Exercise 1*

Consider the following labelled transition system.

- 1. Decide whether the state s satisfies the following formulae of Hennessy-Milner logic:
 - (a) $s \stackrel{?}{\models} \langle a \rangle t t$
 - (b) $s \models \langle b \rangle tt$
 - (c) $s \models [a] ff$
 - (d) $s \models [b] ff$
 - (e) $s \models [a]\langle b \rangle tt$
 - (f) $s \stackrel{?}{\models} \langle a \rangle \langle b \rangle tt$
 - (g) $s \stackrel{?}{\models} [a]\langle a \rangle [a][b]ff$
 - (h) $s \models \langle a \rangle (\langle a \rangle tt \wedge \langle b \rangle tt)$
 - (i) $s \stackrel{?}{\models} [a] (\langle a \rangle t t \vee \langle b \rangle t)$
 - (j) $s \stackrel{?}{\models} \langle a \rangle ([b][a]ff \wedge \langle b \rangle tt)$
 - (k) $s \models \langle a \rangle ([a](\langle a \rangle tt \wedge [b]ff) \wedge \langle b \rangle ff)$
- 2. Compute the following sets according to the denotational semantics for Hennessy-Milner logic.
 - [[a][b]ff] = ?
 - $[\langle a \rangle (\langle a \rangle t t \wedge \langle b \rangle t)] = ?$
 - [[a][a][b]ff] = ?
 - $\llbracket [a] (\langle a \rangle t t \vee \langle b \rangle t) \rrbracket = ?$

Solution of Exercise 1

- 1. The state s satisfies the following formulae of Hennessy-Milner logic:
 - (a) $s \models \langle a \rangle tt$
 - (b) $s \not\models \langle b \rangle tt$
 - (c) $s \not\models [a] ff$
 - (d) $s \models [b] ff$
 - (e) $s \not\models [a]\langle b \rangle tt$
 - (f) $s \models \langle a \rangle \langle b \rangle tt$
 - (g) $s \models [a]\langle a \rangle [a][b]ff$
 - (h) $s \models \langle a \rangle (\langle a \rangle t t \wedge \langle b \rangle t t)$
 - (i) $s \models [a](\langle a \rangle tt \vee \langle b \rangle tt)$
 - (j) $s \not\models \langle a \rangle ([b][a]ff \wedge \langle b \rangle t)$
 - (k) $s \not\models \langle a \rangle ([a](\langle a \rangle tt \wedge [b]ff) \wedge \langle b \rangle ff)$
- 2. The denotational semantics of the logical formulae is as follows:

$$\begin{split} \llbracket[a][b]ff\rrbracket &= [\cdot a \cdot] \llbracket[b]ff\rrbracket \\ &= [\cdot a \cdot] [\cdot b \cdot] \llbracket ff\rrbracket \\ &= [\cdot a \cdot] [\cdot b \cdot] \emptyset \\ &= [\cdot a \cdot] \{P \mid \forall P' . P \xrightarrow{b} P' \Rightarrow P' \in \emptyset\} \\ &= [\cdot a \cdot] \{s, s_3, s_2, s_4\} \\ &= \{P \mid \forall P' . P \xrightarrow{a} P' \Rightarrow P' \in \{s, s_3, s_2, s_4\}\} \\ &= \{s_1, s_2, s_3, s_4\} \end{split}$$

$$\begin{split} \llbracket[a][a][b]ff\rrbracket &= [\cdot a \cdot][\cdot a \cdot][\cdot b \cdot] \emptyset \\ &= [\cdot a \cdot][\cdot a \cdot] \{s, s_2, s_3, s_4\} \\ &= [\cdot a \cdot] \{s_1, s_2, s_3, s_4\} \\ &= \{s, s_1, s_2\} \end{split}$$

$$\begin{aligned}
& [[a](\langle a \rangle tt \vee \langle b \rangle tt)] = [\cdot a \cdot] [[\langle a \rangle tt \vee \langle b \rangle tt]] \\
&= [\cdot a \cdot] (\langle \cdot a \cdot \rangle Proc \cup \langle \cdot b \cdot \rangle Proc) \\
&= [\cdot a \cdot] \{s, s_1, s_2, s_3, s_4\} \\
&= \{s, s_1, s_2, s_3, s_4\}
\end{aligned}$$

Exercise 2

Find (one) labelled transition system with an initial state s such that it satisfies (at the same time) the following properties:

- $s \models \langle a \rangle (\langle b \rangle \langle c \rangle tt \wedge \langle c \rangle tt)$
- $s \models \langle a \rangle \langle b \rangle ([a]ff \wedge [b]ff \wedge [c]ff)$
- $s \models [a]\langle b\rangle([c]ff \land \langle a\rangle t)$

Solution of Exercise 2

One possible solution is as follows.

Exercise 3*

Consider the following labelled transition system.

It is true that $s \not\sim t$, $s \not\sim v$ and $t \not\sim v$. Find a distinguishing formula of Hennessy-Milner logic for the pairs

- \bullet s and t
- \bullet s and v
- \bullet t and v.

Solution of Exercise 3

Distinguishing HML-formulae are as follows.

- Let $F_1 = \langle a \rangle [b] \langle b \rangle t$. Then $s \models F_1$, but $t \not\models F_1$.
- Let $F_2 = \langle a \rangle [b] \langle a \rangle tt$. Then $s \models F_2$ but $v \not\models F_3$.
- Let $F_3 = \langle a \rangle \langle b \rangle (\langle a \rangle t t \wedge \langle b \rangle t)$. Then $t \not\models F_3$ but $v \models F_3$.

Exercise 4*

For each of the following CCS expressions decide whether they are strongly bisimilar and if no, find a distinguishing formula in Hennessy-Milner logic.

- 1. b.a.Nil + b.Nil and b.(a.Nil + b.Nil)
- 2. a.(b.c.Nil + b.d.Nil) and a.b.c.Nil + a.b.d.Nil
- 3. $a.Nil \mid b.Nil$ and a.b.Nil + b.a.Nil
- 4. $(a.Nil \mid b.Nil) + c.a.Nil$ and $a.Nil \mid (b.Nil + c.Nil)$

Home exercise: verify your claims in CAAL and check whether you found the same distinguishing formula as the tool.

Solution of Exercise 4

For each pair we provide a strong bisimulation containing it if they are strongly bisimilar, otherwise we show a distinguishing formula in Hennessy-Milner logic.

1. b.a.Nil + b.Nil and b.(a.Nil + b.Nil) are not bisimilar.

 $F_1 = [b]\langle b \rangle t$ is a distinguishing formula:

$$b.a.Nil + b.Nil \not\models F_1$$
 but $b.(a.Nil + b.Nil) \models F_1$.

2. a.(b.c.Nil + b.d.Nil) and a.b.c.Nil + a.b.d.Nil are not bisimilar.

 $F_2 = [a](\langle b \rangle \langle c \rangle t t \wedge \langle b \rangle \langle d \rangle t)$ is a distinguishing formula:

$$a.(b.c.Nil + b.d.Nil) \models F_2$$
 but $a.b.c.Nil + a.b.d.Nil \not\models F_2$.

3. $a.Nil \mid b.Nil$ and a.b.Nil + b.a.Nil are bisimilar.

Let A = a.Nil and B = b.Nil, then the following is a strong bisimulation containing the pair $(A \mid B, a.B + b.A)$ (note that this is exactly the pair $(a.Nil \mid b.Nil, a.b.Nil + b.a.Nil)$).

$$R = \{(A \mid B, a.B + b.A), (Nil \mid B, B), (A \mid Nil, A), (Nil, Nil)\}$$
.

4. $(a.Nil \mid b.Nil) + c.a.Nil$ and $a.Nil \mid (b.Nil + c.Nil)$ are not bisimilar.

 $F_3 = [a]\langle c \rangle tt$ is a distinguishing formula:

$$(a.Nil \mid b.Nil) + c.a.Nil \not\models F_3$$
 but $a.Nil \mid (b.Nil + c.Nil) \models F_3$.

Exercise 5 (optional)

Prove that for every Hennessy-Milner formula F and every state $p \in Proc$:

$$p \models F \quad \text{if and only if} \quad p \in \llbracket F \rrbracket \, .$$

Hint: use induction on the structure of the formula F.