## Pipeline Model





N-tube model

### N-tube model



http://clas.mq.edu.au/speech/acoustics/frequency/vocal\_tract\_resonance.html

Atal, Bishnu S., et al. "Inversion of articulatory-to-acoustic transformation in the vocal tract by a computer-sorting technique." *The Journal of the Acoustical Society of America* 63.5 (1978): 1535-1555.



http://www.phonetics.ucla.edu/index/sounds.html



Labial b, p, m



Labio-dental f, v



Interdental

θ, δ



Alveolar d, t, s, z, n



Palatal

š, ž



Velar

g, k, ŋ

#### Four general classes of sounds in American English

- Vowels, diphthongs, semivowels, and consonants
- Each can be further divided according to articulators (manner, place)



#### Alternatively, phoneme classes can be divided into

- Continuants: produced by a fixed vocal tract configuration
  - Includes vowels, fricatives, and nasals
- Non-continuants: vocal tract configuration changes over time
  - Diphthongs, semivowels, stops and affricatives



### **Ultrasound**



**Articulograph** 



rtMRI









### Articulation to acoustic

3000 Hz

3000 Hz

3000 Hz

after Benade



For vowels

### **Formant**

Formants are frequency peaks which have, in the spectrum, a high degree of energy. They are especially prominent in vowels. Each formant corresponds to a resonance in the vocal tract (roughly speaking, the spectrum has a formant every 1000 Hz). First three formant for few vowels (with example word and IPA symbol) are:

|       | Vowel     | F1(Hz) | F2(Hz) | F3(Hz) |
|-------|-----------|--------|--------|--------|
| heed  | i:        | 280    | 2620   | 3380   |
| hid   | I         | 360    | 2220   | 2960   |
| head  | e         | 600    | 2060   | 2840   |
| had   | æ         | 800    | 1760   | 2500   |
| hudd  | Λ         | 760    | 1320   | 2500   |
| hard  | a:        | 740    | 1180   | 2640   |
| hod   | D         | 560    | 920    | 2560   |
| hoard | <b>ɔ:</b> | 480    | 760    | 2620   |
| hood  | υ         | 380    | 940    | 2300   |
| Who'd | u:        | 320    | 920    | 2200   |
| heard | 3!        | 560    | 1480   | 2520   |

Adult male formant frequencies in Hertz collected by J.C.Wells around 1960. Note how F1 and F2 vary more than F3.

## **Formant**



Frequency of second formant versus frequency of first formant for ten vowels by 76 speakers.

## Speech production models

#### DIVA Model



<u>Guenther, Ghosh, and Tourville (2006)</u> <u>Brain and Language</u> http://www.bu.edu/speechlab/research/the-diva-model/

## Speech production models

**Articulatory Model** 



Mermelstein, Paul. "Articulatory model for the study of speech production." The Journal of the Acoustical Society of America 53.4 (1973): 1070-1082.

## Speech production models

#### TaDA Model

- •Saltzman, Elliot. "Task dynamic coordination of the speech articulators: A preliminary model." AVAILABLE FROM US Department of Commerce, National Technical information Service, 5285 Port Royal Rd., Springfield, VA 22151. PUB TYPE Reports-Research/Technical (143) EDRS PRICE MF01/PC11 Plus Postage. (1986): 9.
- •Nam, Hosung, et al. "TADA: An enhanced, portable Task Dynamics model in MATLAB." The Journal of the Acoustical Society of America 115.5 (2004): 2430-2430.

#### **Forward Model**

Heinks-Maldonado, Theda H., Srikantan S. Nagarajan, and John F. Houde. "Magnetoencephalographic evidence for a precise forward model in speech production." Neuroreport 17.13 (2006): 1375-1379.

## The human ear



# Cochlea – organ of hearing





# Tonotopic Mapping



# Central Auditory system



# Audiogram

