Computación Científica II

Ecuaciones Diferenciales Parciales

Diferencias Finitas para EDPs Elípticas

Cristopher Arenas cristopher.arenas@usm.cl

Universidad Técnica Federico Santa María Computación Científica II - ILI286

v0.32b

EDP Elíptica

Se llamará EPD elíptica a una EDP que tiene la forma:

$$A u_{xx} + B u_{xy} + C u_{yy} + F(u_x, u_y, u, x, y) = 0$$

y se cumple $B^2-4\,A\,C<0$. O bien, teniendo una forma más general, que es posible reducirla a un caso equivalente al anterior.

4 / 43

Ecuación de Laplace

$$u_{xx}(x,y) + u_{yy}(x,y) = 0$$

Ecuación de Poisson

$$u_{xx}(x,y) + u_{yy}(x,y) = f(x,y)$$

Ecuación de Helmholtz

$$u_{xx}(x,y) + u_{yy}(x,y) = \lambda u(x,y)$$

- En general, no se asocian al tiempo, sino únicamente al espacio.
- No requieren condiciones iniciales, sino únicamente de frontera.
- Principio del máximo:

$$\max_{x\in\Omega}u(x)=\max_{x\in\partial\Omega}u(x)$$

Habitualmente se buscan soluciones en dominios acotados.

Problema Genérico: Sea u(x,y) una función incógnita que depende de las variables x e y, definidas en $0 \le x \le 1$ y $0 \le y \le 1$.

El problema a resolver asociado a esta incógnita será la ecuación de Poisson con condiciones de Dirichlet:

$$u_{xx}(x,y) + u_{yy}(x,y) = f(x,y)$$

$$u(x,0) = g_1(x)$$

$$u(1,y) = g_2(y)$$

$$u(x,1) = g_3(x)$$

$$u(0,y) = g_4(y)$$

8 / 43

Problema concreto:

$$u_{xx}(x,y) + u_{yy}(x,y) = x$$

$$u(x,0) = \sin(\pi x)$$

$$u(1,y) = 0$$

$$u(x,1) = \sin(\pi x)$$

$$u(0,y) = 0$$

Diferencias Finitas

Reemplazar una derivada por una diferencia de ciertos valores que sea aproximadamente equivalente.

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} \approx \frac{f(x+h) - f(x)}{h}$$

Forward Difference

 $\mathcal{O}(h)$

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} \approx \frac{f(x) - f(x - h)}{h}$$

Backward Difference

 $\mathcal{O}(h)$

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} \approx \frac{f(x+h) - f(x-h)}{2h}$$

Central Difference

 $\mathcal{O}(h^2)$

$$\frac{\mathrm{d}^2 f(x)}{\mathrm{d}x^2} \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

 $\mathcal{O}(h^2)$

¿Cómo puede aplicarse diferencias finitas cuando se trata de derivadas en varias variables?

$$\begin{split} \frac{\partial f(x,y)}{\partial x} &= \frac{f(x+h,y) - f(x,y)}{h} + \mathcal{O}(h) \\ \frac{\partial f(x,y)}{\partial x} &= \frac{f(x,y) - f(x-h,y)}{h} + \mathcal{O}(h) \\ \frac{\partial f(x,y)}{\partial x} &= \frac{f(x+h,y) - f(x-h,y)}{2h} + \mathcal{O}(h^2) \\ \frac{\partial^2 f(x,y)}{\partial x^2} &= \frac{f(x+h,y) - 2f(x,y) + f(x-h,y)}{h^2} + \mathcal{O}(h^2) \end{split}$$

Notación: puede usarse Δx en lugar de h.

¿Cómo puede aplicarse diferencias finitas cuando se trata de derivadas en varias variables?

$$\frac{\partial f(x,y)}{\partial y} = \frac{f(x,y+k) - f(x,y)}{k} + \mathcal{O}(k)$$

$$\frac{\partial f(x,y)}{\partial y} = \frac{f(x,y) - f(x,y-k)}{k} + \mathcal{O}(k)$$

$$\frac{\partial f(x,y)}{\partial y} = \frac{f(x,y+k) - f(x,y-k)}{2k} + \mathcal{O}(k^2)$$

$$\frac{\partial^2 f(x,y)}{\partial y^2} = \frac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^2} + \mathcal{O}(k^2)$$

Notación: puede usarse Δy en lugar de k.

Volviendo al problema genérico para el dominio $\Omega = [0,1] \times [0,1]$:

$$u_{xx}(x,y) + u_{yy}(x,y) = f(x,y)$$

$$u(x,0) = g_1(x)$$

$$u(1,y) = g_2(y)$$

$$u(x,1) = g_3(x)$$

$$u(0,y) = g_4(y)$$

¿Cómo se aplica el método de diferencias finitas en la EDP Elíptica?

Discretizando [0,1] de manera regular en N_x+1 puntos para la variable x, de manera que $\Delta x=\frac{1-0}{N_x}$, se tiene:

$$x_i = x_0 + i \Delta x, \ i \in \{0, 1, 2, \dots, N_x\}$$

Similarmente, para la variable y, se define $\Delta y=\frac{1-0}{N_y}$ discretizando [0,1] en N_y+1 puntos y se tiene:

$$y_j = y_0 + j \Delta y, \ j \in \{0, 1, 2, \dots, N_y\}$$

Esquema Continuo

Diferencias Finitas para EDPs Elípticas Esquema Discreto

No se busca resolver la ecuación en todos los puntos, sino únicamente en los puntos de la discretización. Esto es, en los valores $w_{i,j}$:

$$w_{i,j}=u(x_i,y_j)=u(i\Delta x,j\Delta y)$$
 para $i\in\{0,1,2,\dots,N_x\}$
$$j\in\{0,1,2,\dots,N_y\}$$

Por tanto, existen $(N_x+1) \times (N_y+1)$ incógnitas que se deben encontrar.

Pregunta:

lacktriangle ¿Qué relación existe entre los $w_{i,j}$, las derivadas y la EDP?

Utilizando diferencias finitas, se puede obtener:

$$\frac{\partial^2 u(x,y)}{\partial x^2} \approx \frac{u(x - \Delta x, y) - 2u(x,y) + u(x + \Delta x, y)}{(\Delta x)^2}$$
$$\frac{\partial^2 u(x,y)}{\partial y^2} \approx \frac{u(x,y - \Delta y) - 2u(x,y) + u(x,y + \Delta x)}{(\Delta y)^2}$$

Usando la notación
$$u(x_i,y_j)=u(i\Delta x,j\Delta y)=w_{i,j}$$
:
$$\frac{\partial^2 u(x,y)}{\partial x^2}\approx \frac{w_{i-1,j}-2\,w_{i,j}+w_{i+1,j}}{(\Delta x)^2}$$

$$\frac{\partial^2 u(x,y)}{\partial y^2}\approx \frac{w_{i,j-1}-2\,w_{i,j}+w_{i,j+1}}{(\Delta y)^2}$$

Para $0 < i < N_x$, $0 < j < N_y$, se satisface la EDP:

$$u_{xx}(x_i, y_j) + u_{yy}(x_i, y_j) = f(x_i, y_j)$$

Reemplazando las aproximaciones de diferencias finitas se obtiene:

$$\frac{w_{i-1,j} - 2w_{i,j} + w_{i+1,j}}{(\Delta x)^2} + \frac{w_{i,j-1} - 2w_{i,j} + w_{i,j+1}}{(\Delta y)^2} = f(x_i, y_j)$$

Considerar $\delta=\frac{1}{\Delta x^2},$ $\gamma=\frac{1}{\Delta y^2}$ y $\xi=-(\frac{2}{\Delta x^2}+\frac{2}{\Delta y^2}),$ la expresión puede ser reescrita como:

$$\delta w_{i-1,j} + \gamma w_{i,j-1} + \xi w_{i,j} + \delta w_{i+1,j} + \gamma w_{i,j+1} = f(x_i, y_j)$$

¿Qué ocurre con los casos $i=0,\,i=N_x,\,j=0,\,j=N_y$?

26 / 43

Discretizando las condiciones de frontera:

$$\begin{array}{lll} u(x,0) = g_1(x) & \Rightarrow & u(x_i,0) = w_{i,0} = g_1(x_i) & i \in \{0,1,\ldots,N_x\} \\ u(1,y) = g_2(y) & \Rightarrow & u(1,y_j) = w_{N_x,j} = g_2(y_j) & j \in \{0,1,\ldots,N_y\} \\ u(x,1) = g_3(x) & \Rightarrow & u(x_i,1) = w_{i,N_y} = g_3(x_i) & i \in \{0,1,\ldots,N_x\} \\ u(0,y) = g_4(y) & \Rightarrow & u(0,y_j) = w_{0,j} = g_4(y_j) & j \in \{0,1,\ldots,N_y\} \end{array}$$

¿Cómo se pueden obtener los valores de $w_{i,j}$?

Considerar $N_x = N_y = 3$. El siguiente sistema lineal debe resolverse:

Γ1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	07	Γ
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	γ	0	0	δ	ξ	δ	0	0	γ	0	0	0	0	0	0	1
0	0	γ	0	0	δ	ξ	δ	0	0	γ	0	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
0	0	0	0	0	γ	0	0	δ	ξ	δ	0	0	γ	0	0	1
0	0	0	0	0	0	γ	0	0	δ	ξ	δ	0	0	γ	0	1
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	Ľ

$w_{0,0}$		$\int g_1(x_0)$
$w_{1,0}$		$g_1(x_1)$
$w_{2,0}$		$g_1(x_2)$
$w_{3,0}$		$g_1(x_3)$
$w_{0,1}$		$g_4(y_1)$
$w_{1,1}$		$f(x_1,y_1)$
$w_{2,1}$		$f(x_2,y_1)$
$w_{3,1}$	_	$g_2(y_1)$
$w_{0,2}$	_	$g_4(y_2)$
$w_{1,2}$		$f(x_1, y_2)$
$w_{2,2}$		$f(x_2, y_2)$
$w_{3,2}$		$g_2(y_2)$
$w_{0,3}$		$g_3(x_0)$
$w_{1,3}$		$g_3(x_1)$
$w_{2,3}$		$g_3(x_2)$
$w_{3,3}$		$g_3(x_3)$

27 / 43

Considerar $N_x = N_y = 3$. El siguiente sistema lineal debe resolverse:

Γ1	0	0	0	0	0	0	0	0	0	0	0	$\lceil w_{1,0} \rceil$		$\begin{bmatrix} g_1(x_1) \end{bmatrix}$
0	1	0	0	0	0	0	0	0	0	0	0	$ w_{2,0} $		$g_1(x_2)$
0	0	1	0	0	0	0	0	0	0	0	0	$ w_{0,1} $		$g_4(y_1)$
γ	0	δ	ξ	δ	0	0	γ	0	0	0	0	$ w_{1,1} $		$f(x_1,y_1)$
0	γ	0	δ	ξ	δ	0	0	γ	0	0	0	$ w_{2,1} $		$f(x_2,y_1)$
0	0	0	0	0	1	0	0	0	0	0	0	$ w_{3,1} $	_	$g_2(y_1)$
0	0	0	0	0	0	1	0	0	0	0	0	$ w_{0,2} $	_	$g_4(y_2)$
0	0	0	γ	0	0	δ	ξ	δ	0	γ	0	$ w_{1,2} $		$ f(x_1,y_2) $
0	0	0	0	γ	0	0	δ	ξ	δ	0	γ	$ w_{2,2} $		$ f(x_2,y_2) $
0	0	0	0	0	0	0	0	0	1	0	0	$ w_{3,2} $		$g_2(y_2)$
0	0	0	0	0	0	0	0	0	0	1	0	$ w_{1,3} $		$g_3(x_1)$
0	0	0	0	0	0	0	0	0	0	0	1	$\lfloor w_{2,3} \rfloor$		$\begin{bmatrix} g_3(x_2) \end{bmatrix}$

A continuación, se implementará un algoritmo para resolver el problema concreto, definido para el dominio $\Omega=[0,1]\times[0,1]$:

$$u_{xx}(x,y) + u_{yy}(x,y) = x$$

$$u(x,0) = \sin(\pi x)$$

$$u(1,y) = 0$$

$$u(x,1) = \sin(\pi x)$$

$$u(0,y) = 0$$

30 / 43

```
import numpy as np
from numpy.linalg import solve
# Define Boundary Conditions
f = lambda x, y : x
g1 = lambda x : np.sin(np.pi*x)
g2 = lambda x : 0
g3 = lambda x : np.sin(np.pi*x)
g4 = lambda x : 0
# Define Domain
x_{min}, x_{max} = 0., 1.
y_min, y_max = 0., 1.
```


31 / 43

```
# Define Discretization Parameters
Nx = 10
Ny = 10

# Discretize x and y
x = np.linspace(x_min, x_max, Nx+1)
y = np.linspace(y_min, y_max, Ny+1)

# Define the discretization parameters
dx = x[1]-x[0]
dy = y[1]-y[0]
```



```
# Create the matrix and the right hand size vector
A = np.zeros([(Nx+1)*(Ny+1), (Nx+1)*(Ny+1)])
b = np.zeros([(Nx+1)*(Ny+1), 1])

# Define global indexing
def index(i, j, nCols=(Ny+1)):
    return j + i*nCols
```



```
for i in xrange(Nx+1):
 for j in xrange(Ny+1):
    k = index(i,i)
    if j==0: # y=ymin
     A[k,k] = 1.
     b[k] = g1(x[i])
    elif i==Nx: # x=xmax
      A[k,k] = 1.
     b[k] = g2(y[j])
    elif j==Ny: # y=ymax
     A[k,k] = 1.
     b[k] = g3(x[i])
    elif i==0: # x=xmin
      A[k,k] = 1.
     b[k] = g4(v[i])
    else:
      A[k, k] = -2./dx**2 - 2./dv**2
      A[k,index(i+1,j)] = 1./dx**2
      A[k,index(i-1,j)] = 1./dx**2
      A[k,index(i,j-1)] = 1./dy**2
      A[k,index(i,j+1)] = 1./dy**2
      b[k] = f(x[i], y[j])
```



```
# Solve the linear system
w = solve(A, b)
```


40 / 43

Preguntas

- lacksquare ¿Cómo se puede construir una EDP? i.e, ¿cómo se obtiene f(.,.) y $g_k(.)$?
- ¿Cómo se podrían implementar otras condiciones de frontera (Neumann, Robin)?
- ¿Qué cambios son necesarios para resolver otras EDPs elípticas, como la Ecuación de Helmholtz?
- ullet ¿Existe alguna relación entre f(.,.) y las condiciones de frontera $g_k(.)$ de Dirichlet?

Referencias

Numerical Analysis, Timothy Sauer, Second Edition, Pearson, 2012. Chapter 8: Partial Diferential Equations.