UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

LUCAS SANTOS SOUZA

AUTÔMATO DETERMINÍSTICO E NÃO-DETERMINÍSTICO

1. INTRODUÇÃO

A teoria dos autômatos é definida como sendo um modelo matemático, desempenhando um papel importante em diversas áreas aplicadas da ciência da computação. Um autômato, ou máquina abstrata, utiliza o conceito de estado em combinação com instruções primitivas, no qual recebem especificações de como cada instrução modifica cada estado.

Um modelo, chamado autômato finito, é bastante utilizado em processamento de texto para reconhecer padrões, compiladores, projeto de hardwares e etc. Contudo possui aplicações práticas restritas, visto que a informação de saída é limitada à lógica binária aceita/rejeita. Em uma definição formal é representado por uma 5-upla (Q, Σ , δ , q_0 , F), onde:

- Q é um conjunto finito conhecido como os estados, representado por círculos;
- 2. Σ é um conjunto finito de símbolos de entrada, chamado o alfabeto;
- 3. δ : Q × ∑ → Q é a função de transição, representado por arestas, é a responsável pela transição entre os estados a partir de um determinado símbolo do alfabeto:
- 4. $q_0 \in Q$ é o estado inicial;
- 5. F é um subconjunto de Q, denominado conjunto de estados finais.

Este modelo pode ser dividido em dois tipos:

- Autômato finito determinístico (AFD): Para um dado estado atual e o símbolo lido como entrada, o sistema assume um único estado, ou seja, o autômato pode pular para um e somente um estado.
- Autômato finito não determinístico (AFND): Para um dado estado atual e o símbolo lido como entrada, o sistema pode assumir mais de um único estado possível.

2. AUTÔMATOS PROPOSTOS

2.1 AFND

Figura 1: AFN PROPOSTO

Seguindo a definição formal, o AFND é uma 5-upla (Q, Σ , δ , q_0 , F), onde

- 1. $Q = \{q_0, q_1, q_2\}$
- 2. $\Sigma = \{0, 1\}$
- 3. $\delta(q_0,0) = q_0, q_1$

$$\delta(q_0,1)=q_0$$

$$\delta(q_1,0)=q_2$$

$$\delta(q_1,1)=q_2$$

$$\delta(q_2,0)=q_0$$

$$\delta(q_2,1) = q_0, q_1$$

- 4. $q_0 = q_0$
- 5. $F = \{q_2\}$

O AFND possui como estado inicial o q₀, onde a partir dele podemos receber qualquer símbolo do nosso alfabeto, no caso do primeiro símbolo for "1" permanecemos no mesmo estado q₀, no caso do símbolo for "0" podemos permanecer no mesmo estado ou seguir para o próximo, q₁. Em q₁ qualquer símbolo de entrada presente no alfabeto nos leva para o próximo estado, q₂. No estado final, q₂, também não temos nenhuma restrição de entrada, no caso da entrada "0" retornamos para o estado inicial q₀, no caso da entrada "1" podemos retornar para q₀ ou retornar para o estado q₁.

2.2 AFD

Apesar de possuir definições diferentes, a partir de um AFND pode-se construir um AFD equivalente e para isso podemos usar a tabela de transição da seguinte forma:

Passos	estados	0	1
1	q ₀	{q ₀ , q ₁ }	q ₀
2	$\{q_0, q_1\}$	{q ₀ , q ₁ , q ₂ }	{q ₀ , q ₂ }
3	$\{q_0, q_1, q_2\}$	{q ₀ , q ₁ , q ₂ }	$\{q_0, q_1, q_2\}$
4	{q ₀ , q ₂ }	{q ₀ , q ₁ }	$\{q_0, q_1\}$

Tabela 1: Tabela de Transição

No primeiro passo temos o estado inicial q_0 e suas transições, como o símbolo de entrada "0" pode levar a dois estados diferentes ocorre uma junção desses estados, onde esse conjunto se torna um novo estado $\{q_0, q_1\}$. No segundo passo a partir do novo conjunto obtido analisamos as transições de cada um de seus elementos para criar outro conjunto de estados. O mesmo ocorre para os passos 3 e 4. O estado final do AFD se dá pelo conjunto que contém o estado final do AFND, podendo ter mais de um único estado de aceitação, nesse caso, como o AFND possui o estado final q_2 , o AFD terá como estado final $\{q_0, q_1, q_2\}$ e $\{q_0, q_2\}$. A partir desta tabela é possível criar o seguinte autômato:

Figura 2: AFD

Seguindo a definição formal, o AFD é uma 5-upla (Q, Σ , δ , q_0 , F), onde

```
1. Q = \{N_0, N_1, N_2, N_3\}
```

2.
$$\Sigma = \{0, 1\}$$

3.
$$\delta(N_0,0) = N_1$$

$$\delta(N_0,1) = N_0$$

$$\delta(N_1,0) = N_3$$

$$\delta(N_1, 1) = N_2$$

$$\delta(N_2,0) = N_1$$

$$\delta(N_2,1) = N_1$$

$$\delta(N_3,0) = N_3$$

$$\delta(N_3,1) = N_3$$

4.
$$q_0 = N_0$$

5.
$$F = \{N_2, N_3\}$$

O AFD possui como estado inicial N_0 , onde temos um loop no caso da entrada "1" que nos mantém no mesmo estado, no caso da entrada "0" passamos para o próximo estado N_1 . Em N_1 podemos seguir para qualquer um dos estados finais, no caso da entrada "1" seguimos para o estado final N_2 , no caso da entrada "0", seguimos para o estado final N_3 . No estado N_2 , temos somente um único caminho, então para qualquer entrada que esteja presente no alfabeto retornamos para o estado N_1 . O estado final N_3 também possui somente um caminho, um loop onde independente da entrada, desde que esteja presente no alfabeto, continuamos sempre no mesmo estado.

3. CONCLUSÃO

A partir do modelo AFD podemos definir a linguagem aceita pelo autômato. Sua expressão regular pode ser descrita pela união (0 U 1). Tendo em vista que para ter a aceitação devemos ter no mínimo o conjunto de entrada {0,1} ou {0,0}, e também não podemos ter uma cadeia com a sequência "010", ou seja, não podemos ter uma sequencia intercalando "0" e "1" tal que a quantidade de 0's seja um numero par e a quantidade de 1's seja ímpar. Como por exemplo "0101010", ou "0101010".