TD analyse grammaticale

Exercice 1 Dérivation

Voici une grammaire pour les expressions arithmétiques :

$$\begin{array}{cccc} E & \rightarrow & M \ E' \\ E' & \rightarrow & + M \ E' \\ & \mid & \varepsilon \\ M & \rightarrow & A \ M' \\ M' & \rightarrow & ^* A \ M' \\ & \mid & \varepsilon \\ A & \rightarrow & (E) \\ & \mid & n \end{array}$$

Donner un arbre de dérivation pour l'entrée 2 * (2 * 3 + 1) * 3.

Correction

Exercice 2 Grammaires et associativité

Le cours proposait la grammaire ${\cal G}_0$ suivante pour les expressions arithmétiques :

1

$$\begin{array}{cccc} E & \rightarrow & E+M \\ & \mid & M \\ M & \rightarrow & M*A \\ & \mid & A \\ A & \rightarrow & (E) \\ & \mid & \mathsf{n} \end{array}$$

 $En\ voici\ plusieurs\ variantes:$

Grammaire G_1	Grammaire G_2	Grammaire G_3	Grammaire G_4
$E \rightarrow E + E$	$E \rightarrow M + M$	$E \rightarrow M + E$	$E \rightarrow E + M$
$\begin{array}{ccc} & & M \\ M & \rightarrow & M * M \end{array}$	$\begin{array}{ccc} & & M \\ M & \rightarrow & A * A \end{array}$	$\begin{array}{ccc} & M \\ M & \rightarrow & A * M \end{array}$	$\begin{array}{ccc} & M & \\ M & \rightarrow & M * A \end{array}$
A	A	A	A * A
$A \rightarrow (E)$	$A \rightarrow (E)$	$A \rightarrow (E)$	n
n	n	n	$\begin{array}{ccc} A & \rightarrow & (E+M) \\ & & n \end{array}$

- 1. Deux de ces grammaires ne décrivent pas exactement le même langage que G_0 . Lesquelles? Quel langage décrivent-elles?
- 2. Donner tous les arbres de dérivation possibles pour l'entrée 2 * 3 * 7 pour G_0 et les deux autres grammaires décrivant les expressions arithmétiques. En quoi l'approche de ces trois grammaires est-elle différente?
- 3. Étendre ces grammaires pour qu'elles reconnaissent également les soustractions, si cela est possible.

Correction

- 1. Les deux grammaires décrivant un langage différent sont G_2 et G_4 :
 - $-G_2$ force l'utilisation de parenthèses à chaque enchaînement de deux additions ou multiplications. Elle accepte par exemple (1+2)+3 mais pas 1+2+3.
 - $-G_4$ interdit les parenthèses superflues. Elle accepte par exemple 1+2+3 mais pas (1+2)+3.
- 2. Pour G_0 et G_3 , on a à chaque fois un seul arbre de dérivation possible. Ci-dessous, l'arbre pour G_0 à gauche, et celui pour G_3 à droite.

Pour G_1 en revanche, la grammaire permet les deux arbres de dérivation suivants.

Interprétation:

- $-G_0$ impose l'associativité à gauche : 2*3*7 est comprise comme (2*3)*7.
- $-G_3$ impose l'associativité à droite : 2*3*7 est comprise comme 2*(3*7).
- $-G_1$ est ambiguë et autorise les deux interprétations précédentes.
- 3. On peut ajouter une règle $E \to E$ M dans G_0 ou G_1 . Cela ne fonctionne en revanche pas pour G_3 (on n'admettrait pas l'entrée 1-2+3). La règle $E \to E$ E ne convient pas, car autoriserait de mauvaises associativités (1-2+3 pouvant alors être comprise comme 1-(2+3)).

Exercice 3 Analyse ascendante

On prend la grammaire suivante pour les expressions arithmétiques, et les règles d'analyse ascendante détaillées dans les notes de cours (tableau p.17).

- 1. Détailler les étapes de l'analyse ascendante de l'entrée (1 + 2) + (3 + 4) et donner l'arbre de dérivation correspondant.
- 2. Détailler les étapes de l'analyse ascendante de l'entrée (1 + 2) (3). Que se passe-t-il?

Correction

1. On alterne étapes de progression et de réduction jusqu'à consommer toute l'entrée et réduire la pile à une unique expression E : l'analyse a réussi.

Pile	Entrée	Action
ε	(1+2)+(3+4)	S
(1+2)+(3+4)	S
(1	+2)+(3+4)	$R[E \rightarrow n]$
(E	+2)+(3+4)	S
(E+	2)+(3+4)	S
(E+2)+(3+4)	$R[E \rightarrow n]$
(E+E)+(3+4)	$R\left[E \to E + E\right]$
(E)+(3+4)	S
(E)	+(3+4)	$R[E \rightarrow (E)]$
E	+(3+4)	S
E+	(3+4)	S
E+(3+4)	S
E+(3	+4)	$R[E \rightarrow n]$
E+(E	+4)	S
E+(E+	4)	S
E+(E+4)	$R[E \rightarrow n]$
E+(E+E)	$R\left[E \to E + E\right]$
E+(E)	S
E+(E)	Ø	$R\left[E \to (E)\right]$
E+E	Ø	$R\left[E \to E + E\right]$
E	Ø	succès

L'arbre de dérivation correspond est le suivant.

2. La reconnaissance de cette nouvelle expression commence similairement à la précédente. En revanche, on arrive au bout d'un moment à une situation où plus aucune règle ne peut s'appliquer : l'analyse échoue, indiquant une phrase mal formée.

3

Pile	Entrée	Action
ε	(1+2)(3)	S
(1+2)(3)	S
(1	+2)(3)	$R[E \rightarrow n]$
(E	+2)(3)	S
(E+	2)(3)	S
(E+2)(3)	$R[E \rightarrow n]$
(E+E)(3)	$R [E \rightarrow E + E]$
(E)(3)	S
(E)	(3)	$R [E \rightarrow (E)]$
E	(3)	échec

Exercice 4 Analyse descendante

Les règles suivantes définissent la grammaire du langage de programmation LISP.

On a trois symboles non terminaux S (un programme), E (une expression) et L (une liste), et quatre symboles terminaux : les parenthèses (et), un symbole # de fin d'entrée, et un symbole sym désignant une séquence de caractères (en pratique : un mot-clé, un opérateur, une variable...).

- 1. Calculer pour cette grammaire les annulables, les premiers et les suivants.
- 2. En déduire la table d'analyse LL(1).
- 3. En suivant la table précédente, analyser le programme

(defun double
$$(x)$$
 (* 2 x))

4. Que se passe-t-il lors de l'analyse du programme suivant?

(let
$$x 3$$

Correction

1. Annulables : seul L est annulable.

	S	E	L
0.	F	F	F
1.	F	F	V
2.	F	F	V

Calcul des premiers : on a les équations suivantes.

Premiers(S) = Premiers(E) $Premiers(E) = \{sym, (\}$ Premiers(L) = Premiers(E)

Le calcul du point fixe est rapide, comme les premiers de E se propagent directement comme premiers des autres symboles non terminaux.

	S	E	L
0.	Ø	Ø	Ø
1.	Ø	sym,(Ø
2.	sym,(sym,(sym,(
3.	sym,(sym,(sym,(

Calcul des suivants : on a les équations suivantes.

 $Suivants(S) = \emptyset$ $Suivants(E) = \{\#\} \cup Premiers(L) \cup Suivants(L)$ $Suivants(L) = \{\} \cup Suivants(L)$ Note: l'apparition de Suivants(L) dans l'équation pour Suivants(E) vient de la règle $L \to EL$ et du fait que L est annulable. Le calcul du point fixe est à nouveau assez rapide, puisqu'il n'y a pas de dépendance cyclique.

	S	E	$\mid L \mid$
0.	Ø	Ø	Ø
1.	Ø	#,sym,()
2.	Ø	#,sym,(,))
3.	Ø	#,sym,(,))

2. Table d'analyse LL(1).

	sym	()	#
S	E #	E #		
\overline{E}	sym	(L)		
L	EL	EL	ε	

3. L'analyse consiste à produire une séquence de dérivation. Tant que tout se passe bien, la phrase en cours de dérivation commence par une séquence de symboles terminaux correspondant à un préfixe de la phrase à reconnaître, cette séquence étant immédiatement suivie par un premier symbole non terminal X. C'est ce symbole X qui va être expansé, en fonction du symbole terminal a trouvé dans la séquence d'entrée à cette position.

```
Cible: (defun double(x)(*2x)) #
                                                                          Règle
        S
                                                           S
                                                                          S \rightarrow E^{\#}
        E #
                                                           Ε
                                                                          E \rightarrow (L)
                                                           L
                                                               defun
                                                                          L \rightarrow EL
       (L)#
       (EL)#
                                                               defun
                                                                          E \rightarrow s \gamma m
        ( defun L ) #
                                                           L
                                                               double
                                                                         L \rightarrow EL
                                                           Ε
                                                                         E \rightarrow sym
        ( defun EL ) #
                                                               double
        ( defun double L ) #
                                                           L
                                                                          L \rightarrow EL
                                                               (
                                                           Ε
                                                                          E \rightarrow (L)
        ( defun double EL ) #
                                                               (
                                                           L
                                                                          L \rightarrow EL
        ( defun double ( L ) L ) #
                                                               Х
                                                           Ε
       ( defun double ( EL ) L ) #
                                                                          E \rightarrow s \gamma m
       ( defun double ( \times L ) L ) #
                                                           L
                                                               )
                                                                          L \to \varepsilon
                                                                          L \rightarrow EL
       ( defun double ( x ) L ) #
                                                           L
                                                               (
                                                                          E \rightarrow (L)
       ( defun double ( x ) EL ) #
                                                           Ε
                                                               (
                                                                          L \rightarrow EL
        ( defun double ( x ) ( L ) L ) #
                                                           L
                                                               *
        ( defun double ( x ) ( EL ) L ) #
                                                           E
                                                                          E \rightarrow sym
       ( defun double ( x ) ( * L ) L ) #
                                                           L
                                                               2
                                                                          L \rightarrow EL
       ( defun double ( x ) ( *EL ) L ) #
                                                           E
                                                               2
                                                                          E \rightarrow sym
      ( defun double ( x ) ( * 2 L ) L ) #
                                                           L
                                                                          L \rightarrow EL
       ( defun double ( x ) ( * 2 EL ) L ) #
                                                           E
                                                                          E \rightarrow sym
                                                               Х
      ( defun double ( x ) ( * 2 x L ) L ) #
                                                                         L \to \varepsilon
                                                           L
                                                               )
                                                                         L \to \varepsilon
        ( defun double ( x ) ( * 2 x ) L ) #
                                                           L
                                                               )
        ( defun double (x)(*2x)) #
                                                           succès
```

4. L'analyse de la séquence (let x 3 finit par échouer sur une situation pour laquelle il n'existe pas d'entrée dans la table. Cela signifie que la phrase n'est pas bien formée.

Cible: (let x 3 #
$$X \mid a \mid R\grave{e}gle$$

$$S \mid S \mid (S \rightarrow E\#)$$

$$\rightarrow E\# \mid E \mid (E \rightarrow (L))$$

$$\rightarrow (EL)\# \mid E \mid let \mid E \rightarrow sym$$

$$\rightarrow (let L)\# \mid L \mid x \mid L \rightarrow EL$$

$$\rightarrow (let EL)\# \mid E \mid x \mid E \rightarrow sym$$

$$\rightarrow (let x L)\# \mid L \mid x \mid L \rightarrow EL$$

$$\rightarrow (let x EL)\# \mid L \mid 3 \mid L \rightarrow EL$$

$$\rightarrow (let x EL)\# \mid E \mid 3 \mid E \rightarrow sym$$

$$\rightarrow (let x 3 L)\# \mid L \mid \# \quad \acute{e}chec$$