

课程编号: MTH17003 北京理工大学 2012-2013 学年第一学期

工科数学分析期末试题(A卷)(信二学习部整理)

班级_		学号						姓名					
(本试卷共6页,十一个大题.解答题必须有解题过程.试卷后面空白纸撕下做草稿纸.试卷不得拆散.)													
题号	_		11]	四	五	六	七	八	九	十	+ -	总分	
得分													
签名													
一. 填空题 (每小题 2 分, 共 10 分)													
1. 设 $f(x) = \begin{cases} a + \sqrt{x+1} & x \ge 0 \\ \arctan \frac{1}{x} & x < 0 \end{cases}$ 是连续函数,则 $a = $													
2. 曲线 $\rho = 2e^{\theta}$ 上 $\theta = 0$ 的点处的切线方程为													
3. 已知 $\cos x - e^{x^2} = ax^2 + bx^4 + o(x^4)$,则 $a = $													
4. 微分方程 $\cos^2 x \frac{dy}{dx} + y = 1$ 的通解为 $y = $													
5. 质量为m的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v成正比,													
则质点下降的速度 $v=v(t)$ 所满足的微分方程为													
二. $(9 分)$ 求极限 $\lim_{x\to 0}(\cos x + x \sin x)^{\frac{1}{x^2}}$.													
		Ź	- , ,										

三. (9 分) 求不定积分 $\int (x \arctan x + \frac{1}{x^2} e^{\frac{1}{x}}) dx$.

四. (9 分) 求 $f(x) = \sqrt[3]{(x^2 - 2x)^2}$ 在区间[-1,3]上的最大值和最小值.

信息与电子二学部学生会学习部

五. (8 分) 判断 $f(x) = \arctan x + \arcsin \frac{2x}{1+x^2}$ $(x \ge 1)$ 是否恒为常数.

六. (9 分) 设 $\arctan \frac{y}{x} = \frac{1}{2} \ln(x^2 + y^2)$ 确定函数 y = y(x), 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

信息与电子二学部学生会学习部

七. (10 分) 求下列反常积分. (1)
$$\int_{-\infty}^{-1} \frac{dx}{x^2(x^2+1)}$$
; (2) $\int_{0}^{1} \frac{dx}{(2-x)\sqrt{1-x}}$.

八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受到的水压力. (要求画出带有坐标系的图形)

常区学

九. (10 分) 求微分方程 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的通解.

信息与电子二学部学生会 学习部

十. (10 分) 设 f(x) 可导,且满足方程 $f(x)(x^2+x)=\int_a^x f(t)dt+a$ ((a>0),求 f(x) 的表达式. 又若曲线 y=f(x) 与直线 x=0, x=1, y=0 所围成的图形绕 x 轴旋转一周所得旋转体的体积为 $\frac{7}{6}\pi$,求 a 的值.

十一. (8 分) 设 f(x) 在[0,2]上可导,且 f(0) = f(2) = 0, $\int_{\frac{1}{2}}^{1} f(x) \sin x dx = 1$,证明在(0,2) 内存在 ξ 使 $f'(\xi) = 1$.