CS 473: Algorithms

Chandra Chekuri chekuri@cs.illinois.edu 3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2010

Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: saw an $O(n \cdot (n+m))$ time algorithm.

This lecture: O(n+m) time algorithm.

Graph of SCCs

Figure: Graph G

Figure: Graph of SCCs G^{SCC}

Meta-graph of SCCs

Let $S_1, S_2, \dots S_k$ be the SCCs of G. The graph of SCCs is G^{SCC}

- Vertices are $S_1, S_2, \dots S_k$
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof.

Exercise.

SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.

Part I

Directed Acyclic Graphs

Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Sources and Sinks

Definition

- A vertex *u* is a source if it has no in-coming edges.
- A vertex *u* is a sink if it has no out-going edges.

ullet Every DAG G has at least one source and at least one sink.

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Topological Ordering/Sorting

Figure: Graph G

Figure: Topological Ordering of G

Definition

A topological ordering/sorting of G = (V, E) is an ordering < on V such that if $(u, v) \in E$ then u < v.

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

Only if: Suppose G is not a DAG and has a topological ordering <.

G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$.

Then $u_1 < u_2 < \ldots < u_k < u_1!$ A contradiction.

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

If: Consider the following algorithm:

- Pick a source *u*, output it.
- Remove u and all edges out of u.
- Repeat until graph is empty.
- Exercise: prove this gives an ordering.

Exercise: show above algorithm can be implemented in O(m+n) time.

Output: 1 2 3 4

adbcegth

Note: A DAG *G* may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?

DFS to check for Acylicity and Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS to check for Acylicity and Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- ullet If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

DFS to check for Acylicity and Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in DFS(G).

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Example

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS.

All other nodes in C are descendents of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.

Assume post(v) > post(u) and (u, v) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
 Implies that (u, v) is a back edge but a DAG has no back edges!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \nleq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \not \leq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

DAGs and Partial Orders

Total order, all the elements of set are comparable with each other.

Partial order, some elements might not be comparable(Not all the elements need to have a relation.

Definition

A partially ordered set is a set S along with a binary relation \leq such that \leq is (i) reflexive ($a \leq a$ for all $a \in V$), (ii) anti-symmetric ($a \leq b$ implies $b \not \leq a$) and (iii) transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Part II

Linear time algorithm for finding all strong connected components of a directed graph

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
For each vertex u \in V do find SCC(G,u) the strong component containing u as follows: Obtain \operatorname{rch}(G,u) using DFS(G,u) Obtain \operatorname{rch}(G^{\operatorname{rev}},u) using DFS(G^{\operatorname{rev}},u) Output SCC(G,u) = \operatorname{rch}(G,u) \cap \operatorname{rch}(G^{\operatorname{rev}},u)
```

Running time: O(n(n+m))

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
For each vertex u \in V do find SCC(G,u) the strong component containing u as follows: Obtain \operatorname{rch}(G,u) using DFS(G,u) Obtain \operatorname{rch}(G^{\operatorname{rev}},u) using DFS(G^{\operatorname{rev}},u) Output SCC(G,u) = \operatorname{rch}(G,u) \cap \operatorname{rch}(G^{\operatorname{rev}},u)
```

Running time: O(n(n+m))

Is there an O(n+m) time algorithm?

Structure of a Directed Graph

Figure: Graph G

Figure: Graph of SCCs G^{SCC}

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n+m)!

How do we find a vertex in the sink SCC of G^{SCC} ?

How do we find a vertex in the sink SCC of G^{SCC} ?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

How do we find a vertex in the sink SCC of G^{SCC} ?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Answer: DFS(G) gives some information!

Post-visit times of SCCs

Definition

Given G and a SCC S of G, define $post(S) = max_{u \in S} post(u)$ where post numbers are with respect to some DFS(G).

An Example

Figure: Graph G

Figure: Graph with pre-post times for DFS(A); black edges in tree

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

G^{SCC} and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

• If $u \in S$ then all of S' will be explored before DFS(u) completes.

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

Topological ordering of G^{SCC}

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of $G^{\rm SCC}$

Topological ordering of $G^{ m SCC}$

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of $G^{\rm SCC}$

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

DFS(G) gives some information on topological ordering of G^{SCC}!

An Example

[2, 11] B A C [12, 15] C [13, 14] C [4, 5] C [18, 9]

Figure: Graph G

Figure: Graph with pre-post times for DFS(A); black edges in tree

Figure: G^{SCC} with post times \longrightarrow 4 \bigcirc \longrightarrow 4 \bigcirc \longrightarrow 4 \bigcirc \bigcirc 4 \bigcirc 6 \bigcirc 4 \bigcirc 6 \bigcirc 9 4 \bigcirc 6 \bigcirc 9 4 \bigcirc 9 4

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n+m)!

How do we find a vertex in the sink SCC of G^{SCC} ?

How do we find a vertex in the sink SCC of G^{SCC} ?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

How do we find a vertex in the sink SCC of G^{SCC} ?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Answer: DFS(G) gives some information!

Finding Sources

Proposition

The vertex u with the highest post visit time belongs to a source SCC in $G^{\rm SCC}$

Finding Sources

Proposition

The vertex u with the highest post visit time belongs to a source SCC in $G^{\rm SCC}$

Proof.

- post(SCC(u)) = post(u)
- Thus, post(SCC(u)) is highest and will be output first in topological ordering of G^{SCC} .

Finding Sinks

Proposition

The vertex u with highest post visit time in DFS(G^{rev}) belongs to a sink SCC of G.

Finding Sinks

Proposition

The vertex u with highest post visit time in DFS(G^{rev}) belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^{rev}
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC} , SCC(u) is sink SCC of G.

Linear Time Algorithm

```
Do DFS(G^{\mathrm{rev}}) and sort vertices in decreasing post order. Mark all nodes as unvisited for each u in the computed order do if u is not visited then DFS(u)

Let S_u be the nodes reached by u
Output S_u as a strong connected component Remove S_u from G
```

Analysis

Running time is O(n+m). (Exercise)

Figure: Graph G

Figure: Graph G

Figure: G^{rev}

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: DFS(G) = {G};

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: DFS(
$$G$$
) = { G }; DFS(H) = { H };

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: DFS(
$$G$$
) = { G }; DFS(H) = { H }; DFS(B) = { B , E , F };

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: DFS(
$$G$$
) = { G }; DFS(H) = { H }; DFS(B) = { B , E , F }; DFS(A) = { A , C , D }.

Obtaining the meta-graph from strong connected components

Exercise: Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph $G^{\rm SCC}$ can be obtained in O(m+n) time.

• let S_1, S_2, \ldots, S_k be strong components in G

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that $post(u_i) = post(S_i) = max_{v \in S_i} post(v)$.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that $post(u_i) = post(S_i) = max_{v \in S_i} post(v)$.
- Assume without loss of generality that $post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that $post(u_i) = post(S_i) = max_{v \in S_i} post(v)$.
- Assume without loss of generality that $post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS (u_k) will explore all of S_k which is a sink component in G.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that $post(u_i) = post(S_i) = max_{v \in S_i} post(v)$.
- Assume without loss of generality that $post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS(u_k) will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

Part III

An Application to make

Unix utility for automatically building large software applications

- Unix utility for automatically building large software applications
- A makefile specifies

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

An Example makefile

makefile as a Digraph

• Is the makefile reasonable?

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

• Is the makefile reasonable? Is G a DAG?

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order.
 Verify that one can find the files to recompile and the ordering in linear time.

Takeaway Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph $G^{\rm SCC}$ give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).