Element	Calculated/Nominal Values	Measure Values	Percent Differences
R_1	$1.5K\Omega$	$1.475K\Omega$	-1.6666%
R_2	$3.3K\Omega$	$3.345K\Omega$	1.3636%
R_3	$4.7K\Omega$	$4.538K\Omega$	-3.4468%
R_4	$2.2K\Omega$	$2.165K\Omega$	-1.5909%
R_5	$1.0K\Omega$	$0.980K\Omega$	-2.0000%
R_eq1	$3.2K\Omega$	$3.148K\Omega$	-1.625 %
R_eq2	$1.2073K\Omega$	$1.194K\Omega$	-1.1016 %
$R_e q$	$2.7073K\Omega$	$2.695K\Omega$	-0.4543%
$\overline{V_S}$	8 [V]	8.035 [V]	-0.4375%
V_1	4.432 [V]	4.408 [V]	-0.5415%
V_2	3.555 [V]	3.606 [V]	1.4346%
V_3	3.553 [V]	3.575 [V]	0.6192%
V_4	2.444 [V]	2.433 [V]	-0.4501%
V_5	1.111 [V]	1.111 [V]	0%
V_A	8 [V]	8.032 [V]	0.4000%
V_B	3.567 [V]	3.612 [V]	1.2615%
V_C	1.123 [V]	1.140 [V]	1.5138%
$\overline{I_1}$	2.954 [mA]	2.973 [mA]	0.6432%
I_2	1.0774 [mA]	$1.085 \; [{ m mA}]$	0.7054%
I_3	0.756 [mA]	$0.770 \; [mA]$	1.8519%
I_4	$1.111 \; [{ m mA}]$	$1.111 [\mathrm{mA}]$	0%

$$\begin{split} V_1 &= I_1 * R_1 = 2.973[mA] * 1.475[K\Omega] = 4.3851[V] \\ V_2 &= I_2 * R_2 = 1.0774[mA] * 3.345[K\Omega] = 3.6039[V] \\ V_3 &= I_3 * R_3 = 0.770[mA] * 4.538[K\Omega] = 3.4942[V] \\ V_4 &= I_4 * R_4 = 1.111[mA] * 2.165[K\Omega] = 2.4053[V] \\ V_5 &= I_4 * R_5 = 1.111[mA] * 0.980[K\Omega] = 1.0888[V] \end{split}$$

All of the measurements were with in the error rang of $\pm 10\%$. The greatest resistor error was resistor number three which had a error of -3.4468%. The greatest voltage error was the voltage at node C with and error of 1.5138%. The most likely reason is that it is the farthest from the voltage supply, so the error in the resistor would combine resulting in a greater error. Current number three was the greatest off, however it was a minute value being measured. A reason for resistor degradation is overheating and crystalline break down. Resistors are also susceptible to temperature drift.