№ 10 «Дослідження радіоактивного випромінювання»

Дата виконання:	Розрахунковий лист
Допуск	
Відмітка про виконання:	до лабораторної роботи
Відмітка про оформлення:	<u>№10</u> (v.1.01)
π:>	``

«Дослідження радіоактивного випромінювання»

група <u>КБ-01</u>

студент Борщ Дмитро

Мета роботи

- 1 Експериментально переконатися у справедливості закону Бугера.
- 2 Визначити радіоактивний фон навколишнього середовища.
- 3 Визначити коефіцієнт поглинання заданого матеріалу.

Виконання роботи

Визначте середній природний фон I $_{\Phi}$ іонізуючого випромінювання в лабораторії, тобто середнє число іонізуючих частинок за хвилину, що попадають до лічильника Гейгера-Мюллера, при умові відсутності випромінювання від радіоактивного препарату. Проводимо 5 вимірів числа іонізуючих частинок, що попадають до лічильника, за одну хвилину. Отримані значення запишемо до таблиці 1.

Знаходимо середнє значення та похибку

$$=\left(\sum_{i=1}^{N}I_{\hat{o}i}\right)/N=25,2 \text{ imπ/xB}$$

$$\Delta I_{\phi}=3\sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N}(I_{\phi i}-\langle I_{\phi}\rangle)^{2}}=7,79423 \text{ imπ/xB}$$

Визначимо початкову інтенсивність випромінювання радіоактивного джерела з природнім фоном $I_{0\phi}$. Проведемо 5 вимірів Отримані значення запишіть до таблиці 1.

Знаходимо середнє значення та похибку

$$< I_{0\phi} > = \left(\sum_{i=1}^{N} I_{0\phi i}\right) / N = 683,6 \text{ im}\Pi/\text{xB}$$

$$\triangle I_{0\phi} = 3\sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N} (I_{0\phi i} - < I_{0\phi} >)^{2}} = 24,12343 \text{ im}\Pi/\text{xB}$$

№ 10 «Дослідження радіоактивного випромінювання»

Визначимо інтенсивність випромінювання радіоактивного джерела з природнім фоном $I_{1\phi}$, якщо на шляху іонізуючих частинок розташована одна пластина відомої товщини. Отримані значення запишемо до таблиці 1. До таблиці 1 запишемо товщину пластинки.

Знаходимо середнє значення та похибку

$$< I_{1\phi} > = \left(\sum_{i=1}^{N} I_{1\phi i}\right) / N = 206 \text{ imп/xB}$$

$$\Delta I_{1\phi} = 3\sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N} (I_{1\phi i} - < I_{1\phi} >)^2} = 13,00769 \text{ imп/xB}$$

Таблиця 1

Умова досліду	Номер досліду	Інтенсивність, імп/хв	Товщина пластинок, мм
	1	16	
Без препарату,	2	29	
без поглинача,	3	31	0
(Іф)	4	24	
(1)	5	26	
	Середнє	25,2	
	1	670	
3 препаратом.	2	666	
3 препаратом, без поглинача,	3	677	0
(ІОф)	4	698	U
(10Ψ)	5	707	
	Середнє	683,6	
	1	194	
3 препаратом,	2	198	
з однією	3	216	0,14
пластинкою,	4	214	0,14
(І1ф)	5	208	
	Середнє	206	
	1	147	
3 препаратом,	2	144	
з двома	3	155	
пластинками,	4	133	0,28
(І2ф)	5	149	
	Середнє	145,6	

№ 10 «Дослідження радіоактивного випромінювання»

Визначимо інтенсивність випромінювання радіоактивного джерела з природнім фоном $I_{2\phi}$, якщо на шляху іонізуючих частинок розташована дві пластину відомої товщини. Отримані значення запишемо до таблиці 1. До таблиці 1 запишемо товщину пластинки.

Знаходимо середнє значення та похибку

$$=\left(\sum_{i=1}^{N}I_{2\phi i}\right)/N=145,6$$
 імп/хв
$$\Delta I_{2\phi}=3\sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N}(I_{2\phi i}-)^{2}}=10,88301$$
 імп/хв

Обчислюємо відповідні інтенсивності без природного фону, а також їх похибки $I_0 = I_{0\phi} - I_{\phi} = 657,8$ імп/хв

$$I_1 = I_{1\phi} - I_{\phi} = 180,8 \text{ im} \pi/xB$$

$$I_2 = I_{2\phi} - I_{\phi} = 120,4$$
 імп/хв

$$\Delta I_0 = \sqrt{(\Delta I_{0\phi})^2 + (\Delta I_{\phi})^2} = 25,35133 \text{ im} \pi/\text{xB}$$

$$\Delta I_1 = \sqrt{(\Delta I_{1\phi})^2 + (\Delta I_{\phi})^2} = 15,1641 \text{ im} \pi/\text{xB}$$

$$\Delta I_2 = \sqrt{(\Delta I_{2\phi})^2 + (\Delta I_{\phi})^2} = 13,38618 \text{ im} \pi/\text{xB}$$

Обчислимо лінійний коефіцієнт поглинання радіоактивного випромінювання досліджуваної речовини та його похибку у випадку, коли проводили дослідження з однією пластиною

$$\mu_{1} = \frac{1}{d_{1}} \ln \frac{I_{0}}{I_{1}} = 9225,06776 \text{ 1/M}$$

$$\Delta \mu_{1} = \sqrt{\left(\frac{\Delta d_{1}}{d_{1}^{2}} \ln \frac{I_{0}}{I_{1}}\right)^{2} + \frac{1}{d_{1}^{2}} \left(\left(\frac{\Delta I_{0}}{I_{0}}\right)^{2} + \left(\frac{\Delta I_{1}}{I_{1}}\right)^{2}\right)} = 932,137 \text{ 1/M}$$

№ 10 «Дослідження радіоактивного випромінювання»

Прийміть, що Δd1=0.01 мм.

Обчислимо лінійний коефіцієнт поглинання радіоактивного випромінювання досліджуваної речовини та його похибку у випадку, коли проводили дослідження з двома пластинами

$$\mu_2 = \frac{1}{d_2} \ln \frac{I_0}{I_2} = 6064,57643 \text{ 1/m}$$

$$\Delta\mu_{2} = \sqrt{\left(\frac{\Delta d_{2}}{d_{2}^{2}} \ln \frac{I_{0}}{I_{2}}\right)^{2} + \frac{1}{d_{2}^{2}} \left(\left(\frac{\Delta I_{0}}{I_{0}}\right)^{2} + \left(\frac{\Delta I_{2}}{I_{2}}\right)^{2}\right)} = 472,785 \text{ } 1/\text{M}$$

висновки

В результаті проведення лабораторної роботи знайшли лінійний коефіцієнт поглинання радіоактивного випромінювання речовиною пластин. Для двох випадків отримали

$$\mu_1$$
=< μ_1 >± $\Delta\mu_1$ = 9225,06776 ± 932,137 1/м

$$\mu_2 = <\mu_2> \pm \Delta \mu_2 = 6064,57643 \pm 472,785 \text{ 1/m}$$

Бачимо, що ці результати з точністю до п	охиб	бки ек	сперименту	
не співпадають між собою		Це	означає,	співвідношення,
(співпадають або не співпадають між собою)				
що описує зменшення інтенсивності іоніз	зуюч	ого ви	промінюван	ня, €
вірним .				
(вірним або не вірним)				

	эчення					три лаборато	оної установ	вки –
Номер дослі ду	Без препарату, без поглинача (Іф)	3 препаратом, без поглинача (ІОф)	3 препаратом, з однією пластинкою (ПФ)	3 препаратом, з двома пластинками (І2ф)		1, мм <mark>0,01</mark> 2, мм <mark>0,01</mark>		
1	16	670	194	147				
2	29	666	198	144				
3	31	677	216	155				
4	24	698	214	133				
5	26	707	208	149				
Товщина пластинок, мм	0	0	0,14	0,28				
оевірка розр Гередні знач	•			Похибки зна	чень			
	•			Похибки зна	чень			
Гередні знач	•	Вірн		Похибки зна Іф, імп/хв	чень	Вірно		
Гередні знач [ф, імп/хв	ення	Вірно Вірно				Вірно		
Гереднізнач [ф,імп/хв [Оф,імп/хв	ення 25,2		9	Іф, імп/хв	7,79423			
Середні знач [ф, імп/хв [Оф, імп/хв [1ф, імп/хв	25,2 683,6	Вірн	0	Іф, імп/хв ІОф, імп/хв	7,79423 24,12343	Вірно		
Середні знач [ф, імп/хв [Оф, імп/хв [Оф, імп/хв [Оф, імп/хв	25,2 683,6 206	Вірно Вірно	0	Іф, імп/хв ІОф, імп/хв ІІф, імп/хв	7,79423 24,12343 13,00769	Вірно Вірно Вірно		
Середні знач Іф, імп/хв ІОф, імп/хв ІОф, імп/хв ІОф, імп/хв ІО, імп/хв	25,2 683,6 206 145,6	Вірно Вірно Вірно	0	Іф, імп/хв ІОф, імп/хв ІІф, імп/хв І2ф, імп/хв	7,79423 24,12343 13,00769 10,88301	Вірно Вірно Вірно Вірно		
Середні знач [ф, імп/хв [Оф, імп/хв [1ф, імп/хв [2ф, імп/хв [О, імп/хв [1, імп/хв	25,2 683,6 206 145,6 657,8	Вірно Вірно Вірно Вірно		Іф, і мп/хв ІОф, і мп/хв ІІф, і мп/хв І2ф, і мп/хв І0, і мп/хв	7,79423 24,12343 13,00769 10,88301 25,35133	Вірно Вірно Вірно		
Середні знач (ф, імп/хв (Оф, імп/хв (Оф, імп/хв (Оф, імп/хв (О, імп/хв (О, імп/хв (О, імп/хв (О, імп/хв	25,2 683,6 206 145,6 657,8 180,8	Biphe Biphe Biphe Biphe Biphe		Іф, імп/хв 10ф, імп/хв 11ф, імп/хв 12ф, імп/хв 10, імп/хв	7,79423 24,12343 13,00769 10,88301 25,35133 15,1641	Вірно Вірно Вірно Вірно Вірно		
	25,2 683,6 206 145,6 657,8 180,8	Bipho Bipho Bipho Bipho Bipho Bipho		Іф, імп/хв І0ф, імп/хв Пф, імп/хв І2ф, імп/хв І0, імп/хв П, імп/хв І2, імп/хв	7,79423 24,12343 13,00769 10,88301 25,35133 15,1641 13,38618	Вірно Вірно Вірно Вірно Вірно Вірно		