

Academic Year	Module	Assessment Number	Assessment Type
S20	Introductory Data Structures and Algorithms (DipIT02)	A1	Assignment Submission

[Assignment Submission]

Student Id : [NP03A190299]
Student Name : [Yogesh Shrestha]

Section : [DC8]

Module Leader : [Mr. Prakash Gautam]

Submitted on : 06-03-2020

17 6 9 21 8 9
8
- 2 3 4 5 6 7 8 9 21
merge -sort (A)
mid = niz; right = Arroy of size (n-mid)
by 47 (,, 217, 80 (444, p.).
for Ci= 0 × + 0 mid-2
Cild: Cild: Liding Lidi
weide - 2014 (1041).
Meide & biely isidy);


```
7.1. Bubble - 2011
        for (3 = 0; icn - 1; i 1-1)
         for (j=0; j2n-2; j++)
   SELL CACIDAD fi

ELDA = 9 mot
            C1+13A - C13A
             ACjald - demp;
 organitha because the relative order it any
 I we canol element is preserved in the shorted
 Orroy.
2.2. Sometica - Sort
         Por (1:0:12n-1; 1-11)2
         int min = i";
         for ( ) = 17+2 ; jen ; jet) ?
         if (alj32 almin))2
min = a;
       if (min 1-1)?

(Col), almin ];
The Selection Soit is not a slable browse it
 Swops non-adjocement elements. The time
 Complexity is O(n2) which is worst case.
```



```
Insection 30(1

Par (7: 1; 12n); 11)

1 cmp = pti];

while (-j) = c i>=0 822 aci) >1emp);

a file 2
        a Cition Cition
        : aCjts) = tempi
  when the array is given in decending order and we are going to surt that array in astending
  do po pero la de posimptos ous mpire land offo
organ paris mars core mpire to O( 43) pero de
2.11.) merge sort
         n= length (A);
         mid: n/2;
        left = mid
         Right = n-mid;
         Sor (2:0 10 mid 1)
          (i) 1 = (i) +191
          Por () = mid to n-1)
            CIJA: [bim - i] +Apir
        words - Bort (1647);
           Mrg (left, right, A)
```



```
merge (A. L. RX
    のしこと;
    OR:R;
   while ( nLZ NR)
    (Ci39 = > Ci31) Li
    DE 13 - 121 - 121 30 - 121 30
   CRG SCP STATE
   F 11;
   while (ichol)
    O (162) = [[]; H; K++;
  While (jene)

ACKD=RGDH;

HHH;
os it requires O(n) exten space. It is stable or
 it does not change the order of two or more
 de plicale value.
```


2.5) · Ovick 2017 Quick Soil (A. 16, UB) 14 (1P < 1P) int loc = partition (Ulpinp) Qual 2014 (D, 11, 10 C - 1); Quick 804 (b. 100.17.0P) Carpiton (U'IPIAP) Pivot = 0[16] Stock = 16: 40 = 06 (tourg = > (trofe) 0) stides elort while Colend I pivol) I have a side (500) Loss 2) li (500) Chot2 30) qow2 Soup Colly, alend) reluin end -> The Quick sort is in place sorting algorithm as if toker extra spore but only low servicing Punchus alls. no. quier 2017 12 not shape as we do swapping at comme according to pivols pasition without considering original position.


```
2.67 Shall 3014
                             Shell - Soit (A, size)
                              (0, (30b = 30b (s : 30b = 7, 30b (s))
                               Par ( ): 90p ; 3 < 2 :20, 311)
                      (Ci) 1 (1 = 1 = 10 = 1 = 10 = 1 = 10 = 1 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 
             -> The Shell soft is inplace sorting algorithm of
                         12 take O(I) Spore for exchanging element. It is not stable as it does not examine elements lying between gap.
      2.2) Heap soil, (100) 100 (10)
                                Heap il ach, n.i)
                                                  (i: tespio)
                                              ( Los org & CIDa > & Cleader)
                                                   lorgest = 1;
                                              101907 = 8 101301) til
                                               if (losgest 1= i)
                                                         smot (UCI) UTlogers)
                                                            hoopily (n.n. lorger)
             -> The Moop soit is inplace as it only require,
                                    deolero 21 12 shormals pring our solos of
```



```
3).
    2010
   let donale the function 7 (n)
    ow.
Partition from time complexicity taxab;
   (SIU) If (21/4) I find that of of only any Louis)
    Then. T(n) = Ti(n/2) dansb - (in)
      7 (n/2) = 27 (n/w) x (n/2) - (ii)
     (1 (n/u)= 25 (n/8) 1( (n/u) - (iii)
     from (iii) and (ii)
  (n/2) = (2(n)) 1 · (8·(n)) 2) - · iv)
      from (iv) and (i)
       1(U):5(5/4) + F(NU)) + ((U)) > 515: (U))
          - 87 (810) 1ên Marca (810) 78 -
          = 237 (n/33) 13 Cn
        ngoir.
       BOCT (ORC SK) 7 K(U-(ON))
       Taking log 2 on bolb side
           : k = logo (vi)
        Now, from (v) and (v)
        (U) = 5 lods U 12C + ) + U lods U
   [(n): n1) + (.nlog ?n
      . Time complexicity: oraloga)
```


for four properties of the and properties of the second con 100-1717

- why volves browne it products sorted hat and voot and right element.
- orlows.

 The Guick Soit is more popular shorting additional space to the store the auxiliary
- close of while (values (short 2 = prod)

 Short until we get okment emalks than

 pived . So, at the end we (ould sloop

 element or last ...while (values lend) pived)

 Lend -- i) is to decree the indexend

 which stails from the end of any

 which stails from the ond of any

 which stails from the ond of any
- The arroy be would be balanced of

 values from 10-22 by providing values

 greater than 28 & less than 3. we would get

 worst case time compinity of a??.

 Time complexity for Guich Soit.

 But cose: ocalog?)

 worst cose: ocal


```
30/2
9).
    Bubble gort
                             Instition Solt
     par (arc = 0(4)
                           BCS1 (0)C > O(n)
     marst core = o(U)
                           MOM (021:0(US)
    Uncrode Cores Ocus
                           Unciona (070 = 0( 45)
      162
10)
      Morge Meshod M.L. R)
       N2:5 108:8, 1-7-K-0;
      whice (iz of elicor)
         76:1926:111 1:
       UCM3: 45(5);
        ( 12 : C(1);
           while (idal)?
              U(K): 41(1);
               j 41;
          while (jenR)
              ( ) ( ) = R()
                 K 44)
```


15-2 Winds Boir gois y pars mars - cat 0(4)	14)
Best complexity = O(n) wors) complexity = O(n?)	15-
Bust combining: 0(05)	
Corst complexity: O(03)	16-
Box Complexity: Ochlogens c) Scinction Soil	
Busy complexity: o(us)	
Best (ax = 0(010yn) Worst (ose = 0(01) *1)	
man total property of the	

Tout of ou ones only one books you onch

15-) Sorting is known of Stable in the input
Contain some keys and under going
Alganithm Orde on in put do which dog
not chape.

Stable - Bubble Sort
Unstable - Outek Sort

16-5 Brick Suit is a well-known surting algorithm developed by (.A.R. Music and an average, it makes all logal companisors to soil nitems.