Large Language Models

Advanced Attention Mechanisms - I

ELL881 · AIL821

Sourish Dasgupta

Assistant Professor, DA-IICT, Gandhinagar https://daiict.ac.in/faculty/sourish-dasgupta

Year: 2017, NeurIPS

Self Attention

	THE	CAT	15	ON	A	CHAIR
ТНЕ	0.268	0.119	0.134	0.148	0.179	0.152
CAT	0.124	0.278	0.201	0.128	0.154	0.115
15	0.147	0.132	0.262	0.097	0.218	0.145
ON	0.210	0.128	0.206	0.212	0.119	0.125
	0.146	0.158	0.152	0.143	0.227	0.174
CHAIR	0.195	0.114	0.203	0.103	0.157	0.229

(6, 6)

Year: 2017, NeurIPS

Causal (Forward Masked) Attention

(6, 6)

Zoom-in! (simplified without Scale and Softmax)

Why do we need to do better?

KV Cache based (Forward Masked) Attention

Year: 2020, Arxiv

Sliding Window Attention

(a) Full n^2 attention

(b) Sliding window attention

Year: 2020, Arxiv

Sliding Window Attention

	THE	CAT	IS	ON	A	CHAIR
THE	1.0	0	0	0	0	0
CAT	0.461	0.538	0	0	0	0
ıs	0.3219	0.317	0.361	0	0	0
ON	0	0.316	0.341	0.343	0	0
A	0	0	0.326	0.323	0.351	0
CHAIR	0	0	0	0.313	0.331	0.356

Year: 2020, Arxiv

What happens to the KV Cache?

(1, 8)

The motivation

Since our sliding window size is 4, we only want the dot-product of the current token with the previous 4 (including the token itself)

We don't care about these either, as we want the output

OUTPUT TOKEN 8

(8,4096)

Time: O(N*w*d) + O(N*w) + O(N*w*d) = O(N*w*d)

Space: O(2*N*d) + O(N*w) = O(N*w + N*d)

(2×w×d)×Size of a float

(2×N×d)×Size of a float

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Multi-Head Self Attention

Year: 2019, arxiv

Multi-Query Attention (MQA)

Do we lose out on something?

- Decline in performance quality
- Training instability

Year: 2023; ICLR

Uptraining: Converting MHA to MQA

What can still go wrong?

- Decline in performance quality
- Training instability

Year: 2023; EMNLP

Grouped Query Attention

What did we gain?

Model	Tinfer	Average CN	CNN	N arXiv	PubMed	MediaSum	MultiNews	WMT	TriviaQA
	S		R ₁	\mathbf{R}_{1}	R ₁	\mathbf{R}_{1}	\mathbf{R}_{1}	BLEU	F1
MHA-Large	0.37	46.0	42.9	44.6	46.2	35.5	46.6	27.7	78.2
MHA-XXL	1.51	47.2	43.8	45.6	47.5	36.4	46.9	28.4	81.9
MQA-XXL	0.24	46.6	43.0	45.0	46.9	36.1	46.5	28.5	81.3
GQA-8-XXL	0.28	47.1	43.5	45.4	47.7	36.3	47.2	28.4	81.6

So are we all set? Key Takeaways takeaways

- GQA/MQA Aim: To reduce the need for storing a large amount of KV cache
- LLM server can handle more requests, larger batch sizes and increased throughput
- Cannot significantly reduce the computational load
- Quality degradation remains

