Сьогодні 26.12.2024

Урок №31-32

Підсумкове заняття

Повідомлення мети уроку

Ви зможете:

- продемонструвати власний проєкт;
- повторити основні хімічні поняття, які вивчили в I семестрі;
 - розв`язувати цікаві завдання;
- вдосконалити вміння працювати з періодичною системою хімічних елементів.

Мотивація навчальної діяльності

Ми вже дізналися яким чином відбувається сполучення атомів у молекули, як вчені намагалися класифікувати хімічні елементи, як був відкритий періодичний закон. Ми можемо з допомогою періодичної системи давати характеристику хімічним елементам і малювати їх електроні графічні формули. Отримані знання дозволять вам і надалі успішно вивчати хімію та виконувати різноманітні завдання.

Перша класифікація хімічних елементів

1786-1787 - француз Антуан Лавуазьє поділяє на

Неметали

Xлор (Cl_2)

Фтор (F_2)

Бром (Br₂)

Йод (I₂)

Графіт (С)

Кремній (Si)

Метали

Золото (Аи)

Алюміній (AI)

Галій (Ga)

Ртуть (Hg)

Мідь (Си)

Срібло (Ag)

З історії хімії

Йоганн Вольфганг Деберайнер – німецький хімік. У 1817 р., проаналізувавши властивості й характерні ознаки відомих на той час хімічних елементів, вказав на наявність певних сімейств, що містили по три елементи (звідси назва «тріада»).

З історії хімії

1863- англієць Джон Ньюлендс Основа: Розташував елементи за зростанням атомних мас, помітив подібність кожного восьмого. Недолік - охопив лише 17 елементів

3 історії хімії

1864 – німець Лотар Мейер

Основа - розмістив елементи за зростанням атомних мас. Недолік – не зміг узагальнити результати одержані на основі спостережень та встановити закономірність

4-атомні	3-атомні	2-атомні	1-атомні	1-атомні	2-атомні
				Li (7)	Be (8,3)
C (12)	N(14)	O (16)	F (19,9)	Na (23)	Mg (24)
Si (28)	P (31)	S (32)	Cl (35,5)	K (39,1)	Ca (40)
-	As (75)	Se (79)	Br (80)	Rb (85)	Sr (87,6)
Sn (117,6)	S6 (120,6)	Te (128,3)	I (126,8)	Cs (133)	Ba (137)
P6 (207)	Bi (203)	_	_	Tl (204)	_

Відкриття періодичного закону

Російський хімік Дмитро Іванович Менделєєв, на відміну від своїх попередників звернув увагу на відмінності фізико-хімічних властивостей елементів і їхніх сполук. Завдяки цьому вчений у 1869 р. відкрив загальний закон природи — періодичний закон.

Періодична система

Минуло більш як 150 років, але періодичний закон та періодична система з успіхом застосовується і донині.

Періодична система

Періодичний закон Д.І. Менделєєва дав можливість передбачити існування на той час ще невідомих хімічних елементів.

Д. І. Менделєєв дуже докладно описав властивості трьох ще не відкритих елементів і назвав їх екабором, екаалюмінієм і екасиліцієм. Протягом 15 років ці елементи були відкриті.

Першим був відкритий екаалюміній (Лекок-де-Буабодран, француз, 1875). Цей елемент був названий галієм.

Scandium 44.955

швед, 1880),

Потім екасіліцій, названий германієм (К. А. Вінклер, німець,1886).

Структура ПСХЕ Д. І. Менделєєва

19		_		Побічн	підгрупи			700	-	_		
Tyyns	Ia	Ha	Шь	IVb	1b	IIb	IIIa	IVa	Va	VIa	VIIa	VIIIa
epinar	-											
1	H											He
2	Li	Be					В	C	N	0	F	Ne
3	Na	Mg					Al	Si	P	S	CI	Ar
4	K	Ca	Sc	Ti	Cu	Zn	Ga	Ge	As	Se	Br	Kr

Будова атома

Атом - найменша, електронейтральна, хімічно неподільна частинка речовини.

Атом – позитивно заряджене ядро і негативно заряджені електрони.

Пригадай

Нейтрон — нейтральна частинка, що не має електричного заряду.

Протон – позитивно заряджена частинка.

Електрон – негативно заряджена частинка.

Протонне число — Z = кількості протонів = заряду ядра = кількості електронів = порядковому номеру.

Нуклонне число – A = кількості нуклонів (протонів і нейтронів разом) = атомній масі.

BCIM

Електронні орбіталі

Кожен електрон рухається навколо ядра так швидко, що його не тільки не можна розглянути за допомогою найпотужнішого мікроскопа, але неможливо навіть представити у вигляді крапки, що рухається по певній траєкторії.

Енергетичні підрівні

Кожен рівень поділяється на підрівні - s, p, d, f, на яких розташовуються атомні орбіталі — s, p, d, f. Чим більше номер "поверху" - рівня, тим "вище" (далі від ядра) знаходяться електрони цього рівня. На першому рівні може бути один-єдиний s-підрівень, на другому підрівнів вже два: s і p. На третьому "поверсі" три підрівні (s, p i d), на четвертому - чотири (s, p, d, f).

Енергетичі рівень (електрон шар) 1		-	фічне бражеі	ння	opõitani	686	9-11/2	фівн прів
2	2s 2p				1		ядро	
3	3s 3p 3d							
4	4s 4n 4d	4f						

Електронна хмара такої форми може займати в атомі три положення вздовж осей координат x, y i z:

Енергетичні підрівні

Наприклад, р-орбіталь:

чим більше енергія електрона в атомі, тим швидше він обертається, тим сильніше витягується область його перебування і нарешті перетворюється на гантелеподібну рорбіталь:

 P_x – орбіталь

 P_v – орбіталь

 P_z – орбіталь

Будова атома

Порядок заповнення рівнів та підрівнів електронами в атомі.

$$1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p$$

$$3s \rightarrow 3p$$

$$3d \rightarrow 4p \rightarrow 5s \rightarrow 4d$$

$$3d \rightarrow 4p \rightarrow 5s \rightarrow 4d$$

$$4d$$

$$3d \rightarrow 5p \rightarrow 6s \rightarrow 4f \rightarrow 5d \rightarrow 6p$$

$$3d \rightarrow 7s \rightarrow 5f \rightarrow 6p$$

Хімічні підказки

Номер групи – кількість електронів зовнішнього енергетичного рівня (для головних підгруп).

Кількість неспарених електронів = валентності. Максимальна валентність = номеру групи.

Можливі валентності для елементів V – VII груп: № групи мінус 2.

Робота в парах

Знайдіть в таблиці Менделєєва елемент № 18.

Вкажіть загальну кількість його електронів.

Скільки енергетичних рівнів є в атомі Ar?

Скільки електронів може вмістити III рівень?

Чи можемо ми вважати, що III рівень в Ar завершений?

Проблемне питання

Атом може втратити або прийняти електрон.

Як ви вважаєте, які наслідки для нього це буде мати?

Він перетворюється на заряджену частинку – йон та набуває електронної конфігурації іншого елементу.

3.Li⁺

5.Mg²⁺

Завдання в групах

Складіть електронні формули з комірками йонів

1. Na ⁺ $2s^2$ $2p^6 \uparrow \downarrow$ $3s^0 \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

2.F-
$$2p^6 \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow$$

4.Al
$$^{3+}$$
 2s 2 2p 6 3s 0 3p 0 3d 0

$$\uparrow\downarrow$$
 $\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$

$$2s^2 2p^6 3s^0 3p^0 3d^0$$

Вправа «Виправ помилку»

Речовина складається з молекул, які в свою чергу з протонів.

Атом складається з протонів та електронної оболонки.

Ядро має негативний заряд, електронна оболонка — позитивний.

До складу ядра входить два види нуклонів, а саме: протони та електрони.

Найбільш розповсюдженим елементом у Всесвіті є Гелій.

Атом алюмінію має 13 електронів, 13 протонів, 13 нейтронів.

Робота в зошиті

Закінчити речення

Періодична система є...

Графічним відображенням періодичного закону.

Періодична система складається з ...

періодів і груп.

Період це ...

ряд хімічних елементів.

Періоди є ...

малі та великі.

Група це ...

стовпчик подібних за властивостями елементів.

Група поділяється на дві підгрупи

головну і побічну.

Рефлексія

Сьогодні я дізнався...

Було цікаво...

Було важко...

Я виконував завдання...

Я зрозумів, що...

Тепер я можу...

Я відчув, що...

Я придбав...

Я навчився...

У мене вийшло...

Домашнє завдання

1.Скласти кросворд до улюбленої теми.