Titanic Survival Prediction

Xiang Liu 94457 Lan Zhang 94807

Agenda

- Project Overview
- Data Pre-processing
- Data Analysis
- Conclusion
- Reference

Project Overview

The sinking of the Titanic is one of the most infamous shipwrecks in history.

On April 15, 1912, during her maiden voyage, the widely considered "unsinkable" RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren't enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew.

While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others.

In this project, we will build a predictive model that answers the question: "what sorts of people were more likely to survive?" using passenger data (ie name, age, gender, socio-economic class, etc).

Data Set

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

There is a total of 12 columns, 892 rows.

Variable notes

```
pclass: A proxy for socio-economic status (SES)
```

1st = Upper 2nd = Middle 3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: The dataset defines family relations in this way...

Sibling = brother, sister, stepbrother, stepsister

Spouse = husband, wife (mistresses and fiancés were ignored)

parch: The dataset defines family relations in this way...

Parent = mother, father

Child = daughter, son, stepdaughter, stepson

Some children travelled only with a nanny, therefore parch=0 for them.

Titanic Survival Prediction

Topic

Knowing from a training set of samples listing passengers who survived or did not survive the Titanic disaster, can our model determine based on a given test dataset not containing the survival information, if these passengers in the test dataset survived or not

Data Resources

Titanic: Machine Learning from Disaster

(Kaggle)

Link:

https://www.kaggle.com/startupsci/tit anic-data-science-solutions/data

Tools and Algorithm

Python

Logistic Regression

KNN

Decision Tree

RandomForest

Raw Data Sample

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	s
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

Data Information

```
Data columns (total 12 columns):
               891 non-null int64
PassengerId
Survived
               891 non-null int64
Pclass
               891 non-null int64
Name
               891 non-null object
               891 non-null object
Sex
Age
               714 non-null float64
SibSp
               891 non-null int64
Parch
               891 non-null int64
Ticket
               891 non-null object
               891 non-null float64
Fare
Cabin
               204 non-null object
Embarked
               889 non-null object
```

Process

Data Cleaning

Working with data

Clean the data

(missing data, outliers)

80% train, 20% validation

Generate a model

Machine Learning Algorithm

Explore the traits of the data and generate visual plots

Logistic Regression

Decision Tree

KNN

Random Forest

Test the model

Testing the effectiveness and results of the models

Data Cleaning

Check missing value

Before

Drop missing value (Choose 'Age' to drop) After

	Data columns	(total 12 col	umns):		Data columns	(total	l 12 colur	nns):
	PassengerId	891 non-nul	l int64		PassengerId	714	non-null	int64
	Survived	891 non-nul	l int64		Survived	714	non-null	int64
	Pclass	891 non-nul	l int64		Pclass	714	non-null	int64
	Name	891 non-nul	l object		Name	714	non-null	object
	Sex	891 non-nul	l object		Sex	714	non-null	object
-	Age	714 non-nul	l float64		Age	714	non-null	float64
	SibSp	891 non-nul	l int64		SibSp	714	non-null	int64
	Parch	891 non-nul	l int64		Parch	714	non-null	int64
	Ticket	891 non-nul	l object		Ticket	714	non-null	object
	Fare	891 non-nul	l float64		Fare	714	non-null	float64
→	Cabin	204 non-nul	l object	-	Cabin	185	non-null	object
	Embarked	889 non-nul	l object		Embarked	712	non-null	object

Data Cleaning

Fill out missing values for 'Cabin' and 'Embarked'

```
train_df['Cabin'] = train_df['Cabin'] .replace(np.nan, 'X')
train_df['Embarked'] = train_df['Embarked'] .replace(np.nan, 'S')
train_df.info()
```

After

```
Data columns (total 12 columns):
               714 non-null int64
PassengerId
Survived
               714 non-null int64
Pclass
               714 non-null int64
Name
               714 non-null object
               714 non-null object
Sex
               714 non-null float64
Age
SibSp
               714 non-null int64
Parch
               714 non-null int64
Ticket
               714 non-null object
               714 non-null float64
Fare
Cabin
               714 non-null object
Embarked
               714 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 72.5+ KB
```

Check Outliers

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	714.000000	714.000000	714.000000	714.000000	714.000000	714.000000	714.000000
mean	448.582633	0.406162	2.236695	29.699118	0.512605	0.431373	34.694514
std	259.119524	0.491460	0.838250	14.526497	0.929783	0.853289	52.918930
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	222.250000	0.000000	1.000000	20.125000	0.000000	0.000000	8.050000
50%	445.000000	0.000000	2.000000	28.000000	0.000000	0.000000	15.741700
75%	677.750000	1.000000	3.000000	38.000000	1.000000	1.000000	33.375000
max	891.000000	1.000000	3.000000	80.000000	5.000000	6.000000	512.329200

Detect_Outliners Function in Python

```
from collections import Counter
def detect outliers(df,n,features):
   Takes a dataframe df of features and returns a list of the indices
   corresponding to the observations containing more than n outliers according
   to the Tukey method.
   outlier indices = []
    # iterate over features(columns)
    for col in features:
       # 1st quartile (25%)
       Q1 = np.percentile(df[col], 25)
       # 3rd quartile (75%)
       Q3 = np.percentile(df[col],75)
       # Interquartile range (IQR)
       IQR = Q3 - Q1
       outlier_step = 1.5 * IQR
       # Determine a list of indices of outliers for feature col
       outlier_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step )].index
       # append the found outlier indices for col to the list of outlier indices
       outlier_indices.extend(outlier_list_col)
   # select observations containing more than 2 outliers
   outlier indices = Counter(outlier indices)
   multiple_outliers = list( k for k, v in outlier_indices.items() if v > n )
   return multiple outliers
# detect outliers from Age, SibSp , Parch and Fare (train data)
Outliers_to_drop = detect_outliers(train_df,2,["Age","SibSp","Parch","Fare"])
```

Convert Categorical variables to numerical variables

•	Name		"Master": 0 "Miss-Mrs": 1 "Mr": 2 "Others": 3
•	Sex		"male": 0 "female":1
•	SibSp	Fsize (Family Size)	
•	Parch	→	"Single": 0 "SmallF(2-3)" : 1 "MedF(3-4)": 2 "LargeF(5): 3
•	Ticket		"A": 1 "C": 2 "F": 3 "L": 4 'P': 5 "S":6 "W":7 "X":8
•	Cabin		"A": 1 "B": 2 "C": 3 "D": 4 'E': 5 "F":6 "G":7 "T":8 "X": 9
•	Embarked		'S': 0 'C': 1 'Q': 2

Normalize the data

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title	Fsize
0	1	0	3	0	22.0	1	0	1.0	1.981001	9.0	0	2.0	1
1	2	1	1	1	38.0	1	0	5.0	4.266662	3.0	1	1.0	1
2	3	1	3	1	26.0	0	0	6.0	2.070022	9.0	0	1.0	0
3	4	1	1	1	35.0	1	0	8.0	3.972177	3.0	0	1.0	1
4	5	0	3	0	35.0	0	0	8.0	2.085672	9.0	0	2.0	0

Before

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title	Fsize
0	0.000000	0.0	1.0	0.0	0.271174	0.2	0.000000	0.000000	0.317521	1.00	0.0	0.666667	0.333333
1	0.001124	1.0	0.0	1.0	0.472229	0.2	0.000000	0.571429	0.683873	0.25	0.5	0.333333	0.333333
2	0.002247	1.0	1.0	1.0	0.321438	0.0	0.000000	0.714286	0.331789	1.00	0.0	0.333333	0.000000
3	0.003371	1.0	0.0	1.0	0.434531	0.2	0.000000	1.000000	0.636672	0.25	0.0	0.333333	0.333333
4	0.004494	0.0	1.0	0.0	0.434531	0.0	0.000000	1.000000	0.334298	1.00	0.0	0.666667	0.000000

After

Data Visualization

S: Southhampton

C: Cherbourg

Q: Queenstown

Pearson Correlation of Features

Passengerld -	1	0.029	-0.035	-0.025	0.037	-0.082	-0.012	0.13	-0.0074	0.0054	-0.014	0.063	-0.068
Survived -	0.029	1	-0.36	0.54	-0.077	-0.017	0.093	-0.071	0.34	-0.053	0.11	0.012	0.075
Pclass -	-0.035	-0.36	1	-0.16	-0.37	0.067	0.026	0.013	-0.72	-0.031	-0.11	0.013	0.00018
Sex -	-0.025	0.54	-0.16	1	-0.093	0.1	0.25	-0.11	0.27	-0.019	0.095	-0.008	0.25
Age -	0.037	-0.077	-0.37	-0.093	1	-0.31	-0.19	0.0021	0.12	0.0082	0.01	-0.025	-0.28
SibSp -	-0.082	-0.017	0.067	0.1	-0.31	1	0.38	0.024	0.3	-0.015	0.0048	-0.055	0.83
Parch -	-0.012	0.093	0.026	0.25	-0.19	0.38	1	0.023	0.33	0.02	-0.013	-0.026	0.77
Ticket -	0.13	-0.071	0.013	-0.11	0.0021	0.024	0.023	1	-0.017	-0.052	-0.084	-0.0086	0.015
Fare -	-0.0074	0.34	-0.72	0.27	0.12	0.3	0.33	-0.017	1	0.034	0.16	-0.041	0.43
Cabin -	0.0054	-0.053	-0.031	-0.019	0.0082	-0.015	0.02	-0.052	0.034	1	-0.009	-0.0015	0.0075
Embarked -	-0.014	0.11	-0.11	0.095	0.01	0.0048	-0.013	-0.084	0.16	-0.009	1	-0.018	0.021
Title -	0.063	0.012	0.013	-0.008	-0.025	-0.055	-0.026	-0.0086	-0.041	-0.0015	-0.018	1	-0.059
Fsize -	-0.068	0.075	0.00018	0.25	-0.28	0.83	0.77	0.015	0.43	0.0075	0.021	-0.059	1
	Passengerld -	Survived -	Pclass -	Sex -	Age -	- dSdS	Parch -	Ticket -	Fare -	Cabin -	Embarked -	Title -	Fsize –

-0.6

1. Sex urvived 2. Pclass 3. Fare

Logistic Regression

Accuracy = 0.8462 RMSE = 0.392

AUC: 0.89

		precision	recall	f1-score	support
	0.0	0.84 0.86	0.92 0.74	0.88	85 58
micro macro weighted	avg	0.85 0.85 0.85	0.85 0.83 0.85	0.85 0.84 0.84	143 143 143

```
array([[78, 7], [15, 43]])
```

KNN (k=31)

Accuracy = 0.8461 RMSE = 0.4096

AUC: 0.883

		precision	recall	f1-score	support
	0.0	0.81	0.93	0.87	85
	1.0	0.87	0.69	0.77	58
micro	avg	0.83	0.83	0.83	143
macro	avg	0.84	0.81	0.82	143
weighted	avg	0.84	0.83	0.83	143

```
array([[79, 6], [18, 40]])
```

Decision Tree

Accuracy = 0.8461 RMSE = 0.418 AUC: 0.83

variable importance

1	Sex	0.336718
2	Age	0.208421
0	Pclass	0.158157
6	Fare	0.137584
10	Fsize	0.068196
5	Ticket	0.032442
7	Cabin	0.027185
8	Embarked	0.019962
9	Title	0.007619
4	Parch	0.003717

		precision	recall	f1-score	support
	0.0	0.81	0.91	0.86	85
	1.0	0.83	0.69	0.75	58
micro	avg	0.82	0.82	0.82	143
macro	avg	0.82	0.80	0.81	143
veighted	avg	0.82	0.82	0.81	143

Decision Tree

Random Forest

Accuracy = 0.7692 RMSE = 0.4803 AUC: 0.817

	variable	importance
1	Sex	0.227977
2	Age	0.208715
6	Fare	0.202071
0	Pclass	0.091753
7	Cabin	0.055946
5	Ticket	0.048107
9	Title	0.045048
10	Fsize	0.039272
3	SibSp	0.027468
4	Parch	0.027228

		precision	recall	f1-score	support
	0.0	0.78 0.76	0.86 0.64	0.82 0.69	85 58
micro macro weighted	avg	0.77 0.77 0.77	0.77 0.75 0.77	0.77 0.75 0.77	143 143 143
array([[]	73, 12 21, 3				

Conclusion

The correlation between

Sex, Pclass, Fare and Survival Rate is obvious.

Logistic regression model has better performance than the other three models in this case.

Reference

- A journey through Titanic
- Getting Started with Pandas: Kaggle's Titanic Competition
- Titanic Best Working Classifier