

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Question	Scheme	Marks
1. (a)	4	B1
(b)	$P(X=2) = 3 \times 0.2 \times 0.8^2$ $\left[= \frac{48}{125} = 0.384 \right]$ or $P(X=3) = 0.8^3$ $\left[= \frac{64}{125} = 0.512 \right]$	M1 (1)
	[X =] 3 is the mode	A1 (2)
(c)	$P(W_1 = 2) = \frac{e^{-4}4^2}{2}$ [=0.1465] and $P(X_1 = 2) = 3 \times 0.2 \times 0.8^2$ [= $\frac{48}{125}$ =0.384]	M1
	$P(W_1 \text{ and } X_1 = 2) = \frac{e^{-4}4^2}{2} \times (3 \times 0.2 \times 0.8^2) [= 0.1465 \times 0.384]$	M1
	= 0.05626564 awrt <u>0.0563</u>	A1 (3)
(d)	$X_1 = 0$ and $W_1 > 0$, $X_1 = 1$ and $W_1 > 1$, $X_1 = 2$ and $W_1 > 2$, $X_1 = 3$ and $W_1 > 3$	M1
	$0.008 \times (1 - 0.0183) + 0.096 \times (1 - 0.0916) + 0.384 \times (1 - 0.2381) + 0.512 \times (1 - 0.4335)$	M1M1
	= 0.677677 awrt <u>0.678</u>	A1 (4)
		(4) [10 marks]
	Notes	[======================================
(a)	B1 cao	
(b)	M1 valid attempt at either probability.	
(0)	A1 3 (M1 must be scored)	
	NB answer only with no method is M0A0	
(c)	1^{st} M1 both $P(W_1 = 2)$ Allow $(0.2381 - 0.0916)$ and $P(X_1 = 2)$	
	2 nd M1 Poisson probability × binomial probability. If no working shown these p	robabilities
	must be correct	
	A1 awrt 0.0563	
(d)	1 st M1 for listing at least 3 combinations. Implied by 2 nd M1.	
(u)	2 nd M1 for sum of at least 3 correct products	
	Condone consistent use of the tables for 3.5 or 4.5 rather than 4	
	3 rd M1 for a fully correct expression	
	eg $0.008 \times (0.9817) + 0.096 \times (0.9084) + 0.384 \times (0.7619) + 0.512 \times (0.5665)$	
	condone 0.9816 and 0.7618 Allow figures to 3sf for method or awrt 0.00785 + awrt 0.0872 + awrt 0.293 + awrt 0.290 (allow 0.29)	
	A1 awrt 0.678	
	Alternative:	
	$W_1 = 1$ and $X_1 = 0$, $W_1 = 2$ and $X_1 < 2$, $W_1 = 3$ and $X_1 < 3$, $W_1 \ge 4$	
	$0.0733 \times 0.008 + 0.1465 \times 0.104 + 0.1954 \times 0.488 + (1 - 0.4335)$	
	awrt 0.000586 + awrt 0.0152 + awrt 0.0954 + awrt 0.567	

Question	Scheme	Marks
2. (a)	$E(T) = \int_{0}^{4} \frac{1}{192} t(t^3 - 48t + 128) dt$	M1
	$= \frac{1}{192} \left[\frac{t^5}{5} - 16t^3 + 64t^2 \right]_0^4 \text{ or } \left[\frac{t^5}{960} - \frac{1}{12}t^3 + \frac{1}{3}t^2 \right]_0^4 \text{ oe}$	dM1
	$= \frac{1}{192} \left(\frac{4^5}{5} - 16(4^3) + 64(4^2) - 0 \right) = \frac{16}{15} \text{ min} \to 1 \text{ minute 4 seconds}$	A1
		(3)
(b)	P(call takes between 1 and 3 minutes) = $\int_{1}^{3} \frac{1}{192} (t^3 - 48t + 128) dt$	
	$ mor \left[\frac{t^4}{768} - \frac{1}{8}t^2 + \frac{2}{3}t \right]_1^3 \text{ oe} $	M1
	$= \frac{1}{192} \left(\left(\frac{3^4}{4} - 24(3^2) + 128(3) \right) - \left(\frac{1^4}{4} - 24(1^2) + 128(1) \right) \right) = \frac{7}{16} *$	dM1 A1*cso
		(3)
(c)	$C \sim B(256, \frac{7}{16}) \approx N(112, 63)$	M1 A1
	$P(C > 125) \approx P\left(Z > \frac{125.5 - 112}{\sqrt{63}}\right)$	M1M1
	P(Z > 1.70) = 1 - 0.9554 = 0.0446	A1
		(5)
	Notes	[11 marks]
(a)	1 st M1 for using $\int tf(t) dt$ ignore limits. $t^4 \to t^5$ or $t^2 \to t^3$ or $t \to t^2$ for at least one term	m, ignore
	coefficients. Implied by an answer of $\frac{16}{15}$ or 1 minute 4 seconds (allow 64) or aways	
	2 nd dM1 dep on previous M1 fully correct integration with limit of 4 and 0 or 4 substite. This mark is not implied by a correct answer. A1 the second M1 mark must be awarded 1 min 4 s (accept 64)	uted (204.8)
	NB an answer of $\frac{16}{15}$ or 1 minute 4 seconds or 64 or awrt 1.067 with no working ga	ains M1M0A0.
	1 st M1 attempt to integrate $\int f(t) dt$ $t^n \to t^{n+1}$ for at least one term. Ignore limits. If the	ney have
(b)	integrated $f(t)$ in part (a) and used this in part (b) we will allow this mark.	
	2 nd M1 (dep on 1 st M1) for use of correct limits. Must see substitution into their expression. If	
	integration correct allow $\frac{1}{192} \left(\left(\frac{81}{4} - 216 + 384 \right) - \left(\frac{1}{4} - 24 + 128 \right) \right)$ or $\frac{1}{192} \left(\frac{753}{4} - \frac{417}{4} \right)$	or $\frac{251}{256} - \frac{139}{256}$
	1 st A1* cso $\frac{7}{16}$ [= 0.4375] fully correct solution (correct integration and substitution)	. Answer is
(c)	given so both method marks must be awarded.	
	1 st M1 use or sight of Normal approximation with mean 112 1 st A1 correct mean and variance (condone 63^2 if used $\sqrt{63}$ in the standardisation)	
	2 nd M1 standardising using their mean and variance. Allow use of 124.5, 125, 125.5, 12	26, 126.5 or on
	the numerator 12.5, 13, 13.5, 14, 14.5	., 5.0 51 511
	3^{rd} M1 use of continuity correction 125 ± 0.5 Implied by numerator of 12.5 or 13.5 2^{nd} A1 awrt $0.0445/0.0446$ [calc 0.0444865]	
	[Exact binomial gives 0.0448518 and gains no marks]	

Question	Scheme	Marks
3. (a)		B1
	$\frac{19}{24}$	
		(1)
(b)	$P(R > 3.5) = \frac{-3.5 - (-5)}{19 - (-5)} + \frac{19 - 3.5}{19 - (-5)} = \frac{17}{24}$	M1, A1
	19 - (-5) $19 - (-5)$, 24	
		(2)
(c)		M1 A1
	0.5	M1 A1
	-5	
		(2)
(d)(i)	$P(R_1 > 10) = \frac{19 - 10}{19 - (-5)} \left[= \frac{9}{24} = 0.375 \right]$	
	$P(R_1 > 10) = \frac{19 - (-5)}{19 - (-5)} = \frac{24}{24} = 0.375$	M1
	$(9)^3$ 27	2.61
	$[P(R > 10)]^3 = \left(\frac{9}{24}\right)^3 = \frac{27}{512}$	M1 A1
		(3)
(ii)	$1 - [P(R < 10)]^3 = \frac{387}{512}$	
, ,	$1 - [P(R < 10)]^3 = \frac{1}{512}$	M1 A1
		(2)
	Notes	[10 marks]
(a)	B1 allow awrt 0.792	•
	(b) M1 sum of two regions from uniform distribution or $1 - \frac{3.5 - (-3.5)}{19 - (-5)} = 1 - \frac{7}{24}$ oe You	
(b)	17 (3) [21]	1 0 00 11100 / 10
	their denominator from (a)	
	A1 allow awrt 0.708	
	SC M1A0 for P(-3.5 < R < 3.5) = $\frac{7}{24}$ (awrt 0.292) or	
	for finding $P(R > 3.5) = \frac{31}{48}$ (awrt 0.646) and $P(R < -3.5) = \frac{1}{16}$ (0.0625)	
	10	
(c)	M1 straight line with increasing gradient. Allow a horizontal line to the right of	19
	and/or a horizontal line to the left of -5	and 1
	A1 starting at (-5, 0) and finishing at (19, 1) Need to be clear labels for -5, 19 to 0 may be labelled or implied by the x- axis	anu I.
(d) (i)		27 _{Van}
. , ,	1 st M1 for $P(R > 10)$ eg $1 - \frac{10 - (-5)}{19 - (-5)}$ no need to simplify. Implied by 0.375 or	$\frac{1}{512}$ 1 ou may
	use their denominator from (a)	
	2^{nd} M1 ["their P(R > 10)"] ³ They may use their denominator from (a) otherwi	se ft their $P(R)$
	> 10) only if it is clearly labelled.	
(ii)	A1 allow awrt 0.0527 M1 Use of $1 - p^3$ $0 (none are greater than 10cm from origin) or$	
(11)	$3p^2(1-p) + 3p(1-p)^2 + (1-p)$ $0 working needs to be shown$	
	A1 allow awrt 0.756	
	SC M1A0 for finding the P (exactly 1 is > 10cm) = $\frac{225}{512}$ = (0.439)	

Question	Scheme	Marks
4. (a)	[P(Y=0) < 0.05]	
	$(1-0.07)^n < 0.05$	M1
	$n\log(0.93) < \log(0.05)$	M1
	n > 41.28 $n = 42$	A1
		(3)
(b)	$H_{0:} p = 0.08$ $H_{1:} p \neq 0.08$	B1
	$X \sim B(75, 0.08) \rightarrow Po(6)$	M1
	P(X11) = 1 - P(X, 10)	M1
	= 1 - 0.9574 = 0.0426 [> 0.025]	A1
	Do not Reject H ₀ or not significant or 11 does not lie in the CR	dM1
	There is not significant evidence to suggest that the proportion of pears	A1
	weighing more than 180g has changed	
		(6)
		[9 marks]
	Notes	
(a)	1 st M1 For 0.93 ⁿ or 0.93 ⁴² or 0.93 ⁴¹	
	$2^{\text{nd}} \text{ M1 for } n \log (0.93) < \log (0.05) \text{ or } \log_{0.93} 0.05, n \text{ Allow} = \text{or } , \text{ condom}$	ne > or
	or $0.93^{42} = 0.0474$ or 0.0475 (min 4 dp) Implied by 41.28 or awrt 41.3	3
	A1 42 cao NB An answer of 42 gains 3/3	
	SC condone for M1 M0 A0 ($[e^{-3} =]0.04978$ (min 4dp) and $-0.07n = -3$)	
(b)	B1 both hypotheses correct (may use p or π but do not allow $p(x)$) Allow 8% of H_0 and H_1 correctly	connected to
	1 st M1 writing or using Poisson approximation with mean 6.	
	2^{nd} M1 for writing or using $1 - P(X, 10)$	
	or for a CR method (must give a CR) giving $P(X , 11) = 0.9799$ or $P(X12) = 0.0201$ Implied by awrt 0.0426 or correct CR	
	1^{st} A1 for 0.0426 or CR: X 12 ignore lower CR.	
	NB M1A1 for $P(X_{*}, 10) = 0.9574$ on its own	
	3 rd dM1 Independent of their hypotheses dependent on 2 nd M1 but A correct statement i.e. not significant/do not reject H ₀ /Not in CR/reject	H_1
	Do not allow non-contextual conflicting statements.	. 11
	2 nd A1 For a correct contextual statement. Need proportion oe and changed oe farmers belief (oe) is not supported (bold words)	Allow the
	Do not accept contradicting statements. No hypotheses is A0	
	NB Award d M1A1 for a correct contextual statement on its own SC1: Use of one-tailed test may score B0M1M1A1M1A0 for rejecting H ₀	
	SC2: Use of Binomial throughout max (3/6) B1M0M1A0dM1A0	
	SC3: normal approximation prob = 0.0277 (maximum 3 out of 6)	0.00
	B1 M0 M1 for writing or using $1 - P(X_n, 10.5)$ allow < implied by awrt 0	0.027/0.028 A0
	dM1A0	

Question	Scheme	Marks
5. (a)	X~Po(7.5)	B1
(i)	$P(X=10) = 0.8622 - 0.7764 = \frac{e^{-7.5}(7.5)^{10}}{10!} = 0.0858$ awrt <u>0.0858</u>	B1
(ii)	P(6, X, 11) = P(X, 11) - P(X, 5) [=0.9208 - 0.2414]	M1
	= 0.6794 awrt 0.679	A1
		(4)
(b)	Y = number of samples that contain 0 particles	
	$Y \sim B(12, p) \text{ or } B(12, e^{-0.15m}) \text{ or } B(12, e^{-\lambda})$	M1
	$[P(Y \dots 2) =] 1 - P(Y, 1) = 0.1184$	M1
	$P(Y, 1) = 0.8816 \rightarrow \text{ from tables } [p =] 0.05$	A1
	S = number of particles per m millilitres	
	$S \sim \text{Po}(0.15m)$	M1
	$P(S=0) = 0.05 \text{ or } e^{-0.15m} = "0.05"$	M1
	$-0.15m = \ln(0.05) \rightarrow m = 19.9715$ awrt 20.0	A1
		(6)
		[10 marks]
	Notes	
(a)	1 st B1 writing or using Po(7.5) May be implied by a correct probability	
(i)	2^{nd} B1 awrt 0.0858 [calc = 0.0858303]	
(ii)	M1 writing or using $P(X, 11) - P(X, 5)$	
<i>a</i> >	A1 awrt 0.0679 [calc = 0.06793222]	. 1. 1.1
(b)	1 st M1 writing or using B(12, p) Allow Binomial with $n = 12$ or B(12,) May 1 0.05	be implied by
	2^{nd} M1 for $1 - P(Y, 1) = 0.1184$ (or better) or $P(Y, 1) = 0.8816$ oe	
	eg $(1-p)^{12} + 12p (1-p)^{11} = 0.8816$ Implied by 0.05	
	1 st A1 0.05(seen)	
	3^{rd} M1 writing or using Po(0.15m) May be implied by $e^{-0.15m}$	
	4^{th} M1 ft their p (0 < p < 1) for an equation of the form $e^{-0.15m} = "0.05"$ (allow	$e^{-\lambda} = "0.05")$
	Allow $0.15m = 3$	
	2 nd A1 Allow 20 or awrt 20.0 Allow trial and error to solve their equation	

Question	Scheme	Marks
6. (a)	$\int_{0}^{2} 0.1x dx + \int_{2}^{4} kx(8-x) dx = \frac{31}{45}$	M1
	$\frac{\left[\frac{0.1x^2}{2}\right]_0^2 + k\left[4x^2 - \frac{x^3}{3}\right]_2^4 = \frac{31}{45}$	M1
	$0.2 + k\left(64 - \frac{64}{3} - (16 - \frac{8}{3})\right) = \frac{31}{45} \to k = \frac{1}{60}$	dM1 A1
(b)(i)	$a = \left[\left(1 - \frac{31}{45} \right) \div 2 = \right] \frac{7}{45}$	B1 (4)
(ii)	P(0, X, 5.5) = $\frac{31}{45}$ + "a"×1.5 = $\frac{83}{90}$	M1 A1
(c)	$\int_{0}^{x} 0.1t dt = \frac{0.1x^2}{2}$	B1 (3)
	$\int_{0}^{2} 0.1t dt + \int_{2}^{x} \frac{1}{60} t(8-t) dt, \qquad \frac{31}{45} + \int_{4}^{x} \frac{7}{45} dt$	M1, M1
	$\int_{0}^{x} 0.1t dt = \frac{0.1x^{2}}{2}$ $\int_{0}^{2} 0.1t dt + \int_{2}^{x} \frac{1}{60} t(8-t) dt, \qquad \frac{31}{45} + \int_{4}^{x} \frac{7}{45} dt$ $[F(x) =] \begin{cases} 0 & x < 0 \\ 0.05x^{2} & 0, x < 2 \\ \frac{1}{60} (4x^{2} - \frac{x^{3}}{3} - \frac{4}{3}) & 2, x < 4 \\ \frac{7}{45}x + \frac{1}{15} & 4, x < 6 \\ 1 & x \dots 6 \end{cases}$	B1 A1
	$ [F(x)] = \begin{cases} \frac{1}{60} (4x^2 - \frac{x}{3} - \frac{\pi}{3}) & 2, & x < 4 \\ \frac{7}{45}x + \frac{1}{15} & 4, & x < 6 \\ 1 & x 6 \end{cases} $	A1 (6)
	Notes	[13 marks]
(a)	1 st M1 sum of two integrals = $31/45$ (ignore limits) It may be equated to $31/45$ later working. Condone missing dx 2 nd M1 attempt at integration $x \rightarrow x^2$ or $x^2 \rightarrow x^3$ for at least one	in their
	3 rd dM1 dep on 1 st M1 being awarded for use of correct limits	
	A1 $k = \frac{1}{60}$ cao Allow 0.016 or equivalent exact value	
(b)(i)	$k = \frac{1}{60}$ with no working gains $4/4$ $k = \frac{1}{60}$ from $0.2 = 2k(8-2)$ gains M0M0M0A0	
	B1 $a = \frac{7}{45}$ cao allow 0.15 or equivalent exact value	
(ii)	M1 ft "their value of a " for $\frac{31}{45} + 1.5 \times "a$ " or $1 - 0.5 \times "a$ "	
(c)	A1 $\frac{83}{90}$ cao Allow 0.92 or equivalent exact value 1st B1 a correct integration of 2nd line of pdf if have + C must get $C = 0$ 1st M1 a correct method to find 3rd line of cdf Condone incorrect integration (allow k)	
	Allow $0.2 + \int_{2}^{x} \frac{1}{60} t(8-t) dt$ or $\int \frac{1}{60} t(8-t) dt + C$ and $f(2) = 0.2$	
	2 nd M1 a correct method to find 4th line of cdf Condone incorrect integration (allow a	1)
	Allow $\int \left(\frac{7}{45} \right) dt + C$ and $F(6) = 1$ but do not allow their $F(4) + \int_{4}^{x} \frac{7}{45} dt$	
	For the next 3 marks limits condone < for " and " for < andfor >	
	2 nd B1 1 st and 5 th lines correct with correct limits. Allow 1 range to be otherwise for the Must have consistent use of letter throughout for this mark	e limits,
	1st A1 3rd line correct with correct limits Allow equivalent un-simplified expressions	
	2 nd A1 4 th line correct with correct limits Allow equivalent un-simplified expressions	

Question	Scheme	Marks
7. (a)	$Y \sim B(20, p)$ $p = P(\text{sample contains counter with a 9 on it)}$	
	$p = \left(1 - \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8}\right) \text{ oe } \mathbf{or} \qquad \left(\frac{1}{10} \times \frac{9}{9} \times \frac{8}{8} \times 3\right) \text{ oe}$	M1A1
	or $\left(\frac{6}{10} \times \frac{5}{9} \times \frac{1}{8} \times 3 + \frac{6}{10} \times \frac{3}{9} \times \frac{1}{8} \times 6 + \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} \times 3\right)$ oe $\left[=\frac{3}{10}\right]$	WITAT
(i)	$E(Y) = 20 \times "\frac{3}{10}" [= 6]$	B1
(ii)	$Var(Y) = 20 \times "\frac{3}{10}" \times (1 - "\frac{3}{10}") = 4.2$	M1A1
(b)	(7.7.7)	(5)
(b)	(7,7,7) (7,7,8), [(7,8,7), (8,7,7)] (7,7,9), [(7,9,7), (9,7,7)]	B2
		(2)
(c)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 M1 M1
	$=\frac{2}{3}$ $=\frac{1}{3}$	A1 A1 (5)
	Notes	[Total 12]
(a)	1 st M1 For all methods condone missing ×3 and /or ×6 Allow $\frac{{}^{1}C_{1}{}^{9}C_{2}}{{}^{10}C_{3}}$ oe	
	Condone with replacement - condone missing ×3 and /or ×6	
	$1 - \left(\frac{9}{10}\right)^3 \text{or} \left(\frac{6}{10}\right)^2 \times \frac{1}{10} \times 3 + \frac{6}{10} \times \frac{3}{10} \times \frac{1}{10} \times 6 + \left(\frac{3}{10}\right)^2 \times \frac{1}{10} \times 3 + \dots \right] = 0.271$	
	1^{st} A1 A fully correct expression without replacement or 0.3 NB E(Y) = 6 implies the 1^{st} M1 1^{st} A1	
	B1 for 20 × probability – no need to calculate	
and (ii)	T (P) = T (20)	
(b)	2 nd A1 variance = 4.2 B1B1 all 3 correct (with none incorrect – ignore arrangements of the correct r	numbers)
(6)	(B1B0 any one correct and no incorrect or 2 or 3 correct and only one incorrect awarded in part (c) provided that they are clearly identified as having a median	ct)These can be
	More than one incorrect is B0B0	
(c)	B1 for identifying that the only possible medians are 7 and 8. Allow 9 if it has a probability of 0	
	1 st M1 correct expression for $P(M = 7)$ Implied by 2/3 or $P(M = 8)$ Implied by	1/3
	$P(M=8) = \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} + 3 \times \frac{6}{10} \times \frac{3}{9} \times \frac{2}{8} + 3 \times \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} + 6 \times \frac{6}{10} \times \frac{3}{9} \times \frac{1}{8}$	
	Condone with replacement $P(M=7) = \left(\frac{6}{10}\right)^3 + 3 \times \left(\frac{6}{10}\right)^2 \times \frac{3}{10} + 3 \times \left(\frac{6}{10}\right)^2 \times \frac{1}{10} = -\frac{3}{10}$	$\frac{81}{125} = 0.648$ or
	$P(M=8) = \left(\frac{3}{10}\right)^3 + 3 \times \frac{6}{10} \times \left(\frac{3}{10}\right)^2 + 3 \times \left(\frac{3}{10}\right)^2 \times \frac{1}{10} + 6 \times \frac{6}{10} \times \frac{3}{10} \times \frac{1}{10} = \frac{81}{250} = 0.324$	_
	2^{nd} M1 Total of the 2 probabilities for 7 and 8 =1 or a correct expression without for both $P(M = 7)$ and $P(M = 8)$ condone with replacement	out replacement
	$1^{\text{st}} \text{ A1 } P(M=7) = \frac{2}{3} \text{ oe } 2^{\text{nd}} \text{ A1 } P(M=8) = \frac{1}{3} \text{ oe}$	