Project: Investigate a Dataset - [No Show Appointments]

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

Dataset Description

In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

Question(s) for Analysis

- **q1** which country has the highest growing population?
- **q2** which content has the largest growing population?
- q3 Is there any countries with a decreaase in population?

```
In [86]: # importing important libararies

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Data Wrangling

The next step after defining our questions would be **Data Wrangling**, in which we will perform three main steps, first we will load the data to our workspace, then we will proceed to assing the data and making sure that the quality and structure of it is right, finally we will clean our data as we enter the explore phase

```
In [2]: # Loading data
world_data = pd.read_csv('world_population.csv')
```

In [3]:

world_data.head()

_				-	
\cap	1.1	+	1 2	? [
U	u	L) I	

	Rank	CCA3	Country	Capital	Continent	2022 Population	2020 Population	2015 Population	2010 Population	2000 Population	Popul
0	36	AFG	Afghanistan	Kabul	Asia	41128771	38972230	33753499	28189672	19542982	1069
1	138	ALB	Albania	Tirana	Europe	2842321	2866849	2882481	2913399	3182021	329
2	34	DZA	Algeria	Algiers	Africa	44903225	43451666	39543154	35856344	30774621	255 ⁻
3	213	ASM	American Samoa	Pago Pago	Oceania	44273	46189	51368	54849	58230	2
4	203	AND	Andorra	Andorra la Vella	Europe	79824	77700	71746	71519	66097	Į.

First five rows of the dataset, just for visualization purpose

In [4]:

world data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 234 entries, 0 to 233
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Rank	234 non-null	int64
1	CCA3	234 non-null	object
2	Country	234 non-null	object
3	Capital	234 non-null	object
4	Continent	234 non-null	object
5	2022 Population	234 non-null	int64
6	2020 Population	234 non-null	int64
7	2015 Population	234 non-null	int64
8	2010 Population	234 non-null	int64
9	2000 Population	234 non-null	int64
10	1990 Population	234 non-null	int64
11	1980 Population	234 non-null	int64
12	1970 Population	234 non-null	int64
13	Area (km²)	234 non-null	int64
14	Density (per km²)	234 non-null	float64
15	Growth Rate	234 non-null	float64
16	World Population Percentage	234 non-null	float64
dtvp	es: float64(3), int64(10), ob	ject(4)	

dtypes: float64(3), int64(10), object(4)

memory usage: 31.2+ KB

In [5]:

world data.describe()

Out[5]:

	Rank	2022 Population	2020 Population	2015 Population	2010 Population	2000 Population	1990 Population	19 Populat
count	234.000000	2.340000e+02	2.340000e+02	2.340000e+02	2.340000e+02	2.340000e+02	2.340000e+02	2.340000e-
mean	117.500000	3.407441e+07	3.350107e+07	3.172996e+07	2.984524e+07	2.626947e+07	2.271022e+07	1.898462e-
std	67.694165	1.367664e+08	1.355899e+08	1.304050e+08	1.242185e+08	1.116982e+08	9.783217e+07	8.178519e-
min	1.000000	5.100000e+02	5.200000e+02	5.640000e+02	5.960000e+02	6.510000e+02	7.000000e+02	7.330000e-

	Rank	2022 Population	2020 Population	2015 Population	2010 Population	2000 Population	1990 Population	19 Populat
25%	59.250000	4.197385e+05	4.152845e+05	4.046760e+05	3.931490e+05	3.272420e+05	2.641158e+05	2.296142e-
50%	117.500000	5.559944e+06	5.493074e+06	5.307400e+06	4.942770e+06	4.292907e+06	3.825410e+06	3.141146e-
75%	175.750000	2.247650e+07	2.144798e+07	1.973085e+07	1.915957e+07	1.576230e+07	1.186923e+07	9.826054e-
max	234.000000	1.425887e+09	1.424930e+09	1.393715e+09	1.348191e+09	1.264099e+09	1.153704e+09	9.823725e-

we can see that the average population doubled from 1970 to 2022

we can see that the data does not need cleaning so we will go to the visualizations

Exploratory Data Analysis

Research Question 1 (which country has the highest growing population?)

```
In [6]: #first we have to find the top five countries with growth rate from 1970 to
    2022
    world_data['growth_rate']=((world_data['2022 Population'] - world_data['1970
    Population'])/world_data['1970 Population'])
    top5=world_data[["Country", "growth_rate"]]
    top5.sort_values(by='growth_rate', ascending=False).head()
```

```
Out[6]:
                              Country growth_rate
          219
                   United Arab Emirates
                                           30.672713
           167
                                           21.838662
                                 Oatar
           130
                                            8.216319
                               Mayotte
          215 Turks and Caicos Islands
                                            7.067608
                                            6.763241
            52
                               Djibouti
```

now we know our top 5 country with growth rate let's plot them over the years

```
In [8]: [top5_table.set_index('Country',inplace=True)
```

```
In [30]: top5=top5_table.T.iloc[::-1]
```

```
base valueE=top5['United Arab Emirates'].min()
base valueD=top5['Djibouti'].min()
 base valueM=top5['Mayotte'].min()
 base valueQ=top5['Qatar'].min()
 base valueT=top5['Turks and Caicos Islands'].min()
 top5["United Arab Emirates' growth"]=0
 top5["Djibouti's growth"]=0
 top5["Mayotte's growth"]=0
 top5["Qatar's growth"]=0
 top5["Turks and Caicos Islands'growth"]=0
 for i,v in enumerate(top5['United Arab Emirates']):
     top5["United Arab Emirates' growth"][[i]]= (v-base valueE)/base valueE
 for i, v in enumerate(top5['Djibouti']):
     top5["Djibouti's growth"][[i]]= (v-base_valueD)/base_valueD
 for i,v in enumerate(top5['Mayotte']):
     top5["Mayotte's growth"][[i]]= (v-base valueM)/base valueM
 for i, v in enumerate(top5['Qatar']):
     top5["Qatar's growth"][[i]]= (v-base valueQ)/base valueQ
 for i,v in enumerate(top5['Turks and Caicos Islands']):
     top5["Turks and Caicos Islands'growth"][[i]] = (v-base valueT)/base valueT
 top5.drop(["United Arab Emirates", "Djibouti", "Mayotte", "Qatar", "Turks and
 Caicos Islands"], axis=1, inplace=True)
C:\Users\fahda\AppData\Local\Temp\ipykernel 13192\3918971349.py:17: SettingWithCopyWarnin
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user gu
ide/indexing.html#returning-a-view-versus-a-copy
  top5["Djibouti's growth"][[i]]= (v-base valueD)/base valueD
C:\Users\fahda\AppData\Local\Temp\ipykernel 13192\3918971349.py:19: SettingWithCopyWarnin
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user gu
ide/indexing.html#returning-a-view-versus-a-copy
  top5["Mayotte's growth"][[i]]= (v-base valueM)/base valueM
C:\Users\fahda\AppData\Local\Temp\ipykernel 13192\3918971349.py:21: SettingWithCopyWarnin
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user gu
ide/indexing.html#returning-a-view-versus-a-copy
  top5["Qatar's growth"][[i]]= (v-base valueQ)/base valueQ
C:\Users\fahda\AppData\Local\Temp\ipykernel 13192\3918971349.py:23: SettingWithCopyWarnin
```

A value is trying to be set on a copy of a slice from a DataFrame

#calculate growth rate to 1970 for each country

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_gu ide/indexing.html#returning-a-view-versus-a-copy top5["Turks and Caicos Islands'growth"][[i]]= (v-base valueT)/base valueT

we can see that **UAE** and **Qatar** have the highest percentages in population growth

Research Question 2 (which content has the largest growing population?)

So Asia is leading in the population race but what about the growth in the past decades

```
In [84]:
        continents =continents.T
        #calculating growth rate for each continent
        base valueAf=continents['Africa'].min()
        base valueAs=continents['Asia'].min()
        base valueE=continents['Europe'].min()
        base_valueNa=continents['North America'].min()
        base valueSa=continents['South America'].min()
        base valueO=continents['Oceania'].min()
        continents["Africa's growth"]=0
        continents["Asia's growth"]=0
        continents["Europe's growth"]=0
        continents["North America's growth"]=0
        continents["South America's growth"]=0
        continents["Oceania's growth"]=0
        for i, v in enumerate(continents['Africa']):
            continents["Africa's growth"][[i]]= (v-base valueAf)/base valueAf
        for i, v in enumerate(continents['Asia']):
            continents["Asia's growth"][[i]]= (v-base valueAs)/base valueAs
        for i, v in enumerate(continents['Europe']):
             continents["Europe's growth"][[i]]= (v-base valueE)/base valueE
```

```
for i, v in enumerate(continents['North America']):
    continents["North America's growth"][[i]]= (v-base_valueNa)/base_valueNa

for i, v in enumerate(continents['South America']):
    continents["South America's growth"][[i]]= (v-base_valueSa)/base_valueSa

for i, v in enumerate(continents['Oceania']):
    continents["Oceania's growth"][[i]]= (v-base_valueO)/base_valueO

continents.drop(["Africa", "Asia", "Europe", "North America", "South

America", "Oceania"], axis=1, inplace=True)
continents
```

C:\Users\fahda\AppData\Local\Temp\ipykernel 13192\982271450.py:21: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

continents["Asia's growth"][[i]]= (v-base valueAs)/base valueAs

 $\verb|C:\Users\\fahda\\AppData\\Local\\Temp\\ipykernel_13192\\982271450.py:23: SettingWithCopyWarning: \\ |Simple States | Simple Stat$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

continents["Europe's growth"][[i]]= (v-base valueE)/base valueE

C:\Users\fahda\AppData\Local\Temp\ipykernel 13192\982271450.py:25: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

continents["North America's growth"][[i]]= (v-base valueNa)/base valueNa

C:\Users\fahda\AppData\Local\Temp\ipykernel 13192\982271450.py:27: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

continents["South America's growth"][[i]]= (v-base valueSa)/base valueSa

C:\Users\fahda\AppData\Local\Temp\ipykernel 13192\982271450.py:29: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

continents["Oceania's growth"][[i]]= (v-base valueO)/base valueO

Out[84]:

Continent	Africa's growth	Asia's growth	Europe's growth	North America's growth	South America's growth	Oceania's growth
1970 Population	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1980 Population	0.317674	0.228648	0.055804	0.167574	0.253136	0.176587
1990 Population	0.746232	0.496832	0.098177	0.335511	0.540040	0.372867

Continent	Africa's growth	Asia's growth	Europe's growth	North America's growth	South America's growth	Oceania's growth
2000 Population	1.240960	0.741377	0.106978	0.540952	0.812073	0.602790
2010 Population	1.887521	0.967471	0.121493	0.720549	1.037233	0.904633
2015 Population	2.286690	1.078529	0.130521	0.808248	1.141179	1.074062
2020 Population	2.723335	1.174028	0.137010	0.883866	1.236519	1.255278
2022 Population	2.904099	1.201207	0.132978	0.903076	1.263918	1.312009

```
In [85]: plt.figure(figsize=(8, 6));
    sns.lineplot(data=continents)
    plt.xticks(rotation=45);
    plt.ylabel('Growth percentage');
    plt.title('Top 5 growth percentage from 1970 per continent');
```


The growth rate of Africa is tremendous, it is more that the doub;e of each continent, we can see that Oceania exceeded South america in the past decade While Europe is nearlly zero

Research Question 3 (Is there any countries with a decreaase in population?)

```
top5decrease=top5decrease.sort_values('growth_rate').head()
plt.figure(figsize=(8, 6));
sns.barplot(data = top5decrease, x='Country', y='growth_rate');
plt.title('Top 5 countries in declining population from 1970 ');
```


we see that there is countries that has had a decrease in their populations from the 1970s

Conclusions

In this report we found out which contries has the highest growth and which countinents has the highest growth also which countries is decreasing their population states

Although that Asia has the highest population and has the highest population growth in countries but Africa has the highest population growth as a continent

Limitations

Tip: we need more data on what is the main factors behind a population growth, or what drives people out of a country to figure out what caused these conclusion to occur

Tn l	٦.	\perp	
T11	.] •	ш	
		ш	
		١,٠	