# **SOLUSI SIMULASI OSK 2018**

Oleh: YBC



**ASTRONOMI** 

- 1. Diketahui partikel A (4,0,0), B (0,-4,0), dan C (0,0,8) sedang berada di daerah tepi galaksi Andromeda. Panjang vektor proyeksi  $\overrightarrow{AC}$  ke vektor  $\overrightarrow{AB}$  adalah ...
  - a.  $2\sqrt{2}$
  - b.  $\frac{2}{3}\sqrt{2}$
  - c.  $5\sqrt{3}$
  - d.  $\sqrt{2}$
  - e.  $\frac{16}{\sqrt{2}}$

# Jawaban: A

Gunakan konsep perkalian dot vektor.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = |AB||AC|\cos\theta$$

Kegunaan perkalian dot adalah untuk membuat dua vektor dengan sudut apit  $\theta$  menjadi searah. Jadi agar vektor  $\overline{AC}$  searah dengan vektor  $\overline{AB}$ , vektor  $\overline{AC}$  harus dikalikan  $\cos\theta$ . Sehingga  $|AC|\cos\theta$  merupakan panjang proyeksi vektor  $\overline{AC}$  ke vektor  $\overline{AB}$ .

$$\overrightarrow{AC} = C - A = (-4, 0, 8)$$
  
 $\overrightarrow{AB} = B - A = (-4, -4, 0)$ 

$$|AC|\cos\theta = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{|AB|}$$
$$|AC|\cos\theta = \frac{16+0+0}{\sqrt{16+16+0}} = \frac{16}{\sqrt{32}} = 2\sqrt{2}$$

2. Perhatikan gambar bintang berikut!



Apabila semua ujung dari struktur tersebut memiliki nilai sudut yang sama, berapakah nilai  $\theta$ ?

- a. 15°
- b. 18°
- c. 27°
- d. 36°
- e. 42°



3. If your mass is 65 kg, what is the maximum value of the attractive force exerted on you by Jupiter? The mass of Jupiter is  $1.9 \times 10^{27}$  kg and its semi-major axis is 5.2 AU.

a. 
$$1.4 \times 10^{-5} N$$

b. 
$$2.1 \times 10^{-11} N$$

c. 
$$9.6 \times 10^{-6} N$$

d. 
$$2.1 \times 10^{-5} N$$

e. 
$$5,4 \times 10^{-7} N$$

# Jawaban: D

The maximum value of the attractive force can be calculated when the Jupiter is in opposition. Thus, the distance between the Earth and Jupiter is 5.2 - 1 = 4.2 AU. Then,

$$F \max = \frac{GMm}{d^2}$$

$$F = \frac{(6.67 \times 10^{-11})(1.9 \times 10^{27})(65)}{(4.2 \times 1.5 \times 10^{11})^2}$$

$$F = 2.1 \times 10^{-5} N$$

4. Bertholdt sedang mengamati sebuah bintang dengan fluks E dan diameter teleskop reflektor Cassegrain miliknya itu sebesar B meter. Diameter cermin pemantul di dalamnnya adalah sebesar x meter dan pengamatan dilakukan selama t sekon. Maka energi total yanng diterima ialah ...

a. 
$$\frac{2\pi E(B-x)}{t}$$

b. 
$$\frac{E(B-x)^2}{\pi t}$$

C. 
$$\frac{E\pi(B^2-x^2)}{4t^{-1}}$$

d. 
$$4E\pi(B^2 - x^2)t$$

e. 
$$\frac{E\pi B^2}{4}t$$

## Jawaban: C



Teleskop reflektor Cassegrain selain memiliki cermin bagian luar, ia juga memiliki cermin dalam (*gambar: Wikipedia*). Cahaya pada awalnya masuk melalui cermin luar kemudian terpantul di cermin dalam. Sehingga cahaya yang lolos hanya sebesar:

$$A = \frac{1}{4}\pi B^2 - \frac{1}{4}\pi x^2 = \frac{\pi}{4}(B^2 - x^2)$$

Energi yang lolos didapatkan dari perkalian antara fluks  $(J/m^2s)$ , waktu (s), dan luas A tadi.

$$Energi = EAt$$
 
$$Energi = \frac{E\pi(B^2 - x^2)}{4t^{-1}}$$

5. Sebuah meteor terdeteksi memiliki persamaan orbit sebagai berikut.

$$81x^2 - 49y^2 = 3969$$

Berapakah eksentrisitas meteor tersebut?

- a. 0,74
- b. 0,22
- c. 1,63
- d. 1,93
- e. 2,79

Jawaban: C

Bentuk orbit meteor dilihat dari persamaan di soal adalah hiperbola. Kita ubah dahulu ke bentuk asli dari persamaan hiperbola.

Bentuk asli:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Sehingga:

$$81x^{2} - 49y^{2} = 3969 \text{ (: 3969)}$$

$$\frac{x^{2}}{49} - \frac{y^{2}}{81} = 1$$

Untuk mencari eksentrisitas kita dapat menggunakan hubungan sumbu semimayor dengan eksentrisitas itu sendiri.

$$c^{2} = a^{2} + b^{2}$$

$$(ae)^{2} = a^{2} + b^{2}$$

$$e^{2} = 1 + \left(\frac{b}{a}\right)^{2}$$

$$e = \sqrt{1 + \left(\frac{b}{a}\right)^{2}}$$

Dengan a sebagai sumbu semimayor (nilainya 7), b sumbu semiminor (nilainya 9), e eksentrisitas. Masukkan nilai-nilainya dan akan didapat hasil e = 1,63.

- 6. Suatu sumber cahaya ditemukan pada kedalaman h di dalam air. Ketika diamati dari atas permukaan air, terbentuk sebuah lingkaran dengan jari-jari 7 meter. Jika diketaui indeks bias air 1,333 dan indeks bias udara 1,0002926, maka nilai h adalah ...
  - a. 6,166 meter
  - b. 7,328 meter
  - c. 4,711 meter
  - d. 9,887 meter
  - e. 12,524 meter

### Jawaban: A

Soal tersebut dapat diilustrasikan seperti ini.



Sumber cahaya yang di bawah permukaan air dapat membuat lingkaran pada permukaan karena ada sinar yang mencapai sudut kritis saat menuju ke permukaan air tersebut. Sehingga sudut bias ketika sinar tersebut telah keluar ke udara menjadi 90 derajat. Kita dapat menghitung sudut kritis dengan:

$$n \operatorname{air} x \sin i = n \operatorname{udara} x \sin 90^{o}$$
$$i = \arcsin \frac{n \operatorname{udara}}{n \operatorname{air}} = 48,6^{o}$$

Sehingga nilai kedalaman air didapatkan:

$$\tan i = \frac{r}{h}$$

$$h = r (\cot i)$$

$$h = (7 m) (\cot 48,6^{\circ}) = 6,166 meter$$

- 7. Kode kupon hadiah didapatkan oleh Pieck untuk berbelanja teleskop. Kode tersebut berupa bilangan yang disusun dari angka 2, 4, 4, 6, 8. Jika kupon-kupon tersebut disusun berdasarkan kodenya mulai dari yang terkecil sampai yang terbesar, maka kupon dengan kode 64248 berada pada urutan ke ...
  - a. 53
  - b. 40
  - c. 37
  - d. 29
  - e. 18

### Jawaban: B

Semua kemunkinan  $\frac{5!}{2!} = 60$ 

- Kupon dengan bilangan 8xxxx banyaknya  $\frac{4!}{2!} = 12$ 

- Kupon dengan bilangan 68xxx banyaknya  $\frac{3!}{2!} = 3$
- Kupon dengan bilangan 648xx banyaknya 2! = 2
- Kupon dengan bilangan 644xx banyaknya 3 Jadi kupon 64248 berada pada urutan ke 60 - 20 = 40
- 8. Sebuah foto Bulan yang rusak ditemukan oleh Ibnu. Jika panjang alas 8 cm dan hipotenusa foto 17 cm, tentukan jari-jari Bulan yang tampak pada foto tersebut!
  - a. 4,25 cm
  - b. 7,55 cm
  - c. 3,75 cm
  - d. 6,15 cm
  - e. 2,85 cm

# Jawaban: C



- 9. Sebuah satelit geostsioner terlihat mengorit Bumi di ketinggian h seperti pada gambar berikut. Berapakah lintang maksimum/minimum yang masih dapat dipindai oleh satelit?
  - a. 90°
  - b. 81,324°
  - c.  $77,662^{\circ}$
  - d. 65,194°
  - e. 60°

Jawaban: B

Sebenarnya soal ini bisa diselesaikan dengan aturan sinus maupun langsung memanfaatkan perbandingan cosinus. Kali ini saya akan langsung saja menggunakan:

$$\cos \varphi = rac{R \; bumi}{jari - jari \; orbit \; satelit \; Geostasioner}$$

Jari-jari orbit satelit Geostasioner dapat dicari menggunakan hukum Kepler 3, dengan periode revolusi sama dengan rotasi Bumi. Akan didapat hasil sekitar 42.000 km. Maskkan nilai-nilainya pada persamaan di atas akan diperoleh lintang maksimum/minimum yang dapat dipindai satelit adalah sekitar 81,3°.

- 10. Sebuah pesawat ulang-alik diluncurkan dari Bumi untuk menjelajahi tata surya. Di tengah jalan pesawat ini menemukan sebuah bongkah es yang cukup besar dan geraknya searah dengan pesawat. Karena penasaran, 1 jam kemudian pesawat ini berbalik dan bertemu lagi dengan es tadi pada jarak 6 megameter dari titik awal mereka bertemu. Kecepatan pesawat konstan. Maka kecepatan es adalah ...
  - a. 2 Mm/jam
  - b. 3 Mm/jam
  - c. 4 Mm/jam
  - d. 5 Mm/jam
  - e. 6 Mm/jam

Jawaban: B

Perhatikan ilustrasi berikut.



Dari ilustrasi tersebut terlihat bahwa:

$$AC = AB + BC$$

$$v_{AC} \cdot t_{AC} = 6 + v_{BC} \cdot (t_{AB} - t_{AC})$$

$$(v_p + v_e) \cdot 1 = 6 + (v_p - v_e)(AB/v_e - t_{AC})$$

$$(v_p + v_e) = 6 + (v_p - v_e)(6/v_e - 1)$$

$$(v_p + v_e) = 6 + (6v_p/v_e) - v_p - 6 + v_e$$

$$2v_p = 6 v_p/v_e$$

$$V_e = 3 \text{ Mm/jam}$$

Pilihah:

- A. Jika 1, 2, dan 3 benar
- B. Jika 1 dan 3 benar
- C. Jika 2 dan 4 benar
- D. Jika 4 saja benar
- E. Jika semua benar

- 11. Superman sedang berpatroli di derah orbit Mars untuk mengantisipasi invasi alien terhadap planet-planet terestrial. Kemudian tanpa disengaja ia heran sekali melihat Phobos dan Deimos tiba-tiba saling bertumbukan secara lenting sempurna. Pada kejadian itu:
  - (1) Energi kinetik total tetap
  - (2) Timbul panas akibat tumbukan
  - (3) Setelah tumbukan kedua benda berpisah
  - (4) Kecepatan Phobos dan Deimos sama setelah tumbukan

#### Jawaban: B

- 12. Perseid meteor shower is one of the greatest meteor shower that occurs every year. It's a really good event, because we can see that it moves so fast and many other things to notice. Choose the right statements:
  - (1) Occurs between July and August
  - (2) Heating the air when entering the atmosphere
  - (3) Made from a comet named Swift-Tuttle
  - (4) Produce the explosive sound that can be heard from the ground

#### Jawaban: E

#### Pilihah:

- A. Jika pernyataan pertama dan kedua benar serta memiliki hubungan sebab-akibat.
- B. Jika pernyataan pertama dan kedua benar, tetapi tidak memiliki hubungan sebabakibat.
- C. Jika pernyataan pertama benar, sedangan pernyataan kedua salah.
- D. Jika pernyataan pertama salah, sedangan pernyataan kedua benar.
- E. Jika kedua pernyataan salah.
- 13. Penyimpangan akibat aberasi cahaya sebenarnya hanya beraku pada komponen sudut ketinggian.

#### **SEBAB**

Penyimpangan yang ditimbulkan selalu memiliki arah yang sama dengan arah gerak sang pengamat.

### Jawaban: D

Ada faktor selain komponen sudut ketinggian yang mempengaruhi penyimpangan akibat aberasi cahaya, yaitu perbedaan kecepatan rambat cahaya di atmosfer dengan kecepatan rotasi dan revolusi Bumi, sehingga tidak hanya bergantung pada komponen sudut ketinggian.

14. When the Earth is in the perihelion, Northern hemispheres experience winter.

#### **BECAUSE**

The Soutern hemispheres became closer and directly face the Sun.

### Jawaban: B

The seasons isn't the result of Earth's distance from the Sun. Because Earth's distance varies by about only 0,03 AU, and that's not enough to make any difference in the weather. Rather, the seasons are the result of changes in the angle and duration of sunlight across the planet's surface, so it mostly depends on the declination of the Sun.

15. Saat pertama kali terdeteksi, gelombang gravitasi dihasilkan oleh dua lubang hitam masif bermassa sekitar 30 kali massa Matahari bergabung menjadi satu.

#### **SEBAB**

Kedua lubang hitam tersebut mengalami perubahan arah dan kecepatan dari masa ke masa.

### Jawaban: A

Gelombang gravitasi dihasilkan oleh benda bermassa yang mengalami perubahan arah dan kecepatan.

### **ISIAN SINGKAT**

16. Sebuah partikel bermuatan 3,2 x  $10^{-17}$  C bergerak tegak lurus terhadap medan magnetik  $\frac{1}{4}$  Tesla. Jika massa partikel tersebut 2,5 x  $10^{-20}$  kg dan jari-jari lintasannya 7 mikrometer, kecepatan partikel tersebut adalah . . . . . . . . . km/jam.

# Jawaban: $8,064 \times 10^{-3} \text{ km/jam}$

Partikel yang bergerak tegak lurus terhadap medan magnet memiliki bentuk lintasan lingkaran. Sehingga gaya yang berperan sebagai gaya sentripetal adalah gaya Lorentz. Jadi:

$$m\frac{v^2}{r} = Bqv$$

Kecepatan partikel adalah:

$$v = \frac{Bqr}{m}$$

$$v = \frac{(0,25)(3,2x10^{-17})(7x10^{-6})}{(2,5 \times 10^{-20})}$$

$$v = 2,24 \times 10^{-3} \text{ m/s}$$

$$v = 8,064 \times 10^{-3} \text{ km/jam}$$

17. Tekanan atmosfer di permukaan planet Venus adalah 90 atm. Diketahui massa Venus bernilai 0,82 kali massa Bumi dan jejarinya 0,95 jejari Bumi. Apabila atmosfer Venus tersebut dipindahkan ke Mars, maka tekanan atmosfer di Mars akan bernilai sebesar . . . . . . . . atm.

## Jawaban: sekitar 120 atm

Massa atmosfer Venus dapat dihitung dengan:

$$P = \frac{F}{A} = \frac{mgv}{4\pi Rv^2}$$

$$m = \frac{4\pi R v^2 P}{gv}$$

Kemudian kita substitusikan ke persamaan tekanan di Mars.

$$P' = \frac{m \cdot gm}{4\pi (Rm)^2}$$

$$P' = \frac{4\pi Rv^2 P(gm)}{4\pi (Rm)^2 (gv)}$$

$$P' = \left(\frac{Rv}{Rm}\right)^4 \left(\frac{Mm}{Mv}\right) P$$

$$P' \approx 120 \text{ atm}$$

18. Cahaya dengan frekuensi tertentu dijatuhkan pada permukaan logam sehingga fotoelektron dengan energi kinetik maksimum sebesar  $1,6 \times 10^{-19} J$  terlepas darinya. Bila diketahui konstanta Planck adalah  $6,63 \times 10^{-34} Js$  dan fungsi kerja logam tersebut adalah  $4 \times 10^{-19} J$ , maka frekuensi cahaya yang jatuh pada logam tersbut adalah . . . . . . . . Hz.

# Jawaban: 8,45 x 1014 Hz

Besarnya energi kinetik elektron:

$$Ek = hf - Wo$$

Dengan Wo adalah fungsi kerja logam. Maka:

$$f = \frac{(Ek + Wo)}{h}$$

$$f = \frac{(1.6 \times 10^{-19} + 4 \times 10^{-19})}{(6.63 \times 10^{-34})}$$
$$f = 8.45 \times 10^{14} Hz$$

19. Berikut adalah tabel banyaknya lubang itam berdasarkan massanya (dalam massa Matahari).

| Massa (M⊙)     | Jumlah |  |  |
|----------------|--------|--|--|
| 11 M⊙ - 25M⊙   | 3      |  |  |
| 26 M⊙ - 40 M⊙  | 18     |  |  |
| 41 M⊙ - 55 M⊙  | 10     |  |  |
| 56 M⊙ - 70 M⊙  | 7      |  |  |
| 71 M⊙ - 95 M⊙  | 5      |  |  |
| 96 M⊙ - 110 M⊙ | 2      |  |  |

Kuartil bawah dari data tersebut adalah . . . . . . . . .

*Jawaban: 32,375 M*⊙

| Massa (M⊙)     | Jumlah | Fk |
|----------------|--------|----|
| 11 M⊙ - 25M⊙   | 3      | 3  |
| 26 M⊙ - 40 M⊙  | 18     | 21 |
| 41 M⊙ - 55 M⊙  | 10     | 31 |
| 56 M⊙ - 70 M⊙  | 7      | 38 |
| 71 M⊙ - 95 M⊙  | 5      | 43 |
| 96 M⊙ - 110 M⊙ | 2      | 45 |

Jumlah data n = 40 Kuartil bawah (Q1) = nilai data ke -  $\frac{1}{4}$  (n+1) = nilai data ke -  $\frac{1}{4}$  (45+1) = nilai data ke - 11,5

Nilai data ke – 11,5 terletak pada kelas interval 26  $M\odot$  - 40  $M\odot$ .

Tepi bawah (L1) = 26 - 0.5 = 25.5

Jumlah kelas sebelum kuartil bawah (fkks) = 3

Jumlah kelas kuartil bawah (fQ1) = 18

Panjang interval kelas (R) = 40 - 26 + 1 = 15

Nilai kuartil bawah (Q1) 
$$= L1 + \frac{0.25n - fkks}{fQ1} \times R$$

$$Q1 = 25.5 + \frac{(0.25x45) - 3}{18} \times 15$$

$$Q1 = 25.5 + 6.875$$

$$Q1 = 32.375$$

Jadi, kuartil bawah dari data adalah 32,375 *M*⊙.

# Jawaban: JD2458118,666

Agar praktis, kita hitung dahulu Julian Date tanggal 1 Januari 2018 pukul 12.00 UT melalui persamaan:

$$ID = (4712 + 2018) \times 365,25 - 10 - 3 = 2458119,5$$

Kemudian kita dapat menentukan JD di luar 1 Januari dengan:

$$JD' = JD + selisih hari dengan 1 Januari + (selisih jam)/24$$

Selisih hari dengan 1 Januari 2018 = -1 Selisih jam = (23.59 WITA - 8.00) UT - 12.00 UT= 3.59 = 3.9833333333

Substitusikan ke persamaan di atas, didapatkan hasil:

$$JD' = 2458119,5 + (-1) + \frac{3,9833333333}{24}$$
  
 $JD' = 2458118,666$ 

Jadi, Julian Date 31 Desember 2017 pukul 23.59 adalah *JD*2458118,666.

# **DAFTAR KONSTANTA**

| Nama konstanta                          | Simbol      | Harga                                             |
|-----------------------------------------|-------------|---------------------------------------------------|
| Kecepatan cahaya                        | c           | $2{,}99792458 \; \times \; 10^8 \; \mathrm{m/s}$  |
| Konstanta gravitasi                     | G           | $6,\!673\times10^{-11}\;{\rm m}^3/{\rm kg/s}^2$   |
| Konstanta Planck                        | h           | $6{,}6261~	imes~10^{-34}~{ m J~s}$                |
| Konstanta Boltzmann                     | k           | $1{,}3807 \times 10^{-23} \text{ J/K}$            |
| Konstanta kerapatan radiasi             | a           | $7,5659 \times 10^{-16} \text{ J/m}^3/\text{K}^4$ |
| Konstanta Stefan-Boltzmann              | σ           | $5,6705 \times 10^{-8}  \mathrm{W/m^2/K^4}$       |
| Muatan elektron                         | e           | $1,6022~	imes~10^{-19}~{ m C}$                    |
| Massa elektron                          | <i>m</i> e  | $9{,}1094~\times~10^{-31}~{ m kg}$                |
| Massa proton                            | $m_{p}$     | $1{,}6726 \; \times \; 10^{-27} \; \mathrm{kg}$   |
| Massa neutron                           | $m_{n}$     | $1{,}6749  \times  10^{-27} \ kg$                 |
| Massa atom <sub>1</sub> H <sup>1</sup>  | $m_{H}$     | $1{,}6735  \times  10^{-27} \ \mathrm{kg}$        |
| Massa atom <sub>2</sub> He <sup>4</sup> | <i>™</i> He | $6,6465~	imes~10^{-27}~{ m kg}$                   |
| Massa inti <sub>2</sub> He <sup>4</sup> |             | $6{,}6430~	imes~10^{-27}~{ m kg}$                 |
| Konstanta gas                           | R           | 8,3145 J/K/mol                                    |

| Nama besaran                            | Notasi                 | Harga                                              |  |  |
|-----------------------------------------|------------------------|----------------------------------------------------|--|--|
| Satuan astronomi                        | sa                     | $1,49597870 \times 10^{11} \text{ m}$              |  |  |
| Parsek                                  | рс                     | $3,0857~\times~10^{16}~{\rm m}$                    |  |  |
| Tahun cahaya                            | ly                     | $0,9461~\times~10^{16}~{\rm m}$                    |  |  |
| Tahun sideris                           |                        | 365,2564 hari                                      |  |  |
| Tahun tropik                            |                        | 365,2422 hari                                      |  |  |
| Tahun Gregorian                         |                        | 365,2425 hari                                      |  |  |
| Tahun Julian                            |                        | 365,2500 hari                                      |  |  |
| Periode sinodis Bulan (synodic month)   | 29,5306 ha             |                                                    |  |  |
| Periode sideris Bulan (sidereal month)  | 27,3217 ha             |                                                    |  |  |
| Hari Matahari rerata (mean solar day)   |                        | 24 <sup>j</sup> 3 <sup>m</sup> 56 <sup>d</sup> ,56 |  |  |
| Hari sideris rerata (mean sidereal day) |                        | 23 <sup>j</sup> 56 <sup>m</sup> 4 <sup>d</sup> ,09 |  |  |
| Massa Matahari                          | $M_{\odot}$            | $1{,}989~\times~10^{30}~{ m kg}$                   |  |  |
| Jejari Matahari                         | $R_{\odot}$            | $6,96~\times~10^8~\mathrm{m}$                      |  |  |
| Temperatur efektif Matahari             | T <sub>eff,⊙</sub> 578 |                                                    |  |  |
| Luminositas Matahari                    | $L_{\odot}$            | $3.9 \times 10^{26} \text{ W}$                     |  |  |
| Magnitudo semu visual Matahari          | V                      | -26,78                                             |  |  |
| Indeks warna Matahari                   | B-V                    | 0,62                                               |  |  |
|                                         | U - B                  | 0,10                                               |  |  |
| Magnitudo mutlak visual Matahari        | $M_V$                  | 4,79                                               |  |  |
| Magnitudo mutlak biru Matahari          | $M_B$                  | 5,48                                               |  |  |
| Magnitudo mutlak bolometrik Matahari    | $M_{bol}$              | 4,72                                               |  |  |
| Massa Bulan                             | $M_{\mathcal{D}}$      | $7,348 \times 10^{22} \text{ kg}$                  |  |  |
| Jejari Bulan                            | $R_{\mathcal{D}}$      | 1738000 m                                          |  |  |
| Jarak rerata Bumi-Bulan                 |                        | 384399000 m                                        |  |  |
| Konstanta Hubble                        | $H_0$                  | 69,3 km/s/Mpc                                      |  |  |

| Objek     | Massa<br>(kg)         | Jejari<br>ekuatorial<br>(km) | $\mathrm{P}_{rotasi}$                          | P <sub>sideris</sub><br>(hari) | Jarak rerata<br>ke Matahari<br>(10 <sup>8</sup> km) |
|-----------|-----------------------|------------------------------|------------------------------------------------|--------------------------------|-----------------------------------------------------|
| Merkurius | $3,30 \times 10^{23}$ | 2440                         | 58,646 hari                                    | 87,9522                        | 57910                                               |
| Venus     | $4,87 \times 10^{24}$ | 6052                         | 243,019 hari                                   | 244,7018                       | 108200                                              |
| Bumi      | $5,97 \times 10^{24}$ | 6378                         | $_{23}$ j $_{56}$ m $_4$ d $_{,1}$             | 365,2500                       | 149600                                              |
| Mars      | $6,42 \times 10^{23}$ | 3397                         | $_{24}$ j $_{37}$ m $_{22}$ d $_{,6}$          | 686,9257                       | 227940                                              |
| Jupiter   | $1,90 \times 10^{27}$ | 71492                        | <sub>9</sub> j <sub>55</sub> m <sub>30</sub> d | 4330,5866                      | 778330                                              |
| Saturnus  | $5,69 \times 10^{26}$ | 60268                        | $_{10}$ j $_{39}$ m $_{22}$ d                  | 10746,9334                     | 1429400                                             |
| Uranus    | $8,66 \times 10^{25}$ | 25559                        | $_{17}$ j $_{14}$ m $_{24}$ d                  | 30588,5918                     | 2870990                                             |
| Neptunus  | $1,03 \times 10^{26}$ | 24764                        | $_{16}$ j $_{6}$ m $_{36}$ d                   | 59799,8258                     | 4504300                                             |

