Análise de Redes

Aula 02 - Introdução a Grafos

Prof. Patrick Terrematte

Teoria de Grafos

- Propriedades
 - Ordem e Tamanho
 - Caminhos e medidas
 - Grau e Distribuição de Grau
 - Coeficiente de Clusterização
 - Medidas de Centralidade
- Tipos de Redes
 - Redes Aleatórias
 - Redes 'Mundo Pequeno' (Small Worlds)
 - Redes Livre de Escala

Teoria de Grafos

http://www.visualcomplexity.com/vc/

As Pontes de Königsberg

Na cidade de Königsberg havia um conjunto de 7 pontes que cruzavam o rio Pregel e conectavam duas ilhas centrais entre si e com as margens.

Problema:

Há um **caminho** que passe por todas as pontes, visitando cada ponte uma única vez?

Em 1735, o matemático suíço **Leonard Euler** mostrou que **não existe** uma solução para o problema.

As Pontes de Königsberg

- Caminho Euleriano é um caminho (em um grafo) que visita uma aresta apenas uma vez.
- A demonstração foi baseada em grafos.

 Para que exista um caminho que percorra todos os vértices passando por cada aresta uma única vez, é necessário que 0 ou 2 dos vértices tenham um número ímpar de arestas.

As Pontes de Königsberg

- Teorema de Euler: Se um grafo não-directionado tiver dois, ou nenhum vértice impar, ele possui pelo menos um caminho Euleriano.
 - Racional: se houver um caminho cruzando todas as pontes, mas nunca a mesma ponte duas vezes, então os vértices com número ímpar de arestas devem ser o ponto inicial ou final deste caminho.

Conjunto composto pelo par ordenado G = (N, L)

Ordem: # vértices n(G) = 6

■ Tamanho: # arestas I(G) = 7

■ Dado G = (N, L), o maior número de arestas de G = onde n é a $\binom{n}{2}$ = $\frac{n(n-1)}{2} \le n^2$ ordem do grafo.

Não-orientados Links de co-autoria Redes de atores Interações proteicas

Orientados
URLs na www Chamadas
telefônicas Reações
metabólicas

Não-conectados Componentes gigantes isolados

Uma matriz de adjacência A^{n×n} representa elementos a_{ij} tais que cada e_{ij} representa uma aresta.

$$A_{ij} = \begin{array}{ccccc} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{array}$$

Uma matriz de adjacência A^{n×n} representa elementos a_{ij} tais que cada e_{ij} representa uma aresta.

Undirected Graph

Adjacency Matrix

Directed Graph

Weighted Directed Graph

Adjacency Matrix

Adjacency Matrix

Grafos ou Redes?

REDES - sistemas reais

World Wide Web

Rede metabólica

Rede social

Nomenclatura: nó, ligação.

GRAFO - representação matemática

Grafo web

Grafo social

Nomenclatura: vértice, aresta.

Tipos de Redes

Network	Nodes	Links	Directed / Undirected	N	L	⟨ K ⟩
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.34
www	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile-Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorships	Undirected	23,133	93,437	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Papers	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

GRAU, GRAU MÉDIO E DISTRIBUIÇÃO DE GRAU

Grau e Grau Médio

- Grau (K): número de arestas incidentes ao vértice.
- Em grafos orientados, **k**_{in} e **k**_{out}.
 - Fonte (source): vértice com kin = 0
 - Sumidouro (sink): vértice com kout = 0

$$k_C^{in} = 2$$
 $k_C^{out} = 1$ $k_C = 3$

$$k_A = 1$$
 $k_B = 4$

Grau e Grau Médio

■ Grau (K): número de arestas incidentes ao vértice.

■ Grau Médio <K>:

$$k_{A} = 1$$
 $k_{R} = 4$

Grau e Grau Médio

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	L	k
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.9 0

Distribuição de Grau

- P(k): probabilidade que um vértice escolhido aleatoriamente tenha grau
 k.
- Distribuição empírica de grau: frequência de vértices com grau k.

$$P(k_i = k) = P(k) = P_k = \frac{n_k}{\sum_k n_k} = \frac{n_k}{n}$$

 k_i = grau de cada nó, n_k = # vértices com grau k

Distribuição de Grau em redes PPI

MATRIZ DE ADJACÊNCIA

Representação de Grafos

Matriz de adjacência $(n \times n)$

- $a_{ij} = 1$, se existe aresta entre os vértices $i \in j$
- a_{ii} =0, caso contrário

1	2	3 4	5	6	7	
0	1	1	1	0	0	0
1	0	1	0	1	0	1
1	1	0	1	1	1	0
1	0	1	0	0	0	0
0	1	1	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0

MATRIZ DE ADJACÊNCIA (grafo não direcionado)

$$A_{ij} = \begin{array}{ccccc} 0 & 1 & 1 & 0 \\ \frac{1}{1} & 0 & \frac{1}{1} & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

$$k_2 = \sum_{j=1}^4 A_{2j} = \sum_{i=1}^4 A_{i2} = 3$$

$$A_{ij} = A_{ji} \qquad A_{ii} = 0$$

$$L = \frac{1}{2} \sum_{i=1}^{N} A_{ij}$$

$$\langle k \rangle = \frac{2L}{N}$$

Representação de Grafos

- Qual a diferença desta matriz de adjacência para a anterior?
- E para a posterior?

0 0 0 1	0		
	•	0	1
1 0 0 0	0	0	0
1 0 0 0	0	1	0
0 0 1 0	0	0	0
0 1 0 0	0	0	0
0 0 0 0	0	1	0
0 1 0 0	0	0	0

MATRIZ DE ADJACÊNCIA (grafo direcionado)

$$A_{ij} = \begin{array}{ccccc} 0 & 0 & 1 & 0 \\ \frac{1}{0} & \frac{0}{1} & \frac{0}{0} \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

$$k_2^{\text{in}} = \sum_{j=1}^4 A_{2j} = 2$$
, $k_2^{\text{out}} = \sum_{i=1}^4 A_{i2} = 1$

$$A_{ij} \neq A_{ji} \qquad A_{ii} = 0$$

$$L = \sum_{i,j=1}^{N} A_{ij}$$

$$\langle k^{\rm in} \rangle = \langle k^{\rm out} \rangle = \frac{L}{N}$$

Representação de Grafos

- Lista de adjacência: lista de vértices com seus respectivos vértices adjacentes.
- Computacionalmente vantajosa com grafos esparsos ($N^2 >> L$)

1: 4, 7

2: 1

3: 1, 6

4: 3

5: 2

6: 6

7: 2

Resumo: Tipos de Redes

a. Undirected

$$A_{ij} = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right)$$

$$A_{ij} = 0$$
 $A_{ij} = A_{ji}$
 $L = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij}$ $< k > = \frac{2L}{N}$

$$A_{ij} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{pmatrix}$$

$$A_{ij} = 0 \qquad A_{ij} = A$$

$$A_{ij} = 0$$

$$L = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & A_{ij} = A_{ji} \\ & < k > = \frac{2}{N} \end{bmatrix}$$

$$A_{ij} = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

$$L = \sum_{i,j=1}^{N} A_{ij} \quad \langle k \rangle = \frac{L}{N}$$

$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

$$A_{ij} = 0$$
 $A_{ij} = A_{ji}$
 $< k >= \frac{2i}{2}$

$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$

$$= L_{max} = \frac{N(N-1)}{2}$$

$$\langle k \rangle = N - 1$$

Grafos Bipartidos (Bígrafo)

- Grafo cujos nós podem ser divididos em dois conjuntos disjuntos U e V, de modo que cada link conecte um nó em U a um em V;
- Ou seja, U e V são conjuntos independentes.

Rede de atores de Hollywood Redes de colaborações Rede de doenças (diseasome)

Grafos Bipartidos (Bígrafo)

Gene network

Disease network

Human Diseasome Network

Sources: Marc Vidal; Albert-Laszlo Barabasi; Michael Cusick; Proceedings of the National Academy of Sciences

The New York Times

Propriedades de Grafos

Caminho

- Caminho: sequência de vértices consecutivos conectados por arestas <s, u, v, ..., t>.
- Em um grafo direcionado, o caminho segue o sentido da aresta. AB ≠ BA.
- **Distância** (*caminho mínimo, caminho geodésico*): o menor caminho entre dois vértices.

Grafo não-direcionado

<B, C, A, D> é caminho de comprimento 3.

<B, A, D, C> não é caminho.

Grafo direcionado

<A, B, C> é caminho.

<A, C, B> não é caminho.

Caminhos

$$l_{1\to 4} = 3$$
 $l_{1\to 5} = 2$

Distância: menor comprimento entre 2 vértices (caminho mínimo).

$$l_{1\to 4}=3$$

Diâmetro: maior distância entre quaisquer 2 vértices (maior caminho mínimo).

$$(l_{1\to 2} + l_{1\to 3} + l_{1\to 4} + l_{1\to 5} + l_{2\to 3} + l_{2\to 4} + l_{2\to 5} + l_{3\to 4} + l_{3\to 5} + l_{4\to 5})/10 = 1.6$$

Caminho médio: média das distâncias entre todos os pares de vértices.

Caminhos

$$l_{1\to 4} = 3$$
 $l_{1\to 5} = 2$

Distância: menor comprimento entre 2 vértices (caminho mínimo).

$$l_{1\to 4}=3$$

Diâmetro: maior distância entre quaisquer 2 vértices (maior caminho mínimo).

Caminhos

Ciclo: caminho que começa e termina no mesmo vértice.

Caminho Euleriano: caminho que passa por cada aresta uma única vez.

Caminho Hamiltoniano: caminho que passa por cada vértice uma única vez.

Grafos Completos

- Grafo com tamanho $L = L_{max}$ e grau médio $\langle k \rangle = N-1$.
- O maior número de arestas de em um grafo de ordem N:

$$L_{\text{max}} = \begin{pmatrix} N \\ 2 \end{pmatrix} = \frac{N!}{(N-2)!2!} = \frac{N(N-1)}{2}$$

- Densidade: número de arestas L em relação ao grafo completo L_{max} .
- Dado um grafo de ordem N e tamanho L.
 - o Grafo espaço: L ∼ N.
 - Grafo denso: $L \sim N^2$.
 - Grafo completo: $L = N^2$.

Redes Reais são Esparsas

$$L \ll L_{max}$$
 ou $\langle k \rangle \ll N-1$

	Nodes	Links	Lmax	<k></k>
WWW (sample)	325,729	1.4 x10 ⁶	10 ¹²	4.51
Proteina (S. cerevisiae)	1,870	4,470	10 ⁷	2.39
Colaboração (math)	70,975	2 x10 ⁵	3 x10 ¹⁰	3.9
Atores em um filme	212,250	6 x10 ⁶	1.8 x10 ¹³	28.78

Redes Reais são Esparsas

A matriz de adjacência da rede de interação proteína-proteína de levedura, constituída por 2.018 vértices, cada um representando uma proteína.

Coeficiente de Clusterização Local

- Razão entre as arestas existentes e o # máximo de arestas possíveis entre os vizinhos de um dado vértice.
- Não está definido para vértices com grau 0 ou 1.

CC não expressa uma propriedade do vértice e sim dos seus vizinhos!

$$CC = 0/12 = 0$$

$$CC = 6/12 = 0.5$$

$$CC = 12/12 = 1$$

Coeficiente de Clusterização Global

- Média aritmética dos CC de cada vértice: mede o grau com que os vértices de um grafo tendem a agrupar.
- Nas redes sociais, o agrupamento refere-se aos círculos de amigos ou conhecidos onde os seus membros se conhecem, formando um grupo na rede.
 - Comportamentos assortivo: vértices com alto grau se ligam preferencialmente a vértices com alto grau.
 - Comportamento dissasortivo: o contrário.

Medidas de Centralidade

- Centralidade de Grau: grau 'normalizado'.
- Centralidade de Proximidade (closeness): menor distância média.

- Centralidade de Intermediação (betweenness): pontes entre vértices, 'caminho do meio'.
- Centralidade de Eigenvector: conexão a vértices de alto grau.

Resumo: Propriedades de Redes

- Grau k_i Número de arestas do vértice i
- Distribuição de grau P (k)
 Probabilidade (frequência) dos vértices de grau k
- Distância Média <L>
 Média dos caminhos mínimos entre todos os vértices
- Diâmetro da rede
 Maior caminho mínimo
- Coeficiente de Clusterização CC
 Medida da 'organização' local ou global
- Centralidade de Intermediação (Betweenness)
 Importância relativa do vértice na intermediação dos caminhos

Algumas questões...

Dada uma rede com V vértices e E arestas =>

rede com topologia estatisticamente idêntica!

Resultado: modela uma rede com topologia estática!

Problema: redes reais são sistemas dinâmicos!

Redes Reais

- Dinâmica de vértices e de arestas (rewiring)
- Envelhecimento (*aging*)
- Respostas a estímulos e perturbações
- Efeitos não-lineares

Objetivo: identificar o processo gerador da dinâmica da rede.

Bônus: representação correta da topologia da rede.

Modelos de Redes

Redes Aleatórias

- Paul Erdös e Alfred Rényi (1959): redes complexas naturais e sociais parecem seguir um padrão aleatório de formação => Grafos Aleatórios.
- Formação: novos nós são randomicamente adicionados à rede, gerando grafos estatisticamente homogêneos. Aparecimento de componente gigante quando <k> = 1.
- $L \sim N^2$ => vértices com aproximadamente mesmo número de arestas.

Redes Aleatórias

- Mark Granovetter (1970): sociedade organizada em componentes bem agrupados, conectados por componentes mais fracos.
- O desafio foi reconciliar a teoria de grafos aleatórios com a realidade agrupada de Granovetter. Isto levou quase três décadas!

Redes Aleatórias

■ Distribuição de grau <k>: Binomial ou Poisson.

Apresentam pico em torno de <k>. Se aumentar p, a rede se torna mais densa, aumentando <k> e movendo o pico para a direita.

A largura da distribuição (dispersão: quanto mais densa a rede, mais ampla é a distribuição e maiores as diferenças de graus.

■ Coeficiente de clusterização (CC)

Diminui com o aumento da rede (~ 1/N).

Independe do grau do nó => C(k) é constante.

■ Distância média <d>, <L>

Média dos caminhos pequenos.

$$\langle d \rangle \approx \frac{\ln N}{\ln \langle k \rangle}$$

Seis graus de separação

- Stanley Milgram (1967) realiza um experimento para determinar a "distância" entre duas pessoas quaisquer dos EUA.
- Envio de cartas partindo de Nebraska KA, com destino a uma pessoa em
 Boston MA, por intermédio de pessoas conhecidas.
- Das 160 cartas preparadas, 42 chegaram.
- O menor caminho foi de 2 conexões e o mais longo de 11.
- O valor médio foi de 5,5 conexões!

Efeito Mundo Pequeno: as informações se propagam rapidamente por toda a rede (L ≤ log n)

Redes Mundo Pequeno (small-world)

- Duncan Watts e Steven Strogatz (1998): sistemas autoorganizáveis não são nem aleatórios nem regulares.
- Formação: a partir de um anel regular com N vértices e k arestas, reconecte cada vértice aleatoriamente com probabilidade p.

Redes Mundo Pequeno (small-world)

Baixo P => Distância média <L> pequena e coeficiente de clusterização <C> alto

Table 1 Empirical examples of small-world networks						
	Lactual	L _{random}	$C_{ m actual}$	C_{random}		
Film actors	3.65	2.99	0.79	0.00027		
Power grid	18.7	12.4	0.080	0.005		
C. elegans	2.65	2.25	0.28	0.05		

Modelos Erdos-Renyi e Watts-Strogatz

- Proíbem a presença de vértices com um grau muito acima da média.
- Redes com número de vértices fixo.
- Vértices com grau próximo da média.
- Arestas criadas aleatoriamente.

	Erdos- Renyi	Watts- Strogatz
Caminho <l></l>	PEQUENO	PEQUENO
Coeficiente de Clusterização < <i>C</i> >	PEQUENO	GRANDE

Redes Reais

Network	Size	$\langle k \rangle$	6	Prand	C	C_{rand}	
WWW, site level, undir.	153 127	35.21	3.1	3.35	0.1078	0.00023	
Internet, domain level	3015-6209	3.52-4.11	3.7-3.76	6.36-6.18	0.18-0.3	0.001	
Movie actors	225 226	61	3.65	2.99	0.79	0.00027	
LANL co-authorship	52 909	9.7	5.9	4.79	0.43	1.8×10^{-4}	
MEDLINE co-authorship	1 520 251	18.1	4.6	4.91	0.066	1.1×10^{-5}	
SPIRES co-authorship	56 627	173	4.0	2.12	0.726	0.003	
NCSTRL co-authorship	11 994	3.59	9.7	7.34	0.496	3×10^{-4}	
Math. co-authorship	70 975	3.9	9.5	8.2	0.59	5.4×10^{-5}	
Neurosci. co-authorship	209 293	11.5	6	5.01	0.76	5.5×10^{-5}	
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	
Words, synonyms	22 311	13.48	4.5	3.84	0.7	0.0006	
Power grid	4941	2.67	18.7	12.4	0.08	0.005	
C. Elegans	282	14	2.65	2.25	0.28	0.05	

Redes Reais

Redes Reais

Redes Sem Escala (scale-free)

Barabasi e Alberts (1999): a distribuição de graus em redes com um grande número de componentes segue uma **lei de potência**.

Princípios gerativos:

- Crescimento A cada passo, um novo vértice é inserido na rede.
 - "Senioridade": vértices mais antigos tem maior K.
- Conexão preferencial ("reforço")
 Probabilidade de conexão é proporcional ao grau do vértice.
 "Rico-fica-mais-rico": acelera o crescimento de vértices com alto K.

Redes Sem Escala (scale-free)

■ Distribuição de grau <k>

Lei de potência: **aK**⁻³ Maior parte dos nós com graus baixos. Existência de nós com alto grau (hubs).

Coeficiente de clusterização: baixo.

C(k) é constante. Redes biológicas disasortivas. Redes sociais assortivas.

Distância média: ~ log N ou log log N Caminhos médios pequenos.

"Ultra small world".

Resumo: Tipos de Redes

55

Motivos (motiffs)

- Uri Alon e cols. (2002): padrões recorrentes em redes parecem exercer funções bem definidas.
 - Redes gênicas *E. Coli* e *S. Serevisae*
 - Redes neuronais *C. elegans*
 - Cadeias alimentares
 - Circuitos eletrônicos
 - Subredes www
- Hipótese: motifs surgem devido a requerimentos especiais dos sistemas e podem ser utilizados para definir classes de redes ou homologias.

Motivos (motiffs)

Technical Comment

Artzy-Randrup Y, Fleishman S. J, Ben-Tal N, & Stone L. *Science*, **305**, 2004

Network	Nodes	Edges	$N_{\rm real}$	$N_{\rm rand} \pm SE$) Z score	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score	$N_{\rm real}$	N _{rand} ± SD	Z score
Gene regulation (transcription)		X Feed- W forward Y loop Z Z		X Bi-fan Z W		real	rand	Z score			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14 Feed-	1812 V	300 ± 40	41 Bi-fan		,	Bi-
Neurons			>	Υ Ψ Ψ Z	forward loop	ž	√ w	Bi-ian	Y Y	v ^z	parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X \ Y \ V	Three chain	Y	$ u^{\mathbf{Z}} $	Bi- parallel			
				Z		W					
Little Rock Ythan	92 83	984 391	3219 1182	3120 ± 50 1020 ± 20		7295 1357	2220 ± 210 230 ± 50	25 23			
St. Martin	42	205	469	1020 ± 20 450 ± 10		382	130 ± 30 130 ± 20	12			
Chesapeake	31	67	80	82 ± 4	NS NS	26	5 ± 2	8			
Coachella	29	243	279	235 ± 12		181	80 ± 20	5			
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			
Electronic circ (forward logic				X W Y V Z	Feed- forward loop	X Z	¥ ₩	Bi-fan	Y	z w Z	Bi- parallel
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
s13207	8,651	11,831	403	2 ± 1	225	4445	1 ± 1	4950 Bi-fan	264 X-	\rightarrow Y	Four-
Electronic circuits (digital fractional multipliers)		node		feedback	X Y Bi-fan		node v feedback z < W loop				
s208	122	189	10	1 ± 1	9	4	1 ± 1	3.8	5	1 ± 1	5
s420	252	399	20	1 ± 1	18	10	1 ± 1	10	11	1 ± 1	11
s838‡	512	819	40	1 ± 1	38	22	1 ± 1	20	23	1 ± 1	25
World Wide V	Veb		>	X \$\display \display \dix \display \display \display \display \te	Feedback with two mutual dyads	X Y <	\Rightarrow z	Fully connected triad	1 Y Y Y	\nearrow z	Uplinked mutual dyad
nd edu8	325 720	1.4606	1 105	203 + 102	800	6 806	5e4+4e2	15,000	1.2e6	$1e4 + 2e^2$	5000

Interpretação biológica das propriedades de grafos

Propriedades de Redes Biológicas

MODULARIDADE

- Componentes com alta intraconectividade e baixa interconectividade.
- Alguma sobreposição e cruzamentos de módulos.
- Organização hierárquica.

MOTIVOS & CLIQUES

- Subgrafos encontrados em frequência maior que a esperada.
- Redes transcricionais: alças de feedback e feed-forward.
- PPIs: pequenos ciclos e subgrafos completos.

Oltvai ZN, Barabási A-L. Science, 298, 2002

Propriedades de Redes Biológicas

Propriedades de Redes Biológicas

HUBS

- Nós com grau bem maior que a média.
- Remoção aletória vs. remoção dirigida.
- 73% dos genes *S. cerevisae:* nãoessenciais.
- Mecanismos seletivos: restrições funcionais e evolução!

CAMINHOS

- Caminho mínimos: eficiência.
- Caminhos redundantes: **robustez**.
- Centralidade de intermediação: identificação de hubs.

Para Saber Mais...

A-L Barabasi. Linked a Nova Ciência dos Networks: como tudo está conectado a tudo e o que isso significa para os negócios, relações sociais e ciência. São Paulo: Leopardo Editora, 2009.

A-L Barabasi. Network Science. http://networksciencebook.com/

B H Junker & F Schreiber. Analysis of Biological Networks. New Jersey: Willey InterScience, 2008.

Complex Systems and Networks. Science, vol 325, 2009.

D J Watts. Seis Graus de Separação. São Paulo: Leopardo Editora, 2009.

D Noble. The Music of Life – Biology Beyond Genes. London: Oxford University Press, 2006.

S Johnson. Emergência – a vida integrada de formigas, cérebros, cidades e softwares. Rio de Janeiro: Jorge Zahar, 2001

U Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton: Chapman & Hall/CRC, 2007.

www.youtube.com/watch?v=TcxZSmzPw8k

www.youtube.com/watch?v=dTzkrJKUo-I

Read Aug. 1, 2014 News at OU article on the popularity of this website.

The Erdös Number Project

oakland.edu/enp/compute/

www.youtube.com/watch?v=BQ7UDWn_uw

