

DATA MINING — Credit Default Prediction

Using SAS Enterprise Miner

CHEEKY MINERS

ROHIT SOANS | NALIN SINGH

PROJECT MAP

Our approach to the bankruptcy classification problem

Classification Problem - Project Workflow

Exploratory Data
Analysis (EDA) –
to identify different trends in
the raw data

Data Modification –
preparing our data for
modelling

Data Modelling –
running different models to
train our data

Cross Validation –public v. private leaderboard score

Way Forward –major learnings from the
project

Project Objective

APPLY CLASSIFICATION ALGORITHMS TO FORECAST IF A CLIENT WILL DEFAULT

DATA PRE-PROCESSING

EXPLORATORY DATA ANALYSIS (EDA)

Identifying patterns in our data

Limit	Sex	Educatio	1	Marriage	Age	Status_1	4	Statement_1	Payment_1	Status_2		Statement_2	Payment_2	Status_3	Sta	atement_3	Payment_3	Status_4		Statement_4	Payment_4	Status_5
1.020380	81		11		0.2732249		1	105935.38	5138.86		2	100815.86	30022.02		2 1	103744.47	5008.69		2	103423.25	10017.1	
0.520358	21		32		-1.1369961		2	76068.75	2896.01		2	69335.51	2090.18		2	54884.9	1514.48		2	55385.28	1124.87	
-0.212210	411		22		0.0562678		2	58165.94	2503.78		2	59695.81	3002.56		2	61732.14	2303.06		2	62412.93	3001.5	
0.172974	30		42		-0.5946034		2	198098.28	4515.53		2	194580.41	15466.96		2 2	202870.47	4702.43		2	198938.2	47450.88	
0.712233	01		12		1.0325747		1	6062.43	0		1	-899.31	0		0	-899.19	2808.72		1	1906.53	6.83	
0.250011	31		21		1.3580104		2	205153.31	0		2	0	0		0	0	0		0	0	0	
0.172974	30		51		0.4901820		2	58783.09	3101.07		2	59881.41	80000.33		2 1	136994.15	5003.64		2	118269.45	4000.92	
1.328528	60		12		-0.0522106		1	320.78	3075.45		1	3077.29	3003.84		1	3002.83	2613.9		1	2615.23	1807.83	
2561119	90		32		1.1410533		1	24239.84	15000.9		2	36676.83	1560.35		1	1562.52	310852.35		1	310852.56	10001.92	
0.018900	41		12		-0.5946034		2	129848.98	5115.75		2	89690.14	2500.39	1	2	31050.39	0		2	0	0	
0.443321	20		12		-0.7030819		0	7399.51	2001.04		0	-16.91	0		0	-12.03	0		0	-16.88	0	
0.905542	90		21		-0.1606892		2	2793.46	2001.74		2	4565.44	1201.21	1	2	5000.99	0		2	0	0	
0.327048	20		22		-0.1606892		1	8548.34	2998.79		1	2990.9	4585.58		1	4572.53	3274.72		1	3268.39	8649.54	
2.252972	10		12		-0.1606892		1	14461	8869.89		1	8869.47	23665.03		1	21494.64	12660.61		1	12657.8	5752.89	
2.561119	90		21		0.5986605		2	131721.34	3900.4		2	103746.44	3201.43		2	91805.07	2768.28		2	76152.08	2103.86	
-0.212210	410		21		-0.1606892		1	56705.67	3000		2	53584.81	3003.81		2	54794.81	3000.76		2	55952.7	3000.1	
0.905542	90		21		-0.3776463		1	391.66	390.97		1	390.17	391	1 3	1	390.32	394.21		1	391.65	933.67	
1.059616	91		12		-1.2454747		2	28440.38	1801.25		2	28848.92	3302.33	- 3	2	31072.89	0		4	30249.86	1501	
0.058136	51		21		1.5749675		1	269.97	0		1	0	698.74		1	697.12	697.96		1	698.92	897.51	
0 289247	3 1		22		-1 0285176		4	137204 82	7002 38		4	139190 92	0	1 2	4 1	133523 62	51337		2	133183.45	5002 76	

Understanding Data – We noticed that there was no missing values in the data

Imbalanced Target Variable – Frequency of 0 in the target variable is significantly higher than that of 1, creating an imbalanced data. It will be an important factor when we create our model.

Important Class Attributes – As per the Chi Square test we notice that Sex is strongly associated than Marriage with our target variable.

EXPLORATORY DATA ANALYSIS (EDA)

Identifying patterns in our data

Important Attributes – As per the variable worth graph, most important attributes are: **Status attributes**

EXPLORATORY DATA ANALYSIS (EDA)

Identifying patterns in our data

Marriage and Sex appear to not have a clear separation with our target variable

DATA MODELLING & CROSS VALIDATION

DATA MODELLING

Running different models to fit our data

** TOTAL MODELS DEPLOYED

1 Gradient Boosting

 Tuning parameters tried: no. of iterations, shrinkage, leaf fraction, max depth & reuse variables.

 Tuning parameters tried: number of hidden layers, max iterations, max time & model selection criterion.

2 HP Forest

 Tuning parameters tried: max number of tress, max depth, split size & min category size. 4 Logistic Regression

 Tuning parameters tried: input coding method. In addition, used both impute & transform nodes before running logistic regression.

DATA MODELLING

Running different models to fit our data

Best Model #1

Best Model #2

Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Target Label	Selection Criterion: Valid: Roc Index	Train: Sum of Frequencies	Train: Sum of Case Weights Times Freq	Train: Misclassifica tion Rate	
Y	Boost7	Boost7	GB 7	TI Default1	Default 1	0.734	8998	17996	0.212269	
	Boost8	Boost8	GB 8	TI_Default1	Default1	0.732	8998	17996	0.210158	
	Boost6	Boost6	GB 6	TI_Default1	Default1	0.732	8998	17996	0.210936	
	Boost9	Boost9	GB 9	TI_Default1	Default1	0.731	8998	17996	0.211714	
	Boost10	Boost10	GB 10	TI_Default1	Default:1	0.73	8998	17996	0.211825	
	Neural	Neural	Neural Net	TI Default1	Default1	0.727	8998	17996	0.206935	

Valid ROC Index: .727

Public Score: .74631

Private Score: .74843

Valid ROC Index: .735

Public Score: .74617

LEARNINGS & WAY FORWARD

WAY FORWARD

Major learnings from public & private leaderboard score difference

- Shrinkage seems to be a **balance parameter** as we increased number of iterations. Increasing number of iterations can lead to a better model fit if it is balanced with a decrease in shrinkage.
- In addition to number of iterations, max tree depth can be used as a **regularization parameter**.
- Better combination of **combination and activation functions(Combination = Linear, Activation = mlogistic)**for target layer in neural network can be used for better fit.
- Adjusting the **number of hidden layers/ units** can also be used as a balancing parameter for better fit.
- Combining different models together can help reduce variance in our model fit. For classification, voting could have been used as a judging parameter
- Enables to train diverse models and use a combination of models to stabilize the overall performance and hence increase accuracy.

Way Forward

Major learnings from public & private leaderboard score difference

Most Important Learning – In order to get a high score on the Public Leaderboard, we tried different models making changes in iterations, shrinkage, data partition, etc., which led to overfitting of the data causing high variations in the final leaderboard.

THANK YOU!