MIPS Reference Data

1

	110		енее Виси				
CORE INSTRUCTI	ON SE				OPCODE		
NAME ADDITAG	NIIC	FOR-			/ FUNCT		
NAME, MNEMO Add	add	MAT R	- ((1)	(Hex) 0 / 20 _{hex}		
Add Immediate	addi	I	R[rd] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm	(1,2)			
		I			8 _{hex}		
Add Imm. Unsigned			R[rt] = R[rs] + SignExtImm	(2)	9 _{hex} 0 / 21 _{hex}		
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{\text{hex}}$ $0/24_{\text{hex}}$		
And	and	R	R[rd] = R[rs] & R[rt]	(2)			
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}		
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}		
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}		
Jump	j	J	PC=JumpAddr	(5)	2_{hex}		
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}		
Jump Register	jr	R	PC=R[rs]		$0 / 08_{hex}$		
Load Byte Unsigned	lbu	I	$R[rt]={24'b0,M[R[rs] + SignExtImm](7:0)}$	(2)	24 _{hex}		
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}		
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}		
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}		
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}		
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}		
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}		
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d_{hex}		
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$		
Set Less Than Imm.	slti	I	$R[rt] = (R[rs] \le SignExtImm)? 1$:	0 (2)	a _{hex}		
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1 : 0	(2,6)	b_{hex}		
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}		
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}		
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}		
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}		
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}		
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}		
Store Word	SW	Ι	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}		
Subtract	sub	R	R[rd] = R[rs] - R[rt]		0 / 22 _{hex}		
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]	. /	0 / 23 _{hex}		
	(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 }						

(6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5
I	opcode	rs	rt		immediate	e
	31 26	25 21	20 16	15		
J	opcode			address		
	21 26	26				

ARITHMETIC CORE INSTRUCTION SET

			/ FMT /FT
	FO	R-	/ FUNCT
NAME, MNEMONI	C M	AT OPERATION	(Hex)
Branch On FP True bo	1t F	I if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False bo	1f F	I if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide d	iv F	R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned di	vu F	R = R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single add	d.s F	R F[fd] = F[fs] + F[ft]	11/10//0
FP Add	d.d F	$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\} +$	11/11//0
Double	d.d F	{F[ft],F[ft+1]}	11/11//0
FP Compare Single c.x	.s* F	R FPcond = $(F[fs] op F[ft])$? 1:0	11/10//y
FP Compare	.d* F	FPcond = $\{\{F[fs],F[fs+1]\}\}$ op	11/11//y
Double	-	{F[ft],F[ft+1]})?1:0	11/11//y
		is ==, <, or <=) (y is 32, 3c, or 3e)	
	v.s F	R F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	v.d Fl	$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\} /$	11/11//3
Double	v.a 1.	{F[ft],F[ft+1]}	
FP Multiply Single mu	l.s F	R F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	1.d F	$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\} *$	11/11//2
Double	1.u 1	{F[ft],F[ft+1]}	11/11//2
FP Subtract Single sul	b.s F	R F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	b.d F	$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\}$	11/11//1
Double	o.u r	{F[ft],F[ft+1]}	11/11//1
Load FP Single 1w	rc1 I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	lc1 I	F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double	ICI I	F[rt+1]=M[R[rs]+SignExtImm+4]	33//
Move From Hi mf	hi F	R[rd] = Hi	0 ///10
Move From Lo mf	lo F	R[rd] = Lo	0 //-12
Move From Control mf	c0 F	R R[rd] = CR[rs]	10 /0//0
Multiply mu	ilt F	$R = \{Hi, Lo\} = R[rs] * R[rt]$	0//-18
Multiply Unsigned mu	ltu F	$R = \{Hi, Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith. s	ra F	R[rd] = R[rt] >>> shamt	0//-3
Store FP Single sw	rc1 I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	lc1 I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double	ICT I	M[R[rs]+SignExtImm+4] = F[rt+1]	3u//

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

		,	, 00L, 0ALL 00.11L	******
N	AME	NUMBER	USE	PRESERVEDACROSS
INZ	INAME	NUMBER	USE	A CALL?
\$:	zero	0	The Constant Value 0	N.A.
	\$at	1	Assembler Temporary	No
\$v(0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a(0-\$a3	4-7	Arguments	No
\$t(0-\$t7	8-15	Temporaries	No
\$s(0-\$s7	16-23	Saved Temporaries	Yes
\$t8	8-\$t9	24-25	Temporaries	No
\$k0	0-\$k1	26-27	Reserved for OS Kernel	No
5	Sgp	28	Global Pointer	Yes
5	\$sp	29	Stack Pointer	Yes
	\$fp	30	Frame Pointer	Yes
	\$ra	31	Return Address	No

MIPS

MIPS	(1) MIPS	(2) MIPS			Heya-	ASCII		Hexa-	ASCI
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	Dillary	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
(-)		sub.f	00 0001	1	1	SOH	65	41	Ã
j	srl	mul.f	00 0010	2	2	STX	66	42	В
jal	sra	$\mathrm{div}f$	00 0011	3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs f	00 0101	5	5	ENQ	69	45	Е
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	neg.f	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000	8	8	BS	72	48	H
addiu slti	jalr movz		00 1001 00 1010	10	a	HT LF	73	49 4a	I J
siti	movz		00 1010	11	a b	VT	75	4a 4b	K
andi	syscall	round.w.f	00 1011	12	c	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori	DICAR	ceil.w.f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	Ö
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
. ,	mflo	movz.f	01 0010	18	12	DC2	82	52	Ř
	mtlo	movn f	01 0011	19	13	DC3	83	53	S
		_	01 0100	20	14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b	_[_
			01 1100 01 1101	28 29	lc 1d	FS	92	5c 5d	\
			01 1110	30	ld le	GS RS	93	5u 5e	Ì
			01 1111	31	1f	US	95	5f	
1b	add	cvt.s.f	10 0000	32	20	Space	96	60	-
lh	addu	cvt.d.f	10 0001	33	21	!	97	61	a
lwl	sub	ore.a.y	10 0010	34	22		98	62	b
lw	subu		10 0011	35	23	#	99	63	c
lbu	and	cvt.w.f	10 0100	36	24	\$	100	64	d
lhu	or	,	10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
	nor		10 0111	39	27	,	103	67	g
sb			10 1000	40	28	(104	68	h
sh			10 1001	41	29)	105	69	i
swl	slt		10 1010	42	2a	*	106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k
			10 1100	44	2c	,	108	6c	1
			10 1101 10 1110	45 46	2d 2e	-	109	6d	m
swr cache			10 1110	47	2e 2f	,	1110	6e 6f	n o
11	tao	c.f.f	11 0000	48	30	0	1112	70	
lwc1	tge tgeu	c.un.f	11 0000	49	31	1	1112	71	p q
lwc2	tlt	c.eq.f	11 0001	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0010	51	33	3	115	73	S
	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldc1		c.ult.f	11 0101	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	v
		c.ule.f	11 0111	55	37	7	119	77	w
sc		c.sf.f	11 1000	56	38	8	120	78	X
swc1		c.ngle f	11 1001	57	39	9	121	79	у
swc2		c.seq.f	11 1010	58	3a	:	122	7a	Z
		- C	111 1011	50	21		1122	71.	(

 $11\ 11111$ (1) opcode(31:26) == 0(2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

11 1011

11 1100

11 1101

11 1110

c.nglf

c.lt./

c.nge./

c.ngt.

c.le.f

sdc1

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols Object Exponent Fraction 0 ± 0 0 **≠**0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 ±∞ NaN MAX **≠**0

4

S.P. MAX = 255, D.P. MAX = 2047 S Exponent Fraction 23 22 S Exponent Fraction 52 51

DATA ALIGNMENT

Double Word										
	Word Word									
Halfw	ord	Half	word	Hal	fword	Half	word			
Byte Byte Byte Byte				Byte	Byte	Byte	Byte			
0	1	2	3	4	5	6	7			

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

 EF HON CONTROL REGISTERS. CAUSE AND STATUS											
В			Interrupt			Ex	ception				
D			Mask				Code				
31		15		8		6		2			
			Pending	1			U		Е	Ι	
			Interrupt				M		L	Е	
		15		8			4		1	0	

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception	10	RI	Reserved Instruction
-	Auel	(load or instruction fetch)		KI	Exception
5	AdES	Address Error Exception	11	CpU	Coprocessor
]		(store)	11	СрС	Unimplemented
6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
0	IBE	Instruction Fetch	12	Ov	Exception
7	DBE Bus Error on		13	Tr	Trap
_ ′	DDE	Load or Store	13	11	пар
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

= 1 11=1 51=0 (10 10: 51014) 00: minutinoation, = 10: monor, y											
SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol						
10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki						
10^{6}	Mega-	M	2 ²⁰	Mebi-	Mi						
10 ⁹	Giga-	G	230	Gibi-	Gi						
10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti						
10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi						
10^{18}	Exa-	Е	260	Exbi-	Ei						
10^{21}	Zetta-	Z	270	Zebi-	Zi						
10 ²⁴	Yotta-	Y	280	Yobi-	Yi						

59 3h

60

61

3c

3d

3e

3f

123

124

125

126

127

7b

7c

7d

7e 7f

DEL