AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) The use of Dispersants for aqueous suspensions of solids comprising random comb polymers which are obtainable obtained by free-radical copolymerization according to catalytic chain transfer method (CCT) of a vinylic poly(alkylene oxide) compound (A) of the general formula (I)

$$R^{1}-O-(C_{m}H_{2m}O)-(-1-C_{m}H_{2m}-Z)$$
 (1)

where

 R^1 = hydrogen, a C_1 - C_{20} -alkyl radical, a cycloaliphatic C_5 - C_{12} -cycloalkyl radical, a substituted or unsubstituted C_6 - C_{14} -aryl radical,

m = 2 to 4,

n = 1 to 250,

Z =

$$Y - C - C = C_{m'}H_{2m'}$$

$$C_{n'}H_{2n'+1}$$

 $Y = 0 \text{ or } NR^2$,

 R^2 = hydrogen, a C_{1_12} -alkyl radical, a C_6 - C_{14} -aryl radical, - C_mH_{2m} -(O- C_mH_{2m-1} - $C_mH_$

m' = 1 to 4 and

n' = 0 to 2.

with an ethylenically unsaturated monomer compound (B) of the general formula (II),

$$R^4 C = C R^6$$

$$R^5$$
(II)

where

 $R^3 = H$, CH_3 , COOH or a salt thereof, $COOR^7$ or $CONR^7R^7$,

 R^4 = H, a substituted or unsubstituted C₆-C₁₄-aryl radical,

R⁵ = H, CH₃, COOH or a salt thereof, COOR⁷, CONR⁷R⁷, a substituted or unsubstituted aryl radical or OR⁸, PO₃H₂, SO₃H, CONH-R⁹,

 $R^6 = H_1 CH_3 \text{ or } CH_3COOR^7$,

 R^7 = H, C_1 - C_{12} -alkyl, C_1 - C_{12} -hydroxyalkyl, C_1 - C_{12} -alkylphosphate or - phosphonate or a salt thereof, C_1 - C_{12} -alkylsulfate or -sulfonate or a salt thereof, C_mH_{2m} - $(O - C_mH_{2m-})$ -

R⁸ = acetyl and

 R^9 = C_1 - C_{12} -alkylphosphate or -phosphonate or a salt thereof, C_1 - C_{12} -alkylsulfate or -sulfonate or a salt thereof,

R³ and R⁵ together form -O-CO-O-,

by the "catalytical chain transfer (CCT)" method, as dispersants for aqueous suspensions of solids.

- 2. (Currently Amended) The use <u>dispersants</u> as claimed in claim 1, characterized in that <u>wherein</u> the aryl radicals R¹ are substituted by hydroxyl, carboxyl or/and sulfonic acid groups.
- 3. (Currently Amended) The use dispersants as claimed in claim 1-or 2, characterized in that wherein in the formula (I), m = 2 or 3 and n = 5 to 250.
- 4. (Currently Amended) The use <u>dispersants</u> as claimed in any of claims 1 to 3 claim 1, characterized in that wherein in the formula (I), m'=I and n'=0 or 1.
- 5. (Currently Amended) The use dispersants as claimed in any of claims 1 to 4 claim 1, characterized in that wherein in the formula (II), R^3 and $R^4 = H$, $R^6 = H$,

 CH_3 and $R^5 = COOR^7$, PO_3H_2 or $CONH-R^9-SO_3H$.

- 6. (Currently Amended) The use <u>dispersants</u> as claimed in any of claims 1 to 5 <u>claim 1</u>, characterized in that <u>wherein</u> in the formula (II), R^3 and R^4 = H, R^6 = CH_3 , R^5 = COOH or a salt thereof or $COOR^7$ and R^7 = C_{I} - C_6 -hydroxyalkyl.
- 7. (Currently Amended) The use <u>dispersants</u> as claimed in any of claims 1 to 6 <u>claim 1</u>, characterized in that <u>wherein</u> R⁵ is a carboxylic acid salt selected from among alkali metal, alkaline earth metal and ammonium salts
- 8. (Currently Amended) The use <u>dispersants</u> as claimed in any of claims 1 to 7 claim 1, characterized in that <u>wherein</u> the molar ratios of the vinylic poly(alkylene oxide) compound (A) to the ethylenically unsaturated monomer compound (B) have been set to from 1:0.01 to 1:100, preferably from 1:0.1 to 1:50.
- 9. (Currently Amended) The use <u>dispersants</u> as claimed in <u>any of claims</u>

 1 to 8 <u>claim 1</u>, characterized in that <u>wherein</u> the comb polymers are used in an amount of from 0.01 to 5% by weight, based on the suspension of solids.
- 10. (Currently Amended) The use dispersants as claimed in any of claims 1 to 9 claim 1, characterized in that wherein the suspension of solids comprises hydraulic binders based on cement, lime, plaster of Paris and anhydrite.
- 11. (Currently Amended) The use <u>dispersants</u> as claimed in any of claims 1 to 10 <u>claim 1</u>, <u>characterized in that wherein</u> the suspension of solids comprises inorganic particles selected from the group consisting of ground rock, ground silicate, chalk, clays, porcelain slips, talc, pigments and carbon black.
- 12. (New) The dispersants as claimed in claim 8, wherein the molar ratios of the vinylic poly(alkylene oxide) compound (A) to the ethylenically unsaturated monomer compound (B) have been set to from 1:0.1 to 1:50.

436425-1