CS495 Optimiztaion

Waleed A. Yousef, Ph.D.,

Human Computer Interaction Lab., Computer Science Department, Faculty of Computers and Information, Helwan University, Egypt.

February 22, 2019

Lectures follow Boyd and Vandenberghe (2004):

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press.

Book and Stanford course: http://web.stanford.edu/ ~boyd/cvxbook/ Some examples from Chong and Zak (2001):

Chong, E. K., & Zak, S. (2001). An introduction to optimization: Wiley-Interscience.

Course Objectives

- Developing rigorous mathematical treatment for mathematical optimization.
- Building intuition, in particular to practical problems.
- Developing computer practice to using optimization SW.

Prerequisites

Calculus (both single and multivariable) and Linear Algebra.

Contents

Contents							
1	Introd	luction		1			
	1.1	Mathema	atical Optimization Motivation and Applications	. 2			
		1.1.1	Motivation and Applications	. 4			
		1.1.2	Solving Optimization Problems	. 6			
	1.2 Least-Squares and Linear Programming		uares and Linear Programming	. 7			
		1.2.1	Least-Squares Problems	. 7			
		1.2.2	Linear Programming	. 8			
	1.3	Convex C	Optimization	. 9			
	1.4	Nonlinea	r Optimization	. 10			
Bibl	iograph	ıy		11			

Chapter 1

Introduction

Mathematical Optimization 1.1

Definition 1 A mathematical optimization problem $| \bullet |$ minimize $f_0 \equiv \text{maximize} - f_0$. or just optimization problem, has the form (Boyd and *Vandenberghe*, 2004):

minimize
$$f_0(x)$$

subject to: $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$,
 $x = (x_1, ..., x_n) \in \mathbf{R}^n$, (optimization variable)
 $f_0 : \mathbf{R}^n \mapsto \mathbf{R}$, (objective (cost/utility) function)
 $f_i : \mathbf{R}^n \mapsto \mathbf{R}$, (inequality constraints (functions))
 $h_i : \mathbf{R}^n \mapsto \mathbf{R}$, (equality constraints (functions))
 $\mathcal{D} : \bigcap_{i=1}^m \mathbf{dom} f_i \cap \bigcap_{i=1}^p \mathbf{dom} h_i$ (feasible set)
 $= \{x \mid x \in \mathbf{R}^n \land f_i(x) \le 0 \land h_i(x) = 0\}$
 $x^* : \{x \mid x \in \mathcal{D} \land f_0(x) \le f_0(z) \ \forall z \in \mathcal{D}\}$ (solution)

- $f_i \le 0 \equiv -f_i \ge 0$.
- 0s can be replaced of course by constants b_i , c_i
- unconstrained problem when m = p = 0.

Example 2:

minimize subject to: $x < 2 \land x > 1$.

 $x^* = 1$.

If the constraints are relaxed, then $x^* = 0$.

 $\underset{x}{\text{minimize}} f_0(x)$

subject to: $f_i(x) \le 0$, i = 1, ..., m

$$h_i(x) = 0, i = 1, \dots, p,$$

 $x = (x_1, \dots, x_n) \in \mathbf{R}^n$, (optimization variable)

 $f_0: \mathbf{R}^n \mapsto \mathbf{R}$, (objective (cost/utility) function)

 $f_i: \mathbf{R}^n \mapsto \mathbf{R}$, (inequality constraints (functions)) $h_i: \mathbf{R}^n \mapsto \mathbf{R}$, (equality constraints (functions))

$$\mathcal{D}: \bigcap_{i=1}^{m} \mathbf{dom} \, f_i \, \cap \bigcap_{i=1}^{p} \mathbf{dom} \, h_i \qquad (feasible \, set)$$

$$= \left\{ x \mid x \in \mathbf{R}^n \ \land \ f_i(x) \le 0 \ \land \ h_i(x) = 0 \right\}$$

 $x^*: \left\{x \mid x \in \mathcal{D} \ \land \ f_0(x) \leq f_0(z) \ \forall z \in \mathcal{D}\right\} \quad \ (solution)$

Example 3 (Chong and Zak, 2001, Ex. 20.1, P. 454):

minimize $(x_1 - 1)^2 + x_2 - 2$

subject to: $x_2 - x_1 = 1$ $x_1 + x_2 \le 2$.

No global minimizer: $\partial z/\partial x_2 = 1 \neq 0$. However, $z|_{(x_2-x_1=1)} = (x_1-1)^2 + (x_1-1)$, which attains a minima at $x_1 = 1/2$.

x * = (1/2, 3/2)'. (Let's see animation)

1.1.1 Motivation and Applications

- *optimization problem* is an abstraction of how to make "best" possible choice of $x \in \mathbb{R}^n$.
- *constrains* represent trim requirements or specifications that limit the possible choices.
- *objective function* represents the *cost* to minimize or the *utility* to maximize for each x.

Examples:

sessment.

	Any problem	Portfolio Optimization	Device Sizing	Data Science
$x \in \mathbf{R}^n$	choice made	investment in capitals	dimensions	parameters
f_i, h_i	firm requirements /conditions	overall budget	engineering constraints	regularizer
f_0	cost (or utility)	overall risk	power consumption	error

• Amazing variety of practical problems. In particular, data science: two sub-fields: construction and as-

- The construction of: Least Mean Square (LMS), Logistic Regression (LR), Support Vector Machines (SVM), Neural Networks(NN), Deep Neural Networks (DNN), etc.
- Many techniques are for solving the optimization problem:
 - Closed form solutions: convex optimization problems
- Numerical solutions: Newton's methods, Gradient methods, Gradient descent, etc.
- "Intelligent" methods: particle swarm optimization, genetic algorithms, etc.

Example 4 (Machine Learning: construction):

Let's suppose that the best regression function is $Y = \beta_0 + \beta_1 X$, then for the training dataset (x_i, y_i) we need to minimize the MSE.

- Half of ML field is construction: NN, SVM, etc.
- In DNN it is an optimization problem of millions of parameters.
- Let's see animation.
- Where are Probability, Statistics, and Linear Algebra here? Let's re-visit the chart.
- Is the optimization problem solvable:
 - closed form? (LSM)
 - numerically and guaranteed? (convex and linear)
 - numerically but not guaranteed? (non-convex):
 - * numerical algorithms, e.g., GD,
 - * local optimization,
 - * heuristics, swarm, and genetics,
 - * brute-force with exhaustive search

$$\underset{\beta_o,\beta_1}{\text{minimize}} \sum_{i} (\beta_o + \beta_1 x_i - y_i)^2$$

1.1.2 Solving Optimization Problems

- A solution method for a class of optimization problems is an algorithm that computes a solution.
- Even when the *objective function* and constraints are smooth, e.g., polynomials, the solution is very difficult.
- There are three classes where solutions exist, theory is very well developed, and amazingly found in many practical problems:

Linear ⊂ Quadratic ⊂ Convex ⊂ Non-linear (not linear and not known to be convex!)

• For the first three classes, the problem can be solved very reliably in hundreds or thousands of variables!

1.2 Least-Squares and Linear Programming

1.2.1 Least-Squares Problems

A *least-squares* problem is an optimization problem with no constraints (i.e., m = p = 0), and an objective in the form:

minimize
$$f_0(x) = \sum_{i=1}^k (a_i' x - b_i)^2 = ||A_{k \times n} x_{n \times 1} - b_{k \times 1}||^2$$
.

The solution is given in **closed form** by:

$$x = (A'A)^{-1}A'b$$

- Good algorithms in many SC SW exist; it is a very mature technology.
- Solution time is $O(n^2k)$.
- Easily solvable even for hundreds or thousands of variables.
- More on that in the Linear Algebra course.
- Many other problems reduce to typical LS problem:
 - Weighted LS (to emphasize some observations)

$$\underset{x}{\text{minimize}} f_0(x) = \sum_{i=1}^k w_i (a_i' x - b_i)^2.$$

- Regularization (to penalize for over-fitting)

minimize
$$f_0(x) = \sum_{i=1}^k (a_i' x - b_i)^2 + \rho \sum_{j=1}^n x_j^2$$
.

1.2.2 Linear Programming

A linear programming problem is an optimization problem with objective and all constraint functions are linear: $f_0(x) = C'x$ minimize

$\overset{\dots}{x}$	J0(a) 0 a	
subject to:	$a_i'x \le b_i,$	$i = 1, \dots, m$
	$h_i'x = g_i,$	$i=1,\ldots,p,$

- No closed form solution as opposed to LS.
- Very robust, reliable, and effective set of methods for numerical solution; e.g., Dantzig's simplex, and interior point.
- Complexity is $\simeq O(n^2m)$.
- Similar to LS, we can solve a problem of thousands of variables.
- Example is *Chebyshev minimization* problem:

$$\underset{x}{\operatorname{minimize}} f_0(x) = \underset{i=1,\dots,k}{\max} |a_i'x - b_i|,$$

- The objective is different from the LS: minimize the maximum error. Ex:
- After some tricks, requiring familiarity with optimization, it is equivalent to a LP:

Titter some tricks, requiring rummur.		ir optimization, it is equivalent to a Er.	
\min_{x}	t		

- subject to: $a_i'x - t \le b_i$ $i = 1, \ldots, k$ $-a_i'x - t \leq -b_i$

1.3 Convex Optimization

A *convex optimization* problem is an optimization problem with objective and all constraint function are convex:

$$\begin{aligned} & \underset{x}{\text{minimize}} & & f_0(x) \\ & \text{subject to:} & & f_i(x) \leq 0, & & i = 1, \dots, m \\ & & & h_i(x) = 0, & & i = 1, \dots, p, \\ & & & f_i(\alpha x + \beta y) \leq \alpha f_i(x) + \beta f_i(y), & & \alpha + \beta = 1, & & 0 \leq \alpha, \ 0 \leq \beta, & & 0 \leq i \leq m \\ & & & h_i(x) = a_i' x + b_i & & & \end{aligned}$$

1.4 Nonlinear Optimization

Bibliography

Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge: Cambridge University Press.

Chong, E. K. and Zak, Stanislaw, H. (2001), An Introduction to Optimization, Wiley-Interscience, 4th ed.