高中数学解析几何教程

作者: 还在尬黑

版本:第1版

日期: 2025年10月8日

© 2025 版权所有

前言

本书内容全部使用 LATEX 进行排版,作者"还在尬黑"是一位准大一学生,高中毕业于广东深圳中学,高三数学各次大考平均排名位于前 5%,高考应该也不例外。"还在尬黑"拥有知乎(同名),微信公众号(同名),小红书号(同名)等账号,头像是一个右手三叶结。以及不同名不同头像的GitHub 账号,发表原创优质内容百余篇,且固定更新频率,堪称发文的"螺丝钉"。

"还在尬黑"对圆锥曲线的解题研究有着浓厚兴趣,并在书中将其总结成了一套完整的解析几何教程。本书适合高中解析几何解题体系未成熟的高二高三学生,以及前来自学的高一学生以及初中生,也可作为高中数学教材。笔者衷心希望本书能够帮助读者提高圆锥曲线解题速度和解题能力,并能够准确地识别班内的"大佬"是用什么东西来装逼的,当然,本书和市面上的某些书不同,不会直接甩给学生们根本用不明白也不懂从何而来的技巧大招,而是会侧重解析一种方法的产生过程,以及如何恰当的选择方法解决具体问题。

学习圆锥曲线(包括高考数学的一些其它内容)的过程中,最重要也最需要大家认真做的就是 历年的高考题,本书内容涵盖了大部分恢复高考以来所有的高考解析几何压轴题,并且每一道题都 经过了笔者的精挑细选,放到了合适的位置上,后续笔者会在书末尾出一个索引表,帮助只想刷高 考题的同学快速使用本书。

除了经典而偏基础的高考题外,本书后面还有些部分为选学内容,难度较高,属于高考不怎么考的范畴,这部分留给同学们或解析几何爱好者们进行自我提高和兴趣拓展。当然,建议读者先打牢必学内容的基础,再来进行进一步的学习。

在创作本书的过程中,笔者也得到了朋友们和热心群众的帮助,在此向他们表示感谢! 十分感谢读者朋友们的支持和赞助!祝大家健康进步,高考成功!

> 还在尬黑 2025年10月8日

图 1: 我的头像

目录

第一章	先导课程	1
1.1	写在前面	1
1.2	轮换,对称	1
第二章	导数与微分	4
2.1	导数的定义	4

第一章 先导课程

1.1 写在前面

解析几何是高中数学的重要学习内容,在高考中分值占比较高。

不少教辅会以"圆锥曲线"作为替代性的表述,这可能是因为圆锥曲线是解析几何中的重难点。但笔者认为"解析几何"更为贴切:第一,从应试角度考虑,圆锥曲线是解析几何的子集,现在考试有的题也会出直线和圆,新定义曲线(如3次曲线等)进行考察;第二,笔者打算从不单单只谈3种圆锥曲线,而是想在其基础之上,更多地普及一些考试常用的几何知识和背景;第三,笔者愿意先从最基本的直线开始说起,帮助读者搭建完整的解析几何体系。

首先,笔者来讲一讲怎么进行计算。这似乎是一个很简单的问题,但是谁又能保证在紧张刺激的考场环境下不会犯错误?一旦出现计算错误,检查就需要花费一定的时间,所以不如挑选合适的计算方法,从源头上减少失误。本节中,笔者会结合自己的一些实战经验,尽量告诉大家一些计算过程中减小失误,提升速度的技巧和方法,以及解析几何中计算的基本方向——整体代换。

鉴于本书的覆盖群体,笔者会尽量避免过多的公式推导和过于严谨的学术表述,而是从直观的 角度出发,用一些具体的例子来说明计算的过程。希望大家能从中受益。

1.2 轮换,对称

在此之前,请允许我先介绍一些基本的概念,我们不妨先来看一些看起来很整齐的式子,这些 式子平时很常见,大家在备考强基计划的过程中也会遇到比较多这样的式子:

例题 1.2.1

观察以下代数式,并尝试在心里面归纳出它们的特点:

$$abc$$

$$a + b + c$$

$$ab + bc + ca$$

$$a^{2} + b^{2} + c^{2}$$

$$(a + b)(b + c)(c + a)$$

$$a^{2}b + a^{2}c + b^{2}a + b^{2}c + c^{2}a + c^{2}b$$

解 1.2.1. 相信大部分同学是通过自己的直觉来归纳的,直观的感受就是这些式子很"整齐",而且很有规律可循。那么问题来了:"整齐"是怎么体现的?更进一步地,有没有手段验证一个代数式

是"整齐"的?至于"很有规律可循",那么规律是什么?

这些问题循序渐进,如果理清这些问题,那么读者便掌握了学习数学时地最基本的关注点:定义,性质,判定。这些式子中的 a,b,c 结构权重是均等的,它们地位相同,没有"特权变量",也没有"次序"之分。

而且,眼尖的读者可以发现,这些表达式中的项往往成组出现,覆盖所有可能的组合,比如 a+b+c 中全为一次项,如果 a 出现了,不用猜也知道 b 和 c 也出现了;再比如 $a^2b+a^2c+b^2a+b^2c+c^2a+c^2b$ 中, a^2b 出现了,其中 a 被平方了,那不用猜也知道在其他的项中,b 和 c 也会被平方,而且后面一定会跟着其他没有被平方的字母。它们出现的次数相同。

事实上,由于乘法和加法的交换律和结合律,我们可以发现,对于上面任意一个式子,我们都可以挑选任意两个变量交换位置,而多项式本身保持不变。大家不妨想象一下阅兵式的场景,即使我们偷偷调换两个兵的位置,你也看不出来有什么异样,这是阅兵队伍"整齐"的体现。同样地,这个代数式也可以这样操作,来验证这个代数式是"整齐"的,"规律可循"的。这样我们便可以引出对称式的概念。

定义 1.2.1: 对称式

对于一个 n 元多项式 $P(x_1,x_2,\dots,x_n)$,若对于数 $1,2,\dots,n$ 的任意一个排列 (i_1,i_2,\dots,i_n) ,都有

$$P(x_{i_1}, x_{i_2}, \dots, x_{i_n}) = P(x_1, x_2, \dots, x_n),$$

则称 $P(x_1, x_2, ..., x_n)$ 为对称式。

"对称"体现在字母地位平等,没有哪个字母是特殊的。只要式子中包含某个由特定字母组成的项(例如 a^2b),那么它一定包含由所有其他字母以同样的方式组成的项(即 a^2c,b^2a,b^2c,c^2a,c^2b)。

这样我们就认识了对称式的概念,这样当读者听到别人说"对称式"的时候,不会至于一脸懵逼,或者一边点头,假装听懂,然后用直觉去理解这个概念(这样的情况长期发展下去,是不利于学习数学的)。当然,读者也许会发现,像" $a^2b+a^2c+b^2a+b^2c+c^2a+c^2b$ "这样的式子其实比较长,占用了较大的空间,也显得不够简洁。因此我们不妨规定以下记号:

定义 1.2.2: 循环和

性质 1.2.1: 对称式的性质

(1) 基本对称多项式的基础性:

那么下面我们乘胜追击,再来看一组式子:

例题 1.2.2

观察以下代数式,并尝试在心里面归纳出它们的特点:

$$a^{2}b + b^{2}c + c^{2}a$$

$$a^{3}b + b^{3}c + c^{3}a$$

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$$

解 1.2.2. 和刚才的对称式不同,如果我们这里调换某两个字母的位置,那么结果也会发生变化。比如 $a^2b + b^2c + c^2a$ 中,如果我们把 a 和 b 调换位置,那么结果也会发生变化,比如说新出现了 b^2a 项,这是原来所没有的。

但是读者会发现,这个式子看上去也是有规律可循的,比如 $a^3b + b^3c + c^3a$ 中, a^3 项出现了,那不用猜也知道 b^3 和 c^3 也会在其它部分出现,而且出现的次数相同,但是和上文的规律不一样, a^3 后面只会跟着 b,却没有 c,即没有 a^2c 项。

例题 1.2.3

将 (a+b)(b+c)(c+a) 进行展开,并尽己所能地保证结果的每个部分都是由 a,b,c 三个元同时出现且地位相同的式子:

解 1.2.3. 先展开, 再重组:

$$(a+b)(b+c)(c+a) = (b^2 + ac + ab + bc)(a+c)$$
$$= ab^2 + b^2c + a^2c + ac^2 + a^2b + abc + abc + bc^2$$
$$= (a+b+c)(ab+bc+ca) - abc$$

最后为什么

定理 1.2.1

$$(a+b)^2 = a^2 + 2ab + b^2$$

第二章 导数与微分

2.1 导数的定义

例题 2.1.1

已知 x, y > 0,且 $x^2 + 9y^2 = 12$,则 $\frac{x+2}{y+1} - 3x$ 的最小值为______.

解 2.1.1.

例题 2.1.2

(单选) 设代数式
$$T=\frac{2}{1}\cdot\frac{4}{3}\cdot\frac{6}{5}\cdots\frac{200}{199}$$
,则 ()
$$A.14\leq T\leq 16\quad B.16\leq T\leq 18\quad C.18\leq T\leq 20\quad D.20\leq T\leq 22$$

解 2.1.2. 出题背景是大名鼎鼎的 Wallis 公式:

$$\begin{split} I(n) &= \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \sin^{n-1} x \, \mathrm{d}(-\cos x) \\ &= (-\cos x \sin^{n-1} x)|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (-\cos x) \, \mathrm{d}\sin^{n-1} x \\ &= (-\cos x \sin^{n-1} x)|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (-\cos^2 x)(n-1) \sin^{n-2} x \, \mathrm{d}x \\ &= (n-1) \int_0^{\frac{\pi}{2}} (\sin^{n-2} x - \sin^n x) \, \mathrm{d}x = (n-1)I(n-2) - (n-1)I(n) \\ \Rightarrow I(n) &= \frac{n-1}{n} I(n-2) \Rightarrow \begin{cases} \frac{I(2n+1)}{I(2n-1)} = \frac{2n}{2n+1} \\ \frac{I(2n)}{I(2n-2)} = \frac{2n-1}{2n} \end{cases} \end{split}$$

所以累乘有:

$$\frac{I(3)}{I(1)} \cdot \frac{I(5)}{I(3)} \cdots \frac{I(2n+1)}{I(2n-1)} = \frac{2 \times 1}{2 \times 1 + 1} \times \frac{2 \times 2}{2 \times 2 + 1} \times \cdots \times \frac{2n}{2n+1} = \frac{(2n)!!}{(2n+1)!!}$$

$$\frac{I(2)}{I(0)} \cdot \frac{I(4)}{I(2)} \cdots \frac{I(2n)}{I(2n-2)} = \frac{2 \times 1 - 1}{2 \times 1} \times \frac{2 \times 2 - 1}{2 \times 2} \times \cdots \times \frac{2n-1}{2n} = \frac{(2n-1)!!}{(2n)!!}$$

又因为:

$$\begin{split} I(2k+1) < I(2k) < I(2k-1) \Rightarrow \frac{(2k)!!}{(2k+1)!!} < \frac{(2k-1)!!}{(2k)!!} \frac{\pi}{2} < \frac{(2k-2)!!}{(2k-1)!!} \\ \Rightarrow \frac{1}{2k+1} \cdot [\frac{(2k)!!}{(2k-1)!!}]^2 < \frac{\pi}{2} < \frac{1}{2k} \cdot [\frac{(2k)!!}{(2k-1)!!}]^2 \\ \Rightarrow \frac{\pi}{2} = \prod_{n=1}^{\infty} \frac{4n^2}{4n^2-1} = \prod_{n=1}^{\infty} (\frac{2n}{2n+1} \cdot \frac{2n}{2n-1}) = (\frac{2}{1} \cdot \frac{2}{3}) \cdot (\frac{4}{3} \cdot \frac{4}{5}) \cdot (\frac{6}{5} \cdot \frac{6}{7}) (\frac{8}{7} \cdot \frac{8}{9}) \end{split}$$

所以:

$$T^2 = \frac{2}{1} \cdot \frac{2}{1} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{6}{5} \cdot \frac{6}{5} \cdots \frac{2n}{2n-1} \cdot \frac{2n}{2n-1} \approx \frac{\frac{2}{1} \cdot \frac{2}{1} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{6}{5} \cdot \frac{6}{5} \cdots \frac{2n}{2n-1} \cdot \frac{2n}{2n-1}}{(\frac{2}{1} \cdot \frac{2}{3}) \cdot (\frac{4}{3} \cdot \frac{4}{5}) \cdot (\frac{6}{5} \cdot \frac{6}{7}) \cdots \frac{2n}{2n-1} \cdot \frac{2n}{2n+1}} \frac{\pi}{2}$$

则 $T \approx \frac{(2n+1)\pi}{2}$,简单计算得知原题选 B.

方法二是使用放缩, 先平方然后用糖水不等式:

$$P^{2} = \frac{2}{1} \cdot \frac{2}{1} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{6}{5} \cdot \frac{6}{5} \cdots \frac{200}{199} \cdot \frac{200}{199}$$

$$> \frac{2}{1} \cdot \frac{2}{1} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \cdot \frac{7}{6} \cdots \frac{200}{199} \cdot \frac{201}{200}$$

$$= 268 > 16^{2}$$

例题 2.1.3

(单选)数列 a_n 各项为正整数且递增, $a_{n+2} = C_{a_{n+1}}^{a_n}$,则 ()

 $A.a_n < a_{n-1} + 1$ $B.a_1, a_2, a_3$ 可能成等比数列

解 2.1.3. 由于 a_n 递增,则 A 显然错误;下面考虑选项 BD:

$$a_n a_{n+2} = a_n C_{a_{n+1}}^{a_n} = a_{n+1} C_{a_{n+1}-1}^{a_n-1} = a_{n+1}^2 \Rightarrow a_{n+1} = C_{a_{n+1}-1}^{a_n-1}$$

当 $a_n=1$ 时,代入表达式得到 $a_{n+1}=C^0_{a_{n+1}-1}=1=a_n$,与数列递增矛盾;

当 $a_n=2$ 时,代入表达式得到 $a_{n+1}=C^1_{a_{n+1}-1}=a_{n+1}-1< a_{n+1}$,矛盾;

当 $a_n > 2$ 时,易得 $a_{n+1} - 1 > 2$,代入表达式得到

$$a_{n+1} = C_{a_{n+1}-1}^{a_n-1} \geq C_{a_{n+1}-1}^2 = \frac{(a_{n+1}-1)(a_{n+1}-2)}{2}$$

解方程发现无整数解,而且由于 $C_{a_{n+1}-1}^1=a_{n+1}-1$ 是小于 a_{n+1} 的最大整数,且有

$$C_{a_{n+1}-1}^1 < C_{a_{n+1}-1}^2, \ C_{a_{n+1}-1}^2 \neq a_{n+1}$$

只可能是 $C_{a_{n+1}-1}^2 > a_{n+1}$.

雪上加霜的是, $C^2_{a_{n+1}-1}$ 和 $C^1_{a_{n+1}-1}$ 中间没有数可以等于 $C^m_{a_{n+1}-1}$,所以 BD 错误;

考虑 C, 易得 $a_1 \neq 1, a_2 \geq 4, a_3 \geq 6, a_4 = C_{a_3}^{a_2} > 2a_3 + 1$,由

$$a_5 = C_{a_4}^{a_3} > a_3 a_4 \Rightarrow a_3^2 < C_{a_4-1}^{a_3-1} < C_{2a_3}^{a_3-1}$$

转化为 $a_3^3 + a_3 < C_{2a_3}^{a_3}$ 这是显然成立的,故本题目选 C

例题 2.1.4

已知 $\triangle ABC$ 中,A = 3B = 9C,则 $\cos A \cos B + \cos B \cos C + \cos C \cos A =$ _____.

解 2.1.4. 解得
$$A = \frac{9\pi}{13}, B = \frac{3\pi}{13}, C = \frac{\pi}{13}$$
 考虑积化和差:

$$\begin{split} &\cos A \cos B + \cos B \cos C + \cos C \cos A \\ &= \frac{1}{2}(\cos(A+B) + \cos(A-B) + \cos(B+C) + \cos(B-C) + \cos(A+C) + \cos(A+C)) \\ &= \frac{1}{2}(\cos\frac{12\pi}{13} + \cos\frac{6\pi}{13} + \cos\frac{4\pi}{13} + \cos\frac{2\pi}{13} + \cos\frac{10\pi}{13} + \cos\frac{8\pi}{13}) \\ &= \frac{1}{2\sin\frac{\pi}{13}}\sin\frac{\pi}{13}(\cos\frac{2\pi}{13} + \cos\frac{4\pi}{13} + \cos\frac{6\pi}{13} + \cos\frac{8\pi}{13} + \cos\frac{10\pi}{13} + \cos\frac{12\pi}{13}) \\ &= \frac{1}{4\sin\frac{\pi}{13}}(\sin\frac{\pi}{13} - \sin\frac{3\pi}{13} + \sin\frac{3\pi}{13} - \sin\frac{5\pi}{13} + \sin\frac{5\pi}{13} - \sin\frac{7\pi}{13} \\ &\quad + \sin\frac{7\pi}{13} - \sin\frac{9\pi}{13} + \sin\frac{9\pi}{13} - \sin\frac{11\pi}{13} + \sin\frac{13\pi}{13} - \sin\frac{13\pi}{13}) \end{split}$$

定理 2.1.1: 阿贝尔求和

 $=-\frac{1}{4}$

设 B_n 是数列 b_n 的前 n 项和, 当 $n \ge 2$ 时, 有:

$$\sum_{i=1}^{n} a_i b_i = a_n B_n - \sum_{i=1}^{n-1} (a_{i+1} - a_i) B_n$$

证明 2.1.1. 当 $n \ge 2$ 时,有

$$\begin{split} \sum_{i=1}^n a_i b_i &= a_1 b_1 + \sum_{i=2}^n a_i (B_i - B_{i-1}) \\ &= a_1 b_1 + \sum_{i=2}^n a_i B_i - \sum_{i=2}^n a_i B_{i-1} \\ &= \sum_{i=1}^n a_i B_i - \sum_{i=1}^{n-1} a_{i+1} B_i \\ &= a_n B_n - \sum_{i=1}^{n-1} (a_{i+1} - a_i) B_n \end{split}$$

例题 2.1.5: (来自 Fiddie)

设数列 $\{a_n\}$ 的各项均为实数,且当 $n \geq 2$ 时, $a_{n+1} + a_{n-1} = |a_n|$. 证明:

- (1) 存在大于 1 的正整数 m 使得 $a_m \leq 0$
- (2) 存在正整数 m 使得 $a_m \le 0, a_{m+1} \le 0$
- (3) $a_n = a_{n+9}$

解 2.1.5. (1) 当 $n \ge 2$ 时,由

$$\begin{cases} a_{n+1} + a_{n-1} = |a_n| \\ a_{n+2} + a_n = |a_{n+1}| \end{cases} \Rightarrow a_{n+2} + a_{n+1} + a_n + a_{n-1} = |a_n| + |a_{n+1}|$$
$$\Rightarrow a_{n+2} + a_{n-1} = |a_n| - a_n + |a_{n+1}| - a_{n+1} \ge 0$$

若 $n \geq 2$ 时 $a_n > 0$, 上式化为 $a_{n+2} + a_{n-1} = 0$,矛盾,故存在大于 1 的正整数 m 使得 $a_m \leq 0$ (2) 已证存在大于 1 的整数 m 使得 $a_m \leq 0$,现假设不存在正整数 k 使得 $a_k \leq 0$, $a_{k+1} \leq 0$,则不妨设 a_m 为首个小于等于 0 的项,由假设得 $a_1, a_2, ... a_{m-1} > 0$, $a_m \leq 0$, $a_{m+1} > 0$,可以通过不断消元推出矛盾:

$$\begin{aligned} a_{m+1} + a_{m-1} &= |a_m| = -a_m \Rightarrow a_{m+1} = -a_m - a_{m-1} \\ a_{m+2} + a_m &= |a_{m+1}| = a_{m+1} \Rightarrow a_{m+2} = a_{m+1} - a_m > 0 + 0 = 0 \\ a_{m+3} + a_{m+1} &= |a_{m+2}| = a_{m+2} \Rightarrow a_{m+3} = a_{m+2} - a_{m+1} = a_{m+1} - a_m - a_{m+1} = -a_m \ge 0 \\ a_{m+4} + a_{m+2} &= |a_{m+3}| = -a_m \Rightarrow a_{m+4} = -a_m - a_{m+2} = -a_{m+1} < 0 \\ a_{m+5} + a_{m+3} &= |a_{m+4}| = a_{m+1} \Rightarrow a_{m+5} = a_{m+1} - a_{m+3} = a_m + a_{m+1} = -a_{m-1} < 0 \end{aligned}$$

由 $a_{m+4} < 0, a_{m+5} < 0$ 知矛盾,故存在正整数 k 使得 $a_k \le 0, a_{k+1} \le 0$.

(3) 抓住上面第二小问的提示就可以得到:

$$\begin{split} a_{m+6} + a_{m+4} &= |a_{m+5}| = a_{m-1} \Rightarrow a_{m+6} = a_{m-1} - a_{m+4} = a_{m-1} + a_{m+1} = -a_m \\ a_{m+7} + a_{m+5} &= |a_{m+6}| = -a_m \Rightarrow a_{m+7} = -a_m - a_{m+5} = a_{m-1} - a_m \\ a_{m+8} + a_{m+6} &= |a_{m+7}| = a_{m-1} - a_m \Rightarrow a_{m+8} = a_{m-1} - a_m - a_{m+6} = a_{m-1} \\ a_{m+9} + a_{m+7} &= |a_{m+8}| = a_{m-1} \Rightarrow a_{m+9} = a_{m-1} - a_{m+7} = a_{m-1} - a_{m-1} + a_m = a_m \end{split}$$

所以设
$$T=9$$
,有

$$\begin{cases} a_m = a_{m+nT}, n \in N \\ a_{m-1} = a_{m-1+nT}, n \in N \end{cases}$$

然后由于

$$a_{m-2+nT} = |a_{m-1+nT}| - a_{m+nT} = |a_{m-1}| - a_m = a_{m-2}$$

以此类推,则有

$$a_k = a_{k+nT}, k \in N_+, k \le m$$

取合适的 m 使得 m 大于 T, 则数列 $\{a_n\}$ 为周期数列,其中一个周期为 9

例题 2.1.6: (南通 9 调 14 题)

已知
$$x, y$$
 满足 $(\sqrt{x^2+1}-x)(\sqrt{y^2+4}-y)=2$,则 4^x+2^{y-1} 的最小值为_____.

解 2.1.6. 套路题, 先换元:

$$\begin{cases} m = \sqrt{x^2 + 1} - x \Rightarrow x = \frac{1}{2m} - \frac{2}{m} \\ n = \sqrt{y^2 + 4} - y \Rightarrow y = \frac{2}{n} - \frac{n}{2} \end{cases}$$

再代入 $mn = 2 \Rightarrow n = \frac{2}{m}$:

$$y = \frac{2}{n} - \frac{n}{2} = m - \frac{1}{m} \Rightarrow y = -2x$$

所以:

$$4^x + 2^{y-1} = 4^x + \frac{1}{2 \times 4^x} \ge 2\sqrt{\frac{1}{2}} = \sqrt{2}$$

当 $x = \frac{1}{4}$ 时取得等号

例题 2.1.7: (深圳中学 2025 届二轮一阶)

 $\triangle ABC$ 中,若

$$\begin{cases}
\overrightarrow{AD} = \frac{\lambda}{\lambda + 1} \overrightarrow{AC} \\
\overrightarrow{AE} = \frac{\mu}{\mu + 1} \overrightarrow{AB}
\end{cases}$$

则连接 BD, CE 得到交点 Q, 任取 $\triangle ABC$ 所在平面内某一点 P, 那么有:

$$PQ^{2} = \frac{PA^{2} + \mu PB^{2} + \lambda PC^{2}}{1 + \lambda + \mu} - \frac{\lambda \mu BC^{2} + \lambda AC^{2} + \mu AB^{2}}{\left(1 + \lambda + \mu\right)^{2}}$$

解 2.1.7. 设

$$\begin{cases} \overrightarrow{AQ} = x\overrightarrow{AD} + (1-x)\overrightarrow{AB} = x\frac{\lambda}{1+\lambda}\overrightarrow{AC} + (1-x)\overrightarrow{AB} \\ \overrightarrow{AQ} = y\overrightarrow{AE} + (1-y)\overrightarrow{AC} = y\frac{\mu}{1+\mu}\overrightarrow{AB} + (1-y)\overrightarrow{AC} \end{cases} \Rightarrow \begin{cases} x = \frac{\lambda+1}{1+\lambda+\mu} \\ y = \frac{\mu+1}{1+\lambda+\mu} \end{cases}$$

化为形如 $x\overrightarrow{QA} + y\overrightarrow{QB} + z\overrightarrow{QC} = 0$ 的方程:

$$\Rightarrow \overrightarrow{AQ} = \frac{\lambda}{1 + \lambda + \mu} \overrightarrow{AC} + \frac{\mu}{1 + \lambda + \mu} \overrightarrow{AB}$$

$$= \frac{\lambda}{1 + \lambda + \mu} (\overrightarrow{AQ} + \overrightarrow{QC}) + \frac{\mu}{1 + \lambda + \mu} (\overrightarrow{AQ} + \overrightarrow{QB})$$

$$= \frac{\lambda + \mu}{1 + \lambda + \mu} \overrightarrow{AQ} + \frac{\lambda}{1 + \lambda + \mu} \overrightarrow{QC} + \frac{\mu}{1 + \lambda + \mu} \overrightarrow{QB}$$

$$\Rightarrow \overrightarrow{QA} + \lambda \overrightarrow{QC} + \mu \overrightarrow{QB} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{PA} - \overrightarrow{PQ} + \lambda (\overrightarrow{PC} - \overrightarrow{PQ}) + \mu (\overrightarrow{PB} - \overrightarrow{PQ}) = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{PA} + \lambda \overrightarrow{PC} + \mu \overrightarrow{PB} = (1 + \lambda + \mu) \overrightarrow{PQ}$$

平方得:

 $PA^2 + \lambda^2 PC^2 + \mu^2 PB^2 + 2\lambda \overrightarrow{PA} \cdot \overrightarrow{PC} + 2\mu \overrightarrow{PA} \cdot \overrightarrow{PB} + 2\lambda \mu \overrightarrow{PC} \cdot \overrightarrow{PB} = (1 + \lambda + \mu)^2 PQ^2$ 分别代入

$$\begin{cases} 2\lambda \overrightarrow{PA} \cdot \overrightarrow{PC} = \lambda \left(PA^2 + PC^2 - (\overrightarrow{PA} - \overrightarrow{PC}) \right)^2 = \lambda (PA^2 + PC^2 - AC^2) \\ 2\mu \overrightarrow{PA} \cdot \overrightarrow{PB} = \mu \left(PA^2 + PB^2 - (\overrightarrow{PA} - \overrightarrow{PB}) \right)^2 = \mu (PA^2 + PB^2 - AB^2) \\ 2\lambda \mu \overrightarrow{PC} \cdot \overrightarrow{PB} = \lambda \mu \left(PC^2 + PB^2 - (\overrightarrow{PC} - \overrightarrow{PB}) \right)^2 = \lambda \mu (PC^2 + PB^2 - BC^2) \end{cases}$$

变形即可得到:

$$PQ^{2} = \frac{PA^{2} + \mu PB^{2} + \lambda PC^{2}}{1 + \lambda + \mu} - \frac{\lambda \mu BC^{2} + \lambda AC^{2} + \mu AB^{2}}{\left(1 + \lambda + \mu\right)^{2}}$$

因此有结论:

结论 2.1.1: 结论

平面内给定 $\triangle ABC$, 若点 Q 满足

$$\overrightarrow{QA} + \lambda \overrightarrow{QC} + \mu \overrightarrow{QB} = \vec{0}$$

则任取 $\triangle ABC$ 所在平面内某一点 P,有

$$PQ^{2} = \frac{PA^{2} + \mu PB^{2} + \lambda PC^{2}}{1 + \lambda + \mu} - \frac{\lambda \mu BC^{2} + \lambda AC^{2} + \mu AB^{2}}{\left(1 + \lambda + \mu\right)^{2}}$$

例题 2.1.8: 奔驰定理

已知平面直角坐标系 xOy 中有一个 $\triangle ABC$,以及平面内任意一点 P,则有:

$$\begin{vmatrix} x_{B} & y_{B} & 1 \\ x_{C} & y_{C} & 1 \\ x_{P} & y_{P} & 1 \end{vmatrix} \overrightarrow{PA} + \begin{vmatrix} x_{C} & y_{C} & 1 \\ x_{A} & y_{A} & 1 \\ x_{P} & y_{P} & 1 \end{vmatrix} \overrightarrow{PB} + \begin{vmatrix} x_{A} & y_{A} & 1 \\ x_{B} & y_{B} & 1 \\ x_{P} & y_{P} & 1 \end{vmatrix} \overrightarrow{PC} = \vec{0}$$

这等价于

$$S_{\triangle PBC}\overrightarrow{PA} + S_{\triangle PAC}\overrightarrow{PB} + S_{\triangle PAB}\overrightarrow{PC} = \vec{0}$$

这里的三角形面积是有向面积,我们必须在计算三角形面积时按照字母顺序看一下方向(顺时针或逆时针),然后将与其他两个方向不同的三角形的对应面积取负值。

解 2.1.8.

例题 2.1.9: 外心向量关系

已知平面直角坐标系 xOy 中有一个 $\triangle ABC$,则其外心满足关系式:

解 2.1.9.

例题 2.1.10: 三角形外心坐标

已知平面直角坐标系 xOy 中有一个 $\triangle ABC$,则其外心的坐标为

$$\begin{pmatrix}
|OA^{2} & y_{A} & 1| & |x_{A} & OA^{2} & 1| \\
|OB^{2} & y_{B} & 1| & |x_{B} & OB^{2} & 1| \\
|OC^{2} & y_{C} & 1| & |x_{C} & OC^{2} & 1| \\
|x_{A} & y_{A} & 1| & |x_{C} & y_{C} & 1| \\
|x_{B} & y_{B} & 1| & |x_{C} & y_{C} & 1|
\end{pmatrix}$$

解 2.1.10.

例题 2.1.11: 三角形垂心坐标

已知平面直角坐标系 xOy 中有一个 $\triangle ABC$,则其垂心的坐标为

$$\left(\begin{array}{c|cccc} x_B x_C + y_B y_C & y_A & 1 \\ x_A x_C + y_A y_C & y_B & 1 \\ x_A x_B + y_A y_B & y_C & 1 \\ \hline & & x_B & x_A x_C + y_A y_C & 1 \\ \hline & & x_B & x_A x_C + y_A y_C & 1 \\ \hline & & x_B & x_A x_C + y_A y_C & 1 \\ \hline & & x_C & x_A x_B + y_A y_B & 1 \\ \hline & & & & x_B & x_B & x_B & 1 \\ \hline & & & & x_B & x_B & x_B & 1 \\ \hline & & & & x_B & x_B & x_B & 1 \\ \hline & & & & & x_B & x_B$$

解 2.1.11.

例题 2.1.12: 三角形的内心坐标

已知平面直角坐标系 xOy 中有一个 $\triangle ABC$,则其内心的坐标为

$$\left(\frac{ax_A+bx_B+cx_C}{a+b+c},\frac{ay_A+by_B+cy_C}{a+b+c}\right)$$

解 2.1.12.

例题 2.1.13: 容斥原理练习

某学校举办比赛,有20个参赛名额,现在分给4个不同的班,保证至少有一个班的名额为4个,且每一个班都有名额,则共有______种分法。

解 2.1.13. 设四个班的名额为 $x_1,x_2,x_3,x_4\in N_+$,则分法数就是集合 $A_i=\{(x_1,x_2,x_3,x_4)|x_i=4,x_1+x_2+x_3+x_4=20\}$ 的元素个数,又因为

$$\begin{split} |A_1| &= \{(x_1,x_3,x_4) \mid x_2 + x_3 + x_4 = 16, x_2, x_3, x_4 > 0\} = C_{15}^2 \\ |A_1 \cap A_2| &= \{(x_3,x_4) \mid x_3 + x_4 = 12, x_3, x_4 > 0\} = C_{11}^1 \\ |A_1 \cap A_2 \cap A_3| &= 1 \\ |A_1 \cup A_2 \cup A_3 \cup A_4| &= C_4^1 |A_1| - C_4^2 |A_1 \cap A_2| + C_4^3 |A_1 \cap A_2 \cap A_3| \\ &= C_4^1 C_{15}^2 - C_4^2 + C_4^3 C_{11}^1 = 358 \end{split}$$

例题 2.1.14: 求和

计算
$$\sum_{i=0}^{n-1} (-1)^i C_{n-1}^i (i+1)^k$$
,其中 $k < n-1, k \in N_+$

解 2.1.14. 定义函数并对其求 k 阶导数:

$$\begin{split} f(x) &= \sum_{i=0}^{n-1} (-1)^i C_{n-1}^i x^{i+1} = x \sum_{i=0}^{n-1} (-x)^i C_{n-1}^i \\ &= x (1-x)^{n-1} = (x-1+1)(1-x)^{n-1} = (1-x)^{n-1} - (1-x)^n \\ &\Rightarrow f(1) = \sum_{i=0}^{n-1} (-1)^i C_{n-1}^i = 0 \\ f^{(k)}(x) &= \sum_{i=0}^{n-1} (-1)^i C_{n-1}^i A_{i+1}^k x^{i+1-k} \Rightarrow f^{(k)}(1) = \sum_{i=0}^{n-1} (-1)^i C_{n-1}^i A_{i+1}^k \end{split}$$

现已很接近原式,问题在于沟通 A_{i+1}^k 和 $(i+1)^k$,我们假想这样一个情境:有 k 个不同的球等待放进 i+1 个不同的盒子里面,放置过程中允许空盒的存在,所以放法是 $(i+1)^k$,然后我们换一种方式,考虑分为恰好有 0,1,2,3,4,...,k 个非空盒子的情况,那么求和就是

$$\sum_{r=0}^k S(k,r)r!C_{i+1}^r = \sum_{r=0}^k S(k,r)A_{i+1}^r$$

其中 S(k,r) 表示 k 个有标号的球放到 r 个同样的盒子里面的方法数, C_{i+1}^r 表示从 i+1 个不同的盒子无序地挑出 r 个盒子来放球,再对其进行全排列使得挑出来的 r 个盒子有编号,则:

$$(i+1)^k = \sum_{r=0}^k S(k,r) A_{i+1}^r$$

那么代入到 $\sum_{i=0}^{n-1} (-1)^i C_{n-1}^i (i+1)^k$ 中就有:

$$\begin{split} \sum_{i=0}^{n-1} (-1)^i C_{n-1}^i (i+1)^k &= \sum_{i=0}^{n-1} \left((-1)^i C_{n-1}^i \bigg(\sum_{r=0}^k S(k,r) A_{i+1}^r \bigg) \right) \\ &= \sum_{i=0}^{n-1} \sum_{r=0}^k S(k,r) A_{i+1}^r (-1)^i C_{n-1}^i \\ &= \sum_{r=0}^k \sum_{i=0}^{n-1} S(k,r) A_{i+1}^r (-1)^i C_{n-1}^i = \sum_{r=0}^k S(k,r) f^{(r)}(1) \end{split}$$

对 $(1-x)^{n-1}-(1-x)^n$ 求导易得 f(x) 只有第 n-1 和 n 阶导数在 x=1 处的值不是 0,即:

$$\sum_{i=0}^{n-1} (-1)^i C_{n-1}^i (i+1)^k = 0$$

例题 2.1.15: 证明

$$(1) \quad \frac{\sin B - \cos A}{\sin A + \cos B} - \frac{\sin A + \cos B}{\sin B - \cos A} = 2\tan(A+B)$$

$$(2) \quad \frac{\sin B - \cos A}{\sin A - \cos B} - \frac{\sin A - \cos B}{\sin B - \cos A} = \frac{\cos B + \sin A}{\cos A + \sin B} - \frac{\cos A + \sin B}{\cos B + \sin A} = 2\tan(A - B)$$

$$(3) \quad \frac{\cos A - \cos B}{\sin A - \sin B} - \frac{\sin A - \sin B}{\cos A - \cos B} = 2\cot(A+B)$$

(4)
$$\frac{\sin A - \sin B}{\sin A + \sin B} - \frac{\cos A - \cos B}{\cos A - \cos B} = \frac{\cos A + \cos B}{\sin A - \sin B} - \frac{\sin A - \sin B}{\cos A + \cos B} = 2\cot(A - B)$$

解 2.1.15. 第一种方法就是通分,拿一个式子举例

$$\begin{split} &\frac{\sin B - \cos A}{\sin A - \cos B} - \frac{\sin A - \cos B}{\sin B - \cos A} \\ &= \frac{(\sin B - \cos A)^2 - (\sin A - \cos B)^2}{(\sin B - \cos A) (\sin A - \cos B)} \\ &= \frac{\sin^2 B - 2\sin B\cos A + \cos^2 A - \sin^2 A + 2\sin A\cos B - \cos^2 B}{\sin B\sin A - \sin A\cos A - \sin B\cos B + \cos B\cos A} \\ &= \frac{\cos 2A - \cos 2B + 2 (\sin A\cos B - \sin B\cos A)}{\cos (A - B) - \frac{1}{2} (\sin 2A + \sin 2B)} \\ &= \frac{-2\sin (A + B)\sin (A - B) + 2\sin (A - B)}{\cos (A - B) - \sin (A + B)\cos (A - B)} = \frac{2[1 - \sin (A + B)]\sin (A - B)}{[1 - \sin (A + B)]\cos (A - B)} \\ &= \frac{2\sin (A - B)}{\cos (A - B)} = 2\tan (A - B) \,. \end{split}$$

再写一个:

$$\begin{split} &\frac{\cos A - \cos B}{\sin A - \sin B} - \frac{\sin A - \sin B}{\cos A - \cos B} \\ &= \frac{(\cos A - \cos B)^2 - (\sin A - \sin B)^2}{(\cos A - \cos B)(\sin A - \sin B)} \\ &= \frac{\cos^2 A - \cos A \cos B + \cos^2 B - \sin^2 A + 2\sin A \sin B - \sin^2 B}{\sin A \cos A - \sin A \cos B - \sin B \cos A + \sin B \cos B} \\ &= \frac{(\cos^2 A - \sin^2 A) + (\cos^2 B - \sin^2 B) - 2\cos A \cos B + 2\sin A \sin B}{\sin A \cos A + \sin B \cos B - (\sin A \cos B + \sin B \cos A)} \\ &= \frac{\cos 2A + \cos 2B - 2\cos(A + B)}{\sin (A + B) \cos(A + B)} = \frac{2\cos(A + B)\cos(A - B) - 2\cos(A + B)}{\sin(A + B)\cos(A - B) - \sin(A + B)} \\ &= \frac{2\cos(A + B)[\cos(A - B) - 1]}{\sin(A + B)[\cos(A - B) - 1]} = \frac{2\cos(A + B)}{\sin(A + B)} = 2\cot(A + B). \end{split}$$

第二种方法就是按部就班地和差化积,拿一个式子举例

$$\begin{split} &\frac{\sin B - \cos A}{\sin A - \cos B} - \frac{\sin A - \cos B}{\sin B - \cos A} \\ &= \frac{\cos \left(\frac{\pi}{2} - B\right) - \cos A}{\sin A - \sin \left(\frac{\pi}{2} - B\right)} - \frac{\sin A - \sin \left(\frac{\pi}{2} - B\right)}{\cos \left(\frac{\pi}{2} - B\right) - \cos A} \\ &= \frac{-2 \sin \left(\frac{\pi}{4} + \frac{A - B}{2}\right) \sin \left(\frac{\pi}{4} - \frac{A + B}{2}\right)}{2 \cos \left(\frac{\pi}{4} + \frac{A - B}{2}\right) \sin \left(\frac{A + B}{2} - \frac{\pi}{4}\right)} - \frac{2 \cos \left(\frac{\pi}{4} + \frac{A - B}{2}\right) \sin \left(\frac{A + B}{2} - \frac{\pi}{4}\right)}{-2 \sin \left(\frac{\pi}{4} + \frac{A - B}{2}\right) \sin \left(\frac{\pi}{4} - \frac{A + B}{2}\right)} \\ &= \frac{\sin \left(\frac{\pi}{4} + \frac{A - B}{2}\right)}{\cos \left(\frac{\pi}{4} + \frac{A - B}{2}\right)} - \frac{\cos \left(\frac{\pi}{4} + \frac{A - B}{2}\right)}{\sin \left(\frac{\pi}{4} + \frac{A - B}{2}\right)} = \frac{\sin^2 \left(\frac{\pi}{4} + \frac{A - B}{2}\right) - \cos^2 \left(\frac{\pi}{4} + \frac{A - B}{2}\right)}{\sin \left(\frac{\pi}{4} + \frac{A - B}{2}\right)} \\ &= -2 \frac{\cos \left[2 \cdot \left(\frac{\pi}{4} + \frac{A - B}{2}\right)\right]}{\sin \left[2 \cdot \left(\frac{\pi}{4} + \frac{A - B}{2}\right)\right]} = -2 \frac{\cos \left(\frac{\pi}{2} + A - B\right)}{\sin \left(\frac{\pi}{2} + A - B\right)} \\ &= -2 \frac{-\sin \left(A - B\right)}{\cos \left(A - B\right)} = 2 \tan \left(A - B\right). \end{split}$$

再写一个:

$$\begin{split} &\frac{\cos A - \cos B}{\sin A - \sin B} - \frac{\sin A - \sin B}{\cos A - \cos B} \\ &= \frac{\sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)}{\cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)} - \frac{\cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)}{\sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)} \\ &= \frac{\sin \left(\frac{A+B}{2}\right)}{\cos \left(\frac{A+B}{2}\right)} - \frac{\cos \left(\frac{A+B}{2}\right)}{\sin \left(\frac{A+B}{2}\right)} = \frac{\sin^2 \left(\frac{A+B}{2}\right) - \cos^2 \left(\frac{A+B}{2}\right)}{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A+B}{2}\right)} \\ &= -\frac{\cos \left[2 \cdot \frac{A+B}{2}\right]}{\frac{1}{2} \sin \left[2 \cdot \frac{A+B}{2}\right]} = -\frac{\cos (A+B)}{\frac{1}{2} \sin (A+B)} \\ &= -2\frac{\cos (A+B)}{\sin (A+B)} = 2 \cot (A+B). \end{split}$$