Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/002793

International filing date: 16 March 2005 (16.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 013 035.3

Filing date: 16 March 2004 (16.03.2004)

Date of receipt at the International Bureau: 27 May 2005 (27.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND 13. 05. 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 013 035.3

Anmeldetag:

16. März 2004

Anmelder/Inhaber:

Dr. Nikolaus Vida, 72516 Scheer/DE

Bezeichnung:

Fortbewegungsmittel mit verbesserten Strömungsei-

genschaften

IPC:

F 15 D 1/10

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 27. April 2005 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Faust

Fortbewegungsmittel mit verbesserten Strömungseigenschaften

Beschreibung

5

25

Die Erfindung betrifft allgemein Fortbewegungsmittel und insbesondere Fortbewegungsmittel, entlang deren Oberfläche ein Medium strömt, wobei das Medium ein Gas, eine Flüssigkeit oder ein Gemisch aus Gas und Flüssigkeit umfassen kann.

10 Es ist bekannt, dass die Strömungseigenschaften eines Fortbewegungsmittels, das sich in einem Medium bewegt, von einer Reihe von Parametern abhängen. Hierzu gehören unter anderen die Eigenschaften des Mediums, die Form des Fortbewegungsmittels, sowie die Relativgeschwindigkeit von Fortbewegungsmittel und Medium.

Insbesondere um den Strömungswiderstand zu reduzieren und um andere negative Strömungseigenschaften so weit wie möglich zu vermeiden, wird von Fahrzeugherstellern mit großem Zeit- und Kostenaufwand die Geometrie von Fahrzeugen immer weiter optimiert. Dies betrifft in unterschiedlichem Maß sowohl Land-, Wasser- als auch Luftfahrzeuge. Jedoch sind der Unterdrückung bestimmter negativer Strömungseffekte durch Anpassung der Fahrzeuggeometrie Grenzen gesetzt.

Durch den Druckausgleich am hinteren Ende eines bewegten Objekts entstehen beispielsweise sogenannte Schleppwirbel. Auch bereits in der Übergangsphase zwischen laminaren und

10

turbulenten Strömungen kann es passieren, daß sich große Schleppwirbel durch Abreissen der laminaren Strömung bilden. Die Erzeugung solch unkontrollierter großer Schleppwirbel erfordert Energie und führt daher zu einer erheblichen Bremswirkung.

Dies ist insbesondere ein Problem in der Luftfahrt, da solch große Wirbel für einen längeren Zeitraum stabil bestehen bleiben und dadurch nachfolgende Luftfahrzeuge beeinträchtigen können. Ebenso sind aber Schleppwirbel auch bei Land- und Wasserfahrzeugen zu beobachten.

Ein weiteres Problem ist die Bildung von Leewalzen bei Seitenwind. Hierbei handelt es sich um große Wirbel, die sich auf der windabgewandten Seite eines Objekts bilden. Durch den entstehenden Druckunterschied führt dies insbesondere bei Hochgeschwindigkeitszügen zu einer erhöhten Kippgefahr des Zuges.

- 20 Weiterhin ist mit der Bildung turbulenter Wirbel in der Regel eine hohe Geräusch- und Vibrationsentwicklung verbunden.
- Der Erfindung liegt die Aufgabe zugrunde, einen neuen Weg
 25 aufzuzeigen, wie die Strömungseigenschaften eines
 Fortbewegungsmittels, das sich relativ zu einem umgebenden
 Medium bewegt, verbessert und die oben beschriebenen
 nachteiligen Effekte vermindert werden können.
- Die Aufgabe wird in überraschend einfacher Weise durch einen Gegenstand gemäß einem der anhängenden unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen sind in den Unteransprüchen umschrieben.

10

Die Erfinder haben überraschend herausgefunden, dass bei Fortbewegungsmitteln, deren Oberfläche zumindest teilweise eine spezielle dreidimensionale Oberflächenstruktur, wie sie in EP 92 911 873.5, PCT RU92/00106 und in EP 96 927 047.9, PCT/EP96/03200 beschrieben wird, aufweist, nicht nur der Strömungswiderstand reduziert ist, sondern auch weitere negative Strömungseffekte vermindert sind. Der Offenbarungsgehalt der EP 92 911 873.5, PCT RU92/00106 und der EP 96 927 047.9, PCT/EP96/03200 wird daher hiermit ausdrücklich durch Referenz inkorporiert.

Dementsprechend umfasst ein erfindungsgemäßes Fortbewegungsmittel zumindest eine Oberfläche, die eine 15 Strukturierung mit einer Vielzahl von Vertiefungen und/oder Erhebungen aufweist, wobei bei Bewegung des Fortbewegungsmittels ein umgebendes Medium entlang dieser Oberfläche strömt.

- Vorteilhaft ist die zumindest eine Oberfläche derart ausgebildet, dass sich in der Nähe der Oberfläche Vortices in dem umgebenden Medium bilden, wenn das Medium an der Oberfläche entlang strömt.
- Die Entstehung von Vortices in der Nähe der Oberfläche in dem umgebenden Medium durch eine erfindungsgemäße

 Vertiefung lässt sich folgendermassen beschreiben. An der Vertiefung bildet sich zunächst eine Wirbelwalze im wesentlichen quer zur Strömungsrichtung. Da diese

 Wirbelwalze typischerweise eine nicht verschwindende Helizität aufweist, wird das Medium an dem einen Ende in den Wirbel gesogen und an dem anderen Ende ausgestossen.

 Dies führt dazu, dass sich das letztgenannte Ende des

10

25

Wirbels von der Oberfläche löst und von der Hauptströmung mitgerissen wird. Es bilden sich auf diese Weise Vortices, die ausgehend von den Vertiefungen von der Oberfläche weg in Richtung Hauptströmung führen. Da der Druck innerhalb der Vortices geringer ist als in deren Umgebung, wird die Grenzschicht des Mediums in der Nähe der Oberfläche abgesogen und in die Hauptströmung geleitet. Jeder Wirbel wirkt dadurch als eine Art Grenzschichtkontroller, der in allen Richtungen der Umgebung das umgebende Medium in sich, auch gegen die regierende Strömungsrichtung, hineinsaugt. Dadurch werden in der Nähe der Oberfläche im Medium vorhandene ungeordnete Turbulenzen abgebaut.

Durch die beschriebene Bildung von Vortices wird der

Strömungsabriss im Vergleich zu einer glatten Oberfläche entlang der Strömungsrichtung nach hinten verschoben, sowie die oben beschriebenen negativen Strömungseffekte wie Schleppwirbel- oder Leewalzenbildung reduziert. Die Reduzierung der Schleppwirbelbildung führt gleichzeitig

auch zu einer Reduzierung des Gesamtwiderstandes.

Vorteilhaft weisen die Vertiefungen und/oder Erhebungen einen zweidimensional begrenzten Rand auf und sind besonders vorteilhaft im Bereich des Randes zum Rest der Oberfläche hin mit einem vorgegebenen Abrundungsradius abgerundet. Der Abrundungsradius kann dabei in unterschiedlichen Richtungen innerhalb der Ebene der Oberfläche einen unterschiedlichen Wert aufweisen.

Vorzugsweise weisen die Vertiefungen im wesentlichen die Form eines Abschnitts einer Kugel oder eines Ellipsoids auf, da diese Form herstellungstechnisch am einfachsten zu realisieren ist.

10

15

20

25

30

Die Form, Größe und Anordnung der Vertiefungen und/oder Erhebungen kann vorteilhafterweise auf unterschiedliche Strömungsbedingungen abgestimmt werden, die durch den Einsatzzweck des Fortbewegungsmittels vorgegeben werden. Um während der Benutzung eine flexible Anpassung der Oberflächenstruktur des Fortbewegungsmittels an unterschiedliche Bewegungszustände zu realisieren, umfasst das Fortbewegungsmittel vorteilhaft eine Einrichtung zum Variieren der Form und/oder der Anzahl der Vertiefungen und/oder Erhebungen. Beispielsweise kann dies mittels flexibler Membranen erfolgen, wie dies in EP 96 927 047.9 beschrieben wird. Die EP 96 927 047.9 wird daher hiermit auch diesbezüglich ausdrücklich durch Referenz inkorporiert.

In einer bevorzugten Ausführungsform sind die Vertiefungen und/oder Erhebungen zumindest abschnittsweise im wesentlichen periodisch auf der Oberfläche des Fortbewegungsmittels angeordnet.

Um mit der Strukturierung eine möglichst vollständige Flächenabdeckung zu erzielen, umfasst die Oberfläche des Fortbewegungsmittels, welche die Vertiefungen und/oder Erhebungen aufweist, zweckmäßigerweise zumindest einen ersten, im wesentlichen ebenen Bereich und zumindest einen zweiten, im wesentlichen gekrümmten Bereich. Auf diese Weise lässt sich die strukturierte Oberfläche an beliebige Geometrien des Fortbewegungsmittels anpassen.

Da typischerweise in dem ebenen und dem gekrümmten Bereich der Oberfläche des Fortbewegungsmittels unterschiedliche Strömungszustände herrschen, unterscheiden sich die

10

15

20

Vertiefungen und/oder Erhebungen in diesen Bereichen vorteilhaft in Form und/oder Größe und/oder Anordnung.

In einer besonders bevorzugten Anordnung der Vertiefungen und/oder Erhebungen in einem im wesentlichen ebenen Bereich der Oberfläche des Fortbewegungsmittels bilden die Mittelpunkte dreier direkt benachbarter Vertiefungen und/oder Erhebungen ein gleichseitiges Dreieck, wobei der Abstand der Mittelpunkte zweier benachbarter Vertiefungen und/oder Erhebungen einen im wesentlichen konstanten ersten Wert und der Abstand zweier aufeinanderfolgender Reihen von Vertiefungen und/oder Erhebungen einen im wesentlichen konstanten zweiten Wert aufweisen. In einem gekrümmten Bereich weist die Oberfläche bevorzugt eine ähnliche Anordnung auf, die die Oberflächenkrümmung berücksichtigt.

Eine bevorzugte Ausbildung eines erfindungsgemäßen Fortbewegungsmittels umfasst ein Landfahrzeug, insbesondere ein Schienenfahrzeug oder einen Last- oder Personenkraftwagen, mit zumindest einer Aussenhülle, wobei zumindest Teile der Oberfläche der Aussenhülle eine Vielzahl von Vertiefungen und/oder Erhebungen aufweisen.

Besonders bevorzugt weist die Oberfläche des

Fortbewegungsmittels eine Vielzahl von Vertiefungen und/oder Erhebungen derart auf, dass die Leewalzenbildung reduziert ist gegenüber einem ansonsten identischen Fortbewegungsmittel, dessen Oberfläche eine glatte Struktur aufweist. Dies ist besonders vorteilhaft, wenn das

Fortbewegungsmittel als Schienenfahrzeug, insbesondere als Hochgeschwindigkeitszug ausgebildet ist.

Eine weitere bevorzugte Ausbildung eines erfindungsgemäßen Fortbewegungsmittels umfasst ein Luftfahrzeug, insbesondere ein Flugzeug oder Hubschrauber, mit zumindest einer der Komponenten Aussenhülle, Propeller, Rotor, Turbine,

Tragfläche, Lenkfläche oder Leitwerk, wobei zumindest Teile der Oberfläche einer dieser Komponenten eine Vielzahl von Vertiefungen und/oder Erhebungen aufweisen.

Eine bevorzugte Ausbildung eines erfindungsgemäßen Fortbewegungsmittels ist auch ein Wasserfahrzeug, umfassend zumindest einen Rumpf und/oder eine Antriebsschraube, wobei zumindest Teile der Oberflächen des Rumpfes und/oder der Antriebsschraube eine Vielzahl von Vertiefungen und/oder Erhebungen aufweisen.

15

10

Darüber hinaus liegen auch beliebige andere Arten von Fortbewegungsmitteln, wie beispielsweise Surfboards, Bob-Schlitten oder Raketen, mit einer Oberfläche, welche eine Vielzahl von Vertiefungen und/der Erhebungen aufweist, im Rahmen der Erfindung.

20

25

Besonders bevorzugt wird durch die Oberfläche des Fortbewegungsmittels, welche eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist, gegenüber einem ansonsten identischen Fortbewegungsmittel, dessen Oberfläche eine glatte Struktur aufweist,

- die Schleppwirbelbildung reduziert und/oder
- die Leewalzenbildung reduziert und/oder
- der Strömungswiderstand reduziert und/oder
- die Position des Strömungsabrisses relativ zur Bewegungsrichtung des Fortbewegungsmittels nach hinten verschoben und/oder
 - die Geräuschentwicklung reduziert und/oder

- die Vibrationsentwicklung reduziert und/oder
- die Ablagerung von Partikeln auf der Oberfläche reduziert und/oder
- die Eisbildung auf der Oberfläche reduziert.

Dementsprechend umfasst die Erfindung auch die Verwendung einer Oberfläche, welche eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist, als Oberfläche oder Teil einer Oberfläche eines Fortbewegungsmittels zu einem oder mehreren dieser Zwecke.

10

15

Weiterhin umfasst die Erfindung eine Schicht, insbesondere ausgebildet als Folie, zum Aufbringen auf eine Oberfläche oder Teile einer Oberfläche eines Fortbewegungsmittels, wobei die Aussenseite der Schicht eine Strukturierung aufweist, die eine Vielzahl von Vertiefungen und/oder Erhebungen umfasst. Durch Aufbringen einer solchen Schicht lassen sich die erfindungsgemäßen Vorteile auch durch Nachrüsten herkömmlicher Fortbewegungsmittel erzielen.

20

Die Erfindung wird nachstehend anhand von bevorzugten Ausführungsbeispielen und unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, wobei sich in den einzelnen Zeichnungen gleiche Bezugszeichen auf gleiche oder ähnliche Bestandteile beziehen.

25

Es zeigen

Figur 1: eine schematische Darstellung einer ersten Ausführungsform eines erfindungsgemäßen Fortbewegungsmittels,

30

Figur 2: eine schematische Darstellung einer zweiten Ausführungsform eines erfindungsgemäßen Fortbewegungsmittels.

 $(\cdot,\epsilon)^{(n)}$

- Figur 3: eine schematische Darstellung einer dritten Ausführungsform eines erfindungsgemäßen Fortbewegungsmittels,
- Figur 4: eine schematische Darstellung einer
 Antriebsschraube eines erfindungsgemäßen
 Fortbewegungsmittels,
 - Figur 5: eine schematische Darstellung eines Rotors eines erfindungsgemäßen Fortbewegungsmittels,
 - Figur 6: schematisch die Querschnitte zweier Tragflächen,
- 10 Figur 7: schematisch einen mittigen Querschnitt einer ersten Ausführungsform einer Vertiefung bzw.

 Erhebung senkrecht zur Oberfläche,
 - Figur 8: eine schematische Darstellung einer ersten Verteilung von Vertiefungen bzw. Erhebungen,
- 15 Figur 9: schematisch einen mittigen Querschnitt einer zweiten Ausführungsform einer Vertiefung bzw. Erhebung senkrecht zur Oberfläche,
 - Figur 10: eine schematische Darstellung einer zweiten Verteilung von Vertiefungen bzw. Erhebungen,
- Figur 11: schematisch einen mittigen Querschnitt senkrecht zu Oberfläche einer dritten Ausführungsform von Vertiefungen bzw. Erhebungen mit der entsprechenden Draufsicht,
 - Figur 12: eine schematische Darstellung einer
 Ausführungsform einer Oberfläche mit Vertiefungen
 bzw. Erhebungen, die ebene und gekrümmte Bereiche
 aufweist.
- Fig. 1 zeigt einen Hochgeschwindigkeitszug 10, dessen äußere Öberfläche 101 eine Vielzahl von Vertiefungen aufweist. Bei Bewegung des Zuges werden durch den oben beschriebenen Mechanismus ausgehend von diesen Vertiefungen

sekundäre Vortices in der an der Oberfläche entlang strömenden Luft erzeugt. Durch diese selbstorganisierenden Vortexstrukturen wird die Grenzschicht in der Nähe der Oberfläche abgesaugt und in die Hauptströmung geleitet, wodurch der Strömungswiderstand reduziert und verschiedene negative Strömungseffekte vermindert werden. Eine besondere Bedeutung kommt hier insbesondere einer reduzierten Leewalzenbildung bei Seitenwind zu, die bei herkömmlichen Hochgeschwindigkeitszügen ein großes Problem darstellt.

10

15

20

25

30

5

In Fig. 2 ist ein üblicher Düsenjet 20 gezeigt. In diesem Ausführungsbeispiel weisen die Oberflächen 201 der Tragflächen 22 eine Strukturierung mit einer Vielzahl von Vertiefungen und/oder Erhebungen auf. Diese Strukturierung kann bei der Herstellung der Tragflächen vorgesehen werden oder auch durch eine nachträglich aufgebrachte Schicht erzeugt werden, beispielsweise durch Aufbringen einer Folie, die die Strukturierung aufweist. Die strukturierte Oberfläche kann selbstverständlich mit Vorteil auch auf weiteren Oberflächen eines solchen Flugzeugs vorgesehen werden, wie beispielsweise des Rumpfes 21, der hinteren Leitwerke 23 und 24 oder der Außenseite der Antriebsaggregate 25. Auch könnten beispielsweise die Turbinenschaufeln der Antriebsaggregate 25 eine erfindungsgemäß strukturierte Oberfläche aufweisen. Vorteilhafte Effekte eines erfindungsgemäßen Luftfahrzeugs sind beispielsweise eine Reduzierung der Schleppwirbelbildung und eine Verbesserung der Stall-Eigenschaften. Die Erfindung reduziert außerdem ein insbesondere bei Überschallflugzeugen auftretendes Problem einer Erhitzung der Aussenhülle durch eine deutliche Verringerung des Oberflächenwiderstandes. Gleichzeitig wird durch die erfindungsgemäße Oberflächenstrukturierung der

20

25

30

Wärmeübergang zwischen Oberfläche und Medium verbessert, was ebenfalls zu einer Reduzierung dieses Problems beiträgt.

Fig. 3 zeigt ein Schiff 30, bei dem die unter der Wasserlinie 40 liegende Oberfläche 301 des Rumpfes 31 eine Strukturierung mit einer Vielzahl von Vertiefungen aufweist. Eine erfindungsgemäß strukturierte Oberfläche 331 kann außerdem auch auf den Blättern 34 der Antriebsschraube 33 vorgesehen sein. Dies ist in Fig. 4 nochmals im Detail dargestellt.

Fig. 5 zeigt einen Rotor 50 eines erfindungsgemäßen Hubschraubers mit zwei Rotorblättern 51, deren Oberfläche 501 eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist. Auch in diesem Ausführungsbeispiel können die Strömungseigenschaften auf diese Weise positiv beeinflusst werden. Bei Hubschraubern wirkt sich dies insbesondere durch verbesserten Lift, verbesserte Stall-Eigenschaften und eine Reduzierung der Geräuschentwicklung aus. Auf gleiche Weise können auch die Stall-Eigenschaften eines Propellers verbessert werden.

Fig. 6 zeigt den Querschnitt eines Profils einer herkömmlichen Tragfläche 26. Das langgezogene Profil ist erforderlich, um einen frühzeitigen Strömungsabriss zu vermeiden, der zu einem Verlust des Auftriebs führen würde. Weist jedoch die Oberfläche einer Tragfläche eine Vielzahl von Vertiefungen und/oder Erhebungen auf, verschiebt sich der Punkt des Strömungsabrisses entlang der Strömungsrichtung nach hinten, wodurch völlig neue Tragflächenprofile ermöglicht werden. Ein solches Profil 27 ist in Fig. 6 beispielhaft, zum Vergleich über das

herkömmliche Profil 26 gelegt, dargestellt. Durch solch neuartige Tragflächenprofile kann der Auftrieb signifikant erhöht beziehungsweise bei gleichem Auftrieb die Dimensionen der Tragfläche deutlich verringert werden.

5

10

Figur 7 zeigt einen mittigen Querschnitt einer bevorzugten Form einer Vertiefung 602 senkrecht zu einer ebenen Oberfläche. Die Vertiefung 602 in diesem Ausführungsbeispiel hat die Form eines Abschnitts einer Kugel bzw. einer Kugelkalotte mit Radius R₁, Höhe h und Durchmesser d, und ist mit einem Abrundungsradius R₂ abgerundet. Eine Vertiefung ist in diesem Beispiel rotationssymmetrisch zu einer Rotationsachse durch den Mittelpunkt der Vertiefung senkrecht zur Oberfläche.

15

20

In Fig. 8 ist eine bevorzugte Verteilung der
Vertiefungen 602 auf einer ebenen Oberfläche dargestellt.
Die Vertiefungen 602 sind periodisch angeordnet, wobei die
Mittelpunkte dreier direkt benachbarter Vertiefungen 602
ein gleichseitiges Dreieck bilden. Der Winkel α beträgt
daher 60°. Der Abstand der Mittelpunkte zweier benachbarter
Vertiefungen 602 und damit die Seitenlänge des genannten
Dreiecks beträgt t₂. Der Abstand zweier
aufeinanderfolgender Reihen von Vertiefungen 602 und damit
die Höhe des genannten Dreiecks beträgt t₁. t₁ und t₂ können
je nach Einsatzzweck unterschiedliche Werte aufweisen.

30

25

Figur 9 zeigt einen mittigen Querschnitt einer weiteren bevorzugten Form einer Vertiefung 702 senkrecht zu einer ebenen Oberfläche. Die Vertiefung 702 in diesem Ausführungsbeispiel hat die Form eines Abschnitts eines Ellipsoids mit den Durchmessern E_1 , E_2 und E_3 , wobei E_3 senkrecht zur Zeichenebene liegt und dementsprechend nicht

dargestellt ist. Die Vertiefung weist eine Höhe h und einen Durchmesser d auf und ist mit einem Abrundungsradius $R_{\mbox{\tiny 3}}$ abgerundet.

- In Fig. 10 ist eine bevorzugte Verteilung der Vertiefungen 702 auf einer ebenen Oberfläche dargestellt. Diese entspricht im wesentlichen der in Fig. 8 für die Vertiefungen 602 dargestellten Anordnung.
- Weitere vorteilhafte Formen und Anordnungen der 10 Vertiefungen und/oder Erhebungen sind den Anmeldungen EP 92 911 873.5, PCT RU92/00106 und EP 96 927 047.9, PCT/EP96/03200 zu entnehmen. Dementsprechend weist die Oberfläche vorteilhaft eine dreidimensionale Struktur auf, wie sie beispielhaft in Fig. 11 schematisch dargestellt 15 ist, mit Vertiefungen oder Erhebungen 802, gekrümmten Gebieten und Übergangsgebieten. In dem im oberen Bereich der Fig. 11 dargestellten Querschnitt der Oberfläche erstrecken sich die Vertiefungen bzw. Erhebungen entlang deren Durchmesser d, die gekrümmten Gebiete entlang der 20 Strecke l_c und die Übergangsgebiete entlang der Strecke l_{tr} . Der Abstand zweier Vertiefungen ist wiederum mit t2 bezeichnet.
- Ein beliebiger Abschnitt der Vertiefungen oder Erhebungen 802 entlang der Oberfläche hat die Gestalt einer glatten und durchgehenden Linie, die durch folgende Beziehung beschreibbar ist:

$$r(\varphi, z) = \left(\frac{z}{h}\right)^{k} \left[r(h, 0) - \frac{l_{c}}{2} + \Delta r \left(\frac{\varphi}{180^{\circ}} - \frac{1}{4\pi} \sin \frac{4\pi\varphi}{180^{\circ}}\right) + A_{1}\Delta r \left(\sin \frac{\pi\varphi}{180^{\circ}} - \frac{1}{3} \sin \frac{3\pi\varphi}{180^{\circ}}\right) + A_{2}\Delta r \left(\sin \frac{2\pi\varphi}{180^{\circ}} - \frac{1}{2} \sin \frac{4\pi\varphi}{180^{\circ}}\right) \right], \tag{1}$$

worin:

- $-r(\varphi,z)$ der Abschnittsradius in Richtung des Winkels φ (in Winkelmaß) ist, der von der Strecke aus, die die Zentren von benachbarten Vertiefungen und/oder Erhebungen verbindet oder von einer beliebigen Strecke aus, die in dem gekennzeichneten Abschnitt liegt, zu zählen ist;
 - z die Abschnittshöhe über dem niedrigsten Punkt der Vertiefungen ist oder der Abschnittsabstand vom höchsten Punkt der Erhebungen ist;
 - r(h,0) der Radius des Vertiefungs- oder Erhebungsabschnitts in Richtung des Winkels $\phi=0^\circ$ ist;
- 15 $\Delta r = r(h,180^\circ) r(h,0^\circ)$ die Differenz zwischen den Radien des Vertiefungs- oder des Erhebungsabschnitts in Richtung der Winkel $\varphi=180^\circ$ und $\varphi=0^\circ$ ist;
 - l_c die Abmessung des gekrümmten Bereichs projiziert auf eine Ebene, die parallel zur Ebene der Oberfläche verläuft, ist;
 - k ein Koeffizient ist mit 0,3 < k < 0,7;
 - A_1 ein Koeffizient ist mit -1 < A_1 < 1;
 - A_2 ein Koeffizient ist mit -1 < A_2 < 1; und
- h die Tiefe bzw. Höhe der Vertiefungen bzw. Erhebungen 25 ist.

In den gekrümmten Gebieten sind die Vertiefungen bzw. Erhebungen vorteilhaft mit einem Abrundungsradius von $R > 3 \cdot h$ zu den Übergangsgebieten hin abgerundet.

Vorteilhaft liegt der Wert von h zwischen dem 0,005- und dem 0,3-fachen der Dicke der Grenzschicht. Mit d dem Durchmesser der Vertiefungen oder Erhebungen gelten außerdem vorzugsweise die folgenden Beziehungen:

 $2 \cdot h < d < 40 \cdot h$, insbesondere $2 \cdot h < d < 10 \cdot h$, $0.3 \cdot d < l_c < 0.5 \cdot d \quad \text{und}$ $0.05 \cdot d < l_r < 3 \cdot d \; .$

10

15

20

25

5

Die in Gleichung (1) enthaltenen Parameter können abhängig von der Art des Mediums, der Form und den Dimensionen der Oberfläche, der Strömungsgeschwindigkeit, der Temperatur des Mediums und der Oberfläche, sowie weiteren die Strömung beinflussenden Faktoren unterschiedlich gewählt werden.

Fig. 12 zeigt eine Oberfläche, die zumindest einen ebenen Bereich 601 und einen gekrümmten Bereich 901 aufweist. Wird eine solche Oberfläche von einem Medium umströmt, ist es aufgrund unterschiedlicher Strömungszustände in den unterschiedlichen Bereichen vorteilhaft, wenn sich die Vertiefungen bzw. Erhebungen 602 in dem ebenen Bereich 601 in Form und/oder Größe und/oder Anordnung von den Vertiefungen bzw. Erhebungen 902 in dem gekrümmten Bereich 901 unterscheiden. Auch kann dies allein aus geometrischen Gründen erforderlich sein, da bei einer starken Krümmung der Oberfläche beispielsweise eine sinnvolle Größe der Vertiefungen bzw. Erhebungen beschränkt ist.

Die Figuren 13 a und 13 b zeigen das Modell eines Zuges mit einer Oberfläche, welche eine Vielzahl von Vertiefungen aufweist. Die Form der in diesem Modell verwendeten Vertiefungen entspricht im wesentlichen den in Fig. 7 dargestellten, angepasst an die Krümmung der Oberfläche. Zu erkennen ist auch eine Variation in Größe und Verteilung der Vertiefungen zwischen unterschiedlich gekrümmten Bereichen der Oberfläche.

Die Strömungseigenschaften dieses Modells wurden in einem Windkanal gemessen. Dabei ergab sich ein um 16% reduzierter Oberflächenwiderstand, sowie eine deutlich reduzierte Leewalzenbildung. Weiterhin ergaben Messungen in einem Medium, das turbulente Strömungen aufwies, eine signifikante Reduzierung der Vibrationsentwicklung.

10

Patentansprüche

1. Fortbewegungsmittel (10, 20, 30) mit zumindest einer Oberfläche (101, 201, 301), entlang der bei Bewegung des Fortbewegungsmittels (10, 20, 30) ein umgebendes Medium strömt, wobei die zumindest eine Oberfläche (101, 201, 301) eine Strukturierung aufweist, die eine Vielzahl von Vertiefungen und/oder Erhebungen (602, 702, 802, 902) umfasst.

10

15

20

25

30

- 2. Fortbewegungsmittel (10, 20, 30) nach Anspruch 1, wobei die zumindest eine Oberfläche (101, 201, 301) derart ausgebildet ist, dass sich in der Nähe der zumindest einen Oberfläche (101, 201, 301) Vortices in dem umgebenden Medium bilden, wenn das Medium an der zumindest einen Oberfläche (101, 201, 301) entlang strömt.
- 3. Fortbewegungsmittel (10, 20, 30) nach einem der vorstehenden Ansprüche, wobei die Vertiefungen und/oder Erhebungen (602, 702, 802, 902) im Bereich des Randes zum Rest der Oberfläche (101, 201, 301) hin abgerundet sind.
- 4. Fortbewegungsmittel (10, 20, 30) nach einem der vorstehenden Ansprüche, wobei die Vertiefungen und/oder Erhebungen (602, 702) im wesentlichen die Form eines Abschnitts einer Kugel oder eines Ellipsoids aufweisen.
- 5. Fortbewegungsmittel (10, 20, 30) nach einem der vorstehenden Ansprüche, umfassend eine Einrichtung zum Variieren der Form und/oder der Anzahl der Vertiefungen und/oder Erhebungen (602, 702).

10

15

20

25

- 6. Fortbewegungsmittel (10, 20, 30) nach einem der vorstehenden Ansprüche, wobei die Vertiefungen und/oder Erhebungen (602, 702, 802, 902) zumindest abschnittsweise im wesentlichen periodisch auf der zumindest einen Oberfläche (101, 201, 301) angeordnet sind.
- 7. Fortbewegungsmittel (10, 20, 30) nach einem der vorstehenden Ansprüche, wobei die zumindest eine Oberfläche (101, 201, 301) zumindest einen ersten, im wesentlichen ebenen Bereich (601) und zumindest einen zweiten, im wesentlichen gekrümmten Bereich (901) umfasst.
- 8. Fortbewegungsmittel (10, 20, 30) nach Anspruch 7, wobei sich die Vertiefungen und/oder Erhebungen (602, 902) in dem zumindest einen ersten Bereich (601) und in dem zumindest einen zweiten Bereich (901) in Form und/oder Größe und/oder Anordnung unterscheiden.
- 9. Fortbewegungsmittel (10, 20, 30) nach Anspruch 7 oder 8, wobei zumindest in dem zumindest einen ersten, im wesentlichen ebenen Bereich (601) der zumindest einen Oberfläche (101, 201, 301) die Mittelpunkte dreier direkt benachbarter Vertiefungen und/oder Erhebungen (602) ein gleichseitiges Dreieck bilden und der Abstand der Mittelpunkte zweier benachbarter Vertiefungen und/oder Erhebungen (602) einen im wesentlichen konstanten ersten Wert (t₂) und der Abstand zweier aufeinanderfolgender Reihen von Vertiefungen und/oder Erhebungen (602) einen im wesentlichen konstanten zweiten Wert (t₁) aufweisen.
 - 10. Fortbewegungsmittel (10) nach einem der vorstehenden Ansprüche, ausgebildet als Landfahrzeug, insbesondere als Schienenfahrzeug oder als Last- oder Personenkraftwagen,

20

30

umfassend zumindest eine Aussenhülle, wobei zumindest Teile der Oberfläche (101) der Aussenhülle eine Vielzahl von Vertiefungen und/oder Erhebungen aufweisen.

- 11. Fortbewegungsmittel (10) nach Anspruch 10, wobei durch die zumindest eine Oberfläche (101), welche eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist, die Leewalzenbildung reduziert ist gegenüber einem ansonsten identischen Fortbewegungsmittel, bei dem die zumindest eine Oberfläche eine glatte Struktur aufweist.
 - 12. Fortbewegungsmittel (20) nach einem der vorstehenden Ansprüche, ausgebildet als Luftfahrzeug, insbesondere als Flugzeug oder Hubschrauber, umfassend zumindest eine Aussenhülle und/oder einen Propeller und/oder einen Rotor und/oder eine Turbine und/oder eine Tragfläche und/oder eine Lenkfläche und/oder ein Leitwerk, wobei zumindest Teile der Oberflächen (201) der Aussenhülle und/oder des Propellers und/oder des Rotors und/oder der Turbine und/oder der Tragfläche und/oder der Lenkfläche und/oder des Leitwerks eine Vielzahl von Vertiefungen und/oder Erhebungen aufweisen.
- 13. Fortbewegungsmittel (30) nach einem der vorstehenden 25 Ansprüche, ausgebildet als Wasserfahrzeug, umfassend 25 zumindest einen Rumpf (31) und/oder eine Antriebsschraube (33), wobei zumindest Teile der Oberflächen (301) des 200 Rumpfes (31) und/oder der Antriebsschraube (33) eine 200 Vielzahl von Vertiefungen und/oder Erhebungen aufweisen.
 - 14. Fortbewegungsmittel (10, 20, 30) nach einem der vorstehenden Ansprüche, wobei durch die zumindest eine Oberfläche (101, 201, 301), welche eine Vielzahl von

25

Vertiefungen und/oder Erhebungen (602, 702, 802, 902) aufweist, gegenüber einem ansonsten identischen Fortbewegungsmittel, bei dem die zumindest eine Oberfläche eine glatte Struktur aufweist,

- die Schleppwirbelbildung reduziert ist und/oder 5
 - die Leewalzenbildung reduziert ist und/oder
 - der Strömungswiderstand reduziert ist und/oder
 - die Position des Strömungsabrisses relativ zur Bewegungsrichtung des Fortbewegungsmittels (10, 20, 30)
- nach hinten verschoben ist und/oder 10
 - die Geräuschentwicklung reduziert ist und/oder
 - die Vibrationsentwicklung reduziert ist.
- 15. Fortbewegungsmittel (10, 20, 30) nach einem der 15 vorstehenden Ansprüche, wobei die Ablagerung von Partikeln auf der zumindest einen Oberfläche (101, 201, 301), welche eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist, reduziert ist gegenüber einer glatten Oberfläche, wenn ein Medium an der Oberfläche entlang strömt.
 - 16. Fortbewegungsmittel (10, 20, 30) nach einem der vorstehenden Ansprüche, wobei die Eisbildung auf der zumindest einen Oberfläche (101, 201, 301), welche eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist, reduziert ist gegenüber einer glatten Oberfläche, wenn ein Medium an der Oberfläche entlang strömt und die Oberfläche eine niedrigere Temperatur als das Medium aufweist.
- 17. Verwendung einer Oberfläche, welche eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist, als Oberfläche 30 (101, 201, 301) eines Fortbewegungsmittels (10, 20, 30) zum - Reduzieren der Schleppwirbelbildung und/oder

 - Reduzieren der Leewalzenbildung und/oder

- Reduzieren des Strömungswiderstandes und/oder
- Verschieben der Position des Strömungsabrisses nach hinten relativ zur Bewegungsrichtung des Fortbewegungsmittels (10, 20, 30) und/oder
- 5 Reduzieren der Geräuschentwicklung und/oder
 - Reduzieren der Vibrationsentwicklung und/oder
 - Reduzieren von Partikelablagerungen, wenn ein Medium an der Oberfläche entlang strömt, und/oder
 - Reduzieren von Eisbildung, wenn ein Medium an der Oberfläche entlang strömt.
- 18. Schicht, insbesondere Folie, zum Aufbringen auf eine Oberfläche oder Teile einer Oberfläche eines Fortbewegungsmittels, wobei die Aussenseite der Schicht eine Strukturierung aufweist, die eine Vielzahl von Vertiefungen und/oder Erhebungen umfasst.

10

15

Zusammenfassung

Zur Verbesserung der Strömungseigenschaften eines Fortbewegungsmittels, das sich relativ zu einem umgebenden Medium bewegt, und zur Verminderung bestimmter nachteiliger Strömungseffekte, wie zum Beispiel der Schleppwirbel- und Leewalzenbildung, sieht die Erfindung ein Fortbewegungsmittel mit zumindest einer strukturierten Oberfläche vor, die eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist, sowie die Verwendung einer Oberfläche, welche eine Vielzahl von Vertiefungen und/oder Erhebungen aufweist, als Oberfläche eines Fortbewegungsmittels.

Weiterhin sieht die Erfindung eine Schicht zum Aufbringen auf eine Oberfläche oder Teile einer Oberfläche eines Fortbewegungsmittels vor, wobei die Aussenseite der Schicht eine Strukturierung aufweist, die eine Vielzahl von Vertiefungen und/oder Erhebungen umfasst.

20 (Fig. 1)

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

CHL

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13 a

Fig. 13 b

