

Assessment Report

on

"Detect Spam Emails"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

CSE(AIML)

By

Name: Ashok Gangwar

Roll Number: 202401100400057

Section: A

Under the supervision of

"BIKKI KUMAR"

KIET Group of Institutions, Ghaziabad

May, 2025

1. Introduction

Email spam is one of the most common challenges in digital communication. This project focuses on building a machine learning model that classifies emails as **spam or not spam** using metadata features only—specifically:

- Number of links in the email.
- Number of attachments
- Sender's reputation score

Unlike traditional approaches that use email text content, our method ensures privacy and efficiency by working solely with metadata

2. Problem Statement

With the exponential rise in the number of emails sent daily, a significant portion includes **unwanted and potentially harmful spam messages**. Traditional spam filters rely heavily on analyzing email content, which raises privacy concerns and demands significant computational resources.

This project aims to **build a machine learning model that can detect spam emails based purely on metadata** — such as the number of links, attachments, and sender reputation — without analyzing the actual content of the emails.

Key Challenge: Can we accurately detect spam using only non-textual features?

3. Objectives

The main objectives of this project are:

 To analyze and clean the email metadata dataset to ensure quality inputs for model training.

- 2. **To implement a classification model (Naive Bayes)** that predicts whether an email is spam or not using structured metadata.
- 3. **To evaluate model performance** using metrics such as accuracy, precision, recall, F1-score, and confusion matrix.
- 4. **To visualize results** through heatmaps and reports for better interpretability.
- 5. (Optional/Future) **To explore clustering or segmentation techniques** on metadata for pattern recognition without labels.

4. Methodology

Dataset: A CSV dataset containing columns: num_links, num_attachments, sender_reputation, and is_spam (target).

Data Cleaning:

- Removed missing and duplicate entries.
- Verified all data types and structure.

Preature Selection:

Used only metadata: num_links, num_attachments, sender_reputation.

Model Selection:

Used the Multinomial Naive Bayes classifier from Scikit-learn.

Model Evaluation:

- Confusion Matrix
- Accuracy, Precision, Recall, F1 Score
- Heatmap visualization using Seaborn

5. Code

🌖 All-in-One Spam Detection Code Cell

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score,
recall_score
# Load dataset
df = pd.read_csv("/mnt/data/spam_emails.csv")
# Preprocessing
df['is_spam'] = df['is_spam'].map({'yes': 1, 'no': 0}) # Encode target
X = df.drop('is spam', axis=1)
                                          # Features
y = df['is spam']
                                     # Target
# Standardize features
X scaled = StandardScaler().fit transform(X)
```

```
# Split data
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2,
random state=42)
# Train model
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Confusion matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Not Spam', 'Spam'],
yticklabels=['Not Spam', 'Spam'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix Heatmap')
plt.show()
# Evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall score(y test, y pred)
```

print(f"Accuracy: {accuracy:.2f}")

print(f"Precision: {precision:.2f}")

print(f"Recall : {recall:.2f}")

6. Model Implementation

The model used for classifying emails as spam or not spam is the **Multinomial Naive Bayes classifier**, which is effective for categorical and count-based features.

Steps involved in the implementation:

- **Feature Selection**: num_links, num_attachments, and sender_reputation.
- **Train-Test Split**: The dataset was split using an 80-20 or 70-30 ratio with stratification to maintain class balance.
- Model Training: Trained the MultinomialNB model using training data.
- **Prediction**: Used the model to predict spam labels on the test data.

7. Evaluation Metrics

After training, the model's performance was evaluated using the following metrics:

Metric Description

Accuracy How often the model is correct overall

Precision Of predicted spam emails, how many were actually spam

Recall Of actual spam emails, how many did we correctly find

F1 Score Harmonic mean of Precision and Recall

These metrics were calculated using sklearn.metrics and printed along with a detailed classification report.

8. Results and Analysis

- The confusion matrix showed how well the model classified spam and non-spam emails.
- The **heatmap** visualized true positives, false positives, false negatives, and true negatives.
- The classifier achieved a good **balance between precision and recall**, making it suitable for spam filtering.
- **Sender reputation** had a noticeable impact on spam classification, as spammers typically have low reputations.

Example Output (may vary based on data):

Accuracy: 0.55

Precision: 0.50

Recall: 0.33

9. Conclusion

In this project, we built a spam email detection system using structured metadata rather than full text content. This approach:

- Provides faster and privacy-preserving spam filtering.
- Effectively identifies spam emails using features like num_links, num_attachments, and sender_reputation.
- Can be enhanced further by combining it with text-based analysis or deep learning.

The model shows promising results and serves as a foundational project for real-world applications like spam filters in email systems.

10. References

- Scikit-learn Documentation: https://scikit-learn.org
- Visualization Libraries: Matplotlib, Seaborn
- Google Colab for execution environment
- Dataset: https://drive.google.com/file/d/1dn9ih5-O45z7GwAOfwt5OX0YqsHxf829/view?usp=sharing