Lecture 3.2: Some properties of the rank

Optimization and Computational Linear Algebra for Data Science

Inequalities

Proposition

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$. Then the following holds

- 1. $\operatorname{rank}(A) \leq \min(n, m)$.
- 2. $rank(AB) \le min(rank(A), rank(B))$.

Proof.

Inequalities

Proposition

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$. Then the following holds

- 1. $\operatorname{rank}(A) \leq \min(n, m)$.
- 2. $rank(AB) \le min(rank(A), rank(B))$.

Proof.

The rank-nullity theorem

Theorem

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then

$$\operatorname{rank}(L) + \dim(\operatorname{Ker}(L)) = m.$$