Vytěžování dat

Filip Železný

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA)

24. února 2010

Jednoduchá úloha klasifikace

Datová tabulka

Vysoké příjmy	Splácí úvěr
ano	ano
ano	ne
ne	ano
ano	ano
ne	ne
ne	ne
ne	ano
ano	ano
ano	ano
ano	ano
ne	ne

Jednoduchá úloha klasifikace

Datová tabulka

Vysoké příjmy	Splácí úvěr
ano	ano
ano	ne
ne	ano
ano	ano
ne	ne
ne	ne
ne	ano
ano	ano
ano	ano
ano	ano
ne	ne

Kontingenční tabulka

		Splác	í úvěr	
		ano	ne	\sum
vysoké	ano	5	1	6
příjmy	ne	2	3	5
	\sum	7	4	11

Nový žadatel o úvěr, má vysoké příjmy.

- Bude splácet úvěr?
- S jakou pravděpodobností?

Příznaková klasifikace

- vysoké příjmy: příznak
- Splácí úvěr: cílová veličina (třída)

Frekvence a pravděpodobnost

	S	$\neg S$	\sum
V	а	b	r
$\neg V$	С	d	5
\sum	k	1	n

- V (vys. příjmy), S (splácí úvěr): náhodné jevy
- $Pr(V) \approx r/n$, $Pr(S) \approx k/n$: marginální pravděpodobnosti
- $\Pr(V,S) \approx a/n$, $\Pr(V,\neg S) \approx b/n$, atd.: **sdružené** pravděpodobnosti
- $\Pr(V|S) \approx a/k$, $\Pr(V|\neg S) \approx b/I$, atd.: **podmíněné** pravděpod.
- Frekvence konvergují k pravděpodobnostem s roustoucím n. Např.

$$\lim_{n\to\infty} r/n = \Pr(V)$$

4 D > 4 D > 4 E > 4 E > E 900

- $0 \le Pr(\dots) \le 1$
- $Pr(\neg A) =$

- $0 \le \Pr(\dots) \le 1$
- $Pr(\neg A) = 1 Pr(A)$

•
$$Pr(A|B) =$$

- $0 \le \Pr(\dots) \le 1$
- $Pr(\neg A) = 1 Pr(A)$

•
$$Pr(A|B) = Pr(A,B)/Pr(B)$$

- $0 \le \Pr(\dots) \le 1$
- $Pr(\neg A) = 1 Pr(A)$

Zřejmé z geometrické představy

•
$$0 \le \Pr(\dots) \le 1$$

•
$$Pr(\neg A) = 1 - Pr(A)$$

•
$$Pr(A|B) = Pr(A,B)/Pr(B)$$

•
$$Pr(\neg A|\dots) = 1 - Pr(A|\dots)$$

•
$$Pr(A \text{ nebo } B) = Pr(A) + Pr(B) - Pr(A, B)$$

4 / 27

Nezávislost jevů

Pokud platí

$$Pr(A, B) = Pr(A) \cdot Pr(B)$$

neboli Pr(A|B) = Pr(A), tak jsou jevy A a B **nezávislé**.

Jsou splácení úvěru (S) a vysoké příjmy (V) nezávislé?

	S	$\neg S$	\sum
V	5	1	6
$\neg V$	2	3	5
\sum	7	4	11

Nezávislost jevů

Pokud platí

$$Pr(A, B) = Pr(A) \cdot Pr(B)$$

neboli Pr(A|B) = Pr(A), tak jsou jevy A a B **nezávislé**.

Jsou splácení úvěru (S) a vysoké příjmy (V) nezávislé?

	S	$\neg S$	\sum
V	5	1	6
$\neg V$	2	3	5
\sum	7	4	11

- $Pr(V, S) \approx 5/11 = 0.45...$
- $\Pr(V) \cdot \Pr(S) \approx 6/11 \cdot 7/11 = 0.34...$
- Z dat se zdá, že jsou závislé. Proč to nemůžeme říci s jistotou?

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

	S	$\neg S$	\sum
V	5	1	6
$\neg V$	2	3	5
\sum	7	4	11

- "Bude vysokopříjmový klient splácet úvěr?"
 - Jaký typ pravděpodobnosti odpovídá na tuto otázku?

	S	$\neg S$	\sum
V	5	1	6
$\neg V$	2	3	5
\sum	7	4	11

- "Bude vysokopříjmový klient splácet úvěr?"
 - Jaký typ pravděpodobnosti odpovídá na tuto otázku?
 - S pravděpodobností $\Pr(S|V) \approx 5/6$ bude splácet.
- "Bude klient, o kterém nic nevíme, splácet úvěr?"

	S	$\neg S$	\sum
\overline{V}	5	1	6
$\neg V$	2	3	5
\sum	7	4	11

- "Bude vysokopříjmový klient splácet úvěr?"
 - Jaký typ pravděpodobnosti odpovídá na tuto otázku?
 - ▶ S pravděpodobností $Pr(S|V) \approx 5/6$ bude splácet.
- "Bude klient, o kterém nic nevíme, splácet úvěr?"
 - Jaký typ pravděpodobnosti odpovídá na tuto otázku?

	S	$\neg S$	\sum
\overline{V}	5	1	6
$\neg V$	2	3	5
\sum	7	4	11

- "Bude vysokopříjmový klient splácet úvěr?"
 - Jaký typ pravděpodobnosti odpovídá na tuto otázku?
 - ▶ S pravděpodobností $Pr(S|V) \approx 5/6$ bude splácet.
- "Bude klient, o kterém nic nevíme, splácet úvěr?"
 - Jaký typ pravděpodobnosti odpovídá na tuto otázku?
 - ▶ S pravděpodobností $Pr(S) \approx 7/11$ bude splácet.
- Pr(S|V) > Pr(S) (nejsou nezávislé!)
 - ▶ Pr(S|V) též apriorní pravděpodobnost
 - Pr(S|V) též aposteriorní pravděpodobnost

Náhodná veličina

- Náhodný jev je binární pojem (nastane / nenastane)
- Pro modelování dat potřebujeme širší škály hodnot. Např.
 - ▶ příjmy: p ∈ {vysoké, střední, nízké}
 - ▶ splácení úvěru: $u \in \{\text{splácí}, \text{problémy}, \text{nesplácí}\}$

Příjmy (p)	Úvěr (u)
vysoké	splácí
nízké	nesplácí
střední	problémy
nízké	problémy

- p a u jsou (diskrétní) náhodné veličiny (n.v.)
- N.v. charakterizuje tzv. rozdělení pravděpodobnosti

◆ロ > ◆回 > ◆ 直 > ◆ 直 > り へ で

- Rozdělení n.v. v je funkce $P_v(x) = \Pr(v = x)$.
- K hodnotám rozdělení opět konvergují frekvence v kontingenční tabulce:

p↓ u→	splácí	problémy	nesplácí	\sum
vysoké	2	1	0	3
střední	2	2	2	6
nízké	0	1	1	2
\sum	4	4	3	11

- P_p , P_u : marginální rozdělení p (příjmy) resp. u (splácení úvěru)
 - ▶ např. $P_p(\text{střední}) \approx 6/11$, $P_u(\text{problémy}) \approx 4/11$
- $P_{p,u}$: **sdružené** rozdělení p a u
 - např. $P_{p,u}(\mathsf{středn}\mathsf{i},\mathsf{splác}\mathsf{i}) \approx$

- Rozdělení n.v. v je funkce $P_v(x) = \Pr(v = x)$.
- K hodnotám rozdělení opět konvergují frekvence v kontingenční tabulce:

p↓ u→	splácí	problémy	nesplácí	\sum
vysoké	2	1	0	3
střední	2	2	2	6
nízké	0	1	1	2
\sum	4	4	3	11

- P_p , P_u : marginální rozdělení p (příjmy) resp. u (splácení úvěru)
 - ▶ např. $P_p(\text{středn\'i}) \approx 6/11$, $P_u(\text{problémy}) \approx 4/11$
- $P_{p,u}$: **sdružené** rozdělení p a u
 - např. $P_{p,u}(\mathsf{středn}\mathsf{i},\mathsf{splác}\mathsf{i}) \approx 2/11$

- Rozdělení n.v. v je funkce $P_v(x) = \Pr(v = x)$.
- K hodnotám rozdělení opět konvergují frekvence v kontingenční tabulce:

p↓ u→	splácí	problémy	nesplácí	\sum
vysoké	2	1	0	3
střední	2	2	2	6
nízké	0	1	1	2
\sum	4	4	3	11

- P_p , P_u : marginální rozdělení p (příjmy) resp. u (splácení úvěru)
 - ▶ např. $P_p(\text{střední}) \approx 6/11$, $P_u(\text{problémy}) \approx 4/11$
- $P_{p,u}$: **sdružené** rozdělení p a u
 - např. $P_{p,u}(\text{střední}, \text{splácí}) \approx 2/11$
- $P_{p,u}$: **podmíněné** rozdělení p a u
 - ▶ např. $P_{p|u}(\text{střední}|\text{splácí}) \approx$

- Rozdělení n.v. v je funkce $P_v(x) = \Pr(v = x)$.
- K hodnotám rozdělení opět konvergují frekvence v kontingenční tabulce:

p↓ u→	splácí	problémy	nesplácí	\sum
vysoké	2	1	0	3
střední	2	2	2	6
nízké	0	1	1	2
\sum	4	4	3	11

- P_p , P_u : marginální rozdělení p (příjmy) resp. u (splácení úvěru)
 - ▶ např. $P_p(\text{střední}) \approx 6/11$, $P_u(\text{problémy}) \approx 4/11$
- $P_{p,u}$: **sdružené** rozdělení p a u
 - např. $P_{p,u}(\mathsf{středn}\mathsf{i},\mathsf{splaci}) \approx 2/11$
- $P_{p,u}$: **podmíněné** rozdělení p a u
 - ▶ např. $P_{p|u}(\text{střední}|\text{splácí}) \approx 2/4$

- Rozdělení n.v. v je funkce $P_v(x) = \Pr(v = x)$.
- K hodnotám rozdělení opět konvergují frekvence v kontingenční tabulce:

p↓ u→	splácí	problémy	nesplácí	\sum
vysoké	2	1	0	3
střední	2	2	2	6
nízké	0	1	1	2
\sum	4	4	3	11

- P_p , P_u : marginální rozdělení p (příjmy) resp. u (splácení úvěru)
 - ▶ např. $P_p(\text{střední}) \approx 6/11$, $P_u(\text{problémy}) \approx 4/11$
- $P_{p,u}$: **sdružené** rozdělení p a u
 - např. $P_{p,u}(\mathsf{středn}\mathsf{i},\mathsf{splaci}) \approx 2/11$
- $P_{p,u}$: **podmíněné** rozdělení p a u
 - ▶ např. $P_{p|u}(\text{střední}|\text{splácí}) \approx 2/4$

Histogramy

p↓ u→	splácí	problémy	nesplácí	\sum
vysoké	2	1	0	3
střední	2	2	2	6
nízké	0	1	1	2
\sum	4	4	3	11

Histogramy

p↓ u→	splácí	problémy	nesplácí	\sum
vysoké	2	1	0 0	3
střední	2	2	2	6
nízké	0	1	1	2
$\overline{\sum}$	4	4	3	11

 $P_{u|p}(x|vysoké)$

 $P_{p|u}(x|\text{nesplácí})$

Součty rozdělení

Vždy platí

$$\sum_{x} P_{\nu}(x) = 1$$

Sčítáme přes všechny hodnoty x, kterých může n.v. v nabývat.

Např. $P_u(\operatorname{splác}i) + P_u(\operatorname{problémy}) + P_u(\operatorname{nesplác}i) = 4/11 + 4/11 + 3/11 = 1$

Filip Železný (ČVUT)

Součty rozdělení

Vždy platí

$$\sum_{x} P_{\nu}(x) = 1$$

Sčítáme přes všechny hodnoty x, kterých může n.v. v nabývat.

Např. $P_u(\operatorname{spláci}) + P_u(\operatorname{problémy}) + P_u(\operatorname{nespláci}) = 4/11 + 4/11 + 3/11 = 1$

Analogicky pro podmíněné rozdělení

$$\sum_{x} P_{v|w}(x|y) = 1$$

Pro jakoukoliv hodnotu y n.v. w.

Např. $P_{u|v}(\text{splácí}|\text{nízké}) + P_{u|v}(\text{problémy}|\text{nízké}) + P_{u|v}(\text{nesplácí}|\text{nízké}) = 0/2 + 1/2 + 1/2 = 1$

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (C)

11 / 27

Filip Železný (ČVUT) Vytěžování dat 24. února 2010

Klasifikace dle aposteriorní pravděpodobnosti

- Klient má vysoké příjmy. Jak bude splácet úvěr?
- Tedy z p = vysoké urči nejpravděpodobnější hodnotu <math>u (třídu).
- Hledáme y* vyhovující

$$y^* = \arg\max_{y} P_{u|p}(y|\text{vysok\'e})$$

• Řešení je $y^* = \text{splác}$ í

$$P_{u|p}(y^*|\text{vysok\'e}) \approx 2/3$$

- S pravděpodobností $1 P_{u|p}(y^*|\text{vysok\'e})$ klasifikujeme chybně.
- Klasifikací $y^* = \text{splácí tedy minimalizujeme chybu.}$
- 'Kritérium minimální chyby' (UI6)

Ztrátová funkce

- Každá chyba klasifikace je jinak drahá.
- Např. příliš optimististické hodnocení klienta stojí víc než příliš skeptické.
- Klasifikace dle aposteriorní pravděpodobnosti toto nerespektuje.
- **Ztrátová funkce** L(u, y) zachycuje ztrátu pro každou kombinaci
 - u skutečná třída
 - y třída, do které klasifikujeme
- Pro náš příklad L(u, y) např.:

$u\downarrow y \rightarrow$	splácí	problémy	nesplácí
splácí	0	1	2
problémy	5	0	1
nesplácí	10	5	0

Střední hodnota

Definujeme **střední hodnotu** číselné n.v. v

$$\sum_{x} x \cdot P_{v}(x)$$

Sčítáme přes všechny hodnoty x, kterých může n.v. v nabývat.

Střední hodnota

Definujeme **střední hodnotu** číselné n.v. *v*

$$\sum_{x} x \cdot P_{\nu}(x)$$

Sčítáme přes všechny hodnoty x, kterých může n.v. v nabývat.

Analogicky střední hodnotu podmíněnou w = y

$$\sum_{x} x \cdot P_{v|w}(x|y)$$

Pro jakoukoliv hodnotu y n.v. w

Filip Železný (ČVUT)

Riziko

• Ztráta L(u, y) je n.v., protože její argumenty jsou n.v.

Riziko klasifikace do y za podmínky p = x

$$r_{u|p}(y,x) = \sum_{t} L(t,y) P_{u|p}(t|x)$$

Riziko je tedy střední hodnota ztráty podmíněná p = x.

Filip Železný (ČVUT)

Jak klasifikovat vysokopříjmového klienta?

 $P_{u|p}$

$p{\downarrow}\ u{\rightarrow}$	splácí	problémy	nesplácí
vysoké	2/3	1/3	0/3
střední	2/6	2/6	2/6
nízké	0/2	1/2	1/2

L

u↓ y→	splácí	problémy	nesplácí
splácí	0	1	2
problémy	5	0	1
nesplácí	10	5	0

• Klasifikace y = splácí

skut. třída	ztráta	s pravděp.
splácí	0	2/3
problémy	5	1/3
nesplácí	10	0

• Riziko při této klasifikaci:

$$0 \cdot 2/3 + 5 \cdot 1/3 + 10 \cdot 0 = 5/3$$

Jak klasifikovat vysokopříjmového klienta?

 $P_{u|p}$

$p{\downarrow}\ u{\rightarrow}$	splácí	problémy	nesplácí
vysoké	2/3	1/3	0/3
střední	2/6	2/6	2/6
nízké	0/2	1/2	1/2

$u\downarrow y \rightarrow$	splácí	problémy
splácí	0	1
problémy	5	0

• Klasifikace do y = problémy

skut. třída	ztráta	s pravděp.
splácí	1	2/3
problémy	0	1/3
nesplácí	5	0

Riziko při této klasifikaci:

$$1 \cdot 2/3 + 0 \cdot 1/3 + 5 \cdot 0 = 2/3$$

nesplácí

Jak klasifikovat vysokopříjmového klienta?

 $P_{u|p}$

$p{\downarrow}\ u{\rightarrow}$	splácí	problémy	nesplácí
vysoké	2/3	1/3	0/3
střední	2/6	2/6	2/6
nízké	0/2	1/2	1/2

L

느			
$u \downarrow y \rightarrow$	splácí	problémy	nesplácí
splácí	0	2	2
problémy	5	1	1
nesplácí	10	0	0

• Klasifikace y = nesplácí

skut. třída	ztráta	s pravděp.
splácí	2	2/3
problémy	1	1/3
nesplácí	0	0

• Riziko při této klasifikaci:

$$2 \cdot 2/3 + 1 \cdot 1/3 + 0 \cdot 0 = 4/3$$

Klasifikujeme do

$$y^* = \arg\min_{y} r_{u|p}(y, \text{vysok\'e}) = \text{probl\'emy}$$

Klasifikujeme do

$$y^* = \arg\min_{y} r_{u|p}(y, \text{vysok\'e}) = \text{probl\'emy}$$

• Pozor, jiný výsledek než dle aposteriorní pravděpodobnosti

$$y^* = \arg\max_{y} P_{u|p}(y|\text{vysok\'e}) = \text{spl\'ac\'e}$$

• Při jaké ztrátové funkci L(u, y) by výsledky vyšly stejně?

(4日) (個) (注) (注) (注) (200)

Klasifikujeme do

$$y^* = \arg\min_{y} r_{u|p}(y, \text{vysok\'e}) = \text{probl\'emy}$$

• Pozor, jiný výsledek než dle aposteriorní pravděpodobnosti

$$y^* = \arg\max_{y} P_{u|p}(y|vysoké) = splácí$$

• Při jaké ztrátové funkci L(u, y) by výsledky vyšly stejně?

u↓ y→	splácí	problémy	nesplácí
splácí	0	1	1
problémy	1	0	1
nesplácí	1	1	0

• Tzv. L_{01} ztrátová funkce. Je-li použita, je $r_{u|p}(y,x)$ pravděpodobnost chybné klasifikace instance s příznakem x.

Klasifikace s několika příznaky

- Zatím jsme klasifikovali pouze dle jediného příznaku (p výše příjmů)
- O klientech toho víme obvykle více.

Příjmy (p)	Rok narození (n)	Úvěr (u)
vysoké	1969	splácí
nízké	1974	nesplácí
střední	1940	problémy
nízké	1985	problémy

- Třírozměrná kontingenční tabulka
 - p vs. n vs. u

Klasifikace s několika příznaky

- Na principech klasifikace se nic nemění. Např. jak klasifikovat nízkopříjmového klienta narozeného v r. 1985?
 - Maximalizací aposteriorní pravděpodobnosti

$$y^* = \arg\max_{y} P_{u|p,n}(y|\text{nízké}, 1974)$$

Minimalizací rizika

$$y^* = \arg\min_{y} r_{u|p,n}(y, \text{nízké}, 1974)$$

Z kontingenční tabulky

$$P_{u|p,n}(y|\text{nízké}, 1974) \approx \frac{\text{počet klientů s } u=y, p=\text{nízké}, n=1974}{\text{počet klientů s } p=\text{nízké}, n=1974}$$

- **◆ロト ◆御 ▶ ◆** き ▶ ◆ き → りへで

Prokletí rozměrnosti

$$P_{u|p,n}(y|\text{nízké}, 1974) \approx \frac{\text{počet klientů s } u=y, p=\text{nízké}, n=1974}{\text{počet klientů s } p=\text{nízké}, n=1974}$$

- Čím více příznaků, tím větší nebezpečí výsledku "0/0"!
- Kolik dat potřebujeme, aby odhady dobře konvergovaly k pravděpodobnostem?
- Kontingenční tabulka musí být 'dostatečně zaplněna'.
- V předchozím příkladě

p↓ u→	splácí	problémy	nesplácí	\sum
vysoké	2	1	0	3
střední	2	2	2	6
nízké	0	1	1	2
\sum	4	4	3	11

v průměru 11/9 případů na kolonku tabulky.

Prokletí rozměrnosti

- Předpokládejme, že 11/9 je dostatečný poměr. Kolik případů (m) potřebujeme pro jeho zachování se dvěma příznaky p a n?
- Přepodkládejme 100 možných roků narození. Kontingenční tabulka má 100 · 3 · 3 = 900 kolonek.

$$\frac{m}{900} = \frac{11}{9}$$

tedy nyní již potřebujeme $11 \cdot 900/9 = 1100$ dat.

- Po přidání dalšího příznaku, např. roku ukončení studia už potřebujeme $11 \cdot 90000/9 = 110000$ dat!
- Obecně pro odhady z kontingenční tabulky (tzv. neparametrické odhady) roste potřebný počet dat exponenciálně s počtem příznaků.
 - "Prokletí rozměrnosti"

 Situace se zjednoduší, jsou-li výše příjmů a rok narození podmíněně nezávislé, tj. platí

$$P_{p,n|u}(x,x'|y) = P_{p|u}(x|y) \cdot P_{n|u}(x'|y)$$

pro každou z hodnot $y \in \{\text{splácí}, \text{problémy}, \text{nesplácí}\}$

Využijeme tzv. Bayesova pravidla

$$P_{u|p,n}(y|x,x') = \frac{P_{p,n|u}(x,x'|y)P_u(y)}{P_{p,n}(x,x')}$$

 Z Bayesova pravidla platí pro klasifikaci maximalizací aposteriorní pravděpodobnosti

$$\arg\max_{y} P_{u|p,n}(y|x,x') = \arg\max_{y} P_{p,n|u}(x,x'|y)P_u(y)$$

Podobně pro klasifikaci minimalizací rizika

$$\arg\min_{y} \sum_{t} L(t,y) P_{u|p,n}(t|x,x')$$

$$= \arg\min_{y} \sum_{t} L(t, y) P_{p, n|u}(x, x'|y) P_{u}(y)$$

• Proč 'zmizelo' $P_{p,n}(x,x')$?

Filip Železný (ČVUT)

 Z Bayesova pravidla platí pro klasifikaci maximalizací aposteriorní pravděpodobnosti

$$\arg\max_{y} P_{u|p,n}(y|x,x') = \arg\max_{y} P_{p,n|u}(x,x'|y) P_u(y)$$

Podobně pro klasifikaci minimalizací rizika

$$\arg\min_{y} \sum_{t} L(t,y) P_{u|p,n}(t|x,x')$$

$$= \arg\min_{y} \sum_{t} L(t, y) P_{p, n|u}(x, x'|y) P_{u}(y)$$

- Proč 'zmizelo' $P_{p,n}(x,x')$? Nezávisí na y!
- K oběma typům klasifikace tedy potřebujeme odhady dvou rozdělení: $P_{p,n|u}$ a P_u .

(4日) (個) (量) (量) (量) (9Qで)

- K oběma typům klasifikace tedy potřebujeme odhady dvou rozdělení: $P_{p,n|u}$ a P_u .
- ullet P_u odhadneme z jednorozměrné kontingenční tabulky
- $P_{p|u}$ odhadneme z dvourozměrné tabulky 3×3
- $P_{n|u}$ odhadneme z dvourozměrné tabulky 100×3 .
 - Nejnáročnější na počet dat, pro zachování poměru 11/9 vyžaduje cca 367 (<< 1100).</p>
- Obecně: při podmíněně nezávislých příznacích neroste potřebný počet dat exponenciálně s počtem příznaků.
 - Je určen příznakem s největším oborem hodnot.
- Příznaky obvykle nejsou podmíněně nezávislé!
 - Je-li přesto použita tato metoda, mluvíme o naivní Bayesovské klasifikaci.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・釣なべ

Literatura k této přednášce

- Pokrývá: kontingenční tabulky
- Navíc: χ^2 test nezávislosti

- Pokrývá: klasifikaci dle aposteriorní pravděpodobnosti a dle etalonů
- Navíc: pojem diskriminační funkce
- Nepokryto: klasifikace minimalizací ztráty, podmíněná nezávislost příznaků
- Je třeba pochopit tyto slidy, tedy chodit na přednášky.

27 / 27