CS502 Assignment – 1

Author: Tanisha Garg Roll No: 2201Al40

1. Introduction

Logistic Regression is a supervised machine learning algorithm used for classification problems. It predicts the probability of a categorical dependent variable. The output is binary (0/1, True/False, Yes/No), which makes it suitable for medical diagnosis, spam detection, fraud detection, etc.

In this assignment, I have applied Logistic Regression to the **Breast Cancer Wisconsin Dataset**, which contains features computed from breast mass cell nuclei images. The task is to classify tumors as **Malignant (cancerous)** or **Benign (non-cancerous)**.

2. Dataset Description

- Source: <u>UCI Machine Learning Repository</u> (via Kaggle).
- Download method: Using kagglehub.
- Total Records: 569
- Features: 30 (such as radius, texture, smoothness, concavity, etc.)
- Target Variable:
 - \circ M \rightarrow Malignant (1)
 - \circ B \rightarrow Benign (0)

Unnecessary columns like id and Unnamed: 32 were removed.

3. Methodology

Step 1: Data Collection

Downloaded Dataset using kagglehub.

Step 2: Data Preprocessing

- Removed irrelevant columns.
- Encoded target values.
- Standardized features using StandardScaler.

Step 3: Data Splitting

- 85% of data → Training + Validation
- 15% of data → Test
- From training, 15% further used as Validation.

Final split:

Training Set: ~70%
Validation Set: ~15%
Test Set: ~15%

Step 4: Model Training

- Logistic Regression was chosen due to its interpretability and suitability for binary classification
- Hyperparameter tuning using GridSearchCV with C = [0.01, 0.1, 1, 10, 100].

Step 5: Model Evaluation

- Evaluated on Training, Validation, and Test sets.
- Generated Classification Report and Confusion Matrix.

4. Code Implementation

```
import kagglehub
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report
```

```
path = kagglehub.dataset_download("uciml/breast-cancer-wisconsin-data")
print("Path to dataset files:", path)
# Step 2: Load dataset
data = pd.read_csv(path + "/data.csv")
# Step 3: Data preprocessing
data = data.drop(['id', 'Unnamed: 32'], axis=1)
data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0})
X = data.drop('diagnosis', axis=1)
y = data['diagnosis']
# Step 4: Split dataset
X_train_full, X_test, y_train_full, y_test = train_test split(
    X, y, test_size=0.15, random_state=42, stratify=y
X train, X val, y train, y val = train test split(
    X_train_full, y_train_full, test_size=0.15, random_state=42,
stratify=y_train_full
print(f"Training samples: {len(X_train)}, Validation samples: {len(X_val)},
Test samples: {len(X_test)}")
# Step 5: Feature scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X val = scaler.transform(X val)
X test = scaler.transform(X test)
# Step 6: Logistic Regression with Hyperparameter Tuning
param_grid = {
    'C': [0.01, 0.1, 1, 10, 100],
    'penalty': ['12'],
    'solver': ['lbfgs']
}
grid = GridSearchCV(LogisticRegression(max_iter=1000), param_grid, cv=5,
scoring='accuracy')
```

```
grid.fit(X train, y train)
print("\nBest Hyperparameters:", grid.best_params_)
# Step 7: Validation performance
y_val_pred = grid.predict(X_val)
print("\nValidation Accuracy:", accuracy_score(y_val, y_val_pred))
print("Validation Classification Report:\n", classification report(y val,
y val pred))
# Step 8: Final Test performance
y_test_pred = grid.predict(X_test)
print("\nTest Accuracy:", accuracy_score(y_test, y_test_pred))
print("\nTest Confusion Matrix:\n", confusion_matrix(y_test, y_test_pred))
print("\nTest Classification Report:\n", classification_report(y_test,
y_test_pred))
# Step 9: Visualization
sns.heatmap(confusion_matrix(y_test, y_test_pred), annot=True, fmt="d",
cmap="Blues")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Test Set - Confusion Matrix Heatmap")
plt.show()
```

5. Results

1. Best Hyperparameters (from GridSearchCV):

```
Best Hyperparameters: {'C': 1, 'penalty': 'l2', 'solver': 'lbfgs'}
```

2. Validation Performance:

Validation Accuracy: 0.9726027397260274 Validation Classification Report:									
	pre	cision	recall d	f1-score	support				
	0	0.98	0.98	0.98	46				
	1	0.96	0.96	0.96	27				
accura			0.97	73					
macro a	vg	0.97	0.97	0.97	73				
weighted a	vg	0.97	0.97	0.97	73				

3. Test Performance:

Test Accuracy: 0.9883720930232558									
Test Confusion Matrix: [[54 0] [1 31]]									
Test Classification Report:									
	precis	ion r	recall f1	-score s	support				
(0.	98	1.00	0.99	54				
1	l 1.	00	0.97	0.98	32				
				0.00	05				
accuracy				0.99	86				
macro av	g 0.	99	0.98	0.99	86				
weighted av	g 0.	99	0.99	0.99	86				

Confusion Matrix (Test Set):

6. Conclusion

- Logistic Regression achieved **high accuracy (98%)** in classifying tumors.
- The model generalized well due to proper use of training, validation, and test splits.
- Logistic Regression is effective for binary classification with medical datasets.