Plant Objects Detection Considering Environmental Noise

s1260085 Kakeru Abe, supervised by Prof. Keita Nakamura

Background

- In disaster sites or plants, there are many dangerous places. (e.g., debris, radiation)
 - High demand for automatic inspection by robots.
 - > It needs automatic valve or lever operation.

Figure 1: Inclined course in World Robot Summit

Research purpose

- To automate this...
 - Automatic object detection is needed.

Previous study ... Detection with color-based segmentation [S.Keito, 2021]

>Affected environmental noise (e.g., light reflection)

Research purpose

On the other hand,

Object detection with deep learning is effective to noises. [Y.Funayama et al, 2020]

- ■My goal is ...
 - Implement object detection effective to environmental noise with deep learning

Proposed method

- There are no learning data of valve or lever.
 - > We create the learning data.
- 1. Take image of object.
 - Take for each angle.

$$> 0^{\circ}, \pm 30^{\circ}, \pm 60^{\circ}, \pm 90^{\circ}$$

Figure 2: How to measure degree of object

- 2. Argument the images with adding noise.
 - Add noise and change the scale.
 - OpenCV is used for argumentation.

Figure 3: Example of argumentation

Proposed method

- 3. Classify and learn to DNN
 - Darknet / YOLOv3 is used.
 - Total images is 65,000 and learning time is 9.5 hours.

Table 1: Classification of YOLO learning

valve / lever degree	class
[-90, -80)	valve90 / lever90
[-80, -50)	valve60 / lever60
[-50, -20)	valve30 / lever30
[-20, 20)	valve_0 / lever_0
[20, 50)	valve_30 / lever_30
[50, 80)	valve_60 / lever_60
[80, 90]	valve_90 / lever_90

Figure 4: Relation between accuracy and loss

Verification of experiment

Prepare other background's image and collect the result of detection.

Figure 5: Example of images used in verification

Verification of experiment

- Evaluations
- 1. Detect 30 image per each angles.

- 2. Collect the result.

 If nothing is detected, count it as "None".
- 3. Summarize to tables.

Figure 6: Flow of verification

Table 2.1: Detection result of lever

Expected degree
Nearest degree
Opposite degree

lever		Detection result									
iev	ег	90 60 30 0 -30 -60 -90 NONE									
	90	15	0	0	0	0	0	0	15		
	60	28	0	0	0	0	0	0	2		
	30	0	0	0	3	27	0	0	0		
Input	0	0	0	0	30	0	0	0	0		
	-30	0	0	0	0	25	0	0	5		
	-60	0	0	0	0	0	1	0	29		
	-90	11	0	0	0	11	0	4	4		

Nearest degree

Opposite degree

Table 2.2: Detection result of valve

valve		Detection result									
va	ive	90 60 30 0 -30 -60 -90 NON							NONE		
	90	29	0	0	0	0	0	1	0		
	60	0	30	0	0	0	0	0	0		
	30	0	0	0	0	30	0	0	0		
Input	0	0	0	0	30	0	0	0	0		
	-30	0	0	0	0	30	0	0	0		
	-60	8	2	0	0	0	0	0	20		
	-90	4	0	0	0	0	0	15	11		

Discussion

Results show...

High accuracy almost whole degree.

- It could not discriminate the orientation of right or left
 - ► lever or valve = 30°, lever = -90°
- There are a lot of None
 - ▶lever = 90°, -60°, valve = -60°, -90°

- Only YOLO, it could not determine the orientation.
- Previous study... Place QR code to determine the orientation_[G.Pitteri et al, 2020]
 - There is no QR code in real situation.

- Combine YOLO and ResNet detection.
 - ➤ Object detection ... YOLO
 - ➤ Orientation detection ... ResNet

Classify images used in previous experiment and learning YOLO and finetuned ResNet50 pretrained ImageNet.

Table 3.1: Classification of YOLO learning

valve / le	ver degree	class				
[0, 20)	[-20, 0)	valve_0 / lever_0				
[20, 50)	[-50, -20)	valve_30 / lever_30				
[50, 80)	[-80, -50)	valve_60 / lever_60				
[80, 90]	[-90, -80]	valve_90 / lever_90				

Table 3.2: Classification of ResNet learning for levers

lever degree	class
[-90, 0]	left
[0, 90]	right

Table 3.3: Classification of ResNet learning for valves

valve degree	class
[-90, 0]	left
[0, 90]	right

- ■The total image number is 14,000.
- ■The learning time is 4.1 hours for YOLO

Figure 7: Relation between accuracy and loss in Yolo

- ■The total image number is 6,000 per training for ResNet
- ■The learning time is 30 minutes per training.

Figure 8.1: Relation between accuracy or loss of ResNet in lever training

Figure 8.2: Relation between accuracy or loss of ResNet in valve training

Evaluations

- Evaluations
- 1. Detect 30 image per each angles.

- 2. Collect the result.

 If nothing is detected, count it as "None".
- 3. Summarize to tables.

Figure 9: Flow of verification

Table 4.1: Detection result of lever

Expected degree
Nearest degree
Opposite degree

lovov			YOI	ResNet detection					
lever			90	60	30	0	NONE	left (-)	right (+)
		90	30	0	0	0	0	4	26
	right	60	0	30	0	0	0	0	30
		30	0	0	30	0	0	0	30
Input		0	0	0	6	24	0	-	-
		-30	0	0	30	0	0	28	2
	left	-60	0	30	0	0	0	30	0
		-90	0	0	15	15	0	30	0

Table 4.2: Detection result of valve

Expected degree
Nearest degree
Opposite degree

walwa			YOI	ResNet detection						
valve			90	60	30	0	NONE		left (-)	right (+)
		90	30	0	0	0	0		5	25
Input	right	60	0	30	0	0	0		0	30
		30	0	0	30	0	0		24	6
		0	0	0	0	30	0		-	-
		-30	0	0	30	0	0		11	19
	left	-60	28	0	0	0	2		26	4
		-90	30	0	0	0	0		15	15

Additional discussion

- Through experiment...
 - The number of None decrease.
 - Accuracy of detection increase.
 - > High accuracy of orientation detection.

- >Some detection result is not sufficient.
 - Object: lever = -90°, valve = -60°
 - Orientation: valve = 30°, all negative degree

right: 99.79798%

Figure 10: Example of detection result

Conclusion and future work

- We attempted to implement object detection using two deep learning model.
 - Realize high accuracy of detection of object and orientation.
 - There is still room to improve detections.
- In the future...
 - >Improve detections
 - Implement in our disaster robot Spider2020