Deep Learning

MGTF 495

Class Outline

- Deep Learning
 - Motivation
 - History & Phases in Research of Artificial Neural Networks
 - Recent wave in Artificial Neural Network
 - Types of Neural Networks
 - Examples/Applications of Artificial Neural Networks

Motivation

• In human brain, billions of neurons interact with each other.

Motivation

- Idea is to replicate neurons in brain through Artificial Neuron.
- These artificial neurons interact with each other.

Class Outline

- Deep Learning
 - Motivation
 - History & Phases in Research of Artificial Neural Networks
 - Recent wave in Artificial Neural Network
 - Types of Neural Networks
 - Examples/Applications of Artificial Neural Networks

• 1950's: **Perceptron**, first neuron was developed by Rosenblatt et al.

- 1950's: **Perceptron**, first neuron was developed by Rosenblatt et al.
- 1970's: The Quiet Years Limitations of Perceptron was demonstrated by Minsky and Papert

- 1950's: **Perceptron**, first neuron was developed by Rosenblatt et al.
- 1970's: The Quiet Years Limitations of Perceptron was demonstrated by Minsky and Papert
- 1980's: Renewed Interest, Geoffrey Hinton demonstrated backpropagation algorithm.
 - Godfather of Deep learning.
 - At the time, he was PostDoc at UCSD.
 - Prof. at University of Toronto. Currently at Google Brain

- 1950's: Perceptron, first neuron was developed by Rosenblatt et al.
- 1970's: The Quiet Years Limitations of Perceptron was demonstrated by Minsky and Papert
- 1980's: Renewed Interest, Geoffrey Hinton demonstrated backpropagation algorithm.
 - Godfather of Deep learning.
 - At the time, he was PostDoc at UCSD.
 - Prof. at University of Toronto. Currently at Google Brain
- 1989: ConvNet, Yann Lecun came up with Convolutional Neural Network.
 - Prof. at New York University
 - Director of FAIR: Facebook AI Research.
 - Independently discovered backpropagation Algorithm.

- 1950's: **Perceptron**, first neuron was developed by Rosenblatt et al.
- 1970's: The Quiet Years Limitations of Perceptron was demonstrated by Minsky and Papert
- 1980's: Renewed Interest, Geoffrey Hinton demonstrated backpropagation algorithm.
 - Godfather of Deep learning.
 - At the time, he was PostDoc at UCSD.
 - Prof. at University of Toronto. Currently at Google Brain
- 1989: **ConvNet,** Yann Lecun came up with Convolutional Neural Network.
 - Prof. at New York University
 - Director of FAIR: Facebook AI Research.
 - Independently discovered backpropagation Algorithm.
- Research in Neural Networks died because
 - Required a lot of data.
 - Computation Intensive.

Class Outline

- Deep Learning
 - Motivation
 - History & Phases in Research of Artificial Neural Networks
 - Recent wave in Artificial Neural Network
 - Types of Neural Networks
 - Examples/Applications of Artificial Neural Networks

Recent wave in Artificial Neural Network

• It all began in 2012.

Recent wave in Artificial Neural Network

- It all began in 2012
- Image recognition challenge ImageNet
 - 1000 classes of images
 - ~ 1 Million training images.

Recent wave in Artificial Neural Network

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Winning team
 - o **10%** better than other teams.
 - Team members:
 - Alex Krizhevsky
 - Geoffrey Hinton
 - <u>llya Sutskever</u> Director at OpenAl

This competition renewed interest in Neural Networks.

ILSVRC-2012 results

ImageNet Results

- Over the years, accuracy on ImageNet has significantly improved.
- Today, the Deep learning models have better accuracy than humans.
- Later, we will see the trend in this area of research.

ImageNet Classification Error (Top 5)

The algorithm existed since 1990's, so why Now?

- The algorithm existed since 1990's, so why Now?
- Neural networks require a lot of data to train.

- The algorithm existed since 1990's, so why Now?
- Neural networks require a lot of data to train
- Require a lot of computations.

- The algorithm existed since 1990's, so why Now?
- Neural networks require a lot of data to train
- Require a lot of computations.
- These problems are now solved.
 - Lots of Data with the help of Internet/Mobile Devices
 - Amazon Mechanical Turk label data.
 - Lots of computational power GPU

Class Outline

- Deep Learning
 - Motivation
 - History & Phases in Research of Artificial Neural Networks
 - Recent wave in Artificial Neural Network
 - Types of Neural Networks
 - Examples/Applications of Artificial Neural Networks

- Most common variations of neural network architectures are:
 - Multilayer perceptron
 - Convolutional Neural Network
 - Recurrent Neural Network

- Most common variations of neural networks architecture are:
 - Multilayer perceptron
 - Convolutional Neural Network
 - Recurrent Neural Network

Multilayer Perceptron:

We will build most of our fundamental understanding with Multilayer

Perceptron(MLP)

- Most common variations of neural networks architecture are:
 - Multilayer perceptron(MLP)
 - Convolutional Neural Network(CNN)
 - Recurrent Neural Network(RNN)

• Multilayer Perceptron:

We will build most of our fundamental understanding with Multilayer

Perceptron(MLP)

- We will extend understanding of MLP into CNN.
- CNN's are typically used in Images/Videos related problems.
- Can be used to generate/draw images as well.

- Most common variations of neural networks architecture are:
 - Multilayer perceptron
 - Convolutional Neural Network
 - Recurrent Neural Network

• Multilayer Perceptron:

We will build most of our fundamental understanding with Multilayer

Perceptron(MLP)

Convolutional Neural Network:

- We will extend understanding of MLP into CNN.
- CNN's are typically used in Images/Videos related problems.
- Can be used to generate/draw images as well.

Recurrent Neural Network:

- Typically used to understand sequences, eg speech, text, etc.
- It can even be used to generate music.

Artificial Neuron

- We will talk only about intuition.
- We will study the mathematics later.

One neuron is connected to many other neurons

Artificial Neuron

- We will talk only about intuition.
- We will study the mathematics later.

Multiple layer Perceptron

- Multiple Neurons interact with each other.
- We introduce the concept of layer.
- Also called
 - Fully connected layer
 - Dense layers

Multiple layer Perceptron

- Multiple Neurons interact with each other.
- We introduce the concept of layer.
- Also called
 - Fully connected layer
 - Dense layers

Input layer -> Hidden layer -> Hidden Layer - > Output Layer

Multiple layer Perceptron

- Multiple Neurons interact with each other.
- We introduce the concept of layer.
- Also called
 - Fully connected layer
 - Dense layers

Input layer -> Hidden layer -> Hidden Layer -> Output Layer

Synaptic weights

- Most fundamental application of CNN:
 - Identify the objects.
 - Locate these objects in image.

- We will study about
 - Convolution
 - Pooling max pooling

- We will study about
 - Convolution
 - Pooling max pooling

- We will study about
 - Convolution
 - Pooling max pooling

convolution + pooling layers

- We will study about
 - Convolution
 - Pooling max pooling

- We will study about
 - Convolution
 - Pooling max pooling

Recurrent Neural Network

• Recurrent Neural Networks targets sequential/temporal information.

He is drinking Orange _____

†

Juice can be inferred from previous words/context

Recurrent Neural Network

- Recurrent Neural Network targets sequential/temporal information.
- RNN Cell has memory/state which stores information/context from the past.

- Recurrent Neural Network targets sequential/temporal information.
- RNN Cell has memory/state which stores information/context from the past.
- At every time instant,
 - They have a state

- Recurrent Neural Network targets sequential/temporal information.
- RNN Cell has memory/state which stores information/context from the past.
- At every time instant,
 - They have a state
 - accept
 - new input.

- Recurrent Neural Network targets sequential/temporal information.
- RNN Cell has memory/state which stores information/context from the past.
- At every time instant,
 - They have a state
 - accept
 - new input.
 - past context.

- Recurrent Neural Network targets sequential/temporal information.
- RNN Cell has memory/state which stores information/context from the past.
- At every time instant,
 - They have a state
 - accept
 - new input.
 - past context.
 - update their memory/state.

- Recurrent Neural Network targets sequential/temporal information.
- RNN Cell has memory/state which stores information/context from the past
- At every time instant,
 - They have a state
 - accept
 - new input.
 - past context.
 - update their memory/state.
 - Generate an output.

Recurrent Neural Network: Unrolled in time

An unrolled recurrent neural network.

RNN and LSTM Cell

- LSTM: Long Short Term Memory
- RNN Cell specialized to remember past information/context.
 - LSTM Cell solves vanishing gradient problem seen in RNN Cell.(discussed later)
- Introduced in 1997
- Variants
 - Gated Recurrent Unit(GRU).

Class Outline

- Deep Learning
 - Motivation
 - History & Phases in Research of Artificial Neural Networks
 - Recent wave in Artificial Neural Network
 - Types of Neural Networks
 - Examples/Applications of Artificial Neural Networks

Applications of Artificial Neural Networks

- Recognize digits.
- Widely used in Cheque deposit machines.

Applications of Convolutional Neural Networks

Visual Question Answering

woman

Who is wearing glasses?

Where is the child sitting? fridge arms

How many children are in the bed?

Applications of Convolutional Neural Networks

Image captioning

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

Image Captioning

Applications of Recurrent Neural Networks

Applications of Recurrent Neural Networks

- Train on Wikipedia, and they can summarize the articles.
- They can write software codes.
- Generate Music.
- Video classification.

Frameworks

- Neural networks are difficult to write from the scratch.
- There are standard libraries/frameworks, which can run parallely code on GPU
 - Theano University of Montreal.
 - Caffe Berkeley
 - TensorFlow Google
 - PyTorch Facebook
 - Keras A wrapper on top of TensorFlow/Theano
- In this course, we will use **Keras** framework with tensorflow backend.

State of the art network/applications

- Object Detection
- Object Segmentation
- Generative Networks