COMP 2710 – Spring 2020 Final Exam (take-home)

What to submit:

- 1. A .pdf file of your answers with a file name of "**FinalExam_LastName_UserID.pdf**". (Please type answers with your keyboard, hand-written answers are NOT accepted).
 - 1.1. Create a .doc file.
 - 1.2. Type answers through a keyboard.
 - 1.3. Save it as a .pdf file.
 - 1.4. Submit it on Canvas.

Maximum points possible: 50(.pdf) + 50 (coding part) = 100

Time: 11:59pm CST Apr 29th - 11:59pm CST May 1st

1.	Multiple Choice (14 points, 2 points/Question). Hint: Pick one choice for each question.									
(1)	(1) We create a dynamic array as follows:									
	Data type: Double pointer variable name d; d = new double[10];									
V	Which of the following statement delete the dynamic array?									
	a)	delete d	l;							
	b)	delete &	& d;							
	c)	delete *	d;							
	d)) delete [] d; The wording is confus								The wording is confusing to me.
(2)	Which of the following statement related to pointers is incorre						ncorrect?		I know: Pointers are <i>variables</i> that store	
	a)	Pointers are memory addresses of variables the memory address as it							the memory address as its' value.	
	b)	Memory addresses are pointers that point to variables of a given data type								
	c)	In the call-by-reference approach, the addresses of arguments are passed								
	d)	None of	f the ab	ove is cor	rect					
(3) Suppose we have the following definitions and assignments:										
	double *p1, *p2, v;									
		p1 = &v								
		v = 9.9;								
		p2 = p1	;							
W	hic	ch of the	followi	ng stateme	nt is incorre	ect?				
	a) *p1 = &v									
	b)	*p2 ==	9.9							
	c)	p2 == &	ζv							
	d)	p1 == p	2							
(4) Pointer variables are memory addresses and can be assigned to one another without regard to type.										
		a)	True			b))	False		
(5)	Re	cursive fu	unctions	s can be ac	complished	in one step, n	nan	nely repeated calls to	itself.	
		a)	True			b))	False		
(6) A recursive function with parameter N counts up from any negative number to 0. An appropriate base case would be N == 0.										
		a)	True			b))	False		

- (7) A recursive function can have two base cases, such as N == 0 returning 0, and N == 1 returning 1.
 - a) True

- b) False
- 8. Revised solution 2 with three State variables regarding the Dining-Philosopher problem. (36 points)

```
Philosopher_State {
2.
3.
        Semaphore EatAgain[5]; // How is this initialized?
4.
        Semaphore mutex; // How is this initialized?
5.
        int state[5];
                                // Initialized to THINKING
                                // Initialized to a unique id for Philosophers
6.
        int p;
7.
8.
        take_chopsticks() {
9.
            mutex.P();
10.
            state[p] = HUNGRY;
11.
            test(p);
12.
            mutex.V();
13.
            EatAgain[p].P();
14.
15.
16.
        put_chopsticks() {
17.
            mutex.P();
18.
            state[p] = THINKING;
19.
            test[(p+1)%5];
20.
            test[(p+4)%5];
            mutex.V();
21.
22.
23.
24.
        test(int i) {
25.
            if (state[i] == HUNGRY \&\& state[(i+1) \% 5] != EATING \&\& state[(i+4) \% 5] != EATING) {
26.
                state[i] = EATING;
27.
28.
            EatAgain[i].V();
29.
        }
30. }
```

- 8.1. Please carefully review Solution 2 to list three states. (3 points)
- 8.2. How should the Semaphore elements of EatAgain be initialized? (3 points)
- 8.3. How should the Semaphore mutex be initialized? (3 points)

8.6. Does the code work correctly if the statement EatAgain[i].P() is moved before mutex.V() in take_chopsticks()? Briefly explain it. (4 points) 8.7. Does the code work correctly if the statements test((i+1)%5) and test((i+4)%5) are moved before state[i]=THINKING() in put_chopsticks()? Briefly explain it. (4 points) 9. In the Fig. 0, suppose A and B are making simultaneous transfers between two accounts in a bank. Please predict potential threats for this transaction. (5 points) A B Transfer \$100 from account 1 to account 2 to account 2 account 1 account 2 Shared memory account 1 account 2	8.4. What is the maximum number of Philosophers that can be waiting on a Semaphore element EatAgain[i] at any given time? (3 points)
8.7. Does the code work correctly if the statements test((i+1)%5) and test((i+4)%5) are moved before state[i]=THINKING() in put_chopsticks()? Briefly explain it. (4 points) 9. In the Fig. 0, suppose A and B are making simultaneous transfers between two accounts in a bank. Please predict potential threats for this transaction. (5 points) A	8.5. What is the maximum number of Philosophers that can be waiting on mutex at any given time? (3 points)
9. In the Fig. 0, suppose A and B are making simultaneous transfers between two accounts in a bank. Please predict potential threats for this transaction. (5 points) A B transfer \$100 from account 1 from account 2 to account 1 Shared memory account 1 account 2	
transfer \$100 transfer \$200 from account 1 to account 1 A B Shared memory account 1 account 2	
Figure 0 10. Please summarize source of major software developers' headaches from the concurrency mechanism. List at least 4	threats for this transaction. (5 points) A B transfer \$100 transfer \$200 from account 1 to account 2 to account 1 A B Shared memory account 1 account 2 Figure 0