

MA1201 Lineær algebra og geometri Høst 2017

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Øving 1

Oppgavene merket som utfordringer, er ikke obligatoriske.

- T Gjør oppgave 1, 2, 3, 5, 12, 18, 18 med $c, d \ge 0, c + d \le 1$, og 29 på side 8-10.
- Utfordring: La det være gitt tre vektorer u_1 , u_2 , u_3 i \mathbb{R}^2 , ikke alle på en linje. Hvilken mengde i planet er

$$\{c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + c_3\mathbf{u}_3 \mid c_1, c_2, c_3 \ge 0, c_1 + c_2 + c_3 = 1, c_i \in \mathbb{R}\}$$
?

- **3** Gjør oppgave 1, 2, 4, 7 (a) og (b), 8, 9, og 27 på side 18-21.
- 4 Utfordring:
 - 1) La det være gitt $\mathbf{u}=(1,2)$ i \mathbb{R}^2 . Beskriv mengden \mathcal{L} i \mathbb{R}^2 gitt ved

$$\mathcal{L} = \{ \mathbf{x} = (x, y) \in \mathbb{R}^2 \mid \mathbf{u} \cdot \mathbf{x} = 3 \}.$$

2) La det være gitt to vektorer $\mathbf{u}=(1,1,0)$ og $\mathbf{v}=(2,0,3)$ i \mathbb{R}^3 . Linjen utspent av \mathbf{u} er alle punktene i \mathbb{R}^3 på formen $t \cdot \mathbf{u}=(t,t,0)$ for $t \in \mathbb{R}$. Hva er korteste avstand fra punktet \mathbf{v} til linjen utspent av \mathbf{u} ?