The Huge Giant Super Amazing Calculator Program!!!

Your Task: Work with a partner to create a super-giant amazing calculator! You will use *Git* to share code with each other and work on your functions separately!

Choose from the menu of functions below

Geometry Functions			
Function	Input/Output	Formula	Points
Area of a Triangle	In: b, h Out: Area	$A = \frac{1}{2}bh$	1
Area of a Trapezoid	In: b_1, b_2, h Out: Area	$A = \frac{1}{2}h(b_1 + b_2)$	1
Area of a Regular Polygon	In: apothem, side length, number of sides Out: Area	$A = n\left(\frac{1}{2}al\right)$	1
Circumference of a Circle	In: <i>radius</i> Out: Circumference	$C=2\pi r$	1
Arc Length	In: radius, angle of arc Out: Arc Length	$L = 2\pi r \left(\frac{a}{360}\right)$	1
Area of a Circle	In: <i>radius</i> Out: Area	$A = \pi r^2$	1
Area of a Sector	In: radius, angle of arc Out: Area of Sector	$A = \pi r^2 \left(\frac{a}{360}\right)$	1
Volume of a Sphere	In: <i>radius</i> Out: Volume	$A = \pi r^2 \left(\frac{a}{360}\right)$ $V = \frac{4}{3}\pi r^3$	1
Volume of a Cylinder	In: radius, height Out: Volume	$V = \pi r^2 h$	1
Volume of a Cone	In: radius, height Out: Volume	$V = \frac{1}{3} \pi r^2 h$	1
Pythagorean Theorem	In: <i>a, b</i> Out: <i>c</i>	$c = \sqrt{a^2 + b^2}$	1

Each of the above programs is worth an extra point if you call one of these functions *inside* another function

For example, if you see two functions that look similar, maybe there's a way to use one of the functions *inside* the other function

Unit Conversion Functions			
Function	Input/Output	Formula	Points
Inches to Centimeters	In: Inches Out: Centimeters	C=2.54I	1
Feet to Meters	In: Feet Out: Meters	M = 0.305F	1
Miles to Kilometers	In: Miles Out: Kilometers	K = 1.609M	1
Gallons to Liters	In: Gallons Out: Liters	L = 3.78G	1
Pounds to Kilograms	In: Pounds Out: Kilograms	K = 0.45P	1
Celsius to Fahrenheit	In: Celsius Out: Fahrenheit	$F = 1.8 \cdot C + 32$	1

Each of the above programs is worth an extra point if you also write a function for the *inverse* of the conversion.

In other words, you write a function that converts Celsius to Fahrenheit *and* Fahrenheit to Celsius.

Coordinate Functions			
Function	Input/Output	Formula	Points
Slope Formula	In: $(x_1, y_1), (x_2, y_2)$ Out: Slope	$m = \frac{y_2 - y_1}{x_2 - x_1}$	2
Distance Formula	In: $(x_1, y_1), (x_2, y_2)$ Out: Distance	$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	2

Physics Functions			
Function	Input/Output	Formula	Points
Velocity	In: Initial velocity, acceleration, time Out: Velocity	$v = v_0 + at$	1
Distance	In: Initial distance, initial velocity, acceleration, time Out: Distance	$d = d_0 + v_0 t + \frac{1}{2} a t^2$	2
Circular	In: velocity, radius	$a = \frac{v^2}{}$	1
Acceleration Momentum	Out: Acceleration In: mass, velocity Out: momentum (p)	p = mv	1
Kinetic Energy	In: mass, velocity Out: Kinetic Energy	$K = \frac{1}{2}mv^2$	1
Potential Energy	In: mass, gravity, change in height Out: Potential Energy	P = mgy	1
Current	In: voltage, resistance Out: Current	$I = \frac{V}{R}$	1
Power	In: current, voltage Out: Power	P = IV	1

Finance Functions			
Function	Input/Output	Formula	Points
Simple Interest	In: Principal, Rate (as decimal), Time Out: Simple Interest Earned	I = PRT	2
Compound Interest	In: Principal, Rate (as decimal), Time, number of times compounded per year Out: Value after t years	$V = P\left(1 + \frac{r}{n}\right)^{nt}$	4