Stat 134: Review Session 6.1-6.3

Adam Lucas

December 5th, 2018

Conceptual Review

- a. Suppose X is a continuous random variable with possible values on (a,b). Let A be an event. Write down a formula for P(A) by conditioning on X.
- b. Let Y be a random variable, and let $B_1, B_2, B_3, ...$ be events. Write down an expression for E(Y) by conditioning on the events B_i .
- c. Let X_1 , X_2 be random variables, and suppose h is a two-input function, and consider $\theta = E[h(X_1, X_2)]$. Now let g be a function defined by $g(x) = E[h(x, X_2)] \theta$. Explain why $g(X_1)$ is not 0 but is a random variable with $E[g(X_1)] = 0$.
- d. Let $N \sim Geometric(p)$ on $\{1, 2, ...\}$. What is E[cN + d|N > m]?

Problem 1

You and your friend are going to play a rock-paper-scissors game all day. You know that you choose rock 1/3 of the time, paper 1/6 of the time, and scissors 1/2 of the time. However, your friend does not like paper. Instead, your friend plays rock 1/2 of the time and scissors half of the time. Each time you duel, each player randomly picks one of rock, paper, or scissors independently. A duel corresponds to a pair, for example (Rock, Rock).

- a. Find the expected number of duels it takes you to get:
 - i. (Rock, Rock)
 - ii. (Scissor, Scissor)
- b. Find the expected number of duels it takes to get either two (Rock, Rock) or two (Scissor, Scissor) in a row, whichever comes first. After a (R,R) stalemate occurs, neither player will pick Scissor. Instead, Paper absorbs this probability. The same works for a (S, S) stalemate.

Suppose the number of car accidents on the Bay Bridge every year, X, follows a $Poisson(\mu)$ distribution given μ . The rate μ is a realization from another distribution (called a prior) $M \sim Gamma(r, \lambda)$.

- a. Given that X = k, what is the posterior distribution of the rate μ ? (i.e. find the distribution of M|X = k)
- b. Compare the expectation of M and M|X=k. Plug in r=1, $\lambda=1$, k=5

Problem 3: Branching Process

Suppose there is a certain species that reproduces as follows: At time n = 0, there is one organism, and for each time step $n \geq 0$, each organism independently gives birth to 0 organisms with probability 1/4, or 2 organisms with probability 3/4, then dies. Let X_n denote the number of organisms alive at time n. We wish to find the probability that the species goes extinct (and thus the probability that it survives forever).

- a. Show that $E(X_{n+1}) = \frac{3}{2}E(X_n)$. Note that this implies that $E(X_n) = (3/2)^n$.
- b. Let $u_n = P(X_n = 0)$. Show that $u_n = \frac{1}{4} + \frac{3}{4}u_{n-1}^2$.
- c. It takes some additional analysis to show that the sequence $\{u_n\}$ converges (indeed, it is an increasing sequence bounded above by 1). Taking this for granted, what is the probability that the species will eventually go extinct? *Hint:* You should arrive at 2 possible answers. Argue intuitively why one of them should be the correct answer.