布尔

曾经的扣模型的方式一般都是这样

内部挤压再到挤压

做某些东西会很方便,但是如果要扣的是圆之类的,这个就显得无力了。

直到我遇到了她,绿油油的,宛如被原谅的孩子,她打动了我【以下内容与数学"集合"相关,但不一定需要懂集合】

我们先创建一个球体

再创建一个圆柱

接着新建一个布尔

把两个模型都拖进布尔里作为子单位

就会发现球变成了不可见的

把圆柱向球的方向移动,就会发现进入球体的圆柱被慢慢吞噬

因为布尔现在的类型为【A减B】

就是说,

在布尔内只能有两个子单位

排在上面的【圆柱】是A

排在下面的【球体】是B

然后用 A 的部分去将 B 的部分减除[吞噬]

如果把 A 和 B 的位置换一下,两个模型的模式就会跟着变化 先前不可见的是球体,现在球体可见,不可见的变成了圆柱,但是圆柱会吞噬球体

坐标 <mark>对象</mark>		
生		
类型	A加B -	
量	АЛВ	
单个对象	A减B	
新的边	A B 交集	
处创建平滑着色(Phong)分割	AB补集	
交界		
氚	0.01 cm 💠	

布尔有四种模式

除了刚才的 A 减 B 之外,第一个为 A 加 B 从外观上来看就至少是普通的两个模型拼在一起

把视角转到内部,会发现进入球体内部的部分变成了不可见

而两个模型的线条也连在了一起 也就是说,这是直接将两个模型合并成了一个模型 而不是强硬地拼接

第三种 A 与 B 交集

移动一下球体,圆柱也在跟着消失 AB 交集就是指

只有当布尔内两个模型叠加[相交]的时候,在能看见[体积比较小的]模型

一般可以用于让一行字或者模型慢慢凭空出现

最后一种, AB补集

与 A B 相减类似

但A减B是用模型减除模型

而补集是用模型减除平面,

如图,球体显然被圆柱减除,但是产生变化的只有表面

处理好模型之后可以将布尔转化为可编辑对象

布尔就会变成一个空白

但是处理好的模型不会变

只是被挖空的和挖空模型的会分开 只需要合并就行了

基本 坐标 对象	
对象属性	
● 布尔类型	A减B▼
● 高质量	V
● 创建单个对象	
● 隐藏新的边	•
● 交叉处创建平滑着色(Phong)分割	
● 选择交界	•

或者简单些,直接选取创建单个对象

可编辑化后会直接变成一个单位

顺带一提,布尔也可以作为布尔的处理对象 在硬件允许的情况下可无限叠加

