Chapter 3

The Relational
Data Model
and Relational
Database
Constraints

Addison-Wesley is an imprint of

Chapter 3 Outline

- The Relational Data Model and Relational Database Constraints
- Relational Model Constraints and Relational Database Schemas
- Update Operations, Transactions, and Dealing with Constraint Violations

The Relational Data Model and Relational Database Constraints

- Relational model
 - First commercial implementations available in early 1980s
 - Has been implemented in a large number of commercial system
- Hierarchical and network models
 - Preceded the relational model

Relational Model Concepts

- Represents data as a collection of relations
- Table of values
 - Row
 - Represents a collection of related data values
 - Fact that typically corresponds to a real-world entity or relationship
 - Tuple
 - Table name and column names
 - Interpret the meaning of the values in each row attribute

Relational Model Concepts (cont'd.)

Figure 3.1
The attributes and tuples of a relation STUDENT.

Domains, Attributes, Tuples, and Relations

- Domain D
 - Set of atomic values
- Atomic
 - Each value indivisible
- Specifying a domain
 - Data type specified for each domain

Domains, Attributes, Tuples, and Relations (cont'd.)

- Relation schema R
 - Denoted by $R(A_1, A_2, ..., A_n)$
 - Made up of a relation name R and a list of attributes, A₁, A₂, ..., A_n
- Attribute A_i
 - Name of a role played by some domain D in the relation schema R
- Degree (or arity) of a relation
 - Number of attributes n of its relation schema

Domains, Attributes, Tuples, and Relations (cont'd.)

Cardinality

Total number of values in domain

Current relation state

- Relation state at a given time
- Reflects only the valid tuples that represent a particular state of the real world
- Attribute names
 - Indicate different roles, or interpretations, for the domain

Characteristics of Relations (cont'd.)

Figure 3.2

The relation STUDENT from Figure 3.1 with a different order of tuples.

STUDENT

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Characteristics of Relations (cont'd.)

- NULL values
 - Represent the values of attributes that may be unknown or may not apply to a tuple
 - Meanings for NULL values
 - Value unknown
 - Value exists but is not available
 - Attribute does not apply to this tuple (also known as value undefined)

Relational Model Notation

- Name of a relation schema: STUDENT
 - Indicates the current set of tuples in that relation
- Notation: STUDENT(Name, Ssn, ...)
 - Refers only to relation schema
- Attribute A can be qualified with the relation name R to which it belongs
 - Using the dot notation R.A

Relational Model Notation

- n-tuple t in a relation r(R)
 - Denoted by $t = \langle v_1, v_2, ..., v_n \rangle$
 - v_i is the value corresponding to attribute A_i
- Component values of tuples:
 - t[A_i] and t.A_i refer to the value v_i in t for attribute
 A_i
 - $t[A_u, A_w, ..., A_z]$ and $t.(A_u, A_w, ..., A_z)$ refer to the subtuple of values $\langle v_u, v_w, ..., v_z \rangle$ from t corresponding to the attributes specified in the list

Relational Model Constraints

- Constraints
 - Restrictions on the actual values in a database state
 - Derived from the rules in the miniworld that the database represents
- Inherent model-based constraints or implicit constraints
 - Inherent in the data model

Domain Constraints

- Typically include:
 - Numeric data types for integers and real numbers
 - Characters
 - Booleans
 - Fixed-length strings
 - Variable-length strings
 - Date, time, timestamp
 - Money
 - Other special data types

Key Constraints and Constraints on NULL Values

 No two tuples can have the same combination of values for all their attributes.

Superkey

 No two distinct tuples in any state r of R can have the same value for SK

Key

- Superkey of R
- Removing any attribute A from K leaves a set of attributes K that is not a superkey of R any more

Key Constraints and Constraints on NULL Values (cont'd.)

- Key satisfies two properties:
 - Two distinct tuples in any state of relation cannot have identical values for (all) attributes in key
 - Minimal superkey
 - Cannot remove any attributes and still have uniqueness constraint in above condition hold

Key Constraints and Constraints on NULL Values (cont'd.)

- Candidate key
 - Relation schema may have more than one key
- Primary key of the relation
 - Designated among candidate keys
 - Underline attribute
- Other candidate keys are designated as unique keys

Key Constraints and Constraints on NULL Values (cont'd.)

CAR

Figure 3.4
The CAR relation, with two candidate keys:
License_number and
Engine_serial_number.

<u>License_number</u>	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

Integrity, Referential Integrity, and Foreign Keys

- Entity integrity constraint
 - No primary key value can be NULL
- Referential integrity constraint
 - Specified between two relations
 - Maintains consistency among tuples in two relations

Integrity, Referential Integrity, and Foreign Keys (cont'd.)

- Foreign key rules:
 - The attributes in FK have the same domain(s) as the primary key attributes PK
 - Value of FK in a tuple t₁ of the current state r₁(R₁) either occurs as a value of PK for some tuple t₂ in the current state r₂(R₂) or is NULL

Integrity, Referential Integrity, and Foreign Keys (cont'd.)

- Diagrammatically display referential integrity constraints
 - Directed arc from each foreign key to the relation it references
- All integrity constraints should be specified on relational database schema

Other Types of Constraints

- Semantic integrity constraints
 - May have to be specified and enforced on a relational database
 - Use triggers and assertions
 - More common to check for these types of constraints within the application programs

- 1. The company is organized into departments. Each department has a unique name, a unique number, and a particular employee who manages the department. We keep track of the start date when that employee began managing the department. A department may have several locations.
- 2. A department controls a number of projects, each of which has a unique name, a unique number, and a single location.
- 3. We store each employee's name, social security number (Note 1), address, salary, sex, and birth date. An employee is assigned to one department but may work on several projects, which are not necessarily controlled by the same department. We keep track of the number of hours per week that an employee works on each project. We also keep track of the direct supervisor of each employee.
- 4. We want to keep track of the dependents of each employee for insurance purposes. We keep each dependent's first name, sex, birth date, and relationship to the employee.

Figure 3.6

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Diocation	
1	Houston	
4	Stafford	
5	Bellaire	
5	Sugarland	
5	Houston	

Figure 3.6
One possible database state for the COMPANY relational database schema.

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Summary

- Characteristics differentiate relations from ordinary tables or files
- Classify database constraints into:
 - Inherent model-based constraints, explicit schema-based constraints, and applicationbased constraints
- Modification operations on the relational model:
 - Insert, Delete, and Update

