Villamosmérnök alapszak	F1	F2	F3	F4	М	E1	E2	E3	E4	E5	Összesen	Bónusz	
Fizika1	-	1925	H-IN	AND	adite	Bull	11 34		PE TE		desprent 3	avamet a	rail C
4. vizsga, 2019. jan. 21.	A G		O VA	MEN	nell.	0.00	20 19		9/19/1		GOT TOP	03393 10004	SERIPR

NÉV:	emm - moomod - meres

Neptun kód:

Előadó: Márkus □ / Sarkadi □ / Vizsgakurzus □

1. Az ábrán látható kéthengeres motorblokk főtengelye ω szögsebességgel forog. Az O forgástengelytől R távolságban elhelyezkedő A pontot kötik össze a dugattyúkkal (B és C) az L hosszúságú hajtókarok. A dugattyúk tömege egyenként m, a hajtókarok tömege elhanyagolható, a motorblokk többi alkatrésze M tömegű.

a) Írja fel a dugattyúk $x_B(t)$ valamint $x_C(t)$ kitérés-idő függvényét egy O-hoz rögzített xy koordinátarendszerben! Feltételezzük, hogy L>>R, így a BA valamint AC hajtókarok x tengelyre vett vetülete közelítőleg mindig L!(1)

b) Maximálisan mekkora erőt kell elviselniük a hajtókaroknak? A hengereket tekintsük nyitottnak, így a gáznyomás minden térrészben időben állandó. (1)

c) Írja fel a motor tömegközéppontjának x koordinátáját az idő függvényében megadó $x_{TKP}(t)$ függvényt! (1)

$$\chi_{TKP}(t) = \frac{\sum m_i \chi_i}{\sum w_i} = \frac{m \chi_0 + m \chi_c + 0.M}{\sum m_i \chi_0} = \frac{2m \kappa \sin(\omega t)}{\sum m_i \chi_0}$$

d) A motor erőteljesen rázza a felfüggesztését, hiszen tömegközéppontja mozog. A mérnökök úgy döntenek, elhelyeznek egy m' tömeget a D pontban annak érdekében, hogy az $x_{TKP}(t)$ függvény konstans legyen. Mekkorának kell választani m'-t?

$$0 = \frac{2mR \sin(\omega t) - m'R \sin(\omega t)}{2m + M + m'} \Longrightarrow [m' = 2m]$$

e) Hogyan alakul a módosított motor tömegközéppontjának y koordinátáját megadó y_{TKP}(t) függvény?

$$E_{hin}+E_{pot}=E_{hin}+E_{pot}$$

$$0+mg\frac{L}{2}=\frac{1}{2}\Theta\omega^{2}+mg\frac{L}{2}\cdot cosd$$

$$\frac{mgL}{2}(1-cosd)=\frac{1}{2}\frac{1}{3}mL^{2}\omega^{2}$$

$$3g(1-cosd)=L\omega^{2}$$

$$U=\frac{3g}{L}(1-cosd)$$

$$U=\frac{3g}{L}(1-cosd)$$

b) Határozza meg, mekkora α szög mellett válik el a műugró a deszkától! (1,5)

The mag cost =
$$\frac{39}{L}(1-\cos \omega) \cdot \frac{L}{2}$$
 $2\cos \alpha = 3-3\cos \alpha \implies \cos \alpha = \frac{3}{5}$

c) Mekkora szögsebességgel mozog a műugró a deszkától való elválás pillanatában? (1)

$$\omega = \sqrt{\frac{39}{L}\left(1 - \frac{3}{5}\right)} = \sqrt{\frac{69}{5L}}$$

d) Mennyi ideig kell tartania az esésnek, hogy függőlegesen, fejjel lefelé érkezzen a vízbe? (1)

$$\varphi = \pi - \lambda \qquad \omega_0 = \sqrt{\frac{6q}{5L}} \qquad \varphi = \omega, t$$

$$t = \frac{\varphi}{\omega_0} = \frac{\pi - \lambda}{\omega_0} = \sqrt{\frac{6q}{5L}}$$

a) Mekkora az űrhajó v keringési sebessége?

b) Az űrhajó a Föld középpontjától 2R távolságra elhelyezkedő B pontba kíván eljutni. Az A pontban begyújtja rakétáit, és igen rövid idő alatt felgyorsul v_A sebességre. Ezzel a kezdősebességgel vág neki az utazásnak szaggatott vonallal jelölt pályán. Mire a B pontba ér, sebessége v_B lesz.

Fejezze ki a v_A / v_B arányt a pálya geometriai paramétereinek segítségével! (1)

Fejezze ki a
$$v_A/v_B$$
 arányt a palya geometriai parameterenek seglisegevel! (1)

Impulzusmonentum myharadas tönvénye:

R. M. $V_A = 2R$ m. V_B

c) Határozza meg a v_A sebességet M és R paraméterek függvényében! (1,5)

Hechanibai energis megnaradas tönénye:

Hechanisai energia meginaridas torteze.

$$\frac{1}{2}m v_{x}^{2} - 8 \frac{mH}{R} = \frac{1}{2}m v_{0}^{2} - 8 \frac{mH}{2R}$$
 $\frac{1}{2}v_{0}^{2} - \frac{1}{2}v_{0}^{2} = \frac{8M}{R} - \frac{8M}{2R}$
 $\frac{1}{2}(v_{0}^{2} - \frac{1}{2}v_{0}^{2}) = \frac{8M}{R}(1 - \frac{1}{2})$
 $v_{0}^{2} = \frac{48M}{2R}$
 $v_{0}^{2} = \frac{48M}{3R}$

d) Mennyi munkát kellett végeznie a hajtóműnek az A pontban, hogy a körpályáról áttérhessen az űrhajó az ellipszis pályára? (1,5)

Mundatetel:
W=
$$\Delta E_{\text{hin}} = \frac{1}{2} m v_A^2 - \frac{1}{2} m v^2 = \frac{1}{2} m \left(\frac{48M}{3R} - \frac{8M}{R} \right)$$

 $= \frac{\gamma mM}{2R} \left(\frac{4}{3} - 1 \right) \left[\frac{\gamma mM}{6R} \right]$

a) Fejezze ki a gép jósági tényezőjét, vagyis a Q_2/W hányadost a hőtartályok hőmérsékletének függvényében! (1)

$$\frac{Q_2}{W} = \frac{1}{\gamma} = \frac{1}{\frac{T_2 - T_1}{T_2}} = \frac{T_2}{\frac{T_2 - T_1}{T_2}}$$

b) Hogyan aránylik egymáshoz a gép által leadott, valamint felvett hő? (1)

Cannot-gip esetén :
$$\frac{Q_1}{T_1} = \frac{Q_2}{T_2} \implies \frac{Q_1}{Q_1} = \frac{T_1}{T_2}$$
(2)

c) A hűtőszekrény ajtaját időről időre kinyitják, minek hatására hő áramlik be a hűtőszekrénybe. Ezt egy átlagos P_x hőteljesítménnyel vegyük figyelembe. Egészítse ki az energetikai blokkdiagramot a P_x

hőáramot reprezentáló nyíllal! (1)
(1)
$$Q_z = W \cdot \frac{T_z}{T_z - T_1} \Rightarrow \frac{\Delta Q_z}{\Delta t} = \frac{\Delta W}{\Delta t} \cdot \frac{T_z}{T_z - T_1} = P_H \cdot \frac{T_z}{T_z - T_1}$$

$$P_X = \frac{\Delta Q_z}{\Delta t}$$

(2)
$$\frac{\Delta Q_1}{\Delta c} = \frac{T_1}{T_2} = \frac{P_x}{P_H} \Rightarrow P_H = \frac{P_x}{T_1} = \frac{P_x}{T_2} = \frac{P_x}{T_1}$$
d) Mekkora a hűtőszekrény elektromos hálózatból felvett átlagos P_H teljesítménye, ha az ajtó nyitogatása

ellenére is fenn kívánjuk tartani a hideg hőtartály T_I hőmérsékletét? (1)

e) Mekkora teljesítménnyel fűti a hűtőszekrény a környezetét? (1)

$$P_{x} = \frac{\Delta Q_{z}}{\Delta t} - P_{x} = \frac{\Delta Q_{1}}{\Delta t} \cdot \frac{T_{z}}{T_{1}} - P_{x} = \frac{T_{z}}{T_{1}} \cdot P_{x} - P_{x} = P_{x} \left(\frac{T_{z}}{T_{1}} - 1\right) = P_{x} \cdot \frac{T_{z} - T_{1}}{T_{1}}$$

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!

1. Egy tömegpont gyorsulása arányos a na hata esch ende jewl
2. Vízszintesen elhajított test gyorsulásvektora és sebességvektora pillanatában zárja be a legkisebb szöget egymással
3. Ferdén elhajított test pályájának alakja pajadola
4. Egy asztalon nyugvó testre ható tartóerő ellenereje a
5. Föld felszínéhez közel, körpályán keringő műhold centripetális gyorsulása megegyezik a gravitációs gyorkulással
6. A nehézségi erőtér konzervatív, hiszen az erőtér által egy tömegponton végzett munka csak a mengin levelő és vég pontri hels helyetetől függ.
7. Pontrendszer tong keripport jank gyorsulása arányos a pontrendszerre ható
külső erők eredőjével.
3. A nôben toketseg megadja, mekkora kezdősebességgel kell
egy tömegpontot indítani egy adott bolygó felszínéről, hogy az képes legyen a bolygótól
végtelen messzire távolodni.
2. Egy tömegpont harmonikus rezgőmozgást végez, ha a rá ható erő
0. Két kismértékben eltérő frekvenciájú hanghullám interferenciájának eredményét
Egy mindkét végén nyitott síp egyik végét befogjuk. A síp alaphangjának frekvenciája
2. Az ideális gázok kinetikus elmélete szerint a gázrészecskék egymással és az edény falával ütköznek.
3. A P-V diagram tetszőleges pontján áthaladó adiabata, valamint izoterma görbék közül az adiabaták a meredekebbek.
4. A 0 °C-os jég sűrűsége hiselb "mint a 0 °C-os vízé.
5. Ha egy adott tömegű anyagdarab adott mértékben történő felmelegítéséhez sok hő kell, az azt jelenti, hogy anyag

Kifejtendő kérdések

Tömör, lényegre törő, vázlatszerű, fizikailag és matematikailag pontos válaszokat várunk. Ha szükséges, rajzoljon magyarázó ábrákat!

1. Matematikai összefüggéssel definiálja az egydimenziős haladó mozgást, valamint a körmozgást leíró kinematikai mennyiségeket! (1) Adja meg azok SI mértékegységeit! (0,5) Mikor tekinthetünk egy haladó, valamint egy körmozgást egyenletesen változónak? Definiálja a bevezetett kinematikai mennyiségekkel! (0,5) Írja fel az egyenletesen változó haladó mozgás hely-idő, valamint az egyenletesen változó körmozgás szögelfordulás-idő függvényét! (1)

Egypnes conali norgis	Kermorge whom
elmarchelàs: X (m)	nögalforche (a): (= 5 (dimeniotlan)
seberry: $v = \lim_{\delta t \to 0} \frac{\delta x}{\delta t} \left(\frac{m}{\delta}\right)$	nögalforche (a'): (f = \frac{3}{12} (dinerio'tlan) nögalforche (a'): (f = \frac{3}{12} (dinerio'tlan) nigselvenig: \widehat = \line \frac{34}{3t} (\frac{1}{3})
quombis: $a = \lim_{\Delta t \to 0} \frac{\Delta t}{\Delta t} \left(\frac{m}{\delta^2} \right)$	naggyonulos: $p = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} \left(\frac{1}{\delta^2} \right)$
Egypenletoren viltori: a=a'llancli	B= c'llands'
$X(t) = X_0 + U_0 t + \frac{\alpha}{2} t^2$	$\varphi_{(t)} = \varphi_0 + \omega_0 \cdot t + \frac{\beta}{2} \cdot t^2$

 Definiálja matematikai összefüggéssel egy pontrendszer teljes impulzusát! (1) Matematikai alakban írja fel, valamint fogalmazza meg egy mondatban a tömegpontrendszerekre vonatkozó impulzustételt! (1) Milyen feltétel mellett marad meg egy pontrendszer impulzusa? (1)

$$\overline{I}_{\bar{0}m} = Z m_i \overline{v}_i \qquad \overline{\overline{I}}_{\bar{0}m} = Z \overline{f}_K$$

Pontradres impulsusainet idéegységenhinti usegraltorais a egyent a pontradrene haté külsé eről eredőjével.

Pontunction inpulsassa s'llandé, la a sulsi evil endôje résus. $\Sigma \bar{F}_{k} = 0$ 3. Írja fel Kepler II. törvényét! (1) Ábra, valamint levezetés segítségével mutassa meg, hogy Kepler II. törvénye a centrális erőtérben mozgó tömegpontokra vonatkozó impulzusmomentum-megmaradás törvényének alternatív megfogalmazása! (2)

A Napból a bolygóher hursett mgár egyen le idősérék alatt egyenle temeleteket mírol.

N St iob alatt: $\Delta \bar{\nu} = \bar{\nu} \cdot \Delta t$ $\Delta t = \frac{|\Delta \bar{\nu}| \cdot h}{2} = \frac{|\Delta \bar{\nu}| \cdot h}{2} \cdot h$ Aland = $\frac{|\Delta \bar{\nu}| \cdot h}{2} = \frac{|\Delta \bar{\nu}| \cdot h}{2} \cdot h$ a'lland = $\frac{\Delta A}{\Delta t} = \frac{|\bar{\nu}| \cdot \Delta t \cdot |\bar{\nu}| \cdot h}{2} \cdot h$ $= \frac{|\bar{\nu}| \cdot m|\bar{\nu}| \cdot m|\bar{\nu}| \cdot h}{2} \cdot h$ $= \frac{|\bar{\nu}| \cdot m|\bar{\nu}| \cdot h}{2} \cdot h$ $= \frac{|\bar{\nu}| \cdot m|\bar{\nu}| \cdot m$

inequared.

- 4. Sorolja fel a hőterjedés fajtáit, (1) nevezze meg, melyik milyen közegben fordulhat elő! (1) Mit állít a termodinamika II. főtétele a hőterjedésről? (1)
 - · Hångåres: këreg hidnyalan is letrejen.
 - · Houretes: korez missiges.
 - · Higrander: coal folgétany, liqueux horegelle.

A his hiels's learnthora's ne'hriel mindig a melegebbtest feli'l a hichgebb tast fele terjed.

