$\ddot{\mathbf{U}} \mathbf{bungsblatt} \ \mathbf{8-Frohe} \ \mathbf{Weihnachten!}$

Aufgabe 29 (1+2+2). Berechnen Sie folgende Grenzwerte

- (i) $\lim_{x\to\infty} \frac{8x^3+2x+1}{2x^3+7x}$
- (ii) $\lim_{x\to\infty} \sqrt{x}(\sqrt{x+2}-\sqrt{x-2})$ Hinweis: Sie können benutzen, dass $\sqrt{x}\to\infty$ für $x\to\infty$.
- (iii) $\lim_{x\to\infty} \frac{x}{\ln x}$ Hinweis: Nutzen Sie $x = e^{\ln x}$ für $x \in (0, \infty)$.

Aufgabe 30 (1+2+2). Bestimmen Sie die Ableitungen der folgenden Funktionen

- (i) Tangens: $\tan : \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\} \to \mathbb{R}, x \mapsto \frac{\sin x}{\cos x}$
- (ii) $^{1}(x^{3}+2x+1)e^{x^{2}}$
- (iii) $\ln \frac{1+x}{1-x}$

Aufgabe 31 (2.5+2.5). (i) Sei g eine beschränkte Funktion auf [-1,1] und $f(x) := x^2g(x)$. Zeigen Siedass f in 0 differenzierbar ist.

(ii) Sei $f\colon I=(a,b)\subset\mathbb{R}\to\mathbb{R}$ in $x_0\in I$ differenzierbar. Zeigen Sie, dass dann

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0)$$

gilt. Folgt andersherum, dass, wenn der Limes $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{2h}$ existiert, dann f in x_0 differenzierbar ist? Beweisen Sie oder geben Sie ein Gegenbeispiel an.

Aufgabe 32 (3+2). (i) Rechnen Sie die Werte des Sinus und Kosinus für die Argumente $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$ nach:

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
cos	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0

Hinweis: $\cos x = \operatorname{Re} e^{ix}$

(ii) Skizzieren Sie die Mengen $A = \{\cos^2 \phi \ e^{i\phi} \ | \phi \in [0, 2\pi)\} \subset \mathbb{C}$ und $B = \{2(1 + \cos \phi) \ e^{i\phi} \ | \phi \in [0, 2\pi)\} \subset \mathbb{C}$.

Aufgabe* (5). Sei $f: [0,1] \to \mathbb{R}$ stetig mit f(0) = f(1). Für welche Zahlen $d \in (0,1]$ gibt es immer (also unabhängig von der gewählten Funktion f) ein $x \in [0,1-d]$ mit f(x) = f(x+d)?

Abgabe am Mittwoch 13.01.21 bis 14 Uhr

 $^{{}^{1}}e^{x^{2}} := e^{(x^{2})}$ und nicht gleich $(e^{x})^{2}$ (das letztere ist gleich e^{2x}).