

MiniRHex: An Open-Source Walking Hexapod

Carnegie Mellon University
Robomechanics Lab

Nikolai A Flowers, Scott Phillips, Monica Barragan and Aaron M Johnson Carnegie Mellon University, Department of Mechanical Engineering https://github.com/robomechanics/MiniRHex

Summary

MiniRHex is a miniature scale hexapod heavily based on the design of RHex. Notable features include a laser-cut frame and 3D printed legs for cheaper construction and an intuitive software package that allows for highlycustomizable control over the robot's behavior.

Motivation

MiniRHex was designed to be an educational and outreach tool to allow students to experiment with a fully functional walking robot at a much lower cost. The low price tag lets research groups maintain a fleet of machines, allowing each student more hands-on interaction with the hardware.

Possible Educational Principles:

- Gait design and optimization
- Leg design and control
- Mobile robot sensor incorporation

Leg Control

- Carefully calculated leg spring constant to deliver optimal flex on ground contact
- Independent control (position and speed) over each leg
- Clock-driven desired position for each leg
- Intelligent deadzone avoidance
- Same parameterization as RHex (period, duty factor, sweep angle and down angle)

Alternating Tripod Gait Parameter Chart	MiniRHex	
Period	720 ms	
Duty Factor	0.42	
Sweep Angle	40°	
Down Angle	20°	

Pronk Gait Parameter Chart	MiniRHex	
Period	400 ms	
Duty Factor	0.7	
Sweep Angle	40°	
Down Angle	-50°, - 58°, -66°	

Capabilities

- Behaviors/Gaits:
 - Alternating Tripod (Running)
 - Pronking
 - Jumping
 - Simple adoption of user-defined gaits
- Remote control (gait switching and behavior activation)
- Automatic dead-zone avoidance (legs continue to track desired position without servo feedback)
- Easily modifiable software package for developing new gaits and behaviors

Technical Specifications

Specification Chart	MiniRHex	X-RHex (2010)
Mass	.425 kg	8.6 kg
Carrying Capacity	1.8-3 kg	5-10 kg
Length	0.186 m	0.53 m
Width	0.100 m	0.39 m
Leg Diameter	0.058 m	0.175 m
Experimental Leg Spring Constant	1.98 N/mm	1.4-1.7 N/mm
Leg actuation	Dynamixel XL320 Servo	Maxon Brushless Motor
On-Board Processing	OpenCM9.04	PC104, Intel Atom Processor
Single Unit Price	< \$250	~\$20,000

Future Work

Although MiniRHex was developed as an educational tool, we have found multiple research avenues that the platform could assist in:

- Development of new gaits and behaviors
- Inertial data collection via visual sensors and IMU
- Testing of autonomous gait-tuning algorithms
- Comparison of control strategy and gaits with full-scale RHex