AMENDMENTS TO THE CLAIMS

Please amend claims as follows:

- (Previously presented) A method of making a highly crystalline cross-linked polymeric material comprising:
 - a) heating a polymeric material to a temperature above the melt:
 - b) pressurizing the heated polymeric material under at least about 10-1000 MPa;
 - c) holding the polymeric material at this pressure and temperature;
 - d) cooling the heated polymeric material to a temperature below the melting point of the pressurized polymeric material;
 - e) releasing the pressure to an atmospheric pressure level, thereby forming a highly crystalline polymeric material: and
 - f) irradiating the highly crystalline polymeric material at temperature below the melt with ionizing radiation, thereby forming a highly crystalline cross-linked polymeric material.
- (Previously presented) A method of making a highly crystalline cross-linked polymeric material comprising:
 - a) pressurizing a polymeric material under at least about 10-1000 MPa;
 - b) heating the pressurized polymeric material to a temperature below the melt of the pressurized polymeric material;
 - c) holding at this pressure and temperature;
 - d) cooling the heated polymeric material to a temperature below the melting point of the polymeric material:
 - e) releasing the pressure to an atmospheric pressure level, thereby forming a highly crystalline polymeric material: and
 - f) irradiating the highly crystalline polymeric material at temperature below the melt with ionizing radiation, thereby forming a highly crystalline cross-linked polymeric material.

- (Original) The method of claim 1, wherein the pressurized polymeric material is heated to a temperature about 180°C or about 225°C.
- (Original) The method of claim 2, wherein the pressurized polymeric material is heated to a temperature below 150°C.
- 5-6. (Cancelled).
- (Previously presented) The method of claim 1, wherein the polymeric material is pressurized to about 320 MPa.
- (Previously presented) The method of claim 1 further comprising doping the highly
 crystalline cross-linked polymeric material with an antioxidant by diffusion,
 thereby forming an antioxidant-doped highly crystalline cross-linked polymeric
 material.

9-10. (Cancelled).

- 11. (Previously presented) The method of claim 1 further comprising:
 - a) mechanically deforming the polymeric material below its melting point; and
 - b) annealing the mechanically deformed polymeric material at a temperature below the melting point, thereby forming an antioxidant-doped highly crystalline cross-linked polymeric material containing substantially no detectable residual free radicals.
- 12. (Previously presented) The method of claim 1 further comprising:
 - a) machining the highly crystalline cross-linked polymeric material, thereby forming a medical implant; and
 - b) doping the medical implant with an antioxidant by diffusion, thereby forming an antioxidant-doped highly crystalline cross-linked medical implant.
- 13. (Previously presented) The method of claim 1 further comprising:
 - a) doping the highly crystalline cross-linked polymeric material with an antioxidant by diffusion, thereby forming an antioxidant-doped highly crystalline cross-linked polymeric material; and

- b) machining the antioxidant-doped highly crystalline cross-linked polymeric material, thereby forming an antioxidant-doped highly crystalline cross-linked medical implant.
- 14. (Previously presented) The method of claim 13, wherein the antioxidant-doped highly crystalline cross-linked medical implant is packaged and sterilized by ionizing radiation or gas sterilization, thereby forming a sterile and antioxidantdoped highly crystalline cross-linked medical implant.
- 15-21. (Cancelled).
- (Previously presented) A method of claim 1, wherein the polymeric material is a blend of polymer and an additive.
- 23. (Previously presented) The method of claim 63, wherein the highly crystalline cross-linked polymeric material is machined thereby forming a medical implant, this medical implant is packaged and sterilized by ionizing radiation or gas sterilization, thereby forming a sterile and antioxidant-doped highly crystalline cross-linked medical implant.
- (Previously presented) A medical implant comprising the highly crystalline crosslinked polymeric material according to claim 11.
- 25. (Cancelled).
- (Previously presented) The method of claim 12, wherein the polymeric material is compression molded to another piece or a medical implant, thereby forming an interface or an interlocked hybrid material.
- 27-28. (Cancelled).
- (Previously presented) The method of claim 1, wherein the polymeric material is a polyolefin, a polypropylene, a polyamide, a polyether ketone, or a mixture thereof.

- 30. (Original) The polyolefin of claim 29 is selected from a group consisting of a low-density polyethylene, high-density polyethylene, linear low-density polyethylene, ultra-high molecular weight polyethylene (UHMWPE), or a mixture thereof.
- (Cancelled).
- 32. (Previously presented) The method according to claim 1, wherein the polymeric material is polymeric resin powder, polymeric flakes, polymeric particles, or the like, or a mixture thereof or an additive.
- 33-35. (Cancelled).
- (Previously presented) The method according to claim 1, wherein the radiation dose is between about 25 and about 1000 kGy.
- (Previously presented) The method according to claim 1, wherein the radiation dose is about 65 kGy, about 75 kGy, or about 150 kGy.
- (Previously presented) The method according to claim 1, wherein the radiation is a gamma irradiation.
- (Previously presented) The method according to claim 1, wherein the radiation is an electron beam irradiation.
- 40-57. (Cancelled).
- 58. (Previously presented) The method of claim 2, wherein the polymeric material is pressurized to about 320 MPa.
- 59. (Previously presented) The method of claim 2 further comprising:
 - a) mechanically deforming the polymeric material below its melting point; and
 - b) annealing the mechanically deformed polymeric material at a temperature below the melting point, thereby forming an antioxidant-doped highly crystalline cross-linked polymeric material containing substantially no detectable residual free radicals.
- 60. (Currently amended) The method of claim 1, wherein the polymeric material is compression molded to another piece or a medical implant <u>prior to heating the</u>

- <u>polymeric material</u>, thereby forming an interface or an interlocked hybrid material
- 61. (Currently amended) The method of claim 2, wherein the polymeric material is compression molded to another piece or a medical implant <u>prior to heating the</u> <u>polymeric material</u>, thereby forming an interface or an interlocked hybrid material
- 62. (Previously presented) The method of claim 12, wherein the antioxidant-doped highly crystalline cross-linked medical implant is packaged and sterilized by ionizing radiation or gas sterilization, thereby forming a sterile and antioxidantdoped highly crystalline cross-linked medical implant.
- 63. (Previously presented) The method of claim 1 further comprising:
 - a) doping the highly crystalline cross-linked polymeric material with an antioxidant by diffusion, thereby forming an antioxidant-doped highly crystalline cross-linked polymeric material; and
 - b) annealing the antioxidant-doped, cross-linked highly crystalline polymeric material at a temperature below the melting point of the antioxidant-doped, cross-linked highly crystalline polymeric material, thereby forming a highly crystalline cross-linked, antioxidant-doped and homogenized polymeric material.
- (Previously presented) A medical implant comprising the highly crystalline crosslinked polymeric material according to claim 63.
- 65. (Previously presented) The method of claim 2 further comprising:
 - a) doping the highly crystalline cross-linked polymeric material with an antioxidant by diffusion, thereby forming an antioxidant-doped highly crystalline cross-linked polymeric material; and
 - b) annealing the antioxidant-doped, cross-linked highly crystalline polymeric material at a temperature below the melting point of the antioxidant-doped, cross-linked highly crystalline polymeric material, thereby forming a highly crystalline cross-linked, antioxidant-doped and homogenized polymeric material.

- 66. (Previously presented) The method of claim 65, wherein the highly crystalline cross-linked polymeric material is machined thereby forming a medical implant, this medical implant is packaged and sterilized by ionizing radiation or gas sterilization, thereby forming a sterile and antioxidant-doped highly crystalline cross-linked medical implant.
- 67. (Previously presented) The method of claim 1 further comprising:
 - a) machining the highly crystalline cross-linked polymeric material, thereby forming a highly crystalline cross-linked medical implant;
 - b) doping the highly crystalline cross-linked medical implant with an additive by diffusion, thereby forming an additive-doped highly crystalline cross-linked medical implant; and
 - c) annealing the additive-doped polymeric material at a temperature below the melting point of the additive-doped medical implant, thereby forming a additivedoped and homogenized medical implant.
- 68. (Previously presented) The method of claim 2 further comprising:
 - a) machining the highly crystalline cross-linked polymeric material, thereby forming a highly crystalline cross-linked medical implant;
 - b) doping the highly crystalline cross-linked medical implant with an additive by diffusion, thereby forming an additive-doped highly crystalline cross-linked medical implant; and
 - c) annealing the additive-doped polymeric material at a temperature below the melting point of the additive-doped medical implant, thereby forming a additivedoped and homogenized medical implant.
- 69. (Previously presented) The method of claim 2 further comprising doping the highly crystalline cross-linked polymeric material with an antioxidant by diffusion, thereby forming an antioxidant-doped highly crystalline cross-linked polymeric material.
- 70. (Previously presented) The method of claim 2 further comprising:

- a) machining the highly crystalline cross-linked polymeric material, thereby forming a medical implant: and
- b) doping the medical implant with an antioxidant by diffusion, thereby forming an antioxidant-doped highly crystalline cross-linked medical implant.
- 71. (Previously presented) The method of claim 2 further comprising:
 - a) doping the highly crystalline cross-linked polymeric material with an antioxidant by diffusion, thereby forming an antioxidant-doped highly crystalline cross-linked polymeric material; and
 - b) machining the antioxidant-doped highly crystalline cross-linked polymeric material, thereby forming an antioxidant-doped highly crystalline cross-linked medical implant.
- 72. (Previously presented) The method in claim 1, wherein the polymeric material is irradiated at a temperature between about room temperature and about 90°C.
- 73. (Previously presented) The method in claim 2, wherein the polymeric material is irradiated at a temperature between about room temperature and about 90°C.
- 74. (Previously presented) The method in claim 1, wherein the polymeric material is irradiated at a temperature between about 90°C and the peak melting point of the highly crystalline polymeric material.
- 75. (Previously presented) The method in claim 2, wherein the polymeric material is irradiated at a temperature between about 90°C and the peak melting point of the highly crystalline polymeric material.
- 76. (Previously presented) The method in claim 1, wherein the polymeric material is irradiated at a temperature above the peak melting point of the highly crystalline polymeric material.
- 77. (Previously presented) The method in claim 2, wherein the polymeric material is irradiated at a temperature above the peak melting point of the highly crystalline polymeric material.
- 78. (Previously presented) The method of claim 1 further comprising:

- a) doping the highly crystalline cross-linked polymeric material with an additive by diffusion, thereby forming an additive-doped highly crystalline cross-linked polymeric material;
- b) annealing the additive-doped polymeric material at a temperature below the melting point of the additive-doped polymeric material, thereby forming a additive-doped and homogenized polymeric material; and
- c) machining the additive-doped and homogenized highly crystalline cross-linked polymeric material, thereby forming an additive-doped and homogenized highly crystalline cross-linked medical implant.
- 79. (Previously presented) The method of claim 2 further comprising:
 - a) doping the highly crystalline cross-linked polymeric material with an additive by diffusion, thereby forming an additive-doped highly crystalline cross-linked polymeric material;
 - b) annealing the additive-doped polymeric material at a temperature below the melting point of the additive-doped polymeric material, thereby forming a additive-doped and homogenized polymeric material; and
 - c) machining the additive-doped and homogenized highly crystalline cross-linked polymeric material, thereby forming an additive-doped and homogenized highly crystalline cross-linked medical implant.
- 80. (Previously presented) A method of making highly crystalline blend of polymeric material comprising:
 - a) blending the polymeric material with an additive;
 - b) consolidating the blend;
 - c) heating the blend to a temperature above the melt;
 - d) pressurizing the blend under at least 10-1000 MPa;
 - e) holding at this pressure and temperature;
 - f) cooling the heated blend to a temperature that is below the melting point of the pressurized polymeric material; and
 - g) releasing the pressure to about an atmospheric pressure level, thereby forming a highly crystalline blend of polymeric material.

- 81. (Previously presented) The method of claim 80, wherein the highly crystalline blend of polymeric material is machined thereby forming a medical implant, this medical implant is packaged and sterilized by ionizing radiation or gas sterilization, thereby forming a sterile and oxidation-resistant highly crystalline medical implant.
- (Previously presented) A medical implant comprising the highly crystalline polymeric material according to claim 80.
- 83. (Previously presented) A method of making oxidation resistant highly crystalline polymeric material according to claim 80, wherein the additive is an antioxidant.
- 84. (Previously presented) A method of making oxidation resistant highly crystalline polymeric material according to claim 80, wherein the additive is vitamin E.
- 85. (Previously presented) The method in claim 80, wherein the additive concentration is between about 0.001 wt/wt% and about 50 wt/wt%.
- 86. (Previously presented) The method in claim 80, wherein the additive concentration is about 0.1 wt/wt%.
- 87. (Previously presented) A method of making a highly crystalline cross-linked polymeric material comprising:
 - a) irradiating a polymeric material at a temperature below or above the melt with ionizing radiation, thereby forming a cross-linked polymeric material;
 - b) pressurizing the cross-linked polymeric material under at least about 10-1000 MPa:
 - c) heating the pressurized cross-linked polymeric material to a temperature below the melt of the pressurized polymeric material;
 - d) holding at this pressure and temperature;
 - e) cooling the heated cross-linked polymeric material to a temperature that is below the melting point of the pressurized cross-linked polymeric material; and
 - f) releasing the pressure to an atmospheric pressure level, thereby forming a highly crystalline cross-linked polymeric material.

- 88. (Previously presented) A medical implant comprising the highly crystalline cross-linked polymeric material according to claim 87.
- 89. (Previously presented) The method of claim 87, wherein the polymeric material is compression molded to another piece or a medical implant, thereby forming an interface or an interlocked hybrid material.
- (Previously presented) A method of making highly crystalline blend of polymeric material and additive comprising:
 - a) blending the polymeric material with an additive;
 - b) consolidating the blend:
 - c) irradiating the polymeric material with ionizing radiation, thereby forming a cross-linked blend of polymeric material and additive:
 - d) heating the cross-linked blend to a temperature above the melt;
 - e) pressurizing the cross-linked blend under at least 10-1000 MPa;
 - f) holding at this pressure and temperature;
 - g) cooling the heated cross-linked blend to a temperature that is below the melting point of the pressurized polymeric material; and
 - h) releasing the pressure to about an atmospheric pressure level, thereby forming a highly crystalline cross-linked blend of polymeric material and additive.
- 91. (Previously presented) A method of making highly crystalline blend of polymeric material and additive comprising:
 - a) blending the polymeric material with an additive;
 - b) consolidating the blend;
 - c) irradiating the polymeric material with ionizing radiation, thereby forming a cross-linked blend of polymeric material and additive;
 - d) pressurizing the cross-linked blend under at least 10-1000 MPa;
 - e) heating the pressurized cross-linked blend to a temperature below the melting point of the pressurized cross-linked blend;
 - f) holding at this pressure and temperature;

- g) cooling the heated cross-linked blend to a temperature that is below the melting point of the pressurized polymeric material; and
- h) releasing the pressure to about an atmospheric pressure level, thereby forming a highly crystalline cross-linked blend of polymeric material and additive.
- (Previously presented) A method of making highly crystalline additive-doped polymeric material comprising:
 - a) doping the polymeric material with an additive by diffusion; thereby making an additive-doped polymeric material;
 - b) annealing the additive-doped polymeric material at a temperature below the melting point of the additive-doped polymeric material, thereby forming a additive-doped and homogenized polymeric material;
 - c) irradiating the additive-doped and homogenized polymeric material with ionizing radiation, thereby forming a cross-linked additive-doped and homogenized polymeric material;
 - d) heating the cross-linked additive-doped and homogenized polymeric material to a temperature above the melt;
 - e) pressurizing the cross-linked additive-doped and homogenized polymeric material under at least 10-1000 MPa;
 - f) holding at this pressure and temperature;
 - g) cooling the heated cross-linked additive-doped and homogenized polymeric material to a temperature that is below the melting point of the pressurized polymeric material; and
 - h) releasing the pressure to about an atmospheric pressure level, thereby forming a highly crystalline cross-linked additive-doped and homogenized polymeric material.
- (Previously presented) A method of making highly crystalline additive-doped polymeric material comprising:
 - a) doping the polymeric material with an additive by diffusion; thereby making an additive-doped polymeric material;

- b) annealing the additive-doped polymeric material at a temperature below the melting point of the additive-doped polymeric material, thereby forming a additive-doped and homogenized polymeric material;
- c) irradiating the additive-doped and homogenized polymeric material with ionizing radiation, thereby forming a cross-linked additive-doped and homogenized polymeric material;
- d) pressurizing the cross-linked additive-doped and homogenized polymeric material under at least 10-1000 MPa:
- e) heating the pressurized cross-linked additive-doped and homogenized polymeric material to a temperature below the melting point of the pressurized cross-linked additive-doped and homogenized polymeric material;
- f) holding at this pressure and temperature;
- g) cooling the heated cross-linked additive-doped and homogenized polymeric material to a temperature that is below the melting point of the pressurized polymeric material; and
- h) releasing the pressure to about an atmospheric pressure level, thereby forming a highly crystalline cross-linked additive-doped and homogenized polymeric material.
- 94. (Previously presented) A method of making highly crystalline blend of cross-linked polymeric material comprising:
 - a) blending the polymeric material with an additive;
 - b) consolidating the blend;
 - c) heating the blend to a temperature above the melt;
 - d) pressurizing the blend under at least 10-1000 MPa;
 - e) holding at this pressure and temperature;
 - f) cooling the heated blend to a temperature that is below the melting point of the pressurized polymeric material; and
 - g) releasing the pressure to about an atmospheric pressure level, thereby forming a highly crystalline blend of polymeric material; and

- h) irradiating the highly crystalline blend of polymeric material with ionizing radiation, thereby forming highly crystalline blend of cross-linked polymeric material.
- 95. (New) A method of making a highly crystalline cross-linked polymeric material comprising:
 - a) heating a polymeric material to a temperature below or above the melting point and pressurizing the polymeric material under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating;
 - b) holding the polymeric material at the pressure and temperature;
 - c) cooling the heated polymeric material;
 - d) releasing the pressure, thereby forming a highly crystalline polymeric material;
 - e) irradiating the highly crystalline polymeric material at a temperature below or above the melting point of the highly crystalline polymeric material with ionizing radiation, thereby forming a highly crystalline cross-linked polymeric material;
 - f) doping the highly crystalline cross-linked polymeric material with one or more antioxidants by diffusion, thereby forming an antioxidant-doped highly crystalline cross-linked polymeric material; and
 - g) annealing the antioxidant-doped, cross-linked highly crystalline polymeric material at a temperature below or above the melting point of the antioxidant-doped, cross-linked highly crystalline polymeric material, thereby forming a highly crystalline cross-linked, antioxidant-doped and homogenized polymeric material.
- 96. (New) The method of claim 95, wherein the heated polymeric material is cooled to a temperature below the melting point of the pressurized polymeric material.
- 97. (New) A method of making highly crystalline blend of cross-linked polymeric material comprising:
 - a) blending the polymeric material with one or more additives;
 - b) heating the blend to a temperature below or above the melting point and pressurizing the blend under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating;

- c) holding at the pressure and temperature;
- d) cooling the heated blend;
- e) releasing the pressure, thereby forming a highly crystalline blend of polymeric material: and
- f) irradiating the highly crystalline blend of polymeric material with ionizing radiation at a temperature that is below or above the melting point of the highly crystalline blend of polymeric material, thereby forming highly crystalline blend of cross-linked polymeric material.
- (New) The method of claim 97, wherein the additive is a plasticizing agent, a nucleating agent, or an antioxidant.
- (New) A method of making highly crystalline blend of polymeric material comprising:
 - a) blending the polymeric material with one or more additives;
 - b) heating the blend to a temperature below or above the melting point and pressurizing the blend under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating;
 - c) holding at the pressure and temperature;
 - d) cooling the heated blend to a temperature that is below the melting point of the polymeric material at an ambient pressure or to about room temperature; and
 - e) releasing the pressure to about an atmospheric pressure level, thereby forming a highly crystalline blend of polymeric material.
- 100. (New) The method of claim 99, wherein the polymeric material is pressurized to about 320 MPa.
- 101. (New) A method of making a highly crystalline cross-linked polymeric material comprising:
 - a) irradiating a polymeric material or a blend of polymeric material with one or more additives at a temperature below or above the melting point with ionizing radiation, thereby forming a cross-linked polymeric material;

- b) pressurizing the cross-linked polymeric material under at least about 10-1000 MPa and heating the pressurized cross-linked polymeric material to a temperature that is below or above the melting point of the pressurized polymeric material, wherein the heating can be carried out prior to pressurizing;
- c) holding at the pressure and temperature;
- d) cooling the heated cross-linked polymeric material; and
- f) releasing the pressure, thereby forming a highly crystalline cross-linked polymeric material.
- 102. (New) The method of claim 101, wherein the pressurized polymeric material is heated to a temperature of about 180°C or about 225°C.
- 103. (New) A method of making highly crystalline blend of polymeric material and additive comprising:
 - a) blending the polymeric material with one or more additives;
 - b) consolidating the blend;
 - c) irradiating the polymeric material with ionizing radiation, thereby forming a cross-linked blend of polymeric material and additive;
 - d) heating the cross-linked blend to a temperature below or above the melting point and pressurizing the cross-linked blend under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating;
 - e) holding at the pressure and temperature;
 - f) cooling the heated cross-linked blend; and
 - g) releasing the pressure, thereby forming a highly crystalline cross-linked blend of polymeric material and additive.
- 104. (New) The method of claim 103, wherein the consolidating the blend is achieved by compression molding.
- 105. (New) A method of making highly crystalline blend of cross-linked interlocked hybrid material comprising:
 - a) blending the polymeric material with one or more additives, thereby forming a polymeric blend:

- b) contacting the polymeric blend to the counterface of a second material, thereby forming a hybrid material;
- c) heating the hybrid material to a temperature above the melting point of the polymeric material, and pressurizing the hybrid material under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating, thereby forming a highly crystalline blend of interlocked hybrid material having an interface between the polymeric blend and the second material;
- d) holding the interlocked hybrid material at the pressure and temperature;
- e) cooling the heated blend of interlocked hybrid material;
- f) releasing the pressure, thereby forming a highly crystalline blend of interlocked hybrid material: and
- g) irradiating the interlocked hybrid material with ionizing radiation at a temperature that is below or above the melting point of the highly crystalline blend, thereby forming a highly crystalline blend of cross-linked and interlocked hybrid material.
- 106. (New) The method of claim 105, wherein the second material is a metallic mesh or back, a non-metallic mesh or back, a tibial tray, a patella tray, or an acetabular shell.
- 107. (New) A method of making a highly crystalline cross-linked polymeric material comprising:
 - a) heating a polymeric material to a temperature below or above the melting point and pressurizing the polymeric material under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating;
 - b) holding the polymeric material at the pressure and temperature;
 - c) cooling the heated polymeric material;
 - d) releasing the pressure, thereby forming a highly crystalline polymeric material;
 - e) irradiating the highly crystalline polymeric material at a temperature below or above the melting point of the highly crystalline polymeric material with ionizing radiation, thereby forming a highly crystalline cross-linked polymeric material;

- f) mechanically deforming the highly crystalline cross-linked polymeric material, thereby reducing residual free radicals; and
- g) annealing the mechanically deformed, cross-linked highly crystalline polymeric material at a temperature below the melting point of the mechanically deformed, cross-linked highly crystalline polymeric material, thereby forming a highly crystalline cross-linked polymeric material having reduced residual free radicals.
- 108. (New) The method of claim 107, wherein the highly crystalline cross-linked polymeric material is mechanically deformed at a temperature below the melting point of the cross-linked highly crystalline polymeric material.
- 109. (New) A method of making oxidation-resistant highly cross-linked blend of polymeric material and additive comprising:
 - a) blending the polymeric material with one or more additives;
 - b) consolidating the blend;
 - c) irradiating the blend at a temperature below or above the melting point of the polymeric material, thereby forming a highly cross-linked blend of polymeric material;
 - d) mechanically deforming highly cross-linked blend below its melting point;
 - e) heating the polymeric material below or above its melting point and pressurizing the polymeric material under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating;
 - f) holding the polymeric material at the temperature and pressure;
 - g) cooling the heated polymeric material; and
 - h) releasing the pressure, thereby forming an oxidation-resistant highly cross-linked blend of polymeric material.
- 110. (New) A method of making a highly crystalline cross-linked polymeric material comprising:
 - a) irradiating the polymeric material with ionizing radiation, thereby forming a cross-linked polymeric material;

- b) heating the polymeric material below or above its melting point and pressurizing the polymeric material under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating;
- c) holding at this temperature and pressure;
- d) cooling the heated cross-linked polymeric material to a temperature below the melting point of the polymeric material at ambient pressure;
- e) releasing the pressure to an atmospheric pressure level, thereby forming a highly crystalline cross-linked polymeric material;
- f) doping the highly crystalline cross-linked polymeric material with one or more antioxidants by diffusion; and
- g) annealing the antioxidant-doped highly crystalline cross-linked polymeric material at a temperature below the melting point of the antioxidant-doped crosslinked highly crystalline polymeric material, thereby forming an oxidation resistant highly crystalline cross-linked polymeric material.
- 111. (New) A method of making highly crystalline blend of cross-linked polymeric material comprising:
 - a) blending the polymeric material with one or more additives;
 - b) heating the blend to a temperature above the melting point and pressurizing the blend under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating;
 - c) holding at the pressure and temperature;
 - d) cooling the heated blend;
 - e) releasing the pressure, thereby forming a highly crystalline blend of polymeric material: and
 - f) irradiating the highly crystalline blend of polymeric material with ionizing radiation at an elevated temperature that is below the melting point of the highly crystalline blend of polymeric material, thereby forming highly crystalline blend of cross-linked polymeric material.
- 112. (New) A method of making highly crystalline blend of cross-linked interlocked hybrid material comprising:

- a) blending the polymeric material with one or more additives, thereby forming a polymeric blend;
- b) contacting the polymeric blend to the counterface of a second material, thereby forming a hybrid material;
- c) heating the hybrid material to a temperature above the melting point of the polymeric material, and pressurizing the hybrid material under at least 10-1000 MPa, wherein the pressurizing can be carried out prior to heating, thereby forming a highly crystalline blend of interlocked hybrid material having an interface between the polymeric blend and the second material;
- d) holding the interlocked hybrid material at the pressure and temperature;
- e) cooling the heated blend of interlocked hybrid material;
- f) releasing the pressure, thereby forming a highly crystalline blend of interlocked hybrid material: and
- g) irradiating the interlocked hybrid material with ionizing radiation at an elevated temperature that is below the melting point of the highly crystalline blend, thereby forming a highly crystalline blend of cross-linked and interlocked hybrid material.