- CROP SUGGESTION ANALYSIS

Precision agriculture is a modern farming technique that uses the data of soil characteristics, soil types, crop yield data, weather conditions and suggests the farmers with the most optimal crop to grow in their farms for maximum yield and profit.

This technique can reduce the crop failures and will help the farmers to take informed decision about their farming strategy.

DATA FIELDS MENTIONED

- P ratio of Phosphorous content in soil
- N ratio of Nitrogen content in soil
- K ratio of Potassium content in soil
- humidity relative humidity in %
- ph ph value of the soil
- rainfall rainfall in mm
- temperature temperature in degree Celsius

Importing necessary Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from sklearn import tree

import warnings
warnings.filterwarnings('ignore')
```

DATASET UPLOADING

```
df=pd.read_csv("/content/Crop_recommendation.csv")
df
```

	N	P	K	temperature	humidity	ph	rainfall	label
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice
4	78	42	42	20.130175	81.604873	7.628473	262.717340	rice
2195	107	34	32	26.774637	66.413269	6.780064	177.774507	coffee
2196	99	15	27	27.417112	56.636362	6.086922	127.924610	coffee
2197	118	33	30	24.131797	67.225123	6.362608	173.322839	coffee
2198	117	32	34	26.272418	52.127394	6.758793	127.175293	coffee
2199	104	18	30	23.603016	60.396475	6.779833	140.937041	coffee
2200 rows × 8 columns								

df.dtypes

```
N int64
P int64
K int64
temperature float64
humidity float64
rainfall float64
label object
dtype: object
```

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2200 entries, 0 to 2199
Data columns (total 8 columns):
# Column
                Non-Null Count Dtype
                2200 non-null
0
                               int64
1 P
                2200 non-null
                               int64
                2200 non-null
    temperature 2200 non-null
    humidity
                2200 non-null
5 ph
                2200 non-null
                               float64
                2200 non-null float64
6 rainfall
                2200 non-null object
7 label
dtypes: float64(4), int64(3), object(1)
memory usage: 137.6+ KB
```

df.describe()

```
df.isna().sum()
                  0
                  0
    temperature
    humidity
    rainfall
    label
                  0
    dtype: int64
      15%
             84.250000
                        00000UU
                                    49.000000
                                                           89.948777
                                                                       6.923643 124
                                               28.561654
df.size
    17600
df.shape
    (2200, 8)
df.columns
    Index(['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall', 'label'], dtype='object')
df["label"].unique()
print(len(df["label"].unique()))
    22
df["label"].value_counts()
    maize
                  100
                  100
    jute
                  100
    cotton
                  100
    coconut
    papaya
                  100
    orange
                  100
                  100
    apple
    muskmelon
    watermelon
                  100
    grapes
                  100
    mango
                  100
    banana
                  100
                  100
    pomegranate
    lentil
                  100
    blackgram
                  100
    mungbean
                  100
    mothbeans
                  100
    pigeonpeas
                  100
    kidneybeans
                  100
    chickpea
                  100
    coffee
                  100
    Name: label, dtype: int64
```

PIVOT TABLE The pivot table function takes in a data frame and the parameters detailing the shape for the necessary data. Then it outputs summarized data in the form of a pivot table

```
cs=pd.pivot_table(df,index=['label'],aggfunc='mean')
cs_new=cs.reset_index()
cs_new
```

	label	К	N	Р	humidity	ph	rainfall	temperature
0	apple	199.89	20.80	134.22	92.333383	5.929663	112.654779	22.630942
1	banana	50.05	100.23	82.01	80.358123	5.983893	104.626980	27.376798
2	blackgram	19.24	40.02	67.47	65.118426	7.133952	67.884151	29.973340
3	chickpea	79.92	40.09	67.79	16.860439	7.336957	80.058977	18.872847
4	coconut	30.59	21.98	16.93	94.844272	5.976562	175.686646	27.409892
5	coffee	29.94	101.20	28.74	58.869846	6.790308	158.066295	25.540477
6	cotton	19.56	117.77	46.24	79.843474	6.912675	80.398043	23.988958
7	grapes	200.11	23.18	132.53	81.875228	6.025937	69.611829	23.849575
8	jute	39.99	78.40	46.86	79.639864	6.732778	174.792798	24.958376
9	kidneybeans	20.05	20.75	67.54	21.605357	5.749411	105.919778	20.115085
10	lentil	19.41	18.77	68.36	64.804785	6.927932	45.680454	24.509052
11	maize	19.79	77.76	48.44	65.092249	6.245190	84.766988	22.389204
12	mango	29.92	20.07	27.18	50.156573	5.766373	94.704515	31.208770
13	mothbeans	20.23	21.44	48.01	53.160418	6.831174	51.198487	28.194920
14	mungbean	19.87	20.99	47.28	85.499975	6.723957	48.403601	28.525775
15	muskmelon	50.08	100.32	17.72	92.342802	6.358805	24.689952	28.663066
16	orange	10.01	19.58	16.55	92.170209	7.016957	110.474969	22.765725
17	papaya	50.04	49.88	59.05	92.403388	6.741442	142.627839	33.723859
18	pigeonpeas	20.29	20.73	67.73	48.061633	5.794175	149.457564	27.741762
19	pomegranate	40.21	18.87	18.75	90.125504	6.429172	107.528442	21.837842
20	rice	39.87	79.89	47.58	82.272822	6.425471	236.181114	23.689332
21	watermelon	50.22	99.42	17.00	85.160375	6.495778	50.786219	25.591767

DATA VISUALIZATION AND ANALYSIS

Evaluation of crops based on the values of N,K,P

```
import plotly.graph_objects as go
cs=cs.sort_values(by='N', ascending=False)
```

```
cs=cs.sort_values(by='P', ascending=False)

fig=go.Figure()
fig.add_trace(go.Bar(x=cs.index,y=cs['N'],name='Nitrogen',marker_color='indianred'))
fig.add_trace(go.Bar(x=cs.index,y=cs['P'],name='Phosphorous',marker_color='blue'))
fig.add_trace(go.Bar(x=cs.index,y=cs['K'],name='Potassium',marker_color='green'))

fig.update_layout(title="Analysis of Crops based on the content of Potassium,Nitrogen and Phosporous",plot_bgcolor='white',barmode='group',xafig.show()
```

Analysis of Crops based on the content of Potassium, Nitrogen and

Evaluation of crops based on natural calamities

```
import plotly.express as px

fig=px.bar(cs,x=cs.index,y=["humidity","rainfall","temperature"])
fig.update_layout(title_text="Comparison between rainfall, temerature and humidity",height=700)
fig.show()
```

Comparison between rainfall, temerature and humidity

HEATMAP DISPLAYING THE CORRELATION BETWEEN DIFFERENT FEATURES

```
fig,ax=plt.subplots(1,1,figsize=(15,9))
sns.heatmap(df.corr(),annot=True,cmap="copper")
plt.title('CORRELATION BETWEEN DIFFERENT FEATURES',fontsize = 15,c='black')
plt.show()
```

DECLARING INDEPENDENT AND TARGET VARIABLES

```
features=df[['N','P','K','temperature','humidity','ph','rainfall']]
target=df['label']
```

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['label']=le.fit_transform(df['label'])
df
```

	N	Р	K	temperature	humidity	ph	rainfall	label
0	90	42	43	20.879744	82.002744	6.502985	202.935536	20
1	85	58	41	21.770462	80.319644	7.038096	226.655537	20
2	60	55	44	23.004459	82.320763	7.840207	263.964248	20
3	74	35	40	26.491096	80.158363	6.980401	242.864034	20
4	78	42	42	20.130175	81.604873	7.628473	262.717340	20
2195	107	34	32	26.774637	66.413269	6.780064	177.774507	5
2196	99	15	27	27.417112	56.636362	6.086922	127.924610	5
2197	118	33	30	24.131797	67.225123	6.362608	173.322839	5
2198	117	32	34	26.272418	52.127394	6.758793	127.175293	5
2199	104	18	30	23.603016	60.396475	6.779833	140.937041	5
2200 rows × 8 columns								

OUTLIER DETECTION AND HANDLING

plt.figure(figsize=[10,5],dpi=100) sns.boxplot(data=df)


```
for i in df["P"]:
  q1=df["P"].quantile(0.25)
  q2=df["P"].quantile(0.75)
  iqr=q2-q1
  lower_tail=q1-1.5*iqr
  upper_tail=q2+1.5*iqr
  if i > upper_tail:
    df["P"]=df["P"].replace(i,np.mean(df["P"]))
for i in df["K"]:
 q1=df["K"].quantile(0.25)
  q2=df["K"].quantile(0.75)
  iqr=q2-q1
  lower_tail=q1-1.5*iqr
 upper_tail=q2+1.5*iqr
 if i > upper_tail:
    df["K"]=df["K"].replace(i,np.mean(df["K"]))
for i in df["temperature"]:
  q1=df["temperature"].quantile(0.25)
 q2=df["temperature"].quantile(0.75)
  iqr=q2-q1
 lower_tail=q1-1.5*iqr
  upper_tail=q2+1.5*iqr
  if i > upper_tail or i < lower_tail:</pre>
```

df["K"]=df["temperature"].replace(i,0)

```
for i in df["humidity"]:
  q1=df["humidity"].quantile(0.25)
  q2=df["humidity"].quantile(0.75)
  iqr=q2-q1
  lower_tail=q1-1.5*iqr
  upper_tail=q2+1.5*iqr
  if i > upper tail:
    df["humidity"]=df["humidity"].replace(i,np.mean(df["humidity"]))
for i in df["ph"]:
  q1=df["ph"].quantile(0.25)
  q2=df["ph"].quantile(0.75)
  iqr=q2-q1
  lower_tail=q1-1.5*iqr
  upper_tail=q2+1.5*iqr
  if i > upper_tail or i < lower_tail:</pre>
    df["ph"]=df["ph"].replace(i,np.mean(df["ph"]))
for i in df["rainfall"]:
  q1=df["rainfall"].quantile(0.25)
 q2=df["rainfall"].quantile(0.75)
  iqr=q2-q1
  lower_tail=q1-1.5*iqr
  upper_tail=q2+1.5*iqr
  if i > upper_tail:
    df["rainfall"]=df["rainfall"].replace(i,np.median(df["K"]))
```

BOX PLOT REPRESENTATION AFTER HANDLING OUTLIERS

```
plt.figure(figsize=[10,5],dpi=100)
sns.boxplot(data=df)
```


SPLITTING TRAIN AND TEST DATASET

```
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(features,target,test_size=0.2,random_state=2)
```

X_train.shape

(1760, 7)

X_train

	N	Р	К	temperature	humidity	ph	rainfall
1936	113	38	25	22.000851	79.472710	7.388266	90.422242
610	28	35	22	29.530376	86.733460	7.156563	59.872321
372	11	61	21	18.623288	23.024103	5.532101	135.337803
1559	29	139	205	23.641424	93.744615	6.155939	116.691218
1500	24	128	196	22.750888	90.694892	5.521467	110.431786
1071	105	88	54	25.787498	84.511942	6.020445	114.200546
433	27	71	23	23.453790	46.487148	7.109598	150.871220
674	23	39	22	29.256493	81.979522	6.864839	42.024833
1099	117	81	53	29.507046	78.205856	5.507642	98.125658
1608	39	24	14	30.554726	90.903438	7.189260	106.071198
1760 rows × 7 columns							

X_test.shape

(440, 7)

X_test

```
N P K temperature humidity
                                               rainfall
                                           ph
                   25.567483 60.492446 7.466901 190.225784
2121 83 21 28
960
       1 27 36
                   23.985988 93.342366 5.684995 104.991282
952
     23 5 44
                  21.207254 94.263047 7.163005 107.566080
                  22 942767 75 371706 6 114526 67 080226
1958 116 52 19
681
       6 37 17
                   28.086572 80.350059 6.760694
                                              38 144768
1684
      7 17 10
                   10.164313 91.223210 6.465913 106.362551
                  28.965866 90.718329 6.566759 22.258381
1477 86 18 45
```

NORMALIZING THE DATASET

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
sc.fit(X_train)
X_train_new=sc.transform(X_train)
X_test_new=sc.transform(X_test)
```

X_train_new

```
array([[ 1.69991833, -0.48450066, -0.46654299, ..., 0.36534732, 1.20356233, -0.23551865], [-0.60720953, -0.57443434, -0.52452593, ..., 0.69004063, 0.90389393, -0.79201637], [-1.0686351, 0.20499088, -0.54385357, ..., -2.15897647, -1.19707781, 0.58266376], ..., [-0.74292293, -0.45452277, -0.52452593, ..., 0.4774494, 0.52659831, -1.11712642], [1.80848906, 0.80454873, 0.07463107, ..., 0.30869492, -1.22870711, -0.09519312], [-0.30864004, -0.90419116, -0.67914709, ..., 0.87651775, 0.94618139, 0.04954294]])
```

X_test_new

LIST OF ALGORITHMS IMPLEMENTED

- SUPPORT VECTOR MACHINE
- DECISION TREE
- RANDOM FOREST
- LIGHTGBM
- K-Nearest Neighbors
- NAIVE BAYES CLASSIFIER
- LOGISTIC REGRESSION

Initializing empty lists to append all modelsand corresponding name

```
acc=[]
model=[]
```

SUPPORT VECTOR MACHINE

```
from sklearn.svm import SVC
SVM=SVC(kernel="linear")
SVM.fit(X_train,Y_train)
Y_Pred=SVM.predict(X_test)

a=metrics.accuracy_score(Y_test,Y_Pred)
acc.append(a)
model.append("SVM")
print("Accuracy_Score_accquired_from_SVM:",a*100)
```

Accuracy Score accquired from SVM: 97.72727272727273

```
from sklearn.model_selection import cross_val_score
score=cross_val_score(SVM,features,target,cv=10,scoring="accuracy").mean()
score
```

0.9854545454545454

DECISION TREE ALGORITHM

```
from sklearn.tree import DecisionTreeClassifier
DT=DecisionTreeClassifier(criterion="entropy")
DT.fit(X_train,Y_train)
Y_Pred=DT.predict(X_test)

a = metrics.accuracy_score(Y_test,Y_Pred)
acc.append(a)
model.append("DT")
print("Accuracy Score accurred from Decision Tree:", a*100)
https://colab.research.google.com/drive/1clKYSEcNhPIOFIE-cfck5bypDHJZJ4py#printMode=true
```

```
printer recursely score accepance from secretion free, , a roof
```

```
Accuracy Score accquired from Decision Tree: 98.4090909090909
```

score=cross_val_score(DT,features,target,cv=10,scoring="accuracy").mean()
score

0.9868181818181817

RANDOM FOREST

```
from sklearn.ensemble import RandomForestClassifier
RF=RandomForestClassifier(n_estimators=150)
RF.fit(X_train,Y_train)
Y_Pred=RF.predict(X_test)

a=metrics.accuracy_score(Y_test,Y_Pred)
acc.append(a)
model.append("RF")
print("Accuracy Score accquired from Random Forest:",a*100)
```

Arr Accuracy Score accquired from Random Forest: 99.54545454545455

score=cross_val_score(RF,features,target,cv=10,scoring="accuracy").mean()
score

0.9936363636363638

LightGBM Model

```
import lightgbm as lgb
LGB= lgb.LGBMClassifier()
LGB.fit(X_train,Y_train)
Y_Pred=LGB.predict(X_test)

a = metrics.accuracy_score(Y_test,Y_Pred)
acc.append(a)
model.append("LGB")
print("Accuracy acquired from LightGBM:",a*100)
```

Accuracy acquired from LightGBM: 99.0909090909091

score=cross_val_score(LGB,features,target,cv=10,scoring="accuracy").mean()
score

0.9904545454545456

K-Nearest Neighbors

```
from sklearn.neighbors import KNeighborsClassifier
Knn=KNeighborsClassifier(n_neighbors=3)
Knn.fit(X_train,Y_train)
Y_Pred=Knn.predict(X_test)

a=metrics.accuracy_score(Y_test,Y_Pred)
acc.append(a)
model.append("Knn")
print("Accuracy acquired from K-Nearest Neighbors:",a*100)
```

Accuracy acquired from K-Nearest Neighbors: 97.04545454545455

score=cross_val_score(Knn,features,target,cv=10,scoring="accuracy").mean()
score

0.9804545454545457

NAIVE BAYES CLASSIFIER

```
from sklearn.naive_bayes import GaussianNB
NB=GaussianNB()
NB.fit(X_train,Y_train)
Y_Pred=NB.predict(X_test)

a=metrics.accuracy_score(Y_test,Y_Pred)
acc.append(a)
model.append("NB")
print("Accuracy acquired from Naive Bayes:",a*100)
```

Accuracy acquired from Naive Bayes: 99.0909090909091

score=cross_val_score(NB,features,target,cv=10,scoring="accuracy").mean()
score

0.99500000000000001

LOGISTIC REGRESSION

```
from sklearn.linear_model import LogisticRegression
LR=LogisticRegression(random_state=2)
LR.fit(X_train,Y_train)
```

```
Y_Pred=LR.predict(X_test)

a=metrics.accuracy_score(Y_test,Y_Pred)
acc.append(a)
model.append("LR")
print("Accuracy acquired from Logistic Regression:",a*100)

Accuracy acquired from Logistic Regression: 95.227272727273
```

score=cross_val_score(LR,features,target,cv=10,scoring="accuracy").mean()
score

0.9604545454545453

LGB - 0.990909090909091 Knn - 0.9704545454545455 NB - 0.990909090909091

BAR CODE REPRESENTATION OF THE ACCURACY SCORES ACQUIRED FROM VARIOUS ALGORITHMS

```
accuracy_models = dict(zip(model,acc))
for a,b in accuracy_models.items():
    print (a,'-',b)

SVM - 0.97727272727273
DT - 0.9840909090909091
RF - 0.9931818181818182
```

plt.figure(figsize=[10,5],dpi=100)
plt.title("Accuracy Comparison")
plt.xlabel("ALGORITHM")
plt.ylabel("ACCURACY SCORE")

sns.barplot(x=model,y=acc,palette="icefire")

<AxesSubplot:title={'center':'Accuracy Comparison'}, xlabel='ALGORITHM',</pre>

CLASSIFICATION REPORT AND CONFUSION MATRIX DISPLAY

```
lst=[SVM,DT,RF,LGB,Knn,NB,LR]
from sklearn.metrics import classification_report
for i in lst:
    i.fit(X_train,Y_train)
    Y_Pred=i.predict(X_test)
print(classification_report(Y_test,Y_Pred))
```

	precision	recall	f1-score	support
apple	1.00	1.00	1.00	13
banana	1.00	1.00	1.00	17
blackgram	0.86	0.75	0.80	16
chickpea	1.00	1.00	1.00	21
coconut	1.00	1.00	1.00	21
coffee	1.00	1.00	1.00	22
cotton	0.86	0.90	0.88	20
grapes	1.00	1.00	1.00	18
jute	0.84	0.93	0.88	28
kidneybeans	1.00	1.00	1.00	14
lentil	0.88	1.00	0.94	23
maize	0.90	0.86	0.88	21
mango	0.96	1.00	0.98	26
mothbeans	0.84	0.84	0.84	19
mungbean	1.00	0.96	0.98	24
muskmelon	1.00	1.00	1.00	23
orange	1.00	1.00	1.00	29
papaya	1.00	0.95	0.97	19
pigeonpeas	1.00	1.00	1.00	18
pomegranate	1.00	1.00	1.00	17
rice	0.85	0.69	0.76	16
watermelon	1.00	1.00	1.00	15
2661112614			0.95	440
accuracy	0.05	0.05	0.95	440
macro avg weighted avg	0.95 0.95	0.95 0.95	0.95	440
merRuren and	0.95	0.95	0.95	440

```
from sklearn.metrics import confusion_matrix
lst=[SVM,DT,RF,LGB,Knn,NB,LR]
for i in lst:
    i.fit(X_train,Y_train)
    Y_Pred=i.predict(X_test)
cm=confusion_matrix(Y_test,Y_Pred)
plt.figure(figsize=(15,15))
sns.heatmap(cm,annot=True,linewidths=.10,square=True,cmap ='crest');
```

```
plt.ylabel("Actual label");
plt.xlabel("Predicted label");
all_sample_title="Confusion Matrix"
plt.title(all_sample_title,size=30);
plt.show()
    NameError
                                           Traceback (most recent call last)
    <ipython-input-3-d026e5d78821> in <module>
         1 from sklearn.metrics import confusion_matrix
     ----> 2 lst=[SVM,DT,RF,LGB,Knn,NB,LR]
         3 for i in lst:
              i.fit(X_train,Y_train)
Y_Pred=i.predict(X_test)
    NameError: name 'SVM' is not defined
      SEARCH STACK OVERFLOW
RANDOM PREDICTION
```

```
newdata=DT.predict([[83,45,60,28,70.3,7.0,150.9]])
print("RECOMMENDED CROP",newdata)
   RECOMMENDED CROP ['papaya']
newdata=SVM.predict([[104,18,30,23.603016,60.3,6.7,140.91]])
print("RECOMMENDED CROP", newdata)
   RECOMMENDED CROP ['coffee']
newdata=RF.predict([[104,18,30,23.603016,60.3,6.7,140.91]])
print("RECOMMENDED CROP", newdata)
   RECOMMENDED CROP ['coffee']
newdata=LR.predict([[60,55,44,23.004459,82.320763,7.840207,263.964248]])
print("RECOMMENDED CROP", newdata)
   RECOMMENDED CROP ['rice']
```