Circuitos Resistivos em Regime Estacionário

P2.1 - Determine I_x no circuito da figura 2.1.

Figura 2.1

P2.2 - Dado o circuito da figura 2.2 calcule I_1 , I_2 e V_X .

Figura 2.2

P2.3 – Qual deve ser o valor da resistência *R* de modo a ser percorrida por uma corrente 5 A com o sentido indicado na figura 2.3.

Figura 2.3

P2.4 - Determine a potência na resistência de 30 k Ω no circuito da figura 2.4.

Figura 2.4

- P2.5 Considere o circuito da figura 2.5. V_1 = 10 V, R_1 = 100 Ω , R_2 = 200 Ω e k = 300 Ω .
 - a) Quantos nós, ramos, malhas elementares e malhas tem o circuito?
 - b) Calcule I_1 , I_2 , I_3 e V_3 .

Figura 2.5

P2.6 - Determine R_{AB} no circuito da figura 2.6.

Figura 2.6

Programação

Semana	1ª aula		2ª aula	
Semana 2 (04/10 - 08/10)	E14, P2.2, P2.3	E15, P2.1, E17	P2.4, P2.5, E18	E19, E21, P2.6

Soluções

P2.1 – 4 mA

 $P2.2 - I_1 = 0.6 \text{ mA}$; $I_2 = 0.3 \text{ mA}$; $V_X = 24V$

 $\begin{array}{l} \text{P2.3} - 8.2~\Omega \\ \text{P2.4} - 1.2~\text{mW} \end{array}$

P2.5 - a) 3 nós, 4 ramos, 2 malhas elementares e 3 malhas; b) I1 = 25mA, I2 = 37.5mA, I3 = 12.5mA, V3=7.5V

 $P2.6 - 10 \text{ k}\Omega$