Econometrics: Multiple Regression and Applications ECON4004: LAB 3

Duong Trinh

University of Glasgow

February 21, 2024

Intro

- Duong Trinh
 - PhD Student in Economics (Bayesian Microeconometrics)
 - Email: Duong.Trinh@glasgow.ac.uk
- ECON4004-LB01
 - Wednesday 10am -12 pm
 - 5 sessions (7-Feb, 14-Feb, 21-Feb, 28-Feb, 6-March)
 - ST ANDREWS:357
- ♦ ECON4004-LB02
 - Wednesday 12-2 pm
 - 5 sessions (7-Feb, 14-Feb, 21-Feb, 28-Feb, 6-March)
 - ST ANDREWS:357

Record Attendance

Plan for LAB 3

- ⋄ Exercise 1: based on Wooldridge, Exercise C17.8
- ♦ Exercise 2: based on Wooldridge, Exercise C17.14
- We will focus on "Regression with Binary Dependent Variables"
 - Linear Probability Model (LPM)
 - Probit Model (PROBIT)

Exercise 1: based on Wooldridge, Exercise C17.8

Picture the Scenario

- Objective: Examine the effect of participation in the job training program on unemployment probabilities and earnings in 1978.
- Dataset: JTRAIN2.dta
 - data on a job training experiment for a group of men. Men could enter the program starting in January 1976 through about mid-1977. The program ended in December 1977.
- Key variables:
 - train: job training indicator.
 - unem78: denoting being unemployed in 1978. (outcome variable)
 - unem75, unem74: denoting being unemployed in 1975 and 1974, respectively. (pretraining variable)
 - several demographic variables: age, educ, black, hisp, and married.

Questions

- (i) How many men in the sample participated in the job training program? What was the highest number of months a man actually participated in the program?
- (ii) Run a linear regression of train on unem75, unem74, age, educ, black, hisp, and married. Are these variables jointly significant at the 5% level?
- (iii) Estimate a probit version of the linear model in part (ii). Compute the likelihood ratio test for joint significance of all variables. What do you conclude?
- (iv) Based on your answers to parts (ii) and (iii), does it appear that participation in job training can be treated as exogenous for explaining 1978 unemployment status? Explain.

Questions

Single explanatory variable

- (v) Run a simple regression of unem78 on train. What is the estimated effect of participating in the job training program on the probability of being unemployed in 1978? Is it statistically significant?
- (vi) Run a probit of unem78 on train. Does it make sense to compare the probit coefficient on train with the coefficient obtained from the linear model in part (v)?
- (vii) Find the fitted probabilities from parts (v) and (vi). Explain why they are identical. Which approach would you use to measure the effect and statistical significance of the job training program?

Questions

Additional controls & Average partial affect (APE)

- (viii) Add all the variables from part (ii) as additional controls to the models from parts (v) and (vi). Are the fitted probabilities now identical? What is the correlation between them?
 - (ix) Using the model from part (viii), estimate the average partial effect of train on the 1978 unemployment probability.How does the estimate compare with the OLS estimate from part (viii)?
 - (x) Estimate the average partial effects of the remaining regressors in (ix) on the 1978 unemployment probability.

 How does the estimate compare with the OLS estimate from part (viii)?

(i) How many men in the sample participated in the job training program? What was the highest number of months man actually participated in the program?

- ♦ 185 men in the sample participated in the job training program. (»stata)
- ♦ The highest number of months a man actually participated in the program is 24. (»stata)

(ii) Run a linear regression of train on unem75, unem74, age, educ, black, hisp, and married.

Linear Probability Model (LPM)

$$\begin{aligned} \textit{train}_i &= \delta_0 + \delta_1 \cdot \textit{unem} \\ 74_i + \delta_2 \cdot \textit{unem} \\ 75_i + \delta_3 \cdot \textit{age}_i + \delta_4 \cdot \textit{educ}_i + \\ + \delta_5 \cdot \textit{black}_i + \delta_6 \cdot \textit{hisp}_i + \delta_7 \cdot \textit{married}_i + u_i \end{aligned}$$

OLS estimation result (»stata)

$$\begin{array}{c} \widehat{train} = .338 + .021 \cdot unem74 - .096 \cdot unem75 + .003 \cdot age + .012 \cdot educ + \\ \text{(.082)} & \text{(.013)} \\ \end{array} \\ - .082 \cdot black - .200 \cdot hisp + .037 \cdot married \\ \text{(.088)} \\ \end{array}$$

(ii) Are these variables jointly significant at the 5% level?

- \diamond Null Hypothesis: $H_0: \delta_1 = \delta_2 = \ldots = \delta_7 = 0$ (»stata)
- ♦ The F statistic for joint significance of the explanatory variables is F(7,437) = 1.43 with p value = .19. Therefore, they are jointly insignificant at even the 15% level.
- \diamond Note that, even though we have estimated a linear probability model, the null hypothesis we are testing is that all slope coefficients are zero, and so there is no heteroskedasticity under H_0 . This means that the usual F-statistic is asymptotically valid.

(iii) Estimate a probit version of linear model in part (ii).

Probit Model (PROBIT)

$$Pr(train = 1 \mid \mathbf{x}) = \Phi(\delta_0 + \delta_1 \cdot unem75 + \delta_2 \cdot unem74 + \delta_3 \cdot age + \delta_4 \cdot educ + \\ + \delta_5 \cdot black + \delta_6 \cdot hisp + \delta_7 \cdot married)$$

[SN] Stata command for Probit regression

- * probit depvar indepvars [, options]
 - For LPM, standard errors should be made robust to heteroskedasticity in order to yield more reliable results.
 - STATA: add option robust or vce(robust) to return heteroskedasticity-robust standard errors.
 - For PROBIT, there is no such advantage in using robust standard errors. (reference)
 - They do not solve the problems associated with heteroskedasticity for a nonlinear model estimated using maximum likelihood, and have a different interpretation.
 - STATA: option robust or vce(robust) is unnecessary.

[SN] Stata command for Probit regression

* probit depvar indepvars [, options]

. probit train unem74 unem75 age educ black hisp married

```
Iteration 0: Log likelihood = -302.1
Iteration 1: Log likelihood = -297.01499
Iteration 2: Log likelihood = -297.0088
Iteration 3: Log likelihood = -297.0088
```

Probit regression

Log likelihood = -297.0088

Number of obs = 445 LR chi2(7) = 10.18 Prob > chi2 = 0.1785 Pseudo R2 = 0.0169

train	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
unem74	.0530256	.1992686	0.27	0.790	3375337	. 4435849
unem75	2477249	.18505	-1.34	0.181	6104163	.1149665
age	.0083443	.0087982	0.95	0.343	0088999	.0255886
educ	.0314431	.0343238	0.92	0.360	0358304	.0987165
black	2069299	.2249003	-0.92	0.358	6477264	.2338666
hisp	5397772	.3085029	-1.75	0.080	-1.144432	.0648773
married	.0966251	.1655823	0.58	0.560	2279101	.4211604
_cons	4241079	.4870267	-0.87	0.384	-1.378663	.5304469

(iii) Estimate a probit version of linear model in part (ii).

Probit Model (PROBIT)

$$\begin{split} \text{Pr}(\textit{train} = 1 \mid \textbf{x}) &= \Phi(\delta_0 + \delta_1 \cdot \textit{unem} 75 + \delta_2 \cdot \textit{unem} 74 + \delta_3 \cdot \textit{age} + \delta_4 \cdot \textit{educ} + \\ &+ \delta_5 \cdot \textit{black} + \delta_6 \cdot \textit{hisp} + \delta_7 \cdot \textit{married}) \end{split}$$

Maximum Likelihood estimation result (»stata)

$$\begin{split} \overline{\text{Pr}(\textit{train} = 1 \mid \textbf{x})} &= \Phi(\underbrace{-.424}_{(.487)} + \underbrace{.053}_{(.199)} \cdot \textit{unem74} - \underbrace{.247}_{(.185)} \cdot \textit{unem75} + \underbrace{.008}_{(.009)} \cdot \textit{age} + \\ &+ \underbrace{.031}_{(.034)} \cdot \textit{educ} - \underbrace{.207}_{(.225)} \cdot \textit{black} - \underbrace{.540}_{(.308)} \cdot \textit{hisp} + \underbrace{.097}_{(.166)} \cdot \textit{married}) \end{split}$$

(iii) Compute the likelihood ratio test for joint significance of all variables. What do you conclude?

- \diamond Null Hypothesis: $H_0: \delta_1 = \delta_2 = \ldots = \delta_7 = 0$ (»stata)
- Likelihood ratio test for joint significance of all variables
- ♦ Idea: This test compares the value of the likelihood when all regressors are included and with that when no regressors are included.
- \diamond The test statistic follows the chi-square distribution (denoted by χ^2), with degrees of freedom equal to the number of regressors.
- ♦ The likelihood ratio test for joint significance is 10.18.
- \diamond In a χ_7^2 distribution this gives p-value=.18, which is very similar to that obtained for the LPM in part (ii).

(iv) Based on your answers to parts (ii) and (iii), does it appear that participation in job training can be treated as exogenous for explaining 1978 unemployment status? Explain.

(»review)

- Training eligibility was randomly assigned among the participants, so it
 is not surprising that train appears to be independent of other
 observed factors.
- However, there can be a difference between *eligibility* and *actual* participation, as men can always refuse to participate if chosen (non-compliance issue).

(v) Run a simple regression of unem78 on train.

Linear Probability Model (LPM)

$$unem78_i = \beta_0 + \beta_1 \cdot train_i + u_i$$

OLS estimation result (»stata)

$$\widehat{unem78} = .354 - .111 \cdot train \atop (rb.se) \cdot (.030) \cdot (.043)$$

(v) Run a simple regression of unem78 on train.

Linear Probability Model (LPM)

$$\begin{array}{c} \textit{unem} \textbf{78}_{\textit{i}} = \beta_{\textit{0}} + \beta_{\textit{1}} \cdot \textit{train}_{\textit{i}} + \textit{u}_{\textit{i}} \\ \\ \text{Pr}(\textit{unem} \textbf{78} = 1 \mid \textit{train}) = \textit{E}[\textit{unem} \textbf{78} \mid \textit{train}] = \beta_{\textit{0}} + \beta_{\textit{1}} \cdot \textit{train} \\ \\ \longrightarrow \text{that's why we call "probability of..."} \end{array}$$

OLS estimation result (»stata)

$$\widehat{unem78} = .354 - .111 \cdot train$$
 $(rb.se)$ $(.030)$ $(.043)$
 $Pr(unem78 = 1 \mid train) = .354 - .111 \cdot train$

(v) What is the estimated effect of participating in the job training program on the probability of being unemployed in 1978? Is it statistically significant?

Estimated Linear Probability Model (LPM) (»stata)

$$\widehat{unem78} = .354 - .111 \cdot train$$

- Participating in the job training program lowers the estimated probability of being unemployed in 1978 by .111, or 11.1 percentage points. This is a large effect.
- \diamond The differences is statistically significant at almost the 1% level against at two-sided alternative.
- Because training was randomly assigned, we have confidence that OLS is consistently estimating a *causal effect*, even though the R-squared from the regression is very small. There is much about being unemployed that we are not explaining, but we can be pretty confident that this job training program was beneficial. (»review)

(vi) Run a probit of unem78 on train.

Probit Model (PROBIT)

$$Pr(unem78 = 1 \mid train) = \Phi(\beta_0 + \beta_1 \cdot train)$$

Maximum Likelihood estimation result (»stata)

$$\overline{\mathsf{Pr}(\mathit{unem78} = 1 \mid \mathit{train})} = \Phi(-.375 - .321 \cdot \mathit{train})$$

(vi) Run a probit of unem78 on train.

Probit Model (PROBIT)

$$Pr(unem78 = 1 \mid train) = \Phi(\beta_0 + \beta_1 \cdot train)$$

 $\Phi(\cdot)$ is CDF of the standard normal distribution that helps restrict returned values to [0,1].

Maximum Likelihood estimation result (»stata)

$$\overline{\mathsf{Pr}(\mathit{unem78} = 1 \mid \mathit{train})} = \Phi(-.375 - .321 \cdot \mathit{train})$$

(vi) Does it make sense to compare the probit coefficient on train with the coefficient obtained from the linear model in part (v)?

- \diamond It does not make sense to compare the coefficient on train for the probit (-.321) with the LPM estimate (-.111). The probabilities have different functional forms.
- However, note that the probit and LPM t-statistics are essentially the same (although the LPM standard errors should be made robust to heteroskedasticity).

(vii) Find the fitted probabilities from parts (v) and (vi). Explain why they are identical.

Estimated Linear Probability Model (LPM)

$$\widehat{\text{unem78}} = .354 - .111 \cdot \text{train}$$

$$\widehat{\text{Pr}(\text{unem78} = 1 \mid \text{train})} = .354 - .111 \cdot \text{train}$$

- ⇒ Predicted probabilities of being unemployed in 1978 (»stata)
 - \diamond when train = 0 is: unem78(train = 0) = .354
 - \diamond when train = 1 is: unem78(train = 1) = .354 .111 = .243

(vii) Find the fitted probabilities from parts (v) and (vi). Explain why they are identical.

Estimated Probit Model (PROBIT)

$$\overline{\mathsf{Pr}(\mathit{unem78} = 1 \mid \mathit{train})} = \frac{\Phi(-.375 - .321 \cdot \mathit{train})}{\overset{(.080)}{}}$$

- ⇒ Predicted probabilities of being unemployed in 1978 (»stata)
 - ♦ when train = 0 is: $Pr(unem78 = 1 \mid train = 0) = \Phi(-.375) = .354$
 - ♦ when train = 1 is: $Pr(unem78 = 1 \mid train = 1) = \Phi(-.375 .321) = .243$

(vii) Find the fitted probabilities from parts (v) and (vi). Explain why they are identical.

Hence, fitted values are identical in both models. This has to be the case, because any method simply delivers the cell frequencies as the estimated probabilities (here, we have only a single binary regressor). The LPM estimates are easier to interpret because they do not involve the transformation by $\Phi(\cdot)$, but it does not matter which is used provided the probability differences are calculated.

(viii) Add all the variables from part (ii) as additional control to the models from parts (v) and (vi).

Linear Probability Model (LPM)

$$unem78_i = \beta_0 + \beta_1 \cdot train_i + \beta_2 \cdot unem74_i + \beta_3 \cdot unem75_i + \beta_4 \cdot age_i + \beta_5 \cdot educ_i + \\ + \beta_6 \cdot black_i + \beta_7 \cdot hisp_i + \beta_8 \cdot married_i + u_i$$

OLS estimation result (»stata)

$$\widehat{unem78} = .163 - .112 \cdot train + .039 \cdot unem74 + .016 \cdot unem75 + .000 \cdot age + \\ + .000 \cdot educ + .189 \cdot black - .038 \cdot hisp - .025 \cdot married$$

$$Pr(unem78 = 1 \mid x) = .163 - .112 \cdot train + .039 \cdot unem74 + .016 \cdot unem75 + .000 \cdot age + + .000 \cdot educ + .189 \cdot black - .038 \cdot hisp - .025 \cdot married$$

(viii) Add all the variables from part (ii) as additional control to the models from parts (v) and (vi).

Probit Model (PROBIT)

$$\begin{split} \text{Pr}(\textit{unem} 78 = 1 \mid \textbf{x}) &= \Phi(\beta_0 + \beta_1 \cdot \textit{train} \beta_2 \cdot \textit{unem} 74 + \beta_3 \cdot \textit{unem} 75 + \beta_4 \cdot \textit{age} + \\ &\beta_5 \cdot \textit{educ} + \beta_6 \cdot \textit{black} + \beta_7 \cdot \textit{hisp} + \beta_8 \cdot \textit{married}) \end{split}$$

Maximum Likelihood estimation result (»stata)

[SN] STATA command for Predicted probabilities

Linear Probability Model

```
* regress yvar xvar wvar1 wvar2 wvark, robust

* predict newvar, xb

// add option 'xb' to calculate linear index
```

Probit Model

```
* probit yvar xvar wvar1 wvar2 wvark
* predict newvar, p
// add option 'p' to calculate predicted probabilities
```

(viii) Are the fitted probabilities now identical? What is the correlation between them?

Linear Probability Model

```
* regress yvar xvar wvar1 wvar2 wvark, robust
* predict newvar, xb // add 'xb' to calculate linear index
```

- . quiet regress unem78 train unem74 unem75 age educ black hisp married, robust
- . predict p_lpm, xb // predicted probability from LPM

Probit Model

- * probit yvar xvar wvar1 wvar2 wvark
- * predict newvar, p // add 'p' to calculate predicted probabilities
- . quiet probit unem78 train unem74 unem75 age educ black hisp married
- . predict p probit, p // predicted probability from PROBIT

(viii) Are the fitted probabilities now identical? What is the correlation between them?

. summarize p lpm p probit

Variable	0bs	Mean	Std. dev.	Min	Max
p_lpm	445	.3078652	.0993342	0092491	.4105947
p_probit	445	.3077102	.1008801	.0550662	.4303571

* corr var1 var2 // return correlation coefficient

. corr p_lpm p_probit

	p_lpm p	_probit
p_lpm	1.0000	
p_probit	0.9932	1.0000

The fitted values are no longer going to be identical because the model is not saturated. That is, the explanatory variables are not an exhaustive, mutually exclusive set of dummy variables. Lower extreme values of predicted probabilities from LMP are even negative, while all values from probit fall in [0, 1].

However, we observe a still very high correlation of .9932.

[SN] STATA command for Average Partial Effects

* probit yvar ib0.binary_varname c.continuous_varname

```
// use 'c.' to explicitly indicate continuous variables
// use 'ib0.' to indicate binary variables, with base value 0

* probit yvar ib0.binary_var c.continuous_var
* margins, dydx(varname_of_interest)
// calculate APE for varname of interest among regressors.
```

```
* probit yvar ib0.binary_varname c.continuous_varname
* margins, dydx(*)
// use (*) to calculate APE for all regressors.
```

[SN] Probit regression - explicitly indicates types of variables

```
* probit yvar ib0.binary_varname c.continuous_varname

// use 'c.' to explicitly indicate continuous variables

// use 'ib0.' to indicate binary variables, with base value 0

. probit unem78 ib0.train ib0.unem74 ib0.unem75 c.age c.educ ib0.black ib0.hisp ib0.married

Iteration 0: Log likelihood = -274.73494

Iteration 1: Log likelihood = -263.3816

Iteration 2: Log likelihood = -263.3128
```

Probit regression

Log likelihood = -263.31279

Iteration 3: Log likelihood = -263.31279

Number of obs = 445 LR chi2(8) = 22.84 Prob > chi2 = 0.0036 Pseudo R2 = 0.0416

unem78	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
1.train	3365897	.1316429	-2.56	0.011	5946051	0785744
1.unem74	.106094	.2125598	0.50	0.618	3105155	.5227035
1.unem75	.0636124	.1970995	0.32	0.747	3226956	.4499204
age	.0006757	.0091211	0.07	0.941	0172014	.0185529
educ	0018916	.0367938	-0.05	0.959	0740061	.0702229
1.black	.6336688	.2742692	2.31	0.021	.096111	1.171227
1.hisp	1649409	.3790471	-0.44	0.663	9078596	.5779777
1.married	077768	.1771557	-0.44	0.661	4249869	.2694509
_cons	-1.010331	.5380256	-1.88	0.060	-2.064842	.0441798

(ix) Using the model from part (viii), estimate the average partial effect of train on the 1978 unemployment probability. Compare with the OLS estimate from part (viii).

As train is a binary variable (»review)

$$APE_{train} = \frac{1}{n} \sum_{i=1}^{N} \Phi(\hat{\beta}_0 + train\hat{\beta}_{train} + \\ + \text{sum of other regressors multiplied by their coefficients}) \\ - \Phi(\hat{\beta}_0 + \text{sum of other regressors multiplied by their coefficients})]$$

- * probit yvar ib0.binary_var c.continuous_var
- * margins, dydx(varname_of_interest)
- // calculate APE for varname_of_interest among regressors.
- . quiet probit unem78 ib0.train ib0.unem74 ib0.unem75 c.age c.educ ib0.black ib0.hisp ib0.married
- . margins, dydx(ib0.train) // average partial effects for train with base value 0

Average marginal effects

Number of obs = 445

Model VCE: OIM

Expression: Pr(unem78), predict()

dy/dx wrt: 1.train

	dy/dx	Delta-method std. err.		P> z	[95% conf.	interval]
1.train	1123307	.0429271	-2.62	0.009	1964663	0281951

Note: dy/dx for factor levels is the discrete change from the base level.

(ix) Using the model from part (viii), estimate the average partial effect of train on the 1978 unemployment probability. Compare with the OLS estimate from part (viii).

- \diamond With the variables in part (ii) appearing in the probit, the estimated APE is about -.112.
- Interestingly, rounded to three decimal places, this is the same as the coefficient on train in the linear regression. In other words, the linear probability model and probit give virtually the same estimated APEs.

(x) Estimate the average partial effects of the remaining regressors in (ix) on the 1978 unemployment probability. Compare with the OLS estimate from part (viii).

- * probit yvar ib0.binary_varname c.continuous_varname
- * margins, dydx(*)

// use (*) to calculate APE for all regressors.

- . quiet probit unem78 ib0.train ib0.unem74 ib0.unem75 c.age c.educ ib0.black ib0.hisp ib0.married
- . margins, dydx(*) // average partial effects for all regressors

Average marginal effects

Number of obs = 445

Model VCE: 01M

Expression: Pr(unem78), predict()

dy/dx wrt: 1.train 1.unem74 1.unem75 age educ 1.black 1.hisp 1.married

	dy/dx	Delta-method std. err.	z	P> z	[95% conf.	interval]
1.train	1123307	.0429271	-2.62	0.009	1964663	0281951
1.unem74	.0353018	.0699011	0.51	0.614	1017018	.1723055
1.unem75	.0213189	.0657959	0.32	0.746	1076387	.1502766
age	.0002272	.0030667	0.07	0.941	0057834	.0062379
educ	000636	.0123712	-0.05	0.959	024883	.023611
1.black	.188783	.0684525	2.76	0.006	.0546186	.3229474
1.hisp	0536882	.1188582	-0.45	0.651	286646	.1792697
1.married	0258306	.0580771	-0.44	0.656	1396597	.0879985

- (x) Estimate the average partial effects of the remaining regressors in (ix) on the 1978 unemployment probability. Compare with the OLS estimate from part (viii).
 - Other than train, only being black has a statistically significant APE(AME), at increases on average the probability of being unemployed in 1978 by about 18.8 percentage points. We expect this result, as the coefficient of black was statistically significant in the probit regression. Almost always (i.e., with very few exceptions) a statistically significant probit coefficient will imply a statistically significant APE, and vice versa.
 - The result for black is very similar to the APE from the OLS regression, which is equal to the estimated coefficient. The remaining variables have statistically insignificant APES, with broadly similar patterns as the estimated OLS coefficients.

Exercise 2: based on Wooldridge, Exercise C17.14

Picture the Scenario

- Objective: Determinants of Happiness!
- Dataset: happiness.dta
 - contains independently pooled cross sections for the even years from 1994 through 2006, obtained from the General Social Survey.
- Key variables:
 - \diamond vhappy: a measure of "happiness", = 1 if the person reports being "very happy" and = 0 otherwise.
 - \diamond occattend: = 1 if attend religious services between several times a year and 2-3 times per month and = 0 otherwise.
 - \diamond regattend: = 1 if attend religious services more often that 2-3 times per month.
 - a full set of year dummies.

Questions

- (i) Estimate a probit probability model relating vhappy to occattend and regattend. Find the average partial effects for occattend and regattend. How do these compare with those from estimating a linear probability model?
- (ii) Include highinc, unem10, educ, and teens to the probit estimation in part (i). Is the APE of regattend affected much? What about its statistical significance?
- (iii) Discuss the APEs and statistical significance of the four new variables in part (ii). Do the estimates make sense?
- (iv) Controlling for the factors in part (ii), do there appear to be differences in happiness by gender or race? Justify your answer.

(i) Estimate a probit probability model relating vhappy to occattend and regattend.

. probit vhappy ib0.occattend ib0.regattend ib1994.year

```
Iteration 0: Log likelihood = -10397.033
Iteration 1: Log likelihood = -10339.48
Iteration 2: Log likelihood = -10339.463
Iteration 3: Log likelihood = -10339.463
```

Probit regression

Log likelihood = -10339.463

Number of obs = 16,864 LR chi2(8) = 115.14 Prob > chi2 = 0.0000 Pseudo R2 = 0.0055

vhappy	Coefficient	Std. err.	z	P> z	[95% conf.	. interval]
1.occattend 1.regattend	.0122544 .3053249	.0232981 .0300845	0.53 10.15	0.599 0.000	0334091 .2463604	.0579178 .3642893
year 1996	.0482759	.034976	1.38	0.168	0202759	.1168276
1998 2000 2002	.0798343 .0894637 .0455899	.0350035 .0352042 .0433746	2.28 2.54 1.05	0.023 0.011 0.293	.0112287 .0204648 0394227	.1484398 .1584626 .1306025
2004 2006	.072181	.0435354	1.66	0.097 0.064	0131467 0036165	.1575087
_cons	6070756	.0261378	-23.23	0.000	6583048	5558465

(i) Find the average partial effects for occattend and regattend.

. quiet probit vhappy ib0.occattend ib0.regattend ib1994.year

. margins,dydx(*)

Average marginal effects

Number of obs = 16.864

Model VCE: OIM

Expression: Pr(vhappy), predict()

dy/dx wrt: 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year

		Delta-method				
	dy/dx	std. err.	z	P> z	[95% conf.	interval]
1.occattend	.0042834	.0081532	0.53	0.599	0116965	.0202632
1.regattend	.1122627	.0114712	9.79	0.000	.0897796	. 1347458
year						
1996	.016581	.0120143	1.38	0.168	0069667	.0401286
1998	.0276457	.0121232	2.28	0.023	.0038847	.0514066
2000	.0310558	.0122247	2.54	0.011	.0070959	.0550158
2002	.0156473	.0149513	1.05	0.295	0136567	.0449513
2004	.0249465	.015147	1.65	0.100	0047411	.0546342
2006	.0220265	.0118694	1.86	0.063	0012371	.04529

(i) How do these compare with those from estimating a linear probability model?

. regress vhappy ib0.occattend ib0.regattend ib1994.year, robust

vhappy	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
1.occattend	.0042648	.008024	0.53	0.595	0114632	.0199928
1.regattend	.1121737	.0113857	9.85	0.000	.0898565	.134491
year						
1996	.0167487	.012032	1.39	0.164	0068353	.0403327
1998	.0278593	.0121477	2.29	0.022	.0040486	.05167
2000	.0312657	.0122258	2.56	0.011	.007302	.0552295
2002	.0157476	.0149857	1.05	0.293	013626	.0451211
2004	.0251635	.0151638	1.66	0.097	0045591	.0548861
2006	.0221839	.011884	1.87	0.062	00111	.0454779
_cons	.2713457	.0088906	30.52	0.000	.2539191	.2887723

(ii) Include highinc, unem10, educ, and teens to the probit estimation in part (i).

. quiet probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens

. margins, dydx(*)

Average marginal effects Model VCE: **OIM** Number of obs = 9,768

Expression: Pr(vhappy), predict()

	dy/dx	Delta-method std. err.	z	P> z	[95% conf	. interval]
1.occattend	0067564	.0104435	-0.65	0.518	0272253	.0137125
1.regattend	.0949556	.0147601	6.43	0.000	.0660263	.1238848
year						
1996	.0121567	.0155867	0.78	0.435	0183927	.0427061
1998	.0180866	.0156145	1.16	0.247	0125173	.0486905
2000	.0302029	.0160702	1.88	0.060	001294	.0616999
2002	0172918	.0188304	-0.92	0.358	0541988	.0196152
2004	.0067199	.0195423	0.34	0.731	0315823	.0450222
2006	0060395	.0152607	-0.40	0.692	0359499	.0238709
1.highinc	.1019708	.0099953	10.20	0.000	.0823803	.1215613
1.unem10	0891086	.0096034	-9.28	0.000	107931	0702863
educ	.0038862	.0016398	2.37	0.018	.0006723	.007
teens	0171432	.0094141	-1.82	0.069	0355946	.0013083

(ii) Is the APE of regattend affected much? What about its statistical significance?

We observe that the APE for regattend is about .0950(t=6.43). So, the APE estimate and its t statistic are somewhat lower when including the additional regressors, but it is still pretty large and very statistically significant.

A person who reports attending a religious service regularly has, on average, almost a .10 higher probability of being "very happy."

(iii) Discuss the APEs and statistical significance of the four new variables in part (ii).

The signs of the APEs of highinc, unem10, educ, and teens seem reasonable.

- Being in the highest income group (which, unfortunately, was not indexed to inflation) leads to about a .10 higher probability of being very happy, on average.
- Being unemployed in the past 10 years lowers the probability of being very happy by slightly less, about .09. Both are very statistically significant.
- Education has a slight positive effect: each year of education increase the probability of being very happy by about .004.
- Finally, having teenagers reduces the probability of being very happy.
 Each teenager is estimated to reduce the probability by about .017,
 although it is only marginally statistically significant.

(iv) Controlling for the factors in part (ii), do there appear to be differences in happiness by gender or race?

. quiet probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens ib0.black ib0.female

margins, dydx(*)

Average marginal effects Model VCE: **OIM** Number of obs = 9,768

Expression: Pr(vhappy), predict()

dy/dx wrt: 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year 1.highinc 1.unem10 educ teens 1.black 1.female

		Delta-method					
	dy/dx	std. err.	z	P> z	[95% conf.	interval]	
1.occattend	003796	.0104925	-0.36	0.718	0243609	.0167688	
1.regattend	.0995761	.0148764	6.69	0.000	.070419	.1287333	
year							In the probit regression, black is
1996	.0134091	.0155668	0.86	0.389	0171012	.0439194	
1998	.0199608	.0156103	1.28	0.201	0106348	.0505563	statistically significant while female
2000	.0314606	.0160523	1.96	0.050	-1.36e-06	0530335	, ,
2002	015392	.0188298	-0.82	0.414	0522977	.0215138	is not. The APE for black is about
2004	.0076119	.0195077	0.39	0.696	0306224	.0458463	052, so that, other things in the
2006	0040866	.0152576	-0.27	0.789	033991	.0258178	_
							model fixed, black people are, on
1.highinc	.0975514	.0101496	9.61	0.000	.0776586	.1174443	
1.unem10	0878733	.0096136	-9.14	0.000	1067156	0690309	average, .052 less likely to be very
educ	.0034814	.0016418	2.12	0.034	.0002636	.0066992	hanny
teens	0154439	.009423	-1.64	0.101	0339126	.0030248	happy.
1.black	0520126	.0135505	-3.84	0.000	0785711	0254542	
1.female	.0015709	.0092531	0.17	0.865	0165649	.0197067	

(iv) Adding an interaction between black and female

. quiet probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens ib0.black ib0.female ib0.black#ib0.female

. // include interaction term

. margins, dydx(*)

Average marginal effects

Number of obs = 9,768

Model VCE: 01M

Expression: Pr(vhappy), predict()

dy/dx wrt: 1.occattend 1.regattend 1996.year 1998.year 2000.year 2004.year 2004.year 2006.year 1.highinc 1.unem10 educ teens 1.black 1.female

	dy/dx	Delta-method std. err.	z	P> z	[95% conf	. interval]
1.occattend 1.regattend	0038168 .0995918	.0104917	-0.36 6.69	0.716	0243801 .0704347	.0167465
1. regattend	.0995918	.0148/64	6.69	0.000	.0/0434/	.1287489
year						
1996	.0136693	.0155676	0.88	0.380	0168427	.0441812
1998	.0201202	.0156091	1.29	0.197	0104732	.0507135
2000	.0317747	.0160547	1.98	0.048	.0003081	.0632413
2002	0153237	.0188266	-0.81	0.416	0522233	.0215759
2004	.0079413	.0195113	0.41	0.684	0303003	.0461828
2006	0040135	.0152543	-0.26	0.792	0339115	.0258844
1.highinc	.0971444	.0101577	9.56	0.000	.0772358	.1170531
1.unem10	0878395	.0096136	-9.14	0.000	1066819	0689971
educ	.0035031	.0016418	2.13	0.033	.0002853	.0067209
teens	015165	.0094268	-1.61	0.108	0336412	.0033112
1.black	0500396	.0137389	-3.64	0.000	0769674	0231118
1.female	.001447	.0092636	0.16	0.876	0167094	.0196034

(iv) Adding an interaction between black and female

We note from the probit results that the interaction term has a statistically insignificant t statistic, and the same is true for the black and female binary variables. This is likely due to the collinearity between the variables and their interaction. When we test the three dummies jointly we get

```
. quiet probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens ib0.black ib0.female ib0.black#ib0.female

(1) [vhappy]].Nlack = 0
(2) [vhappy]].Neach = 0
(3) [vhappy]].Neach = 0
(3) [vhappy]].Neach = 0
(3) [vhappy]].Neach = 0
```

Hence, the three dummy variables are jointly very significant. It appears that a model with just black fits these data best.

Causal Graph

Random Assignment

(»back1iv) (»back1v)

Average Partial Affect (APE)

For a continuous variable cvar

$$\begin{split} APE_{cvar} &= \frac{1}{n} \sum_{i=1}^{N} \phi[(\hat{\beta}_0 + cvar\hat{\beta}_{cvar} + \\ &+ \text{sum of other regressors multiplied by their coefficients}) \cdot \hat{\beta}_{cvar}] \end{split}$$

For a binary variable bvar

$$\begin{split} APE_{bvar} &= \frac{1}{n} \sum_{i=1}^{N} \Phi(\hat{\beta}_0 + bvar\hat{\beta}_{bvar} + \\ &+ \text{sum of other regressors multiplied by their coefficients}) \\ &- \Phi(\hat{\beta}_0 + \text{sum of other regressors multiplied by their coefficients})] \end{split}$$

Exercise 1(i-l)

. tabulate train

Total	445	100.00	
0	260 185	58.43 41.57	58.43 100.00
=1 if assigned to job training	Freq.	Percent	Cum.

. count if train==1 185

(»back1(i))

Exercise 1(i-II)

. summarize mosinex

Variable	0bs	Mean	Std. dev.	Min	Max
mosinex	445	18.1236	5.311937	5	24

. tabstat mosinex, s(max)

Max	Variable
24	mosinex

(»back1(i))

Exercise 1(ii)

. regress train unem74 unem75 age educ black hisp married

Source	SS	df	MS		ber of obs	=	445
				- F(7	, 437)	=	1.43
Model	2.41922955	7	.345604222	Pro	b > F	=	0.1915
Residual	105.670658	437	.241809286	R-s	quared	=	0.0224
				- Adj	R-squared	=	0.0067
Total	108.089888	444	.243445693	Roo	t MSE	=	.49174
train	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
unem74	.02088	.0772939	0.27	0.787	13103	41	.172794
unem75	0955711	.0719021	-1.33	0.184	2368	88	.0457459
age	.0032057	.0034027	0.94	0.347	0034	82	.0098933
educ	.0120131	.0133419	0.90	0.368	01420	92	.0382354
black	0816663	.0877325	-0.93	0.352	25409	63	.0907637
hisp	2000168	.1169708	-1.71	0.088	42991	22	.0298785
married	.0372887	.0644037	0.58	0.563	08929	99	.1638683
_cons	.3380222	.1894451	1.78	0.075	03431	47	.7103591

Exercise 1(ii)

. regress train unem74 unem75 age educ black hisp married, robust

Linear regression

Number of obs	=	445
F(7, 437)	=	1.60
Prob > F	=	0.1334
R-squared	=	0.0224
Root MSE	=	. 49174

train	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
unem74	.02088	.0772497	0.27	0.787	1309472	.1727072
unem75	0955711	.0722763	-1.32	0.187	2376234	.0464813
age	.0032057	.0033869	0.95	0.344	003451	.0098624
educ	.0120131	.0138597	0.87	0.387	0152268	.039253
black	0816663	.0888047	-0.92	0.358	2562038	.0928712
hisp	2000168	.1132098	-1.77	0.078	4225202	.0224865
married	.0372887	.0650005	0.57	0.566	0904638	.1650412
_cons	.3380222	.1944555	1.74	0.083	044162	.7202064

Exercise 1(iii)

. probit train unem74 unem75 age educ black hisp married

```
Iteration 0: Log likelihood = -302.1
Iteration 1: Log likelihood = -297.01499
Iteration 2: Log likelihood = -297.0088
Iteration 3: Log likelihood = -297.0088
```

Probit regression

Log likelihood = -297.0088

Number of obs	=	445
LR chi2(7)	=	10.18
Prob > chi2	=	0.1785
Pseudo R2	=	0.0169

train	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
unem74	.0530256	.1992686	0.27	0.790	3375337	. 4435849
unem75	2477249	.18505	-1.34	0.181	6104163	.1149665
age	.0083443	.0087982	0.95	0.343	0088999	.0255886
educ	.0314431	.0343238	0.92	0.360	0358304	.0987165
black	2069299	.2249003	-0.92	0.358	6477264	.2338666
hisp	5397772	.3085029	-1.75	0.080	-1.144432	.0648773
married	.0966251	.1655823	0.58	0.560	2279101	.4211604
_cons	4241079	.4870267	-0.87	0.384	-1.378663	.5304469

Exercise 1(v)

. regress unem78 train, robust

Linear regression	Number of obs	=	445
	F(1, 443)	=	6.50
	Prob > F	=	0.0111
	R-squared	=	0.0139
	Root MSE	=	. 45941

unem78	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
train _cons		.0433918 .0297212			1958823 .295434	0253236 .4122583

Exercise 1(vi)

. probit unem78 train

```
Iteration 0: Log likelihood = -274.73494
Iteration 1: Log likelihood = -271.58459
Iteration 2: Log likelihood = -271.5828
Iteration 3: Log likelihood = -271.5828
```

Probit regression

Number of obs = 445LR chi2(1) = 6.30Prob > chi2 = 0.0120 Pseudo R2 = 0.0115

Log likelihood = -271.5828

unem78	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
train	3209508	.1284764	-2.50	0.012	5727599	0691416
_cons	3749572	.0797458	-4.70	0.000	5312561	2186583

Exercise 1(vii-I)

. regress unem78 train, robust coeflegend

unem78	Coefficient Legend
train	1106029 _b[train]
_cons	.3538462 _b[_cons]

```
. display "From LPM, probability when train=0 is: " _b[_cons]
From LPM, probability when train=0 is: .35384615
```

. display "From LPM, probability when train=1 is: " _b[_cons]+_b[train] From LPM, probability when train=1 is: .24324324

Exercise 1(vii-II)

. probit unem78 train, coeflegend

```
Iteration 0: Log likelihood = -274.73494
Iteration 1: Log likelihood = -271.58459
Iteration 2: Log likelihood = -271.5828
Iteration 3: Log likelihood = -271.5828
```

 Probit regression
 Number of obs = 445

 LR chi2(1) = 6.30

 Prob > chi2 = 0.0120

 Log likelihood = -271.5828
 Pseudo R2 = 0.0115

unem78	Coefficient Legend
train	3209508 _b[train]
_cons	3749572 _b[_cons]

. display "From probit, probability when train=1 is: " normal(_b[_cons])
From probit, probability when train=1 is: .35384615

. display "From probit, probability when train=0 is: " normal(_b[_cons]+_b[train]) From probit, probability when train=0 is: .24324324

Exercise 1(viii-I)

. regress unem78 train unem74 unem75 age educ black hisp married, robust

Linear regression	Number of obs	=	445
	F(8, 436)	=	3.93
	Prob > F	=	0.0002
	R-squared	=	0.0462
	Root MSE	=	. 45545

		Robust				
unem78	Coefficient	std. err.	t	P> t	[95% conf.	interval]
train	1117028	.0438196	-2.55	0.011	1978267	0255789
unem74	.0386926	.0698225	0.55	0.580	098538	. 1759231
unem75	.0159613	.0654068	0.24	0.807	1125906	. 1445132
age	.0000433	.0032717	0.01	0.989	0063869	.0064735
educ	.0001442	.0116097	0.01	0.990	0226737	.0229622
black	.1888328	.065795	2.87	0.004	.0595179	.3181477
hisp	0377011	.081827	-0.46	0.645	1985255	.1231234
married	0254373	.0591917	-0.43	0.668	1417739	.0908993
_cons	.1631823	.1615939	1.01	0.313	1544176	.4807822

Exercise 1(viii-II)

. probit unem78 train unem74 unem75 age educ black hisp married

```
Iteration 0: Log likelihood = -274.73494

Iteration 1: Log likelihood = -263.3816

Iteration 2: Log likelihood = -263.3128

Iteration 3: Log likelihood = -263.31279
```

```
      Probit regression
      Number of obs = 445

      LR chi2(8) = 22.84

      Prob > chi2 = 0.0036

      Log likelihood = -263.31279
      Pseudo R2 = 0.0416
```

unem78	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
train	3365897	.1316429	-2.56	0.011	5946051	0785744
unem74	.106094	.2125598	0.50	0.618	3105155	.5227035
unem75	.0636124	.1970995	0.32	0.747	3226956	.4499204
age	.0006757	.0091211	0.07	0.941	0172014	.0185529
educ	0018916	.0367938	-0.05	0.959	0740061	.0702229
black	.6336688	.2742692	2.31	0.021	.096111	1.171227
hisp	1649409	.3790471	-0.44	0.663	9078596	.5779777
married	077768	.1771557	-0.44	0.661	4249869	.2694509
_cons	-1.010331	.5380256	-1.88	0.060	-2.064842	.0441798

Exercise 1(viii-III)

- * regress yvar xvar wvar1 wvar2 wvark, robust
- * predict newvar, xb // add 'xb' to calculate linear index
 - . quiet regress unem78 train unem74 unem75 age educ black hisp married, robust
 - . predict p_lpm, xb // predicted probability from LPM
- * probit yvar xvar wvar1 wvar2 wvark
- * predict newvar, p // add 'p' to calculate predicted probabilities
 - . quiet probit unem78 train unem74 unem75 age educ black hisp married
 - . predict p probit, p // predicted probability from PROBIT
- * corr var1 var2 // return correlation coefficient
 - . corr p_lpm p_probit
 (obs=445)

	p_lpm	p_probit
p_lpm p_probit	1.0000 0.9932	1.0000

Exercise 1(ix)

```
* probit yvar ib0.binary_var c.continuous_var

* margins, dydx(varname_of_interest)

// calculate APE for varname_of_interest among regressors.

. quiet probit unem78 ib0.train ib0.unem74 ib0.unem75 c.age c.educ ib0.black ib0.hisp ib0.married

. margins, dydx(ib0.train) // average partial effects for train with base value 0
```

Average marginal effects Number of obs = 445 Model VCE: 0IM

Expression: Pr(unem78), predict()
dy/dx wrt: 1.train

	dy/dx	Delta-method std. err.	z	P> z	[95% conf.	interval]
1.train	1123307	.0429271	-2.62	0.009	1964663	0281951

Exercise 1(x)

- * probit yvar ib0.binary_varname c.continuous_varname
- * margins, dydx(*)

// use (*) to calculate APE for all regressors.

- . quiet probit unem78 ib0.train ib0.unem74 ib0.unem75 c.age c.educ ib0.black ib0.hisp ib0.married
- . margins, dydx(*) // average partial effects for all regressors

Average marginal effects
Model VCF: OIM

Number of obs = 445

Expression: Pr(unem78), predict()

dy/dx wrt: 1.train 1.unem74 1.unem75 age educ 1.black 1.hisp 1.married

	dy/dx	Delta-method std. err.	z	P> z	[95% conf.	interval]
1.train	1123307	.0429271	-2.62	0.009	1964663	0281951
1.unem74	.0353018	.0699011	0.51	0.614	1017018	.1723055
1.unem75	.0213189	.0657959	0.32	0.746	1076387	.1502766
age	.0002272	.0030667	0.07	0.941	0057834	.0062379
educ	000636	.0123712	-0.05	0.959	024883	.023611
1.black	.188783	.0684525	2.76	0.006	.0546186	.3229474
1.hisp	0536882	.1188582	-0.45	0.651	286646	.1792697
1.married	0258306	.0580771	-0.44	0.656	1396597	.0879985

Exercise 2(i-I)

. regress vhappy ib0.occattend ib0.regattend ib1994.year, robust

Linear regression Number of obs = 16,864
F(8, 16855) = 13.58
Prob > F = 0.0000
R-squared = 0.0071
Root MSE = .45965

vhappy	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
1.occattend 1.regattend	.0042648 .1121737	.008024 .0113857	0.53 9.85	0.595 0.000	0114632 .0898565	.0199928
year 1996	.0167487	.012032	1.39	0.164	0068353	.0403327
1998	.0278593	.0121477	2.29	0.022	.0040486	.05167
2000	.0312657	.0122258	2.56	0.011	.007302	.0552295
2002	.0157476	.0149857	1.05	0.293	013626	.0451211
2004 2006	.0251635 .0221839	.0151638 .011884	1.66 1.87	0.097 0.062	0045591 00111	.0548861 .0454779
_cons	. 2713457	.0088906	30.52	0.000	.2539191	.2887723

Exercise 2(i-II)

. probit vhappy ib0.occattend ib0.regattend ib1994.year

```
Iteration 0: Log likelihood = -10397.033
Iteration 1: Log likelihood = -10339.48
Iteration 2: Log likelihood = -10339.463
Iteration 3: Log likelihood = -10339.463
```

-.6070756

regression

_cons

	Prob > chi2	= 0.0000
Log likelihood = -10339.463	Pseudo R2	= 0.0055

Number of obs = 16,864LR chi2(8)

= 115.14

-.5558465

vhappy	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
1.occattend 1.regattend	.0122544	.0232981	0.53 10.15	0.599	0334091 .2463604	.0579178
year	.5055245	.0300043	10.13	0.000	.2403004	.3042033
1996 1998	.0482759 .0798343	.034976	1.38	0.168 0.023	0202759 .0112287	.1168276
2000	.0894637	.0352042	2.54	0.011	.0204648	.1584626
2002	.0455899	.0433746	1.05	0.293	0394227	.1306025
2004 2006	.072181	.0435354	1.66 1.85	0.097 0.064	0131467 0036165	.1575087
2000		.054452	1.05	0.004	0050105	.1313340

-23.23

0.000

-.6583048

.0261378

Exercise 2(i-III)

. quiet probit vhappy ib0.occattend ib0.regattend ib1994.year

. margins,dydx(*)

Average marginal effects Number of obs = 16,864

Model VCE: OIM

Expression: Pr(vhappy), predict()

dy/dx wrt: 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year

		Delta-method				
	dy/dx	std. err.	Z	P> z	[95% conf.	interval]
1.occattend	.0042834	.0081532	0.53	0.599	0116965	.0202632
1.regattend	.1122627	.0114712	9.79	0.000	.0897796	.1347458
year						
1996	.016581	.0120143	1.38	0.168	0069667	.0401286
1998	.0276457	.0121232	2.28	0.023	.0038847	.0514066
2000	.0310558	.0122247	2.54	0.011	.0070959	.0550158
2002	.0156473	.0149513	1.05	0.295	0136567	.0449513
2004	.0249465	.015147	1.65	0.100	0047411	.0546342
2006	.0220265	.0118694	1.86	0.063	0012371	.04529

Exercise 2(ii-I)

, tab income, miss nolabel // display numeric codes rather than value label

. tab income, miss // table of frequencies, treat missing values like other values

total family			
income	Freq.	Percent	Cum.
lt \$1000	176	1.03	1.03
\$1000 to 2999	182	1.06	2.09
\$3000 to 3999	150	0.88	2.96
\$4000 to 4999	156	0.91	3.87
\$5000 to 5999	289	1.22	5.09
\$6000 to 6999	202	1.18	6.27
\$7000 to 7999	218	1.27	7.55
\$8000 to 9999	399	2.33	9.87
\$10000 - 14999	1,251	7.30	17.17
\$15000 - 19999	1,899	6.41	23.59
\$20000 - 24999	1,278	7.46	31.04
\$25000 or more	9,725	56.75	87.79
	2,892	12.21	100.00
Total	17,137	100.00	

. tab income,	miss notabet	// display	numeric co
total			
family			
income	Freq.	Percent	Cum.
1	176	1.03	1.03
2	182	1.06	2.09
3	150	0.88	2.96
4	156	0.91	3.87
5	209	1.22	5.09
6	202	1.18	6.27
7	218	1.27	7.55
8	399	2.33	9.87
9	1,251	7.30	17.17
10	1,099	6.41	23.59
11	1,278	7.46	31.04
12	9,725	56.75	87.79
	2,092	12.21	100.00
Total	17, 137	100.00	

. gen highinc = (income==12) if (income != .) // only generate values for nonmissing
(2,092 missing values generated)

. tab highinc, miss

highinc	Freq.	Percent	Cum.
0	5,320	31.04	31.04
1	9,725	56.75	87.79
	2,092	12.21	100.00
Total	17,137	100.00	

Exercise 2(ii-II)

. quiet probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.uneml0 c.educ c.teens

. margins, dydx(*)

Average marginal effects Model VCE: **OIM** Number of obs = 9,768

Expression: Pr(vhappy), predict()

dy/dx wrt: 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year 1.highinc 1.unem10 educ teens

		Delta-method						
	dy/dx	std. err.	z	P> z	[95% conf.	interval]		
1.occattend	0067564	.0104435	-0.65	0.518	0272253	.0137125		
1.regattend	.0949556	.0147601	6.43	0.000	.0660263	.1238848		
year								
1996	.0121567	.0155867	0.78	0.435	0183927	.0427061		
1998	.0180866	.0156145	1.16	0.247	0125173	.048690		
2000	.0302029	.0160702	1.88	0.060	001294	.0616999		
2002	0172918	.0188304	-0.92	0.358	0541988	.0196152		
2004	.0067199	.0195423	0.34	0.731	0315823	.0450222		
2006	0060395	.0152607	-0.40	0.692	0359499	.0238709		
1.highinc	.1019708	.0099953	10.20	0.000	.0823803	.1215613		
1.unem10	0891086	.0096034	-9.28	0.000	107931	0702863		
educ	.0038862	.0016398	2.37	0.018	.0006723	.007		
teens	0171432	.0094141	-1.82	0.069	0355946	.0013083		

Exercise 2(iv-I)

. quiet probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens ib0.black ib0.female

. margins, dydx(*)

Average marginal effects Model VCE: **OIM** Number of obs = 9,768

Expression: Pr(vhappy), predict()

dy/dx wrt: 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year 1.highinc 1.unem10 educ teens 1.black 1.female

		Delta-method				
	dy/dx	std. err.	z	P> z	[95% conf	. interval]
1.occattend	003796	.0104925	-0.36	0.718	0243609	.0167688
1.regattend	.0995761	.0148764	6.69	0.000	.070419	.128733
year						
1996	.0134091	.0155668	0.86	0.389	0171012	.0439194
1998	.0199608	.0156103	1.28	0.201	0106348	.0505563
2000	.0314606	.0160523	1.96	0.050	-1.36e-06	.062922
2002	015392	.0188298	-0.82	0.414	0522977	.0215138
2004	.0076119	.0195077	0.39	0.696	0306224	.0458463
2006	0040866	.0152576	-0.27	0.789	033991	.025817
1.highinc	.0975514	.0101496	9.61	0.000	.0776586	.117444
1.unem10	0878733	.0096136	-9.14	0.000	1067156	0690309
educ	.0034814	.0016418	2.12	0.034	.0002636	.0066992
teens	0154439	.009423	-1.64	0.101	0339126	.003024
1.black	0520126	.0135505	-3.84	0.000	0785711	0254542
1.female	.0015709	.0092531	0.17	0.865	0165649	.019706

Exercise 2(iv-II)

. quiet probit vhappy ib8.occattend ib8.regattend ib1994.year ib8.highinc ib8.unem10 c.educ c.teens ib8.black ib8.female ib8.black#ib8.female

. // include interaction term . margins, dydx(*)

Average marginal effects

Model VCE: 01M

Number of obs = 9,768

Expression: Pr(vhappy), predict()

dy/dx wrt: 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year 1.highinc 1.unem10 educ teens 1.black 1.female

	Delta-method dy/dx std.err. z			P> z [95% conf. interval]		
1.occattend 1.regattend	0038168 .0995918	.0104917 .0148764	-0.36 6.69	0.716 0.000	0243801 .0704347	.0167465 .1287489
year 1996	.0136693	.0155676	0.88	0.380	0168427	.0441812
1998	.0201202	.0156091	1.29	0.197	0104732	.0507135
2000	.0317747	.0160547	1.98	0.048	.0003081	.0632413
2002	0153237	.0188266	-0.81	0.416	0522233	.0215759
2004	.0079413	.0195113	0.41	0.684	0303003	.0461828
2006	0040135	.0152543	-0.26	0.792	0339115	.0258844
1.highinc	.0971444	.0101577	9.56	0.000	. 0772358	.1170531
1.unem10	0878395	.0096136	-9.14	0.000	1066819	0689971
educ	.0035031	.0016418	2.13	0.033	.0002853	.0067209
teens	015165	.0094268	-1.61	0.108	0336412	.0033112
1.black	0500396	.0137389	-3.64	0.000	0769674	0231118
1.female	.001447	.0092636	0.16	0.876	0167094	.0196034

Note: dy/dx for factor levels is the discrete change from the base level.

Writing the interaction term as ib0.black#ib0.female is important if we want to calculate the APEs, as Stata needs to know all the terms in the specification in which any particular variable shows up, so as to put it equal to 0 and 1 (when binary), or differentiate with respect to it (when continuous) correctly.

Exercise 2(iv-III)

- . quiet probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens ib0.black ib0.female ib0.black#ib0.female
- . testparm ib0.black ib0.female ib0.black#ib0.female
- (1) [vhappy]1.black = 0
- (2) [vhappv]1.female = 0
- (3) [vhappy]1.black#1.female = 0

chi2(3) = 14.78 Prob > chi2 = 0.0020