

第二部分

编译自动化技术

- 词法分析的自动化
- 语法分析的自动化
- 其它自动化技术
 - -编译优化

第三章:词法分析

- 3.1 词法分析的功能
 - 一一识别单词,返回单词的类别和值
- 3.2 词法分析程序的设计与实现
 - 一一状态图: 有穷自动机的非形式表示
 - ---正则文法和状态图
- 3.3 词法分析程序的自动生成
 - ——正则表达式和有穷自动机

会回何头八江首 今圆处水月池车 乘 昨 是 僧 十 畔 , 清风东南五杏月 光一南西庭园十 似吹见北隘边五 往无月望浦今乘 年人几乡沙年曲

八月十五日夜湓亭望月 白居易

昔年八月十五夜,曲江池畔杏园边。 今年八月十五夜,湓浦沙头水馆前。 西北望乡何处是,东南见月几回圆。 昨风一吹无人会,今夜清光似往年。

八月十五日夜湓亭望月

白居易

昔年八月十五夜, 曲江池畔杏园边。 今年八月十五夜, 湓浦沙头水馆前。 西北望乡何处是, 东南见月几回圆。 昨风一吹无人会, 今夜清光似往年。

词法分析: 断词,并给出词性(分类)

语法分析: 断句,并给出句的结构、分类

程序

```
int main() '\n' { int count=read(); '\n'
//if number of entries read is greater
than 1 '\n' //then sort() and compact()
'\n' if (count > 1) { sort();
compact(); } '\n' if (count ==0) '\n'
count << "no sales for this month\n";
'\n' else write(); '\n' return; '\n' }</pre>
```


程序

```
int main()
  int count=read();
  //if number of entries read is greater than 1
 //then sort() and compact()
  if (count > 1) { sort(); compact(); }
  if (count == 0)
    count << "no sales for this month\n";
  else write();
  return;
```


内容

- 3.1 词法分析程序的功能及实现方案
- 3.2 单词的种类及词法分析程序的输出形式
- 3.3 正则文法和状态图
- 3.4
- 11.1-2 正则表达式与有穷自动机
- 11.3

3.3 正则文法和状态图

• 状态图的画法(根据文法画出状态图)

例如:正则文法

Z := U0 | V1

U := Z1 | 1

V ::= Z0 | 0

左线性文法。该文法所定义的语言为:

 $L(G[Z]) = \{ B^n | n>0 \}, 其中 B = \{01,10\}$

左线性文法的状态图的画法:

例:正则文法

Z::=U0|V1

U := Z1 | 1

 $V := Z0 \mid 0$

S

- 1. 令G的每个非终结符都是一个状态;
- 2. 设一个开始状态S;

3. 若Q::=T, Q ∈ Vn,T ∈ Vt,则:

4. 若Q::=RT, Q、R∈Vn,T∈Vt,则: Q R

5. 按自动机方法,可加上开始状态和终止状态标志。

Compiler

例如: 正则文法

Z := U0 | V1

U := Z1 | 1

V ::= Z0 | 0

其状态图为:

- 1. 每个非终结符设一个状态;
- 2. 设一个开始状态S;
- 3. 若Q::=T, Q \in Vn,T \in Vt,
- 4. 若Q::=RT, Q、R∈Vn,T∈Vt,
- 5. 加上开始状态和终止状态标志

• 识别算法

利用状态图可按如下步骤分析和识别字符串x:

- 1、置初始状态为当前状态,从x的最左字符开始,重复步骤2,直到x右端为止。
- 2、扫描x的下一个字符,在当前状态所射出的弧中 找出标记有该字符的弧,并沿此弧过渡到下一个状态;如果找不到标有该字符的弧,那么x不是句子, 过程到此结束;如果扫描的是x的最右端字符,并 从当前状态出发沿着标有该字符的弧过渡到下一个 状态为终止状态Z,则x是句子。

例: x=0110 和1011

Compiler

3、词法分析程序算法

START: TOKEN:= ''; /*置TOKEN为空串*/GETCHAR; GETNBC;

CASE CHAR OF

'A'..'Z': BEGIN

WHILE ISLETTER OR ISDIGET DO

BEGIN CAT; GETCHAR END;

UNGETCH:

C:= RESERVE; /* 返回0,为标识符 */

IF C=0 THEN RETURN('IDSY': TOKEN)

ELSE RETURN (C,-) /*C为保留字编码*/

END;

'0'..'9': BEGIN

WHILE DIGIT DO

BEGIN CAT; GETCHAR END;

UNGETCH;

RETURN ('INTSY', ATOI)

END;

'+': RETURN('PLUSSY',-);

内容

- 3.1 词法分析程序的功能及实现方案
- 3.2 单词的种类及词法分析程序的输出形式
- 3.3 正则文法和状态图
- 3.4
- 11.1-2 正则表达式与有穷自动机
- 11.3

11.1 正则表达式

11.1.1 正则表达式和正则集合的递归定义

有字母表 Σ , 定义在 Σ 上的正则表达式和正则集合递归定义如下:

- 1. $\epsilon n \phi$ 都是 \(\sum \text{ hornula bound in the proof of the proof
- 2. 任何 $a \in \Sigma$, $a \notin \Sigma$ 上的正则表达式,其正则集合为: $\{a\}$;
- 3. 假定U和V是 Σ 上的正则表达式,其正则集合分别记为L(U)和L(V),那么U|V,U•V和U*也都是 Σ 上的正则表达式,其正则集合分别为L(U) \cup L(V)、L(U) L(V)和L(U)*;
- 4. 任何Σ 上的正则表达式和正则集合均由1、2和3产生。

正则表达式中的运算符:

| ----或(选择)

- ----连接
- * _ 或 { } ----重复
- () ----括号

与集合的闭包运算有区别 这里a*表示由任意个a组成的串,

 $\overline{\mathbb{m}}\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, \ldots\}$

运算符的优先级:

先*,后•,最后

• 在正则表达式中可以省略.

正则表达式相等⇔ 这两个正则表达式表示的语言相等

如:
$$b{ab} = {ba}b$$

$${a|b} = {\{a\} \{b\}} = (a*b*)*$$

例:设 $\Sigma = \{a, b\}$,下面是定义在 Σ 上的正则表达式和正则集合

正则表达式

正则集合

ba*

以b为首,后跟0个和多个a的符号串

a(a|b)*

Σ上以a为首的所有符号串

(a|b)*(aa|bb)(a|b)*

Σ上含有aa或bb的所有符号串

正则表达式的性质:

设e1, e2和e3均是某字母表上的正则表达式,则有:

$$e1(e2e3) = (e1e2)e3$$

$$(e1 | e2) e3 = e1e3 | e2e3$$

此外:
$$r^* = (r|\epsilon)^*$$
 $r^{**} = r^*$ $(r|s)^* = (r^*s^*)^*$

正则表达式与3型文法等价

例如:

正则表达式: ba*

3型文法: Z ::= Za|b

a(a|b)*

Z::=Za|Zb|a

例:

3型文法

S := aS|aB

B := bC

C := aC|a

正则表达式

aS|aba*a → a*aba*a

ba*a

a*a

11.2.1 确定的有穷自动机(DFA)— 状态图的形式化

(Deterministic Finite Automata)

一个确定的有穷自动机(DFA)M是一个五元式:

$$M=(S, \Sigma, \delta, S_0, Z)$$

其中:

- 1. S —有穷状态集
- 2. Σ —输入字母表
- 3. δ —映射函数(也称状态转换函数)

$$S \times \Sigma \rightarrow S$$

$$\delta(s,a)=s', s, s' \in S, a \in \Sigma$$

- **4.** s₀—初始状态 s₀ ∈ S
- 5. Z—终止状态集 Z⊂S

例如: M: ($\{0, 1, 2, 3\}$, $\{a, b\}$, δ , 0, $\{3\}$)

$$\delta (0, a) = 1$$
 $\delta (0, b) = 2$

$$\delta$$
 (0, b) =2

$$\delta$$
 (1, a) =3

$$\delta$$
 (1, a) =3 δ (1, b) =2

$$\delta$$
 (2, a) =1

$$\delta$$
 (2, a) =1 δ (2, b) =3

$$\delta$$
 (3, a) =3

$$\delta$$
 (3, a) =3 δ (3, b) =3

状态转换函数 δ 可用一矩阵来表示:

输入 字符		
状态	a	b
0	1	2
1	3	2
2 3	1	3 3
3	3	3

所谓确定的状 态机,其确定 性表现在状态 转换函数是单 值函数!

DFA也可以用一状态转换图表示:

输入 字符 状态	a	b
0	1	2
1	3	2
2	1	3
3	3	3

DFA M所接受的符号串:

令 $\alpha = a_1 a_2$ " " a_n , $\alpha \in \Sigma^*$, 若 $\delta(\delta($ " " $\delta(s_0, a_1), a_2)$ " "), a_{n-1}), a_n) = s_n ,且 $s_n \in Z$,则可以写成 $\delta(s_0, \alpha) = s_n$,我们称 α 可为 M所接受。

$$\delta(\mathbf{s}_0,\mathbf{a}_1) = \mathbf{s}_1$$

$$\delta(\mathbf{s}_1,\mathbf{a}_2) = \mathbf{s}_2$$

• • • • • • • •

$$\delta(s_{n-2}, a_{n-1}) = s_{n-1}$$

$$\delta(\mathbf{s}_{n-1},\mathbf{a}_n) = \mathbf{s}_n$$

换言之:若存在一条 初始状态到某一终止 状态的路径,且这条 路径上能有弧的标记 符号连接成符号串 a, 则称 a 为DFA M(接受) 识别。

DFA M所接受的语言为: $L(M) = \{ \alpha \mid \delta(s_0, \alpha) = s_n, s_n \in Z \}$

11.2.2 不确定的有穷自动机(NFA)(Nondeterministic Finite Automata)

若δ是一个多值函数,且输入可允许为ε,则有穷自动机是不确定的,即在某个状态下,对于某个输入字符存在多个后继状态。

从同一状态出发,有以同一字符标记的多条边,或者有 以 ε 标记的特殊边的自动机。

左公士 给入字母a时,自动机既可以

如果向右,则可接 受由a组成长度为偶 数的字符串。 如果向左,则可接 受由a组成长度为3的 倍数的字符串:

因此,该NFA所能接受的语言是所有由a组成,长度为2和3的倍数的字符串的集合。在第一次状态转换中,自动机需要选择要走的路径。只要有任何路径可匹配输入字符串,该串就必须被接受,因此NFA必须正确"猜测"所需的路径。

经过以 ε 标记的边无须任何字符输入。这里是接受同一语言的另一个NFA:

图示自动机需要选择沿哪一条标记有ε的边前进。如果一个状态同时引出以ε标记的边和以其它字符标记的边,则自动机可以选择处理一个输入字符并沿其对应的边前进,或者仅沿ε边前进。

NFA的形式定义为:

一个非确定的有穷自动机NFA M'是一个五元式:

NFA M'= $(S, \Sigma \cup \{\epsilon\}, \delta, s_0, \mathbf{Z})$

其中 S—有穷状态集

 $\Sigma \cup \{\epsilon\}$ —输入符号加上 ϵ ,

即自动机的每个结点所射出的弧可以是Σ中的一个字符或是ε

so—初态

 $s_0 \in S$

Z—终态集

Z⊆S

δ—转换函数

 $S \times \Sigma \cup \{\epsilon\} \rightarrow 2^S$

(2^S --S的幂集—S的子集构成的集合)

NFA M'所接受的语言为:

$$L(M')=\{\alpha|\delta(S_0,\alpha)=S' S'\cap Z\neq \Phi\}$$

NFA M'=($\{1,2,3,4\},\{a,b,c\} \cup \{\epsilon\},\delta,1,\{4\}\}$) 符号 b 状态 3 a **{4**} **{2, 3}** Φ Φ **{2**} **{4**} Φ ${3, 4}$ Φ Φ Φ Φ Φ

上例题相应的状态图为:

M'所接受的语言(用正则表达式) R=aa*b|ac*c|ε

复习:

1.正则表达式与有穷自动机,给出了两者的定义。

用3型文法所定义的语言都可以用正则表达式描述,

用正则表达式描述单词是为了自动生成词法分析程序。

有一个正则表达式则对应一个正则集合。

若V是正则集合,iff V=L(M)

即一个正则表达式对应一个DFA M

2. NFA的定义, δ 非单值函数,且有 ϵ 弧,表现为非确定性

如:
$$\delta(s,a)=\{s_1,s_2\}$$

$$\delta(s,a) = \{s_1, s_3\}$$

11.2.3 NFA的确定化

正如我们所学到的,用计算机程序实现DFA是很容易的。 但在多数计算机硬件并不能正确猜测路径的情况下,NFA 的实现就有些困难了。

己证明: **不确定的有穷自动机与确定的有穷自动机从功能 上来说是等价的**,也就是说能够从:

为了使得NFA确定化,首先给出两个定义:

定义1、集合I的ε-闭包:

令I是一个状态集的子集,定义 ϵ -closure(I)为:

- 1) 若s∈I, 则s∈ε-closure (I);
- 2) 若s∈I,则从s出发经过任意条ε弧能够到达的任何 状态都属于ε-closure(I)。 状态集ε-closure(I) 称为I的ε-闭包。

可以通过一例子来说明<mark>状态子集的ε-闭包</mark>的构造方法

例:

如图所示的状态图:

$$\diamondsuit$$
I={1},

 $漱 \epsilon \text{-closure } (I) = ?$

 ϵ -closure (I) ={1, 3}

定义2: 令I是NFA M'的状态集的一个子集, $a \in \Sigma$

定义: I_a = ϵ -closure(J)

其中 $J = \bigcup_{s \in I} \delta(s,a)$

一 J是从状态子集I中的每个状态出发,经过标记为a的弧而达到的状态集合。

— I_a是状态子集, 其元素为J中的状态, 加上从J中每一个 状态出发通过 ε 弧到达的状态。

同样可以通过一例子来说明上述定义,仍采用前面给定的状态图为例

根据定义1,2,可以<mark>将上述的M'确定化(即可构造出状态</mark> 转换矩阵)

Compiler

例:有NFA M'

$I=\varepsilon$ -closure({1})={1,4}

$$I_a = \varepsilon$$
-closure($\delta(1,a) \cup \delta(4,a)$)

=
$$\varepsilon$$
-closure($\{2,3\} \cup \varphi$)

=
$$\varepsilon$$
-closure ({2,3})

$$={2,3}$$

$$I_b = \varepsilon$$
-closure $(\delta(1,b) \cup \delta(4,b))$

$$= \varepsilon$$
-closure(φ)

$$=\varphi$$

$$I_c = \varepsilon$$
-closure($\delta(1,c) \cup \delta(4,c)$)

$$= \varphi$$

$$I=\{2,3\}, I_a=\{2\}, I_b=\{4\}, I_c=\{3,4\}...$$

Compiler

I_a I_b	I_{c}
{1,4}	φ
{2,3} {2} {4}	{3,4}
{2} {2} {4}	φ
{4} φ φ	p
$\{3,4\}$ ϕ ϕ $\{3,4\}$	3,4}

Excellence in BUAA SEI

Compiler	7			I	I_a	I_b	$I_{\rm c}$	
				{1,4}	{2,3}	φ	φ	
将求得的状态	转换矩阵重新:	编号		{2,3}	{2}	{4}	{3,4}	
	++++h, h= 17+			{2}	{2}	{4}	φ	
DFA M状态	特			{4 }	φ	φ	φ	
				{3,4}	φ	φ	{3,4}	
~ 符号								
状态	a		b		c			
0	1		_		_			

符号 状态	a	b	c	
0	1	_	_	
1	2	3	4	
2	2	3	_	
3	_	_	_	
4	_	_	4	

Excellence in BUAA SEI

DFA M的状态图:

{1,4}	{2,3}	
start	b	4) c
	$\frac{1}{2}$ a	3,4}
	{4} {2}	

注意: 原初始状态的ε-closure为DFA M的初态 包含原终止状态4的状态子集为DFA M的终态。

复习:

- 1.正则表达式与有穷自动机,给出了两者的定义。 用3型文法所定义的语言都可以用正则表达式描述, 用正则表达式描述单词是为了自动生成词法分析程序。 有一个正则表达式则对应一个正则集合。
- 2. NFA M' 的定义、确定化 → 对任何一个NFA M', 都可以构造出一个DFA M, 使得 L(M) = L(M')

构造出来的DFA M唯一吗?

11.2.4 DFA的简化(最小化)

"对于任一个DFA,存在一个唯一的状态最少的等价的DFA"

一个有穷自动机是化简的 ⇔ 它没有多余状态并且它的状态 中没有两个是互相等价的。

一个有穷自动机可以通过消除多余状态和合并等价状态 而转换成一个最小的与之等价的有穷自动机

定义:

(1) <mark>有穷自动机的多余状态</mark>:从该自动机的开始状态出发,任何输入串也不能到达那个状态

	0	1
S 0	S 1	S 5
\mathbf{S}_1	S 2	S 7
\mathbf{S}_2	S 2	S 5
S_3	S 5	S 7
S 4	S 5	S 6
S_5	S 3	S 1
S 6	S 8	\mathbf{S}_0
S 7	\mathbf{S}_0	S 1
S 8	S 3	S 6
	\$1 \$2 \$3 \$4 \$5 \$6 \$7	S0 S1 S1 S2 S2 S2 S3 S5 S4 S5 S5 S3 S6 S8 S7 S0

画状态图可			
以看出s4,s6,s8		0	1
为 <mark>不可达状</mark>	\mathbf{S} 0	S 1	S_5
态应该消除	S 1	S ₂	S 7
<u> </u>	S_2	S 2	S_5
	S 3	S 5	S 7
	S 5	S 3	S 1
	S 7	\mathbf{S}_0	S 1

(2)等价状态<>>状态s和t的等价条件是:

1)一致性条件: 状态s和t必须同时为可接受状态或

不接受状态。

2)蔓延性条件: 对于所有输入符号,状态s和t必须

转换到等价的状态里。

对于所有输入符号c, $I_c(s)=I_c(t)$,即状态s、t对于c具有相同的后继,则称s,t是等价的。

(任何有后继的状态和任何无后继的状态一定不等价)

有穷自动机的状态s和t不等价,称这两个状态是可区别的。

"分割法": 把一个DFA(不含多余状态)的状态分割成一些不相关的子集,使得任何不同的两个子集状态都是可区别的,而同一个子集中的任何状态都是等价的。

Compiler

解:

(一)区分终态与非终态 <u>a</u> <u>b</u> 区号

Compiler

	a	b	区号
1	6	3	_1
2	7	3	
3	1	5	-2
4	4	6	}-3
5 6	7	3	
6	4	1	<u>_</u> 5
7	4	2	

	a	b	区号
1	6	3	1
2	7	3	
3	1	5	$}2$
4	4	6	}-3
5 6	7	3	4
6	4	1	5
7	4	2	

	a	b
1	5	2
2	1	4
3	3	5
4	5	2
5	3	1

将区号代替状态号得:

	a	b
1	5	2
2	1	4
3	3	5
4	5	2
5	3	1

复习:

- 1.正则表达式与有穷自动机,给出了两者的定义。 用3型文法所定义的语言都可以用正则表达式描述, 用正则表达式描述单词是为了自动生成词法分析程序。 有一个正则表达式则对应一个正则集合。
- 2. NFA M' 的定义、确定化 → 对任何一个NFA M', 都可以构造出一个DFA M, 使得 L(M) = L(M')

下面:

正则表达式与DFA的等价性

我们证明了对任何一个正则表达式,都可以构造出等价的NFA.

11.2.5 正则表达式与DFA的等价性

定理: 在 Σ 上的一个子集 $V(V \subseteq \Sigma^*)$ 是正则集合,当且仅当存在一个DFA M,使得V = L(M)

V是正则集合,

R是与其相对应的正则表达式 ⇔ DFA M V=L(R) L(M)=L(R)

所以 正则表达式 $R \Rightarrow NFA M' \Rightarrow DFA M$ L(R) = L(M') = L(M)

证明:根据定义。

复习

正则表达式和正则集合的递归定义

有字母表 Σ ,定义在 Σ 上的正则表达式和正则集合递归定义如下:

- 1. $\epsilon n \phi$ 都是 \(\sum \text{ hornula bound in the proof of the proof
- 2. 任何 $a \in \Sigma$, $a \in \Sigma$ 上的正则表达式,其正则集合为: $\{a\}$;
- 3. 假定U和V是 Σ 上的正则表达式,其正则集合分别记为L(U)和L(V),那么U|V,U•V和U*也都是 Σ 上的正则表达式,其正则集合分别为L(U) \cup L(V)、L(U) L(V)和L(U)*;
- 4. 任何Σ 上的正则表达式和正则集合均由1、2和3产生。

判断题:

- 1. 对任意一个右线性文法G,都存在一个NFA M,满足L(G) = L(M) ()
- 2. 对任意一个右线性文法G,都存在一个DFAM, 满足L(G) = L(M) ()
- 3. 对任何正则表达式e,都存在一个NFA M,满足 L(M) = L(e) ()
- 4. 对任何正则表达式e,都存在一个DFA M,满足 L(M) = L(e) ()

补充

(1) 有穷自动机⇒正则文法

算法:

- 1. 对转换函数f(A, t)=B, 可写成一个产生式:A→tB
- 2. 对可接受状态Z, 增加一个产生式: Z→ ε
- 3. 有穷自动机的初态对应于文法的开始符号(识别符号),有穷自动机的字母表为文法的终结符号集。

例:给出如图NFA等价的正则文法G

其中P: A→aB

 $A \rightarrow bD$

 $B \rightarrow bC$

 $C \rightarrow aA$

 $C \rightarrow bD$

 $C \rightarrow \varepsilon$

 $D \rightarrow aB$

 $D \rightarrow bD$

 $D \rightarrow \epsilon$

start

(2) 正则文法⇒有穷自动机M

算法:

- 1. 字母表与G的终结符号相同;
- 2. 为G中的每个非终结符生成M的一个状态,G的开始符号S 是开始状态S;
- 3. 增加一个新状态Z, 作为NFA的终态;
- 4. 对G中的形如A→tB, 其中t为终结符或 ε, A和B为非终结符的产生式, 构造M的一个转换函数f(A, t)=B;
- 5. 对G中的形如A→t的产生式,构造M的一个转换函数 f(A, t)=Z。

例:求与文法G[S]等价的NFA

G[S]: $S \rightarrow aA |bB| \epsilon$

A→aB | bA

B→aS | bA | ε

求得:

左线形正则文法和右线性正则文法的等价

左线性正则文法例

$$Z \rightarrow U0 | V1$$

$$U \rightarrow Z1 | 1$$

$$V \rightarrow Z0 \mid 0$$

$$L(G[Z]) = \{ B^n \mid n>0 \}$$

其中 $B=\{01,10\}$

$$\mathbf{R} = (01|10)(01|10)^*$$

右线性正则文法例

$$S \rightarrow 0U \mid 1V$$

$$U \rightarrow 1S \mid 1$$

$$V \rightarrow 0S \mid 0$$

$$L(G[S]) = \{ B^n \mid n>0 \}$$

其中 $B=\{ 01, 10 \}$

 $\mathbf{R} = (01|10)(01|10)^*$

(3) 正则式⇒有穷自动机

语法制导方法

1.(a)对于正则式φ,所构造NFA:

(b)对于正则式ε,所构造NFA:

(c)对于正则式 $a,a \in \Sigma$,则 NFA:

2. 若s, t为 Σ 上的正则式, 相应的NFA分别为N(s)和N(t);

(c)对于正则式R=s*, NFA(R)

(d)对R=(s),与R=s的NFA一样.

例:为R=(a|b)* abb构造NFA N,使得L(N)=L(R)

从左到右分解R,令
$$r_1=a$$
,第一个 a ,则有 \Rightarrow 2 \xrightarrow{a} 3

令r10= r4 r9 则最终得到NFA N:

分解R的方法有很多种,下面给出另一种分解方式和所构成的NFA

(4) 有穷自动机⇒正则式R

算法:

- 1)在M上加两个结点x, y, 从x结点用ε弧到M的所有初态,从M的所有终态用ε到y结点形成与M等价的M',M'只有一个初态x和一个终态y。
- 2)逐步消去M'中的所有结点,直至剩下x和y结点,在 消结过程中,逐步用正则式来记弧,其消结规则如 下:

(2)消除M中的所有结点

(5) 正则文法⇒正则式

利用以下转换规则,直至只剩下一个开始符号定义的产生式,并且产生式的右部不含非终结符。

规则	文法产生式	正则式
规则1	$A \rightarrow xB, B \rightarrow y$	A=xy
规则2	$A \rightarrow xA \mid y$	A=x*y
规则3	$A \rightarrow x$, $A \rightarrow y$	$A=x \mid y$

规则	一 文法产生式 —	一 正则式 —
79073	人内工人	工以工
规则1	$A \rightarrow xB, B \rightarrow y$	A=xy
规则2	$A \rightarrow xA \mid y$	A=x*y

 $A \rightarrow x, A \rightarrow y$

例:有文法G[s]

 $S \rightarrow aA|a$

 $A \rightarrow aA|dA|a|d$

于是: S=aA|a

$$A=(aA|dA)|(a|d)\Rightarrow A=(a|d)A|(a|d)$$

规则3

由规则二: A=(a|d)*(a|d)

代入:S=a(a|d)*(a|d)|a

于是:S=a((a|d)*(a|d)|ε)

 $A=x \mid y$

(6) 正则式⇒正则文法

算法:

- 1) 对任何正则式r,选择一个非终结符S作为识别符号, 并产生产生式 S→r
- 2) 若x,y是正则式,对形为A \rightarrow xy的产生式,重写为 A \rightarrow xB B \rightarrow y,其中B为新的非终结符,B \in Vn 同样: 对于 A \rightarrow x*y \Rightarrow A \rightarrow xA A \rightarrow y A \rightarrow x|y \Rightarrow A \rightarrow x

例:将R=a(a|d)*转换成相应的正则文法

2) $S \rightarrow aA$ $A \rightarrow (a|d)^*$ 3) $S \rightarrow aA$ $A \rightarrow (a|d)A$ $A \rightarrow \varepsilon$

4) $S \rightarrow aA$ $A \rightarrow aA|dA$ $A \rightarrow \varepsilon$

11.3 词法分析程序的自动生成器—LEX(LEXICAL)

LEX的原理:

正则表达式与DFA的等价性

根据给定的正则表达式自动生成相应的词法分析程序。

LEX的功能:

11.3.1 LEX源程序

- 一个LEX源程序主要由三个部分组成:
 - 1. 辅助定义式
 - 2. 识别规则
 - 3. 用户子程序

各部分之间用%%隔开

辅助定义式是如下形式的LEX语句:

限定:在Ri中只能出现字母表Σ中的字符, 以及前面已定义的正则表达式名字,我们 用这种辅助定义式(相当于规则)来定义程 序语言的单词符号。

其中:

 $\mathbf{R}_1,\mathbf{R}_2,\ldots,\mathbf{R}_n$ 为正则表达式。

D1,D2,, Dn 为正则表达式名字, 称简名。

sign
$$\rightarrow$$
 +| - | ϵ

 $sign_integer \rightarrow sign \quad integer$

识别规则:是一串如下形式的LEX语句:

 $egin{array}{cccc} P_1 & \{A_1\} \\ P_2 & \{A_2\} \\ & \vdots \\ P_m & \{A_m\} \end{array}$

P_i: 定义在Σ∪{D₁,D₂, ""D_n}上的正则表达式,也称词形。 {A_i}: A_i为语句序列,它指出,在识别出词形为P_i的单词以 后,词法分析器所应作的动作。

其基本动作是返回单词的类别编码和单词值。

下面是识别某语言单议

例: LEX 源程序

RETURN是LEX过程,该过程将单词传给语法分析程序

RETURN (C, LEXVAL)

其中C为单词类别编码

LEXVAL:

标识符: TOKEN (字符数组)

整常数: DTB (数值转换函数,将TOKEN

中的数字串转换二进制值)

AUXILIARY DEFINITIONS 其他单词,无定义*/

letter $\rightarrow A|B|$ " |Z|

digit $\rightarrow 0|1|$ " |9

%%

RECOGNITION RULES

/*识别规则*/

1.BEGIN

{RETURN(1,-) }

2.END

 $\{RETURN(2, -)\}$

3.FOR

{RETURN(3,**-**) }

Compiler

4.DO	{RETURN(4,—) }
5.IF	{RETURN(5, -) }
6.THEN	{RETURN(6,—) }
7.ELSE	{RETURN(7,—) }
8.letter(letter digit)*	{RETURN(8,TOKEN) }
9.digit(digit)*	{RETURN(9,DTB }
10. :	{RETURN(10,—) }
11. +	{RETURN(11,—) }
12. "**"	{RETURN(12,—) }

Compiler

13.,

14. "("

15. ") "

16. :=

17. =

{RETURN(13,-)}

{RETURN(14,—) }

{RETURN(15,-)}

{RETURN(16,—) }

{RETURN(17,—) }

11.3.2 LEX的实现

LEX的功能是根据LEX源程序构造一个词法分析程序, 该词法分析器实质上是一个有穷自动机。

LEX生成的词法分析程序由两部分组成:

词法分析程序

状态转换矩阵(DFA)

控制执行程序

::LEX的功能是根据LEX源程序生成状态转换矩阵和控制程序

LEX的工作过程:

·扫描每条识别规则Pi,构造相应的不确定有穷自动机Mi

"将各条规则的有穷自动机Mi合并成一个新的NFA M

· "确定化 NFA⇒DFA

生成该DFA的状态转换矩阵和控制执行程序

如:begin, :=

LEX二义性问题的两条原则:

2.优先匹配原则

如有一字符串,有两条规则可以同时匹配时,那么用规则序列中位于前面的规则相匹配,所以排列在最前面的规则优先权最高。

例:字符串·"begin·" P₈

根据原则,应该识别为关键字begin,所以在写LEX源程序时应注意规则的排列顺序。

此外,优先匹配原则是在符合最长匹配的前提下执行的。

可以通过一个例子来说明这些问题:

例: LEX源程序

a { } abb { } a*bb* { }

一.读LEX源程序,分别生成NFA,用状态图表示为:

二.合并成一个NFA:

三.确定化给出状态转换矩阵

	状态	a	b	到达终态所识别的单词
初态	$\{0,1,3,7\}$	{2,4,7}	{8}	
终态	{2,4,7}	{7}	{5,8}	a
终态	{8}	φ	{8}	$a^* bb^*$
	{7}	{7}	{8}	*
终态	{5,8}	φ	{6,8}	a* bb*
终态	{6,8}	φ	{8}	abb

在此DFA中 初态为{0,1,3,7}

终态为{2,4,7},{8},{5,8},{6,8}

词法分析程序的分析过程

令输入字符串为aba...

- (1) 吃进字符ab
- (2) 按反序检查状态子集 检查前一次状态是否含有原 NFA的终止状态

T . t Δ $(0.1.2.7)$	读入字符	进入状态
开始 {0,1,3,7}	开始	$\{0,1,3,7\}$

- a {2,4,7}
- b {5,8}
- a 无后继状态(退 掉输入字符a)
- ·即检查{5,8},含有终态8,因此断定所识别的单词ab是属于a*bb*中的一个。
- ··若在状态子集中无NFA的终态,则要从识别的单词再退掉一个字符(b),然后再检查上一个状态子集。
- …若一旦吃进的字符都退完,则识别失败,调用出错程序,一般是跳过一个字符然后重新分析。(应打印出错信息)

三点说明:

1) 以上是LEX的构造原理,虽然是原理性的,但据此就不难将LEX构造出来。

2) 所构造出来的LEX是一个通用的工具,用它可以生成各种语言的词法分析程序,只需要根据不同的语言书写不同的LEX源文件就可以了。

3) LEX不但能自动生成词法分析器,而且也可以产生多种模式识别器及文本编辑程序等。

第十一章作业:

P254-255 1, 2, 4, 5;