KG - Azterketa - 2021eko urria

1. (1,5 puntu)

- a) Kalkulatu ABC triangeluko P puntuaren α, β, γ koordenatu barizentrikoak t, s parametroak ezarri ondoren. Frogatu koordenatu barizentrikoen batura 1 dela eta positiboak direla (P erpinen konbinazio konbexua beraz).
- b) Adierazi nola egiten den interpolazio barizentrikoa, triangeluko erpinetan funtzio baten balioak f(A), f(B), f(C) ezagunak badira eta triangelu barruko P puntuan funtzioaren balioa interpolatu nahi bada. Ehundura mapaketaren kasuan, adierazi nola interpolatzen diren ehundura mapako u, v koordenatuak, triangelu bat eta barruko puntu baten koordeantu barizentrikoak emanik.

2. (1,5 puntu)

a) Lau puntu emanik, eta ardatz kartesiarrak finkatuz, Bézier kurba definituko dugu $\gamma(t) = G \cdot M \cdot t$ formulan $G = [P_0 \ P_1 \ P_2 \ P_3]$ geometria matrizea eta M oinarri matrizea hartuz, $t = [1 \ t \ t^2 \ t^3]^T$:

$$M = \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hasteko idatzi $\gamma(t) = G \cdot M \cdot t$ biderkatuz $M \cdot t$ eta ondoren $\gamma'(t)$ deribatua ere kalkulatu. Frogatu baldintza hauek betetzen direla: $\gamma(0) = P_0, \ \gamma(1) = P_3, \ \gamma'(0) = 3(P_1 - P_0), \ \gamma'(1) = 3(P_3 - P_2)$

- b) Espazioan hamasei punturen sareta hartuz, Bézier adabakia da $S(u,v) = \sum_{i,j=0}^{3} P_{ij}b_i(u)b_j(v)$, non $u,v \in [0,1]$ parametroak diren. Adierazi (frogapen zehatza egin gabe) adabakiaren S(u,0), S(u,1), S(0,v), S(1,v) ertzak zer diren, nola definitzen diren kurba horiek saretako P_{ij} puntuen gainean.
- 3. (puntua) Plano afinean P puntua, \boldsymbol{a} translazio-bektorea eta T^* transformazio lineala emanik, transformazio afina definitzen da T(Q)=

 $P+T^*(Q-P)+\boldsymbol{a}$ idatziz, edozein puntu Q-rako. Ardatz kartesiarrak ezarriz, $P=\boldsymbol{x}_0$ eta $Q=\boldsymbol{x}$ zutabe-bektoreak idatziko ditugu, eta A izango da transformazio linealaren matrizea. (a) Idatzi A matrizea θ angeluko biraketa egiteko (zutabeak dira oinarri estandarra biratuta). (b) Idatzi $P(x_0,y_0)$ puntuaren inguruan Q(x,y) biratzeko formula, hau da, transformazio afin honen adierazpena zutabe-bektoreekin kalkuluak egiteko, $T(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{b}$ moduan idatziz. (c) Edozein transformazio afin emanik, $T(Q) = P + T^*(Q - P) + \boldsymbol{a}$, deduzitu $T(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{b}$.

- 4. (1,5 puntu) Kamera XYZ espazioan orientatzeko bi biraketa konposatuko ditugu (1. eta 4. praktikan bezala). Rodrigues-en formularen ordez oinarri estandarraren transformatuak zutabeka idatziko ditugu.
 - a) Idatzi R_1 biraketa matrizea $\pi/4$ angelua biratuz X ardatzaren inguruan eta R_2 biraketa matrizea $\pi/4$ angelua biratuz Y ardatzaren inguruan. Marraztu bi irudi, bakoitzean oinarri estandarra eta honen transformatua (eskuin eskuaren arauarekin biratuz beti).
 - b) Ondoren kalkulatu $R = R_2 R_1$ matrizea eta egiaztatu ortogonala dela, $R^T R = I$ (zutabeak perpendikularrak eta unitarioak).
 - c) R biraketa matrizea da, ardatza lortzeko $R\boldsymbol{w}=\boldsymbol{w}$ ekuazioa dugu, beraz $(R-I)\boldsymbol{w}=0$ ekuazio sistema homogeneoa, idatzi hiru ekuazioak $\boldsymbol{w}(x,y,z)$ kalkulatzeko. Zenbat soluzio ditugu, zein hartuko genuke (soluzioa ez kalkulatu)?

5. (2 puntu)

- a) Kamera idealean nola definitzen dira $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ bektoreak? Zer angeluk mugatzen dute ikuspegi bolumena? Marraztu kameraren ikuspegian n eta f distantziak (hurbileko eta urrutiko planoa), ikuspegi enborra eta A, B, C puntuak. Nola definitzen dira $\boldsymbol{u}', \boldsymbol{v}', \boldsymbol{w}'$ bektoreak kameraren oinarrirako?
- b) Munduaren koordenatuak eta kameraren ikuspegi estandarra erlazionatzeko $O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ oinarria $P, \mathbf{u}', \mathbf{v}', \mathbf{w}'$ oinarrian eraldatuko dugu dugu hiru transformazio afin eginez. Deskribatu M_3, M_2, M_1 matrizeen elementuak eta dagozkien transformazioak:

$$M = \begin{bmatrix} 1 & 0 & 0 & P_x \\ 0 & 1 & 0 & P_y \\ 0 & 0 & 1 & P_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & v_x & w_x & 0 \\ u_y & v_y & w_y & 0 \\ u_z & v_z & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} AB & 0 & 0 & 0 \\ 0 & AC & 0 & 0 \\ 0 & 0 & f & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- c) Idatzi $M_{per} = M^{-1}$, hiru matrizeen alderantzizkoak kalkulatuz. Azaldu $\boldsymbol{x}_{view} = M_{per} \, \boldsymbol{x}_{world}$ formula.
- 6. (puntua) Kameraren ikuspegi estandarrean erpin hauek dituen triangeluaren transformatua aztertuko dugu ikuspegi paralelizatuan: A(0,0,-1), D(1/3,1/3,-2/3) eta E(-1/3,1/3,-2/3). Paralelizazio transformazioaren matrizea hau da (n/f=1/3 izanik):

$$M_{pp} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3/2 & 1/2 \\ 0 & 0 & -1 & 0 \end{array} \right]$$

Kalkulatu A, D, E puntuen transformatu proiektiboak (hartu koordenatu homogeneoak eta emaitza ere homogeneizatu). Marraztu X'Y' planoan triangelu transformatua (z koordenaturik gabe). (Laguntza: ikuspegi paraleloan A berdin geratzen da; D eta E bertikalarekiko simetrikoak dira X'Y' planoan.)

7. (1,5 puntu)

- a) Eredu grafiko baten argiztapenean, azaldu zer den puntu-argia eta argi direkzionala, ispilu-gainazala eta gainazal difusoa, eta Lambert-en legea, irudiak egin. Triangelu sare batean nola kal-kulatzen da argiztapena baldin triangeluak nabarmentzea nahi ez bada?
- b) Kameraren ikuspegi paralelizatuan aztertuko dugu izpi baten eta ABC triangelu baten arteko P ebakidura nola kalkulatu koordenatu barizentrikoen bidez. Izpia (x_0,y_0) bikoteak zehazten du, beraz ebakidura, existitzen bada, $P(x_0,y_0,z)$ izango da non z ezezaguna den. A,B,C erpinen koordenatu kartesiarrak ezagunak dira. Idatzi $\alpha A + \beta B + \gamma C = P$ erlazioak ematen dizkigun hiru ekuazioak. Ekuazio hauetan zer dira ezezagunak? Zein izango da laugarren ekuazioa?
- c) Triangelu sare bat renderizatzeko kalkuluak antolatzeko bi era daude: izpi-isurketa (ray casting) eta rasterizazioa, azaldu bi metodoak bi eskemaren laguntzarekin. Zer gordetzen da closest[x,y] matrizean (depth buffer)?