Network Security

Homework 2

CHANG LIU

chang.liu@jhu.edu

Feb. 29, 2012

1. 1 5 9 13 17 21 25 29 0000 0001 0010 0011 0100 0101 0110 0111 33 37 41 45 49 53 57 61 1000 1001 1010 1011 1100 1101 1110 1111 (a) Derive the first round key K1.

		F	C-	1			
			Lef				
57	49	41	33	1111000			
1	58	50	42	0110011 0010101			
10	2	59	51	010000			
19	11	3	60	36	0100000		
Г		F	Righ				
63	55	47	39	31	23	15	1010101
7	62	54	46	38	30	22	0110011
14	6	61	53	45	37	29	0011110
21	13	5	28	20	12	4	0000000

Thus,

L = 1111 0000 1100 1100 1010 1010 0000

R = 1010 1010 1100 1100 1111 0000 0000

Rotations

Round	Number of
number	left rotations
1	1
2	1
3	2
4	2
5	2
6	2
7	2
8	2
9	1
10	2
11	2
12	2
13	2
14	2
15	2
16	1

- \Rightarrow C₁(L) = 1110 0001 1001 1001 0101 0100 0001
- \Rightarrow D₁(R) = 0101 0101 1001 1001 1110 0000 0001

→

			PC	2-2				0000 1011
14	17	11	24	1	5	3	28	0000 1011
15	6	21	10	23	19	12	4	0110 0111
26	8	16	7	27	20	13	2	0110 0111
41	52	31	37	47	55	30	40	1001 1011
51	45	33	48	44	49	39	56	0100 1001
34	53	46	42	50	36	29	32	1010 0101

Thus,

K1 = 0000 1011 0000 0010 0110 0111 1001 1011 0100 1001 1010 0101

(b) Derive LO and RO.

			IF	0				
58	50	42	34	26	18	10	2	1100 1100
60	52	11		28	-	12	1	0000 0000
00	32	44	_	-	_	12	4	1100 1100
62	54	46	38	30	22	14	6	1111 1111
64	56	48	40	32	24	16	8	
57	49	41	33	25	17	9	1	1111 0000
59	51	43	35	27	19	11	3	1010 1010
61	53	45	37	29	21	13	5	1111 0000
63	55	47	39	31	23	15	7	1010 1010

- ⇒ L0 = 1100 1100 0000 0000 1100 1100 1111 1111
- ⇒ R0 = 1111 0000 1010 1010 1111 0000 1010 1010

Network Security

(c) Expand R0 to get E[R0], where E[.] is the expansion function of Table 3.2 of your textbook.

		E			
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

 $E[R_0] = 0111110\ 100001\ 010101\ 010101$ $011110\ 100001\ 010101\ 010101$

(d) Calculate $A = E[R0] \oplus K1$.

 $\mathsf{A} = \mathsf{E}[\mathsf{R}_0] \oplus \mathsf{K}_1 =$

0111 1010 0001 0101 0101 0101

0111 1010 0001 0101 0101 0101

 \oplus

0000 1011 0000 0010 0110 0111 1001 1011 0100 1001 1010 0101

=

 $0111\ 0001\ 0001\ 0111\ 0011\ 0010$

1110 0001 0101 1100 1111 0000

Thus

A = 011100 010001 011100 110010 111000 010101 110011 110000

(e) Group the 48 bit results of (d) into sets of 6 bits and evaluate the corresponding S-box substitutions.

A = 011100 010001 011100 110010 111000 010101 110011 110000

								S ₁								
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0уууу1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
1yyyy0	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	(
1yyyy1	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

 $S_1(011100) = 0000$

								S2								
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
0yyyy1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
1yyyy0	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
1yyyy1	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

 $S_2(010001) = 1100$

								S ₃								
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
0уууу1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
1уууу0	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1уууу1	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

 $S_3(011100) = 0010$

								S ₄								
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
0yyyy1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
1yyyy0	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
1yyyy1	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

 $S_4(110010) = 0001$

								S ₅								
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
0уууу1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
1уууу0	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
1уууу1	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

 $S_5(111000) = 0110$

								S ₆								
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
0yyyy1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
1уууу0	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
1yyyy1	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

 $S_6(010101) = 1101$

								S ₇								
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
0yyyy1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1yyyy0	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
1yyyy1	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

 $S_7(110011) = 0101$

S ₈																
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
0уууу1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
1yyyy0	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
1уууу1	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

 $S_8(110000) = 0000$

(f) Concatenate the results of (e) to get a 32 bit result, B.

(g) Apply the permutation to get P(B).

P												
16	7	20	21	29	12	28	17					
1	15	23	26	5	18	31	10					
2	8	24	14	32	27	3	9					
19	13	30	6	22	11	4	25					

- ⇒ 10010010
- ⇒ 00011100
- ⇒ 00100000
- □ 10011100

P(B) = 1001 0010 0001 1100 0010 0000 1001 1100

(h) Calculate R1 = $P(B) \oplus L0$.

 $R_1 = P(B) \oplus L_0$

_>

1001 0010 0001 1100 0010 0000 1001 1100

Œ.

 $1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1111$

 $R_1 = 0101 \ 1110 \ 0001 \ 1100 \ 1110 \ 1100 \ 0110 \ 0011$

(i) Write down the ciphertext.

2. (a) Using RSA, choose p=3, and q=11, and encode the word "dog" by encrypting each letter separately. Apply the decryption algorithm to the encrypted version to recover the original plaintext message.

N = pq = 33
(p-1)(q-1) = 2x10 = 20
e = 3

$$(d \times e) \mod((p-1)(q-1)) = 1$$
d: $\Rightarrow (d \times 3) \mod 20 = 1$
 $\Rightarrow d = 7$

Encrypting:

d:
$$c = m^e \pmod{N} = 4^3 \mod 33 = 31 = e$$

o:
$$c = m^e \pmod{N} = 15^3 \mod 33 = 9 = i$$

g:
$$c = m^e \pmod{N} = 7^3 \mod{33} = 13 = m$$

The cypertext is "eim"

Decryption:

m1:
$$m = c^d \pmod{N} = 31^7 \mod 33 = 4 = c$$

m2:
$$m = c^d \pmod{N} = 9^7 \mod{33} = 15 = o$$

m3:
$$m = c^d \pmod{N} = 13^7 \mod 33 = 7 = g$$

Thus, we get the plaintext "dog".

(b) Repeat part (a) but now encrypt "dog" as one message.

Encryption:

v:
$$c = m^e \pmod{N} = 10747^3 \mod{33} = 22 = v$$

Decryption:

v:
$$m = c^d \pmod{N} = 22^7 \mod 33 = 22 = v$$

3. Consider RSA with p=5 and q=11.

(a) what are n and z.

$$n = pq = 55$$

 $z = (p-1)(q-1) = 4x10 = 40$

(b) Let e be 3, why is this an acceptable choice for e.

e=3 is acceptable because we need to choose an integer e such that 1 < e < z and e, z are coprime.

When e = 3, it fulfill all the above requirements, thus e = 3 is acceptable.

(c) Find d such that de=1(mod z) and d<160.

$$(d \times e) \mod ((p-1)(q-1)) \equiv 1$$

d: $\Rightarrow (d \times 3) \mod 40 \equiv 1$
 $\Rightarrow d = 27$

(d) Encrypt the message m=8 using the key (n,e). Let c denote the corresponding ciphertext. Show all the work.

Encrypting:

8:
$$c = m^e \pmod{N} = 8^3 \mod 55 = 17$$

Thus the ciphertext is 17.