EEE104 – Digital Electronics (I) Lecture 11

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Functions of Combinational Logic Gates
 - Adders
 - Comparators
 - Decoders

Basic Adders – The Half-Adder

The half-adder does not add an input carry.

A	В	Cout	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- The sum is 1 only when the inputs are different

 — an XOR operation.
- The output carry is 1 only when both the inputs are 1 an AND operation.

Basic Adders – The Full-Adder

A	В	C_{in}	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	· 1	0	0	1
0	1	1	1	0 1
1	0	0	0	
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$\Sigma = (A \oplus B) \oplus C_{\rm in}$$

$$\begin{split} C_{out} &= ABC_{in} + AB\overline{C}_{in} + A\overline{B}C_{in} + \overline{A}BC_{in} \\ &= \left(ABC_{in} + AB\overline{C}_{in}\right) + \left(ABC_{in} + A\overline{B}C_{in}\right) + \left(ABC_{in} + \overline{A}BC_{in}\right) \\ &= AB + AC_{in} + BC_{in} \end{split}$$

Comparators — Equality Comparators

1. An XOR gate is a 1-bit comparator.

2. 2-bit comparators

Comparators — Inequality Comparators

- 1. Check the highest—order bit first.
- 2. If $A_3 = 1$ and $B_3 = 0$, A > B.
- 3. If $A_3 = 0$ and $B_3 = 1$, A < B.
- 4. If $A_3 = B_3$, examine the next lower bit position.

MSI magnitude comparator: 74HC85, which has three cascade inputs A < B, A = B, A > B.

Comparators — Inequality Comparators

Decoders

A decoder is used to detect a specified combination of input bits (code), e.g. to determine when the inputs are 1001.

- The output is 1 only when $A_3A_2A_1A_0 = 1001$.
- Implemented with an AND (NAND) gate and inverters for an active-HIGH (LOW) output.

Decoders – The 4-Bit Decoder

The truth table (with active-LOW output)

BIN	ARY	INP	JTS	DECODING			380		500			C	UT	PUT	S	V33.40			(1000)	54
A_3	A2	A1	Ao	FUNCTION	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	$\overline{A}_3A_2\overline{A}_1A_0$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	1	0	$\overline{A}_3A_2A_1\overline{A}_0$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	1	1	$\overline{A}_3A_2A_1A_0$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
1	0	1	0	$A_3\overline{A}_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
1	0	1	1	$A_3\overline{A}_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
1	1	0	0	$A_3A_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	0	1	$A_3A_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
1	1	1	0	$A_3A_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	$A_3A_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

Decoders – The 4-Bit decoder

- The 4-bit decoder is usually called a *4-line-to-16-line decoder*.
- The 74HC154 is an MSI decoder.
- Both chip select inputs must be LOW to enable the device, otherwise all the outputs are HIGH.

Decoders – The 4-Bit decoder

The chip select inputs may be used to expand the decoder to higher orders.

E.g. to decode a 5-bit number.

LED Displays

- A 7-segment LED display consists of light-emitting diodes (LED).
- For common-cathode displays, the LED is turned on when a HIGH is applied.

12

LED Displays

DECIMAL		INP	UTS		SEGMENT OUTPUTS								
DIGIT	D	С	В	Α	а	ь	С	d	e	f	g		
0	0	0	0	0	1	1	1	1	1	1	0		
1	0	0	0	1	0	1	1	0	0	0	0		
2	0	0	1	0	1	1	0	1	1	0	1		
3	0	0	1	1	1	1	1	1	0	0	1		
4	0	1	0	0	0	1	1	0	0	1	1		
5	0	1	0	1	1	0	1	1	0	1	1		
6	0	1	1	0	1	0	1	1	1	1	1		
7	0	1	1	1	1	1	1	0	0	0	0		
8	1	0	0	0	1	1	1	1	1	1	1		
9	1	0	0	1	1	1	1	1	0	1	1		
10	1	0	1	0	X	X	X	X	X	X	X		
11	1	0	1	l	X	X	X	X	X	X	X		
12	1	1	0	0	X	X	X	X	X	X	X		
13	1	1	0	1	X	X	X	X	X	X	X		
14	1	1	1	0	X	X	X	X	X	X	X		
15	1	1	1	1	X	X	X	X	X	X	X		

Karnaugh map to simplify the segment-a logic.

D	INP C	UTS B	Α	а
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Standard SOP expression: $\bar{D}\bar{C}\bar{B}\bar{A} + \bar{D}\bar{C}\bar{B}\bar{A} + \bar{D}\bar{C}\bar{B}\bar{A}$

Minimum SOP expression: $D + B + CA + \overline{CA}$

- LT is for lamp test.
- RBI and RBO are for zero suppression.