Facial Keypoint Detection

Objective: The objective is to detect facial keypoint positions on face images from the given facial dataset.

Image Keypoints:

- Image keypoints are distinct points or places in an image that are picked because they represent unique and distinguishable features.
- These points are crucial in computer vision and image processing for various tasks such as image recognition, object detection, and image matching.

Problem categorization:

• Keypoint detection is a **regression task** where output is a continuous value of predicted keypoints. The input images are and the corresponding keypoints are the input to the network and the output is the keypoints predicted by the model.

Dataset:

- Each keypoint is specified by an (x,y) real-valued pair in the space of pixel indices. There are 15 keypoints in the dataset, which represent the following elements of the face:
- Left_eye_center, right_eye_center, left_eye_inner_corner, left_eye_outer_corner, right_eye_inner_corner, right_eye_outer_corner, left_eyebrow_inner_end, left_eyebrow_outer_end, right_eyebrow_inner_end, right_eyebrow_outer_end, nose_tip, mouth_left_corner, mouth_right_corner, mouth_center_top_lip, mouth_center_bottom_lip

Dataset link:

https://www.kaggle.com/datasets/nagasai524/facial-keypoint-detection/data

Challenges in the Facial Keypoint detection:

 Detecting facial keypoints is a very challenging problem. Facial features vary greatly from one individual to another, and even for a single individual, there is a large amount of variation due to 3D pose, size, position, viewing angle, and illumination conditions.

Project folder structure organization:

- Project structure:

```
keypoint detection/
training.csv
kaggle facial_keypoint_dataset.zip
images/
    train images/
      - 1.jpg
      - 2.jpg ...
      test images/
      - 1.jpg
      - 2.jpg ...
      Processed keypoint data.npz
model results/
      base model/
            base model summary.txt
            base model plot.png
            training validation_loss_plot.png
             trained base model keypoint detection.h5
            keypoint predictions.csv
            base model results.png
            base model results 1.png
            evaluation results base model keypoint.csv
      model v1/
            model v1 summary.txt
            model v1 plot.png
            model v1 results.png
            model v1 results 1.png
            evaluation results model v1 keypoint.csv
             training validation loss plot.png
            trained model v1_keypoint_detection.h5
            model v1 keypoint predictions.csv
 processed training labels.csv
 data analysis keypoint detection.ipynb
 Readme_keypoint_detection document.gdoc
 Readme keypoint detection document.pdf
 base model keypoint detection script.ipynb
 model v1 keypoint detection script.ipynb
```

- Steps followed in the development of the project:
 - Data analysis for understanding the nature of images and keypoints in the dataset, data preprocessing such as filling in missing keypoints.

(Notebook: data_analysis_yeypoint_detection.ipynb)

- The dataset validation after preprocessing.

- Data Loading and converting dataset into numpy array for easy loading and processing while training
- Loading numpy array and splitting the dataset into train, validation, and test (Total samples = 7049, Train = 5639, Validation = 705, Test = 705)
- Two models were developed:
 - Base model
 - Model_v1
 - Saved summary, plots, predictions and performance of the models
 - Model notebook
 - base_model_keypoint_detection_script.ipynb
 - model_v1_ keypoint_detection_script.ipynb
- Trained two models separately using the following training configuration

- Optimizer: Adam

- Learning rate: 1Xe-5

- Loss: mean squared error

- Metric: mean absolute error

- Training callback: EarlyStopping

Batch Size: 32Epochs: 200

- Saved the trained model and plot for losses
- Load the model and Model predictions saved in CSV
- visualization of the ground truth and predictions on the sample images
- Performance evaluation using mean absolute error and accuracy of the model for three threshold values (5, 10, 15) of pixels in percentage
- Saved the evaluation performance in CSV file

Result Analysis:

- Both models are evaluated using the Mean Absolute Error (MAE) and the different threshold pixel values.
- The accuracy of the model varies depending on the pixel threshold.
- The result analysis in Table 1 indicated that the performance of the model_v1 is better than the base model.

Table 1: Evaluation performance of the models

Models	Performance evaluation results			
	MAE	MAE_threshold _pixels_5_in%	MAE_threshold _pixels_10_in%	MAE_threshold _pixels_15_in%
base_model	3.438	77.962	94.676	98.572
model_v1	2.023	92.988	99.177	99.806

- The model parameters and the memory requirements are given below in Table 2.

Table 2: Model parameters

Models	Parameters	
base_model	6662750	
model_v1	6668378	

- Table 1 and Table 2 indicate that the model_v1 is performing better than the base_model. However, the model_v1 has more parameters than the base_model.
- The parameter increases due to the embedding of the squeeze-and-excitation network (SENet) in the architecture.
- The SENet has the ability to capture the significant features from the input feature map and uplift the learning and generalization capability of the model. It acts as channel-wise attention in the network that learns the significant details and suppresses the redundant information. The architecture of the SENet shown in Figure 1 is utilized for the model architecture building.
- The computational complexity of the SENet can be controlled by adjusting the parameter ratio (r) in the model architecture. In the model_v1 r = 8 is chosen for maintaining the complexity and performance. If the value of r-increases the complexity reduces and vice versa.

Figure 1: SENet architecture

- The difference in the architecture of both the networks is shown in the following Figure 2 and Figure 3 respectively.

Figure 2: Base_model architecture

Figure 3: Model_v1 architecture

(Note: Figure is not visible clearly because image size does not fit on the page but in the project folder high-quality image is available)

- The training progress in terms of MAE and Val loss for both the models are shown in Figure 4 and Figure 5.

Figure 4: Base_model Training, validation loss and MAE (EarlyStop at 102 Epoch)

Figure 5: Mode_v1l Training, validation loss and MAE (EarlyStop at 112 Epoch)

 The sample predictions for the base_model are shown in Figure 6 and Figure 7 and the Model v1 are shown in the Figure 8 and Figure 9.

Figure 6: Base_model visualization (Column 1: Ground truth, Column 2: Predictions, and Column 3: Difference in the predictions)

Figure 7: Base_model visualization (Column 1: Ground truth, Column 2: Predictions, and Column 3: Difference in the predictions)

Figure 8: Model_v1 visualization (Column 1: Ground truth, Column 2: Predictions, and Column 3: Difference in the predictions)

Figure 9: Model_v1 visualization (Column 1: Ground truth, Column 2: Predictions, and Column 3: Difference in the predictions)

 The visualization result indicates that the difference in the ground truth keypoints and the predicted keypoints is less in model_v1 compared the base_model.

Conclusion:

- From the result analysis and visual representation it is clear that the keypoint detection using the simple baseline approach is not outperforming.
- The introduction of the SENet in the network uplifts the keypoint detection performance but introduces complexity in the architecture design and increases the parameters.
- The model_v1 leverages the advantages of the channel-wise attention module and enhances the network learning and generalization ability of the model.
- The experimentation result analysis and the visualization results indicate that the model_v1 is outperforming the base_model.