UBC

a place of mind

ELEC 341: Systems and Control

Lecture 1

Introduction to dynamic systems and control

Siamak Najarian, Ph.D., P.Eng.

Professor of Biomedical Engineering (retired)

Department of Electrical and Computer Engineering

University of British Columbia

Remark before starting ...

- All the lecture slides will be posted on Canvas.
- You may want to write down additional information that I present in the lecture on the slides.

Today's outline

- Practical information
- Introduction to the course

Instructor and TAs

Instructor:

- Siamak Najarian, Ph.D., P.Eng., Professor of Biomedical Engineering (retired)
 - Email: siamak.najarian@ubc.ca or siamakn@ece.ubc.ca
 - Office: MacLeod Building 451
 - Office hours: Tuesdays and Thursdays from 1:00 pm to 2:30 pm.
 - Research interest: Biomedical Engineering

TAs:

• Mr. Su Wang; suwang@msl.ubc.ca and Mr. Mohammad Najjarzadegan; najjarzadegan@ece.ubc.ca

Note:

- For any assignment-related issues, please contact Mr. Su Wang and Mr. Mohammad Najjarzadegan.
- For assignments group formation (i.e., member names), please only contact Mr. Su Wang; suwang@msl.ubc.ca.

Course information

- Canvas (Check regularly!)
 - All information on this course, including lecture slides, assignments, and announcements, will be posted on Canvas.
- Required course materials: Course lecture notes
- Important Note:
 - ✓ Please download and go through the document entitled "Syllabus and Course Outline for ELEC 341" on Canvas. It contains important information about the course.

Main components of the course

Lectures:

• Time and Building: From 10:00 am to 12:pm; Mon Tue Wed Thu (MacLeod 228)

Group assignments:

 They will be posted on Canvas and your solutions should also be uploaded by you on Canvas (i.e., paperless). Each group will have 6 members.

• Exams:

- Midterm
- Final

Quizzes:

 There will be 2 quizzes and their dates have already been announced.

Group Assignments

Midterm Exam

Final Exam

Total

Quizzes (2 x 5% each)

Course grading

Midterm and final exams:

- Midterm carries a weight of 35% and final a weight of 40%.
- Closed book/notes. One page letter-size hand-written cribsheet (both sides) is allowed.
- Regular scientific calculators are allowed (no graphing calculators).

Group assignments:

 They will be posted on Canvas and your solutions should be uploaded before the due dates. Total weight of assignments is 15%.

Quizzes:

- Closed book/notes.
- Multiple choice questions.
- Quizzes will carry a total weight of 10% (5% each).

15%

10%

35%

40%

100%

Tips to succeed in this course

- Come to the lectures as many times as you can.
- Bring lecture slides (print-out or electronically) to the lecture.
- Solve assignments problems and lecture notes examples.
- Keep pace with lectures by:
 - Reading the slides.
 - Solving assignments problems.

Outline

- Practical information
- Introduction to the course
 - Systems and control
 - Open-loop system and closed-loop system
 - Goal of the course

What is "Control"?

- Make some object behave as we desire.
- In control engineering, the controlled object is called *system*, or *plant*, or *process*.
- Imagine "control" around you!
 - Room temperature control
 - Car/bicycle driving
 - Voice volume control
 - Balance of bank account.
 - "Control" (move) the position of the pointer
 - etc.

What is "Automatic Control"?

- Not manual!
- Why do we need automatic control?
 - Convenient (e.g., room temperature control, laundry machine)
 - Dangerous (e.g., hot/cold places, space, bomb removal)
 - Impossible for human (e.g., nanometer scale precision positioning, work inside the small space that human cannot enter, huge antennas control, elevator)
 - Delicate and sensitive environment (smart surgical tools operating inside human body)
 - It exists in nature (e.g., human body temperature control).
 - High efficiency (e.g., engine fuel-injection control)
- Many examples of automatic control around us

Outline

- Practical information
- Introduction to the course
 - Systems and control
 - Open-loop system and closed-loop system
 - Goal of the course

Example: Toaster

A toaster toasts bread, by setting timer.

- A toaster does not measure the color of bread during the toasting process.
- What happens if your setting is wrong ...
- However, a toaster would be more expensive with:
 - Sensors to measure the color, and
 - Actuators to adjust the timer based on the measured color.

Example: Laundry machine

 A laundry machine washes clothes, by setting a program.

- A laundry machine does not measure how clean the clothes become.
- Control without measuring devices (sensors) is called *open-loop control*.

Open-Loop Control

- Open-loop Control System
 - Toaster, microwave oven, shooting a basketball

- Calibration is the key!
- Can be sensitive to disturbances

Block diagram

Ex: Automobile direction control

• Change the direction of the automobile.

- Control with measuring devices (sensors) is called closed-loop (feedback) control.
- Manual (not-automatic) control

a place of mind

Ex: Automobile cruise control

Maintain the speed of the automobile.

Disturbance (wind, bumpy road, etc.)

- Cruise control can be both manual and automatic.
- When the controlled system is "Automobile", input and output depend on control objectives, and not unique!

Ex: Room temperature control

Maintain the temperature in a room.

- Temperature control can be automatic.
- Note the similarity of the diagram above to the diagram in the previous slides!

Ex: Water level control

Maintain the water level in a tank.

- Water level control can be automatic.
- Other examples: autopilot, catching a ball, etc.

Think about examples of feedback control by yourself!

Automatic feedback control systems: Elements and design objective

 Control system design objective is to design a controller such that the output follows the reference in a "satisfactory" manner even in the face of disturbances.

Closed-Loop (Feedback) Control

- Compare actual behavior with desired behavior
- Make corrections based on the error
- The sensor and the actuator are key elements of a feedback loop
- Design control algorithm

Features of feedback control

- Advantage: Strong, or robust, against
 - uncertainty
 - unpredictable disturbance
 - variation of plant, etc.
- Disadvantage: The action is taken after some undesirable event happens and
 - the system becomes more complicated by the increased number of components, such as sensors and error detectors.
 - the system may not be stable (it may oscillate or depart greatly from the desired output), even though the comparable open-loop system is stable.

Outline

- Practical information
- Introduction to the course
 - Systems and control
 - Open-loop system and closed-loop system
 - Goal of the course

Systematic controller design process

Goal of this course

To learn basics of feedback control systems

- Modeling
 - Transfer function and a block diagram
 - Laplace transform (Mathematics!)
 - Electrical, mechanical, and electromechanical systems
- Analysis
 - Stability: Routh-Hurwitz criterion, and Nyquist criterion
 - Time response and frequency response
- Design
 - Root locus technique, frequency response technique, PID control, and lead/lag compensator
- Simulation with Matlab

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

- Transient
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Summary

- Introduction
 - Examples of automatic control
 - Open-loop and closed-loop (feedback) control
 - Systems and control is useful and enjoyable!
- Next
 - Laplace transform