

Report

- Investigation on Deviations in Calibration Data Sets -

Introduction

 4 data sets of the calibration of a laser-based stereoendoscopic system show several deviations in paramteres of the laser model that was fitted to observations.

Data set	KK17_alt_Jonas	_alt_Jonas KK17_mit_Rotation KK10		KK2_mit_Rotation
Identifier	1	2	3	4
Issue	translation shows deviation	direction vectors show deviation	direction vectors show deviation	translation shows deviation

- 20 investigations were carried out that can be divided into 4 groups:
 - Data Consistency
 - Laser Model
 - Computation of Initial Values
 - Optimization Task

Introduction

• Data set 1

• Data set 2

• Data set 3

• Data set 4

Data Consistency

1. Check Identity – Data Set 1 & 2

- Camera Calibration: (KK18) cal_lsr_Cam_16904_Cine1.avi
- Laser Calibration: (KK17) cal_cam_Cam_16904_Cine1.avi

2. Check Rotation Camera - Data Set 1 & 2

- File: KK17_cal_cam_Cam_16904_
- The first column shows images of data set 1, the second column shows images of data set 2 and the third row shows the second column rotated by 180°.
- Rotation of camera calibration images was done in a feasible way.

3. Check Images Camera – Data Set 1

 Same images are present but indices are not necessarily matching (e.g. 2 -> 10).

4. Check Rotation Laser - Data Set 1 & 2

- File: KK18_cal_lsr_Cam_16904_
- The first column shows images of data set 1, the second column shows images of data set 2 and the third row shows the second column rotated by 180°.
- Rotation of laser calibration images was done in a feasible way.

5. Check Images Laser – Data Set 1

 Same images are present but indices are not necessarily matching (e.g. 2 -> 10).

Cine1.avi

6. Check Matching Laser – Data Set 1

• All frames were checked, matching seems reasonable.

7. Check Incomplete Data – Data Set 2

- Frames were removed from calibration where detection was not complete.
- No major influence on the parameter fitting could be found.

8. Compact Data Set – Data Set 2

- A compact data set with only 15 images was created.
- No major influence on the parameter fitting could be found.

9. Small Variance Data Set - Data Set 2

- A data set was created where a smaller variance is present.
- No major influence on the parameter fitting could be found.

10. Removed Outliers - Data Set 2

Why does data under 90° show more outliers and higher variance.

A data set with less outliers should be created.

11. Intrinsic Parameters – Data Set 1 & 2

The computation of the intrinsic parameters seems feasible.

Without rotation:

```
Focal Length: fc = [ 16227.67875 16227.71764 ]  \bullet  [ 0.00000 0.00000 ] Principal point: cc = [ 360.05020 371.22787 ]  \bullet  [ 0.00000 0.00000 ] Skew: alpha_c = [ 0.00000 ]  \bullet  [ 0.00000 ] => angle of pixel axes = 90.00000  \bullet  0.00000 degrees

Distortion: kc = [ 4.09138 -1680.78743 0.00385 -0.00437 0.00000 ]  \bullet  [ 0.00000 0.00000 0.00000 0.00000 ] Note: The numerical errors are approximately three times the standard deviations (for reference).
```


With rotation:

```
Focal Length: fc = [ 16196.30671  16196.40637 ]  \bullet  [ 0.00000  0.00000 ] Principal point: cc = [ 405.98353  397.01651 ]  \bullet  [ 0.00000  0.00000 ] Skew: alpha_c = [ 0.00000 ]  \bullet  [ 0.00000 ] => angle of pixel axes = 90.00000   \bullet  0.00000 degrees

Distortion: kc = [ 4.09712  -1686.72189  -0.00400  0.00384  0.00000 ]  \bullet  [ 0.00000  0.00000  0.00000  0.00000  0.00000  ] Note: The numerical errors are approximately three times the standard deviations (for reference).
```

12. Detection Errors – Data Set 2

For the camera calibration always all images are considered.

• An experiment could be carried out, where images with detection errors are

removed from the set.

Laser Model

13. Model

- The extrinsic parameters (the laser ray model) considers the rotation only around **one** axis. It could be further investigated if a second rotation has to be considered, i.e. a rotation around the imaging axis of the laser.
- Could the computation of the distortion have an influence? That should be checked as well.

Computation of Initial Values

14. System of Linear Equations

- A system of linear equations is solved prior to running an optimization for parameter fitting. The retrieved parameters are used as initial values for the optimization.
- The following methods could lead to errors:
 - Orthogonal regression
 - Centroid of each ray
 - Centroid of all rays
- It is especially interesting how robust those methods are against outliers.

Optimization Task

15. Optimization Model

A rough overview of the optimization task is given as:

min
$$F(\mathbf{f}(\mathbf{x}))$$
minimize the functional F with
$$\mathbf{x} = [r_1, r_2, r_3, t_1, t_2, t_3]^T$$
or
$$\mathbf{x} = [r_1, r_2, r_3, t_1, t_2, t_3, \alpha, x_{11}, x_{21}, ..., x_{1p}, x_{2p}]^T$$
where
$$\mathbf{r} = [r_1, r_2, r_3]^T \text{ rotation vector} \blacktriangleleft$$

$$\mathbf{t} = [t_1, t_2, t_3]^T \text{ translation vector}$$

$$\alpha = \text{ divergence angle}$$

$$\mathbf{x} = [x_{11}, x_{21}, ..., x_{1p}, x_{2p}]^T \text{ ray offset}$$

$$\begin{aligned} \mathbf{f}(\mathbf{x}) &= \mathbf{f}(\mathbf{x}, \mathbf{x}^c, \mathbf{c}^c, \mathbf{u}^c) \in \mathbb{R}^n, n = n_r n_i n_{sd}, n_{sd} = 3 \\ &\text{error from each observation in each direction where} \\ \mathbf{x}^c &= [\mathbf{x}_1^{c(1)}, ..., \mathbf{x}_r^{c(i)}]^T \text{ coordinates of each observation in image } i \text{ and ray } r \\ \mathbf{c}^c &= [\mathbf{c}_1^{c(1)}, ..., \mathbf{c}_r^{c(i)}]^T \text{ centroid of each observation in image } i \text{ and ray } r \\ \mathbf{u}^c &= [\mathbf{u}_1^{c(1)}, ..., \mathbf{u}_r^{c(i)}]^T \text{ unit vector of each observation in image } i \text{ and ray } r \end{aligned}$$

Euler-Rodriguez-Vector

16. Optimization Variables – Data Set 2

- When carrying out the optimization with **precise = false**, fewer variables are present in the optimization model.
- The optimization does not stop in the local extremum from experiment 7 (precise = true).
- A new local extremum is found.

_	•		_
Expe	KIMA	\sim 10 \pm	
CXDC			•

teration Func		f(x)	step	optimality	
0	656	8323.35		5.1e+06	
1	1312	8323.35	10	5.1e+06	
2	1968	3015.72	2.5	1.25e+06	
3	2624	3015.72	5	1.25e+06	
4	3280	2928.59	1.25	5.22e+05	
5	3936	2928.59	1.25	5.22e+05	
6	4592	2863.33	0.3125	1.53e+05	

Experiment 11

Iteratio	n Fun	ic f(x)	step	optimality
0	8	8128.36		5.1e+06
1	16	2143.16	10	1.21e+06
2	24	2143.16	18.0532	1.21e+06
3	32	1578.08	4.51331	1.41e+05
4	40	1215.9	9.02662	1.03e+05
5	48	1103.04	7.31152	2.03e+05
6	56	(1083.56)	0.603121	267

16. Optimization Variables

- Good qualitative are found.
- The issue from data set 2 can be solved.

17. Optimizer

- A nonlinear data fitter from [1] is used.
- The following options are relevant:
 - TolFun is a lower bound on the change in the value of the objective function during a step. If |f(xi) f(xi+1)| < TolFun, the iterations end. Solvers generally use TolFun as a relative bound, meaning iterations end when |f(xi) f(xi+1)| < TolFun(1 + |f(xi)|), or a similar relative measure.

 MaxIter is a bound on the number of solver iterations. MaxFunEvals is a bound on the number of function evaluations.

17. Optimizer – Data Set 2

- The two differnet optimization algorithms **trust-region-reflective** (default) and **levenberg-marquardt** were tested.
- Levenberg-marquardt shows faster and more robust convergence.

trust-region-reflective

Iteration Func		f(x)	step	optimality		
0	8	8128.36		5.1e+06		
1	16	2143.16	10	1.21e+06		
2	24	2143.16	18.0532	1.21e+06		
3	32	1578.08	4.51331	1.41e+05		
4	40	1215.9	9.02662	1.03e+05		
5	48	1103.04	7.31152	2.03e+05		
6	56	1083.56	0.603121	267		

levenberg-marquardt

Itera	ation Func	Residual	optimality	Lambda	step
0	8	8128.36	5.1e+06	0.01	
1	16	4706.63	2.96e+06	0.001	17.3176
2	24	1107.06	2.76e+05	0.0001	12.5721
3	32	1083.56	4.99e+03	1e-05	1.54558

18. Initial Values - Data Set 2

- Two subsequent optimizations were carried out where the first optimization the ray offset were fixed variables (precise = false) and in the second optimization the ray offset was variable (precise = true). The resulting variables from the first optimization were used as initial values for the second optimization.
- In the extremum similar values for the objective are reached.

precise = false precise = true

	_	
1 △_2	initial	rav offset
エニコ	IIIILIAI	i i a v Oliset

								5 militial re	ay on sec
Iteratio	on Fun	c f(x)	step	optimality	Iteratio	n Func	f(x)	step	optimality
0	8	8128.36		5.1e+06	0	656	(1394.36)		1.6e+05
1	16	2143.16	10	1.21e+06	1	1312	1394.36	10	1.6e+05
2	24	2143.16	18.0532	1.21e+06	2	1968	1394.36	2.5	1.6e+05
3	32	1578.08	4.51331	1.41e+05	3	2624	1083.59	0.625	5.18e+04
4	40	1215.9	9.02662	1.03e+05	4	3280	1083.59	1.25	5.18e+04
5	48	1103.04	7.31152	2.03e+05	5	3936	1083.51	0.3125	2.68e+04
6	56	1083.56	0.603121	267	6	4592	1083.51	0.3125	2.68e+04
					7	5248	1083.43	0.078125	1.88e+03

18. Initial Values - Data Set 2

- The initial ray offset was lowered.
- This proofs that a local minimum is found. Qualitative evaluation seems reasonable.
 Large step size in the first iterations shows that it is unlikely that another local minimum is close.

1e-3 initial ray offset

Iteration Func		f(x)	step	optimality		
0	656	1394.36		1.6e+05		
1	1312	1394.36	10	1.6e+05		
2	1968	1394.36	2.5	1.6e+05		
3	2624	1083.59	0.625	5.18e+04		
4	3280	1083.59	1.25	5.18e+04		
5	3936	1083.51	0.3125	2.68e+04		
6	4592	1083.51	0.3125	2.68e+04		
7	5248	(1083.43)	0.078125	1.88e+03		

Iteration Func		on Func	f(x)	step	optimality	
	0	656	1083.56		578	
	1	1312	1083.56	10	578	
	2	1968	1083.56	2.5	578	
	3	2624	1083.56	0.625	578	
	4	3280	1081.9	0.15625	1.24e+05	

19. Reduced Tolerance - Data Set 2

• A reduced tolerance for the convergence criteria further proves that a local extremum is found.

Tolerance = 0.1

To	lerance =	0.01
----	-----------	------

Iteratio	n Func	f(x)	step	optimality	Iteration	Func	f(x)	step	optimality
0	8	8128.36		5.1e+06	0	3	8128.36		5.1e+06
1	16	2143.16	10	1.21e+06	1 1	.6	2143.16	10	1.21e+06
2	24	2143.16	18.0532	1.21e+06	2 2	4	2143.16	18.0532	1.21e+06
3	32	1578.08	4.51331	1.41e+05	3 3	2	1578.08	4.51331	1.41e+05
4	40	1215.9	9.02662	1.03e+05	4 4	0	1215.9	9.02662	1.03e+05
5	48	1103.04	7.31152	2.03e+05	5 4	8	1103.04	7.31152	2.03e+05
6	56	(1083.56)	0.603121	267	6 5	6	1083.56	0.603121	267
					7 6	4 (1083.56	0.0165264	0.725
						•			

19. Reduced Tolerance – Data Set 3

- A tolerance of 1.0 does not deliver feasible results.
- The deviations of data set 3 can therefore be explained and lowered with a smaller tolerance.

Tolerance = 1.0

Iteration Func		f(x)	step	optimality
0	656	25720.1		1.97e+06
1	1312	10833.2	10	2.35e+06
2	1968	2425.37	20	2.65e+06
3	2624	(1286.74)	19.6511	2.21e+06

Tolerance = 0.1

Iteration Func		f(x)	step	optimality
0	656	25720.1		1.97e+06
1	1312	10833.2	10	2.35e+06
2	1968	2425.37	20	2.65e+06
3	2624	1286.74	19.6511	2.21e+06
4	3280	1003.97	2.74823	1.37e+03
5	3936	(1003.97)	0.0640879	20.3

20. Outliers

• Outliers could be the reason for the deviation of the laser origin, which is visible in 1,2 and 4. Possible solutions could be:

Remove outliers -> So far no outliers could be visually identified

Use other objective -> Would need a new implementation in MATLAB

Use different fitting -> RANSAC

The random sample consensus is a paradigm for model fitting, which takes the presence of outliers in the underlying data set into account. It was first proposed by [6] and has since then widely been used [2nd source]. Outliers, which are points in the data set, are present if either

- their location deviates significantly from the ground truth, or
- their correspondence to a subset of the data set is wrong.

Why does this apply to our case -> explanation Why can we not simply remove outliers -> explanation

21. RANSAC

The RANSAC can be described as an algorithm that follows the steps:

precise = false -> 2 points of 2 rays (4 points)

1. Draw samples uniformly and at random from the input data set.

- precise = true -> 2 points of 2 rays (4 points) + 1 point of each left over ray
- 2. Cardinality of sample set is the smallest size sufficient to estimate the model parameters.
- 3. Compute the model parameters for each element of the sample data.
- 4. Evaluate the quality of the hypothetical models on the full data set.
 - Cost function for the evaluation of the quality of the model
 - Inliers: data points which agree with the model within an error tolerance
- The hypothesis which gets the most support from the data set is taken as the best estimate.

number of samples

Previously: Approximation

Now: Interpolation with support

 $n = rac{\log(1-p)}{\log(1-(1-\epsilon)^s)}$ sample size

probability outlier present

probability outlier free desired

Conclusion

- Several issues could be solved and a deeper understanding of the parameter fitting could be gained. This was marked with \checkmark .
- The deviation in all direction vectors in data set 2 and 3 could be solved
- The issue of a deviation of the **translation vector** in data set 1, 2 and 4 still remains!
- All propsals marked with should further be considered.
- All questions marked with ? should be answered.

Reference

• [1] https://de.mathworks.com/help/optim/ug/lsqnonlin.html