1. A ball rolls up, then down an incline. Sketch an acceleration diagram for the entire motion. (An acceleration diagram is similar to a velocity diagram; however, the vectors on an acceleration diagram represent the acceleration rather than the velocity of an object.)

Highest point is same instant on uphill and downhill figures.

Downhill

- 2. Sketch x versus t, v versus t, and a versus t graphs for the entire motion of a ball rolling up and then down an incline.
 - a. Use a coordinate system in which the positive x-direction is down the track.

b. Use a coordinate system in which the positive x-direction is up the track.

c. Can an object have a negative acceleration while speeding up? If so, describe a possible physical situation and a corresponding coordinate system. If not, explain why not.

- 3. Describe the motion of an object:
 - a. for which the direction of the acceleration is the same as the direction of motion of the object.
 - b. for which the direction of the acceleration is opposite to the direction of motion of the object.
 - c. for which the change in velocity is zero.
 - d. for which the initial velocity is zero but the acceleration is not zero.
- 4. Two carts roll toward each other on a level table. The vectors represent the velocities of the carts just before and just after they collide.

- a. Draw and label a vector for each cart to represent the *change in velocity* from before to after the collision. Make the magnitude and direction of your vectors consistent with the vectors drawn above.
- b. How does the direction of the average acceleration of cart A compare to the direction of the average acceleration of cart B over the time interval shown? Explain.
- c. For the time interval shown, is the magnitude of the average acceleration of cart A greater than, less than, or equal to the magnitude of the average acceleration of cart B? Explain.

5. In this problem, a cart moves in various ways on a horizontal track. A coordinate system with the positive x-direction to the right is used to measure each motion. For each motion, one of five different representations is given: a strobe diagram, a velocity versus time graph, a set of instantaneous velocity vectors, a written description, or a pair of arrows representing the directions of the velocity and acceleration.

Name

Give the remaining *four* representations for each motion. The first exercise has been worked as an example.

a. Given: The cart moves in the negative direction with constant speed.						
Velocity vectors \vec{v}_1 \vec{v}_2 \vec{v}_3 \vec{v}_4	Top-view strobe diagram Track	Graph of v vs t	Arrows Direction of \vec{v} : Direction of \vec{a} :			

b. Given: top-view strobe diagram		I		2	3	4	
		Cart 🔤	<u> </u>				
			Tra	ck //			
$ \begin{array}{c} \textit{Velocity vectors} \\ \vec{v}_I \\ \vec{v}_2 \\ \vec{v}_3 \\ \vec{v}_4 \end{array} $	Writte	n description	v	Graj	ph of v vs t	-	Arrows Direction of \vec{v} : Direction of \vec{a} :

c. Given: graph of v vs t						
Velocity vectors \vec{v}_1	Top-view strobe diagram	Written description	Arrows Direction of \vec{v} :			
$egin{array}{c} ec{v}_2 \ ec{v}_3 \ ec{v}_4 \end{array}$	Track		Direction of \vec{a} :			

6. Carts A and B move along a horizontal track. The top-view strobe diagram below shows the locations of the carts at instants 1-5, separated by equal time intervals.

- a. At instant 3:
 - is cart A speeding up, slowing down, or moving with constant speed? Explain.
 - is cart B speeding up, slowing down, or moving with constant speed? Explain.
- b. Is the speed of cart B greater than, less than, or equal to the speed of cart A:
 - at instant 2? Explain.
 - at instant 3? Explain.
- c. During a small time interval from just before instant 2 until just after instant 2, does the distance between cart A and cart B *increase*, decrease, or remain the same? Explain.

Consider the following response to the above question:

"For the small interval containing instant 2, cart B is ahead and speeding up, so the distance between the carts must be increasing."

Do you agree or disagree? Explain.

d. Is there any time interval during which cart A and cart B have the same average velocity? If so, identify the interval(s) and explain. If not, explain why not.

Is there any instant at which cart A and cart B have the same instantaneous velocity? If so, identify the instant(s) (e.g., "at instant 1," or "at an instant between 2 and 3") and explain. If not, explain why not.

Acces	leration	i 111	040	dimo	nedon
Acce	teramon	1n	one	aime	nsion

Name	Mech
	HW-17

7. Two cars, C and D, travel in the same direction on a long, straight section of highway. During a particular time interval Δt_o , car D is ahead of car C and is speeding up while car C is slowing down.

During the interval Δt_o it is observed that car C gains on car D (i.e., the distance between the cars decreases). Explain how this is possible, and give a specific example of such a case.

- 8. Two cars, P and Q, travel in the same direction on a long, straight section of a highway. Car P passes car Q, and is adjacent to car Q at time t_o .
 - a. Suppose that car P and car Q each move with constant speed. At time t_o , is the magnitude of the instantaneous velocity of car P greater than, less than, or equal to the magnitude of the instantaneous velocity of car Q? Explain.
 - b. Suppose instead that car P is moving with constant speed but car Q is speeding up. At time t_o , is the magnitude of the instantaneous velocity of car P greater than, less than, or equal to the magnitude of the instantaneous velocity of car Q? Explain.