Практикум 1. Пошаговые вычисления в пакете MATLAB.

Цель работы — знакомство с интерфейсом, представлением различных типов числовых данных и действиями над ними.

Продолжительность работы - 2 часа.

Оборудование, *приборы*, *инструментарий* — работа выполняется в компьютерном классе с использованием пакета MatLab.

Порядок выполнения

- 1. Упражнения выполняются параллельно с изучением теоретического материала.
- 2. После выполнения каждого упражнения результаты заносятся в отчёт.
- 3. При выполнении упражнений в случае появления сообщения об ошибке рекомендуется сначала самостоятельно выяснить, чем оно вызвано, и исправить команду; если многократные попытки устранить ошибку не привели к успеху, то проконсультироваться с преподавателем.
- 4. Дома доделать упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые Вы не успели выполнить во время аудиторного занятия.
- 5. После выполнения упражнений выполнить дополнительные упражнения для самостоятельной работы и ответить на контрольные вопросы и (см. ниже).
- 6. Подготовить отчёт, в который включить упражнения из раздела «Краткие теоретические сведения и практические упражнения» и упражнения для самостоятельной работы. Отчёт представить в виде документа Microsoft Word, файла (пример): mp_10_Ivanov_P_01_s1 имя (факультет группа Фамилия студента Инициал номер лабораторной семестр). Отчет должен содержать каждому выполненному упражнению: № упражнения, текст упражнения; команды, скопированные из командного окна, с комментариями к ним и результаты их выполнения, включая построенные графики; тексты М-сценариев и Мфункций; выводы.

Краткие теоретические сведения и практические упражнения

1. Основные окна рабочего стола МАТLAB.

После запуска пакета появляется рабочий стол (**Desktop**), состоящий из строки заголовка, строки главного меню, панели инструментов и комбинированного окна.

Комбинированное окно включает четыре панели:

Command Window (Окно команд)

Command History (История команд)

Workspace (Рабочее пространство)

Current Folder (Текущая папка)

В **Command Window** набираются команды, подлежащие немедленному исполнению, и выдаются результаты выполненных команд

Окно **Workspace** отображает текущий набор переменных, заведенных пользователем в командном окне.

Окно **Command History** хранит все команды, набираемые пользователем в командном окне Command Window, однако в отличие от Command Window в Command History не попадают результаты вычислений и сообщения системы.

Переключение между окнами реализуется с помощью щелчка левой кнопки мыши в области соответствующего окна или на одной из вкладок, если нужное окно полностью закрыто другим окном. Конфигурацию окон на экране можно менять, используя вертикальные и горизонтальные разделители. Можно изменять размер окон в пределах рабочего стола, перемещать окна по экрану с помощью перетаскивания строки заголовка соответствующего окна, закрывать их (крестик) и отделять(отстыковывать) от рабочего стола (стрелочка). Чтобы в точности восстановить исходную конфигурацию нужно пройти путь: **Desktop** (команда Рабочий стол в строке главного меню) → **Desktop Layout** (разметка рабочего стола) → **Default** (по умолчанию).

Упражнение 1.

1) Последовательно переключиться между окнами Command Window, Workspace, Command History, Current Folder, Command Window.

- 2) С помощью вертикального разделителя уменьшить примерно на половину ширину Command Window, увеличив при этом ширину окон Workspace и Command History.
- 3) С помощью горизонтального разделителя увеличить примерно на треть высоту Workspace.
 - 4) Перенести в левый верхний угол рабочего стола Command History.
- 5) Отстыковать окно Current Folder и перенести его в правый нижний угол рабочего стола, после чего свернуть его.
- 6) Развернуть во весь экран Command History, затем вернуть его в предыдущее положение.
- б) Удалить с рабочего стола Command History. Вернуть его, с помощью последовательности команд: **Desktop** (команда Рабочий стол в строке главного меню) → **Command History** (поставить галочку).
- 7) Минимизировать окно Workspace (нажать на панели инструментов этого окна на стрелку Minimize Workspace).

B результате выполнения пунктов 1-6 на рабочем столе должны остаться два окна Current Folder и Command Window.

- 8) Вернуть окно Workspace в предыдущее положение (нажать на закладку Workspace и после выдвижения окна Workspace нажать на его панели инструментов прямоугольник Restore Workspace восстановить рабочее пространство).
 - 9) Пристыковать к рабочему столу Current Folder.
 - 10) Восстановить исходную конфигурацию рабочего стола.

Знак >> в Command Window символизирует начало текущей строки. В этой строке можно набирать формулы или команды, удовлетворяющие синтаксису языка MATLAB. Если все составляющие (операнды) формулы известны, то после нажатия клавиши <Enter> MATLAB вычисляет значение выражения. Если в выражении указан операнд, значение которого неизвестно, MATLAB выдает сообшение об ошибке.

Упражнение 2. Выполнить команды

- 1) >> 2*3
- 2) >> k=3+4

$$3) >> (k+1)*(k-1)$$

$$4) >> (x+1)*(x-1)$$

5) Точка с запятой подавляет автоматический вывод результатов вычислений >> a=5; b=3; c=6; h=(a+b)*c;

Обратите внимание: значение всех промежуточных переменных, использованных в многошаговых вычислениях, MATLAB запоминает в рабочем в пространстве (см. окно Workspace).

6) Если формула для вычисления очень длинная, то ее можно перенести на следующую строку. Признаком завершения сроки, у которой имеется продолжение на следующей строке, являются три подряд идущих точки.

Обратите внимание: информация, касающаяся переменной h, в окне Workspace обновлена.

Меню **Edit** (Правка) в строке главного меню содержит группу команд, которые позволяют очистить соответствующие окна (**Clear Command Window** - очистить окно команд, **Clear Command History** — очистить окно истории команд, **Clear Workspace** — очистить переменные рабочего пространства).

2. Переменные рабочего пространства.

В именах переменных можно использовать латинские буквы, цифры и символ подчеркивания; большие и малые буквы в именах различаются; имя должно начинаться с буквы; длина имени не должна превышать 63 символа.

Информацию о переменных рабочего пространства можно получить, набрав в Command Window команду whos

>> whos a b h

Name – имя переменой, Size – размерность, Bytes – количество занятых байтов, Class - класс объектов, представляющих соответствующий тип данных. Детали этой информации рассмотрим позже.

Команда whos без параметров выдает информацию обо всех переменных.

Если в дальнейших вычислениях переменная а, к примеру, не понадобится, ее можно убрать из рабочего пространства, набрав в командном окне >> clear a Команда clear без параметров удаляет все переменные.

Упражнение 3.

- 1) Убрать из рабочего пространства все переменные.
- 2) Ввести новые переменные x, y, z, t, задав им значения соответственно 1, 2, 3, 4.
 - 3) Вывести в командное окно информацию обо всех переменных.
 - 4) Удалить из рабочего пространства переменную х.
 - 5) Вывести в командное окно информацию об оставшихся переменных.
 - 6) Удалить из рабочего пространства одновременно переменные у и z.
 - 7) Вывести в командное окно информацию об оставшихся переменных.

3. Представление данных матрицами

Матрицей размерности $n \times m$ называется прямоугольная таблица, состоящая из n строк и m столбцов. Традиционно в математике эту таблицу заключают в круглые скобки. Например, $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 \end{pmatrix}$ - матрица размерности 2×4 ;

Если матрица имеет размер $1 \times m$, т.е. состоит только из одной строки, то ее называют вектором-строкой. Например, $B = (1 \ 3 \ -1)$ - матрица размерности 1×3 , т.е. вектор-строка.

Если матрица имеет размер $n \times 1$, т.е. состоит только из одного столбца, то ее называют вектором-столбцом. Например, $C = \begin{pmatrix} -1 \\ 2,1 \end{pmatrix}$ - матрица размерности 2×1 , т.е. вектор-столбец.

Если матрица имеет размер 1×1 , т.е. состоит из одного столбца и одной строки, то ее называют скаляром. Например, D=(9) - матрица размерности 1×1 , т.е. скаляр.

В MATLAB все числовые данные представляются в виде матриц. Поэтому любое число рассматривается как матрица размера 1×1.

Рассмотрим самый простой способ задания матриц в MATLAB.

Для задания вектора-строки (т.е. матрицы размера $1 \times m$) используются квадратные скобки, в которых числовые данные отделяются друг от друга пробелами или запятыми:

Для задания вектора-столбца (т.е. матрицы размера $n \times 1$) используются квадратные скобки, в которых числовые данные отделяются друг от друга точкой с запятой:

Комбинируя оба варианта разделителя, можно задать матрицу, число строк и столбцов которой больше одного (двумерный массив):

Любое число рассматривается в MATLAB как матрица размера 1×1 .

```
  Лююое число рассматривается в MATLAB ка

  >> n=3

  n =

  3

  >> m=[3]

  m =

  3

  >> whos A B C n m

  Name
  Size

  Bytes Class
  Attributes

  A
  2x4

  64 double
```

B 1x3 24 double
C 2x1 16 double
m 1x1 8 double
n 1x1 8 double

Для доступа к отдельным элементам матриц указываются их индексы. Например, A(1,3) — элемент матрицы A, стоящий в 1-й строке и 3-м столбце; B(2)(B(1,2)) — второй элемент вектора-строки B.

Далее мы будем часто использовать векторы-строки, элементы которых образуют арифметическую прогрессию. Они задаются следующим образом: $a_1:d:a_n$:

Элементами матриц могут быть любые выражения, допустимые в MATLAB.

>> S=[-1+2*3 sqrt(2) abs(-3)]

Упражнение 4.

- 1) Задать какую-нибудь матрицу R размерностью 3×4.
- 2) Заменить значения элемента R(2,3) на противоположный (R(2,3)=-R(2,3)), вывести обновленную матрицу R в командное окно. Уменьшить на 4 элемент, стоящий в первой строке и третьем столбце, вывести обновленную матрицу R в командное окно. Удвоить все элементы второго столбца (>> R(:,2)=2*R(:,2)). Утроить все элементы первой строки.
- 3) Задать векторы-строки размерности 1×5 и 1×7 , задать 3 вектора-столбца разной размерности.

4. Формат отображения числовых данных

Числовые данные, с которыми оперирует MATLAB, в памяти компьютера представлены вещественными или комплексными (их обсудим позже) переменными в формате double. Это означает, что каждое вещественное число занимает 8 байтов в оперативной памяти и принимает по модулю значения из

диапазона [10⁻³⁰⁸,10³⁰⁸]. Количество значащих цифр при этом достигает 16-17. Именно с такой точностью MATLAB выполняет все вычисления. Однако при отображении всех результатов на экране часть значащих цифр отбрасывается в соответствии с установленным форматом вывода. Отображаемые значения округляются по общепринятым в математике правилам.

В таблице 1 представлены основные форматы вывода числовых данных с фиксированной (левый столбец) и плавающей (правый столбец) запятой. Формат rational позволяет отображать числовые значения в виде подходящих рациональных дробей с минимально возможными числителями и знаменателями. При этом значение переменной х, хранящееся в памяти компьютера, не зависит от установленного формата вывода.

Таблица 1. Форматы вывода чисел			
Пример отображения	Пример отображения	Пример отображения	
числа	числа	числа	
>> format short	>> format short e	>> format rational	
>> x=sqrt(2)	>> x	>> x	
x =	x =	x =	
1.4142	1.4142e+000	1393/985	
>> format long	>> format long e		
>> x	>> x		
x =	x =		
1.414213562373095	1.414213562373095e+000		

По умолчанию система использует формат short (укороченный).

Есть целый ряд системных числовых констант, которые не надо портить:

pi – число π ;

realmax – наибольшее положительное число с плавающей запятой; realmin – наименьшее положительное число с плавающей запятой; eps – относительная погрешность при вычислениях с плавающей запятой.

Упражнение 5.

Вывести в формате long e: realmax, realmin, eps.

5. Основные математические функции

Напомним, что все данные в системе MATLAB – массивы. Все операции над массивами реализуются посредством функций. С каждой из традиционных операций (с умножением, делением и возведением в степень) связаны по две функции. Список этих функций приведен в табл. 2 (см. также Л.1 стр. 27). Серым цветом выделены функции, которыми будем пользоваться после изучения соответствующих понятий в курсе линейной алгебры.

Таблица 2. Арифметические функции		
Символ	Выполняемое действие	
+	Покомпонентное сложение числовых массивов одинаковой	
	размерности.	
	Добавление скалярной величины к каждому элементу массива.	
-	Покомпонентное вычитание числовых массивов одинаковой	
	размерности.	
	Вычитание скалярной величины от каждого элемента массива.	
*	Умножение матриц в соответствии с правилами линейной алгебры	
	(условие выполнения: число столбцов первого сомножителя должно	
	быть равно числу строк второго сомножителя)	
.*	Покомпонентное умножение массивов одинаковой размерности	
/	Деление скаляра на скаляр.	
	Покомпонентное деление всех элементов массива на скаляр.	
	$A/B = A*B^{-1}$ (A и B — квадратные матрицы одного порядка).	
./	Покомпонентное деление элементов массивов одинаковой	
	размерности.	
^	Возведение скаляра в любую степень.	
.^	Поэлементное возведение элементов матрицы степень.	
,	Вычисление сопряженной матрицы	
,	Транспонирование матрицы	

Упражнение 6.

1) Ввести матрицы

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 3 & 4 \end{pmatrix}, c = 2, D = ones(2,3), E = eye(3,3).$$

2) Выполнить операции (или убедиться, что их выполнить нельзя): A+B, A+B, A+c, A+E A-B, A-c, c*A, c*A, A+c*D, A-c*D, A*B, A*B, c^3 , A*3, A', (A')'.

В таблице 3 приведен список основных элементарных функций (см. также Л.1 стр. 27, 28).

Таблица 3. Элементарные математические функции		
Категория функций	Наименование функций	
Тригонометрические, аргумент в	$\cos(x), \sin(x), \tan(x), \cot(x)$	
радианах		
Тригонометрические, аргумент в	cosd(x), $sind(x)$, $tand(x)$, $cotd(x)$	
градусах		
Обратные тригонометрические,	$a\cos(x), a\sin(x), a\tan(x), a\cot(x)$	
аргумент в радианах		
Обратные тригонометрические,	$a\cos d(x)$, $a\sin d(x)$, $at and(x)$, $acotd(x)$	
аргумент в градусах		
Гиперболические	$\cosh(x), \sinh(x), \tanh(x), \coth(x)$	
$ch(x) = \frac{e^x + e^{-x}}{2}, sh(x) = \frac{e^x - e^{-x}}{2},$		
$th(x) = \frac{sh(x)}{ch(x)}, cth(x) = \frac{ch(x)}{sh(x)}$		
Степени, логарифмы, корни	$\exp(x), \log(x), \log 10(x), \log 2(x), \operatorname{sqrt}(x)$	
Модуль числа	abs(x)	
Знак числа	sign(x)	
Округление по обычным	round(x)	
математическим правилам		

Подробную информацию о каждой функции можно получить с помощью команды

help <имя функции>. Например,

>> help cos

COS Cosine of argument in radians.

COS(X) is the cosine of the elements of X.

Очень важная особенность функций в MATLAB - обработка аргументов, заданных матрицами.

Например,

A =

1 3 4

6 1 0

 \gg B=sin(A)

B =

-0.27942 0.84147 0

Упражнение 7.

1) Вычислить $\sqrt{1}, \sqrt{3}, \sqrt{5}$ с помощью задания данных в виде вектора.

Задания для самостоятельной работы

- **1.** Выполнить упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые не успели сделать в аудитории.
- 2. Самостоятельно выполнить упражнения:

Упражнение С1.

- 1) Задать вектор-строку с элементами от -2 до 10 с шагом 2, утроить все ее элементы.
- 2) Задать вектор-строку с элементами от 45 до 5 с шагом -5, определить ее размерность.

Упражнение С2.

Вывести во всех основных форматах рі.

Упражнение С3.

- 1) Вычислить значения $\cos(x)$ одновременно при $0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, ..., 2\pi$. То же для остальных тригонометрических функций.
- 2) Вычислить значение выражения $y = \cosh^2(x) \sinh^2(x)$ одновременно при x = -2, -1.5, -1, ..., 2.
 - 3. Повторить теоретический материал, ответить на контрольные вопросы:
 - 1) Перечислите основные окна рабочего стола MATLAB.
 - 2) Какие имена переменных являются допустимыми?
 - 3) Каким образом можно получить информацию о переменных рабочего пространства?
 - 4) Перечислите основные форматы вывода числовых данных с фиксированной и плавающей запятой.
 - 5) Каким образом можно получить подробную информацию о функции или команде?
 - 6) Как задать матрицу произвольной размерности?
 - 7) Каким образом осуществляются поэлементные арифметические действия с матрицами одинаковой размерности?

Список рекомендуемой литературы

- **1.** А. Кривелёв. Основы компьютерной математики с использованием системы MatLab. M, 2005. 2.1, 3.1, 4.1.
- 2. В.Г.Потемкин "Введение в Matlab" (v 5.3), http://matlab.exponenta.ru/ml/book1/index.php - 1.1, 1.7, 8.6