Causal Inference Using Potential Outcomes

Causal Inference Reading Group 3/20/2025

An example

 We are interested to know the relationship between taking aspirin (our treatment of interest T) and headache severity (our outcome of interest Y)

	Potential Outcome Y (Severity of headache)			
ID	X _i (e.g. Age)	STATE 1: if treated with aspirin Y _i 1	STATE 2: if NOT Treated with aspirin Y _i ⁰	Individual-level Causal effect of Aspirin Y _i ¹- Y _i ⁰
1	34	100	100	0
2	22	50	80	-30
3	56	0	100	-100
4	73	50	20	30
5	86	0	0	0

 Causal Effect of the aspirin is the difference in the severity of headache between the two states of the world

		Potential Outcome Y (Severity of headache)		
ID	X _i (e.g. Age)	STATE 1: if treated with aspirin Y _i 1	STATE 2: if NOT Treated with aspirin Y _i ⁰	Individual-level Causal effect of Aspirin Y _i ¹- Y _i ⁰
1	34	100	100	0
2	22	50	80	-30
3	56	0	100	-100
4	73	50	20	30
5	86	0	0	0

Other Estimands of interest (i.e., the quantity that you want to estimate):

1. Average Treatment Effect: mean of the individual effects: $E(Y_i^1 - Y_i^0) = -20$

		Potential Outcome Y (Severity of headache)				
ID	X (e.g. Age)	STATE 1: if treated with aspirin Y ¹	STATE 2: if NOT Treated with aspirin Y ⁰	Individual-level Causal effect of Aspirin Y _i ¹- Y _i º	Actual Aspirin Use	
1	34	100	100	0	1	
2	22	50	80	-30	1	
3	56	0	100	-100	0	
4	73	50	20	30	0	
5	86	0	0	0	0	

2. Average Treatment Effect of the treated (ATT): $E(Y_i^1 - Y_i^0)$ treated) = -15

		Potential Outcome Y (Severity of headache)			
ID	X (e.g. Age)	STATE 1: if treated with aspirin Y ¹	STATE 2: if NOT Treated with aspirin Y ⁰	Individual-level Causal effect of Aspirin Y _i ¹- Y _i º	Actual Aspirin Use
1	34	100	100	0	1
2	22	50	80	-30	1
3	56	0	100	-100	0
4	73	50	20	30	0
5	86	0	0	0	0

3. Average Treatment Effect of the untreated (ATU): $E(Y_i^1 - Y_i^0)$ untreated) = -23.3

"The Fundamental Problem of Causal Inference" – we do not get to observe both states, one will always be missing

		Potential Outcome Y (Severity of headache)				
ID	X (e.g. Age)	STATE 1: if treated with aspirin Y ¹	STATE 2: if NOT Treated with aspirin Y ⁰	Individual-level Causal effect of Aspirin Y _i ¹- Y _i º	Actual Aspirin Use	Observed Outcome Y
1	34	100	100	0	1	100
2	22	50	80	-30	1	50
3	56	0	100	-100	0	100
4	73	50	20	30	0	20
5	86	0	0	0	0	0

- If we take the mean Y of the treated mean Y of the untreated: E(Y|treated) E(Y|untreated) = 35
- ≠ ATE (-20) because there is <u>selection bias</u> (e.g. older people were less likely to take aspirin), and/or <u>heterogeneous treatment effect bias</u>

The assignment mechanisms

- Methods that assign treatments to individuals/units
- Can be seen as a special type of missing-data mechanism that creates missing potential outcomes
- Can be written as $P(T = 1 | X, Y^0, Y^1)$, where T indicates treatment assignment and X represents observed covariates.

Randomization

- Using a random mechanism to assign treatment
- Satisfies the "Independence Assumption" treatment assignment is independent of the individuals' potential outcomes.
- Randomization eliminates both the selection bias and heterogeneous treatment effect bias
- E(Y|treated) E(Y|untreated) = ATE!

Non-random assignment and causal assumptions:

1. Exchangeability / unconfoundedness/ ignorability:

- The potential outcomes for individuals in different treatment groups are comparable, and the distribution of potential outcomes is the same across groups.
- After controlling for **observed covariates**, the treatment assignment is independent of the potential outcomes
 - Example of violation:
 - Those who had a positive experience with aspirin chose to take aspirin, and we do not have information on the individual's aspirin preferences or history

Non-random assignment and causal assumptions:

2. Positivity

- Every individual has a non-zero probability of receiving each level of treatment. (Requires that the propensity of treatment assignment is between 0 and 1)
 - Example of violation:
 - Those who are at high risk of bleeding will never choose to take an aspirin for their headache (structural positivity violation)
 - Our sample size was small. All younger people took aspirin. (Stochastic violations)

More Causal Assumptions: SUTVA Stable Unit Treatment Value Assumption

1. Consistency

- The potential outcome for an individual under a specific treatment condition is the same as the observed outcome when that individual actually receives that treatment
- Allows us to see one of the potential outcomes for each individual
- If a patient received aspirin, the outcome measured (severity of headache) should be the same as their potential outcome \mathbf{Y}^1
- Example of violation:
 - There are multiple versions of aspirin (e.g. different strength and delivery mechanisms), but we lumped them all as "aspirin". The difference between a 80mb "baby aspirin" and an extra strength 500 mg aspirin may be significant. (A case of **poorly-defined exposure**)

SUTVA (cont'd)

2. No spillovers (No Externalities/ No interference)

- The potential outcome for an individual responds only to their OWN treatment status. Potential outcomes are invariant to treatment assignment of others.
- Example of violation:
 - In a vaccination study, if one person receives a vaccine, it may affect the probability of another person contracting an infectious disease
 - Seeing a friend's headache goes away after taking an aspirin makes your headache better, too.

SUTVA (cont'd)

3. No general equilibrium effects (Cunningham)

 The impact of a treatment on one individual should not be influenced by how many others are receiving the same treatment or a different treatment.

Example of violation:

- If a health educational program's effectiveness changes based on the number of students enrolled in the program, then the assumption is violated
- The self-reported headache pain level changes when 1000 people are taking aspirin as the same time in the same room vs. when there was only 1 person.

Randomization Inference

- Inference based on different possible randomizations of treatment
- Allows us to make probability calculations revealing whether the data are likely a draw from a truly random distribution or not
- **Fisher's sharp null:** generate exact p-values for tests of a sharp null hypothesis
- Sharp null hypothesis: the treatment has no effect for any individual
 - H0: $Y_i^1 Y_i^0 = 0$ for all *i*
 - If sharp null is true: $Y_i^1 = Y_i^0 = Y_i$
- Involves shuffling the treatment assignments among the participants to create a distribution of test statistics.
- Compare test statistic between the observed data and for each permutation of the treatment assignments.