Университет ИТМО Мегафакультет компьютерных технологий и управления Факультет безопасности информационных технологий

Группа	ФИЗ-3 Э БИТ 1.3.1	К работе допущен
Студенты	Бардышев Артём	
	Суханкулиев Мухаммет	Работа выполнена
	Шегай Станислав	
Преподавател	іь Бочкарев М. Э.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №5.01

Измерение температуры и интегрального коэффициента излучения тела методом спектральных отношений

1. Цель работы.

Определить значения интегрального коэффициента излучения A_T источника, исследовать зависимость A_T от температуры.

2. Задачи, решаемые при выполнении работы.

- 1. Измерить температуру источника методом спектральных отношений.
- 2. Вычислить коэффициент излучения A_T на основе измеренных температур и мощности.

3. Объект исследования.

Вольфрамовая нить накала электролампы.

4. Метод экспериментального исследования.

Метод спектральных отношений — определение температуры по отношению интенсивностей излучения на двух длинах волн с последующим расчетом A_T .

5. Рабочие формулы и исходные данные.

1. Чувствительность отношения сигналов фотоприемников к температуре тела:

$$L = C_2 \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$$

2. Формула определения температуры:

$$T = \frac{L}{\ln\frac{J_1}{J_2} - Z_0}$$

Полученная при тарировочных опытах величина: $Z_0 = 1.784$; $C_2 = 1.439 \cdot 10^{-2}$.

3. Мощность источника излучения при высоких температурах:

$$P_{\text{ист}} = IU$$

4. Формула для интегрального коэффициента излучения:

$$A_T = A_{2000} \cdot K \cdot \frac{P_{\text{\tiny MCT}}}{T^4},$$

где

$$K = \frac{2000^4}{P_{\text{MCT2000}}},$$
$$A_{2000} = 0.249$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр	Блок РТИ1	150-300 мА	±2.5 <i>MA</i>
2	Вольтметр	Блок РТИ1	5-12 B	±0.04 B
3	Измеритель относительной интенсивности	Блок РТИ1	Отношение $\frac{J_1}{J_0}$, $\frac{J_2}{J_0}$	±0.001

7. Схема установки.

Рисунок 1 – РТИ1

1. Индикатор относительной интенсивности; 2. индикатор выбранного фотоприемника; 3. индикатор тока или напряжения лампы накаливания; 4. индикатор измеряемой величины тока или напряжения; 5. регулятор напряжения накала; 6. кнопка переключения ток/напряжения накала; 7. накал (вид на лампу накаливания); 8. регулятор J_{max} ; 9. кнопка переключения фотоприемников; 10. выключатель.

8. Результаты прямых измерений и их обработки.

Используемые формулы - (5):

И:	Измеряемые величины				Вычисляемые величины			
I , мА	U , B	$\frac{J_1}{J_0}$	$\frac{J_2}{J_0}$	$\frac{J_1}{J_2}$	T , K	₽ , Вт	A_{T}	
186	5,15	0,005	0,098	0,051	1364,530	0,958	0,367	
189	5,01	0,004	0,076	0,053	1373,502	0,947	0,353	
195	5,65	0,01	0,144	0,069	1459,040	1,102	0,323	
200	6,1	0,017	0,201	0,085	1526,653	1,220	0,298	

210	6,7	0,029	0,294	0,099	1583,919	1,407	0,297
216	6,98	0,036	0,321	0,112	1635,107	1,508	0,280
217	7,2	0,044	0,386	0,114	1641,835	1,562	0,285
223	7,7	0,063	0,487	0,129	1696,083	1,717	0,275
232	8,29	0,092	0,628	0,146	1753,024	1,923	0,270
242	8,79	0,125	0,777	0,161	1798,475	2,127	0,270
248	9,28	0,163	0,929	0,175	1842,752	2,301	0,265
254	9,8	0,208	1,095	0,190	1885,217	2,489	0,261
260	10,29	0,263	1,284	0,205	1927,397	2,675	0,257
266	10,83	0,327	1,491	0,219	1967,296	2,881	0,255
272	11,35	0,399	1,707	0,234	2006,010	3,087	0,253
273	11,4	0,403	1,716	0,235	2008,937	3,112	0,253

Пример вычислений для первой строки:

$$\frac{J_1}{J_0} = J_1 = \frac{0.005}{0.098} \approx 0.051$$

$$L = 1.439 \cdot 10^{-2} \left(\frac{1}{0.94 \cdot 10^{-6}} - \frac{1}{0.66 \cdot 10^{-6}} \right) \approx -6494.52 \text{ K}$$

$$T = \frac{-6494.52}{\ln 0.051 - 1.784} \approx 1364.415 \text{ K}$$

$$P = 0.186 \cdot 5.15 \approx 0.958 \text{ BT}$$

$$P_{\text{MCT2000}} \approx 3.003 \text{ BT}, \qquad (\text{M3 (9)})$$

$$K = \frac{2000^4}{3.003} \frac{\text{K}^4}{\text{BT}}$$

$$A_T = 0.249 \cdot \frac{2000^4}{3.003} \cdot \frac{0.958}{1364.415^4} \approx 0.367$$

9. Графики

Рисунок 2 – График зависимости $P_{\text{ист}}(T)$

Рисунок 3 — График зависимости $A_T = F(T)$

10. Окончательные результаты.

Температура изменялась от ~1364 К до ~2009 К при увеличении тока и напряжения.

При возрастании температуры A_T снижается, особенно заметно в диапазоне 1300–1600 К.

После 1700 К значения A_T приближаются к насыщению, что согласуется с теоретическим поведением излучающих тел.

Зависимость $A_T(T)$ нелинейная, монотонно убывающая.

Наблюдается близость к табличным и расчетным значениям для вольфрама $(A_{2000}$ ≈0.249, получено – ~0.253).

11. Выводы и анализ результатов работы.

В результате выполнения лабораторной работы методом спектральных отношений было определено:

- Полученные зависимости P(T) и $A_T(T)$ имеют степенной характер, что подтверждает теоретические предположения.
- Зависимость A_T от T соответствует физической модели: с ростом температуры вольфрам становится ближе к черному телу, но $A_T < 1$ при любых T.
- Результаты адекватны ожиданиям, метод работает стабильно на температурном интервале 1300–2000 К.

Вывод: Метод спектральных отношений позволяет достаточно точно определять температуру и интегральный коэффициент излучения тела. Полученная зависимость $A_T(T)$ для вольфрамовой нити подтверждает теоретические представления о термическом излучении и характере изменения коэффициента излучения с температурой.