YILDIZ TEKNİK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK FAKÜLTESİ / BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Dersin Adı: BLM2512 Veri Yapıları ve Algoritmalar	Tarih/Saat: 24.03.2021 – 12:15 – 13:00			Sınav süresi: 45 dakika	
Sınav Türü:	Kısa Sınav √	Vize	Mazeret	Final	Bütünleme
Ders Yürütücüsü Unvan Ad-Soyad:					
Doç. Dr. M. Elif KARSLIGİL - Dr. Öğretim Üyesi Göksel Biricik - Dr. Öğr. Üyesi M. Amaç GÜVENSAN					

- VERİLEN SÜRE DOSYA YÜKLEME İŞLEMLERİNİ DE KAPSAMAKTADIR.
- E-POSTA ile GÖNDERİLEN CEVAPLAR KESİNLİKLE DEĞERLENDİRİLMEYECEKTİR.
- DOSYA FORMATINA ve İSİMLENDİRME KURALLARINA UYULMADIĞI TAKDİRDE SORU PUANIN YARISI ÜZERİNDEN DEĞERLENDİRECEKTİR:
- Bu kısımda **OgrenciNo.c** içeren OgrenciNo.zip dosyasını yükleyiniz.
- 1. Bir resim, NxM'lik bir matriste resmi oluşturan renkler 0-K-1 arasında sayılarla gösterilerek saklanıyor. Bu resimde her rengin kaç defa kullanıldığının hesaplanması (histogram) isteniyor.
 - Resimde kullanılan renkleri ve kullanım sıklıklarını bir matrise yerleştiren ve resimde kaç farklı renk olduğunu bulan algoritmanın C dilinde kodunu yazınız. (80 Puan)
 - Tasarladığınız algoritmanın hem en iyi durum hem de en kötü durum için zaman ve yer karmaşıklığını Big-Oh notasyonunu kullanarak ifade ediniz. Cevabınızı .c uzantılı dosyanın başlangıcına YORUM SATIRI olarak ekleyiniz (20 Puan)
- **Not 1:** Gömülü bir sistem üzerinde çalışacak algoritmanızın kısıtlı bir bellek üzerinde çalışacağı göz önünde bulundurulmalıdır. Bu doğrultuda bellek karmaşıklığı diğer çözümlere göre düşük olacak bir çözüm üretilmelidir.

Not 2: Resimdeki farklı renk sayısının en çok K/3 (bir başka ifade ile renkSayısı <=K/3) olabileceği varsayılmalıdır.

Örnek:

Input: resim N:3 M:3 K:256 (0-255)

0	255	128
0	255	255
0	1	100

Output:

Farklı Renk Sayısı: 5

renk	0	255	128	1	100
adet	3	3	1	1	1