

김수환

https://www.soohwan.kim

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채 꼴(r)	중심각($ heta$)	호(l)	넓이(s)
원	(5)	1	2
단위부채꼴	4	3	6
일반부채 꼴	7	8	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채 꼴(r)	중심각($ heta$)	호(l)	넓이(s)
원	(5)	$\textcircled{1} \ l=2\pi r$	2
단위부채꼴	4	3	6
일반부채 꼴	7	8	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채꼴(r)	중심각($ heta$)	호(l)	넓이(s)
원	(5)	$\textcircled{1} l = 2\pi r$	② $s=\pi r^2$
단위부채꼴	4	3	6
일반부채꼴	7	8	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채꼴(r)	중심각($ heta$)	호(l)	넓이(s)
원	(5)	$\textcircled{1} l = 2\pi r$	② $s=\pi r^2$
단위부채꼴	4	$\Im l = r$	6
일반부채꼴	7	8	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채꼴(r)	중심각($ heta$)	호(l)	넓이(s)
원	(5)	$\textcircled{1} l = 2\pi r$	② $s=\pi r^2$
단위부채꼴	$\Theta \theta = 1$	$\Im l = r$	6
일반부채꼴	7	8	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채꼴(r)	중심각($ heta$)	호(l)	넓이(s)
원	\odot $ heta=2\pi$	$\textcircled{1} l = 2\pi r$	② $s=\pi r^2$
단위부채꼴	$\Theta \theta = 1$	$\Im l = r$	6
일반부채꼴	7	8	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채꼴(r)	중심각(θ)	호(l)	넓이(s)
원	\odot $ heta=2\pi$	① $l=2\pi r$	② $s=\pi r^2$
단위부채꼴	$oldsymbol{artheta} heta = 1$	$\Im \ l=r$	
일반부채꼴	7	8	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채꼴(r)	중심각(θ)	호(l)	넓이(s)
원	\odot $ heta=2\pi$	① $l=2\pi r$	② $s=\pi r^2$
단위부채꼴	$oldsymbol{artheta} heta = 1$	$\Im \ l=r$	
일반부채꼴	$ \bigcirc \theta $	8	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채 $ 2 (r) $	중심각(θ)	호(l)	넓이(s)
원	§ $ heta=2\pi$	$\textcircled{1} l = 2\pi r$	② $s=\pi r^2$
단위부채꼴	$egin{array}{c} eta & heta = 1 \end{array}$	$\Im \ l=r$	
일반부채꼴	$ \bigcirc \theta $	\otimes $l=r heta$	9

- 다음 표를 순서대로 채우시오. (호도법 사용)
- 단위부채꼴: 반지름과 호의 길이가 같은 부채꼴

부채 $ ^{f 2}(r)$	중심각($ heta$)	호(l)	넓이(s)
원	§ $ heta=2\pi$	$\textcircled{1} l = 2\pi r$	② $s=\pi r^2$
단위부채꼴	$egin{array}{c} eta & heta = 1 \end{array}$	$\Im \ l=r$	
일반부채꼴	$ \bigcirc \theta $	$\otimes l = r heta$	$\ \ \ \ \ \ \ \ \ \ \ \ \ $

삼각함수

피타고라스의 세 쌍

```
3:4:5
5:12:13
7:24:25
8:15:17
9:12:15
9:40:41
11:60:61
13:84:85
16:63:65
:
```

특수각의 삼각비

각도(deg)	0	30°	45°	60°	90°
각도(rad)	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$rac{1}{2}$	0
an	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞

벡터

다음 두 벡터의 내적을 구하라

$$\mathbf{a} = egin{bmatrix} -1 \ 2 \end{bmatrix}, \; \mathbf{b} = egin{bmatrix} 2 \ 3 \end{bmatrix}$$

$$\mathbf{a} \cdot \mathbf{b} = (-1) \cdot 2 + 2 \cdot 3 = 4$$

벡터의 내적 — 정사영벡터

다음 주어진 벡터에 대해서
 Proj_ba와 Proj_ab를 구하라

$$\mathbf{a} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\begin{aligned} \operatorname{Proj}_{\mathbf{b}}\mathbf{a} &= \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \\ &= \frac{(-3) \cdot 1 + 2 \cdot (-1) + 1 \cdot 1}{1 \cdot 1 + (-1) \cdot (-1) + 1 \cdot 1} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \\ &= \frac{-4}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \end{aligned}$$

$$\operatorname{Proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\mathbf{a}$$

$$= \frac{(-3) \cdot 1 + 2 \cdot (-1) + 1 \cdot 1}{(-3) \cdot (-3) + 2 \cdot 2 + 1 \cdot 1} \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

$$= \frac{-4}{14} \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

벡터의 내적 — 벡터의 분해

$$ullet$$
 벡터 $oldsymbol{a}=egin{bmatrix}2\\-3\\1\end{bmatrix}$ 를 벡터 $oldsymbol{b}=egin{bmatrix}0\\2\\-1\end{bmatrix}$ 와

평행한 벡터 \mathbf{a}_{\parallel} 과 수직한 벡터 \mathbf{a}_{\perp} 의 합으로 나타내시오.

$$egin{aligned} \mathbf{a}_{\parallel} &= rac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} = rac{-7}{5} egin{bmatrix} 0 \ 2 \ -1 \end{bmatrix} = egin{bmatrix} 0 \ -rac{14}{5} \ rac{7}{5} \end{bmatrix} \ \mathbf{a}_{\perp} &= \mathbf{a} - \mathbf{a}_{\parallel} = egin{bmatrix} 2 \ -3 \ 1 \end{bmatrix} - egin{bmatrix} 0 \ -rac{14}{5} \ rac{7}{5} \end{bmatrix} \ &= egin{bmatrix} 2 \ -rac{1}{5} \ -rac{2}{5} \end{bmatrix} \end{aligned}$$

벡터의 내적 - 초평면의 법선벡터

$$ullet$$
 점 $\mathbf{p}=egin{bmatrix}2\\-4\\-3\end{bmatrix}$ 에서 평면 $2x-3y+6z+1=0$ 까지

의 최단거리 d를 구하시오. ● 평면

$$\mathbf{n} \cdot \mathbf{x} + c = 0, \ \mathbf{n} = \begin{bmatrix} 2 \\ -3 \\ 6 \end{bmatrix}, \ c = 1$$

• 평행이동된 평면

$$\mathbf{n} \cdot (\mathbf{x} + \mathbf{p}) + c = \mathbf{n} \cdot \mathbf{x} + (\mathbf{n} \cdot \mathbf{p} + c) = 0$$

• 원점에서 평행이동된 평면까지의 거리

$$d=rac{|\mathbf{n}\cdot\mathbf{x}|}{\|\mathbf{n}\|}=rac{|\mathbf{n}\cdot\mathbf{p}+c|}{\|\mathbf{n}\|}=rac{1}{7}$$

벡터의 외적 — 기하학적 의미

• 벡터
$$\mathbf{a}=\begin{bmatrix}2\\-1\end{bmatrix}$$
와 벡터 $\mathbf{b}=\begin{bmatrix}4\\2\\-1\end{bmatrix}$ 에 모두 직교하는 벡터를 구하시오.

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ 2 & -1 & 1 \\ 4 & 2 & -1 \end{vmatrix} = \begin{bmatrix} -1 \\ 6 \\ 8 \end{bmatrix}$$

$$\therefore lpha egin{bmatrix} -1 \ 6 \ 8 \end{bmatrix}, \;\; lpha
eq 0$$

벡터의 외적 — 삼중곱

• 다음 세 벡터
$$\mathbf{a} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ $\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & -3 \\ 1 & -1 & 1 \end{bmatrix} = -3$

$$\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{vmatrix} 1 & 0 & -1 \\ -2 & 1 & -3 \\ 1 & -1 & 1 \end{vmatrix} = -3$$

$$\therefore V = |-3| = 3$$