Introducción a la Criptografía Moderna Introducción "Básica" de Teoría de Números, Álgebra Abstracta, Aritmética de Cuerpos Finitos,

"Lo necesario para el curso"

Rodrigo Abarzúa[†],

[†] Universidad de Santiago de Chile rodrigo.abarzua@usach.cl

April 8, 2014

- Cuerpos Finitos
 - Grupos
 - Cuerpos
 - Cuerpos primos
 - Extensión del Cuerpos GF(2^m)
 - Adición y Sustracción en $GF(2^m)$
 - ullet Multiplicación en $GF(2^m)$
 - Inversión en GF(2^m)

Cuerpos Finitos

Antes de dar una definición de los Cuerpos finitos presentaremos algunos conceptos algebraicos básicos.

Definición

Un grupo es un conjunto G junto con una operación * en G tal que las siguientes tres propiedades se satisfacen:

ullet La operación del grupo st es cerrada, es decir que para cada $a,b\in G$

$$a*b=c\in G$$

ullet La operación st es asociativa, es decir, que para cada $a,b,c\in G$

$$a*(b*c)=(a*b)*c$$

• Existe una elemento neutro, que es la identidad (o unidad) denotado por $e \in G$ tal que para todo $a \in G$

$$a * e = e * a = a$$

• Para cada $a \in G$, existe un elemento inverso $a^{-1} \in G$ tal que

$$a * a^{-1} = a^{-1} * a = e$$

Definición

Además, si el grupo también satisface

• Para todo $a, b \in G$

$$a * b = b * a$$

Entonces el grupo es llamado un grupo abeliano (o conmutativo).

Observaciones

- Es fácil demostrar que el elemento identidad e y el inverso a^{-1} de un elemento $a \in G$ es único.
- Por otro lado, $(a * b)^{-1} = b^{-1} * a^{-1}$ para todo $a, b \in G$.
- Se debe hacer notar que la operación * es solo una notación para diferenciarse de la multiplicación corriente.
- Cuando se trabaje con grupos se debe dejar claro cual es la operación del grupo.

La ley asociativa nos garantiza que la expresión

$$a_1a_2a_3\cdots a_n$$
 con $a_j\in G$ para $1\leq j\leq n$.

no es ambiguo, desde que no es necesario insertar paréntesis, la expresión siempre representa el mismo elemento en G.

Para indicar la composición n-veces $a \in G$ consigo mismo, donde $n \in \mathbb{N}$, se escribirá:

$$a^n = aa \cdots a$$
, n factores de a .

si utilizamos la notación multiplicativa del grupo, denotaremos a^n como las n potencias de a.

Si usamos la notación aditiva para la operación * en G, escribiremos

$$na = a + a + \cdots + a$$
 n sumandos de a .

Ejemplo

- Sea G en conjunto de los números enteros con la operación de la adición.
- El conjunto G de los restos de todos los enteros de la división por 7 es decir,

$$G = \{[0], [1], [2], [3], [4], [5], [6]\}.$$

la operación del grupo de adición de a y b en G es el resto al dividir la suma de a+b por 6.

Definición

Un grupo multiplicativo G se dice cíclico si existe un elemento $a \in G$ tal que para cualquier elemento $b \in G$ existe algún entero j con $b = a^j$. Tal elemento a es llamado un generador de un grupo cíclico, y se denota por $G = \langle a \rangle$.

Observaciones

- Es fácil ver todo grupo cíclico es conmutativo.
- Además el generador de una grupo no necesariamente es único, por ejemplo $\mathbb Z$ posee como generadores el 1 y el -1.

Definición

Un grupo se dice finito si contiene un número finito de elementos. El número de elementos en un grupo finito se llama el orden. Denotaremos |G| para el orden de un grupo finito.

Cuerpos

La estructura algebraica en la cual tenemos las cuatro operaciones, es decir, addición, subtracción, multiplicación y división. Es la estructura algebraica conocida como Cuerpo.

Cuerpos

Definición

Un cuerpo F es un conjunto de elementos con las siguientes propiedades:

- Todos los elementos de F forman un grupo aditivo con la operación del + y su elemento neutro 0.
- Todos los elementos de F {0} forman un grupo multiplicativo con la operación del grupo * y elemento neutro 1.
- ullet Se cumple la ley distributiva, es decir, para todo $a,b,c\in F$

$$a(b+c)=(ab)+(ac).$$

Ejemplo

Algunos cuerpos:

• El conjunto de los números reales $\mathbb R$ es un cuerpo.

Cuerpos

Teorema

Un cuerpo de orden m sólo existe si m es una potencia de un número primo, es decir $m=p^n$ para algún entero positivo n y algún entero primo p. El primo p es llamado la característica del cuerpo finito.

Cuerpos Primos

Observación

Los elementos de un cuerpo finito denotado por GF(p) puede ser representado por los enteros $0,1,\ldots p-1$. Las dos operaciones del cuerpo son la adición entera modular y la multiplicación entera modular (todo esto modulo p.)

Teorema

Sea p un número primo. El anillo de enteros \mathbb{Z}_p denotado por GF(p) que se dice un cuerpo primo, o un cuerpo de Galois con un número primo de elementos. Todos los elementos no nulos de GF(p) tienen inverso. La aritmética en GF(p) se realiza modulo p.

Ejemplo

Consideremos el cuerpo finito $GF(5) = \{0, 1, 2, 3, 4\}$ las siguientes tablas describen como sumar y multiplicar dos elementos

Observar que los inversos aditivos son: -0=0, -1=4, -2=3, -3=2, -4=1

Observar que los inversos multiplicativos son: 0^{-1} no existe, $1^{-1}=1$, $2^{-1}=3$, $3^{-1}=2$,

Un importante ejemplo de cuerpos primos es GF(2), que es el cuerpos finito mas pequeño que existe.

Ejemplo

Consideremos el cuerpo finito $GF(2)=\{0,1\}$. La aritmética del cuerpo es:

Adición					
+ 0 1					
0	0	1			
1 1 0					

Multiplicación						
*	0 1					
0	0	0				
1	0	1				

Extensión del Cuerpos $GF(2^m)$

Observaciones

- Observemos que 2^m no es un número primo, entonces las operaciones de la adición y la multiplicación no se pueden representar por números enteros modulo 2^8 . Tales cuerpos con m>1 son llamados extensión de cuerpos o "extension fields".
- Los elementos de estos cuerpos son representados por polinomios y la aritmética de cuerpos que se realiza es la aritmética de polinomios.
- En una extensión de cuerpos $GF(2^m)$ no se representan por enteros sino por polinomios con grado máximo de m-1 y los coeficientes de estos polinomios están en GF(2).

Extensión del Cuerpos $GF(2^m)$

Ejemplo

El cuerpo que utilizamos en el algoritmos AES, es el $GF(2^8)$, entonces cada elemento $A \in GF(2^8)$ es representado por el polinomio:

$$A(x) = a_7x^7 + \cdots + a_1x + a_0, \ a_i \in GF(2) = \{0, 1\}.$$

- Observar que hay $2^8 = 256$ polinomios. Es decir que $GF(2^8)$ tiene 256 polinomios.
- También se debe observar que cada polinomio se puede almacenar de la forma vectorial de 8—bits, solo almacenando los coeficientes de A(x)

$$A = (a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)$$

Adición y Sustracción en $GF(2^m)$

Dados $A(x) = a_{m-1}x^{m-1} + \cdots + a_0$ y $B(x) = b_{m-1}x^{m-1} + \cdots + b_0 \in GF(2^m)$. La adición se define como:

$$C(x) = A(x) + B(x) = \sum_{i=0}^{m-1} c_i x^i, \ c_i \equiv a_i + b_i \mod 2$$

y la diferencia se calcula como:

$$C(x) = A(x) - B(x) = \sum_{i=0}^{m-1} c_i x^i, \ c_i \equiv a_i - b_i \mod 2$$

Ejemplo

Dado
$$A(x) = x^7 + x^6 + x^4 + 1$$
 y $B(x) = x^4 + x^2 + 1$ entonces $C(x) = x^7 + x^6 + x^2$

Multiplicación en $GF(2^m)$

Dados A(x) y $B(x) \in GF(2^m)$. La adición se define como:

$$A(x) \cdot B(x) = (a_{m-1}x^{m-1} + \dots + a_0) \cdot (b_{m-1}x^{m-1} + \dots + b_0)$$

$$C'(x) = c'_{2m-2}x^{2m-2} + \dots + c'_{0},$$

Donde:

$$c_0' = a_0 b_0 \mod 2$$
 $c_1' = a_0 b_1 + a_1 b_0 \mod 2$
 \vdots
 $c_{2m-2}' = a_{m-1} b_{m-1} \mod 2$

El polinomio C(x) que se considera para la operación de la multiplicación de $A(x) \cdot B(x)$ sera el resto al dividirlo por un polinomio irreductible P(x) que caracteriza al cuerpo $GF(2^m)$. Para comprender este polinomio P(x) presentaremos los siguientes teoremas de cuerpos finitos. <□ > →□ > → □ > → □ > → □ >

Teorema

Sea F un cuerpo y f un polinomio mónico de grado positivo n sobre F. Entonces el F[x]/(f) es un cuerpo si y solo si f es un polinomio irreducible.

Ejemplo

$$F = \mathbb{R}[x]/(x^2+1) = \{r_0 + r_1\alpha : r_0, r_1 \in \mathbb{R}y\alpha^2 + 1 = 0\}$$

Sea p un número primo y $q = p^n$. entonces el cuerpo de orden q (es decir, que posee q elementos) y denotado por GF(q) o \mathbb{F}_q

Teorema

Sea $q=p^n$. Si f es un polinomio irreductible sobre GF(p) de grado n entonces $GF(q)\cong GF(p)[x]/(f)$

Eiemplo

Se puede ver que $f(x) = x^2 + x + 1$ tiene grado 2 y no posee raíces en GF(2), luego es un polinomio irreducible en GF(2). Entonces el $GF(2^2)$ se puede ver como GF(2)[x]/(f)(formalmente se dicen isomorfos). Los elementos de GF(4) se representan por polinomios 0, 1, x, x + 1. Por ejemplo la multiplicación de x por x + 1 es: $x(x+1) = x^2 + x \equiv 1 \pmod{f}$. En las siguientes tablas presentamos la adición y la

multiplicación en GF(4)

Adición en GF(2 ²)							
+	0	1	X	x + 1			
0	0	1	X	x + 1			
1	1	0	x + 1	X			
X	x	x + 1	0	1			
<i>x</i> + 1	x+1	X	1	0			

Multiplicación en GF(2²)						
•	0	1	X	x + 1		
0	0	0	0	0		
1	0	1	X	x + 1		
X	0	X	x + 1	1		
x + 1	0	x + 1	1	X		

Ejemplo

Ejemplo

Considere el cuerpo finito $GF(2^3)$ visto (via isomorfismos) $\mathbb{F}_2[x]/(x^3+x+1)$. El polinomio x^3+x+1 es irreducible en GF(2) ya que tiene grado 3 y no tiene raices en GF(2).

Adición en <i>GF</i> (2 ³)								
+	0	1	X	x + 1	x^2	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	1	Х	x + 1	x^2	$x^{2} + 1$		
1	1	0	x + 1	x	$x^{2} + 1$	x^2		
		x + 1						
		x						
x^2	x^2	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$	0	1		
		x^2						
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^{2} + 1$	x	x + 1		
$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^{2} + 1$	x ²	x + 1	x		

Ejemplo

Ejemplo

Considere el cuerpo finito $GF(2^3)$ visto (via isomorfismos) $\mathbb{F}_2[x]/(x^3+x+1)$. El polinomio x^3+x+1 es irreducible en GF(2) ya que tiene grado 3 y no tiene raices en GF(2).

Multiplicación en $GF(2^3)$								
+	0	1	Х	x + 1	x ²	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	0	0	0	0	0		
1	0	1			x^2			
			x^2					
x + 1	0	x + 1	$x^2 + x$	$x^{2} + 1$	$x^2 + x + 1$	x^2		
x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x		
			1			$x^2 + x + 1$		
			$x^2 + x + 1$			x + 1		
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^{2} + 1$	x	1	$x^2 + x$		

Entonces la definición de la operación del producto es:

Definición

Sea A(x), $B(x) \in GF(2^m)$, se

$$P(x) = \sum_{i=0}^{m} p_i x^i$$
, $dondep_i \in GF(2)$

un polinomio irreduccible. La multiplicación de dos elementos A(x), B(x) se calcula:

$$C(x) \equiv A(x) \cdot B(x) \bmod P(x)$$

entonces para definir el $GF(2^m)$ requiere un polinomios irreducible P(x) de grado m con coeficientes en GF(2). Se debe observar que no todo polinomio es irreducible. Por ejemplo el polinomio

$$x^4 + x^3 + x + 1 = (x^2 + x + 1)(x^2 + 1)$$

luego este polinomio no puede definir el cuerpo $GF(2^2)$

Ejercicios

Dado el cuerpo GF(2⁴) cuyo polinomio irreducible que lo caracteriza es

$$P(x) = x^4 + x + 1$$
, entonces multiplicar los polinomios $A(x) = x^3 + x^2 + 1$ y

Inversión en $GF(2^m)$

Dado un cuerpo finito $GF(2^m)$ y si correspondiente polinomio irreducible P(x) el inverso $A^{-1}(x)$ de un elemento $A(x) \in GF(2^m)$ se define como:

$$A^{-1}(x) \cdot A(x) = 1 \bmod P(x)$$

Ejemplo

Anteriormente vimos en el ejemplo, $f(x) = x^2 + x + 1$ tiene grado 2 y no posee raíces en GF(2), luego es un polinomio irreducible en GF(2). Entonces el $GF(2^2)$ se puede ver como GF(2)[x]/(f) (formalmente se dicen isomorfos). En las siguientes tablas presentamos la multiplicación en GF(4)

Multiplicación en GF(22)

manuplicación en di (2)							
•	0	1	X	x + 1			
0	0	0	0	0			
1	0	1	X	x + 1			
X	0	X	x + 1	1			
x + 1	0	x + 1	1	X			

Inversión en $GF(2^m)$

Ejemplo

Entonces por ejemplo el inverso de x+1 es el polinomio x ya que: Se observa en la tabla que:

$$(x+1)\cdot x = x^2 + x \equiv 1 \bmod f(x)$$