March 17, 2023 2:57 PM
Last time: we saw that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent
Today: Continuing & 11.2:
Theorem 6: If $\underset{n=1}{\overset{\circ}{\sum}}$ an is convergent, then $\underset{n\to\infty}{\lim}$ an $=0$.
Proof: let $S_N = a_1 + a_2 + \cdots + a_N$
Then $a_N = (a_1 + a_2 + \cdots + a_{N_1} + a_N) - (a_1 + a_2 + \cdots + a_{N_{-1}})$
$=S_{N}-S_{N-1}$
then because the series conerges, $\lim_{N\to\infty} S_N = S$ $\left(S = \frac{2}{n} c_N\right)$
also lim S _{N-1} = S
So $\lim_{N\to\infty} Q_N = \lim_{N\to\infty} \left(S_N - S_{N-1}\right) = \lim_{N\to\infty} S_N - \lim_{N\to\infty} S_{N-1} = S - S = 0.$
(1) The Reverse Statement is not true!
The "peverse statement" until be "If lim an = 0 then \$7 an converges"
This is not true, an example is the harmonic series (an= 1/h) lim to = 0 Honever we saw \$7 to diverges!
noon = 0 However us saw som not harges!
Test-for divergence: If lim an #0 or lim an doesn't exist, the 2 an diverges.
Ex 10: Show that $\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$ diverges
Sol: We note that $\lim_{N\to\infty} \frac{N^2}{5n^2+4} = \lim_{N\to\infty} \frac{1}{5+4/n^2} = \frac{1}{5} \neq 0$
So by the test for divergence, the series $\sum_{n=1}^{50} \frac{n^2}{5n^2+4}$ diverges.
Minute Math: Find the Sum (if it converges):

