Deep Learning

Topic 05: Deep Neural Networks, Part 2

Prof. Michael Madden

Chair of Computer Science
Head of Machine Learning Group
University of Galway

Learning Objectives – Same As Last Topic

After successfully completing Topics 4 and 5, you will be able to...

- Define key concepts related to Deep Learning, and discuss major advances relative to shallow neural networks
- Explain and implement approaches to handling unstructured data and multi-class classification
- Explain and implement regularization methods, and algorithms including Mini-Batch Gradient Descent, Momentum, RMSprop and Adam
- Explain the principles of operation of Convolutional Networks
- Correctly use these features within ML libraries, including selecting hyperparameters

Michael Madden Deep Learning (2)

Previous Topic: DNNs Part 1

- Deep Neural Networks; Their Representation Power; Challenges Arising
- Handling Unstructured Data; Multi-Class Classification
- Methods to Avoid Overfitting
- Training Algorithm Challenges
- Mini-Batch Gradient Descent

This Topic: DNNs Part 2

- More Training Algorithms:
 - Backprop with Momentum
 - RMSprop
 - Adam
- Locally Connected Networks
- Convolutional Neural Networks

Training Algorithms: Backprop with Momentum Overview

- Basic ideas behind Backprop with Momentum:
 - Each parameter should be able to change at a rate appropriate to itself, rather than there being one fixed learning rate
 - The previous changes in parameter values should influence the current direction of updates
 - To achieve this, for each parameter, compute an exponentially weighted moving average of previous gradients, and use that to update the parameter

Exponential Moving Average

This is a low-cost way of computing a moving average for a stream of timeseries

data points: D_1 , D_2 , D_3 ...

At Time t=1: $V_1 = D_1$

At Time t>1: $V_t = (1 - \beta) D_t + \beta V_{t-1}$

- Current value of D_t contributes most to current V_t , but all past values also contribute, with exponentially decreasing weight
- Roughly, the most recent $1/(1-\beta)$ steps contribute most to the current value
- Main attraction is its simplicity: only one extra value to store per series, and a simple calculation
- For Backprop with Momentum, a common value of β is 0.9, though it is another hyperparameter that can be adjusted

USD-EUR-moving-average.xlsx

Exponential Moving Average with Bias Correction

• Instead of initialising $V_1 = D_1$, we can initialise $V_0 = 0$ and then use bias correction:

At Time
$$t = 0$$
: $V_0 = 0$
At Time $t \ge 1$: $V_t = (1 - \beta) D_t + \beta V_{t-1}$
 $VC_t = V_t / (1 - \beta^t)$

- Red and green plotted lines correspond to red and green results
- If we initialise to 0 and don't use bias correction, the first values are very bad estimates
- When t=1, this calculation undoes the initialisation to 0, and at t gets large, $(1 \beta^t)$ -> 1 so correction fades.

Training Algorithms: Backprop with Momentum Algorithm

Note: omitting all subscripts and superscripts for weights W and biases b, because you apply it to every one of them

Modifying Backprop to add Momentum Algorithm:

At start: for each weight W and bias b, will store $V_{\Delta W}$ and $V_{\Delta b}$

During each iteration:

If it's first iteration, initialise the V values: $V_{\Lambda W} = \Delta W$, $V_{\Lambda b} = \Delta b$

After the Backprop step (when you have computed new values for all ΔW and Δb terms), update the V values:

$$V_{\Delta W} = (1 - \beta) \Delta W + \beta V_{\Delta W}$$
$$V_{\Delta b} = (1 - \beta) \Delta b + \beta V_{\Delta b}$$

Do Gradient Descent update step using $V_{\Delta W}$ and $V_{\Delta b}$:

$$W = \alpha V_{\Delta W}, \quad b = \alpha V_{\Delta b}$$

Training Algorithms: RMSprop Overview

- Another adaptive learning rate algorithm, proposed by Geoff Hinton, and strongly related to an earlier one called AdaGrad
 - For each parameter, keep a moving average of its squared gradient
 - When updating, divide the current gradient by the square root of the average squared gradient
- In Backprop with Momentum, if the analogy is that we are calculating "velocity" terms, then in RMSprop we are calculating "acceleration" terms
 - In both cases, we are using these terms to adapt the learning rate individually for each parameter, allowing faster learning overall

Deep Learning (8)

Training Algorithms: RMSprop Algorithm

Note: omitting all subscripts and superscripts for weights W and biases b, because you apply it to every one of them

Modifying Backprop to turn it into RMSprop:

At start: for each weight *W* and bias *b*, initialise the *S* values to 0:

$$S_{\Delta W} = 0$$
, $S_{\Delta b} = 0$

During each iteration:

After the Backprop step (when you have computed new values for all ΔW and Δb terms), update the S values:

$$S_{\Delta W} = (1 - \beta) \Delta W^2 + \beta S_{\Delta W}$$
$$S_{\Delta h} = (1 - \beta) \Delta b^2 + \beta S_{\Delta h}$$

Do Gradient Descent update step using square roots of $S_{\Delta W}$ and $S_{\Delta b}$:

$$W -= \alpha \frac{\Delta W}{\sqrt{S_{\Delta W}} + \epsilon} \qquad b -= \alpha \frac{\Delta b}{\sqrt{S_{\Delta b}} + \epsilon}$$

where ϵ is a very small value, e.g. $\epsilon = 1e-8$, for numerical stability to avoid dividing by 0 or close to 0

Visualising Some Training Algorithms

Source: https://imgur.com/a/Hqolp#NKsFHJb

Michael Madden Deep Learning (10)

Visualising Some Training Algorithms

Another nice visualisation – this one is interactive:

https://observablehq.com/@emiliendupont/visualizing-optimization-algorithms-in-deep-learning

Training Algorithms: Adam Optimisation Algorithm Overview

- Essentially, combine the ideas from Momentum and RMSprop: consider both velocity and acceleration terms
 - Name comes from "Adaptive Moment Estimation", as 'velocity' and 'acceleration' terms are the 1st and 2nd moments of gradients
 - For the moving average, Adam initialises all terms to 0 and performs the bias correction calculation
 - There are two separate β parameters: β_1 for "velocity" moving average β_2 for "acceleration" moving average
 - In theory, this means there are 2 more hyperparameters to set, but in practice, Adam works well with default values of β_1 = 0.9, β_2 =0.999
- Adam Optimizer was published as a poster at ICLR in 2015
 - since then has become very widely used as people have found it to be robust and effective.

Deep Learning (12)

Training Algorithms: Adam Optimisation Algorithm Details

Here, omitting subscripts and superscripts on W and b terms, except at very end.

Modifying Backprop to turn it into Adam Optimizer:

At start: for each weight W and bias b, initialise all V and S terms to 0:

$$V_{\Delta W}=0$$
, $V_{\Delta b}=0$, $S_{\Delta W}=0$, $S_{\Delta b}=0$

At each iteration, t:

After the Backprop step, update all V and S terms and calculate corrections:

$$\begin{split} V_{\Delta W} &= (1 - \beta_1) \; \Delta W + \beta_1 \; V_{\Delta W} \;\;, \qquad V_{\Delta b} = (1 - \beta_1) \; \Delta b + \beta_1 \; V_{\Delta b} \\ S_{\Delta W} &= (1 - \beta_2) \; \Delta W^2 + \beta_2 \; S_{\Delta W} \;\;, \qquad S_{\Delta b} = (1 - \beta_2) \; \Delta b^2 + \beta_2 \; S_{\Delta b} \\ VC_{\Delta W} &= V_{\Delta W}/(1 - \beta_1^t) \qquad , \qquad VC_{\Delta b} = V_{\Delta b}/(1 - \beta_1^t) \\ SC_{\Delta W} &= S_{\Delta W}/(1 - \beta_2^t) \qquad , \qquad SC_{\Delta b} = S_{\Delta b}/(1 - \beta_2^t) \end{split}$$

Do Gradient Descent update step using these new terms:

$$W_{j,i}^{[l]} -= \alpha \frac{VC_{\Delta W_{j,i}^{[l]}}}{\sqrt{SC_{\Delta W_{j,i}^{[l]}}} + \epsilon} \qquad b_j^{[l]} -= \alpha \frac{VC_{\Delta b_j^{[l]}}}{\sqrt{SC_{\Delta b_j^{[l]}}} + \epsilon} \qquad \text{where ϵ is a very small value, e.g.} \\ \epsilon = 1\text{e-8, for numerical stability}$$

Locally Connected NNs

- In tasks such as image analysis, each input node (pixel) has a local context
 - Makes more sense to consider pixels adjacent to each other rather than far away from each other
- Leads to idea of locally connected NNs:
 - Input nodes connected in "patches" (fields) to nodes in next layer, e.g.
 20x20 image, 5x5 patches that all overlap, so hidden layer has 16x16 =
 256 nodes
- Termed Local Receptive Fields
 - Inspired by how the eye works
 - Much fewer weights than the fully connected NNs we have been looking at
- Similar ideas apply to analysis of other forms of data, such as audio and text, where each input may have a local context

Convolutional Neural Nets - Overview

- Building on previous idea, introduce a set of shared weights and biases for each field
 - Modify the backprop algorithm for these nodes so that they are always the same ("tied")
 - This means that they become a **feature detector** that detects the same feature everywhere
 - Helps achieve translational invariance in computer vision
 - Number of parameters becomes much smaller
- Usually have multiple convolutional layers in a CNN
 - Idea that earlier layers might detect low-level features,
 and later layers might aggregate these to detect more complex features

Convolutional Neural Nets: Visualisations of Features in Different Layers

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

CNNs Incorporate Important Ideas that can Help Learning

Sparse Connectivity

- Rather than having fully-connected layers, only some units in one layer are derived from values of some units in previous layer
- Reduces number of weights, reducing overfitting risk, computational cost and training demands

Parameter Sharing

- Rather than learning a separate parameter for each connection, learn shared parameters that represent specific operations
- Again, reduces number of weights

Equivariant Representations

- If you apply a transformation to input and then put it through conv layer, equivalent to putting it through conv layer and then applying the transformation
- For CNNs, true of translation operations specifically, but not others such as rotations

[Image from Max Welling, ICPR 2021]

Convolution Operators and Filters in Computer Vision

- A convolution operation in computer vision:
 - Step across each section of an input
 - Perform element-wise multiplication by a filter and sum results
 - Result is a feature map
- Example: input (e.g. greyscale image) is green, filter (or kernel or convolution matrix) is blue, result in pink is a feature map

2	1	3	4	3	2	0
1	1	2	4	5	4	1
3	0	0	1	2	3	4
4	5	2	1	1	2	3
4	3	2	0	2	1	1
4	5	4	1	2	4	5
3	1	4	2	1	3	5

*

1	0	-1
1	0	-1
1	0	-1

=

1	-7	-5	0	5
4	0	-4	-3	0
7	6	-1	-4	-3
4	11	3	-5	-4
1	6	5	-5	-6

Deep Learning (18)

Convolution Operators and Filters – What is the Point? (1)

- What is the point?
 - Depending on the filter you apply, you can detect different kinds of features
 - Examples: horizontal and vertical edges

10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0
10	10	10	0	0	0	0

 1
 0
 -1

 1
 0
 -1

 1
 0
 -1

Michael Madden Deep Learning (19)

Convolution Operators and Filters – What is the Point? (2)

- What is the point?
 - Depending on the filter you apply, you can detect different kinds of features
 - Examples: horizontal and vertical edges

10	10	10	10	10	10	10
10	10	10	10	10	10	10
10	10	10	10	10	10	10
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

 1
 1
 1

 0
 0
 0

 -1
 -1
 -1

0	0	0	0	0
30	30	30	30	30
30	30	30	30	30
0	0	0	0	0
0	0	0	0	0

Michael Madden Deep Learning (20)

Convolution Operators and Filters – Multiple Filters

Multiple filters can be applied to detect different features

-10	-10	0	10	10
-20	-20	0	20	20
-30	-30	0	30	30
-20	-20	0	20	20
-10	-10	0	10	10

Michael Madden

What is the Link to Deep Learning?

- For many years, researchers in Computer Vision created filters manually
 - Some variants of the basic edge detectors work better than others for different tasks
- Key insight: could replace hand-crafted filter values with parameters in a neural net that can be learned with Backprop
 - LeCun started developing these ideas in the 1990s, and named them Convolutional Networks
 - Exceeded previous state-of-the-art performance in tasks such as recognising handwritten digits, without needing manual feature engineering
 - See http://web.archive.org/web/20240129000543/
 http://web.archive.org/web/20240129000543/

0123456789 0123456789 0123456789 0123456789

Convolutions - Filter Size and Padding

- Filter does not have to be 3×3
 - Can be other sizes such as 5×5, 7×7, 9×9
 - Filter size is denoted f (almost always odd)
- Without padding, output ends up smaller than input
 - If input is $n_W \times n_H$, output will be $(n_W f + 1) \times (n_H f + 1)$
- To avoid this, can pad the input with 0s all round
 - To keep the input the same size as the output, have padding p = (f-1)/2
- Convolutions can be Valid or Same:
 - Valid: no padding, output width is (n_W-f+1)
 - Same: pad by amount p = (f-1)/2
 - (Obscure terminology coming from Matlab)

2	1	3	4	3	2	0
1	1	2	4	5	4	1
3	0	0	1	2	3	4
4	5	2	1	1	2	3
4	3	2	0	2	1	1
4	5	4	1	2	4	5
3	1	4	2	1	3	5

Convolutions - Padding Example

0	0	0	0	0	0	0	0	0
0	2	1	3	4	3	2	0	0
0	1	1	2	4	5	4	1	0
0	3	0	0	1	2	3	4	0
0	4	5	2	1	1	2	3	0
0	4	3	2	0	2	1	1	0
0	4	5	4	1	2	4	5	0
0	3	1	4	2	1	3	5	0
0	0	0	0	0	0	0	0	0

-2	-2	-6	-3	2	7	6
-2	1	-7	-5	0	5	9
-6	4	0	-4	-3	0	9
-8	7	6	-1	-4	-3	6
-13	4	11	3	-5	-4	7
-9	1	6	5	-5	-6	8
-6	-1	3	5	-4	-7	7

Michael Madden Deep Learning (24)

Convolutions - Stride and Output Size

- Don't have to move filter in steps of 1
 - Can define a different stride
 - E.g. Stride s=2 means you move the filter 2 steps across or down each time,
 rather than 1 step
 - If s=2, output feature map will be about half the size it would be if s=1
- At edges, only apply convolution if the filter fits fully within input
- For an input is $n_W \times n_H$, with stride s and padding p, output size is:

$$n_H^{[out]} = \left| \frac{n_H + 2p - f}{s} + 1 \right| \qquad n_W^{[out]} = \left| \frac{n_W + 2p - f}{s} + 1 \right|$$

Convolutions on Multi-Channel Inputs

- For multi-channel inputs, need a filter with the same number of channels, e.g. 3 if we have image with Red-Green-Blue channels
 - E.g. if input size is $n_W \times n_H \times n_C$, filter must be $f \times f \times n_C$
 - A single convolution calculation sums all multiplications from one filter, so we get a scalar output from it, and a 2D output feature map overall

Michael Madden Deep Learning (26)

Multiple Feature Detectors

- Need to detect more than one feature:
 - We always have multiple filters in 1 layer: 6 − 512 or even more
 - Each filter has independent weights and they are applied in parallel
 - Each filter creates one channel in the output feature map

Michael Madden Deep Learning (27)

One Layer of a CNN: Forward-Propagation

- The parameters of a filter act like weights in a standard NN:
 - Applying 1 filter to a 1 patch of an input is a sum of inputs*weights
 - Then add one bias for each filter
 - Put the result though an activation function, usually ReLU
 - Result is activation of for that value of the output feature map

Deep Learning (28)

One Layer of a CNN: Backprop

- The algorithms for backpropagation with gradient descent work for convolutional layers
 - In a convolutional layer, learn values for each parameter of each filter, which are handled as weight values (W), and one bias (b) term for each filter
 - For classification, use cross-entropy loss function as usual;
 different loss functions for different tasks, e.g. bounding box regression
 - Backprop is used to calculate gradients for W and b terms,
 with modifications to account for the convolution calculations
 - W and b terms updated using gradient descent

Layers of a CNN: Pooling and Fully Connected

- The output of one convolutional layer can be used as the input into another one
- Conv layers can also be followed by pooling, which is an operation that down-samples its inputs (next slide)
 - A secondary operation that can be optionally performed after convolution
 - Pooling operation has no weights to be learned, so does not add parameters
- After all conv layers, usually have fully connected layers
 - The last feature map is reshaped into a single column of nodes
 - Can have multiple fully connected hidden layers
 - These feed into the final layer, often a softmax layer for multi-class classification

Deep Learning (30)

Layers of a CNN: Pooling

- A convolutional stage is often followed by a pooling stage that summarises its inputs and reduces dimensionality
 - These typically get the mean (Avg-Pool) or maximum (Max-Pool) of a block of inputs, applied to each channel separately
 - Most common: Max-Pool of size 2x2, non-overlapping (stride=2)
- No learnable parameters, just overall settings for the pooling stage
 - However, need to be accounted for during backprop, as forward propagation is affected by the pooling operations

Michael Madden Deep Learning (31)

Layers of a CNN: LeNet-5 Example

- In diagrams, often represent CNNs by size of feature maps in each layer
 - Annotations added to indicate filter size, number of filters, stride and padding
 - If a conv layer is followed by pooling, they are both given the same layer number

Michael Madden Deep Learning (32)

Convolutional Networks - Some Notes

- Convnets covered here are specifically designed for image processing and related tasks
 - Not just image classification, but object detection within images, segmentation of images, tracking objects in videos, medical image analysis, etc.
 - Their structure is inspired by past work in computer vision, and encoding strong assumptions/biases, e.g. how groups of neighbouring pixels define features
 - Have led to major increases in performance in computer vision
- A conv layer has far fewer weights than a fully-connected layer to handle same number of inputs
 - Improves feasibility of learning
 - Since size of layer is determined by number and size of filters, it is independent of the size of the image itself
 - Makes it possible to work with higher resolution images

Deep Learning (33)

Review of Learning Objectives

Now that you have completed Topics 4 and 5, you should be able to...

- Define key concepts related to Deep Learning, and discuss major advances relative to shallow neural networks
- Explain and implement approaches to handling unstructured data and multi-class classification
- Explain and implement regularization methods, and algorithms including Mini-Batch Gradient Descent, Momentum, RMSprop and Adam
- Explain the principles of operation of Convolutional Networks
- Correctly use these features within ML libraries, including selecting hyperparameters

Michael Madden Deep Learning (34)

