SQL on Hadoop - Analyzing Big Data with Hive

Ahmad Alkilani www.pluralsight.com

Introduction to Hadoop

Ahmad Alkilani www.pluralsight.com

Outline

- Why Hadoop? Motivation
- Hadoop architecture and distributed computing
- HDFS
- MapReduce
- Getting up and running

Motivation for Hadoop

- ~40 Billion web Pages x 30 KB each = Petabyte
- Today's average disk speed reads about 120 MB/sec
- Little over 3 months to read the web!
- Approximately 1,000 drives to store and use

Distributed Computing Challenges

- Scale out with distributed computing
- Hadoop based on Google's implementation
- Volume, Velocity, and Variety
- Recover from failures
- Shared nothing architecture
- Hadoop file system (HDFS)
- MapReduce

Hadoop File System (HDFS)

MapReduce

Word Count Example

<pre>String line = value.toString();</pre>
<pre>StringTokenizer tokenizer = new StringTokenizer(line);</pre>
<pre>while (tokenizer.hasMoreTokens())</pre>
{
<pre>word.set(tokenizer.nextToken());</pre>
<pre>context.write(word, one);</pre>
}
,

Key	Value
This	1
This	1
the	1
the	1
second	1
first	1

Key	Value
line	1
line	1
is	1
is	1

Reducer A

first 1 second 1 the 2

This 2

Reducer B

is 2

line 2

int sum = 0;
for (IntWritable val : values)
{ sum += val.get(); }
context.write(key, new IntWritable(sum));

Basic commands using HDFS

Hadoop Demo

Environment Setup

- Course focus is on development
- Use a Virtual Machine image to follow along with examples
- Pseudo distributed sandbox
 - Replication factor set to 1
 - Name Node, Job Tracker, Data Node, and Task Tracker on a single machine
- Demos using Hortonworks' HDP sandbox
 - Hive 0.10, 0.11 and above

Summary

- Distributed computing and scaling out to solve big data problems
- Key system characteristics
 - Built to handle failures
 - Move processing to the data
 - Failures are inevitable. Embracing this allows for solutions built on commodity servers

MapReduce

- Mapper assigned to each block of data
- Key-value pairs are both the input to and output of each phase
- Keys must implement WritableComparable interface
- Shuffle and Sort plays a key role in solving problem