# Shortest path algorithms

20120302 김우진 20130870 이건희

### 조사한 3가지 알고리즘

- 1. Dijkstra's Algorithm
- 2. Bellman-Ford's Algorithm
- 3. Floyd-Warshall's Algorithm

### Dijkstra's Algorithm

#### • 개요

- Edsger W. Dijkstra가 고안한 알고리즘
- 한 정점에서 다른 모든 정점으로의 최단 경로를 구하는 알고리즘

#### 조건

- 간선들은 모두 양의 간선을 가져야한다. (음의 간선을 가져선 안된다.)
- 첫 정점을 기준으로 연결된 정점들을 추가하며 최단 거리를 갱신
- 정점 연결 전까지는 시작점을 제외하고 모두 무한대 값



| i     | 1 | 2   | 3   | 4   | 5   | 6   | 7   |
|-------|---|-----|-----|-----|-----|-----|-----|
| dist  | 0 | MAX | MAX | MAX | MAX | MAX | MAX |
| visit |   |     |     |     |     |     |     |



| i     | 1 | 2 | 3   | 4   | 5 | 6   | 7   |
|-------|---|---|-----|-----|---|-----|-----|
| dist  | 0 | 2 | MAX | MAX | 5 | MAX | MAX |
| visit | 1 |   |     |     |   |     |     |



| i     | 1 | 2 | 3 | 4  | 5 | 6   | 7   |
|-------|---|---|---|----|---|-----|-----|
| dist  | 0 | 2 | 5 | 10 | 3 | MAX | MAX |
| visit | 1 | 1 |   |    |   |     |     |



| i     | 1 | 2 | 3 | 4 | 5 | 6   | 7   |
|-------|---|---|---|---|---|-----|-----|
| dist  | 0 | 2 | 5 | 8 | 3 | MAX | MAX |
| visit | 1 | 1 | 1 |   | 1 |     |     |



| i     | 1 | 2 | 3 | 4 | 5 | 6   | 7 |
|-------|---|---|---|---|---|-----|---|
| dist  | 0 | 2 | 5 | 6 | 3 | MAX | 9 |
| visit | 1 | 1 | 1 |   | 1 |     |   |



| i     | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|
| dist  | 0 | 2 | 5 | 6 | 3 | 7 | 9 |
| visit | 1 | 1 | 1 | 1 | 1 |   |   |



| i     | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|
| dist  | 0 | 2 | 5 | 6 | 3 | 7 | 8 |
| visit | 1 | 1 | 1 | 1 | 1 | 1 |   |



| i     | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|
| dist  | 0 | 2 | 5 | 6 | 5 | 7 | 8 |
| visit | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

### Dijkstra's Algorithm

#### •시간 복잡도

- 배열 : O(V^2)
- 이진 힙 : O(E\*logV)
- 피보나치 힙 : O(E+V\*logV)

#### • 실질적 사용

- 경로 찾기
- 네비게이션
- 미로탐색 알고리즘

### Dijkstra's Algorithm 관련 논문

- 윤창민 외 3명. (2008). **연산시간 최적화를 위한 P-Dijkstra 알고리즘에 관한 연구(A**Study on the P-Dijkstra Algorithms for Optimization of Computation Time). 한국통 신학회 2017년도 추계종합학술발표회, 177~178
- 기존의 Dijkstra 알고리즘은 모든 경로를 탐색함 -> 속도 저하
- 모든 노드를 구획(partition)화하고 Dijkstra 알고리즘을 적용

### Bellman-Ford Algorithm

#### • 개요

- Dijkstra 알고리즘에 비해 느린 알고리즘이다.
- 음의 가중치까지 더할 수 있다.

#### 조건

- 최단 경로는 사이클을 포함하면 안되므로, 최대 |V|-1개의 간선만 사용
- 최단 거리가 업데이트되는 노드가 없어질 때까지 반복해서 구해줌.



| Α | В | C | D | E |
|---|---|---|---|---|
| 0 | 8 | 8 | 8 | 8 |



| Α | В  | U | D | E        |
|---|----|---|---|----------|
| 0 | 8  | 8 | 8 | $\infty$ |
| 0 | -1 | 8 | 8 | $\infty$ |



| Α | В  | C        | D | E        |
|---|----|----------|---|----------|
| 0 | 8  | 8        | 8 | $\infty$ |
| 0 | -1 | $\infty$ | 8 | $\infty$ |
| 0 | -1 | 4        | 8 | $\infty$ |



| Α | В  | С | D | E        |
|---|----|---|---|----------|
| 0 | 8  | 8 | 8 | 8        |
| 0 | -1 | 8 | 8 | 8        |
| 0 | -1 | 4 | 8 | <b>∞</b> |
| 0 | -1 | 2 | 8 | 8        |



| Α | В  | С | D | E        |
|---|----|---|---|----------|
| 0 | 8  | 8 | 8 | $\infty$ |
| 0 | -1 | 8 | 8 | $\infty$ |
| 0 | -1 | 4 | 8 | $\infty$ |
| 0 | -1 | 2 | 8 | $\infty$ |
| 0 | -1 | 2 | 8 | 1        |



| Α | В  | С | D        | E        |
|---|----|---|----------|----------|
| 0 | 8  | 8 | 8        | $\infty$ |
| 0 | -1 | 8 | 8        | $\infty$ |
| 0 | -1 | 4 | 8        | $\infty$ |
| 0 | -1 | 2 | 8        | $\infty$ |
| 0 | -1 | 2 | <b>∞</b> | 1        |
| 0 | -1 | 2 | 1        | 1        |



| Α | В  | С        | D   | E        |
|---|----|----------|-----|----------|
| 0 | 8  | $\infty$ | 8   | $\infty$ |
| 0 | -1 | $\infty$ | 8   | $\infty$ |
| 0 | -1 | 4        | 4 ∞ |          |
| 0 | -1 | 2        | 8   | $\infty$ |
| 0 | -1 | 2        | 8   | 1        |
| 0 | -1 | 2        | 1   | 1        |
| 0 | -1 | 2        | -2  | 1        |

### Bellman-Ford Algorithm

- •시간 복잡도
  - O(|V|\*|티) (단, |티 <= |V|^2)
- 공간 복잡도
  - O(|V|)
- 실질적 사용
  - MCMF(Minimum Cost Maximum Flow) 문제 해결

### Bellman-Ford Algorithm 관련 논문

- 진호,서희종. (2012). SPFA를 기반으로 개선된 벨만-포드 알고리듬(An improved Bellman-Ford algorithm based on SPFA). 대한전자통신학회 논문지 제7권 제4호, 721~726
- SPFA : Shortest Path Faster Algorithm
- Bellman-Ford 알고리즘은 모든 노드를 순회함으로 인한 문제점을 개선
- 인접 리스트를 용해서 각 표의 노드를 저장, 대기열을 통해 데이터를 저장
- 새로운 점에 계속 relaxtion을 통해 최적의 경로를 얻을 수 있음

### Floyd-Warshall Algorithm

#### • 개요

- 그래프에서 모든 꼭짓점 사이의 최단 경로의 거리를 구하는 알고리즘
- 모든 경로의 최소 비용을 구함
- 음수 가중치를 갖는 간선도, 순환만 없다면 처리 가능

#### • 조건

- 3중 반복문(for)문을 사용: 거쳐가는 노드, 출발노드, 도착노드
- 2가지 테이블 : 모든 경로의 비용 관련 테이블, 각 정점까지 가기 직전의 정점 관련 테이블



**테이블1 :** 거리를 저장한 테이블 D

|   | 1 | 2 | 3  | 4 | 5  |
|---|---|---|----|---|----|
| 1 | 0 | 3 | 8  | 8 | -4 |
| 2 | 8 | 0 | 8  | 1 | 7  |
| 3 | 8 | 4 | 0  | 8 | 8  |
| 4 | 2 | 8 | -5 | 0 | 8  |
| 5 | 8 | 8 | 8  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 1 | 1 |
| 2 | - | - | - | 2 | 2 |
| 3 | - | 3 | - | - | _ |
| 4 | 4 | - | 4 | - | _ |
| 5 | - | - | - | 5 | _ |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1        | 2 | 3  | 4        | 5  |
|---|----------|---|----|----------|----|
| 1 | 0        | 3 | 8  | 8        | -4 |
| 2 | $\infty$ | 0 | 8  | 1        | 7  |
| 3 | $\infty$ | 4 | 0  | $\infty$ | 8  |
| 4 | 2        | 5 | -5 | 0        | 8  |
| 5 | $\infty$ | 8 | ∞  | 6        | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | - | 1 |
| 2 | - | - | - | 2 | 2 |
| 3 | - | 3 | - | - | _ |
| 4 | 4 | 1 | 4 | - | _ |
| 5 | - | - | - | 5 | _ |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1        | 2 | 3  | 4 | 5  |
|---|----------|---|----|---|----|
| 1 | 0        | 3 | 8  | 8 | -4 |
| 2 | ∞        | 0 | 8  | 1 | 7  |
| 3 | $\infty$ | 4 | 0  | 8 | 8  |
| 4 | 2        | 5 | -5 | 0 | -2 |
| 5 | $\infty$ | 8 | 8  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | - | 1 |
| 2 | - | - | - | 2 | 2 |
| 3 | - | 3 | - | - | - |
| 4 | 4 | 1 | 4 | - | 1 |
| 5 | - | - | - | 5 | - |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1 | 2 | 3  | 4 | 5  |
|---|---|---|----|---|----|
| 1 | 0 | 3 | 8  | 4 | -4 |
| 2 | 8 | 0 | 8  | 1 | 7  |
| 3 | 8 | 4 | 0  | 8 | 8  |
| 4 | 2 | 5 | -5 | 0 | -2 |
| 5 | 8 | 8 | 8  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | - | - | - | 2 | 2 |
| 3 | - | 3 | - | - | - |
| 4 | 4 | 1 | 4 | - | 1 |
| 5 | - | - | - | 5 | _ |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1 | 2 | 3  | 4 | 5  |
|---|---|---|----|---|----|
| 1 | 0 | 3 | 8  | 4 | -4 |
| 2 | 8 | 0 | 8  | 1 | 7  |
| 3 | 8 | 4 | 0  | 5 | 8  |
| 4 | 2 | 5 | -5 | 0 | -2 |
| 5 | ∞ | 8 | 8  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | - | - | - | 2 | 2 |
| 3 | - | 3 | - | 2 | _ |
| 4 | 4 | 1 | 4 | - | 1 |
| 5 | - | - | - | 5 | - |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1        | 2 | 3  | 4 | 5  |
|---|----------|---|----|---|----|
| 1 | 0        | 3 | 8  | 4 | -4 |
| 2 | $\infty$ | 0 | 8  | 1 | 7  |
| 3 | $\infty$ | 4 | 0  | 5 | 11 |
| 4 | 2        | 5 | -5 | 0 | -2 |
| 5 | $\infty$ | 8 | 8  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | - | - | - | 2 | 2 |
| 3 | - | 3 | - | 2 | 2 |
| 4 | 4 | 1 | 4 | - | 1 |
| 5 | - | - | - | 5 | _ |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1        | 2 | 3  | 4 | 5  |
|---|----------|---|----|---|----|
| 1 | 0        | 3 | 8  | 4 | -4 |
| 2 | 3        | 0 | 8  | 1 | 7  |
| 3 | $\infty$ | 4 | 0  | 5 | 11 |
| 4 | 2        | 5 | -5 | 0 | -2 |
| 5 | $\infty$ | 8 | 8  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | 4 | - | - | 2 | 2 |
| 3 | - | 3 | - | 2 | 2 |
| 4 | 4 | 1 | 4 | - | 1 |
| 5 | - | - | - | 5 | _ |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1 | 2  | 3  | 4 | 5  |
|---|---|----|----|---|----|
| 1 | 0 | 3  | 8  | 4 | -4 |
| 2 | 3 | 0  | 8  | 1 | 7  |
| 3 | 8 | 4  | 0  | 5 | 11 |
| 4 | 2 | -1 | -5 | 0 | -2 |
| 5 | 8 | 8  | 8  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | 4 | - | - | 2 | 2 |
| 3 | - | 3 | - | 2 | 2 |
| 4 | 4 | 3 | 4 | - | 1 |
| 5 | - | - | - | 5 | _ |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1 | 2  | 3  | 4 | 5  |
|---|---|----|----|---|----|
| 1 | 0 | 3  | 8  | 4 | -4 |
| 2 | 3 | 0  | -4 | 1 | 7  |
| 3 | 8 | 4  | 0  | 5 | 11 |
| 4 | 2 | -1 | -5 | 0 | -2 |
| 5 | ∞ | 8  | ∞  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | 4 | - | 4 | 2 | 2 |
| 3 | - | 3 | - | 2 | 2 |
| 4 | 4 | 3 | 4 | - | 1 |
| 5 | - | - | - | 5 | _ |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1        | 2  | 3        | 4 | 5  |
|---|----------|----|----------|---|----|
| 1 | 0        | 3  | 8        | 4 | -4 |
| 2 | 3        | 0  | -4       | 1 | 7  |
| 3 | $\infty$ | 4  | 0        | 5 | 11 |
| 4 | 2        | -1 | -5       | 0 | -2 |
| 5 | 8        | 8  | $\infty$ | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | 4 | - | 4 | 2 | 2 |
| 3 | - | 3 | - | 2 | 2 |
| 4 | 4 | 3 | 4 | - | 1 |
| 5 | 4 | - | - | 5 | - |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1 | 2  | 3  | 4 | 5  |
|---|---|----|----|---|----|
| 1 | 0 | 3  | 8  | 4 | -4 |
| 2 | 3 | 0  | -4 | 1 | 7  |
| 3 | 8 | 4  | 0  | 5 | 11 |
| 4 | 2 | -1 | -5 | 0 | -2 |
| 5 | 8 | 8  | 1  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | 4 | - | 4 | 2 | 2 |
| 3 | - | 3 | - | 2 | 2 |
| 4 | 4 | 3 | 4 | - | 1 |
| 5 | 4 | - | 4 | 5 | _ |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1 | 2  | 3  | 4 | 5  |
|---|---|----|----|---|----|
| 1 | 0 | 3  | 8  | 4 | -4 |
| 2 | 3 | 0  | -4 | 1 | 7  |
| 3 | 8 | 4  | 0  | 5 | 11 |
| 4 | 2 | -1 | -5 | 0 | -2 |
| 5 | 8 | 8  | 1  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 2 | 1 |
| 2 | 4 | - | 4 | 2 | 2 |
| 3 | - | 3 | - | 2 | 2 |
| 4 | 4 | 3 | 4 | - | 1 |
| 5 | 4 | - | 4 | 5 | - |



**테이블1 :** 거리를 저장한 테이블 D

|   | 1 | 2  | 3  | 4 | 5  |
|---|---|----|----|---|----|
| 1 | 0 | 3  | 8  | 2 | -4 |
| 2 | 3 | 0  | -4 | 1 | 7  |
| 3 | 8 | 4  | 0  | 5 | 11 |
| 4 | 2 | -1 | -5 | 0 | -2 |
| 5 | 8 | 8  | 1  | 6 | 0  |

**테이블2 :** 직전 정점을 저장한 테이블 D

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | 1 | 5 | 1 |
| 2 | 4 | - | 4 | 2 | 2 |
| 3 | - | 3 | - | 2 | 2 |
| 4 | 4 | 3 | 4 | - | 1 |
| 5 | 4 | - | 4 | 5 | _ |

### Floyd-Warshall Algorithm

- 시간 복잡도 : O(|V|^3)
  - (노드의 수) \* (노드의 수) \* (노드의 수) => |V| \* |V|
- 공간 복잡도 : O(2 \* |V|^2)
  - |V| \* |V| 사이즈의 테이블 2개

## 각 알고리즘 간 비교

|        | Dijkstra                             | Bellman-Ford                 | Floyd-warshall         |
|--------|--------------------------------------|------------------------------|------------------------|
| 시간 복잡도 | O( V ^2) (Array)<br>O(E*logV) (heap) | O( V * E )                   | O( V ^3)               |
| 공간 복잡도 | O( V ) (Array)                       | O( V )                       | O( V ^2)               |
| 특징     | 하나의 노드에서부터<br>최단 경로를 구함              | 최단 경로를 구할 때,<br>모든 edge를 고려함 | 모든 노드 사이의<br>최단 경로를 구함 |

### 참고자료

- 다익스트라 알고리즘 :
  - http://manducku.tistory.com/29
- P-Dijkstra 알고리즘 논문:
  - https://fall.kics.or.kr/storage/paper/event/20171110\_workshop/publish/9A-4.pdf
- 벨만-포드 알고리즘:
  - <a href="https://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/">https://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/</a>
- SPFA를 기반으로 한 개선된 벨만-보드 알고리즘
  - http://dcollection.jnu.ac.kr/public\_resource/pdf/000000034527\_20180413044750.pdf
- 플로이드 워셜 알고리즘
  - <a href="https://ko.wikipedia.org/wiki/%ED%94%8C%EB%A1%9C%EC%9D%B4%EB%93%9C-%EC%9B%8C%EC%85%9C">https://ko.wikipedia.org/wiki/%ED%94%8C%EB%A1%9C%EC%9D%B4%EB%93%9C-%EC%9B%8C%EC%85%9C</a> %EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98