

Linear Regression, SVMs

Jose Martinez Heras

08/03/2018

ESA UNCLASSIFIED - For Official Use

Resources

Watch the video of this lecture

https://dlmultimedia.esa.int/download/public/videos/2048/03/004/4803 004 AR EN.mp4

Watch the practical exercise video

https://dlmultimedia.esa.int/download/public/videos/2048/03/003/4803 003 AR EN.mp4

Get presentation and additional resources on

https://github.com/jmartinezheras/2018-MachineLearning-Lectures-ESA

ESA UNCLASSIFIED - For Official Use

Outline for Supervised Learning (1)

Supervised Learning (1)

- Linear, polynomial regression
- Lasso, Ridge, ElasticNet regression
- Logistic Regression
- Support Vector Machines (SVM)
- Hands-on Supervised Learning

Predict price of vacation rentals in Frankfurt on Airbnb

Linear Regression

Let's create some data

$$y = 0.1x + 1.25 + 0.2$$
 GaussianNoise

Linear Regression

Let's perform linear regression...

$$y = 0.1x + 1.25 + 0.2$$
 GaussianNoise

$$y = wx + b$$
 $w = 0.1014$
b = 1.2258

$$y = 0.1014x + 1.2258$$

How we fitted the line?

We just found the values of 'w' and 'b' that minimize the Mean Squared Error

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (Y_i - \widehat{Y}_i)^2$$

Mean Squared Error

How we fitted the line?

How do we know which values of 'w' and 'b' minimize the Mean Squared Error?

Least squares method

Carl Friedrich Gauss

Ceres asteroid

Picture by Justin Cowart - Ceres - RC3 - Haulani Crater, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=49700320

ESA UNCLASSIFIED - For Official Use

Least Squares - notation

$$y = wx + b = b + wx$$

$$X = 1$$
, x

$$W = b$$
, w

$$y = WX = b + wx$$

Also called features

$$X = x_0, x_1, x_2, x_3, ..., x_n$$
 $x_0 = 1$
$$W = w_0, w_1, w_2, w_3, ..., w_n$$
 $w_0 = b$

x_0	x_1	y
1	0.0	1.57
1	0.5	1.18
1	1.0	1.24
1	1.5	1.19
1	2.0	1.62

 ${\sf ESA\ UNCLASSIFIED\ -\ For\ Official\ Use}$

How we fitted the line?

Which values of line parameters minimize the Mean Squared Error?

Least squares Method

Carl Friedrich Gauss

Least Squares Method

$$\widehat{W} = (X^T X)^{-1} X^T y$$

$$X = x_0, x_1, x_2, x_3, ..., x_n$$
 $x_0 = 1$
 $W = w_0, w_1, w_2, w_3, ..., w_n$ $w_0 = b$
 $y = WX = w_0x_0 + w_1x_1 + w_2x_2 + ... + w_nx_n$

 \widehat{W} is the best approximation to W

How we fitted the line?

Which values of line parameters minimize the Mean Squared Error?

Least squares Method

Carl Friedrich Gauss

Least Squares Method

$$\widehat{W} = (X^T X)^{-1} X^T y$$

ESA UNCLASSIFIED - For Official Use

Gradient Descent

There is another way: Gradient Descent

$$J = MSE = \frac{1}{m} \sum_{i=1}^{m} (Y_i - \widehat{Y}_i)^2$$

Learning

$$W = W - \alpha \frac{\partial J}{\partial W}$$

Gradient Descent Visualization. Credit: rasbt.github.io

 ${\sf ESA~UNCLASSIFIED~For~Official~Use}$

Gradient Descent

There is another way: Gradient Descent

Image Credits: Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (pp. 113-114). O'Reilly Media. Kindle Edition.

ESA UNCLASSIFIED - For Official Use

Gradient Descent

When using Gradient Descent we need to **normalize** the inputs

- "normalize" means, put every input in a similar scale
- E.g. predict price of a property: n_reviews = [0 500], rooms = [1, 8]

Image Credits: Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (pp. 113-114). O'Reilly Media. Kindle Edition.

ESA UNCLASSIFIED - For Official Use

When we use which method?

$$\widehat{W} = (X^T X)^{-1} X^T y$$

Least Squares

 when there is a relatively small number of features (< 1,000)

Gradient Descent

- when there are many features (> 1,000)
- when we need to stop training at any time
 - e.g. if we only have 1 minute
- If data does not fit in memory
- If you have new data (e.g. stream) and don't want to start all over (with all previous data)

 $y = 0.2x^2 + 0.1x + 1 + 3GaussianNoise$

Linear Regression: $y = w_0 + w_1x$

ESA UNCLASSIFIED - For Official Use

- You already know how to do it
- It is not a new technique, it's a feature

	X			X	x ²
x_0	x_1	y	x_0	x_1	x_2
1	-10.0	17.74	1	-10.0	100.0
1	-9.5	21.86	1	-9.5	90.25
1	-9	17.84	1	-9	81.00
1	-8.5	13.71	1	-8.5	72.25
1	-8	14.47	1	-8	64.00

 ${\sf ESA\ UNCLASSIFIED\ -\ For\ Official\ Use}$

 $y = 0.2x^2 + 0.1x + 1 + 3GaussianNoise$

Linear Regression: $y = w_0 + w_1x + w_2x^2$

ESA UNCLASSIFIED - For Official Use

- Polynomial Regression = Linear Regression with polynomial features
- You can get creative:
 - x², x³, x⁴...
 - ZX², ZX³, Z²X², ...

		X	X ²	
Features	x_0	x_1	x_2	y
	1	-10.0	100.0	17.74
	1	-9.5	90.25	21.86
	1	-9	81.00	17.84
	1	-8.5	72.25	13.71
	1	-8	64.00	14.47

What if some of the inputs are irrelevant?

- Ridge Regression
- Lasso Regression
- ElasticNet Regression

ESA UNCLASSIFIED - For Official Use

Ridge Regression

Remember Gradient Descent?

$$J = MSE = \frac{1}{m} \sum_{i=1}^{m} (Y_i - \widehat{Y}_i)^2$$

Learning

$$W = W - \alpha \frac{\partial J}{\partial W}$$

Gradient Descent Visualization. Credit: rasbt.github.io

 ${\sf ESA\ UNCLASSIFIED\ -\ For\ Official\ Use}$

Ridge Regression

Upgrade the Cost Function with a **regularization** term

Gradient Descent Visualization. Credit: rasbt.github.io

ESA UNCLASSIFIED - For Official Use

Lasso Regression

Upgrade the Cost Function with a **regularization** term

Gradient Descent Visualization. Credit: rasbt.github.io

 ${\sf ESA\ UNCLASSIFIED\ -\ For\ Official\ Use}$

ElasticNet Regression

Regularization combining Ridge and Lasso regularizations

$$J = MSE + r \cdot Lasso + (1 - r) \cdot Ridge$$

$$J = \frac{1}{m} \sum_{i=1}^{m} (Y_i - \widehat{Y}_i)^2 + r \cdot \alpha \sum_{j=1}^{n} |w_j| + \alpha \frac{1 - r}{2} \sum_{j=1}^{n} w_j^2$$

Which Linear Regression?

In general, it is always a good idea to use some regularization

Ridge

- few irrelevant features
- some correlated features

Lasso

- many irrelevant features
- little correlation among features

ElasticNet

- Large number of features
- Possibly many irrelevant
- Possibly correlated features

When to use which Linear Regression?

Let's add 50 irrelevant features (Gaussian Noise)

ESA UNCLASSIFIED - For Official Use

When to use which Linear Regression?

Let's add 50 irrelevant features (Gaussian Noise)

ESA UNCLASSIFIED - For Official Use

Logistic Regression

- Tiny Neural Network used for classification
 - It has exactly 1 neuron

ESA UNCLASSIFIED - For Official Use

Logistic Regression

Sigmoid Function

- Values [0, 1]
- Used for estimating probability
 - Spam = 1
 - Not spam = 0
- In binary classification:
 - 1 if p ≥ 0.5
 - 0 if p < 0.5

Logistic Regression Example

Chance of passing an exam based on how much you studied

Hours	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1

$$p = \frac{1}{1 + e^{(-(1.5046 \cdot hours - 4.0777))}}$$

Hours	Probability of passing
1	0.07
2	0.26
3	0.61
4	0.87
5	0.97

Wikipedia contributors, "Logistic regression," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=827666692 (accessed March 5, 2018).

ESA UNCLASSIFIED - For Official Use

Logistic Regression Example

Hours studying

Chance of passing an exam based on how much you studied

Hours	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1

Hours	Probability of passing
1	0.07
2	0.26
3	0.61
4	0.87
5	0.97

Wikipedia contributors, "Logistic regression," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=827666692 (accessed March 5, 2018).

Jose Martinez Heras | ESOC | 08/03/2018 | Slide 30

ESA UNCLASSIFIED - For Official Use

Logistic Regression

Cost: log loss

$$J = -\frac{1}{m} \sum_{i=1}^{m} [y_i \log(\widehat{p_i}) + (1 - y_i) \log(1 - \widehat{p_i})]$$

- No formula to solve it.
- **Only numerical optimization** Gradient Descent
- We can also add |1 or |2 regularization terms

What about if there are more than 2 classes?

Iris setosa

Iris versicolor

Iris virginica

Knowing the sepal and petal length and width, which flower it is?

Pictures from Wikipedia contributors, "Iris flower data set," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Iris_flower_data_set&oldid=824486644 (accessed March 5, 2018).

ESA UNCLASSIFIED - For Official Use

What about if there are more than 2 classes?

Transform the problem into binary classification

- Setosa vs non-setosa
- Versicolor vs non-versicolor
- Virginica vs non-virginica

Machine Learning libraries can handle multiclass classification for us

Visualization from https://github.com/ageron/handson-ml/blob/master/04_training_linear_models.ipynb

 ${\sf ESA\ UNCLASSIFIED\ -\ For\ Official\ Use}$

What's the optimal way to do classification?

European Space Agency

What's the optimal way to do classification?

ESA UNCLASSIFIED - For Official Use

What's the optimal way to do classification?

What's the optimal way to do classification?

_ _ ..

What's the optimal way to do classification?

What's if data has outliers?

We still want a maximum margin

Use penalty parameter C

$$C = \frac{1}{\alpha}$$

 ${\sf ESA\ UNCLASSIFIED\ -\ For\ Official\ Use}$

Some times data is not separable with a line / hyperplane

Visualization from http://blog.csdn.net/sinat_35257860/article/details/58226823

ESA UNCLASSIFIED - For Official Use

Support Vector Machine applications

Face Detection

Spam Filter

Handwriting recognition

Support Vector Machine applications

NASA EO-1

Figure 5. Image of South Georgia Island near Antarctica taken December 1, 2004. The left is the false color image while the right shows the resulting SVM classification, where blue is water, black is land, cyan is ice, purple is snow, gray is cloud, and white is unclassified. Open water was correctly identified indicating sea ice break-up and triggering another image of the scene to be taken on December 3, 2004.

Figure 4. Image of Lake Winnibigoshish, Wisconsin taken September 22, 2004. The scene was correctly classified as cloudy by the onboard SVM classifier.

Castano, Rebecca, Dominic Mazzoni, Nghia Tang, Ron Greeley, Thomas Doggett, Ben Cichy, Steve Chien, and Ashley Davies. "Onboard classifiers for science event detection on a remote sensing spacecraft." In *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 845-851. ACM, 2006.

ESA UNCLASSIFIED - For Official Use

Python Hands-On

Imagine you had an apartment in Frankfurt and you want to use Airbnb to monetize it. What price should you ask?

ESA UNCLASSIFIED - For Official Use

Materials: Slides, Code, Videos

They will be available on the Data Analytics ESA connect community

url: https://connect.esa.int/communities/community/data-analytics

For externals, I'll post them on LinkedIn:

https://www.linkedin.com/in/josemartinezheras/

What is next?

March 14th 16:00 - HI

Session 3: Supervised Learning (2)

- **Decision Trees**
- Ensembles
- Random Forests
- Hands on

Resources

Watch the video of this lecture

https://dlmultimedia.esa.int/download/public/videos/2048/03/004/4803 004 AR EN.mp4

Watch the practical exercise video

https://dlmultimedia.esa.int/download/public/videos/2048/03/003/4803 003 AR EN.mp4

Get presentation and additional resources on

https://github.com/jmartinezheras/2018-MachineLearning-Lectures-ESA

Thank you

Data Analytics Team for Operations (DATO)

Jose Martinez Heras

LinkedIn: https://www.linkedin.com/in/josemartinezheras/

ESA UNCLASSIFIED - For Official Use