MA202: Calculus II

Instructor: Dr. Arnab Patra

Department of Mathematics
Indian Institute of Technology Bhilai

Lecture 2

Recall: Let $D \subset \mathbb{R}$, and let c be an interior point of D. A function $f:D \to \mathbb{R}$ is said to have a **derivative** at c if $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$ exists, and then it is denoted by f'(c).

- If (x_0, y_0) is a point in the domain of a function f(x, y), the vertical plane $y = y_0$ will cut the surface z = f(x, y) in the curve $z = f(x, y_0)$.
- We define the partial derivative of f with respect to x at the point (x_0, y_0) as the ordinary derivative of $f(x, y_0)$ with respect to x at the point $x = x_0$.
- $\begin{tabular}{ll} \hline \bullet & To distinguish partial derivatives from ordinary derivatives we use the symbol ∂ rather than the d previously used. \\ \end{tabular}$

Definition

Let $D \subset \mathbb{R}^2$, and let (x_0, y_0) be an interior point of D. A function $f: D \to \mathbb{R}$ is said to have a **partial derivative** with respect to x at (x_0, y_0) if

exists, and then it is denoted by
$$f_x(x_0, y_0)$$
 or by $\frac{\partial f}{\partial x}(x_0, y_0)$.

$$\sqrt{\frac{\partial f}{\partial x}}(x_0,y_0).$$

Similarly, a function $f:D\to\mathbb{R}$ is said to have a partial

derivative with respect to y at (x_0, y_0) if

$$\lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k}$$

exists, and then it is denoted by $f_y(x_0, y_0)$ or by $\frac{\partial f}{\partial y}(x_0, y_0)$.

by
$$\frac{\partial f}{\partial y}(x_0, y_0)$$
.

(i) Let $f(x,y) := x^2 + y^2$ for $(x,y) \in \mathbb{R}^2$. Partial derivatives of f exist at all points of \mathbb{R}^2 . In fact, for $(x_0, y_0) \in \mathbb{R}^2$, $f_x(x_0, y_0) = 2x_0$ and $f_y(x_0, y_0) = 2y_0$.

Let
$$f(x,y) := \sqrt{x^2 + y^2}$$
 for $(x,y) \in \mathbb{R}^2$.
Let $(x_0, y_0) \neq (0, 0)$. Then
$$f_x(x_0, y_0) = \frac{x_0}{\sqrt{x_0^2 + y_0^2}} \quad \text{and} \quad f_y(x_0, y_0) = \frac{y_0}{\sqrt{x_0^2 + y_0^2}}.$$

But f does not have either partial derivative at (0,0) since $\lim_{h\to 0} |h|/h$ does not exist. Note: f is continuous at (0,0).

(iii) Let $f(x,y) := xy/(x^2 + y^2)$ if $(x,y) \neq (0,0)$, and f(0,0) = 0. It is easy to see that f(0,0) = 0 = f(0,0). We have already seen that f(0,0) = 0 = f(0,0).

Let $D \subset \mathbb{R}^2$, and $f: D \to \mathbb{R}$. Suppose $f_x(x_0, y_0)$ exists for every $(x_0, y_0) \in D$. If the function $f_x : D \to \mathbb{R}$ has a partial derivative with respect to x at (x_0, y_0) , then it is denoted by

$$f_{xx}(x_0, y_0)$$
 or by $\frac{\partial^2 f}{\partial x^2}(x_0, y_0)$.

Also, if $f_x: D \to \mathbb{R}$ has a partial derivative with respect to y

at (x_0, y_0) , then it is denoted by $f_{xy}(x_0, y_0)$ or by $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$.

$$f_{xy}(x_0, y_0)$$
 or by $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$.

Similarly, we define $f_{yy}(x_0, y_0)$ and $f_{yx}(x_0, y_0)$, or $\frac{\partial^2 f}{\partial y^2}(x_0, y_0)$

$$f_{yx}(x_0, y_0)$$
, or $\frac{\partial^2 f}{\partial y^2}(x_0, y_0)$

and
$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$$
.

In general, the **mixed partial derivatives** $f_{xy}(x_0, y_0)$ and $f_{vx}(x_0, y_0)$ may not be equal.

Partial Differentiation : Examples

$$f(x,y) = \begin{cases} xy \frac{x^2 + y^2}{x^2 - y^2}, & (x,y) \neq (0,0) \\ & (0,1)(x,y) = (0,0) \end{cases}$$

Calculate $f_{xy}(0,0)$ and $f_{yx}(0,0)$.

$$f_{\alpha}(0,0) = \chi_{+} \left(\frac{1}{2}(0,0) - \frac{1}{2}(0,0)\right) = \chi_{+} \left(\frac{1}{2}(0,0) - \frac{1}{2}($$

Let $f: D(\subseteq \mathbb{R}^2) \to \mathbb{R}$ be a function where both the partial derivatives exist at (x_0, y_0) .

• Geometrically, $f_x(x_0, y_0)$ or $\frac{\partial f}{\partial x}(x_0, y_0)$ is the slope of the tangent to the curve obtained by intersecting the surface z = f(x, y) with the plane $y = y_0$ at $(x_0, y_0, f(x_0, y_0))$.

Physically, $f_x(x_0, y_0)$ or $(\frac{\partial f}{\partial x})(x_0, y_0)$ is the rate of change in f at (x_0, y_0)

Gradien

If both the partial derivative exist of f(x, y) at (x_0, y_0) then the column

vector

$$\begin{pmatrix} f_x(x_0,y_0) \\ f_y(x_0,y_0) \end{pmatrix}$$

is called the gradient of f and denoted by $\nabla f(x_0, y_0)$.

Let $\underline{D} \subseteq \mathbb{R}^2$, and let (x_0, y_0) be an interior point of \underline{D} . Very let $\underline{u} := (u_1, u_2) \in \mathbb{R}^2$ be a unit vector, that is, $||\underline{u}|| = 1$.

Definition

A function $f: D \to \mathbb{R}$ is said to have a **directional** derivative along u at (x_0, y_0) if

$$\lim_{t\to 0}\frac{f(x_0+tu_1,y_0+tu_2)-f(x_0,y_0)}{t}$$

exists, and then it is denoted by $(D_u f)(x_0, y_0)$.

Important points

- ① Directional derivative of f along u is the measure of rate of change of f as (x, y) changes in the direction u.
- ② If u=(1,0) then directional derivative along u (i.e., x-axis) is same as $f_x(x_0,y_0)$ and if u=(0,1) then directional derivative along u (i.e., x-axis) is same as $f_y(x_0,y_0)$

Examples:

(i) Let
$$f(x, y) := x^2 + y^2$$
 for $(x, y) \in \mathbb{R}^2$.
Let $(x_0, y_0) \in \mathbb{R}^2$ and $\underline{u} := (u_1, u_2)$ be a unit vector. For $t \neq 0$,
$$\underbrace{\frac{f(x_0 + tu_1, y_0 + tu_2) - f(x_0, y_0)}{t}}_{= (x_0 + tu_1)^2 + (y_0 + tu_2)^2 - x_0^2 - y_0^2}_{= (2x_0u_1 + 2y_0u_2 + t)}$$
Letting $t \to 0$, we obtain
$$\underbrace{\frac{f(x_0 + tu_1)^2 + (y_0 + tu_2)^2 - x_0^2 - y_0^2}_{(x_0, y_0)}}_{(x_0, y_0) = (2x_0u_1 + 2y_0u_2)}$$

(ii) Let $f(x,y) := \sqrt{x^2 + y^2}$ for $(x,y) \in \mathbb{R}^2$. Let $(x_0,y_0) \in \mathbb{R}^2$ and $u := (u_1,u_2)$ be a unit vector. For $t \neq 0$,

$$\frac{f(x_0 + tu_1, y_0 + tu_2) - f(x_0, y_0)}{t}$$

$$= \frac{\sqrt{(x_0 + tu_1)^2 + (y_0 + tu_2)^2} - \sqrt{x_0^2 + y_0^2}}{t}$$

$$= \frac{2x_0u_1 + 2y_0u_2 + t}{\sqrt{(x_0 + tu_1)^2 + (y_0 + tu_2)^2} + \sqrt{x_0^2 + y_0^2}}.$$
Hence if $(x_0, y_0) \neq (0, 0)$, then
$$(D_u f)(x_0, y_0) = \frac{x_0u_1 + y_0u_2}{\sqrt{x_0^2 + y_0^2}} = (\nabla f)(x_0, y_0) \cdot \mathbf{u}.$$

$$(D_u f)(0, 0)$$
does not exists.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Show that f has directional derivative at (0,0) along any direction $u=(u_1,u_2)$ where $u_1^2+u_2^2=1$ but f is not continuous at (0,0).

$$(D_{u}f)(0,0) = \lim_{t\to 0} \underbrace{\begin{cases} f(tu_{1}, tu_{2}) - f(0,0) \\ t \end{cases}}_{t\to 0} = \underbrace{\begin{cases} u_{1}^{2} & u_{2} \neq 0 \\ 0, & u_{2} = 0 \end{cases}}_{0, & u_{2} = 0}$$

Important note

Even when f has directional derivatives at a point (x_0, y_0) along all arbitrary direction still f may not be continuous!

- Directional derivative of f at a point (x_0, y_0) gives us the rate of change of f at (x_0, y_0) in a particular direction,
- 2 Now we are interested in the complete information about the rate of change in f at (x_0, y_0)

Let us recall the one variable situation. If $D \subset \mathbb{R}$, $f : D \to \mathbb{R}$, and c is an interior point of D, then the derivative of f at c is

$$f'(c) := \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

We note that if $f: D \to \mathbb{R}$, c is an interior point of D and $\alpha \in \mathbb{R}$, then $f'(c) = \alpha \in \mathbb{R}$ if and only if

$$\lim_{h\to 0}\frac{f(c+h)-f(c)-\alpha h}{h}=0,$$

that is,

If $D \subseteq \mathbb{R}^2$, and (x_0, y_0) is an interior point of D then in a similar fashion as above the following equation is well-defined (where $\alpha, \beta \in \mathbb{R}$)

$$\lim_{(h,k)\to(0,0)}\frac{f(x_0+h,y_0+k)-f(x_0,y_0)-\alpha h-\beta k}{||(h,k)||}=0.$$

Definition

We say that f is differentiable at (x_0, y_0) if there is $(\alpha, \beta) \in \mathbb{R}^2$ such that

$$\lim_{(h,k)\to(0,0)}\frac{f(x_0+h,y_0+k)-f(x_0,y_0)-\alpha h-\beta k}{\sqrt{h^2+k^2}}=0.$$

In this case the pair $(\alpha, \beta) \in \mathbb{R}^2$ is called the total derivative of f at (x_0, y_0) .

- **1** In the case of single variable we assume that $\alpha = f'(c)$.
- **②** Natural question arises about the quantities $\underline{\alpha}$ and $\underline{\beta}$
- **3** Letting $(h, (k)) \rightarrow (0, 0)$ along x-axis (i,e, $h \rightarrow 0$ and k = 0) we get

$$\lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0) - \alpha h}{|h|} = 0$$

This is same as

$$\lim_{h\to 0} \frac{f(x_0+h,y_0)-f(x_0,y_0)}{|h|} = \alpha$$

Hence $f_x(x_0, y_0) = \alpha$

- Similarly letting $(h, k) \to (0, 0)$ along y-axis we can get $\beta = f_y(x_0, y_0)$.
- If f is differentiable at (x_0, y_0) then $(\alpha, \beta) = (f_x(x_0, y_0), f_y(x_0, y_0))^t$ is called the total derivative of f. (This is the gradient of f if we write as a column vector.)

Proposition (Increment Lemma)

Let $D \subset \mathbb{R}^2$, and let (x_0, y_0) be an interior point of D. Then $f: D \to \mathbb{R}$ is differentiable at (x_0, y_0) if and only if there exist functions $f_1, f_2: D \to \mathbb{R}$ such that f_1 and f_2 are continuous at (x_0, y_0) , and for all $(x, y) \in D$,

$$f(x,y) - f(x_0,y_0) = (x-x_0)f_1(x,y) + (y-y_0)f_2(x,y).$$

In this case, $\nabla f(x_0, y_0) = (f_1(x_0, y_0), f_2(x_0, y_0)).$

A pair (f_1, f_2) of functions stated in the Increment Lemma is called a pair of increment functions associated with the function f and the point (x_0, y_0) .

Proposition (Differentiability ⇒ Continuity)

Let $D \subset \mathbb{R}^2$, and let (x_0, y_0) be an interior point of D. Suppose $f : D \to \mathbb{R}$ is differentiable at (x_0, y_0) . Then f is continuous at (x_0, y_0) .

Proof:

If (f_1, f_2) is a pair of increment functions associated with f and (x_0, y_0) , then

$$f(x,y) = f(x_0,y_0) + (x-x_0)f_1(x,y) + (y-y_0)f_2(x,y)$$

for all $(x, y) \in D$. Consequently, the continuity of f at (x_0, y_0) follows from the continuity of f_1 and f_2 at (x_0, y_0) .

Differentiability: Necessary & sufficient conditions

If $D \subseteq \mathbb{R}^2$, where $f: D \to \mathbb{R}$ and (x_0, y_0) is an interior point of D. Then if f is differentiable at (x_0, y_0) , the following conditions are necessary

Necessary conditions

- Oboth the partial derivatives f_x and f_y exist at (x_0, y_0)
- 2 f is continuous at (x_0, y_0)

Sufficient condition

Let $D \subseteq \mathbb{R}^2$, where $f: D \to \mathbb{R}$ and (x_0, y_0) is an interior point of D. Suppose one of the partial derivatives exists at (x_0, y_0) and other is continuous at (x_0, y_0) then f is differentiable at (x_0, y_0) .

Differentiability: Examples

How to check differentiability

- Whether f violates any necessary conditions (to check f is not differentiable)
- whether *f* satisfies all the sufficient conditions. Also the definition of differentiability can be checked.
- $f(x,y) = \sqrt{(x^2 + y^2)}$, $(x,y) \in \mathbb{R}^2$. f is continuous at (0,0) but $f_x(0,0)$ and $f_y(0,0)$ do not exist. So f is not differentiable at (0,0). However f is differentiable all other point in \mathbb{R}^2 .
- 2 f(x,y) = 1 if $0 < y < x^2$ and f(x,y) = 0, otherwise. f is not continuous at (0,0). (check it!) So f is not differentiable at (0,0).

Differentiability: Examples

Check whether $f(x,y) = \sqrt{|xy|}$ is differentiable at (0,0) or not. We use the definition of differentiability here.

Differentiability: Examples

$$f(x,y) = \begin{cases} x^2 \sin \frac{1}{x} + y^2 \sin \frac{1}{y}, & (x,y) \neq (0,0) \\ x^2 \sin \frac{1}{x}, & y = 0, & x \neq 0 \\ y^2 \sin \frac{1}{y}, & x = 0, & y \neq 0 \\ 0, & (x,y) = (0,0) \end{cases}$$

Calculate $f_x(x, y)$ and $f_y(x, y)$. Also check the differentiability of f.

Dr. A. Patra (IIT Bhilai)