15BT101

Biology for Engineers

Unit - 2

Biodiversity

Biodiversity - Variety of life on earth, 3 levels classified

- ➤ Genetic diversity Different gene in all individual plants, animals, fungi etc.,
- > Species diversity Occurs within species or between different species
- ➤ Ecosystem diversity Different variety of habitats, biological communities, ecological processes

Importance of biodiversity

- > Food species hunted, fished, agriculture, forestry, aquaculture
- ➤ Shelter & warmth timbers, fibers, wool, cotton, other forest products
- ➤ Health Medicines Traditional medicines, others synthesized from biological resources & processes

Threats to biodiversity

- Habitat loss and destruction
- Alteration in ecosystem composition
- Introduction of exotic (non-native) species
- Over-exploitation
- Pollution & contamination
- Global climatic change

Chemistry of Life

Chemistry of Life

- ➤ Atom Simplest unit, positive nucleus made up of protons & neutrons, surrounded by negatively charged electrons
 - Atom Stable When outer most electron orbit is completely filed (Doublet, Octet)
- **Element** Atom of same kind combine
 - 6 Elements (C, H, O, P, S, N) 98% Body weight
- Compound 2 or more elements combined
 - Elements join Chemical bonding Atoms lose their individual property

Types of Bonding

1. Covalent Bonding

- Sharing of valence electron between 2 atoms
- >Strong bond
- Formation of double & triple bonds
- ➤ Example Hydrogen gas (Diatomic hydrogen molecule), Sharing valence electron – Doublet stable configuration

2. Non – Covalent

Weak forces, Interaction critical in maintaining shapes of nucleic acids, proteins & other macromolecules (Ex: DNA double helix). 4 types

- > Hydrogen Bonds
- > Ionic Bonds
- ➤ Van der Waals forces
- > Hydrophobic Interactions

Ionic Bonding

- Atom donates an electron Cations (positively charged)
- Atom accepts donated electron Anions (Negatively charged)
- Ionic bond arise between these 2 atoms (Cation, Anion)
- Example NaCl Na+ (2, 8, 1) Cation

- Cl- (2, 8, 7) – Anion (attains octet configuration)

Biochemistry & Human Biology - Biomacromolecules

- ➤ Living processes Metabolism 2 types Anabolism (building up of molecules) & Catabolism (breaking up of molecules)
- ➤ Biomacromolecules Include protein, carbohydrate, lipid, nucleic acids & other biomolecules
- ➤ Smaller unit Monomer joins to form polymers
- ➤ Cell has water, rest Carbon based molecules Organic molecules

1) Carbohydrate

1) Carbohydrate

Organic compound, Empirical formula – Cm(H2O)n – Consists of Carbon,
 Hydrogen: Oxygen ratio (2:1)

• Divided into four types

S.No.	Types	Properties	Example
1.	Monosaccharides	Simple sugar, formula (CH2O)n,	Glucose, Fructose
2.	Disaccharides	2 monosaccharides joined by glycosidic linkage (covalent bond) – by dehydration reaction – H & OH removal from each monosaccharide	Sucrose, Lactose
3.	Oligosaccharides	3 – 6 monosaccharides joined	Mannose
4.	Polysaccharides	Many monosaccharides joined . Joined into linear or branched chain	Cellulose

2) Lipids

saturated fatty acid

unsaturated fatty acid

2) Lipids

• Organic compound, Soluble in non-polar solvents (ex: Ether, choloroform, acetone, benzene), insoluble in water

S.No.	Types	Properties	Example
1.	Fatty acids (FA)	 Composed of chain of methylene group with Carboxyl group at one end 10 − 20 Carbon atoms − in fatty acid chain Head − Polar (Hydrophilic) Tail − Non-Polar (Hydrophobic) FA − Saturated - Many hydrogen bonded to Carbon FA − Unsaturated - Few hydrogen - 1 or few double bond connecting carbon 	Omega 3 fatty acid
2.	Triglycerides	3 fatty acid linked to a molecule of glycerol	Vegetable oil
3.	Steroids	4 Cycloalkane rings joined to each other	Cholesterol, Sex hormones – Estradiol & Testosterone
4.	Waxes	Long chain of fatty acid joined to single complex alcohol in ester linkage Found in protective coating - on leaves, hair, skin etc.	Cutin (Plant)

2) Triglycerides, Steroids, Waxes

Triglycerides

Waxes

3) Proteins

3) Proteins

- Essential part of organism every process within cells
- Functions Act as hormones & enzymes, structural integrity, cellular transportation, used to build cells
- Polymer of amino acid linked by peptide bond
- Amino acid 20 types (both essential and non essential) linked to build various proteins

4) Nucleic Acids

- Nucleic acid Essential for life DNA (deoxyribonucleic acid) & RNA (ribonucleic acid)
- DNA differs from RNA by absence of "O" in "OH" group of sugar
- Made up of polymer nucleotide (nitrogenous base, sugar, phosphate molecule)

DNA Replication

- ➤ Copies their own DNA One double stranded DNA molecule produces 2 identical copies of the molecule
- ➤ DNA replication begins at specific location in genome called "Origins"
- > Steps involved:
 - Unwinding of DNA at "Origin"
 - ❖ Hydrogen bond break Strands unzips by different enzymes & proteins
 - ❖ DNA polymerase (enzyme) Adds bases & Synthesis new strand (Daughter DNA) from template strand (Parent DNA)

DNA - Genetic Information

DNA (deoxyribonucleic acid)

- Storage of genetic information
- Watson & Crick 1953 Proposed DNA double helix model
- DNA formed by Polynucleotide chains, 2 chain of DNA complementary to each double helix one turn
 34Å with 10 pair of nucleotides distance of 3.4Å, width 20Å
- Antiparallel one end is 5' & other 3'

Nucleotide

- ➤ Nucleoside (Pentose sugar + Nitrogenous bases)
- Phosphate group

Nucleoside

- ➤ Pentose sugar (DNA deoxyribose) (RNA ribose)
- > Nitrogenous Bases
 - ➤ Purine Adenine (A), Guanine (G)
 - > Pyrimidine Cytosine (C), Thymine (T) in DNA & Uracil (U) in RNA

Chargaff's rule

- > Purine always pairs with pyrimidine
- A always pairs with T, 2 hydrogen bond
- > G always pairs with C, 3 hydrogen bond
- ➤ Amount of A equal to T & G equal to C

DNA - Genetic Information

Pentosugar

- ➤ A cyclic 5 carbon sugar, which connects two phosphate groups
- ➤ The type of sugar molecule in DNA is deoxyribose, where as in RNA is ribose.

<u>Nitrogenous base</u>

- ➤ Nucleic acids contains 5 major heterocyclic bases, adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U).
- ➤ First four bases are common in DNA, in case of RNA thymine is replaced with uracil

Phosphate

- ➤ A phosphate group attached to the 5' carbon of the sugar by a phosphodiester linkage.
- ➤ This phosphate group responsible for the negative charge of the nucleic acids.

RNA (Ribonucleic acid)

- Contains ribose sugar, single stranded, thymine replace by Uracil (U)
- More RNA in cytoplasm, less in nucleus
- 3 types
 - 1. mRNA (Messenger RNA)
 - 2. tRNA (Transfer RNA)
 - 3. rRNA (Ribosomal RNA)

mRNA (Messenger RNA)

- > 3-5% of total RNA
- ➤ Carries genetic information for protein synthesis (from DNA → Cytoplasm)
- > Carries triplet codes
- > One end of mRNA called 5' end cap region present binds with ribosome
- > Other end 3' end with poly A tail (adenylate nucleotides)
- > Post-transcriptional modifications
 - Cap & Poly A tail
 - ❖ AUG (methionine) translation initiation codon Start codon
 - ❖ UAA Stop codon

mRNA

2. tRNA (Transfer RNA)

- \triangleright 15-17% of total RNA, 60 types, contains 75 80 nucleotides
- > Transport amino acid to site of protein synthesis each tRNA transport only 1 amino acid
- > Structure Clover leaf contains 4 arms
 - 1)Acceptor arm amino acid binding site
 - 2)D arm enzyme site
 - 3)T Ψ*C arm Ribosome site
 - **4)Anticodon arm** recognition site has codon complementary to mRNA makes respective amino acid bind to acceptor arm

3. rRNA (Ribosomal RNA)

- ➤ 80% of total RNA, 100-3000 nucleotides
- Associated with ribosome
- \geq 7 types based upon sedimentation coefficient 2.88, 188, 5.88, 58, 238, 168, 558
- > Other small RNA non coding RNA involves in gene expression regulation
 - 1. snRNA (small nuclear RNA)
 - 2. snoRNA (small nucleolar RNA)
 - 3. microRNA
 - 4. siRNA (small interference RNA)

Protein Synthesis

Protein Synthesis

1 – Central Dogma

2 – Protein Synthesis

Protein Synthesis

Introduction

- ➤ Protein Synthesis process cells build proteins
- > Steps involved;
 - 1) Transcription
 - 2) Post-transcriptional modifications
 - 3) Translation
 - 4) Post-translational modifications

1) Transcription

- > Synthesis of RNA from complementary DNA strand
- Synthesis strand of DNA antisense strand
- ➤ Other non-synthesizing strand of DNA sense strand
- **→** 3 steps **Initiation**, **Elongation**, **Termination**

1) Transcription

1. Initiation:

- ► RNA polymerase binds to DNA In Promoter sequence or TATA box
- ➤DNA molecule unzips upto 20 basepairs
- ➤ Region/ sequence before promoter called as Upstream sequence
- ➤ Region/ sequence after/ following promoter called as Downstream sequence Region to be transcribed transcription initiation site denoted as +1

2. Elongation:

- ► Unwinding of DNA
- >RNA polymerase adds complementary bases RNA synthesized in $5' \rightarrow 3'$ direction

1) Transcription

3. Termination:

- ➤ Stop codon/ signal reached RNA polymerase unbinds
- ➤mRNA (pre-mRNA) falls off
- This mRNA called as pre-mRNA has both Exons (coding sequences) & Introns (non-coding sequences)

2) Post-transcriptional modifications

- ➤ Splicing Spliceosome Remove introns join exons – mature mRNA
- ➤ mature mRNA leaves nucleus and enter cytoplasm for translation

3) Translation

<u>Introduction</u>

- > Translation transfer of genetic code in mRNA to protein (amino acid)
- > Occurs in cytoplasm
- **>** 3 steps − **Initiation**, **Elongation**, **Termination**
- ➤ Involves the following:
 - 1) mRNA (codons)
 - 2) tRNA (anticodons)
 - 3) ribosomes (Large and small subunits)
 - 4) amino acids

1. Initiation

- >mRNA binds to smaller unit of ribosome (30S)
- Attachment made at 1st codon of mRNA– Start codon (AUG methionine) called as mRNA-30S complex

- Now tRNA with complementary anticodon UAC attaches to AUG in mRNA then tRNA transports methionine (AUG) to 30S subunit (smaller subunit of ribosome)
- \triangleright mRNA + tRNA + 30S subunit \rightarrow called **Pre-initiation complex**
- Later, 50S (larger subunit of ribosome) joins/ attaches to Pre-initiation complex
- \triangleright mRNA + tRNA + 30S subunit + 50S subunit \rightarrow called **Initiation complex**
- ➤ Has 2 slots for tRNA entry A site (aminoacyl site) & P site (peptidyl site)

1st tRNA attaches to P site

PSite A Site

First tRNA binding site

Met G G W

MRNA

A D G C C A G W

MRNA

Small subunit

Second tRNA binding site

First tRNA

D A D G C C A G W

MRNA

Fig 1 Initiation complex

2. Elongation

- ➤ As per mRNA sequence amino acid added
- ➤ 2nd mRNA codon recognized by 2nd charged tRNA (with respective amino acid attached) Enters via A site
- ➤ Peptide bond added between 1st & 2nd amino acid
- ➤ Ribosome complex moves reads next mRNA codon (i.e 3rd) Now 1st tRNA (empty tRNA) leaves via P site and falls off, Now 2nd tRNA occupies P site and new tRNA (3rd) enters via A site
- Polypeptide chain elongates

tRNA enter via A site and falls off from P site

3. Termination:

- ➤ When stop codon (UAG, UAA, or UGA) reached polypeptide chain terminates
- ➤ Protein synthesized
- Further post-translational modification

4) Post-translational modifications (PTM)

- >PTM for intracellular localization and other purposes of proteins
- ➤ Glycosylation, phosphorylation, acetylation, sumoylation

Properties of genetic code

Triplet codon – total 64 (4*4*4)

- Universal
- Redundancy (Each amino acid more than one codon)
- Ambiguous (No codon codes for more than 1 amino acid)

Stem Cells and Their Application

Stem Cells (SC)

Introduction

➤ Stem cell (SC)- Stem Cells are the cells which has the ability to divide for indefinite periods and which can give rise to specialized cells of various tissues of body.

➤ Stem cells – Unspecialized, can self-renew, when divides into 2 – one remains unspecialized & other becomes specialized

Properties of stem cells

- ➤ Self renewal
- Unspecialized
- ➤ Give rise to specialized cells

Sources of Stem Cells

Embryonic Stem Cells

- Isolated from blastocyst (ICM) stage of embryos
- Pluripotent (capable of developing into all cell types of body), except trophoblast

2) Adult Stem Cells

- ➤ It is present in all the organs (Ex: brain, bone marrow, skin, teeth, heart etc.), tissue-specific, undifferentiated, but very little amount
- Helps in tissue repair
- They are multipotent (differentiate into a closely related family of cells)
- ➤ Also derived from pregnancy-related tissues umbilical cords, placenta & amniotic fluids
- Cadavers within 20 hours of death can remove neural stem cells from brain

Classification of stem cells

1) Totipotent

- > Can become any cell type
- Ex: Morula stage of Embryos

2) Pluripotent

- ➤ Almost any kind of cell except placenta
- Ex: Embryonic SC

3) Multipotent

- > Produces limited range of cell types
- Ex: Adult SC: nerve cells, blood cells, muscle cells, bone and skin cells

4) Unipotent

- ➤ Cell make exact copies of itself, can differentiate, produce same type of cells
- Ex: Adult muscle stem cell

Classification of stem cells

Human embryonic stem cell (hESCs) isolation and culture

- ➤ hESC cultured from ICM of blastocyst
- ➤ Isolation of ICM (inner cell mass) from the blastocyst stage
- > Transfer to culture medium
- ➤ Surface of culture dish coated with mouse UV treated embryonic skin cells (feeder layer)
- ➤ Feeder layer act as niche release growth factors, cytokines etc.
- ➤ Sub-culture Passage

Human embryonic stem cell (hESCs) isolation and culture

Application of Stem Cells

1) Therapeutic & Reproductive cloning

2) Regenerative Medicine

- □ Parkinson's disease Stem cell (SC) injected Nerve cell increases dopamine synthesis
- □Muscular dystrophy SC Muscle damaged tissue gets healthy patients walk faster
- □Polio SC New spinal neurons grow
- \square Diabetes (Type 1) SC Reduces hyper and hypoglycemia
- ■Bone tissue engineering SC Degradable scaffolds with bone morphogenetic proteins (BMPs) helps in healing of facture, trauma, infections, skeletal development, biochemical disorder etc.

3) Gene therapy

- > Insertion of genes into an individual's cell to treat disease
- \triangleright Defective gene \rightarrow Replaced \rightarrow Become Functional gene
- > 2 delivering therapeutic transgenes into human recipients

1st BY VIRAL MEDIATED TRANSFER

2nd USE OF LIVING CELLS TO DELIVER TRANSGENES INTO BODY

- □ Delivering live cells Ex: stem cell, lymphocyte, fibroblast are removed from patient's body
- ☐ Therapeutic transgenes introduced into those cells via **vehicles**
- ☐ This genetically modified cell is cultured & infused back into patient

Application of Stem Cells

