Class Activity: Image Preprocessing and CNN

Course: CS460 AI

Week 9: Computer Vision and Convolutional Neural Networks (CNNs)

Name: _Jetsada Wijit_

Student ID: _1640705339_

Section: _327G_

Activity: Capture Key Outputs & Answer Questions

Google Colab Notebook Link:

[https://colab.research.google.com/drive/1jJolaLxAeKjxSinS-1uglncAShbPgNZK?usp=sharing]

Data Link: [■ Lena.jpg]

Part 1: Experiment with Edge Detection & Noise Filtering

Task: Compare "Lena" Original image with Gaussian Blur and Median Filter.

1. Which one is better for removing noise in Lena pictures? _Median_

Part 2: CNN

Step 1: Load and Inspect the Dataset

Write your observations:

What dataset do we use to train CNN models?
cifar10

How many classes (categories) are in the dataset?
10 class

3. What is the size of the train and test dataset?

Train dataset size: 50,000

Test dataset size: 10,000

4. Capture example image of dataset

Step 2: Defining the CNN Architecture

Task: Build a CNN model using Conv2D, MaxPooling, Flatten, Dense layers.

1. Capture final model.summary() table

Fill in the blanks:

- The first Conv2D layer extracts _features_ from images.
- An input image of size 32×32×3 means it has _32_ height, _32_ width, and _3_ color channels.
- MaxPooling2D helps by _reduce the spatial dimensions_ the feature map size, reducing computation.
- Flatten() converts the feature maps into _a 1D vector_ before feeding into the Dense layer.

Step 3 : Evaluating the Model

- What accuracy did the model achieve after training? _0.6986_
- Did the validation accuracy improve? _It improve at start and then it stop and decrease around the middle (May be overfitting)_
- Capture classification report

₹	313/313	4s 13ms/step			
		precision	recall	f1-score	support
	airplane	0.59	0.85	0.70	1000
	automobile	0.86	0.78	0.82	1000
	bird	0.63	0.56	0.59	1000
	cat	0.50	0.54	0.52	1000
	deer	0.69	0.62	0.65	1000
	dog	0.63	0.59	0.61	1000
	frog	0.88	0.68	0.76	1000
	horse	0.70	0.80	0.75	1000
	ship	0.80	0.81	0.80	1000
	truck	0.84	0.76	0.80	1000
	accuracy			0.70	10000
	macro avg	0.71	0.70	0.70	10000
	weighted avg	0.71	0.70	0.70	10000
	·				