

MANOELA KOHLER

Prof.manoela@ica.ele.puc-rio.br

TÓPICOS

R

Análise exploratória

Pré-processamento

- Balanceamento
- Outliers
- Missing values
- Normalização
- Seleção de atributos (Filtros, Wrappers, PCA)

Associação:

- Apriori
- FP-Growth
- Eclat

Classificação:

- Regressão logística
- Support Vector Machine (SVM)
- Árvores de Decisão
- Random Forest
- Redes Neurais
- K nearest neighbors

Regressão

- Regressão linear simples
- Regressão linear múltipla
- Regressão não linear simples
- Regressão não linear múltipla

Agrupamento

- Particionamento (K-means, K-medoids)
- Hierárquico (DIANA, AGNES)
- Densidade (DBSCAN)

Séries Temporais

- Naive
- Média Móvel
- Amortecimento exponencial
- Auto-regressivo integrados de média móvel
- Auto regressivo n\u00e4o linear

Recapitulação

ETAPAS DE UM PROJETO DE DATA MINING

ESQUEMA BÁSICO DE UM PROJETO DE DM

AGRUPAMENTO (CLUSTERIZAÇÃO)

Aprendizado não supervisionado: Agrupamento

- K-means (Clusterização baseada em Particionamento)
- Clusterização Hierárquica
- Clusterização baseada em Densidade

MÉTODOS DE CLUSTERIZAÇÃO

Particionamento: Constrói várias partições e as avalia usando algum critério.

Hierárquico: Cria uma decomposição hierárquica dos objetos usando algum critério.

Baseado em densidade: Fundamenta-se em funções de conectividade e de densidade.

ESTUDO DE CASO

ESTUDO DE CASO

Clientes de um Shopping

- Ganho Anual
- Traço de Gastos

SUPERVISIONADO

Aproximador: função mapeia entradas e saída.

NÃO SUPERVISIONADO

CORRELAÇÃO

Indica a força e a direção do relacionamento entre dois atributos;

Trata-se de uma medida da relação entre dois atributos, embora correlação não implique causalidade:

Duas variáveis podem estar altamente correlacionadas e não existir relação de causa e efeito entre elas.

Ela permite verificar se é possível ajustar um modelo que expresse a mencionada relação;

Esse é o objetivo da análise de regressão.

Existe uma série de técnicas voltada para a modelagem e a investigação de relações entre dois ou mais atributos.

Exemplo:

- Na análise de correlação linear, o objetivo é determinar o grau de relacionamento entre duas variáveis.
- Já na análise de regressão linear, o objetivo é determinar o modelo que expressa esta relação (equação de regressão), a qual é ajustada aos dados.

Para que serve?

Podemos usar esse modelo para predizer o valor de y para um dado valor de x

- Realizar previsões sobre o comportamento futuro de algum fenômeno da realidade.
- Neste caso extrapola-se para o futuro as relações de causa-efeito já observadas no passado – entre as variáveis.

A análise de regressão compreende quatro tipos básicos de modelos:

- Linear simples;
- Linear Múltipla;
- Não linear simples;
- Não linear múltipla.

Regressão Linear Simples

MÍNIMOS QUADRADOS

MÍNIMOS QUADRADOS

MÍNIMOS QUADRADOS

Uma análise de regressão gera uma equação para descrever a relação entre um ou mais preditores e a variável resposta e para predizer novas observações com um valor preditor com precisão maior que o acaso.

A regressão linear geralmente usa o método de estimativa de mínimos quadrados comum que deriva a equação minimizando a soma dos resíduos quadrados.

REGRESSÃO LINEAR SIMPLES

A regressão fornece a linha que "melhor" ajusta os dados. Essa linha pode ser usada para:

- Examinar como a variável de resposta muda quando o preditor muda.
- Predizer o valor de uma variável de resposta para qualquer variável preditora.

R Squared

Soma dos quadrados

$$SS_{res} = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

R² AJUSTADO

$$R^2 = 1 - \frac{SSres}{SStot}$$

 R^2 - Quão bom é o modelo (quanto maior, melhor)

$$y = b_0 + b_1 x_1$$

$y = b_0 + b_1 x_1 + b_2 x_2$

Problema:

$$+b_3x_3$$

$$SS_{res} => Min$$

R² AJUSTADO

$$R^2 = 1 - \frac{SSres}{SStot}$$

$$R^2_{aj} = 1 - (1 - R2) \frac{n - 1}{n - p - 1}$$

n = número de dadosp = número de regressores

Regressão Linear Múltipla

REGRESSÃO LINEAR MÚLTIPLA

A regressão linear múltipla examina as relações lineares entre uma resposta contínua e dois ou mais preditores.

REGRESSÃO

Regressão Linear Simples

$$y = b_0 + b_1 x_1$$

ESTUDO DE CASO

Startups

50 Startups:

- 4 variáveis independentes (explicativas):
 - Gastos com P&D;
 - Gastos administrativos;
 - Gastos com marketing;
 - Estado.
- Variável dependente (resposta):
 - Lucro

DEVEMOS SABER

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 +$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1 x_1$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York		
191,792.06	162,597.70	151,377.59	443,898.53	California		
191,050.39	153,441.51	101,145.55	407,934.54	California		
182,901.99	144,372.41	118,671.85	383,199.62	New York		
166,187.94	142,107.34	91,391.77	366,168.42	California		

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York—		
191,792.06	162,597.70	151,377.59	443,898.53	California	0	
191,050.39	153,441.51	101,145.55	407,934.54	California	0	
182,901.99	144,372.41	118,671.85	383,199.62	New York—	→ 1	
166,187.94	142,107.34	91,391.77	366,168.42	California	0	

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York	1	0
191,792.06	162,597.70	151,377.59	443,898.53	California—	0	→ 1
191,050.39	153,441.51	101,145.55	407,934.54	California—	0	→ 1
182,901.99	144,372.41	118,671.85	383,199.62	New York	1	0
166,187.94	142,107.34	91,391.77	366,168.42	California—	0	→ 1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Dummy Variables

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + b_4^* D_1$$

Profit R&D Spend Marketing Admin State 165,349.20 136,897.80 471,784.10 **N**ew York 192,261.83 191,792.06 162,597.70 151,377.59 443,898.53 California California 191,050.39 153,441.51 101,145.55 407,934.54 182,901.99 144,372.41 118,671.85 383,199.62 New York California 166,187.94 142,107.34 91,391.77 366,168.42

Dummy	Variables
Donning	v ai labtes

New York	California
1	0
0	1
0	λ
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

DUMMY VARIABLE TRAP

Profit R&D Spend Admin Marketing State **New York** 192,261.83 165,349.20 136,897.80 471,784.10 California 191,792.06 162,597.70 151,377.59 443,898.53 191,050.39 153,441.51 101,145.55 407,934.54 California 182,901.99 144,372.41 118,671.85 383,199.62 **New York** 166,187.94 142,107.34 91,391.77 366,168.42 California

Dummy Variables

California
0
1
1
0
1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + b_4^* D_1 + b_5^* D_2$$

DUMMY VARIABLE TRAP

Profit R&D Spend Marketing Admin State 192,261.83 165,3 191,792.06 162,5 153,4 191,050.39 182,901.99 144,3 Multicolinearidade 166,187.94 142,107.54 Lallioillia

Dummy Variables

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3$$

$$+ b_4*D_1 + b_5*D_2$$

O modelo não funcionará de forma apropriada


```
Call:
lm(formula = Profit ~ ., data = training_set)
Residuals:
  Min
         1Q Median
                           Max
                      30
-33128 -4865
                5 6098 18065
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.965e+04 7.637e+03 6.501 1.94e-07 ***
R.D.Spend 7.986e-01 5.604e-02 14.251 6.70e-16 ***
Administration -2.942e-02 5.828e-02 -0.505 0.617
Marketing.Spend 3.268e-02 2.127e-02 1.537 0.134
State2 1.213e+02 3.751e+03 0.032 0.974
State3 2.376e+02 4.127e+03 0.058 0.954
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9908 on 34 degrees of freedom
Multiple R-squared: 0.9499, Adjusted R-squared: 0.9425
F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16
```



```
Call:
lm(formula = Profit ~ ., data = training_set)
Residuals:
  Min
          1Q Median
                             Max
                       30
-33128 -4865
                     6098
                           18065
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
               4.965e+04
                          7.637e+03 6.501 1.94e-07 ***
(Intercept)
R.D.Spend
               7.986e-01 5.604e-02 14.251 6.70e-16 ***
Administration
               -2.942e-02 5.828e-02 -0.505
                                              0.617
Marketing.Spend 3.268e-02
                          2.127e-02 1.537 0.134
                1.213e+02 3.751e+03 0.032 0.974
State2
State3
                2.376e+02
                          4.127e+03
                                    0.058
                                              0.954
```

Coeficiente: o modelo estima um aumento esperado de 0.79 no lucro para cada 1 unidade (no caso, 1 dólar) de aumento de gasto com pesquisa e desenvolvimento (quando as outras variáveis são mantidas constantes).

F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16


```
Call:
lm(formula = Profit ~ ., data = training_set)
Residuals:
  Min
         1Q Median
                          Max
                     30
-33128 -4865
                5 6098 18065
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
              4.965e+04 7.637e+03 6.501 1.94e-07 ***
R.D.Spend 7.986e-01 5.604e-02 14.251 6.70e-16 ***
Administration -2.942e-02 5.828e-02
                                 -0.505 0.617
Marketing.Spend 3.268e-02 2.127e-02 1.537 0.134
State2 1.213e+02 3.751e+03 0.032 0.974
State3 2.376e+02
                        4.127e+03
                                  0.058 0.954
```

Desvio padrão: quão precisamente o modelo estimou o coeficiente da variável em questão. Quanto menor, mais precisa é a estimativa.

F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16


```
Call:
lm(formula = Profit ~ ., data = training_set)
Residuals:
  Min
         1Q Median
                     3Q
                           Max
-33128 -4865
                5 6098 18065
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.965e+04 7.637e+03 6.501 1.94e-07 ***
R.D.Spend 7.986e-01 5.604e-02 14.251 6.70e-16 ***
Administration -2.942e-02 5.828e-02 -0.505
                                        0.617
Marketing.Spend 3.268e-02 2.127e-02 1.537 0.134
State2 1.213e+02 3.751e+03
                                 0.032 0.974
State3 2.376e+02 4.127e+03
                                  0.058
                                          0.954
```

T value: Estimate/Standard Error

Quantos desvios padrões do zero o coeficiente estimado está

F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16


```
Call:
lm(formula = Profit ~ ., data = training_set)
Residuals:
  Min
          10 Median
                            Max
                       30
-33128 -4865
                     6098
                          18065
Coefficients:
                Estimate Std. Error t value (Pr(>|t|)
(Intercept)
               4.965e+04 7.637e+03 6.501 1.94e-07 ***
R.D.Spend
           7.986e-01 5.604e-02 14.251 6.70e-16 ***
Administration -2.942e-02 5.828e-02 -0.505
                                            0.617
Marketing.Spend 3.268e-02 2.127e-02 1.537 0.134
State2
         1.213e+02 3.751e+03 0.032 0.974
State3
               2.376e+02 4.127e+03
                                    0.058
                                             0.954
```

P-value: testa a hipótese nula onde o coeficiente é igual a zero (sem efeito). Um p-value < 0.05 indica que você pode rejeitar a hipótese nula. Em outras palavras, um preditor que tem um p-value pequeno é provavelmente uma boa adição ao seu modelo (estatisticamente significante).


```
Call:
lm(formula = Profit ~ ., data = training_set)
Residuals:
  Min
         1Q Median
                           Max
                     30
-33128 -4865
                5 6098 18065
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.965e+04 7.637e+03 6.501 1.94e-07 ***
R.D.Spend 7.986e-01 5.604e-02 14.251 6.70e-16 ***
Administration -2.942e-02 5.828e-02 -0.505 0.617
Marketing.Spend 3.268e-02 2.127e-02 1.537 0.134
State2 1.213e+02 3.751e+03 0.032 0.974
State3 2.376e+02 4.127e+03 0.058 0.954
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 9908 on 34 degrees of freedom Multiple R-squared: 0.9499, Adjusted R-squared: 0.9425 F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16

R SCRIPT

```
Call:
lm(formula = Profit ~ ., data = training set)
                                                                lm(formula = Profit ~ ., data = training set)
Residuals:
  Min
         10 Median
                                                                Residuals:
-33128 -4865
                 5 6098 18065
                                                                   Min
                                                                        10 Median
                                                                                      3Q Max
                                                                -33117 -4858
                                                                                -36 6020 17957
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                                                                Coefficients:
                4.965e+04 7.637e+03 6.501 1.94e-07 ***
(Intercept)
                                                                                 Estimate Std. Error t value Pr(>|t|)
R.D.Spend
               7.986e-01 5.604e-02 14.251 6.70e-16 ***
                                                                (Intercept)
                                                                                4.970e+04 7.120e+03 6.980 3.48e-08 ***
Administration -2.942e-02 5.828e-02 -0.505
                                                                R.D.Spend
                                                                                7.983e-01 5.356e-02 14.905 < 2e-16 ***
Marketing.Spend 3.268e-02 2.127e-02 1.537
                                              0.134
                                                                Administration -2.895e-02 5.603e-02 -0.517
State2
               1.213e+02 3.751e+03 0.032
                                              0.974
                                                                Marketing.Spend 3.283e-02 1.987e-02 1.652
                                                                                                              0.107
State3
               2.376e+02 4.127e+03 0.058
                                            0.954
                                                                Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                Residual standard error: 9629 on 36 degrees of freedom
Residual standard error: 9908 on 34 degrees of freedom
                                                                Multiple R-squared: 0.9499, Adjusted R-squared: 0.9457
Multiple R-squared: 0.9499,
                             Adjusted R-squared: 0.9425
                                                                F-statistic: 227.6 on 3 and 36 DF, p-value: < 2.2e-16
F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16
Call:
lm(formula = Profit ~ ., data = training set)
                                                                lm(formula = Profit ~ ., data = training set)
Residuals:
                                                                Residuals:
        1Q Median
                       3Q
                                                                   Min
                                                                        1Q Median
                                                                                      3Q Max
-33294 -4763 -354 6351 17693
                                                                -34334 -4894 -340 6752 17147
Coefficients:
                                                                Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                                                            Estimate Std. Error t value Pr(>|t|)
               4.638e+04 3.019e+03 15.364 <2e-16 ***
(Intercept)
                                                                 (Intercept) 4.902e+04 2.748e+03 17.84 <2e-16 ***
R.D.Spend
               7.879e-01 4.916e-02 16.026
                                           <2e-16 ***
                                                                R.D.Spend 8.563e-01 3.357e-02 25.51 <2e-16 ***
Marketing.Spend 3.538e-02 1.905e-02 1.857 0.0713 .
                                                                Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                Residual standard error: 9836 on 38 degrees of freedom
Residual standard error: 9533 on 37 degrees of freedom
                                                                Multiple R-squared: 0.9448, Adjusted R-squared: 0.9434
Multiple R-squared: 0.9495, Adjusted R-squared: 0.9468
                                                                F-statistic: 650.8 on 1 and 38 DF, p-value: < 2.2e-16
F-statistic: 348.1 on 2 and 37 DF, p-value: < 2.2e-16
```


R SCRIPT

```
Call:
lm(formula = Profit ~ ., data = training set)
                                                                lm(formula = Profit ~ ., data = training set)
Residuals:
  Min
         10 Median
                                                                Residuals:
-33128 -4865
                 5 6098 18065
                                                                   Min
                                                                       10 Median
                                                                                     3Q Max
                                                                -33117 -4858
                                                                               -36 6020 17957
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                                                                Coefficients:
               4.965e+04 7.637e+03 6.501 1.94e-07 ***
(Intercept)
                                                                                 Estimate Std. Error t value Pr(>|t|)
R.D.Spend
               7.986e-01 5.604e-02 14.251 6.70e-16 ***
                                                                (Intercept)
                                                                                4.970e+04 7.120e+03 6.980 3.48e-08 ***
Administration -2.942e-02 5.828e-02 -0.505
                                                                R.D.Spend
                                                                                7.983e-01 5.356e-02 14.905 < 2e-16 ***
Marketing.Spend 3.268e-02 2.127e-02 1.537
                                             0.134
                                                                Administration -2.895e-02 5.603e-02 -0.517
               1.213e+02 3.751e+03 0.032
State2
                                             0.974
                                                                Marketing.Spend 3.283e-02 1.987e-02 1.652
State3
               2.376e+02 4.127e+03 0.058 0.954
                                                                Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RESIGNAT SCANDARD ELICI. 9900 ON 34 DEGLES OF FREEDOM
                                                                Multiple R-squared: 0.9499,
                                                                                              Adjusted R-squared: 0.9457
Multiple R-squared: 0.9499,
                             Adjusted R-squared: 0.9425
Call:
lm(formula = Profit ~ ., data = training set)
                                                                lm(formula = Profit ~ ., data = training set)
Residuals:
                                                                Residuals:
        10 Median
                       3Q
                                                                   Min
                                                                        10 Median
                                                                                     3Q Max
-33294 -4763 -354 6351 17693
                                                                -34334 -4894 -340 6752 17147
Coefficients:
                                                                Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                                                            Estimate Std. Error t value Pr(>|t|)
               4.638e+04 3.019e+03 15.364 <2e-16 ***
(Intercept)
                                                                (Intercept) 4.902e+04 2.748e+03 17.84 <2e-16 ***
R.D.Spend
               7.879e-01 4.916e-02 16.026
                                           <2e-16 ***
                                                                R.D.Spend 8.563e-01 3.357e-02 25.51 <2e-16 ***
Marketing.Spend 3.538e-02 1.905e-02 1.857 0.0713 .
                                                                Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                RESIDUAL STANDARD ELLOI. 9000 ON 30 DEGLESS OF FLEEDOM
                                                                Multiple R-squared: 0.9448, Adjusted R-squared: 0.9434
Multiple R-squared: 0.9495,
                             Adjusted R-squared: 0.9468
```


R SCRIPT

Call:

```
lm(formula = Profit ~ ., data = training set)
                                                                lm(formula = Profit ~ ., data = training set)
Residuals:
   Min
         10 Median
                                                                Residuals:
-33128 -4865
                 5 6098 18065
                                                                   Min
                                                                        10 Median
                                                                                      3Q Max
                                                                 -33117 -4858
                                                                                -36 6020 17957
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                                                                Coefficients:
                4.965e+04 7.637e+03 6.501 1.94e-07 ***
(Intercept)
                                                                                 Estimate Std. Error t value Pr(>|t|)
R.D.Spend
                7.986e-01 5.604e-02 14.251 6.70e-16 ***
                                                                 (Intercept)
                                                                                 4.970e+04 7.120e+03 6.980 3.48e-08 ***
Administration -2.942e-02 5.828e-02 -0.505
                                                                R.D.Spend
                                                                                7.983e-01 5.356e-02 14.905 < 2e-16 ***
Marketing.Spend 3.268e-02 2.127e-02 1.537
                                              0.134
                                                                Administration -2.895e-02 5.603e-02 -0.517
State2
                1.213e+02 3.751e+03 0.032
                                              0.974
                                                                Marketing.Spend 3.283e-02 1.987e-02 1.652
                                                                                                              0.107
State3
                2.376e+02 4.127e+03 0.058 0.954
                                                                Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                Residual standard error: 9629 on 36 degrees of freedom
Residual standard error: 9908 on 34 degrees of freedom
                                                                Multiple R-squared: 0.9499, Adjusted R-squared: 0.9457
Multiple R-squared: 0.9499,
                              Adjusted R-squared: 0.9425
                                                                F-statistic: 227.6 on 3 and 36 DF, p-value: < 2.2e-16
F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16
Call:
lm(formula = Profit ~ ., data = training set)
                                                                lm(formula = Profit ~ ., data = training set)
Residuals:
                                                                 Residuals:
        10 Median
                        3Q
                                                                   Min
                                                                        10 Median
                                                                                      3Q Max
-33294 -4763 -354 6351 17693
                                                                 -34334 -4894 -340 6752 17147
Coefficients:
                                                                 Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                                                                             Estimate Std. Error t value Pr(>|t|)
               4.638e+04 3.019e+03 15.364 <2e-16 ***
(Intercept)
                                                                 (Intercept) 4.902e+04 2.748e+03 17.84 <2e-16 ***
                                           <2e-16 ***
R.D.Spend
               7.879e-01 4.916e-02 16.026
                                                                 R.D.Spend 8.563e-01 3.357e-02 25.51 <2e-16 ***
Marketing.Spend 3.538e-02 1.905e-02 1.857 0.0713 .
                                                                 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                 Residual standard error: 9836 on 38 degrees of freedom
Residual standard error: 9533 on 37 degrees of freedom
                                                                Multiple R-squared: 0.9448, Adjusted R-squared: 0.9434
Multiple R-squared: 0.9495, Adjusted R-squared: 0.9468
                                                                 F-statistic: 650.8 on 1 and 38 DF, p-value: < 2.2e-16
f-Statistic: 348.1 on Z and 3/ Dr, p-value: < 2.2e-10
```


Regressão Linear Múltipla

Árvores de Regressão

ÁRVORES DE REGRESSÃO

CART

ÁRVORES DE REGRESSÃO

ÁRVORES DE REGRESSÃO y-coordinate χ_2

ÁRVORES DE REGRESSÃO

ÁRVORES DE REGRESSÃO Split 1 y-coordinate χ_2 65.7 Split 3 200 Split 2 170 300.5 Split 4 20 40 Média da variável dependente y

Random Forest

RANDOM FOREST

RANDOM FOREST

PASSO 1: Escolhe o número de árvores que se deseja construir e repete os passos 2 e 3 para cada uma das árvores.

PASSO 2: Escolhe aleatoriamente K dados do conjunto de treinamento.

PASSO 3: Constrói a árvore de decisão associada àqueles K dados.

PASSO 4: Para cada dado novo, faça com que cada árvore da sua floresta infira um valor da variável resposta (dependente). A resposta do comitê será, por exemplo, a média aritmética da inferência de todas as árvores.

K Nearest Neighbors

KNN - CLASSIFICAÇÃO

KNN - CLASSIFICAÇÃO

2NN para Regressão: O Faturamento Esperado é a Média Aritmética dos 2 vizinhos mais próximos!

■ 3NN para Regressão: O Faturamento Esperado é a Média Aritmética dos 3 vizinhos mais próximos!

KNN

- 1. Dados com domínio definido e dados suficientes dentro deste domínio;
- 2. Não paramétrico;
- 3. Simples;
- 4. Local.

ESTUDO DE CASO

Aluguel de Bicicletas (2011-2012)

https://www.capitalbikeshare.com/

9 variáveis independentes:

- Estação do ano (1:primavera, 2:verão, 3:outono, 4:inverno);
- Feriado;
- Dia de semana;
- Dia de trabalho;
- Tempo (1:limpo, 2:nublado, 3:neve / chuva);
- Temperatura;
- Sensação térmica;
- Humidade;
- Velocidade do vento.

Variável resposta: horas de uso de bike.

BOSTON HOUSING

506 registros e 14 atributos:

Crim: per capita crime rate by town.

Zn: proportion of residential land zoned for lots over 25,000 sq.ft.

Indus: proportion of non-retail business acres per town.

Chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

Nox: nitrogen oxides concentration (parts per 10 million).

Rm: average number of rooms per dwelling.

Age: proportion of owner-occupied units built prior to 1940.

Dis: weighted mean of distances to five Boston employment centres.

Rad: index of accessibility to radial highways.

Tax: full-value property-tax rate per \$10,000.

Ptratio: pupil-teacher ratio by town.

Black: $1000(Bk - 0.63)^{\Lambda}2$ where Bk is the proportion of blacks by town.

Lstat: lower status of the population (percent).

Medv: median value of owner-occupied homes in \$1000s.