Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

CAT/IND/STA

Report No. 80-9

Hy 1020

AN INTERACTIVE PROGRAM FOR THE DOUGLAS-FIR TUSSOCK MOTH STAND OUTBREAK MODEL

Methods Application Group Forest Insect and Disease Management Forest Service, USDA 2810 Chiles Road Davis, California 95616

TABLE OF CONTENTS

INTRODUCTION	. 1
SYSTEMS OVERVIEW	. 2
PROGRAM FEATURES	. 2
EXAMPLES	. 4
PROGRAM VARIABLES DEFINITIONS	27
ACKNOWLEDGEMENTS	33
REFERENCES CITED	34
TABLES 1-7	35

AN INTERACTIVE PROGRAM FOR THE DOUGLAS-FIR TUSSOCK MOTH STAND OUTBREAK MODEL [].

 10° John Wong 1 and Bruce Danielson 2

ABSTRACT

An interactive program has been installed at the Fort Collins Computer Center (FCCC) to assist users to create data files required for the Douglas-fir Tussock Moth Stand Outbreak Model programs. Instructions on how to use this interactive program are provided via examples in this report.

INTRODUCTION

Through a cooperative effort between Pacific Northwest Forest and Range Experiment Station and FPM/Methods Application Group, a report entitled "Data Preparation and Computer Runstream Procedures for the Douglas-fir Tussock Moth Stand Outbreak Model" was distributed (Colbert and Wong 1979). It was prepared under the premise that a comprehensive reference document should be assembled to serve as a single source of information on data input and output structure and computer access procedures for this model. The stand outbreak model is a component of the Douglas-fir Tussock Moth (DFTM) Pest Management System (Campbell and McFadden) developed under the USDA Expanded DFTM Research and Development Program (Wright 1977). This model has a generalized system structure. When new information becomes available it can be readily updated.

The basic documentation on the DFTM Stand Outbreak Model described data input and output structure for a variety of available options. However, the need exists to further simplify the data preparation procedures so that users with a minimal amount of training can readily create data files required to make simulations. To satisfy this need, an interactive program has been developed and placed on line at FCCC. Designed strictly for demand processing, this program can be accessed by an authorized FCCC user from a remote terminal.

In this report, it is assumed that the reader has already reviewed the aforementioned documentation for the DFTM Stand Outbreak Model (Colbert and Wong 1979). The reader should therefore be knowledgeable about the input

¹ Mathematical Statistician, USDA Forest Service, Forest Insect and Disease Management, Methods Application Group, Davis, CA.

² Graduate student, School of Engineering, Oregon State University, Corvallis, Oregon.

files required and the information needed to make up these files. Primary intent of this report is to demonstrate how this new program can be utilized.

SYSTEMS OVERVIEW

The interactive program is conversational in nature and is capable of performing the following tasks:

- Create the initial condition file (*IC.) and the parameters file (*PARAMETERS.) simultaneously (option 1) as input files for a simulation.
- 2. Create the specifications file (*SPECTAB4.) to retrieve detail information from a previous simulation (option 2).
- 3. Compute instar specific daily larval, pupal or overwintering mortality resulting from direct control as input to the generation of the parameters file (option 3).

This program is written in ASCII Fortran for the UNIVAC 1100 computer at FCCC. It resides in a program file named DFTM*UTILITY1.

PROGRAM FEATURES

Several special features have been built into the interactive program which will transform field data into a form readily acceptable by the model programs. Some of these special features are:

1. Capability to Enter Model at Any Stage of the Outbreak.

The DFTM Stand Outbreak Model was structured in a form such that the insect density (larval count) and the actual foliage conditions must be specified at the initiation (1st instar) of a phase. This requirement is not practical from the standpoint that insect densities at the 1st instar are not always available except under an established monitoring system when field activities are planned in advance. Recognizing this situation, the capability to "back-up" insect count available at some intermediate point, e.g. at the third day of the second instar, to the beginning of the first instar, has been incorporated into this program. To accomplish this task, the following functional form for insect survivorship is utilized:

$$N = N_0 \qquad \frac{k}{11} \qquad \frac{k}{11} \qquad (1 - p_{ij})^{d_{ij}}$$

$$i=1 \qquad j=1$$

where N = insect density at the initiation of a specific phase.

 N_0 = instar density at the time of data collection.

i = the type of mortality associated with instar i.

P_{ii} = the mortality (value) associated with i and j.

 d_{ii} = the time in days to be included for each instar.

2. Ability to Adjust Mortality Factors and Foliage Biomass Values.

A set of natural mortalities are stored within the program in the *PARAMETERS. file. Users can utilize these standard mortalities or make alterations when executing this program if other values are to be used. Foliage conditions—actual new foliage biomass and actual old foliage biomass in addition to nominal percent new foliage and nominal total foliage biomass—at the first instar of a specific phase must be available for a simulation to start from other than phase 1. For the phase 1 start, the actual foliage complements will be automatically computed from the nominal foliage values supplied by the user.

3. Ability to Create an Input File to Retrieve Detailed Information.

Option 2 provides the mechanism to set up the SPECTAB4. file to retrieve model details for up to six state or output variables; namely, new foliage biomass, old foliage biomass, number of insects, mean larval biomass, number of days on old foliage, and number of days without food. By entering the appropriate pair of indices sequentially, as shown in Fig. 8 of the basic considerations, the desired output can be obtained by executing DFTM*RUNSTREAM.TABLE4B.

4. Control Mortality Computation.

Another special feature is found in option 3, which is the control mortality algorithm. With this option, the user can obtain a value for the required control mortality factor to be entered into *PARAMETERS, when option 1 is processed. Using the same functional form as in the above formula, the daily control mortality or overwintering and pupal control mortality, as applicable, can be easily calculated. For the daily control rate, it is assumed that the initial and final insect densities are known at the beginning and end of instar. It is then computed as a function of these values, and all other mortalities entered. Furthermore, if stress mortality is to be considered, in computing daily control mortality, the user is expected to supply the number of days for which stress will operate³. In order to obtain an estimate of the number of days for which stress will operate a preliminary simulation will have to be made

³ Number of days stress operates is the number of days on old foliage.

with a phase 1 start, with insect densities ranging from 1-20 larvae/1000 square inch of foliage, and with nominal foliage conditions that best approximate the situations at hand. After this simulation is made, the information on the number of days on old foliage can be retrieved as discussed above.

EXAMPLES

The following synopsis was developed to show an example of how the Douglas-fir Tussock Moth Stand Outbreak Model with its new interactive frontend program could be used to make a pest management decision.

A combination of pheromone trapping and larval sampling indicates that a major up-surge of Douglas-fir tussock moth is about to occur in portions of eastern Oregon during late 1983. The infested area encompasses approximately 150,000 acres of predominately grand fir type. The outbreak is assumed to be entering Phase II in 1984. In October 1983, a decision must be made whether or not to begin plans for a direct control project.

Data from biological evaluations identifies five areas of infestation. Projected average 1st instar population trends in these areas at the beginning of Phase II are as follows:

Infestation Area	Projected 1st Instar Larvae
	(insects per 1,000 sq. in. of foliage)
1	50
2	75
3	110
4	150
5	200

At the time of this initial evaluation, no data are available on incidence of naturally occuring virus in the population of egg parasite levels or porportion of nonviable eggs. According to existing data, the proportion of nominal new foliage for grand fir in eastern Oregon is 30 percent and nominal foliage biomass on a mid-crown branch is 230 grams/1000 sq. in. The actual amount of new and old foliage at the beginning of Phase II is estimated to be 69 grams and 161 grams, respectively.

One alternative under consideration is direct control of the infestation with an aerial application of Sevin 4-Oil at 2 lbs to 3/4 gal. carrier per acre. Data from a 1974 pilot control project in northern Idaho (Ciesla et al. 1976) is used to compute daily mortality rates; and the Stand Outbreak Model is run with or without introduction on direct control to project population trends and impact. Data from this pilot control project were collected under the following conditions:

- 1. Phase of outbreak is Phase III.
- 2. Instar to which spray was applied was primarily the 3rd instar.
- 3. Prespray population density was 50.71 insects per 1,000 sq. in. of foliage.
- 4. Seven-day post-spray population density = 5.58 insects per 1,000 in. of foliage.
- 5. Fourteen day post-spray population density = .96 insects per 1,000 in. of foliage.

To use the Stand Outbreak Model for pest management decisionmaking, compute a daily control mortality rate from the 1974 data; enter that rate into the parameter file; and run simulations with and without a direct control mortality factor with a Phase II start; and then compare the population trends and impact.

The first step is to create *IC. and *PARAMETERS. files for the no control option as follows:

Runstream No. 1

Using these input files, make a simulation without control as follows:

>@RUN MØ1MAG,11Ø52Ø34050 ,WONG

DATE: Ø8Ø68Ø TIME: 114337

S2K INFO - , S2ØØØ,8Ø=ØØØØ6 (@INFO)MONDAY 11:35

<@XOT DFTM*UTILITY1.

DFTM OUTBREAK MODEL DATA PREPARATION UTILITY VERSION 01.001 COMPILED 6/3/80

PROGRAM OPTIONS: 1= IC AND PARAMETERS FILE GENERATION

2= SPECTAB4 FILE GENERATION,

3 = CONTROL MORTALITY ALGORITHM

ENTER OPTION DESIRED

>1

*IC. FILE AND *PARAMETER. FILE GENERATION

ENTER RUN QUALIFIER

>WC1

RUN OUALIFIER IS NOW WC1

ENTER NUMBER OF DOUGLAS FIR TREE CLASSES

>0

ENTER NUMBER OF GRAND FIR TREE CLASSES

>5

ENTER STARTING PHASE NUMBER

>2

DO YOU WANT TO DEFINE SUBSETS? (YES/NO)

>N0

DO YOU WISH TO CHANGE PARAMETERS FILE VALUES? (YES/NO)

>N0

INITIAL CONDITIONS FILE GENERATION
ENTER NUMBER OF DAYS STRESS OPERATES IN
FIRST INSTAR, SECOND INSTAR, THIRD INSTAR, FOURTH INSTAR
>0,0,0,0

TREE CLASS DEFINITIONS:

YOU HAVE SPECIFIED ØØØ DOUGLAS FIR TREE CLASSES

AND 005 GRAND FIR TREE CLASSES. FOR EACH CLASS

YOU WILL NEED TO ENTER 1 LINE CONTAINING THE FOLLOWING VALUES:

- 1. NOMINAL % NEW FOLIAGE
- 2. NOMINAL TOTAL FOLIAGE BIOMASS
- 3. # OF VIABLE EGGS PER BRANCH
- 4. INSTAR OF EGG COUNT
- 5. DAY IN INSTAR OF EGG COUNT

```
ACTUAL NEW FOLIAGE BIOMASS
       7. ACTUAL OLD FOLIAGE BIOMASS
>30,230,50,1,1,69,160
>30,230,75,1,1,69,161
>30,230,110,1,1,69,160
>30,230,150,1,1,69,161
>30,230,200,1,1,69,161
IF YOU WANT A LISTING OF THE ENTIRE *IC FILE, ENTER -1,-1,\emptyset
IF YOU WANT TO SEE ONE LINE, ENTER LINE#, Ø, Ø
IF YOU WANT TO CHANGE A VALUE, ENTER LINE#, ITEM#, NEW VALUE
TO CONTINUE WITH PROGRAM, ENTER Ø,Ø,Ø
>1,7,161
LINE 1 ITEM 7= 161.000
>3,7,161
LINE
     3 ITEM 7= 161.000
>-1,-1,\emptyset
2
     .00000
              .00000
                      30.00000230.00000
                                          69.00000161.00000 50.00000
 2
     .øgggg
              .00000
                      30.00000230.00000
                                          69.00000161.00000 75.00000
                                                                       2
 2
                      30.00000230.00000
                                                                       3
              .øøøøø
                                          69.00000161.000000110.00000
     .00000
 2
              .00000
                      30.00000230.00000
                                          69.00000161.00000150.00000
     .ggggg
                                                                       4
 2
              .00000
                      30.00000230.00000
                                         69.00000161.00000200.00000
     .øøøøø
>0,0,0
*IC. AND *PARAMETERS. FILE PREPARATION FOR PHASE 2 START COMPLETED
****GOODBYE****
>0FIN 4
```

⁴ Cost for this run was \$1.34.

Using these input files, make a simulation without control as follows:

Runstream No. 2

>@RUN MØ1MAG, 11Ø52Ø34Ø5 , WONG
DATE: Ø8Ø68Ø TIME: 115321
S2K INFO - , S2ØØØ,8Ø-ØØØØ6 (@INFO)MONDAY 11:35
>@QUAL WC1
READY
>@ADD,L DFTM*RUNSTREAM.PRE2

*LUN25 IS NOT CATALOGUED OR ASSIGNED FAC STATUS: 400010000000

@ASG,UP *LUN25. READY

*USE 25,*LUN25 READY

@DELETE,C *LUN1Ø. FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 11:54:44

*LUN1Ø IS NOT CATALOGUED OR ASSIGNED FAC STATUS: 40001000000

@ASG,UP *LUN1Ø. READY

@USE 10,*LUN1Ø READY

@ASG,T *4 READY

@ASG,T *5 RFADY

@ASG,T *6 READY @ASG,T *7 READY

@ASG,T *8 READY

@ASG,T *9 READY

@ASG,T *11 READY

@ASG,T *12 READY

@DELETE,C *15. FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 11:55:34

*15 IS NOT CATALOGUED OR ASSIGNED FAC STATUS: 400010000000

@ASG, UP *15 READY

@FREE *15. READY

@ASG, A *15. READY

@DELETE,C *16. FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 11:56:06

*16 IS NOT CATALOGUED OR ASSIGNED FAC STATUS: 400010000000

@ASG, UP *16 READY

@FREE *16. READY

*ASG,A *16. READY

*DELETE,C *17

FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 11:56:28

*17 IS NOT CATALOGUED OR ASSIGNED

FAC STATUS: 400010000000

@ASG,UP *17

READY

@FREE *17.

READY

@ASG,A *17.

READY

@ASG,T *18

READY

@ASG,T *19

READY

@ASG,T *2Ø

READY

@DELETE,C *21.

FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 11:56:52

*21 IS NOT CATALOGUED OR ASSIGNED

FAC STATUS: 40010000000

@ASG, UP *21

READY

@FREE *21.

READY

@ASG,A *21.

READY

@ASG,T *22 READY

@ASG,T *23 READY

@ASG,T *24 READY

@ASG,A DFTM*DFTMDF. FACILITY WARNING 00020000000

@USE 13,DFTM*DFTMDF
READY

@ASG,A DFTM*DFTMGF. FACILITY WARNING ØØØ2ØØØØØØØØ

@USE 14,DFTM*DFTMGF
READY

@ASG,A *IC. READY

@ASG,A *PARAMETERS. READY

@USE 3Ø,*IC READY

@USE 6Ø,*PARAMETERS
READY
>@XQT DFTM*OUTBREAK.
>@ADD,L DFTM*RUNSTREAM.POST2

@FREE *2 FACILITY WARNING 1000000000000

@FREE *3 FACILITY WARNING 1000000000000 @FREE *4 READY

@FREE *5 READY

@FREE *6 READY

@FREE *7 READY

@FREE *8
READY

@FREE *9 READY

@FREE *1Ø READY

@FREE *11 READY

@FREE *12 READY

@FREE *13 READY

@FREE *14 READY

@FREE *18 READY

@FREE *19 READY

@FREE *2Ø READY

```
@FREE *21
READY
```

@FREE *22 READY

@FREE *23 READY

OFREE *24 READY

@FREE *25 READY >@SYM,U *15.,,FCR1Ø4 >@SYM,U *16.,,FCR1Ø4 >@SYM,U *17.,,FCR1Ø4 >@FIN⁵

⁵ Cost for this run was \$3.37.

Then compute a direct control daily mortality rate. The runstream appears as follows:

Runstream No. 3

UNS>@RUN MØ1MAG,11Ø52Ø34Ø5 WONG DATE: 080680 TIME: 113813 S2K INFO -, S2ØØØ,8Ø-ØØØØ6 (@INFO)MONDAY 11:35 >@XOT DFTM*UTILITY1. DFTM OUTBREAK MODEL DATA PREPARATION UTILITY VERSION Ø1.ØØ1 COMPILED 6/3/8Ø 1= IC AND PARAMETERS FILE GENERATION PROGRAM OPTIONS: 2= SPECTAB4 FILE GENERATION, 3= CONTROL MORTALITY ALGORITHM ENTER OPTION DESIRED >3 CONTROL MORTALITY ALGORITHM ENTER OPTION CODE DAY=DAILY CONTROL MORTALITY PUP=PUPAL CONTROL MORTALITY OVW=OVERWINTER CONTROL MORTALITY TER=TERMINATE PROGRAM >DAY ENTER PHASE >3 ENTER INSTAR >3 ENTER TREE TYPE (DF=DOUGLAS FIR, GF=GRAND FIR) NATURAL DAILY MORTALITIES: PREDATOR/PARASITE= .003 DISEASE= .006 BACK GROUND= .020 STRESS= .100 CHANGE ANY NATURAL MORTALITIES? (YES/NO) >NO ENTER NUMBER OF DAYS STRESS OPERATES ENTER BEGINNING INSECT COUNT >50.71 ENDING INSECT COUNT WITH NATURAL MORTALITY ONLY= 37.9 ENTER ENDING COUNT WITH CONTROL >3.00 DAILY CONTROL MORTALITY = .2239 ENTER OPTION >TER ROUTINE TERMINATED CONTROL MORTALITY ALGORITHM COMPLETED ****GOODBYE****

>@FIN/

⁶ This number was estimated from 1974 pilot project data.

⁷ Cost for this run was \$0.37.

Next create the *IC. and *PARAMETERS. File for the direct control option as follows:

Runstream No. 4

> @RUN MØ1MAG,11Ø52Ø34Ø5 ,WONG DUP ID, NEW ID IS MØ1MAH DATE: Ø8Ø68Ø TIME: 12Ø321 S2K INFO - , S2ØØØ,8Ø-ØØØØ6 (@INFO)MONDAY 11:35 > @XOT DFTM*UTILITY1.

DFTM OUTBREAK MODEL DATA PREPARATION UTILITY VERSION Ø1.ØØ1 COMPILED 6/3/8Ø

PROGRAM OPTIONS: 1= IC AND PARAMETERS FILE GENERATION

2= SPECTAB4 FILE GENERATION,

3= CONTROL MORTALITY ALGORITHM

ENTER OPTION DESIRED

>1

*IC. FILE AND *PARAMETER. FILE GENERATION

ENTER RUN QUALIFIER

>WC2

RUN QUALIFIER IS NOT WC2

ENTER NUMBER OF DOUGLAS FIR TRE CLASSES

>0

ENTER NUMBER OF GRAND FIR TREE CLASSES

\۲

ENTER STARTING PHASE NUMBER

>2

DO YOUT WANT TO DEFINE SUBSETS? (YES/NO)

WHAT?

>N0

DO YOU WISH TO CHANGE PARAMETERS FILE VALUES? (YES/NO)

>YES

TO CHANGE A PARAMETERS FILE VALUE, ENTER A TRIPLE (RECORD NUMBER, ITEM NUMBER, NEW VALUE)

TO OBTAIN THE LABEL AND CURRENT VALUE OF A PARTICULAR ITEM, ENTER A TRIPLE (-RECORD NUMBER, ITEM NUMBER, Ø)

TO PRINT THE ENTIRE PARAMETERS FILE ENTER THE TRIPLE -1,-1,0

```
WHEN YOU ARE DONE ENTERING VALUES, ENTER THE TRIPLE Ø, Ø, Ø
>14,1,2239
RECORD 14. ITEM 1
DAILY CONTROL MORTALITY RATE<sup>8</sup> FOR PHASE 2 INSTAR 1
HAS THE VALUE
                   .2239000
>\emptyset,\emptyset,\emptyset
INITIAL CONDITIONS FILE GENERATION
ENTER NUMBER OF DAYS STRESS OPERATES IN
FIRST INSTAR, SECOND INSTRAR, THIRD INSTAR, FOURTH INSTAR
>0,0,0,0
TREE CLASS DEFINITIONS:
  YOU HAVE SPECIFIED 000 DOUGLAS FIR TREE CLASSES
  AND 005 GRAND FIR TREE CLASSES. FOR EACH CLASS
  YOU WILL NEED TO ENTER 1 LINE CONTAINING THE FOLLOWING VALUES:
           NOMINAL % NEW FOLIAGE
       1.
       2.
           NOMINAL TOTAL FOLIAGE BIOMASS
          # OF VIABLE EGGS PER BRANCH
          INSTAR OF EGG COUNT
       5.
          DAY IN INSTAR OF EGG COUNT
       ACTUAL NEW FOLIAGE BIOMASS
       7.
           ACTUAL OLD FOLIAGE BIOMASS
>30,230,50,1,1,69,161
>30,230,75,1,1,69,161
>30,230,110,1,1,69,161
>30,230,150,1,1,69,161
>30, 230,200,1,1,69,161
IF YOU WANT A LISTING OF THE ENTIRE *IC FILE, ENTER -1,-1,0
IF YOU WANT TO SEE ONE LINE, ENTER LINE #,0,0
IF YOU WANT TO CHANGE A VALUE, ENTER LINE #, ITEM#, NEW VALUE
TO CONTINUE WITH PROGRAM, ENTER Ø,Ø,Ø
>-1,-1,\emptyset
             .ggggg
  2
     .00000
                     30.00000230.00000
                                         69.00000161.00000 50.00000
  2
     .00000
                     30.00000230.00000
                                         69.00000161.00000 75.00000
            .00000
  2
            .00000 30.00000230.00000
                                         69.00000161.00000110.00000
                                                                      3
     .00000
     .00000
            .00000 30.00000230.00000
                                         69.00000161.000000150.00000
                                                                      4
  2
    .00000
            .00000 30.00000230.00000
                                         69.00000161.00000200.00000
```

*IC. AND *PARAMETER. FILE PREPARATION FOR PHASE 2 START COMPLETED

>0.0.0

>0FIN 9

****GOODBYE****

⁸ Direct control applied at Phase II, Instar 1.

⁹ Cost for this run was \$1.30.

Finally, run a simulation with the control option as follows:

Runstream No. 5

>@RUN MØ1MAG,11Ø52Ø34Ø5 , CIESLA
DUP ID, NEW ID IS MØ1MAH
DATE: 18Ø68Ø TIME: 121251
S2K INFO - , S2ØØØ,8Ø-ØØØØ6 (@INFO)MONDAY 11:35
>@QUAL WC2
READY
>@ADD,L DFTM*RUNSTREAM.PRE2

@DELETE,C *LUN25. FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 12:14:04

@ASG,UP *LUN 25. READY

@USE 25,*LUN25 READY

@DELETE,C *LUN1Ø. FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 12:14:17

@ASG,UP *LUN1Ø.
READY

@USE 10,LUN1Ø READY

@ASG,T *4 READY

@ASG,T *5 READY @ASG,T *6 READY

@ASG,T *7 READY

@ASG,T *8 READY

@ASG,T *9 READY

@ASG,T *11 READY

@ASG,T *12 READY

@DELETE,C *15. FURPUR 27R3A

E35 SL73R1 Ø8/Ø6/8Ø 12:14:48

*15 IS NOT CATALOGUED OR ASSIGNED FAC STATUS: 400010000000

@ASG,UP *15 READY

@FREE *15. READY

@ASG,A *15. READY

@DELETE,C *16.

FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 12:15:15

*16 IS NOT CATALOGUED OR ASSIGNED

FAC STATUS: 400010000000

@ASG,UP *16 READY @FREE *16.
READY

@ASG,A *16. READY

@DELETE,C *17.

E35 SL73R1 08/06/80 12:15:37

* 17 IS NOT CATALOGUED OR ASSIGNED FAC STATUS: 400010000000

@ASG,UP *17 READY

@FREE *17.
READY

@ASG,A *17. READY

@ASG,T *18 READY

@ASG,T *19 READY

@ASG,T *2Ø READY

@DELETE,C *21.

FURPUR 27R3A E35 SL73R1 Ø8/Ø6/8Ø 12:15:58

*21 IS NOT CATALOGUED OR ASSIGNED FAC STATUS: 40001000000

@ASG,UP *21 READY

@FREE *21. READY @ASG,A *21. READY

@ASG,T *22 READY

@ASG,T *23 READY

@ASG,T *24 READY

@ASG,A DFTM*DFTMDF. FACILITY WARNING ØØØ2ØØØØØØØØ

@USE 13,DFTM*DFTMDF
READY

@ASG,A DFTM*DFTMGF.
FACILITY WARNING ØØØ2ØØØØØØØØ

@USE 14,DFTM*DFTMGF READY

@ASG,A *IC. READY

@ASG,A *PARAMETERS
READY

@USE 3Ø,*IC READY

@USE 6Ø,*PARAMETERS
READY
>@XQT DFTM*OUTBREAK.
>ADD,L DFTM*RUNSTREAM.POST 2
ADDX
DATA IGNORED - IN CONTROL MODE
>AD
@ADD,L DFTM*RUNSTREAM.POST2

@FREE *2 FACILITY WARNING 100000000000

@FREE *3 FACILITY WARNING 100000000000

@FREE *4 READY

@FREE *5 READY

@FREE *6 READY

@FREE *7 READY

@FREE *8 READY

OFREE *9 READY

@FREE *1Ø READY

@FREE *11 READY

@FREE *12 READY

@FREE *13 READY

@FREE *14 READY

@FREE *18 READY

```
@FREE *19
READY
```

@FREE *2Ø READY

@FREE *21 READY

@FREE *22 READY

@FREE *23 READY

@FREE *24 READY

@FREE *25 READY >@SYM,U *15.,,FCR1Ø4 >@SYM,U *16.,,FCR1Ø4 >@SYM,U *17.,,FCR1Ø4 >FIN 10

¹⁰ Cost for this run was \$3.46.

Model ouputs for control vs no control under these conditions are compared in tables 1-6 for each infested area. After these model simulations have been made, option 2 of the front-end program was used to create the specification file to make a post-simulation run. The runstream for creating the specification file follows:

Runstream No. 6

>@RUN MØ1MAG,11Ø52Ø34Ø5 ,WONG DATE: Ø8/11/8Ø TIME: 115751 >@ASG,A DFTM*UTILITY1. READY >@XQT DFTM*UTILITY1.

DFTM OUTBREAK MODEL DATA PREPARATION UTILITY VERSION Ø1.001 COMPILED 6/3/80

1= IC AND PARAMETERS FILE GENERATION PROGRAM OPTIONS: 2= SPECTAB4 FILE GENERATION. 3= CONTROL MORTALITY ALGORITHM ENTER OPTION DESIRED >2 *SPECTAB4. FILE GENERATION ENTER RUN QUALIFIER >WC2 RUN OUALIFIER IS NOW WC2 ENTER NUMBER OF TREE CLASSES ENTER PAIRS OF NUMBERS(ONE PAIR PER LINE) FOR EACH ITEM DESIRED FROM THE TABLE4. PROGRAM. WHEN FINISHED ENTERING PAIRS, ENTER Ø,Ø >1.3 >2.3 >3.3 >4.3 >5.3 >6.3 >7.3 >8.3 >9.3 >10.3 >Ø,Ø OPTION CODES:

T=TERMINATE PROGRAM NORMALLY
C=CHANGE AN ITEM IN *SPECTAB4. FILE
A=ADD AN ITEM TO *SPECTAB4. FILE
L=LIST CURRENT *SPECTAB4. FILE
D=DELETE AN ITEM FROM *SPECTAB4. FILE

ENTER OPTION CODE
>T

WC2*SPECTAB4 HAS BEEN GENERATED WITH 10 ITEMS

*SPECTAB4. FILE PREPARATION COMPLETED

****GOODBYE****
>@FIN¹¹

¹¹ Cost for the run was \$0.87.

With this specification file, a computer run was made to retrieve information on the numerical changes of the population resulting from control. The runstream for the post-simulation run follows:

Runstream No. 7

>@RUN MØ1MAG,11Ø52Ø34Ø5 ,WONG DATE: Ø8118Ø TIME: 12Ø252 >@QUAL WC2 READY >@ADD,L DFTM*RUNSTREAM,TABLE4B

@ASG,A *SPECTAB4
READY

@ASG,A *LUN1Ø. READY

@ASG,A *LUN25. READY

@DELETE,C *TABLE4. FURPUR 27R3A E35 SL73R1 Ø8/11/8Ø 12:Ø3:38

@ASG,CP *TABLE4.
READY

@USE 11,*TABLE4
READY

@USE 12,*SPECTAB4
READY

@USE 10,*LUN10 READY

@USE 25,*LUN25 READY @XQT DFTM*NTABLE4.A2
THERE WERE 5 TREE CLASSES COUNTED IN *LUN10.
REQUEST IS TO PROCESS THE FIRST 5 TREE CLASSES
THERE WERE 10 VALID ITEMS REQUESTED

@FREE 11 READY

@FREE *TABLE4. FACILITY WARNING 1000000000000

@FREE 12 READY

@FREE 1Ø READY

@FREE 25
READY
>@SYM,U *TABLE4.,2,FCR1Ø4
>@FIN 12

¹² Cost of this run was \$0.53.

The output table from this run is shown in Table 7.

The user should find it very instructional to construct examples similar to those provided in this report. With a few practice sessions on the terminal, the operating characteristics of the front-end program can be grasped quickly, by a person with very little background in computers. When a large number of simulations have to be made, this program should prove to be a real time saving tool.

PROGRAM VARIABLE DEFINITIONS

In this Section, the definitions of the variables names used in the program source codes are explained in terms of their name, type, size, and usage. The source codes for this program can be made available upon request. It is anticipated that additional capabilities will be installed as the need arises. Revisions of this document will be made accordingly to provide the user with the latest information.

ICFILE (Subroutine):

NAME	TYPE	SIZE	USAGE
ITIC	I	200,9	matrix containing the integer values of the IC file
TIC	R	200,9	matrix containing the real values of the IC file
			NOTE: ITIC and TIC have been equivalenced and are therefore actually stored in the same memory locations. Use of ITIC and TIC allow both real and integer values to be stored in the same matrix
NDF	I		user-input number of Douglas-fir tree classes
NGF	I		user-input number of Grand fir tree classes
NTC	I		total number of tree classes (NDF + NGF)
NPHASE	I		user-input starting phase
IND	I		counter for number of tree classes processed so far. In this version also use as the tree class index (9th item in the current record of the IC file) & equal to K
TIC(K,8)	R		calculated insect density for Kth tree class. If TIC(K,8) is greater than 1000, message printed and program terminated

NAME	TYPE	SIZE	<u>USAGE</u>		
ITIC(K,1)	I		species code (1 = Douglas-fir; 2 = Grand fir)		
11	I		user-input editing code for IC file. May be a line (or row, or record) number of an entry in the IC file or merely a code for printing or continuation of program		
12	I		user-input editing code for IC file. May be an item (or column) number of an entry in the IC file or merely a code for printing or continuation of program		
VAL	R		user-input new value for the (I1,I2)th entry in the IC file or a code for printing or continuation of program		
IVAL	I		integer form of VALUE for integer entries in the IC file		
SDAY	I	6	Number of days stress operates in instars 1 to 6. SDAY (1) to SDAY (4) are user input; SDAY (5) and SDAY (6) are always zero.		
K	I		Line (or record) number of current tree class in IC file		
PRFILE (Subroutine):					
NTC	I		number of tree classes		
NPHASE	I		starting phase		
PRN	R	24.6	matrix containing records 2-25 of the PARAMETERS file		
IPR1	I	22	vector containing first record of the PARAMETERS file		
ANSW	C*3		character variable containing a user-input response (yes/no)		
ICODE	I		<pre>numerical code corresponding to value of ANSW: "no" = -1, "yes" = +1, otherwise = 0</pre>		
I	I		user-input number of tree class subsets before checking for allowable values		
NPOSUB	I		maximum possible number of subsets given the number of tree classes (NTC)		

NAME	TYPE	SIZE	<u>USAGE</u>
NSUBS	I		number of tree class subsets after checking for allowable values
I1	Ι		current user-input low subset index before checking for error. Becomes IPR1(J2 + 1) if no error
12	I		current user-input high subset index before checking for error. Becomes IPR1(J2 + 2) if no error
VALUE	R		user-input new value for (I1, I2)th entry in the PARAMETERS file
J	I		subset currently being input is the Jth subset
J2	I		position of last accepted entry in IPR1 vector (=J*2 because entries 1 and 2 in IPR1 are always NPHASE & NTC, and because there are 2 entries per subset pair)
MAIN (Main	Progran	1):	Subset party
IPR1	Ι	22	vector containing the first record of the PARAMETERS file
PRN	R	24,6	matrix containing records 2-25 of the PARAMETERS file
IOPT	I		option code for desired subroutine
AMPLF (Sub	routine):	
I	I		record (or row) number of item in PARAMETERS file
J	I		item (or column) number of item in PARAMETERS file
IPR1	I	22	vector containing first record of the PARAMETERS file
PRN	I	24,6	matrix containing records 2-25 of the PARAMETERS file
М	I		M = ABS(I)
N	I		N = ABS(J)
IR	I		<pre>IR = N module 2 (used in the program to determine whether an item number is odd or even)</pre>

NAME	TYPE	SIZE	USAGE		
INDEX	I		number of tree class subset cooresponding to item $(1,j)$ in the PARAMETERS file		
SALUTE (Su	broutine	e):			
IGEN	I		generation number (changed when recompiling program)		
IVER	I		version number (changed when recompiling program)		
CDATE	I	8	date of compilation (changed when recompiling)		
SOLONG (Su	broutine	e):			
IOPT	I		subroutine option code		
NPHASE	I		starting phase		
NCLASS (Su	broutine	e):			
NCL	I		number of tree classes (input by user)		
IL	I		lower bound to number of tree classes (fixed in program version)		
IH	I		upper bound to number of tree classes (fixed in program version)		
ABRTR (Subroutine):					
ISTAT	I		error status code returned after executive request initiated by routine FACSF		
<pre>GETFLS (Subroutine):</pre>					
CCD	C*40		contains character string for the @QUAL executive request		
QUAL	C*72		user-entered run qualifier including leading and trailing blanks		
QUALIF	C*1	12	qualifier squeezed down to 12 characters (including trailing blanks, if any)		

NAME	TYPE	SIZE	USAGE
QTEST	C*1		contains sequential characters from QUAL for testing (for blanks). Also used as user-input response code.
IDUPMS	0		octal error status code for: "another file already assigned with same number but different qualifer"
INOCAT	0		octal error status code for: "no cataloged file with name given in an @DELETE executive request"
ISTAT	I		error status returned after executive request initiated by FACSF routine
LQUAL	I		counter for number of characters in qualifier
ISTATR	I		same usage as ISTAT
QTEST	I		also used to contain a character-type user response
I	I		counter for number of characters in QUAL checked for blanks
TCLASS (Su	broutin	e):	
NEND	I		counter for number of EOF's read - if greater than 2, run is terminated
NF	I		number of tree classes
ТҮРЕ	R		variable indicates record number of appropriate stress mortality (DF or GF) in PRN matrix = 18 for DF, = 19 for GF
IPR1	I	22	vector containing first record of PARAMETERS file
PRN	R	24,6	matrix containing records 2 through 25 of PARAMETERS file
NDFC	I		number of Douglas-fir tree classes
FIC	R	200,9	matrix containing entries for the IC file
INSTAR	I		instar of insect count
DAY	I		day within instar of insect count
FIC6	R		<pre>if NPHASE is greater than 1, 6th item in current record of FIC (actual new foliage biomass) is set = FIC6</pre>

NAME	TYPE	SIZE	USAGE		
FIC7	R		<pre>if NPHASE is greater than 1, 7th item in current record of FIC (actual old foliage biomass) is set = FIC7</pre>		
I	I		counter for number of times user has input a line of data		
NPHASE	I		starting phase		
D	R		total survivorship from beginning of phase to INSTAR, DAY		
IENT	I		number of records read so far		
ILEFT	I		number of records left to be read		
NDAY	I	6	same usage as SDAY in ICFILE routine		
INITID	L		not used in this version		
CHANGE (Su	broutine	e):			
I	I		indicates record (or row) number of entry in PARAMETERS file		
J	I		indicates item (or column) number of entry in PARAMETERS file		
VAL	R		new value for (I,J)th entry in PARAMETERS file		
IVAL	I		new value for (1,j)th entry in PARAMETERS file		
I PR 1	I	22	vector containing first record of PARAMETERS file		
PRN	R	24,6	matrix containing records 2-25 of PARAMETERS file		
SPCT4 (Subroutine):					
IX1	I		user-input first member of pair before checking for error		
IX2	I		user-input second member of pair before checking for error		
I	I		counter for number of characters checked for blank in QUAL. Also counter for number of pairs entered in I1 & I2 vectors		
KTOTAL	I		number of tree classes		

NITEM	I		number of accepted items (pairs) in SPECTAB4
NUM	I		position number of pair for editing
ICK	I		loop index for checking new pair for duplication in existing pair list
CCD	C*40		contains the character string that makes up executive request "@QUAL (qualifier)"
QUAL	C*72		user-entered run qualifier including leading and trailing blanks
QTEST	C*1		contains successive single characters from QUAL for testing (for blank character). Also used as user-input response code.
QUALIF	C*1	12	qualifier squeezed down to 12 characters (including trailing blanks, if any)
I1	I	47	vector of 1st members of SPECTAB4 pairs
12	I	47	vector of 2nd members of SPECTAB4 pairs
IDUPMS	0		octal error status code for: another file exists with same name but a different qualifier (usually following an @ASG executive request)
INOCAT	0		octal error status code for: no existing cataloged file with name given in an @DELELTE executive request
ISTAT	I		error status returned after executive request command initiated through FACSF routine
LQUAL	I		counter for number of characters in qualifier

ACKNOWLEDGEMENTS

We would like to thank William Ciesla, FIDM/MAG; Jed Dewey, R-1, FPM; and Paul Buffam, R-6, FPM for their review of this report. We also appreciate the cooperation of the staff at the Siuslaw National Forest, Supervisors Office, Corvallis, Oregon, in allowing us to use their computer facilities throughout this project.

REFERENCE CITED

- Campbell, R.W. and M.W. McFadden. 1977. Design of a pest management research and development program. Bull. Entomol. Soc. America. 23:216-220.
- Ciesla, W.M., S. Kohler, J.E. Dewey, and M.D. McGregor. 1976. Field efficacy of aerial applications of Carbaryl against Douglas-fir tussock moth. J. Econ. Entom.: 69:219-224.
- Colbert, J.J. and J. Wong. 1979. Data preparation and computer runstream procedures for the Douglas-fir Tussock Moth Stand Outbreak Model. USDA, For. Serv., FIDM/Methods Application Group, Davis, CA. Rpt. No. 79-5. 60 pp.
- Wright, K.H. 1975. An expanded research and development program for the Douglas-fir tussock moth--1975 to 1978. West. For. Conser. Assoc., Portland, OR., Perm. Assoc. Proc. 1974:24-30.

Table 1. First output table from simulation without control.

		L .0 N m m m		1
	REDIS- TRIBUTED EGGS (NO.)	243. 166 708. 832 866. 013 931. 993 867. 073		1. 997 1. 812 151 . 151 . 014
OUTPUTS	VIABLE EGGS LAID (NO.)	543. 166 708. 832 866. 013 931. 993 867. 073		1. 997 1. 812 1. 151 . 014
	DEFOLIA- TION (%)	26. 138 43. 814 67. 792 83. 232 95. 358	10	48. 672 72. 605 54. 086 73. 182 81. 143
FHASE II	FERCENT D NEW FOLIAGE (%)	000 000 000 000 000 000 000 000 000 00	FHASE	37. 624 58. 066 41. 371 61. 658 82. 173
INFUTS	TOTAL F FOLIAGE BIOMASS F (GRAMS)	230. 000 230. 000 230. 000 230. 000 230. 000		122. 050 66. 633 105. 905 61. 710 43. 397
	VIABLE EGGS 1	50. 000 75. 000 110. 000 150. 000 200. 000		11. 146 10. 115 843 . 079
	REDIS- TRIBUTED EGGS (NO.)	00000		74.308 67.430 5.613 .525 .489
OUTFUTS	VIABLE EGGS 1 LAID (NO.)	00000		74, 308 67, 430 5, 618 525 489
H	DEFOLIA- TION (%)	0000	111	66. 900 87. 851 73. 004 89. 713 96. 636
PHASE	FERCENT NEW FOL I AGE (2)	00000	PHASE	27. 144 29. 427 38. 108 58. 756 77. 174
INPUTS	TOTAL FOL JAGE BIOMASS (GRAMS)	00000		220. 983 183. 113 119. 691 65. 627 46. 779
 	VIABLE EGS (NO.)	00000		217. 266 283. 533 346. 405 372. 797 346. 829
	NUMBER OF STEMS	000 000 000 000 000 000 000 000 000 00		00000
	TREE CLASS NO.	⇔ଉପ୍ୟାମ		-004B

Table 2. Second output table from simulation without control.

TREE	NUMBER	WEIGHT	INITIAL	MODEL			 	PERCENT OF :	PER CENT		ECEIVING	
S	TREES	PER				DEFOLIATION BY PHIORE	10E	TOTALLY	DIRECT	SECONDARY	1	ONI V GROWTH
		TREE	- 1	I	11	111	\ \ !	DEFOLIATED :	MORTALITY		KILL	REDUCTION
1	0.	0	000	000	26, 138	66, 900	48.672	12.1	0.	4.4	5.6	90. 0
Ç1	Ο.	0.	000	000	43,814	87, 851	72, 605	92, 358	17.3	9.3	34, 4	39.0
m	0.	0.	000	000 .	67, 792	73, 004	54, 086	35.	o.	4.5	27. 0	67.6
4	0 .	0.	000	000 .	88, 232	89, 713	73, 182	94.	17. 3	9. 9.	34, 4	39. 0
un.	0.	0.	000	000	95, 358	96, 636	81, 143	.76	47.7	7.8	21.5	23. 0

	URVIVING : DIAMETER GROWTH IN O TOP KILL : TREES WITH TOP KILL NOMINAL :	85. 00 69. 10 74. 00 69. 10 61. 90
	l a s P z	85.00 69.10 74.00 69.10
	PER CENT OF TREES BY GROWTH IN REDUCTION IN CROWN HEIGHT : TREES WITH S. O 17.5 37.5 70.0 : DIAMETER	1. 6 5. 4 69. 10 69. 10 1. 2 8. 4 69. 10 69. 10 1. 2 8. 4 69. 10 69. 10 1. 6 5. 4 69. 10 69. 10 69. 10 69. 10 61. 90
	REDUCTION IN CROWN HEIGHT : 5.0 17.5 37.5 70.0 :	. N N.
	PER CENT OF TREES BY TREDUCTION IN CROWN HEIGHT 5.0 17.5 37.5 70.0	4.11.20.
	T OF T	40000
		10004 20000
	PERCEN 0.0	19.00 19.00 19.00 19.00
	TIAL ABLE GGS SE I	000000000000000000000000000000000000000
		00000
	NUMBER OF TREES	00000
	TREE CLASS NO.	-0040

PHACE VE OPPORTED MOON BUS DEBUGGED TO PHACE

Table 3. Third output table from simulation without control.

DAILY MORTALITY RATE LIFE STAGE MORTALITY RATE				1	2	0	4	ו מו	9	FUPAE/ADULT OV	OVERWINTER	SIZE
1020 1020		1			DAILY	MORTALI	TY RATE			STAGE	RTALITY RATES	
1,000 0,00	BACKGROUND	I, II, III,	IV DF, GF		. 020	. 020	. 020	. 020	. 020			
1000 0000	DISEASE	111111	0F, GF 10F, GF 10F, GF 10F, GF	. 000	. 000 . 000 . 003	. 000 . 000 . 031	. 000 . 000 . 013	. 000 . 001 . 035	. 000 . 001 . 028 . 035			
1,920	FARASITE/PREDATOR	1 11 111 1 V	0F, 0F 0F, 0F 0F, 0F	000	. 000 . 000 . 002 . 006	. 000	. 000 . 000 . 010 . 021	. 000 . 001 . 016	. 000 . 001 . 042 . 056			
F	STRESS	1, 11, 111, 1, 11, 111,		920	. 700	. 070	. 000	000 .	000			
5. 400 6. 250 6. 250 3. 670 3. 200 5. 400 6. 250 6. 250 3. 670 3. 200 5. 400 6. 250 6. 250 3. 670 3. 200 5. 400 6. 250 6. 250 3. 670 3. 200 6. 1147 1147 1147 0886 0625 0625	CONTROL	11 111 1 V	0F, 0F 0F, DF 0F, DF 0F, DF	0000	0000	0000	0000	0000	0000	0000	0000	
200. 200. 150. 150. 2 200. 150. 2 200. 150. 2 200. 3 290.	: 1	1 11 111 1 V	DF, OF DF, OF DF, OF DF, OF							. 500 . 620 . 750 . 800	. 500 . 500 . 900	
5.400 6.250 6.250 2.710 2.270 2. 5.400 6.250 6.250 3.690 3.290 3. F 1147 1147 1147 0886 0625		1 11 111 1 V	07, 07 07, 07 07, 07									200, 0 200, 0 150, 0 150, 0
5. 400 6. 250 6. 250 2. 710 2. 270 2. 25 2. 400 6. 250 6. 250 3. 690 3. 290 3. 690 3. 290 3. 690 6. 250 6.	STRUCTION/CONSUMPTION RATIOS											
5,400 6,250 6,250 3,690 3,290 3, F 1147 1147 1147 0886 0625	NEW FOLINGE	1, 11, 111	DF, GF		250	250	Сį	N	200			
F 1147 1147 1147 0886 0625	OLD FOLIAGE	1, 11, 111	DF, GF	400	250		oi.	(6)	200			
	MEAN INDIVIDUAL LARVAL GROWTH RAIE	1, 11, 111	DF, GF	1147	1147				0625			
	DISTRIBUTION CORPELCIENT	FOR THE O	UTBREAK	000								

Table 4. First output table from simulation with control.

	NUMBER OF VIABLE STEMS EGGS F (NG.)	000 0000 000 0000 000 0000 000 0000		000 17, 225 000 25, 838 000 37, 896 000 51, 676 000 68, 902
INFUTS	TOTAL FULIAGE BIOMASS (GRAMS)	000000000000000000000000000000000000000		229, 209 228, 813 228, 259 227, 626 226, 835
FHASE	PERCENT NEW FOL IAGE (%)	0000	FHASE	29, 758 29, 637 29, 466 29, 270 29, 270
1	LEFULIA- 110N (Z)	000 000 000 000 000 000 000 000 000 00	111	6, 434 9, 651 14, 154 19, 301 25, 735
001P018	VIABLE EGGS LAII (NG.)	0000		18.786 28.179 41.329 56.357 75.143
	KEDIS- TRIBUTED EGGS (NG.)	0000		18, 786 28, 179 41, 329 56, 357 75, 143
	VIABLE EGGS (NO.)	200. 000 200. 000 200. 000 200. 000		2. 818 4. 227 6. 199 8. 454 11. 271
INFUES	TOTAL FOLIAGE BIOMASS (GRAMS)	230. 000 230. 000 230. 000 230. 000 230. 000		227, 780 226, 671 225, 117 223, 341 221, 121
FHASE 11	PERCENT NEW FOLIAGE (%)	30.000 30.000 30.000 30.000 30.000	FHASE	29, 318 28, 972 28, 482 27, 913 27, 189
111	DEFULIA- 110N (2)	2. 294 2. 294 5. 046 6. 882 9. 175	^I .	1. 404 2. 106 3. 089 4. 212 5. 617
0017PU18	VIABLE EGGS LAID (NG.)	43.064 64.595 94.740 129.191 172.254		. 505 . 757 1. 111 1. 515 2. 020
	KEDIS- TKIBUTED EGGS (NO.)	43. 064 64. 595 94. 740 129. 191 172. 254		. 505 . 757 1. 111 1. 515 2. 020

Table 5. Second output table from simulation with control.

TREE	NUMBER	WE DGHT	-	MUDEL	MODEL BRANCH:	ALL TAY COLD	LO	PERCENT OF	FER CENT	PER CENT OF TREES RECEIVING:	RECEIVING	
		מיייי ביייי		בייר ואום השב	DEFOLIALI	EL 19 NO	년 0 1	TOTAL	100010		i '	TENOCO X MAS
2	0 11 10 10 10 10 10 10 10 10 10 10 10 10	TREE	FHASE I :	1	11	111	2	DEFOLIATED	MORTALITY	SECONDARY MORTALITY	KIL	REDUCTION
	0.	0.	000	000	2. 294	6. 434	1. 404		0 .	4. 4	5.6	90. 0
N	0.	0.	000 .	000 .	3.441	9, 651	2. 100	•	0.	4.4	5.6	90.0
69	0.	0.	000 .	000 .	5.046	14, 154	3, 089	000 . 6	0.	4.4	♦	90.0
4	0.	0.	000 .	000 .	6, 882	19, 301	4. 213	•	0.	4. 4	5.6	90.0
ស៊	а.	0.	000 .	000	9, 175	25, 735	5.61	•	0.	4.4	5.6	90.0

			1								
LIMISE			AL:	4	ER CEN	T 0F 1	FER CENT OF TREES BY	••	GROWTH IN	GROWTH IN SURVIVING	
Ġ.		NIABLE :		PERCENT	r REDUC	NI NOIL	INT REDUCTION IN CROWN HEIGHT	HE16HT:	TREES WITH	TREES WITH NO TOP KILL :	: TREES WITH TOP KILL
TREE	S PER TREE			0.0	5.0	17.5	5.0 17.5 37.5 70.0	70.0	5. 0 17. 5 37. 5 70. 0 : DIAMETER HEIGHT	FERCENT OF NOMINAL IAMETER HEIGHT	FERCENT OF NOMINAL
	0.	Ŏ.	0	0.4	1. 2	4.	. 4	. 2	1.2 .4 .4 .2 85.00	85.00	85.00
	0	ō.	o	ক ত	1. 2	4.	4.	. 2	85 00	85.00	85.00
	0	Ŏ.	0	6) 4	1.2	4.	4	2	85.00	85, 00	85.00
)	ð.	Ç	(r)	1.2	4.	4	8	85, 00	85, 00	85.00
	0	ć	Ç	4	1 2	D	D	•	00 50	00 50	00 58

Table 6. Third output table from simulation with control.

74 etc., 1666 etc., 1667	ļ										
DATEY MURHALITY SOUNCE	·]]]]]	DAILY	DAILY MORTALITY KATE	IY KATE	1	 	LIFE STAGE M	STAGE MORTALITY KATES	
EACHGROUND	1, 11, 111, IV DF, GF	V DF, GF	070	. 020	. 620	. 020	. 020	. 020			
DUSEASE	111	주 주 주 주 주 주 주 주		0000	000	. 000 . 000 . 013		. 000 . 001 . 028			
	2	DF, GF	. 025	. 028	100	034	035	. 035			
FAKASITE/PREDATOR	1 11 2	0F, 0F 0F, 0F 0F, 0F 0F, 0F	. 000 . 000 . 000 . 000		. 000 . 000 . 003 . 007	.000	. 000 . 001 . 016 . 033	. 000 . 001 . 042 . 056			
STRESS	1, 11, 111, 1V I, 11, 111, 1V	> PF	. 920	. 600	. 070 . 100	. 020	000 .	000 .			
CONTROL	1 11 1 V	16, 66 65, 106 65, 106 65, 106	. 000	0000	0000	0000	0000	0000	0000	000000	
	1111	95, GF 97, GF 97, GF 16, GF							. 500 . 620 . 750 . 800	000 850 900 900 900	
NOMINAL EGG MASS SIZE	1 11 111 V	06, 06 06, 06 06, 06 06, 06									200, 0 200, 0 150, 0 150, 0
DESTRUCTION/CONSUMPTION RATIOS											
NEW FOLIAGE	1, 11, 111	UF, GF	5 400 6.	250 6.	250 2.	710 2.	270 2.	200			
OLD FOLIAGE	1, 11, 111	DE, 6F	5, 400 6.	250 6.	250 3.	8 069	290 3.	200			
MEAN INDIVIDUAL LARVAL GROWTH RATE	1.11.111	11F, GF	1147	1147	1147	. 9880 .	. 0625	. 0625			
REDISTRIBUTION COEFFICIENT FOR THE UUTEKENK.	FOR THE OU	HEREOL	000								

Table 7. Detailed information from simulation with control.

	BIOMASS	>1	1. 700 2. 550 9. 740 5. 100 6. 800		BIOMASS	Ņ	. 256	. 563	1.024	EGGS	BIOMASS	>1	. 003	. 000 . 000 . 000	. 010	. 013
.c.rs istar	TUTAL FOL. 230, 000	111	13, 658 20, 487 30, 048 40, 974 54, 632	CTS TAR	101AL FOL. 230, 000	1111	5, 138	11, 303 15, 413	20, 551	SOBOCE	TOTAL FOL. 230, 000	1111	. 125	. 188	376	501
NUMBER OF INSECTS START SECUND INSTAR	ZNEW FOLIAGE 30.00	1.1	3. 239 4. 858 7. 126 9. 717 12. 956	NUMBER OF INSECTS START FIFTH INSTAR	XNEW FOLIAGE 30, 00	11	1, 767 2, 650		7.067	NUMBER OF INSECTS DULT FEMALES TO PI	ZNEW FOLIAGE 30.00	111	. 215	323	646	861
NUMBE		ı	0000	NUMBE		1	000	000	000	NUME! ADULT		I	000 .	000	000	000
	BIUMASS SPECIES GRAND	10	2. 818 4. 227 6. 199 8. 454 11. 271		BIOMASS SPECIES GRAND	^1	. 821	1, 204	2, 189	-AL	BIOMASS SPECIES GRAND	>1		. 025	020	790
eurs spar	TUTAL FOL. 230, 000	111	17, 225 25, 838 37, 896 51, 676 68, 902	SCTS 4STAR	10TAL FUL. 230, 000	1111	7, 925			INSECTS STAGE-START PUFAL	101AL FOL. 230, 000	111	.501	751	1.503	2, 004
NUMBER OF INSELSS	XNEW FOLIAGE 30.00	11	50 000 75,000 110 000 150,000 200,000	NUMBER OF INSECTS START FOURTH INSTAR	XNEW FULIAGE 30,00	11	2, 162		8,649	NUMBER OF INSECTS END LARVAL STAGE—S	ZNEW FOLIAGE 30.00	11	1987	0000	1, 700	7. 267
NUME		I	0000	STAKI		I	000	000	000	NUME ENE L		I	000	000	000	000
	BIOMASS SFECIES GRAND	Ν	2. 818 4. 227 6. 1999 8. 454 11. 271		BIOMASS SPECIES GRAND	۸I	. 985				BIOMASS SPECIES GRAND	\sqrt{1}	.052	9/0	. 157	505
SC1S /EAR	TOTAL FOL. 230, 000	111	17, 225 25, 838 37, 896 51, 676 68, 902	ECTS STAR	TUTAL FOL. 230, 000	1111	10, 615 15, 922			ECTS STAR	TUTAL FOL. 230 000	111	1, 251	1 076 0 750		\$ 004
NUMBER OF INSECTS INITIATION OF YEAR	ZNEW FOLIAGE 30.00	111	50, 000 75, 000 110, 000 156, 000 200, 000	NUMBER OF INSECTS START THIRD INSTAR	ZNEW FULIAGE 30.00	11	2, 646 3, 970		10, 586	NUMBER OF INSECTS JARI SIXIH INSTAR	ZNEW FULIAGE 30.00	11	708	1 061		0% & C4
NUME		I	000000000000000000000000000000000000000	NUME STAKI		I	000	000	500	NUMBE		-	000.	000	900	000
	SPECTES GRAND	E CLASS	ಪಠಕರ		SPECIES GRAND	E CLASS	ને હો	જ 4	ெ		SPECIES GRAND	TREE CLASS		M N	i ¢	មា
		TREE				IREE						TRE		•		

Table 7. (Continued)

	BIOMASS	>1	
HURBER OF INSECTS BEFORE OVERWINTER MORTALITY	SPECIES ZNEW FOLLAGE TOTAL FOL. GRANNU 30.00	111 111	. 000 43, 064 18, 786 . 505 . 000 64, 595 28, 179 . 757 . 000 94, 740 41, 329 1, 111 . 000 129, 191 56, 357 1, 515 . 000 172, 254 75, 143 2, 020
		TREE CLASS	-1 ಸಿಹಕ್ಕ

