22401 HW3

Bin Yu

Feb 03, 2025

Question 1

(a)

Three indicator variables were created for fertilizer groups 1, 2, and 3 using the following code:

```
gen F1 = (Fertilizer == 1)
gen F2 = (Fertilizer == 2)
gen F3 = (Fertilizer == 3)
```

Group 4, corresponding to the control, is represented by observations for which all three indicators are 0.

(b)

Estimated the following model:

Yield_{ij} =
$$\mu_0 + \mu_1 F1 + \mu_2 F2 + \mu_3 F3 + \epsilon_{ij}$$
.

The Stata regression output is shown in Figure 7.

. regress Yield F1 F2 F3

Source	SS	df	MS	Number	01 005	= 40 = 5.14
Model	362.6	3	120.866667		2.5	= 0.0046
Residual	845.8	36	23.4944444	R−squa	red	= 0.3001
Total	1208.4	39	30.9846154		oquu. cu	= 0.2417 = 4.8471
Yield	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
F1 F2 F3 _cons	6.8 .1 5.1 29.8	2.167692 2.167692 2.167692 1.53279	3.14 0.05 2.35 19.44	0.003 0.963 0.024 0.000	2.403717 -4.296283 .7037167 26.69136	11.19628 4.496283 9.496283 32.90864

Figure 1: Stata regression output for the model Yield_{ij} = $\mu_0 + \mu_1$ F1 + μ_2 F2 + μ_3 F3 + ϵ_{ij} .

(c)

We first test the null hypothesis that none of the fertilizers affect the corn yield:

$$H_0: \mu_1 = \mu_2 = \mu_3 = 0.$$

The alternative hypothesis is that at least one of the fertilizer effects is nonzero:

$$H_1$$
: At least one $\mu_i \neq 0$ $(i = 1, 2, 3)$.

Under the null hypothesis, the restricted model omits the predictors F1, F2, and F3. The F-statistic for testing these q=3 restrictions is computed as

$$F = \frac{(RSS_R - RSS_F)/q}{RSS_F/(n-k)},$$

where:

- \bullet RSS_R is the residual sum of squares from the restricted model,
- RSS_F is the residual sum of squares from the full model (with F1, F2, and F3),
- n is the number of observations (40 in this case), and
- k is the number of parameters estimated in the full model (including the intercept, so k=4).

Using Stata's test command, obtained:

$$F(3,36) = 5.14, \quad p = 0.0046.$$

Since p < 0.05, we reject H_0 in favor of H_1 , indicating that at least one fertilizer has a statistically significant effect on yield. The output is displayed in Figure 2.

. test F1 F2 F3

- (1) F1 = 0
- (2) **F2** = **0**
- (3) **F3** = **0**

$$F(3, 36) = 5.14$$

 $Prob > F = 0.0046$

Figure 2: F-test output for $H_0: \mu_1 = \mu_2 = \mu_3 = 0$ vs. H_1 : at least one $\mu_i \neq 0$.

(d)

To test whether the three fertilizers have equal effects:

$$H_0: \mu_1 = \mu_2 = \mu_3.$$

The alternative hypothesis is that at least one pair of fertilizer effects differs:

$$H_1$$
: Not all μ_i are equal $(i = 1, 2, 3)$.

Null hypothesis can be restated in terms of differences:

$$H_0: \mu_1 - \mu_2 = 0$$
 and $\mu_1 - \mu_3 = 0$.

In matrix form, if we let $\boldsymbol{\mu} = (\mu_1, \mu_2, \mu_3)^{\top}$, the restrictions can be expressed as:

$$H_0: R\mu = \mathbf{0}, \text{ with } R = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

The F-statistic is calculated as:

$$F = \frac{(RSS_R - RSS_F)/q}{RSS_F/(n-k)},$$

with q=2 restrictions for this test. Here, RSS_R corresponds to the residual sum of squares under the restricted model (which imposes $\mu_1 = \mu_2 = \mu_3$), and RSS_F is the residual sum of squares from the full model (with separate effects). Stata's joint F-test yielded

$$F(2,36) = 5.16, \quad p = 0.0107.$$

Since p < 0.05, we reject H_0 in favor of H_1 , suggesting that the effects of the three fertilizers are not equal. The corresponding output is given in Figure 3.

Figure 3: F-test output for $H_0: \mu_1 = \mu_2 = \mu_3$ vs. H_1 : not all μ_i are equal.

(e)

To test whether applying any fertilizer (groups 1, 2, or 3) has a common effect relative to the control (group 4), a new indicator variable anyfert is created using the following code:

We then estimate the regression model:

$$Yield = \alpha + \beta \operatorname{anyfert} + \epsilon.$$

The hypotheses for testing the overall effect of any fertilizer are:

$$H_0: \beta = 0$$
 vs. $H_1: \beta \neq 0$.

Under H_0 , the restricted model excludes the effect of fertilizer (i.e., it reduces to a model with only the intercept). The F-test for this single restriction (with q = 1) is calculated as:

$$F = \frac{(RSS_R - RSS_F)/q}{RSS_F/(n-k)},$$

where:

- RSS_R is the residual sum of squares from the restricted model,
- RSS_F is the residual sum of squares from the full model (including anyfert),
- n is the number of observations (40), and
- k is the number of parameters estimated in the full model (here, k=2, for intercept and β).

The Stata output gived the F-statistic of

$$F(1,38) = 4.19$$
 with $p = 0.0476$,

which corresponds to a t-test for β (since for one restriction, $t^2 = F$). Since p < 0.05, we reject H_0 in favor of H_1 , indicating that applying any fertilizer results in a statistically significant change in corn yield. The output is displayed in Figure 4.

. regress Yield anyfert

Source	SS	df	MS	Number of ob	s =	40 4.19
Model Residual	120 1088.4	1 38	120 28.6421053	R-squared	=	0.0476 0.0993
Total	1208.4	39	30.9846154	- Adj R-square Root MSE	d = =	0.0756 5.3518
Yield	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
anyfert _cons	4 29.8	1.954213 1.692398		0.048 .0439 0.000 26.37		7.956097 33.22608

Figure 4: Regression output for testing $H_0: \beta = 0$ vs. $H_1: \beta \neq 0$ in the model Yield $= \alpha + \beta$ any fert $+ \epsilon$.

Question 2

(a)

graph matrix expend_per_k income kids_per_k
correlate expend_per_k income kids_per_k urban_per_k

Figure 5: Scatter matrix plot for expend_per_k, income, and kids_per_k.

The correlation table indicates a strong positive correlation between income and expenditure, and a moderate correlation (negative between per capita school age children and expenditure, positive between urbanicity and expenditure).

There is also a negative correlation between income and per capita school age children, a positive correlation between income and urbanicity, a negative correlation between per capita school age children and urbanicity.

. correlate expend_per_k income kids_per_k urban_per_k (obs=150)

	expend~k	income	kids_p~k	urban_~k
expend_per_k	1.0000			
income	0.9148	1.0000		
kids_per_k	-0.5541	-0.6963	1.0000	
urban_per_k	0.3549	0.4800	-0.3709	1.0000

Figure 6: Correlation Coefficients

(b)

We estimate the following multiple regression model:

$$Y = \beta_0 + \beta_1 \cdot \text{income} + \beta_2 \cdot \text{kids_per_k} + \beta_3 \cdot \text{urban_per_k} + \epsilon.$$

Stata Output

. regress expend_per_k income kids_per_k urban_per_k

Source	ss	df	MS	Number of o		150
Model Residual	1124732.31 185764.329	3 146	374910.77 1272.35841		= = = ed =	294.66 0.0000 0.8582 0.8553
Total	1310496.64	149	8795.27946		=	35.67
expend_per_k	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
income kids_per_k urban_per_k _cons	.080208 .2978954 063398 -141.8916	.0034482 .0843104 .0220906 40.59252	3.53 -2.87	0.000 .073 0.001 .131 0.005107 0.001 -222.	2689 0566	.0870228 .464522 0197393 -61.66675

Figure 7: Regression output for the model testing the overall effects of income, kids_per_k, and urban_per_k on expend_per_k.

The regression output shows that:

- The model has F(3, 146) = 294.66 with p = 0.0000, indicating that the overall regression is highly significant.
- The R^2 is 0.8582 (with an adjusted R^2 of 0.8553), meaning that approximately 85.5% of the variation in educational expenditures is explained by the predictors.

Overall Test: We test the joint null hypothesis:

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0,$$

which implies that none of the predictors have an effect on Y. Given the highly significant overall F-statistic (F(3, 146) = 294.66, p = 0.0000), we reject H_0 and conclude that at least one of the predictors have a statistically significant effect on educational expenditures.

Individual Tests:

- Income (X_1) : The coefficient for income is 0.080208 with a standard error of 0.0034482. The corresponding t-value is 23.26 and p < 0.001. This indicates that holding other variables constant, a one-unit increase in per capita school age kids is associated with an increase of 0.08 units in educational expenditures on average, which is significant.
- per capita school age kids (X_2) : The coefficient for kids_per_k is 0.2978954 with a standard error of 0.0843104. The t-value is 3.53 with p = 0.001. This suggests that, holding other variables constant, a one-unit increase in per capita school age kids is associated with an increase of approximately 0.30 units in educational expenditures on average, which is statistically significant.

• Urban per 1000 (X_3): The coefficient for urban_per_k is -0.063398 with a standard error of 0.0220906. The t-value is -2.87 with p = 0.005. This implies that one unit increase in urbanicity is associated 0.063 unit decrease in educational expenditures, and the effect is significant.

(c)

We first incorporate the categorical variable yearint into the multivariable model using factor-variable notation so that the first level (year interval 1) serves as the baseline. The model is specified as

expend_per_k =
$$\beta_0 + \beta_1 \cdot \text{income} + \beta_2 \cdot \text{kids_per_k} + \beta_3 \cdot \text{urban_per_k} + \delta_2 D_2 + \delta_3 D_3 + \epsilon$$
,

where D_2 and D_3 are indicator (dummy) variables for year intervals 2 and 3, respectively.

Stata Output

. regress expend_per_k income kids_per_k urban_per_k i.yearint

Source	SS	df	MS	Numbe	er of obs	=	150 205.23
Model	1149224.71	5	229844.942			=	0.0000
		_				-	
Residual	161271.932	144	1119.94397	R-sqi	uared	=	0.8769
-				- Adj F	R-squared	=	0.8727
Total	1310496.64	149	8795.27946	Root	MSE	=	33.466
expend_per_k	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
income	.0687726	.0066163	10.39	0.000	. 05569	5	.0818503
kids_per_k	.3633622	.080598	4.51	0.000	.204054	3	.5226701
urban_per_k	0507201	.0242687	-2.09	0.038	09868	9	0027511
yearint							
2	43.08517	10.02345	4.30	0.000	23.2730	8	62.89727
3	43.09763	18.19469	2.37	0.019	7.13445	1	79.0608
	(Maryan - Maryan (Maryan (Mary						
_cons	-165.0158	38.40555	-4.30	0.000	-240.927	3	-89.10441

Figure 8: Regression output including yearint dummies (baseline: interval 1).

The output reports the following coefficients for the year interval indicators:

- For year interval 2: $\delta_2 = 43.09$ with a standard error of 10.02, a t-statistic of 4.30, and a p-value less than 0.001.
- For year interval 3: $\delta_3 = 43.10$ with a standard error of 18.19, a t-statistic of 2.37, and a p-value of 0.019.

The coefficient $\delta_2 = 43.09$ indicates that, holding income, per capita school age children, and urbanicity constant, the average per capita educational expenditure in year interval 2 is estimated to be 43.09 units higher than in year interval 1 on average. Similarly, the coefficient $\delta_3 = 43.10$ implies that, under the same conditions, the average expenditure in year interval 3 is 43.10 units higher than that in the baseline on average. The statistical significance of these coefficients (with p < 0.001 for interval 2 and p = 0.019 for interval 3) provides strong evidence that both year intervals 2 and 3 have higher expenditures compared to year interval 1.

(d)

We now change the reference (baseline) level to interval 2.

Stata Output

. regress expend_per_k income kids_per_k urban_per_k ib2.yearint

Source	SS	df	MS	Number (
				- F(5, 14		
Model	1149224.71	5	229844.942	Prob > 1	F =	0.0000
Residual	161271.932	144	1119.94397	R-square	ed =	0.8769
-				- Adj R-s	quared =	0.8727
Total	1310496.64	149	8795.27946	Root MSI	Ε =	33.466
expend_per_k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
income	.0687726	.0066163	10.39	0.000	.055695	.0818503
kids_per_k	.3633622	.080598	4.51	0.000	. 2040543	.5226701
urban per k	0507201	.0242687	-2.09		098689	0027511
uibaii_pei_k	0307201	.0242007	-2.03	0.050	030003	002/311
yearint						
1	-43.08517	10.02345	-4.30	0.000 -	62.89727	-23.27308
3	.0124529	11.74007	0.00	0.999 -2	23.19268	23.21758
_cons	-121.9307	38.56866	-3.16	0.002 -	198.1645	-45.69682

Figure 9: Regression output with yearint baseline set to interval 2.

In this parameterization, the model estimates the effects relative to interval 2. The output shows:

- For year interval 1: the coefficient is -43.09 (indicating that the expenditure of interval 1 on average is 43.09 units lower than interval 2, holding other predictors constant), and
- For year interval 3: the coefficient is 0.0125 (SE = 11.74, t = 0.00, p = 0.999).

To understand why coefficients and p-value of interval 3 changed, a formal test comparing the effects for intervals 2 and 3 can be performed by testing the null hypothesis that the coefficient for interval 3 is zero (i.e., that the effect in interval 3 is equal to that in the baseline, interval 2):

$$H_0: \delta_3 = 0$$
 vs. $H_1: \delta_3 \neq 0$.

. test 2.yearint = 3.yearint

```
( 1) 2b.yearint - 3.yearint = 0
```

```
F(1, 144) = 0.00

Prob > F = 0.9992
```

Figure 10: Testing output

The test result is:

$$F(1, 144) = 0.00, \quad p = 0.9992,$$

indicating no statistically significant difference between year intervals 2 and 3.

Therefore, the coefficient for year interval 3 changes dramatically when the baseline is switched from interval 1 to interval 2 because the coefficients are defined relative to the chosen baseline. In the first parameterization (baseline = 1), both intervals 2 and 3 are compared with interval 1 and yield similar positive differences (approximately 43 units) in expenditures. When interval 2 is chosen as the baseline, the difference between interval 3 and interval 2 in expenditures is approximately zero (0.0125), which is confirmed by the hypothesis test ($p \approx 1$). This reparameterization shows that intervals 2 and 3 do not differ significantly on their effects on education expenditures from each other, even though each is substantially different from interval 1 on the effects on education expenditures.

(e)

To test if the effect of per capita school age children (X_2) on education expenditures is constant across year intervals, we create interaction terms:

$$Y = \beta_0 + \beta_1 \cdot \text{income} + \beta_2 \cdot \text{kids_per_k} + \beta_3 \cdot \text{urban_per_k} + \delta_2 D_2 + \delta_3 D_3 + \gamma_2 (D_2 \times \text{kids_per_k}) + \gamma_3 (D_3 \times \text{kids_per_k}) + \epsilon.$$

. regress expend_per_k income urban_per_k i.yearint##c.kids_per_k

	Source	SS	df	MS	Number of obs	=	150
-					F(7, 142)	=	188.80
	Model	1183348.3	7	169049.757	Prob > F	=	0.0000
	Residual	127148.339	142	895.410836	R-squared	=	0.9030
-					Adj R-squared	=	0.8982
	Total	1310496.64	149	8795.27946	Root MSE	=	29.923

expend_per_k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
income urban_per_k	.0714467 0491426	.0059397 .0217067	12.03 -2.26	0.000 0.025	.0597051 0920527	.0831884 0062325
yearint 2 3	-214.2849 -403.7084	71.54385 81.77559	-3.00 -4.94	0.003 0.000	-355.7136 -565.3632	-72.85625 -242.0535
kids_per_k	.1500218	.0813904	1.84	0.067	0108717	.3109152
<pre>yearint#c.kids_per_k 2 3</pre>	.6797114 1.296788	.1936334 .2355819	3.51 5.50	0.001 0.000	.2969349 .8310869	1.062488 1.762489
_cons	-84.67142	37.39907	-2.26	0.025	-158.6023	-10.74053

Figure 11: Regression output for the interaction model and test for $H_0: \gamma_2 = \gamma_3 = 0$.

To test the effect of interaction terms, the null hypothesis is:

$$H_0: \gamma_2 = \gamma_3 = 0$$
 versus $H_1: \text{At least one } \gamma_i \neq 0.$

If H_0 holds, the relationship between kids_per_k and Y is the same regardless of the value of yearint; that is, the slope for kids_per_k remains β_2 across all groups. If we reject H_0 , it implies that the impact of kids_per_k on educational expenditure differs in at least one of the non-baseline year intervals.

```
. testparm i.yearint#c.kids_per_k
```

- (1) 2.yearint#c.kids_per_k = 0
- (2) 3.yearint#c.kids_per_k = 0

$$F(2, 142) = 19.05$$

 $Prob > F = 0.0000$

Figure 12: F-test

The F-test for the interaction yields F(2, 142) = 19.05 with p = 0.0000. Since the p-value is small, we reject H_0 and conclude that at least one of the interaction coefficients is significantly different from zero. This indicates that the effect of per capita school-age children on educational expenditures is not constant across the year intervals. In

other words, the relationship between $\mathtt{kids_per_k}$ and Y varies among different year intervals, indicating that the impact of this predictor is moderated by time.

(f)

Separate regressions are run for each year interval to obtain the effect of kids_per_k within each subgroup:

-> yearint = 1	1						
Source	SS	df	MS		per of obs	=	50
				- F(3,	46)	=	13.71
Model	10133.6139	3	3377.8713	Prob) > F	=	0.0000
Residual	11332.3061	46	246.354481	R-sc	quared	=	0.4721
				- Adj	R-squared	=	0.4376
Total	21465.92	49	438.08	Root	MSE	=	15.696
expend_per_k	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
income	. 0449327	.0076673	5.86	0.000	.0294992		. 0603662
kids_per_k	.0662226	.0488342	1.36	0.182	0320756		.1645208
urban_per_k	0289536	.0192932	-1.50	0.140	0677888		.0098816
_cons	-11.40463	28.97616	-0.39	0.696	-69.73062		46.92137
-> yearint = 2	2						
Source	SS	df	MS		er of obs	=	50
				- F(3,	46)	=	32.96
Model	71922.5923	3	23974.1974) > F	=	0.0000
Residual	33460.2877	46	727.397558	R-sc	quared	=	0.6825
<u> </u>				- Adj	R-squared	=	0.6618
Total	105382.88	49	2150.67102	Root	MSE	=	26.97
expend_per_k	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
income	.0808861	.0094739	8.54	0.000	.0618161		. 099956
kids_per_k	.8184112	.1616285	5.06	0.000	. 49307		1.143752
urban_per_k	1037663	.0350621	-2.96	0.005	1743426		03319
_cons	-289.1793	66.16956	-4.37	0.000	-422.3717		-155.9868
-> yearint = 3	3						
yearine – :							
Source	SS	df	MS	Numb	er of obs	=	50
3				- F(3,	46)	=	22.19
Model	109020.418	3	36340.1394	Prob) > F	=	0.0000
Residual	75347.5819	46	1637.99091	R-sc	quared	=	0.5913
					R-squared	=	0.5647
Total	184368	49	3762.61224	Root	MSE	=	40.472
expend_per_k	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
3	072225	0110001	6.24	0.000	0400000		0057366
income	.0723853	.0116024	6.24	0.000	.0490308		.0957398
kids_per_k	1.552054	.3146716	4.93	0.000	.9186534		2.185456
	00/000	0513000		0 021			0000=00
urban_per_k _cons	004269 -556.568	.0513929 123.1953	-0.08 -4.52	0.934 0.000	1077175 -804.5472		.0991794 -308.5889

Figure 13: Stratified regression outputs by year interval.

The output from these regressions is summarized below.

For Year Interval 1 (yearint = 1):

• kids_per_k coefficient: 0.0662

• Standard error: 0.0488

t-value: 1.36 p-value: 0.182

• 95% Confidence Interval: [-0.0321, 0.1645]

Interpretation: In year interval 1, the coefficient for kids_per_k is small (approximately 0.0662) and not statistically significant (p = 0.182). This suggests that, for year interval 1, there is little evidence that a one unit increase in the per-capita school-age children are associated with 0.0662 unit increase in educational expenditures on average, holding income and urbanicity constant.

For Year Interval 2 (yearint = 2):

• kids_per_k coefficient: 0.8184

• Standard error: 0.1616

t-value: 5.06 p-value: 0.000

• 95% Confidence Interval: [0.4931, 1.1438]

Interpretation: In year interval 2, the coefficient for kids_per_k is approximately 0.8184 and highly significant (p < 0.001). This indicates that for year interval 2, a one unit increase in the per-capita school-age children is associated with an increase of about 0.82 units in educational expenditures on average, holding the other variables constant.

For Year Interval 3 (yearint = 3):

• kids_per_k coefficient: 1.5521

• Standard error: 0.3147

t-value: 4.93 p-value: 0.000

• 95% Confidence Interval: [0.9187, 2.1855]

Interpretation: In year interval 3, the coefficient for kids_per_k is approximately 1.5521, and it is also statistically significant (p < 0.001). This suggests that in year interval 3, an additional one unit increase in per capita school-age children is associated with an increase of about 1.55 units in educational expenditures on average, holding other variables constant.

Summary The stratified analyses indicate that the impact of per capita school-age children on educational expenditures varies significantly in different year interval. In the earliest period (year interval 1), the effect is small and insignificant. However, in later intervals (2 and 3), the effect becomes larger and significant year by year.

(g)

Based on the stratified regressions reported in part (f), effects of urbanicity also differ by year interval:

Urban_per_k (Urbanicity):

- Year Interval 1: The coefficient is about -0.029 and not statistically significant $(p \approx 0.14)$.
- Year Interval 2: The coefficient is more negative, approximately -0.104 and statistically significant (p = 0.005).
- Year Interval 3: The coefficient is close to zero (-0.0043) and not statistically significant (p = 0.934).

This pattern indicates that the effect of urbanicity on educational expenditures is not consistent across time. It appears to have a negative effect in interval 2, while its effect is minimal in intervals 1 and 3. Such a change suggests that the influence of urbanicity on educational expenditures may have altered over the time periods.

(h)

From the interaction model in Part (e), the slopes for kids_per_k can be written as follows:

 $Y = \beta_0 + \beta_1 \cdot \text{income} + \beta_2 \cdot \text{kids_per_k} + \beta_3 \cdot \text{urban_per_k} + \delta_2 D_2 + \delta_3 D_3 + \gamma_2 (D_2 \times \text{kids_per_k}) + \gamma_3 (D_3 \times \text{kids_per_k}) + \epsilon.$

- For year interval 1 (baseline): Slope = β_2 .
- For year interval 2: Slope = $\beta_2 + \gamma_2$.
- For year interval 3: Slope = $\beta_2 + \gamma_3$.

Estimated Values from the Interaction Model:

From the Stata output in part (e), we have the following estimates:

- β_2 (coefficient for kids_per_k) is estimated as approximately 0.1500.
- γ_2 (interaction coefficient for year interval 2) is estimated as approximately 0.6797.
- γ_3 (interaction coefficient for year interval 3) is estimated as approximately 1.2968.

Thus, the slopes are:

Interval 1: 0.1500,

Interval 2: 0.1500 + 0.6797 = 0.8297,

Interval 3: 0.1500 + 1.2968 = 1.4468.

Comparison with Stratified Models:

The stratified regressions reported in part (f) provided the following estimates for the coefficient on kids_per_k:

- Year Interval 1: 0.0662 (not statistically significant),
- Year Interval 2: 0.8184 (highly significant),
- Year Interval 3: 1.5521 (highly significant).

Comparing the slopes:

- Interval 1: The interaction model yields 0.1500 versus 0.0662 from the stratified regression.
- Interval 2: The interaction model gives 0.8297 compared to 0.8184 from the stratified regression. These values are very close.
- Interval 3: The interaction model estimates 1.4468 while the stratified model reports 1.5521. The estimates are also very close.

Overall Interpretation:

The slopes for kids_per_k derived from the interaction model are expressed in terms of the estimated parameters as:

Slope in Interval
$$1 = \beta_2 \approx 0.1500$$
,
Slope in Interval $2 = \beta_2 + \gamma_2 \approx 0.8297$,
Slope in Interval $3 = \beta_2 + \gamma_3 \approx 1.4468$.

These estimates are mainly consistent with the slopes obtained from the stratified regressions:

```
Interval 1 (Stratified) \approx 0.0662,
Interval 2 (Stratified) \approx 0.8184,
Interval 3 (Stratified) \approx 1.5521.
```

However, there are several reasons why these estimates might not be exactly the same:

- 1. **Joint Estimation vs. Separate Estimation:** In the joint model, the parameters are estimated simultaneously using the full sample. In contrast, the stratified regressions use only the subgroup data, which may result in different estimates due to smaller sample sizes and less precision.
- 2. Control of Other Covariates: In the joint model, the effects of other covariates (e.g., income and urban_per_k) are estimated using the full sample. However, when we are fitting the stratified model, we are assuming the effect are different for covariates among different groups, therefore, we are using samples from each group to estimate all the coefficients. Therefore, the estimation of the kids_per_k slope differently across groups than when each subgroup is analyzed separately.

This comparison affirms the finding that the impact of kids_per_k on educational expenditures is not constant across time, but rather increases in later year intervals.

Alternatively, if we fit the model in this way:

$$\begin{split} \text{expend_per_k} &= \beta_0 + \beta_1 \, \text{income} + \beta_2 \, \text{kids_per_k} + \beta_3 \, \text{urban_per_k} \\ &+ \delta_2 \, D_2 + \delta_3 \, D_3 \\ &+ \gamma_2 \, \left(D_2 \times \text{kids_per_k} \right) + \gamma_3 \, \left(D_3 \times \text{kids_per_k} \right) \\ &+ \phi_2 \, \left(D_2 \times \text{income} \right) + \phi_3 \, \left(D_3 \times \text{income} \right) \\ &+ \theta_2 \, \left(D_2 \times \text{urban_per_k} \right) + \theta_3 \, \left(D_3 \times \text{urban_per_k} \right) \\ &+ \epsilon. \end{split}$$

. regress expend_per_k i.yearint##c.kids_per_k i.yearint##c.income i.yearint##c.urban_per_k

	Source	SS	df	MS	Number of obs	=	150
-					F(11, 138)	=	124.30
	Model	1190356.46	11	108214.224	Prob > F	=	0.0000
	Residual	120140.176	138	870.580983	R-squared	=	0.9083
-					Adj R-squared	=	0.9010
	Total	1310496.64	149	8795.27946	Root MSE	=	29.506

expend_per_k	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
yearint						
2	-277.7746	90.59449	-3.07	0.003	-456.9074	-98.64183
3	-545.1634	105.0409	-5.19	0.000	-752.8612	-337.4656
kids_per_k	.0662226	.0918013	0.72	0.472	1152964	.2477416
yearint#c.kids_per_k						
2	.7521886	.1992323	3.78	0.000	.3582458	1.146131
3	1.485832	.2470931	6.01	0.000	.9972539	1.97441
income	.0449327	.0144134	3.12	0.002	.016433	.0734324
yearint#c.income						
2	.0359534	.017753	2.03	0.045	.0008503	.0710565
3	.0274526	.0167121	1.64	0.103	0055923	.0604975
urban_per_k	0289536	.0362684	-0.80	0.426	1006672	.0427601
yearint#c.urban_per_k						
2	0748127	.0527895	-1.42	0.159	1791937	.0295683
3	.0246845	.0521459	0.47	0.637	0784236	.1277927
_cons	-11.40463	54.47099	-0.21	0.834	-119.1103	96.30105

Figure 14: Alternative model

Based on our Stata output, we have:

- β_2 (coefficient for kids_per_k) = 0.0662226,
- γ_2 (interaction coefficient for year interval 2) = 0.7521886,
- γ_3 (interaction coefficient for year interval 3) = 1.485832.

Thus, the estimated slopes from the interaction model are:

Year Interval 1: 0.0662226,

Year Interval 2: 0.0662226 + 0.7521886 = 0.8184112,

Year Interval 3: 0.0662226 + 1.485832 = 1.5520546.

These values are exactly the same as those obtained from the stratified regressions:

• Year Interval 1: 0.0662226,

• Year Interval 2: 0.8184112,

• Year Interval 3: 1.5520546.

Why They Are the Same:

In the joint model, the group-specific slope for kids_per_k is computed as the sum of its overall (main) effect, β_2 , and the corresponding interaction term (i.e. γ_2 for interval 2 and γ_3 for interval 3). This partitioning mirrors what is estimated in stratified regressions when all covariates are allowed to vary by group.

In order to achieve complete equivalence between the joint model and separate (stratified) regressions, one must include interactions between the group indicator (here, yearint) and all predictors in the model. This is because the stratified regressions estimate the effects of every predictor separately within each subgroup. If we only interact the variable of interest (here, kids_per_k) but assume that the effects of other covariates remain constant across groups, then the joint model relies on different assumptions compared to the stratified approach.

In the alternative case, we have included interactions for kids_per_k, income, and urban_per_k with yearint. As a result, the joint model replicates the subgroup-specific estimates that would be obtained by running separate regressions.

(i)

Use the following code:

```
* Estimate the interaction model
regress expend_per_k income urban_per_k i.yearint##c.kids_per_k
* Calculate means for income and urban_per_k
summarize income, meanonly
local mean_income = r(mean)
summarize urban_per_k, meanonly
local mean\_urban = r(mean)
summarize kids_per_k, meanonly
local min_kids = r(min)
local max_kids = r(max)
margins i.yearint, at(income = 'mean_income' urban_per_k = 'mean_urban' kids_per_k = ('min_kids'(5)'max_ki
marginsplot, xdimension(kids_per_k) recast(line) noci ///
   plotopts(msymbol(0)) ///
    title("Predicted Expenditure vs. Number of School Age Kids by Year Interval") ///
    xtitle("Number of School Age Kids") ytitle("Predicted Expenditure per 1000") ///
    legend(title("Year Interval"))
```


Figure 15: Predicted educational expenditures (\hat{Y}) for each year interval with covariates set at their means.

The graph shows that:

- In all year intervals, the predicted educational expenditures increase as the number of per capita school-age kids increases.
- The slope of the predicted line for later year intervals (e.g., intervals 2 and 3) is steeper compared to the baseline interval (year interval 1), indicating a stronger relationship between the number of school-age kids and expenditures in year interval 2 and 3.
- This pattern suggests that over time, the impact of per capita school age kids on educational expenditures has become stronger.

Question 3

(a)

For the model

$$E[Y \mid \text{Trt}, \text{EGFR}] = \beta_0 + \beta_1 \text{Trt} + \beta_2 \text{EGFR} + \beta_3 (\text{Trt} \times \text{EGFR}),$$

consider the two subgroups:

• When EGFR = 0 (EGFR-negative),

$$E[Y \mid \text{Trt}, \text{EGFR} = 0] = \beta_0 + \beta_1 \text{Trt}.$$

Thus, the treatment effect (difference between Trt = 1 and Trt = 0) is

$$(\beta_0 + \beta_1) - \beta_0 = \beta_1.$$

• When EGFR = 1 (EGFR-positive),

$$E[Y \mid \mathrm{Trt}, \mathrm{EGFR} = 1] = \beta_0 + \beta_1 \, \mathrm{Trt} + \beta_2 + \beta_3 \, \mathrm{Trt}.$$

The treatment effect is

$$[\beta_0 + \beta_1 + \beta_2 + \beta_3] - [\beta_0 + \beta_2] = \beta_1 + \beta_3.$$

(b)

If the interaction term is not needed (i.e. $\beta_3 = 0$), then the model simplifies to

$$E[Y \mid \mathrm{Trt}, \mathrm{EGFR}] = \beta_0 + \beta_1 \, \mathrm{Trt} + \beta_2 \, \mathrm{EGFR}.$$

In this case, the treatment effect for both EGFR-negative and EGFR-positive patients is

$$(\beta_0 + \beta_1 + \beta_2) - (\beta_0 + \beta_2) = \beta_1.$$

(c)

For the model with the interaction term and when EGFR = 1:

$$E[Y \mid \text{Trt}, \text{EGFR}] = \beta_0 + \beta_1 \text{Trt} + \beta_2 \text{EGFR} + \beta_3 (\text{Trt} \times \text{EGFR}),$$

• Trt = 0:

$$E[Y | Trt = 0, EGFR = 1] = \beta_0 + \beta_2.$$

• Trt = 1:

$$E[Y \mid \text{Trt} = 1, \text{EGFR} = 1] = \beta_0 + \beta_1 + \beta_2 + \beta_3.$$

(d)

For the model without the interaction term (i.e., $\beta_3=0$) and when EGFR = 1:

$$E[Y \mid \text{Trt}, \text{EGFR}] = \beta_0 + \beta_1 \, \text{Trt} + \beta_2 \, \text{EGFR}.$$

• Trt = 0:

$$E[Y \mid \text{Trt} = 0, \text{EGFR} = 1] = \beta_0 + \beta_2.$$

• Trt = 1:

$$E[Y \mid \text{Trt} = 1, \text{EGFR} = 1] = \beta_0 + \beta_1 + \beta_2.$$