NEC

NPN SILICON TRANSISTOR 2SC945

DESCRIPTION

The 2SC945 is designed for use in driver stage of AF amplifier

and low speed switching.

FEATURES

• High Voltage

LVCEO: 50 V MIN.

Excellent h_{FE} Linearity

 h_{FE1} (0.1 mA)/ h_{FE2} (1.0 mA)

: 0.92 TYP.

20 mA

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures		
Storage Temperature55 to	o +12	5°C
Junction Temperature+125 °C	Maxi	mum
Maximum Power Dissipation (Ta = 25 °C)		
Total Power Dissipation	250	mW
Maximum Voltages and Currents (Ta = 25 °C)		
V _{CBO} Collector to Base Voltage	60	٧
V _{CEO} Collector to Emitter Voltage	50	٧
V _{EBO} Emitter to Base Voltage	5.0	٧
I _C Collector Current	100	mΑ

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

ΙB

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
hFE1	DC Current Gain	50	185			V _{CE} =6.0 V, I _C =0.1 mA	
hFE2	DC Current Gain	90	200	600		V _{CE} =6.0 V, I _C =1.0 mA	
NF	Noise Figure		8.0	15	dB	VCE=6.0 V, IC=0.1 mA, RG=2.0 kΩ, f=1.0 kHz	
fT	Gain Bandwidth Product	150	250	450	MHz	V _{CE} =6.0 V, I _E =-10 mA	
Cob	Collector to Base Capacitance		3.0	4.0	рF	V _{CB} =6.0 V, I _E =0, f=1.0 MHz	
СВО	Collector Cutoff Current			100	nΑ	V _{CB} =60 V, 1 _E =0	
IEBO	Emitter Cutoff Current			100	nΑ	V _{EB} =5.0 V, I _C =0	
VBE	Base to Emitter Voltage	0.55	0.62	0.65	V	V _{CE} =6.0 V, I _C =1.0 mA	
V _{CE(sat)}	Collector Saturation Voltage		0.15	0.3	V	I _C =100 mA, I _B =10 mA	
V _{BE(sat)}	Base Saturation Voltage		0.86	1.0	V	$I_{C}=100 \text{ mA}, I_{B}=10 \text{ mA}$	

Classification of h_{FE2}

Rank	R	Q.	Р	к
Range	90 - 180	135 - 270	200 - 400	300 - 600

 h_{FE2} Test Conditions : $V_{CE} = 6.0 \text{ V}$, $I_{C} = 1.0 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta = 25 °C unless otherwise noted)

COLLECTOR CURRENT

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR CURRENT
vs. BASE TO EMITTER VOLTAGE

GAIN BANDWIDTH PRODUCT vs. EMITTER CURRENT

EMITTER TO BASE AND COLLECTOR TO BASE CAPACITANCE vs. REVERSE VOLTAGE

SMALL SIGNAL CURRENT GAIN vs. DC CURRENT GAIN

INPUT IMPEDANCE, VOLTAGE FEEDBACK RATIO AND OUTPUT ADMITTANCE vs. SMALL SIGNAL CURRENT GAIN

NORMALIZED h-PARAMETERS vs. COLLECTOR CURRENT

NORMALIZED h-PARAMETERS vs. COLLECTOR TO EMITTER VOLTAGE

En AND In vs. COLLECTOR CURRENT

NOISE FIGURE MAP 1

NOISE FIGURE MAP 2

NOISE FIGURE MAP 3

