The Example 2 Detecting Political Bias in Indian News Media

This project analyzes political bias in Indian news articles by scraping real-time data, cleaning and visualizing it, and training MiniLM model to detect leanings (left, right, center).

• Project By: Prashant Pramod Patil

- Detect and classify political bias in Indian news using NLP.
- Use transformer models like MiniLM for robust classification.
- Visualize patterns in headlines and sentiment across different media outlets.

Why This Project?

- India has a diverse and polarized media landscape.
- Political bias in reporting can shape public opinion.
- Analyzing it with data and ML can uncover patterns and trends.

```
#Data handling
import pandas as pd
import numpy as np
#Data visualization
import matplotlib.pyplot as plt
import seaborn as sns
#Train/test split and evaluation
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix,accuracy_score,ConfusionMatrixDisplay
#Hugging face transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
import transformers
#Hugging face datasets (for tokenization)
from datasets import Dataset
from google.colab import drive
drive.mount('/content/drive')
print("Libraries loaded successfully.")
```

Loading the data

Libraries loaded successfully.

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/NewsArticleData.csv')
print(df.shape)
df.head()

→ (600, 6)

title description published_date source bias_text label

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Next steps: Generate code with df View recommended plots New interactive sheet

Checking for null values

df.isnull().sum()

Checking the size of each category

print(df['bias_text'].value_counts())

```
bias_text
center 197
left 197
right 195
Right 5
Center 3
Left 3
Name: count, dtype: int64
```

```
There are inconsistencies in spellings of bias_text so we will lower all the fields from that
  column to Lowercase
df['bias_text'] = df['bias_text'].str.lower()
print(df['bias_text'].value_counts())
→ bias_text
    left
    right
           200
    Name: count, dtype: int64
  The data is well distributed among each category so there is no need for downsampling or
  upsampling
bias_counts = df['bias_text'].value_counts().sort_index()
plt.figure(figsize=(6, 4))
ax = sns.barplot(x=bias_counts.index, y=bias_counts.values, palette=["red", "green", "blue"])
ax.bar_label(ax.containers[0], padding=5, fontsize=10)
ax.set_title("Distribution of News Articles by Political Bias", fontsize=12)
ax.set_xlabel("Bias Category", fontsize=10)
ax.set_ylabel("Number of Articles", fontsize=10)
plt.tight_layout()
plt.show()
                  Distribution of News Articles by Political Bias
       200
       175
 Number of Articles
        50
        25
                 center
                                                      right
                                Bias Category

    We will create a label column which will indicate the bias as (left=0, center=1, right=2)

label_map = {'left': 0, 'center': 1, 'right': 2}
df['label'] = df['bias_text'].map(label_map)
df.head()
print(df['label'].value_counts())
```

```
→ label
      200
       200
```

We will merge the title and description column by creating a text column.(it will help to tokenize the data)

```
df['text'] = df['title'] +" "+df['description']
\mbox{\tt \#we} will lower the text from text column also
df['text'] = df['text'].str.lower()
df.head()
```

;	title	description	published_date	source	bias_text	label	text
0	India Ranks 5th in Global GDP List	IMF figures indicate positive trajectory.	27-06-2025	Mint	center	1	india ranks 5th in global gdp list imf figures
1	RBI Keeps Repo Rate Unchanged	Monetary policy committee evaluates inflation	24-06-2025	PTI	center	1	rbi keeps repo rate unchanged monetary policy
2	Refugees Face Statelessness Under New Policy	UN says new rules violate humanitarian princip	11-06-2025	Scroll.in	left	0	refugees face statelessness under new policy u
	SEBI Introduces New IPO Norms	Reforms aim to protect retail investors.	19-06-2025	Indian Express			sebi introduces new ipo norms reforms aim to p
4	Disability Pension Budget Slashed	Critics say social justice is being undermined.	27-06-2025	The Hindu	left	0	disability pension budget slashed critics say

Next steps: Generate code with df View recommended plots New interactive sheet

Now we will split the data to train and test. we will only need the following columns for the model:

• text

Name: count, dtype: int64

• label

```
X = df['text']
y = df['label']

train_texts, val_texts, train_labels, val_labels = train_test_split(
    df['text'], df['label'], test_size=0.2, random_state=42, stratify=df['label']
)
print("Training examples: ",train_texts.shape)
print("Test examples: ",val_texts.shape)

Training examples: (480,)
Test examples: (120,)
```

Tokenize Text Using MiniLM Tokenizer

We'll use Hugging Face's AutoTokenizer to tokenize the input text using the MiniLM model

Convert Tokenized Data into Hugging Face Dataset Format

Because Hugging face trainer expects data in a special format to train the model

```
#Creating training dataset
train_dataset = Dataset.from_dict({
    'input_ids': train_encodings['input_ids'],
    'attention_mask': train_encodings['attention_mask'],
    'label': train_labels
})

#Creating test dataset
val_dataset = Dataset.from_dict({
    'input_ids': val_encodings['input_ids'],
    'attention_mask': val_encodings['attention_mask'],
    'label': val_labels
})
```

Load MiniLM Model & Define Training Arguments

```
# Load MiniLM model with 3 output labels for bias classification
model = AutoModelForSequenceClassification.from_pretrained(
    "microsoft/MiniLM-L12-H384-uncased",
    num_labels=3
training_args = TrainingArguments(
                                         # Where to save model checkpoints
    output_dir="./results",
    num_train_epochs=4,
                                         # Number of epochs
    per_device_train_batch_size=16,
                                         # Training batch size
    per_device_eval_batch_size=64,
                                         # Evaluation batch size
    weight_decay=0.01,
                                         # Regularization
    logging_dir="./logs",
                                         # Logging directory
    logging_strategy="epoch",
                                        # Log once per epoch
    logging_steps=1,
    report_to="none"
# Initializing Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=val_dataset,
```

Some weights of BertForSequenceClassification were not initialized from the model checkpoint at microsoft/MiniLM-L12-H384-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

Training the model

```
trainer.train()
```

This shows how well the model learned from the data

How to Interpret:

- Decreasing line = the model is learning
- Flat line = no further learning
- Upward trend = possible overfitting or unstable training

```
# Extract loss values from training logs
logs = trainer.state.log_history

train_steps = [log["step"] for log in logs if "loss" in log]
train_loss = [log["loss"] for log in logs if "loss" in log]

plt.plot(train_steps, train_loss, marker='o', linestyle='-', color='blue')
plt.title("Training Loss Curve")
plt.xlabel("Training Steps")
plt.ylabel("Loss")
plt.grid(True)
plt.tight_layout()
plt.show()
```


Model Accuracy on Test data

```
predictions = trainer.predict(val_dataset)

preds = predictions.predictions.argmax(axis=1)
    true = predictions.label_ids

accuracy = accuracy_score(true, preds)
    print("test Accuracy:", round(accuracy * 100, 2), "%")

#the reason of 100% accuracy can be repeated fields as i collected data of the same news from different sources. so the wording can be same
```

Simple prediction model

def predict_bias(title, description):

```
input_text = title + ". " + description
   inputs = tokenizer(
       input_text,
       truncation=True,
       padding=True,
       max_length=128,
       return_tensors="pt"
   ).to(model.device)
   outputs = model(**inputs)
   predicted_label = outputs.logits.argmax(dim=1).item()
   label_map = {0: "Left", 1: "Center", 2: "Right"}
   return label_map[predicted_label]
title_input = input("Enter the news title: ")
description_input = input("Enter the news description: ")
predicted_bias = predict_bias(title_input, description_input)
print("\nPredicted Political Bias:", predicted_bias)
```

Enter the news title: Odisha: Bureaucrats Go On Mass Leave to Protest Officer's Assault, Demand BJP Leader's Arrest Enter the news description: The police have arrested five persons in connection with the matter including BMC corporator Jeevan Rout, who is also a BJP member.

Predicted Political Bias: Left