

Universidade Federal do Maranhão - UFMA Departamento de Informática Processo de Desenvolvimento de Software

Prof^a.MSc Simara Rocha simararocha@gmail.com/simara@deinf.ufma.br

> Referências: Booch, G. et al. The Unified Modeling Language User Guide Medeiros, E. Desenvolvendo Software com UML 2.0: Definitivo, Makron Books, 2006. Sommerville, I. Engenharia de Software, 8ª edição, 2007.

Sumário

- Introdução
- Descrição Arquitetônica
- Razões para Modelar
- Modelos
- Visões
- Diagramas
- Observações

- É uma linguagem para especificação, construção, visualização e documentação de artefatos de um sistema de software
- É mantida pelo Object Management Group (OMG), com contribuições e direitos de autoria das seguintes empresas: Hewlett-Packard, IBM, ICON Computing, i-Logix, IntelliCorp, Electronic Data Services, Microsoft, ObjecTime, Oracle, Platinum, Ptech, Rational, Reich, Softeam, Sterling, Taskon A/S e Unisys.

- A ênfase da UML é na definição de uma linguagem de modelagem padrão, e por conseguinte, a UML é independente das linguagens de programação, das ferramentas CASE, bem como dos processos de desenvolvimento.
- O objetivo da UML é que, dependendo do tipo de projeto, da ferramenta de suporte, ou da organização envolvida, devem ser adotados diferentes processos/metodologias, mantendo-se contudo a utilização da mesma linguagem de modelagem.

- A UML é usada no desenvolvimento dos mais diversos tipos de sistemas.
- Ela abrange sempre qualquer característica de um sistema em um de seus diagramas
- Aplicada em diferentes fases do desenvolvimento de um sistema, desde a especificação da análise de requisitos até a finalização com a fase de testes.
- O objetivo da UML é descrever qualquer tipo de sistema, em termos de diagramas orientado a objetos.

 Vantagem é a unificação de todas as notações anteriores

- A UML não é
 - um processo
 - uma metodologia
 - análise e projeto OO
 - regras de projeto
 - linguagem de programação

- UML é uma linguagem padrão da OMG para
 - Visualização,
 - Especificação,
 - Construção e
 - Documentação de software orientado a objetos.

Visualização

- A existência de um modelo visual facilita a comunicação e faz com que os membros de um grupo tenham a mesma idéia do sistema.
- Cada símbolo gráfico tem uma semântica bem definida.
- O que modelamos?
 - Dimensões: dados, função, comportamento

Especificação

 É uma ferramenta poderosa para a especificação de diferentes aspectos arquiteturais e de uso de um sistema.

- Geração automática de código a partir do modelo visual
- Geração do modelo visual a partir do código
- Ambientes de desenvolvimento de software atuais permitem:
 - movimentações em ambos sentidos e
 - manutenção da consistência entre as duas visões.

Documentação

- Pode incluir artefatos como:
 - Deliverables (documentos como especificação de requisitos, especificações funcionais, planos de teste, etc.).
 - Materiais que são importantes para controlar, medir, e refletir sobre um sistema durante o seu desenvolvimento e implantação.

Descrição Arquitetônica

- UML oferece uma forma padrão de se desenhar as "plantas" (como em arquitetura) de um sistema de forma a incluir
 - aspectos abstratos (processos de negócio, funcionalidades do sistema)
 - aspectos concretos (classes C++/Java esquemas de bancos de dados, componentes de software reutilizáveis)

Razões para Modelar

- Comunicar a estrutura e o comportamento desejado de um sistema.
- Visualizar e controlar a arquitetura de um sistema.
- Para melhorar o nosso entendimento de um sistema e, assim, expor oportunidades para melhorias e reutilização.
- Para administrar os riscos

Razões para Modelar

- A UML permite modelar:
 - Elementos;
 - Relacionamentos;
 - Mecanismos de extensibilidade;
 - Diagramas

Elementos

- Para formar um modelo conceitual da linguagem é necessário aprender três elementos principais
 - Blocos de construção
 - Regras que determinam como esses blocos poderão ser combinados
 - Mecanismos comuns aplicados na UML

Blocos de Construção

- Três tipos:
 - Itens: são abstrações
 - Relacionamentos: os relacionamentos reunem esses itens
 - Diagramas: agrupam coleções interessantes de item

Itens da UML

- Estruturais
- Comportamentais
- De agrupamento
- Anotacionais

Itens estruturais

- São os substantivos dos modelos. São a parte estática, representando elementos conceituais ou físicos
- Sete tipos: classes, interfaces, colaborações, casos de uso, classes ativas, componentes e nós

Classe

Itens comportamentais

- Representam as partes dinâmicas dos modelos.
 São os verbos, representando comportamentos no tempo e no espaço
- Dois tipos: interação e máquina de estado

<u>exibir</u>

Mensagem

Aguardando

Estado

Itens de agrupamento

- São as partes organizacionais dos modelos de UML. São os blocos em que os modelos podem ser decompostos – pacotes
- Um pacote é um mecanismo de propósito geral para a organização de elementos em grupos

Regras de negócios

Pacote

Itens anotacionais

 Partes explicativas dos modelos UML. São comentários, incluídos para descrever, esclarecer e fazer alguma observação importante sobre qualquer elemento do modelo - notas

Retornar cópia

Nota

Relacionamentos

- Dependências
- Associações
- Generalização
- Realização

Dependência

 Relacionamento semântico entre dois itens, nos quais a alteração de um (o item independente) pode afetar a semântica do outro (o item dependente)

Associação

 É um relacionamento estrutural que descreve um conjunto de ligações, em que as ligações são conexões entre objetos

Associação: Agregação

 A agregação é um tipo especial de associação representando um relacionamento estrutural entre o todo e sua parte

 É um relacionamento de especialização/generalização, nos quais os objetos dos elementos especializados (os filhos) são substituíveis por objetos do elemento generalizado (os pais)

Realização

 É um relacionamento semântico entre classificadores, em que um classificador especifica um contrato que outro classificador garante executar

Mecanismos de extensibilidade

- Esteriótipos
- Regras
- Valores marcados (tagged values)
 - {aluno = "placido neto"; versao = 2.3}

Modelos

- Um modelo é uma simplificação da realidade
- Um modelo é representado por um ou mais diagramas. Desta forma, um diagrama pode ser visto como uma visão dentro de um modelo.
- Um diagrama pode ser representado de várias formas, dependendo de quem irá interpretá-lo.

Visão

Um diagrama é uma visão sobre um modelo

Organização

Comportamento

Diagrama

- Um diagrama provê uma parcial representação do sistema.
- Ele ajuda a compreender a arquitetura do sistema em desenvolvimento.
- Os diagramas:
 - Caso de uso, classes, sequência, objeto, colaboração, atividade, estado, implantação, pacotes, componentes

Diagramas de casos de uso

- Modelam a funcionalidade do sistema através de atores e casos de uso
- Casos de uso são serviços ou funções fornecidas pelo sistema aos seus usuários

- Diagramas de classe são a espinha dorsal da maioria dos métodos orientados a objeto, inclusive UML
- Descrevem a estrutura estática do sistema (entidades e relacionamentos)

Diagramas de seqüências

 Descreve as interações entre as classes através das trocas de mensagens ao logo do tempo

Diagramas de objetos

- Descrevem a estrutura estática de um sistema em um determinado momento
- Podem ser usados para testar a precisão dos diagramas de classe

Diagramas de Comunicação

 Representam as interações entre objetos em termos de mensagens em seqüência

 Descrevem tanto a estrutura estática como o comportamento dinâmico do sistema

Diagramas de atividades

- Ilustram a natureza dinâmica de um sistema modelando o fluxo de controle de uma atividade para outra
- Uma atividade representa uma operação em uma classe do sistema que resulta na mudança do estado do sistema
- Tipicamente, são usados para modelar fluxo de trabalho ou processos de negócio e funcionamento interno

Diagramas de estados

- Descrevem o comportamento dinâmico do sistema em resposta a estímulos externos
- São especialmente úteis para modelar objetos reativos cujos estados são disparados por eventos específicos

Diagramas de implantação

 Descrevem os recursos físicos em um sistema, incluindo nós, componentes e conexões

 Organizam elementos do sistema em grupos relacionados a fim de minimizar a dependência entre eles

Diagramas de componente

- Descreve a organização dos componentes físicos de software
- Ex.: código-fonte, código em tempo de execução (binário) e executáveis

Diagrama

 Os diagramas UML são abordados como Estáticos e Dinâmicos.

Estes diagramas também Podem ser classificados como:

Comportamentais Estruturais

Observações

- UML não é uma metodologia:
 - Não diz quem deve fazer o que, quando e como;
 - UML pode ser usado segundo diferentes metodologias, como o RUP.
- UML não é uma linguagem de programação.