Notizen - B.Sc. Physik | math241

Inhaltsverzeichnis

1	Topologie metrischer Räume					
	1.1	Norm	4			
		1.1.1 Normierter Raum	4			
	1.2	Innenprodukträume				
		1.2.1 Cauchy–Bunjakowski–Schwarz–Ungleichung	6			
	1.3	L^2 -Raum	6			
	1.4	Offene und punktierte offene Kugel	6			
	1.5	Vollständige Räume	7			
	1.6	Abschluss und Rand	7			
	1.7	Dichte Mengen	8			
	1.8	Isometrie und isometrische Isomorphie	8			
	1.9	Äquivalenzrelationen von Normen	8			
	1.10	Abstand zu einer kompakten Menge	8			
2	Folg	gen und Stetigkeit	ç			
	2.1	Konvergenz und Cauchy-Folgen	Ć			
		2.1.1 Konvergenz	Ć			
		2.1.2 Konvergenz in \mathbb{K}^m	Ć			
	2.2	Teilfolgen und kompakte Mengen	Ć			
		2.2.1 Überdeckung	10			
		2.2.2 Erweiterte reelle Zahlengrade	10			
		2.2.3 Obere und untere Grenzwerte	10			
	2.3	Grenzwerte und Stetigkeit von Funktionen	11			
	2.4	Topologische Stetigkeit				
	2.5	Komponentenweise Stetigkeit				
	2.6	l^p -Produktnormen	12			
	2.7	Stetigkeit von Einschränkungen	13			
	2.8	Lipschitz-Stetigkeit	13			
	2.9	Stetige Funktionen auf kompakten Mengen	14			
	2.10	Wegzusammenhängende Mengen und stetige Funktionen	14			
3	Stet	ige Lineare Operatoren	15			
	3.1	Beschränkte Funktionen	15			
	3.2	Polynome mehrerer Variablen	17			
	3.3	Operationen mit Grenzwerten der Funktionen	17			
		3.3.1 Links— und rechtsseitige / obere und untere Grenzwerte von Funktionen .	18			
4	Matrizen 18					
	4.1	Spektralsatz für selbstadjungierte Matrizen	18			
		4.1.1 Adjungierte und selbstadjungierte quadratische Matrizen	18			

Jo	nas Wortmann	Notizen	Inhaltsverzeichnis
	4.1.2 Spektralsatz .		19
5	Mehrdimensionale Diffe	erenzialgleichungen	19
6	Mehrdimentionale Integ	gralrechnung	19
7	Vektoranalysis		19
8	Hilberträume, L^2 –Räum	ne und Fourierreihen	19
9	Variationsrechnung und	l Laplace-Operator	19
10	Notizen		19

1 Topologie metrischer Räume

Ein metrischer Raum (X, d) besteht aus einer Menge X und einer Abstandsfunktion

$$d: X \times X \to [0, +\infty)$$

die die folgenden Eigenschaften $\forall x, y, z \in X$ haben

- (a) $d(x,y) \ge 0$ d ist positiv semidefinit
- (b) $d(x,y) = 0 \Leftrightarrow x = y$ zusammen mit (a) ist d positiv definit
- (c) d(x,y) = d(y,x) Symmetrie
- (d) $d(x, z) \le d(x, y) + d(y, z)$ Dreiecksungleichung

Die Funktion $d(\cdot, \cdot)$ heißt auch der Abstand oder die Metrik.

Sei M eine Teilmenge des metrischen Raums (X, d). Dann ist (M, d) auch ein metrischer Raum

$$(M, \rho)$$
 mit $\rho = d|_{M \times M}$ ist ein metrischer Raum.

Der Abstand ρ heißt induzierter Abstand durch den Abstand d. Man sagt auch, dass die Betragsnorm $|\cdot|$ den Abstand $d_2(x,y) = |x-y|$ in \mathbb{K}^n induziert.

1.1 Norm

Sei ein V Vektorraum. Eine Funktion $||\cdot||:V\to\mathbb{R}$ heißt Norm, wenn sie folgende Eigenschaften $\forall u,v\in V$ besitzt

- (a) $||u|| \ge 0$ (positive Semidefinitheit)
- (b) ||u|| = 0 genau wenn $u = 0_V$ (zusammen mit (a) positive Definitheit)
- (c) $||\alpha u|| = |\alpha| ||u|| \forall \alpha \in \mathbb{K}$
- (d) $||u+v|| \le ||u|| + ||v||$ (Dreiecksungleichung)

1.1.1 Normierter Raum

Ein Vektorraum V über \mathbb{K} heißt normierter Vektorraum, wenn V mit einer Norm $||\cdot||$ ausgerüstet wird. In diesem Fall schreibt man den normierten Raum als $(V, ||\cdot||)$.

Sei $(V, ||\cdot||)$ ein normierter Raum. Mit d(v, u) = ||v - u|| ist (V, d) dann ein metrischer Raum.

Beispiel: Einheitsspähre

Sei $S^2 = \partial K_1(0)$ die Einheitssphäre in $(\mathbb{R}^3, d_2), d_2(x, y) := |x - y|$. Dann ist $(S^2, d_2) = (S^2, d_2|_{S^2 \times S^2})$ der metrische Raum mit dem induzierten Abstand $d_2|_{S^2 \times S^2}$.

Beispiel: l^2 -Raum

Sei $l^2 = l^2(\mathbb{N}) = l_{\mathbb{K}}^2(\mathbb{N})$ die Menge aller Folgen $x = (x_1, x_2, \dots, x_n)$ mit den Koordinaten $x_j \in \mathbb{K} \, \forall j$, sodass $\sum_{j=1}^{+\infty} |x_j|^2 < +\infty$. Das heißt

$$l^{2} = \left\{ x = (x_{j})_{j=1}^{\infty} \in \mathbb{K}^{\mathbb{N}} : \sum_{j=1}^{+\infty} |x_{j}|^{2} < +\infty \right\}$$

wobei $\mathbb{K}^{\mathbb{N}}=\mathbb{K}\times\mathbb{K}\times\ldots$ also abzählbar unendlich ist. Dann ist l^2 ein Vektorraum und ein normierter Raum mit der Norm

$$||x||_2 = \left(\sum_{j=1}^{+\infty} |x_j|^2\right)^{\frac{1}{2}}.$$

1.2 Innenprodukträume

Das innere Produkt oder auch Skalarprodukt findet sich in dem l^2 -Raum wieder, also als unendliche Aufsummierung

$$\langle x, y \rangle_{l^2} = \sum_{j=1}^{\infty} x_j \overline{y_j}.$$

Das innere Produkt induziert die Norm $||x||_2 = \sqrt{\langle x, x \rangle_{l^2}}$ und den Abstand $||x - y||_2$.

Das innere Produkt bzw. Skalarprodukt auf V ist eine Abbildung

$$\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_V : V \times V \to \mathbb{K}$$

mit folgenden Eigenschaften $\forall x, y, z \in V$

- (a) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (komplexe Konjugation)
- (b) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle = \mathbb{K}$ (Linearität bezogen auf die zweite Variable)
- (b') $\langle z, \alpha x + \beta y \rangle = \overline{\alpha} \langle z, x \rangle + \overline{\beta} \langle z, y \rangle$ (im Fall von $\mathbb{K} = \mathbb{C}$)
- (c) $\langle x, x \rangle \ge 0$
- (d) $\langle x, x \rangle = 0 \Leftrightarrow x = 0_V$

Ein Vektorraum $(V, \langle \cdot, \cdot \rangle)$ mit einem inneren Produkt heißt **Innenproduktraum**. Wenn die Eigenschaften (a)–(c) erfüllt werden heißt der Vektorraum **Halbhilbertraum**.

Norm

Sei $(V, \langle \cdot, \cdot \rangle_V)$ ein Innenproduktraum. Dann ist $||x|| := \sqrt{\langle x, x \rangle}$ eine Norm auf V.

1.2.1 Cauchy-Bunjakowski-Schwarz-Ungleichung

Sei $(V, \langle \cdot, \cdot \rangle_V)$ ein Halbhilbertraum. Dann gilt

$$|\langle x, y \rangle_V| \le ||x||_V ||y||_V \qquad ||x||_V := \sqrt{\langle x, x \rangle_V}.$$

1.3 L^2 -Raum

Seien $-\infty < a < b < +\infty$. Die Menge $C_{\mathbb{K}}[a,b]$ der stetigen \mathbb{K} -wertigen Funktionen auf [a,b] ist ein Vektorraum bzgl. der Addition und Multiplikation der Funktionen mit Skalaren. Mit dem inneren Produkt

$$\langle f, g \rangle_{L^2} := \int_a^b f(x) \overline{g(x)} dx \qquad f, g \in C_{\mathbb{K}}[a, b]$$

ist $C_{\mathbb{K}}[a,b]$ ein Innenproduktraum. Wobei $\overline{g}: x \mapsto \overline{g(x)}$.

1.4 Offene und punktierte offene Kugel

Sei (X, d) ein metischer Raum. Sei $E \subseteq X$. Eine offene Kugel mit einem Radius r > 0 und Mittelpunkt $z \in X$ ist die Menge

$$K_r(z) := \{x \in K : d(z, x) < r\}.$$

Eine punktierte offene Kugel ist eine Kugel ohne Zentrum, also die Menge

$$K_r^{\bullet}(z) := \{x \in K : 0 < d(z.x) < r\} = K_r(z) \setminus \{z\}.$$

innere, Häufungs- und isolierte Punkte

Ein Punkt $p \in E$ heißt innerer Punkt von E, wenn es eine offene Kugel $K_r(p)$ gibt, sodass $K_r(p) \subseteq E$. Die Menge aller inneren Punkte von E bezeichnet man als E^o .

Ein Punkt $p \in X$ heißt Häufungspunkt von E, wenn $E \cap K_r^{\bullet}(p) \neq \{\} \forall r > 0$. Die Menge aller Häufungspunkte von E wird als E' bezeichnet.

Falls $p \in E$ und $p \notin E'$, wird p als isolierter Punkt bezeichnet.

Eine Menge $E \subseteq X$ heißt offen, falls $E = E^o$. Eine Menge heißt abgeschlossen, wenn ihr Komplement $X^c := X \setminus E$ offen ist. Sie ist auch genau dann abgeschlossen, wenn $E' \subseteq E$.

Wenn $p \in E'$, gibt es in jeder $K_r(p)$ unendlich viele Punkte von E, da sich immer ein Punkt in einer ε -Umgebung befindet.

Vereinigungen und Schnitte

Für jede Familie $\{G_{\alpha}\}_{{\alpha}\in\mathbb{A}}$ offener Mengen G_{α} ist ihre Vereinigung $\bigcup_{{\alpha}\in\mathbb{A}}G_{\alpha}$ offen.

Für jede endliche Familie $\{G_j\}_{j=1}^n$ offener Mengen G_j ist ihre Schnittmenge $\bigcap_{j=1}^n G_j$ offen.

Für jede Familie $\{F_{\alpha}\}_{{\alpha}\in\mathbb{A}}$ abgeschlossener Mengen F_{α} ist ihre Schnittmenge $\bigcap_{{\alpha}\in\mathbb{A}}F_{\alpha}$ abgeschlossen.

Für jede endliche Familie $\{F_j\}_{j=1}^n$ abgeschlossener Mengen F_j ist ihre Vereinigung $\bigcup_{j=1}^n F_j$ abgeschlossen.

Es glit immer für beliebige Familien und Mengen

$$\left(\bigcup_{\alpha \in \mathbb{A}} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in \mathbb{A}} E_{\alpha}^{c} \qquad \left(\bigcap_{\alpha \in \mathbb{A}} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in \mathbb{A}} E_{\alpha}^{c}.$$

1.5 Vollständige Räume

Es gibt verschiedene vollständige Räume:

- (a) Falls jede Cauchy-Folge im metrischen Raum (X, d) konvergiert, heißt (X, d) vollständig.
- (b) Ein normierter Raum $(V, ||\cdot||)$ heißt vollständig, wenn V mit dem induzierten Abstand d(u, v) = ||u v|| vollständig ist.
- (c) Ein Innenproduktraum $(V, \langle \cdot, \cdot \rangle)$ heißt vollständig, wenn der induzierte Raum $(V, ||\cdot||)$ mit $||u|| = \sqrt{\langle u, u \rangle}$ vollständig ist.

Ein vollständiger normierter Vektorraum heißt **Banachraum**. Ein vollständiger Innenproduktraum heißt **Hilberraum** $(l_{\mathbb{K}}^2(\mathbb{N}) \text{ und } l_{\mathbb{K}}^2(\mathbb{Z}) \text{ sind Hilberräume}).$

Sei (X, d) vollständig. Betrachten wir $E \subset X$ als ein metrischen Unterraum (E, d) von (X, d). Dann ist (E, d) genau dann vollständig, wenn E im (X, d) abgeschlossen ist.

1.6 Abschluss und Rand

Sei $\{E_{\alpha}\}_{{\alpha}\in\mathbb{A}}$ die Familie aller abgeschlossenen Teilmengen von (X,d) mit der Eigenschaft $E\subseteq E_{\alpha}$. Dann heißt die abgeschlossene Menge $\overline{E}:=\bigcap_{{\alpha}\in\mathbb{A}}E_{\alpha}$ Abschluss von M. Die Menge $\partial E=\overline{E}\cap\overline{E^c}$ heißt Rand von M. Es gelten zudem

1.
$$\overline{E} = ((E^c)^o)^c$$

2.
$$\partial E = ((E^c)^o \cup E^o)^c = \overline{E} \backslash E^o$$

E ist genau dann abgeschlossen, wenn $E = \overline{E}$.

Der Abschluss und Rand kann auch durch Konvergenz beschrieben werden.

- 1. $p \in \overline{E}$ genau dann, wenn $\exists \{p_n\}_{n=1}^{\infty} \subset E$, sodass $\lim p_n = p$.
- 2. $p \in \partial E$ genau dann, wenn $\exists \{x_n\}_{n=1}^{\infty} \subset E$ und $\exists \{y_n\}_{n=1}^{\infty} \subset E^c$, sodass $\lim x_n = 0 = \lim y_n$.

$$\overline{E} = E \cup E' = E \cup \partial E.$$

1.7 Dichte Mengen

Eine Menge $E \subseteq X$ heißt dicht in X, wenn $\overline{E} = X$. Sei (X, d) vollständig. Sei $E \subseteq X$ und sei (E, d) der induzierte metrische Raum. Dann ist (\overline{E}, d) eine Vervollständigung von (E, d). Falls E zusätzlich dicht in X ist, ist (X, d) eine Vervollständigung von (E, d).

1.8 Isometrie und isometrische Isomorphie

Seien (X, d_X) und (Y, d_Y) metrische Räume.

- 1. Eine Abbildung $\varphi: X \to Y$ heißt Isometrie, wenn $d_Y(\varphi(x_1), \varphi(x_2)) = d_X(x_1, x_2) \, \forall x_1, x_2 \in X$.
- 2. Eine Isometrie φ heißt isometrischer Isomorphismus, wenn φ surjektiv ist.

Ein vollständiger metrischer Raum (\hat{X}, \hat{d}) heißt Vervollständigung von (X, d), wenn es eine solche Isometrie $\varphi: X \to \hat{X}$, sodass das Bild $\varphi(X) = \{\varphi(x): x \in X\}$ dicht in \hat{X} ist. Jeder metrische Raum kann vervollständigt werden. Eine Vervollständigung ist wesentlich eindeutig, in dem Sinn, dass zwei Vervollständigungen \hat{X}_1, \hat{X}_2 immer isometrisch isomorph sind, das heißt es existiert ein isometrischer Isomorphismus $\Phi: \hat{X}_1 \to \hat{X}_2$.

1.9 Äquivalenzrelationen von Normen

Eine Relation \sim auf einer abstrakten Menge M heißt Äquivalenzrelation wenn \sim die folgenden Eigenschaften hat

- 1. Reflexivität $x \sim x \, \forall x \in M$.
- 2. Transitivität $(x \sim y \land y \sim z) \Rightarrow x \sim z$.
- 3. Symmetrie $x \sim y \Rightarrow y \sim x$.

Normen $|\cdot|_{\alpha}$ und $|\cdot|_{\beta}$ auf einem Vektorraum W sind äquivalent, wenn es Konstanten $c_1, c_2 > 0$ gibt, sodass

$$c_2|w|_{\alpha} < |w|_{\beta} < c_1|w|_{\alpha} \forall w \in W.$$

Auf \mathbb{K}^m sind alle Normen äquivalent. Auf jedem endlichdimensionalem Vektorraum V sind alle Normen äquivalent.

1.10 Abstand zu einer kompakten Menge

Sei (X, d_X) ein metrischer Raum. Sei

$$\operatorname{dist}(E, M) = \inf_{y \in M} d_X(x, y)$$

der Abstand zwischen den Mengen $E, M \subseteq X$. Falls $E = \{x\}$ schreibt man

$$dist(x, M) = dist_M(x).$$

2 Folgen und Stetigkeit

2.1 Konvergenz und Cauchy-Folgen

2.1.1 Konvergenz

Sei (X, d) ein metrischer Raum. Eine Folge $\{p_n\}_{n=1}^{\infty} \subseteq X$ konvergiert gegen $p \in X$, wenn $\lim_{n\to\infty} d(p_n, p) = 0$. In diesem Fall sagt man, dass p der Grenzwert oder Limes von $\{p_n\}_{n=1}^{\infty}$ ist.

Cauchy-Folgen

Eine Folge $\{p_n\}_{n=1}^{\infty} \subseteq X$ heißt Cauchy–Folge, wenn es $\forall \varepsilon > 0$ eine Zahl $N_{\varepsilon} \in \mathbb{N}$ gibt, sodass $d(p_n, p_m) < \varepsilon$ für alle $n, m \ge n_{\varepsilon}$.

2.1.2 Konvergenz in \mathbb{K}^m

Sei $\{x^{[n]}\}_{n=1}^{\infty}$ mit $x^{[n]} = (x_1^{[n]}, x_2^{[n]}, \dots, x_m^{[n]}) \in \mathbb{K}^m$ eine Folge in $(\mathbb{K}, |\cdot|)$. Dann sind folgende Aussagen äquivalent

- 1. $\{x^{[n]}\}_{n=1}^{\infty}$ konvergiert in \mathbb{K}^m gegen $x=(x_1,\ldots,x_m)$
- 2. $\left\{x^{[n]}\right\}_{n=1}^{\infty}$ konvergiert gegen xkomponentenweise

Diese Äquivalenzen stimmen mit den Analogen Sätzen zu Cauchy-Folge überein.

Häufungspunkt

Die Menge aller Häufungspunkte ist E'. $p \in E'$ genau dann, wenn $\exists \{p_n\}_{n=1}^{\infty} \subset E \setminus \{p\}$, sodass $\lim p_n = p$.

Eine Teilmenge M des normierten Raums \mathbb{K}^m ist genau dann kompakt, wenn M abgeschlossen und beschränkt in \mathbb{K}^m ist.

2.2 Teilfolgen und kompakte Mengen

Sei $\{p_n\}_{n=1}^{\infty}$ eine Folge im metrischen Raum (X,d). Betrachtet man eine streng monoton steigende Teilfolge $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$. Dann heißt die Folge $\{p_{n_k}\}_{n=1}^{\infty}$ eine Teilfolge von $\{p_n\}_{n=1}^{\infty}$. Wenn diese Folge gegen $p \in X$ konvergiert, dann heißt p Teilfolgengrenzwert. Wenn $\lim_{n\to\infty} p_n = p \Leftrightarrow \lim_{n\to\infty} p_{n_k} = p$.

Folgenkompaktheit

Eine Menge $K\subseteq X$ heißt folgenkompakt, wenn jede Folge $\{p_n\}_{n=1}^{\infty}\subset K$ einen Teilfolgengrenzwert in K hat. In einem metrischen Raum (X,d) ist eine Menge K genau dann kompakt, wenn K folgenkompakt ist.

Eine Teilmenge E eines metrischen Raums (X,d) heißt beschränkt, wenn $E \subseteq K_r(z)$ für offene Kugeln $K_r(x)$ in X ist. Jede kompakte Menge ist abgeschlossen und beschränkt. Im l^2 ist die Einheitskugel $\overline{K_1(0)}$ abgeschlossen und beschränkt, aber nicht kompakt.

2.2.1 Überdeckung

Eine offene Überdeckung der Menge E ist eine Familie $\{G_{\alpha}\}_{{\alpha}\in\mathbb{A}}$ von offenen Mengen, sodass $E\subseteq\bigcup_{{\alpha}\in\mathbb{A}}$. Wenn zusätzlich $E\subseteq\bigcup_{{\alpha}\in\mathbb{A}_1}$ für eine Teilindexmenge $\mathbb{A}_1\subseteq\mathbb{A}$, sagt man, dass $\{G_{\alpha}\}_{{\alpha}\in\mathbb{A}_1}$ eine Teilüberdeckung ist. Falls die Indexmenge endlich ist, sagt man, dass G eine endliche Überdeckung ist. Eine Menge K heißt kompakt, wenn jede offene Überdeckung von K eine endliche Teilüberdeckung enthält.

2.2.2 Erweiterte reelle Zahlengrade

Sei

$$\hat{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{+\infty\} | -\infty < x < \infty \, \forall x \in \mathbb{R}$$

die erweiterte reelle Zahlengrade und sei $\arctan(\pm \infty) := \pm \frac{\pi}{2}$. Definiert man

$$d_{\arctan}(x,y) = |\arctan(x) - \arctan(y)|, x, y \in \hat{\mathbb{R}},$$

dann ist $(\hat{\mathbb{R}}, d_{\text{arctan}})$ ein kompakter metrischer Raum.

Für eine reelle Folge $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$ bedeutet definitionsgemäß, dass der Limes $\lim_{n\to+\infty} x_n = \pm \infty$ gegen $\pm \infty$ im metrischen Raum $(\hat{\mathbb{R}}, d_{\arctan})$ konvergiert.

Für jede Folge $\{s_n\}_{n\in\mathbb{N}}\subseteq \hat{\mathbb{R}}$ ist die Menge T aller Teilfolgengrenzwerte nicht leer.

2.2.3 Obere und untere Grenzwerte

Sei T wie oben, dann

- 1. $\lim_{n\to\infty}\inf x_n:=\inf T$ heißt unterer Grenzwert von $\{x_n\}_{n\in\mathbb{N}}$
- 2. $\lim_{n\to\infty}\sup x_n:=\sup T$ heißt oberer Grenzwert von $\{x_n\}_{n\in\mathbb{N}}$

Eine Folge $\{x_n\}_{n\in\mathbb{N}}\subseteq \hat{\mathbb{R}}$ konvergiert genau dann in $\hat{\mathbb{R}}$, wenn $\lim_{n\to\infty}\inf x_n=\lim_{n\to\infty}\sup x_n$. Dann ist $\lim_{n\to\infty}x_n=\lim_{n\to\infty}\inf x_n=\lim_{n\to\infty}\sup x_n$.

Eine Folge $\{x_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ konvergiert genau dann im \mathbb{R} , wenn die oberen und unteren Grenzwerte gleich und endlich sind.

Konvergenzradius der Potenzreihe

Für jede Potenzreihe

$$\sum_{k \in \mathbb{N}} a_k \left(z - z_0 \right)^k \qquad a_k \in \mathbb{C} \,\forall,$$

gibt es eine Zahl $\rho \in [0, +\infty]$, die Konvergenzradius heißt, sodass

- 1. die Reihe konvergiert absolut $\forall z \in K_{\rho}(z0)$.
- 2. die Reihe divergiert in $\mathbb{C} \ \forall z \in \{z \in \mathbb{C} \ | \ z z_0 | > \rho\}.$

3.
$$\rho = \left(\limsup |a_n|^{\frac{1}{n}}\right)^{-1}$$
, wobei

$$\rho = \begin{cases} 0 & \text{, wenn } \limsup |a_n|^{\frac{1}{n}} = +\infty \\ +\infty & \text{, wenn } \limsup |a_n|^{\frac{1}{n}} = 0 \end{cases}.$$

Die Kreisscheibe $K_{\rho}(z_0) \subseteq \mathbb{C}$ heißt Konvergenzkreis.

2.3 Grenzwerte und Stetigkeit von Funktionen

Seien (X, d_X) und (Y, d_Y) zwei metrische Räume. Sei $E \subseteq X$ und sei $f : E \to Y$ eine Funktion. Sei $p \in E'$. Die Funktion f hat einen Grenzwert q an der Stelle p, wenn

$$\lim_{n \to \infty} f(x_n) = q \,\forall \, \{x_n\}_{n \in \mathbb{N}} \subset E \,\text{mit } \lim x_n = p.$$

In diesem Fall schreibt man $\lim_{x\to p} f(x_n) = q$ oder $f(x) \to p$ als $x \to p$. Eine äquivalente Definition ist: Eine Funktion $f: E \to Y$ heißt stetig an der Stelle $x_0 \in E$, falls

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 | d_Y(f(x), f(x_0)) < \varepsilon \, \forall x \in K_\delta(x_0).$$

Falls x_0 ein isolierter Punkt von E ist, ist f an x_0 immer stetig. Falls $x_0 \in E'$, ist f und x_0 genau dann stetig, wenn $\lim_{x\to x_0} f(x) = f(x_0)$. Falls f an der Stelle x_0 stetig ist, heißt x_0 eine Stetigkeitsstelle von f. Wenn f an der Stelle x_0 unstetig ist, heißt x_0 eine Unstetigkeitsstelle von f. In metrischen Räumen sind Stetigkeit und Folgenstetigkeit äquivalent. In topologischen Räumen generell nicht. Ist eine Funktion f stetig für jedes $x \in M \subseteq E$, so heißt f stetig auf der Menge M. Falls hier M = E der Definitionsbereicht ist, sagt man, dass f eine stetige Funktion ist.

Stetigkeit der Norm

Sei $(V, ||\cdot||)$ ein normierter Raum. Die Norm sei $||\cdot||: V \to [0, +\infty)$. Alle Vektoren $u \in V$ sind Stetigkeitsstellen von $||\cdot||$.

Stetigkeit von Kompositionen

Seien $f: E \to Y$ und $g: M \to Z$, wobei $f(E) \subseteq M \subseteq Y$. Dann ist die Komposition von f mit g die Funktio $h: E \to Z$, die durch $h(X) = g(f(X)), x \in E$ definiert wird. Die Bezeichnung für die Komposition ist $h = g \circ f$.

- 1. Ist f stetig in $x \in E$ und g stetig in $f(x) \in M$, so ist h stetig in x.
- 2. Ist f stetig auf E und ist g stetig auf f(E), dann ist h stetig auf E.

Stetigkeit der quadratischen Form $\langle u, u \rangle$

Sei $(V, \langle u, u \rangle)$ ein Innenproduktraum über \mathbb{K} . Dann ist die Funktion $q: V \to \mathbb{R}, q(u) = \langle u, u \rangle$ stetig auf V. $||u|| = \sqrt{\langle u, u \rangle} \Rightarrow q(u) = ||u||^2$ ist die Komposition von der stetigen Funktion $||\cdot||$

mit der stetigen Funktion $g(y) = y^2, g: \mathbb{R} \to \mathbb{R}$. Daraus folgt, dass die quadratische Form q stetig ist.

2.4 Topologische Stetigkeit

Seien X und Y zwei metrische Räume. Sei $f:X\to Y$. Dann sind die folgenden Aussagen äquivalent.

- 1. f ist stetig auf X
- 2. Für jede offene Menge $G \subset Y$ ist ihr Urbild

$$f^{-1}(G) := \{x \in X | f(x) \in G\}$$

eine offene Menge in X. Dies ist auch die Definition der Stetigkeit in topologischen Räumen.

3. Für jede abgeschlossene Menge $F \subseteq Y$ ist $f^{-1}(F)$ abgeschlossen.

2.5 Komponentenweise Stetigkeit

Sei (X, d_X) ein metrischer Raum. Sei $R \subseteq X$ und $m \in \mathbb{N}$. Eine Funktion $f : E \to \mathbb{K}^m$ kann man komponentenweise als $f(x) = (f_1(x), f_2(x), \dots, f_m(x)), x \in E$ dargestellt werden. $f_j : E \to \mathbb{K}$ ist dann die j-te Komponentenfunktion von f. Wenn dies gilt sind folgende zwei Aussagen äquivalent.

- 1. f ist stetig an der Stelle $x \in E$.
- 2. Alle f_j mit j = 1, ..., m sind stetig an der Stelle $x \in E$.

2.6 *l*^p-Produktnormen

Die Funktion $||\cdot||_{\infty}: V \to [0,+\infty)$, mit $||u||_{(+)\infty}:=\max_{1\leq j\leq m}||u_j||_{V_j}$, ist eine Norm im Produktvektorraum $V=V_1\times\ldots\times V_m$.

Sei $1 \leq p < +\infty$. Die Funktion $||\cdot||_p : V \to [0, +\infty)$, mit $||u||_p := \left(\sum_{j=1}^m ||u_j||_{V_j}^p\right)^{\frac{1}{p}}$, ist eine Norm im Produktvektorraum $V = V_1 \times \ldots \times V_m$.

Stetigkeit im Produktvektorraum

Sei $1 \le p \le +\infty$. Sei $f: E \to X$. Dann gilt

1. Die Funktion f heißt stetig an der Stelle $v=(v_1,\ldots,v_m)\in E$, wenn sie stetig an der Stelle v, wenn es im Produktvektorraum $(V,||\cdot||_p)$ zu jedem $\varepsilon>0$ eine Zahl $\delta=\delta(\varepsilon)>0$ gibt, sodass

$$d_X(f(u), f(v)) < \varepsilon \, \forall u \in E : ||u - v||_n < \delta.$$

2. Die Funktion f heißt stetig auf E, wenn f stetig an jeder Stelle $v \in E$ ist.

Die Stetigkeit der Funktion ist unabhängig von dem Wert des Parameters p, weil alle Produktnormen $||\cdot||_p$ mit verschiedenen p äquivalent sind.

Äquivalente Normen

Normen $|\cdot|_{\alpha}$ und $|\cdot|_{\beta}$ auf einem Vektorraum W sind äquivalent, wenn es Konstanten $c_1, c_2 > 0$ gibt, sodass

$$c_2|w|_a \le |w|_\beta \le c_1|w|_\alpha \, \forall w \in W.$$

Äquivalente Normen generieren gleiche Topologie und gleiche Systeme der Umgebung.

Das Skalarprodukt $f(u_1, u_2) = \langle u_1, u_2 \rangle$ ist stetig auf dem Produktraum $V = H \times H$ bezüglich einer der Produktnormen $||\cdot||_p$.

Stetigkeit bezüglich einer Variablen

Sei (X, d_X) ein metrischer Raum. Sei $E \subseteq V = V_1 \times \ldots \times V_m$. Sei $f : E \to X$ eine Funktion $f(u_1, \ldots, u_m)$, die für die Werte der Variablen $u_1 \in V_1, \ldots, u_m \in V_m$ mit $(u_1, \ldots, u_m) \in E$ definiert ist. Die Funktion f heißt stetig bezüglich der Variablen u_j an der Stelle $v = (v_1, \ldots, v_m) \in E$, wenn die Funktion $g(u_j) = f(v_1, \ldots, v_{j-1}, u_j, v_{j+1}, \ldots, v_m)$ von der Variablen u_j stetig an der stelle $u_j = v_j$ ist (hier sind alle v_k mit $k \neq j$ fixiert und sind keine Variablen für g). Wenn f an der Stelle $v = (v_1, \ldots, v_m) \in E$ stetig im Sinne des Produktraums ist, ist f stetig an der Stelle v bezüglich jeder Variablen $u_j, j = 1, \ldots, m$. Generell impliziert die Stetigkeit für jede Variable nicht die Stetigkeit im Sinne des Produktraumes.

2.7 Stetigkeit von Einschränkungen

Seien (X, d_X) und (Y, d_Y) metrische Räume. Sei $E \subseteq X$. Sei $f : E \to Y$. Falls $f : E \to Y$ stetig auf E ist und $M \subseteq E$, ist die Einschränkung $f|_M : M \to Y$ auch stetig auf M. (Erinnerung: $g = f|_M$ ist die solche Funktion $g : M \to Y$, sodass $g(x) = f(x) \, \forall x \in M$.)

Sei $M_x = \{x\}$ mit $x \in E$. Dann ist $f|_M$ stetig für beliebige Funktionen f. Dies ist allerdings nicht verbunden mit der Stetigkeit von f an der Stelle x. In der Tat ist x ein isolierter Punkt von der einpunktigen Menge M_x . So ist $f|_{M_x}$ immer stetig in einem isolierten Punkt ihres Definitionsbereichs in M_x .

Sei $E = \bigcup_{\alpha \in \mathbb{A}} E_{\alpha}$ und sei $f|_{E_{\alpha}}$ stetig $\forall \alpha \in \mathbb{A}$. Das impliziert nicht, dass f stetig auf E ist.

2.8 Lipschitz-Stetigkeit

Seien (X, d_X) und (Y, d_Y) metrische Räume. Sei $E \subseteq X$. Eine Funktion $f: E \to Y$ heißt Lipschitz-stetig, wenn

$$\exists \alpha > 0 | d_Y(f(p), f(q)) \le \alpha d_X(p, q) \, \forall p, q \in E.$$

In diesem Fall heißt α eine Lipschitz-Konstante von f. Jede Isometrie ist Lipschitz-stetig mit der Lipschitz-Konstante $\alpha = 1$, weil dann gilt

$$d_Y(f(p), f(q)) = d_X(p, q).$$

Jede Lipschitz-stetige Funktion ist stetig auf ihrem Definitionsbereich.

2.9 Stetige Funktionen auf kompakten Mengen

Sei $f:[a,b]\to\mathbb{R}$ stetig, wobei $[a,b]\subset\mathbb{R}$ mit $a\leq b$. Sei $m:=\inf_{x\in[a,b]}f(x)$ und $M:=\sup_{x\in[a,b]}f(x)$. Dann

- 1. $-\infty < m < M < +\infty$.
- 2. $\exists x_{\min}, x_{\max} \in [a, b], \text{ sodass } f(x_{\min}) = m \text{ und } f(x_{\max}) = M.$

Seien (X, d_X) und (Y, d_Y) metrische Räume. Sei $E \subseteq X$. Sei E kompakt. Sei $f : E \to Y$ stetig. Dann

- 1. ist f(E) eine kompakte Teilmenge von Y.
- 2. ist f(E) abgeschlossen und beschränkt.
- 3. ist f beschränkt (eine Funktion heißt beschränkt, wenn ihr Bild beschränkt ist).

2.10 Wegzusammenhängende Mengen und stetige Funktionen

Zwischenwertsatz von Bolzano

Sei $I \subseteq \mathbb{R}$ ein Intervall. Sei $f: I \to \mathbb{R}$ stetig. Dann ist f(I) ein Intervall. Im Besonderen, falls $f(x_1) \le y \le f(x_2)$ für $x_1, x_2 \in I$, dann besitzt die Gleichung f(x) = y mindestens eine Lösung $x \in I$.

Wege

Seien (X, d_X) und (Y, d_Y) metrische Räume. Sei $E \subseteq X$. Sei $-\infty < a < b < +\infty$. Jede stetige Funktion $w \in \mathcal{C}([a, b], X)$ heißt Weg in X. Dieser Weg hat den Anfangspunkt w(a) und Endpunkt w(b). Die Spur Spur(w) = w([a, b]) des Weges w ist definitionsgemäß sein Bild.

Wegzusammenhängende Mengen

Eine Menge E heißt wegzusammenhängend, falls es zu jedem Paar $x,y\in E$ ein Weg $w:[a,b]\to E$ gibt, mit x=w(a) und y=w(b). In diesem Falls ist $\mathrm{Spur}(w)\subseteq E$.

Sei V ein normierter Raum. Jede Spur eines Weges ist wegzusammenhängend. Eine einpunktige Menge ist wegzusammenhängend. Die leere Menge ist auch wegzusammenhängend.

Seien $u, v \in V$. Die Strecke

$$[u, v] = \{(1 - t)u + tv : t \in [0, 1]\} \subset V$$

ist die Spur des Weges

$$w(t) = (1 - t)u + tv, t \in [0, 1].$$

Die Strecke [u, v] ist wegzusammenhängend.

Konvexe Mengen

Eine Menge $M \subseteq V$ heißt konvex, falls für jede Strecke [u,v] mit Endpunkten $u,v \in M$ gilt

$$[u,v]\subseteq M$$
.

Jede konvexe Teilmenge M eines normierten Raums ist wegzusammenhängend.

Sei $m \in \mathbb{N}$ und $m \geq 2$. Sei $x \in \mathbb{K}^m$.

- 1. Die Mengen $K_r(x)$ und $\overline{K_r(x)}$ sind konvex und so wegzusammenhängend.
- 2. Die Menge $\partial K_r(x)$ ist nicht konvex, aber wegzusammenhängend.

Sei $E\subseteq X$ wegzusammenhängend und sei $f:E\to Y$ stetig. Dann ist f(E) wegzusammenhängend.

Sei $E \subseteq \mathbb{R}$. Dann sind die folgenden Aussagen äquivalent

- 1. E ist ein Intervall.
- 2. E ist konvex.
- 3. E ist wegzusammenhängend.

Mehrdimensionaler Zwischenwertsatz

Sei $E \subseteq X$ wegzusammenhängend und sei $f: E \to \mathbb{R}$ stetig. Dann

- 1. ist f(E) ein Intervall.
- 2. ist hat die Gleichung f(x) = y mindestens eine Lösung $x \in E$, wenn es für $y \in \mathbb{R}$: $x_1, x_2 \in E : f(x_1) \le y \le f(x_2)$.

3 Stetige Lineare Operatoren

Eine Abbildung $A:V\to W$ heißt linearer Operator (Homomorphismus) falls

$$A(\alpha u_1 + \beta u_2) = \alpha A(u_1) + \beta A(u_2) \,\forall u_1, u_2 \in V \land \forall \alpha, \beta \in \mathbb{K}.$$

3.1 Beschränkte Funktionen

Seien $(V, ||\cdot||_V)$ und $(W, ||\cdot||_W)$ zwei normierte Räume über K.

1. Eine Funktion $f: E \to Y$ heißt beschränkt, wenn ihr Bild f(E) beschränkt ist. Eine Funktion f heißt beschränkt auf $M \subseteq E$, wenn f(M) beschränkt ist. 2. Ein linearer Operator $A:V\to W$ heißt beschränkt, wenn A auf der Einheitskugel $K_1(0)\subseteq V$ beschränkt ist.

Ein linearer Operator kann gleichzeitig als linearer Operator beschränkt und als Funktion unbeschränkt sein. Ein linearer Operator $A:V\to W$ ist genau dann beschränkt, wenn $||A||<+\infty$.

Raum der beschränkten linearen Operatoren

Die Menge $\mathbb{L}(V, W)$ aller beschränkten linearen Operatoren $A: V \to W$ ist ein Vektorraum mit der natürlichen Vektorraumstruktur $(\alpha A + \beta B)(u) = \alpha Au + \beta Bu, \alpha, \beta \in \mathbb{K}$. $\mathbb{L}(V, W)$ ist ein normierter Raum mit der Norm

$$||A|| := \sup_{||u||_{V} < 1} ||Au||_{W}.$$

Äquivalente Formen in der Norm $\mathbb{L}(V, W)$

$$||A|| = \sup_{||u||_{V} < 1} ||Au||_{W} = \sup_{||u||_{V} \le 1} ||Au||_{W} = \sup_{||u||_{V} = 1} ||Au||_{W} = \sup_{u \ne 0_{V}} \frac{||Au||_{W}}{||u||_{V}}.$$

Einheitsoperator

Sei V = W. Dann betrachtet man den Einheitsoperator als

$$I = I_V : V \to W, Iu = u \,\forall u \in V.$$

Dann ist

$$||I|| = \sup_{u \neq 0_V} \frac{||Iu||_V}{||u||_V} = \sup_{u \neq 0_V} \frac{||u||_V}{||u||_V} = 1.$$

Die folgenden Aussagen sind für lineare Operatoren äquivalent.

- 1. A ist beschränkt.
- 2. A ist stetig auf V.
- 3. A ist stetig in einem Punkt $u \in V$.
- 4. A ist stetig im Nullvektor $u = 0_V$.

Sei $n, m \in \mathbb{N}$.

- 1. Jeder lineare Operator $A: \mathbb{K}^m \to \mathbb{K}^n$ ist stetig und so beschränkt
- 2. Sei V endlichdimensional. Dann ist jeder linearer Operator $A:V\to W$ beschränkt und so stetig.

Linearform

Man betrachte den Fall, wenn $W = \mathbb{K}$ endlichdimensional ist. Ein linearer Operator $L: V \to \mathbb{K}$ heißt Linearform.

3.2 Polynome mehrerer Variablen

Sei $V = \mathbb{K}^m = \{x = (x_1, \dots, x_m) : x_j \in \mathbb{K} \, \forall j\}$. Sei $c \in \mathbb{K}$. Generell heißt $f : \mathbb{K}^m \to \mathbb{K}$ Monom, wenn

$$f(x_1, \dots, x_m) = c_n x^n := c_{n_1, \dots, n_m} \cdot x_1^{n_1} \cdot \dots \cdot x_m^{n_m} \qquad n_j \in \mathbb{N}_0 \,\forall j.$$

Hier ist $n=(n_1,\ldots,n_m)$ ein Multiindex. Die Konstanten $c_n=c_{n_1,\ldots,n_m}\in\mathbb{K}$ heißt Koeffizient. Falls $c_n\neq 0$, heißt die Summe der Exponenten

$$||n||_1 = \sum_{j=1}^m n_j$$

Grad des Monoms. Falls $c_n = 0$, dann ist das Monom eine Konstante und hat definitionsgemäß den Grad 0.

Eine Summe von Monomen

$$P(x) = \sum_{\|n\|_1 \le N} c_n x^n, P : \mathbb{K}^m \to \mathbb{K}$$

heißt **Polynom**. Der Grad von einem Polynom ist $\deg P = \max\{||n||_1 : c_n \neq 0\}$. Jedes Polynom ist stetig.

3.3 Operationen mit Grenzwerten der Funktionen

Sei $E \subseteq X$ mit (X, d_X) . Sei $p \in E'$. Seien $f, g \in Abb(E, \mathbb{C})$, sodass

$$\lim_{x \to p} f(x) = a \in \mathbb{C} \wedge \lim_{x \to p} g(x) = b \in \mathbb{C}.$$

Dann

- 1. $\lim_{x\to p} (f+g)(x) = a+b$.
- $2. \lim_{x \to p} (fg)(x) = ab.$
- 3. Falls zusätzlich $b \neq 0$ und p ein Häufungspunkt von $g^{-1}(\mathbb{C}n\{0\} = \{x \in E : g(x) \neq 0\}$ ist, dann gilt $\lim_{x \to p} (\frac{f}{g})(x) = \frac{a}{b}$.

Sei $(V, ||\cdot||)$ ein normierter Raum über \mathbb{K} . Seien $f, g \in \text{Abb}(E, V), \alpha \in \text{Abb}(E, \mathbb{K})$, sodass $\lim_{x\to p} f(x) = u \in V, \lim_{x\to p} g(x) = w \in V, \lim_{x\to p} \alpha(x) = a \in \mathbb{K}$. Dann gilt

- 1. $\lim_{x \to p} (f+g)(x) = u + w$.
- 2. $\lim_{x\to p} (\alpha f)(x) = au$.
- 3. Falls zusätzlich $a \neq 0$ und p ein Häufungspunkt von $\alpha^{-1}(\mathbb{C}n\{0\}) = \{x \in E : \alpha(x) \neq 0\}$ ist, dann gilt $\lim_{x \to p} (\frac{f}{\alpha})(x) = \frac{u}{\alpha}$.
- 4. Wenn $(V, \langle \cdot, \cdot \rangle)$ ein Innenproduktraum ist, gilt $\lim_{x \to p} \langle f, g \rangle = \langle u, w \rangle$.

3.3.1 Links- und rechtsseitige / obere und untere Grenzwerte von Funktionen

Sei (Y, d_Y) ein metrischer Raum. Seien $a \in \mathbb{R}, m \subseteq \mathbb{R}$ und $f: M \to Y$.

1. Falls a ein Häufungspunkt von $M_{a-} := M \cap (-\infty, a)$ ist, definiert man

$$\lim_{x \to a-0} f(x) := \lim_{x \to a} f|_{M_{a-}}.$$

Andere Bezeichnungen sind

$$f(a-o) = \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} f(x).$$

2. Falls a ein Häufungspunkt von $M_{a+} := M \cap (a, +\infty)$ ist, definiert man

$$\lim_{x \to a+0} f(x) := \lim_{x \to a} f_{M_{a+}}.$$

Andere Bezeichnungen sind

$$f(a+o) = \lim_{x \to a+} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a+0} f(x).$$

Sei (X, d_X) ein metrischer Raum. Sei $E \subseteq X$. Sei $p \in E'$. Sei $f : E \to \hat{\mathbb{R}}$.

- 1. $\lim_{x\to p}\inf f(x) := \lim_{\delta\to 0+0}\inf_{x\in E\cap K^{\bullet}_{\delta}(p)}f(x)$.
- 2. $\lim_{x\to p} \sup f(x) := \lim_{\delta\to 0+0} \inf_{x\in E\cap K^{\bullet}_{\delta}(p)} f(x)$.

Mit
$$K_{\delta}^{\bullet}(p) = K_{\delta}(p)n\{p\} = \{x \in X : 0 < d_X(x,p) < \delta\}.$$

4 Matrizen

4.1 Spektralsatz für selbstadjungierte Matrizen

Sei $m, n \in \mathbb{N}$. Sei $\mathbb{K}^{m \times n} = \text{Mat } (m \times n, \mathbb{K})$ die Menge aller $m \times n$ -Matrizen $A = (a_{j,k})_{1 \leq j \leq m}^{1 \leq k \leq n}$ mit Einträgen $a_{j,k} \in \mathbb{K}$. Dann ist $\mathbb{K}^{m \times n}$ ein Vektorraum über \mathbb{K} mit gewöhnlicher Addition und Multiplikation mit Skalaren $\gamma \in \mathbb{K}$

$$A + B = (a_{j,k} + b_{j,k})_{1 < j < m}^{1 \le k \le n} \qquad \gamma A = (\gamma a_{j,k})_{1 < l < m}^{1 \le k \le n} \qquad A, b \in \mathbb{K}^{m \times n}.$$

4.1.1 Adjungierte und selbstadjungierte quadratische Matrizen

Sei jetzt $n = m \in \mathbb{N}$. Eine quadratische Matrix $B = (b_{j,k})_{j,k=1}^n \in \mathbb{C}^{n \times n}$ heißt adjungierte Matrix von $A \in \mathbb{C}^{n \times n}$, falls

$$\langle Ax, y \rangle = \langle x, By \rangle \qquad \forall x, y \in \mathbb{C}^n.$$

In diesem Fall schreibt man $B = A^*$, was äquivalent zu $b_{j,k} = \overline{a_{k,j}} \,\forall j, k$ ist. Adjungiert bedeutet also transponiert–konjugiert.

 $A=(a_{j,k})_{j,k=1}^n\in\mathbb{C}^{n\times n}$ heißt selbstadjungierte Matrix, falls $A=A^*$, also falls $a_{j,k}=\overline{a_{k,j}}\,\forall j,k$.

4.1.2 Spektralsatz

Sei $A = (a_{j,k})_{j,k=1}^n \in \mathbb{C}^{n \times n}$ selbstadjungiert. Dann gibt es eine Orthonormalbasis $\{u^k\}_{k=1}^n$ des Raums \mathbb{C}^n , sodass

- 1. $Au^k = \lambda_k u^k \, \forall k$, das heißt u^k sind Eigenvektoren von A zu den Eigenwerten λ_k .
- 2. $\lambda_k \in \mathbb{R} \, \forall k$ und $\{\lambda_k\}$ ist die Menge aller Eigenwerte von A mit den entsprechenden Vielfachen.

Spektralsatz für symmetrische Matrizen

Falls alle $a_{j,k} \in \mathbb{R}$ sind, ist $A = A^*$ äquivalent mit $a_{j,k} = a_{k,j} \,\forall j,k$. Das heißt $A \in \mathbb{R}^{n \times n}$ stellt in $(\mathbb{C}^n, \langle \cdot, \cdot \rangle)$ genau dann einen selbstadjungierten linearen Operator dar, wenn A symmetrisch ist. In diesem Fall sind für jeden Eigenvektor u^k zu λ_k , $v^k = \Re(u^k)$ und $w^k = \Re(u^k)$ auch Eigenvektoren zu λ_k . In diesem Fall kann man eine Orthonormalbasis $[u^k]_{k=1}^n$ so wählen, dass $u_j^k \in \mathbb{R} \,\forall j,k$ ist.

Sei $A = (a_{j,k})_{j,k=1}^n \in \mathbb{C}^{n \times n}$ selbstadjungiert. Seien $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ die Eigenvektoren von A und sei $\{u^k\}_{k=1}^n$ die entsprechende Orthonormalbasis der Eigenvektoren. Betrachte $q_A(x) = \langle Ax, x \rangle_{\mathbb{C}^n}$ als eine \mathbb{R} -werte Funktion auf $\overline{K_1(0)} = \{x \in \mathbb{C}^n : |x| \leq 1\}$. Dann ist

- 1. $m = \min_{|x| \le 1} q_A(x) = \lambda_1$ und $M = \max_{|x| \le 1} q_A(x) = \lambda_n$.
- 2. u^1 und u^n globale Minima und Maxima von $q_A \left| \frac{1}{K_1(0)} \right|$, das heißt $q_A(u^1) = \lambda_1$ und $q_A(u^n) = \lambda_n$.
- 5 Mehrdimensionale Differenzialgleichungen
- 6 Mehrdimentionale Integralrechnung
- 7 Vektoranalysis
- 8 Hilberträume, L²-Räume und Fourierreihen
- 9 Variationsrechnung und Laplace-Operator
- 10 Notizen