Pumping Lemma for Regular Languages and Applications of Pumping Lemma

Ayush Tandon (2K22/CO/133)

September 18, 2024

1 Introduction

The Pumping Lemma is a fundamental concept in the theory of formal languages and automata. It provides a method to prove that certain languages are not regular by showing that they fail to satisfy the properties described by the lemma.

2 Theorem (Pumping Lemma for Regular Languages)

If L is an **infinite language** then there exists some positive integer p called as pumping length such that any string $w \in L$ has length greater than or equal to \mathbf{p} i.e. $|w| \geq p$, then w can be divided into three parts w = xyz, satisfy following conditions:

- $|xy| \leq p$
- |y| > 0
- For all $i \geq 0$, $xy^iz \in L$

Pumping Lemma is a **negative test**. This means if a language L fails this test, then L is a **non-regular language**. If a language L passes this test, then it cannot be said whether language is regular or not.

3 Steps to prove that a language L is not regular by using PL

- 1. Assume that L is regular.
- 2. Therefore, the pumping lemma should hold for L.
- 3. There exists a pumping length P.
- 4. All strings of length greater than P can be pumped, i.e., $|w| \ge P$.
- 5. Find a string w in L such that $|w| \geq P$.
- 6. Divide w into xyz.
- 7. Show that $xy^iz \notin L$ for some i.
- 8. Consider all possible ways that w can be divided into xyz.
- 9. Show that none of these can satisfy all three pumping conditions at the same time.
- 10. Thus, w cannot be pumped, leading to a contradiction.

4 Illustration

The following two examples will help to understand concept of pumping lemma in a better way:

4.1 Proving Non-Regularity of $L = \{a^n b^n \mid n \ge 0\}$

To demonstrate the application of the Pumping Lemma, let us consider the language $L = \{a^n b^n \mid n \geq 0\}$. We will prove that L is not a regular language.

- Assume, for the sake of contradiction, that L is regular.
- Let p be the pumping length given by the Pumping Lemma.
- Consider the string $w = a^p b^p \in L$, where $|w| = 2p \ge p$.
- By the Pumping Lemma, we can write w = xyz, where $|xy| \le p$ and |y| > 0.
- Since $|xy| \le p$, the substring y consists only of a's, i.e., $y = a^k$ for some k > 0.
- Now, consider $xy^2z=a^{p+k}b^p$. This string has more a's than b's, and thus it is not in L, which contradicts the Pumping Lemma.

Therefore, L is not a regular language. Finite state machine cannot keep count of input.

4.2 Proving Non-Regularity of $L = \{a^n b^m \mid n > m\}$

Now, let us consider another language $L = \{a^n b^m \mid n > m\}$. We will again use the Pumping Lemma to prove that L is not regular.

- Assume, for the sake of contradiction, that L is regular.
- Let p be the pumping length given by the Pumping Lemma.
- Consider the string $w = a^p b^p \in L$, where $|w| = 2p \ge p$.
- According to the Pumping Lemma, we can decompose w into three parts: w = xyz, where:
 - $-|xy| \le p$
 - -|y| > 0
 - Since $|xy| \le p$, the substring y consists only of a's. Thus, we can write $y = a^k$ for some k > 0.
- Now, consider the pumped string xy^2z :

$$xu^2z = a^{p+k}b^p$$

This string has more a's than b's, satisfying n > m, which is consistent with the language L.

• However, let's consider the case when we pump y down to y^0 :

$$xy^0z = a^{p-k}b^p$$

This string has fewer a's than b's, i.e., n < m, which violates the condition n > m, showing that $xz \notin L$.

Thus, L is also not a regular language.

5 Applications of Pumping Lemma

The Pumping Lemma has a wide range of applications in formal language theory and automata, particularly in proving the non-regularity of certain languages. Some important applications include:

1. Proving Non-Regularity

The Pumping Lemma is most commonly used to prove that a language is not regular. By assuming a language is regular and then using the lemma to derive a contradiction, we can show that the language does not meet the necessary conditions for regularity.

2. Identifying Limitations of Regular Languages

The Pumping Lemma helps to highlight the structural limitations of regular languages, such as their inability to count or track dependencies between symbols.

3. Complexity Analysis of Formal Languages

The Pumping Lemma helps distinguish between regular and non-regular languages, thus aiding in the classification of languages based on their complexity. Regular languages are simple in structure and can be described by finite automata, while non-regular languages require more powerful computational models, such as context-free grammars or pushdown automata.

4. Tool for Language Theory Education

The Pumping Lemma is a key concept in language theory courses, where it is used to introduce students to the concept of regular languages and their limitations. It serves as a foundation for understanding more advanced topics in automata theory and formal languages.

6 Conclusion

The Pumping Lemma for regular languages is a powerful tool in theoretical computer science. It allows us to identify non-regular languages by proving that they do not satisfy the conditions imposed by the lemma. Understanding the Pumping Lemma is essential for analyzing the structure of formal languages and automata.