标题

作者

2022年11月5日

前言

> 姓名 2022 年 11 月 5 日

目录

1	章节	标题						1
	1.1	二级标	示题	 	 	 	 	1
		1.1.1	三级标题	 	 	 	 	1
2	第二	:章						5

1.1 二级标题

1.1.1 三级标题

四级标题

描述列表:

- **1.** (非负性) $d(x,y) \ge 0$ 且 $d(x,y) = 0 \Leftrightarrow x = y$
- **2.** (对称性)d(x,y) = d(y,x)
- 3. (三角不等式) $d(x,y) \leq d(x,z) + d(y,z)$

有序列表:

1. $(非负性)d(x,y) \ge 0$ 且 $d(x,y) = 0 \Leftrightarrow x = y$. 再长一点,看下换行效果,红红火火恍恍惚惚或或或或或或或或或或或或或。

分段

- 2. (对称性)d(x,y) = d(y,x). 再长一点,看下换行效果,红红火火恍恍惚惚或或或或或或或或或或或或或或或或或或或。
- 3. $(三角不等式)d(x,y) \le d(x,z) + d(y,z)$. 再长一点,看下换行效果,红红火火恍恍惚惚或或或或或或或或或或或或或或。

无序列表:

• n 维欧氏空间*R*ⁿ

定义距离
$$d = (\sum_{k=1}^{n} |\xi_k - \eta_k|^2)^{1/2}$$
 或者 $d = \max_{1 \leq k \leq n} |\xi_k - \eta_k|$

• 空间 C[a,b]

定义距离
$$d = \max_{a \leqslant t \leqslant b} |x(t) - y(t)|$$

• 空间 $\operatorname{L}^{\infty}$

先回顾一下空间 L^{∞} :

$$\|f\|_{\infty}=\inf\Big\{M:|f|\leqslant M\quad a.e.\quad on\quad E\Big\}$$

$$L^{\infty}(E)=\Big\{f:f\ \to\ E\ \mbox{可测}\|f\|_{\infty}<\infty\Big\}$$
 定义距离
$$d=\inf_{mF_0=0,F_0\subset F}\Big\{\sup_{t\in F\backslash F_0}|x(t)-y(t)|\Big\}$$

定义 1.1 内容.

注:注意了.

定理 1.1(唯一性)
$$x_n \to x, x_n \to y \Rightarrow x = y.$$

由定理 1.1.1 可知, 我也不知道.

定理 1.2
$$x_n \to x, x_n \to y \Rightarrow x = y.$$

定理 1.1.1.

证明:
$$0 \le d(x,y) \le d(x_n,x) + d(x_n,y) \to 0$$
,根据夹逼定理, $d(x,y) = 0 \Rightarrow x = y$

【例 1.1】微分方程解的存在性与唯一性: 微分方程

$$\begin{cases} \frac{dy}{dx} = p(x, y) \\ y(x_0) = y_0 \end{cases}$$

其中 $f \in C(\mathbb{R}^2)$

设 y 满足 Lipschitz 条件,即 $\exists K > 0, s.t.$

$$|f(x,y) - f(x,y')| \leqslant K |y - y'|$$

解:

$$y(x) - y_0 = \int_{x_0}^x \frac{dy}{dx} dx$$
$$= \int_{x_0}^x f(x, y(x)) dx$$
$$= \int_{x_0}^x f(t, y(t)) dt$$

(可以看出这个解的结构但无法说明解的存在性与唯一性,但是积分不一定收敛)

取 $\delta > 0, s.t.k\delta < 1$, 在 $C[x_0 - \delta, x_0 + \delta]$ 上定义 T:

$$(Ty)(x) = y_0 + \int_{x_0}^{x} f(t, y(t))dt$$

性质 1(有界性) 内容.

引理 1.1 内容.

推论 1.1 内容.

如图 1.1 所示.

图 1.1 this is Ali

如表 1.1 所示.

表 1.1 表格标题

Country List						
Country Name or Area Name	ISO ALPHA 2 Code	ISO ALPHA 3	ISO ALPHA 4			
Afghanistan	AF	AFG	abcd			

性质 2(可列可加性) 内容.

定理 1.3 内容.

2 第二章

定理 2.1 内容.
性质 1 内容.
性质 2 (非负性) 内容.