Tutorial 4 Solutions: Functions and Boolean Logic

Boolean Logic

Concept(s) The set of Booleans $\mathbb{B} = \{0,1\}$ with functions $!: \mathbb{B} \to \mathbb{B}$, && $: \mathbb{B}^2 \to \mathbb{B}$ and $||: \mathbb{B}^2 \to \mathbb{B}$ defined as $|x = 1 - x, \quad x \&\& y = \min\{x, y\}, \quad x \mid\mid y = \max\{x, y\}.$ There are laws for these operations, which are similar to the ones in set theory: Commutativity $x \mid\mid y = y \mid\mid x$ x && y = y && x $(x \mid\mid y) \mid\mid z = x \mid\mid (y \mid\mid z)$ (x && y) && z = x && (y && z)Associativity $x \parallel (y \&\& z) = (x \parallel y) \&\& (x \parallel z) \quad x \&\& (y \parallel z) = (x \&\& y) \parallel (x \&\& z)$ Distribution Identity $x \mid\mid 0 = x$ x && 1 = xComplement $x \mid \mid (!x) = 1$ x && (!x) = 0Idempotence $x \mid\mid x = x$ x && x = x

Exercise 1. Calculate the value of the following terms:

```
(1 \mid\mid 1) \&\& (1 \mid\mid 0), \quad (!0 \&\& 0) \mid\mid (!1 \&\& 1), \quad !(!0 \&\& ((0 \&\& !1) \&\& 1)).
```

```
Answer(s)  (1 || 1) \&\& (1 || 0) = 1, \quad (!0 \&\& 0) || (!1 \&\& 1) = 0, \quad !(!0 \&\& ((0 \&\& !1) \&\& 1)) = 1.
```

Exercise 2. Using the laws of Boolean algebra, show that

```
[x \&\& (x \&\& !y)] || [(x \&\& y) || (y \&\& !x)] = x || y.
```

```
Answer(s)
      [x \&\& (x \&\& !y)] || [(x \&\& y) || (y \&\& !x)]
   = [x \&\& (x \&\& !y)] || [(y \&\& x) || (y \&\& !x)]
                                                                      (Commutativity)
   = [x \&\& (x \&\& !y)] || [y \&\& (x || !x)]
                                                                          (Distribution)
   = [x \&\& (x \&\& !y)] || [y \&\& 1]
                                                                         (Complement)
   = [x \&\& (x \&\& !y)] || y
                                                                              (Identity)
   = [(x \&\& x) \&\& !y] || y
                                                                         (Associativity)
   = [x \&\& !y] || y
                                                                         (Idempotence)
   = y \mid | [x \&\& !y]
                                                                      (Commutativity)
                                                                          (Distribution)
   = (y \mid\mid x) \&\& (y \mid\mid !y)
   = (y \mid\mid x) \&\& 1
                                                                         (Complement)
   =y\mid\mid x
                                                                              (Identity)
   = x \mid\mid y
                                                                      (Commutativity)
```

Functions and Their Properties

Concept(s)

```
A binary relation f\subseteq X\times Y is a function if for all x\in X, there is exactly one y\in Y such that (x,y)\in f. We write f(x)=y when (x,y)\in f. f \text{ is Injective} \qquad \text{For all } a,b\in X, \text{ if } f(a)=f(b), \text{ then } a=b f \text{ is Surjective} \qquad \text{For all } y\in Y, \text{ there exists } x\in X \text{ such that } f(x)=y f \text{ is Bijective} \qquad \text{Injective and Surjective} We define \mathrm{Dom}(f)=X, \mathrm{Codom}(f)=Y \text{ and } \mathrm{Im}(f)=\{f(x): x\in \mathrm{Dom}(f)\}.
```

Exercise 3. Which of the following binary relations are functions? If it is a function, find the domain, codomain and image.

```
a) f \subseteq \mathbb{Z} \times \mathbb{N}, where (x, y) \in f if and only if y = |x|.
```

- b) $f \subseteq \mathbb{N} \times \mathbb{Z}$, where $(x, y) \in f$ if and only if |y| = x.
- c) $f \subseteq \mathbb{N} \times \mathbb{Z}$, where $(x, y) \in f$ if and only if y = 2x + 1.
- d) $f \subseteq \mathbb{B} \times \mathbb{B}$, where $f = \{(1,1)\}$.
- e) $f \subseteq \mathbb{B} \times \mathbb{B}$, where $(x, y) \in f$ if and only if $y = x \mid | !x$.

Answer(s)

- a) Every x value has one associated y value, |x|. This means that f is a function with $\mathrm{Dom}(f)=\mathbb{Z}$ and $\mathrm{Codom}(f)=\mathbb{N}$. We have $\mathrm{Im}(f)=\mathbb{N}$ as $(n,n)\in f$ for all $n\in\mathbb{N}$.
- b) An x value can have multiple associated y values e.g. $(1,1), (1,-1) \in f$ so f is not a function.
- c) Every x value has one associated y value, 2x+1. This means that f is a function with $Dom(f) = \mathbb{N}$ and $Codom(f) = \mathbb{Z}$. We have f(0) = 1, f(1) = 3 and increasing x by 1 increases f(x) by 2. This means $Im(f) = \{x \in \mathbb{N} : x \text{ is an odd integer}\}$.
- d) There are no values for an input of 0 in the relation so f is not a function.
- e) Every x value has one associated y value, $x \mid | !x$. This means that f is a function with $Dom(f) = \mathbb{B}$ and $Codom(f) = \mathbb{B}$. We have f(1) = 1 and f(0) = 1 so $Im(f) = \{1\}$.

Exercise 4. Determine which of the following functions are injective, surjective or bijective.

```
a) f: \mathbb{R} \to \mathbb{Z}, f(x) = |x+1|.
```

b) Let
$$X = \{x\}$$
 and $f: X^* \to \mathbb{N}$, $f(w) = \text{length}(w)$.

- c) $f: \mathbb{N} \to \mathbb{N}$, $f(x) = x^2$.
- d) Let $\Sigma = \{a, b\}$ and $A : \Sigma^* \to \mathbb{N}$, where A(w) is the number of a's in the word w.
- e) $f: \mathbb{B} \to \mathbb{B}$, f(x) = !x.

Answer(s)

a) Since f(1) = f(1.5) = 2, f is not injective and therefore not bijective. For all $n \in \mathbb{Z}$, we have f(n-1) = n so f is surjective.

- b) We have $X^* = \{\lambda, x, xx, xxx, \dots\}$. If $f(w_1) = f(w_2)$ where $w_1, w_2 \in X^*$, this means w_1 and w_2 have the same length. There is one word associated with each length so $w_1 = w_2$. This means f is injective. For all $n \in \mathbb{N}$, we have $f(x^n) = n$ so f is surjective and bijective.
- c) If we have f(x) = f(y), then $x^2 = y^2$ so x = y, as x and y are non-negative. This means f is injective. Since there is no $n \in \mathbb{N}$ such that $n^2 = 2$, f is not surjective and not bijective.
- d) Since f(a) = f(ab), we find f is not injective and therefore not bijective. For all $n \in \mathbb{N}$, we have $f(a^n) = n$ so f is surjective.
- e) Considering all input, we have $f = \{(0,1), (1,0)\}$. We find that f is bijective.

Inverse Functions

Concept(s)

For $f: X \to Y$ and $g: Y \to Z$, the composition of f and g is $g \circ f$, where $(g \circ f)(x) = g(f(x))$.

The identity function on X, $\mathrm{Id}:X\to X$, is defined as $\mathrm{Id}_X(x)=x$.

Exercise 5. Define $f: \mathbb{Z} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{Z}$ where $f(x) = x^2 + 3$ and $g(x) = (-1)^x x$.

- a) Compute $f \circ g$ and $g \circ f$.
- b) What is the domain, codomain and image of $f \circ g$?
- c) Is $g \circ f$ injective, surjective or bijective?

Answer(s)

a) We have

$$(f \circ g)(x) = f(g(x)) = f((-1)^x x) = ((-1)^x x)^2 + 3 = x^2 + 3$$

and

$$(g \circ f)(x) = g(f(x)) = g(x^2 + 3) = (-1)^{x^2 + 3}(x^2 + 3).$$

- b) The domain and codomain of $f \circ g$ is \mathbb{N} . We find that $\{n^2 : n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ so $\mathrm{Im}(f) = \{3, 4, 7, 12, \dots\}$.
- c) Since $(g \circ f)(1) = (g \circ f)(-1)$, $g \circ f$ is not injective. We also do not have $x \in \mathbb{Z}$ such that $(g \circ f)(x) = 0$, since $|(g \circ f)(x)| = \left|(-1)^{x^2+3}(x^2+3)\right| = x^2+3 \geq 3$.

Exercise 6. Prove if $f: A \to B$ and $g: B \to C$ are both injective, then $g \circ f$ is injective.

Answer(s)

Suppose that we have $x,y\in A$, where $(g\circ f)(x)=(g\circ f)(y)$. We have g(f(x))=g(f(y)). Since g is injective, we find that f(x)=f(y). Since f is injective, we find that x=y. Therefore, if $(g\circ f)(x)=(g\circ f)(y)$, then x=y, meaning $g\circ f$ is injective.

Concept(s)

For $f: X \to Y$, if f^{\leftarrow} is a function, we call it inverse function of f.

The function f has an inverse if and only if f is bijective.

For $f: X \to Y$ and $g: Y \to X$, we have $g = f^{-1}$ the inverse of f whenever

$$g \circ f = \operatorname{Id}_X$$
 and $f \circ g = \operatorname{Id}_Y$.

Exercise 7. Let $f, g : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = 3x + 5 and $g(x) = \frac{x-5}{3}$. Show that g is the inverse of f.

Answer(s)

We can show that g is an inverse of f by computing $g \circ f$ and $f \circ g$. First, we have

$$(g \circ f)(x) = g(f(x)) = g(3x+5) = \frac{(3x+5)-5}{3} = x \text{ so } g \circ f = \mathrm{Id}_{\mathbb{R}}.$$

We also have

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{x-5}{3}\right) = 3\frac{x-5}{3} + 5 = x \text{ so } f \circ g = \mathrm{Id}_{\mathbb{R}}.$$

Therefore, g is the inverse of f.

Exercise 8. Let $f, g: \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n and

$$g(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ (n-1)/2 & \text{if } n \text{ is odd.} \end{cases}$$

Show that $g \circ f = \mathrm{Id}_{\mathbb{N}}$. Is g an inverse of f?

Answer(s)

Consider that

$$(g \circ f)(n) = g(f(n)) = g(2n) = 2n/2 = n,$$

where 2n is even so we always take the even branch of g. Therefore, $g \circ f = \mathrm{Id}_{\mathbb{R}}$.

We find that f is not surjective as there is no $n \in \mathbb{N}$ such that f(n) = 1. This means f is not bijective and so f cannot have an inverse.

Conjunctive and Disjunctive Normal Form

Concept(s)

Literal A function $\mathbb{B} \to \mathbb{B}$ (All l_i are literals in the following definitions)

Minterm A function $\mathbb{B}^n \to \mathbb{B}$ of the form $(\dots (l_1(x_1) \&\& l_2(x_2)) \&\& \dots \&\& l_n(x_n))$

Maxterm A function $\mathbb{B}^n \to \mathbb{B}$ of the form $(\dots(l_1(x_1) || l_2(x_2)) || \dots || l_n(x_n))$

CNF Boolean Function A function $(...(m_1 \&\& m_2) \&\& ... \&\& m_n)$ where m_i are maxterms

DNF Boolean Function A function $(\dots (m_1 \parallel m_2) \parallel \dots \parallel m_n)$ where m_i are minterms

Exercise 9. Determine if the following terms are CNF, DNF or neither:

a)
$$((!x_2 \&\& (x_3 \&\& !x_1)) || x_3) || (x_1 \&\& !x_2)$$

- b) $((!x_1 || x_2) \&\& (x_3 || x_4)) || (!x_3 \&\& x_4)$
- c) $|x_1 \&\& (x_3 || (x_2 \&\& !x_3))$
- d) $((x_2 || !x_3) \&\& (x_1 || (x_5 || x_6))) \&\& ((!x_2 || !x_5) || x_6)$

Answer(s)

- a) DNF: The minterms are $!x_2 \&\& (x_3 \&\& !x_1)$, x_3 and $x_1 \&\& !x_2$.
- b) Neither: The operator applied last determines if the term is a CNF or DNF. Since the operator applied last is || as shown below, the term is either DNF or neither.

$$((!x_1 || x_2) \&\& (x_3 || x_4)) || (!x_3 \&\& x_4)$$

The term to the left of || has the operator applied last as && but is not a minterm so this formula is neither.

c) Neither: The operator that is applied last is && so the term is not a DNF, as shown below:

$$|x_1 \&\& (x_3 || (x_2 \&\& !x_3))$$

The term to the right of && must be a maxterm as the operator applied last is || . Since $x_3 || (x_2 \&\& !x_3)$ is not a maxterm, it is not a CNF.

d) CNF: The maxterms are $x_2 \parallel |x_3, x_1| \mid (x_5 \parallel x_6)$ and $(|x_2| \mid |x_5|) \mid |x_6|$.

Concept(s)

For a term f of the form $\mathbb{B}^n \to \mathbb{B}$, we can consider all $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{B}^n$, and define

$$m_{\mathbf{b}} = (\dots(l_1(x_1) \&\& l_2(x_2)) \&\& \dots \&\& l_n(x_n)) \text{ where } l_i(x_i) = \begin{cases} x_i & \text{if } b_i = 1, \\ !x_i & \text{if } b_i = 0. \end{cases}$$

The formula in Disjunctive Normal Form is the disjunction (or) over all min terms where $f(\mathbf{b}) = 1$.

Exercise 10. Convert $(x \mid\mid y)$ && $(!x \mid\mid !y)$ into Disjunctive Normal Form (DNF).

Answer(s)

We have two inputs for this term, x and y. There are four possibilities for x and y:

Since the term is only true when (x,y) = (0,1) and (x,y) = (1,0), our DNF becomes

$$(!x \&\& y) || (x \&\& !y).$$

Exercise 11. Convert $(x \mid\mid y)$ && $(x \&\& (!y \mid\mid z))$ into Disjunctive Normal Form (DNF).

Answer(s)

Let $f(x, y, z) = (x \mid\mid y)$ && $(x \&\& (!y \mid\mid z))$. We have three inputs for this term, x, y and z. There are eight possibilities for x, y and z:

\boldsymbol{x}	y	z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

The formula f is true for $(x, y, z) \in \{(1, 0, 0), (1, 0, 1), (1, 1, 1)\}$. Our DNF is

$$(((x \&\& !y) \&\& !z) || ((x \&\& !y) \&\& z) || ((x \&\& y) \&\& z).$$

Big-O Notation

Concept(s)

Let $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$.

 $f(n) \in O(g(n))$ means there exists $n_0 \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ where for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

 $f(n) \in \Omega(g(n))$ means there exists $n_0 \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ where for all $n \ge n_0$, $f(n) \ge c \cdot g(n)$

 $f(n) \in \Theta(g(n))$ means that $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

Exercise 12. Consider $f, g: \mathbb{N} \to \mathbb{R}$ and determine if $f(n) \in O(g(n))$, $f(n) \in O(g(n))$ or $f(n) \in O(g(n))$.

- a) f(n) = 4n + 2, $g(n) = n^2 4$
- b) $f(n) = 2n^2 n$, $g(n) = n^2 4$
- c) $f(n) = 2^{3n}, g(n) = 2^{2n}$

Answer(s)

a) We have $f(n) \in O(g(n))$. Consider that $4n + 2 \le n^2 - 4$ for all $n \ge 6$.

Suppose that $f(n)\in\Omega(g(n))$. Then there exists $n_0\in\mathbb{N}$ and real number c>0, such that $4n+2\geq cn^2-4c$ for all $n\geq n_0$. Then, $4+\frac{2}{n}\geq cn-\frac{4c}{n}$. For all $n\geq 1$, we have $\frac{2}{n}\leq 2$ and $\frac{4c}{n}\leq 4c$. This means that $6\geq 4+\frac{2}{n}\geq cn-\frac{4c}{n}g\geq cn-4c$.

Since for all $n \ge 1$, we have $\frac{2}{n} \le 2$ and $\frac{4c}{n} \le 4c$, we have $6 \le cn - c4$ when $n \ge 1$. But, this is not true when $n > \frac{6}{c}$ which is a contradiction. Therefore, $f(n) \in \Omega(g(n))$ is not possible and $f(n) \notin \Theta(g(n))$.

- b) We have $f(n) \in \Theta(g(n))$. Consider that when $n \ge 3$, we have $n^2 4 \le 2n^2 n \le 3(n^2 4)$.
- c) We have $f(n) \in \Omega(g(n))$. Consider that $2^{2n} \le 2^{3n}$ for all $n \ge 0$.

Suppose that $f(n) \in O(g(n))$. Then there exists $n_0 \in \mathbb{N}$ and real number c > 0, such that $2^{3n} \le c2^{2n}$ for all $n \ge n_0$. This means that $2^n \le c$ for all $n \ge n_0$ which is not true as $2^n > c$ for

all $n \ge c$. Therefore, $f(n) \in O(g(n))$ is not possible and $f(n) \notin \Theta(g(n))$.

Exercise 13. Prove that if $f(n) \in O(g(n))$, then $g(n) \in \Omega(f(n))$, where $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$.

Answer(s)

Suppose that $f(n) \in O(g(n))$. Then, there exists $n_0 \in \mathbb{N}$ and real number c > 0, such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$. This means that $\frac{1}{c}f(n) \le g(n)$ for all $n \ge n_0$, where $\frac{1}{c} > 0$. By definition, we have $g(n) \in \Omega(f(n))$.

Extra Practice Problems

- 1. Determine which of the following functions are injective, surjective or bijective.
 - a) $f: \mathbb{N} \to \mathbb{Z}$, $f(x) = (-1)^x x$.
 - b) Let $\Sigma = \{a, b\}$ and len : $\Sigma^* \to \mathbb{N}$, where len(w) is the number of symbols in the word w.
 - c) Let $\Sigma = \{a, b\}$ and $f : \mathbb{N} \to Pow(\Sigma^*)$, where $f(n) = \{w \in \Sigma^* : len(w) \le n\}$.
 - d) $f : \mathbb{Z} to \mathbb{N}, f(x) = |x|$.
- 2. Let $f: X \to Y$ be bijective and $A, B \subseteq Y$. Show that $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B)$.
- 3. We define $f, g, h : \mathbb{Z} \to \mathbb{Z}$ as $f(x) = x^3 4x$, $g(x) = x \mod 5$, and $h(x) = x^2$. Find

$$f \circ f$$
, $h \circ g$, $g \circ g$, $f \circ g \circ h$, $g \circ f \circ h$.

- 4. Show that if f and g are both surjective, then $g \circ f$ is also surjective.
- 5. Show that $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = -x is bijective and find f^{-1} .
- 6. Simplify the following Boolean expressions:
 - a) (x && y) || (x && !y) || (!x && y)
 - b) (x || y) && (x || !y) && (!x || y)
 - c) !(x && y) || (x && !y)
- 7. Convert the following Boolean expressions to Disjunctive Normal Form (DNF):
 - a) x && (y || x)
 - b) (x || y) && (!x || z)
- 8. Let $f: \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = n^2 + 2n + 1$. Find a function $g: \mathbb{N} \to \mathbb{N}$ such that $g \circ f = \mathrm{Id}_{\mathbb{N}}$. Is g the inverse of f? Explain why or why not.
- 9. Let $\Sigma = \{0,1\}$ and define $f: \Sigma^* \to \mathbb{Z}$ as f(w) = the number of 1's in w minus the number of 0's in w. Is f injective? Is it surjective? Justify your answers.
- 10. For each of the following pairs of functions f(n) and g(n), determine whether $f(n) \in O(g(n))$, $f(n) \in O(g(n))$, or $f(n) \in O(g(n))$. Justify your answers.
 - a) $f(n) = n \log n, g(n) = n^{1.5}$
 - b) $f(n) = 2^n, g(n) = n^2$
 - c) $f(n) = n!, g(n) = 2^n$