

Michigan Technological University

Masters of Computer Science

Machine Learning,
Artificial Intelligence
Deep Learning
Data structure and algorithms

Soham Sheth Graduate Student College of Computing Michigan Technological University ssheth1@mtu.edu

Work experience

Working under professor Xiaoyong (Brian) Yuan as Research Assistant

Project: Mobile Security using Machine Learning

(Gestures Recognition using camera and ALS Sensor)

Working with a team of 5 members

- 1) Collecting the data
- 2) Preprocessing the data
- 3) Feature extraction
- 4) Classification Algorithms
- 4) Classification of different gestures
- 5) Plotting the graphs and analyzing the data

Skills used: Deep learning(CNN), Machine Learning, Computer vision, Libraries

UI/UX consultant

Working as a UI/UX consultant under professor Robert Pastel.

Collaborating on numerous real-world projects with their teams to find solutions to difficult Technological problems and help development teams accomplish their goals.

Libraries:

Numpy, Pandas, Matplotlib, Tensorflow, Seaborn, Scikit-learn, Keras, OpenCv2, pytorch

Platform and tools:

Windows, Linux, GIT, Github, pycharm, Google Colab, Visual Studio, Advanced Excel(SQL), Anaconda, Jupyter Notebook

Programming Skills:

Python, Java, C, C++, HTML, CSS

Worked as Student machine learning intern

During my undergraduate I worked at IIT Bombay as student machine learning intern.

Where I worked with a team on project like

- 1) Image super Resolution
- 2) Brain tumor segmentation and classification

Image Super Resolution

Methodology

- Used CNN based deep learning in TensorFlow framework
- Trained the model on the dataset of down sampled images as input and high resolution image as output
- YUV domain of images were used instead of RGB to make the model computationally fast.
- For the upsampling in the model, an Efficient Sub-Pixel Convolution Layer instead of commonly used Bi cubic interpolation was used after the initial convolution layers.
- After training the model, we predicted 5 up-sampled images, converted each of them back to their RGB versions and displayed them side by side with their low resolution versions and the original HR images with the Peak-to-Signal Noise Ratio (PSNR) obtained.

Music Recommendation based on emotions

Data Transformation

Count Vectorizer, :TFIDF Transformer.

Model Selection and Conclusion

Identifying which one is best and then using that model to conclude results and then use it in future scope.

Data Pre-processing

Involves Add/remove columns, Null values, Duplicates, Punctuation, Stop words, Stemming and Lemmatization

Data Splitting

Cross validation, Percentage of split, Random state

Machine Learning skills

- Understanding Tensor 1D to 5D. (Image Processing)
- Working with csv file, Json/Sql
- Preprocessing of data
- Univariant, bivariant, multivariate analysis
- Pandas Profiling

Feature Engineering

Standardization, Normalization, Handling Missing data, dealing with outliers

Algorithms

Linear Regression ,

Multilinear regression,

Polynomial Regression,

Regression Metrics

MAE, MSE, RMSE, R2 SCORE, ADJUSTED R2

Gradient Descent

Batch Gradient Descent, Stochastic Gradient Descent MiniBatch Gradient Descent

BIAS VARIANCE TRADE OFF

OVERFITTING (Low Bias, High Variance)
UNDERFITTING (High Bias, High Variance)

To solve the problem

- 1)Regularization
 - a) Ridge
 - b) Lasso
 - c) Elasticnet
- 2) Bagging
- 3)Boosting

Machine Learning Algorithms

- 1) Logistic Regression
- 2) Decision Tree
- 3) Svm
- 4) Knn
- 5) Ada Boost

Classification Metrics

- 1) Accuracy
- 2) Confusion Matrix (Type 1, Type 2 error)
- 3) Precision
- 4) Recall
- 5) F1 Score

Deep Learning

- 1) ANN
- 2) CNN(Image Data)
- 3) RNN (Speech/Text data)
- 4) GAN AUTO ENCODERS (Generate text/images)
- 5) OBJECT DETECTION AND SEGMENTATION

Pretrained Models

Image Classification : Resnet

Image Segmentation: UNET

Text classification: BERT

Image Translation: PIX2PIX

Object Detection: YOLO

Speech Generation: Wavenet

Thank You

