MATH 2233 Differential Equations Chapter 2 First-Order Differential Equations

Section 2.2 Separable Equations

Goal of this section

- 1. understand what is a separable equation.
- 2. learn how to solve separable equations.

Example 1. Solve the differential equation

$$\frac{dy}{dx} = e^{3x+2y}.$$

<u>Definition of Separable Equations</u> If the right-hand side of the equation $\frac{dy}{dx} = f(x,y)$ can be expressed as

Example 2. Are the following equations separable?

$$\frac{dy}{dx} = \frac{2x + xy}{y^2 + 1}, \qquad \frac{dy}{dx} = 1 + xy$$

Method for Solving Separable Equations

To solve

$$\frac{dy}{dx} = g(x)p(y)$$

- 1. Multiply by dx and by h(y) = 1/p(y) to obtain
- 2. Integrate both side
- 3. If possible, solve the functional equation to obtain the explicit solution

Example 3. Is the differential equation separable? Find its solution.

$$y' = \frac{x - 5}{y^2}$$

$$\frac{dy}{dx} = \frac{y-1}{x+3}, \quad y(-1) = 0.$$

$$\frac{dy}{dx} = y^2 - 4.$$

$$\frac{dy}{dx} = \frac{6x^5 - 2x + 1}{\cos(y) + e^y}, \quad y(0) = 0.$$

MATH 2233 Differential Equations

Section 2.3 Linear Equations

Goal of this section

1. understand how to solve first-order linear equations.

Review. The general form of a first-order linear differential equation is

The **standard form** of the first-order equation is

Example 1. Find the solution of the differential equation

$$(4+x^2)\frac{dy}{dx} + 2xy = 4x.$$

Question: How to solve general first-order linear equations?

Method of Integrating Factors

Example 2. Solve the differential equation

$$\frac{dy}{dx} + \frac{1}{2}y = \frac{1}{2}e^{\frac{x}{3}}.$$

Method for Solving Linear Equations

Step 1. We write the equation in standard form

$$\frac{dy}{dx} + P(x)y = Q(x).$$

Step 2. Calculate the integrating factor

Step 3. Multiply

Step 4. Integrate

Example 3. Solve the differential equation

$$\frac{1}{x}\frac{dy}{dx} - \frac{2y}{x^2} = x\cos(x), \quad x > 0.$$

Example 4. (An equation is both linear and separable)

Solve the initial value problem

$$\frac{dy}{dx} + 2xy = 0, \quad y(0) = 2.$$

Method #1: Solve as a separable equation

Method #2: Solve as a linear equation

MATH 2233 Differential Equations

Section 2.4 Exact Equations

Goal of this section

- 1. understand what is an exact equation, and how to test for exactness.
- 2. understand how to solve exact equations.

Example 1. Solve the differential equation

$$2x + y^2 + 2xyy' = 0.$$

Definition of Exact Equations

Consider the differential equation

$$M(x,y) + N(x,y)y' = 0.$$

If we can identify a function F(x, y) such that

<u>Definition.</u> A differential equation M(x,y)+N(x,y)y'=0 is called an ______, if **Test for Exactness** The differential equation M(x,y) + N(x,y)y' = 0.is exact if and only if **Method for Solving Exact Equations Step 1.** If M(x,y)dx + N(x,y)dy = 0 is exact, then **Step 2.** To determine g(y), we take **Step 3.** Integrate

Step 4. The solution is implicitly given by

Example 2.	Solve the	e differential	eauation
LAUTIPIC 2.	DOLVE LILL	- aijjoi cittiai	cquation

$$(2xy - \sec^2(x))dx + (x^2 + 2y)dy = 0.$$

Remark

- As a check on our work, we observe that when we solve for $g^{\prime}(y)$, we must
- When constructing F(x,y), we can also

$$\frac{dy}{dx} = \frac{xy^2 - \cos(x)\sin(x)}{y(1-x^2)}, \quad y(0) = 2.$$

Example 4. Show that

$$(x + 3x^3 \sin(y))dx + (x^4 \cos(y))dy = 0$$

is not exact but multiplying this equations by the factor x^{-1} yields an exact equation. Use this fact to solve the equation.

MATH 2233 Differential Equations

Section 1.4 Numerical Approximation: Euler's Method

Goal of this section

- 1. understand how to use Euler's method to approximate solution of an IVP.
- 2. get familiar to computer program of Euler's Method.

Although the analytical techniques in Chapter 2 were useful for solving several 1st-order differential equations, the majority of the differential equations encountered in applications cannot be solved analytically. In this section, we introduce a numerical method for approximating the solution to an initial value problem for a first-order equation:

$$\frac{dy}{dx} = f(x,y), \qquad y(x_0) = y_0.$$

The method is called ______.

How to use tangent lines to approximate the solution $y = \phi(x)$?

Starting with the initial point (x_0, y_0) ,

The **Euler's Method** can be summarized by the recursive formulas:

$$x_{n+1} =$$

$$y_{n+1} =$$

Example 1. Use Euler's method with h=0.1 to approximate the solution to the initial value problem

$$y' = x\sqrt{y}, \quad y(1) = 4$$

at the points x=1.1, 1.2, and 1.3. Compare them with the corresponding values of the true solution.

$$y' = y, \quad y(0) = 1.$$

at the point x = 1, taking 1, 2, 4, 8, and 16 steps.

MATLAB Implementation of Euler's Method

• To test Example 2 with MATLAB, we write a "driver file"

```
%Example 1.4.2 in the Textbook
clc
%% Inputs
fun = @(x,y) y; % define a two-variable function.
x0 = 0; y0 = 1; % initial condition
xE = 1; % final
N = 8; % number of steps.
h = (xE-x0)/N; % step size
X = zeros(N+1,1); Y = zeros(N+1,1);
X(1) = x0; Y(1) = y0;
for i = 1:N
    X(i+1) = X(i) + h;
    Y(i+1) = Y(i) + h*fun(X(i),Y(i));
end
disp('
                                 True')
                      Euler
disp('---
trueY = exp(X);
disp([X,Y,trueY]);
%% Plot Solution
plot(X,Y,'*-','linewidth',2)
hold on
fplot(@(x) exp(x), [x0,xE],'r-','linewidth',2)
legend('Euler','True Solution','fontSize',18,'location','best')
title(['Euler Method for h = 1/',int2str(N)],'fontSize',18)
grid on
```

• Numerical Results

x	Euler	True
0	1.0000	1.0000
0.1250	1.1250	1.1331
0.2500	1.2656	1.2840
0.3750	1.4238	1.4550
0.5000	1.6018	1.6487
0.6250	1.8020	1.8682
0.7500	2.0273	2.1170
0.8750	2.2807	2.3989
1.0000	2.5658	2.7183