

Solvabilité Basée sur les Risques (SBR), Application de calcul des Provisions Prudentielles et du Capital de Solvabilité Requis en assurance vie et non-vie

Auteurs: DIAKITÉ Abdoul Oudouss et ETTADLAOUI Othmane

Encadrants:

Pr. AKDIM Khadija Pr. BELFADI I Rachid

M. KHIRAOUI Abdelkrim (ARM CONSULTANTS)

Filière : Ingénieur en Finance et Actuariat Faculté des Sciences et Techniques Université Cadi Ayyad

5 juillet 2023

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
 - Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

Introduction

Le risque est au centre de toutes les opérations d'assurance. Sa prévention nécessite une mobilisation de moyens techniques particuliers en fonction de sa gravité en cas de survenance. Par ailleurs, dans chaque pays, une autorité est chargée de la réglementation du secteur d'assurance afin d'harmoniser les méthodologies de quantification liées à la couverture de ces risques.

Introduction

l'Autorité de Contrôle des Assurances et de la Prévoyance Sociale (ACAPS) a publié une nouvelle réforme de la Solvabilité Basée sur les Risques (SBR) qui repose sur trois piliers :

- Pilier 1 : exigence quantitatives,
- Pilier 2 : exigence qualitatives,
- Pilier 3 : obligations de reporting.

Introduction

Figure – Les trois piliers de la SBR

- Introduction
- 2 Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

Contexte

La Solvabilité Basée sur les Risques (SBR) est une réforme en cours d'élaboration qui est inspirée de la directive européenne Solvabilité II.

Notre projet vient dans ce contexte pour :

- Anticiper l'élaboration d'un outil de calcul de Capital de Solvabilité Requis,
- Faciliter la transition vers la nouvelle norme SBR,
- Automatiser le processus de calcul des exigences quantitatives.

- Introduction
- Contextualisation
- 3 Pilier I : Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
 - Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

Exigences quantitaives : Bilan prudentiel

Bilan Prudentiel:

- Basé sur une valorisation économique.
- Évaluation en valeur de marché des actifs
- évaluation du Best Estimate des Provisions Techniques brutes et cédées et d'une marge de risque explicite

Dispostion du bilan

Bilan

*Provisions Techniques

Exigences quantitaives : Fonds propres

Fonds propres:

- Catégorie 1 : Capital social, Primes d'émission etc.
- Catégorie 2 : Capitaux appelés non versés, Réserve de réconciliation (si positive), etc.

Exigences quantitaives : Exigence de capital

Note

La seule exigence de capital de la norme SBR est le Capital de Solvabilité Requis (CSR). Une section entière est dédiée à cette dernière dans la suite de cette présentation.

- Introduction
- Contextualisation
- 3 Pilier I: Exigences quantitaives
- Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- 11 Conclusion et Perspectives

Étape 1 : Transformation des taux monétaires en taux actuariels

$$T_a = \left(1 + \frac{n}{365} * T_m\right)^{\frac{365}{n}} - 1,$$

- T_a: Le taux actuariel
- T_m : Le taux monétaire
- n : Le nombre de jours entre la date de valeur et la date d'échéance
- $\frac{365}{n}$: La maturité

Étape 2 : Interpolation linéaire

$$t_j = t_i + \frac{t_{i+1} - t_i}{n_{i+1} - n_i} \times (j - n_i)$$

- t_j : Taux actuariels de maturité pleine j compris entre les maturités n_i et $n_{(i+1)}$
- t_i: Taux actuariels de maturités n_i

Étape 3 : Calcul des taux zéro coupons

Nous avons comme hypothèse que le prix théorique d'une obligation correspond à la somme de ses flux futures actualisés aux taux zéro-coupon de l'échéance de chaque flux

$$R_n = \sqrt[n]{\frac{1 + t_n}{1 - t_n \times \sum_{i=1}^{n-1} \frac{1}{(1 + R_i)^i}}} - 1$$

- P : Prix d'émission du bon de trésor
- N : Valeur Nominale du bon de trésor

Onglet Courbe des taux zéro-coupon

Figure – Courbe des taux zéro-coupon à la date du 30-12-2022 par la méthode Boostrap

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- 5 Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
 - Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

Valorisation de l'actif

Actif	Valorisation
Actions cotées à la bourse	Dernier cours coté
Titres OPCVM et OPCI	Dernière valeur liquidative
Titres OPCC et FPCT	Dernière valeur connue
Titres de créances négociables , obligations et bons	Valeur de marché
Immobilisations corporelles	Valeur comptable
Autres créances	Valeur comptable
Immobilisations en non-valeur	Valeur nulle
Immobilisations incorporelles	Valeur nulle
Actifs immobiliers hors OPCI	Valeur de transaction (sinon valeur comptable)
Autres actifs	Valeur d'expert (sinon valeur comptable)

Modélisation du prix des actions (RNN)

Figure – Schéma du modèle RNN pour recurrent neural network en anglais

Modélisation du prix des actions (RNN)

Figure – Courbe du cours prédit par le modèle LSTM et du cours observé de l'indice MASI

- Introduction
- Contextualisation
- 3 Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- 11 Conclusion et Perspectives

Provisions non-vie hors rentes

Valorisation

$$PT = BE_{eng} + BEFG + MR$$

- PT : la provision technique.
- $BE_{eng} = BE_{sinistres} + BE_{primes}$: La meilleure estimation des engagements non-vie
- $BEFG = \sum_{t} \frac{FG}{(1+r_t)^t}$: La meilleure estimation des frais de gestion non-vie.

Meilleure estimation des engagements pour primes

Valorisation

$$BEP = \sum_{t \ge 1} \frac{\overline{FRFP_t}}{(1 + r_t)^t} - PFPA$$

- PFPA :Le montant des primes futures probabilisé et actualisé,
- PFP : Le montant des primes futures probabilisé.
- FRFP_t: La somme actualisée des flux de règlements futurs probabilisés nets.

Meilleure estimation des engagements pour sinistres

Valorisation

$$BES = \sum_{t \ge 1} \frac{FRFP_t}{(1 + r_t)^t}$$

 $FRFP_t$: les flux de règlements futurs probabilisés nets de recours relatifs aux sinistres survenus.

Méthode Chain Ladder

Figure – Forme d'un triangle de règlements cumulés

	Années de développement										
Survenance	0	1	2	3	4	5	6	7	8	9	10
2012	3 504,00	17 838,65	29 762,13	37 354,13	48 113,13	54 288,92	60 990,92	64 953,92	67 075,06	67 961,14	69 073,14
2013	4 774,24	14 225,85	24 891,85	38 451,85	45 605,98	54 219,98	57 611,98	61 752,56	62 906,74	64 306,33	
2014	3 821,92	12 489,92	28 284,92	39 782,63	46 485,63	51 429,63	53 462,05	54 797,99	55 771,01		
2015	4 074,00	19 021,00	35 729,00	50 865,00	58 417,00	62 138,27	63 510,56	64 673,57			
2016	5 070,00	19 512,00	41 560,00	51 917,00	59 168,44	66 278,59	69 647,56				
2017	3 817,00	17 940,00	27 339,00	33 666,67	37 893,96	41 649,41					
2018	7 838,00	23 756,00	34 489,85	42 665,27	51 181,77						
2019	7 690,00	29 440,55	43 027,97	56 870,69							
2020	8 935,00	27 985,56	42 675,50								
2021	4 979,97	21 154,81									
2022	5 818,64										

Étape 1 : Vérification des hypothèse

- Hypothèse Nº1 : Indépendence,
- Hypothèse Nº2 : Linéarité.

Etape 2 : Calcul des règlements cumulés futurs

	Années de développement										
Survenance	0	1	2	3	4	5	6	7	8	9	10
2012	3504	17839	29762	37354	48113	54289	60991	64954	67075	67961	69073
2013	4774	14226	24892	38452	45606	54220	57612	61753	62907	64306	65359
2014	3822	12490	28285	39783	46486	51430	53462	54798	55771	56752	57680
2015	4074	19021	$\nabla^n = \nabla^n$		58417	62138	63511	64674	66187	67351	68453
2016	5070	19512	Δį:	=0 C _{i,j}	59168	66279	69648	72782	74486	75796	77036
2017	3817	17940	27339	33667	37894	41649	44086	46070	47148	47977	48762
2018	7838	23756	34490	42665	51182 🔫	57123	60464	63185	64664	65801	66878
2019	7690	29441	43028	56871	66937	74707	79077	82636	84570	86057	87465
2020	8935	27986	42675	56599	66617	74350	78699	82241	84166	85646	87047
2021	4980	21155	35731	47389	55778	62252	65893	68859	70471	71710	72883
2022	5819	21710	36670	48634	57242	63887	67624	70667	72321	73593	74797

Etape 3 : Triangle des règlements décumulés

Etape 4 : Calcul des flux de règlements futurs

Meilleur estimation des engagements non-vie

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- Capital de Solvabilité Requis
- Conclusion et Perspectives

Provisions vie, décès ou capitalisation

Valorisation

$$PT = BE_{eng} + BEFG + MR,$$

- *PT* : la provision technique.
- ullet $BE_{eng} = BEGP + BDF$: La meilleure estimation des engagements vie.
- $BEFG = \sum_{t=1}^{N} \frac{FG_t}{(1+r_t)^t}$: La meilleure estimation des frais de gestion vie.

Meilleure estimation des garanties probabilisées

Valorisation

$$BEGP = \sum_{t=0}^{t=N} \frac{(Dec_t - Enc_t)}{(1+r_t)^t},$$

- Enct :Les encaissements à la date t.
- Dect : Les décaissements à la date t.

Bénéfices discrétionnaires futurs

Valorisation

$$BDF = PPB + \overline{TPB} \times (ST + SF) \times 1_{(ST + SF) > 0},$$

- PPB : la provision pour participation aux bénéfices.
- (ST + SF): Somme des soldes techniques et financière.
- *TPB* : Le taux de participation au bénéfice moyen.

Provisions vie: Tableau d'amortissement

Annee	CRP	Intérêts	Amortissement	Annuité
2017	2 625 000	105 000	88 152	193 152
2018	2 536 848	101 474	91 678	193 152
2019	2 445 170	97 807	95 345	193 152
2020	2 349 824	93 993	99 159	193 152
2021	2 250 665	90 027	103 125	193 152
2022	2 147 540	85 902	107 251	193,152
2023	2 040 289	81 612	111 541	193 152
2024	1 928 749	77 150	116 002	193 152
2025	1 812 747	72 510	120 642	193 152
2026	1 692 104	67.684	125 468	193 152
2027	1 566 637	62 665	130 487	193 152
2028	1 436 150	57 446	135 706	193 152
2029	1 300 444	52 018	141 134	193 152
2030	1 159 309	46 372	146 780	193 152
2031	1 012 530	40 501	152 651	193 152
2032	859 879	34 395	158 757	193 152
2033	701 122	28 045	165 107	193 152
2034	536 015	21 441	171 712	193 152
2035	364 303	14 572	178 580	193 152
2036	185 723	7 429	185 723	193 152
2037	0	0	0	0

Provisions vie : Projection du capital

 $\textit{VPC}_t = \textit{CRP}_t \times_{t-1} \textit{p}_x \times \textit{q}_{x+t}$

N	
$Dec_t = \sum VPC_t$	
1	

ID	Age	Année d'effét	Année expiration	Durue de contrat	Nbr année restant	Prime	Capital décés initial	2023	2024	2025	2026	2027	2028	2029	2030	
1400001	46	2017	2037	20	15	55 624	2 625 000	9 505	9 610	9 794	10 110	10 255	10 222	10 098	9 752	
1400002	43	2017	2042	25	20	94 684	1 785 000	5 644	5 886	6 012	6 127	6 253	6 442	6 734	6 934	
1400003	35	2014	2039	25	17	4 113	262 500	413	415	418	420	413	415	418	409	
1400004	46	2017	2037	20	15	55 624	2 625 000	9 505	9 610	9 794	10 110	10 255	10 222	10 098	9 752	
1400005	43	2017	2042	25	20	94 684	1 785 000	5 644	5 886	6 012	6 127	6 253	6 442	6 734	6 934	
1400006	35	2014	2039	25	17	4 113	262 500	413	415	418	420	413	415	418	409	
1400007	46	2017	2037	20	15	55 624	2 625 000	9 505	9 610	9 794	10 110	10 255	10 222	10 098	9 752	
1400008	43	2017	2042	25	20	94 684	1 785 000	5 644	5 886	6 012	6 127	6 253	6 442	6 734	6 934	
1400009	35	2014	2039	25	17	4 113	262 500	413	415	418	420	413	415	418	409	
1400010	46	2017	2037	20	15	55 624	2 625 000	9 505	9 610	9 794	10 110	10 255	10 222	10 098	9 752	
1400011	43	2017	2042	25	20	94 684	1 785 000	5 644	5 886	6 012	6 127	6 253	6 442	6 734	6 934	
1400012	35	2014	2039	25	17	4 113	262 500	413	415	418	420	413	415	418	409	
1400013	46	2017	2037	20	15	55 624	2 625 000	9 505	9 610	9 794	10 110	10 255	10 222	10 098	9 752	
1400014	43	2017	2042	25	20	94 684	1 785 000	5 644	5 886	6 012	6 127	6 253	6 442	6 734	6 934	
1400015	35	2014	2039	25	17	4 113	262 500	413	415	418	420	413	415	418	409	
1400016	46	2017	2037	20	15	55 624	2 625 000	9 505	9 610	9 794	10 110	10 255	10 222	10 098	9 752	
1400017	43	2017	2042	25	20	94 684	1 785 000	5 644	5 886	6 012	6 127	6 253	6 442	6 734	6 934	
1400018	35	2014	2039	25	17	4 113	262 500	413	415	418	420	413	415	418	409	
1400019	46	2017	2037	20	15	55 624	2 625 000	9 505	9 610	9 794	10 110	10 255	10 222	10 098	9 752	
1400020	43	2017	2042	25	20	94 684	1 785 000	5 644	5 886	6 012	6 127	6 253	6 442	6 734	6 934	
1400021	35	2014	2039	25	17	4 113	262 500	413	415	418	420	413	415	418	409	
1400022	46	2017	2037	20	15	55 624	2 625 000	9 505	9 610	9 794	10 110	10 255	10 222	10 098	9 752	
1400023	43	2017	2042	25	20	94 684	1 785 000	5 644	5 886	6 012	6 127	6 253	6 442	6 734	6 934	

Provisions vie : Projection du nombre de contrats

Provisions vie

Contents

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

Marge de risque

Valorisation

$$MR = \alpha \times \sum_{i \ge 0} \frac{CSR_i}{(1 + r_{i+1})^{i+1}}$$

- ullet α : le taux du coût du capital.
- $CSR_i = \frac{BE_{eng_i}}{BE_{eng_0}} \times CSR_0$

Contents

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

Part des cessionnaires dans les provisions prudentielles

Définition

La cession est une opération par laquelle un assureur transfère une partie de son risque à un réassureur en échange d'une partie de prime, pour réduire son exposition au risque.

$$PC = BEC - Adj$$

- PC: Part des cessionnaires.
- BEC : Meilleure estimation des engagements cédés.
- *Adj* : Ajustement pour défaut de contrepartie.

Meilleure estimation des engagements cédès

Opérations vie, décès ou capitalisation et rentes non-vie :

Valorisation

$$BEC = TC \times BE_{eng}$$

- BEC : Meilleure estimation des engagements cédès.
- TC : Taux de cession.
- BE_{eng} : Meilleure estimation des engagements vie.

Meilleure estimation des engagements cédès

Opérations non-vie hors rentes :

Valorisation

$$BEC = TCS \times BES + TCP \times BEP$$

- BEC : Meilleure estimation des engagements cédès.
- *TCS* : Taux de cession pour sinistres.
- TCP : Taux de cession pour primes.
- BES : Meilleure estimation des engagements pour sinistres.
- BEP: Meilleure estimation des engagements pour primes.

Ajustement pour défaut de contrepartie

Valorisation

$$Adj = \sum_{i>0} \frac{Adj_i}{(1+r_i)^i} \quad ,$$

avec:

$$Adj_i = \frac{1}{2} \times \max(BEC_i - DEV + SDR; 0) \times PD \times (1 - PD)^{i-1}$$

- *Adj* : Ajustement pour défaut de contrepartie.
- DEV : Dépôt en espèces et en valeurs.
- SDR : Solde de réassurance.
- PD : Probabilité de défaut de réassureur.

Part des cessionnaires

Contents

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
- Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

Capital de Solvabilité Requis

Définition

Le CSR correspond au capital dont une entreprise d'assurance ou de réassurance a besoin pour faire face à tous les risques qui pourraient survenir dans le futur et limiter la probabilité de ruine.

$$CSR = CSRB + CSRO + Adj_{As} + Adj_{ID}$$

- CSRB : Capital de solvabilité requis de base.
- CSRO : Exigence de capital relative au risque opérationnel.
- Adj_{As} : Ajustement visant à tenir compte des pertes par des assurés.
- Adj_{ID}: Ajustement visant à tenir compte des pertes par les impôts différés.

Capital de Solvabilité Requis

Capital de solvabilité requis

Démarches

- Application d'un choc sur chaque composante de chaque risque.
- Réestimation des différentes meilleures estimations après choc.
- Le CSR correspond à la perte en meilleur estimation pour chaque risque.

Capital de Solvabilité Requis

Les paramètres

CSR et Marge de risque

Contents

- Introduction
- Contextualisation
- Pilier I : Exigences quantitaives
- 4 Construction de la Courbe zéro-coupon
- Valorisation de l'actif
- 6 Provisions non-vie hors rentes

- Provisions vie, décès ou capitalisation
 - Marge de risque
- Part des cessionnaires dans les provisions prudentielles
- 10 Capital de Solvabilité Requis
- Conclusion et Perspectives

Conclusion et Perspectives

- Le secteur de l'assurance est très exposé aux risques. Dans ce contexte, l'ACAPS a adopté le projet SBR pour améliorer la réglementation prudentielle au Maroc.
- Application développée en R pour calculer le capital de solvabilité requis (SCR) selon la norme SBR.
- L'application formalise mathématiquement les directives de l'ACAPS et automatise le processus de calcul sans nécessiter de connaissance du langage R.

Conclusion et Perspectives

- L'application offre une interface visuelle moderne et intuitive, et prend en charge la construction des courbes des taux et les actualisations requises.
- L'application présente des limites comme la nécessité de manipulations préalables pour certains inputs, et des améliorations sont envisagées comme l'affichage des tableaux d'amortissement ou la possibilité de sauter des étapes.
- Le stage a permis de renforcer les connaissances en assurance et de se confronter à des problématiques réelles du marché grâce à l'encadrement du directeur du cabinet.

Merci pour votre attention