Definition (Dualizable object)

Let $\langle \mathbf{C}, \bigotimes_{\mathbf{C}}, \mathbf{1}_{\mathbf{C}} \rangle$ be a monoidal category, and let $X \in \mathrm{Ob}_{\mathbf{C}}$. A *right dual object* of X is specified by:

Constituents

- an object X[∨] ∈ Ob_C;
 an evaluation map ev_X : X[∨] ⊗ X → 1;
- 3. a coevaluation map $coev_X : \mathbf{1} \to X \otimes X^{\vee};$

Conditions

- 1. $lu_X^{-1} \ \ \ (coev_X \otimes Id_X) \ \ \ \ as_{X,X^\vee,X} \ \ \ \ \ (Id_X \otimes ev_X) \ \ \ \ ru_X = Id_X;$
 - 2. $\operatorname{ru}_{X^{\vee}}^{-1} \circ (\operatorname{Id}_{X^{\vee}} \otimes \operatorname{coev}_{X}) \circ \operatorname{as}_{X^{\vee},X,X^{\vee}}^{-1} \circ (\operatorname{ev}_{X} \otimes \operatorname{Id}_{X^{\vee}}) \circ \operatorname{lu}_{X^{\vee}} = \operatorname{Id}_{X^{\vee}}.$