	◊◊◊ Lycée de Dindéfélo ◊◊◊			A.S.: 2024/2025	
	Matière: Mathématiques	Niveau: 1^{er} S2	Date: 16/06/2025	Durée : 4 heures	
	Composition n° 2 Du 2 nd Semestre				

Exercice 1:5 pts

Soient A et B deux points du plan tels que AB = 8 cm.

1 Construire le barycentre G des points pondérés (A; 1) et (B; 3).

0,1 pt

2 Calculer les distances GA et GB.

0.5 pt + 0.5 pt

3 Démontrer que, pour tout point M du plan, on a :

$$MA^2 + 3MB^2 = 4MG^2 + 48$$

0,1 pt

4 En déduire et construire l'ensemble des points M du plan tels que :

$$MA^2 + 3MB^2 = 84$$

0,1 pt

 \bullet Déterminer et construire l'ensemble des points M du plan tels que :

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = -12$$

0,1 pt

Exercice 2:5 pts

On considère la fonction f définie par

$$f(x) = \frac{x^2 + ax + b}{x - 1}$$

1 Déterminer les réels a et b tels que la courbe (C_f) passe par le point A(0,1) et admette en ce point une tangente horizontale. 0,5 pt + 0,75 pt

On suppose a = 1 et $b = -1 \dots$

2 Déterminer les limites aux bornes de \mathcal{D}_f . Préciser les asymptotes éventuelles. 0,5 pt + 0,5 pt + 0,5 pt

3 Déterminer les réels α , β , γ tels que :

$$f(x) = \alpha x + \beta + \frac{\gamma}{x - 1}$$

En déduire que la droite (D) : y = x + 2 est asymptote oblique à la courbe.

0,75 pt + 0,5 pt

4 Dresser le tableau de variations de f puis tracer la courbe.

0.1 pt + 0.5 pt

Problème: 10 pts

Soit f la fonction définie par :

$$f(x) = \begin{cases} \frac{-x^2 + 5x - 5}{x - 1} & \text{si } x \le 0\\ \frac{3x - 5}{x^2 - 1} & \text{si } x > 0 \end{cases}$$

1 Montrer que $D_f = \mathbb{R} \setminus \{1\}$.	1,25 pt
2 Calculer les limites aux bornes de D_f .	0,1 pt
3 En déduire les asymptotes de (C_f) .	0,5 pt
4 Montrer que la droite d'équation $y = -x + 4$ est asymptote oblique à (C_f) en $-\infty$.	0,5 pt
\bullet Étudier la continuité de f en 0 .	0,75 pt
6 Étudier la dérivabilité de f en 0 puis interpréter graphiquement les résultats.	0,1 pt + 0,5 pt
7 Calculer $f'(x)$ pour $x < 0$ et pour $x > 0$.	0,5 pt + 0,5 pt
8 Étudier le signe de $f'(x)$ pour $x < 0$ puis pour $x > 0$.	0,5 pt + 0,5 pt
9 Dresser le tableau de variation de f .	1,5 pt
10 Construire (C_f) .	0,1 pt