UNIVERSITAS NUSA PUTRA SUKABUMI PRODI TEKNIK INFORMATIKA

Team Dosen – Pertemuan ke 4 ORKOM S1 Informatika

Pokok Bahasan

- MemoriSemikonduktorErrorCorrection
- Advanced DRAM Organization

6.1 Memori Semikonduktor

Cincin
Feromagnetik
(dulu)

Semikonduktor (sekarang)

Memori Komupter

Jenis Memory Semikonduktor

Memory Type	Category	Erasure	Write Mechanism	Volatility		
Random-access memory (RAM)	Read-write memory	Electrically, byte- level	Electrically	Volatile		
Read-only memory (ROM)	Read-only	Not possible	Masks	Nonvolatile		
Programmable ROM (PROM)	memory					
Erasable PROM (EPROM)		UV light, chip- level				
Electrically Erasable PROM (EEPROM)	Read-mostly memory	Electrically, byte- level	Electrically			
Flash memory		Electrically, block- level				

6.1.1 RAM (Random Access Memory)

RAM

- Dapat dibaca/ditulis
 - Volatile
- Penyimpanan sementara

Static

- Untuk cache memori
- Lebih cepat
- Lebih mahal
- Nilai o dan 1 disimpan pada gate flip flop

Dynamic

- Untuk main memori
- Lebih lambat
- Lebih padat
- SDRAM & RDRAM
- Terbuat dari cell yang menyimpan data berdasarkan muatan pada kapasitor

Operasi Cell Memori / Organisasi

Figure 5.1 Memory Cell Operation

- Sel memori merupakan elemen dasar memori semikonduktor.
- Semua sel memori memiliki sifat-sifat yang sama, walaupun menggunakan teknologi berbeda, yaitu :
 - Menunjukan 2 angka untuk mewakili biner 1 dan o
 - Mampu untuk menuliskan data, dan
 - Mampu untuk membaca data.

Operasi Cell Memori

- Sel memori memiliki 3 terminal yang berfungsi untuk menyalurkan sinyal elektronik.
- Terminal "SELECT" berfungsi untuk memilih sel memori untuk operasi "READ"/"WRITE".
- Terminal "CONTROL" berfungsi untuk menunjukkan operasi "READ"/"WRITE".
 - Untuk "READ" : terminal memberikan sinyal listrik yang mengubah keadaan sel menjadi 1 atau o.
 - Untuk "WRITE" : terminal memberikan output dari keadaan sel tersebut.

6.1.1.1 Dynamic RAM

- Bit bit disimpan sebagai muatan dalam
- kapasitor Muatan mudah bocor
- Perlu sering di refresh/Need refreshing even when powered
- Simpler construction/konstruksi lebih
- mudah Smaller per bit
- Less expensive/lebih
- murah Slower/lambat
- Digunakan sebagai Main
- memory Esensi analogi
 - Nilai dari muatan pada kapasitor dideterminasikan sebuah biner 1 atau o

Dynamic RAM Structure & Operation

- Address line active when bit read or written
 - Transistor switch closed (current flows)
- Write
 - Voltage to bit line
 - High for 1 low for o
 - Then signal address line
 - Transfers charge to capacitor
 - Read
 - Address line selected
 - transistor turns on
 - Charge from capacitor fed via bit line to sense amplifier
 - Compares with reference value to determine o or 1
 - Capacitor charge must be restored

6.1.1.2 Static RAM

- Bit disimpan sebagai switch on/off
- Muatan tidak mudah bocor
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Digunakan sebagai cache memory
- Digital
- Uses flip-flops
 SRAM akan menyimpan data selama ada arus listrik yang di salurkan.

Static RAM Structure & Operation

- Transistor arrangement gives stable logic state
- State 1
 - C₁ high, C₂ low
 - $T_1 T_4$ off, $T_2 T_3$ on
- State o
 - C₂ high, C₁ low
 - $T_2 T_3 \text{ off, } T_1 T_4 \text{ on}$
- Address line transistors T₅ T₆ is switch
- Write apply value to B & compliment to B
- Read value is on line B

SRAM v DRAM

- Both volatile
 - Power needed to preserve data
- Dynamic
 - Simpler to build, smaller
 - More dense
 - Less

expensive Nee

ds refresh

- Larger memory units
- Static
 - Faster

Cache

6.1.2 ROM (Read Only Memory)

6.1.2.1 Programmable ROM (PROM)

- ROM ini hanya dapat dibaca datanya.
- Informasi diisi kedalam Chip pada saat pembuatan oleh Pabrik.
- PROM ini datanya tersimpan secara permanen dan tidak dapat dihapus atau ditulis ulang.
- PROM termasuk memori non-volatile, yaitu data tidak akan hilang ketika komputer kita matikan/ tidak mendapat daya listrik.

6.1.2.2 Erasable Programmable ROM (EPROM)

- chip EPROM dapat dihapus atau ditulis ulang memggunakan paparan sinar Ultra Violet.
- Untuk melakukan ini diperlukan peralatan khusus.
- EPROM termasuk memori non-volatile, sama dengan PROM, yaitu data tidak akan hilang ketika komputer kita matikan/ tidak mendapat daya listrik.

6.1.2.3 Electrically Erasable Programmable ROM (EEPROM)

- Bersifat read-mostly.
- Bisa memasukan data kapanpun tanpa harus menghapus data yang sudah tersimpan sebelumnya.
- EEPROM menggabungkan keunggulan dari ciri non-volatilenya dengan fleksibilitasnya untuk di update.
- EEPROM lebih mahal dan lebih padat dari EPROM.

6.1.2.4 Flash Memory

- Seperti EEPROM, flash memory menggunakan sistem penghapusan elektrik.
- Seluruh isi flash memory bisa dihapus dalam hitungan detik, lebih cepat dibandingkan dengan EPROM.
- Flash memory memungkinkan untuk menghapus hanya sebagian dan tidak seluruh isi chip.
- Flash memory menggunakan satu transistor/bit.

Refreshing

- Refresh circuit included on
- chip Disable chip
- Count through
- rows Read & Write
- back Takes time
- Slows down apparent performance

6.2 Error Correction

- Memory semiconduktor rentan terhadap error
- Jenis Error pada memory semikonduktor
 - Hard Error
 - Error yang disebabkan oleh kerusakan permanent memory secara fisik yang menyebabkan cell tidak mampu menyimpan data dengan benar.
 - Soft Error
 - Error yang bersifat acak dan hanya menyebabkan kerusakan konten yang disimpan dalam cell.
- Butuh rangkaian logika untuk error detecting dan error correction.

Proses Deteksi Error

- Proses Penulisan Data :
 - perhitungan dilakukan terhadap data yang akan disimpan dengan menggunakan sebuah fungsi yang akan menghasilkan sebuah code.
 - Data dan code hasil perhitungan tersebut disimpan pada memory.
- Proses pembacaan data:
 - Data yang dihasilkan tersebut dibandingkan dengan data yang tersimpan yang akan menghasilkan 3 kemungkinan :
 - Tidak ada error.
 - Ada error, tapi data bisa direcovery
 - Ada error, tapi data tidak bisa direcovery(diselamatkan)
- Metode error correction sederhana yang digunakan adalah metode Hamming Code ditemukan oleh Richard Hamming dari Bell Laboratories.

Hamming Code

- Prinsip hamming code digunakan dalam proses deteksi dan koreksi error di memory komputer.
- Bit code yang digunakan disebut juga dengan nama check bit.
- Check bit digunakan menghasilkan syndrome error yang dapat menentukan lokasi error

Jumlah bit yang dibutuhkan untuk check bit error dapat dilihat pada tabel dibawah ini

Data Bits	Single-Erro	r Correction	Single-Error Correction/ Double-Error Detection		
	Check Bits	% Increase	Check Bits	% Increase	
8	4	50	5	62.5	
16	5	31.25	6	37.5	
32	6	18.75	7	21.875	
64	7	10.94	8	12.5	
128	8	6.25	9	7.03	
256	9	3.52	10	3.91	

- Untuk mencapai karakteristik ini, data dan check bit disusun berdasarkan 12 posisi seperti tabel.
- Check bit diletakkan pada posisi dimana hanya ada 1 buah bit 1 pada nilai binary posisi tersebut.
 - Misalnya check bit kedua (C2) diletakkan pada posisi 2 (2 = 0010 → hanya ada 1 bit 1 yaitu pada bit ke-2).
 - Posisi sangat menentukan dalam proses penghitungan check bit

 $C1 = D1 \oplus D2 \oplus D4 \oplus D5 \oplus D7$

 $C2 = D1 \oplus D3 \oplus D4 \oplus D6 \oplus D7$

C3 = D2 ⊕ D3 ⊕ D4 ⊕ D8

 $C4 = D5 \oplus D6 \oplus D7 \oplus D8$

Bit Position	12	11	10	9	8	7	6	5	4	3	2	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data Bit	D8	D7	D6	D5		D4	D3	D2		DI		
Check Bit					C8				C4		C2	CI

Penggunaan Check Bit

- Check bit dihitung dan disimpan bersamaan dengan proses penyimpanan data.
- Pada saat data dibaca, check bit dihitung lagi dengan menggunakan persamaan diatas dan kemudian dibandingkan dengan check bit yang tersimpan dengan menggunakan logika EXCLUSIVE OR.
- Hasil perbandingan disebut sebagai syndrome
- Karakteristik syndrome :
 - Jika semua bit syndrome error adalah
 - oTidak ada error

Jika syndrome error memiliki 1 dan hanya 1 bit 1,

- Ada error pada check bit
- Tidak diperlukan koreksi.
- Jika syndrome error memiliki lebih dari 1 bit 1
- ada error pada data
- nilai dari syndrome error menunjukkan lokasi bit yang mengalami error

5.1.4 Chip Logic

- Memori semikonduktor dibuat dalam chip yang tersusun rapih, seperti pada gambar sebelumnya.
- Memori semikonduktor berbentuk chip yang terkemas. Masing-masing keping berisi array sel memori.
- Untuk memori semikonduktor, salah satu masalahnya adalah jumlah bit data yang bisa di baca/tulis ke dalamnya hanya satu dalam satu waktu.
- Susunan fisik dari sel didalam array sama seperti susunan logika kata di memori.

Chip Packaging

- Merupakan lapisan luar pembentuk fisik dari masing-masing memory chip.
- Yang paling sering digunakan adalahTSOP (Thin Small Outline Package).
- Pada RDRAM menggunakan CSP (Chip Scale Package).
- Beberapa chip untuk modul memory terdahulu menggunakan DIP (Dual In-Line Package) dan SOJ (Small Outline J-lead).

- Gambar di slide selanjutnya menampilkan contoh packaging EPROM, yang merupakan chip 8-Mbit.
- Setiap pin mengikuti garis sinyal :
 - Ao-A19 : alamat dari kata yang sedang

diakses. Do-D7: data yang akan dibaca, terdiri dari 8

baris.

Vcc : power suply ke dalam chip.

Vss: pin ground.

CE : Chip enable pin.

Vpp : program voltase yang disuplai selama programming.

Packaging

(a) 8 Mbit EPROM

(b) 16 Mbit DRAM

Typical Memory Package Pins and Signals

Interleaved Memory

- Memory utama terdiri dari kumpulan chip memory DRAM.
- Sekumpulan chip dapat dikelompokan menjadi memory
- Bank memory secara independen melaksanakan permintaan membaca/menulis.
- X bank bisa memproses X permintaan secara berkelanjutan, meningkatkan rataan memory untuk membaca/menulis dari faktor X.

Pertanyaan

- Apa yang dimaksud DRAM lebih padat dari SRAM?
 - Karena ukuran sel selnya lebih rapat
- SRAM lebih cepat digunakan sebagai saat apa?
 - SRAM digunakan sebagai chace memory
- Apa perbedaan RAM dan SRAM dalam segi kemampuannya?
 - RAM dan SRAM tidak ada perbedaannya karena SRAM adalah salah satu jenis dari RAM itu sendiri

Jawaban

- Apa yang dimaksud array sel?
 - Array (larik) merupakan tipe data tersetruktur dimana didalamnya terdiri dari komponen komponen yang mempunyai tipe data yang sama.
- Bagaimana cara kerja terminal
- elektronik? Terminal "SELECT" berfungsi untuk memilih sel "READ"/"WRITE". memori untuk operasi
 - Ternimal "CONTROL" berfungsi untuk menunjukkan operasi "READ"/"WRITE".
 - Untuk "READ": terminal memberikan sinyal listrik yang mengubah keadaan sel menjadi 1 atau o.
 - Untuk "WRITE": terminal memberikan output dari keadaan sel tersebut.