Introduction to Deep Learning

Deep learning is a subset of machine learning that uses neural networks with multiple layers to extract higher-level features from data. It's at the forefront of artificial intelligence, enabling machines to automatically learn and make decisions from data.

What is Deep Learning?

- 1 Complex Data Analysis

 Deep learning is capable of analyzing and processing complex, unstructured data such as images, audio, and natural language.
- 2 Feature Extraction
 It focuses on automatically
 identifying and extracting
 hierarchical representations of data,
 leading to more accurate results.
- Pattern Recognition
 It is used to recognize patterns and make decisions based on those patterns, typically mimicking the human brain's capabilities.

MACHINE EARNING fachine learning begins o flourish.

Neural Networks and Their Architecture

Structure

Neural networks consist of layers of interconnected nodes that process and transform data, eventually producing an output.

Activation Functions

Each node applies a mathematical function to the input signal, transforming it into the desired output.

Training Algorithms

Different optimization algorithms are used to adjust the connections' strengths based on the input data.

neural networks vs deep neural networks

neural networks have three layers: input layer, hidden layer, output layer

Deep neural networks: is a type of neural network with multiple hiden layers between the input and the output layers. The term "deep" refers to the number of hidden layers

The key difference between a Neural Network and a Deep Neural Network is the depth of the network.

Training Deep Learning Models

Data Collection

Acquire and preprocess the data used to train the model.

Model Building

Develop the architecture and parameters of the deep learning model for the specific task.

Evaluation

3

Assess the model's performance on validation data and fine-tune it for better accuracy.

Deep learning architectures

- 1. Artificial neural networks
- 2. Recurrent neural networks
- 3. Long Short term memory (LSTM)
- 4. Convolutional neural networks (CNN)
- 5. Transformer
- 6. Generative adversial Networks (GAN)

Artificial neural networks

Recurrent neural networks

Long Short Term Memory

Transformer

Generative adversarial network

What is a CNN?

The name «Convolutional Neural Network» indicates that the network employs a mathematical operation called Convolution. Convolution is a specialized kind of linear operation. Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers.

Architecture of the visual cortex:

CNNs are basically inspired from the concept of the human brain, specifically the visual cortex.

images

pixel

images

RGB

classification vs object detection vs segmentation

PyTorch Library

O PyTorch

- Dynamic
 Computation Graphs
 PyTorch allows for the
 creation of
 computational graphs
 that change during
 runtime, providing
 flexibility.
- Scalability
 It supports easy scaling of deep learning models to large datasets and GPUs.
- Research and Production
 Used extensively in both academic research and production environments for various applications.

TensorFlow Library

Highly Scalable	Provides distributed computing and deployment across multiple platforms.
Rich Ecosystem	Comes with a wide variety of tools, libraries, and community support for deep learning tasks.
Model Compatibility	Supports easy integration with different hardware, allowing for efficient model deployment.

what are tensors

central data abstraction used for numeric computation. you can create array of tensors, integers, float .

can run on either CPU or GPU.