XXIX Semana do IME/UFG e VI Seminário de Pesquisa e Pós-Graduação do IME/UFG

Formalização de Teoremas em Assistentes de Prova

Section 3: Provas em papel e lápis versus provas formais

Thaynara Arielly de Lima (IME) **UFG**Mauricio Ayala-Rincón (CIC-MAT) UnB

Funded by FAPDF DE grant 00193.0000.2144/2018-81, CNPq Research Grant 307672/2017-4 Oct 6 --8 , 2021

Talk's Plan

- 1 Section 3
 - Formalizing a simple remark in Hungerford's abstract algebra textbook

Definition 3.5. An integral domain R is a unique factorization domain provided that:

- (i) every nonzero nonunit element a of R can be written $a=c_1c_2\cdots c_n$, with c_1,\ldots,c_n irreducible.
- (ii) If $a=c_1c_2\cdots c_n$ and $a=d_1d_2\cdots d_m$ (c_i,d_i irreducible), then n=m and for some permutation σ of $\{1,2,\ldots,n\}$, c_i and $d_{\sigma(i)}$ are associates for every i.

REMARK. Every irreducible element in a unique factorization domain is necessarily prime by (ii). Consequently, irreducible and prime elements coincide by Theorem 3.4 (iii).

Hungerford's remark - Ring definition

Definition 1.1. A ring is a nonempty set R together with two binary operations (usually denoted as addition (+) and multiplication) such that:

- (i) (R,+) is an abelian group;
- (ii) (ab)c = a(bc) for all a,b,c $\in R$ (associative multiplication);
- (iii) a(b + c) = ab + ac and (a + b)c = ac + bc (left and right distributive laws).

If in addition:

- (iv) ab = ba for all $a, b \in R$,
- then R is said to be a commutative ring. If R contains an element 1_R such that
 - (v) $1_R a = a 1_R = a$ for all $a \in R$,

then R is said to be a ring with identity.

See the file ring_def.pvs in https://github.com/nasa/pvslib/tree/master/algebra

Hungerford's remark - Ring examples

$$\begin{split} &(\mathbb{Z},+,\cdot,0,1)\\ &(m\mathbb{Z}=\{m\cdot z;z\in\mathbb{Z}\text{ and }m\text{ is a natural number }\},+,\cdot,0)\\ &(\{f:\mathbb{R}\to\mathbb{R}\},+:(f+g)(x)=f(x)+g(x),\cdot:(f\cdot g)(x)=f(x)\cdot g(x),0,1)\\ &\left(M_2(\mathbb{R})=\left\{\left(\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right);a_{ij}\in\mathbb{R}\right\},+:M_2(\mathbb{R}),\cdot:M_2(\mathbb{R}),\left(\begin{array}{cc}0&0\\0&0\end{array}\right),\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\right)\\ &(\mathbb{Z}_m=\{\overline{0},\overline{1},\ldots,\overline{m-1}\},+:\overline{a}+\overline{b}=\overline{a+b},\cdot:\overline{a}\cdot\overline{b}=\overline{a\cdot b},\overline{0}) \end{split}$$

Definition 1.3. A nonzero element a in a ring R is said to be a **left** [resp. right] zero divisor if there exists a nonzero $b \in R$ such that ab = 0 [resp. ba = 0]. A zero divisor is an element of R which is both a left and a right zero divisor.

See the file ring_nz_closed_def.pvs in

https://github.com/nasa/pvslib/tree/master/algebra

Definition 1.5. A commutative ring R with identity $1_R \neq 0$ and no zero divisors is called an **integral domain.** A ring D with identity $1_D \neq 0$ in which every nonzero element is a unit is called a **division ring.** A field is a commutative division ring.

See the file integral_domain_with_one_def.pvs in

https://github.com/nasa/pvslib/tree/master/algebra

Graduate Texts in Mathematics Thomas W. Hungerford Algebra

Definition 1.4. An element a in a ring R with identity is said to be left [resp. right] invertible if there exists $c \in R$ [resp. $b \in R$] such that $ca = 1_R$ [resp. $ab = 1_R$]. The element c [resp. b] is called a left [resp. right] inverse of a. An element $a \in R$ that is both left and right invertible is said to be invertible or to be a unit.

Definition 3.1. A nonzero element a of a commutative ring R is said to **divide** an element $b \in R$ (notation: $a \mid b$) if there exists $x \in R$ such that ax = b. Elements a,b of R are said to be **associates** if $a \mid b$ and $b \mid a$.

Definition 3.3. Let R be a commutative ring with identity. An element c of R is irreducible provided that:

- (i) c is a nonzero nonunit;
- (ii) $c = ab \Rightarrow a \text{ or } b \text{ is } a \text{ unit.}$

An element p of R is prime provided that:

- (i) p is a nonzero nonunit;
- (ii) $p \mid ab \Rightarrow p \mid a \text{ or } p \mid b$.

- In \mathbb{Z} , the notions of prime and irreducible elements are equal.
- In \mathbb{Z}_6 , 2 is a prime element; however 2 is not an irreducible element.

Every prime element in an integral domain R is an irreducible element.

If p = ab then p|a or p|b since p|p = ab and p is prime.

Consider that p|a. Thus a=px and p=ab=pxb.

Consequently, p - pxb = p(one - xb) = zero. Thus, xb = one and b is an unit.

Definition 3.5. An integral domain R is a unique factorization domain provided that:

- (i) every nonzero nonunit element a of R can be written $a=c_1c_2\cdots c_n$, with c_1,\ldots,c_n irreducible.
- (ii) If $a=c_1c_2\cdots c_n$ and $a=d_1d_2\cdots d_m$ (c_i,d_i irreducible), then n=m and for some permutation σ of $\{1,2,\ldots,n\}$, c_i and $d_{\sigma(i)}$ are associates for every i.

REMARK. Every irreducible element in a unique factorization domain is necessarily prime by (ii). Consequently, irreducible and prime elements coincide by Theorem 3.4 (iii).