Les nombres complexes

I. Introduction

La règle des signes

Soit a et $b \in \mathbb{R}_+$

♦ 0 = a.(b + (-b)) = a.b + a.(-b)⇒ -(a.b) = a.(-b)

Le produit d'un positif et d'un négatif est négatif.

 \bullet 0 = (-a).(b + (-b)) = (-a).b + (-a).(-b) = -(a.b) + (-a).(-b) \Rightarrow a.b = (-a).(-b)

Le produit d'un négatif et d'un négatif est positif.

Dans \mathbb{R} , un carré est toujours positif. L'équation $x^2 + 1 = 0$ n'a pas de racine.

On appelle i une racine carrée de -1 : $i^2 = -1$

On définit l'ensemble des nombres complexes comme :

$$\mathbb{C} = \{ z = x + iy \mid x, y \in \mathbb{R} \}$$

- \star x est la partie réelle de z, notée : x = $\Re(z)$
- y est la partie imaginaire de z, notée : $y = \Im(z)$

II. Operations sur C

$$z = x + iy = 0 \iff x = y = 0$$

$$z + z' = (x + iy).(x' + iy') = x + x' + i(y + y')$$

$$z.z' = (x + iy).(x' + iy') = x.x' - y.y' + i(x.y' + x'.y)$$

$$x + iy = x' + iy' \iff x = x' \text{ et } y = y'$$

$$(x + iy).(x - iy) = x^2 + y^2$$

Si x + iy
$$\neq$$
 0: $\frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} + i\frac{-y}{x^2+y^2}$

III. Deux formules à connaître

Somme de puissances

Pour tous a, b \in \mathbb{C} et tout entier n \neq 0 :

$$\begin{split} b^{n+1} - a^{n+1} &= (b-a)(b^n + b^{n-1}a + b^{n-2}a^2 + + b^1a^{n-1} + a^n) \\ &= (b-a) \ \sum_{k=0}^n b^{n-k}a^k = (b-a) \ \sum_{k=0}^n b^ka^{n-k} \\ avec \ a^0 &= b^0 = 1. \end{split}$$

$$n = 0 : b - a = (b-a) \times 1 \\ n = 1 : b^2 - a^2 = (b-a)(b+a) \\ n = 2 : b^3 - a^3 = (b-a)(b^2 + ab + a^2) \\ ... \end{split}$$

Conséquence : pour tout $z \in \mathbb{C}$ et tout entier $n \ge 0$,

$$z^{n+1} - 1 = (z - 1)(1 + z + z^2 + \dots + z^n)$$

Démonstration :

Pour tous a, b
$$\in$$
 \mathbb{C} et tout entier $n \neq 0$:
 $b^{n+1} - a^{n+1} = (b-a)(b^n + b^{n-1}a + b^{n-2}a^2 + \dots + b^1a^{n-1} + a^n)$
Posons $S = b^n + b^{n-1}a + b^{n-2}a^2 + \dots + b^1a^{n-1} + a^n$. On a:
 $(b-a)S = bS - Sa$
 $= (b^{n+1} + b^na + b^{n-1}a^2 + \dots + ba^n) - (b^na + b^{n-1}a^2 + \dots + ba^n + a^{n+1})$
 $= b^{n+1} - a^{n+1}$

Le binôme de Newton

Pour tous nombres complexes a et b et tout nombre entier $n \neq 0$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k . b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} . b^k$$

$$avec \binom{n}{k} = \frac{n!}{k!(n-k)!} et \ k! = 1 \ x \ 2 \ x \ ... \ x \ k.$$

$$(a + b)^{2} = a^{2} + 2a.b + b^{2}$$

$$(a + b)^{3} = a^{3} + 3a^{2}.b + 3a.b^{2} + b^{3}$$

$$(a + b)^{6} = a^{6} + 6a^{5}.b + 15a^{4}.b^{2} + 20a^{3}.b^{3} + 15a^{2}.b^{4} + 6a.b^{5} + b^{6}$$

IV. Les nombres complexes représentés dans le plan

Soit $z = a + ib \in \mathbb{C}$.

Le nombre complexe z s'appelle l'affixe du point M de coordonnées (a, b) dans le plan.

V. Représentation de l'addition des complexes

VI. Conjugaison

Soit $z = x + iy \in \mathbb{C}$.

On appelle nombre complexe conjugué de z, le nombre :

$$\overline{z} = x - iy$$

Conjugué: règles de calcul

$$z = x + iy$$
 $\overline{z} = x - iy$

$$\Re(\overline{z}) = \Re(z)$$
 et $\Im(\overline{z}) = -\Im(z)$

$$\mathfrak{R}(\overline{z}) = \mathfrak{R}(z) \quad \text{et} \quad \mathfrak{I}(\overline{z}) = -\mathfrak{I}(z)$$

$$\mathfrak{R}(z) = \frac{1}{2} (z + \overline{z}) \quad \text{et} \quad \mathfrak{I}(z) = \frac{1}{2i} (z - \overline{z})$$

$$\star$$
 $z \in \mathbb{R} \iff z = \overline{z}$

$$\star$$
 $z \in i\mathbb{R} \iff z + \overline{z} = 0$

$$\overline{(z_1 + z_2)} = \overline{z_1} + \overline{z_2}, \ \overline{(\overline{z})} = z, \ \overline{(z_1.z_2)} = \overline{z_1}.\overline{z_2}$$

Module d'un nombre complexe VII.

On appelle module du nombre complexe z, le nombre réel :

$$|z| = \sqrt{z.\,\overline{z}} = \sqrt{x^2 + y^2}$$

⋄
$$|z| = |-z| = |\overline{z}|, |x| ≤ |z|, |y| ≤ |z|$$

$$|z| = 0 \iff z = 0$$

$$|z.z'| = |z|.|z'|$$

 $\leq |z|^2 + 2|z| \cdot |z'| + |z'|^2 = (|z| + |z'|)^2$

Attention : Ne pas confondre module d'un nombre complexe avec valeur absolue. La notation est la même mais :

• Si
$$z \in \mathbb{R}$$
, $(z = x)$ $|z| = \sqrt{x^2} = |x|$ et donc $|z^2| = z^2$

$$ightharpoonup$$
 Si $z \in \mathbb{C} \setminus \mathbb{R}$, $(z = x + iy, y \neq 0)$

$$|z^{2}| = |(x + iy)^{2}| = \sqrt{(x^{2} - y^{2})^{2} + 4x^{2}y^{2}} = x^{2} + y^{2} = |z|^{2} \in \mathbb{R}$$

$$z^{2} = x^{2} - y^{2} + 2ixy \neq |z^{2}|$$

VIII. Racine carrée des nombres complexes

Proposition: Tout nombre complexe a deux racines carrées opposées.

Exemple: trouver la racine carrée de 3 + 4i

On cherche z = x + iy tel que $z^2 = 3 + 4i$

$$(x + iy)^2 = x^2 - y^2 + 2ixy = 3 + 4i$$

$$(3) |z|^2 = x^2 + y^2 = \sqrt{3^2 + 4^2} = 5$$

x et y sont donc solutions du système :

$$\begin{cases} x^2 - y^2 = 3\\ 2xy = 4\\ x^2 + y^2 = 5 \end{cases}$$

D'où les deux solutions : (x, y) = (2, 1) et (x, y) = (-2, -1).

Pour trouver la racine d'un nombre complexe a + ib,

on pose :
$$(x + iy)^2 = a + ib$$

C3
$$(x + iy)^2 = x^2 - y^2 + 2ixy = a + ib$$

C3 $|z|^2 = x^2 + y^2 = \sqrt{a^2 + b^2}$

x et y sont donc solutions du système :

$$\begin{cases} x^2 - y^2 = a & (1) \\ 2xy & = b & (2) \\ x^2 + y^2 & = \sqrt{a^2 + b^2} & (3) \end{cases}$$

Les équations (1) et (3) permettent de calculer x^2 et y^2 . L'équation (2) permet de trouver le signe de x et y.

IX. L'équation du second degré

$$az^{2} + bz + c = 0, \quad a \neq 0, b, c \in \mathbb{C}$$

$$az^{2} + bz + c = a(z^{2} + \frac{b}{a}z + \frac{c}{a}) = 0$$

$$= a\left[\left(z + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right] = 0$$

$$= a\left[\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right] = 0$$

Les racines sont donc les nombres complexes z, tels que z + $\frac{b}{2a}$ soit une racine carrée de $\frac{\Delta}{4a^2}$.

Quand a, b et c sont réels, on a les solutions (complexes) suivantes :

Si Δ > 0, les deux racines sont :

$$z_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$

Si Δ < 0, les deux racines sont :

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

Si Δ = 0, il y a une racine double :

$$z = -\frac{b}{2a}$$

X. Argument

On appelle argument du nombre complexe z = x + iy, la seule solution θ , $0 \le \theta < 2\pi$, du système :

$$\begin{cases} \cos\theta = \frac{x}{\sqrt{x^2 + y^2}} \\ \sin\theta = \frac{y}{\sqrt{x^2 + y^2}} \end{cases}$$

Notation : $\theta = arg(z)$

XI. Écriture trigonométrique des nombres complexes

Un nombre complexe peut s'écrire de deux manières :

- 1. algébrique : z = x + iy, $x, y \in \mathbb{R}$
- 2. trigonométrique : $z = r(\cos \theta + i \sin \theta), r \in \mathbb{R}_+, 0 \le \theta < 2\pi$

Remarque : Le choix $0 \le \theta < 2\pi$ est un choix arbitraire, on peut tout aussi bien choisir : $-\pi \le \theta < \pi$ ou ...

Exemples

Moyen mnémotechnique

Θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin θ	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
cos θ	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$

XII. Représentation de la multiplication

Soit
$$z = r(\cos \theta + i \sin \theta)$$
, $z' = r'(\cos \theta' + i \sin \theta')$
 $zz' = rr'[(\cos \theta \cos \theta' - \sin \theta \sin \theta') + i(\cos \theta \sin \theta' + \sin \theta \cos \theta')]$
 $= rr'[\cos(\theta + \theta') + i \sin(\theta + \theta')]$

Règle: Pour multiplier deux nombres complexes écrits sous forme trigonométrique,

- On multiplie les modules.
- On additionne les arguments.

XIII. Représentation de la division

Si
$$z \neq 0$$
, $\frac{1}{z} = \frac{\bar{z}}{z.\bar{z}} = \frac{r.(\cos \theta - i \sin \theta)}{r^2}$
$$\frac{1}{z} = \frac{1}{r} (\cos \theta - i \sin \theta)$$

 $\forall z \neq 0, z' \in \mathbb{C}$:

$$\frac{z'}{z} = \frac{r'}{r} \left(\cos(\theta' - \theta) + i \sin(\theta' - \theta) \right)$$

Règle: Pour diviser deux nombres complexes écrits sous forme trigonométrique,

- On divise les modules.
- 🖙 On soustrait l'argument du dénominateur de l'argument du numérateur.

XIV. Formule de De Moivre

Puissance entière d'un nombre complexe.

Si
$$n \in \mathbb{N}$$
,

$$\begin{split} z^n &= \underbrace{r.r...r}_{n-fois} \\ &= \underbrace{r.r...r}_{n-fois} \underbrace{(\cos\theta + i\sin\theta).(\cos\theta + i\sin\theta)...(\cos\theta + i\sin\theta)}_{n-fois} \\ &= r^n. (\cos(n\theta) + i\sin(n\theta)) \\ Si \, n \in \mathbb{Z}_-^*, \quad -n \in \mathbb{N} \\ &\qquad \qquad z^n. z^{-n} = z^n. \Big(r^{-n}. (\cos(-n\theta) + i\sin(-n\theta)) \Big) = 1 \\ z^n &= \frac{1}{z^{-n}} = \frac{1}{r^{-n}.(\cos(-n\theta) + i\sin(-n\theta))} \\ &= r^n. (\cos(-n\theta) - i\sin(-n\theta)) \\ &= r^n. (\cos(n\theta) - i\sin(n\theta)) \end{split}$$

Formule de De Moivre:

$$\forall n \in \mathbb{Z}$$
: $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

XV. Exponentielle complexe

Théorème : Il existe une fonction exponentielle définie sur \mathbb{C} (notée $e^z \forall z \in \mathbb{C}$) qui vérifie :

- 1. $\forall z, z' \in \mathbb{C}$: $e^{z+z'} = e^z \cdot e^{z'}$
- 2. Si $x \in \mathbb{R}$, e^x est l'exponentielle réelle
- 3. L'application : $[0, 2\pi[\rightarrow \mathbb{C} \text{ est une bijection sur l'ensemble des complexes de module 1.}$

$$\theta \mapsto e^{i\theta}$$

Théorème admis

Les nombres complexes de module 1

On dispose de 3 écritures pour les nombres complexes :

- 1. algébrique : z = x + iy, $x, y \in \mathbb{R}$
- 2. trigonométrique : $z = r.(\cos \theta + i \sin \theta)$, $r \in \mathbb{R}_+$, $\theta \in [0, 2\pi[$
- 3. exponentielle : $z = r.e^{i\theta}$, $r \in \mathbb{R}_+$, $\theta \in [0, 2\pi[$

$$cse^{i\theta} = cos\theta + i sin\theta$$

$$e^{i\theta_1}.e^{i\theta_2} = e^{i(\theta_1+\theta_2)}$$

$$\mathcal{O} (e^{i\theta})^n = e^{ni\theta}$$

XVI. Racines des nombres complexes

Racine n-ième d'un nombre complexe

Soit $z = r(\cos \theta + i \sin \theta) \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

On appelle racine n-ième de z, le nombre complexe :

$$a = \varrho (\cos \alpha + i \sin \alpha)$$

tel que :
$$z = a^n$$

$$z = a^n$$

$$r(\cos \theta + i \sin \theta) = \varrho^n(\cos n\alpha + i \sin n\alpha)$$

$$\begin{cases} \varrho^n = r \\ n\alpha = \theta + 2k\pi \end{cases} \iff \begin{cases} \varrho = \sqrt[n]{r} \\ \alpha = \frac{\theta + 2k\pi}{n} \end{cases}$$

Pour $k \in \mathbb{N}$ tel que : $0 \le k \le n-1$

Théorème: Pour $n \in \mathbb{N}^*$, tout nombre complexe z = r (cos $\theta + i \sin \theta$), non-nul, a n racines n-ièmes:

$$a_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$
$$0 \le k \le n - 1$$

Racine n-ième de l'unité

Si z = 1:
$$r = 1$$
, $\theta = 0$.

Les nombres complexes :

$$\omega_k = \cos\frac{2k\pi}{n} + i \sin\frac{2k\pi}{n} = e^{i\frac{2k\pi}{n}}$$
$$0 \le k \le n - 1$$

S'appellent les racines n-ième de l'unité.

Pour
$$0 \le k \le n-1$$
, $\omega_k^n = 1$

Somme des racines n-ièmes de l'unité

Pour n=3:

$$1 + e^{i\frac{2\pi}{3}} + e^{i\frac{4\pi}{3}} = 1 + e^{i\frac{2\pi}{3}} + (e^{i\frac{2\pi}{3}})^2 = \frac{1 - (e^{i\frac{2\pi}{3}})^3}{1 - e^{i\frac{2\pi}{3}}} = 0$$

Pour n quelconque:

$$\sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = \sum_{k=0}^{n-1} (e^{i\frac{2\pi}{n}})^k = \frac{1 - (e^{i\frac{2\pi}{n}})^n}{1 - e^{i\frac{2\pi}{n}}} = 0$$

La somme des racines n-ièmes de l'unité est nulle.

Soit $n \in \mathbb{N}^*$, $z \in \mathbb{C}$ et a et b deux racines n-ièmes de z.

$$a^n = b^n = z$$

Soit :
$$\left(\frac{a}{b}\right)^n = 1 \iff a = b. \omega_k$$

Où ω_k , $(0 \le k \le n-1)$ est une racine n-ièmes de l'unité.

Théorème : On obtient les n racines n-ièmes d'un nombre complexe en multipliant l'une d'entre elles par les n racines n-ièmes de l'unité.

Exemple : soit à calculer les racines 7-ièmes de z = $\frac{3}{2}e^{i\frac{5\pi}{12}}$.

On doit trouver a tel que $a^7 = z$

$$|a| = \sqrt[7]{\frac{3}{2}}$$
 $a_0 = \sqrt[7]{\frac{3}{2}}e^{i\frac{5\pi}{7\times12}} = \sqrt[7]{\frac{3}{2}}e^{i\frac{5\pi}{84}}$

Les autres racines sont obtenues en multipliant a0 par les six racines 7-ièmes de l'unité (différentes de 1) :

$$\begin{array}{lll} \text{CS} & a_1 = \ a_0 e^{i\frac{2\pi}{7}} = \ \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{2\pi}{7})} = \ \sqrt[7]{\frac{3}{2}} e^{i\frac{29\pi}{84}} \\ \text{CS} & a_2 = \ a_0 e^{i\frac{4\pi}{7}} = \ \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{4\pi}{7})} = \ \sqrt[7]{\frac{3}{2}} e^{i\frac{53\pi}{84}} \\ \text{CS} & a_3 = \ a_0 e^{i\frac{6\pi}{7}} = \ \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{6\pi}{7})} = \ \sqrt[7]{\frac{3}{2}} e^{i\frac{77\pi}{84}} \\ \text{CS} & a_4 = \ a_0 e^{i\frac{8\pi}{7}} = \ \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{8\pi}{7})} = \ \sqrt[7]{\frac{3}{2}} e^{i\frac{101\pi}{84}} \\ \text{CS} & a_5 = \ a_0 e^{i\frac{10\pi}{7}} = \ \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{10\pi}{7})} = \ \sqrt[7]{\frac{3}{2}} e^{i\frac{125\pi}{84}} \\ \text{CS} & a_6 = \ a_0 e^{i\frac{12\pi}{7}} = \ \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{12\pi}{7})} = \ \sqrt[7]{\frac{3}{2}} e^{i\frac{149\pi}{84}} \end{array}$$

XVII. Trigonométrie

$$z \in \mathbb{C}$$
 $z = \cos \theta + i \sin \theta = e^{i \theta}$

$$\Re(z) = \cos \theta = \frac{1}{2}(z + \bar{z}) = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$$

$$\Im(z) = \sin \theta = \frac{1}{2i}(z - \bar{z}) = \frac{1}{2i}(e^{i \theta} - e^{-i \theta})$$

Linéarisation des puissances de sinus et cosinus

Transformation de $\cos^n \theta$ et $\sin^n \theta$ en une somme des sinus et cosinus des multiples de θ .

Primitives des fonctions $\cos^n \theta$ et $\sin^n \theta$: inconnues Primitives des fonctions $\cos (k\theta)$ et $\sin (k\theta)$: connues

$$2^{3} \cos^{3} \theta = (e^{i \theta} + e^{-i \theta})^{3}$$

$$= e^{3i \theta} + 3e^{2i \theta}e^{-i \theta} + 3e^{i \theta}e^{-2i \theta} + e^{-3i \theta}$$

$$= (e^{3i \theta} + e^{-3i \theta}) + 3(e^{i \theta} + e^{-i \theta})$$

$$= 2\cos 3\theta + 6\cos \theta$$

$$\cos^{3} \theta = \frac{1}{4}\cos 3\theta + \frac{3}{4}\cos \theta$$

- On écrit : $2^n \cos^n \theta = (e^{i\theta} + e^{-i\theta})^n$.
- On développe $(e^{i\theta} + e^{-i\theta})^n$ avec la formule du binôme.
- On regroupe chaque $e^{ki\theta}$ avec son conjugué $e^{-ki\theta}$.

$$(2i)^{3} \sin^{3} \theta = (e^{i \theta} - e^{-i \theta})^{3}$$

$$= e^{3i \theta} - 3e^{2i \theta} e^{-i \theta} + 3e^{i \theta} e^{-2i \theta} - e^{-3i \theta}$$

$$= (e^{3i \theta} - e^{-3i \theta}) - 3(e^{i \theta} - e^{-i \theta})$$

$$= 2i \sin 3\theta - 6i \sin \theta$$

$$\sin^{3} \theta = -\frac{1}{4} \sin 3\theta + \frac{3}{4} \sin \theta$$

Calcul des sinus et cosinus de n0

$$\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^{n}$$

$$\cos n\theta = \Re((\cos \theta + i \sin \theta)^{n})$$

$$\sin n\theta = \Im((\cos \theta + i \sin \theta)^{n})$$

$$\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^{4}$$

$$= (\cos \theta)^{4} + 4i (\cos \theta)^{3} \sin \theta + 6i^{2} (\cos \theta)^{2} (\sin \theta)^{2} + 4i^{3} (\cos \theta)(\sin \theta)^{3} + i^{4} (\sin \theta)^{4}$$

$$\cos 4\theta = (\cos \theta)^{4} - 6(\cos \theta)^{2} (\sin \theta)^{2} + (\sin \theta)^{4}$$

$$\sin 4\theta = 4 (\cos \theta)^{3} \sin \theta - 4\cos \theta (\sin \theta)^{3}$$

XVIII. Le théorème fondamental de l'algèbre

$$a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = 0$$

Théorème de d'Alembert

Théorème : Tout polynôme non-constant à coefficients complexes a au moins une racine complexe.

Corollaire: Tout polynôme de degré $n \ge 1$, à coefficients complexes, a n racines complexes.

Exemple : Le polynôme $z^4 + z^3 + 2z^2 + z + 1$ a pour racines j, j², i, -i.