Complex Analysis: Exam 1B

Kevin Roebuck

September 27, 2018

- 1. (20) Miscellaneous computations. Show all necessary steps.
 - (a) Compute all values of $(1-i)^{\frac{4}{3}} = ((1-i)^4)^{\frac{1}{3}}$.

Begin by writing z = 1 - i in polar form. The modulus is $|z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$. Then, by using the relationships

$$\cos \theta = \frac{\operatorname{Re}(z)}{|z|}$$
 and $\sin \theta = \frac{\operatorname{Im}(z)}{|z|}$,

we see that $\cos\theta=1/\sqrt{2}$ and $\sin\theta=-1/\sqrt{2}$. From this set of equations we conclude that ${\rm Arg}(z)=-\pi/4$. Therefore $z=\sqrt{2}e^{-i\pi/4}$. Raising z to the fourth power gives $z^4=4e^{-i\pi}$. Now all that's left to do is find the cube roots of z^4 , which will require the use of

$$z^{1/m} = |z|^{1/m} e^{i(\theta + 2k\pi)/m}$$
 $(k = 0, 1, 2, ..., m - 1).$

In our case m=3 so that the above equation takes the form

$$(z^4)^{1/3} = |z^4|^{1/3} e^{i(-\pi + 2k\pi)/3} = 4^{1/3} e^{i\pi(2k-1)/3}$$
 $(k = 0, 1, 2).$

By plugging in the possible values of k, we get

k	$z^{4/3}$
0	$4^{1/3}e^{-i\pi/3}$
1	$4^{1/3}e^{i\pi/3}$
2	$4^{1/3}e^{i\pi}$

- (b) Compute $\int_0^{2\pi} \cos^5(x) dx$ using methods introduced in our class.
- (c) Find the partial fraction decomposition of $\frac{z^2+z+1}{(z-i)^2(z+2)}$. (You do not need to simplify the constants that you solve for.)
- (d) Describe the set of points |z| = 2|z i|.
- 2. (5) Use the idea of local linear approximation to describe what happens to a small disc centered at $z_0 = 3 + 4i$ when it is substituted into f(z) = 1/z. Describe what happens in the language of translations, rotations, expansions, and/or contractions. Draw an appropriate diagram.
- 3. (10) Describe the projection on the Riemann Sphere of the set $\{z=x+iy:x\geq\sqrt{3}\}$. I encourage you to include a nice diagram.
- 4. (15) Choose one of the following explorations.
 - (b) An exploration of admissibility. Recall that if z = x + iy, then $x = \frac{1}{2}(z + \bar{z})$ and $y = \frac{1}{2i}(z \bar{z})$.
 - i. (4) Substitute for x and y in $f(x,y) = x^2y^2 + i2xy$ and verify that f reduces to a function of z only, i.e. that there are no z terms remaining after simplification. Also use the Cauchy Riemann Equations to verify that f is analytic.
 - ii. (4) Substitute for x and y in $g(x,y) = x^2y^2 + i3xy$ and verify that f does not reduce to a function of z only, i.e. that there are still z terms remaining after simplification. Also use the Cauchy Riemann Equations to verify that g is not analytic.
 - iii. (7) Admissibility essentially boils down to the idea that f(x,y) = u(x,y) + iv(x,y) does not depend on z. A more precise way to say this is that $\frac{\partial f}{\partial \bar{z}} = 0$. Use the multivariable chain rule,

$$\frac{\partial f}{\partial \bar{z}} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \bar{z}} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{z}},$$

to show that $\frac{\partial f}{\partial \bar{z}} = 0$ if the Cauchy Riemann Equations are satisfied. This indicates that f does not depend on z if f is analytic.