APPENDIX

In this appendix, we present the experimental results of our proposed model stability based stopping criterion for extended models including kernelized models and non-gradient-based models which are introduced in Section 7. We left these detailed experimental results for this appendix due to the page limitation (25 pages).

A EXPERIMENTS FOR KERNELIZED MODELS

In this section, we validate our proposed algorithm on the kernelized models, including kernel logistic regression (kernel LR) and kernel SVMs with radial basis function (RBF) kernel and polynomial (PN) kernel (Section 7.1). Extensive experiments are implemented on both the UCI and ImageNet data sets with uncertainty sampling (US) strategy and expected model change (EMC) strategy, respectively.

A.1 Experiments with Uncertainty Sampling Strategy

We first present the experimental results coupled with US strategy. The following two subsections are detailed results for kernel LR and kernel SVMs, respectively.

A.1.1 Experiments for Kernel LR. Table 1-Table 2 present the results of kernel LR on UCI data sets with RBF kernel and PN kernel, respectively. Table 3-Table 4 present the results of kernel LR for ImageNet data sets. As shown in the tables, our proposed method MS is still observed to outperform the baselines most of the time. It achieves the highest accuracy with fewer annotations on most cases which demonstrates the effectiveness of our stopping criterion.

Table 1. The results of Δ_{Size} and Δ_{Acc} on UCI data sets for kernel-LR with RBF kernel taking US as the strategy. The thresholds of MS are all 1.0.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	52.0	446.0	843.0	Δ_{Size}	-101.0	391.0	397.0	264.0	378.0	-88.0
Biodeg	Acc	74.72%	87.45%	81.04%	Δ_{Acc}	1.7%	6.32%	6.42%	2.08%	2.26%	2.08%
	Size	430.0	1393.0	6880.0	Δ_{Size}	-86.0	1135.0	5487.0	464.0	3354.0	344.0
Clave	Acc	85.77%	98.42%	90.8%	Δ_{Acc}	0.2%	0.28%	7.62%	0.29%	0.52%	0.47%
	Size	17.0	87.0	280.0	Δ_{Size}	-10.0	-3.0	186.0	193.0	193.0	193.0
Ionosphere	Acc	75.21%	92.96%	84.79%	Δ_{Acc}	2.54%	2.82%	8.45%	8.17%	8.17%	8.17%
	Size	230.0	1873.0	3680.0	Δ_{Size}	-407.0	1308.0	1807.0	1807.0	1807.0	1807.0
Spambase	Acc	83.2%	94.26%	93.22%	Δ_{Acc}	0.28%	0.81%	1.04%	1.04%	1.04%	1.04%
	Size	28.0	93.0	454.0	Δ_{Size}	-19.0	5.0	283.0	101.0	138.0	23.0
WDBC	Acc	94.35%	98.26%	97.74%	Δ_{Acc}	0.43%	0.87%	3.74%	0.7%	0.61%	3.3%
	Size	80.0	139.0	1286.0	Δ_{Size}	16.0	22.0	1032.0	44.0	457.0	-59.0
D-vs-P	Acc	97.38%	99.64%	99.36%	Δ_{Acc}	0.14%	0.17%	0.3%	0.22%	0.19%	2.27%
	Size	77.0	134.0	1234.0	Δ_{Size}	27.0	27.0	1082.0	51.0	360.0	-42.0
E-vs-F	Acc	91.2%	99.61%	99.03%	Δ_{Acc}	0.06%	0.13%	0.52%	0.19%	0.26%	2.14%
	Size	78.0	161.0	1259.0	Δ_{Size}	24.0	30.0	1006.0	149.0	640.0	-83.0
M-vs-N	Acc	95.95%	99.4%	98.42%	Δ_{Acc}	0.25%	0.47%	0.95%	0.51%	0.79%	3.45%
	Size	78.0	113.0	1260.0	Δ_{Size}	23.0	32.0	1135.0	32.0	263.0	-31.0
U-vs-V	Acc	96.68%	99.92%	97.88%	Δ_{Acc}	0.02%	0.02%	2.04%	0.02%	0.11%	1.58%

1

1:2 Y. Zhang et al.

Table 2. The results of Δ_{Size} and Δ_{Acc} on UCI data sets for kernel-LR with PN kernel taking US as the strategy. The thresholds of MS are 2.5, 2.0, 1.0, 2.5, 2.5, 2.0, 2.5, 2.0, 2.0 respectively.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	52.0	272.0	843.0	Δ_{Size}	319.0	484.0	571.0	561.0	571.0	429.0
Biodeg	Acc	63.92%	89.39%	84.43%	Δ_{Acc}	2.83%	4.25%	4.95%	4.72%	4.95%	3.54%
	Size	430.0	1247.0	6880.0	Δ_{Size}	839.0	430.0	4236.0	4386.0	5139.0	1226.0
Clave	Acc	96.22%	97.91%	96.98%	Δ_{Acc}	0.19%	0.23%	0.64%	0.9%	0.96%	0.33%
	Size	17.0	95.0	280.0	Δ_{Size}	158.0	185.0	128.0	185.0	185.0	185.0
Ionosphere	Acc	73.24%	88.03%	84.51%	Δ_{Acc}	2.11%	3.52%	2.82%	3.52%	3.52%	3.52%
	Size	230.0	1360.0	3680.0	Δ_{Size}	1630.0	2129.0	-789.0	2320.0	2320.0	2320.0
Spambase	Acc	77.87%	88.04%	82.49%	Δ_{Acc}	4.06%	5.94%	2.7%	5.55%	5.55%	5.55%
MDDC	Size	28.0	72.0	454.0	Δ_{Size}	18.0	152.0	322.0	368.0	375.0	332.0
WDBC	Acc	86.96%	98.43%	94.26%	Δ_{Acc}	3.83%	4.0%	4.09%	4.35%	4.26%	4.43%
	Size	80.0	160.0	1286.0	Δ_{Size}	133.0	173.0	1018.0	1126.0	1126.0	1066.0
D-vs-P	Acc	95.0%	98.73%	96.18%	Δ_{Acc}	0.68%	0.75%	2.36%	2.55%	2.55%	4.69%
	Size	77.0	272.0	1234.0	Δ_{Size}	-165.0	465.0	962.0	540.0	803.0	45.0
E-vs-F	Acc	93.69%	97.9%	96.6%	Δ_{Acc}	0.49%	0.81%	1.29%	1.46%	1.46%	0.65%
	Size	78.0	228.0	1259.0	Δ_{Size}	234.0	360.0	1031.0	1022.0	1029.0	848.0
M-vs-N	Acc	93.99%	97.11%	95.89%	Δ_{Acc}	0.59%	0.59%	1.23%	1.74%	1.23%	1.03%
	Size	78.0	259.0	1260.0	Δ_{Size}	128.0	736.0	1001.0	896.0	996.0	-181.0
U-vs-V	Acc	96.85%	99.68%	97.9%	Δ_{Acc}	0.32%	1.47%	1.79%	2.31%	1.89%	2.84%

Table 3. The results of Δ_{Size} and Δ_{Acc} on ImageNet data sets for kernel-LR with RBF kernel taking US as the strategy. The thresholds of MS are all 1.0.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	184.0	2108.0	2951.0	Δ_{Size}	-222.0	-481.0	518.0	592.0	407.0	703.0
Basenji	Acc	55.48%	65.49%	64.41%	Δ_{Acc}	0.68%	2.71%	2.84%	1.22%	1.35%	1.62%
	Size	175.0	2275.0	2800.0	Δ_{Size}	-945.0	-525.0	105.0	-140.0	455.0	70.0
Chihuahua	Acc	47.29%	69.14%	67.43%	Δ_{Acc}	0.43%	2.0%	1.0%	1.14%	2.0%	0.57%
English	Size	242.0	1712.0	3881.0	Δ_{Size}	-490.0	-686.0	196.0	931.0	1617.0	1813.0
setter	Acc	59.94%	64.68%	63.44%	Δ_{Acc}	1.44%	2.27%	2.16%	2.37%	2.57%	1.96%
German	Size	174.0	1994.0	2785.0	Δ_{Size}	-595.0	-385.0	-280.0	420.0	490.0	70.0
police dog	Acc	49.64%	64.71%	63.27%	Δ_{Acc}	0.14%	0.72%	1.29%	1.15%	1.72%	3.59%
Standard	Size	195.0	3120.0	3129.0	Δ_{Size}	-1170.0	-1326.0	-351.0	-117.0	-78.0	-1287.0
poodle	Acc	45.08%	75.99%	74.2%	Δ_{Acc}	1.4%	2.04%	2.17%	2.17%	2.55%	2.55%
	Size	233.0	3288.0	3734.0	Δ_{Size}	282.0	47.0	-1034.0	94.0	188.0	-846.0
Vizsla	Acc	60.28%	70.24%	69.7%	Δ_{Acc}	1.39%	3.1%	2.25%	3.32%	2.89%	1.61%
Yorkshire	Size	304.0	4574.0	4874.0	Δ_{Size}	-305.0	-1647.0	300.0	-61.0	183.0	-1098.0
terrier	Acc	68.28%	75.49%	74.84%	Δ_{Acc}	0.16%	0.9%	0.66%	1.39%	2.13%	0.74%
	Size	242.0	2594.0	3875.0	Δ_{Size}	960.0	-144.0	-720.0	384.0	480.0	864.0
Wild dog	Acc	65.84%	72.86%	72.03%	Δ_{Acc}	0.31%	0.62%	1.65%	3.61%	0.52%	1.75%
	Size	561.0	5713.0	8986.0	Δ_{Size}	896.0	-1904.0	-3839.0	1568.0	1680.0	-1232.0
Wolf	Acc	72.33%	76.87%	74.6%	Δ_{Acc}	3.29%	1.47%	5.66%	0.53%	2.58%	1.65%
	Size	478.0	7582.0	7654.0	Δ_{Size}	-576.0	-1536.0	72.0	-192.0	-192.0	-1248.0
Fox	Acc	72.52%	77.69%	76.96%	Δ_{Acc}	0.37%	0.57%	0.73%	0.05%	0.05%	0.21%
	Size	349.0	3709.0	5593.0	Δ_{Size}	980.0	-1190.0	1050.0	1750.0	1884.0	-490.0
Rabbit	Acc	69.12%	76.34%	74.2%	Δ_{Acc}	0.64%	0.86%	2.29%	3.57%	2.14%	1.14%
	Size	732.0	7788.0	11722.0	Δ_{Size}	3731.0	3934.0	3934.0	3934.0	3934.0	3934.0
Cat	Acc	64.68%	69.78%	65.98%	Δ_{Acc}	2.08%	3.8%	3.8%	3.8%	3.8%	3.8%
	Size	351.0	2871.0	5628.0	Δ_{Size}	1540.0	-2030.0	1820.0	1680.0	2240.0	2170.0
Panda	Acc	55.61%	84.52%	81.04%	Δ_{Acc}	0.14%	2.13%	2.98%	0.92%	2.27%	2.77%
	Size	392.0	3710.0	6282.0	Δ_{Size}	316.0	-2844.0	2572.0	869.0	1738.0	-2607.0
Elephant	Acc	80.47%	85.75%	83.21%	Δ_{Acc}	0.25%	2.42%	2.54%	0.57%	1.91%	3.69%

1:4 Y. Zhang et al.

Table 4. The results of Δ_{Size} and Δ_{Acc} on ImageNet data sets for kernel-LR with PN kernel taking US as the strategy. The thresholds of MS are all 2.0.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	184.0	1689.0	2951.0	Δ_{Size}	259.0	1262.0	-604.0	1262.0	1262.0	1262.0
Basenji	Acc	51.96%	62.02%	59.27%	Δ_{Acc}	1.58%	2.75%	6.0%	2.75%	2.75%	2.75%
	Size	175.0	1692.0	2800.0	Δ_{Size}	560.0	1108.0	-1027.0	1108.0	1108.0	1108.0
Chihuahua	Acc	55.29%	63.9%	63.1%	Δ_{Acc}	0.48%	0.81%	7.52%	0.81%	0.81%	0.81%
English	Size	242.0	2864.0	3881.0	Δ_{Size}	573.0	573.0	-1923.0	1018.0	1018.0	1018.0
setter	Acc	53.58%	61.89%	60.04%	Δ_{Acc}	1.57%	4.76%	5.79%	1.85%	1.85%	1.85%
German	Size	174.0	1376.0	2785.0	Δ_{Size}	828.0	1409.0	128.0	1409.0	1409.0	1409.0
police dog	Acc	55.76%	61.88%	59.4%	Δ_{Acc}	1.24%	2.49%	5.88%	2.49%	2.49%	2.49%
Standard	Size	195.0	2291.0	3129.0	Δ_{Size}	419.0	838.0	-1446.0	838.0	838.0	838.0
poodle	Acc	62.41%	70.29%	69.31%	Δ_{Acc}	0.68%	0.98%	0.81%	0.98%	0.98%	0.98%
	Size	233.0	2442.0	3734.0	Δ_{Size}	928.0	1292.0	-1927.0	1292.0	1292.0	1292.0
Vizsla	Acc	55.41%	64.88%	62.26%	Δ_{Acc}	1.5%	2.62%	5.84%	2.62%	2.62%	2.62%
Yorkshire	Size	304.0	3212.0	4874.0	Δ_{Size}	-1891.0	1662.0	324.0	1662.0	1662.0	1662.0
terrier	Acc	65.22%	70.57%	68.58%	Δ_{Acc}	1.07%	1.99%	7.62%	1.99%	1.99%	1.99%
	Size	242.0	2450.0	3875.0	Δ_{Size}	528.0	1425.0	-1344.0	1425.0	1425.0	1425.0
Wild dog	Acc	57.89%	71.1%	66.87%	Δ_{Acc}	1.14%	4.23%	1.34%	4.23%	4.23%	4.23%
	Size	561.0	5601.0	8986.0	Δ_{Size}	-1904.0	3385.0	3385.0	3385.0	3385.0	3385.0
Wolf	Acc	64.41%	70.6%	68.37%	Δ_{Acc}	1.56%	2.22%	2.22%	2.22%	2.22%	2.22%
	Size	478.0	1918.0	7654.0	Δ_{Size}	3072.0	5736.0	2592.0	5736.0	5736.0	5736.0
Fox	Acc	65.57%	70.74%	69.38%	Δ_{Acc}	0.31%	1.36%	0.73%	1.36%	1.36%	1.36%
	Size	349.0	4164.0	5593.0	Δ_{Size}	-1348.0	1429.0	330.0	1429.0	1429.0	1429.0
Rabbit	Acc	55.5%	69.1%	66.14%	Δ_{Acc}	2.2%	2.97%	6.67%	2.97%	2.97%	2.97%
	Size	732.0	10471.0	11722.0	Δ_{Size}	-9200.0	1251.0	-5672.0	1251.0	1251.0	1251.0
Cat	Acc	49.62%	65.78%	65.39%	Δ_{Acc}	4.25%	0.39%	0.76%	0.39%	0.39%	0.39%
	Size	351.0	3396.0	5628.0	Δ_{Size}	679.0	2232.0	1869.0	2232.0	2232.0	2232.0
Panda	Acc	75.96%	77.77%	76.17%	Δ_{Acc}	1.03%	1.6%	1.1%	1.6%	1.6%	1.6%
	Size	392.0	3434.0	6282.0	Δ_{Size}	970.0	2849.0	536.0	2849.0	2849.0	2849.0
Elephant	Acc	69.94%	81.3%	77.89%	Δ_{Acc}	2.42%	3.4%	3.56%	3.4%	3.4%	3.4%
-											

A.1.2 Experiments for Kernel SVM. Table 5-Table 6 present the results of kernel SVM on UCI data sets with RBF kernel and PN kernel, respectively. Table 7-Table 8 are the results of kernel SVM on ImageNet data sets. From these tables, similar results can be observed and MS performs best in these seven stopping criterions.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME	QUIRE
	Size	52.0	250.0	843.0	$ \Delta_{Size} $	107.0	152.0	240.0	367.0	501.0	84.0	-29.0
Biodeg	Acc	77.6%	88.36%		Δ_{Acc}	1.19%	1.43%	1.75%	1.58%	1.6%	1.38%	2.68%
	Size	430.0	2620.0	6880.0		-1250.0	-1221.0	350.0	-1456.0	-1193.0	-2190.0	-957.0
Clave	Acc	96.16%	98.33%	98.21%	Δ_{Acc}	0.13%	0.14%	0.16%	0.29%	0.14%	2.17%	0.11%
. 1	Size	17.0	64.0	280.0	Δ_{Size}	161.0	40.0	99.0	61.0	136.0	27.0	6.0
Ionosphere	Acc	78.73%	95.92%		Δ_{Acc}	1.06%	1.76%	1.34%	1.27%	1.34%	1.97%	8.24%
0 1	Size	230.0	1423.0	3680.0	Δ_{Size}	-199.0	-330.0	1708.0	-250.0	880.0	-391.0	343.0
Spambase	Acc	87.36%	93.53%	93.16%	Δ_{Acc}	0.61%	0.43%	0.42%	0.47%	0.25%	0.53%	0.45%
T. I'D D C	Size	28.0	64.0	454.0	Δ_{Size}	366.0	40.0	318.0	28.0	80.0	23.0	101.0
WDBC	Acc	94.49%	98.72%	98.2%	Δ_{Acc}	0.58%	0.81%	0.75%	0.99%	1.04%	0.87%	0.93%
D D	Size	80.0	148.0	1286.0	Δ_{Size}	26.0	18.0	629.0	32.0	98.0	-68.0	152.0
D-vs-P	Acc	96.54%	99.53%		Δ_{Acc}	0.11%	0.28%	0.17%	0.19%	0.17%	3.0%	0.26%
	Size	77.0	184.0		Δ_{Size}	32.0	24.0	540.0	19.0	86.0	512.0	94.0
E-vs-F	Acc	94.94%	99.34%	99.06%	Δ_{Acc}	0.16%	0.26%	0.29%	0.29%	0.32%	0.84%	0.33%
	Size	78.0	171.0	1259.0	Δ_{Size}	380.0	48.0	707.0	54.0	163.0	-93.0	109.0
M-vs-N	Acc	96.65%	98.99%	98.8%	Δ_{Acc}	0.19%	0.32%	0.25%	0.25%	0.25%	2.34%	0.28%
**	Size	78.0	140.0	1260.0	Δ_{Size}	285.0	22.0	601.0	10.0	89.0	-62.0	68.0
U-vs-V	Acc	97.05%	99.72%	99.57%	Δ_{Acc}	0.57%	0.16%	0.14%	0.09%	0.14%	2.67%	0.11%

Table 6. The results of Δ_{Size} and Δ_{Acc} on UCI data sets for kernel-SVM with PN kernel taking US as the strategy. The thresholds of MS are 2.0, 2.0, 2.0, 1.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 respectively.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME	QUIRE
	Size	52.0	339.0	843.0	Δ_{Size}	-108.0	-33.0	43.0	66.0	271.0	-50.0	-103.0
Biodeg	Acc	77.78%	89.15%	87.69%		1.42%	1.51%	2.26%	1.65%	1.65%	1.27%	1.46%
	Size	430.0	1238.0	6880.0	Δ_{Size}	-17.0	-172.0	1926.0	-52.0	559.0	-808.0	163.0
Clave	Acc	94.19%	97.85%	96.33%		0.23%	0.31%	0.9%	0.29%	0.52%	3.66%	0.37%
	Size	17.0	102.0	280.0	Δ_{Size}	-10.0	5.0	45.0	107.0	151.0	64.0	-17.0
Ionosphere	Acc	72.58%	90.23%	84.23%		3.47%	4.41%	4.88%	5.63%	5.45%	4.88%	4.41%
	Size	230.0	2134.0	3680.0	Δ_{Size}	-1104.0	-1063.0	934.0	-920.0	23.0	-1251.0	-1086.0
Spambase	Acc	87.08%	93.45%	93.11%		0.8%	0.65%	0.47%	0.54%	0.66%	0.66%	0.67%
	Size	28.0	60.0	454.0	Δ_{Size}	0.0	23.0	302.0	45.0	122.0	50.0	48.0
WDBC	Acc	93.45%	98.09%	96.81%		0.7%	1.16%	1.22%	1.28%	0.99%	1.16%	1.28%
	Size	80.0	223.0	1286.0	Δ_{Size}	-47.0	-58.0	510.0	-54.0	70.0	-93.0	1.0
D-vs-P	Acc	96.27%	99.42%	99.25%	Δ_{Acc}	0.35%	0.35%	0.08%	0.35%	0.27%	1.51%	0.33%
	Size	77.0	160.0	1234.0	Δ_{Size}	18.0	8.0	333.0	33.0	102.0	1075.0	57.0
E-vs-F	Acc	96.6%	99.48%	99.19%		0.19%	0.26%	0.39%	0.23%	$\boldsymbol{0.19\%}$	0.29%	0.23%
	Size	78.0	184.0	1259.0	Δ_{Size}	24.0	-5.0	498.0	83.0	131.0	1075.0	70.0
M-vs-N	Acc	95.32%	99.68%	99.43%		0.16%	0.7%	0.19%	0.25%	0.19%	0.25%	0.54%
	Size	78.0	136.0	1260.0	Δ_{Size}	28.0	27.0	492.0	25.0	82.0	-58.0	113.0
U-vs-V	Acc	97.01%	99.75%	99.62%		0.13%	0.17%	0.17%	0.19%	0.17%	2.73%	0.15%

1:6 Y. Zhang et al.

Table 7. The results of Δ_{Size} and Δ_{Acc} on ImageNet data sets for kernel-SVM with RBF kernel taking US as the strategy. The thresholds of MS are all 1.0.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME	QUIRE
	Size	184.0	1897.0	2951.0	Δ_{Size}	902.0	844.0	-453.0	1054.0	1054.0	1054.0	-370.0
Basenji	Acc	55.87%	64.19%	63.33%	Δ_{Acc}	0.72%	0.89%	3.27%	0.87%	0.87%	0.87%	1.79%
	Size	175.0	1829.0	2800.0	Δ_{Size}	166.0	464.0	-936.0	971.0	971.0	963.0	-359.0
Chihuahua	Acc	58.61%	65.21%	63.96%	Δ_{Acc}	0.93%	1.29%	2.25%	1.25%	1.25%	1.29%	2.47%
English	Size	242.0	2496.0	3881.0	Δ_{Size}	743.0	1209.0	-1372.0	1385.0	1385.0	1383.0	-1421.0
setter	Acc	56.42%	65.5%	64.04%	Δ_{Acc}	1.07%	1.36%	4.43%	1.45%	1.45%	1.44%	3.98%
German	Size	174.0	1959.0	2785.0	Δ_{Size}	410.0	689.0	-899.0	826.0	826.0	826.0	-1155.0
police dog	Acc	56.89%	63.79%	63.07%	Δ_{Acc}	0.63%	0.95%	3.32%	0.72%	0.72%	0.72%	3.6%
Standard	Size	195.0	2188.0	3129.0	Δ_{Size}	0.0	-47.0	-120.0	917.0	933.0	-94.0	-733.0
poodle	Acc	65.7%	74.64%	73.98%	Δ_{Acc}	0.6%	0.75%	1.34%	0.66%	0.65%	0.92%	2.25%
	Size	233.0	3175.0	3734.0	Δ_{Size}	-165.0	-66.0	-1222.0	559.0	559.0	348.0	-780.0
Vizsla	Acc	59.83%	68.63%	68.07%	Δ_{Acc}	0.41%	0.66%	3.1%	0.56%	0.56%	0.64%	1.09%
Yorkshire	Size	304.0	3385.0	4874.0	Δ_{Size}	-299.0	-403.0	-868.0	1366.0	1450.0	-220.0	-610.0
terrier	Acc	68.61%	74.81%	74.52%	Δ_{Acc}	0.82%	0.83%	1.89%	$\boldsymbol{0.26\%}$	0.3%	0.66%	0.66%
	Size	242.0	2623.0	3875.0	Δ_{Size}	67.0	-422.0	202.0	1252.0	1252.0	403.0	-797.0
Wild dog	Acc	66.5%	73.79%	73.23%	Δ_{Acc}	0.52%	0.76%	0.76%	0.56%	0.56%	0.33%	0.99%
	Size	561.0	5567.0	8986.0	Δ_{Size}	302.0	-829.0	2677.0	3270.0	3394.0	-314.0	784.0
Wolf	Acc	72.0%	77.39%	77.1%	Δ_{Acc}	0.52%	0.54%	0.51%	0.28%	0.28%	0.39%	0.37%
_	Size	478.0	6027.0	7654.0	Δ_{Size}	-1622.0	-1853.0	146.0	1555.0	1620.0	-1229.0	-749.0
Fox	Acc	71.85%	77.62%	77.4%	Δ_{Acc}	0.71%	0.76%	0.44%	0.22%	$\boldsymbol{0.21\%}$	0.62%	0.34%
	Size	349.0	4138.0	5593.0	Δ_{Size}	-56.0	-830.0	-427.0	1455.0	1455.0	-485.0	-737.0
Rabbit	Acc	69.26%	77.15%	76.82%	Δ_{Acc}	0.28%	0.52%	1.42%	0.33%	0.33%	0.42%	0.73%
	Size	732.0	7964.0	11722.0	Δ_{Size}	2587.0	-735.0	626.0	3758.0	3758.0	2705.0	1264.0
Cat	Acc	64.69%	69.09%	68.77%	Δ_{Acc}	0.14%	0.46%	0.79%	0.33%	0.33%	0.24%	0.29%
	Size	351.0	2570.0	5628.0	Δ_{Size}	49.0	119.0	2255.0	2296.0	2709.0	-105.0	490.0
Panda	Acc	77.7%	83.03%	82.57%	Δ_{Acc}	0.26%	0.36%	0.65%	0.48%	0.43%	0.43%	0.42%
	Size	392.0	3355.0	6282.0	Δ_{Size}	-474.0	-474.0	1128.0	1264.0	2094.0	-869.0	-382.0
Elephant	Acc	78.94%	84.32%	84.13%	Δ_{Acc}	0.57%	0.54%	0.48%	0.1%	0.19%	0.89%	0.2%

Table 8. The results of Δ_{Size} and Δ_{Acc} on ImageNet data sets for kernel-SVM with PN kernel taking US as the strategy. The thresholds of MS are 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 0.5 respectively.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME	QUIRE
	Size	184.0	2182.0	2951.0	Δ_{Size}	-229.0	769.0	-1354.0	769.0	769.0	725.0	-1177.0
Basenji	Acc	55.51%	65.12%	63.9%	Δ_{Acc}	1.0%	1.22%	3.27%	1.22%	1.22%	1.65%	2.98%
	Size	175.0	1848.0	2800.0	Δ_{Size}	-7.0	875.0	-490.0	952.0	952.0	896.0	-840.0
Chihuahua	Acc	55.83%	66.11%	64.43%	Δ_{Acc}	0.83%	1.6%	1.74%	1.69%	1.69%	1.74%	4.71%
English	Size	242.0	2625.0	3881.0	Δ_{Size}	121.0	1256.0	-443.0	1256.0	1256.0	1231.0	-1187.0
setter	Acc	52.5%	64.32%	62.84%	Δ_{Acc}	0.84%	1.47%	2.08%	1.47%	1.47%	1.73%	2.29%
German	Size	174.0	2141.0	2785.0	Δ_{Size}	7.0	220.0	-1130.0	644.0	644.0	636.0	-994.0
police dog	Acc	52.8%	64.36%	62.61%	Δ_{Acc}	1.69%	3.53%	6.05%	1.75%	1.75%	2.09%	3.3%
Standard	Size	195.0	1762.0	3129.0	Δ_{Size}	-52.0	169.0	187.0	1320.0	1362.0	137.0	-806.0
poodle	Acc	62.01%	75.31%	74.24%	Δ_{Acc}	0.4%	1.06%	2.23%	1.0%	1.21%	0.7%	3.19%
	Size	233.0	3344.0	3734.0	Δ_{Size}	-893.0	390.0	-715.0	380.0	390.0	-75.0	-1626.0
Vizsla	Acc	60.45%	70.75%	69.81%	Δ_{Acc}	1.71%	0.94%	1.8%	1.13%	0.94%	0.73%	3.34%
Yorkshire	Size	304.0	3064.0	4874.0	Δ_{Size}	-442.0	-336.0	104.0	1571.0	1781.0	31.0	-671.0
terrier	Acc	69.24%	75.86%	74.67%	Δ_{Acc}	0.55%	0.74%	1.48%	0.72%	1.05%	1.17%	1.09%
	Size	242.0	3346.0	3875.0	Δ_{Size}	-1216.0	-1216.0	-1269.0	464.0	529.0	-720.0	-1232.0
Wild dog	Acc	64.71%	74.48%	73.82%	Δ_{Acc}	0.48%	0.76%	2.17%	0.79%	0.65%	0.86%	1.2%
	Size	561.0	6833.0	8986.0	Δ_{Size}	-2296.0	-2128.0	2153.0	1792.0	2128.0	-1624.0	-1624.0
Wolf	Acc	73.0%	77.36%	76.69%	Δ_{Acc}	0.4%	0.53%	0.67%	0.67%	0.73%	0.44%	0.67%
	Size	478.0	6595.0	7654.0	Δ_{Size}	-2811.0	-3099.0	1059.0	880.0	1035.0	-2448.0	-1915.0
Fox	Acc	71.26%	77.77%	77.31%	Δ_{Acc}	1.02%	1.04%	0.45%	0.53%	0.57%	0.88%	0.75%
	Size	349.0	3196.0	5593.0	Δ_{Size}	117.0	23.0	2397.0	2287.0	2397.0	373.0	607.0
Rabbit	Acc	69.72%	77.25%	76.41%	Δ_{Acc}	0.21%	0.91%	0.83%	1.0%	0.83%	0.41%	0.48%
	Size	732.0	9589.0	11722.0	Δ_{Size}	-2242.0	-2438.0	2133.0	2133.0	2133.0	257.0	-723.0
Cat	Acc	64.44%	69.68%	69.41%	Δ_{Acc}	0.47%	0.34%	0.27%	0.27%	0.27%	0.34%	0.4%
	Size	351.0	3137.0	5628.0	Δ_{Size}	-756.0	-686.0	1199.0	1531.0	2114.0	-1246.0	-476.0
Panda	Acc	76.09%	83.43%	82.67%	Δ_{Acc}	0.31%	0.4%	0.47%	0.64%	0.66%	0.88%	0.4%
	Size	392.0	2525.0	6282.0	Δ_{Size}	119.0	40.0	3757.0	2173.0	3002.0	119.0	-79.0
Elephant	Acc	79.07%	85.34%	84.8%	Δ_{Acc}	0.35%	0.38%	0.54%	0.64%	0.64%	0.41%	0.57%

1:8 Y. Zhang et al.

A.2 Experiments with Expected Model Change Strategy

In this section, we present the experimental results coupled with EMC sampling strategy. The following two subsections detail the results for kernel LR and kernel SVMs, respectively.

A.2.1 Experiments for Kernel LR. Table 9-Table 10 present the results of kernel LR on UCI data sets with RBF kernel and PN kernel, respectively. Table 11-Table 12 are the results on ImageNet data sets. As shown in these tables, MS still performs the best on most cases which is consistent with previous experiments.

Table 9. The results of Δ_{Size} and Δ_{Acc} on UCI data sets for kernel-LR with RBF kernel taking EMC as the strategy. The thresholds of MS are all 1.0.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	52.0	466.0	843.0	Δ_{Size}	-64.0	377.0	336.0	377.0	377.0	276.0
Biodeg	Acc	82.92%	90.94%	88.77%	Δ_{Acc}	1.7%	2.17%	2.26%	2.17%	2.17%	1.98%
	Size	430.0	1565.0	6880.0	Δ_{Size}	447.0	894.0	5315.0	5315.0	5315.0	155.0
Clave	Acc	87.03%	98.4%	96.88%	Δ_{Acc}	0.15%	0.22%	1.51%	1.51%	1.51%	2.47%
	Size	17.0	123.0	280.0	Δ_{Size}	-29.0	-6.0	157.0	157.0	157.0	157.0
Ionosphere	Acc	82.25%	93.52%	87.61%	Δ_{Acc}	3.1%	3.1%	5.92%	5.92%	5.92%	5.92%
	Size	230.0	1324.0	3680.0	Δ_{Size}	261.0	2075.0	2259.0	2356.0	2356.0	2356.0
Spambase	Acc	87.92%	94.14%	92.81%	Δ_{Acc}	0.37%	1.31%	4.67%	1.33%	1.33%	1.33%
	Size	28.0	57.0	454.0	Δ_{Size}	20.0	32.0	323.0	384.0	394.0	-29.0
WDBC	Acc	94.26%	98.78%	97.04%	Δ_{Acc}	1.04%	1.57%	2.43%	1.57%	1.74%	4.52%
	Size	80.0	176.0	1286.0	Δ_{Size}	0.0	-22.0	996.0	1108.0	1109.0	-3.0
D-vs-P	Acc	83.11%	99.57%	97.02%	Δ_{Acc}	0.12%	0.25%	0.43%	0.5%	0.5%	0.25%
	Size	77.0	299.0	1234.0	Δ_{Size}	-123.0	-120.0	860.0	925.0	934.0	-222.0
E-vs-F	Acc	95.34%	99.61%	99.16%	Δ_{Acc}	0.26%	0.26%	0.45%	4.27%	4.27%	4.27%
	Size	78.0	163.0	1259.0	Δ_{Size}	37.0	19.0	965.0	1091.0	1096.0	-85.0
M-vs-N	Acc	95.46%	99.31%	97.26%	Δ_{Acc}	0.05%	0.05%	2.0%	1.0%	2.06%	3.85%
	Size	78.0	129.0	1260.0	Δ_{Size}	22.0	26.0	787.0	1131.0	1131.0	-51.0
U-vs-V	Acc	97.92%	99.94%	99.68%	Δ_{Acc}	0.0%	0.0%	0.25%	0.25%	0.25%	2.02%

Table 10. The results of Δ_{Size} and Δ_{Acc} on UCI data sets for kernel-LR with PN kernel taking EMC as the strategy. The thresholds of MS are 1.0, 1.5, 1.0, 1.5, 1.0, 2.0, 2.0, 2.0, 2.0 respectively.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	52.0	195.0	843.0	Δ_{Size}	275.0	468.0	357.0	648.0	648.0	648.0
Biodeg	Acc	78.77%	86.56%	84.91%	Δ_{Acc}	0.47%	1.18%	1.18%	1.65%	1.65%	1.65%
	Size	430.0	1388.0	6880.0	Δ_{Size}	848.0	160.0	5492.0	4263.0	4902.0	885.0
Clave	Acc	95.59%	97.98%	97.34%	Δ_{Acc}	0.22%	0.29%	0.64%	0.66%	0.7%	0.75%
	Size	17.0	103.0	280.0	Δ_{Size}	161.0	116.0	166.0	177.0	177.0	146.0
Ionosphere	Acc	69.53%	86.81%	83.87%	Δ_{Acc}	2.3%	2.56%	4.1%	4.61%	2.94%	6.02%
	Size	230.0	543.0	3680.0	Δ_{Size}	-244.0	856.0	2111.0	3137.0	3137.0	3137.0
Spambase	Acc	78.33%	85.73%	81.89%	Δ_{Acc}	2.58%	5.07%	5.66%	3.84%	3.84%	3.84%
WDDC	Size	28.0	272.0	454.0	Δ_{Size}	-40.0	-74.0	182.0	182.0	182.0	140.0
WDBC	Acc	85.22%	92.46%	91.3%	Δ_{Acc}	0.29%	2.61%	1.16%	1.16%	1.16%	1.16%
	Size	80.0	244.0	1286.0	Δ_{Size}	-9.0	101.0	623.0	1042.0	1042.0	997.0
D-vs-P	Acc	95.48%	98.59%	96.45%	Δ_{Acc}	0.62%	0.69%	1.38%	2.14%	2.14%	2.31%
	Size	77.0	215.0	1234.0	Δ_{Size}	75.0	306.0	1019.0	783.0	945.0	135.0
E-vs-F	Acc	95.02%	97.93%	95.79%	Δ_{Acc}	0.58%	0.91%	2.14%	1.75%	1.88%	1.04%
	Size	78.0	242.0	1259.0	Δ_{Size}	30.0	148.0	872.0	1017.0	1017.0	1017.0
M-vs-N	Acc	92.44%	97.27%	95.57%	Δ_{Acc}	0.59%	0.79%	1.62%	1.7%	1.7%	1.7%
	Size	78.0	144.0	1260.0	Δ_{Size}	54.0	66.0	1030.0	1116.0	1116.0	1083.0
U-vs-V	Acc	96.25%	98.83%	96.5%	Δ_{Acc}	0.5%	0.63%	2.24%	2.33%	2.33%	2.33%

1:10 Y. Zhang et al.

Table 11. The results of Δ_{Size} and Δ_{Acc} on ImageNet data sets for kernel-LR with RBF kernel taking EMC as the strategy. The thresholds of MS are all 1.0.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	184.0	2774.0	2951.0	Δ_{Size}	148.0	-1443.0	-370.0	111.0	177.0	-1036.0
Basenji	Acc	53.45%	64.55%	61.43%	Δ_{Acc}	0.81%	2.71%	2.84%	3.79%	3.11%	1.62%
	Size	175.0	2275.0	2800.0	Δ_{Size}	455.0	-1715.0	-1050.0	490.0	525.0	-980.0
Chihuahua	Acc	53.29%	65.43%	65.0%	Δ_{Acc}	0.29%	1.0%	0.71%	1.0%	0.43%	0.71%
English	Size	242.0	3868.0	3881.0	Δ_{Size}	-2573.0	-1323.0	13.0	-588.0	-98.0	-637.0
setter	Acc	54.69%	66.01%	64.68%	Δ_{Acc}	1.3%	4.63%	1.34%	2.68%	3.4%	2.68%
German	Size	174.0	2379.0	2785.0	Δ_{Size}	35.0	-700.0	-350.0	385.0	406.0	175.0
police dog	Acc	58.25%	65.57%	63.27%	Δ_{Acc}	$\boldsymbol{4.02\%}$	4.73%	4.45%	5.6%	5.6%	7.75%
Standard	Size	195.0	2379.0	3129.0	Δ_{Size}	585.0	-1014.0	-624.0	663.0	750.0	-702.0
poodle	Acc	48.66%	76.63%	73.44%	Δ_{Acc}	1.15%	2.43%	2.04%	1.15%	3.19%	1.53%
	Size	233.0	3288.0	3734.0	Δ_{Size}	-517.0	-2021.0	-517.0	282.0	282.0	-846.0
Vizsla	Acc	60.92%	69.38%	67.24%	Δ_{Acc}	2.03%	3.0%	2.03%	2.36%	2.36%	2.36%
Yorkshire	Size	304.0	4086.0	4874.0	Δ_{Size}	-305.0	-2379.0	-732.0	-183.0	-122.0	61.0
terrier	Acc	49.67%	74.26%	72.87%	Δ_{Acc}	0.33%	1.31%	2.38%	1.97%	1.48%	1.97%
	Size	242.0	2546.0	3875.0	Δ_{Size}	1296.0	-912.0	1329.0	1056.0	1152.0	-624.0
Wild dog	Acc	70.49%	74.82%	73.99%	Δ_{Acc}	0.31%	0.93%	0.83%	0.62%	0.93%	0.52%
	Size	561.0	4257.0	8986.0	Δ_{Size}	224.0	-2623.0	112.0	1008.0	1568.0	560.0
Wolf	Acc	71.66%	76.33%	75.71%	Δ_{Acc}	0.27%	2.44%	0.44%	0.22%	0.4%	2.62%
_	Size	478.0	7006.0	7654.0	Δ_{Size}	288.0	-5664.0	-3840.0	-1440.0	-768.0	-2112.0
Fox	Acc	71.94%	76.38%	72.2%	Δ_{Acc}	0.63%	1.52%	2.4%	0.31%	1.04%	1.1%
	Size	349.0	4899.0	5593.0	Δ_{Size}	560.0	-2660.0	-1330.0	140.0	694.0	-280.0
Rabbit	Acc	69.12%	75.98%	73.12%	Δ_{Acc}	1.22%	2.5%	2.93%	3.43%	2.86%	1.5%
	Size	732.0	9405.0	11722.0	Δ_{Size}	-5145.0	-6468.0	-4116.0	1323.0	1617.0	-1470.0
Cat	Acc	61.97%	68.86%	64.5%	Δ_{Acc}	0.78%	1.33%	0.99%	1.19%	2.52%	0.99%
	Size	351.0	3641.0	5628.0	Δ_{Size}	1260.0	-980.0	-630.0	1610.0	1680.0	1987.0
Panda	Acc	76.07%	82.32%	78.98%	Δ_{Acc}	0.21%	1.99%	1.78%	2.84%	2.27%	3.34%
	Size	392.0	3078.0	6282.0	Δ_{Size}	1699.0	3204.0	3204.0	3204.0	3204.0	3204.0
Elephant	Acc	80.66%	85.69%	83.81%	Δ_{Acc}	0.83%	1.88%	1.88%	1.88%	1.88%	1.88%

Table 12. The results of Δ_{Size} and Δ_{Acc} on ImageNet data sets for kernel-LR with PN kernel taking EMC as the strategy. The thresholds of MS are all 2.0.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	184.0	2487.0	2951.0	Δ_{Size}	-496.0	464.0	-677.0	464.0	464.0	464.0
Basenji	Acc	54.79%	60.98%	58.49%	Δ_{Acc}	1.86%	2.49%	3.52%	2.49%	2.49%	2.49%
	Size	175.0	2435.0	2800.0	Δ_{Size}	-495.0	365.0	-1025.0	365.0	365.0	365.0
Chihuahua	Acc	51.45%	64.33%	62.84%	Δ_{Acc}	1.02%	1.49%	4.41%	1.49%	1.49%	1.49%
English	Size	242.0	3390.0	3881.0	Δ_{Size}	-70.0	-297.0	-1225.0	491.0	491.0	491.0
setter	Acc	54.09%	61.15%	58.14%	Δ_{Acc}	2.01%	5.74%	9.68%	3.01%	3.01%	3.01%
German	Size	174.0	2516.0	2785.0	Δ_{Size}	184.0	270.0	-1458.0	270.0	270.0	270.0
police dog	Acc	56.13%	63.06%	62.34%	Δ_{Acc}	0.47%	0.72%	7.46%	0.72%	0.72%	0.72%
Standard	Size	195.0	2896.0	3129.0	Δ_{Size}	-1782.0	233.0	-1061.0	233.0	233.0	233.0
poodle	Acc	58.01%	69.19%	67.98%	Δ_{Acc}	3.29%	1.21%	1.72%	1.21%	1.21%	1.21%
	Size	233.0	2959.0	3734.0	Δ_{Size}	-423.0	775.0	-1285.0	775.0	775.0	775.0
Vizsla	Acc	53.71%	62.38%	60.85%	Δ_{Acc}	1.46%	1.53%	7.42%	1.53%	1.53%	1.53%
Yorkshire	Size	304.0	4147.0	4874.0	Δ_{Size}	647.0	-1079.0	-1466.0	727.0	727.0	727.0
terrier	Acc	55.05%	71.2%	70.55%	Δ_{Acc}	0.6%	13.09%	9.13%	0.66%	0.66%	0.66%
	Size	242.0	2551.0	3875.0	Δ_{Size}	1325.0	1325.0	-404.0	1325.0	1325.0	1325.0
Wild dog	Acc	62.07%	69.79%	69.17%	Δ_{Acc}	0.62%	0.62%	2.37%	0.62%	0.62%	0.62%
	Size	561.0	8743.0	8986.0	Δ_{Size}	-5690.0	243.0	243.0	243.0	243.0	243.0
Wolf	Acc	62.53%	70.2%	69.53%	Δ_{Acc}	2.32%	0.67%	0.67%	0.67%	0.67%	0.67%
	Size	478.0	4606.0	7654.0	Δ_{Size}	1680.0	3048.0	3048.0	3048.0	3048.0	3048.0
Fox	Acc	63.22%	70.9%	69.17%	Δ_{Acc}	1.02%	1.72%	1.72%	1.72%	1.72%	1.72%
	Size	349.0	3359.0	5593.0	Δ_{Size}	-490.0	2234.0	2234.0	2234.0	2234.0	2234.0
Rabbit	Acc	56.15%	68.87%	66.01%	Δ_{Acc}	2.68%	2.86%	2.86%	2.86%	2.86%	2.86%
	Size	732.0	1908.0	11722.0	Δ_{Size}	-294.0	9814.0	9814.0	9814.0	9814.0	9814.0
Cat	Acc	64.36%	65.11%	63.4%	Δ_{Acc}	1.26%	1.71%	1.71%	1.71%	1.71%	1.71%
	Size	351.0	5563.0	5628.0	Δ_{Size}	47.0	65.0	-901.0	65.0	65.0	65.0
Panda	Acc	73.11%	78.5%	78.39%	Δ_{Acc}	0.09%	0.12%	5.23%	0.12%	0.12%	0.12%
	Size	392.0	5646.0	6282.0	Δ_{Size}	338.0	637.0	-1817.0	637.0	637.0	637.0
Elephant	Acc	73.12%	78.91%	77.23%	Δ_{Acc}	1.59%	1.69%	16.03%	1.69%	1.69%	1.69%

1:12 Y. Zhang et al.

A.2.2 Experiments for Kernel SVM. Table 13-Table 14 present the results of kernel SVM on UCI data sets with RBF kernel and PN kernel, respectively. Table 15-Table 16 show the results of kernel SVM on ImageNet data sets. As before, MS is still observed to outperform the baselines and it achieves the highest accuracy with fewer training examples on most cases.

Table 13. The results of Δ_{Size} and Δ_{Acc} on UCI data sets for kernel-SVM with RBF kernel taking EMC as the strategy. The thresholds of MS are 2.0, 1.0, 1.5, 2.5, 2.0, 2.0, 2.0, 2.0, 1.0 respectively.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME	QUIRE
	Size	52.0	320.0	843.0	$ \Delta_{Size} $	7.0	97.0	124.0	523.0	523.0	142.0	151.0
Biodeg	Acc	77.83%	88.38%		Δ_{Acc}	0.99%	1.56%	2.04%	1.19%	1.19%	1.51%	2.93%
	Size	430.0	5031.0	6880.0	Δ_{Size}	-2795.0	-3712.0	-3698.0	1849.0	1849.0	-4601.0	-1063.0
Clave	Acc	96.2%	98.31%	98.17%	Δ_{Acc}	0.13%	0.39%	0.21%	0.15%	0.15%	2.11%	0.25%
	Size	17.0	75.0	280.0	Δ_{Size}	50.0	55.0	76.0	200.0	205.0	198.0	34.0
Ionosphere	Acc	76.46%	94.97%	93.56%	Δ_{Acc}	1.01%	1.21%	2.21%	1.41%	1.41%	1.21%	10.26%
	Size	230.0	1741.0	3680.0	Δ_{Size}	-434.0	-710.0	486.0	1939.0	1939.0	1209.0	-355.0
Spambase	Acc	87.36%	93.62%	93.36%	Δ_{Acc}	0.17%	0.43%	0.51%	0.26%	0.26%	0.26%	1.49%
	Size	28.0	149.0	454.0	Δ_{Size}	302.0	-40.0	71.0	30.0	305.0	51.0	-70.0
WDBC	Acc	93.39%	98.0%	97.3%	Δ_{Acc}	0.7%	1.04%	0.83%	0.91%	0.7%	0.96%	2.35%
	Size	80.0	185.0	1286.0	Δ_{Size}	-11.0	-18.0	247.0	9.0	1086.0	-97.0	175.0
D-vs-P	Acc	97.12%	99.38%	99.21%	Δ_{Acc}	0.17%	0.19%	0.19%	0.19%	0.17%	1.95%	0.23%
	Size	77.0	294.0	1234.0	Δ_{Size}	-85.0	-93.0	119.0	677.0	939.0	940.0	23.0
E-vs-F	Acc	95.1%	99.55%	99.14%	Δ_{Acc}	0.3%	0.39%	0.32%	0.43%	0.37%	0.41%	0.8%
	Size	78.0	906.0	1259.0	Δ_{Size}	-93.0	-709.0	-562.0	353.0	353.0	353.0	-607.0
M-vs-N	Acc	94.43%	98.99%	98.54%	Δ_{Acc}	0.38%	1.84%	1.2%	0.44%	0.44%	0.44%	1.58%
	Size	78.0	259.0	1260.0	Δ_{Size}	420.0	-82.0	149.0	548.0	1001.0	-181.0	580.0
U-vs-V	Acc	97.41%	99.65%	99.54%		0.07%	1.54%	0.7%	0.11%	0.11%	2.24%	0.11%

Table 14. The results of Δ_{Size} and Δ_{Acc} on UCI data sets for kernel-SVM with PN kernel taking EMC as the strategy. The thresholds of MS are 1.5, 1.5, 0.5, 1.5, 2.0, 1.5, 1.5, 2.0, 1.5 respectively.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME	QUIRE
Buttaset	<u>. </u>				<u> </u>			Gruid				
n: 1 .	Size	52.0	433.0	843.0	Δ_{Size}		-42.0	-166.0	410.0	410.0	410.0	-181.0
Biodeg	Acc	78.9%	89.34%	87.64%	Δ_{Acc}	1.07%	1.26%	2.83%	1.7%	1.7%	1.7%	3.27%
	Size	430.0	1763.0	6880.0	Δ_{Size}	-275.0	-512.0	-353.0	4390.0	5117.0	-1333.0	3861.0
Clave	Acc	94.9%	97.67%	96.34%	Δ_{Acc}	0.24%	0.31%	0.29%	1.21%	1.33%	2.77%	1.1%
	Size	17.0	142.0	280.0	Δ_{Size}	-17.0	-10.0	-2.0	138.0	138.0	116.0	-89.0
Ionosphere	Acc	74.65%	91.55%	87.14%		3.57%	4.98%	5.35%	4.41%	4.41%	4.79%	9.2%
	Size	230.0	2290.0	3680.0		-1126.0	-1314.0	106.0	1089.0	1390.0	775.0	-1603.0
Spambase	Acc	86.77%	93.0%	92.84%	Δ_{Acc}	1.19%	1.8%	1.06%	0.15%	0.16%	0.25%	3.18%
	Size	28.0	109.0	454.0	Δ_{Size}	-49.0	-22.0	83.0	285.0	345.0	307.0	-47.0
WDBC	Acc	92.61%	98.35%	97.13%		0.87%	1.3%	1.39%	1.22%	1.22%	1.3%	1.65%
	Size	80.0	178.0	1286.0	Δ_{Size}	-9.0	-11.0	286.0	30.0	1099.0	28.0	377.0
D-vs-P	Acc	96.19%	99.36%	99.13%		0.12%	0.21%	0.25%	0.19%	0.23%	0.19%	0.19%
	Size	77.0	181.0	1234.0	Δ_{Size}	-2.0	2.0	176.0	320.0	1050.0	1054.0	215.0
E-vs-F	Acc	96.21%	98.96%	98.77%		0.45%	0.26%	0.16%	0.16%	0.19%	0.19%	0.13%
	Size	78.0	246.0	1259.0	Δ_{Size}	-16.0	-47.0	234.0	529.0	996.0	1013.0	172.0
M-vs-N	Acc	95.39%	99.59%	99.25%		0.25%	0.41%	0.36%	0.29%	0.36%	0.34%	0.38%
	Size	78.0	184.0	1260.0	Δ_{Size}	-14.0	-35.0	179.0	513.0	1012.0	-106.0	536.0
U-vs-V	Acc	97.6%	99.87%	99.68%		0.09%	0.32%	0.19%	0.19%	0.16%	2.27%	0.19%

Table 15. The results of Δ_{Size} and Δ_{Acc} on ImageNet data sets for kernel-SVM with RBF kernel taking EMC as the strategy. The thresholds of MS are 1.0, 1.0, 1.0, 1.5, 1.5, 1.0, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 1.0 respectively.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME	QUIRE
	10.				 							
Basenji		184.0	2355.0	2951.0	Δ_{Size}	596.0	596.0	-999.0	596.0	596.0	596.0	-987.0
Dasenji		51.83%	66.67%	65.76%	Δ_{Acc}	0.9%	0.9%	3.61%	0.9%	0.9%	0.9%	3.25%
01.11 1	Size	175.0	2188.0	2800.0	Δ_{Size}	284.0	346.0	-324.0	613.0	613.0	613.0	-1330.0
Chihuahua	Acc	58.36%	65.2%	64.3%	Δ_{Acc}	0.88%	0.93%	1.73%	0.89%	0.89%	0.89%	2.98%
English	Size	242.0	2982.0	3881.0	Δ_{Size}	702.0	857.0	-984.0	899.0	899.0	899.0	-1594.0
setter	Acc	53.53%	65.18%	64.48%	Δ_{Acc}	0.59%	0.71%	2.82%	0.7%	0.7%	0.7%	3.33%
German	Size	174.0	1812.0	2785.0	Δ_{Size}	655.0	973.0	-122.0	973.0	973.0	973.0	-1057.0
police dog	Acc	56.47%	63.87%	62.96%	Δ_{Acc}	0.83%	0.92%	3.85%	0.92%	0.92%	0.92%	3.79%
Standard	Size	195.0	2353.0	3129.0	Δ_{Size}	149.0	217.0	-796.0	776.0	776.0	260.0	-1564.0
poodle	Acc	65.9%	74.64%	74.02%	Δ_{Acc}	0.38%	0.68%	2.31%	0.62%	0.62%	0.74%	4.37%
	Size	233.0	3153.0	3734.0	Δ_{Size}	581.0	171.0	-611.0	581.0	581.0	581.0	-2027.0
Vizsla	Acc	59.64%	68.52%	68.31%	Δ_{Acc}	0.21%	0.43%	1.63%	0.21%	0.21%	0.21%	3.1%
Yorkshire	Size	304.0	4140.0	4874.0	Δ_{Size}	-349.0	-609.0	-398.0	734.0	734.0	-622.0	-2348.0
terrier	Acc	68.51%	74.84%	74.51%	Δ_{Acc}	0.65%	0.66%	0.56%	0.33%	0.33%	0.76%	2.11%
	Size	242.0	2919.0	3875.0	Δ_{Size}	760.0	-304.0	-713.0	956.0	956.0	956.0	-1589.0
Wild dog	Acc	66.86%	73.93%	73.44%	Δ_{Acc}	0.45%	0.86%	1.22%	0.48%	0.48%	0.48%	2.08%
	Size	561.0	8177.0	8986.0	Δ_{Size}	809.0	-2688.0	809.0	809.0	809.0	-2725.0	-4256.0
Wolf	Acc	71.71%	77.21%	77.09%	Δ_{Acc}	0.12%	0.55%	0.12%	0.12%	0.12%	0.53%	1.5%
	Size	478.0	7195.0	7654.0	Δ_{Size}	419.0	-2408.0	459.0	459.0	459.0	-2227.0	-1885.0
Fox	Acc	71.26%	77.75%	77.59%	Δ_{Acc}	0.15%	0.73%	0.16%	0.16%	0.16%	0.67%	0.72%
	Size	349.0	4598.0	5593.0	Δ_{Size}	-693.0	-574.0	226.0	995.0	995.0	-595.0	-1897.0
Rabbit	Acc	68.43%	76.48%	76.21%	Δ_{Acc}	0.72%	0.64%	0.62%	0.26%	0.26%	0.63%	1.73%
	Size	732.0	10022.0	11722.0	Δ_{Size}	1700.0	-1852.0	-1682.0	1700.0	1700.0	1700.0	-1154.0
Cat	Acc	64.68%	69.28%	68.92%	Δ_{Acc}	0.36%	0.49%	1.12%	0.36%	0.36%	0.36%	0.67%
	Size	351.0	4341.0	5628.0	Δ_{Size}	-1400.0	-1372.0	1287.0	1287.0	1287.0	764.0	-1451.0
Panda	Acc	77.64%	83.17%	82.77%	Δ_{Acc}	0.34%	0.37%	0.4%	0.4%	0.4%	0.38%	0.8%
-	Size	392.0	4387.0	6282.0	Δ_{Size}	-818.0	-1151.0	1510.0	1895.0	1895.0	-450.0	-2054.0
Elephant	Acc	79.94%	85.23%	84.86%	Δ_{Acc}	0.37%	0.48%	0.42%	0.37%	0.37%	0.52%	0.85%

1:14 Y. Zhang et al.

Table 16. The results of Δ_{Size} and Δ_{Acc} on ImageNet data sets for kernel-SVM with PN kernel taking EMC as the strategy. The thresholds of MS are are all 1.0.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME	QUIRE
	Size	184.0	2490.0	2951.0	$ \Delta_{Size} $	407.0	461.0	-2060.0	461.0	461.0	461.0	-691.0
Basenji	Acc	54.8%	65.36%	64.37%	Δ_{Acc}	0.81%	0.99%	4.51%	0.99%	0.99%	0.99%	0.9%
	Size	175.0	2076.0	2800.0	Δ_{Size}	518.0	725.0	-1173.0	725.0	725.0	725.0	-1022.0
Chihuahua	Acc	56.09%	66.41%	64.73%	Δ_{Acc}	1.41%	1.69%	4.63%	1.69%	1.69%	1.69%	3.4%
English	Size	242.0	3011.0	3881.0	Δ_{Size}	821.0	871.0	-1493.0	871.0	871.0	871.0	-1795.0
setter	Acc	53.22%	64.8%	63.03%	Δ_{Acc}	1.54%	1.78%	3.51%	1.78%	1.78%	1.78%	3.58%
German	Size	174.0	2527.0	2785.0	Δ_{Size}	153.0	258.0	-1320.0	258.0	258.0	258.0	-1310.0
police dog	Acc	55.84%	65.08%	64.16%	Δ_{Acc}	0.53%	0.93%	3.68%	0.93%	0.93%	0.93%	3.16%
Standard	Size	195.0	2535.0	3129.0	Δ_{Size}	94.0	-82.0	-1435.0	594.0	594.0	594.0	-1377.0
poodle	Acc	61.44%	75.71%	74.75%	Δ_{Acc}	0.64%	0.79%	5.24%	0.96%	0.96%	0.96%	3.68%
	Size	233.0	3250.0	3734.0	Δ_{Size}	362.0	484.0	-1612.0	484.0	484.0	484.0	-1166.0
Vizsla	Acc	59.59%	70.84%	70.02%	Δ_{Acc}	0.71%	0.81%	3.9%	0.81%	0.81%	0.81%	3.1%
Yorkshire	Size	304.0	3647.0	4874.0	Δ_{Size}	775.0	-360.0	-95.0	1227.0	1227.0	1216.0	-1354.0
terrier	Acc	68.63%	76.11%	75.5%	Δ_{Acc}	0.56%	0.87%	1.49%	0.61%	0.61%	0.66%	1.48%
	Size	242.0	3015.0	3875.0	Δ_{Size}	69.0	50.0	-1389.0	860.0	860.0	860.0	-1074.0
Wild dog	Acc	63.92%	74.96%	74.39%	Δ_{Acc}	1.82%	1.11%	3.38%	$\boldsymbol{0.58\%}$	0.58%	0.58%	1.98%
	Size	561.0	4369.0	8986.0	Δ_{Size}	4480.0	1120.0	4617.0	4617.0	4617.0	4617.0	224.0
Wolf	Acc	71.89%	76.89%	76.53%	Δ_{Acc}	0.33%	0.42%	0.36%	0.36%	0.36%	0.36%	0.58%
	Size	478.0	7294.0	7654.0	Δ_{Size}	-480.0	-2400.0	360.0	360.0	360.0	360.0	-2304.0
Fox	Acc	71.68%	77.59%	77.27%	Δ_{Acc}	0.29%	0.78%	0.31%	0.31%	0.31%	0.31%	0.76%
	Size	349.0	4787.0	5593.0	Δ_{Size}	420.0	-588.0	-802.0	806.0	806.0	806.0	-1344.0
Rabbit	Acc	69.09%	76.7%	76.23%	Δ_{Acc}	0.46%	0.86%	1.52%	0.47%	0.47%	0.47%	0.84%
_	Size	732.0	8964.0	11722.0	Δ_{Size}	2702.0	882.0	-1635.0	2758.0	2758.0	2758.0	-221.0
Cat	Acc	64.51%	70.0%	69.65%	Δ_{Acc}	0.32%	0.29%	1.48%	0.36%	0.36%	0.36%	0.36%
	Size	351.0	3431.0	5628.0	Δ_{Size}	1081.0	-809.0	269.0	2197.0	2197.0	1784.0	-1003.0
Panda	Acc	76.63%	84.19%	83.66%	Δ_{Acc}	0.5%	0.52%	1.18%	0.53%	0.53%	0.51%	0.77%
71 1	Size	392.0	4842.0	6282.0	Δ_{Size}	527.0	-2159.0	1440.0	1440.0	1440.0	-2107.0	-2370.0
Elephant	Acc	78.94%	85.43%	84.84%	Δ_{Acc}	0.49%	1.1%	0.59%	0.59%	0.59%	1.21%	1.21%

B EXPERIMENTS FOR NON-GRADIENT-BASED MODELS

In this section, we validate our proposed algorithm on one non-gradient-based model: the gaussian process regression (GPR) model (Section 7.2). We conduct experiments on four regression data sets: **Concrete**, **Housing**, **WineRed** from the UCI machine learning repository and **PM10** from the StatLib repository¹. The performance of the regression model is measured by the root mean square error (RMSE) [1]. Similarly, we use Δ_{Size} and $\Delta_{Rmse} = Rmse_{SC} - Rmse_{HPP}$ to evaluate the performance of each stopping criterion.

Table 17 presents the comparison results. Our proposed MS is observed to perform the best and it obtains the lowest RMSE with fewer annotation costs, which demonstrates the effectiveness of our method on GPR model. The other methods perform not well which is similar to previous results.

Table 17. The results of Δ_{Size} and Δ_{Rmse} on UCI and StatLib data sets for GPR taking EMC as the active learning method. The thresholds of MS are all 0.1.

Dataset		Initial	HPP	All		MS	SP	GRAD	OU	MC	ME
	Size	51.0	746.0	823.0	Δ_{Size}	15.0	-95.0	77.0	55.0	75.0	77.0
Concrete	Rmse	13.4535	5.4988	5.6037	Δ_{Rmse}	0.0347	1.1227	0.1049	0.0989	0.1044	0.1049
	Size	25.0	333.0	404.0	Δ_{Size}	6.0	-96.0	37.0	-8.0	69.0	71.0
Housing	Rmse	7.8891	3.2776	3.3266	Δ_{Rmse}	0.0192	1.4685	0.9982	0.7145	0.0493	0.0489
	Size	25.0	334.0	400.0	Δ_{Size}	6.0	-273.0	66.0	66.0	66.0	66.0
PM 10	Rmse	0.9443	0.8061	0.8078	Δ_{Rmse}	0.0011	0.065	0.0017	0.0017	0.0017	0.0017
*.** * 1	Size	79.0	963.0	1278.0	Δ_{Size}	204.0	-830.0	315.0	-884.0	-820.0	36.0
WineRed	Rmse	0.7987	0.6363	0.6386	Δ_{Rmse}	0.0018	0.2018	0.0023	0.1623	0.1521	0.0026

REFERENCES

[1] W. Cai, M. Zhang, and Y. Zhang. 2016. Batch mode active learning for regression with expected model change. *IEEE Transactions on Neural Networks and Learning Systems* (2016).

¹http://lib.stat.cmu.edu/datasets/