Massively Parallel Methods for Deep Reinforcement Learning

Google DeepMind, London

Presented by liyang.cs@pku.edu.cn

Background: DistBelief

- A distributed system for training large neural networks on massive amounts of data efficiently by using two types of parallelism
- Model parallelism
- Data parallelism
- Two main components: 1) central parameter server, 2) model replicas

Background: Reinforcement Learning

- Agent interacts sequentially with an environment, with the goal of maximizing cumulative rewards
- At each step t the agent observes state s_t , selects an action a_t , and receives a reward r_t
- Discounted factor
- Action-value function $Q^{\pi}(s,a)$ is the expected return after observing state s_t and taking an action a_t under a policy π
- Bellman equation: $Q^*(s,a) = E[r + \lambda \max_{a'} Q^*(s',a')]$

Background: Reinforcement Learning

- Core idea: represent the action-value function using a function approximator such as a neural network
- Q-network: $Q(s, a) = Q(s, a; \theta)$
- ullet Parameters eta are optimized so as to approximately solve the Bellman Equation
- Q-learning algorithm: 1) value iteration, 2) highly unstable when combined with non-linear function approximators

Deep Q-Networks

- More stable, like Q-learning, iteratively solve the Bellman equation by adjusting the parameters of the Q-networks towards bellman target
- Difference:
 - 1) using experience replay
 - 2) DQN maintains two separate Q-networks $Q(s,a;\theta)$ and $Q(s,a;\theta^-)$ with current parameters θ and old parameters θ^-
- Parameter θ are updated so as to minimize the mean-squared Bellman error with respect to old parameters θ^- , the loss function is:

•
$$L_i(\theta_i) = E[\left(r + \lambda \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i)\right)^2]$$

Deep Q-Networks

- For each update i, a tuple of experience (s, a, r, s') ~ U(D) is sampled uniformly from the replay memory D
- ullet For each mini-batch, the current parameters ullet are updated by a stochastic gradient descent algorithm
- The gradient is:
 - $g_i = \left(r + \lambda \max_{a'} Q(s', a'; \theta_i^-) Q(s, a; \theta_i)\right) \nabla_{\theta_i} Q(s, a; \theta)$
 - Each action is selected at each time-step t by an ϵ -greedy behavior with respect to the current Q-network $Q(s,a;\theta)$

Distributed Architecture

Gorila: General Reinforcement Learning Architecture

Actors

- Agent must ultimately select action a_t to apply in its environment
- Gorila contains N_{act} different processes (instances of the same env)
- Each actor i generates its own experience $s_1^i, a_1^i, r_1^i, \dots, s_T^i, a_T^i, r_T^i$ within the env (each actor may visit different parts of the state space)
- The quantity of experience after T time-steps is: TN_{act}
- Each actor contains a replica of the Q-network, which is used to determine the behavior (ϵ -greedy policy); the parameters of the Q-network are synchronized periodically from parameter server

Experience Replay Memory

- The experience tuples $e^i_t=(s^i_t,a^i_t,r^i_t,s^i_{t+1})$ generated by the actors are stored in a replay memory D
- Two forms of experience replay memory:
 - **1. Local replay memory**: store each actors' experience $D_t^i = \{e_1^i, e_2^i, ..., e_t^i\}$ locally; if a single machine can store M experience tuples, the overall memory capacity becomes MN_{act}
 - **2. Global replay memory**: aggregate the experience into a distributed database (overall capacity is independent of N_{act} , at the cost of additional communication overhead)

Learners

- Gorila contains N_{learn} learner processes
- Each learner contains a replica of the Q-network
- Target: compute desired changes to the parameters of the Q-network
- 1. For each learner update, sample a mini-batch of experience tuples e=(s,a,r,s') from either a local or global experience replay memory D
- 2. Apply an off-policy RL algorithm such as DQN to this mini-batch of experience, in order to generate a gradient vector g_i ; the gradients are communicated to the parameter server
- 3. The parameters of the Q-network are updated periodically from the parameter server

Parameter Server

- Use a central parameter server to maintain a distributed representation of the Q-network $Q(s, a; \theta^+)$
- The parameter vector θ^+ is split disjointly across N_{param} different machines
- Each machine is responsible for applying gradient updates to a subset of the parameters
- Apply gradients to modify the parameter vector θ^+ , using an asynchronous stochastic gradient descent algorithm

Considerable Flexibility

- Avoid any individual component from becoming a bottleneck, the gorila architecture allows for arbitrary numbers of actors, learners, and parameter servers to both generate data, learn from that data, and update the model
- The simplest overall instantiation of gorila: bundled mode
- One-to-one correspondence between actors, replay memory, and learners ($N_{act}=N_{learn}$)
- Each bundle: an actor, a loca replay memory, a learner

Stability

- Challenges: disappearing nodes, slowdowns in network traffic, and slowdowns of individual machines
- Discard the gradients older than the threshold (determine the maximum time delay between local parameter and parameters in the parameter server)
- Discard gradients with absolute loss higher than the mean plus serveral standard deviations
- Use the AdaGrad update rule

Gorila DQN

Algorithm 1 Distributed DQN Algorithm

Initialise replay memory D to size P.

Initialise the training network for the action-value function $Q(s, a; \theta)$ with weights θ and target network $Q(s, a; \theta^-)$ with weights $\theta^- = \theta$.

```
for episode = 1 to M do
```

Initialise the start state to s_1 .

Update θ from parameters θ^+ of the parameter server.

for
$$t = 1$$
 to T do

With probability ϵ take a random action a_t or else $a_t = \operatorname{argmax} Q(s, a; \theta)$.

Execute the action in the environment and observe the reward r_t and the next state s_{t+1} . Store (s_t, a_t, r_t, s_{t+1}) in D.

Update θ from parameters θ^+ of the parameter server.

Sample random mini-batch from D. And for each tuple (s_i, a_i, r_i, s_{i+1}) set target y_t as

if s_{i+1} is terminal then

$$y_t = r_i$$

else

$$y_t = r_i + \gamma \max_{a'} Q(s_{i+1}, a'; \theta^-)$$

end if

Calculate the loss $L_t = (y_t - Q(s_i, a_i; \theta)^2)$.

Compute gradients with respect to the network parameters θ using equation 2.

Send gradients to the parameter server.

Every global N steps sync θ^- with parameters θ^+ from the parameter server.

end for

end for

Experiments

- Evaluate Gorila by conducting experiments on 49 atari 2600 games
- 210x160 RGB video as input, the changes in the score provided as rewards
- Use the same preprocessing and network architecture of DQN (2015)
- In all experiments:
 - 1. $N_{param} = 31$ and $N_{learn} = N_{act} = 100$
 - 2. Use the bundled mode
 - 3. Replay memory size D=1 million frames and use ϵ -greedy with annealed from 1 to 0.1 over the first one million global updates
 - 4. Sync the parameter θ after every 60K parameter updates

Evaluation

- Two types of evaluations:
 - 1. Follow the protocol established by DQN, each trained agent was evaluated on 30 episodes of the game it was trained on (avg score, null op starts)
 - 2. Aim to measure how well the agent generalizes to states it may not have trained on (100 random professional's gameplay start points, human starts)
- 0 is the score obtained by a random agent and 100 is the score obtained by a professional human game player

Results

Results

Results

Conclusion

- The first massively distributed architecture for deep reinforcement learning
- The gorila architecture acts and learns in parallel, using a distributed replay memory and distributed neural network
- Explore whether the good performance of DQN would continue to scale with additional computation
- Outperformed single GPU DQN on 41/49 games and achieved the best results in this domain, reduced the training time by an order of magnitude