

Lessons Learned Developing and Managing High Volume Apache Spark Pipelines in Production

Erni Durdevic, Quby B.V.

#SAISML4

Over 350,000 connected homes across Europe

Our partners:

Interpolis.

Testing phase Launched in 2012 Launched in 2016 Launched in 2017

Toon available

Toon in testphase

TOON

ENERGY INSIGHTS APP SMART METER DONGLE & APP SMART THERMOSTAT & APP

SECURITY PACKAGE & APP

DATA SERVICES

ISIGHT

MONTHLY ENERGY INSIGHT

TOON SOLAR

BOILER MONITORING

>1200 TB in total

Batch pipeline

USE CASE #1 Waste Checker

Energy Waste Checker

"We don't always notice how much energy we're wasting. Toon can now expose the energy guzzlers in your home."

Launched in December 2017 to all Eneco Toon users

Quby's disaggregation algorithms

Patent pending algorithms can detect appliances from 10 second resolution electricity meter data

Use case example: Inefficient dishwasher diagnosis

Disaggregation algorithms run on the 10s electricity meter data

Compared with industry standards and peers

Toon determines the "fingerprint" of the appliance through features

Translated to personalised advice for the end user

Scale of the Waste checker

Getting the data ready

- Extraction & Cleaning
- Resampling
- Vectorization

Detecting appliances

- Signal processing
- Machine learning (One Big model)

Finding user behavior

- Clustering per user
- Many, many, many (small) models

Behaviour

Drawing conclusions

- Comparing to other users
- Comparing to industry standards

The Data Pipeline

Managing jobs (Option 1)

Databricks Jobs & Notebook Workflows

https://databricks.com/blog/2016/08/30/notebook-workflows-the-easiest-way-to-implement-apachespark-pipelines.html

Active runs Run ID Start Time Launched Status Duration Spark Run Now / Run Now With Different Parameters Completed in past 60 days Latest successful run (refreshes automatically) Previous 20 Next 20 > Run Run ID Start Time Launched Duration Spark Status **Run 206** 114438 2018-09-28 11:21:46 CEST Manually 47m 57s Spark UI / Logs / Metrics Succeeded × 114350 **Run 205** 2018-09-28 04:00:00 CEST By scheduler 3m 26s Spark UI / Logs / Metrics Failed × **Bun 204** 114109 2018-09-27 04:00:00 CEST By scheduler 44m 54s Spark UI / Logs / Metrics Succeeded ж Bun 203 113874 2018-09-26 04:00:01 CEST By scheduler 46m 27s Spark UI / Logs / Metrics Succeeded × **Run 202** 113635 2018-09-25 04:00:00 CEST By scheduler 46m 35s Spark UI / Logs / Metrics Succeeded × Bun 201 113370 2018-09-24 04:00:00 CEST By scheduler 46m 31s Spark UI / Logs / Metrics Succeeded × **Run 200** 113132 2018-09-23 04:00:00 CEST By scheduler 45m 22s Spark UI / Logs / Metrics Succeeded × **Run 199** 112893 2018-09-22 04:00:00 CEST By scheduler 45m 45s Spark UI / Logs / Metrics Succeeded ×

Managing jobs (Option 2)

Airflow DAGs

https://airflow.apache.org/

Must read:

#SAISML4

- ETL principles: https://gtoonstra.github.io/etl-with-airflow/principles.html
- Gotcha's: https://gtoonstra.github.io/etl-with-airflow/gotchas.html

When designing data pipelines

Enforce idempotent constraints

$$f(x) = y$$
Always

Enforce reproducibility

Let data transformations be chainable

$$f(x) = y \qquad g(y) = z$$

Leverage partitioning and data locality

Monitoring

 Live dashboards with aggregated data

Monitoring and Validation

Daily email to Quby's VIP employees

Alerting

Alerting (via Email / Slack)

- If anything goes wrong
- If an independent monitoring job detects missing data

USE CASE #2

Detecting anomalies in heating systems

Structured Streaming

Multiple Streaming aggregations

When working with streams in spark it is not possible to do multiple aggregations on the same stream

- E.g. Forking a stream in multiple streams
- E.g. Do consecutive aggregations

Work around

Output the aggregations on a sink and read it back in Spark (E.g. Kafka, Kinesis, Delta tables)

Non time-based windows on streams

- When working with streams in spark it is not possible to compute non time-based window operations
 - E.g. Compute the derivative of a signal

timestamp	lag(timestamp)
2018-10-04 14:00:00	
2018-10-04 15:00:00	2018-10-04 14:00:00
2018-10-04 16:00:00	2018-10-04 15:00:00

Our solution

Compute **non time-based window** operations

- Use (Flat) mapGroupWithState (Beware: no ordering guarantee)
- Inside a time-based window by collecting a list of Struct(Timestamp, Value)

Stream to stream joins

 When doing stream to stream joins, keep an eye on the distinct key count on aggregation state

Streaming in production

- Structured Streaming in Production checklist
 - Setup recovery of queries from failure
 - Configure Checkpointing
 - Query restart
 - Configure Spark scheduler pool for efficiency
 - Optimize performance of stateful streaming queries
 - Configure multiple watermark policy

Reference: https://docs.databricks.com/spark/latest/structured-streaming/production.html

Erni Durdevic

Machine Learning Engineer

+31 (0) 638 11 94 12

erni.durdevic@quby.com

