Bond Market Making Simulation

July 13, 2025

1 Objective

This report presents a simulation-based market-making framework for a 10-year zero-coupon bond. The model is driven by short-term interest rate dynamics under the CIR model, with synthetic bid/ask pricing and trade arrival modeling.

2 Short Rate Model (CIR)

The short rate r(t) follows the Cox-Ingersoll-Ross (CIR) process:

$$dr = a(b - r)dt + \sigma\sqrt{r}dW_t \tag{1}$$

Bond prices are computed using the closed-form CIR solution:

$$P(t,T) = A(t,T) \cdot e^{-B(t,T) \cdot r(t)}$$
(2)

where A(t,T) and B(t,T) are model-specific functions of time to maturity and the CIR parameters, as outlined in John C. Hull's *Options, Futures and Other Derivatives*.

3 Simulation Framework

3.1 Calibrating Parameters

Using the most recent Yield on Zero Coupon Bonds from FRED, we compute observed market bond prices via:

$$P(t,T) = e^{-r(T-t)} \tag{3}$$

We then compute the corresponding model price using the CIR bond pricing function. Calibration is performed by minimizing the squared error:

$$Loss = \sum (P_{\text{model}} - P_{\text{market}})^2 \tag{4}$$

with respect to the parameters a, b, σ , and r_0 .

3.2 Simulating Midpoint Bond Prices

Using the calibrated parameters, we simulate the short rate using Euler discretization at 1-second resolution across 252 trading days (539 minutes per day):

$$r_{t+\Delta t} = r_t + a(b - r_t)\Delta t + \sigma \sqrt{r_t} \sqrt{\Delta t} \cdot z_t$$
 (5)

where z_t is drawn from a standard normal distribution.

Bid/Ask Spread 3.3

We simulate bid-ask spreads from a uniform distribution:

spread
$$\sim U(0.01, 0.04)$$
 (6)

Bid and ask prices are then calculated as:

$$bid = mid - \frac{spread}{2}$$

$$ask = mid + \frac{spread}{2}$$
(8)

$$ask = mid + \frac{spread}{2} \tag{8}$$

Simulating Fills 3.4

Liquidity sensitivity k is drawn from a normal distribution:

$$k \sim \mathcal{N}(60, 2^2) \tag{9}$$

We fix the baseline activity level A=2 trades per side per second. For each quote, we compute the arrival rates as:

$$\lambda_{\text{bid}} = A \cdot e^{-k \cdot (\text{mid-bid})} \tag{10}$$

$$\lambda_{\text{ask}} = A \cdot e^{-k \cdot (\text{ask-mid})} \tag{11}$$

We then simulate the number of trades per side using Poisson random draws:

$$N \sim \text{Poisson}(\lambda)$$
 (12)

Final Simulated Data 3.5

The resulting dataset includes the following fields for each simulated second:

Timestamp, Midpoint, Bid, Ask, Bid Volume, Ask Volume

Market Making Strategy 4

We simulate a market-making strategy using the above synthetic market environment.

4.1 Estimating k and A from Simulated Data

Every 1200 seconds (20 minutes), we estimate separate liquidity parameters k and A for the bid and ask sides.

We fit the model:

$$\log(\text{volume}) = \log(A) - k \cdot \delta \tag{13}$$

where δ is the distance from the quote to the midprice. Volume is aggregated by binning spreads and summing counts in each bin. This rolling regression allows us to infer timevarying liquidity sensitivity.

4.2 Setting Bid and Ask Prices

We use a base spread of 0.04 and adjust quotes based on inventory using a skew parameter γ :

$$bid = mid - \frac{base_spread}{2} - \gamma \cdot inventory \tag{14}$$

$$bid = mid - \frac{base_spread}{2} - \gamma \cdot inventory$$

$$ask = mid + \frac{base_spread}{2} - \gamma \cdot inventory$$
(14)

When inventory is positive, the bid is reduced to encourage selling, and the ask is lowered to discourage further buying. The opposite is applied when inventory is negative.

4.3 Simulating Fills

At each second, we use the estimated k_{bid} , A_{bid} and k_{ask} , A_{ask} to compute fill probabilities:

$$\lambda_{\text{ask}} = A_{\text{ask}} \cdot e^{-k_{\text{ask}} \cdot (\text{ask-mid})} \tag{16}$$

$$\lambda_{\text{bid}} = A_{\text{bid}} \cdot e^{-k_{\text{bid}} \cdot (\text{mid-bid})} \tag{17}$$

These are used to draw the number of fills from a Poisson distribution.

Tracking Cash and Inventory 4.4

Each executed trade updates inventory and cash:

- Selling at the ask: inventory decreases, cash increases
- Buying at the bid: inventory increases, cash decreases

We log both inventory and cash at each time step to evaluate performance over the simulation horizon.