1 Problem

Suppose that $T \in \text{End}(V)$.

Lemma 1.1

The T-annihilator of x is unique.

Proof.

Suppose that q(t) and r(t) are T-annihilators of x.

Since they are both monic polynomials of the least degree, then $\deg q(t) = \deg r(t)$.

By the division algorithm, there exist unique u(t) and v(t) such that $\deg v(t) < \deg r(t)$ and q(t) = u(t)r(t) + v(t).

Therefore, q(T) = u(T)r(T) + v(T), and since q(T) = r(T) = 0, then v(T) = 0.

Since v(t) is such that $\deg v(t) < \deg r(t)$ and r(t) is a T-annihilator, while v(T) = 0, then v(t) is a zero polynomial.

Hence, q(t) = u(t)r(t).

Since $\deg q(t) = \deg u(t) + \deg r(t)$, then $\deg u(t) = 0$. Therefore, $u(t) = c \in \mathbb{F}$. Since q(t) and r(t) are both monic, u(t) = c = 1, and thus q(t) = r(t).

Theorem 1.2

The T-annihilator of x divides any polynomial q(t) such that q(T)(x) = 0.

Proof.

Suppose $x \in V$.

Let p(t) be a minimal polynomial of T, and let q(t) be the T-annihilator of x.

By Theorem 7.12, p(t) divides any polynomial g(t) such that g(T)(x) = 0. Thus, we only need to show that q(t) divides p(t), and the claim follows.

By the division algorithm, there exist u(t) and v(t) such that $\deg v(t) < \deg q(t)$ and p(t) = u(t)q(t) + v(t).

Since p(T)x = 0 by definition and we are given that q(T)x = 0, then by additivity and homogeneity of T we know that p(T)x = 0 = u(T)q(T)x + v(T)x = v(T)x. Therefore, v(T)x = 0, and since $\deg v(t) < \deg q(t)$, where q(t) is the monic polynomial of the minimal degree such that q(T)x = 0, then v(t) is the zero polynomial, which means that p(t) = u(t)q(t). Therefore, q(t) divides p(t), as required.

Theorem 1.3

If W is the T-cyclic subspace generated by x, then the T-annihilator of x equals the minimal polynomial of $T|_W$ and can be represented in the form $(-1)^{\text{dim}}$ times the characteristic polynomial of $T|_W$.

Proof.

Let T-annihilator of x be q(t) and let p(t) be the minimal polynomial of $T|_{W}$.

Let $n = \dim W$.

By definition of a minimal polynomial, $p(T|_W) = 0$.

By definition of a T-annihilator, q(T)x = 0.

Note that x generates a cyclic basis $\beta_x = \{x, Tx, \dots, T^{n-1}x\}.$

Since the product of q(T) and any power of T is commutative, we know that, for any $j \in [1, n-1] \cap \mathbb{N}$, we have $T^j(q(T)x) = T(0) = 0 = q(T)T^jx$, and hence q(T) restricted to W is a zero transformation, which means that $q(T|_W) = 0$.

From Theorem 1.2, we know that q(t)|p(t) and thus there exists a polynomial u(t) such that p(t) = u(t)q(t).

On the other hand, by Theorem 7.12, since $q(T|_W) = 0$, we obtain that p(t)|q(t). Therefore, there exists a polynomial u'(t) such that q(t) = u'(t)p(t).

Since p(t) = u(t)u'(t)p(t), we see that $\deg u(t) + \deg u'(t) = 0$, and thus $\deg u(t) = 0 = \deg u'(t)$. Since q(t) and p(t) are also monic, then p(t) = q(t).

By Theorem 7.15, since W is an n-dimensional cyclic vector space, then the characteristic polynomial f(t) of $T|_W$ is $(-1)^n p(t)$, which, from the previous discussion, means that $f(t) = (-1)^n q(t)$ and thus $q(t) = (-1)^{-n} f(t) = (-1)^n f(t)$, as required.