## Question 1(a) [3 marks]

### **Answer All Questions**

### i) What is Information Security?

**Answer**: Information Security protects digital data from unauthorized access, use, disclosure, disruption, modification, or destruction.

### **Key Components:**

• Confidentiality: Data accessible only to authorized users

• Integrity: Data remains accurate and complete

• Availability: Data accessible when needed

Mnemonic: "CIA keeps data safe"

### ii) List Types of hackers

#### **Answer:**

| Hacker Type    | Description        | Intent              |
|----------------|--------------------|---------------------|
| White Hat      | Ethical hackers    | Good intentions     |
| Black Hat      | Malicious hackers  | Criminal activities |
| Gray Hat       | Mix of both        | Neutral motives     |
| Script Kiddies | Use existing tools | Limited skills      |

### iii) What is the default username and password for Kali Linux?

#### Answer:

• Username: kali

• Password: kali (changed from root/toor in newer versions)

## Question 1(b) [4 marks]

### Describe CIA triad with example.

**Answer**: CIA Triad is the foundation of information security with three core principles:

| Principle       | Definition                               | Example                         |
|-----------------|------------------------------------------|---------------------------------|
| Confidentiality | Data accessible only to authorized users | Password protection, encryption |
| Integrity       | Data remains accurate and unmodified     | Digital signatures, checksums   |
| Availability    | Data accessible when needed              | Backup systems, redundancy      |

**Real-world Example**: Banking system maintains confidentiality through login credentials, integrity through transaction verification, and availability through 24/7 service.

Mnemonic: "CIA protects information like secret agents"

## Question 1(c) [7 marks]

## **Explain MD5 hashing algorithm**

**Answer**: MD5 (Message Digest 5) is a cryptographic hash function producing 128-bit hash values.

#### **MD5 Process Table:**

| Step | Process         | Details                                 |
|------|-----------------|-----------------------------------------|
| 1    | Padding         | Add bits to make length ≡ 448 (mod 512) |
| 2    | Length Addition | Append 64-bit length                    |
| 3    | Initialize      | Set four 32-bit variables               |
| 4    | Processing      | Four rounds of operations               |
| 5    | Output          | 128-bit hash value                      |



### **Key Features:**

• Fixed Output: Always 128 bits

• One-way: Cannot reverse hash to original

• Collision Prone: Vulnerable to attacks

Mnemonic: "MD5 Makes Data into 5-step hash"

## Question 1(c) OR [7 marks]

### **Explain SHA algorithm**

Answer: SHA (Secure Hash Algorithm) is a family of cryptographic hash functions designed by NSA.

### **SHA Variants Comparison:**

| Version | Output Size | Block Size | Security Level |
|---------|-------------|------------|----------------|
| SHA-1   | 160 bits    | 512 bits   | Deprecated     |
| SHA-256 | 256 bits    | 512 bits   | Strong         |
| SHA-512 | 512 bits    | 1024 bits  | Very Strong    |



### **SHA-256 Process:**

• Preprocessing: Padding and parsing message

• Hash Computation: 64 rounds of operations

• Final Hash: 256-bit output

### **Advantages over MD5:**

• **Stronger Security**: Resistant to collision attacks

• Larger Output: More bits for security

• Government Standard: NIST approved

Mnemonic: "SHA Securely Hashes All data"

## Question 2(a) [3 marks]

### What is virus? Explain Virus Life cycle.

**Answer**: Computer virus is malicious software that replicates by inserting copies into other programs or files.

### **Virus Life Cycle:**



### **Phase Details:**

• **Dormant**: Virus remains inactive

• **Propagation**: Copies itself to other systems

• Triggering: Activated by specific conditions

• Execution: Performs malicious activities

Mnemonic: "Viruses Dance, Propagate, Trigger, Execute"

## Question 2(b) [4 marks]

### **Answer All Questions**

### i) Difference between Private key and Public Key cryptography

#### Answer:

| Aspect           | Private Key             | Public Key                |
|------------------|-------------------------|---------------------------|
| Keys             | Single shared key       | Key pair (public/private) |
| Speed            | Fast encryption         | Slower encryption         |
| Key Distribution | Difficult               | Easy distribution         |
| Scalability      | Poor for large networks | Good scalability          |

# ii) Define database forensics and list different kind of activities performed during database forensics.

Answer: Database forensics examines database systems to extract digital evidence for legal proceedings.

### **Activities Performed:**

- Log Analysis: Examining transaction logs
- Metadata Extraction: Recovering database structure
- Deleted Data Recovery: Retrieving removed records
- Timeline Analysis: Tracking data modifications

## Question 2(c) [7 marks]

### Explain proxy server in details and why we need it?

**Answer**: Proxy server acts as intermediary between client and server, forwarding requests and responses.

### **Proxy Server Architecture:**



### **Types of Proxy Servers:**

| Туре              | Function                 | Use Case        |
|-------------------|--------------------------|-----------------|
| Forward Proxy     | Client-side intermediary | Web filtering   |
| Reverse Proxy     | Server-side intermediary | Load balancing  |
| Transparent Proxy | Invisible to client      | Content caching |

### Why We Need Proxy Servers:

• **Security**: Hide client IP addresses

• **Performance**: Cache frequently accessed content

• **Control**: Filter and monitor traffic

• **Anonymity**: Protect user privacy

### **Benefits:**

• Bandwidth Saving: Caching reduces traffic

• Access Control: Block unwanted sites

• Load Distribution: Balance server requests

Mnemonic: "Proxy Protects Privacy and Performance"

## Question 2(a) OR [3 marks]

Define: Trojans, Rootkit, Backdoors, Keylogger

**Answer:** 

| Malware Type | Definition                                          |
|--------------|-----------------------------------------------------|
| Trojans      | Malicious software disguised as legitimate programs |
| Rootkit      | Software hiding presence of malware in system       |
| Backdoors    | Secret entry points bypassing normal authentication |
| Keylogger    | Software recording keystrokes to steal passwords    |

Mnemonic: "TRBK - Trojans, Rootkits, Backdoors Keep attacking"

## Question 2(b) OR [4 marks]

### **Answer All Questions**

i) Write advantages and disadvantages of firewall.

### **Answer**:

| Advantages         | Disadvantages            |
|--------------------|--------------------------|
| Network Protection | Performance Impact       |
| Access Control     | Configuration Complexity |
| Traffic Monitoring | Cannot Stop All Attacks  |
| Log Generation     | Maintenance Required     |

### ii) List critical steps in preserving digital evidence.

#### Answer:

• Identification: Locate potential evidence

Documentation: Record evidence details

• Collection: Gather evidence safely

• **Preservation**: Maintain evidence integrity

• Chain of Custody: Track evidence handling

## Question 2(c) OR [7 marks]

### **Explain IP Security Architecture.**

**Answer**: IPSec provides security services at network layer for IP communications.

### **IPSec Architecture Components:**



### **Security Services:**

| Service         | Protocol | Function               |
|-----------------|----------|------------------------|
| Authentication  | АН       | Verify packet origin   |
| Confidentiality | ESP      | Encrypt packet data    |
| Integrity       | Both     | Detect modifications   |
| Anti-replay     | Both     | Prevent replay attacks |

### **IPSec Modes:**

• Transport Mode: Protects payload only

• Tunnel Mode: Protects entire IP packet

## **Key Components:**

• Security Association (SA): Security parameters

• Security Policy Database (SPD): Security policies

• Key Management: Automated key exchange

Mnemonic: "IPSec Integrates Protection, Security, Encryption Completely"

## Question 3(a) [3 marks]

List out various types of cybercrime and explain anyone.

### Answer:

### **Cybercrime Types:**

• Financial Crimes: Credit card fraud, online banking theft

• Identity Theft: Stealing personal information

Cyber Bullying: Online harassment

• Data Breach: Unauthorized data access

### **Email Bombing (Detailed Explanation):**

Email bombing involves sending large volumes of emails to overwhelm victim's mailbox and server resources.

#### **Attack Process:**

• Target Selection: Choose victim email

• Volume Generation: Send thousands of emails

• Resource Exhaustion: Overwhelm mail server

• Service Disruption: Make email unusable

Mnemonic: "Cyber Crimes Create Chaos Constantly"

## Question 3(b) [4 marks]

### Define Web Jacking, Data Diddling, Dos Attack and DDOS Attack

#### **Answer**:

| Attack Type   | Definition                                          |
|---------------|-----------------------------------------------------|
| Web Jacking   | Unauthorized control of website by changing content |
| Data Diddling | Unauthorized modification of data before processing |
| DoS Attack    | Single source attack to make service unavailable    |
| DDoS Attack   | Multiple sources attack to overwhelm target system  |

### **Attack Comparison:**



## Question 3(c) [7 marks]

Explain Main in the middle attack with suitable examples.

**Answer**: Man-in-the-Middle (MITM) attack occurs when attacker secretly intercepts and relays communications between two parties.

### **MITM Attack Process:**



### **Attack Types:**

| Туре                | Method               | Example                |
|---------------------|----------------------|------------------------|
| Wi-Fi Eavesdropping | Fake hotspots        | Coffee shop Wi-Fi      |
| Email Hijacking     | Compromised accounts | Business email         |
| DNS Spoofing        | Fake DNS responses   | Redirect to fake sites |
| HTTPS Spoofing      | Fake certificates    | Banking websites       |

## Real Example - Wi-Fi Attack:

- 1. Attacker creates fake "Free\_WiFi" hotspot
- 2. Victim connects to malicious network
- 3. All traffic passes through attacker
- 4. Sensitive data like passwords stolen

#### **Prevention Measures:**

• Use HTTPS: Encrypted connections

• VPN Usage: Additional encryption layer

• Certificate Verification: Check SSL certificates

• Secure Networks: Avoid public Wi-Fi for sensitive tasks

Mnemonic: "MITM Maliciously Intercepts, Tampers Messages"

## Question 3(a) OR [3 marks]

### **Explain Salami attack in detail**

**Answer**: Salami attack involves stealing small amounts of money from many accounts to avoid detection.

#### **Attack Mechanism:**

• Small Amounts: Steal fractions of currency

• Large Scale: Target thousands of accounts

• Rounding Errors: Exploit calculation differences

• Accumulation: Small thefts create large profit

**Example**: Banking system rounds interest to nearest cent. Attacker collects remaining fractions from millions of accounts.

Mnemonic: "Salami Slices Small, Steals Significantly"

## Question 3(b) OR [4 marks]

### Define Cyber bullying, Phishing, spyware and logic bomb

#### Answer:

| Term           | Definition                                          |
|----------------|-----------------------------------------------------|
| Cyber Bullying | Online harassment causing emotional distress        |
| Phishing       | Fraudulent attempts to obtain sensitive information |
| Spyware        | Software secretly monitoring user activities        |
| Logic Bomb     | Malicious code triggered by specific conditions     |

## Question 3(c) OR [7 marks]

### **Explain ransomware in detail?**

**Answer**: Ransomware encrypts victim's files and demands payment for decryption key.

#### **Ransomware Attack Process:**



### **Ransomware Types:**

| Туре              | Behavior                   | Example         |
|-------------------|----------------------------|-----------------|
| Crypto Ransomware | Encrypts files             | WannaCry        |
| Locker Ransomware | Locks system access        | Police-themed   |
| Scareware         | Fake threats               | Fake antivirus  |
| Doxware           | Threatens data publication | Personal photos |

#### **Attack Vectors:**

• Email Attachments: Malicious documents

• **Drive-by Downloads**: Compromised websites

• Exploit Kits: Vulnerability exploitation

• RDP Attacks: Remote desktop compromise

### **Prevention Strategies:**

• **Regular Backups**: Offline data copies

• **Security Updates**: Patch vulnerabilities

• Email Filtering: Block malicious attachments

• **User Training**: Recognize threats

• Network Segmentation: Limit spread

## **Impact Assessment:**

• Financial Loss: Ransom payments and downtime

• **Data Loss**: Permanently encrypted files

• Reputation Damage: Customer trust loss

• Operational Disruption: Business shutdown

Mnemonic: "Ransomware Really Ruins Recovery, Requires Robust Response"

## Question 4(a) [3 marks]

### List out any six basic kali Linux commands.

### **Answer**:

| Command | Function                |
|---------|-------------------------|
| Is      | List directory contents |
| cd      | Change directory        |
| pwd     | Print working directory |
| mkdir   | Create directory        |
| ср      | Copy files              |
| nmap    | Network scanning        |

**Mnemonic**: "Linux Commands Make Navigation Possible"

## Question 4(b) [4 marks]

### **Explain Zero day attack with example**

**Answer**: Zero-day attack exploits unknown vulnerability before security patch is available.

### **Zero-Day Timeline:**

## **Zero-Day Attack Timeline**



### **Example - Stuxnet Worm:**

• Target: Iranian nuclear facilities

Exploit: Windows zero-day vulnerabilities

• Impact: Physical damage to centrifuges

• **Duration**: Active for months before detection

### **Characteristics:**

• Unknown Vulnerability: No existing patches

• High Success Rate: No defenses prepared

• Valuable: Expensive in dark markets

• Limited Lifespan: Once discovered, patched

Mnemonic: "Zero-day Zaps before Anyone Notices"

## Question 4(c) [7 marks]

## **Explain Remote Access Tools and how we protect system from RAT?**

**Answer**: Remote Access Tool (RAT) allows remote control of computer systems, often used maliciously.

### **RAT Functionality:**



## **Common RATs:**

| RAT Name     | Features            | Detection Difficulty |
|--------------|---------------------|----------------------|
| DarkComet    | Full system control | Medium               |
| Poison Ivy   | Stealth operations  | High                 |
| Back Orifice | Windows targeting   | Low                  |
| NetBus       | Simple interface    | Low                  |

### **RAT Infection Methods:**

• Email Attachments: Trojanized files

• Software Bundling: Hidden in legitimate software

• **Drive-by Downloads**: Malicious websites

• Social Engineering: Trick users into installation

### **Protection Strategies:**

#### **Technical Measures:**

• Antivirus Software: Real-time scanning

• Firewall Rules: Block unauthorized connections

• Network Monitoring: Detect unusual traffic

• System Updates: Patch vulnerabilities

#### **Behavioral Measures:**

• Email Caution: Verify attachments

• **Download Sources**: Use trusted sites only

• Regular Scans: Periodic malware checks

• User Training: Recognize threats

### **Detection Signs:**

• Slow Performance: Unusual system lag

• Network Activity: Unexpected connections

• File Changes: Modified or new files

• Strange Behavior: Unexpected system actions

### **Incident Response:**

1. Isolate System: Disconnect from network

2. **Document Evidence**: Record malicious activity

3. Clean System: Remove RAT completely

4. **Restore Data**: From clean backups

5. Strengthen Security: Improve defenses

Mnemonic: "RATs Remotely Access, Require Robust Response"

## Question 4(a) OR [3 marks]

Describe Hacking, Blackhat, and White hat hacker in short.

#### Answer:

| Term      | Definition                                         |
|-----------|----------------------------------------------------|
| Hacking   | Gaining unauthorized access to systems or networks |
| Black Hat | Malicious hackers with criminal intent             |
| White Hat | Ethical hackers helping improve security           |

## **Comparison:**

• Intent: White hat helps, Black hat harms

• Authorization: White hat has permission

• Purpose: White hat protects, Black hat exploits

Mnemonic: "Hats Have Different Hacking Habits"

## Question 4(b) OR [4 marks]

What is Port Scanning? Explain any two port scanning techniques.

**Answer**: Port scanning discovers open ports and services on target systems.

## **Port Scanning Techniques:**

| Technique   | Method               | Stealth Level |
|-------------|----------------------|---------------|
| TCP Connect | Full connection      | Low stealth   |
| SYN Scan    | Half-open connection | High stealth  |

### **TCP Connect Scan:**

- Completes full TCP handshake
- Reliable but easily detected
- Logged by target systems

### SYN Scan (Half-Open):

- Sends SYN, receives SYN-ACK, sends RST
- Stealthy, often unlogged
- Faster than connect scan

Mnemonic: "Port Scanning Probes System Services"

## Question 4(c) OR [7 marks]

Explain the hacking process in detail.

**Answer**: Hacking follows systematic five-phase methodology for gaining unauthorized system access.

### **Five Phases of Hacking:**



#### **Phase Details:**

### 1. Information Gathering (Reconnaissance):

• Passive: OSINT, social media research

• Active: Network queries, DNS lookups

• **Tools**: Google dorking, Whois, social engineering

### 2. Scanning:

• Network Scanning: Discover live hosts

• Port Scanning: Find open services

• Vulnerability Scanning: Identify weaknesses

• Tools: Nmap, Nessus, OpenVAS

## 3. Gaining Access:

• Exploit Vulnerabilities: Use discovered weaknesses

• Password Attacks: Brute force, dictionary

• Social Engineering: Manipulate humans

• **Tools**: Metasploit, custom exploits

### 4. Maintaining Access:

• Install Backdoors: Ensure continued access

• Create User Accounts: Hidden administrator

• Rootkits: Hide presence

• Tools: Netcat, custom backdoors

### 5. Covering Tracks:

• Log Deletion: Remove evidence

• File Hiding: Conceal malicious files

• Process Hiding: Hide running programs

• Tools: Log cleaners, steganography

#### **Detailed Process Flow:**

| Phase              | Activities             | Duration      | Risk Level |
|--------------------|------------------------|---------------|------------|
| Reconnaissance     | Passive info gathering | Days/Weeks    | Low        |
| Scanning           | Active probing         | Hours/Days    | Medium     |
| Gaining Access     | Exploitation           | Minutes/Hours | High       |
| Maintaining Access | Persistence            | Ongoing       | Medium     |
| Covering Tracks    | Evidence removal       | Hours         | High       |

### **Legal vs Illegal Hacking:**

• Ethical Hacking: Authorized penetration testing

• Malicious Hacking: Unauthorized criminal activity

• Bug Bounty: Legal vulnerability discovery

Mnemonic: "Hackers Investigate, Scan, Gain, Maintain, Cover"

## Question 5(a) [3 marks]

### Write Locards's principal and explain how it is related to cybercrime?

**Answer**: Locard's Principle states "Every contact leaves a trace" - fundamental principle in forensic science.

## **Digital Application:**

• Log Files: System activities recorded

Network Traffic: Communication traces

• File Metadata: Creation, modification times

Memory Dumps: Runtime evidence

### **Cybercrime Relevance:**

Digital activities create electronic traces that investigators can analyze to reconstruct criminal activities.

Mnemonic: "Locard's Law: Leave Lasting Logs"

## Question 5(b) [4 marks]

### What is software forensics? How it is contributing in cybercrime?

**Answer**: Software forensics analyzes software artifacts to determine authorship, detect plagiarism, or investigate malicious code.

### **Software Forensics Applications:**

| Application          | Purpose             | Cybercrime Use      |
|----------------------|---------------------|---------------------|
| Code Analysis        | Identify programmer | Malware attribution |
| Binary Analysis      | Reverse engineering | Understand attacks  |
| License Compliance   | Software piracy     | IP theft cases      |
| Plagiarism Detection | Academic integrity  | Copyright violation |

### **Contribution to Cybercrime Investigation:**

• Malware Attribution: Link code to specific authors

• Attack Reconstruction: Understand how attacks occurred

• Evidence Collection: Gather digital proof

• Pattern Recognition: Identify repeat offenders

## Question 5(c) [7 marks]

### Explain in detail: Drive imaging, Chain of custody and hash values

#### Answer:

### **Drive Imaging:**

Physical bit-by-bit copy of storage device preserving all data including deleted files and slack space.

### **Imaging Process:**



### **Chain of Custody:**

Documentation tracking evidence handling from seizure to court presentation.

### **Chain of Custody Elements:**

| Element | Details                  |
|---------|--------------------------|
| Who     | Person handling evidence |
| What    | Evidence description     |
| When    | Date and time            |
| Where   | Location of evidence     |
| Why     | Reason for handling      |

#### **Hash Values:**

Mathematical algorithms creating unique fingerprints to verify data integrity.

## **Common Hash Algorithms:**

| Algorithm | Output Size | Use Case           |
|-----------|-------------|--------------------|
| MD5       | 128 bits    | Quick verification |
| SHA-1     | 160 bits    | Legacy systems     |
| SHA-256   | 256 bits    | Modern standard    |

### **Forensic Implementation:**

1. Create Image: Bit-by-bit copy

2. **Generate Hash**: Calculate original drive hash

3. **Verify Integrity**: Compare image hash

4. **Document Process**: Chain of custody

5. **Analyze Safely**: Work on copy only

## **Importance in Digital Forensics:**

• Data Integrity: Ensures evidence authenticity

• Legal Admissibility: Court accepts verified evidence

• Non-Repudiation: Proves data unchanged

• Forensic Soundness: Maintains evidence quality

Mnemonic: "Drive Images Document Digital Data Definitively"

## Question 5(a) OR [3 marks]

### Explain four stage of malware analysis in short.

#### Answer:

### **Malware Analysis Stages:**

| Stage            | Description               | Tools Used                 |
|------------------|---------------------------|----------------------------|
| Static Analysis  | Examine without execution | Hex editors, disassemblers |
| Dynamic Analysis | Observe runtime behavior  | Sandboxes, debuggers       |
| Code Analysis    | Reverse engineer source   | IDA Pro, Ghidra            |
| Network Analysis | Monitor communications    | Wireshark, tcpdump         |

Mnemonic: "Static, Dynamic, Code, Network - SDCN"

## Question 5(b) OR [4 marks]

### How does network forensic functions?

**Answer**: Network forensics captures, records, and analyzes network traffic to investigate security incidents.

### **Network Forensics Process:**



### **Key Functions:**

- Packet Capture: Record network communications
- **Protocol Analysis**: Examine communication protocols
- Flow Analysis: Track data movement patterns
- Content Inspection: Analyze payload data

## **Tools and Techniques:**

- Network Taps: Hardware monitoring
- Packet Analyzers: Software inspection
- Flow Collectors: Traffic summarization
- SIEM Systems: Correlation and alerting

## Question 5(c) OR [7 marks]

### **Explain digital forensic investigation process**

**Answer**: Digital forensic investigation follows systematic methodology to collect, preserve, analyze, and present digital evidence.

### **Investigation Process Phases:**



#### **Detailed Process:**

#### 1. Identification Phase:

- Evidence Location: Find potential digital evidence
- Scope Definition: Determine investigation boundaries
- Resource Planning: Allocate personnel and tools
- **Legal Considerations**: Obtain necessary warrants

#### 2. Preservation Phase:

- **Scene Securing**: Prevent evidence contamination
- System Isolation: Disconnect from networks
- Evidence Documentation: Photograph and catalog
- Chain of Custody: Begin documentation trail

#### 3. Collection Phase:

- Imaging Process: Create forensic copies
- **Hash Generation**: Ensure data integrity
- Metadata Capture: Record file properties
- Live Data Collection: Capture volatile information

#### 4. Examination Phase:

- Data Recovery: Retrieve deleted files
- File System Analysis: Examine storage structures
- Timeline Creation: Establish event sequence
- **Keyword Searching**: Find relevant content

### 5. Analysis Phase:

- Evidence Correlation: Link related findings
- Pattern Recognition: Identify trends
- Hypothesis Testing: Validate theories
- Timeline Analysis: Reconstruct events

### 6. Presentation Phase:

• Report Writing: Document findings

• Evidence Preparation: Organize for court

• Expert Testimony: Present in legal proceedings

• Visualization: Create demonstrative aids

### **Investigation Principles:**

| Principle     | Description                 | Importance          |
|---------------|-----------------------------|---------------------|
| Reliability   | Evidence must be dependable | Court acceptance    |
| Repeatability | Results can be reproduced   | Scientific validity |
| Integrity     | Data remains unchanged      | Legal admissibility |
| Documentation | Complete record keeping     | Audit trail         |

### **Key Challenges:**

• Encryption: Password-protected data

• Anti-Forensics: Evidence hiding techniques

• Volume: Large amounts of data

• Technology: Rapidly changing systems

#### **Best Practices:**

• Standard Procedures: Follow established protocols

• Tool Validation: Use tested forensic tools

• **Continuous Training**: Stay current with technology

• Quality Assurance: Peer review processes

### **Legal Framework:**

• Evidence Rules: Admissibility requirements

• Privacy Laws: Data protection compliance

• Chain of Custody: Unbroken documentation

• Expert Qualifications: Forensic examiner credentials

Mnemonic: "Digital Investigation: Identify, Preserve, Collect, Examine, Analyze, Present"