UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO ELECTRÓNICA

Sistemas de Control

Convertidores DC/DC - Análisis topológico

Aspectos a analizar:

- · Circuitos resultantes en condiciones ON y OFF.
- Análisis de formas de onda.
- Relación de gran señal.
- Cálculo de inductancia crítica, L_C .
- Cálculo de ripple de tensión sobre el capacitor, Δv_{Cpp} .

Condiciones de operación:

- Estado estacionario (V_C :cte, I_L :cte).
- Modo de conducción continua, $i_L > 0 \ \forall t$.
- Período constante.
- Ripple de tensión reducido en el capacitor, $\Delta v_{Cpp} \ll V_C$.

 v_C : valor instantáneo (continua + ripple)

 V_C : valor de continua

 Δv_{Cpp} : amplitud pico a pico del ripple

 $\tilde{v}_{\it C}=0$: análisis estático

Estado ON

Estado OFF

Relación de conversión de gran señal

Estado estacionario: I_L :cte $\Longrightarrow V_L = 0$

$$(V_{IN} - V_O) \cdot (D \cdot T_S) = (V_O) \cdot (1 - D) \cdot T_S$$

$$\frac{V_O}{V_{IN}} = D$$

Convertidores conmutados DC/DC

Convertidor Buck

Estado ON

Estado OFF

Inductancia crítica

Premisa: CCM $\Rightarrow i_L > 0 \ \forall t$

Condición crítica: $I_L = \frac{\Delta i_L}{2}$

Cálculo de I_L : $I_L = I_O = \frac{V_O}{R_O}$

Cálculo de $\frac{\Delta i_L}{2}$: $\Delta i_L^- = \frac{V_O \cdot (1-D) \cdot T_S}{L}$

$$\frac{V_O}{R_O} = \frac{V_O(1-D) \cdot T_S}{2 \cdot L_C}$$

$$L_C = \frac{R_O(1-D) \cdot T_S}{2}$$

Convertidor Buck

Estado ON

Estado OFF

Ripple de tensión

Cálculo de
$$\Delta v_{Opp}$$
: $\Delta V = \frac{\Delta Q}{C}$

Cálculo de
$$\Delta Q : \Delta Q = \frac{1}{2} \cdot \frac{\Delta i_L}{2} \cdot \frac{T_S}{2}$$

Cálculo de
$$\Delta i_L$$
: $\Delta i_L = \frac{V_O \cdot (1-D) \cdot T_S}{L}$

$$\Delta v_{Opp} = \frac{V_O \cdot (1 - D) \cdot T_S^2}{8 \cdot C \cdot L}$$

Convertidores conmutados DC/DC

Inductancia crítica

Premisa: CCM $\Rightarrow i_L > 0 \ \forall t$

Condición crítica: $I_L = \frac{\Delta i_L}{2}$

Cálculo de I_L : $I_L = I_{IN}$

$$P_{IN} = P_O \Rightarrow V_{IN} \cdot I_{IN} = V_O \cdot I_O$$

$$\square \qquad I_{IN} = \frac{V_O}{V_{IN}} \cdot I_O = \frac{V_O^2}{V_{IN} \cdot R_O} = \frac{V_O}{(1 - D) \cdot R_O}$$

Cálculo de
$$\frac{\Delta i_L}{2}$$
: $\Delta i_L^+ = \frac{V_{IN} \cdot D \cdot T_S}{L} = \frac{V_O \cdot (1-D) \cdot D \cdot T_S}{L}$

$$\frac{V_O}{(1-D)\cdot R_O} = \frac{V_O\cdot (1-D)\cdot D\cdot T_S}{2\cdot L_C}$$

$$L_C = \frac{R_O(1-D)^2 \cdot D \cdot T_S}{2}$$

Convertidores conmutados DC/DC

Ripple de tensión

Cálculo de
$$\Delta v_{Opp}$$
: $\Delta V = \frac{\Delta Q}{C}$

Cálculo de ΔQ ¿¿??

$$\Delta Q = \frac{\Delta i_L \cdot (1 - D) \cdot T_S}{2} \cdot \left(\frac{i_{Dmx} - I_D}{\Delta i_L}\right)^2$$

Cálculo de
$$i_{Dmx}$$
: $i_{Dmx}=i_{Lmx}=I_{IN}+rac{\Delta i_L}{2}$

$$I_{IN} = \frac{V_O}{(1-D)\cdot R_O} \text{y } \Delta i_L^+ = \frac{V_O\cdot (1-D)\cdot D\cdot T_S}{L}$$

$$i_{Dmx} - I_D = \frac{D \cdot V_O}{(1 - D) \cdot R_O} + \frac{\Delta i_L}{2}$$

$$\left[\Delta v_{Opp} = \frac{\cdot (1-D) \cdot T_S}{2 \cdot C \cdot \Delta i_L} \cdot \left(\frac{D \cdot V_O}{(1-D) \cdot R_O} + \frac{\Delta i_L}{2}\right)^2\right]$$

Convertidores conmutados DC/DC

Estado OFF

 $R_o \geqslant$

En estado ON se comporta como un Boost

En estado OFF se comporta como un Buck con todas las tensiones y corrientes cambiadas de signo!

Convertidores conmutados DC/DC

SISTEMAS DE CONTROL

Convertidor Flyback Estado ON Estado OFF ON **OFF** Relación de conversión de gran señal $(1-D)\cdot T_S$ $D \cdot T_S$ $|v_L|$ Estado estacionario: I_L :cte $ightharpoonup V_L = 0$ $\downarrow V_O$ $\overrightarrow{i_L} = \frac{1}{L} \int v_L dt$ $(V_{IN}) \cdot (D \cdot T_S) = (V_O) \cdot (1 - D) \cdot T_S$ V_{IN} i_L Δi_L I_L Δi_L^+ i_D $I_D = I_O$ $\Delta i_L \mathbf{f}$

 $i_C = i_D - I_O$

 $\overline{v_C} = \frac{1}{C} \int i_C dt$

 Δv_{Cpp} t

-Vin

D

 Δi_L

 I_D

 $i_C \uparrow$

 v_{C}

 V_C

Inductancia crítica

Premisa: CCM $\Rightarrow i_L > 0 \ \forall t$

Condición crítica: $I_L = \frac{\Delta i_L}{2}$

Cálculo de I_L : $(1-D) \cdot I_L = I_D = I_O$

Cálculo de
$$\frac{\Delta i_L}{2}$$
: $\Delta i_L^+ = \frac{V_{IN} \cdot D \cdot T_S}{L} = \frac{V_O \cdot (1-D) \cdot T_S}{L}$

$$\frac{V_O}{(1-D)\cdot R_O} = \frac{V_O\cdot (1-D)\cdot T_S}{2\cdot L_C}$$

$$L_C = \frac{R_O(1-D)^2 \cdot T_S}{2}$$

Convertidores conmutados DC/DC

Ripple de tensión

Cálculo de
$$\Delta v_{Opp}$$
: $\Delta V = \frac{\Delta Q}{C}$

Cálculo de ΔQ ¿¿??

$$\Delta Q = \frac{\Delta i_L \cdot (1 - D) \cdot T_S}{2} \cdot \left(\frac{i_{Dmx} - I_D}{\Delta i_L}\right)^2$$

Cálculo de
$$i_{Dmx}$$
: $i_{Dmx} = i_{Lmx} = I_L + \frac{\Delta i_L}{2}$

$$I_L = \frac{V_O}{(1-D)\cdot R_O} \text{ y } \Delta i_L^+ = \frac{V_O \cdot (1-D) \cdot T_S}{L}$$

$$i_{Dmx} - I_D = \frac{D \cdot V_O}{(1 - D) \cdot R_O} + \frac{\Delta i_L}{2}$$

$$\left[\Delta v_{Opp} = \frac{\cdot (1-D) \cdot T_S}{2 \cdot C \cdot \Delta i_L} \cdot \left(\frac{D \cdot V_O}{(1-D) \cdot R_O} + \frac{\Delta i_L}{2}\right)^2\right]$$

Convertidores conmutados DC/DC

Convertidores conmutados DC/DC

SISTEMAS DE CONTROL

Convertidor Buck

Convertidor Boost

Convertidores conmutados DC/DC

Convertidor Boost: Casos de ripple de tensión de salida

Caso 1

Caso 2

Convertidores conmutados DC/DC

SISTEMAS DE CONTROL

 $i_{\mathcal{C}}$

 $v_{\it C}$

Convertidor Flyback

Corriente de entrada

Corriente en la entrada del filtro

