Devoir maison de théorie de Hodge p-adique

Rayane Bait

Exercice 1

1)

On note $R := {\alpha \zeta_p^i}_{i=0,\dots,p-1}$. Alors R est l'ensemble des racines de f. En effet,

$$(\alpha \zeta_n^i)^p = \alpha^p (\zeta_n^p)^i = p$$

et $\alpha \zeta_i \neq \alpha \zeta_p^j$ pour $i \neq j \mod p$ car dans ce cas $\frac{\alpha \zeta_p^i}{\alpha \zeta_p^j} = \zeta_p^{i-j} \neq 1$, d'où $|R| = p = \deg(f)$ et l'assertion sur R.

En particulier, on en déduit que $K\subset Q(\alpha,\zeta_p^i)$. En plus, $\zeta_p=\alpha\zeta_p/\alpha\in K$ d'où $\mathbb{Q}_p(\zeta_p,\alpha)\subset K$.

2)

On assume pour l'instant que $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ est galoisienne de degré p-1 et que $\mathbb{Q}_p(\alpha)/\mathbb{Q}_p$ est de degré p. On remarque alors que $\mathbb{Q}_p(\alpha)/\mathbb{Q}_p$ et $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ sont linéairement disjointes car $p \wedge p - 1 = 1$. En particulier

$$[K : \mathbb{Q}_p] = [K : \mathbb{Q}_p(\zeta_p)][\mathbb{Q}_p(\zeta_p) : \mathbb{Q}_p]$$
$$= [\mathbb{Q}_p(\alpha) : \mathbb{Q}_p][\mathbb{Q}_p(\zeta_p) : \mathbb{Q}_p]$$
$$= p(p-1)$$

et $H = Gal(K/\mathbb{Q}_p(\zeta_p))$ est normal dans G car $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ est galoisienne. Enfin H est d'indice $|G/H| = |Gal(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p)| = p-1$ qui est le résultat voulu.

On prouve maintenant les assertions. On note $X^p-1=(X-1)\phi_p(X)$ et on a

$$(X+1)^p - 1 = X(\sum_{k=1}^{p-1} {p \choose k+1} X^k + p) = X\phi_p(X+1)$$

d'où on déduit que $\phi_p(X+1)$ est $p\mathbb{Z}_p$ -Eisenstein donc irréductible dans $\mathbb{Z}_p[X]$. Maintenant $\mathbb{Q}_p(\zeta_p)$ est le corps de décomposition de $\phi_p(X)$ sur \mathbb{Q}_p d'où $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ est galoisienne de degré $[\mathbb{Q}_p(\zeta_p):\mathbb{Q}_p]=\deg(\phi_p)=p-1$. De même X^p-p est $p\mathbb{Z}_p$ -Eisenstein de degré p et $\mathbb{Q}_p(\alpha)$ en est un corps de rupture d'où le résultat.

3)

Dans la partie 2) on a montré que $\phi_p(X+1)$ est $p\mathbb{Z}_p$ -Eisenstein. On en déduit directement que $\mathbb{Q}_p(\zeta_p-1)/\mathbb{Q}_p$ est totalement ramifiée et que ζ_p-1 , qui est une racine de $\phi_p(X+1)$, en est une uniformisante. De la même manière, $\mathbb{Q}_p(\alpha)/\mathbb{Q}_p$ est totalement ramifiée et α en est une uniformisante. Via

$$e_{K/\mathbb{Q}_p} = e_{K/\mathbb{Q}_p(\alpha)} e_{\mathbb{Q}_p(\alpha)/\mathbb{Q}_p}$$

on obtient $p \mid e_{K/\mathbb{Q}_p}$ et via

$$e_{K/\mathbb{Q}_p} = e_{K/\mathbb{Q}_p(\zeta_p)} e_{\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p}$$

on obtient $p-1 \mid e_{K/\mathbb{Q}_p}$ ce qui prouve que K/\mathbb{Q}_p est totalement ramifiée car $e_{K/\mathbb{Q}_p} \leq [K:\mathbb{Q}_p] = p(p-1)$. Enfin

$$v_p(\frac{\zeta_p - 1}{\alpha}) = \frac{1}{p - 1} - \frac{1}{p} = \frac{p - (p - 1)}{p(p - 1)} = \frac{1}{p(p - 1)}$$

si on note v_p la valuation sur K qui étend la valuation p-adique normalisée. On a prouvé que $\frac{\zeta_p-1}{\alpha}$ est une uniformisante de K/\mathbb{Q}_p .

4)

Le groupe de Galois G est formé des automorphismes

$${s_{ij}}_{i=1,\dots,p-1;j=0,\dots,p-1}$$

définis par $s_{ij}(\zeta_p) = \zeta_p^i$ et $s_{ij}(\alpha) = \alpha \zeta_p^j$. De la ramification totale de K/\mathbb{Q}_p on déduit que $\mathbb{Z}_p[\lambda] = \mathcal{O}_K$ et $G = G_0$ si l'on pose $\lambda = \frac{\zeta_p - 1}{\alpha}$. Soit maintenant s_{ij} un élément de G. Pour $g \in G$ si $i_G(g)$ désigne le plus grand entier i tel que $g \in G_{i-1}$, on a

$$i_G(g) - 1 = e_{K/\mathbb{Q}_p} v_p(\frac{g\lambda}{\lambda} - 1).$$

ou $i_G(g) - 1 = v_K(\frac{g\lambda}{\lambda} - 1)$ si v_K est normalisée. Maintenant on calcule

$$\frac{s_{ij}\lambda}{\lambda} - 1 = \frac{\zeta_p^i - 1}{\alpha \zeta_p^j} \cdot \frac{\alpha}{\zeta_p - 1} - 1$$
$$= \frac{\zeta_p^i - 1}{\zeta_p^j (\zeta_p - 1)} - 1$$
$$= \zeta_p^{-j} \left(\sum_{k=0}^{k-1} \zeta_p^k\right) - 1$$

On remarque que $\zeta_p = 1 \mod \mathfrak{m}_K$ de sorte que

$$\zeta_p^{-j} \left(\sum_{k=0}^{k-1} \zeta_p^k \right) - 1 = 1.i - 1 \mod \mathfrak{m}_K$$

ce qui fait sens car $\zeta_p^{-j}\left(\sum_{k=0}^{k-1}\zeta_p^k\right)-1$ est dans \mathcal{O}_K . On obtient deux cas : d'abord si $i\neq 1$ alors pour tout $0\leq j\leq p-1$ on a

$$i_G(s_{ij}) - 1 = v_K(\frac{s_{ij}\lambda}{\lambda} - 1) = 0$$

d'où $i_G(s_{ij})=1$. Ensuite si i=1 alors on calcule pour $1\leq j\leq p-1$,

$$v_K \left(\frac{s_{ij}(\lambda)}{\lambda} - 1 \right) = v_K \left(\zeta_p^{-j} - 1 \right)$$
$$= v_K \left(\zeta_p - 1 \right)$$
$$= p(p-1).v_p \left(\zeta_p - 1 \right)$$
$$= p$$

d'où $i_G(s_{ij})-1=p$. On remarque que $\{s_{ij}|i=1,0\leq j\leq p-1\}=H$. En particulier, pour k=-1,0 on a $G_k=G$ puis pour $1\leq k\leq p$ on a $\mathbb{Z}/p\mathbb{Z}\simeq G_k=G_1=H$ et enfin pour p< k on a $G_k=\{id_K\}$.

Exercice 2

1)

Pour tout élément h de H, on note $(a_{ij}(h))_{i,j} = A(h)$. Alors pour $1 \le j \le n$ et $h_1, h_2 \in H$ on a

$$h_2 v_j = \sum_{i=1}^n a_{ij}(h_2) v_i$$

puis

$$h_1 h_2 v_j = \sum_{i=1}^n h_1(a_{ij}(h_2)v_i)$$
$$= \sum_{i=1}^n h_1(a_{ij}(h_2))h_1 v_i$$

d'où

$$(v_j)_{j=1,\dots,n} A(h_1 h_2) = (h_1 h_2 v_j)_{j=1,\dots,n}$$

= $(h_1 v_j)_{j=1,\dots,n} h_1 A(h_2)$
= $(v_j)_{j=1,\dots,n} A(h_1) h_1 A(h_2)$

Puis par unicité de $A(h_1h_2)$ on obtient $A(h_1h_2)=A(h_1)h_1A(h_2)$.

2)

On prouve a) implique b). Soit $(w_j)_j$ une base de V dont les vecteurs sont invariants par H. Et soit P la matrice de changement de base de $(v_j)_j$ à $(w_j)_j$, on montre que B = P convient. On a

$$(v_j)_j \cdot P = (w_j)_j$$

$$= (h \cdot w_j)_j$$

$$= h \cdot ((v_j)_j \cdot P)$$

$$= h \cdot (\sum_i p_{ij} v_i)_j$$

$$= (\sum_i h p_{ij} h v_i)_j$$

$$= (h v_j)_j h P$$

$$= (v_j)_j A(h) h P$$

d'où P = A(h)hP puis $A(h) = P.h(P)^{-1}$.

Maintenant si $A(h) = Bh(B)^{-1}$ pour $(b_{ij})_{ij} = B \in GL_n(\mathbb{C})$ alors on pose $(w_j)_j = (v_j)_j.B$. C'est une base de V par hypothèse sur B et on calcule

de la même manière que précédemment

$$h.(w_j)_j = h.(\sum_i b_{ij}v_i)_j$$

$$= (\sum_i h(b_{ij})h(v_i))_j$$

$$= (v_j)_j A(h)h(B)$$

$$= (v_j)_j B.h(B)^{-1}h(B)$$

$$= (v_j)_j B$$

$$= (w_j)_j$$

d'où $(w_j)_j$ est une base formée de vecteurs invariants par h qui est le résultat voulu.

3)

Soit $f: H \to GL_n(\mathbb{C})$ un cocycle. On remarque que

$$f(id) = f(id.id) = f(id)id(f(id)) = f(id)^{2}.$$

Comme f est à valeurs dans des matrices inversibles on obtient que

$$f(id) = I_n$$
.

On munit maintenant $GL_n(\mathbb{C})$ de la norme donnée par

$$||(a_{ij})_{i,j}|| := \max_{i,j} |a_{ij}|_{\mathbb{C}}$$

où $|\cdot|_{\mathbb{C}}$ est l'unique valeur absolue sur \mathbb{C} étendant la valeur absolue p-adique normalisée par $|p|_{\mathbb{C}} = 1/p$. Alors la topologie de $|\cdot|$ coincide avec la topologie produit de $M_n(\mathbb{C})$ et on a

$$B(I_n, 1/p^2) \subsetneq \overline{B(I_n, 1/p^2)} = 1 + p^2 M_n(\mathcal{O}_{\mathbb{C}})$$

par définition si B(a,r) désigne la boule ouverte centrée en a et de rayon r. Puis $f^{-1}(1+p^2M_n(\mathcal{O}_C))$ contient $f^{-1}(B(I_n,1/p^2))$ qui est ouvert par continuité de f et non vide car il contient id par la première remarque. Maintenant une base de voisinage de id est donnée par les groupes de galois $Gal(\bar{K},M)$ tels que M est de dimension finie sur L. Il existe donc F_1 tel que

$$id \in Gal(\bar{K}, F_1) \subset f^{-1}(B(I_n, 1/p^2))$$

et $[F_1:L]<+\infty$. On pose alors F la clôture galoisienne de F_1 dans \bar{K} puis $H'=Gal(\bar{K},F),\ H'$ est d'indice fini dans H car F/L est de dimension finie et on a

$$f(H') \subset f(Gal(\bar{K}, F_1)) \subset f(f^{-1}(B(I_n, 1/p^2))) \subset 1 + p^2 M_n(\mathcal{O}_C)$$

qui est bien le résultat voulu.

4)

4a)

Par le même argument que dans 3) en remplaçant $1 + p^2 M_n(\mathcal{O}_C)$ par $1 + p^{m+2} M_n(\mathcal{O}_C)$ et f par $f|_{H'}$, on remarque que $f|_{H'}$ est bien un cocycle et on obtient $H_1 = Gal(\bar{K}, F_1)$ un sous-groupe d'indice fini de H' tel que

$$f|_{H'}(H_1) \subset 1 + p^{m+2}M_n(\mathcal{O}_C).$$

On pose E la clôture galoisienne de F_1 dans \bar{K} . Alors $N = Gal(\bar{K}, E)$ est d'indice fini dans H' car $(H': H_1) = [E: F] = [E: F_1][F_1: F] < +\infty$. En plus

$$f|_{H'}(N) = f(N) \subset f(H_1) \subset 1 + p^{m+2} M_n(\mathcal{O}_{\mathbb{C}})$$

qui est le premier résultat voulu.

Pour le second on remarque que E/F est presque étale. Pour le voir on remarque que F/K n'est pas de conducteur fini, par le théorème de Coates-Greenberg F/K est alors profondément ramifiée d'où E/F est presque étale car $[E:F]<+\infty$ par construction. Si F/K était de conducteur fini on aurait $L\subset F\subset \bar K^{(\nu)}$ pour un $\nu\geq 0$ d'où L/K serait de conducteur fini ce qui contredit le fait que L/K est profondément ramifiée.

En particulier, $Tr_{E/F} \colon \mathfrak{m}_E \to \mathfrak{m}_F$ est surjective et on peut prendre $y \in \mathfrak{m}_E$ tel que

$$p = Tr_{E/F}(y) = \sum_{\sigma \in Gal(E/F)} \sigma(y)$$

qui est le résultat voulu.

4b)

Si l'on note $f(\hat{\sigma}) = 1 + p^m M_{\sigma}$ alors on a

$$B_{m} = \frac{1}{p} \left(\sum_{\sigma \in Gal(E/F)} f(\hat{\sigma}) \hat{\sigma}(y) \right)$$

$$= \frac{1}{p} \left(\sum_{\sigma \in Gal(E/F)} (1 + p^{m} M_{\sigma}) \hat{\sigma}(y) \right)$$

$$= \frac{1}{p} \left(\sum_{\sigma \in Gal(E/F)} \hat{\sigma}(y) + p^{m} \left(\sum_{\sigma \in Gal(E/F)} M_{\sigma} \hat{\sigma}(y) \right) \right)$$

$$= 1 + p^{m-1} \left(\sum_{\sigma \in Gal(E/F)} M_{\sigma} \hat{\sigma}(y) \right)$$

et le résultat car $\hat{\sigma}(y) = \sigma(y)$ est dans \mathcal{O}_E .

4c)

On prouve que pour tout $h \in H'$ on a

$$f(h)h(B_m) \equiv B_m \mod p^{m+1}$$
.

Soit $h \in H'$, pour tout $\sigma \in Gal(E/F)$, il existe $\sigma' \in Gal(E/F)$ et $h' \in N$ tel que $h\hat{\sigma} = \hat{\sigma}'h'$. En effet si $\pi \colon H' \to Gal(E/F)$ est la projection canonique alors on pose $\sigma' = \pi(h\hat{\sigma})$ d'où

$$(h\hat{\sigma})^{-1}\hat{\sigma}' = h'^{-1} \in \ker(\pi)$$

par construction puis l'assertion car $\ker(\pi) = N$. Maintenant on calcule

$$f(h)h(B_m) = \frac{1}{p}f(h)h. \sum_{\sigma \in Gal(E/F)} f(\hat{\sigma})\hat{\sigma}(y)$$

$$= \frac{1}{p} \sum_{\sigma \in Gal(E/F)} f(h\hat{\sigma})h\hat{\sigma}(y)$$

$$= \frac{1}{p} \sum_{\sigma \in Gal(E/F)} f(\hat{\sigma}'h')\hat{\sigma}'h'(y)$$

$$= \frac{1}{p} \sum_{\sigma \in Gal(E/F)} f(\hat{\sigma}'h')\hat{\sigma}'(y)$$

puis en notant $f(h') = I_n + p^{m+2}M_{h'}$ on trouve

$$f(h)h(B_m) - B_m = \frac{1}{p} \left(\sum_{\sigma \in Gal(E/F)} (f(\hat{\sigma}')\hat{\sigma}'f(h')).(\hat{\sigma}')(y) - f(\hat{\sigma}').(\hat{\sigma}')(y) \right)$$

$$= \frac{1}{p} \left(\sum_{\sigma \in Gal(E/F)} (f(\hat{\sigma}')(\hat{\sigma}'(y))(\hat{\sigma}'f(h') - I_n)) \right)$$

$$= \left(\sum_{\sigma \in Gal(E/F)} (f(\hat{\sigma}')(\hat{\sigma}'(y))(p^{m+1}\hat{\sigma}'M_{h'})) \right)$$

$$= p^{m+1} \left(\sum_{\sigma \in Gal(E/F)} (f(\hat{\sigma}')(\hat{\sigma}'(y))(\hat{\sigma}'M_{h'})) \right)$$

où la première égalité provient du fait que h' fixe y. Maintenant le terme de droite est dans $M_n(\mathcal{O}_{\mathbb{C}})$ d'où le résultat.

5)

Soit $f: H \to GL_n(\mathbb{C})$ un cocycle. On construit un sous-groupe distingué H' de H, des cocycles $(f_i)_{i\geq 2}$ et des matrices $(B_i)_{i\geq 2}$ tels que pour $2\leq i$ on ait

- $f_i(H') \subset 1 + p^m M_n(\mathcal{O}_C)$,
- $B_i \in 1 + p^{i-1}M_n(\mathcal{O}_C)$,
- Pour tout $h \in H$, $f_{i+1}(h) := B_{i+1}^{-1} f_i(h) h(B_{i+1})^{-1}$.
- Pour tout $h' \in H'$, $f_{i+1}(h') \equiv 1 \mod p^{i+1}$.

Alors la suite $(\prod_{i=2}^m B_i)_{m\geq 2}$ converge dans $1+pM_n(\mathcal{O}_{\mathbb{C}})\subset GL_n(\mathcal{O}_{\mathbb{C}})$ en un B vérifiant pour tout $h\in H'$ l'identité

$$f(h) \equiv Bh(B)^{-1}$$

qui est le résultat voulu.

Preuve de la convergence

Sous les hypothèses précédentes on montre que la suite $(A_m)_{m\geq 2} := (\prod_{i=2}^m B_i)_{m\geq 2}$ converge dans $1 + pM_n(\mathcal{O}_{\mathbb{C}})$ muni de la norme présentée en 3). On remarque d'abord que $1 + pM_n(\mathcal{O}_{\mathbb{C}}) = \overline{B(I_n, 1/p)}$ est fermé dans $M_n(\mathcal{O}_{\mathbb{C}})$ qui est complet pour ||.|| d'où est lui même complet. Enfin par l'annexe 0.1, A_m est dans $1 + pM_n(\mathcal{O}_{\mathbb{C}})$ d'où sa limite, si elle existe, est dans $1 + pM_n(\mathcal{O}_{\mathbb{C}})$. Il

suffit donc de montrer que $(A_m)_m$ est de Cauchy. Soit $\epsilon > 0$ et $m \ge 2$ tel que $(1/p)^m < \epsilon$. Alors si $u \ge v \ge m$ on a

$$||A_u - A_v|| = ||\prod_{i=2}^v B_i (\prod_{k=v+1}^u B_k - 1)||$$

$$\leq ||\prod_{i=2}^v B_i|| \cdot ||\prod_{k=v+1}^u B_k - 1||$$

$$\leq (1/p)^{v+1} \leq (1/p)^m < \epsilon$$

et l'inégalité des normes étant une majoration naive utilisant l'inégalité ultramétrique pour $|.|_{\mathbb{C}}$. D'où $(A_m)_m$ converge en un B et de $B \equiv A_m \mod p^m$ pour tout $h \in H'$ l'identité

$$f_{m+1}(h) \equiv 1 \mod p^{m+1}$$

montre que $f(h) \equiv Bh(B)^{-1} \mod p^m$ pour tout $m \geq 2$ d'où $A_m h(A_m)^{-1}$ converge vers f(h) et le résultat en découle.

Initialisation

On pose $f_1 = f$, par la question 3) il existe H' un sous-groupe distingué de H d'indice fini tel que $f(H') \subset 1 + p^2 M_n(\mathcal{O}_{\mathbb{C}})$ et on peut construire B_2 telle que

$$f(h) \equiv B_2 h(B_2)^{-1} \mod p^3.$$

On pose alors $f_2: h \mapsto B_2^{-1} f_1(h) h(B_2)$. On prouve maintenant que f_2 est un cocycle. Pour tout $h_1, h_2 \in H$ on a

$$f_2(h_1h_2) = B_2^{-1}f(h_1h_2)h_1h_2(B_2)$$

$$= B_2^{-1}f(h_1).h_1f(h_2)(h_1h_2)(B_2)$$

$$= B_2^{-1}f(h_1)h_1(B_2)h_1(B_2)^{-1}h_1f(h_2)(h_1h_2)(B_2)$$

$$= f_2(h_1)h_1(B_2^{-1}f(h_2)h_2(B_2)$$

$$= f_2(h_1)h_1f_2(h_2)$$

où la quatrième égalité est dûe au fait que $h(P^{-1}) = h(P)^{-1}$ pour toute matrice $P \in GL_n(\mathcal{O}_C)$, d'où f_2 vérifie la condition de cocycle. En plus f_2 est continue car $h \mapsto h.B_2$ et $h \mapsto B_2f(h)$ sont continues d'où si on écrit f_2 comme la composée

$$H \to GL_n(\mathcal{O}_C)^2 \to GL_n(\mathcal{O}_C)$$

où la première application est l'application produit et la deuxième la multiplication on obtient sa continuité.

Hérédité

On suppose maintenant $(f_i)_{i=2,...,m}$ et $(B_i)_{i=2,...,m}$ construits pour $m \geq 2$. Par les questions 4a) et 4b) on trouve B_{m+1} vérifiant les hypothèses voulues. On pose ensuite $f_{m+1}: h \mapsto B_{m+1}^{-1}f_m(h)h(B_{m+1})$. Alors par la même preuve que pour l'initialisation f_{m+1} est un cocycle et donc vérifie nos hypothèses ce qui conclut la preuve.

6)

On note $(v_j)_{j=1,\dots,n}$ une base de V quelconque et $f: h \mapsto A(h)$ comme dans la partie I. Alors f vérifie la condition de cocycle par 1). On assume la continuité. Alors f est un cocycle.

Maintenant on applique la partie 2 question 5) pour obtenir H' distingué et d'indice fini dans H et $B \in GL_n(\mathcal{O}_{\mathbb{C}})$ vérifiant pour tout $h \in H'$

$$f(h) = Bh(B)^{-1}.$$

Si l'on pose maintenant $(w_j)_j := (v_j)_j.B$ alors par la question 2), $(w_j)_j$ à ses composantes invariantes par l'action de H'.

7)

Pour chaque $h \in H$, comme F/K est profondément ramifiée par le même argument que dans 4a), par le théorème d'Ax-Sen-Tate il suffit de montrer que les coefficients de C(h) sont invariants par H'. Autrement dit que pour tout $h' \in H'$ on ait h'C(h) = C(h). Soit donc $h \in H$ et $h' \in H'$. Comme H' est distingué dans H, il existe $h'' \in H'$ tel que h'.h = h.h''. Maintenant on remarque que $C(h') = I_n$ d'où C(h'h) = h'C(h). Enfin, C(h'.h) est définie par

$$(h'.hw_j)_j = (w_j)_j C(h'h)$$

et on a

$$(h'.hw_j)_j = (h.h''w_j)_j$$
$$= (hw_j)_j$$
$$= (w_j)_j C(h)$$

d'où par unicité h'C(h) = C(h'h) = C(h) et le résultat.

8)

On considère comme dans 6), $(w_j)_j$ une base H'-invariante de V. Alors par 7) le cocycle

$$C(_{-}): H \to GL_n(\mathbb{C})$$

vérifie $C(H) \subset GL_n(\hat{F})$. On considère maintenant le \hat{F} -espace vectoriel $V' = \bigoplus_{j=1}^n w_j \hat{F}$ et on remarque que comme H' fixe \hat{F} , H' agit trivialement sur V'. En particulier, l'action de H restreinte à V' se factorise en une action de H/H' qui est fini et agit sur \hat{F} via l'action de Gal(F/L) sur $F \otimes_L \hat{L} \simeq \hat{F}$ où la flèche est un isomorphisme car F/L est séparable. En particulier on obtient $H/H' \to Aut(\hat{F})$ une action semi-linéaire, via la semi-linéarité de l'action de H, d'où par Hilbert 90 on obtient une base de V', $(u_j)_j$, qui est H/H'-invariante et donc à fortiori H-invariante. Comme $(w_j)_j$ est dans V', la famille $(u_j)_j$ est une \mathbb{C} -base de V qui est H-invariante ce qui conclut la preuve.

Annexe

0.1 $1 + p^m M_n(\mathcal{O}_{\mathbb{C}})$ est un sous-monoide de $GL_n(\mathcal{O}_{\mathbb{C}})$

On montre d'abord que $1 + p^m M_n(\mathcal{O}_{\mathbb{C}})$ est un sous-ensemble de $GL_n(\mathcal{O}_{\mathbb{C}})$. Soit $A \in 1 + p^m M_n(\mathcal{O}_{\mathbb{C}}) = 1 + M_n(p^m \mathcal{O}_C)$, l'application déterminant est polynomiale en les coefficients d'où $\det(A) \in 1 + p^m \mathcal{O}_{\mathbb{C}} \subset \mathcal{O}_{\mathbb{C}}^{\times}$ et A est inversible dans $GL_n(\mathcal{O}_{\mathbb{C}})$.

Maintenant si $A, B \in 1 + p^m M_n(\mathcal{O}_{\mathbb{C}})$ alors

$$A.B = (1 + p^m A_1)(1 + p^m B_1)$$

= 1 + p^m (A_1 + B_1 + p^m A_1 B_1) \in 1 + p^m M_n(\mathcal{O}_\mathbb{C})

d'où la stabilité par produit. Enfin I_n est clairement dans $1 + p^m M_n(\mathcal{O}_{\mathbb{C}})$.

0.2 Continuité de $h \mapsto A(h)$

On le montre uniquement dans le cas où $A(H) \subset 1 + pM_n(\mathcal{O}_C)$. Pour voir la continuité on prend $h_1, h_2 \in H$ et 1 > r > 0 tel que $A(h_1) \in B(A(h_2), r)$.

Comme la norme est invariante par K-automorphisme on a

$$||A(h_1) - A(h_2)|| = ||h_1^{-1}A(h_2) - h_1^{-1}A(h_1)||$$

$$= ||A(h_1^{-1})^{-1}A(h_1^{-1}h_2) - A(h_1^{-1})^{-1}||$$

$$= ||A(h_1^{-1}h_2) - 1|| < r$$

car $A(h_1^{-1}) \in 1 + pM_n(\mathcal{O}_{\mathbb{C}})$ d'où $||A(h_1^{-1})|| = 1$. Alors $B(I_n, r)$ contient $A(h_1^{-1}h_2)$ puis

 $id, h_1^{-1}h_2 \in f^{-1}(B(I_n, r))$

d'où il existe E/L une extension finie telle que $h_1^{-1}h_2\in Gal(\bar{K},E)$.