Analiza i predvidjanje kvaliteta vazduha u Novom Sadu

Autor: Nikola Selić IN-43-2017

Motivacija

Srbija, konkretno Beograd, je bio medju prvima, a kasnije i prvi, na listi zagadjenosti vezduha na svetu https://www.airvisual.com/world-air-quality-ranking). Podatak jeste zabrinjavajuć i, samim tim, glavna motivacija ovog rada je jedan od načina kako se može reagovati na tu pojavu. Agregirajući zvanične podatke o kvalitetu vazduha kao i vrste štetnih gasova u našoj atmosferi bi za cilj trebalo da informiše šire javne mase o opasnosti i štetnosti koje ti gasovi izazivaju. (https://i.redd.it/g7c4hmz73vu31.jpg) (https://i.redd.it/g7c4hmz73vu31.jpg)

Cilj

Glavna tema ovog projekta je predvidjanje kvaliteta vazduha u atmosferi koristeci podatke iz meteoroloskih stanica Srbije. Konkretno, koristimo podatke za Liman, Novi Sad. Obradjujemo sledeće faktore kvaliteta vazduha:

- CO
- SO2
- O3
- NO2
- NOX
- NO

Hipoteza

Zato što postoji trend izmedju vremena (24 sata) i koncentracije CO i ostalih štetnih gasova, mozemo pretpostaviti buduću vrednost emisije gasova u periodu od jednog dana.

Algoritmi

Algoritmi koji bi se koristili u implementaciji projekta su:

Multivarijabilna Linearna Regresija

Multivariajilna linearna regresija se koristi kada imamo više promenljivih ili (eng. features) koje trebamo uzimati u obzir. Naša funkcija hipoteze se može napisati kao:

$$h_{ heta}(x) = heta_0 + \sum\limits_{i=1}^m heta_i x_i$$

Odavde, možemo rešiti jednačinu pomoću algoritma opadajućeg gradijenta (eng. Gradient Descent)

Mutivarijabilni algoritam opadajuceg gradijenta

Multivarijabilni kriterijum optimalnosti je sličan kao i univarijabilni:

$$J(\stackrel{
ightarrow}{ heta})=rac{1}{m}\sum_{i=1}^m(h_ heta(x^{(i)})-y^{(i)})^2$$
 (nekada $rac{1}{2m}$ zbog lepšeg izvoda)

Alati

Za izgradnju projekta tj. analizu podataka i implementaciju regresije u svrsi saznavanja budućih vrednosti, koristi se **Python** programski jezik,ili konkretnije, **Jupyter Notebook** okruženje.

Ostali alati i biblioteke koji su korisćeni su:

- numpy
 - Koristimo za rad nad matricama
- pandas
 - Omogucava dobru organizaciju podataka i rad sa ključevima kao i ostalim obeležijama
- · requests
 - Služi za slanje http zahteva koji koristimo za pozivaje API-a
- selenium
 - Koristi se za automatsko korišćenje internet pretraživaca
- BeautifulSoup
 - Omogućava čitanje html stranica i izvlačenja informacija iz iste

Podaci

Podaci su pribavljeni sa zvaničnog sajta Ministarstva zaštite životne sredine - Agencija za zaštitu životne sredine - http://www.amskv.sepa.gov.rs/ (http://www.amskv.sepa.gov.rs/)

Podaci se moraju prvo učitati i dodati u pandas dataframe i nakon toga srediti i urediti. Količina podataka je 718 redova tj. period od mesec dana.

Pribavljanje podataka

Agencija za zaštitu životne sredine nema API ili drugi način pribavljanja podataka u nekom formatu, tako da za regionalne podatke moramo koristiti tehniku automatskog pribavljanja podataka (eng. web scraping)

Sav kod pribavljanja i čiscenja podataka se nalazi u <u>data_scripting.py (https://github.com/Selich/Serbian-Airquality/blob/master/data_scraping.py)</u>

Podaci se ažuriraju svakog sata zato što su nam potrebni podaci koji su relevantni za dati trenutak.

Pregled tabela dataset-a:

```
In [2]: import pandas as pd
    df = pd.read_csv("./data/amskv_data.csv")
    df.head()
```

Out[2]:

	Unnamed: 0	Vreme	SO2 [ug.m-3]	O3 [ug.m-3]	NO2 [ug.m-3]	NOX [ug.m-3]	CO [mg.m-3]	NO [ug.m-3]	V [m/s]	dd [°]	P [mb]	t [°C]
0	1	2019-10-12 17:00:00	20.78	48.59	21.68	28.16	0.34	4.16	0.42	115.59	1015.67	22.81
1	2	2019-10-12 18:00:00	14.82	35.95	23.31	29.73	0.36	4.22	0.91	131.52	1015.93	19.13
2	3	2019-10-12 19:00:00	12.47	40.89	18.90	25.31	0.33	4.15	0.95	131.06	1016.32	17.23
3	4	2019-10-12 20:00:00	12.04	44.82	14.80	22.19	0.28	4.78	0.99	137.33	1016.57	16.24
4	5	2019-10-12 21:00:00	12.45	55.13	11.64	17.97	0.25	4.14	0.86	136.70	1016.87	15.72

Korisni prikazi podataka

Neki prikazi podataka koji mogu bolje da objasne odnos podataka.

```
In [4]: df = df[df['CO [mg.m-3]'] < 4]
    plt.title("Koncentracija CO u toku poslednjih mesec dana")
    plt.xlabel("Vreme")
    plt.ylabel("Koncentracija CO")
    plt.plot(df["CO [mg.m-3]"])</pre>
```

Out[4]: [<matplotlib.lines.Line2D at 0x7fdfb85dc410>]

Mozemo i uočiti konkretna kretanja u roku od 24h.

```
In [5]: plt.title("Koncentracija CO u toku poslednjih 24 sata")
    plt.xlabel("Vreme")
    plt.ylabel("Koncentracija CO")
    plt.plot(df["CO [mg.m-3]"].tail(24))
```

Out[5]: [<matplotlib.lines.Line2D at 0x7fdfb8aaa550>]

Možemo i videti kretanja ostalih štetnih gasova u toku poslednjih 24 sata.

```
In [7]: df.tail(24).plot(y=["S02 [ug.m-3]","03 [ug.m-3]","N02 [ug.m-3]","N0X [ug.m-3]","C0 [mg.m-3]","N0 [ug.m-3]"])
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdfb31a8bd0>

Literatura

- https://www.ritchieng.com/multi-variable-linear-regression/ (https://www.ritchieng.com/multi-variable-linear-regression/)
- https://cmertin.github.io/Predicting-Air-Quality.html (https://cmertin.github.io/Predicting-Air-Quality.html)