Machine Learning – COMS3007

Reinforcement Learning

Benjamin Rosman

Previously on ML...

 We've seen how to solve many cool problems around supervised and unsupervised learning

- Why do we make predictions on data?
 - Usually so a human can make better decisions
- Decision making itself is important in intelligence
 - How do we automate this?

And now for something completely different...

- Reinforcement learning is the branch of machine learning relating to learning in sequential decision making settings
- Also think of as behaviour learning
- Supervised learning: single decision point
- Multiple decision points
 - How do I know if I'm doing the right thing?
 - How do my decisions now impact the future?
 - Actions affect the environment!

Interacting with the environment

- Decision maker (agent) exists within an environment
- Agent takes action a_t based on the environment state s_t
- Environment state updates $s_{t+1} \leftarrow s_t$
- Agent receives feedback as rewards r_t

Modeling the problem

"Future is independent of the past, given the present"

 Markov Decision Process (MDP)

$$M = \langle S, A, T, R \rangle$$

- States: encode world configurations
- Actions: choices made by agent
- Transition function: how the world evolves under actions

$$T(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$$

Rewards: feedback signal to agent

$$R(s,a) = E[r_t|s_t = s, a_t = a]$$

E[.] = "expected" (think of as the average reward)

An example

- Cleaning Robot
- States:
 - Position on grid e.g. S is (1,1), goal (4,3)

Actions:

- Reward:
 - +1 for finding dirt
 - -1 for falling into hole
 - -0.001 for every move

Optimal behaviour:

Policies

- A **policy** (or behaviour or strategy) π is any mapping from states to actions
 - Deterministic or stochastic

$$\pi(a|s) = P(a_t = a|s_t = s)$$

- Optimal policy π^*
 - Accumulates maximal rewards over a trajectory
 - This is what we want to learn!

Immediate vs delayed rewards

- Cannot just rely on the instantaneous reward function
 - Tradeoff: don't just act myopically (short term)

- Notion of value to codify the goodness of a state, considering a policy running into the future
 - Represented as a value function

Value functions

- Value function:
 - The expected return (R) starting at state s and then executing policy π

$$V^{\pi}(s) = E_{\pi}\{R_t | s_t = s\} = E_{\pi}\{\sum_{t=0}^{\infty} \gamma^t r_{\pi(s_t)}(s_t, s_{t+1})\}$$

accumulated reward

• "How good is s under π ?"

Discounting: future

Example

Reward -1 for every move

Example

Optimal policy

a) gridworld

b)
$$v_*$$

c) π_*

Value functions: recursion

- V(s) ⇒ expected return starting at s and following π
 - Suggests dependence on V(s') from next state s'
- Bellman Equation:

$$\begin{array}{c|c} V^{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V^{\pi}(s') \\ \text{value of s reward for all probability possible of reaching next that state states with } \pi \\ \end{array}$$

Value functions: optimality

- Similarly, for an optimal policy π* with optimal value function V*:
- Bellman Optimality Equation:

$$V^*(s) = \max_a \{R(s,a) + \gamma \sum_{s'} T(s,a,s') V^*(s')$$
 take the best possible action

- Note: the optimal value function V* gives us the optimal policy π^*
 - Choose the action that leads to the best next state

Solving Bellman

Given the Bellman equation:

$$V^*(s) = \max_{a} \{ R(s, a) + \gamma \sum_{s'} T(s, a, s') V^*(s') \}$$

- Solve this as a large system of value function equations
 - But: non-linear (max operator)
 - So: solve iteratively
- What are we trying to do here?
 - Learn how good each state of the world is, when looking perfectly into the future

Dynamic programming

- Value Iteration: dynamic programming
- Iteratively update V (synchronous version)
 - At each iteration i:
 - For all states $s \in S$:
 - Update *V*(*s*):

$$V_{i+1}(s) := \max_{a} \left\{ \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma V_i(s') \right) \right\}$$

- But: this requires the full MDP!!
 - In general, T and R are unknown

Learning from experience

- T and R unknown!
- Instead, generate samples of training data (s, a, r, s') from environment
- Learn from experience
- We need:
 - A way to choose actions
 - A model to store knowledge
 - Value function

Action selection

- How do we collect data from the environment?
 - Run the best policy we have at the moment
 - But how does that learn anything new??
- Exploration/exploitation tradeoff!
 - Sometimes exploit what we have already learned
 - Other times try something new
- ϵ -Greedy (0 < ϵ \leq 1):
 - With probability 1ϵ exploit
 - Choose the best action for a state from π
 - With probability ϵ explore
 - Randomly choose action

TD learning

- Temporal Difference (TD) Learning:
 - Initialise V for all $s \in S$
 - For each episode:
 - Reset state s
 - Until episode terminates:
 - Choose action a (ϵ -greedy)
 - Execute a
 - Receive new state s' and reward r
 - Update V using (s, r, s'):

$$V_{i+1}(s) \leftarrow V_i(s) + \alpha \overbrace{(r + \gamma V_i(s') - V_i(s))}^{learnt \ value}$$
 Learning rate TD error

a

• $s \leftarrow s'$

Learning curves

But the world is continuous!

Function approximation

Instead of learning the best action for every state...

Use a **neural network** to learn a representation of the value function

i.e. a mapping from states to value/actions

Import the whole deep learning toolbox into RL

Backgammon

TD-Gammon: Tesauro (1992-1995)

- Learn to play Backgammon through self-play
- 1.5 million games
- Neural network function approximator

States = board configurations (
$$\approx 10^{20}$$
)
Actions = moves
Rewards =
$$\begin{cases} 1 \ win \\ -1 \ lose \\ 0 \ else \end{cases}$$

At/near best human play
Changed the way the best human players played

Atari

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.

video: Two Minute Papers

Atari results

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S., 2015. Human-level control through deep reinforcement learning. *Nature*, *518*(7540), pp.529-533.

But these are simple games!

- Go
 - 361 moves
 - $\sim 10^{174}$ states
 - Adversarial!

What is the complexity of real-world decisions?

And more games...

Increasing complexity

Learning skills

What about learning reusable skills?

- Local controllers / temporally-extended actions
- Use to solve new tasks faster

How?

Watch human demonstrations

Learn how to achieve commonly occurring goals

[•] P. Ranchod, B. Rosman, G. Konidaris. Nonparametric Bayesian Reward Segmentation for Skill Discovery Using Inverse Reinforcement Learning. International Conference on Intelligent Robots and Systems, 2015.

[•] M. Hiratsuka, N. Makondo, B. Rosman, O. Hasegawa. Trajectory Learning from Human Demonstrations via Manifold Mapping. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016.

Effects of skills

Given skills, can we learn:

- When to use them?
 - Preconditions
- What they do?
 - Effects

Then we can plan over long horizons with them

[•] S. James, B. Rosman, G. Konidaris. Learning to Plan with Portable Symbols. ICML/IJCAI/AAMAS 2018 Workshop on Planning and Learning, 2018.

[•] S. James, B. Rosman, G. Konidaris. Learning Object-Centric Representations for High-Level Planning in Minecraft. Object-Oriented Learning (OOL): Perception, Representation, and Reasoning Workshop at ICML, 2020.

[•] S. James, B. Rosman, G. Konidaris. Learning Portable Representations for High-Level Planning. International Conference on Machine Learning, 2020.

Learning models

In complex settings, we may need to learn more about **generalisable** components of the environment

Learn **models**:

- Dynamics
- Object interactions

[•] B. van Niekerk, A. Damianou, B. Rosman. Online Constrained Model-based Reinforcement Learning. Uncertainty in Artificial Intelligence, 2017.

[•] O. Marom, B. Rosman. Zero-Shot Transfer with Deictic Object-Oriented Representation in Reinforcement Learning. Advances in Neural Information Processing Systems (NeurIPS), 2018.

O. Marom, B. Rosman. Utilising Uncertainty for Efficient Learning of Likely-Admissible Heuristics. International Conference on Automated Planning and Scheduling (ICAPS), 2020.

 $touch_{North}(Person, Wall)$ $Person. y \qquad \phi$ $\leftarrow Person. y + 1$

 $\sim 8k$ states

 $\sim 1M$ states

Composing behaviours

Given that we can learn these skills, how do we maximise their utility?

• Can we learn to **combine** them to solve new problems?

- · A. Saxe, A. Earle, B. Rosman. Hierarchy Through Composition with Multitask LMDPs. International Conference on Machine Learning, 2017.
- A. Earle, A. Saxe, B. Rosman. Hierarchical Subtask Discovery with Non-Negative Matrix Factorization. International Conference on Learning Representations, 2018.
- B. van Niekerk, S. James, A. Earle, B. Rosman. Composing Value Functions in Reinforcement Learning. International Conference on Machine Learning, 2019.
- G. Nangue Tasse, S. James, B. Rosman. Logical Composition for Lifelong Reinforcement Learning. 4th Lifelong Learning Workshop at ICML, 2020.
- G. Nangue Tasse, S. James, B. Rosman. A Boolean Task Algebra for Reinforcement Learning. Advances in Neural Information Processing Systems (NeurIPS), 2020.
- V. Cohen, G. Nangue Tasse, N. Gopalan, S. James, M. Gombolay, B. Rosman. Learning to Follow Language Instructions with Compositional Policies. AAAI Fall Symposium on AI for Human-Robot Interaction, 2021.
- G. Nangue Tasse, S. James, B. Rosman. Generalisation in Lifelong Reinforcement Learning through Logical Composition. NeurIPS Deep Reinforcement Learning Workshop, 2021.

- Deliver mail from the mail room to the appropriate recipients in the office.
- Then deliver coffee to the office, until there are no more orders.
- Then keep patrolling between 4 locations.
- Avoid collisions with delicate objects throughout the whole procedure.

Human-Robot Interaction

- React faster to changes in human behaviour
- Adapt to different humans
- Learn to take advice from humans
- Teach humans

- B. Rosman, M. Hawasly, S. Ramamoorthy. Bayesian Policy Reuse. Machine Learning Journal, 104(1), pp. 99-127, 2016.
- O.C. Görür, B. Rosman, G. Hoffman, S. Albayrak. Toward Integrating Theory of Mind into Adaptive Decision-Making of Social Robots to Understand Human Intention. Workshop on the Role of Intentions in Human-Robot Interaction at the International Conference on Human-Robot Interaction, 2017.
- O.C. Görür, B. Rosman, F. Sivrikaya, S. Albayrak. Social Cobots: Anticipatory Decision-Making for Collaborative Robots Incorporating Unexpected Human Behaviors. ACM/IEEE International Conference on Human-Robot Interaction, 2018.
- O.C. Görür, B. Rosman, S. Albayrak.. Anticipatory Bayesian Policy Selection for Online Adaptation of Collaborative Robots to Unknown Human Types. International Conference on Autonomous Agents and Multiagent Systems, 2019.
- T. Love, R. Ajoodha, B. Rosman. Should I Trust You? Incorporating Unreliable Expert Advice in Human-Agent Interaction. Workshop on Human-aligned Reinforcement Learning for Autonomous Agents and Robots at ICDL, 2021.
- S. Singh, B. Rosman. The Challenge of Redundancy on Multi-Agent Value Factorisation. NeurIPS Workshop on Cooperative AI, 2021.

Human-Robot Interaction

Applications

- Medical (diagnostic behaviour)
- Education (personalised content)
- Robotics (learning generalisable behaviour)
- Logistics (autonomous fleet coordination)
- Agriculture (maximising crop yield)
- Bio-sciences (controlling invasive species)

•

[•] G. Singh, C. Reynolds, M. Byrne, B. Rosman. A Remote Sensing Method to Monitor Water, Aquatic Vegetation, and Invasive Water Hyacinth at National Extents. Remote Sensing 2020, 12(24), 4021.

[•] H. Combrink, V. Marivate, B. Rosman. A Framework for Undergraduate Data Collection Strategies for Student Support Recommendation Systems in Higher Education. Southern African Conference for Artificial Intelligence Research, 2021.

Thank you!

Thanks to our funders:

ORGANIZATION FOR WOMEN IN SCIENCE FOR THE DEVELOPING WORLD

