

#### Features:

- 600V Field Stop Trench Technology
- High Speed Switching
- Low Conduction Loss
- Positive Temperature Coefficient
- Easy Parallel Operation
- RoHS Compliant
- JEDEC Qualification



### Applications:

Induction Heating, Soft Switching Application, UPS, Welder, Inverter

| Device      | Package | Marking     | Remark |
|-------------|---------|-------------|--------|
| TGAN60N60FD | TO-3PN  | TGAN60N60FD | RoHS   |

# **Absolute Maximum Ratings**

| Parameter                                                                     |                         | Symbol           | Value     | Unit       |
|-------------------------------------------------------------------------------|-------------------------|------------------|-----------|------------|
| Collector-Emitter Voltage                                                     |                         | V <sub>CES</sub> | 600       | V          |
| Gate-Emitter Voltage                                                          |                         | $V_{GES}$        | ±20       | V          |
|                                                                               | T <sub>C</sub> = 25 ℃   |                  | 120       | А          |
| Continuous Collector Current                                                  | T <sub>C</sub> = 100 °C | I <sub>C</sub>   | 60        | А          |
| Pulsed Collector Current (Note 1)                                             | •                       | I <sub>CM</sub>  | 180       | Α          |
| Diode Continuous Forward Current                                              | T <sub>C</sub> = 100 ℃  | I <sub>F</sub>   | 30        | Α          |
|                                                                               | T <sub>C</sub> = 25 ℃   | 1                | 347       | W          |
| Power Dissipation                                                             | T <sub>C</sub> = 100 °C | P <sub>D</sub>   | 139       | W          |
| Operating Junction Temperature                                                | •                       | T <sub>J</sub>   | -55 ~ 150 | $^{\circ}$ |
| Storage Temperature Range                                                     |                         | T <sub>STG</sub> | -55 ~ 150 | $^{\circ}$ |
| Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds |                         | T <sub>L</sub>   | 300       | °C         |

#### Notes:

(1) Repetitive rating: Pulse width limited by maximum junction temperature

#### **Thermal Characteristics**

| Parameter                                       | Symbol                   | Value | Unit |
|-------------------------------------------------|--------------------------|-------|------|
| Maximum Thermal resistance, Junction-to-Case    | R <sub>OJC</sub> (IGBT)  | 0.36  | °C/W |
| Maximum Thermal resistance, Junction-to-Case    | R <sub>θJC</sub> (DIODE) | 1.12  | °C/W |
| Maximum Thermal resistance, Junction-to-Ambient | $R_{\theta JA}$          | 40    | °C/W |



# Electrical Characteristics of the IGBT $\tau_{c}\text{=-}25\,^{\circ}\!\!\text{C},$ unless otherwise noted

| Parameter                              | Symbol               | Test condition                                                     | Min. | Тур. | Max.  | Units |
|----------------------------------------|----------------------|--------------------------------------------------------------------|------|------|-------|-------|
| OFF                                    |                      |                                                                    |      |      |       |       |
| Collector – Emitter Breakdown Voltage  | BV <sub>CES</sub>    | $V_{GE} = 0V, I_C = 1mA$                                           | 600  |      |       | V     |
| Zero Gate Voltage Collector Current    | I <sub>CES</sub>     | $V_{CE} = 600 \text{V}, V_{GE} = 0 \text{V}$                       |      |      | 1     | mA    |
| Gate – Emitter Leakage Current         | I <sub>GES</sub>     | $V_{CE} = 0V, V_{GE} = \pm 20V$                                    |      |      | ± 250 | nA    |
| ON                                     |                      |                                                                    |      |      |       |       |
| Gate – Emitter Threshold Voltage       | V <sub>GE(TH)</sub>  | $V_{GE} = V_{CE}$ , $I_C = 60mA$                                   | 4.5  | 6.0  | 7.5   | V     |
| Collector Facility Cotynetics Voltage  |                      | $V_{GE} = 15V, I_{C} = 60A, T_{C} = 25  {}^{\circ}C$               |      | 1.8  | 2.3   | V     |
| Collector – Emitter Saturation Voltage | V <sub>CE(SAT)</sub> | $V_{GE} = 15V, I_{C} = 60A, T_{C} = 125  {}^{\circ}\text{C}$       |      | 2.3  |       | V     |
| DYNAMIC                                |                      |                                                                    |      |      |       |       |
| Input Capacitance                      | C <sub>IES</sub>     | V <sub>CE</sub> = 30V,                                             |      | 3300 |       | pF    |
| Output Capacitance                     | C <sub>OES</sub>     | $V_{GE} = 0V$                                                      |      | 170  |       | pF    |
| Reverse Transfer Capacitance           | C <sub>RES</sub>     | f = 1MHz                                                           |      | 110  |       | pF    |
| SWITCHING                              | I                    |                                                                    |      |      |       |       |
| Turn-On Delay Time                     | t <sub>d(on)</sub>   |                                                                    |      | 45   |       | ns    |
| Rise Time                              | t <sub>r</sub>       |                                                                    |      | 125  |       | ns    |
| Turn-Off Delay Time                    | t <sub>d(off)</sub>  | $V_{CE} = 400V, I_{C} = 60A$                                       |      | 150  |       | ns    |
| Fall Time                              | t <sub>f</sub>       | $R_G = 10\Omega$ , $V_{GE} = 15V$<br>Inductive Load, $T_C = 25$ °C |      | 80   | 120   | ns    |
| Turn-On Switching Loss                 | E <sub>ON</sub>      | inductive Load, T <sub>C</sub> = 25 °C                             |      | 2.66 | 4     | mJ    |
| Turn-Off Switching Loss                | E <sub>OFF</sub>     |                                                                    |      | 1.53 | 2.3   | mJ    |
| Total Switching Loss                   | E <sub>TS</sub>      |                                                                    |      | 4.19 | 6.3   | mJ    |
| Turn-On Delay Time                     | t <sub>d(on)</sub>   |                                                                    |      | 45   | -     | ns    |
| Rise Time                              | t <sub>r</sub>       |                                                                    |      | 135  |       | ns    |
| Turn-Off Delay Time                    | t <sub>d(off)</sub>  | $V_{CE} = 400V, I_{C} = 60A$                                       |      | 160  |       | ns    |
| Fall Time                              | t <sub>f</sub>       | $R_G = 10\Omega$ , $V_{GE} = 15V$                                  |      | 90   |       | ns    |
| Turn-On Switching Loss                 | E <sub>ON</sub>      | Inductive Load, T <sub>C</sub> = 125 °C                            |      | 2.65 | 4     | mJ    |
| Turn-Off Switching Loss                | E <sub>OFF</sub>     |                                                                    |      | 1.86 | 2.8   | mJ    |
| Total Switching Loss                   | E <sub>TS</sub>      |                                                                    |      | 4.51 | 6.8   | mJ    |
| Total Gate Charge                      | Qg                   |                                                                    |      | 150  | 225   | nC    |
| Gate-Emitter Charge                    | Q <sub>ge</sub>      | $V_{CE} = 400V, I_{C} = 60A$<br>$V_{GF} = 15V$                     | -    | 22   | 33    | nC    |
| Gate-Collector Charge                  | Q <sub>gc</sub>      | GE 10 V                                                            |      | 78   | 117   | nC    |



# TGAN60N60FD Field Stop Trench IGBT

# Electrical Characteristics of the DIODE $T_{\text{C}}\text{=}25\,\text{°C},$ unless otherwise noted

| Parameter                | Symbol          | Test co              | ndition                 | Min. | Тур. | Max. | Units |
|--------------------------|-----------------|----------------------|-------------------------|------|------|------|-------|
| Diada Farward Voltage    | \ \/            | 1 - 201              | T <sub>C</sub> = 25 °C  |      | 1.9  | -    | V     |
| Diode Forward Voltage    | V <sub>FM</sub> | I <sub>F</sub> = 30A | T <sub>C</sub> = 125 °C |      | 1.78 |      | ]     |
| Poverce Pecevery Time    |                 |                      | T <sub>C</sub> = 25 °C  |      | 140  |      |       |
| Reverse Recovery Time    | t <sub>rr</sub> |                      | T <sub>C</sub> = 125 °C |      | 240  |      | ns    |
| Povorco Popovory Current |                 | $I_{F} = 30A,$       | T <sub>C</sub> = 25 °C  |      | 5    | -    | A     |
| Reverse Recovery Current | Irr             | di/dt = 200A/µs      | T <sub>C</sub> = 125 °C |      | 10   |      |       |
| Poverce Pecevery Charge  |                 |                      | T <sub>C</sub> = 25 °C  |      | 340  |      | nC    |
| Reverse Recovery Charge  | Q <sub>rr</sub> | <b>√</b> π           | T <sub>C</sub> = 125 °C |      | 1200 |      |       |



## **IGBT Characteristics**

Fig. 1 Output characteristics



Fig. 3 Saturation voltage vs. collector current



Fig. 5 Saturation voltage vs. gate bias



Fig. 2 Saturation voltage characteristics



Fig. 4 Saturation voltage vs. gate bias



Fig. 6 Capacitance characteristics





## **IGBT Characteristics**

Fig. 7 Turn-on time vs. gate resistance



Fig. 9 Switching loss vs. gate resistance



Fig. 11 Turn-off time vs. collector current



Fig. 8 Turn-off time vs. gate resistance



Fig. 10 Turn-on time vs. collector current



Fig. 12 Switching loss vs. collector current





## **IGBT Characteristics**

Fig. 13 Gate charge characteristics



Fig. 15 RBSOA



Fig. 17 Load Current vs. Frequency



Fig. 14 SOA



Fig. 16 Transient thermal impedance of IGBT





## **Diode Characteristics**

Fig. 18 Conduction characteristics



Fig. 20 Reverse recovery charge vs. forward current



Fig. 19 Reverse recovery current vs. forward current



Fig. 21 Reverse recovery time vs. forward current





# **TO-3PN MECHANICAL DATA**







| SYMBOL | MIN   | NOM    | MAX   |
|--------|-------|--------|-------|
| Α      | 4.60  | 4.80   | 5.00  |
| b      | 0.80  | 1.00   | 1.20  |
| b1     | 1.80  | 2.00   | 2.20  |
| b2     | 2.80  | 3.00   | 3.20  |
| С      | 0.55  | 0.60   | 0.75  |
| c1     | 1.45  | 1.50   | 1.65  |
| D      | 15.40 | 15.60  | 15.80 |
| E      | 19.70 | 19.90  | 20.10 |
| е      | 5.15  | 5.45   | 5.75  |
| L1     | 3.30  | 3.50   | 3.70  |
| L2     | 19.80 | 20.00  | 20.20 |
| øP1    | 3.30  | 3.40   | 3.50  |
| øP2    |       | (3.20) |       |
| Q      | 2.20  | 2.40   | 2.60  |
| q1     | 4.80  | 5.00   | 5.20  |