В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {1100; 1111}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MH/II}\phi$ = (X4X3 $\overline{X}2\overline{X}1$) v (X4X3X2X1) v ($\overline{X}4\overline{X}3X1$) v ($\overline{X}3\overline{X}2X1$)

Метод діаграм Вейча

Метод діаграм Вейча— це графічний метод, призначений для ручної мінімізації. Його наочність эберігається за невеликої кількості аргументів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить 2^k елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

 $f_{4MHII\Phi} = (X4X3\overline{X}2\overline{X}1) \ v \ (X4X3X2X1) \ v \ (\overline{X}4\overline{X}3X1) \ v \ (\overline{X}3\overline{X}2X1)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

3M.	Арк.	№ докум.	Підп.	Дата

<i>IA/IU.463626.004 </i>	73
---------------------------	----

KO *K2 K1* 000X (1,2) OXXO (1,3) 0000 (1,2,3) 00X0 (1,2,3) OXXO (1,3) *0001 (1,2*) 0010 (1,2,3) OXOO (1,3) XX00 (1) 0100 (-1,3) X000 (1,2) XX00 (1) 0110 (1,-2,-3) OX10 (1,2,3) 01X0 (1,3) 0111 (-1,-2,3) 1000 (1,2) X100 (1,3) 1100 (1,-2,3) 011X (1,2,3) 1111 (1,2,3) X111 (1,2,3) 1X00 (1,2)

Рисунок 4.6 Склеювання і поглинання термів системи

	<i>a</i>			<u> </u>				2	~	~	~		3/	~	~			
	0000/F1/	0001/F1/	0010 F1	0110/F1)	1000(F1)	1100/F1/	1111/F1/	0000(F2)	0001/F2/	710IF.	1000(F2)	1111/F2/	00000(F3)	0010IF3J	0100lF3J	0111F3J	1100IF3/	1111/F3/
	\gamma	\mathcal{O}	\mathcal{Z}	Ö	\mathcal{Q}	11	11	\mathcal{O}	\mathcal{C}	\mathcal{O}	\mathcal{Q}	11	00	\mathcal{O}	Ö	0	11	11
1100 (1,-2,3)						+											+	
000X (1,2)	+	+						+	+									
00X0 (1,2,3)	+		+					+		+			+	+				
X000 (1,2)	+				+			+			+							
OX10 (1,2,3)			+	+						+				+				
X100 (1,3)						+									+		+	
011X (1,2,3)				+												+		
X111 (1,2,3)							+					+				+		+
1X00 (1,2)					+	+					+							
OXXO (1,3)	+		+	+									+	+	+			
XX00 (1)	+				+	+												

3M.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.5 Таблиця покриття системи

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (X3X2X1)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X3X2X1) \ v \ (X4\overline{X2}\overline{X1})$

 $f3_{MDH\phi} = (X3X2X1) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1})$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

KO	K1	K2
<i>0001 (3)</i>	00X1 (3)	X0X1 (3)
<i>0011 (1,2,3)</i>	0X01 (3)	XX01 (3)
0100 (-1,2)	X001 (3)	XOX1 (3)
0101 (1,2,3)	<i>0X11 (1,2</i>)	XX01 (3)
0110 (-2,-3)	X011 (1,2,3)	01XX (2)
0111 (-1,-2)	010X (1,2)	X10X (2)
1000 (3)	01X0 (2)	01XX (2)
1001 (1,2,3)	X100 (2)	X1X0 (2)
1010 (1,2,3)	01X1 (1,2)	X10X (2)
1011 (1,2,3)	X101 (1,2,3)	X1X0 (2)
1100 (-2)	011X (2)	<u> 10XX (3)</u>
1101 (1,2,3)	X110 (2,3)	10XX (3)
1110 (1,2,3)	100X (3)	
	10X0 (3)	
	10X1 (1,2,3)	
	1X01 (1,2,3)	
	101X (1,2,3)	
	1X10 (1,2,3)	
	110X (2)	<u> </u>
	11X0 (2)	

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.7 Склеювання і поглинання термів системи

	0011/F1)	0101/F1)	1001/F1)	1010IF1)	1011F1	1101F1)	1110IF1)	<i>0011 F2 </i>	0100lF2)	01011F21	1001/F2/	1010IF2)	1011F2J	1101(F2)	1110(F2)	0001/F3J	0011F3J	0101F3J	1000lF3/	1001F3J	1010IF3J	1011(F3)	1101(F3)	1110IF3J
OX11 (1,2)	+							+																
, , , , , , , , , , , , , , , , , , , ,	+				+			+					+				+					+		
010X (1,2)		+							+	+														
01X1 (1,2)		+								+														
X101 (1,2,3)		+				+				+				+				+					+	
X110 (2,3)															+									+
10X1 (1,2,3)			+		+						+		+							+		+		
1X01 (1,2,3)			+			+					+			+						+			+	
101X (1,2,3)				+	+							+	+								+	+		
1X10 (1,2,3)				+			+					+			+						+			+
XOX1 (3)																+	+			+		+		
XX01 (3)																+		+		+			+	
01XX (2)									+	+														
X10X (2)									+	+				+										
X1X0 (2)									+						+									
10XX (3)																			+	+	+	+		

Таблиця 4.6 Таблиця покриття системи

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

 $f1_{MJH\Phi}=(\overline{X3}X2X1) \ v \ (X3\overline{X2}X1) \ v \ (X4\overline{X3}X1) \ v \ (X4X2\overline{X1})$

 $f2_{MJH\phi}=(\overline{X3}X2X1) \ v \ (X3\overline{X2}X1) \ v \ (X4\overline{X3}X1) \ v \ (X4X2\overline{X1}) \ v \ (\overline{X4}X3)$

 $f3_{MJH\phi}=(X3\overline{X}2X1) \ v \ (X4\overline{X}3X1) \ v \ (\overline{X}3X1) \ v \ (\overline{X}4X3)$

3M.	Арк.	№ докум.	Підп.	Дата

<i>IA/ILI.463626.004</i>	//3
--------------------------	-----

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функції, що подана в формі I/AБО.

 $f1_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (X3X2X1)$

 $f2_{M\Pi H \phi} = (\overline{X4} \overline{X3} \overline{X2}) \ v \ (\overline{X4} \overline{X3} \overline{X1}) \ v \ (X3X2X1) \ v \ (X4\overline{X2} \overline{X1})$

 $f3_{MJH\phi} = (X3X2X1) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1})$

Позначимо терми системи:

 $P1 = \overline{X4}\overline{X3}\overline{X2}$

 $P2 = X4\overline{X}2\overline{X}1$

 $P3 = \overline{X4}\overline{X1}$

P4 = X3X2X1

 $P5 = \overline{X4}\overline{X3}\overline{X1}$

P6 = X3\overline{X}2\overline{X}1

Тоді функції виходів описуються системою:

 $f1_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (X3X2X1) = P1 \ v \ P2 \ v \ P3 \ v \ P4$

 $f2_{M\Pi H \phi} = (\overline{X4} \overline{X3} \overline{X2}) \ v \ (\overline{X4} \overline{X3} \overline{X1}) \ v \ (X3X2X1) \ v \ (X4 \overline{X2} \overline{X1}) = P1 \ v \ P4 \ v \ P5 \ v \ P2$

 $f3_{MJH\phi} = (X3X2X1) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) = P4 \ v \ P3 \ v \ P6$

Зм.	Арк.	№ докум.	Підп.	Дата

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

p = 6 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,6,3) (рисунок 4.8).

Рисунок 4.8 Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,6,3) (таблиця 4.7).

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.7 Карта програмування ПЛМ

Nº		Вхи	Виходи				
ШИНИ	<i>X</i> 4	<i>X3</i>	<i>X2</i>	<i>X1</i>	<i>f1</i>	<i>f2</i>	<i>f3</i>
<i>P1</i>	0	0	0	ı	1	1	0
<i>P2</i>	1	-	0	0	1	1	0
<i>P3</i>	0	-	1	0	1	0	1
P4	-	1	1	1	1	1	1
P5	0	0	-	0	0	1	0
<i>P6</i>	-	0	1	1	0	0	1

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІАЛЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2015р.

Зм.	Арк.	№ докум.	Підп.	Дата