SRM OF INSTITUTE OF SCIENCE AND TECHNOLOGY FACULTY OF ENGINEERING AND TECHNOLOGY 18MAB102T- ADVANCED CALCULUS AND COMPLEX ANALYSIS PART - A: MULTIPLE CHOICE QUESTIONS

UNIT – I: MULTIPLE INTEGRALS

1.	Evaluation of $\int_{0}^{1} \int_{0}^{1} dx dy$ is						
	(a) 1	(b) 2	(c) 0	(d) 4			

- 2. The curve $y^2 = 4x$ is a

 (a) parabola (b) hyperbola (c) straight line (d) ellipse
- 3. Evaluation of $\int_{0}^{\pi} \int_{0}^{\pi} d\theta d\phi$ is $a) 1 \quad b) 0 \quad c) \pi/2 \quad d) \pi^{2}$
- 4. The area of an ellipse is
 a) πr^2 b) $\pi a^2 b$ c) πab^2 d) πab
- 5. $\int_{12}^{b} \frac{dxdy}{xy}$ is equal to
a) $\log a + \log b$ b) $\log a$ c) $\log b$ d) $\log a \log b$
- 6. $\iint_{0}^{1} \frac{dx}{dy} \text{ is equal to} \\ a) 1 \quad b) 1/2 \quad c) 2 \quad d) 3$
- 7. $\iint_{00}^{12} dx dy$ is equal to

 a) $\iint_{00}^{21} dy dx$ b) $-\iint_{00}^{12} dx dy$ c) $\iint_{20}^{01} dy dx$ d) $\iint_{10}^{02} dy dx$
- 8. If *R* is the region bounded x = 0, y = 0, x + y = 1 then $\iint_R dx dy$ is equal to a) 1 b) 1/2 c) 1/3 d) 2/3
- 9. Area of the double integral in cartesian co-ordinate is equal to a) $\iint_R dydx$ b) $\iint_R rdrd\theta$ c) $\iint_R xdxdy$ d) $\iint_R x^2dxdy$

	a x	
10. Change the order of integration in	$\iint dxdy$	is
	0.0	

a)
$$\int_{0.0}^{a.x} dxdy$$

b)
$$\int_{0.0}^{a} \int_{0}^{x} x dy dx$$

c)
$$\int_{0}^{a} \int_{0}^{a} dxdy$$

a)
$$\int_{0}^{a} \int_{0}^{x} dxdy$$
 b) $\int_{0}^{a} \int_{0}^{x} xdydx$ c) $\int_{0}^{a} \int_{0}^{a} dxdy$ d) $\int_{0}^{a} \int_{0}^{y} dxdy$

11. Area of the double integral in polar co-ordinate is equal to

a)
$$\iint_{R} dr d\theta$$

b)
$$\iint_{\mathbb{R}} r^2 dr d\theta$$

b)
$$\iint_{R} r^2 dr d\theta$$
 c) $\iint_{R} (r+1) dr d\theta$

$$d) \iint_{\mathbb{R}} r dr d\theta$$

12. $\iiint_{000}^{123} dx dy dz$ is equal to

- a) 3 b) 4 c) 2 d) 6

13. The name of the curve $r = a(1 + \cos \theta)$ is

- a) lemniscate
- b) cycloid
- c) cardioid
- d) hemicircle

14. The volume integral in cartesian coordinates is equal to

a)
$$\iiint\limits_V dxdydz$$
 b) $\iiint\limits_V drd\theta d\phi$ c) $\iint\limits_R drd\theta$

15. $\int_{0.0}^{1.2} x^2 y dx dy$ is equal to

a)
$$\frac{2}{3}$$

a)
$$\frac{2}{3}$$
 b) $\frac{1}{3}$ c) $\frac{4}{3}$ d) $\frac{8}{3}$

$$d)\frac{8}{3}$$

16. $\int_{00}^{11} (x+y)dxdy$ is equal to a) 1 b) 2 c) 3 d) 4

17. After changing the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy$ into polar coordinates, we have a) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} drd\theta$ b) $\int_{0}^{\pi/4} \int_{0}^{\infty} e^{-r} drd\theta$ c) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} rdrd\theta$ d) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r} drd\theta$

$$a)\int_{0}^{\pi/2}\int_{0}^{\infty}e^{-r^{2}}drd\theta$$

b)
$$\int_{0}^{\pi/4} \int_{0}^{\infty} e^{-r} dr d\theta$$

c)
$$\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} r dr d\theta$$

$$d)\int_{0}^{\pi/2}\int_{0}^{\infty}e^{-r}drd\theta$$

18. $\int_{0}^{\infty} \int_{0}^{y} \frac{e^{-y}}{y} dx dy \text{ is equal to}$ a) 1 b) 0 c) -1 d) 2

19. The value of the integral $\int_{00}^{21} xy dx dy$ is

(a) 1 (b) 2 (c) 3 (d) 4

20. The value of the integral
$$\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(\theta + \phi) d\theta d\phi$$

- (a) 1
- (b) 2 (c) 3 (d) 4
- 21. The region of integration of the integral $\int_{-b-a}^{b} \int_{-a}^{a} f(x, y) dx dy$ is
 - (a) square
- (b) circle
- (c) rectangle (d) triangle
- 22. The region of integration of the integral $\int_{0.0}^{1.x} f(x, y) dx dy$ is

 - (a) square (b) rectangle (c) triangle
- 23. The limits of integration is the double integral $\iint_R f(x, y) dx dy$, where R is in the first quadrant and bounded by x = 0, y = 0, x + y = 1 are

- (a) $\int_{x=0}^{1} \int_{y=0}^{1-x} f(x, y) dy dx$ (b) $\int_{y=1}^{2} \int_{x=0}^{1-y} f(x, y) dx dy$ (c) $\int_{y=0}^{1} \int_{x=1}^{y} f(x, y) dx dy$ (d) $\int_{y=0}^{2} \int_{x=0}^{1-y} f(x, y) dx dy$

ANSWERS:

1	a	6	b	11	d	16	a	21	С
2	a	7	a	12	d	17	С	22	С
3	d	8	b	13	С	18	a	23	a
4	d	9	a	14	a	19	a		
5	d	10	c	15	c	20	b		