Applications of functional MRI

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

Topics

- Mapping basic functions
 - Brain physiology
 - Brain development
- Mapping higher-order cognitive functions
 - Attention
 - Memory
 - Schizophrenia
 - Learning
 - Autism

Brain activation

- Sensory systems
 - Visual
 - Auditory
 - Tactile
 - Olfactory
 - Gustatory
- Active tasks
 - Motor
 - Cognitive

Basic blocked design experiment

 Mapping basic sensory/motor and language areas of the brain is useful e.g. in neurosurgery

Using the BOLD signal to study physiology

Visual stimulation at different blood glucose levels

BOLD signal in V1
drops to 60%
during mild
hypoglycemia
even though flow does
not increase

Origin of BOLD signal changes

- Neurons need energy (glucose+O₂) to do work
- Cerebral blood flow (CBF) increases locally
- Oxygen saturation increases locally
- Oxygen makes iron in Hb less magnetic
- Magnetic field around vessels becomes more uniform
 - Measure signal change

Brain development

Auditory stimulation

Adult positive BOLD signal

Newborn negative BOLD signal

Origin of BOLD signal changes

- Neurons need energy (glucose+O₂) to do work
- Cerebral blood flow (CBF) increases locally
- Oxygen saturation increases locally
- Oxygen makes iron in Hb less magnetic
- Magnetic field around vessels becomes more uniform
 - Measure signal change

Flow / metabolism balance is different in newborns Reflects maturity of brain

Study design

Blocked design

Event related design

Event Related fMRI

Condition

A

B

The transient change in MRI signal produced by 'A' is detected

MRI signal

= The hemodynamic response

Event related fMRI

- Measure response after transient stimulus
- Allows other types of experiment, e.g. "oddball" studies (no adaptation to repeated stimuli)
- Provides some temporal information of response
- Is less affected by some types of noise and drift

Effects of a short audio tone

The hemodynamic response is slow and delayed - it takes seconds to wash out the deoxyHb

Testing Attention

- The Stroop task
- Name the COLOR of the letters
 - Do not read the word!
- For example,

Name the color - do not read

red

blue

green

red

yellow

red

blue

yellow

green

red

Event Related fMRI

Transient stimuli produce a transient flow change

Event-related Stroop test - insert incongruent "color words" into a string of congruent "color words"

Event related Stroop effect

- Appearance of incongruent color-word pair triggers response in brain
- Conflict between attention to task and automatic reading response
- Transient change in <u>attentional network</u> as error correction and task monitoring occur

Event-related Stroop test

Time after incongruent word

Verbal Working Memory

- Subject hears words "...foot...grass...pole...horse..."
- Rehearse and remember serial positions
- Hear one word
- Respond with position (1 4)
- Compare to non-word sounds

Verbal Working Memory Task

Controls

Schizophrenia patients

Event related verbal working memory

Schizophrenic subjects do not maintain activity in IFG

Learning: Using fMRI to study visual object recognition

novices

experts

Gauthier et al, 1999

The fusiform "face area"

Functional definition of face-selective areas (passive viewing localizer)

Learning

Novel stimuli: "Greebles"

PLOKS

GLIPS

Learning to recognize greebles

Greeble expertise is related to activity in the FFA

Gauthier et al., 1999

What about long-term learning?

Gauthier, Skudlarski, Gore & Anderson, 2000

Behavioral measure of expertise: matching task

'Face' area is generally used for object recognition

fMRI Tasks Same/different judgments for faces, objects, patterns

Region of interest (ROI) definition

Results for faces

Control group
Faces - patterns

Autistism Ss show less activity in the normally face-selective right fusiform when viewing faces

Autism group Faces - patterns

Activity in normally object-selective areas

Control group objects - patterns

Autistic Ss show more activity in the normally object-selective right temporal gyrus when viewing faces

Autism group faces - patterns

Face vs. Object Discrimination Composite t Maps

Face recognition in autism

- No evidence of anatomical abnormality in fusiform gyrus in Autism
 - -> normal response to objects
- Functional abnormality for face processing
- Is this part of the cause of autism or caused by developing with autism?

Case Report – Child with Autism

- Shows obsession with "Digimon" cartoon characters
- Behavioral testing reveals high expertise in recognizing Digimon
- Tested in magnet vs faces, objects

FFA is intact

Digimon elicits amygdala response: circuitry intact

Summary of fMRI applications

- Normal brain function and organization
- Treatment planning and patient assessment
 - Neurosurgery
 - Neurology
- Abnormal brain function: relationship to underlying neurobiology
 - Psychiatry
 - Developmental disorders
 - Degenerative disorders