Competition Survey

Analyse important factors from past results of FS Electric competitions

[raw_formula_student, read_file(file)]

Libraries

```
In [1]:
         import pandas as pd
         import os
         import matplotlib.pyplot as plt
         %config InlineBackend.figure_formats = ['svg'] # makes everything svg by default
         %matplotlib inline
         from sklearn import preprocessing
```

Importing Results

```
PDFs from FS Website
In [2]:
         rel = "data/"
         files = os.listdir("./data")
In [3]:
         def read file(file):
             if( ".csv" == file[-4:] ):
                 df = pd.read csv(rel + file)
                 return df
In [4]:
         raw_formula_student = pd.DataFrame()
         for file in files:
             if( ".csv" == file[-4:] ):
                 raw formula student = pd.concat(
```

Data Cleanup

```
In [5]:
         def cleanup(df):
             df = df.copy()
             df.dropna(inplace=True)
             df.iloc[:, 2:12] = (
                df.iloc[:, 2:12]
                 .apply(lambda x: x.str.replace(',', '.'))
                 .values.astype(float)
             df[["Car", "Overall Placing"]] = df[["Car", "Overall Placing"]].values.astype('int32')
             df = df.set index([
                 "Competition",
                 "City/University"
             ])
         formula_student = raw_formula_student.pipe(cleanup)
         formula student
```

Competition	City/University												
FSG19	München TU	31	93.00	49.14	120.0	66.79	75.00	100.00	325.00	96.81	0.0	925.74	1
	Karlsruhe KIT	19	95.00	73.00	133.0	73.95	50.70	49.71	186.00	98.13	0.0	759.50	2
	Freiberg TU	85	88.00	52.58	100.0	46.19	37.19	62.84	229.71	95.19	0.0	711.70	3
	Aachen RWTH	99	92.00	74.00	115.0	58.39	12.41	48.89	205.64	93.74	0.0	700.07	4
	Eindhoven TU	40	98.00	62.18	95.0	37.69	52.09	34.52	175.01	89.24	65.0	578.73	5
•••	•••	•••											
FSG21	Chemnitz TU	36	77.90	57.86	55.0	0.00	0.00	0.00	0.00	0.00	30.0	160.76	34
	Berlin TU	113	79.80	52.61	55.0	0.00	0.00	0.00	0.00	0.00	35.0	152.41	35
	Ilmenau TU	71	61.75	45.43	60.0	0.00	0.00	0.00	0.00	0.00	18.0	149.18	36
	Lausanne EPFL	127	41.80	36.41	75.0	0.00	28.71	4.50	0.00	0.00	60.0	126.42	37
	Diepholz UAS	18	42.75	45.14	25.0	0.00	0.00	0.00	0.00	0.00	64.0	48.89	38
152 rows × 1	2 columns												

Car Cost BPP Design ACC SkidPad AutoX Endu Effic Penalties Overall Scores Overall Placing

Analysis

Overview

In [6]:

Out[5]:

overview = (

Competition

```
formula_student[["Car", "Overall Scores"]]
             .groupby(
                 ["Competition"]
             .agg({
                 'Car' : ["count"],
                 'Overall Scores' : ["mean", "min", "max"]
             .round(1)
         overview.plot(title="Competition overview over time", figsize=(6, 6))
         overview
Out[6]:
                             Overall Scores
                   count mean min max
```

```
FSG17
             35 350.4 0.0 918.1
             40 345.9 0.0 883.8
    FSG18
             39 313.6 0.0 925.7
    FSG19
             38 401.3 48.9 937.7
    FSG21
                 Competition overview over time
800
```


formula_student .iloc[:, 1:11] .corr()

.rename(columns={"Overall Scores":"Correlation"}) [["Correlation"]]

```
.sort values("Correlation", ascending=False)
              .iloc[1:, :] # remove the obvious overall scores = 1.00
                  Correlation
Out[7]:
                    0.868175
            Endu
             Effic
                    0.811912
           AutoX
                    0.777112
             ACC
                    0.754784
```

0.538074 Cost **BPP** 0.458588 **Penalties** -0.410896

Design

SkidPad

In [8]:

0.722782

0.708315

In [7]:

We can learn how these teams managed to get such good positions

Teams with best cost scores

```
.sort_values("Cost", ascending = False)
.head(10)
.sort_values("Overall Placing")
```

formula_student[["Cost", "Overall Placing"]]

```
Out[8]:
                                             Cost Overall Placing
           Competition
                             City/University
```

FSG21	Stuttgart U	99.0	1
FSG18	Karlsruhe KIT	100.0	4
FSG19	Eindhoven TU	98.0	5
FSG17	Karlsruhe KIT	100.0	6
FSG19	Stuttgart U	100.0	7
FSG17	Barcelona UPC	100.0	7
FSG21	Sankt Augustin UAS	100.0	8
FSG18	Delft TU	100.0	9
	Hamburg TU	99.0	17
FSG19	Schweinfurt UAS	99.0	24