

Social and Graph Data Management Probabilistic Graphs and Influence Algorithms

Benoît Groz (slides and content are mostly from Silviu Maniu)

December 1st, 2023

M2 Data Science

Uncertain Graphs

Graphs: a natural way to represent data in various domains

- · transport data: road, air links between locations
- social networks: relationships between humans, citation networks
- interactions between proteins: contacts due to biochemical processes

For all the above examples, the links are not exact. (Why?)

(Deterministic) Graphs

A graph G = (V, E) is formed of

- a set **V** of vertices (nodes)
- a set $\textit{E} \subseteq \textit{V} \times \textit{V}$, of edges

Uncertain Graphs

An uncertain graph G = (V, E, p) is formed of

- a set V of vertices (nodes)
- a set $E \subseteq V \times V$, of edges
- a function $p: E \to [0, 1]$, representing the **probability** p(e) that the edge $e \in E$ exists or not

Uncertain Graphs: Possible Worlds

A possible world of \mathcal{G} , denoted $G \sqsubseteq \mathcal{G}$ is a deterministic graph $G = (V, E_G)$ where each $e \in E_G$ is chosen from E

The probability of G is:

$$\Pr[G] = \prod_{e \in E_G} p_e \prod_{e \in E \setminus E_G} (1 - p_e)$$

How many possible worlds are there?

Example: Possible Worlds

(a)

(c

 $\Pr[G_1] = 0.8 \times \qquad \Pr[G_2] = 0.8 \times$ $0.7 \times 0.5 = 0.28 \qquad 0.7 \times 0.5 = 0.28$

(a

(b) (C)

 $Pr[G_3] = 0.8 \times$

 $0.3 \times 0.5 = 0.12$

 $Pr[G_4] = 0.8 \times 0.3 \times 0.5 = 0.12$

 $0.7 \times 0.5 = 0.28$

(a) (b) (c)

$$\begin{split} \Pr[G_5] &= 0.2 \times \\ 0.7 \times 0.5 &= 0.07 \end{split}$$

 $\Pr[G_6] = 0.2 \times 0.7 \times 0.5 = 0.07$

 $Pr[G_7] = 0.2 \times 0.3 \times 0.5 = 0.03$

 $\Pr[G_8] = 0.2 \times 0.3 \times 0.5 = 0.03$

Uncertain Graphs: Other Models

Other models are possible:

- each edge is replaced by a distribution of weights –
 instead of choosing if the edge exists or not, a possible
 world is an instantiation of weights
- each edge has a formula of events, capturing correlations
- probabilities can be on nodes also equivalent to the edge model

Queries on Uncertain Graphs

Generally, the queries we want to answer are **distance** queries:

- the **reachability** or **reliability** query get the probability that two nodes **s** and **t** are connected
- · queries on the distance distribution:

$$\Pr[d(s,t)=x] = \sum_{G \mid d_G(s,t)=x} \Pr[G]$$

Multiple uses of distance queries:

· link prediction, social search, travel estimation

Queries on Deterministic Graphs

What is the distance (in hops) between **b** and **a**?

- BFS search (or Dijkstra's algorithms) finds the edge
 b → a
- the cost is $\mathcal{O}(E)$ (linear in the size of the graph)

Queries on Uncertain Graphs: Reachability

What is the probability that we can reach *a* from *b*?

• **logical formula**: going through the edge (b, a) or the path $b \rightarrow c \rightarrow a$:

$$Pr[b \to a] = p(b, a) + + (1 - p(b, a))p(b, c)p(c, a) = 0.2 + 0.8 \times 0.3 \times 0.5 = 0.32$$

 or by counting the number of possible worlds in which there is a path from b to a

$$\begin{split} \Pr[b \to a] &= \Pr[G_3] + \Pr[G_4] + \Pr[G_5] + \\ &+ \Pr[G_6] + \Pr[G_7] = 0.32 \end{split}$$

Queries on Uncertain Graphs: Distance Distribution

between b and a?
the edge b → a does not appear in all possible worlds:

What is the distance (in hops)

$$\Pr[d(b,a) = 1] = p(b,a) = 0.2$$

• there is one possible path of distance 2 ($b \rightarrow c \rightarrow a$)

$$\Pr[d(b, a) = 2] = (1 - \Pr[d(b, a) = 1])$$

$$\times p(b, c)p(c, a)$$

$$= 0.8 \times 0.3 \times 0.5 = 0.12$$

$$\Pr[d(b, a) = \infty] = 1 - \Pr[d(b, a) = 1]$$

$$- \Pr[d(b, a) = 2] = 0.68$$

Queries on Uncertain Graphs

What is the distance (in hops) between **b** and **a**, or what is the reachability probability? We have to write a formula over all paths.

- the number of simple paths is exponential in the size of the graph
- specifically, there are 3! simple paths

Queries on Uncertain Graphs

Distance query answering in **uncertain graphs** is at least as hard as in relational databases (*logical formulas* of paths; the number of which can be **exponential**)

Computing the reachability probability (i.e, computing the probability of there being a path between a source and a target) is known to be #P hard – as hard as **model counting**

Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be **approximated** via Monte Carlo sampling

- generate sampled graphs for r rounds (is this the optimal way for an s, t distance estimation?)
- 2. compute the desired measure (reachability probability, distance distributions) by averaging results

Main issue: how many rounds are needed?

Sampling Graphs

Generating the entirety of the graph G_i for each round i < r is not optimal

- · we do not need to estimate the entire graph G_i
- we can start from s and do a BFS or Dijkstra search by sampling only the outgoing edges
- \cdot based on the generated outgoing edges, we re-do the computation for each generated outgoing node, until we find t

Table of contents

Distance Estimation in Uncertain Graphs

Influence Maximization

Social Influence

Social Influence: important problem in social network, with applications in marketing, computational advertising

Objective: given a promotion budget of *k* social network users, maximize the expected influence spread given some influence or propagation model

Social Influence

Data Model: an uncertain graph G(V, E, p)

- · V and E are the social network
- \cdot *p* is, on each edge, the **influence probability**

Influence Spread via Cascades

Independent Cascade Model:

discrete time model of propagation

- 1. at time 0, activate seed u
- for a node i activated at time t: activate at time t + 1 each neighbour v with probability p_{iv}
- once a node is activated, it cannot be activated again or de-activated

Influence Spread via Cascades

We wish to compute the **expected** spread from a seed seed set S, $\sigma(S)$

By linearity of expectation:

$$\sigma(u) = \sum_{v \in V} \Pr(u \to v)$$

- for a seed set S, more complicated
- same hardness as reachability

Influence Spread

Influence spread of each node in V:

$$\sigma(a) = \Pr[a \to a] + \Pr[a \to b] + \Pr[a \to c]$$

= 1 + 0 + 0 = 1

$$\sigma(b) = \Pr[b \to a] + \Pr[b \to b] + \Pr[b \to c]$$

= 0.32 + 1 + 0.3 = 1.62

$$\sigma(c) = \Pr[c \to a] + \Pr[c \to b] + \Pr[c \to c]$$
$$= 0.5 + 0 + 1 = 1.5$$

Maximizing the Influence

Influence maximization is computationally hard

Two sources of hardness:

- 1. computing $\sigma(S)$ is #P-hard (as we seen before, it is equivalent to **reachability**) Monte Carlo with additive approximations
- computing the selection of k seeds in S is NP-hard maximization of a submodular function

Submodular function: the influence spread is submodular:

$$\sigma(S \cup \{u\}) - \sigma(S) \geqslant \sigma(T \cup \{u\}) - \sigma(T)$$
 if $S \subseteq T$

Influence Maximization: Greedy Algorithm

We can obtain a $(1 - \frac{1}{\epsilon})$ -approximation factor for influence maximization by using the **greedy algorithm**

Steps:

- 1. initialize $S = \emptyset$
- 2. choose the user u that maximizes $\sigma(S \cup \{u\}) \sigma(S)$
- 3. $S = S \cup u$
- 4. repeat steps 2 and 3 k times
- 5. return S

Learning Propagation Probabilities

The probability that \mathbf{v} is influenced by its neighbours

$$\Pr(\mathbf{v}) = 1 - \prod_{u} (1 - p_{uv})$$

Given a log of actions

$$A = \{(act, u, v), \dots\}$$
:

1. maximum likelihood:

$$p_{vu} = \frac{A_{vu}}{A_v}$$

2. Jaccard similarity: $p_{vu} = \frac{A_{vu}}{A_{u|v}}$

References i