Lecture: Binary dearh-1

Agenda
— Introduction
first occurrence in vorted array
unique element
Max element in in dec array.
Local minima in an array.

Introduction to searching

Binary Search

Qu Given A[n] of distinct elements. Redurn the index of an element k. If not found, return -1.

0					-	
3	8	11	19	28	k = 19.	om = 3

Brute force:

O(n) — traverse the array.

3 | 1 | 2 | 8 | 18 | K = 8

2										_
	0	1	2	3	4	5	6	7	8	9
	3	6	9	12	14	19	20	23	25	27

$$k = 12$$
target = 12
mid value = 14 $\left[\frac{0+9}{2}\right]$
target < 14
Search apace = $(0-3)$ idz
mid-1

$$k = 25$$

$$target = 25$$

$$mid value = 14 \left[\frac{0+9}{2}\right]$$

$$target > 14$$

$$dearch apace = (5-9) idx$$

$$mid+1$$

Dry run:

10.									
0 1	2	3	4	5	6	7	8	9.	
3 6	9	12	14	19	20	23	25	27	target=12.

র	و	Action
0	9	mld = 14 $target < mld$ $d = 0, e = 3.$
0	3	midIdz = 1 $mid = 6$ $12 > 6$
2	3	$d = 2 e = 3$ $mid = \frac{2+3}{2} = 2$ $mid = 9$ $12 > 9$
	3	ζ=3, e=3
3		mid = 12 12 = 12 (return midIdi).

Binary Search pseudocode

TC: $\log_2 n$.

SC: O(1) $\frac{n}{2}$ $\log_2 n$. $\frac{n}{4}$

 Ou
 Given A(n)
 , find first occurrence of target element

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 -5 -5 -3 0 0 1 1 5 5 5 5 5 5 10 10 15 15

target = 5
$$ans = 7$$

target = 15 $ans = 16$
target = -5 $ans = 0$

Brute force:

0(n)

0	- 1	2	3	4	5	6	٦	8	9	[D	11	12	10	14	15	16	17 T . = 1
-5	-5	-3	0	0	1	l	5	5	5	5	5	5	5	10	10	15	1 15

		-5	- 3	2													
				to	u rge	₹ = 3	5.		1.								
	ź	I	e			1	(&	:+e) :dIo	lz Lz	- 1			ctrón	ι 			
-	0		۲۱				8				mı°d 5	_	5				
										- 1	5 2001 S = 0						
	0		F				3				min 5 8 =	リ=) 4	0 0 e=7				
_	4		Ę	F			5				mic 5 &=	>	l e	= 7			
_	6		=	F			ı	6			min 5 & =	>	t	·= 7			
_	7		 F	+				7			mi 5 an	d = = 1 = = 7	5 7 e=	6			
-	7		6		_							sti	Tp				
		!															

Pseudocode

```
int firstoccurence int[] A, int target) {
        &=0;
        e = A \cdot length - 1;
e = A \cdot length - 1;
        while ( & <=e
              m_i^* dT dx = \frac{d+e}{2};
              mid = A[midIdx];
              if (target = = mid) {

varie = midIdx;
                     e = mid-1;
               } else if (target < mid) {
                       e = mid-l;
                 else {
                     d = mid + 1;
  return ans;
                    TC: Ollog2n)
                     sc: o(1)
```

Ou given A[n]. Every element occurs twice except for one element.

find that unique element.

Dufficate el are adjacent to each other but array is unsorted.

P 00	1						٦
8	8	5	5	6	2	2	ans =

Brute force: xor — o(n)

Hashmaf — o(n), o(n)

0		2	3	ч	5	6	7	8	9	10	11	12	13	14.
3	3	1	Ţ	8	8	10	10	19	6	6	2	2	4	4

S	e	midIdx	mid	Actions
0	14	コ	10	$10 == A[mid-1]$ Not unique el. fivoce of $10 = 6$ $arm[mid] == arm[mid-1] \longrightarrow mid-1$ $f \cdot 0 = 6$ $6 = 8$ $e = 14$
8	14	11	2	Not unique. fir occ of $2 = 11$ an(11) == an(10) \longrightarrow f.0 = 10 != f.0 = 11 $4 = 8$ $e = 10$
8	10			

Pseudrode

```
if (A[mid]!= A[mid-1])

A[mid]!= A[mid+1])

return A[mid]

f.o = if (A[mid] == A[mid-1])

mid-1 is f.o

else mid is f.o.

if (f.o is odd idz) 1

left side

} else 1

right side.
}
```

Qu Given increasing - decreasing array with distinct elements.

find maximum element.

Bruteforce: O(n)

Casel

$$arr[mid] > arr[mid-1]$$
 {{

 $arr[mid] > arr[mid+1]$
 $arr[mid] > arr[mid]$

Case2

Case3

Break: 8: 26; 8:36

Qu (fiven A[n] of clistict elements, find any local minima in array.

Local minima: A no. smaller -than its adjacent neighbours

2 | 20 | 9 | 17 | 15 | 9 | 7

Bouteforce. O(U)

Case 1.

$$\frac{\text{mid-1}}{\text{arr[mid]}} \frac{\text{mid}}{\text{arr[mid-1]}} \frac{\text{mid+1}}{\text{arr[mid]}} < \frac{\text{arr[mid-1]}}{\text{arr[mid+1]}} \frac{\text{ans}}{\text{ans}} = 10$$

Case2:

arr(mid) > arr(mid-1)

ll arr(mid) < arr(mid+1)

Left

Case 4

 _					_	,	7	
0		2	3	Ч	2	0		
a	8	2	7	6	4	1	5	
٦	0		,	Ů				

&	e	midIdx	Action
0	Ŧ	3	mid = 7 $-7 > 2 $ 1 $7 > 6$
			7>2 ll $7>6$ left $8=0$, $e=2$
0	2	l	mid=8 8<9 \$1 8>2
			8(9 fl 8)2 right $8=2 e=2$
2	2_	2_	mid = 2 2<8 dd 2<7 return and (2),
			return an (2).

TC: 0 (log2n) sc: 0(1)

Pseudocode

Thankyou (i)