Lösningar till tentamen TATA24 2023-01-09

- 1. Ekvationssystemet kan skrivas $AX = B \mod A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ -1 & 1 \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}, B = \begin{pmatrix} x \\ y \end{pmatrix}$
 - $\begin{pmatrix} 5\\4\\2 \end{pmatrix}$. Normalekvationerna $A^tAX=A^tB$ blir $\begin{pmatrix} 3\,x+y\\x+11\,y \end{pmatrix}=\begin{pmatrix} 7\\13 \end{pmatrix}$ som har den

unika lösningen $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

- 2. Vi kan beräkna arean av parallellogrammet OACB som normen av kryssprodukten $\overline{\mathbf{OA}} \times \overline{\mathbf{OB}} = (-2, 4, -2)$. Triangeln OAB har en area som är hälften av detta, nämligen $\sqrt{6}$.
- $3. \left(\begin{array}{rrr} -2 & 1 & 2 \\ 1 & 0 & -1 \\ -3 & 0 & 4 \end{array} \right)$
- 4. Vi har att $\begin{pmatrix} 0 & 0 & -3 \\ -1 & 0 & -1 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, så egenvärdet är 3.

5.

$$F(2\overline{\mathbf{e}}_1 + \overline{\mathbf{e}}_2) = 2F(\overline{\mathbf{e}}_1) + F(\overline{\mathbf{e}}_2) = \overline{\mathbf{e}}_1 + 3\overline{\mathbf{e}}_2$$

$$F(\overline{\mathbf{e}}_1 - \overline{\mathbf{e}}_2) = F(\overline{\mathbf{e}}_1) - F(\overline{\mathbf{e}}_2) = 5\overline{\mathbf{e}}_1$$

så $3F(\overline{\mathbf{e}}_1)=6\overline{\mathbf{e}}_1+3\overline{\mathbf{e}}_2$ varför $F(\overline{\mathbf{e}}_1)=2\overline{\mathbf{e}}_1+\overline{\mathbf{e}}_2$. Insättning i andra ekvationen ger $F(\overline{\mathbf{e}}_2)=F(\overline{\mathbf{e}}_2)-5\overline{\mathbf{e}}_1=-3\overline{\mathbf{e}}_1+\overline{\mathbf{e}}_2$. Det följer att avbildningsmatrisen i standardbasen är

$$\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}$$
.

$$6. \begin{vmatrix} 2 & 2 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ -1 & 1 & 0 & 5 \end{vmatrix} = 6$$

7. Vi skriver systemet som $X_{n+1} = AX_n \mod A = \begin{bmatrix} -1 & 1 \\ -12 & 6 \end{bmatrix}$, $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix} X_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Eftersom $A = TDT^{-1} \mod T = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ och $D^n = \begin{bmatrix} 2^n & 0 \\ 0 & 3^n \end{bmatrix}$ så får vi att

$$X_{n} = A^{n} X_{0} = (TDT^{-1})^{n} X_{0} = TD^{n} T^{-1} X_{0} = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2^{n} & 0 \\ 0 & 3^{n} \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -3^{n} + 2 \cdot 2^{n} \\ -4 \cdot 3^{n} + 6 \cdot 2^{n} \end{bmatrix}$$

8. Gram-schmidt på de givna uppspännande vektorerna för U ger ON-basen

$$(\mathbf{f}_1 \quad \mathbf{f}_2 \quad \mathbf{f}_3) = ((\frac{1}{7}\sqrt{7}, -\frac{1}{7}\sqrt{7}, \frac{2}{7}\sqrt{7}, \frac{1}{7}\sqrt{7}) \quad (\frac{2}{5}\sqrt{5}, 0, -\frac{1}{5}\sqrt{5}, 0) \quad (0, \frac{1}{2}\sqrt{2}, 0, \frac{1}{2}\sqrt{2}))$$

för delrummet U.

Vi beräknar ortogonala komplementet U^{\perp} , som har dimension 1, som nollrummet till $\begin{bmatrix} 1 & -1 & 2 & 1 \\ 3 & -1 & 1 & 1 \\ 3 & 1 & 1 & 3 \end{bmatrix}$, vilket mycket riktigt är ett-dimensionellt och spänns av enhetsvektorn

$$\mathbf{f}_4 = \left(\frac{1}{35}\sqrt{7}\sqrt{5}\sqrt{2}, \frac{1}{14}\sqrt{7}\sqrt{5}\sqrt{2}, \frac{2}{35}\sqrt{7}\sqrt{5}\sqrt{2}, -\frac{1}{14}\sqrt{7}\sqrt{5}\sqrt{2}\right) = \frac{1}{\sqrt{70}}(2, 5, 4, -5).$$

Så (\mathbf{f}_4) är en ON-bas för delrummet U^{\perp} .

Nu blir

$$(\mathbf{f}_1 \quad \mathbf{f}_2 \quad \mathbf{f}_3 \quad \mathbf{f}_4)$$

en ON-bas för \mathbf{R}^4 där varje basvektor aningen tillhör U eller U^{\perp} .

9. Vi kallar matrisen för M och ser att $M^tM=I$ samt att $\det(M)=-1$. Avbildningen F är alltså en vridspegling. Vi hittar egenvektorn $\overline{\mathbf{v}}=\underline{e}\begin{pmatrix}1\\0\\2\end{pmatrix}$ som hör till egenvärdet -1. Vridningsaxeln ℓ är linjära höljet till $\overline{\mathbf{v}}$, så ℓ har ekvation

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} , t \in \mathbb{R}$$

För att hitta vridningsvinkeln så tar vi en enhetsvektor $\overline{\mathbf{w}}$ ortogonal mot $\overline{\mathbf{w}}$, till exempel $\overline{\mathbf{w}} = \underline{e} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$

Då vrid
s $\overline{\mathbf{w}}$ i planet ortogonalt mot vridningsaxeln, och vi
 kan mäta vridningsvinkeln genom

$$\cos(\alpha) = \overline{\mathbf{w}} \cdot F(\overline{\mathbf{w}}) = (0, 1, 0) \cdot \left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right) = \frac{2}{3}$$

 $S\mathring{a} \alpha = \arccos \frac{2}{3}$

10. Sätt $\overline{\mathbf{f_1}} = \left(\frac{1}{2}\sqrt{2}, -\frac{1}{2}\sqrt{2}, 0\right), \overline{\mathbf{f_2}} = \left(\frac{1}{6}\sqrt{6}, \frac{1}{6}\sqrt{6}, -\frac{1}{3}\sqrt{6}\right), \text{ och }$

$$\overline{\mathbf{f}}_3 = \overline{\mathbf{f_1}} \times \overline{\mathbf{f_2}} = \left(\frac{1}{6}\sqrt{6}\sqrt{2}, \, \frac{1}{6}\sqrt{6}\sqrt{2}, \, \frac{1}{6}\sqrt{6}\sqrt{2}\right).$$

Eftersom avbildningen är symmetrisk med determinant noll så är de tre egenvärdena -1, 2, 0 och de tre egenrummen är ett-dimensionella och ortogonala mot varandra, alltså

spända av $\overline{\mathbf{f_1}}$, $\overline{\mathbf{f_2}}$, $\overline{\mathbf{f_3}}$. I egenvektorsbas har den avbildningsmatris $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, vi kan

ändra ordningen på egenvärdena men det är den enda frihet vi har.

I originalbasen blir avbildningsmatrisen

$$A = TDT^{t}$$

där egenvektorerna är kolonner i T, listade i samma ordning som egenvärdena dyker upp i D. Om vi tar plus eller minus egenvektorerna spelar ingen roll. Lösningen blir

$$\begin{bmatrix} \frac{1}{2}\sqrt{2} & \frac{1}{6}\sqrt{6} & \frac{1}{6}\sqrt{6}\sqrt{2} \\ -\frac{1}{2}\sqrt{2} & \frac{1}{6}\sqrt{6} & \frac{1}{6}\sqrt{6}\sqrt{2} \\ 0 & -\frac{1}{3}\sqrt{6} & \frac{1}{6}\sqrt{6}\sqrt{2} \end{bmatrix} * \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} & 0 \\ \frac{1}{6}\sqrt{6} & \frac{1}{6}\sqrt{6} & -\frac{1}{3}\sqrt{6} \\ \frac{1}{6}\sqrt{6}\sqrt{2} & \frac{1}{6}\sqrt{6}\sqrt{2} & \frac{1}{6}\sqrt{6}\sqrt{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{6} & \frac{5}{6} & -\frac{2}{3} \\ \frac{5}{6} & -\frac{1}{6} & -\frac{2}{3} \\ -\frac{2}{2} & -\frac{2}{2} & \frac{4}{2} \end{bmatrix}$$

Kontroll:

$$\begin{bmatrix} -\frac{1}{6} & \frac{5}{6} & -\frac{2}{3} \\ \frac{5}{6} & -\frac{1}{6} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{4}{3} \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -\frac{1}{6} & \frac{5}{6} & -\frac{2}{3} \\ \frac{5}{6} & -\frac{1}{6} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{4}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -4 \end{bmatrix}$$
$$\begin{bmatrix} -\frac{1}{6} & \frac{5}{6} & -\frac{2}{3} \\ \frac{5}{6} & -\frac{1}{6} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{4}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$