Exploratory Data Analysis on UN Sustainable Development Goals (SDG) Dataset

Name: Sukalp Warhekar PRN: 22070521118

Course: Machine Learning

1. Introduction

The United Nations Sustainable Development Goals (SDG) dataset provides an extensive collection of global indicators tracking progress toward the 17 SDGs. This dataset includes multiple country-level and time-series observations across various developmental dimensions, such as poverty reduction, health, education, environment, and economic growth.

The primary objective of this study is to **perform Exploratory Data Analysis (EDA)** to understand the dataset's structure, identify patterns and trends, and prepare it for **future machine learning applications**, such as predictive modeling and clustering of countries based on SDG performance.

2. Dataset Overview

- Source: United Nations SDG Official Data Portal
- Number of columns/features: 37
- Key Features:
 - o GeoAreaName Country/Region name
 - TimePeriod Year of the observation
 - Indicator SDG indicator description
 - SeriesCode Unique code for each indicator series
 - o OBS VALUE Observed value for the indicator

A preliminary review revealed:

- Missing values in some indicators
- Varying scales across different SDGs
- A combination of categorical (country, indicator) and numerical (value) data

3. ETL (Extract, Transform, Load) & Data Cleaning

The following preprocessing and cleaning steps were performed:

1. Extract: Loaded the dataset into a Jupyter notebook using Pandas.

2. Transform:

- o Removed duplicate rows
- o Dropped irrelevant columns that did not add analytical value
- o Converted TimePeriod to integer for easier time-series analysis
- Renamed columns for readability

3. Handle Missing Values:

- o Checked the proportion of null values
- Dropped rows with excessive missing data
- 4. Load: Created a cleaned CSV ready for EDA and ML tasks.

Observation: After cleaning, the dataset became well-structured, with consistent formats across time periods and indicators.

4. Exploratory Data Analysis (EDA)

We performed EDA to identify trends, distributions, and relationships within the dataset.

4.1 **Univariate Analysis**

• Focused on the OBS VALUE distribution to check the spread of indicator values.

Insight:

The histogram reveals that most SDG indicator values are concentrated within a certain range, with a few extreme outliers. This reflects that some countries or indicators have exceptionally high measurements compared to the global average.

4.2 Multivariate Analysis

We explored relationships between indicators using correlation and compared distributions among countries.

Insight:

The correlation heatmap highlights clusters of related SDG indicators. Strong correlations suggest interdependence between indicators, e.g., economic growth metrics often correlate with energy and infrastructure indicators.

Insight:

The boxplot shows variability in SDG indicator values among leading countries. Countries with larger boxes exhibit greater fluctuations in indicator performance, signaling potential disparities.

4.3 Time Series / Trend Analysis

Insight:

The line plot indicates **overall trends in global SDG performance over time**. Certain years show spikes or drops, possibly influenced by global events such as economic slowdowns or health crises.

4.4 Key Insights

- Indicator values are **unevenly distributed**, with a few extreme outliers.
- **Strong correlations** exist between some SDG indicators, which can guide feature selection for ML.
- **Temporal trends** reveal consistent improvement in some indicators, while others remain stagnant.
- Country-level variability suggests potential for clustering and benchmarking in ML.

5. Planned Machine Learning Algorithms

Based on the EDA findings, the following ML techniques are planned:

1. Regression:

o Predict specific SDG indicator values based on other related indicators.

2. Classification:

o Categorize countries into **High / Medium / Low performance tiers**.

3. Clustering:

o Group countries with **similar SDG profiles** to identify development patterns.

4. Time Series Forecasting:

o Predict future SDG performance trends using historical data.

6. Recommendations for ML Modeling

- **Feature Engineering:** Focus on indicators with strong correlations and consistent time coverage.
- Normalization: Standardize features to handle varying scales across SDG indicators.
- **Handling Missing Data:** Use imputation methods for minor gaps instead of dropping valuable observations.
- **Dimensionality Reduction:** Apply PCA if needed to simplify high-dimensional indicator space.

7. Conclusion

The EDA of the UN SDG dataset provided **meaningful insights into global development trends**. We identified outliers, correlations, and variability across countries and time. This dataset is now **well-prepared for machine learning tasks**, including regression, clustering, and forecasting to aid in sustainable development planning.