Introduction to Machine Learning

Class **Tree Based Models**

Topic

Introduction to Regression Tree

Decision Tree can be used to do regression tasks

When the target variable is continuous decision tree regressor can be used

Prediction

Mean value of the target variable

Example

Country	Rim	Tires	Туре	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

Build a decision tree model to predict price

Price is a continuous variable

Regression tree

Recursively subset the data

Example

Country	Rim	Tires	Туре	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

Total Population = 10 Average price = 21.9

Yes No **R14**

Total Population = 6 Average Price = 17.50

Price
11.95
18.9
24.65
13.15
20.22
16.14

Total Population = 4 Average Price = 26.97

Price
24.76
26.90
33.20
23.04

How does a regression tree algorithm pick up which variable to split on?

Predictions need to be accurate

The prediction is the average value of target variable in decision node

Higher the accuracy of prediction, the better the split is

Mean Squared Error (MSE) or Residual Sum of Square (RSS) as a proxy of accuracy in each node

Country	Rim	Tires	Type	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

MSE or RSS helps in deciding which variable to choose for a split

Country	Rim	Tires	Type	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

Country	Rim	Tires	Type	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

Price

26.90

18.90

26.45

33.20

	Price
	11.95
	24.76
	13.15
	20.22
	16.14
	23.04

Rim or Country?

Which variable helps in creating a more accurate prediction?

Total Population = 10 Average price = 21.9 Yes No **R14** Total Population = 6Total Population = 4 Average Price = 17.50

Use Mean Squared Error (MSE) or Residual Sum of Square (RSS)

Average Price = 26.97

$$MSE = \frac{1}{n} \sum (y_i - \mu)^2$$

MSE is just the average of RSS

Nothing but variance in the values of target in variable in a node

Total Population = 10 Average price = 21.9

Yes Country - Germany

No

Total Population = 6 Average Price = 17.50

Price	Pred.
11.95	17.50
18.9	17.50
24.65	17.50
13.15	17.50
20.22	17.50
16.14	17.50

Total Population = 4 Average Price = 26.97

Price	Pred.
24.76	26.97
26.90	2697
33.20	26.97
23.04	26.97

Total Population = 4 Average Price = 25.91

Price	Pred.
26.90	25.91
18.90	25.91
26.45	25.91
33.20	25.91

Total Population = 6 Average Price = 18.21

Price	Pred.
11.95	18.21
24.76	18.21
13.15	18.21
20.22	18.21
16.14	18.21
23.04	18.21

MSE tries to find out how accurate a prediction is in each node

Total Population = 10 Average price = 21.9

$$MSE = \frac{1}{n} \sum (y_i - \mu)^2$$

Total Population = 10 Average price = 21.9

Yes R14

Yes

Country -Germany No

Total Population = 6 Average Price = 17.50

Total	l Populat	tion = 4
Avera	ge Price	= 26.97

No

Total Population = 4
Average Price = 25.91

Total Pc	pu	latic	n	=	6
verage	Pri	ce =	: 1	8.2	<u>)</u>

Price	Pred.
11.95	17.50
18.9	17.50
24.65	17.50
13.15	17.50
20.22	17.50

16.14

Price	Pred.	re	
24.76	26.97	ĵ.	
26.90	2697	ĵ.	
33.20	26.97	ĵ.	
23.04	26.97	ō.	

 $\frac{1}{4}(24.76 - 26.97)^2 + (26.90 - 26.97)^2 + ... + (23.04 - 26.97)^2$

Price	Pred.
26.90	25.91
18.90	25.91
26.45	25.91
33.20	25.91

Price	Pred.
11.95	18.21
24.76	18.21
13.15	18.21
20.22	18.21
16.14	18.21
23.04	18.21

$$\frac{1}{6}(11.95 - 17.50)^2 + (18.90 - 17.50)^2 + ... + (16.14 - 17.50)^2$$

17.50

Total Population = 10 Average price = 21.9

$$MSE = \frac{1}{n} \sum (y_i - \mu)^2$$

Total Population = 10 Average price = 21.9

Yes

R14

No

Yes

No

Germany

Country -

Total Population = 6 Average Price = 17.50

Total Population = 4 Average Price = 26.97 Total Population = 4 Average Price = 25.91 Total Population = 6 Average Price = 18.21

MSE - 18.67

MSE - 14.78

MSE - 26.21

MSE - 23.22

$$\frac{6}{10} * 18.67 + \frac{4}{10} * 14.78 = 17.114$$

$$\frac{4}{10}$$
 * 26. 21 + $\frac{6}{10}$ * 23. 22 = 24. 416

Rim is better than country at producing more accurate predictions

Hyperparameters

Regression Tree

Number of observations in terminal node

Grid search procedure to compute the appropriate values of these hyperparameters

Computed as the total reduction of purity measure brought out by a feature

Proportion of classes are **more disproportionate** in Feature B than in Feature A

In Variable Importance both the sequence of the split and the purity of a node should be considered

Feature A precedes
Feature B

Feature B creates greater node purity

Importance of A: Decrease in Gini * Proportion of data

Decrease in Gini

Ability of a variable to create class imbalance compared to preceding split

Proportion of data

Sequence in which variable causes the split

More observations will pass through the node caused by an early split

Weigh the decrease in Mean Squared Error and Residual Sum Square appropriately

Recap

- 1. Decision tree Regression
- 2. Purity Metric
- 3. Hyperparameters
- 4. Feature Importance