Interpreting Customers' Purchase on Online Shopping Website

Final Project Presentation

MMDT MLAI101

Instructor: Dr.Myo Thida

Mentor: Ma Nuwai Thet

Team members: Ma May Mon Thant

Ko Myint Myat Aung Zaw

Ma Nilar Win

Contents

- Introduction to the Project
- Dataset Description
- Data Preprocessing
- Model Selection
- Implementation Process
- Evaluation Metrics
- Results and Findings
- Discussion of Results
- Conclusion and Future Work

Projectoverview

The project focuses on binary classification to predict whether an online shopper will make a purchase or not during their visit to an e-commerce website.

Scope of the Project

- Identify our target audience with a high degree of confidence.
- Focus marketing efforts on potential buyers.
- Increase the conversion rate of our marketing campaigns.

DATASET DESCRIPTION

- Source: UCI Machine Learning Repository
- Size: 12,330 shopping sessions from different users over 1 year
- Features: 18 columns (10 numerical, 8 categorical)
- Important Features: PageValues, ExitRates, TotalPageDuration, TotalPageViews, Month, BounceRates
- Target Variable: Revenue (Purchase, No Purchase)

Data Preprocessing

- Load the data from .csv file
- Check the null value and data type of features
- Encoded the target variable and Weekend feature
- Encoded VisitorType feature using OneHotEncoder
- Mapped Month feature
- Combined number of pages views as TotalPageViews
- Combined Time spent on each pages in seconds as TotalPageDuration
- Cleaned the column names by removing underscores
- Split the dataset into 70% train and 30% test data using stratify=y due to imbalanced dataset
- Scaled the numerical features using StandardScaler

BUSINESS OBJECTIVES

Optimize Marketing: By minimizing wasted spend on irrelevant customer outreach.

Maximize Revenue: By increasing the purchase conversion rate.

Aligning Model Metrics with Our Strategy

- False Positives (The Problem): A model prediction of "will buy" for a customer who ultimately does not, leads to wasted marketing costs. These are customers we mistakenly target with promotions.
- Precision (The Solution): This metric tells us how many of our positive predictions were actually correct. A high precision score ensures our marketing efforts are focused on the right people, leading to a higher conversion rate for every dollar spent.

Implementation Process

Library Usage

- pandas, numpy, matplotlib
- scikit-learn
- time (to compute model running time)
- accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix (evaluation metrics)

Implementation Process

Data Implementation Process

- Cleaned dataset (removed missing values, standardized column names)
- Encoded categorical variables (Weekend, VisitorType, etc.)
- Split dataset into training (70%) and testing (30%)
- Performed feature scaling (StandardScaler for numeric features)
- Trained multiple models: Logistic Regression, Random Forest, Naive Bayes, SVM
- Evaluated using Accuracy, Precision, Recall, F1-score, ROC-AUC

Data Loading

Data Preprocessing

1

Feature Engineering

 \downarrow

Train/Test Split

Model Training

1

Model Evaluation

 \downarrow

Prediction

Model Selection

- Logistic Regression
- Support Vector Machine (SVM)
- Decision Tree
- Random Forest
- K-Nearest Neighbors (KNN)

Our Modes

Model	Precision	Recall	F1 Score	ROC AUC	Accuracy
Random Forest	0.73	0.57	0.64	0.91	0.90
Decision Tree	0.51	0.53	0.52	0.72	0.85
SVM	0.72	0.39	0.50	0.88	0.88
-Nearest Neighbors	0.71	0.38	0.50	0.79	0.88
ogistic Regression	0.71	0.34	0.46	0.89	0.88

Type I and Type II errors for our problem:

- A type I (false positive) error would be predicting that a customer will make a purchase, when they in fact do not.
- A type II (false negative) error would be predicting that a customer will not make a purchase, when in fact they do.

Random Forest Model	Test Data			Train Data			
Performance	Precision	Recall	F1-score	Precision	Recall	F1-score	
Original	0.71	0.54	0.61	** <u>2</u>	-		
SMOTE	0.59	0.69	0.64	-	· -]:-	
K-Fold CV	0.72	0.50	0.59	0.74	0.57	0.64	
SMOTE & K-Fold CV	0.61	0.70	0.65	0.62	0.74	0.67	
Best Parameters	0.72	0.58	0.64	j a	-	-	

Our Model's Performance

- The model's Precision Score is 72%.
- This means that when our model predicts a customer will buy, it is correct 72% of the time.

```
--- Step 3: Final Model with Best Parameters Test Data ---
  Final Evaluation on Test Set .
F1 Score: 0.6409
Confusion Matrix:
 [[2995 132]
 [ 240 332]]
Classification Report:
              precision recall f1-score
                                              support
                  0.93
                            0.96
                                       0.94
                                                 3127
                  0.72
                            0.58
                                                  572
                                       0.64
                                       0.90
                                                 3699
    accuracy
                  0.82
                            0.77
                                       0.79
                                                 3699
  macro avg
weighted avg
                  0.89
                                                 3699
                            0.90
                                       0.90
ROC AUC Score: 0.9199
```

ATACHALLENGES

Highly Imbalanced Dataset: The number of customers who make a purchase is very small compared to those who don't.

Data Validation: The data source for customer engagement may not be fully validated. We must be mindful of potential inaccuracies or biases in the data

DISCUSSION

- The model might be very good at predicting purchases for frequent visitors but poor for first-time customers.
- Given our website's focus on high-volume, casual products (similar to Amazon), we prioritize maximizing the efficiency of our marketing campaigns to drive mass sales.

FUREWORK

Acquire More Data in Future

Improve our data foundation

Implement and test for business implementation

#