21 | 套路篇

如何"快狠準"找到系统記憶體的問題?

如何"快狠準"找到系统記憶體的問題?

純個人感想:

不止系統要熟、工具熟練、反應快....

還要

經驗老到~

大方向

有多少記憶體 使用 swap 嗎 系統的熟悉度

應用層的熟悉度

工具的解讀:使用率

TOP

										0 zombie	
%Cpu(s	s): (0.2 us,	0.3	sy, 0.0	ni, 99	.6 id,	0	. 0 wa,	0.0) hi, 0.0	si, 0.0 st
KiB Me	em :	3624464	tota	l, 1380	192 fre	e, 5 7	776	08 use	d, 1	.666664 buf	f/cache
KiB Sv	vap:	0	tota	l,	0 fre	e,		0 use	d. 2	. 643000 ava	il Mem
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
31440	ts	20	0	743860	82740	12256	S	1.7	2.3	53:58.68	[TS_MAIN]
1800	root	20	0	728464	34732	20668	S	0.7	1.0	16:49.74	docker-containe
23864	root	20	0	40528	3728	3116	R	0.3	0.1	0:00.02	top
31430	ts	20	0	281336	10636	7336	S	0.3	0.3	1:13.26	traffic_manager
1	root	20	0	37816	5864	4036	S	0.0	0.2	0:12.01	systemd

top - 15:02:29 up 6 days, 8:21, 1 user, load average: 0.02, 0.01, 0.00

工具的解讀:應用程序~記憶體使用狀況

pidstat -r

root@afu1	L6-1:	~# pidsta	t -r						
Linux 4.1	L5.0-	1078-gcp	(afu16-	-1)	07/15/20	20	_x86_64_		(4 CPU)
02:57:50	PM	UID	PID	minflt/s	majflt/s	VSZ	RSS	%MEM	Command
02:57:50	PM	0	1	0.13	0.00	37816	5864	0.16	systemd
02:57:50	PM	0	413	0.02	0.00	40976	7308	0.20	systemd-journal
02:57:50	PM	0	452	0.00	0.00	102968	1568	0.04	lvmetad
02:57:50	PM	0	483	0.12	0.00	42608	3956	0.11	systemd-udevd
02:57:50	PM	0	1154	0.00	0.00	16124	2948	0.08	dhclient

工具的解讀:使用率

Free

	total	used	free	shared	buff/cache	available	
Mem:	7624	398	5381	10	1844	6918	
Swap:	O	0	0				

工具的解讀:虛擬記憶體

vmstat

Virtual Meomory Statistics

ubuntu@aws:~\$ vmstat 1														
		memo free												
0 0	0	5504944	166908	1722512	0	0	3	56	35	63	0 0	100	0 0	
0 0	0	5504936	166908	1722548	0	0	0	168	165	300	0 0	100	0 0	
0 0	0	5504936	166908	1722548	0	0	0	200	136	269	0 0	100	0 0	

工具的解讀:記憶體緩存與洩漏

關於記憶體緩存效率 cachestat cachetop

關於記憶體洩漏:

memleak valgrind

14:16:11	Buffers	MB: 233 / Cached	MB: 1150 ,	/ Sort:	HITS / Ord	er: ascendi	ng
PID	UID	CMD	HITS	MISSES	DIRTIES	READ_HIT%	WRITE_HIT%
23015	root	cachetop	4		0 0	100.0%	0.0%
351	root	jbd2/sda1-8	4		0 0	100.0%	0.0%
31433	root	traffic_manager	61	4	10 20	40.6%	19.8%

關於系統記憶體的設定

sysctl:系統基礎設定

swap: swapon -s / free

swapoff -a && swapon -a

etc/fstab / vm.swappiness=0

drop_cache:釋放緩存

sh -c "sync; echo [1|2|3] > /proc/sys/vm/drop_caches"

關於一篇:微調處理能力

應用層的熟悉度

GO 語言: CPU 資源足夠下, 記憶體使用少。

JAVA 語言:記憶體怪獸, 需要熟悉 JVM。

NoSQL層: 很多基於記憶體 IO的應用服務。

DB層: Buffer_pool 觀念不能少。

常見的優化思路

- 1. 最好禁止 Swap。如果必須開啟 Swap,降低 swappiness 的值,減少內存回收時 Swap 的使用傾向。
- 2. 減少內存的動態分配。比如,可以使用內存池、大頁(HugePage)等。
- 3. 盡量使用緩存和緩衝區來訪問數據。比如,可以使用堆heap)棧(stack)明確聲明內存空間,來 存儲需要緩存的數據;或者用Redis 這類的外部緩存組件,優化數據的訪問。
- 4. 使用 cgroups 等方式限制進程的內存使用情況。這樣,可以確保系統內存不會被異常進程 耗盡。
- 5. 通過 /proc/pid/oom_adj,調整核心應用的oom_score。這樣,可以保證即使內存緊張,核心 應用也不會被 OOM 殺死。

總結

多看、多學、多好奇

經驗是累積出來的。