Table 1 Regularization in early vision

Problem	Regularization principle
Edge detection	$\int \left[(Sf - i)^2 + \lambda (f_{xx})^2 \right] dx$
Optical flow (area based)	$\int [i_x u + i_y v + i_t]^2 + \lambda (u_x^2 + u_y^2 + v_x^2 + v_y^2) dx dy$
Optical flow (contour based)	$\int \left[(V \cdot N - V^N)^2 + \lambda ((\partial/\partial_s)V)^2 \right] ds$
Surface reconstruction	$\int [S \cdot f - d)^2 + \lambda (f_{xx}^2 + 2f_{xy}^2 + f_{yy}^2)^2] dx dy$
Spatiotemporal approximation	$\int [(S \cdot f - i)^2 + \lambda (\nabla f \cdot V + ft)^2] dx dy dt$
Colour	$ I^{\nu}-Az ^2+\lambda Pz ^2$
Shape from shading	$\int [(E - R(f, g))^2 + \lambda (f_x^2 + f_y^2 + g_x^2 + g_y^2)] dx dy$
Stereo	$\int \left\{ \left[\nabla^2 G * (L(x, y) - R(x + d(x, y), y)) \right]^2 + \lambda (\nabla d)^2 \right\} dx dy$

Some of the early vision problems that have been solved in terms of variational principles. The first five are standard quadratic regularization principles. In edge detection 26,27 the data on image intensity (i=i(x))(for simplicity in one dimension) are given on a discrete lattice: the operator S is the sampling operator on the continuous distribution f to be recovered. A similar functional may be used to approximate timevarying imagery. The spatio-temporal intensity to be recovered from the data i(x, y, t) is f(x, y, t); the stabilizer imposes the constraint of constant velocity V in the image plane (ref. 61). In area-based optical flow 18, i is the image intensity, u and v are the two components of the velocity field. In surface reconstruction 21,22 the surface f(x, y) is computed from sparse depth data d(x, y). In the case of colour³² the brightness is measured on each of three appropriate colour coordinates $I^{\nu}(\nu=1,2,3)$. The solution vector z contains the illumination and the albedo components separately; it is mapped by A into the ideal data. Minimization of an appropriate stabilizer enforces the constraint of spatially smooth illumination and either constant or sharply varying albedo. For shape from shading¹⁹ and stereo (T.P. and A. Yuille, unpublished), we show two non-quadratic regularization functionals. R is the reflectance map, f and g are related to the components of the surface gradient, E is the brightness distribution¹⁹. The regularization of the disparity field d involves convolution with the laplacian of a gaussian of the left (L) and the right (R) images and a Tikhonov stabilizer corresponding to the disparity gradient.