비주얼 컴퓨팅 Project #2

다음과 같은 2D sample pattern 들을 사용하여 아래 프로그램들을 작성하고 결과를 분석하여 보고서를 제출하시오.

Sample	\mathbf{w}_1		W_2		W3	
	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_1	x ₂	\mathbf{x}_1	\mathbf{x}_2
1	0.1	1.1	7.1	4.2	-3.0	-2.9
2	6.8	7.1	-1.4	-4.3	0.5	8.7
3	-3.5	-4.1	4.5	0.0	2.9	2.1
4	2.0	2.7	6.3	1.6	-0.1	5.2
5	4.1	2.8	4.2	1.9	-4.0	2.2
6	3.1	5.0	1.4	-3.2	-1.3	3.7
7	-0.8	-1.3	2.4	-4.0	-3.4	6.2
8	0.9	1.2	2.5	-6.1	-4.1	3.4
9	5.0	6.4	8.4	3.7	-5.1	1.6
10	3.9	4.0	4.1	-2.2	1.9	5.1

- 1. Perceptron algorithm 을 사용하여 w_1, w_2 를 구분하는 선형분류기를 작성하라. 초기 weight vector 와 학습율을 다양하게 시도해 볼 것.
- 2. Batch relaxation algorithm 을 사용하여 w_1 과 w_3 를 구분하는 선형분류기를 작성하라. Margin b 를 0.1 과 0.5, 초기 weight vector 를 (0,0,0)로 하였을 경우의 결과들을 보여라.
- 3. Widrow-Hoff (LMS) algorithm 을 사용하여 w_1 과 w_3 를 구분하는 선형분류기를 작성하라. 다양한 initial weight vector **a**, margin vector **b**, threshold, learning rate 를 시도해 볼 것.