PROBLEM STATEMENT

Take any dataset of you choice and perform EDA(Exploratory Data Analysis) and apply a suitable Classifier, Regressor or Clusterer and calculate accuracy of model

```
In [1]:
        # Importing the necessary libraries
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import LabelEncoder, StandardScaler
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
        import warnings
        warnings.filterwarnings('ignore')
        %matplotlib inline
        # Importing the csv file
In [2]:
        data = pd.read csv('Hr.csv')
        data.head(5)
Out[2]:
           EmpNumber
                       Age Gender EducationBackground
                                                       MaritalStatus
                                                                   EmpDepartment EmpJobRole
                                                                                         Sales
        0
              E1001000
                        32
                              Male
                                             Marketing
                                                             Single
                                                                             Sales
                                                                                      Executive
                                                                                         Sales
        1
              E1001006
                        47
                              Male
                                              Marketing
                                                             Single
                                                                             Sales
                                                                                      Executive
                                                                                         Sales
        2
              E1001007
                        40
                              Male
                                            Life Sciences
                                                            Married
                                                                             Sales
                                                                                      Executive
                                                                           Human
        3
              E1001009
                              Male
                                        Human Resources
                                                                                      Manager
                        41
                                                           Divorced
                                                                         Resources
                                                                                         Sales
              E1001010
                                                                             Sales
                        60
                              Male
                                             Marketing
                                                             Single
                                                                                      Executive
        5 rows × 28 columns
In [3]:
        data.shape
        (1200, 28)
Out[3]:
In [4]:
        data.columns
        Out[4]:
                'DistanceFromHome', 'EmpEducationLevel', 'EmpEnvironmentSatisfaction',
                'EmpHourlyRate', 'EmpJobInvolvement', 'EmpJobLevel',
                'EmpJobSatisfaction', 'NumCompaniesWorked', 'OverTime',
                'EmpLastSalaryHikePercent', 'EmpRelationshipSatisfaction',
                'TotalWorkExperienceInYears', 'TrainingTimesLastYear',
                'EmpWorkLifeBalance', 'ExperienceYearsAtThisCompany',
                \verb|'ExperienceYearsInCurrentRole', 'YearsSinceLastPromotion', \\
```

'YearsWithCurrManager', 'Attrition', 'PerformanceRating'],

dtype='object')

```
# Looking for missing data
In [5]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1200 entries, 0 to 1199
         Data columns (total 28 columns):
          # Column
                                           Non-Null Count Dtype
             EmpNumber
                                                          object
          0
                                           1200 non-null
          1
             Age
                                           1200 non-null
                                                          int64
          2
             Gender
                                           1200 non-null
                                                          object
                                           1200 non-null
          3
             EducationBackground
                                                          object
             MaritalStatus
                                           1200 non-null
                                                          object
          5
             EmpDepartment
                                           1200 non-null
                                                          object
             EmpJobRole
                                           1200 non-null
                                                           object
             BusinessTravelFrequency
                                         1200 non-null
                                                           object
             DistanceFromHome
                                          1200 non-null
                                                           int64
                                          1200 non-null
          9
             EmpEducationLevel
                                                          int64
          10 EmpEnvironmentSatisfaction 1200 non-null
                                                          int64
          11 EmpHourlyRate
                                          1200 non-null
                                                          int64
                                          1200 non-null
          12 EmpJobInvolvement
                                                          int64
          13 EmpJobLevel
                                          1200 non-null
                                                          int64
          14 EmpJobSatisfaction
                                          1200 non-null
                                                          int64
          15 NumCompaniesWorked
                                          1200 non-null
                                                          int64
          16 OverTime
                                           1200 non-null
                                                          object
          17  EmpLastSalaryHikePercent
                                           1200 non-null
                                                           int64
          18 EmpRelationshipSatisfaction
                                           1200 non-null
                                                           int64
          19 TotalWorkExperienceInYears
                                           1200 non-null
                                                           int64
          20 TrainingTimesLastYear
                                           1200 non-null
                                                           int64
          21 EmpWorkLifeBalance
                                          1200 non-null
                                                           int64
          22 ExperienceYearsAtThisCompany 1200 non-null
                                                          int64
          23 ExperienceYearsInCurrentRole 1200 non-null
                                                          int64
          24 YearsSinceLastPromotion
                                         1200 non-null
                                                           int64
          25 YearsWithCurrManager
                                           1200 non-null
                                                           int64
          26 Attrition
                                           1200 non-null
                                                           object
          27 PerformanceRating
                                           1200 non-null
                                                           int64
         dtypes: int64(19), object(9)
         memory usage: 262.6+ KB
         # A new pandas Dataframe is created to analyze department wise performance as asked
In [6]:
         dept = data.iloc[:,[5,27]].copy()
         dept_per = dept.copy()
         # Finding out the mean performance of all the departments and plotting its bar grap
In [7]:
         dept per.groupby(by='EmpDepartment')['PerformanceRating'].mean()
         EmpDepartment
Out[7]:
         Data Science
                                  3.050000
         Development
                                  3.085873
         Finance
                                  2.775510
         Human Resources
                                  2.925926
         Research & Development
                                  2.921283
         Sales
                                  2.860590
         Name: PerformanceRating, dtype: float64
In [10]: # Analyze each department separately
         dept_per.groupby(by='EmpDepartment')['PerformanceRating'].value_counts()
```

EmpDepartment	PerformanceRating	
Data Science	3	17
	4	2
	2	1
Development	3	304
	4	44
	2	13
Finance	3	30
	2	15
	4	4
Human Resources	3	38
	2	10
	4	6
Research & Development	3	234
	2	68
	4	41
Sales	3	251
	2	87
	4	35
	Data Science Development Finance Human Resources Research & Development	Data Science 3 4 2 Development 3 4 Finance 3 2 Human Resources 3 2 4 Research & Development 3 2 Sales 3 2

Name: PerformanceRating, dtype: int64

Data Processing

```
In [16]: # Encoding all the ordinal columns and creating a dummy variable for them to see ig
enc = LabelEncoder()
for i in (2,3,4,5,6,7,16,26):
    data.iloc[:,i] = enc.fit_transform(data.iloc[:,i])
data.head()
```

Out[16]:		EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRole
	0	E1001000	32	1	2	2	5	13
	1	E1001006	47	1	2	2	5	13
	2	E1001007	40	1	1	1	5	13
	3	E1001009	41	1	0	0	3	8
	4	E1001010	60	1	2	2	5	13

5 rows × 28 columns

In [17]: # Finding out the correlation coeffecient to find out which predictors are signific
data.corr()

17.00 T W

Out[17]:

	Age	Gender	EducationBackground	MaritalStatus	EmpDep
Age	1.000000	-0.040107	-0.055905	-0.098368	-
Gender	-0.040107	1.000000	0.009922	-0.042169	-
EducationBackground	-0.055905	0.009922	1.000000	-0.001097	-
MaritalStatus	-0.098368	-0.042169	-0.001097	1.000000	
EmpDepartment	-0.000104	-0.010925	-0.026874	0.067272	
EmpJobRole	-0.037665	0.011332	-0.012325	0.038023	
BusinessTravelFrequency	0.040579	-0.043608	0.012382	0.028520	-
DistanceFromHome	0.020937	-0.001507	-0.013919	-0.019148	
EmpEducationLevel	0.207313	-0.022960	-0.047978	0.026737	
EmpEnvironmentSatisfaction	0.013814	0.000033	0.045028	-0.032467	-
EmpHourlyRate	0.062867	0.002218	-0.030234	-0.013540	
EmpJobInvolvement	0.027216	0.010949	-0.025505	-0.043355	-
EmpJobLevel	0.509139	-0.050685	-0.056338	-0.087359	
EmpJobSatisfaction	-0.002436	0.024680	-0.030977	0.044593	
NumCompaniesWorked	0.284408	-0.036675	-0.032879	-0.030095	-
OverTime	0.051910	-0.038410	0.007046	-0.022833	-
EmpLastSalaryHikePercent	-0.006105	-0.005319	-0.009788	0.010128	-
EmpRelationshipSatisfaction	0.049749	0.030707	0.005652	0.026410	-
TotalWorkExperienceInYears	0.680886	-0.061055	-0.027929	-0.093537	
TrainingTimesLastYear	-0.016053	-0.057654	0.051596	0.026045	
EmpWorkLifeBalance	-0.019563	0.015793	0.022890	0.014154	
ExperienceYearsAtThisCompany	0.318852	-0.030392	-0.009887	-0.075728	
Experience Years In Current Role	0.217163	-0.031823	-0.003215	-0.076663	
YearsSinceLastPromotion	0.228199	-0.021575	0.014277	-0.052951	
YearsWithCurrManager	0.205098	-0.036643	0.002767	-0.061908	
Attrition	-0.189317	0.035758	0.027161	0.162969	
PerformanceRating	-0.040164	-0.001780	0.005607	0.024172	-

27 rows × 27 columns

```
In [18]: # Dropping the first columns as it is of no use for analysis.
    data.drop(['EmpNumber'],inplace=True,axis=1)
In [19]: data.head()
```

Out[19]:		Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRole	BusinessTrav
	0	32	1	2	2	5	13	
	1	47	1	2	2	5	13	
	2	40	1	1	1	5	13	
	3	41	1	0	0	3	8	
	4	60	1	2	2	5	13	

5 rows × 27 columns

```
In [20]: # Here we have selected only the important columns
y = data.PerformanceRating
#X = data.iloc[:,0:-1] All predictors were selected it resulted in dropping of according
X = data.iloc[:,[4,5,9,16,20,21,22,23,24]] # Taking only variables with correlation
X.head()
```

Out[20]:	EmpDepartment		EmpJobRole	${\bf EmpEnvironment Satisfaction}$	EmpLastSalaryHikePercent	EmpWoi
	0	5	13	4	12	
	1	5	13	4	12	
	2	5	13	4	21	
	3	3	8	2	15	
	4	5	13	1	14	

```
In [21]: # Splitting into train and test for calculating the accuracy
   X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state)
In [22]: # Standardization technique is used
   sc = StandardScaler()
   X_train = sc.fit_transform(X_train)
   X_test = sc.transform(X_test)
```

```
In [23]: X_train.shape
Out[23]: (840, 9)
```

```
Out[23]: (840, 9)
```

```
In [24]: X_test.shape
```

Out[24]: (360, 9)

Model: Random Forest with GridSearchCV

```
In [28]: # Training the model
from sklearn.ensemble import RandomForestClassifier
    classifier_rfg=RandomForestClassifier(random_state=33,n_estimators=23)
    parameters=[{'min_samples_split':[2,3,4,5],'criterion':['gini','entropy'],'min_sampled_gridrf=GridSearchCV(estimator=classifier_rfg, param_grid=parameters, scorings model_gridrf.fit(X_train,y_train)
```

```
Out[28]: 

• GridSearchCV

• estimator: RandomForestClassifier

• RandomForestClassifier
```

```
model_gridrf.best_params_
         {'criterion': 'entropy', 'min_samples_leaf': 1, 'min_samples_split': 4}
Out[29]:
         # Predicting the model
In [30]:
         y_predict_rf = model_gridrf.predict(X_test)
         # Finding accuracy, precision, recall and confusion matrix
In [31]:
         print(accuracy_score(y_test,y_predict_rf))
         print(classification_report(y_test,y_predict_rf))
         0.9333333333333333
                       precision recall f1-score
                                                      support
                           0.90
                                    0.89
                                               0.90
                                                           63
                                    0.97
                    3
                           0.95
                                               0.96
                                                          264
                           0.83
                                    0.76
                                               0.79
                                                          33
                                               0.93
                                                          360
             accuracy
            macro avg
                           0.90
                                     0.87
                                               0.88
                                                          360
         weighted avg
                           0.93
                                     0.93
                                               0.93
                                                          360
         confusion_matrix(y_test,y_predict_rf)
In [32]:
         array([[ 56, 7,
                            0],
Out[32]:
                [ 4, 255,
                            5],
```

You can see the model has 93.05% Accuracy.

The features that are positively correlated are:

[2, 6, 25]], dtype=int64)

- 1. Environment Satisfaction
- 2. Last Salary Hike Percent
- 3. Worklife Balance. This means that if these factors increases, Performance Rating will increase. On the other hand, the features that are negatively correlated are:
- 4. Years Since Last Promotion
- 5. Experience Years at this Company
- 6. Experience years in Current Role
- 7. Years with Current Manager. This means that if these factors increases, Performance Rating will go down.

Conclusion: The company should provide a better environment as it increases the performance drastically. The company should increase the salary of the employee from time to time and help them maintain a worklife balance, shuffling the manager from time to time will also affect performance

In []: