Modeling of the nonlinear stochastic dynamics of an orchard sprayer tower moving in an irregular terrain

Americo Cunha Jr

Universidade do Estado do Rio de Janeiro (UERJ)

NUMERICO – Nucleus of Modeling and Experimentation with Computers

http://numerico.ime.uerj.br

In collaboration with: Jorge Luis Palacios Felix (UFFS)

José Manoel Balthazar (ITA)

WCCM - APCOM 2016 24 - 29 July, 2016 Seoul, Republic of Korea

Outline

- Introduction
- 2 Deterministic Modeling
- Stochastic Modeling
- 4 Numerical Experiments
- Final Remarks

Section 1

Introduction

Horticulture in Brazil

Economical and social aspects:

- Brazil is the world's third largest fruit producer
- annual production of about 40.8 million tonnes
- responsible for 27% of agribusiness workforce

Challenges:

- ensure fruit quality
- reduce crop losses
- reduce air and soil pollution
- increase productivity

Horticulture in Brazil

Economical and social aspects:

- Brazil is the world's third largest fruit producer
- annual production of about 40.8 million tonnes
- responsible for 27% of agribusiness workforce

Challenges:

- ensure fruit quality
- reduce crop losses
- reduce air and soil pollution
- increase productivity

careful pest control

Orchard spraying process

Pest control: done through dispersion of a pulverizing fluid.

Orchard tower sprayer

Figure: Schematic of an orchard tower sprayer.

Characteristics:

- an articulate tall structure
- subjected to soil irregularities induced vibrations

Orchard tower sprayer

Figure: Schematic of an orchard tower sprayer.

Characteristics:

- an articulate tall structure
- subjected to soil irregularities induced vibrations

Research objectives

The objectives of this research are:

- construct a stochastic model for orchard sprayer dynamics
- compute the propagation of uncertainties through this model
- investigate the probability of large lateral vibrations

Section 2

Deterministic Modeling

Idealized mechanical system

Multibody system with 3 DoF (trailer + tower + tires)

Degrees of Freedom:

- v₁ trailer displacement
- ϕ_1 trailer rotation
- ϕ_2 tower rotation

External Excitation:

- y_{e1} left tire displacement
- y_{e2} right tire displacement

Quantity of Interest (QoI):

• $x_2 = -L_1 \sin \phi_1 - L_2 \sin \phi_2$

S. Sartori Junior, J. M. Balthazar, B. R. Pontes Junior, Non-linear dynamics of a tower orchard

Model equations of motion

Lagrangian formalism:

$$\frac{\partial}{\partial t} \left(\frac{\partial \mathcal{T}}{\partial \dot{q}} \right) - \frac{\partial \mathcal{T}}{\partial q} + \frac{\partial \mathcal{V}}{\partial q} + \frac{\partial \mathcal{D}}{\partial \dot{q}} = 0, \quad q = \{y_1, \phi_1, \phi_2\}$$

Functionals of energy and dissipation:

$$\mathcal{T} = \frac{1}{2}m_1\dot{y}_1 + \frac{1}{2}m_2(\dot{x}_2 + \dot{y}_2) + \frac{1}{2}l_1\dot{\phi}_1 + \frac{1}{2}l_2\dot{\phi}_2$$

$$\mathcal{V} = m_1 g y_1 + m_2 g y_2 + \frac{1}{2} k_1 (y_1 - B_1 \sin \phi_1 - y_{e1})^2 + \frac{1}{2} k_2 (y_1 + B_2 \sin \phi_1 - y_{e2})^2 + \frac{1}{2} k_T (\phi_2 - \phi_1)^2$$

$$\mathcal{D} = \frac{1}{2}c_{1}\left(\dot{y}_{1} - B_{1}\,\dot{\phi}_{1}\,\cos\phi_{1} - y_{e1}\right)^{2} + \frac{1}{2}c_{2}\left(\dot{y}_{1} + B_{2}\,\dot{\phi}_{1}\,\cos\phi_{1} - y_{e1}\right)^{2} + \frac{1}{2}c_{7}\left(\dot{\phi}_{2} - \dot{\phi}_{1}\right)^{2}$$

S. Sartori Junior, J. M. Balthazar, B. R. Pontes Junior, Non-linear dynamics of a tower orchard

Numerical Experiments

Nonlinear dynamical system

$$[M] \begin{pmatrix} \ddot{y}_1(t) \\ \ddot{\phi}_1(t) \\ \ddot{\phi}_2(t) \end{pmatrix} + [N] \begin{pmatrix} \dot{y}_1^2(t) \\ \dot{\phi}_1^2(t) \\ \dot{\phi}_2^2(t) \end{pmatrix} + [C] \begin{pmatrix} \dot{y}_1(t) \\ \dot{\phi}_1(t) \\ \dot{\phi}_2(t) \end{pmatrix} + [K] \begin{pmatrix} y_1(t) \\ \phi_1(t) \\ \phi_2(t) \end{pmatrix} = \mathbf{g} - \mathbf{h},$$

- + initial conditions
 - [M], [N], [C], [K], g, and h are configuration dependent
 - RKF45 method is used for numerical integration

S. Sartori Junior, J. M. Balthazar, B. R. Pontes Junior, Non-linear dynamics of a tower orchard

Section 3

Stochastic Modeling

Aleatory nature of a tire displacement

Figure: Typical paths followed by the tires of orchard sprayer.

Introduction

External excitations are described as random processes:

- $\{y_{e1}(t), t \in \mathbb{R}\}$
- $\{y_{e2}(t), t \in \mathbb{R}\}$

Covariance functions are assumed to be:

$$cov_{y_{e1}}(t_1, t_2) = cov_{y_{e2}}(t_1, t_2) = exp\left(-\frac{v(t_2 - t_1)}{a_{corr}}\right)$$

Random processes representation

Truncated Karhunen-Loève expansion:

$$\mathbf{y}(t) pprox \mu_{\mathbf{y}}(t) + \sum_{n=1}^{N_{KL}} \sqrt{\lambda_n} \, arphi_n(t) \, \mathbb{Y}_n$$

$$\int_{\mathbb{R}} \operatorname{cov}_{y(t)}(t,\tau) \varphi_n(\tau) d\tau = \lambda_n \varphi_n(t), \qquad t \in \mathbb{R}$$

$$\mu_{\mathbb{Y}_n} = 0$$
 and $\mathbb{E}\left[\mathbb{Y}_n \mathbb{Y}_m\right] = \delta_{mn}$

D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010.

2003.

R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach, Dover Publications,

Random loading induced by irregular terrain

Figure: Random loadings generated by KL expansion.

Stochastic nonlinear dynamical system

$$[\mathbb{M}] \left(\begin{array}{c} \ddot{\mathbb{y}}_1(t) \\ \ddot{\mathbb{g}}_1(t) \\ \ddot{\mathbb{g}}_2(t) \end{array} \right) + [\mathbb{N}] \left(\begin{array}{c} \dot{\mathbb{y}}_1^2(t) \\ \dot{\mathbb{g}}_1^2(t) \\ \dot{\mathbb{g}}_2^2(t) \end{array} \right) + [\mathbb{C}] \left(\begin{array}{c} \dot{\mathbb{y}}_1(t) \\ \dot{\mathbb{g}}_1(t) \\ \dot{\mathbb{g}}_2(t) \end{array} \right) + [\mathbb{K}] \left(\begin{array}{c} \mathbb{y}_1(t) \\ \psi_1(t) \\ \psi_2(t) \end{array} \right) = \underline{\mathbb{g}} - \underline{\mathbb{h}}, \quad \text{a.s.}$$

+ initial conditions

Propagation of uncertainties: Monte Carlo method

A. Cunha Jr, R. Nasser, R. Sampaio, H. Lopes, and K. Breitman, *Uncertainty quantification through*Monte Carlo method in a cloud computing setting. Computer Physics Communications, 185: 1355—

1363, 2014.

Section 4

Numerical Experiments

Nonlinear dynamics animation

Lateral dynamics: typical realization time series

Figure: Time series of tower lateral displacement.

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

Lateral dynamics: typical realization time series

Figure: Projection of lateral dynamics phase space trajectory in \mathbb{R}^3 .

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

by irregular soil loading in orchard tower sprayer nonlinear dynamics (in preparation).

Lateral dynamics: typical realization time series

Figure: Projection of lateral dynamics phase space trajectory in \mathbb{R}^2 .

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

by irregular soil loading in orchard tower sprayer nonlinear dynamics (in preparation).

Lateral dynamics: typical realization spectral analysis

Figure: Power spectral density of tower lateral displacement.

Lateral dynamics: probabilistic confidence band

Figure: Confidence envelope for tower lateral displacement.

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

by irregular soil loading in orchard tower sprayer nonlinear dynamics (in preparation).

Lateral dynamics: low order statistics

Figure: Sample mean/standard deviation for tower lateral displacement.

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

Lateral dynamics: PDF evolution

Figure: Evolution of tower lateral displacement PDF.

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

Lateral dynamics: PDF evolution

Figure: Evolution of tower lateral displacement PDF.

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

by irregular soil loading in orchard tower sprayer nonlinear dynamics (in preparation).

Lateral dynamics: PDF evolution

Figure: Evolution of tower lateral displacement PDF.

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

Lateral dynamics: PDF evolution

Figure: Evolution of tower lateral displacement PDF.

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

Lateral dynamics: PDF evolution

Lateral dynamics: PDF evolution

A. Cunha Jr, J. L. P. Felix, and J. M. Balthazar, Quantification of parametric uncertainties induced

by irregular soil loading in orchard tower sprayer nonlinear dynamics (in preparation).

Lateral dynamics: temporal average statistics

Figure: PDF time average.

Statistics of
$$\langle x_2 \rangle$$

$$\begin{array}{rcl} \text{mean} & = & 0.00 \\ \text{std. dev.} & = & 0.02 \\ \text{skewness} & = & 0.11 \\ \text{kurtosis} & = & 0.01 \end{array}$$

$$\mathbb{P}\left\{ \underbrace{\langle \mathbb{X}_2
angle > 10\% \,\, ext{of} \,\, B_1}_{ ext{large vibration}}
ight\} = 1\%$$

Section 5

Final Remarks

Concluding remarks

Contributions and conclusions:

- Construction of a parametric probabilistic model for orchard sprayer dynamics uncertainties
- Computation of propagation of random loading uncertainties through the nonlinear dynamics
- Numerical simulations shown the probability of sprayer presents large lateral vibrations is small, but not negligible

Next steps in this work:

 Solve a robust optimization problem seeking to reduce sprayer lateral vibrations

Acknowledgments

Important data supplied:

Máquinas Agrícolas Jacto S/A

Financial support given to this research:

- CNPq
- CAPES
- FAPERJ
- FAPESP

Thank you for your attention!

americo@ime.uerj.br

www.americocunha.org

Simulation Parameters

Deterministic parameters

parameter	value	unit
m_1	6500	kg
m_2	800	kg
L_1	0.2	m
L_2	2.4	m
I_1	6850	kg m²
I_2	6250	kg m ²
k_1	$465 imes 10^3$	N/m
k_2	465×10^3	N/m
c_1	$5.6 imes 10^3$	N/m/s
c_2	$5.6 imes 10^3$	N/m/s
B_1	0.85	m
B_2	0.85	m
k_T	100×10^3	N/rad
c_T	50×10^3	Nm/rad/s

Stochastic parameters

parameter	value	unit
N_{KL}	173	
a_{corr}	0.2	m
$\sigma_{y_{ m e}}}$	0.0375	m
$\sigma_{y_{ m e2}}$	0.0375	m
$\mu_{y_{e1}}$	0.25	m
$\mu_{y_{e2}}$	0.25	m
V	12	km/h

Nonlinear Dynamics Operators

Mass Matrix (configuration dependent)

$$[M] = \begin{bmatrix} m_1 + m_2 & -m_2 L_1 \sin \phi_1 & -m_2 L_2 \sin \phi_1 \\ -m_2 L_1 \sin \phi_1 & l_1 + m_2 L_1^2 & m_2 L_1 L_2 \cos (\phi_2 - \phi_1) \\ -m_2 L_2 \sin \phi_1 & m_2 L_1 L_2 \cos (\phi_2 - \phi_1) & l_2 + m_2 L_2^2 \end{bmatrix},$$

Circulatory Matrix (configuration dependent)

$$[N] = \begin{bmatrix} 0 & -m_2 L_1 \cos \phi_1 & -m_2 L_2 \cos \phi_2 \\ 0 & 0 & -m_2 L_1 L_2 \sin (\phi_2 - \phi_1) \\ 0 & -m_2 L_1 L_2 \sin (\phi_2 - \phi_1) & 0 \end{bmatrix},$$

$$[C] = \begin{bmatrix} c_1 + c_2 & (c_2 B_2 - c_1 B_1) \cos \phi_1 & 0 \\ (c_2 B_2 - c_1 B_1) \cos \phi_1 & c_T + (c_1 B_1^2 + c_2 B_2^2) \cos^2 \phi_1 & -c_T \\ 0 & -c_T & c_T \end{bmatrix},$$

$$[K] = \begin{vmatrix} k_1 + k_2 & 0 & 0 \\ (k_2 B_2 - k_1 B_1) \cos \phi_1 & k_T & -k_T \\ 0 & -k_T & k_T \end{vmatrix},$$

$$\mathbf{g} = \begin{pmatrix} (k_2 B_2 - k_1 B_1) \sin \phi_1 + (m_1 + m_2)g \\ (k_1 B_1^2 + k_2 B_2^2) \sin \phi_1 \cos \phi_1 - m_2 g L_1 \sin \phi_1 \\ -m_2 g L_2 \sin \phi_2 \end{pmatrix},$$

$$\mathbf{h} = \left(\begin{array}{c} k_1 \, y_{e1} + k_2 \, y_{e2} + c_1 \, \dot{y}_{e1} + c_2 \, \dot{y}_{e2} \\ -k_1 \, B_1 \, \cos \phi_1 \, y_{e1} + k_2 \, B_2 \, \cos \phi_1 \, y_{e2} - c_1 \, B_2 \, \cos \phi_1 \, \dot{y}_{e1} + c_2 \, B_2 \, \cos \phi_1 \, \dot{y}_{e2} \\ 0 \end{array} \right).$$

Monte Carlo convergence

Study of convergence for MC simulation

The convergence of Monte Carlo simulation is measured with the following metric:

$$\mathrm{conv}(n_s) = \left(\frac{1}{n_s} \sum_{n=1}^{n_s} \int_{t=t_0}^{t_f} \left(y_1(t,\theta_n)^2 + \phi_1(t,\theta_n)^2 + \phi_2(t,\theta_n)^2 \right) dt \right)^{1/2}$$

Introduction

Final Remarks

C. Soize, A comprehensive overview of a non-parametric probabilistic approach of model uncertainties

Study of convergence for MC simulation

Figure: MC convergence metric as function of the number of realizations.

Other Numerical Results

Trailer vertical dynamics: time series analyses

Figure: Time series of trailer vertical displacement.

Trailer vertical dynamics: time series analyses

Figure: Projection of trailer vertical dynamics phase space trajectory in \mathbb{R}^3 .

Trailer vertical dynamics: time series analyses

Figure: Projection of trailer vertical dynamics phase space trajectory in $\mathbb{R}^2.$

Trailer rotational dynamics: time series analyses

Figure: Time series of trailer rotational displacement.

Trailer rotational dynamics: time series analyses

Figure: Projection of trailer rotational dynamics phase space trajectory in \mathbb{R}^3 .

Trailer rotational dynamics: time series analyses

Figure: Projection of trailer rotational dynamics phase space trajectory in \mathbb{R}^2 .

Tower rotational dynamics: time series analyses

Figure: Time series of tower rotational displacement.

Tower rotational dynamics: time series analyses

Figure: Projection of tower rotational dynamics phase space trajectory in \mathbb{R}^3 .

Tower rotational dynamics: time series analyses

Figure: Projection of tower rotational dynamics phase space trajectory in \mathbb{R}^2 .