

ON THE CYCLE STRUCTURE OF HAMILTONIAN k -REGULAR BIPARTITE GRAPHS OF ORDER $4k$

JANUSZ ADAMUS

ABSTRACT. It is shown that a hamiltonian $n/2$ -regular bipartite graph G of order $2n > 8$ contains a cycle of length $2n - 2$. Moreover, if such a cycle can be chosen to omit a pair of adjacent vertices, then G is bipancyclic.

In [2], Entringer and Schmeichel gave a sufficient condition for a hamiltonian bipartite graph to be bipancyclic.

Theorem 1. *A hamiltonian bipartite graph G of order $2n$ and size $\|G\| > n^2/2$ is bipancyclic (that is, contains cycles of all even lengths up to $2n$).*

Interestingly enough, a non-hamiltonian graph with this same bound on the size may contain no long cycles whatsoever. Consider for instance, for n even, a graph obtained from the disjoint union of $H_1 = K_{n/2, n/2}$ and $H_2 = K_{n/2, n/2}$ by joining a single vertex of H_1 with a vertex of H_2 .

In the present note, we are interested in the cycle structure of a hamiltonian bipartite graph of order $2n$, whose every vertex is of degree $n/2$. One immediately verifies that the size of such a graph is precisely $n^2/2$, so the above theorem does not apply. Instead, we prove the following result.

Theorem 2. *If G is a hamiltonian $n/2$ -regular bipartite graph of order $2n > 8$, then G contains a cycle C of length $2n - 2$. Moreover, if C can be chosen to omit a pair of adjacent vertices, then G is bipancyclic.*

Our motivation for presenting Theorem 2 is that, although concerning a narrow class of graphs, it plays an important role in the general study of long cycles in balanced bipartite graphs [1]. We find it also quite amusing that the proof below relies entirely on the combinatorics of the adjacency matrix.

It should be noted that Tian and Zang [3] proved that a hamiltonian bipartite graph of order $2n \geq 120$ and minimal degree greater than $\frac{2n}{5} + 2$ is necessarily bipancyclic. This result leaves open the case of $|G| = n < 60$, in which the above theorem seems to be best to date.

Proof. Suppose to the contrary that there is a hamiltonian $n/2$ -regular bipartite graph G on $2n$ vertices ($n \geq 5$), without a cycle of length $2n - 2$. Let $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$ be the colour classes of G , and let H be a Hamilton cycle in G ; say, $H = x_1y_1x_2y_2 \dots x_ny_nx_1$. Let $E = E(G)$ be the edge set of G . The requirement that G contain no C_{2n-2} implies that, for every $i = 1, \dots, n$,

$$(1) \quad x_iy_{i-2} \notin E, \quad x_iy_{i+1} \notin E, \quad \text{and}$$

Key words and phrases. regular graph, bipartite graph, Hamilton cycle, long cycle, bipancyclicity, combinatorial problems
 MSC 2000: 05C38, 05C35, 05A05.

(2) if $x_i y_j \in E$ for some $j \in \{i+2, \dots, n+i-3\}$, then $x_{i+1} y_{j+1} \notin E$.

(All indices are understood modulo n .)

Consider the $n \times n$ adjacency matrix $A_G = [a_j^i]_{1 \leq i,j \leq n}$, where $a_j^i = 1$ if $x_i y_j \in E$, and $a_j^i = -1$ otherwise. Notice that, from adjacency on H and by (1),

$$(3) \quad a_{i-1}^i = a_i^i = 1 \quad \text{and} \quad a_{i-2}^i = a_{i+1}^i = -1 \quad \text{for all } i,$$

and by (2),

$$(4) \quad a_j^i = 1 \Rightarrow a_{j+1}^{i+1} = -1 \quad \text{for } i = 1, \dots, n, j = i+2, \dots, i-3.$$

As every x_i has precisely $n/2$ neighbours, the entries of each row of A_G sum up to 0; i.e., $\sum_{j=1}^n a_j^i = 0$. Therefore, by (4), we also have

$$(5) \quad a_j^i = -1 \Rightarrow a_{j+1}^{i+1} = 1 \quad \text{for } i = 1, \dots, n, j = i+2, \dots, i-3.$$

The properties (3), (4) and (5) imply that A_G (and hence G itself) is uniquely determined by the entries a_3^1, \dots, a_{n-2}^1 , and more importantly, that the sum of entries of the first column of A_G equals

$$\begin{aligned} a_1^1 + a_n^1 + a_{n-1}^1 - a_{n-2}^1 + a_{n-3}^1 - a_{n-4}^1 + \cdots - a_4^1 + a_3^1 + a_2^1 \\ = a_3^1 - a_4^1 + \cdots + a_{n-3}^1 - a_{n-2}^1, \end{aligned}$$

given that $a_1^1 + a_2^1 + a_{n-1}^1 + a_n^1 = 0$.

On the other hand, every column sums up to 0, as each y_j has precisely $n/2$ neighbours. Hence $\sum_{j=3}^{n-2} a_j^1 = 0$ and $\sum_{j=3}^{n-2} (-1)^{j+1} a_j^1 = 0$, and thus $n-4 = 4l$ for some $l \geq 1$, and $\sum_{k=1}^{2l} a_{2k+1}^1 = \sum_{k=1}^{2l} a_{2k+2}^1 = 0$. In general, for any $1 \leq i_0 \leq n$,

$$(6) \quad a_{i_0+2}^{i_0} + a_{i_0+4}^{i_0} + \cdots + a_{i_0+n-4}^{i_0} = a_{i_0+3}^{i_0} + a_{i_0+5}^{i_0} + \cdots + a_{i_0+n-3}^{i_0} = 0.$$

Let now $1 \leq i_0 \leq n$ be such that $a_{i_0+2}^{i_0} = -1$. In fact, we can choose $i_0 = 1$ or $i_0 = 2$, for if $a_3^1 = 1$, then $a_4^2 = -1$, by (4). We will show that there exists a $k \in \{3, \dots, n-3\}$ such that

$$a_{i_0+k}^{i_0} = a_{i_0}^{i_0+k} = 1.$$

Suppose otherwise; i.e., suppose that, for all $3 \leq k \leq n-3$, $a_{i_0+k}^{i_0} + a_{i_0}^{i_0+k} \in \{0, -2\}$. Notice that, by (4) and (5), $a_{i_0}^{i_0+k} = (-1)^k a_{i_0-k}^{i_0}$ for $k = 3, \dots, n-3$. Hence, in particular, $a_{i_0+4}^{i_0} + a_{i_0+n-4}^{i_0}$, $a_{i_0+6}^{i_0} + a_{i_0+n-6}^{i_0}, \dots, a_{i_0+2l+2}^{i_0} + a_{i_0+2l+2}^{i_0}$ are all non-positive. In light of (6), this is only possible when $a_{i_0+2}^{i_0} = 1$, which contradicts our choice of i_0 .

To sum up, we have found i_0 and $k \in \{3, \dots, n-3\}$ with the property that $a_{i_0+1}^{i_0-1} = a_{i_0+k}^{i_0} = a_{i_0}^{i_0+k} = 1$, which is to say that

$$x_{i_0-1} y_{i_0+1} \in E, \quad x_{i_0} y_{i_0+k} \in E, \quad \text{and} \quad x_{i_0+k} y_{i_0} \in E.$$

Hence a cycle

$$C = x_{i_0-1} y_{i_0+1} x_{i_0+2} \dots y_{i_0+k-1} x_{i_0+k} y_{i_0} x_{i_0} y_{i_0+k} x_{i_0+k+1} \dots y_{i_0-2} x_{i_0-1}$$

of length $2n-2$ in G ; a contradiction.

For the proof of the second assertion of the theorem, suppose that C can be chosen so that the omitted vertices x' and y' are adjacent in G . Let $G' = G - \{x', y'\}$

be the induced subgraph of G spanned by the vertices of C . Then G' is hamiltonian of order $2(n - 1)$ and size

$$\|G'\| = \|G\| - (d_G(x') + d_G(y') - 1) = n^2/2 - n + 1,$$

which is greater than $(n - 1)^2/2$. Thus G' , and hence G itself, is bipancyclic, by Theorem 1.

□

REFERENCES

1. J. Adamus and L. Adamus, *Ore and Erdős type conditions for long cycles in balanced bipartite graphs*, Discrete Math. Theor. Comput. Sci. **11:2** (2009), 57–70.
2. R.C. Entringer and E.F. Schmeichel, *Edge conditions and cycle structure in bipartite graphs*, Ars Combinatoria **26** (1988), 229–232.
3. F. Tian and W.A. Zang, *Bipancyclism in Hamiltonian bipartite graphs*, Systems Sci. Math. Sci. **2** (1989), no. 1, 22–31.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO,
N6A 5B7 CANADA AND INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNIVERSITY, KRAKÓW, POLAND
E-mail address: jadamus@uwo.ca