Sommersemester 2015 Übungsblatt 4 4. Mai 2015

Theoretische Informatik

Abgabetermin: 11. Mai 2015, 13 Uhr in die THEO Briefkästen

Hausaufgabe 1 (5 Punkte)

Sei $\Sigma = \{a, b\}$. Für beliebige Sprachen $R, L \subseteq \Sigma^*$ ist der Rechtsquotient R/L definiert durch

$$R/L := \{ x \in \Sigma^* ; (\exists y \in L) [xy \in R] \}.$$

Hinweis: Wenden Sie im Folgenden wenn möglich bekannte Sätze an.

- 1. Seien $R \subseteq \Sigma^*$ und $R_{-2} = \{x \in \Sigma^* ; (\exists y \in \Sigma^*)[|y| = 2 \land xy \in R] \}$. Man zeige: Falls R regulär ist, dann ist auch R_{-2} regulär.
- 2. Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein deterministischer endlicher Automat, der die Sprache R:=L(A) akzeptiert.
 - Beschreiben Sie explizit, ausgehend von A, einen DFA oder NFA $A' = (Q', \Sigma, \delta', q'_0, F')$, der R_{-2} akzeptiert.
- 3. Seien $L\subseteq \Sigma^*$ beliebig und $R\subseteq \Sigma^*$ regulär. Zeigen Sie die Entscheidbarkeit von R/L.

Hausaufgabe 2 (5 Punkte)

Beantworten Sie kurz die folgenden Fragen und begünden Sie Ihre Antwort:

- 1. Gibt es endliche, nicht kontextfreie Sprachen?
- 2. Ist die Sprache $\{a^mb^n \mid m < n\}$ kontextfrei?
- 3. Welche endliche Sprache beschreibt die Grammatik mit den Produktionen $S \to aS \mid bB$ und $B \to bBb$?
- 4. Wie viele DFA mit Zustandsmenge $\{a\}$ und Eingabealphabet $\{0\}$ gibt es?
- 5. Wie viele NFA mit Zustandsmenge $\{a\}$ und Eingabealphabet $\{0\}$ gibt es?

Hausaufgabe 3 (5 Punkte)

Die Sprache L über dem Alphabet $\Sigma = \{a, b, c\}$ bestehe aus allen Wörtern w, so dass jedes Zeichen b und c höchstens zwischen den Zeichen a auftritt. (D. h. $acababa \in L, acbaba \notin L$.)

- 1. Geben Sie einen NFA A an, der L akzeptiert.
- 2. Nun sei $N = (Q, \Sigma, \delta, \{q_0\}, F)$ ein beliebiger NFA über $\Sigma = \{a, b, c\}$. Wir definieren L'(N) als Menge aller Wörter, die man erhält, wenn man in einem Wort aus L(N) alle Vorkommen von a durch das leere Wort ϵ ersetzt und die übrigen Buchstaben unverändert lässt.

Konstruieren Sie einen NFA N', so dass L(N') = L'(N) gilt.

3. Verifizieren Sie Ihre Konstruktion, indem Sie zu A den entsprechenden Automat A' berechnen und dann möglichst vereinfachen.

Hausaufgabe 4 (5 Punkte)

Wir betrachten die Sprache L aller Wörter über dem Alphabet $\Sigma = \{0, 1\}$, die mit 00 beginnen, wenn sie mit 00 enden, und mit 11 beginnen, wenn sie mit 11 enden. Geben Sie einen deterministischen endlichen Automat an, der L akzeptiert.

Hinweis: Beachten Sie, dass L z. B. das Wort 0001 enthält.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Gegeben sei die Sprache $L=\{a^n\mid n=2^k, k\in\mathbb{N}\}$. Zeigen Sie, dass L nicht regulär ist.

Vorbereitung 2

Sei $\Sigma = \{a, b\}$. Der Automat M sei durch das folgende Diagramm gegeben. Zeigen Sie $q_3 \not\equiv_M q_4$ und $q_3 \equiv_M q_6$.

Vorbereitung 3

Wir nennen eine Phrasenstrukturgrammatik $G=(V,\Sigma,P,S)$ nullierbar kontextfrei, wenn alle Regeln aus P die Form $A \to \alpha$ mit $A \in V$, $\alpha \in \Gamma^*$ und $\Gamma = V \cup \Sigma$ besitzen. Γ^* heißt Menge der Satzformen über dem Vokabular Γ . Sei G eine nullierbar kontextfreie Grammatik.

1. Man zeige für alle $u,v,w\in\Gamma^*$ die Zerlegungseigenschaft

$$uv \underset{G}{\longrightarrow} w \quad \Longrightarrow \quad (\exists \, u', v' \in \Gamma^*)[\, u \underset{G}{\longrightarrow}^* \, u' \, \wedge \, v \underset{G}{\longrightarrow}^* \, v' \, \wedge \, u'v' = w \,] \,.$$

2. Es gilt für alle $u, v \in \Gamma^*$, $a \in \Sigma$ und $n \in \mathbb{N}_0$

$$uv \xrightarrow[G]{}^* a^n \implies (\exists p, q \in \mathbb{N}_0)[p + q = n \land u \xrightarrow[G]{}^* a^p \land v \xrightarrow[G]{}^* a^q].$$

Vorbereitung 4

Welche Symbole einer durch die folgenden Produktionen gegebenen Grammatik sind erzeugend, welche erreichbar, und welche nützlich?

Tutoraufgabe 1

- 1. Sei $\Sigma = \{a, b, c, d, e\}$. Zeigen Sie, dass die Sprache $L = \{ab^{2i}cd^ie \, ; \, i \in \mathbb{N}\}$ nicht regulär ist.
- 2. Sei $\Sigma = \{1\}$. Zeigen Sie, dass die Sprache $P = \{1^p; p \text{ prim}\}$ nicht regulär ist.

Tutoraufgabe 2 (Induzierte Äquivalenz)

Sei $R = L(a^*b^*)$. Zeigen oder widerlegen Sie die folgenden Äquivalenzbeziehungen:

$$aa \equiv_R \epsilon$$
, $ab \equiv_R aa$, $aba \equiv_R abba$, $aba \equiv_R \epsilon$.

Tutoraufgabe 3 (Quotientenautomat)

Wir betrachten den folgenden deterministischen Automat mit Alphabet $\{a, b\}$.

Verwenden Sie das in der Vorlesung vorgestellte Verfahren, um diesen Automat zu minimieren. Gehen Sie dabei wie folgt vor:

- 1. Stellen Sie die Tabelle aus der Vorlesung auf und geben Sie zu jedem unterscheidbaren Paar von Zuständen an, mit welchem Zeichen (oder ϵ) sie unterschieden werden können.
- 2. Verwenden Sie die aufgestellte Tabelle, um den Quotientenautomat zu konstruieren.

Tutoraufgabe 4 (CNF)

Wandeln Sie die durch folgende Produktionen gegebene Grammatik mit Startsymbol S in Chomsky-Normalform um: