Deep Learning

Syed Irtaza Muzaffar

Backpropagation Through Time

Background $igvee_W$ y $igvee_w$ 1igau $igvee_v$ 1igau $igvee_v$ 1igau $igvee_v$ 1igvee $igvee_v$ 1igvee $igvee_v$ 1igvee $igvee_v$ 1igvee $igvee_v$ 2igvee0igvee Summar

RNN Unfolded in Time

Backpropagation Through Time (BPTT)

- ▶ In order to train a single hidden layer RNN, we need 5 derivatives:
 - **1.** $\nabla_{W^1} \mathcal{L} \in \mathbb{R}^{M \times K}$
 - 2. $\nabla_{\mathbf{b}^1} \mathcal{L} \in \mathbb{R}^{1 \times K}$
 - **3.** $\nabla_{W^{11}} \mathcal{L} \in \mathbb{R}^{M \times M}$
 - **4.** $\nabla_{W^{\mathbf{0}}} \mathcal{L} \in \mathbb{R}^{D \times M}$
 - **5.** $\nabla_{\mathbf{b}^{\mathbf{0}}} \mathcal{L} \in \mathbb{R}^{1 \times M}$
- They correspond to backpropagation through space as well as time.

Background Multivariate Chain Rule

Recall the multivariate chain rule of differentiation

$$\frac{df(u(x),v(x))}{dx} = \frac{\partial f}{\partial u} \frac{du}{dx} + \frac{\partial f}{\partial v} \frac{dv}{dx}$$

$$u(x)$$

$$x \qquad f(u(x),v(x))$$

$$v(x)$$

Background $\bigvee_{W^1} \mathcal{L} \qquad \bigvee_{b^1} \mathcal{L} \qquad \bigvee_{W^1} \mathcal{L} \qquad \bigvee_{b^1} \mathcal{L} \qquad \bigvee_{W^1} \mathcal{L} \qquad \bigvee_{b^0} \mathcal{L} \qquad \text{Summ}$

Background Matrix and Vector Calculus

For scalars $x, y \in \mathbb{R}$, vectors $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{y} \in \mathbb{R}^k$ and matrices $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$, we will use the following conventions for writing matrix and vector derivatives.

Scalar w.r.t vector:
$$\nabla_{\mathbf{x}} \mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}}{\partial x_1} & \frac{\partial \mathbf{y}}{\partial x_2} & \cdots & \frac{\partial \mathbf{y}}{\partial x_d} \end{bmatrix}$$

Vector w.r.t scalar: $\nabla_{\mathbf{x}} \mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}_1}{\partial \mathbf{x}} \\ \frac{\partial \mathbf{y}_2}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial \mathbf{y}_k}{\partial \mathbf{x}} \end{bmatrix}$

Vector w.r.t vector: $\nabla_{\mathbf{x}} \mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \nabla_{\mathbf{x}} \mathbf{y}_1 \\ \nabla_{\mathbf{x}} \mathbf{y}_2 \\ \vdots \\ \nabla_{\mathbf{x}} \mathbf{y}_k \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{\partial \mathbf{y}_1}{\partial x_1} & \frac{\partial \mathbf{y}_1}{\partial x_2} & \cdots & \frac{\partial \mathbf{y}_1}{\partial x_d} \\ \frac{\partial \mathbf{y}_2}{\partial x_1} & \frac{\partial \mathbf{y}_2}{\partial x_2} & \cdots & \frac{\partial \mathbf{y}_2}{\partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{y}_k}{\partial x_1} & \frac{\partial \mathbf{y}_k}{\partial x_2} & \cdots & \frac{\partial \mathbf{y}_k}{\partial x_d} \end{bmatrix}}_{\mathbf{y}_{\mathbf{x}}}$

 $k \times d$

Scalar w.r.t matrix:
$$\nabla_{\mathbf{X}} y = \frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{m1}} \\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1n}} & \frac{\partial y}{\partial x_{2n}} & \cdots & \frac{\partial y}{\partial x_{mn}} \end{bmatrix}$$

$$\text{Matrix w.r.t scalar: } \nabla_{\mathbf{x}}\mathbf{Y} = \frac{\partial \mathbf{Y}}{\partial x} = \begin{bmatrix} \frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \dots & \frac{\partial y_{1n}}{\partial x} \\ \frac{\partial y_{21}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \dots & \frac{\partial y_{2n}}{\partial x} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \dots & \frac{\partial y_{mn}}{\partial x} \end{bmatrix}$$

Background Matrix and Vector Calculus

For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and matrices $\mathbf{M} \in \mathbb{R}^{k \times d}$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$

$$ightharpoonup
abla_{\mathsf{x}}(\mathsf{M}\mathsf{x}) = \mathsf{M}$$

► For symmetric **A**,
$$\nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{A}\mathbf{x}) = 2(\mathbf{A}\mathbf{x})^T$$

Derivative of scalar loss function $\mathcal{L}(y)$ of vector output y = Wx w.r.t matrix $W \in \mathbb{R}^{K \times M}$.

$$\underbrace{\nabla_{W}\mathcal{L}}_{M\times K} = \underbrace{\nabla_{\mathbf{y}}\mathcal{L}}_{1\times K} \underbrace{\nabla_{W}\mathbf{y}}_{K\times (M\times K)}$$

Multiplication of 1D array with 3D tensor

ackground $oldsymbol{f V}_{f W}f Y$ $oldsymbol{f V}_{u,1}f ar{f L}$ $oldsymbol{f V}_{u,1}f ar{f L}$ $oldsymbol{f V}_{u,1}f ar{f L}$ $oldsymbol{f V}_{u,0}f ar{f L}$ $oldsymbol{f V}_{u,0}f ar{f L}$ Summa

y_1	=		W_{11}		W_{12}	W	13	W_{14}	x_1
									x_2
									x_3
3 imes 4							x_4		
		$\frac{\partial y}{\partial W}$		$\frac{\partial y_1}{\partial W_{21}}$	$\frac{\partial y_1}{\partial W_{31}}$		x_1	0	0
_		$\frac{\partial y}{\partial W}$		$\frac{\partial y_1}{\partial W_{22}}$	$\frac{\partial y_1}{\partial W_{32}}$	_	x_2	0	0
$\nabla_W y_1$	=	$\frac{\partial y}{\partial W}$	13	$\frac{\partial y_1}{\partial W_{23}}$	$\frac{\partial y_1}{\partial W_{33}}$	_	x_3	0	0
		$\frac{\partial y}{\partial W}$		$\frac{\partial y_1}{\partial W_{24}}$	$\frac{\partial y_1}{\partial W_{34}}$		x_4	0	0

Derivative of vector with respect to matrix

$ abla_W y_2 =$	$\frac{\partial y_2}{\partial W_{11}}$	$\frac{\partial y_2}{\partial W_{21}}$	$\frac{\partial y_2}{\partial W_{31}}$		0	x_1	0
	$\frac{\partial y_2}{\partial W_{12}}$	$\frac{\partial y_2}{\partial W_{22}}$	$\frac{\partial y_2}{\partial W_{32}}$	_	0	x_2	0
	$\frac{\partial y_2}{\partial W_{13}}$	$\frac{\partial y_2}{\partial W_{23}}$	$\frac{\partial y_2}{\partial W_{33}}$	_	0	x_3	0
	$\frac{\partial y_2}{\partial W_{14}}$	$\frac{\partial y_2}{\partial W_{24}}$	$\frac{\partial y_2}{\partial W_{34}}$		0	x_4	0
$ abla_W y_3 =$	$\frac{\partial y_3}{\partial W_{11}}$	$\frac{\partial y_3}{\partial W_{21}}$	$\frac{\partial y_3}{\partial W_{31}}$		0	0	x_1
	$\frac{\partial y_3}{\partial W_{12}}$	$\frac{\partial y_3}{\partial W_{22}}$	$\frac{\partial y_3}{\partial W_{32}}$		0	0	x_2
	$\frac{\partial y_3}{\partial W_{13}}$	$\frac{\partial y_3}{\partial W_{23}}$	$\frac{\partial y_3}{\partial W_{33}}$	=	0	0	x_3
	$\frac{\partial y_3}{\partial W_{14}}$	$\frac{\partial y_3}{\partial W_{24}}$	$\frac{\partial y_3}{\partial W_{34}}$		0	0	x_4

$\begin{array}{c} \textbf{Detour} \\ \nabla_{W} \mathcal{L}(W \textbf{x}) \end{array}$

$\frac{\partial \mathcal{L}}{\partial y_1} x_1$	$\frac{\partial \mathcal{L}}{\partial y_2} x_1$	$\frac{\partial \mathcal{L}}{\partial y_3} x_1$
$\frac{\partial \mathcal{L}}{\partial y_1} x_2$	$\frac{\partial \mathcal{L}}{\partial y_2} x_2$	$\frac{\partial \mathcal{L}}{\partial y_3} x_2$
$\frac{\partial \mathcal{L}}{\partial y_1} x_3$	$\frac{\partial \mathcal{L}}{\partial y_2} x_3$	$\frac{\partial \mathcal{L}}{\partial y_3} x_3$
$\frac{\partial \mathcal{L}}{\partial y_1} x_4$	$\frac{\partial \mathcal{L}}{\partial y_2} x_4$	$\frac{\partial \mathcal{L}}{\partial y_3} x_4$

$$egin{array}{c|c} x_1 & \hline \partial \mathcal{L} & \partial \mathcal{L} & \partial \mathcal{L} \\ \hline \partial y_1 & \partial y_2 & \partial y_3 \\ \hline x_2 & \hline x_3 & \hline x_4 & \hline \end{array}$$

 $\nabla_{\mathbf{y}} \mathcal{L} \times \nabla_W \mathbf{y}$

=

 $\mathbf{x}\nabla_{\mathbf{y}}\mathcal{L}$

ОТТ

Derivative number 1: $\nabla_{W^1}\mathcal{L}$

Notice that W^1 affects loss \mathcal{L} through $\mathbf{a}^{2(t)}$ at each time t.

$$\mathcal{L}(\underbrace{\mathbf{a}^{2(1)}(W^1)}_{t=1},\underbrace{\mathbf{a}^{2(2)}(W^1)}_{t=2},\ldots,\underbrace{\mathbf{a}^{2(T)}(W^1)}_{t=T})$$

h²

a²

W¹, b

h¹

w¹¹

W⁰, b

h⁰

RNN

Unfolded in time

Influence diagram

BPTT

Derivative number 1: $\nabla_{W^1}\mathcal{L}$

$$\mathbf{h}^{2(t)} = f(\mathbf{a}^{2(t)})$$
 $\mathbf{a}^{2(t)} = W^1 \mathbf{h}^{1(t)} + \mathbf{b}^1$
 $\mathbf{h}^{1(t)} = \tanh(\mathbf{a}^{1(t)})$
 $\mathbf{a}^{1(t)} = W^0 \mathbf{h}^{0(t)} + W^{11} \mathbf{h}^{1(t-1)} + \mathbf{b}^0$

Using the multivariate chain rule over time

$$\nabla_{W^{1}} \mathcal{L} = \sum_{t=1}^{T} \nabla_{\mathbf{a}^{2(t)}} \mathcal{L} \nabla_{W^{1}} \mathbf{a}^{2(t)}$$

$$= \sum_{t=T}^{1} \underbrace{\mathbf{h}^{1(t)}}_{M \times 1} \nabla_{\mathbf{a}^{2(t)}} \mathcal{L}$$

$$= \sum_{t=T}^{1} \underbrace{\mathbf{h}^{1(t)}}_{1 \times K} \nabla_{\mathbf{a}^{2(t)}} \mathcal{L}$$

▶ Computation of $\nabla_{\mathbf{a}^{2(t)}}\mathcal{L}$ is described next.

$$\begin{array}{l}\mathsf{BPTT}\\ \nabla_{\mathsf{a}^{2(t)}}\mathcal{L}\end{array}$$

▶ The derivatives of loss \mathcal{L} w.r.t pre-activations $\mathbf{a}^{2(t)}$ can be computed as

$$\underbrace{\nabla_{\mathbf{a}^{2(t)}}\mathcal{L}}_{1\times K} = \underbrace{\nabla_{\mathbf{h}^{2(t)}}\mathcal{L}}_{1\times K}\underbrace{\nabla_{\mathbf{a}^{2(t)}}\mathbf{h}^{2(t)}}_{K\times K} = \nabla_{\mathbf{h}^{2(t)}}\mathcal{L}
\underbrace{\begin{bmatrix} \partial_{a_{1}}h_{1} & \partial_{a_{2}}h_{1} & \dots & \partial_{a_{K}}h_{1} \\ \partial_{a_{1}}h_{2} & \partial_{a_{2}}h_{2} & \dots & \partial_{a_{K}}h_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{a_{1}}h_{K} & \partial_{a_{2}}h_{K} & \dots & \partial_{a_{K}}h_{K} \end{bmatrix}^{2(t)}}_{a_{1}}$$

- ▶ The Jacobian matrix is the derivative of outputs with respect to inputs.
- ▶ In 1D, the term $\frac{dy}{dx}$ is the 1 × 1 Jacobian matrix of y = f(x).
- Jacobian matrix is
 - diagonal for scalar activation functions (logistic sigmoid, tanh, ReLU), and
 - dense for vector activation functions (softmax).

ртт

Derivative number 2: $\nabla_{\mathbf{b}^1}\mathcal{L}$

lacktriangle Following the same reasoning as used for $abla_{W^1}\mathcal{L}$ above, we can compute

$$\underbrace{\nabla_{\mathbf{b}^1} \mathcal{L}}_{1 \times K} = \sum_{t=T}^1 \underbrace{\nabla_{\mathbf{a}^{2(t)}} \mathcal{L}}_{1 \times K}$$

where we have used the fact that $\nabla_{\mathbf{b}^1} \mathbf{a}^{2(t)} = I_K$.

ртт

Derivative number 3: $\nabla_{W^{11}}\mathcal{L}$

Notice that W^{11} affects loss \mathcal{L} through $\mathbf{a}^{1(t)}$ at each time t.

$$\mathcal{L}(\underbrace{\mathbf{a}^{1(1)}(W^{11})}_{t=1},\underbrace{\mathbf{a}^{1(2)}(W^{11})}_{t=2},\dots,\underbrace{\mathbf{a}^{1(T)}(W^{11})}_{t=T})$$

RNN

Unfolded in time

Influence diagram

RPTT

Derivative number 3: $\nabla_{W^{11}}\mathcal{L}$

$$egin{aligned} \mathbf{h}^{2(t)} &= f(\mathbf{a}^{2(t)}) \ \mathbf{a}^{2(t)} &= W^1 \mathbf{h}^{1(t)} + \mathbf{b}^1 \ \mathbf{h}^{1(t)} &= anh(\mathbf{a}^{1(t)}) \end{aligned} \\ egin{aligned} \mathbf{a}^{1(t)} &= W^0 \mathbf{h}^{0(t)} + W^{11} \mathbf{h}^{1(t-1)} + \mathbf{b}^0 \end{aligned}$$

Using the multivariate chain rule over time

$$\underbrace{\nabla_{W^{11}}\mathcal{L}}_{M\times M} = \sum_{t=1}^{I} \underbrace{\nabla_{\mathbf{a}^{1(t)}}\mathcal{L}}_{1\times M} \underbrace{\nabla_{W^{11}}\mathbf{a}^{1(t)}}_{M\times (M\times M)}$$

$$= \sum_{t=1}^{1} \underbrace{\mathbf{h}^{1(t-1)}}_{M\times 1} \underbrace{\nabla_{\mathbf{a}^{1(t)}}\mathcal{L}}_{1\times M}$$

▶ Computation of $\nabla_{\mathbf{a}^{1(t)}}\mathcal{L}$ is described next.

▶ The derivatives of loss \mathcal{L} w.r.t pre-activations $\mathbf{a}^{1(t)}$ can be computed as

$$\underbrace{\nabla_{\mathbf{a}^{1(t)}}\mathcal{L}}_{1\times M} = \underbrace{\nabla_{\mathbf{h}^{1(t)}}\mathcal{L}}_{1\times M} \underbrace{\nabla_{\mathbf{a}^{1(t)}}\mathbf{h}^{1(t)}}_{M\times M} = \nabla_{\mathbf{h}^{1(t)}}\mathcal{L} \underbrace{\begin{bmatrix} \partial_{a_{1}}h_{1} & \partial_{a_{2}}h_{1} & \dots & \partial_{a_{M}}h_{1} \\ \partial_{a_{1}}h_{2} & \partial_{a_{2}}h_{2} & \dots & \partial_{a_{M}}h_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{a_{1}}h_{M} & \partial_{a_{2}}h_{M} & \dots & \partial_{a_{M}}h_{M} \end{bmatrix}^{1(t)}}_{\text{Jacobian matrix}}$$

Jacobian matri

► Computation of $\nabla_{\mathbf{h}^{1(t)}}\mathcal{L}$ is described next.

$egin{array}{c} \mathsf{BPTT} \ abla_{\mathbf{h}^{\mathbf{1}(t)}} \mathcal{L} \end{array}$

RNN

- Notice that $\mathbf{h}^{1(t)}$ affects loss \mathcal{L}
 - 1. through $\mathbf{a}^{2(t)}$ at each time t, and
 - **2.** through $\mathbf{a}^{1(t+1)}$ at each time t+1.

Deep Learning

 $\mathbf{a}^{1(t+1)}$

Influence diagram

$$\begin{split} \mathbf{h}^{2(t)} &= f(\mathbf{a}^{2(t)}) \\ \mathbf{a}^{2(t)} &= \mathcal{W}^1 \mathbf{h}^{1(t)} + \mathbf{b}^1 \\ \mathbf{h}^{1(t)} &= \tanh(\mathbf{a}^{1(t)}) \\ \mathbf{a}^{1(t)} &= \mathcal{W}^0 \mathbf{h}^{0(t)} + \mathcal{W}^{11} \mathbf{h}^{1(t-1)} + \mathbf{b}^0 \end{split}$$

▶ Using the multivariate chain rule over these 2 time steps

$$\underbrace{\nabla_{\mathbf{h}^{1(t)}}\mathcal{L}}_{1\times M} = \nabla_{\mathbf{a}^{2(t)}}\mathcal{L}\nabla_{\mathbf{h}^{1(t)}}\mathbf{a}^{2(t)} + \underbrace{\nabla_{\mathbf{a}^{1(t+1)}}\mathcal{L}\nabla_{\mathbf{h}^{1(t)}}\mathbf{a}^{1(t+1)}}_{\text{Not required when } t = T}$$

$$= \underbrace{\nabla_{\mathbf{a}^{2(t)}}\mathcal{L}}_{1\times K}\underbrace{\mathcal{W}^{1}}_{K\times M} + \underbrace{\nabla_{\mathbf{a}^{1(t+1)}}\mathcal{L}}_{1\times M}\underbrace{\mathcal{W}^{11}}_{M\times M}$$

отт

Derivative number 4: $\nabla_{W^{\circ}}\mathcal{L}$

Notice that W^0 affects loss \mathcal{L} through $\mathbf{a}^{1(t)}$ at each time t.

$$\mathcal{L}(\underbrace{\mathbf{a}^{1(1)}(W^0)}_{t=1}, \underbrace{\mathbf{a}^{1(2)}(W^0)}_{t=2}, \dots, \underbrace{\mathbf{a}^{1(T)}(W^0)}_{t=T})$$

RNN

Unfolded in time

Influence diagram

RPTT

Derivative number 4: $\nabla_{W^{\circ}}\mathcal{L}$

$$egin{aligned} \mathbf{h}^{2(t)} &= f(\mathbf{a}^{2(t)}) \ \mathbf{a}^{2(t)} &= W^1 \mathbf{h}^{1(t)} + \mathbf{b}^1 \ \mathbf{h}^{1(t)} &= anh(\mathbf{a}^{1(t)}) \end{aligned} \\ egin{aligned} \mathbf{a}^{1(t)} &= W^0 \mathbf{h}^{0(t)} + W^{11} \mathbf{h}^{1(t-1)} + \mathbf{b}^0 \end{aligned}$$

Using the multivariate chain rule over time

$$\underbrace{\nabla_{W^0} \mathcal{L}}_{D \times M} = \sum_{t=1}^{I} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M} \underbrace{\nabla_{W^0} \mathbf{a}^{1(t)}}_{M \times (D \times M)}$$

$$= \sum_{t=T}^{1} \underbrace{\mathbf{h}^{0(t)}}_{D \times 1} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M}$$

DTT

Derivative number 5: $\nabla_{\mathbf{h}^{0}}\mathcal{L}$

lacktriangle Following the same reasoning as used for $abla_{W^0}\mathcal{L}$ above, we can compute

$$\underbrace{\nabla_{\mathbf{b}^0} \mathcal{L}}_{1 \times M} = \sum_{t=T}^1 \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M}$$

where we have used the fact that $\nabla_{\mathbf{b}^0} \mathbf{a}^{1(t)} = I_M$.

Now we have all 5 derivatives required to train an RNN with 1 hidden layer.

Please note that all 5 derivatives will be transposed to obtain the gradients used in gradient descent.

ackground \bigvee_{w} y \bigvee_{w^1} \bigwedge \bigvee_{b^1} \bigwedge \bigvee_{b^1} \bigwedge \bigvee_{w^1} \bigvee_{w^2} \bigvee_{w^2} \bigvee_{b^2} \bigvee_{b^2} Summary

Note about biases

Notice that, throughout the course, derivative with respect to bias has been the sum of δ -values.

- ► This was the case for
 - Neural Networks
 - Convolutional Neural Networks, and now
 - Recurrent Neural Networks

Summary

Output layer

$$\begin{split} \nabla_{\mathbf{a}^{2(t)}}\mathcal{L} &= \nabla_{\mathbf{h}^{2(t)}}\mathcal{L}\underbrace{\nabla_{\mathbf{a}^{2(t)}}\mathbf{h}^{2(t)}}_{\text{Jacobian}} \\ \nabla_{W^{1}}\mathcal{L} &= \sum_{t=T}^{1}\mathbf{h}^{1(t)}\nabla_{\mathbf{a}^{2(t)}}\mathcal{L} \\ \nabla_{\mathbf{b}^{1}}\mathcal{L} &= \sum_{t=T}^{1}\nabla_{\mathbf{a}^{2(t)}}\mathcal{L} \end{split}$$

Summary

Hidden layer

$$\begin{split} \nabla_{\mathbf{h}^{1(t)}}\mathcal{L} &= \nabla_{\mathbf{a}^{2(t)}}\mathcal{L}W^{1} + \underbrace{\nabla_{\mathbf{a}^{1(t+1)}}\mathcal{L}W^{11}}_{\text{Not required when }t = T} \\ \nabla_{\mathbf{a}^{1(t)}}\mathcal{L} &= \nabla_{\mathbf{h}^{1(t)}}\mathcal{L}\underbrace{\nabla_{\mathbf{a}^{1(t)}}\mathbf{h}^{1(t)}}_{\text{Jacobian}} \\ \nabla_{W^{11}}\mathcal{L} &= \sum_{t=T}^{1}\mathbf{h}^{1(t-1)}\nabla_{\mathbf{a}^{1(t)}}\mathcal{L} \\ \nabla_{W^{0}}\mathcal{L} &= \sum_{t=T}^{1}\mathbf{h}^{0(t)}\nabla_{\mathbf{a}^{1(t)}}\mathcal{L} \\ \nabla_{\mathbf{b}^{0}}\mathcal{L} &= \sum_{t=T}^{1}\nabla_{\mathbf{a}^{1(t)}}\mathcal{L} \end{split}$$