

COMP3311 Database Management Systems
Spring 2022

DBMS Introduction

Prof Xiaofang Zhou

+ What is a DBMS?

How to organize, access, share, protect, ... stored data?

+ Data and Databases

- Data are facts such as age, salary, name, address, etc.
- A database has the following properties.
 - It usually represents some aspect of the real world
 - The data have some inherent meaning
 - It is designed, built and populated with data for a specific purpose
 - sales, human resources, manufacturing, banking, real estate, stock trading, inventory management, ...
- Databases touch all aspects of our lives!

A database is a collection of related data

+ DBMS

- A database management system (DBMS) is a general-purpose software package that manages databases
- A DBMS provides support/facilities for:
 - Defining types, structures, constraints on data
 - Storing data on some storage device
 - Manipulating data (querying, updating)
 - Sharing data among many users
 - Protecting data from loss, corruption, unauthorized access
- A DBMS provides an environment for managing data that is both convenient and efficient to use

+ Popular DBMS Products

- Oracle
- IBM DB2
- Microsoft SQL Server
- MySQL (MariaDB)
- PostgreSQL
- Microsoft Access
- dBASE
- SQLite...

+ DBMS vs File Systems

In file processing, applications access stored data using the facilities provided by an operating system file system.

Drawbacks

- Data redundancy & inconsistency
- Difficulty in accessing data
- Data isolation
- Integrity problems
- Atomicity of updates
- Concurrent access
- Security problems

+ DBMS vs File Systems

In database processing, applications access stored data using the facilities provided by a DBMS

Major Principles

- integrates an organization's data.
- separates meta-data (description of data) and data.
- supports multiple views of data.
- controls definition and access of data <u>centrally</u>.

A DBMS provides automated solutions for the data management problems encountered when using file systems

+ Data Independence

- One big problem in application development is the separation of applications from data
- Do I have to change my program when I ...
 - replace my hard drive?
 - store the data in a B-tree instead of a hash file?
 - partition the data into two physical files (or merge two physical files into one)?
 - store salary as floating point number instead of integer?
 - develop other applications that use the same set of data?
 - add more data fields to support other applications?
- Solution: introduce levels of abstraction

A DBMS provides separation of applications and data via several levels of abstraction.

+ Three Levels of Abstraction

+ Three Levels of Abstraction

- Physical level: describe how a record is stored on disks
 - e.g., "Divide the customer records into 3 partitions and store them on disks 1, 2 and 3."
- Logical level: describe how data are structured in database, and the relationships among the data
 - Similar to defining a record type or class in a programming language:

```
class customer {
    string name;
    string street;
    int city;
};
```

■ View level: Define a subset of the database for a particular application. Views can hide information (e.g. salary) for security purposes or add information (e.g., age).

+ Instances and Schemas

- Each level is defined by a schema, which describes the data at the corresponding level
 - A logical schema defines the logical structure of the database (e.g., set of customers and accounts and the relationship between them)
 - A physical schema defines the file formats and locations
- A database instance refers to the actual content of the database at a particular point in time.
 - A database instance must conform to the corresponding schema

+ Data Independence

+ An Example of Data Independence

+ Data Models

- A collection of tools for describing:
 - Data
 - Relationships among data
 - Data semantics
 - Constraints on data

+ Entity-Relationship Model

Example of entity-relationship model

+ Relational Model

Example of tabular data in the relational model:

name	social-security	street	city	account-number
Johnson	192-83-7465	Alma	Palo Alto	A-101
Smith	019-28-3746	North	Rye	A-215
Johnson	192-83-7465	Alma	Palo Alto	A-201
Jones	321-12-3123	Main	Harrison	A-217
Smith	019-28-3746	North	Rye	A-201

account-number	balance	
A-101	500	
A-201	900	
A-215	700	
A-217	750	

+ Data Definition Language (DDL)

- Notation for defining the database schema
 - Express how data are organized in a formal language
 - Examples:

```
CREATE TABLE customer (
    customer-name varchar(40),
    social-security char(11),
    customer-street varchar(100),
    customer-city varchar(20),
    account-number varchar(10));

CREATE TABLE account (
    account-number char(10),
    balance integer);
```

+ Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the data model
- Two types of theoretical DML
 - Algebra (Procedural) user specifies what data is required and how to get those data.
 - Calculus (Nonprocedural) user specifies what data is required without specifying how to get those data
- DML in practice
 - SQL

+ SQL

- Most common language used in all commercial DBMSs
- Including DML, DDL and more
- Example

SELECT account-number

FROM account

WHERE balance <= 0

+ Transaction Management

- A transaction is a collection of operations that performs a single logical function in the database
 - Example: ATM withdrawal Read account record Modify balance

Write back modified record

■ The transaction management (TM) component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures

+ Concurrency Control

Concurrency control (CC) manager controls the interaction among the concurrent transactions, to ensure the consistency of the database

+ Storage/Buffer Management

- The storage manager provides an interface to the buffer manager in the DBMS to access the data stored on disk
- The buffer manager is responsible for fetching data from the storage manager into main memory (the buffer) and deciding what data to keep in the buffer

+ Overall System Architecture

+ Database Users

End Users

- Naïve users
 - Invoke existing application programs (e.g., print monthly sales report).
 - Interact with applications through a graphical user interface (GUI).
- Application programmers
 - Develop applications that interact with DBMS through DML calls.
- Sophisticated users
 - Issue queries either directly using a database query language (e.g., SQL) or via tools such as data analysis software.

Database Administrator (DBA)

- Coordinates all activities of the database system.
 - Defines and maintains the schemas.
 - Defines and maintains the physical organization.
 - Monitors and optimizes the database performance.
 - Monitors access and grants access rights

A DBA must have a good understanding of an enterprise's information resources and needs

+ Summary

- Database management systems (DBMSs) address the limitations of file systems for managing an enterprise's data
- Data independence is fundamental to understanding a database at different abstraction levels
- Data models are the foundation for developing a database
 - The entity-relationship (E-R) model and relational model are commonly used in practice
- Database languages (DDL and DML) are an integral part of a DBMS
 - SQL is the common database language for relational DBMSs
- A DBMS provides many facilities to efficiently manage the data management and access needs of various users
 - Query processing, storage management, transaction management