التوحيدي	حياق	ثانوية أبو
• 4 .		** (** **)

الاشتقاق و دراسة الدوال و الدوال الأصلية السنة الدراسية : 2012-2011

سلسلة التمارين

الثانية باك علوم رياضيــة

 x_o في الحالات التالية، أدر س قابلية اشتقاق الدالة f $f(x) = \frac{\sin x}{\sqrt{x}}; x > 0$ $f(x)=\sqrt{x-1};x\geqslant 1$ $f(x) = \frac{x - 3\sqrt[3]{x} + 2}{\sqrt[3]{x} - 1}; x < 1$ $f(x) = \operatorname{Arctg}(x\sqrt{x}); x \geqslant 0$ $f(x) = \sqrt{x^2 - x}; x < 0$ $x_o = 0$

باستعمال تعريف العدد المشتق ، أحسب النهايات : $\frac{7}{x+1}-1$ $\lim_{x \to 1} \frac{\sqrt{x+3} - \sqrt[3]{x+7}}{x-1}$ $\lim_{x \to 0} \frac{\sqrt[3]{x+1} - 1}{x}$ $\lim_{x \to 0} \frac{x}{x}$ $\lim_{x \to 0} \frac{\sqrt[3]{x+1} - 1}{x}$ $\lim_{x \to 0} \frac{\sqrt[3]{x+1} - 1}{x}$ $\lim_{x \to 0} \frac{\sqrt[3]{x+1} - 1}{x}$ $\lim_{x o 0} rac{x - \sin(x)}{ an(x) - x}$ 9 $\lim_{x o \sqrt{3}} rac{\operatorname{Arctg}(x) - x}{x - \sqrt{3}}$

f في كل من الحالات التالية، أدرس قابلية اشتقاق الدالة على مجموعة تعريفها وحدد دالتها المشتقة:

$$f(x)=\sqrt[3]{(x-1)^2}$$
 g $f(x)=x\mathrm{Arctg}\sqrt{x}$ $f(x)=\sqrt{x+\mathrm{Arctg}(x)}$ g $f(x)=x-2\sqrt[3]{x-2}$ g $f(x)=\sqrt[6]{\frac{x}{1+x^2}}$ g $f(x)=|2x+3|^{rac{3}{4}}$ g

و $f(x) = \operatorname{Arctg} \frac{2x}{1-x^2}$ و $f(x) = (\operatorname{Arctg}(\sin x))^3$ $f(x) = \sin(\sqrt[3]{x})$

 $g:x\mapsto \cos(x)$ و $f:x\mapsto \sin(x)$: نعتبر الدالتين بين أنه لكل x من $\mathbb R$ و لكل n من $\mathbb R$ بين أنه لكل $g^{(n)}(x)=\cos\left(x+n\frac{\pi}{2}\right)$ و $f^{(n)}(x)=\sin\left(x+n\frac{\pi}{2}\right)$ $\left(f$ هي المشتقة من الرتبة n للدالة $f^{(n)}
ight)$

 $f(x) = \sqrt[3]{x^2 - 3x + 2}$ نعتبر الدالة f المعرفة بما يلي

- أدرس قابلية اشتقاق الدالة f على اليمين في 2 و على lacktriangleاليسار في 1 ثم أو ل هندسيا النتائج المحصلة.
 - f أعط جدول تغيرات الدالة f
 - $I=]-\infty;1]$ ليكن ${
 m g}$ قصور الدالة f على المجال ${
 m g}$

ا) بين أن ${
m g}$ تقابل من I نحو مجال J ينبغي تحديده.

بJ أدرس قابلية اشتقاق g^{-1} على J و احسب $\cdot \left(\mathbf{g}^{-1}\right)' \left(\sqrt[3]{2}\right)$

تمرین 6

: يعتبر الدالة f المعرفة على $\mathbb R$ بما يلي (I $f(x) = \operatorname{Arctg}\left(rac{\sqrt{1+x^2}-1}{x}
ight)$ و f(0) = 0

 $\lim_{+\infty} f(x)$ بين أن f متصلة في 0 ثم أحسب $oldsymbol{0}$

بين أن f قابلة للإشتقاق في 0. و أن f دالة فر دية. $oldsymbol{\emptyset}$

 (\mathscr{C}_f) أعط جدول التغيرات. ثم أنشئ المنحنى

بين أن f تقابل من $\mathbb R$ نحو مجال J ينبغي تحديده.

 \cdot J قابلة للإشتقاق على المجال $oldsymbol{6}$

f(1) تحقق أن $anrac{\pi}{8}=\sqrt{2}-1$ ثم أحسب (۱lacksquare $\cdot \left(f^{-1}\right)'\left(\frac{\pi}{8}\right)$ و

 $(orall x \in \mathbb{R}) \; f(x) = rac{1}{2} \mathrm{Arctg}(x)$ ب) بین أن: $f^{-1}(x)$ ثم حدد

 $u_o>0\;;$ نعتبر المتتالية (u_n) بحيث $\sqrt{\Pi}$ $u_{n+1} = f(u_n)$

 $.(orall n \in \mathbb{N}): \quad 0 < u_n < rac{\pi}{4}$ بین آن: $oldsymbol{0}$

 $(orall t > 0): \operatorname{Arctg}(t) < t$ بين أن: $lackbr{artheta}$ استنتج رتابة المتتالية (u_n) .

 $\lim u_n$ بین آن: $\forall n \in \mathbb{N} : u_{n+1} < rac{1}{2}u_n$. استنتج

 $\left\{egin{array}{l} f(x)=-\sqrt[3]{1-x^3}\,;\;x\leqslant 1\ f(x)=2\mathrm{Arctg}\left(rac{x-1}{x+1}
ight)\;;\;x>1 \end{array}
ight.$

 \mathscr{D}_f حدد \mathscr{D}_f ثم أحسب نهايات \mathscr{D}_f حدد \mathscr{D}_f

أدرس اتصال و قابلية اشتقاق f في 1. الثاويل الهندسي arrho

 \mathscr{C}_f أدرس تغيرات f . ثم حدد الفروع اللانهائية كـ \mathscr{C}_f).

 (\mathscr{C}_f) بين أن I(0;-1) هي نقطة انعطاف المنحنى G

بین أن f تقابل من \mathscr{D}_f نحو مجال J یتم تحدیده . ثم \mathfrak{D}_f

 $(O; ec{i}; ec{j})$ أنشئ (\mathscr{C}_f) و $(\mathscr{C}_{f^{-1}})$ في نفس المعلم (\mathscr{C}_f)

- قابلة للاشتقاق على مجال I مفتوح. بين أنه إذا fI المعادلة f(x)=0 تقبل A حلول في المجال AI المعادلة f'(x)=0 تقبل 3 حلول في المجال
 - $a < a < b < rac{\pi}{2}$ و $a < a < b < rac{\pi}{2}$ و a < a < b

$$rac{b-a}{\cos^2 a} \leqslant an b - an a \leqslant rac{b-a}{\cos^2 b}$$
 بين أن $(a \sin(a) - \pi a)$

ب) بین آن
$$\frac{a}{b} < \frac{\sin(a)}{\sin(b)} < \frac{\pi}{2} \frac{a}{b}$$
 (یمکنے دراسة $(u(x) = \frac{\sin x}{x})$

- دالة قابلة للاشتقاق على مجال I من $\mathbb R$. و لتكن a و f2f(c)=f(a)+f(b) و c ثلاث عناصر من I بحيث b $(\exists lpha \in I)$: f'(lpha) = 0 :بين أن
-]0;1[و قابلة للاشتقاق على [0;1] و قابلة للاشتقاق على f $oldsymbol{0}$ f(1)=1 و f(0)=0 بحيث: f(0)=0 و f(0)=0 بين أن: $f'(c)=rac{1}{2\sqrt{c}}$
- و a عددان حقيقيان بحيث a b و a دالتين aمتصلتين على المجال [a,b] و قابلتين للاشتقاق على $orall x\in]a,b[:g'(x)
 eq 0$ بحيث: a,b[
 - g(a)
 eq g(b)) ا بيـــن أن g(a)
 eq g(b) بg(a)
 eq g(b) با نعتبر الدالة

$$H(x) \stackrel{\checkmark}{=} rac{f(b) - f(a)}{g(b) - g(a)} \Big(g(x) - g(a)\Big) - \Big(f(x) - f(a)\Big)$$
 $\therefore (\exists c \in]a, b[) : rac{f(b) - f(a)}{g(b) - g(a)} = rac{f'(c)}{g'(c)}$ بين أن $\lim_{x \to 0} rac{\sin(x) - x}{x^3}$ استنتج النهاية

$$\lim_{n o +\infty}\left(1+rac{1}{\sqrt[3]{2}}+\cdots+rac{1}{\sqrt[3]{n}}
ight)$$
 أحسب النهاية: $oldsymbol{6}$

- دالة متصلة على [-1;1] و قابلة للاشتقاق مرتين fعلى [1,1]=1 و [1,1]=1 و [1,1]=1 على [1,1]=1 $(\exists c \in]-1;1[): \ f''(c)=0$:بين أنf(-1)=-1
- ليكن $f:[0;a]
 ightarrow\mathbb{R}$ و $a\in]0;+\infty$ دالة قابلة $oldsymbol{0}$ للاشتقاق على [0;a] بحيث f' متصلة على [0;a] و

- دالة متصلة على $\left(a>0
 ight)$ $\left(a;b
 ight]$ و قابلة للاشتقاق f.bf(a)=af(b) على]a;b[يحيث $(\exists c \in]a;b[):\ cf'(c)=f(c)$ بین آن:
- دالة متصلة على [a;b] و قابلة للاشتقاق $f \; \mathbb{O}$:علی [a;b[بین أن
 - $(\exists c \in]a;b[): \frac{bf(a)-af(b)}{b-a} = f(c)-cf'(c)$

- و $\sum\limits_{k=1}^{n}kC_{n}^{k}$ و $\sum\limits_{k=0}^{n}C_{n}^{k}$ المجاميع: $(ext{I}$ $\sum_{k=1}^{n} (k+1)C_n^k$
- \mathbb{N}^* نعتبر الدالة $f(x)=\dfrac{1}{1+x^2}$ نعتبر الدالة بن أن مشتقة f من الرتبة n معرفة بما يلي: ر عن الربية n معرفة بما يلي: $P_n(x) = \frac{P_n(x)}{(1+x^2)^{n+1}}$ دالة حدودية درجتها n

حدد جميع الدوال $f: \mathbb{R} o \mathbb{R}$ قابلة للاشتقاق على $\forall x,y \in \mathbb{R}: \ f(x+y) = f(x) + f(y)$

: نعتبر الدالة f المعرفة بما يلى (I

$$\left\{egin{array}{l} f(x)=-x+\sqrt{1+x^2}\,; \quad x\geqslant 0 \ f(x)=rac{4}{\pi}\mathrm{Arctg}(-x+\sqrt{1+x^2})\,; \quad x< 0 \end{array}
ight.$$

- .0 أدرس اتصال و قابلية اشتقاق الدالة f في f
 - $orall x \in \mathbb{R}^\star$ ہین ان $x \in \mathbb{R}^\star$ f'(x) < 0 : بین ا
- ه أعط جدول تغيرات f محددا نهايتيها عند $\infty+$ و lacktriangle
- أنشئ المنحنى (\mathscr{C}_f) في م م م (\mathscr{C}_f) . نأخذ خ $||\overrightarrow{i}||=2cm$

$$.f(I)\subset I$$
 نضع: $I=\left[rac{1}{4};1
ight]$ نضع: $oldsymbol{\mathfrak{F}}$

$$\left\{egin{array}{ll} u_o=1\ ;\ u_{n+1}=f(u_n) \end{array}
ight.$$
نعتبر المتالية (u_n) حيث: $(\mathrm{II}$

$$(orall x \in I): |f'(x)| < rac{4}{5}$$
 بین آن: $oldsymbol{0}$

: i) باستعمال مبرهنة التزایدات المنتهیة بین أن .
$$(\forall n \in \mathbb{N}^{\star})$$
 $\left|u_{n} - \frac{1}{\sqrt{3}}\right| < \frac{4}{5} \left|u_{n-1} - \frac{1}{\sqrt{3}}\right|$. Here, we have (u_{n}) or (u_{n}) or (u_{n}) .

استنتج أن
$$(u_n)$$
 متقاربة وأحسب نهايتها. $\mathfrak E$

$$-\left(orall x\in\left]0;rac{\pi}{2}
ight]:f\left(rac{1}{ an(x)}
ight)= an\left(rac{x}{2}
ight)$$
:بین آن: 4

$$a_n = rac{2^{n+1} + (-1)^n}{3}$$
نضع $a_o = 1$ و نضع $a_o = 1$ و نضع

$$(\forall n \in \mathbb{N}): \ a_{n+1} = 2^{n+1} - a_n$$

$$.(orall n\in\mathbb{N}):\;u_n= an\left(rac{\pi a_n}{2^{n+2}}
ight)$$
 ثم بین آن:

تمرین 12

:نعتبر الدالة f المعرفة بما يلي (${
m I}$

$$f(x) = \operatorname{Arctg}\left(\sqrt[3]{1+x^3} - x\right)$$

- $\lim_{x o +\infty}f(x)$ حدد \mathscr{D}_f : ثم أحسب $oldsymbol{0}$
- ادرس قابلية اشتقاق f على يمين -1 ؛ أو ل هندسيا. $oldsymbol{arphi}$
 - . (\mathscr{C}_f) أدرس تغيرات f. ثم أنشئ المنحنى

$$\mathrm{g}(x) = rac{1}{9} \left(x + \mathrm{tan}(f(x))
ight)^3 - 2 \mathrm{Arctg}(x)$$
 نعتبر $oldsymbol{0}$

ا حدد
$$g$$
 حيز تعريف الدالة g ؛ ثم بين أن: . $(orall x \in \mathscr{D}_{\mathrm{g}}) \; \mathrm{g}(x) = rac{1}{3} \left(rac{1+x^3}{3} - 2\mathrm{Arctg}(x)
ight)$

$$\exists!lpha\in[-1;1]:\;\mathrm{g}(lpha)=lpha$$
ب) بین أن $lpha$

$$\exists k \in [0;1[\:/\:(orall x \in]\!-\!1;1[):|g'(x)| \leqslant k\::$$
ېين ان (x)

$$\left\{egin{array}{l} -1\leqslant u_o\leqslant 1\ ;\ u_{n+1}=g(u_n) \end{array}
ight.$$
نعتبر المتتالية (u_n) بحيث (II

- $(orall n \in \mathbb{N})$ بين أن: $|u_n| < 1$. بين أن: $\mathbf{0}$
- $(orall n \in \mathbb{N}): |u_{n+1} lpha| < k \, |u_n lpha|$ بين أن \mathcal{Q}
- $(orall n \in \mathbb{N}): |u_n lpha| < k^n \, |u_o lpha|$ استنتج أن $oldsymbol{\Theta}$
 - استنتج أن (u_n) متقاربة وأحسب نهايتها. $oldsymbol{0}$
- lpha نفترض أن: $u_o=0$ حدد قيمة مقربة للعدد 0 دالدقة 10^{-1} .

تمرین 13 .ـ

نعتبر الدالة h المعرفة بما يلي: $ig(ext{I} ig)$

$$h(x) = rac{1}{x} - 2 \mathrm{Arctg}(x)$$

 \mathbb{R}_+^* بين أن المعادلة h(x)=0 تقبل حلا وحيدا a في a في أن أن المعادلة a ثم أدر س إشارة a

$$f(x) = rac{\mathrm{Arctg}(x)}{1+x^2}$$
 نعتبر الدالة f المعرفة بما يلي: (II

$$f(lpha)=rac{1}{2lpha(1+lpha^2)}$$
 أدر س تغيرات f و بين أن:

$$.ig(orall x\in\mathbb{R}^+ig):\ 0\leqslant f(x)<rac{3\sqrt{3}}{8}$$
 استنتج أن $oldsymbol{arphi}$

باستعمال مبرهنة التزايدات المنتهية، بين أنه لكل $x>x_o$ بين أنه لكل و x من x

$$\operatorname{Arctg}^2(x) - \operatorname{Arctg}^2(x_o) \leqslant rac{3\sqrt{3}}{4}(x-x_o)$$

ليكن x من \mathbb{R}^+ . نعتبر المتتالية $(u_n(x))$ المعرفة . $u_n(x)=\sum_{p=0}^n\left(\mathrm{Arctg}rac{x}{2^p}
ight)^2$ بما يلي:

بین أن $(u_n(x))$ مکبورة بالعدد $rac{3\sqrt{3}}{2}$ ثم استنتج أنها متقاربة.

 $\mathcal{C}(x) = \lim_{n o +\infty} u_n(x)$:نضع \mathbb{R}^+ نضع ککل x اکل x بین أنه لکل x و x_o من \mathbb{R}^+ لدینا:

$$|u_n(x)-u_n(x_o)|\leqslant rac{3\sqrt{3}}{4}\left|x-x_o
ight|\sum_{p=0}^nrac{1}{2^p}$$

 \mathbb{R}^+ استنتج أن الدالة $\mathcal C$ متصلة على

تمرین 14

نعتبر الدالة \overline{f} المعرفة على $\mathbb R$ بما يلي:

$$\left\{ egin{aligned} f(x) &= x - 3\sqrt[3]{x - 1}\,; & x \geqslant 1 \ f(x) &= rac{\mathrm{Arctg}\sqrt{1 - x}}{\sqrt{1 - x}}\,; & x < 1 \end{aligned}
ight.$$

- $\displaystyle \lim_{-\infty} f(x)$ و $\displaystyle \lim_{+\infty} f(x)$ بين أن $\displaystyle f$ متصلة في $\displaystyle 1$ ثم أحسب $\displaystyle 0$
 - .(\mathscr{C}_f) أدرس الفرعين اللانهائيين للمنحنى (\mathscr{C}_f)
- $oldsymbol{\Theta}$ أدرس قابلية اشتقاق f على يمين 1 ، التأويل الهندسي.
- $v(t)=t^3$ نكل t من \mathbb{R}^*_+ نضع $u(t)=t-\mathrm{Arctg}(t)$ و \mathbb{R}^*_+

$$\lim_{x o 1^-}rac{f(x)-f(1)}{x-1}=\lim_{t o 0^+}rac{u(t)}{v(t)}$$
 اتحقق من أن (1)

$$g(x)=u(t)v(x)-u(x)v(t)$$
 نضع: \mathbb{R}_+^* نضع: $\exists c\in]0; t[:g'(c)=0$ بین أن:

ج) استنتج أن
$$\frac{1}{3}=rac{u(t)}{v(t)}=rac{1}{3}$$
 و أن f قابلية لل $t o 0$ للاشتقاق على يسار $t o 0$ ثم أعط التأويل الهندسي.

$$[1;+\infty[$$
 أدرس إشارة $f'(x)$ على المجال \mathfrak{G}

 $-\infty;1[$ بين أن لكل من $-\infty;1$ لدينا:

$$f'(x) = \frac{1}{2(1-x)^{\frac{3}{2}}} \left(\text{Arctg} \sqrt{1-x} - \frac{\sqrt{1-x}}{2-x} \right)$$

ج) بین أن:
$$rac{t}{(t+t^2)}: ext{Arctg}$$
 : ثم $(t) > \frac{t}{1+t^2}$: ثم استنتج أن f تزایدیهٔ علی f استنتج أن f

f(x)=0 بين أن المعادلة f(x)=0 تقبل حلا وحيدا في (\mathscr{C}_f) بين أن المنحنى (\mathscr{C}_f) .

تمرین 15 .

في كل من الحالات التالية، حدد الدوال الأصلية للدالة f على $f(x)=rac{(\sqrt{x}+1)^2}{\sqrt{x}}$ و $f(x)=x^3(x^4+1)^2$ مجال مناسب: $f(x)=rac{x-1}{(x^2-2x-3)^2}$ و $f(x)=rac{4x+2}{\sqrt{x^2+x+1}}$ و $f(x)=rac{\sin(x)}{\cos^3(x)}$ و $f(x)=rac{x-2}{\sqrt[3]{x^2-4x}}$ و

 $g \quad f(x) = \frac{\cos(x)}{\sqrt{2 + \sin(x)}} \quad g \quad f(x) = \frac{\sin(x)}{1 + \cos^2 x}$ $3 \quad f(x) = \frac{f(x)}{1 + \cos^2 x}$

 $f(x) = rac{3}{x^2 + 2x + 2}$ $f(x) = rac{\operatorname{Arctg}(x)}{1 + x^2}$ $f(x) = rac{\sin x - x \cos x}{x^2}$ $f(x) = 1 + rac{1}{ an^2 x}$ $f(x) = x\sqrt[3]{x + 1}$ $f(x) = x\sqrt[3]{x + 1}$

و $f(x) = x\sqrt[3]{x+1}$ و $f(x) = \frac{1}{(1+x)\sqrt{x}}$ و $f(x) = \sin 2x \sqrt{1 - \cos 2x}$ $f(x) = \tan^2(x)$

تمرین 16

f للدالة الأصلية F للدالة الأصلية الدالة الأصلية الدالة المدالة المدالة الدالة ا F(a)=b على مجال ينبغي تحديده و تحقق

$$\begin{cases} f(x) = \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{3}\right) \\ b = 0 \quad \text{g} \quad a = \pi \end{cases} \begin{cases} f(x) = \sin\left(x - \frac{\pi}{4}\right) \\ b = 0 \quad \text{g} \quad a = \frac{\pi}{2} \end{cases}$$

$$\begin{cases} f(x) = \sqrt{x+1} + \frac{x}{2\sqrt{x+1}} \\ b = 2 \quad \text{g} \quad a = 0 \end{cases} \begin{cases} f(x) = \frac{x+5}{(x-1)^4} \\ b = 3 \quad \text{g} \quad a = 2 \end{cases}$$

 $f(x)=\sin^4(x)$ نعتبر f المعرفة على $\mathbb R$ بما يلى:

 $\cos 2x$ أحسب f'(x) و f''(x) ثم عبر عن f(x) بدلالة f''(x) و f'(x)

 \mathbb{R} استنتج دالة أصلية للدالة f على $oldsymbol{2}$

- دالة فردية و متصلة على $\mathbb R$ و F دالة أصلية لها عل f $\mathbb R$ بين أن F دالة زوجية.
- دالة زوجية و متصلة على $\mathbb R$ و G دالة أصلية لها على $g~oldsymbol{arphi}$ و التي تنعدم في 0. بين أن G دالة فر دية. $\mathbb R$

 $h(x) = rac{x}{1+x^2} - ext{Arctg}(x)$: نعتبر الدالة ($oxed{I}$ h(x) أعط جدول تغيرات h و استنتج إشارة

 $(orall t\in \mathbb{R}): 1-t^2\leqslant rac{1}{1+t^2}\leqslant 1$ نحقق أن: $oldsymbol{0}$ $(orall x \in \mathbb{R}^+): x - rac{x^3}{3} \leqslant \operatorname{Arctg}(x) \leqslant x$ بين أن:

التكن g دالة معرفة على \mathbb{R}^+ بما يلي: g

$$\left\{ \begin{array}{l} g(x) = \dfrac{\operatorname{Arctg}(x)}{x} \; ; \; x \neq 0 \\ g(0) = 1 \end{array} \right.$$

 \mathbb{R} بين أن g تقبل دو الا أصلية على

لتكن G الدالة الاصلية للدالة g على $\mathbb R$ و التي تنعدم (III في 0. نعتبر الدالة f المعرفة على $\mathbb R$ بما يلى:

$$\begin{cases} f(x) = \frac{G(x)}{x} ; x \neq 0 \\ f(0) = 1 \end{cases}$$

 $(O;\, ec{i}\,; ec{j}\,)$ و ليكن (\mathscr{C}_f) منحناها في م م

 $(orall x \in \mathbb{R}^+): \ x - rac{x^3}{9} \leqslant G(x) \leqslant x$

بين أن f دالة زوجية. و أن $oldsymbol{0}$

- .0 استنتج أن f متصلة و قابلة للإشتقاق على يمين f
- $.(orall x \in [1;+\infty[):0\leqslant G(x)\leqslant 4\sqrt{x}$ بين أن $\lim_{+\infty} f(x)$ ثم حدد
- f'(x)بين أن f قابلة للإشتقاق على \mathbb{R}_+^* ثم أحسب $oldsymbol{0}$ $x \in \mathbb{R}_+^*$ لکل
 - نعتبر الدالة q المعرفة على \mathbb{R}^+ بما يلى: $oldsymbol{\mathfrak{G}}$

$$\begin{cases} q(x) = x^2 f'(x) ; x > 0 \\ q(0) = 0 \end{cases}$$

 $(orall x \in \mathbb{R}_+^*): xq'(x) = h(x)$ تحقق من أن:

 \mathscr{C}_f أعط جدول تغيرات f ثم أنشئ المنحنى (\mathscr{C}_f) .

(a < b) بحيث [a;b] دالة متصلة على f

F(a)=0 :لتكن F الدالة الأصلية للدالة f على الدالة الأصلية الدالة الذالة الذا

$$(\exists \alpha \in]a;b[): \sqrt{2(b-a)|f(\alpha)F(\alpha)|} < 1 + F^2(\alpha)$$

 $ig(H(x) = rac{1}{1 + F^2(x)}$ على الدالة TAF على الدالة

 $f(x) = rac{ an(x)}{1 - 2\sin(x)}$:دالة معرفة بما يلي f

- f مجموعة تعريف الدالة \mathcal{D}_f حدد
- بين أن النقطة $I\left(\frac{\pi}{2};0\right)$ مركز تماثل المنحنى (\mathscr{C}_f) و أنه يكفي دراسة f على المجموعة $E=\left[\frac{\pi}{2};\frac{5\pi}{6}\right[\cup\left]\frac{5\pi}{6};\frac{3\pi}{2}\right[$
 - E أحسب نهايات f عند محدات مجاني $oldsymbol{\mathfrak{G}}$
 - E أدرس تغيرات f على كل من مجالي Φ
 - $[-\pi;\pi]\cap \mathscr{D}_f$ على المنحنى (\mathscr{C}_f) على أنشئ المنحنى $oldsymbol{\mathfrak{G}}$

 $f(x) = \sqrt{x + \sqrt{1 + x^2}}$ لتكن f دالة معرفة على $\mathbb R$ بما يلى:

 $(orall x \in \mathbb{R}): \ x + \sqrt{1 + x^2} > 0$: تحقق من أن $(x \in \mathbb{R}): x + \sqrt{1 + x^2} > 0$

 $\lim_{n\to\infty}f(x)$ ب $\lim_{n\to\infty}f(x)$ النهايات التالية $\lim_{n\to\infty}f(x)$ و $\lim_{n\to\infty}\frac{f(x)}{x}$ ثم استنتج طبيعة الفروع اللانهائية للمنحنى (\mathscr{C}_f) .

- f'(x) بين أن f قابلة للاشتقاق على $\mathbb R$ و احسب (f'(x) بين أن f استنتج منحى تغيرات الدالم f على f
- بین أن المنحنی (\mathscr{C}_f) یقبل نقطة انعطاف وحیدة $rac{\sqrt{3}}{3}$ ثم استنتج تقعر المنحنی (\mathscr{C}_f) .
 - $(O; ec{i}; ec{j})$ أنشئ المنحنى (\mathscr{C}_f) في م م م $oldsymbol{0}$
- بين أن المعادلة f(x)=x تقبل حلا وحيدا lpha في المجال $[1;+\infty[$ و أن lpha<3 .
- f^{-1} بين أن f تقابل من \mathbb{R} نحو \mathbb{R}^*_+ ثم حدد $(\mathcal{C}_{f^{-1}})$ بين أن $(O; \overrightarrow{i}; \overrightarrow{j})$ المنحنى ب) أنشئ في نفس المعلم
 - نعتبر الدالة ϕ المعرفة على $\left[0; \frac{\sqrt{3}}{3}\right]$ بما يلي: σ

$$\phi(x) = \frac{f(x) + 1}{2} - f\left(\frac{x}{2}\right) - \frac{Ax^2}{8}$$

 $\phi\left(rac{\sqrt{3}}{3}
ight)=0$ حيث A عدد حقيقي يحقق

 $\left(\exists a\in\left]0;rac{\sqrt{3}}{3}
ight[
ight):\;f'(a)-f'\left(rac{a}{2}
ight)=rac{Aa}{2}$

 $-\left(\exists b\in\left]rac{a}{2};a
ight[
ight):\quad A=f''(b)$ بین أن: $\left($

 $\left|f\left(rac{\sqrt{3}}{6}
ight)-rac{1}{2}-rac{\sqrt[4]{3}}{2}
ight|\leqslantrac{\sqrt[4]{3}}{96}$:استنتج أن

تمرین 23

 $f(x)=\cos(x)$ دالة معرفة على $f(x)=[0;\pi]$ بما يلي:

- . [-1;1] نحو $[0;\pi]$ انحو f بين أن f
- و بين أن الدالة العكسية f^{-1} قابلة للاشتقاق على [0,1] و أن:

 $(orall x \in]-1;1[): \ \left(f^{-1}
ight)'(x) = rac{-1}{\sqrt{1-x^2}}$

نعتبر الدالة g المعرفة بما يلي (II

$$g(x)=f^{-1}\left(4x^3-3x
ight)$$

- g حدد \mathscr{D}_g مجموعة تعريف الدالة
- $-rac{1}{2};rac{1}{2}$ بين أن g قابلة للاشتقاق على المجال g بين أن g و أن $g'(x)=rac{3}{\sqrt{1-x^2}}$ و أن $g'(x)=rac{3}{\sqrt{1-x^2}}$

- $\left(orall x \in \left[-rac{1}{2};rac{1}{2}
 ight]
 ight) \colon \, g(x) = 2\pi 3f^{-1}(x)$
- f_a ليكن a عددا حقيقيا بحيث |a|<1 نعتبر الدالة $f_a(x)=h\left(rac{a+\cos(x)}{1+a\cos(x)}
 ight)$ المعرفة بما يلي: $(orall x\in\mathbb{R}):1+a\cos(x)>0$

€ استنتج أن:

- $.(orall x\in \mathbb{R}): 1+a\cos(x)>0$ بين أن $\left|rac{a+\cos(x)}{1+a\cos(x)}
 ight|\leqslant 1$ المتراجحة \mathbb{R}
- $\mathcal{D}_{f_a}=\mathbb{R}$ استنتج أن $\mathcal{D}_{f_a}=\mathbb{R}$. ثم بين أنه يمكن الأكتفاء بدراسة f_a على المجال $[0;\pi]$.
 - $]0;\pi[$ بين أن الدالة f_a قابلة للاشتقاق على $oldsymbol{\Theta}$. $(orall x\in]0;\pi[):f_a'(x)=rac{\sqrt{1-a^2}}{1+a\cos(x)}$: و أن
 - نتكن g_a الدالة المعرفة على g_a بما يلي: g_a

$$g_a(x) = \left(\frac{1}{1 + a\cos(x)} - \frac{1}{1 + a}\right)$$

ا) أدرس تغيرات الدالة g_a حسب قيم a. ثم استنتج أن:

$$\left(orall (c;x) \in [0;\pi]^2
ight) \ 0 < c < x \Longrightarrow |g_a(c)| \leqslant |g_a(x)|$$

- ب) ليكن x من $[0;\pi[$ ، بتطبيق TAF على الدائة $\varphi:t\mapsto f_a(t)-t\sqrt{rac{1-a}{1+a}}$
- $\left|f_a(x)-x\sqrt{rac{1-a}{1+a}}
 ight|\leqslant x\sqrt{1-a^2}\left|g_a(x)
 ight|$ بين أن: f_a فايلة للاشتقاق على اليمين في السنتج أن f_a قايلة للاشتقاق على اليمين في
- ج) استنتج أن f_a قابلة للاشتقاق على اليمين في الصفر ثم حدد $\left(f_a
 ight)_d'(0)$.
- $(orall \in]-1;1[):h(-t)=\pi-h(t)$. بين أن f_a قابلة للاشتقاق على يسار π و حدد و استنتج أن f_a قابلة للاشتقاق على π
- ا أعط جدول تغيرات f_a على $[0;\pi]$. ثم أنشئ منحنى الدالة $f_{rac{1}{2}}$ على $[-2\pi,2\pi]$.
- $u_o = rac{\pi}{2}$ نعتبر المتتالية (u_n) المعرفة بما يلي: $u_o = rac{\pi}{2}$ و فقر ف $u_{n+1} = f_a(u_n)$
- $u_{n+1}=f_a(u_n)$ و نفتر ض أن: $u_{n+1}=f_a(u_n)$ $(orall n\in \mathbb{N}): 0\leqslant u_n\leqslant \pi$ بين أن: $h(a)<rac{\pi}{2}$ بين أن: a
- $oldsymbol{Q}$ بين أن (u_n^{-}) تناقصية و استنتج أنها متقاربة ثم حدد نهايتها.

تمرین 24

لتكن f دالة متصلة على [a;b] ، و قابلة للاشتقاق مرتين f على f على a;b[على a;b[بحيث g(x)=f(x)-A(x-a)(x-b) على $A=\frac{f(c)}{(c-a)(c-b)}$ بحيث f

 $(\exists \alpha \in]a;b[): \quad f(c) = (c-a)(c-b)\frac{f''(\alpha)}{2}$

نعتبر الدالة ar f المعرفة على $\mathbb R$ بما يلي:

$$f(x) = 2 + \frac{1}{2}\cos(x)$$

- $I=[0;\pi]$ بين أنه يكفي دراسة f على المجال (
 - I أدرس تغيرات f على المجال ا
 - I أدريس تقعر المنحنى (\mathscr{C}_f) على المجال (
 - $-4\pi;4\pi]$ أنشئ المنحنى (\mathscr{C}_f) على المجال أ
- lpha ا بين أن المعادلة f(x)=x تقبل حلا وحيدا $oldsymbol{arphi}$ $rac{\pi}{2} < lpha < \pi$ يناتمي (لى المجال π) إلى المجال π [. و تحقق أن
 - $(orall x \in I): |f'(x)|$ ب) بین اُن $(x \in I)$
 - لتكن (u_n) المتتالية المعرفة بما يلي $oldsymbol{\mathfrak{G}}$

$$(orall n \in \mathbb{N}): u_{n+1} = f(u_n)$$
 و $u_o = 1$

. $(orall n\in\mathbb{N}):|u_{n+1}-lpha|$ پین آن $|u_n-lpha|=rac{1}{2}|u_n-lpha|$ بین آن(ب) بین أن (u_n) متقاربة محددا نهایتها.

تمرین 26 .

 $(orall x \in \mathbb{R}^{+*}): \operatorname{Arctg}(x) + \operatorname{Arctg}\left(rac{1}{x}
ight) = rac{\pi}{2}$: بين أن: f المعرفة بما يلي:

$$\left\{egin{array}{l} f(x) = \operatorname{Arctg}\sqrt{rac{1-x}{x}} \ ; \ x
eq 0 \end{array}
ight.$$
 $f(0) = rac{\pi}{2}$

- . f عدد \mathscr{D}_f حير تعريف الدالة
- . 0 أدرس اتصال و قابلية اشتقاق الدالة f على يمين 0أول هندسيا النتيجة المحصل عليها.
- ادرس قابلية اشتقاق الدالة f على يسار 1 . أو ل هندسيا $oldsymbol{\mathfrak{G}}$ النتيجة المحصل عليها.
- f أحسب أكل f'(x) لكل أعط جدو ل تغيرات f'(x)
- \mathcal{C}_f بين أن النقطة $\mathcal{C}_f(rac{1}{2};rac{\pi}{4})$ مركز تماثل المنحنى $\mathcal{C}_f(\mathcal{C}_f)$.
 - $\mathcal{L}\left(\mathscr{C}_f
 ight)$ بين أن $\mathcal{L}\left(rac{1}{2};rac{\pi}{4}
 ight)$ نقطة انعطاف المنحنى $oldsymbol{\mathfrak{G}}$
 - $.ig(O; \overrightarrow{i}; \overrightarrow{j}ig)$ في م م م (\mathscr{C}_f) في المنحنى $oldsymbol{\mathcal{C}}$

نعتبر الدالة f المعرفة على $\mathbb R$ بما يلي:

$$\begin{cases} f(x) = \frac{1}{3}x - \sqrt[3]{x} \; ; \; x \geqslant 0 \\ f(x) = \frac{x}{x^2 + 1} + \operatorname{Arctg}(x) \; ; \; x < 0 \end{cases}$$

- .f(-1) و $f(3\sqrt{3})$ و f(8) أحسب (
- 0 في f أدرس اتصال و قابلية اشتقاق
 - . f ضع جدول تغيرات الدالة (ا
- (\mathscr{C}_f) أدرس الفروع اللانهائية للمنحنى
- $.ig(O; \overrightarrow{i}; \overrightarrow{j}ig)$ مثل المنحنى (\mathscr{C}_f) في م م م
 - $I=[1;+\infty[$ ليكن ${
 m g}$ قصور f يلي ${
 m f \Theta}$
- ا) بین أن ${f g}$ تقبل دالة عکسیة ${f g}^{-1}$ معرفة علی مجال يتم تحديده J
 - $.ig(O; \overrightarrow{i}; \overrightarrow{j}ig)$ في المعلم $\left(\mathscr{C}_{\mathbf{g}^{-1}}
 ight)$ أنشئ
 - J من $g^{-1}(x)$ عدد $\mathrm{g}^{-1}(x)$

نعتبر الدالة ${
m g}$ المعرفة على ${
m J}-\infty$ بما يلي:

$$g(x) = Arctg\left(\frac{1}{x}\right) - \frac{x}{1+x^2}$$

أدرس تغيرات g و استنتج إشارتها.

نعتبر الدالة f المعرفة بما يلي:

$$\left\{egin{array}{l} f(x) = \left(\sqrt[3]{x}
ight)^2 + \sqrt[3]{x} - x \; ; \; x \geqslant 0 \ f(x) = x \mathrm{Arctg}\left(rac{1}{x}
ight) \; ; \; x < 0 \end{array}
ight.$$

0 أدرس اتصال أf في أ

أدرس قابلية اشتقاق f في 0 و أعط تأويلا هندسيا.

- أحسب $\lim_{\|x\| o + \infty}$ ثم أدرس الفروع اللانهائية للمنحنى 2
 - ⊕ ضع جدول تغيرات الدالة f.
- ين أن المعادلة f(x)=0 تقبل حلا و حيدا lpha في (α المجال $\alpha^3-4lpha^2-lpha=0$ المجال بين أن ($lpha^3-4lpha^2$
 - - $(O; \overrightarrow{i}; \overrightarrow{j})$ إنشئ المنحنى (\mathscr{C}_f) في المعلم أنشئ المنحنى (