Insect Biology

THE YOUNG SCIENTIST PROGRAM

HTTP://YSP.WUSTL.EDU

WASHINGTON UNIVERSITY SCHOOL OF MEDICINE
ECOLOGY/EVOLUTION TEACHING TEAM

Make a dichotomous key

Dichotomous key

- A dichotomous key is a tool that scientists can use to help identify a particular specimen.
- In science we use many helping aids to organize and easily retrieve information.
- The specimen could be a chemical that is identified by its physical properties, an insect identified by its markings and traits, or even a rock sample based on its different properties. The term dichotomous begins with the prefix of "di" which means two.
- The dichotomous key allows for the scientist to ask a series of questions with yes or no answers. Each question should be phrased so that the answer will either be **yes** or **no**.

The first step in the key will be organized the following way:

1. a. wings covered by an exoskeletonb. wings not covered by an exoskeleton

Next, the statements need to lead the observer to the next step to narrow the identification further:

1. a. wings covered by an exoskeleton go to step 2 b. wings not covered by an exoskeleton go to step 3

Step 2 needs to consist of a pair of statements that will allow for the identification of the ladybug and the grasshopper:

2. a. body has a round shape ladybug
b. wings not covered by an exoskeleton grasshopper

Step 3 needs to consist of a pair of statements that will allow for the identification of the housefly and dragonfly:

3. a. wings point out from the side of the body dragonfly b. wings point to the posterior of the body housefly

Population Biology

Ecosystems made of both abiotic and biotic components

The characterization of an ecosystem

Why can't one species dominate the planet?

- Nutrients are limited
- Environments are limited

$$\frac{dN}{dT} = rN$$

N

Population size

Time

$$\frac{dN}{dT}$$

The growth rate of the population at a given instant

r

Per capita rate of increase/how quick the population grows

If no movement, r = births - deaths

Different Growth Rates

Exponential Growth Rate

When r (per capita rate of increase) never changes

Exponential Growth Rate

J Shaped Curve

When r increases until the population reaches a maximum limit.

$$\frac{dN}{dT} = r_{max} \frac{(K - N)}{K} N$$

S Shaped Curve

$$(K-N)$$

Tells us how many more individuals can be added to the population before it hits carrying capacity

$$\frac{(K-N)}{K}$$

The fraction of the carrying capacity that has not yet been "used up"

How to determine carrying capacity

- Food
- Habitat
- Water
- Other abiotic factors

