432 Class 03 Slides

thomaselove.github.io/432

2022-01-18

Today's Agenda

- Create a data set for week 2 analyses from smart_ohio
- Making cleaning / tidying decisions, then saving our work
- Simple imputation
- Splitting the sample with rsample tools
- Fitting a model (and then several more models) with lm
 - Incorporating an interaction between factors
- Regression Diagnostics via Residual Plots

Creating and Managing the Data for Week 2

Setup

```
knitr::opts chunk$set(comment = NA)
options(width = 60)
library(here); library(knitr)
library(janitor); library(patchwork)
library(naniar); library(simputation)
library(skimr)
                        ## for a specific summary
library(equatiomatic) ## print equations
library(broom)
library(rsample)
                        ## new today: data splitting
library(yardstick)
                        ## new today: evaluating fits
library(tidyverse)
theme set(theme bw())
options(dplyr.summarise.inform = FALSE) ## avoid message
```

Similar approach as last time...

```
smart_ohio <- read_csv(here("data/smart_ohio.csv"))</pre>
week2 <- smart ohio %>%
    filter(hx diabetes == 0,
           mmsa == "Cleveland-Elyria",
           complete.cases(bmi)) %>%
    select(bmi, inc imp, fruit day, drinks wk,
           female, exerany, genhealth, race_eth,
           hx diabetes, mmsa, SEQNO) %>%
    type.convert(as.is = FALSE) %>%
    mutate(ID = as.character(SEQNO - 2017000000)) %>%
    relocate(ID)
```

8 10

9 11

A tibble: 894 x 12 ID bmi inc imp fruit day drinks wk female exerany <chr> <dbl> <int> <dbl> <dbl> <int> <int> 23.0 86865 1 2 4 0 2 3 26.9 NΑ 3 3 4 26.5 NA 4.67 24.2 58311 4 5 0.57 0.93 5 7 23.0 2318 2 2 6 8 28.4 79667 7 9 30.1 47880 0.23

... with 884 more rows, and 5 more variables:

10 12 24.6 76917

19.8 100136

27.2 73145

0.77

0.71

1.07

0.47

[#] genhealth <fct>, race_eth <fct>, hx_diabetes <int>,

[#] mmsa <fct>. SEQNO <int>

Codebook for useful week2 variables

• 894 subjects in Cleveland-Elyria with bmi and no history of diabetes

Variable	Description
bmi inc_imp	(outcome) Body-Mass index in kg/m ² . income (imputed from grouped values) in \$
_	,
fruit_day	average fruit servings consumed per day
drinks_wk	average alcoholic drinks consumed per week
female	sex: $1 = \text{female}$, $0 = \text{male}$
exerany genhealth race_eth	any exercise in the past month: $1 = \text{yes}$, $0 = \text{no}$ self-reported overall health (5 levels) race and Hispanic/Latinx ethnicity (5 levels)
	. , , , , , , , , , , , , , , , , , , ,

- plus ID, SEQNO, hx_diabetes (all 0), MMSA (all Cleveland-Elyria)
- See Chapter 2 of the Course Notes for details on the variables

Basic Data Summaries

Available approaches include:

- summary
- mosaic package's inspect()
- skimr package's skim_without_charts()
- Hmisc package's describe

all of which can work nicely in an HTML presentation, but none of them fit well on one of these slides.

Summarizing the Quantities (Raw week2)

var	n_missing	min	median	max	mean	sd
bmi	0	13.3	26.8	63	27.9	6.3
inc_imp	120	216.0	48224.5	700676	75673.5	90695.8
fruit_day	41	0.0	1.1	10	1.4	1.1
drinks_wk	39	0.0	0.5	56	3.0	6.1

Any signs of trouble? (What are we looking for?)

Quick Histogram of each quantitative variable

Code for previous slide

```
p1 <- ggplot(week2, aes(x = bmi)) +
    geom histogram(fill = "navy", col = "white", bins = 20)
p2 \leftarrow ggplot(week2, aes(x = inc imp)) +
    geom_histogram(fill = "forestgreen", col = "white",
                    bins = 20
p3 \leftarrow ggplot(week2, aes(x = fruit_day)) +
    geom_histogram(fill = "tomato", col = "white", bins = 20)
p4 \leftarrow ggplot(week2, aes(x = drinks_wk)) +
    geom_histogram(fill = "royalblue", col = "white",
                    bins = 20)
(p1 + p2) / (p3 + p4)
```

l also used warning = FALSE in the plot's code chunk label to avoid warnings about missing values, like this one for inc_imp:

Warning: Removed 120 rows containing non-finite values

Binary variables in raw week2

week2 %>% tabyl(female, exerany) %>% adorn_title()

```
exerany
female 0 1 NA_
0 95 268 20
1 128 361 22
```

- female is based on biological sex (1 = female, 0 = male)
- exerany comes from a response to "During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?" (1 = yes, 0 = no, don't know and refused = missing)
- Any signs of trouble here?

Binary variables in raw week2

week2 %>% tabyl(female, exerany) %>% adorn_title()

exerany female 0 1 NA_ 0 95 268 20

- 1 128 361 22
- ullet female is based on biological sex (1 = female, 0 = male)
- exerany comes from a response to "During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?" (1 = yes, 0 = no, don't know and refused = missing)
- Any signs of trouble here?
- I think the 1/0 values and names are OK choices.

Multicategorical genhealth in raw week2

week2 %>% tabyl(genhealth)

```
genhealth n percent valid_percent
1_Excellent 148 0.165548098 0.16573348
2_VeryGood 324 0.362416107 0.36282195
3_Good 274 0.306487696 0.30683091
4_Fair 112 0.125279642 0.12541993
5_Poor 35 0.039149888 0.03919373
<NA> 1 0.001118568 NA
```

- The variable is based on "Would you say that in general your health is
 ..." using the five specified categories (Excellent -> Poor), numbered
 for convenience after data collection.
- Don't know / not sure / refused were each treated as missing.
- How might we manage this variable?

Changing the levels for genhealth

Might want to run a sanity check here, just to be sure. . .

Checking health vs. genhealth in week2

week2 %>% tabyl(genhealth, health) %>% adorn_title()

health genhealth VG P NA 1 Excellent 148 0 324 0 0 0 2_VeryGood 0 0 274 0 3 Good 4 Fair 0 112 0 0 0 35 5 Poor 0 0 <NA> 0 0

• OK. We've preserved the order and we have much shorter labels. Sometimes, that's helpful.

Multicategorical race_eth in raw week2

```
week2 %>% count(race_eth)
```

```
A tibble: 6 x 2
  race eth
                                n
  <fct>
                            <int>
1 Black non-Hispanic
                               167
2 Hispanic
                               27
                               19
3 Multiracial non-Hispanic
                               22
4 Other race non-Hispanic
                              646
 White non-Hispanic
 <NA>
                                13
```

"Don't know", "Not sure", and "Refused" were treated as missing.

• What is this variable actually about?

Multicategorical race_eth in raw week2

```
week2 %>% count(race_eth)
```

```
A tibble: 6 x 2
  race_{eth}
                                 n
  <fct>
                             <int>
1 Black non-Hispanic
                               167
2 Hispanic
                                27
                                19
3 Multiracial non-Hispanic
                                22
4 Other race non-Hispanic
                               646
 White non-Hispanic
 <NA>
                                13
```

- What is this variable actually about?
- What is the most common thing people do here?

[&]quot;Don't know", "Not sure", and "Refused" were treated as missing.

What is the question you are asking?

Collapsing race_eth levels *might* be rational for *some* questions.

- We have lots of data from two categories, but only two.
- Systemic racism affects people of color in different ways across these categories, but also *within* them.
- Is combining race and Hispanic/Latinx ethnicity helpful?

It's hard to see the justice in collecting this information and not using it in as granular a form as possible, though this leaves some small sample sizes. There is no magic number for "too small a sample size."

- Most people identified themselves in one of the categories.
- These data are not ordered, and (I'd argue) ordering them isn't helpful.
- Regression models are easier to interpret, though, if the "baseline" category is a common one.

Resorting the factor for race_eth

Let's sort all five levels, from most observations to least...

```
week2 <- week2 %>%
    mutate(race_eth = fct_infreq(race_eth))
week2 %>% tabyl(race eth)
```

```
race_eth n percent valid_percent
White non-Hispanic 646 0.72259508 0.73325766
Black non-Hispanic 167 0.18680089 0.18955732
Hispanic 27 0.03020134 0.03064699
Other race non-Hispanic 22 0.02460850 0.02497162
Multiracial non-Hispanic 19 0.02125280 0.02156640

<NA> 13 0.01454139 NA
```

• Not a perfect solution, certainly, but we'll try it out.

"Cleaned" Data and Missing Values

```
variable n_miss pct_miss
 <chr>
          <int> <dbl>
             120 13.4
1 inc imp
              42 4.70
2 exerany
3 fruit_day 41 4.59
4 drinks wk
         39 4.36
5 race eth 13 1.45
6 health
                  0.112
               1
7 genhealth
                  0.112
8 ID
              0
                  0
```

Single Imputation Approach?

```
set.seed(43203)
week2im <- week2 %>%
    select(ID, bmi, inc_imp, fruit_day, drinks_wk,
           female, exerany, health, race_eth) %>%
    data.frame() %>%
    impute_cart(health ~ bmi + female) %>%
    impute pmm(exerany ~ female + health + bmi) %>%
    impute rlm(inc imp + drinks wk + fruit day ~
                   bmi + female + health + exerany) %>%
    impute cart(race eth ~ health + inc imp + bmi) %>%
    tibble()
prop_miss_case(week2im)
```

[1] 0

Saving the tidied data

Let's save both the unimputed and the imputed tidy data as R data sets.

```
saveRDS(week2, here("data", "week2.Rds"))
saveRDS(week2im, here("data", "week2im.Rds"))
```

To reload these files, we'd use readRDS.

 The main advantage here is that we've saved the whole R object, including all characteristics that we've added since the original download.

Splitting the Sample

Use initial split from rsample to partition the data into:

- Model development (training) sample where we'll build models
- Model evaluation (testing) sample which we'll hold out for a while

```
set.seed(432) ## to make the work replicable in the future
week2im split <- initial split(week2im, prop = 3/4)</pre>
train_w2im <- training(week2im_split)</pre>
test_w2im <- testing(week2im_split)</pre>
dim(train_w2im); dim(test_w2im)
```

- [1] 670 9
- [1] 224 9

Should we transform our outcome?

Outcome: bmi, with key predictors exerany and health both categorical (two-way ANOVA!)

bmi means by exerany and health

```
summaries_1 <- train_w2im %>%
   group_by(exerany, health) %>%
   summarise(n = n(), mean = mean(bmi), stdev = sd(bmi))
summaries_1 %>% kable(digits = 2)
```

exerany	health	n	mean	stdev
0	Е	18	27.49	3.56
0	VG	54	26.87	5.27
0	G	58	30.33	7.45
0	F	31	35.12	9.95
0	Р	8	36.21	12.11
1	E	92	25.80	4.49
1	VG	191	26.80	4.89
1	G	152	29.12	6.26
1	F	49	27.21	5.55
1	Р	17	28.50	8.61

Code for Interaction Plot

- Note the use of factor here since the exerany variable is in fact numeric, although it only takes the values 1 and 0.
 - ullet Sometimes it's helpful to treat 1/0 as a factor, and sometimes not.
- Where is the evidence of serious non-parallelism (if any) in the plot on the next slide that results from this code?

Resulting Interaction Plot

Models we'll build today

- m_1 a linear model without interaction using exerany and health to predict bmi
- m_1int add the interaction term for exerany and health to m_1

We'll assess these models carefully (today) in the training sample and (next time) in the test sample.

 We'll also explore adding a covariate fruit_day to the models in several different ways. Fitting ANOVA model m_1 without interaction

Building a Model (m_1) without interaction

• How well does this model fit the training data?

r.squared	adj.r.squared	sigma	nobs	df	df.residual	AIC	BIC
0.089	0.082	6.12	670	5	664	4335.9	4367.5

ANOVA for the m_1 model

```
anova(m 1)
Analysis of Variance Table
Response: bmi
          Df
              Sum Sq Mean Sq F value Pr(>F)
exerany 1 895.7 895.71 23.948 1.243e-06 ***
health 4 1528.5 382.12 10.217 4.952e-08 ***
Residuals 664 24834.7 37.40
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Tidied ANOVA for the m_1 model

```
tidy(anova(m_1)) %>%
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
exerany	1	895.71	895.71	23.95	0
health	4	1528.47	382.12	10.22	0
Residuals	664	24834.72	37.40	NA	NA

A summary of m_1 coefficients

summary(m_1)\$coeff

```
Estimate Std. Error t value
                                                Pr(>|t|)
(Intercept) 27.9094987 0.7428015 37.5732944 1.704557e-166
           -2.1966833 0.5501802 -3.9926613 7.262660e-05
exerany
healthVG
            0.6176707
                       0.7026030
                                 0.8791177
                                            3.796555e-01
healthG
            3.1372434
                       0.7224634 4.3424255
                                            1.629287e-05
healthF
            3.7122198
                       0.9070315
                                 4.0927131
                                            4 788419e-05
            4 5514459 1 3577495
                                 3 3521985 8 472164e-04
healthP
```

Tidied summary of m_1 coefficients

```
tidy(m_1, conf.int = TRUE, conf.level = 0.90) %>%
   kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	27.91	0.74	37.57	0.000	26.69	29.13
exerany	-2.20	0.55	-3.99	0.000	-3.10	-1.29
healthVG	0.62	0.70	0.88	0.380	-0.54	1.77
healthG	3.14	0.72	4.34	0.000	1.95	4.33
healthF	3.71	0.91	4.09	0.000	2.22	5.21
healthP	4.55	1.36	3.35	0.001	2.32	6.79

Equation for Model without Interaction

From m1 our equation is ...

$$\begin{aligned} \widehat{\mathsf{bmi}} &= 27.91 - 2.2(\mathsf{exerany}) + 0.62(\mathsf{health}_{\mathsf{VG}}) + 3.14(\mathsf{health}_{\mathsf{G}}) + \\ &\quad 3.71(\mathsf{health}_{\mathsf{F}}) + 4.55(\mathsf{health}_{\mathsf{P}}) \end{aligned} \tag{1}$$

- You need to use results = "asis" in the code chunk label to get this to work.
- This function extract_eq comes from the equatiomatic package.

Interpreting the m_1 model

$$\widehat{\mathsf{bmi}} = 27.91 - 2.2(\mathsf{exerany}) + 0.62(\mathsf{health}_{\mathsf{VG}}) + 3.14(\mathsf{health}_{\mathsf{G}}) + \\ 3.71(\mathsf{health}_{\mathsf{F}}) + 4.55(\mathsf{health}_{\mathsf{P}})$$

Name	exerany	health	predicted bmi
Harry	0	Excellent	27.91
Sally	1	Excellent	27.91 - 2.20 = 25.71
Billy	0	Fair	27.91 + 3.71 = 31.62
Meg	1	Fair	27.91 - 2.20 + 3.71 = 29.42

- Effect of exerany?
- Effect of health = Fair instead of Excellent?

Plot the Residuals from model m_1?

```
par(mfrow = c(2,2))
plot(m_1)
par(mfrow = c(1,1))
```

That's the simplest code to get the four key plots to show up in the most familiar pattern, as shown on the next slide. . .

m_1 Residual Plots (conclusions?)

Fitting ANOVA model m_1int including interaction

Adding the interaction term to m_1

• How does this model compare in terms of fit to the training data?

```
bind_rows(glance(m_1), glance(m_1int)) %>%
  mutate(mod = c("m_1", "m_1int")) %>%
  select(mod, r.sq = r.squared, adj.r.sq = adj.r.squared,
      sigma, nobs, df, df.res = df.residual, AIC, BIC) %>%
  kable(digits = c(0, 3, 3, 2, 0, 0, 0, 1, 1))
```

mod	r.sq	adj.r.sq	sigma	nobs	df	df.res	AIC	BIC
m_1	0.089	0.082	6.12	670	5	664	4335.9	4367.5
m_1int	0.126	0.114	6.01	670	9	660	4315.8	4365.4

ANOVA for the m_1int model

```
tidy(anova(m_1int)) %>%
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
exerany	1	895.71	895.71	24.82	0
health	4	1528.47	382.12	10.59	0
exerany:health	4	1020.50	255.13	7.07	0
Residuals	660	23814.22	36.08	NA	NA

ANOVA test comparing m_1 to m_1int

```
anova(m 1, m 1int)
Analysis of Variance Table
Model 1: bmi ~ exerany + health
Model 2: bmi ~ exerany * health
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 664 24835
2 660 23814 4 1020.5 7.0707 1.411e-05 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

A summary of m_lint coefficients

summary(m_1int)\$coeff

```
Estimate Std. Error t value
               27.4872222
(Intercept)
                            1.415826 19.4142627
               -1.6917874
                            1.548148 -1.0927817
exerany
healthVG
               -0.6140741
                            1.634855 -0.3756137
healthG
                2.8419157
                            1.620700 1.7535108
                            1.780029 4.2901815
healthF
                7.6366487
healthP
             8.7202778
                            2.552417 3.4164785
exerany:healthVG 1.6167545
                            1.803846 0.8962818
exerany:healthG 0.4865311 1.804508 0.2696198
exerany:healthF -6.2226958 2.072938 -3.0018726
                -6.0145361
                            3.004914 -2.0015667
exerany:healthP
                   Pr(>|t|)
(Intercept)
               9.227071e-67
               2.748884e-01
exerany
healthVG
               7.073248e-01
```

Tidied summary of m_1int coefficients

```
tidy(m_1int, conf.int = TRUE, conf.level = 0.90) %>%
    rename(se = std.error, t = statistic, p = p.value) %>%
    kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	se	t	р	conf.low	conf.high
(Intercept)	27.49	1.42	19.41	0.000	25.16	29.82
exerany	-1.69	1.55	-1.09	0.275	-4.24	0.86
healthVG	-0.61	1.63	-0.38	0.707	-3.31	2.08
healthG	2.84	1.62	1.75	0.080	0.17	5.51
healthF	7.64	1.78	4.29	0.000	4.70	10.57
healthP	8.72	2.55	3.42	0.001	4.52	12.92
exerany:healthVG	1.62	1.80	0.90	0.370	-1.35	4.59
exerany:healthG	0.49	1.80	0.27	0.788	-2.49	3.46
exerany:healthF	-6.22	2.07	-3.00	0.003	-9.64	-2.81
exerany:healthP	-6.01	3.00	-2.00	0.046	-10.96	-1.06

Equation for Interaction Model

From m1_int our equation is ...

$$\begin{split} \widehat{\mathsf{bmi}} &= 27.49 - 1.69(\mathsf{exerany}) - \\ &\quad 0.61(\mathsf{health}_{\mathsf{VG}}) + 2.84(\mathsf{health}_{\mathsf{G}}) + \\ &\quad 7.64(\mathsf{health}_{\mathsf{F}}) + 8.72(\mathsf{health}_{\mathsf{P}}) + \\ &\quad 1.62(\mathsf{exerany} \times \mathsf{health}_{\mathsf{VG}}) + 0.49(\mathsf{exerany} \times \mathsf{health}_{\mathsf{G}}) - \\ &\quad 6.22(\mathsf{exerany} \times \mathsf{health}_{\mathsf{F}}) - 6.01(\mathsf{exerany} \times \mathsf{health}_{\mathsf{P}}) \end{split}$$

Don't forget to use results = "asis" in the code chunk label.

Interpreting the m_1int model

$$\begin{split} \widehat{\mathsf{bmi}} &= 27.49 - 1.69(\mathsf{exerany}) - \\ &= 0.61(\mathsf{health}_{\mathsf{VG}}) + 2.84(\mathsf{health}_{\mathsf{G}}) + \\ &= 7.64(\mathsf{health}_{\mathsf{F}}) + 8.72(\mathsf{health}_{\mathsf{P}}) + \\ &= 1.62(\mathsf{exerany} \times \mathsf{health}_{\mathsf{VG}}) + 0.49(\mathsf{exerany} \times \mathsf{health}_{\mathsf{G}}) - \\ &= 6.22(\mathsf{exerany} \times \mathsf{health}_{\mathsf{F}}) - 6.01(\mathsf{exerany} \times \mathsf{health}_{\mathsf{P}}) \end{split}$$

Name	exerany	health	predicted bmi
Harry	0	Excellent	27.49
Sally	1	Excellent	27.49 - 1.69 = 25.80
Billy	0	Fair	27.49 + 7.64 = 35.13
Meg	1	Fair	27.49 - 1.69 + 7.64 - 6.22 = 27.22

• How do we interpret effect sizes here?

Interpreting the m_1int model

Name	exerany	health	predicted bmi
Harry	0	Excellent	27.49
Sally	1	Excellent	27.49 - 1.69 = 25.80
Billy	0	Fair	27.49 + 7.64 = 35.13
Meg	1	Fair	27.49 - 1.69 + 7.64 - 6.22 = 27.22

- How do we interpret effect sizes here? It depends.
- Effect of exerany?
 - If health = Excellent, effect is -1.69
 - If health = Fair, effect is (-1.69 6.22) = -7.91
- Effect of health = Fair instead of Excellent?
 - If exerany = 0 (no), effect is 7.64
 - If exerany = 1 (yes), effect is (7.64 6.22) = 1.42

Plot the Residuals from model m_1int?

Incorporating a Covariate into our two-way ANOVA models

Taking Stock

So far, we've fit two models to predict bmi, using exerany and health, one with an interaction term and one without.

```
m_1 <- lm(bmi ~ exerany + health, data = train_w2im)
m_1int <- lm(bmi ~ exerany * health, data = train_w2im)</pre>
```

Next, we'll fit models incorporating a covariate, specifically, fruit_day, a quantity (servings/day).

- m_2 and m_2int will add a linear term for fruit_day
- Later models (we'll fit next time) will add various non-linear terms in fruit_day
- We'll assess these models in our testing sample (next time) as well as our training sample.

Giving away the ending: We'll see that none of these augmented models will clearly improve the fit in our test sample over the performance of m_1 and m_1 int.

Adding in the covariate fruit_day to m_1

• How well does this model fit the training data?

```
bind_rows(glance(m_1), glance(m_2)) %>%
  mutate(mod = c("m_1", "m_2")) %>%
  select(mod, r.sq = r.squared, adj.r.sq = adj.r.squared,
      sigma, df, df.res = df.residual, AIC, BIC) %>%
  kable(digits = c(0, 3, 3, 2, 0, 0, 1, 1))
```

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.089	0.082	6.12	5	664	4335.9	4367.5
m_2	0.098	0.090	6.09	6	663	4331.2	4367.3

 Also available in glance for a model fit with lm are statistic, p.value, logLik, and deviance.

ANOVA for the m_2 model

```
tidy(anova(m_2)) %>%
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
fruit_day	1	468.10	468.10	12.62	0
exerany	1	760.50	760.50	20.51	0
health	4	1441.63	360.41	9.72	0
Residuals	663	24588.68	37.09	NA	NA

Tidied summary of m_2 coefficients

```
tidy(m_2, conf.int = TRUE, conf.level = 0.90) %>%
   kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	28.68	0.80	35.94	0.000	27.37	30.00
fruit_day	-0.55	0.21	-2.58	0.010	-0.90	-0.20
exerany	-2.05	0.55	-3.71	0.000	-2.95	-1.14
healthVG	0.55	0.70	0.79	0.430	-0.60	1.71
healthG	3.00	0.72	4.16	0.000	1.81	4.19
healthF	3.55	0.91	3.92	0.000	2.06	5.04
healthP	4.57	1.35	3.38	0.001	2.34	6.79

m_2 Residual Plots (non-constant variance?)

Who is that poorest fit case?

Plot suggests we look at row 28

```
train_w2im %>% slice(28) %>%
    select(ID, bmi, fruit_day, exerany, health) %>% kable()
```

ID	bmi	fruit_day	exerany	health
320	63	1	0	Р

What is unusual about this subject?

```
train_w2im %$% sort(bmi) %>% tail()
```

[1] 50.46 51.22 51.54 56.31 58.98 63.00

What if we included the interaction term?

Compare m_2int fit to previous models...

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.089	0.082	6.12	5	664	4335.9	4367.5
m_2	0.098	0.090	6.09	6	663	4331.2	4367.3
m_1int	0.126	0.114	6.01	9	660	4315.8	4365.4
m_2int	0.138	0.125	5.97	10	659	4309.1	4363.2

- m_1 = no fruit_day, no exerany*health interaction
- m_2 = fruit_day, but no interaction
- m_1int = no fruit_day, with interaction
- m_2int = both fruit_day and interaction

ANOVA for the m_2int model

```
tidy(anova(m_2int)) %>% kable(dig = c(0, 0, 2, 2, 2, 3))
```

df	sumsq	meansq	statistic	p.value
1	468.10	468.10	13.12	0
1	760.50	760.50	21.32	0
4	1441.63	360.41	10.10	0
4	1080.39	270.10	7.57	0
659	23508.29	35.67	NA	NA
	1 1 4 4	1 468.10 1 760.50 4 1441.63 4 1080.39	1 468.10 468.10 1 760.50 760.50 4 1441.63 360.41 4 1080.39 270.10	1 468.10 468.10 13.12 1 760.50 760.50 21.32 4 1441.63 360.41 10.10 4 1080.39 270.10 7.57

Tidied summary of m_2int coefficients

```
tidy(m_2int, conf.int = TRUE, conf.level = 0.90) %>%
    rename(se = std.error, t = statistic, p = p.value) %>%
    kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	se	t	р	conf.low	conf.high
(Intercept)	28.28	1.43	19.73	0.000	25.91	30.64
fruit_day	-0.61	0.21	-2.93	0.004	-0.96	-0.27
exerany	-1.43	1.54	-0.93	0.353	-3.97	1.11
healthVG	-0.66	1.63	-0.40	0.686	-3.34	2.02
healthG	2.75	1.61	1.71	0.088	0.10	5.41
healthF	7.59	1.77	4.29	0.000	4.67	10.50
healthP	9.12	2.54	3.59	0.000	4.93	13.30
exerany:healthVG	1.59	1.79	0.88	0.377	-1.37	4.54
exerany:healthG	0.41	1.79	0.23	0.819	-2.54	3.37
exerany:healthF	-6.41	2.06	-3.11	0.002	-9.81	-3.02
exerany:healthP	-6.55	2.99	-2.19	0.029	-11.48	-1.62

ANOVA comparison of m_2 and m_2int

```
anova(m 2, m 2int)
Analysis of Variance Table
Model 1: bmi ~ fruit_day + exerany + health
Model 2: bmi ~ fruit_day + exerany * health
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 663 24589
2 659 23508 4 1080.4 7.5716 5.751e-06 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual plots for model m_2int?

Which of the four models fits best?

In the **training** sample, we have...

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.089	0.082	6.12	5	664	4335.9	4367.5
m_2	0.098	0.090	6.09	6	663	4331.2	4367.3
m_1int	0.126	0.114	6.01	9	660	4315.8	4365.4
m_2int	0.138	0.125	5.97	10	659	4309.1	4363.2

- Adjusted R², σ, AIC and BIC all improve as we move down from m1 towards m2_int.
- BUT the testing sample cannot judge between models accurately. Our models have already seen that data.
- For fairer comparisons, we'll need to also consider the (held out) testing sample.

Next Time

- Feedback from the Minute Paper after Class 03, due tomorrow at Noon, please.
- Assessing the models we've fit so far in the testing sample
- Incorporating polynomial terms and splines into linear regression (ANCOVA) models