2. Linear Regression with One Variable – or Univariate Linear Regression

⇒ MODEL REPRESENTATION:

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	→ 2 104	460
(Portland, OR)	1416	$232 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	> 1534	315
	852	178
	•••)
Notation:	C	~
\rightarrow m = Number of training examples (1)		
\Rightarrow x's = "input" variable / features \Rightarrow		
\rightarrow y's = "output" variable / "target" variable $\times^{(2)} = 1416$		
(x,y) - one training example (x(i), y(i)) - ith training example (xny) - one training example (xny) - one training example (xny) - one training example Andrew		

> Other Notations:

X = space of input values

Y = space of output values

Dataset = list of m training examples \rightarrow ($x^{(i)}, y^{(i)}$); i = 1, 2, ..., m

Hypothesis Function: Function which is derived by feeding training data (Input and Output (Supervised)) to the learning algorithm, which can then be used to predict o/p for new input data.

For a supervised problem: $\mathbf{h}: \mathbf{X} \to \mathbf{Y}$ so that $\mathbf{h}(\mathbf{x})$ is a "good" predictor for the corresponding value of y.

COST FUNCTION: Can measure the **accuracy** of our hypothesis function by **Choosing parameters** of h(x) such that h(x) is close to y for data in the training set.

Cost function is a minimization function:

Here, we try to **minimize** the (1/2m) x (sum of squared differences b/w predicted value and actual value given in dataset).

- "J" is the cost function or squared error cost function or Mean squared error
- > (1/2m) is for averaging the squared difference.

Minimize means, we try to find values of θ parameters such that the cost function is minimized.

Cost → An average difference of all the results of the hypothesis with inputs from x's and the actual output y's.

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m (\hat{y}_i - y_i)^2 = rac{1}{2m} \sum_{i=1}^m (h_ heta(x_i) - y_i)^2.$$

To break it apart, it is $\frac{1}{2}$ \bar{x} where \bar{x} is the mean of the squares of $h_{\theta}(x_i)-y_i$, or the difference between the predicted value and the actual value.

➤ The mean is **halved** as a convenience for the computation of the **gradient descent**, as the derivative term of the square function will cancel out the 1/2 term.

COST FUNCTION INTUITION: Training set data is scattered on x-y plane. We try to draw a straight line through it. **Goal** → **find best fitting line.**

Ideally, the line should pass through all the points of our training data set. In such a case, the value of "J" will be 0.

For simplicity: let
$$h_{ heta}(x) = \theta_1 x$$
 $o \underline{h_{ heta}(x)}$ $o \underline{J(\theta_1)}$ (function of the parameter θ_1)

For
$$\Theta=1 \rightarrow h(\Theta)=x \rightarrow J(\Theta)=_0$$

For
$$\Theta=0.5 \rightarrow h(\Theta)=0.5x \rightarrow$$

 $J(\Theta) = 0.58$

For
$$\Theta=0 \rightarrow h(\Theta)=0 \rightarrow J(\Theta)=2.3$$

- > J(Θ) is the average of sqr of diff bw h(x) and y:
- h(x) = predicted value at given training data
- y = actual value of o/p in training data

Vertical lines
represent the given
difference

- For different values of Θ , we try to minimize $J(\Theta)$ {error}, which occurs at $\Theta=1$. Therefore, we choose $\Theta=1$ as out best fitting curve: h(x)=x
- \gg For more **complex** h(x) fxn like $h(x) = \Theta_0 + \Theta_1 x$: we have to plot $J(\Theta_0, \Theta_1)$ in **3D**. As, for different combinations of Θ_0 and Θ_1 , J can be different.

These can be more easily represented using **contour figures**: A contour plot is a graph that contains many contour lines. A **contour line** of a two variable function has a **constant value** at all points on the line.

Graph b/w Θ_0 and Θ_1 : these **ellipses** are the combinations of Θ_0 and Θ_1 for which value of J is same. Points other than on ellipses are also valid points, they also correspond to a unique value of J.

- The **best** combination (one which **minimizes** $J(\Theta_0, \Theta_1)$) of Θ_0 and Θ_1 lies around **center** of the innermost circle.
 - \Rightarrow **GRADIENT DESCENT:** an algorithm to minimize $J(\Theta_0, \Theta_1)$
- \triangleright Start with some Θ_0 , Θ_1
- \triangleright Keep changing Θ_0 , Θ_1 to reduce J until minimum is reached

Here, we start at a value of Θ_0 , Θ_1 and keep going down on $J(\Theta_0$, Θ_1) curve until we reach a **local minima**. We will know that we have succeeded when our cost function is at the very bottom of the pits in our graph.

 \triangleright If we start at a diff value of Θ_0 , Θ_1 , we end having different minima.

We are not graphing x and y itself, but the parameter range of our hypothesis function and the cost resulting from selecting a particular set of parameters.

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 0 and j = 1)

The **slope of the tangent** is the **derivative** at that point and it will give us a direction to move towards. We make steps down the cost function in the direction with the steepest descent. The size of each step is determined by the parameter α , which is called the learning rate.

 α = Learning rate

SIMULTANEOUS UPDATE: first we calculate new value for both Θ_0 and Θ_1 , then only we update their values. So order of execution of statements is:

Correct: Simultaneous update Incorrect: $\Rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$ $\Rightarrow \theta_0 := \text{temp0}$ $\Rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$ $\Rightarrow \theta_1 := \text{temp1}$ $temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$ $temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$ $\theta_0 := \text{temp0}$

 $\theta_1 := \text{temp1}$

Here, if update Θ_0 before actually calculating the value of new Θ_1 , the Θ_0 used in equation of Θ_1 will be new Θ_0 , not the one we wanted to minimize for.

At each iteration j, one should simultaneously update the parameters .. Θ_0 , Θ_1 ... Θ_n . Updating a specific parameter prior to calculating another one on the jth iteration would yield a wrong implementation.

GRADIENT DESCENT INTUITION: for simplicity we only use one parameter:

$$h(x) = \Theta_1.x$$

 $\rightarrow \alpha$ is positive

- \Rightarrow For a value of Θ_1 , if the **slope** of $J(\Theta)$ is **positive**: Θ_1 decreases
- \Rightarrow For **negative slope** of $J(\Theta)$: Θ_1 increases
- $\Rightarrow \theta_1$ eventually **converges** to its minimum.

 \Rightarrow If the value of α is too small: gradient descent takes baby steps towards the min.

$$\theta_1 := \theta_1 - @\frac{\partial}{\partial \theta_1} J(\theta_1)$$
 If α is too small, gradient descent can be slow.
$$\theta_1$$

 \Rightarrow If α is too large: gradient descent takes huge steps.. in such case the gradient descent may even **overshoot the min** if the diff b/w initial Θ and Θ_{min} is less than the value of **jump in Θ** (α * derivative of J) and it may start going further and further from the min.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

- Therefore, we should adjust our parameter to ensure that the gradient descent algorithm converges in a reasonable time.
- If the Θ is already at its local minimum, the slope will be 0.. thus
 Θ won't change
 - ⇒Even if the learning rate α is fixed, the slope gets smaller as we reach towards the minima.. so the steps automatically become smaller

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

⇒ For a **linear regression** model: **Derivative of J**:

repeat until convergence: {

$$egin{align} heta_0 &:= heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - a \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - a \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_3 &:= heta_1 - a \sum_{i$$

- \Rightarrow **For \Theta_0** derivate wrt Θ_0
- \Rightarrow For Θ_1 derivate wrt Θ_1

For a **linear regression** model: the curve is always a **convex curve** (bowl shaped).

It has only **one optimum** \rightarrow **global minima** (assuming the learning rate α is not too large).

- \triangleright In the contour curve: we start of with any value of Θ_0 and Θ_1 and then we minimize the J.
- We approach the min as we reach towards the center.

We start at an **arbitrary** value for Θ_0 and Θ_1 :

We start minimizing $J(\Theta_0, \Theta_1)$ with our gradient descent algo:

J is a complicated quadratic function

The ellipses shown above are the **contours** of a quadratic function **Batch Gradient Descent** → Each step of gradient descent uses all training examples.

The point of all this is that if we start with a guess for our hypothesis and then **repeatedly apply these gradient descent** equations, our **hypothesis** will become more and more **accurate**.