Package 'multiScaleR'

September 2, 2025

Type Package

Title Methods for Optimizing Scales of Effect

Version 0.4.5

Description

A tool for optimizing scales of effect when modeling ecological processes in space. Specifically, the scale parameter of a distance-weighted kernel distribution is identified for all environmental layers included in the model. Includes functions to assist in model selection, model evaluation, efficient transformation of raster surfaces using fast Fourier transformation, and projecting models. For more details see Peterman (2025) <doi:10.21203/rs.3.rs-7246115/v1>.

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2

Imports Rcpp, Matrix, cowplot, dplyr, fields, ggplot2, insight, stats, utils, unmarked, exactextractr, crayon, parallel, optimParallel, AICcmodavg, methods, pscl

LinkingTo Rcpp, RcppArmadillo **Depends** R (>= 4.3), terra, sf **Suggests** knitr, rmarkdown

URL https://github.com/wpeterman/multiScaleR

BugReports https://github.com/wpeterman/multiScaleR/issues

BuildVignettes true **VignetteBuilder** knitr **NeedsCompilation** yes

Author Bill Peterman [aut, cre] (ORCID:

<https://orcid.org/0000-0001-5229-9268>)

Maintainer Bill Peterman < Peterman. 73@osu.edu>

Repository CRAN

Date/Publication 2025-09-02 05:40:12 UTC

Contents

	multiScaleR-package	2
	aic_tab	3
	bic_tab	5
	count_data	7
	hab	7
	kernel_dist	8
	kernel_prep	9
	kernel_scale.raster	10
	landscape	12
	landscape_counts	13
	multiScale_optim	13
	plot.multiScaleR	16
	plot_kernel	17
	plot_marginal_effects	19
	print.multiScaleR	20
	print.multiScaleR_data	20
	print.summary_multiScaleR	21
	pts	21
	sim_dat	22
	sim_dat_unmarked	23
	sim_rast	26
	summary.multiScaleR	27
	surv_pts	27
ndex		28
HUCA		20
multi	ScaleR-package multiScaleR	

Description

This package is for optimizing scales of effect when modeling ecological processes in space. Specifically, the scale parameter of a distance-weighted kernel distribution is identified for all environmental layers included in the model.

Details

Author(s)

Maintainer: Bill Peterman < Peterman. 73@osu.edu > (ORCID)

aic_tab 3

See Also

Useful links:

- https://github.com/wpeterman/multiScaleR
- Report bugs at https://github.com/wpeterman/multiScaleR/issues

aic_tab

multiScaleR model selection

Description

Function to create AIC(c) table of fitted models

Usage

Arguments

mod_list List containing fitted 'multiScaleR' objects

AICc Use second order AIC in ranking models (Default = TRUE). See Details

mod_names Optional. Specify names for fitted model objects. By default, the right hand side of the fitted 'multiScaleR' model, in combination with the kernel, will be used as the model name.

verbose (Default = FALSE) Should the table be printed to the console

... Additional arguments (Not used)

Details

aic_tab creates a model selection table using aictabCustom from the 'AICcmodavg' package

Value

Data frame of class 'aictab' with AIC summary table for provided models

Author(s)

Bill Peterman

4 aic_tab

```
## Simulate data
set.seed(555)
points <- vect(cbind(c(5,7,9,11,13),
                      c(13,11,9,7,5)))
mat_list <- list(r1 = rast(matrix(rnorm(20^2),</pre>
                                     nrow = 20)),
                  r2 = rast(matrix(rnorm(20^2),
                                    nrow = 20)))
rast_stack <- rast(mat_list)</pre>
kernel_inputs <- kernel_prep(pts = points,</pre>
                               raster_stack = rast_stack,
                               max_D = 5,
                               kernel = 'gaussian',
                               sigma = NULL)
## Example response data
y <- rnorm(5)
## Create data frame with raster variables
dat <- data.frame(y = y,</pre>
                   kernel_inputs$kernel_dat)
mod1 <- glm(y \sim r1,
             data = dat)
mod2 \leftarrow glm(y \sim r2,
            data = dat)
mod3 \leftarrow glm(y \sim r1 + r2,
             data = dat)
## NOTE: This code is only for demonstration
## Optimization results will have no meaning
opt_mod1 <- multiScale_optim(fitted_mod = mod1,</pre>
                               kernel_inputs = kernel_inputs,
                               par = NULL
                               n_cores = NULL)
opt_mod2 <- multiScale_optim(fitted_mod = mod2,</pre>
                               kernel_inputs = kernel_inputs,
                               par = NULL,
                               n_cores = NULL)
opt_mod3 <- multiScale_optim(fitted_mod = mod3,</pre>
                               kernel_inputs = kernel_inputs,
                               par = NULL,
                               n_{cores} = NULL)
 ## AIC table
 mod_list <- list(opt_mod1, opt_mod2, opt_mod3)</pre>
 aic_tab(mod_list = mod_list,
         AICc = FALSE)
```

bic_tab 5

bic_tab

multiScaleR model selection

Description

Function to create BIC table of fitted models

Usage

Arguments

mod_list List containing fitted 'multiScaleR' objects

mod_names Optional. Specify names for fitted model objects. By default, the right hand side of the fitted 'multiScaleR' model, in combination with the kernel, will be used as the model name.

verbose (Default = FALSE) Should the table be printed to the console

... Additional arguments (Not used)

Details

bic_tab creates a model selection table using bictabCustom from the 'AICcmodavg' package

Value

Data frame of class 'bictab' with BIC summary table for provided models

Author(s)

Bill Peterman

6 bic_tab

```
## Simulate data
set.seed(555)
points <- vect(cbind(c(5,7,9,11,13),
                       c(13,11,9,7,5)))
mat_list <- list(r1 = rast(matrix(rnorm(20^2),</pre>
                                     nrow = 20)),
                  r2 = rast(matrix(rnorm(20^2),
                                    nrow = 20)))
rast_stack <- rast(mat_list)</pre>
kernel_inputs <- kernel_prep(pts = points,</pre>
                               raster_stack = rast_stack,
                               max_D = 5,
                               kernel = 'gaussian',
                               sigma = NULL)
## Example response data
y <- rnorm(5)
## Create data frame with raster variables
dat <- data.frame(y = y,</pre>
                   kernel_inputs$kernel_dat)
mod1 <- glm(y \sim r1,
             data = dat)
mod2 \leftarrow glm(y \sim r2,
            data = dat)
mod3 \leftarrow glm(y \sim r1 + r2,
             data = dat)
## NOTE: This code is only for demonstration
## Optimization results will have no meaning
opt_mod1 <- multiScale_optim(fitted_mod = mod1,</pre>
                               kernel_inputs = kernel_inputs,
                               par = NULL
                               n_cores = NULL)
opt_mod2 <- multiScale_optim(fitted_mod = mod2,</pre>
                               kernel_inputs = kernel_inputs,
                               par = NULL,
                               n_cores = NULL)
opt_mod3 <- multiScale_optim(fitted_mod = mod3,</pre>
                               kernel_inputs = kernel_inputs,
                               par = NULL,
                               n_{cores} = NULL)
 ## BIC table
 mod_list <- list(opt_mod1, opt_mod2, opt_mod3)</pre>
 bic_tab(mod_list = mod_list)
```

count_data 7

count_data

Example data frame

Description

Example count data to be used for optimizing scales of effect

Usage

```
data(count_data)
```

Format

A data frame with 75 rows and 2 columns. Data were simulated from a Poisson distribution with an intercept of 0.5, a 'hab' effect of 0.75, and scale of effect (sigma) of 75.

y -> Simulated counts at spatial locations

hab -> Scaled and centered weighted mean values from the 'hab' raster at each of the 'pts'

hab

Example raster

Description

Example habitat raster for optimizing scales of effect

Format

A binary SpatRaster object

```
hab -> A binary raster
```

8 kernel_dist

kernel_dist

Scale Distance

Description

Function to estimate the effective distance encompassing a specified cumulative probability density of the kernel function

Usage

```
kernel_dist(model, prob = 0.9, ...)
```

Arguments

model multiScale_optim object of class 'multiScaleR'

prob Density probability cutoff for calculating distance, Default: 0.9

... Parameters to be used if not providing a 'multiScaleR' fitted object. See Details

Details

This function is used to determine the distance at which kernel density distributions have influence. If not providing a fitted model, you can plot kernel distributions by specifying (1) sigma, (2) beta (if using exponential power), and (3) the kernel transformation ('exp' = negative exponential, 'gaussian', 'fixed' = fixed buffer, and 'expow' = exponential power)

Value

Numeric. Distance at which the cumulative kernel density reaches the specified proportion.

See Also

```
plot.multiScaleR
```

kernel_prep 9

kernel_prep

Kernel Scale Preparation

Description

Function to prepare data inputs for kernel scale analysis

Usage

```
kernel_prep(
  pts,
  raster_stack,
  max_D,
  kernel = c("gaussian", "exp", "expow", "fixed"),
  sigma = NULL,
  shape = NULL,
  projected = TRUE,
  progress = FALSE,
  verbose = TRUE
)
```

Arguments

pts	Point locations provided as 'SpatVector' or 'sf' objects
raster_stack	Raster layer(s) of class 'SpatRaster'
max_D	The maximum distance to consider during the scale optimization
kernel	Kernel function to be used ('gaussian', 'exp', 'fixed', 'expow'; Default: 'gaussian')
sigma	Initial values for optimizing the scale parameter. Default: NULL, initial values will be automatically generated. This is recommended.

10 kernel_scale.raster

shape	Initial values for optimizing the shape parameter if using exponential power kernel. Default: NULL, starting values will be automatically generated. This is recommended.
projected	Logical. Are 'pts' and 'raster_stack' projected. Function currently requires that both are projected. Default: TRUE
progress	Should progress bars be printed to console. Default: FALSE
verbose	Logical. Print preparation information to the console. Default: TRUE

Details

Spatial point locations and raster layers should have a defined projection and be the same CRS. If providing starting values for 'sigma' or 'shape', it must be a vector of length equal to the number of raster layers for which scale is being assessed and should be provided in the unit of the used projection. When specifying 'max_D', ensure that your raster layers adequately extend beyond the points provided so that the surrounding landscape can be meaningfully sampled during scale optimization.

Value

A list of class 'multiscaleR' with necessary elements to conduct scale optimization using the 'multiScale_optim' function

Examples

Description

Function to create scaled rasters

kernel_scale.raster 11

Usage

```
kernel_scale.raster(
    raster_stack,
    sigma = NULL,
    multiScaleR = NULL,
    shape = NULL,
    kernel = c("gaussian", "exp", "expow", "fixed"),
    pct_wt = 0.975,
    fft = TRUE,
    scale_center = FALSE,
    clamp = FALSE,
    pct_mx = 0,
    na.rm = TRUE,
    verbose = TRUE,
    ...
)
```

Arguments

raster_stack	Stack of combined 'SpatRaster' layers
sigma	Vector of parameters listed in order to scale each raster
multiScaleR	If scale optimization with 'multimultiScaleRim' has been completed, provide the 'multiscaleR' object here. You can also pass an object of class "multi-ScaleR_data" created using 'kernel_prep'. Default: NULL
shape	Vector of parameters listed in order to scale each raster if using 'expow' kernel. Default: NULL
kernel	Kernel function to be used ('gaussian', 'exp', 'fixed', 'expow'; Default: 'gaussian')
pct_wt	The percentage of the weighted density to include when applying the kernel smoothing function, Default: 0.975
fft	Logical. If TRUE (Default), a fast Fourier transformation will be used to smooth the raster surface. See details.
scale_center	Logical. If 'TRUE', raster values are scaled and centered accordingly to the data used to fit the model. Necessary when predicting model results across the landscape.
clamp	Logical. If 'TRUE', scaled values are clamped to the covariate range in the model data.
pct_mx	Numeric. If 'clamp' is 'TRUE', this value specifies the amount (percentage; positive or negative) by which to expand/contract the min/max range when clamping. Can range from -0.99–0.99 (Default = 0).
na.rm	Logical. If TRUE (Default), NA values are removed from the weighted mean calculation.
verbose	Logical. Print status of raster scaling to the console. Default: TRUE
	Not used

12 landscape

Details

The fast Fourier transformation is substantially faster when scaling large raster surfaces with large kernel areas. There will be some edge effects on the outer boundaries.

Value

'SpatRaster' object containing scaled rasters

Examples

landscape

Simulated raster

Description

Raster data for use with vignette example

Format

'landscape_rast'

A spatRaster object with three surfaces:

land1 -> A binary landscape surface with low autocorrelation

land2 -> A continuous landscape surface with low autocorrelation

land3 -> A continuous landscape surface with high autocorrelation

landscape_counts 13

landscape_counts

Example data frame

Description

Example count data to be used vignette document example

Usage

```
data(landscape_counts)
```

Format

A data frame with 100 rows and 2 columns. Data were simulated from a Poisson distribution with an intercept of 0.25; land1 effect = -0.5; site effect = 0.3; land2 effect = 0.7. True simulated Gaussian scale effects (sigma): land1 = 250; land2 = 500. For use with package vignette.

counts -> Simulated counts at spatial locations

site -> A habitat variable measured at the site

multiScale_optim

Multiscale optimization

Description

Function to conduct multiscale optimization

Usage

```
multiScale_optim(
  fitted_mod,
  kernel_inputs,
  join_by = NULL,
  par = NULL,
  n_cores = NULL,
  PSOCK = FALSE,
  verbose = TRUE
)
```

14 multiScale_optim

Arguments

fitted_mod	Model object of class glm, lm, gls, or unmarked
kernel_inputs	Object created from running kernel_prep
join_by	Default: NULL. A data frame containing the variable used to join spatial point data with observation data (see Details)
par	Optional starting values for parameter estimation. If provided, should be divided by the 'max_D' value to be appropriately scaled. Default: NULL
n_cores	If attempting to optimize in parallel, the number of cores to use. Default: NULL
PSOCK	Logical. If attempting to optimize in parallel on a Windows machine, a PSOCK cluster will be created. If using a Unix OS a FORK cluster will be created. You can force a Unix system to create a PSOCK cluster by setting to TRUE. Default: FALSE
verbose	Logical. Print status of optimization to the console. Default: TRUE

Details

Identifies the kernel scale, and uncertainty of that scale, for each raster within the context of the fitted model provided.

To ensure that fitted model function calls are properly parallelized, fit models directly from the packages. For example, fit a negative binomial distribution from the MASS package as 'fitted_mod <- MASS::glm.nb(y ~ x, data = df)'

There may situations when using 'unmarked' where sites are sampled across multiple years, but spatial environmental values are relevant for all years. In this situation, you want to join the scaled landscape variables from each site to each observation at a site. This can be achieved by providing a data frame object containing the values (e.g. site names) that will be used to join spatial data to sites. The name of the column in the 'join_by' data frame must match a column name in the data used to fit your 'unmarked' model.

Value

Returns a list of class 'multiScaleR' containing scale estimates, shape estimates (if using kernel = 'expow'), optimization results, and the final optimized model.

See Also

```
kernel_dist
```

multiScale_optim 15

```
nrow = 20))
rast_stack <- rast(mat_list)</pre>
kernel_inputs <- kernel_prep(pts = points,</pre>
                               raster_stack = rast_stack,
                               max_D = 5,
                               kernel = 'gaussian',
                               sigma = NULL)
## Example response data
y <- rnorm(5)
## Create data frame with raster variables
dat <- data.frame(y = y,</pre>
                   kernel_inputs$kernel_dat)
mod1 \leftarrow glm(y \sim r1 + r2,
            data = dat)
## NOTE: This code is only for demonstration
## Optimization results will have no meaning
opt_mod <- multiScale_optim(fitted_mod = mod1,</pre>
                             kernel_inputs = kernel_inputs,
                              par = NULL,
                              n_cores = NULL)
## Using package data
data('pts')
data('count_data')
hab <- terra::rast(system.file('extdata',</pre>
                    'hab.tif', package = 'multiScaleR'))
kernel_inputs <- kernel_prep(pts = pts,</pre>
                               raster_stack = hab,
                               max_D = 250,
                               kernel = 'gaussian')
mod <- glm(y \sim hab,
           family = poisson,
           data = count_data)
## Optimize scale
opt <- multiScale_optim(fitted_mod = mod,</pre>
                         kernel_inputs = kernel_inputs)
## Summary of fitted model
summary(opt)
## 'True' parameter values data were simulated from:
# hab scale = 75
# Intercept = 0.5,
# hab slope estimate = 0.75
## Plot and visualize kernel density
plot(opt)
```

16 plot.multiScaleR

plot.multiScaleR

Plot method for multiScaleR objects

Description

Plot kernel weight distributions from optimized multiScaleR objects.

Usage

```
## S3 method for class 'multiScaleR'
plot(x, ...)
```

Arguments

x An object of class multiScaleR.

... Arguments to modify the plot. See Details.

Details

Supported arguments include:

- prob: Cumulative weight cutoff for distance scale (default = 0.9).
- scale_dist: Logical; add vertical line for distance scale (default = TRUE).
- add_label: Logical; annotate scale distance and CI (default = TRUE).

Value

A list of ggplot2 objects.

See Also

```
plot_kernel
```

plot_kernel 17

Examples

```
## Using package data
data('pts')
data('count_data')
hab <- terra::rast(system.file('extdata',</pre>
                    'hab.tif', package = 'multiScaleR'))
kernel_inputs <- kernel_prep(pts = pts,</pre>
                              raster_stack = hab,
                              max_D = 250,
                              kernel = 'gaussian')
mod <- glm(y \sim hab,
           family = poisson,
           data = count_data)
## Optimize scale
opt <- multiScale_optim(fitted_mod = mod,</pre>
                         kernel_inputs = kernel_inputs)
plot(opt)
plot(opt, prob = 0.95)
plot(opt, scale_dist = FALSE)
plot(opt, scale_dist = TRUE, add_label = FALSE)
```

plot_kernel

Plot kernel densities

Description

Generic function to plot kernels

Usage

```
plot_kernel(
  prob = 0.9,
  sigma,
  beta = NULL,
  kernel,
  scale_dist = TRUE,
  add_label = TRUE,
  ...
)
```

18 plot_kernel

Arguments

prob	Cumulative kernel density to identify scale of effect distance, Default: 0.9
sigma	Value of scaling parameter, sigma
beta	Numeric. Shape parameter for exponential power kernel. Ignored unless kernel = "expow". Values between 1-50 are typically valid. (Default = NULL)
kernel	Kernel function to use. Valid functions are $c(\text{'exp'}, \text{'gaussian'}, \text{fixed'}, \text{'expow'})$. See details
scale_dist	Logical. If TRUE (Default), the distance at which the specified density probability is achieved is added to the plot along with 95% confidence interval
add_label	Logical. If TRUE (Default), the distance value calculated for 'scale_dist' is added as an annotation to the plot.
	Not used

Details

This function is used to visualize kernel density distributions without having a fitted multiScaleR optimized object. Requires (1) sigma, (2) beta (if using exponential power), and (3) the kernel transformation ('exp' = negative exponential, 'gaussian', 'fixed' = fixed buffer, and 'expow' = exponential power)

Value

ggplot2 objects of kernel density distributions

plot_marginal_effects 19

plot_marginal_effects Plot Marginal Effects from a Fitted Model

Description

Generates marginal effect plots with 95 in a fitted model stored within a 'multiScaleR' object.

Usage

```
plot_marginal_effects(
    x,
    ylab = "Estimated response",
    length.out = 100,
    type = "state",
    link = FALSE
)
```

Arguments

x	A 'multiScaleR' object containing at least the elements 'opt_mod' (the fitted model) and 'scl_params' (a list with 'mean' and 'sd' for each covariate used for scaling).
ylab	Character. Y-axis label for the marginal effect plots. Default is "Estimated response".
length.out	Integer. Number of points at which to evaluate the marginal effect curve. Default is 100.
type	For 'unmarked' models, Default is "state"
link	Logical. An optional switch to predict values on the response scale. Default = 'FALSE'. If predicted values seem incorrect, try switching to 'TRUE'

Details

For 'unmarked' models, predictions are made using 'type = "state" and the 'predict' method for state variables. For other models (e.g., 'lm', 'glm'), predictions are made using the standard 'predict(..., se.fit = TRUE)' call and transformed by the model's inverse link function.

Value

A named list of 'ggplot' objects, one for each covariate, showing the predicted response and 95 while holding other covariates at their mean values.

print.multiScaleR

 $Print\ method\ for\ multiScaleR$

Description

Print method for objects of class multiScaleR.

Usage

```
## S3 method for class 'multiScaleR'
print(x, ...)
```

Arguments

x A multiScaleR object

... Ignored

Value

Invisibly returns the input multiScaleR object

```
print.multiScaleR_data
```

Print method for multiScaleR_data

Description

Print method for objects of class multiScaleR_data.

Usage

```
## S3 method for class 'multiScaleR_data'
print(x, ...)
```

Arguments

x A multiScaleR_data object
... Ignored

Value

Invisibly returns the input multiScaleR_data object

```
print.summary_multiScaleR
```

 $Print\ method\ for\ summary_multiScaleR$

Description

Print method for objects of class summary_multiScaleR.

Usage

```
## S3 method for class 'summary_multiScaleR'
print(x, ...)
```

Arguments

x A summary_multiScaleR object

... Ignored

Value

Invisibly returns the input summary_multiScaleR object

pts

Spatial sample points

Description

Example point file for optimizing scales of effect

Usage

```
data(pts)
```

Format

An sf class point object:

pts -> spatial location of points

22 sim_dat

sim_dat

Simulate data for optimizing scales of effect

Description

Function to simulate data with known scales of effect from spatial spatRaster variables

Usage

```
sim_dat(
   alpha = 1,
   beta = NULL,
   kernel = c("gaussian", "exp", "expow", "fixed"),
   type = c("count", "count_nb", "occ", "gaussian"),
   StDev = 0.5,
   n_points = 50,
   min_D = NULL,
   raster_stack = NULL,
   sigma = NULL,
   shape = NULL,
   user_seed = NULL,
   ...
)
```

Arguments

alpha	Intercept term for GLM (Default = 1)
beta	Slope term(s) for GLM. Should be vector equal in length to number of spatRaster surfaces provided
kernel	Type of kernel transformation. Valid options are 'gaussian', 'exp' (negative exponential), 'expow' (exponential power), and 'fixed' fixed width buffer. (Default = 'gaussian')
type	Type of response data to simulate. Valid options are 'count' for Poisson distributed count; 'count_nb' for negative binomial counts; 'occ' for binomial response; and 'gaussian' for normally distributed response. 'count' for normally distributed response (Default = 'count')
StDev	If specifying 'count_nb' or 'gaus' for type, this is the dispersion term for those respective processes (Default = 0.5)
n_points	Number of spatial sample points (Default = 50). Alternatively, provide a spatVector point file.
min_D	Minimum distance between points. Function will attempt to create the number of sample points specified while honoring this minimum distance.
raster_stack	A spatRaster object
sigma	The scale term dictating the rate of decay with distance

sim_dat_unmarked 23

shape	If using an exponential power function, the shape parameter must also be specified. Values between 1-50 are generally valid
max_D	The maximum distance surrounding spatial points to consider. This typically needs to be $>= 2.5x$ greater than sigma
user_seed	Optional seed to reproduce simulation
	Additional arguments. Not currently used

Details

This function distributes sample points across the landscape on a hexagonal grid, then subsamples to the specified number. The weighted values of each landscape are determined according to the simulation parameters, then the specified response is generated.

Value

Returns a list containing:

```
* obs -> The simulated response variable
```

Examples

sim_dat_unmarked

Simulate data for optimizing scales of effect with 'unmarked'

Description

Function to simulate data with known scales of effect from spatial spatRaster variables for analysis with the R package 'unmarked'

^{*} df -> A data frame with the simulated response (obs) as well as the true kernel weighted mean values for each raster surface.

^{*} pts -> An 'sf' object with the simulated spatial point locations

24 sim_dat_unmarked

Usage

```
sim_dat_unmarked(
  alpha = 1,
  beta = NULL,
 kernel = c("gaussian", "exp", "expow", "fixed"),
  type = c("count", "count_nb", "occ"),
  StDev = 0.5,
 n_points = 50,
 n_surv = 3,
 det = 0.5,
 min_D = NULL,
 raster_stack = NULL,
  sigma = NULL,
  shape = NULL,
 max_D = NULL,
 user_seed = NULL,
)
```

Intercept term for GLM (Default = 1)

needs to be $\geq 2.5x$ greater than sigma Optional seed to reproduce simulation

Additional arguments. Not currently used

Arguments

alpha

user_seed

•	1 '
beta	Slope term(s) for GLM. Should be vector equal in length to number of spatRaster surfaces provided
kernel	Type of kernel transformation. Valid options are 'gaussian', 'exp' (negative exponential), 'expow' (exponential power), and 'fixed' fixed width buffer. (Default = 'gaussian')
type	Type of response data to simulate in 'unmarked'. Valid options are 'count' for Poisson distributed count; 'count_nb' for negative binomial counts; and 'occ' for binomial response.(Default = 'count')
StDev	If specifying 'count_nb' or 'gaus' for type, this is the dispersion term for those respective processes (Default = 0.5)
n_points	Number of spatial sample points (Default = 50).
n_surv	Number of surveys to simulate in 'unmarked' (Default = 3).
det	The probability of detection. (Default = 0.5)
min_D	Minimum distance between points. Function will attempt to create the number of sample points specified while honoring this minimum distance.
raster_stack	A spatRaster object
sigma	The scale term dictating the rate of decay with distance
shape	If using an exponential power function, the shape parameter must also be specified. Values between 1-50 are generally valid
max_D	The maximum distance surrounding spatial points to consider. This typically

sim_dat_unmarked 25

Details

This function distributes sample points across the landscape on a hexagonal grid, then subsamples to the specified number. The weighted values of each landscape are determined according to the simulation parameters, then the specified response is generated.

Value

Returns a list containing:

- * y -> The simulated observation matrix for use in an unmarkedFrame
- * df -> A data frame with the simulated response (obs) as well as the true kernel weighted mean values for each raster surfa
- * pts -> An 'sf' object with the simulated spatial point locations

```
rs <- sim_rast(user_seed = 123)</pre>
rs <- terra::subset(rs, c(1,3))
s_dat <- sim_dat_unmarked(alpha = 1,</pre>
                            beta = c(0.75, -0.75),
                            kernel = 'gaussian',
                            sigma = c(75, 150),
                            n_points = 75,
                            n_surv = 5,
                            det = 0.5,
                            type = 'count',
                            raster_stack = rs,
                            max_D = 550,
                            user\_seed = 123)
plot(s_dat$df$y ~ s_dat$df$bin1)
plot(s_dat df y \sim s_dat df cont1)
## unmarked analysis
library(unmarked)
kernel_inputs <- kernel_prep(pts = s_dat$pts,</pre>
                               raster_stack = rs,
                               max_D = 550,
                               kernel = 'gaus')
umf <- unmarkedFramePCount(y = s_dat$y,</pre>
                             siteCovs = kernel_inputs$kernel_dat)
## Base unmarked model
mod0 <- pcount(~1 ~bin1 + cont1,</pre>
                data = umf,
                K = 100)
## `multiscale_optim`
opt1 <- multiScale_optim(fitted_mod = mod0,</pre>
                           kernel_inputs = kernel_inputs)
summary(opt1)
```

26 sim_rast

sim_rast

Function to simulate raster surfaces

Description

Function to create four spatRaster surfaces

Usage

```
sim_rast(
  dim = 100,
  resolution = 10,
  autocorr_range1 = NULL,
  autocorr_range2 = NULL,
  sill = 10,
  plot = FALSE,
  user_seed = NULL,
  ...
)
```

Arguments

dim Dimension (number of cells) on a side a square raster (Default = 100)

resolution Resolution of raster cells (Default = 10)

autocorr_range1

Optional, Numeric. Spatial correlation range in map cells. Controls the decay of the exponential covariance. If NULL (default), autocorrelation range will be 5% of specified dimension.

autocorr_range2

Optional, Numeric. Spatial correlation range in map cells. Controls the decay of the exponential covariance. If NULL (default), autocorrelation range will be

25% of specified dimension.

sill Numeric. Variance (partial sill) of the random field (default = 10).

plot Logical. If TRUE, the spatRaster stack will be plotted following the simulation

user_seed Optional seed to replicate simulated surfaces
... Additional arguments. Not currently used

Details

This is a simple wrapper to create four different raster surfaces. Surfaces differ in the range of autocorrelation. Binary surfaces are created by thresholding continuous values of the Gaussian random surface.

Value

Four spatRaster surfaces. Two 1/0 binary surfaces and two continuous surfaces.

summary.multiScaleR 27

Examples

summary.multiScaleR

Summarize multiScaleR objects

Description

Summarizes output from multiScale_optim.

Usage

```
## S3 method for class 'multiScaleR'
summary(object, ...)
```

Arguments

object

An object of class multiScaleR.

. . .

Optional arguments passed to the method (e.g., prob for cumulative kernel

weight threshold).

Value

An object of class summary_multiScaleR.

surv_pts

Spatial sample points

Description

Example point file for use with vignette document example

Usage

```
data(surv_pts)
```

Format

An sf class point object:

```
pts -> 100 spatial point locations
```

Index

```
aic_tab, 3
aictabCustom, 3
bic_tab, 5
bictabCustom, 5
count_data, 7
hab, 7
kernel_dist, 8, 14
kernel_prep, 9, 14
kernel\_scale.raster, 10
landscape, 12
landscape_counts, 13
multiScale_optim, 8, 13
multiScaleR (multiScaleR-package), 2
multiScaleR-package, 2
plot.multiScaleR, 8, 16
plot_kernel, 16, 17
plot_marginal_effects, 19
print.multiScaleR, 20
print.multiScaleR_data, 20
print.summary_multiScaleR, 21
pts, 21
sim_dat, 22
\verb|sim_dat_unmarked|, 23|
sim_rast, 26
summary.multiScaleR, 27
surv_pts, 27
```