Università degli Studi di Bergamo, Facoltà di Ingegneria, Dalmine Laurea Specialistica in Ingegneria Edile

Fondamenti di Dinamica e Instabilità delle Strutture a.a. 2006/2007

I ELABORATO

Si consideri il seguente telaio in C.A. con elementi assialmente rigidi e pilastri privi di massa. Il traverso, di massa m, ha rigidezza flessionale variabile in ragione del parametro $\alpha \ge 0$.

Dati:

- parametro allievo: $\alpha_a = 20 + 0.4$ (N-C) (N=numero lettera iniziale del nome, C= numero lettera iniziale del cognome);
- massa della trave: m = 20000 kg.
- altezza del telaio: h=4 m;
- sezione pilastri: quadrata 30 cm × 30 cm;
- modulo di elasticità del C.A.: E=30000 MPa;
- ampiezza della forzante: F=50000 N.

Richieste:

- Determinare e rappresentare la risposta non forzata del sistema al variare di α con condizioni iniziali $u_0 = 2$ cm, $\dot{u}_0 = 4$ cm/s per i fattori di smorzamento $\zeta = 0$, 5%, 10%. Considerare i valori $\alpha = 0$, $\alpha = \alpha_a$, $\alpha \to \infty$.
- Assumendo $\alpha = \alpha_a$ e $\zeta = 5\%$, determinare e rappresentare la risposta del sistema con c.i. nulle $u_0 = \dot{u}_0 = 0$ dovuta a:
 - ♦ Forzante armonica F(t)=F sinot di periodo T=0.5 s. Verificare se spostamento e velocità orizzontale max della trave a regime risultano rispettivamente inferiori a 1 cm e 20 cm/s. Rappresentare il diagramma di Argand relativo alle risposte z(t), $\dot{z}(t)$, $\ddot{z}(t)$ a forzante armonica F(t)=F $e^{i\omega t}$ e alle forze in gioco: forzante F $e^{i\omega t}$, forza elastica $F_e=k$ z, forza smorzante $F_d=c$ \dot{z} (F_e e F_d positive se opposte a z e \dot{z}), forza d'inerzia $F_i=-m\ddot{z}$. Indicare il valore dello sfasamento tra risposta e forzante e il modulo di tutte le forze sopra indicate.
 - ♦ Forzante onda quadra di periodo T=0.5 s sotto rappresentata. Si consideri uno sviluppo in serie di Fourier della forzante con numero crescente di armoniche (fino ad almeno 3). Rappresentare l'approssimazione ottenuta per la forzante e per la risposta del sistema in termini di spostamento, velocità ed accelerazione.
 - ♦ Facoltativo: determinare altresì le due risposte forzate mediante valutazione numerica dell'integrale di Duhamel e confrontare con le soluzioni precedenti.

