Finish Ch. 20.

wanted: sin(x)=c

COS (x) = C

foun(x) = c

Recall: f 1-1 $f^{-1}(y) = sol.$ of ean f(x) = y, x in domain of f.

Cavit find inverse of sin(x) on its entire domain.

Smaller interval, where we can define inverse function.

1: On this smaller domain we achieve the entire range 2: Include acute angles [0, 2]

Tongent: Want same as before, also rant to have continuous grouph

we define the principal domains of trig. fcts:

 $sin: \left[-\frac{7}{12}, \frac{7}{12}\right]$

 $cos: [0,\pi]$

tou: $\left(-\frac{11}{2},\frac{11}{2}\right)$

On those intervals the trig. fcts are 1-1. We can define their inverses.

Define:

-, sin (y) (arcsin(y), as in (y)): inverse fct of y= sin(x)

sin (y): domain [-1,1]

range [-1,1]

principal domain of sin

-> cos-1(y) (arccos (y), acos (y)):

inverse of y=(os(x))restricted to $x \in [o, \Pi]$ cos^{-1} : domain [-1,1]rouge $[o, \pi] \leftarrow principal$ domain

of cos

Tour'(y) (arctan(y), atam(y))

invent of y = tam(x)restricted to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Domain: $(-\infty, \infty)$ (all real numbers)

Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \leftarrow pr$. domain of tangent.

Ruk: $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ sin'(sin(x)) = x $existsin'(sin(x)) = \frac{\pi}{4}$ $existsin'(sin(\frac{3\pi}{4})) = \frac{\pi}{4}$ $existsin'(sin(\frac{3\pi}{4})) = \frac{\pi}{4}$ Why? $existsin'(sin(\frac{3\pi}{4})) = \frac{\pi}{4}$ Why? $existsin'(sin(\frac{3\pi}{4})) = \frac{\pi}{4}$ $existsin'(sin(\frac{3\pi}{4})) = \frac{\pi}{4}$

Graphs of inverte trig functions

Book to the problem of solving trig. egins.

This is a solution. But not all solutions.

Recall: $sin(\pi-x) = sin(x)$ If x solves equal $sin(x) = \frac{1}{2}$ then $\pi-x$ easo does! $sin(\pi-x) = sin(x) = \frac{1}{2}$

So four: 2 solutions $x = \frac{\pi}{6}, \quad \pi - \frac{\pi}{6} = \frac{5\pi}{6}.$

Those are all solutions in a period.

Add periods to get all solutions:

27. $k + \frac{\pi}{6}$, $k = 0, \pm 1, \pm 2...$ is solution. blue points $2\pi \cdot k + \frac{5\pi}{6}$, $k = 0, \pm 1, \pm 2,...$ are solutions.

red points

Summary: Solutions of sin (x) = c, When $-1 \le c \le 1$ (otherwise no sols): $2\pi \cdot k + \sin^{-1}(c)$, $k = 0, \pm 1, \pm 2, -1$ $2\pi \cdot k + \pi - \sin^{-1}(c)$, $k = 0, \pm 1, \pm 2, -1$

Ex: Solve

$$2\sin(x^2-1) = \sqrt{3}$$

 $\sin(x^2-1) = \sqrt{3}$

If it helps: set $\alpha = x^2 - 1$ $\sin(\alpha) = \frac{\sqrt{3}}{2}$

 $\begin{cases} x^2 = 2n \cdot k + \frac{\pi}{3} - 1 \\ x^2 = 2\pi \cdot k + \frac{2\pi}{3} - 1 \end{cases}$ $k = 0, \pm 1, \pm 2$

Issue: Not all k work! If k is large regative, say k = -50, right hand side is negative. Find for what k (can solve. Make sure that right hound side in (*) is non-negative.

Solve 2πk+3-1>0

$$\Rightarrow 2\pi k \geqslant 1 - \frac{\eta}{3}$$

$$\Rightarrow k \geqslant \frac{1 - \frac{\eta}{3}}{2\pi}$$

=) k > -. 007, k integer.

First set of sol's:

 $x^{2} = 2\pi \cdot k + \frac{1}{3} - l$, $k \ge 6$ integer $\Rightarrow x^{2} = \frac{1}{2\pi \cdot k} + \frac{1}{3} - l$, $k \ge 0$, int.

2nd set of sols:

 $\chi^2 = 2\pi \cdot k + \frac{2\pi}{3} - 1$ -> Find for what k this makes

-> solve for x as before.

- Get full set of sols.

Wheet about cos?

 $\cos(x) = c$

Recall: cos(-x) = cos(x)

If x solves cos(x)=c, then -x also solves cos(-x)=c

As before, general solution of $\cos(\kappa) = c$, $-1 \le c \le 1$

SX= 27. k + cos-1(c) k=0, ±1, ±2, - $\int x = 2\pi \cdot k - \cos^{-1}(c)$

egin toun(x)=c cony real has exactly
one solution
in one period. General solution:

x= \pi \ k + \tan^{-1}(c)

Peniod