Brownian motion. { Pt, too} : collection of random. Votrables with in (3). 2) Be has independent increments. 3) $\beta t - \beta s$ (typ) are Gaussian $\sim \mathcal{N}(0, t-s)$ (Consequence) B.M. is continuous but not differentiable. (Q) What determines a continuous time stochastic process Xt , tro (0 stsT) F, D, P, Emile dimension Joint probability of Xto Xti, -- , Xtn is given. distribution

f B+++ - B++ € K=0.1, ..., N-1 are independent random variable! ⇒ B is not differentiable

Martingales.

P:(A,F) are assignments of $A:EF \rightarrow a:P(A):I$ if A, As, ..., AN ... EF, and AIAA = \$ $\Rightarrow \sum_{j=1}^{\infty} P(A_j) = \emptyset \quad P(\widehat{U} A_j)$

if we have $X: \Omega \to R$, $F_X(x) = P(w \in \Omega \mid X(w) \in x)$ of CR

Question): Given a consistent set of probabilistic distribution. of process Xt, = Ets T Poes there exist Ω and F and further $X+(w): \Omega \to IR^*$ osts Tsuch that F.D.D. of Xt (by kolmogorov continuty ~)

We need that the F.D.D. bas stochastic continuity.

P(=|X+h-x+1,73), =0. for all 320 (), Continuity "m probability"

· Discrete time Mantingale.

$$E[X_n \mid F_{n-1}] = X_{n-1} \qquad n = 1, 2, \dots n$$

$$\text{The information up to } n-1 \ (given).$$

E.g.) suppose
$$X_1, X_2, \dots, X_n$$
 assume $S \cdot n = X_1 + \dots + X_n$

Clearly, BEN 75 @ sum of independent @ expatations of zero.

≥ Btw is Nantingale

$$EX ext{ (2)} ext{ What about } ext{ $\beta_t^2 - t$} ext{ } ext{ }$$

$$\beta t^{2} - \beta s^{2} = (\beta t - \beta s)^{2} + 2\beta t \cdot \beta s - \beta g^{2} - \beta s^{2} = (\beta t - \beta s)^{2} + 2(\beta t - \beta s) \cdot \beta s$$

$$\Rightarrow E[\beta t^{2} - \beta s^{2}|F_{5}] = E[(\beta t - \beta s)^{2}|F_{5}] + 2E[(\beta t - \beta s)\beta s|F_{5}]$$

Ex3 $e^{\alpha\beta t} - \alpha^2 t/2 = M_t^{(\alpha)} = Martingale$.

01/11/2024 Brownian motion - quadratic $\begin{cases}
\beta t, \ t > 0 \end{cases} \rightarrow
\begin{cases}
2 & \beta t & has ind, increments \\
3 & \beta t - \beta s \sim N(o, t-s)
\end{cases}$

> "Continuity" of Bt is implied in 1,2,3.

Suppose (1, F) is prob. space, Bt ~ Bt (w), wen is defined,

Bt (w) : 12 -> 18 , t>0

\ w | B+(w) ≤ X } EF+ CF

o-algebra (mameter) involving path up to t

Note: Ft is generated by events finEst BE, (w) xx, ..., BEN(w) * xn}

Here. Martigale property of Bt, to > EIBt | Fs] = Bs

why? a = E[Bt = Bs | Fs] = 0 (The, since Bt - Bs ~ N(0, t-s) Guussian).

E.y., 1) E[|Bt|] = Jim (e-x72t dx em . (finite)

2) $E \left[\beta \xi^{\mu}\right] = \int_{-\infty}^{\infty} \chi f \frac{e^{-\chi^{2}/2\xi}}{\sqrt{2\pi \xi}} d\chi \times \infty \left(fib \text{ all } p.\right) \left(finde\right)$

3) $E[e^{xBt}] = \int_{-\infty}^{\infty} e^{xx} \frac{e^{-x^{3}/2t}}{\sqrt{2\pi t}} dx = e^{x^{2}t/2}$

 \Rightarrow we conclude $e^{\alpha \beta t - \alpha^2 t/2}$ is a Marthyale.

show > E[Mt | Fs] = Ms > E[e &Bt - atta | Fs] = e &Bs - x2s/2

 \Leftrightarrow E[e $\alpha \beta \xi - \alpha \beta s$ [Fs] = E[e $\alpha (\beta \xi - \beta s)$] Fs] = $e^{\alpha^2 (\xi - s)/2}$ (BE-Bs) is Gaussin Vormable

 $\Leftrightarrow E[e^{d(\beta t - \beta s)} | T_s] = e^{d^2(t-s)/2}$ by We can get vid of "Fs (: independent incoments.)

Total variation / Quadratic variation.

flt), 0 & t & T is a given function. too to the terms.

Partitions (to ~ tw) is called (π_N) \Rightarrow $\pi_N: \max |t_{j+1} - t_j| \rightarrow o$ as $N \rightarrow \infty$

Perfine $TV_T(F) = \lim_{N\to\infty} \sup_{TN} \sum_{i=0}^{N-1} |F(t_{i+1}) - F(t_{i})|$:

Any F such that $\max_{i=0} |F'(t_{i})| < \infty \iff TV_T(t_{i+1}) = 0$

 \Rightarrow Any F such that $\max_{i} |F'(t)| < \infty \iff TV_{T}(x) \leq \lim_{N\to\infty} \sup_{T_{N}} \int_{t}^{x} f'(t)$

 $i \Rightarrow TU_{\overline{i}}(F) \in \max |F'(f)|$ liven sup $T_{ij} = \max_{t} |F'(f)| T_{ij}$

 \Rightarrow If it's differentiable, \rightarrow TVT(F) < ∞ (finite).

However, if F is prease monotone (increasing), $TV_T(x) = \lim_{N \to \infty} \sup_{TN} \frac{p-1}{p-1} \left(f(t_{j+1}) - f(t_{j}) \right) = F(T) - F(0) < \infty$

Ricmann integrals. $\int_{0}^{T} g(s) df(s) = \lim_{N \to \infty} \sup_{T_N} \sum_{j=0}^{N-1} g(t_{j}^{*}) \left\{ F(t_{jH}) - F(t_{j}) \right\}$ (t; * e; (t); ts+1) Bouned total variation. (BV) $\left|\int_{0}^{T}g(s)\,df(s)\right| \leq \max_{0\leq q\leq T}\left|g(s)\right|\,TV_{T}(f)$ JA (large one in intune) 90 (smiles) 7 = to

 $g_N(t) < g(t) < g_N(t) \Rightarrow f_{msup} | g_N(t) - g_N(t) | = 0$

 $\Rightarrow \int_{0}^{T} dt = \sum_{i=1}^{n-1} g(t_{i}^{*}) \left(f(t_{i}^{*}H) - f(t_{i}^{*}H) \right) .$

> = g(t;+) [+(t;+) + (t;)] € [Tgdf. € I g(t;+) [f(t;+) - f(t;)]

BUT, $TV_T(\beta_t) = +\infty$ (w.p.1) Brownian motion...

 $\frac{Mole}{EC \sum_{j=0}^{N-1} |B_{ij}| - B_{ij}|} = \sum_{j=0}^{N-1} E[|B_{ij}| - B_{ij}|]$ $= \sum_{j=0}^{N-1} |B_{ij}| - B_{ij}| = \sum_{j=0}^{N-1} E[|B_{ij}| - B_{ij}|]$ $= \sum_{j=0}^{N-1} |x| \frac{e^{-x^{2}(t_{ij} + t_{ij})}}{12\pi(t_{ij} + t_{ij})} dx$ S = C. I TEH-ti J 181 e-42 by . Itini-ts

```
· TIN is even partition -> to-1 - to = st; NAt = T
                                   > c \( \frac{7}{500} \) \( \sigma_{\text{or}} - \frac{1}{50} \) = C \( \sigma_{\text{of}} \) \(
             [ Using Bornel - Contide (B.C.) lemma, we show that.]

TV_T(\beta \epsilon) = +\infty wp.1.
> Conclusion: for f(Os) dBs "cannot be" a Riemann integral.
                 > New theory (Ito): Sadf = #f T - Stag will the work?
                                                                                                                                                                                                                       -> No! since (B) is not difficiently
                                                          But, Bt has finish queadratic variation |

lim sup I | Bto+1 - Bto| = (T) in mean square.

Note to 1000
                                 E \left\{ \begin{array}{c} I \\ I \\ I \end{array} \right\} \left( \begin{array}{c} Bt_{J+1} - Bt_{J} \end{array} \right)^{2} - \left( \begin{array}{c} I \\ I \end{array} \right)^{2} \left( \begin{array}
                    E \int_{c=0}^{\infty} \left[ \left| B_{t_{j+1}} - B_{t_{j}} \right|^{2} - \left( \left| t_{j+1} - t_{j} \right| \right) \right] = E \left( \sum_{c=0}^{\infty} \left[ - \frac{1}{2} \right]^{2} \right)
                                                                                                                                                  Randonn Vulrables and mean = 0
                                                                                                                                                                                                                                                                                                                                                                                                                              Note: no cross terms survive (; independent)
              = \frac{2}{1500} E \left[ \left( \beta t_{5H} - \beta t_{5} \right)^{\frac{1}{2}} - 2 \left( \beta t_{5H} - \beta t_{5} \right)^{2} \left( t_{5H} - t_{5} \right) + \left( t_{5H} - t_{5} \right)^{2} \right]
                 (Fact: if X is fidusion. \Rightarrow micon =0, E[X^4] = 3 (E[X^2])^2)
                                   = \sum_{j=1}^{n-1} \left[ 3(t_{j+1} - t_{j})^2 - 2(t_{j+1} - t_{j})^2 + (t_{j+1} - t_{j})^2 \right]
                    i = 2 \int_{0.00}^{N-1} (t_{j+1} - t_0)^2 \le 2 \cdot \max_{j} (t_{j+1} - t_0) \cdot T \xrightarrow{N \to \infty} 0
```

 $QV_{T}(B)=T$

$$\sum_{G=0}^{p-1} \left(\beta t_{S+1} - \beta t_{S}\right)^{2} - T$$

For simple
$$Nat = T$$
, $\frac{1}{Iat} \left\{ QV_T^N(B) - T \right\} \longrightarrow N(0, 2T)$

Kulmogonou continuity (Bt is continue w.p.1)

 $\Omega = C([\sigma, T]; R)$ $F_T = \sigma$ -algebra generated by cylinder set. $\Rightarrow o \le t \le T$ $F_t = \sigma \{B_S, S \le t\}$ $cylinder Set : \{w \in \Omega \mid \beta t, (w) \le x_1', \dots, Btw(w) \le x_n\}$

by depends on TIN, X1, X2, ---, Xn

 $\langle Nok: w \in \Omega, wtt \rangle = \beta t(w) \rangle$

to path of Browner motion at time t.

(D, Foster, p) -> P makes paths to tollow rules of Brown, motiona.

 Ω is also a metric space. I dist $(w, w_2) = \max_{0 \le t \le T} \|w_{t_1}\|_{-\infty} \|w_{t_2}\|_{-\infty}$

Pefire open set: 0 = [wildlwo, wi) < 33 =>

##

Elementary def. of B, M. provides a prob. law on ay cylindor sets of $A \in \mathcal{F}_T$ and is a cylinder set; then P(A) is defined.

Since joint law of Bto(w), Bto(w), Bto(w) is Gtoussian Bto = 0, Bt

stym of freezers

(X)

Kolmogum continued. (k.c.)

Supposes p (as p on : (Sh. FE -sest)) has property that there exist of B, C positive.

EP{|X+(m)-x5(m)|x | < C | t-s| 149 05 vert, & T

then, P extends to prob. law on all of (A, Fr)

Logic: Colordo set (substied) F.C. all set (substiel)

```
E \int |B_t - B_s|^{\alpha} \int = \int_{-\infty}^{\infty} |x|^{\alpha} \frac{e^{-\frac{x^2}{2(t-s)}}}{|x|^{\alpha}} dx \qquad \left( \begin{array}{c} x \\ \int \frac{1}{|x|^{\alpha}} dx \end{array} \right)
         > E ( |BE-Ps | " ) = . . Cox (t-s) = > . 0/2 > 1
                                  d=4, p=4 → kolmoyum conteren works.
(Inequality) (not continous in great)

Suppose f(t) 0 \le t \le 1, s \cdot t \int_{0}^{t} \int_{0}^{t} \frac{|f(x) - f(y)|^{p}}{(x-y)^{n}p+t} dxdy < \infty ((x-y)^{n}p+t)
             Then, GTRR (1992) \Rightarrow |f(t)-f(s)| \leq C_{\sigma,p} |t-s|^{\alpha-1} \left(\int_{0}^{\infty} \int_{0}^{\infty} \frac{|f(x)-f(y)|^{p}}{|x-y|^{\alpha p+1}} dxdy\right) - 0
                                                                                                                                                                                                                                                                                                                                                                                                      ( xp-1 >0 (Holder exporate))
                                                                                                                                                                                                                                    f(x) of (x) to make O Mtwable
  > Apply this inequality (a) with kolymon conterms,
              \Rightarrow let u(h, w) = \max_{l \in S} |X_{\ell}(w) - X_{S}(w)| a decreasing function of h.
                                                                GRA > u(h,w) = (a,p) h d-1/p. B(w) 1/p where B(w) = \int \( \frac{1}{2} \) \( \times \tau \) \( \times \) \( 
                              (Recall k.c.

E[1] \times E - x_s |^p) \leq |E-s|^{1+p} \Rightarrow \underbrace{1+p-(\alpha p+1)} \in E[\frac{1}{x^p}] \times \underbrace{(1+p-(\alpha p+1))} = \underbrace{(1+p-(\alpha p+1))} \times \underbrace{(
                                                     P(wen| B(w) < 00) = 1
```

Pertads to whole (kici)

$$\left(\Omega, Fostst, P \right), \quad \Omega = C(To,TJ;R) \quad \left(P - B,M, Ianu \right)$$
and $BU \in \Omega$ $f(t,w) = Co,TJ \times R \rightarrow R$

$$\Rightarrow defice \int_{0}^{T} f(s,w) dB_{s}(w) \sim \frac{2}{s}$$

$$\cdot f \text{ is non-onterpating.} : \left\{ w \in \Omega \mid f(t,w) \in A \right\} \in F_{t} \quad \left(\text{ostst} \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \left(B_{tkri}(w) - B_{tkl}(w) \right)$$

$$= lnn \quad Z \quad f(tk,w) \quad$$

-> PReview Chapter 3.

 $\beta t(\omega) = mart.$ $\beta^2 + (\omega) - t = mert$

	, !
and the second second	
and the second second	
and the second second	
e e a maria	
*** *** *** *** *** *** *** *** *** **	BOOK SEASON OF THE CONTRACT OF
	i Programme de la companya de la comp
	en de la companya de La companya de la co
÷	
and the second second	

```
Stochastic integrals.
```

01/18/2024.

Brief review.

 $\begin{cases}
\Omega = C([0,T] \supset R) : continuous \\
w_1, w_2 \in \Omega : paths \\
d(w_1, w_2) = max | w_1(t) - w_2(t)
\end{cases}$

 $d(w_1, w_2) = \max_{0 \le t \le T} |w_1(t) - w_2(t)|$

for $0 \le t \le T$ $f_t = \emptyset G G f$ σ -algebra generated by $\beta s(\omega)$ $\delta s \le t$ Notation: $\beta t(\omega) = \omega(t)$, in general, $f: [0,T] \times \Omega \to R \Rightarrow f(t,\omega)$ with this notation, $\beta(t,\omega) = \beta t(\omega) = \omega(t)$.

To general, Ω can be considered as subspace of set of all functions on [0,T]E.S.) $\tilde{\Lambda} = set$ of real value functions on $[0,T] \rightarrow \Omega \subset \tilde{\Omega}$ Ft can be defined on $\tilde{\Omega}$ as well

Criven a set of finite dimension distribution, $\tilde{F}_{0,t}$, $t_{0,t}$, $t_{0,t}$, $t_{0,t}$, $t_{0,t}$.

 \Rightarrow $P(\beta_{b_1}(\omega) \leq \chi_1, \cdots, \beta_{b_n}(\omega) \leq \chi_n)$ can be associated uniquely with a publishing law $n \lesssim \alpha$ assuming only that they are consistent

(b) How to assign probion. Sup $Ps(w) = ML(w) \rightarrow we don't know of set$

if however, P is stochastic continuous sup $P(.|Bt(\omega)-Bs(\omega)|>8) \longrightarrow 0$ as $t \to s$, $0 \le s \le t \le T$ (for any 2 > 0)

Then, my countable dense set in to, T] determines probabilities in to, T]

We can also define. What we mean f(t,w) we at telo, TI being intervable.

Suppose Ful mayonov continuity holds $(R,C_0): E[|Bt(\cdot)-Bs(\cdot)|^{\alpha}] \le C_7 |t-s|^{1+\beta}$. Then, with probability 1, the continuous function in $\widetilde{\Omega}$, that is $\alpha,\beta,C_7>0$ the set $\Omega \subset \widetilde{\Omega}$ have probability 1, $P(\Omega) = 1$.

(prop X completely!)

Stochastic integrals. { _1 = C([0,T]; R) ft, osest, P= Brownian motion law.} > If flt, w): [0,T] x.a -> R, we assume that, $0 \int_{0}^{T} f^{2}(t, w) dt < \infty$ @ non-anticipating > qwealfle,w) GA } & Ft -> Partition Define: $\int_0^T f(t,w) d\beta_t(w) = \lim_{N \to \infty} \frac{1}{f(t_0,w)} \left(\beta_{t_0,t_0}(w) - \beta_{t_0,t_0}(w)\right)$ Mein square Note; Increment is always forward > Use opprox, of f(b,w) called simple ftim) = Z ek(w) / Ctk, thus (t) ere(w) ofth $I_{T.}(f) = \int_{0}^{T} f(s, w) d\beta_{s}(w) = \sum_{k=0}^{p-1} e_{k}(w) \left[\beta_{th}(w) - \beta_{tk}(w)\right].$ 1) Additharty: I fdB = I fdB+ In fdB (OSUST) For simple function following peop hold > (a) Linearity $=\int_0^T (f+g)d\theta = \int_0^T fd\beta + \int_0^T fd\beta$. $\Im \ E\left[\int_{-T}^{T} f d\beta\right] = 0$ A : Iterative conditional expectation. $= E[\sum_{k=0}^{p-1} e_k(w) \left(\beta(k+1)(w) - \beta_{k}(w)\right)]$ = D E S Ck(w) (Ptry-Btk)(w)] = I E E E E E E (BEKH - BEK) FEK] = [161 eki vue (18 ther - 18 the) } = I E[ek Ef Btkn - Bik | Ftk]

```
Property @: the ramety, E[IT(4)] = 5 Eff. (t,-) df < 0
     E\left(\left(I_{T}(w)\right)^{2}\right] = E\left(\left(\frac{N-1}{2}e_{K}\left(B_{t+1}-B_{t+1}\right)\right)^{2}\right)
          = E \ _ T = erex' (BtkH - Dtk) (BtkH - Btk')
         = ZI E) ex ex (Btkn - Btk) (Btkin - Btk)}
        = II E[E[---- | Ftk']]
                                         4 highest one, (" KSK")
        = To Eleker El - ( FW)
                            if k + k' -> this term is (zero) -> drywal tems surve.
    > I E [ ek2 (Befor - Befor) ] = I E [ek2] (ten - to) ('i mod produt)
                                      = \int_{-\infty}^{\infty} E(f^{2}(t, w)) dt
          A (t,w) = (ek (w) (+k s +s +k+))
Property (5) For f sample Stad B is on Ft mantagale in ostst
                                                        (E[It[To] = Io = 0

~ similar to $3)
              that is continuous m t.
            If J_{\xi}(w) = \int_{0}^{t} f(s, w) d\beta_{\xi}(w) \Rightarrow E[I_{\xi}(F_{\xi})] = I_{\xi}
Summary: It(w) is continuous and square integrable man fingule.
     since, E[It^2] = \int_0^t E[f(s,\cdot)] ds.
```

il de la companya de Esta de la companya d
(a) Given property 1-5 > How to complete the theory?
Lemma (oksendal)
Suppose $f: [0, \tau) \times \mathbb{R} \to \mathbb{R}$, non-entripoting and square integrable.
Without non-entrapeting property, we know that there always exists a
Sequence of simple. In (t, w) sit, $E \int_{0}^{t} (f(t, w) - f_{n}(t, w))^{2} dt \longrightarrow 0$
-> If also f is non-entrepating than for (6, so) can also be closed to be
non-conformating, (Infutive)
Suppose this is known -> flow to complete?
-> How do we extend property @ to any f. that is non-anterpropy
and squate integrille.
$\int_{a}^{b} f_{n}(s, w) ds = I_{h}^{k}(w)$ is a confinous square integrable F_{k}
ter state of the second of the
Review convergence
(1) $\forall n \in \mathbb{N}$, $(n-1)_{2,-n}$, $(n-1)_{2,-n}$, $(n-1)_{2,-n}$, $(n-1)_{2,-n}$, $(n-1)_{2,-n}$
(2) In > X in pubability if P(1x1-x1 >2) -> as now for 2>0
(3) Xn > X as if Xn (w) -> X(w) for a set of wear that has proble
-> Suppose we show that plantx(In (t, w) - Im (t,w) > 3} -> =
The state of the s
as by many services and a
as $n, m \rightarrow v$ for any 320
(In words, In (t, w) is a couchy-sequence, uniformity in t, 0565T in purbabilities
with respect to (winiting)
Suppose Xn is carely in (11,50) × conv. publicity 11 Xn " in prob
x conv. prbv exsts
conv., in pub. $\equiv E\left(\frac{1\times n - \times 1}{1\times n - \times 1 + 1}\right) \rightarrow as$ as
In (t, w) - rs Couchy valtormly continues

-> (Continues!)

 $P \left\{ \begin{array}{l} Sup \\ 0 \leq 6 \leq 7 \end{array} \middle| I_n \left(b, \omega \right) - I_m \left(b, \omega \right) \middle| > 0 \right\} \rightarrow 0$

· The stochastic integral 01/23/2024 * Main fact: (Integrand f(t,w): [0,T] $\times \Omega \rightarrow \mathbb{R}$, $\Omega = C(50,T):\mathbb{R}$) Ft, 05 65T, P & motes path B.M. \rightarrow Notation: w(t) $0 \le t \le T$ is decided by Bt(w) = w(t). > Properties : = E f T f (5,0) ds < P · Non-enticipating [W & D | flow) GA] EFE, OSEST. ACR $f(t,w) = \sum_{k=0}^{N-1} e_k(w) \times (t_k, t_{k+1}) \qquad e_k(\cdot) \in F_{t_k}$ {wen| ek(w) = x } eft. Yxer $\Rightarrow \text{ For simple } f, \int_{0}^{T} f(s, w) dB_{s}(w) = \sum_{k=0}^{N-1} f_{k}(w) \left\{ B_{k}(w) + B_{k}(w) \right\}$ Adding ahead (forward). · O Additivity @ Limearity. 3. $E\left(\int_{0}^{T}fdB\right)=0$ $\mathbb{E}\left[\left(\int_{0}^{T} f d\beta\right)^{2}\right] = \mathbb{E}\left[\int_{0}^{1} f^{2} ds\right]$ (3) $I_{t}(w) = I(t, w) = \int_{s}^{t} f(s, w) d\beta_{s}(w) = \int_{s}^{T} \chi_{[s,t)} f(s, w) d\beta_{s}(w)$ It (w) "is continuous in to, square integrable, Ft martingale. (E[Jt|Fs] = Is) 5 - explanation Last price , Last price. $J_{S} = \frac{16-1}{2} e_{k'=0} e_{k'} \left(B_{t k'+1} - B_{t k'} \right) + e_{n_{S}-1} \left(B_{S} - B_{t n_{S}} - 1 \right)$ + ent-1 (Bt- Btns-1), $I_t =$

From inherited continuity of B.M.

Pass the limit officer simple of to general of Oksendal lemma General appreximation theorem. f(t,w) sq. int. $E \int_{-\infty}^{\infty} f(s,\cdot) ds < 0 \Rightarrow \exists . f_n(t,w)^n simple is, t. <math>E \int_{-\infty}^{\infty} (f-f_n)^n \longrightarrow 0$ < Additionally, for is non-conticipating> martingale > E/Mt/P} < 00 ISp < 00 continuous, Hen P { max | Ms| > 2 } & 1 E { 1 M+ | ?} > Apply ! Let $J_n(t,w) = \int_0^t f(t,w)dB_s(w)$ > P max In (E,w) - Im (t, w) 172 \$ 1/22 E [(In (Ty) - In (Ty)] = $\frac{1}{2}$ = $\mathbb{E}\left\{\int_{0}^{T}(f_{n}(s, \cdot) - f_{m}(s, \cdot))ds\right\}$ 1/3° E[J. (fn(s, v) - fm(s.)) ds] ds] Conclusion: In (6, w) is a continue stillute. by It has unique limit. I(t,w), s,t,P max $|I_n(t,\bullet)-I(t,\bullet)|>2$ $\rightarrow 0$

-> We can prove using Bornel - Contelly learner -> find (subsequence) $I_{nk}(t, w)$. S.t. $I_{nk}(t, w) \rightarrow I(t, w)$ as $n_k \rightarrow \infty$ unique n(t) while

```
have sitochastic integral.
                   I(t,w) = \int_{0}^{t} f(s,w) d\beta_{s}(w)
               all 5 properties of the S.I. for simple f.

    ② Linearity
    ③ Mean Zero.
    ④ Ito Zerometry
    ⑤ I(t,w) is a cont. sq. int- Mart.

(e) Note: I(t,w) = \int_{-\infty}^{\infty} f(s,w) d\beta s(w) ostST on (\Delta, F_{\ell}, ostST, P)
                  is cont, sq. integrable maptingale.
 (1) Converse: Every cont. sq. int. Mantagale is a Brownian stochasta integral,
(2) Small : If Mt is sq. int. Mart. $ s.t. its quadratic variation is t
                        Mt is a Brownian motion of Poesn't have to be original!
       why? \rightarrow show by converse

M_{\pm}(w) = \int_{0}^{\pm} f(s, w) ds B_{5}(w) \quad Bat \ E(M_{\pm}^{2}) = E \int_{0}^{\pm} f^{2} ds = (\pm)
         In addition, i For any S. internal J(t, w) = \int_0^t f(s, w) d\theta s(w)
                  \Rightarrow \alpha V(I) = \int_{0}^{T} f^{2}(s, w) ds (1) Ito isometry)
          (so QV+(M) = + (os+sT) \Rightarrow \int_0^t f(s,w)ds = + \Rightarrow f^2 = 1
                   let -X(t,w) = \int_0^t f(s,w) d\beta s(w) and suppose |f'(s,w)| = 1 (05 ts 7)
                 ⇒ X(t, w) is @ Brownian motion that's not B(t, w)
         Small converse is proved!
```

Ito's formula. (p24-p.25 in lecture notes.)

g(x): $|R \to R$. g(x), g'(x), g''(x) are bounded.

Then, $g(Bt) - g(Bs) = \int_{-1}^{t} g'(Bu) dBu + \frac{1}{2} \int_{s}^{t} g''(Bu) du$.

(assume max (ftx11-gtx)->0)

 $g(\beta_T) - g(\beta_0) = \sum_{k=0}^{N-1} \left\{ g(\beta_{k+1}) - g(\beta_{k+1}) \right\}$

 $= \underbrace{Z}_{k=0} g'(\beta t_k) \left(\beta t_{kH} - \beta t_k\right)$

(Taylords expansion)

+ $\frac{1}{2} \frac{1}{2} g''(Btk) (Btkn - Btke)^2$ (assume g''' exists).

+ $\frac{1}{2}$ $\frac{1}{6}$ $g^{(1)}(Bt_k*)(Bt_{k+1}-Bt_k)^3$ $t_k* \in \mathbb{Z}$ t_k , t_k t_k

 $0 \to \int_{0}^{T} g'(Bs) dBs \qquad 0 \to \frac{1}{2} \int_{0}^{T} g''(Bs) ds \qquad 0 \to 0$ why?

 $\left| \begin{array}{c} B \to B \\ \sum B(tk^*) \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \max \left| Btkm - Btk \right| \sum_{k=0}^{N-1} \left(Btkm - Btk\right)^2 \\ \times \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \leq \max \left| g^{(1)}(x) \right| \left| \sum_{k=0}^{N-1} \left(Btkm - Btk\right) \right| \left| \sum_{k=0}^{N-1}$ =0 W.P. I bounded w.p. 1

(Brownia continuest)

- uniform continuity.

1 3 20

1. $g(Bt) - g(Bs) = \int_{a}^{b} g'(\beta u) d\beta u + \frac{1}{2} \int_{a}^{t} g''(\partial u) du$

(a) How to generalize? -> continued...

" 3(B+) - g(Bo) = 5 g'(Bs) LBS + 1 5 Tg"(Br) LS

```
k.I \rightarrow Stopping times.
```

K.I. in discrete time.

$$\begin{cases} M_1, & n \ge 0 & \text{Mav bryanle.} & \text{at } (-\Omega, F_1, o \le n \le N, P) \\ E[M_1|F] < \infty & 1 \le p < \infty \\ E[M_1|F_k] = M_k & 0 \le k \le q < \infty \end{cases}$$

$$\Rightarrow P\{\max_{s \in p \leq n} |M_k| > n\} = \frac{1}{\lambda_P} E[|M_n|P] \qquad (k. I.)$$

In Continuous case,

$$P\{\max_{0 \leq s \leq t} |M_s| > \lambda\} \leq \frac{1}{\lambda!} \cdot E[M_t|^p]$$
 (f.I. in cont.)

$$\begin{cases} A_0 = \int w \in \Omega \mid |M_0| > \lambda \end{cases}$$
 (get out from mitral)
$$A_1 = \{ w \in \Omega \mid |M_1| > \lambda \}, |M_0| \leq \lambda \}$$
 (get out after mitral).
$$A_2 = \{ w \in \Omega \mid |M_2| > \lambda, |M_1| \leq \lambda, |M_0| \leq \lambda \}$$

[A:=
$$\{w \in \Lambda \mid IM; 1>2, IM \notin \Lambda \in \Lambda, ---, M_0 \mid \leq \Lambda, \}$$
.

clearly. A: $\Lambda A: = \emptyset$ (i \(i \) and $\{w \in \Lambda \mid max \mid IM \notin I > \Lambda\} = \bigcup_{k \in \Lambda} A_k$

Ak is a set of path that escapes at time k. (exit time = k)

$$\Rightarrow P \left[\max_{0 \le k \le n} |M_k| > \lambda \right] = \sum_{k=0}^{n} P(A_k) = \sum_{k=0}^{n} E \left[\sum_{k=0}^{n} E \left[\sum_{k=0}^{n} E \left[\sum_{k=0}^{n} \sum_{k=0}^{n} E \left[$$

By Martingale,
$$|MK| = |E[Mn|Fk]| \le E[Mn|Fk]$$

 $\le E[Mn|F|Fk]^{VP}$ (Hölder inequality).

Therefore,
$$P[\max_{0 \le k \le n} |Mk| > n]$$
 if $\sum_{k=0}^{n} E[E[|Mk||^{p} \times_{Ak} |Fk]]$

$$= \sum_{k=0}^{n} E[E[|Mk||^{p} \times_{Ak} |Fk]] = \sum_{k=0}^{n} E[|Mk||^{p} \times_{Ak} |Fk]] = \sum_{k=0}^{n} E[|Mk||^{p} \times_{Ak} |Fk]$$

Also, note that XAL (sum of Events) <1 ~ < TESIMIPS #. .. P [max | Mxl > 2 } & Tr E [(Mx | P] Quadratic variation (QU) QV_(I)= lim I (I+++ (w) - I++(w)) MSQ> max (++++++) -> 0, N > 00 $\alpha_{VT}(x) = \int_0^T f^2(s, w) ds$ $I_T(w) = \int_0^T f(s, w) d\beta_s(w)$ Clearly $(I_T(w) = B_T(w))$ if f(t,w) = 1 (05 t $\leq T$) (Evolvint \Rightarrow mean square lim r t) $\frac{Suppose}{Suppose} \quad I(t, \omega) = \int_{0}^{t} \sigma(s, \omega) d\beta_{s}(\omega) \quad \text{and} \quad |\sigma(s, \omega)| \leq C$ $0 \leq t \leq T.$ Then, I'(t,w) - It o'(s,w)ds is a Fit Martingale In fact $I^2(t) - \int_0^t \sigma^2 ds = \int_0^t I(s) \sigma(s) dBs$ By Ito isometry $E\left(\int_0^t I + dBs\right)^2 = E\int_0^t I^2 \sigma^2 ds$ Recall $E(I(t)) = E\int_0^t \sigma^2(s) ds$. $I^{2}(t) - \int_{0}^{t} \sigma^{2} ds \sim sq. int.$ Return to Itals formula, suppose f(6,x): [0,T] $x \neq 0$. $f(x) \neq 0$. $f(x) \neq 0$. Are bounded. $f(t,\beta_t(\omega)) = f(o,o) + \int_0^t f_t(s,\beta_s(\omega)) ds + \int_0^t f_x(s,\beta_s(\omega)) d\beta_s(\omega)$

1 ft fxx (s, As(w)) ds

If f=fix), f(b) =0 Aust term days out.

· Full strength Ito's formula

f(t,x): $[0,T] \times \mathbb{R} \to \mathbb{R}$, f(t,x), f(t,x), f(t,x) bounded, cont.

let $I(t,w) = \int_{-\infty}^{\infty} \sigma(s,w) dB_s(w)$. $E\left[\int_{0}^{\infty} t \sigma^{2}(s,w) ds\right] cop$

Then, $f(T, I(T)) - f(0, I(0)) = \int_0^T f_t(s, I(s)) ds + \int_0^T f_x(s, I(s)) dBs$ $+ \frac{1}{2} \cdot \int_0^T f_{tx}(s, I(s)) d < I_s >$

 $\left(dI_{s} = \sigma(s)dB_{s} dG_{s}\right) = \sigma^{2}(s)ds$

Rewrite in diff. from

 $df \mid t, I(E) \rangle = f_E \cdot (t, I(E)) \cdot dE + f_X(t, I(E)) \cdot \frac{\sigma(E) \cdot dBE}{(=dI_E)}$

(Integrability). $\frac{1}{2}f_{XA}(6, I(6)) \sigma^{2}(6)d6$

When Ito Gails We need a stopping time

- · optimal stapping than.

Stopping theorem (Ito)

$$I(t,w) = \int_{0}^{t} \sigma(s,w) d\beta s(w) \left(w \in \Omega \quad \Omega = C([0,T];R) \right) \left(\Omega, T_{t,0:test}, P \right) \quad P = B,M.$$

(t, w): [0, T] x 12 → R Est or (time) dt < non - anterpating);

From Ito's formula, "

 $E(T(t, \cdot)^2)$ = $E(s, \cdot)$ ds. [Also, $dI(t, w) = \sigma(t, w)$ dB+(w)

 $(\mathcal{I}(\mathfrak{o},\omega)=\mathfrak{o})$

Moreover, I(t, w) is contravers and $E(I(t, \cdot)|F_s) = I(s, \cdot)$

· let' f(t,x); [o,T] xR -> IR with ft, fx, fxx boundad. let Y(t, w) = f(t, I(t, w))

then, dY(t, w) = ft(t, I(t, w))dt + fx(t, I(t, w))dI(t, w)+ 1/2 fxx (t, Ilt, w) (k I(t, w))

Note: $QV_{\pm}(I) = \langle I_{\pm}(t, w) \rangle = \int_{0}^{t} \sigma^{2}(s, w) ds$

Pf) Huristic prof.

 $BV_{7}(I) = \lim_{k \to \infty} \sup_{K=0}^{N-1} \left(\frac{I(t_{k+1}) - I(t_{k})}{I(t_{k+1})} \right)^{N}$ $\lim_{k \to \infty} \sup_{K=0}^{N-1} \left(\frac{I(t_{k+1}) - I(t_{k})}{I(t_{k+1})} \right)^{N}$ $\lim_{k \to \infty} \frac{I(t_{k+1}) - I(t_{k+1})}{I(t_{k+1})} = \lim_{k \to \infty} \frac{I(t_{k+1})}{I(t_{k+1})} = \lim_{k \to \infty} \frac$

 $\frac{1}{\sum_{k=0}^{\infty} \left(I(t_{k+1}) - I(t_k) \right)^n} = \frac{1}{\sum_{k=0}^{\infty} \left(\int_{t_k}^{t_{k+1}} \sigma(s, w) d\theta_s(w) \right)^2}$

2. I ofthe, w) & Btk+ (w) - Btk (w) } (2. Stochashe Integral)

≈ I o(tk, w) (that -tk) (", QU of BM);

(if Givession, C=1) $\left(E\left(I^{2}P(x)\right)=3.5.c^{p}E^{p}\right)$

Stopping time. (*) - (simple) and (essential) Z(w) + 12 -> 1Rt in a stopping time if for any tro for est (w) = + } EI+.

Example: IN = "mf 1 t | I(t) >N) = first time I exceeds "N"

 $\{t_N, \leq t\} = \{\max_{0 \leq s \leq t} I(s, w) \geq N\} \in F_t$

EN is the first exit time of I form [- M. N].

 $\int_{0}^{\infty} 2p \, I^{2p-1}(s) \, \sigma(s) \, dBs$

= \int \x\[\tau_{\text{s}} \right\] \pm \[\text{T} \text{\$\text{\$\pm \text{\$\geq \endot{\$\geq \text{\$\geq \text{\$\geq \text{\$\geq \endot{\$\geq \endot{\$\geq \endot{\$\geq \endot{\$\geq \endot{\$\geq \endot{\$\geq \endot{\$\geq \endot{\$\geq \endot{\$\e

Note: optimal stopping theorem

Suppose MIE) IS FE MONE. ES[ME] > 00

PETETCO P, T bounded, stopping times,

then, $E[M(z)|F_{\rho}] = M(P)$

or (s) gone;

Also define $I_N(t) = I(t) \times (|N(t)| \leq N)$ (trincated)

up to thre IN, IN(6) = I(6) but after IN. IN(6) =0 + IH)

Thus; when: $|\sigma(t,w)| \leq C \Rightarrow (w) \Rightarrow \infty$

why? $\Rightarrow P \{ T_1 \leq t \} = P \{ \max_{0 \leq t \leq t} | I(s|1 > N) \} \leq \frac{1}{N^2} | E(I^2(t)) | \leq \frac{C^2 t}{N^2}$ (k. z.)

```
02/01/2024.
Stopping times,
 Read Ito's formula
        I(t; w) = \int_0^t \sigma(s, w) d\beta_s(w), of tsT
     σ (t, w) = [0, 7] × A → JR.
                                                                           well-defined
        E\int_{-\infty}^{\infty} \sigma^{2}(s, \cdot) ds < \infty (non-anticipating).
        f(t,x): [0,T] x |R -> R. fl, fx, fxx bounded.
 \Rightarrow \int df(t, I(t, w)) = f_t(t, I(t, w))dt + f_x(t, I(t, w)) \cdot dI(t, w)
       where \langle I|t,w\rangle = \int_0^t \sigma^2(s,w) ds = QV_{\pm}(I)
 Let Y/t,w) itself a stochastic integral + deterministic integral.
Y(t,w) = Y(s,w) + \int_{s}^{t} f_{t}(s,t|s,w)) ds + \int_{s}^{t} f_{x}(s,t|s,w) \sigma(s,w) d\theta s(w)
                             + \frac{1}{2}\int \frac{f_{xx}(s, I(s, w))}{bounded \square sq. (stypelte
 Example: How to calculate of (tonchous) that are not bounded using (stopping) (times)
  \frac{f(x) = x^{2p}}{\text{Calcidate } E\left(\int_{0}^{t} \sigma(s, \cdot) d\beta_{s}(\cdot)\right)^{2p}\right) \left(|\sigma(t_{1}w_{2})| \le c \text{ is needed with suffice.}\right)
         dI(t)^{2l} = 2p I(t)^{2p-l} dI(t) + \frac{1}{2} 2p (2p-1), I(t)^{2p-2} e^{2}(t) dt.
                = 2p I(t) 2p-1 \sigma(t) d\beta + \pp(2p-1) I^2p-2 \sigma^2(4) dt (10)
    Need (J^{2p-1})^2 = J^{4p-2} is integrable. If p = 2 (4th moment)
```

Stopping time IN EN [TIW) SEJ EFF (OSEST,) Ex) IN(W) = inf [t/ I(t, w)] > A) Fath w clearly. $\{C(w) \le t\} = \{\max |I(s)| \ge N\}$. (completely, equivalent). $P(T \leq L) = P(\max_{s \in as \, b} | T(s)| \geq N)$ → *****(k.I) E Li E[[t v(s, v)ds] stochastic interval Narthyele Consider $P(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} (T_{n} \leq t)) = 0$ implies that " For some N and any N>N. In st doesn't happen" = lim $P(\bigcup_{n=N}^{\infty} [\tau_n \leq t]) \leq lim \sum_{n=N}^{\infty} P(\tau_n \leq t) \leq lim \leq t \leq \frac{1}{n+1} = 0 \quad (:: \Theta)$ $P\left(\bigcap_{N=1}^{\infty} \bigcap_{h=N}^{\infty} \left(\bigcap_{h=1}^{\infty} \bigcap_{h=N}^{\infty} \bigcap_{h=1}^{\infty} \bigcap_{h=1}^{\infty} \bigcap_{h=1}^{\infty} \left(\bigcap_{h=1}^{\infty} \bigcap_{$ mens, for some $N_0(w)$ and for all $n \geqslant N_0(w)$, then, . In (w) > t : probability = 1.

In short, Chi(w) > 00 (w.p.1.)

```
AAB = MH(A,B)
· Use stopping time for moments.
              En = mf { + 1 | 11(+) | > N } .
   -> Ito's formula up to In At is Valid. " (Until Hen I is bounded by N)
    I(t)^{2p} = \int_{0}^{t} 2p \ I(t)^{2p-1}(s), \ \sigma(s) \ d\beta_{s}, \ + \int_{0}^{t} \int_{0}^{t} (2p-1) \ I^{2p-2}(s) \ \sigma^{2}(s) \ ds.
       = \int_{a}^{t \wedge \tau_{n}} 2\rho \, \mathcal{I}^{2\rho-1}(s) \, \mathcal{N}_{\lceil |\underline{u}(s)| \leq N \rceil} \, \sigma(s) \, dBs \qquad \left( \mathcal{N}_{\underline{u}(s) \leq N} = 1 \, \left( |\underline{z}(s)| \leq N \right) \right) 
                                       + Jo p(2p-1) I 2p-2 (s) \(\tau^2(s) \) ds.
         M(t) = \int_0^t 2p I^{2p-1}(s) \mathcal{N}[I(s)] \leq N_0 I^{-2p} dBs. E(M(t)) = 0 (wed) - defined Mathygle
      (TAAt 5 to is bounded stopping time) :> by patrant stopping time (05T)
     = E[M(ENTA))=0 = (ROM) valso, E[M(ENTA)|Fo] = No =0
    > Using this,
       E\left[\frac{1}{1-2p}(qp)\right] = E\left[\int_{0}^{1} f(2p-1) \int_{0}^{2p-2} f(s) \sigma^{2}(s) ds\right]
          TP ( +12)
 > E[ ]= P(tran) = P(2p-1) e2 E[ St 12p-2(5) d5]
          and also, to a more as N -> M
               so that CNAt => t U.P.1 as N > 00
                                                                              10(t,w)|5c)
      (than t t NAM)
       By Fate's lemma, (P. 34).
        E\left[\lim_{N\to\infty}I^{2p}(\pm n\pi\omega)\right]\leq\lim_{N\to\infty}E\left[I^{2p}(\pm n\pi\omega)\right]\leq p(2p-1)C^{2}E\left[\int_{0}^{\pm}I^{2p-2}(x)dx\right]
          E[I]p(t)].
                                   ( P=1) E[I"] € C2+
```

 $E[I^{2p}] = 3.5...(2p-1).(c^{2}t)^{p}$

(wg1, as N=10).

1=2) EI 14] & 2.3. C. S. C'sds = 24 3 C4+2

EX) Exponental Martingule $M_{\alpha}(L) = e \times p \left(\alpha I(L) - \frac{\alpha^2}{2} \int_{s}^{t} \sigma^2(s) ds \right) \left(\alpha \in \mathbb{R} \right)$ Mx (t) is an Ft (05487) sq. integrable Martingale, Solvetion and dMa (t,w) = & F(t,w) Ma (t,w) dBs(w) < Linear, Scalar, Stock Diff 5/1. > To have solution, (a o (+, w) Ma (6, w)) should be square mtographe. Mx (0, w) =1) < Proof of Option Strong Thoung (OST) Define: (Ft. 10 ets. T & T be a stopping fing." The is the o-algebra generated by events of the form. ANITELL GFt , AGFT (OSEST) > For collection of events that degrand on path up to time t. suppose M(6) is a continuous Northyale s.t. I (M(4)) < 00 0565T and, if p and t are stro fundam, s.t. OSP(w) & T(w) & T < D. then $\Rightarrow E[N(\tau)|F_{\theta}] = M(\theta)$ (Martinale purpose is pleasured) EX). $M(t) = B(t) = \beta, M$ B(0) = 0

 $M(t) = B(t) = \beta, M \quad B(0) = 0$ $E(t) = T = Nf \{t \mid B(t) = f \}$ $Apply \quad 0, S, T,$ $E \left\{ B(T) \mid F_0 \right\} = B(0) = 0$ $S_0 \text{ that there is not } T \neq \infty \text{ s.t.}$ $Apply \quad 0, S, T,$ $E \left\{ B(T) \mid F_0 \right\} = B(0) = 0$ $S_0 \text{ that there is not } T \neq \infty \text{ s.t.}$ $Apply \quad 0, S, T,$ $E \left\{ B(T) \mid F_0 \right\} = B(0) = 0$ $S_0 \text{ that there is not } T \neq \infty \text{ s.t.}$ $Apply \quad 0, S, T,$ $E \left\{ B(T) \mid F_0 \right\} = B(0) = 0$ $S_0 \text{ that there is not } T \neq \infty \text{ s.t.}$

```
1=F
```

O.S.T. holds when p and I are bold. => E[MI[Fe] = Mp (* Martingale proporty holds PVME).

6) E[MINT | Fo] = E[MINT] ? . [a, b] c meaning ?

Proof of OST > Good practice for condition (p. 26)

 $M \circ (t) = \exp \left(\frac{1}{2} I(t) - \frac{1}{2} \int_{0}^{t} \sigma^{2}(s) ds \right)$ $I(t) = \int_{0}^{t} \sigma(s) ds$.

> dMx (t) = x o (t, w) Mx (t) dB6 (Ito's)

M(t,w) = 1 + x ft o(s,w) Mx (s,w) dBs(w)) -> SOE with explicit so (attru

SPE

Let $g(t,x) = \sigma(t,x) : [\sigma,T] \times |R| \Rightarrow |R|$

· | flt, x) + o(t, x) = c(1+1x1) for often, x ext) : Linear growth cond.

• $|B(t,x) - B(t,y)| + |V(t,x) - \sigma(t,y)| \le C(|X-y|)$ is Globally Lapaulte cond.

we want to show that the SDE:

 $X_{t}(w) = X + \int_{0}^{t} B(s, X_{s}(w)) ds_{t} + \int_{0}^{t} \sigma(s, X_{s}(w)) dB_{s}(w)$

has a unique non - entrespenting square integrable solution,

X+ & Ft and E[X+2] < 00 0 6 + 5 T. is continuous in t

Then Ito's condition it is true.

Note: X+(w) ~ X+(w, r) 2. EM. X+(w, n) is continues in x in probability comments: The case $\sigma \equiv 0$ is included, so all of determinate ope is included here. 1) The fact that we deal with scalable case is for simplicity only,

1) The Inext greated condition is essential in global aristonce.

(x) dxt = xt²dt $x_0 = 1$ \Rightarrow $x_1 = \frac{1}{1-t}$ $\Rightarrow \infty$ as t > 1

Lipschitz condition (not for oblind) is asserted for uniqueness.
Cif)
$$dxt = xt^{2/3} dt$$
 $x_0 = 0$.

The have two solutions, $x_0 = 0$, $x_1 = t^{3/27}$.

Thus is because we don't have Exposiste property!

ps). Define
$$V(t) = \int_0^t w(s) ds$$
 Then $V(0) = 0$, $dV/dt = w$

So that
$$dV/dt = A + \beta V$$
 and $dV/dt - \beta V \leq A$.

$$\Rightarrow e^{Bt} \frac{d}{dt} \left(e^{-\beta t} v \right) \leq A.$$

$$\Rightarrow \frac{d}{dt} \left(e^{-\beta t} v \right) \leq A. \Rightarrow e^{-\beta t} v(t) \leq A \int_0^t e^{-\beta s} ds \Rightarrow v(t) \leq A \int_0^t e^{-\beta s} ds$$

so that, with
$$\leq A + OV(t) \leq Ae^{Bt}$$

(1) Uniqueness

$$x_{t(1)} - x_{t(2)} = \int_{0}^{t} \left[B\left(s, x_{s(1)}\right) - B\left(sx_{s(2)}\right) ds + \int_{0}^{t} \left(\sigma(s, x_{s(1)}) - \sigma(s, x_{s(1)})\right) dB_{s}$$

Use
$$(a+b)^2 \leq 2a^2+2b^2 \Rightarrow (xt^{11}-xt^{12})^2 \leq 2(\int_0^t aB ds)^2+2(\int_0^t a dB)^2$$
.

By stotal liftchitz condition,
$$|\Delta B| \leq C |X_S^{(i)} - X_S^{(i)}|$$

 $|\Delta \eta| \leq C |X_S^{(i)} - X_S^{(i)}|$

$$\Rightarrow$$
 w(t) $\leq 2 \in \left\{ \pm \int_{0}^{t} (\Delta \beta)^{2} ds \right\} + 2 \in \left(\int_{0}^{t} (\Delta \sigma)^{2} ds \right)$

 $w(t) = 2c^2(T-1)\int_0^t w(s) ds.$ E [(x+") - x(2))2) w(t) € 20° (++1). J. t w(s) ds. > E [|xt(1) - xt(1) | 2] = 0 , > |xt(1) - xt(1) | = 0 (0545T)

$$Mt = \exp\left(\alpha\beta\xi - \alpha^{2}t/2\right) \text{ is Martingale.} \qquad E[M\tau_{N}] = E[N_{0}] = E[I] = 1$$

$$E[Mt|Fs] = Ms. \qquad E[\exp(\alpha\beta\tau_{N} - \alpha^{2}\tau_{N}/2)]$$

$$U.IT \text{ steke that.} \qquad = E[\exp(\alpha\beta\tau_{N})] E[-\alpha^{2}\tau_{N}/2].$$

$$E[M[t]|Ft] = MI(t) \qquad \qquad (\alpha^{2}/2 = 4) \text{ apply.} \qquad = E[\exp(\sqrt{2\pi}.8\pi)].$$

$$Ut \quad (=\circ, E[M\tau|F_{0}] = M_{0} = 1 \qquad E[\exp(-1\tau_{N})] = 1$$

$$E[Mt|F_{0}] \qquad \qquad How to kn \qquad E[\exp(\alpha\beta\tau_{N})]. \qquad \exp(-\alpha^{2}\tau_{N}/2).$$

$$E[Mt|F_{0}] \qquad \qquad Uty: \qquad \qquad Uty: \qquad Uty$$

$$u(X_{4AE}) = u(x) + \int_0^{tAE} u'(X_5)dX_5 + \frac{1}{2}\int_0^{tAE} u''(X_5)dS$$

$$\frac{1}{e^{1-a}-e^{a-b}}\left(e^{x-a}-e^{a-x}\right)$$

p6 /

U(XtAz) is Martingale.

Basics - applications of Ito's formula. Soy we want to evaluate $X(t) = \int_0^t W(s) dW(s)$.

By It's formula, by taking appropriate $f(x) = x^4 2$. $f(w(b)) = f(0) + \int_0^b f'(w(s)) dw(s) + \frac{1}{2} \int_0^b f''(w(s)) ds.$

 $\Rightarrow W(t)^{2}/_{2} = 0 + \int_{0}^{t} W(s) dw(s) = \frac{1}{2} \int_{0}^{t} l ds$

.. $x(t) = \int_0^t w(s) dw(s) = \frac{w(t)^2/2 - t/2}{t}$

```
Existence of SDE solutions.
B(t,x) , \sigma(t,x) : [0,T] x IR \rightarrow IR.
 Ito's conditions, (recell) ..
                                                         (growth)
   · | P(t,x) - p(t,y) + (+(t,x) - \sigma(t,y) | \le c|x-y| (tipsoh) | A(y) \le N for any N.
  (In time indep, coeffs, the timen growth & local lipsophits -> global lipsophita)
 Griven B. \sigma, and \times GIR we want to find \times (t, w, x) precisely, \circ [\circ, T] \times \Omega \times IR \to R
 sit, axlt, wix) is non-antripating
        · X (t, w; or) is continuous, wip /
      X(t,w,x) = X + \int_{-\infty}^{t} B(s, \chi(s,w,x)) ds + \int_{-\infty}^{t} \sigma(s, \chi(s,w,x)) ds
       ( OEEST, KER W.P. )
   m short Gm, 3. 4 X(6) = B(t, X(6)) dt + (t, X(6)) dBt
    E.g.) { w \in SL \mid X \mid t_1 w, x \rangle \leq y} \in Ft { \Omega = C(([Co,T]:IR), Tt_1, o \in t \in T_1, P_1)}

\Rightarrow True but requires proof.

\Rightarrow we need into upto (fine t) so that X is (non-anticipating).

(not time over t).
-> We already stated that if we do have a solution then it should be unique
              Chy using Ito isometry / global topschitz / granwall meg. cont. of Xt, SI Int.)
 Next: Squate integrability and existence of continuous,
     → Introduce the Peano ((890's) iterates.
         Y_{t}^{(k+)}(\omega) = x + \int_{s}^{t} B(s, \chi_{s}^{(k)}(\omega)) ds + \int_{s}^{t} \sigma(s, \chi_{s}^{(k)}(\omega)) d\beta_{s}(\omega).
```

Use
$$(a+b)^3 \le 2(a^2+b^2)$$

 $E[(\chi_{\xi}^{(k+1)})^2] \le 4\chi^2 + 4E[\int_0^t B(s,\chi_{s}^{(k)})ds)^2] + 4E[\int_0^t \sigma(s,\chi_{s}^{(k)})ds]^2$
 $\le 4\chi^2 + 4T E[B^2(s,\chi_{s}^{(k)})ds + 4E[\int_0^t \sigma^2(s,\chi_{s}^{(k)})ds]^2]$
 $= \frac{1}{2} e^{-2}(1+|x|)^2$
 $= \frac{1}{2} e^{-2}($

Consider the difference (to show (convergence) $Y_{t}^{(k+1)} = Y_{t}^{(k)} = \int_{0}^{t} \left[B\left(s, Y_{s}^{(k)}\right) - B\left(s, Y_{s}^{(k-1)}\right) \right] ds + \int_{0}^{t} \left(\sigma(s, X_{s}^{(k)}) - \sigma(s, X_{s}^{(k-1)}) \right) dBs$ $D(s) = \int_{0}^{t} \left[B\left(s, Y_{s}^{(k)}\right) - B\left(s, Y_{s}^{(k-1)}\right) \right] ds + \int_{0}^{t} \left(\sigma(s, X_{s}^{(k)}) - \sigma(s, X_{s}^{(k)}) \right) dBs$

let V(+1)(t) = E ((Yt(64) - Yb(6))2)

 $V^{(k+1)}(t) \le 2C^2 (T+1) \int_0^t E[(Y_s^{(k)} - Y_s^{(k+1)})]^2 ds = B \int_0^t V^{(k)}(s) ds$

Start Fam k = 0 $V^{(1)}(t) \leq 2c^{2}(1+T)(1+|X|^{2})t$ $V^{(2)}(t) \leq B \int_{0}^{t} As ds = B A t^{2}/2 \leq (\widetilde{A}t)^{2}/2$

 $V^{(k+1)}(t) = E \left\{ Y_t^{(k+1)} - Y_t^{(k+1)} \right\} \leq \left(\tilde{A} t \right)^{k+1} (k+1)!$

claims $Y_{t}^{(k)}(w) \rightarrow X_{t}(w)$ as $k \rightarrow \infty$ uniformly in often well in w

$$\Rightarrow Y_{t}^{(p)}(w) = Y_{t}^{(0)}(w) + \sum_{k=0}^{N-1} \left(Y_{t}^{(p+1)}(w) - Y_{t}^{(p)}(w)\right)$$

Show this conveyes uniformly well

$$\left| \begin{array}{c} \frac{n-1}{2} \left(Y_{\epsilon}^{(k+1)} - Y_{\epsilon}^{(k)} \right) \right| \leq \frac{2}{K^{-n}} \max_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k+1)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{k = 0}^{n-1} \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k+1)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{k \leq n} \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| \\ = \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)} \right| + \sum_{0 \leq k \leq T} \left| Y_{\epsilon}^{(k)} - Y_{\epsilon}^{(k)}$$

If we have the existence 2 uniqueness of $X_{t}(w,x) = x + \int_{0}^{t} \beta(s,X_{s}(w,x)) ds + \int_{0}^{t} \sigma(s,X_{s}(w,x)) ds,$ we have shown: $\begin{cases} sq. & \text{int.} \\ non-conficipating. \end{cases} \Rightarrow Show X_{t}(w,x) \text{ is cont. in probability in } X_{t}(w,x)$ (AW3)

 $\begin{array}{c} X: \Omega \to \Omega & \text{for each } X \\ X: |R \to |R| & \text{for each } t \\ \end{array}$ $X \to X \quad X: |R \to |R| \quad \text{for each } t \to This is immortant concept (dependent)$

This is a "Flow"

Next: Markov! X/t, w, x) is Markov!

What we have done .: 1) completed 5DE (ch5)

Review SDE basics/briefly [Basics]

b(t,x), $\sigma(t,x)$; $[0,T] \times \mathbb{R} \to \mathbb{R}$, we have

Ito condition

 $|b(t,x)| + |o(t,x)| \in c(1+|x|)$ (ostsT < \infty, x \in IR.)

· | b(t,x)-b(t,y)| + | \sigma(6,x) - \sigma(t,y)| \le C |x-y| (O \le t \le T, x \in TR)

These exists a unique $X_{\pm}(w,x)$ that (a) non-anticipating (continuous in $\pm w.p.1$ (b) $\pm (x \pm^2) \in C$ 05 ± 5 $\mp (C = c(T,x))$

and $X+(w,x) = x+\int_{-\infty}^{\infty} b(s,X_s(w,x))ds+\int_{-\infty}^{\infty} \sigma(s,X_s(w,s))dss(w)$

Also, Xelwix) is also lipschitz in > E { | X+(·,x) - X+(·,y) } ≤ C | x-y |.

in fact, Xt (w, x) is continuous wife I in both to and x. > Uses tolongorou inequality and Bu-holder - brundy inequality.

Notation

X Es, 63 (w,x) is a solution of SDE starting at (5 from X

*650 | w. x) = x + ft + (

 $X_{[t,T]}(wx) = x + \int_{t}^{T} b(s, x_{[t,s]}(w,x)ds + \int_{t}^{T} \sigma(s, x_{[t,s]}(w,x), dB_{s}(w)).$

Note that (wer | X (t, T] (w,x) CA | & F(t,T]

 $f_{Ct,T} = \sigma \left\{ \beta_S - \beta_t, (t \leq s \leq T) \right\} = \sigma - algebra$

X LO, TJ (W, X) = X [to, T] (W, X [o, t) (W, X)) Gicometric interpretation X TOSTS (Wisc)

X [to,7] (w,y) & Front with y fixed depends on information of [t,T].

- (1) Rynamic composition law of ODE.

 2) Stochastic dependence of Bhownian path.

Markov property

 $E\{f(X_{L_0,T_0})\} \mid Ft\} = E\{f(X_{L_0,T_1}(\cdot X_{L_0,t_2}(\cdot X))) \mid Ft\}$

= E \ f(xt+, T) (. , x to +1 (. , x))) | X (0, +)

That is conditional expectation up to time to is a poin function of the path at time t

and oftetictions incom

E[f(xtn, xtn-1, ... xtn) | Ft)] = E[f(xtn, xtn-1, - xtn) | xt]

They are point functions

* More notation

 $E[J(X_{[t,T]}) \mid X_{[t,T]}] = E_{t,x} \{J(X_T)\}. \quad (t<T)$

Assume, f(t,x), $Co,T \subseteq X \mid R \rightarrow R$ with ft, fx, fx bdd.

From Ito's formula,

df (t, x4) = fe dt + fx dxt + = fx (8x6)2. = fldl+fx(bdt+odB) + 1 fxx ordt. = (fe + 1 offxx + bfx) db + ofx dB

 $\Rightarrow \text{ Lategration } \Rightarrow f(T, X_T) - f(t, X_t) = \int_{t}^{T} \left(f_S + \frac{1}{2}\sigma^2 f_{XX} + bf_X\right)(S, X_S) \, dS.$ + Jt ofx (xxx) dBs.

Let $\oint_{\mathcal{L}} = \frac{1}{2} \sigma^2(\ell, x), \frac{\partial^2}{\partial x^2} + b(\ell, x) \frac{\partial}{\partial x}$

 $E[f(T,X_T)|F_t] - f(t,X_t) = E[f_t^T(\partial_t + f_t)f(t,X_t)ds]F_t]$

Suppose f(t,x) is such that $d \in f(t,x) + f(t,x) = 0$ f(T,x) = g(T,x) is given (Backward K.E.)

When $f_{tb} = \frac{1}{2} \frac{\partial^2}{\partial x^2} \beta_{t,M}$. Hen, $f(t,x) = \int \mathbb{R}(T - t, x - y) g(T,y) dy$ $P(\pm ix) = \frac{e^{-x72t}}{\sqrt{2\pi t}}$

this f(t,x) is such that ft, fx, fxx are bounded. Assume that $f(t,x) = E \int g(\tau,x_{\tau})[f_t] = E_{t,x} \{g(\tau,x_{\tau})\}.$

Markov property.

0

- 1) f "solve" the PDE () f defined by the (expectation) solves the PDE.
- 2) The solution fitix) of the PDE can be represented ("solved") probabilishingly as an expectation of the solution of SDE.

```
Indicator function
```

Let
$$P(t, x, T, A) = E_{t,x} \{ X_A(X_T) \}$$
, $A \subset \mathbb{R}$
= $P_{t,x} \{ X_T \in A \}$

BKE is a PDE in
$$p(t, x, T, A)$$
 as a function of (t, x) .

$$\begin{cases} (\partial_{A}t + f_{4}) P(t, x, T, A) = 0 & (t < T, \times GR) \\ P(t, x, T, A) = \chi_{A}(x) \end{cases}$$

$$P(\pm, \chi, T, A) = \chi_A(\chi)$$

$$\left(\int_{\Xi} \frac{1}{2} \frac{\partial^2 (\pm, \chi)}{\partial \chi^2} + b(\pm, \chi) \frac{\partial^2 \chi}{\partial \chi^2} + b(\pm, \chi) \frac{\partial^2 \chi}{\partial \chi} \right)$$

If
$$P(x,t,T,A) = \int P(t,x,T,y) \chi_{A}(y)dy$$

$$\int \frac{\partial P(x,t,T,A)}{\partial P(x,t,T,A)} \chi_{A}(y)dy$$

(a) Does
$$p(\pm, x, T,y)$$
, density satisfy a PDE in (T,y) ?)
Yes, \rightarrow This is $\int FKE$

Let
$$\phi(t,x)$$
 be a test function. $\phi(0,x) = \phi(\tau,x) = 0$

$$\phi(\tau, x_{\tau}) = \phi(t, x_{t}) + \int_{t}^{\tau} (\partial_{s} + f_{s}) \phi ds + \int_{t}^{\tau} (\partial_{s} + f_{s}) \phi ds$$

$$\Rightarrow E\left\{\int_{t}^{T} \left[\partial_{s} + d_{s}\right] \phi(s, x_{s}) ds\right\} = 0 = \int_{t}^{T} ds \left(\frac{\partial}{\partial s} + f_{s}\right) \phi(s, y) \rho(t, x_{s}, y_{s})$$

Assume \$ (5,4) is differentiable and integrable by parts.

$$0 = \int_{a}^{b} \int_{a}^{T} ds \, \phi(s,y) \left[-\frac{\partial}{\partial s} + f_{s}^{*} \right] P(t,x,s,y) \quad (\text{intervale by parts})$$

$$\Rightarrow \left(-\frac{4}{37} + L_T^*\right) P(t, x, T, y) = 0 \quad \text{for } T > t \quad \text{and} \quad P(t, x, t, y) = 3(x - y)$$

$$\Rightarrow \mathcal{L}_{\tau}^{*} = \frac{1}{2} \frac{\partial^{2}}{\partial y^{2}} \left(\vec{\sigma}(T, y), \cdot \right) - \frac{\partial}{\partial y} \left(b(T, y), \cdot \right)$$

Thurson, TKE, $\frac{\partial P}{\partial T} = \frac{1}{2} \frac{\partial^2}{\partial y^2} \left(\frac{\sigma^2 p}{\sigma^2 p} \right) - \frac{\partial^2}{\partial y} \left(\frac{b p}{b} \right), (tr)$ $= \frac{\partial^2}{\partial y} \left\{ \frac{1}{2} \frac{\partial^2}{\partial y} \left(\frac{\sigma^2 p}{b} \right) - \frac{b p}{b} \right\}$ Higher dimensions, $\frac{\partial P}{\partial T} = \frac{1}{2} \cdot \nabla \cdot \left(\frac{b \cdot \nabla (\sigma^2 p) - b p}{b} \right)$ Equation

Probability flux = diff

 $= \frac{1}{2} \nabla \cdot \left\{ \nabla^2 \nabla p + 2 \left(\nabla \nabla - 6 \right) p \right\}$

```
Markov property (BKE, FKE) + Garsanov Trans.
* Quick review.
  b(t,x) o(t,x): IO,T] x(R → IR
  < Ito condition>
   · |b(t,x)| + |o(t,x)| < o(1+(x))
    · |b(t,x)-b(t,y)| + |o(t,x)-r(t,y)| < 0 |x-y|
 o stst XEIR Have exists a "unique process" Xx((m), x)
 non-anticipating, countinuous t wp.1. sy it. Exxt? sc (ustet) and s.t.
 X+(u,x) = x+\int_{0}^{t} d(s, Xs(u,x)) ds + \int_{0}^{t} \sigma(s,Xs(u,x)) d\beta s(u)
  Define XII.7] (w,x), process studing from X at time to and gong up to time T.
  X (1,7) (W, X) = FC+, T] = 0 { Bs-Bt, tessT}
 horover, Estxt(-,x) - xt(-,y) = < C(x-y)2
 Markov property for any f: \mathbb{R}^n \to \mathbb{R}, bolds, and any (0 \le t < t_1 < t_2 < \cdots < t_n \le t)
    E\left\{f\left(X_{b_1},\dots,X_{b_l}\right)\middle|\mathcal{T}_{\mathcal{E}}\right\}=E\left\{f\left(X_{b_1},\dots,E_{b_l}\right)\middle|X_{\mathcal{E}}\right\}
 Notation: P(s,T,X,A) = E{XA(XT) | Xs = x} = P(XT GA | Xs = x) (for ACR)
                                                            G Reaching region (1.)
 BKE seys that, P(t,x,T,A)
  (3/36 + L6)P = 0, 6<T, P(T, X, T, A) = XA. (instructor)
     when to = = + 02(tx) dox2 + b(t,x) dox
    This is rust It's formula applied to P(t. H. Tick)
    > dp = (dt + dt) Pot + o(t, xt) %x Plt, Xt, T, A) dBt. (Zero because we assume solution of
   \Rightarrow (Theyroton) P(T, X_T, T, A) - P(t, x, T, A) = \int_{t}^{T} \sigma(s, x_s) \frac{\partial f}{\partial x}(s, x_s, T, A) d\beta_s.
   > P(tex, TeA) = Etex (XA(XT))
```

p(t.x.T.A)

(Ligic) Assume P solves the BRE \rightarrow then P(tix,T,A) = P(X+EA)

a) can we do reverse way! ... > HW3. Answer: To go backwords, that is to show that classical way: 0

A) How to know cond. prob. $P(x,t \leq T,\lambda)$ satisfies BEE PDE?

A) $P(t,x,T,\lambda) = E(x_{\Lambda}(x_{T})|x_{S}|$

Sit. $f(t,X,T,A) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(T) \in A \mid w(t) = x \}$ for comment: I to map (-1, Ft, os tet, P) is the conomial space with $B \in W$ = w(t)being B, M with $P \mid auw$ then by the Z to theory then is a map. $(w,x) : x \to h$ for $0 \le t \in T$. $X : t(w(0),x) \in A$. $(w(t) \to X : t(w) < T$ the trunsformation $X : t(x) \in A$.

In the question above, we use for a law p^{x} that throwtone $p(t_{i}x, \tau, A)$ Finish distribution of the x, $\frac{t_{0}=0}{1}$ $p^{x}(x_{tw}\in Au, tw-1GAu+\cdots to\in Ab)$ For finite dimension distribution,

So, pX (Yth GAN, Xth-1 GAN-1, ..., Xto. GAO)

= \iiiiff Po(dxo) (P(to. Xo, to. dxo,) \(P(to. Xo, to. dxo,) \) \

Assume that P(t, x, T, A) satisfies

1) lim it P(t, x, t+at, dy) = 0 uniform in x and in t. $\forall g>0$ As a satisfies path continuity.

2) final/at $\int (y-x) P(t, x, t+atdy) = \int (t, x)$ The speed is b(t, x) = Integrated speed is b(t, x).

3) $\lim_{\Delta t \to 0} 1/\delta t \int_{\mathbb{R}} (y-x)^{2} P(t,x,t+\delta t,dy) = \sigma^{2}(t,x)$ Various of the proton

1), 2), 3) implies that P(x, x, A) satisfies BKEwhere P/2t + f + P = 0, $E(T \times ER$ $f = \frac{1}{2} T^2(f, x) \frac{3}{6} x^2 + b(f, x) \frac{3}{6} x$

(i) classical: Derivation from C.t.

(ii) Itals varion: The strochastic calculus implies the BKE. (Q.Q. 3)

& Girsanov theorem

Time homogeneous X sit.

 $dXt = b(Xt)dt + \sigma(Xt)d\beta t$, $X_0 = x$

(b(x), o(x) satisfies Ito's condition)

1x = 10 0(x) 0/2x + 1(x) 0/2x

Net C(x) also satisfies Ito's condition, and assume $\left|\frac{C(x)}{\sigma(x)}\right| \leq c$.

so that $M_t = \exp\left(\int_0^t \frac{c(x_s)}{\sigma(x_s)} dB_s - \frac{1}{2} \int_0^t \frac{c(x_s)}{\sigma(x_s)}^2 ds\right)$

Q) How to prove? > HW3 pb-9.

and Mb is a Fe non-negative Martingale and by Ito?

> dME = 6/6 Mt dBL + 1/6/0/2 Mt dt. - 1 1/2 (C/2)2 Mt dL

if $Mt = 1 + \int_{0}^{t} \frac{C(x_s)}{\sigma(x_s)} Ms dBs$.

In particular, ME 20 and E[ME] = 1, we can use ME to change P on 12, FE, 05 to T.

dp*/dp = Mt. = It. AGFT, then.

 $E^{p^*} [\chi_A] = p^*(A) = E^p[M_T \chi_A]$ (Note: $p^*(\Lambda) = E^p[M_T \chi_A] = E^p[M_T] = 1$)

P*(A) = EP (MT XA) = EP (EP (MT XA) Ft)

= EP (KA EP (MT | FE) } = EP (KA ME)

: 1 / / / F = Mt

if p(A) = 0. A $\in F_t$ then $p^*(A) = 0$.

 $\beta^*(A) = 0$ then $p(A) = 0 \rightarrow p^*$ and p are equivalent

But we need Arsanov Heaven,

o probability

Girsanov thm.

X under pt has some law as Y under P, where

 $dYt = (b(Yt) + c(Yt))dt + \sigma(Yt).dst$

(where BE is quother B.M.)

 $\beta t(w) = w(t) \Rightarrow \beta t(w) = \int_{0}^{t} \sigma_{s}(w) d\beta_{s}(w)$

where ofther) is non-anticipating, and lottimil =1 often

Follows by lary characterization since $\langle \beta \tilde{t} \rangle = \int_{a}^{t} |\sigma_{S}|^{2} ds = (t)$

⇒ X under P* ~ Y under P (Gitsanov)

Essential calculation

 $dxt = atb(xt) + \sigma(xt)dBt = (b(xt) + c(xt))dt + (-c(xt))dt + dBt) \sigma(xt)$

(addition and sulfaction)

To the Girsonov to hid, we must have $-C(x_k)/dt + d\beta_k - d\beta_k$

Pt > Bit Browning with drift is also a Brownian in diffacult pix

> Matter of perspective (P and px)

```
Variant - Importance sampling
consider X under P and change X \to Y by adding (keplacing) to by b+c.
as well as P by P^* where \frac{dP^*}{dP} = Mt with Mt = \exp\left(-\int_0^t \frac{c(Ys)}{\sigma(Ys)} d\beta s\right)
                                                                      -\frac{1}{2}\int_{0}^{b}\left(\frac{c(Y_{5})}{\sigma(Y_{5})}\right)^{d}ds
Then, Y under p^* is the same as X under P
Brownian bridge.
Pf). d(f(t, Xt): Mt) = Nt of +fdM + dfdM
     = M ((f+ fxf) dt + ofxdB) + f ( & MdB) + & fx & udb
    = ME (ft + fxft + cfx) dt + (f = + odx) MdB.
    = Mt (ft + 1x f) dt + (f = + + fx) Mt dBt.
  E\left\{fM\left[\frac{T}{t}\right]F_{t}\right\}=E\left\{\int_{M_{t}}^{M_{t}}\left(f_{t}+L_{2}f\right)dt\right\}F_{t}\right\}
```

Suppose
$$f(t,y) = g(y)$$
 (6(T)

(BKE)

Thun $f(t, xt)Mt = E_{t}x \{g(x_T)MT\}$

:, Yt under P^{+} has the law accorated will spec. dY(t) = (b Y t + c Y t) dt + o (Y t) dhe

Used implantly that the PKE virgalo setums the law of philology.

 $P(X, GA) = P(weal X, (w) GA) = P^{X}(A)$ P^{X} is a new prob law on (A, Fe, osest,)

X~P means He law PX

d X = bdt + odB = (btc)dt. + o(- 4 dt + dB)

d B

 B^* is B.M under $P^* \Leftrightarrow Y \sim P^*$ is the law of dY = (l+c)dt + vdB

* Mysel representation Howem

```
Girsanov therem continued.
                                                                  02/22/2024
Show that B_{\xi} = B_{\xi} - \int_{\mathbb{R}}^{\xi} \frac{c(x_{\theta})}{c(x_{\theta})} ds
                                         is B.M. under PX
  Ep# [(BL*)2-t|Fs) = (Bs*)2-5 (show this)
 Ep# [ (B++2- ps+1) ] Fr ) = 6-5
> 5pm ( BE - P5 ) = 2B5 2+ 2BE B5 / Fs}
 = EP { (Pt - Ps") = |Fs} = EP { Mby f (Pt-Bs) - \signifty \forall ds'}
  \Rightarrow Use Ito's formula, Mut = exp \{ \propto Bt^{10} - \frac{1}{2}t \}
    Show Nox, 6 is a p* 15 a martingable
   d (Nam) = NadN + MdNa + dNadM = Na( = m) dB
                                              + M ( N N d dB* - x2 Nodt)
                                                 + drudM
    = Nx = MdB + M(dNx(dB- = dE)+ x2 Nddt)
   dM = % MdB.
   dNa = de a(BE-S. + % ds) - x2 + = and dBE + 1 and Nadt - ac wedt - 2 wedt
        = = MdBNX + M ( x Nx dBt - xc Nxdb) + c Mx MxdE
     = do MNd dB + dM Nd dB.
      = MNX ( + c/o) dB = mantingale
   > Ept {Na,T | Ft} = Na,t. atl
```

Brownian bridge,

Perfore a new
$$p^*$$
 (0<56697)

$$dp^*/dp = \frac{u(t, x_{t,i}, T)}{u(s, x_{i}, T)} \rightarrow M_{t}$$

$$d \log (u_1 t, x_t) = \frac{1}{u} u_x d x_t + \frac{1}{u} u_t dt - \frac{1}{2} \left(\frac{1}{u^2} u_x^2 \right)^{\frac{1}{2}}$$

$$+ \frac{1}{2} \left(\frac{1}{u^2} u_x \right) (d x_t)^2$$

By Garsanov,

$$\Rightarrow u(t, x, T) = \exp(-x/2(T-t))/\sqrt{2\pi(T-t)} \Rightarrow vx/u = -\frac{x-2}{T-t}$$

$$(Y spe)$$

$$\Rightarrow dYt = -\frac{(Yt-t)}{T-t} dt + d\vec{B} , Ys = k, v$$

$$E^{p^*}(\cdot) = E^{p}(M_{\pm} \cdot)$$
 when $M_{\pm} = \exp(m)$ in the notes.

$$I(i+i)/J(i) = \exp\left(-\frac{E(i+i)-E(i)}{2keT}\right)$$

$$I(i+i)/J(i) = \exp\left(-\frac{E(i+i)-E(i)}{2keT}\right) \rightarrow k'(i\rightarrow i+i) = \exp\left(-\frac{E\tau_0 + (i+i)-E\tau_0 + (i+i)}{2keT}\right)$$

$$d X_t = -\alpha X_t$$

$$dXt = -\alpha \times tdt + \sigma d\beta t$$

$$\Rightarrow e^{-\alpha t} d(e^{\alpha t} x_t) = \sigma d\beta t$$
Inter. factor

$$\Rightarrow e^{\alpha t} \times t \Big|_{t}^{T} = \sigma \int_{t}^{T} e^{\alpha s} d\beta_{s}$$

$$e^{xt} x_t - e^{xt} x_t = \sigma \int_t^t e^{xs} ds$$

$$X_{T} = \underbrace{e^{-\alpha(T-t)} X_{t} + \sigma \int_{t}^{T} e^{-\alpha(T-s)} d\beta s}_{\text{mean}}$$

$$=\frac{\sigma^2}{2\alpha}\left(1-e^{-2\alpha(\tau-6)}\right)$$

Brownian bridge

$$d\chi_t = -\frac{\chi_{6-2}}{7-t} dt + \sigma d\beta \epsilon$$

$$\Rightarrow \left(dXt + \frac{Xt}{T-t} dt \right) = \sigma dBt$$

$$(7-t)d\left(\frac{1}{7-t}\times t\right) = \sigma d\beta t$$

$$\mathcal{A}\left(\frac{1}{T-t} \times t\right)\Big|_{\frac{1}{2}}^{t} = \int_{s}^{t} \left(\frac{t}{T-s'}\right) \cdot dBs'$$

$$\Rightarrow \chi_{t} = \frac{T-t}{T-s} \times_{s} + \left(\sigma\right) \int_{s}^{\infty} \frac{1}{T-s!} d\theta s! \left(T-t\right).$$

$$\lambda_{b} = 2 + \frac{T-t}{T-s} \times + \sigma(T-t) \int_{s}^{t} \frac{1}{T-s'} dBs'$$

$$\begin{pmatrix} X_{c} = X \\ X_{c} = \xi \end{pmatrix}$$

· Maximum likelihood.

$$dY_t = b(Y_t) dt + \sigma(Y_t) dBt \quad Y_0 = x$$

$$dx_t = b(X_t) dBt \quad \chi_0 = x$$

$$SDE$$

In discrete time,

$$\begin{cases} Y_{n+1} = Y_n + b(Y_n) \cdot \Delta t + \sigma(Y_n) \Delta B_{n+1} \\ Y_{n+1} = Y_n + \sigma(X_n) \Delta B_{n+1} \end{cases} \Rightarrow \forall \text{ one step forward } \equiv \text{ Exclar}$$

Ofnot = Royat - Bnot

This is called Euler expection of SDE.

=
$$\exp\left(-\frac{(Y_{kH}-Y_{k},-b(f_{k}).st)^{2}}{2\sigma^{2}(f_{k}).st}\right)\sqrt{2\pi\sigma^{2}(f_{k}).st}$$

Man about pabl?

$$M_{n}(x_{n}, -x_{i}, x_{o}) = \underbrace{P^{*}(x_{n}, x_{n-1}, x_{i}, x_{o})}_{P(x_{n}, x_{i}, x_{o})} = \underbrace{T}_{k=0} \underbrace{P^{*}(x_{k+1}, x_{k})}_{P(x_{k+1}, x_{k})}$$

So Mn is P martiyale.

$$E! \begin{cases} T! & p^{*}(x_{ee}|x_{e}) \\ k=0 \end{cases} p(x_{ee}|x_{e}) \end{cases} x_{e}, \dots, x_{n-1}$$

$$= T! & p^{*}(x_{ee}|x_{e}) \\ k=0 & p(x_{ee}|x_{e}) \end{cases} p(x_{e}|x_{e+1}) p(x_{e}|x_{e+1}) dx_{e}$$

$$= M_{n-1} (x_{e} \land x_{n-1})$$

$$= M_{n-1} (x_{e} \land x_{n-1})$$

$$= M_{n-1} (x_{e} \land x_{n-1})$$

$$= P^{*}(f(x_{n}, \dots, x_{e})) = F^{*}(f(x_{n}, \dots, x_{e}), M_{n})$$

$$= T^{*}(f(x_{n}, \dots, x_{e})) = T^{*}(f(x_{e}|x_{e})) + (f(x_{e}|x_{e})) + (f(x_{e}$$

$$= \int_{-\infty}^{\infty} \left(-\frac{\left(\times_{kH} - \times_{k'} - b(\kappa_{k'}) \cdot \delta t \right)^{2} - \left(\times_{kH} - \times_{k'} \right)^{2}}{2\sigma^{2}(\chi_{k}) \cdot \delta t} \right)$$
keb
$$\frac{2\sigma^{2}(\chi_{k}) \cdot \delta t}{2\sigma^{2}(\chi_{k}) \cdot \delta t}$$

$$= \frac{1}{11} \exp \left(+ \frac{\left(\times_{k+1} - \times_{k} \right) b \left(\times_{k} \right)}{\sigma^{2} \left(\times_{k} \right)} - \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{b \left(\times_{k} \right)}{\sigma \left(\times_{k} \right)} \right)^{\frac{2}{$$

(p.84~85)

. Max like. 7hm

$$P^*(Y_{k+1}|Y_k) \rightarrow Lifelihood (observation)$$

$$P^*(Y_{k+1}|Y_k) = \pi P^*(Y_{i+1}|Y_i)$$

Square terms are gone!

Mn(x, b, o) ; observe x. unknown b. e.

brood estimate of (b, 6) -> Maximizes Mn

& This estimator is inconsistat and gets acquibe as $t \to \infty$ ($n \to \infty$)

asset pria will converge to its average

Evoluded.

· Monte Caplo.

$$A(x^2+Y^2)=R$$

$$\theta = tm^{-1} \left(\frac{X}{\sqrt{X^2+y^2}} \right)$$

$$U^{N}(t,x) = \frac{1}{N} \sum_{k=1}^{N} d(X_{t}^{(k)}) \qquad (Xt is solution of SDE)$$

$$E\{u^{N}(t,x)\} = E\{\frac{1}{N}\sum g(x_{\epsilon}^{(n)}) = E\{g(x_{\epsilon})\} = u(\xi,x)$$

$$\Rightarrow Vor(u^{N}) = E\left\{\left(\frac{1}{N} \frac{X}{N=1} \left(g(Xe^{(n)}) - u(e_{i,X})\right)^{2}\right\}\right\}$$

$$= \frac{1}{N^{2}}\left[\frac{1}{N} \frac{X}{N=1} \left(g(Xe^{(n)}) - u(e_{i,X})\right)^{2}\right]$$

$$= \frac{1}{N} \cdot E \left\{ \left[g(x_{\theta}) - u(E_{1}x_{0})^{2} \right] = O\left(\frac{1}{N} \right) \right\}$$

Question 1) Calculate
$$E\{(g(x_k) - u(t_k x))^2\}$$
 by Monte - Carlo.

11 2) Can Ihs factor reduced.

Let
$$V(t_{i,x})$$
 solve $\begin{cases} v_{i} = \frac{1}{2}v, t > 0 \end{cases}$ Recall that $\begin{cases} u_{i} = \frac{1}{2}u, t > 0 \end{cases}$ $v(o, x) = g^{2}(x)$ $u(o, x) = g(x)$

Apply It's firmula,

444 + 4x

$$= -\sigma^2 u_x^2 ds - (2uu_x \sigma - \sigma v_x) dB$$

$$\Rightarrow E_{\times}\left\{\left(V(t_{i,x})-u^{2}(t_{i,x})\right)=-E_{\times}\int_{0}^{t}\sigma^{2}ux^{2}ds\right\}$$

$$N \operatorname{Var} \left(u^{N} \right) = V(t,x) - u^{2}(t,x) = \left[-x \int_{0}^{t} \sigma^{2}(Xs) u^{2}(t-s,Xs) ds \right]$$

why do this? > Error can be computed recupsively

bood way >
$$X_t = x(t,x) = x + \int_0^t b(x_s) ds + \int_0^t \sigma(x_s) d\beta s$$
.

Assuming regularity of coefficients, (6.0).

$$2t = \frac{\partial}{\partial x} \times (t, n)$$
, $2t = 1 + \int_{-\infty}^{t} b_{x}(x_{s}) \frac{\partial}{\partial x} ds + \int_{-\infty}^{t} \sigma_{y}(x_{s}) \frac{\partial}{\partial x} ds$

Jointly (XL, ZL) are a Markov process.

$$\Rightarrow d\left(\begin{array}{c} x_{\ell} \\ t_{\ell} \end{array}\right) = \left(\begin{array}{c} b_{\ell}(x_{\ell}) & \vdots \\ b_{\ell}(x_{\ell}) & \vdots \\ \vdots & \vdots \\ b_{\ell}(x_{\ell}) & \vdots \\ b_{$$

M.C. I generally go make
$$y \in \mathbb{Z}_{+}^{(n)}$$
 $\mathbb{Z}_{+}^{(n)}$

Then, $y \in \mathbb{Z}_{+}^{(n)}$ $\mathbb{Z}_{+}^{(n)}$ $\mathbb{Z}_{+}^{(n)}$ $\mathbb{Z}_{+}^{(n)}$ $\mathbb{Z}_{+}^{(n)}$ $\mathbb{Z}_{+}^{(n)}$

Variance reduction.

$$dX_t = b(X_t) dt + r(X_t) dBt$$
. $(X_0 = x)$

Introduce operator
$$f_c = \frac{1}{2}\sigma^2(x)$$
 $\frac{\partial^2}{\partial x^2} + \{b(x) + c(x)\} \frac{\partial}{\partial x} \left(\frac{|c(x)|}{|c(x)|} \leqslant c \right)$

Let
$$M_{c,t} = \exp\left(-\int_{u}^{t} \frac{e(xs)}{\sigma(xs)} ds = \frac{1}{2} \int_{0}^{t} \left(\frac{c(xs)}{\sigma(xs)}\right)^{2} ds\right)$$
where $dY_{t} = \left\{b(Y_{t}) + c(Y_{t})\right\} dt + \sigma(Y_{t}) dBt$

87 Fixsanov, (Varant)

I am
$$(Xt, Lo, P)$$
 is same as (Yt, Lo, P^*) where $dP^*/dP = M_{crt}$

So
$$u(\varepsilon, x) = E_{x}^{p} \left\{ g(x_{\varepsilon}) \right\} = E_{x}^{p^{*}} \left\{ g(x_{\varepsilon}) \right\}$$

Now,
$$C = c \mid t, x \rangle$$
 to be Chosen to reduce the various of $M^n \cdot u^n \mid t, x \rangle$
But, $u^n \mid t, x \rangle = \frac{1}{N} \sum_{i=1}^{N} g(\chi_t^{(n)}) M_{i,t}^{(n)}$

nth order path of process (1)

clearly
$$\mathbb{E}\left\{u^{N}(t,x)\right\} = u(t,x)$$
 (unbrased)

What about var (UN) ?

$$N. var(NL^{N}) = Ex^{p} \left\{ \int_{0}^{t} \left[\sigma(Y_{S}) u_{X} (t-s, Y_{S})^{2} - \left(u(t-s, Y_{S}) \sigma(t-s, Y_{S}) \right) / \sigma(Y_{S}) \right\} M_{q,S}^{2} ds \right\}$$

$$\sigma(t,y) = \frac{\sigma^2(y) \cdot u \times (t,y)}{u(t,y)} = \sigma^2(y) \cdot \ln(u(t,y)) \Big|_{y}$$

$$u(t,x) = Ex[\{(X_t)\}]$$
 solves $B.K.E.$ (PDE)

- -> Use M.C. smulatron (accuracy is O(VN) "Very fow")
- > Probablistic & large dimension -> M.C. simulation.

C(m) reduces the variance of M.C. estimates.

Hos -> 2+ is Pt

HW4

$$dY = -\frac{1}{2} \times ||\partial z||^2 + (- \times \partial z) \quad \partial \frac{f_{a} - 1(Y/x)}{z_{t} = f_{a} - 1(Y/x)} = 0$$

$$@ \rightarrow M_c = \int_0^t$$

$$dY = (b+c)dt + od BE$$

> u