Les Generalités Sur Les Fonctions

Mohammed Amine Chennoufi

12 - 11 - 2022

Contents

Ι	Definitions	2
	I.1 Definition de la fonction numérique	. 2
	I.2 Definiton de domaine de definition	. 2
II	Domaines de definitions de fonctions usuelles	2
II	Les tableaus de variations des fonctions	
	usuelles:	3
	III.1 Tableau de variations de fonction polynome de degrée	
	2:	. 3
	III.2 Tableau de variations d'une fonction homographique:	. 3
	III.3 Tableau de variations d'une fonction $x \to \sqrt{x+a}$	
IV	Les courbes de fonctions usuelles	4
	IV.1 La courbe du fonction polynome de degrée 2	. 4
	IV.2 La courbe du fonction homographique:	
	IV 3 La courbe du fonction $r \to \sqrt{r+a}$	6

I- Definitions

I.1- Definition de la fonction numérique

Définition

On dit que $f: \mathbb{R} \to \mathbb{R}$ est une fonction numerique si et seulement si $\forall x \in \mathbb{R}$ admet **au plus** une image dans \mathbb{R}

I.2- Definition de domaine de definition

Définition

L'ensemble des elements de \mathbb{R} qui ont des images par f sont appelés l'ensemble de definition de f et on le note D_f ou D et On a:

$$D_f = \{ x \in \mathbb{R} / f(x) \in \mathbb{R} \}$$

II- Domaines de definitions de fonctions usuelles

propri<u>étés</u>

On a des domaines de définition usuelles comme:

- $D_f = \mathbb{R}$ si la fonction est une fonction polynome écrit sous la forme: $f: x \to ax^2 + bx + c$
- $D_f = \{x \in \mathbb{R}/x \neq 0\}$ si la fonction est une fonction quotient écrit sous la forme: $f: x \to \frac{ax+b}{x}$
- $D_f = [-a; +\infty]$ si la fonction est une foction écrit sous la forme: $f: x \to \sqrt{x+a}$
- $D_f = \mathbb{R} \left\{\frac{-d}{c}\right\}$ si la fonction est une fonction homographique écrit sous la forme: $f: x \to \frac{ax+b}{cx+d}$

III- Les tableaus de variations des fonctions usuelles:

III.1- Tableau de variations de fonction polynome de degrée2:

 $x \qquad -\infty \qquad \frac{-b}{2a} \qquad +\infty$ $f(x) = \qquad \qquad f(\frac{-b}{2a})$ $ax^2 + bx + c$

III.2- Tableau de variations d'une fonction homographique:

On a:

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

III.3- Tableau de variations d'une fonction $x \to \sqrt{x+a}$

x	$-\infty$ $+\infty$
$f(x) = \sqrt{x+a}$	0

IV- Les courbes de fonctions usuelles

IV.1- La courbe du fonction polynome de degrée 2

fonction IV.2- La courbe $d\mathbf{u}$ homographique: 20 15 10 5 -205 -15-1010 15 -520 -5-10-15-20

