EXERCICE DES COCOTTES

Parmi les cocottes 2 à 9, lesquelles ont été obtenues à partir de la cocotte 1 par une translation ?

Tracer sur la feuille le vecteur de chacune de ces translations.

A - Définitions d'un vecteur et d'une translation

Définition d'un vecteur non nul

Un vecteur non nul du plan est constitué :

- d'une direction du plan;
- d'un sens associé à cette direction;
- d'une longueur non nulle.

Notation Un vecteur se note avec une flèche, par exemple \vec{u} ou \vec{v} .

Vecteur nul On considère aussi un vecteur appelé vecteur nul et noté $\vec{0}$. Sa longueur est 0 mais il n'a ni direction, ni sens.

Exemple fondamental

1) Soient A et B deux points distincts.

Par définition, le vecteur \overrightarrow{AB} est le vecteur non nul :

- de direction la direction de la droite (AB);
- de sens A vers B ;
- de longueur AB.

On peut représenter le vecteur par une flèche joignant A à B.

On peut aussi le représenter par une flèche joignant d'autres points à condition que les direction, sens et longueur soient les mêmes.

2) Soit C un point. Par définition, le vecteur \overrightarrow{CC} est le vecteur nul.

Soient A et B deux points distincts. Les vecteurs \overrightarrow{AB} et \overrightarrow{BA} sont-ils égaux ?

Définition d'une translation

On considère un vecteur non nul. La translation de vecteur \vec{u} est la transformation du plan qui consiste à déplacer les points dans la direction de \vec{u} , le sens de \vec{u} et la longueur de \vec{u} .

La translation de vecteur nul est la transformation qui à chaque point associe lui-même.

B - ÉGALITÉ DE DEUX VECTEURS

Théorème Soient A, B, C et D quatre points.

 $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si

Exercice 1 Soient A, B, C et D quatre points tels que $\overrightarrow{AB} = \overrightarrow{CD}$. Que peut-on dire des vecteurs \overrightarrow{AC} et \overrightarrow{BD} ?

Exercice 2 Soient A, B et C trois points. Trouver une condition simple pour que $\overrightarrow{AB} = \overrightarrow{BC}$.

Exercice 3 A, B et C sont trois points, et D et E sont les points tels que $\overrightarrow{BA} = \overrightarrow{CD}$ et $\overrightarrow{AC} = \overrightarrow{BE}$ Démontrer que C est le milieu du segment DE.

C - COORDONNÉES D'UN VECTEUR DANS UN REPÈRE

Théorème Soit \overrightarrow{AB} un vecteur. Soit M un point et soit M' son image par la translation de vecteur \overrightarrow{AB} .

Alors
$$x_{M'} =$$

et
$$y_{M'} =$$

Définition Les coordonnées du vecteur \overrightarrow{AB} dans le repère sont $x_B - x_A$ et $y_B - y_A$.

Remarques et notation

- 1) Tout vecteur pouvant s'écrire sous la forme \overrightarrow{AB} , la définition précédente permet donc de définir les coordonnées de n'importe quel vecteur.
- 2) Deux vecteurs sont égaux si et seulement s'ils ont les mêmes coordonnées.
- 3) Les coordonnées du vecteur nul sont 0 et 0.
- **4)** Soient a et b les coordonnées d'un vecteur \vec{u} . On note $\vec{u} \binom{a}{b}$. a est le déplacement horizontal de la translation de vecteur \vec{u} : vers la droite si a>0, vers la gauche si a<0. b est le déplacement vertical de la translation de vecteur \vec{u} : vers le haut si b>0, vers le bas si b<0.

Exemple dans le cas a > 0 et b > 0:

Exercice 4 On considère les points I(1;0), J(0;1) et A(4;2,5). Représenter ci-contre les vecteurs suivants et déterminer leurs coordonnées :

$$\overrightarrow{OA}\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right) \qquad \overrightarrow{AO}\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right) \qquad \overrightarrow{IJ}\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right) \qquad \overrightarrow{JA}\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right)$$

Exercice 5 Quelle est l'image du point A(-3; 1,5) par la translation de vecteur $\vec{u} \binom{5}{2}$? Faire une figure.

Exercice 6 On considère les points A(-4;1), B(-2;3) et C(-1,5;-1).

- a) Quelles sont les coordonnées du point M tel que $\overrightarrow{AB} = \overrightarrow{CM}$?
- **b)** Quelles sont les coordonnées des points N tel que $\overrightarrow{CA} = \overrightarrow{NC}$?
- c) Quelle est la nature du quadrilatère BMNC?

D - SOMME DE DEUX VECTEURS

Théorème et définition

Soient \vec{u} et \vec{v} deux vecteurs.

Alors la transformation qui consiste à enchaîner la translation de vecteur \vec{u} puis la translation de vecteur \vec{v} est aussi une translation.

Le vecteur de cette translation est appelé somme des vecteurs \vec{u} et \vec{v} . On le note $\vec{u} + \vec{v}$.

Exercice 7 EFGH est un rectangle. A, B, C et D sont les milieux des côtés [EF], [FG], [GH] et [HE]. Sans justifier, compléter les égalités à l'aide des points précédents :

$$\overrightarrow{AB} + \overrightarrow{BC} =$$

$$\overrightarrow{AB} + \overrightarrow{AD} =$$

$$\overrightarrow{ED} + \overrightarrow{BG} =$$

$$\overrightarrow{AC} + \overrightarrow{HC} = \overrightarrow{}$$

$$\overrightarrow{DC} + \overrightarrow{CD} =$$

$$\overrightarrow{EA} + \overrightarrow{DC} = \overrightarrow{}$$

$$\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CD} + \overrightarrow{CB} =$$

Propriété

On considère deux vecteurs \vec{u} et \vec{v} .

Alors
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
.

Propriété (relation de Chasles)

Pour tous points A, B et C, on a :

Remarque On considère deux points A et B. Alors $\overrightarrow{AB} + \overrightarrow{BA} =$

Définition

Le vecteur opposé d'un vecteur \vec{u} est l'unique vecteur dont la somme avec \vec{u} est égale à $\vec{0}$. Ce vecteur est noté $-\vec{u}$.

Propriété Étant donnés deux points A et B, on a $-\overrightarrow{AB}$ =

Notation Étant donné deux vecteurs \vec{u} et \vec{v} , la somme $\vec{u} + (-\vec{v})$ est notée $\vec{u} - \vec{v}$.

Exercice 8 Mêmes consignes que l'exercice 7.

$$\overrightarrow{AB} - \overrightarrow{BG} = \overrightarrow{\dots}$$

$$\overrightarrow{AC} - \overrightarrow{DB} = \overrightarrow{\dots}$$

$$\overrightarrow{AD} - \overrightarrow{DA} = \overrightarrow{\dots}$$

$$\overrightarrow{EF} - \overrightarrow{AB} = \overrightarrow{\dots}$$

Exercice 9 Soient les vecteurs $\vec{u} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ et $v \begin{pmatrix} 1 \\ -4 \end{pmatrix}$. Quelles sont les coordonnées du vecteur $\vec{u} + \vec{v}$?

Conjecture : On représente le vecteur $\vec{u} + \vec{v}$ ci-contre.

On peut alors conjecture que $\vec{u} + \vec{v} \left(\cdots \right)$

Preuve de la conjecture :

Théorème

Soient
$$\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} c \\ d \end{pmatrix}$. Alors $\vec{u} + \vec{v} \begin{pmatrix} a+c \\ b+d \end{pmatrix}$.

Alors
$$\vec{u} + \vec{v} \begin{pmatrix} a+c \\ b+d \end{pmatrix}$$
.

D'autre part,
$$-\vec{u} \begin{pmatrix} -a \\ -b \end{pmatrix}$$

Exercice 10 Soient les points A(1,5;-2), B(-1;0,5), C(2;0) et D(3;2,5).

Soient les vecteurs $\vec{u} = \overrightarrow{AB} + \overrightarrow{CD}$ et $\vec{v} = \overrightarrow{AB} - \overrightarrow{CD}$.

- a) Sans calculs, représenter ci-contre les points et vecteurs précédents.
- **b)** Conjecturer quelles sont les coordonnées des vecteurs \vec{u} et \vec{v} .
- c) Démontrer les conjectures de la question précédente.

Exercice 11 A et B sont deux points du plan. Quels sont les points G tels que $\overrightarrow{GA} + \overrightarrow{GB} = \overrightarrow{0}$?

Exercice 12 Soient les points A(2; 1), B(0; -2) et C(-1; -1). On note D le point tel que $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$.

- a) Faire une figure ci-contre.
- **b)** Déterminer les coordonnées du point *D*.
- c) Démontrer que ABDC est un parallélogramme.
- d) <u>Défi</u>: généraliser le résultat obtenu au c).

