DSC 1408 Representation Learning

Lecture 04 | Part 1

Matrices

Matrices?

► I thought this week was supposed to be about linear algebra... Where are the matrices?

Matrices?

- I thought this week was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Recall: Linear Transformations

- A **transformation** $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- ightharpoonup A transformation \vec{f} is **linear** if

$$\vec{f}(\alpha \vec{u} + \beta \vec{v}) = \alpha \vec{f}(\vec{u}) + \beta \vec{f}(\vec{v})$$

Recall: Linear Transformations

- **Key** consequence of **linearity**: to compute $\vec{f}(\vec{x})$, only need to know what \vec{f} does to basis vectors.
- Example:

$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$$

$$\vec{f}(\vec{x}) =$$

Matrices

- ▶ **Idea**: Since \vec{f} is defined by what it does to basis, place $\vec{f}(\hat{e}^{(1)})$, $\vec{f}(\hat{e}^{(2)})$, ... into a table as columns
- ► This is the matrix representing \vec{f}

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)} = \begin{pmatrix} -1\\3 \end{pmatrix}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)} = \begin{pmatrix} 2\\0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2\\3 & 0 \end{pmatrix}$$

¹with respect to the standard basis $\hat{e}^{(1)}$, $\hat{e}^{(2)}$

Exercise

Write the matrix representing \vec{f} with respect to the standard basis, given:

$$\vec{f}(\hat{e}^{(1)}) = (1, 4, 7)^{\mathsf{T}}$$

$$\vec{f}(\hat{e}^{(2)}) = (2, 5, 7)^{\mathsf{T}}$$

$$\vec{f}(\hat{e}^{(3)}) = (3, 6, 9)^{\mathsf{T}}$$

Exercise

Suppose \vec{f} has the matrix below:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Let $\vec{x} = (-2, 1, 3)^T$. What is $\vec{f}(\vec{x})$?

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$.

What is matrix multiplication?

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

A low-level definition

$$(A\vec{x})_i = \sum_{j=1}^n A_{ij} x_j$$

A low-level interpretation

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} + 3 \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$$

In general...

 $\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{a}^{(1)} & \vec{a}^{(2)} & \vec{a}^{(3)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = x_1 \vec{a}^{(1)} + x_2 \vec{a}^{(2)} + x_3 \vec{a}^{(3)}$

Matrix Multiplication

$$\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + x_3 \hat{e}^{(3)} = (x_1, x_2, x_3)^T$$

$$\vec{f}(\vec{x}) = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

$$\vec{f}(\vec{x}) = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \end{pmatrix}$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix}$$

$$A\vec{x} = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$AX = \begin{cases} f(e^{(1)}) & f(e^{(2)}) & f(e^{(3)}) \\ \downarrow & \downarrow \end{cases} \begin{cases} x_2 \\ x_3 \end{cases}$$
$$= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

Matrix Multiplication

- Matrix A represents a linear transformation \vec{f}
 - With respect to the standard basis
 - If we use a different basis, the matrix changes!
- Matrix multiplication $A\vec{x}$ evaluates $\vec{f}(\vec{x})$

What are they, really?

- Matrices are sometimes just tables of numbers.
- But they often have a deeper meaning.

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $\vec{f}: \mathbb{R}^n \to \mathbb{R}^n$.

What's more, if A represents \vec{f} , then $A\vec{x} = \vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f} .

Example

$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \qquad A =$$

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$$

$$\vec{f}(\vec{x}) =$$

$$A\vec{x} =$$

Note

- ightharpoonup All of this works because we assumed \vec{f} is **linear**.
- ▶ If it isn't, evaluating \vec{f} isn't so simple.

Note

- ightharpoonup All of this works because we assumed \vec{f} is **linear**.
- ▶ If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!

Matrices in Other Bases

► The matrix of a linear transformation wrt the **standard basis**:

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \cdots & \vec{f}(\hat{e}^{(d)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix}$$

ightharpoonup With respect to basis \mathcal{U} :

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \end{pmatrix}$$

Matrices in Other Bases

Consider the transformation \vec{f} which "mirrors" a vector over the line of 45°.

What is its matrix in the standard basis?

Matrices in Other Bases

Let
$$\hat{u}^{(1)} = \frac{1}{\sqrt{2}}(1,1)^{\frac{1}{2}}$$

Let
$$\hat{u}^{(1)} = \frac{1}{\sqrt{2}} (1, 1)^T$$

Let $\hat{u}^{(2)} = \frac{1}{\sqrt{2}} (-1, 1)^T$
What is $[\hat{f}(\hat{u}^{(1)})]_{\mathcal{U}}$?

- $\vdash [\vec{f}(\hat{u}^{(2)})]_{i,j}$?
- What is the matrix?

DSC 1408 Representation Learning

Lecture 04 | Part 2

The Spectral Theorem

Eigenvectors

Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v}$.

Eigenvectors (of Linear Transformations)

Let \vec{f} be a linear transformation. An eigenvector of \vec{f} with eigenvalue λ is a nonzero vector \vec{v} such that $f(\vec{v}) = \lambda \vec{v}$.

Importance

We will see why eigenvectors are important in the next part.

For now: what are they?

Geometric Interpretation

- Mhen \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.
 - Possibly by a negative amount.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$$

Finding Eigenvectors

- We typically compute the eigenvectors of a matrix with a computer.
- But it can help our understanding to find them "graphically".

Procedure

Given a matrix A (or transformation \vec{f}), to find an eigenvector "graphically".

- 1. Think about (or draw) the output of \vec{f} for a handful of unit vector inputs.
 - Linear transformations are continuous so you can "interpolate".
- 2. Find place(s) where the input vector and the output vector are parallel.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

Exercise

Consider the linear transformation which mirrors its input over the line of 45°. Give two orthogonal eigenvectors of the transformation.

Alternate Procedure: Guess and Check

- 1. Guess a vector \vec{x} .
- 2. Check that $\vec{f}(\vec{x}) = \lambda \vec{x}$.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Caution!

- ► Not all matrices have even one eigenvector!²
- When does a matrix have multiple (linearly independent) eigenvectors?

²That is, with a *real-valued* eigenvalue.

Symmetric Matrices

► Recall: a matrix A is **symmetric** if $A^T = A$.

The Spectral Theorem³

► **Theorem**: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

³for symmetric matrices

What?

- What does the spectral theorem mean?
- What is an eigenvector, really?
- Why are they useful?

Example Linear Transformation

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Example Linear Transformation

$$A = \begin{pmatrix} -2 & -1 \\ -5 & 3 \end{pmatrix}$$

Example Symmetric Linear Transformation

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

Symmetric linear transformations have axes of symmetry.

The axes of symmetry are **orthogonal** to one another.

The action of \vec{f} along an axis of symmetry is simply to scale its input.

The size of this scaling can be different for each axis.

Main Idea

The **eigenvectors** of a symmetric linear transformation (matrix) are its axes of symmetry. The **eigenvalues** describe how much each axis of symmetry is scaled.

Diagonal Matrices

► If A is diagonal, its eigenvectors are simply the standard basis vectors.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.1 \\ -0.1 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.2 \\ -0.2 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.3 \\ -0.3 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.4 \\ -0.4 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.5 \\ -0.5 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.6 \\ -0.6 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.7 \\ -0.7 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.8 \\ -0.8 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.9 \\ -0.9 & 5 \end{pmatrix}$$

Non-Diagonal Symmetric Matrices

- When a symmetric matrix is not diagonal, its eigenvectors are not the standard basis vectors.
- But they can be used to form an orthonormal basis!

The Spectral Theorem⁴

Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

⁴for symmetric matrices

What about total symmetry?

Every vector is an eigenvector.

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

Computing Eigenvectors

