

VISION SYSTEMS ARCHITECTURES AND SOLUTIONS

Dr TIAN Jing tianjing@nus.edu.sg

Key considerations of vision systems (1/6)

- Analytics objective
- Acquisition
- Performance index
- Deployment
- User concerns
- Business model

	Low-level	Middle-level	High-level		
Input	Image	Image	Image/attributes		
Output	Image	Attributes	Understanding		
Examples	Noise removalImage sharpening	 Object detection and segmentation 			

Q: What is the problem you are addressing? What is the function of the video analytic?

Image: https://www.researchgate.net/post/CCTV-is_there_a_way_or_a_new_method_of_improving_the_image_quality_for_facial_recognition

Key considerations of vision systems (2/6)

- Analytics objective
- Acquisition
- Performance index
- Deployment
- User concerns
- Business model

- Light-Sensitive Camera: Measures from the visible part of the electromagnetic spectrum, e.g., RGB camera.
- Multi/Hyper-Spectral Sensors: Measure from a broader part of the electromagnetic spectrum (than the lightsensitive cameras), e.g., infrared, thermal.
- Range Sensor: A device that measures the distance from the camera to a target, e.g., laser, radar, Lidar.
- Additional equipment needed (such as external lighting)

Photo: https://www.quora.com/What-is-the-average-angle-of-a-CCTV-camera

Key considerations of vision systems (3/6)

- Analytics objective
- Acquisition
- Performance index
- Deployment
- User concerns
- Business model

- What detection rate and false alarm are acceptable?
- Test scripts, red teaming

True positives (TP)	The data that is correctly classified by a model as positive instance of the concept being modelled.
False positives (FP)	The data that is classified as positive instance by the model, but in fact are known not to be
True negatives (TN)	The data correctly classified by the model as not being instances of the concept
False negatives (FN)	The data that is classified as not being instances, but are in fact know to be

Key considerations of vision systems (4/6)

- Analytics objective
- Acquisition
- Performance index
- Deployment
- User concerns
- Business model

Q: How do you want to deploy? edge vs cloud? real-time vs. post-event?

Example: Person re-identification is the task of recognizing an individual who has previously been observed over a camera network, e.g., on-line tracking of individuals over different cameras, and off-line retrieval of the video sequences containing an individual of interest, whose image is given as a query.

Video footage

Video Camera

Key considerations of vision systems (5/6)

- Analytics objective
- Acquisition
- Performance index
- Deployment
- User concerns
- Business model

- What are the legal restrictions which may exist in your country?
- Ethical considerations of data usage.

An example in CCTV security system

Stakeholders	People (being watched)	System owner	System operator
Acquisition	ConsentSignageAnonymity	No data missingVideo properties	• None
Storage	Secure storage	Secure storageDeletion after retention period	• None
Transmission	ConfidentialityIntegrityAuthenticity	ConfidentialityIntegrityAuthenticity	• None
Monitoring	Privacy safeguardsAuthorized accessPublic access to their data	Continuous monitoringAuthorized access	Data freshnessTimestampingEasy to search

Reference: Q. Rajpoot, C. Jensen, "Security and Privacy in Video Surveillance: Requirements and Challenges," Int. Conf. on Information Security, 2014, https://hal.inria.fr/hal-01370363/document

Key considerations of vision systems (6/6)

- Analytics objective
- Acquisition
- Performance index
- Deployment
- User concerns
- **Business** model

planning

Analysis and

Program management execution

Reference: Padma Kamath, Video Surveillance: The important basics, available at http://media.govtech.net/GOVTECH W EBSITE/EVENTS/PRESENTATION D OCS/2008/Los Angeles Tech Forum/ 320VideoSurveillanceKAMATH.ppt

Ongoing management

Consult

- Security and architecture assessments
- Operations consulting

Design

- Requirement development
- System architecture

Integrate

- Solution configuration
- Customization

Deploy

- Site surveys
- Civil works and installation
- Site acceptance testing

Maintain and operate

- Technical support
- Machine learning model update and tuning

Vision intelligence: Cloud

🙀 Vision intelligence: Cloud

- Agility and Affordability: No capital investment of large-size infrastructures for analytical workloads.
- Data Analytics Platforms in Clouds: Leveraging cloud-enabled and ready platforms are fast and easy.
- Databases and Data Warehouses in Clouds: All kinds of database management systems and data warehouses in cloud speed up the process of data analytics.
- Enterprise-class Applications in Clouds: All kinds of customer-facing applications are cloud-enabled and deployed in highly optimized and organized cloud environments.
- Sensor/Device-to-Cloud Integration are available to transmit ground-level data to cloud storages and processing.

- Latency and Response time is often a critical part, especially when you deal with emergency procedure.
- Bandwidth Cost and Capacity: If you
 want to use a set of smart devices
 requiring each one to communicate
 certain bytes of data then you can
 quickly reach huge bandwidth
 requirements reaching Mbit/s or even
 Gbit/s at a gateway level.
- Security and Privacy: Transmitting device data over any open and public network is risky.
- Offline usages versus only-online usages: Pure cloud services do not allow offline usages. It is a major shortcoming since smart cities and industry 4.0 applications require a dual offline/online paradigm.

Example: AWS Rekognition

Vision intelligence: Edge

🖐 Vision intelligence: Edge

- Volume and Velocity: Processing and storing such huge amounts of data which is gathered in real-time.
- Security: Devices can be located in sensitive environments, control vital systems or send private data.
- Bandwidth: If devices constantly send the sensor and video data, it will hog the internet and cost a fortune.
- Real-time Data Capture, Storage, Processing, Analytics, Knowledge Discovery, Decision-making and Actuation.
- Less Latency and Faster Response.

Deep learning library for edge computing

					Te							P		
Owner	Microsoft	Preferred Networks	Google	Skymind	Google	Apache Incubator	Facebook	Apple	Qualcomm	Tencent	Alibaba	Baidu	XiaoMi	ETH Zrich
Edge Support	×	×	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Android	×	×	×	✓	✓	✓	✓	×	✓	✓	✓	✓	✓	×
iOS	×	×	×	×	×	✓	✓	✓	×	✓	✓	✓	✓	×
Arm	×	×	✓	✓	✓	✓	✓	×	✓	✓	✓	✓	✓	✓
FPGA	×	×	×	×	×	×	✓	×	×	×	×	✓	×	×
DSP	×	×	×	×	×	×	×	×	✓	×	×	×	×	×
GPU	✓	✓	✓	✓	✓	✓	✓	×	×	×	×	×	×	×
Mobile GPU	×	×	×	×	✓	×	×	✓	✓	✓	✓	✓	✓	×
Training Support	✓	✓	✓	✓	×	✓	✓	×	×	×	×	×	×	✓

Reference: Convergence of Edge Computing and Deep Learning: A Comprehensive Survey, https://arxiv.org/pdf/190 7.08349.pdf

Al edge computing hardware and systems

	Owner	Production	Feature					
Integrated Commodities -	Microsoft	Data Box Edge [29]	Competitive in data preprocessing and data transmission					
	Intel	Movidius Neural Compute Stick [30]	Prototype on any platform with plug-and-play simplicity					
	NVIDIA	Jetson [31]	Easy-to-use platforms that runs in as little as 5 Watts					
	Huawei	Atlas Series [32]	An all-scenario AI infrastructure solution that bridges "device, edge, and cloud"					
	Qualcomm	Snapdragon 8 Series [33]	Powerful adaptability to major DL frameworks					
	HiSilicon	Kirin 600/900 Series [34]	Independent NPU for DL computation					
	HiSilicon	Ascend Series [35]	Full coverage from the ultimate low energy consumption scenario to high computing power scenario					
AI Hardware for	MediaTek	Helio P60 [36]	Simultaneous use of GPU and NPU to accelerate neural network computing					
Edge Computing	NVIDIA	Turing GPUs [37]	Powerful capabilities and compatibility but with high energy consumption					
-	Google	TPU [38]	Stable in terms of performance and power consumption					
	Intel	Xeon D-2100 [39]	Optimized for power- and space-constrained cloud-edge solutions					
	Samsung	Exynos 9820 [40]	Mobile NPU for accelerating AI tasks					
	Huawei	KubeEdge [41]	Native support for edge-cloud collaboration					
	Baidu	OpenEdge [42]	Computing framework shielding and application production simplification					
	Microsoft	Azure IoT Edge [43]	Remotely edge management with zero-touch device provisioning					
Edge	Linux Foundation	EdgeX [44]	IoT edge across the industrial and enterprise use cases					
Computing - Frameworks -	Linux Foundation	Akraino Edge Stack [45]	Integrated distributed cloud edge platform					
	NVIDIA	NVIDIA EGX [46]	Real-time perception, understanding, and processing at the edge					
	Amazon	AWS IoT Greengrass [47]	Tolerance to edge devices even with intermittent connectivity					
	Google	Google Cloud IoT [48]	Compatible with Google AI products, such as TensorFlow Lite and Edge TPU					

Reference: Convergence of Edge Computing and Deep Learning: A Comprehensive Survey, https://arxiv.org/pdf/1907.08349.pdf

Case study: Face-based access control

Face landmark detection with cheaper HOG Facial recognition via comparison of 2x 128D mapped face and euc dist $(\sim < 0.4)$

Frame optimization

Basic face spoof detection

- Card detection
- Info capture with barcode/QR scanning

Example: OpenVINO (Intel)

Reference: OpenCV tutorial in CVPR 2019, https://opencv.org/cvpr-2019-tutorial.html/

Example: Atlas 200DK (Huawei)

Atlas 200 DK AI Developer Kit

Powered by the Huawei Ascend 310 processor, the Atlas 200 DK AI Developer Kit helps AI application developers quickly get familiar with the development environment. The device provides external ports for developers to quickly and easily access and use the powerful processing capability of the Ascend 310 processor. Equipped with the Atlas 200 AI accelerator module as its core component, the Atlas 200 DK AI Developer Kit provides the main service ports of the Ascend 310 processor on the expansion baseboard through a high-speed connector. Thanks to the full-stack, all-scenario capability of the Ascend processor, programs can be developed on the Atlas 200 DK AI Developer Kit in a one-off manner and deployed in device-edge-cloud scenarios with zero code modification. It can be used in various fields such as safe cities, drones, robots, video servers, and smart gates.

Reference: https://e.huawei.com/sg/products/cloud-computing-dc/atlas/atlas-200

Thank You.

Dr TIAN Jing Email: tianjing@nus.edu.sg