

Роздавання смаколиків

Онті Конг готує n коробок смаколиків для учнів найближчої школи. Коробки пронумеровано від 0 до n-1, на початку вони порожні. Коробка i ($0 \le i \le n-1$) може вміщати c[i] смаколиків.

Онті Конг готує коробки протягом q днів. У день j ($0 \le j \le q-1$) вона виконує дію, що задається трьома цілими числами l[j], r[j] та v[j], де $0 \le l[j] \le r[j] \le n-1$ та $v[j] \ne 0$. Для кожної коробки k відомо, що $l[j] \le k \le r[j]$:

- Якщо v[j]>0, Онті Конг додає смаколики у коробку k, один за одним, поки вона не додасть рівно v[j] смаколиків або поки коробка не заповниться. Іншими словами, якщо у коробці було p смаколиків, то після виконання цієї дії стане $\min(c[k], p+v[j])$.
- Якщо v[j] < 0, Онті Конг забирає смаколики з коробки k, один за одним, поки не забере рівно -v[j] смаколиків або поки коробка не стане порожньою. Іншими словами, якщо у коробці було p смаколиків, то після виконання цієї дії стане $\max(0, p + v[j])$.

Ви маєте визначити кількість смаколиків у кожній коробці після q днів.

Деталі реалізації

Ви маєте реалізувати наступну процедуру:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: масив довжини n. Для $0 \leq i \leq n-1$, c[i] задає місткість коробки i.
- $l,\ r$ та v: три масиви довжини q. У день j, при $0\leq j\leq q-1$, Онті Конг виконує дію, задану числами $l[j],\ r[j]$ and v[j], як описано вище.
- Ця процедура має повернути масив довжини n. Назвемо його s. Для $0 \le i \le n-1$, s[i] має бути кількістю смаколиків у коробці i після q днів.

Приклади

Приклад 1

Дозглянемо наступний виклик:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Це означає, що коробка 0 містить 10 смаколиків, коробка 1 містить 15 смаколиків, а коробка 2 містить 13 смаколиків.

Наприкінці дня 0: коробка 0 містить $\min(c[0],0+v[0])=10$ смаколиків, коробка 1 містить $\min(c[1],0+v[0])=15$ смаколиків, а коробка 2 містить $\min(c[2],0+v[0])=13$ смаколиків.

Наприкінці дня 1: коробка 0 містить $\max(0,10+v[1])=0$ смаколиків, коробка 1 містить $\max(0,15+v[1])=4$ смаколиків. Оскільки 2>r[1], кількість смаколиків у коробці 2 не змінюється. Кількість смаколиків наприкінці кожного дня наведено у таблиці нижче:

День	Коробка 0	Коробка 1	Коробка 2
0	10	15	13
1	0	4	13

Процедура має повернути [0,4,13].

Обмеження

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \le c[i] \le 10^9$ (для всіх $0 \le i \le n-1$)
- $0 \leq l[j] \leq r[j] \leq n-1$ (для всіх $0 \leq j \leq q-1$)
- ullet $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ (для всіх $0 \leq j \leq q-1$)

Підзадачі

- 1. (3 бали) $n, q \leq 2000$
- 2. (8 балів) v[j] > 0 (для всіх $0 \le j \le q-1$)
- 3. (27 балів) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 балів) l[j] = 0 та r[j] = n-1 (для всіх $0 \le j \le q-1$)
- 5. (33 бали) без додаткових обмежень.

Приклад модуля перевірки

Приклад модуля перевірки читає вхідні дані у наступному форматі:

- рядок 1: n
- рядок 2: $c[0] \ c[1] \ \dots \ c[n-1]$
- рядок 3: q
- рядок 4+j ($0 \le j \le q-1$): $l[j] \ r[j] \ v[j]$

Приклад модуля перевірки друкує ваші відповіді у наступному форматі:

• рядок 1: $s[0] \ s[1] \ \dots \ s[n-1]$