Universidad de Costa Rica Escuela de Matemática Facultad de Ciencias

Duración: 3 horas

Miércoles 5 de junio, 1 pm I ciclo del 2019

MA0292 Algebra Lineal para computación Puntaje: 52 puntos

Examen parcial No II

<u>Instrucciones</u>: Favor presentar su identificación. Muestre todos los cálculos ; operaciones necesarias que justifiquen sus respuestas. Utilice lapicero azul o negro para poder tener derecho a reclamos. No se permite el uso de calculadoras gráfico-programables, tabletas, etc.

- 1) (10pts) Conteste verdadero (V) o falso (F) en su cuaderno de examen, además debe justificar su respuesta para obtener puntaje.
 - a. El punto $(1,2,0) \in \pi$, donde el plano π es dado por:

$$x = -s + 2t$$

$$y = 3 + s - t ; s, t \in \mathbb{R}.$$

$$z = -1 + 2s + t$$

- b. Sea $w \in \mathbb{R}^3$ y $B = \{v_1, v_2\}$ una base ortonormal de un subespacio S de \mathbb{R}^3 entonces el vector Proy_S^w es combinación lineal de los vectores de B.
- c. Los planos de ecuaciones x = 2 y x = 1 en \mathbb{R}^3 son ortogonales.
- d. $S = \{(x, y, z) \in \mathbb{R}^3 : 2y 1 = 3z\}$ es un subespacio vectorial de \mathbb{R}^3 .
- e. $S = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} \right\}$ forma un conjunto de vectores linealmente independientes en \mathbb{R}^3 .
- 2) (20pts) Considere las siguientes ecuaciones de rectas:

$$l_1: \begin{cases} x = 3t \\ y = 1 - t \\ z = -1 + t \end{cases} \quad l_2: \frac{1 + x}{2} = \frac{y - 4}{2} = 3 - z$$

- a. (5pts) Determine dos planos cuya intersección sea la recta l_2 . $_{\sharp}$
- b. (5pts) Determine un plano que contenga a la recta l_1 y pase por el punto (1,0,1).
- c. (5pts) Verifique que la recta l_1 está contenida en el plano y+z=0.
- d. (5pts) Calcule la distancia del punto (0,1,1) al plano y+z=0.

- 3) (8pts) Sea $W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,\mathbb{R}): a+b-2c=0 \right\}$
 - a. (5pts) Determine una base B para W. Debe justificar porqué B es vuna base.
- (3pts) Calcule las coordenadas de $\begin{pmatrix} -4 & 2 \\ -1 & 3 \end{pmatrix}$ en la base B.
- 4) (14pts) Sea $W = Cl\{(0,-1,1,0)',(0,1,1,0)'\}$ subespacio de \mathbb{R}^4
 - a. (4pts) Construya una base B ortonormal para W. \bigvee
 - b. (6pts) Determine el subespacio vectorial W^{\perp} y una base ortonormal D para W^{\perp} .
 - c. (4pts) Calcule $Proy_W v$ si $v = (1,0,1,0)^t$.