TRhizo-local Adaptation

Local Adaptation by Urbanization

David Murray-Stoker

Contents

Load Packages & Data	3
Data Management	4
Aboveground Biomass Regressions	7
Global Index	7
Fit the Regressions	7
Check Model Assumptions	7
Model Summaries	8
Rural Index	9
Fit the Regressions	9
Check Model Assumptions	9
*	10
	11
	11
<u> </u>	11
•	12
Delegament Diemoga Degrassions	13
	13
	13
1	13
	14
	15
	15
1	15
	16
	17
	17
1	17
Model Summaries	18
Nodule Density Regressions	19
	19
	19
	19
	20
	21
	21
<u> </u>	21
	$\frac{21}{22}$

Urban Index	2;
Fit the Regressions	2:
Check Model Assumptions	
Model Summaries	
Fixing Nodule Density Regressions	25
Global Index	2
Fit the Regressions	
Check Model Assumptions	
Model Summaries	
Rural Index	
Fit the Regressions	
Check Model Assumptions	
Model Summaries	
Urban Index	
Fit the Regressions	
Check Model Assumptions	
Model Summaries	
Resign Information	21

Load Packages & Data

```
## Load the tidyverse
library(tidyverse)

## Load packages for data analysis
library(broom)
library(easystats)

## Read in data
# Urbanization data
urbanization.data <- read_rds(file = "data/full_urbanization_data.rds")
# Local adaptation indices
load("data_analysis/4-local_adaptation_indices/local_adaptation_indices.RData")

## Set function for scaling variables
center_and_scale <- function(x) {
    (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}</pre>
```

Data Management

```
## Aboveground biomass
# Global index
aboveground.biomass.LA.global.combined.data <- aboveground.biomass.LA.global.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
   Distance_Scaled = center_and_scale(Distance),
   Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
   Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
# Rural index
aboveground.biomass.LA.rural.combined.data <- aboveground.biomass.LA.rural.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
   Distance_Scaled = center_and_scale(Distance),
   Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
   Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
# Urban index
aboveground.biomass.LA.urban.combined.data <- aboveground.biomass.LA.urban.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop na() %>%
  type convert(col types = c("ffnnnnnfnin")) %>%
   Distance_Scaled = center_and_scale(Distance),
   Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
   Mean_ISC_Scaled = center_and_scale(Mean_ISC)
## Belowground biomass
# Global index
belowground.biomass.LA.global.combined.data <- belowground.biomass.LA.global.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
   Distance_Scaled = center_and_scale(Distance),
   Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
   Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
# Rural index
belowground.biomass.LA.rural.combined.data <- belowground.biomass.LA.rural.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
   Distance_Scaled = center_and_scale(Distance),
   Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
   Mean_ISC_Scaled = center_and_scale(Mean_ISC)
```

```
)
# Urban index
belowground.biomass.LA.urban.combined.data <- belowground.biomass.LA.urban.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
    Distance Scaled = center and scale(Distance),
    Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
    Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
## Nodule density
# Global index
nodule.density.LA.global.combined.data <- nodule.density.LA.global.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
    Distance_Scaled = center_and_scale(Distance),
    Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
    Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
# Rural index
nodule.density.LA.rural.combined.data <- nodule.density.LA.rural.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
    Distance_Scaled = center_and_scale(Distance),
    Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
    Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
# Urban index
nodule.density.LA.urban.combined.data <- nodule.density.LA.urban.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
    Distance Scaled = center and scale(Distance),
    Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
    Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
## Fixing nodule density
fixing.nodule.density.LA.global.combined.data <- fixing.nodule.density.LA.global.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
    Distance_Scaled = center_and_scale(Distance),
    Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
    Mean_ISC_Scaled = center_and_scale(Mean_ISC)
```

```
)
# Rural index
fixing.nodule.density.LA.rural.combined.data <- fixing.nodule.density.LA.rural.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
    Distance_Scaled = center_and_scale(Distance),
    Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
    Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
# Urban index
fixing.nodule.density.LA.urban.combined.data <- fixing.nodule.density.LA.urban.data %>%
  left_join(urbanization.data, by = "Population") %>%
  drop_na() %>%
  type_convert(col_types = c("ffnnnnnfnin")) %>%
  mutate(
    Distance_Scaled = center_and_scale(Distance),
    Human_Influence_Index_Scaled = center_and_scale(Human_Influence_Index),
    Mean_ISC_Scaled = center_and_scale(Mean_ISC)
  )
```

Aboveground Biomass Regressions

Global Index

Fit the Regressions

```
## Distance
aboveground.biomass.by.distance.global.LM <- lm(
    AG_Biomass_LA_Global ~ Distance_Scaled,
    data = aboveground.biomass.LA.global.combined.data
)

## Human influence index
aboveground.biomass.by.HII.global.LM <- lm(
    AG_Biomass_LA_Global ~ Human_Influence_Index_Scaled,
    data = aboveground.biomass.LA.global.combined.data
)

## Impervious surface cover
aboveground.biomass.by.ISC.global.LM <- lm(
    AG_Biomass_LA_Global ~ Mean_ISC_Scaled,
    data = aboveground.biomass.LA.global.combined.data
)</pre>
```

```
## Distance
check_model(aboveground.biomass.by.distance.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(aboveground.biomass.by.HII.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(aboveground.biomass.by.ISC.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 1: Summary of the above ground biomass global local adaptation index by distance model. Adjusted R-squared $=\,$ 0.

Term	Estimate	SE	t	P-value
(Intercept)	0	0.002	-0.044	0.965
$Distance_Scaled$	0	0.002	-0.090	0.929

Table 2: Summary of the above ground biomass global local adaptation index by HII model. Adjusted R-squared =0.031.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	-0.044	0.965
$Human_Influence_Index_Scaled$	0.001	0.002	0.528	0.599

Table 3: Summary of the above ground biomass global local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	-0.044	0.965
$Mean_ISC_Scaled$	0.001	0.002	0.652	0.517

Rural Index

Fit the Regressions

```
## Distance
aboveground.biomass.by.distance.rural.LM <- lm(
    AG_Biomass_LA_Rural ~ Distance_Scaled,
    data = aboveground.biomass.LA.rural.combined.data
)

## Human influence index
aboveground.biomass.by.HII.rural.LM <- lm(
    AG_Biomass_LA_Rural ~ Human_Influence_Index_Scaled,
    data = aboveground.biomass.LA.rural.combined.data
)

## Impervious surface cover
aboveground.biomass.by.ISC.rural.LM <- lm(
    AG_Biomass_LA_Rural ~ Mean_ISC_Scaled,
    data = aboveground.biomass.LA.rural.combined.data
)</pre>
```

```
## Distance
check_model(aboveground.biomass.by.distance.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(aboveground.biomass.by.HII.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(aboveground.biomass.by.ISC.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 4: Summary of the above ground biomass rural local adaptation index by distance model. Adjusted $\mbox{R-squared}=~0.$

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	0.00	1.000
$Distance_Scaled$	0.001	0.002	0.33	0.743

Table 5: Summary of the above ground biomass rural local adaptation index by HII model. Adjusted R-squared =0.012.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	0.000	1.000
$Human_Influence_Index_Scaled$	-0.001	0.002	-0.434	0.666

Table 6: Summary of the above ground biomass rural local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0	0.002	0.00	1.000
${\bf Mean_ISC_Scaled}$	0	0.002	0.22	0.827

Urban Index

Fit the Regressions

```
## Distance
aboveground.biomass.by.distance.urban.LM <- lm(
    AG_Biomass_LA_Urban ~ Distance_Scaled,
    data = aboveground.biomass.LA.urban.combined.data
)

## Human influence index
aboveground.biomass.by.HII.urban.LM <- lm(
    AG_Biomass_LA_Urban ~ Human_Influence_Index_Scaled,
    data = aboveground.biomass.LA.urban.combined.data
)

## Impervious surface cover
aboveground.biomass.by.ISC.urban.LM <- lm(
    AG_Biomass_LA_Urban ~ Mean_ISC_Scaled,
    data = aboveground.biomass.LA.urban.combined.data
)</pre>
```

```
## Distance
check_model(aboveground.biomass.by.distance.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(aboveground.biomass.by.HII.urban.LM)
# Linear assumption met
# Slight (+ non-concerning) heterogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(aboveground.biomass.by.ISC.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 7: Summary of the above ground biomass urban local adaptation index by distance model. Adjusted R-squared $=\,$ 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	-0.144	0.886
$Distance_Scaled$	-0.001	0.002	-0.469	0.641

Table 8: Summary of the above ground biomass urban local adaptation index by HII model. Adjusted R-squared =0.022.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	-0.146	0.885
Human_Influence_Index_Scaled	0.003	0.002	1.312	0.195

Table 9: Summary of the above ground biomass urban local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	-0.144	0.886
${\bf Mean_ISC_Scaled}$	0.002	0.002	0.865	0.391

Belowground Biomass Regressions

Global Index

Fit the Regressions

```
## Distance
belowground.biomass.by.distance.global.LM <- lm(
    BG_Biomass_LA_Global ~ Distance_Scaled,
    data = belowground.biomass.LA.global.combined.data
)

## Human influence index
belowground.biomass.by.HII.global.LM <- lm(
    BG_Biomass_LA_Global ~ Human_Influence_Index_Scaled,
    data = belowground.biomass.LA.global.combined.data
)

## Impervious surface cover
belowground.biomass.by.ISC.global.LM <- lm(
    BG_Biomass_LA_Global ~ Mean_ISC_Scaled,
    data = belowground.biomass.LA.global.combined.data
)</pre>
```

```
## Distance
check_model(belowground.biomass.by.distance.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(belowground.biomass.by.HII.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(belowground.biomass.by.ISC.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 10: Summary of the below ground biomass global local adaptation index by distance model. Adjusted R-squared $=\ 0.$

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	-0.022	0.983
$Distance_Scaled$	-0.001	0.001	-0.695	0.490

Table 11: Summary of the below ground biomass global local adaptation index by HII model. Adjusted R-squared = 0.012.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	-0.022	0.983
$Human_Influence_Index_Scaled$	0.001	0.001	1.165	0.249

Table 12: Summary of the below ground biomass global local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	-0.022	0.983
$Mean_ISC_Scaled$	0.001	0.001	0.999	0.322

Rural Index

Fit the Regressions

```
## Distance
belowground.biomass.by.distance.rural.LM <- lm(
    BG_Biomass_LA_Rural ~ Distance_Scaled,
    data = belowground.biomass.LA.rural.combined.data
)

## Human influence index
belowground.biomass.by.HII.rural.LM <- lm(
    BG_Biomass_LA_Rural ~ Human_Influence_Index_Scaled,
    data = belowground.biomass.LA.rural.combined.data
)

## Impervious surface cover
belowground.biomass.by.ISC.rural.LM <- lm(
    BG_Biomass_LA_Rural ~ Mean_ISC_Scaled,
    data = belowground.biomass.LA.rural.combined.data
)</pre>
```

```
## Distance
check_model(belowground.biomass.by.distance.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(belowground.biomass.by.HII.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(belowground.biomass.by.ISC.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 13: Summary of the below ground biomass rural local adaptation index by distance model. Adjusted R-squared $=\,$ 0.

Term	Estimate	SE	t	P-value
(Intercept)	0	0.001	0.000	1.000
$Distance_Scaled$	0	0.001	-0.065	0.948

Table 14: Summary of the below ground biomass rural local adaptation index by HII model. Adjusted R-squared =0.024.

Term	Estimate	SE	t	P-value
(Intercept)	0	0.001	0.000	1.000
$Human_Influence_Index_Scaled$	0	0.001	-0.049	0.961

Table 15: Summary of the below ground biomass rural local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0	0.001	0.000	1.000
${\bf Mean_ISC_Scaled}$	0	0.001	0.033	0.974

Urban Index

Fit the Regressions

```
## Distance
belowground.biomass.by.distance.urban.LM <- lm(
    BG_Biomass_LA_Urban ~ Distance_Scaled,
    data = belowground.biomass.LA.urban.combined.data
)

## Human influence index
belowground.biomass.by.HII.urban.LM <- lm(
    BG_Biomass_LA_Urban ~ Human_Influence_Index_Scaled,
    data = belowground.biomass.LA.urban.combined.data
)

## Impervious surface cover
belowground.biomass.by.ISC.urban.LM <- lm(
    BG_Biomass_LA_Urban ~ Mean_ISC_Scaled,
    data = belowground.biomass.LA.urban.combined.data
)</pre>
```

```
## Distance
check_model(belowground.biomass.by.distance.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(belowground.biomass.by.HII.urban.LM)
# Linear assumption met
# Slight (+ non-concerning) heterogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(belowground.biomass.by.ISC.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 16: Summary of the below ground biomass urban local adaptation index by distance model. Adjusted R-squared $=0.001.\,$

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	-0.113	0.911
$Distance_Scaled$	-0.001	0.001	-1.025	0.310

Table 17: Summary of the below ground biomass urban local adaptation index by HII model. Adjusted R-squared $=\ 0.$

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	-0.115	0.909
Human_Influence_Index_Scaled	0.002	0.001	1.858	0.068

Table 18: Summary of the below ground biomass urban local adaptation index by ISC model. Adjusted R-squared = 0.022.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	-0.114	0.910
${\bf Mean_ISC_Scaled}$	0.001	0.001	1.505	0.138

Nodule Density Regressions

Global Index

Fit the Regressions

```
## Distance
nodule.density.by.distance.global.LM <- lm(
   Nod_Density_LA_Global ~ Distance_Scaled,
   data = nodule.density.LA.global.combined.data
)

## Human influence index
nodule.density.by.HII.global.LM <- lm(
   Nod_Density_LA_Global ~ Human_Influence_Index_Scaled,
   data = nodule.density.LA.global.combined.data
)

## Impervious surface cover
nodule.density.by.ISC.global.LM <- lm(
   Nod_Density_LA_Global ~ Mean_ISC_Scaled,
   data = nodule.density.LA.global.combined.data
)</pre>
```

```
## Distance
check_model(nodule.density.by.distance.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(nodule.density.by.HII.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(nodule.density.by.ISC.global.LM)
# Linear assumption met
# Slight (+ non-concerning) heterogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 19: Summary of the nodule density global local adaptation index by distance model. Adjusted R-squared $=\ 0$.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.006	0.072	0.943
$Distance_Scaled$	0.001	0.006	0.132	0.895

Table 20: Summary of the nodule density global local adaptation index by HII model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0	0.006	0.072	0.943
$Human_Influence_Index_Scaled$	0	0.006	-0.024	0.981

Table 21: Summary of the nodule density global local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.006	0.072	0.943
${\bf Mean_ISC_Scaled}$	-0.002	0.006	-0.400	0.691

Rural Index

Fit the Regressions

```
## Distance
nodule.density.by.distance.rural.LM <- lm(
   Nod_Density_LA_Rural ~ Distance_Scaled,
   data = nodule.density.LA.rural.combined.data
)

## Human influence index
nodule.density.by.HII.rural.LM <- lm(
   Nod_Density_LA_Rural ~ Human_Influence_Index_Scaled,
   data = nodule.density.LA.rural.combined.data
)

## Impervious surface cover
nodule.density.by.ISC.rural.LM <- lm(
   Nod_Density_LA_Rural ~ Mean_ISC_Scaled,
   data = nodule.density.LA.rural.combined.data
)</pre>
```

```
## Distance
check_model(nodule.density.by.distance.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(nodule.density.by.HII.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(nodule.density.by.ISC.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 22: Summary of the nodule density rural local adaptation index by distance model. Adjusted R-squared = 0.006.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.006	0.079	0.937
$Distance_Scaled$	0.007	0.006	1.174	0.245

Table 23: Summary of the nodule density rural local adaptation index by HII model. Adjusted R-squared = 0.014.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.006	0.079	0.937
$Human_Influence_Index_Scaled$	-0.008	0.006	-1.319	0.192

Table 24: Summary of the nodule density rural local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.006	0.078	0.938
${\bf Mean_ISC_Scaled}$	-0.003	0.006	-0.488	0.627

Urban Index

Fit the Regressions

```
## Distance
nodule.density.by.distance.urban.LM <- lm(
   Nod_Density_LA_Urban ~ Distance_Scaled,
   data = nodule.density.LA.urban.combined.data
)

## Human influence index
nodule.density.by.HII.urban.LM <- lm(
   Nod_Density_LA_Urban ~ Human_Influence_Index_Scaled,
   data = nodule.density.LA.urban.combined.data
)

## Impervious surface cover
nodule.density.by.ISC.urban.LM <- lm(
   Nod_Density_LA_Urban ~ Mean_ISC_Scaled,
   data = nodule.density.LA.urban.combined.data
)</pre>
```

```
## Distance
check_model(nodule.density.by.distance.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(nodule.density.by.HII.urban.LM)
# Linear assumption met
# Slight (+ non-concerning) heterogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(nodule.density.by.ISC.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 25: Summary of the nodule density urban local adaptation index by distance model. Adjusted R-squared $=\ 0$.

Term	Estimate	SE	t	P-value
(Intercept)	-0.001	0.008	-0.105	0.917
$Distance_Scaled$	-0.006	0.008	-0.747	0.458

Table 26: Summary of the nodule density urban local adaptation index by HII model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	-0.001	0.008	-0.105	0.916
$Human_Influence_Index_Scaled$	0.008	0.008	1.000	0.321

Table 27: Summary of the nodule density urban local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	-0.001	0.008	-0.104	0.917
$Mean_ISC_Scaled$	-0.002	0.008	-0.218	0.828

Fixing Nodule Density Regressions

Global Index

Fit the Regressions

```
## Distance
fixing.nodule.density.by.distance.global.LM <- lm(
   Fix_Nod_Density_LA_Global ~ Distance_Scaled,
   data = fixing.nodule.density.LA.global.combined.data
)

## Human influence index
fixing.nodule.density.by.HII.global.LM <- lm(
   Fix_Nod_Density_LA_Global ~ Human_Influence_Index_Scaled,
   data = fixing.nodule.density.LA.global.combined.data
)

## Impervious surface cover
fixing.nodule.density.by.ISC.global.LM <- lm(
   Fix_Nod_Density_LA_Global ~ Mean_ISC_Scaled,
   data = fixing.nodule.density.LA.global.combined.data
)</pre>
```

```
## Distance
check_model(fixing.nodule.density.by.distance.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(fixing.nodule.density.by.HII.global.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(fixing.nodule.density.by.ISC.global.LM)
# Linear assumption met
# Slight (+ non-concerning) heterogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 28: Summary of the fixing nodule density global local adaptation index by distance model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	0.027	0.978
$Distance_Scaled$	-0.001	0.001	-0.721	0.474

Table 29: Summary of the fixing nodule density global local adaptation index by HII model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	0.027	0.978
Human_Influence_Index_Scaled	0.001	0.001	0.473	0.638

Table 30: Summary of the fixing nodule density global local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	0.028	0.978
${\bf Mean_ISC_Scaled}$	-0.001	0.001	-0.749	0.457

Rural Index

Fit the Regressions

```
## Distance
fixing.nodule.density.by.distance.rural.LM <- lm(
   Fix_Nod_Density_LA_Rural ~ Distance_Scaled,
   data = fixing.nodule.density.LA.rural.combined.data
)

## Human influence index
fixing.nodule.density.by.HII.rural.LM <- lm(
   Fix_Nod_Density_LA_Rural ~ Human_Influence_Index_Scaled,
   data = fixing.nodule.density.LA.rural.combined.data
)

## Impervious surface cover
fixing.nodule.density.by.ISC.rural.LM <- lm(
   Fix_Nod_Density_LA_Rural ~ Mean_ISC_Scaled,
   data = fixing.nodule.density.LA.rural.combined.data
)</pre>
```

```
## Distance
check_model(fixing.nodule.density.by.distance.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(fixing.nodule.density.by.HII.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(fixing.nodule.density.by.ISC.rural.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 31: Summary of the fixing nodule density rural local adaptation index by distance model. Adjusted R-squared =~0.

Term	Estimate	SE	t	P-value
(Intercept)	0	0.001	0.054	0.957
$Distance_Scaled$	0	0.001	-0.151	0.880

Table 32: Summary of the fixing nodule density rural local adaptation index by HII model. Adjusted R-squared =~0.

Term	Estimate	SE	t	P-value
(Intercept)	0	0.001	0.054	0.957
$Human_Influence_Index_Scaled$	0	0.001	-0.268	0.790

Table 33: Summary of the fixing nodule density rural local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.001	0.054	0.957
$Mean_ISC_Scaled$	-0.001	0.001	-0.475	0.637

Urban Index

Fit the Regressions

```
## Distance
fixing.nodule.density.by.distance.urban.LM <- lm(
   Fix_Nod_Density_LA_Urban ~ Distance_Scaled,
   data = fixing.nodule.density.LA.urban.combined.data
)

## Human influence index
fixing.nodule.density.by.HII.urban.LM <- lm(
   Fix_Nod_Density_LA_Urban ~ Human_Influence_Index_Scaled,
   data = fixing.nodule.density.LA.urban.combined.data
)

## Impervious surface cover
fixing.nodule.density.by.ISC.urban.LM <- lm(
   Fix_Nod_Density_LA_Urban ~ Mean_ISC_Scaled,
   data = fixing.nodule.density.LA.urban.combined.data
)</pre>
```

```
## Distance
check_model(fixing.nodule.density.by.distance.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Human influence index
check_model(fixing.nodule.density.by.HII.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution

## Impervious surface cover
check_model(fixing.nodule.density.by.ISC.urban.LM)
# Linear assumption met
# Homogeneity of variance
# Residuals approximately follow a normal distribution
```

Table 34: Summary of the fixing nodule density urban local adaptation index by distance model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	-0.07	0.944
$Distance_Scaled$	-0.001	0.002	-0.95	0.346

Table 35: Summary of the fixing nodule density urban local adaptation index by HII model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	-0.070	0.944
$Human_Influence_Index_Scaled$	0.001	0.002	0.897	0.374

Table 36: Summary of the fixing nodule density urban local adaptation index by ISC model. Adjusted R-squared = 0.

Term	Estimate	SE	t	P-value
(Intercept)	0.000	0.002	-0.070	0.945
$Mean_ISC_Scaled$	-0.001	0.002	-0.758	0.451

R Session Information

Table 37: Packages required for data management and analysis.

Package	Loaded Version	Date
bayestestR	0.13.2	2024-02-12
broom	1.0.5	2023-06-09
correlation	0.8.4	2023-04-06
datawizard	0.10.0	2024-03-26
dplyr	1.1.4	2023-11-17
easystats	0.7.1	2024-03-28
effectsize	0.8.6	2023-09-14
forcats	1.0.0	2023-01-29
ggplot2	3.5.0	2024-02-23
insight	0.19.10	2024 - 03 - 22
kableExtra	1.4.0	2024-01-24
knitr	1.45	2023-10-30
lubridate	1.9.3	2023-09-27
modelbased	0.8.7	2024 - 02 - 15
parameters	0.21.6	2024-03-18
performance	0.11.0	2024-03-22
purrr	1.0.2	2023-08-10
readr	2.1.5	2024-01-10
report	0.5.8	2023-12-07
see	0.8.3	2024-03-24
stringr	1.5.1	2023-11-14
tibble	3.2.1	2023-03-20
tidyr	1.3.1	2024-01-24
tidyverse	2.0.0	2023-02-22