Course Title: Discrete Mathematics Teaching Hours: 48
Nature of the Course: Theoretical Credit Hours: 3

Course No.: Math Ed. 475 (Minor) Level: B Ed/ Semester: VII

1. Course Description

This course is designed for the B .Ed. (ICT) students needed to explore mathematical structures in the objects and understand their properties. This course covers the basic notions and results on relations, counting and combinatories, algorithms, recursion and sequences, special functions and transformations that are universally needed. Further, it has incorporated learners' experiences closer to IT-applications, different examples, problems and projects.

2. The General Objectives

The general objectives of this course are as follows:

- To familiarize students with theoretical concepts of relation and special types of function.
- To understand the theoretical concept of algorithm.
- To develop the ability to perform the basic algorithms applicable in the computer work.
- To make students efficient of solving the problems of sequence and series.
- To enable the students in dealing with principle of counting and combinatories
- To familiarize learners' concept of isometric and non isometric transformations.

3. Specific Objectives and Contents

Specific Objectives	Contents		
• Define Cartesian product of	Unit- I Relations and Digraph (9 hrs)		
two and three sets.	1.1 Product set and partitions		
• Define different types of	1.2 Binary relations and its types		
relations and find the relations	1.3 Different methods representing		
between different sets.	relations.		
• Represent the given relations	 Relation as an order pairs 		
in different methods.	 Relations as matrix 		
• Verify the different properties	 Relations as directed graphs 		
of relations	 Relations as an arrow diagram 		
Define Boolean matrix with	Relations as graph		
examples.	1.4 Properties of relations:		

- Perform the operations on Boolean matrices.
- Perform the product of two Boolean matrices.
- Find the composition of two relations.
- Find the operation on relations with transitive closure and Warshall's algorithm

- Reflexive,
- Symmetric
- Asymmetric
- Transitive
- Equivalence relation
- Partial order relations
- 1.5 Boolean matrix representation of Relations
 - Boolean matrix operation
 - Boolean products
- 1.6 Composition of two relations
- 1.7 Operation on relations
- 1.8 Transitive closure and Warshall's algorithm
- Define basic principle of counting
- Use sum and product rule principle to find the total number of arrangement of objects.
- Explain the method of Permutation and find the permutation of n different object.
- Define combinations and find the combination of different objects.
- Prove Pigeonhole principle and find the number of pigeons and pigeonholes.
- Prove extended pigeonhole principle and find the number of pigeons and pigeonholes.

Unit II Counting and Combinatories (7 hrs)

- 2.1.Introduction
- 2.2 Basic principles of counting
 - Sum rule principle
 - Product rule principle
- 2.3 Permutation of n- different objects
- 2.4 Combination
- 2.5 The pigeonhole principle
- 2.6 The extended pigeonhole principle

- Define fundamental of different algorithm on the integers and matrices
- Define different types of complexity.
- Use binary and linear search to find the numbers in the list.
- Use Bubble sort and insertion sort to find the element in the list.

Unit III The Fundamental Algorithms, and Matrices (9 hrs)

- 3.1 Algorithms
- 3.2 Complexity of algorithm
 - Time complexity
 - Understanding the Complexity of algorithm.
- 3.3 Searching algorithm:
 - Linear search
 - Binary search

 Define matrices and its types Find transpose of matrices and power of matrices 	 Sorting Bubble sort Insertion sort 3.5 Matrices Matrix arithmetic Transpose of matrix Power of matrices
 Find the nth term of sequence by using recursive formula. Use summation notation for the given sequences. Define recurrence relations with examples. Solve the recursive relations. Identify the recursively defined functions and use it to find the term of sequences. 	Unit- IV Recursion on Sequence and Series (8 hrs) 4.1 Introduction 4.2 Sequence and summations • Arithmetic progression • Geometric progression • Harmonic progression • Relations and properties • Recurrence relations • Use of series on summation notation 4.3 Solutions for recursive relations 4.4 Recursive algorithm, recursion and iteration, the merge sort. 4.5 Recursively defined functions
 Define floor and ceiling functions with examples. Define characteristics function, recursive function, integer value functions remainder functions, factorial function and permutation functions with examples. Find the value of factorial function 	Unit: V Special Types of Functions (6 hrs) 5.1 Floor and ceiling function 5.2 Characteristics functions 5.3 Integer value functions 5.4 Remainder function: modular arithmetic 5.5 Factorial function
Define isometric and Non- Isometric transformation with examples	Unit- VI Geometric Transformation (9 hrs) 6.1 Geometric properties of plane linear transformation

- Apply the isometric and non isometric transformation to solve numerical examples.
- Represent Isometric and Non-isometric transformation in matrices.

6.2 Isometric transformation

- Reflection
- Translation
- Half turn
- Rotation
- Glide Reflection

6.3 Non isometric transformation

- Dilation
- Stretch
- Shear

6.4 Matrix representation of isometric and non- isometric transformations

4. Instructional Techniques:

4.1 General Instructional Techniques

Diffent instructional techniques lecture, power point presentation, questions-answer, collaborative work etc along with the use of animated figures, use of mathematical softwares can be applied.

4.2 Specific Instructional Techniques

The specific instructional techniques for this chapter wise are as follows:

Unit- I	Discussion and presentations in groups, mini lecture
Unit- II	Discussion and presentation, brain storming
Unit- II	Presentation and verification in group, demonstration
Unit-III	Collaborative problem solving and verification
Unit-IV	Power point presentation and verification in computer
Unit-V	Lecture, problem solving, questions –answers, and discussion
Unit-VI	Assignment and discussion

5. Evaluation

Internal Evaluation: 40%

The subject teacher will conduct internal evaluation as follows:

	Total:	40 points
•	Unit test and midterm examination	5 points
•	Third assignment	10 points
•	Second project work /assignment	10 points
•	Group works and presentation	5 points
•	Participation in learning activities	5 points
•	Attendance	5 points

External Evaluation (Final Examination)

60%

Examination Division, Dean's Office will conduct final examination at the end of the semester. The types of questions and marks allocated for each category of questions are given below:

- Objective type question $(10 \times 1point) = 10 points$
- Short answer questions $(6 \times 5 \text{ points}) = 30 \text{ points}$
- Long answer questions $(2 \times 10 \text{ points}) = 20 \text{ points}$

Total = 60 points

6. Recommended and Reference Books

6.1 Recommended Books

Rosen H.K ,(2008) Discrete mathematics and its application, 7th Edition, Mc Graw Hill Companies.

Susanna S.E (2011) Discrete mathematics with application, (Fourth Edition), Cangage Learning

6.2 Reference Books

Johnsonbaugh, R. (2002) *Discrete mathematics* (5th Edition). Singapore: Pearson Education Pvt. Ltd, India (Branch Office, Delhi).

Kolman, B, Busby,R.C, Ross,Sc (2009). *Discrete mathematics and its structures* (6th Edition). Delhi: PHI learning Pvt.Ltd.

: Pinnacle Publica	ition.		