System Design Document

Team: Lighthouse Solutions

Version: 1.0

Date: 10/31/2022

Client: Ben Drozdenko of the Naval Undersea Warfare Center Division Newport (NUWCDIVNPT)

Prepared by Johnny Driscoll, Sean Staton, Dylan Haughton, Brody Looney and Andy Howe

Abnormal Network Traffic Flow Dashboard Tool

System Design Document

Table of Contents

1. Introduction	1
1.1 Purpose of This Document	1
1.2 References	1
2. System Architecture	2
2.1 Architectural Design	2
2.2 Decomposition Description	3
3. Persistent Data Design	5
3.1 Database Descriptions	5
3.2 File Descriptions	7
4. Requirements Matrix	11
Appendix A – Agreement Between Customer and Contractor	12
Appendix B – Team Review Sign-off	13
Appendix C – Document Contributions	14

1 Introduction

This is a capstone project for Ben Drozdenko representing the Naval Undersea Warfare Center Division Newport (NUWCDIVNPT), in partial fulfillment of the Computer Science BS degree for the University of Maine. The purpose of this project is to give the client a viable means of analyzing traffic that moves around their network in order to protect the integrity of confidentiality of all data that flows through. The project serves to detect statistical anomalies and give minimalist, user-friendly reports.

1.1 Purpose of This Document

This document naturally serves to outline the mechanics of the coming project to be developed, in presenting architectural design and information regarding database and file usage. Below, one can find each of those evaluations, beginning with visual and theoretical analysis on the system's architecture, and ending with information regarding the proposed database, file usage, and requirements. This document is meant to be viewed and approved by the client, and thereafter, referred back to by the developers.

1.2 References

There are only three references to speak on currently. The first two of these are the original and revised SRS documents. These inform us on the necessary requirements of the project. The third reference document is a data set procured from the University of New South Wales, used as reference to the proposed file structure, type of information to be analyzed by the program, and the way in which data recording should be conducted.

2 System Architecture

This section appropriately outlines, visually and systematically, the architectural design of the project. The first subsection will provide a detailed graphical design of the system architecture. The following section will deconstruct the different components of that graphic, and provide an explanation.

2.1 Architectural Design

The system will be utilizing Zeek to analyze the traffic that goes through the network. Once the monitor detects an abnormality in the traffic. It will send a flag to the database, the flag will store

the address of the machine that had this abnormality as well as a timestamp of when it was discovered. Once the database has three flags originating from the same address, it will send a message to the interface of the LAN Admin to inform them of the abnormalities. The message will provide the time stamps and the address of origination.

2.2 Decomposition Description

3 Persistent Data Design

This section describes, in detail, the nature of individual databases that are planned to be used, and the file interactions and structure to be implemented therein. The first of these subsections considers the use and evaluation of the database, while the second subsection describes the nature of various files used by the system, and the structure of that usage therein.

3.1 Database Descriptions (if you use a database)

Our application will communicate directly with the database without a middle layer involved. From the zeek flow network data, our tool will flag any abnormal data and send this directly to the database with the associated IP address. If the flagCounter rises to a certain number that our training algorithm will determine then an abnormality confirmation is sent back to the application. With this the LAN admin can view this information and take any necessary steps.

3.2 File Descriptions

The files that we are using in this system are .csv files that have 45 columns that each represent a different field within the file. The description of what each column represents is shown in the table below.

Name of Column	Data Type	Description	
id	int	This serves as the identification number for the record.	
dur	float	This is the duration of the record.	
proto	nominal	This is the type of transaction protocol.	
service	nominal	This is the service used to transfer the network traffic flow.	
state	nominal	This indicates to the state and its dependent protocol.	

spkts	int	Source to destination packet count.	
-		-	
dpkts	int	Destination to source packet count.	
sbytes	int	Source to destination transaction bytes.	
dbytes	int	Destination to source transaction bytes.	
rate	float	Thsi is the rate at which data is being transmitted.	
sttl	int	Source to destination time to live value.	
dttl	int	Destination to source time to live value.	
sload	float	Source bits per second.	
dload	float	Destination bits per second.	
sloss	int	Source packets retransmitted or dropped.	
dloss	int	Destination packets retransmitted or dropped.	
sinpkt	float	Source interpacket arrival time (mSec).	
dinpkt	float	Destination interpacket arrival time (mSec).	
sjit	float	Source jitter (mSec).	
djit	float	Destination jitter (mSec).	
swin	int	Source TCP window advertisement value.	
stcpb	long	Source TCP base sequence number.	
dtcpb	long	Destination TCP base sequence number.	
dwin	int	Destination TCP window advertisement value.	
tcprtt	float	TCP connection setup round-trip time, the sum of 'synack' and 'ackdat'.	
synack	float	TCP connection setup time, the time between the SYN and the SYN_ACK packets.	
ackdat	float	TCP connection setup time, the time between the SYN_ACK and the ACK packets.	
smean	int	Mean of the packet size transmitted by the src.	

dmean	int	Mean of the packet size transmitted by the dst.	
trans_depth	int	Represents the pipelined depth into the connection of http request/response transaction.	
response_body_len	int	Actual uncompressed content size of the data transferred from the server's http service.	
ct_srv_src	int	Number of connections that contain the same service and source address in 100 connections according to the last time.	
ct_state_ttl	int	Number for each state according to specific range of values for source/destination time to live.	
ct_dst_ltm	int	Number of connections of the same destination address in 100 connections according to the last time.	
ct_src_dport_ltm	int	Number of connections of the same source address and the destination port in 100 connections according to the last time.	
ct_dst_sport_ltm	int	Number of connections of the same destination address and the source port in 100 connections according to the last time.	
ct_dst_src_ltm	int	Number of connections of the same source and the destination address in in 100 connections according to the last time.	
is_ftp_login	binary	If the ftp session is accessed by user and password then 1 else 0.	
ct_ftp_cmd	int	Number of flows that has a command in ftp session.	
ct_flw_http_mthd	int	Number. of flows that has methods such as Get and Post in http service.	
ct_src_ltm	int	Number of connections of the same destination address in 100 connections according to the last time.	
ct_srv_dst	int	Number of connections that contain the same service and destination address in 100 connections according to the last time.	
is_sm_ips_ports	binary	If source and destination IP addresses equal and port numbers equal then, this variable takes value 1 else 0.	

attack_cat	nominal	This shows if the piece of network traffic flow data is normal or if it is a type of attack. There are nine types of attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms.
label	binary	This labels whether the record was normal or an attack. 0 for normal and 1 for attack records.

An example of this file is shown below. The file had to be broken into three screenshots since the file is very large. This file shows 16 rows within the file but in reality these files are around 100,000+ rows long.

id	dur	proto	service st	ate spk	ts dpkts	sbytes	dbytes	rate	sttl	dttl	sload	dload	sloss	dloss	sinpkt	dinpkt	sjit
1	0.1215	tcp	- FI	N	6	4 258	172	74.09	252	254	14158.9423	8495.36523	0	0	24.2956	8.375	5 30.177547
2	0.6499	tcp	- FI	N	14 3	8 734	42014	78.47	62	252	8395.11230	05 503571.313	2	17	49.915	15.432865	5 61.426934
3	1.6231	tcp	- FI	N	8 1	.6 364	13186	14.17	62	252	1572.27185	51 60929.2305	1	. 6	231.87557	102.7372	2 17179.587
4	1.6816	tcp	ftp FI	N	12 1	.2 628	770	13.68	62	252	2740.17895	55 3358.62207	1	. 3	152.87655	90.235726	5 259.08017
5	0.4495	tcp	- FI	N	10	6 534	268	33.37	254	252	8561.49902	23 3987.05981	. 2	1	47.750333	75.659602	2 2415.8376
6	0.3805	tcp	- FI	N	10	6 534	268	39.42	254	252	10112.0253	39 4709.13477	2	1	39.928778	52,241	1 2223.7303
7	0.6371		- FI	N	10	8 534	354		254	252		3892.58374					1 4286.8286
8			- FI			8 534			254			14 4754.74707					1 3770.5807
9			- FI			8 534			254			37 4568.01856			60.210889		9 4060.6256
10			- FI			6 534	268		254			12 6927.29102					1 1413.6864
11			- FI			6 4142			254			75 5878.24316					1 1471.6492
						8 56329			62			25 8152.55908					5 3253.2788
12																	
13			- FI			6 534			254			33 4297.85645					9 2610.9083
14			- FI			8 564	354		254			16 2489.40747			110.69122		8 6542.8152
15			- FI			8 534			254			4299.91943			64.083889		
16	2E-06	udp	snmp IN	IT	2	0 138	0	5E+05	254	0	27600000	00 0	0	0	0.002	2 (0 0
djit s	swin sto	nh	dtcpb	dwin	tcprtt	synack	ackdat	smean	dmea	an tr	ans_depth	response_bod	v len	ct_srv	erc et et	ate_ttlc	t_dst_ltm
11.830604	255	62177269					0			43	0		y	0	1	0	1
1387.7783		141788414					0			1106	0			0	43	1	1
11420.926		211615070					0.050439	4		824	0			0	7	1	2
4991.7847		110711917					0	5		64	0			0	1	1	2
115.807		243613754			0.128381	0.071147	0.057234	5	3	45	0			0	43	1	2
82.5505	255	398415550	17960403	91 255	0.172934	0.119331	0.053603	5	3	45	0			0	43	1	2
119.42272	255	178730922	26 17671804	93 255	0.143337	0.069136	0.074201	5	3	44	0			0	43	1	1
118.96263	255	20598570	3160063	00 255	0.116615	0.059195	0.05742	5	3	44	0			0	43	1	3
106.61155	255	88409487	74 34103172	03 255	0.118584	0.066133	0.052451	5	3	44	0			0	43	1	3
57.200395	255	336844799	5848592	15 255	0.087934	0.063116	0.024818	5	3	45	0			0	43	1	3
80.404844	255	13715029	26040928	85 255	0.097761	0.036508	0.061253	34.	5	45	0			0	11	1	1
106.11345		182472266					0.078288	90		79	0			0	2	1	1
99.860875	255	8840802					0.126439	5		45	0			0	43	1	1
202.43305		232178053					0.094066	5		44	0			0	11	1	1
116.49323	255	377225197	72 42817319	81 255	0.113311	0.050849	0.062462	5	3	44	0			0	43	1	1
ct src dpor	rt Itm	ct dst	sport Itm	ct dst src	ltm is	ftp login	ct ftp c	md c	t flw l	http m	thd ct src	Itm ct srv	dst is	s sm ips	ports a	ittack cat	label
	_	1	1		1	0	0	0			0	1	1		_	Normal	0
		1	1		2		0	0			0	1	6		1 0	Normal	0
		1	1		3		0	0			0	2	6		1 0	Normal	0
		1	1		3		1	1			0	2	1		1 0	Normal	0
		2	1		40		0	0			0	2	39		1 0	Normal	0
		2	1		40		0	0			0	2	39		1 0	Normal	0
		1	1		40		0	0			0	1	39		1 0	Normal	0
		3	1		40		0	0			0	3	39		1 0	Normal	0
		3	1		40		0	0			0	3	39		1 0	Normal	0
		3	1		40		0	0			0	3	39		0	Normal	0
		1	1		3		0	0			0	1	6		0	Normal	0
		1	1		2		0	0			0	1	1		1 0	Normal	0
		1	1		40		0	0			0	1	39		1 0	Normal	0
		1	1		3		0	0			0	2	3			Normal	0
		1	1		40		0	0			0	1	39		1 0	Normal	0

4 Requirements Matrix

This final section considers the requirements, as outlined in the SRS, and how they pertain to system components outlined in the first section of this paper. The table below shows this by requirement number, relating each to a specific component.

Requirement Number	Name	System component used
1	User interface	Database,DisplayData()
2	No bloat elements	GUI
3	Begin capture	Database, sFlow, BeginCapture()
4	End capture	Database, sFlow, EndCapture()
5	Collect network data	Database, CollectWhenDiscovered()
6	Display abnormal data	Database, DisplayData()
7	Allow user to identify abnormal data	Database, DisplayData(), AppendData(),DeleteData()
8	Alert LAN admin	Database, DisplayData(), SendMessage()
9	Individual abnormal data collection	Database, DisplayData(),SearchIP()
10	Training from a file	ReadData()
11	Training from a capture	ReadData()
12	Switch between 'capture' and 'training' mode	SwitchMode()

Appendix A – Agreement Between Customer and Contractor

This document states the system design for the *Abnormal Network Traffic Flow Dashboard Tool* contracted by Ben Drozdenko and the Naval Undersea Warfare Center Division Newport (NUWCDIVNPT). Both the customer and the development team agree that this document clearly states the system architecture, persistent data design, and requirements matrix for this project.

In the event that there are future changes made to this document the development team and customer will discuss the changes during our bi-weekly check-in meetings. If everyone agrees on the changes, we will document the change below and sign-off showing that the amendment has been approved.

Brody Looney	Brody Looney	11/8/2022
Typed Name	Signature	Date
Dylan Haughton	Dylan Haughton	11/8/2022
Typed Name	Signature	Date
Sean Staton	Sean Staton	11/8/2022
Typed Name	Signature	Date
Johnathan Driscoll	Johnathan Driscoll	11/8/2022
Typed Name	Signature	Date
Andrew Howe	Andrew Howe	11/8/2022
Typed Name	Signature	Date
Benjamin Drozdenko		11/10/2022
Typed Name	Signature	Date

Customer Comments:

Appendix B – Team Review Sign-off

Andy Howe, Dylan Haughton, Johnny Driscoll, Sean Staton, and Brody Looney have all reviewed this document. We all have agreed on the content that listed in this document is accurate and complete. We all agree that the format follows the correct structure. The signatures below prove the information stated previously is correct.

Brody Looney

11/8/2022

Typed Name	Signature	Date
Dylan Haughton	Dylan Haughton	11/8/2022
Typed Name	Signature	Date
Sean Staton	Sean Staton	11/8/2022
Typed Name	Signature	Date
Johnathan Driscoll	Johnathan Driscoll	11/8/2022
Typed Name	Signature	Date
Andrew Howe	Andrew Howe	11/8/2022
Typed Name	Signature	Date

Comments:

Appendix C – Document Contributions

Group Member	Sections Worked On	Contribution Percentage
Sean Staton	Introduction, introductions for each section	20%
Dylan Haughton	System Architecture	20%
Andy Howe	Requirements Matrix	20%
Johnny Driscoll	Persistent Data Design	20%
Brody Looney	SRS Review, File Descriptions, Appendix A, Appendix B, and Appendix C	20%