Data Exploration

Machine Learning for Behavioral Data February 25, 2025

Today's Topic

Week	Lecture/Lab
1	Introduction
2	Data Exploration
3	Regression
4	Classification
5	Model Evaluation
6	Time Series Prediction
7	Time Series Prediction
8	Time Series Prediction

Complete pipeline for one use case:

- Data exploration
- Prediction
- Model evaluation

Getting ready for today's lecture...

• If not done yet: clone the repository containing the Jupyter notebook and data for today's lecture into your Noto workspace..

• SpeakUp room for today's lecture:

https://go.epfl.ch/speakup-mlbd2025

Noto: Student notebook

- Go to https://noto.epfl.ch/
- Login with your GASPAR
- Go to Git → Clone
- Clone the course repository: https://github.com/epfl-ml4ed/mlbd-2025

Why is data handling important?

Why do we not just use the raw data?

Different types of input data

0	logdate url	· ip	city	▼ state	country	category	💌 age 💌 gender 💌
	2012-03-12 http://www.acme.com/SH55126545/VD551794	33 76.166.167.172	oxnard	CA	usa	shoes	29 F
	2012-03-12 http://www.acme.com/SH55126545/VD551794	33 76.166.167.172	oxnard	CA	usa	shoes	29 F
	2012-03-12 http://www.acme.com/SH55126545/VD551794	33 12.132.157.137	opelika	AL	usa	shoes	28 M
	2012-03-15 http://www.acme.com/SH55126545/VD551794	33 24.184.60.95	brooklyn	NY	usa	shoes	
	2012-03-15 http://www.acme.com/SH55126545/VD551794	33 24.184.60.95	brooklyn	NY	usa	shoes	
	2012-03-15 http://www.acme.com/SH55126545/VD551794	33 24.184.60.95	brooklyn	NY	usa	shoes	
	2012-03-15 http://www.acme.com/SH55126545/VD551794	33 24.184.60.95	brooklyn	NY	usa	shoes	
	2012-03-15 http://www.acme.com/SH55126545/VD551794	33 24.184.60.95	brooklyn	NY	usa	shoes	
	2012-03-12 http://www.acme.com/SH55126545/VD551794	33 24.58.5.10	ithaca	NY	usa	shoes	
	2012-03-12 http://www.acme.com/SH55126545/VD551794	33 24.58.5.10	Ithaca	NY	usa	shoes	
	2012-03-12 http://www.acme.com/SH55126545/VD551794	33 24.58.5.10	ithaca	NY	usa	shoes	
	2012-03-12 http://www.acme.com/SH55126545/VD551794	33 24.58.5.10	ithaca	NY	usa	shoes	
	2012-03-05 http://www.acme.com/SH55126545/VD551779	27 208.190.165.82	laredo	TX	usa	clothing	
	2012-03-05 http://www.acme.com/SH55126545/VD551779	27 208.190.165.82	laredo	TX	usa	clothing	
	2012-03-05 http://www.acme.com/SH55126545/VD551779.	27 208.190.165.82	laredo	TX	usa	clothing	
	2012-03-05 http://www.acme.com/SH55126545/VD551779	27 208.190.165.82	laredo	TX	usa	clothing	
	201 9 http://www.acme.com/SH55126545/VD551779	27 75.138.250.116	spring hill	TN	usa	clothing	25 M
	201 to://www.acme.com/SH55126545/VD551779.	27 75.138.250.116	spring hill	TN	usa	clothing	25 M
	201 www.acme.com/SH55126545/VD5517793	27 75.138.250.116	spring hill	TN	usa	clothing	25 M
		138.250.116	spring hill	TN	usa	clothing	25 M
		3.250.116	spring hill	TN	usa	clothing	25 M
		.250.116	spring hill	TN	usa	clothing	25 M

Data Problems

- Incorrect data
- Duplicates
- Inconsistent data
- Missing data
- Outliers

Why is data handling important?

• What is the purpose of data exploration?

Today: Data Exploration

- Univariate Analysis
- Multivariate Analysis
- Time Series

Today's Use Case: Flipped Classroom Course

- Participants: 157 EPFL students of a course taught in *flipped* classroom mode with a duration of 10 weeks
- Structure:
 - Preparation: watch videos (and solve simple quizzes) on new
 content at home as a preparation for the lecture
 - Lecture: discuss open questions and solve more complex tasks
 - Lab session: solve paper-and-pen assignments
- Data: clickstream data (all interactions of the student with the system)

Today's Use Case: The Data

	Vic	deo_Info		Video_Events						
TimeStamp	DataPackageID	UniqueRowID	TableName	VideoID	EventType	SessionUserID				
1436539064	hwts-002	0000000773b50de2958e6128ca6a01dc	Video_Events	75	Video.Download	\$\times 9e6622aa3440f144edb91a7d6397\$				
1348761147	progfun-2012-001	00000013631cd1107b9781b40c37ac07	Video_Events	37	Video.Play	\$\times a7e07c5f41369e0acdf08ec72794b				
1362266322	dsp-001	0000002363c3bd0f73b783e3adc44fb3	Video_Events	29	Video.Pause	\$\times\$ bf85620e711cc570f95763d9768c0				
1430601717	reactive-002	00000059c6fb3e38eb5639e1b9e6c863	Video_Events	133	Video.Seek	© ec35ab9103eb35ffcafc74f12c7e97				
1372391638	progfun-002	00000078c0f0685cc50a25a8d5734a88	Video_Events	33	Video.Play	\$\times \text{ef64fb7b096008f7eaf8441684afdf}\$				
1348627928	progfun-2012-001	000000d6a01b089ecee6aea3ddb4589c	Video_Events	33	Video.Seek	\$\times\$ f12fbe6298a9e46122ed11cfabc43k				
1366535543	progfun-002	0000013af9c71ddea9e67332e9f2220f	Video_Events	39	Video.Load	\$\times\$ 8d7c72c0dfe78d0dbeb187c6c464\$				
1361863559	dsp-001	00000146053bbf1daf5e74539b695ae6	Video_Events	43	Video.Play	© c0b7417192e8b38e8f6cb641fc7bd				
1350842274	progfun-2012-001	0000016e472deac18413b2a7ccdc2e07	Video_Events	97	Video.Seek	0c8efe11945ef0f1d0017707ba930				
1400493317	progfun-004	0000017c871f54fda701333bd0acf7ba	Video_Events	77	Video.Play	\$\times 2487d6899365bd5f704979f91995				
1426880606	villesafricaines-003	0000017ea64ccec0f405090cfd220b51	Video_Events	47	Video.Load	\$\times b27704ef3090a0f666907807c1d8\$				
1417881517	intropoojava-001	0000019fa8f938d69cc019e7805edcba	Video_Events	67	Video.Pause	\$ 8ae201009a69aa6ee8c0ae7909279				
1395399921	java-fr-2013-001	000001cb3ef0ccf281d3b9f1c00e7d60	Video_Events	13	Video.Stalled	\$17fc9f1ede5e69d36641c8b2d937				
1400786471	microcontroleurs-003	000001d606e9a4bea4544c1827275b89	Video_Events	19	Video.Pause	\$\times 6c06a76c20df00c17f1d83e7c1832				

Characteristics of a Variable/Feature

ID	Grade	Gender	Category	# Sessions	Time in videos	Time in problems	# clicks on weekdays	# clicks on weekends	Content alignment	Mean pause duration	Mean playback speed	# problem sub- missions	# correct sub- missions
1	4.5	M	Suisse. Autres	57	9227	1698	179	4	0.75	50	1.1	9	5.9
2	5.25	M	Suisse. Autres	41	10801	2340	129	95	0.35	231	0.8	6.1	3
3	4.5	F	Suisse. PAM	33	8185	2737	46	14	0.37	92	0.5	4.6	3.2
4	4.75	F	France	47	7040	3787		58	0.03	62	0.85	0.3	0.1

- Center of the data?
- Spread of the data?
- Shape/distribution of the data?

Descriptive Statistics

	Mean	Median	Mode	Variance	Std	Minimum	25%	75%	Maximum
grade	4.05	4.25	5.0	1.49e+00	1.22	1.00	3.25	5.00	6.00
sessions	33.89	34.00	36.0	2.38e+02	15.42	6.00	22.00	43.00	97.00
time_in_problem	28022.04	24209.50	0.0	4.83e+08	21980.95	0.00	10029.00	41756.75	111238.00
time_in_video	82851.62	81735.50	26699.0	2.20e+09	46942.02	0.00	48823.25	111431.25	274917.00
lecture_delay	820.27	0.00	0.0	1.85e+09	43010.20	-159250.48	-22921.90	24249.25	144964.21
content_anticipation	0.11	0.09	0.0	1.02e-02	0.10	0.00	0.01	0.20	0.31
mean_playback_speed	0.94	0.92	0.9	9.37e-02	0.31	0.00	0.80	1.11	1.76
relative_video_pause	0.22	0.23	0.0	1.05e-02	0.10	0.00	0.14	0.30	0.43
submissions	46.05	35.50	0.0	1.77e+03	42.12	0.00	9.75	77.00	171.00
submissions_correct	25.01	18.00	0.0	5.24e+02	22.90	0.00	4.75	41.00	89.00
clicks_weekend	679.80	465.00	0.0	4.93e+05	702.04	0.00	160.50	1012.75	4546.00
clicks_weekday	1130.64	930.50	108.0	8.13e+05	901.44	0.00	495.00	1534.00	6223.00

Center of the data

Spread of the data

Example: Normal Distribution

• Sample mean:
$$\mu_{\bar{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Sample variance:
$$\sigma_{\bar{x}}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_{\bar{x}})^2$$

- Mode: most frequent value in data set
- Median: separates the lower and upper half of the data (1, 2, 2, 3, 4, 7, 9)

Example: Normal Distribution

Boxplot

Descriptive Statistics

	Mean	Median	Mode	Variance	Std	Minimum	25%	75%	Maximum
grade	4.05	4.25	5.0	1.49e+00	1.22	1.00	3.25	5.00	6.00
sessions	33.89	34.00	36.0	2.38e+02	15.42	6.00	22.00	43.00	97.00
time_in_problem	28022.04	24209.50	0.0	4.83e+08	21980.95	0.00	10029.00	41756.75	111238.00
time_in_video	82851.62	81735.50	26699.0	2.20e+09	46942.02	0.00	48823.25	111431.25	274917.00
lecture_delay	820.27	0.00	0.0	1.85e+09	43010.20	-159250.48	-22921.90	24249.25	144964.21
content_anticipation	0.11	0.09	0.0	1.02e-02	0.10	0.00	0.01	0.20	0.31
mean_playback_speed	0.94	0.92	0.9	9.37e-02	0.31	0.00	0.80	1.11	1.76
relative_video_pause	0.22	0.23	0.0	1.05e-02	0.10	0.00	0.14	0.30	0.43
submissions	46.05	35.50	0.0	1.77e+03	42.12	0.00	9.75	77.00	171.00
submissions_correct	25.01	18.00	0.0	5.24e+02	22.90	0.00	4.75	41.00	89.00
clicks_weekend	679.80	465.00	0.0	4.93e+05	702.04	0.00	160.50	1012.75	4546.00
clicks_weekday	1130.64	930.50	108.0	8.13e+05	901.44	0.00	495.00	1534.00	6223.00

Variable Types

- Categorical
- Ordinal
- Numerical

Categorical Variables

Category	Count	Count %
France	114	0.40
Suisse.Autres	57	0.20
Suisse.PAM	57	0.20
NaN	49	0.17
Etranger.Autres	11	0.04

Gender	Count	Count %
М	156	0.54
F	83	0.29
NaN	49	0.17

Number of students per category

Characteristics of a Variable/Feature

ID	Grade	Gender	Category	# Sessions	Time in videos	Time in problems	# clicks on weekdays	# clicks on weekends	Content alignment	Mean pause duration	Mean playback speed	# problem sub- missions	# correct sub- missions
1	4.5	M	Suisse. Autres	57	9227	1698	179	4	0.75	50	1.1	9	5.9
2	5.25	M	Suisse. Autres	41	10801	2340	129	95	0.35	231	0.8	6.1	3
3	4.5	F	Suisse. PAM	33	8185	2737	46	14	0.37	92	0.5	4.6	3.2
4	4.75	F	France	47	7040	3787		58	0.03	62	0.85	0.3	0.1

- Center of the data?
- Spread of the data?
- Shape/distribution of the data?

Does my data follow a normal distribution?

Normal test p = 0.39

Normal test p = 8.7e-43

Normal test p = 6.0e-26

Important Distributions

- Normal distribution : (continuous) see previous slides
- **Poisson distribution:** (discrete) expresses the probability of a given number of events occurring in a fixed interval of time or space
- Exponential distribution (continuous) distribution of times between events in a Poisson process
- **Binomial distribution**: *(discrete)* models the number of successes in a sequence of independent experiments
- **Bernoulli distribution**: *(discrete)* special case of binomial distribution (n=1)

Important Distributions | Poisson

Models the number of events occurring within a given time interval.

Properties:

- Discrete (not continuous)
- Greater or equal to zero.

Examples:

- Number of calls a call center receives per minute
- Number of students that join the zoom meeting per minute during the first 15 minutes of the class

Important Distributions | Exponential

Probability distribution of time between events of a **Poisson** process.

Properties:

- Continuous
- Greater or equal to zero.

Examples:

- The time before the next telephone call in a call center.
- The time before the next student joins the zoom call.

Important Distributions | Binomial

Models the number of successes in a sequence of independent experiments.

Properties:

- Discrete (not continuous)
- Greater or equal to zero.

Examples:

- Number of passed tests in a course with 20 tests.
- Number of customers that redeemed a coupon.

Important Distributions | Binomial

Models the number of successes in a sequence of independent experiments.

Bernoulli is a special case of the Binomial distribution with one experiment: n = 1

Properties:

- Discrete (not continuous)
- Greater or equal to zero.

Examples:

- Number of passed tests in a course with 20 tests.

Number of customers that redeemed a coupon.

Visual Inspection

p = 6.20579e-29
The null hypothesis can be rejected

p = 0.0216998The null hypothesis cannot be rejected

p = 5.78191e-05
The null hypothesis can be rejected

Data Exploration

- Univariate Analysis
- Multivariate Analysis
- Time Series

Multivariate Analysis

How can we explore the relationship between two variables?

Relation between numerical variables

Relation between numerical & categorical variables

Submissions Correct by Gender

Who is more likely to have correct submissions?

- a) Students identifying as male are more likely to have a correct submission.
- b) Students identifying as female are more likely to have a correct submission.
- c) I cannot answer based on the visualization.

Pearson's Correlation

Linear correlation between two sets of data.

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Where cov(X, Y) is the covariance σ_X is the standard deviation on X σ_Y is the standard deviation on Y

Pearson's Correlation

Linear correlation between two sets of data.

120

Correlation between variables

$$\rho = 0.31 (p = 6.8e - 8)$$

$$\rho = 0.32 \ (p = 1.5e - 08)$$

Pearson's Correlation

Linear correlation between two sets of data.

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Where cov(X, Y) is the covariance σ_X is the standard deviation on X σ_Y is the standard deviation on Y

Pearson's Correlation

Linear correlation between two sets of data.

No correlation = variables are independent?

- a) Yes
- b) No

Pearson's Correlation

X, Y independent $\rightarrow \rho_{X,Y} = 0$ $\rho_{X,Y} = 0 \not\rightarrow X, Y$ independent

Mutual Information

 Dependence between two random variables: "Amount of information" obtained about one random variable through observing the other random variable

$$I(X;Y) = D_{KL}(P_{(X,Y)}||P_X \otimes P_Y)$$

where X and Y are random variables, $P_{(X,Y)}$ is their joint distribution, P_X and P_Y are the marginal distributions, and D_{KL} is the Kullback-Leibler divergence.

Mutual Information

 Dependence between two random variables: "Amount of information" obtained about one random variable through observing the other random variable

$$I(X;Y) = D_{KL}(P_{(X,Y)}||P_X \otimes P_Y)$$

where X and Y are random variables, $P_{(X,Y)}$ is their joint distribution, P_X and P_Y are the marginal distributions, and D_{KL} is the Kullback-Leibler divergence.

For discrete distributions

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \cdot \log(\frac{p(x,y)}{p(x) \cdot p(y)})$$

Mutual Information - Motivation

For discrete distributions

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \cdot \log(\frac{p(x,y)}{p(x) \cdot p(y)})$$

• If X and Y are independent, then $p(x,y) = p(x) \cdot p(y)$ and therefore:

$$\log\left(\frac{p(x,y)}{p(x)\cdot p(y)}\right) = \log(1) = 0$$

Pearson Correlation vs Mutual Information

Mutual Information – Discrete

Mutual Information - Discrete

P(X,Y)

Y: Category

X: Gender

	France	Suisse.PAM	Suisse. Autres	Etranger.Autres
Male	0.28	0.20	0.15	0.02
Female	0.20	0.04	0.09	0.02

Mutual Information - Discrete

P(X,Y)

Y: Category

X: Gender

	France	Suisse.PAM	Suisse. Autres	Etranger.Autres
Male	0.28	0.20	0.15	0.02
Female	0.20	0.04	0.09	0.02

P(Y)

France	Suisse.PAM	Suisse. Autres	Etranger.Autres
0.48	0.24	0.24	0.04

P(X)

Female	Male
0.35	0.65

Mutual Information - Discrete

P(X,Y)

Y: Category

X: Gender

	France	Suisse.PAM	Suisse. Autres	Etranger.Autres
Male	0.28	0.20	0.15	0.02
Female	0.20	0.04	0.09	0.02

P(Y)

France	Suisse.PAM	Suisse. Autres	Etranger.Autres
0.48	0.24	0.24	0.04

P(X)

Female	Male
0.35	0.65

I(X;Y) = 0.02

Mutual Information - Continuous

$$\rho = 0.31 (p = 6.8e - 8)$$

$$I(X;Y) = 0.12$$

Data Exploration

- Univariate Analysis
- Multivariate Analysis
- Time Series

Time Series Data

Records, which are measured sequentially over time:

- **Business**: sales figures, production numbers, customer frequencies, ...
- **Economics**: stock prices, exchange rates, interest rates, ...
- Official Statistics: census data, personal expenditures, road casualties, ...
- **Natural Sciences**: population sizes, sunspot activity, chemical process data, ...
- Environmetrics: precipitation, temperature or pollution recordings, ...

Time Series – Behavioral Data

Records of user behavior, which are measured sequentially over time:

- we usually deal with multiple time series (i.e. one time series per user u)
- a record $r_{u,t}$ of a user u at time t can consists of multiple variables

We might be interested in representing, analyzing, and predicting behavior of single users or of group of users:

- Visualization and exploration of time series data (this lecture)
- Modeling time series data (later...)

Time Series – Our flipped classroom case

The number of sessions will decrease over the course of the semester.

The number of sessions will decrease over the course of the semester.

There is no difference between males and females in terms of the number of sessions.

There is no difference between males and females in terms of the number of sessions.

Your turn!

- Come up with a hypothesis on your own
- Produce a visualization
- Describe: what do you observe? Can your hypothesis be confirmed?

Your turn!

- Come up with a hypothesis on your own
- Produce a visualization
- Describe: what do you observe? Can your hypothesis be confirmed?

Do you want feedback or have questions? (Optional) Upload your Jupyter Notebook here:

https://go.epfl.ch/notebooks-mlbd

Summary

- Compute descriptive statistics
- Visualize, visualize,
 - → Different types of visualizations or representations help to identify different types of problems
 - → Different types of visualizations help to identify different patterns/properties in the data
- Try to gain as much knowledge as possible about the domain and the data collection

Up next...

- Exercises on data exploration [lab session today]
- Introduction to tasks for M2 [project hours today]

Remember

Deadline for M1 is today at 23:59.

Sign-up for the project here (as a team or alone):

https://go.epfl.ch/mlbd-m1-2025