Statistical Literacy — MINT

Lecture 9: A second step in inference - Hypothesis testing for means

Rémi Viné

The Graduate Institute | Geneva

November 20th, 2023

Outline

Housekeeping

General understanding

Steps

Validity conditions

State the hypotheses

Calculate the test-statistic

Find the critical value

Compare

Conclude

Be cautious

Types of errors

Other possible issues

Recap' - Confidence intervals \rightarrow Get the right critical value

- Proportions: take critical value from Standard Normal Distribution
- Means:
 - ▶ If population variance known (σ^2)
 - ► Take critical value from the Standard Normal Distribution
 - If population variance unknown
 - ► Take critical value from the Student (T) Distribution

Case (and information)	Sample size	α	Critical value
Proportion $(\hat{p}=0.3)$	28	5%	$z_{0.025} = 1.96$
Means $(ar{x}=12)$	41	1%	$t_{0.005}^{40} = 2.704$
Means $(ar{x}=-34,\ \sigma=3)$	12	0.2%	X
Means ($\bar{x}=-6$, Normal population)	19	0.2%	$t_{0.001}^{18} = 3.611$

Housekeeping

- Problem set 9 is now available
- Second assignment is due by lecture 11. Send it to your Teaching Assistant by lecture 11
 - Follow the guidelines
 - Build 2 confidence intervals
 - Run one hypothesis test
 - Use classical tests for hypotheses for each output (less options leading to different confidence intervals)

What is hypothesis testing?

- A significant leap for statisticshood!
 - ► The term "significant" can be used only after conducting a statistical test
- Hypothesis testing consists in stating a system of hypotheses that are to be tested. One will be rejected and this will lead to a meaningful interpretation
 - For example the statement: "There is a significant difference between men and women incomes" can be tested using hypotheses testing
 - Shrestha & Sakellariou (1996) for Canada
 - Iwasaki & Satogami (2023) for the EU

6 Steps for hypothesis testing

- Validity conditions: Verify you can use inference (if not, stop here)
- 2. State the hypotheses
- Calculate the test-statistic (and/or the corresponding p-value)
- 4. Find the **critical value**, having decided on the **level of significance** (α)
- 5. Compare
 - ► Test-statistic *versus* critical value (in absolute terms)
 - $ightharpoonup P-value\ versus\ level\ of\ significance$
- 6. Conclude

I. Validity conditions

- As long as the sampling distribution can be considered as Normally distributed, then the validity conditions are met
 - Verified if the population distribution is Normal, or in any other cases where n>30

II. State the hypotheses

- State a **null hypothesis**: H_0 ; and a counterpart, the **alternative hypothesis**: H_a , also written H_1 (they cannot overlap)
 - \Rightarrow You reject H_0 , or you fail to reject H_0

One-tail test
$$\begin{cases} H_0: \mu = \mu_0 \\ H \end{cases}$$

$$\begin{cases} H_0: \mu = \\ H_a: \mu \neq \end{cases}$$

Two-tail test

One-tail test
$$\begin{cases} H_0: \mu = \mu_0 \\ H_a: \mu > \mu_0 \end{cases}$$

with μ_0 a constant to compare the population average with

II. Validity & Hypotheses

Example

- Assume a computer manufacturer states that the produced laptops have an battery life of 400 minutes (= μ_0). You buy 100 laptops (= n) and observe that the average battery life in this sample is 397 minutes (= \bar{x}) with a variance in the sample of 121 minutes (= s^2).
- You want to test whether the manufacturer misestimated the average battery life.
 - 1. Validity: n>30, so the sampling distribution is approximately Normal
 - 2. State the hypotheses (two tail test, as this is about misestimation, neither just under- nor just over-estimation):

$$\begin{cases} H_0: \mu = \mu_0 \\ H_a: \mu \neq \mu_0 \end{cases}$$

III. Calculate the test-statistic

- ► The test-statistic is the **standardized** or the **studentized** value of the sample average
 - It tells where the sample is located compared to the tested value (μ_0) on the sampling distribution
 - ▶ $test-statistic=Z=\frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}}$ when standardized (because the population variance is available)
 - $test-statistic=T=\frac{\bar{x}-\mu_0}{\frac{s}{\sqrt{n}}}$ when studentized (because the population variance is **NOT** available)
- For a two tail test, the test-statistic is both the positive value and its mirror negative value (e.g., $\{-2, 2\}$)

III. Or calculate the *p-value*

- ▶ The p-value is the area further from the center of the distribution than the test-statistic
 - Samples in the area covered by the p-value that would be even further from μ_0 than the current sample is
 - (a) One tail test

(b) Two tail test

III. Calculate the test-statistic

Example

- Assume a computer manufacturer states that the produced laptops have an battery life of 400 minutes (= μ_0). You buy 100 laptops (= n) and observe that the average battery life in this sample is 397 minutes (= \bar{x}) with a variance in the sample of 121 minutes (= s^2).
- You want to test, at a level of significance of 1% (= α), whether the manufacturer misestimated the average battery life.
 - 3. Test-statistic: the population variance is not available, so it is the *studentized* value (Student distribution):

$$test - statistic = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{397 - 400}{\frac{11}{10}} = -2.727$$

 \blacktriangleright Since two tail, the test-statistic is -2.727 and 2.727

III. Calculate the test-statistic

Example

III. Find the *p-value*

Example (this usually requires the use of a software, unless the test-statistic is a number that appears on the probability table \rightarrow not asked directly in this class)

- Since the population variance is not available, the Student distribution must be used
 - Find on the Student distribution table the probability corresponding a value of 2.727 (two tail test with $\alpha=0.01$)

IV. Find the critical value

Define first the level of significance

- ► The critical value gives the thresholds beyond which there is the rejection area (blue areas in the plots)
 - ► The critical value is the blue dashed line threshold
- The critical value is derived based on the level of significance α (which does not depend on the sample itself)

IV. Find the critical value

Example

- Find the right critical value
 - ▶ What is the correct table?
 - Since, in this case, the population variance is not available, the correct table is the Student table
 - Find $t_{\alpha/2}^{n-1}=t_{\alpha/2}^{n-1}=t_{0.005}^{99}=2.626$ (and the negative opposite value because it is a two tail test)

V. Compare the test-statistics and the critical value

- ▶ If the test-statistic belongs to the rejection region, then H_0 is rejected
 - lacktriangleq $if \ |test-statistic| > |critical \ value|$, then $reject \ H_0$
 - ightharpoonup if |test-statistic| < |critical value|, then $fail \ to \ reject \ H_0$
- ▶ One can also use the p-value:
 - ▶ $if \ p-value < \alpha$, then $reject \ H_0$
 - if $p-value > \alpha$, then fail to reject H_0
- Make sure to understand why these two comparisions boil down to the same thing

V. Compare the test-statistics and the critical value

Example

- In the example
 - ightharpoonup $|test-statistic| > |critical\ value|$
 - $ightharpoonup p value < \alpha$
- (a) test statistic versus critical value

(b) $p-value\ versus\ \alpha$

VI. Conclude

- ▶ H_0 is either **rejected** or **not rejected**
 - **Beware:** It is not about accepting H_0
- ▶ In the example, |-2.727| > |-2.626| (and 0.00756 < 0.01), thus H_0 is rejected
- ▶ Therefore, we conclude that, at the significance level 1%, we reject H_0 , which implies that we conclude that the manufacturer misestimated the laptops' battery life.
 - Using a one-tail test, would you conclude that the manufacturer overestimated the laptops battery life?

Types of errors

	H_0 is true	H_0 is false
Do not reject H_0	Correct	Type II Error
(negative)	$(P(\cdot) = 1 - \alpha)$	$(P(\cdot) = \beta)$
Reject H_0 (positive)	Type I Error $(P(\cdot) = \alpha)$	Correct $(P(\cdot) = 1 - \beta)$

 $ightharpoonup \alpha$ is the level of significance, β is the power of the test

Types of errors

Illustration of the level of significance (α) and the power of the test (β)

- Assume you want to test whether a population average value (e.g age of first year student) is *lower* than 20 years old (μ_0) .
 - Suppose that the true average (usually not observed) is $\mu=16.5$, and set $\alpha=5\%$

- Here, both distributions (call them X_1 and X_2) have $\sigma = 1$, hence
- $\rightarrow \alpha = P(X_1 < 18.04) = P(Z < -1.96) = 2.5\%$
- $ightarrow \beta = P(X_2 > 18.04) = P(Z > 1.54) = 6.18\%$

Possible issues, be cautious!

- ► There can be issues due to the test itself, leading to type I or type II errors with some given probabilities
- ► There can also be issues because of the context of the test and the data gathering

Other points of caution

- Always bear in mind that the conclusion of your hypothesis might be due to other factors (confounding factors)
 - The clever Hans effect
 - Other actors might be involved in the change
 - ► If interested, see Samhita and Gross (2013)
 - The Hawthorne effect
 - Being observed/sampled changes your behavior
 - ► If interested, see Levitt and List (2011)
 - The placebo effect
 - It's not the drug but the information (the belief around its consumption)
 - If interested in an application in social sciences, see Jiménez-Buedo (2021)

Next session

Next session is on univariate linear regression, basically adding up on everything we have seen so far.