Introduction to Real Analysis - MAT337 Course Notes

Yuchen Wang

May 13, 2019

Contents

1	Construction of Real Numbers		
	1.1	Decimal Expansion	2
	1.2	Properties of Supremum and Infimum	4

2

1 Construction of Real Numbers

1.1 Decimal Expansion

Definition 1.1.1 Let $r \in \mathbb{R}^+$. Then r is called

- 1. Terminating DE if $r = q.d_1 \dots d_n 0$
- 2. Repeating DE if $r = q.d_1...d_kd_{k+1}...d_nd_{k+1}...d_nd_{k+1}...$

Proposition 1.1.2 $x = \frac{l}{m}$ is <u>rational</u> if x has a DE that is either terminating or repeating.

proof:

 $\overline{\text{Let } x} \in \mathbb{R}^+.$

 \Rightarrow :

1. Assume x has a DE that is terminating, then

$$x = q.d_1...d_n0 = q + \sum_{m=1}^{n} \frac{d_m}{10^m} \in \mathbb{Q}$$

2. Assume x has a DE that is repeating, then

$$x = q.d_1 \dots d_k \overline{d_{k+1} \dots d_n}$$

= $q.d_1 \dots d_k 0 + 0.0 \dots 0 \overline{d_{k+1} \dots d_n}$

We know that the former number $\in \mathbb{Q}$, so we only need to show the rationality of the latter number.

$$0.0...0\overline{d_{k+1}...d_{n}} = 10^{-k} \left(\sum_{m=1}^{n} \sum_{l=0}^{\infty} \frac{d'_{m}}{10^{nl+m}} \right)$$

$$(\text{denote } d'_{0}, ..., d'_{n} \text{ be the repeated digits})$$

$$= 10^{-k} \sum_{m=1}^{n} d'_{m} 10^{-m} \left(\sum_{l=0}^{\infty} 10^{nl+m} \right) \qquad (\text{decompose})$$

$$= 10^{-k} \sum_{m=1}^{n} d'_{m} 10^{-m} (1 - 10^{-n})^{-1} \qquad (\text{geometric series})$$

$$= \sum_{m=1}^{n} \frac{d'_{m} 10^{n}}{10^{m+k} (10^{n} - 1)} \qquad (\text{make it look nicer})$$

$$\in \mathbb{Q}$$

3

 \Leftarrow : Assume $x \in \mathbb{Q}$, we'll show that its DE is either terminating or repeating.

Idea

By Euclidean division we write

$$l = qm + r_0$$

Again by ED,

$$10r_0 = d_1m + r_1$$

$$\rightarrow \frac{r_0}{m} = \frac{d_1}{10} + \frac{r_1}{10m} \rightarrow \frac{l}{m} = q + \frac{r_0}{m} = q + \frac{d_1}{10} + \frac{r_1}{10m}$$

Repeat this using induction.

Base Case:

$$\frac{l}{m} = q + \frac{d_1}{10} + \frac{r_1}{10m}$$

Inductive Step:

Assume
$$\frac{l}{m} = q + \frac{d_1}{10} + \ldots + \frac{r_n}{10^n m}$$
. By ED.

$$10r_n = d_{n+1}m + r_{n+1}$$

$$\begin{array}{l} \rightarrow \frac{r_n}{m10^n} = \frac{d_{n+1}}{10^{n+1}} + \frac{r_{n+1}}{10^{n+1}m} \\ \rightarrow \frac{l}{m} = q + \frac{d_1}{10} + \ldots + \frac{r_{n+1}}{10^{n+1}m} \\ \underline{\textbf{Case 1}} \ r_h = 0 \ \text{for some} \ h > 0 \Rightarrow \text{then DE is terminating} \end{array}$$

Case 2 $r_h > 0 \,\forall l > 0$

WTS DE is repeating.

$$r_h \in \{0, \dots, m-1\} \, \forall h > 0$$

Fix
$$h$$
, then $\exists n \text{ s.t. } r_n = r_h \text{ for } n > h$

Then
$$\begin{cases} 10r_n = d_{n+1}m + r_{n+1} \implies d_{n+1} = d_{h+1} \\ 10r_h = d_{h+1}m + r_{h+1} \end{cases} \qquad \text{(by uniqueness of ED)}$$

$$\implies \text{ED is repeating.}$$

Definition 1.1.3 $x \in \mathbb{R}$ is called <u>irrational</u> if $\nexists \frac{l}{m}$ such that $x = \frac{l}{m}$. Denote as $x \in \mathbb{Q}^C$.

Proposition 1.1.4 $x \in \mathbb{Q}^C \iff$ the decimal expansion of x neither terminates nor repeats.

Fact 1.1.5 $\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}^C$.

1.2 Properties of Supremum and Infimum

Proposition 1.2.1 Every nonempty bounded above set S has a supremum.

proof:

Since S is bounded above, $\exists M \in \mathbb{R}, \exists m_0, m_1 \in \mathbb{N}, M = m_0.m_1, M \geq s \ \forall s \in S$.

Pick $s' = s_0.s_1 \in S$. Since $M \ge s'$, then $m_0 + 1 > s_0$.

Find the smallest integer $a_0 \in \{s_0, s_0 + 1, \dots, m_0 + 1\}$ that $a_0 + 1$ is an upper bound for S.

Let $x_0 \in S$ s.t. $a_0 - 1 < x_0$.

Let $y_1 = a_0 + \frac{a_1}{10}$ where $a_1 \in \{0, 1, \dots, 9\}$ is the smallest integer s.t. y_1 is an upper bound for S.

Let $x_1 \in S$ s.t. $a_0.a_1 - 0.1 \le x_1 \le a_0.a_1$

Let $y_2 = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2}$ where $a_2 \in \{0, 1, \dots, 9\}$ is the smallest integer s.t. y_2 an upper bound for S.

Let $x_2 \in S$ s.t. $a_0.a_1a_2 - 0.01 \le x_2 \le a_0.a_1a_2$

Let $y_n = a_0 + \frac{a_1}{10} + \ldots + \frac{a_n}{10^n}$ where $a_n \in \{0, 1, \ldots, 9\}$ is the smallest integer s.t. y_n an upper bound for S.

Let $x_n \in S$ s.t. $a_0.a_1 \dots a_n - \frac{1}{10^n} \le x_n \le y_n$

Claim: $L = a_0.a_1a_2...$ is the supremum for S.

proof:

prove upper bound: Let $s = s_0.s_1... \in S$. There are 3 cases:

- 1. $s_i = a_i \forall i$ so that s = L
- 2. $\exists k \in \mathbb{N}, \forall i < k, s_i = a_i \text{ but } s_k > a_k$

$$y_k = a_0.a_1 \dots a_{k-1}a_k 0$$

$$< a_0.a_1 \dots a_{k-1}s_k 0$$

$$= s_0.s_1 \dots s_{k-1}s_k 0$$

$$\leq s_0.s_1 \dots s_{k-1}s_k s_{k+1}$$

$$= s \in S$$

Since y_k is an upper bound for S, this cannot happen.

3.
$$s_i = a_i \ \forall i < k \text{ but } s_k < a_k$$

 $\implies y_k > s \implies L > y_k > s$

prove subsequence property: $\forall \epsilon > 0$, WTS $\exists s_{\epsilon} \in S$ s.t. $L - \epsilon \leq s_{\epsilon} \leq L$ Let $\epsilon > 0$. Pick n > 0 s.t. $\frac{1}{10^n} < \epsilon$, so then

$$L - \epsilon \le L - \frac{1}{10^n} \le x_n \le y_n < L$$

Choose $s_{\epsilon} = x_n$.

Proposition 1.2.2 Supremum is unique.

proof:

Assume for a set $S \in \mathbb{R}$, there are two supremums $u, v \in \mathbb{R}$.

Let $\epsilon = u - v > 0$. Then by definition of supremum, $\exists s_{\epsilon} \in S$ s.t. $u - \epsilon = v < s_{\epsilon}$

 \implies contradiction: v is not a supremum of S.

Proposition 1.2.3 For bounded above set A and $c \geq 0$,

$$\sup(cA) = c\sup(A)$$

proof:

 $\overline{\text{Let }M} = \sup(A).$

Upper bound property: $\forall s \in cA, s/c \in A \implies s/c \leq M \implies s \leq cM$

Subsequence property: Let $\epsilon > 0$, then take $\epsilon * = \frac{\epsilon}{c}$.

By the definition of $\sup(A)$, $\exists s_{\epsilon*} \in A, M - \epsilon* \leq s_{\epsilon*}$

Choose $s_{\epsilon} = cs_{\epsilon*}$, then

 $M - \epsilon * \leq s_{\epsilon *} \implies cM - \epsilon \leq s_{\epsilon}$ as wanted.