

Subject: Machine Learning – I (DJ19MN4C2)

AY: 2022-23

Experiment 3

(Regression)

Name: Ayush Jain SAPID: 60004200132

Aim: Implement Linear Regression on the given Dataset and apply Regularization to overcome overfitting in the model.

Theory:

• Linear Regression: Linear regression is a quiet and simple statistical regression method used for predictive analysis and shows the relationship between the continuous variables. Linear regression shows the linear relationship between the independent variable (X-axis) and the dependent variable (Y-axis), consequently called linear regression. If there is a single input variable (x), such linear regression is called simple linear regression. And if there is more than one input variable, such linear regression is called multiple linear regression. The linear regression model gives a sloped straight line describing the relationship within the variables.

The above graph presents the linear relationship between the dependent variable and independent variables. When the value of x (**independent variable**) increases, the value of y (**dependent variable**) is likewise increasing. The red line is referred to as the best fit straight line. Based on the given data points, we try to plot a line that models the points the best.

$$y = mx + b \implies y = a_0 + a_1x$$

y= Dependent Variable; x= Independent Variable; a0= intercept; a1 = Linear regression coefficient.

• Cost function: The cost function helps to figure out the best possible values for a0 and a1, which provides the best fit line for the data points. Cost function optimizes the regression coefficients or weights and measures how a linear regression model is performing. The cost function is used to find the accuracy of the mapping function that maps the input variable to the output variable. This mapping function is also known as the Hypothesis function. In Linear Regression, Mean Squared Error (MSE) cost function is used, which is the average of squared error that occurred between the predicted values and actual values. By simple linear equation y=mx+b we can calculate MSE as: Let's y = actual values, y_i = predicted values

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

Using the MSE function, we will change the values of a0 and a1 such that the MSE value settles at the minima. Model parameters xi, b (a_0 , a_1) can be manipulated to minimize the cost function. These parameters can be determined using the gradient descent method so that the cost function value is minimum.

• **Gradient descent:** Gradient descent is a method of updating a0 and a1 to minimize the cost function (MSE). A regression model uses gradient descent to update the coefficients of the line (a0, a1 => xi, b) by reducing the cost function by a random selection of coefficient values and then iteratively update the values to reach the minimum cost function.

To update a_0 and a_1 , we take gradients from the cost function. To find these gradients, we take partial derivatives for a_0 and a_1 .

$$J = rac{1}{n} \sum_{i=1}^n (a_0 + a_1 \cdot x_i - y_i)^2 \ rac{\partial J}{\partial a_0} = rac{2}{n} \sum_{i=1}^n (a_0 + a_1 \cdot x_i - y_i) \ rac{\partial J}{\partial a_1} = rac{2}{n} \sum_{i=1}^n (a_0 + a_1 \cdot x_i - y_i) \cdot x_i \ rac{\partial J}{\partial a_0} = rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \ rac{\partial J}{\partial a_1} = rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_0 = a_0 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - lpha \cdot rac{2}{n} \sum_{i=1}^n (pred_i - y_i) \cdot x_i \ a_1 = a_1 - a$$

- Regularization: When linear regression is underfitting there is no other way (given you can't add more data) then to increase complexity of the model making it polynomial regression (cubic, quadratic, etc...) or using other complex model to capture data that linear regression cannot capture due to its simplicity. When linear regression is overfitting, number of columns(independent variables) approach number of observations there are two ways to mitigate it
 - 1. Add more observations
 - 2. Regularization

Since adding more observations is time consuming and often not provided we will use regularization technique to mitigate overfitting. There are multiple regularization techniques, all

share the same concept of **adding constraints on weights** of independent variables(except theta_0) however they differ in way of constraining. We will go through three most popular regularization techniques: Ridge regression (L2) and Lasso regression (L1)

Lasso Regression

The word "LASSO" denotes Least Absolute Shrinkage and Selection Operator. Lasso regression follows the regularization technique to create prediction. It is given more priority over the other regression methods because it gives an accurate prediction. Lasso regression model uses shrinkage technique. In this technique, the data values are shrunk towards a central point similar to the concept of mean. The lasso regression algorithm suggests a simple, sparse models (i.e. models with fewer parameters), which is well-suited for models or data showing high levels of multicollinearity or when we would like to automate certain parts of model selection, like variable selection or parameter elimination using feature engineering. Lasso Regression algorithm utilises L1 regularization technique It is taken into consideration when there are more number of features because it automatically performs feature selection.

Residual Sum of Squares + λ * (Sum of the absolute value of the coefficients) The equation looks like:

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

• Ridge Regression

Ridge Regression is another type of regression algorithm in data science and is usually considered when there is a high correlation between the independent variables or model parameters. As the value of correlation increases the least square estimates evaluates unbiased values. But if the collinearity in the dataset is very high, there can be some bias value. Therefore, we create a bias matrix in the equation of Ridge Regression algorithm. It is a useful regression method in which the model is less susceptible to overfitting and hence the model works well even if the dataset is very small.

The cost function for ridge regression algorithm is:

Where λ is the penalty variable. λ given here is denoted by an alpha parameter in the ridge function. Hence, by changing the values of alpha, we are controlling the penalty term. Greater the values of alpha, the higher is the penalty and therefore the magnitude of the coefficients is reduced. We can conclude that it shrinks the parameters. Therefore, it is used to prevent multicollinearity, it also reduces the model complexity by shrinking the coefficient.

Lab Assignments to complete in this session

Use the given dataset and perform the following tasks:

Dataset 1: food_truck_data.csv

Dataset 2: housing.csv

- 1. Perform Linear Regression on Dataset 1 by computing cost function and gradient descent from scratch.
- 2. Use sklearn to perform linear regression on Dataset 2, show the scatter plot for best fit line using matplotlib and show the results using MSE.
- 3. To perform regularization on linear model build using Linear Regression on Dataset2.

Code:

```
[] import numpy as np
import pandas as pd
import sklearn
import matplotlib.pyplot as plt
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

Loading the dataset

```
df=pd.read_csv('/content/foodtruck (1).txt',sep=",")
C.
        Population Profit
     0
             6.1101 17.59200
             5.5277 9.13020
     1
     2
             8.5186 13.66200
     3
             7.0032 11.85400
     4
             5.8598 6.82330
     ***
     92
             5.8707
                     7.20290
             5.3054 1.98690
     93
             8.2934
                     0.14454
     94
     95
            13.3940 9.05510
             5.4369 0.61705
    97 rows x 2 columns
```

```
x=df.iloc[:,0].values
y=df.iloc[:,1].values
print(x)
print(y)

C [ 6.1101 5.5277 8.5186 7.0032 5.8598 8.3829 7.4764 8.5781 6.4862
```

```
5.0546 5.7107 14.164 5.734 8.4084 5.6407 5.3794 6.3654 5.1301
 6.4296 7.0708 6.1891 20.27
                           5.4901 6.3261 5.5649 18.945 12.828
10.957 13.176 22.203 5.2524 6.5894 9.2482 5.8918 8.2111 7.9334
 8.0959 5.6063 12.836 6.3534 5.4069 6.8825 11.708 5.7737 7.8247
 7.0931 5.0702 5.8014 11.7
                             5.5416 7.5402 5.3077
 6.3328 6.3589 6.2742 5.6397 9.3102 9.4536 8.8254 5.1793 21.279
14.908 18.959 7.2182 8.2951 10.236 5.4994 20.341 10.136 7.3345
 6.0062 7.2259 5.0269 6.5479 7.5386 5.0365 10.274 5.1077 5.7292
 5.1884 6.3557 9.7687 6.5159 8.5172 9.1802 6.002 5.5204 5.0594
 5.7077 7.6366 5.8707 5.3054 8.2934 13.394 5.4369]
[17.592
         9.1302 13.662 11.854
                               6.8233 11.886
                                                4.3483 12.
        3.8166 3.2522 15.505
 6.5987
                                3.1551
                                       7.2258 0.71618 3.5129
 5.3048 0.56077 3.6518 5.3893 3.1386 21.767
                                               4.263
                                                        5.1875
 3.0825 22.638 13.501
                        7.0467 14.692 24.147 -1.22
12.134
        1.8495 6.5426 4.5623 4.1164 3.3928 10.117
                                                        5.4974
 0.55657 3.9115 5.3854 2.4406
                                6.7318 1.0463 5.1337
                                                       1.844
                        1.8396
 8.0043
         1.0179
                6.7504
                                4.2885
                                        4.9981
                                                1.4233
 2.4756 4.6042 3.9624 5.4141
                               5.1694 -0.74279 17.929 12.054
        4.8852 5.7442 7.7754 1.0173 20.992 6.6799 4.0259
17.054
 1.2784 3.3411 -2.6807 0.29678 3.8845 5.7014 6.7526 2.0576
 0.47953 0.20421 0.67861 7.5435 5.3436 4.2415 6.7981 0.92695
 0.152
        2.8214 1.8451 4.2959 7.2029 1.9869 0.14454 9.0551
 0.61705]
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

```
from sklearn.model_selection import train_test_split
   x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=42)
   print(x_train)
   print(x_test)
   print(y_train)
   print(y_test)
T. [ 5.8918 5.0546 5.7292 14.164 7.2182 13.394 5.2524 13.176 6.002
     8.3829 7.0931 20.341 7.9334 6.3654 6.0062 8.2111 8.5781 6.3589
    10.957 7.0708 5.1077 18.945 7.6031 8.4084 5.5649 7.0032 5.1301
    12.836 6.4862 7.5386 7.4764 10.274 8.0959 8.5172 6.2742 5.4369
     6.3328 5.7737 7.5402 8.2951 5.0702 10.236 5.1793 8.2934 5.0365
     6.8825 9.3102 11.7
                          6.5159 5.6397 9.2482 7.6366 9.4536 14.908
     5.7077 5.6063 22.203 5.5277 7.4239 20.27
                                               8.5186 6.3261 5.5204
     5.0269 9.1802 6.3557 6.1891 8.8254 7.3345 5.6407 5.8707 5.3077]
   [21.279 5.4069 5.3054 6.4296 5.1884 9.7687 18.959 11.708 5.7107
     6.1101 6.5894 6.5479 5.8014 12.828 7.8247 5.8598 5.4901 5.734
     5.0594 7.2259 5.5416 10.136 5.4994 5.3794 6.3534]
   [ 1.8495    3.8166    0.47953    15.505    4.8852    9.0551   -1.22
                                                            14.692
                    1.0463 20.992
7.0467 5.3893
                                     4.5623 5.3048 1.2784 6.5426
     0.92695 11.886
                            5.3893 2.0576 22.638
    12.
            -1.4211
                                                     4.9981
                                     6.5987 3.8845 4.3483 6.7526
     3.0825 11.854
                     0.56077 10.117
     4.1164 4.2415 2.4756 0.61705 1.4233 2.4406 6.7504 5.7442
     5.1337 7.7754 -0.74279 0.14454 5.7014 3.9115 3.9624 8.0043
     5.3436 4.6042 12.134
                           4.2959 5.4141 12.054
                                                    1.8451 3.3928
             9.1302 4.2885 21.767 13.662 5.1875 0.152 -2.6807
    24.147
     6.7981 0.67861 3.1386 5.1694
                                    4.0259
                                            0.71618 7.2029 1.8396 ]
             0.55657 1.9869
                             3.6518
                                    0.20421 7.5435 17.054
                     5.9966 0.29678 1.844 13.501
                                                     6.7318 6.8233
     3.2522 17.592
            3.1551 2.8214 3.3411 1.0179 6.6799 1.0173 3.5129
     4.263
     5.4974 ]
```

```
[ ] from sklearn.linear_model import LinearRegression
    x_train=np.reshape(x_train,(-1,1))
    x_test=np.reshape(x_test,(-1,1))
    reg = LinearRegression().fit(x_train, y_train)
    pred=reg.predict(x_test)
    print(pred)

[22.72210566    2.23334237    2.10231941    3.55351161    1.95128802    7.86384417
    19.72729521    10.36722171    2.62550763    3.14107974    3.75979209    3.70622112
    2.74258923    11.81299227    5.35439956    2.81797584    2.34074247    2.65558482
    1.78476623    4.58142866    2.40722209    8.33797946    2.35274753    2.19784354
    3.45514758]
```

- reg.coef_
- array([1.29086657])
- [] reg.n_features_in_

1

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Computer Science and Engineering (Data Science)

- [] reg.rank_
- [] reg.score(x_test,y_test)
- [] pred_train=reg.predict(x_train)

0.5210382872605228

plt.scatter(x_train,y_train,color='black')
plt.plot(x_train,pred_train,color='blue')
plt.show()

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

plt.scatter(x_test,y_test, color="black")
plt.plot(x_test,pred,color='blue')
plt.show()

For DATASET 2:

```
[1] import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

2 opar miont or comparer colones and 2 ing incoming (2 and colones)											- /				
0	<pre>df=pd.read_csv('Housing (1).csv') df</pre>														
□ •		price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefarea	furnishingstatus	%
	0	13300000	7420	4	2	3	yes	no	no	no	yes	2	yes	furnished	
	1	12250000	8960	4	4	4	yes	no	no	no	yes	3	no	furnished	
	2	12250000	9960	3	2	2	yes	no	yes	no	no	2	yes	semi-furnished	
	3	12215000	7500	4	2	2	yes	no	yes	no	yes	3	yes	furnished	
	4	11410000	7420	4	1	2	yes	yes	yes	no	yes	2	no	furnished	
	540	1820000	3000	2	1	1	yes	no	yes	no	no	2	no	unfurnished	
	541	1767150	2400	3	1	1	no	no	no	no	no	0	no	semi-furnished	
	542	1750000	3620	2	1	1	yes	no	no	no	no	0	no	unfurnished	
	543	1750000	2910	3	1	1	no	no	no	no	no	0	no	furnished	
	544	1750000	3850	3	1	2	yes	no	no	no	no	0	no	unfurnished	

x=df.iloc[:,0].values
y=df.iloc[:,1].values
print(x)
print(y)

545 rows × 13 columns

C÷		311889	50 3	115000	31150	300 3	115000	30876	000 30	080000	30806	300 30	080008	
L,		308000	aa 3	045000	30100	300 3	010000	30100	000 30	10000	30100	900 30	10000	
		301000	aa 3	003000	29756	300 2	961000	29400	000 29	940000	29400	900 29	40000	
		294000	00 2	940000	29400	900 2	940000	28700	000 28	370000	28700	900 28	370000	
		285250	00 2	835000	28356	000 2	835000	28000	000 28	300000	27300	000 27	730000	
		269500	00 2	660000	26600	000 2	660000	26600	000 20	560000	26600	000 26	60000	
		265300	00 2	653000	26046	900 2	590000	25900	000 25	590000	25200	000 25	20000	
		2520000		485000	24856	300 2	450000	24500	2450000 24		24500	300 24	150000	
		2450000		408000	23800	900 2	380000	23800	000 2	345000	23100	000 22	275000	
		2275000		275000	22400	900 2	233000	2135000 2		100000	21000	000 21	2100000	
		1960000		890000	1890000 1		855000	18200	000 1	767150	17500	000 17	750000	
		1750000]												
	[7420	8960	9960	7500	7420	7500	8580	16200	8100	5750	13200	6000	
		6550	3500	7800	6000	6600	8500	4600	6420	4320	7155	8050	4560	
		8800	6540	6000	8875	7950	5500	7475	7000	4880	5960	6840	7000	
		7482	9000	6000	6000	6550	6360	6480	6000	6000	6000	6000	6600	
		4300	7440	7440	6325	6000	5150	6000	6000	11440	9000	7680	6000	
		6000	8880	6240	6360	11175	8880	13200	7700	6000	12090	4000	6000	
		5020	6600	4040	4260	6420	6500	5700	6000	6000	4000	10500	6000	
		3760	8250	6670	3960	7410	8580	5000	6750	4800	7200	6000	4100	
		9000	6400	6600	6000	6600	5500	5500	6350	5500	4500	5450	6420	
		3240	6615	6600	8372	4300	9620	6800	8000	6900	3700	6420	7020	
		6540	7231	6254	7320	6525	15600	7160	6500	5500	11460	4800	5828	
		5200	4800	7000	6000	5400	4640	5000	6360	5800	6660	10500	4800	
		4700	5000	10500	5500	6360	6600	5136	4400	5400	3300	3650	6100	
		6900	2817	7980	3150	6210	6100	6600	6825	6710	6450	7800	4600	

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Computer Science and Engineering (Data Science)

- [6] from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=42)
- from sklearn.linear_model import LinearRegression
 reg = LinearRegression().fit(x_train, y_train)
 y_pred=reg.predict(x_test)
 print(y_pred)
- [4687.97629657 6417.00136832 4454.32425985 6276.81014628 3846.82896437 5248.7411847 5482.39322143 5010.41610725 3613.17692765 4215.99918239 8753.52173554 3753.36814968 4220.67222312 4220.67222312 3496.35090928 3753.36814968 3753.36814968 6884.30544176 3940.28977906 3893.55937171 6463.73177566 5599.21923979 3239.33366889 5482.39322143 4776.76407052 10155.43395588 4033.75059375 5388.93240674 8519.86969882 3659.90733499 6510.462183 4314.13303781 6417.00136832 3940.28977906 4197.30701945 4781.43711126 5248.7411847 4173.94181578 4314.13303781 3566.4465203 5645.94964713 4430.95905617 6417.00136832 5253.41422544 4080.48100109 4968.35874064 6370.27096097 5809.50607284 3982.34714567 3192.60326154 7585.26155193 3613.17692765 4828.1675186 4652.92849106 4136.5574899 3145.8728542 8519.86969882 3379.52489092 4874.89792595 4010.38539007 4547.78507454 4314.13303781 5150.60732928 4033.75059375 5015.08914798 6323.54055363 6440.36657199 5388.93240674 5015.08914798 6417.00136832 4407.5938525 5716.04525815 4501.05466719 6393.63616464 4127.21140844 6417.00136832 5108.54996267 5202.01077736 6557.19259035 3468.31266488 6674.01860871 4758.07190759 6113.25372058 6323.54055363

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Computer Science and Engineering (Data Science)


```
[27] from sklearn.metrics import mean_squared_error
    mse = mean_squared_error(y_test, y_pred)
    print('Mean Squared Error:', mse)

Mean Squared Error: 3033418.448648035

• from sklearn.linear_model import Ridge
    ridge = Ridge(alpha=1)
    ridge.fit(x_train, y_train)

• Ridge
    Ridge(alpha=1)

Sy_pred = ridge.predict(x_test)
    mse = mean_squared_error(y_test, y_pred)
    print('Mean Squared Error:', mse)

Mean Squared Error: 3033418.448648034
```

Conclusion: We successfully implemented Linear Regression on the given Dataset and apply Regularization to overcome overfitting in the model.