The Strong Law of Large Numbers

Tong Zhou

JHU

The first strong law of large numbers is motivated by the Borel-Cantelli lemmas:

PROPOSITION 1 (Proposition 2.2.16). Suppose that $\mathbb{E}[Z_n^2] \leq C$ for some $C < \infty$ and all n. Then, $\frac{Z_n}{n} \xrightarrow{a.s.} 0$ as $n \to \infty$.

PROOF. Fix $\delta > 0$, consider the set

$$A_k = \{ \omega \in \Omega : |Z_k(\omega)| > k\delta \}$$
 for each $k \in \mathbb{N}$.

By the Chebyshev's inequality,

$$\mathbb{P}(A_k) \leqslant \frac{\mathbb{E}[Z_k^2]}{k^2 \delta^2} \leqslant \frac{C}{\delta^2 k^2}.$$

By $\sum_k \mathbb{P}(A_k) \leq (C/\delta^2) \sum_k \frac{1}{k^2} < \infty$, apply the Borel-Cantelli lemma I,

$$\mathbb{P}(A_k \text{ i.o.}) = \mathbb{P}(\cap_{m \ge 1} \cup_{k \ge m} A_k) = 0.$$

Define $N=\bigcap_{m\geq 1}\bigcup_{k\geq m}A_k$. Pick any $\omega\in N^c$, i.e., $\exists m\in\mathbb{N}, \text{ s.t.}, \, \forall k\geq m$, we have

$$\left|\frac{Z_k(\omega)}{k}\right| \leqslant \delta, \forall k \geqslant m.$$

It is true for any k and $\delta > 0$. So let $\delta \downarrow 0$, we have

$$\limsup_{k} \left| \frac{Z_k(\omega)}{k} \right| = 0.$$

and therefore,

$$\lim_{n} \frac{Z_n(\omega)}{n} = 0,$$

which concludes that $n^{-1}Z_n \xrightarrow{\text{a.s.}} 0$.

independent but non-identical R.V.s

EXERCISE 1. Suppose X_i are mutually independent random variables such that $\mathbb{P}(X_n = n^2 - 1) = 1 - \mathbb{P}(X_n = -1) = n^{-2}$ for $n = 1, 2, \dots$. Show that $\mathbb{E}[X_n] = 0$, for all n, while $n^{-1} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} -1$ for $n \to \infty$.

Additional properties of convergence a.s.

Exercise 2 (2.2.19). Show that for any R.V. X_n

- 1. $X_n \xrightarrow{a.s.} 0 \iff \mathbb{P}(|X_n| > \varepsilon \ i.o.) = 0 \ for \ each \ \varepsilon > 0.$
- 2. There exist non-random constants $b_n \uparrow \infty$ such that $X_n/b_n \xrightarrow{a.s.} 0$.

Proof.

1. For the sufficiency, suppose $X_n \xrightarrow{\mathsf{a.s.}} 0$. It means for any $\varepsilon > 0$, there exists $m \in \mathbb{N}$ such that $|X_n| < \varepsilon$ with probability 1 for any $n \ge m$. Or equivalently, given $\varepsilon > 0$,

$$\mathbb{P}\left(\bigcup_{m\in\mathbb{N}}\bigcap_{n\geqslant m}\left\{|X_n|<\varepsilon\right\}\right)=1$$

Taking the complement of the insider set:

$$\left(\bigcup_{m\in\mathbb{N}}\bigcap_{n\geqslant m}\left\{|X_n|<\varepsilon\right\}\right)^c=\left\{|X_n|>\varepsilon\text{ i.o.}\right\}.$$

So we have

$$\mathbb{P}(|X_n| > \varepsilon \text{ i.o.}) = 0.$$

For the necessary part, replace $\varepsilon = 1/k, k \in \mathbb{N}$. The condition can be rephrased as

$$\mathbb{P}\left(|X_n| > \frac{1}{k} \text{ i.o.}\right) = 0 \text{ for any } k \in \mathbb{N}.$$

Define the set

$$N := \bigcup_{k=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcup_{\ell > m} \left\{ |X_n| > \frac{1}{k} \right\}$$

So N is a \mathbb{P} -null set, i.e., $\mathbb{P}(N) = 0$.

Pick any $\omega \in \mathbb{N}^c$. Then for any $k \in \mathbb{N}$, there exists $m \in \mathbb{N}$, such that $|X_n(\omega)| \leq \frac{1}{k}$, $\forall \ell > k$. This indicates that $X_n \xrightarrow{\text{a.s.}} 0$.

2.