

ML Lab Week 10 SVM Lab Instructions

SRN: PES2UG23CS366

SECTION: F

SEM - 5

1. Objective

The goal of this lab is to understand and implement Support Vector Machine (SVM) classifiers. You will train SVMs using three different kernels: **Linear, Radial Basis Function** (RBF), and Polynomial, on distinct datasets. You will then evaluate their performance using standard classification metrics and visualize their decision boundaries to see how they separate data.

2. Core Concepts

- **Support Vector Machine (SVM):** A powerful supervised learning algorithm that finds an optimal hyperplane to separate data points of different classes.
- **Kernel Trick:** A technique that allows SVMs to solve non-linear problems by transforming data into a higher-dimensional space.
 - Linear Kernel: Creates a straight-line decision boundary.
 - **RBF Kernel:** Creates a complex, non-linear boundary, like a circle or a wave.
 - **Polynomial Kernel:** Creates a curved, polynomial decision boundary.
- Hard vs. Soft Margin: The parameter C in SVMs controls the trade-off between
 maximizing the margin and minimizing the classification error. A large C leads to a hard
 margin (less tolerance for misclassification), while a small C leads to a soft margin
 (more tolerance).

3. Deliverables

1..

- Content Requirements:
 - 1. Screenshots Provide clearly labeled screenshots for all the results generated by your notebook. You must include a total of 14 screenshots, divided as follows:
 - Training Results (6 Screenshots): Capture the classification report output for each model.
 - Moons Dataset (3 screenshots):
 - 1. Classification Report for SVM with LINEAR Kernel with SRN

2. Classification Report for SVM with RBF Kernel with SRN

3. Classification Report for SVM with POLY Kernel with SRN

- Banknote Dataset (3 screenshots):
- 4. Classification Report for SVM with LINEAR Kernel

5. Classification Report for SVM with RBF Kernel

6. Classification Report for SVM with POLY Kernel

- **Decision Boundary Visualizations (8 Screenshots):** Capture the plot for each model's decision boundary.
 - Moons Dataset (3 plots):
 - 7. Moons Dataset SVM with LINEAR Kernel
 - 8. Moons Dataset SVM with RBF Kernel
 - 9. Moons Dataset SVM with POLY Kernel

- Banknote Dataset (3 plots):
- 10. Banknote Dataset SVM with LINEAR Kernel
- 11. Banknote Dataset SVM with RBF Kernel

12. Banknote Dataset - SVM with POLY Kernel

Margin Analysis (2 plots):

- Soft Margin SVM (C=0.1)
- Hard Margin SVM (C=100)

Analysis Questions:

Analysis Questions for Moons:

1. Based on the metrics and the visualizations, what inferences about the performance of the Linear Kernel can you draw?

Answer :-

Linear kernel — inferences from metrics & visualization

- Behavior: Linear SVM produces a straight-line decision boundary.
- **Observed effect:** It **underfits** the Moons data (which is intrinsically nonlinear).
- Evidence: Lower accuracy (~0.84) and lower F1-scores for both classes; many points along the curved moon arcs are misclassified.
- **Conclusion:** Linear kernel is too simple (high bias) for this dataset it cannot capture the curved class boundary.

2. Compare the decision boundaries of the RBF and Polynomial kernels. Which one seems to capture the shape of the data more naturally?

• **RBF:** Produces *smooth, radial* decision regions that closely follow the curved moon shapes; tends to give the best accuracy (in your run $\approx 0.94-0.95$).

- **Polynomial (degree 3):** Can fit curved boundaries but may introduce extra wiggles or irregularities (depending on degree and coef0); performance is usually slightly worse than RBF for this dataset.
- **Verdict: RBF** captures the moons more naturally smoother boundary and better empirical performance.

Analysis Questions for Banknote:

- 1. In this case, which kernel appears to be the most effective?
- **Typical result:** The **linear kernel** often performs very well on the Banknote Authentication dataset because its features (variance, skewness, curtosis, entropy) are often linearly separable after scaling.
- If your experiments show otherwise: If RBF slightly outperforms linear, it means a small nonlinearity exists; otherwise choose **linear** for simplicity and interpretability.
- 2. The Polynomial kernel shows lower performance here compared to the Moons dataset. What might be the reason for this?

• Reasons:

- The Banknote dataset is **closer to linearly separable**; an unnecessarily complex polynomial boundary can *overfit* noise instead of improving class separation.
- Polynomial kernels introduce **higher model complexity** (extra curvature / interactions) which is unnecessary when the classes are already separable in the original feature space.
- Sensitive to **feature scaling** and hyperparameters (degree, coef0) if not tuned, polynomial can underperform.

☐ **Conclusion:** Polynomial underperforms because it adds complexity that isn't needed and can fit noise or cause unstable boundaries.

General Margin / C Analysis (Soft vs Hard)

- 1) Which model produces a wider margin: C=0.1 (soft) or C=100 (hard)?
- Wider margin: Soft margin (C = 0.1) produces a wider margin.
 - Low C emphasizes maximizing margin over classifying every training point correctly → larger margin, more slack allowed.
 - 2) Why does SVM allow points inside/on the wrong side of the margin in Soft Margin?

- Reason: Soft-margin SVM introduces slack variables (ξ_i) and a penalty controlled by C.
- **Trade-off:** The model trades some training errors (points inside or on the wrong side) for a **larger margin** that usually generalizes better.
- **Primary goal: Maximize the margin** while controlling misclassification via the penalty term i.e., **good generalization**, not perfect training accuracy.
 - 3) Which model is more likely to overfit?
- More likely to overfit: Hard margin / high C(C = 100).
 - High C strongly penalizes misclassification, forcing the classifier to fit training points tightly; this can fit noise and reduce generalization.
 - 4) Which model to trust on a new unseen point? Which C to prefer when data is noisy?
- Trust more: Soft-margin model (low C) more robust to noise and less likely to be misled by outliers.
- **Real-world recommendation:** Start with a **lower C** (e.g., 0.01–1 depending on scale) when data is noisy, then tune C with cross-validation. Low C favors simpler decision boundaries and typically generalizes better; increase C only if validation shows underfitting.
- 4. Imagine you receive a new, unseen data point. Which model do you trust more to classify it correctly? Why? In a real-world scenario where data is often noisy, which value of C (low or high) would you generally prefer to start with?

I would trust the **Soft Margin SVM (with low C)** more to classify a new, unseen data point correctly.

Reasoning:

- A **low C value** means the model allows some misclassifications on the training data in exchange for a **wider margin**.
- This wider margin makes the model less sensitive to noise and outliers, resulting in better generalization to unseen data.
- In contrast, a **high C** (**hard margin**) model tries to perfectly classify all training samples, which can lead to **overfitting** it performs well on the training set but poorly on new data.

In a real-world scenario:

- Data is almost always **noisy or imperfect**.
- Therefore, it is better to **start with a lower C value** (e.g., 0.1 or 1) and later tune it using cross-validation if needed.
- A smaller C produces a **simpler, smoother decision boundary** that generalizes better.

