

Convertisseurs - Bloqueurs

Hugues GARNIER

hugues.garnier@univ-lorraine.fr

Schéma de régulation numérique

• Besoin de blocs pour faire dialoguer les parties analogique et numérique :

CNA & CAN

Conversion d'un signal analogique en signal numérique : CAN

- La conversion est caractérisée par deux discrétisations
 - la 1^{ère} concerne le *temps* et porte le nom d'*échantillonnage* : cela consiste à prendre des échantillons du signal analogique à des instants régulièrement espacés
 - La 2^e concerne *l'amplitude* et porte le nom de *quantification* : cela consiste à coder l'amplitude du signal sur un nombre fini d'éléments binaires

Choix à effectuer lors de la numérisation d'un signal analogique

- Précision de discrétisation via le choix de la fréquence d'échantillonnage
 - $-f_e$ doit être suffisamment élevée si l'on ne veut pas perdre trop d'informations sur le signal
 - Cependant plus f_e est élevée (T_e faible), plus le temps disponible pour effectuer les calculs numériques sera court et plus le nombre d'échantillons à traiter sera important

Comment choisir la fréquence d'échantillonnage f_e ?

Théorème d'échantillonnage (Shannon 1949)

Un signal x(t) à bande limitée dans l'intervalle de fréquence $[-f_{max}; +f_{max}]$

peut être reconstruit exactement à partir de ses échantillons

$$sif_e > 2f_{max}$$

La fréquence limite $f_e/2$ est appelée *fréquence de Nyquist*

Théorème de Shannon - Interprétation

• On dispose des échantillons $y(kT_e)$. Comment en déduire y(t)?

• Si $f_e > 2 f_{max}$ alors on pourra reconstruire parfaitement y(t) à partir de des échantillons $y(kT_e)$

- Le théorème de Shannon ne permet d'avoir qu'une borne **inférieure** sur la fréquence d'échantillonnage à ne pas dépasser
 - Il est indispensable de choisir une fréquence d'échantillonnage bien plus élevée
- En pratique, la fréquence f_{max} est rarement connue précisément
 - Il est nécessaire de filtrer le signal analogique par un filtre analogique de type passe-bas. Un tel filtre est appelé *Filtre Anti-Repliement (de spectre)*
- Pour la mise en œuvre d'une régulation numérique, le choix de la fréquence d'échantillonnage est un problème bien plus complexe
 - Il dépend des caractéristiques de la réponse en boucle fermée désirée et donc des performances recherchées (voir plus loin)

Chaîne pratique pour la conversion analogique numérique (CAN)

- En pratique:
 - indispensable de faire précéder l'opération d'échantillonnage par un filtre passe-bas appelé filtre anti-repliement de fréquence de coupure un peu inférieure à la fréquence de Nyquist $f_e/2$
- La chaîne pratique pour convertir un signal analogique en signal numérique est donc constituée des éléments suivants :

Conversion Analogique Numérique (CAN) Représentation simplifiée

• La représentation habituelle de l'opération de CAN consiste à ne représenter que le bloc échantillonneur

Quelques valeurs classiques de périodes d'échantillonnage

•	Asservissement	T _e en secondes
		i e chi secolides

- Position 0,001 à 0,1

Régulation

- Vitesse 0,001 à 0,1

- Débit 1 à 3

- Niveau 5 à 10

- Pression 1 à 5

- Température 10 à 45

• Systèmes industriels

- Colonnes à distiller 10 à 180

- Réacteurs catalytiques 10 à 45

- Fours à ciment 20 à 45

- Sécheurs 20 à 45

10

Schéma de régulation numérique

• Besoin de blocs pour faire dialoguer les parties analogique et numérique :

CAN & CNA

Conversion Numérique Analogique (CNA) Reconstruction pratique

• L'opération de CNA la plus courante consiste à produire un signal de commande continu *u*(*t*) à partir des valeurs échantillonnées *u*(*k*) en maintenant constant *u*(*k*) durant toute la période d'échantillonnage via un bloqueur d'ordre 0 (*Zero-Order Hold ou ZOH*)

Fonction de transfert de Laplace d'un bloqueur d'ordre zéro

• Rappel: fonction de transfert = \mathcal{L} (réponse impulsionnelle)

$$b_o(t) = \Gamma(t) - \Gamma(t - T_e)$$

$$B_o(s) = \frac{1}{s} - \frac{e^{-T_e s}}{s}$$

$$B_o(s) = \frac{1 - e^{-T_e s}}{s}$$

Schéma de régulation numérique

