Math 132 (Complex Analysis for Applications) University of California, Los Angeles

Aaron Chao

Winter 2022

These are my lecture notes for Math 132 (Complex Analysis for Applications), which is taught by Tyler James Arant. The textbook for this class is *Complex Analysis*, by Theodore W. Gamelin.

Contents		
1	an 3, 2022	2
	.1 What are the Complex Numbers?	
	.2 Complex Conjugates and the Modulus	. 3
2	an 5, 2022	6
	.1 Distance in the Complex Plane	. 6
	. <mark>2 Complex Polynomials</mark>	. 6
	.3 Polar Representation	. 7
	.4 De Moivre's Formulae	. 10
	.5 nth Roots	. 10

1 Jan 3, 2022

1.1 What are the Complex Numbers?

We first recall the basic algebraic properties of the real numbers, \mathbb{R} . For all $a, b, c \in \mathbb{R}$,

- 1. (Commutative law of addition): a + b = b + a
- 2. (Commutative law of multiplication): $a \cdot b = b \cdot a$
- 3. (Associative law of addition): (a + b) + c = a + (b + c)
- 4. (Associative law of multiplication): $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 5. (Distributive law): $a(b+c) = a \cdot b + a \cdot c$

The system of real numbers \mathbb{R} has many more (non-algebraic) properties which make it suitable for calculus. However, it lacks a particular desirable property: \mathbb{R} does not contain roots for all of its polynomial equations, e.g., there is not a solution to the equation

$$x^2 + 1 = 0 \quad \text{in } \mathbb{R}.$$

It turns out (by the non-trivial fundamental theorem of algebra) that we can get a number system for which every polynomial equation has a root by "appending" $i = \sqrt{-1}$ to \mathbb{R} .

Definition 1.1 (Complex number)

A complex number is an expression of the form

$$x + iy$$
 where $x, y \in \mathbb{R}$,

Two complex numbers a+ib and c+id are equal if and only if a=c and b=d We denote by $\mathbb C$ the set of all complex numbers.

For a complex number z = x + iy, we define its real and imaginary parts as follows:

$$\operatorname{Re} z = x$$

$$\operatorname{Im} z = y$$

There is a one-to-one correspondence between \mathbb{C} and \mathbb{R}^2 :

$$z \mapsto (\operatorname{Re} z, \operatorname{Im} z)$$

This can be visualized as the *complex plane*, where we can identify the real numbers and the *purely imaginary numbers*.

Example 1.2 (Addition and multiplication on \mathbb{C})

We can define operations of addition and multiplication on $\mathbb C$ as follows:

$$z = x + iy, \quad w = a + ib$$

$$z + w = (x + iy) + (a + ib) = (x + a) + i(y + b)$$

$$zw = (x + iy)(a + ib) = xa + ixb + iya + i^{2}yb$$

$$= (xa - yb) + i(xb + ya)$$

Example 1.3 (Multiplicative inverse in \mathbb{C})

Every nonzero complex number $z = x + iy \neq 0$ has a multiplicative inverse,

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2}.$$

Need to check $z \cdot \frac{1}{z} = 1$

$$z \cdot \frac{1}{z} = (x + iy) \left(\frac{x - iy}{x^2 + y^2} \right) = \left(\frac{x^2 - ixy + ixy - i^2y^2}{x^2 + y^2} \right) = \left(\frac{x^2 + y^2}{x^2 + y^2} \right) = 1$$

In addition to having additive and multiplicative inverses, the complex numbers also have the following algebraic properties:

For all $z_1, z_2, z_3 \in \mathbb{C}$,

- 1. (Commutative law of addition): $z_1 + z_2 = z_2 + z_1$
- 2. (Commutative law of multiplication): $z_1 \cdot z_2 = z_2 \cdot z_1$
- 3. (Associative law of addition): $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- 4. (Associative law of multiplication): $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$
- 5. (Distributive law): $z_1(z_2+z_3)=z_1\cdot z_2+z_1\cdot z_3$

1.2 Complex Conjugates and the Modulus

Definition 1.4 (Complex conjugate)

The <u>complex conjugate</u> of the number z = x + iy is the number

$$\overline{z} = x - iy.$$

Some basic facts about complex conjugation. All are simple to prove, so we only discuss the proof of a few.

- $\bar{\overline{z}} = z$
- $z = \overline{z}$ if and only if z is a real number
- $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$
- $\overline{z_1}\overline{z_2} = \overline{z}_1 \cdot \overline{z}_2$
- $\overline{\left(\frac{1}{z}\right)} = 1/\overline{z}$

Proof. We want to show that $\overline{\left(\frac{1}{z}\right)} = 1/\overline{z}$.

$$\frac{1}{\overline{z}} = \frac{1}{x - iy} = \frac{x - (-iy)}{x^2 + y^2} = \frac{x + iy}{x^2 + y^2} = \overline{\left(\frac{x - iy}{x^2 + y^2}\right)} = \overline{\left(\frac{1}{\overline{z}}\right)}$$

Geometrically, conjugation reflects z across the real axis:

Definition 1.5 (Absolute value/modulus)

The <u>absolute value</u> or <u>modulus</u> of z = x + iy is

$$|z| = \sqrt{x^2 + y^2}$$

Geometrically, |z| is the length of z as a vector in the complex plane:

Some properties relating complex conjugation and absolute value:

•
$$|z|^2 = z\overline{z}$$

$$z\overline{z} = (x+iy)(x-iy) = x^2 - ixy + ixy - i^2y^2$$
$$= x^2 + y^2$$
$$= |z|^2$$

$$\bullet \quad \frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2} = \frac{\overline{z}}{|z|^2}$$

• We have

$$\operatorname{Re} z = \frac{z + \overline{z}}{2}, \quad \operatorname{Im} z = \frac{z - \overline{z}}{2i}$$
$$\frac{z + \overline{z}}{2} = \frac{x + iy + x - iy}{2} = \frac{2x}{2} = x$$

Note:
$$\frac{1}{i} = -i$$

• For
$$z, w \in \mathbb{C}, |zw| = |z| \cdot |w|$$
.

Note:
$$\frac{1}{i} = -i$$

• For $z, w \in \mathbb{C}, |zw| = |z| \cdot |w|$.

$$|z|^2 \cdot |w|^2 = z\overline{z} \cdot w\overline{w} = (zw)(\overline{z} \cdot \overline{w})$$

$$= (zw)\overline{(zw)} = |zw|^2$$

Then take a square root.

2 Jan 5, 2022

2.1 Distance in the Complex Plane

We can use absolute value to measure the distance between complex numbers (thought of as vectors in the complex plane).

The distance between complex numbers z_1, z_2 is $|z_1 - z_2|$:

$$z_1 = x_1 + iy_1, \quad z_2 = x_2 + iy_2$$

 $|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

A crucial fact about working with absolute values is

Proposition 2.1 (Triangle Inequality)

For any two complex numbers z_1, z_2 ,

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Some corollaries of the Triangle Inequality:

Corollary 2.2

For any complex numbers z_1, z_2, w ,

- $|z_1 z_2| \le |z_1 w| + |w z_2|$.
- $|z_2| |z_1| \le |z_2 z_1|$ (Reverse triangle inequality)

Proof.

•

$$|z_1 - z_2| = |(z_1 - w) + (w - z_2)|$$

= $|z_1 - w| + |w - z_2|$ (Triangle Inequality)

•

$$|z_2| = |(z_2 - z_1) + z_1| \le |z_2 - z_1| + |z_1|$$

 $\implies |z_2| - |z_1| \le |z_2 - z_1|$

By symmetry, also $|z_1| - |z_2| \le |z_2 - z_1|$

2.2 Complex Polynomials

Definition 2.3 (Complex polynomial)

A <u>complex polynomial</u> of degree $n \ge 0$ is a function of the form

$$\overline{p(z)} = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 + a_0, \quad z \in \mathbb{C},$$

where the coefficients a_0, a_1, \ldots, a_n are complex numbers with $a_n \neq 0$.

Theorem 2.4 (Fundamental Theorem of Algebra)

Every complex polynomial p(z) of degree $n \ge 1$ has a factorization

$$p(z) = c(z - z_1)^{m_1}(z - z_2)^{m_2} \cdots (z - z_k)^{m_k},$$

where $c \in \mathbb{C}$, the roots z_1, \ldots, z_n are distinct complex numbers, and $m_1, \ldots, m_k \geq 1$. This factorization is unique, up to permutation of the factors. Also note that

$$\sum_{i=1}^{k} m_k = n = \text{the degree of the polynomial}$$

Example 2.5

Consider
$$p(z) = iz^2 + i$$
.
 $p(z) = iz^2 + i = i(z^2 + 1) = i(z - i)(z + i)$

2.3 Polar Representation

A nonzero complex number $z \in \mathbb{C}$ can be described by two quantities:

- its length |z| = r
- The angle z makes with the positive real axis.

Definition 2.6 (Polar representation)

The polar representation of $z \neq 0$ is:

$$z = r(\cos(\theta) + i\sin(\theta))$$

Given $z = r(\cos(\theta) + i\sin(\theta))$ we can recover the Cartesian coordinates for z:

$$x = r\cos(\theta)$$

$$y = r\sin(\theta)$$

Definition 2.7 (Argument)

For a nonzero $z = r(\cos(\theta) + i\sin(\theta))$, the angle θ is called the <u>argument</u> of z, and is denoted $\theta = \arg z$. But the argument of z, $\arg z$, is actually a multivalued function:

$$\arg z + 2\pi k$$
, k an integer

also represents the same angle

Definition 2.8 (Principal argument)

The <u>principal argument</u> of $z \neq 0$, denoted Arg z, is the unique argument θ which is in $(-\pi, \pi]$.

$$\arg z = \{ \operatorname{Arg} z + 2k\pi \colon k \text{ integer} \}$$

"multivalued function"

 $\operatorname{Arg} z$

"single-valued"

Example 2.9

Consider the complex number 1 + i.

$$|1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$1+i = \sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \right)$$

$$\operatorname{Arg}(1+i) = \frac{\pi}{4}$$

We introduce the notation

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$
 for $\theta \in \mathbb{R}$.

We will see that this equality does follow from how we define complex exponentiation, but in the meantime it is just some convenient notation since the polar form for $z \in \mathbb{C}$ becomes:

$$z \neq 0, z = re^{i\theta},$$
 where $\theta = \operatorname{Arg} z, r = |z|$

Example 2.10

We write the polar form using complex exponentials for the numbers -1 and $\frac{1}{2} + i \frac{\sqrt{3}}{2}$.

$$Arg(-1) = \pi, |-1| = 1$$
$$-1 = e^{i\pi}$$
$$\frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}}$$

Some helpful identities for $e^{i\theta}$, $\theta \in \mathbb{R}$:

$$|e^{i\theta}| = 1$$
, $\overline{e^{i\theta}} = e^{-i\theta}$, $\frac{1}{e^{i\theta}} = e^{-i\theta}$.

Proof.

$$\overline{e^{i\theta}} = \cos(\theta) - i\sin(\theta) = \cos(-\theta) + i\sin(-\theta)$$
$$= e^{-i\theta}$$

Check $e^{i\theta}e^{-i\theta} = 1$

use
$$\cos^2(\theta) + \sin^2(\theta) = 1$$

Another very important identity for $\theta, \varphi \in \mathbb{R}$:

$$e^{i(\theta+\varphi)} = e^{i\theta}e^{i\varphi}.$$

Just use angle sum formulas

$$\cos(\theta + \varphi) = \cos(\theta)\cos(\varphi) - \sin(\theta)\sin(\varphi)$$
$$\sin(\theta + \varphi) = \cos(\theta)\sin(\varphi) + \sin(\theta)\cos(\varphi)$$

Example 2.11

If $z = re^{i\theta}$ is a nonzero complex number, then

$$\frac{1}{z} = \frac{1}{r}e^{-\theta}, \quad \overline{z} = re^{-i\theta}.$$

$$\left(\frac{1}{r}e^{-i\theta}\right) = \left(r \cdot \frac{1}{r}\right)e^{i\theta + (-i\theta)} = 1$$

$$\implies \frac{1}{r}e^{-i\theta} = \frac{1}{z}$$

Polar form can also help us understand multiplication of complex numbers geometrically in the complex plane:

Example 2.12 (Inversion)

$$z = re^{i\theta} \neq 0 \quad \frac{1}{z} = \frac{1}{r}e^{-i\theta}$$

Example 2.13 (Multiplication)

$$z_1 = r_1 e^{i\theta_1}, \quad z_2 = r_2 e^{i\theta_2}$$
$$z_1 \cdot z_2 = (r_1 e^{i\theta_1})(r_2 e^{i\theta_2}) = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

To multiply two complex numbers, multiply their lengths and add their arg's.

2.4 De Moivre's Formulae

Theorem 2.14 (De Moivre's Formulae)

For any natural number n and any $\theta \in \mathbb{R}$, we have

$$\cos(n\theta) + i\sin(n\theta) = e^{in\theta} = (e^{i\theta})^n = (\cos(\theta) + i\sin(\theta))^n$$

Once the right-hand-side is expanded, we can obtain expressions for $\cos(n\theta)$ and $\sin(n\theta)$ as polynomials is $\cos(\theta)$ and $\sin(\theta)$. These qualities are known as <u>de Moivre's formulae</u>.

Example 2.15

We obtain de Moivre's formulae for the case n=2.

$$\cos(2\theta) + i\sin(2\theta) = (\cos(\theta) + i\sin(\theta))^{2}$$
$$= \cos^{2}(\theta) - \sin^{2}(\theta) + i(2\cos(\theta)\sin(\theta))$$

$$\stackrel{\text{equating Re=Im}}{\Longrightarrow} = \begin{cases} \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \\ \sin(2\theta) = 2\cos(\theta)\sin(\theta) \end{cases}$$

Exercise. See the textbook for a derivation of the formulae

$$\cos(3\theta) = \cos^3(\theta) + 3\cos(\theta)\sin^2(\theta), \quad \sin(3\theta) = 3\cos^2(\theta)\sin(\theta) - \sin^3(\theta).$$

2.5 nth Roots

Definition 2.16 (*n*th roots)

A complex number z is an $\underline{nth\ root}$ of w if $z^n = w$. In other words, the $nth\ roots$ of w are precisely the roots of the polynomial $p(z) = z^n - w$. As an immediate consequence: any $z \in \mathbb{C}$ has at most n many distinct $nth\ roots$.

For a nonzero complex number w, we can find its nth roots as follows:

Let $w = \rho e^{i\varphi}$ $z = re^{i\theta}$.

For z to be an nth root of w, we need $z^n = w$

$$\implies r^n e^{in\theta} = \rho e^{i\varphi}$$

$$\implies r^n = \rho, \quad n\theta = \varphi$$

or,

$$n\theta = \varphi + 2k\pi \quad k \in \mathbb{Z}.$$

$$\implies r = \rho^{1/n}, \quad \theta = \frac{\varphi + 2k\pi}{n},$$

distinct angles are

$$\theta = \frac{\varphi + 2k\pi}{n}, \quad k = 0, 1, 2, \dots, n - 1$$

Therefore.

nth roots of w:
$$z_k = \rho^{1/n} e^{i\left(\frac{\varphi + 2k\pi}{n}\right)}, \quad k = 0, 1, \dots, n-1$$

Exercise. Find and plot the 3rd roots of w = 9i.

Definition 2.17 (*n*th roots of unity)

The nth roots of 1 have a special name: they are called the nth roots of unity. Using the same procedure as above, we can find that the nth roots of unity are

$$w_k = e^{2\pi i k/n}$$
, for $k = 0, 1, \dots, n - 1$.

3rd roots of unity:

4th roots of unity:

nth roots of unity can also be used to find nth roots of complex numbers other than 1. For a nonzero $z = re^{i\theta}$, we can find the first nth root of z to be $z_0 = r^{1/n}e^{i\theta/n}$. Then, if w_0, \ldots, w_{n-1} are the nth root of unity, then the nth roots of z are exactly

$$z_k = z_0 w_k, \quad k = 0, \dots, n - 1.$$

 $z_k^n = (z_0 w_k) = z_0^n \cdot w_k^n = z \cdot 1 = z$