Computer Hardware Data Set

Data Set Information:

The estimated relative performance values were estimated by the authors using a linear regression method.

Attribute Information:

- 1. vendor name: 30 (adviser, amdahl,apollo, basf, bti, burroughs, c.r.d, cambex, cdc, dec, dg, formation, four-phase, gould, honeywell, hp, ibm, ipl, magnuson, microdata, nas, ncr, nixdorf, perkin-elmer, prime, siemens, sperry, sratus, wang)
- 2. Model Name: many unique symbols
- 3. MYCT: machine cycle time in nanoseconds (integer)
- 4. MMIN: minimum main memory in kilobytes (integer)
- 5. MMAX: maximum main memory in kilobytes (integer)
- 6. CACH: cache memory in kilobytes (integer)
- 7. CHMIN: minimum channels in units (integer)
- 8. CHMAX: maximum channels in units (integer)
- 9. PRP: published relative performance (integer)
- 10. ERP: estimated relative performance from the original article (integer)

R Code:

Linear Regression

- setwd('~/Desktop/dm') #set working directory to desktop
- machine=read.table("machine.data",sep=",",header=TRUE)
- summary(machine)

```
model
      vendor
                                      myct
                                                       mmin
                                                                       mmax
ibm
         : 32
                                        : 17.0
                                                                  Min.
                100
                          : 1
                                 Min.
                                                  Min.
                                                             64
         : 19
                                 1st Qu.: 50.0
                1100/61-h1: 1
                                                  1st Qu.:
                                                           768
                                                                  1st Qu.: 4000
honeywell: 13
                1100/81
                                 Median : 110.0
                                                  Median: 2000
                                                                  Median: 8000
ncr
         : 13
                1100/82
                          : 1
                                 Mean
                                       : 203.8
                                                  Mean
                                                         : 2868
                                                                  Mean
                                                                         :11796
         : 13
                1100/83
                                 3rd Qu.: 225.0
                                                  3rd Qu.: 4000
                                                                  3rd Qu.:16000
sperry
                                        :1500.0
                                                         :32000
                                                                  Max.
                                                                         :64000
siemens : 12
                1100/84
                                 Max.
                                                  Max.
(Other) :107
                (Other)
                          :203
     cach
                     chmin
                                      chmax
                                                        prp
                                                                         erp
         0.00
                 Min.
                        : 0.000
                                  Min.
                                         : 0.00
                                                              6.0
                                                                    Min.
                                                                              15.00
                                                   1st Qu.:
                                                                    1st Qu.:
1st Ou.:
         0.00
                 1st Qu.: 1.000
                                  1st Qu.: 5.00
                                                             27.0
                                                                              28.00
Median: 8.00
                 Median : 2.000
                                  Median: 8.00
                                                   Median :
                                                             50.0
                                                                    Median :
                        : 4.699
                                       : 18.27
                                                         : 105.6
                                                                              99.33
       : 25.21
                 Mean
                                  Mean
                                                   Mean
                                                                    Mean
                                  3rd Qu.: 24.00
                                                   3rd Qu.: 113.0
3rd Qu.: 32.00
                 3rd Qu.: 6.000
                                                                    3rd Qu.: 101.00
       :256.00
                 Max.
                        :52,000
                                  Max.
                                         :176.00
                                                   Max.
                                                          :1150.0
                                                                           :1238.00
Max.
                                                                    Max.
```

The above output shows the mean 1st and 3rd quadrant with median and maximum value of each of the attributes in the table. Take an example of 'cach' attribute in the above figure which corresponds to each unique row in the dataset and as the max value is 256 it shows max as 256 with its mean as 25.21 and median as 8.

- mach<-subset(machine, select = c('prp', 'erp')) #select 2 attributes from dataset
- summary(mach)

pı	rp	erp			
Min.	: 6.0	Min. :	15.00		
1st Qu	.: 27.0	1st Qu.:	28.00		
Median	: 50.0	Median :	45.00		
Mean	: 105.6	Mean :	99.33		
3rd Qu	.: 113.0	3rd Qu.:	101.00		
Max.	:1150.0	Max. :1	238.00		

In the above 2 lines of code we select 2 attributes from the dataset and their summary is displayed as the output shown in the figure above.

#correlation of mach object

• cor(mach) we correlate the two attributes to look for any errors

```
prp erp
prp 1.0000000 0.9664717
erp 0.9664717 1.0000000
```

• plot(mach)

The above plot is plotted with erp on y axis and prp on x axis.

- mean.erp<-mean(machine\$erp) #calculating the mean abline(h=mean.erp) #plot mean line

The Mean is calculated on y axis for erp label and is plotted on the graph as shown below:

The Linear Regression Function is given by:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

The goal is to find some values of θ (known as coefficients), so we can minimize the difference between real and predicted values of dependent variable(y).

- lmreg <- lm(erp ~ prp,data=machine) # linear regression on dataset # Summarize and print the results
- summary(lmreg) # show regression coefficients table
 The summary after the lm function is stored in 'lmreg' variable and its output is as shown below:

```
Call:
lm(formula = erp ~ prp, data = machine)
Residuals:
    Min
              1Q
                  Median
                               3Q
                                      Max
-241.335 -10.304 1.856 12.327 173.006
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                                       0.738
(Intercept) 1.10445 3.29877 0.335
            0.92997 0.01717 54.153
                                       <2e-16 ***
prp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.83 on 207 degrees of freedom
Multiple R-squared: 0.9341,
                            Adjusted R-squared: 0.9337
F-statistic: 2933 on 1 and 207 DF, p-value: < 2.2e-16
```

Values of coefficients (θ s) are 1.10445 and 0.92997, hence prediction equation for model is as below:

```
prp = 1.10445 + 0.92997*erp
```

In the output, residual standard error is cost which is 39.83.

We map the line in red color on the graph with code below:

• abline(lmreg,col="red") #linear regression line

The output for the above code is as follows:

Now we compare the predicted values that are generated from the lm function with the actual values.

• machine\$erp #original values

This code displays the actual 'Water' attribute values from the dataset. The output is as depicted below:

```
[1]
       199
            253
                  253
                       253
                            132
                                  290
                                       381
                                            381
                                                  749 1238
                                                              23
                                                                   24
                                                                        70
                                                                                   15
                                                                                        64
                                                                                              23
                                                                                                   29
                                                                             117
 [19]
        22
             124
                   35
                                             21
                                                              28
                                                                   27
                                                                       102
                                                                             102
                                                                                   74
                                                                                        74
                                                                                            138
                                                                                                  136
                        39
                              40
                                   45
                                        28
                                                   28
                                                        22
        23
                                                                                              72
              29
                   44
                        30
                              41
                                   74
                                        74
                                             74
                                                   54
                                                        41
                                                              18
                                                                   28
                                                                        36
                                                                              38
                                                                                   34
                                                                                        19
                                                                                                   36
                   42
                                                        75
                                                                              20
 [55]
        30
              56
                        34
                              34
                                   34
                                        34
                                             34
                                                   19
                                                             113
                                                                  157
                                                                        18
                                                                                        33
                                                                                              47
                                                                                                   54
        20
             23
                   25
                        52
                              27
                                   50
                                        18
                                             53
                                                   23
                                                        30
                                                              73
                                                                   20
                                                                        25
                                                                              28
                                                                                   29
                                                                                        32
                                                                                            175
                                                                                                   57
 [73]
 [91]
       181
             181
                   32
                        82
                            171
                                  361
                                       350
                                            220
                                                  113
                                                        15
                                                              21
                                                                   35
                                                                        18
                                                                              20
                                                                                   20
                                                                                        28
                                                                                              45
                                                                                                   18
        17
              26
                   28
                              31
                                   31
                                        42
                                             76
                                                   76
                                                        26
                                                              59
                                                                   65
                                                                       101
                                                                                        20
                                                                                                   30
[109]
                        28
                                                                             116
                                                                                   18
                                                                                              20
                   82
                             128
                                                        88
                                                                   33
                                                                                        53
                                                                                                   86
[127]
        44
              44
                        82
                                   37
                                        46
                                             46
                                                   80
                                                              88
                                                                        46
                                                                              29
                                                                                   53
                                                                                              41
[145]
        95
             107
                  117
                       119
                             120
                                   48
                                       126
                                            266
                                                  270
                                                       426
                                                             151
                                                                  267
                                                                       603
                                                                              19
                                                                                   21
                                                                                        26
                                                                                              35
                                                                                                   41
                   78
[163]
        47
              62
                        80
                              80
                                  142
                                       281
                                            190
                                                   21
                                                        25
                                                              67
                                                                   24
                                                                        24
                                                                              64
                                                                                   25
                                                                                        20
                                                                                              29
                                                                                                   43
[181]
        53
             19
                   22
                        31
                              41
                                   47
                                        99
                                             67
                                                   81
                                                       149
                                                             183
                                                                  275
                                                                       382
                                                                              56
                                                                                  182 227
                                                                                            341
[199]
       919
            978
                                              50
>
```

• fitted(lmreg) #predicted values

The fitted method shows the predicted values obtained from the linear regression method and are as shown below:

1	2	3	4	5	6	7	8
185.239246	251.267379	205.698667	161.059929	123.860981	296.836091	342.404802	455.861595
9	10	11	12	13	14	15	16
_	1064.994374	36.443453		86.662033		10.404189	33.653531
17	18	19	20	21	22	23	24
18.773952	27.143715	29.933637	112.701297	29.003663	31.793584	57.832848	71.782453
25	26	27	28	29	30	31	32
22.493847	65.272638	31.793584	26.213742	72.712427	26.213742	255.917248	343.334776
33	34	35	36	37	38	39	40
30.863610	59.692795	99.681665	194.538983	19.703926	28.073689	67.132585	25.283768
41	42	43	44	45	46	47	48
34.583505	38.303400	49.463084	56.902874	68.062559	68.062559	17.843978	19.703926
49	50.505400	51	52	53	54	55	56
38.303400	58.762822	23.423821	23.423821	129.440823	34.583505	25.283768	56.902874
57	58	59	60	61	62	63	64
67.132585	12.264136	14.124084	19.703926	15.984031	21.563873	34.583505	135.020666
65	66	67	68	69	70	71	72
135.020666	241.967642	16.914005	25.283768	30.863610	30.863610	58.762822	60.622769
73	74	75	76	77	78	79	80
21.563873	34.583505	42.023295	47.603137	42.953269	50.393058	34.583505	79.222243
81	82	83	84	85	86	87	88
					28.073689	38.303400	
15.984031	36.443453	36.443453	15.984031				33.653531
89	90	91	92		94	95	96
125.720929	62.482716	132.230744	176.869482	21.563873	123.860981	221.508220	433.542226
97	98	99	100	101	102	103	104
433.542226	258.707169	173.149588	6.684294	23.423821	42.953269	7.614268	13.194110
105	106	107	108	109	110	111	112
15.984031	30.863610	30.863610	11.334162	11.334162	17.843978	21.563873	35.513479
113	114	115	116		118	119	
38.303400	32.723558	47.603137			23.423821	46.673163	
121	122	123	124	125	126	127	128
94.101822	124.790955	12.264136	17.843978	19.703926	26.213742	42.953269	
129	130	131	132	133	134	135	136
66.202611	75.502348	127.580876	15.984031	25.283768	30.863610	42.953269	51.323032
137	138	139	140	141	142	143	144
61.552743	29.003663	47.603137	38.303400	58.762822	56.902874	47.603137	62.482716
145	146	147	148	149	150	151	152
81.082191	69.922506	87.592007	104.331533	134.090692	98.751691	200.118825	258.707169
153	154	155	156	157		159	160
345.194724	475.391043	200.118825	304.275880	475.391043	8.544241	12.264136	16.914005
161	162	163	164	165	166	167	168
20.633900	23.423821	32.723558	40.163347	43.883242	48.533111	108.981402	94.101822
169	170	171	172	173	174	175	176
131.300771	198.258878	24.353794	29.003663	39.233374	24.353794	47.603137	47.603137
177	178	179	180	181	182	183	184
29.003663	30.863610	36.443453	56.902874	102.471586	6.684294	11.334162	21.563873
185		187	188				
31.793584				106.191481			
193						199	
		195			198		
377.743803				286.606380			
201		203					
12.264136	14.124084	17.843978	20.633900	40.163347	43.883242	49.463084	63.412690
209							
42.953269							

We can see comparing both the outputs that the predicted values are nearer to the actual values and hence we can predict values for one attribute from other attribute.

Decision Tree

#import packages

- library(rpart)
- library(rpart.plot)
- library(party)
- str(machine) #show details of each attribute

```
'data.frame':
               209 obs. of 10 variables:
$ vendor: Factor w/ 30 levels "adviser", "amdahl",..: 1 2 2 2 2 2 2 2 2 2 ...
$ model : Factor w/ 209 levels "100","1100/61-h1",..: 30 63 64 65 66 67 75 76 77 78 ...
        : int 125 29 29 29 29 26 23 23 23 23 ...
          int
               256 8000 8000 8000 8000 8000 16000 16000 16000 32000 ...
          int
               6000 32000 32000 32000 16000 32000 32000 32000 64000 64000 ...
        : int
               256 32 32 32 32 64 64 64 64 128 ...
$ chmin : int
               16 8 8 8 8 8 16 16 16 32 ...
$ chmax : int
               128 32 32 32 16 32 32 32 32 64 ...
       : int
               198 269 220 172 132 318 367 489 636 1144 ...
        : int 199 253 253 253 132 290 381 381 749 1238 ...
```

- mach.tree<-rpart(vendor~erp,machine)
- rpart.plot(mach.tree, extra = 8) #plot the decision tree

The above graph shows that the probability of ibm vendor among all others is 15%. If the value of erp is greater than or equal to 224 it also contains the value of Amdahl whose probability of the fitted value in the table is 35% and so on.