11

②

(9) BUNDESREPUBLIK DEUTSCHLAND

DT 24 29 523 A1

Offenlegungsschrift 24 29 523

Aktenzeichen:

P 24 29 523.6-44

Anmeldetag:

20. 6.74

Offenlegungstag:

16. 1.75

30 Unionspriorität:

Ø Ø Ø

21. 6.73 Großbritannien 29535-73

Bezeichnung: Fungicide Zubereitungen

(Großbritannien) The Boots Co. Ltd., Nottingham (Großbritannien)

Wertreter: Berg, W.J., Dipl.-Chem. Dr.rer. nat.; Stapf, O., Dipl.-Ing.;

Schwabe, H.-G., Dipl.-Ing.; Sandmair, K., Dipl.-Chem. Dr.jur. Dr.rer.nat.;

Pat.-Anwälte, 8000 München

Brookes, Robert Frederick, Tollerton; Godson, David Henry, Chilwell;

Hams, Anthony Frederick, Wollaton; Weighton, David Michael, The Park; Wells, Wilfred Hase, Radcliffe-on-Trent; Nottinghamshire (Großbritannien)

JT 24 29 523 A1

2 O. JUNI 1974

Anwaltsakte 25 126 Be/Sch

THE BOOTS COMPANY LIMITED Nottingham / England

"Fungicide Zubereitungen"

Diese Erfindung betrifft Verbindungen mit fungiciden Eigenschaften und die Verwendung der fungicid wirksamen Verbindungen.

Pflanzenfungi verursachen beträchtliche Schäden bei Nutzpflanzen der Landwirtschaft und des Gartenbaus. Beispiels-

Case 539

-2-

weise befallen Schimmelpilze (Mehltaubrand) viele Pflanzen und sie können zu einem ernsthaften Problem bei Nutzpflanzen wie Getreide, Obst und Gemüse werden, wobei sie große wirtschaftliche Verluste anrichten. Obgleich fungicide Wirkstoffe allgemein verwendet werden, besteht noch immer ein Bedarf an neuen Fungiciden mit besonderer Ausrichtung hinsichtlich besonderer Anwendungsbereiche.

Die Verbindungen der Erfindung haben die allgemeine Formel

worin X ein Sauerstoff- oder Schwefelatom, R¹ ein gegebenenfalls substituierter Alkyl-, Alkenyl-, Alkynyl-, Cyclo-alkyl-, Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxy-alkyl- oder Phenylthioalkylrest und R² ein gegebenenfalls substituierter Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Phenylthioalkylrest ist, mit der Maßgabe daß wenn R¹ ein Methyl- oder Phenylrest ist, R² ein substituierter Phenyl- oder gegebenenfalls substituierter Phenyl-alkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Phenylthioalkyl-rest ist. Es wird bevorzugt, daß X ein Sauerstoffatom ist.

Es wurde nunmehr gefunden, daß die Verbindungen dieser Erfindung fungicide Wirksamkeit aufweisen, besonders gegenüber Mehltau und im besonderen gegenüber Getreidemehltau,
(Erjsiphe graminis), bei Getreidearten wie Weizen, Gerste

und Hafer. Darüberhinaus weisen die Verbindungen dieser Erfindung einen weiteren Bereich von Wirksamkeit gegen Fungi auf. Beispielsweise können sie verwendet werden zur Kontrolle weiterer Pilzerkrankungen von Feldfrüchen wie von Brand (Tilletia caries) bei Weizen, Flugbrand (Ustilago spp.) bei Gerste und Hafer, Brenn- bzw. Braunfleckigkeit (Pyrenophora avenae) bei Hafer und Streifenkrankheit (Pyrenophora graminea) bei Gerste. Eine Kontrolle gegenüber bestimmten Fungi im Gartenbau kann erzielt werden beispielsweise bei Apfelmehltau (Podosphaera leucotricha), Apfelschorf (Venturia inaequalis), Rosenmehltau (Sphaerotheca pannosa) und Schorf oder Mehltau (Sphaerotheca fuliginea) bei Kürbisarten wie beispielsweise Eierkürbis. "Courgettes", Melonen und Gurken. Es ist darauf hinzuweisen, daß nicht jede Verbindung der Erfindung gleich wirksam ist gegen alle angegebenen Fungispezies, sondern daß eine Auswahl hinsichtlich der besonders geeigneten Verbindung für einen besonderen Zweck vorgenommen werden muß.

In der oben angegebenen allgemeinen Formel (I) kann der Rest R¹ eine substituierte oder nicht substituierte Alkylgruppe sein, wobei die Alkylgruppe gerade oder verzweigtkettig sein kann. Vorzugsweise enthält die Alkylgruppe bis zu 10 Kohlenstoffatome und zu typischen Beispielen gehören Methyl-, Äthyl-, Propyl-, Isopropyl-, n-Butyl-, Isobutyl-, sek.-Butyl-, tert-Butyl-, n-Pentyl-, n-Hexyl-, n-Heptyl-, n-Octyl-, n-Nonyl-, n-Decylgruppen. Eine besonders geeignete

Alkylgruppe enthält 1 bis 6 Kohlenstoffatome. Wenn R¹ eine substituierte Alkylgruppe ist, kann die Gruppe beispiels-weise irgendeine der oben angegebenen Alkylgruppen sein, die mit einem oder mehreren Substituenten substituiert ist, die gleich oder verschieden sein können, wie beispielsweise Cyano-, Alkoxy- oder Alkoxycarbonylgruppen. Vorzugsweise weist die Gruppe einen einzigen Substituenten auf, wie eine Cyano-, Äthoxy- oder Äthoxycarbonylgruppe und bevorzugte Gruppen sind Cyanomethyl-, 2-Cyanoäthyl-, 2-Äthoxy-äthyl- und Äthoxycarbonylmethylgruppen.

Wie oben beschrieben kann der Rest R¹ eine Alkenyl- oder substituierte Alkenylgruppe sein und die Alkenylgruppe, die vorzugsweise 3 oder 4 Kohlenstoffatome enthält, kann gerade oder verzweigtkettig sein. Zu Beispielen gehören Allyl-, 2-Methylallyl-, 1-Propenyl-, 3-Butenylgruppen, wobei insbesondere Allyl- und 2-Methylallylgruppen bevorzugt werden. Wenn R¹ eine substituierte Alkenylgruppe ist, kann irgendeine dieser Alkenylgruppen mit einem oder mehreren Substituenten substituiert sein, die gleich oder verschieden sind, wie beispielsweise Halogen- und im besonderen Chloratome. Eine besonders geeignete substituierte Alkenylgruppe ist eine Alkenylgruppe mit 3 oder 4 Kohlenstoffatomen, die mit einem oder zwei Chloratomen substituiert ist, wie beispielsweise eine 2-Chlorallyl- und 2.3-Dichlorallylgruppe.

Die Gruppe R¹ kann ebenso eine Alkynyl- oder substituierte

Alkynylgruppe sein, wobei sie vorzugsweise 3 bis 5 Kohlenstoffatome enthält und zu Beispielen solcher Gruppen gehören Prop-2-ynyl- und 1.1-Dimethylprop-2-ynylgruppen und Gruppen, die mit Halogen, besonders Chlor, substituiert sind, wie beispielsweise 4-Chlorbut-2-ynyl.

Weiterhin kann R¹ eine substituierte oder nicht substituierte Cycloalkylgruppe sein, die vorzugsweise 3 bis 10 Kohlenstoffatome enthält. Eine besonders bevorzugte Cycloalkylgruppe enthält 5 bis 9 Kohlenstoffatome im Ring und ist gegebenenfalls mit einer oder mehreren Niedrigalkyl (besonders Methyl)-gruppen substituiert. Zu Beispielen gehören Cyclopentyl, Cycloheptyl, Cyclooctyl, 1-Methylcyclohexyl, 1.3-Dimethylcyclohexyl und besonders Cyclohexyl gruppen.

Die Gruppe R¹ kann ebenso eine Phenyl-, substiuierte Phenyl-, Phenylalkyl-, substituierte Phenylalkyl-, Phenylalkenyl-, substituierte Phenylalkenyl-, Phenoxyalkyl-, substituierte Phenoxyalkyl-, Phenylthioalkyl- oder substituierte Phenyl-thioalkylgruppe sein und wenn der Rest substituiert ist, kann er einen Phenylkern mit einem oder mehreren Substituenten aufweisen, die ihrerseits gleich oder verschieden sind und die beispielsweise Halogenatome (Fluor, Chlor, Brom und Jod), Alkoxy-, Alkyl-, Trihalogenmethyl-, Cyano-, Alkylthio-, Nitro-, Alkylsulfonyl-, Acetyl-, Acetamido-, Amino- oder Dialkylaminogruppen sein können. Vorzugsweise

liegen 1 bis 3 Substituenten vor, die gleich oder verschieden sind und die Halogenatome, Alkoxy-, Alkyl-, Tri-halogenmethyl-, Cyano-, Alkylthio-, Nitro- oder Alkylsul-fonylgruppen sind. Eine besonders bevorzugte Gruppe ist mit einem oder zwei Substituenten, die gleich oder verschieden sind, substituiert, wobei diese Halogenatome, Alkoxygruppen mit 1 oder 2 Kohlenstoffatomen, Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, Trifluormethyl- oder Cyanogruppen sind. Oftmals nimmt der Substituent oder einer oder mehrere der Substituenten die 2- oder 4-Stellung an dem Phenylkern ein.

Typische Beispiele für den Rest R¹, wenn dieser ein substituierter Phenylrest ist, sind 2-Chlorphenyl-, 2.4-Dichlorphenyl-, 2.5-Dichlorphenyl-, 3.4-Dichlorphenyl-, 2.4-5-Trichlorphenyl-, 3-Chlorphenyl-, 4-Chlorphenyl-, 2-Fluorphenyl-, 3-Fluorphenyl-, 4-Fluorphenyl-, 4-Bromphenyl-, 4-Bromphenyl-, 4-Jodphenyl-, 4-Methoxyphenyl-, 4-Methylthiophenyl-, 4-Äthoxyphenyl-, 2-Methylphenyl-, 4-Methylphenyl-, 2.4-Dimethylphenyl-, 2.5-Dimethylphenyl-, 4-Methylsulfonylphenyl-, 3-Trifluormethylphenyl-, 4-Cyanophenyl-, 2-Methyl-4-chlor-phenyl und 2-Chlor-4-nitrophenylreste.

Wenn R¹ ein Phenylalkyl- oder substituierter Phenylalkylrest ist, kann dieser beispielsweise ein gegebenenfalls
substituierter Benzyl-, «-Methylbenzyl-, Phenethyl- oder
höherer Phenylalkylrest der Formel Ph(CH₂)_n sein, worin n

3 bis 5 ist, wie beispielsweise ein Phenylpropylrest. Vorzugsweise ist R¹ eine gegebenenfalls substituierte Benzyloder Phenethylgruppe und typische Beispiele sind Benzylog-Chlorbenzylog-, 4-Chlorbenzylog-, 2.4-Dichlorbenzylog-, 3.4-Dichlorbenzylog-, 4-Brombenzylog-, 4-Methoxybenzylog-, 4-Methylobenzylog-, 4-Nitrobenzylog-, 4-Cyanobenzylog-, Phenethylog-, 2-Chlorphenethylog-, 4-Chlorphenethylog- und 3-Methoxyphenethylogruppen.

Wenn R¹ ein Phenylalkenyl- oder substituierter Phenylalkenylrest ist, enthält dieser vorzugsweise 9 bis 11 Kohlenstoffatome. Im besonderen ist der Rest ein substituierter oder
unsubstituierter 2-Phenylallyl- oder 3-Phenylallylrest und
zu typischen Beispielen gehören 2-Phenylallyl-, 2-(2-Chlorphenylallyl)-, 2-(4-Chlorphenylallyl)-, 2-(2.4-Dichlorphenylallyl)-, 3-Phenylallyl-, 3-(2-Chlorphenylallyl)-,
3-(4-Chlorphenylallyl)- und 3-(2.4-Dichlorphenylallyl)-reste.

Wenn R¹ ein Phenoxyalkyl- oder substituierter Phenoxyalkylrest ist, kann er beispielsweise ein gegebenenfalls substituierter 2-Phenoxyäthyl- oder höherer Phenoxyalkylrest
der Formel PhO(CH₂)_n sein, worin n = 3 bis 5 ist. Vorzugsweise ist R¹ ein gegebenenfalls substituierter 2-Phenoxyäthyl-Rest und zu typischen Beispielen gehören 2-Phenoxyäthyl-, 2-(2-Chlorphenoxy)-äthyl-, 2-(4-Chlorphenoxy)-äthyl-,
2-(3-Chlorphenoxy)-äthyl-, 2-(2-Methylphenoxy)-äthyl-,
2-(4-Bromphenoxy)-äthyl-, 2-(2-Methylphenoxy)-äthyl-, 2-(2-

Methyl-4-chlorphenoxy)-äthyl- und 2-(4-Methoxyphenoxy)-äthylreste.

R¹ kann ebenso ein Phenylthioalkyl- oder substituierter Phenylthioalkylrest sein, wobei in diesem Falle er beispiels-weise ein gegebenenfalls substituierter höherer Phenylthioalkylrest der Formel PhS(CH₂)_n sein kann, worin n = 3 bis 5 ist, aber vorzugsweise ein gegebenenfalls substituierter 2-Phenylthioäthylrest ist, wobei typische Beispiele 2-Phenylthioäthyl-, 2-(2-Chlorphenylthio)-äthyl-, 2-(4-Chlorphenylthio)-äthyl-, 2-(4-Chlorphenylthio)-äthyl-, 2-(2-4-Chlorphenylthio)-äthyl-, 2-(2-4-Chlorphenylthio)-äthyl-, 2-(2-4-Chlorphenylthio)-äthyl-, 2-(2-Methylphenylthio)-äthyl-, 2-(2-Methylphenylthio)-äthyl-, 2-(2-Methylphenylthio)-äthyl-, 2-(2-Methylphenylthio)-äthyl- und 2-(4-Methoxyphenylthio)-äthylreste sind.

Der Rest R² kann ein Phenyl-, substituierter Phenyl-, Phenylalkyl-, substituierter Phenylalkyl-, Phenylalkenyl-, substituierter Phenylalkenyl-, Phenoxyalkyl-, substituierter
Phenoxyalkyl-, Phenylthioalkyl- oder substituierter Phenylthioalkylrest sein, mit der Maßgabe daß wenn R¹ ein Methyloder Phenylrest ist, R² ein substituierter Phenyl-, Phenylalkyl-, substituierter Phenylalkyl-, Phenylalkenyl-, substituierter Phenylalkenyl-, Phenoxyalkyl-, substituierter
Phenoxyalkyl-, Phenylthioalkyl- oder substituierter Phenylthioalkylrest ist. Der Rest R² kann die Bedeutung von irgendeiner der Gruppen haben, wie sie oben für R¹ definiert wurden, wenn er ein Phenyl-, substituierter Phenyl-, Phenyl-

alkyl-, substituierter Phenylalkyl-, Phenylalkenyl-, substituierter Phenylalkenyl-, Phenoxyalkyl-, substituierter Phenoxyalkyl-, Phenylthioalkyl- oder substituierter Phenylthioalkylrest ist.

Eine bevorzugte Verbindung der Erfindung weist die allgemeine Formel

auf, worin X ein Sauerstoff- oder Schwefelatom, R¹ ein
Alkylrest mit 1 bis 5 Kohlenstoffatomen, Alkenylrest mit
3 oder 4 Kohlenstoffatomen, der gegebenenfalls mit einem
oder zwei Chloratomen substituiert ist, ein Phenylrest, der
gegebenenfalls mit einem oder mehreren Substituenten, nämlich Halogenatomen, Alkoxygruppen mit 1 oder 2 Kohlenstoffatomen, Alkylgruppen mit 1 oder 2 Kohlenstoffatomen und/
oder Trifluormethylgruppen substituiert ist, Benzyl- oder
Cyclohexylrest und R² ein Phenylrest, der gegebenenfalls
mit einem oder mehreren Substituenten, nämlich Halogenatomen, Alkoxygruppen mit 1 oder 2 Kohlenstoffatomen, Alkylgruppen mit 1 oder 2 Kohlenstoffatomen und/oder Trifluormethylgruppen substituiert ist, oder ein Benzylrest, der
mit einem oder mehreren Substituenten substituiert ist, nämlich Halogenatomen, Alkoxygruppen mit 1 oder 2 Kohlenstoff-

atomen, Alkylgruppen mit 1 oder 2 Kohlenstoffatomen oder Trifluormethylgruppen, mit der Maßgabe daß wenn R¹ eine Methyl- oder Phenylgruppe ist, R² eine substituierte Phenyloder gegebenenfalls substituierte Benzylgruppe ist. Eine besonders bevorzugte Verbindung der allgemeinen Formel (II) ist eine solche, worin X ein Sauerstoffatom, R¹ ein Alkylrest mit 1 bis 4 Kohlenstoffatomen und R² ein Phenylrest ist, der mit einem oder zwei Halogenatomen substituiert ist. Eine weitere bevorzugte Verbindung der allgemeinen Formel (II) ist eine solche, worin X ein Sauerstoffatom, R¹ ein Alkylrest mit 1 bis 4 Kohlenstoffatomen und R² ein Benzylrest ist, der mit einem oder zwei Halogenatomen substituiert ist.

Die Erfindung beinhaltet weiterhin eine fungicide Zubereitung, die eine Verbindung der allgemeinen Formel (I) zusammen mit einem Streckmittel bzw. Verdünnungsmittel oder Träger enthält. Es kann natürlich mehr als eine Verbindung der Erfindung in der Zubereitung enthalten sein. Weiterhin kann die Zubereitung einen oder mehrere zusätzliche Wirkstoffe enthalten, wie beispielsweise Verbindungen, von denen bekannt ist, daß sie herbicide, fungicide, insekticide oder acaricide Eigenschaften aufweisen. Weiterhin können Fungicide, die beispielsweise zur Frucht-Pflanzenerhaltung geeignet sind, beispielsweise Dodin, Captan, Dithieanon und Benomyl, zugegeben werden. Es ist mitunter wünschenswert, besonders wenn Früchte oder Gemüsepflanzen besprüht werden

sollen, ein Insekticid oder Acaricid, beispielsweise eine Organochlorverbindung wie beispielsweise DDT, Benzolhexachlorid oder Dicofol, eine Organophosphorverbindung wie beispielsweise Fenitrothion, Azinphos-methyl, Demeton oder Dimethoat, oder ein Carbamat wie beispielsweise Carbaryl, zuzugeben.

Das Streck- bzw. Verdünnungsmittel oder der Träger in der Zubereitung der Erfindung kann ein Feststoff oder eine Flüssigkeit sein, gegebenenfalls in Verbindung mit einem oberflächenaktiven Mittel, beispielsweise einem Dispergiermittel, Emulgiermittel oder Netzmittel. Zu geeigneten oberflächenaktiven Mitteln gehören anionische Verbindungen wie ein Carboxylat, beispielsweise ein Metallcarboxylat einer langkettigen Fettsäure, ein N-Acylsarcosinat, ein Sulfonat wie beispielsweise ein Alkylbenzolsulfonat oder ein Petroleumsulfonat, ein Sulfat wie beispielsweise ein sulfatierter Alkohol, ein sulfatiertes natürliches Fett oder Öl, ein Phosphatester wie beispielsweise ein Alkylorthophosphat oder ein Alkylpolyphosphat. Zu nicht ionischen oberflächenaktiven Mitteln gehören beispielsweiseein äthoxyliertes Alkylphenol wie beispielsweise ein Nonylphenoxypoly-(äthylenoxy)-äthanol, ein äthoxylierter aliphatischer Alkohol wie ein Alkylpoly-(äthylenoxy)-äthanol, ein Carbonsäureester, der mit einem Polyol oder Polyoxyäthylen löslich gemacht ist. Zu Beispielen für kationische oberflächenaktive Mittel gehören beispielsweise aliphatische Mono-, Di- oder

Polyamine, wie ein Acetat, Naphthenat oder Oleat, Sauerstoff-enthaltende Amine wie Aminoxid oder Polyoxyäthylenalkylamin, ein Amid-verbundenes Amin, das durch Kondensation einer Carbonsäure mit einem Di- oder Polyamin hergestellt ist, oder ein quarternäres Ammoniumsalz.

Die Zubereitung der Erfindung kann in irgendeiner dem Fachmann zur Formulierung von fungiciden Verbindungen bekannten Form vorliegen, beispielsweise als Lösung, Dispersion, wäßrige Emulsion, Stäubepulver, Saatbeize, Räuchermittel, Rauch, dispergierbares Pulver, emulgierbares Konzentrat oder Granulate. Darüberhinaus kann die Zubereitung der Erfindung in einer geeigneten Form zur/unmittelbaren Anwendung vorliegen oder als Konzentrat oder primäre Zubereitung, die eine Verdünnung mit einer geeigneten Menge Wasser oder einem anderen Streck- bzw. Verdünnungsmittel vor der Anwendung erforderlich machen.

Als Dispersion enthält die Zubereitung eine Verbindung der Erfindung dispergiert in einem flüssigen Medium, vorzugsweise Wasser. Es ist oftmals zweckmäßig, den Verbraucher mit einer primären Zubereitung zu versorgen, die mit Wasser verdünnt werden kann, um eine Dispersion in der gewünschten Konzentration zu bilden. Die primäre Zubereitung kann in irgendeiner der nachfolgenden Formen vorliegen. Es kann eine dispergierbare Lösung sein, die eine Verbindung der Erfindung gelöst in einem wassermischbaren Lösungsmittel unter

Zugabe eines Dispergiermittels enthält. Es kann aber auch ein dispergierbares Pulver sein, das eine Verbindung der Erfindung und ein Dispergiermittel enthält. Weiterhin kann eine Verbindung der Erfindung in Form eines fein gemahlenen Pulvers zusammen mit einem Dispergiermittel und innig gemischt mit Wasser unter Bildung einer Paste oder Creme, die, wenn gewünscht, zu einer Öl-in-Wasser-Emulsion zugegeben werden kann, um eine Dispersion des Wirkstoffs in einer wäßrigen Ölemulsion zu erhalten.

Eine Emulsion enthält eine Verbindung der Erfindung, gelöst in einem Wasser-nicht-mischbaren Lösungsmittel, das in
eine Emulsion mit Wasser in Gegenwart eines Emulgiermittels
gebracht ist. Eine Emulsion der gewünschten Konzentration
kann aus einer primären Zubereitung der folgenden Arten gebildet werden. Es kann eine konzentrierte Grundemulsion
geliefert werden, die eine Verbindung der Erfindung zusammen mit einem Emulgiermittel, Wasser und einem Wasser-nichtmischbaren Lösungsmittel enthält. Es kann aber auch ein
emulgierbares Konzentrat dem Verwender zur Verfügung gestellt werden, das eine Lösung der Verbindung der Erfindung in einem Wasser-nicht-mischbaren Lösungsmittel mit
Emulgiermittel enthält.

Ein Stäubepulver enthält eine Verbindung der Erfindung, innig gemischt und gemahlen mit einem festen pulverförmigen Streckmittel, wie beispielsweise Kaolin.

7

Ein körniger Feststoff enthält eine Verbindung der Erfindung zusammen mit ähnlichen Streckmitteln, wie sie bei Stäubepulvern Verwendung finden können, wobei jedoch das Gemisch mittels bekannter Verfahren granuliert wird. Wahlweise weist der Feststoff den Wirkstoff absorbiert oder adsorbiert auf einem voraus geformten körnigen Streckmittel, zum Beispiel Fuller's-Erde, Attapulgit oder Kalksteingrit auf.

Die Konzentration des Wirkstoffs in der Zubereitung der vorliegenden Erfindung liegt vorzugsweise im Bereich von 0,001 bis 10 Gew.%, vorzugsweise 0,005 bis 5 Gew.%. In einer primären Zubereitung kann die Wirkstoffmenge weitgehend variieren, sie kann beispielsweise 5 bis 95 Gew.% der Zubereitung betragen.

Weiterhin beinhaltet die Erfindung ein Verfahren zur Kontrolle von phytophathogenen Fungi, wozu man auf Samen, Pflanzen oder ihre Umgebung eine Verbindung der allgemeinen Formel

anwendet, worin X ein Sauerstoff- oder Schwefelatom, R¹ ein gegebenenfalls substituierter Alkyl-, Alkenyl-, Alkynyl-,

-15-

Cycloalkyl-, Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxy-alkyl- oder Phenylthioalkylrest und R² ein gegebenenfalls substituierter Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Phenylthioalkylrest ist. Aus Zweckmäßig-keitsgründen und wegen der Wirksamkeit wird es bevorzugt, den Wirkstoff in Form einer der oben beschriebenen Zubereitungen zu verwenden.

Nach dem Verfahren der Erfindung wird die Verbindung auf Samen, Pflanzen oder ihre Umgebung angewendet. Es kann daher die Verbindung unmittelbar auf dem Boden vor, bei oder nach der Saat aufgebracht werden, sodaß der Wirkstoff durch die Wurzeln der Pflanzen absorbiert werden kann oder daß man durch das Vorliegen des Wirkstoffs in dem Boden den Wuchs der Fungi, die den Samen angreifen, kontrollieren kann. Wenn der Boden unmittelbar mit der Wirkstoffverbindung behandelt wird, kann dies in jeder Weise erfolgen, die es ermöglicht, die Verbindungen innig mit dem Boden zu vermischen, wie beispielsweise durch Besprühen, durch breitwürfiges Aussähen des Feststoffs in Form von Granulaten oder durch Verwendung des Wirkstoffs gleichzeitig mit dem Drillen durch Einbringen desselben in der gleichen Sävorrichtung wie der Samen. Ein geeignetes Anwendungsverhältnis liegt im Bereich von 0,05 bis 22,5 kg/ha, insbesondere von 0,115 bis 11,250 kg/ha.

Es kann auch der Wirkstoff unmittelbar auf der Pflanze,

beispielsweise durch Besprühen oder Bestäuben entweder zum Zeitpunkt des Auftretens des Fungus auf der Pflanze oder vor dem Auftreten des Fungus als Schutzmaßnahme erfolgen. In beiden Fällen wird das Aufbringen mittels Blattbestäubung bzw. Besprühung bevorzugt. Es ist im allgemeinen von Bedeutung, eine gute Kontrolle der Fungi in den frühen Stufen des Pflanzenwuchses zu erzielen, da die Pflanze zu diesem Zeitpunkt am schwersten geschädigt werden kann. Bei Getreidearten wie Weizen, Gerste und Hafer ist es oftmals zweckmäßig, die Pflanze bei oder vor der fünften Wachstumsstufe zu behandeln, obgleich weitere Behandlungen durch Besprühen bzw. Bestäuben, wenn die Pflanze reifer ist, die Widerstandsfähigkeit gegenüber dem Wuchs oder der Ausbreitung der Fungi erhöhen kann. Das Spühmittel oder der Staub können zweckmäßigerweise ein Vor- oder Nach-Auflaufherbicid enthalten, wenn dies als erforderlich angesehen wird. Mitunter ist es wünschenswert, die Wurzeln einer Pflanze vor oder während dem Pflanzen beispielsweise durch Eintauchen der Wurzeln in eine geeignete Flüssigkeit oder durch eine feste Zubereitung zu schützen. Wenn der Wirkstoff unmittelbar auf die Pflanzen angebracht wird, liegt ein geeignetes Anwendungsverhältnis im Bereich von 0,115 bis 11,250 kg/ha, vorzugsweise von 0,05 bis 5,650 kg/ha.

Nach einem weiteren Verfahren der Erfindung kann der Wirkstoff auf dem Samen als Beize oder Schlämme aufgebracht

-17-

werden, um am Samen haftende Erkrankungen zu bekämpfen. Dieses Verfahren ist von besonderer Bedeutung bei der Behandlung von Getreide gegen den Angriff von beispielsweise die Brennflecken-bzw. Braunfleckenschäden bei Hafer, Steifenkrankheit bei Gerste, Flugbrand bei Gerste und Hafer und Brand von Weizen. Wenn Getreidekörner in einem Lagerraum oder Behälter gelagert werden sollen ist es mitunter zweckmäßig, den Lagerraum oder Behälter mit dem Wirkstoff anstelle oder zusätzlich zu der Behandlung der Körner selbst zu behandeln. Ein geeignetes Anwendungsverhältnis als Beizmittel liegt im Bereich von 0,04 bis 3,9, wie beispielsweise von 0,78 bis 1,560 g/l.

Ein bevorzugtes Verfahren der Erfindung zur Kontrolle von Getreidemehltau bei Feldfrüchten, wie beispielsweise Weizen, Gerste, Haferarten oder Reis besteht darin, daß man auf die Pflanze oder den Boden, in dem die Pflanze gesät wird, eine Verbindung der allgemeinen Formel (I) aufbringt. Es ist eine besondere Verbindung notwendig, um das wirksamste Verfahren unter den oben beschriebenen bei einem geeigneten Anwendungsverhältnis zu verwenden, um sicherzustellen, daß eine Kontrolle der Fungi erreicht, aber nachteilige Wirkungen auf die Pflanzen vermieden werden.

Die Verbindungen der Erfindung können mittels einem Verfahren hergestellt werden, das darin besteht, daß man Imidazol mit einem Carbamoylhalogenid oder Thiocarbamoylhalogenid

der allgemeinen Formel Z-CXNR¹R² (IV) umsetzt, wobei in der Formel die Reste R¹, R² und X die oben in der Formel (I) definierten Bedeutungen haben und Z ein Halogenatom, beispielsweise Chlor oder Brom und vorzugsweise Chlor ist. Die Reaktion wird geeigneterweise in Gegenwart einer inerten organischen Flüssigkeit als Reaktionsmedium, das vorzugsweise ein Lösungsmittel für die Reaktionspartner ist, durchgeführt. Vorzugsweise wird die Reaktion in Gegenwart eines geeigneten Säurebindemittels, beispielsweise eines tertiären Amins wie Triäthylamin oder Pyridin oder eines Überschusses des Imidazolreaktionspartners durchgeführt, um den in der Reaktion gebildeten Halogenwasserstoff zu absorbieren. Wahlweise kann die Reaktion jedoch auch in der Weise durchgeführt werden, daß man zuerst ein Alkalimetallderivat des Imidazols, beispielsweise ein N-Natriumderivat bildet und danach dieses mit dem Carbamoyl- oder Thiocarbamoylhalogenid umsetzt. Die Reaktion kann bei einer Temperatur von beispielsweise O bis 200°C, vorzugsweise im Bereich von 50 bis 150°C durchgeführt werden.

Das Carbamoylhalogenid oder Thiocarbamoylhalogenid der allgemeinen Formel (IV) kann in der Weise hergestellt werden,
daß man ein sekundäres Amin der allgemeinen Formel HNR¹R²
mit einem Carbonylhalogenid oder Thiocarbonylhalogenid der
allgemeinen Formel CXZ₂ umsetzt. Das sekundäre Amin HNR¹R²
kann seinerseits mittels dem Fachmann bekannter Verfahren
hergestellt werden. Beispielsweise durch Umsetzen eines

primären Amins der Formel R¹NH₂ oder R²NH₂ mit dem entsprechenden Alkylhalogenid der Formel R²Q oder R¹Q, worin Q ein Halogenatom, vorzugsweise Brom, ist.

Ein weiteres Verfahren zur Herstellung der Verbindungen der Erfindung besteht darin, daß man Carbonylbisimidazol oder Thiocarbonylbisimidazol der allgemeinen Formel

mit einem sekundären Amin der allgemeinen Formel HNR¹R² umsetzt, wobei in den Formeln X, R¹ und R² die in der Formel (I) definierte Bedeutung haben. Die Reaktion wird geeigneterweise in Gegenwart einer inerten organischen Flüssigkeit als Reaktionsmedium, die vorzugsweise ein Lösungsmittel für die Reaktionspartner ist, bei einer Temperatur von beispielsweise O bis 100°C durchgeführt.

Die Verbindung der Formel (V) kann dadurch hergestellt werden, daß man Imidazol mit etwa 0,5 molekularen Anteilen oder weniger eines Carbonylhalogenids oder Thiocarbamoylhalogenids der Formel CXZ2, worin Z ein Halogen-, vorzugsweise Chloratom ist, nach bekannten Verfahren umsetzt. Die Reaktion wird vorzugsweise in Gegenwart eines geeigneten Säurebindemittels, beispielsweise eines tertiären Amins wie

Triäthylamin oder Pyridin oder Imidazol im Überschuß und bei einer Temperatur von beispielsweise -20°C bis 50°C durchgeführt. Nach Bildung des Carbonylbisimidazols oder Thiocarbonylbisimidazols ist es oftmals zweckmäßig, dieses ohne Isolieren mit dem Aminreaktionspartner HNR¹R² umzusetzen.

Die Verbindungen der vorliegenden Erfindung können weiterhin mittels einem Verfahren hergestellt werden, bei dem man ein Carbamoylhalogenid oder Thiocarbamoylhalogenid der allgemeinen Formel

mit einem sekundären Amin der allgemeinen Formel HNR¹R² umsetzt, wobei in der Formel X, R¹ und R² die in der Formel (I) definierte Bedeutung haben und Z ein Halogen, beispiels-weise Chlor oder Brom- und vorzugsweise Chloratom ist. Die Reaktion wird geeigneterweise in Gegenwart einer inerten organischen Flüssigkeit als Reaktionsmedium, die vorzugs-weise ein Lösungsmittel für die Reaktionspartner ist, durchgeführt. Vorzugsweise wird die Reaktion in Gegenwart eines geeigneten Säurebindemittels, beispielsweise eines tertiären Amins wie Triäthylamin oder Pyridin oder in einem Überschuß des Imidazols durchgeführt, um den in der Reaktion gebildeten

Halogenwasserstoff zu absorbieren.

Ein weiteres Verfahren zur Herstellung der Verbindungen der Formel (I), außer solchen, worin beide Reste R¹ und R² gegebenenfalls substituierte Phenylgruppen sind, besteht darin, daß man eine Verbindung der allgemeinen Formel

alkyliert, wobei in der Formel X ein Sauerstoff- oder Schwefelatom und R³ eine gegebenenfalls substituierte Alkyl-, Alkenyl-, Alkynyl-, Cycloalkyl-, Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Phenylthioalkylgruppe ist. Es können alle bekannten Formen von Alkylierungsmitteln verwendet werden, beispielsweise Alkyl-, Alkenyl-, Alkynyl-, Cycloalkyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Phenylthioalkylverbindungen, wie die Halogenide, Sulfate, Benzolsulfonate oder Toluol-p--ulfonate.

Die Verbindung der Formel (VII) kann dadurch hergestellt werden, daß man ein Isocyanat oder Isothiocyanat der all-gemeinen Formel R³NCX, das nach bekannten Verfahren hergestellt werden kann, mit Imidazol umsetzt.

Die Erfindung wird durch die nachfolgenden Beispiele erläutert. In den in der Tabelle angegebenen Verbindungen werden die folgenden Abkürzungen verwendet: Ph = Phenyl, Me = Methyl, Et = Äthyl, Pr = Propyl, Bu = Butyl, i = iso und s = sekundär. Alkylreste ohne die Bezeichnungen i- oder s- bedeuten Normalreste.

Die physikalische Konstante einer festen Verbindung ist deren Schmelzpunkt und einer Flüssigkeit deren Siedepunkt bei dem angegebenen Druck (mm. Hg).

Beispiel 1

Dieses Beispiel erläutert die Herstellung von Verbindungen nach der Erfindung.

44 g N-2-Chlorphenyl-N-propylcarbamoylchlorid, 14 g Imidazol und 30 ml Triäthylamin hält man in 200 ml trockenem

Tetrahydrofuran 5 Stunden am Rückfluß. Das Reaktionsgemisch gießt man in 2 l Wasser und kühlt die Schlämme, wodurch man eine gewisse Abtrennung von der wäßrigen Phase erreicht.

Ein leicht klebriger kristalliner Feststoff wurde gesammelt, mit Wasser gewaschen und unter Vakuum getrocknet. Er wurde aus einem Gemisch von Toluol und Leichtpetroleum (62 bis 68°C Fraktion) unter Kohlenbehandlung umkristallisiert.

Nach Abkühlen wurde ein Öl abgetrennt, das sich bald unter Bildung des Produkts, 1-(N-2-Chlorphenyl-N-propylcarbamoyl)-imidazol, Schmelzpunkt 75,5 - 76,50C, verfestigt.

Das N-2-Chlorphenyl-N-propylcarbamoylchlorid wurde in der folgenden Weise hergestellt.

Eine Lösung von 255 g 2'-Chloracetanilid in 900 ml trockenem Tetrahydrofuran wurde zu einer wassergekühlten Suspension von 75 g Natriumhydrid (50% Gew./Gew.) in dem gleichen Lösungsmittel unter Rühren zugegeben. Nach Beendigung der Wasserstoffbildung wurde das Gemisch 10 Minuten gerührt und 140 ml Propylbromid wurden tropfenweise zugegeben. Das Gemisch wurde 2 Stunden am Rückfluß gehalten, bevor 50 ml Propylbromid zugegeben wurden und das Erhitzen wurde weitere 16 Stunden fortgesetzt: Der Natriumbromidniederschlag wurde gesammelt und mit trockenem Tetrahydrofuran gewaschen. Durch Verdampfen des organischen Filtrats erhielt man ein Öl, das am Rückfluß mit 750 ml konzentrierter Salzsäure und 750 ml vergälltem Alkohol 46 Stunden am Rückfluß gehalten wurde. Es wurden dann weitere Zugaben von 250 ml und 125 ml von konzentrierter Salzesäure nach 19 bzw. 27 Stunden Erhitzen vorgenommen. Die organischen Lösungsmittel wurden unter reduziertem Druck entfernt und die gekühlte saure Lösung mit konzentrierter Natriumhydroxidlösung basisch gemacht. Die organische Schicht wurde mittels Ätherextraktion isoliert und die getrocknete Ätherlösung unter Bildung eines Öls verdampft. Durch Destillation erhielt man 2-Chlor-N-propylanilin als öliges Produkt mit einem Siedepunkt von 89 - 92°C/3,0 Torr.

22 g dieses Produkts wurden in 100 ml Äthylacetat gelöst und zu einer Menge von 150 ml Äthylacetat zugegeben, durch die ein Phosgenstrom bei Rückflußtemperatur geleitet wurde. Das Durchleiten des Phosgens wurde 1 1/2 Stunden nach beendeter Zugabe fortgesetzt. Durch Verdampfen des Äthylacetats erhielt man ein Öl, das destilliert wurde und N-2-Chlorphenyl-N-propylcarbamoylchlorid, Siedepunkt 132 - 133°C/3,0 Torr, war.

Die folgenden Carbamoylimidazolverbindungen der allgemeinen Formel (I) (X = Sauerstoff) wurden in ähnlicher Weise hergestellt. Die rohen Flüssigkeiten wurden unter Vakuum zur Bildung des reinen Produkts destilliert.

R ¹	_R 2	Physikali- scher Zu- stand	Konstante
Et '	2C1-Ph	flüssig	148-149°C./0.5 mm.
. Et	4Cl-Ph	fest	44-47°C.
Me .	3C1-Ph	fest	80-82°C
Pr.	4C1-Ph	flüssig	152-154°C./0.25 mm
Et.	301-Ph	fest	67-69°C
Pr .	4Br-Ph	fest	57-59°C.
. Me	3,4diCl-Ph	fest	87–89°C
Pr	301-Ph	fest	64–66°C.
Pr	3,4diCl-Ph	fest	70-71°C.
Et	3,4diCl-Ph	fest	82-83 ⁰ C
Et	4F-Ph	fest	52.5-53.5°C.
Me	2F-Ph	fest	66.5-68.5°C
Me	3F-Ph	fest	65.5-67.5°C.
Et	2F-Ph	fest	53.5-55°C.

	•		
<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Pr	2F-Ph	fest	67-68.5 ^σ C.
Pr .	3F-Ph	fest	36-38°C.
Pr	4F-Ph	flüssig	134°C./O.1 mm.
Me	2,5diCl-Ph	fest	102-104.5°C.
Et	2,5diCl-Ph	fest	108-110 ⁰ C.
Bu	4Cl-Ph	flüssig	154-156°C./0.15 mm.
Me	4I-Ph	fest	177.5-179°C.
Me ·	4F-Ph	fest	73-74°C.
Pen tyl	4C1-Ph	fest	49-50°C.
Et	3F-Ph	fest	72-74°C.
Pr	2,5diCl-Ph	fest	106–108 ^o C
Bu	4F-Ph	fest	59-61 ⁰ C.
Hexyl	4C1-Ph	flüssig	170-171°C./0.2 mm.
i-Bu	4Cl-Ph	fest	76.5-78.5°C.
Bu	2C1-Ph .	fest	89.5-91 ⁰ C.
Et :	2,4diCl-Ph	fest	70.5-72°C.
Me	2,4diCl-Ph	fest	87.5-89.5°C.
i-Pr	4C1-Ph	fest	78-79°C.
Pr	2,4diCl-Ph	fest	82-83°C.
s-Bu	4Cl-Ph	flüssig	147-149°C./0.08 mm.
i-Pr	2C1-Ph	fest	78-79.5°C.
s-Bu	2C1-Ph	fest	70.5-72°C.
i-Bu	2C1-Ph	fest	70.5-72°C.
Bu	301-Ph	flüssig	149-150°C./0.05 mm.
Allyl	4Cl-Ph	fest	55-56.5°C.
Pentyl	2C1-Ph	flüssig	174-175°C./0.4 mm.
Hexyl	2C1-Ph	flüssig	185°C./0.6 mm.
Pentyl	2,4diCl-Ph	flüssig	176-178°C./0.4 mm.
Bu	2,4diCl-Ph	flüssig	165-166°C./0.15 mm.
Bu	2F-Ph	flüssig	140-141°C./0.2 mm.
Pentyl	2F-Ph	flüssig	153°C./0.3 mm.
Hexyl	2F-Ph	flüssig	.156-157°C./0.15 mm.
Me	4Cl-Ph	fest	110-112 ⁰ C.

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Me	4F-Ph	fest	53-55°c.
Me	2C1-Ph	flüssig	140-142°C./0.4 mm.
Et	4Br-Ph	fest	58-60°C.
${\tt Pr}$	2Br-Ph	fest	93-95°C.
Me	2,4,5triCl	fest	144-5-146°C.
CNCH2CH2	-Ph Ph	fest	90-91 ^o c.
i-Pr	Ph	fest	47-49°C.
Pentyl	Ph	flüssig	139-140°C./0.15 mm.
Pr	4Me-Ph	flüssig	142-144°C./0.25 mm
Hexyl	Ph	flüssig	153-157°C./0.3 mm.
Octyl	Ph	flüssig	165-168°C./0.2 mm.
Et	4MeO-Ph	fest	103,5-104.5°C.
Hexadecy1	Ph .	fest	58-60°C.
Et	CF ₃ -Ph	fest ·	79.5-80.5°c.
Et ·	2Me-Ph	fest	66-68 ⁰ C.
Octadecyl	Ph	fest	66-67°C.
s-Bu	Ph	fest ·	53-55°C.
i-Bu	Ph	fest	87-89°C.
Me	4Bu-Ph	flüssig	154-156°C./0.2 mm.
Decyl	Ph	flüssig	182°C./0.15 mm.
Me ·	4EtO-Ph	flüssig	150-152°C./0.1 mm.
Allyl	2Me-Ph	flüssig	138-139°C./0.2 mm.
Nonyl	Ph	flüssig	176-177°C./0.1 mm.
Undecyl	Ph	flüssig	192-194°C./0:2 mm.
Pr ··	4E tO-Ph	flüssig	160°C./0.15 mm.
Me	2Me-4Cl-Ph	fest	122-124°C.
Me ·	2,4diMe-Ph	fest	81-82.5°C.
Et	2Me-4Cl-Ph	fest	61-63 ⁰ C.
Et .	2,4,5triCl-Ph	fest	111-113 ⁰ C.
Bu	4Fe-Ph	flüssig	143-144°C./0.1 mm.
Me	2,5diMe-Ph	fest	70.5-72°C.
Me	2MeO-Ph	fest	85-86.5°C.
-		•	

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
D.	0.5344	• •	0
Et	2,5diMe-Ph	fest	75-77°C.
tert.Bu	Ph	fest	68-70°C.
Me	2,5dille-Ph	fest	70.5-72°C.
EtCO2CH2	4Cl-Ph	fest	129.5-131 ⁰ C.
Et	2,5diMe-Ph	fest	75-77°C
Me	3,4diMe-Ph	fest	99-101°C.
Me · ·	3MeO-Ph	fest	89-90.5°C.
Me	3,5diMe-Ph	fest	127-128.5°c.
\mathbf{Pr}	2,5diMe-Ph	fest	57-59°c.
Et	3Cl-4Ke-Ph	fest	87-89°c.
Pr	3C1-4Me-Ph	flüssig	180°C./1 mm.
Bu.	3C1-4Me-Ph	flüssig	184-186°C./1 mm.
Me	4i-Pr-Ph	fļüssig.	160-161°C./0.5 mm.
Et	4i-Pr-Ph	flüssig	155°C./0.5 mm.
Bu	41-Pr-Ph	flüssig	166°C./0.4 mm.
Pr	4i-Pr-Ph	flüssig	161-162°C./0.5 mm.
CNCH ₂	3,4diCl-Ph	fest	152-154°C.
CNCH	2Me-4C1-Ph	fest	132-134°C.
Bu	2Me-4Cl-Ph	fest	41-43°C.
Bu	2Me-Ph	flüssig	149-151°C./0.3 mm.
Bu	3Me-Ph	flüssig	153-154°C./0.3 mm.
CHCH2CH2	4Cl-Ph	fest	108–110°C.
Pr	2Me-Ph	flüssig	139-141°C./0.2 mm.
CMCH2CH2	2C1-Ph	flüssig	200-202°C./0.25 mm.
Bu	3,4,5triCl -Ph	flüssig	190-192°C./0.2 mm.
Pr	3,4,5triCl -Ph	fest	143-145°C.
Pr ·	4tert.Bu-Ph	flüssig	159-160°C./0.3 mm.
Et	2Br-4Me-Ph	flüssig	163-166°C./0.25 mm.

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Ne	4CN-Ph	fest	145-147°C.
Me	4MeSO ₂ -Ph	fest	138-140°C.
Et	Ph	fest	
Bu	Ph	fest	44-46°C. 25°C.
Me	4Me-Ph	fest	
Me	3CF ₃ -Ph	fest	118-120°C.
Pr	Ph	fest	72-73°C.
Pr	3CF ₃ -Ph	flüssig	44-46°C.
Et	2,4diMe-Ph	flüssig	128-129°C./0.2 mm.
Et	4CN-Ph	fest	132-134°C./0.2 mm.
Cyclohexyl	Ph	fest	124°C.
Ph	4F-Ph		77-79°c.
Ph	4Me-Ph	fest	104-106°C.
Ph		fest	110-112°C.
Ph	3C1-Ph	fest	138-140°C.
•	4l/ieO_Ph	fest	95-97°C.
Ph	4MeS-Ph	fest	82-84°C
Ph :	3CF ₃ -Ph	fest	115-117°C.

Zwischenprodukte

Die folgenden Carbamoylchlorid-Zwischenprodukte der allgemeinen Formel R¹R²NCOCl wurden in ähnlicher Weise nach dem oben beschriebenen Verfahren zur Herstellung von N-2-Chlorphenyl-N-propylcarbamoylchlorid hergestellt.

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Et	2C1-Ph	flüssig	122-123°C./3.0 mm.
Et	4C1-Ph	flüssig	134-135°C./2.3 mm,
Me	3C1-Ph	fest	84-87°C.
Pr	4C1-Ph	flüssig	147-148°C./5.0 mm.
Et	301-Ph	fest	63-64°C.
Pr	4Br-Fh	flüssig	108-110°C./2.5 mm.
Me	3,4diCl-Ph	fest	43.5-45.5°C.
Pr	3C1-Ph	flüssig	132-133°C./3.0 mm.
${\tt Pr}$	3,4diCl-Ph	fest	40-42°C.
Et.	3,4diCl-Ph	fest	60-61.5°C.
Et	4F-Ph	flüssig	112-114°C./4.5 mm.
Me	2F-Ph	flüssig	101-102°C./4.0 mm.
Me	3F-Ph	fest	73.5-74.5°C.
Et	2F-Ph	flüssig	98-100°C./4.5 mm.
${\tt Pr}$	2F-Ph	flüssig	120°C./4.5 mm.
Pr .	3F-Ph	flüssig	114-116°C./3.5 mm.
Pr	4F-Ph	fest	41-42.5°C.
Me	2,5diCl-Ph	fest	71-73°C.
Et	2,5diCl-Ph	flüssig	145-147°C./4.0 mm.
Bu	4Cl-Ph	flüssig	150°C./2.25 mm.
Me	4I-Ph	fest	122-123.5°C.
Me _	4F-Ph	fest	55-57°C.
Pentyl	4C1-Ph	flüssig	121°C./0.3 mm.
Et .	31-Ph	fest	38-39°C.
Pr	2,5diCl-Ph	fest	55.5-57°C.
Bu .	4F-Ph	flüssig	110°C./1.5 mm.
Hexyl	4C1-Ph	flüssig	127°C./0.3 mm.
i-Bu	4C1-Ph	flüssig	148°C./5.0 nm.
Bu	2C1-Ph	flüssig	127°C./1.8 mm.
Et	2,4diCl-Ph	flüssig	129-132°C./2.5 mm.
Me	2,4diC1-Ph	fest	49.5-51.5°C.
i-Pr	4C1-Ph	fest	83-84°C.

4	•		•
<u>R</u> 1	<u>R²</u>	Physikali scher Zus	
Pr	2,4diCl-Ph	flüssig	157-159°C./5.8 mm.
s-Bu .	4C1-Ph	flüssig	149°C./4.5 mm. •
i-Pr	201-Ph	fest	60-61.5°C.
s-Bu	2C1-Ph	flüssig	128-129°C./2.0 mm.
i-Bu	2Cl-Ph	flüssig	129-130°C./2,5 mm.
Bu	301-Ph	flüssig	135°C./2.0 mm.
Allyl	401-Ph	flüssig	101°C./0.1 mm.
Pentyl	201-Ph	flüssig	118-120°C./0.05 mm.
Hexyl	201-Ph	flüssig	133-134°C./0.35 mm.
Pentyl	2,4diCl-Ph	flüssig	131-133°C./0.25 mm.
Bu	2,4diCl-Ph	flüssig	130-133°C./0.1 mm.
Bu	2F-Ph	flüssig	105-106°C./0.15 mm.
Pentyl	2F-Ph	flüssig	116-117°C./0.2-0.25 mm.
Hexyl	2F-Ph	flüssig	114-115°C./O.1 mm.
Me	4C1-Ph	fest	64-67°C.
Me	4F-Ph	fest	55-57°C.
Me .	201-Ph	fest	47-50°C.
Et	4Br-Ph	fest	43.5-45°C.
Pr	2Br-Ph	flüssig	124-126°C./0.1 mm.
Me.	2,4,5triCl -Ph	fest	48-49 ⁰ C
CNCH ₂ CH ₂	Ph	flüssig	130-132°C./0.15 mm.
i-Pr	Ph	fest	89-91°C.
Pentyl	Ph	flüssig	144-146°C./5.5 mm.
Pr	4Me-Ph	flüssig	84-86°C./0.15 mm.
Hexyl	Ph	flüssig	106°C./0.3 mm.
0ctyl	Ph	flüssig	124-126°C./0.2 mm.
Et	4MeO-Ph	fest	65-66.5°C.
Hexadecyl	.Ph	flüssig	198-200°C./0.15 mm.
Et	dF3 -Ph	flüssig	108-110°C./2.5 mm.
Et	2Me-Ph	flüssig	114-115°C./4.0 mm.
Octadecyl	Ph	fest	42.5-43.5°C.
s-Bu-	Ph	flüssig	120-122°C./3.0 mm.
	-		

$\frac{\mathbb{R}^1}{2}$ $\frac{\mathbb{R}^2}{2}$	Physikali- scher Zustand	Konstante
19. 28 125.45		
i-Bu Ph	1	115-116°C./2.5 mm.
Ke 4Bu-Ph	flüssig	157-158°C./5.0 mm.
Decyl Ph	flüssig	132-134°C./0.1 mm.
Me 4EtO-Ph	fest	66-68 ⁰ C.
Allyl 2Me-Ph	flüssig	115-116°C./1.5 mm.
Nonyl Ph	flüssig	132-133°C./0.15 mm.
Undecyl Ph	flüssig	150-151°C./0.2 mm.
Pr 4Et0-Ph	flüssig	165°C./3.5 mm.
Me 2Me-4C1-Ph	fest	44-45.5°C.
Me 2,4diMe-Ph:	flüssig	108 ⁰ C./2.5 mm.
Et 2Me-4C1-Ph	flüssig	128-129°C./2.5 mm.
Et 2,4,5triCl+	flüssig	120-121°C./0.3 mm.
Bu 4Me-Ph	flüssig	130-131°C./2.0 mm.
Me 2,5diMe-Ph	flüssig	108°C./2.5 mm.
Me 2MeO-Ph	flüssig	133°C./4.0 mm.
tert.Bu Ph	fest	85-86°C.
Me 2,5diMe-Ph	fest	44.5-46.5°C.
EtCO ₂ CH ₂ 4C1-Ph	fest	48.5-50°C.
Et 2,5diMe-Ph	flüssig	83°C./0.1 mm.
Me 3,4diMe-Ph	fest	62-63.5°C.
Me 3MeO-Ph	fest	89-90.5°c.
Me 3,5diMe-Ph	fest	64-66°C.
Pr 2,5diMe-Ph	flüssig	129°C./3.0 mm.
Et 3C1-4Me-Ph	fest	55-57°C.
Pr 3C1-4Me-Ph	flüssig	132-134°C./1.3 mm.
Bu 3C1-4Me-Ph	flüssig	184-186°C./1.0 mm.
Ne 4i-Pr-Ph	flüssig	114-116°C./0.6 mm.
Et 4i-Pr-Ph	flüssig	109-111°C:/0.3 mm.
Bu 4i-Pr-Ph	flüssig	124-126°C./0.4 mm.
Pr 4i-Pr-Ph	flüssig	120°C./0.5 mm.
CNCH ₂ 3,4diCl-Ph	flüssig	158°C./0.1 mm.
	•	

<u>R</u> 1	<u>R</u> ²	Physikali- scher Zustand	Konstante
cnch ₂	2Me-4Cl-Ph	flüssig	148-150°C./0.4 mm.
Bu	2Me-4Cl-Ph	flüssig	134-136°C./0.9-1.0 mm.
Bu .	2Me-Ph	flüssig	104-107°C./0.2 mm.
Bu	3Me-Ph	flüssig	97-99°C./0.15 mm.
CHCH2CH2.	4Cl-Ph	fest	118.5–120 ⁰ C.
Pr · ·	2Me-Ph	flüssig	104-108°C./0.4 mm.
CNCH2CH2	2C1-Ph	flüssig	144-145°C./0.2 mm.
Bu ·	3,4,5triCl -Ph	flüssig	134-136 ⁰ C./O.05 mm.
Pr	3,4,5triCl -Ph	fest	71-73°C.
Pr	4tert.Bu-Ph	flüssig	122°C./0.1 mm.
Et	2Br-4Me-Ph	flüssig	120-122°C./0.2 mm.
Me .	4CN-Ph	fest	108-110°C.
Me	4MeSO ₂ -Ph	fest	119-121 ⁰ C.
Et	Ph	fest	46-48°C.
Bu	Ph	flüssig	165-168°C./20 mm.
Me	4Me-Ph	fest	68-70°c.
Me	3CF ₃ -Ph	flüssig	82-84°C./0.3 mm.
·Pr	Ph	fest	45-46°C.
Pr	3CF ₃ -Ph	flüssig	121-123°C./5.5 mm.
Et	2,4diMe-Ph	flüssig	83°C./0.1 mm.
Et	4CN-Ph	fest	98-100°C.
Cyclohexyl	Ph	fest	72-74°C.
Ph	4F-Ph	fest	82-84°C.
Ph	4Me-Ph	fest	95-96°c.
Ph .	301-Yh	flüssig	130°C./0.2 mm.
Ph	4MeO-Ph	fest	56-58°C.
Ph	4MeS-Ph	fest	95-97°C.
Ph	3CF ₃ -Ph	fest	53-54°C.

Beispiel 2

Verbindungen der Erfindung

In ähnlicher Weise, wie im Beispiel 1 beschrieben, wurden die folgenden Carbamoylimidazolverbindungen der allgemeinen Formel (I) (X = Sauerstoff) hergestellt.

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Me	4MeO-Ph	fest	49-51°C.
Heptyl	301-4Me-Ph	flüssig	198-200°C./0.4 mm.
Decyl	201-Ph	flüssig	227-230°C./0.3 mm.
Pr	2NO ₂ -4C1-Ph	fest	116-118 ^o C.
Allyl	2C1-Ph .	feșt	70.5-72°c.
Pr .	2C1-4NO ₂ -Ph	fest	91-93°C.
Pr	4MeO-Ph	flüssig	170-172 C:/O.5 mm.
2-Methyl- allyl	4Cl-Ph	flüssig	144-146°C./0.05 mm.
2,3di- chloroallyl	4C1-Ph	flüssig	180-182°C./0.1 mm.
Bu	4Bu-Ph	flüssig	175-177°C./0.5 mm.
Pr	4Bu-Ph	-	162-164°C./O.2 mm.
Pr		flüssig	105-107°C.
Bu	201-50F ₃ -Ph	fest	
	2C1-5CF ₃ -Ph	flüssig fest	156°C./O.6 mm.
Me	2NO ₂ -4MeO-Ph		86-88°C.
EtOCH ₂ CH ₂	4C1-Ph	flüssig	151-153°C./0.05 mm.
4C1-PhCH ₂	2,4diCl-Ph	fest	90-92°C.
2,4diCl- PhCH ₂	Ph	fest	72-74°C.
PhCH	2,4diCl-Ph	flüssig	210-213°C./0.5 mm.
4Br-Ph	4Br-Ph	fest	149-150°C.
4C1-PhCH ₂	4C1-Ph	fest	134.5-135.5°C.
PhCH ₂	4C1-Ph .	fest	59.5-61°C.
4Me-PhCH ₂	4Me-Ph	fest	107-109°C.

<u>R</u> 1	<u>R</u> 2 ·	Physikali- scher Zustand	Konstante
2,4diCl- PhCH ₂	4Cl-Ph	fest	144-146°C.
4Me-Ph PhCH ₂ 4Me-PhCII ₂	4Me-Ph 4MeO-Ph 2,4diCl-Ph	fest fest fest	137-138.5°c. 90-92°c. 78-81°c.
Ph 4C1-Ph	PhCH ₂ CH ₂	fest	97-99°c. 84-85°c.

Zwischenprodukte

In ähnlicher Weise, wie im Beispiel 1 beschrieben, wurden die folgenden Carbamoylchlorid-Zwischenprodukte der allgemeinen Formel $\mathbb{R}^1\mathbb{R}^2$ NCOC1 hergestellt.

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Me	4MeO-Ph	fest	43-45 ⁰ C.
Heptyl	3Cl-4Me-Ph	flüssig .	150-153 ⁰ C./0.3 mm.
Decyl	2C1-Ph	flüssig	154-156°C./O.1 mm.
Pr	2NO ₂ -4C1-Ph	nicht isolier	t
Allyl	201-Ph	flüssig	121-122°C./2.0 mm.
Pr	2C1-4NO ₂ -Ph	nicht isolier	ប់
Pr	4MeO-Ph	flüssig	152-154°C./2.5 mm.
2-Methyl- allyl	4C1-Ph	flüssig	95-96°C./0.05 mm.
2,3di - chloroallyl	4C1-Ph	fest	42-44.5°C.
Bu	4Bu-Ph	flüssig	123-124°C./0.05-0.1 mm
Pr	4Bu-Ph	flüssig	124-126°C./0.05 mm.
Pr .	2C1-5CF ₃ -Ph	flüssig	96-98°C./0.1 mm.
Bu	201-50F ₃ -Ph	flüssig	105-106°C./0.05 mm.
Me	2NO ₂ -4MeO-Ph	nicht isolier	t
EtocH2CH2	4C1-Ph	nicht isolier	t

<u>R</u> 1	<u>R</u> ²	Physikali- scher Zustand	Konstante
4Cl-PhCH2	2,4diCl-Ph	flüssig	172-176°C./0.2-0.3 mm.
2,4diCl- PhCH ₂	Ph	fest	78-80°c.
PhCH ₂	2,4diCl-Ph	flüssig	186°C/0.8 mm.
4Br-Ph	4Br-Ph	fest	127-128.5°C.
4C1-PhCH ₂	4C1-Ph	fest	68.5-69.5°C.
PhCH	401-Ph	fest	69-70°C.
4Me-PhCH2	4Me-Ph	flüssig	150-152°C./0.1 mm.
2,4diCl- PhCH ₂	4C1-Ph	fest	81-83°C.
4Me-Ph	4Me-Ph	fest	98.5-100.5°C.
PhCH ₂	4MeO-Ph	flüssig	162-165°C./0.1 mm.
4Me-PhCH	2,4diCl-Ph	flüssig	146-148°C./O.1 mm.
Ph ·	PhCH2CH2	fest	68-70°C.
4Cl-Ph	PhCH2CH2	fest	83-85°C.

Beispiel 3

Dieses Beispiel erläutert die Herstellung von Verbindungen der Erfindung.

Ein Gemisch von 12,3 g N-4-Chlorbenzyl-N-propylcarbamoylchlorid und 6,8 g Imidazol wurde in 75 ml trockenem Tetrahydrofuran 5 Stunden am Rückfluß gehalten. Das filtrierte
Reaktionsgemisch wurde verdampft und das Produkt in Äther
gelöst. Nach Waschen mit Wasser wurde die ätherische Lösung getrocknet und verdampft. Durch Zugabe von Leichtpetroleum und Kühlen erhielt man einen Feststoff, der abgetrennt und aus einem Gemisch von Toluol und Leichtpetroleum

umkristallisiert wurde. Das Produkt, 1-(N-4-Chlorbenzyl-N-propylcarbamoyl)-imidazol, hatte einen Schmelzpunkt von 89 - 91°C.

Das N-4-Chlorbenzyl-N-propylcarbamoylchlorid wurde in der folgenden Weise hergestellt.

Eine Lösung von 48,3 g 4-Chlorbenzylchlorid in 40 ml Acetonitril gab man zu einem Gemisch von 18 g Propylamin, 12,6 g Natriumhydroxid, 50 ml Acetonitril und 30 ml Wasser. Das Gemisch wurde periodisch 45 Minuten geschüttelt. Es fand eine exotherme Reaktion statt und es wurde ein weißer Feststoff in der unteren Phase abgetrennt. Nach 4 Tagen wurde das Reaktionsgemisch in 1 l Wasser gegossen und die organische Phase mit Äther isoliert. Durch Destillation des Ätherextrakts erhielt man ein öliges Produkt, N-4-Chlorbenzyl-N-propylamin, Siedepunkt 101 - 106°C/1,7-2,5 Torr.

Eine Lösung von 25,2 g N-4-Chlorbenzyl-N-propylamin in 150 ml Äthylacetat wurde zu 150 ml Äthylacetat am Rückfluß zugegeben, während Phosgen durchgeleitet wurde. Das Durchleiten des Phosgens wurde 2 1/2 Stunden fortgesetzt, wonach das Äthylacetat verdampft wurde und man ein öliges Produkt erhielt. Durch Destillation erhielt man N-4-Chlorbenzyl-N-propylcarbamoylchlorid, als Öl, Siedepunkt 162 - 164°C/4,0 Torr.

Die nachfolgenden Carbamoylimidazolverbindungen der allge-

meinen Formel (I) (X = Sauerstoff) wurden in ähnlicher Weise hergestellt. Die rohen Flüssigkeiten wurden unter Vakuum zur Herstellung des reinen Produkts destilliert.

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Ме	3,4diCl-PhCH ₂	fest	68-69 ⁰ C.
Me Me	2,4diCl-PhCH ₂	fest fest	105-107 ⁰ C. 60-62 ⁰ C.
Me ·	2MeO-PhCII ₂	fest	111-112.5°C.
Et .	4C1-PhCH2	fest	57-59°C.
i-Pr	PhCH ₂	fest	48-50°C.
Bu	4C1-PhCH ₂	fest	58-60°C.
Pr	4C1-PhCH ₂	fest	89-91°C.
Et .	4NO2-PhCH2	fest	107-109 ⁰ C.
\mathbf{Pr}	4NO ₂ -PhCH ₂	fest	83.5-85°c.
i-Pr	4C1-PhCH2	fest	120-121.5°C.
i-Pr	4-110 ₂ -PhCH ₂	fest	189.5-191 ⁰ C.
Pr	. 2,4diCl-PhCH	fest	119-121 ⁰ C.
Allyl	2,4diCl-PhCH2	fest	123-125°C.
Bu	2,4diCl-PhCH2	fest	80-82°C.
i-Pr	2,4diCl-PhCH2	fest	102-104°C.
Et	2,4diCl-PhCH2	fest	119-121°C.
i-Bu	2,4diCl-PhCH ₂	flüssig	194°C./0.5 mm.
Et	2C1-PhCH2	fest	81-83°C.
Allyl	2C1-PhCH ₂	fest	73-75°C.
Allyl	4C1-PhCH2	flüssig	180-181°C./0.35 mm.
Me	4MeO-PhCH ₂	fest	66-68 ⁰ C.
Me	2C1-PhCH ₂	fest	79-80°c.
i-Pr	2C1-PhCH2	flüssig	170-172°C./0.25 mm.
Pr	3,4diCl-PhCH2	fest	106–108 ⁰ C.
Allyl	3,4diCl-PhCH2	fest	97-99°C.
Pr	· 2C1-PhCH ₂ · .	flüssig.	163-165°C√0.1 mm.
PhCH ₂	PhCH ₂	fest	62-63.5°C.

Zwischenprodukte

Die folgenden Carbamoylchlorid-Zwischenprodukte der allgemeinen Formel R¹R²NCOCl wurden in ähnlicher Weise wie in dem oben beschriebenen Verfahren zur Herstellung von N-4-Chlorbenzyl-N-propylcarbamoylchlorid hergestellt.

<u>R</u> 1	<u>R</u> ²	Physikali- scher Zustand	Konstante
Me -	3,4diCl-PhCH2	fest	49-50°C.
Ме	2,4diCl-PhCH2	flüssig	118°C./0.2 mm.
Me	4Cl-PhCH ₂	fest	46-48°C.
Et .	4C1-PhCH2	flüssig	152-153°C./3.5 mm.
·i-Pr	PhCH	flüssig	146-147°C./6.5 mm.
Bu ·	4C1-PhCH2	flüssig	173-174°C./3.5 mm.
\mathtt{Pr}	4C1-PhCH2	flüssig	162-164°C./4.0 mm.
Et	4NO ₂ -PhCH ₂	flüssig	154-155°C./0.15 mm.
Pr .	4NO2-PhCH2	flüssig	158-159°C./0.15 mm.
i-Pr	4C1-PhCH	flüssig	120-121°C./0.3 mm.
i-Pr	4NO ₂ -PHCH ₂	fest	83-84°C.
\mathtt{Pr}	.2,4diCl-PhCH2	flüssig	138-140°C./0.1 mm
Allyl	2,4diCl-PhCH ₂	flüssig	138-140°C./0.1 mm.
Bu	2,4diCl-PhCH	flüssig	148-150°C./0.4 mm.
i-Pr	2,4diCl-PhCH ₂	flüssig	128-130°C./0.1 mm.
Et	2,4diCl-PhCH ₂	flüssig	130-132°C./0.3 mm.
i-Bu	2,4diCl-PhCH ₂	flüssig	154_156°C/0.4 mm.
Et.	2C1-PhCH ₉	flüssig	124-126°C./1.0 mm.
Allyl	2C1-PhCH ₂	flüssig	136-138°C./1.5 mm.
Allyl	4C1-PhCH ₂	flüssig	141-142°C./1.8 mm.
Ме	4MeO-PhCH ₂	flüssig	140-141°C./1.4 mm.
	4	:	

<u>R</u> 1	<u> 2</u> 2	Physikali- scher Zustand	Konstante
Ne.	201-PhOH ₂	flüssig	110°C./0.4 mm.
i-l'ŗ	201-PhCH2	flüssig	132-134°C./1.0 mm.
Pr	3,4diCl-PhCH2	flüssig	158-160°C./0.3 mm.
Allyl	3,4diCl-lhCH2	flüssig	148-150°C./0.1 mm.
Pr	2C1-PhCH2	flüssig	138-140°C./1.5 mm.
PhCH ₂	PhCH2	flüssig	154-158°C./0.4 mm.

In ähnlicher Weise, wie im Beispiel 3 beschrieben, wurden die folgenden Carbamoylimidazolverbindungen der allgemeinen .
Formel (I) (X = Sauerstoff) hergestellt.

•	•		
<u>R</u> 1		hysikali- cher Zustand	Konstante
Bu	PhCH2	flüssig	171-172°C./0.4 mm.
Cyclopentyl	2,4diCl-PhCH2	flüssig	204-205°C./0.3 rcm.
1,1-Dimethyl- prop-2-ynyl	4C1-PhCH ₂	fest	101–103 ⁰ C.
2-Chloroallyl	PhCH ₂	flüssig	179-181°C./0.3 mm.
2,3-Dichloro- allyl	PhcH ₂	flüssig	195-197°C./0.6 mm.
tert.Bu	2,4diCl-PhCH2	fest	87-88.5°C.
2-Methylallyl	2,4diCl-PhCH2	flüssig	188-190°C./0.3 mm.
s-Bu	2,4diCl-PhCH2	flüssig	180-183°C./0.1 mm.
Hexyl	4C1-PhCH2	flüssig	185-187°C./0.08 mm.
tert.Bu-	4C1-PhCH2	fest	109-111°C.
i-Pr	4Br-FhCH2	fest	107.5-108.5°c.
Cyclohexyl	PhCH ₂	flüssig	130-131 °C./0.15 mm.
Cyclohexyl	401-Phon	fest	120-121.5°c.
Bu	4Br-PhCH ₂	fest	66.5-68°C.
Decyl	4C1-FhCH2	: fl?ssig	212-215°C./0.1 mm.

1	2	•	
<u>R</u> 1	<u>R</u> 2	Prysikali- scher Zustand	Konstante
2-Methylally)	4Cl-PhCH ₂ '	fest	55-57°C.
i-Pr	4Me-PhCH2	fest	72.5-74°C.
Allyl	4Br-PhCH ₂	flüssig	194-198°C./0.2 mm.
Et	2C1-PhCH ₂	fest	81-83°C.
Allyl ~ ·	2C1-PhCH2	fest	73-75°c.
i-Pr	2,6diCl-PhCH	fest	132-134 ⁰ C.
EtOCH2CH2	2,4diCl-PhCH	flüssig	198-200°C./0.3 mm.
Bu	4CN-PhCH ₂	fest	102-104 ⁰ C.
Cyclopentyl	PhCH ₂	flüssig	178-179°C./0.3 mm.
Pr	PhCH ₂	flüssig	165-166°C./0.4 mm.
EtOCH2CH2	3,4diCl-PhCH	flüssig	202-204°C./0.2 mm.
CKCH2CH2	4C1-PhCH2	fest	103-105 ⁰ C.
Cyclooctyl	4C1-PhCH2	fest	95-96.5 ⁰ C.
CNCH ₂ CH ₂	PhCH2	flüssig	202-206°C./0.05-0.1
PhCH ₂	4C1-PhCH2	flüssig	206-210°C./0.2 mm.
4C1-PhCH2	.4C1-PhCH2	fest	122-124°C.
PhCH ₂	2,4diCl-PhCH2	fest	109-110°C.
PhCH ₂	2C1-PhCH2	flüssig	225-229°C./1-1.5 mm
i,1-Dimethyl- prop-2-ynyl	2,4diC1-PhCH ₂	fest	107-109°C.
1,1-Dimethyl- prop-2-ynyl	4C1-PhCH ₂	fest	101–103°C.
1,1-Dimethyl- prop-2-ynyl	· 3,4diCl-PhCH2	fest	109-111 ⁰ C.
Pr .	PhCH ₂ CII ₂	flüssig	161-163°C./0.2 mm.
Allyl	PhCH2CII2	fest	51-53°C.
Me	Phoh	fest	78.5-79.5°C.
i-Pr	PhCH ₂ CH ₂	flüssig	166°c./0.5 mm.
PhCH ₂	PhCH ₂ CH ₂	flüssig	208-210°C./0.3-0.4m
Pr	3MeO-PhCH ₂ CH		170-172°C./0.4 mm.
		-	

Zwischenprodukte

Die folgenden Carbamoylchlorid-Zwischenprodukte der allge-

-41-

meinen Formel R¹R²NCOCl wurden in ähnlicher Weise, wie in Beispiel 3 beschrieben, hergestellt.

<u>R</u> 1		vsikali- ner Zustand	Konstante
Bu	PhCH2	flüssig	123-124°C./0.6 mm.
Cyclopentyl	2,4diCl-PhCH2	fest	68-70°C.
1,1-Dimethyl- prop-2-ynyl	4C1-PhCH ₂	îest .	72-76°C.
2-Chloroallyl	PhCH ₂	flüssig	129-131°C./1.25 mm.
2,3-Dichloro- allyl	PhCH ₂	flüssig	124-126°C./O.1 mm.
tert.Bu	2,4diCl-PhCH2	fest	86-87°C.
2-Methylallyl	2,4diCl-PhCH2	flüssig	141-143°C./0.3 mm.
s-Bu	2,4d1Cl-PhCH2	flüssig	122-127°C./0.1 mm.
Hexyl	401-PhCH ₂	flüssig	137-139°C./O.1 mm.
tert.Bu	4C1-PhCH2	fest	118-119 ⁰ C.
i-Pr	4Br-PhCH ₂	flüssig	122-124°C./0.1 mm.
Cyclohexyl	PhCII2	flüssig	130-131°C./0.15 mm.
Cyclonexyl	4Cl-PhCh ₂	flüssig ·	150-152°C./0.05 mm.
Bu	4Br-PhCH ₂	flüssig	139-141°C./0.1 mm.
Decyl	. 4C1-PhCH ₂	flüssig	170-171°C./0.05 mm.
2-Methylallyl	4C1-PhCH ₂	flüssig	122-124°C./0.05 mm.
i-Pr	4Me-PhCH ₂	flüssig	103-105°C./0.12 mm.
Allyl	4Br-PhCH ₂	flüssig	119-121 ⁰ C./0.025 mm.
Et	2C1-PhCH ₂	flüssig ·	124-126°C./1.0 mm.
Allyl	2C1-PhCH ₂	flüssig	136-138°C./1.5 mm.
i-Pr	2,6diCl-PhCH2	fest	64-66°C.
Etoch_Cil_	2,4diCl-PhCH ₂	nicht isoli	ert
Bu	4CN-PhCH ₂	flüssig	161-162°C./0.2 mm.
Cyclopentyl	PhCH ₂	flüssig	128-130°C./O.1 mm.
\mathbf{Pr}	PhCII2	flüssig	108-109°C./0.1 mm.
EtOCH2CH2	3,4diCl-PhCH2	nicht isoli	.ert
CMCH2CH2	4C1-PhCH ₂	flüssig	168-172°C./0.1 mm.
Cyclooctyl	4C1-PhCH ₂	flüssig	173-175°C./0.15 mm.

<u>R</u> 1	$\frac{\mathbb{R}^2}{2}$	Physikali- scher Zustand	Konstante
CNOH ₂ CH ₂ PhCH ₂ 4Cl-FhCH ₂ PhCH ₂ PhCH ₂ 1,1-Dimethyl- prop-2-ynyl	PhCH ₂ 4C1-PhCH ₂ 4C1-PhCH ₂ 2,4diC1-PhCH ₂ 2C1-PhCH ₂ 2,4diC1-PhCH ₂	fest flüssig flüssig	149-151°C./0.2 mm. 140-142°C./0.05 mm. 86-87°C. 186°C./0.8 mm. 174-176°C./0.5 mm. 86-88°C.
1,1-Dimethyl- prop-2-ynyl	4C1-PhCH ₂	fest	72-74°C.
1,1-Dimethyl- prop-2-ynyl	3,4diCl-PhCH	fest	86-88°C.
Pr	PhCH2CH2	flüssig	128-130°C./0.2 mm.
Allyl	PhCH2CH2	flüssig	116-118°C./0.2 mm.
Me .	PhCH2CH2	fest	51-52.5°C.
i-Pr	PhCH ₂ CH ₂	flüssig	124-125°C./0.4 mm.
PhCH ₂	PhCH ₂ CH ₂	fest	56-58 ⁰ c.
Pr	·3MeO-PhCH2CH2	flüssig	143°C./0.45 mm.

Dieses Beispiel erläutert die Herstellung von Verbindungen der Erfindung.

12,4 g N-2-Chlorphenyl-N-propyl-(thiocarbamoyl)-chlorid und 6,8 g Imidazol wurden in 75 ml trockenem Tetrahydro-furan 16 Stunden am Rückfluß gehalten. Weitere 2 g Imidazol wurden dann zugegeben und das Erhitzen 8 Stunden fortgesetzt. Nach Abtrennen des durch Verdampfen des Tetrahydrofuran gebildeten Feststoffs verblieb ein Öl, das man in Methylenchlorid löst. Die erhaltene organische Phase

wurde mit Wasser gewaschen, mit Natriumsulfat getrocknet und das Lösungsmittel verdampft, wodurch man ein Öl erhielt, das durch Behandlung mit Leichtpetroleum und Abkühlen auskristallisiert und das Produkt, 1-/N-2-Chlorphenyl-N-propyl-(thiocarbamoyl)7-imidazol, Schmelzpunkt 59 - 61°C, liefert.

Der N-2-Chlorphenyl-N-propyl-(thiocarbamoyl)-chlorid-Reaktionspartner wurde in der folgenden Weise hergestellt.

Eine Lösung von 25,4 g 2-Chlor-N-propylanilin und 15,15 g trockenem Triäthylamin in 200 ml trockenem Äther wurde zu einer Lösung von 13 ml Thiophosgen in 200 ml des gleichen Lösungsmittels bei -20°C zugegeben. Man ließ das Reaktionsgemisch sich auf Raumtemperatur erwärmen und filtriert dann, wobei der filtrierte Feststoff mit Äther gewaschen wurde. Der Ätherextrakt, der zu dem Ätherliquor zugegeben wurde, wurde nach Trocknen über Natriumsulfat verdampft unter Bildung eines dunklen öls. Beim Stehenlassen wurde weiterer Feststoff ausgefällt, der dann aus dem öl abgetrennt wurde. Daschige Filtrat wurde destilliert unter Bildung von N-2-Chlorphenyl-N-propyl-(thiocarbamoyl)-chlorid, Siedepunkt 119 - 120°C/O,4 Torr.

Die folgenden Thiocarbamoylimidazolverbindungen der allgemeinen Formel (I) (X = Schwefel) wurden in ähnlicher Weise hergestellt. Die rohen Flüssigkeiten wurden unter Vakuum

zur Herstellung des reinen Produkts destilliert.

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Me .	Ph ·	flüssig	139-141°C./0.1 mm.
Me .	4Me-Ph	! fest	88-89°C.
Me	4MeO-Ph	flüssig	166-167°C./0.15 mm.
Et	4Cl-Ph	i fest	69.5-71°C.
Et.	2C1-Ph	fest	72.5-74°C.
Pr	4C1-Ph	fest	87-89°C.
i-Pr	2,4diCl-PhCH2	fest	130-131.5°C.
Hexyl	4Cl-Ph	fest	54.5-56.5°C.
CNCH2CH2	4C1-Ph	fest	104.5-106°C.
Pr	2C1-FhCH2	fest	75.5-77°C.
Allyl	4C1-PhCH2	fest	62.5-63.5°C.
Et	2,4diCl-Ph	fest	89.5-91.5°C.
i-Pr	4C1-PhCH ₂	fest	119-120.5°C.

Zwischenprodukte

Die folgenden Thiocarbamoylchlorid-Zwischenprodukte der allgemeinen Formel R¹R²NCSCl wurden in ähnlicher Weise wie in dem oben beschriebenen Verfahren zur Herstellung von N-2-Chlorphenyl-N-propyl-(thiocarbamoyl)-chlorid hergestellt.

<u>R</u> 1	<u>R</u> 2	Physikali- scher Zustand	Konstante
Me	Ph	flüssig	137-139°C./4.5 mm.
Me	4Me-Ph	fest	58-59.5°C.
Me	4MeO-Ph	flüssig	166-167°C./0.15 mm.
Et ·	4C1-Ph	flüssig	103-104°C./0.05 mm.
Et	201-Ph	flüssig	102-104°C./0.1 mm.

<u>R</u> 1	<u>R²</u>	Physikali- scher Zustand	Konstante
Pr	4C1-Ph	flüssig	118°C./0.1 mm.
i-Pr .	2,4diCl-PhCH	flüssig	156-158°C./0.5 mm.
Hexy]	4Cl-Ph	fest	45.5-47 ⁰ C.
CNCH2CH2	4C1-Ph	fest	118.5-120.5°C.
Pr	2Cl-PhCH ₂	fest	47-48.5°C.
Allyl	4C1-PhCH ₂	flüssig	145-148°C./0.15 mm.
Et .	2,4diCl-Ph	flüssig	124-127°C./0.3 mm.
$i-P_r$	4C1-PhCH ₂	fest	88.5-90°C.

Dieses Beispiel erläutert die Herstellung von 1-(N-2-Phenoxyäthyl-N-propylcarbamoyl)-imidazol und verwandter Imidazole der Erfindung.

Zu 75 ml trockenem Tetrahydrofuran gab man 6,8 g Imidazol und 12,075 g N-2-Phenoxyäthyl-N-propylcarbamoylchlorid.

Die Reaktionspartner wurden miteinander am Rückfluß 24 Stunden gekocht, auf Raumtemperatur gekühlt und zur Entfernung des Imidazolhydrochlorids filtriert. Das Lösungsmittel wurde dann durch Verdampfen auf dem Dampfbad entfernt, wobei die letzten Spuren unter Vakuum entfernt wurden. Es verblieb ein öliger Rückstand, der in Äther extrahiert, mit Wasser gewaschen, über wasserfreiem Natriumsulfat getrocknet wurde, wonach das Lösungsmittel entfernt und das rückständige Öl unter Vakuum destilliert wurde und man 1-(N-2-Phenoxyäthyl-N-propylcarbamoyl)-imidazol, Siedepunkt 209°C/1,0 Torr, erhielt.

Das N-2-Phenoxyäthyl-N-propylcarbamoylchlorid wurde in der folgenden Weise hergestellt.

47,2 g Propylamin wurden in 100 ml absolutem Alkohol unter Kühlen gelöst und 40,2 g ß-Bromphenetol wurden portionsweise zu der gebildeten Lösung zugegeben. Nach Beendigung
der Zugabe ließ man das Reaktionsgemisch bei Raumtemperatur eine Woche unter gelegentlichem Rühren stehen. Der
Aminüberschuß und das Lösungsmittel wurden dann unter
Vakuum auf dem Dampfbad entfernt und der nach Kühlen erhaltene rückständige farblose Feststoff wurde mit einem
Überschuß an 5N wäßrigem Natriumhydroxid behandelt. Das Öl
wurde freigesetzt, dann mit Äther extrahiert, mit Wasser
gewaschen und über wasserfreiem Natriumsulfat getrocknet.
Nach Entfernen des Lösungsmittels wurde das rückständige Öl
unter Vakuum destilliert, wodurch man N-2-Phenoxyäthyl-Npropylamin, Siedepunkt 90 - 92°C/0,2 Torr, erhielt.

In 100 ml mechanisch gerührtes, am Rückfluß gehaltenes trockenes Äthylacetat führt man einen stetigen Strom an Phosgengas ein, wonach man tropfenweise 22,4 g N-2-Phenoxy-äthyl-N-propylamin in 100 ml trockenem Äthylacetat während 45 Minuten zugibt. Nach Beendigung der Zugabe wurde das Reaktionsgemisch am Rückfluß unter Rühren zum Kochen gebracht, während die Zuleitung des Phosgenstroms weitere 3 Stunden beibehalten wurde. Das Lösungsmittel wurde auf dem Dampfbad entfernt, wobei die letzten Spuren unter Vakuum

extrahiert wurden; man erhielt N-2-Phenoxyäthyl-N-propyl-carbamoylchlorid.

Die folgenden Carbamoylimidazolverbindungen der allgemeinen Formel (I) (X = Sauerstoff) wurden in ähnlicher Weise hergestellt. Die festen Verbindungen wurden aus einem geeigneten Lösungsmittel, wie Leichtpetroleum, umkristallisiert, um das reine Produkt zu erhalten.

<u>R</u> 1	<u>R</u> ²	Physikali- scher Zustand	Konstante
Pr s-Bu i-Pr PnCH ₂ PhCH ₂	Phoch ₂ CH ₂ Phoch ₂ CH ₂ Phoch ₂ CH ₂ Phoch ₂ CH ₂ AC1-Phoch ₂ CH ₂	flüssig fest flüssig fest fest	185-186°C./0.35 mm. 63.5-65°C. 177-179°C./0.2 mm. 106-108°C. 93-95°C.
2C1-PhCH ₂ Ke i-Bu Pr Bu PhCH ₂ Pentyl Hexyl Pr Pr	Phoch ₂ CH ₂ Phoch ₂ CH ₂ Phoch ₂ CH ₂ Phoch ₂ CH ₂ 4C1-Phoch ₂ CH ₂ Phoch ₂ CH ₂ 2Me-Phoch ₂ CH ₂ 4Me-Phoch ₂ CH ₂ 3C1-Phoch ₂ CH ₂	fest flüssig fest fest fest fest fest fest fest fest	76-78°C. 186-188°C./0.15 mm 80.5-82°C. 70.5-72°C. 46-48°C. 110-112°C. 51-52.5°C. 40-41.5°C. 186-188°C./0.2 mm. 57-58.5°C. 65.5-67°C. 37-39°C.
4C1-PhCH ₂ PhCH ₂	2,4diCl-PhOCH ₂ CH ₂ 3,4diCl-PhOCH ₂	fest	128-130°C. 128.6°C.

<u>r</u> 1	<u>2</u>	Physikali- scher Zustand	Konstante
Octyl	FhOCH2CH2	flüssig	15 ⁰ C.
Pr.	Ph0(CH ₂) ₃	flüssig	198-199 ⁰ C./0.4 mm.
Bu ,	Pho(CH ₂) ₃	flüssig	193-194°C./0.2 mm.
PhCH ₂	2Me-4Cl-PhOCH ₂ -CH ₂	fest	114-116 ⁰ C.
PhC(CH3)H	4C1-PhOCH2CH2	flüssig	215-220°C./0.1-0.2 mm
PhCH ₂	4Br-PhOCH2CH2	fest	101–103 ⁰ C.
Pr	2Me-4Cl-PhOCH ₂ -CH ₂	fest	79.5-81°C.
Bu	2C1-PhOCH2CH2	fest	64-65.5°C.
Pr	PhSCH ₂ CH ₂	flüssig	189°C./0.2 mm.
PhCH2CH2	Phoch_CH2	fest	73-75°C.
PhCH ₂	2,4diMe-PhOCH ₂	fest	121-123°C.
Pr	3,4diCl-PhOCH ₂ -CH ₂	fest	84.5-86°C.
201-Ph	Phocii2cH2	fest	80.5-82.5°C.
Prop-2-yny	1 PhOCH ₂ CH ₂	fest	76-78°C.
Ph	4C1-PhOCH ₂ CH ₂	fest	86-88°C.
Allyl	PhOCH ₂ CH ₂	flüssig	186-190°C./0.4 mm.
Allyl	4C1-PhOCII2CII2	fest	53-55°C.
PhCH ₂	2,4diC1-PhO(CH ₂	• •	87-89°C.
PhCH ₂	2,4,5triCl-PhOC	ll2 fest	135-137°C.
PhCH ₂	401-FhSCH2CH2	fest	84-86°C.
PhCII ₂	4MeO-PhOCH2CH2	fest	107°C.

Zwischenprodukte

Die Carbamoylchlorid-Zwischenprodukte wurden in ähnlicher Weise wie für die Herstellung von N-2-Phenoxyäthyl-N-propyl-carbamoylchlorid beschrieben, hergestellt. Die Carbamoyl-chloride wurden nicht gereinigt, sondern unmittelbar zur

Carbamoylierung des Imidazols unter Bildung der oben angegebenen Carbamoylimidazole verwendet. Die nachfolgende Tabelle faßt die Carbamoylchlorid-Zwischenprodukte und die
Amine zusammen, aus denen diese abgeleitet wurden. Die gesamten zuletzt angegebenen Verbindungen waren Flüssigkeiten,
wurden isoliert und analysiert.

· <u>Tabelle</u>

Carbamoylchlorid-Zwischenprodukte R ¹ R ² NCOC1		Amin-Zwischenprodukte R ¹ R ² NH	
_R 1	R ²	Siedepunkt	
Pr	PhOCH2CH2	90-92°C./0.2 mm.	
s-Bu	PhOCH ₂ CH ₂	122-125°C./6.5 mm.	
i-Pr	PhOCH ₂ CH ₂	109-111°C./6.5 mm.	
PhCH ₂	PhOCH ₂ CH ₂	141-143°C./0.3 mm.	
PhCH ₂	4C1-PhOCH ₂ CH ₂	158-162°C./0.4 mm.	
2Cl-PhCH ₂	4C1-PhOCH2CH2	159-162°C./0.1 mm.	
Me	Phoch ₂ CH ₂	102-105°C./8.0 mm.	
i-Bu	PhOCH ₂ CH ₂	107-108°C./2.5 rm.	
Pr	4C1-PhOCH ₂ CH ₂	145-147°C./6.0 mm.	
Bu	PhOCH ₂ CH ₂	115-117°C./2.5 mm.	
PhCII ₂	2C1-PhOCH2CH2	155-162°C./0.3-0.4mm.	
Pentyl .	Phocii CH2	110-113°C./0.5 mm.	
Hexyl ·	Phocii CH2	130-132°C./0.5 mm.	
·Pr	2Me-PhOCH2CH2	88-91°C./0.7 mm.	
Pr	2Cl-PhoCH2CH2	104-106°C./0.6 mm.	
Pr :	4Me-PhOCH ₂ CH ₂	90-93°C./0.2 mm.	
Pr	3C1-PhOCH2CH2	106-108°C./0.4 mm.	

Tabelle I (Fortsetzung)

Carbanoylchlorid-Zwischenprodukte		
r1r ² ticoci		

 R^2

Amin-Zwischenprodukte R¹R²NH Siedepunkt

	Λ .	
4C1-PhCH ₂	2,4diCl-PhOCH2CH2	176-182°C./O.1 mm.
PhCH ₂	3,4dicl-PhocH2CH2	200-203°C./1.5 mm.
Octyl	Phoch ₂ CH ₂	130-133°C./0.3 mm.
Pr	PhO(CH ₂) ₃	163-166°C./30 mm.
Bu	Pho(CH ₂) ₃	106-108°C./0.3 mm.
PhCH ₂	2Me-4Cl-PhOCH2CH2	159-161°C./0.2 mm.
PhC(CH ₃)H	4C1-PhOCH ₂ CH ₂	145-148°C./0.2 mm.
PhCH ₂	4Br-PhOCH ₂ CH ₂	169-171°C./0.3 mm.
Pr	2Me-4C1-PhOCH ₂ CH ₂	138-139°C./3.0 mm.
Bu -	2C1-PhOCH ₂ CH ₂	120-122°C./1.5 mm.
Pr	PhSCH ₂ CH ₂	124-126°C./3.0 mm.
PhCH ₂ CH ₂	Phoch ₂ CH ₂	128-130°C./0.02 mm.
PhCH ₂	2,4diMe-PhOCH2CH2	167-170°C./0.8 mm.
Pr .	3,4diCl-PhOCH ₂ CH ₂	114-116°C./0.15 mm.
2C1-Ph	PhOCH ₂ CH ₂	149-153°C./O.1 mmi.
Prop-2-ynyl	Phoch ₂ CH ₂	89°C./0.2 mm.
Ph	4C1-PhOCH ₂ CH ₂	155-157°C./0.2 mm.
Allyl	PhOCH ₂ CH ₂	109-110°C./3.5 mm.
Allyl	4C1-PhOCH ₂ CH ₂	129-131°C./2.6 mm.
PhCH ₂	2,4diCl-PhO(CH ₂) ₃	184-186°C./0.3 mm.
PhCH ₂	2,4,5triCl-PhOCH ₂ CH ₂	180-182°C./0.2-0.25mm.
PhCH ₂	4C1-PhSCH ₂ CH ₂	170-173°C./0.3 mm.
PhCH ₂	4MeO-PhOCH ₂ CH ₂	157-160°C./O.1 mm.

Beispiel 7

Dieses Beispiel erläutert ein weiteres Verfahren zur Herstellung der Imidazolverbindungen der Erfindung durch Umsetzen von Carbonylbisimidazol mit einem geeigneten sekundären Amin.

Trockenes Benzol wurde von Calciumdihydrid in einem Kolben destilliert, der 27,2 g Imidazol enthielt, das durch mäßiges Erwärmen in dem Lösungsmittel gelöst wurde. 9,5 ml Phosgen wurden mittels einem Trockeneiskühler gesammelt und in die warme Benzollösung wurde durch einen Trocknungsebzug von Hand überführt. Der Trocknungsabzug wurde dann mit trockenem Stickstoff gespült und zuletzt wurde das Phosgen aus dem Benzol durch unmittelbares Einblasen des trockenen Gases entfernt. Nach 2 Stunden Rühren trennt sich eine untere Schicht aus Imidazolhydrochlorid ab. Das Gemisch wurde auf 50°C erhitzt, abkühlen lassen und die Benzolschicht von dem gebildeten Öl dekantiert.

16,5 g N-4-Chlorbenzyl-N-isopropylamin wurden zugegeben und das Gemisch am Rückfluß 48 Stunden erhitzt. Das Benzol wurde dann verdampft und der Rückstand in Äther gelöst, mit Wasser gewaschen und über Natriumsulfat getrocknet. Durch Verdampfen erhielt man ein Öl, das in Leichtpetroleum (40 - 60°C) gelöst wurde. Nach Impfen und Ritzen wurde ein weißer Feststoff ausgefällt, nämlich 1-(N-4-Chlorbenzyl-N-isopropylcarbamoyl)-imidazol, Schmelzpunkt 120 - 121,5°C.

Beispiel 8

Dieses Beispiel erläutert ein emulgierbares Konzentrat der Erfindung. Ein emulgierbares Konzentrat, das zur Verdünnung mit Wasser zur Bildung einer wäßrigen Emulsion geeignet ist, wurde aus den folgenden Bestandteilen hergestellt:

1-(N-2.4-Dichlorphenyl-N-äthylcarbamoyl)imidazol 25,0% Gew./Vol.

Calciumdodecylbenzolsulfonat 2,5% Gew./Vol.

Nonylphenoxypolyäthoxyäthanol + 2,5% Gew./Vol.

Xylol auf 100,0 Vol.%

Beispiel 9

Dieses Beispiel erläutert eine körnige Zubereitung der Erfindung.

Granulate mit einem Gehalt von 5% Gew./Gew. von 1-(N-2.4-Dichlorphenyl-N-äthylcarbamoyl)-imidazol und 5% Gew./Gew. Paraffinwachs wurden in der Weise hergestellt, daß man zunächst Granulate von Fuller's-Erde (Siebweite 0,75 bis 0,32 mm) mit einer Lösung der Imidazolverbindung in Xylol imprägniert und dann das Xylol von den imprägnierten Granulaten verdampft. Die Granulate wurden dann mit einer Xylollösung des Paraffinwachses behandelt und das Lösungsmittel verdampft, wodurch man eine Oberflächenwachsbeschichtung erhielt.

⁺ Ein Nonylphenoläthylenoxidkondensat enthielt im Durch-schnitt 14 Mol Äthylenoxid pro Mol Nonylphenol.

Dieses Beispiel erläutert eine Beizzubereitung nach der Erfindung.

Eine Beizzubereitung wurde in der Weise hergestellt, daß man die folgenden Bestandteile mischt.

1-(N-2.4-Dichlorphenyl-N-äthylcarbamoyl)- imidazol	15,0% Gew./Gew.
Kolloidale Kieselsäure	25,0% Gew./Gew.
Talkum	10,0% Gew./Gew.
Gipspulver	50,0% Gew./Gew.

Beispiel 11

Dieses Beispiel erläutert ein dispergierbares Pulver nach der Erfindung.

Ein dispergierbares Pulver wurde aus den folgenden Bestandteilen hergestellt.

1-(N-2-Chlorphanyl-N-propylcarbamoyl)- imidazol	25,0%	Gew./Gew.
Äthylan MR ⁺	1,0%	Gew./Gew.
Dyapol PT ++	5,0%	Gew./Gew.
Kaolin	69,0%	Gew./Gew.

⁺ Ein Alkylphenoläthoxylat

⁺⁺ Ein sulfoniertes Kondensat von Harnstoff, Cresol und Formaldehyd.

Dieses Beispiel erläutert die fungicide Wirksamkeit der Verbindungen der Erfindung, wenn sie zur Kontrolle von Mehltau bei Hafer verwendet werden.

Ein Versuchssatz Hafersämlinge wurden mit Getreidemehltau, Erysiphe graminis, infiziert und nachfolgend mit einer Suspension oder Lösung der unter Versuch stehenden Verbindung im Verhältnis von 2000 ppm besprüht.

Ein weiterer Versuchssatz Hafersämlinge wurde zunächst mit der Suspension oder Lösung der unter Versuch stehenden Verbindung in einer Konzentration von 2000 ppm besprüht und die behandelten Samen bzw. Sämlinge, dann mit Getreidemehltau geimpft.

Es wurde eine visuelle Bestimmung der Infektion, sofern vorhanden, bei diesen beiden Versuchsreihen vorgenommen. Es wurde festgestellt, daß die folgenden Verbindungen eine mehr als 70%ige Kontrolle des Mehltaus bei beiden Versuchen erreichten.

1-(N-2.4-Dichlorphenyl-N-äthylcarbamoyl)-imidazol

1-(N-2.4-Dichlorphenyl-N-pentylcarbamoyl)-imidazol

1-(N-4-Chlorphenyl-N-sek.-butylcarbamoyl)-imidazol

1-(N-2-Chlor-4-nitrophenyl-N-propylcarbamoyl)-imidazol

1-(N-2.4-Dichlorbenzyl-N-isopropylcarbamoyl)-imidazol

- $1-\sqrt{N}-2.4$ -Dichlorbenzyl-N-(1.1-dimethylprop-2-ynyl)-carbamoy1/2-imidazol
- 1-(N-4-Chlorbenzyl-N-tert-butylcarbamoyl)-imidazol
- 1-(N-4-Chlorbenzyl-N-2.4-dichlorphenylcarbamoyl)-imidazol
- 1-(N.N-bis-4-Chlorbenzylcarbamoyl)-imidazol
- 1-(N-2.4-Dichlorbenzyl-N-sek-butylcarbamoyl)-imidazol
- 1-(N-4-Chlorbenzyl-N-cyclooctylcarbamoyl)-imidazol
- 1-(N-Benzyl-N-2.4-dichlorphenylcarbamoyl)-imidazol
- 1-(K-Benzyl-N-2-phenethylcarbamoyl)-imidazol
- 1-(N-Benzyl-N-2-phenoxyäthylcarbamoyl)-imidazol
- 1-(N-Benzyl-N-2-p-chlorphenoxyäthylcarbamoyl)-imidazol
- 1-(N-Benzyl-N-2-o-chlorphenoxyäthylcarbamoyl)-imidazol
- 1-(N-2-Chlorbenzyl-N-2-p-chlorphenoxyäthylcarbamoyl)-imidazol
- 1-(N-2-Chlorbenzyl-N-2-phenethylcarbamoyl)-imidazol
- 1-(N-2.4-Dichlorbenzyl-N-2-chlorphenylcarbamoyl)-imidazol
- 1-(N.N-bis-Phenylcarbamoyl)-imidazol

Dieses Beispiel erläutert die fungicide Wirksamkeit der Verbindungen der Erfindung, wenn sie zur Kontrolle von Nehltau bei Hafer verwendet werden.

Eine gewogene Menge der Imidazolverbindung wurde gründlich mit einer gewogenen Menge Boden so vermischt, daß man ein Gemisch erhielt, das 250 ppm Verbindung enthielt. Hafersamen wurden dann in Töpfe gesät, die die Bodengemische

enthielten und die erhaltenen Sämlinge mit Getreidemehltau, Erysiphe graminis, infiziert. Eine visuelle Bestimmung wurde später vorgenommen, um festzustellen, ob ein Mehltaubefall vorlag. Bei Pflanzen, die im Boden gezüchtet wurden, der mit den folgenden Imidazolverbindungen behandelt wurde, wurde eine größere Kontrolle als 70% erreicht.

```
1-(N-2.4-Dichlorphenyl-N-äthylcarbamoyl)-imidazol
```

Beispiel 14

Dieses Beispiel erläutert die Wirksamkeit der Verbindungen der Erfindung, wenn sie zur Kontrolle von Mehltau bei Gerste verwendet werden.

Ein Gerstefeld im etwa 5-Blattstadium, das in natürlicher

¹⁻⁽N-2-Methyl-4-chlorphenyl-N-butylcarbamoyl)-imidazol

Weise mit Mehltau (Erysiphe graminis) infiziert war, wurde in Versuchsparzellen aufgeteilt. Wäßrige Sprühmittel, die den Wirkstoff enthielten, wurden auf der Gerste im Verhältnis von 1,120 kg/ha pro 182 l Flüssigkeit angewendet. Drei entsprechende Parzellen wurden in dieser Weise besprüht und Kontrollparzellen wurden zu Vergleichszwecken unbehandelt belassen.

Neun Tage nach dem Besprühen wurden die behandelten und nicht behandelten Parzellen visuell untersucht und der Prozentsatz Kontrolle in den behandelten Parzellen gegen- über den nicht behandelten Parzellen errechnet. Die nachfolgenden Verbindungen lieferten eine wenigstens 60%ige Kontrolle.

1-(N-4-Chlorphenyl-N-propylcarbamoyl)-imidazol

1-(N-2-Chlorphenyl-N-propylcarbamoyl)-imidazol

1-(N-2-Fluorphenyl-N-propylcarbamoyl)-imidazol

1-(N-4-Chlorphenyl-N-propylthiocarbamoyl)-imidazol

1-(N-2.4-Dichlorphenyl-N-äthylcarbamoyl)-imidazol

1-(N-2.4-Dichlorphenyl-N-methylcarbamoyl)-imidazol

Beispiel 15

Dieses Beispiel erläutert die Wirksamkeit der Verbindungen der Erfindung bei der Kontrolle von Mehltau bei Eierkürbis.

Ein Kürbisfeld (hybrid Zucchini), das mit Mehltau befallen war (Sphaerotheca fuliginea) wurde in Parzellen aufgeteilt.

Wäßrige Sprühmittel, die aus emulgierbaren Konzentraten der in Beispiel 8 beschriebenen Art und die die nachfolgend angegebenen Wirkstoffe enthielten, wurden hergestellt und auf die Parzellen gesprüht, sobald der Mehltau beobachtet wurde. Das Spühmittel enthielt 0,05 Gew.% Wirkstoff und wurde so aufgesprüht, daß es ablief.

Eine Woche nach der Behandlung wurde das Ausmaß der Kontrolle des Mehltaus durch Vergleich des Auftretens der Infektion bei den behandelten und nicht behandelten Parzellen festgestellt.

Die folgenden Verbindungen lieferten im Durchschnitt eine wenigstens 60%ige Kontrolle von Mehltau:

1-(N-4-Chlorphenyl-N-propylthiocarbamoyl)-imidazol

1-(N-2.4-Dichlorphenyl-N-äthylcarbamoyl)-imidazol

1-(N-4-Chlorphenyl-N-pentylcarbamoyl)-imidazol

-Patentansprüche-

Patentansprüche:

1 Verbindung der allgemeinen Formel

worin X ein Sauerstoff- oder Schwefelatom, R¹ ein gegebenenfalls substituierter Alkyl-, Alkenyl-, Alkynyl-, Cycloalkyl-, Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxy-alkyl- oder Phenylthioalkylrest und R² ein gegebenenfalls substituierter Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Phenylthioalkylrest ist, mit der Maßgabe, daß wenn R¹ ein Methyl- oder Phenylrest ist, R² ein substituierter Phenyl- oder gegebenenfalls substituierter Phenylalkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Phenylthioalkylrest ist.

- 2. Verbindung gemäß Anspruch 1, dadurch gekennzeichnet, daß X ein Sauerstoffatom ist.
- 3. Verbindung gemäß einem der Ansprüche 1 und 2, da-durch gekennzeichnet, daß R¹ ein Alkylrest mit 1 bis 6 Kohlenstoffatomen ist.
- 4. Verbindung gemäß einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß R¹ ein Phenyl-

rest oder ein mit 1 bis 3 Substituenten substituierter Phenylrest ist, wobei die Substituenten gleich oder verschieden und Halogenatome, Alkoxy-, Alkyl-, Trihalogenmethyl-, Cyano-, Alkylthio-, Nitro- oder Alkylsulfonylgruppen sind.

- 5. Verbindung gemäß einem der Ansprüche 1 und 2, da durch gekennzeichnet, daß R¹ ein Benzylrest oder ein in dem Phenylkern mit 1 bis 3 Substituenten
 substituierter Benzylrest ist, wobei die Substituenten
 gleich oder verschieden und Halogenatome, Alkyl-, Alkoxy-,
 Trihalogenmethyl-, Cyano-, Alkylthio-, Nitro-, Alkylsulfonylgruppen sind.
- 6. Verbindung gemäß einem der vorausgehenden Ansprüche, dad urch gekennzeichnet, daß R² ein Phenylrest oder ein mit 1 bis 3 Substituenten substituierter Phenylrest ist, wobei die Substituenten gleich oder verschieden und Halogenatome, Alkoxy-, Alkyl-, Trihalogenmethyl-, Cyano-, Alkylthio-, Nitro- oder Alkylsulfonyl-gruppen sind.
- 7. Verbindung gemäß einem der Ansprüche 1 bis 5, da durch gekennzeichnet, daß R² ein Benzylrest oder ein in dem Phenylkern mit 1 bis 3 Substituenten substituierter Benzylrest ist, wobei die Substituenten gleich oder verschieden und Halogenatome, Alkoxy-,

Alkyl-, Trihalogenmethyl-, Cyano-, Alkylthio-, Nitro-oder Alkylsulfonylgruppen sind.

- 8. Verbindung gemäß einem der Ansprüche 1 bis 5, da-durch gekennzeichnet, daß R² ein Phenyläthyl-, substituierter Phenyläthyl-, Phenoxyäthyl-oder substituierter Phenoxyäthylrest ist.
- 9. Verbindung gemäß Anspruch 1, dadurch gekennzeichnet, daß Xein Sauerstoffatom, R¹
 ein Alkylrest mit 1 bis 4 Kohlenstoffatomen und R² ein
 Phenylrest ist, der mit einem oder zwei Halogenatomen substituiert ist.
- 10. Verbindung gemäß Anspruch 1, dadurch ge-kennzeichnet, daß Xein Sauerstoffatom, R¹ ein Alkylrest mit 1 bis 4 Kohlenstoffatomen und R² ein Benzylrest ist, der mit einem oder zwei Halogenatomen substituiert ist.
- 11. Fungicide Zubereitung, dadurch gekenn-zeichnet, daß sie eine Verbindung gemäß einem der Ansprüche 1 bis 11 und ein Verdünnungs-bzw. Streckmittel oder einen Träger enthält.
- 12. Fungicide Zubereitung gemäß Anspruch 11, dadurch gekennzeichnet, daß das Streckmittel oder

der Trägenein Feststoff oder eine Flüssigkeit mit dem Gehalt eines oberflächenaktiven Mittels ist.

13. Verfahren zur Kontrolle von phytopathogenen Fungi, dad urch gekennzeichnet, daß man auf Samen, Sämlingen, Pflanzen oder ihrem Standort eine Verbindung der allgemeinen Formel

verwendet, worin X ein Sauerstoff- oder Schwefelatom, R¹ ein gegebenenfalls substituierter Alkyl-, Alkenyl-, Alkynyl-, Cycloalkyl-, Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxy-alkyl- oder Phenylthioalkylrest und R² ein gegebenenfalls substituierter Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Phenylthioalkylrest ist.

14. Verfahren zur Steuerung von phytopathogenen Fungid a d u r c h g e k e n n z e i c h n e t , daß man auf
Samen, Sämlingen, Pflanzen oder ihrem Standort eine Verbindung gemäß einem der Ansprüche 2 bis 10 verwendet.

15. Verfahren zur Herstellung einer Verbindung gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen Formel R¹R²Nq, worin

 ${\tt R}^1$ und ${\tt R}^2$ die im Anspruch 1 definierten Bedeutungen haben, mit einer Verbindung der allgemeinen Formel

umsetzt, wobei in den Formeln entweder (a) eines der q und y ein Wasserstoffatom und das andere eine CXZ-Gruppe ist, worin X ein Sauerstoff- oder Schwefelatom und Z ein Halogen- atom ist, oder (b) q ein Wasserstoffatom und y die Gruppe

ist.

16. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, daß q = COCl und y ein Wasserstoffatom ist.

17. Verfahren zur Herstellung einer Verbindung gemäß Anspruch 1, außer Verbindungen, worin R¹ und R² beide gegebenenfalls substituierte Phenylreste sind, dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen Formel

der Alkylierung unterwirft, wobei in der Formel X ein Sauerstoff- oder Schwefelatom und R³ ein gegebenenfalls substituierter Alkyl-, Alkenyl-, Alkynyl-, Cycloalkyl-, Phenyl-, Phenylalkyl-, Phenylalkenyl-, Phenoxyalkyl- oder Fhenyltbioalkylrest ist.