2IT80 Discrete Structures

2023-24 Q2

Lecture 9: Trees (and 2-connected graphs)

Vertex connectivity

Graph operations

Let G = (V, E) be a graph

Edge deletion:

$$G - e = (V, E \setminus \{e\})$$
, where $e \in E$.

Edge insertion:

$$G + e = (V, E \cup \{e\})$$
, where $e \in \binom{V}{2} \setminus E$.

Vertex deletion:

$$G - v = (V \setminus \{v\}, \{e \in E: v \notin e\})$$
, where $v \in V$.

Edge subdivision:

$$G\%e = (V \cup \{z\}, (E \setminus \{\{x, y\}\}) \cup \{\{x, z\}, \{z, y\}\}),$$
 where $e = \{x, y\} \in E$ and $z \notin V$.

k-vertex-connectivity

A graph G is called k-vertex-connected if it has at least k+1 vertices and by deleting any k-1 vertices we obtain a connected graph. Often this is abbreviated to k-connected.

For example a graph is 2-connected if it has at least 3 vertices and deleting any 1 vertex does not create a disconnected graph.

Example:

3-connected

Example

For which k is the graph below k-connected.

- 4) The complete graph K_5
- 5) The complete bipartite graph $K_{3,5}$

Trees

Definition and Characterizations

A tree is...

What could a precise definition look like?

Tree

A tree is a connected graph that does not contain a cycle.

Leaf

A vertex of degree 1.

- i. The graph *G* is a tree.
- ii. (unique paths)
 For any two distinct vertices $x, y \in V$ there is exactly one path from x to y.
- iii. (minimal connected graph)

 The graph G is connected, and for any edge $e \in E$ the graph G e obtained by removing e is not connected.
- iv. (maximal acyclic graph) The graph G does not contain a cycle, and for any edge $e \in \binom{V}{2} \setminus E$ the graph G + e obtained by adding e has a cycle.
- v. (Euler's formula) G is connected and |V| = |E| + 1.

- i. The graph is a tree.
- ii. (unique paths) For any two distinct vertices $x, y \in V$ there is exactly one path from x to y.
- iii. (minimal connected graph)
 The graph is connected, and for any edge e ∈ E the graph e obtained by removing e is not connected.
- iv. (maximal acyclic graph)

 The graph does not contain a cycle, and for any edge $e \in \binom{V}{2} \setminus E$ the graph $e \in \binom{V}{2} \setminus E$ the graph e
- v. (Euler's formula) is connected and |V| = |E| + 1.

- i. The graph is a tree.
- ii. (unique paths) For any two distinct vertices $x, y \in V$ there is exactly one path from x to y.

- i. The graph is a tree.
- iii. (minimal connected graph)

 The graph G is connected, and for any edge $e \in E$ the graph G e obtained by removing e is not connected.

- i. The graph is a tree.
- iv. (maximal acyclic graph) The graph does not contain a cycle, and for any edge $e \in \binom{V}{2} \setminus E$ the graph $e \in$

- i. The graph is a tree.
- v. (Euler's formula) is connected and |V| = |E| + 1.

- i. The graph is a tree.
- ii. (unique paths) For any two distinct vertices $x, y \in V$ there is exactly one path from x to y.
- iii. (minimal connected graph)
 The graph is connected, and for any edge e ∈ E the graph e obtained by removing e is not connected.
- iv. (maximal acyclic graph)

 The graph does not contain a cycle, and for any edge $e \in \binom{V}{2} \setminus E$ the graph + e obtained by adding e has a cycle.
- v. (Euler's formula) is connected and |V| = |E| + 1.

Properties of Trees

- i. The graph is a tree.
- ii. (unique paths) For any two distinct vertices $x, y \in V$ there is exactly one path from x to y.
- iii. (minimal connected graph)
 The graph is connected, and for any edge e ∈ E the graph e obtained by removing e is not connected.
- iv. (maximal acyclic graph)

 The graph does not contain a cycle, and for any edge $e \in \binom{V}{2} \setminus E$ the graph + e obtained by adding e has a cycle.
- v. (Euler's formula) is connected and |V| = |E| + 1.

So let's prove all the different characterizations!

Fine, then not.

Let's look at something really obvious instead.

Every tree of at least 2 vertices has a leaf.

■ Removing a leaf from a tree yields a tree.

Why do we care??

Induction on Trees

Induction on trees

We can do induction on the number of vertices. Remove a leaf, apply inductive hypothesis to the rest.

Note the direction!

Induction on trees

Lemma: (end-vertex) Every tree with at least two vertices has at least two leaves.

Lemma: (tree-growing) Let G be a graph and v a leaf in G. Then the following statements are equivalent:

- *i. G* is a tree
- *ii.* G v is a tree.

Proofs in the book!

Example

Theorem: The graph G is a tree \Rightarrow G is connected and |V| = |E| + 1.

Proof sketch: By induction on size of the tree

Step: To prove for all trees with k+1 vertices. (for some $k \geq ?$)

Consider arbitrary tree T = (V, E) with k + 1 vertices

Since T is a tree, T has a leaf, say v (end-vertex lemma)

Let T' = T - v, then T' is a tree with k vertices (tree-growing lemma)

By IH T' has |V'| = |E'| + 1.

Since v is a leaf T contains 1 more vertex and one more edge than T, so |V| = |V'| + 1 and |E| = |E'| + 1,

then |V| = |V'| + 1 = |E'| + 2 = |E| + 1

Rooted trees

When down is up

Rooted tree

A rooted tree is a pair (T,r) where T is a tree and $r \in V(T)$ is a distinguished vertex of T called the root.

A node u in a rooted tree T may have a...

parent (book: father): the unique vertex $v \in V(T)$ such that $\{u, v\} \in E(T)$ and v lies on the unique path from u to the root.

ancestor: a vertex $v \in V(T)$ such that v lies on the unique path from u to the root. (This definition includes u itself...)

child: a vertex $v \in V(T)$ where u is the parent of v.

descendant: a vertex $v \in V(T)$ where u is an ancestor of v.

Subtree

The subtree rooted at $v \in V(T)$ in a rooted tree is the induced subgraph defined by all vertices that are descendants of v (by definition then also including v), rooted at v.*

Example:

A rooted tree with root r,

The subtree rooted at v in blue.

^{*}We will not prove that a subtree is indeed a rooted tree, but you may assume it is.

Examples rooted trees

Binary trees

We can place more restrictions on trees.

Binary tree: every vertex has at most two children.

Binary trees

We can place more restrictions on trees.

Binary tree: every vertex has at most two children.

Strict binary tree: every vertex has zero or two children.

Binary trees

Can we bound the number of internal vertices in a strict binary tree?

Yes, we can.

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

Proof: By induction on size of tree

More induction on trees

Look at the subtrees formed by children of the root. Apply inductive hypothesis to the sub-trees.

Note the direction!

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

Let $l = |T_L| \ge 1$ and $r = |T_R| \ge 1$ Then n = l + r + 1

By IH T_L has $\frac{l-1}{2}$ internal vertices and T_R has $\frac{r-1}{2}$ internal vertices.

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

By IH T_L has $\frac{l-1}{2}$ internal vertices and T_R has $\frac{r-1}{2}$ internal vertices.

Internal vertices in T is $\frac{l-1}{2} + \frac{r-1}{2} + 1$

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

By IH T_L has $\frac{l-1}{2}$ internal vertices and T_R has $\frac{r-1}{2}$ internal vertices.

Internal vertices in *T* is $\frac{l-1}{2} + \frac{r-1}{2} + 1 = \frac{l+r-2+2}{2} = \frac{l+r}{2}$

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

By IH T_L has $\frac{l-1}{2}$ internal vertices and T_R has $\frac{r-1}{2}$ internal vertices.

Internal vertices in T is $\frac{l-1}{2} + \frac{r-1}{2} + 1 = \frac{l+r-2+2}{2} = \frac{l+r}{2} = \frac{n-1}{2}$

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

Proof: We will prove the statement by induction.

Base (n = 1):

A strict binary tree consisting of one vertex, must have only a degree zero vertex. Thus it has 0 internal nodes and 1 leaf.

Indeed the number of internal vertices is then $\frac{1-1}{2} = 0$.

Step: Let $k \geq 1$.

Induction hypothesis: for all $1 \le k' \le k$ a strict binary tree with k' vertices has $\frac{k'-1}{2}$ vertices.

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

Proof: We will prove the statement by induction.

Inductive Step: Let $k \geq 1$.

Induction hypothesis: for all $1 \le k' \le k$ a strict binary tree with k' vertices has $\frac{k'-1}{2}$ vertices.

Internal vertices

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

Proof: We will prove the statement by induction.

Inductive Step: Let $k \geq 1$.

Induction hypothesis: for all $1 \le k' \le k$ a strict binary tree with k' vertices has $\frac{k'-1}{2}$ vertices.

Let (T,r) be a strict binary tree with k+1 vertices. Let T_L and T_R be the sub-trees rooted at the left and right child of r, with l and m vertices respectively. We know l+m+1=k+1 and $l,m\geq 1$ so $l,m\leq k$.

By IH T_L has $\frac{l-1}{2}$ internal vertices and T_R has $\frac{r-1}{2}$ internal vertices. These internal vertices are also internal vertices for T. Furthermore r is also an internal vertex for T. But then T has $\frac{l-1}{2} + \frac{r-1}{2} + 1 = \frac{l+r}{2} = \frac{n-1}{2}$ internal vertices.

Internal vertices

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

So why does our proof not work for (regular) binary trees?

Internal vertices

Lemma: A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

So why does our proof not work for (regular) binary trees?

More induction on trees

Look at the subtrees formed by children of the root. Apply inductive hypothesis to the sub-trees.

Note the direction!

2-connected graphs

Theorem: A graph G = (V, E) is 2-connected if and only if there exists, for any two vertices $v, v' \in V$, a cycle in G containing v and v'.

Ear decompositions

Nurse, a knife please...

Lemma: Let G = (V, E) be a 2-connected graph, then

- 1) G%e is a 2-connected graph, where $e \in E$
- 2) G + e is a 2-connected graph, where $e \notin E$

Proof sketch:

2) adding an edge is never reduces connectivity. For 1) the proof is a little more involved, see book

Lemma: Any graph G = (V, E) created from K_3 by a sequence of edge subdivisions and edge additions is 2-connected.

Proof sketch:

 K_3 is 2-connected.

By previous lemma any subdivision or edge addition maintains 2connectedness.

So the Lemma holds.

(Can make a formal proof using induction on length of the sequence)

Are there also 2-connected graphs that cannot be created by a sequence of edge subdivisions and edge additions from K_3 ?

Lemma: Any graph G = (V, E) created from K_3 by a sequence of edge subdivisions and edge additions is 2-connected.

Proof sketch:

 K_3 is 2-connected.

By previous lemma any subdivision or edge addition maintains 2-connectedness.

So the Lemma holds.

(Can make a formal proof using induction on length of the sequence)

Proposition: Any 2-connected graph G = (V, E) can be created from K_3 by a sequence of edge subdivisions and edge additions.

A level up

We can easily make C_k starting from K_3 .

We'll consider the problem at a higher level.

- We know we can make any cycle from K_3 .
- We also know we can consider adding paths instead of edges.

We'll consider the problem at a higher level.

- We know we can make any cycle from K_3 .
- We also know we can consider adding paths instead of edges.

We'll consider the problem at a higher level.

- We know we can make any cycle from K_3 .
- We also know we can consider adding paths instead of edges.

We'll consider the problem at a higher level.

- We know we can make any cycle from K_3 .
- We also know we can consider adding paths instead of edges.

We'll consider the problem at a higher level.

- We know we can make any cycle from K_3 .
- We also know we can consider adding paths instead of edges.

Ear Decomposition

Partition of the edges of a graph into a sequence of ears C_1, P_2, \dots, P_k .

The first ear C_1 is a cycle.

All remaining ears are paths $P_2, ..., P_k$ such that:

■ For any path P_i , only the endpoints of P_i are part of a previous ear.

Example:

Notational warning:

In C_1 the 1 indicates it is the first ear, not the length of the cycle. In P_i , the i indicates which ear it is, not the length of the path.

Lemma: Any 2-connected graph G = (V, E) has an ear decomposition.

Why is this useful?

Induction!

Every 2-connected graph has an ear-decomposition with k ears. Can reduce graph by taking away an ear and the result is still 2-connected and "smaller" (fewer ears)

Similar to "a subtree of a rooted tree is a rooted tree".

We sometimes refer to this as structural induction

Summary

Organizational

No Lecture Thursday

A3 test next week!