Data analysis

Hege Michiels

4/27/2023

ARM	shift	status	time	Z	age	gender	id		##
Control	0.00000		47.88922		•	•	1		
Control	0.00000	0	60.00000	1	55.21952	0	2	2	##
Experimental	0.00000	1	49.93390	0	58.12572	1	3	3	##
Control	34.24845	1	56.75231	1	53.51899	1	4	4	##
Experimental	0.00000	1	50.13366	0	52.67932	0	5	5	##
Control	0.00000	1	47.75965	1	55.69778	1	6	6	##

The following variables are needed in the dataset:

Z: indicating the treatment arm (with Z=1: control and Z=0: experimental)

time: right-censored survival time

status: indication whether (status = 1) or not (status = 0) the patient had an event

shift: possible time of treatment crossover from one treatment to the other, 0 if the patient did not cross over

Data

Overall survival

Adding an indicator for crossover

```
## Control Experimental ## 272 228
```

table(data\$ARM,data\$CO.indicator)

Patient pathway plot

Data analysis on Overall Survival endpoint

Treatment-policy estimand

```
## Additive Aalen Model
##
## Test for nonparametric terms
##
## Test for non-significant effects
##
               Supremum-test of significance p-value H_0: B(t)=0
##
   (Intercept)
                                         8.31
##
## Test for time invariant effects
##
                     Kolmogorov-Smirnov test p-value H_O:constant effect
## (Intercept)
                                       0.0256
                                                                     0.546
                       Cramer von Mises test p-value H_O:constant effect
##
##
   (Intercept)
                                       0.0108
##
## Parametric terms :
              Coef.
                         SE Robust SE
                                              P-val lower2.5% upper97.5%
                                          z
## const(Z) 0.00297 0.00112
                              0.00112 2.66 0.00777 0.000775
##
## aalen(formula = Surv(time, status) ~ const(Z), data = data)
```

Wald type standard error and confidence interval

```
## Additive Aalen Model
##
## Test for nonparametric terms
##
## Test for non-significant effects
##
               Supremum-test of significance p-value H_0: B(t)=0
## (Intercept)
                                        8.31
                                                                0
##
## Test for time invariant effects
##
                     Kolmogorov-Smirnov test p-value H O:constant effect
                                      0.0256
## (Intercept)
                       Cramer von Mises test p-value H_O:constant effect
##
                                      0.0108
## (Intercept)
                                                                    0.386
##
## Parametric terms :
                         SE Robust SE
                                         z P-val lower2.5% upper97.5%
             Coef.
## const(Z) 0.00297 0.00112 0.00112 2.66 0.00777 0.000775
##
##
    Call:
## aalen(formula = Surv(time, status) ~ const(Z), data = data)
##
                    Estimand
                                          Estimator Measure Value SE.type
## const(Z) Treatment policy Additive Hazards Model
                                                       beta 0.003
                                                                     Wald 0.001
                     LB
                           UB
## const(Z) 0.008 0.001 0.005
##
                     Estimand
## const(Z) Treatment policy Additive Hazards Model
## const(Z)1 Treatment policy Additive Hazards Model
##
                                                  Measure Value SE.type
## const(Z)
                                                     beta 0.003
                                                                    Wald 0.001
## const(Z)1 Relative risk of surviving (exp. vs control) 1.195
                                                                    Wald 0.080
                р
                      LB
## const(Z) 0.008 0.001 0.005
## const(Z)1 0.008 1.048 1.363
```

Score type standard error and confidence interval

Estimate β by minimizing the score equations

```
hazards = hazards.marginal(data)
beta = beta.estimate.itt(data=data,lower=-0.01,upper=0.01,hazards=hazards) #the lower and upper bounds
beta
```

[1] 0.002977041

Now we estimate the p-value

```
fit.ivsacim = ivsacim(time=data$time, event=data$status, instrument=data$Z, IV_valid = TRUE, treatment_
fit.ivsacim.by_prod = fit.ivsacim$by_prod
stime = fit.ivsacim$stime
p.value = p.itt.score(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,stime=stime,hazards=hazards)
p.value
## [1] 0.00520822
SE for \beta:
beta.se = beta.itt.se.function(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,beta.est=beta,hazards=
## [1] 0.001098524
Now we determine a 95% CI by minimising the quadratic difference between the p-value and 5%
LB = beta.bound.itt(lower=beta-10*beta.se,upper=beta,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,
UB = beta.bound.itt(lower=beta,upper=beta+10*beta.se,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,
##
                     Estimand
                                           Estimator
## const(Z) Treatment policy Additive Hazards Model
## const(Z)1 Treatment policy Additive Hazards Model
             Treatment policy Additive Hazards Model
## 11
             Treatment policy Additive Hazards Model
##
                                                   Measure Value SE.type
## const(Z)
                                                      beta 0.003
                                                                    Wald 0.001
## const(Z)1 Relative risk of surviving (exp. vs control) 1.195
                                                                    Wald 0.080
                                                      beta 0.003
                                                                   Score 0.001
             Relative risk of surviving (exp. vs control) 1.195
## 11
                                                                   Score 0.079
                      LB
## const(Z) 0.008 0.001 0.005
## const(Z)1 0.008 1.048 1.363
## 1
            0.005 0.001 0.005
## 11
             0.005 1.054 1.366
Using Instrumental Variables (g-estimation): method by Ying and Tchetgen Tchetgen 2022
(No baseline covariates are included)
library(ivsacim) #install this package first if needed
fit.ivsacim <- ivsacim(time=data$time, event=data$status, instrument=data$Z, IV_valid = TRUE, treatment
summary(fit.ivsacim)
## Instrumental Variables Structural Additive Cumulative Intensity Model with a Valid IV
## Test for non-significant exposure effect. H_0: B_D(t) = 0
```

```
##
##
            Supremum-test pval
  Exposure
##
##
##
  Goodness-of-fit test for constant effects model. H_O: B_D(t) = beta_D * t
##
            Supremum-test pval
##
                         0.114
##
##
   Constant effect model: B_D(t) = beta_D * t
##
                   coef se(coef) z-value p-value
##
                 0.0062 0.00193
## Exposure
                                    3.22 0.0013
```

```
p.value = summary(fit.ivsacim)$pval_beta_D
```

Hypothetical survival risk ratio over time:

Hypothetical estimand

##		Estimand	Estimator
##	const(Z)	Treatment policy	Additive Hazards Model
##	const(Z)1	Treatment policy	Additive Hazards Model
##	1	Treatment policy	Additive Hazards Model
##	11	Treatment policy	Additive Hazards Model
##	12	Hypothetical estimand	ivsacim
##	13	Hypothetical estimand	ivsacim
##			

Measure Value

```
## const(Z)
                                                                   beta 0.003
## const(Z)1
                           Relative risk of surviving (exp. vs control) 1.195
## 1
                           Relative risk of surviving (exp. vs control) 1.195
## 11
## 12
                                                                   beta 0.006
            Relative risk of surviving (always exp. vs always control) 1.450
## 13
             SE.type
                               р
                                    LB
                        SE
## const(Z)
               Wald 0.001 0.008 0.001 0.005
## const(Z)1
               Wald 0.080 0.008 1.048 1.363
## 1
              Score 0.001 0.005 0.001 0.005
## 11
              Score 0.079 0.005 1.054 1.366
               Wald 0.002 0.001 0.002 0.010
## 12
               Wald 0.168 0.001 1.156 1.819
## 13
```

Score (Sandwich estimator) β estimate:

```
fit.ivsacim.by_prod = fit.ivsacim$by_prod
stime = fit.ivsacim$stime
beta = beta.estimate.iv.score(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,lower=-0.01,upper=0.01,
beta
```

[1] 0.005421263

Next, we estimate the SE of β using the Sandwich estimator

```
beta.se = beta.iv.se(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,beta.est=fit.ivsacim.by_prod$beta.se
```

[1] 0.002738459

Now we estimate the p-value

```
p.value = p.iv.score(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,stime=stime)
p.value
```

[1] 0.02272636

Now we determine a 95% CI by minimising the quadratic difference between the p-value and 5%

```
LB = beta.bound.iv(lower=beta-10*beta.se,upper=beta,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,s
UB = beta.bound.iv(lower=beta,upper=beta+10*beta.se,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,s
```

```
##
                          Estimand
                                                Estimator
## const(Z)
                  Treatment policy Additive Hazards Model
## const(Z)1
                  Treatment policy Additive Hazards Model
                  Treatment policy Additive Hazards Model
## 1
## 11
                  Treatment policy Additive Hazards Model
## 12
             Hypothetical estimand
                                                  ivsacim
## 13
             Hypothetical estimand
                                                  ivsacim
## 14
             Hypothetical estimand
                                                  ivsacim
```

```
## 15
             Hypothetical estimand
                                                   ivsacim
##
                                                                  Measure Value
## const(Z)
                                                                     beta 0.003
                           Relative risk of surviving (exp. vs control) 1.195
## const(Z)1
## 1
                                                                     beta 0.003
## 11
                           Relative risk of surviving (exp. vs control) 1.195
## 12
                                                                     beta 0.006
             Relative risk of surviving (always exp. vs always control) 1.450
## 13
## 14
                                                                     beta 0.005
             Relative risk of surviving (always exp. vs always control) 1.384
## 15
##
             SE.type
                        SE
                               p
                                     LB
                Wald 0.001 0.008 0.001 0.005
## const(Z)
                Wald 0.080 0.008 1.048 1.363
## const(Z)1
               Score 0.001 0.005 0.001 0.005
## 1
## 11
               Score 0.079 0.005 1.054 1.366
## 12
                Wald 0.002 0.001 0.002 0.010
## 13
                Wald 0.168 0.001 1.156 1.819
               Score 0.003 0.023 0.001 0.009
## 14
               Score 0.227 0.023 1.052 1.759
## 15
```

Observed and hypothetical survival curves

Hypothetical survival curve

One-step estimator

1. Initial estimate for β using the IV estimator of Ying and Tchetgen Tchetgen

```
library(ivsacim)
fit.ivsacim <- ivsacim(time=data$time, event=data$status, instrument=data$Z, IV_valid = TRUE, treatment
summary(fit.ivsacim)
##
## Instrumental Variables Structural Additive Cumulative Intensity Model with a Valid IV
## Test for non-significant exposure effect. H_0: B_D(t) = 0
##
##
            Supremum-test pval
                         0.002
## Exposure
##
##
## Goodness-of-fit test for constant effects model. H_0: B_D(t) = beta_D * t
##
            Supremum-test pval
                         0.106
##
##
## Constant effect model: B_D(t) = beta_D * t
##
                   coef se(coef) z-value p-value
                 0.0062 0.00193
                                    3.22 0.0013
## Exposure
##
beta.start = fit.ivsacim$beta_D
stime = fit.ivsacim$stime
```

2. Calculate score function for every patient, evaluated in the inital β estimate and take the sample average.

```
#Z.formula=Z~1 #use this if you dont want to condition on baseline covariates
#L.values=c() #use this if you dont want to condition on baseline covariates
Z.formula=Z~gender+age #change the names of the baseline covariates
L.values=c("gender","age") #change the names of the baseline covariates
fit.ivsacim.by_prod = fit.ivsacim$by_prod
stime = fit.ivsacim$stime
#Sample average of the score function, evaluated in beta.start
av = av.function(fit.ivsacim.by_prod = fit.ivsacim.by_prod,data=data,beta.start=beta.start,stime=stime
av
```

[1] -0.008687571

3. Calculate the derivative of the score function for every patient, evaluated in the inital β estimate and take the sample average.

```
## [1] -8.231402
```

4. Update the initial β estimate

```
beta.update = beta.start - av/av.deriv
beta.update
```

[1] 0.005147617

```
beta = beta.update
```

Now we estimate the p-value

p.value = p.score(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,stime=stime,Z.formula=Z.formula,L.vp.value

[1] 0.04847756

SE for β :

beta.se = beta.se.function(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,beta.est=beta,Z.formula=Z.sbeta.se

[1] 0.001718241

Now we determine a 95% CI by minimising the quadratic difference between the p-value and 5%

LB = beta.bound(lower=beta-10*beta.se,upper=beta,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,stim
UB = beta.bound(lower=beta,upper=beta+10*beta.se,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,stim

Hypothetical estimand


```
##
                          Estimand
                                                 Estimator
## const(Z)
                  Treatment policy Additive Hazards Model
## const(Z)1
                  Treatment policy Additive Hazards Model
## 1
                  Treatment policy Additive Hazards Model
## 11
                  Treatment policy Additive Hazards Model
## 12
             Hypothetical estimand
                                                   ivsacim
## 13
             Hypothetical estimand
                                                   ivsacim
## 14
             Hypothetical estimand
                                                   ivsacim
## 15
             Hypothetical estimand
                                                   ivsacim
## 16
             Hypothetical estimand
                                                   Onestep
## 17
             Hypothetical estimand
                                                   Onestep
                                                                  Measure Value
##
## const(Z)
                                                                     beta 0.003
## const(Z)1
                           Relative risk of surviving (exp. vs control) 1.195
## 1
                                                                     beta 0.003
## 11
                           Relative risk of surviving (exp. vs control) 1.195
## 12
                                                                     beta 0.006
## 13
             Relative risk of surviving (always exp. vs always control) 1.450
## 14
                                                                     beta 0.005
## 15
             Relative risk of surviving (always exp. vs always control) 1.384
## 16
                                                                     beta 0.005
## 17
             Relative risk of surviving (always exp. vs always control) 1.361
##
             SE.type
                        SE
                               р
                                     LB
## const(Z)
                Wald 0.001 0.008 0.001 0.005
                Wald 0.080 0.008 1.048 1.363
## const(Z)1
## 1
               Score 0.001 0.005 0.001 0.005
## 11
               Score 0.079 0.005 1.054 1.366
## 12
                Wald 0.002 0.001 0.002 0.010
## 13
                Wald 0.168 0.001 1.156 1.819
## 14
               Score 0.003 0.023 0.001 0.009
## 15
               Score 0.227 0.023 1.052 1.759
## 16
               Score 0.002 0.048 0.000 0.009
## 17
               Score 0.140 0.048 1.001 1.718
```


Observed - Predicted

Observed

Hypothetical survival curve

One-step estimator with hazard

1. Initial estimate for β using the IV estimator of Ying and Tchetgen Tchetgen

```
library(ivsacim)
fit.ivsacim <- ivsacim(time=data$time, event=data$status, instrument=data$Z, IV_valid = TRUE, treatment
summary(fit.ivsacim)
##
## Instrumental Variables Structural Additive Cumulative Intensity Model with a Valid IV
##
## Test for non-significant exposure effect. H_0: B_D(t) = 0
##
##
            Supremum-test pval
## Exposure
##
##
##
  Goodness-of-fit test for constant effects model. H_O: B_D(t) = beta_D * t
##
            Supremum-test pval
##
                         0.109
##
  Constant effect model: B_D(t) = beta_D * t
##
                   coef se(coef) z-value p-value
                 0.0062 0.00193
                                    3.22 0.0013
## Exposure
##
```

```
beta.start = fit.ivsacim$beta_D
stime = fit.ivsacim$stime
```

2. Calculate score function for every patient, evaluated in the inital β estimate and take the sample average.

```
hazards = hazards.conditional(data,T.formula = T.formula)

fit.ivsacim.by_prod = fit.ivsacim$by_prod

stime = fit.ivsacim$stime

#Sample average of the score function, evaluated in beta.start

av = av.function.hazard(fit.ivsacim.by_prod = fit.ivsacim.by_prod,data=data,beta.start=beta.start,stime
av
```

[1] -0.009675167

3. Calculate the derivative of the score function for every patient, evaluated in the inital β estimate and take the sample average.

```
## [1] -8.252618
```

4. Update the initial β estimate

```
beta.update = beta.start - av/av.deriv
beta.update
```

```
## [1] 0.005030659
```

```
beta = beta.update
```

Now we estimate the p-value

```
p.value = p.score.hazard(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,stime=stime,Z.formula=Z.form p.value
```

[1] 0.007696374

SE for β :

```
beta.se = beta.se.function.hazard(fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=data,beta.est=beta,Z.for=beta.se
```

[1] 0.001749919

Now we determine a 95% CI by minimising the quadratic difference between the p-value and 5%

LB = beta.bound.hazard(lower=beta-10*beta.se,upper=beta,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=datube = beta.bound.hazard(lower=beta,upper=beta+10*beta.se,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=datube = beta.bound.hazard(lower=beta,upper=beta+10*beta.se,fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=datube = beta.bound.hazard(lower=beta,upper=beta+10*beta.se,fit.ivsacim.by_prod=fit.ivsacim.by_prod=fit.ivsacim.by_prod,data=datube = beta.bound.hazard(lower=beta,upper=beta+10*beta.se,fit.ivsacim.by_prod=fit.ivsaci

Hypothetical estimand

##		Estimand Estimator	
##	const(Z)	Treatment policy Additive Hazards Model	
##	const(Z)1	Treatment policy Additive Hazards Model	
##	1	Treatment policy Additive Hazards Model	
##	11	Treatment policy Additive Hazards Model	
##	12	Hypothetical estimand ivsacim	
##	13	Hypothetical estimand ivsacim	
##	14	Hypothetical estimand ivsacim	
##	15	Hypothetical estimand ivsacim	
##	16	Hypothetical estimand Onestep	
##	17	Hypothetical estimand Onestep	
##	18	Hypothetical estimand Onestep with hazard	
##	19	Hypothetical estimand Onestep with hazard	
##		Measure Value	
##	const(Z)	beta 0.003	
##	const(Z)1	Relative risk of surviving (exp. vs control) 1.195	
##	1	beta 0.003	
##	11	Relative risk of surviving (exp. vs control) 1.195	
##	12	beta 0.006	
##	13	Relative risk of surviving (always exp. vs always control) 1.450	
##	14	beta 0.005	
##	15	Relative risk of surviving (always exp. vs always control) 1.384	
##	16	beta 0.005	

```
Relative risk of surviving (always exp. vs always control) 1.361
## 18
                                                                    beta 0.005
## 19
             Relative risk of surviving (always exp. vs always control) 1.352
##
             SE.type
                        SE
                                    LB
                               р
## const(Z)
                Wald 0.001 0.008 0.001 0.005
## const(Z)1
                Wald 0.080 0.008 1.048 1.363
## 1
               Score 0.001 0.005 0.001 0.005
               Score 0.079 0.005 1.054 1.366
## 11
## 12
               Wald 0.002 0.001 0.002 0.010
               Wald 0.168 0.001 1.156 1.819
## 13
## 14
               Score 0.003 0.023 0.001 0.009
               Score 0.227 0.023 1.052 1.759
## 15
               Score 0.002 0.048 0.000 0.009
## 16
               Score 0.140 0.048 1.001 1.718
## 17
## 18
               Score 0.002 0.008 0.001 0.009
               Score 0.142 0.008 1.085 1.670
## 19
```

Observed and hypothetical survival curves

Hypothetical survival curve

Results on overall survival endpoint

