The Constructive Cost Model (COCOMO)

Model proposed by B. W. Boehm's through his book Software Engineering Economics in 1981

COCOMO

Mode	Project size Nature of Project		Innovation	Deadline of the project	Development Environment	
Organic	Typically 2-50 KLOC	Small size project, experienced developers in the familiar environment. For example, pay roll, inventory projects etc.	Little	Not tight	Familiar & In house	
Semi detached	Typically 50-300 KLOC	Medium size project, Medium size team, Average previous experience on similar project. For example: Utility systems like compilers, database systems, editors etc.	Medium	Medium	Medium	
Embedded	Typically over 300 KLOC	Large project, Real time systems, Complex interfaces, Very little previous experience. For example: ATMs, Air Traffic Control etc.	Significant	Tight	Complex Hardware/ customer Interfaces required	

The comparison of three COCOMO modes

Basic Model

Basic COCOMO model takes the form

$$E = a_b (KLOC)^{b_b}$$

$$D = c_b(E)^{d_b}$$

where E is effort applied in Person-Months, and D is the development time in months. The coefficients a_b , b_b , c_b and d_b are given in table 4.

Software Project	a _b	b _b	C _b	d _b
Organic	2.4	1.05	2.5	0.38
Semidetached	3.0	1.12	2.5	0.35
Embedded	3.6	1.20	2.5	0.32

Table 4: Basic COCOMO coefficients

When effort and development time are known, the average staff size to complete the project may be calculated as:

Average staff size
$$(SS) = \frac{E}{D} Persons$$

When project size is known, the productivity level may be calculated as:

Productivity
$$(P) = \frac{KLOC}{E} KLOC / PM$$

Example

Suppose that a project was estimated to be 400 KLOC. Calculate the effort and development time for each of the three modes i.e., organic, semidetached and embedded.

Solution

The basic COCOMO equation take the form:

$$E = a_b (KLOC)^{b_b}$$

$$D = c_b (KLOC)^{d_b}$$

Estimated size of the project = 400 KLOC

(i) Organic mode

$$E = 2.4(400)^{1.05} = 1295.31 \text{ PM}$$

$$D = 2.5(1295.31)^{0.38} = 38.07 M$$

(ii)Semidetached mode

$$E = 3.0(400)^{1.12} = 2462.79 \text{ PM}$$

$$D = 2.5(2462.79)^{0.35} = 38.45 M$$

(iii)Embedded mode

$$E = 3.6(400)^{1.20} = 4772.81 \text{ PM}$$

$$D = 2.5(4772.8)^{0.32} = 38 M$$

Example:

A project size of 200 KLOC is to be developed. Software development team has average experience on similar type of projects. The project schedule is not very tight. Calculate the effort, development time, average staff size and productivity of the project.

The semi-detached mode is the most appropriate mode; keeping in view the size, schedule and experience of the development team.

$$E = 3.0(200)^{1.12} = 1133.12 \text{ PM}$$

$$D = 2.5(1133.12)^{0.35} = 29.3 \text{ PM}$$

Average staff size
$$(SS) = \frac{E}{D} Persons$$

$$=\frac{1133.12}{29.3}=38.67$$
 Persons

Average staff size
$$(SS) = \frac{E}{D} Persons$$

$$=\frac{1133.12}{29.3}=38.67$$
 Persons

Intermediate Model

Cost drivers

- (i) Product Attributes
 - ➤ Required s/w reliability (RELY)
 - ➤ Size of application database (DATA)
 - ➤ Complexity of the product (CPLX)
- (ii) Hardware Attributes
 - ➤ Run time performance constraints (TIME)
 - ➤ Memory constraints (STORE)
 - ➤ Virtual machine volatility (VIRT)
 - Turnaround time (TURN)

(iii)Personal Attributes

- ➤ Analyst capability
- ➤ Programmer capability
- ➤ Application experience
- ➤ Virtual m/c experience
- ➤ Programming language experience

(iv)Project Attributes

- ➤ Modern programming practices
- ➤ Use of software tools
- ➤ Required development Schedule

Multipliers of different cost drivers

Cost Drivers	RATINGS							
	Very low	Low	Nominal	High	Very high	Extra high		
Product Attributes								
RELY	0.75	0.88	1.00	1.15	1.40	124-		
DATA		0.94	1.00	1.08	1.16	334		
CPLX	0.70	0.85	1.00	1.15	1.30	1.65		
Computer Attributes		4000000000		300000000000000000000000000000000000000				
TIME	620	S - 31	1.00	1.11	1.30	1.66		
STOR	574	500	1.00	1.06	1.21	1.56		
VIRT	-	0.87	1.00	1.15	1.30	(37		
TURN		0.87	1.00	1.07	1.15	155		

Multipliers of different cost drivers

Cost Drivers	RATINGS							
	Very low	Low	Nominal	High	Very high	Extra high		
Personnel Attributes								
ACAP	1.46	1.19	1.00	0.86	0.71	577.		
AEXP	1.29	1.13	1.00	0.91	0.82	**		
PCAP	1.42	1.17	1.00	0.86	0.70	1221		
VEXP	1.21	1.10	1.00	0.90	57%	223		
LEXP	1.14	1.07	1.00	0.95		250		
Project Attributes					6.			
MODP	1.24	1.10	1.00	0.91	0.82	221		
TOOL	1.24	1.10	1.00	0.91	0.83	223		
SCED	1.23	1.08	1.00	1.04	1.10	570		

The multiplying factors for all 15 cost drivers are multiplied to get the effort adjustment factor (EAF)

Intermediate COCOMO equations

$$E = a_i (KLOC)^{b_i} * EAF$$
$$D = c_i (E)^{d_i}$$

Project	a _i	b _i	C _i	d _i
Organic	3.2	1.05	2.5	0.38
Semidetached	3.0	1.12	2.5	0.35
Embedded	2.8	1.20	2.5	0.32

Coefficients for intermediate COCOMO