P		
P		
P		
E	5.2	base case: 1 = 2°; 124 a distinct sim of yours of 2
		Finduction Hypothesis: n = 2" n >1
		Case 1: K+1 :4 even
		1. (K+1) most be a natural number less ten or equal to K
		2. $\frac{(k+1)}{2} = 2^{x_1} + 2^{x_2} + + 2^{x_y}$ Gor $0 \le x, 2 < x_y$
-		3. K+1 = 2(2*1+2*2++2*7); multiply both sides by 2
-		4. K+L = 2 x1+1 + + 2 xy+1 ; can be represented as a distinct sum of 2 x4
		Case 21: K+1 15 odd
-		1. Knost be ever, thus each power must be atleast 1 so kish by 2
		2. k = 2x1 + + 2xy for 0 × x, × xy
		3. K+1=2"+"+1=2"+1+2"+2"; con be represented
		Bare week
	5.39	12 13 14 5
		12 13 14 5 4,4,4 34,5 6,5,5 5,5,5
-		induction step: p(n) = p(n+4)
-	100	P(n) = 4K+5j
-		P(N+4) = (4K+9j) +4 = (200)
	Test of the	P(n+4)=+(K+1)+5)
		ance he have about that every tour cents you can add
		a four cent stomp, and that there are four have cases, this
		induction proof slows that there is a compration of 4 & 9
5		cent story, that can make of every value 212
5		
1		
1		
A		

	1. 8 n 2 2		
	1. On - 2		
7	$6. (n+2)^{7} < 8n^{7}$ $7. 8n^{7} < 2^{n+2}$		
	5. (n+z) 1 n + n n 6 + n 2 n 4 n 3 n 4 n 4 n 3 + n 5 n 7 + n 6 n 4 n 7		
	1, (112) = M 111/2 + 81/4 + 280 K + 300 K + 612 K + 418 M + 128		
	5 ((n+2) = (n+2) 22 scozn+		
	$2, \beta(n) = n^{7} < 2^{n}$ $2 < 2^{n+2}$ $2 < 3 < n < 2^{n}$ $2 < 3 < n < 2^{n}$		
	38: 1.1 x10" 2 2.7 x10"		
	1. base cases: 37: 9.4 x10 6 1.3 x10"		
	b. Prove very leaply induction		
	dubles, value 19 true		
	8. 8 n × 2 nt'; since the left side only goes up by 8, but the right 2 rde		
	7. (n+1) 2 8 n 7		
	$(0, (n+1)^{7} < n^{7} + (n) n^{6} + (n^{2}) n^{5} + (n^{3}) n^{4} + (n^{4}) n^{3} + (n^{5}) n^{2} + (n^{6}) n + (n^{7})$		
	4. $P(n+1) = (n+1)^{7} < 2^{n+1}$ 5. $(n+1)^{7} = n^{7} + 7n^{6} + 21n^{5} + 35n^{4} + 35n^{3} + 21n^{2} + 7n + 1$		
	3. $P(n) = n^7 \times 2^n$ $4 P(n+1) = (n+1)^7 \times 2^{n+1}$ $35 \times n^3$		
	2. Induction Step: P(n) > P(n+1)		
	94, 931, 877, 133 4 137, 438, 963, 472 ; true		
	1. base case: 37 < 237		
8,1	a. n < 2° using induction n ≥ 37		