Package 'pGRN'

January 17, 2023

• • • • • • • • • • • • • • • • • • •
Type Package
Title Single-Cell RNA Sequencing Pseudo-Time Based Gene Regulatory Network Inference
Version 0.3.5
Author Gangcai Xie
Maintainer Gangcai Xie <gcxiester@gmail.com></gcxiester@gmail.com>
Description Inference and visualize gene regulatory network based on single-cell RNA sequencing pseudo-time information.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
VignetteBuilder knitr, rmarkdown
Depends R (>= 2.10),
Imports bigmemory, doParallel, dtw, foreach, ggplot2, ggraph, igraph, lmtest, proxy, tidygraph, visNetwork, future
Suggests knitr, webshot, rmarkdown,
NeedsCompilation no
Repository CRAN
Date/Publication 2023-01-17 17:20:02 UTC
R topics documented:
data_transform 2 get_dtw_dist_bidirectional 3 get_dtw_dist_mat 3 get_networks 4 matrix2adj 5 module_networks 6
pGRN

2 data_transform

Index		13
	slideWindows	12
	run_granger_test	11
	run_dtw	10
	plot_network_i	
	plot_network	9
	pGRNDB	8

 ${\tt data_transform}$

Pseudotime based Expression Data Transformation

Description

Based on single-cell pseudotime information, get the sliding window average expression, and then standard normlize the expression for each gene

Usage

```
data_transform(data, pseudotime, slide_window_size = 100, slide_step_size = 50)
```

Arguments

```
data expression matrix data

pseudotime list of pseudotime

slide_window_size

sliding window size

slide_step_size

sliding window step size
```

Value

Transformed new matrix

```
get_dtw_dist_bidirectional
```

Bidirectional DTW Distance

Description

Get bidirectional DTW distance.

Usage

```
get_dtw_dist_bidirectional(x, y)
```

Arguments

```
x list of x inputy list of y input
```

Value

numeric

Examples

```
\texttt{get\_dtw\_dist\_bidirectional}(\texttt{c(1:1000)}, \texttt{c(1:1000)})
```

get_dtw_dist_mat

DTW distance matrix for all genes

Description

Get DTW distance matrix for all genes using pseudotime based sliding window transfromation, parallel computing allowed.

Usage

```
get_dtw_dist_mat(
  data,
  ptime,
  slide_window_size = 50,
  slide_step_size = 25,
  cores = 2
)
```

get_networks

Arguments

```
data gene expression matrix (Gene * Cells)

ptime pseudotime matched with the column cells of the gene expression matrix slide_window_size sliding window size slide_step_size sliding window step size

cores number of cores for parallel computing
```

Value

bidirectional DTW distance matrix

Examples

get_networks

Get the list of sub-networks

Description

Get sub-networks based on given adjacency data.frame input

Usage

```
get_networks(
  data,
  centrality_degree_mod = "out",
  components_mod = "weak",
  network_min_genes = 10
)
```

```
data adjacency data.frame

centrality_degree_mod

mode of centrality degree for popularity calculation

components_mod mode of sub-network extraction methods

network_min_genes

minimal number of gene elements required for extracted sub-networks
```

matrix2adj 5

Value

list of tabl_graph objects

Examples

matrix2adj

Convert distance matrix to adjacency dataframe

Description

Convert distance matrix to adjacency dataframe for network construction.

Usage

```
matrix2adj(data, quantile_cutoff = 5)
```

Arguments

```
data distance matrix
quantile_cutoff
an integer value (1-99) for quantile cutoff
```

Value

adjacency dataframe (with columns "from, to, distance, direction, similarity")

6 module_networks

module_networks

Get module level networks

Description

Given a distance matrix, calculate gene modules based on hierarchical clustering method and then get module level networks

Usage

```
module_networks(
   data,
   k = 10,
   quantile_cutoff = 10,
   centrality_degree_mod = "out",
   components_mod = "weak",
   network_min_genes = 10
)
```

Arguments

Value

a list networks for each module

pGRN 7

pGRN

pGRN: creates gene regulatory network based on single cell pseudotime information

Description

Given single cell matrix and pseudotime, construct gene regulatory network (GRN)

Usage

```
pGRN(
   expression_matrix,
   pseudotime_list,
   method = "DTW",
   slide_window_size = 20,
   slide_step_size = 10,
   centrality_degree_mod = "out",
   components_mod = "weak",
   network_min_genes = 10,
   quantile_cutoff = 5,
   order = 1,
   cores = 1
)
```

```
expression_matrix
                  expression matrix data
pseudotime_list
                 list of pseudotime
method
                 method for GRN construction: DTW, granger
slide_window_size
                  sliding window size
slide_step_size
                  sliding window step size
centrality_degree_mod
                  (for DTW method) mode of centrality degree for popularity calculation
components_mod (for DTW method) mode of sub-network extraction methods (weak or strong)
network_min_genes
                  minimal number of gene elements required for extracted sub-networks
quantile_cutoff
                  an integer value (1-99) for quantile cutoff
order
                  (for granger method) integer specifying the order of lags to include in the auxil-
                  iary regression
                 number of cores for parallel computing
cores
```

pGRNDB

Value

```
a list of tabl_graph objects
```

Examples

pGRNDB

pGRN example data

Description

A list with expression dataframe and pseudotime dataframe

Usage

pGRNDB

Format

```
pGRNDB:
```

A list with items expression and ptime **expression** data frame of single cell expression **ptime** pseudotime of the single cells ...

Source

pGRN

plot_network 9

plot_network

Plot stationary network

Description

Plot stationary network through ggraph

Usage

```
plot_network(graph, ...)
```

Arguments

```
graph a tbl_graph object
```

... other parameters for ggraph

Value

ggraph

Examples

plot_network_i

Plot interactive network

Description

Plot interactive network based on igraph layout input

Usage

```
plot_network_i(graph, save_file = NULL)
```

Arguments

graph igraph layout object

save_file file name of the saved file, not save if NULL

10 run_dtw

Value

visNetwork htmlwidget

Examples

run_dtw

Get network adjacency dataframe based on DTW method

Description

Use DTW to calcuate gene-gene distance based on their expression and pseudotime

Usage

```
run_dtw(
   expression_matrix,
   pseudotime_list,
   slide_window_size = 50,
   slide_step_size = 25,
   quantile_cutoff = 5,
   cores = 1
)
```

run_granger_test 11

Value

adjacency dataframe (with columns "from, to, distance, direction, similarity")

Examples

run_granger_test

Use Granger-causality Test to get gene-gene regulatory relationship

Description

Based on single-cell gene expression matrix and pseudotime, calculate Granger-causality Test based gene-gene regulatory relationship

Usage

```
run_granger_test(
  data,
  ptime,
  slide_window_size = 20,
  slide_step_size = 10,
  pvalue_cutoff = 0.01,
  order = 1,
  ...
)
```

```
data gene expression matrix (Gene * Cells)

ptime pseudotime matched with the column cells of the gene expression matrix slide_window_size sliding window size

slide_step_size sliding window step size

pvalue_cutoff cutoff for the pvalue from transfer entropy test order integer specifying the order of lags to include in the auxiliary regression other parameters for grangertest function in lmtest
```

12 slideWindows

Value

adjacency data frame

Examples

```
example_data <- pGRNDB
expression_matrix <- example_data[["expression"]]
pseudotime_list <- example_data[["ptime"]]$PseudoTime
gt_adj_df <- run_granger_test(expression_matrix, pseudotime_list)</pre>
```

slideWindows

Sliding Window Average

Description

Get sliding windows average values for given vector/list

Usage

```
slideWindows(data, window = 2, step = 1)
```

Arguments

data list of expression
window sliding window size
step sliding window step size

Value

list/vector of sliding windows with average expression value

```
slideWindows(c(1:1000),window=200,step=100)
slideWindows(c(1:1000),window=100,step=50)
```

Index

```
* datasets
pGRNDB, 8

data_transform, 2

get_dtw_dist_bidirectional, 3
get_dtw_dist_mat, 3
get_networks, 4

matrix2adj, 5
module_networks, 6

pGRN, 7
pGRNDB, 8
plot_network, 9
plot_network, 9
plot_network_i, 9

run_dtw, 10
run_granger_test, 11

slideWindows, 12
```