明細書

フォトレジスト組成物およびレジストパターン形成方法 技術分野

[0001] 本発明は、フォトレジスト組成物および該フォトレジスト組成物を用いたレジストパターン形成方法に関する。詳しくは、レジスト溶剤への溶解性に優れるフラーレン誘導体を含有することにより、高エッチング耐性を有するとともに、エッジラフネス低減にも優れるフォトレジスト組成物、および該フォトレジスト組成物を用いたレジストパターン形成方法に関する。本願は、2004年2月19日に出願された特願2004-043692号に対し優先権を主張し、その内容をここに援用する。

背景技術

- [0002] 半導体デバイス、液晶デバイス等の各種電子デバイスにおける微細構造の製造には、リングラフィー法が多用されているが、デバイス構造の微細化に伴って、リングラフィー工程におけるレジストパターンの微細化が要求されている。
- [0003] 現在では、リングラフィー法により、例えば、最先端の領域では、線幅が90nm程度 の微細なレジストパターンを形成することが可能となっているが、今後はさらに微細な パターン形成が要求される。
- [0004] このような90nmより微細なパターン形成を達成させるためには、ArFエキシマレーザー、F、エキシマレーザー、EUV(極端紫外光)、電子線、X線、軟X線等の光源波長の短波長化が避けられず、これに対応した感光材料やフォトレジストの開発が必要とされている。
- [0005] 従来、このような感光材料やフォトレジストは、被膜形成成分として、(メタ)アクリル系、ポリヒドロキシスチレン系またはノボラック系樹脂などの樹脂成分と露光により酸を発生する酸発生剤や感光剤とを組み合わせた組成物が広く用いられている。しかし、このような組成物では、レジスト膜を薄膜化し高解像性の微細パターンを形成できたとしても、エッチング耐性が不十分となる。また、ナノメーター・オーダーの高解像度の微細パターンでは、従来以上にエッジラフネスの低減が困難となってきており、その改善が強く望まれている。

[0006] 他方において、これまでいろいろなフラーレンを用いたフォトレジストが提案されている(例えば、特許文献1~3参照)。しかし、これまでフォトレジストに用いられてきたフラーレンは、レジスト溶剤への溶解性が低い傾向がある。また、溶液としたときに、その溶液の粘度が低いため、スピンコートなどの塗布法により基板上に良質なフォトレジスト膜を形成することが困難である。また、膜が形成できても薄膜しか形成できず、膜厚の調整が困難である。さらには、溶解可能な範囲でフラーレンを増量するとエッチング耐性は向上するものの、レジストパターン形状が悪化するというトレードオフの問題がある。

[0007] 特許文献1:特開平7-33751号公報

特許文献2:特開平9-211862号公報

特許文献3:特開平11-258796号公報

発明の開示

発明が解決しようとする課題

- [0008] 本発明は、前記に鑑みてなされたものであって、レジスト溶剤への溶解性に優れるフラーレン誘導体を含有させることにより高エッチング耐性を有するとともに、エッジラフネス低減にも優れるフォトレジスト組成物と、該フォトレジスト組成物を用いたレジストパターン形成方法とを提供することを課題とする。
- [0009] また、本発明は、レジストパターン形状に優れるフォトレジスト組成物、および該フォトレジスト組成物を用いたレジストパターン形成方法を提供することも課題とする。 課題を解決するための手段
- [0010] 本発明者らは、前記課題を解決するためにフラーレン誘導体の置換基および置換 基数について鋭意研究を進めたところ、特定置換基を有するフラーレン誘導体、特 に、その置換基数が複数であるメタノフラーレン誘導体がレジスト溶剤への高い溶解 性を示すことを見いだした。そして、前記メタノフラーレン誘導体を含有したフォトレジ スト組成物が、優れたエッジラフネス低減効果を示すばかりでなく、高エッチング耐性 を示すことを見いだし、これらの知見に基づいて本発明を完成させるに至った。

また、そのようなフォトレジスト組成物が、高感度で、レジストパターン形状に優れる ことを見いだし、これらの知見に基づいて本発明を完成させるに至った。 [0011] すなわち、本発明のフォトレジスト組成物は、2つ以上のマロン酸エステル残基を有するフラーレン誘導体(A)を含有することを特徴とするフォトレジスト組成物である。 前記マロン酸エステル残基としては、下記一般式(1)で表される基が好ましい。

[0012] [化1]

(式中、 R^1 および R^2 はそれぞれ独立してアルキル基であり、同一でも異なってもよい。

[0013] また、本発明のフォトレジスト組成物は、前記フラーレン誘導体(A)が下記一般式(2)で表される化合物であることが好ましい。

[0014] [化2]

(式中、nは2以上の整数を表し、R1およびR2は、それぞれ独立してアルキル基であり、同一でも異なってもよい。)

- [0015] 前記アルキル基としては、炭素数1〜10の鎖状、分岐状及び環状のアルキル基のいずれかが好ましく、nが2〜10の整数であることが好ましい。
- [0016] 本発明のフォトレジスト組成物は、さらに、放射線照射により酸を発生する酸発生剤 (B)と、有機溶剤とを含有するのが好ましい。

また、本発明のフォトレジスト組成物は、さらに、被膜形成樹脂成分(C)を含有する

のが好ましい。

また、前記(C)成分が、酸解離性溶解抑制基を有し、酸の作用によってアルカリに対する溶解性が増大する樹脂(C1)であることを特徴とするポジ型のフォトレジスト組成物が好ましい。

また、前記(C)成分が、アルカリ可溶性樹脂(C2)であり、さらに架橋剤成分(D)を含有することを特徴とするネガ型のフォトレジスト組成物が好ましい。

これらのフォトレジスト組成物は、さらに、含窒素有機化合物を含有することができる。また、さらに有機カルボン酸を含有することもできる。

[0017] また、本発明のレジストパターン形成方法は、前記フォトレジスト組成物を基板上に 塗布してフォトレジスト膜を形成する工程と、前記フォトレジスト膜を露光する工程と、 前記露光後のフォトレジスト膜を現像し、レジストパターンを形成する工程とを含むこ とを特徴とする。

発明の効果

[0018] 本発明のフラーレン誘導体を含有してなるフォトレジスト組成物は、高エッチング耐性を有し、しかもエッジラフネスを低減することができる。また、本発明のフォトレジスト組成物は、レジストパターン形状に優れるレジストパターンを形成できる。

発明を実施するための最良の形態

[0019] 以下に、本発明の実施形態について説明する。

本発明のフォトレジスト組成物は、2つ以上のマロン酸エステル残基を有するフラーレン誘導体(A)を含有することを特徴とする。本発明のフラーレン誘導体(A)を含有してなるフォトレジスト組成物は、前記フラーレン誘導体(A)が有機溶剤(レジスト溶剤)に対する溶解性に優れるため、フォトレジスト組成物にフラーレンを十分量配合することができる。その結果、高エッチング耐性を有し、エッジラフネス低減に優れ、また高感度で、レジストパターン形状に優れるレジストパターンを形成できる。

[0020] 前記マロン酸エステル残基としては、下記一般式(1)で表される基が好ましい。

[0021] [化3]

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(式中、 R^1 および R^2 はそれぞれ独立してアルキル基であり、同一でも異なってもよい。

[0022] 前記フラーレン誘導体(A)としては、下記一般式(2)で表される化合物(メタノフラーレン)が好ましい。

[0023] [化4]

$$CO_2R^1$$
 CO_2R^2
 CO_2R^2
 CO_2R^2

(式中、nは2以上の整数を表し、R¹およびR²は、それぞれ独立してアルキル基であり、同一でも異なってもよい。)

[0024] 本発明のフォトレジスト組成物は、好ましくは、前記フラーレン誘導体(A)、及び放射線照射により酸を発生する酸発生剤(B)を有機溶剤に溶解してなるものである。

また、本発明のフォトレジスト組成物は、好ましくは、前記フラーレン誘導体(A)、前記酸発生剤(B)、及び被膜形成樹脂成分(C)を有機溶剤に溶解してなるものである

また、本発明のポジ型フォトレジスト組成物は、好ましくは、前記フラーレン誘導体(A)、前記酸発生剤(B)、及び酸解離性溶解抑制基を有し酸の作用によってアルカリに対する溶解性が増大する樹脂である被膜形成樹脂成分(C1)を有機溶剤に溶解

してなるものである。

また、本発明のネガ型フォトレジスト組成物は、好ましくは、前記フラーレン誘導体(A)、前記酸発生剤(B)、前記アルカリ可溶性樹脂である被膜形成樹脂成分(C2)及び架橋剤成分(D)を有機溶剤に溶解してなるものである。

さらに、これらのフォトレジスト組成物は、含窒素有機化合物又は有機カルボン酸或 いはこれらの両方を含有していても良い。

- [0025] このフォトレジスト組成物は、露光に用いられる光源の波長について、特に限定はないため、KrF用、ArF用、F用、EUV用、電子線用、X線用等さまざまなものに用いることができる。これらの中でも、特には、電子線用又はEUV用として好適である。
- [0026] 前記2つ以上のマロン酸エステル残基を有するフラーレン誘導体(A)におけるフラーレンとは、炭素原子からなる球殻状の分子構造をもつ化合物であり、例えば、 C_{60} 、 C_{70} 、 C_{76} 、 C_{82} 、 C_{84} 、 C_{90} 、 C_{79} フラーレンなどが知られている。本発明においては、分子サイズが小さく解像度に優れる点から C_{60} フラーレンを用いることが好ましい。
- [0027] 前記フラーレン誘導体(A)におけるマロン酸エステル残基は、α炭素(2位の炭素)における水素原子2個を除いた基であり、前記一般式(1)で表され、これがフラーレンに結合する。そして、そのマロン酸エステル残基の数は2以上の整数である。このようなマロン酸エステル残基を複数有することにより、フラーレンのレジスト溶剤への溶解性が飛躍的に向上する。前記マロン酸エステル残基の数が多いほどレジスト溶剤への溶解性が高くなる傾向がある。このことから、前記マロン酸エステル残基の数は多ければ多いほど好ましいが、フラーレン誘導体(A)の合成上の観点から、現時点では、上限は12程度であり、好ましくは2~6である。
- [0028] 前記一般式(1)で表されるマロン酸エステル残基における有機基R¹およびR²は、 それぞれ独立してアルキル基である。前記アルキル基は、レジスト溶剤への溶解性が 高くなるものであれば、特に限定されないが、炭素数1~20のアルキル基が好ましい 。炭素数1~10の鎖状、分岐状及び環状のアルキル基が、レジスト溶剤への溶解性 に優れ、また、レジストパターン形状に優れるため、より好ましい。
- [0029] 前記アルキル基としては、例えば、メチル基、エチル基、nープロピル基、イソプロピル基、nーブチル基、secーブチル基、tertーブチル基、nーペンチル基、nーペンチル

基、secーペンチル基、tertーペンチル基、シクロペンチル基、nーへキシル基、nーへキシル基、secーへキシル基、シクロペンチル基、ノニル基、デカニル基などを挙げることができる。中でも、エチル基、tertープチル基のような低級アルキル基が好ましい

[0030] 前記フラーレン誘導体(A)としては、下記一般式(2)で表されるメタノフラーレン化 合物が分子サイズが小さく解像度に優れる点、およびフラーレン誘導体(A)の合成 上の観点から好ましい。

[0031] [化5]

- [0032] 前記一般式(2)中、nは2以上の整数を表し、 R^1 および R^2 は、それぞれ独立してアルキル基であり、同一でも異なってもよい。nの数値は前記したマロン酸エステル残基における説明から、nの上限は12程度である。好ましくは2~6である。式中、R およびR は前記と同様である。
- [0033] 特に前記アルキル基が、tert-ブチル基のような第三級アルキル基であると、酸発生剤から発生した酸の作用により解離して酸解離性溶解抑制基として作用するため、前記フラーレン誘導体(A)及び酸発生剤との2成分を主要成分とするフォトレジスト組成物を得ることができる。この組成物は、高いエッチング耐性を有し、しかも微細なパターンを形成することができるため、好ましい。また、この組成物は、エッジラフネス低減効果にも優れるため、好ましい。
- [0034] なお、従来のフラーレン又はフラーレン誘導体を用いたフォトレジストは、フラーレン 又はフラーレン誘導体のレジスト溶剤への溶解性が悪く、被膜形成成分と酸発生剤 成分に加える添加剤としてしか配合できなかった。これに対し、本発明におけるフラ ーレン誘導体(A)は、レジスト溶剤への溶解性が高くなっているので、前記した2成

分(フラーレン誘導体(A)及び酸発生剤)を主要成分とするフォトレジスト組成物を得ることができる。

- [0035] しかしながら、本発明のフォトレジスト組成物は、このような2成分を主要成分とするフォトレジスト組成物に限定されるものではない。従来の被膜形成成分と酸発生剤成分を主要成分として含むフォトレジスト組成物に配合して用いることもできる。レジスト溶剤への溶解性が高くなることにより、従来よりも、増量して配合できる。その結果、得られたフォトレジスト組成物は、高エッチング耐性を有し、かつエッジラフネス低減に優れる。また、フラーレン誘導体(A)の添加量を増やしても、レジストパターン形状に優れるレジストパターン形成を形成できる。
- [0036] 本発明のフォトレジスト組成物に用いられるフラーレン誘導体(A)においては、前記一般式(2)中のR」およびR」は、かならずしも酸解離性溶解抑制基として作用する第三級アルキル基である必要はない。tert-ブチル基のような第三級アルキル基であってもよいし、低級アルキル基であってもよい。そして、ポジ型のフォトレジスト組成物であってもよい。ネガ型のフォトレジスト組成物であってもよい。
- [0037] 前記フラーレン誘導体(A)は、フラーレンとマロン酸エステルの付加反応にて得ることができる。その際、マロン酸エステルは、α炭素を1,8-ジアザビシクロ[5.4.0] アンデセンのような脱プロトン試薬とハロゲンにより、ハロゲン化した活性化誘導体を用いてもよい。
- [0038] 次に、前記フラーレン誘導体(A)、及び放射線照射により酸を発生する酸発生剤(B)を有機溶剤に溶解してなる2成分を主要成分とするフォトレジスト組成物について説明する。
- [0039] 前記フラーレン誘導体(A)の本発明のフォトレジスト組成物中の配合量は、レジスト溶媒100質量部に対し、通常、0.1~150質量部、好ましくは1~15質量部である。この場合、フラーレン誘導体(A)の配合量が0.1質量部未満では、レジストとしての塗布性や感度が低下したり、パターン形状が損なわれたりする傾向があるため好ましくない。150質量部を越えると、レジスト溶媒への溶解性が悪くなり、本発明の効果が損なわれる。
- [0040] 前記酸発生剤(B)としては、従来の化学増幅型フォトレジストにおける酸発生剤とし

て公知のものの中から任意のものを適宜選択して用いることができる。例えば、ヨード ニウム塩やスルホニウム塩などのオニウム塩、オキシムスルホネート類、ビスアルキル またはビスアリールスルホニルジアゾメタン類、ジアゾメタンニトロベンジルスルホネート類、イミノスルホネート類、ジスルホン類など多種のものが知られているので、このような公知の酸発生剤から特に限定せずに用いることができる。

- [0041] 前記ジアゾメタン系酸発生剤の具体例としては、ビス(イソプロピルスルホニル)ジア ゾメタン、ビス(pートルエンスルホニル)ジアゾメタン、ビス(1, 1ージメチルエチルスル ホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(2, 4ージメ チルフェニルスルホニル)ジアゾメタン等が挙げられる。
- [0042] 前記オキシムスルホネート系酸発生剤の具体例としては、αー(メチルスルホニルオキシイミノ)ーフェニルアセトニトリル、αー(メチルスルホニルオキシイミノ)ーpーメトキシフェニルアセトニトリル、αー(トリフルオロメチルスルホニルオキシイミノ)ーフェニルアセトニトリル、αー(トリフルオロメチルスルホニルオキシイミノ)ーpーメトキシフェニルアセトニトリル、αー(トリフルオロメチルスルホニルオキシイミノ)ーpーメトキシフェニルアセトニトリル、αー(エチルスルホニルオキシイミノ)ーpーメトキシフェニルアセトニトリル、αー(メチルスルホニルオキシイミノ)ーpーメチルフェニルアセトニトリル、αー(メチルスルホニルオキシイミノ)ーpーブロモフェニルアセトニトリルなどが挙げられる。これらの中で、αー(メチルスルホニルオキシイミノ)ーpーメトキシフェニルアセトニトリルが好ましい
- [0043] 前記オニウム塩系酸発生剤の具体例としては、ジフェニルヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、トリフェニルスルホニウムのノナフルオロブタンスルホネート、トリ(4-メチルフェニル)スルホニウムのトリフルオロプロパンスルホネート、トリ(4-メチルフェニル)スルホニウムのトリフルオロプロパンスルホネート、ドリ(4-メチルフェニル)スルホニウムのハプタフルオロプロパンスルホネート、ジメチル(4-ヒドロキシナフチル)スルホニウムのトリフルオロプタンスルホネート、ジメチル(4-ヒドロキシナフチル)スルホニウムのヘプタフルオロプロパンスルホネートまたは

ジメチル(4ーヒドロキシナフチル)スルホニウムのノナフルオロブタンスルホネート、モ ノフェニルジメチルスルホニウムのトリフルオロンメタンスルホネート、トリフルオロンメタ ンスルホネートのヘプタフルオロプロパンスルホネートまたはトリフルオロンメタンスル ホネートのノナフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフ ルオロメタンスルホネート、ジフェニルモノメチルスルホニウムのヘプタフルオロプロパ ンスルホネートまたはジフェニルモノメチルスルホニウムのノナフルオロブタンスルホ ネートなどが挙げられる。

前記オニウム塩の中でもスルホニウム塩が好ましい。

- [0044] 前記酸発生剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。その配合量は、例えば前記レジスト溶媒100質量部に対し、0.01~5質量部、好ましくは0.1~3質量部とされる。この範囲より少ないと潜像形成が不十分となるし、多いとレジスト組成物としての保存安定性を損なう恐れがある。
- [0045] 次に、前記フラーレン誘導体(A)、前記酸発生剤(B)及び被膜形成樹脂成分(C) を有機溶剤に溶解してなるフォトレジスト組成物について説明する。
- [0046] 前記フラーレン誘導体(A)、前記酸発生剤(B)は上述したものと同様である。被膜形成樹脂成分(C)は、いわゆるフォトレジストを基板上へ塗布したとき、レジスト被膜を形成するベース樹脂成分である。ポジ型フォトレジスト組成物の場合は、酸解離性溶解抑制基を有し、酸の作用によってアルカリに対する溶解性が増大する樹脂(C1)(以下、「(C1)成分」という。)である。また、ネガ型フォトレジスト組成物の場合は、アルカリ可溶性樹脂(C2)(以下、「(C2)成分」という。)であり、架橋剤成分(D)(以下、「(D)成分」という。)と組み合わせて使用する。
- [0047] これらの被膜形成成分は、公知のポジ又はネガレジストで用いられているものの中から、特に限定されず、用いることができる。
- [0048] 前記(C2)成分としては、フェノール、m-クレゾール、p-クレゾール、o-クレゾール等のクレゾール類、2,3-キシレノール、2,5-キシレノール、3,5-キシレノール、3,4-キシレノール類等のキシレノール類、2,3,5-トリメチルフェノール、2,3,5-トリエチルフェノールなどのトリアルキルフェノール類などのフェノール類をホルムアルデヒド、パラホルムアルデヒド、トリオキサンなどのアルデヒド類で酸性触媒の存在下、常

法により縮合させて得られるノボラック樹脂、ヒドロキシスチレンの単独重合体やヒドロキシスチレンと他のスチレン系単量体との共重合体、ヒドロキシスチレンとアクリル酸 又はメタアクリル酸あるいはその誘導体との共重合体などのポリヒドロキシスチレン系 樹脂等が挙げられる。

- [0049] 前記ノボラック樹脂の重量平均分子量は、2,000~30,000、好ましくは、5,000~25,000の範囲である。この範囲より小さいと残膜率が低下するとともに、レジストパターン形状も悪化する。一方、この範囲より大きいと解像性が劣化するので好ましくない。
- [0050] 前記ポリヒドロキシスチレン系樹脂のヒドロキシスチレン系単量体としては、例えば、スチレン、αーメチルスチレン、pーメチルスチレン、οーメチルスチレン、pーメトキシスチレン、pークロロスチレンなどが挙げられる。また、アクリル酸またはメタクリル酸の誘導体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2ーヒドロキシエチル、アクリル酸2ーヒドロキシプロピル、アクリル酸アミド、アクリロニトリル及び対応するメタクリル酸誘導体を挙げることができる。これらの中では、ヒドロキシスチレンとスチレンの共重合体が好ましい。

このようなポリヒドロキシスチレン系樹脂の重量平均分子量は1,000~10,000、 好ましくは2,000~4,000の範囲が好ましい。

- [0051] 前記(D)成分としては、公知の化学増幅型のネガ型レジストの架橋剤として用いられているヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも一つの架橋形成基を有する架橋剤であれば特に限定されない。
- [0052] このような架橋剤としては、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、 例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリルーホルムアルデヒド樹脂、スクシニルアミドーホルムアルデヒド樹脂、エチレン尿素ーホルムアルデヒド樹脂 などを挙げることができる。これらはメラミン、尿素、グアナミン、グリコールウリル、スクシニルアミド、エチレン尿素を沸騰水中でホルマリンと反応させてメチロール化、あるいはこれにさらに低級アルコールを反応させてアルコキシル化することにより容易に得られる。実用上はニカラックMx-750、ニカラックMw-30、ニカラックMx-290(いずれも三和ケミカル社製)として入手することができる。

- [0053] 前記(C1)成分としては、ノボラック樹脂、ヒドロキシスチレン系樹脂、ヒドロキシスチレン単位と(メタ)アクリル酸エステルから誘導される構成単位を含有する共重合樹脂等の水酸基やカルボキシル基を酸解離性溶解抑制基で置換した樹脂が好適に用いられる。
- [0054] なお、本明細書において、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方 あるいは両方を示す。「(メタ)アクリル酸エステルから誘導される構成単位」とは、(メ タ)アクリル酸エステルのエチレン性2重結合が開裂して形成される構成単位であり、 以下、「(メタ)アクリレート構成単位」ということがある。
- [0055] 前記(C1)成分として好適な樹脂成分としては、例えば、下記構成単位(c-1)〜(c-1)の各単位から選択される単位を有するポジ型レジストの樹脂成分が挙げられる。
- [0056] 前記樹脂成分は、酸の作用によってアルカリ溶解性が増大する。すなわち、少なくとも構成単位(c-1)と、構成単位(c-2)、構成単位(c-3)及び構成単位(c-6)から選ばれる少なくとも一つの単位とからなる2つ以上の構成単位を有する樹脂であって、露光によって酸発生剤から発生する酸の作用によって、構成単位(c-2)、構成単位(c-3)及び構成単位(c-6)において酸解離性基が解裂する。これによって、はじめはアルカリ現像液に対して不溶性であった樹脂において、そのアルカリ溶解性が増大する。その結果、露光・現像により、化学増幅型のポジ型のパターンを形成することができる。
- [0057] 構成単位(c-1) 構成単位(c-1)は、下記一般式(3)で表される。

[化6]

(式中、Rは一Hまたは一CH_.を示す。)

[0058] 前記一般式(3)中、Rは一Hまたは一CH₃である。一OHのベンゼン環への結合位置 は特に限定されるものではないが、式中、4の位置(パラ位)が好ましい。

[0059] 前記構成単位(c-1)は、樹脂中に、40〜80モル%、好ましくは50〜75モル%とされる。40モル%以上とすることにより、アルカリ現像液に対する溶解性を向上させることができ、パターン形状の改善効果も得られる。一方、80モル%以下とすることにより、他の構成単位とのバランスをとることができる。

[0060] 構成単位(c-2)

構成単位(c-2)は、下記一般式(4)で表される。

[化7]

(式中、Rは一Hまたは一CH。を示し、Xは酸解離性溶解抑制基を示す。)

[0061] 前記一般式(4)中、Rは一Hまたは一CHである。酸解離性溶解抑制基Xは、第3級 炭素原子を有するアルキル基であって、例えば、前記第3級アルキル基の第3級炭素原子がエステル基(-C(O)O-)に結合している酸離性溶解抑制基、テトラヒドロピラニル基、テトラヒドロフラニル基のような環状アセタール基などである。

この様な酸解離性溶解抑制基、すなわちXは、例えば、化学増幅型のポジ型レジスト組成物において用いられているものの中から前記以外のものも任意に使用することができる。

[0062] 前記構成単位(c-2)として、例えば下記一般式(5)に記載のものが好ましいものと して挙げられる。

[化8]

$$\begin{array}{c}
R \\
C = 0 \\
0 \\
R^{3} \quad C \quad R^{4} \\
R^{5}
\end{array}$$
(5)

[0063] 前記一般式(5)中、Rは一Hまたは一CHを示し、R³、R⁴、R⁵は、それぞれ独立に低級アルキル基(直鎖、分岐鎖のいずれでもよい。好ましくは炭素数は1~5である。)である。または、これらのうちの二つが結合して、単環または多環の脂環式基(脂環式基の炭素数は好ましくは5~12)を形成していてもよい。脂環式基を有しない場合には、R³、R⁴、R⁵がいずれもメチル基であるものが好ましい。

[0064] 前記脂環式基を有する場合において、単環の脂環式基を有する場合は、シクロペンチル基、シクロヘキシル基を有するものが好ましい。

また、多環の脂環式基のうち、好ましいものとして例えば下記一般式(6)、(7)で示されるものを挙げることができる。

[0065] [化9]

$$\begin{array}{c}
R \\
C = 0
\end{array}$$

$$\begin{array}{c}
R^6 \\
\end{array}$$
(6)

[式中、Rは一Hまたは一CHを示し、R⁶は低級アルキル基である(直鎖、分岐鎖のいずれでもよい。好ましくは炭素数は1~5である。)。]

[0066] [化10]

[式中、Rは-Hまたは-CHを示し、R7、R8は、それぞれ独立に低級アルキル基である(直鎖、分岐鎖のいずれでもよい。好ましくは炭素数は1~5である。)。]

[0067] 前記構成単位(c-2)は、樹脂中に、5~50モル%、好ましくは10~40モル%存在することが好ましい。

[0068] 構成単位(c-3)

構成単位(c-3)は、下記一般式(8)で表される。

[化11]

(式中、Rは-Hまたは-CH₃を示し、X'は酸解離性溶解抑制基を示す。)

[0069] 前記酸解離性溶解抑制基X'としては、慣用の化学増幅型のポジ型レジスト組成物において用いられているものの中から任意に使用することができるが、例えば、tert-ブチルオキシカルボニル基、tert-アミルオキシカルボニル基などの第3級アルキルオキシカルボニル基;tert-ブチルオキシカルボニルメチル基、tert-ブチルオキシカルボニルエチル基などの第3級アルキルオキシカルボニルアルキル基;tert-ブチル

基、tert-アミル基などの第3級アルキル基;テトラヒドロピラニル基、テトラヒドロフラニル基などの環状アセタール基;エトキシエチル基、メトキシプロピル基などのアルコキシアルキル基などが挙げられる。中でも、tert-ブチルオキシカルボニル基、tert-ブチルオキシカルボニルメチル基、tert-ブチル基、テトラヒドロピラニル基、エトキシエチル基が好ましい。

[0070] 一般式(8)において、ベンゼン環に結合している基(一OX')の結合位置は特に限定するものではないが式中に示した4の位置(パラ位)が好ましい。

構成単位(c-3)は、樹脂成分中、10~50モル%、好ましくは20~40モル%とされる。

[0071] 構成単位(c-4)

構成単位(c-4)は、下記一般式(9)で表される。

[化12]

$$\begin{array}{c}
R \\
6 \\
5 \\
4
\end{array}$$

$$\begin{array}{c}
R^9 \\
0
\end{array}$$

$$\begin{array}{c}
(8) \\
\end{array}$$

(式中、Rは-Hまたは-CH を示し、R⁹は低級アルキル基を示し、nは0または1~3の整数を示す。)

- [0072] なお、一般式(9)中、R⁹の低級アルキル基は、直鎖または分岐鎖のいずれでもよく 、炭素数は好ましくは1~5とされる。nは0または1~3の整数を示すが、0であること が好ましい。
- [0073] 前記構成単位(c-4)は、樹脂成分中、1〜40モル%、好ましくは5〜25モル%とされる。1モル%以上とすることにより、形状の改善(膜減りの改善)の効果が高くなり、4 0モル%以下とすることにより、他の構成単位とのバランスをとることができる。
- [0074] 構成単位(c-5) 構成単位(c-5)は、下記一般式(10)で表される。

[0075] [化13]

(式中、Rは一Hまたは一CH。を示し、mは1~3の整数を示す。)

[0076] 前記構成単位(c-5)は、樹脂成分中、1〜40モル%、好ましくは5〜25モル%とされる。前記構成単位(c-5)は、前記構成単位(c-1)よりもアルカリ現像液に対する溶解性が低いので、本発明に用いられる(C1)成分は、ポリヒドロキシスチレンの水酸基の一部を酸解離性溶解抑制基で保護した樹脂よりも、酸解離性溶解抑制基が脱離した状態でのアルカリ現像液に対する溶解性が低くなっている。このため、ポリヒドロキシスチレン系樹脂より低い保護率でもアルカリ現像液に対する十分な不溶性を得ることができ、これにより、酸解離性溶解抑制基に起因する現像欠陥を抑えつつ高解像性を達成することができる。

[0077] 構成単位(c-6)

構成単位(c-6)は、下記一般式(11)で表される。

[0078] [化14]

$$(x^{\prime}O)_{\overline{M}}$$
(11)

(式中、Rは-Hまたは $-CH_3$ を示し、X' は酸解離性溶解抑制基、mは1-3の整数を示す。)

[0079] 前記構成単位(c-6)は、樹脂成分中、1~30モル%、好ましくは2~25モル%とされる。この単位は構成単位(c-5)における水酸基を前記X'と同様な酸解離性溶解抑制基で保護した単位である。前記酸解離性溶解抑制基X''は、X'と同じものが挙げられるが、中でも、1-エトキシエチル基、1-メトキシプロピル基などの1-アルコキシアルキル基が好ましい。そして、この単位は構成単位(c-3)との合計で(C1)成分中、10~35モル%、好ましくは、20~30モル%の範囲で用いると解像性に優れ好ましい。

[0080] 前記(C1)成分においては、少なくとも構成単位(c-1)と、構成単位(c-2)、構成単位(c-3)及び構成単位(c-6)から選ばれる少なくとも一つの単位とからなる2つ以上の構成単位を有する樹脂であればよい。

[0081] このような共重合体としては、具体的には、前記構成単位(c-1)と(c-2)を有する 共重合体(イ)、前記構成単位(c-1)と(c-2)と(c-4)を有する共重合体(ロ)、前記 構成単位(c-1)と(c-3)を有する共重合体(ハ)、前記構成単位(c-1)と(c-3)と(c -4)を有する共重合体(ニ)、前記構成単位(c-1)と(c-3)と(c-5)と(c-6)を有す る共重合体(ホ)などを挙げることができる。また、これらの共重合体同士の混合物とし てもよい。

これらの中では、前記共重合体(ハ)、共重合体(ニ)及び共重合体(ホ)から選ばれ

る少なくとも1種が、解像性に優れ好ましい。

- [0082] 前記(C1)成分のGPCによるポリスチレン換算の質量平均分子量は2000より大きく、好ましくは3000~30000、より好ましくは5000~20000とされる。また、前記共重合体(ホ)においては、特に質量平均分子量(ポリスチレン換算、以下同様)は2000以上8500以下が好ましく、より好ましくは4500以上8500以下である。該質量平均分子量が8500を超えるとマイクロブリッジが発生し易くなり、また、該質量平均分子量が2000未満であると耐エッチング性や耐熱性に劣る。
- [0083] なお、前記(C1)成分は、前記構成単位の材料となるモノマーを公知の方法で重合することにより得ることができる。
- [0084] 前記フラーレン誘導体(A)(以下、「(A)成分」という。)、前記酸発生剤(B)(以下、「(B)成分」という。)、及び被膜形成樹脂成分(C)(以下、「(C)成分」という。)を有機溶剤に溶解してなるフォトレジスト組成物について、その配合割合は、(C)成分100質量部に対し、(A)成分0.1~50質量部、好ましくは1~20質量部、(B)成分0.1~20質量部、好ましくは1~10質量部である。
- [0085] 前記ポジ型フォトレジスト組成物における各成分の配合割合は、(C1)成分100質量部に対し、(A)成分0.1~50質量部、好ましくは1~20質量部、(B)成分0.1~20質量部、好ましくは1~10質量部である。
- [0086] 前記ネガ型フォトレジスト組成物における各成分の配合割合は、(C2)成分100質量部に対し、(A)成分0.1~50質量部、好ましくは1~20質量部、(B)成分0.1~20質量部、好ましくは1~10質量部、(D)成分1~50質量部、好ましくは1~30質量部である。前記範囲を逸脱すると、レジストとしてのエッジラフネス低減効果が低下する傾向があり、また、レジストとしての塗布性や感度が低下したり、パターン形状が損なわれる傾向があるため好ましくない。
- [0087] 本発明のフォトレジストには、例えば、分子量200~500の少なくともひとつの芳香族環又は脂肪族環を有するフェノール性水酸基、アルコール性水酸基、又はカルボキシル基に、アルカリに対する溶解抑制能を有する一種以上の置換基を導入した化合物(溶解抑制剤)を配合することもできる。このような酸解離性置換基としては、例えば、第3級アルキル基、第3級アルコキシカルボニル基、第3級アルコキシカルボニ

ルアルキル基、鎖状又は環状のアルコキシアルキル基等を挙げることができる。

- [0088] 前記溶解抑制剤としては、例えば、tert-ブチル基などの第3級アルキル基、tert-ブトキシカルボニル基などの第3級アルコキシカルボニル基、tert-ブトキシカルボニルメチル基などの第3級アルコキシカルボニルアルキル基、メトキシメチル基、1-エトキシエチル基、1-プロポキシエチル基などの鎖状アルコキシアルキル基、テトラヒドロピラニル基、テトラヒドロフラニル基などの環状アルコキシアルキル基等を導入した化合物が挙げられる。
- [0089] 本発明のフォトレジスト組成物において、前記溶解抑制剤の添加量は、前記(C)成分100質量部に対して、2~30質量部、好ましくは3~10質量部が適当である。
- [0090] 本発明のフォトレジスト組成物は、各成分を有機溶剤に溶解させて製造することができる。

本発明に用いることができる有機溶剤としては、使用する各成分を溶解し、均一な 溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公 知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。 例えば、γ -ブチロラクトン、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイ ソアミルケトン、2-ヘプタノンなどのケトン類や、エチレングリコール、エチレングリコー ルモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロ ピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール、また はジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル 、モノプロピルエーテル、モノブチルエーテルまたはモノフェニルエーテルなどの多 価アルコール類およびその誘導体や、ジオキサンのような環式エーテル類や、乳酸メ チル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピル ビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステ ル類などを挙げることができる。これらの有機溶剤は単独で用いてもよく、2種以上の 混合溶剤として用いてもよい。中でもプロピレングリコールモノメチルエーテルアセテ ート(PGMEA)、乳酸エチル(EL)、メチルアミルケトンなどが前記フラーレン誘導体 (A)の溶解性が優れ好ましい。混合溶媒とする場合、プロピレングリコールモノメチル エーテルアセテート(PGMEA)と極性溶剤との配合比は、PGMEAと極性溶剤との

相溶性等を考慮して適宜決定すればよいが、好ましくは1:9〜9:1、より好ましくは2:8〜8:2の範囲内とすることが好ましい。

より具体的には、極性溶剤として乳酸エチル(EL)を配合する場合は、PGMEA:E Lの質量比が好ましくは2:8~8:2、より好ましくは3:7~7:3である。

- [0091] 前記有機溶剤の使用量は特に限定されず、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定される。一般的にはフォトレジスト組成物の固形分濃度2~20質量%、好ましくは5~15質量%の範囲内である。
- [0092] 本発明のフォトレジスト組成物は、レジストパターン形状、引き置き経時安定性(post exposure stability of the latent image formed by the pattern wise exposure of the resist layer)などを向上させるために、さらに任意の成分として、含窒素有機化合物(E)((以下、「(E)成分」という。)を配合させることができる。この(E)成分は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良いが、アミン、特に第2級脂肪族アミンや第3級脂肪族アミンが好ましい。
- [0093] ここで、脂肪族アミンとは、炭素数15以下のアルキルまたはアルキルアルコールのアミンをいい、この第2級や第3級アミンの例としては、トリメチルアミン、ジエチルアミン、ジエチルアミン、トリーnープロピルアミン、トリペンチルアミン、トリーオシルアミン、トリープロピルアミン、トリーカープロピルアミン、トリペンチルアミン、トリーカープロピルアミン、トリデカニルアミン、トリドデシルアミン、トリテトラデカニルアミン、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミンなどが挙げられる。これらの中でも特にトリエタノールアミン、トリイソプロパノール等の第3級アルカノールアミンが好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
- [0094] 前記(E)成分は、(A)成分100質量部に対して、通常0.01〜40質量部、好ましくは、0.01〜20質量部範囲の範囲で用いられる。0.01質量部より少ないとその効果が得られないし、40質量部より多いと感度劣化やパターン形状が悪化する恐れがある。
- [0095] また、前記(E)成分の配合による感度劣化を防ぎ、またレジストパターン形状、引き 置き経時安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸また はリンのオキソ酸若しくはその誘導体(F)(以下、「(F)成分」という。)を含有させるこ

- とができる。なお、(E)成分と(F)成分とは併用することもできるし、いずれか1種を用いることもできる。
- [0096] 前記有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適なものとして挙げられる。
- [0097] 前記リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸またはそれらのエステル誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸・ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸およびそれらのエステル誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸およびそれらのエステル誘導体が挙げられ、これらの中で特にサリチル酸、フェニルホスホン酸が好ましい。
- [0098] 前記(F)成分は、前記(A)成分100質量部当り通常0.01〜40質量部、好ましくは、0.01〜20質量部の割合で用いられる。0.01質量部より少ないとその効果が得られないし、40質量部より多いと感度劣化やパターン形状が悪化する恐れがある。
- [0099] また、本発明のフォトレジスト組成物には、さらに所望により混和性のある添加剤、 例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための 界面活性剤、可塑剤、安定剤、着色剤、ハレーション防止剤などを添加含有させるこ とができる。
- [0100] 本発明のレジストパターン形成方法は、前記フォトレジスト組成物を基板上に塗布 してフォトレジスト膜を形成する工程と、前記フォトレジスト膜を露光する工程と、前記 露光後のフォトレジスト膜を現像し、レジストパターンを形成する工程とを含むことを特 徴とする。
- [0101] 本発明のレジストパターン形成方法は、例えば以下の様にして行うことができる。 まず、シリコンウェーハ等の基板上に、前記フォトレジスト組成物をスピンナーなどで 塗布し、80~150℃の温度条件下、プレベークを40~120秒間、好ましくは60~9 0秒間施す。得られた塗膜に、例えば、電子線描画装置などにより、電子線やその他 遠紫外線等を所望のマスクパターンを介して選択的に露光する。ここで露光は、上述 のようにマスクパターンを介して露光してもよいし、マスクパターンを介さずに電子線

を直接照射して描画してもよい。露光または描画後、80~150℃の温度条件下、PEB(露光後加熱)を40~120秒間、好ましくは60~90秒間施す。次いで、PEB後のフォトレジスト膜をアルカリ現像液、例えば、0.1~10質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。このようにして、マスクパターンに忠実なレジストパターンを得ることができる。

[0102] なお、基板とレジスト組成物の塗布層との間には、有機系または無機系の反射防止 膜を設けることもできる。

露光に用いる前記電子線やその他遠紫外線等の波長は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、 F_2 レーザー、EUV(極紫外線)、VUV(真空紫外線)、EB(電子線)、X線、軟X線などの放射線を用いて行うことができる。 実施例

- [0103] 以下、本発明を実施例により説明する。以下に説明する実施例は、本発明を好適 に説明する例示に過ぎず、何ら本発明を限定するものではない。
- [0104] <実施例1>

以下、本発明を実施例によりさらに詳しく説明する。以下に示す実施例は、本発明を好適に説明する例示に過ぎず、なんら本発明を限定するものではない。

[0105] フラーレン誘導体(A):メタノフラーレン誘導体(12)〜(18)の合成 <合成例1>(マロン酸ジエチル多付加体の合成)

ガラス製2リットルのフラスコに窒素気流下マロン酸ジエチル(東京化成株式会社製)16.8gを入れ、さらに1,2,4ートリメチルベンゼン150cm³とDBU(1,8-diazabic yclo[5.4.0]undec-7-ene:(東京化成株式会社製))15.1gを加えて撹拌しながら、温度を4℃に調整した。

得られた温度調整後の反応液に、1, 2, 4ートリメチルベンゼンにヨウ素(和光純薬株式会社製)24.5gを溶解させた黒紫色の溶液をゆっくり滴下した。滴下中は氷浴を用いてフラスコ内温を11℃になるよう制御した。滴下終了後、温度は、室温まで戻した。フラスコ内の反応液は茶色の懸濁液の状態であった。

[0106] その後、前記フラスコ内の反応液に、フラーレン C_{so} (分子量720、フロンティアカーボン株式会社製) 5. 00gを1, 2, 4ートリメチルベンゼン350cm 3 に溶解させた溶液を

撹拌しながら加えた。その後、フラスコ内の反応液に、5cm³の1, 2, 4ートリメチルベンゼンでDBU(1, 8-diazabicyclo[5. 4. 0]undec-7-ene: (東京化成株式会社製))16. 2gを希釈した溶液を撹拌しながらゆっくり滴下した。 薄層クロマトグラフィにて、反応液中の付加体組成比が付加数5のピークが最大の状態で変化しないことを確認し反応を終了した。

得られた反応液について、以下の手順により、溶媒抽出による洗浄を行った。反応層(有機相)を飽和亜硫酸ナトリウム水溶液で4回洗浄した。得られた有機相を同様に、1N硫酸水溶液100cm³を用いて2回洗浄した後、純水200cm³を用いて3回洗浄した。有機層の溶剤を減圧下留去し、赤茶色の固体を得た。

- [0107] 得られた赤茶色の固体について、液体クロマトグラフー質量分析(LC-MS)による 測定を行ったところ、下記化学式(16)、(14)、(13)、(12)で表されるフラーレンC ーマロン酸ジエチル付加体の2、4、5及び6付加体(以下、「メタノフラーレン(16)」、「 メタノフラーレン(14)」、「メタノフラーレン(13)」、「メタノフラーレン(12)」という。)に それぞれ相当するピーク(M/Z=1194, 1352, 1510, 1668)が観測された。
- [0108] また、赤外線吸収スペクトルを測定したところ、3000~2900cm⁻¹に炭化水素結合の吸収があり、1750cm⁻¹にエステル基のカルボニル吸収、及び1240cm⁻¹に炭素一酸素結合の吸収が検出され、エチルエステル基の存在が認められた。

さらに、「H-NMR測定(重クロロホルム)を行ったところ、4.55〜4.20ppmと1.48〜1.20ppmに多重線が観測され、それらの積分比は2:3であったことからもエチルエステル基の存在が認められた。

反応の終点確認のLC分析において、下記化学式(13)で表される5付加体(メタノフラーレン(13))が主生成物であることが判明した。

これをシリカゲルクロマトグラフにてn-ヘキサンと酢酸エチルの混合溶媒にて分別してフラーレンC。-マロン酸ジエチル付加体の2、4、5及び6(メタノフラーレン(16)、(14)、(13)、(12))をそれぞれ得た。

[0109] <合成例2>(マロン酸ージーtertーブチル多付加体の合成) ガラス製2リットルのフラスコに窒素気流下マロン酸ージーtertーブチル(Aldrich社 製) 9. 80gを入れ、さらに1, 2, 4ートリメチルベンゼン150cm³とDBU(1, 8-diazabi cyclo[5. 4. 0]undec-7-ene: (東京化成株式会社製)) 6. 50gを加えて攪拌しながら、温度を4℃に調整した。

得られた温度調整後の反応液に、130cm³の1, 2, 4ートリメチルベンゼンにヨウ素(和光純薬株式会社製)10.9gを溶解させた黒紫色の溶液をゆっくり滴下した。滴下中は氷浴を用いてフラスコ内温を11℃になるよう制御した。滴下終了後、温度は、室温まで戻した。フラスコ内の反応液は茶色の懸濁液の状態であった。

[0110] その後、前記フラスコ内の反応液に、フラーレンC₈₀(分子量720、フロンティアカーボン株式会社製)5.00gを1,2,4ートリメチルベンゼン350cm³に溶解させた溶液を撹拌しながら加えた。その後、フラスコ内の反応液に、DBU(1,8-diazabicyclo[5.4.0]undec-7-ene:(東京化成株式会社製))6.90gを5cm³の1,2,4ートリメチルベンゼンで希釈した溶液を撹拌しながらゆっくり滴下した。薄層クロマトグラフィにて、反応液中の付加体組成比が付加数4のピークが最大の状態で変化しなくなったことから、反応の終点を確認した。

得られた反応液について、合成例1と同様な溶媒抽出による洗浄により、赤茶色の 固体9.50gを得た。

- [0111] 得られた赤茶色の固体について、液体クロマトグラフー質量分析(LC-MS)による 測定を行ったところ、フラーレンC。マロン酸ージーtertーブチル付加体において、下 記化学式(20)、(19)で表される3、4付加体(以下、「メタノフラーレン(20)」、「メタノ フラーレン(19)」という。)にそれぞれ相当するピーク(M/Z=1362, 1576)が観測 された。
- [0112] また、赤外線吸収スペクトルを測定したところ、3000~2900cm⁻¹に炭化水素結合の吸収があり、1750cm⁻¹にエステル基のカルボニル吸収、及び1240cm⁻¹に炭素一酸素結合の吸収が検出され、tert-ブチルエステル基の存在が認められた。 さらに、「H-NMR測定(重クロロホルム)を行ったところ、1.74~1.50ppmに多数の一重線が観測されたことからもtert-ブチルエステル基の存在が認められた。
- [0113] 反応の終点確認のために行なったLC分析において、4付加体(メタノフラーレン(19))が主生成物であることが判明した。 これをシリカゲルクロマトグラフにてnーヘキサンと酢酸エチルの混合溶媒にて分別

してフラーレンC $_{60}$ ーマロン酸ーtertーブチルエステル付加体(メタノフラーレン(19))を 得た。

[0114] <実施例1~5、比較例1および2>

メタノフラーレン誘導体のレジスト溶剤への溶解性

レジスト溶剤であるプロピレングリコールモノメチルエーテルアセテート(以下、「PG MEA」という。)、メチルアミルケトン(2ーヘプタノン)(MAK)、乳酸エチル(EL)に対する本発明のメタノフラーレン誘導体の溶解性を検討した。すなわち、前記合成例で得られた、置換基数nが6~2のメタノフラーレン(12)~(14)、(16)、(19)のそれぞれ100mgをPGMEA、MAK、ELの3種のレジスト溶剤それぞれ100mgに加え、室温にて攪拌し、終濃度が50質量%のメタノフラーレン溶液を調製した(実施例1~5)。また、比較例1として、下記化学式(17)で表される置換基数nが1のメタノフラーレン(以下、「メタノフラーレン(17)」という。)についても同様にして溶解性を検討した。また、比較例2として、下記化学式(18)で表される置換基数nが0のメタノフラーレン(以下、「メタノフラーレン(18)」という。)についても同様にして溶解性を検討した。溶解性は目視により確認した。

[0115] [化15]

 $R^{1}, R^{2}; -COOC_{2}H_{5}$; n=6 (12), n=5 (13), n=4 (14), n=3 (15),

n=2 (16), n=1 (17), n=0 (18),

 $R^{1}, R^{2}; -COOC(CH_{3})_{3}$; n=4 (19), n=3 (20)

メタノフラーレン(12)〜(20)の化学式

[0116] [表1]

	· · · · · · · · · · · · · · · · · · ·	PGMEA	MAK	EL
実施例1	メタノフラーレン(12)	速やかに溶解	速やかに溶解	速やかに溶解
実施例2	メタノフラーレン(13)	速やかに溶解	速やかに溶解	速やかに溶解
実施例3	メタノフラーレン(14)	速やかに溶解	速やかに溶解	速やかに溶解
実施例4	メタノフラーレン(16)	可溶	可溶	可溶
実施例5	メタノフラーレン(19)	速やかに溶解	速やかに溶解	速やかに溶解
比較例1	メタノフラーレン(17)	不溶	不溶	不溶
比較例2	Cフラーレン (18)	不溶	不溶	不溶

表1 レジスト溶剤への溶解性結果

[0117] 溶解性の結果を表1に示した。表1から明らかなように、置換基数nが6~2のメタノフラーレン(12)~(14)、(16)及び(19)は、いずれも前記レジスト溶剤に溶解し、特にnが4以上のメタノフラーレン誘導体の溶解性が優れていた。一方、置換基数nが0、1であるメタノフラーレン(18)、(17)は前記レジスト溶剤のいずれに対しても不溶であった。

[0118] <実施例6、比較例3>エッチング耐性の評価

前記メタノフラーレン(12)500mgをPGMEA9.7mLに溶解し、メタノフラーレン(12)の5質量%PGMEA溶液を調製した。このメタノフラーレンPGMEA溶液を用いて、スピンコート法によりシリコン基板上に厚さ120nmのメタノフラーレン膜を作成した後、酸化膜エッチャー(TCE-7612X:東京応化工業製)にてエッチングガスCF/CHF/He=30/30/100sccm、圧力300mTorr、高周波電力600Wで30秒間の条件でエッチング処理した。メタノフラーレン(12)膜において、削られた膜厚と比較例に対するエッチング耐性比を評価した(実施例6)。比較例としてはポリヒドロキシスチレン(PHS)を用いて、削られた膜厚を測定した(比較例3)。

[0119] [表2]

表2 エッチング耐性の評価結果

		削られた膜厚(nm)	エッチング耐性比
実施例6	メタノフラーレン(12)	37.7	1.5倍 強い
比較例3	PHS	56.7	1.0

[0120] 表2から明らかなように、メタノフラーレン(12)膜において、比較例3のPHSに対し

、1.5倍強いエッチング耐性が確認された。

[0121] 2成分系フォトレジスト組成物の評価

<実施例7>

前記メタノフラーレン(R¹とR²=tert-ブチル基, n=4)(19)100質量部と、トリフェニルスルホニウムトリフルオロメタンスルホネート(以下、「TPS-TF」(酸発生剤)という。)20質量部とをメチルアミルケトン(MAK)1880質量部に溶解させて、均一な6.0質量%MAK溶液として、2成分系ポジ型フォトレジスト組成物(以下、「レジスト組成物1」という。)を得た。

調製されたレジスト組成物1をスピンコート法によりシリコン基板上に塗布し、130℃にて90秒間ベークし、膜厚100nmのレジスト膜を調製した。調整したレジスト膜に対して、70keVの電子線描画装置(HL-800D VSB:日立計測器株式会社製)にて電子線照射した後、130℃にて90秒間ベークし、界面活性剤入りの2.38%テトラメチルアンモニウムヒドロキシド水溶液(以下、「NMD-W」という。)にて60秒間現像を行った。

[0122] その結果、180 μ C/cm²の照射量で、レジストパターンサイズ50nmのラインアンドスペース(L/S)1:1となるレジストパターンが形成できた。次いで、そのパターンを走査型電子顕微鏡(SEM)により観察したところ、良好な形状であった。

[0123] <実施例8>

実施例7で用いたレジスト組成物1に、さらにトリーnーオクチルアミン0.1質量部と、サリチル酸0.05質量部とを加え溶解させて、均一な6.0質量%MAK溶液として、2成分系ポジ型フォトレジスト組成物(レジスト組成物2)を得、実施例7と同様にレジストパターンを形成した。

その結果、230 µ C/cm²の照射量で、レジストパターンサイズ50nmのラインアンドスペース(L/S)1:1となるレジストパターンが形成できた。次いで、そのパターンを 走査型電子顕微鏡(SEM)により観察したところ、良好な形状であった。

[0124] <比較例4>

前記一般式(2)におけるメタノフラーレンにおいて、R¹とR²が共にエチル基であり、 n=1の化合物(メタノフラーレン(17))を用いて、実施例7と同様に、レジストパター ンを形成しようとしたところ、解像することができなかった。

[0125] 化学増幅型のネガ型フォトレジスト組成物におけるエッジラフネス低減効果 <実施例9および10、比較例5>

ヒドロキシスチレンとスチレンとの共重合体であるアルカリ可溶性樹脂(VPS2520、質量平均分子量3600、分散度2)100質量部と、前記メタノフラーレン(12)を5質量部又は10質量部と、トリフェニルスルホニウムノナフルオロブタンスルホネート(以下、「TPS-Nf」という。)5質量部と、トリn-オクチルアミン0.8質量部と、サリチル酸0.3質量部と、及び架橋剤として、メトキシメチル化プロピレン尿素10質量部とをPGME A1100質量部に溶解させて、均一な溶液として、ネガ型レジスト組成物を得た(以下、メタノフラーレン(12)の含量が、5質量%の組成物を「レジスト組成物3」といい、10質量%の組成物を「レジスト組成物4」という。)。

調製された電子線用化学増幅型ネガレジスト組成物3および4を、それぞれスピンコート法によりシリコン基板上に110℃にて90秒間ベークし、膜厚250nmの電子線用化学増幅型ネガレジスト膜を調製した。ここで、ネガレジスト組成物3から得られたネガレジスト膜を実施例9とし、ネガレジスト組成物4から得られたネガレジスト膜を実施例10とした。比較例として、メタノフラーレン(12)を添加しない以外は同様な組成のネガ型レジスト組成物から電子線用化学増幅型ネガレジスト膜(比較例5)を調製した。

[0126] これらの電子線用化学増幅型ネガレジスト膜にそれぞれに対して、70keVの電子線描画装置(HL-800D VSB:日立計測器株式会社製)にて電子線照射した後、100℃にて90秒間ベークし、0.26Nのテトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液にて60秒間現像を行った。

その結果、実施例9及び実施例10において、最適照射量でレジストパターンサイズ 120nmの孤立パターンが形成された。そのパターンにおけるエッジラフネスを走査 型電子顕微鏡で観察し、ラインワイズラフネス(LWR)(nm)として求め、その結果を 表3に示した。

[0127] [表3]

	メタノフラーレン (12)添加率(wt%)	LWR(nm)
比較例5	0	7.9
実施例9	5	6.3
実施例10	10	6.1

表3 エッジラフネスの測定結果

[0128] 表3から明らかなように、メタノフラーレン(12)の添加した電子線用化学増幅型ネガレジスト膜(実施例9および10)では、比較例5に対して、LWRの減少が観察され、エッジラフネスの低減が確認された。

[0129] 3成分系化学増幅型のポジ型フォトレジスト組成物におけるパターン形成 <実施例11>

前記構成単位(c-1)である前記一般式(3)において、水酸基がパラ位に結合した p-ヒドロキシスチレン単位と、前記構成単位(c-5)である前記一般式(10)において、Rがメチル基であり、水酸基が3位に結合したアダマンタノールメタクリレート単位の 共重合体(モル比80:20、質量平均分子量(Mw)は8000、分散度(Mw/Mn)は1.7)と、エチルビニルエーテルとを、酸触媒下で公知の手法により反応させて、前記 共重合体の水酸基を1-エトキシエチル基で保護した樹脂(A2)を得た。この樹脂(A2)を¹H-NMRで分析した結果、p-ヒドロキシスチレンとアダマンタノールの合計水酸基の数に対する1-エトキシエトキシ基の数は20%であった。これより、水酸基の保護割合が20モル%であると認められた。この樹脂100質量部に対して、前記メタノフラーレン(12)10質量部、下記化学式(21)であらわされるスルホン酸エステル8質量部、トリーn-オクチルアミン1.6質量部、及びサリチル酸0.64質量部をPGMEA1890質量部に溶解させて、均一な溶液として、ポジ型フォトレジスト組成物を得た(以下、「レジスト組成物5」という。)。

[0130] [化16]

$$H_3C-C=N-OSO_2-C_4H_9$$

 $H_3C-C=N-OSO_2-C_4H_9$ (21)

[0131] 調製された電子線用化学増幅型のポジ型レジスト組成物5をスピンコート法によりシ リコン基板上に100℃にて90秒間ベークし、膜厚150nmの電子線用化学増幅型の ポジ型レジスト膜を調製した。

- [0132] これらの電子線用化学増幅型のポジ型レジスト膜それぞれに対して、70keVの電子線描画装置(HL-800D VSB:日立計測器株式会社製)を用いて電子線照射した後、110℃にて90秒間ベークし、2.38質量%TMAH水溶液にて60秒間現像を行った。
- [0133] その結果、最適照射量(42 μ C/cm²)で、レジストパターンサイズ100nmのラインアンドスペースが1:1となるレジストパターンが形成できた。次いで、そのパターンを走査型電子顕微鏡(SEM)により観察したところ、良好な形状であった。また、エッジラフネスを走査型電子顕微鏡で観察し、ラインワイズラフネス(LWR)として求めたところ、7.4nmであった。

[0134] <実施例12>

実施例11において、前記メタノフラーレン(12)を同量のメタノフラーレン(19)に代えた以外は、同様にしてポジ型フォトレジスト組成物を得た(以下、「レジスト組成物6」という。)。次いで、実施例11と同様にして、レジストパターンの形成を行った。

その結果、最適照射量(52 µ C/cm²)で、レジストパターンサイズ100nmのラインアンドスペースが1:1となるレジストパターンが形成できた。次いで、そのパターンを走査型電子顕微鏡(SEM)により観察したところ、良好な形状であった。また、実施例11と同様にしてLWRを求めたところ、9. 1nmであった。

[0135] <比較例6>

実施例11において、前記メタノフラーレン(12)を除いた以外は、同様にしてポジ型フォトレジスト組成物を得た(レジスト組成物7)。次いで、実施例11と同様にして、レジストパターンの形成を行った。

その結果、最適照射量で、レジストパターンサイズ100nmのラインアンドスペースが 1:1となるレジストパターンが形成できた。次いで、そのパターンを走査型電子顕微 鏡(SEM)により観察したところ、良好な形状であった。しかしながら、実施例11と同 様にしてLWRを求めたところ、11.1nmと不良であった。

産業上の利用可能性

[0136] 以上のように、本発明のフラーレン誘導体を含有してなるフォトレジスト組成物は、

高エッチング耐性を有するとともに、エッジラフネス低減に優れ、また、レジストパターン形状に優れるレジストパターンを形成できる。

請求の範囲

- [1] 2つ以上のマロン酸エステル残基を有するフラーレン誘導体(A)を含有することを 特徴とするフォトレジスト組成物。
- [2] 前記マロン酸エステル残基が下記一般式(1) [化1]

(式中、 R^1 および R^2 はそれぞれ独立してアルキル基であり、それぞれ同一でも異なってもよい。)

で表される基である請求項1に記載のフォトレジスト組成物。

[3] 前記フラーレン誘導体(A)が下記一般式(2) [化2]

(式中、nは2以上の整数を表し、 R^1 および R^2 は、それぞれ独立してアルキル基であり、それぞれ同一でも異なってもよい。)

で表される化合物である請求項1に記載のフォトレジスト組成物。

[4] 前記アルキル基が炭素数1~10の鎖状、分岐状及び環状のアルキル基のいずれかであり、nが2~10の整数であることを特徴とする請求項3に記載のフォトレジスト組成物。

- [5] 前記フラーレン誘導体(A)と、少なくとも放射線照射により酸を発生する酸発生剤(B)と、有機溶剤とを含有することを特徴とする請求項1に記載のフォトレジスト組成物
- [6] さらに、被膜形成樹脂成分(C)を含有することを特徴とする請求項5に記載のフォトレジスト組成物。
- [7] 前記被膜形成樹脂成分(C)が、酸解離性溶解抑制基を有し、酸の作用によってアルカリに対する溶解性が増大する樹脂(C1)であることを特徴とする請求項6に記載のポジ型のフォトレジスト組成物。
- [8] 前記(C)成分が、アルカリ可溶性樹脂(C2)であり、さらに架橋剤成分(D)を含有することを特徴とする請求項6に記載のネガ型のフォトレジスト組成物。
- [9] さらに、含窒素有機化合物を含有することを特徴とする請求項1に記載のフォトレジスト組成物。
- [10] さらに、有機カルボン酸を含有することを特徴とする請求項1に記載のフォトレジスト 組成物。
- [11] 請求項1に記載のフォトレジスト組成物を基板上に塗布してフォトレジスト膜を形成する工程と、

前記フォトレジスト膜を露光する工程と、

前記露光後のフォトレジスト膜を現像し、レジストパターンを形成する工程と、 を含むレジストパターン形成方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/001392

Α.	CLASSIFICATION OF SUBJECT MATTER				
	$Int.Cl^7$	G03F7/004,	7/038,	7/039	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ G03F7/004-7/18

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005

Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Name and mailing address of the ISA/

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	JP 11-109613 A (JSR Corp.),	1-9,11
Y	23 April, 1999 (23.04.99), Full text (Family: none)	10
Х	JP 11-258796 A (Director General, Agency of	1-4,11
A	Industrial Science and Technology), 24 September, 1999 (24.09.99), Full text (Family: none)	5-10
Х	JP 11-143074 A (The University of Birmingham),	1,11
A	28 May, 1999 (28.05.99), Full text	2-10
	& EP 903637 A2 & US 6117617 A	

X	Further documents are listed in the continuation of Box C.		See patent family annex.	
+	Special categories of cited documents:	"T"	later document published after the international filing date or priority	
"A"	document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
"E"	earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive	
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		step when the document is taken alone	
			document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is	
"O" "P"	document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		combined with one or more other such documents, such combination being obvious to a person skilled in the art	
Г		"&"	document member of the same patent family	
Date	of the actual completion of the international search	Date	e of mailing of the international search report	
22 February, 2005 (22.02.05)		08 March, 2005 (08.03.05)		

Authorized officer

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/001392

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	JP 9-6001 A (Tokyo Ohka Kogyo Co., Ltd.), 10 January, 1997 (10.01.97), Full text & EP 749046 A1 & US 5948589 A	10 1-9,11
		,
	·	

	国际出願番号 PCI/JP200	00/001392	
A. 発明の属する分野の分類(国際特許分類(IPC Int.Cl'G03F7/004,7/038			
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ G03F7/004-7/18	·	·	
最小限資料以外の資料で調査を行った分野に含まれるも 日本国実用新案公報 1922-19 日本国公開実用新案公報 1971-20 日本国実用新案登録公報 1996-20 日本国登録実用新案公報 1994-20	9 9 6年 0 0 5年 0 0 5年	·	
国際調査で使用した電子データベース(データベースの)名称、調査に使用した用語),		
C. 関連すると認められる文献			
引用文献の	でするときは、その関連する箇所の表示	関連する 請求の範囲の番号	
X JP 11-109613 A (Y 1999. 04. 23, 全文 (Y		1-9, 11	
X JP 11-258796 A (1 A 1999. 09. 24, 全文(1		$1-4, 11 \\ 5-10$	
X JP 11-143074 A (ハーミンガム) 1999. 05. & EP 903637 A2 &	. 28,全文	1, 11 $2-10$	
X C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準をもの 「E」国際出願日前の出願または特許であるが、国際出以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の日若しくは他の特別な理由を確立するために引用文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる	出願と矛盾するものではなく、 問用 の理解のために引用するもの 「X」特に関連のある文献であって、 の新規性又は進歩性がないと考え 同する 「Y」特に関連のある文献であって、 上の文献との、当業者にとって「 よって進歩性がないと考えられ	「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの	
国際調査を完了した日 22.02.2005	国際調査報告の発送日 08.3.	2005	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 伊藤 裕美	2H 3209	
東京都千代田区段が関三丁目4番3号	電話番号 03-3581-1101	内線 3229	

C (続き) <u>.</u> 関連すると認められる文献 関連する 引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP 9-6001 A (東京応化工業株式会社) Y 10 1-9, 111997.01.10,全文 Α & EP 749046 A1 & US 5948589 A