T2C1 - Cinématique du point materiel

$$v \ll c$$

c la vitesse de la lumière dans le vide

$$L\gg \lambda_{dB}=rac{h}{mv}$$

h la constante de planks

L La taille du système

 λ_{dB} : Longueur d'onde de Broglie (Se prononce "Breuil")

I. Description du mouvement d'un point

1. Temps et espace

a. Le temps

- C'est une grandeur physique scalaire toujours positive
- Principe de causalité : Le temps est irreversible
- L'unité de temps est la seconde s

b. L'espace

- L'espace est représenté par une base vectorielle à 3 dimensions
- Unité de l'espace : m
- L'espace est un espace affine euclidien

L'espace et le temps sont reliés par c la vitesse de la lumière

2. Notion de référentiel

Définition

Un référentiel \mathcal{R} est un solide de référence considéré immobile par rapport auquel on étudie les mouvements.

- Ce solide à un repère d'origine *O* et de 3 vecteurs formants une base. Il permet de mesurer les longueurs.
- Une Horloge qui permet de mesurer le temps

3. Mouvement d'un point vecteurs cinématiques

Définition

Un système mécanique sera assimilé à un point materiel si on peut négliger ses dimensions.

Son état (position vitesse et accélération) est complètement décrit par 3 coordonnés spatiales.

Un point materiel se caractérise aussi par sa masse m qui est une grandeur scalaire positive.

a. Le vecteur position

Définition

Dans le référentiel ${\mathcal R}$ on repère le point M par son vecteur position :

$$ec{r}(t) = \overrightarrow{OM}(t)$$

avec O le centre du repère dans \mathcal{R}

La trajectoire de M est l'ensemble des positions prises par ce point.

Les coordonnées C_i de M dont les projections de \vec{r} sur les vecteur de la base u_i

$$C_i(t) = ec{r}(t).\,ec{u}_i(t)$$
 $ec{r} = \sum C_i ec{u}_i$

Equations du mouvement ou équations horaire $\Leftrightarrow C_i$ est une fonction

S'il est possible d'exprimer une coordonnée en fonction dans autres sans faire apparaître de temps on parle d'équation de la trajectoire

Exemple

Soit M qui a une trajectoire circulaire uniforme Excalibur 1.

On note $\omega = cste$ la vitesse angulaire M

• Exprimer les equations horaires du mouvement x(t) et y(t) Excalibur 2.

$$x(t) = R\cos(\Theta(t))$$
 $y(t) = R\sin(\Theta(t))$ $\Theta = \omega t$ On a donc :

$$x(t) = R\cos(\omega t)$$

 $y(t) = R\sin(\omega t)$

• Déterminer une équation de la trajectoire Il faut donc exprimer x en fonction de y sans que t apparaisse On prend le carré des équations horaires

$$x^2(t) = R^2 \cos^2(\omega t)$$

 $y^2(t) = R^2 \sin^2(\omega t)$

On additionne des 2 équations :

$$egin{split} x^2 + y^2 &= R^2 \cos^2(\omega t) + R^2 \sin^2(\omega t) \ x^2 + y^2 &= R^2 \ x &= \pm \sqrt{R^2 - y^2} \end{split}$$

b. Déplacement élémentaire

Définition

Le vecteur déplacement élémentaire

$$dec{r}=d\overrightarrow{OM}=\overrightarrow{M(t+dt)M(t)}$$

C'est le vecteur reliant 2 positions successives de M dans $\mathcal R$

$$dec{r} = \overrightarrow{OM}(t+dt) - \overrightarrow{OM}(t)$$

c. Vecteur vitesse

Définition

La vitesse \vec{v} d'un point M dans le eréférentiel \mathcal{R} est définie comme .

$$ec{v} = \left(rac{\overrightarrow{dOM}}{dt}
ight)_{\mathcal{R}}$$

la vitesse v est la norme su vecteur vitesse

$$v = \left| \left| \left(rac{d\overrightarrow{OM}}{dt}
ight)_{\mathcal{R}}
ight|
ight|$$

Soient O et O' deux origines de repères. (fixes) Le vecteur vitesse de M dépend-il du repère?

$$ec{v'} = \left(rac{\overrightarrow{dO'M}}{dt}
ight)_{\mathcal{R}}$$
 $\overrightarrow{O'M} = \overrightarrow{OO} + \overrightarrow{OM}$

Donc

$$ec{v'} = \left(rac{d\overrightarrow{O'O}}{dt}
ight)_{\mathcal{R}} + ec{v}$$

Comme O' et O sont fixes dans \mathcal{R}

$$\overrightarrow{O'O} = \overrightarrow{cte}$$

Alors

$$ec{v'}=ec{v}$$

Le vecteur vitesse ne dépend pas du repère choisi.

$$egin{aligned} ec{v}_{M/\mathcal{R}} &= \lim_{dt o 0} \dfrac{\overrightarrow{OM}(t+dt) - \overrightarrow{OM}(t)}{t+dt-t} \ ec{v}_{M/\mathcal{R}} imes dt pprox d\overrightarrow{OM} &= d ec{r} \ ec{v}_{M/\mathcal{R}} pprox \dfrac{d \overrightarrow{OM}}{dt} \end{aligned}$$

Propriété

- Le point d'application de \vec{v} est le point M
- ullet Si $ec{v}
 eq ec{0}$ alors le vecteur $ec{v}$ est tangent à la trajectoire en M

Exemple

Soit M décrivant une trajectoire elliptique a la vitesse angulaire $\omega=cte$ le vecteur position s'écrit :

$$ec{r}=2R\cos(\omega t)ec{e}_x+R\sin(\omega t)ec{e}_y$$

• Exprimer $v_{M/\mathcal{R}}$

$$ec{v}_{M/\mathcal{R}} = \left(rac{dec{r}}{dt}
ight)_{\mathcal{R}} = \left(rac{d2R\cos(\omega t)ec{e}_x + R\sin(\omega t)ec{e}_y}{dt}
ight)_{\mathcal{R}} = rac{d_2R\cos(\omega t)ec{e}_y}{dt}$$
 $ec{v}_{M/\mathcal{R}} = -2R\omega\sin(\omega t)ec{e}_x + R\omega\cos(\omega t)ec{e}_y$

Montrer que le mouvement n'a pas une vitesse constante :
 On dérive le vecteur vitesse.

$$\left(rac{dec{v}_{M/\mathcal{R}}}{dt}
ight)_{\mathcal{R}} = -2R\omega^2\cos(\omega t)$$

d. Vecteur accélération

Définition

Le vecteur accélération de point M dans $\mathcal R$ est :

$$ec{a}_{M/\mathcal{R}} = \left(rac{dec{v}_{M/\mathcal{R}}}{dt}
ight)_{\mathcal{R}}$$

$$ec{a}_{M/\mathcal{R}} = \left(rac{d^2 \overrightarrow{OM}}{dt^2}
ight)_{\mathcal{R}}$$

Remarques

On peut distinguer 2 composantes de l'accélération

- Une composante normale à la trajectoire en entrée vers l'intérieur de la trajectoire. Elle correspond à la variation de direction du vecteur vitesse \vec{v}
- Une composante tangentielle à la trajectoire qui correspond a la variation de la norme de la vitesse

$$ec{a}=rac{dec{v}}{dt}$$

on écrit $\vec{v} = v \vec{u}$ avec \vec{u} le vecteur unitaire tangent a la trajectoire en M

$$ec{a} = v rac{dec{u}}{dt} + rac{dv}{dt} ec{u}$$

(premier terme : Acceleration normale, deuxieme terme : accélération tangentielle)

Propriété

• Le point d'application du vecteur \vec{a} est le point M si $\vec{a} \neq \vec{0}$ alors \vec{a} est orienté vers l'intérieur de la trajectoire

Exemple

On considère un ballon d'helium qui monte dans l'atmosphère à la vitesse $\vec{v}=v_0\vec{e}_z$ avec $v_0=cte$ et \vec{e}_z la verticale vers le haut. Le vent va faire dériver le ballon à la vitesse $\vec{v}_{vent}=\frac{z}{t}\vec{e}_x$ avec z l'altitude et t le temps.

Le vecteur vitesse du ballon est $ec{v}=rac{z}{t}ec{e}_x+v_0ec{e}_z$

- 1. Déterminer les equations du mouvement
- 2. Determiner l'équation de la trajectoire
- 3. Calculer le vecteur accélération \vec{a} du ballon dans le référentiel terrestre.

$$ec{v} = rac{d\overrightarrow{OM}}{dt} = rac{dx}{dt}ec{e}_x + rac{dz}{dt}ec{e}_z \ rac{dx}{dt} = rac{z(t)}{t}$$

et

$$\frac{dz}{dt} = v_0 = cte$$

On integre entre 0 et t $\frac{dz}{dt}$

$$z(t) - z(0) = v_0 t$$

Alors

$$z(t) = v_0 t$$

$$rac{dx}{dt} = rac{z(t)}{t} = rac{v_0 t}{t} = v_0$$

Integration entre 0 et t

$$x(t) - x(0) = v_0 t$$

Trajectoire : x = z

$$ec{a} = \left(rac{dec{v}}{dt}
ight)_{\mathcal{R}} = rac{dv_0}{dt} + rac{d}{dt} \Big(rac{z}{t}\Big)ec{e}_x$$

$$rac{z}{t} = v_0 \Rightarrow rac{d}{dt} \Big(rac{z}{t}\Big) = rac{dv_0}{dt} = 0$$

$$rac{dec{e}_x}{dt}=ec{0} \Rightarrow ec{a}=ec{0}$$

e. Nature du mouvement

Calculons la dérivée du carré de la vitesse

$$rac{dv^2}{dt} = rac{dec{v}.\,ec{v}}{dt} = 2ec{v}.\,rac{dec{v}}{dt} = 2ec{v}.\,ec{a}$$

Propriétés

- La dérivée de la norme de \vec{v} est du même signe que le produit scalaire \vec{v} . \vec{a}
- Le mouvement est accéléré si \vec{v} . $\vec{a} > 0$.
- Le mouvement est décéléré si \vec{v} . $\vec{a} < 0$
- Le mouvement est uniforme $\vec{v} \cdot \vec{a} = 0$

II. Repérage dans l'espace, systèmes de coordonnées

1. Coordonnées et degrés de liberté

Définition

- Dans un espace affine euclidien à trois dimensions, la position d'un point est décrit par 3 coordonnées.
- Les degrés de liberté du mouvement de ce point sont le nombre de coordonnées indépendantes qui finissent la trajectoire de ce point.

2. Les systèmes de coordonnées

Le choix d'un système de coordonnées conduit a une description plus ou moins simple du mouvement.

- Si le mouvement est dans un plan circulaire ou radial, on choisira alors des coordonnées polaires.
- Si un axe est privilégié (axe de rotation), on choisira des coordonnées cylindriques.
- Si un point joue un role particulier alors on utilisera les coordonnées sphériques

 Sinon dans les autres cas on choisira des coordonnées cartésiennes.

3. Coordonnées cartésiennes

On considère un repère $(O_{x,y,z})$ excali 3.

La position du point M est définie par ses 3 coordonnées :

- x_M : distance algébrique de M au plan (yOz)
- y_M : distance algébrique de M au plan (xOz)
- z_M : distance algébrique de M au plan (xOy)

Propriété

Les vecteurs unitaires des coordonnées cartésiennes $\vec{u}_x, \vec{u}_y, \vec{u}_z$ (ou $\vec{e}_x, \vec{e}_y, \vec{e}_z$), ne dépendent pas de la position du point M et donc ils ne dépendent pas du temps

$$rac{dec{e}_x}{dt} = rac{dec{e}_y}{dt} = rac{dec{e}_z}{dt} = ec{0}$$

a. vecteur position

$$ec{r} = \overrightarrow{OM} = xec{e}_x + yec{e}_y + zec{e}_z$$

b. déplacement élémentaire

$$dec{r} = \overrightarrow{MM'} = \overrightarrow{OM'} - \overrightarrow{OM}$$
 $dec{r} = (x'-x)ec{e}_x + (y'-y)ec{e}_y + (z'-z)ec{e}_z$

On écrit alors :

$$dec{r}=dxec{e}_x+dyec{e}_y+dzec{e}_z$$

c. Vecteur vitesse

$$ec{v} = rac{d\overrightarrow{OM}}{dt} = rac{dxec{e}_x}{dt} + rac{dyec{e}_y}{dt} + rac{dzec{e}_z}{dt}$$

 $ec{e}_x, ec{e}_y, ec{e}_z$ sont constants Donc

$$ec{v}=\dot{x}ec{e}_x+\dot{y}ec{e}_y+\dot{z}ec{e}_z$$
 $v=\sqrt{\dot{x}^2+\dot{y}^2+\dot{z}^2}$

d. vecteur acceleration

$$ec{a}=rac{dec{v}}{dt}$$
 $ec{a}=\ddot{x}ec{e}_x+\ddot{y}ec{e}_y+\ddot{z}ec{e}_z$ $mec{a}=$

4. Coordonnées cylindriques

Soit H le projeté de M sur (xOy)On définit :

- ho = OH ; distance de H au centre du repère
- heta : angle entre les vecteurs $ec{e}_x$ et \overrightarrow{OM}

ho et heta sont les coordonnées polaires du point H. La position de M est définie par : ho, heta et la distance $HM=z_M$ (la coordonnée cartésienne) On obtiens alors les coordonnés cylindriques de M $(
ho, heta, z_M)$

Excalibur 4.

La base orthonormé du repère cylindrique est

$$ec{e}_{
ho}=rac{\overrightarrow{OH}}{
ho}$$

 \vec{e}_θ : perpendiculaire à \vec{e}_ρ dans (xOy) et dans le sens de y croissant \vec{e}_z : vecteur su repère cartésien

C'est une base locale, les vecteurs unitaires \vec{e}_{ρ} et \vec{e}_{θ} dépendent de la position du point M.

a. Relation entre coordonnées cylindriques et cartésiennes

Cartésien -> Cylindrique :

$$x = \rho \cos \theta$$
 $y = \rho \sin \theta$
 $z = z$

Cylindrique -> Cartésien :

$$ho = \sqrt{x^2 + y^2}$$
 $heta = rccos\left(rac{x}{\sqrt{x^2 + y^2}}
ight) = rcsin\left(rac{y}{\sqrt{x^2 + y^2}}
ight) = rctan\left(rac{y}{x}
ight)$ $z = z$

Relation entre les vecteurs unitaires des bases Excalibur 5

$$e_x = rac{\overrightarrow{OH_x}}{x}$$
 $e_y = rac{\overrightarrow{OH_y}}{y}$

$$e_{rhp} = rac{\overrightarrow{OH}}{
ho}$$

$$\overrightarrow{OH} =
ho ec{e}_
ho = x ec{e}_x + y ec{e}_y$$

On cherche a écrire

$$ec{e}_{
ho} = aec{e}_x + bec{e}_y$$

avec a et b les coordonnées de $\vec{e}_{
ho}$

$$\begin{cases} a = \frac{x}{\rho} = \cos \theta \\ b = \frac{y}{\rho} = \sin \theta \end{cases}$$

$$ec{e}_
ho = \cos hetaec{e}_x + \sin hetaec{e}_y$$

$$\vec{e}_{\theta} = \cos\theta \vec{e}_y - \sin\theta \vec{e}_x$$

Donc:

$$egin{cases} ec{e}_{
ho} = \cos heta ec{e}_x + \sin heta ec{e}_y \ ec{e}_{ heta} = \cos heta ec{e}_y - \sin heta ec{e}_x \ ec{e}_z = ec{e}_z \end{cases}$$

$$egin{cases} ec{e}_x = \cos hetaec{e}_
ho - \sin hetaec{e}_ heta \ ec{e}_y = \sin hetaec{e}_
ho + \cos hetaec{e}_ heta \ ec{e}_z = ec{e}_z \end{cases}$$

Les composantes du vecteur \vec{e}_{ρ} sont appelées radiales. Les composantes du vecteur $\vec{e}\theta$ sont appelées orthoradiales.

b. Vecteur position

$$\overrightarrow{OM} = \overrightarrow{OH} + \overrightarrow{HM} =
ho ec{e}_
ho + z ec{e}_z$$

Donc le vecteur position e, coordonnés cylindriques est :

$$ec{r} = \overrightarrow{OM} =
ho ec{e}_
ho + z ec{e}_z$$

ATTENTION : Dans la base cylindrique les coordonnés de M et celles de \overrightarrow{OM} sont différentes

c. Déplacement élémentaire

Excalibur 6.

$$dec{r}=d
hoec{e}_
ho+
ho$$

d. Vecteur vitesse

$$ec{v} = rac{d\overrightarrow{OM}}{dt} \overrightarrow{OM} =
ho ec{e}_
ho + z ec{e}_z \ ec{v} = rac{d
ho ec{e}_
ho}{dt} + rac{dec{e}_z}{dt} = \dot{
ho} ec{e}_
ho + rac{
ho dec{e}_
ho}{dt} + \dot{z} ec{e}_z$$

exprimons $\frac{d\vec{e}_{\rho}}{dt}$, On sait que

$$ec{e}_{
ho} = \cos heta ec{e}_x + \sin heta ec{e}_y$$
 $rac{dec{e}_{
ho}}{dt} = rac{d\cos heta}{dt} ec{e}_x + rac{d\sin heta}{dt} ec{e}_y = \cos heta \ \dot{ heta} ec{e}_x - \sin heta \ \dot{ heta} ec{e}_y$ $rac{dec{e}_{
ho}}{dt} = \dot{ heta} (\cos heta ec{e}_x - \sin heta ec{e}_y)$ $rac{dec{e}_{
ho}}{dt} = \dot{ heta} ec{e}_{
ho}$

Excaliibur 7.

 $rac{dec{e}_{
ho}}{dt}$ et $ec{e}_{
ho}$ sont orthogonaux

e. Vecteur accélération

$$ec{a}=rac{dec{v}}{dt})_{\mathcal{R}}$$

$$ec{a}=\ddot{
ho}ec{e}_{
ho}+\dot{
ho}rac{dec{e}_{
ho}}{dt}+\dot{
ho}\dot{ heta}ec{e}_{ heta}+
ho\ddot{ heta}ec{e}_{ heta}+
ho\ddot{ heta}rac{dec{e}_{ heta}}{dt}+\ddot{z}ec{e}_{z}$$

On sait que

$$rac{dec{e}_{
ho}}{dt}=\dot{ heta}ec{e}_{ heta}$$

et que

$$ec{e}_{ heta} = -\sin hetaec{e}_x + \cos hetaec{e}_y = -\dot{ heta}(\cos hetaec{e}_x + \sin hetaec{e}_y)$$

Donc

$$egin{align} rac{dec{e}_{ heta}}{dt} &= -\dot{ heta}ec{e}_{
ho} \ ec{a} &= (\ddot{
ho} -
ho \dot{ heta}^2)ec{e}_{
ho} + (2\dot{
ho}\dot{ heta} +
ho \ddot{ heta})ec{e}_{ heta} + \ddot{z}ec{e}_z \end{aligned}$$

5. Coordonnées polaires

Cas particulier des coordonnées cylindriques pour lesquelles z=cte (Dans le plan)

a. Vecteur position

$$\overrightarrow{OM} =
ho ec{e}_
ho$$

b. Déplacement élémentaire

$$dec{r}=\overrightarrow{dOM}=d
hoec{e}_
ho+
ho d hetaec{e}_ heta$$

c. Vecteur vitesse

$$ec{v}=\dot{
ho}ec{e}_{
ho}+
ho\dot{ heta}ec{e}_{ heta}$$

d. Vecteur accélération

$$ec{a}=(\ddot{
ho}-
ho\dot{ heta}^2)ec{e}_
ho+(2\dot{
ho}\dot{ heta}+
ho\ddot{ heta})ec{e}_ heta$$

6. Coordonnées sphériques

PHOTO 15-01-2024

On définit la base orthonormée :

- $ec{e}_r = rac{ec{r}}{r}$
- \vec{e}_{θ} : vecteur unitaire, orthogonal à \vec{e}_r dans le sens des θ croissants dans le plan contenant \overrightarrow{OM} et \vec{e}_z
- \vec{e}_{ϕ} : vecteur unitaire perpendiculaire à \vec{e}_r et $e_{\vec{\theta}}$, il correspond au vecteur unitaire de (xOy) perpendiculaire à \overrightarrow{OH} .

a. Relation entre les coordonnées sphériques, cylindriques et cartésiennes

Par construction:

- $z = r \cos \theta$
- $\rho = r \sin \theta$
- $x = \rho \cos \phi$
- $y = \rho \sin \phi$

Exprimons x,y,z en fonction de r,θ,ϕ

- $x = r \sin \theta \cos \phi$
- $y = r \sin \theta \sin \phi$
- $z = r \cos \phi$

On sait que
$$ho^2=x^2+y^2$$
 et que $r^2=
ho^2+z^2\Rightarrow r^2=x^2+y^2+z^2$ Donc $r=\sqrt{x^2+y^2+z^2}$

$$ec{e}_r = \cos hetaec{e}_z + \sin hetaec{e}_
ho \ ec{e}_ heta = -\sin(heta)ec{e}_z + \cos hetaec{e}_
ho$$

 \Leftrightarrow

$$ec{e}_
ho = \sin hetaec{e}_r + \cos hetaec{e}_ heta \ ec{e}_z = \cos hetaec{e}_r - \sin hetaec{e}_
ho \ ec{e}_
ho$$

On sait que $ec{e}_
ho = \cos\phiec{e}_x + \sin\phiec{e}_y$

$$ec{e}_r = \cos heta ec{e}_z + \sin heta \cos \phi ec{e}_x + \sin heta \sin \phi ec{e}_y$$
 $e heta = -\sin heta ec{e}_z + \cos heta \cos \phi ec{e}_x + \cos heta \sin \phi ec{e}_y$ $ec{e}_\phi = -\sin \phi ec{e}_x + \cos \phi ec{e}_y$

b. Vecteur position

$$\overrightarrow{OM} = \vec{r} = r \vec{e_r}$$

c. Déplacement élémentaire

PHOTO 15-01-2023

- Déplacement le long de \overrightarrow{OM} dt
- déplacement $d\theta$ $rd\theta$
- Déplacement $d\phi =
 ho d\phi = r \sin \theta d\phi$

$$dec{r} = drec{e}_r + rd hetaec{e}_ heta + r\sin heta d\phiec{e}_\phi$$

d. Vecteur vitesse

$$ec{v} = rac{\overrightarrow{DOM}}{dt} = \dot{r}ec{e}_r + rrac{dec{e}_r}{dt} \ ec{v} = \dot{r}ec{e}_r + r\dot{ heta}ec{e}_ heta + r\sin heta\dot{e}_\phi \ ec{e}_\phi$$

7. Base locale de Frenet

On note $\vec{r}(t)$, $\vec{v}(t)$ et $\vec{a}(t)$ la position la vitesse et l'accélération de M dans un référentiel \mathcal{R} .

• $\vec{v}(t)$ est toujours tangent à la trajectoire Donc on créé le repère orthonormé formé des vecteurs tangents a la trajectoire en M \vec{t} normal à la trajectoire de M vers l'intérieur \vec{n} dans cette base.

$$ec{v} = v ec{t}$$

alors l'accélération :

$$ec{a} = rac{dec{v}}{dt} = rac{dv}{dt}ec{t} + vrac{dec{t}}{dt}$$
 $ec{a} = rac{dv}{dt}ec{t} - rac{v^2}{R}ec{n}$

R: Le Rayon de courbure de la trajectoire en M.

Définition

Le rayon de courbure R d'une trajectoire en un point M est le rayon du cercle tangent a cette trajectoire en M. PHOTO 15-01-2024

$$R=rac{v^2}{|ec{a}.\,ec{n}|}$$

 $\frac{1}{R}$: Courbure d'une trajectoire

III. Exemples

1. Mouvement uniformément accéléré

$$\vec{a} = cte$$

Soit M un point, de vecteur accélération $\vec{a}=a\vec{e}_y$ avec a=cte, à t=0,

$$ec{v} = V_0 \cos lpha ec{e}_x + V_0 \sin lpha ec{e}_y$$

Déterminer l'équation de la trajectoire

- $\ddot{x}=0$
- $\ddot{y} = a$
- $\ddot{z}=0$

On intègre:

- $\dot{x} = cte = v_0 \cos \alpha$
- $\dot{y} = at + cte$
- $\dot{z} = cte = 0$

Donc

- $\dot{x} = V_0 \cos \alpha$
- $\dot{y} = at + V_0 \sin \alpha$
- $\dot{z}=0$

On intègre:

- $x = v_0 \cos(\alpha)t + x(0)$
- $ullet y=rac{1}{at^2}+V_0\sin(lpha)t+y(0)$
- $z=z_0$

CI à t=0 et M=0, Equations horaires,

$$egin{aligned} & x(t) = v_0 \cos(lpha) t \ & y(t) = rac{1}{at^2} + V_0 \sin(lpha) t \end{aligned}$$

•
$$z(t) = 0$$

Il faut éliminer la variable t pour trouver la relation entre x et y or a $t=\frac{x}{V_0\cos\alpha}$ et on injecte dans y(t)

$$y = rac{1}{2} a igg(rac{x}{v_0 \cos lpha}igg)^2 + V_0 \sin lpha rac{x}{V_0 \cos lpha}$$
 $y = rac{1}{2} a rac{x^2}{V_0^2 \cos^2 lpha} + c an x$

C'est l'équation d'une parabole.

2. Mouvement circulaire

a. Cas général

PHOTO 15-01-2024

On choisit la base polaire $(\vec{e}_{\rho},\vec{e}_{\theta})$ et en a $\rho=R=cte$ Les coordonnées de M, x et y sont reliées aux coordonnées polaires :

•
$$x = R\cos\theta$$

•
$$y = R \sin \theta$$

 \Leftrightarrow

•
$$R=\sqrt{x^2+y^2}$$

•
$$\theta = \arctan\left(\frac{y}{x}\right)$$

Exprimons les vecteurs position, vitesse et accélération

$$\overrightarrow{OM} = R ec{e}_
ho$$

$$ec{v}=rac{\overrightarrow{dOM}}{dt}=R\dot{ heta}ec{e}_{ heta}$$

 $ec{v}$ est tangent a la trajectoire.

Souvent on pose $\omega = \dot{\theta}$ la vitesse angulaire.

$$ec{a}=rac{dec{v}}{dt}=R\ddot{ heta}ec{e}_{ heta}-R\dot{ heta}^2ec{e}_{
ho}$$

elle comporte une composante tangentielle à la trajectoire

$$ec{a}_T = R \ddot{ heta} ec{e}_{ heta}$$

et une composante normale :

$$ec{a}_N = -R \dot{ heta}^2 ec{e}_
ho$$

dirigé vers l'intérieur.

b. Cas du mouvement circulaire uniforme

$$v = cte$$

(Norme de la vitesse)

La direction de \vec{v} peut changer

On à vu que :

$$ec{v} = R\dot{ heta}ec{e}_{ heta} \Leftrightarrow v = |R\dot{ heta}|$$

or R=cte

Donc

$$\overset{\cdot}{ heta} = \omega = cte \Leftrightarrow \overset{\cdot\cdot}{ heta} = 0$$

Donc le vecteur accélération

$$ec{a}=-R\dot{ heta}^2ec{e}_
ho$$

L'accélération n'est pas nulle mais elle est normale à la trajectoire. De plus $R\dot{\theta}^2>0$.

Donc \vec{a} est centripète (dirigé vers le centre du cercle)

$$ec{a} = \ddot{x}ec{e}_x + \ddot{y}ec{e}_y \ ec{a} = -\omega^2(R\cos hetaec{e}_x + R\sin hetaec{e}_y)$$

- $\ddot{x} = -\omega^2 x$
- $\ddot{y}=-\omega^2 y$
- $\ddot{x} + \omega^2 x = 0$
- $\ddot{y} + \omega^2 y = 0$

Equation différentielle du mouvement Le mouvement est sinusoïdal.

c. Origine du cercle

excal 8

En coordonnées polaires e+de centre O

- Exprimer l'équation polaire ρ en fonction de θ
- OCM est isocelle de somme C
 Excal 9
 triangle OHC rectangle en H

$$\cos heta = rac{OH}{OC} = rac{
ho}{2R} \Rightarrow
ho = 2R \cos heta$$

• Exprimer \vec{v} et \vec{a} en coordonées polaires en fonction de $R,\dot{\theta}$ et θ

On suppose $\ddot{\theta}=0$

$$ec{v}=\dot{
ho}ec{e}_{
ho}+
ho\dot{ heta}ec{e}_{ heta}$$

On a

$$ho = 2R\cos heta \Rightarrow \dot{
ho} = -2R\sin heta\ \dot{ heta}$$
 $ec{v} = 2R\dot{ heta}(-\sin hetaec{e}_
ho + \cos hetaec{e}_ heta)$
 $ec{a} = -4R\dot{ heta}^2(\cos hetaec{e}_
ho + \sin hetaec{e}_ heta)$
 $R\cos hetaec{e}_
ho + R\sin hetaec{e}_ heta = \overrightarrow{CM}$
 $ec{a} = -4\dot{ heta}^2\overrightarrow{CM}$

accélération centripète

Remarques

Pour un mouvement circulaire, on défini le vecteur de rotation $\vec{\omega}$ par rapport à l'axe du cercle $\vec{\Omega}$ excal 10