CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Class: NPC

A KITTY OF NP-COMPLETE PROBLEMS

NP-COMPLETENESS

- Given any NP-complete problem π , all NP-complete problems polynomially reduce to π
 - i.e. for all NP-complete problems π and π' $\pi' \preceq \pi$ and $\pi' \preceq \pi$
- What is the implication?
 - Can be an NP-complete problem be in \mathbb{P} ?

COMPLEXITY CLASSES AND RELATIONS AMONG THEM

o Current Belief:

NPC is the class of all NP-complete problems

Arguments: ?!

CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Structure of problems:

Strong NP-hardness and Pseudopolynomial Time Algorithms

STRUCTURE OF PROBLEMS -0/1 KNAPSACK

- o 0/1 KNAPSACK is an №—complete problem.
 - We have seen a dynamic programming algorithm for that solves this problem in time O(nW)
 - o where n is the number of items in the input set and W is the capacity of the sack.
 - Such algorithms are referred to as pseudopolynomial-time algorithms:
 - o polynomial in one of the input numbers (but not its size).

PSEUDO-POLYNOMIAL TIME ALGORITHMS

- \circ An algorithm A for a problem π runs in pseudo-polynomial time
 - if its running time is bounded by a polynomial function in |x| and max(x) for any instance x of π
 - where max(x) denotes the value of the largest number occurring in instance x.
- o E.g. 0,1 Knapsack
 - $max(x) = max(w_1, w_2, ... w_n, p_1, p_2, ... p_n, W)$
 - The DP algorithm for 0,1 Knapsack runs in time O(n* W)
 i.e. O(n * max(x))
 - oSo, it is pseudo polynomial.

STRONG NP-HARDNESS

- ullet An \mathbb{NP} problem Π is said to be strongly \mathbb{NP} -hard
 - if a polynomial p exists s.t. $\Pi^{\max,p}$ is NP-hard
 - where $\Pi^{\text{max},p}$ is the problem obtained by restricting Π to only those instances x for which $\text{max}(x) \le p(|x|)$
- o 0,1 Knapsack is not strongly NP-hard
 - Why?
- TSP is strongly NP-hard
 - Why?

STRONG NP-HARDNESS AND PSEUDO-POLYNOMIAL-TIME ALGORITHMS

o Theorem:

- No strongly NP-hard problem admits a pseudopolynomial time algorithm unless P=NP
- Proof: (by contradiction.)
 - Let Π be strongly NP-hard with a pseudo-polynomial time algorithm A
 - oi.e. A solves Π in time q(|x|, max(x)) for some polynomial q.
 - Then for any polynomial p, $\Pi^{\text{max},p}$ can be solved in time q(|x|,p(|x|)).
 - But by strong-hardness of Π it follows there exists a polynomial p s.t. $\Pi^{\text{max,p}}$ is NP-hard i.e. P=NP