Math 450 Homework 1

Dr. Fuller Solutions

1. Let \mathbf{x}, \mathbf{y} be non-zero vectors in \mathbf{R}^n .

Assume that $|\langle \mathbf{x}, \mathbf{y} \rangle| = \|\mathbf{x}\| \|\mathbf{y}\|$. Let $r_0 = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2}$. A calculation as in the proof of Cauchy-Schwarz given in class shows

$$0 \le \|\mathbf{x} - r_0 \mathbf{y}\|^2 = \langle \mathbf{x} - r_0 \mathbf{y}, \mathbf{x} - r_0 \mathbf{y} \rangle = \|\mathbf{x}\|^2 - 2r_0 \langle \mathbf{x}, \mathbf{y} \rangle + r_0^2 \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\|\mathbf{y}\|^2} = 0.$$

(The last "= 0" follows from the assumption.) This implies $\mathbf{x} - r_0 \mathbf{y} = 0$ or $\mathbf{x} = r_0 \mathbf{y}$.

Conversely, assume $\mathbf{y} = r\mathbf{x}$. Then $|\langle \mathbf{x}, \mathbf{y} \rangle| = |\langle \mathbf{x}, r\mathbf{x} \rangle| = |r| |\langle \mathbf{x}, \mathbf{x} \rangle| = |r| ||\mathbf{x}|| ||\mathbf{x}|| = ||\mathbf{x}|| ||\mathbf{y}||$.

- 2. In general we have: $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2$. Thus $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ if and only if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ if and only if \mathbf{x} and \mathbf{y} are orthogonal.
- 3. $\frac{\pi}{6}$
- 4. (a) $\{(x,y): xy=0\} \subset \mathbb{R}^2$ is not open and is closed.
 - (b) $\{(x,y): xy \neq 0\} \subset \mathbb{R}^2$ is open and is not closed.
 - (c) $\{(x,y,z): x^2+y^2<1 \text{ and } z=0\}\subset \mathbb{R}^3 \text{ is not open and not closed.}$
 - (d) $\{(x,y,z): x^2+y^2<1\}\subset \mathbf{R}^3$ is open and not closed.
 - (e) $\{(x_1, ..., x_n) : \text{each } x_i \in \mathbf{Q}\} \subset \mathbf{R}^n \text{ is not open and not closed.}$
- 6. If $\mathbf{y} \in \mathbf{R}^n \overline{B}(\mathbf{x}, r)$, let $s = \|\mathbf{y} \mathbf{x}\| r$. We wish to show $B(\mathbf{y}, s) \subset \mathbf{R}^n \overline{B}(\mathbf{x}, r)$. To do this, let $\mathbf{w} \in B(\mathbf{y}, s)$. Then

$$s + r = \|\mathbf{y} - \mathbf{x}\| \le \|\mathbf{y} - \mathbf{w}\| + \|\mathbf{w} - \mathbf{x}\| < s + \|\mathbf{w} - \mathbf{x}\|.$$

This implies $r < \|\mathbf{w} - \mathbf{x}\|$, so $\mathbf{w} \in \mathbf{R}^n - \overline{B}(\mathbf{x}, r)$.

- 7. (a) For any $x \in \mathbf{R}^n$, let r = 1. Then certainly $x \in B(x, 1) \subset \mathbf{R}^n$
 - (b) Let $x \in \bigcup_{\alpha \in \Gamma} U_{\alpha}$, so $x \in U_{\alpha_0}$ for some $\alpha_0 \in \Gamma$. Since U_{α_0} is open, there exists r > 0 with $x \in B(x, r) \subset U_{\alpha_0} \subset \bigcup_{\alpha \in \Gamma} U_{\alpha}$.
 - (c) Let $x \in U_1 \cap U_2$. Then there exists r_1, r_2 with $B(x, r_1) \subset U_1$ and $B(x, r_2) \subset U_2$. Then $x \in B(x, \min\{r_1, r_2\}) \subset U_1 \cap U_2$.
- 8. (a) $\mathbf{R}^n \bigcap_{\alpha \in \Gamma} C_\alpha = \bigcup_{\alpha \in \Gamma} \mathbf{R}^n C_\alpha$. By problem 7(b) this is an open set, showing that $\bigcap_{\alpha \in \Gamma} C_\alpha$ is closed.
 - (b) For each 0 < r < 1, we have that $\overline{B}(\mathbf{0}, r)$ is closed, but $\bigcup_{r \in (0,1)} \overline{B}(\mathbf{0}, r) = B(\mathbf{0}, 1)$ is not closed.