Name: Chethan Kacham, Username: CXK34890, Student ID: 700743489

Question -1

Question:- Six points with the following attributes are given, calculate and find out clustering representations and dendrogram using Single, complete, and average link proximity function in hierarchical clustering technique.

point	x coordinate	y coordinate
p1	0.4005	0.5306
p2	0.2148	0.3854
р3	0.3457	0.3156
p4	0.2652	0.1875
p5	0.0789	0.4139
p6	0.4548	0.3022

Table: X-Y coordinates of six points.

	p1	p2	р3	p4	p5	p6
p1	0.0000	0.2357	0.2218	0.3688	0.3421	0.2347
p 2	0.2357	0.0000	0.1483	0.2042	0.1388	0.2540
p 3	0.2218	0.1483	0.0000	0.1513	0.2843	0.1100
p4	0.3688	0.2042	0.1513	0.0000	0.2932	0.2216
p 5	0.3421	0.1388	0.2843	0.2932	0.0000	0.3921
р6	0.2347	0.2540	0.1100	0.2216	0.3921	0.0000

Table : Distance Matrix for Six Points

Answer:-

Single link:

p3 and p6 have the minimum distance from the above table. So, distance(p3,p6) is minimum.

Now we need to update the distance matrix.

To update the distance matrix MIN[distance((p3,p6),p1)]:

$$MIN[distance((p3,p1),(p6,p1))] = MIN[0.2218,0.2347] = 0.2218$$

To update the distance matrix MIN[distance((p3,p6),p2)]:

$$MIN[distance((p3,p2),(p6,p2))] = MIN[0.1483,0.2540] = 0.1483$$

To update the distance matrix MIN[distance((p3,p6),p4)]:

$$MIN[distance((p3,p4),(p6,p4))] = MIN[0.1513,0.2216] = 0.1513$$

To update the distance matrix MIN[distance((p3,p6),p5)]:

$$MIN[distance((p3,p5),(p6,p5))] = MIN[0.2843,0.3921] = 0.2843$$

Updated distance matrix for cluster p3,p6

	p1	p2	p3,p6	p4	p5
p1	0	0.2357	0.2218	0.3688	0.3421
p2	0.2357	0	0.1483	0.2042	0.1388
p3,p6	0.2218	0.1483	0	0.1513	0.2843
p4	0.3688	0.2042	0.1513	0	0.2932
р5	0.3421	0.1388	0.2843	0.2932	0

p2 and p5 have the minimum distance from the above table. So, distance(p2,p5) is minimum.

Now we need to update the distance matrix.

To update the distance matrix MIN[distance((p2,p5),p1)]:

$$MIN[distance((p2,p1),(p5,p1))] = MIN[0.2357,0.3421] = 0.2357$$

To update the distance matrix MIN[distance((p2,p5),(p3,p6))]:

$$MIN[distance((p2,(p3,p6)),(p5,(p3,p6)))] = MIN[0.1483,0.2843] = 0.1483$$

To update the distance matrix MIN[distance((p2,p5),p4)]:

$$MIN[distance((p2,p4),(p5,p4))] = MIN[0.2042,0.2932] = 0.2042$$

Updated distance matrix for cluster p2,p5

	p1	p2,p5	p3,p6	p4
p1	0	0.2357	0.2218	0.3688
p2,p5	0.2357	0	0.1483	0.2042
p3,p6	0.2218	0.1483	0	0.1513
p4	0.3688	0.2042	0.1513	0

(p2,p5) and (p3,p6) have the minimum distance from the above table. So, distance((p2,p5),(p3,p6)) is minimum.

Now we need to update the distance matrix.

To update the distance matrix MIN[distance(((p2,p5),(p3,p6)),p1)]:

$$MIN[distance(((p2,p5),p1),((p3,p6),p1))] = MIN[0.2357,0.2218] = 0.2218$$

To update the distance matrix MIN[distance(((p2,p5),(p3,p6)),p4)]:

$$MIN[distance(((p2,p5),p4),((p3,p6),p4))] = MIN[0.2042,0.1513] = 0.1513$$

Updated distance matrix for cluster p2,p5,p3,p6

	p1	p2,p5,p3,p6	p4
p1	0	0.2218	0.3688
p2,p5,p3,p6	0.2218	0	0.1513
p4	0.3688	0.1513	0

(p2,p5,p3,p6) and p4 have the minimum distance from the above table. So, distance((p2,p5,p3,p6),p4) is minimum.

Now we need to update the distance matrix.

To update the distance matrix MIN[distance(((p2,p5,p3,p6),p4),p1)]:

MIN[distance((p2,p5,p3,p6),p1),(p4,p1))] = MIN[0.2218,0.3688] = 0.2218

	p1	p2,p5,p3,p6,p4
p1	0	0.2218
p2,p5,p3,p6,p4	0.2218	0

Dendrogram for Single link:

Complete link:

p3 and p6 have the minimum distance from the above table. So, distance(p3,p6) is minimum.

Now we need to update the distance matrix.

To update the distance matrix MAX[distance((p3,p6),p1)]:

$$MAX[distance((p3,p1),(p6,p1))] = MAX[0.2218,0.2347] = 0.2347$$

To update the distance matrix MAX[distance((p3,p6),p2)]:

$$MAX[distance((p3,p2),(p6,p2))] = MAX[0.1483,0.2540] = 0.2540$$

To update the distance matrix MAX[distance((p3,p6),p4)]:

$$MAX[distance((p3,p4),(p6,p4))] = MAX[0.1513,0.2216] = 0.2216$$

To update the distance matrix MAX[distance((p3,p6),p5)]:

$$MAX[distance((p3,p5),(p6,p5))] = MAX[0.2843,0.3921] = 0.3921$$

Updated distance matrix for cluster p3,p6

	p1	p2	p3,p6	p4	p5
p1	0	0.2357	0.2357	0.3688	0.3421
p2	0.2357	0	0.2540	0.2042	0.1388
p3,p6	0.2357	0.2540	0	0.2216	0.3921
p4	0.3688	0.2042	0.2216	0	0.2932
p5	0.3421	0.1388	0.3921	0.2932	0

p2 and p5 have the minimum distance from the above table. So, distance(p2,p5) is minimum.

Now we need to update the distance matrix.

To update the distance matrix MAX[distance((p2,p5),p1)]:

$$MAX[distance((p2,p1),(p5,p1))] = MAX[0.2357,0.3421] = 0.3421$$

To update the distance matrix MAX[distance((p2,p5),(p3,p6))]:

$$MAX[distance((p2,(p3,p6)),(p5,(p3,p6)))] = MAX[0.2540,0.3921] = 0.3921$$

To update the distance matrix MAX[distance((p2,p5),p4)]:

$$MAX[distance((p2,p4),(p5,p4))] = MAX[0.2042,0.2932] = 0.2932$$

Updated distance matrix for cluster p2,p5

	p1	p2,p5	p3,p6	p4
p1	0	0.3421	0.2357	0.3688
p2,p5	0.3421	0	0.3921	0.2932
p3,p6	0.2357	0.3921	0	0.2216
p4	0.3688	0.2932	0.2216	0

(p3,p6) and p4 have the minimum distance from the above table. So, distance((p3,p6),p4) is minimum.

Now we need to update the distance matrix.

To update the distance matrix MAX[distance(((p3,p6),p4),p1)]:

$$MAX[distance(((p3,p6),p1),(p4,p1))] = MAX[0.2357,0.3688] = 0.3688$$

To update the distance matrix MAX[distance(((p3,p6),p4),(p2,p5))]:

$$MAX[distance(((p3,p6),(p2,p5)),(p4,(p2,p5)))] = MAX[0.3921,0.2932] = 0.3921$$

Updated distance matrix for p3,p6,p4

	p1	p2,p5	p3,p6,p4
p1	0	0.3421	0.3688
p2,p5	0.3421	0	0.3921
p3,p6,p4	0.3688	0.3921	0

(p2,p5) and p1 have the minimum distance from the above table. So, distance((p2,p5),p1) is minimum.

Now we need to update the distance matrix.

To update the distance matrix MAX[distance(((p2,p5),p1),(p3,p6,p4))]:

$$MAX[distance(((p2,p5),(p3,p6,p4)),(p1,(p3,p6,p4)))] = MAX[0.3921,0.3688] = 0.3921$$

Updated distance matrix for p2,p5,p1

	p2,p5,p1	p3,p6,p4
p2,p5,p1	0	0.3921
p3,p6,p4	0.3921	0

Dendrogram for Complete link:

Average link:

p3 and p6 have the minimum distance from the above table. So, distance(p3,p6) is minimum. Now we need to update the distance matrix.

To update the distance matrix AVG[distance((p3,p6),p1)]:

$$AVG[distance((p3,p1),(p6,p1))] = \frac{1}{2} * [0.2218+0.2347] = 0.2282$$

To update the distance matrix MAX[distance((p3,p6),p2)]:

AVG[distance((p3,p2),(p6,p2))] =
$$\frac{1}{2}$$
 * [0.1483+0.2540] = 0.2011

To update the distance matrix MAX[distance((p3,p6),p4)]:

$$AVG[distance((p3,p4),(p6,p4))] = \frac{1}{2} * [0.1513+0.2216] = 0.1864$$

To update the distance matrix MAX[distance((p3,p6),p5)]:

$$AVG[distance((p3,p5),(p6,p5))] = \frac{1}{2} * [0.2843+0.3921] = 0.3382$$

Updated distance matrix for cluster p3,p6

	p1	p2	p3,p6	p4	p5
p1	0	0.2357	0.2282	0.3688	0.3421
p2	0.2357	0	0.2011	0.2042	0.1388
p3,p6	0.2282	0.2011	0	0.1864	0.3382
p4	0.3688	0.2042	0.1864	0	0.2932
p5	0.3421	0.1388	0.3382	0.2932	0

p2 and p5 have the minimum distance from the above table. So, distance(p2,p5) is minimum.

Now we need to update the distance matrix.

To update the distance matrix AVG[distance((p2,p5),p1)]:

AVG[distance((p2,p1),(p5,p1))] =
$$\frac{1}{2}$$
 * [0.2357+0.3421] = 0.2889

To update the distance matrix MAX[distance((p2,p5),(p3,p6))]:

AVG[distance(
$$(p2,(p3,p6)),(p5,(p3,p6))$$
)] = $\frac{1}{2}$ * [0.2011+0.3382] = 0.2696

To update the distance matrix MAX[distance((p2,p5),p4)]:

AVG[distance((p2,p4),(p5,p4))] =
$$\frac{1}{2}$$
 * [0.2042+0.2932] = 0.2487

Updated distance matrix for cluster p2,p5

	p1	p2,p5	p3,p6	p4
p1	0	0.2889	0.3688	0.3688
p2,p5	0.2889	0	0.2696	0.2487
p3,p6	0.2282	0.2696	0	0.1864
p4	0.3688	0.2487	0.1864	0

(p3,p6) and p4 have the minimum distance from the above table. So, distance((p3,p6),p4) is minimum.

Now we need to update the distance matrix.

To update the distance matrix AVG[distance(((p3,p6),p4),p1)]:

AVG[distance(((p3,p6),p1),(p4,p1))] =
$$\frac{1}{2}$$
 * [0.2282+0.3688] = 0.2985

To update the distance matrix AVG[distance(((p3,p6),p4),(p2,p5))]:

$$AVG[distance(((p3,p6),(p2,p5)),(p4,(p2,p5)))] = \frac{1}{2} * [0.2696+0.2487] = 0.2591$$

Updated distance matrix for cluster p3,p6,p4

	p1	p2,p5	p3,p6,p4
p1	0	0.2899	0.2985
p2,p5	0.2889	0	0.2591
p3,p6,p4	0.2985	0.2591	0

(p3,p6,p4) and (p2,p5) have the minimum distance from the above table. So, distance((p3,p6,p4),(p2,p5)) is minimum.

Now we need to update the distance matrix.

To update the distance matrix AVG[distance(((p3,p6,p4),(p2,p5)),p1)]:

$$AVG[distance(((p3,p6,p4),p1),((p2,p5),p1))] = \frac{1}{2} * [0.2985+0.2889] = 0.2937$$

Updated distance matrix for cluster p3,p6,p4,p2,p5

	p1	p3,p6,p4,p2,p5
p1	0	0.2937
p3,p6,p4,p2,p5	0.2937	0

Dendrogram for Average link:

