Calculus II

Assignment 4

20180626

Student ID:
1. Find an equation of the tangent plane to the given surface at the specified point.

(a) $z = 3y^2 - 2x^2 + x$; (2, -1, -3)

(b)
$$z = xe^{xy}$$
; $(2, 0, 2)$

Name: _

Hint: Equation 2 in Section 15.4.

2. Explain why the function is differentiable at the given point. Then find the linearization L(x, y) of the function at that point.

$$f(x,y) = x^3 y^4;$$
 (1,1)

Hint: Theorem 8 in Section 15.4.

3. Verify the linear approximation at (0,0).

$$\frac{2x+3}{4x+1} \approx 3 + 2x - 12y$$

 $\frac{2x+3}{4y+1} \approx 3 + 2x - 12y$ Hint: Theorem 8 in Section 15.4.

4. Find the total differential of the function.

$$z = e^{-2x} \cos 2\pi t$$

5. Use the Chain Rule to find dz/dt.

(a)
$$z = x^2 + y^2 + xy$$
; $x = sint, y = e^t$

(b)
$$z = \cos(x + 4y)$$
; $x = 5t^4$, $y = 1/t$

6. Use the Chain Rule to find the indicated partial derivatives.

$$\begin{array}{ll} z=x^4+x^2y; & x=s+2t-u, \ y=stu^2; \\ \frac{\partial z}{\partial s}, \frac{\partial z}{\partial t}, \frac{\partial z}{\partial u} \text{, when } s=4, t=2, u=1 \end{array}$$

Reading materials: Textbook Section 15.4, 15.5.