UNIVERSITY OF TWENTE.

Mixed finite elements for port-Hamiltonian models of von Kármán beams

7th IFAC Conference on Lagrangian and Hamiltonian method for non linear control
Andrea Brugnoli¹ Ramy Rashad¹ Federico Califano¹

Stramigioli¹ Denis Matignon²

¹University of Twente, Enschede (NL)

²ISAF SUPAERO, Toulouse (FR)

Stefant

Overview

- Von-Kármán theory of thin beams in pH form
- 2 Numerical discretization
- Numerical convergence study

Outline

- 1 Von-Kármán theory of thin beams in pH form
- 2 Numerical discretization
- 3 Numerical convergence study

Linear vs Von-Kármán plate theory

Geoometrical non-linearities allow describing bifurcations (i.e. buckling).

The von-Kármán assumption

Basic geometric assumption

Out of plane deflection comparable compared to the thickness: $w/h = \mathcal{O}(1)$.

Aspect ratio: $\delta = h/L$. The following terms are kept in the expansion:

$$w/L = \mathcal{O}(\delta),$$

 $u/L = \mathcal{O}(\delta^2),$

Linear isotropic beams

The axial and bending behavior are uncoupled if $w/h \ll 1$:

Axial displacement (wave equation)

$$\rho A \partial_{tt} u = \partial_x n_{xx}, \qquad n_{xx} = E A \partial_x u.$$

Vertical displacement (Euler-Bernoulli equation)

$$\rho A \partial_{tt} w = -\partial_{xx} m_{xx}, \qquad m_{xx} = E I \partial_{xx} w.$$

For Von-Kármán beams the two are coupled.

Stresses and Strains in Von-Kármán beams

Decomposition strain field

Membrane and bending stresses (isotropic material)

$$n_{xx} = \int_{S} E \, dS \varepsilon_{xx}^{m} = EA \varepsilon_{xx}^{m}$$
 Axial stress resultant $m_{xx} = -\int_{S} Ez^{2} \, dS \kappa_{xx} = EI\kappa_{xx}$, Bending stress resultant

Port-Hamiltonian Von-Kármán beams

Dynamics

$$\rho A \partial_{tt} u = \partial_x \underbrace{n_{xx}}_{n_{xx}},$$

$$\rho A \partial_{tt} w = -\partial_{xx}^2 m_{xx} + \partial_x (\underbrace{n_{xx}}_{n_{xx}} \partial_x w),$$

Energy and coenergy variables

Same selection as usual:

$$\alpha_u = \rho A \partial_t u, \qquad \alpha_\varepsilon = \varepsilon_{xx}^m,
\alpha_w = \rho A \partial_t w, \qquad \alpha_\kappa = \kappa_{xx}.$$

Linear constitutive relation $e = Q\alpha$ with

$$Q = \text{Diag} [\rho A, C_a, \rho A, C_b]^{-1}, \quad C_a = (EA)^{-1}, \quad C_b = (EI)^{-1},$$

where C_a , C_b are the axial and bending compliances.

The port-Hamiltonian realization

To close the system, variable w has to be accessible.

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_u \\ \alpha_\varepsilon \\ \alpha_w \\ \alpha_\kappa \\ w \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & \partial_x & 0 & 0 & 0 \\ \partial_x & 0 & \boxed{(\partial_x w) \, \partial_x} & 0 & 0 \\ 0 & \boxed{\partial_x (\cdot \, \partial_x w)} & 0 & -\partial_{xx}^2 & -1 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathcal{J}} \begin{pmatrix} e_u \\ e_\varepsilon \\ e_w \\ e_\kappa \\ \delta_w H \end{pmatrix}.$$

Proposition

The operator \mathcal{J} *is formally skew-adjoint.*

The construction is analogous for plate problems¹.

¹Andrea Brugnoli and Denis Matignon (2022). "A port-Hamiltonian formulation for the full von-Kàrmàn plate model". In: *10th European Nonlinear Dynamics Conference (ENOC)*.

Energy rate and boundary conditions

Proposition

The energy rate reads

$$\dot{H} = \langle e_u, e_{\varepsilon} \rangle_{\partial \Omega} + \langle e_w, e_{\varepsilon} \partial_x w - \partial_x e_{\kappa} \rangle_{\partial \Omega} + \langle \partial_x e_w, e_{\kappa} \rangle_{\partial \Omega}.$$

with $\Omega = [0, L]$ and $\langle \cdot, \cdot \rangle_{\Omega}$ the L^2 inner product.

Boundary conditions classification

BCs	Traction	Bending	
Dirichlet BCs.	$e_u _0^L$	$e_w _0^L$	$\partial_x e_w _0^L$
Neumann BCs.	$ e_{\varepsilon} _{0}^{L}$	$ e_{\varepsilon}\partial_{x}w-\partial_{x}e_{\kappa} _{0}^{L}$	$ e_{\kappa} _{0}^{L}$

Same bcs. as in Puel and Tucsnak 1996 for global existence and uniqueness result.

Outline

- 1 Von-Kármán theory of thin beams in pH form
- 2 Numerical discretization
- 3 Numerical convergence study

Pure coenergy formulation

Coenergy formulation for linear constitutive equations

If the Q operator is inverted:

$$\begin{pmatrix} \rho A \dot{e}_u \\ C_a \dot{e}_\varepsilon \\ \rho A \dot{e}_w \\ C_b \dot{e}_\kappa \\ \dot{w} \end{pmatrix} = \begin{bmatrix} 0 & \partial_x & 0 & 0 & 0 \\ \partial_x & 0 & \partial_x w \, \partial_x & 0 & 0 \\ 0 & \partial_x (\cdot \, \partial_x w) & 0 & -\partial_{xx}^2 & -1 \\ 0 & 0 & \partial_{xx}^2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} e_u \\ e_\varepsilon \\ e_w \\ e_\kappa \\ \delta_w H \end{pmatrix}.$$

In the sequel, the quantity $\delta_w H$ is removed as no displacement dependent potential (e.g. gravity) is considered

Weak formulation

Introducing test functions and integrating by parts the first, third and fourth, we get the weak formulation.

Weak formulation

Find $(e_u, e_w, e_\kappa, w) \in H^1(\Omega)$, $e_\varepsilon \in L^2(\Omega)$ such that

$$\begin{split} \langle \psi_{u}, \, \rho A \, \dot{e}_{u} \rangle_{\Omega} &= - \, \langle \partial_{x} \psi_{u}, \, e_{\varepsilon} \rangle_{\Omega} + \langle \psi_{u}, \, e_{\varepsilon} \rangle_{\partial \Omega} \,. \\ \langle \psi_{\varepsilon}, \, C_{a} \, \dot{e}_{\varepsilon} \rangle_{\Omega} &= \langle \psi_{\varepsilon}, \, \partial_{x} e_{u} \rangle_{\Omega} + \langle \psi_{\varepsilon}, \, \partial_{x} w \, \partial_{x} e_{w} \rangle_{\Omega} \,, \\ \langle \psi_{w}, \, \rho A \dot{e}_{w} \rangle_{\Omega} &= - \, \langle \partial_{x} \psi_{w} \partial_{x} w, \, e_{\varepsilon} \rangle_{\Omega} + \langle \partial_{x} \psi_{w}, \, \partial_{x} e_{\kappa} \rangle_{\Omega} \\ &\quad + \langle \psi_{w}, \, e_{\varepsilon} \partial_{x} w - \partial_{x} e_{\kappa} \rangle_{\partial \Omega} \,, \\ \langle \psi_{\kappa}, \, C_{b} \, \dot{e}_{\kappa} \rangle_{\Omega} &= - \, \langle \partial_{x} \psi_{\kappa}, \, \partial_{x} e_{w} \rangle_{\Omega} + \langle \psi_{\kappa}, \, \partial_{x} e_{w} \rangle_{\partial \Omega} \,, \\ \langle \psi, \, \dot{w} \rangle_{\Omega} &= \langle \psi, \, e_{w} \rangle_{\Omega} \,. \end{split}$$

holds $\forall (\psi_u, \psi_w, \psi_\kappa, \psi) \in H^1(\Omega), \forall \psi_\varepsilon \in L^2(\Omega)$.

Weak formulation

Introducing test functions and integrating by parts the first, third and fourth, we get the weak formulation.

Weak formulation

Find
$$e = (e_u, e_\varepsilon, e_w, e_\kappa) \in H^1 \times L^2 \times H^1 \times H^1$$
 such that

$$m(\boldsymbol{\psi}, \partial_t \boldsymbol{e}) = j_w(\boldsymbol{\psi}, \boldsymbol{e}) + b(\boldsymbol{\psi}) \mathbf{u},$$

 $\partial_t w = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \boldsymbol{e},$
 $\mathbf{y} = \boldsymbol{b}^\top(\boldsymbol{e}),$

$$\forall \boldsymbol{\psi} \in H^1 \times L^2 \times H^1 \times H^1 := X$$

- ► *m* is a symmetric, coercive, bilinear form;
- $ightharpoonup j_w$ is a skew-symmetric bilinear form modulated by w;
- ▶ $b: X \to \mathbb{R}^6$ vector-valued functional.

Mixed finite element construction²

Crucial concept: Hilbert complex $H^1 \xrightarrow{\partial_x} L^2$.

Key requirements for mixed Galerkin approximation

- ► The subspaces $H_h^1 \subset H^1$, $L_h^2 \subset L^2$ form a subcomplex $H_h^1 \xrightarrow{\partial_x} L_h^2$ (i.e. $\partial_x H_h^1 \subset L_h^2$).
- ▶ they admit bounded linear projections $\pi_h^{H^1}: H^1 \to H_h^1$ and $\pi_h^{L^2}: L^2 \to L_h^2$ which commute with ∂_x :

$$\partial_{x}\pi_{h}^{H^{1}}=\pi_{h}^{L^{2}}\partial_{x}.$$

Satisfied for $CG_k \xrightarrow{\partial_x} DG_{k-1}$

$$CG_k = \{u \in H^1(\Omega) | \forall \text{edge in the mesh}, \ u|_{\text{edge}} \in P_k\},$$

$$DG_{k-1} = \{u \in L^2(\Omega) | \forall edge \text{ in the mesh, } u|_{edge} \in P_{k-1}\},$$

where P_k space of polynomials of degree k.

²Arnold, Falk, and Winther 2006.

Finite element choice and final system

For the proposed weak formulation, the FE spaces become

$$e_u^h \in CG_{2k-1}, \qquad e_\varepsilon^h \in DG_{2k-2}, \qquad (e_w^h, \ e_\kappa^h, \ w^h) \in CG_k, \quad k \geq 1.$$

Implications:

- ► Subcomplex property for the linear part: $\partial_x CG_{2k-1} \subset DG_{2k-2}$.
- ► The non linear part respects

$$\partial_x CG_k \cdot \partial_x CG_k \subset DG_{2k-2}$$
.

Finite dimensional system (Galerkin projection)

$$\begin{aligned} \mathbf{M}\dot{\mathbf{e}} &= J(\mathbf{w})\mathbf{e} + \mathbf{B}\mathbf{u},\\ \dot{\mathbf{w}} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{I} & \mathbf{0} \end{bmatrix}\mathbf{e},\\ \mathbf{y} &= \mathbf{B}^{\top}\mathbf{e}. \end{aligned}$$

Outline

- 1 Von-Kármán theory of thin beams in pH form
- 2 Numerical discretization
- 3 Numerical convergence study

Manufactured solution

The following manufactured solution is considered

$$u^{\text{ex}} = x^3 [1 - (x/L)^3] \sin(2\pi t), \qquad w^{\text{ex}} = \sin(\pi x/L) \sin(2\pi t),$$

together with the boundary conditions

$$u|_0^L = 0$$
, $w|_0^L = 0$, $m_{xx}|_0^L = 0$.

A Crank-Nicholson scheme is used for time integration.

Convergence measure

The discrete time-space norm $L^{\infty}_{\Delta t}(\mathcal{X})(\mathcal{X} = H^1 \text{ or } L^2)$ is used to measure convergence

$$||\cdot||_{L^{\infty}(\mathcal{X})} \approx ||\cdot||_{L^{\infty}_{\Delta t}(\mathcal{X})} = \max_{t \in t_i} ||\cdot||_{\mathcal{X}},$$

where t_i are the discrete simulation instants.

 $L^{\infty}_{\Delta t}(H^1)$ error for e_u .

 $e_u^h (h = 2^{-5}, k = 2).$

 $L^{\infty}_{\Delta t}(L^2)$ error for e_{ε} .

 e_{ε}^{h} for $h = 2^{-5}, k = 2$.

 $L^{\infty}_{\Delta t}(H^1)$ error for e_w .

 e_w^h for $h = 2^{-5}$, k = 2.

 $L^{\infty}_{\Delta t}(H^1)$ error for e_{κ} .

 e_{κ}^{h} for $h = 2^{-5}$, k = 2.

Conclusion and Outlook

- ► First step into pH non linear mechanics. The geometrical non linearities belong to the interconnection operator.
- ► Natural extension for the 2D case (fancier FE).
- ► Can be used to study more complex phenomena. The discretization method guarantees energy conservation.

References I

Brugnoli, Andrea and Denis Matignon (2022). "A port-Hamiltonian formulation for the full von-Kàrmàn plate model". In: 10th European Nonlinear Dynamics Conference (ENOC).

Puel, J.P. and M. Tucsnak (1996). "Global existence for the full von Kármán system". In: *Applied Mathematics and Optimization* 34.2, pp. 139–160.

Port-Hamiltonian von-Kármán plates

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_u \\ A_{\varepsilon} \\ w \\ \alpha_w \\ A_{\kappa} \end{pmatrix} = \underbrace{\begin{bmatrix} \mathbf{0} & \mathrm{Div} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathrm{Grad} & \mathbf{0} & \mathbf{0} & -\mathcal{C}(w)^* & \mathbf{0} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & \mathcal{C}(w) & -1 & 0 & -\mathrm{div}\,\mathrm{Div} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathrm{Grad}\,\mathrm{grad} & \mathbf{0} \end{bmatrix}}_{\mathcal{J}} \begin{pmatrix} \delta_{\alpha_u} H \\ \delta_{A_{\varepsilon}} H \\ \delta_{\alpha_w} H \\ \delta_{A_{\kappa}} H \end{pmatrix},$$

where

$$C(w)(T) = \operatorname{div}(T\operatorname{grad} w),$$

$$\mathcal{C}(w)^*(\cdot) = -\frac{1}{2} \left[\operatorname{grad}(\cdot) \otimes \operatorname{grad}(w) + \operatorname{grad}(w) \otimes \operatorname{grad}(\cdot) \right].$$