Started on	Wednesday, 21 March 2018, 4:00 PM
State	Finished
Completed on	Wednesday, 21 March 2018, 4:25 PM
Time taken	24 mins 50 secs
Marks	7.00/7.00
Grade	10.00 out of 10.00 (100 %)

Correct

Mark 1.00 out of 1.00

Let X and Y be independent random variables where $X\sim \mathrm{gamma}(a=r,b=1)$ and $Y\sim \mathrm{gamma}(a=s,b=1)$, where the E[X]=r.

Let $Z_1=X+Y$ and $Z_2=X/(X+Y)$. Which of the following statement is true?

Select one:

- \bullet a. Marginally, $Z_1 \sim \operatorname{gamma}(r+s,1)$ and $Z_2 \sim \operatorname{beta}(r,s)$.
- \bigcirc b. Marginally, $Z_1 \sim \operatorname{gamma}(r+s,1)$ and $Z_2 \sim \operatorname{beta}(r/s,1)$.
- \bigcirc c. Z_1 and Z_2 are dependent.
- o. Marginally, $Z_1 \sim \operatorname{gamma}(r+s,1)$ and $Z_2 \sim \operatorname{gamma}(r/s,1)$.

The correct answer is: Marginally, $Z_1 \sim \operatorname{gamma}(r+s,1)$ and $Z_2 \sim \operatorname{beta}(r,s)$.

Correct

Mark 1.00 out of 1.00

An original method for generating random standard normal variables based on random uniform variables was through the following transformation:

$$X = \sum_{i=1}^{12} U_i - 6$$

 $U_i \sim \text{ iid uniform}(0, 1).$

The mean of \boldsymbol{X} is?

Select one:

- a. 0 ✓
- b. 6
- c. 12
- d. -2

The correct answer is: 0

Question 3

Correct

Mark 1.00 out of 1.00

An original method for generating random standard normal variables based on random uniform variables was through the following transformation:

$$X = \sum_{i=1}^{12} U_i - 6$$

 $U_i \sim \text{ iid uniform}(0, 1).$

The variance of X is?

Select one:

- a. 1 √
- b. 0
- \circ c. 12^2
- d. 12

The correct answer is: 1

Correct

Mark 1.00 out of 1.00

Let $X_1,\dots,X_N\sim \text{ iid } f(x;\theta)=\theta x^{\theta-1}$, where $0\leq x\leq 1$ and $0<\theta<\infty$. Maximise the joint density or the log of the joint density with respect to θ . The value of θ which maximises the function (i.e. the MLE) is

Select one:

- a. Doesn't have an analytical solution.
- $\bigcirc \quad \text{ b. } -\tfrac{n}{\sum_{i=1}^n x_i}$
- \circ c. $-\frac{n}{\sum_{i=1}^{n}log(x_i)}$
- \circ d. $ar{x}$

The correct answer is: $-\frac{n}{\sum_{i=1}^{n}log(x_i)}$

Question 5

Correct

Mark 1.00 out of 1.00

Find the constant c such that the following function is a proper probability density:

$$f(x) = c(1-x)^3; 0 \le x \le 3.$$

Select one:

- a. 1/3
- b. 10
- c. -2/3
- d. -4/15

The correct answer is: -4/15

Correct

Mark 1.00 out of 1.00

Determine the following integral using Monte Carlo integration:

$$\int_{0}^{\infty} \sin(x) \exp(-x/2) dx.$$

Base the integration on an exponential distribution with E[X]=2. Use 10,000 draws and use the following to set the seed: set.seed(2000). Round to 4 decimal places.

Answer: 0.7938

S<-10000

set.seed(2000)

x < -rexp(S, 1/2)

I.hat <- mean(2*sin(x))

round(I.hat,4)

The correct answer is: 0.7938

Question 7

Correct

Mark 1.00 out of 1.00

A researcher from the College of Medicine states: "I just fit a least-squares model to determine the eects of age and gender on blood pressure." This statement is clear and correct.

Select one:

True

False

Least-squares is a method of estimation and is not a model.

The correct answer is 'False'.