Exercises of mVMC

Takahiro Misawa BAQIS

Basic exercises [demonstration]

- 1. Heisenberg & Hubbard chain
- 2. Heisenberg & Hubbard (square lattice)
- 3. Using Hartree-Fock solutions as initial states

git clone https://github.com/issp-center-dev/mVMC-tutorial.git

Sample scripts: mVMC-tutorial/HandsOn/2022_1128/Samples

Advanced exercise (Let's generate quantum phases by mVMC)

- 1. Hubbard + V \rightarrow Charge order
- 2. Heisenberg+J2 → stripe magnetic order
- 3. Attractive Hubbard \rightarrow superconductivity
- 4. 1D Kondo lattice \rightarrow Kondo insulator
- 5. Data used in researches [Data repository in ISSP]

1. Calculation flow

Step 1: Optimization [stan_opt.in]

Step 2: Calc. of 1- and 2-body Green functions for optimized wave functions [stan_aft.in]

Step 3: Calc. of correlations functions such as spin/charge structure factors from 1- and 2-body Green functions [VMCcor.py]

$$H = \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Optimization [stan_opt.in]

stan opt.in

```
L = 4
Lsub = 2
lattice = "chain"
model = "Spin"
J = 1.0
2Sz = 0
NVMCSample = 200
NSROptItrStep = 600
NMPTrans = 1
NSPStot = 0
```

Exercise: Yellow shaded boxes

```
cp -r 1D_Heisenberg L4_1D_Heisenberg
cd ./L4_1D_Heisenberg

vmcdry stan_opt.in

vmc ./namelist.def

gnuplot
plot ./output/zvo out 001.dat u 1
```

$$H = \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Optimization [stan_opt.in]

stan_opt.in

```
Lsub
lattice
          = "chain"
model
          = "Spin"
          = 1.0
J
2Sz
          = 0
NVMCSample
              = 200
NSROptItrStep
              = 600
NMPTrans
NSPStot
              = 0
```

plot "./output/zvo_out_001.dat" u 1

1. Heisenberg chain [Exact diag. by HΦ]

Sample script for HΦ

HPhi -s stan_hphi.in

exct: # of excited states

For small, system sizes, you can do full diagonaliztion

$$H = \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Optimization [stan_opt.in]

output/zvo_out_001.dat

1 2 3 4 5 6

$$Re[] Im[] [-^2]/^2 <(S^z)^2>$$

1st row: Energy = Re[<H>]

4th row: Variance = $[<H^2>-<H>^2]/<H>^2$

By seeing energy, you can check the convergence of optimization.

Note that if the variational wave function becomes an eigenstate, variance=0. However, VMC is *not* exact method, variance becomes finite in most cases. Exceptions: small system sizes, non-interacting systems

$$H = \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Calc. of 1- and 2-body Green functions for optimized wave functions [stan_aft.in]

```
stan_aft.in
```

```
L = 4
Lsub = 2
lattice = "chain"
model = "Spin"
J = 1.0
2Sz = 0
NVMCSample = 200
NSROptItrStep = 600
NMPTrans = 1
NSPStot = 0
```

```
cp ./output/zqp_opt.dat .
mv output opt

vmcdry ./stan_aft.in
cp green1 greenone.def
cp green2 greentwo.def
vmc ./namelist.def ./zqp_opt.dat
NB: output is overwritten!
zqp_opt.dat = optimized wave functions!
```

NVMCCalMode = 1 # 1=calculation of physical quantities, 0=optimization NDataldxStart = 0 # the first index NDataQtySmp = 5 # number of bins

$$H = \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Calc. of 1- and 2-body Green functions for optimized wave functions [stan_aft.in]

ls -l ./output

```
In output

zvo_out_000.dat - zvo_out_004.dat [energy, variance ...]

zvo_cisajs_000.dat - zvo_cisajs_004.dat [1-body Green functions]

zvo_cisajscktalt_000.dat -zvo_cisajscktalt_004.dat [2-body Green functions]
```

From these files, you can calculate average values and statistical errors of physical quantities such as energy, charge/spin structure factors, etc...

$$H = \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Calc. of 1- and 2-body Green functions for optimized wave functions [stan_aft.in]

mv output aft

python3 VMClocal.py input.toml python3 VMCcor.py input.toml

 $VMClocal.py \rightarrow Calculation of energies and local charge/spin density$ $<math>VMCcor.py \rightarrow Calculation of spin/charge structure factors, and spin correlations$

$$H = \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Calc. of 1- and 2-body Green functions for optimized wave functions [stan_aft.in]

cat Ene.dat

Ene err_Ene Ene/(All_site) err_Ene/(All_site)

-2.000000 0.000000 -0.500000 0.000000

mVMC generates exact ground state for L=4

$$occ = \frac{1}{N_{\rm s}} \sum_{i} (n_{i\uparrow} + n_{i\downarrow})$$

cat occ.dat

occ err_occ AF err_AF 1.000000 0.000000 0.032000 0.038425

$$AF = \frac{1}{N_{\rm s}} \sum_{i} (n_{i\uparrow} - n_{i\downarrow}) e^{i\pi r_i}$$

Averaged charge density occ=1. Antiferromagnetic spin moment is zero AF=0.03(4) with in error bar.

$$H = \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Calc. of 1- and 2-body Green functions for optimized wave functions [stan_aft.in]

gnuplot p "SqNq.dat" u 1:3 w lp

$$S(q) = \frac{1}{N_{\rm s}} \sum_{i,j} \vec{S}_i \cdot \vec{S}_j e^{iqr_i}$$

NB: In some cases, pre-factor of S(q) is $1/(3N_s)$.

If you want to check error bars,

gnuplot p "SqNq.dat" u 1:3:4 w err

$$H = \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 mVMC-tutorial/HandsOn/2022_1128/Samples/1D_Heisenberg

Step 1: Calc. of 1- and 2-body Green functions for optimized wave functions [stan_aft.in]

gnuplot p "SqNq.dat" u 1:5 w lp

$$S^{z}(q) = \frac{1}{N_{\rm s}} \sum_{i,j} S_{i}^{z} \cdot S_{j}^{z} e^{iqr_{i}}, S_{i}^{z} = (n_{i\uparrow} - n_{i\downarrow})/2$$

NB:S^z(q)=S(q)/3 is satisfied if SU(2) symmetry is preserved.

If you want to check error bars,

gnuplot p "SqNq.dat" u 1:5:6 w err

Let's change system sizes! Edit "Lx" in input.toml

```
cp -r 1D_Heisenberg L8_1D_Heisenberg cd ./L8_1D_Heisenberg

python3 MakeInput.py input.toml vmcdry stan_opt.in vmc namelist.def

cp output/zqp_opt.dat ./
mv output opt
```

vmcdry stan_aft.in
cp green1 greenone.def
cp green2 greenone.def
vmcdry stan_aft.in
vmc namelist.def ./zqp_opt.dat
mv output aft

python3 VMClocal.py input.toml python3 VMCcor.py input.toml

$$H = \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

```
For L =8 sites
[lattice]
Lx = 8
Ly = 1
orb num = 1
model_type = "Spin"
[mVMC]
sub x = 2
sub_y = 1
sub z = 1
[mVMC_aft]
modpara = "modpara.def"
directory = "aft"
```

1. Heisenberg chain (references)

These energies are obtained by exact diagonalization (HΦ)

```
L=6:
                     L=8:
                                          L=10:
0 -2.8027756377
                      0 -3.6510934089
                                           0 -4.5154463545
 1 -2.1180339887
                      1 -3.1284190638
                                           1 -4.0922073467
2 - 1.5000000000
                      2 -2.6996281483
                                           2 -3.7705974354
3 -1.2807764064
                      3 -2.4587385089
                                           3 - 3.5432793743
4 -1.2807764064
                      4 -2.4587385089
                                           4 -3.5432793743
5 - 1.0000000000
                      5 -2.1451483739
                                           5 -3.2461649167
                      6 -2.1451483739
6 - 1.00000000000
                                           6 -3.2461649167
 7 -0.5000000000
                      7 -1.8546376797
                                           7 -2.9759318691
```

Check accuracy of mVMC method!

If you change

NSPStot=0 → NSPStot=1 in stan_opt.in & stan_aft.in you can generate S=1 state.

Please try this! How about S=2, S=3 ...?

Scripts X.sh & Clean.sh

```
sh ./X.sh \rightarrow Performing all calculations sh ./Clean.sh \rightarrow Delete all generated files (Initialization)
```

After editing input.toml, by executing "sh X.sh", you can do optimization, calculation of Green functions, and post process.

```
#[s] definitions of executions
MPI=" "
VMC="vmc" #MAL
VMCDRY="vmcdry" #MAL
#[e] definitions of executions
python3 MakeInput.py input.toml
#[s] opt
 ${VMCDRY} ./stan_opt.in
 ${MPI} ${VMC} namelist.def
 cp ./output/zqp_opt.dat .
 mv output opt
#[e] opt
#[s] aft
 ${VMCDRY} ./stan_aft.in
 cp green1 greenone.def
 cp green2 greentwo.def
 ${MPI} ${VMC} namelist.def ./zqp_opt.dat
 mv output aft
#[e] aft
#[s] post process
 python3 VMClocal.py input.toml
 python3 VMCcor.py
                      input.toml
#[e] post process
```

1. Hubbard chain

$$H = -t \sum_{\langle i,j \rangle} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

cp -r 1D_Hubbard L4_1D_Hubbard cd ./L4_1D_Hubbard

vmcdry stan_opt.in vmc namelist.def

cp output/zqp_opt.dat ./
mv output opt

vmcdry stan_aft.in

cp green1 greenone.def cp green2 greentwo.def

vmc namelist.def ./zqp_opt.dat mv output aft

python3 VMClocal.py input.toml python3 VMCcor.py input.toml

=4Lsub lattice = "chain" model = "Hubbard" = 1.0U = 4 ()ncond =42Sz= ()= 200NVMCSample NSROptItrStep = 600NMPTrans = 1NSPStot = 0

NB:

 $ncond = L \rightarrow half filling = one electron/site$

1. Hubbard chain

$$H = -t \sum_{\langle i,j \rangle} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

plot "./opt/zvo_out_001.dat" u 1

Energy by HΦ 0 -2.1027484835 1 -1.8064238518 2 -1.0681403934 3 -0.8284271247 4 -0.8284271247 5 0.0000000000 6 0.5814492811

2.0000000000

1. Hubbard chain [Exact diag. by HΦ]

$$H = -t \sum_{\langle i,j \rangle} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Sample script for $H\Phi$ **HPhi** -s stan_hphi.in

```
L = 4
model = "Hubbard"
lattice = "chain"
method = "CG"
U = 4.0
t = 1.0
2Sz = 0
nelec = 4
exct = 8
```

1. Hubbard chain [Exact diag. by HΦ]

$$H = -t \sum_{\langle i,j \rangle} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

p "SqNq.dat" u 1:3 w lp

$$S(q) = \frac{1}{N_{\rm s}} \sum_{i,j} \vec{S}_i \cdot \vec{S}_j e^{iqr_i}$$

p "SqNq.dat" u 1:7 w lp

$$N(q) = \frac{1}{N_{\rm s}} \sum_{i,j} \bar{n}_i \cdot \bar{n}_j e^{iqr_i},$$
$$\bar{n}_i = (n_{i\uparrow} + n_{i\downarrow}) - \langle (n_{i\uparrow} + n_{i\downarrow}) \rangle$$

1. Hubbard chain

Let's change system sizes! Edit "Lx" in input.toml

python3 MakeInput.py input.toml

$$H = -t \sum_{\langle i,j \rangle} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

cp -r 1D_Hubbard L6_1D_Hubbard cd ./L6_1D_Hubbard

vmcdry stan opt.in

vmc namelist.def cp output/zqp_opt.dat ./

cp green2 greentwo.def

mv output opt

vmcdry stan_aft.in cp green1 greenone.def

vmc namelist.def ./zqp_opt.dat mv output aft

python3 VMClocal.py input.toml python3 VMCcor.py input.toml

=6Lsub =2lattice = "chain" model = "Hubbard" = 1.0t. IJ =4.0ncond =42Sz= 0NVMCSample = 200NSROptItrStep = 600NMPTrans = 1NSPStot = 0

NB:

 $ncond = L \rightarrow half filling = one electron/site$

1. Hubbard chain (references)

These energies are obtained by exact diagonalization (HP)

```
L=6:
                           I =8:
  -3.6687061788729571
                            0 -4.6035262999892002
  -2.8983814740367304
                               -4.2999927584330599
 -2.5163768731161431
                              -4.0101539576440342
                             3 -3.7057642394839405
 -2.4229112638479289
4 -2.4229112638479293
                            4 -3.7057642394839405
5 -2.0927538294969210
                             5 -3.4963563102152051
6 -2.0927538294969210
                            6 -3.4963563102152042
 -1.7690248232884345
                               -3.2445570984649694
```

Check accuracy of mVMC method!

Advanced:

Perform the total momentum projections for L=6, 8 by specifying NMPTrans = 2 in stan_opt.in & stan_aft.in

- Procedure is basically the same as that of Heisenberg and Hubbard chain. Please note that the elapsed time becomes longer!

mVMC-tutorial/HandsOn/

```
2022_1128/Samples/2D_Hubbard
mVMC-tutorial/HandsOn/
                               stan opt.in
2022 1128/Samples/2D Heisenberg
stan opt.in
                               W
                               Wsub = 2
W = 4
Wsub = 2
                                 = 4
L = 4
                               Lsub = 2
Lsub = 2
                               lattice = "square"
lattice = "square"
                               model = "Hubbard"
                                 = 1.0
model = "Spin"
  = 1.0
                                 = 4.0
                               ncond = 16
2Sz = 0
NVMCSample = 200
                               2Sz = 0
NSROptItrStep = 600
                               NVMCSample = 200
                               NSROptItrStep = 600
NMPTrans = 1
                               NMPTrans = 1
NSPStot = 0
                               NSPStot = 0
```

- Procedure is basically the same as that of Heisenberg and Hubbard chain. Please note that the elapsed time becomes longer!

4by4 Heisenberg model, J=1

plot "./op/zvo_out_001.dat" u 1

sp "SqNq.dat" u 1:2:3 w lp

- Procedure is basically the same as that of Heisenberg and Hubbard chain. Please note that the elapsed time becomes longer!

4by4 Hubbard model, t=1,U=4, ncond=16

plot "./opt/zvo_out_001.dat" u 1

sp "SqNq.dat" u 1:2:3 w lp

Reference data for Heisenberg model

T. Misawa et al., Comp. Phys. Comm. 235, 447 (2019).

Table 4 Comparisons with exact diagonalization for 4×4 and 6×6 Heisenberg model with J=1. We note $\mathbf{k}_{\text{peak}}=(\pi,\pi)$. The relative errors η become $10^{-6}\%$ for L=4 and $10^{-3}\%$ for L=6, respectively. The definitions of the spin correlations in the Lanczos method and N_p are same as those of Table 3.

$(N_s=4\times4)$	E/N_s	S_{nn}	$S_{ m nnn}$	$\tilde{S}(\boldsymbol{k}_{\mathrm{peak}})$	N_p
ED	-0.70178020	-0.35089010	0.21376	0.09217	_
$mVMC(2 \times 2)$	-0.701765(2)	-0.350883(1)	0.2136(1)	0.09216(3)	64
$mVMC(2 \times 2)+Lanczos$	-0.701780(1)	-0.3517(5)	0.214(1)	0.0924(2)	64
$mVMC(4 \times 4)$	-0.70178015(8)	-0.35089007(4)	0.2139(4)	0.0922(1)	256
$(N_{\rm s}=6\times6)$	$E/N_{\rm s}$	S_{nn}	S_{nnn}	$\tilde{S}(\boldsymbol{k}_{\mathrm{peak}})$	N_p
ED	-0.678872	-0.33943607	0.207402499	0.069945	_
$mVMC(2 \times 2)$	-0.67846(1)	-0.33923(1)	0.20742(3)	0.07021(2)	144
$mVMC(2 \times 2)+Lanczos$	-0.678840(4)	-0.339(1)	0.207(1)	0.0698(3)	144
$mVMC(6 \times 6)$	-0.678865(1)	-0.3394326(4)	0.20735(4)	0.06993(3)	1296
$mVMC(6 \times 6)+Lanczos$	-0.678871(1)	-0.3391(5)	0.2071(6)	0.0699(2)	1296

Note: Si*Sj is output in "Sij.dat"

$$\tilde{S}(q) = \frac{S(q)}{3N_{\rm s}^2} = \frac{1}{3N_{\rm s}^2} \sum_{i,j} \vec{S}_i \cdot \vec{S}_j e^{iqr_i}$$

Reference data for Hubbard model

T. Misawa et al., Comp. Phys. Comm. 235, 447 (2019).

Table 3

Comparisons with exact diagonalization (ED) for 4×4 Hubbard model with U = 4 and t = 1 at half filling. ED is done by using $\mathcal{H}\Phi$ [7,57]. mVMC(2 × 2/4 × 4) means f_{ij} has the 2 × 2/4 × 4 sublattice structure. N_p is the size of S matrix, which is the number of variational parameters and $k_{\text{peak}} = (\pi, \pi)$. Error bars are denoted by the parentheses in the last digit. Lanczos means that the first-step Lanczos calculations on top of the mVMC calculations. In the Lanczos calculations, to reduce the numerical cost, we calculate the diagonal spin correlations such as $S_{nn}^z = 3/4N_s\sum_{i,\mu}\langle S_{r_i}^z \cdot S_{r_i+e_{ij}}^z \rangle$ and $\tilde{S}^z(\mathbf{k}) = S^z(\mathbf{k})/N_s$, which are equivalent to S_{nn} and $\tilde{S}(\mathbf{k})$ when the spin-rotational symmetry is preserved.

	E/N_s	D	S _{nn}	$\tilde{S}(\boldsymbol{k}_{\mathrm{peak}})$	N_p
ED	-0.85136	0.11512	-0.2063	0.05699	-
$mVMC(2 \times 2)$	-0.84985(3)	0.1155(1)	-0.2057(2)	0.05762(4)	74
$mVMC(2 \times 2)+Lanczos$	-0.85100(2)	0.1156(1)	-0.2054(8)	0.05736(2)	74
$mVMC(4 \times 4)$	-0.85070(2)	0.1151(1)	-0.2065(1)	0.05737(2)	266
$mVMC(4 \times 4)+Lanczos$	-0.85122(1)	0.1151(1)	-0.2072(4)	0.0576(1)	266

Sij.dat

```
# i j tot S err tot S Sxy err Sxy Sz err Sz
        0.75000000 \quad 0.00000000 \quad 0.50000000 \quad 0.00000000
        -0.34746908 0.01192859 -0.22546908 0.00706604 -0.12200000
0 2 0 21767184 0 00700917
                                                           0 14167184 0 01234442
\text{tot\_S} : \vec{S}_i \cdot \vec{S}_j = S_i^x S_j^x + S_i^y S_j^y + S_i^z S_j^z
Sxy: S_i^x S_i^x + S_i^y S_i^y
Szz: S_i^z S_i^z
S_i^x = \frac{1}{2}(S_i^+ + S_i^-) = \frac{1}{2}(c_{i\uparrow}^\dagger c_{i\downarrow} + c_{i\downarrow}^\dagger c_{i\uparrow})
S_i^y = \frac{\imath}{2}(-S_i^+ + S_i^-) = \frac{\imath}{2}(-c_{i\uparrow}^{\dagger}c_{i\downarrow} + c_{i\downarrow}^{\dagger}c_{i\uparrow})
S_i^z = \frac{1}{2}(n_{i\uparrow} - n_{i\downarrow}) = \frac{1}{2}(c_{i\uparrow}^{\dagger}c_{i\uparrow} - c_{i\downarrow}^{\dagger}c_{i\downarrow})
```

In mVMC, spin operators are implemented by Abrikosov fermion representation.

0.25000000

0.07600000

0.00000000

0.01287925

0.01433091

$$S_{i}^{x}S_{j}^{x} + S_{i}^{y}S_{j}^{y} = \frac{1}{2}(S_{i}^{+}S_{j}^{-} + S_{i}^{-}S_{j}^{+}) = \frac{1}{2}(c_{i\uparrow}^{\dagger}c_{i\downarrow}c_{j\downarrow}^{\dagger}c_{j\uparrow} + c_{i\downarrow}^{\dagger}c_{i\uparrow}c_{j\uparrow}^{\dagger}c_{j\downarrow})$$

$$= -\frac{1}{2}(c_{i\uparrow}^{\dagger}c_{j\uparrow}c_{j\downarrow}^{\dagger}c_{i\downarrow} + c_{i\downarrow}^{\dagger}c_{j\downarrow}c_{j\uparrow}^{\dagger}c_{i\uparrow}) + \frac{1}{2}\delta_{ij}(c_{i\uparrow}^{\dagger}c_{j\uparrow} + c_{i\downarrow}^{\dagger}c_{j\downarrow})$$

$$S_{i}^{z}S_{j}^{z} = \frac{1}{4}(n_{i\uparrow}n_{j\uparrow} - n_{i\uparrow}n_{j\downarrow} - n_{i\uparrow}n_{j\downarrow} + n_{i\downarrow}n_{i\downarrow})$$

3. Initial states from UHF calculations

Generating initial states from unrestricted Hartree-Fock calculations. Execution file for UHF calculations (UHF) exists in

/usr/share/mvmc/tool/UHF

mVMC-tutorial/HandsOn/2022_1128/Samples/IniUHF

Ex. 2D Hubbard, 4by4, t=1,U=4,

```
vmcdry stan_opt.in

python3 MakeIni.py input.toml
echo " Initial initial.def" >> namelist.def
cp /usr/share/mvmc/tool/UHF .

./UHF namelist.def
```

zvo_result.dat: energy by UHF

Tips: Proper initial Green functions (Weiss fields) are necessary MakeIni.py \rightarrow Generating Green functions for (π, π) magnetic order Add "Initial initial.def" in namelist.def

3. Initial states from UHF calculations

vmcdry stan_opt.in
echo "InOrbital zqp_APOrbital_opt.dat" >> namelist.def
vmc namelist.def

zqp_APOrbital_opt.dat fij generated by UHF

$$|\phi_{ ext{AP-Pf}}
angle = \Bigl(\sum_{i,j=0}^{N_{ ext{S}}-1} f_{ij} c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger}\Bigr)^{N_{ ext{e}}/2} |0
angle.$$

$$|\phi_{\mathrm{SL}}
angle = \Bigl(\prod_{n=1}^{N_{\mathrm{e}}} \psi_n^\dagger\Bigr)|0
angle, \;\; \psi_n^\dagger = \sum_{I=1}^{2N_{\mathrm{S}}} \varPhi_{In}c_I^\dagger,$$

$$f_{ij} = \sum_{n=1}^{N_e/2} \Phi_{in\uparrow} \Phi_{jn\downarrow}.$$

NB: $E_{UHF} > E_{mVMC}$ should be satisfied. If not, something is wrong.

Advanced exercise (Let's generate quantum phases by mVMC)

- 1. Hubbard + V \rightarrow Charge order
- 2. Heisenberg+J2 → stripe magnetic order
- 3. Attractive Hubbard \rightarrow superconductivity
- 4. 1D Kondo lattice \rightarrow Kondo insulator
- 5. Data used in researches [Data repository in ISSP]

1. Introducing off-site Coulomb interaction V

Check whether the ground state is charge-ordered phase by plotting SqNq.dat.

1. Introducing off-site Coulomb interaction V

$$H_V = V \sum_{\langle i,j \rangle} n_i n_j$$

Ex. stan_opt.in

```
W
Wsub
Lsub
            = "square"
lattice
              = "Hubbard"
model
t
              = 1.0
              = 4.0
              = 1.5
              = 16
ncond
2Sz
              = 0
NVMCSample = 200
NSROptItrStep = 600
NMPTrans
          = 1
NSPStot
```

How to rewrite input files

- 1. python3 MakeInput.py input.toml

 → generating stan_opt.in, stan_aft.in
- 2. Add "V=1.5" in stan_opt.in & stan_aft. in
- 3. sh ./X.sh

Or, you can directly modify MakeInput.py

1. Introducing off-site Coulomb interaction V

$$H_V = V \sum_{\langle i,j \rangle} n_i n_j$$

sp "SqNq.dat" u 1:2:3 w lp

$$S(q) = \frac{1}{N_{\rm s}} \sum_{i,j} \vec{S}_i \cdot \vec{S}_j e^{iqr_i}$$

"SqNq.dat" u 1:2:3 ----

sp "SqNq.dat" u 1:2:7 w lp

$$N(q) = \frac{1}{N_{\rm s}} \sum_{i,j} \bar{n}_i \cdot \bar{n}_j e^{iqr_i},$$

$$\bar{n}_i = (n_{i\uparrow} + n_{i\downarrow}) - \langle (n_{i\uparrow} + n_{i\downarrow}) \rangle$$

"SqNq.dat" u 1:2:7 ----

$$H = J_1 \sum_{\langle i,j \rangle} S_i S_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} S_i S_j$$

nearest J1,next-nearest J2

plot by lattice.gp

S. Motira and M. Imada JPSJ (2014). see also Y. Nomura and M. Imada PRX (2021).

QSL may appear around J2/J1~0.5

- Confirmt that stripe magnetic order occurs at J2=1 from SqNq.dat
- What happens around J2=0.5?

Ex. stan_opt.in

```
cat stan_opt.in
Wsub
Lsub
lattice = "square"
model
            = "Spin"
J
             = 1.0
             = 1.0
2Sz
             = 0
NVMCSample
             = 200
NSROptItrStep = 600
NMPTrans = 1
NSPStot
```

How to rewrite input files

- 1. python3 MakeInput.py input.toml

 → generating stan_opt.in, stan_aft.in
- 2. Add "J'=1.0" in stan_opt.in & stan_aft. in
- 3. sh ./X.sh

Or, you can directly modify MakeInput.py

- Confirm that stripe magnetic order occurs at J2=1 from SqNq.dat
- What happens around J2=0.5?

$$S(q) = \frac{1}{N_{\rm s}} \sum_{i,j} \vec{S}_i \cdot \vec{S}_j e^{iqr_i}$$

sp "SqNq.dat" u 1:2:3 w lp

$$J'/J=1$$

sp "SqNq.dat" u 1:2:3 w lp

$$J'/J=0.5$$

- Cnfirmt that stripe magnetic order occurs at J2=1 from Result Sq.dat or using fourier tool
- What happens around J2=0.5?

Ex. stan opt.in

```
W
Wsub
Lsub
model = "Spin"
lattice = "Tetragonal"
            = 1.0
            = 1.0
2Sz
            = 0
NVMCSample
         = 50
NSROptItrStep = 500
NSROptItrSmp = 100
NMPTrans
       = 1
NSPGaussLeg
```

How to rewrite input files

- 1. python3 MakeInput.py input.toml

 → generating stan_opt.in, stan_aft.in
- 2. Add "J'=1.0" in stan_opt.in & stan_aft. in
- 3. sh ./X.sh

Or, you can directly modify MakeInput.py

- Set U as negative values, e.g, U=-4
- Calculate 1s SC correlations (it is better to perform calculation for doped case)

NSPStot

$$P_{1s}(\vec{r}) = \frac{1}{2N_s} \sum_{i=1}^{N_s} \langle \Delta_{1s}^{\dagger}(\vec{r_i}) \Delta_{1s}(\vec{r_i} + \vec{r}) + \Delta_{1s}(\vec{r_i}) \Delta_{1s}^{\dagger}(\vec{r_i} + \vec{r}) \rangle$$
$$\Delta_{1s}(\vec{r_i}) = \frac{1}{\sqrt{2}} (c_{i\uparrow}c_{i\downarrow} - c_{i\downarrow}c_{i\uparrow}).$$

- Scripts for calculating 1s SC correlating exists at Samples/SC_Correlation

python3 SCGreen.py input.tom # generating SC_1swave

python3 SCGreen.py # result is output in Result_1swave

- Set U as negative values, e.g, U=-4
- Calculate 1s SC correlations (it is better to perform calculation for doped case)

HPhi:U=-4, ncond=10 hphi_Ene, hphi_Result_1swave

$$\max |P(r_i-r_j)|$$

p "Result_1swave.dat" u 1:2:3 w e ps 2 pt 6, "hpi_Result_1swave.dat" u 1:2 w lp ps 2

Details of SC correlations:

$$P(\boldsymbol{r}_j - \boldsymbol{r}_i) = \frac{1}{2N_{\rm s}} \sum_{\boldsymbol{r}_i} \langle \Delta_{\alpha}^{\dagger}(\boldsymbol{r}_i) \Delta_{\alpha}(\boldsymbol{r}_j) + \Delta_{\alpha}(\boldsymbol{r}_i) \Delta_{\alpha}^{\dagger}(\boldsymbol{r}_j) \rangle$$

Details of SC order parameter: $f_{\alpha}(e)$ is a form factor

$$\Delta_{\alpha}(\boldsymbol{r}_{i}) = \frac{1}{\sqrt{2}} \sum_{\boldsymbol{e}} f_{\alpha}(\boldsymbol{e}) (c_{\boldsymbol{r}_{i}} + c_{\boldsymbol{r}_{i}} + c_{\boldsymbol{r}_{i}} + c_{\boldsymbol{r}_{i}} + c_{\boldsymbol{r}_{i}})$$

$$\Delta_{\alpha}^{\dagger}(\boldsymbol{r}_{i}) = \frac{1}{\sqrt{2}} \sum_{\boldsymbol{e}} f_{\alpha}(\boldsymbol{e}) (c_{\boldsymbol{r}_{i}+\boldsymbol{e}\downarrow}^{\dagger} c_{\boldsymbol{r}_{i}\uparrow}^{\dagger} - c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger} c_{\boldsymbol{r}_{i}\downarrow}^{\dagger})$$

$$\begin{split} \Delta_{\alpha}^{\dagger}(\boldsymbol{r}_{i})\Delta_{\alpha}(\boldsymbol{r}_{j}) &= \frac{1}{2}\sum_{\boldsymbol{e},\boldsymbol{e}'}f_{\alpha}(\boldsymbol{e})f_{\alpha}(\boldsymbol{e}')\Big(\\ &+ c_{\boldsymbol{r}_{i}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}\uparrow}c_{\boldsymbol{r}_{i}+\boldsymbol{e}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}\uparrow}c_{\boldsymbol{r}_{i}+\boldsymbol{e}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}+\boldsymbol{e}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}\downarrow} \\ &+ c_{\boldsymbol{r}_{i}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}+\boldsymbol{e}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}\downarrow} \Big) \end{split}$$

For 1s-wave, $f_{\alpha}(e=0)=1$

$$\Delta_{\alpha}^{\dagger}(\boldsymbol{r}_{i})\Delta_{\alpha}(\boldsymbol{r}_{j}) = \frac{1}{2} \left[c_{\boldsymbol{r}_{i}\uparrow}^{\dagger} c_{\boldsymbol{r}_{j}\uparrow} c_{\boldsymbol{r}_{i}\downarrow}^{\dagger} c_{\boldsymbol{r}_{j}\downarrow} \right]$$

$$\Delta_{\alpha}(\boldsymbol{r}_{i})\Delta_{\alpha}^{\dagger}(\boldsymbol{r}_{j}) = \frac{1}{2}[(\delta_{i,j} - c_{\boldsymbol{r}_{j}\uparrow}^{\dagger}c_{\boldsymbol{r}_{i}\uparrow})(\delta_{i,j} - c_{\boldsymbol{r}_{j}\downarrow}^{\dagger}c_{\boldsymbol{r}_{i}\downarrow})]$$

Only these two terms are necessary for calculating SC correlations.

For 2d-wave (dx2-y2), $f_{\alpha}(e=[1,0])=1$, $f_{\alpha}(e=[-1,0])=1$, $f_{\alpha}(e=[0,1])=-1$, $f_{\alpha}(e=[0,1])=-1$

$$\begin{split} \Delta_{\alpha}^{\dagger}(\boldsymbol{r}_{i})\Delta_{\alpha}(\boldsymbol{r}_{j}) &= \frac{1}{2}\sum_{\boldsymbol{e},\boldsymbol{e}'}f_{\alpha}(\boldsymbol{e})f_{\alpha}(\boldsymbol{e}')\Big(\qquad \Delta_{\alpha}(\boldsymbol{r}_{i})\Delta_{\alpha}^{\dagger}(\boldsymbol{r}_{j}) = \frac{1}{2}\sum_{\boldsymbol{e},\boldsymbol{e}'}f_{\alpha}(\boldsymbol{e})f_{\alpha}(\boldsymbol{e}')\Big(\\ &+ c_{\boldsymbol{r}_{i}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}\uparrow}c_{\boldsymbol{r}_{i}+\boldsymbol{e}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ (\delta_{i,j} - c_{\boldsymbol{r}_{j}\uparrow}^{\dagger}c_{\boldsymbol{r}_{i}\uparrow})(\delta_{i+\boldsymbol{e},j+\boldsymbol{e}'} - c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow}^{\dagger}c_{\boldsymbol{r}_{i}+\boldsymbol{e}\downarrow}) \\ &+ c_{\boldsymbol{r}_{i}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}+\boldsymbol{e}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\downarrow} \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}\downarrow}c_{\boldsymbol{r}_{i}\downarrow}\Big) \\ &+ c_{\boldsymbol{r}_{i}+\boldsymbol{e}\uparrow}^{\dagger}c_{\boldsymbol{r}_{j}+\boldsymbol{e}'\uparrow}c_{\boldsymbol{r}_{i}\downarrow}^{\dagger}c_{\boldsymbol{r}_{j}\downarrow}\Big) \end{split}$$

We should calculate these terms for an-isotropic paring

4. 1D Kondo lattice model

Ex. stan_opt.in

L = 8
Lsub = 2
lattice = "chain"
model = "Kondo"
t = 1.0
J = 1.0
ncond = 8
2Sz = 0
NVMCSample = 200
NSROptItrStep = 600
NMPTrans = 1
NSPStot = 0

Calculating spin gap from the energy difference between S=0 and S=1 state!

Table 5

Comparisons with exact diagonalization for one-dimensional Kondo-lattice model with J=1, t=1, and L=8. Notations are the same as Table 3. Upper (Lower) panel shows the results for spin singlet (triplet) sector. In the triplet sector (S=1), we take total momentum as $K=\pi$, which gives the lowest energy in S=1, while we take total momentum as K=0 for S=1. The definitions of the spin correlations in the Lanczos method are the same as those of Table 3 for S=0. For S=1, because spin-rotational symmetry is not preserved and S^z correlations are not equivalent to that of S^x and S^y correlations. We do not show the results of the spin correlations in the Lanczos method for S=1.

(L=8,S=0)	$E/N_{\rm s}$	$S_{ m onsite}$	$S_{\rm nn}^{\rm loc}$	$S(\pi)$	N_p
ED	-1.394104	-0.3151	-0.3386	0.05685	-
mVMC(2)	-1.39350(1)	-0.3144(1)	-0.3363(1)	0.05752(3)	69
mVMC(2)+Lanczos	-1.39401(2)	-0.3152(2)	-0.336(1)	0.05716(4)	69
mVMC(8)	-1.39398(1)	-0.3151(2)	-0.3384(2)	0.05693(4)	261
mVMC(8)+Lanczos	-1.394097(2)	-0.3150(2)	-0.3377(3)	0.0568(1)	261
(L = 8, S = 1)	$E/N_{\rm s}$	$S_{ m onsite}$	$S_{\rm nn}^{\rm loc}$	$S(\pi)$	N_p
$\frac{(L=8,S=1)}{\text{ED}}$	E/N _s -1.382061	S _{onsite} -0.2748	S _{nn} loc -0.2240	S(π) 0.05747	N _p
	, -			• • • • • • • • • • • • • • • • • • • •	N _p - 69
ED	-1.382061	-0.2748	-0.2240	0.05747	_
ED mVMC(2)	-1.382061 -1.38126(3)	-0.2748	-0.2240	0.05747	- 69

See, H. Tsunetsugu *et al.*, PRB 46, 3175 (1992), H. Tsunetsugu *et al.*, RMP 69, 809 (1997)

4. 1D Kondo lattice model

Table 5

Comparisons with exact diagonalization for one-dimensional Kondo-lattice model with J=1, t=1, and L=8. Notations are the same as Table 3. Upper (Lower) panel shows the results for spin singlet (triplet) sector. In the triplet sector (S=1), we take total momentum as $K=\pi$, which gives the lowest energy in S=1, while we take total momentum as K=0 for S=1. The definitions of the spin correlations in the Lanczos method are the same as those of Table 3 for S=0. For S=1, because spin-rotational symmetry is not preserved and S^z correlations are not equivalent to that of S^x and S^y correlations. We do not show the results of the spin correlations in the Lanczos method for S=1.

(L=8,S=0)	E/N_s	S_{onsite}	$S_{\rm nn}^{\rm loc}$	$S(\pi)$	N_p
ED	-1.394104	-0.3151	-0.3386	0.05685	-
mVMC(2)	-1.39350(1)	-0.3144(1)	-0.3363(1)	0.05752(3)	69
mVMC(2)+Lanczos	-1.39401(2)	-0.3152(2)	-0.336(1)	0.05716(4)	69
mVMC(8)	-1.39398(1)	-0.3151(2)	-0.3384(2)	0.05693(4)	261
mVMC(8)+Lanczos	-1.394097(2)	-0.3150(2)	-0.3377(3)	0.0568(1)	261
(L = 8, S = 1)	E/N _s	S _{onsite}	S _{nn} loc	S(π)	N _p
ED	-1.382061	-0.2748	-0.2240	0.05747	-
mVMC(2)	-1.38126(3)	-0.2738(2)	-0.2246(1)	0.05822(1)	69
mVMC(2)+Lanczos	-1.38187(1)		_	_	69
	-1.30107(1)	_	_		0.5
mVMC(8)	-1.38171(3)	-0.2750(4)	-0.2249(7)	0.0577(1)	261

```
$ cat Sij.dat
```

```
i tot S err tot S Sxy err Sxy Sz err Sz
                                                              0.25000000
 0
      0.75000000
                    0.00000000
                                  0.50000000
0
                                                0.00000000
                                                                            0.00000000
                                                             -0.11300000
     -0.33608200
                    0.01193516
                                 -0.22308200
                                                0.00278660
                                                                            0.01016735
 2
0
      0.17766053
                    0.01250381
                                  0.12416053
                                                0.01278212
                                                              0.05350000
                                                                            0.01190063
  3
     -0.17904993
                    0.01246032
                                 -0.12404993
                                                0.00538062
                                                             -0.05500000
                                                                            0.01227294
0
 4
      0.14972480
                    0.01799936
                                  0.11022480
                                                0.00856900
                                                              0.03950000
                                                                            0.01770240
0
  5
     -0.17576586
                    0.01618117
                                 -0.12426586
                                                0.01915799
                                                             -0.05150000
                                                                            0.00752496
0
 6
      0.15913789
                    0.00735077
                                  0.11313789
                                                0.00697177
                                                              0.04600000
                                                                            0.00664267
0
                                 -0.21820877
     -0.31820877
                    0.01514541
                                                0.01304659
                                                             -0.10000000
                                                                            0.00454148
0
 8
     -0.30266746
                    0.01981710
                                 -0.19916746
                                                0.01581060
                                                             -0.10350000
                                                                            0.00456550
0
 9
      0.09560833
                    0.01101715
                                  0.06235833
                                                0.00646871
                                                              0.03325000
                                                                            0.00664502
0
  10
                     0.01317163
                                  -0.07733294
                                                 0.01157127
                                                              -0.02800000
                                                                             0.00787202
      -0.10533294
  11
       0.07217159
                     0.00547608
                                   0.04592159
                                                 0.01023667
                                                               0.02625000
                                                                             0.00733144
  12
      -0.07578796
                     0.01771080
                                  -0.04953796
                                                 0.00726571
                                                              -0.02625000
                                                                             0.01361869
  13
       0.05804883
                     0.00704554
                                   0.03954883
                                                 0.00915289
                                                               0.01850000
                                                                             0.00632949
  14
      -0.06306408
                     0.02314937
                                  -0.05406408
                                                 0.01598994
                                                              -0.00900000
                                                                             0.00799805
                     0.00764861
  15
       0.09360713
                                   0.07435713
                                                 0.00557442
                                                               0.01925000
                                                                             0.00496236
```

4. 1D Kondo lattice model

p "SqNq.dat" u 1:3 w lp

$$S(q) = \frac{1}{N_{\rm s}} \sum_{i,j} \vec{S}_i \cdot \vec{S}_j e^{iqr_i}$$

p "SqNq.dat" u 1:7 w lp

$$N(q) = \frac{1}{N_{\rm s}} \sum_{i,j} \bar{n}_i \cdot \bar{n}_j e^{iqr_i},$$

$$\bar{n}_i = (n_{i\uparrow} + n_{i\downarrow}) - \langle (n_{i\uparrow} + n_{i\downarrow}) \rangle$$

In the Kondo lattice, spin/charge operators are defined as $S_i = S_i^{f+}S_i^c$ and $n_i = n_i^{f+}n_i^c$

5. Data repository

Quasi-1D molecular solids TMTTF/TMTSF salts

https://isspns-gitlab.issp.u-tokyo.ac.jp/k-yoshimi/tm-salts

- data
 - TMTSF_roomT
 - PF6
 - RESPACK
 - mVMC
 - qe
 - AsF6
 - RESPACK
 - mVMC
 - qe
 - SbF6
 - RESPACK
 - mVMC
 - qe

第一原理計算の結果(QE) 有効模型導出の結果(RESPACK) 有効模型解析結果(mVMC)

https://arxiv.org/abs/2210.13726

5. Data repository

Correlated Dirac electrons in α-ET and α-BETS

https://isspns-gitlab.issp.u-tokyo.ac.jp/k-yoshimi/alpha-salts

- data
 - alpha-BETS
 - 30K
 - RESPACK
 - mVMC
 - qe
 - 80K
 - RESPACK
 - qe
 - alpha-ET
 - 150K
 - RESPACK
 - mVMC
 - qe
 - 30K
 - RESPACK
 - mVMC
 - qe

第一原理計算の結果(QE) 有効模型導出の結果(RESPACK) 有効模型解析結果(mVMC)

https://arxiv.org/abs/2209.13460