Welcome

Analysis and Application of Queuing Theory in Supermarkets

Introduction to Queuing Theory

- Mathematical study of waiting lines (queues)
- Applied in:
 - Supermarkets, banks, hospitals, transport systems
- Helps:
 - Minimize waiting time
 - Improve customer service
 - Reduce idle time and operational costs

Study Objective & Context

- Goal: Analyze supermarket checkout process using queuing models
- Focus:
 - Evaluate current multi-line setup
 - Propose more efficient alternative (M/M/S)
- Expected Benefit: Enhanced service & reduced cost

Real-World Observation

- Studied checkout process at "XYZ Supermarket"
- Setup: 3 cashiers, each with a separate queue
- Issues noted:
 - Line imbalance
 - Inefficiency during peak hours
- Data sources:
 - Direct observation, interviews,surveys

- M/M/1 (Current system):
 - 3 independent queues (1 per cashier)
 - Poisson arrivals, exponential service times

- M/M/s (Proposed system):
 - Single line, multiple servers
 - Customers served by first available cashier

M/M/1 – Key Formulas

- λ = Arrival rate | μ = Service rate
- Utilization: $\rho = \lambda / \mu$
- Average in system: Ls = λ / (μ λ)
- Average in queue: Lq = $(\lambda^2) / (\mu(\mu \lambda))$
- Wait in queue: Wq = ρ / (μ λ)
- Time in system: Ws = 1 / $(\mu \lambda)$
- Probability of 0 customers: $P_0 = 1 \rho$
- Probability of n customers: $P_n = P_o * \varrho^n$

M/M/S – Key Formulas

- $\rho = \lambda / (s\mu)$
- $P_o = \left(\left[\frac{\sum_{n=0}^{s-1} (sp)^n}{n!} \right] + \frac{(sp)^s}{[s!(1-p)]} \right)^{-1}$
- Lq = Ps × $(\rho / (1 \rho)^2)$
- Ws = Wq + $(1/\mu)$
- Wait in queue: Wq = Ps / $[s\mu(1 \rho)^2]$
- Total in system: Ls = Lq + λ / μ

Model Assumptions

- Customer arrivals follow Poisson process
- Service time = exponential distribution
- No queue limit (infinite capacity)
- First-Come, First-Served (FCFS)
- No customer prioritization
- Employees (servers) work at full capacity
- No impact of queue length on speed
- Arrival rate slightly higher than service rate

M/M/1

- Avg. waiting time: 9 min
- Total cost: ₹2475

M/M/S

- Avg. waiting time: 4.33 min
- Total cost: ₹1578.8

Results

- M/M/s reduced both
 waiting time & cost
- More efficient under all observed time slots

Recommendations & Future Work

- Simulation: Use software tools to test complex or emergency scenarios
- Behavioral Study: Account for customers switching lines or leaving
- Self-Checkouts: Assess effect on queue lengths and staff workload

Name	
Mohamed Osama	20220477
Rawan Ehab	20220133
Ghassan ELGendy	20220239
Ibrahim Medhat	20221003
Abdelrahman Ashry	20220189

References

Jhala, Nityangini & Bhathawala, Pravin

"Analysis and Application of Queuing Theory in Supermarkets"

International Journal of Innovative Research in Science, Engineering and Technology, Vol. 6, No. 9, 2017