Приложение № 2.2.1.17 к Основной образовательной программе среднего общего образования, утвержденной приказом директора от 10.12.2021 г. № 37-П/2021

ОБЩЕОБРАЗОВАТЕЛЬНАЯ АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ «ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР «УСТЬ-ЛАБИНСКИЙ ЛИЦЕЙ»

РАБОЧАЯ ПРОГРАММА учебного предмета «Химия» ого уровня среднего общего образо

углубленного уровня среднего общего образования для универсального (биология) профиля

Рабочую программу составили:

Учитель

И.В. Полтарабатько

Учитель

А.А. Тепанов

Данная рабочая программа обеспечивает достижение образовательных результатов, предусмотренных ФГОС СОО по учебному предмету «Химия» углубленного уровня среднего общего образования и выполнение основной образовательной программы ОАНО «Усть-Лабинский Лицей» (далее – Лицей).

Настоящая рабочая программа разработана на основе рабочей программы учебного предмета «Химия» на углубленном уровне среднего общего образования к УМК по химии авторов В.В. Еремина, Н.Е. Кузьменко, В.И. Теренина, А.А. Дроздова, В.В. Лунина.

Настоящая рабочая программа реализуется за 2 учебных года в течение 1 и 2 полугодий.

Учебный предмет «Химия» углубленного уровня среднего общего образования состоит из двух учебных курсов:

- «Химия. 10 класс. Углубленный уровень» 1 год обучения;
- «Химия. 11 класс. Углубленный уровень» 2 год обучения.

В соответствии с учебным планом Лицея рабочая программа рассчитана на 272 часа: 140 часов в 10 классе (35 недель по 4 часа в неделю), 132 часа в 11 классе (33 недели по 4 часа в неделю).

Преподавание ведётся по учебникам УМК:

- 1. Химия. 10 класс. Углубленный уровень: учебник / В.В. Еремин, Н.Е. Кузьменко, В.И. Теренин, А.А. Дроздов, В.В. Лунин. М.: Дрофа; Просвещение.
- 2. Химия. 11 класс. Углубленный уровень: учебник / В.В. Еремин, Н.Е. Кузьменко, А.А. Дроздов, В.В. Лунин. М.: Дрофа, Просвещение.

1. Планируемые результаты освоения учебного предмета «Химия» углубленного уровня среднего общего образования

Предметные результаты

В результате изучения учебного предмета «Химия» на углубленном уровне обучающийся научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между химией и другими естественными науками;
- сопоставлять исторические вехи развития химии с историческими периодами развития промышленности и науки для проведения анализа состояния, путей развития науки и технологий;
- анализировать состав, строение и свойства веществ, применяя положения основных химических теорий: химического строения органических соединений А.М. Бутлерова, строения атома, химической связи, электролитической диссоциации кислот, оснований и

- солей, а также устанавливать причинно-следственные связи между свойствами вещества, его составом и строением;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы неорганических и органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определённому классу соединений;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- характеризовать физические свойства неорганических и органических веществ и устанавливать зависимость физических свойств веществ от типа кристаллической решётки;
- характеризовать закономерности в изменении химических свойств простых веществ,
 водородных соединений, высших оксидов и гидроксидов;
- приводить примеры химических реакций, раскрывающих характерные химические свойства неорганических и органических веществ изученных классов с целью их идентификации и объяснения области применения;
- определять механизм реакции в зависимости от условий проведения реакции и прогнозировать возможность протекания химических реакций на основе типа химической связи и активности реагентов;
- устанавливать зависимость реакционной способности органических соединений от характера взаимного влияния атомов в молекулах с целью прогнозирования продуктов реакции;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- устанавливать генетическую связь между классами неорганических и органических веществ для обоснования принципиальной возможности получения неорганических и органических соединений заданного состава и строения;
- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные способы получения важнейших неорганических и органических веществ;
- определять характер среды в результате гидролиза неорганических и органических веществ и приводить примеры гидролиза веществ в повседневной жизни человека, биологических

- обменных процессах и промышленности;
- приводить примеры окислительно-восстановительных реакций в природе,
 производственных процессах и жизнедеятельности организмов;
- обосновывать практическое использование неорганических и органических веществ и их реакций в промышленности и быту;
- выполнять химический эксперимент по распознаванию и получению неорганических и органических веществ, относящихся к различным классам соединений, в соответствии с правилами и приёмами безопасной работы при работе с химическими веществами и лабораторным оборудованием;
- проводить расчёты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав или по продуктам сгорания; расчёты массовой доли (массы) химического соединения в смеси; расчёты массы (объёма, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчёты массовой или объёмной доли выхода продукта реакции от теоретически возможного; расчёты теплового эффекта реакции; расчёты объёмных отношений газов при химических реакциях; расчёты массы (объёма, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определённой массовой долей растворенного вещества;
- использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественнонаучной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- находить взаимосвязи между структурой и функцией, причиной и следствием, теорией и фактами при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний;
- представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий, в том числе технологий

современных материалов с различной функциональностью, возобновляемых источников сырья, переработки и утилизации промышленных и бытовых отходов.

В результате изучения учебного предмета «Химия» на углубленном уровне обучающийся получит возможность научиться:

- проводить индивидуальную исследовательскую деятельность по химии (или участвовать в разработке индивидуального проекта) в качестве исполнителя: выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты или теоретические изыскания, интерпретировать результаты, делать выводы на основе полученных результатов, представлять продукт исследований;
- прогнозировать последствия исследований с учетом этических норм, природоохранных и ресурсосберегающих требований;
- самостоятельно планировать и проводить химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- интерпретировать данные о составе и строении веществ, полученные с помощью современных физико-химических методов;
- описывать состояние электрона в атоме на основе современных квантово-механических представлений о строении атома для объяснения результатов спектрального анализа веществ;
- характеризовать роль азотосодержащих гетероциклических соединений и нуклеиновых кислот как важнейших биологически активных веществ;
- прогнозировать возможность протекания окислительно-восстановительных реакций,
 лежащих в основе природных и производственных процессов;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности.

2. Содержание и тематическое планирование учебного предмета «Химия» углубленного уровня среднего общего образования

1 год обучения (учебный курс «Химия. 10 класс. Углубленный уровень»)

Наименование	Коли-	
	чество	Содержание темы
темы	часов	
Тема 1.	20	Атомно-молекулярное учение. Вещества молекулярного и
Повторение и		немолекулярного строения. Качественный и количественный состав
углубление		вещества. Молярная и относительная молекулярная массы вещества.
знаний		Мольная доля и массовая доля элемента в веществе.
		Строение атома. Нуклиды. Изотопы. Современная модель
		строения атома. Атомная орбиталь. Распределение электронов по
		энергетическим уровням в соответствии с принципом наименьшей
		энергии, правилом Хунда и принципом Паули. Электронная
		конфигурация атома. Классификация химических элементов (s-, p-, d-
		, f-элементы). Валентные электроны.
		Периодический закон. Формулировка закона в свете
		современных представлений о строении атома. Мировоззренческое и
		научное значение Периодического закона Д.И. Менделеева. Радиус
		атома. Закономерности в изменении свойств простых веществ,
		водородных соединений, высших оксидов и гидроксидов в периодах
		и группах. Электроотрицательность.
		Химическая связь. Электронная природа химической связи.
		Виды химической связи. Ионная связь. Ковалентная неполярная и
		полярная связь. Обменный и донорно-акцепторный механизм
		образования ковалентной полярной связи. Геометрия молекулы.
		Металлическая связь. Водородная связь.
		Агрегатные состояния вещества. Типы кристаллических
		решеток: атомная, молекулярная, ионная, металлическая.
		Зависимость физических свойств вещества от типа кристаллической
		решётки. Причины многообразия веществ. Современные
		представления о строении твёрдых, жидких и газообразных веществ.
		Газы. Газовые законы. Уравнение Клапейрона-Менделеева.
		Закон Авогадро. Закон объемных отношений. Относительная
		плотность газов. Средняя молярная масса смеси.
		Классификация химических реакций по различным признакам
		сравнения. Гомогенные и гетерогенные реакции. Классификация по
		знаку теплового эффекта. Обратимые и необратимые реакции.
		Каталитические и некаталитические реакции. Реакции с изменением
		и без изменения степени окисления элементов в соединениях.
		Расчеты по формулам и уравнениям реакций с использованием
		основного закона химической стехиометрии.

т	Коли-	
Наименование	чество	Содержание темы
темы	часов	
		Важнейшие классы неорганических веществ. Элементы
		металлы и неметаллы и их положение в Периодической системе.
		Классификация и номенклатура сложных неорганических
		соединений: оксидов, гидроксидов, кислот и солей. Генетическая
		связь между классами неорганических соединений.
		Реакции ионного обмена. Сильные и слабые электролиты.
		Реакции ионного обмена и условия их протекания до конца. Полные
		и сокращенные ионные уравнения.
		Растворы. Способы выражения количественного состава
		раствора: массовая доля (процентная концентрация), молярная
		концентрация. Растворение как физико-химический процесс.
		Дисперсные системы. Коллоидные растворы. Истинные
		растворы. Дисперсная фаза и дисперсионная среда. Суспензии и
		эмульсии. Золи и гели. Опалесценция. Эффект Тиндаля. Коагуляция.
		Седиментация. Синерезис.
		Гидролиз солей. Гидролиз по катиону, по аниону, по катиону и
		по аниону. Реакция среды растворов солей: кислотная, щелочная и
		нейтральная. Полный необратимый гидролиз.
		Комплексные соединения. Состав комплексного иона:
		комплексообразователь, лиганды. Координационное число.
		Номенклатура комплексных соединений. Значение комплексных
		соединений. Понятие о координационной химии.
		Окислительно-восстановительные реакции. Изменение степени
		окисления элементов в соединениях. Окислительно-
		восстановительные реакции. Типы окислительно-восстановительных
		реакций. Окисление и восстановление. Окислители и восстановители.
		Метод электронного баланса. Поведение веществ в средах с разным
		значением рН. Перманганат калия как окислитель. Гальванический
		элемент (на примере элемента Даниэля). Электролиз расплавов и
		водных растворов электролитов (кислот, щелочей и солей).
		Окислительно-восстановительные реакции в природе,
Тема 2.	12	производственных процессах и жизнедеятельности организмов. Появление и развитие органической химии как науки. Предмет
Основные	12	и задачи органической химии. Место и значение органической химии
понятия		в системе естественных наук. Взаимосвязь неорганических и
органической		органических веществ.
химии		Решение расчетных задач на установление формул
AMERICANE		углеводородов по элементному составу и по анализу продуктов
		сгорания.
		Электронное строение и химические связи атома углерода.
		Основное и возбуждённые состояния атомов на примере углерода.
		Гибридизация атомных орбиталей, ее типы для органических
	<u> </u>	1 /1 openimien, of time April optimit tooking

Наименование темы	Коли- чество часов	Содержание темы
	часов	соединений: sp3, sp2, sp. Образование σ- и π-связей в молекулах
		органических соединений. Пространственное строение органических
		соединений.
		Химическое строение как порядок соединения атомов в
		молекуле согласно их валентности. Основные положения теории
		химического строения органических соединений А.М. Бутлерова.
		Зависимость свойств веществ от химического строения молекул.
		Структурная формула.
		Изомерия и изомеры. Структурная и пространственная
		изомерия. Изомерия углеродного скелета. Изомерия положения
		Межклассовая изомерия.
		Виды пространственной изомерии. Оптическая изомерия.
		Асимметрический атом углерода. Оптические антиподы
		Хиральность. Хиральные и ахиральные молекулы. Геометрическая
		изомерия (цис-, транс-изомерия).
		Электронное строение органических веществ. Взаимное
		влияние атомов и групп атомов. Электронные эффекты.
		Индуктивный и мезомерный эффекты. Представление о резонансе.
		Классификация органических веществ. Основные классы
		органических соединений. Принципы классификации органических
		соединений. Понятие о функциональной группе. Классификация
		органических соединений по функциональным группам. Гомология.
		Гомологи. Гомологическая разность. Гомологические ряды.
		Номенклатура органических веществ. Международная
		(систематическая) номенклатура органических веществ и принципы
		образования названий органических соединений. Рациональная
		номенклатура.
		Классификация и особенности органических реакций. Способы
		записей реакций в органической химии. Схема и уравнение. Условия
		проведения реакций. Классификация реакций органических веществ
		по структурному признаку: замещение, присоединение, отщепление.
		Реакционные центры. Первоначальные понятия о типах и механизмах
		органических реакций. Гомолитический и гетеролитический разрыв
		ковалентной химической связи. Свободнорадикальный и ионный
		механизмы реакции. Понятие о свободном радикале, нуклеофиле и
		электрофиле.
		Окислительно-восстановительные реакции в органической
		химии.
		Особенности органических веществ. Причины многообразия
		органических веществ. Органические вещества в природе.
		Углеродный скелет органической молекулы, его типы: циклические,
		ациклические. Карбоциклические и гетероциклические скелеты.

**	Коли-	
Наименование	чество	Содержание темы
темы	часов	•
		Кратность химической связи (виды связей в молекулах
		органических веществ: одинарные, двойные, тройные). Изменение
		энергии связей между атомами углерода при увеличении кратности
		связи. Насыщенные и ненасыщенные соединения.
Тема 3.	27	Алканы. Электронное и пространственное строение молекулы
Углеводороды		метана. sp3-гибридизация орбиталей атомов углерода.
		Гомологический ряд и общая формула алканов. Систематическая
		номенклатура алканов и радикалов. Изомерия углеродного скелета
		алканов. Физические свойства алканов. Закономерности изменения
		физических свойств.
		Химические свойства алканов: галогенирование, нитрование,
		дегидрирование, термическое разложение (пиролиз), горение как
		один из основных источников тепла в промышленности и быту,
		каталитическое окисление, крекинг как способы получения
		важнейших соединений в органическом синтезе, изомеризация как
		способ получения высокосортного бензина. Механизм реакции
		свободнорадикального замещения (на примере хлорирования
		метана).
		Синтетические способы получения алканов. Методы получения
		алканов из алкилгалогенидов (реакция Вюрца),
		декарбоксилированием солей карбоновых кислот и электролизом
		растворов солей карбоновых кислот. Нахождение алканов в природе
		и применение алканов.
		Циклоалканы. Строение молекул циклоалканов. Общая
		формула циклоалканов. Номенклатура циклоалканов. Изомерия
		циклоалканов: углеродного скелета, межклассовая, пространственная
		(цис-транс-изомерия). Напряженные и ненапряженные циклы.
		Специфика свойств циклоалканов с малым размером цикла. Химические свойства циклопропана: горение, реакции
		Химические свойства циклопропана: горение, реакции присоединения (гидрирование, присоединение галогенов,
		галогеноводородов, воды) и циклогексана: горение, реакции
		радикального замещения (хлорирование, нитрование). Получение
		циклоалканов из алканов и дигалогеналканов.
		Алкены. Электронное и пространственное строение молекулы
		этилена. sp2-гибридизация орбиталей атомов углерода. σ - и π -связи.
		Гомологический ряд и общая формула алкенов. Номенклатура
		алкенов. Изомерия алкенов: углеродного скелета, положения кратной
		связи, пространственная (геометрическая изомерия или цис-транс-
		изомерия), межклассовая. Физические свойства алкенов.
		Химические свойства алкенов. Реакции электрофильного
		присоединения как способ получения функциональных производных
		углеводородов: гидрирование, галогенирование,

	Коли-	
Наименование	чество	Содержание темы
темы	часов	обдержиние темы
	10002	гидрогалогенирование, гидратация алкенов. Правило Марковникова
		и его объяснение с точки зрения электронной теории. Радикальное
		присоединение бромоводорода к алкенам в присутствии перекисей.
		Окисление алкенов: горение, окисление кислородом в присутствии
		хлоридов палладия (II) и меди (II) (Вакер-процесс), окисление
		кислородом в присутствии серебра, окисление горячим
		подкисленным раствором перманганата калия, окисление
		перманганатом калия (реакция Вагнера). Качественные реакции на
		двойную связь.
		Промышленные и лабораторные способы получения алкенов.
		Получение алкенов из алканов, спиртов, галогеналканов,
		дигалогеналкапов. Правило Зайцева. Полимеризация алкенов.
		Полимеризация на катализаторах Циглера-Натта. Полиэтилен как
		крупнотоннажный продукт химического производства. Применение
		алкенов (этилен и пропилен).
		Алкадиены. Классификация алкадиенов по взаимному
		расположению кратных связей в молекуле. Особенности
		электронного и пространственного строения сопряжённых
		алкадиенов. Общая формула алкадиенов. Номенклатура и изомерия
		алкадиенов. Физические свойства алкадиенов. Химические свойства
		алкадиенов: реакции присоединения (гидрирование,
		галогенирование), горения и полимеризации. 1,2- и 1,4-
		присоединение. Получение алкадиенов. Синтез бутадиена из бутана
		и этанола.
		Полимеризация. Каучуки. Вклад С.В. Лебедева в получение
		синтетического каучука. Вулканизация каучуков. Резина.
		Многообразие видов синтетических каучуков, их свойства и
		применение.
		Алкины. Электронное и пространственное строение молекулы
		ацетилена. sp-гибридизация орбиталей атомов углерода.
		Гомологический ряд и общая формула алкинов. Номенклатура
		алкинов. Изомерия алкинов: углеродного скелета, положения
		кратной связи, межклассовая. Физические свойства алкинов.
		Химические свойства алкинов. Реакции присоединения как
		способ получения полимеров и других полезных продуктов. Гидрирование. Реакции присоединения галогенов,
		Гидрирование. Реакции присоединения галогенов, галогеноводородов, воды. Тримеризация и димеризация ацетилена.
		Реакции замещения. Кислотные свойства алкинов с концевой
		тройной связью. Ацетилениды. Окисление алкинов раствором
		перманганата калия. Горение ацетилена.
		Получение ацетилена пиролизом метана и карбидным методом.
		Синтез алкинов алкилированием ацетилидов. Применение ацетилена.
		отте выминов вымытрованием ацетындов. Применение ацетилена.

Наименование	Коли-	
темы	чество	Содержание темы
	часов	
		Горение ацетилена как источник высокотемпературного пламени для
		сварки и резки металлов.
		Арены. История открытия бензола. Современные
		представления об электронном и пространственном строении
		бензола. Общая формула аренов. Изомерия и номенклатура
		гомологов бензола. Изомерия дизамещенных бензолов на примере
		ксилолов. Физические свойства бензола.
		Химические свойства бензола. Реакции замещения в
		бензольном ядре (электрофильное замещение): галогенирование,
		нитрование, алкилирование. Реакции присоединения к бензолу
		(гидрирование, галогенирование (хлорирование на свету)). Реакция
		горения. Особенности химических свойств алкилбензолов на
		примере толуола. Взаимное влияние атомов в молекуле толуола.
		Правила ориентации заместителей в реакциях замещения.
		Хлорирование толуола. Окисление алкилбензолов раствором перманганата калия. Галогенирование алкилбензолов в боковую
		цепь. Нитрование нитробензола.
		Получение бензола и его гомологов. Применение гомологов
		бензола.
		Генетическая связь между различными классами
		углеводородов. Качественные реакции на непредельные
		углеводороды.
		Природные источники углеводородов. Природный и попутный
		нефтяной газы, их состав и использование. Нефть как смесь
		углеводородов. Состав нефти и её переработка. Нефтепродукты.
		Первичная переработка нефти. Перегонка нефти. Октановое число
		бензина. Охрана окружающей среды при нефтепереработке и
		транспортировке нефтепродуктов. Каменный уголь. Коксование угля.
		Газификация угля. Экологические проблемы, возникающие при
		использовании угля в качестве топлива.
		Вторичная (глубокая) переработка нефти. Крекинг. Риформинг.
		Галогенопроизводные углеводородов. Реакции замещения
		галогена на гидроксил, нитрогруппу, цианогруппу. Действие на
		галогенпроизводные водного и спиртового раствора щелочи.
		Сравнение реакционной способности алкил-, винил-, фенил- и
		бензилгалогенидов. Взаимодействие дигалогеналканов с магнием и
		цинком. Понятие о металлоорганических соединениях.
		Магнийорганические соединения. Реактив Гриньяра. Использование
		галогенпроизводных в быту, технике и в синтезе.
Тема 4.	25	Спирты. Классификация, номенклатура и изомерия спиртов.
Кислород-		Гомологический ряд и общая формула предельных одноатомных
содержащие		спиртов. Физические свойства предельных одноатомных спиртов.

	Коли-	
Наименование	чество	Содержание темы
темы	часов	Содержиние тены
on Formula or the	часов	Водородная связь между молекулами и ее влияние на физические
органические		свойства спиртов. Физиологическое действие метанола и этанола на
соединения		<u> </u>
		организм человека. Промышленный синтез метанола. Получение
		этанола: реакция брожения глюкозы, гидратация этилена.
		Применение метанола и этанола.
		Химические свойства спиртов: кислотные свойства
		(взаимодействие с натрием как способ установления наличия
		гидроксогруппы); реакции замещения гидроксильной группы на
		галоген как способ получения растворителей; межмолекулярная и
		внутримолекулярная дегидратация; образование сложных эфиров с
		неорганическими и органическими кислотами; горение; окисление
		оксидом меди (II), подкисленным раствором перманганата калия,
		хромовой смесью; реакции углеводородного радикала. Алкоголяты.
		Гидролиз, алкилирование (синтез простых эфиров по Вильямсону).
		Простые эфиры как изомеры предельных одноатомных спиртов
		Сравнение их физических и химических свойств со спиртами.
		Реакция расщепления простых эфиров иодоводородом.
		Многоатомные спирты. Этиленгликоль и глицерин как
		представители предельных многоатомных спиртов, их физические и
		химические свойства. Качественная реакция на многоатомные
		спирты и её применение для распознавания глицерина в составе
		косметических средств. Синтез диоксана из этиленгликоля.
		Токсичность этиленгликоля. Практическое применение
		этиленгликоля и глицерина.
		Фенолы. Строение, изомерия и номенклатура фенолов.
		Взаимное влияние атомов в молекуле фенола. Физические и
		химические свойства фенола и крезолов. Кислотные свойства
		фенолов в сравнении со спиртами: реакции с натрием, гидроксидом
		натрия. Реакции замещения в бензольном кольце (галогенирование
		(бромирование), нитрование). Окисление фенолов. Качественные
		реакции на фенол. Получение фенола. Применение фенола.
		Карбонильные соединения. Альдегиды и кетоны. Электронное
		и пространственное строение карбонильной группы, ее полярность и
		поляризуемость. Классификация альдегидов и кетонов. Строение
		предельных альдегидов. Гомологический ряд, номенклатура,
		изомерия предельных альдегидов. Строение молекулы ацетона.
		Гомологический ряд, номенклатура и изомерия кетонов. Общая
		формула предельных альдегидов и кетонов. Физические свойства
		формальдегида, ацетальдегида, ацетона. Понятие о кето-енольной
		таутомерии карбонильных соединений. Химические свойства
		предельных альдегидов и кетонов. Реакции присоединения воды,
		спиртов, циановодорода и гидросульфита натрия. Сравнение

Цануоноранио	Коли-	
Наименование	чество	Содержание темы
темы	часов	
		реакционной способности альдегидов и кетонов в реакциях
		присоединения.
		Химические свойства предельных альдегидов и кетонов.
		Реакции замещения атомов водорода при α-углеродном атоме на
		галоген. Полимеризация формальдегида и ацетальдегида. Синтез
		спиртов взаимодействием карбонильных соединений с реактивом
		Гриньяра. Окисление карбонильных соединений. Особенности
		реакции окисления ацетона. Сравнение окисления альдегидов и
		кетонов. Гидрирование. Восстановление карбонильных соединений в
		спирты. Качественные реакции на альдегидную группу (реакция
		«серебряного зеркала», взаимодействие с гидроксидом меди (II)).
		Особенности формальдегида. Получение предельных альдегидов:
		окисление спиртов, гидратация ацетилена (реакция Кучерова),
		окислением этилена кислородом в присутствии хлорида палладия (II).
		Получение ацетона окислением пропанола-2 и разложением
		кальциевой или бариевой соли уксусной кислоты. Токсичность
		альдегидов. Важнейшие представители альдегидов и кетонов:
		формальдегид, уксусный альдегид, ацетон и их практическое
		использование.
		Карбоновые кислоты. Строение предельных одноосновных
		карбоновых кислот. Классификация, изомерия и номенклатура
		карбоновых кислот. Электронное и пространственное строение
		карбоксильной группы. Гомологический ряд и общая формула
		предельных одноосновных карбоновых кислот. Физические свойства
		предельных одноосновных карбоновых кислот на примере муравьиной, уксусной, пропионовой, пальмитиновой и стеариновой
		кислот. Водородные связи, ассоциация карбоновых кислот.
		Химические свойства предельных одноосновных карбоновых кислот.
		Кислотные свойства (изменение окраски индикаторов, реакции с
		активными металлами, основными оксидами, основаниями, солями).
		Изменение силы карбоновых кислот при введении донорных и
		акцепторных заместителей. Взаимодействие карбоновых кислот со
		спиртами (реакция этерификации), обратимость реакции, механизм
		реакции этерификации. Галогенирование карбоновых кислот в
		боковую цепь. Особенности химических свойств муравьиной
		кислоты. Получение предельных одноосновных карбоновых кислот:
		окисление альдегидов, окисление первичных спиртов, окисление
		алканов и алкенов, гидролизом геминальных тригалогенидов.
		Получение муравьиной и уксусной кислот в промышленности.
		Применение муравьиной и уксусной кислот. Высшие предельные
		карбоновые кислоты.
		Функциональные производные карбоновых кислот.

Наименование	Коли-	
	чество	Содержание темы
темы	часов	
		Хлорангидриды и ангидриды карбоновых кислот: получение,
		гидролиз. Получение сложных эфиров с использованием
		хлорангидридов и ангидридов кислот.
		Сложные эфиры. Строение, номенклатура и изомерия сложных
		эфиров. Сложные эфиры как изомеры карбоновых кислот
		(межклассовая изомерия). Сравнение физических свойств и
		реакционной способности сложных эфиров и изомерных им
		карбоновых кислот. Гидролиз сложных эфиров. Способы получения
		сложных эфиров: этерификация карбоновых кислот, ацилирование
		спиртов и алкоголятов галогенангиридами и ангидридами,
		алкилирование карбоксилат-ионов. Применение сложных эфиров в
		пищевой и парфюмерной промышленности.
		Амиды карбоновых кислот: получение и свойства на примере
		ацетамида.
		Соли карбоновых кислот, их термическое разложение в
		присутствии щелочи. Синтез карбонильных соединений разложением
		кальциевых солей карбоновых кислот.
		Многообразие карбоновых кислот
		Непредельные и ароматические кислоты: особенности их
		строения и свойств. Применение бензойной кислоты. Высшие
		непредельные карбоновые кислоты.
		Двухосновные карбоновые кислоты: общие способы получения,
		особенности химических свойств. Щавелевая и малоновая кислота
		как представители дикарбоновых кислот.
		Ароматические дикарбоновые кислоты (фталевая, изофталевая
		и терефталевая кислоты).
		Понятие о гидроксикарбоновых кислотах и их представителях
		молочной, лимонной, яблочной и винной кислотах. Значение и
T 5	1.1	применение карбоновых кислот.
Тема 5.	11	Нитросоединения. Электронное строение нитрогруппы.
Азот- и серо-		Получение нитросоединений. Восстановление нитроаренов в амины.
содержащие		Ароматические нитросоединения. Взрывчатые вещества. Амины. Классификация по типу углеводородного радикала и
соединения		
		числу аминогрупп в молекуле, номенклатура, изомерия аминов. Первичные, вторичные и третичные амины. Электронное и
		пространственное строение предельных аминов. Физические
		свойства аминов. Амины как органические основания: реакции с
		водой, кислотами. Соли алкиламмония. Реакция горения аминов.
		Алкилирование и ацилирование аминов. Реакции аминов с азотистой
		кислотой. Получение аминов алкилированием аммиака и
		восстановлением нитропроизводных углеводородов, из спиртов.
		Применение аминов в фармацевтической промышленности.
		применение аминов в фармацевтической промышленности.

Наименование	Коли-	Construction
темы	чество часов	Содержание темы
	часов	Ароматические амины. Анилин как представитель
		ароматических аминов. Строение анилина. Взаимное влияние групп
		атомов в молекуле анилина. Влияние заместителей в ароматическом
		ядре на кислотные и основные свойства ариламинов. Причины
		ослабления основных свойств анилина в сравнении с аминами
		предельного ряда. Химические свойства анилина: основные свойства
		(взаимодействие с кислотами); реакции замещения в ароматическое
		ядро (галогенирование (взаимодействие с бромной водой),
		нитрование (взаимодействие с азотной кислотой), сульфирование);
		окисление; алкилирование и ацилирование по атому азота).
		Получение анилина (реакция Зинина). Анилин как сырьё для
		производства анилиновых красителей. Синтезы на основе анилина.
		Сероорганические соединения. Представление о
		сероорганических соединениях. Особенности их строения и свойств.
		Значение сероорганических соединений.
		Гетероциклы. Фуран и пиррол как представители пятичленных
		гетероциклов. Природа ароматичности пятичленных гетероциклов.
		Электронное строение молекулы пиррола, ароматический характер
		молекулы. Кислотные свойства пиррола.
		Пиридин как представитель шестичленных гетероциклов.
		Электронное строение молекулы пиридина, ароматический характер
		молекулы. Основные свойства пиридина. Различие в проявлении основных свойств пиррола и пиридина. Реакции пиридина:
		электрофильное замещение, гидрирование, замещение атомов
		водорода в α-положении на гидроксогруппу. Пиколины и их
		окисление. Кето-енольная таутомерия α-гидроксипиридина.
		Представление об имидазоле, пиперидине, пиримидине, никотине,
		атропине, пурине, пуриновых и пиримидиновых основаниях.
Тема 6.	21	Углеводы. Общая формула углеводов. Классификация
Биологически		углеводов. Моно-, олиго- и полисахариды. Применение и
активные		биологическая роль углеводов. Окисление углеводов – источник
вещества		энергии живых организмов.
		Физические свойства и нахождение углеводов в природе (на
		примере глюкозы и фруктозы). Линейная и циклическая формы
		глюкозы и фруктозы. Пиранозы и фуранозы. Формулы Фишера и
		Хеуорса. Понятие о таутомерии как виде изомерии между
		циклической и линейной формами. Фруктоза как изомер глюкозы.
		Рибоза и дезоксирибоза.
		Химические свойства глюкозы: окисление хлорной или
		бромной водой, окисление азотной кислотой, восстановление в
		шестиатомный спирт, ацилирование, алкилирование, изомеризация,
		качественные реакции на глюкозу (экспериментальные

	Коли-	
Наименование		Содорумому тому
темы	чество	Содержание темы
	часов	· · · · · · · · · · · · · · · · · · ·
		доказательства наличия альдегидной и спиртовых групп в глюкозе),
		спиртовое и молочнокислое брожение. Гликозидный гидроксил, его
		специфические свойства. Понятие о гликозидах. Понятие о
		глюкозидах, их нахождении в природе. Получение глюкозы.
		Дисахариды. Сахароза как представитель
		невосстанавливающих дисахаридов. Строение, физические и
		химические свойства сахарозы. Гидролиз дисахаридов. Получение
		сахара из сахарной свеклы. Применение сахарозы.
		Полисахариды. Крахмал, гликоген и целлюлоза как
		биологические полимеры. Крахмала как смесь амилозы и
		амилопектина, его физические свойства. Химические свойства
		крахмала: гидролиз, качественная реакция с иодом и её применение
		для обнаружения крахмала в продуктах питания. Целлюлоза:
		строение и физические свойства. Химические свойства целлюлозы:
		гидролиз, образование сложных эфиров. Применение крахмала и
		целлюлозы. Практическое значение полисахаридов.
		Жиры как сложные эфиры глицерина и высших карбоновых
		кислот. Растительные и животные жиры, их состав. Физические
		свойства жиров. Химические свойства жиров: гидрирование,
		окисление. Гидролиз или омыление жиров как способ
		промышленного получения солей высших карбоновых кислот.
		Гидрогенизация жиров. Применение жиров. Мыла как соли высших
		карбоновых кислот. Моющие свойства мыла.
		Аминокислоты. Состав, строение и номенклатура аминокислот.
		Гомологический ряд предельных аминокислот. Изомерия
		предельных аминокислот. Оптическая изомерия. Физические
		свойства предельных аминокислот. Основные аминокислоты,
		образующие белки. Способы получения аминокислот. Аминокислоты
		как амфотерные органические соединения, равновесия в растворах
		аминокислот. Свойства аминокислот: кислотные и основные
		свойства; ацилирование аминогруппы; этерификация; реакции с
		азотистой кислотой. Качественные реакции на аминокислоты с
		гидроксидом меди (II), нингидрином, 2,4-динитрофторбензолом.
		Специфические качественные реакции на ароматические и
		гетероциклические аминокислоты с концентрированной азотной
		кислотой, на цистеин с ацетатом свинца (II). Биологическое значение
		α-аминокислот. Области применения аминокислот.
		Пептиды, их строение. Пептидная связь. Амидный характер
		пептидной связи. Синтез пептидов. Гидролиз пептидов.
		Белки как природные биополимеры. Состав и строение белков.
		Первичная структура белков. Химические методы установления
		аминокислотного состава и последовательности. Ферментативный

Наименование темы	Коли- чество часов	Содержание темы
Тема 7. Высоко-	6	гидролиз белков. Вторичная структура белков: α-спираль, β-структура. Третичная и четвертичная структура белков. Дисульфидные мостики и ионные и ван-дер-ваальсовы (гидрофобные) взаимодействия. Химические свойства белков: гидролиз, денатурация, качественные (цветные) реакции на белки. Биологические функции белков. Нуклеиновые кислоты. Нуклеозиды. Нуклеотиды. Нуклеиновые кислоты как природные полимеры. Состав и строение нуклеиновых кислот (ДНК и РНК). Гидролиз нуклеиновых кислот. Роль нуклеиновых кислот в жизнедеятельности организмов. Функции ДНК и РНК. Комплементарность. Генетический код. Основные понятие высокомолекулярных соединений: реакции способы полимери.
молекулярные соединения		способы получения высокомолекулярных соединений: реакции полимеризации и поликонденсации. Сополимеризация. Строение и
Консультации	16	структура полимеров. Зависимость свойств полимеров от строения молекул. Классификация полимеров: пластмассы (пластики), эластомеры (каучуки), волокна, композиты. Современные пластмассы (пластики) (полиэтилен, полипропилен, полистирол, поливинилхлорид, фторопласт, полиэтилентерефталат, акрил-бутадиен-стирольный пластик, поликарбонаты). Термопластичные и термореактивные полимеры. Фенолформальдегидные смолы. Композитные материалы. Перспективы использования композитных материалов. Углепластики. Волокна, их классификация. Природные и химические волокна. Искусственные и синтетические волокна. Понятие о вискозе и ацетатном волокне. Полиэфирные и полиамидные волокна, их строение, свойства. Практическое использование волокон. Эластомеры. Природный и синтетический каучук. Резина и эбонит. Применение полимеров. Синтетические плёнки. Мембраны. Новые технологии дальнейшего совершенствования полимерных материалов.
топсультации		

2 год обучения (учебный курс «Химия. 11 класс. Углубленный уровень»)

	Коли-	
Наименование	чество	Содержание темы
темы	часов	
Тема 1.	11	Строение атома. Нуклиды. Изотопы. Дефект массы. Типы
Строение		радиоактивного распада. Термоядерный синтез. Открытие новых
вещества		химических элементов. Ядерные реакции. Типы ядерных реакций:
		деление и синтез. Применение радионуклидов в медицине. Метод
		меченых атомов.
		Представление о квантовой механике. Соотношение де Бройля.
		Принцип неопределенности Гейзенберга. Понятие о волновой
		функции.
		Квантовые числа. Атомная орбиталь. Распределение
		электронов по энергетическим уровням в соответствии с принципом
		наименьшей энергии, правилом Хунда и принципом Паули.
		Особенности строения энергетических уровней атомов d-элементов.
		Электронная конфигурация атома. Электронные конфигурации
		положительных и отрицательных ионов. Валентные электроны.
		Электронная природа химической связи. Виды химической
		связи. Ковалентная связь и ее характеристики (энергия связи, длина
		связи, валентный угол, кратность связи, полярность,
		поляризуемость). Ковалентная неполярная и полярная связь.
		Обменный и донорно-акцепторный механизмы образования
		ковалентной полярной связи. Геометрия молекулы. Дипольный
		момент связи, дипольный момент молекулы. Химическая связь. Ионная связь. Отличие между ионной и
		ковалентной связью. Строение твердых тел. Типы кристаллических
		решеток ионных соединений. Понятие об элементарной ячейке.
		Химическая связь. Металлическая связь. Строение твердых тел.
		Кристаллические и аморфные тела. Типы кристаллических решеток
		металлов.
		Межмолекулярные взаимодействия. Водородная связь и ее
		влияние на свойства вещества. Понятие о супрамолекулярной химии.
Тема 2.	19	Тепловой эффект химической реакции. Эндотермические и
Теоретическое		экзотермические реакции. Термохимические уравнения. Понятие об
описание		энтальпии. Теплота образования вещества. Энергия связи.
химических		Закон Гесса и следствия из него. Энергия связи.
реакций		Понятие об энтропии. Второй закон термодинамики.
		Энергия Гиббса и критерии самопроизвольности химической
		реакции.
		Скорость химических реакций, ее зависимость от различных
		факторов: природы реагирующих веществ, концентрации
		реагирующих веществ, температуры, наличия катализатора, площади
		поверхности реагирующих веществ. Реакции гомогенные и

Поттолого	Коли-	
Наименование темы	чество	Содержание темы
ICMBI	часов	
		гетерогенные. Элементарные реакции. Механизм реакции.
		Активированный комплекс (переходное состояние). Закон
		действующих масс.
		Правило Вант-Гоффа. Понятие об энергии активации и об
		энергетическом профиле реакции.
		Катализаторы и катализ. Активность и селективность
		катализатора. Гомогенный и гетерогенный катализ. Роль
		катализаторов в природе и промышленном производстве. Ферменты
		как биологические катализаторы. Лабораторный опыт 1. Каталитическое разложение пероксида
		водорода.
		Обратимые реакции. Химическое равновесие. Константа
		равновесия.
		Принцип Ле Шателье. Равновесные состояния: устойчивое,
		неустойчивое, безразличное. Смещение химического равновесия под
		действием различных факторов: концентрации реагентов или
		продуктов реакции, давления, температуры. Роль смещения
		равновесия в технологических процессах.
		Ионное произведение воды. Водородный показатель (рН)
		раствора. Расчет рН растворов сильных кислот и щелочей.
		Равновесие в растворах. Константы диссоциации слабых
		электролитов. Связь константы и степени диссоциации. Закон
		разведения Оствальда. Равновесие между насыщенным раствором и
		осадком. Произведение растворимости.
		Гальванический элемент (на примере элемента Даниэля).
		Химические источники тока: гальванические элементы,
		аккумуляторы и топливные элементы. Форма записи химического
		источника тока. Стандартный водородный электрод. Стандартный
		электродный потенциал системы. Понятие о электродвижущей силе реакции. Электрохимический ряд напряжений (активности)
		металлов. Направление окислительно-восстановительных реакций.
		Электролиз водных растворов электролитов. Законы
		электролиза.
Тема 3.	12	Щелочные металлы. Общая характеристика элементов главной
Металлы		подгруппы I группы. Свойства щелочных металлов. Распознавание
главных		катионов лития, натрия и калия.
подгрупп		Лабораторный опыт 2. Окрашивание пламени соединениями
		щелочных металлов.
		Натрий и калий — представители щелочных металлов.
		Характерные реакции натрия и калия. Получение щелочных
		металлов. Оксиды и пероксиды натрия и калия. Соли натрия, калия,
		их значение в природе.

П	Коли-	
Наименование	чество	Содержание темы
темы	часов	
		Лабораторный опыт 3. Ознакомление с минералами и
		важнейшими соединениями щелочных металлов.
		Соединения натрия и калия. Соли натрия, калия, их значение в
		жизни человека. Сода и едкий натр — важнейшие соединения натрия.
		Лабораторный опыт 4. Свойства соединений щелочных
		металлов.
		Общая характеристика элементов главной подгруппы II
		группы.
		Бериллий, магний, щелочноземельные металлы. Амфотерность
		оксида и гидроксида бериллия. Окраска пламени солями
		щелочноземельных металлов.
		Лабораторный опыт 5. Окраска пламени соединениями
		щелочноземельных металлов.
		Магний, его общая характеристика на основе положения в
		Периодической системе элементов Д.И. Менделеева и строения
		атомов. Получение, физические и химические свойства, применение
		магния и его соединений. Соли магния, их значение в природе и
		жизни человека.
		Лабораторный опыт 6. Свойства магния и его соединений.
		Кальций, его общая характеристика на основе положения в
		Периодической системе элементов Д.И. Менделеева и строения
		атомов. Получение, физические и химические свойства, применение
		кальция и его соединений. Соли кальция, их значение в природе и
		жизни человека.
		Лабораторный опыт 7. Свойства соединений кальция.
		Жесткость воды и способы ее устранения.
		Лабораторный опыт 8. Жесткость воды.
		Алюминий. Распространенность в природе, физические и
		химические свойства (отношение к кислороду, галогенам, растворам
		кислот и щелочей, алюмотермия). Производство алюминия.
		Применение алюминия.
		Лабораторный опыт 9. Свойства алюминия.
		Амфотерность оксида и гидроксида алюминия. Соли
		алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе.
		Комплексные соединения алюминия. Лабораторный опыт 10. Свойства соединений алюминия.
		Олово и свинец. Физические и химические свойства (реакции с
		кислородом, кислотами), применение. Соли олова(II) и свинца(II).
		Свинцовый аккумулятор.
		Лабораторный опыт 11. Свойства олова, свинца и их
		соединений.
		соодинении.

Наименование	Коли-	
темы	чество	Содержание темы
	часов	
Тема 4.	17	Общая характеристика переходных металлов I-VIII групп.
Металлы		Особенности строения атомов переходных металлов. Общие
побочных		физические и химические свойства. Применение металлов.
подгрупп		Хром. Физические свойства хрома. Химические свойства хрома
		(отношение к водяному пару, кислороду, хлору, растворам кислот).
		Получение и применение хрома.
		Соединения хрома. Изменение окислительно-
		восстановительных и кислотно-основных свойств оксидов и
		гидроксидов хрома с ростом степени окисления. Амфотерные
		свойства оксида и гидроксида хрома (III). Окисление солей хрома
		(III) в хроматы. Взаимные переходы хроматов и дихроматов.
		Хроматы и дихроматы как окислители. Полное разложение водой
		солей хрома (III) со слабыми двухосновными кислотами.
		Комплексные соединения хрома.
		Лабораторный опыт 12. Свойства соединений хрома.
		Марганец — физические и химические свойства (отношение к
		кислороду, хлору, растворам кислот). Получение и применение
		марганца. Оксид марганца (IV) как окислитель и катализатор.
		Перманганат калия как окислитель. Лабораторный опыт 13. Свойства марганца и его соединений.
		Железо. Нахождение в природе. Значение железа для организма
		человека.
		Лабораторный опыт 14. Изучение минералов железа.
		Физические свойства железа. Химические свойства железа
		(взаимодействие с кислородом, хлором, серой, углем, водой,
		кислотами, растворами солей). Сплавы железа с углеродом.
		Получение и применение железа.
		Коррозия железа и способы защиты железных изделий от
		коррозии.
		Лабораторный опыт 15. Свойства железа.
		Соединения железа. Сравнение кислотно-основных и
		окислительно-восстановительных свойств гидроксида железа (II) и
		гидроксида железа (III). Соли железа (II) и железа (III). Методы
		перевода солей железа (II) в соли железа (III) и обратно. Полное
		разложение водой солей железа (III) со слабыми двухосновными
		кислотами. Окислительные свойства соединений железа (III) в
		реакциях с восстановителями (иодидом, сероводородом и медью).
		Цианидные комплексы железа. Качественные реакции на ионы
		железа (II) и (III).
		Медь. Нахождение в природе. Биологическая роль. Физические
		и химические свойства меди: взаимодействие с кислородом, хлором,
		серой, кислотами-окислителями, хлоридом железа (III). Получение и

	Коли-	
Наименование	чество	Содержание темы
темы	часов	•
		применение меди. Оксид и гидроксид меди (II). Соли меди (II). Медный купорос. Аммиакаты меди (I) и меди (II). Получение оксида меди (I) восстановлением гидроксида меди (II) глюкозой. Получение хлорида и иодида меди (I). Лабораторный опыт 16. Свойства меди, ее сплавов и
		соединений.
		Серебро. Физические и химические свойства (взаимодействие с сероводородом в присутствии кислорода, кислотами-окислителями). Осаждение оксида серебра при действии щелочи на соли серебра. Аммиакаты серебра как окислители. Качественная реакция на ионы серебра. Применение серебра. Золото. Физические и химические свойства (взаимодействие с хлором, «царской водкой»). Золотохлороводородная кислота. Гидроксид золота (III). Комплексы золота. Способы выделения золота из золотоносной породы. Применение золота. Цинк. Физические и химические свойства (взаимодействие с галогенами, кислородом, серой, водой, растворами кислот и щелочей). Получение и применение цинка. Амфотерность оксида и
		гидроксида цинка. Важнейшие соли цинка. Лабораторный опыт 17. Свойства цинка и его соединений.
		Ртуть. Физические и химические (взаимодействие с
		кислородом, серой, хлором, кислотами-окислителями) свойства.
		Получение и применение ртути.
Тема 5.	40	Классификация неорганических веществ. Элементы металлы и
Неметаллы		неметаллы и их положение в Периодической системе. Благородные (инертные) газы. Общая характеристика элементов главной подгруппы VIII группы. Особенности химических свойств. Применение благородных газов. Водород. Получение, физические и химические свойства (реакции с металлами и неметаллами, восстановление оксидов и солей). Гидриды. Топливные элементы. Галогены. Общая характеристика элементов главной подгруппы VII группы. Физические свойства простых веществ. Закономерности изменения окислительной активности галогенов в соответствии с их положением в периодической таблице. Галогеноводороды — получение, кислотные и восстановительные свойства. Галогеноводороды, галогеноводородные кислоты и их
		соли. Порядок вытеснения галогенов из растворов галогенидов. Хлор — получение в промышленности и лаборатории, реакции с металлами и неметаллами. Взаимодействие хлора с водой и растворами щелочей. Цепной механизм реакции взаимодействия

Наименование темы	Коли- чество часов	Содержание темы
		хлора с водородом. Обеззараживание питьевой воды хлором.
		Хранение и транспортировка хлора.
		Лабораторный опыт 18. Получение хлора и изучение его
		свойств.
		Кислородные соединения хлора. Гипохлориты, хлораты и
		перхлораты как типичные окислители.
		Лабораторный опыт 19. Свойства хлорсодержащих
		отбеливателей.
		Хлороводород — получение, кислотные и восстановительные
		свойства. Соляная кислота и ее соли. Качественные реакции на
		галогенид-ионы.
		Физические свойства простых веществ. Особенности химии
		фтора, брома и иода. Качественная реакция на иод. Применение
		галогенов и их важнейших соединений.
		Лабораторный опыт 20. Свойства брома, иода и их солей.
		Элементы подгруппы кислорода. Общая характеристика
		элементов главной подгруппы VI группы. Физические свойства
		простых веществ.
		Озон как аллотропная модификация кислорода. Получение озона. Озон как окислитель. Позитивная и негативная роль озона в
		окружающей среде. Сравнение свойств озона и кислорода.
		Вода и пероксид водорода как водородные соединения
		кислорода — сравнение свойств. Пероксид водорода как окислитель
		и восстановитель. Пероксиды металлов.
		Сера. Аллотропия серы. Физические и химические свойства
		серы (взаимодействие с металлами, кислородом, водородом,
		растворами щелочей, кислотами-окислителями). Взаимодействие
		серы с сульфитом натрия с образованием тиосульфата натрия.
		Сероводород — получение, кислотные и восстановительные
		свойства. Сульфиды. Дисульфан. Понятие о полисульфидах.
		Сернистый газ как кислотный оксид. Окислительные и
		восстановительные свойства сернистого газа. Получение сернистого
		газа в промышленности и лаборатории. Сернистая кислота и ее соли.
		Серный ангидрид. Серная кислота. Свойства
		концентрированной и разбавленной серной кислоты. Действие
		концентрированной серной кислоты на сахар, металлы, неметаллы,
		сульфиды. Термическая устойчивость сульфатов. Кристаллогидраты
		сульфатов металлов. Качественная реакция на серную кислоту и ее
		соли.
		Лабораторный опыт 21. Изучение свойств серной кислоты и ее
		солей.

	Коли-	
Наименование	чество	Содержание темы
темы	часов	
		Элементы подгруппы азота. Общая характеристика главной
		подгруппы V группы. Физические свойства простых веществ.
		Азот и его соединения. Строение молекулы азота. Физические
		и химические свойства азота. Получение азота в промышленности и
		лаборатории. Нитриды.
		Аммиак — его получение, физические и химические свойства.
		Основные свойства водных растворов аммиака. Аммиак как
		восстановитель. Взаимодействие аммиака с активными металлами.
		Амид натрия, его свойства. Соли аммония. Поведение солей аммония
		при нагревании. Качественная реакция на ион аммония. Применение
		аммиака.
		Лабораторный опыт 22. Изучение свойств водного раствора
		аммиака.
		Лабораторный опыт 23. Свойства солей аммония.
		Оксиды азота, их получение и свойства. Оксид азота (I).
		Окисление оксида азота (II) кислородом. Димеризация оксида азота
		(IV). Азотистая кислота и ее соли. Нитриты как окислители и
		восстановители.
		Азотная кислота — физические и химические свойства,
		получение. Азотная кислота как окислитель (отношение азотной
		кислоты к металлам и неметаллам). Зависимость продукта
		восстановления азотной кислоты от активности металла и
		концентрации кислоты. Понятие о катионе нитрония. Особенность
		взаимодействия магния и марганца с разбавленной азотной кислотой.
		Нитраты, их физические и химические свойства (окислительные
		свойства и термическая устойчивость), применение.
		Фосфор и его соединения. Аллотропия фосфора. Физические
		свойства фосфора. Химические свойства фосфора (реакции с
		кислородом, галогенами, металлами, сложными веществами-
		окислителями, щелочами). Получение и применение фосфора.
		Фосфин. Фосфиды.
		Фосфорный ангидрид. Ортофосфорная и метафосфорная
		кислоты и их соли. Качественная реакция на ортофосфаты.
		Разложение ортофосфорной кислоты. Применение фосфорной
		кислоты и ее солей. Биологическая роль фосфатов.
		Общая характеристика элементов главной подгруппы IV группы. Углерод. Аллотропия углерода. Сравнение строения и
		группы. Углерод. Аллотропия углерода. Сравнение строения и свойств графита и алмаза. Фуллерен как новая молекулярная форма
		углерода. Уголь: химические свойства, получение и применение
		угля. Карбиды. Гидролиз карбида кальция и карбида алюминия.
		Карбиды переходных металлов (железа, хрома и др.) как
		сверхпрочные материалы.
		сверлирочные материалы.

	Коли-	
Наименование	чество	Содержание темы
темы	часов	
		Оксиды углерода. Электронное строение молекулы угарного
		газа. Уголь и угарный газ как восстановители. Реакция угарного газа
		с расплавами щелочей. Синтез формиатов. Образование угарного
		газа при неполном сгорании угля. Биологическое действие угарного
		газа. Получение и применение угарного газа.
		Углекислый газ: получение, химические свойства:
		взаимодействие углекислого газа с водой, щелочами, магнием,
		пероксидами металлов. Электронное строение углекислого газа.
		Угольная кислота и ее соли. Карбонаты и гидрокарбонаты: их
		поведение при нагревании. Нахождение карбонатов магния и
		кальция в природе: кораллы, жемчуг, известняки (известковые горы,
		карстовые пещеры, сталактиты и сталагмиты).
		Лабораторный опыт 24. Качественная реакция на карбонат-ион.
		Кремний. Физические и химические свойства кремния. Реакции
		с углем, кислородом, хлором, магнием, растворами щелочей,
		сероводородом. Силан — водородное соединение кремния.
		Силициды. Получение и применение кремния.
		Оксид кремния (IV), его строение, физические и химические
		свойства, значение в природе и применение. Кремниевые кислоты и
		их соли. Гидролиз силикатов. Силикатные минералы – основа земной
		коры.
		Лабораторный опыт 25. Испытание раствора силиката натрия
		индикатором.
		Лабораторный опыт 26. Ознакомление с образцами природных
		силикатов.
		Бор. Оксид бора. Борная кислота и ее соли. Бура. Водородные
	_	соединения бора – бораны. Применение соединений бора.
Тема 6.	2	Общий обзор элементов — металлов. Строение и свойства
Общие		простых веществ-металлов. Электрохимический ряд напряжений
свойства		металлов.
металлов		Сплавы. Характеристика наиболее известных сплавов.
		Металлические кристаллические решетки. Получение и применение
T. 7	0	металлов.
Тема 7. У	8	Основные принципы химической технологии. Общие
Химическая		представления о промышленных способах получения химических
технология		Веществ.
		Производство серной кислоты контактным способом. Химизм процесса. Сырье для производства серной кислоты. Технологическая
		схема процесса, процессы и аппараты. Производство аммиака. Химизм процесса. Определение
		Производство аммиака. Химизм процесса. Определение оптимальных условий проведения реакции. Принцип циркуляции и
		его реализация в технологической схеме.
		его решизация в технологической ехеме.

Наименование	Коли-	
	чество	Содержание темы
темы	часов	
		Металлургия. Черная металлургия. Производство чугуна.
		Доменный процесс (сырье, устройство доменной печи, химизм
		процесса).
		Производство стали в кислородном конвертере и в
		электропечах.
		Промышленная органическая химия. Основной и тонкий
		органический синтез. Наиболее крупнотоннажные производства
		органических соединений. Производство метанола. Получение
		уксусной кислоты и формальдегида из метанола. Получение ацетата
		целлюлозы. Сырье для органической промышленности. Проблема
		отходов и побочных продуктов. Синтезы на основе синтез-газа.
		Химическое загрязнение окружающей среды и его последствия.
		Экология и проблема охраны окружающей среды. «Зеленая» химия.
Тема 8.	4	Химия пищи. Жиры, белки, углеводы, витамины, ферменты.
Химия в		Рациональное питание. Пищевые добавки. Пищевые добавки, их
повседневной		классификация. Запрещенные и разрешенные пищевые добавки.
жизни		Основы пищевой химии.
		Химия в медицине. Понятие о фармацевтической химии и
		фармакологии. Разработка лекарств. Лекарственные средства, их
		классификация. Противомикробные средства (сульфаниламидные
		препараты и антибиотики). Анальгетики (аспирин, анальгин,
		парацетамол, наркотические анальгетики). Вяжущие средства.
		Проблемы, связанные с применением лекарственных препаратов.
		Вредные привычки и факторы, разрушающие здоровье (избыточное
		потребление жирной пищи, курение, употребление алкоголя,
		наркомания).
		Косметические и парфюмерные средства.
		Бытовая химия. Понятие о поверхностно-активных веществах.
		Моющие и чистящие средства.
		Отбеливающие средства.
		Правила безопасной работы с едкими, горючими и токсичными
		веществами, средствами бытовой химии.
		Лабораторный опыт 27. Знакомство с моющими средствами.
Тема 9.	4	Химия в строительстве. Гипс. Известь. Цемент, бетон. Клеи.
Химия на		Подбор оптимальных строительных материалов в практической
службе		деятельности человека.
общества		Минеральные и органические удобрения. Средства защиты
		растений. Пестициды: инсектициды, гербициды и фунгициды.
		Репелленты.
		Неорганические материалы. Стекло, его виды. Силикатная
		промышленность. Керамика. Традиционные и современные
	<u> </u>	1 1 1 7 7

Наименование темы	Коли- чество часов	Содержание темы
Тема 10.	4	керамические материалы. Сверхпроводящая керамика. Понятие о керметах и материалах с высокой твердостью. Лабораторный опыт 28. Клеи. Лабораторный опыт 29. Знакомство с минеральными удобрениями и изучение их свойств. Особенности современной науки. Профессия химика.
Химия в современной науке	7	Методология научного исследования. Научные методы познания в химии. Субъект и объект научного познания. Постановка проблемы. Сбор информации и накопление фактов. Гипотеза и ее экспериментальная проверка. Теоретическое объяснение полученных результатов. Индукция и дедукция. Экспериментальная проверка полученных теоретических выводов с целью распространения их на более широкий круг объектов. Химический анализ, синтез, моделирование химических процессов и явлений как методы научного познания. Наноструктуры. Современные физико-химические методы установления состава и структуры веществ. Источники химической информации. Поиск химической информации по названиям, идентификаторам, структурным формулам. Работа с базами данных.
Консультации	8	тормунам таота о ососин даниям.