

Mixture of Expert/Imitator Networks: Scalable Semi-supervised Learning Framework

Shun Kiyono¹

Jun Suzuki^{1,2}

Kentaro Inui^{1,2}

¹Tohoku University

²RIKEN AIP

Presented at AAAI-19

Intro: More Data, Better Performance

- One of the characteristics of deep neural network
- We aim to accomplish this through semisupervised learning (SSL) using unlabeled data
- Main challenge is to design SSL to equip following two properties:
- 1 "More data, better performance" with unlabeled data
- 2 Computationally scalable to the amount of unlabeled data

Training Procedure

- 1 Train the expert with labeled data
- 2 Train the imitators with unlabeled data

- The imitators "imitate" the label distributions that are estimated by the expert
- Input for the imitators is limited to n-gram
- 3 Fine-tune the expert with the imitators

Overview of Proposed Method: MEIN

- The MEIN is a mixture of expert and imitators
- The imitators are trained with unlabeled data
- The imitators are designed to be computationally fast

Intuition behind Imitator Network

Unlabeled Data (Large)

..... good this appreciate

..... good this appreciate

····· this

bad this!

···· bad

The amount of labeled training data is **not enough** for learning infrequent features

Frequent useless features may be biased to specific label, leading to overfitting because labeled data is limited

Frequent useful features can be learned even if labeled data is limited

Using unlabeled data improves the coverage of infrequent features

Unlabeled data is greater than labeled data, thus bias is less likely to happen

Each imitator makes a prediction from n-gram; learns to classify useful/useless features

Experiments

Expert

Network

Expert

predicts

labels

1) Effectiveness of the MEIN Framework

Error rate (%) on each benchmark dataset

Method	Elec	IMDB	Rotten	RCV1
LSTM	10.09	10.98	26.47	14.14
LSTM+Imitator	8.83	10.04	24.93	12.31
LM-LSTM	5.72	7.25	16.80	8.37
LM-LSTM+Imitator	5.48	6.51	15.91	7.53
ADV-LM-LSTM	5.38	6.58	15.73	7.89
ADV-LM-LSTM+Imitator	5.14	6.07	13.98	7.51
VAT-LM-LSTM (rerun)	5.47	6.20	18.50	8.44
VAT-LM-LSTM (Miyato)	5.54	5.91	19.1	7.05
iVAT-LSTM (Sato)	5.18	5.66	14.12	11.68

- Incorporating the imitators improves the performance of three distinct baselines
- Imitators can be combined with even stronger baseline developed in the future
- Our ADV-LM-LSTM+Imitator achieves the new state-of-the-art performance

2 Computational Speed of the Imitators

LM-LSTM 41,914 -
VAT-LM-LSTM 9,602 0.23x
Imitator (x1) 555,613 13.26x
Imitator (x2) 236,065 5.63x
Imitator (x3) 122,076 2.91x
Imitator (x4) 75,393 1.80x

Imitator is 8 times faster than state-of-the-art VAT method

3 Effectiveness of Increasing Unlabeled Data

Increasing the amount of unlabeled data improves the performance of the expert (ADV-LM-LSTM)