Econometrics 710 Midterm Exam March 21, 2002

1. The model is iid data, i = 1, ..., n,

$$y_i = x_i'\beta + e_i$$
$$E(e_i \mid x_i) = 0$$

Does the presence of heteroskedasticity invalidate the application of the non-parametric bootstrap? Explain briefly.

2. The model is

$$\begin{array}{rcl} Y & = & Z\beta + e \\ Z & = & X\Gamma \\ E\left(e \mid X\right) & = & 0 \end{array}$$

where X is $n \times k$, Γ is $k \times m$, k > m, β is $m \times 1$. Suppose that Γ is unknown, but it is estimated by $\hat{\Gamma}$ which satisfies

$$\hat{\Gamma} \to_p \Gamma$$
.

Assume that Γ has full rank m and that $\beta=0$ (Hint: both are important). Set $\hat{Z}=X\hat{\Gamma}$, and let $\hat{\beta}=\hat{Z}'\hat{Z}^{-1}\hat{Z}'Y$. Derive the asymptotic distribution of $\sqrt{n}\hat{\beta}$.

3. The model is iid data, i = 1, ..., n,

$$y_i = x_i'\beta + e_i$$

$$E(e_i \mid x_i) = 0$$

Let $\hat{\beta}$ be the OLS estimator of β , and let \hat{V}_n be the White covariance matrix estimator of $V_n = Var(\hat{\beta})$. Suppose that in addition to the above model assumptions, it is true that

$$E^{\dagger}e_i^2 \mid x_i^{\ \ } = \sigma^2.$$

Under these conditions, find $E \ \hat{V}_n \mid X$.

Hint: First find $E^{i}\hat{e}_{i}^{2}\mid X^{^{\complement}}$, where \hat{e}_{i} is the OLS residual. In particular, show that

$$E^{\dot{i}}\hat{e}_i^2 \mid X^{\mathfrak{C}} = \sigma \lambda_i$$

1

where λ_i is specific function of x_i and $(X'X)^{-1}$.