министерство образования и науки российской федерации

санкт-петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет	Ест	гественнонаучный		
Направлени	еПрикладная	информатика и инф	орматика	
Квалификац	ия	бакалавр		
Специализа	ция матем	атическое моделиро	вание	
Кафедра	высшей математики	Группа	A3401	
	пояснител	ьная записк	a	
	к выпускной квал	ификационной ра	аботе	
	симплектические	методы интегрирован	ия	
	уравнения	ландау-лифшица		
Автор квали	фикационной работы _	Плотников А. М	<u>И.</u> (подпись)	
Руководител	ъЛо	обанов И. С.	(подпись)	
К защите до	пустить			
Зав. кафедро	й	Іопов И. Ю.	(подпись)	
23 мая 2016 г	' .			

1 ПОСТАНОВКА ПРОБЛЕМЫ

1.1 Симплектический интегратор

Для того чтобы сохранить сохранить энергию системы можно воспользоваться симплектическим интегратором. Опираясь на работу Markiewicz (1999, стр. 3), в общем виде итерационная система имеет вид:

$$c_1 \mid a_{11} \quad \dots \quad a_{1s}$$
 $\vdots \quad \vdots \quad \ddots \quad \vdots$
 $c_s \mid a_{11} \quad \dots \quad a_{ss}$
 $a_{11} \quad \dots \quad a_{ss}$

Рис. 1.1: Таблица для общего вида

$$S_{n+1} = S_n + h \sum_{j=1}^{s} b_j f(t_n + c_j h, \xi_j)$$

$$\xi_j = y_n + h \sum_{j=1}^{s} a_{ji} f(t_n + c_j h, \xi_i)$$
(1.1)

В данной работе рассматривается симплектический интегратор Рунге-Кутта второго порядка, он же метод Гаусса-Лежандра-Рунге-Кутта(далее ГЛРК). Для него таблица 1.1 выглядит как таблица 1.2.

$$\begin{array}{c|ccccc} \frac{1}{2} - \frac{\sqrt{3}}{6} & \frac{1}{4} & \frac{1}{4} - \frac{\sqrt{3}}{6} \\ \frac{1}{2} + \frac{\sqrt{3}}{6} & \frac{1}{4} + \frac{\sqrt{3}}{6} & \frac{1}{4} \\ & \frac{1}{2} & \frac{1}{2} \end{array}$$

Рис. 1.2: Таблица для метода Гаусса-Лагранжа-Рунге-Кутта

Для исследуемой модели f(x) есть правая часть уравнения Ландау-Лифшица $\ref{Mathieu}$. Тогда итерационная схема 1.1 для исследуемой модели будет записана в виде:

$$S_{n+1} = S_n + h \sum_{j=1}^{s} b_j \cdot \left(-\gamma S_n \times H_n^{eff} - \gamma \lambda S_n \times \left(S_n \times H_n^{eff} \right) \right)$$
 (1.2)

$$S_k = S_n + h \sum_{i=1}^s a_{ji} \cdot \left(-\gamma S_n \times H_k^{eff} - \gamma \lambda S_n \times \left(S_n \times H_k^{eff} \right) \right)$$
 (1.3)

Замечание 1. Нужно отметить что в виде 1.2 энергия сохраняться не будет из-за диссипации энергии. Поэтому далее, при проведении эксперимента, для наглядности того, что энергия сохраняется коэффициент диссипации λ следует положить равным 0.

Для вычисления каждого следующего состояния системы необходимо решить нелинейное уравнение 1.3. Для этого можно воспользоваться методом Ньютона.

1.2 Метод Ньютона

Методом Ньютона в обобщенном виде удобно искать численное решение подобной системы:

$$\begin{cases}
f_1(x_1, x_2, \dots, x_n) = 0 \\
\dots \\
f_n(x_1, x_2, \dots, x_n) = 0
\end{cases}$$
(1.4)

Выбрав некоторое начальное приближение $\bar{x}^{[0]}$ следующие приближения находятся из решения системы уравнений:

$$f_i + \sum_{k=1}^n \frac{\partial f_i}{\partial x_k} (x_k^{[j+1]} - x_k^{[j]})$$
 (1.5)

Замечание 2. Для решения системы можно воспользоваться методом би-сопряжения градиентов ??.

Для того чтобы воспользоваться методом ньютона необходимо выделить многомерную функцию f и вычислить ее производную. Перепишем уравнение 1.3 в виде:

$$S_n + h \sum_{i=1}^{s} a_{ji} \cdot \left(-\gamma S_n \times H_i^{eff} - \gamma \lambda S_n \times \left(S_n \times H_i^{eff} \right) \right) - S_j = 0$$
 (1.6)

Вычислим $\nabla_{S_n} f$:

$$\nabla_{S_k} \left(S_n \times H_k^{eff} \right) = \nabla_{S_k} \left(S_n \times (A_k S_k + B) \right) =$$

$$= \nabla_{S_k} S_n \times (A_k S_k + B) + S_n \nabla_{S_k} \left(A_k S_k + B \right) =$$

$$= \delta_{kn} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times (A_k S_k + B) + S_n \times \nabla_{S_k} (A_k S_k + B) =$$

$$= \delta_{kn} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times H_k^{eff} + S_n A_k$$

$$\nabla_{S_k} \left(S_n \times \left(S_n \times H_k^{eff} \right) \right) = \nabla_{S_k} S_n \times \left(S_n \times H_k^{eff} \right) + S_n \times \nabla_{S_k} \left(S_n \times H_k^{eff} \right) =$$

$$= \delta_{kn} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \left(S_n \times H_k^{eff} \right) + S_n \times \left(\delta_{kn} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times H_k^{eff} + S_n A_k \right)$$

$$\delta_{nk} \begin{pmatrix} 1\\1\\1 \end{pmatrix} + h \sum_{i=1}^{s} \left(a_{ji} \cdot \gamma \left[\delta_{in} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \times H_{i}^{eff} + S_{n} A_{i} \right] - \gamma \lambda \left[S_{n} \times \left(\delta_{in} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \times H_{i}^{eff} + S_{n} A_{i} \right) \right] \right) - \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \nabla_{S_{k}} f \quad (1.7)$$

2 РЕШЕНИЕ ПРОБЛЕМЫ

2.1 Переход к новому базису

Для того, чтобы воспользоваться симплектическим методом нужно представить Гамильтониан в виде:

$$\begin{cases} \dot{q}_i = \frac{\partial H}{\partial p_i} \\ \dot{p}_i = -\frac{\partial H}{\partial q_i} \end{cases}$$
 (2.1)

Для этого в каждом состоянии системы для каждого атома введем пару базисных векторов (\bar{e}_{p_i} и \bar{e}_{q_i}) в касательной плоскости, к единичной сфере с центром в координате атома, в точке пересечения сферы и луча, пущенного из центра сферы в направлении спина атома (\bar{s}_i).

Рис. 2.1: Введение базисных векторов

СПИСОК ЛИТЕРАТУРЫ

Markiewicz, Daniel W (1999). «Survey on symplectic integrators». B: Spring 272, c. 1-13.