The Geometry of Estimation in High Dimensions

Alex Shkolnik (shkolnik@ucsb.edu)

Blessings of Dimensionality Workshop. University of Connecticut, Storrs, CT. July 15, 2024.

Department of Statistics & Applied Probability University of California, Santa Barbara

Table of contents.

- A motivating example from optimization.
- High dimensional geometry of Stein's estimator for the mean. (Hypercube concentration of measure result of Borel (1914)).
- Covariance (eigenvector) estimation and quadratic optimization are a (arguably) more natural framework for Stein's estimator.
 (Levy's concentration of measure on the sphere (1919))
 :
- Beyond the simple Stein's estimation for low dimensional subspaces (PCA) and its connections to quadratic programming.
- Appendix (technical results).

Notation.

- -p dimension
- $-\langle u, v \rangle = \sum_{i=1}^{m} u_i v_i$
- $|u| = \sqrt{\langle u, u \rangle}$

Motivating example

Let $f: \mathbb{R}^p \to \mathbb{R}$ be a *p*-variable function and consider,

$$\max_{x \in \mathbb{R}^p} f(x).$$

In practice f is unknown and we have an estimated surrogate,

$$\hat{f}: \mathbb{R}^p \to \mathbb{R}$$
.

e.g.,
$$f(x) = E(\hat{f}(x))$$

Let \hat{x} be the maximizer of \hat{f} and consider the objective value,

$$f(\hat{x})$$
 (realized "optimum").

Closely related to the statistics notion of out-of-sample.

- $\hat{f}(\hat{x})$ is the estimated optimum.
- $\max_{x \in \mathbb{R}^p} f(x)$ is the true optimum.

An important example of f (a quadratic function of p-variables).

$$Q(x) = 1 + \langle \mu, x \rangle - \frac{1}{2} \langle x, \Sigma x \rangle \qquad (x \in \mathbb{R}^p)$$

 $-\mu \in \mathbb{R}^p$ and Σ is a symmetric and pos. def. $(p \times p)$ -matrix.

Applications.

- optimization, graph theory, statistics and probability.
- Mean-variance portfolio optimization, robust (Capon) beamforming in signal processing, optimal fingerprinting in climate science.
- A Lagrangian for (linearly constrained) quadratic programs.

Suppose some fixed number q of eigenvalues of $\Sigma = \Sigma_{p \times p}$ diverge in p and the remaining eigenvalues are bounded in $(0, \infty)$.

- The diverging eigenvalues are often called spikes.

Also suppose μ is not (eventually) an eigenvector for the spikes.

Their estimates ζ and $\hat{\Sigma}$ are assumed to inherit the same properties.

The maximizer of Q is unique and occurs at $\Sigma^{-1}\mu$ so that,

(1)
$$\max_{x \in \mathbb{R}^p} Q(x) = 1 + \frac{g_\mu^2}{2}$$

where
$$g_\mu^2=\langle\mu,\Sigma^{-1}\mu\rangle=|\mu|^2\langle v,\Sigma^{-1}v\rangle$$
 for $v=\mu/|\mu|$

- The true optimum (1) grows in p in proportion to $|\mu|^2$.
- For effect, the natural assumption that $|\mu|^2 = \sum_{i=1}^p \mu_i^2$ grows in p to $+\infty$ is assumed but not needed (same for the estimate ζ).

The estimated objective function \hat{Q} takes the form,

$$\hat{Q}(x) = 1 + \langle \zeta, x \rangle - \frac{1}{2} \langle x, \hat{\Sigma} x \rangle$$

where we think of ζ and $\hat{\Sigma}$ as estimates of μ and Σ .

- The case $\zeta = \mu$ is of practical utility but $\hat{\Sigma} \neq \Sigma$.

The estimated optimum follows the logic of the previous slide.

Let \hat{x} denote the unique maximizer $(\hat{\Sigma}^{-1}\zeta)$ of \hat{Q} .

The *realized optimum* – true objective at the estimated maximizer.

$$Q(\hat{x}) = 1 + \langle \mu, \hat{\Sigma}^{-1} \zeta \rangle - \frac{1}{2} \langle \hat{x}, \Sigma \hat{x} \rangle$$
$$= 1 + \frac{\hat{g}_{\zeta}^{2}}{2} D_{p}$$

where $\hat{g}_{\zeta}^2 = \langle \zeta, \hat{\Sigma}^{-1} \zeta \rangle$ and we call D_p the discrepancy, i.e.,

$$\max_{x \in \mathbb{R}^p} Q(x) = 1 + \frac{g_{\mu}^2}{2}.$$

Unless $\hat{\Sigma}$ chosen "wisely", the discrepancy D_p tends to $-\infty$.

As $p \uparrow \infty$ the true objective $\max_{x \in \mathbb{R}^p} Q(x)$ tends to $+\infty$ but the realized objective $Q(\hat{x})$ tends to $-\infty$.

- Which (or which part) of the estimates causes this?

$$Q(x) = 1 + \langle \mu, x \rangle - \frac{1}{2} \langle x, \Sigma x \rangle$$
$$\hat{Q}(x) = 1 + \langle \zeta, x \rangle - \frac{1}{2} \langle x, \hat{\Sigma} x \rangle$$

Let r_p be the rate at which the spiked eigenvalues diverge.

– For simplicity, all non-spiked eigenvalues of $\hat{\Sigma}$ are identical.

Theorem. (Gurdogan & Shkolnik, 2024)

$$D_p = O(1) \frac{|\mu|}{|\zeta|} - O(r_p) |\mathscr{E}_p(\mathscr{H})|^2 + 2$$
nd order terms.

We call the quantity $\mathcal{E}_p(\mathcal{H})$ the *quadratic optimization bias*.

Let $\mathcal B$ and $\mathcal K$ be the eigenvectors of Σ and $\hat \Sigma$ corresponding to the q spiked eigenvalues ($p \times q$ matrices with orthonormal columns).

Quadratic optimization bias.

$$\mathcal{E}_p(\mathcal{H}) = \frac{\mathcal{B}^\top z - (\mathcal{B}^\top \mathcal{H})(\mathcal{H}^\top z)}{\sqrt{1 - |\mathcal{H}^\top z|^2}} \quad \left(z = \frac{\zeta}{|\zeta|}\right).$$

- Does not depend on any of the eigenvalues.
- Does not depend on the non-spiked eigenvectors.
- Tells us what has to be estimated accurately.
- i.e. find roots of $\mathscr{E}_p: \mathbb{R}^{p \times q} \to \mathbb{R}^q$ (perhaps asymptotically).
- The quantities $\mathcal{B}^{\mathsf{T}}z$ and $\mathcal{B}^{\mathsf{T}}\mathcal{H}$ are not observed.
- The most natural framework is HDLSS.

Numerics on principal component analysis of a (simulated) financial data set with q=7 spikes and a finite sample.

p	$\max_{x} Q(x)$	$EQ(\hat{x})$	$ED_p(\mathcal{H})$	$EQ(\hat{x}_{\sharp})$	$\mathrm{E}D_p(\mathcal{H}_\sharp)$
500	1.01	0.99	-1.16	1.00	1.22
2000	1.03	0.64	-7.11	1.01	0.93
8000	1.12	-4.98	-30.04	1.04	0.85
32000	1.47	-97.01	-121.81	1.18	0.86
128000	2.88	-1572.9	-486.92	1.70	0.87

Theoretical analysis and numerics in Gurdogan & Shkolnik (2024). "Quadratic Optimization Bias of Large Covariance Matrices"

Mean estimation

There are so many methods for covariance estimation!

- e.g., Yao, Zheng & Bai (2015)

INADMISSIBILITY OF THE USUAL ESTI-MATOR FOR THE MEAN OF A MULTI-VARIATE NORMAL DISTRIBUTION

CHARLES STEIN STANFORD UNIVERSITY

1. Introduction

If one observes the real random variables X_1, \dots, X_n independently normally distributed with unknown means ξ_1, \dots, ξ_n and variance 1, it is customary to estimate ξ_i

- Stein (1955)

Third Berkeley symposium on mathematical statistics and probability Let $\eta = \beta + \epsilon$ be a noisy observation of a vector $\beta \in \mathbb{R}^p$.

- Critical dimension p = 3.
- This is a HDLSS framework where $p \uparrow \infty$.

Let $\epsilon = \eta - \beta$ represent "noise".

The vector $\zeta \in \mathbb{R}^p$ is treated as nonrandom (or independent).

Geometric LLN.

$$\langle \eta - \beta, \zeta - \beta \rangle / p = \langle \epsilon, v \rangle / p = \frac{1}{p} \sum_{i=1}^{p} \epsilon_i v_i \to 0$$

As $p \uparrow \infty$ the angle α_p between ϵ and $v = \zeta - \beta$ tends to 90°.

- Noise (pure randomness) is orthogonal to (or independent of) any high dimensional vector not corrupted by it.
- Very similar to perhaps the first concentration of measure result due to Borel 1914 (mass of hypercube concentrates on equator).

Borel 1914 - Concentration of mass of hypercube on its equator.

Once we reach dimension ∞ the geometry is computed in terms of the limits of $f = \frac{|\epsilon|}{\sqrt{1-c}}$ and $c = 1 - \frac{|\epsilon|^2}{|\eta - \xi|^2}$.

The point $\eta^{\rm JS}$ is an estimator of β strictly better than η with respect to ℓ_2 -error (originally due to James & Stein (1961) for p>2).

Letting v^2 be a *p*-consistent estimate of $|\epsilon|^2 = |\eta - \beta|^2$ (may be obtained with just n = 2 weakly dependent observations), define

$$\eta^{JS} = \zeta + c(\eta - \zeta), \qquad \left(c = 1 - \frac{v^2}{|\eta - \zeta|^2}\right)$$
$$= c \eta + (1 - c)\zeta$$

Theorem. If $|\beta|^2/p$ and $|\epsilon|^2/p$ are bounded in $(0, \infty)$ as $p \to \infty$ and the Geometric LLN holds, \sqrt{c} is eventually in the interval (0, 1) and,

$$|\eta^{\rm JS} - \beta| \sim \sqrt{c} |\eta - \beta| = \sqrt{c} |\epsilon|.$$

The vector ζ is called the "shrinkage target".

Remarks.

A similar (but not asymptotic) geometry is illustrated in Efron (1978).

The first p-asymptotic analysis of JS estimator appears in is Casella & Hwang (1982) but without any mention of geometry.

Fourdrinier, Strawderman & Wells (2018) – excellent treatment of the theoretical aspects of the James-Stein (JS) estimator.

Efron & Morris (1975) – "Difficulties in adapting the James-Stein estimator to the many special cases that invariably arise in practice."

Covariance estimation

Eigenvector estimation.

As sensibly pointed out by Wang & Fan (2017) in reference to the partition of the sample eigenvector:

the "two parts intertwine in such a way that correction for the biases of estimating eigenvectors is almost impossible."

The original problem in Stein (1955) concerns mean estimation from finitely many Gaussian observations $y=\mu+\epsilon$

- The vector $\mu \in \mathbb{R}^p$ is a population mean.
- The usual estimate is the sample mean.
- The metric is quadratic loss (expected mean-squared error).
- The estimator y^{JS} is not optimal (just better than y).
- The shrinkage target is arbitrary (Stein's paradox).

Its arguable that the more natural framework is that of spiked covariance estimation (eigenvector estimation in particular).

- The vector $\beta \in \mathbb{R}^p$ is a population eigenvector.
- The usual estimate is a sample eigenvector.
- The metric is the quadratic optimization bias.
- The JS estimator will be optimal wrt this metric.
- There is a natural choice of shrinkage target.

To move over to covariance estimation, correlate our variables via

$$y = \mu + \beta x + \epsilon$$

where x is mean-zero of unit variance and uncorrelated from ϵ .

Letting $V = (y - \mu)(y - \mu)^{\mathsf{T}}$ we return to our quadratic function,

$$\begin{split} Q(x) &= \mathrm{E}(\hat{Q}(x)) \\ &= \mathrm{E}\big(1 + \langle y, x \rangle - \frac{1}{2} \langle x, Vx \rangle \big) \\ &= 1 + \langle \mu, x \rangle - \frac{1}{2} \langle x, \Sigma x \rangle \end{split}$$

where $\Sigma = \mathrm{E}(V) = \mathrm{VAR}(y) = \beta \beta^\top + \Gamma$ for $\Gamma = \mathrm{VAR}(\epsilon)$.

- Assume all eigenvalues of Γ are bounded in $(0, \infty)$.

We take the simple estimate $\hat{\Sigma} = \eta \eta^{\top} + \nu^2 I$ and some ζ .

$$\hat{Q}(x) = 1 + \langle \zeta, x \rangle - \frac{1}{2} \langle x, \hat{\Sigma} x \rangle$$

Our discrepancy theorem is restated for this example as,

$$D_p = -O(|\beta|^2)|\mathcal{E}_p(\eta)| + O(1)\frac{|\mu|}{|\zeta|}$$

where $\mathcal{E}_p(\eta)$ is the optimization bias (for q=1).

Lets embed everything into a unit sphere in \mathbb{R}^p .

$$h = \frac{\eta}{|\eta|}$$
 $b = \frac{\beta}{|\beta|}$ $z = \frac{\zeta}{|\zeta|}$

In this single eigenvector special case the optimization bias is,

$$\mathscr{E}(h) = \frac{\langle b, z \rangle - \langle h, b \rangle \langle h, z \rangle}{\sqrt{1 - \langle h, z \rangle^2}}$$

First identified in Goldberg, Papanicolaou & Shkolnik (2022).

- Now frequently called the GPS paper.
- The map $\mathscr{E}_p(\cdot)$ has at least 2 distinct roots.
- Problem 1 characterize all the roots.
- Problem 2 which may estimated from data p-asymptotically.

By the spherical law of cosines $\mathscr{E}_p(h_*) = 0$.

Why is this applicable for eigenvectors?

- Suppose our data (columns) are generated n observations of

$$y = \mu + \beta x + \epsilon$$

which are weakly dependent (say i.i.d.).

- We will need $n \geq 3$ observations (the very first one, one to center the data and one more to estimate the optimal shrinkage amount).

Making a (centered) $p \times p$ sample covariance matrix, we can extract an eigenvector h with the largest eigenvalue s^2 .

$$\eta = sh = \chi_n \beta + \epsilon'$$

for a random variable χ_n related to $\langle h, b \rangle$ and where $\epsilon' \neq \epsilon$ that has sufficient weak dependency in its entries to satisfy the Geometric LLN.

Bias of high-dimensional vectors ($h = \psi b + \epsilon''$).

A question about geometry – from the "right" perspective.

Levy's concentration of measure on the sphere.

Let $\mathcal A$ be an area of size at least 1/2 on $\mathbb S^{p-1}$ (Lévy 1919). Then,

$$\mu(x \in \mathbb{S}^{p-1} : d(x, \mathcal{A}) \ge r) \le 2e^{-pr^2/64}$$

where μ is the uniform surface area measure and $d(x, \mathcal{A})$ denotes the Euclidean geodesic from x to \mathcal{A} .

- Leads to a concentration around the equator.

The following is true in high dimensions (whp).

Scale ζ to ensure $\zeta = \langle \eta, z \rangle z$.

Theorem. The JS estimator of the leading eigenvector is a *p*-asymptotic root of the quadratic optimization bias $\mathcal{E}(\cdot)$ for fixed $n \geq 3$.

 Gurdogan & Shkolnik (2024) extend this to any number of spiked eigenvectors (Quadratic Optimization Bias of Large Covariance Matrices).

Replacing the eigenvector h with $h^{\rm JS}$ ensures the optimization bias is zero and bounds the discrepancy in L_2 .

- The latter is closely related to Conjecture 1 in the GPS paper.
- In this covariance estimation + optimization bias framework the JS estimator is optimal and has a natural shrinkage target.

$$\hat{Q}(x) = 1 + \langle \zeta, x \rangle - \frac{1}{2} \langle x, \hat{\Sigma} x \rangle$$

Beyond the simple

We now consider a general quadratic program (QP)

$$\min_{x \in \mathbb{R}^p} \frac{1}{2} \langle x, \hat{\Sigma} x \rangle$$

$$\mathscr{C}^{\top} x \le c$$

The solution is the maximizer of the Lagrangian,

$$\hat{Q}(x) = c_0 + \langle x, \zeta \rangle - \frac{1}{2} \langle x, \hat{\Sigma} x \rangle$$

where ζ is a linear combination of the k columns $\zeta_j \in \mathbb{R}^p$ of \mathscr{C} ,

$$\zeta = \ell_1 \zeta_1 + \dots + \ell_k \zeta_k$$

in terms of the (right) multipliers ℓ_j .

We now consider a general quadratic program (QP)

$$\min_{x \in \mathbb{R}^p} \frac{1}{2} \langle x, \hat{\Sigma} x \rangle$$

$$\mathscr{C}^{\mathsf{T}} x \le c$$

The solution \hat{x} is the maximizer of the Lagrangian,

$$\hat{Q}(x) = c_0 + \langle x, \zeta \rangle - \frac{1}{2} \langle x, \hat{\Sigma} x \rangle.$$

As before, of interest is the behaviour of the realized optimum $Q(\hat{x})$.

- Again the key quantity is the optimization bias.

Let ${\mathscr B}$ and ${\mathscr H}$ be the eigenvectors of Σ and $\hat{\Sigma}$ corresponding to the q spiked eigenvalues ($p \times q$ matrices with orthonormal columns).

Quadratic optimization bias.

$$\mathscr{E}_p(\mathscr{H}) = \frac{\mathscr{B}^\top z - (\mathscr{B}^\top \mathscr{H})(\mathscr{H}^\top z)}{\sqrt{1 - |\mathscr{H}^\top z|^2}} \qquad \left(z = \frac{\zeta}{|\zeta|}\right).$$

- Now, it is a sum over the ζ_i (columns of \mathscr{C}).
- Does not depend on any of the eigenvalues.
- Does not depend on the non-spiked eigenvectors.
- Tells us what has to be estimated accurately.
- i.e. find roots of $\mathscr{E}_p: \mathbb{R}^{p \times q} \to \mathbb{R}^q$ (perhaps asymptotically).
- The quantities $\mathcal{B}^{\mathsf{T}}z$, and $\mathcal{B}^{\mathsf{T}}\mathcal{H}$ are not observed.
- The most natural framework is HDLSS.

Letting v^2 be a *p*-consistent estimate of $|\epsilon|^2 = |\eta - \beta|^2$ (may be obtained with just n = 2 weakly dependent observations), define

$$\eta^{\text{IS}} = \eta \, \text{c} + \zeta \, (1 - \text{c}) \qquad \left(\text{c} = 1 - \nu^2 J^{-1} \right)$$

where $J = (\eta - \zeta)^{\top} (\eta - \zeta)$.

Theorem. If $|\beta|^2/p$ and $|\epsilon|^2/p$ are bounded in $(0, \infty)$ as $p \to \infty$ and the Geometric LLN holds, \sqrt{c} is eventually in the interval (0, 1) and,

$$|\eta^{\text{JS}} - \beta| \sim \sqrt{c} |\eta - \beta| = \sqrt{c} |\epsilon|.$$

- For eigenvectors we took $\eta = s \times h$ and $\zeta = \langle \eta, z \rangle z$
- We can generalize to a $p \times q$ matrix of eigenvectors \mathcal{H} . Write H for \mathcal{H} with columns scaled by $\sqrt{\text{eigenvalue}}$.

Computing the pseudo-inverse $\mathscr{C}^+ = (\mathscr{C}^\top \mathscr{C})^{-1} \mathscr{C}^\top$,

$$H^{JSQP} = HC + Z(I - C)$$

$$Z = \mathscr{CC}^+H,$$

$$C = I - v^2J^{-1},$$

$$J = (H - M)^\top(H - M).$$

The theory for why $\mathscr{E}_p(H^{\text{JSQP}}) \to 0$ is in Gurdogan & Shkolnik (2024). How is ν computed?

Given a centered sample covariance matrix $S = HH^{T} + G$,

$$v^2 = \frac{\operatorname{tr}(G)}{n_+ - q}$$
 (Noise)

where n_+ is the number of nonzero eigenvalues of S.

- q is the number of spikes.

Thanks D. Hilbert.

Appendix

We are going to expand COL(H) by e and define

$$\mathcal{H}_{z} = \left(\mathcal{H} \quad \frac{z - z_{\mathcal{H}}}{|z - z_{\mathcal{H}}|}\right) \qquad (z = e/\sqrt{p}).$$

We try to see if a linear transformation can hit the root of $\mathscr{E}_p(\cdot)$.

$$T \mapsto \mathcal{H}_{\tau}T$$
, $(T^{\top}T \in \mathbb{R}^{q \times q} \text{ invertible})$.

This leads to the following transformation of the optimization bias.

$$\mathcal{E}_p(\mathcal{H}_z T) = \frac{\mathcal{B}^\top z - \mathcal{B}^\top \mathcal{H}_z T T^\dagger \mathcal{H}_z^\top z}{1 - |z_{\mathcal{H}_z} T|^2}$$

Slick observation: $T^{\top}TT^{\dagger} = T^{\top}$ (i.e., $T^{\dagger} = (T^{\top}T)^{-1}T^{\top}$).

This suggests we set $T = T_* = \mathcal{H}_z^{\top} \mathcal{B}$ above.

This leads to the following transformation of the optimization bias.

$$\mathcal{E}_p(\mathcal{H}_z T) = \frac{\mathcal{B}^\top z - \mathcal{B}^\top \mathcal{H}_z T T^\dagger \mathcal{H}_z^\top z}{1 - |z_{\mathcal{H}_z} T|^2}$$

Slick observation: $T^{\top}TT^{\dagger} = T^{\top}$ (i.e., $T^{\dagger} = (T^{\top}T)^{-1}T^{\top}$).

This suggests we set $T = T_* = \mathscr{H}_z^{\top} \mathscr{B}$ above.

Provided $T_*^{\top} T_*$ is invertible and $|z_{\mathscr{H}_7 T_*}| < 1$, for $T_* = \mathscr{H}_7^{\top} \mathscr{B}$,

$$\mathscr{E}_p(\mathscr{H}_z T_*) = \frac{\mathscr{B}^\top z - T_*^\top \mathscr{H}_z^\top z}{1 - |z_{\mathscr{H}_z T_*}|^2} = \frac{\mathscr{B}^\top z - \mathscr{B}^\top \mathscr{H}_z \mathscr{H}_z^\top z}{1 - |z_{\mathscr{H}_z T_*}|^2} = 0.$$

Major obstacle – there is no way to estimate T_* from Y.

Тнеокем (Gurdogan & Shkolnik 2024).

There does not exist a function $f: \mathbb{R}^{p \times n} \to \mathbb{R}^{q \times q}$ with $q \geq 2$ for which,

$$\mathscr{B}^{\mathsf{T}}\mathscr{H} \sim f(\mathbf{Y})$$

without "very strong assumptions" (e.g., $X^TX = I$).

 This does not mean we do not have limit theorems for the angles between the sample and population principal component angles. Recall $\Psi^2 = I - \kappa_p^2 S_p^{-2}$ (constructed from sample eigenvalues).

THEOREM (Gurdogan & Shkolnik 2024).

Suppose Assumption A holds. Then, almost surely,

$$\mathcal{H}^{\mathsf{T}} \mathcal{B} \mathcal{B}^{\mathsf{T}} \mathcal{H} \sim \Psi^2$$
 and $\mathcal{H}^{\mathsf{T}} z \sim (\mathcal{H}^{\mathsf{T}} \mathcal{B}) \mathcal{B}^{\mathsf{T}} z$.

Moreover, every diagonal entry of Ψ is eventually in (0,1) wp1.

LEMMA. For any invertible matrix K we have $e_H = e_{HK}$.

As a corollary, for any invertible matrix K, we also have

 $\mathscr{E}(\mathscr{H}_z T_*) = \mathscr{E}(\mathscr{H}_z \mathscr{H}_z^\top \mathscr{B}) = \mathscr{E}(\mathscr{H}_z \mathscr{H}_z^\top \mathscr{B} K)$

A good choice turns out to be $K = \mathcal{B}^{\top} \mathcal{H}$.

RECAP.

- We found that $\mathscr{E}_p(\mathscr{H}_z T_*) = 0$ for $T_* = \mathscr{H}_z^{\top} \mathscr{B}$.
- Key lemma: $\mathscr{E}_p(H) = \mathscr{E}_p(HK)$ for invertible K.
- Choosing $K = \mathscr{B}^{\top} \mathscr{H}$ leads to $T_{**} = T_* \mathscr{B}^{\top} \mathscr{H}$ with

$$T_{**} = \mathcal{H}_{\mathcal{Z}} \mathcal{B} \mathcal{B}^{\top} \mathcal{H}$$

which may be estimated due to the PCA angles theorem

$$\mathcal{H}^{\top}\mathcal{B}\mathcal{B}^{\top}\mathcal{H} \sim \Psi^2 \ \text{ and } \ \mathcal{H}^{\top}z \sim (\mathcal{H}^{\top}\mathcal{B})\mathcal{B}^{\top}z \,.$$

– These estimates lead to our H_{\sharp} with the guarantee,

$$\lim_{p} \mathscr{E}_{p}(H_{\sharp}) = 0_{q}.$$

References.

- Casella, G. & Hwang, J. T. (1982), 'Limit expressions for the risk of james-stein estimators', *Canadian Journal of Statistics* **10**(4), 305–309.
- Efron, B. (1978), 'Controversies in the foundations of statistics', *The American Mathematical Monthly* 85(4), 231–246.
- Efron, B. & Morris, C. (1975), 'Data analysis using stein's estimator and its generalizations', *Journal of the American Statistical Association* 70(350), 311–319.
- Fourdrinier, D., Strawderman, W. E. & Wells, M. T. (2018), *Shrinkage estimation*, Springer.
- Goldberg, L. R., Papanicolaou, A. & Shkolnik, A. (2022), 'The dispersion bias', *SIAM Journal on Financial Mathematics* 13(2), 521–550.

Gurdogan, H. & Shkolnik, A. (2024), 'The quadratic optimization bias of large covariance matrices'.

James, W. & Stein, C. (1961), Estimation with quadratic loss, *in* 'Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics', The Regents of the University of California.

Stein, C. (1955), Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, *in* 'Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics', The Regents of the University of California.

Wang, W. & Fan, J. (2017), 'Asymptotics of empirical eigenstructure for high dimensional spiked covariance', *The Annals of Statistics* 45(3), 1342–1374.

Yao, J., Zheng, S. & Bai, Z. (2015), 'Sample covariance matrices and

high-dimensional data analysis', Cambridge UP, New York.