C. Fundamentals of AloT Chapter #3: Introduction to AloT and its Components

ET0743
5G and AloT Applications

Week #4 – #5

Learning Objectives

At the end of instruction, the learner should be able to:

- Understand the basics of AI and Machine Learning.
- Understand AloT architectures and integration of Al and IoT.
- Describe examples of AloT applications.

Road Map of Al

Road Map of Al

3.1 Basics of Artificial Intelligence and Machine Learning – Types of AI and relation between AI, ML & DL

3.1 Basics of Artificial Intelligence and Machine Learning – Key Al Terms and Definitions

Term	Explanation	Example
Instance	The object about which the AI should make a prediction	An image from a vehicle front camera, which needs to be classified as "contains obstacle" or not
Inference	The process of using a trained model to make predictions about an instance based on new data	Apply an ML model to a new image from the vehicle camera to identify potential obstacles
Label	The outcome of a prediction task (either supplied by the training data or by the AI)	Parts of an image labeled as "traffic light", "pedestrian", "speed limit"
Labeling	The process of manually (at least initially) detecting and tagging data samples as input for model training	Manually identify and tag potential obstacles on a large set of images
Training	Machine learning models are trained by using large, representative sets of data, e.g. labeled training data	Manually identify and tag potential obstacles on a large set of images
Feature	An measurable property or characteristic of an instance	Edges and objects in an image
Model	A statistical representation of a prediction task	A model to predict road traffic
Pipeline	The IT infrastructure for an Al/ML algorithm, including data and model management.	The pipline to manage data flows and prediction model definitions
		niatalauhaak ara

Supervised Learning

Unsupervised Learning

- 3.1 Basics of Artificial Intelligence and Machine Learning
- Reinforcement Learning

aiotplaybook.org

3.1 Basics of Artificial Intelligence and Machine Learning — The Machine Learning Cycle

Example: Lab #6 Use Case:

• To be added soon.

Example: Lab #6 Use Case:

• To be added soon.

Artificial Neural Networks and Deep Learning

Pattern Recognition Example

We can use a single-neuron perceptron with three inputs, because there
are only two categories (apple or orange).

$$a = hardlims \left[\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + b \right]$$

3.1 Basics of Artificial Intelligence and Machine Learning – Artificial Neural Networks and Deep Learning

Generative Al

https://chat.openai.com/

- Generative Al

What is AloT?

AI

- Identify patterns in data with machine learning to improve performance
- Automates repetitive tasks to save time

AloT

- Provide real-time datadriven solutions
- Take proactive steps to meet customers' needs

IoT

- Connects diverse infrastructures and gathers critical data
- Provides oversight and maintenance of an intelligent infrastructure

3.3 (Real-world) Examples of AloT Applications

3.3 (Edge Device) Examples of AloT Applications

A few notable applications of the edge devices are:

Deep Learning-enabled smart cameras can locally process captured images to identify and track multiple objects and people. The technology can detect suspicious activities directly on the Edge node.

Audio Event Detection

Distinguishing sounds like baby crying, glass breaking, or a gunshot can trigger an action, including notifications or location detection, via triangulation. Since understanding specific sound events in multisource conditions is a latency-critical task, Al at the Edge can be super-fast and effective. It can recognize an audio event among plentiful overlapping sound sources.

Body Monitoring

Wearable devices collect a lot of data about an individual's activity, location, and heart rate among others. This information can be correlated with health, stress levels, and diet. It can alert wearers to a potential health issue before it becomes critical.

Text To Speech (TTS) & Speech to Text (STT)

Two examples of complex tasks in which AI and DL are used to bring these functionalities on the Edge. Examples include hands-free text read and write functions in automotive, where the driver can keep attention on his main task (drive the car) while interacting with the infotainment system.