Econometrics September 10, 2023

Topic 19: Community Detection

by Sai Zhang

Key points: .

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

19.1 Stochastic Block Model (Abbe et al., 2015)

Consider an undirected graph G, with nodes V and edges E. Let

- *n* be a positive integer: the number of **vertices**
- *k* be a positive integer: the number of **communities**
- $p = (p_1, \dots, p_k)$ be a probability vector on $\{1, \dots, k\} := [k]$: the **prior** on the k communities
- W be a $k \times k$ symmetric matrix with entries $W_{ij} \in [0,1]$: the matrix of **connectivity probabilities**

then we have

Definition 19.1.1: Stochastic Block Model

The pair (\mathbf{X}, G) is drawn under $SBM(n, p, \mathbf{W})$ if \mathbf{X} is an n dimensional random vector with i.i.d. components distributed under p, and G is an n-vertex simple graph where vertices i and j are connected with probability W_{X_i,X_j} , **independently** of other pairs of vertices. And the **community** sets can be defined by

$$\Omega_i = \Omega_i(\mathbf{X}) := \{v \in [n] : X_v = i\}, i \in [k]$$

Immediately, we can define the symmetry of SBM as:

Definition 19.1.2: Symmetric SBM

An SBM is called symmetric if

- p is uniform
- W takes the same value on the diagonal and the same value off the diagonal

 (\mathbf{X}, G) is drawn under SSBM(n, k, A, B) if $p = \{1/k\}^k$ and \mathbf{W} takes avolue A on the diagonal and B off the diagonal.

19.1.1 Recovery

The goal of community detection is to recover the labels X by observing G, up to some level of accuracy. First, define **agreement** as

Definition 19.1.3: Agreement of Communities

The agreement between two community vectors \mathbf{x} , $\mathbf{y} \in [k]^n$ is obtained by maximizing the common components between \mathbf{x} and any relabelling of \mathbf{y} , that is

$$A(\mathbf{x}, \mathbf{y}) = \max_{\pi \in S_k} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left[x_i = \pi(y_i) \right]$$

where S_k is the group of permutations on [k].

The **relabelling** permutation is used to handle symmetric communities such as in SSBM, as it is impossible to recover the actual labels in this case. But it's possible to recover the **partition**. There are 2 types of partition recovery we consider

Exact Recovery First, consider the case of **exact recovery**:

Definition 19.1.4: Exact Recovery

Let $(\mathbf{X}, G) \sim SBM(n, p, W)$, the exact recovery is solved if there exists an algorithm that takes G as an input and outpus $\hat{\mathbf{X}} = \hat{\mathbf{X}}(G)$ such that $\mathbb{P}\left\{A(\mathbf{X}, \hat{\mathbf{X}}) = 1\right\} = 1 - o_p(1)$

In the SSBM case, algorithms that guarantee

$$A(\mathbf{X}, \hat{\mathbf{X}}) \to \frac{1}{k}$$

would be trivial.

Weak Recovery On the other hand, we the case of weak recovery defined as

Definition 19.1.5: Weak Recovery

Weak recovery or detection is solved SSBM(n,k,A,B) if for $(\mathbf{X},G) \sim SSBM(n,k,A,B)$, then $\exists \epsilon > 0$ and an algorithm that takes G as an input and outputs $\hat{\mathbf{X}}$ such that

$$\mathbb{P}\left\{A(\mathbf{X}, \hat{\mathbf{X}}) \ge \frac{1}{k} + \epsilon\right\} = 1 - o(1)$$

19.1.2 **Example:** SSBM(n,2)

Let's look at the example of $SSBM(n, 2, \alpha \frac{\log n}{n}, \beta \frac{\log n}{n})$, where

- *n*: number of vertices (assumed to be even for simplicity)
- for each $v \in [n]$, a binary label X_v is attached s.t.

$$|\{v \in [n] : X_v = 1\}| = n/2$$

• for each pair of distinct nodes $u, v \in [n]$, an edge is placed with probability

$$-\alpha \frac{\log n}{n} \text{ if } X_u = X_v$$

$$-\beta \frac{\log n}{n} \text{ if } X_u \neq X_v$$

where edges are placed independently conditionally on the vertex labels

• WLOG, $\alpha > \beta$

then we have the following theorem

Theorem 19.1.6: Exact Recovery in $SSBM(n, 2, \alpha \log(n)/n, \beta \log(n)/n)$

- Exact recovery in $SSBM(n, 2, \alpha \log(n)/n, \beta \log(n)/n)$ is solvable and efficiently so if $|\sqrt{\alpha} \sqrt{\beta}| > \sqrt{2}$ nad unsolvable if $|\sqrt{\alpha} \sqrt{\beta}| < \sqrt{2}$
- Exact recovery of the ground truth assignment of the partition (A, B) is also achieveable, that is: if

$$\frac{\alpha + \beta}{2} - \sqrt{\alpha \beta} > 1$$

i.e.

$$\alpha + \beta > 2$$
, $(\alpha - \beta)^2 > 4(\alpha + \beta) - 4$

the maximum likelihood estimator exactly recovers the communities (up to a global flip), with high probability.

See Abbe (2017) for the proof of this theorem.

In summary, for a graph structure G = (V, E) represented by adjacency matrix $\mathbf{X}_{n \times n}$, Stochastic Block Model (SBM)

- assumes that there is a symmetric matrix $\mathbf{P} = \{p_{ij}\} \in \mathbb{R}^{k \times k}$, for $k \ll n$ and a map $C : \{1, \dots, n\} \rightarrow \{1, \dots, k\}$, s.t. $\Pr(\mathbf{X}_{ij} = 1) = \mathbf{P}_{C(i), C(i)}$
- Define $\Pi = (\pi_1, \dots, \pi_n)' \in \mathbb{R}^{n \times k}$ where $\Pi_{ij} = 1$ if C(i) = j, and $\Pi_{ij} = 0$ otherwise
- Let $\mathbf{H} = \mathbb{E}(\mathbf{X})$ be the probability matrix, then $\mathbf{H} = \mathbf{\Pi} \mathbf{P} \mathbf{\Pi}'$
- A variant of SBM is degree corrected SBM which incorporates the degree heterogeneity.
 - each node is assigned a parameter $\theta_i > 0$ such that $\Pr(\mathbf{X}_{ij} = 1) = \theta_i \theta_j \mathbf{P}_{C(i),C(j)}$
 - $\mathbf{H} = \mathbf{\Theta} \mathbf{\Pi} \mathbf{P} \mathbf{\Pi}' \mathbf{\Theta}$, where $\mathbf{\Theta} = \text{diag}(\theta_1, \dots, \theta_n)$

19.2 SIMPLE Model (Fan et al., 2022)

In SBM, each $\pi_i \in \{e_1, \dots, e_K\}$ with e_k a one entry vector whose k-th component is one. But what if each node i can belong to K different communities? We generalize π_i to be a compositional vector, and interpret it as community membership profile for node i, then

$$\Pr\left(\mathbf{X}_{ij}=1\right) = \theta_i \theta_j \sum_{k=1}^K \sum_{l=1}^K \pi_i(k) \pi_j(l) p_{kl}$$

and $\mathbf{H} = \mathbf{\Theta} \mathbf{\Pi} \mathbf{P} \mathbf{\Pi}' \mathbf{\Theta}$. Now, consider a new statistical tests for testing whether any given pair of nodes share the same membership profiles, and providing the associated p-values.

19.2.1 Problem Setting

For an undirected graph G = (V, E) with n nodes, let $\mathbf{X} = \{x_{ij}\} \in \mathbb{R}^{n \times n}$ be the **symmetric** adjacency matrix. Under a probabilistic model, assume x_{ij} is an independent realization from a Bernoulli random variable for all upper triangular entries of random matrix \mathbf{X} . Consider the adjacency matrix with the deterministic-random latent structure

$$X = H + W$$

where

- $\mathbf{H} = \{h_{ij}\} \in \mathbb{R}^{n \times n}$ is the deterministic mean matrix of low rank $K \ge 1$
- $\mathbf{W} = \{w_{ij}\} \in \mathbb{R}^{n \times n}$ is a symmetric random matrix with zero mean and independent entries on and above the diagonal

Assume *V* is decomposed into *K* disjoint latent communities

$$C_1, \cdots, C_K$$

where each node i is associated with the community membership probability vector

$$\boldsymbol{\pi}_i = (\pi_i(1), \cdots, \pi_i(K))' \in \mathbb{R}^K$$

s.t.

$$\Pr(i \in C_k) = \pi_i(k), \ k = 1, \dots, K$$

here, K is unknown but bounded away from ∞ .

19.2.2 Hypothesis Testing

For any given pair of nodes $i \neq j \in V$, the goal is to infer whether they share the same community identity with quantified uncertainty level based on adjacency matrix X, the hypothesis is

$$H_0: \pi_i = \pi_j \qquad \qquad H_1: \pi_i \neq \pi_j$$

More explicitly, consider the DCMM (Degree Corrected Mixed Membership) model as the underlying network model, s.t. the probability of a link between nodes i and j can be written as

$$\Pr(\mathbf{X}_{ij} = 1) = \theta_i \theta_j \sum_{k=1}^K \sum_{l=1}^K \pi_i(k) \pi_j(l) p_{kl}$$

and

$$H = \Theta \Pi P \Pi' \Theta$$

in matrix form, where $\Pi = (\pi_1, \dots, \pi_n)' \in \mathbb{R}^{n \times k}$ and $\Theta = \text{diag}(\theta_1, \dots, \theta_n)$. Consider

- No degree homogeneity: $\mathbf{\Theta} = \sqrt{\theta}\mathbf{I}_n$, then $\mathbf{H} = \theta \mathbf{\Pi} \mathbf{P} \mathbf{\Pi}'$. If we eigen-decompose $\mathbf{H} = \mathbf{V} \mathbf{D} \mathbf{V}'$ where $\mathbf{D} = \operatorname{diag}(d_1, \cdots, d_K)$ with $|d_1| \geq |d_2| \geq \cdots |d_K| > 0$ is the matrix of all K non-zero eigenvalues and $V = (v_1, \cdots, v_K) \in \mathbb{R}^{n \times K}$ is the eigenvectors.
 - the column space spanned by Π is the same as the eigenspace spanned by the top K eigenvectors of matrix \mathbf{H}
 - mean matrix **H** is **not** observable: replace it with adjacency matrix **X** and conduct eigen-decomposition to get eigenvalues $\hat{d}_1, \dots, \hat{d}_n$ and eigenvectors $\hat{v}_1, \dots, \hat{v}_n$. We assume that

$$\left|\hat{d}_1\right| \ge \left|\hat{d}_2\right| \ge \dots \ge \left|\hat{d}_n\right|$$

and let
$$\hat{\mathbf{V}} = (\hat{v}_1, \cdots, \hat{v}_K) \in \mathbf{R}^{n \times K}$$
.

Without degree heterogeneity first, consider the case where $\Theta = \sqrt{\theta} \mathbf{I}_n$ and $\mathbb{E}(\mathbf{X}) = \mathbf{H} = \theta \mathbf{\Pi} \mathbf{P} \mathbf{\Pi}'$. If $\pi_i = \pi_j$, then nodes i and j are exchangeable and $\mathbf{V}(i) = \mathbf{V}(j)$. The test statistic for membership information of node i and j is given as

$$T_{ij} = \left[\hat{\mathbf{V}}(i) - \hat{\mathbf{V}}(j)\right]' \boldsymbol{\Sigma}_{1}^{-1} \left[\hat{\mathbf{V}}(i) - \hat{\mathbf{V}}(j)\right]$$

where $\Sigma_1^{-1} = \text{Cov}\left[(e_i - e_j)'\mathbf{W}\mathbf{V}\mathbf{D}^{-1}\right]$ is the asymptotic variance of $\left[\hat{\mathbf{V}}(i) - \hat{\mathbf{V}}(j)\right]$. The regularity conditions are

C1 $\exists c_0 > 0 \text{ s.t.}$

$$\min\left\{\frac{|d_i|}{|d_j|}: 1 \le i \le j \le K, d_i \ne -d_j\right\} \ge 1 + c_0$$

- **C2** $\exists c_0 \in (0,1), c_2 \in [0,1/2), c_1 \in (0,1-2c_2) \text{ s.t. } \lambda_k(\mathbf{\Pi'\Pi}) \geq c_0 n, \lambda_K(\mathbf{P}) \geq n^{-c_2} \text{ and } \theta \geq n^{-c_1}$
- **C3** as $n \to \infty$, all the eigenvalues of $\theta^{-1}\mathbf{D}\Sigma_1\mathbf{D}$ are bounded away from 0 and ∞

and the test statistics follow the theorem

Theorem 19.2.1: Test Statistics Distribution

Under Condition C1 and C2, and $\Theta = \sqrt{\theta} \mathbf{I}_n$,

• If C3 holds too, then under the null

$$H_0: T_{ij} \xrightarrow{\mathcal{D}} \chi_K^2$$

as $n \to \infty$, where χ_K^2 is the chi-square distribution with K degrees of freedom

- under the alternative,
 - if $n^{1/2-c_2}\sqrt{\theta} \|\pi_i \pi_j\| \to \infty$, then for arbitrarily large constant C > 0, we have

$$\Pr\left(T_{ij} > C\right) \xrightarrow{n \to \infty} 1$$

- in addition, if Condition C3 holds, $c_2 = 0$, $\|\pi_i - \pi_j\| \sim \frac{1}{\sqrt{n\theta}}$, and

$$\left[\mathbf{V}(i) - \mathbf{V}(j)\right]' \boldsymbol{\Sigma}_1^{-1} \left[\mathbf{V}(i) - \mathbf{V}(j)\right] \to \boldsymbol{\mu}$$

, then

$$T_{ij} \xrightarrow{\mathcal{D}} \chi_K^2(\mu)$$

as $n \to \infty$, where $\chi^2_K(\mu)$ is a noncentral chi-square distribution with mean μ and K degrees of freedom.

Under the joint null $H_{0,ij}: \pi_i = \pi j, \forall 1 \le i \ne j \le n$, a uniform version of Thm.19.2.1 is

$$\lim_{n \to \infty} \sup_{1 \le i \ne j \le n} \left| \Pr \left(T_{ij} \le x \right) - \Pr \left(X \le x \right) \right| = 0, \forall x \in \mathbf{R}$$

where $X \sim \chi_K^2$. But the test statistic T_{ij} is not directly applicable since the population parameters K and Σ_1 . For consistent estimators satisfying the following condition

$$\Pr(\hat{K} = K) = 1 - o(1)$$
$$\theta^{-1} \left\| \mathbf{D} \left(\hat{\mathbf{S}}_1 - \boldsymbol{\Sigma}_1 \right) \mathbf{D} \right\|_2 = o(1)$$

then the asymptotic results in Thm. 19.2.1 holds.

With degree heterogeneity Define componentwise ratio

$$Y(i,k) = \frac{\hat{v}_k(i)}{\hat{v}_1(i)}, \qquad 1 \le i < n, 2 \le k \le K$$

where $\hat{v}_k(i)$ is the *i*-th component of *k*-th eigenvector of **X**. Due to the **exchangeability** of nodes *i* and *j*, under the null it holds that

$$\frac{v_k(j)}{v_1(j)} = \frac{v_k(j)}{v_1(j)}, \qquad 2 \le k \le K$$

Denote $\mathbf{Y}_i = (Y(i, 2), \dots, Y(i, K))'$, the new test statistics is proposed as

$$G_{ij} = (\mathbf{Y}_i - \mathbf{Y}_j)' \Sigma_2^{-1} (\mathbf{Y}_i - \mathbf{Y}_j)$$

where Σ_2 is the asymptotic variance of $Y_i - Y_j$, which is much harder to derive and estimate. So we need to impose four other conditions in addition to Condition C1-C3:

C4 $\exists c_2 \in [0, 1/2), c_3 \in (0, 1 - 2c_2), c_4 > 0, c_5 \in (0, 1) \text{ s.t.}$

$$\lambda_K(\mathbf{P}) \ge n^{-c_2}$$
 $\min_{1 \le k \le K} |\mathcal{N}_k| \ge c_5 n$ $\theta_{\text{max}} \le c_4 \theta_{\text{min}}$ $\theta_{\text{min}}^2 \ge n^{-c_3}$

C5 $P = (p_{kl})$ is positive definite, irreducible and has unit diagonal entries, moreover

$$n \min_{1 \le k \le K, t=i,j} \operatorname{Var} \left(\mathbf{e}_t' \mathbf{W} \mathbf{v}_{\mathbf{k}} \right) \sim n \theta_{\max}^2 \to \infty$$

C6 all the eigenvalues of

$$(n\theta_{\text{max}}^2)^{-1} \mathbf{D} \text{Cov}(f) \mathbf{D}$$

are bounded away from 0 and ∞

C7 Let η_1 be the first right singular vector of $\mathbf{P}\Pi'\mathbf{\Theta}^2\Pi$, it holds that

$$\min_{1 \le k \le K} \eta_1(k) > 0 \qquad \frac{\max_{1 \le k \le K} \eta_1(k)}{\min_{1 \le k \le K} \eta_1(k)} \le C$$

for some positive *C*, where $\eta_1(k)$ is the *k*-th entry of η_1 .

Then we have

Theorem 19.2.2: Test Statistic Distribution with Degree Heterogeneity

Under Condition C1, C4-C7, with degree heterogeneity,

under the null,

$$G_{ij} \xrightarrow{\mathcal{D}} \chi^2_{K-1}$$

• under the alternative with $\lambda_2 \left(\pi_i \pi_i' + \pi_i \pi_j' \right) \gg \frac{1}{n^{1-2c\theta_{\min}^2}}$, for any arbitrarily large constant C > 0,

$$\Pr(G_{ij} > C) \xrightarrow{n \to \infty} 1$$

notice that K and Σ_2 are both unknown, we must have

• for estimator \hat{S}_2 of Σ_2 , we need

$$(n\theta_{\text{max}}^2)^{-1} \| \mathbf{D} \left(\hat{\mathbf{S}}_2 - \boldsymbol{\Sigma}^2 \right) \mathbf{D} \|_2 = o_p(1)$$

replace Σ_2 with $\hat{\mathbf{S}}_2$

• for K, under Condition C1, and $|d_K| \gg \sqrt{\log(n)}\alpha_n$ and $\alpha_n \ge n^{c_5}$ for some positive constant c_5 , a consistent thresholding estimator is defined

$$\hat{K} = |\{\hat{d}_i : \hat{d}_i^2 > 2.01(\log n)\check{d}_n, i \in [n]\}|$$

where the constant 2.01 can be replace with any other constant slightly larger than 2, and

$$\check{d}_n = \max_{1 \le l \le n} \sum_{j=1}^n \mathbf{X}_{lj}$$

is the maximum degree of the network. For \hat{K} to be consistent, we need

- Condition C1 holds
- $|d_K| \gg \sqrt{\log(n)}\alpha_n$, where $\alpha_n \ge n^{c_5}$ for some constant $c_5 > 0$

19.3 Rank Inference via Residual Subsampling

Again, consider $n \times n$ symmetric random matrix $\tilde{\mathbf{X}}$ and its decomposition

$$\tilde{\mathbf{X}} = \mathbf{H} + \mathbf{W}$$

where

• $\mathbf{H} = \mathbb{E}(\tilde{\mathbf{X}})$ with some fixed but unknown rank $K \ll n$, it can be eigen-decomposed as

$$H = VDV'$$

where $\mathbf{D} = \operatorname{diag}(d_1, \dots, d_K)$ are the non-zero eigenvalues of \mathbf{H} in decreasing magnitude and $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_K)$ are the corresponding eigenvectors

• W has bounded and independent entries on and above the diagonals

References

Emmanuel Abbe. Community detection and stochastic block models: recent developments. *The Journal of Machine Learning Research*, 18(1):6446–6531, 2017.