NeRF

Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall* UC Berkeley

Pratul P. Srinivasan* UC Berkeley

Matthew Tancik* UC Berkeley

Google Research

Jonathan T. Barron Ravi Ramamoorthi Ren Ng UC San Diego UC Berkeley

Representing Scenes as Neural Radiance Fields for View Synthesis

ECCV 2020 Oral - Best Paper Honorable Mention

Ben Mildenhall*
UC Berkeley

Pratul P. Srinivasan*
UC Berkeley

Matthew Tancik*

UC Berkeley

Jonathan T. Barron Google Research Ravi Ramamoorthi
UC San Diego

Ren Ng UC Berkeley

*Denotes Equal Contribution

Paper

</Code>

Data

Task

 A method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views.

How?

How?

Representing a scene as a continuous 5D function

Fully connected neural network, 9 layers 256 channels

Representing a scene as a continuous 5D function

Fully connected neural network, 9 layers 256 channels

View generation using volume rendering with radiance field

Rendering model of camera ray: r(t) = o + td

Expected Color:
$$C \approx \sum_{i=1}^{N} T_i \alpha_i c_i^{\text{Colors}}$$

Amount of light blocked earlier:

$$T_i = \prod_{i=1}^{i-1} (1 - \alpha_i)$$

Amount of light by ray segment i:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

View dependent effects

Directions as input : Change (θ, ϕ) to visualize view dependent effects

Optimizing using rendering loss

Trivially Differentiable w.r.t color and volume density

$$min_{\theta} \sum_{i} \left\| render^{(i)}(F_{\theta}) - I_{gt}^{(i)} \right\|^{2}$$

Positional encoding to recover high frequency details

High frequency embedding of input coordinates

$$\begin{pmatrix} \sin(x), \cos(x) \\ \sin(2x), \cos(2x), \\ \vdots \\ \sin(2^N x), \cos(2^N x) \end{pmatrix}, \begin{pmatrix} \sin(d), \cos(d) \\ \sin(2d), \cos(2d), \\ \vdots \\ \sin(2^N d), \cos(2^N d) \end{pmatrix}$$

$$(C, \sigma)$$

Positional encoding to recover high frequency details

Results

Results

1	Diffuse Synthetic 360° [40]			Realistic Synthetic 360°			Real Forward-Facing [27]		
Method	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS.
SRN [41]	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV [23]	29.62	0.929	0.099	26.05	0.893	0.160	-	-	-
LLFF [27]	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	0.212
Ours	40.15	0.991	0.023	31.01	0.947	0.081	26.50	0.811	0.250

Summary

- Continuous neural network as a volumetric scene representation (5D = position + direction)
- Use volume rendering model to synthesize new views.
- Optimization using rendering loss for one scene (no prior training)
- Apply positional encoding before passing coordinates into network to recover high frequency details.

Reference

• Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., & Ng, R. (2020). NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV.

Project website

Link: https://www.matthewtancik.com/nerl

Useful Youtube videos

- Link 1: "NeRF: Neural Radiance Fields", https://youtu.be/JuH79E8rdKc
- Link 2: "[ECCV 2020] NeRF: Neural Radiance Fields (10 min talk)",

https://www.youtube.com/watch?v=LRAqeM8EjOc