IUT de Bordeaux

Département Informatique

M2201 – Graphes et Langages

Éléments de Théorie des Langages

- Introduction générale : alphabets, mots et langages
- Langages rationnels

Alphabet, mot sur un alphabet (1)

Un **alphabet** est un ensemble (fini) **A** de symboles appelés **lettres**.

Un **mot** m sur un alphabet **A** est une séquence (finie) de lettres prises dans **A** : $\mathbf{m} = \mathbf{a_1} \dots \mathbf{a_k}$. Ce mot est de **longueur** (nombre de lettres) $\mathbf{k} : |\mathbf{m}| = \mathbf{k}$.

Il existe un unique mot de longueur nulle, le **mot vide**, noté ε .

On note A^* l'ensemble de tous les mots construits sur l'alphabet A. On note A^n l'ensemble des mots de A^* de longueur n.

En particulier, $A^0 = \{ \epsilon \}$ et $A^1 = A$.

Alphabet, mot sur un alphabet (2)

Soit a une lettre de A et m un mot de A^* . Le **nombre** d'occurrences de la lettre a dans m, noté $|m|_a$, est le nombre de fois où la lettre a apparaît dans m.

Notons que $|\varepsilon| = 0$ et, pour toute lettre a, $|\varepsilon|_a = 0$.

Exemples.

$$A_1 = \{ 0, 1 \}$$
 $m_1 = 00101011, m_2 = 1101$
 $|m_1| = 8, |m_2|_1 = 3$

Alphabet, mot sur un alphabet (3)

$$A_2 = \{ a, b, c \}$$

 $m_3 = baba, m_4 = bac$

$$A_3 = \{ 0, ..., 9, +, -, *, :, (,) \}$$
 $m_5 = (12 + 4) * (71 - 14:5)$

$$A_4 = \{ \text{ si, alors, sinon, >, a, b, } \leftarrow, +, 0, 1, ... \}$$

 $m_6 = \text{si a > b + 1 alors a} \leftarrow 0 \text{ sinon b} \leftarrow 10$

Concaténation de mots

Soient u et v deux mots de A^* . La **concaténation** de u et v est le mot, noté u.v ou plus simplement uv, obtenu en « collant » le mot v à la suite du mot u. Ainsi, |uv| = |u| + |v| et, pour toute lettre a, $|uv|_a = |u|_a + |v|_a$. On notera u^n le mot u.u.u (n fois), avec $u^0 = \varepsilon$.

Exemple.
$$u = aba, v = ca, uv = abaca, u^2 = abaaba |u| = 3, |v| = 2, |uv| = 5, |u^2| = 6$$

Pour tous mots u, v et w, nous avons :

- \triangleright $\varepsilon u = u\varepsilon = u (\varepsilon \text{ est élément neutre})$
- u.vw = uv.w = uvw (associativité)
- > mais, en général, **uv** ≠ **vu** (non commutativité)

Préfixes, suffixes et facteurs

Soient u et v deux mots de A*.

Le mot u est un **préfixe** du mot v s'il existe un mot w de **A*** tel que v = uw.

De façon similaire, le mot w est un **suffixe** du mot v s'il existe un mot u de A^* tel que v = uw.

Le mot u est un **facteur** du mot v s'il existe deux mots w_1 et w_2 de A^* tels que $v = w_1uw_2$.

Exemple. u = aba, v = abac, w = abacabac, t = aca

- > u est un *préfixe* de w, car w = u.cabac
- v est un suffixe de w, car w = abac.v
- t est un *facteur* de w, cat w = ab.t.bac

Quelques propriétés...

Propriété. Si u, v et w sont trois mots de A^* , alors uw = vw

$$\Leftrightarrow$$
 wu = wv \Leftrightarrow u = v

Lemme de Levi. Si u et v sont tous deux préfixes de w, alors u est préfixe de v, ou v est préfixe de u.

Théorème (de commutation). Si u et v commutent (c'est-àdire sont tels que uv = vu), alors u et v sont deux *puissances* d'un même facteur :

 \Rightarrow il existe un mot f de **A*** et deux entiers p et q tels que $u = f^p$ et $v = f^q$.

Preuve du théorème de commutation...

- \triangleright Si u = f^p et v = f^q, alors uv = vu = f^{p+q}.
- \triangleright Réciproque : par récurrence sur N = |u| + |v| :
 - si N = 0, alors $u = v = \varepsilon$ et donc uv = vu.
 - si $u = \varepsilon$, alors $u = v^0$ et $v = v^1$ (idem si $v = \varepsilon$).
 - si |u| = |v|, alors uv = vu entraîne u = v
 d'où f = u, p = q = 1.
 - sinon, comme u et v sont préfixes de uv = vu, l'un est préfixe de l'autre (Lemme de Levi).
 - Supposons que u est préfixe de v : v = uw.
 - On a donc $uv = vu \Rightarrow u(uw) = (uw)u$, c'est-à-dire uuw = uwu, et donc uw = wu (propriété).
 - L'hypothèse de récurrence permet de conclure.

Langages (1)

Un **langage** L sur un alphabet **A** est un sousensemble, fini ou infini, de **A***.

Par exemple, sur l'alphabet **A** = {a, b}, on peut définir les langages suivants :

- $L_1 = A^2 = \{ aa, ab, ba, bb \},$
- L₂ = { mots d'au plus quatre lettres ayant autant de a que de b }
 - = {ε, ab, ba, aabb, abab, abba, baab, baba, bbaa},
- L₃ = { mots ayant deux fois plus de a que de b } (ce langage est infini).

Langages (2)

Autres exemples:

> etc.

```
\rightarrow A = { a, ..., z }
    L = { mots de la langue française }
A = { mots de la langue française }
   L = { phrases correctes }
> A = { ... }
   L = { programmes C++ syntaxiquement corrects }
```

Opérations sur les langages (1)

Soit A un alphabet. On définit les opérations suivantes sur les langages définis sur A* :

Union.

$$L_1 \cup L_2 = \{ m \in A^* / (m \in L_1) \text{ ou } (m \in L_2) \}$$

Intersection.

$$L_1 \cap L_2 = \{ m \in A^* / (m \in L_1) \text{ et } (m \in L_2) \}$$

Produit (de concaténation).

$$L_1.L_2 = L_1L_2 = \{m \in A^*/m = m_1m_2, m_1 \in L_1 \text{ et } m_2 \in L_2\}$$

Opérations sur les langages (2)

Puissance.

$$L^0 = \{ \, \epsilon \, \}$$

$$L^n = \{ \, m \in \, \textbf{A}^* \, / \, m = m_1 m_2 ... m_n,$$

$$\text{avec } m_i \in \, L \, \text{pour tout i, } 1 \leq i \leq n \, \}, \, \text{pour } n \geq 1$$

Étoile et "plus".

$$L^* = L^0 \cup L^1 \cup ... \cup L^n \cup ...$$

$$L^+ = L^1 \cup L^2 \cup ... \cup L^n \cup ...$$
(i.e. $L^+ = L.L^*$)

Langages rationnels

Langages rationnels (1)

Un langage sur un alphabet **A** est **rationnel** (on dit également **régulier**), s'il peut être construit à l'aide des opérations union, étoile et produit à partir des langages élémentaires composés du mot vide ou d'un mot à une seule lettre.

De façon inductive, un L.R. se définit donc ainsi :

- { ε } est un L.R.,
- si a ∈ **A**, { **a** } est un L.R.,
- si L est un L.R. alors L* est un L.R. (L+ et Ln aussi),
- si L₁ et L₂ sont des L.R., alors L₁ ∪ L₂ et L₁.L₂ sont des L.R.

Langages rationnels (2)

Soit **A** = { a, b, c }. Les langages suivants sont rationnels :

```
    L₁ = ({ε} ∪ {a}).({b} ∪ {c})*.{a}³
    L₁ = {aaa, bcbbcaaa, ..., aaaa, abaaa, ...}
    L₂ = {c}².({a} ∪ {b}* ∪ ({a} ∪ {b}.{c})²)³
    L₂ = {ccaaa,cc,cca,ccaaaaaaa,ccbcabcabcbc, ...}
    L₃ = ({a} ∪ {b})*.{c}
    L₃ = {c, ac, bc, aac, abc, bac, bbc, aaac, ...}
```

Expressions rationnelles

On utilise habituellement quelques conventions d'écriture qui permettent d'alléger les expressions précédentes :

- un langage singleton { a } est noté simplement a,
- l'union est notée simplement +.

Ainsi, les langages précédents peuvent s'écrire, plus simplement, sous forme de ce que l'on appelle des **expressions rationnelles** :

- $L_1 = (\varepsilon + a)(b + c)*a^3$
- $L_2 = c^2(a + b^* + (a + bc)^2)^3$
- $L_3 = (a + b)*c$