

Lecture 02 – Fundamentals of digital imaging I

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Agenda

- The human eye
- Photographic camera
- The digital image
- Colored images— RGB
- The RGB color space
- Image acquisition
- CCD sensor and Bayer pattern
- Sampling
- Effects of spatial resolution
- Intensity resolution
- Effects of intensity resolution

Photographic camera - diaphragm

Photographic camera - diaphragm

Photographic camera - diaphragm

Intensity image (gray levels):

Colored image (RGB):

Intensity image (gray levels):

Intensity image (gray levels):

Intensity image (gray levels):

Intensity image (gray levels):

60	89	117	140
127	147	160	168
192	198	193	186
209	210	204	197

78			
56			
36			
118	149	80	
108	133	58	
91	124	33	
211	176	81	
202	161	57	
200	158	17	
231	174	83	
218	155	57	
214	150	21	11

M rows N columns M × N pixels

Colored images - RGB

Colored images - RGB

R (red)

Colored images - RGB

G (green)

Colored images - RGB

Colored images - RGB

The RGB color space

I: luminance $0 < i(x,y) < \infty$

R : reflectance

0 < r(x,y) < 1

f(X,	y) =	i(X,	<i>y) x</i>	r(x,	V)
-().	//	-()		- ()	"

i(x, y)	(in lux ou lumen/m²)
900	Sunny day
100	Cloud day
10	Office
0.001	Clear night

r(x, y)	
0.93	Snow
0.80	White wall
0.65	Stainless steel
0.01	Black velvet

MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.

$$I_D = \frac{1}{\Delta^2} \int_{l\Delta}^{(l+1)\Delta} \int_{c\Delta}^{(c+1)\Delta} I_c(\rho, \chi) \delta \rho \delta \chi$$

Based on: Alan Peters, 2019.

Continuous RGB image

Continuous RGB image

R channel sampling

G channel sampling

Continuous gray level image

Continuous gray level image

Gray level image sampling

Continuous gray level image

Gray level image sampling

Discrete gray level image (sampled)

Effects of spatial resolution

1,7 pol

300 ppi – 512 x 512

1,7 pol. a 150 ppi – 256 x 256

1,7 pol. a ~38 ppi – 64 x 64

1,7 pol. a 75 ppi – 128 x 128

1,7 pol. a 19 ppi – 32 x 32

Effects of spatial resolution

1,7 pol. 512 x 512 pixels 300 ppi

0,85 pol. 256 x 256 pixels 300 ppi

0,43 pol. 128 x 128 pixels 300 ppi

0,21 pol. 64 x 64 pixels 300 ppi

0,11 pol. 32 x 32 pixels 300 ppi

Intensity resolution

Intensity resolution

Effects of intensity resolution

8 bits. $2^8 = 256$ gray levels

4 bits. $2^4 = 16$ gray levels

7 bits. $2^7 = 128$ gray levels

3 bits. $2^3 = 8$ gray levels

6 bits. 2^6 = 64 gray levels

2 bits. $2^2 = 4$ gray levels

5 bits. $2^5 = 32$ gray levels

1 bit. $2^1 = 2$ gray levels

Bibliography

- GONZALEZ, R.C.; WOODS, R.E. Digital Image Processing. 3rd ed. Pearson, 2007.
 - Sections 2.1, 2.2, 2.3 e 2.4
- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - (in Brazilian Portuguese)
 - Available on the author's website (for personal use only)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
 - Section 2.1
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - (in Brazilian Portuguese)
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf
 - Section 2
- PETERS, A. Lectures on Image Processing. Vanderbilt University, 2019.
 - https://archive.org/details/Lectures on Image Processing

Complementary bibliography

- Felipe Arruda. Vídeo explica como funciona o sensor CCD das câmeras digitais. Tecmundo, 2012.
 - (in Brazilian Portuguese)
 - https://www.tecmundo.com.br/fotografia-e-design/23626-video-explica-comofunciona-o-sensor-ccd-das-cameras-digitais.htm
- Bill Hammack. CCD: The heart of a digital camera (how a charge-coupled device works).
 YouTube. Canal: engineerguy.
 - https://www.youtube.com/watch?v=wsdmt0De8Hw&feature=youtu.be
- Raymond Siri. CMOS Animation Sequence. Vimeo
 - https://vimeo.com/103279734
- Raymond Siri. CCD Animation Sequence. Vimeo
 - https://vimeo.com/103279733

Complementary bibliography

- Rafael Helerbrock. **Quais são os limites da visão humana?** Mundo Educação
 - (in Brazilian Portuguese)
 - https://mundoeducacao.uol.com.br/fisica/quais-sao-os-limites-visao-humana.htm
- Francie Diep. Humans Can Only Distinguish Between About 30 Shades Of Gray. Popular Science, 2015.
 - (in Brazilian Portuguese)
 - https://www.popsci.com/humans-can-only-distinguish-between-about-30-shades-gray/
- Luciana Galastri. Humanos conseguem distinguir apenas 30 tons de cinza. Galileu, 2015.
 - (in Brazilian Portuguese)
 - https://revistagalileu.globo.com/Ciencia/noticia/2015/02/humanos-conseguemdistinguir-apenas-30-tons-de-cinza.html


```
@misc{mari_im_proc_2023,
 author = {João Fernando Mari},
 title = {Fundamentals of digital imaging I},
 year = {2023},
 publisher = {GitHub},
 journal = {Introduction to digital image processing - UFV},
 howpublished = {\url{https://github.com/joaofmari/SIN392_Introduction-to-digital-image-processing_2023}}
```

THE END