближением при $n\geqslant 50$ и $\nu_j\geqslant 5,\ j\in\overline{1,N}.$

Таким образом: гипотеза H_0 отвергается тогда и только тогда, когда $X_n^2 > \chi_{1-\alpha,N-1}^2$, где α — заданный уровень значимости.

Рассмотрим случай сложной гипотезы. Пусть гипотеза для полиномиального распределения имеет следующий вид:

$$H_0: \overline{p} = \overline{p}(\theta), \ \theta = (\theta_1, \dots, \theta_r), \theta \in \Theta, r < N - 1.$$

В этом случае при гипотезе H_0 вероятности исходов являются некоторыми функциями от параметра θ . Если выписать статистику Пирсона, то она будет зависеть от параметра θ . При фиксации некоторого θ мы можем вычислить статистику критери хи-квадрат. Верна следующая

Теорема 9.16. Пусть $p_j(\theta)$, $j = \overline{1,N}$, $\theta = (\theta_1, \dots, \theta_r)$, при этом:

- 1. $\sum_{j=1}^{N} p_i(\theta) = 1, \forall \theta \in \Theta,$
- 2. $p_i(\theta) \ge c > 0, \forall j$
- 3. существуют непрерывные производные

$$\frac{\partial p_j(\theta)}{\partial \theta_k}, \ k = \overline{1,r},$$

$$\frac{\partial^2 p_j(\theta)}{\partial \theta_k \theta_l}, \ k, l = \overline{1,r},$$

4. Матрица размера $N \times r \left\| \frac{\partial^2 p_j(\theta)}{\partial \theta_k} \right\|$ имеет ранг r для всех $\theta \in \Theta$. Пусть также

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg max}} \prod_{j=1}^{N} (p_j(\theta))^{\nu_j},$$

Тогда статистика

$$\widehat{X}_n^2 = X_n^2 \left(\widehat{\theta}\right) = \sum_{j=1}^N \frac{\left(\nu_j - np_j(\theta)\right)^2}{np_j(\theta)}$$

имеет распределение хи-квадрат с N-1-r степенями свободы.

В этом случае гипотеза H_0 отвергается тогда и только тогда, когда $\widehat{X}_n^2 > \chi^2_{1-\alpha,N-1-r}$, где α — заданный уровень значимости.

!!!!!!!!Добавить про состоятельность критерия хи-квадрат и близкие альтернативы

9.3 Гипотеза и критерии однородности

Пусть $X = (X_1 ... X_n)$ из распределения $\mathcal{L}(\xi)$ с неизвестной функцией распределения $F_1(x)$ и $Y = (Y_1 ... Y_n)$ из распределения $\mathcal{L}(\eta)$ также с неизвестной функцией распределения $F_2(x)$. Гипотеза однородности формулируется следующим образом $H_0: F_1(x) = F_2(x)$ и заключается в проверке гипотезы о том, что рассматриваются две выборки из одного и того же распределения.

9.3.1 Критерий однородности Смирнова

Пусть X, Y - две выборки объема n и m соответственно \widehat{F}_{1n} - э.ф.р., построенная по выборке X, \widehat{F}_{2m} - э.ф.р., построенная по выборке Y. Рассмотрим статистику:

$$D_{n,m} = \sup_{x \in \mathbb{R}} \left| \widehat{F}_{1n}(x) - \widehat{F}_{2n}(x) \right|$$

В случае если F_1 и F_2 непрерывные функции распределения, то по теореме Смирнова статистика

$$\sqrt{\frac{n \cdot m}{n + m}} D_{n,m}$$

имеет распределение Колмогорова. Тогда критерий проверки гипотезы однородности можно сформулировать следующим образом: если $D_{n,m} > t_{\alpha}(n,m)$, то гипотезу H_0 отвергаем, где

$$t_{\alpha}(n,m) = \sqrt{\frac{1}{n} + \frac{1}{m}} t_{\alpha}, K(t_{\alpha}) = 1 - \alpha.$$

При этом:

$$\mathsf{P}\left(D_{n,m} > \sqrt{\frac{1}{n} + \frac{1}{m}} t_{\alpha} \middle| H_{0}\right) = \mathsf{P}\left(\sqrt{\frac{mn}{n+m}} D_{n,m} > t_{\alpha} \middle| H_{0}\right) \underset{n \to \infty}{=} 1 - K(\lambda_{\alpha}) = \alpha.$$

Данный критерий имеет ряд преимуществ:

- 1. Можем использовать статистику даже если не знаем вид распределения, кроме того, что оно **непрерывное**
- 2. $D_{n,m}$ считается легко

$$D_{n,m}^{+} = \max_{1 \le r \le m} \left| \frac{r}{m} - \widehat{F}_{1n} \left(Y_{(r)} \right) \right| = \max_{1 \le r \le n} \left| \widehat{F}_{2m} \left(X_{(r)} \right) - \frac{r-1}{n} \right|$$

$$D_{n,m}^{-} = \max_{1 \le r \le m} \left| \widehat{F}_{1n} \left(Y_{(r)} \right) - \frac{r-1}{m} \right| = \max_{1 \le r \le n} \left| \frac{r}{n} - \widehat{F}_{2m} \left(X_{(r)} \right) \right|$$
$$D_{n,m} = \max \left\{ D_{n,m}^{-}, D_{n,m}^{+} \right\}.$$

Однако применять мы его можем только в случае непрерывных распределений.

Стоит отметить, что сходимость к распределению Колмогорова достаточно медленная. В случае небольших значений n и m можно пользоваться таблицами, приведенными, например в [?].

9.3.2 Критерий однородности хи-квадрат

Рассмотрим критерий, который можно применить для проверки гипотезы однородности в случае, когда наблюдается некоторый переменный признак, принимающий конечное число $N\geqslant 2$ различных значений.

Как и для критерия однородности Пирсона изначально рассмотрим случай полиномиально распределенных случайных величин. Очевидным образом критерий обобщается на случай произвольных случайных величин. Очевидным плюсом данного критерия является тот факт, что с его помощью можно проверять однородность произвольного количества выборок. Пусть k — количество серий наблюдений $(X^{(1)}, X^{(2)}, \ldots, X^{(k)})$. Каждая серия $X^{(i)}$ порождает вектор частот $\nu_i = (\nu_{i,1}, \ldots, \nu_{i,N}), i = \overline{1,k}$. При этом для каждой выборки имеется свое вероятностное распределения $(p_{i1}, \ldots, p_{iN}) = \overline{p}_i$, которое называется вероятностью появления npuзнаков.

Гипотеза однородности H_0 заключается в том, что

$$\overline{p}_0 = \overline{p}_1 = \dots = \overline{p}_k = \overline{p},$$

где
$$\overline{p} = (p_1, \dots, p_N), p_i > 0, i = \overline{1,N}, \sum_{i=1}^N p_i = 1.$$

В случае верности гипотезы H_0 верно равенство: $\mathsf{M}(\nu_{ij}|H_0)=n_ip_j$. Рассмотрим статистику

$$\sum_{i=1}^{k} X_k^2 = \sum_{i=1}^{k} \sum_{j=1}^{N} \frac{(\nu_{ij} - n_i p_j)^2}{n_i p_j}.$$

Как и в случае использования критерия хи-квадрат для случая сложной гипотезы заменим значения p_i их оценкой максимального правдоподобия \widehat{p}_j , построенная по всем выборкам:

$$\widehat{p} = (\widehat{p}_1, \dots, \widehat{p}_N) = rg \max_{\overline{p}} \prod_{i,j} p_j^{
u_{i,j}} = rg \max_{\overline{p}} \prod_j p_j^{
u_{i,j}},$$

где $\nu_{\cdot,j} = \sum_{i=1}^{N} \nu_{i,j}$. Отсюда легко можно заметить, что

$$\widehat{p}_j = \frac{\nu_{\cdot,j}}{n},$$

где $n=n_1+\ldots+n_k$. Получаем следующий вид критерия проверки однородности хи-квадрат:

$$\widehat{X}_{n_1,\dots,n_k}^2 = X_{n_1,\dots,n_k}^2(\widehat{p}) = n \sum_{i=1}^k \sum_{j=1}^N \frac{1}{n_i \nu_{.j}} \left(\nu_{i,j} - \frac{n_i \nu_{.j}}{n} \right)^2.$$

 H_0 отвергаем тогда и только тогда, когда $X^2_{n_1,\dots,n_k} > t_{\alpha}.$

Осталось узнать как считать величину t_{α} . Можно доказать, что $\mathcal{L}(X_{n_1,\dots,n_k}^2|H_0) \underset{n_i\to\infty}{\longrightarrow} \chi^2_{(k-1)(N-1)}$. Что дает нам следующий критерий проверки однородности: гипотезу H_0 отвергаем тогда и только тогда, когда $\widehat{X}_{n_1,\dots,n_k}^2 > \chi^2_{1-\alpha,(k-1)(N-1)}$, где α — заданный уровень значимости.

9.4 Выбор из двух простых гипотез. Критерий Неймана-Пирсона

Рассмотрим случай двух простых гипотез H_0 и H_1 . Иными словами, считаем, что допустимыми распределениями случайной величины ξ являются лишь два заранее заданных распределения $F_0(x)$ и $F_1(x)$. Необходимо по выборке $X = (X_1, \ldots, X_n)$ из $\mathcal{L}(\xi)$ проверить гипотезу H_0 против альтернативы H_1 .

Выбор из двух простых гипотез можно представить в виде параметрической гипотезы. Действительно, пусть $\Theta = \{0,1\}$, и $F_{\theta}(x) = (1-\theta)F_{0}(x) + \theta F_{1}(x)$.

В случае параметрических гипотез функцию мощности критерия можно переписать в виде:

$$W(\theta) = W(\theta; \mathfrak{X}_{1,\alpha}) = \mathsf{P}_{\theta} \left(X \in \mathfrak{X}_{1,\alpha} \right).$$

Сначала рассмотрим случай абсолютно непрерывных распределений. Для реализации выборки \overline{x} с помощью функции плотности можем выписать правдоподобие данных:

$$L(\overline{x}, \theta_i) = f_i(x_1) \cdot \ldots \cdot f_i(x_n).$$

Как и ранее рассмотрим задачу нахождения такого статистического критерия, что при заданной ошибке 1 рода

$$\alpha = W(\theta_0; \mathfrak{X}_{1,\alpha}) = \int_{\mathfrak{X}_{1,\alpha}} L(\overline{x}; \theta_0) d\overline{x}$$

максимизировать функцию мощности

$$W(\theta_1; \mathfrak{X}_{1,\alpha}) = \int_{\mathfrak{X}_{1,\alpha}} L(\overline{x}; \theta_1) d\overline{x} = 1 - \beta \to \max,$$

где β — ошибка 2 рода. Параметрический критерий, минимизирующий ошибку 2 рода при заданной ошибке 1 рода называется наиболее мощным критерием с уровнем значимости α . Заметим, что функции $W(\theta_i; \mathfrak{X}_{1,\alpha})$ есть суть вероятности того, что выборка попадет в i-ю критическую область. Критическую область можно построить следующим образом: множество $\mathfrak{X}_{1,\alpha}$ состоит из таких \overline{x} , для которых правдоподобие $L(\overline{x}, \theta_1)$ будет больше правдоподобия $L(\overline{x}, \theta_0)$.

Определение 9.17. Функция, имеющая вид:

$$l(\overline{x}) = \frac{L(\overline{x}, \theta_1)}{L(\overline{x}, \theta_0)} = \frac{\prod_{i=1}^n f_1(x_i)}{\prod_{i=1}^n f_0(x_i)}$$

называется функцией отношения правдоподобия.

Выберем некоторую границу c. Если $l(\overline{x}) \geq c$, то принимаем H_1 , иначе — H_0 . Далее возьмем все $x \in X$ и упорядочим их по значению $l(\overline{x})$ и зададим такую c, чтобы выполнялось условие ошибка первго рода была в точности α .

Определение 9.18. Назовем T(X) тестовой статистикой, если выполняется равенство $T(\overline{x}) = l(\overline{x}), u\ l(\overline{x})$ — отношение правдоподобия.

Определение 9.19. Критическим множеством критерия Неймана-Пирсона называется множество $\mathfrak{X}_{1,\alpha}^*$ имеющее вид:

$$\mathfrak{X}_{1,\alpha}^* = \{ \overline{x} \in \mathfrak{X} : l(\overline{x}) \ge c_{\alpha} \} ,$$

где c_{α} такое, что ошибка 1 рода равна α .

Предположим далее, что $f_i(x) > 0$, так как из $f_i(x) = 0$ следует $L(x_i, \theta_0) = 0$, что говорит о верности другой гипотезы. Здесь и далее для сокращения записи вместо P_{θ_i} будем писать P_i . Определим вспомогательную функцию $\phi(c)$:

$$\phi(c) = \mathsf{P}_0\left(l(\overline{x}) \ge c\right) = \int_{\overline{x}: l(\overline{x}) \ge c} L(\overline{x}, \theta_0) d\overline{x}.$$

Заметим, что при c=0 функция принимает значение равное $\phi(0)=1$. Покажем, что чем больше c, тем меньше значение $\phi(c)$:

$$1 \geq \mathsf{P}_1(l(\overline{x}) \geq c) = \int\limits_{\overline{x}: l(\overline{x}) \geq c} L(\overline{x}, \theta_1) d\overline{x} \geq c \cdot \int\limits_{\overline{x}: l(\overline{x}) \geq c} L(\overline{x}, \theta_0) d\overline{x} = c \cdot \phi(c).$$

Следовательно:

$$\phi(c) \le \frac{1}{c}.$$

Отсюда следует, что при $c \to \infty$ значение $\phi(c) \to 0$. Предположим, что $\phi(c)$ — непрерывная функция. Тогда для любого $\alpha \in (0;1)$ можно найти такое $c_{\alpha}: \phi(c_{\alpha}) = \alpha$. Соответственно для множества $\mathfrak{X}_{1,\alpha}^* = \{\overline{x}: l(\overline{x}) \geq c_{\alpha}\}$ верно равенство:

$$W(\theta_0, \mathfrak{X}_{1,\alpha}^*) = \mathsf{P}_0\left(\mathfrak{X}_{1,\alpha}^*\right) = \phi(c_\alpha) = \alpha.$$

Теорема 9.20 (Лемма Неймана-Пирсона). Пусть для фиксированного α существует такое c_{α} , что $\phi(c_{\alpha}) = \alpha$. Тогда критическая область $\mathfrak{X}_{1,\alpha}^* = \{\overline{x}: l(\overline{x}) \geq c_{\alpha}\}$ задает наиболее мощный критерий для гипотезы $H_0: F_{\xi} = F_0$ относительно альтернативы $H_1: F_{\xi} = F_1$ среди всех критериев с уровнем значимости α .

Доказательство. Пусть $\mathfrak{X}_{1,\alpha}$ - другая критическая область с уровнем значимости α :

$$W(\theta_0; \mathfrak{X}_{1,\alpha}) = \mathsf{P}_0(\overline{x} \in \mathfrak{X}_{1,\alpha}) = \int_{\mathfrak{X}_{1,\alpha}} L(\overline{x}, \theta_0) d\overline{x} = \alpha.$$

Тогда

$$\mathsf{P}_{0}(\mathfrak{X}_{1,\alpha}\backslash\mathfrak{X}_{1,\alpha}\cap\mathfrak{X}_{1,\alpha}^{*}) = \mathsf{P}_{0}(\mathfrak{X}_{1,\alpha}) - \mathsf{P}_{0}(\mathfrak{X}_{1,\alpha}\cap\mathfrak{X}_{1,\alpha}^{*}) = \mathsf{P}_{0}(\mathfrak{X}_{1,\alpha}^{*}) - \mathsf{P}_{0}(\mathfrak{X}_{1,\alpha}\cap\mathfrak{X}_{1,\alpha}^{*}) = \\ = \mathsf{P}_{0}(\mathfrak{X}_{1,\alpha}^{*}\backslash\mathfrak{X}_{1,\alpha}\cap\mathfrak{X}_{1,\alpha}^{*})$$

Согласно определению множества $\mathfrak{X}_{1,\alpha}^*$, для любого \overline{x} не лежащего в нем, выполняется неравенство: $l(\overline{x}) < c_{\alpha}$ или

$$c_{\alpha} \cdot L(\overline{x}; \theta_0) > L(\overline{x}; \theta_1).$$

Следовательно,

$$\mathsf{P}_{1}(\mathfrak{X}_{1,\alpha}^{*}\backslash\mathfrak{X}_{1,\alpha}\cap\mathfrak{X}_{1,\alpha}^{*})\geq c_{\alpha}\cdot\mathsf{P}_{0}(\mathfrak{X}_{1,\alpha}^{*}\backslash\mathfrak{X}_{1,\alpha}\cap\mathfrak{X}_{1,\alpha}^{*})=c_{\alpha}\cdot\mathsf{P}_{0}(\mathfrak{X}_{1,\alpha}\backslash\mathfrak{X}_{1,\alpha}\cap\mathfrak{X}_{1,\alpha}^{*})>>\mathsf{P}_{1}(\mathfrak{X}_{1,\alpha}\backslash\mathfrak{X}_{1,\alpha}\cap\mathfrak{X}_{1,\alpha}^{*}).$$

Прибавив к обоим частям неравенства $\mathsf{P}_1(\mathfrak{X}_{1,\alpha} \cap \mathfrak{X}_{1,\alpha}^*)$ получим:

$$W(\theta_1; \mathfrak{X}_{1,\alpha}^*) = \mathsf{P}_1(\mathfrak{X}_{1,\alpha}^*) > \mathsf{P}_1(\mathfrak{X}_{1,\alpha}) = W(\theta_1, \mathfrak{X}_{1,\alpha}).$$

Определение 9.21. Будем говорить, что статистический критерий является несмещенным, если $W(\theta) \geqslant \alpha$ для всех $\alpha \in \Theta_1$.

Утверждение 9.22. Критерий Неймана-Пирсона является несмещенным критерием.

Доказательство. 1) Рассмотрим случай $c_{\alpha} \geq 1$. Тогда

$$W(\theta_1, \mathfrak{X}_{1,\alpha}^*) = \int_{\mathfrak{X}_{1,\alpha}^*} L(\overline{x}, \theta_1) d\overline{x} \ge c_{\alpha} \cdot \int_{\mathfrak{X}_{1,\alpha}^*} L(\overline{x}, \theta_0) d\overline{x} \ge \alpha \cdot c_{\alpha} > \alpha$$

2) Рассмотрим случай $c_{\alpha} < 1$:

$$W(\theta_1, \mathfrak{X}_{1,\alpha}^*) = 1 - P(\overline{\mathfrak{X}_{1,\alpha}^*}) > 1 - c_{\alpha} P_0(\overline{\mathfrak{X}_{0,\alpha}}) \ge 1 - P_0(\overline{\mathfrak{X}_{1,\alpha}}) = \alpha$$

Пример 9.23. Пусть имеется выборка $X = (X_1, \dots, X_n)$ из распределения $\mathcal{L}(\xi)$. Рассмотрим две гипотезы:

$$H_0: \xi \sim N(\theta_0, \sigma^2)$$

 $H_1: \xi \sim N(\theta_1, \sigma^2)$

Найдем функцию отношения правдоподобия:

$$\begin{split} l(\overline{x}) &= \frac{\prod_{i=1}^{n} f_1(x_i)}{\prod_{i=1}^{n} f_2(x_i)} = \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} \left[(x_i - \theta_0)^2 - (x_i - \theta_1)^2 \right] \right\} = \\ &= \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2 + \theta_0^2 - 2x_i \theta_0 - x_i^2 - \theta_1^2 + 2x_i \theta_1 \right\} = \\ &= \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} \theta_0^2 - \theta_1^2 + 2x_i \theta_1 - 2x_i \theta_0 \right\} = \\ &= \exp\left\{-\frac{n}{2\sigma^2} (\theta_0^2 - \theta_1^2) - \frac{n}{\sigma^2} (\theta_1 - \theta_0) \frac{1}{n} \sum_{i=1}^{n} x_i \right\} = \\ &= \exp\left\{\frac{n}{\sigma^2} (\theta_0 - \theta_1) \overline{X} - \frac{n}{2\sigma^2} (\theta_0^2 - \theta_1^2) \right\} \ge c \end{split}$$

Прологарифмируем:

$$\frac{n}{\sigma^2}(\theta_0 - \theta_1)\overline{X} \ge \ln c + \frac{n}{2\sigma^2}(\theta_0^2 - \theta_1^2),$$

$$\overline{X} \ge \frac{\sigma^2}{n \cdot (\theta_0 - \theta_1)} \ln c + \frac{\theta_0 - \theta_1}{2}.$$

Получаем следующее эквивалентное равенство:

$$\mathsf{P}_i(l(\overline{x}) \ge c_\alpha) = \mathsf{P}_i\left(\overline{X} \ge t_\alpha\right).$$

Тогда:

$$\phi(c_{\alpha}) = \mathsf{P}_{0}\left(\overline{X} \ge t_{\alpha}\right) = \mathsf{P}_{0}\left(\frac{\sqrt{n}}{\sigma}\left(\overline{X} - \theta_{0}\right) \ge \frac{(t_{\alpha} - \theta_{0})\sqrt{n}}{\sigma}\right) = \Phi\left(-\frac{(t - \theta_{0})\sqrt{n}}{\sigma}\right),$$

где Φ - функия стандартного нормального распределения.

Так как $\Phi(c)$ — непрерывная функция, то всегда найдем такое t_{α} . Тогда,

$$\mathsf{P}_1\left(\overline{X} \geq t_\alpha\right) = \mathsf{P}_1\left(\frac{\sqrt{n}}{\sigma}(\overline{X} - \theta_1) \geq \frac{\sqrt{n}(t_\alpha - \theta_1)}{\sigma}\right) = \Phi\left(-\frac{\sqrt{n}(t_\alpha - \theta_1)}{\sigma}\right).$$

Точное вычисление параметров критерия возможен в том случае, когда распределение статистики l(X) (или эквивалентной ей как в примере выше) известно как при гипотезе H_0 , так и при альтернативе H_1 . Это не всегда возможно. В случае большого объема выборки $(n \to \infty)$ возможно рассмотреть асимптотический подход, основанный на центральной предельной теореме. При логарифмировании функции отношения правдоподобия мы получаем сумму одинаково распределенных независимых величин вида

$$Z_i = \ln \frac{f_1(X_i)}{f_0(X_i)}, i \in \overline{1,n}.$$

Из $l(\overline{X}) \geq c_{\alpha}$ следует, что $S_n \geq \ln c_{\alpha}$, где $S_n = \sum_{i=1}^n Z_i$. Воспользуемся центральной предельной теоремой (если это возможно) и получим предельное распределение статистики $\ln l(\overline{X})$:

Если
$$S_n \sim N\left(\mu_0, \sigma_0^2\right)$$
, то принимаем гипотезу H_0 ;
Если $S_n \sim N\left(\mu_1, \sigma_1^2\right)$, то принимаем гипотезу H_1 ,

где

$$\mu_i = \mathsf{M}_{\theta_i} Z_1, \, \sigma_i^2 = \mathsf{D}_{\theta_i} Z_1, \, i = \overline{1,2}.$$

В этом случае ошибку первого рода можно вычислить по формуле:

$$\alpha = \mathsf{P}_0\left(S_n \geqslant \ln c_\alpha\right) = \mathsf{P}_0\left(\frac{S_n - n\mu_0}{\sqrt{n}\sigma_0} \geqslant \frac{\ln c_\alpha - n\mu_0}{\sqrt{n}\sigma_0}\right),$$

а ошибку второго рода:

$$\beta = \mathsf{P}_1\left(S_n < \ln c_\alpha\right) = \mathsf{P}_1\left(\frac{S_n - n\mu_1}{\sqrt{n}\sigma_1} < \frac{\ln c_\alpha - n\mu_1}{\sqrt{n}\sigma_1}\right).$$

Рассмотрим вопрос применения Критерия Неймана-Пирсона в случае дискретных распределений.

Можно провести аналогичные рассуждения, как и в случае с непрерывными распределениями. Пусть как и ранее $f_j(z_k) > 0$, для всех z_k — возможных значений случайной величины ξ , и для $j = \overline{0,1}$. То есть для рассматриваемых гипотез вероятность любого из возможных значений случайной величины ξ , распределение которой мы хотим установить, ненулевая.

Общий принцип остаётся прежним: рассматриваем статистику отношения правдоподобия $l(\overline{x})$. Все $x \in \mathfrak{X}$ «упорядочиваем» в соответствии с величиной

значения функции отношения правдоподобия:

$$l(\overline{x}) = \frac{L(\overline{x}, \theta_1)}{L(\overline{x}, \theta_0)}.$$

В критическое множество \mathfrak{X}_1 включим максимальное число этих x, так, чтобы выполнялось неравенство:

$$\sum_{\overline{x} \in \mathfrak{X}_1} L(\overline{x}; \theta_0) \leqslant \alpha.$$

Однако в отличие от непрерывного случая здесь не всегда можно получить равенство величине α в силу дискретности распределения.

Пусть ... $l_k < l_{k+1} < \ldots$ — возможные значения статистики $l(\overline{x})$. Могут возникнуть две ситуации:

1. Существует $l_k \in \mathbb{N}$ такой, что верно равенство:

$$\sum_{\overline{x}:l(\overline{x})\geqslant l_k} L(\overline{x};\theta_0) = \alpha.$$

В этом случае критерий не отличается от непрерывного случая и применяется аналогично, то есть: H_0 отвергается тогда и только тогда, когда $l(\overline{x}) \in \mathfrak{X}_{1\alpha}^*, \mathfrak{X}_{1\alpha}^* = \{\overline{x} : l(\overline{x} \geqslant\}$ — наиболее мощный критерий (н.м.к.) при альтернативе H_1 среди всех критериев уровня значимости α .

2. При заданном уровне α можно определить такое $k=k(\alpha),$ что

$$\sum_{\overline{x}:l(\overline{x})\geqslant l_{k+1}}L(\overline{x};\theta_0)<\alpha<\sum_{\overline{x}:l(\overline{x})\geqslant l_k}L(\overline{x};\theta_0).$$

Иначе говоря, обозначив

$$\sum_{\overline{x}:l(\overline{x})\geqslant l_{k+1}} L(x;\theta_j) = \alpha_j, \ j = \overline{0,1},$$

$$p_j = \mathsf{P}(l(\overline{x}) = l_k) = \sum_{\overline{x}: \ l(\overline{x}) = l_k} L(\overline{x}; \theta_j), \ j = \overline{0,1}$$

получаем:

$$\alpha_0 < \alpha < \alpha_0 + p_0$$
.

Рассмотрим более подробно второй случай. Как в этом случае построить критерий с уровнем значимости α? Можно предложить два решения:

- Перейти от α_0 к $\alpha_0 + p_0$ и получить 1 случай, для которого все доказано. Но в этом случае точность уровня значимости может быть низкой.
- Рассмотрим случайную величину

$$\xi \sim \text{Bin}\left(1, \frac{\alpha - \alpha_0}{p_0}\right).$$

Предложим следующее правило принятия решения:

$$arphi^*(\overline{x}) = egin{cases} 1, & ext{если } l(\overline{x}) > l_k \ \xi, & ext{если } l(\overline{x}) = l_k \ 0, & ext{если } l(\overline{x}) < l_k \end{cases}$$

То есть если $l(\overline{x}) > l_k$ — отвергаем гипотезу H_0 , $l(\overline{x}) < l_k$ — принимаем гипотезу H_0 . Если же $l(\overline{x}) = l_k$ бросаем монетку с вероятностью 1 (орел) равной $\frac{\alpha - \alpha_0}{p_0}$. Если выпала единица, то отвергаем H_0 , иначе — принимаем. Такое правило называют рандомизированным критерием.

Покажем, что рандомизированный критерий является критерием с уровнем значимости α . Действительно,

$$P(H_1|H_0) = P_0(\varphi^*(X) = 1) =$$

$$= P_0(l(X) > l_k) + \frac{\alpha - \alpha_0}{p_0} P_0(l(X) = l_k) = \alpha_0 + \frac{\alpha - \alpha_0}{p_0} p_0 = \alpha.$$

Его мощность вычисляется аналогично:

$$W(\theta_1; \varphi^*) = P_1(l(X) > l_k) + \frac{\alpha - \alpha_0}{p_0} P_1(l(X) = l_k) = \alpha_1 + \frac{\alpha - \alpha_0}{p_0} p_1.$$

Покажем, что φ^* - наиболее мощный критерий с уровнем значимости α . Рассмотрим другой (произвольный) критерий φ с уровнем значимости α :

$$\varphi \colon \mathsf{P}_0\left(\varphi\left(X\right) = 1\right) = \alpha.$$

Представим выборочное пространство в следующем виде:

$$\mathfrak{X} = \mathfrak{X}^+ \bigcup \mathfrak{X}^0 \bigcup \mathfrak{X}^-,$$

где

•
$$\mathfrak{X}^+ = \{\overline{x} : \varphi^*(\overline{x}) - \varphi(\overline{x}) > 0\},\$$

•
$$\mathfrak{X}^- = \{\overline{x} : \varphi^*(\overline{x}) - \varphi(\overline{x}) < 0\},\$$

•
$$\mathfrak{X}^0 = \{\overline{x} : \varphi^*(\overline{x}) = \varphi(\overline{x}) = 0\}.$$

Если $\overline{x} \in \mathfrak{X}^+$, то $\varphi^*(x) > 0$. Тогда

$$\frac{L(\overline{x};\theta_1)}{L(\overline{x};\theta_0)} \geqslant l_k$$

и $L(\overline{x};\theta_1)\geqslant l_kL(\overline{x};\theta_0)$. Аналогично, если $\overline{x}\in\mathfrak{X}^-$, то $\varphi_1^*(\overline{x})<1$ и $L(\overline{x};\theta_1)\leqslant l_kL(\overline{x};\theta_0)$.

Таким образом:

$$\sum_{\overline{x}} (\varphi^*(\overline{x}) - \varphi(\overline{x})) (L(\overline{x}; \theta_1) - l_k L(x; \theta_0)) = \sum_{\overline{x} \in \mathfrak{X}^+} + \sum_{\overline{x} \in \mathfrak{X}^-} \geqslant 0.$$

Отсюда для разности мощностей получаем:

$$\begin{split} W(\theta_1;\varphi^*) - W(\theta_1;\varphi) &= \mathsf{P}_1(\varphi^*(X) = 1) - \mathsf{P}_1(\varphi(X) = 1) = \\ &= \sum_{\overline{x}} (\varphi^*(x) - \varphi(\overline{x})) L(\overline{x};\theta_1) \geqslant \\ \geqslant l_k \sum_{\overline{x}} (\varphi^*(x) - \varphi(x)) L(\overline{x};\theta_0) = l_k (\mathsf{P}_0(\varphi^*(X) = 1) - \mathsf{P}_0(\varphi(X) = 1)) \geqslant 0. \end{split}$$

То есть, $W(\theta_1; \varphi^*) \geqslant W(\theta_1; \varphi)$. Из этого следует, что φ^* — наиболее мощный критерий.

Пример 9.24. Пусть о неизвестной вероятности успеха в бернулиевской модели $Bin(1,\theta)$ имеются две простые гипотезы:

- H_0 : $\theta = \theta_0$;
- H_1 : $\theta = \theta_1$, $\theta_1 \ge \theta_0$.

Такие критерии зачастую называют односторонними и обозначают H_1^+ .

Выпишем функцию правдоподобия:

$$L(\overline{x}; \theta_i) = (\theta_i)^r (1 - \theta_i)^{n-r},$$

где $r = r(\overline{x}) = \sum_{i=1}^{n} x_i$ — наблюдавшееся число «успехов».

Рассмотрим функцию отношения правдоподобия:

$$l(\overline{x}) = \left(\frac{\theta_1(1-\theta_0)}{\theta_0(1-\theta_1)}\right)^r \left(\frac{(1-\theta_1)}{(1-\theta_0)}\right)^n.$$

Функция f(x) = x/(1-x) возрастает на интервале (0,1), поэтому, при $\theta_1 > \theta_0$ $f(\theta_1)/f(\theta_0) > 1$ и неравенство $l(\overline{x}) \geq c$ эквивалентно неравенству

$$r(\overline{x}) \ge \frac{\ln c - n\rho_1}{\rho},$$

где

$$\rho_1 = \ln\left(\frac{1-\theta_1}{1-\theta_0}\right), \ \rho = \ln\left(\frac{\theta_0(1-\theta_1)}{\theta_1(1-\theta_0)}\right).$$

Следовательно критическая область критерия Неймана-Пирсона выражается через статистику $r(\overline{x})$ и имеет вид:

$$\mathfrak{X}_{1\alpha}^* = \{ \overline{x} \colon r(\overline{x}) \ge r_{\alpha} \} .$$

Так как статистика $r(\overline{x})$ при верности гипотезы H_j имеет распределение $Bin(n,\theta_j)$, то легко вычисляем ошибки первого и второго рода. При этом ошибка первого рода не зависит от альтернативы. От нее зависит только ошибка второго рода.

Заметим, что в случае $n \to \infty$ можем воспользоваться ЦПТ и рассчитать ошибки критерия пользуясь нормальным приближением.

10 Сложные гипотезы

Случай, когда основная и альтернативная гипотезы являются простыми — достаточно редки. Рассмотрим пример, в котором основная гипотеза $H_0: F_{\theta}, \theta \in \Theta$ — простая гипотеза (один параметр), а гипотеза $H_1: F_{\theta_2}, \theta_2 \in \Theta \backslash \theta$ (альтернативная) — сложная гипотеза.

Определение 10.1. Семейство распределений $\{F_{\theta}, \theta \in \Theta\}$ называется семейством с монотонным отношением правдоподобия, если существует такая достаточная статистика $T(\overline{x})$ такая, что:

$$l(\overline{x}) = \frac{f_{\theta_1}(\overline{x})}{f_{\theta_0}(\overline{x})}$$

является монотонной функцией от $T(\overline{x})$

Пользуясь критерием факторизации получим, что если $T(\overline{x})$ — достаточная статистика, то

$$L(\overline{x};\theta) = g(T(\overline{x});\theta) \cdot h(\overline{x})$$

И

$$l(\overline{x}) = \frac{g(T(\overline{x}), \theta_1)h(\overline{x})}{g(T(\overline{x}), \theta_0)h(\overline{x})}.$$

Функция $l(\overline{x})$ должна монотонно возрастать (убывать) по $T(\overline{x})$.

Теорема 10.2. Пусть семейство распределений $\{F_{\theta}, \theta \in \Theta\}$ имеет монотонное отношение правдоподобия. Тогда в классе всех критериев проверки простой гипотезы $H_0 = \theta$ против сложной альтернативы $H_1 = \theta_1 > \theta$ с уровнем значимости α существует равномерно наиболее мощный критерий, задаваемый функцией:

$$\varphi^*(x) = \begin{cases} 1 & ecnu \ T(\overline{x}) > c \\ \xi & ecnu \ T(\overline{x}) = c \\ 0 & ecnu \ T(\overline{x}) < c \end{cases}$$

где с и р определяются по формуле:

$$P_0(T(\overline{x}) > c) + pP_0(T(\overline{x} \geqslant c) = \alpha.$$

Доказательство. Пусть отношение

$$\frac{g(T(\overline{x});\theta_1)}{g(T(\overline{x});\theta_0)}$$

возрастает по T. Построим критерий Неймана-Пирсона в задаче (H_0, H_1) . В данном случае:

$$l(\overline{x}) \geqslant c \Leftrightarrow T(\overline{x}) \geqslant c_{\alpha}^{+}$$

причем граница c_{α}^{+} определяется лишь распределением

$$F(x; \theta_0) = \mathsf{P}_{\theta_0} \{ T(\overline{x}) \geqslant c_{\alpha}^+ \} = \alpha.$$

Таким образом, критерий $\mathfrak{X}_{1\alpha}^{*+}=\{T(\overline{x})\geqslant c_{\alpha}^{+}\}$ не зависит от конкретной альтернативы $\theta_{1}>\theta_{0}$, следовательно, он есть р.н.м.к. для задачи $(\theta_{0};\theta_{1})$.

Если же

$$\frac{g(T(\overline{x});\theta_1)}{g(T(\overline{x});\theta_0)}$$

убывает по T, то неравенство для T заменяется на противоположное. Аналогично рассматривается и случай для левосторонней H_1^- .

Пример 10.3. Рассмотрим экспоненциальное семейство:

$$f(x;\theta) = \exp\{A(\theta)B(x) + C(\theta) + D(x)\}.$$

Достаточной статистикой в этом случае является: $T(\overline{x}) = \sum_{i=1}^{n} B(X_i)$. Действительно:

$$l(\overline{x}) = \exp\{(A(\theta) - A(\theta_0)) \sum B(\overline{x}) + n(c(\theta) - c(\theta_0))\}.$$

Если A — монотонная функция, то и $l(\overline{x})$ — монотонная функция. В этом случае существует Р.Н.М.К.