DX FT8 Software Set Up and User Guide for WB2CBA / W5BAA Project 1/3/2025

This document is written to guide the user in setting up and using the project firmware.

Step 1:

Download and review the STM32F746 User Guide found here: https://www.st.com/resource/en/user_manual/um1907-discovery-kit-for-stm32f7-series-with-stm32f746ng-mcu-stmicroelectronics.pdf

Step 2:

Download and install "STM32 ST-Link" utility found here: https://www.st.com/en/development-tools/stsw-link004.html

Step 3:

Make sure that a jumper is installed on JP1 on the 5V link usb pins as shown below:

Next connect your computer to the Disco Board via the USB connector shown directly above.

Use the STM32 ST-Link Utility to install the firmware file entitled "DX_FT8_0.bin" found in this folder on the WB2CBA gitbub Repository for this project:

https://github.com/WB2CBA/DX-FT8-FT8-MULTIBAND-TABLET-TRANSCEIVER/tree/main/DX %20FT8%20FIRMWARE

Here is a note on how to use ST-Link Utility to program the firmware om your Disco Board.

After connecting the Disco Board to your computer start the STM32 ST-Link Utility and then select the Target Tab and then select the Connect Option as shown below:

If all goes well you will confirmation of the Disco Board Connection as below:

```
06:03:25 : ST-LINK SN : 066FFF565588494867121810
06:03:25 : V2J37M26
06:03:25 : Connected via SWD.
06:03:25 : SWD Frequency = 4,0 MHz.|
06:03:25 : Connection mode : Normal.
06:03:25 : Debug in Low Power mode enabled.
06:03:25 : Device ID:0x449
06:03:25 : Device flash Size : 1MBytes
06:03:25 : Device family :STM32F74x/F75x

Debug in Low Power mode enabled.
```

Next, using the File Tab select the Open File Option to select the DX_FT8_0.bin file that you have downloaded to your machine.

Next, using the Target Tab Select the Program & Verify Option.

When the programming is completed you will see the confirmation note shown below:

```
06:03:25 : Connection mode : Normal.
06:03:25 : Debug in Low Power mode enabled.
06:03:25 : Device ID:0x449
06:03:25 : Device flash Size : 1MBytes
06:03:25 : Device family :STM32F74x/F75x
06:23:10 : [DX_FT8_0.bin] opened successfully.
06:23:10 : [DX_FT8_0.bin] checksum : 0x0240BE26
06:32:32 : Memory programmed in 8s and 390ms.
06:32:32 : Verification...OK
06:32:32 : Programmed memory Checksum: 0x0240BE26
```

Step 4:

Format an SD Card and then create and save a file labeled "StationData.txt" which includes your Call Sign and Maidenhead Locator. Here is an example of what my station data file contains:

W5BAA:EM00

After creating the file on the SD Card, insert the SD Card in the SD Card Connector as shown below:

Step 5:

After reviewing Barb's Notes on preparing and connecting the DX_FT8 board to the Disco Board make the required connections between the Audio IQ output of the DX_FT8 board then IQ (Line) Audio input of the Disco board.

Next, move the jumper on J1 to the 5V ext pins.

Step 6: Follow Barb's instructions for setting up the input power options for the DX_FT8 board and power up the board and connect an antenna. Here us what you should see.

When you touch the Tune Button you will see the following display.

Very Important Note: The DX FT8 Firmware V1.8 Will Work With 5 Band and 7 Band Boards!

The 7 Band Boards include a Discrete Input Pin Tied to Ground.

Existing 5 Band Boards do not such a Discrete Input Pin Tied to Ground.

On Boot Up the firmware checks Discrete Input Pin to determine the board type.

The screen shot below shows the connected Board to be a 7 Band Board.

FT8 Operations Display Legend

When you first set up your unit the Real Time Clock (RTC) Date and Time will probably read as 00:00:00 or be blank. You may set the RTC Date and Time by using the Tune screen.

Clr: Touch to clear FT8 Traffic Display, momentary touch.

QSO: Touch to change FT8 Mode from QSO to Beacon, bi state touch

Tune: Touch to bring up TUNE Screen, bi state touch

Rcv: No Touch, indicates either Receive or Transmit Operation

Fixd: Touch to turn on transmit on Target's received (Rcvd) frequency, bi state touch

Sync: Touch to Synchronize FT8 Reception With Rest of World, turns from RED to BLUE on Sync

G-: Touch to reduce Receiver Gain by 1 dB.

G+: Touch to increase Receiver Gain by 1 dB.

F-: Touch to reduce transmit audio frequency by 6.25 Hz

F+: Touch to reduce transmit audio frequency by 6.25 Hz

Tune Screen Data and Touch Button Legend

When you touch the **Tune Button** the unit goes into the Tune mode and additional data items and buttons will be presented as shown below:

Date / Time Edit Buttons

Date Edit Buttons

Band & Frequency Buttons

Time Synchronization With the FT8 World

In the world of FT8 time synchronization is vital. After various attempts such using GPS Time or pure manual synchronization a more friendly semi automatic method has been developed.

With this version of hardware the FT8 signals displayed on the waterfall are quite crisp and there is a

very distinct band of no received signals at the end of each FT8 slot as shown below:

If you have noisy conditions and there is white snow at the end of the FT8 slot, use the G- button shown above until there is a distinct lull in signals at the end of the FT8 slot. Then, press the Sync button and wait.

The software searches for the lull in FT8 traffic and then sets the synchronization and the Sync Button turns BLUE and FT8 messages are decoded.

DX FT8 V1.8 Cheat Sheet Page 1: Boot Up Page

Cheat Sheet Page 2

DX FT8 V1.8 Cheat Sheet Page 3: Tune Page

DX FT8 Operation Flow Chart

The flow chart shown below illustrates the operation of both the QSO Mode and Beacon Mode of operation. The detail of the operations has been developed by recording and analyzing actual "On The Air FT8 Traffic".

FT8 Contact Logging

DX FT8 automatically logs FT8 Contacts as they are made. Contact entries are made when the firmware sends either a "RR73 Message" or a "73 Message".

DX FT8 Log Files are written in the ADIF Format and my be viewed in ADIFMaster as shown below: Log Files are stored on the SD Card and have the filename of the current RTC Date, for example "20250103.adif".

The ADIFMaster Application may be downloaded from this site: https://www.adif.org/

Monitoring Receiver Audio Output

The demodulated signal audio output may be observed via the Green 3.5 mm stereo audio jack, CN10. The top audio spectrum is the received Upper Sideband Audio and the bottom spectrum is the Lower Sideband Audio. Please note the excellent unwanted sideband suppression from DX FT8 board.

A nice tool for observing the audio output is an application called "Goldwave" which may be found here: https://goldwave.com/

Extra Benefits

One of the key benefits of the STM32F746 board that has significantly contributed to the success of the DX FT8 project are the ARDUINO connectors shown below. All signals except for the IQ Audio signals required for this project are made thru these connectors. Also the required power connections are made thru these connectors.

Table 5. ARDUINO® connectors (CN4, CN5, CN6 and CN7)

Left connectors					Right connectors							
CN No.	Pin No.	Pin name	STM32 pin	Function	Function	STM32 pin	Pin name	Pin No.	CN No			
					I2C1_SCL	PB8	D15	10	2			
					I2C1_SDA	PB9	D14	9				
					AVDD	-	AREF	8				
					Ground	-	GND	7				
CN6 power	1	NC	-	-	SPI2_SCK	PI1	D13	6	CN7 digital			
	2	IOREF	17	3.3V Ref	SPI2_MISO	PB14	D12	5				
	3	RESET	NRST	RESET	TIM12_CH2, SPI2_MOSI	PB15	D11	4				
	4	+3V3	-	3.3V input/output	TIM1_CH1	PA8	D10	3				
	5	+5V	-	5V output	TIM2_CH1	PA15	D9	2				
	6	GND	-	Ground	-	PI2	D8	1				
	7	GND	2	Ground			-	168	19h			
	8	VIN	-	Power input	-	PI3	D7	8	let .			
					TIM12_CH1	PH6	D6	7				
CN5 analog	1	Α0	PA0	ADC3_IN0	TIM5_CH4,SPI 2_NSS	PI0	D5	6	CN4 digital			
	2	A1	PF10	ADC3_IN8	-	PG7	D4	5				
	3	A2	PF9	ADC3_IN7	TIM3_CH1	PB4	D3	4				
	4	A3	PF8	ADC3_IN6	-	PG6	D2	3				
	5	A4	PF7 or PB ⁽¹⁾	ADC3_IN5 (PF7) or I2C1_SDA (PB9)	USART6_TX	PC6	D1	2				
	6	A5	PF6 or PB8 ⁽¹⁾	ADC3_IN4 (PC0) or I2C1_SCL (PB8)	USART6_RX	PC7	D0	1				

^{1.} Refer to Table 12 for details.