Fragenkatalog zum Biothan-Rundgang

Fragen Nassfermentation (A): 28
Fragen Trockenfermentation (B): 22
Fragen Kompostierung (C): 14

Fragen Gasaufbereitung (D): 14

Fragen Naturschutz (E): 8 Fragen Historie (F): 4

→ 90

- 1. Welche Begriffe beschreiben synonym den anaeroben Abbau?
 - a. Vergärung und Fermentation
 - b. Degradation und Reduktion
 - c. aerober Abbau und Oxidation
- 2. Welche Mikroorganismen sind am anaeroben Abbau beteiligt?
 - a. Viren
 - b. Bakterien
 - c. fakultativ und obligate Anaerobier
- 3. Worin liegt der Unterschied zwischen fakultativen und obligaten Anaerobiern?
 - a. Obligat anaerobe Organismen können mit und ohne Sauerstoff leben, wohingegen fakultativ anaerobe Organismen nur unter Ausschluss von Sauerstoff leben können
 - b. Obligat anaerobe Organismen können mit und ohne Sauerstoff leben, wohingegen fakultativ anaerobe Organismen nur mit Sauerstoff leben können
 - c. Fakultativ anaerobe Organismen können mit und ohne Sauerstoff leben, wohingegen obligat anaerobe Organismen nur unter Ausschluss von Sauerstoff leben können
- 4. Wie viele Phasen umfasst der anaerobe Abbau?
 - a. zwei
 - b. drei
 - c. vier
- 5. Wie heißen die Phasen des anaeroben Abbaus in der richtigen Reihenfolge?
 - a. Hydrolyse, Versäuerung und Methanogenese
 - b. Verflüssigungsphase, Acidogenese, Acetogenese und Methanogenese
 - c. Hydrolyse, Versäuerung, Acetogenese und Methanogenese
- 6. Was passiert während der Hydrolyse?
 - a. Langkettige Verbindungen werden in die Zellen der Bakterien aufgenommen.
 - b. Komplexe polymere Verbindungen werden durch von fermentativen Bakterien abgesonderten Exoenzymen aufgespalten.
 - c. Monomere und Dimere werden zu komplexen Verbindungen zusammengebaut.
- 7. Was passiert während der Acidogenese?

- a. Die Hydolyseprodukte werden über die Cytoplasmamembran der fermentativen Bakterien in die Zelle aufgenommen.
- b. Die Hydrolyseprodukte werden zu organischen Säuren und Alkoholen vergoren.
- c. Die Hydrolyseprodukte werden in Essigsäure umgewandelt.
- 8. Was passiert während der Acetogenese?
 - a. Essigsäure wird gebildet.
 - b. Wasserstoff wird freigesetzt.
 - c. Alkohole werden gebildet.
- 9. Was passiert während der Methanogenese?
 - a. Essigsäure, Wasserstoff und Kohlenstoffdioxid werden direkt zu Methan umgesetzt.
 - b. Methan wird zu Biogas umgewandelt.
 - c. Langkettige Verbindungen werden zu Methan umgesetzt.
- 10. Worin besteht die Besonderheit zwischen acetogenen und methanogenen Bakterien während des anaeroben Abbaus?
 - a. Sie agieren unabhängig voneinander
 - b. Sie weisen gleiche Nahrungsansprüche auf.
 - c. Sie bilden eine synthrophe Lebensgemeinschaft.
- 11. Was sind die Endprodukte des anaeroben Abbaus?
 - a. Wasserstoff, Methan und Kohlenstoffdioxid
 - b. Gärreste, Biogas und Edelgase
 - c. Gärreste, Methan und Kohlenstoffdioxid
- 12. Welche Stationen werden bei der Einfahrt auf die Biothan-Anlage durchlaufen?
 - a. Wertstoffhof und Desinfektionsbecken
 - b. Desinfektionsbecken und Waage
 - c. Ausgleichsfläche und Waage
- 13. Wie funktioniert ein Biofilter?
 - a. Mikroorganismen siedeln auf dem Trägermaterial des Filters an und nehmen die Geruchsstoffe auf.
 - b. In einem Biofilter werden die Geruchsstoffe mittels Wasser ausgewaschen.
 - c. Die Abluft wird durch eine Membran geleitet und dabei gereinigt.
- 14. Wieso werden Biofilter eingesetzt?
 - a. Verminderung Geruchsbelastung
 - b. Emissionsschutz
 - c. Vermeidung des Austritts giftiger Gase
- 15. Wozu dient der Regenwasserspeicher?
 - a. Feuerlöschteich
 - b. Anmaischwasser
 - c. Trinkwasser

- 16. Welche Ausgangsmaterialien werden bei der Nassfermentation der Biothan Anlage verwendet?
 - a. Marktrückläufer und Lebensmittelfehlchargen
 - b. Maissilage und Biertreber
 - c. Rohgülle und Speisereste
- 17. Welche Trockensubstanzgehalte werden bei der Nassfermentation verwendet?
 - a. < 25 Gew.-%
 - b. < 15 Gew.-%
 - c. > 15 Gew.-%
- 18. Welche Schritte durchlaufen die organischen Reststoffe bei der Annahme der Nassfermentation in der richtigen Reihenfolge?
 - a. Annahmebunker, Rohgüllelagertank, Misch-/ Vorlagebehälter
 - b. Rohgüllelagertank, Misch-/ Vorlagebehälter, Hammermühle
 - c. Annahmebunker, Hammermühle, Misch-/ Vorlagebehälter
- 19. Über welche drei Möglichkeiten können organische Reststoffe bei der Nassfermentation angenommen werden?
 - a. Flachbunker, Schüttguttrichter und Rohgüllelagertank
 - b. Vorlagebehälter, Hammermühle und Rohgüllelagertank
 - c. Flachbunker
- 20. Wozu dient die Hammermühle in der Nassfermentation?
 - a. Entpackung des angelieferten Materials
 - b. Störstoffentfernung
 - c. Aufbereitung der Rohgülle
- 21. Was passiert mit dem ausgesiebten Material der Hammermühle in der Nassfermentation?
 - a. Einsatz auf der Anlage in der Heizkesselanlage
 - b. Energetische Verwertung als Ersatzbrennstoff
 - c. Recycling in externen Firmen
- 22. Welche Station sorgt für die Dosierung der Reststoffe für die Anaerobstufe in der Nassfermentation?
 - a. Mischbehälter
 - b. Exzenterschneckenpumpe
 - c. Vorlagebehälter
- 23. Welche Funktionen übernimmt der Vorlagebehälter in der Nassfermentation?
 - a. Hygienisierung des Materials
 - b. kontinuierliche Bestückung des Anaerobbehälter
 - c. Sedimentation von Störstoffen
- 24. In welchem Temperaturbereich werden die Anaerobfermenter der Nassfermentation betrieben?
 - a. extremophil
 - b. thermophil

- c. mesophil
- 25. Welche Parameter müssen zur Hygienisierung der Gärprodukte während der Pasteurisierung eingehalten werden?
 - a. Mindestens 70°C für mindestens eine Stunde
 - b. Maximal 50°C für mindestens eine Stunde
 - c. 80°C für weniger als eine Stunde
- 26. Was wird im Gärrestelager gespeichert?
 - a. Biogas
 - b. flüssiges Gärprodukt
 - c. organische Reststoffe
- 27. Wie wird der Flüssigdünger vor der Ausbringung behandelt?
 - a. Entwässerung über eine Schneckenpresse
 - b. Feinabsiebung über eine Schneckenpresse
 - c. Anreicherung mit Nährstoffen
- 28. Wann erfolgt die Ausbringung des Flüssigdüngers?
 - a. Im Winter und Sommer
 - b. Im Sommer und Frühjahr
 - c. Im Frühjahr und Herbst
- 29. Was versteht man unter Enzymen?
 - a. Komplexe Moleküle, die biochemische Reaktionen verzögern
 - b. Komplexe Moleküle, die biochemische Reaktionen beschleunigen
 - c. Komplexe Moleküle, die als Katalysator wirken
- 30. Wovon ist die Reaktionsgeschwindigkeit von enzymkatalysierten Reaktionen abhängig?
 - a. Substratkonzentration- und Zusammensetzung
 - b. Druck und Temperatur
 - c. Ionenstärke und pH-Wert
- 31. Wie verändert sich die Wachstumsgeschwindigkeit der Bakterien zum Ende des anaeroben Abbaus hin?
 - a. steigend
 - b. gleichbleibend
 - c. verringernd
- 32. Welche Phase des anaeroben Abbaus ist der limitierende Schritt?
 - a. Hydrolyse
 - b. Acetogenese
 - c. Methanogenese
- 33. Wieso muss die Substratdosierung beim anaeroben Abbau beachtet werden?
 - a. Steigen des pH-Wertes in den basischen Bereich und Umkippen des Prozesses in ein basisches Milieu
 - b. Hemmung der Methanbakterien

- c. Sinken des pH-Wertes in den sauren Bereich und Umkippen des Prozesses in ein saures Milieu
- 34. Zwischen welchen Phasen liegt das "Nadelöhr" des pH-Wertes?
 - a. erste und zweite Phase
 - b. zweite und dritte Phase
 - c. dritte und vierte Phase
- 35. Wieso ist es wichtig den pH-Wert im anaeroben Prozess zu berücksichtigen?
 - a. Es ist nicht wichtig
 - b. Acetogene und methanogene Bakterien reagieren empfindlich auf niedrige pH-Werte
 - c. Hydrolytische und acidogene Bakterien reagieren empfindlich auf hohe pH-Werte
- 36. Wie ist der optimale pH-Wert für den anaeroben Abbau?
 - a. Der pH-Wert sollte genau bei 6,7 liegen
 - b. Der pH-Wert sollte nicht über 6,7 steigen
 - c. Der pH-Wert sollte nicht unter 6,7 fallen
- 37. In welchen Temperaturbereichen kann der anaerobe Abbau stattfinden?
 - a. mesophil
 - b. thermophil
 - c. extremophil
- 38. Welcher Temperaturbereich ist optimal beim anaeroben Abbau und warum?
 - a. Der mesophile Temperaturbereich bietet Prozessstabilität bei optimalen Umsatzraten und überschaubarem Aufwand für die Temperierung
 - b. Der thermophile Temperaturbereich bietet Prozessstabilität bei optimalen Umsatzraten und überschaubarem Aufwand für die Temperierung
 - c. Der thermophile Temperaturbereich bietet einen intensiveren Abbau und die Möglichkeit der Hygienisierung
- 39. Welche Vorteile bietet der thermophile Temperaturbereich?
 - a. höhere Umsatzraten
 - b. intensiverer und schnellerer Abbau
 - c. Hygienisierung des Gärrestes
- 40. Wie beeinflusst der Wasserstoffpartialdruck den anaeroben Abbau?
 - a. Die Methanbildung verbraucht Wasserstoff und hält den Wasserstoffpartialdruck niedrig
 - b. Es wird ein niedriger Wasserstoffpartialruck für die Acetogenese benötigt
 - c. Ein hoher Wasserstoffpartialdruck wird für die Acetogenese benötigt
- 41. Welche Verfahren der Prozessführung sind beim anaeroben Abbau möglich?
 - a. einstufig / zweistufig
 - b. trocken / nass
 - c. batch / kontinuierlich

- 42. Welche Ausgangsmaterialien werden bei der Trockenfermentation verwendet?
 - a. Marktrückläufer und Lebensmittelfehlchargen
 - b. biologische Abfälle der Biotonne
 - c. Getreidefehlchargen und Zuckerrübenfehlchargen
- 43. Welche Trockensubstanzgehalte werden bei der Trockenfermentation verwendet?
 - a. > 25 Gew.-%
 - b. < 35 Gew.-%
 - c. 25-40 Gew.-%
- 44. Welche Probleme treten durch die Ausgangsstoffe bei der Trockenfermentation auf?
 - a. hohe Störstoffbelastung
 - b. zu hoher Wassergehalt
 - c. Sand- und Steineintrag
- 45. In welchen Schritten werden die angenommenen organischen Reststoffe bei der Trockenfermentation aufbereitet?
 - a. Schredderanlage, Magnetscheider und Sternsieb
 - b. Waschanlage, Schredderanlage und Presse
 - c. Schredderanlage, Presse und Sternsieb
- 46. Was sichert der Bunker bei der Trockenfermentation ab?
 - a. Störstofffreiheit des aufbereiteten Materials
 - b. Kontinuierliche Bestückung des Fermenters
 - c. Ausgleich für Tage ohne Materialanlieferungen
- 47. Was für Fermenter werden bei der Trockenfermentation werden?
 - a. kontinuierlicher Rohrbehälter
 - b. kontinuierliche Rührkessel
 - c. Pfropfenstrombehälter nach dem KOMPOGAS-Verfahren
- 48. Wie lange verweilt das Material im Fermenter der Trockenfermentation?
 - a. < 15 Tage
 - b. < 20 Tage
 - c. 20-25 Tage
- 49. Bei wieviel Grad findet die Vergärung bei der Trockenfermentation statt?
 - a. 40-42°C
 - b. 35°C
 - c. 55°C
- 50. Welcher Prozessschritt der Trockenfermentation ermöglicht die Kompostierung des Gärmaterials?
 - a. Fest-/Flüssigtrennung
 - b. Überdrucksicherung
 - c. Anmaischung
- 51. Wozu dient die Kompostierung?

- a. Vollständiger Abbau des Materials
- b. Reduktion des Restgaspotentials
- c. Rechtfertigung der Vergärung
- 52. Welche zwei Phasen durchläuft die Kompostierung?
 - a. Vor- und Nachrotte
 - b. Intensiv- und Nachrotte
 - c. Absiebung und Rotte
- 53. Welchen Prozess durchläuft der Kompost vor der Ausbringung?
 - a. Pressen
 - b. Nährstoffanreicherung
 - c. Störstoffabtrennung
- 54. Worin liegt Unterschied zwischen aeroben und anaeroben Abbau?
 - a. Beim aeroben Abbau findet kein technischer Energiegewinn statt
 - b. Beim aeroben Material wird kein organisches Material abgebaut
 - c. Beim aeroben Abbau werden keine Mikroorganismen benötigt
- 55. Was versteht man unter dem aeroben Abbau?
 - a. Abbauvorgang anorgansicher Substanzen mit autotrophen Mikroorganismen unter dem Einfluss von Sauerstoff
 - b. Abbauvorgang organischer Substanzen mit heterotrophen Mikoorganismen unter dem Einfluss von Sauerstoff
 - c. Abbauvorgang organischer Substanzen mit heterotrophen Mikroorganismen unter Ausschluss von Sauerstoff
- 56. Welcher Begriff beschreibt synonym den aeroben Abbau?
 - a. Fermentation
 - b. Hydrolyse
 - c. Kompostierung
- 57. Welche Qualitätskriterien werden an Kompost gestellt?
 - a. hygienische Unbedenklichkeit und weitgehende Freiheit von Verunreinigungen
 - b. niedriger Gehalt an potenziellen Schadstoffen und ausgewogener Gehalt an Nährstoffen
 - c. gleichbleibende Produktqualität und Lagerfähigkeit
- 58. Was versteht man unter dem semidynamischen Verfahren bei der Kompostierung?
 - a. Das Rottegut wird kontinuierlich bewegt
 - b. Das Rottegut wird nicht bewegt
 - c. Das Rottegut wird in Zeitabständen bewegt
- 59. Was bezeichnet der Begriff Miete?
 - a. Eine Aufschüttung von Abfallstoffen
 - b. Steht synonym für den Kompostierungsprozess
 - c. Bezeichnet den fertigen Kompost

- 60. Wie lange dauert die Intensivrotte insgesamt während der Kompostierung?
 - a. 1-10 Tage
 - b. 7 14 Tage
 - c. 9-21 Tage
- 61. In welchem Bereich sollte sich der Wassergehalt während der Kompostierung bewegen?
 - a. 35 45 Gew. %
 - b. 40 65 Gew. %
 - c. 50 75 Gew. %
- 62. Wie wird die Zeit während der Kompostierung genannt, in der die Abbauleistung zurückgeht?
 - a. Hauptrotte
 - b. Intensivrotte
 - c. Nachrotte
- 63. Was verbirgt sich hinter dem Begriff Luftporenvolumen?
 - a. Wert der Sauerstoffzufuhr für Mikroorganismen in der Rotte
 - b. Durchlässigkeit des Siebes bei der Absiebung
 - c. Ein Organismus, der atmosphärischen Sauerstoff zur Atmung benötigt
- 64. Wie oft werden während der sechswöchigen Nachkompostierung die Mieten umgesetzt?
 - a. Einmal
 - b. Zweimal
 - c. Dreimal
- 65. Was sind die Hauptbestandteile von Biogas?
 - a. Methan und Kohlenstoffdioxid
 - b. Kohlenstoffdioxid und Wasserstoff
 - c. Methan und Wasserstoff
- 66. Welche weiteren Bestandteile außer Methan und Kohlenstoffdioxid enthält das Biogas in sehr geringen Mengen?
 - a. Wasserdampf & Sauerstoff
 - b. Stickstoff & Ammoniak
 - c. Wasserstoff & Schwefelwasserstoff
- 67. Worin liegt der Hauptunterschied zwischen Methan und Kohlenstoffdioxid?
 - a. Methan ist im Gegensatz zu Kohlenstoffdioxid nicht geruchlos
 - b. Methan ist im Gegensatz zu Kohlenstoffdioxid ein bedeutendes Treibhausgas
 - c. Methan ist im Gegensatz zu Kohlenstoffdioxid hochentzündlich
- 68. Warum sollte man auf Schwefelwasserstoff besonders achten?
 - a. Es ist schon in sehr geringen Konzentrationen hoch giftig
 - b. Es ist leicht entzündlich
 - c. Es ist schwerer als Luft und sammelt sich am Boden
- 69. Was ist eine Besonderheit der Biothan-Anlage?
 - a. ausschließliche Verwendung organischer Reststoffe

- b. liegende Gärfermenter
- c. Kombination aus Trocken- und Nassfermentation
- 70. Was unterscheidet das Produkt- vom Rohbiogas?
 - a. Der Verwendungszweck
 - b. Die Herkunft
 - c. Die Aufbereitung
- 71. Wann spricht man von Schwachgas?
 - a. Biogas, das nicht aufbereitet wird
 - b. Biogas aus Gärrestlagern, dass ins Heizhaus geleitet wird
 - c. Biogas, das nicht verwendet wird
- 72. Wieviel Methan befindet sich im Produktgas?
 - a. > 96 %
 - b. < 90 %
 - c. > 85 %
- 73. Wozu dient die Gasfackel?
 - a. Betriebssicherheit
 - b. Stromerzeugung
 - c. Emissionsschutz
- 74. Was geschieht mit dem Biomethan am Ende?
 - a. Verstromung vor Ort
 - b. Verstromung in einem Blockheizkraftwerk
 - c. Einspeisung in das Erdgasnetz
- 75. Welches Gas ist noch klimaschädlicher als Kohlenstoffdioxid?
 - a. Schwefelwasserstoff
 - b. Methan
 - c. Wasserstoff
- 76. Welche Besonderheit zeichnet die Biothan-Anlage aus?
 - a. Verbrennung des Produktgases im BHKW zur Stromerzeugung
 - b. Veredelung von Rohbiogas zu Produktgas
 - c. Direkte Einspeisung des Biogases ins Erdgasnetz
- 77. Wofür wird die in der Biomasseheizkesselanlage aus Schwachgas und Hackschnitzel erzeugte Wärme verwendet?
 - a. Beheizung des Verwaltungsgebäudes
 - b. Beheizung der Fermenter
 - c. Beheizung der Rottehalle
- 78. Für wie viele Haushalte kann jährlich, mit dem auf der Biogasanlage in Fulda erzeugten Biogas, der Wärmebedarf gedeckt werden?
 - a. ca. 1.300 Haushalte
 - b. ca. 2.400 Haushalte

c. ca. 5.700 Haushalte

- 79. Welche Ausgleichsmaßnahmen werden auf der Anlage getroffen?
 - a. Entsiegelung des asphaltierten Wegenetzes
 - b. Verjüngung des Heidebestandes
 - c. Vegetationswachstum
- 80. Wie groß ist die geschaffene Ausgleichsfläche auf dem Finkenberg?
 - a. 11 ha
 - b. 5,7 ha
 - c. 3,6 ha
- 81. Welche Tierarten stehen beim Artenschutz auf dem Gelände der Biogasanlage insbesondere im Fokus?
 - a. Säugetiere
 - b. Reptilien
 - c. Vögel
- 82. Wie werden die Ausgleichsflächen der Anlage gepflegt?
 - a. Mit Hilfe von Schafen
 - b. Durch regelmäßige Mahd
 - c. Durch Neupflanzung alle 5 Jahre
- 83. Was versteht man unter Lesesteinhaufen?
 - a. Verstecke und Sonnenplätze für Reptilien
 - b. Einen aufgeschütteten Steinhaufen
 - c. Reste eines asphaltierten Weges
- 84. Welchen Zweck erfüllt die neu entstandene Grasvegetation?
 - a. Spezielles Futter für die Schafherde
 - b. Schmetterlinge finden einfacher Nahrung
 - c. Verhinderung von Verwaldung
- 85. Welchen Vorteil bietet die Verjüngung der vorhandenen Heide?
 - a. Fördert das Wachstum von Eiablage- und Raupenpflanzen für Schmetterlinge
 - b. Verhindert die Ausbildung eines Kiefernwaldes
 - c. Schafft optimalen Lebensraum für Reptilien
- 86. Wann fand die erste Erfolgskontrolle zur Schmetterlingsentwicklung nach Ersterfassung 2010 auf dem Gelände statt?
 - a. 2011
 - b. 2014
 - c. 2019
- 87. Welche historische Besonderheit liegt auf der Anlage vor?
 - a. ehemaliges Naturschutzgebiet
 - b. ehemaliges Militärgelände

- c. ehemaliges Weltkulturerbe
- 88. Welche Bauwerke zeugen von der Vergangenheit des Geländes als Militärstützpunkt?
 - a. Bunker
 - b. Raketenabschusspositionen
 - c. Baracken
- 89. Wie konnten mögliche Einwände unterschiedlicher Interessensgruppen beim Bau der Biogasanlage verhindert werden?
 - a. Durch Bürgerinnenbeteiligung bereits in der Vorplanung
 - b. Durch genügend Abstand zu Siedlungsgebieten
 - c. Durch Naturschutz- und Ausgleichsmaßnahmen
- 90. Wie werden die Freiflächen der Raketenabschussrampen nachgenutzt?
 - a. Als Parkplätze
 - b. Als Feuchtbiotop
 - c. Als Lagerstätte