

General information

Designation

Betula alleghaniensis (L)

Typical uses

Furniture; boxes; baskets; crates; woodenware; cooperage; interior finish; doors. As veneer in plywood: flush doors; furniture; paneling; radio & television cabinets; aircraft.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O

Material family Natural

Base material Wood (hardwood)

Renewable content 100 %

Composition detail (polymers and natural materials)

Wood	100	%

Price

* 0.304	- 0.60	8 USD/lb
	* 0.304	* 0.304 - 0.608

Physical properties

Mechanical properties

moonamea proportion				
Young's modulus	* 1.99	-	2.44	10^6 psi
Yield strength (elastic limit)	* 7.35	-	8.98	ksi
Tensile strength	* 13.9	-	17	ksi
Elongation	* 1.88	-	2.3	% strain
Compressive strength	7.35	-	8.99	ksi
Flexural modulus	1.81	-	2.2	10^6 psi
Flexural strength (modulus of rupture)	14.9	-	18.3	ksi
Shear modulus	* 0.146	-	0.18	10^6 psi
Shear strength	1.7	-	2.07	ksi
Bulk modulus	* 0.149	-	0.167	10^6 psi
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.3			
Hardness - Vickers	* 6.54	-	7.99	HV
Hardness - Brinell	* 7.92	-	9.67	ksi
Hardness - Janka	* 1.47e3	-	1.8e3	lbf
Fatigue strength at 10^7 cycles	* 4.48	-	5.48	ksi
Mechanical loss coefficient (tan delta)	* 0.0064	-	0.0078	
Differential shrinkage (radial)	0.18	-	0.24	%
Differential shrinkage (tangential)	0.26	-	0.31	%
Radial shrinkage (green to oven-dry)	6.6	-	8	%
Tangential shrinkage (green to oven-dry)	8.6	-	10.5	%
Volumetric shrinkage (green to oven-dry)	15.1	-	18.5	%
Work to maximum strength	1.56	-	1.91	ft.lbf/in^3

Impact & fracture properties

Fracture toughness	* 5.19	- 6.28	ksi.in^0.5
--------------------	--------	--------	------------

Thermal properties

Birch (betula alleghaniensis) (I)

* 0.08

0.098

Glass temperature	171	-	216	°F
Maximum service temperature	248	-	284	°F
Minimum service temperature	* -99.4	-	-9.4	°F

* 0.173 0.214 BTU.ft/hr.ft^2.°F Thermal conductivity Specific heat capacity 0.396 0.408 BTU/lb.°F ustrain/°F Thermal expansion coefficient * 1.11 6.11

Electrical properties

Dissipation factor (dielectric loss tangent)

Electrical resistivity 3.05e14 -3.73e14 µohm.cm Dielectric constant (relative permittivity) * 6.85 8.37

Dielectric strength (dielectric breakdown) * 10.2 15.2 V/mil

Optical properties

Transparency Opaque

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades? Food contact Yes

Durability

Limited use Water (fresh) Water (salt) Limited use Weak acids Limited use Strong acids Unacceptable Weak alkalis Acceptable Unacceptable Strong alkalis Organic solvents Acceptable Oxidation at 500C Unacceptable UV radiation (sunlight) Good

Flammability Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production 4.99e3 BTU/lb 5.5e3

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7

MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production 0.574 0.633 lb/lb

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe,

0.00257 0.00284 NOx creation lb/lb SOx creation 0.00656 -0.00725 lb/lb * 1.84e4 2.03e4 in^3/lb Water usage

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed) * 538 594 BTU/lb * 0.0938 Coarse machining CO2 (per unit wt removed) 0.104 lb/lb Fine machining energy (per unit wt removed) * 3.54e3 3.91e3 BTU/lb Fine machining CO2 (per unit wt removed) * 0.618 0.683 lb/lb * 6.88e3 Grinding energy (per unit wt removed) 7.6e3 BTU/lb Grinding CO2 (per unit wt removed) * 1.2 1.33 lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	- 69.3	

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse

Reference

Shape