Less is More: **Nyström Computational Regularization**

Alessandro Rudi, Raffaello Camoriano, Lorenzo Rosasco University of Genova - Istituto Italiano di Tecnologia Massachusetts Institute of Technology ale rudi@mit.edu

> Dec 10th NIPS 2015

A Starting Point

Classically:

Statistics and optimization distinct steps in algorithm design

A Starting Point

Classically:

Statistics and optimization distinct steps in algorithm design

Large Scale:

Consider **interplay** between statistics and optimization! (Bottou, Bousquet '08)

Supervised Learning

Problem: Estimate f^*

Supervised Learning

Problem: Estimate f^* given $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$

Supervised Learning

Problem: Estimate f^* given $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$

The Setting

$$y_i = f^*(x_i) + \varepsilon_i \qquad i \in \{1, \dots, n\}$$

- $ightharpoonup \varepsilon_i \in \mathbb{R}, x_i \in \mathbb{R}^d$ random (with unknown distribution)
- ► f* unknown

Outline

Learning with kernels

Data Dependent Subsampling

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

▶ q non linear function

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- ightharpoonup q non linear function
- $lackbox{w}_i \in \mathbb{R}^d$ centers

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- ightharpoonup q non linear function
- $lackbox{w}_i \in \mathbb{R}^d$ centers
- $ightharpoonup c_i \in \mathbb{R}$ coefficients

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- ▶ q non linear function
- $\mathbf{v}_i \in \mathbb{R}^d$ centers
- $ightharpoonup c_i \in \mathbb{R}$ coefficients
- $ightharpoonup M = M_n$ could/should grow with n

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- q non linear function
- $\mathbf{v}_i \in \mathbb{R}^d$ centers
- $ightharpoonup c_i \in \mathbb{R}$ coefficients
- $ightharpoonup M = M_n$ could/should grow with n

Question: How to choose w_i , c_i and M given S_n ?

Learning with Positive Definite Kernels

There is an *elegant* answer if:

- ightharpoonup q is symmetric
- lacktriangledown all the matrices $\widehat{Q}_{ij}=q(x_i,x_j)$ are positive semi-definite 1

¹They have non-negative eigenvalues

Learning with Positive Definite Kernels

There is an elegant answer if:

- ightharpoonup q is symmetric
- ▶ all the matrices $\widehat{Q}_{ij} = q(x_i, x_j)$ are positive semi-definite¹

Representer Theorem (Kimeldorf, Wahba '70; Schölkopf et al. '01)

- ightharpoonup M = n.
- $ightharpoonup w_i = x_i$,
- c_i by convex optimization!

¹They have non-negative eigenvalues

Kernel Ridge Regression (KRR)

a.k.a. Penalized Least Squares

$$\widehat{f}_{\lambda} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||^2$$

Kernel Ridge Regression (KRR)

a.k.a. Penalized Least Squares

$$\widehat{f}_{\lambda} = \operatorname*{argmin}_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||^2$$

where

$$\mathcal{H} = \{ f \mid f(x) = \sum_{i=1}^{M} c_i q(x, w_i), \ c_i \in \mathbb{R}, \underbrace{w_i \in \mathbb{R}^d}_{\text{any center!}}, \ \underbrace{M \in \mathbb{N}}_{\text{any length!}} \}$$

Kernel Ridge Regression (KRR)

a.k.a. Penalized Least Squares

$$\widehat{f}_{\lambda} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||^2$$

where

$$\mathcal{H} = \{ f \mid f(x) = \sum_{i=1}^{M} c_i q(x, w_i), \ c_i \in \mathbb{R}, \underbrace{w_i \in \mathbb{R}^d}_{\text{any center!}}, \ \underbrace{M \in \mathbb{N}}_{\text{any length!}} \}$$

Solution

$$\widehat{f}_{\lambda} = \sum_{i=1}^{n} c_i q(x, \mathbf{x}_i)$$
 with $c = (\widehat{Q} + \lambda nI)^{-1} \widehat{y}$

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

1. Optimal nonparametric bound

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

- 1. Optimal nonparametric bound
- 2. Results for general kernels (e.g. splines/Sobolev etc.)

$$\lambda_* = n^{-\frac{1}{2s+1}}, \qquad \mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim n^{-\frac{2s}{2s+1}}$$

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

- 1. Optimal nonparametric bound
- 2. Results for general kernels (e.g. splines/Sobolev etc.)

$$\lambda_* = n^{-\frac{1}{2s+1}}, \qquad \mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim n^{-\frac{2s}{2s+1}}$$

3. Adaptive tuning via cross validation

KRR: Optimization

$$\widehat{f}_{\lambda} = \sum_{i=1}^{n} c_i q(x, x_i)$$
 with $c = (\widehat{Q} + \lambda nI)^{-1} \widehat{y}$

Linear System

Complexity

- ▶ Space $O(n^2)$
- ▶ Time $O(n^3)$

KRR: Optimization

$$\widehat{f}_{\lambda} = \sum_{i=1}^{n} c_i q(x, x_i)$$
 with $c = (\widehat{Q} + \lambda nI)^{-1} \widehat{y}$

Linear System

Complexity

- ▶ Space $O(n^2)$
- ▶ Time $O(n^3)$

BIG DATA?

Running out of space before running out of time...

Can this be fixed?

Outline

Learning with kernels

Data Dependent Subsampling

1. pick w_i at random...

1. pick w_i at random... from training set (Smola, Scholköpf '00)

$$\tilde{w}_1, \dots, \tilde{w}_M \subset x_1, \dots x_n \qquad M \ll n$$

1. pick w_i at random... from training set (Smola, Scholköpf '00)

$$\tilde{w}_1, \dots, \tilde{w}_M \subset x_1, \dots x_n \qquad M \ll n$$

2. perform KRR on

$$\mathcal{H}_M = \{ f \mid f(x) = \sum_{i=1}^M c_i q(x, \tilde{\boldsymbol{w}_i}), \ c_i \in \mathbb{R}, \ \boldsymbol{w_i \in \mathbb{R}^d}, \ \boldsymbol{M \in \mathbb{N}} \}.$$

1. pick w_i at random... from training set (Smola, Scholköpf '00)

$$\tilde{w}_1, \dots, \tilde{w}_M \subset x_1, \dots x_n \qquad M \ll n$$

2. perform KRR on

$$\mathcal{H}_M = \{ f \mid f(x) = \sum_{i=1}^M c_i q(x, \tilde{\boldsymbol{w}}_i), \ c_i \in \mathbb{R}, \ \boldsymbol{w}_i \in \mathbb{R}^d, \ M \in \mathbb{N} \}.$$

Linear System

Complexity

- ▶ Space $O(n^2) \rightarrow O(nM)$ ▶ Time $O(n^3) \rightarrow O(nM^2)$

1. pick w_i at random... from training set (Smola, Scholköpf '00)

$$\tilde{w}_1, \dots, \tilde{w}_M \subset x_1, \dots x_n \qquad M \ll n$$

2. perform KRR on

$$\mathcal{H}_M = \{ f \mid f(x) = \sum_{i=1}^M c_i q(x, \tilde{\boldsymbol{w}}_i), \ c_i \in \mathbb{R}, \ \boldsymbol{w}_i \in \mathbb{R}^d, \ M \in \mathbb{N} \}.$$

Linear System

Complexity

- ▶ Space $O(n^2) \rightarrow O(nM)$ ▶ Time $O(n^3) \rightarrow O(nM^2)$

What about statistics? What's the price for efficient computations?

Putting our Result in Context

► *Many* different subsampling schemes (Smola, Scholkopf '00; Williams, Seeger '01; ... 20+)

Putting our Result in Context

► *Many* different subsampling schemes (Smola, Scholkopf '00; Williams, Seeger '01; ... 20+)

► Theoretical guarantees mainly on matrix approximation (Mahoney and Drineas '09; Cortes et al '10, Kumar et al.'12 ... 10+)

$$\|\widehat{Q} - \widehat{Q}_M\| \lesssim \frac{1}{\sqrt{M}}$$

Putting our Result in Context

Many different subsampling schemes (Smola, Scholkopf '00; Williams, Seeger '01; ... 20+)

► Theoretical guarantees mainly on matrix approximation (Mahoney and Drineas '09; Cortes et al '10, Kumar et al.'12 ... 10+)

$$\|\widehat{Q} - \widehat{Q}_M\| \lesssim \frac{1}{\sqrt{M}}$$

► Few prediction guarantees either **suboptimal** or in **restricted setting** (Cortes et al. '10; Jin et al. '11, Bach '13, Alaoui, Mahoney '14)

Main Result

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

Remarks

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

Remarks

1. Subsampling achives **optimal** bound...

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

Remarks

- 1. Subsampling achives **optimal** bound...
- 2. ... with $M_* \sim \sqrt{n}$!!

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

Remarks

- 1. Subsampling achives **optimal** bound...
- 2. ... with $M_* \sim \sqrt{n}$!!
- 3. More generally,

$$\lambda_* = n^{-\frac{1}{2s+1}}, \quad M_* = \frac{1}{\lambda}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} \quad , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

Remarks

- 1. Subsampling achives optimal bound...
- 2. ... with $M_* \sim \sqrt{n}$!!
- 3. More generally,

$$\lambda_* = n^{-\frac{1}{2s+1}}, \quad M_* = \frac{1}{\lambda}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

Note: An interesting insight is obtained rewriting the result...

A simple idea: "swap" the role of λ and M...

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

 $ightharpoonup \lambda$ and M play the same role...

... new interpretation: subsampling regularizes!

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- λ and M play the same role...
 ... new interpretation: subsampling regularizes!
- ▶ New natural incremental algorithm...

Algorithm

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- \blacktriangleright λ and M play the same role. . .
 - ... new interpretation: subsampling regularizes!
- ▶ New natural **incremental** algorithm...

Algorithm

1. Pick a center + compute solution

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- λ and M play the same role...
 ... new interpretation: subsampling regularizes!
- ▶ New natural incremental algorithm...

Algorithm

- 1. Pick a center + compute solution
- 2. Pick another center + rank one update

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- λ and M play the same role...
 ... new interpretation: subsampling regularizes!
- ▶ New natural incremental algorithm...

Algorithm

- 1. Pick a center + compute solution
- 2. Pick another center + rank one update
- 3. Pick another center . . .

CoRe Illustrated

Computation controls stability!

Time/space requirement tailored to generalization

Experiments

comparable/better w.r.t. the state of the art

Dataset	n_{tr}	d	Incremental CoRe	Standard KRLS	Standard Nyström	Random Features	Fastfood RF
Ins. Co.	5822	85	$0.23180 \pm 4 \times 10^{-5}$	0.231	0.232	0.266	0.264
CPU	6554	21	$\bf 2.8466 \pm 0.0497$	7.271	6.758	7.103	7.366
CT slices	42800	384	7.1106 ± 0.0772	NA	60.683	49.491	43.858
Year Pred.	463715	90	$0.10470 \pm 5 imes 10^{-5}$	NA	0.113	0.123	0.115
Forest	522910	54	0.9638 ± 0.0186	NA	0.837	0.840	0.840

- ▶ Random Features (Rahimi, Recht '07)
- ► Fastfood (Le et al. '13)

Contributions

- ▶ Optimal learning with data dependent subsampling
- ▶ **Beyond uniform sampling** come to the poster!

Contributions

- ▶ Optimal learning with data dependent subsampling
- ▶ **Beyond uniform sampling** come to the poster!

Some questions:

- Beyond ridge regression— SGD and early stopping
- Data independent sampling— random features
- Beyond randomization— non convex optimization?

Contributions

- Optimal learning with data dependent subsampling
- ▶ **Beyond uniform sampling** come to the poster!

Some questions:

- Beyond ridge regression— SGD and early stopping
- Data independent sampling— random features
- Beyond randomization— non convex optimization?

Some perspectives:

- Computational regularization: subsampling regularizes!
- Algorithm design: Control statistics with computations

Thank you!

Come to poster N.63 for the details!!

CODE: lcsl.github.io/NystromCoRe

Alessandro Rudi - ale_rudi@mit.edu

Laboratory for Computational and Statistical Learning - lcsl.mit.edu