Universidade Federal de Pernambuco - UFPE Centro de Ciências Sociais Aplicadas - CCSA Departamento de Ciências Contábeis e Atuariais Bacharelado em Ciências Atuariais

Aluno: Mario Beating P. M. Palmeira

Professor: Edilberto Almeida

Disciplina: Fundamentos de Algebra Linear

Exame 3 - Fundamentos de Álgebra Linear Data:

Duração: 2 horas

a prova contém 1 página e 5 questões, formando um total de 10 pontos.

(2 pontos) Seja \mathbf{P}_2 o espaço das funções polinomiais reais de grau menor ou ig dois. Definimos em \mathbf{P}_2 :

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$$

Nota:

Considere **W** o subespaço de \mathbf{P}_2 gerado pelos vetores p(t) = 1 e q(t) = 1 - t.

- (a) $\langle f, g \rangle$ é um produto interno? Mostre usando as propriedades.
- (b) Se a resposta de (a) for afirmativa determine uma base ortogonal para W.
- (2 pontos) Seja $\beta = \{(1,1,0), (1,0,1), (0,2,0)\}$. Ache uma base ortonormal de \mathbb{F} relação ao produto interno usual.
- (2 pontos) Seja $\mathbf{V} = \mathbb{R}^2$. Sejam $\vec{v}_1 = (x_1, y_1)$ e $\vec{v}_2 = (x_2, y_2)$. Se $f(\vec{v}_1, \vec{v}_2) = 2x_1$
- (a) Mostre que $f(\vec{v}_1, \vec{v}_2)$ é produto interno.
- (b) Seja $\beta = \{(-1, 1), (1, 1)\}$. Ache uma base ortonormal para \mathbb{R}^3 em relação a $f(\vec{v})$ (2 pontos) Seja T: $\mathbb{R}^3 \to \mathbb{R}^3$, a rotação de um ângulo θ em torno do eixo z. Pod expressar T por:

$$T(x, y, z) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta, z).$$

Encontre a matriz $[T]^{\alpha}_{\alpha}$ onde α é a base canônica e classifique T a partir de $[T]^{\alpha}_{\alpha}$ Auto-Adjunto ou Ortogonal ou Nenhum dos dois. Prove sua resposta a partir propriedades da matriz $[T]^{\alpha}_{\alpha}$.

(2 pontos) Seja B: $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por:

$$B((x_1, y_1), (x_2, y_2)) = x_1 x_2 - 2y_1 y_2.$$

Mostre que B é uma forma bilinear.

B1(2, 91 122,122) +(22,43)) = B((2,81), (22,92) + \$(21,8