Theoretical task 2

due 9:00 February 1 (Monday).

To simplify notation $g(x) = w^T x + w_0$ for linear methods suppose that x is augmented with new unity feature $x \leftarrow [1; x]$ and accordingly $w \leftarrow [w_0; w]$. So now we can write $g(x) = \langle w, x \rangle$.

- 1. For binary classification $y \in \{+1, -1\}$ we may define a linear classifier with the following pair of discriminant functions: $g_{+1}(x) = \langle w_{+1}, x \rangle$ and $g_{-1}(x) = \langle w_{-1}, x \rangle$, or equivalently with the following decision rule $\widehat{y}(x) = sign[\langle w, x \rangle]$ for $w = w_{+1} w_{-1}$. What is the connection between two definitions of margin presented on lectures [here y is the correct class for x]:
 - (a) $M(x, y) = g_y(x) \max_{c \neq y} g_c(x)$
 - (b) $M(x,y) = y\langle w, x \rangle$
- 2. For Perceptron of Rosenblatt method $\mathbb{I}[M<0]\approx \mathcal{L}(M)=[-M]_+=max\{-M,0\}$ and for logistic regression $\mathbb{I}[M<0]\approx \mathcal{L}(M)=\ln(1+e^{-M})$ [see page 30 of lecture on linear classifiers for details]. For both methods:
 - (a) Plot $\mathcal{L}(M)$ on the same graph
 - (b) Plot $\frac{\partial \mathcal{L}(M)}{\partial M}$ on the same graph
 - (c) Write down the update rule of weights for stochastic gradient descent method
 - (d) Looking at the results of a), b) and c), what is the qualitative difference between the two methods?
 - (e) Write down the update rule of weights for gradient descent method.
 - (f) What is the advantage of c) compared to e) update formula?