Proracun performansi i geometrije	
Ulazni podaci:	
Maseni protok goriva:	mg:= 1
Odnos mesanja oksidator/gorivo:	OF := 5
Pritisak u komori:	P := 100·10 ⁵
Karakteristicna duzina:	Lkar := 1
Karakteristicna brzina:	Cstar := 2000
Stepen sirenja mlaznika:	εi := 6
Odnos precnika komore i grla mlaznika:	dkdkr := 2.5
Gasna konstanta:	R:= 546
Odnos specificnih toplota pri konstantnom pritisku i zapremini:	κ := 1.2
Atmosferski pritisak:	Pa := 101325

Proracun

Maseni protok oksidatora:

$$mox := OF \cdot mg$$

$$mox = 5$$

Kriticni presek i precnik mlaznika:

$$Akr := \frac{Cstar \cdot (mg + mox)}{P}$$

$$Akr = 1.2 \times 10^{-3}$$

$$dkr := \sqrt{Akr\!\cdot\!\frac{4}{\pi}}$$

$$dkr = 0.039$$

Zapremina komore:

$$Vkom := Lkar \cdot Akr$$

$$Vkom = 1.2 \times 10^{-3}$$

Precnik i duzina komore:

$$dk := dkdkr \cdot dkr$$

$$dk = 0.098$$

$$1k := \frac{Vkom}{dk^2 \cdot \frac{\pi}{4}}$$

$$1k = 0.16$$

Izlazni presek i precnik mlaznika:

$$Ai := \varepsilon i \cdot Akr$$

$$Ai = 7.2 \times 10^{-3}$$

$$di := \sqrt{Ai \cdot \frac{4}{\pi}}$$

$$di = 0.096$$

Odredjivanje Mahovog broja na izlazu mlaznika:

given

Miter := 2.8

Miter := 2.8
$$\varepsilon i = \frac{\left(1 + \frac{\kappa - 1}{2} \cdot \text{Miter}^2\right)^{\frac{\kappa + 1}{2 \cdot (\kappa - 1)}}}{\text{Miter}} \cdot \frac{1}{\left(\frac{\kappa + 1}{2}\right)^{\frac{\kappa + 1}{2 \cdot (\kappa - 1)}}}$$

Mi := find(Miter)

Mi = 2.917

Staticki pritisak na izlazu iz mlaznika:

$$pi \coloneqq \frac{P}{\left(1 + \frac{\kappa - 1}{2} \cdot Mi^2\right)^{\frac{\kappa}{\kappa - 1}}}$$

 $pi = 2.486 \times 10^5$

Optimalni stepen sirenja mlaznika (do atmosferskog pritiska od 1bar) i njemu odgovarajuci izlazni precnik:

$$Miopt := \sqrt{\left(\frac{\frac{\kappa-1}{P_a}}{\kappa} - 1\right) \cdot \frac{2}{\kappa - 1}}$$

Miopt = 3.391

$$\varepsilon iopt := \frac{\left(1 + \frac{\kappa - 1}{2} \cdot Miopt^2\right)^{\frac{\kappa + 1}{2 \cdot (\kappa - 1)}}}{Miopt} \cdot \frac{1}{\left(\frac{\kappa + 1}{2}\right)^{\frac{\kappa + 1}{2 \cdot (\kappa - 1)}}}$$

 ε iopt = 11.753

$$Aiopt := \epsilon iopt \cdot Akr$$

Aiopt = 0.014

$$diopt := \sqrt{Aiopt \cdot \frac{4}{\pi}}$$

diopt = 0.134

Totalna temperatura u komori:

$$\underline{\Gamma}(\kappa) := \sqrt{\kappa} \cdot \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{2 \cdot (\kappa-1)}}$$

$$\Gamma(\kappa) = 0.649$$

$$\underset{\text{NW}}{T} = \frac{\left(\text{Cstar} \cdot \Gamma(\kappa) \right)^2}{R}$$

 $T = 3.081 \times 10^3$

Brzina isticanja pri zadanom i optimalnom stepenu sirenja:

$$Vi := \sqrt{2 \cdot \frac{\kappa}{\kappa - 1} \cdot R \cdot T} \cdot 1 - \frac{1}{\frac{\kappa - 1}{\kappa}} \left(\frac{P}{pi}\right)^{\frac{\kappa}{\kappa}}$$

$$Vi = 3.047 \times 10^3$$

 $Viopt = 3.286 \times 10^3$

Potisak pri zadanom i optimalnom stepenu sirenja:

$$F_{\text{on}} := (\text{mox} + \text{mg}) \cdot \text{Vi} + \text{Ai} \cdot (\text{pi} - \text{Pa})$$

 $F = 1.934 \times 10^4$

Fopt :=
$$(mox + mg) \cdot Viopt$$

Fopt = 1.972×10^4

$$\frac{F}{Fopt} = 0.981$$

Koeficijent potiska:

$$Cf := \frac{F}{P \cdot Akr} \qquad \qquad Cf = 1.612$$

Specificni impuls pri zadanom i optimalnom stepenu sirenja:

$$Isp := \frac{F}{(mox + mg)}$$

$$Isp = 3.223 \times 10^3$$

Ispopt :=
$$\frac{\text{Fopt}}{(\text{mox} + \text{mg})}$$
 Ispopt = 3.286×10^3