Hugo Marquerie March 2, 2025

Integral

Definición 1 (Integral de fn simple). Sea $\varphi \colon X \longrightarrow \mathbb{R}$ una fn simple en un espacio de medida $(X, \Sigma, \mu), I \in \mathbb{R}$ es la integral de φ respecto de μ en $E \in \Sigma$

$$\iff I = \int_{E} \varphi \, d\mu := \sum_{i=1}^{n} a_{i} \mu(E_{i}) \quad \text{donde} \quad \varphi = \sum_{i=1}^{n} a_{i} \mathbb{1}_{E_{i}}$$

Definición 2 (Integral de fn no negativa). Sea $f: X \longrightarrow \mathbb{R}$ una fn medible no negativa en un espacio de medida $(X, \Sigma, \mu), I \in \mathbb{R}$ es la integral de f respecto de μ en $E \in \Sigma$

$$\iff I = \int_E f \, \mathrm{d}\mu := \sup \left\{ \int_E \varphi \, \mathrm{d}\mu : \varphi \text{ simple } \wedge 0 \le \varphi \le f \right\}$$

Definición 3 (Integral). Sea $f: X \longrightarrow \mathbb{R}$ una función medible en un espacio de medida $(X, \Sigma, \mu), I \in \mathbb{R}$ es la integral de f respecto de μ en $E \in \Sigma$

$$\iff I = \int_{E} f \, \mathrm{d}\mu := \int_{E} f^{+} \, \mathrm{d}\mu - \int_{E} f^{-} \, \mathrm{d}\mu \quad \text{donde} \quad f^{+} = \max\{f, 0\} \land f^{-} = \max\{-f, 0\}$$