Series 6

1. Bootstrap

In Series 5 we computed several confidence intervals for different parameters of interest. This was done based on the Wald-statistic or on the profile t-function. In this exercise, we will now construct confidence intervals using the bootstrap method.

- a) Load the data body.dat used in Exercise 1 of Series 5 and redo the nonlinear regression with the same starting values as in Series 5.
- b) We are still interested in the question whether θ_4 is significantly different from 1. Perform bootstrap with 999 bootstrap samples. Look at the distribution of the bootstrap replicates of θ_4 . To do so, make a histogram of the values and add a line where the original estimate of θ_4 lies. Deciding by eye, would you say that θ_4 is significantly different from 1?

R-Hint:

- > library(nlstools)
 > D.Boot <- nlsBoot(..., niter = ...)</pre>
- c) Now write down the 95%-confidence-interval using the bootstrap method and compare it to the approximate 95%-confidence-interval computed using the Wald-statistics which we obtained in Exercise 1c) of Series 5 and the 95%-confidence-interval based on the profile t-function which we obtained in Exercise 1f) of Series 5. Do you find any differences?
- d) Load the data isomer.dat used in Exercises 2 and 3 of Series 5 and redo the nonlinear regression from Exercise 2 of Series 5 with the same starting values.
- e) Perform bootstrap with 999 bootstrap samples and plot the result. Are the problems obtained in Exercise 2 of Series 5 visible?

R-Hint:

- > D.Boot <- ...
- > plot(D.Boot)
- f) Do the same for the reparametrized model of Exercise 3 of Series 5. Does the plot look better?
- g) Make a histogram of the bootstrap replicates of φ_1 . Try to decide by eye what the upper and lower limit of the 95%-bootstrap confidence-interval is.
- h) Calculate the bootstrap confidence interval for φ_1 "by hand" (i.e. without using the summary() command).
- i) Look at the 95%-bootstrap confidence-intervals for all parameters $\varphi_1, \ldots, \varphi_4$. We are interested to know whether the variable x_1 has an influence on the response variable y. How can you decide this by looking at the bootstrap confidence-intervals?

Hint: Look at the equation of the reparametrized model.

2. Radioimmunoassay of Cortisol

Since the quantity of hormones contained in a compound cannot be measured directly, it is determined using a calibration curve that is estimated from a Radioimmunoassay (RIA). The assay is based on the fact that the hormone H and its radioactive Isotope H^* behave in a similar way with respect to their specific antibody. For a given quantity of antibodies A and a radioactive hormone H^* , the quantity of ligated complexes $[AH^*]$ will decrease the more the "cold" hormone H is present. This relationship is the basic concept for the calibration curve. For a given dose of pure hormone H, the number (per minute) of radioactive complexes $[AH^*]$ is counted. The functional relation between the logarithmized (base 10) dose (Variable dose) and the logarithmized number per minute (y) is given by the Richards-function:

$$y \approx h(x, \boldsymbol{\theta}) = \theta_1 + \frac{\theta_2 - \theta_1}{(1 + \exp(\theta_3 + \theta_4 x))^{\theta_5}}.$$

Load the data via

read.table("http://stat.ethz.ch/Teaching/Datasets/cas-das/cortisol.dat",
header = TRUE, sep = ",").

- a) Estimate the parameters in the nonlinear model. Use the starting values: $\theta_1^{(0)} = 5$, $\theta_2^{(0)} = 8$, $\theta_3^{(0)} = 3$, $\theta_4^{(0)} = 3$ and $\theta_5^{(0)} = 0.6$.
- b) Take a look at the likelihood profile traces. How do they change if you set the parameter θ_5 to 0.5? In the following, set θ_5 to the fixed value of 0.5.
- c) Calculate the 95%-prediction interval for $h\langle x_0, \boldsymbol{\theta} \rangle$ at $x_0 = -1.5, 0, 2$ using the fit of subtask 2 b) as well as the fit of subtask 2a. Compare the results. Which of the three prediction intervals is the longest?
- d) In the plot below, draw by hand the 95%-calibration interval at $y_0 = 7$ and $y_0 = 5.1$. Are there obvious differences?

- e) Estimate with R the limits of the calibration intervals at $y_0 = 7$ and $y_0 = 5.1$.
- f) Calculating the calibration intervals for y0 = 7 and y0 = 5.1 using the parametric bootstrap method. Are there any differences to the solution of 2 e)?

Exercise hour: Monday, June 24, afternoon.