HW 3 Graph

1. Draw Picture of the specified graph. Graph G has vertex set { v1,v2,v3,v4,v5} and edge set {e1,e2,e3,e4} with edge-endpoint function as follows:

Edge	Endpoints
e1	{v1,v2}
e2	{v1,v2}
e3	{v2,v3}
e4	{v2}

2. For this graph

a) Find all edges that are incident on v1

|--|

b) Find all vertices that are adjacent to v3

V2,V4	

c) Find all loops

e9

d) Find all isolated point

e) Find the degree of v4

4

f) Find the total degree of the graph

18	
ΤΟ.	

3. Construct a precedence graph for the following program:

Ans:

4. For each of the following graphs determine:

(i) Whether or not the graph has an Euler Circuit.

No .

(ii) Whether or not the graph has an Euler Path.

Yes

(iii) Whether or not the graph has a Hamilton Circuit.

No

(iv) Whether or not the graph has a Hamilton Path.

_____Yes .

(i) Whether or not the graph has an Euler Circuit.

Yes .

(ii) Whether or not the graph has an Euler Path.

No .

(iii) Whether or not the graph has a Hamilton Circuit.

No

(iv) Whether or not the graph has a Hamilton Path.

Yes

5. For each of the following weighted graphs, use Dijkstra's Algorithm to find a shortest path from a to z.

Output

- The shortest path has weight: 13 and follows the vertex sequence sequence < a,c,d,e,f,z >
- 6. Use a brute force algorithm to find an optimal solution for the <u>traveling salesman problem</u> for the given graph starting at "home" vertex a:

Possible Path	Total Weight
a,c,d,b,a	23
a,d,c,b,a	15
a,b,d,c,a	23
a,b,c,d,a	15
a,d,b,c,a	22
a,c,b,d,a	22

The minimal circuits starting at a are _____a,d,c,b,a ____ and ____a,b,c,d,a ____,
which both have total weight _____.

7. Graph Coloring. Suppose want to schedule some final exams for CS courses with following course numbers: 1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156 Suppose also that there are no students in common taking the following pairs of courses: 1007-3137 1007-3157, 3137-3157 1007-3203 1007-3261, 3137-3261, 3203-3261 1007-4115, 3137-4115, 3203-4115, 3261-4115 1007-4118, 3137-4118 1007-4156, 3137-4156, 3157-4156 How many exam slots are necessary to schedule exams?

8. An arbitrary number of colors may be needed if regions are not contiguous. This example needs _____ d color.

