How Numbers are represented in a computer!

Integers are exact but finite, dependent on number of bytes /bits

Typical Integer Representations / Ranges

Unsigned

Signed

Note: Range related to #of bits

2¹⁰ × 10³

Real numbers are represented by floating data types. Never use == to compare floats! Only do the following

X = = Y = Never

|X-Y| = E - Always

X-Y = difference

1x-y1 = Absolute value of the difference

E = Tolerance where

E = |x|/SD

10

5D = Significant Disits of the data type

Floating Data Types are always inaccurate due to finite number of bits.

Example X E Q Q is set of national Numbers

12/99 = .12121212.... Thorever = .12 Rundersone means repeat for forever So let's calculate the range of 2 Real Data types and how accurate they could be! 4 byte Real called float in Ctt All Numbers can be represented in scientific

Notation

1 Sigh bit for mantissa 23 bits for mantissa range 1 Sign bit for characteristic 7 bits for chacateristic range So the range = 2 = 222 = 8 × 10 × 10 = 10 or 2 7 significant digits in Base 10

For the power

$$10 = 2^{\pm (2^{2}-1)} = \frac{\pm 127}{2}$$

$$\log_{10} 10^{\times} = \log_{10} 2^{\pm 127}$$

$$\times = \pm 127 \log_{10} 2$$

$$\times 2 \pm 38$$

The limit of accuracy for a 4byte real called float is

7 significant digits Base 10 With the range ±38

This datatype should be used for real values +99% of the time since it is rare that we know a number to this kind of accuracy.

Refer to any laboratory science and measurement accordacy.

Now define a real datatype with	ax the
Width!	
•	
8 bytes - 64 bits	
	1
	11 bit characteristic
53 6,+	<i>^</i>
martissa	lbit for sign
l bit sign	
Ton Jigh	
<u> </u>	IC, C2, C10
+ 0. m, m, m x	2
Same avalysis as before	
53 3 10 18 10 10	10 3 3 3 3 A
Accoracy 2 = 2x2x2x2x2x2	_
	210/6
So, 16 significant digits 1	in Base 10
Now the range	

The range in base 10

log, 10 = log, 2

X = 1023 log 2

= ±308

Then the range of an 8 Byte float, i.e. a Dorble is

<u>† 308</u>

with accuracy of 16 significant digits Base 10

When are double data types needed?

IN CES/CSC 5 or 174 ??

Never

Absolutely No wood since No problem requires this range or accuracy.