18.701: Problem Set 3

Dmitry Kaysin

March 2020

Problem 1

Let \mathbb{F}_p be a prime field, and let $V = \mathbb{F}_n^2$.

a) Prove that the number of bases of V is equal to the order of the general linear group $GL_2(\mathbb{F}_p)$.

Proof. $B = \{(1,0),(0,1)\}$ is a basis of V, thus dim V = 2. By Artin 3.5.9, any basis B' of V can be represented as B' = BP, where P is a unique invertible 2×2 matrix with entries in \mathbb{F}_p . Such matrices form the general linear group $\mathrm{GL}_2(\mathbb{F}_p)$. Therefore, the number of unique bases of V is equal to the order of $\mathrm{GL}_2(\mathbb{F}_p)$.

b) Prove that the order of the general linear group $\mathrm{GL}_2(\mathbb{F}_p)$ is

$$p(p+1)(p-1)^2$$
,

and the order of the special linear group $\mathrm{SL}_2(\mathbb{F}_p)$ is

$$p(p+1)(p-1)$$
.

Proof. Order of $\mathrm{GL}_2(\mathbb{F}_p)$ is equal to the number of possible 2×2 matrices with entries in \mathbb{F}_p and a non-zero determinant. We start from the first row. There are p^2 2-combinations with repetition from $\mathbb{F}_p = \{0,1,\ldots,p-1\}$. Therefore, there are p^2-1 choices of how to compose the first row of the matrix (we exclude (0,0)). The second row can have any 2-combination with repetition from \mathbb{F}_p except those that are equal to the first row multiplied by some $c \in \mathbb{F}_p$ (including 0). Therefore, there are p^2-p choices of how to compose the second row. We conclude that there are

$$(p^2 - 1)(p^2 - p) = (p - 1)(p + 1)(p - 1)p = p(p + 1)(p - 1)^2$$

choices of how to compose 2×2 invertible matrix with entries in \mathbb{F}_p , which is the order of $GL_2(\mathbb{F}_p)$, as required.

Consider determinant homomorphism det : $GL_2(\mathbb{F}_p) \to \mathbb{F}_p^{\times}$, where \mathbb{F}_p^{\times} is the multiplicative group of field \mathbb{F} . The special linear group $SL_2(\mathbb{F}_p)$ is the kernel of det. By Lagrange's theorem:

$$|GL_2(\mathbb{F}_p)| = |\ker \det| \cdot |\operatorname{im} \det| \tag{1}$$

We notice that homomorphism det is surjective, i. e. im det $= \mathbb{F}_p^{\times}$. Indeed, we can construct invertible matrix with determinant a for every $a \in \mathbb{F}_p^{\times}$:

$$\left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} : a \in F_n^{\times} \right\}$$

Therefore, $|\operatorname{im} \operatorname{det}| = |\mathbb{F}_p^{\times}| = p - 1$. Substituting to (1) we have:

$$p(p+1)(p-1)^2 = |\ker \det| \cdot (p-1),$$

 $|\ker \det| = p(p+1)(p-1).$

Therefore, order of $\mathrm{SL}_2(\mathbb{F}_p)$ is p(p+1)(p-1), as required.

Problem 2

Let GL denote the group $GL_2(\mathbb{F}_3)$ of invertible matrices with entries modulo 3. This group operates on 2-dimensional vectors with entries mod 3 by matrix multiplication, as usual.

There are 9 vectors modulo 3, and four pairs $\pm v$ of nonzero vectors, namely

$$s_1 = \pm \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad s_2 = \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad s_3 = \pm \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad s_4 = \pm \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

The elements of GL permute the nonzero vectors, and they also permute the pairs of nonzero vectors. Sending a matrix to the permutation it defines gives us a homomorphism φ from GL to the symmetric group S_4 of permutations of $\{s_1, s_2, s_3, s_4\}$. For example, if $E = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, then $\varphi(E)$ is the 3-cycle (s_2, s_3, s_4) .

a) Show that φ is a surjective map, and determine its kernel.

Proof. We first find the kernel of φ . We compose 2×4 matrix from column-vectors that represent s_1, s_2, s_3 and s_4 :

$$S = \left[\pm \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ \pm \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ \pm \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right]$$

Matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $A \in \ker \varphi$ must preserve vectors (s_1, s_2, s_3, s_4) , thus:

$$AS = S$$
,

up to a sign of each vector. Multiplying:

$$\begin{bmatrix} \begin{pmatrix} \pm a \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ \pm d \end{pmatrix} & \begin{pmatrix} (\pm a) + (\pm b) \\ (\pm c) + (\pm d) \end{pmatrix} & \pm \begin{pmatrix} (\pm a) + (\pm b) \\ (\pm c) - (\pm d) \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \pm \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix} & \pm \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{bmatrix}$$

From the first and the second vectors we can see that $a = \pm 1$, b = 0, c = 0, $d = \pm 1$. From the third vector we can see that a = d. We conclude that elements

$$I_{\pm} = \pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

form the kernel of φ . As per Lagrange's theorem:

$$|GL| = |\ker \varphi| \cdot |\operatorname{im} \varphi|$$

Using the result of Problem 1, the order of GL is 48, thus

$$48 = 2 \cdot |\operatorname{im} \varphi|$$
$$|\operatorname{im} \varphi| = 24$$

The order of symmetric group S_4 is 4! = 24, therefore $|\operatorname{im} \varphi| = |S_4|$ and φ must be surjective.

b) Determine the subgroup of GL that corresponds, by the Correspondence Theorem, to the alternating subgroup A_4 of S_4 .

The special linear group $SL_2(\mathbb{F}_3)$ corresponds to A_4 .

Proof. Denote $SL = SL_2(\mathbb{F}_3)$. Using the result of Problem 1, the order of $SL_2(\mathbb{F}_3)$ is 24. By the Correspondence Theorem, since φ is onto S_4 and $\ker \varphi \leq SL$, there exists a subgroup G of S_4 such that $G = \varphi(SL)$ and

$$\begin{aligned} |\mathrm{SL}| &= |\ker \varphi| \cdot |\varphi(\mathrm{SL})| \\ 24 &= 2 \cdot |\varphi(\mathrm{SL})| \\ |\varphi(\mathrm{SL})| &= |G| = 12. \end{aligned}$$

We remember that the special linear group SL is generated by elementary row-addition matrices of the form:

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}, \quad a \in \mathbb{F}_3, \ a \neq 0.$$

We check images of elementary matrices under φ :

$$\varphi\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = (s_2 s_3 s_4), \quad \varphi\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = (s_2 s_4 s_3),$$
$$\varphi\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = (s_1 s_3 s_4), \quad \varphi\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = (s_1 s_4 s_3).$$

We can see that images of the generators of SL are 3-cycles, even permutations, each distinct element of A_4 of order 3.

Consider arbitrary element $B \in \mathrm{SL},$ which can be represented as a product of elementary matrices:

$$B = E_1 \cdot E_2 \cdots E_n$$

Consider its image under φ :

$$\varphi(B) = \varphi(E_1 \cdot E_2 \cdots E_n)$$

$$\varphi(B) = \varphi(E_1) \cdot \varphi(E_2) \cdots \varphi(E_n)$$

Each $\varphi(E_k)$ above is a 3-cycle. Product of arbitrary number of 3-cycles is an even permutation, thus an element of A_4 . Therefore, $\varphi(SL) \leq A_4$. Since $|\varphi(SL)| = |A_4|$, we conclude that $\varphi(SL) = A_4$ and SL corresponds to A_4 .

c) Determine the subgroup of S_4 that corresponds to the subgroup of GL of upper triangular matrices.

Proof. Denote $U \leq GL$, the subgroup of upper triangular matrices in GL:

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$

We first find the order of U. Since U must be invertible, $a \neq 0$ and $c \neq 0$. Therefore, there are 2 choices of a, 2 choices of c and 3 choices of b, for the total of 12 possible matrices in U. Therefore, |U| = 12.

We notice that $\ker \varphi \leq U$, therefore the Correspondence Theorem applies, and there must exist a subgroup $\varphi(U) \leq S_4$ of order 6.

There are 4 subgroups of order 6 in S_4 , specifically groups of permutations of $\{s_1, s_2, s_3\}, \{s_2, s_3, s_4\}, \{s_1, s_2, s_4\}$ and $\{s_1, s_3, s_4\}$, each of which is isomorphic to the symmetric group S_3 .

We check image of one of the elements of U under φ :

$$\varphi\begin{pmatrix}1&1\\0&1\end{pmatrix}=(s_2s_3s_4),$$

which is an element of the group of permutations of $\{s_2, s_3, s_4\}$. Therefore, U corresponds to the group of permutations of $\{s_2, s_3, s_4\}$, which is isomorphic to S_3 .

Problem 3

Let $a=(a_1,\ldots a_k)$ and $b=(b_1,\ldots b_k)$ be points in k-dimensional space \mathbb{R}^k . A path from a to b is a continuous function on the unit interval [0,1] with values in \mathbb{R}^k , a function $X:[0,1]\to\mathbb{R}^k$, sending $t\mapsto X(t)=(x_1(t),\ldots x_k(t))$, such that X(0)=a and X(1)=b. If S is a subset of \mathbb{R}^k and if a and b are in S, define $a\sim b$ if a and b can be joined by a path lying entirely in S.

a) Show that \sim is an equivalence relation on S. Be careful to check that any paths you construct stay within the set S.

Proof. We first check reflexivity. Consider $X:t\mapsto a$, constant function. X(t) is continuous; $X([0,1])\subseteq S$ since $a\in S$; and X(0)=X(1)=a. Therefore, $a\sim a$.

We then check symmetry. Consider points $a, b \in S$ such that $a \sim b$. There must exist continuous function X(t) such that $X[0,1] \subseteq S$ and X(0) = a, X(1) = b. Consider function Y(t) = X(1-t). We notice that Y(t) is a composition of continuous functions f(t) = (1-t) and X(t), thus it must be continuous; $Y[0,1] = X[0,1] \subseteq S$; Y(0) = X(1) = b, Y(1) = X(0) = a. Therefore, $b \sim a$.

Lastly, we check transitivity. Consider points $a,b,c \in S$ such that $a \sim b, b \sim c$. There must exist continuous function X(t) such that $X[0,1] \subseteq S$ and X(0) = a, X(1) = b and function Y(t) such that $Y[0,1] \subseteq S$ and Y(0) = b, Y(1) = c. Consider function Z(t):

$$Z(t) = \begin{cases} X(2t), & \text{if } t \in [0, 0.5], \\ Y(2t-1), & \text{if } t \in (0.5, 1]. \end{cases}$$

This is a piecewise function that is continuous since both X and Y are continuous on [0,1] and X(1)=Y(0). We also notice that $Z[0,1]=X[0,1]\cup Y(0,1]\subseteq S$ and Z(0)=X(0)=a, Z(1)=Y(1)=c. Therefore, $a\sim c$.

We conclude that \sim is an equivalence relation.

b) A subset S is path connected if $a \sim b$ for any two points a and b in S. Show that every subset S is partitioned into path-connected subsets with the property that two points in different subsets cannot be connected by a path in S.

Proof. Equivalence relation \sim on S induces a partition on S. Sets in a partition represent different equivalence classes and are disjoint. This means that every point of S belongs to one and only one of the partition sets and for any $a, b \in S$ that belong to different sets of the partition, $a \nsim b$. From the definition of path-connectedness, such points cannot be connected by a path in S.

Problem 4

The set of $n \times n$ matrices can be identified with the space $\mathbb{R}^{n \times n}$. Let G be a subgroup of $GL_n(\mathbb{R})$. With the notation of the previous exercise, prove:

a) If A, B, C and D are in G, and if there are paths in G from A to B and from C to D, then there is a path in G from AC to BD.

Proof. We say that function $\varphi:[0,1]\to \mathrm{GL}_n(\mathbb{R})$ is continuous if φ is continuous in each of its entries. Since $A\sim B$, there exists function $X:[0,1]\to G$ such that $X(0)=A,\ X(1)=B$ and $\rho\circ X$ is continuous on [0,1]. Since $C\sim D$, there exists function $Y:[0,1]\to G$ such that $Y(0)=C,\ Y(1)=D$ and $\rho\circ Y$ is continuous on [0,1].

Since G is a subgroup, AC, AD, and BD must be elements of G.

We first prove that $AC \sim AD$ with a path $f: t \mapsto AY(t)$. We notice that f(0) = AY(0) = AC and f(1) = AY(1) = AD (endpoints match). We know that Y is continuous on [0,1]. Left-multiplication by A is a linear map, thus continuous function. Composition of continuous functions is continuous, thus f is continuous on [0,1]. We also notice that for any $t \in [0,1]: Y(t) \in G$. Then $AY(t) \in G$. Therefore, $f[0,1] = A \cdot Y[0,1] \subseteq G$ (path is in G). We conclude that $AC \sim AD$.

We then prove that $AD \sim BD$ with a path $g: t \mapsto X(t)D$. We notice that g(0) = X(0)D = AD and g(1) = X(1)D = BD (endpoints match). We know that X is continuous on [0,1]. Right-multiplication by D is a linear map, thus continuous function. Composition of continuous functions is continuous, thus g is continuous on [0,1]. We also can see that $g[0,1] = X[0,1] \cdot D \subseteq G$ via the same reasoning as above (path is in G). We conclude that $AD \sim BD$.

Since $AC \sim AD$ and $AD \sim BD$, by transitivity, $AC \sim BD$.

b) The set of matrices that can be joined to the identity I forms a normal subgroup of G. (It is called the connected component of G).

Proof. Consider set $H \subseteq GL_n(\mathbb{R})$ such that for all $A \in H : A \sim I$, where I is the identity element of $GL_n(\mathbb{R})$. We note that $I \sim I$ by reflexivity. Thus, H contains the identity element.

Consider $A \in H$

$$I \sim A$$
,

By the result of part a):

$$A^{-1} \sim AA^{-1} = I$$

Thus, H contains inverses.

Consider $A, B \in H$:

$$A \sim I \sim B \sim B^{-1}$$

By the result of part a):

$$AB \sim B^{-1}B$$
, $AB \sim I$.

Thus, ${\cal H}$ is closed under matrix multiplication.

Therefore, H is a subgroup of $GL_n(\mathbb{R})$.

We will now prove that H is normal. Consider arbitrary $A \in H$ and $C \in GL_n(\mathbb{R})$.

$$A \sim I,$$

$$CA \sim CI,$$

$$CAC^{-1} \sim CIC^{-1},$$

$$CAC^{-1} \sim I,$$

$$CAC^{-1} \in H.$$

Thus, H is normal.

Problem 5

a) The group $\mathrm{SL}_n(\mathbb{R})$ is generated by elementary matrices of the first type (row addition). Use this fact to prove that $\mathrm{SL}_n(\mathbb{R})$ is path-connected.

Proof. Any elementary matrix

$$E_a = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \quad \text{for } a \in \mathbb{R}$$

can be joined to I, the identity matrix, via the path

$$\varphi:\ t\longmapsto I+\begin{pmatrix}0 & at\\0 & 0\end{pmatrix}$$

Thus, $E_a \sim I$. The same is true for elementary matrices E_a^T .

Any matrix $A \in \mathrm{SL}_n(\mathbb{R})$ can be represented as a product of elementary matrices E_a and E_a^T :

$$A = E_k \cdots E_2 E_1 I.$$

Using the result of Problem 4 a):

$$I \sim I,$$
 $E_1 \cdot I \sim I \cdot I,$ $E_2 \cdot E_1 \cdot I \sim I \cdot I \cdot I,$ \dots $A \sim I.$

Thus, $\mathrm{SL}_n(\mathbb{R})$ is path-connected.

Show that $\mathrm{GL}_n(\mathbb{R})$ is a union of two path-connected subsets and describe them.

Proof. In this exercise we will use the group notation with lowercase letters representing elements of the group, i.e. matrices; e being the identity element of $GL_n(\mathbb{R})$; and uppercase letters representing subgroups of $GL_n(\mathbb{R})$.

Consider homomorphism $\varphi = \operatorname{sgn} \circ \operatorname{det}$, where (sgn) is a sign function and (det) is a determinant homomorphism. One can easily see that φ is indeed a homomorphism that sends $\operatorname{GL}_n(\mathbb{R})$ to \mathbb{Z}_2 .

Denote H^+ , the set $\{x \in \operatorname{GL}_n(\mathbb{R}) : \varphi(x) = 1\}$ (matrices with positive determinant). Denote H^- , the set $\{x \in \operatorname{GL}_n(\mathbb{R}) : \varphi(x) = -1\}$ (matrices with negative determinant). H^+ is a kernel of φ . Therefore, by the first isomorphism theorem, $\operatorname{GL}_n(\mathbb{R}) \setminus H^+ \cong \mathbb{Z}_2$. Thus, there are only two elements in $\operatorname{GL}_n(\mathbb{R}) \setminus H^+$, specifically H^+ and its coset H^- .

We will first show that H^+ is path-connected. As we have seen in the Problem 5 a), $\mathrm{SL}_n(\mathbb{R})$ is path-connected. To prove H^+ is path-connected it suffices to show that any matrix $a \in H^+$ can be path-connected to some matrix $c \in \mathrm{SL}_n(\mathbb{R})$. Consider function

$$f: t \longmapsto \begin{pmatrix} (1-t) + t \frac{1}{\det a} & 0 \\ 0 & 1 \end{pmatrix}$$

We claim that function f(t)a for $t \in [0,1]$ is the required path. Indeed

$$f(0)a = ea = a$$
, $\det f(1)a = \det (1/\det a) \cdot \det a = 1$,

thus f(1)a = c, where c is some element of $\mathrm{SL}_n(\mathbb{R})$. Every f(t) has positive determinant, thus every f(t)a is in H^+ . Finally, f(t) is continuous and right-multiplication is continuous, thus f(t)a is continuous. Therefore, $a \sim c \sim e$ and we conclude that H^+ is path-connected.

We will now show that H^- is path-connected. Consider arbitrary $b \in H^-$. Since H^- is a coset of H^+ , there exists $a \in H^+$ such that b = xa for some $x \in H^-$. We know that $a \sim e$. By the result of Problem 4 a):

$$xa \sim xe$$
, $b \sim xe$.

Since $xe \in H^-$, we conclude that all elements of H^- can be path-connected via xe, thus H^- is path-connected. We also note that no two elements $b \in H^-$, $a \in H^+$ are path-connected, otherwise, b would be path-connected to e and by the result of the Problem 4 b), b would be an element of H^+ , while H^- and H^+ are disjoint.

We conclude that both H^+ and H^- are path-connected and they together partition $GL_n(\mathbb{R})$, as requested.