Discrete Computational Structures – Dijkstra's algorithm

อ. ภูริวัจน์ วรวิชัยพัฒน์

ทบทวนคาบที่แล้ว (Recap)

- ข่ายงาน Network, N(V,A)
- นิยาม: ข่ายงานต้องเป็นกราฟทิศทาง, มีการเชื่อมโยงแบบอ่อน, เส้นเชื่อมมีเลขความจุ ≥ 0
 จุดยอด 3 แบบ: แหล่งต้นทาง(s), แหล่งปลายทาง(t), และระหว่างทาง
- การไหล, f(a), ซึ่งต้องมีค่าไม่มากกว่า ความจุ c(a)
 ผลรวมการไหลออกของแหล่งต้นทาง = ผลรวมการไหลเข้าของแหล่งปลายทาง
 ผลรวมการไหลออกของจุดระหว่างทาง = ผลรวมการไหลเข้าของจุดระหว่างทาง
- ค่าการไหล $d=\sum_{a\in outdeg(s)}f(a)=\sum_{a\in indeg(t)}f(a)$ ค่านี้จะเป็นค่าการไหลของทั้งข่ายงาน

ทบทวนคาบที่แล้ว (Recap)

- ส่วนตัด (cut) จะแบ่งข่ายงานออกเป็นสองส่วน X และ \bar{X} ; \bar{X} คือ ส่วนเติมเต็มของ X; $A(X,\bar{X})$ คือเซ็ตของเส้นทิศทางที่เชื่อมจาก X ไป \bar{X} ; s ต้องอยู่ใน X เสมอ และ t ต้องอยู่ใน \bar{X} เสมอ;
- ullet ความจุส่วนตัด $c(X,ar{X})$ คือ ผลรวมความจุของเส้นเชื่อม<u>ขาออก</u>ระหว่างจุด X ไป ยังจุด $ar{X}$
- ค่าการไหลส่วนตัด $\mathbf{c}(X, \bar{X})$ คือ ผลรวมการไหลออกระหว่างจุด X ไปยังจุด \bar{X} ลบด้วย ผลรวมการไหลออกจากจุด \bar{X} ไปยังจุดใน X
- อัลกอริทึมฟอร์ดและฟูลเกอร์สัน (Ford and Fulkerson Algorithm)

เนื้อหาปลายภาค - Overview

- ต้นไม้, Tree
- กราฟทิศทาง, Directed graph
- ข่ายงาน และการประยุกต์ใช้ข่ายงาน, Network
- การหาเส้นที่สั้นที่สุด Shortest path, Dijkstra's algorithm торду
- การหาต้นไม้ทอดข้ามที่น้อยที่สุด Kruskal's algorithm & Prim's algorithm

เส้นทางที่สั้นที่สุด, Shortest path

โดยปกติแล้วเมื่อเรามีการเก็บข้องมูลหรือการแสดงผลในรูปแบบ กราฟ ผู้ใช้งานจะมีจุดมุ่งหมายหลายๆอย่างหรือวิธีการประยุกต์ใช้ งานกราฟในทิศทางที่แตกต่างกันไป และสิ่งที่มักจะพบเจอเสมอๆ เมื่อใช้งานกราฟคือ "การหาเส้นทางที่สั้นที่สุด"

ตัวอย่างด้านขวา เป็นกราฟแสดงการเดินทางจากมหาลัยไปถึงบ้าน โดยมีทางเลือกอยู่ทั้งหมด 3 เส้นทางคือ

1. รถประจำทาง ระยะทาง 4 กม.

2. รถตู้ ระยะทาง 2 กม.

3. รถส่วนตัว ระยะทาง 1.5 กม.

จะสังเกตได้ว่ารถยนต์ส่วนตัวนั้นเป็นเส้นทางที่สั้นที่สุด

แต่ลองจินตนาการว่าถ้ากราฟนั้นมีขนาดใหญ่มากๆและเส้นเชื่อมนั้นมีความซับซ้อน มากๆ ไม่สามารถหาเส้นทางที่สั้นที่สุดได้ด้วยตาเปล่าได้ จะมีวิธีการอย่างไร?

องค์ประกอบกราฟ - น้ำหนัก, weight

กราฟ G ต้องเป็นกราฟที่มีฟังก์ชันน้ำหนัก จะถูกเรียกว่ากราฟ น้ำหนักหรือ weighted graph

ฟังก์ชันน้ำหนัก weight() คือ ฟังก์ชันที่ส่งเส้นเชื่อมของกราฟ ไปยังค่าจำนวนจริงที่<u>ไม่ติดลบ</u> ตัวอย่างเช่น

weight(s, h) = $\frac{2}{3}$

weight(z, h) = 1

weight(s, m) = 0.5

องค์ประกอบกราฟ - ระยะทาง, distance

ฟังก์ชันระยะทาง dist(a) คือค่าน้ำหนักจากจุดยอดเริ่มต้น s ถึงจุดยอด a *แต่ค่าน้ำหนักนี้แปรผันไปตามเส้นทาง เช่น

1. เส้นทาง s, x, y, h จงหาระยะทาง dist(h)

dist(h) = weight(s, x) + weight(x, y) + weight(y, z) + weight(z, h)

$$= 1+1+1+1 = 4$$

2. เส้นทาง s, m, h จงหาระยะทางdist(h)

dist(h) = weight(s, m)+weight(m, h)

$$= 0.5 + 1 = 4$$

องค์ประกอบกราฟ - จุดก่อนหน้า, previous

จุดยอดก่อนหน้า หรือ prev(a) คือจุดก่อนหน้าที่เชื่อมมา a จุดยอดก่อนหน้านั้นแปรผันตามเส้นทางเช่นเดียวกับระยะทาง

1. เส้นทาง s, x, y, h

$$prev(x) = s$$

$$prev(h) = y$$

2. เส้นทาง s, m, h

$$prev(m) = s$$

$$prev(h) = m$$

$$prev(s) = null$$

อัลกอริทึมที่เป็นที่นิยมมากๆในการหาเส้นทางที่สั้นที่สุดภายในกราฟคือ อัลกอริทึมของไดส์ตร้า (Dijkstra's Algorithm) ให้ G(V, E) เป็นกราฟ อัลกอริทึมนี้สามารถหาเส้นทางที่สั้นที่สุดจาก s ไป t ได้ การทำงานหลักๆของ อัลกอริทึมนี้เป็นการทำงานวนซ้ำเป็นรอบๆ โดย

- 1. เริ่มจากจุดยอดเริ่มต้น s ในรอบแรกจะคำนวณหาหาค่า dist(u) โดยที่จุด ยอด u คือจุดยอดอื่นๆที่มีเส้นเชื่อมมายัง s จนครบทุกจุด
- 2. จากนั้นเริ่มรอบถัดมาโดยให้จุดยอด v ที่มีค่า dist(v) น้อยที่สุดแล้วมาเป็น จุดเริ่มต้น หาจุดยอด u อื่นๆที่เชื่อมกับจุด v แล้วคำนวณหา dist(u) จนครบ ทุกจุดยอดทำซ้ำไปเรื่อยๆจนครบทุกจุดยอด
- 3. ถ้าจุดยอดใหม่ในข้อ 2 ที่เลือกมาเป็นจุดยอด t (ที่เป็นปลายทาง) อัลกอริทึม จะหยุดทำงาน

ในทางคณิตศาสตร์แล้วรายละเอียดของอัลกอริทึมมีดังนี้

- 1. ให้ T เป็นเซ็ตของจุดยอดทั้งหมดหรือจุดยอดที่ยังไม่ถูกเยี่ยม (unvisited vertex)
- 2. กำหนดจุดยอดปัจจุบัน (current vertex) เป็นจุดยอด s และปรับ ระยะทางของ dist(s) = 0 และ dist(a)
 = ∞ โดยที่ a เป็นจุดยอดอื่นๆที่ a ≠ s
- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
 - \circ 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3
 - \circ 3.2 อัปเดต dist(u) = dist(v) + weight(v, u)
 - \circ 3.3 prev(u) = v
- 4. $T = T \{v\}$ และกลับไปทำข้อ 3 ใหม่ จนกว่า T จะเป็นเซ็ตว่าง

เจอเส้นทางใหม่ที่สั้นกว่า และ อัปเดตเส้นทางใหม่นั้น

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
s	0	null
а	∞	null
ь	∞	null
с	∞ –(2)	null
d	∞	null
е	∞	null
t	∞	null

$$visited = \{$$
 }
$$T = \{s, a, b, c, d, e, t\} \leftarrow (1)$$
จุดยอดปัจจุบัน คือ ...

- 1. ให้ T เป็นเซ็ตของจุดยอดทั้งหมดหรือจุดยอดที่ยังไม่ถูกเยี่ยม (unvisited vertex)
- 2. กำหนดจุดยอดปัจจุบัน (current vertex) เป็นจุดยอด s และปรับ ระยะทางของ dist(s)
- = 0 และ dist(a) = ∞ โดยที่ a เป็นจุดยอดอื่นๆที่ a ≠ s

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
S	0 ← (3)	null
а	∞	null
ь	∞	null
С	∞	null
d	∞	null
е	∞	null
t	∞	null

$$visited = \{ \}$$
 $T = \{s, a, b, c, d, e, t\}$
จุดยอดปัจจุบัน คือ $v = s \leftarrow (3)$
เพราะ s มี $dist(s)$ น้อยที่สุด
 $u = a \leftarrow (3.1)$
 $dist(s) + weight(s, a) < dist(a)$?
 $u = c \leftarrow (3.1)$
 $dist(s) + weight(s, c) < dist(c)$?

- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
- ° 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
S	0	null
а	∞ ← (3.1)	null
ь	∞	null
с	∞ ← (3.1)	null
d	∞	null
е	∞	null
t	∞	null

$$visited = \{ \}$$
 $T = \{s, a, b, c, d, e, t\}; \ v = s$
 $u = a \leftarrow (3.1)$
 $dist(s) + weight(s, a) < dist(a)?$
 $0 + 3 < \infty$?
 $u = c \leftarrow (3.1)$
 $dist(s) + weight(s, c) < dist(c)?$
 $0 + 4 < \infty$?

- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
- ° 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
S	0	null
а	∞ → 3 ← (3	s \leftarrow (3.3)
ь	∞	null
С	∞ → 4 ← (3	$s \leftarrow (3.3)$
d	∞	null
е	∞	null
t	∞	null

$$visited = \{s \} \leftarrow (4)$$

$$T = \{s, a, b, c, d, e, t\}; v = s$$

$$u = a$$

$$dist(s) + weight(s, a) < dist(a)?$$

$$0 + 3 < \infty ?$$

$$u = c$$

$$dist(s) + weight(s, c) < dist(c)?$$

$$0 + 4 < \infty ?$$

$$\circ$$
 3.2 อัปเดต $dist(u) = dist(v) + weight(v, u)$

• 3.3
$$prev(u) = v$$

4.
$$T=T-\{v\}$$
 และกลับไปทำข้อ 3 ใหม่ จนกว่า T จะเป็นเซ็ตว่าง

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
S	0	null
а	3 ← (3), ((3.1) s
Ь	∞	null
С	4	S
d	∞	null
е	∞	null
t	∞	null

$$visited = \{s \}$$
 $T = \{a, b, c, d, e, h\}; \ v = a \in (3)$
 $u = b \in (3.1)$
 $dist(a) + weight(a, b) < dist(b)?$
 $3 + 4 < \infty$?

- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
- 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
s	0	null
а	3	S
Ь	7 ← (3.2)	a ← (3.3)
С	4	S
d	∞	null
е	∞	null
t	∞	null

$$visited = \{s, a \} \leftarrow (4)$$

$$T = \{a, b, c, d, e, t\}; v = a$$

$$u = b$$

$$dist(a) + weight(a, b) < dist(b)?$$

$$3 + 4 < \infty$$
?

$$\circ$$
 3.2 อัปเดต $dist(u) = dist(v) + weight(v, u)$

$$\circ$$
 3.3 $prev(u) = v$

4.
$$T=T-\{v\}$$
 และกลับไปทำข้อ 3 ใหม่ จนกว่า T จะเป็นเซ็ตว่าง

จุดยอด ${oldsymbol {\cal V}}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
s	0	null
а	3	S
Ь	7	a
с	4 ← (3), (3.1) s
d	∞	null
е	∞	null
t	∞	null

$$visited = \{s, a\}$$

$$T = \{b, c, d, e, t\}; \ v = c \leftarrow (3)$$

$$u = b \leftarrow (3.1)$$

$$dist(c) + weight(c,b) < dist(b)$$
?
 $4 + 2 < 7$?

$$u = d \leftarrow (3.1)$$

$$dist(c) + weight(c,d) < dist(d)$$
?

- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
- ° 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3

ขั้นตอนปัจจุบัน

เจอเส้นทางใหม่ที่สั้นกว่า และ อัปเดตเส้นทางใหม่นั้น

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
s	0	null
а	3	S
Ь	7→6 ← (3.2	$\frac{2}{2}$ a \Rightarrow c \leftarrow (3.3)
С	4	S
d	9 ← (3.2)	c ← (3.3)
е	∞	null
t	∞	null

$$visited = \{s, a, c \} \leftarrow (4)$$

$$T = \{b, e, d, e, t\}; \ v = c$$

$$u = b$$

$$dist(c) + weight(c,b) < dist(b)?$$

$$4 + 2 < 7 ?$$

$$u = d$$

$$dist(c) + weight(c,d) < dist(d)?$$

$$4 + 5 < \infty ?$$

 \circ 3.2 อัปเดต dist(u) = dist(v) + weight(v, u)

ขั้นตอนปัจจุบัน

 \circ 3.3 prev(u) = v

4. $T = T - \{v\}$ และกลับไปทำข้อ 3 ใหม่ จนกว่า T จะเป็นเซ็ตว่าง

เจอเส้นทางใหม่ที่สั้นกว่า และ อัปเดตเส้นทางใหม่นั้น

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
s	0	null
а	3	S
Ь	6 ← (3), (3	3.1) c
С	4	S
d	9	С
е	∞ → 8 ← (3.2) b \leftarrow (3.3)
t	∞ → 7 ← (3.2) b \leftarrow (3.3)

$$visited = \{s, a, c, b\} \leftarrow (4)$$

$$T = \{ b, d, e, t \}; \ v = b \leftarrow (3)$$

$$u = e \leftarrow (3.1)$$

 $dist(b) + weight(b, e) < dist(e)$?
 $6 + 2 < \infty$?
 $u = t \leftarrow (3.1)$
 $dist(b) + weight(b, t) < dist(t)$?
 $6 + 1 < \infty$?

- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
- \circ 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3
- \circ 3.2 อัปเดต dist(u) = dist(v) + weight(v, u)
- $3.3 \ prev(u) = v$
- 4. $T=T-\{v\}$ และกลับไปทำข้อ 3 ใหม่ จนกว่า T จะเป็นเซ็ตว่าง

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
S	0	null
а	3	S
Ь	6	С
С	4	S
d	9	С
e	8	b
t	7 ← (3), (3	.1) b

$$visited = \{s, a, c, b, t\} \leftarrow (4)$$

$$T = \{d, e, \frac{t}{\cdot}\}; \ v = \frac{t}{\cdot}$$

$$u = e \leftarrow (3.1)$$

$$dist(t) + weight(t, e) < dist(e)$$
?
7 + 2 < 8 ?
9 < 8 ?

*ไม่ทำ 3.2 และ 3.3

- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
- \circ 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3
- $\frac{3.2 \text{ อัปเดต } dist(u) = dist(v) + weight(v, u)}{2}$
- $\frac{9}{3.3}$ prev(u) = v
- 4. $T=T-\{v\}$ และกลับไปทำข้อ 3 ใหม่ จนกว่า T จะเป็นเซ็ตว่าง

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
s	0	null
а	3	S
Ь	6	С
С	4	S
d	9	С
е	8 ← (3), (3	.1) b
t	7	b

$$visited = \{s, a, c, b, t, e\} \leftarrow (4)$$

$$T = \{d, \frac{e}{e}\}; \ v = \frac{e}{e} \leftarrow (3)$$

$$u = d \leftarrow (3.1)$$

$$dist(e) + weight(e,d) < dist(d)$$
?
8 + 4 < 9 ?
12 < 9 ?

*ไม่ทำ 3.2 และ 3.3

- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
- \circ 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3
- $\frac{3.2 \text{ อัปเดต } dist(u) = dist(v) + weight(v, u)}{2}$
- $\frac{\circ}{3.3} prev(u) = v$
- 4. $T=T-\{v\}$ และกลับไปทำข้อ 3 ใหม่ จนกว่า T จะเป็นเซ็ตว่าง

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
s	0	null
а	3	S
Ь	6	С
С	4	S
d	9 ← (3), (3	.1) c
е	8	b
t	7	b

 $visited = \{s, a, b, c, t, e, d\} \leftarrow (4)$

$$T = \{ \frac{d}{d} \}; \ v = \frac{d}{d} \in (3)$$

$$u =$$
ไม่มี \leftarrow (3.1)

เพราะไม่มีจุดยอดใดๆเป็นสมาชิกของ T

*ไม่ทำ 3.2 และ 3.3

- 3. หาจุดยอด $v \in T$ ที่ dist(v) น้อยที่สุด, ให้ v เป็นจุดยอดปัจจุบัน
- \circ 3.1 สำหรับทุกจุดยอด u ที่ประชิดกับ v และ $u \in T$ ถ้า dist(v) + weight(v,u) < dist(u) ทำ 3.2 และ 3.3
- $\frac{3.2 \text{ อัปเดต } dist(u) = dist(v) + weight(v, u)}{2}$
- $\frac{9}{3.3} prev(u) = v$
- 4. $T=T-\{v\}$ และกลับไปทำข้อ 3 ใหม่ จนกว่า T จะเป็นเซ็ตว่าง

ขั้นตอนปัจจุบัน

ตารางที่ได้คือเส้นทางที่สั้นที่สุดจากจุด s ไป ยังจุดใดๆในกราฟ โดยสามารถระบุเส้นทางเดินนั้นๆโดยการไล่ prev() ย้อนกลับจนไปถึงจุดเริ่มต้น

แบบฝึกหัด 1, หาเส้นทางที่สั้นที่สุดจาก a ไป d

จุดยอด ${oldsymbol v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
а	0	null
Ь		
С		
d		
e		
f		

$visited = \{$	
$T = \{$	
v =	
u =	
<i>u</i> =	
u =	

แบบฝึกหัด 2, หาเส้นทางที่สั้นที่สุดจาก a ไป d

จุดยอด $oldsymbol{v}$	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
а	0	null
Ь		
с		
d		
e		
f		
g		
h		

$visited = \{$
$T = \{$
v =
u =
u =
u =

แบบฝึกหัด 3, หาเส้นทางที่สั้นที่สุดจาก a ไป d

จุดยอด \overline{v}	ระยะทาง, $dist(v)$	จุดยอดก่อนหน้า, $prev(v)$
а	0	null
ь		
с		
d		
e		
f		
g		
h		

$visited = \{$
$T = \{$
v =
u =
u =
u =

สรุป

อัลกอริทึมของไดส์ตร้า Dijkstra's algorithm

องค์ประกอบที่จำเป็น: น้ำหนัก weight(v,u), ระยะทาง dist(v,u), จุดยอดก่อนหน้า prev(v)

การทำซ้ำหลายๆรอบของอัลกอริทึมไดส์ตร้า

- 1. เลือกจุดยอดปัจจุบัน v
- 2. คำนวณระยะทาง v ไป น เช็คว่าน้อยกว่าหรือไม่?
- อัปเดตระยะทาง และ จุดยอดก่อนหน้า
 วนไปเรื่อยๆจนจุดที่ยังไม่ได้เยี่ยมนั้นหมด