Matrix Basics

Shusen Wang

Vector and Matrix

Vector (*n*-dim)
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Matrix
$$(m \times n)$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Additions

Vector Addition

- Given $n \times 1$ vectors: $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^n$.
- Vector addition: $\mathbf{c} = \mathbf{a} + \mathbf{b} \in \mathbb{R}^n$.

Vector Addition

- Given $n \times 1$ vectors: $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^n$.
- Vector addition: $\mathbf{c} = \mathbf{a} + \mathbf{b} \in \mathbb{R}^n$.

Pseudo Code

- Initialization: $\mathbf{c} \leftarrow [0, 0, \dots, 0]$.
- For i = 1 to n:

$$c_i \leftarrow a_i + b_i$$
.

Time complexity: O(n).

Matrix Addition

- Given $m \times n$ matrices: $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- Matrix addition: $C = A + B \in \mathbb{R}^{m \times n}$.

Matrix Addition

- Given $m \times n$ matrices: $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$.
- Matrix addition: $\mathbf{C} = \mathbf{A} + \mathbf{B} \in \mathbb{R}^{m \times n}$.

Pseudo Code

- Initialization: $C \leftarrow m \times n$ all-zero matrix.
- For i = 1 to m:
 - For j = 1 to n:

$$c_{ij} \leftarrow a_{ij} + b_{ij}$$
.

Time complexity: O(mn).

Multiplications

Vector Inner Product

- Given vectors: $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^n$.
- Vector inner product: $c = \mathbf{a}^T \mathbf{b} = a_1 b_1 + \dots + a_n b_n$.

Vector Inner Product

- Given vectors: $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^n$.
- Vector inner product: $c = \mathbf{a}^T \mathbf{b} = a_1 b_1 + \dots + a_n b_n$.

Pseudo Code

- Initialization: $c \leftarrow 0$.
- For i = 1 to n:

$$c \leftarrow c + a_i b_i$$
.

Time complexity: O(n).

- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^n$.
- Vector inner product: $\mathbf{c} = \mathbf{Ab} \in \mathbb{R}^m$.

- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^n$.
- Vector inner product: $\mathbf{c} = \mathbf{Ab} \in \mathbb{R}^m$.

- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^n$.
- Vector inner product: $\mathbf{c} = \mathbf{Ab} \in \mathbb{R}^m$.

- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^n$.
- Vector inner product: $\mathbf{c} = \mathbf{Ab} \in \mathbb{R}^m$.

Pseudo Code

- Initialization: c ← all-zero vector.
- For i = 1 to m:
 - For j = 1 to n:

$$c_i \leftarrow c_i + a_{ij} b_i$$
.

Time complexity: O(mn).

- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{B} \in \mathbb{R}^{n \times p}$.
- Vector inner product: $C = AB \in \mathbb{R}^{m \times p}$.

- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{B} \in \mathbb{R}^{n \times p}$.
- Vector inner product: $C = AB \in \mathbb{R}^{m \times p}$.

- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{B} \in \mathbb{R}^{n \times p}$.
- Vector inner product: $C = AB \in \mathbb{R}^{m \times p}$.

- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{B} \in \mathbb{R}^{n \times p}$.
- Vector inner product: $\mathbf{C} = \mathbf{AB} \in \mathbb{R}^{m \times p}$.

Pseudo Code

- Initialization: C ← all-zero matrix.
- For i = 1 to m:
 - For k = 1 to p:
 - For j = 1 to n:

$$c_{ik} \leftarrow c_{ik} + a_{ij} b_{jk}$$
.

Time complexity: O(mnp).

Summary

Addition

- Given vector $\mathbf{a} \in \mathbb{R}^n$ and vector $\mathbf{b} \in \mathbb{R}^n$.
- Given matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and vector $\mathbf{B} \in \mathbb{R}^{n \times n}$.

- Vector addition: c = a + b.
- Time complexity: O(n).

- Matrix addition: C = A + B.
- Time complexity: $O(n^2)$.

Multiplication

- Given vector $\mathbf{a} \in \mathbb{R}^n$ and vector $\mathbf{b} \in \mathbb{R}^n$.
- Given matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and vector $\mathbf{B} \in \mathbb{R}^{n \times n}$.
- Vector-vector product: $c = \mathbf{a}^T \mathbf{b}$.
- Time complexity: O(n).
- Matrix-vector product: $\mathbf{c} = \mathbf{A} \mathbf{b}$.
- Time complexity: $O(n^2)$.
- Matrix-matrix product: C = A B.
- Time complexity: $O(n^3)$.

Questions

Vector and Matrix Norms

• Given $n \times 1$ vector **a** and $m \times n$ matrix **B**.

Question: What are the costs of computing the following norms?

- Vector ℓ_1 -norm: $||\mathbf{a}||_1 = |a_1| + |a_2| + \dots + |a_n|$.
- Vector ℓ_2 -norm: $||\mathbf{a}||_2 = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$.
- Matrix Frobenius norm: $||\mathbf{B}||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n b_{ij}^2}$.

Thank You!