

通信网理论基础

第二章 通信网的组成要素

北京邮电大学·信息与通信工程学院

授课教师: 武穆清

电子信箱: wumuqing@bupt.edu.cn

课程内容介绍

第一章 引论

通信系统和通信网的种类和基本要求

第二章 通信网的组成要素

通信系统和网络的构成部件、功能、特性

第三章 通信网的结构

图论基础,最短径、最大流、最佳流算法

第四章 网内业务分析

排队论基础,业务模型与分析,网络效率

第五章 通信网的可靠性

可靠性理论,系统可靠性,网络可靠性

第二章 通信网的组成要素

2.1 概述

- 通信网的构成:
 - = 硬件:
 - ≡终端系统,亦即用户系统
 - ≡交换系统:交换机,路由器
 - ≡传输系统: 局间的长途传输
 - = 软件:
 - ≡信令: 用户信令, 局间信令
 - ■协议: 互联网协议(IP), 传输控制协议(TCP)...
 - ■标准: 语音编码标准A律/u律
 - △ 传输系统标准: E1, E2, E3, E4, E5 / T1, T2, T3, T4
 - △图像编码标准,数据编码标准,.....

- 通信网的构成图

△目前:交换系统和传输系统均已数字化

△ 只有用户系统还是模拟与数字混合的,尚未完全数字化

- 通信网的构成图

≡长途程控交换机

2.2 用户终端及用户环路

- 用户终端设备的功能:
 - = 使待传送的信息与在信道上传送的信号之间相 互转换
 - ≡1. 使原始信息与电信号之间相互转换
 - ≡2. 使原始信息的电信号与信道信号之间相互转换
- 用户终端设备的构成:
 - = 传感器,发送机,接收机,信令
- 传感器: 是终端设备的终端部分
 - = 语声传感器: 将语声信号转换为电信号
 - ≡炭精话筒: 逼真度和频响均不甚理想, 仅用于电话
 - = 耳机或音箱: 将电信号转换为语音信号

- 传感器: (2)
 - = 图像传感器:
 - ≡滚筒式感光扫描仪: 用于传真机, 速度较慢
 - ■电子扫描仪:用于可视电话、电视等,速度稍快
 - ≡光敏电子耦合阵列成像仪:
 - ≡红外热敏耦合阵列成像仪:
 - = 温度传感器
 - = 湿度传感器
 - = 压力传感器
 - = 速度传感器
 - = 烟雾传感器
 - = 眼球位置传感器

- 用户终端上的信令:
 - =使用户终端能进网
 - = 并与网内其它用户联系
 - ≡其中包括:
 - △选择被叫用户的寻址信号
 - △控制电路接通与断开的控制信号
 - △辨别状态和表示状态的联系信号

- 用户环路(又称用户系统)

= 线路

≡双绞线

△芯线: 铜芯线, 铝芯线

△ 线径: 0.4, 0.5, 0.6, 0.7毫米

· 其中0.5, 0.7毫米用得最多,长用户线使用0.7mm线

 Δ 衰减: f = 800赫兹, 20℃时

线径 mm	0.4	0.5	0.6	0.7
衰减 dB/km	1.67	1.33	0.973	0.834

≡长度:

△通常: 2~4公里

△一般: < 7公里

 Δ 个别有到9公里的

≡供电:集中供电,-48伏

≡带宽:一路模拟话音信号

三类100对非屏蔽双绞线

- =用户线信令
- =用户环路的发展(1)

△用户线系统相当庞大,成本很高

- 用户线成本 = (交换机+用户终端)的成本 × 4
- 所以,不能轻易抛弃原有的用户环路

≡用户环路的数字化改造

△ 在二线用户线上实现全双工数字传输2B+D信号(160kb/s)

- 回波消除方式 (EC)
- 乒乓方式 (TCM: 时间压缩调制)

△采用ISDN用户线信令: DSS1(数字用户信令第一号)

- 这是一种共路信令系统
- 由消息组成

=用户环路的发展(2)

≡用户环路的宽带数字化改造:

△HDSL技术: 高比特率数字用户环路

∆ High bit rate Digital Subscriber Loop

△可将二线用户线的频带拓宽至: 2.048Mb/s, 1.544Mb/s

 Δ 可用于PCM一次群E1/T1的接入

△通过两对双绞线实现双向通信

△上、下行是对称的,即带宽相同

△有效传输距离: 5公里

△适用于连接:

- 小交换机、局域网、
- 校园网、
- 互联网业务提供商

24-26AWG-宽带综合业务 数字网络通信电缆 11

=用户环路的最新发展(3)

≡用户环路的宽带数字化改造:

△ADSL技术:非对称数字用户环路

• 可将二线用户线的传信率拓展至: 8Mb/s

Δ 下行: 1.5~8 Mb/s

Δ 上行: 16~640 Kb/s

- 保证传输距离: 4公里
- 可用于多媒体业务的用户接入
- ADSL2: 第二版非对称数字用户环路(G.992.3)

 Δ 传信率拓展至: 12Mb/s

Δ 频 带拓展至: 1.1MHz

• ADSL2+: 第二+版非对称数字用户环路(G.992.5)

 Δ 传信率拓展至: 24Mb/s

Δ 频 带拓展至: 2.2MHz

- =用户环路的最新发展(4)
 - ≡用户环路的宽带数字化改造:

△ VDSL技术: 甚高比特率数字用户环路

- Very high bit rate Digital Subscriber Loop
- 可将二线用户线的传信率拓展至: 50Mb/s

Δ 下行: 13~52 Mb/s

Δ 上行: 1.5~2.3 Mb/s

- 传输距离不超过: 1.5公里
- 主要适用于: 视频业务接入、多媒体业务接入

■ 2013年我国已经开始光纤到户的进程了 △ 即用户环路光纤化

=用户环路的最新发展(5)

≡无线用户环路:

△无线终端:

- 设置在用户家中
- 将电话、数据终端、传真机等与之相连
- 将原信号调制成无线信号发射出去

△无线基站:

- 接收无线终端发出的无线信号
- 通过标准的二线、2 Mb/s或V5.2接口与电话交换机相连
- 覆盖范围: 2~50公里

△适用于:

• 农村、远郊区、高原、草原、沙漠、近海岛屿

=用户环路的最新发展(6) =无线用户环路结构示意图

图一 W L L (无线本地环路) 应用框图

2.3 信道

- 信息的传输通道
 - = 在电信网中称为传输线路
 - = 它是电磁波的传播途径
 - 当电磁波携带含有信息的一个信号时,就构成一条信道
 - = 一条传输线路上可以形成多条信道
 - = 电磁波的传播方式有: 无界传播、导引传播
 - ■无界传播:在自由空间中传播
 - △通过天线发射而向外传播
 - △在接收天线处接收下来
 - △这类信道称为无线信道
 - ≡导引传播: 沿导体传播, 这类信道称为有线信道

- 信道的分类(1)

- = 按媒体分
 - ≡有线信道:
 - △架空明线
 - △对称电缆
 - △同轴电缆
 - △ 光缆

≡无线信道:

- △地波信道(长波信道)
- △短波电离层反射信道
- △微波视距传播信道
- △人造卫星中继信道
- △ 各种散射信道 (流星余迹,超短波对流层散射)

- 信道的分类(2)

- = 按参数分
 - ■恒参信道
 - △ 恒定参数信道
 - △对信号传输的影响是确定的或变化是及其缓慢的
 - △可等效为一个非时变系统
 - △如:架空明线,电缆,光缆,中长波地波传输信道,微波视 距传输信道

■随参信道

- △ 随机参数信道 (变参信道)
- △对信号传输的影响是不确定的,随机的,随时间变化很快的
- △对信号的衰耗、延迟等也是随时间变化的
- △有多径传播现象
- △如:短波电离层反射信道,超短波流星余迹散射信道,超短 波对流层散射信道,超短波超视距绕射信道,超短波及微波 对流层散射信道

- 信道的分类 (3)
 - =按信号分
 - ≡模拟信道:

△载波传输信道

△模拟微波信道

≡数字信道:

ΔPCM传输信道

△数字微波信道

2.4 交换设备

- 引言
 - =端机和信道构成点对点的通信系统
 - ■要把点对点的通信系统组成通信网,就必须有交换 设备
 - =信息交换设备有三种技术方式;
 - ≡电路转接(电路交换)
 - △人工交换、步进制交换技术
 - △ 纵横制交换、程控制交换技术
 - ≡信息转接(存储转发)
 - Δ 报文交换、分组交换
 - Δ 帧交换、 信元交换
 - ≡多址接入

 Δ 信道化多址接入、随机多址接入

- 电路转接

- = 在电路转接通信网中,转接任务是由局或站来 完成的
 - ≡通常每个局覆盖若干个用户
 - ≡各局之间用中继线联结
- = 每个局通常能完成三种转接任务:
 - ≡局内用户间的转接
 - ■本局用户与它局用户间的转接
 - ≡它局用户之间的转接
- = 每个局还应完成:
 - ≡信令应答
 - ≡监视
 - ≡计费 等管理性任务

= 电路转接设备(1)

≡人工交换机

△使用磁石话机(摇把话机)

△接线员使用绳路

△接续过程:

- 主叫摇把
- 接线台上塞孔的小门打开
- 接线员把耳机话筒插入塞孔,询问用户

用绳路接通主、被叫 挂机时用户摇把, 接线员便知道用户挂机, 于是拆线

早期的人工电话交换 机。它能为50家电 话用户提供服务

我国生产的第一部 手摇磁石电话机

= 电路转接设备(2)

≡步进制交换机

△发明人: 美国人史端乔

- 一家殡仪馆老板,
- 因接线员办事不公,
- 发誓使其自动化

△ 直接控制方式

- 依靠拨号脉冲,
- 完成接线器动作

△间接控制方式

- 旋转制和升降制 交换机
- 用户拨号由记发器接收
- 由译码器翻译成电码来 控制接线器动作

△特点:

- 全过程自动完成
- 噪音巨大

= 电路转接设备(3)

≡纵横制交换机

- △1919年瑞典人发明了"纵横接线器"
- △1926年在瑞典开通了纵横制交换机
- △我国于1957年开始研制纵横制电话交换机

△特点:

- 纵横制接线器采用压接触方式,减少磨损,提高了可靠性
- 采用"公共控制"方式:即把控制部分与话路分开
- · 交换机的控制由 "标志器"和 "记发器"来完成
- 公共控制对拨号号盘 要求低,中继布局 灵活性大交换机

纵横接线器交叉点示意图

纵横接线器

纵横制交换机机房 1960年在上海吴淞建成国内 第一个纵横制电话交换机 试验局

纵横制交换机机架 1976年在北京建成编码制 电话交换试验局

= 电路转接设备(4)

- ≡程控交换机
 - △从交换方式上可分为: 空分交换机
 - 时分交换机
 - Δ 从信息形式上可分为:
 - 模拟交换机: 对模拟信号进行交换 包括: 机电式交换机、空分交换机、PAM时分交换机
 - 数字交换机: 对数字信号进行交换
 这里数字信号是指经过编码的: PCM、ΔM等信号
 Δ从控制方式上可分为:
 - 布线逻辑控制交换机(布控交换机)
 所有控制逻辑用机电与电子元件做在印刷板上
 通过机架的布线做成。亦即全部由硬件来完成。
 - 存储程序控制交换机(程控交换机)
 由程序来分析号码,实现控制
 实质上是数字电子计算机控制的交换机

- -信息转接
 - = 信息转接又称存储转发
 - =信息转接适用于:
 - ≡实时性要求不高的业务
 - ≡同时能够提供准确性要求很高的业务
 - =信息转接的具体应用形式有:
 - ■报文交换:用户信息组成一个报文,可以很长
 - 分组交换(X.25): 用户信息分为一定长度的若干包 Δ 包长不固定,但不超过1500字节
 - ■帧交换(FR): 简化了X.25的检错、纠错、拥塞控制
 - ≡信元交换(ATM):包长固定
 - = 分组交换已成为计算机相互通信的主要方式
 - ≡信元交换(ATM)也在电信网中有较为广泛的应用
 - ■如在电信骨干网中ATM已得到广泛应用

- 多址接入(MA)(1)
 - = 这是一种没有交换节点的交换系统,有两大类
 - =信道化的多址接入系统---SPADE系统
 - ≡可按需分配
 - ≡也可固定分配
 - ■所有N个用户通过线路连接起来
 - △每个用户有一个地址
 - Δ 线路上有N(N-1)/2个双向信道
 - △ 预先分配好,使任意两个用户之间 有一条双向信道
 - Δ 于是形成一个全联结网
 - ■任一用户要与另一个用户通信时
 △只要选择相应的信道即可
 - ≡通常用于卫星通信网

- 多址接入(MA)(2)

- #1 #2 #n
- = 随机接入的多址接入系统--ALOHA系统
 - ≡专为计算机通信而设计,最开始用的是无线信道
 - ≡一台主机和多个用户通过总线连接起来
 - Δ 只有一个信道,称为总线,所以也称这种网络为总线网
 - △主机通过总线可以把信息传给网内的所有用户
 - 用地址表明信息给哪个用户
 - △各用户(即计算机终端)均可收到主机发来的信息
 - 通过地址来判断信息是否属于自己
 - ≡ 当用户向主机发送信息时,可随时向信道发送信息
 - △ 主机收到后会应答
 - △ 由于总线上有多个终端, 所以此时会发生碰撞
 - △碰撞后,两个(或两个以上)用户发送的信息都被破坏
 - 主机无法应答,各终端也就收不到应答
 - 隔一随机时间段后,再重发,直至主机应答为止
 - ≡这种方式的缺点是:由于碰撞,信道利用率很低

- 多址接入(MA)(3)
 - ≡采用监听的ALOHA系统--CSMA: 载波监听多址接入 △各用户在发送信息前,首先监听一下
 - 看是否有其他用户正在使用信道
 - ■采用监听并能检测碰撞的ALOHA系统
 - CSMA-CD: Carrier Sensing Multiple Access-Collision Detection
 - ≡采用监听并具有冲突解决能力的ALOHA系统
 - CSMA-CR: Carrier Sense Multiple Access-Collision Resolution

- 多址接入(MA)(4)
 - = 注意: 所有改进信道利用率的方法
 - ≡都是以加入控制信息为代价的
 - ≡即:控制越复杂,终端和交换设备也越复杂
 - △信道利用率也就越高
 - △甚至: 为了完全消除碰撞,也有采用中央控制的申请制的。
 - 这已经类似于转接站的方式了
 - 只是结构上还是多址的
 - = 随机接入的多址网常用于局部网络

2.5 通信网的约定

- 引言(1)
 - = 有了端机、信道和交换设备
 - ≡从装备来说,已能完成用户之间的通信了
 - ■但要使通信网顺利地运转,要使信息顺畅地流通 △则还不够,还需要一些约定
 - = 终端设备除了硬件之外
 - ≡还要有软件,要有用户信令,要有设备标准
 - = 网络设备除了硬件之外
 - ≡也要有软件,要有网间信令,要有接口标准
 - = 计算机网络中要有协议(protocol)
 - ≡数据包的拆装协议,传输协议,

- 引言(2)

- = 传输系统除了硬件之外
 - ≡还要有传输标准,要有质量标准,要有复用标准...
- = 从某种意义上说
 - ■没有这些约定,就不能形成通信网
 - ≡通信网的性能和效率在很大程度上决定于这些约定
- = 要建立世界性的通信网
 - ≡则这些约定最好全世界统一
 - △但目前并不理想
 - △通信网是逐渐发展起来的,各国都有各自的历史 背景
 - △最初人们没有意识到统一约定的重要性
 - △后来人们认识到了,技术上也可行了,由国际标 准化组织和国际电信联盟负责制定统一的标准

2.5.1 电话信令

- =信令信息大致由三部分组成:
 - ≡地址信息: 用于标识每个用户

△使网络能够找出被叫用户

≡控制信息:建立连接,转移连接,拆除连接,

△ 占用资源,选择路由,释放资源

- ≡状态信息:拨号音,回铃音,忙音,语音报告信息
- = 信令应满足两种要求: 完整性和节约性
 - ≡完整性:不论网络中出现什么情况,发生什么故障
 - △都应有适当的信号来表示和应对
 - △使端机能做出正确的反应
 - ≡节约性: 就是信令占用信道的时间不宜过多

△ 否则会降低网络利用率和通信效率

- 编号计划

- = 编号计划的作用:确定号码结构和分配规则
 - ≡它对通信网的基本结构会产生重大影响
 - ■因此,CCITT对编号计划作了严格的规定
 - △国际电话网编号计划: E.163
 - △国际数据网编号计划: X.121
 - △ 国际 ISDN 编号计划: E.164 或 I.331
- = 编号计划所涉及的内容
 - ≡确定编号的位长和编号方式: 等长或 不等长
 - ■确定长途区号的位长和 本地号码的位长
 - ≡确定字冠的分配
 - ≡确定拨号程序
 - ≡确定各特种业务号码的分配
 - ≡确定长途编号区的划分和长途区号的分配
 - ≡确定一个长途编号区内局号的分配

- 国际长途电话网的结构(1)
 - = 国内长途电话网通过国际局进入国际电话网
 - =原国际电报电话咨询委员会(CCITT)于 1964年提出等级制国际自动电话局的规划
 - = 国际局分为一、二、三级国际交换中心 ≡分别以: CT1, CT2, CT3来表示
 - = 其基干电路所构成的国际电话网为:

- 国际长途电话网的结构(2)

- = 国际电话网的第一级交换中心CT1之间均有直达路由, 是网状网连接
 - CT1与所属的CT2之间有直达路由,是星形网连接
 - CT2与所属的CT3之间有直达路由,是星形网连接
- = CT1: 第一级国际中心局
 - ■负责一个洲或洲内一部分范围的话务交换和接续任务

■ 其数量很少,全世界共有八个第一级国际中心局CT1

第一级国际中心局CT1汇接范围	第一级国际中心局CT1位置
北美和加勒比海 (不含古巴)	纽约
南美、古巴	里约热内卢
非洲	开罗
西欧和地中海地区	伦敦、巴黎
东欧、独联体	莫斯科
大洋洲 (南太平洋地区)	悉尼
东亚	东京
南亚、中亚和中东	新德里 38

- 国际长途电话网的结构(3)

- = CT2: 第二级国际中心局
 - ≡负责某部分范围的话务交换和接续任务
 - ■在领土面积非常大的国家里,CT2局可以负责一个 国家或一个国家一部分范围的话务交换和接续任务

= CT3: 第三级国际中心局

- ■各国的国际电话从国内长途电话网通过CT3局进入 国际网
- ≡国际网中的CT3局通常称为国际出入口局,或国际接口局
- ≡每个国家可以有一个或几个CT3局
- ≡负责某部分范围的话务交换和接续任务

– 我国电话网的结构

△采用的是五级等级网结构,如图:

 Δ C0: 国际交换局 北京,上海,广州三个国际出口局

Δ C1: 大区长途汇接局

- 或省间中心长途汇接局
- 长途区号均为两位号码
- 首位为2的长途区号均为两位
- 东北区: 沈阳 24
- 西北区: 西安 29
- 华北区:
- 华中区: 武汉 27
- 华东区: 南京 25
- 华南区: 广州 20
- 西南区: 成都 28
- 直辖市: 北京 10 上海 21 天津 22 重庆 23
- 26: 备用

- 我国电话网的结构(2)

Δ C2: 省长途局

- 或省中心长途汇接局
- 通常设置在省会城市
- 长途区号为三位号码

ΔC3: 地区长途局

- 或县间中心长途汇接局
- 通常设置在地区首府所在城市
- 长途区号为三位号码

△ C4: 县长途局

- 或县中心长途汇接局
- 通常设置在县城
- 长途区号为四位号码

△ C5: 市话端局

△其中长途是四级汇接

△但目前C1、C2已经融合为一级了; C3、C4也在融合之中

- 我国电话网的结构(3)
 - = 目前长途已是二级汇接结构
 - ■DC1: 省际交换中心
 - △构成高平面(省际平面)
 - △ 网状网联结
 - ■DC2: 省内地市交换中心
 - △构成低平面(省内平面)
 - Δ 不完全网状网联结

2.5.2 计算机通信协议

- = 作用: 与电话网中信令的作用是一样的
- = 不同点:
 - ≡在计算机通信中,人的参与更少
 - △所以完整性就更为重要
 - ≡由于采用信息转接的交换方式
 - △ 所以通常把地址、控制、状态、管理等信息都封装在数据帧中
 - △而不是表现为一条一条不同的信令
 - ≡其内容更为复杂
 - △不但要包括网内传输的各种规定
 - △还包括计算机内部和用户的各种情况
 - △ 因为整个传输和交换过程,不但涉及网内的结构和运行,也涉及计算机类型,操作系统和应用软件等。

= 协议分层(1)

- ≡要整理出一份十分完全的协议是很困难的
- ≡为简化和明确起见,国际标准化组织(ISO)建议
 - △ 将数据通信协议分为七层:

•	物	理	层
---	---	---	---

- 链路层
- 网络层
- 传输层
- 对话层
- 表示层
- 应用层

△低三层又称为通信层

• 是对通信网而言的

△高四层又称为用户层

• 是对用户网而言的

用户层

通信层

应用层
表示层
对话层
传输层
网络层
链路层
物理层

- 国际互联网的结构(1)

- 国际互联网的结构(2)
 - = 本图绘制于2003年2月6日
 - ≡描绘了从某一测试站点到其他约10万个站点的最短 连结路径
 - ■图中以相同的颜色来表示相类似的站点。
 - = 互联网是一个无尺度网络
 - ≡其中某些站点似乎与无数的其他站点相连结
 - ≡如图中的星爆形结构细节

- 国际互联网的寻址结构(1)
 - =世界上有13个根服务器系统
 - ≡每个根服务器系统 由多台根服务器构成
 - ■根服务器:全球至少有1000多台,北京有3台
 - = 在这13个根服务器系统之上,还有一个 更高级的、隐藏着的母服务器
 - ≡全世界所有的顶级域名,都由这台母服务器来确定
 - ■全球1000多台根服务器上的解析系统都是这台母服务器的复制
 - = 目前这13个根服务器系统由12家机构管理
 - ≡分布在全球100多个地区
 - ≡每一个编号的根服务器系统,不是一台服务器,
 - ≡而是有几十台或上百台服务器

国 际 互 联 网 的 寻 址 结 构

城市

根服务器 根服务器 根服务器 (伦敦)(法兰克福)(米兰) 分布于全世界17个城市

- 国际互联网的寻址结构(3)
 - = 13个根服务器系统的分布(1)

服务器系统编号	服务器系统管理者	服务器系统位置
A服务器系统	互联网网络信息中心 INTERNIC. NET	美国・弗吉尼亚州
B服务器系统	南加州大学信息科学研究所	美国·加利弗尼亚州
C服务器系统	美国Cogent公司	美国·洛杉矶、纽约、 芝加哥、弗吉尼亚
D服务器系统	美国马里兰大学	美国·马里兰州
E服务器系统	美国宇航局Acme研究所	美国·硅谷的山景城
F服务器系统	美国的"互联网系统联合体" (总部位于加利弗尼亚州)	全球40个地方,包括北京、 台北、伦敦等

- 国际互联网的寻址结构(4)
 - = 13个根服务器系统的分布(2)

服务器系统编号	服务器系统管理者	服务器系统位置
G服务器系统	美国国防部网络信息中心	美国・俄亥俄州・哥伦布市
H服务器系统 美国陆军信息中心 美国·马里兰州·阿		美国・马里兰州・阿伯丁
I服务器系统	瑞典Autonomica公司(位于斯德 哥尔摩)和北欧NORDUnet组织	29个城市,包括北京、赫尔辛基、 斯德哥尔摩等
J服务器系统 (位于加利福尼亚州)		全球30个城市,如北京、旧金山等
K服务器系统	欧洲网络协调中心(位于伦敦)	伦敦、法兰克福、米兰等17城市
L服务器系统	互联网域名与数字地址分配机构 (ICANN)	美国・洛杉矶
M服务器系统	日本WIDE项目组	日本・东京 51

- 国际互联网的寻址结构(5)
 - = 13个根服务器系统的分布地理位置图

- 国际互联网的寻址结构(6)
 - = 13个根服务器系统的分布地理位置图

- 中国下一代互联网CNGI
 - = 国家级IPv6骨干网络
 - = 网络规模属于大型互联网
 - = 采用分层的网络体系结构
 - ≡由核心网和接入网构成
 - ≡接入网:负责实现用户业务的接入
 - ≡核心网:负责汇接接入网的流量
 - △也可以直接接入某些业务用户
 - △核心网又可分为: 汇接层、核心层
 - △根据业务量不同个别城市需要建设城域网
 - ≡核心网的主干网建设到所有的本地网

- 中国下一代互联网CNGI网络结构

- 中国下一代互联网CNGI某运营商的核心网结构

- 中国下一代互联网CNGI某运营商的核心网结构
 - = 目前全国CNGI骨干网已组建完毕,部署工作已经向驻 地网建设及IPv6的各项应用等内容逐步开展。
 - = 遵照分步建设核心网的思路,某运营商的核心网有以下节点:
 - ■核心层 7个节点:

△北京、上海、广州、武汉、沈阳、西安、成都

 Δ 其中,一级核心节点:北京、上海、广州

- 呈全网状连接,彼此通过10G或2.5G POS链路互联
- △二级核心节点:沈阳、西安、武汉、成都
 - 都通过2.5G POS链路连接到一级核心节点
- ≡ 汇聚层8个节点:

△天津、济南、南京、杭州、重庆、郑州、哈尔滨、福州 △汇接节点通过622M POS连接核心节点

- 中国教育和科研计算机网(CERNET)-1
 - = China Education and Research Network
 - ≡是由国家投资建设
 - ≡教育部负责管理
 - ■清华大学等高等学校承担建设和管理运行的全 国性学术计算机互联网络
 - ≡主要面向教育和科研单位
 - ≡是全国最大的公益性互联网络

- 中国教育和科研计算机网 (CERNET) -2
 - =分四级管理
 - ≡全国网络中心

△设在清华大学,负责全国主干网的运行管理

- ≡地区网络中心和地区主结点
 - △分别设在清华大学、北京大学、北京邮电大学、上海交通大学、西安交通大学、华中科技大学、华南理工大学、电子科技大学、东南大学、东北大学等10所高校,负责地区网的运行管理和规划建设
- ≡省教育科研网
- ≡校园网

- 中国教育和科研计算机网(CERNET)-4
 - =地区网络中心和地区主结点(1)
 - ≡是CERNET的重要组成部分
 - ≡CERNET 由各地区网络中心互连而成
 - △负责地区网的运行管理和信息资源服务
 - △负责管辖范围内单位和用户入网,技术支持与培训
 - △它是广大校园网与CERNET联系的纽带与桥梁
 - △CERNET的地区网络中心和地区主结点分布在全国 八个城市的十所高等院校

- 中国教育和科研计算机网(CERNET)-5

=地区网络中心和地区主结点(2)

华北	清华大学(北京), 北京大学(北京,天津,河北) 北京邮电大学(北京,山西,内蒙古)
西北	西安交通大学(陕西,甘肃,宁夏,青海,新疆)
西南	电子科技大学 (四川,重庆,贵州,云南,西藏)
华南	华南理工大学(广东,广西,海南)
华中	华中科技大学(湖北,湖南,河南)
华东(北)	东南大学(江苏,安徽,山东)
华东(南)	上海交通大学(上海,浙江,江西,福建)
东北	东北大学(辽宁,吉林,黑龙江)

- 中国教育和科研计算机网(CERNET)-6
 - =省级结点
 - ≡设在36个城市的38所大学
 - ≡分布于全国除台湾省外的所有省、市、自治区
 - =CERNET已经有28条国际和地区性信道
 - ≡与美国、加拿大、英国、德国、日本和香港特区联网,总带宽达到250Mbps
 - =与CERNET联网的大学有1000多所 ≡另外还有中小学等教育单位和科研单位

2.5.3 质量标准

- 通信质量
 - = 是指用户的满意程度,包含两个方面:
 - ≡接续质量:

△接通率或呼损率,接续时长,设备的故障率等

- ≡信息质量:语音的清晰度,图象的清晰度等
 △通常受终端和信道的失真、噪声等限制
- 接续质量
 - = 主要靠增加网络资源来提高
 - ≡网络资源多,可以避免呼损
 - ≡利用迂回路由来提高可靠性
 - ≡通过直达路由可以降低时延
 - = 管理和维护对接续质量也起着重要作用

- 接续质量(2)
 - = 接续质量随着技术的进步而逐步提高
 - ≡如: 在电话网中,
 - Δ 起呼呼损率 < 0.5%
 - △拨号呼损率:市内<4%
 - 长途<10%
 - Δ 用户设备故障率 < 1.5×10^{-6}
 - △交换设备和线路故障率<6×10⁻⁵
 - △接通时延: 国内<1分钟
 - ■又如: 在ATM网络中,
 - Δ 信元丢失率:语音业务 < 10^{-5}
 - 图象业务<10-9
 - 高速数据业务<10⁻¹⁰

- 信息质量 (1)
 - = 依信息类型的不同而异
 - 当信息接受者是人时,则以人的主观感受为依据■如声音信号
 - △客观上的信号失真并不重要
 - △只要人听上去要满意就认为已达到质量标准
 - △话音质量通常以清晰度、响度和自然度为主要指标
 - △评定方法是: 主观测试
 - △评定人员分为两组:专家组和一般用户组
 - △清晰度测试:
 - 清晰度与传输系统的频率畸变有关
 - 一般用标准的、互不联系的单音作为测试对象
 - 若能听对80%,则清晰度合格
 - · 在单音能分辨80%时,全文的听懂率应在90%以上,则 理解含义已无问题

- 信息质量(2)

■如声音信号(2)

△响度测试:

- 响度与传输系统的衰减有关
- 响度可用电平表测定
- 但每个人对响度的爱好各不相同
- 同样的响度,有人认为太响,有人认为太轻
- 所以也以评定人员打分为准

△ 自然度测试:

- 自然度与传输系统的衰减畸变有关
- 国际上规定了一个参考系统: NOSFER
- 接上输出设备,并加一固定衰耗器(X1dB),由人去听
- 再换上待测设备,并加一可变衰耗器,改变衰耗值(X2 dB),直至听者认为与标准系统有相同响度
- 则X1-X2 称为待测系统的自然度当量值
- 自然度当量值应当低于某个标准值

- 信息质量(3)

- ≡在数字电话系统中,信息质量取决于信道的误码率
 - Δ 通常规定,PCM信道误码率 < 10^{-6}
 - △但是误码的模式有很多种:
 - 独立差错: 是常用的一种, 误码的出现是纯随机的
 - 突发型差错:也是常用的一种,误码一来就是一串,但 很少发生
 - △不同的误码模式对信息质量的影响是不一样的
 - 若各种误码模式在长时平均误码率相同的情况下
 - 则主观上听起来差别会很大

■图象通信.黑白传真

- △规定一些测试图表,作为评价传真的质量指标
- △测试图表中包括: 黑白相间的条纹、相间的密度有若干等级
- △ 图表传真后,看这些条纹是否还能分辨
- △ 通常以每毫米能辨别线数为质量指标(分辨率)

- 信息质量 (4)

- ■图象通信.照片传真
 - △分辨率
 - △ 能分辨的灰度等级
 - △噪声水平
- 图象通信.彩色传真
 △ 还应加上彩色失真限度
- ■图象通信.广播电视
 - △清晰度
 - △ 几何失真
 - △ 色度和灰度失真
 - △闪烁限度
 - Δ制式: PAL, NTSC, SECAM

=传输标准包括:

△信道接口的电平,阻抗,噪声分配,互通条件,同步,导频,多路复用系列等。这里: 只介绍多路复用的体制标准

= 频分多路(又称载波电话系统)

△ 话路: 0.3~3.4 kHz, 带宽: 3.1 kHz, 实宽: 4 kHz

△ 前群: 三个话路, 频带: 12~24kHz, 带宽: 12kHz

 Δ 基群: 四个前群,频带: $60 \sim 108 \, \mathrm{kHz}$,

• group: 12个话路; 带宽: 48 kHz

△超群: 五个基群, 频带: 312~552 kHz

• super-group: 60个话路; 带宽: 240 kHz

△ 主群: 五个超群, 频带: 812~2044 kHz

• master-group: 300个话路; 带宽: 1632 kHz

△超主群: 三个主群, 频带: 8516~12388 kHz

• super master-group: 900话; 带宽: 3872 kHz

△ 巨群: 四个超主群,频带: 42612~59684 kHz

• giant group: 3600话路; 带宽; 17072 kHz

= 频分多路(又称载波电话系统)

名称	构成	话路数	频带(kHz)	带宽(kHz)
一个话路	一个话路	1	0.3 ~ 3.4	4
前群	三个话路	3	12~24	12
基群	四个前群	12	60~108	48
超群	五个基群	60	312 ~ 552	240
主群	五个超群	300	812 ~ 2044	1632
超主群	三个主群	900	8516 ~ 12388	3872
巨群	四个超主群	3600	42612 ~ 59684	17072

= 时分多路(又称PCM系统)(1)

■欧洲、中国体系的PCM复用系列(1)

 Δ 一次群: 又称基群; 符号: E1; 速率: 2.048Mb/s

30/32路系统,

共32个通道,其中话路30个

• CH0: 同步通路; CH16: 信令通路

 Δ 二次群: 四个基群组成; 符号: E2; 速率: 8.448Mb/s

• 120个话路

 Δ 三次群: 四个二次群组成; 符号: E3; 速率: 34.368Mb/s

• 480个话路

 Δ 四次群: 四个三次群组成; 符号: E4; 速率: 139.264Mb/s

• 1920个话路

△ 五次群: 四个四次群组成; 符号: E5; 速率: 564.992Mb/s

• 7680个话路

= 时分多路(又称PCM系统)(2) ≡欧洲、中国体系的PCM复用系列(2)

名称	构成	符号	话路数	速率(Mb/s)
一次群	基群	E 1	32	2.048
二次群	四个基群	E2	120	8.448
三次群	四个二次群	E3	480	34.368
四次群	四个三次群	E4	1920	139.264
五次群	四个四次群	E5	7680	564.992

= 时分多路(又称PCM系统)(3)

≡北美,日本体系的PCM复用系列

 Δ 一次群: 又称基群; 符号: T1; 速率: 1.544Mb/s

• 24路系统;

 Δ 二次群: 四个基群组成; 符号: T2; 速率: 6.312Mb/s

• 96个话路

 Δ 三次群(日): 五个二次群组成; 速率: 32.064Mb/s

• 480个话路

 Δ 三次群(美): 七个二次群组成; 速率: 44.736Mb/s

• 672个话路

 Δ 四次群(日): 三个三次群组成; 速率: 100 Mb/s

• 1440个话路

 Δ 四次群(美): 六个三次群组成; 速率: 274Mb/s

• 4032个话路

(本章结束)