mid presentation

dSTOP:

Notification system estimating arrival of destination with multimodal approach

Presented by Team 9
Talibli Farid, Minhyo Jung, and Jisup Lee
Spring 2022, SNU CSE

Outline

- Refined Our Idea
- Key functions
 - Listen to the name of stops (Speech recognition)
 - Where we are (Location by GPS)
 - When the stop happens (IMU sensors)
- Architecture
- Challenges
 - Multimodal approach to combine sensors
- Remained schedule
- Outputs and how to evaluate

Refined our idea

Problems

- Although mobile devices have been highly developed in past decades,
- we still focus on the map applications when we're on a subway or bus to go to somewhere.
- It would be **useful** if there are more **reliable destination notification system**.

Current Solutions

- Map app will help us to find a path or ETA.
- For example, however, this may not be exact when in the underground. (no gps signal)

Target Users

- Who do not want to focus on the map app on a transportation.
- Newcomers in Korea or SNU (we may narrow down to the SNU for this project)

Refined our idea

- Our Approach is that
- It's a <u>Mobile Application</u> which is a notification system estimating arrival to the destination using multimodal approach
 - Multimodal inputs
 - User's destination
 - Ambient sounds
 - Real-time location information (gps, wifi, etc)
 - Accelerometer, etc.
 - Output
 - Alarm at right destination and on right time
 - Furthermore, naturally **pervasive interface** is what we aim for.

Refined our idea

Scenarios

- A user enter the destination (as the name of subway station or bus stop) on the app.
- Then app runs in the background to gather and analysis.
 - \blacksquare ambient sounds \rightarrow to extract the name of stops
 - location information such as gps, wifi. \rightarrow to infer exact location
 - \blacksquare patterns of IMU sensors \rightarrow how many times a vehicle stops
- Considering overall infos, app can classify the status quo; arrival or not.
- Finally, the app can notify a user based on those informations and inferences.

- We have 3 key functions to recognise the destination
 - Speech Recognition
 - Location Aware
 - Stop Recognition
- Then link them to analysis

• Speech Recognition

- Goal of this function is to detect and analyze the sound of station announcement.
- The system will start a continuous stream of audio to the speech-to-text API.
- \circ If the text stream returned from the model matches the station the user specified, one of the
 - two criteria for the stop recognition will be fulfilled.
- One possible API to use is <u>Google Cloud Speech API</u>
- In case if the API underperforms, we will need to:
 - Gather station announcement data
 - Deploy the model and connect it to the application

Location Aware

- Goal of this function is tracking the current location
- There are some open APIS that helps get the location information
 - Google Geolocation API, Kakao map Android API
 - Map view
 - Mark the location
 - Overlay (Lines, Circles, etc ...)

- Location Aware
 - Simple Example : KakaoMap and marking the location
 - Marked location with API and current location in KakaoMap is the same

• Stop Recognition

- Goal of this function is that a device should aware moving status a vehicle.
- Esp. in case of stops, how many times a vehicle pull up or not.
- This will help for the system to infer the status of a vehicle in our hypothesis.
- The recognition is based on an analysis signal stream of IMU sensors.
- Here are two tasks
 - Gather real-world data
 - Build classify algorithm

- Stop Recognition Progress
 - Data Acquisition & Processing (~ing)
 - Gather labelled accelerometer and angular velocity
 - Real-world mobile sensors data
 - iPhone 11 Matlab mobile (sample rate: 10Hz, duration: ~30 secs.)
 - records acc. and ang. velocity when subway and bus start and stop
 - Data Processing
 - Applying FFT to extract the patterns.

- Stop Recognition Data
 - Raw examples of start and stop case of Bus-Gwanak 02

Part of data list

Architecture

- Basic architecture for our application:
 - With Google Cloud Speech API:

- In Architecture
 - Build strong algorithm to combine multimodal approach
- For each key functions
 - Speech recognition
 - Location aware
 - Stop recognition

Speech recognition

- For Google Cloud Speech API, the accuracy of the speech recognition in realistic setting for a stream might not be as good.
- In case of a crowded bus, there might be too much noise.
- In case of making our own model, gathering enough data might be problematic.

- Location aware
 - The case when location information providing is interrupted
 - Measure the arrival time

• Stop Recognition

- Data stream from IMU sensor may vary in real-world situations
 - User's position and moving status.
 - Location of a device
 - Type of a vehicle (Bus and subway shows differently. Stop light in the road)
- Garbage in, garbage out problem
 - That is; if data is dirty, the inference will be not correct.

Remained schedule

• Detailed plan

Remained schedule

What we have done

- Refine Ideas, search necessary techniques
- Collect Multi-modal data
- Architecture design
- Processing collected data(In progress)

What we will do

- Application UX & UI design(All member)
- Implementation
 - Sound part(Farid)
 - Location part(Jisup)
 - Acceleration part(Minhyo)
- User Study(All member)

Outcome and how to evaluate it

- Final deliverable
 - A mobile application that:
 - Aids newcomers to SNU in finding their way around campus
 - Allows users to forget about navigation after entering public transportation
 - Is intuitive and easy to use for everyone

Evaluation

- Whether the application performs its role with few errors
- Whether one function can be replaced by other functions when it is stopped
- User satisfaction

Thank you!

• Q&A

