ncalls	tottime / s	percall / s	cumtime / s	percall / s	function
1	0.180	0.180	36751.569	36751.569	<module></module>
150	0.178	0.001	36748.625	244.991	attack_user
128	9.492	0.074	36049.427	281.636	user_data
57600	19.310	0.000	35753.019	0.621	extract_feats
57600	71.529	0.001	29391.213	0.510	tsfresh.extract_features
57600	27.916	0.000	28669.417	0.498	tsfreshdo_extraction
57600	18.031	0.000	21892.667	0.380	tsfresh.map_reduce
3144454	21767.459	0.007	21767.459	0.007	thread.lock.acquire
705716	7.104	0.000	21673.963	0.031	threading.wait
57600	2.091	0.000	6057.272	0.105	tsfresh.impute

1	0.035	0.035	752.915	752.915	<module></module>
1	0.028	0.028	752.519	752.519	main
1	3.806	3.806	531.462	531.462	remove_duplicate_roi_reports
168536	0.691	0.000	225.000	0.001	pandasgetitem
1	0.146	0.146	220.541	220.541	append_null_rois
168508	1.119	0.000	212.387	0.001	pandasgetitem_axis
167439	0.574	0.000	203.981	0.001	pandas.apply
167439	0.927	0.000	201.932	0.001	pandas.get_result

percall / s

0.001

function

pandas.apply standard

cumtime / s

200.140

ncalls

167439

tottime / s

2.674

percall / s

0.000

Graph of mean total preprocessing run time against N_PROCESSES

Graph of mean total preprocessing run time against N_THREADS

ncalis	tottime / s	percall / s	cumtime / s	percall / s	nlename:lineno(function)
1	0.000	0.000	18652.882	18652.882	<module></module>
1	0.000	0.000	18651.689	18651.689	run_attack
24	0.000	0.000	18650.340	777.098	threading.wait
548 186	50.340	34.033	18650.340	34.033	thread.lock.acquire
3	0.000	0.000	18650.333	6216.778	queue.join
1	0.125	0.125	1.335	1.335	get_ground_truth_matrix
1626/6	0.008	0.000	1.194	0.199	_find_and_load
1626/6	0.006	0.000	1.194	0.199	_find_and_load_unlocked
1315/2	0.005	0.000	1.193	0.596	_load_unlocked

Figure 7.3: A profile of our code for the DIFFERENT LOCATIONS attack run across all 150 sampled targets.

```
def geo_ind_df(epsilon: float, df: DataFrame, ID2LATLONG) -> DataFrame
 1
         planar_laplace_noise = PlanarLaplaceNoise(epsilon, ID2LATLONG)
 3
         new_events = []
 4
         for index, row in df.iterrows():
 5
             new_point_id = planar_laplace_noise(10 * row.lat + row.long,
 6
                 SALT,
                      row.epoch)
             new_events.append([row.target, new_point_id // 10,
 8
                 new_point_id % 10,
                      row.epoch])
 9
10
         return DataFrame(new_events, columns=COLUMNS)
11
```

Figure B.1: A sample from our code function which applies geo-indistinguishability to the SFC data.

Figure B.2: A sample taken from the code which suppresses low counts in aggregates, and returns the aggregate which has had all low counts set to 0.

```
5
         scaling = scale_factor(noise_params, aggregation_size)
         if noise_params[0] == "Laplacian":
 8
             noise = random.laplace
 9
         elif noise_params[0] == "Normal":
10
             noise = random.normal
11
         else:
12
             print("Error: Invalid noise function used. Exiting.")
13
             # Kill the whole program.
14
             sys.exit()
15
16
         perturbed_agg = zeros(agg.shape, agg.dtype)
17
         agg_x_len, agg_y_len = agg.shape
18
         for i in range(agg_x_len):
19
             for j in range(agg_y_len):
20
                  perturbed_agg[i, j] = noise(agg[i, j], scaling)
21
         return perturbed_agg
22
   Figure B.3: A sample taken from the code which adds noise of some kind to an aggre-
   gate.
```

agg: ndarray, noise_params: tuple, aggregation_size: int

def add_noise(

) -> ndarray:

assert aggregation_size > 0

2

3

4

```
if DATA SET == "CDR":
6
                 subset_df = subset_df.loc[:, ["point_id"]]
7
             if DATA SET == "SFC":
8
                 subset_df = subset_df.loc[:, ["lat", "long"]]
9
10
             # Get the single representative location.
11
             if DEFENSES["One ROI per epoch"] == "Mode":
12
                 location = subset_df.apply(tuple, 1).mode()[0]
13
             if DEFENSES["One ROI per epoch"] == "Random":
14
                 location = subset_df.apply(tuple, 1).sample(1).iloc[0]
15
16
             if DATA_SET == "CDR":
17
                 rows.append([target, location[0], epoch])
18
             elif DATA_SET == "SFC":
19
                 rows.append([target, location[0], location[1], epoch])
20
21
22
         return DataFrame(rows, columns=COLUMNS)
23
   Figure B.4: The code used to implement single ROI defenses: WINNER TAKES ALL and
   random ROI reports.
```

subset_df = target_data[target_data.epoch == epoch]

def remove_duplicate_roi_reports(target_data):
 target = target_data['target'].iloc[0]

for epoch in set(target_data.epoch.unique()):

2

3

4

5

rows = []

How can we improve the attack?

- 1. Parametrization of the classifiers
- 2. Sampling high mobility users / targets
- 3. "Maybe...": More training data

How else can we defend against the attack?

- 1. Restrict volume of training data (query denial)
- 2. ε differential privacy
- 3. Time generalization methods

How would we optimize the attack more?

- 1. Optimization of the TSFresh API function
- 2. More fine-grained jobs, threading
- 3. Better hardware
- 4. Use caches, not disk memory

How would you test your hypotheses?

- 1. Hypothesis test
- 2. Assume the AOC is $N(\mu, \sigma^2)$, and compute σ
- 3. Adapt our sampling in order to produce an experiment.

"¿How sure are you?"

- Unit tests on the components we added
- Type checking & integration tests with dummy data
- Repeat experiments with resampled targets

But:

- APIs untested
- Original code untested (although it's already purportedly generalized)
- We do see variation in our results with sampling differences.

About the AOC

- Unbiased estimator of the true mean of the sample
- Discrepancies in small level comparison
- Important to consider stat significance

"Privacy gain" (Pyrgelis et al. 2017)

$$PL = \begin{cases} \frac{AUC - 0.5}{0.5} & \text{if AUC} > 0.5\\ 0 & \text{otherwise} \end{cases}$$