

TaxoNN: A Light-Weight Accelerator for Deep Neural Network Training

<u>Reza Hojabr¹</u>, Kamyar Givaki^{1*}, Kossar Pourahmadi^{1*}, Parsa Nooralinejad^{1*}, Ahmad Khonsari¹², Dara Rahmati², M. Hassan Najafi³

¹School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran ²School of Computer Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ³School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA, USA

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Deep Learning Accelerators

Edge AI – The Next Wave of AI

- The need for embedded AI accelerators
 - GPU and TPU cannot meet the requirements:
 - Power consumption
 - Price \$
- On-device training
 - Efficient use of BW
 - Privacy
 - Reliability
 - Low latency
- TaxoNN
 - Supports both inference and training

Main Contributions

Split the SGD algorithm into smaller computation units

Adding the training ability to the baseline inference only Processing Elements

Low-bitwidth operations for different layers

Stochastic Gradient Descent

$$W_i = W_i - \alpha \frac{\partial error}{\partial W_i}$$

Simplifying SGD Algorithm

 Y_i is the output of i^{th} layer

$$W_i = W_i - \alpha \frac{\partial error}{\partial W_i}$$

$$\frac{\partial error}{\partial W_i} = \frac{\partial error}{\partial Y_{i+1}} \times \frac{\partial Y_{i+1}}{\partial Y_i} \times \frac{\partial Y_i}{\partial W_i}$$

$$\frac{\partial Y_{i+1}}{\partial Y_i} = \frac{\partial f_{i+1}(W_{i+1}Y_i)}{\partial Y_i} = W_{i+1} f'_{i+1}(W_{i+1}Y_i)$$

$$\frac{\partial Y_i}{\partial W_i} = \frac{\partial f_i(W_i Y_{i-1})}{\partial W_i} = Y_{i-1} f'_i(W_i Y_{i-1})$$

 $\frac{\partial error}{\partial W_i} =$

$$= \frac{\partial error}{\partial Y_{i+1}} \times f'_{i+1}$$

$$G_i = G_{i+1} \times W_{i+1} \times f'_i$$

$$\frac{\partial error}{\partial W_i} = G_i \times X_i$$

 $f_i()$ is the activation function of the i^{th} layer

f'() is the derivation of the activation function

TaxoNN Architecture

$$W_i = W_i - \alpha \frac{\partial error}{\partial W_i}$$

$$\frac{\partial error}{\partial W_i} = G_i \times X_i$$

Timing and Pipelining

$$W_i = W_i - \alpha \frac{\partial error}{\partial W_i}$$

 N_i = # of neurons in layer *i*

$$\frac{\partial error}{\partial W_i} = G_i \times X_i$$

 G_i : a vec of size N_i

 N_i : #of neuron in layer i

Back-Propagation

 $N_n + \sum N_i$ cycles

 $G_{n-1} = G_n \times W_n \times f'_{n-1}$ $N_n + N_{n-1}$ cycles

Performance Evaluation

- Network
 - LeNet
- Dataset
 - MNIST
 - CIFAR10
 - SVHN
- Developed a cycleaccurate simulator
- Full-precision results are extracted from TensorFlow

Dataset	Procision per Lever (LE)	TaxoNN	Full-precision	
	Precision per Layer (I,F)	Accuracy	Accuracy	
MNIST	(2,12)(2,12)(2,12)(1,12)(3,10)	99.1	99.4	
CIFAR10	(2,10)(2,11)(1,10)(1,13)(2,13)	84.1	85.4	
SVHN	(1,12)(2,12)(2,12)(2,11)(4,12)	94.7	96.0	

0 2000 4000 6000 8000 10000 **SVHN** Iterations

Hardware Cost

- Implemented TaxoNN in RTL Verilog
- Synthesized using DC with 45nm technology

Bitwidth	21	20	19	18	17	16	15	14	13	Average
Eyeriss	14.3	13.1	11.8	11.1	10.6	10.1	9.7	9.0	8.1	Area
TaxoNN	15.5	14.3	12.9	12.1	11.7	11.2	10.6	9.9	9.0	Overhead
Overhead	8.3%	9.2%	9.1%	8.6%	10.0%	10.8%	8.8%	9.8%	10.5%	9.5%

Bitwidth	I	ı	l	l .	l		ı			
Eyeriss	4.54	4.48	4.42	4.31	4.22	4.10	3.98	3.88	3.75	Power
TaxoNN	4.84	4.78	4.70	4.65	4.49	4.31	4.15	4.13	4.04	Overhead
Overhead	6.5%	6.7%	6.2%	7.9%	6.5%	5.2%	4.3%	6.5%	7.7%	6.4%

Dataset	Power Reduction	Area Reduction
MNIST	2.1×	1.7×
CIFAR10	2.3×	1.8×
SVHN	1.9×	1.5×

TaxoNN Summary

- TaxoNN: a light-wight accelerator for DNN training
- A novel method to unroll and parallelize the SGD algorithm
- A fine-grained and optimized datapath to perform the SGD
- Evaluated TaxoNN using low-bitwidth operations for each layer
- 1.65x area and 2.1x power saving at the cost of 0.97% misclassification rate compared to full-precision

Reza Hojabr r.hojabr@ut.ac.ir