(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-27757

(43)公開日 平成11年(1999)10月12日

51) In:. Cl. "	識別記号	庁内整理番号	F I	技術表示箇所			
B29C 45/16			B29C 45/16				
45/70			45/70				
45,776			45/76				
'/ B29L 9 00							
			審査請求	未請求 請求項の数3 OL (全7頁)			
21)出願番号	特願平11-18	7 3 6	(71)出願人	0 0 0 0 0 3 3 2 2			
				大日本塗料株式会社			
(22)出願日	平成11年(19	99)1月27日		大阪府大阪市此花区西九条6丁目1番12			
				4 号			
(31)優先権主張番号	特願平10-14	2 3 9	(72)発明者	米持 建司			
32)優先日	平10(1998			愛知県小牧市三ツ渕字西ノ門878 大日			
33)優先権王張国	日本 (JP)			本塗料株式会社小牧工場内			
			(72)発明者	山本 義明			
				受知県小牧市三ツ渕字西/門878 大日			
				本塗料株式会社小牧工場内			
			(74)代理人	弁理士 山下 穣平 (外1名)			

(54)【発明の名称】型内被覆方法

(£7)【要約】

【課題】 射出成形、射出圧縮成形、射出プレス成形法による成形型内で、合成樹脂成形材料の成形後、その同一成形型内で成形品の表面に被覆剤をコーティングする際、成形品の厚肉部の盛り上がり現象の発生を防止し、高い品質の被覆成形品を製造できる型内被覆方法を提供する。

【解決手段】 台成樹脂成形材料を成形後、その同一成形型内で、得られた成形品の表面に被覆剤をコーティングするさいに、成形品の表面が被覆剤の注入圧力、流動圧力に耐えうる程度に硬化又は固化した段階で、被覆剤を成形品の表面に注入すること及び被環剤圧入後の再度型締めが所定の多段可変型締め圧力及び型結め圧力移行時間の条件下で実施されることよりなる型内被覆方法。

【特許請求の範囲】

【請点項1】 射出成形法、射出圧縮成用法または射出プレス成形法による、固定金型部と可動室型部からなる成形型内で型縁め圧力をかけて合成樹脂成形材料を成形後、その同一成形型内において上記型締め圧を低減し、あるいは固定金型部と可動金型部を離間して成形型内と表面と再られた成形品の表面と可聞に被覆剤を注入すること及び再度型締めを行ない作ら該成形品の表面を許被覆剤で被覆することによりなる、成用品の型内被覆方法において、

(1) 上記成形品の表面が、被覆剤の任入圧力、流動圧力に耐えうる程度に硬化または間化した段階で、上記被 複剤の住入が行われること、

(2)被覆剤在入後の上記再度型線がが測定の多段可変 式の型締め圧力及び型締め圧力移行時間の条件下で実施 されることを特徴とする製内被覆方法。

【請水項2】 上記成形型がジェアエッジ構造を有する 請水項1に記載の型内被覆方法。

【請求項3】 上記所定の多段可及式の型締め圧力及び型締め圧力移行時間の条件が、初期段階での型締め圧力が10kgf cm²~100kg1。cm²(成形品投影面積当たり)で型締め圧力移行時間かり、5秒~20秒であり:中間段階での型締め圧力が初期段階のそれの20%~30にで、型締め圧力移行時間かり、1秒~5秒、型締め至力保持時間かり、5秒~20世であり:最終段階の至れの40%~200%で、型締め圧力移行時間が0、1秒~5秒、型締め圧力保持時間が1地以上である請求項1または請求項2に記載必要的被覆方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、台成樹脂成形材料 を射出成形法、射出圧縮成形法あるいは射出プレス成形 法などによる成形型内で成形し、得られた台成樹脂成形 品の表面を、その成形型内で被覆剤を住入することによ り被覆する型内被覆方法に関する。

[00002]

【徒中の技術】型内被覆方法は、成用品表面の品質向上 件下でま 及び塗装工程の短縮を目的として、利用されている。特 40 される。 に外観及び品質に対する要求度の高い自動車において 【0006 は、その外板や外装部品等に広く利用されている。 肝材料を

【6003】このような型内被関方法としては、例えば USP4076788号、USP4081578号、U ST4331735号、USP4366109号、US P4668460号、特開平5-301251号公報 特開平5-313527号公報 特開平8-14211 9号公執等において開示されている。

[0004]

【発明が解制しようとする課題】これら特許公報に記載 50 € (シートモールディングコンハウンド) 及びBMC

されている方法では、成刑型内で合成樹脂成刑材料を成 **刑後、成刑型内表面と得られた成形品表面との間に被覆** 剤を注えする際の型締め圧力や全型離間の規定はあるも のの、被覆創在人後の型締め圧りの規定については、ほ とんどほ音が払われておらず、一定圧力で型締めされて いる。被覆創在大夜の聖締め圧力により、すなわち任人 した被覆剤に対する圧力によって、成形品のリブキボス といった厚肉部は圧縮され、その部分の被覆剤は厚くな り、その状態で被覆剤は硬化される。その後型締め爪を 10 開放し、被覆された成形品を金型から取り出す。本発明 者等はこの型締め圧を開放する時、被覆剤によって圧縮 されていたリフやホス部がスプリングパック現象によっ て見され、盛り上かり、外観上の勿陥となりやすいこと を見出した。この現象は、被覆剤在人時の成形樹脂の硬 化(固化)度合い、強性圧縮され易さも影響されるか。 特に被覆剤狂人後の関絡め圧が高いと生しやすいことが 確認された。

【0005】本発明の目的は上記事情に基づいて、射出成形、射出圧縮成形、射出プレス成形などによる成形型内での合成樹脂成形材料の成形後に、その同一成形型内で、成平晶の表面に被覆剤をコーティングする際、成形品の厚内部の盛り上かり現象(ハンフ現象)の発生を防止し、得られる被覆された成形品の高い品質を確保できる個内被覆方法を提供するものである。

[00006]

【課題を解決するための手段】本色明に従って、知出内 形法、射出圧縮成形法または射出プレフ成刑法による固 定金型部と可動金型部からなる成形型内で型締め圧の かけて上記型締め圧を低減し、あるいは固定金型部との 動金型部を観問して成刑型内では固定金型部との 動金型部を観問して成刑型内では固定金型部との の生の診成形晶の表面を結び複ですることに就明 なる。成形晶の型内で表面をお被覆することに認明 なる。成形晶の型内で表面とおいて、(1)上記成形 なる。成形晶の型内で表したで、(1)上記成形 といて、では固化した段階の正対に耐えらる程 現に使化又は固化した段階で、上記被覆剤のほとが所定 なること、(2)被覆剤は入めの上記再度型締めが所定 の多段可要式の型締め圧力及び型締め圧力移行時間の条 件下で実施されることを特徴とする型内被覆方法が提供 なれる。

【0007】 本発明によれば、成形型内にて含成樹脂成 形材料を成形後、成形型内に被覆剤を任うし、成形型内 で被覆剤を均一に押し広げ、硬化する際、成形品の形 状、力きさなとに応した、選択な多段可変型緒が圧力を 保持しながら、被覆着を全成樹脂或用品書面に被覆する まのである。

【のアロス】本発明において使用される含成樹脂或形材料としては、不飽和ホリエスで用樹脂等の熱硬化性樹脂をマトリックスとする繊維強化するスチックであるがM

(パルクモールディングコンパウンド)などの熱硬化性合成樹脂材料やボリエチレン、ポリプロピレン、アルリロニトリル・ブタンエンースチレン共重合体、ボリカーボネート、ホリアミド、ホリエチレンテレフタレート、ポリフチレンテレフタレート、変性ボリフェエレンエーテルなどの熱可塑性合成樹脂材料あるいはごれらの下ロイ材、更にはこれらに繊維状あるいは鱗片状のフィューを配合したもの等が挙げられる。

【0009】また、本発明において使用される核覆剤は、従来から気知の各種型内核覆用被覆剤が利用出去、例えば、特開昭54-36369号、特開昭54-13962号、特開昭55-65511号、特開昭57-140号、特開昭60-212467号、特開昭60-221437号、特開平1-229605号、特開平5-70712号、特開平5-148375号、特開平6-107750号、特開平8-113761号等の三報に記載の被覆剤が代表的なものとして挙げられる。

[0011]

【発明の実施の形態】以下、4発明の型内被覆方法を実 施するための射出成形機の構成およひその成形型を、図 面を参照して、具体的に説明する。図1において、符号 1は射出成形機の型締め装置の固定盤、2は可動盤であ り、それぞれ互いに対向する成形型部材である固定至型 部3および可動全型部4を備えている。可動盤とが型締 めションク5によって進退動作される構成になってい る。そして、固定金型部3および可動金型部4の低合個 40 所には、所要形状のキャビディもか形成されていて、こ の中に溶離もしては軟化状態の合成樹脂成形材料を貼 出、充葉し、硬化まるいは固化するのである。溶融合成 樹脂成形材料を射出、充填する場合。上記キャビティ 6 には、スクリューを有する射出。リンダでから、アズル とおよびアプルータを介して、台灣樹脂域形材料が射出 できるようになっている。なお、気中、荷号10はリブ 部の大ス部)1)は離野時のエジュウタビンである。

【0(1.2】また、固定金型を基準可動金型すの低分偶 $0...5 \sim 2.0$ 時に対す好ました。なお、型締め圧力が可認範所にジェアエッジ構造部分が形成されており、このジェー 50... 囲まり低いと成形品全面に均一な被膜が形成しに引っな

アエッジ構造部分に低合溝(図示されず)を設けて、こ こにローリングなどの弾性シール材を嵌合し、シェアエッジ構造部の被覆剤に対するシール性を向上させている。

【0013】一方、図1において被覆剤の任入手段としては、シャットすつピン1とAを備えたインシェクタ1 2、上記インシェッタ12に再定量の被覆剤を供給する 被覆剤計量シリンダ13おより被覆剤をその貯蔵部14 から上記計量シリンダ13に供給するための供給ホンプ 15が装備されている。なお、上記計量シリンダ13に は被覆剤狂人用のプランシャー・レキュレータ13Aか 備まられている。

【0014】しかして、成形に際しては、先ず、型絲砂シリンタ5を動作して、金型(固定金型部3と可動金型部4)を閉じ、型絡め圧を付加する。この型絡め圧は、台成樹脂成形材料の射出圧力に対抗できる必要がある。通常この射出圧力は、ファルをの部分で400~2、500と度子。cm。の高圧である。この過程で、供給する、計量シリンタ13に必要な量の被獲剤を供給する。

【0015】次いで、射出ンリンクでから、溶融もしくは軟化状態の合成樹脂成形材料がプブル8を経由して手をピティ6内に射出される。上記合成樹脂成形材料が変更内で適正に(被関剤の任人圧力・流動圧力に耐える健康に)硬化あるいは固化した段略で、上記型絡が生る程度に開放する。次いで、インシェクク1合は高れない程度に開放する。次いで、インシェクク1合は高いで、計量シリンタ1合の被関剤住入用のプランジャー・レキュレータ1合Aを動作し、キャルティがよりである。の問題と合成機能成形品表面との間に被関剤を任入、充填させる。

【0016】被覆剤狂入後、再びシャットオフピン12 入で化入口を関し、型締めシリンク5を動作させ型締め 操作を行い、型内で被覆剤を抽散させ成生品表面での被 覆を達成するのである。この場合、4発明では、被覆剤 任入後の型締めシリンク5の動作速度及び圧力を適当な 制御系で制御することにより、図2に示すように多段可 変式、例えば3段階の型締む圧力と速度で型締めを行 い、被覆剤を硬化させる。

【0017】この適正な型総以上力と連要(すなわち型総め圧力移行時間と型総め圧力保持時間)は、キャビディもの大きさや形状、また被覆剤の種類等により多分変動するか、リフ部及びオス部のハンブ防止や被覆された。 式川品の高品質化の観点からすの条件が好ましい。

《初期段階ン型経め圧力は、10~100kgf ← m → 成用品投資面積当たり、1分析まして、また型締め圧力移行時間は、0.5~10秒、型締め圧力保持時間は0.5~20秒で好ました。なお「型締め圧力が可認範囲:0.低いと成用品を確に均一な被膜が形成した。これない。

40

り、害着性も低下する傾向にあり 逆に前記範囲より高 いとハンプ防止効果が低下する傾向にある。

【0018】また、型締め圧力移行時間が前記範囲より 短いと被覆剤に気泡が入りやすり、顔料の分離が生じや すぐなる傾向にあり、逆に前記範囲より長いと被膜にご ワープレ等が生しやすくなる傾向にある。

【りり19】また型締め圧力保持時間が前記範囲より短 いと被膜の密着性が低下する傾向にあり、逆に前記範囲 より長いとハンプ防止効果が低下する傾向にある。

<中間段階>型締め圧力は、初期段階のそれの20~8 10 0 %が好まして、型締め圧力移行時間は、0 、 $1\sim5$ 秒、型締め圧力保持時間は0 5~20秒が好ましい。

【りり20】なお、型締め圧力が前記範囲より低いこ初 期段階との圧力差が大きくなり、その反動により被膜中 に気泡を吸い込み易くなり、シワも生しやすぐなる傾向 にあり、逆に前記範囲より高いとハンブ防止効果が低下 する傾向にある。

【0021】また型締め圧力移行時間が前記範囲より短 いと被膜中に気泡を吸い込みやすくなる傾向にあり、逆 に前記範囲より長いと被膜にシワが生じやすくなる傾向 20 剤を硬化させた。 にある。

【りり22】また、型締め圧力保持時間が前記範囲より 短いと被膜の密着性が低下する傾向にある。

<最終段階>最終段階は、中間段階と同一条件でそのま ま糊続させて型締めしておくことも可能である。

【0023】しかしなから型締め圧力は初期段階よりは 低く、かつ中間段階のそれの40~200%が好まし イ、型締め圧力移行時間は、 0 、 1 ~ 5 秒、型締め圧力 保持時間は、1秒以上が好ましい。型締め圧力保持時間 の上限は特にないが、40~120秒が適当である。な 30 お、型締め圧力が前記範囲より低いと被膜の密着性が低 下する傾向にあり、逆に前記範囲より高いと成形品脱型 時に被膜にワレが生しやすくなる傾向にある。

【0024】また型締め圧力移行時間、型締め圧力保持 時間は、中間段階での説明と同様の傾向がある。

【6025】上述の実施の単態において重要なことは、 被覆剤在入後の型締め圧力を多段階にかつ、その型締め 圧力移行時間を制御することで、成刑品のリブ及びホス 部の盛り上がり(ハンフ)の発生を避け、高い品質を確 保する条件となる。

[0026]

【実施例】以下、実施例を学けて本発明を更に詳細に説 明するが、本発明はこれらの実施例により何らその範囲 を喰定するものではない。

[実施例-1] 長さ200mr.、幅150mm、高さ1 りmm、リブ部の幅1mm、終さ5mmの箱形状の合成 樹脂式も品を得るためのキャビティを有する固定企業部 と可動電型部が日なる意動内で、成形品に対する型内被 慶を実施する場合に、上記金型温度として固定金型部3 を120℃、可動金型部4を115℃に設定して、先ず 56 【0032】注・充了後 型絲と圧力を5秒かけて40

ポリアミド樹脂を射出シリンダーで内に充填し、220 ~340℃に加熱溶融し、300トン(1000kg f シ c m~:成刑品の投影面積当たりにの型締め圧力で型 経めされた金型内に約4秒かけて射出し、10秒間冷却 し、得られた成形品の表面が被覆剤の往入圧力、流動圧 力に耐え得る程度に固化させた。

【002~】次いで、型締め圧力を5トン(1~にょす (m) 成形記の投影面積出たり)に緘圧した後、ウ し タンアクリレートオリコマーヒエポキシアクリレート オッコマーとを主成分とする被覆剤A(表1参照)を計 量ションタ13に、3cm 計量した。そして、キャビ ティもに約3秒かけて往入した。

【60028】在入完了後、型締め圧力を2種がけて21 シンス70kg1 「c m」、成形品の投景面積当たり; まで加圧し、5秒間保持した。次いで、聖経の圧力を1 わかけて10トン(33kgficm)、成用品の投影 面積当たりにに減圧し、10秒間保持した後、さらに製 緒め圧力を1秒かけで5トン(17kg(「cm」、成 形品の投幕面積当たり)に威圧し、60秒間保持し被覆

【ロり29】得られた被覆成形品のリフ部の盛り上がり 量を表面形状測定器 」(株)東京精密往製 商品名「サ ー フコム:] により断面曲線から求めたところ1. 5 μ mのパンプ(盛り上がり)であり、平滑な表面であっ

[北較色]] 実施例-1 2 同一条件にて、被覆剤ほ入 まで行った。すいで、被覆剤狂ス院丁後、型締め圧力を こわかけて21トン(70kgficm)、成形品の投 影面積当たり」とし、75秒間保持し被覆剤を硬化させ 12.

【0030】得られた被覆成形品のリフ部の盛り上かり 量は、20、0μmであり、平滑性にある表面であっ

「集施例-2」直径370mm、リブ部の幅1、8m m、繰さる0mmのポイルカバー形状の台成樹脂成形品 を得るためのキャビティを有する企型で、上記金型の圓 定金型部3を120℃、可動金型部4を115℃に設定 して、先す後性ホリフェニレンエーテル機脂を射出シリ シター内に充填し、250~270℃に加熱溶融し、5 - ロウトン(500kgf^cm)、成形品の投幕面積当 たり、こ聖緒場圧力で聖締めされた金型内に約5秒かけ て射出し、約20秒間冷却し、得られた成形品の表面が 被覆削心证人压力、流動压力に耐え得る程度に固化させ

【0021】 沈いで、転締め圧力を10トン(1(kg forcer 、八世品の投影面積当たり。に滅圧した後 ウレタンアグリに一トオロゴマーを主成分とする被覆剤 E (ま1参則) を計量シリング13に 10cm 計量 した。守して、キャビディ6に約4秒がけて注すした。

î

トン(40kgfzcm)、成刑品の投業面積当たり) まで加圧し2秒間保持した。さいで、型締め圧力を2秒 かけて20トン(20kgf・cm)、成形品の投景面 積与たり)に減圧し、70秒間保持し被覆剤を硬化させ

【0033】得られた被覆成刑品のリブ部の盛り上がり 量は、1、0ヵmであり、平滑な表面であった。

[実施例-3] 長さ200mm.、幅150mm. 高さ1 0 mmの箱形状の合成樹脂成形品を得るためのキャビデ ィを有する金型で、上記金型が固定金型部3を155 ♡、可動金型部4を160℃に設定して、先ず、不飽和 ポリエステル樹脂をマトリックスとするFMCと呼ばれ る成形材料を、300トン(1000kgf cm 、 成形品の投影面積当たり)の製締め圧力で型締めされた キャヒティもに射出し、60和問硬化させた。

【0034】次いで、型締め圧力を5トレ(17kgf グοn、 、成形品の投影面積当たり)に緘圧した後、ウ レタンアクリレートオリゴマーヒエボキンアクリレート オリゴマーとを主成分とする被覆剤C(表1参照)を計 量シリング10に、3cm²計量した。そして、キャビ ティもに約3秒かけて正入した。

【0035】任入宅了後、型締め圧力を1秒かけて21 トン (70 kg f / c m¹ 、成形品の投影面積当たり) まで加圧し、6秒間保持した。といで、型締め圧力を1 移かけて10トン (33kg f ‐´cm゚ 、成形品の投影 面積当たり)に減圧し、5科間保持した後、さらに型締 め圧力を1秒かけて15トン(50kgf/cm゚、成 形品の投影面積当たり)にし、50秒間保持し被覆剤を 硬化させた。

【0036】得られた被覆成形品のリブ部の盛り上がり 30 【表1】

量は、1. 5μmであり、平滑な表面であった。

【実施例-4】直径370mm、リブ部の幅1.8m m. 深さ50mmのホイルカバー形状の合成樹脂成用品 を得るためのキャビティを有する、固定型と可動型から なる金型で、成形品に対する型内被覆を実施する場合 に、上記金型温度として固定金型部3を120℃、可動 金型部4を115℃に設定して、先ず変性ポリフェニレ ンエーテル樹脂を射出シリンダー7内に充填し、250 ~270℃に加熱溶融し、500トン(500kg 1/ 10 cm 、成刑品の投影面積当たり)の型締め圧力で型締 めされた金型内に約5秒かけて射出し、30秒間冷却 し、得られた成形品の表面か被覆剤の圧入圧力、流動圧 力に耐え得る程度に固化させた。

【0037】次いで、固定金型部と可動金型部とをり、 5 mm離間させた後、ウレタンアクリレートオリゴマー を主成分とする被覆剤1)(麦1参照)を計量シリング1 3に、10cm。計量した。そして、キャビティ6に約 2秒かけて狂入した。

【0038】住入完了後、型締め圧力を8秒かけて20 20 トン (20kgf/cm²、成形品の投影面積当たり) まで加圧し、2科間保持した。といで、型締め圧力を2 秒かけて10トン(10kgf 'cm ,成世品の投影 面積当たり)に減圧し、5秒間保持した。沈いで、型締 め圧力を1秒かけて15トン(15kgf.゚cm゚、 成 形品の投影面積当たり、に昇圧し、80秒間保持し被覆 剤を硬化させた。

【0039】得られた被覆成形品のリブ部の盛り上がり 量は、1. 5μmであり、平滑な表面であった。

[0040]

BA.	122 /19			/ HZ HS RP/
被覆剤の種類	A	В	С	D
ウレタンアクリレートオリゴマー (1)	10.0	_	I 6. 0	
ウレタンアクリレートオリゴマー (2)	-	55.0	-	54.0
エポキシアクリレートオリゴマー	20.0		16.0	_
1,6ヘキサンジオールジアクリレート	_	45.0	-	36.0
スチレン	24.0		22.0	-
酸化チタン	45.0	_	45.0	-
アルミ顔料(平均粒子径30μm)	-	3.0	_	-
アルミ顔料(平均粒子径22μm)) -	-	_	8.0
ステアリン酸亜鉛	0.5	1.0	0.5	0.8
チヌピン292	-	1.0	_	-
チヌピン1130	\ -	0.5	_	_
8%コパルトオクトエート	0.5	0.5	0.1	0.2
t -ブチルパーオキシペンゾエート	0.5	-	1.5	0.2
t -アミルパーオキシ2エチル	1	1		[
ヘキサノエート	0.5	0 5	-	0.8

ウレタンアクリレートオリゴマー (1): MW=2, 500

ウレタンアクリレートオリゴマー (2):MW=6, 500

エポキシアクリレートオリゴマー

: MW = 540

チヌピン292.チヌピン1130

:紫外無吸収剤(チパガイギー社製商品名)

[0041]

【発明の原果】な発明の型内被覆方法は「被覆剤注入 後、型締めを所定の多段可変式の型締め圧力及び型締め 50 品を製造できる。

圧力移行時間の条件下で行うこで、成刑品の厚肉部の盛 り上がり現象の発生を部押し出来、高い品質の被覆成形 9

【図面の簡単な説明】

【図1】射出成形機の構成及びその成形型を示す。

【図2】多段式可変型の型締め圧力、型締め圧力移行時間及び型締め圧力保持時間条件の例を説明するグラフである。

【符号の説明】

- 1 型締め装置の固定盤
- 2 型締め装置の可動盤
- 3 固定金型部
- 4 可動金型部
- 5 型締めシリンダ
- 6 キャビティ

7 射出シリンダ

8 ノブル

9 スプルー

1.0

11 エジェクタピン

12 インジェクタ

12A シャットオフピン

13 計量シリンダ

13A プランジャー・レギュレータ

10 14 被覆剤貯蔵部

15 供給ポンプ

【図1】

【図2】

小初期段階での型締め正力移行 が初期段階での型締め正力移行 が中旬段階での型締め圧力移行 が中旬段階での型締め圧力移行 い。最終段階での型締め圧が移行 い。最終段階での型締め圧が移行 い。最終段階での型締め圧が移行