Wiktor Kuchta

6/2c

(i)

Niech $K=\mathbb{Q}$ i L jest ciałem rozkładu wielomianu X^4-2 nad K. Ten wielomian możemy rozłożyć na

$$X^{4} - 2 = (X - \sqrt[4]{2})(X - i\sqrt[4]{2})(X + \sqrt[4]{2})(X + i\sqrt[4]{2}),$$

więc $L = \mathbb{Q}(i, \sqrt[4]{2}).$

Niech $a=(2+i)\sqrt[4]{2}$. Wtedy $a^2=(3+4i)\sqrt{2}$ i $a^4=-14+48i$, więc $i=\frac{a^4+14}{48}$ i $\sqrt[4]{2}=\frac{a}{2+i}$. Zatem $\mathbb{Q}(i,\sqrt[4]{2})=\mathbb{Q}((2+i)\sqrt[4]{2})$.

(ii)

Niech $K=\mathbb{Q}(i)$ i L jest ciałem rozkładu wielomianu X^4-2 nad K, czyli $L=\mathbb{Q}(i)(\sqrt[4]{2}).$

6/5a

Wiemy, że $[\mathbb{Q}(\sqrt{5}, \sqrt{7}) : \mathbb{Q}] = 4$. Ponadto jest to rozszerzenie rozkładu wielomianu $(X^2 - 5)(X^2 - 7)$, więc jest Galois i $|G(\mathbb{Q}(\sqrt{5}, \sqrt{7})/\mathbb{Q})| = 4$.

Możemy wskazać 5 ciał pośrednich:

$$\mathbb{Q}, \ \mathbb{Q}(\sqrt{5}), \ \mathbb{Q}(\sqrt{7}), \ \mathbb{Q}(\sqrt{35}), \ \mathbb{Q}(\sqrt{5}, \sqrt{7}).$$

Z zasadniczego twierdzenia teorii Galois te ciała są w bijekcji z podgrupami grupy $G(\mathbb{Q}(\sqrt{5},\sqrt{7})/\mathbb{Q})$. Skoro jest ich co najmniej pięć, to ta grupa jest grupą czwórkową Kleina i znaleźliśmy jej wszystkie podgrupy. Zatem wskazaliśmy wszystkie szukane ciała pośrednie.