

Modelagem de Dados

Modificado em 16/09 para adaptar ao MySQL Workbench

Bianca Maria Pedrosa

Conteúdo

- ✓ Níveis de Abstração em Banco de Dados
- ✓ Modelo Entidade-Relacionamento
- ✓ Modelos Relacional
- ✓ Transformação entre Modelos
- ✓ Modelo Entidade-Relacionamento Estendido
- ✓ Diferentes Notações

Níveis de Abstração dos Dados

Nível Externo

"Alto nível ..."

Nível Lógico

"Quais ..."

Nível Interno

"Como ..."

Modelo Entidade-Relacionamento

- ✓ Notação criada em 1976 por Peter Chen para representar o projeto conceitual de um BD
- ✓ Popularmente chamada de MER ou DER
- ✓ Elementos principais são as entidades e seus relacionamentos

Modelo Entidade-Relacionamento

✓ Entidade

 um objeto com existência física (pessoa, carro, casa) ou conceitual (empresa, universidade, curso), composto por propriedades que o descreve, chamadas atributos.

Empregado

PIS

NomeEmp Endereço Salário Departamento

IdDpt

NomeDpt

Local

Projeto

IdProj

NomePrj

Local

Modelo Entidade Relacionamento

- ✓ Relacionamento
 - associação entre duas ou mais entidades

Cardinalidade dos relacionamentos

- √1 para 1 (um para um)
 - Cada elemento de uma entidade relaciona-se com apenas um elemento da outra.
 - Exemplo: cada departamento é gerenciado por um único funcionário. Um funcionário gerencia apenas um departamento.

Cardinalidade dos relacionamentos

- √1 para N (um para muitos)
 - Cada elemento de uma entidade relaciona-se com vários elementos da outra.
 - Exemplo: cada departamento possui vários empregados, mas cada empregado está lotado em apenas um departamento

Cardinalidade dos relacionamentos

- ✓ N para N (muitos para muitos)
 - Cada elemento de uma entidade relaciona-se com vários elementos da outra e vice-versa.
 - Exemplo: um empregado pode participar de vários projetos e um projeto pode ter a participação de vários empregados.

Empregado	f	trabalha	Projeto
PIS NomeEmp Endereço Salário	0,N	0,N	IdProj NomePrj Local

Cardinalidade com participação

- ✓ Para representar todas as restrições de um BD, não é suficiente dizer apenas em que número (1 ou N) uma entidade aparece em um relacionamento. É necessário dizer se sua participação é opcional (0) ou obrigatória (1).
- ✓ Para isto, representa-se a cardinalidade através de um par (min, max), onde:
 - Min indica a participação da entidade no relacionamento. Pode ser obrigatória (1) ou opcional(0).
 - Max indica o número de vezes que a entidade aparece no relacionamento. Pode ser 1 ou N(muitos).
- ✓ Possibilidades de cardinalidade:

	Um	Muitos
Opcional	(0,1)	(0,N)
Obrigatória	(1,1)	(1,N)

Cardinalidade com Participação

✓ Todos os departamentos possuem pelo menos um empregado. Todo empregado trabalha para algum departamento.

Ferramentas CASE

- ✓ CASE = Computer Aided Software Engineering
- ✓ Neste curso usaremos duas ferramentas case para projetos de BD:

- ✓ Uma ferramenta CASE para banco de dados deve ser capaz de:
 - Fazer mapeamento do modelo ER para modelo relacional
 - Gerar scripts SQL
 - Fazer engenharia reversa

Para download das

Exemplo

- ✓ Uma companhia deseja um BD para armazenar seus empregados, departamento e projetos. Para tal, considere a seguinte descrição:
 - A companhia é organizada em departamentos. Cada **departamento** tem um único nome, um único nro e um determinado empregado que gerencia o departamento.
 - Um departamento controla um nro de projetos, cada um deles tem um único nome, um único nro e uma localização.
 - É armazenado o nome, pis, endereço, salário, sexo e data de nascimento de um empregado. Um **empregado** é associado a um departamento mas pode trabalhar em vários projetos, que não são necessariamente controlados pelo mesmo departamento. Além dessas informações, deve ser armazenado o nro de horas que cada empregado trabalha em um projeto.

DER – DbDesigner

DER – Workbench (UML)

DER: Várias Notações

CHEN

MERISE

PÉ-DE-GALINHA

UML

Chen

- ✓ Peter Chen foi um dos primeiros autores a lançar um livro sobre abordagem E-R, por isso que sua notação é a mais utilizada
- ✓Ex:

- 1,N é a cardinalidade do Departamento
- 1,1 é a cardinalidade do Empregado

Pé-de-galinha

- ✓ Chamada também de notação Engenharia de Informações ou notação James Martin
- ✓ Para a Engenharia de informação (método de desenvolvimento de sistemas de informação), foi definida a seguinte notação gráfica

✓Ex:

Merise

✓ Muito utilizado em ferramentas CASE. Coloca-se a cardinalidade do lado da entidade a que ela se refere (contrário do Chen).

✓Ex:

- Chen

- Merise

DBDesigner 4 -

UML

- ✓ UML (*Unified Modeling Language*) é uma linguagem utilizada em projetos de software orientados a objetos
- ✓ O DER á la UML é baseado no Diagrama de classes da UML
- ✓ A representação de Mínimo e Máximo é chamado de multiplicidade e essas são especificadas na forma MIN..MAX onde * indica que não há limite. As multiplicidades são colocadas nas extremidades opostas do relacionamento em comparação. Um único * representa 0..*, um único 1 representa 1..1

Conceito	Símbolos:	DER		\mathbf{UML}	
Conceito	CHEN	Pé-de- galinha	Merise		
Entidade					
Relacionamento					
Atributos				São representados na classe	
Atributo identificador				Nada consta	
Generaliza ção					
Entidade Associativa		X		X	
Cardinalidade	1:1	+	1:1	1	
	1:N	>+	1:N	1*	
	N:N	>	N:N	*	
	0:1	+	0:1	01	
	0:N	≫ ———	0:N	0*	

Fonte: Sistemas de Banco de Dados, Fundamentos e Aplicações, Elmasri, Ed. LTC

Modelo Relacional

Modelo Relacional

- ✓ Modelo de dados onde o BD consiste em uma coleção de tabelas
- ✓ Cada tabela é chamada relação porque corresponde a este conceito matemático
- ✓ Cada linha de uma tabela recebe o nome de tupla
- ✓ Cada coluna de uma tabela recebe o nome de atributo

Modelo Relacional

Restrições do Modelo Relacional

✓ Domínio

 Todo atributo deve ter um valor atômico (indivisível). Não é possível a existência de valores compostos ou multi-valorados.

✓ Chave

 Toda tupla tem que ser distinta. Duas tuplas não podem ter a mesma combinação de valores para todos os seus atributos. Um atributo chave distingue apenas uma tupla em uma relação

Chaves

Transformação Entre Modelos

Mapeamento ER->Relacional (Regras)

1. Para cada entidade criar uma tabela

Empregado(PIS, NomeEmp, Salário, Endereço)

Departamento(<u>IdDpt</u>, NomeDpt, Local)

Projeto(<u>IdPrj</u>, NomePrj, Local)

Mapeamento de relacionamentos

Implementação de relacionamentos 1:1

	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição coluna	Fusão tabelas
(0,1)	±	>	×
(0,1)	×	±	√
(1,1)	×	×	✓

× Não usar

Mapeamento Relacionamentos 1:1

Mapeamento Relacionamentos 1:1

Mapeamento Relacionamentos 1:N

Relacionamentos 1:n

Regra de implementação		
Tabela própria	Adição coluna	Fusão tabelas
±	1	×
±	✓	×
×	1	×
×	1	×
	Tabela	Tabela Adição

✓ Alternativa preferida

± Pode ser usada

× Não usar

Mapeamento Relacionamentos 1:N

Mapeamento Relacionamentos 1:N

Mapeamento Relacionamentos N:N

Relacionamentos n:n

	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição coluna	Fusão tabelas
(O,r) (O,n)	\	×	×
(O,r) (´,n)	>	×	×
(1,n) (1,n)	>	×	×

Fonte: Carlos A Heuser, Projeto de Banco de Dados. Ed Sagra& Luzato

× Não usar

✓ Alternativa preferida

Mapeamento Relacionamentos N:N

Mapeamento Relacionamentos N:N

Resumo das Regras de Mapeamento ER-> Relacional

- 1. Para cada entidade criar uma tabela
- Para cada relacionamento 1:1 juntar tabela ou adicionar FK
- Para cada relacionamento 1:N adicionar FK
- Para cada relacionamentos N:N criar uma tabela com chaves primárias compostas

DER – DbDesigner

DER – Workbench (UML)

Outros tipos de relacionamentos

Auto-relacionamento

- ✓ Relacionamento de uma entidade com ela mesma
- ✓ Exemplo Empregado supervisiona empregado

Relacionamentos Ternários

- ✓ Relacionamento que associa três entidades.
 - Ex. Vários fornecedores fornecem determinadas peças a alguns projetos:

NroForneced	NroPeça	NroProj
1	100	1
1	200	1
1	200	2
2	100	1

Relacionamentos Ternários

✓ Um relacionamento ternário NÃO corresponde a três relacionamentos binários

compra

NroProj	NroFornec	
	1	1
	1	2
	2	1
	2	2

usa

NroProj	NroPeça	
1	100)
2	100)
1	200)

produz

NroFornecea	NroPeça
1	100
2	100
1	200

Mapeamento Relacionamentos Ternários

Relacionamento ternário

Modelo Entidade-Relacionamento Estendido

Agregação

✓ No modelo E-R não é possível expressar relacionamentos entre relacionamentos.

Mapeamento de Agregações

- ✓ Para mapear Agregações duas soluções são possíveis:
 - Cria-se uma relação para cada relacionamento.
 - Cria-se uma única relação para os dois.

Mapeamento de Agregações

Generalização

✓ Expressa a semelhança entre entidades através de um relacionamento de conteúdo entre um conjunto entidade de nível superior e um ou mais conjuntos entidade de nível inferior.

Mapeamento Generalização/Especialização

- ✓ Para casos de Generalização/Especialização duas soluções podem ser adotadas:
 - Criar uma relação para cada entidade. As relações correspondentes as entidades não principais contêm a chave da relação principal
 - Criar relações apenas para as entidades não principais.

Mapeamento Generalização/Especialização

✓ Solução 1:

- Conta(Nroconta, Saldo)
- ContaPoup(NroConta, Txjuros)
- ContaCorr(NroConta, Limite)

Solução 2:

ContaPoup(NroConta, Saldo, Txjuros)

ContaCorr(NroConta, Saldo, Limite)

Generalização em DbDesigner

Bibliografia

- ✓ Heuser C. A, Projeto de Banco de Dados, 3a ed, Editora Sagra Luzzatto, 2000.
- ✓ Elmasri & Navathe, Sistemas de Banco de Dados Fundamentos e Aplicações, 3a. ed., LTC, 2002.
- ✓ Korth, h.; Silberschatz, A. Sistemas de Banco de Dados. Makron, 3a ed. 1999.
- ✓ Date, C. J., Introdução a Sistemas de Banco de Dados. Campus, 7a ed. 2000.
- ✓ Oliveira, C.H. P. SQL Curso Prático, Novatec, 2002.
- ✓ Patrick, J.J. SQL Fundamentos, Berkeley Brasil, 2002.
- ✓ Taylor, A. G. SQL para Dummies, Campus, 2001.