Линейная классификация

Лекция 3

План лекции

- Линейные модели классификации
- Метрики качества классификации
- Логистическая регрессия
- Обучение логистической регрессии
- Метод опорных векторов
- Многоклассовая классификация

Линейные модели классификации

- Обозначим:
 - $\mathbb{X} = \mathbb{R}^d$ пространство объектов
 - $Y = \{-1, +1\}$ множество допустимых ответов
 - $X = \{(\vec{x}_i, y_i)\}_{i=1}^l$ обучающая выборка
- Линейная модель классификации:

$$a(\vec{x}) = sign(\langle \vec{w}, \vec{x} \rangle + w_0) = sign\left(\sum_{j=1}^d w_j x_j + w_0\right),$$

где $\overrightarrow{w} \in \mathbb{R}^d$ – вектор весов, $w_0 \in \mathbb{R}$ – сдвиг, sign – функция знака:

$$sign \ u = \begin{cases} +1, u > 0 \\ 0, u = 0 \\ -1, u < 0 \end{cases}$$

• Если $x_0 = 1$, тогда $a(\vec{x}) = sign(\vec{w}, \vec{x})$

- Линейный классификатор соответствует гиперплоскости с вектором нормали \overrightarrow{w}
- Величина скалярного произведения $\langle \vec{w}, \vec{x} \rangle$ пропорциональна расстоянию от гиперплоскости до точки \vec{x} , а его знак показывает, с какой стороны от гиперплоскости находится данная точка
- Расстояние от точки до гиперплоскости:

$$\frac{|\langle \vec{w}, \vec{x} \rangle|}{\|\vec{w}\|}$$

• Линейный классификатор разделяет пространство на две части с помощью гиперплоскости, и при этом одно полупространство относится к положительному классу, а другое – к отрицательному

• Уравнение прямой по двум точкам:

$$(x_{1a}, x_{2a}) = (0, 3), (x_{1b}, x_{2b}) = (6, 0)$$

$$(x_{2a} - x_{2b})x_1 + (x_{1b} - x_{1a})x_2 + (x_{1a}x_{2b} - x_{1b}x_{2a}) = 0$$

$$3x_1 + 6x_2 - 18 = 0$$

$$x_1 + 2x_2 - 6 = 0$$

$$\vec{w} = (1, 2), ||\vec{w}|| = \sqrt{1^2 + 2^2} = \sqrt{5} \approx 2.236$$

Функционалы качества/ошибки

• Доля правильных ответов или *правильность* (accuracy):

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [a(\vec{x}_i) = y_i],$$

где [⋅] – нотация (скобка) Айверсона:

$$[P] = egin{cases} 1, {
m если} \, P - {
m истинно} \ 0, {
m если} \, P - {
m ложно} \end{cases}$$

• Доля неправильных ответов:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [a(\vec{x}_i) \neq y_i] = \frac{1}{l} \sum_{i=1}^{l} [sign\langle \vec{w}, \vec{x}_i \rangle \neq y_i] \rightarrow \min_{\vec{w}}$$

– дискретная функция

Функционал ошибки

• Модифицированный вариант:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [y_i \langle \overrightarrow{w}, \overrightarrow{x}_i \rangle < 0] \to \min_{\overrightarrow{w}}$$

- Величина $M=y_i\langle \overrightarrow{w},\overrightarrow{x}_i\rangle$ называется отступом (margin)
- Знак отступа говорит о корректности ответа классификатора:
 - ullet положительный отступ ightarrow правильный ответ
 - отрицательный отступ ightarrow неправильный ответ
- Абсолютная величина отступа характеризует степень уверенности классификатора в своём ответе

• Функция потерь (пороговая):

$$L(M) = [M < 0]$$

• Если оценить эту функцию сверху:

$$L(M) \leq \tilde{L}(M)$$
,

то можно получить верхнюю оценку для функционала ошибки:

$$Q(a, X) \le \frac{1}{l} \sum_{i=1}^{l} \tilde{L}(y_i \langle \vec{w}, \vec{x}_i \rangle) \to \min_{\vec{w}}$$

- 1. $\tilde{L}(M) = log(1 + e^{-M})$ логистическая функция потерь (L)
- 2. $\tilde{L}(M) = (1-M)_+ = max(0,1-M)$ кусочно-линейная функция потерь (hinge loss) (метод опорных векторов) (V)
- 3. $\tilde{L}(M) = (-M)_+ = max(0, -M)$ кусочно-линейная функция потерь (персептрон Розенблатта) (Н)
- 4. $\tilde{L}(M)=e^{-M}$ экспоненциальная функция потерь (AdaBoost) (E)
- 5. $\tilde{L}(M) = \frac{2}{(1+e^M)}$ сигмоидная функция потерь (S)
- 6. $\tilde{L}(M) = (1 M)^2$ квадратичная функция потерь (Q)

Матрица ошибок (confusion matrix):

		Оценка классификатора	
		a(x) = +1 (Positive)	a(x) = -1 (Negative)
Истинные ответы	y = +1	TP (True Positive)	FN (False Negative)
	y = -1	FP (False Positive)	TN (True Negative)

• Accuracy (Правильность):

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

• Precision (Точность):

$$P = \frac{TP}{TP + FP}$$

• Recall (Полнота):

$$R = \frac{TP}{TP + FN}$$

• F1-measure (F1-score, F1-мера):

$$F1 = \frac{2PR}{P+R}$$

• Микроусреднение (micro-averaging):

$$P^{micro} = \frac{\sum_{i=1}^{n} TP_i}{\sum_{i=1}^{n} (TP_i + FP_i)}, \qquad R^{micro} = \frac{\sum_{i=1}^{n} TP_i}{\sum_{i=1}^{n} (TP_i + FN_i)},$$

$$F_1^{micro} = \frac{2P^{micro}R^{micro}}{P^{micro} + R^{micro}}$$

Макроусреднение (macro-averaging):

$$P^{macro} = \frac{\sum_{i=1}^{n} P_i}{n}, \qquad R^{macro} = \frac{\sum_{i=1}^{n} R_i}{n},$$

$$F_1^{macro} = \frac{\sum_{i=1}^{n} F_{1i}}{n}$$

• Линейная регрессия:

$$a(\vec{x}_i) = \langle \vec{w}, \vec{x}_i \rangle$$

• Логистическая регрессия:

$$a(\vec{x}_i) = g(\langle \vec{w}, \vec{x}_i \rangle) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x}_i \rangle}}$$

Сигмоидальная
 (логистическая) функция:

- Пусть $y \in \{0,1\}$
- Тогда:
 - $a(\vec{x}_i)$ вероятность того, что объект \vec{x}_i принадлежит классу $y_i=1$
 - $1-a(\vec{x}_i)$ вероятность того, что объект \vec{x}_i принадлежит классу $y_i=0$
- Интерпретация выходных значений:

$$y = \begin{cases} 1, \text{если } a(\vec{x}_i) \geq 0.5, \text{т. e. } \langle \vec{w}, \vec{x}_i \rangle \geq 0 \\ 0, \text{если } a(\vec{x}_i) < 0.5, \text{т. e. } \langle \vec{w}, \vec{x}_i \rangle < 0 \end{cases}$$

• Одномерный случай:

• Двумерный случай:

• Двумерный нелинейный случай:

• Условные вероятности:

$$P(y = 1|x) = a(x)$$
$$P(y = 0|x) = 1 - a(x)$$

В компактном виде:

$$P(y|x) = (a(x))^{y} (1 - a(x))^{1-y}$$

• Правдоподобие выборки (likelihood) – вероятность получить данную выборку с точки зрения алгоритма:

$$P(\vec{y}|X) = \prod_{i=1}^{l} P(y_i|\vec{x}_i) = \prod_{i=1}^{l} (a(\vec{x}_i))^{y_i} (1 - a(\vec{x}_i))^{1-y_i}$$

• Правдоподобие:

$$P(\vec{y}|X) = \prod_{i=1}^{l} (a(\vec{x}_i))^{y_i} (1 - a(\vec{x}_i))^{1-y_i}$$

• Логарифмическое правдоподобие (log likelihood):

$$\log P(\vec{y}|X) = \sum_{i=1}^{l} y_i \log a(\vec{x}_i) + (1 - y_i) \log(1 - a(\vec{x}_i)) \to \max_{\vec{w}}$$

 Переходим к минимизации (log-loss или cross-entropy – перекрестная энтропия):

$$-\sum_{i=1}^{l} y_i \log a(\vec{x}_i) + (1 - y_i) \log \left(1 - a(\vec{x}_i)\right) \to \min_{\vec{w}}$$

На одном объекте (функция потерь):

$$L(a, \vec{x}_i) = \begin{cases} -\log a(\vec{x}_i), y_i = 1\\ -\log(1 - a(\vec{x}_i)), y_i = 0 \end{cases}$$

Функция потерь:

$$L(a, \vec{x}_i) = \begin{cases} -\log a(\vec{x}_i), y_i = 1\\ -\log (1 - a(\vec{x}_i)), y_i = -1 \end{cases}$$

$$L(a, \vec{x}_i) = \begin{cases} -\log \frac{1}{1 + e^{-\langle \vec{w}, \vec{x}_i \rangle}}, y_i = 1\\ -\log \left(1 - \frac{1}{1 + e^{-\langle \vec{w}, \vec{x}_i \rangle}}\right) = -\log \frac{1}{1 + e^{\langle \vec{w}, \vec{x}_i \rangle}}, y_i = -1 \end{cases}$$

$$L(a, \vec{x}_i) = -\log \frac{1}{1 + e^{-y_i \langle \vec{w}, \vec{x}_i \rangle}} = -\log \frac{1}{1 + e^{-M}} = -\log 1 + \log(1 + e^{-M})$$

$$L(M) = \log(1 + e^{-M})$$

Обучение логистической регрессии

• Градиентный спуск:

$$a'(x) = a(x)(1 - a(x))$$

$$\nabla \log P(\vec{y}|X) = (\vec{y} - a(X))X$$

$$\frac{\partial}{\partial w_j} (\log P(\vec{y}|X)) = \sum_{i=1}^l (y_i - a(\vec{x}_i)) x_{ij}$$

Шаг градиентного спуска:

$$w_j^{(k)} = w_j^{(k-1)} - \eta_k \sum_{i=1}^l (y_i - a(\vec{x}_i)) x_{ij}$$

Метод опорных векторов (Support Vector Machine, SVM)

Случай линейной разделимости

• Линейный классификатор:

$$a(\vec{x}) = sign(\langle \vec{w}, \vec{x} \rangle + w_0)$$

- Пусть существуют такие параметры \overrightarrow{w} и w_0 , что классификатор не допускает ни одной ошибки на обучающей выборке
- В этом случае говорят, что выборка линейно разделима

Метод опорных векторов: идея

- Пусть разделяющая гиперплоскость расположена так, что ближайшие объекты обоих классов находятся от неё на одинаковом расстоянии
- Таких разделяющих полос может быть бесконечно много
- В методе опорных векторов ширина разделяющей полосы максимизируется

- Составим оптимизационную задачу
- Расстояние от произвольной точки \vec{x}_k до гиперплоскости:

$$d(\vec{x}_k) = \frac{|\langle \vec{w}, \vec{x}_k \rangle + w_0|}{\|\vec{w}\|}$$

- Известно, что если умножить одновременно параметры \overrightarrow{w} и w_0 на одну и ту же константу, то классификатор не изменится
- Подберем эту константу так, чтобы

$$\min_{\vec{x}_k \in X} |\langle \vec{w}, \vec{x}_k \rangle + w_0| = 1$$

- Тогда расстояние от разделяющей гиперплоскости до ближайшего объекта обучающей выборки (опорного вектора): $1/\|\overrightarrow{w}\|$
 - данная величина называется *отступом* (margin)
- Ширина разделяющей полосы равна $2/\|\overrightarrow{w}\|$
- Требуется максимизировать ширину разделяющей полосы при условии правильной классификации всех примеров

Уравнения прямых:

$$x_{1} + 2x_{2} - 8 = 0$$

$$x_{1} + 2x_{2} - 6 = 0$$

$$x_{1} + 2x_{2} - 4 = 0$$

$$\overrightarrow{w} = (1, 2)$$

Подберем \vec{w} так, чтобы $|\langle \vec{w}, \vec{x}_0 \rangle + w_0| = 1$:

$$(4,2): 1 \cdot 4 + 2 \cdot 2 - 6 = 2 \mid \times \frac{1}{2}$$

$$(4,2): \frac{1}{2} \cdot 4 + 1 \cdot 2 - 3 = 1$$

$$(2,1): \frac{1}{2} \cdot 2 + 1 \cdot 1 - 3 = -1$$

$$\overrightarrow{w} = \left(\frac{1}{2}, 1\right)$$

42

• Расстояние от точки до плоскости:

$$d(\vec{x}_k) = \frac{|\langle \vec{w}, \vec{x}_k \rangle + w_0|}{||\vec{w}||}$$

$$(4,2): \frac{\left|\frac{1}{2} \cdot 4 + 1 \cdot 2 - 3\right|}{\sqrt{\left(\frac{1}{2}\right)^2 + 1^2}} = \frac{1}{\sqrt{\frac{5}{4}}} \approx 0,894$$

• Ширина разделяющей полосы:

$$\frac{2}{\|\overrightarrow{w}\|} = \frac{2}{\sqrt{\frac{5}{4}}} \cong 1,789$$

• Уравнения прямых:

$$x_1 + x_2 - 6 = 0 x_1 + x_2 - 4,5 = 0 x_1 + x_2 - 3 = 0$$
 $\overrightarrow{w} = (1,1)$

• Подберем \overrightarrow{w} так, чтобы $|\langle \overrightarrow{w}, \overrightarrow{x}_k \rangle + w_0| = 1$:

$$(4,2): 1 \cdot 4 + 1 \cdot 2 - 4,5 = 1,5 \mid \times \frac{2}{3} \mid$$

$$(4,2): \frac{2}{3} \cdot 4 + \frac{2}{3} \cdot 2 - 3 = 1$$

$$(2,1): \frac{2}{3} \cdot 2 + \frac{2}{3} \cdot 1 - 3 = -1$$

$$\downarrow \vec{w} = \left(\frac{2}{3}, \frac{2}{3}\right)$$

• Расстояние от точки до плоскости:

$$d(\vec{x}_k) = \frac{|\langle \vec{w}, \vec{x}_k \rangle + w_0|}{||\vec{w}||}$$

$$(4,2): \frac{\left|\frac{2}{3} \cdot 4 + \frac{2}{3} \cdot 2 - 3\right|}{\sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2}} = \frac{1}{\sqrt{\frac{8}{9}}} \approx 1,061$$

• Ширина разделяющей полосы:

$$\frac{2}{\|\vec{w}\|} = \frac{2}{\sqrt{\frac{8}{9}}} \cong 2,121$$

• Оптимизационная задача:

$$\begin{cases} \frac{1}{2} \|\overrightarrow{w}\|^2 \to \min_{\overrightarrow{w}} \\ y_i(\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle + w_0) \ge 1, & i = 1, ..., l \end{cases}$$

- Задача квадратичной оптимизации найти минимум квадратичной функции при l ограничениях-неравенствах
 - Имеет единственное решение

Случай отсутствия линейной разделимости

• При любых \overrightarrow{w} и w_0 хотя бы одно из ограничений будет нарушено:

$$\exists x_i \in X: \ y_i(\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle + w_0) < 1$$

• Смягчим ограничения, введя штраф $\xi_i \geq 0$ за их нарушение:

$$y_i(\langle \vec{w}, \vec{x}_i \rangle + w_0) \ge 1 - \xi_i$$

• В оптимизационной задаче будем максимизировать ширину разделяющей полосы и минимизировать штраф за ошибки:

$$\begin{cases} \frac{1}{2} \|\overrightarrow{w}\|^2 + C \sum_{i=1}^{l} \xi_i \to \min_{\overrightarrow{w}, \xi} \\ y_i(\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle + w_0) \ge 1 - \xi_i, & i = 1, \dots, l \\ \xi_i \ge 0 \end{cases}$$

- C параметр регуляризации: чем больше параметр C, тем сильнее настраиваемся на обучающую выборку и уменьшаем ширину разделяющей полосы
- Данная задача называется soft margin SVM (в отличие от hard margin) и также имеет единственное решение
- В процессе решения оптимизационной задачи результат зависит только от попарных скалярных произведений объектов $\langle \vec{x}_i, \vec{x}_j \rangle$

Функционал ошибки и функция потерь

$$\begin{cases} \frac{1}{2} \|\overrightarrow{w}\|^2 + C \sum_{i=1}^{l} \xi_i \to \min_{\overrightarrow{w}, \xi} \\ y_i(\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle + w_0) \geq 1 - \xi_i, & i = 1, ..., l \\ \xi_i \geq 0 \end{cases}$$

$$\begin{cases} \xi_i \geq 1 - y_i(\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle + w_0) \\ \xi_i \geq 0 \end{cases}$$

$$\xi_i = \max(0, 1 - y_i(\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle + w_0))$$

$$\frac{1}{2} \|\overrightarrow{w}\|^2 + C \sum_{i=1}^{l} \max(0, 1 - y_i(\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle + w_0)) \to \min_{\overrightarrow{w}, w_0}$$

$$\widetilde{L}(M) = (1 - M)_+ = \max(0, 1 - M), \qquad \text{где } M = y_i(\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle + w_0)$$

кусочно-линейная функция потерь (hinge loss)

Ядра и спрямляющие пространства

- Ещё один подход к решению проблемы линейной неразделимости переход от исходного пространства признаковых описаний объектов $\mathbb X$ к новому пространству $\mathbb H$ с помощью некоторого преобразования $\psi \colon \mathbb X \to \mathbb H$
- Если пространство
 Ш имеет достаточно высокую размерность, то можно надеяться, что в нём выборка окажется линейно разделимой
- Если выборка X^l не противоречива, то всегда найдётся пространство размерности не более l, в котором она будет линейно разделима
- Пространство Ш называют спрямляющим.

- Если предположить, что признаковыми описаниями объектов являются векторы $\vec{\psi}(\vec{x}_i)$, а не векторы \vec{x}_i , то построение SVM производится точно так же, как и ранее
- Единственное отличие состоит в том, что скалярное произведение $\langle \vec{x}_i, \vec{x}_j \rangle$ в пространстве $\mathbb X$ всюду заменяется скалярным произведением $\langle \vec{\psi}(\vec{x}_i), \vec{\psi}(\vec{x}_i) \rangle$ в пространстве $\mathbb H$
- Функция $K(\vec{x}_i, \vec{x}_j) = \langle \vec{\psi}(\vec{x}_i), \vec{\psi}(\vec{x}_j) \rangle$ называется ядром (kernel function)
- Алгоритм обучения SVM зависит только от скалярных произведений объектов, но не от самих признаковых описаний
- Поэтому скалярное произведение $\langle \vec{x}_i, \vec{x}_j \rangle$ можно заменить ядром $K(\vec{x}_i, \vec{x}_j)$
- Можно вообще не строить спрямляющее пространство $\mathbb H$ в явном виде, и вместо подбора отображения ψ непосредственно подбирать ядра

Виды ядер:

- линейное: $K(\vec{x}_i, \vec{x}_j) = \langle \vec{x}_i, \vec{x}_j \rangle$
 - задача сводится к SVM с мягким отступом
- полиномиальное: $K(\vec{x}_i, \vec{x}_j) = (\gamma \langle \vec{x}_i, \vec{x}_j \rangle + r)^d$
- RBF (Radial Basis Function): $K(\vec{x}_i, \vec{x}_j) = e^{-\gamma ||\vec{x}_i \vec{x}_j||^2}$
- сигмоидальное: $K(\vec{x}_i, \vec{x}_j) = \tanh(\gamma \langle \vec{x}_i, \vec{x}_j \rangle + r)$

Data in R^3 (separable w/ hyperplane)

Полиномиальное ядро:

$$K(\vec{x}_{i}, \vec{x}_{j}) = \langle \vec{\psi}(\vec{x}_{i}), \vec{\psi}(\vec{x}_{j}) \rangle = (\langle \vec{x}_{i}, \vec{x}_{j} \rangle)^{2}$$

$$(\langle \vec{x}_{i}, \vec{x}_{j} \rangle)^{2} = (x_{i1}x_{j1} + x_{i2}x_{j2})^{2} =$$

$$= (x_{i1}x_{j1})^{2} + 2x_{i1}x_{j1}x_{i2}x_{j2} + (x_{i2}x_{j2})^{2} =$$

$$= \langle (x_{i1}^{2}, x_{i2}^{2}, \sqrt{2}x_{i1}x_{i2}), (x_{j1}^{2}, x_{j2}^{2}, \sqrt{2}x_{j1}x_{j2}) \rangle$$

$$\vec{\psi}(\vec{x}) = (x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2})$$

- Multiclass classification: $\mathbb{Y} = \{1, ..., K\}$
- Варианты решения:
 - сведение к серии бинарных задач
 - построение классификатора сразу для нескольких классов

Сведение к серии бинарных задач

- 1. Один против всех (one-vs-all, one-vs-rest):
- обучим K линейных классификаторов $b_1(x), \dots, b_K(x),$ выдающих оценки принадлежности классам $1, \dots, K$ соответственно
- Например, в случае линейных классификаторов:

$$b_k(\vec{x}) = \langle \vec{w}_k, \vec{x} \rangle + w_{0k}$$

• Классификатор с номером k будем обучать по выборке

$$(x_i, 2[y_i = k] - 1)_{i=1}^l$$

• Классификатор учится отличать k-й класс от всех остальных

 Итоговый классификатор будет выдавать класс, соответствующий самому уверенному из бинарных алгоритмов:

$$a(x) = \arg\max_{k \in \{1, \dots, K\}} b_k(x).$$

• Проблема данного подхода заключается в том, что каждый из классификаторов $b_1(x), \dots, b_K(x)$ обучается на своей выборке, и выходы этих классификаторов могут иметь разные масштабы, из-за чего сравнивать их будет неправильно

- 2. Каждый против каждого (one-vs-one):
- Обучим C_K^2 классификаторов $b_{ij}(x)$, i,j=1,...,K, $i\neq j$ (сочетание из K по два):

$$C_K^2 = \frac{K!}{2(K-2)!} = \frac{K(K-1)}{2}$$

• Например, в случае линейных классификаторов:

$$b(\vec{x}) = sign(\langle \vec{w}, \vec{x} \rangle + w_0)$$

• Классификатор $b_{ij}(x)$ будем обучать на подвыборке $X_{ij} \subset X$, содержащей только объекты классов i и j:

$$X_{ij} = \{(x_n, y_n) \in X | y_n = i$$
 или $y_n = j\}$

- Соответственно, классификатор $b_{ij}(x)$ будет выдавать для любого объекта либо класс i, либо класс j
- Чтобы классифицировать новый объект, подадим его на вход каждого из построенных бинарных классификаторов
- Каждый из них проголосует за свой класс; в качестве ответа выберем тот класс, за который наберется больше всего голосов:

$$a(x) = \underset{k \in \{1, \dots, K\}}{\operatorname{arg max}} \sum_{i=1}^{K} \sum_{j \neq i} [b_{ij}(x) = k]$$

Многоклассовая логистическая регрессия

(multinomial logistic regression)

- Логистическая регрессия для двух классов:
 - строится линейная модель: $b(x) = (\langle \vec{w}, \vec{x} \rangle + w_0)$
 - вычисляется вероятность: $\sigma(z) = \frac{1}{1 + exp(-z)}$

- Многоклассовая логистическая регрессия:
 - строятся K линейных моделей $b_k(\vec{x}) = \langle \vec{w}_k, \vec{x} \rangle + w_{0k}$
 - каждая модель выдает оценку принадлежности к своему классу и формируется вектор оценок: $(b_1(x), ..., b_K(x))$ logits
 - для получения итоговых результатов оценки нормируются с использованием оператора *SoftMax*:

$$SoftMax(z_1, \dots, z_K) = \left(\frac{exp(z_1)}{\sum_{k=1}^{K} exp(z_k)}, \dots, \frac{exp(z_K)}{\sum_{k=1}^{K} exp(z_k)}\right)$$

• вероятность k-го класса будет выражаться следующим образом:

$$P(y = k | \vec{x}, \vec{w}) = \frac{exp(\langle \vec{w}_k, \vec{x} \rangle + w_{0k})}{\sum_{j=1}^{K} exp(\langle \vec{w}_j, \vec{x} \rangle + w_{0j})}$$

SoftMax

$$SoftMax(z_1,...,z_n) = \left(\frac{e^{z_1}}{\sum_{k=1}^n e^{z_k}},...,\frac{e^{z_n}}{\sum_{k=1}^n e^{z_k}}\right)$$

N	Logits	Exp	Probability
1	5	148.4	0.21
2	3	20.1	0.03
3	6.2	492.7	0.68
4	4	54.6	0.08
5	1.5	4.5	0.01
6	-2	0.1	0.00
		720.5	1.00

