Exercise 1:

Consider the following Bayesian network BN:

Use inference by enumeration to compute the following probabilities:

- (a) $P(dog \mid loudnoise, likeschappi)$.
- (b) $P(loudnoise \mid \neg likeschappi)$.

Include intermediate steps at a level of granularity as in the lecture slides examples. In particular, for each of (a) and (b), state what the query variable, evidence, and hidden variables are; and write down which probabilities provided in BN can be combined how to obtain the demanded probability P.

Solution:

As the variable ordering consistent with BN, we choose $X_1 = Animal$, $X_2 = LoudNoise$, $X_3 = LikesChappi$.

- (a) The query variable X here is Animal. The evidence \mathbf{e} is loudnoise, likeschappi. There are no hidden variables, $\mathbf{Y} = \emptyset$. Using Normalization+Marginalization $\mathbf{P}(X \mid \mathbf{e}) = \alpha \sum_{\mathbf{y} \in \mathbf{Y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$ we get $\mathbf{P}(Animal \mid loudnoise, likeschappi) = \alpha \mathbf{P}(Animal, loudnoise, likeschappi)$. By the Chain rule and exploiting conditional independence, we get $\alpha \mathbf{P}(Animal, loudnoise, likeschappi) = \alpha \mathbf{P}(likeschappi \mid Animal) * \mathbf{P}(loudnoise \mid Animal) * \mathbf{P}(Animal) = \alpha \langle 0.8 * 0.4 * 0.7, 0.1 * 0.2 * 0.4, 0.7 * 0.01 * 0.2 \rangle \approx \langle 0.96, 0.03, 0.01 \rangle$. Thus $P(dog \mid loudnoise, likeschappi) \approx 0.96$. ("If your animal likes Chappi and makes loud noise, chances are good it's a dog.")

Exercise 2:

Consider the running example of the lecture with the following probability tables:

Burglary		
t	f	
.1	.9	

Earthquake	
t	f
.1	.9

		Ala	ırm
Burglary	Earthquake	t	f
t	t	.9	.1
t	f	.8	.2
f	t	.5	.5
f	f	.1	.9

	JohnCalls	
Alarm	t	f
t	.8	.2
f	.1	.9

	MaryCalls	
Alarm	t	f
t	.7	.3
f	.1	.9

Use Variable Elimination to determine the conditional probability $P(MC \mid B = t)$. For each step indicate the operations that are performed over the previous factors and what new factor is computed.

Solution:

The abstract computation on slide 6.16 are given as:

$$\sum_{a \in \{t,f\}} \sum_{eq \in \{t,f\}} \sum_{jc \in \{t,f\}} P(B=t) P(EQ=eq) P(A=a \mid B=t, EQ=eq) P(JC=jc \mid A=a) P(MC \mid A=a) = \sum_{a \in \{t,f\}} P(B=t) P(B=eq) P(A=a \mid B=t, EQ=eq) P(MC \mid A=a) F_1(a) = \sum_{a \in \{t,f\}} P(B=t) P(MC \mid A=a) F_1(a) F_2(a) = P(B=t) P(B=t) P(MC \mid A=a) F_1(a) F_2(a) = P(B=t) P(B=t) P(MC \mid A=a) P(MC \mid A=a) P(B=t) P(B=t)$$

With the concrete tables we have specified for the conditional distributions, we can now compute: to eliminate the variable JohnCalls, we multiply all tables that contain the variable JohnCalls, and sum out the JohnCalls variable. The result is the table, or factor, F_1 . Since there is only one table containing JohnCalls, the result is very simple:

F_1	(Alarm)
t	f
1	1

Next we eliminate Earthquake. There are two tables containing Earthquake: the table of the Earthquake node, and the conditional distribution of Alarm. The latter table is restricted to the cases that are consistent with the observed evidence B=t, which gives a table only containing Earthquake and Alarm:

	Alarm	
Earthquake	t	f
t	.9	.1
f	.8	.2

Multiplying this with the Earthquake table gives

	Alarm	
Earthquake	t	f
t	.09	.01
f	.72	.18

Summing out the Earthquake variable then gives the factor F_2 :

$F_2(A$	larm)
t	f
0.81	0.19

Finally, we eliminate Alarm. Multiplying F_1, F_2 , and the table for MaryCalls gives

	MaryCalls	
Alarm	t	f
t	.7. 0.81=0.567	.3 · 0.81=0.243
f	$.1 \cdot 0.19 = 0.019$	$.9 \cdot 0.19 = 0.171$

Summing out Alarm gives

$F_3(Ma)$	ryCalls)
t	f
0.586	0.414

This multiplied with 0.1 = P(B = t) gives

$P(B=t)F_3(MaryCalls)$	
t	f
0.0586	0.0414

which is now the table containing the function P(B=t,MC). To obtain the conditional distribution $P(MC \mid B=t)$ this has only to be normalized by dividing with 0.0586+0.0414, which gives

$P(MaryCalls \mid B = t)$		
t	f	
0.586	0.414	

Note that by inspecting the semantics of the potentials calculated above, we could have stopped after summing out Alarm, since the resulting potential is the conditional distribution $P(MC \mid B = t)$.

Exercise 3:

* Complete Exercise 8.10 in PM.

Solution: To calculate P(E) you can start by removing D and F, since they are both barren, i.e., the result of marginalizing out these two variables will simply be unity factors. Thus, we end up with P(A), P(B), P(C|A,B), and P(E|C).

Start by eliminating A:

This will create a factor $F_1(C, B) = \sum_A P(A)P(C|A, B)$, with the intermediate factor P(A)P(C|A, B)

$$\begin{array}{c|cccc} & & & C \\ \hline A & B & t & f \\ \hline t & t & 0.09 & 0.81 \\ t & f & 0.72 & 0.18 \\ f & t & 0.07 & 0.03 \\ f & f & 0.04 & 0.06 \\ \hline \end{array}$$

and the final factor

$$\begin{array}{c|cccc} & & C & \\ B & t & f & \\ \hline t & 0.16 & 0.84 \\ f & 0.76 & 0.24 & \\ \end{array}$$

Eliminate B:

This will create a factor $F_2(C) = \sum_B P(B)F_1(C|B) = (0.64, 0.36)$.

Eliminate C:

This will create a factor $F_3(E) = \sum_{C} P(E|C) F_2(C) = (0.52, 0.48)$.

Exercise 4:

Consider the network defined by the two binary variables A and B, where A is the parent of B. Assume that the conditional probability tables are given as P(A) = (0.1, 0.9) and

$$\begin{array}{c|cc} & A \\ & a_1 & a_2 \\ \hline b_1 & 0.05 & 0.2 \\ b_2 & 0.95 & 0.8 \\ \end{array}$$

- i) Assume that you want to estimate $P(b_1)$ using sampling. How many samples would be required if you only accept an error larger than 0.15 in 10% of the cases?
- ii) Generate two random samples, using the following list of random numbers (any time that you use a random number pick one from the list): 0.5, 0.3, 0.01, 0.8.
- iii) Suppose that after sampling 10 states, you got $(A = a_2, B = b_2)$ 3 times, and $(A = a_1, B = b_2)$,6 times, and $(A = a_1, B = b_1)$ once. Estimate $P(B = b_1)$

- iv) (Optional) Implement the network above in Hugin and use Hugin to sample the number of cases that you calculated in step (i); use the function 'Simulate cases' under 'File'. Use the sampled cases to estimate $P(b_1)$ and compare the result with Hugin. Feel free to use a spreadsheet for the counting.
- v) Assume that you want to use rejection sampling to estimate $P(A|B=b_1)$. How many samples do you expect you would have to generate in order to end up (after rejection) with a sample set of 1000 cases for estimating the probability.

Solution:

i) Hoeffding's inequality gives us

$$P(|s-p| > 0.15) \le 2e^{-2n0.15^2} < 0.1,$$

which we can rewrite to find that n > 66.57.

ii) As A is parent of B, we always sample A first.

First state: $A = a_2, B = b_2$: 0.5 > 0.1, so $A = a_2$, then 0.3 > 0.2 so $B = b_2$. Second state: $A = a_1, B = b_2$: $0.01 \le 0.1$, so $A = a_1$, then 0.8 > 0.0.05 so $B = b_2$.

- iii) $P(B = b_1) = 0.1$
- iv) (Must be done in Hugin)
- v) The probability of $B = b_1$ is $P(B = b_1) = 0.185$, hence only 18.5% of all the generated samples would not be rejected. We therefore need to generate approximately 5400 cases to end up with a sample set of 1000 cases.

Exercise 5:

Complete Exercise 8.6(a-b) in PM.

Solution:

We have two variables in the network: *Company* (C) with states *green* (g) and *blue* (b) and *Witness* (W) with states *green* (g) and *blue* (b). The structure of the network incorporating one witness is illustrated in Figure 1(a).

Figure 1: The witness model: Model (a) includes one witness and model (b) includes three witnesses.

The conditional probability tables for the model are given by:

$$\begin{array}{c|cccc}
P(C=g) & P(C=b) \\
\hline
0.85 & 0.15
\end{array}
\qquad
\begin{array}{c|cccccc}
& C=g & C=b \\
\hline
W=g & 0.8 & 0.2 \\
W=b & 0.2 & 0.8 \\
\hline
P(W|C)
\end{array}$$

For calculating P(C = b | W = b) we use Bayes rule:

$$\begin{split} P(C=b \,|\, W=b) &= \frac{P(W=b \,|\, C=b) P(C=b)}{P(W=b)} \\ &= \frac{P(W=b \,|\, C=b) P(C=b)}{P(C=b,W=b) + P(C=g,W=b)} \\ &= \frac{0.8 \cdot 0.15}{0.8 \cdot 0.15 + 0.2 \cdot 0.85} \\ &= \frac{0.12}{0.12 + 0.17} \approx 0.41 \end{split}$$

With three independent witnesses we have the network in Figure 1(b), where we assign the same conditional probability distribution to each of the three witnesses. Thus, we have a naive Bayes model with three information variables.

We can perform probability updating in this model as shown on the slides in the previous lecture. E.g.

$$P(C = b \mid W_1 = W_2 = W_3 = b) = \frac{P(W_1 = b \mid C = b)P(W_2 = b \mid C = b)P(W_3 = b \mid C = b)P(C = b)}{P(W_1 = b, W_2 = b, W_3 = b)}$$
$$= \frac{0.8 \cdot 0.8 \cdot 0.8 \cdot 0.15}{0.8 \cdot 0.8 \cdot 0.15 + 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.85} = 0.92$$

Exercise 6:

Consider the insemination example from Section 3.1.13 in BNDG:

Let the probabilities be as in Table 1 (Ho = y means that hormonal changes have taken place) P(Pr) = (0.87, 0.13).

	Pr = y	Pr = n		Ho = y	Ho = n
Ho = y	0.9	0.01	BT = y	0.7	0.1
Ho = n	0.1	0.99	BT = n	0.3	0.9

	Ho = y	Ho = n
UT = y	0.8	0.1
UT = n	0.2	0.9

Table 1: Tables for Exercise 6.

- i) What is P(Pr | BT = n, UT = n)?
- ii) Construct a naive Bayes model. Determine the conditional probabilities for the model by making inference queries in the model above using Hugin. What is P(Pr | BT = n, UT = n) in this model and how does it compare to the result you got above? Try to (qualitatively) account for any differences.
- iii) (Optional) Verify your solution modelling both BNs in Hugin.

Solution: *Part 1:*

$$P(Pr|Bt = n, Ut = n) = \frac{P(Pr, Bt = n, Ut = n)}{P(Bt = n, Ut = n)}$$

Next, we should calculate P(Pr, Bt = n, Ut = n) and P(Bt = n, Ut = n):

$$P(Pr, Bt = n, Ut = n) = \sum_{Ho} P(Pr, Bt = n, Ut = n, Ho)$$

$$P(Bt = n, Ut = n) = \sum_{Pr} P(Pr, Bt = n, Ut = n)$$

Thus, we only need to calculate P(Pr, Bt = n, Ut = n, Ho) and this can be done using the chain rule:

$$P(Pr, Bt = n, Ut = n, Ho) = P(Ut = n|Ho)P(Bt = n|Ho)P(Ho|Pr)P(Pr)$$

The final value is P(Pr|Bt = n, Ut = n) = (0.53, 0.47). See also the Hugin network.

Part 2:

The following probabilities can be calculated from the original network by inserting the evidence Pr = y and Pr = n, respectively:

$$P(BT|Pr = y) = (0.64, 0.36)$$

$$P(BT|Pr = n) = (0.106, 0.894)$$

$$P(UT|Pr = y) = (0.73, 0.27)$$

$$P(UT|Pr = n) = (0.107, 0.893)$$

Using the calculated probabilities in a nave Bayes structure, we get

$$P(Pr|Bt = n, Ut = n) = \frac{P(Bt = n, Ut = n|Pr)P(Pr)}{P(Bt = n, Ut = n)}$$
$$= \frac{P(Bt = n|Pr)P(Ut = n|Pr)P(Pr)}{P(Bt = n, Ut = n)}$$
$$= (0.449, 0.551)$$

Note:

- In the second step we exploit that BT and UT are conditionally independent given Pr in the naive Bayes model.
- Dividing with P(Bt = n, Ut = n) simply normalizes the results so that we get a proper conditional probability distribution; we can easily calculate this value based on the numerator in the expression above P(Bt = n, Ut = n) = P(Bt = n|Pr = y)P(Ut = n|Pr = y)P(Pr = y) + P(Bt = n|Pr = n)P(Ut = n|Pr = n)P(Pr = n).

Notice the difference between this result and the result you got from the original network.