

Deep Learning in Applications

Lecture 3: CNN and vanishing gradient

Radoslav Neychev

Harbour.Space University 10.07.2019, Barcelona, Spain

Outline

- Simple RNN recap
- RNN problems:
 - Vanishing gradient
 - Exploding gradient
- Potential solutions:
 - LSTM/GRU
 - Gradient clipping
 - Skip connections

Recap: RNN

Recap: Vanilla RNN

Recap: LSTM

8

chain rule!

chain rule!

Vanishing gradient problem:

When the derivatives are small, the gradient signal gets smaller and smaller as it backpropagates further

More info: "On the difficulty of training recurrent neural networks", Pascanu et al, 2013 http://proceedings.mlr.press/v28/pascanu13.pdf

Gradient signal from far away is lost because it's much smaller than from close-by.

So model weights updates will be based only on short-term effects.

 $oldsymbol{h}^{(1)}$

Vanishing gradient problem

Exploding gradient problem

 If the gradient becomes too big, then the SGD update step becomes too big:

$$heta^{new} = heta^{old} - \overbrace{lpha}^{ ext{learning rate}} \int_{ ext{gradient}}^{ ext{learning rate}} \int_{ ext{gradient}}^{ ext{gradient}} d\theta^{new}$$

- This can cause bad updates: we take too large a step and reach a bad parameter configuration (with large loss)
- In the worst case, this will result in Inf or NaN in your network (then you have to restart training from an earlier checkpoint)

Exploding gradient solution

 Gradient clipping: if the norm of the gradient is greater than some threshold, scale it down before applying SGD update

 Intuition: take a step in the same direction, but a smaller step

Exploding gradient solution

Without clipping

With clipping

Vanishing gradient: LSTM

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$egin{aligned} oldsymbol{f}^{(t)} &= \sigma \left(oldsymbol{W}_f oldsymbol{h}^{(t-1)} + oldsymbol{U}_f oldsymbol{x}^{(t)} + oldsymbol{b}_f
ight) \ oldsymbol{i}^{(t)} &= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight) \ oldsymbol{o}^{(t)} &= \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight) \end{aligned}$$

$$= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight)$$

$$oldsymbol{o}^{(t)} = \sigma igg| oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o$$

 $ilde{oldsymbol{c}} ilde{oldsymbol{c}}^{(t)} = anh\left(oldsymbol{W}_c oldsymbol{h}^{(t-1)} + oldsymbol{U}_c oldsymbol{x}^{(t)} + oldsymbol{b}_c
ight)$

$$oldsymbol{c}^{(t)} = oldsymbol{f}^{(t)} \circ oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \circ ilde{oldsymbol{c}}^{(t)}$$

$$m{ au} m{h}^{(t)} = m{o}^{(t)} \circ anh m{c}^{(t)}$$

Gates are applied using element-wise product

All these are vectors of same length *n*

Vanishing gradient: GRU

Vanishing gradient: GRU

<u>Update gate:</u> controls what parts of hidden state are updated vs preserved

Reset gate: controls what parts of previous hidden state are used to compute new content

New hidden state content: reset gate selects useful parts of prev hidden state. Use this and current input to compute new hidden content.

Hidden state: update gate simultaneously controls what is kept from previous hidden state, and what is updated to new hidden state content

$$egin{align} oldsymbol{u}^{(t)} &= \sigma \left(oldsymbol{W}_u oldsymbol{h}^{(t-1)} + oldsymbol{U}_u oldsymbol{x}^{(t)} + oldsymbol{b}_u
ight) \ oldsymbol{ au}^{(t)} &= \sigma \left(oldsymbol{W}_r oldsymbol{h}^{(t-1)} + oldsymbol{U}_r oldsymbol{x}^{(t)} + oldsymbol{b}_r
ight) \ oldsymbol{ au}^{(t)} &= anh \left(oldsymbol{W}_h (oldsymbol{r}^{(t)} \circ oldsymbol{h}^{(t-1)}) + oldsymbol{U}_h oldsymbol{x}^{(t)} + oldsymbol{b}_h
ight) \end{aligned}$$

 $\mathbf{h}^{(t)} = (1 - \mathbf{u}^{(t)}) \circ \mathbf{h}^{(t-1)} + \mathbf{u}^{(t)} \circ \tilde{\mathbf{h}}^{(t)}$

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info long-term (e.g. by setting update gate to 0)

Vanishing gradient: LSTM vs GRU

- LSTM and GRU are both great
 - GRU is quicker to compute and has fewer parameters than LSTM
 - There is no conclusive evidence that one consistently performs better than the other
 - LSTM is a good default choice (especially if your data has particularly long dependencies, or you have lots of training data)

Rule of thumb: start with LSTM, but switch to GRU if you want something more efficient

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution: direct (or skip-) connections (just like in ResNet)

Figure 2. Residual learning: a building block.

Source: "Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution: dense connections (just like in DenseNet)

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution: dense connections (just like in DenseNet)

Conclusion:

Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

- Recursive neural nets require a parser to get tree structure
- Recurrent neural nets can not capture phrases without prefix context and often capture too much of last words in final vector

- RNN: Get compositional vectors for grammatical phrases only
- CNN: What if we compute vectors for every possible phrase?
 - Example: "the country of my birth" computes vectors for:
 - the country, country of, of my, my birth, the country of, country of my, of my birth, the country of my, country of my birth

- Regardless of whether it is grammatical
- Wouldn't need parser
- Not very linguistically or cognitively plausible

• Imagine using only bigrams

 Same operation as in RNN, but for every pair

$$p = \tanh\left(W \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] + b\right)$$

Can be interpreted as convolution over the word vectors

- Simple convolution + pooling
- Window size may be different (2 or more)
- The feature map based on bigrams:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

- Simple convolution + pooling
- Window size may be different (2 or more)
- The feature map based on bigrams:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

- Simple convolution + pooling
- Window size may be different (2 or more)
- The feature map based on bigrams:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

What's next?

- Simple convolution + pooling
- Window size may be different (2 or more)
- The feature map based on bigrams:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

What's next?

We need more features!

• Feature representation is based on some applied filter:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

• Let's use pooling: $\hat{c} = \max\{\mathbf{c}\}$

Now the length of c is irrelevant!

So we can use filters based on unigrams, bigrams, tri-grams, 4-grams, etc.

Relation between RNN and CNN

Another example from Kim (2014) paper

More about CNN

 Narrow vs wide convolution (stride and zero-padding)

- Complex pooling schemes over sequences
- Great readings (e.g. Kalchbrenner et. al. 2014)

34

- Neural machine translation: CNN as encoder, RNN as decoder
- Kalchbrenner and Blunsom (2013) "Recurrent Continuous Translation Models"
- One of the first neural machine translation efforts

CNN applications

Approaches comparison

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	-	-	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	1-	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_		_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_		93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_		_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM _S (Silva et al., 2011)	_	_	_	_	95.0	_	_

Outro and Q & A

- Vanishing gradient is present not only in RNNs
 - Use some kind of memory or skip-connections
- LSTM and GRU are both great
 - o GRU is quicker, LSTM catch more complex dependencies
- Rule of thumb: start with LSTM, but switch to GRU if you want something more efficient
- Clip your gradients
- Combining RNN and CNN worlds? Why not;)

That's all. Feel free to ask any questions.

Attention outro

