المـــوضوع رقم 12

التمرين رقم: 01

نحقق الدارة الكهربائية المثلة في الشكل 1 و التي تتكون من العناصر الكهربائية التالية:

ـ مولد توتر ثابت قوته المحركة الكهربائية E.

 R_2 و $R_1=100$ و $R_1=100$ و .

. مكثفة فارغة سعتها C و بادلة K و أسلاك توصيل

لعتمادا على K في الوضع f=0، اعتمادا على f=0 الدراسة التجريبية تمكنا من تمثيل المنحنى البياني q=f(t) الموضح في الشكل_2.

q(t) أكتب المعادلة التفاضلية لتطور شحنة المكثفة.

2- تقبل المعادلة التفاضلية السابقة العبارة $q\left(t\right)=A+Be^{-\frac{\epsilon}{\tau_{1}}}$ علا لها، حيث A و B و τ_{1} ثوابت يطلب تحديد عبارة كل منها بدلالة مميزات الدارة.

3. بالاعتماد على البيان $q=f\left(t\right)$ جد قيمة شدة التيار الكهربائي I_{0} المار في الدارة عند اللحظة وقيمة التوتر الكهربائي E بين طرفى المولد.

4. أكتب العبارة الزمنية $E_{C}\left(t
ight)$ للطاقة المخزنة في المكثفة.

حلما أن الطاقة الأعظمية المخزنة في المكثفة هي: $E_{C_{\max}} = 0.18\,m$ ،جد قيمة كل من سعة المكثفة C ثابت الزمن au_1 .

الدراسة التجريبية t=0 الدراسة التجريبية الدراسة التجريبية K الدراسة التجريبية $U_{c}=g(t)$ الدراسة التجريبية مكنتنا من تمثيل المنحنى البياني $U_{c}=g(t)$ الموضح في الشكل $U_{c}=g(t)$

العادلة التفاضلية لتطور التوتر $u_{C}\left(t\right)$ بين طرفي المكثفة.

(V)والتوترب والتوترب والمعادلة التفاضلية، حيث الزمن مقاس ب(ms) والتوترب $u_{C}(t)$

أـ حدد سلما مناسبا على محوري البيان الشكل ـ 3.

 R_2 ب-جد قيمة المقاومة

3- مثل بشكل تقريبي المنحنى البياني $E_{C}=h\left(t
ight)$ للطاقة المخزنة في المكثفة بدلالة الزمن.

 $t= au_{2}$ أحسب قيمة الطاقة المحولة $E_{d}\left(t
ight)$ بفعل جول عند اللحظة .4

الأحماض الكربوكسيلية هي مركبات عضوية أكسجينية صيغتها $C_nH_{(2n+1)}-COOH$ و n عدد طبيعي غير معدوم ، حيث: -COOHالمجموعة الوظيفية الكربوكسيلية الميزة للعائلة و $-C_nH_{(2n+1)}$ و $-C_nH_{(2n+1)}$ عبد ألكيلي .

 $m_0=450mg$ المعرفة الصيغة والاسم النظامي للحمض الكربوكسيلي، نأخذ عينة من القارورة كتلتها pH له في حالة ونحضر بها محلولا مائيا (S_A) حجمه $V_A=500mL$ وتركيزه المولي ، نقيس قيمة الpH له في حالة التوازن عند درجة حرارة ثابتة $O(S_A)$ نجد $O(S_A)$ نجد درجة حرارة ثابتة $O(S_A)$ نجد $O(S_A)$

ي: (S_A) الصور الموالية خطوات غير مرتبة لتحضير المحلول (S_A)

أ_تعرف على العناصر المرقمة.

 (S_A) بـ رتب الصور ترتيبا صحيحا مع الشرح يمكن من تحضير المحلول

2 أكتب معادلة تفاعل الحمض الكربوكسيلي RCOOH مع الماء.

3_أ_أنشئ جدول تقدم التفاعل.

.
$$\frac{\left[RCOOH\right]_{f}}{\left[RCOO^{-}\right]_{f}} = C_{A}.10^{pH} - 1:$$
بالشكل التالي: -1 بالتالي: -1 بالتالي

PKaجـ اعتمادا على ثابت الحموضة Kaللثنائية $(RCOOH\ /RCOO^-)$ ، بين أن عبارة ثابت الحموضة

$$a = pH + \log \frac{\left[RCOOH\right]_f}{\left[RCOO^-\right]_f}$$
: تكتب على الشكل التالي:

4 ـ لتحديد قيمة التركيز المولي C_A للمحلول (S_A) ناخذ منه حجما قدره V=10mL ونعايره بواسطة محلول على مائي (S_B) لهيدروكسيد الصوديوم (Na^++OH^-) تركيزه المولي (S_B) فتحصلنا على التكافؤ عند إضافة حجما قدره $V_{BE}=15mL$ من المحلول (S_B) .

أ_أكتب معادلة تفاعل المعايرة.

 C_A ب جد قيمة التركيز المولي C_A للمحلول ب

2016£ M_IS

5_أ_جد قيمة الكتلة المولية الجزيئية M للحمض الكربوكسيلي المدروس ، ثم حدد صيغته واسمه النظامي . pKa ب_جد قيمة ثابتي الحموضة pKa و pKa للثنائية pKa .

6ـ احسب قيمة النسبة النهائية au_f لتقدم تفاعل الحمض الكربوكسيلي السابق مع الماء ،ماذا تستنتج ؟ العطيات: $M\left(O\right)=16g.mol^{-1}$, $M\left(C\right)=12g.mol^{-1}$, $M\left(H\right)=1g.mol^{-1}$

نحو البكالوريا الموضوع رقم 12_______ الصفحة 2 من 8 -

التمرين رقم: 03

ندرس في هذا التمرين انزلاق جسم صلب (S) على مستو مائل (وسادة هوائية) على الأفق بزاوية α بدون احتكاك.

I_ الدراسة التجريبية:

نحرر الجسم من قمة المستوي المائل من السكون ليتحرك، بعد تشغيل كاميرا رقمية من أجل تسجيل الحركة. و بواسطة برنامج إعلام آلي نسجل فواصل مواضع مركز العطالة G للجسم (S)

خلال فترات زمنية متتالية و متساوية بالنسبة للمحور $(x \, \dot{x})$ الموازي لمسار مركز العطالة G، و بأخذ مبدأ الأزمنة لحظة مرور هذا الأخير بمبدأ الفواصل O فتحصلنا على النتائج التالية.

الموضع	M_{0}	M_{1}	M_{2}	M_3	M_4	M_{5}	M_{6}	M_{7}
t(s)	0,00	0,10	0,20	0,30	0,40	0,50	0,60	0,70
x(cm)	0	6	16	26	40	54	72	90
$v\left(m.s^{-1}\right)$								

1_ أكمل الجدول.

v = f(t)بالاعتماد على سلم رسم مناسب أرسم المنحنى البياني.

t=0 لمركز العطالة v_0 و قيمة السرعة الابتدائية v_0 في اللحظة a_G لمركز العطالة a_G لمركز العطالة a_G في اللحظة v_0 في اللحظة والمركة.

t=0,7s عند اللحظة (S) عند الحطة 4-

II_ الدراسة النظرية:

1. مثل القوى الخارجية المؤثرة على الجسم (S).

و تسارع a_G بتطبيق القانون الثاني لنيوتن على الجسم (S) جد العبارة الحرفية للتسارع a_G بدلالة زاوية الميل و تسارع . g الجاذبية الأرضية g

 α أحسب قيمة الزاوية 3

 $g = 10 m \, s^{-2}$ تعطی:

على المـــوضوع رقم 12

حل التمرين رقم: 01

العادلة التفاضلية لتطور شحنة المكثفة $q\left(t
ight)$:

$$u_C=rac{q}{C}$$
 و $u_{R_1}=R_1i=R_1rac{dq}{dt}$: جيث $E=u_C+u_{R_1}$ و بتطبيق قانون جمع التوترات

$$.\frac{dq\left(t
ight)}{dt}+rac{1}{R_{1}C}q\left(t
ight)=rac{E}{R_{1}}$$
 نجد: R_{1} نجد ومنه: $R_{1}\frac{dq}{dt}+rac{q}{C}=E$ ومنه:

عبارة الثوابت A و B و au_1 بدلالة مميزات الدارة:

$$\frac{dq}{dt} = -\frac{B}{\tau_1}e^{-\frac{t}{\tau_1}}$$
باشتقاق عبارة الحل بالنسبة للزمن نجد:

نعوض عبارة الحل وعبارة المشتقة في المعادلة التفاضلية نجد:

$$\left(-\frac{B}{\tau_{1}} + \frac{B}{R_{1}C}\right)e^{-\frac{t}{\tau_{1}}} + \frac{A}{R_{1}C} - \frac{E}{R_{1}} = 0 \text{ ease } -\frac{B}{\tau_{1}}e^{-\frac{t}{\tau_{1}}} + \frac{A}{R_{1}C} + \frac{B}{R_{1}C}e^{-\frac{t}{\tau_{1}}} - \frac{E}{R_{1}} = 0$$

$$\begin{cases} A = CE \\ \tau_1 = R_1C \end{cases} \text{ eals} \begin{cases} \frac{A}{R_1C} - \frac{E}{R_1} = 0 \\ -\frac{B}{\tau_1} + \frac{B}{R_1C} = 0 \end{cases}$$

$$B=-A=-C\,E$$
 من الشروط الابتدائية $\left(t=0
ight)$ نجد: $\left(t=0
ight)$ نجد: ومنه: $\left(t=0
ight)$

$$q(t) = CE - CEe^{-\frac{t}{R_1C}} = CE\left(1 - e^{-\frac{t}{R_1C}}\right)$$
اذن تصبح عبارة الحل من الشكل:

 I_0 1. أـ قيمت

$$I_0 = \frac{dq}{dt}\bigg|_{t=0} = \frac{30\times 10^{-6}-0}{0.5\times 10^{-3}-0} = 6\times 10^{-2}A \quad :غند \ t = 0$$
نجد: $t = \frac{dq}{dt}$ الدينا:

:E بـقيمت

$$E=u_{C}\left(0
ight)+u_{R_{1}}\left(0
ight)$$
نجد: $t=0$ نجد اللحظة وعند اللحظة من قانون جمع التوترات و

.
$$E = R_1 I_0 = 100 \times 6 \times 10^{-2} = 6V$$
 إذن: $E = u_{R_1}(0)$ ومنه: $u_C(0) = 0$

4. العبارة الزمنية $E_{C}(t)$ للطاقة المخزنة في المكثفة:

$$.E_{C} = \frac{1}{2}CE^{2}\left(1 - e^{-\frac{t}{\tau_{1}}}\right)^{2}$$
و لدينا مما سبق: $E_{C} = \frac{1}{2}CE^{2}\left(1 - e^{-\frac{t}{\tau_{1}C}}\right)$ و لدينا مما سبق: $E_{C} = \frac{1}{2}Cu_{C}^{2} = \frac{1}{2}Cu_{C}^{2}$

5 قىمة سعة المكثفة C:

$$C = \frac{0.18 \times 10^{-3}}{36} = 10^{-5} F = 10$$
 تـع: $C = \frac{E_{C_{\max}}}{E^2}$ وعليه: $E_{C_{\max}} = \frac{1}{2} C E^2$ عند نهاية الشعن: τ_1 وعليه: عند نهاية الزمن τ_1

.
$$au_1 = R_1 C = 100 \times 10^{-5} = 10^{-3} s = 1 ms$$
 طریقت 01 : نعلم أن:

$$0,63q_{
m max}$$
 طريقة 02 : بيانيا au_1 يمثل فاصلة النقطة ذات الترتيبة

$$0,63q_{\max}=38\,\mu F$$
 أي: $q_{\max}=C\,u_{C_{\max}}=C\,E=6 imes10^{-5}C=60\,\mu C$ حيث: $au_{1}=1m\,s$.

المعادلة التفاضلية لتطور التوتر $u_{C}\left(t
ight)$ بين طرفى المكثفة. $u_{C}\left(t
ight)$

$$i=C\,rac{du_C}{dt}$$
 : بتطبيق قانون جمع التوترات: $u_C+(R_1+R_2)i=0$ ومنه: $u_C+u_{R_1}+u_{R_2}=0$ حيث:
$$\frac{du_C(t)}{dt}+rac{1}{(R_1+R_2)C}u_C(t)=0$$
 اي: $u_C+(R_1+R_2)C\,rac{du_C}{dt}=0$

أ. تحديد سلما مناسبا على محوري البيان الشكل. 3. لدينا: $E=u_{C_{\max}}=6V$ عمثلة ب $E=u_{C_{\max}}=6V$

$$1cm \to 2ms$$
 ولدينا كذلك: $1cm \to 2ms$ ومنه: $1cm \to 2ms$ ومنه: $1cm \to 2ms$ وعليه: $1cm \to 2ms$ وعليه: $1cm \to 2ms$ ومنه: $1cm \to 2ms$ ومنه: $1cm \to 2ms$ ومنه: $1cm \to 2ms$

$$.R_2 = \frac{2\times 10^{-3}}{10^{-5}} - 100 = 100\Omega : 30 - 30 - 30 = \frac{\tau_2}{C} - R_1 : 300 - 30 = \frac{\tau_2}{C} -$$

. تمثيل بشكل تقريبي المنحنى البياني $E_C = h(t)$ للطاقة المخزنة في المكثفة بدلالة الزمن.

$$(m\,J)$$
و الطاقة المخزنة ب $E_{C}=0.18 imes e^{-t}$ ومنه: $E_{C}=0.18 imes e^{-t}$ ومنه: $E_{C}=\frac{1}{2}C\,u_{C}^{2}=\frac{1}{2}C\,E^{2}e^{-2 imes 0.5t}$

t(ms)	0	$ au_2$	8
$E_{C}(mJ)$	0,18	0,024	0

 $t= au_{2}$ الطاقة المحولة لحرارة بقعل جول عند اللحظة. $E_{d}\left(t
ight)$

$$E_{C_{\max }}=E_{C}\left(au_{2}
ight) +E_{d}\left(au_{2}
ight) :$$
نعلم أن:

$$E_d\left(\tau_2\right) = 0.18 - 0.024 = 0.156 mJ$$
 تـع: $E_d\left(\tau_2\right) = E_{C_{\max}} - E_C\left(\tau_2\right)$ ومنه:

أ_التعرف على العناصر المرقمة: 1_قمع ، 2_ملعقة ، 3_ميزان إلكتروني حساس ، 4_حوجلة عيارية . (S_A) بـ ترتيب الصور ترتيبا صحيحا مع الشرح يمكن من تحضير المحلول

$$(C) \leftarrow (F) \leftarrow (A) \leftarrow (D) \leftarrow (B) \leftarrow (E)$$

بواسطة ميزان إلكتروني حساس مضبوط نزن الكتلة $m_0 = 450 mg$ مأخوذ من القارورة.

الموزونة إلى حوجلة عيارية سعتها $m_0 = 450 mg$ فيها قليل من الكتلة الكتلة الكتلة الكتلة الموزونة الم الماء المقطرمع الرج المستمر.

-نكمل بالماء المقطر حتى خط العيار مع الرج المستمر، مع سد فوهة الحوجلة عند نهاية التحضير.

 $RCOOH + H_2O = RCOO^- + H_3O^+$ معادلة تفاعل الحمض الكربوكسيلي $RCOOH + H_2O = RCOO^- + H_3O^+$ معادلة تقدم التفاعل:

معادلة التفاعل		$RCOOH + H_2O = RCOO^- + H_3O^+$					
الحالة	التقدم	ڪميۃالمادة بـ mol					
الابتدائية	x = 0	$n_0 = C_A V_A$		0	0		
الانتقالية	x(t)	$n_0 - x(t)$	بالزيادة	x(t)	x(t)		
النهائية	x max	$n_0 - x_f$		x_f	x_f		

لدينا من حدول تقدم التفاعل:

$$n_f\left(RCOO^-\right) = n_f\left(H_3O^+\right) = x_f$$
 وكذلك: $n_f\left(RCOOH\right) = C_AV_A - x_f$

$$\begin{split} \left[RCOO^{-}\right]_{f} = & \left[H_{3}O^{+}\right]_{f} = \frac{x_{f}}{V_{A}} : \text{كلك: } \left[RCOOH\right]_{f} = C_{A} - \frac{x_{f}}{V_{A}} = C_{A} - \left[H_{3}O^{+}\right]_{f} \\ & \frac{\left[RCOOH\right]_{f}}{\left[RCOO^{-}\right]_{f}} = \frac{C_{A}}{\left[H_{3}O^{+}\right]_{f}} - 1 : \text{ and } \frac{\left[RCOOH\right]_{f}}{\left[RCOO^{-}\right]_{f}} = \frac{C_{A} - \left[H_{3}O^{+}\right]_{f}}{\left[H_{3}O^{+}\right]_{f}} : \text{ and } \frac{\left[RCOOH\right]_{f}}{\left[RCOO^{-}\right]_{f}} = C_{A} \cdot 10^{pH} - 1 : \text{ bis } \left[H_{3}O^{+}\right]_{f} = 10^{-pH} : \text{ bis } \left[RCOO^{-}\right]_{f} : \text{ and } \left[RCOO^{-}\right]_{f} = 10^{-pH} : \text{ bis } \left[RCOO^{-}\right]_{f} : \text{ bis } \left[RC$$

ب ـ تبيان أن عبارة ثابت الحموضة PKa للثنائية $(RCOOH / RCOO^-)$ تكتب على الشكل التالي: $PKa = pH + \log \frac{[RCOOH]}{[RCOO^-]}$

$$Ka = \frac{\left[RCOO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[RCOOH\right]_{f}}$$
 عبارة ثابت التوازن Ka للثنائية والمنائية والمنائية عبارة ثابت التوازن عمل الثنائية والمنائية والمنائية

$$\log Ka = \log \frac{\left[RCOO^{-}\right]_{f}}{\left[RCOOH\right]_{f}} + \log \left[H_{3}O^{+}\right]_{f}$$
 ومنه:

$$\log Ka = -\log \frac{\left[RCOOH\right]_f}{\left[RCOO^-\right]_f} + \log \left[H_3O^+\right]_f$$
 ومنه:

$$pH = -\log\left[H_3O^+
ight]_f$$
 و $pKa = -\log Ka$ و $pKa = \log\left[RCOOH\right]_f - \log\left[H_3O^+\right]_f$ اي:

. إذن:
$$PKa = pH + \log \frac{\left[RCOOH\right]_f}{\left[RCOO^-\right]_f}$$
 وهو المطلوب

4_أ_معادلة تفاعل المعايرة:

$$. RCOOH + OH^- = RCOO^- + H_2O$$

 (S_A) بـإيجاد قيمة التركيز المولى C_A للمحلول

 $C_{\scriptscriptstyle A}V_{\scriptscriptstyle }=C_{\scriptscriptstyle B}V_{\scriptscriptstyle BE}$ عند التكافؤ يتحقق لنا مزيجا ستكيوميتيريا أي

$$C_A = \frac{10^{-2} \times 15}{10} = 1,5 \times 10^{-2} \, mol. L^{-1} :$$
 تـع $C_A = \frac{C_B V_{BE}}{V} :$ أي

أ_إيجاد قيمة الكتلة المولية الجزيئية Mللحمض الكربوكسيلي المدروس:

$$M=\!rac{m_0}{C_AV_A}:$$
نعلم أن: $n_0\!=\!rac{m_0}{M}$ و $n_0\!=\!C_AV_A$ نعلم أن

$$M = \frac{450 \times 10^{-3}}{1.5 \times 10^{-2} \times 500 \times 10^{-3}} = 60g \text{ mol}^{-1}$$
: قـع

تحديد صيغة الحمض الكربوكسيلي واسمه النظامي:

 $C_n H_{(2n+1)} - COOH$:نعلم أن الحمض المدروس ينتمي لعائلة الأحماض الكربوكسيلية أي صيغته

$$M\left(C_{n}H_{(2n+1)}-COOH\right)=60g.mol^{-1}$$
 ومنه:

حيث:

$$M\left(C_{n}H_{(2n+1)}-COOH\right) = nM\left(C\right) + (2n+1)M\left(H\right) + M\left(C\right) + 2M\left(O\right) + M\left(H\right)$$

$$= 12n + 2n + 1 + 12 + 32 + 1$$

$$= 14n + 46$$

$$n = \frac{60 - 46}{14} = 1$$
 وعليه: $14n + 46 = 60$

وبالتعويض قيمة n=1 في $C_nH_{(2n+1)}-COOH$ نجد صيغة الحمض الكربوكسيلي المدروس: . CH_3-COOH

الاسم النظامي: حمض الإيثانويك.

: $(CH_3-COOH\ /CH_3-COO^-)$ بـ إيجاد قيمة ثابتي الحموضة pKa و pKa للثنائية

$$\frac{\left[CH_{3}-COOH\right]_{f}}{\left[CH_{3}-COO^{-}\right]_{f}} = C_{A}.10^{pH}-1:$$
لاينا:
$$PKa = pH + \log \frac{\left[CH_{3}-COOH\right]_{f}}{\left[CH_{3}-COO^{-}\right]_{f}}:$$

$$PKa = pH + \log(C_A.10^{pH} - 1)$$
 أي:

$$PKa = 3,3 + \log(1,5 \times 10^{-2} \times 10^{3,3} - 1) = 4,76 \approx 4,8 \approx 4,8$$
تـ ع

$$Ka = 10^{-PKa} = 10^{-4.8} = 1.6 \times 10^{-5}$$
 ونعلم أن:

6ـ حساب قيمة النسبة النهائية au_f لتقدم تفاعل الحمض الكربوكسيلي السابق مع الماء ،ماذا تستنتج ؟

$$au_f = rac{x_f}{x_{
m max}} = rac{\left[H_3O^+
ight]_f V_A}{C_A V_A} = rac{\left[H_3O^+
ight]_f}{C_A}$$
نعلم أن: $au_f = rac{\left[H_3O^+
ight]_f}{C_A} = rac{10^{-pH}}{1,5 imes 10^{-2}} = 0,033$ أي: $au_f = rac{10^{-pH}}{C_A} = rac{10^{-3,3}}{1,5 imes 10^{-2}} = 0,033$

بـما أن: $au_f < 1$ فإن:التفاعل غير تام وحمض الإيثانويك ضعيف.

حل التمرين رقم: 03

الدراسة التجريبية:I

. وبالاعتماد على علاقة التأطير $v_i=\frac{M_{i-1}M_{i+1}}{2 au}$ علاقة التأطير au=0.10s على نملأ الجدول .

الموضع	-	_	_		=	•	-	
t(s)	0,00	0,10	0,20	0,30	0,40	0,50	0,60	0,70
$v\left(m.s^{-1}\right)$		0,8	1,0	1,2	1,4	1,6	1,8	

 $\overline{v} = f(t)$ رسم المنحنى البياني.

t=0د. أ. قيمة التسارع a_{G} و اللحظة 3

$$a_G = \frac{\Delta v}{\Delta t} = \frac{1,8-0,8}{0,6-0,1} = 2 \, m \, s^{-2}$$
التسارع a_G يمثل معامل توجيه المستقيم و عليه

 $v_0 = 0,6 m$. $v_0 = 0,6 m$. $v_0 = 0$ قيمة t = 0 قيمة v = f(t) نستنج عند اللحظة

ب طبيعة الحركة: بما أن المسار مستقيم و التسارع ثابت وموجب، نستنتج أن حركة الجسم حركة مستقيمة متغيرة بانتظام.

t=0,7s عند اللحظة (S) عند الحظة 4

$$eta=v_0=0,6m$$
 . a^{-1} و $lpha=a_G=2m$. a^{-2} البيان خط مستقيم معادلتها هي: $a=a_G=2m$ حيث: $a=a_G=2m$ و

 $v\left(0,7\right)=2m\,s^{-1}$ اذن: $v\left(t\right)=2t+0,6$ وعليه:

I_ الدراسة النظرية:

(S) القوى الخارجية المؤثرة على الجسم الخارجية المؤثرة على الجسم الخارجية المؤثرة على الحسم ا

 a_G عبارة التسارع 2

بتطبيق القانون الثاني لنيوتن على الجسم (S)في المعلم السطحي الميران الثاني لنيوتن على الجسم (S)

 $\overrightarrow{P}+\overrightarrow{R}=m$ $\overrightarrow{a_G}$: ومنه $\sum \overrightarrow{F_{ext}}=m$ $\overrightarrow{a_G}$: الأرضي الذي نعتبره عطاليا نجد

 $a_G=g\sin(lpha)$ و بالإسقاط وفق المحور (x'x) نجد: $P\sin(lpha)=m$ و عليه: (x'x)

3 - حساب قيمة الزاوية α:

$$\alpha = 11.5^{\circ}$$
 وعليه: $\sin(\alpha) = \frac{a_G}{g} = \frac{2}{10} = 0.2$

نحو البكالوريا الموضوع رقم 12______الصفحة