Problem 2.1. Consider the 1d univariate function $f(x) = q(x) + \phi(x)$ where $q(x) = ax^2 + bx + c$ with a > 0 is convex quadratic and

$$\phi(x) = \begin{cases} \ell x & x < 0 \\ rx & x \ge 0 \end{cases}$$

- (a) Under what conditions on $\ell, r \in \mathbb{R}$ is ϕ convex?
- (b) Assuming the conditions from part (a), ie, assuming ϕ is convex, write down an explicit, closed form expression for $x^* = \operatorname{argmin} f(x)$.
- (c) Explain in detail how the solution from part (b), together with coordinate descent, could be used to solve a LASSO regression problem very quickly. Augment your explanation with pseudocode or python which implements the procedure.

Problem 2.2. Consider a simple mean-variance optimization problem with trading cost given by paying half the bid-ask spread for every trade in either direction. The utility function of final wealth takes the form

(2.1)
$$u(h) = h'\alpha - \frac{\kappa}{2}h'\Sigma h - \sum_{i} \frac{1}{2}s_{i}|h_{i} - h_{0,i}|$$

for an initial portfolio $h_0 \in \mathbb{R}^n$ which gets traded into a final portfolio $h \in \mathbb{R}^n$ including all cost terms. Note that h_0 and h have units of dollars.

Show that optimizing over h_i while holding h_j fixed for $i \neq j$ (in other words, coordinate descent over each asset) reduces to a sequence of 1d subproblems of the type considered in the previous problem. Write down the explicit solution for the *i*-th sub-problem in terms of the variables in (2.1).

Problem 2.3 (Extra Credit - HARD). Let $x \in \mathbb{R}^2$ and consider the problem $x^* = \operatorname{argmin} f(x)$ where $f(x) = q(x) + \phi(x)$ and $q(x) = \frac{1}{2}x^TAx + b^Tx$ is convex quadratic (A is positive definite). Also,

$$\phi(x) = c |x_1 - x_2| + b \mathbb{I}[x_2 < 0]$$

with b, c > 0. Can you find x^* in closed form?

Problem 2.4. Suppose you are considering trading a single asset, and your current position is h_0 which is some constant determined by the past (not a decision variable). You trade into a target position h_1 in the morning, and then into a position h_2 just before the close, and finally liquidate the next morning. Suppose that the slippage of trading δ dollars is well approximated by $\frac{1}{2}s|\delta|$ where s>0. Suppose also that you pay borrow cost $bh_2\mathbb{I}[h_2<0]$ on the position you hold overnight where \mathcal{I} denotes the indicator function and b>0. Suppose your expected return on the asset is μ_1 from open to close, and μ_2 from close to the next open where $\mu_1>0$ and $\mu_2<0$ and the asset's volatility is σ .

(a) Let w denote final wealth (in dollars) after all trading is complete the next morning. Write down the full mean-variance utility

$$u(h_1, h_2) = E[w] - (\kappa/2)V[w]$$

(where w includes all costs), as a function of h_1 and h_2 where as always, $\kappa \geq 0$.

- (b) Is $u(h_1, h_2)$ convex?
- (c) If you solved the extra credit problem above, apply it to obtain the explicit solution to this one.