```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing, svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

```
In [2]: df=pd.read_csv(r"C:\Users\munigreeshma\Downloads\data (2).csv")
df
```

Out[2]:

<u></u>	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basement	yr_built
0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	3	1340	0	1955
1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	5	3370	280	1921
2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	4	1930	0	1966
3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	4	1000	1000	1963
4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	4	1140	800	1976
4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	4	1510	0	1954
4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	3	1460	0	1983
4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	3	3010	0	2009
4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	3	1070	1020	1974
4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	4	1490	0	1990

4600 rows × 18 columns

4

```
In [3]: df=df[['sqft_living','sqft_lot']]
df.columns=['living','lot']
```

In [4]: df.head(10)

Out[4]:

	living	lo
0	1340	7912
1	3650	9050
2	1930	11947
3	2000	8030
4	1940	10500
5	880	6380
6	1350	2560
7	2710	35868
8	2430	88426
9	1520	6200

```
In [5]: sns.lmplot(x ="living", y= "lot", data = df, order = 2, ci = None)
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x1c064c81150>


```
In [6]: df.describe()
Out[6]:
                     living
                                    lot
         count
                4600.000000 4.600000e+03
                2139.346957 1.485252e+04
          mean
                 963.206916 3.588444e+04
           std
                 370.000000 6.380000e+02
           min
                1460.000000 5.000750e+03
          25%
           50%
                1980.000000 7.683000e+03
                2620.000000 1.100125e+04
          75%
          max 13540.000000 1.074218e+06
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4600 entries, 0 to 4599
        Data columns (total 2 columns):
             Column Non-Null Count Dtype
             living 4600 non-null
                                      int64
              lot
                      4600 non-null
                                      int64
        dtypes: int64(2)
        memory usage: 72.0 KB
In [8]: | df.fillna(method = 'ffill',inplace = True)
        C:\Users\munigreeshma\AppData\Local\Temp\ipykernel 24400\3028625988.py:1: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returnin
        g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
        s-a-copy)
          df.fillna(method = 'ffill',inplace = True)
```

```
In [9]: X = np. array(df['living']).reshape(-1, 1)
Y = np.array(df['lot']).reshape(-1, 1)

In [10]: X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.25)
    regr = LinearRegression()
    regr.fit(X_train, Y_train)
    print(regr.score(X_test, Y_test))
```

0.057885907896339406

```
In [11]: y_pred=regr.predict(X_test)
    plt.scatter(X_test, Y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```



```
In [12]: df500 = df[:][:500]
sns.lmplot(x ="living",y ="lot", data = df500,order = 1,ci = None)
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x1c064de3190>


```
In [13]: df500.fillna(method = 'ffill',inplace = True)
    X = np. array(df500['lot']).reshape(-1, 1)
    y = np.array(df500['lot']).reshape(-1, 1)
    df500.dropna(inplace = True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    regr = LinearRegression()
    regr.fit(X_train,y_train)
    print("Regression:",regr.score(X_test,y_test))
    y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color = 'b')
    plt.plot(X_test,y_pred,color = 'k')
    plt.show()
```

Regression: 0.06814842583461433


```
In [14]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model = LinearRegression()
    model.fit(X_train,y_train)
    y_pred = model.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.06814842583461433