Analiza II - Teoreme demonstrate

Curs - P. Ilias, Latex - Chris Luntraru June 6, 2018

1 Spatii liniare normate

Teorema 1.1. Orice spatiu liniar normat (X, || ||) este spatiu metric.

2 Functii derivabile

Teorema 2.1. Orice functie $f: D \subseteq \mathbb{R} \to (X, ||\ ||_X)$ derivabila intr-un punct $x_0 \in D \cap D'$ este continua in x_0 .

3 Functii derivabile reale

Teorema 3.1 (Teorema lui Fermat). Fie $f: D \subseteq \mathbb{R} \to \mathbb{R}$ o functie si $x_0 \in D^{\mathcal{O}}$ astfel incat x_0 este punct de extrem local pentru f si f este derivabila in punctul x_0 . Atunci $f'(x_0) = 0$.

Teorema 3.2 (Teorema lui Rolle). Fie $f:[a,b]\to\mathbb{R}$ o functie continua pe [a,b], derivabila pe (a,b) si f(a)=f(b). Exista $c\in(a,b)$ astfel incat f'(c)=0.

Teorema 3.3 (Teorema lui Lagrange). Fie $f:[a,b]\to\mathbb{R}$ o functie continua pe [a,b], derivabila pe (a,b). Exista un element $c\in(a,b)$ astfel incat $\frac{f(b)-f(a)}{b-a}=f'(c)$

Teorema 3.4 (Teorema lui Darboux). Fie $I \subseteq \mathbb{R}$ un interval nedegenerat si $f: I \to \mathbb{R}$ o functie derivabila pe I. Atunci $f': I \to \mathbb{R}$ are proprietatea lui Darboux.

4 Functii diferentiabile

Teorema 4.1. Orice functie $f: D \subseteq (X, || ||_X) \to (Y, || ||_Y)$ differentiabila in punctul $x_0 \in D \cap D'$ este continua in x_0 .

5 Functii integrabile Riemann

Teorema 5.1. Orice functie monotona $f:[a,b]\to\mathbb{R}$ este integrabila Riemann pe [a,b].

Teorema 5.2. Orice functie continua $f:[a,b]\to\mathbb{R}$ este integrabila Riemann pe [a,b].

Teorema 5.3 (Formula Leibniz-Newton). Fie $f:[a,b]\to\mathbb{R}$ o functie integrabila Riemann pe [a,b] care admite primitive pe [a,b]. Atunci $\int_a^b f(x)dx=F(b)-F(a)$, unde $F:[a,b]\to\mathbb{R}$ este o primitiva a lui f.