

HealthCare: Persistency of a Drug

Group Name: The Data Doctors

Ashish Sasanapuri, Mohammad Shehzar Khan, Tomisin Abimbola Adeniyi

30-Dec-2023

Problem Description

One challenge for all Pharmaceutical companies is to understand the persistence of a drug as per the physician's prescription. To solve this problem ABC Pharma company approached an analytics company to automate this process of identification.

Data Understanding

- The dataset provides the factors impacting the patient's persistence to New Therapy Medication (NTM) by ABC pharmaceutical company prescribed by various physicians.
- The aim is to build a machine-learning model that classifies the patient into Persistent (Compliant) and Non-persistent (Non-Compliant).
- The dataset consists of 3242 records and is a an imbalanced dataset due to low number of Persistent records as compared to Non-persistent.

Data Understanding

- The dataset contains a total of 69 features that are divided into multiple categories -
 - 1 Target variable: Persistency_Flag
 - 1 Unique identifier for each patient: Ptid
 - 6 Demographic variables of the each patient: Age_Bucket, Gender, Race, Ethnicity, Region,
 Idn_Indicator
 - 3 Physician Specialist attributes: Ntm_Speciality, Ntm_Specialist_Flag, Ntm_Specialist_Bucket
 - 13 Clinical factors: T-Score details, Risk_Segment details, Multiple risk factors count, DEXA details, Fragility fracture details, Glucocorticoid details
 - 45 Disease/Treatment factors: Injectable drugs, Risk factors, Comorbidities, Concomitancies,
 Adherence to therapy

Data Preprocessing

- **Outliers Detection and Handling**: 2 features contain outliers *Dexa_Freq_During_Rx* and *Count_of_Risks*.
- Handled outliers in *Dexa_freq_During_Rx* using **Box-cox transformation**.
- Reduced category count from 0-7 to 0-3 where 3 signifies number of risks a patient suffers at the same time more than or equal to 3.

Data Analysis

Demographic Data

- Majority of the patients recorded are Females and most of them are Non-Persistent to NTM therapies.
- We can observe that majority of the patients are aged above 55 years and majority Non-Persistent patients fall in the age group of more than 75 years of age.
- Midwest, South, and West regions display majority of the patients recorded.

Demographic Data

 Majority of Non-Persistent patients belong to the age group above 75 years in the Midwest region.

Physician Attributes

Around 45% of Physicians who have prescribed new medication to the patients are 'General Practitioners'.

Risk Factors

As the number of risks per patient increases, the number of Non-Persistent patients decreases.

Risk Factors

- Majority of the patients have been susceptible to Risk Factors such as 'Vitamin D insufficiency',
 'smoking tobacco', 'chronic malnutrition or malabsorption' and have a 'family history of osteoporosis'.
- Due to heavy imbalance of data in **Risk Factor** categories, we can reduce dimensionality by reducing the categories capturing less data into a single category.

Comorbidity Factors

- There are total 14 **Comorbidity Factors** recorded for each patient.
- The top Comorbidity Factors include disorders_of_lipoprotein_metabolism_and_other_lipidemias, encounter_for_screening_for_malignant_neoplasms, encounter_for_immunization, and encntr_for_general_exam_w_o_complaint,_susp_or_reprtd_dx.

Concomitant Drugs

- We can see that the graph shows the distribution of patients who have received Concomitant Drugs 1
 year prior to start therapy.
- The count for **Non-Persistent** patients who have been given **Concomitant Drugs** such as *Narcotics*, *cholesterol_and_triglyceride_regulating_preparations*, and *anti_depressants_and_mood_stabilisers* is greater compared to the other categories.

Model Building

Feature Selection

- Applied Recursive Feature Elimination with Cross Validation(RFECV) methods for feature selection.
- Obtained 49 optimal features among which 14 features were picked based on feature importance threshold of 0.5 for training the model.

Model Evaluation and Selection

- Trained 4 machine learning models –
 Logistic Regression, Random Forest
 Classifier, Support Vector Classifier and
 Catboost.
- Logistic Regression performs better and generalises well on unseen data.

Model Evaluation and Selection

• Confusion matrix along with Accuracy, Precision, Recall and F1-scores for **Logistic Regression** on test data.

F1 score: 0.7 Accuracy: 0.8 Classification	30466472303206		f1-score	support
0 1	0.82 0.77	0.87 0.69	0.85 0.73	213 130
accuracy macro avg	0.80	0.78	0.80 0.79	343 343
weighted avg	0.80	0.80	0.80	343

Deployment

Architecture

Homepage

The Homepage allows the end-users to enter the desired patient data for prediction.

Homepage

 The Predict/Result page shows the predicted result whether the patient is persistent to New Therapy Medication or not.

Thank You

