INTERRO DE RENTRÉE

Exercice 1 -

1.
$$4x-5=-2x+3 \iff 6x=8 \iff x=\frac{8}{6}=\frac{4}{3}$$

Donc $S=\left\{\frac{4}{3}\right\}$.

2.
$$x+4 \leqslant -2x+5 \iff 3x \leqslant 1 \iff x \leqslant \frac{1}{3}$$

Donc $S = \left[-\infty, \frac{1}{3} \right]$.

3. $2x^2 - 7x + 3 = x^2 + 3x - 18 \iff x^2 - 10x + 21 = 0$ Je calcule le discriminant : $\Delta = (-10)^2 - 4 \times 1 \times 21 = 100 - 84 = 16 > 0$. Il y a donc deux racines :

$$x_1 = \frac{-(-10) - \sqrt{16}}{2 \times 1} = \frac{10 - 4}{2} = 3$$
 et $x_2 = \frac{10 + 4}{2} = 7$.

Donc $S = \{3, 7\}.$

4. Je cherche à connaître le signe de $2x^3 - 3x^2 + 5x - 4$. Je cherche une racine évidente. Comme la somme des coefficients est nulle, alors 1 est racine évidente : f(1) = 2 - 3 + 5 - 4 = 0. Donc $2x^3 - 3x^2 + 5x - 4$ est un multiple de x - 1. Soit $Q(x) = ax^2 + bx + c$ tel que

$$2x^3 - 3x^2 + 5x - 4 = (x - 1) \times (ax^2 + bx + c) = ax^3 + (b - a)x^2 + (c - b)x - c.$$

Alors par identification des coefficients,

$$\begin{cases} a = 2 \\ b - a = -3 \\ c - b = 5 \\ -c = -4 \end{cases} \iff \begin{cases} a = 2 \\ b = -3 + a = -3 + 2 = -1 \\ c = 5 + b = 5 - 1 = 4 \\ -c = -4 \end{cases}$$

Ainsi $2x^3 - 3x^2 + 5x - 4 = (x - 1)(2x^2 - x + 4)$.

Je calcule le discriminant du facteur de degré 2: $\Delta = (-1)^2 - 4 \times 2 \times 4 = 1 - 32 = -31 < 0$. Il n'y a donc pas de racine et ce facteur est de signe constant, positif puisque a = 2 > 0. Comme ce facteur est toujours positif, j'en déduis que

$$2x^3 - 3x^2 + 5x - 4 < 0 \iff x - 1 < 0 \iff x < 1.$$

Donc $S =]-\infty, 1[$.

5.
$$\frac{2x+3}{x-1} + \frac{1}{x} = 0 \iff \frac{(2x+3) \times x + (x-1) \times 1}{(x-1) \times x} = 0 \iff \frac{2x^2 + 4x - 1}{x(x-1)} = 0$$

Cette équation a deux valeurs interdites : 0 et 1.

Je calcule le discriminant du numérateur : $\Delta = 4^2 - 4 \times 2 \times (-1) = 16 + 8 = 24 > 0$. Il y a donc deux racines :

$$x_1 = \frac{-4 - \sqrt{24}}{2 \times 2} = \frac{-4 - 2\sqrt{6}}{4} = -1 - \frac{\sqrt{6}}{2}$$
 et $x_2 = \frac{-4 + 2\sqrt{6}}{4} = -1 + \frac{\sqrt{6}}{2}$.

Aucune de ces solutions n'est valeur interdite, donc $S = \left\{-1 - \frac{\sqrt{6}}{2}, -1 + \frac{\sqrt{6}}{2}\right\}$.

Exercice 2 -

1. Je calcule la limite:

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^x = 0$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} -x = +\infty$$
Par somme,
$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^x - x = +\infty.$$

2. Je calcule la limite:

$$\lim_{x \to +\infty} \frac{x+1}{x-1} = \lim_{x \to +\infty} \frac{x}{x} = \lim_{x \to +\infty} 1 = 1 \quad \text{et} \quad \lim_{x \to 1} \ln(x) = 0$$

Donc par composition, $\lim_{x \to +\infty} \ln \left(\frac{x+1}{x-1} \right) = 0.$

3. Je calcule la limite:

$$\lim_{\substack{x \to 0^+ \\ X \to +\infty}} \frac{1}{x} = +\infty$$
 Par composition,
$$\lim_{\substack{x \to 0^+ \\ X \to +\infty}} e^{\frac{1}{x}} = +\infty.$$

4. Je calcule la limite:

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty} -x = -\infty}} \ln(x) = +\infty$$
 Forme indéterminée.

Or $\ln(x) - x = x \times \left(\frac{\ln(x)}{x} - 1\right)$ et par croissances comparées, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$. D'où

$$\lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} - 1 \right) = -1$$
Par produit,
$$\lim_{x \to +\infty} \ln(x) - x = -\infty.$$

5. Je calcule la limite:

$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} 1 = 1$$

$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} x - 2 = 0^+$$

$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} \frac{1}{x - 2} = +\infty.$$

$$\lim_{\substack{x \to 2^+ \\ x \to +\infty}} \frac{1}{x - 2} = +\infty$$

$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} \ln\left(\frac{1}{x - 2}\right) = +\infty.$$

$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} \ln\left(\frac{1}{x - 2}\right) = +\infty.$$

$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} \ln\left(\frac{1}{x - 2}\right) = +\infty.$$

$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} \ln\left(\frac{1}{x - 2}\right) = +\infty.$$

$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} \ln\left(\frac{1}{x - 2}\right) = +\infty.$$
Par somme,
$$\lim_{\substack{x \to 2^+ \\ x \to 2^+}} \ln\left(\frac{1}{x - 2}\right) + 4x - 1 = +\infty.$$

Exercice 3 -

1. f est polynomiale donc $f'(x) = 3x^2 + 4 \times 2x - 5 = 3x^2 + 8x - 5$.

2. f est de la forme $u \times v$ avec u(x) = 4x - 1 et $v(x) = \ln(x)$. Comme u'(x) = 4 et $v'(x) = \frac{1}{x}$, alors

$$f'(x) = u'(x)v(x) + u(x)v'(x) = 4 \times \ln(x) + (4x - 1) \times \frac{1}{x} = 4\ln(x) + 4 - \frac{1}{x}.$$

3. f est de la forme $e^u + 1$ avec u(x) = 2x + 3. Comme u'(x) = 2, alors

$$f'(x) = u'(x)e^{u(x)} + 0 = 2 \times e^{2x+3} = 2e^{2x+3}$$
.

4. f est de la forme $\frac{u}{v}$ avec $u(x) = e^x$ et $v(x) = x^2$. Comme $u'(x) = e^x$ et v'(x) = 2x, alors

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{x^2e^x - 2xe^x}{\left(x^2\right)^2} = \frac{x(x-2)e^x}{x^4} = \frac{(x-2)e^x}{x^3}.$$

5. f est de la forme u^2 avec $u(x) = \frac{x+1}{x-1}$. Alors $f'(x) = 2 \times u'(x) \times u(x)$.

Il me faut donc calculer u'(x). u est de la forme $\frac{w}{v}$ avec w(x) = x + 1 et v(x) = x - 1.

Comme w'(x) = 1 et v'(x) = 1, alors

$$u'(x) = \frac{w'(x)v(x) - w(x)v'(x)}{v(x)^2} = \frac{x - 1 - (x + 1)}{(x - 1)^2} = -\frac{2}{(x - 1)^2}.$$

Ainsi

$$f'(x) = 2 \times \left(-\frac{2}{(x-1)^2}\right) \times \frac{x+1}{x-1} = -\frac{4(x+1)}{(x-1)^3}.$$

Exercice 4 -

1. Je calcule la limite:

$$\lim_{x \to 0^+} \ln(x) = -\infty$$

$$\lim_{x \to 0^+} x^5 = 0^+$$
Par quotient,
$$\lim_{x \to 0^+} f(x) = -\infty.$$

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty} x^5 = +\infty}} \ln(x) = +\infty$$
 Par croissances comparées,
$$\lim_{x \to +\infty} f(x) = 0^+.$$

2. f est de la forme $\frac{u}{v}$ avec $u(x) = \ln(x)$ et $v(x) = x^5$. Comme $u'(x) = \frac{1}{x}$ et $v'(x) = 5x^4$, alors

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{\frac{1}{x} \times x^5 - \ln(x) \times 5x^4}{\left(x^5\right)^2} = \frac{x^4 \left(1 - 5\ln(x)\right)}{x^{10}} = \frac{1 - 5\ln(x)}{x^6}.$$

Il me reste à étudier le signe de f'(x):

$$1 - 5\ln(x) \geqslant 0 \iff 1 \geqslant 5\ln(x) \iff \frac{1}{5} \geqslant \ln(x) \iff e^{\frac{1}{5}} \geqslant x.$$

J'en déduis le tableau de variation suivant, avec $f\left(e^{\frac{1}{5}}\right) = \frac{\ln\left(e^{\frac{1}{5}}\right)}{\left(e^{\frac{1}{5}}\right)^5} = \frac{\frac{1}{5}}{e} = \frac{1}{5e}$.

x	0		$e^{\frac{1}{5}}$		+∞
$1-5\ln(x)$		+	0	_	
x^6	0	+		+	
f'(x)		+	0	_	
f	$-\infty$		$\rightarrow \frac{1}{5e}$		→ 0

3. L'équation de la tangente au point d'abscisse a est donnée par y = f'(a)(x - a) + f(a). Ici a = 1 et

$$f(1) = \frac{\ln(1)}{1^5} = 0$$
 et $f'(1) = \frac{1 - 5\ln(1)}{1^6} = 1$.

Ainsi l'équation de la tangente au point d'abscisse 1 est donnée par

$$y = 1 \times (x - 1) + 0 = x - 1.$$

4. Voici le graphe de la courbe et de sa tangente :

Exercice 5 -

1. Je calcule la limite:

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} 2 - x = -\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^x = +\infty$$
Par produit,
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = -\infty.$$

$$\lim_{\substack{x \to -\infty \\ \lim_{x \to -\infty}}} 2 - x = +\infty$$

$$\lim_{\substack{x \to -\infty \\ }} e^x = 0^+$$
Par croissances comparées, $\lim_{\substack{x \to -\infty \\ }} f(x) = 0^+$.

2. f est de la forme $u \times v$ avec u(x) = 2 - x et $v(x) = e^x$. Comme u'(x) = -1 et $v'(x) = e^x$, alors

$$f'(x) = u'(x)v(x) + u(x)v'(x) = -1 \times e^x + (2-x) \times e^x = (1-x)e^x.$$

Il me reste à étudier le signe de f'(x). Comme pour tout $x \in \mathbb{R}$, $e^x > 0$, alors

$$f'(x) \geqslant 0 \iff (1-x)e^x \geqslant 0 \iff 1-x \geqslant 0 \iff 1 \geqslant x.$$

J'en déduis le tableau de variation suivant, avec $f(1) = (2-1) \times e^1 = e$.

x	$-\infty$		1		+∞
1-x		+	0	_	
e^x		+		+	
f'(x)		+	0	_	
f	0		, e		$-\infty$

3. L'équation de la tangente au point d'abscisse a est donnée par y = f'(a)(x - a) + f(a). Ici a = 1 et

$$f(1) = e$$
 et $f'(1) = (1-1) \times e^1 = 0$.

Ainsi l'équation de la tangente au point d'abscisse 1 est donnée par

$$y = 0 \times (x - 1) + e = e.$$

4. f' est de la forme $u \times v$ avec u(x) = 1 - x et $v(x) = e^x$. Comme u'(x) = -1 et $v'(x) = e^x$, alors

$$f''(x) = u'(x)v(x) + u(x)v'(x) = -1 \times e^x + (1-x) \times e^x = -xe^x.$$

La fonction f est convexe là où sa dérivée seconde est positive.

Comme pour tout $x \in \mathbb{R}$, $e^x > 0$, alors

$$f''(x) \geqslant 0 \iff -xe^x \geqslant 0 \iff x \leqslant 0.$$

Donc f est convexe sur $]-\infty,0]$ et concave sur $[0,+\infty[$.

La courbe \mathcal{C} admet un point d'inflexion en (0, f(0)) = (0, 2).

5. Voici le graphe de la courbe et de sa tangente :

Exercice 6 -

1. a) f est de la forme $u \times v$ avec $u(x) = x^2 - 2x + 2$ et $v(x) = e^x$. Comme u'(x) = 2x - 2 et $v'(x) = e^x$, alors

$$f'(x) = u'(x)v(x) + u(x)v'(x) = (2x - 2) \times e^x + \left(x^2 - 2x + 2\right) \times e^x = x^2 e^x.$$

b) Comme pour tout $x \in \mathbb{R}$, $e^x > 0$ et $x^2 \ge 0$, alors je déduis le tableau de variation suivant, avec $f(0) = (0^2 - 2 \times 0 + 2) \times e^0 = 2$.

x	$-\infty$		0		+∞
x^2		+	0	+	
e^x		+		+	
f'(x)		+	0	+	
f	0 —		_2-		→ +∞

2. L'équation de la tangente au point d'abscisse a est donnée par y = f'(a)(x - a) + f(a). Ici a = 1 et

$$f(1) = (1^2 - 2 \times 1 + 2) \times e^1 = e$$
 et $f'(1) = 1^2 \times e^1 = e$.

Ainsi l'équation de la tangente au point d'abscisse 1 est donnée par

$$y = e \times (x - 1) + e = ex$$
.

- 3. a) f' est de la forme $u \times v$ avec $u(x) = x^2$ et $v(x) = e^x$. Comme u'(x) = 2x et $v'(x) = e^x$, alors $f''(x) = u'(x)v(x) + u(x)v'(x) = 2x \times e^x + x^2 \times e^x = (x^2 + 2x)e^x = x(x+2)e^x$.
 - b) La fonction f est convexe là où sa dérivée seconde est positive. Comme pour tout $x \in \mathbb{R}$, $e^x > 0$, alors

$$f''(x) \geqslant 0 \iff x(x+2)e^x \geqslant 0 \iff x(x+2) \geqslant 0.$$

Il s'agit de la forme factorisée d'un polynôme de degré 2 dont les racines sont -2 et 0. Comme a=1>0 le polynôme est positif à l'extérieur de ses racines et négatif entre celles-ci. Donc f est convexe sur $]-\infty,-2]$ et sur $[0,+\infty[$ et concave sur [-2,0].

c) La courbe $\mathcal C$ admet deux points d'inflexion :

$$(-2, f(-2)) = (-2, \frac{10}{e^2})$$
 et $(0, f(0)) = (0, 2)$.

4. Voici le graphe de la courbe et de sa tangente :

Exercice 7 –

1. La fonction est polynomiale donc je calcule directement :

$$\int_0^1 (3x^3 - 2x^2 + x - 4) dx = \left[3 \times \frac{x^4}{4} - 2 \times \frac{x^3}{3} + \frac{x^2}{2} - 4x \right]_0^1$$
$$= \left(\frac{3}{4} - \frac{2}{3} + \frac{1}{2} - 4 \right) - 0 = \frac{9 - 8 + 6 - 48}{12} = -\frac{41}{12}.$$

2. Je commence par calculer une primitive de $f(x) = \frac{x}{(1+x^2)^2}$.

f semble être de la forme $\frac{u'}{u^2}$ avec $u(x) = 1 + x^2$. Puisque u'(x) = 2x, alors

$$\frac{u'(x)}{u(x)^2} = \frac{2x}{\left(1 + x^2\right)^2} = 2f(x).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{2} \times \left(-\frac{1}{u(x)} \right) = -\frac{1}{2(1+x^2)}.$$

Et donc

$$\int_0^2 \frac{x}{\left(1+x^2\right)^2} \, \mathrm{d}x = \left[-\frac{1}{2\left(1+x^2\right)} \right]_0^2 = -\frac{1}{10} + \frac{1}{2} = \frac{4}{10} = \frac{2}{5}.$$

3. Je commence par calculer une primitive de $f(t) = \frac{t}{\sqrt{t^2 + 1}}$.

f semble être de la forme $\frac{u'}{2\sqrt{u}}$ avec $u(t) = t^2 + 1$. Puisque u'(t) = 2t, alors

$$\frac{u'(t)}{2\sqrt{u(t)}} = \frac{2t}{2\sqrt{t^2 + 1}} = \frac{t}{\sqrt{t^2 + 1}} = f(t).$$

Donc une primitive de f est donnée par

$$F(t) = \sqrt{u(t)} = \sqrt{t^2 + 1}$$
.

Et donc
$$\int_0^1 \frac{t}{\sqrt{t^2 + 1}} dt = \left[\sqrt{t^2 + 1} \right]_0^1 = \sqrt{2} - \sqrt{1} = \sqrt{2} - 1.$$

4. La fonction est une somme donc je calcule directement :

$$\int_{1}^{2} \left(\frac{1}{\sqrt{x}} + 4x - 1 \right) dx = \left[2\sqrt{x} + 2x^{2} - x \right]_{1}^{2} = \left(2\sqrt{2} + 8 - 2 \right) - \left(2 + 2 - 1 \right) = 2\sqrt{2} + 3.$$

5. Je commence par calculer une primitive de $f(x) = \frac{x^3}{x^4 + 3}$.

f semble être de la forme $\frac{u'}{u}$ avec $u(x) = x^4 + 3$. Puisque $u'(x) = 4x^3$, alors

$$\frac{u'(x)}{u(x)} = \frac{4x^3}{x^4 + 3} = 4f(x).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{4} \times \ln\left(u(x)\right) = \frac{\ln\left(x^4 + 3\right)}{4}.$$

Et donc

$$\int_{-2}^{-1} \frac{x^3}{x^4 + 3} \, \mathrm{d}x = \left[\frac{\ln\left(x^4 + 3\right)}{4} \right]_{-2}^{-1} = \frac{\ln(4)}{4} - \frac{\ln(19)}{4} = \frac{1}{4} \times \ln\left(\frac{4}{19}\right) = -\frac{1}{4} \times \ln\left(\frac{19}{4}\right).$$

Exercice 8 -

1. a) f est de la forme $f(x) = u(x)^3 + x$ avec u(x) = 1 - x. Comme u'(x) = -1, alors

$$f'(x) = 3 \times (-1) \times (1-x)^2 + 1 = -3(x^2 - 2x + 1) + 1 = -3x^2 + 6x - 3 + 1 = -3x^2 + 6x - 2.$$

Pour étudier le signe de f'(x), je calcule le discriminant : $\Delta = 6^2 - 4 \times (-3) \times (-2) = 12 > 0$. Il y a donc deux racines :

$$x_1 = \frac{-6 - \sqrt{12}}{2 \times (-3)} = \frac{-6 - 2\sqrt{3}}{-6} = 1 + \frac{\sqrt{3}}{3}$$
 et $x_2 = \frac{-6 + 2\sqrt{3}}{-6} = 1 - \frac{\sqrt{3}}{3}$.

Je déduis le tableau de signe de f'(x) et le tableau de variation de f, avec

$$f(0) = (1-0)^3 + 0 = 1, f(1) = (1-1)^3 + 1 = 1$$

et
$$f\left(1-\frac{\sqrt{3}}{3}\right) = \left(\frac{\sqrt{3}}{3}\right)^3 + 1 - \frac{\sqrt{3}}{3} = \frac{3\sqrt{3}}{27} + 1 - \frac{\sqrt{3}}{3} = 1 + \frac{\sqrt{3}-3\sqrt{3}}{9} = 1 - \frac{2\sqrt{3}}{9}$$
.

x	$0 1 - \frac{\sqrt{3}}{3}$	1
f'(x)	- 0	+
f	$1 \longrightarrow 1 - \frac{2\sqrt{3}}{9}$	<u> </u>

b) D'après le tableau de variation précédent, je sais que pour tout $x \in [0,1]$,

$$1 - \frac{2\sqrt{3}}{9} \leqslant f(x) \leqslant 1.$$

Il ne me reste alors plus qu'à montrer que $1 - \frac{2\sqrt{3}}{9} \geqslant 0$.

Comme $0 \le 2\sqrt{3} \le 9$, alors $0 \le \frac{2\sqrt{3}}{9} \le 1$ et donc $1 - \frac{2\sqrt{3}}{9} \ge 0$.

J'ai bien montré que pour tout $x \in [0,1]$, $f(x) \in [0,1]$.

2. a) Je raisonne par récurrence sur $n \ge 0$.

Énoncé: Je note \mathcal{P}_n la propriété: $u_n \in [0,1]$.

Initialisation : Pour n = 0, $u_0 = \frac{4}{10}$ et $0 \le \frac{4}{10} \le 1$. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, je sais que $u_n \in [0,1]$. Or d'après la question **1.b**), pour tout $x \in [0,1]$, $f(x) \in [0,1]$. Donc $u_{n+1} = f(u_n) \in [0,1]$. Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 1 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad u_n \in [0,1].$$

b) J'étudie le signe de la différence de deux termes consécutifs : pour $n \in \mathbb{N}$,

$$u_{n+1} - u_n = (1 - u_n)^3 + u_n - u_n = (1 - u_n)^3 \ge 0$$
 car $u_n \in [0, 1]$.

Ainsi $u_{n+1} - u_n \ge 0$ donc $u_{n+1} \ge u_n$ et la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

c) La suite $(u_n)_{n\in\mathbb{N}}$ est croissante (d'après la question **2.b**)) et majorée par 1 (d'après la question **2.a**). Donc selon le théorème de la limite monotone, la suite $(u_n)_{n\in\mathbb{N}}$ est convergente. Je note ℓ sa limite, *i.e.* $\ell = \lim_{n \to +\infty} u_n$. Alors $\lim_{n \to +\infty} u_{n+1} = \ell$ aussi et en passant à la limite dans l'égalité $u_{n+1} = (1-u_n)^3 + u_n$, j'obtiens donc que $\ell = (1-\ell)^3 + \ell$. Ainsi $(1-\ell)^3 = 0$ donc $1-\ell = 0$ et $\ell = 1$. J'ai bien montré que $\lim_{n \to +\infty} u_n = 1$.

Exercice 9 -

1. a) Pour tout $n \in \mathbb{N}$,

$$\begin{split} v_{n+1} &= u_{n+1} - 12500 = 1.02 u_n - 250 - 12500 = 1.02 (v_n + 12500) - 250 - 12500 \\ &= 1.02 v_n + 12750 - 250 - 12500 = 1.02 v_n. \end{split}$$

La suite $(v_n)_{n\in\mathbb{N}}$ est donc géométrique de raison 1.02.

b) La suite $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison 1.02 et son premier terme vaut $v_0 = u_0 - 12500 = 8500 - 12500 = -4000$. Donc pour tout $n \in \mathbb{N}$,

$$v_n = v_0 \times q^n = -4000 \times 1.02^n$$
.

c) Pour tout $n \in \mathbb{N}$,

$$u_n = v_n + 12500 = 12500 - 4000 \times 1.02^n$$
.

- 2. Comme 1.02 > 1 et que $v_0 = -4000$ est négatif, la suite géométrique $(v_n)_{n \in \mathbb{N}}$ est décroissante. Alors comme pour tout entier n, $u_n = v_n + 12500$, la suite $(u_n)_{n \in \mathbb{N}}$ est aussi décroissante.
- 3. Comme 1.02 > 1, $\lim_{n \to +\infty} 1.02^n = +\infty$ et donc par somme,

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} 12500 - 4000 \times 1.02^n = -\infty.$$

Exercice 10 -

1. a) D'après l'énoncé,

$$\begin{split} P(H) &= \frac{52}{100} = \frac{13}{25}, \qquad P_H(\overline{S}) = \frac{15}{100} = \frac{3}{20}, \qquad P_F(S) = \frac{916}{1000} = \frac{229}{250}, \\ P(F) &= 1 - P(H) = 1 - \frac{13}{25} = \frac{12}{25}, \qquad P_H(S) = 1 - P_H(\overline{S}) = 1 - \frac{3}{20} = \frac{17}{20} \\ &\text{et} \qquad P_F(\overline{S}) = 1 - P_F(S) = 1 - \frac{229}{250} = \frac{21}{250}. \end{split}$$

b) D'après la formule des probabilités composées,

$$P(F \cap S) = P(F) \times P_F(S) = \frac{12}{25} \times \frac{229}{250} \approx 0.44.$$

Ainsi environ 44% des personnes sont des femmes salariées.

c) D'après la formule des probabilités totales, comme $\{F,S\}$ forme un système complet d'événements, alors

$$P(F) = P(F)P_F(S) + P(H)P_H(S) = \frac{12}{25} \times \frac{229}{250} + \frac{13}{25} \times \frac{17}{20} \approx 0.44 + \frac{221}{500} \approx 0.88.$$

d) Je cherche $P_S(H)$. D'après la formule des probabilités conditionnelles,

$$P_S(H) = \frac{P(H \cap S)}{P(S)} \approx \frac{0.44}{0.88} \approx 0.5.$$

2. a) Il s'agit de la répétition de n=40 épreuves de Bernoulli de succès "la femme travaille à temps partiel", de probabilité p=0.3, identiques et indépendantes. La variable aléatoire X compte le nombre de succès donc X suit une loi binomiale de paramètres n=40 et p=0.3. Le support de X est donné par $X(\Omega)=\llbracket 0,40\rrbracket$ et pour tout $k\in X(\Omega)$,

$$P(X = k) = {40 \choose k} \times 0.3^k \times 0.7^{40-k}.$$

b) Puisque *X* suit une loi binomiale,

$$E(X) = np = 40 \times 0.3 = 12.$$

Cela signifie qu'il y a en moyenne 12 femmes qui travaillent à temps partiel.

c) Je cherche P(X = 12). En appliquant la formule de la question **2.a**), j'obtiens que

$$P(X = 12) = {40 \choose 12} \times 0.3^{12} \times 0.7^{28}.$$

Exercice 11 -

1. Le support est l'ensemble des issues possibles, donc $X(\Omega) = \{0,1,2\}$. Pour tout $k \in \{0,1\}$, je note R_k , V_k et B_k les événements "obtenir une boule rouge au k-ième tirage", "obtenir une boule verte au k-ième tirage" et "obtenir une boule bleue au k-ième tirage". D'après la formule des probabilités composées,

$$P(X = 2) = P(R_1) \times P_{R_1}(R_2) = \frac{3}{6} \times \frac{2}{5} = \frac{1}{5}.$$

Les tirages possibles n'amenant aucune boule rouge sont les suivants : $V_1 \cap V_2$, $V_1 \cap B_2$ et $B_1 \cap V_2$. Donc

$$P(X=0) = P(V_1) \times P_{V_1}(V_2) + P(V_1) \times P_{V_1}(B_2) + P(B_1) \times P_{B_1}(V_2) = \frac{2}{6} \times \frac{1}{5} + \frac{2}{6} \times \frac{1}{5} + \frac{1}{6} \times \frac{2}{5} = \frac{1}{5}.$$

Enfin

$$P(X = 1) = 1 - P(X = 2) - P(X = 0) = 1 - \frac{1}{5} - \frac{1}{5} = \frac{3}{5}.$$

Tout ceci est résumé dans le tableau suivant :

k	0	1	2
D(V L)	1	3	1
P(X=k)	5	5	5

2. Grâce aux valeurs du tableau,

$$E(X) = 0 \times \frac{1}{5} + 1 \times \frac{3}{5} + 2 \times \frac{1}{5} = \frac{5}{5} = 1.$$

Pour la variance, je commence par calculer $E(X^2)$. Grâce au théorème de transfert,

$$E(X^2) = 0^2 \times \frac{1}{5} + 1^2 \times \frac{3}{5} + 2^2 \times \frac{1}{5} = \frac{7}{5}.$$

Puis d'après la formule de König-Huygens,

$$V(X) = E(X^2) - E(X)^2 = \frac{7}{5} - 1^2 = \frac{2}{5}.$$

3. La formule de la fonction de répartition est donnée par $F_X(x) = P(X \le x)$. Donc

$$F_X(x) = \begin{cases} 0 & \text{si } x < 0, \\ \frac{1}{5} & \text{si } 0 \le x < 1, \\ \frac{4}{5} & \text{si } 1 \le x < 2, \\ 1 & \text{si } x \ge 2. \end{cases}$$

