THE PRIMER, EXAMPLE CHAPTER: APPLING AN INTEGRAL

Jordan Hanson October 18, 2017

Whittier College Department of Physics and Astronomy

CONTENTS

OPENING

- 1. Symbolic Content: Depict idea through visual design
- 2. Confronting the Puzzle Sum up a signal over time
 - · Classification: A problem involving an integral
 - · Abstraction: Trade the objects for symbols and act on them
 - Hypothetical: Changing properties of symbols
- 3. Create an algorithm one path
 - · Riemann sums and pseudo-code
 - Testing
- 4. Design a circuit another path
 - Translate symbols
 - · Build and Test
- 5. Study the mechanics result

CONFRONTING THE PUZZLE

We encounter a signal. A bug walks across a magic pad (a sensor). The pad gives only the current velocity of the bug. We'd like to know how far the bug has traveled...

Symbolic content: Visual scene \rightarrow *Classification*

Symbolic content: Animate bug in scene \rightarrow *Classification*

Define average velocity and displacement:

$$\vec{x} = \vec{x}_{\rm f} - \vec{x}_{\rm i} \tag{1}$$

$$\vec{\overline{V}} = \frac{\Delta \vec{x}}{\Delta t} \tag{2}$$

CONFRONTING THE PUZZLE

Symbolic content: Observe that shrinking the time-window Δt makes \vec{v} more like the slope of $\vec{x}(t)$, or the instantaneous velocity.

Taking the limit:

$$\lim_{\Delta t \to 0} \vec{\vec{v}} = \vec{v}(t) = \frac{d\vec{x}}{dt}$$
 (3)

$$\lim_{\Delta t \to 0} \vec{v} = \vec{v}(t) = \frac{d\vec{x}}{dt}$$

$$\int_{0}^{x_0} \frac{dx}{dt} dt = x_0$$
(4)

Symbolic content: Represent Eq. 4 visually → *Abstraction*

ONE PATH - DEVELOP AN ALGORITHM

DEVELOP AN ALGORITHM

Symbolic content:

Breaking an integral into a: a Riemann sum \rightarrow Abstraction

$$x_0 = \sum_{n=0}^{N-1} f_n(\Delta x)_n \tag{5}$$

DEVELOP AN ALGORITHM

```
define x_0(t_data,v_data):
    delta_t = t_data[2]-t_data[1]
    x_0 = 0
    for i in v_data:
        x_0 += i*delta_t
    return x_0
```

Study outputs given different data \rightarrow *hypothetical*

ANOTHER PATH - DESIGN A CIRCUIT

DESIGN A CIRCUIT

Taking the limit:

$$\int_0^{x_0} \frac{dx}{dt} dt = x_0 \tag{6}$$

Symbolic content: Represent Eq. 4 visually \rightarrow *Classification*

Show in steps that this circuit obeys → Abstraction

$$v_{\text{out}}(t) = \frac{1}{RC} \int_{t_1}^{t_2} v_{\text{in}}(t) dt$$
 (7)

- See $v_{\mathrm{out}}(t)$ is like x_0 , and $v_{\mathrm{in}}(t)$ is like $\vec{v}(t) \to Classification$
- Build the circuit (hypothetically in the book) \rightarrow Abstraction
- Test the circuit for different outputs \rightarrow Hypothetical

Symbolic content: Show circuit and graph inputs and outputs

STUDY THE MECHANICS RESULT

Using both or either paths (Scalar), solve the problem of x_0 using the content \rightarrow Hypothetical

- Solution for the case of no motion
- · Solution for the case of constant velocity
- · Solution for the case of constant acceleration

Symbolic content: Show these solutions graphically

→ Abstraction (Symbolic content): Deduce equations for displacement, given each situation

STUDY THE MECHANICS RESULT

Arrive at the answers:

$$x_0 = x_i \tag{8}$$

$$x_0 = vt + x_i \tag{9}$$

$$x_0 = \frac{1}{2}at^2 + vt + x_i \tag{10}$$

CONCLUSION

CONCLUSION

- 1. Confronting the Puzzle Sum up a signal over time
- 2. Create an algorithm one path
- 3. Design a circuit another path
- 4. Study the mechanics result