

WEBENCH® Design Report

VinMin = 30.0V VinMax = 30.0V Vout = 24.0V Iout = 0.2A Device = TPS54060ADGQR Topology = Buck Created = 11/21/16 1:30:56 AM BOM Cost = \$2.00 BOM Count = 15 Total Pd = 0.18W

Design: 4232493/33 TPS54060ADGQR TPS54060ADGQR 30.0V-30.0V to 24.00V @ 0.2A

My Comments
No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cboot	MuRata	GRM155R61A104KA01D Series= X5R	Cap= 100.0 nF VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
2.	Ccomp	Yageo America	CC0805KRX7R9BB272 Series= X7R	Cap= 2.7 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
3.	Ccomp2	MuRata	GQM2195C2AR50CB01D Series= C0G/NP0	Cap= 500.0 fF VDC= 100.0 V IRMS= 0.0 A	1	\$0.15	0805 7 mm ²
4.	Cin	MuRata	GRM31CR71H225KA88L Series= X7R	Cap= 2.2 uF ESR= 4.448 mOhm VDC= 50.0 V IRMS= 2.2252 A	1	\$0.05	1206_190 11 mm ²
5.	Cout	Nichicon	UUD1V470MCL1GS Series= uD	Cap= 47.0 uF ESR= 440.0 mOhm VDC= 35.0 V IRMS= 230.0 mA	1	\$0.11	SM_RADIAL_6.3AMM 80 mm ²
6.	Css	Yageo America	CC0805KRX7R9BB682 Series= X7R	Cap= 6.8 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
7.	D1	Diodes Inc.	B160-13-F	VF@Io= 700.0 mV VRRM= 60.0 V	1	\$0.05	SMA 37 mm ²
8.	L1	Panasonic	ELL-6UH391M	L= 390.0 μH DCR= 1.5 Ohm	1	\$0.28	ELL6UH 67 mm ²
9.	Rcomp	Vishay-Dale	CRCW0402150KFKED Series= CRCWe3	Res= 150.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
10.	RenB	Vishay-Dale	CRCW04025K11FKED Series= CRCWe3	Res= 5.11 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
11.	RenT	Vishay-Dale	CRCW0402105KFKED Series= CRCWe3	Res= 105.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

<u>#</u> N	lame	Manufacturer	Part Number	Properties	Qty	Price	Footprint
12. R	Rfbb	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
13. R	Rfbt	Vishay-Dale	CRCW0402294KFKED Series= CRCWe3	Res= 294.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
14. R	Rt	Vishay-Dale	CRCW0402309KFKED Series= CRCWe3	Res= 309.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
15. U	J1	Texas Instruments	TPS54060ADGQR	Switcher	1	\$1.27	S-PDSO-G10 24 mm ²

Operating Values

Ohe	Operating values						
#	Name	Value	Category	Description			
1.	Cin IRMS	79.429 mA	Current	Input capacitor RMS ripple current			
2.	Cout IRMS	9.098 mA	Current	Output capacitor RMS ripple current			
3.	IC lpk	215.759 mA	Current	Peak switch current in IC			
4.	lin Avg	165.84 mA	Current	Average input current			
5.	L lpp	31.518 mA	Current	Peak-to-peak inductor ripple current			
6.	BOM Count	15	General	Total Design BOM count			
7.	FootPrint	260.0 mm ²	General	Total Foot Print Area of BOM components			
8.	Frequency	392.339 kHz	General	Switching frequency			
9.	Mode	CCM	General	Conduction Mode			
10.	Pout	4.8 W	General	Total output power			
11.	Total BOM	\$2.0	General	Total BOM Cost			
12.	D1 Tj	32.985 degC	Op_Point	D1 junction temperature			
13.	Low Freq Gain	77.412 dB	Op_Point	Gain at 10Hz			
14.	Vout Actual	24.32 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors			
15.	Vout OP	24.0 V	Op_Point	Operational Output Voltage			
16.	Cross Freq	3.129 kHz	Op_point	Bode plot crossover frequency			
17.	Duty Cycle	80.377 %	Op_point	Duty cycle			
18.	Efficiency	96.481 %	Op_point	Steady state efficiency			
19.	Gain Marg	-55.385 dB	Op_point	Bode Plot Gain Margin			
20.	IC Tj	35.77 degC	Op_point	IC junction temperature			
21.	ICThetaJA	62.5 degC/W	Op_point	IC junction-to-ambient thermal resistance			
22.	IOUT_OP	200.0 mA	Op_point	lout operating point			
23.	Phase Marg	93.651 deg	Op_point	Bode Plot Phase Margin			
24.	VIN_OP	30.0 V	Op_point	Vin operating point			
25.	Vout p-p	13.868 mV	Op_point	Peak-to-peak output ripple voltage			
26.	Cin Pd	28.062 μW	Power	Input capacitor power dissipation			
27.	Cout Pd	36.424 µW	Power	Output capacitor power dissipation			
28.	Diode Pd	16.677 mW	Power	Diode power dissipation			
29.	IC Pd	92.318 mW	Power	IC power dissipation			
30.	L Pd	66.0 mW	Power	Inductor power dissipation			
31.	Total Pd	175.077 mW	Power	Total Power Dissipation			

#	Name	Value	Category	Description
32.	Vout Tolerance	2.973 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider
				resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	200.0 m	Maximum Output Current
2.	VinMax	30.0	Maximum input voltage
3.	VinMin	30.0	Minimum input voltage
4.	Vout	24.0	Output Voltage
5.	base_pn	TPS54060A	Texas Instruments Base Part Number
6.	source	DC	Input Source Type
7.	ta	30.0	Ambient temperature

Design Assistance

1. TPS54060A Product Folder: http://www.ti.com/product/TPS54060A: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.