Mounting GDrive directory

```
In [1]: from google.colab import drive
    drive.mount('/content/gdrive')
    %cd '/content/gdrive/MyDrive/Colab Notebooks/UoA_MSDS/Course_8/Capstone1_Ad_
```

Mounted at /content/gdrive /content/gdrive/Colab Notebooks/UoA_MSDS/Course_8/Capstone1_Ad_Campa ign_Recommender

Import libraries

```
In [2]:
        %pip install basemap dill --quiet
                                                     - 860.7/860.7 kB 9.2 MB/s eta 0:
       00:00
                                                     - 115.3/115.3 kB 9.8 MB/s eta 0:
       00:00
                                                     - 30.5/30.5 MB 41.4 MB/s eta 0:0
       0:00
In [3]: import os
        import csv
        from IPython.core.display import display, HTML
        import numpy as np
        import pandas as pd
        from matplotlib import pyplot as plt
        from mpl toolkits.basemap import Basemap
        %matplotlib inline
        import warnings
        warnings.filterwarnings('ignore')
        from sklearn.cluster import DBSCAN
```

Reading data

The datasets below are already downloaded from previous notebook:

- app_events.csv
- train_event_data.csv
- app_events_meta_data.csv
- train_mobile_brand.csv

```
In [4]: # Load into dataframes, disble quote parsing inside strings when loading
# Ref: https://stackoverflow.com/a/29857126

app_events = pd.read_csv('data/app_events.csv', quoting=csv.QUOTE_NONE)
train_event_data = pd.read_csv('data/train_event_data.csv', quoting=csv.QUOT
app_events_meta_data = pd.read_csv('data/app_events_meta_data.csv', quoting=train_mobile_brand = pd.read_csv('data/train_mobile_brand.csv', quoting=csv.
# Features from feature engineering section
feature_average_daily_events = pd.read_csv('data/feature_average_daily_event
```

Subtask 4: Advanced visualization and clustering

1. Geospatial visualization

a) Plot the visualization plot for a sample of 100'000 data points

```
In [5]: # Map plot function
            def map_plot(data, color=None, region_config=None):
               plt.figure(figsize=(16,6))
               if not region_config:
                 m = Basemap()
               else:
                 m = Basemap(
                     projection='merc',
                     llcrnrlat=region_config['lat_min'],
                     urcrnrlat=region_config['lat_max'],
                     llcrnrlon=region_config['lon_min'],
                     urcrnrlon=region config['lon max'],
                     lat ts=35,
                     resolution='c'
               m.shadedrelief()
               m.drawcoastlines(linewidth=.1)
               m.drawcountries(linewidth=.1)
               m.scatter(
                   *m(data.longitude, data.latitude),
                   marker='o',
                   s=3,
                   color= color or 'r',
               )
               plt.show()
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

plt.clf()
plt.close("all")

In [6]: # Get 100'000 sample points
 sample_locations = train_event_data[~(train_event_data.latitude.isna() | tra
 sample_locations

Out[6]: device_id gender age group_train event_id datetimestan 2016-05-0 505392 M25-32 1059108490518970000 Μ 29 2711276.0 23:27: 2016-05-0 870788 -1002733576670970000 Μ 47 M32+ 210973.0 21:38:(2016-05-0 65851 118276158630381000 Μ 18 M0-24 2013506.0 03:40:3 2016-05-0 832193 -8241952332260660000 19 M0-24 253577.0 М 14:35:5 2016-05-0 800736 5371847614880380000 М 26 M25-32 13511.0 13:12:4 2016-05-0 **272192** -3845046065455220000 27 M25-32 3191238.0 М 09:51:2 2016-05-0 1079938 9163721051841010000 Μ 31 M25-32 687525.0 19:28:0 2016-05-0 1160273 -1319995297521480000 Μ 31 M25-32 2221899.0 21:38:2 2016-05-0 -9122745692722600000 756893 Μ 36 M32 +497795.0 07:12:3 2016-05-0 28309 -1131132926846460000 46 M32+ 1597167.0 Μ 06:16:(

100000 rows × 8 columns

In [7]: map_plot(sample_locations)

Most of the events are from East Asia. Let's narrow down to the region with most events.

In [9]: map_plot(sample_regional_locations, region_config=region_config)

b) Compare the event visualization plots based on the users' gender information

```
In [10]: sample_male_locations = regional_locations[regional_locations['gender'] == '
sample_female_locations = regional_locations[regional_locations['gender'] ==
map_plot(sample_male_locations, color='b', region_config=region_config)
map_plot(sample_female_locations, color='m', region_config=region_config)
```


There are more male users East Asia than female users.

c) Compare the event visualization plots based on the following age groups: 0-24, 25-32, 32+

Output hidden; open in https://colab.research.google.com to view.

The distribution by age group is not much difference between groups and with the overall distribution.

2. DBSCAN clustering as a preprocessing technique

```
In [13]: # Clustering based on average location for each device id
         regional locations by device = regional locations.groupby('device id')[['lat
         # Clustering the region of interest, others locations will be treated as a d
         regional_locations_coord = regional_locations_by_device[['latitude', 'longit']
         regional_locations_coord
Out[13]: array([[ 23.19
                             , 113.24
                 [ 30.87151515, 114.36234848],
                 [ 46.61897436, 124.88846154],
                 [ 30.25874693, 120.16542998],
                          . 101.7525
                 [ 26.555
                                            1.
                 [ 32.64333333, 118.973333333]])
In [14]: kms_per_radian = 6371.0088
         epsilon = 2.0 / kms_per_radian # Grouping people within 2 km
         db = DBSCAN(
             # cluster_method='dbscan',
             eps=epsilon,
             min_samples=5, # Need 5 neighbors in order to consider a core point
             algorithm = 'ball_tree',
             metric = 'haversine',
             n jobs=-1, # Use all processors
         ).fit(np.radians(regional_locations_coord))
         location_clusters = pd.Series(db.labels_)
         print('Number of clusters:', location_clusters.nunique())
         location clusters
```

Number of clusters: 224

```
26
Out[14]: 0
         1
                  -1
         2
                  -1
         3
                  -1
         4
                  0
                  . .
                 75
         11552
         11553
                 -1
                  53
         11554
         11555
                 -1
                 -1
         11556
         Length: 11557, dtype: int64
In [15]: # Assign cluster labels to train data
         regional_locations_by_device['location_cluster'] = location_clusters
         # Save core points to another dataframe
         dbscan_core_points = regional_locations_by_device[
             regional_locations_by_device['location_cluster'] != -1
         ][
             ['latitude', 'longitude', 'location_cluster']
         display(dbscan_core_points.info())
         dbscan_core_points
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 3066 entries, 0 to 11554
       Data columns (total 3 columns):
                             Non-Null Count Dtype
        # Column
        ____
        0
            latitude
                              3066 non-null float64
```

Column Non-Null Count Dtype
--- 0 latitude 3066 non-null float64
1 longitude 3066 non-null float64
2 location_cluster 3066 non-null int64
dtypes: float64(2), int64(1)
memory usage: 95.8 KB
None

Out[15]:		latitude	longitude	location_cluster
	0	23.190000	113.240000	26
	4	22.660000	114.020000	0
	7	22.730000	113.800000	1
	9	39.854583	116.300139	2
	14	39.110000	117.220000	3
	•••			
	11533	22.617500	114.101250	6
	11540	31.148548	121.407581	10
	11547	30.670000	104.110000	23
	11552	41.810000	123.460000	75
	11554	30.258747	120.165430	53

3066 rows × 3 columns

```
In [16]: # Create feature from location cluster
         feature_location_cluster = train_event_data['device_id'].drop_duplicates()
         # Merge by device id
         feature_location_cluster = pd.merge(
             feature_location_cluster,
             regional_locations_by_device[['device_id', 'location_cluster']],
             on='device_id',
             how='left'
         feature_location_cluster.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 74645 entries, 0 to 74644
        Data columns (total 2 columns):
                              Non-Null Count Dtype
         # Column
             device_id 74645 non-null int64
             location_cluster 11557 non-null float64
        dtypes: float64(1), int64(1)
        memory usage: 1.7 MB
In [17]: # Fill all other points with label -1
         feature_location_cluster['location_cluster'] = feature_location_cluster['location_cluster]
         feature location cluster.info()
```

```
<class 'pandas.core.frame.DataFrame'>
        Int64Index: 74645 entries, 0 to 74644
        Data columns (total 2 columns):
         # Column
                              Non-Null Count Dtype
        ____
            device_id
                              74645 non-null int64
         0
            location cluster 74645 non-null int64
        dtypes: int64(2)
        memory usage: 1.7 MB
In [18]: # Save cluster labels
         feature_location_cluster.to_csv('data/feature_location_cluster.csv')
         os.listdir('data')
Out[18]: ['train_mobile_brand.csv',
          'app_events_meta_data.csv',
          'train_event_data.csv',
          'app_events.csv',
          'feature average daily events.csv',
          'train',
          'test',
          'feature location cluster.csv']
```

3. Final data preparation and train-test split

a) Check the datasets and features again to see what columns to include in train/test data

```
In [19]: for df, label in zip(
                  app_events,
                  train event data,
                  app_events_meta_data,
                  train_mobile_brand,
                  feature_average_daily_events,
                  feature_location_cluster,
             ],
                  'app_events',
                  'train_event_data',
                  'app_events_meta_data',
                  'train mobile brand',
                  'feature_average_daily_events',
                  'feature_location_cluster',
             ],
           display(HTML(f'<h2>{label} columns:</h2>'))
           display(df.columns.values)
           display(HTML('<hr/>'))
```

app_events columns:

train_event_data columns:

app_events_meta_data columns:

```
array(['app_id', 'label_id', 'category'], dtype=object)
```

train_mobile_brand columns:

feature_average_daily_events columns:

```
array(['device_id', 'average_daily_events'], dtype=object)
```

feature_location_cluster columns:

```
array(['device_id', 'location_cluster'], dtype=object)
```

b) Choose features and labels from each data

- train_event_data:
 - device_id
 - gender
 - age
 - event id (to split by scenarios: devices with and without events)
- app events: This is the transitive data, so we don't use this
- app events meta data (we only use the categories of apps on the device):
 - device_id (mapping by app_id ↔ event_id ↔ device_id)
 - category
- train mobile brand:
 - device id
 - phone brand
 - device model
- feature_average_daily_events:
 - device id
 - average_daily_events
- feature location cluster:

- device_id
- location cluster

```
In [20]: # Starter records
         input_data = train_event_data[['device_id', 'gender', 'age', 'event_id']]
         # Show some records
         print('number of unique devices:', input data['device id'].nunique())
         display(input_data.head())
```

number of unique devices: 74645

	device_id	gender	age	event_id
0	-7548291590301750000	М	33	2369465.0
1	-7548291590301750000	М	33	1080869.0
2	-7548291590301750000	М	33	1079338.0
3	-7548291590301750000	М	33	1078881.0
4	-7548291590301750000	М	33	1068711.0

```
In [21]: # Merge with app_events to get the app_id (an event is from a single app)
            input_data_with_categories = pd.merge(
                input_data,
                app_events[['app_id', 'event_id']],
                on='event_id',
                how='left',
            # Merge with app_events_meta_data to get the categories
            input_data_with_categories = pd.merge(
                input data with categories,
                # Filter out apps without category before merging
                app_events_meta_data[
                    ~app_events_meta_data['category'].isna()
                [['app_id', 'category']].groupby('app_id').agg(list),
                on='app_id',
                how='left',
            ).drop(columns=['app id'])
            # Rename category column
            input_data_with_categories = input_data_with_categories.rename(
                columns={'category': 'app_categories'},
            # Merge categories by device
            input data with categories = input data with categories.groupby(
                     'device_id',
                     'gender',
                     'age',
                ],
            )['app categories'].agg(
                lambda x: set(element
                           for lst in x[~x.isna()]
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js in lst
```

```
).reset index()
 display(input data with categories.info())
 input_data_with_categories[input_data_with_categories['app_categories'].appl
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 74645 entries, 0 to 74644
Data columns (total 4 columns):
    Column
                   Non-Null Count Dtype
                   _____
____
0 device_id 74645 non-null int64
1 gender
                  74645 non-null object
2
    age
                  74645 non-null int64
3
    app_categories 74645 non-null object
dtypes: int64(2), object(2)
memory usage: 2.3+ MB
None
```

Out[21]:

:		device_id	gender	age	app_categories
	23	-9217193238265890000	М	33	{Technology Information}
	44	-9212412905070440000	М	33	{Integrated Living}
;	80	-9201434269962940000	М	35	{video}
	91	-9198513807097370000	М	22	{Contacts}
1	14	-9192503757087420000	М	41	{Technology Information}
	•••		•••		
745	37	9198782493894550000	М	23	{Technology Information}
745	78	9207229814361450000	F	29	{Taxi}
745	80	9207308632673860000	F	24	{Contacts}
746	21	9216925254504440000	М	41	{Technology Information}
746	31	9219164468944550000	М	35	{P2P net loan, Wealth Management, Securities,

4039 rows × 4 columns

```
In [22]: # Merge the phone_brand feature
input_data_with_categories_and_phone_brand = pd.merge(
    input_data_with_categories,
        train_mobile_brand[['device_id', 'phone_brand', 'device_model']],
    on='device_id',
    how='left',
)

display(input_data_with_categories_and_phone_brand.info())
input_data_with_categories_and_phone_brand
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 74840 entries, 0 to 74839 Data columns (total 6 columns): Column Non-Null Count Dtype ____ _____ device_id 74840 non-null int64 0 gender 1 74840 non-null object 2 74840 non-null int64 3 app_categories 74840 non-null object 4 phone_brand 74840 non-null object device_model 74840 non-null object 5 dtypes: int64(2), object(4) memory usage: 4.0+ MB None

Out[22]:

:	device_id	gender	age	app_categories	phone_brand	device_n
0	-9223067244542180000	М	24	{}	vivo	
1	-9222956879900150000	М	36	{}	samsung	Galaxy N
2	-9222754701995930000	М	29	{}	Coolpad	8
3	-9222352239947200000	М	23	{}	Xiaomi	xn
4	-9222173362545970000	F	56	{}	samsung	Galaxy N
•••						
74835	9220914901466450000	М	34	{}	Meizu	MX
74836	9221152396628730000	М	21	{}	Xiaomi	1
74837	9221608286127660000	F	43	{}	OPPO	
74838	9221843411551060000	М	17	{}	Gionee	
74839	9222849349208140000	М	23	{}	Xiaomi	

74840 rows × 6 columns

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 74840 entries, 0 to 74839
Data columns (total 8 columns):
```

#	Column	Non-Null Count	Dtype	
0	device_id	74840 non-null	int64	
1	gender	74840 non-null	object	
2	age	74840 non-null	int64	
3	app_categories	74840 non-null	object	
4	phone_brand	74840 non-null	object	
5	device_model	74840 non-null	object	
6	average_daily_events	23402 non-null	float64	
7	location_cluster	74840 non-null	int64	
dtypes: $float64(1)$, $int64(3)$, $object(4)$				

atypes: Tloato4(1), Into4(3), object(4)

memory usage: 5.1+ MB

None

-			
11	114	1) 2 1	-
U	uч	1 4 3 1	

	device_id	gender	age	app_categories	phone_brand	device_n
0	-9223067244542180000	М	24	{}	vivo	
1	-9222956879900150000	М	36	{}	samsung	Galaxy N
2	-9222754701995930000	М	29	{}	Coolpad	8
3	-9222352239947200000	М	23	{}	Xiaomi	xn
4	-9222173362545970000	F	56	{}	samsung	Galaxy N
•••						
74835	9220914901466450000	М	34	{}	Meizu	MX
74836	9221152396628730000	М	21	{}	Xiaomi	ı
74837	9221608286127660000	F	43	{}	OPPO	
74838	9221843411551060000	М	17	{}	Gionee	
74839	9222849349208140000	М	23	{}	Xiaomi	

74840 rows × 8 columns

The data is ok and is ready for next step.

c) Tagging records by scenarios

- Scenario 1: All features are available
- Scenario 2: Only basic features about device are available

```
In [24]: segment_tag = (
                 input_data_with_full_details['app_categories'].apply(lambda lst: len(lst
                 (~input_data_with_full_details['average_daily_events'].isna())
             ).apply(lambda x: 1 if x else 2)
             input_data_segment_tagged = input_data_with_full_details.copy()
             input data segment tagged['segment'] = segment_tag
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
input_data_segment_tagged = input_data_segment_tagged
display(input_data_segment_tagged.info())
input_data_segment_tagged
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 74840 entries, 0 to 74839
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	device_id	74840 non-null	int64
1	gender	74840 non-null	object
2	age	74840 non-null	int64
3	app_categories	74840 non-null	object
4	phone_brand	74840 non-null	object
5	device_model	74840 non-null	object
6	average_daily_events	23402 non-null	float64
7	location_cluster	74840 non-null	int64
8	segment	74840 non-null	int64
	(-) (- \	

dtypes: float64(1), int64(4), object(4)

memory usage: 5.7+ MB

None

_		$\Gamma \sim$	- "	
	111	1)	/	

	device_id	gender	age	app_categories	phone_brand	device_n
0	-9223067244542180000	М	24	{}	vivo	
1	-9222956879900150000	М	36	{}	samsung	Galaxy N
2	-9222754701995930000	М	29	{}	Coolpad	8
3	-9222352239947200000	М	23	{}	Xiaomi	xn
4	-9222173362545970000	F	56	{}	samsung	Galaxy N
•••				•••		
74835	9220914901466450000	М	34	{}	Meizu	MX
74836	9221152396628730000	М	21	{}	Xiaomi	I
74837	9221608286127660000	F	43	{}	OPPO	
74838	9221843411551060000	М	17	{}	Gionee	
74839	9222849349208140000	М	23	{}	Xiaomi	

74840 rows × 9 columns

d) Preprocess feature columns

```
In [25]: from sklearn.feature_extraction.text import CountVectorizer
from sklearn.preprocessing import MultiLabelBinarizer, OneHotEncoder, Functi

In [26]: # Reference: https://github.com/scikit-learn/scikit-learn/issues/11309#issue
from typing import Any, Callable, Sequence
from typing_extensions import Self
import numby typing as not
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
from sklearn.base import BaseEstimator, TransformerMixin
            # Transform app categories
            class MultiHotEncoder(BaseEstimator, TransformerMixin):
                """Wraps `MultiLabelBinarizer` in a form that can work with `ColumnTrans
                Note that the input `X` has to be a `pandas.DataFrame`.
                def __init__(self, binarizer_creator: Callable[[], Any] | None = None, d
                    # Import inside function to prevent issues with pickling
                    from sklearn.preprocessing import MultiLabelBinarizer
                    self.binarizer creator = binarizer creator or MultiLabelBinarizer
                    self.dtype = dtype
                    self.binarizers = []
                    self.categories = self.classes = []
                    self.columns = []
                def fit(self, X: pd.DataFrame, y: Any = None) -> Self: # noqa
                    self.columns = X.columns.to list()
                    for column name in X:
                        binarizer = self.binarizer creator().fit(X[column name])
                        self.binarizers.append(binarizer)
                        self.classes .append(binarizer.classes ) # noga
                    return self
                def transform(self, X: pd.DataFrame) -> np.ndarray:
                    # Import inside function to prevent issues with pickling
                    import numpy as np
                    from sklearn.utils.validation import check is fitted
                    check is fitted(self)
                    if len(self.classes_) != X.shape[1]:
                        raise ValueError(f"The fit transformer deals with {len(self.clas
                                          f"while the input has {X.shape[1]}.")
                    return np.concatenate([binarizer.transform(X[c]).astype(self.dtype)
                                            for c, binarizer in zip(X, self.binarizers)],
                def get_feature_names_out(self, input_features: Sequence[str] = None) ->
                    # Import inside function to prevent issues with pickling
                    import numpy as np
                    from sklearn.utils.validation import check_is_fitted
                    check_is_fitted(self)
                    cats = self.categories_
                    if input features is None:
                                       = self.columns
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
elif len(input_features) != len(self.categories_):
                        raise ValueError(f"input_features should have length equal to nu
                                         f" got {len(input features)}")
                    return np.asarray([input_features[i] + "_" + str(t) for i in range(]
  In [27]: from sklearn.compose import ColumnTransformer
            from sklearn.pipeline import make_pipeline
            # Multi-label encode app categories
            mlb transform = ColumnTransformer(
                transformers=[
                    ('mlb', MultiHotEncoder(), ['app categories']),
                verbose_feature_names_out=False, # if True, "mlb_" will be prefixed to t
                remainder='passthrough' # this allows columns not being transformed to p
            mlb_transform.set_output(transform='pandas')
            # One-hot encode other category columns
            ohe transform = ColumnTransformer(
                transformers=[
                    ('ohe', OneHotEncoder(sparse output=False), ['location cluster', 'ph
                verbose_feature_names_out=False, # if True, "ohe_" will be prefixed to t
                remainder='passthrough' # this allows columns not being transformed to p
            ohe_transform.set_output(transform='pandas')
            # Log transform average_daily_events
            log_transform = ColumnTransformer(
                transformers=[
                    ('log', FunctionTransformer(np.log1p), ['average_daily_events']),
                ],
                verbose feature names out=False, # if True, "log" will be prefixed to t
                remainder='passthrough' # this allows columns not being transformed to p
            log transform.set output(transform='pandas')
            # Scale transform average daily events
            scale_transform = ColumnTransformer(
                transformers=[
                    ('scale', StandardScaler(), ['average_daily_events']),
                ],
                verbose_feature_names_out=False, # if True, "scale_" will be prefixed to
                remainder='passthrough' # this allows columns not being transformed to p
            scale transform.set output(transform='pandas')
            # Preprocessing pipeline, need to save this for usage later in deployment
            preprocessor = make pipeline(
                mlb transform,
                ohe_transform,
                log transform,
                scale_transform,
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 74840 entries, 0 to 74839

Columns: 1856 entries, average_daily_events to app_categories_zombies game

dtypes: float64(1856)
memory usage: 1.0 GB

None

Out[27]:

	average_daily_events	location_cluster1	location_cluster_0	location_cluster_
0	NaN	1.0	0.0	0.0
1	1.488142	0.0	0.0	0.0
2	NaN	1.0	0.0	0.0
3	NaN	1.0	0.0	0.0
4	NaN	1.0	0.0	0.0
•••				
74835	0.124423	1.0	0.0	0.0
74836	NaN	1.0	0.0	0.0
74837	NaN	1.0	0.0	0.0
74838	NaN	1.0	0.0	0.0
74839	NaN	1.0	0.0	0.0

74840 rows × 1856 columns

e) Format labels

- For gender, we will use logistic regression.
- For age, since business problem is to make targeted ads to customers, it's better to group them into age groups and then select ads based on the group.

```
In [28]: # Add device_id back
    preprocessed_data['device_id'] = input_data_segment_tagged['device_id']
    # Categorizing ages into groups
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js | up'] = pd.cut(input_data_segment_tagged['age'], [0]
```

```
# Label-encoding gender and age columns
# Need to save the encoders into files for deployment later
gender_label_encoder = LabelEncoder()
age_label_encoder = LabelEncoder()

preprocessed_data['gender'] = gender_label_encoder.fit_transform(input_data_preprocessed_data['age_group'] = age_label_encoder.fit_transform(preprocessed_preprocessed_data_group')
```

Out[28]:

	average_daily_events	location_cluster1	location_cluster_0	location_cluster_
0	NaN	1.0	0.0	0.0
1	1.488142	0.0	0.0	0.0
2	NaN	1.0	0.0	0.0
3	NaN	1.0	0.0	0.0
4	NaN	1.0	0.0	0.0
•••				
74835	0.124423	1.0	0.0	0.0
74836	NaN	1.0	0.0	0.0
74837	NaN	1.0	0.0	0.0
74838	NaN	1.0	0.0	0.0
74839	NaN	1.0	0.0	0.0

74840 rows × 1859 columns

f) Train test split

```
],
):
    display(HTML(f'<h2>{label}</h2>'))
    display(df)
```

segment_1

	average_daily_events	location_cluster1	location_cluster_0	location_cluster_1
0	-2.113998	1.0	0.0	0.0
1	-0.045799	1.0	0.0	0.0
2	-1.301406	1.0	0.0	0.0
3	-0.474263	1.0	0.0	0.0
4	-0.474263	1.0	0.0	0.0
•••				
4054	-0.613401	1.0	0.0	0.0
4055	-0.514947	1.0	0.0	0.0
4056	-0.714326	1.0	0.0	0.0
4057	1.153500	1.0	0.0	0.0
4058	2.595918	0.0	0.0	0.0

 $4059 \text{ rows} \times 1859 \text{ columns}$

segment_2

	device_id	gender	age_group	phone_brand_AUX	phone_brand_B
0	-9223067244542180000	1	0	0.0	
1	-9222956879900150000	1	2	0.0	
2	-9222754701995930000	1	1	0.0	
3	-9222352239947200000	1	0	0.0	
4	-9222173362545970000	0	3	0.0	
•••					
70776	9220914901466450000	1	2	0.0	
70777	9221152396628730000	1	0	0.0	
70778	9221608286127660000	0	2	0.0	
70779	9221843411551060000	1	0	0.0	
70780	9222849349208140000	1	0	0.0	

70781 rows × 100 columns

```
In [31]: # Train/test split
                 segment_1_train,
                 segment_1_test,
             ) = train_test_split(
                 segment_1,
                 test_size=.3,
                 random_state=0,
                 segment_2_train,
                 segment_2_test,
             ) = train_test_split(
                 segment_2,
                 test_size=.3,
                 random_state=0,
             for df, label in zip(
                      segment_1_train,
                      segment_1_test,
                      segment_2_train,
                      segment_2_test,
                 1,
                      'segment_1_train',
                      'segment_1_test',
                      'segment_2_train',
                      'segment_2_test',
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
df = df.reset_index(drop=True)
  display(HTML(f'<h2>{label}</h2>'))
  print('shape:', df.shape)
  display(df)
```

segment_1_train

shape: (2841, 1859)

	average_daily_events	location_cluster1	location_cluster_0	location_cluster_1
0	0.380427	1.0	0.0	0.0
1	-0.621224	1.0	0.0	0.0
2	-2.669088	1.0	0.0	0.0
3	1.157734	1.0	0.0	0.0
4	-0.123856	1.0	0.0	0.0
•••				
2836	-0.623716	1.0	0.0	0.0
2837	1.288079	0.0	0.0	0.0
2838	-0.705781	1.0	0.0	0.0
2839	-0.026953	1.0	0.0	0.0
2840	1.041286	0.0	1.0	0.0

2841 rows × 1859 columns

segment_1_test

shape: (1218, 1859)

	average_daily_events	location_cluster1	location_cluster_0	location_cluster_1	le
0	2.356397	0.0	0.0	0.0	_
1	-0.523348	1.0	0.0	0.0	
2	0.073159	1.0	0.0	0.0	
3	1.744514	0.0	0.0	0.0	
4	1.057478	1.0	0.0	0.0	
•••					
1213	0.480375	1.0	0.0	0.0	
1214	-0.893056	1.0	0.0	0.0	
1215	0.478324	1.0	0.0	0.0	
1216	-0.013296	0.0	0.0	0.0	
1217	0.272121	1.0	0.0	0.0	

1218 rows × 1859 columns

segment_2_train

shape: (49546, 100)

	device_id	gender	age_group	phone_brand_AUX	phone_brand_I
0	5563127744213600000	1	1	0.0	
1	-8049553530811300000	1	0	0.0	
2	4042086948304470000	1	1	0.0	
3	-679142927640773000	1	1	0.0	
4	8085592460854130000	1	1	0.0	
•••		•••			
49541	-3695505048429830000	0	2	0.0	
49542	2733856391065410000	1	0	0.0	
49543	1885626787384140000	1	0	0.0	
49544	2130080773515700000	1	1	0.0	
49545	8565664770426470000	0	2	0.0	

49546 rows × 100 columns

segment_2_test

		device_id	gender	age_group	phone_brand_AUX	phone_brand_B
	0	-191669847070955000	0	3	0.0	
	1	2403589567148540000	1	2	0.0	
	2	4604662545429270000	0	1	0.0	
	3	4019394794123470000	0	2	0.0	
	4	-1021613832219450000	1	2	0.0	
	•••					
212	230	3557324664602540000	1	1	0.0	
212	231	-931978254629029000	0	1	0.0	
212	232	-2171067714073140000	0	0	0.0	
212	233	-7956453462733460000	1	0	0.0	
212	234	5294464040764260000	1	0	0.0	

21235 rows × 100 columns

g) Test case to make sure the encoders can be used in deployment

```
In [32]: # Test data to use in deployment
            deploy_data = input_data_segment_tagged.loc[input_data_segment_tagged['devic
            deploy data = pd.merge(
                deploy_data,
                train_event_data[['device_id', 'latitude', 'longitude']],
                on='device id',
                how='left',
  In [33]: test input data = deploy data.loc[0]
            test_input_data = test_input_data.to_json()
            test_input_data
  Out[33]: '{"device_id":-9212412905070440000,"gender":"M","age":33,"app_categories":
             ["Integrated Living"], "phone_brand": "Meizu", "device_model": "\\u00e9\\u00ad
            \\u2026\\u00e8\\u201c\\u009d2","average_daily_events":6635879.4285714282,"l
            ocation_cluster":-1,"segment":1,"latitude":0.0,"longitude":0.0}'
  In [34]: class InputProcessor:
                Copy this class definition to
                def __init__(self, preprocessor, dbscan_core_points):
                     self.epsilon = 2.0 / 6371.0088 # Grouping people within 2 km
                     self.preprocessor = preprocessor
                    self.dbscan_core_points = dbscan_core_points
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
def find location cluster(self, coord):
         Find cluster labels for new points.
         If the point is within epsilon distance to a core point then we give
         the core point's label to that point.
         # Import inside function to prevent issues with pickling
         import numpy as np
         from sklearn.metrics.pairwise import haversine distances
         distances = haversine distances(
             np.radians(self.dbscan core points[['latitude', 'longitude']]),
             np.radians(coord),
         location clusters = self.dbscan core points[distances < self.epsilor</pre>
         label = location_clusters[0] if location_clusters.shape[0] else -1
         return label
     def process input(self, json str):
         Process json input string to the dataframe that model can consume.
         Example:
             {
                 'app categories': ['video', 'zombies game'],
                 'phone brand': 'Xiaomi',
                 'device_model': 'MI 4',
                 'average daily events': 45245644.5,
                 'latitude': 22.660000,
                 'longitude': 114.020000,
             }
         111
         # Import inside function to prevent issues with pickling
         import pandas as pd
         df = pd.read_json(json_str, lines=True, nrows=1)
         df['location cluster'] = self.find location cluster(df[['latitude',
         df = self.preprocessor.transform(df)
         return df
 input processor = InputProcessor(preprocessor, dbscan core points)
 processed test data = input processor.process input(test input data)
 display(processed_test_data.columns)
 processed test data
Index(['average_daily_events', 'location_cluster_-1', 'location_cluster_0',
       'location_cluster_1', 'location_cluster_2', 'location_cluster_3',
       'location_cluster_4', 'location_cluster_5', 'location_cluster_6',
       'location cluster 7',
       'app_categories_quality', 'app_categories_reading platform',
       'app_categories_realistic style comic', 'app_categories_service',
       'app_categories_show', 'app_categories_takeaway ordering',
       'app_categories_tourism product', 'app_categories_travel',
       'app_categories_video', 'app_categories_zombies game'],
      dtvne-'ohiect' length=1856)
```

0 -0.045799 1.0 0.0 0.0

1 rows × 1856 columns

As we can see above, total number of columns (together with gender, age and average_daily_events) is 1858, which is correct.

h) Save transformer and train/test data for later and for deployment

```
In [35]: import dill
In [36]: # Save encoders for using later in deployment
         os.makedirs('deploy', exist_ok=True)
         with open('deploy/input_processor.pickle', 'wb') as f:
           dill.dump(input_processor, f)
         with open('deploy/gender_label_encoder.pickle', 'wb') as f:
           dill.dump(gender_label_encoder, f)
         with open('deploy/age label encoder.pickle', 'wb') as f:
           dill.dump(age_label_encoder, f)
         # Save train/test data for model training
         os.makedirs('data/train', exist_ok=True)
         os.makedirs('data/test', exist_ok=True)
         segment 1 train.to csv('data/train/segment 1 train.csv', index=False)
         segment_1_test.to_csv('data/test/segment_1_test.csv', index=False)
         segment_2_train.to_csv('data/train/segment_2_train.csv', index=False)
         segment_2_test.to_csv('data/test/segment_2_test.csv', index=False)
         # Save the data that will be used in deployment
         deploy_data.to_csv('deploy/deploy_data.csv', index=False)
In [37]: for d in ('deploy', 'data/train', 'data/test'):
             print(d)
             display(os.listdir(d))
```

deploy

```
['gender_model_sc1_fit.pickle',
    'gender_model_sc2_fit.pickle',
    'age_model_sc1_fit.pickle',
    'age_model_sc2_fit.pickle',
    'input_processor.pickle',
    'age_label_encoder.pickle',
    'gender_label_encoder.pickle',
    'deploy_data.csv']
data/train
['segment_1_train.csv', 'segment_2_train.csv']
data/test
['segment_1_test.csv', 'segment_2_test.csv']
```