Teoria dei Sistemi 10/01/19

Fila A

Nome e Cognome:	-
Matricola:	-
Crediti:	-

1. Dato il sistema avente funzione di trasferimento

$$W(s) = \frac{s^2 + s - 2}{s^3 + ks^2 - s - k}$$

 $\mathrm{con}\ k\in\mathbb{R}$

(a) calcolarne il guadagno;

(b) calcolare, se esiste, la risposta a regime permanente rispetto $u(t)=2\sin(3t)$;

(c) calcolarne una realizzazione;

(d) condurre l'analisi modale;

(e) studiarne raggiungibilità e osservabilità;

(f) studiarne stabilità interna ed esterna;

(g) calcolare il sistema a tempo discreto equivalente per periodo di campionamento fissato a $T_s>0$.

2. Scrivere la funzione di trasferimento di un sistema avente il diagramma polare della forma

- 3. È noto che la funzione di trasferimento di un sistema è del tipo $W(s) = \frac{K}{1+\tau s}$ con $K, \tau \in \mathbb{R}$.
 - (a) calcolare K e τ sapendo che: (i) la risposta a regime permanente all'ingresso $u^1(t)=1$ è $y^1_r(t)=-3$; (ii) la risposta a regime permanente rispetto $u^2(t)=3\sin(3t)$ subisce uno sfasamento di $\Delta\varphi=-225^\circ$;

(b) calcolare la risposta transitoria rispetto l'ingresso $u(t) = \delta_{-1}(t)$.

4. Dimostrare la formula della risposta a regime permanente all'ingresso $u(k)=\sin(\theta k)$ per un sistema a tempo discreto.