CRYPTOGRAPHIE

1. Objectifs de la sécurité informatique

- Confidentialité (2) : Empêcher l'accès aux données par des tiers non autorisés.
- Authentification (2) : Vérifier l'identité de l'utilisateur ou de la source des données.
- Intégrité (2) : Garantir que les données n'ont pas été altérées.
- Disponibilité : Assurer l'accès aux données et services en temps voulu.
- Non-répudiation (2) : Empêcher une partie de nier une action précédemment effectuée (envoi de message, signature numérique).
- (2): Services attendus du chiffrement asymétrique

2. Chiffrement symétrique vs asymétrique

Chiffrement symétrique

- Principe : Une seule clé pour chiffrer et déchiffrer.
- Exemples: AES (Chiffrement par blocs de 128 bits), DES.
- Avantage : Rapide pour chiffrer des grandes quantités de données.
- Inconvénient : La clé doit rester secrète et être partagée de manière sécurisée.

Chiffrement asymétrique

- Principe : Utilise une paire de clés : une clé publique pour chiffrer et une clé privée pour déchiffrer.
- Exemples : RSA (Basé sur la factorisation de grands nombres premiers), ECC.
- Avantages : Pas besoin de partager une clé secrète, la clé publique peut être diffusée.
- Inconvénients : Plus lent que le chiffrement symétrique.

3. Algorithmes et techniques de chiffrement

Chiffrement Symétrique

- Chiffre de César : $C = (M+k) \bmod 26$
- Carré de Polybe :

	1	2	3	4	5
1	Α	В	С	D	Е
2	F	G	Н	I/J	K
3	L	М	N	0	Р
4	Q	R	S	Т	U
5	V	W	Х	Y	Z

• Chiffre de Vigenère : $Ci = (Mi + Ki) \mod 26$, où Mi est le texte clair, Ki est la clé répétée, et Ci est le texte chiffré.

	Lettre en clair																									
	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	s	Т	U	٧	w	X	Y	Z
Lettre de la clé	Let	tres	s ch	iffré	es	(au	cro	ise	mei	nt d	e la	co	lonr	ne L	.etti	re e	n cl	air e	et de	e la	lign	e L	ettre	e de	la (clé)
A	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	Z
В	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α
С	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	z	Α	В
D	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С
E	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	Z	Α	В	С	D
F	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Ε
G	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F
н	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	z	Α	В	С	D	Е	F	G
I	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н
J	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	w	Х	Υ	z	Α	В	С	D	Е	F	G	Н	1
K	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J
L	L	М	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K
М	М	N	0	Р	Q	R	s	Т	U	٧	w	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L
N	N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М
0	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N
Р	Р	Q	R	S	Т	U	٧	w	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0
Q	Q	R	s	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	Р
R	R	s	Т	U	٧	w	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q
S	s	Т	U	٧	w	Х	Υ	z	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R
Т	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s
U	U	٧	w	Х	Υ	Z	Α	В	С	D	Е	F	G	н	1	J	K	L	М	N	0	Р	Q	R	s	Т
V	٧	w	х	Υ	Z	Α	В	С	D	Е	F	G	н	Τ	J	K	L	М	N	0	Р	Q	R	s	Т	U
w	w	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧
X	х	Υ	z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	W
Y	Υ	z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	w	Х
Z	z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	s	Т	U	٧	w	Х	Υ

- ullet Chiffre de Vernam (One Time Pad/Codage à masque jetable) : $C=M\oplus K$ où M est le message, K est la clé, et C est le résultat.
- AES (Advanced Encryption Standard): Utilise un algorithme de chiffrement par blocs avec des clés de 128, 192, ou 256 bits. Ses principales étapes sont:
 - 1. SubBytes: Chaque octet du bloc est remplacé par un autre selon une table de substitution fixe (S-Box).
 - 2. ShiftRows: Les lignes du bloc sont décalées vers la gauche.
 - 3. MixColumns: Chaque colonne du bloc est mélangée via une opération linéaire (multiplication dans un corps fini).
 - 4. AddRoundKey : Un XOR est appliqué entre le bloc et la clé de tour.
- Chiffrement par flot / par flux :
 - Chiffrement qui traite les données sous forme de flux continu, plutôt qu'en blocs.
 - RC4 est un exemple de chiffrement par flot, où les bits du message sont combinés avec une séquence de bits pseudo-aléatoires.

Chiffrement Asymétrique

RSA:

- Clé publique : (e, n), clé privée : (d, n)
- Clé privée : $d=e^{-1}\ mod\ \phi(n)$, avec $\phi(n)=(p-1)(q-1)$
- Chiffrement : $C = M^e \mod n$
 - Déchiffrement : $M = C^d \bmod n$
- Exponentiation modulaire :
 - Utilisée dans des algorithmes asymétriques comme RSA ou Diffie-Hellman.
 - Le calcul : $C = M^e \mod n$, permet de chiffrer des messages en grande partie grâce à des opérations modulaires.
 - Méthode de l'exponentiation rapide : Calcule efficacement des puissances modulaires en réduisant à chaque étape.
- · Algorithme d'Euclide Étendu :
 - $\bullet \ \ \mathsf{Permet} \ \mathsf{de} \ \mathsf{calculer} \ d = pgcd(a,b) \ \mathsf{ainsi} \ \mathsf{que} \ x \ \mathsf{et} \ y \ \mathsf{tels} \ \mathsf{que} \ ax + by = d.$
 - Utile pour trouver l'inverse modulaire $d \equiv e^{-1} \ mod \ \phi(n)d$.
- Théorème de Bézout
 - Le théorème affirme que pour deux entiers a et b, il existe des entiers x et y tels que ax + by = d, où d est le plus grand commun diviseur (PGCD) de a et b.
 - Ceci est utile dans la cryptographie pour trouver des inverses modulaires.
- Calcul de l'inverse modulaire :
 - Pour un entier a et un modulo n, l'inverse modulaire de a est un entier x tel que $a \cdot x \equiv 1 \mod n$.
 - Algorithme d'Euclide Étendu : Permet de résoudre l'équation ax + by = 1 pour calculer l'inverse de $a \mod n$.
- Échange de clé Diffie-Hellman :
 - Clés partagées : $A = g^a \mod p$, $B = g^b \mod p$
 - Clé commune : $K = B^a \bmod p = A^b \bmod p$

	Alice		Bob							
Secret	Calcul	Public	Public	Calcul	Secret					
		p, g	p, g							
а					b					
	$A=g^a[p]$	Α	(reçoit)							
		(reçoit)	В	$B=g^b[p]$						
	$B^a[p]=(g^b[p])^a[p]=g^{ab}[p]$			$A^b[p]=(g^a[p])^b[p]=g^{ab}[p]$						

4. Fonctions de hachage

- SHA-256: Algorithme de hachage produisant une sortie de 256 bits.
- Propriétés importantes:
 - Résistance aux collisions: H(x) = H(y) implique x = y
 - Résistance à la préimage: Il est difficile de trouver x tel que H(x)=y.