Bodyfat Analysis

Yilun Chen Jiyun Chen Huiyu Jiang

University of Wisconsin-Madison

February 7, 2018

Outline

- Background and Data Description
- Model Selection and Data Processing
- Variable Selection
- Model Diagnostic and Prediction

Background

Thesis Statement:

An analysis of the male bodyfat database: Using a linear model to infer and predict the male bodyfat based on three factors.

Target:

A simple, convenient, and robust model.

Data Description:

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT	ADIPOSITY	NECK	CHEST	ABDOMEN
1	12.6	1.0708	23	154.25	67.75	23.7	36.2	93.1	85.2
2	6.9	1.0853	22	173.25	72.25	23.4	38.5	93.6	83.0
3	24.6	1.0414	22	154.00	66.25	24.7	34.0	95.8	87.9
4	10.9	1.0751	26	184.75	72.25	24.9	37.4	101.8	86.4
5	27.8	1.0340	24	184.25	71.25	25.6	34.4	97.3	100.0
6	20.6	1.0502	24	210.25	74.75	26.5	39.0	104.5	94.4

Model Selection

Is the linear model good enough to catch the trend on bodyfat?

Data Processing

false record:

	BODYFAT	AGE	WEIGHT	HEIGHT	ADIPOSITY
182	0	40	118.5	68	18.1

check outliers:

Variable Selection

Select the variables based on stepwise method and elastic net.

Stepwise:

$$lnL(\mu, \sigma^2) = -\frac{n}{2}ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

- AIC: $2k-2ln(\hat{L})$ ABDOMEN WEIGHT WRIST BICEPS AGE
- BIC: $ln(n)k 2ln(\hat{L})$ ABDOMEN WEIGHT WRIST

Variable Selection

• elastic net: $\hat{\beta} = argmin_{\beta}(||y-X\beta||^2 + \lambda_2||\beta||^2 + \lambda_1||\beta||_1)$

Variable Selection

WEIGHT 5.6178 **ABDOMEN** 4.1857 WRIST 2.0988

```
Call:
lm(formula = BODYFAT ~ WEIGHT + ABDOMEN + WRIST, data = df)
Residuals:
   Min 10 Median 30 Max
-9.0322 -2.9552 -0.4383 3.0110 9.1926
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -23.99356 6.23603 -3.848 0.000152 ***
WEIGHT
        -0.08678 0.02234 -3.885 0.000132 ***
ABDOMEN 0.88476 0.05108 17.320 < 2e-16 ***
WRIST -1.28161 0.40274 -3.182 0.001650 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.981 on 245 degrees of freedom
Multiple R-squared: 0.7292, Adjusted R-squared: 0.7259
F-statistic: 219.9 on 3 and 245 DF, p-value: < 2.2e-16
```

Diagnostic

Rule of Thumb: Bodyfat = -24 - 0.1*Weight(lb) + 0.9*Abdomen(cm) - 1.3*Wrist(cm)

Prediction

Summary

- Strength:
 - 1.easy to implement2.not need a lot of information
- Weakness: rough estimation (relatively large residules)
- Illustrative example:
 - Weight: 136.75lb, Abdomen: 77.0cm, Wrist: 16.5cm
 - Estimated Bodyfat: 10.15
 - Confidence Interval: (9.05,11.25)