ASHR ARMA-X Analysis

Contents

\mathbf{C}	SI 300 China Univariate ARMA-X Models		00 China Univariate ARMA-X Models		0 China Univariate ARMA-X Models	
	Tweet Dummy as Exogenous	2				
	Tweet Count as Exogenous	6				
	Tariff as Exogenous	10				
	Trade Mention as Exogenous	14				
	China Mention as Exogenous	18				
	Positive Vibe as Exogenous	22				
	Negative Vibe as Exogenous	26				

	Model 1
ar1	0.9820***
	(0.0029)
ma1	-0.8749^{***}
	(0.0088)
$dummy_lag_0$	0.0000**
	(0.0000)
$dummy_lag_1$	0.0000
	(0.0000)
$dummy_lag_2$	0.0000
	(0.0000)
AIC	-255919.4761
AICc	-255919.4719
BIC	-255872.0645
Log Likelihood	127965.7380
Num. obs.	19969
*** n < 0.001: ** n < 0.0	0.1: *n < 0.05

p < 0.001; **p < 0.01; *p < 0.05

Table 1: ARMAX Model Results

CSI 300 China Univariate ARMA-X Models

Here we try various specifications with multiple variables to see what comes out.

Tweet Dummy as Exogenous

```
#auto.armax selects the lowest AIC value given r (exogenous variable lags)
res1 = auto.armax(data$ASHR_vol,xreg=data$dummy,nb.lags=2,
                latex=T, max.p = 6, max.q = 6, max.d=0)
```

```
#armax enables a custom armax specification with p,q,r
res2 = armax(data$ASHR_vol, xreg=data$dummy, nb.lags=2,
                  p=5, q=0, d=0, latex=T)
```

```
#auto.armax.r selects the lowest AIC checking all 3 p,q,r values
res3 = auto.armax.r(data$ASHR_vol, x=data$dummy,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
```

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20
irf.plot(res1,nb.periods)
```

	Model 1
ar1	0.2927***
	(0.0071)
ar2	0.0828***
	(0.0073)
ar3	0.0534^{***}
	(0.0073)
ar4	0.0684^{***}
	(0.0073)
ar5	0.0909***
	(0.0073)
intercept	0.0001
$dummy_lag_0$	0.0000^{***}
	(0.0000)
$dummy_lag_1$	0.0000
	(0.0000)
$dummy_lag_2$	0.0000
	(0.0000)
AIC	-255731.1908
AICc	-255731.1798
BIC	-255652.1715
Log Likelihood	127875.5954
Num. obs.	19969
*** p < 0.001: ** p < 0.0	$11 \cdot *n < 0.05$

 $^{^{**}}p < 0.001; \, ^{**}p < 0.01; \, ^{*}p < 0.05$

Table 2: ARMAX Model Results

	Model 1
ar1	0.9910***
	(0.0014)
ma1	-0.7445^{***}
	(0.0072)
ma2	-0.1387^{***}
	(0.0088)
ma3	-0.0470***
	(0.0072)
intercept	0.0001
dummy_lag_0	0.0000
AIC	-256599.7623
AICc	-256599.7567
BIC	-256544.4480
Log Likelihood	128306.8811
Num. obs.	19971
***n < 0.001: **n < 0.0	01·*n < 0.05

p < 0.001; p < 0.01; p < 0.01; p < 0.05

Table 3: ARMAX selected by AIC $\,$

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

Tweet Count as Exogenous

```
\#auto.armax selects the lowest AIC value given r (exogenous variable lags)
res1 = auto.armax(data$ASHR_vol,xreg=data$N,nb.lags=2,
                latex=T, max.p = 6, max.q = 6, max.d=0)
```

```
#armax enables a custom armax specification with p,q,r
res2 = armax(data$ASHR_vol, xreg=data$N, nb.lags=2,
                  p=5, q=0, d=0, latex=T)
```

```
#auto.armax.r selects the lowest AIC checking all 3 p,q,r values
res3 = auto.armax.r(data$ASHR_vol, x=data$N,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
```

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20
irf.plot(res1,nb.periods)
```

	Model 1
ar1	0.3092***
	(0.0075)
ar2	0.0926***
	(0.0074)
ar3	0.0657***
	(0.0075)
ar4	0.0809***
	(0.0073)
ar5	0.1049***
	(0.0065)
N_{lag_0}	0.0000
	(0.0000)
N_{lag_1}	0.0000
	(0.0000)
N_{lag_2}	0.0000
	(0.0000)
AIC	-255345.1057
AICc	-255345.0966
BIC	-255273.9882
Log Likelihood	127681.5528
Num. obs.	19969
*** n < 0.001, ** n < 0.0	01. *n < 0.05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 4: ARMAX Model Results

	Model 1
4	
ar1	0.2931***
	(0.0080)
ar2	0.0802***
	(0.0076)
ar3	0.0535^{***}
	(0.0077)
ar4	0.0680^{***}
	(0.0073)
ar5	0.0907***
	(0.0118)
intercept	0.0001
3	0.0000
$N_{lag}0$	0.0000
	(0.0000)
N_lag_1	0.0000
	(0.0000)
N_{lag_2}	-0.0000
	(0.0000)
AIC	-255638.6089
AICc	-255638.5979
BIC	-255559.5895
Log Likelihood	127829.3044
Num. obs.	19969
*** -0.001 ** -0.0	24 *

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 5: ARMAX Model Results

	Model 1	
ar1	0.9909***	
	(0.0014)	
ma1	-0.7439^{***}	
	(0.0072)	
ma2	-0.1410^{***}	
	(0.0087)	
ma3	-0.0452^{***}	
	(0.0072)	
intercept	0.0001	
N_{lag_0}	0.0000	
AIC	-256508.5319	
AICc	-256508.5263	
BIC	-256453.2176	
Log Likelihood	128261.2659	
Num. obs.	19971	
*** n < 0.001: ** n < 0.01: * n < 0.05		

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 6: ARMAX selected by AIC

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

Tariff as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20

irf.plot(res1,nb.periods)
```

	Model 1
ar1	0.9900***
	(0.0015)
ma1	-0.7563***
	(0.0070)
ma2	-0.1692^{***}
	(0.0069)
intercept	0.0002***
	(0.0000)
$tariff_lag_0$	0.0000
	(0.0000)
$tariff_lag_1$	0.0000
	(0.0000)
$tariff_lag_2$	-0.0000
	(0.0000)
AIC	-255927.0698
AICc	-255927.0626
BIC	-255863.8543
Log Likelihood	127971.5349
Num. obs.	19969
*** - < 0.001 ** - < 0.4	21 * -0.05

***p < 0.001; **p < 0.01; *p < 0.05

Table 7: ARMAX Model Results

	Model 1
ar1	0.2907***
	(0.0070)
ar2	0.0796***
	(0.0073)
ar3	0.0507^{***}
	(0.0073)
ar4	0.0651***
	(0.0073)
ar5	0.0887***
	(0.0070)
intercept	0.0002***
	(0.0000)
$tariff_lag_0$	0.0000
	(0.0000)
$tariff_lag_1$	0.0000
	(0.0000)
$tariff_lag_2$	0.0000
	(0.0000)
AIC	-255036.7200
AICc	-255036.7090
BIC	-254957.7006
Log Likelihood	127528.3600
Num. obs.	19969
***	01 * . 0 05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 8: ARMAX Model Results

	Model 1	
ar1	0.9913***	
	(0.0013)	
ma1	-0.7508***	
	(0.0072)	
ma2	-0.1387^{***}	
	(0.0088)	
ma3	-0.0429^{***}	
	(0.0073)	
intercept	0.0002^{***}	
	(0.0000)	
$tariff_lag_0$	0.0000	
	(0.0000)	
AIC	-255990.0623	
AICc	-255990.0567	
BIC	-255934.7481	
Log Likelihood	128002.0312	
Num. obs.	19971	
*** $p < 0.001$: ** $p < 0.01$: * $p < 0.05$		

^{***} p < 0.001; ** p < 0.01; *p < 0.05

Table 9: ARMAX selected by AIC

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

Trade Mention as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20

irf.plot(res1,nb.periods)
```

	Model 1
ar1	0.9900***
	(0.0015)
ma1	-0.7555***
	(0.0070)
ma2	-0.1703^{***}
	(0.0069)
intercept	0.0002***
	(0.0000)
$trade_lag_0$	0.0000**
	(0.0000)
$trade_lag_1$	-0.0000
	(0.0000)
$trade_lag_2$	0.0000
	(0.0000)
AIC	-255946.3538
AICc	-255946.3466
BIC	-255883.1383
Log Likelihood	127981.1769
Num. obs.	19969
	24

***p < 0.001; **p < 0.01; *p < 0.05

Table 10: ARMAX Model Results

	Model 1
ar1	0.2916***
	(0.0070)
ar2	0.0787***
	(0.0073)
ar3	0.0502^{***}
	(0.0073)
ar4	0.0661^{***}
	(0.0073)
ar5	0.0881***
	(0.0071)
intercept	0.0002^{***}
	(0.0000)
$trade_lag_0$	0.0000**
	(0.0000)
$trade_lag_1$	-0.0000
	(0.0000)
$trade_lag_2$	0.0000
	(0.0000)
AIC	-255055.5611
AICc	-255055.5501
BIC	-254976.5418
Log Likelihood	127537.7806
Num. obs.	19969

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 11: ARMAX Model Results

	Model 1
ar1	0.9914***
	(0.0013)
ma1	-0.7494^{***}
	(0.0072)
ma2	-0.1406^{***}
	(0.0087)
ma3	-0.0427^{***}
	(0.0073)
intercept	0.0002***
	(0.0000)
$trade_lag_0$	0.0000**
	(0.0000)
AIC	-256004.3080
AICc	-256004.3024
BIC	-255948.9937
Log Likelihood	128009.1540
Num. obs.	19971
***n < 0.001 · **n < 0.01 · *n < 0.05	

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 12: ARMAX selected by AIC

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

China Mention as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20

irf.plot(res1,nb.periods)
```

	Model 1
ar1	0.9900***
	(0.0015)
ma1	-0.7563^{***}
	(0.0070)
ma2	-0.1697^{***}
	(0.0069)
intercept	0.0002^{***}
	(0.0000)
$china_lag_0$	0.0000**
	(0.0000)
$china_lag_1$	0.0000
	(0.0000)
$china_lag_2$	0.0000
	(0.0000)
AIC	-255947.4425
AICc	-255947.4352
BIC	-255884.2270
Log Likelihood	127981.7212
Num. obs.	19969
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 13: ARMAX Model Results

	Model 1
ar1	0.2909***
	(0.0070)
ar2	0.0795***
	(0.0073)
ar3	0.0507^{***}
	(0.0073)
ar4	0.0655^{***}
	(0.0073)
ar5	0.0889***
	(0.0071)
intercept	0.0002***
	(0.0000)
$china_lag_0$	0.0000**
	(0.0000)
$china_lag_1$	0.0000
	(0.0000)
$china_lag_2$	-0.0000
	(0.0000)
AIC	-255054.9774
AICc	-255054.9663
BIC	-254975.9580
Log Likelihood	127537.4887
Num. obs.	19969

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 14: ARMAX Model Results

	Model 1
ar1	0.9915***
	(0.0013)
ma1	-0.7509^{***}
	(0.0072)
ma2	-0.1383^{***}
	(0.0088)
ma3	-0.0434^{***}
	(0.0073)
intercept	0.0002***
	(0.0000)
$china_lag_0$	0.0000^{**}
	(0.0000)
AIC	-256010.2273
AICc	-256010.2217
BIC	-255954.9130
Log Likelihood	128012.1137
Num. obs.	19971
*** $n < 0.001 \cdot **n < 0.01 \cdot *n < 0.05$	

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^{*}p < 0.05$

Table 15: ARMAX selected by AIC

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

Positive Vibe as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20

irf.plot(res1,nb.periods)
```

	Model 1
ar1	0.9892***
	(0.0016)
ma1	-0.7522***
	(0.0070)
ma2	-0.1708***
	(0.0070)
intercept	0.0001***
_	(0.0000)
prop_positive_lag_0	0.0001***
	(0.0000)
prop_positive_lag_1	0.0000*
	(0.0000)
prop_positive_lag_2	0.0000
	(0.0000)
AIC	-256149.5460
AICc	-256149.5387
BIC	-256086.3305
Log Likelihood	128082.7730
Num. obs.	19969
*** - < 0.001 ** - < 0.01 * - <	0.05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 16: ARMAX Model Results

	Model 1
ar1	0.2915***
	(0.0070)
ar2	0.0787^{***}
	(0.0073)
ar3	0.0505^{***}
	(0.0073)
ar4	0.0668***
	(0.0073)
ar5	0.0882***
	(0.0071)
intercept	0.0001***
	(0.0000)
prop_positive_lag_0	0.0001***
	(0.0000)
prop_positive_lag_1	0.0000***
	(0.0000)
prop_positive_lag_2	0.0000
	(0.0000)
AIC	-255318.5205
AICc	-255318.5095
BIC	-255239.5012
Log Likelihood	127669.2603
Num. obs.	19969

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 17: ARMAX Model Results

	Model 1
ar1	0.9910***
	(0.0014)
ma1	-0.7463^{***}
	(0.0072)
ma2	-0.1410^{***}
	(0.0087)
ma3	-0.0438^{***}
	(0.0073)
intercept	0.0001***
	(0.0000)
prop_positive_lag_0	0.0001***
	(0.0000)
AIC	-256208.9107
AICc	-256208.9050
BIC	-256153.5964
Log Likelihood	128111.4553
Num. obs.	19971
***n < 0.001, **n < 0.01, *n < 0.05	

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 18: ARMAX selected by AIC

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

Negative Vibe as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20

irf.plot(res1,nb.periods)
```

	Model 1
ar1	0.9901***
	(0.0015)
ma1	-0.7551***
	(0.0070)
ma2	-0.1707^{***}
	(0.0069)
intercept	0.0001***
	(0.0000)
$prop_negative_lag_0$	0.0001^{***}
	(0.0000)
$prop_negative_lag_1$	0.0000
	(0.0000)
$prop_negative_lag_2$	0.0000
	(0.0000)
AIC	-256009.0491
AICc	-256009.0419
BIC	-255945.8336
Log Likelihood	128012.5245
Num. obs.	19969

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 19: ARMAX Model Results

	Model 1
ar1	0.2925***
	(0.0070)
ar2	0.0804***
	(0.0073)
ar3	0.0506^{***}
	(0.0074)
ar4	0.0650^{***}
	(0.0073)
ar5	0.0900***
	(0.0071)
intercept	0.0001^{***}
	(0.0000)
$prop_negative_lag_0$	0.0001^{***}
	(0.0000)
$prop_negative_lag_1$	0.0000
	(0.0000)
$prop_negative_lag_2$	-0.0000
	(0.0000)
AIC	-255118.7457
AICc	-255118.7346
BIC	-255039.7263
Log Likelihood	127569.3728
Num. obs.	19969

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 20: ARMAX Model Results

	Model 1
ar1	0.9915***
	(0.0013)
ma1	-0.7488***
	(0.0072)
ma2	-0.1400^{***}
	(0.0087)
ma3	-0.0440^{***}
	(0.0073)
intercept	0.0001***
	(0.0000)
$prop_negative_lag_0$	0.0001***
	(0.0000)
AIC	-256073.7682
AICc	-256073.7625
BIC	-256018.4539
Log Likelihood	128043.8841
Num. obs.	19971
0.001 0.01	

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 21: ARMAX selected by AIC $\,$

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

