

### **ZJU-UIUC Institute**



Zhejiang University / University of Illinois at Urbana-Champaign Institute

# ECE 486 Control Systems

Lecture 13: Stability from Frequency Response

Liangjing Yang
Assistant Professor, ZJU-UIUC Institute
liangjingyang@intl.zju.edu.cn

#### Checklist



| Wk       | Торіс                                                                                                                      | Ref.                                          |
|----------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1        | ✓ Introduction to feedback control  ✓ State-space models of systems;  linearization                                        | Ch. 1 Sections 1.1, 1.2, 2.1– 2.4, 7.2, 9.2.1 |
| 2        | ✓ Linear systems and their dynamic response                                                                                | Section 3.1, Appendix A                       |
| Modeling | ✓ Transient and steady-state dynamic response with arbitrary initial conditions                                            | Section 3.1, Appendix A                       |
| 3        | ✓ National Holiday Week                                                                                                    |                                               |
| 4        | ✓ System modeling diagrams; prototype second-order system                                                                  | Sections 3.1, 3.2, lab<br>manual              |
| Analysis | ✓ Transient response specifications                                                                                        | Sections 3.3, 3.14, lab manual                |
| 5        | ✓ Effect of zeros and extra poles; Routh- Hurwitz stability criterion                                                      | Sections 3.5, 3.6                             |
| <br>     | ✓ Basic properties and benefits of feedback<br>control; Introduction to Proportional-<br>Integral-Derivative (PID) control | Section 4.1-4.3, lab<br>manual                |
| 6        | ✓ Review A                                                                                                                 |                                               |
|          | ✓ Term Test A                                                                                                              |                                               |
| 7        | ✓ Introduction to Root Locus design method                                                                                 | Ch. 5                                         |
|          | ✓ Root Locus continued; introduction to dynamic compensation                                                               | Root Locus                                    |
| 8        | ✓ Lead and lag dynamic compensation                                                                                        | Ch. 5                                         |
|          | ✓ Introduction to frequency-response design method                                                                         | Sections 5.1-5.4, 6.1                         |

|          |          |        | Root Locus         |
|----------|----------|--------|--------------------|
| Modeling | Analysis | Design |                    |
|          |          |        | Frequency Response |
|          |          | 1      |                    |
|          |          | i<br>I | State-Space        |

|   | Wk | Topic                                                                                                                                               | Ref.                 |
|---|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|   | 9  | Bode plots for three types of transfer functions                                                                                                    | Section 6.1          |
|   |    | Stability from frequency response; gain and phase margins                                                                                           | Section 6.1          |
|   | 10 | Control design using frequency response                                                                                                             | Ch. 6                |
|   |    | Control design using frequency response continued; PI and lag, PID and lead-lag                                                                     | Frequency Response   |
|   | 11 | Nyquist stability criterion                                                                                                                         | Ch. 6                |
|   |    | Nyquist stability criterion continued; gain and phase margins from Nyquist plots                                                                    | Ch. 6                |
|   | 12 | Review B                                                                                                                                            |                      |
|   |    | Term Test B                                                                                                                                         |                      |
| 1 | 13 | Introduction to state-space design                                                                                                                  | Ch. 7                |
|   |    | Controllability, stability, and pole-zero cancellations; similarity transformation; conversion of controllable systems to Controller Canonical Form | Ch. 7                |
|   | 14 | Pole placement by full state feedback                                                                                                               | Ch. 7                |
|   |    | Observer design for state estimation                                                                                                                | 0, 7                 |
|   | 15 | Joint observer and controller design by dynamic output feedback; separation principle                                                               | State-Space<br>Ch. 7 |
|   |    | In-class review                                                                                                                                     | Ch. 7                |
|   | 16 | END OF LECTURES: Revision Week                                                                                                                      |                      |
|   |    | Final                                                                                                                                               |                      |

### Recap: Frequency Response

 The steady-state response to a sinusoidal input is known as the frequency response



### Recap: Frequency Response Formula



$$\sin(\omega t) \longrightarrow G(s) \longrightarrow M \sin(\omega t + \phi)$$
 where  $M = M(\omega) = |G(j\omega)|$  and  $\phi = \phi(\omega) = \angle G(j\omega)$ 

#### Derivation:

1. 
$$u(t) = e^{st} \longmapsto y(t) = G(s)e^{st}$$

- 1.  $u(t) = e^{st} \mapsto y(t) = G(s)e^{st}$ 2. Euler's formula:  $\sin(\omega t) = \frac{e^{j\omega t} e^{-j\omega t}}{2i}$
- 3. By linearity,

$$\sin(\omega t) \longmapsto \frac{G(j\omega)e^{j\omega t} - G(-j\omega)e^{-j\omega t}}{2j} G(j\omega) = M(\omega)e^{j\phi(\omega)}$$

$$= \frac{M(\omega)e^{j(\omega t + \phi(\omega))} - M(\omega)e^{-j(\omega t + \phi(\omega))}}{2j}$$

$$= M(\omega)\sin(\omega t + \phi(\omega))$$

Let's apply this formula to our prototype 2nd-order system:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$M(\omega) = |G(j\omega)| = \left| \frac{\omega_n^2}{-\omega^2 + 2j\zeta\omega_n \omega + \omega_n^2} \right|$$

$$= \left| \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2 + 2\zeta\frac{\omega}{\omega_n}j} \right|$$

$$= \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\zeta^2\left(\frac{\omega}{\omega_n}\right)^2}}$$

Recap: Frequency Response (How)



#### Two-step procedure:

- 1. Plot the frequency response of the open-loop transfer function KG(s) [or, more generally, D(s)G(s)], at  $s=j\omega$
- 2. See how to relate this open-loop frequency response to closed-pop behavior.

#### ertical axis on magnitude plots.

#### Horizontal ( $\omega$ ) axis:

we will use  $logarithmic\ scale$  (base 10) in order to display a wide range of frequencies.

Note: we will still mark the values of  $\omega$ , not  $\log_{10} \omega$ , on the axis, but the scale will be logarithmic:



Equal intervals on log scale correspond to decades in frequency.

we will also use logarithmic scale, just like the frequency axis.

#### Reason:

$$|(M_1e^{j\phi_1})(M_2e^{j\phi_2})| = M_1 \cdot M_2$$
$$\log(M_1M_2) = \log M_1 + \log M_2$$

— this means that we can simply add the graphs of  $\log M_1(\omega)$  and  $\log M_2(\omega)$  to obtain the graph of  $\log (M_1(\omega)M_2(\omega))$ , and graphical addition is easy.

Decibel scale:

$$(M)_{dB} = 20 \log_{10} M$$
 (one decade =  $20 \, dB$ )

We will work with two types of plots for  $KG(j\omega)$ :

- Bode plots: magnitude  $|KG(j\omega)|$  and phase  $\angle KG(j\omega)$  vs. frequency  $\omega$  (could have seen it earlier, in ECE 342)
- 2. Nyquist plots:  $\operatorname{Im}(KG(j\omega))$  vs.  $\operatorname{Re}(K(j\omega))$  [Cartesian plot in s-plane] as  $\omega$  ranges from  $-\infty$  to  $+\infty$

|                  | magnitude | phase  |
|------------------|-----------|--------|
| horizontal scale | log       | log    |
| vertical scale   | log       | linear |

Advantage of the scale convention: we will learn to do Bode plots by starting from simple factors and then building up to general transfer functions by considering products of these simple factors.

#### Vertical axis on phase plots:

we will plot the phase on the usual (linear) scale.

#### Reason:

$$\angle \left( (M_1 e^{j\phi_1})(M_2 e^{j\phi_2}) \right) = \angle \left( M_1 M_2 e^{j(\phi_1 + \phi_2)} \right)$$
  
=  $\phi_1 + \phi_2$ 

— this means that we can simply *add* the phase plots for two transfer functions to obtain the phase plot for their product.

### Recap: Bode Form of the Transfer Function

Bode form of KG(s) is a factored form with the constant term in each factor equal to 1, i.e., lump all DC gains into one number in the front.

#### Example:

rewrite as 
$$\frac{3K\left(\frac{s}{3}+1\right)}{4s\left(\left(\frac{s}{2}\right)^2+\frac{s}{2}+1\right)}\Big|_{s=j\omega}$$

$$=\frac{3K}{4}\frac{\frac{j\omega}{3}+1}{j\omega\left(\left(\frac{j\omega}{2}\right)^2+\frac{j\omega}{2}+1\right)}$$

Transfer functions in Bode form will have three types of factors:

- 1.  $K_0(j\omega)^n$ , where n is a positive or negative integer
- 2.  $(j\omega\tau + 1)^{\pm 1}$

3. 
$$\left[ \left( \frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{\pm 1}$$

In our example above,

$$KG(j\omega) = \frac{3K}{4} \frac{\frac{j\omega}{3} + 1}{j\omega \left[ \left( \frac{j\omega}{2} \right)^2 + \frac{j\omega}{2} + 1 \right]}$$
$$= \underbrace{\frac{3K}{4} (j\omega)^{-1}}_{\text{Type 1}} \cdot \underbrace{\left( \frac{j\omega}{3} + 1 \right)}_{\text{Type 2}} \cdot \underbrace{\left[ \left( \frac{j\omega}{2} \right)^2 + \frac{j\omega}{2} + 1 \right]^{-1}}_{\text{Type 3}}$$

### Unstable Zeros/Poles

So far, we've only looked at transfer functions with stable poles and zeros (except perhaps at the origin). What about RHP? •

Example: consider two transfer functions,

$$G_1(s) = \frac{s+1}{s+5}$$
 and  $G_2(s) = \frac{s-1}{s+5}$ 

Note:

- ▶  $G_1$  has stable poles and zeros;  $G_2$  has a RHP zero.
- ▶ Magnitude plots of  $G_1$  and  $G_2$  are the same —

$$|G_1(j\omega)| = \left| \frac{j\omega + 1}{j\omega + 5} \right| = \sqrt{\frac{\omega^2 + 1}{\omega^2 + 5}}$$
$$|G_2(j\omega)| = \left| \frac{j\omega - 1}{j\omega + 5} \right| = \sqrt{\frac{\omega^2 + 1}{\omega^2 + 5}}$$

▶ All the difference is in the phase plots!

### Phase Plot for G<sub>1</sub>

$$G_1(j\omega) = \frac{j\omega + 1}{j\omega + 5} = \frac{1}{5} \frac{j\omega + 1}{\frac{j\omega}{5} + 1}$$

- ▶ Low-frequency term:  $\frac{1}{5}(j\omega)^0$  n=0, so phase starts at
- ▶ Break-points at  $\omega_n = 1$  (phase goes up by 90°) and at  $\omega_n = 5$  (phase goes down by 90°)



# Phase Plot for G<sub>2</sub>

$$G_2(j\omega) = \frac{j\omega - 1}{j\omega + 5} = \frac{1}{5} \frac{j\omega - 1}{\frac{j\omega}{5} + 1}$$

Let's do a Nyqiust plot for  $j\omega - 1$ :



New type of behavior —

- $\omega \approx 0$ :  $\phi \approx 180^{\circ}$  (real and negative)
- $\omega \gg 1$ :  $\phi \approx 90^{\circ}$  (Re = -1, Im =  $\omega \gg 1$ )
- $\omega \approx 1$ :  $\phi \approx 135^{\circ}$

For a RHP zero, the phase starts out at 180° and goes down by 90° through the break-point (135° at break-point).



For a RHP zero, the phase plot is similar to what we had for a LHP pole: goes down by  $90^{\circ}$  ... However, it starts at  $180^{\circ}$ , and not at  $0^{\circ}$ .

### Minimum - & Nonminimum - Phase Zeros

#### Minimum-Phase and Nonminimum-Phase Zeros



Among all transfer functions with the same magnitude plot, the one with only LHP zeros has the minimal net phase change as  $\omega$  goes from 0 to  $\infty$  — hence the term minimum-phase for LHP zeros.

Example 2 Magnitude



- ow-frequency term  $\frac{0.01}{(j\omega)^2}$  with  $K_0 = 0.01$ , n = -2
  - asymptote has slope = -2, passes through

$$-(\omega = 1, M = 0.01)$$

- complex zero with break-point at  $\omega_n = 1$  and  $\zeta = 0.005$  slope up by 2; large resonant dip
- complex pole with break-point at  $\omega_n = 2$  and  $\zeta = 0.01$  slope down by 2; large resonant peak

### Example 2 Magnitude

# 25=0.00

$$KG(s) = \frac{0.01 \left(s^2 + 0.01s + 1\right)}{s^2 \left(\frac{s^2}{4} + 0.02 + 1\right)} \qquad -\text{already in Bode form}$$

What can we tell about magnitude?

- ▶ low-frequency term  $\frac{0.01}{(j\omega)^2}$  with  $K_0 = 0.01$ , n = -2— asymptote has slope = -2, passes through  $(\omega = 1, M = 0.01)$
- complex zero with break-point at  $\omega_n = 1$  and  $\zeta = 0.005$  slope up by 2; large resonant dip
- complex pole with break-point at  $\omega_n = 2$  and  $\zeta = 0.01$  slope down by 2; large resonant peak





20/09 M =>

(3) (20) log (0)

### Example 2 Phase

Recap: Type 1: 
$$K_0(j\omega)^n$$
 |  $K_0(j\omega)^n$  |

(stable complex pole — phase steps down by 180

$$KG(s) = \frac{0.01 \left(s^2 + 0.01s + 1\right)}{s^2 \left(\frac{s^2}{4} + 0.02\frac{s}{2} + 1\right)}$$
 — already in Bode form

What can we tell about phase?

- ▶ low-frequency term  $\frac{0.01}{(j\omega)^2}$  with  $K_0 = 0.01$ , n = -2— phase starts at  $n \times 90^\circ = -180^\circ$
- complex zero with break-point at  $\omega_n = 1$  phase up by  $180^{\circ}$
- complex pole with break-point at  $\omega_n = 2$  phase down by  $180^{\circ}$
- since ζ is small for both pole and zero, the transitions are very sharp





Question: How can we decide whether the *closed-loop* system is stable for a given value of K > 0 based on our knowledge of the *open-loop* transfer function KG(s)?



Question: How can we decide whether the *closed-loop* system is stable for a given value of K > 0 based on our knowledge of the *open-loop* transfer function KG(s)?



Points on the root locus satisfy the characteristic equation

$$1 + KG(s) = 0$$
  $\iff$   $KG(s) = -1$   $\left( \iff G(s) = -\frac{1}{K} \right)$ 

If  $s \in \mathbb{C}$  is on the RL, then

$$|KG(s)| = 1$$
 and  $\angle KG(s) = \angle G(s) = 180^{\circ} \mod 360^{\circ}$ 



Question: How can we decide whether the *closed-loop* system is stable for a given value of K > 0 based on our knowledge of the *open-loop* transfer function KG(s)?

Another answer: let's look at the Bode plots:

$$\omega \longmapsto |KG(j\omega)|$$
 on log-log scale  $\omega \longmapsto \angle KG(j\omega)$  on log-linear scale

— Bode plots show us magnitude and phase, but only for  $s = j\omega$ ,  $0 < \omega < \infty$ 

How does this relate to the root locus?  $j\omega$ -crossings!!



Stability from frequency response. If  $s = j\omega$  is on the root locus (for some value of K), then

$$|KG(j\omega)| = 1$$
 and  $\angle KG(j\omega) = 180^{\circ} \mod 360^{\circ}$ 

Therefore, the transition from stability to instability can be detected in two different ways:

- from root locus as  $j\omega$ -crossings
- ▶ from Bode plots as M = 1 and  $\phi = 180^{\circ}$  at some frequency  $\omega$  (for a given value of K)



Characteristic equation:

$$1 + \frac{K}{s(s^2 + 2s + 2)} = 0$$
$$s(s^2 + 2s + 2) + K = 0$$
$$s^3 + 2s^2 + 2s + K = 0$$

Recall the necessary & sufficient condition for stability for a 3rd-degree polynomial  $s^3 + a_1s^2 + a_2s + a_3$ :

$$a_1, a_2, a_3 > 0,$$
  $a_1 a_2 > a_3.$ 

Here, the closed-loop system is stable if and only if 0 < K < 4.

Let's see what we can read off from the Bode plots.



$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$

Characteristic equation:

$$1 + \frac{K}{s(s^2 + 2s + 2)} = 0$$
$$s(s^2 + 2s + 2) + K = 0$$
$$s^3 + 2s^2 + 2s + K = 0$$

Recall the necessary & sufficient condition for stability for a 3rd-degree polynomial  $s^3 + a_1s^2 + a_2s + a_3$ :

$$a_1, a_2, a_3 > 0, a_1 a_2 > a_3.$$

Here, the closed-loop system is stable if and only if 0 < K < 4.

Let's see what we can read off from the Bode plots.

$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$

$$S=j\omega$$

$$(j\omega)^2 + 2j\omega + 2$$

$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$
 Bode form: 
$$KG(j\omega) = \frac{K}{2j\omega\left(\left(\frac{j\omega}{\sqrt{2}}\right)^2 + j\omega + 1\right)}$$

Plot the magnitude first:

- ► Type 1 (low-frequency) asymptote:  $\frac{K/2}{j\omega}$   $K_0 = K/2, n = -1 \implies \text{slope} = -1, \text{ passes through}$  $(\omega = 1, M = K/2)$
- ► Type 3 (complex pole) asymptote: break-point at  $\omega = \sqrt{2}$   $\Longrightarrow$  slope down by 2
- $ightharpoonup \zeta = \frac{1}{\sqrt{2}} \Longrightarrow$  no reasonant peak

$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$
 Bode form: 
$$KG(j\omega) = \frac{K}{2j\omega\left(\left(\frac{j\omega}{\sqrt{2}}\right)^2 + j\omega + 1\right)}$$

Plot the magnitude first:

- ► Type 1 (low-frequency) asymptote:  $\frac{K/2}{j\omega}$   $K_0 = K/2, n = -1 \implies \text{slope} = -1, \text{ passes through}$  $(\omega = 1, M = K/2)$
- ► Type 3 (complex pole) asymptote: break-point at  $\omega = \sqrt{2}$   $\Longrightarrow$  slope down by 2
- $\zeta = \frac{1}{\sqrt{2}} \Longrightarrow$  no reasonant peak



The magnitude hits its peak value (for  $\zeta < 1/\sqrt{2} \approx 0.707$ ) occurs when  $\omega = \omega_r$ , where

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} < \omega_n$$

For small enough  $\zeta$  (below  $1/\sqrt{2}$ ), the magnitude of

$$\frac{1}{\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1}$$

has a resonant peak at the resonant frequency

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}.$$

Likewise, the magnitude of

$$\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1$$

has a resonant dip at  $\omega_r$ .

#### **Magnitude Plot**

$$KG(s) = \frac{K}{s(s^2 + 2s + 2)}$$
 Bode form: 
$$KG(j\omega) = \frac{K}{2j\omega\left(\left(\frac{j\omega}{\sqrt{2}}\right)^2 + j\omega + 1\right)}$$

Plot the magnitude first:

- ► Type 1 (low-frequency) asymptote:  $\frac{K/2}{j\omega}$   $K_0 = K/2, \quad n = -1 \implies \text{slope} = -1, \text{ passes through}$  $(\omega = 1, M = K/2)$
- ▶ Type 3 (complex pole) asymptote: break-point at  $\omega = \sqrt{2}$  ⇒ slope down by 2
- $\zeta = \frac{1}{\sqrt{2}} \Longrightarrow$  no reasonant peak

$$KG(j\omega) = \frac{K}{2j\omega\left(\left(\frac{j\omega}{\sqrt{2}}\right)^2 + j\omega + 1\right)}$$

Magnitude plot for K = 4 (the critical value):



#### **Phase Plot**

$$KG(j\omega) = \frac{K}{2j\omega\left(\left(\frac{j\omega}{\sqrt{2}}\right)^2 + j\omega + 1\right)}$$

Phase plot (independent of K):



When 
$$\omega = \sqrt{2}$$
,  $\phi = -180^{\circ}$ 



For the critical value K = 4:

$$M = 1$$
 and  $\phi = 180^{\circ}$   
mod 360° at  $\omega = \sqrt{2}$ 

# Crossover Frequency & Stability

#### Crossover Frequency and Stability

Definition: The frequency at which M=1 is called the crossover frequency and denoted by  $\omega_c$ .



Transition from stability to instability on the Bode plot:

for critical 
$$K$$
,  $\angle G(j\omega_c) = 180^{\circ}$ 

#### Effect of Varying K



What happens as we vary K?

- $\phi$  independent of  $K \Longrightarrow$  only the M-plot changes
- ▶ If we multiply K by 2:

$$\log(2M) = \log 2 + \log M$$

- -M-plot shifts up by  $\log 2$
- ightharpoonup If we divide K by 2:

$$\log(\frac{1}{2}M) = \log\frac{1}{2} + \log M$$
$$= -\log 2 + \log M$$

-M-plot shifts down by  $\log 2$ 

Changing the value of K moves the crossover frequency  $\omega_c!!$ 

#### Effect of Varying K

Changing the value of K moves the crossover frequency  $\omega_c!!$ 



0.1

0.001

0.01

What happens as we vary K?

$$\angle KG(j\omega_c) \begin{cases} > -180^{\circ}, & \text{for } K < 4 \\ & \text{(stable)} \end{cases} & \text{Then, in this example*}, \\ = -180^{\circ}, & \text{for } K = 4 & |KG(j\omega_{180^{\circ}})| < 1 \longleftrightarrow \text{ stability} \\ & \text{(critical)} & |KG(j\omega_{180^{\circ}})| > 1 \longleftrightarrow \text{ instabilit} \\ < -180^{\circ}, & \text{for } K > 4 \\ & \text{(unstable)} \end{cases} & \text{* Not a general rule; conditions will}$$

Equivalently, we may define  $\omega_{180^{\circ}}$  as the frequency at which

$$\phi = 180^{\circ} \mod 360^{\circ}$$
.

$$|KG(j\omega_{180^{\circ}})| < 1 \longleftrightarrow \text{stability}$$
  
 $|KG(j\omega_{180^{\circ}})| > 1 \longleftrightarrow \text{instability}$ 

vary depending on the system, must use either root locus or Nyquist plot to resolve ambiguity.

Consider this unity feedback configuration:



Suppose that the *closed-loop* system, with transfer function

$$\frac{KG(s)}{1 + KG(s)},$$

is stable for a given value of K.

Question: Can we use the Bode plot to determine how far from instability we are?

Two important characteristics: gain margin (GM) and phase margin (PM).

#### Gain Margin

Back to our example:  $G(s) = \frac{1}{s(s^2 + 2s + 2)}$ , K = 2 (stable)



Gain margin (GM) is the factor by which K can be multiplied before we get M=1 when  $\phi=180^{\circ}$ 



Since varying K doesn't change  $\omega_{180^{\circ}}$ , to find GM we need to inspect M at  $\omega = \omega_{180^{\circ}}$ 



Consider gain K = 1, which gives closed-loop transfer function

$$\begin{split} \frac{KG(s)}{1+KG(s)} &= \frac{\frac{\omega_n^2}{s^2+2\zeta\omega_n s}}{1+\frac{\omega_n^2}{s^2+2\zeta\omega_n s}} \\ &= \frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2} & \qquad -\text{prototype 2nd-order response} \end{split}$$

Question: what is the gain margin at K = 1?

Answer:  $GM = \infty$ 

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

Let's look at the phase plot:

- ▶ starts at  $-90^{\circ}$  (Type 1 term with n = -1)
- ▶ goes down by −90° (Type 2 pole)



Recall: to find GM, we first need to find  $\omega_{180^{\circ}}$ , and here there is no such  $\omega \Longrightarrow$  no GM.

So, at K = 1, the gain margin of

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s} = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$

is equal to  $\infty$  — what does that mean?

It means that we can keep on increasing K indefinitely without ever encountering instability.

But we already knew that: the characteristic polynomial is

$$p(s) = s^2 + 2\zeta \omega_n s + \omega_n^2,$$

which is always stable.

What about phase margin?

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

Let's look at the magnitude plot:

- ▶ low-frequency asymptote slope -1 (Type 1 term, n = -1)
- ▶ slope down by 1 past the breakpt.  $\omega = 2\zeta \omega_n$  (Type 2 pole)
- $\Longrightarrow$  there is a finite crossover frequency  $\omega_c!!$



#### Magnitude Plot

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

$$M = 1$$

$$\log_{\omega_c} \log_{\omega_c} \log$$

It can be shown that, for this system,

$$\text{PM}\Big|_{K=1} = \tan^{-1}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right)$$

— for PM < 70°, a good approximation is PM  $\approx 100 \cdot \zeta$ 

#### **Phase Margin**

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$

$$\text{PM}\Big|_{K=1} = \tan^{-1}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right) \approx 100 \cdot \zeta$$

#### Conclusions:

 $\begin{array}{ccc} \text{larger PM} & \Longleftrightarrow & \text{better damping} \\ \text{(open-loop quantity)} & \text{(closed-loop characteristic)} \end{array}$ 

Thus, the overshoot  $M_p = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$  and resonant peak  $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} - 1$  are both related to PM through  $\zeta!!$