Intervals, Transformations, and Slope Solution (version 115)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -5) \cup (-2, 2)$
Negative	$(-5, -2) \cup (2, 8)$
Increasing	$(-3,-1) \cup (7,8)$
Decreasing	$(-9, -3) \cup (-1, 7)$
Domain	(-9,8)
Range	(-5,6)

Intervals, Transformations, and Slope Solution (version 115)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=43$ and $x_2=71$. Express your answer as a reduced fraction.

$$\frac{f(71) - f(43)}{71 - 43} = \frac{67 - 55}{71 - 43} = \frac{12}{28}$$

The greatest common factor of 12 and 28 is 4. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{3}{7}$$

2