清华大学本科生考试试题专用纸

微积分Ⅲ期终考试 A 卷

2006年1 月8日

- 一、填空题(每空题3分,共39分)
- 1. 曲面 $x^2 + y^2 z = 1$ 在点 (-1, -1, 1) 的切平面方程是
- 2. 设 f 为连续可微函数, f'(1) = 2. 令 $g(x, y, z) = f(x^2yz)$,则 $\nabla g(1,1,1) = ...$
- 3. 设S 为球面 $x^2 + y^2 + z^2 = 4$ 上的不与坐标轴相交的一片,则S 上的点(x, y, z) 的外侧单位 法向量是____; 如果S 的面积等于A,则

$$\iint_{S} \frac{\mathrm{d}y \wedge \mathrm{d}z}{x} + \frac{\mathrm{d}z \wedge \mathrm{d}x}{y} + \frac{\mathrm{d}x \wedge \mathrm{d}y}{z} = .$$

- 4. 常微分方程 y'' 2y' + 5y = 0 的通解为
- 5. 设常微分方程 $y'' + \cos x \cdot y' + \sin x \cdot y = \sin 2x$ 有三个线性无关解 $y_1(x)$, $y_2(x)$ 和 $y_3(x)$.则 微分方程 $y'' + \cos x \cdot y' + \sin x \cdot y = 0$ 的通解是
- 6. 假设函数 y(t) 满足方程 $y'' + y' + y = 1 + \cos t$. 则 $\lim_{t \to +\infty} \frac{y(t)}{t} =$ ___。
- 7. 设空间光滑曲面 S 的方程为 z=f(x,y) , $x^2+y^2\leq 2$,上侧为正. 其中函数 f(x,y) 有连续的偏导数. 则 $\iint_S (x^2+y^2) \mathrm{d}x \wedge \mathrm{d}y = \mathbf{0}$
- 8. 设 $\Omega = \{(x,y,z) | \sqrt{x^2 + y^2} \le z \le \sqrt{1 x^2 y^2} \}$,则三重积分 $\iint_{\Omega} f(x,y,z) dx dy dz$ 可以化成 球坐标系下的累次积分
- 9. D是由曲线 $y = \ln x$ 、直线 x = e,以及 x 轴围成的平面区域,则 $\iint_D x dx dy = .$
- 10. 锥面 $z = \sqrt{x^2 + y^2}$ 含在柱面 $(x 2007)^2 + (y + 2008)^2 = 4$ 内部的面积等于。
- 11. 设 L 为曲线 $x^2 + y^2 = 2x$ $(y \ge 0)$, 则 $\int_L \sqrt{2-x} dl = ...$
- 二、解答题
- 12. (8分) Ω 是锥面 $x^2 + y^2 = z^2$ 与平面 z = 2 围成的空间区域、计算 $\iiint_{\Omega} (2x 3y + z) dx dy dz.$
- 13. (10分)设 S 是抛物 $z = \frac{1}{2}(x^2 + y^2)$, $0 \le z \le 1$. 在 S 任意点一点(x, y, z) 的质量密度为

 $\sqrt{1+x^2+y^2}$. 求S的质心.

14. (10 分)如图,L是有向光滑曲线,起点为原点O,终点为A(2,2). 已知L与线段 \overrightarrow{OA} 围成的区域D的面积等于A. f(t)有连续导数. 计算曲线积分

$$\int_{I} (y^{2}e^{x} - 2y)dx + (2ye^{x} - 4x)dy$$

15. (8 分)设 L 为平面 S: x+y+z=1 在第一卦限中的部分的边界,方向是 $A(1,0,0) \to B(0,1,0) \to C(0,0,1) \to A(1,0,0)$. 空间有一个力场

$$\vec{F}(x, y, z) = y\vec{i} - 2z\vec{j} + 6x\vec{k}$$
.

求单位质点P在L上某点出发,绕L运动一周时, \vec{F} 对于质点所做的功.

- 16. (10 分)设 f(x) 在 $(-\infty, +\infty)$ 上有二阶连续导数且 f(0) = f'(0) = 1. 又设对于空间 R^3 中的任意一张光滑的闭合曲面 S ,都有 $\iint_S f'(x) dy \wedge dz + y f(x) dz \wedge dx 2z e^x dx \wedge dy = 0$,求 f(x) . 17. (12 分)
- ① 设 δ 是任意一个正数, L 是圆周 $x^2 + y^2 = \delta^2$ (逆时针方向). 计算积分

$$\oint_L \frac{(x+y)dx + (y-x)dy}{x^2 + y^2}$$

- ② 如果将 L 换成不经过原点但环绕原点的光滑、简单的闭合曲线(逆时针方向). 计算上述积分.
- ③ 向量场 $\frac{(x+y)i-(x-y)j}{x^2+y^2}$ 在右半平面 x>0 有没有势函数? 简述理由.
- ④ 设L为从A(2,0)到B(4,4)的有向线段,计算

$$\int_{L} \frac{(x+y)\mathrm{d}x + (y-x)\mathrm{d}y}{x^2 + y^2}.$$

18. (6分) 设 Ω 是圆域: $x^2 + y^2 < 1$. f(x, y) 在 Ω 上有连续偏导数, 且处处满足方程

$$x\frac{\partial f(x,y)}{\partial x} + y\frac{\partial f(x,y)}{\partial y} = 0.$$

求证 f(x,y) 在 Ω 恒等于常数. 如果 Ω 是不包含原点的圆域,举例说明上述结论未必正确.