Guidance for tutors

Outcome	AG11	Student can consistently:	Draw a circle given its equation and find the equation of a circle.	
How the topic is examined	 Examined through test paper questions. Questions are equally likely to appear on calculator and non-calculator papers. Although this topic was always on GCSE, it has renewed focus on the new GCSE. Because of this it is difficult to predict exactly what questions they could ask. The GCSE specifications require students to recognise and draw graphs of circles with centre (0, 0). Students are also expected to find the intersection of a circle and a straight line and for the highest attainers work out the equation of a tangent to a circle at a given point. It is likely that students will be given an iterative equation to use with a particular starting value. Students will then have to go through several iterations to get the answer. 			
Prior knowledge	 Students should be confident with: Simplifying expressions (AEx2) Substituting into expressions (AEx5) Solving basic equations (AEq1) Simultaneous equations − one linear and one quadratic (AEq10) Gradient of a straight line (AG4) Finding the gradient of a perpendicular line (AG7) In addition questions involving this topic can have links to: Circle theorems 			
Suggested tuition approaches	 1) Drawing a circle and identifying the equation of a circle Students need to be aware that a circle with centre (0, 0) and radius r has an equation ² + ² = ². They should be aware that it could be written in two ways (e.g. ² + ² = 10² or ² + ² = 100 – both equations are for a circle with centre (0, 0) and radius 10 units. Students should be able to draw these graphs using a pair of compasses. 			

Graphs & Sequences

Guidance for tutors

In addition if a circle has been given, students should be above forms.	able to write down the equation o the circle in either of the
2) Finding the intersection of a circle and straight line.Students will be given a circle and equation of a straight the exam.	line. There are two methods that could be used to solve this in
Graphical method	Algebraic method
This method should be used only if students are given part of the graph and told to use this method.	This method is likely to be the one students should use.
	Find the points where the two lines intersect
Use graphs to find where the two lines below intersect	
	= 5 - 2
$= 5 - 2$ $^{2} + ^{2} = 25$	² + ² = 25
The steps involved are - Draw the circle (if not drawn) - Draw the straight line (if not drawn) (AG1)	This is the same method described in (AEq10). You will need to substitute the linear equation into the equation of the circle.
- Find the and co-ordinates of the points where the lines intersect	 □ Rearrange the linear equation so that either x = or y = (if necessary) □ Substitute this rearranged equation into the equation with the quadratic term.
	Expand, Simplify and rearrange to you have an equation equal to 0
	 Solve this equation (there are usually two values to find)
	☐ Find the corresponding value(s) of the other unknown using the linear equation.

Graphs & Sequences

Guidance for tutors

You can see from the graph that the two points are (0, 5) and (4, -3)

3) Find the equation of the tangent at a particular point

- ☐ This is a topic for the highest attainers as it pulls together so many different elements of mathematics knowledge.
- □ Students first need to remember that the radius of a circle is perpendicular to the tangent at that point. This is one of the important circle theorems that students need to know. (e.g. find the tangent to the circle ² + ² = 25 at the point (3, 4)
 - □ Students should work out the gradient of the radius (see AG4)

- $\hfill \square$ Now find the gradient of the tangent (see AG7) Gradient of the tangent $=-\ ^4_3$
- Use the gradient of the tangent at the point on
 the circle to find the equation of the line (See last section of AG4)

$$-1 = (-1)$$

 $-3 = -4(-4)$

©2017 The Access Project

Company number: 07473072 | Charity number: 1143011 Registered address: Bastion House, 140 London Wall, London

ECZY 5DN

Guidance for tutors

Common errors and misconceptions

- Students think the radius of the circle $^2 + ^2 = 25$ is 25 units, when it is 5. They need to remember when a circle is given in this form the right hand side is 2 not .
- Students make errors when solving a pair of simultaneous equations. The most common areas where students make mistakes with the algebra are:

Guidance for tutors

	 Forgetting to rearrange the equation so that it equals 0 Expanding expressions like (2 + 1)², remember this needs to be thought of as (2 + 1)(2 + 1) Solving the quadratic equation (See notes in AEx6, 7 and 9) Working with negatives. Sometimes students work out two correct values for one of the letters and then forget to work out the corresponding values for the other letter. When finding the gradient of the tangent they forget that 1 × 2 = -1, instead they sometimes think it equals 1.
Suggested resources	 Questions http://www.cimt.org.uk/projects/mepres/allgcse/add_13.11c.pdf http://www.cimt.org.uk/projects/mepres/allgcse/add_10.12b.pdf Past GCSE Questions https://corbettmaths.files.wordpress.com/2013/02/equation-of-a-circle-pdf1.pdf Video tutorial https://www.youtube.com/watch?v=HjN9TTRrQiA