

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07D 487/04, 471/04, 251/46, 209/48,
207/16, A01N 43/90, 43/64, 47/38 //
(C07D 487/04, 235:00, 209:00) (C07D
471/04, 235:00, 221:00) (C07D 471/04,
249:00, 221:00) (C07D 487/04, 239:00,
209:00)

(11) International Publication Number:

WO 97/15576

(43) International Publication Date:

1 May 1997 (01.05.97)

(21) International Application Number:

PCT/US96/16111

US

US

A1

(22) International Filing Date:

8 October 1996 (08.10.96)

(30) Priority Data:

60/007,031 25 October 1995 (25.10.95) 60/012,329 27 February 1996 (27.02.96)

(60) Parent Applications or Grants

(63) Related by Continuation

Filed on 25 October 1995 (25.10.95)
US 60/012,329 (CIP)
Filed on 27 February 1996 (27.02.96)

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ADAMS, Edward, John [US/US]; 104 Liberty Lane, Elkton, MD 21921 (US). DRAUZ, Karlheinz [DE/DE]; Zur Marienruhe 13, D-63579 Freigerich (DE). HONG, Wonpyo [KR/US]; 12 Salthill Court, Timonium, MD 21093 (US). KAMIREDDY, Balreddy [IN/US]; 204 Golding Court, Hockessin, DE 19707 (US). PETERSEN, Wallace, Christian [US/US]; 413 Topsfield Road, Hockessin, DE 19707 (US). SCHAFER, Matthias [DE/DE]; Karl-Heeg-Strasse 15B, D-63773 Goldbach (DE). WECKBECKER, Christoph [DE/DE]; Grunaustrasse 6, D-63457 Hanau (DE).

(74) Agent: BLACK, Robert, W.; E.I. du Pont de Nemours and Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HERBICIDAL SULFONAMIDES

(57) Abstract

Compounds of formula (I), and their N-oxides and agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetation. In said formula (I) J is J-1 - J-19, R² is C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ haloalkoxy, C₂-C₆ haloalkoxy, C₃-C₆ haloalkoxyalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkynyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ cycloalkyl, (CH₂)_p-OR⁶, CH-CH(CH₂)_q-OR⁶, C=C(CH₂)_q-OR⁶, C₂-C₆ alkylthioalkyl, C₁-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₃-C₈ alkoxycarbonylalkyl, C₃-C₈ alkylcarbonyloxyalkyl or oxiranyl optionally substituted with 1-3 C₁-C₃ alkyl; also disclosed are compositions containing the compounds of formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of formula (I).

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM AT AU BB BE BF BG BY CA CF CCH CI CM CN CS CZ DE DK EE ES FT FR GA	Armenia Austria Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Demark Estonia Spain Finland Prance Gabon	GB GE GN GR HU IE IT JP KE KG KP KR LI LK LR LU LV MC MD MG MM MR	United Kingdom Georgia Guinea Greece Hungary Ireland Italy Japan Kenya Kyrgystan Democratic People's Republic of Korea Republic of Korea Kazakhstan Liechtenstein Sri Lanka Liberia Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar Mali Mongolia Mauritania	MW MX NE NL NO NZ PL PT RO RU SD SE SG SI SK SN SZ TD TG TJ TT UA UG US UZ VN	Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam
---	--	--	--	---	---

15

25

30

1

TITLE HERBICIDAL SULFONAMIDES BACKGROUND OF THE INVENTION

This invention relates to certain sulfonamides, their N-oxides, agriculturally suitable salts and compositions, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

U.S. 4,818,275 discloses herbicidal acyclic sulfonamides of the formula

20 wherein, inter alia

X and Y are Br, Cl or F;

R is alkyl, haloalkyl or dialkylamino;

R1 is H. Na, lower alkyl or SO₂R;

R² is alkyl, haloalkyl or lower alkoxy; and

R³ is halogen, alkyl or haloalkyl.

The sulfonamides of the present invention are not disclosed therein.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I including all geometric and stereoisomers, N-oxides, and agriculturally suitable salts thereof, agricultural compositions containing them and their use for controlling undesirable vegetation:

I

wherein

5

10

15

25

X is H, F or Cl;

Y is F, Cl, Br, cyano, nitro, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy or $C(S)NH_2$;

R¹ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, formyl, C₂-C₂₀ alkylcarbonyl, C₄-C₇ cycloalkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₃-C₆ alkoxyalkylcarbonyl, C₂-C₆ haloalkoxycarbonyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₄-C₇ cycloalkylalkyl, C₄-C₇ halocycloalkylalkyl, S(O)₂R², C(O)SR³, C(O)NR⁴R⁵ or benzoyl;

R² is C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ haloalkyl, C₃-C₆ cylcloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkoxyalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ cyanoalkyl, C₁-C₆ nitroalkyl, (CH₂)_p-OR⁶, CH=CH(CH₂)_q-OR⁶, C=C(CH₂)_q-OR⁶, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₃-C₈ alkoxycarbonylalkyl, C₃-C₈ alkylcarbonyloxyalkyl or oxiranyl optionally substituted with 1-3 C₁-C₃ alkyl;

20 R³ is H, C₁-C₃ alkyl or C₁-C₃ haloalkyl; or R³ is phenyl optionally substituted with C₁-C₃ alkyl, 1-3 halogen, 4-5 fluorine, 1-2 nitro, C₁-C₃ alkoxy or CF₃;

R⁴ is H, C₁-C₃ alkyl or C₁-C₃ haloalkyl; or R⁴ is phenyl optionally substituted with C₁-C₃ alkyl, 1-3 halogen, 4-5 fluorine, 1-2 nitro, C₁-C₃ alkoxy or CF₃; R⁵ is C₁-C₃ alkyl or C₁-C₃ haloalkyl; or

R⁴ and R⁵ are taken together as -CH-CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂CH₂- or -CH₂CH₂OCH₂CH₂-;

- R⁶ is C₁-C₃ alkylsulfonyl, C₁-C₃ haloalkylsulfonyl or P(=O)(OR⁷)(OR⁸); or R⁶ is phenylsulfonyl optionally substituted with C₁-C₆ alkyl, 1-3 halogen, 4-5 fluorine, C₁-C₆ alkoxy, CF₃ or C₂-C₄ alkylcarbonyl;
- R⁷ and R⁸ are each independently H, C_1 - C_3 alkyl or C_1 - C_3 haloalkyl;

J-2

J-3

J-16

J-17

J-18

wherein the dashed line in J-1, J-5, J-6, J-18, and J-19 indicates that the left-hand ring contains only single bonds or one bond in the ring is a carbon-carbon double bond;

m and n are each independently 0, 1, 2 or 3, provided that m + n is 2 or 3;

Z is CR^9R^{10} , O, S, S(O), S(O)₂, N(C₁-C₄ alkyl) or $\stackrel{\bigoplus}{N}$ (C₁-C₄ alkyl) :

$$Z^1$$
 is CR^9R^{23} , O, S, S(O), S(O)₂, N(C₁-C₄ alkyl) or N :

each R⁹ is independently H, C₁-C₆ alkyl, halogen, hydroxy, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₂-C₆ alkylcarbonyloxy or C₂-C₆ haloalkylcarbonyloxy;

each R¹⁰ is independently H, C₁-C₆ alkyl, hydroxy or halogen; or when R⁹ and R¹⁰ are bonded to adjacent carbon atoms they can be taken together with the carbons to which they are attached to form

-HC-CH- optionally substituted with at least one member selected from 1-2 halogen and 1-2 C₁-C₃ alkyl;

each R^{11} is independently H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkoxyalkyl;

 R^{12} is H, halogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkoxyalkyl;

10

15

20

5

10

30

R¹³ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, HC(=O), C₂-C₅ alkylcarbonyl or N(R¹¹)₂;

 R^{14} is C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl or $N(CH_3)_2$;

W is N or CR15;

 R^{15} is H, C_1 - C_6 alkyl or halogen; or R^{15} is phenyl optionally substituted with C_1 - C_6 alkyl, 1-3 halogen, 4-5 fluorine, C_1 - C_6 alkoxy or CF_3 ;

R¹⁶ is C₁-C₆ alkyl, halogen or C₁-C₆ haloalkyl;

R¹⁷ and R¹⁸ are each independently H, C₁-C₆ alkyl or C₁-C₆ haloalkyl;

 R^{19} and R^{20} are each independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl,

C₃-C₆ haloalkenyl, C₃-C₆ alkynyl or C₃-C₆ haloalkynyl;

R²¹ is H, halogen, cyano, C₁-C₃ alkoxy or C₁-C₃ haloalkoxy;

 R^{22} is C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; or R^{22} is phenyl optionally substituted with C_1 - C_6 alkyl, 1-3 halogen, 4-5 fluorine, 1-2 nitro, C_1 - C_6 alkoxy or CF_3 ;

R²³ is C₁-C₃ alkyl, hydroxy or halogen;

15 R^{24} is cyano or $C(Q)R^{25}$;

R²⁵ is OR²⁶ or NR²⁷R²⁸;

 \mathbb{R}^{26} is \mathbb{C}_1 - \mathbb{C}_6 alkyl or \mathbb{C}_1 - \mathbb{C}_6 haloalkyl;

each R²⁷ is independently H or C₁-C₆ alkyl;

 R^{28} is H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy or $NR^{27}R^{29}$; or

20 R^{27} and R^{28} can be taken together as -CH₂CH₂-, -CH₂CH₂-,

-CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂- or -CH₂CH₂OCH₂CH₂-;

R²⁹ is H, C₁-C₃ alkyl, C₂-C₄ alkylcarbonyl, C₂-C₄ alkoxycarbonyl or C₁-C₃ alkylsulfonyl;

Q is independently O or S;

25 O¹ is O or S;

p is 1, 2 or 3; and

q is 0, 1, 2 or 3;

provided that,

- (a) when J is J-5, X is F, Y is Cl, R¹ is H, Q is O, R⁹ and R¹⁰ are H, Z¹ is O, n is 2, and m is 1, then R² is other than CF₃;
- (b) when J is J-6, X is F, Y is Cl, R¹ is H, Q is O, R⁹ and R¹⁰ are H, Z is CHCl or CHBr, n is 1, and m is 1, then R² is other than CF₃;
- (c) when J is J-8, X is F, Y is Cl, R^1 is H, R^{17} and R^{18} are H, Q is O, R^9 and R^{10} are H, Z is CH₂, and (m+n) is 2 or 3, then R^2 is other than CF₃;
- 35 (d) when J is J-8, X is F, Y is Cl, R¹ is H, R¹⁷ and R¹⁸ are H, Q is O, R⁹ and R¹⁰ are H, Z is O, n is 1, and m is 2, then R² is other than CF₃; and
 - (e) when J is J-11, X is F, Y is Cl, R¹ is H, R²¹ is Cl, R⁹ and R¹⁰ are H, Z is CH₂, and (m+n) is 3, then R² is other than CF₃.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-2 alkyl" indicates that one or two of the available positions for that substituent may be alkyl which are independently selected. "Alkenyl" includes straight-chain or 5 branched alkenes such as vinyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple 10 bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy. n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. "Alkoxyalkoxy" denotes alkoxy substitution on alkoxy. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkylthio" includes 15 branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH₃SCH₂, CH₃SCH₂CH₂, CH₃CH₂SCH₂, CH₃CH₂CH₂CH₂SCH₂ and CH₂CH₂SCH₂CH₂. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl 20 group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Cyanoalkyl" denotes an alkyl group substituted with one cyano 25 group. Examples of "cyanoalkyl" include NCCH₂, NCCH₂CH₂ and CH₃CH(CN)CH₂. "Alkylamino", "dialkylamino", and the like, are defined analogously to the above examples. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. One skilled in the art will appreciate that not all nitrogen containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for 30 oxidation to the oxide; one skilled in the art will recognize those nitrogen containing heterocycles which can form N-oxides.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. The term "1-2 halogen" indicates that one or two of the available positions for that substituent may be halogen which are independently selected. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and

20

25

30

35

7912

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 20. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. Examples of "alkylcarbonyl" include C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂CH₂OC(=O), (CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above

(CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above recitations, when a compound of Formula I is comprised of one or more heterocyclic rings, all substituents are attached to these rings through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents. Further, when the subscript indicates a range, e.g., $(R)_{i-j}$, then the number of substituents may be selected from the integers between i and j inclusive.

When a group contains a substituent which can be hydrogen, for example R¹ or R¹³, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, N-oxides and

10

20

35

agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, triethylamine or dicyclohexylamine) or inorganic bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group such as a carboxylic acid or an amide.

Preferred compounds for reasons of better activity and/or ease of synthesis are: Preferred 1. Compounds of Formula I above, and N-oxides and agriculturally suitable salts thereof, wherein:

X is F or Cl;

15 Y is F, Cl or Br;

R¹ is H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ alkoxyalkyl, C₃-C₆ haloalkenyl, C₃-C₆ alkoxyalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkoxycarbonyl, S(O)₂R² or C(O)NR⁴R⁵;

 R^2 is C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 haloalkyl, C_3 - C_6 halocycloalkyl, C_2 - C_6 alkoxyalkyl or C_2 - C_6 haloalkoxyalkyl;

J is J-5, J-6, J-11, J-17 or J-19;

Z is CR^9R^{10} , O, S or $N(C_1-C_4 \text{ alkyl})$;

each R⁹ is independently H, halogen or C₁-C₆ haloalkoxy;

each R¹⁰ is independently H, hydroxy or halogen;

each Q is O;

 Z^1 is CR^9R^{23} , O, S or $N(C_1-C_4$ alkyl); and

R²³ is halogen.

30 Preferred 2. Compounds of Preferred 1 wherein:

Y is F or Cl;

R¹ is H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ alkoxyalkyl, C₃-C₆ haloalkenyl, C₂-C₆ alkoxycarbonyl;

 R^2 is C_1 - C_6 haloalkoxy, C_1 - C_6 haloalkyl, C_3 - C_6 halocycloalkyl, C_2 - C_6 alkoxyalkyl or C_2 - C_6 haloalkoxyalkyl;

Z is CR⁹R¹⁰ or O; and

 Z^1 is CR^9R^{23} or O.

10

15

20

25

30

35

9

Preferred 3. Compounds of Preferred 1 wherein:

J is J-19:

R¹ is H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkoxyalkyl, C_2 - C_6 alkylcarbonyl or C_2 - C_6 alkoxycarbonyl;

 R^2 is C_1 - C_6 haloalkyl;

R⁹ is H:

R¹⁰ is hydroxy or halogen;

Z is CR9R10:

n is 1; and

m is 1.

Preferred 4. Compounds of Preferred 2 wherein:

J is J-6; and

Z is CR9R10.

Most preferred are compounds of Preferred 4 selected from the group:

- a) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide;
- b) (6S-cis)-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]-N-[(chloromethyl)sulfonyl]acetamide;
- c) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide;
- d) (6S-cis)-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl)-N-[(chloromethyl)sulfonyl]acetamide;
- e) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monosodium salt;
- f) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monopotassium salt;
- g) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monosodium salt; and
- h) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monopotassium salt.

10

15

20

25

30

This invention also relates to herbicidal compositions comprising herbicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-10. The definitions of X, Y, J, R¹-R²⁹, Z, Z¹, n, m, W, Q, Q¹, p, and q in the compounds of Formulae 1-23 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-If are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-If are as defined above for Formulae I.

Compounds of Formula I are prepared from the corresponding anilines of Formula 1 as represented in Scheme 1.

Scheme 1

$$R^2$$
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1

Synthesis of Anilines of Formula 1

Anilines of Formula 1 are prepared by the method illustrated in Scheme 2. Nitration of acetanilide 2 using a nitric acid/sulfuric acid mixture affords the nitro compound of Formula 3. Reduction of the nitro group affords the aniline of Formula 4. The aniline of Formula 4 is contacted with a sulfonyl chloride to give the sulfonamide of Formula 5. For compounds wherein R¹ is other than H, the sulfonamide nitrogen can be alkylated, acylated or sulfonylated to give the R^{1a}-substituted compound of Formula 1. The alkylation is performed using an alkyl halide or alkyl sulfonate in the presence of a base such as potassium carbonate, sodium methoxide, potassium

10

15

t-butoxide (t-BuOK) or sodium hydride in an anhydrous solvent such as dimethylformamide (DMF), tetrahydrofuran or acetonitrile at ambient temperature to 80 °C. Acylations to form the carbonyl-substituted sulfonamides are accomplished by condensing the sulfonamide of Formula 5 with the appropriate acylating agent, for example an acyl chloride, isocyanate or carbamoyl chloride. Sulfonylations to form the sulfonyl-substituted sulfonamides are accomplished in an analogous manner by reacting the sulfonamide of Formula 5 with the appropriate sulfonylating agent, for example a sulfonyl chloride.

Scheme 2

Anilines of Formula 1 can also be prepared by the method illustrated in Scheme 3. The nitro aniline of Formula 6 is sulfonylated to afford the compound of Formula 7. Further alkylation, acylation or sulfonylation gives the nitro compound of Formula 8, which is reduced to the aniline of Formula 9. Chlorination of the phenyl ring provides the compound of Formula 1 wherein R^{1a} is R^{1} as defined in the Summary of the Invention except H.

10

15

12

Scheme 3

$$R^2SO_2Cl$$
pyridine

 R^2SO_2Cl
pyridine

 R^2SO_2Cl
 R^2SO_2C

NO2

$$R_{2}$$
 R_{1a}
 R_{1a}

Converting Anilines of Formula 1 to Compounds of Formula I

The anilines prepared by the methods outlined in Schemes 2 and 3 are used in the condensation with J group derivatives to form compounds of Formula I. In some instances, the anilines are used directly in the condensation reactions. In other instances and depending on the nature of the J-group, the NH₂ of the aniline is first converted to another functional group prior to condensation. For example, the aniline may be converted first to a hydrazine, an isocyanate or an aryl iodide. These methods are described in more detail below.

Direct Coupling with the Anilines

In some instances where the aniline is used directly, the compounds of Formula I are prepared by condensation of the aniline with an anhydride precursor to the J group. For example, as illustrated in Scheme 4, the anhydride of Formula 10 is condensed with

the aniline of Formula 1 to give compounds of Formula Ia wherein J = J-1. This method is disclosed in EP-A-170,191.

Scheme 4

$$R^{9}$$
 R^{10}
 R^{10}

Ia

The anhydride of Formula 10 can be prepared by methods disclosed in EP 493,721, and WO 91/06216. Compounds of Formula I wherein J = J-8 and J-12 can be prepared using similar methodology. The aniline is condensed with the appropriate J-group anhydride, diester, or other bis-electrophile to form the compound of Formula I. The J-8 group precursor and the aniline condensation reaction are described in WO 94/03459. The J-12 group anhydride and the aniline condensation reaction are described in U.S. 4,003,926.

Hydrazines

5

10

. 15

20

For some compounds of Formula I, the appropriate aniline is first converted to the corresponding hydrazine, and then the hydrazine is condensed with the J-group derivative, or precursor thereof, to form the desired material. The conversion of an aniline of Formula 1 to a hydrazine of Formula 11 is illustrated in Scheme 5. Subsequent condensation of the hydrazine with the iminoether precursor to J-2 followed by cyclization with phosgene forms the sulfonamide of Formula Ib. The preparation of the iminoether J-2 precursor and the condensation procedure is described in U.S. 4,315,767.

Scheme 5

Ib

Anilines can be converted to the hydrazines by diazotization and then reduction as is well-known in the literature (for example, see U.S. 4,695,312).

Compounds of Formula I wherein J = J-7 are also prepared by first converting the aniline to the appropriate hydrazine, and then condensation with the appropriate J-group precursor. Methods for the preparation of the J-7 precursor and the condensation with a hydrazine are described in WO 92/12139 and U.S. 4,560,752.

The retrosynthetic analysis for the synthesis of the J-2 group is shown below in Scheme 6 for compounds of Formula I wherein J = J-2 and Z is CR^9R^{10} . The formation of ring A can be accomplished by intramolecular cyclization between the nitrogen in ring B and the terminal double bond of the triazolinone with the sulfonamide group already in place. The synthesis of the triazolinone ring B is known in the art and can be prepared by methods such as those described in U.S. 4,818,275 and U.S. 4,818,276.

Scheme 6

$$\begin{array}{c}
R^{9} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
A \\
B \\
N
\end{array}$$

$$\begin{array}{c}
B \\
N
\end{array}$$

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
B \\
N
\end{array}$$

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
B \\
N
\end{array}$$

15 Isocyanates

5

10

In some instances, the appropriate aniline is first converted to the corresponding isocyanate, and then the isocyanate is condensed with the J-group derivative, or precursor thereof, to form compounds of Formula I. In Scheme 7, the conversion of

10

15

20

aniline of Formula 1 to isocyanate of Formula 12 is illustrated. Subsequent condensation of the isocyanate with the aminoester of Formula 13 followed by cyclization forms the sulfonamide of Formula Ic. The preparation of some aminoester precursors to J-6 and the condensation procedure are described in U.S. 4,179,276.

Scheme 7

NH2

NH2

I isocyanate formation

$$R^{2}$$
 R^{2}
 $R^{$

Compounds of Formula I wherein J = J-3, J-4, J-5, J-9, J-10 and J-19 are also prepared by first converting the aniline to the appropriate isocyanate, and then condensation with the appropriate J-group precursor. Methods for the preparation of the J-4 precursor and the condensation are described in WO 92/11244, EP 476,697, ZA 91/00466, JP 377,874, and U.S. 3,902,887. The synthesis of the J-5 precursor and the condensation with isocyanates is described in WO 92/13453 and EP 230,874. Methods for the preparation of the J-3 precursor and the condensation with isocyanates are described in EP 484,776. Methods for the preparation of the J-19 precursor and its condensation with isocyanates are described in EP 493,323. The synthesis of the J-10 precursor and the condensation with isocyanates is described in J. Pesticide Sci., (1993), 18, 309. In a similar vein, the imino compounds of Formula I wherein J = J-9 can be prepared from the corresponding isocyanates of the anilines. The condensation procedure and J-group precursor preparation for compounds containing J-9 are disclosed in EP 457,151, JP 4,145,087, EP 480,871 and DE 3,927,388.

One skilled in the art will recognize that when Q or Q^1 is S in the desired product, the appropriate isothiocyanate is used instead of the isocyanate in the synthesis.

10

15

20

For some compounds of Formula I wherein J = J-3, J-4, J-5, J-6, J-10, and J-19, the coupling can also be accomplished starting with the aniline rather than the isocyanate. For example, the synthesis of compounds of Formula Id (compounds of Formula I wherein R^9 and R^{10} are taken together to form a cyclopropane ring) is illustrated in Scheme 8.

Scheme 8

Treatment of cyclopropane dicarboxylic acid of Formula 14 with urea and heating to 175-185 °C affords the dicarboximide of Formula 15 as described by G. C. Crockett et al. in Synth. Commun. (1981), 11, 447-454. The diester of the diacid of Formula 14 is prepared by the method described by L. L. McCoy in J. Am. Chem. Soc., (1958), 80, 65-68. The diacid can be obtained by saponification of the diester using well-known methods. Reduction of the dicarboximide of Formula 15 with borane in an inert solvent, such as tetrahydrofuran (THF), followed by work-up with aqueous hydrochloric acid affords the azabicyclo[3.1.0]hexane hydrochloride of Formula 16. The reduction is preferably conducted with heating, for example in THF at reflux, as described by H. C. Brown and P. Heim in J. Org. Chem., (1973), 38, 912-916.

The amine hydrochloride of Formula 16 is converted via a five step sequence to the α-aminoacid of Formula 20 as illustrated. Purification of the intermediates is not necessary. Neutralization of the amine hydrochloride with a base, such as concentrated aqueous potassium hydroxide, liberates the free amine. Dissolution of the amine in an

10

15

20

25

30

35

inert solvent, such as diethyl ether, and treatment with a solution of N-chlorosuccinimide (NCS) in an inert solvent such as ether, produces the chloramine of Formula 17. The solution of the chloramine is then treated with ethanolic potassium hydroxide to effect dehydrochlorination and give the imine of Formula 18. Once again, the imine is not purified but treated directly first with aqueous sodium bisulfite, and then with solid sodium cyanide to afford the aminonitrile of Formula 19. The reaction mixture is poured into water and extracted with a water-immiscible solvent such as ether. The organic layers are dried and evaporated under reduced pressure to afford the aminonitrile. No additional purification is necessary. The aminonitrile can be converted to the aminoacid of Formula 20 by hydrolysis with aqueous barium hydroxide followed by neutralization with sulfuric acid. A mixture of epimers at the carboxylic acid centers is obtained, and the individual diastereomers can be separated by chromatography.

The acid of Formula 20 is reacted with the aniline of Formula 1 and a trialkylaluminum reagent (e.g., trimethylaluminum), in a non-coordinating solvent such as an aromatic hydrocarbon (e.g., benzene and toluene) or halogenated hydrocarbon (e.g., methylene chloride, chloroform, and dichloroethane) to obtain the amide. Generally, the reaction requires 0.1 to 48 hours at a temperature of 0 °C to 25 °C to proceed to completion. The amides are isolated by extraction into an organic solvent, aqueous wash, and removal of the solvent under reduced pressure. Purification can be accomplished by chromatography or recrystallization. The condensation with the amine can also be performed starting with the ester of the acid of Formula 20.

The tricyclic imide of Formula Id can be prepared from the α -aminoamide by condensation with phosgene or a phosgene equivalent. Treatment of the α -aminoamide with phosgene is preferably carried out in the presence of a tertiary-amine base such as triethylamine, pyridine, or N,N-diisopropylethylamine, in an inert solvent such as dichloromethane or 1-chlorobutane. The phosgene can be added as a gas or as a solution in an inert solvent such as toluene. Suitable temperatures range from about 0 °C to the reflux temperature of the solvent. 1,1'-Carbonyldiimidazole, diphosgene (ClC(=O)OCCl₃) and triphosgene (Cl₃COC(=O)OCCl₃) can also be used in a similar manner.

The tricyclic imide of Formula Id can be isolated by extraction into an organic solvent, aqueous wash, and removal of the solvent under reduced pressure. Additional purification can be accomplished by chromatography or recrystallization.

The preparation of compounds of Formula I wherein J = J-6 and Z is CR^9R^{10} is also described in WO94/05668.

10

15

20

Aryl Iodides

For the preparation of compounds of Formula I wherein J = J-11, the appropriate aniline is first converted to the aryl alkyne as illustrated in Scheme 9. The aniline of Formula 1 is converted to the aryl iodide of Formula 21 via diazotization followed by treatment with a metal iodide salt. The aryl iodide is linked by a palladium coupling reaction to give the trimethylsilyl (TMS) alkyne. Hydrolysis of the TMS group with base affords the terminal alkyne of Formula 22. In the case of J-11, a [3+2] cycloaddition using a sydnone as the dipole and the alkyne as the dipolarophile affords the bicyclic pyrazole compounds. Introduction of the R^{21} group affords the sulfonamides of Formula Ie. For example, treatment with N-chlorosuccinimide affords the $R^{21} = Cl$ compound. These methods are described in WO 93/15074, JP 4,059,706, WO 92/06962, and JP 3,163,063.

Scheme 9

NH2

$$NH_2$$
 NH_2
 NH_2

For compounds of Formula I wherein J = J-5, the coupling can also be accomplished starting with the aniline rather than the isocyanate. This method is described in WO 94/10173. For example, the synthesis of compounds of Formula If is illustrated in Scheme 10. Treatment of a diester of Formula 23 with an aniline of Formula 1 in the presence of a trialkylaluminum reagent (e.g., trimethylaluminum) in a non-coordinating solvent such as an aromatic hydrocarbon (e.g., benzene, toluene) or a halogenated hydrocarbon (e.g., methylene chloride, chloroform, and dichloroethane) affords a compound of Formula If.

10

15

20

25

30

19 <u>Scheme 10</u>

Methods for the preparation of compounds of Formula I wherein J = J-13 are described in EP 379,911, U.S. 4,123,252, and U.S. 4,042,373. Methods for the preparation of compounds of Formula I wherein J = J-14 are described in U.S. 4,818,272. Methods for the preparation of compounds of Formula I wherein J = J-17 are described in WO 95/25725 and DE 4,437,295. Methods for the preparation of compounds of Formula I wherein J = J-18 are described in DE 3,340,296 and U.S. 93/06132. Compounds of Formula I wherein J = 15 and J = 16 can be prepared by methods known in the art or by obvious modifications of these methods.

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages

for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dd)-doublet of doublets, (dt)-doublet of triplets, and (br s)-broad singlet.

5

10

15

20

25

30

35

EXAMPLE 1

Step A: Preparation of N-(4-chloro-2-fluoro-5-nitrophenyl)acetamide

To a stirred solution of N-(4-chloro-2-fluorophenyl)acetamide (180.6 g, 0.96 mol) in concentrated sulfuric acid (1L) was added a mixture of 175 mL of concentrated HNO₃ and 175 mL of concentrated sulfuric acid at 0 to 5 °C in 1.5 h. After the addition was finished, the reaction mixture was stirred for another 0.5 h. The solution was poured into 5 L of ice water. After the product precipitated, it was isolated by filtration and then was dissolved in 2.5 L of ethyl acetate. After separation of the water layer, the organic layer was dried over sodium sulfate and then the solvent was evaporated. The crude product was triturated in diisopropyl ether (1.5 L), isolated by filtration, and dried under reduced pressure to afford the title compound of Step A (196.2 g, 87.6%) melting at 145-146 °C. ¹H NMR (Me₂SO- d_6) δ 10.3-10.2 (s, 1H), 8.9 (d, 1H), 7.9-7.8 (d, 1H), 2.2-2.1 (s, 3H).

Step B: Preparation of N-(5-amino-4-chloro-2-fluorophenyl)acetamide

To a solution of the title compound of Step A (15 g, 65 mmol) in 500 mL ethyl acetate was added 1.5 g Raney-Nickel that previously has been washed with methanol and ethyl acetate. The hydrogenation was performed at 5 bar of hydrogen pressure in an autoclave for 24 h at 50 °C. After filtration of the reaction through Celite®, the solvent was removed under reduced pressure. The crude product was triturated with petroleum ether and dried to isolate the title compound of Step B (12.6 g, 96%) melting at 142-143 °C. ¹H NMR (CDCl₃) δ 7.9 (d, 1H), 7.3-7.2 (br s, 1H), 7.1-7.0 (d, 1H), 4.1-4.0 (s, 2H), 2.2-2.1 (s, 3H).

Step C: Preparation of N-[4-chloro-5-[[(chloromethyl)sulfonyl]amino]-2-fluorophenyl]acetamide

To a stirred solution of the title compound of Step B (8.10 g, 40 mmol) in pyridine (50 mL) was added chloromethylsulfonyl chloride (3.84 mL, 40.45 mmol) over 30 minutes at 0 °C. After stirring at room temperature for 14 h, chloromethylsulfonyl chloride (0.38 mL, 4.05 mmol) was added to complete the reaction. Water was added so that the product precipitated. After filtration and washing with water and petroleum ether, the title compound of Step C was isolated as a bright powder (11.17 g, 89%) melting at 208-210 °C. 1 H NMR (Me₂SO- d_6) δ 10.2-10.1 (s, 1H), 9.9 (s, 1H), 8.1 (d, 1H), 7.6-7.5 (d, 1H), 5.0-4.9 (s, 2H), 2.1 (s, 3H).

10

15

25

30

35

21

Step D: Preparation of N-(5-amino-2-chloro-4-fluorophenyl)-1chloromethanesulfonamide

The title compound of Step C (10.3g, 32.6 mmol) was suspended in 450 mL of 2M HCl. The temperature was raised to the boiling point of the reaction mixture under an argon atmosphere. After 45 minutes of stirring at this temperature, the reaction was cooled to room temperature, neutralized with NaHCO₃, and the product was extracted into ethyl acetate. After drying of the solution over sodium sulfate, the solvent was evaporated under reduced pressure yielding 8.9 g (98%) of the title compound of Step D as bright crystals melting at 105-107 °C. ¹H NMR (Me₂SO- d_6) δ 9.9-9.8 (br s, 1H), 7.2 (d, 1H), 6.9 (d, 1H), 5.5-5.4 (s, 2H), 4.9 (s, 2H).

Step E: Preparation of 1-chloro-N-(2-chloro-4-fluoro-5-isocyanatophenyl)methanesulfonamide

To a stirred solution of phosgene (68 mmol) in 35 mL toluene was added the title compound of Step D (4.2 g, 15.4 mmol) in 80 mL toluene at 0 °C and the reaction was stirred at room temperature overnight. The temperature was then raised to 70 °C for 4 h. After cooling to room temperature, the reaction mixture was filtrated and the solvent was removed under reduced pressure. Drying of the white precipitate under reduced pressure yielded the title compound of Step E (4.4 g, 95%) melting at 101.5-102.5 °C. ¹H NMR (CDCl₃) δ 7.5 (d, 1H), 7.3 (d, 1H), 7.0-6.9 (br s, 1H), 4.6-4.5 (s, 2H).

20 Step F: Preparation of (2R-cis)-1-[[[4-chloro-5-[[(chloromethyl)sulfonyl]amino]2-fluorophenyl]amino]carbonyl]-4-hydroxy-2-pyrrolidinecarboxylic acid

To a stirred slurry of the title compound of Step E (34 mmol) in 550 mL toluene was added 4-cis-D-hydroxyproline (4.55 g, 35 mmol) at room temperature. 500 mL of dimethoxyethane was added and the temperature was raised to 70 °C. After 1 h the temperature was raised to 90 °C for 6 h, and then the reaction mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure and after the addition of water, petroleum ether and ethyl acetate, the product was extracted into the water phase. The product was precipitated by removal of the water under reduced pressure, dissolved in ethyl acetate, and dried over Na₂SO₄. The solvent was removed under reduced pressure furnishing the title compound of Step F (8.06 g, 50%). ¹H NMR (Me₂SO-d₆) δ 12.4 (br s, 1H), 10.1 (br s, 1H), 8.2 (s, 1H), 7.7 (d, 1H), 7.5 (d, 1H), 5.1-5.0 (br s, 1H), 5.0-4.9 (s, 2H), 4.4 (m, 1H), 4.3 (m, 1H), 3.7-3.6 (m, 1H), 3.4-3.3 (m, 2H), 2.4-2.3 (m, 1H).

Step G: Preparation of (6R-trans)-1-chloro-N-[2-chloro-4-fluoro-5-(tetrahydro-6-hydroxy-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide

To a stirred solution of the title compound of Step F (2.7 g, 5.4 mmol) and N-hydroxysuccinimide (0.621 g, 5.4 mmol) in acetonitrile (50 mL) was added a solution

10

15

20

25

30

of N,N-dicyclohexylcarbodiimide (1.14 g, 5.4 mmol) in acetonitrile (30 mL) over 30 minutes at 0 to -5 °C. The reaction was stirred at room temperature for 14 h. The byproducts were removed by filtration and the solvent was evaporated under reduced pressure to yield the title compound of Step G (2.6 g, quantitative yield) as a crude product melting at 198-200 °C. 1 H NMR (Me₂SO- d_6) δ 10.2 (br s, 1H), 7.8-7.7 (d, 1H), 7.5-7.4 (d, 1H), 5.2-5.1 (br s, 1H), 5.1-5.0 (s, 2H), 4.5 (m, 1H), 4.3-4.2 (m, 1H), 3.7 (m, 1H), 3.1 (m, 1H), 2.3 (m, 1H), 2.0 (m, 1H).

Step H: Preparation of (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide

To a stirred solution of the title compound of Step G (2.7 g, 5.4 mmol) in dichloromethane (60 mL) was added pyridine (1.0 mL) at -55 °C and DAST (diethylaminosulfur trifluoride) (0.8 mL, 5.8 mmol) over 30 minutes at the same temperature. The reaction mixture was warmed to room temperature and the clear solution was stirred for 14 h. After concentration under reduced pressure, the resulting brown oil was dissolved in ethyl acetate and this solution was treated with water and dilute HCl. The organic layer was separated, dried with sodium sulfate, and the solvent was evaporated under reduced pressure to yield a crude product containing the title product of Step H (1.81 g, 61%). ¹H NMR (CDCl₃) δ 7.62 (d, 1H), 7.34 (d, 1H), 7.26 (br s, 1H), 5.5 (m, 1H), 4.60 (dd, 1H), 4.52 (s, 2H), 4.12 (m, 1H), 3.62 (dd, 1H), 2.64 (m, 1H), 2.06 (m, 1H).

EXAMPLE 2

Step A: Preparation of (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide

To a stirred suspension of the title compound of Example 1, Step G (3.3 g, 8 mmol) in 25 mL toluene and 0.02 g DMF was added at 80 °C thionyl chloride (1.31 g, 11 mmol) over a period of 15 minutes. The suspension was stirred at the same temperature for 2 h and at 105 °C for 30 minutes. After cooling to room temperature, the organic layer was washed with water, dried, and the solvent was evaporated under reduced pressure to yield the title compound of Step A, a compound of this invention, in quantitative yield as a crude powdery product melting at 169-170 °C. ¹H NMR (CDCl₃) δ 7.64 (d, 1H), 7.36 (d, 1H), 7.20 (br s, 1H), 4.78 (m, 2H), 4.56 (s, 2H), 4.24 (dd, 1H), 3.62 (dd, 1H), 2.62 (m, 1H), 2.38 (m, 1H).

10

15

20

25

30

35

23

EXAMPLE 3

Step A: Preparation of (6S-cis)-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]-N[(chloromethyl)sulfonyl]acetamide

To a solution of the title compound of Example 1, Step H (4.14 g, 10 mmol) in anhydrous dichloromethane (200 mL) and pyridine (5 mL) was added a solution of acetyl chloride (0.863 g, 11 mmol) in dichloromethane (10 mL) dropwise at room temperature. After completion of the reaction (monitored by tlc), the organic phase was washed with water (50 mL) and diluted with HCl (5%, 50 mL). The organic layer was separated, dried (MgSO₄), and the solvent was removed in vacuo to give the title compound of Step A, a compound of this invention, as a white solid (4.3 g, 94%) melting at 198-200 °C. ¹H NMR (CDCl₃) δ 7.56 (m, 2H), 5.52 (m, 1H), 5.40 (dd, 1H), 4.84 (d, 1H), 4.62 (dd, 1H), 4.08 (m, 1H), 3.62 (m, 1H), 2.68 (m, 1H), 2.05 (s, 3H), 1.98 (m, 1H).

EXAMPLE 4

Step A: Preparation of (6S-cis)-N-[2-chloro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]-N[(chloromethyl)sulfonyl]acetamide

To a solution of the title compound of Example 2, Step A (4.29 g, 10 mmol) in anhydrous dichloromethane (200 mL) and pyridine (5 mL) was added a solution of acetyl chloride (0.862 g, 11 mmol) in dichloromethane (10 mL) dropwise at room temperature. After completion of the reaction (monitored by tlc), the organic phase was washed with water (50 mL) and diluted with HCl (5%, 50 mL) and water (50 mL). The organic layer was separated, dried (MgSO4), and the removed the solvent to give the title compound of Step A, a compound of this invention, as a white solid (4.4 g, 93%) melting at 180-181 °C. ¹H NMR (CDCl₃) δ 7.50 (m, 2H), 5.38 (dd, 1H), 4.92 (d, 1H), 4.78 (m, 2H), 4.24 (dd, 1H), 3.62 (dd, 1H), 2.62 (m, 1H), 2.26 (m, 1H), 2.04 (s, 3H).

EXAMPLE 5

Step A: Preparation of (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]
N-methylmethanesulfonamide

A mixture of the title compound of Example 1, Step H (0.414 g, 1 mmol), dimethyl sulfate (0.14 g, 1.1 mmol), and potassium carbonate (0.27 g) in acetone (10 mL) was stirred at room temperature for 4 h. After completion of the reaction, the potassium carbonate was filtered off and the solvent was removed on a rotary evaporator. The title compound of Step A, a compound of this invention, was isolated by flash chromatography (0.41 g, 95%) as a white solid melting at 90-92 °C. ¹H NMR

10

15

20

25

30

35

(CDCl₃) δ 7.52 (d, 1H), 7.39 (d, 1H), 5.54 (m, 1H), 4.62 (s, 2H), 4.60 (m, 1H), 4.08 (m, 1H), 3.60 (dd, 1H), 3.42 (s, 3H), 2.64 (m, 1H), 2.01 (m, 1H).

EXAMPLE 6

Step A: Preparation of (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-

fluorotetrahydro-1,3-dioxo-1*H*-pyrrolo[1,2-*c*]imidazol-2(3*H*)-yl)phenyl]-*N*-ethylmethanesulfonamide

A mixture of the title compound of Example 1, Step H (0.414 g, 1 mmol), diethyl sulfate (0.17 g, 1.1 mmol), and potassium carbonate (0.27 g) in acetone (10 mL) was stirred at room temperature for 4 h. After completion of the reaction, the potassium carbonate was filtered off and the solvent was removed on a rotary evaporator. The title compound of Step A, a compound of this invention, was isolated by flash chromatography (0.41 g, 92%) as a white solid melting at 198-200 °C. ¹H NMR (CDCl₃) δ 7.46 (d, 1H), 7.42 (d, 1H), 5.52 (m, 1H), 4.62 (dd, 1H), 4.59 (s, 2H), 4.02 (dd, 1H), 3.80 (m, 4H), 3.60 (dd, 1H), 2.64 (m, 1H), 2.01 (m, 1H), 1.20 (t, 6H).

EXAMPLE 7

Step A: Preparation of (6S-cis)-methyl [2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl][(chloromethyl)sulfonyl]carbamate

To a mixture of the title compound of Example 1, Step H (0.32 g, 0.7 mmol) and pyridine (0.5 mL) in dichloromethane (5 mL) was added a solution of methyl chloroformate (0.09 g, 0.95 mmol) in dichloromethane (1 mL) at room temperature. After completion of the reaction (2 h), the solvents were removed in vacuo and the title compound of Step A, a compound of this invention, was isolated by flash chromatography (0.31 g, 95%) as a white solid melting at 108-115 °C. ¹H NMR (CDCl₃) δ 7.40 (m, 2H), 5.42 (m, 1H), 5.36 (dd, 1H), 4.92 (dd, 1H), 4.60 (m, 1H), 4.04 (m, 1H), 3.82 (s, 3H), 3.60 (dd, 1H), 2.64 (m, 1H), 2.02 (m, 1H).

EXAMPLE 8

Step A: Preparation of (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]-N-methylmethanesulfonamide

A mixture of the title compound of Example 2, Step A (0.43 g, 1 mmol), dimethyl sulfate (0.17 g, 1.1 mmol), and potassium carbonate (0.27 g) in acetone (10 mL) was stirred at room temperature for 4 h. After completion of the reaction, potassium carbonate was filtered off and the solvent was removed on a rotary evaporator to yield the title compound of Step A, a compound of this invention, as a white solid purified by flash chromatography (0.40 g, 90%) and melting at 119-124 °C. ¹H NMR (CDCl₃) δ 7.52 (d, 1H), 7.42 (d, 1H), 4.76 (m, 2H), 4.62 (s, 2H), 4.24 (dd, 1H), 3.64 (dd, 1H), 3.42 (s, 3H), 2.62 (m, 1H), 2.22 (m, 1H).

10

15

25

EXAMPLE 9

Step A:

Preparation of (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]-N-ethylmethanesulfonamide

A mixture of the title compound of Example 2, Step A (0.43 g, 1 mmol), diethyl sulfate (0.17 g, 1.1 mmol), and potassium carbonate (0.27 g) in acetone (10 mL) was stirred at room temperature for 4 h. After completion of the reaction, potassium carbonate was filtered off and the solvent was removed on a rotary evaporator to yield the title compound of Step A, a compound of this invention, as a white solid purified by flash chromatography (0.4 g, 89%) and melting at 152-154 °C. ¹H NMR (CDCl₃) δ 7.40 (m, 2H), 5.30 (s, 2H), 4.72 (m, 2H), 4.22 (dd, 1H), 3.82 (m, 4H), 3.60 (dd, 1H), 2.60 (m, 1H), 2.24 (m, 1H), 1.40 (t, 3H), 1.20 (t, 3H).

EXAMPLE 10

Step A:

Preparation of (6S-cis)-methyl [2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-climidazol-2(3H)-yl)-4-fluorophenyl][(chloromethyl)sulfonyl]carbamate

To a mixture of the title compound of Example 2, Step A (0.34 g, 0.79 mmol) and pyridine (0.5 mL) in dichloromethane (5 mL) was added a solution of methyl chloroformate (85 mg, 0.9 mmol) in dichloromethane (1 mL) at room temperature. After completion of the reaction (2 h), the solvents were removed and the title compound of Step A, a compound of this invention, was isolated by flash chromatography (0.34 g, 93%) as a white solid melting at 117-124 °C. ¹H NMR (CDCl₃) 8 7.40 (m, 2H), 5.40 (dd, 1H), 4.96 (dd, 1H), 4.76 (m, 2H), 4.24 (dd, 1H), 3.84 (s, 3H), 3.62 (dd, 1H), 2.60 (m, 1H), 2.24 (m, 1H).

25

30

35

20

EXAMPLE 11

Step A: Preparation of 1-chloro-N-[2-chloro-4-fluoro-5-(hexahydro-7-hydroxy-1,3-dioxoimidazo[1,5-a]pyridin-2(3H)-yl)phenyl]methanesulfonamide

To a solution of the title compound of Example 1, Step E (4.54 g, 15.2 mmol) in dichloromethane (20 mL) was added dropwise a solution of methyl cis-4-hydroxy-2-piperidinecarboxylate (2.41 g, 15.2 mmol, prepared as described in J. Org. Chem. (1991), 4084) in dichloromethane (20 mL) at room temperature. The reaction was stirred at room temperature for 20 hours, quenched by the addition of water, and the aqueous layer was extracted with dichloromethane. The combined organic layers were washed with water and dried over magnesium sulfate. The solvent was removed under reduced pressure and the title compound of Step A, a compound of this invention, was isolated as a foam by flash chromatography (4.98 g). ¹H NMR (Me₂SO-d₆) δ 10.1 (br s, 1H), 7.75 (m, 1H), 7.4 (dd, 1H), 5.1 (m, 1H), 4.9 (s, 2H), 4.1-3.9 (m, 3H), 3.75 (m, 1H), 2.95 (m, 1H), 2.05 (m, 1H), 1.9 (br d, 1H), 1.2 (m, 1H).

10

15

20

25

30

35

26

EXAMPLE 12

<u>Step A:</u> <u>Preparation of cis-1-chloro-N-[2-chloro-4-fluoro-5-(7-fluorohexahydro-1,3-dioxoimidazo[1,5-a]pyridin-2(3H)-yl)phenyl]methanesulfonamide</u>

To a solution of the title compound of Example 11, Step A (771 mg, 1.80 mmol) in dichloromethane (10 mL) was added dropwise diethylaminosulfur trifluoride (0.48 mL, 3.60 mmol) at 0 °C. The reaction was stirred at 0 °C for 1 hour, quenched with cold water, and extracted with dichloromethane. The combined organic layers were washed with water, dried over magnesium sulfate, and concentrated under reduced pressure. The title compound of Step A, a compound of this invention, was isolated by flash chromatography (332 mg) as a foam melting at 60-64 °C. 1 H NMR (CDCl₃) δ 7.7 (d, 1H), 7.4 (d, 1H), 7.1 (br s, 1H), 5.28 and 5.12 (two br s, 1H), 4.6 (s, 2H), 4.4 (dd, 1H), 4.2 (dd, 1H), 3.3 (ddd, 1H), 2.65 (m, 1H), 2.2 (m, 1H), 1.9-1.6 (m, 2H).

EXAMPLE 13

Step A: Preparation of ethyl [(dimethylamino)[[[(4-chloro-2-fluoro-5-nitrophenyl)amino]carbonyl]imino]methyl]methylcarbamate

To a solution of 1-chloro-5-fluoro-4-isocyanato-2-nitrobenzene (3.4 g, 15.7 mmol) in toluene (50 mL) was added dropwise a solution of ethyl [(dimethylamino)iminomethyl]methylcarbamate (2.41 g, 15.2 mmol, prepared as described in U.S. 3,902,887) in toluene (50 mL) at room temperature. The reaction was stirred at room temperature for 2 hours, quenched by the addition of water, and the aqueous layer was extracted with dichloromethane. The excess solvent was removed under reduced pressure and the title compound of Step A was isolated by flash chromatography as a yellow solid (5.07 g) melting at 158-159 °C. ¹H NMR (CDCl₃) δ 9.05 (d, 1H), 7.3 (br s, 1H), 7.2 (d, 1H), 4.2 (q, 2H), 3.15 (s, 3H), 3.0 (s, 6H), 1.2 (br s, 3H).

Step B: Preparation of 3-(4-chloro-2-fluoro-5-nitrophenyl)-6-(dimethylamino)-5-methyl-1,3,5-triazine-2,4(1H,3H)-dione

A mixture of the title compound of Step A (3.0 g, 7.7 mmol) in methanol (150 mL) was stirred at room temperature overnight. The excess solvent was removed under reduced pressure to provide the title compound of Step B as a white solid (2.8 g). ¹H NMR (CDCl₃) δ 8.05 (d, 1H), 7.4 (d, 1H), 3.45 (s, 3H), 3.1 (s, 6H).

Step C: Preparation of 3-(5-amino-4-chloro-2-fluorophenyl)-6-(dimethylamino)-5-methyl-1,3,5-triazine-2,4(1H,3H)-dione

To a slurry of iron powder (5.3 g) in 5% aqueous acetic acid (30 mL) was added dropwise a solution of the title compound of step B (2.8 g, 8.1 mmol) in a mixture of concentrated acetic acid (25 mL) and ethyl acetate (25 mL) at room temperature. The reaction was stirred at room temperature for 30 minutes, diluted with excess ethyl acetate, filtered through Celite[®], and washed with water. The aqueous phase was

15

20

27

extracted with ethyl acetate and the combined organic layers were washed with saturated aqueous sodium bicarbonate solution and water. The organic layers were then dried over magnesium sulfate and concentrated under reduced pressure. The title compound of Step C was isolated by flash chromatography as a foam (1.59 g). ¹H NMR (CDCl₃) δ 7.15 (d, 1H), 6.65 (d, 1H), 3.95 (br s, 2H), 3.4 (s, 3H), 3.1 (s, 6H).

Step D: Preparation of 1-chloro-N-[2-chloro-5-[4-(dimethylamino)-3,6-dihydro-3-methyl-2,6-dioxo-1,3,5-triazin-1(2H)-yl]-4-

fluorophenyl]methanesulfonamide

To a solution of the title compound of Step C (359 mg, 1.15 mmol), pyridine (0.50 mL), and a catalytic amount of 4-dimethylamino pyridine in dichloromethane was added chloromethylsulfonyl chloride (0.136 mL, 1.37 mmol) at 0 °C. The reaction was stirred at 0 °C for 90 minutes and then concentrated under reduced pressure. The crude oil was dissolved in dichloromethane and washed sequentially with water, 1N aqueous HCl, and water. The organic phase was then dried over magnesium sulfate and concentrated under reduced pressure. The title compound of Step D, a compound of this invention, was isolated by flash chromatography as a foam (126 mg) melting at 234-237 °C.

1H NMR (CDCl₃) δ 7.7 (d, 1H), 7.35 (d, 1H), 7.0 (br s, 1H), 4.55 (q, 2H), 3.45 (s, 3H), 3.15 (s, 6H).

By the procedures described herein together with methods known in the art, the following compounds of Table 1 can be prepared. The following abbreviations are used in the Table which follows: CN = cyano and Ph = phenyl.

TABLE 1

$$J \xrightarrow{R_1} N \xrightarrow{-S(O)_2 R^2} Y$$

J = 1, Y = Cl, a	$nd R^2 = CH_2Cl$			
<u>x</u>	<u>R</u> 1	<u>Z</u>	<u>n</u>	<u>m</u>
F	н	CH ₂	1	1
F	C(=O)CH ₃	CH ₂	1	1
F	CO ₂ CH ₃	CH ₂	1	1
F	H	CHF	1	1
F	$C(=O)CH_3$	CHF	1	1
F	CO ₂ CH ₃	CHF	1	1
F	Н	CH ₂	1	2
F	C(=O)CH ₃	CH ₂	1	2
F	CO ₂ CH ₃	CH ₂	1	2
F	H	CHF	1	2
F	C(=O)CH ₃	CHF	1	2
F	CO ₂ CH ₃	CHF	1	2
Cl	Н	CH ₂	1	1
Cl	C(=O)CH ₃	CH ₂	1	1
· CI	CO ₂ CH ₃	CH ₂	1	1
CI	н	CHF	1	1
Cì	C(=O)CH ₃	CHF	1	1
CI	CO ₂ CH ₃	CHF	1	1
CI	H	CH ₂	1	2
Cl	$C(=O)CH_3$	CH ₂	1	2
Cl	CO ₂ CH ₃	CH ₂	1	2
Cl	Н	CHF	1	2
Cl	C(=O)CH ₃	CHF	ı	2
Cl	CO ₂ CH ₃	CHF	1	2

X	CI, and $R^2 = CH_2CI$ $\frac{R^1}{R^1}$	<u>Z</u>	n	m
F	Н	CH ₂	1	1
F	C(=O)CH ₃	CH ₂	1	1
F	CO ₂ CH ₃	CH ₂	1	1
F	Н	CHF	1	1
F	C(=O)CH ₃	CHF	1	1
F	CO ₂ CH ₃	CHF	1	1
F	н	CH ₂	1	2
F	C(=O)CH ₃	CH ₂	1	. 2
F	CO ₂ CH ₃	CH ₂	1	2
F	н	CHF	1	2
F	C(=O)CH ₃	CHF	. 1	2
F	CO ₂ CH ₃	CHF	1	2
CI	н	CH ₂	1	1
Cl	C(=O)CH ₃	CH ₂	1	1
Cl	CO ₂ CH ₃	CH ₂	1	1
Cl	H	CHF	1	1
Cl	C(=O)CH ₃	CHF	1	1
Cl	CO ₂ CH ₃	CHF	1	1
Cl	Н	CH ₂	1	2
Cl	C(=O)CH ₃	CH ₂	1	2
Cl	CO ₂ CH ₃	CH ₂	1	2
Cl	H	CHF	1	2
Cl	C(=O)CH ₃	CHF	1	2
Cl	CO ₂ CH ₃	CHF	1	2
1-20-	OV = Cl and P2 = CH ₂ (- 1		

J = 3, Q = O, Y = CI, and $R^2 = CH_2CI$

X	<u>R¹</u>	<u>R¹¹</u>	<u>R¹²</u>
F	Н	CH ₃	CH ₂ CI
F	C(=O)CH ₃	CH ₃	CH ₂ CI
F	CO ₂ CH ₃	CH ₃	CH ₂ CI
F	H	CH ₂ CH ₂ CH ₂ F	CH ₂ Cl
F	C(=O)CH ₃	CH ₂ CH ₂ CH ₂ F	CH ₂ CI
F	CO ₂ CH ₃	CH ₂ CH ₂ CH ₂ F	CH ₂ CI
F	н	CH ₃	CH ₂ F
F	C(=O)CH ₃	CH ₃	CH ₂ F

WO 97/15576

PCT/US96/16111

30

F	CO ₂ CH ₃	CH ₃	CH ₂ F
F	н	CH ₂ CH ₂ CH ₂ F	CH ₂ F
F	$C(=O)CH_3$	CH ₂ CH ₂ CH ₂ F	CH ₂ F
F	CO ₂ CH ₃	CH ₂ CH ₂ CH ₂ F	CH ₂ F
Cl	Н	CH ₃	CH ₂ Cl
Cl	$C(=O)CH_3$	CH ₃	CH ₂ CI
Cl	CO ₂ CH ₃	CH ₃	CH ₂ CI
Cl	H	CH ₂ CH ₂ CH ₂ F	CH ₂ CI
CI	C(=0)CH ₃	CH ₂ CH ₂ CH ₂ F	CH ₂ Cl
Cl	CO ₂ CH ₃	CH ₂ CH ₂ CH ₂ F	CH ₂ Cl
Cl	Н	CH ₃	CH ₂ F
Cl	C(=0)CH ₃	CH ₃	CH ₂ F
Cl	CO ₂ CH ₃	CH ₃	CH ₂ F
Cl	Н	CH ₂ CH ₂ CH ₂ F	CH ₂ F
Cì	$C(=O)CH_3$	CH ₂ CH ₂ CH ₂ F	CH ₂ F
Cl	CO ₂ CH ₃	CH ₂ CH ₂ CH ₂ F	CH ₂ F

J = 4, Q = Q, Y = Cl, and $R^2 = CH_2Cl$

X	<u>R</u> 1	<u>R¹³</u>	R14
F	H	CH ₃	CF ₃
F	C(=0)CH ₃	CH ₃	CF ₃
F	CO ₂ CH ₃	CH ₃	CF ₃
F	H	CHF ₂	CF ₃
F	$C(=O)CH_3$	CHF ₂	CF ₃
F	CO ₂ CH ₃	CHF ₂	CF ₃
F	H	CH ₃	N(CH ₃) ₂
F	$C(=O)CH_3$	CH ₃	N(CH ₃) ₂
F	CO ₂ CH ₃	CH ₃	N(CH ₃) ₂
F	H	CHF ₂	N(CH ₃) ₂
F	$C(=O)CH_3$	CHF ₂	N(CH ₃) ₂
F	CO ₂ CH ₃	CHF ₂	N(CH ₃) ₂
Cl	Н	CH ₃	CF ₃
Cl	$C(=0)CH_3$	CH ₃	CF ₃
Cl	CO ₂ CH ₃	CH ₃	CF ₃
Cl	Н	CHF ₂	CF ₃
Cl	C(=0)CH ₃	CHF ₂	CF ₃
Cl	CO ₂ CH ₃	CHF ₂	CF ₃

. 31

Cl		Н	CH ₃	N(CI	f ₃) ₂	
Cl	C(=0)CH ₃	CH ₃	N(CI	i ₃₎₂	
Cl	C	:O ₂ СН ₃	CH ₃	N(CI	H ₃) ₂	
Cl		H	CHF ₂	N(CI	f ₃) ₂	
Cl	C((=O)CH ₃	CHF ₂	N(CI	I ₃) ₂	
Cl	C	CO ₂ CH ₃	CHF ₂	N(CI	I ₃) ₂	
J = 5 and C	<u> </u>					
X	Y	<u>z1</u>	<u>n</u>	m	<u>R1</u>	<u>R²</u>
F	Н	CH ₂	1	1	H	CH ₂ Cl
F	Н	CH ₂	1	1	Н	CH ₂ Br
F	Н	CH ₂	1	2	H	CH ₂ CI
F	Н	CH ₂	1	2	H	CH ₂ Br
F	Н	CHF	1	1	н	CH ₂ CI
F	Н	CHF	1	1	H	CH ₂ Br
F	Н	CHF	1	2	Н	CH ₂ CI
F	Н	CHF	1	2	H	CH ₂ Br
F	Н	CHCI	1	1	H	CH ₂ CI
F	Н	CHCI	1	1	H	CH ₂ Br
F	Н	CHC	1	2	H	CH ₂ CI
F	н	CHCI	1	2	Н	CH ₂ Br
F	Cl	CH ₂	1	1	н	CH ₂ CI
F	Cl	CH ₂	1	1	Н	CH ₂ Br
F	Cl	СH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
F	CI	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CH ₂	1	1	CO_2CH_3	CH ₂ Br
F	CI	CH ₂	1	1	CH ₂ C≝CH	CH ₂ CI
F	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	СH ₂	1	2	н	CH ₂ CI
F	Cl	СH ₂	1	2	Н	CH ₂ Br
F	Cl	CH ₂	1	2	$C(=O)CH_3$	CH ₂ CI
F	CI	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br
F	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
F	Cl	CH ₂	1	2	CO_2CH_3	CH ₂ Br
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	Cl	CH ₂	1	2	CH ₂ C≕CH	CH ₂ Br

F	Cl	CHF	1	1	н	CH ₂ CI
F	Cl	CHF	1	1	Н	CH ₂ Br
F	Cl	CHF	1	i	C(=O)CH ₃	CH ₂ CI
F	Cl	CHF	1	ī	C(=O)CH ₃	CH ₂ Br
F	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	2	Н	CH ₂ CI
F	Cl	CHF	1	2	Н	CH ₂ Br
F	Cl	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
F	Cl	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	Cl	CHF	1	2	со ₂ сн ₃	CH ₂ Cl
F	Cl	CHF	1	2	со ₂ сн ₃	CH ₂ Br
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	1	Н	CH ₂ CI
F	Cl	CHCI	1	1	Н	СН ₂ Вг
F	Cl	CHCI	1	1	$C(=O)CH_3$	CH ₂ CI
F	Cl	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	2	H	CH ₂ Cl
F	Cl	CHCl	1	2	Н	CH ₂ Br
F	Cl	CHCI	1	2	$C(=O)CH_3$	CH ₂ CI
F	Cl	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Cì	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	1	Н	CH ₂ CI
F	Br	CH ₂	1	1	н	CH ₂ Br
F	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
F	Br	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
F	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br

F ·	Br	CH ₂	1 .	1	CH ₂ C≡CH	CH ₂ CI
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	2	Н	CH ₂ CI
F	Br	CH ₂	1	2	н	CH ₂ Br
F -	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
F .	Br	CH ₂	1 .	2	C(=O)CH ₃	CH ₂ Br
F ·	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CHF	1	1	H _.	CH ₂ CI
F	Br	CHF	1	1	H	CH ₂ Br
F	Br	CHF	1	1	$C(=O)CH_3$	CH ₂ CI
F	Вг	CHF	1	1	C(=0)CH ₃	CH ₂ Br
F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
. F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CHF	1	1 *	CH ₂ C≡CH	CH ₂ Cl
F	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CHF	1	2	н	CH ₂ Cl
F	Br	CHF	1	2	H	CH ₂ Br
4 F	Br	CHF	1	2	C(=0)CH ₃	CH ₂ CI
F	Br	CHF	1	2	C(=0)CH ₃	CH ₂ Br
F	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	Br	CHF	1 :	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CHCI	1	1	Н	CH ₂ Cl
F	Br	CHCI	1	1	Н	CH ₂ Br
F	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ CI
F	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
F .	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CHC	1	1 .	CH ₂ C≡CH	CH ₂ CI
F	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CHCI	1	2	н	CH ₂ CI
F	Br	CHCI	1	2	н	CH ₂ Br
F	Br	CHCI	1	2	$C(=O)CH_3$	CH ₂ CI
F	Br	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br

F	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Br	CHCI	1	2	СО ₂ СН ₃	CH ₂ Br
F	Br	CHCI	I	2	CH ₂ C≡CH	CH ₂ Cl
F	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1	1	H	CH ₂ CI
F	CN	СH ₂	1	1	Н	CH ₂ Br
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CH ₂	I	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1	2	Н	CH ₂ Cl
F	CN	CH ₂	1	2	Н	CH ₂ Br
F	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ CI
F	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1	1	н	CH ₂ CI
F	CN	CHF	1	1	н	CH ₂ Br
F	CN	CHF	1	1	C(=0)CH ₃	CH ₂ CI
F	CN	CHF	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	1	со ₂ сн ₃	CH ₂ Cl
F	CN	CHF	1	1	СО ₂ СН ₃	CH ₂ Br
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1	2	Н	CH ₂ CI
F	CN	CHF	1	2	Н	CH ₂ Br
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ CI
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	1	Н	CH ₂ Cl
F	CN	CHCI	1	1	н	CH ₂ Br
						_

F	CN	CHCI	1	I ,	$C(=O)CH_3$	CH ₂ CI
F	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CHCI	1	ı	CO ₂ CH ₃	CH ₂ CI
Ė	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F.	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
, F	CN	CHCI	1	2	н .	CH ₂ CI
F	CN	CHCI	1	2	Н	CH ₂ Br
F	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
F	CN	CHCl	1	2	$C(=O)CH_3$	CH ₂ Br
F	· CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	H	CH ₂	1	1	H	CH ₂ CI
Cl	н .	СH ₂	1	1	н	CH ₂ Br
Cl	H	CH ₂	1	2	Н.	CH ₂ Cl
Cl	H.	CH ₂	1	2	н .	CH ₂ Br
Cl	H	CHF	1	1	н	CH ₂ CI
Cl	H	CHF	1	1	н	CH ₂ Br
Cl	н	CHF	1 .	2	H	CH ₂ Cl
Cl	н	CHF	1	2	н	CH ₂ Br
Cl	н	CHCI	1	1	H	CH ₂ Cl
Cl	н	CHCI	1	1	н .	CH ₂ Br
Cl ``	· H	CHCI	1	2	Н	CH ₂ Cl
Cl	н	CHCI	1	2	Н	CH ₂ Br
Ci	Cl	CH ₂	1	1	Н .	CH ₂ Cl
Cİ	CI	CH ₂	1	1	Н .	CH ₂ Br
Cl	CI	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
Ci	CI	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl	CH ₂	1	1 .	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	1	CH ₂ C≖CH	CH ₂ CI
CI	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Ci	Cl	CH ₂	1	2	н	CH ₂ CI
Ci	CI	СH ₂	1	2	Н	CH ₂ Br
Cl	Cl	СH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	CI	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br

Cl	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CI	CH ₂	i	2	CH ₂ C≡CH	CH ₂ CI
CI	CI	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
CI	Cl	CHF	1	1	н	CH ₂ CI
Cl	Cl	CHF	1	1	н	CH ₂ Br
Cl	Cl	CHF	1	1	C(=0)CH ₃	CH ₂ CI
Cl	Ci	CHF	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
CI	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
CI	Cl	CHF	1	1	CH ₂ C≖CH	CH ₂ CI
Cl	Cl	CHF	1	1	CH ₂ C≖CH	CH ₂ Br
Cl	Cl	CHF	1	2	Н	CH ₂ Cl
Cl	CI	CHF	1	2	Н	СН ₂ Вг
Cl	Cl	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Cl	CHF	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Cl	CHF	1	2	со ₂ сн ₃	CH ₂ Cl
Cl	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	1	1	Н	CH ₂ CI
Cl	Cl	CHCI	1	1	Н	CH ₂ Br
Cl	Cl	CHCI	1	1	C(=O)CH ₃	CH ₂ Cl
Cl	Cl	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Cl	CHCI	1	1	СО ₂ СН ₃	CH ₂ CI
Cl	Cl	CHCI	1	1	со ₂ сн ₃	CH ₂ Br
Cl	Cl	CHCl	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CI	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	1	2	н	CH ₂ Cl
Cl	Cl	CHCI	1	2	н	CH ₂ Br
CI	Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ CI
Cl	Cl	CHCI	I	2	C(=0)CH ₃	CH ₂ Br
CI	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CI	CHCI	i	2	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	1	Н	CH ₂ CI
CI	Br	СH ₂	1	1	Н	CH ₂ Br

Cl	Br	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Br	CH ₂	i i	1	C(=O)CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl ·	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	1 .	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	2	Н	CH ₂ Cl
Cl	Br	CH ₂	1	2	H	CH ₂ Br
Cl	Br	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	Br	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
[,] C1	Br	CHF	1	1	H []	CH ₂ Cl
Cl	Br	CHF	1	1	H T	CH ₂ Br
Cl	Br	CHF	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl `	Br	CHF	1	1 `	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF.	1	2	H	CH ₂ CI
Cl	Br	CHF	1	2	н	CH ₂ Br
Cl	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	Br	CHF	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
CI .	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
CI .	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHCl	l	1	н	CH ₂ CI
Cl	Br	CHCI	1	1	Н	CH ₂ Br
Cl	Br	CHCI	1 ·	1	$C(=O)CH_3$	CH ₂ Cl
Cl	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CHCI	1	1	CO_2CH_3	CH ₂ Cl
CI	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	ı	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br

Cl	Br	CHCI	1	2	Н	CH ₂ CI
Cl	Br	CHCI	1	2	Н	CH ₂ Br
Cl	Br	CHCI	ı	2	$C(=O)CH_3$	CH ₂ Cl
Cl	Br	CHCI	ì	2	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CHCI	i	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CH ₂	1	1	Н	CH ₂ CI
Cl	CN	CH ₂	1	1	Н	CH ₂ Br
Cl	CN	CH ₂	1	1	$C(=0)CH_3$	CH ₂ CI
Cl	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
C l	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CH ₂	1	2	Н	CH ₂ Cl
Cl	CN	CH ₂	1	2	Н	CH ₂ Br
Ci	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cì	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHF	1	1	Н	CH ₂ Cl
Cl	CN	CHF	1	1	Н	CH ₂ Br
Cl	CN	CHF	1	1	C(=0)CH ₃	CH ₂ CI
Cl	CN	CHF	1	1	C(=0)CH ₃	CH ₂ Br
Cl	CN	CHF	1	1	CO_2CH_3	CH ₂ Cl
Cl	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
C!	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHF	1	2	Н	CH ₂ Cl
Cl	CN	CHF	1	2	Н	CH ₂ Br
Cl	CN	CHF	1	2	$C(=O)CH_3$	CH ₂ CI
Cl	CN	CHF	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br

Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
CI	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
CI	CN	CHCI	1	1	H ·	CH ₂ CI
Cl	CN	CHCl	1	1	H	CH ₂ Br
Cl ·	CN	CHCI	1	1 :	$C(=O)CH_3$	CH ₂ Cl
Ci '	CN	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
CI	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCl	1	1 .	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCl	1	2	Н	CH ₂ Cl
Cl	CN	CHCI	1	2	H ,	CH ₂ Br
Cl	CN	CHC	1	2	$C(=O)CH_3$	CH ₂ CI
Cl	CN	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
CI	CN	CHCl	1	2	CO ₂ CH ₃	CH ₂ Br
CI	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
				-	.	
• • • •			•	•		
J = 6 and C	0 = 0			•		_
X	Y	Z	n	m	<u>R¹</u>	<u>R²</u>
F	H	CH ₂	1	1	H	CH ₂ Cl
F	H	CH ₂	1	1	H	CH ₂ Br
F	Н	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
F	Н	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	Н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
F	H	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	H	CH ₂	1	2	H	CH ₂ Cl
F	Н	CH ₂	1	2	H	CH ₂ Br
F	Н	CH ₂	1	2	$C(=O)CH_3$	CH ₂ CI
F	Н	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br
F	Н	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
F	Н	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br

PCT	/T	150	6	/1	61	1	1

F	H	CHF	1	1	Н	CH ₂ CI
F	Н	CHF	1	1	н	CH ₂ Br
F	Н	CHF	1	1	C(=O)CH ₃	CH ₂ CI
F	Н	CHF	1	1	C(=0)CH ₃	CH ₂ Br
F	Н	CHF	1	1	СО ₂ СН ₃	CH ₂ Cl
F	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Н	CHF	1	1	CH ₂ C ≡ CH	CH ₂ Br
F	Н	CHF	1	2	Н	CH ₂ Cl
F	Н	CHF	1	2	Н	CH ₂ Br
F	Н	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
F	Н	CHF	1	2	C(=0)CH ₃	CH ₂ Br
F	Н	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Н	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	H	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	H	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Н	CHCI	1	1	Н	CH ₂ Cl
F	Н	CHCI	1	1	н	CH ₂ Br
F	Н	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
F	H	CHCI	1	1	$C(=0)CH_3$	CH ₂ Br
F	Н	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	H	CHCI	1	1	со ₂ сн ₃	CH ₂ Br
F	H	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	H	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	H	CHCI	1	2	Н	CH ₂ CI
F	H	CHCI	1	2	H	CH ₂ Br
F	H	CHCI	1	2	C(=0)CH ₃	CH ₂ Cl
F	H	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
F	H	CHCI	1	2	со ₂ сн ₃	CH ₂ CI
F	H	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	H	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
F	H	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CH ₂	1	1	H	CH ₂ CI
F	Cl	СH ₂	1	1	H	CH ₂ Br
F	Cl	СH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
F	Cl	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Br
F	Cl	CH ₂	1	1	со ₂ сн ₃	CH ₂ CI
F	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br

F ·	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl ·	CH ₂	1	l	CH ₂ C≡CH	CH ₂ Br
F	Cl	CH ₂	1	2	н	CH ₂ CI
F	Cl	СH ₂	1	2 .	H	CH ₂ Br
F	Cl	CH ₂	1	2	C(=O)CH ₃	CH ₂ CI
F	Cl	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Cl '	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	1	H	CH ₂ CI
F	Cl	CHF	1	1	Н	CH ₂ Br
F '	Cl	CHF	1	1	C(=0)CH ₃	CH ₂ CI
F	Cl	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Ė	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CHF	1	1 :	CO ₂ CH ₃	CH ₂ Br
F :	Cl ·	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
F .	Cl ·	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	2	H *	CH ₂ CI
F	Cl	CHF	1	2	н .	CH ₂ Br
F	Cl	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
F	Cl	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	Cl	CHF	1 :	2	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl :	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCl	1	1	н	CH ₂ Cl
F	· Cl	CHCI	1	1	H ,	CH ₂ Br
F	Cl	CHCI	1	1	$C(=O)CH_3$	CH ₂ Cl
F.	Cl	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHCl	1	1	CO ₂ CH ₃	CH ₂ Br
F	C l	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	2	Н	CH ₂ Cl
F	Cl	CHCI	1	2	Н	CH ₂ Br
F	Cl	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
F	Cl	CHCI	1 .	2	C(=O)CH ₃	CH ₂ Br

Cl	CHCI	1	2	CO ₂ CH ₃	СH ₂ CI
Cl	CHCI	1	2	со ₂ сн ₃	CH ₂ Br
Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
CI	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Br	CH ₂	1	1	Н	CH ₂ CI
Br	CH ₂	1	1	Н	CH ₂ Br
Br	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
Br	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Br	CH ₂	1	1	CH ₂ C≌CH	CH ₂ CI
Br		1	1	CH ₂ C≡CH	CH ₂ Br
Br	CH ₂	1	2	н	CH ₂ CI
Br	CH ₂	1	2	Н	CH ₂ Br
Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ CI
. Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
Br	CH ₂	1	2	CH ₂ C≖CH	CH ₂ Br
Br	CHF	1	1	Н	CH ₂ Cl
Br	CHF	1	1	Н	CH ₂ Br
Br	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
Br	CHF	1	1	C(=0)CH ₃	CH ₂ Br
Br	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Br	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Br	CHF	1	2	Н	CH ₂ CI
Br	CHF	1	2	Н	CH ₂ Br
Br	CHF	1	2	C(=0)CH ₃	CH ₂ CI
Br	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
Br	CHF	1	2	CH ₂ C ≅ CH	CH ₂ Br
Br	CHCI	1	1	Н	CH ₂ Cl
Br	CHCI	1	1	Н	CH ₂ Br
	CI CI CI CI Br	CI CHCI CI CHCI CI CHCI CI CHCI Br CH2 Br CH5 Br CH5 Br CH6	CI CHCI I CI CHCI I CI CHCI I Br CH2 I Br CH4 I Br CHF II CI CHCI I 2 CI CHCI I 2 CI CHCI I 2 Br CH2 I 1 Br CH2 I 2 Br CH2 I 1 2 Br CH2 I 1 2 Br CH2 I 1 1 Br CH5 I 1 1 Br CHF I 2	CI CHCI I 2 CO ₂ CH ₃ CI CHCI I 2 CH ₂ C≡CH CI CHCI I 2 CH ₂ C≡CH Br CH ₂ I I H Br CH ₂ I I C(=0)CH ₃ Br CH ₂ I I C(=0)CH ₃ Br CH ₂ I I CO ₂ CH ₃ Br CH ₂ I I CO ₂ CH ₃ Br CH ₂ I I CO ₂ CH ₃ Br CH ₂ I I CO ₂ CH ₃ Br CH ₂ I I CO ₂ CH ₃ Br CH ₂ I I CO ₂ CH ₃ Br CH ₂ I I CH ₂ C≡CH Br CH ₂ I I CC ₂ CH ₃ Br CH ₂ I I CC ₂ CH ₃ Br CH ₂ I CC ₂ CO ₂ CH ₃ Br CH ₂ I CC ₂ CO ₂ CH ₃ Br CH ₂ I CC ₂ CO ₂ CH ₃ Br CH ₂ I CC ₂ CCH ₃ Br CH ₂ I CC ₂ CCCH ₃ Br CH ₂ I CC ₂ CCCH ₃ Br CH ₂ I CC ₂ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	

F	Br	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
F	Br	CHCI	1 '	i	$C(=O)CH_3$	CH ₂ Br
F	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F .	Br	CHCI	1 '	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	Br	CHCl	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CHCI	1	2	Н	CH ₂ Cl
F	Br	CHCI	1	2	H	CH ₂ Br
F	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Cl
F	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F ·	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F ·	Вг	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
F	Br	CHCl	1	2	CH ₂ C≡CH	CH ₂ Br
F.	CN	CH ₂	1	1 .	H :	CH ₂ Cl
F '	CN	CH ₂	1	1	H	CH ₂ Br
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
F	CN	CH ₂	1	1	$C(=0)CH_3$	CH ₂ Br
F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	1	CH ₂ C≖CH	CH ₂ CI
F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1	2	H	CH ₂ CI
F	CN	CH ₂	1	2	н	CH ₂ Br
F	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ CI
F	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	CN	CH ₂	ì	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1	1	н	CH ₂ CI
F	CN	CHF	1	1	Н	CH ₂ Br
F	CN	CHF	1	1	C(=O)CH ₃	CH ₂ CI
F	CN	CHF	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	1	CO_2CH_3	CH ₂ CI
F	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Br

F	CN	CHF	1	2	Н	CH ₂ Cl
F	CN	CHF	1	2	Н	CH ₂ Br
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ CI
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHF	1	2	СО ₂ СН ₃	CH ₂ Br
F	CN	CHF	1	2	CH ₂ C≅CH	CH ₂ CI
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	1	Н	CH ₂ Cl
F	CN	CHCI	1	1	Н	CH ₂ Br
F	CN	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
F	CN	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
F	CN	CHCI	1	1	СО ₂ СН ₃	CH ₂ CI
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	2	Н	CH ₂ Cl
F	CN	CHCI	1	2	Н	CH ₂ Br
F	CN	CHCI	1	2	$C(=O)CH_3$	CH ₂ CI
F	CN	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	H	CH ₂	1	1	Н	CH ₂ CI
Cl	H	CH ₂	1	1	H	CH ₂ Br
Cl	H	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Cl
Cl	Н	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl	H	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Ci	H	CH ₂	1	1	CH ₂ C≅CH	CH ₂ Cl
Cl	Н	CH ₂	1	i	CH ₂ C≡CH	CH ₂ Br
Cl	H	CH ₂	1	2	Н	CH ₂ CI
Cl	Н	CH ₂	1	2	Н	CH ₂ Br
Cl	Н	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Н	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	Н	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	H	CH ₂	1	2	со ₂ сн ₃	CH ₂ Br

CI	н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
CI CI	H	CH ₂	1 '	2	CH ₂ C≡CH	CH ₂ Br
CI	H	CHF	1	1	н	CH ₂ Cl
Cl	н ′	CHF	1	i	Н	CH ₂ Br
Cl	н	CHF	1 .	1 .	C(=O)CH ₃	CH ₂ CI
CI	н	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	н	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	H	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
CI	н	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	H	CHF	1	2	Н	CH ₂ CI
Cl	Н	CHF	1	2	н	CH ₂ Br
Cl ·	Н	CHF	1	2	C(=O)CH ₃	CH ₂ CI
CI	Н	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Н	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	н	CHF	1 .	2	CO ₂ CH ₃	CH ₂ Br
Cl ·	н	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cì	Н	CHF '	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	н .	CHCI	1	1	H	CH ₂ Cl
Cl	н	CHCI	1	1	н .	CH ₂ Br
Cl ·	Н	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Н	CHCl	1	1	C(=O)CH ₃	CH ₂ Br
Cl	н	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Н	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl ·	Н	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Н	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Н	CHCI	1	2	Н	CH ₂ Cl
C l	Н	CHCI	1	2	Н	CH ₂ Br
Cl	Н	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
Cl	Н	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
CI	Н	CHCI	1 '	2	CO ₂ CH ₃	CH ₂ Br
CI	н	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
CI	Н	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CH ₂	1	1	Н	CH ₂ CI
Cl	Cl	CH ₂	1	l	Н	CH ₂ Br
Cl	Cl	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Cl
Cl	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br

Cl	Cl	CH ₂	1	1	CO_2CH_3	CH ₂ CI
Cl	CI	СH ₂	1	1	со ₂ сн ₃	CH ₂ Br
CI	Cl	СH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
CI	Cl	CH ₂	1	i	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CH ₂	1	2	Н	CH ₂ Cl
Cl	Cl	CH ₂	1	2	Н	CH ₂ Br
Ci	Cl	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
CI	Cl	СH ₂	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
CI	Ci	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
CI	Cl	CHF	1	1	Н	CH ₂ CI
Cl	Cl	CHF	1	1	Н	CH ₂ Br
Cl	Cl	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
Cl	Cl	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Ci	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	CI	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHF	1	2	Н	CH ₂ CI
Cl	Cl	CHF	1	2	Н	CH ₂ Br
CI	Cl	CHF	1	2	C(=0)CH ₃	CH ₂ CI
Cl	Cl	CHF	1	2	$C(=0)CH_3$	CH ₂ Br
Cl	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	1	1	Н	CH ₂ Cl
Cl	Cl	CHCI	1	1	Н	CH ₂ Br
CI	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	CI	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
CI	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
CI	Cl	CHCI	1	1	СО ₂ СН ₃	CH ₂ Br
CI	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	CI	CHCI	ì	1	CH ₂ C≅CH	CH ₂ Br
CI	Cl	CHCI	1	2	Н	CH ₂ Cl
CI	Cl	CHCI	l	2	Н	CH ₂ Br

Cl	Cl	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
Cl	Cl	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Ci	Cl	CHCI	1	2	CO_2CH_3	CH ₂ Br
Cl	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	1	н	CH ₂ Cl
Cl	Br	CH ₂	1	1	Н	CH ₂ Br
Cl	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
Cl	Br	CH ₂	. 1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
CI	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	2	H	CH ₂ Cl
CI	Br	CH ₂	1	2	H	CH ₂ Br
Cl	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
Ci	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
CI	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
CI	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
CI .	Br	CHF	1	1	, Н	CH ₂ CI
Cl	Br	CHF	1	1	H	CH ₂ Br
Cl	Br	CHF	1	1	C(=0)CH ₃	CH ₂ CI
Cl	Br	CHF	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
CI	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
CI `	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	2	H	CH ₂ CI
CI	Br	CHF	1	2	H .	CH ₂ Br
Cl	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
CI	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CHF	t	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	t	2	CH ₂ C≡CH	CH ₂ CI
CI	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br

CI	Br	CHCI	I	1	Н	CH ₂ CI
Cl	Br	CHCI	I	1	Н	CH ₂ Br
Cl	Br	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Br	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Ci
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHCI	1	1	CH ₂ C ≡ CH	CH ₂ Br
Cl	Br	CHCI	1	2	н	CH ₂ CI
Cl	Br	CHCI	. 1	2	н	CH ₂ Br
Cl	Br	CHCI	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
CI	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHCI	1	2	CH ₂ C≡CH	СН ₂ Вг
Ci	CN	CH ₂	1	1	H	CH ₂ Cl
Cl	CN	CH ₂	1	1	H	СН ₂ Вг
Cl	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
CI	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CH ₂	1	2	H	CH ₂ Cl
Cl	CN	CH ₂	1	2	Н	CH ₂ Br
Cl	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
CI	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
CI	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
CI	CN	CHF	1	1	H	CH ₂ CI
Cl	CN	CHF	1	1	Н	CH ₂ Br
Cl	CN	CHF	I	1	$C(=O)CH_3$	CH ₂ Cl
Cl	CN	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHF	1	1	СО ₂ СН ₃	CH ₂ Cl
CI	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ Br

	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
CI	CN		1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHF	1	2	Н	CH ₂ CI
CI	CN	CHF	1	2	н	CH ₂ Br
Cl	CN	CHF	1	2	C(=O)CH ₃	CH ₂ CI
Cl	CN	CHF	1		C(=O)CH ₃	CH ₂ Br
Cl	CN	CHF	1	2	_	_
Cl	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Ci	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCI	1	1	Н	CH ₂ Cl
Cl	CN	CHCI	1	1	Н	CH ₂ Br
Ci	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CHCI	1	1 .	CH ₂ C≡CH	CH ₂ Br
Cl "	CN	CHCI	1	2	н .	CH ₂ Cl
Cl	CN	CHCI	1	2	н	CH ₂ Br
Cl	CN	CHCl	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl ·	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl .	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCI	•	_	~	-

J = 6, $X = F$, $Y = Cl$, $n = m = 1$, and $O = O$				
<u>Z</u>	<u>R</u> 1	<u>R²</u>		
CHF	н	CH ₂ F		
CHF	Н	CH ₂ OCH ₃		
CHF	н	CH ₂ CN		
CHF	Н	CH ₂ SCH ₃		
CHF	Н	CH ₂ SO ₂ CH ₃		
CHF	Н	CHCl ₂		
CHF	н	CH ₂ CH ₂ Cl		
CHF	$C(=O)CH_3$	CH ₂ F		

CHF	C(=O)CH ₃	СН ₂ ОСН ₃
CHF	C(=O)CH ₃	CH ₂ CN
CHF	C(=O)CH ₃	CH ₂ SCH ₃
CHF	C(=O)CH ₃	CH ₂ SO ₂ CH ₃
CHF	C(=0)CH ₃	CHCl ₂
CHF	C(=O)CH ₃	CH ₂ CH ₂ CI
CHF	CO ₂ CH ₃	CH₂F
CHF	CO ₂ CH ₃	CH ₂ OCH ₃
CHF	CO_2CH_3	CH ₂ CN
CHF	CO ₂ CH ₃	CH ₂ SCH ₃
CHF	CO ₂ CH ₃	CH ₂ SO ₂ CH ₃
CHF	со ₂ сн ₃	CHCl ₂
CHF	CO ₂ CH ₃	CH ₂ CH ₂ CI
CHF	CH ₂ C ≡ CH	CH ₂ F
CHF	CH ₂ C≡CH	СH ₂ ОСН ₃
CHF	CH ₂ C≡CH	CH ₂ CN
CHF	CH ₂ C≡CH	CH ₂ SCH ₃
CHF	CH ₂ C≡CH	CH ₂ SO ₂ CH ₃
CHF	CH ₂ C≡CH	CHCl ₂
CHF	CH ₂ C ≡ CH	CH ₂ CH ₂ CI
CHCI	H	CH ₂ F
CHCI	Н	CH ₂ OCH ₃
CHCI	Н	CH ₂ CN
CHCI	H	CH ₂ SCH ₃
CHCI	H	CH ₂ SO ₂ CH ₃
CHCI	Н	CHCl ₂
CHCI	H	CH ₂ CH ₂ CI
CHCl	$C(=O)CH_3$	CH ₂ F
CHCI	$C(=O)CH_3$	CH ₂ OCH ₃
CHCI	C(=O)CH ₃	CH ₂ CN
CHCI	C(=O)CH ₃	CH ₂ SCH ₃
CHCI	$C(=O)CH_3$	CH ₂ SO ₂ CH ₃
CHCI	C(=O)CH ₃	CHCl ₂
CHCI	$C(=O)CH_3$	CH ₂ CH ₂ CI
CHCI	CO ₂ CH ₃	CH ₂ F
CHCI	CO ₂ CH ₃	CH ₂ OCH ₃
CHCI	CO ₂ CH ₃	CH ₂ CN
CHCI	CO ₂ CH ₃	CH ₂ SCH ₃

CHCI	CO ₂ CH ₃	CH ₂ SO ₂ CH ₃
CHCI	CO ₂ CH ₃	CHCl ₂
CHCI	CO ₂ CH ₃	CH ₂ CH ₂ CI
CHCI	CH ₂ C≡CH	CH ₂ F
CHCI	CH ₂ C≡CH	CH ₂ OCH ₃
CHCl .	CH ₂ C≡CH	CH ₂ CN
CHCl	CH ₂ C≡CH	CH ₂ SCH ₃
CHCI	CH ₂ C≡CH	CH ₂ SO ₂ CH ₃
CHCI	CH ₂ C≡CH	CHCl ₂
CHCI	CH ₂ C≡CH	CH ₂ CH ₂ CI
CHBr	• H	CH ₂ Cl
CHBr	, H	CH ₂ F
CHBr	H	CH ₂ OCH ₃
CHBr	Н	CH ₂ CN
CHBr	Н	CH ₂ SCH ₃
CHBr	H	CH ₂ SO ₂ CH ₃
CHBr	H	CHCl ₂
CHBr	H	CH ₂ CH ₂ CI
CHBr	C(=O)CH ₃	CH ₂ Cl
CHBr	$C(=O)CH_3$	CH ₂ F
CHBr	$C(=O)CH_3$	CH ₂ OCH ₃
CHBr	C(=0)CH ₃	CH ₂ CN
CHBr	$C(=O)CH_3$	CH ₂ SCH ₃
CHBr	C(=O)CH ₃	CH ₂ SO ₂ CH ₃
CHBr	$C(=O)CH_3$	CHCl ₂
CHBr	C(=0)CH ₃	CH ₂ CH ₂ Cl
CHBr	CO ₂ CH ₃	CH ₂ Cl
CHBr	CO ₂ CH ₃	CH ₂ F
CHBr	CO ₂ CH ₃	CH ₂ OCH ₃
CHBr	CO ₂ CH ₃	CH ₂ CN
CHBr	CO ₂ CH ₃	CH ₂ SCH ₃
CHBr	CO ₂ CH ₃	CH ₂ SO ₂ CH ₃
CHBr	CO ₂ CH ₃	CHCI ₂
CHBr	CO ₂ CH ₃	CH ₂ CH ₂ CI
CHBr	CH ₂ C≡CH	CH ₂ CI
CHBr	CH ₂ C≡CH	CH ₂ F
CHBr	CH ₂ C≡CH	CH ₂ OCH ₃
CHBr	CH ₂ C≡CH	CH ₂ CN

CHBr	CH ₂ C≡CH	CH ₂ SCH ₃
CHBr	CH ₂ C=CH	CH ₂ SO ₂ CH ₃
CHBr	CH ₂ C≡CH	CHCl ₂
CHBr	CH ₂ C≖CH	CH ₂ CH ₂ CI
CHCI	C(=O)Ph	CH ₂ Cl
CHCI	C(=O)CHCl ₂	CH ₂ CI
CHCI	C(=O)CH(CI)CH ₃	CH ₂ Cl
CHCI	$C(=O)(CH_2)_{18}CH_3$	CH ₂ Cl
CHCI	C(=O)CH ₂ Cl	CH ₂ CI
CHCI	$C(=O)CH_2CH_3$	CH ₂ CI
CHCI	$C(=O)CH(CH_3)_2$	CH ₂ CI
CHCI	$C(=O)CH(CH_2)_2$	CH ₂ Cl

J = 7, Y = Cl, and $R^2 = CH_2Cl$

X	<u>R1</u>	<u>R16</u>
F	Н	CH ₃
F	C(=O)CH ₃	CH ₃
F	CO ₂ CH ₃	CH ₃
F	Н	CF ₃
F	C(=O)CH ₃	CF ₃
F	CO ₂ CH ₃	CF ₃
Cl	H	CH ₃
Cl	C(=O)CH ₃	CH ₃
Cl	CO ₂ CH ₃	CH ₃
Cl	Н	CF ₃
Ci	C(=0)CH ₃	CF ₃
C1	CO ₂ CH ₃	CF ₃

J = 8, Y = C1, O = O, n = m = 1, $R^2 = CH_2C1$, and $R^{17} = R^{18} = H$

X	<u>R1</u>	<u>Z</u>
F	H	CH ₂
F	$C(=O)CH_3$	CH ₂
F	CO ₂ CH ₃	CH ₂
F	Н	CHF
F	$C(=O)CH_3$	CHF
F	CO ₂ CH ₃	CHF
Cl	Н	CH ₂

Cl	C(=O)CH ₃	CH ₂	
Cl	CO ₂ CH ₃	CH ₂	
Cl	H	CHF	
Cl	C(=O)CH ₃	CHF	
Cl	CO ₂ CH ₃	CHF	•
	•		
J=9, Q=0, Q	1 = S, Y = Cl, and R	$^2 = CH_2Cl$	
<u>X</u>	<u>R1</u>	R ¹⁹	<u>R²⁰</u>
F	Н	CH ₃	CH ₃
F	C(=O)CH ₃	CH ₃	CH ₃
F	CO ₂ CH ₃	CH ₃	CH ₃
F	Н	CH ₂ CH ₃	CH ₃
F	C(=0)CH ₃	CH ₂ CH ₃	CH ₃
F	CO ₂ CH ₃	CH ₂ CH ₃	CH ₃
F	Н	CH ₂ C≡CH	CH ₃
F	C(=O)CH ₃	CH ₂ C≡CH	CH ₃
F	CO ₂ CH ₃	CH ₂ C≡CH	CH ₃
F	H	CF ₃	CH ₃
F	C(=O)CH ₃	CF ₃	CH ₃
F	CO ₂ CH ₃	. CF ₃	CH ₃
F	Н	CH ₃	CH ₂ CH ₃
F	C(=0)CH ₃	CH ₃	CH ₂ CH ₃
F	CO ₂ CH ₃	CH ₃	CH ₂ CH ₃
F	н -	CH ₂ CH ₃	CH ₂ CH ₃
F	C(=O)CH ₃	CH ₂ CH ₃	CH ₂ CH ₃
F	CO ₂ CH ₃	CH ₂ CH ₃	CH ₂ CH ₃
F	Н	CH ₂ C≡CH	CH ₂ CH ₃
F	C(=O)CH ₃	CH ₂ C≡CH	CH ₂ CH ₃
F	CO ₂ CH ₃	CH ₂ C≡CH	CH ₂ CH ₃
F	H	CF ₃	CH ₂ CH ₃
F	C(=0)CH ₃	CF ₃	CH ₂ CH ₃
F	CO ₂ CH ₃	CF ₃	CH ₂ CH ₃
F	Н	CH ₃	CH ₂ C≡CH
F	C(=O)CH ₃	CH ₃	CH ₂ C≡CH
F	CO ₂ CH ₃	CH ₃	CH ₂ C≢CH
F	н .	CH ₂ CH ₃	CH ₂ C≡CH
F	C(=O)CH ₃	CH ₂ CH ₃	CH ₂ C≡CH
F	CO ₂ CH ₃	CH ₂ CH ₃	CH ₂ C≅CH

F	Н	CH ₂ C≖CH	CH ₂ C≡CH
F	C(=O)CH ₃	CH ₂ C≡CH	CH ₂ C≡CH
F	CO ₂ CH ₃	CH ₂ C≡CH	CH ₂ C ≡ CH
F	Н	CF ₃	CH ₂ C ≖ CH
F	C(=O)CH ₃	CF ₃	CH ₂ C≡CH
F	CO ₂ CH ₃	CF ₃	CH ₂ C≡CH
F	Н	CH ₃	CF ₃
F	C(=O)CH ₃	CH ₃	CF ₃
F	CO ₂ CH ₃	CH ₃	CF ₃
F	Н	CH ₂ CH ₃	CF ₃
F	C(=O)CH ₃	CH ₂ CH ₃	CF ₃
F	CO ₂ CH ₃	CH ₂ CH ₃	CF ₃
F	H	CH ₂ C≡CH	CF ₃
F	C(=O)CH ₃	CH ₂ C ≡ CH	CF ₃
F	CO ₂ CH ₃	CH ₂ C≡CH	CF ₃
F	Н	CF ₃	CF ₃
F	$C(=O)CH_3$	CF ₃	CF ₃
F	CO ₂ CH ₃	CF ₃	CF ₃
Cl	H	CH ₃	СH ₃
Cl	C(=O)CH ₃	CH ₃	СН3
CI	со ₂ сн ₃	CH ₃	CH ₃
Cl	Н	CH ₂ CH ₃	СН3
Cl	C(=O)CH ₃	CH₂CH₃	СН3
Cl	CO ₂ CH ₃	CH ₂ CH ₃	СН3
CI	н	CH ₂ C≕CH	CH ₃
Cl	C(=O)CH ₃	CH ₂ C≖CH	СН3
Cl	CO ₂ CH ₃	CH ₂ C≡CH	CH ₃
Cl	н	CF ₃	СН3
Cl	C(=O)CH ₃	CF ₃	CH ₃
Cl	CO ₂ CH ₃	CF ₃	СH ₃
Cl	Н	CH ₃	CH ₂ CH ₃
Ci	$C(=O)CH_3$	CH ₃	CH ₂ CH ₃
Cl	CO ₂ CH ₃	CH ₃	CH ₂ CH ₃
Cl	Н	CH ₂ CH ₃	CH ₂ CH ₃
Cl	C(=O)CH ₃	CH ₂ CH ₃	CH ₂ CH ₃
Cl	со ₂ сн ₃	CH ₂ CH ₃	СH ₂ CH ₃
Cl	Н	CH ₂ C≡CH	CH ₂ CH ₃
Cl	C(=O)CH ₃	CH ₂ C≡CH	СH ₂ CH ₃

Cl	CO ₂ CH ₃	CH ₂ C≡CH	CH ₂ CH ₃		
Cl	Н	CF ₃	CH ₂ CH ₃		
Cl	C(=O)CH ₃	CF ₃	CH ₂ CH ₃		
Cl	CO ₂ CH ₃	CF ₃	CH ₂ CH ₃		
CI	Н	CH ₃	CH ₂ C≡CH		
Cl	C(=O)CH ₃	CH ₃	CH ₂ C≡CH		
CI	CO ₂ CH ₃	CH ₃	CH ₂ C≡CH	•	
Cl	н	CH ₂ CH ₃	CH ₂ C≡CH		
CI	C(=O)CH ₃	CH ₂ CH ₃	CH ₂ C≡CH		
Cl	CO ₂ CH ₃	CH ₂ CH ₃	CH ₂ C≡CH		
Cl	н	CH ₂ C≡CH	CH ₂ C≡CH		
Cl	C(=O)CH ₃	CH ₂ C≡CH	CH ₂ C≡CH		
Cl	CO ₂ CH ₃	CH ₂ C≡CH	CH ₂ C≡CH		
Cl	Н	CF ₃	CH ₂ C≡CH		
Cl	$C(=O)CH_3$	CF ₃	CH ₂ C≡CH		
Cl	CO ₂ CH ₃	CF ₃	CH ₂ C≡CH		
Cl	н	CH ₃	CF ₃	•	
Cl	C(=O)CH ₃	CH ₃	CF ₃		
Cl	CO ₂ CH ₃	CH ₃	CF ₃		
Cl	Н	CH ₂ CH ₃	CF ₃		
Cl	C(=O)CH ₃	CH ₂ CH ₃	CF ₃		
Cl	CO ₂ CH ₃	CH ₂ CH ₃	CF ₃		
Cl	Н .	CH ₂ C≡CH	CF ₃		
Cl	C(=O)CH ₃	CH ₂ C≡CH	CF ₃		
Cl	CO ₂ CH ₃	CH ₂ C≡CH	CF ₃		
Cl	н	CF ₃	CF ₃		
Cl	C(=O)CH ₃	CF ₃	CF ₃		
C l	CO ₂ CH ₃	CF ₃	CF ₃		
$J = 10, O^1 = S$	$S, Y = Cl, \text{ and } R^2 = C$				
X	<u>R¹</u>	Z	n		<u>m</u>
F	Н	CH ₂	1		1
F	$C(=O)CH_3$	CH ₂	1		1
F	CO ₂ CH ₃	CH ₂	1		1
F	Н	CHF	1		1
F	$C(=O)CH_3$	CHF	1		1
F	CO ₂ CH ₃	CHF	1		1
F	Н	CH ₂	1		2

VO 97/15576

PCT	/ E	ICO	£ 11		•	•
PCI	/1	159	n/I	ÐΙ	ĸ	п

F	C(=	=O)CH ₃	CH ₂	1		2
F	CC	D ₂ CH ₃	CH ₂	1		2
F		Н	CHF	1		2
F	C(=	=O)CH ₃	CHF	1		2
F	CC	O ₂ CH ₃	CHF	1		2
Cl		Н	CH ₂	1		1
Cl	C(=	=O)CH ₃	CH ₂	1		1
Cl	CC	D ₂ CH ₃	CH ₂	. 1		1
Cl		Н	CHF	1		1
Cl	C(=	=O)CH ₃	CHF	1		1
Cl	CC	D ₂ CH ₃	CHF	1		1
Cl		Н	CH ₂	1		2
Cl	C(=	=O)CH ₃	CH ₂	1		2
Cl	CC	O ₂ CH ₃	CH ₂	1		2
Cl		Н	CHF	1		2
CI	C(=	=O)CH ₃	CHF	1		2
Cl	C	O ₂ CH ₃	CHF	1		2
	01					
J = 11 and R		•				2
X	Y	Z	п	<u>m</u>	<u>R</u> 1	<u>R²</u>
F	H	CH ₂	1	1	H	CH ₂ CI
F	H	CH ₂	1	1	Н	CH ₂ Br
F -	H	CH ₂	1	2	H	CH ₂ CI
F -	H	CH ₂	1	2	Н	CH ₂ Br
F	H	CHF	1	1	Н	CH ₂ CI
F	н	CHF	1	1	H	CH ₂ Br
F	H	CHF	1	2	H	CH ₂ CI
F	Н	CHF	1	2	Н	CH ₂ Br
F	H	CHCI	1	1	H	CH ₂ Cl
F	H	CHCI	1	1	н	CH ₂ Br
F	н	CHCI	1	2	H	CH ₂ CI
F	H	CHCI	1	2	H	CH ₂ Br
F	Cl	CH ₂	1	1	Н	CH ₂ CI
F	Cl	CH ₂	1	1	H	CH ₂ Br
F	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
F	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	Cl	CH ₂	1	1	CO_2CH_3	CH ₂ CI

F	Cl	CH ₂	1	i	CO ₂ CH ₃	CH ₂ Br
F	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CH ₂	1	2	Н	CH ₂ Cl
F	Cl	CH ₂	1	2	Н	CH ₂ Br
F	Cl	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
F	Cl	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	1	Н	CH ₂ CI
F	Cl	CHF	1	, 1	H	CH ₂ Br
F	Cl	CHF	1	1	$C(=O)CH_3$	CH ₂ Cl
F	Cl	CHF	1 ,	1	$C(=O)CH_3$	CH ₂ Br
F	Cl	CHF	1	,1	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHF	1	1	CH ₂ C ≡ CH	CH ₂ Br
F	Cl	CHF	1	2	Н	CH ₂ Cl
F	Cl	CHF	1	2 .	Н	CH ₂ Br
F ·	CI	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
F	Cl	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	CI	CHF	i	2	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	1	Н	CH ₂ Cl
F	Cl	CHCI	1	1	Н	CH ₂ Br
F	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
F	Cl	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHCl	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHCl	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	2	Н	CH ₂ Cl
F	Cl	CHCI	1	2	Н	CH ₂ Br
F	Cl	CHCI	1	2	$C(=O)CH_3$	CH ₂ CI

F	Cl	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CO_2CH_3	CH ₂ CI
F	Cl	CHCI	1	2	CO_2CH_3	CH ₂ Br
F	Cl	CHCI	1	2	CH ₂ C≅CH	CH ₂ Cl
F	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	i	1	Н	CH ₂ Cl
F	Br	CH ₂	1	1	Н	CH ₂ Br
F	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
F	Br	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CO_2CH_3	CH ₂ CI
F	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Br	CH ₂	1	1	CH ₂ C ≍ CH	CH ₂ Br
F	Br	CH ₂	1	2	Н	CH ₂ Cl
F	Br	CH ₂	1	2	Н	CH ₂ Br
F	Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Cl
F	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	2	CH ₂ C≖CH	CH ₂ Cl
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CHF	1	1	Н	CH ₂ Cl
F	Br	CHF	1	1	Н	CH ₂ Br
F	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
F	Br	CHF	1	1	$C(=O)CH_3$	CH ₂ Br
F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
F	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CHF	1	2	Н	CH ₂ Cl
F	Br	CHF	1	2	Н	CH ₂ Br
F	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
F	Br	CHF	1	2	$C(=O)CH_3$	СН ₂ Вг
F	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Br	CHF	1	2	со ₂ сн ₃	СН ₂ Вг
F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CHCI	1	1	Н	CH ₂ CI

F	Br	CHCI	1 ,	1 .	Н	CH ₂ Br
F	Br	CHCI	1 .	1 .	C(=O)CH ₃	CH ₂ CI
F	Br	CHCI	1	1 .	$C(=O)CH_3$	CH ₂ Br
F	Br	CHCI	1 .	1	CO ₂ CH ₃	CH ₂ CI
F	Br	CHCl	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CHCI	1	1	CH ₂ C≖CH	CH ₂ Cl
F	Br	CHCI	1	1	CH ₂ C≖CH	CH ₂ Br
F	Br	CHCI	1	2	Н	CH ₂ Cl
F ;	Br	CHCI	1	2	Н	CH ₂ Br
F	Br	CHCI	. 1	2 .	$C(=O)CH_3$	CH ₂ Cl
F	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F	Br	CHCl	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Br	CHCI	1 .	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CHC1	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1 .	1 .	H	CH ₂ Cl
F	CN	· CH ₂	1	1	н	CH ₂ Br
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1 .	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CH ₂	1 .	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1 .	1 ;	CH ₂ C≡CH	CH ₂ Cl
F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1 .	2	H	CH ₂ Cl
F	CN	CH ₂	1	2	H	CH ₂ Br
F ·	CN	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
F	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
F	CN	CH ₂	1 .	2	CO ₂ CH ₃	CH ₂ Cl
F	CN	CH ₂	1 ,	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CH ₂	1	2 .	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1 .	1	H	CH ₂ CI
F	CN	CHF	1 .	1	H	CH ₂ Br
F	CN	CHF	1	1	$C(=O)CH_3$	CH ₂ Cl
F	CN	CHF	1 .	1	$C(=O)CH_3$	CH ₂ Br
F	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHF	1 .	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl

F	CN	CHF	1	1	CH ₂ C≝CH	CH ₂ Br
F	CN	CHF	1	2	н	CH ₂ CI
F	CN	CHF	1	2	н	CH ₂ Br
F	CN	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	· 1	1	Н	CH ₂ CI
F	CN	CHCI	1	1	Н	CH ₂ Br
F	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ Cl
F	CN	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	2	Н	CH ₂ Cl
F	CN	CHCI	1	2	Н	CH ₂ Br
F	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
F	CN	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
F	CN	CHCI	1	2	со ₂ сн ₃	CH ₂ Cl
F	CN	CHCI	1	2	СО ₂ СН ₃	CH ₂ Br
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	H	CH ₂	1	1	Н	CH ₂ Cl
CI	H	CH ₂	1	1	Н	CH ₂ Br
CI	H	CH ₂	1	2	Н	CH ₂ Cl
CI	H	CH ₂	1	2	Н	CH ₂ Br
Cl	H	CHF	1	1	Н	CH ₂ Cl
Cl	H	CHF	1	1	Н	CH ₂ Br
Cl	Н	CHF	I	2	н	CH ₂ Cl
Cl	H	CHF	1	2	Н	CH ₂ Br
Cl	Н	CHCI	1	1	н	CH ₂ Cl
Cl	H	CHCI	1	1	н	CH ₂ Br
CI	Н	CHCI	1	2	н	CH ₂ Cl
Cl	Н	CHCI	1	2	н	CH ₂ Br
Cl	Cl	CH ₂	1	1	Н	CH ₂ Cl

	Cl	Cl	CH ₂	1		1		Н	CH ₂ Br
	Ci	Cl	CH ₂	i		1		C(=O)CH ₃	CH ₂ Cl
•	CI	Cl	CH ₂	1		1		C(=O)CH ₃	CH ₂ Br
•	CI	Cl .	CH ₂	1		1		CO ₂ CH ₃	CH ₂ Cl
	Cl	CI	CH ₂	1		1		CO ₂ CH ₃	CH ₂ Br
	Cl	Cl	CH ₂	1		1		CH ₂ C≡CH	CH ₂ CI
	Cl	Cl	CH ₂	1	•	1		CH ₂ C≡CH	CH ₂ Br
٠.	Cl	Cl	CH ₂	1		2	,	Н	CH ₂ Cl
	Cl	Cl	CH ₂	1		2		H	CH ₂ Br
	Cl	CI	CH ₂	1		2		C(=O)CH ₃	CH ₂ Cl
	Cl	Cl	CH ₂	1		2		$C(=O)CH_3$	CH ₂ Br
•	Cl	Cl	CH ₂	1		2	•	со ₂ сн ₃	CH ₂ CI
	Cl	Cl	CH ₂	1		2		CO ₂ CH ₃	CH ₂ Br
	Cl	Cl	CH ₂	1		2		CH ₂ C≡CH	CH ₂ Cl
	CI	Cl	CH ₂	1	•	2		CH ₂ C≡CH	CH ₂ Br
•	Cl	Cl	CHF	1 .	<i>:</i> •	1	. •	H	CH ₂ Cl
	Ci	Cl	CHF	1	. •	1	• 1	H ·	CH ₂ Br
• •	Cl	Cl	CHF	1		1	٠	C(=O)CH ₃	CH ₂ Cl
	Cl	Cl	CHF	1		1	:	C(=O)CH ₃	СН2Вг
	Cl	Cl	CHF	1 -		1	•	CO ₂ CH ₃	CH ₂ CI
•	CI	Ci	CHF	1		1		CO ₂ CH ₃	CH ₂ Br
	Cl	Cl	CHF	1		1		CH ₂ C≡CH	CH ₂ Cl
• • •	Cl	Cl	CHF	1		1	•	CH ₂ C≡CH	СН ₂ Вг
	Cl	Cl	CHF	1		2		н	CH ₂ CI
	ĊĬ	Cl	CHF	1	٠	2	-	Н	CH ₂ Br
	CI	Cl	CHF	1		2		C(=O)CH ₃	CH ₂ CI
-	Cl	Cl	CHF	1		2	,	C(=O)CH ₃	CH ₂ Br
٠.	Ci	Cl	CHF	1		2		CO ₂ CH ₃	CH ₂ CI
	CI .	Cl	CHF	1		2		CO ₂ CH ₃	CH ₂ Br
٠.	Cl	Cl	CHF	1		2		CH ₂ C≖CH	CH ₂ CI
	Cl	Cl	CHF	1		2		CH ₂ C≡CH	CH ₂ Br
	Cl	Cl	CHCI	1		1		H	CH ₂ CI
	Cl	Cl	CHCI	1		1	-	H ·	CH ₂ Br
	Cl	Ci	CHCI	1		1		$C(=O)CH_3$	CH ₂ CI
	Cl	Cl	CHCI	1		1		C(=O)CH ₃	CH ₂ Br
	Cl	Cl	CHCI	1		1		CO ₂ CH ₃	CH ₂ CI
	Cl	Cl	CHCI	1		1		CO ₂ CH ₃	CH ₂ Br
	CI	Cl	СНСІ	1		1		CH ₂ C≡CH	CH ₂ Cl

Ci	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	1	2	Н	CH ₂ CI
Cl	Cl	CHCI	1	2	Н	CH ₂ Br
Cl	Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ CI
Cl	Cl	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHCl	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Cl	CHCl	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	СH ₂	1	1	H	CH ₂ Cl
Cl	Br	CH ₂	1	1	H .	CH ₂ Br
Cl	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
Cl	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Вг	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	1	со ₂ сн ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	2	Н	CH ₂ CI
Cl	Br	CH ₂	1	2	Н	CH ₂ Br
Ci	Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
CI	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	1	н	CH ₂ Cl
Cl	Br	CHF	1	1	н	CH ₂ Br
Cl	Br	CHF	1	1	C(=0)CH ₃	CH ₂ CI
Cl	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	со ₂ сн ₃	CH ₂ CI
Cl	Br	CHF	1	1	со ₂ сн ₃	CH ₂ Br
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	2	н	CH ₂ Cl
Cl	Br	CHF	1	2	н	CH ₂ Br
Cl	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Cł	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
						-

C)	Вг	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
CI	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl		CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br Br	CHCI	1	1 2.	н	CH ₂ CI
Cl	Br	CHCI	1	1	н	CH ₂ Br
Cl	Br	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Br	CHCI	1	1 %	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHCI	1 .	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	1 .	CO ₂ CH ₃	CH ₂ Br
Cl	Вг	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHCI	1 .	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHCI	1	2	н	CH ₂ Cl
Cl	Br	CHCI	1	2	H :	CH ₂ Br
Cl	Вг	CHCI	1	2	C(=O)CH3	CH ₂ Cl
Cl	Вг	CHCI	1	2 %	C(=O)CH ₃	CH ₂ Br
CI	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl.	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br ·	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	· Br	CHCl	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CH ₂	1	1 .	H 22	СН ₂ СІ
Cl Cl	CN	CH ₂	1	1	н	CH ₂ Br
Cl	CN	CH ₂	1 '	1	C(=0)CH ₃	CH ₂ Cl
CI	CN	CH ₂	1	1 .	C(=O)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CH ₂	1	1 '	CO ₂ CH ₃	CH ₂ Br
CI	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
CI	CN	CH ₂	1	2 .	н	CH ₂ Cl
CI CI	CN	CH ₂	1 .	2	H	CH ₂ Br
Cl	CN	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
CI	CN	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br
ĊI	CN	CH ₂	1 -	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1 ·	2	CH ₂ C≡CH	CH ₂ CI
CI	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
CI	CN	CHF	1	1	H	CH ₂ CI
Cl	CN	CHF	1	1	н .	CH ₂ Br
CI	CN	CHF	1	1	$C(=O)CH_3$	CH ₂ CI

			0.			
CI	CN	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cì	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHF	1	1	ch ₂ c≡ch	CH ₂ Br
Cl	CN	CHF	1	2	Н	CH ₂ CI
Cl	CN	CHF	1	2	н	CH ₂ Br
Cì	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHF	. 1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCI	1	1	Н	CH ₂ CI
Cl	CN	CHCI	1	1	н	CH ₂ Br
Cl	CN	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCI	1	1	СН ₂ С≡СН	CH ₂ Br
Cl	CN	CHCI	1	2	Н	CH ₂ CI
Cl	CN	CHCI	1	2	н	CH ₂ Br
Cl	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
CI	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
					_	-
J = 11 and	$R^{21} = Br$					
X	Y	<u>Z</u>	Ū	<u>m</u>	<u>R1</u>	<u>R²</u>
F	Н	CH ₂	1	1	H	CH ₂ Cl
F	H	CH ₂	1	1	Н	CH ₂ Br
F	Н	CH ₂	1	2	Н	CH ₂ CI
F	H	CH ₂	I	2	H	CH ₂ Br
F	Н	CHF	1	1	Н	CH ₂ Cl

F		н	CI	HF	1			ι		Н		CH ₂ Br
F		н		HF	1		•	2		н		CH ₂ CI
F		н .		HF	1			2		н		CH ₂ Br
F		Н		ICI	1	ļ		1		н		CH ₂ CI
F		Н		łCl	1		•	1		н	•	CH ₂ Br
F		Н		łCl	1	l		2	-	н		CH ₂ CI
F		H		ICI .	1	l		2		н		CH ₂ Br
F		CI		H ₂	1	ı		1 .		н		CH ₂ Cl
F		Cl		H ₂	1	ı		1		н		CH ₂ Br
F		Cl .		- Н ₂	1	i		1		C(=O)C	Н3	CH ₂ Cl
F		Cl		н ₂	1	1		1	£ 1	C(=O)C	Н3	CH ₂ Br
F		Cl		т ₂	1	1		1		CO ₂ CI	13	CH ₂ CI
F		Cl		- Н ₂	:	1		1		CO ₂ CI	13	CH ₂ Br
F		Cl		H ₂	:	1		1		CH ₂ C≡	CH	CH ₂ Cl
F		Ci		H ₂		1		1		CH ₂ C≖	СН	CH ₂ Br
F		Cl :		H ₂		1	•	2	, •	H	• •	CH ₂ CI
F		Cl .		H ₂		1		2		Н		CH ₂ Br
F		Cl		H ₂		1		2	•	C(=0)C	:H3	CH ₂ Cl
F		Cl		H ₂		1		2	•	C(=0)C	:H3	CH ₂ Br
F	•	Cl	C	H ₂		1		2		CO ₂ C	Н3	CH ₂ CI
F		Cl		H ₂		1		2	•	CO ₂ C	H ₃	CH ₂ Br
F		Cl		:H ₂		1		2		CH ₂ C=	CH	CH ₂ Cl
F		Cl		:H ₂		1		2		CH ₂ C≡	CH	CH ₂ Br
F		Cl		HF		1	•	1	.*	Н		CH ₂ Cl
F	•	Cl	C	HF		1		1		Н	٠	CH ₂ Br
F		Cl	C	HF		1		1		C(=0)C	CH ₃	CH ₂ CI
F		Cl	C	HF		1		1		C(=0)C	CH ₃	CH ₂ Br
F		Cl	C	CHF		1		1	•	CO ₂ C	Н3	CH ₂ Cl
F		CI	(HF		1		1	•	CO ₂ C	Н3	CH ₂ Br
F		Cl	(CHF		1		1		CH ₂ C≡	€CH	CH ₂ CI
F		Cl	(CHF		1		1		CH ₂ C≡	€CH	CH ₂ Br
F		Cl	(CHF		1		2		H		CH ₂ CI
F		Cl	(CHF		1		2		Н		CH ₂ Br
F		Cl	(CHF		1		2		C(=0)0	•	CH ₂ CI
F		Cl	(CHF		1		2		C(=0)(CH ₃	CH ₂ Br
F		Cl	(CHF		1		2		co ₂ c	-	CH ₂ CI
F		Cl	(CHF		1		2		CO ₂ C	_	CH ₂ Br
F		Cl	•	CHF		1		2		CH ₂ C≡	€CH	CH ₂ CI

WO 97/15576 PCT/US96/16111

F	Cì	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	1	н	CH ₂ CI
F	Cl	CHCI	1	i	н	CH ₂ Br
F	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
F	Cl	CHC	1	1	C(=O)CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	со ₂ сн ₃	CH ₂ CI
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHCI	1	1	CH ₂ C≅CH	CH ₂ Br
F	Cl	CHCI	· 1	2	н	CH ₂ CI
F	Cl	CHCI	1	2	Н	CH ₂ Br
F	Cl	CHCl	1	2	C(=O)CH ₃	CH ₂ CI
F	Cl	CHCI	1	2	C(=0)CH ₃	СH ₂ Вг
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
F	C1	CHCi	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	1	H	CH ₂ Cl
F	Br	CH ₂	1	1	H	CH ₂ Br
F	Br	CH ₂	1	1	C(=0)CH ₃	CH ₂ Cl
F	Br	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
F	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	2	Н	CH ₂ CI
F	Br	CH ₂	1	2	Н	CH ₂ Br
F	Br	CH ₂	I	2	C(=0)CH ₃	CH ₂ Cl
F	Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
F	Br	CH ₂	1	2	CO_2CH_3	CH ₂ CI
F	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CHF	1	1	Н	CH ₂ CI
F	Br	CHF	1	1	H	CH ₂ Br
F	Br	CHF	i	1	C(=O)CH ₃	CH ₂ Cl
F	Br	CHF	1	1	$C(=O)CH_3$	CH ₂ Br
F	Br	CHF	i	1	CO ₂ CH ₃	CH ₂ Cl

	F.	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
	F	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
	F	Br ·	CHF	1	ì	CH ₂ C≡CH	CH ₂ Br
	F	Br	CHF	1	2	H	CH ₂ Cl
	F :	Br	CHF	1 .	2	H	CH ₂ Br
	F '	Br	CHF	1 .	2	C(=O)CH ₃	CH ₂ CI
	F .	Br	CHF	1	2	C(=0)CH ₃	CH ₂ Br
	F.	Br	CHF	1	2 ·	CO ₂ CH ₃	CH ₂ Cl
	F	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
	F	Br	CHF	1 .	2	CH ₂ C≅CH	CH ₂ Cl
	F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
	F	Br	CHCI	1	1	Н	CH ₂ Cl
	F	Br	CHCl	1	. 1	H ·	CH ₂ Br
	F ·	Br	CHCI	1	. 1	C(=O)CH ₃	CH ₂ Cl
	F	Br	CHCl	1	1	C(=O)CH ₃	CH ₂ Br
٠.	F	Br	CHCl	1	1	CO ₂ CH ₃	CH ₂ Cl
	F	Br	CHCI	1 '	1	CO ₂ CH ₃	CH ₂ Br
	F .	Br	CHCl	1	1	CH ₂ C≡CH	CH ₂ Cl
	F	Br	CHCl	1	1	CH ₂ C≖CH	CH ₂ Br
	F	Br	CHCI	1	2	. н	CH ₂ CI
	F ·	Br	CHCl	1	2	H	CH ₂ Br
*	F	Br	CHCl	1	2	C(=0)CH ₃	CH ₂ Cl
	F	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
	F	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
•	F	Br	CHCl	1	2	CO ₂ CH ₃	CH ₂ Br
	F	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
	F	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
	F '	CN	CH ₂	1	1	н	CH ₂ CI
	F	CN	CH ₂	1 .	. 1	н .	CH ₂ Br
	F .	CN	CH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
	F.	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
	F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
	F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
	F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
	F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
	F	CN	CH ₂	1	2	Н	CH ₂ CI
	F	CN	CH ₂	1	2	Н	CH ₂ Br
	F	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ CI

F	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CO_2CH_3	CH ₂ CI
F	CN	CH ₂	1	2	CO_2CH_3	CH ₂ Br
F	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1	1	Н	CH ₂ Cl
F	CN	CHF	1	1	Н	CH ₂ Br
F	CN	CHF	1	1	C(=0)CH ₃	CH ₂ CI
F	CN	CHF	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHF	1	1	со ₂ сн ₃	CH ₂ Br
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1	2	Н	CH ₂ Cl
F	CN	CHF	1	2	Н	CH ₂ Br
F.	CN	CHF	1	2	$C(=0)CH_3$	CH ₂ Cl
F	CN	CHF	1	2	C(=0)CH ₃	CH ₂ Br
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCl	1	1	Н	CH ₂ CI
F	CN	CHCl	1	1	Н	CH ₂ Br
F	CN	CHCl	1	1	C(=O)CH ₃	CH ₂ Cl
F	CN	CHCI	1	1,	C(=0)CH ₃	CH ₂ Br
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHCl	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	2	Н	CH ₂ Cl
F	CN	CHCI	1	2	Н	CH ₂ Br
F	CN	CHCI	1	2	$C(=O)CH_3$	CH ₂ CI
F	CN	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	i	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Н	CH ₂	1	l	Н	CH ₂ Cl

	Cl	н		CH ₂		1		1		H	CH ₂ Br
	Cl ·	Н		CH ₂		1		2		Н	CH ₂ CI
	Cl	Н		CH ₂		1		2		Н .	CH ₂ Br
	Cl	Н		CHF		1		1		Н	CH ₂ Cl
	Cl	Н		CHF		1		1		Н .	CH ₂ Br
	Cl ·	н	-	CHF		1		2		H .	CH ₂ Cl
	Cl	Н		CHF		1		2		Н ,	CH ₂ Br
	Cl	н		CHCI		1		1		H	CH ₂ Cl
	Cl	н		CHCI	•	1		1		Н	CH ₂ Br
	Cl	Н		CHCI		1		2		H	CH ₂ CI
	Cl	Н		CHCI		1		2		Н.	CH ₂ Br
	Cl	Cl		CH ₂		1		1		Н	CH ₂ CI
	Cl	Cl		CH ₂		1		1		Н	CH ₂ Br
	Cl +	Cl		CH ₂		1		1		C(=O)CH ₃	CH ₂ CI
	Cl	Cl		CH ₂		1	•	1		C(=O)CH ₃	CH ₂ Br
	Cl -	Cl		CH ₂		1	٠.	1	• •	CO ₂ CH ₃	CH ₂ Cl
	Cl	Cl		CH ₂		1		1		CO ₂ CH ₃	CH ₂ Br
	Cl	Cl		CH ₂		1		1		CH ₂ C≡CH	CH ₂ CI
•	Cl	Cl		CH ₂		1		1		CH ₂ C≡CH	CH ₂ Br
	Cl	Cl		CH ₂		1		2		H	CH ₂ Cl
,	Cl	Cl		CH ₂		1		2		Н .	CH ₂ Br
	Cl	Cl		CH ₂		1		2		$C(=O)CH_3$	CH ₂ Cl
	Cl	Cl		CH ₂		1		2		$C(=O)CH_3$	CH ₂ Br
	Cl	Cl		CH ₂		1		2		CO ₂ CH ₃	CH ₂ CI
	CI.	Cl		CH ₂		1		2		CO ₂ CH ₃	CH ₂ Br
	Cl	C1		CH ₂	:	1		2		CH ₂ C≡CH	CH ₂ CI
	Cl	Cl	•	CH ₂		1		2		CH ₂ C≡CH	CH ₂ Br
	Cl	Cl		CHF		1		1		Н	CH ₂ Cl
	Cl	Cl		CHF		1		1		Н	CH ₂ Br
	Cl	CI		CHF		1		1		$C(=O)CH_3$	CH ₂ CI
	Cl	Cl		CHF		1		1		C(=O)CH ₃	CH ₂ Br
	Cl	Cl		CHF		1		1		CO_2CH_3	CH ₂ Cl
	Cl	Cl		CHF		1		1		CO ₂ CH ₃ .	CH ₂ Br
	Cl	Cl		CHF		1		1		CH ₂ C≡CH	CH ₂ Cl
	Cl .	Cl		CHF		1		1		CH ₂ C≡CH	CH ₂ Br
	Cl	Cl		CHF		1		2		H	CH ₂ Cl
	Cl	CI		CHF		1		2		Н	CH ₂ Br
	Cl	Cl		CHF		1		2		$C(=O)CH_3$	CH ₂ CI

Cl	Cl	CHF	ŧ	2	C(=O)CH ₃	CH ₂ Br
Cl	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Ci	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CI	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	1	1	Н	CH ₂ Cl
Cl	Cl	CHCl	1	1	Н	CH ₂ Br
Cl	Cl	CHCi	1	1	$C(=O)CH_3$	CH ₂ CI
Cl	Cl	CHCl	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
CI	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
CI	Cl	CHCI	1	2	Н	CH ₂ CI
Cl	Cl	CHCI	1	2	Н	CH ₂ Br
Cl	Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ CI
Cl	Cl	CHCI	1	2 .	C(=0)CH ₃	CH ₂ Br
Cl	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Ci	Cl	CHCI	1	2	CH ₂ C≡CH	СН ₂ Вг
Cl	Br	CH ₂	1	1	Н	CH ₂ Cl
Cl	Br	CH ₂	1	1	Н	CH ₂ Br
Cl	Br	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Br	СH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	2	H	CH ₂ Cl
Cl	Br	CH ₂	1	2	Н	CH ₂ Br
Cl	Br	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	1	Н	CH ₂ CI

CI .	Br	CHF	1	1	н	CH ₂ Br
CI	Br .	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
CI	Br .	CHF	1	. 1	C(=O)CH3	CH ₂ Br
CI	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
CI	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
CI .	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHF	1	1	CH ₂ C=CH	CH ₂ Br
CI	Br	CHF	1	2	Н	CH ₂ Cl
CI	Вг	CHF	ı	2	H	CH ₂ Br
Cl	Br	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Br
CI	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHCi	1	1	H	CH ₂ Cl
Cl	Br	CHCI	1	1	н	CH ₂ Br
Cl	Br	СНСІ	1	1	C(=O)CH ₃	CH ₂ Cl
Cl	Br	CHCl	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
Cĺ	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHCI	1 .	1	CH ₂ C≡CH	CH ₂ Br
Cl	. Br	CHCI	1	2	н .	CH ₂ Cl
CI	Br	CHCI	1	2	H	CH ₂ Br
Cl	Br	CHCI	1	2	C(=0)CH3	CH ₂ Cl
Cl	Br	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CH ₂	1	1	H	CH ₂ Cl
Cl	CN	CH ₂	1	1	н	CH ₂ Br
Cl	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
CI	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	СH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl

WO 97/15576 PCT/US96/16111

72 CI CH₂ ì 1 CH₂C≡CH CH₂Br CN 2 CH₂ 1 H CH₂Cl Cl CN 1 2 Н Cl CN CH₂ CH₂Br Cl CH₂ 1 2 $C(=O)CH_3$ CH₂Cl CN CH₂ 2 1 $C(=O)CH_3$ Cl CN CH₂Br 2 Cl CH₂ 1 CO₂CH₃ CH₂Cl CN 2 CI CN CH_2 1 CO₂CH₃ CH₂Br 2 CH₂ 1 CH₂C≡CH CH₂Cl CI CN 2 CH₂C≡CH CI CN CH₂ 1 CH₂Br **CHF** 1 CH₂Cl CI CN 1 Н CI CN CHF 1 1 Н CH₂Br CI CN **CHF** 1 1 $C(=O)CH_3$ CH₂Cl 1 $C(=O)CH_3$ CH₂Br Cl CN **CHF** 1 CHF 1 1 CO₂CH₃ CH₂CI Cl CN CO₂CH₃ CH₂Br CN CHF 1 1 Cl 1 CH₂C≡CH CH₂Cl Cl CN CHF 1 1 CH₂C≡CH CH₂Br CI CN CHF 1 2 Н CH₂Cl Cl CN CHF 1 CN CHF 1 2 Н CH₂Br Cl 2 C(=O)CH₃ CN **CHF** 1 CH₂Cl Cl **CHF** 1 2 $C(=O)CH_3$ CH₂Br Cl CN CI CN **CHF** 1 2 CO₂CH₃ CH₂Cl 2 CH₂Br Cl CN **CHF** 1 CO₂CH₃ 2 Cl 1 CH₂C≡CH CH₂Cl CN **CHF** 2 CH₂C≡CH CI CN CHF 1 CH₂Br 1 1 Н CH₂CI Cl CN **CHCI** Н Cl 1 CH₂Br CN **CHCI** 1 Cl CN CHCI 1 1 $C(=O)CH_3$ CH₂Cl Cl CN CHC 1 1 $C(=0)CH_3$ CH₂Br 1 1 CO₂CH₃ Cl CN CHCI CH₂Cl CHC 1 ı CO2CH3 CH₂Br Cl CN 1 1 CH₂C≡CH Cl CN CHCI CH₂Cl

1

1

1

1

1

1

1

2

2

2

2

2

CH₂C≡CH

Н

Н

 $C(=O)CH_3$

 $C(=O)CH_3$

CO₂CH₃

CH₂Br

CH₂Cl

CH₂Br

CH₂Cl

CH₂Br

CH₂Cl

CHCI

CHCI

CHCI

CHCI

CHCI

CHCI

Cl

Ci

Cl

Cl

Cl

Cl

CN

CN

CN

CN

CN

CN

Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Ci	CIT				-	•
J = 12, Y = C	I, and $R^2 = CI$	H ₂ Cl				
<u> </u>	<u>R1</u>	Z	n	_	m	<u>R²²</u>
F	н	CH ₂	1		1	CH ₃
F	C(=O)CH ₃	CH ₂	1		1	CH ₃
F	CO ₂ CH ₃	CH ₂	1		1	CH ₃
F	н	CHF	1		1	CH ₃
F	C(=O)CH ₃	CHF	1		1	CH ₃
F	CO ₂ CH ₃	CHF	1		1	CH ₃
F	Н	CH ₂	1		2	CH ₃
F	C(=0)CH ₃	CH ₂	1		2	CH ₃
F	CO ₂ CH ₃	CH ₂	. 1	l	2	CH ₃
F	н .	CHF	. 1	l	2	CH ₃
F	C(=0)CH ₃	CHF	1	l	2	CH ₃
F	CO ₂ CH ₃	CHF	. 1	1	2	CH ₃
Cl	н	CH ₂	1	1	1 .	CH ₃
Cl	C(=0)CH ₃	CH ₂	1	l	1	CH ₃
Cl	CO ₂ CH ₃	CH ₂	· 1	1	1	CH ₃
Cl	н .	CHF	1	l	1	CH ₃
. Cl	C(=0)CH ₃	CHF	•	1	1	CH ₃
Cl	CO ₂ CH ₃	CHF		1	. 1	СН3
Cl	Н	CH ₂		1 .	2	CH ₃
Cl	C(=O)CH ₃	CH ₂		1	2	CH ₃
Cl	CO ₂ CH ₃	CH ₂		1	. 2	CH ₃
. CI	Н	CHF		1	2	CH ₃
Cl	C(=O)CH ₃	CHF		1	2	CH ₃
Cl	CO ₂ CH ₃	CHF		1	2	CH ₃
F	. Н	CH ₂		1	1 .	CH ₂ CH ₃
F	C(=O)CH ₃	CH ₂		1	1	CH ₂ CH ₃
F	CO ₂ CH ₃	CH ₂		1	1	CH ₂ CH ₃
F	н	CHF		1	1	CH ₂ CH ₃
F ·	C(=0)CH ₃	CHF		1	1	CH ₂ CH ₃
F	CO ₂ CH ₃	CHF		1	1	CH ₂ CH ₃
F	Н	CH ₂		1	2	CH ₂ CH ₃
F.	C(=O)CH ₃	CH ₂		1	2	CH ₂ CH ₃

F	CO ₂ CH ₃	CH ₂	1	2	CH ₂ CH ₃
F	Н	CHF	1	2	CH ₂ CH ₃
F	C(=O)CH ₃	CHF	1	2	CH ₂ CH ₃
F	CO ₂ CH ₃	CHF	1	2	CH ₂ CH ₃
Cl	Н	CH ₂	1	1	CH ₂ CH ₃
Cl	$C(=O)CH_3$	CH ₂	1	1	CH ₂ CH ₃
Cl	CO ₂ CH ₃	CH ₂	1	1	CH ₂ CH ₃
Cl	Н	CHF	1	1	CH ₂ CH ₃
Cl	C(=O)CH ₃	CHF	1	1	CH ₂ CH ₃
Cl	CO ₂ CH ₃	CHF	1	1	CH ₂ CH ₃
Cl	Н	CH ₂	1	2	CH ₂ CH ₃
Cl	$C(=O)CH_3$	CH ₂	1	2	CH ₂ CH ₃
CI	CO ₂ CH ₃	CH ₂	1	2	CH ₂ CH ₃
CI	Н	CHF	1	2	CH ₂ CH ₃
Cl	$C(=O)CH_3$	CHF	1	2	CH ₂ CH ₃
Cl	CO ₂ CH ₃	CHF	1	2	CH ₂ CH ₃
J = 13, Y =	Cl, and $R^2 = CH_2$	<u>C1</u>			
X	<u>R</u> 1	<u>z1</u>	<u>n</u>	m	<u>R²¹</u>
F	н	CH ₂	1	1	Cl
F	C(=0)CH ₃	CH ₂	1	1	Cl
F	CO ₂ CH ₃	CH ₂	1	1	Cl
F	Н	CHF	1	1	CI
F	C(=0)CH ₃	CHF	I	1	CI
F	CO ₂ CH ₃	CHF	1	1	CI
F	н	CH ₂	1	2	Cl
F	C(=0)CH ₃	CH ₂	ı	2	Cl
F	CO ₂ CH ₃	CH ₂	1	2	Cl
F	H	CHF	1	2	Cl
F	C(=O)CH ₃	CHF	1	2	Cl
F	CO ₂ CH ₃	CHF	1	2	Cl
Cl	H	СH ₂	1	1	CI
Cl	C(=O)CH ₃	СH ₂	1	1	Cl
Cl	CO ₂ CH ₃	CH ₂	1	1	Cl
Cl	н	CHF	1	1	Cl
Cl	$C(=O)CH_3$	CHF	1	1	Cl
Cl	CO ₂ CH ₃	CHF	1	1	Cl
Cl	Н	CH ₂	1	2	Cl

			_	•		CI
Cl	$C(=O)CH_3$	CH ₂	1	2		
CI	CO ₂ CH ₃	CH ₂	1 '	2		CI
Cl	Н	CHF	1	2		Cl
Cl	$C(=O)CH_3$	CHF	1	2		Cl
CI	CO ₂ CH ₃	CHF	1	2		Cl
F	H	CH ₂	. 1	1	,	Br
F	C(=O)CH ₃	CH ₂	1	1		Br
F	CO ₂ CH ₃	CH ₂	1	1		Br
F	н	CHF	1	1		Br
F	$C(=O)CH_3$	CHF	1	1		Br
F	CO ₂ CH ₃	CHF	1	1		Br
F	н	CH ₂	1	2		Br
F	C(=O)CH ₃	CH ₂	1	2		Br
F	CO ₂ CH ₃	CH ₂	1	. 2		Br
F	Н	CHF	. 1	2	;	Br
F	C(=O)CH ₃	CHF	1	2		Br
F	CO ₂ CH ₃	CHF	1	2		Br
Cl	н	CH ₂	1	1	٠.	Br
Cl	C(=0)CH ₃	CH ₂	1	1	• •	Br
Cl	CO ₂ CH ₃	CH ₂	1	1		Br
Cl	н	CHF	1	1		Br
Cl	C(=O)CH ₃	CHF	1	1		Br
Cl	CO ₂ CH ₃	CHF	1	. 1		Br
Cl	H	CH ₂	1	2		Br
Cl	C(=O)CH ₃	CH ₂	1	2		Br
Cl	CO ₂ CH ₃	CH ₂	1	2		Br
Cl	Н	CHF	1 .	2		Br
CI	C(=O)CH ₃	CHF	1	2		Br
Cl	CO ₂ CH ₃	CHF	1	2		Br

J = 14, Y = Cl, $R^2 = CH_2Cl$, and $R^{17} = R^{18} = CH_3$

X R1
F H
F C(=0)CH₃
F CO₂CH₃
Cl H
Cl C(=0)CH₃
Cl CO₂CH₃

J = 15, Y =	$=$ Cl, $\mathbb{R}^2 = \mathbb{CH}_2\mathbb{Cl}$, and	$R^{19} = CH$
<u>X</u>	<u>R1</u>	R18
F	Н	CH ₃
F	C(=0)CH ₃	CH ₃
F	CO ₂ CH ₃	CH ₃
F	H	CF ₃
F	C(=O)CH ₃	CF ₃
F	CO ₂ CH ₃	CF ₃
Cl	H	CH ₃
Cl	C(=0)CH ₃	CH ₃
Cl	CO ₂ CH ₃	CH ₃
Cl	н	CF ₃
Cl	C(=0)CH ₃	CF ₃
Cl	CO ₂ CH ₃	CF ₃
<u>J = 1</u>	6, $Y = Cl$, and $R^2 = C$	<u>:H₂Cl</u>
<u>X</u>	<u>R1</u>	R17
F	Н	CH ₃
F	C(=O)CH ₃	CH ₃
F	CO ₂ CH ₃	ĆH ₃
F	Н	CF ₃
F	C(=O)CH ₃	CF ₃
F	CO ₂ CH ₃	CF ₃
Cl	Н	CH ₃
Cl	C(=O)CH ₃	CH ₃
Cl	CO ₂ CH ₃	CH ₃
Cl	H	CF ₃
Cl	C(=O)CH ₃	CF ₃
Cl	CO ₂ CH ₃	CF ₃

$J = 17$, $Q = O$, and $R^{19} = CH_3$								
X	Y	$\underline{\mathbf{w}}$	<u>R</u> 1	<u>R</u> ²	<u>R¹⁴</u>			
F	Н	N	H	CH ₂ CI	CH ₃			
F	Н	N	Н	CH ₂ Br	CH ₃			
F	Н	N	Н	CH ₂ CI	CF ₃			
F	H	N	Н	CH ₂ Br	CF ₃			

F	Н	N	Н	CH ₂ Cl	$N(CH_3)_2$
F	Н	N	. H	CH ₂ Br	$N(CH_3)_2$
F	Н	ССН3	н	CH ₂ CI	CH ₃
F	Н	CCH ₃	н	CH ₂ Br	CH ₃
F	Н	CCH ₃	н	CH ₂ Cl	CF ₃
F	Н	CCH ₃	H	CH ₂ Br	CF ₃
F	Н	ССН3	Н	CH ₂ Cl	N(CH ₃) ₂
F	Н	CCH ₃	н	CH ₂ Br	N(CH ₃) ₂
F	Cl	N	н	CH ₂ Cl	CH ₃
F	Cl	N	. H	CH ₂ Br	CH ₃
F	Cl	N	$C(=O)CH_3$	CH ₂ CI	CH ₃
F	Cl	N	$C(=O)CH_3$	CH ₂ Br	CH ₃
F	Cl	N	CO ₂ CH ₃	CH ₂ Cl	CH ₃
F	Cl	N	CO ₂ CH ₃	CH ₂ Br	CH ₃
F	Cl	N	CH ₂ C≡CH	CH ₂ CI	CH ₃
F	Cl	N	CH ₂ C≖CH	CH ₂ Br	CH ₃
F	Cl	N	H	CH ₂ Cl	CF ₃
F	Cl	N	H	CH ₂ Br	CF ₃
F	Cl	N	C(=0)CH ₃	CH ₂ CI	CF ₃
F	Cl	N	C(=0)CH ₃	CH ₂ Br	CF ₃
F	Cl	N	CO ₂ CH ₃	CH ₂ Cl	CF ₃
F	Cl	N	CO ₂ CH ₃	CH ₂ Br	CF ₃
F	CI	N	CH ₂ C≡CH	CH ₂ Cl	CF ₃
F	Cl	N	CH ₂ C≡CH	CH ₂ Br	CF ₃
F	Cl	N	Н	CH ₂ Cl	N(CH ₃) ₂
F	Cl	N	Н	CH ₂ Br	N(CH ₃) ₂
F	Cl	N	C(=O)CH ₃	CH ₂ CI	N(CH ₃) ₂
F	Cl	N	C(=0)CH ₃	CH ₂ Br	N(CH ₃) ₂
F	Cl	N	CO ₂ CH ₃	CH ₂ Cl	N(CH ₃) ₂
F	Cl	N	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
F	CI	N	CH ₂ C≡CH	CH ₂ CI	N(CH ₃) ₂
F	Cl	N	CH ₂ C ≡ CH	CH ₂ Br	N(CH ₃) ₂
F	Cl	ССН ₃	Н	CH ₂ CI	CH ₃
F	C 1	ССН ₃	н	CH ₂ Br	CH ₃
F	Cl	CCH ₃	$C(=O)CH_3$	CH ₂ CI	CH ₃
F	Cl	CCH ₃	$C(=O)CH_3$	CH ₂ Br	CH ₃
F	Cl	ссн3	CO ₂ CH ₃	CH ₂ CI	CH ₃
F	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CH ₃
		-	= -		

F	CI	ссн3	CH ₂ C≡CH	CH ₂ Cl	CH ₃
F	Cl	CCH ₃	CH ₂ C≖CH	CH ₂ Br	CH ₃
F	Cl	CCH ₃	н	CH ₂ Cl	CF ₃
F	Cl	CCH ₃	Н	CH ₂ Br	CF ₃
F	Cl	CCH ₃	C(=O)CH ₃	CH ₂ CI	CF ₃
F	Cl	CCH ₃	$C(=O)CH_3$	CH ₂ Br	CF ₃
F	C1	CCH ₃	CO ₂ CH ₃	CH ₂ Cl	CF ₃
F	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CF ₃
F	Cl	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	CF ₃
F	Cl	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CF ₃
F	Cl	CCH ₃	Н	CH ₂ Cl	N(CH ₃) ₂
F	Cl	CCH ₃	H	CH ₂ Br	N(CH ₃) ₂
F	Cl	CCH ₃	$C(=O)CH_3$	CH ₂ CI	N(CH ₃) ₂
F	Cl	CCH ₃	$C(=O)CH_3$	CH ₂ Br	$N(CH_3)_2$
F	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ Cl	N(CH ₃) ₂
F	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
F	Cl	CCH ₃	сн ₂ с≡сн	CH ₂ CI	$N(CH_3)_2$
F	Cl	CCH ₃	CH ₂ C≡CH	CH ₂ Br	N(CH ₃) ₂
F	Br	N	н	CH ₂ Cl	CH ₃
F	Br	N	H	CH ₂ Br	CH ₃
F	Br	N	$C(=O)CH_3$	CH ₂ Cl	CH ₃
F	Br	N	C(=O)CH ₃	CH ₂ Br	CH ₃
F	Br	N	CO ₂ CH ₃	CH ₂ Cl	CH ₃
F	Br	N	CO ₂ CH ₃	CH ₂ Br	CH ₃
F	Br	N	CH ₂ C≡CH	CH ₂ Cl	CH ₃
F	Br	N	CH ₂ C≡CH	CH ₂ Br	CH ₃
F	Br	N	H	CH ₂ Cl	CF ₃
F	Br	N	H	CH ₂ Br	CF ₃
F	Br	N	$C(=O)CH_3$	CH ₂ CI	CF ₃
F	Br	N	C(=O)CH ₃	CH ₂ Br	CF ₃
F	Br	N	CO ₂ CH ₃	CH ₂ Cl	CF ₃
F	Br	N	CO ₂ CH ₃	CH ₂ Br	CF ₃
F	Br	N	CH ₂ C≡CH	CH ₂ Cl	CF ₃
F	Br	N	CH ₂ C≡CH	CH ₂ Br	CF ₃
F	Br	N	H	CH ₂ Cl	N(CH ₃) ₂
F	Br	N	Н	CH ₂ Br	N(CH ₃) ₂
F	Br	N	$C(=O)CH_3$	CH ₂ CI	N(CH ₃) ₂
F	Br	N	$C(=O)CH_3$	CH ₂ Br	N(CH ₃) ₂

F	Br	N	CO ₂ CH ₃	CH ₂ Cl	$N(CH_3)_2$
F	Br	N	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
F	Br	N	CH ₂ C≡CH	CH ₂ Cl	N(CH ₃) ₂
F	Br	N	CH ₂ C≡CH	CH ₂ Br	N(CH ₃) ₂
F	Br	CCH ₃	H	CH ₂ CI	CH ₃
F	Br	CCH ₃	Н	CH ₂ Br	CH ₃
F	Br	CCH ₃	$C(=O)CH_3$	CH ₂ Cl	CH ₃
F	Br	CCH ₃	$C(=O)CH_3$	CH ₂ Br	CH ₃
F	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Cl	CH ₃
F	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CH ₃
F	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	CH ₃
F	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CH ₃
F	Вг	CCH ₃	H	CH ₂ Cl	CF ₃
F	Br	CCH ₃	H	CH ₂ Br	CF ₃
F	Br	CCH ₃	C(=O)CH ₃	CH ₂ Cl	CF ₃
F	Br	CCH ₃	$C(=O)CH_3$	CH ₂ Br	CF ₃
F	Br	CCH ₃	CO ₂ CH ₃	CH ₂ CI	CF ₃
F	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CF ₃
F	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	CF ₃
F	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CF ₃
F	Br	ССН3	H	CH ₂ CI	N(CH ₃) ₂
F	Br	CCH ₃	н	CH ₂ Br	N(CH ₃) ₂
F	Br	CCH ₃	C(=O)CH ₃	CH ₂ CI	N(CH ₃) ₂
F	Br	CCH ₃	C(=O)CH ₃	CH ₂ Br	N(CH ₃) ₂
F	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Cl	N(CH ₃) ₂
F	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
F	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	N(CH ₃) ₂
F	Br	CCH ₃	CH ₂ C≝CH	CH ₂ Br	N(CH ₃) ₂
F	CN	N	H	CH ₂ CI	CH ₃
F	CN	N	н	CH ₂ Br	CH ₃
F	CN	N	$C(=O)CH_3$	CH ₂ CI	CH ₃
F	CN	N	$C(=O)CH_3$	CH ₂ Br	CH ₃
F	CN	N	CO_2CH_3	CH ₂ CI	CH ₃
F	CN	N	CO ₂ CH ₃	CH ₂ Br	CH ₃
F	CN	N	CH ₂ C≡CH	CH ₂ CI	CH ₃
F	CN	N	CH ₂ C≡CH	CH ₂ Br	CH ₃
F	CN	N	Н	CH ₂ CI	CF ₃
F	CN	N	Н	CH ₂ Br	CF ₃

F	CN	N	C(=O)CH ₃	CH ₂ CI	CF ₃
F	CN	N	C(=O)CH ₃	CH ₂ Br	CF ₃
F	CN	N	CO ₂ CH ₃	CH ₂ Cl	CF ₃
F	CN	N	CO ₂ CH ₃	CH ₂ Br	CF ₃
F	CN	N	CH ₂ C≡CH	CH ₂ CI	CF ₃
F	CN	N	CH ₂ C≡CH	CH ₂ Br	CF ₃
F	CN	N	Н	CH ₂ Cl	N(CH ₃) ₂
F	CN	N	н	CH ₂ Br	N(CH ₃) ₂
F	CN	N	C(=O)CH ₃	CH ₂ CI	N(CH ₃) ₂
F	CN	N	C(=O)CH ₃	CH ₂ Br	N(CH ₃) ₂
F	CN	N	CO ₂ CH ₃	CH ₂ Cl	N(CH ₃) ₂
F	CN	N	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
F	CN	N	CH ₂ C≡CH	CH ₂ CI	N(CH ₃) ₂
F	CN	N	СН ₂ С≡СН	CH ₂ Br	N(CH ₃) ₂
F	CN	CCH ₃	Н	CH ₂ Cl	CH ₃
F	CN	CCH ₃	H	CH ₂ Br	CH ₃
F	CN	CCH ₃	C(=O)CH ₃	CH ₂ CI	CH ₃
F	CN	CCH ₃	C(=0)CH ₃	CH ₂ Br	CH ₃
F	CN	CCH ₃	CO ₂ CH ₃	CH ₂ CI	CH ₃
F	CN	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CH ₃
F	CN	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	CH ₃
F	CN	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CH ₃
F	CN	CCH ₃	Н	CH ₂ CI	CF ₃
F	CN	CCH ₃	H	CH ₂ Br	CF ₃
F	CN	CCH ₃	C(=0)CH ₃	CH ₂ Cl	CF ₃
F	CN	CCH ₃	$C(=O)CH_3$	CH ₂ Br	CF ₃
F	CN	CCH ₃	CO ₂ CH ₃	CH ₂ CI	CF ₃
F	CN	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CF ₃
F	CN	CCH ₃	CH ₂ C≅CH	CH ₂ Cl	CF ₃
F	CN	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CF ₃
F	CN	CCH ₃	н	CH ₂ CI	N(CH ₃) ₂
F	CN	CCH ₃	н	CH ₂ Br	N(CH ₃) ₂
F	CN	CCH ₃	C(=O)CH ₃	CH ₂ Cl	N(CH ₃) ₂
F	CN	CCH ₃	C(=0)CH ₃	CH ₂ Br	N(CH ₃) ₂
F	CN	CCH ₃	CO_2CH_3	CH ₂ CI	N(CH ₃) ₂
F	CN	CCH ₃	со ₂ сн ₃	CH ₂ Br	N(CH ₃) ₂
F	CN	CCH ₃	CH ₂ C≡CH	CH ₂ CI	N(CH ₃) ₂
F	CN	CCH ₃	CH ₂ C≡CH	CH ₂ Br	N(CH ₃) ₂

Cl		н	N	н	CH ₂ CI	CH ₃
Cl	. '	н	N	Н	CH ₂ Br	CH ₃
CI		Н	N	Н	CH ₂ Cl	CF ₃
Cl		Н	N	Н	CH ₂ Br	CF ₃
Cl		Н	N	Н	CH ₂ Cl	$N(CH_3)_2$
Cl		Н	N	H	CH ₂ Br	N(CH ₃) ₂
Cl		н	CCH ₃	н	CH ₂ CI	CH ₃
Cl		Н	CCH ₃	Н	CH ₂ Br	CH ₃
CI	7 .	Н	CCH ₃	Н	CH ₂ CI	· CF ₃
Cl		Н	CCH ₃	Н	CH ₂ Br	CF ₃
Cl	•	Н	CCH ₃	Н	CH ₂ Cl	N(CH ₃) ₂
Cl	:	Н	CCH ₃	H	CH ₂ Br	N(CH ₃) ₂
Cl	٠.	Cl	N	H	CH ₂ CI	CH ₃
Cl		Cl	' s - N	H '	CH ₂ Br	CH ₃
Cl		Cl	N	$C(=O)CH_3$	CH ₂ CI	CH ₃
Cl	•	Cl	N	$C(=O)CH_3$	CH ₂ Br	· CH ₃
Cl	;	Cl	N	CO ₂ CH ₃	CH ₂ Cl	CH ₃
Cl	• :	Cl	N	CO ₂ CH ₃	CH ₂ Br	CH ₃
Cl	: *	Cl	N	CH ₂ C≡CH	CH ₂ Cl	CH ₃
Cl		Cl	N	CH ₂ C≡CH	CH ₂ Br	CH ₃
C1	e ²	Cl	N	H	CH ₂ CI	CF ₃
Cl		CI	N	H	CH ₂ Br	CF ₃
Cl		Cl	N	$C(=O)CH_3$	CH ₂ Cl	CF ₃
Cl		Cl	N	$C(=O)CH_3$	CH ₂ Br	CF ₃
Cl	•	Cl	· N	CO ₂ CH ₃	CH ₂ CI	CF ₃
Cl	,	Cl	N	CO ₂ CH ₃	CH ₂ Br	· CF ₃
Cl		Cl	N	CH ₂ C≡CH	CH ₂ CI	CF ₃
Cl		Cl	N	CH ₂ C≡CH	CH ₂ Br	CF ₃
Cl		Cl	N	Н	CH ₂ Cl	N(CH ₃) ₂
Cl		· Cl	N	Н	CH ₂ Br	N(CH ₃) ₂
Cl		Cl	N	$C(=O)CH_3$	CH ₂ CI	$N(CH_3)_2$
Cl		Cl	N	$C(=O)CH_3$	CH ₂ Br	N(CH ₃) ₂
Cl		Cl	N	CO ₂ CH ₃	CH ₂ Cl	N(CH ₃) ₂
Cl		Cl	N	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
Cl		Cl	N	CH ₂ C≡CH	CH ₂ CI	N(CH ₃) ₂
Cl		Cl	N	CH ₂ C≡CH	CH ₂ Br	N(CH ₃) ₂
Cl		Cl	CCH ₃	н	CH ₂ CI	CH ₃
CI		CI	CCH ₃	Н	CH ₂ Br	CH ₃

PCT/US96/16111

82

WO 97/15576

Cl	Cl	CCH ₃	$C(=O)CH_3$	CH ₂ CI	CH ₃
CI	Cl	CCH ₃	C(=O)CH ₃	CH ₂ Br	CH ₃
Cl	Cl	CCH ₃	СО ₂ СН ₃	CH ₂ Cl	CH ₃
Cl	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CH ₃
Cl	Cl	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	CH ₃
Cl	Cl	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CH ₃
Cl	Cl	CCH ₃	Н	CH ₂ CI	CF ₃
CI	Cl	CCH ₃	н	CH ₂ Br	CF ₃
Cl	Cl	CCH ₃	$C(=O)CH_3$	CH ₂ Cl	CF ₃
Cl	Cl	CCH ₃	C(=O)CH ₃	CH ₂ Br	CF ₃
Cl	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ CI	CF ₃
Cì	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CF ₃
Cl	Cl	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	CF ₃
Cl	Cl	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CF ₃
Cl	Cl	CCH ₃	н	CH ₂ CI	N(CH ₃) ₂
Cl	Cl	CCH ₃	н	CH ₂ Br	$N(CH_3)_2$
Cl	Cl	CCH ₃	C(=0)CH ₃	CH ₂ Cl	$N(CH_3)_2$
CI	Cl	CCH ₃	C(=0)CH ₃	CH ₂ Br	N(CH ₃) ₂
Cl	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ CI	$N(CH_3)_2$
Cl	Cl	CCH ₃	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
Ci	CI	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	$N(CH_3)_2$
Cl	Cl	CCH ₃	CH ₂ C ≡ CH	CH ₂ Br	N(CH ₃) ₂
Cl	Br	N	H	CH ₂ CI	CH ₃
Cl	Br	N	н	CH ₂ Br	CH ₃
Cl	Br	N	C(=O)CH ₃	CH ₂ Cl	CH ₃
Cl	Br	N	$C(=O)CH_3$	CH ₂ Br	CH ₃
CI	Br	N	CO ₂ CH ₃	CH ₂ CI	CH ₃
C1	Br	N	CO ₂ CH ₃	CH ₂ Br	CH ₃
Cl	Br	N	CH ₂ C≡CH	CH ₂ CI	CH ₃
Cl	Br	N	CH ₂ C≡CH	CH ₂ Br	CH ₃
Cl	Br	N	Н	CH ₂ CI	CF ₃
Cl	Br	N	Н	CH ₂ Br	CF ₃
Cl	Br	N	$C(=O)CH_3$	CH ₂ Cl	CF ₃
Cl	Br	N	$C(=O)CH_3$	CH ₂ Br	CF ₃
Cl	Br	N	CO ₂ CH ₃	CH ₂ Cl	CF ₃
Cl	Br	N	CO ₂ CH ₃	CH ₂ Br	CF ₃
Cl	Br	N	CH ₂ C≡CH	CH ₂ CI	CF ₃
Cl	Br	N	CH ₂ C≡CH	CH ₂ Br	CF ₃

CI	Br	N	Н	CH ₂ CI	N(CH ₃) ₂
Cl	Br	N	Н	CH ₂ Br	N(CH ₃) ₂
Cl	Br	N	C(=O)CH ₃	CH ₂ CI	$N(CH_3)_2$
CI	Br	N	$C(=O)CH_3$	CH ₂ Br	$N(CH_3)_2$
CI	Br	N	CO ₂ CH ₃	CH ₂ CI	$N(CH_3)_2$
Cl	Br	N	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
Cl	Br	N	CH ₂ C≡CH	CH ₂ Cl	N(CH ₃) ₂
Cl	Br	N	CH ₂ C≡CH	CH ₂ Br	N(CH ₃) ₂
Cl	Br	CCH ₃	Н	CH ₂ Cl	CH ₃
Cl	Br	CCH ₃	H	CH ₂ Br	CH ₃
CI	Br	CCH ₃	C(=0)CH ₃	CH ₂ Cl	CH ₃
Cl	Br	CCH ₃	C(=0)CH ₃	CH ₂ Br	CH ₃
Cl	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Cl	CH ₃
Cl	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CH ₃
Cl	Br	CCH ₃	CH ₂ C≡CH	CH ₂ CI	CH ₃
C1	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CH ₃
Cl	Br	CCH ₃	н	CH ₂ Cl	CF ₃
Cl .	Br	CCH ₃	Н	CH ₂ Br	CF ₃
Cl	Br	CCH ₃	C(=O)CH ₃	CH ₂ Cl	CF ₃
Ci	Br	CCH ₃	C(=O)CH ₃	CH ₂ Br	CF ₃
Cl	Br	CCH ₃	CO ₂ CH ₃	CH ₂ CI	CF ₃
Cl .	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CF ₃
Ci	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	CF ₃
CI	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CF ₃
CI	Br	CCH ₃	н	CH ₂ CI	N(CH ₃) ₂
Cl	Br	CCH ₃	н	CH ₂ Br	N(CH ₃) ₂
Cl	Br	CCH ₃	C(=O)CH ₃	CH ₂ Cl	N(CH ₃) ₂
Cl	Br	CCH ₃	$C(=O)CH_3$	CH ₂ Br	N(CH ₃) ₂
Cl	Br	CCH ₃	CO ₂ CH ₃	CH ₂ CI	N(CH ₃) ₂
Cl	Br	CCH ₃	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
Cl	Br	CCH ₃	CH ₂ C≡CH	CH ₂ CI	N(CH ₃) ₂
Cl	Br	CCH ₃	CH ₂ C≡CH	CH ₂ Br	N(CH ₃) ₂
Cì	CN	N	н	CH ₂ Cl	CH ₃
CI	CN	N	Н	CH ₂ Br	CH ₃
CI	CN	N	$C(=O)CH_3$	CH ₂ CI	CH ₃
Cl	CN	N	$C(=O)CH_3$	CH ₂ Br	CH ₃
Ci	CN	N	CO ₂ CH ₃	CH ₂ CI	CH ₃
Cl	CN	N	CO ₂ CH ₃	CH ₂ Br	CH ₃

CI	CN	N	CH ₂ C≖CH	CH ₂ CI	CH ₃
CI	CN	N	CH ₂ C≡CH	CH ₂ Br	CH ₃
Cl	CN	N	н	CH ₂ CI	CF ₃
Ci	CN	N	н	CH ₂ Br	CF ₃
Cl	CN	N	C(=0)CH ₃	CH ₂ CI	CF ₃
Cl	CN	N	C(=0)CH ₃	CH ₂ Br	CF ₃
Cl	CN	N	CO ₂ CH ₃	CH ₂ Cl	CF ₃
Cl	CN	N	CO ₂ CH ₃	CH ₂ Br	CF ₃
Cl	CN	N	CH ₂ C≡CH	CH ₂ Cl	CF ₃
Cl	CN	N	CH ₂ C≡CH	CH ₂ Br	CF ₃
Cl	CN	N	н	CH ₂ CI	N(CH ₃) ₂
Cl	CN	N	Н	CH ₂ Br	N(CH ₃) ₂
Cl	CN	N	$C(=O)CH_3$	CH ₂ Cl	N(CH ₃) ₂
Cl	CN	N	$C(=O)CH_3$	CH ₂ Br	N(CH ₃) ₂
Cl	CN	N	CO_2CH_3	CH ₂ CI	N(CH ₃) ₂
CI	CN	N	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂
Cl	CN	N	CH ₂ C≅CH	CH ₂ Cl	N(CH ₃) ₂
Cl	CN	N	CH ₂ C≖CH	CH ₂ Br	N(CH ₃) ₂
Cl	CN	CCH ₃	Н	CH ₂ Cl	CH ₃
Cl	CN	CCH ₃	Н	CH ₂ Br	CH ₃
Cl	CN	CCH ₃	C(=0)CH ₃	CH ₂ CI	CH ₃
Cl	CN	CCH ₃	$C(=O)CH_3$	CH ₂ Br	CH ₃
Ci	CN	CCH ₃	CO ₂ CH ₃	CH ₂ CI	CH ₃
Cl	CN	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CH ₃
Cl	CN	CCH ₃	CH ₂ C≡CH	CH ₂ CI	CH ₃
Cl	CN	CCH ₃	CH ₂ C≡CH	СН ₂ Вг	CH ₃
CI	CN	CCH ₃	Н	CH ₂ CI	CF ₃
CI	CN	CCH ₃	H	CH ₂ Br	CF ₃
CI	CN	CCH ₃	C(=O)CH ₃	CH ₂ CI	CF ₃
Cl	CN	CCH ₃	C(=O)CH ₃	CH ₂ Br	CF ₃
Cl	CN	CCH ₃	CO ₂ CH ₃	CH ₂ Cl	CF ₃
Cl	CN	CCH ₃	CO ₂ CH ₃	CH ₂ Br	CF ₃
CI	CN	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	CF ₃
CI	CN	CCH ₃	CH ₂ C≡CH	CH ₂ Br	CF ₃
CI	CN	CCH ₃	Н	CH ₂ CI	$N(CH_3)_2$
Cl	CN	CCH ₃	Н	CH ₂ Br	N(CH ₃) ₂
Cl	CN	CCH ₃	C(=O)CH ₃	CH ₂ CI	$N(CH_3)_2$
Cl	CN	CCH ₃	C(=O)CH ₃	СН ₂ Вг	N(CH ₃) ₂

				GTT G1	N/CU-)-			
Ci	CN	CCH ₃	CO ₂ CH ₃	CH ₂ Cl	N(CH ₃) ₂			
Cl	CN	CCH ₃	CO ₂ CH ₃	CH ₂ Br	N(CH ₃) ₂			
Cl	CN	CCH ₃	CH ₂ C≡CH	CH ₂ Cl	N(CH ₃) ₂			-
Cl	CN	CCH ₃	CH ₂ C≡CH	CH ₂ Br	N(CH ₃) ₂			•
I = 18 O =	- O Y = Cl :	and $R^2 = CH_2$.Cl					
$\frac{J=18, O=1}{X}$	<u> </u>	R ¹	<u>Z</u>	I	1	I	<u>m</u>	
<u>r</u>	•	Н	CH ₂	1	l		1	
F	C	=0)CH ₃	CH ₂	1	l		1	
F		CO ₂ CH ₃	CH ₂	;	1		1	
F	;	Н	CHF		1		1	
F	C	(=O)CH ₃	CHF		1		1	
F		CO ₂ CH ₃	CHF		1	1	1	
F		Н	CH ₂		1		2	
F	· C	(=O)CH ₃	CH ₂		1		2	
F	•	CO ₂ CH ₃	CH ₂		1		2	
F		5 H	CHF	•	1		2	-4"1
F	· · · C	(=0)CH ₃	CHF		1		2	
F	(CO ₂ CH ₃	CHF '		1		2	
CI		Н	CH ₂		1		1	
Cl	C	(=0)CH ₃	CH ₂		1		1	
CI	•	CO ₂ CH ₃	CH ₂		1		1	
Cl		Н	CHF		1		1	
Cl	C	C(=O)CH ₃	CHF		1		1	
Cl		CO ₂ CH ₃	CHF		1		1	
Cl		• Н	CH ₂		1		2	
Cl	C	C(=O)CH ₃	CH ₂		1		2	
Cl	(CO ₂ CH ₃	CH ₂		1	,	2	
Cl	•	Н	CHF		1.	,	2	
Cl		$C(=O)CH_3$	CHF		1		2	
Cl		CO ₂ CH ₃	CHF		1		2	
	o o40°	24 CO.CU.						
		²⁴ = CO ₂ CH ₃ <u>Z</u>		m	<u>R</u> 1		•	<u>R²</u>
X	Y	∠ CH ₂	n 1	· 1	Н			H ₂ CI
F	Н	_	i I	1	н			H ₂ Br
F	Н	CH ₂	1	•				2

F	Н	CH ₂	1	1	C(=0)CH ₃	CH ₂ CI
F	Н	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
F	H	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	H	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
F	H	CH ₂	1	1	СН ₂ С≡СН	CH ₂ Br
F	H	СH ₂	1	2	Н	CH ₂ CI
F	H	CH ₂	1	2	н	CH ₂ Br
F	Н	СH ₂	1	2	C(=0)CH ₃	CH ₂ CI
F	Н	СH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	H	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	H	CH ₂	1	2	СО ₂ СН ₃	CH ₂ Br
F	H	CH ₂	1	2	СН ₂ С≡СН	CH ₂ CI
F	H ·	CH ₂	1	2	CH ₂ C≖CH	CH ₂ Br
F	H	CHF	1	1	Н	CH ₂ Cl
F	H	CHF	1	1	Н	CH ₂ Br
F	H	CHF	1	1	C(=0)CH ₃	CH ₂ Cl
F	H	CHF	1	1	C(=0)CH ₃	CH ₂ Br
F	H	CHF	1	1	со ₂ сн ₃	CH ₂ Cl
F	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Н	CHF	1	2	н	CH ₂ CI
F	Н	CHF	1	2	Н	CH ₂ Br
F	Н	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
F	Н	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	Н	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Н	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Н	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Н	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Н	CHCI	1	1	Н	CH ₂ CI
F	Н	CHCI	1	1	Н	CH ₂ Br
F	H	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
F	H	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
F	Н	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	Н	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Н	CHCI	ı	1	CH ₂ C≡CH	CH ₂ CI
F	н	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
					-	۷

	F	Н	CHCI	1		2	н	CH ₂ CI
.,	F	Н	CHCI	1	. •	2	н .	CH ₂ Br
·	F 1	н	CHCI	1	•	2	$C(=O)CH_3$	CH ₂ CI
•	F .	н	CHCl	1	ŧ	2	C(=0)CH ₃	CH ₂ Br
•	F	н	CHCI	1		2	CO ₂ CH ₃	CH ₂ Cl
. 1	F	н	CHCI	1		2	CO ₂ CH ₃	CH ₂ Br
	F	н	CHCl	1		2	CH ₂ C≡CH	CH ₂ Cl
	F	Н	CHCI	1		2	CH ₂ C≡CH	CH ₂ Br
	F.	Cl	CH ₂	1	•	1	Н	CH ₂ CI
•	F	Cl	CH ₂	1		1	H	CH ₂ Br
	F ·	Cl	CH ₂	1	•	1	$C(=O)CH_3$	CH ₂ Cl
	F '	C1	CH ₂	1		1	C(=O)CH ₃	CH ₂ Br
10.	F 2.	Cl	CH ₂	1	•	1	CO ₂ CH ₃	CH ₂ Cl
1	F * A	Cl	CH ₂	1		1	CO ₂ CH ₃	CH ₂ Br
; ; ;	F	C1	CH ₂	1	• •	1	CH ₂ C≡CH	CH ₂ CI
· .¹	F	Cl	CH ₂	1	,	1	CH ₂ C≡CH	CH ₂ Br
•, •	F () (Cl	CH ₂	1	*	2	: H	CH ₂ Cl
ed ,	F	Cl	CH ₂	1	-	2	H	CH ₂ Br
•	F	Ci	CH ₂	1	٠	2	C(=O)CH ₃	CH ₂ Cl
: "	F	C1	CH ₂	1		2	C(=O)CH ₃	CH ₂ Br
* =	F	C1	CH ₂	1		2	CO ₂ CH ₃	CH ₂ Cl
	F	Cl	CH ₂	1		2	CO ₂ CH ₃	CH ₂ Br
<i>:</i> ·	F	Cl	CH ₂	1		2	CH ₂ C≡CH	CH ₂ CI
Na - 1	F	Cl	CH ₂	1		2	CH ₂ C≡CH	CH ₂ Br
*, **	F	Cl	CHF	1	•	1	· H	CH ₂ CI
•. •	F '	Cl	CHF	1	r	1	Н	CH ₂ Br
.*	F	Cl	CHF	1		1	C(=O)CH ₃	CH ₂ Cl
	F .	Cl	CHF	1	٠.	1	C(=O)CH ₃	CH ₂ Br
•	F	Cl	CHF	1		1	CO ₂ CH ₃	CH ₂ CI
• •	F	Cl	CHF	1		1	CO ₂ CH ₃	CH ₂ Br
	F	Cl	CHF	1		1	CH ₂ C≡CH	CH ₂ Cl
	F	Cl	CHF	1		1	CH ₂ C≡CH	CH ₂ Br
	F .	Cl	CHF	1		2	Н	CH ₂ Cl
	F	Cl	CHF	1		2	Н	CH ₂ Br
	F	Cl	CHF	1		2	C(=O)CH ₃	CH ₂ CI
	F	Cl	CHF	1		2	$C(=O)CH_3$	CH ₂ Br
	F	Cl	CHF	1		2	CO_2CH_3	CH ₂ CI
	F	Cl	CHF	i		2	CO ₂ CH ₃	CH ₂ Br

F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	1	Н	CH ₂ Cl
F	Cì	CHCI	1	1	Н	CH ₂ Br
F	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
F	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cì	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	2	Н	CH ₂ CI
F	Cl	CHCI	1	2	Н	CH ₂ Br
F	Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ Cl
F	Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	СО ₂ СН ₃	CH ₂ Cl
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHCi	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	1	н	CH ₂ Cl
F	Br	CH ₂	1	1	Н	CH ₂ Br
F	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
F	Br	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	СО ₂ СН ₃	CH ₂ CI
F	Br	СH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CH ₂ C≕CH	CH ₂ CI
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	2	Н	CH ₂ CI
F	Br	CH ₂	1	2	H	CH ₂ Br
F	Br	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
F	Br	CH ₂	1	2	C(=O)CH ₃ ·	CH ₂ Br
F	Br	CH ₂	1	2	CO_2CH_3	CH ₂ Cl-
F	Br	CH ₂	1	2	СО ₂ СН ₃	CH ₂ Br
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CHF	1	1	Н	CH ₂ Cl
F	Br	CHF	1	1	Н	CH ₂ Br
F	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
F	Br	CHF	1	1	C(=0)CH ₃	CH ₂ Br

4 1	F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
	F	Br	CHF	1 .	1	CO ₂ CH ₃	CH ₂ Br
	F	Br	CHF	1 .	1	CH ₂ C≖CH	CH ₂ Cl
٠	F	Br	CHF	1 .	1	CH ₂ C≡CH	CH ₂ Br
	F ·	Br	CHF	1	2	Н	CH ₂ CI
	F	Br	CHF	1	2	Н	CH ₂ Br
	F	Br	CHF	1 .	2	C(=0)CH ₃	CH ₂ Cl
	F '	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Br
٠.	F ····	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
• *	F	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
	F	Вт	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
	F ·	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
	F ·	Br	CHCI	1	1	Н	CH ₂ CI
	F * * *	Br	CHCI	1 .	1	H	CH ₂ Br
:	F	Br	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
	F C	Br	CHCI	1	1 -	C(=0)CH ₃	CH ₂ Br
	F	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
	F	Br	CHCl	1	1	CO ₂ CH ₃	CH ₂ Br
:.	F	Br	CHCI	1	1	CH ₂ C≖CH	CH ₂ Cl
	F	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
	F	Br	CHCl	1	2	Н	CH ₂ Cl
	F	Br	CHCI	1	2	H	CH ₂ Br
	F	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Cl
: :	F	Br	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
ı	F	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
	F	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
	F	Br	CHCl	1 .	2	CH ₂ C≡CH	CH ₂ CI
	F	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
	F	CN	CH ₂	1	1	Н	CH ₂ CI
	F	CN	CH ₂	1	1	Н	CH ₂ Br
	F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
	F	CN	CH ₂	i	. 1	C(=O)CH ₃	CH ₂ Br
	F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
	F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
	F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
	F	CN	СH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
	F	CN	CH ₂	i	2	Н	CH ₂ CI
	F	CN	CH ₂	1	2	Н	CH ₂ Br

F	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
F	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	СО ₂ СН ₃	CH ₂ CI
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	СН ₂ С≖СН	CH ₂ CI
F	CN	CH ₂	1 .	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1	1	Н	CH ₂ CI
F	CN	CHF	1	1	Н	CH ₂ Br
F	CN	CHF	1	1	C(=O)CH ₃	CH ₂ CI
F	CN	CHF	· 1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	1	со ₂ сн ₃	CH ₂ CI
F	CN	CHF	1	1	СО ₂ СН ₃	CH ₂ Br
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHF	1	1	CH ₂ C≖CH	CH ₂ Br
F	CN	CHF	1	2	н	CH ₂ CI
F	CN	CHF	· 1	2	н	CH ₂ Br
F	CN	CHF	1	. 2	C(=O)CH ₃	CH ₂ Cl
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHF	1	2	со ₂ сн ₃	CH ₂ Br
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	1	н	CH ₂ Cl
F	CN	CHCI	1	1	Н	СН ₂ Вг
F	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ Cl
F	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHCl	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	2	н	CH ₂ CI
F	CN	CHCI	1	2	н	CH ₂ Br
F	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ Cl
F	CN	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CHCI	1	2	СО ₂ СН ₃	CH ₂ Br
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br

ing parameter section in the section

· · · · ,

••		CII	t	1	Н	CH ₂ CI
Cl	н	CH ₂	1	1	н	CH ₂ Br
CI .	Н	CH ₂	1 .	1	C(=O)CH ₃	CH ₂ CI
Cl	H	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl ,	Н	CH ₂	1 .	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Н	CH ₂	•	1	CO ₂ CH ₃	CH ₂ Br
Cl	H	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Н	CH ₂	1	2	Н	CH ₂ Cl
Cl	H	CH ₂	l	2 2	H	CH ₂ Br
Cl	Н	CH ₂	1		C(=O)CH ₃	CH ₂ CI
Cl	H	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
CI	Н	CH ₂	1	2		CH ₂ Cl
Cl	H	CH ₂	1	2	CO ₂ CH ₃	_
Cl	H	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	H	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	H	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	H	CHF	1	1	H	CH ₂ Cl
Cl	H	CHF	1	1	н -	CH ₂ Br
Cl	Н	CHF	1 1	1	$C(=O)CH_3$	CH ₂ Cl
Cl	Н	CHF	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
CI "	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
	н	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl Cl	н	CHF	i ·	2	H	CH ₂ CI
CI	н	CHF	i	2	H	CH ₂ Br
Cl	Н	CHF	i	2	$C(=O)CH_3$	CH ₂ Cl
Cl	Н	CHF	i	2	C(=0)CH ₃	CH ₂ Br
Cl	Н	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
CI	H	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	н	CHF	i	2	CH ₂ C≖CH	CH ₂ CI
Cl	н	CHF	i.	2	CH ₂ C≡CH	CH ₂ Br
Cl	н	CHCI	1	1	н	CH ₂ CI
Cl	н	CHCI	1	1	н	CH ₂ Br
Cl	н	CHCI	1	1 .	C(=0)CH ₃	CH ₂ CI
ci	н	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
*	Н	CHCI	i	1	CO ₂ CH ₃	CH ₂ CI
Cl		CHCI	1 .	1	CO ₂ CH ₃	CH ₂ Br
Cl	Н	Chci	•	•	- 2 3	• 4

CI	Н	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Н	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	H	CHCI	1	2	н	CH ₂ CI
Cl	Н	CHCI	1	2	Н	CH ₂ Br
Cl	Н	CHCI	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Н	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
CI	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	H	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Н	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CH ₂	1	1	Н	CH ₂ Cl
Cl	Cl	CH ₂	1	1	н	CH ₂ Br
Cl	Cl	CH ₂	1	1	C(=0)CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CH ₂	1	1	СН ₂ С≡СН	CH ₂ Br
CI	Cl	CH ₂	1	2	H	CH ₂ CI
Cl	CI	CH ₂	1	2	н	CH ₂ Br
Cl	Cl	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Cl	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	2	со ₂ сн ₃	CH ₂ CI
CI	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHF	1	1	Н	CH ₂ CI
Cl	Cl	CHF	1	1	н	CH ₂ Br
Cl	Cl	CHF	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Cl	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHF	l	1	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHF	1	1	CH ₂ C ≖C H	CH ₂ CI
Cl	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHF	1	2	н	CH ₂ Cl
CI	Cl	CHF	1	2	н	CH ₂ Br
Cl	Cl	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Cl	CHF	1	2	C(=O)CH ₃	CH ₂ Br

			CI II	1	2	CO ₂ CH ₃	CH ₂ CI
CI		Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl		Cl	CHF	1	2	CH ₂ C≖CH	CH ₂ CI
CI		Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl		Cl	CHF	1	1 .	Н.	CH ₂ Cl
CI .		Cl	CHCI	1	1	H ·	CH ₂ Br
Cl		Cl	CHCI	1	1 .	C(=O)CH ₃	CH ₂ Cl
Cl		Cl	CHCI	1	_	C(=0)CH ₃	CH ₂ Br
Cl		CI	CHCI	1	1	CO2CH ₃	CH ₂ Cl
Cl		Cl	CHCI	1		•	CH ₂ Br
Cl		Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl		Cl	CHCI	1	1	CH ₂ C≡CH	
Cl		Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl		Cl	CHCI	1	2	H -	CH ₂ Cl
Ci		Cl	CHCl	1	2	H · · ·	CH ₂ Br
Cl		Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ Cl
Cl		Cl	CHCl	1	2	C(=0)CH ₃	CH ₂ Br
CI		Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	***	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl		Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl		Cl	CHCl	1	2	СН ₂ С≡СН	CH ₂ Br
Cl		Br	CH ₂	1	1	н .	CH ₂ Cl
Cl		Br	CH ₂	1	1	H	CH ₂ Br
Cl		Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
Cl		Br	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
CI		Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
CI	-	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
CI		Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
CI		Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
CI		Br	CH ₂	1	2	Н	CH ₂ CI
Cl		Br	CH ₂	1	2	н	CH ₂ Br
CI		Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ CI
Cl		Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
		Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl			CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
CI		Br Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl			_	1	2	CH ₂ C≡CH	СН ₂ Вг
Cl		Br	CH ₂	1	1.	Н	CH ₂ Cl
Cl		Br	CHF	-	1-	н	CH ₂ Br
Cl		Br	CHF	1	1	••	2

Cl	Br	CHF	1	t	C(=0)CH ₃	CH ₂ CI
Cl	Br	CHF	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
Cì	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	2	H	CH ₂ Cl
Cl	Br	CHF	1	2 .	H	СН2Вг
Cl	Br	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
CI	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHCl	1	1	Н	CH ₂ Cl
Cl	Br	CHCI	1	1	Н	СН2Вг
Cl	Br	CHCl	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	1	CO_2CH_3	CH ₂ Br
Cl	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHCI	1	2	Н	CH ₂ CI
Cl	Br	CHCI	1	2	Н	CH ₂ Br
Cl	Br	CHCI	1	2	$C(=O)CH_3$	CH ₂ CI
Cl	Br	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cì	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CH ₂	1	1	Н	CH ₂ Cl
Cì	CN	CH ₂	1	1	Н	СН ₂ Вг
Cl	CN	CH ₂	1	1	$C(=O)CH_3$	CH ₂ CI
Cl	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	1	CO_2CH_3	CH ₂ Br
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br

CI	CN	CH ₂	1	2	н .	CH ₂ Cl
Cl	CN	CH ₂	1	2	н	CH ₂ Br
CI .	CN	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl .	CN	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
CI	CN	CH ₂	1	2	CO ₂ CH ₃	СН ₂ Вг
Cl	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHF	1	1	Н	CH ₂ CI
Cl	CN	CHF	1	1	H	CH ₂ Br
Cl	CN	CHF	1	1	$C(=O)CH_3$	CH ₂ Cl
Cl	CN	CHF	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHF	1	1.	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHF	1	2	Н	CH ₂ CI
Cl	CN	CHF	1	2	H.	CH ₂ Br
Cl	CN	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	CN	CHF	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCI	ì	1	Н	CH ₂ Cl
Cl	CN	CHCI	1	1	Н	CH ₂ Br
Cl	CN	CHCI	1	1	$C(=O)CH_3$	CH ₂ CI
Cl	CN	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
Cl .	CN	CHCI	i	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Ci	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCI	1	1.	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCI	1	2	H	CH ₂ CI
CI	CN	CHCI	1	2	н	CH ₂ Br
Cl	CN	CHCI	1	2	$C(=O)CH_3$	CH ₂ CI
Cl	CN	CHCI	i	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CO_2CH_3	CH ₂ CI
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br

PCT/US96/16111

^	_
ч	^
7	v

CI	CN	CHCI	ı	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
J = 19, O =	O, and R ²⁴ =	= C(O)N(OCI	13)(CH3)			
<u> </u>	Y	Z	<u> </u>	m	<u>R¹</u>	<u>R²</u>
F	Н	CH ₂	1	1	Н	CH ₂ Cl
F	Н	CH ₂	1	1	н	CH ₂ Br
F	Н	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Cl
F	Н	CH ₂	1	1	$C(=0)CH_3$	CH ₂ Br
F	Н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	H	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
F	H	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	H	CH ₂	1	2	H	CH ₂ Cl
F	H	CH ₂	1	2	H	CH ₂ Br
F	H	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
F	Н	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
F	Н	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Н	CH ₂	1	2	CO_2CH_3	СH ₂ Вг
F	Н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	Н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Н	CHF	1	1	Н	CH ₂ Cl
F	Н	CHF	1	1	Н	CH ₂ Br
F	Н	CHF	1	1	$C(=0)CH_3$	CH ₂ Cl
F	Н	CHF	1	1	C(=O)CH ₃	CH ₂ Br
F	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
F	н	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Н	CHF	1	2	н	CH ₂ Cl
F	Н	CHF	1	2	Н	CH ₂ Br
F	Н	CHF	1	2	$C(=O)CH_3$	CH ₂ CI
F	Н	CHF	1	2	$C(=O)CH_3$	CH ₂ Br
F	Н	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Н	CHF	1	2	CO_2CH_3	CH ₂ Br
F	Н	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	. Н	CHF	1	2	CH ₂ C≡CH	CH ₂ Br

F.	н	CHCI	1	1	Н	CH ₂ CI
F	H	CHCI	1	1 .	Н	CH ₂ Br
F	Н	CHCI	1	1	$C(=O)CH_3$	CH ₂ CI
F	Н	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	н	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	н	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Н	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Н	СНСІ	1	1	CH ₂ C≡CH	CH ₂ Br
F	Н	CHCI	1	2	H :	CH ₂ CI
F	Н	CHCI	1	2	н	CH ₂ Br
F	Н	CHCI	1	2	C(=0)CH ₃	CH ₂ Cl
F	н	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
F	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	н	CHCI	1 .	2	CH ₂ C≡CH	CH ₂ Cl
F	H	CHCI	ı	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CH ₂	1 :	1	H	CH ₂ Cl
F	Cl	CH ₂	1 .	1	H	CH ₂ Br
F.	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
F	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CH ₂	i	1	CH ₂ C≡CH	CH ₂ CI
F,	Cl	СH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CH ₂	1 ,	2	Н	CH ₂ CI
F	Cl	CH ₂	1	2	H.	CH ₂ Br
F	Cl	CH ₂	1	2 '	C(=O)CH ₃	CH ₂ Cl
F	Cl	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
· F	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CH ₂	1,	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CH ₂	1.	2	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	1	Н	CH ₂ Cl
F	Cl	CHF	1	i	Н	CH ₂ Br
F	Cl	CHF	1	1	C(=O)CH ₃	CH ₂ CI
F	Cl	CHF	i	1	C(=O)CH ₃	CH ₂ Br
F	Cl	CHF	1	į	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Br

F	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	2	Н	CH ₂ Cl
F	Cl	CHF	1	2	H	CH ₂ Br
F	Cl	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
F	Cl	CHF	1	2	$C(=O)CH_3$	CH ₂ Br
F	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	1	H	CH ₂ Cl
F	Cl	CHCI	1	1	Н	CH ₂ Br
F	Cl	CHCI	1	1	$C(=O)CH_3$	CH ₂ Cl
F	Cl	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CHCI	1	1	CO ₂ CH ₃	СН ₂ Вг
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	2	Н	CH ₂ Cl
F	Cl	CHCI	1	2	н	CH ₂ Br
F	Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ Cl
F	Cl	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
F	CI	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	1	Н	CH ₂ Cl
F	Br	CH ₂	1	1	Н	CH ₂ Br
F	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Cl
F	Br	СH ₂	1	1	C(=0)CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
F	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	i	1	CH ₂ C≡CH	CH ₂ Cl
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	2	н	CH ₂ CI
F	Br	CH ₂	ı	2	н	CH ₂ Br
F	Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Cl
F	Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br

F	Br	CH ₂	i	2	CO ₂ CH ₃	CH ₂ CI
F	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br .	CHF	1	1	н	CH ₂ CI
F F	Br .	CHF	1	1	Н	CH ₂ Br
r F	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
r F	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Br
•	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
F F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
	Br	CHF	1	1 .	CH ₂ C≡CH	CH ₂ Cl
F	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F F	Br	CHF	1	2	н	CH ₂ Cl
r F	Br Br	CHF	1	2 .	H	CH ₂ Br
F	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
F	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	Вг	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
	Br	CHCI	1	1	Н	CH ₂ Cl
F F	Br	CHCl	1 .	1	Н	CH ₂ Br
F .	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ Cl
F	Br	CHCI	1	1	C(=O)CH3	CH ₂ Br
F	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CHCl	1	1	CH ₂ C≡CH	CH ₂ CI
	Br	CHC	i	1	CH ₂ C≡CH	CH ₂ Br
F F	Br	CHCI	1	2	Н	CH ₂ Cl
F	Br	CHCI	i	2	Н	CH ₂ Br
	Br	CHCI	i	2	C(=O)CH ₃	CH ₂ Cl
F F	Br	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
F	Br	CHCI	1	2	со ₂ сн ₃	CH ₂ CI
	Br	CHC	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
F	Br	CHCI	ı	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1	. 1	Н	CH ₂ CI
F	CN	CH ₂	1	1	н	CH ₂ Br
F	UN	C1.7	•			

F	CN	CH ₂	1	i	C(=O)CH ₃	CH ₂ Cl
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
F	CN	CH ₂	1	ı	СО ₂ СН ₃	CH ₂ Br
F	CN	СH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1	2	Н	CH ₂ CI
F	CN	CH ₂	1	2	Н	CH ₂ Br
F	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ CI
F	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CH ₂ C≡CH	СH ₂ CI
F	CN	CH ₂	1	2	CH ₂ C≡CH	СН ₂ Вг
F	CN	CHF	1	1	Н	CH ₂ CI
F	CN	CHF	1	1	Н	CH ₂ Br
F	CN	CHF	1	1	C(=0)CH ₃	CH ₂ CI
F	CN	CHF	1	1	C(=0)CH ₃	CH ₂ Br
F	CN	CHF	1	1	CO_2CH_3	CH ₂ CI
F	CN	CHF	1	1	CO_2CH_3	CH ₂ Br
F	CN	CHF	1	1	CH ₂ C = CH	CH ₂ Cl
F	CN	CHF	1	1	CH ₂ C = CH	CH ₂ Br
F	CN	CHF	1	2	Н	CH ₂ CI
F	CN	CHF	1	2	Н	CH ₂ Br
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
F	CN	CHF	1	2	C(=0)CH ₃	СH ₂ Вг
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	1	Н	CH ₂ Cl
F	CN	CHCI	1	1	Н	CH ₂ Br
F	CN	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
F	CN	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CHCI	1	1	CH ₂ C≅CH	CH ₂ Br

	an.	СНСІ	1 .	2 .	н	CH ₂ Cl
F 	CN	CHCI	1 .	2 .	н .	CH ₂ Br
F	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ Cl
F	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHCI	1 .	2 ·	- CH ₂ C≡CH	CH ₂ Br
F	CN		1	1	H ,	CH ₂ Cl
Cl	H	CH ₂	1 .	1	н	CH ₂ Br
Cl	H	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
Cl '	H 	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl · ·	H	CH ₂ CH ₂	1	1 .	CO ₂ CH ₃	CH ₂ Cl
Cl	H		1 .	1 .	CO ₂ CH ₃	CH ₂ Br
Cl	H	CH ₂	1 '	1	CH ₂ C≡CH	CH ₂ Cl
Cl	н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	н	CH ₂	1	2	Нj	CH ₂ Cl
Cl	н	CH ₂	1	2	H	CH ₂ Br
Cl	H	СН ₂ СН ₂	1	2	C(=0)CH ₃	CH ₂ Cl
CI	H	CH ₂	1 .	2	C(=O)CH ₃	CH ₂ Br
Cl	H		1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	H	CH ₂	1	2.	CO ₂ CH ₃	CH ₂ Br
Cl	н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	H	CH ₂	1	2 ·	CH ₂ C≡CH	CH ₂ Br
Cl	H	CH ₂ CHF	1	1	H.	CH ₂ Cl
Cl	H	CHF	1	1	\mathbf{H}_{i}	CH ₂ Br
Cl	H		1	1	C(=O)CH ₃	CH ₂ Cl
Cl	н	CHF CHF	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Н	CHF	• 1	1 .	CO ₂ CH ₃	CH ₂ Cl
Ci	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	H	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	H	CHF	1 -	1	CH ₂ C≡CH	CH ₂ Br
Cl	H 		· 1	2	Н	CH ₂ Cl
Cl	Н	CHF	1	2	н	CH ₂ Br
Cl	H	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	H	CHF	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Н	CHF		2	CO ₂ CH ₃	CH ₂ CI
Cl	H	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Н	CHF	1	-	- 2 3	-

Cl	Н	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
CI	Н	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
CI	Н	CHCI	1	1	Н	CH ₂ CI
Cl	Н	CHCI	1	1	Н	CH ₂ Br
Cl	H	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
Ci	Н	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
CI	H	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Н	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Н	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	H	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	H	CHCI	1	2	Н	CH ₂ CI
Cl	Н	CHCI	1	2	Н	CH ₂ Br
Ci	Н	CHCI	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	Н	CHCI	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Н	CHC1	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Н	CHC1	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CH ₂	1	1	Н	CH ₂ CI
Cl	Cl	CH ₂	1	1	Н	CH ₂ Br
Cl	Cl	CH ₂	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	Cl	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CH ₂	1	1	CH ₂ C ≡ CH	CH ₂ Br
Cl	Cl	CH ₂	1	2	Н	CH ₂ CI
Cl	Cl	CH ₂	1	2	Н	CH ₂ Br
Cl	Cl	CH ₂	1	2	C(=0)CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	2	CO_2CH_3	CH ₂ CI
Cl	Cl	CH ₂	1	2	со ₂ сн ₃	CH ₂ Br
CI	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHF	1	1	Н	CH ₂ CI
Cl	Cl	CHF	1	1	н	CH ₂ Br
Cl	CI	CHF	1 .	1	C(=O)CH ₃	CH ₂ Cl
Cl	CI	CHF	1	1	$C(=O)CH_3$	CH ₂ Br

	~ 1	CHF	ı	i	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
CI	Cl	CHF	1	1	CH ₂ C≖CH	CH ₂ Cl
Cl	Cl	CHF	1	1 .	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHF	1 .	2	н	CH ₂ CI
CI	Cl	CHF	1	2 .	Н .	CH ₂ Br
Cl	Cl	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	Cl	CHF	1	2 .	C(=O)CH ₃	CH ₂ Br
Cl	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHF	1	. 2	CH ₂ C≡CH	CH ₂ Cl
Cl	Cl Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	1	1	н .	CH ₂ Cl
Cl	Cl	CHCI	1	1 .	H	CH ₂ Br
Cl	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	Cl	CHCI	1	1 2	C(=O)CH ₃	CH ₂ Br
Cl	CI	CHCI	1	1 .	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
CI	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	CI	CHCI	1	1	CH ₂ C≖CH	CH ₂ Br
Cl 	Cl	CHCI	1 .	2	\mathbf{H}	CH ₂ Cl
Cl	Cl	CHCI	1	2	Н	CH ₂ Br
Cl	Cl	CHCI	1	2	$C(=O)CH_3$	CH ₂ CI
Cl	Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
Cl	CI CI	CHCI	1	2 .	CO ₂ CH ₃	CH ₂ Cl
CI	Cl	CHCI	1.	2 ·	CO ₂ CH ₃	CH ₂ Br
Cl	CI	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1 ,	1 ·	H	CH ₂ Cl
Cl	Br	CH ₂	1 .	1 .	Н	CH ₂ Br
Cl	Br	CH ₂	1	1 .	C(=0)CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
CI	Br Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Br Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	2	н	CH ₂ Cl
CI		CH ₂	1	2	н	CH ₂ Br
Cl	Br	C1.7	-			

Cl	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ CI
Cl	Br	СH ₂	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	1	Н	CH ₂ Cl
Cl	Br	CHF	1	1	Н	CH ₂ Br
Cl	Br	CHF	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Br	CHF	. 1	1	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	2	H	CH ₂ Cl
Cl	Br	CHF	1	2	н	CH ₂ Br
Ci	Br	CHF	1	2	C(=0)CH ₃	CH ₂ CI
Cl	Br	CHF	1	2	C(=0)CH ₃	СН ₂ Вг
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHF	1	2	СН ₂ С≡СН	CH ₂ Br
Cl	Br	CHCI	1	1	H	CH ₂ CI
Cl	Br	CHCI	1	1	Н	CH ₂ Br
Cl	Br	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Br	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CHCI	1	i	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
CI	Br	CHCI	1	2	Н	CH ₂ Cl
Cì	Br	CHCI	1	2	Н	CH ₂ Br
Cl	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CHCI	1	2	со ₂ сн ₃	CH ₂ Br
Cl	Br	CHCI	i	2	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br

Cl	CN	CH ₂	1	1	H	CH ₂ CI
CI .	CN	CH ₂	1	1	H ·	CH ₂ Br
CI	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
CI	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
Ċl	CN	CH ₂	1 '	1	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CH ₂	1	2	Н	CH ₂ CI
Cl	CN	CH ₂	1	2	H	CH ₂ Br
Cl	CN	CH ₂	1 .	2	C(=O)CH ₃	CH ₂ CI
CI	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	2 ·	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	СН2	1.	2	CH ₂ C≖CH	СH ₂ Вг
Cl	CN	CHF	1	1 .	\mathbf{H}^{ij}	CH ₂ Cl
Cl	CN	CHF	1	1 .	\mathbf{H}^{A}	CH ₂ Br
CI	CN	CHF	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	CN	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHF	1	1 '	CO ₂ CH ₃	CH ₂ CI
CI	CN ¹	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHF	1	1	CH ₂ C≖CH	CH ₂ Cl
CI	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
CI	CN	CHF	1	2	\mathbf{H}_{\cdot}	CH ₂ Cl
Ci	CN	CHF	1	2	H	CH ₂ Br
Cl	CN	CHF	1	2	$C(=O)CH_3$	CH ₂ CI
CI	CN	CHF	1	2.	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHF	1.7	2	CO ₂ CH ₃	CH ₂ CI
CI	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
CI	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHF	1.	2.	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCI	1	1	Н	CH ₂ Cl
CI	CN	CHCI	1	1	H	CH ₂ Br
Cl	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1.	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br

Cl	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHC	1	1	CH ₂ C≡CH	CH ₂ Br
CI	CN	CHCI	1	2	Н	CH ₂ CI
Cl	CN	CHCI	1	2	Н	CH ₂ Br
Cl	CN	CHCI	1	2	$C(=O)CH_3$	CH ₂ Cl
CI	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHCl	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHCI	1	2 .	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
I – 10 O	= O and R ²⁴	= C(O)N(CH ₃)2			
<u>3 – 15, 0 .</u> X	Y	Z	r-2 D	<u>m</u>	<u>R1</u>	<u>R²</u>
F	H	CH ₂	1	1	н	CH ₂ Cl
F	Н	CH ₂	1	1	н	CH ₂ Br
F	Н	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
F	Н	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Br
F	Н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	H	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Н	CH ₂	1	2	Н	CH ₂ Cl
F	н	CH ₂	1	2	Н	CH ₂ Br
F	н	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
F	н	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br
F	H	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
F	н	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Н	CHF	1	1	Н	CH ₂ Cl
F	н	CHF	1	1	Н	CH ₂ Br
F	н	CHF	1	1	$C(=O)CH_3$	CH ₂ Cl
F	н	CHF	1	1	$C(=O)CH_3$	CH ₂ B ₁
F	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ C
F	н	CHF	1	1	CO ₂ CH ₃	CH ₂ B
F	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ C
F	н	CHF	1	1	CH ₂ C≡CH	CH ₂ B

ŕ	H	CHF	1 .	2	н	CH ₂ Cl
F	н	CHF	1	2	Н	CH ₂ Br
F.	н	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
F	Н	CHF	1	2	C(=0)CH ₃	CH ₂ Br
F.	H	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	н	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	н	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	н	CHF	1	2	CH ₂ C≡CH	
F	н	CHCI	1	1	H	CH ₂ Cl
F	н	CHCl	1	1	Н .	CH ₂ Br
F	н	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
F	н	CHCI	1	1	C(=O)CH ₂	CH ₂ Br
F	н	CHCI	1	. 1	CO ₂ CH ₃	CH ₂ Cl
F.	н		1	1	- , -	
F	Н		1	. 1	CH ₂ C≡CH	CH ₂ Cl
F	H	CHCI	1 .	1	CH ₂ C≡CI	H CH ₂ Br
F	: I H	CHCI	1.	2	H	CH ₂ Cl
F	H	CHCI	1	. 2	н .	CH ₂ Br
F	· · ·	H CHCI	1.	2	C(=0)CH	3 CH ₂ Cl
F	·	H CHCI	1	2	C(=0)CH	_
F	I	H CHC	1,	2	CO ₂ CH ₃	CH ₂ Cl
F	I	H CHCI	1,	2	CO ₂ CH ₂	
F	I	H CHCI	1	2	2 CH ₂ C≡Cl	
F	I	H CHCI	1,	:	2 CH ₂ C≡C	H CH ₂ Br
F	•	CI CH ₂	1,		1 ; H;	CH ₂ CI
F	(CI CH ₂	1	,	1 H	CH ₂ Br
F	(CI CH ₂	1		1 C(=O)CH	l ₃ CH ₂ Cl
F	(CI CH ₂	,1		1 C(=0)CF	-
F		CI CH ₂		•	1 CO ₂ CH	_
F		CI CH ₂	1		1 CO ₂ CH	3 CH ₂ Br
F	•	CI CH ₂	1		1 CH ₂ C≡C	
F	•	Cl CH ₂	1		1 CH ₂ C≡C	CH CH ₂ Br
F		Ci CH ₂	1		2 H	CH ₂ CI
F	•	Cl CH ₂	1		2 H	CH ₂ Br
F		CI CH ₂			2 C(=O)CI	H ₃ CH ₂ Cl
F		CI CH ₂			2 C(=0)C1	H ₃ CH ₂ Br
F		CI CH ₂			2 CO ₂ CH	
F		CI CH ₂	. 1	i	2 CO ₂ CH	l ₃ CH ₂ Br

F	Cl	CH ₂	1	2	СН ₂ С≌СН	CH ₂ CI
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	1	Н	CH ₂ Cl
F	Cl	CHF	i	1	н	CH ₂ Br
F	Cl	CHF	1	1	C(=O)CH ₃	CH ₂ CI
F	Cl	CHF	1	1	C(=0)CH ₃	CH ₂ Br
F	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHF	1	1	CH ₂ C≖CH	CH ₂ CI
F	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	2	н	CH ₂ CI
F	Cl	CHF	1	2	н	CH ₂ Br
F	Cl	CHF	1	2	C(=0)CH ₃	CH ₂ Cl
F	Cl	CHF	1	2	C(=0)CH ₃	CH ₂ Br
F	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	1	H	CH ₂ CI
F	Cl	CHCI	1	1	Н	CH ₂ Br
F	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
F	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	2	Н	CH ₂ Cl
F	Cl	CHCI	1	2	Н	CH ₂ Br
F	Cl	CHCI	1	2	C(=0)CH ₃	CH ₂ CI
F	Cl	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	1	Н	CH ₂ CI
F	Br	СH ₂	1	1	н	CH ₂ Br
F	Br	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
F	Br	CH ₂	ı	1	C(=O)CH ₃	CH ₂ Br

F	Br	CH ₂	1 .	ı	CO ₂ CH ₃	CH ₂ Cl
F	Br	CH ₂	1 .	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	2	Н	CH ₂ CI
F	Br	CH ₂	1	2	H	CH ₂ Br
F	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ Cl
F.	Br	СH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
F	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F F	Br	CHF	1	1	H	CH ₂ Cl
F .	Br	CHF	1	1	H	CH ₂ Br
F	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
F	Вг	CHF	1	1	C(=O)CH ₃	CH ₂ Br
F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CHF	1	2	H	CH ₂ Cl
F	Br	CHF	1	2	Н	CH ₂ Br
F	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ CI
F	Br	CHF	1	2	C(=0)CH ₃	CH ₂ Br
F	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	Br .	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br .	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CHCI	1	1	Н	CH ₂ CI
F	Br	CHCI	1	1	H	CH ₂ Br
F.	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ CI
F	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	Br	CHCl	1	1	CO_2CH_3	CH ₂ Br
F	Br .	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CHCI	1	2	Н	CH ₂ CI
F	Br	CHCl	1	2	н	CH ₂ B ₁
-						

F	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
F	Br	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
F	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CHCl	1	2	CH ₂ C≖CH	CH ₂ Cl
F	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1	1	н	CH ₂ Cl
F	CN	CH ₂	1	1	Н	CH ₂ Br
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1	2	Н	CH ₂ Cl
F	CN	CH ₂	1	2	н	CH ₂ Br
F	CN	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
F	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
F	CN	CH ₂	1	2	CH ₂ C≡CH	СН ₂ Вг
F	CN	CHF	1	1	H	CH ₂ CI
F	CN	CHF	1	1	н	CH ₂ Br
F	CN	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
F	CN	CHF	1	1	$C(=O)CH_3$	CH ₂ Br
F	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
F	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1	2	Н	CH ₂ CI
F	CN	CHF	1	2	Н	CH ₂ Br
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ CI
F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
F	CN	CHF	1	2	со ₂ сн ₃	CH ₂ CI
F	CN	CHF	1	2	со ₂ сн ₃	CH ₂ Br
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
F	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br

·F	CN	CHCI	1	1	Н	CH ₂ CI
F	CN	CHCI	1	1	Н	CH ₂ Br
F	CN	CHCI	1	1 .	$C(=O)CH_3$	CH ₂ CI
F	CN	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHC	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CHCl	1 .	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CHCI	1	2	Н	CH ₂ CI
F	CN	CHCI	. 1	2	Н	CH ₂ Br
F	CN	CHCI	1	2	C(=0)CH ₃	CH ₂ CI
F	CN	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
F	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
F	CN	CHCl	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
$\mathbf{F}_{\mathbb{C}^{n}}$	CN	CHCl	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Н	CH ₂	1	1	H	CH ₂ Cl
Cl	н	CH ₂	1	i .	\mathbf{H}_{\perp}	CH ₂ Br
Cl	H	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Cl
Cl	Н	CH ₂	1	1 .	$C(=O)CH_3$	CH ₂ Br
Cl	н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	н	CH ₂	1.	2	H [CH ₂ Cl
Cl	Н	CH ₂	1	2 ·	Н	CH ₂ Br
Cl	Н	CH ₂	1	2	C(=O)CH ₃	CH ₂ CI
Cl	Н	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
Cl	H	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Н	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	н	CH ₂	1	2 .	CH ₂ C≡CH	CH ₂ CI
Cì	Н	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	н	CHF	1	1	Н	CH ₂ Cl
Cl	н	CHF	1	1	Н	CH ₂ Br
Cl	н	CHF	1	1	C(=0)CH ₃	CH ₂ CI
Cl	н	CHF	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Н	CHF	1	1	CO_2CH_3	CH ₂ Cl
Cl	н	CHF	1	1	CO_2CH_3	CH ₂ Br

CI	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Н	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Н	CHF	1	2	Н	CH ₂ Cl
Cl	Н	CHF	1	2	Н	CH ₂ Br
Cl	H	CHF	1	2	C(=O)CH ₃	CH ₂ CI
Cl	H	CHF	1	2	$C(=O)CH_3$	CH ₂ Br
CI	H	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	H	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	H	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Н	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Н	CHCI	1	1	Н	CH ₂ CI
Cl	H	CHCI	1	1	H	CH ₂ Br
Cl	Н	CHCI	1	1	$C(=O)CH_3$	CH ₂ Cl
Cl	H	CHCl	1	1	C(=0)CH ₃	CH ₂ Br
Cl	H	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Ci	Н	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Ci	H	CHCI	1	1	CH ₂ C = CH	CH ₂ Cl
Cl	Н	CHCl	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Н	CHCI	1	2	Н	CH ₂ CI
Cl	Н	CHCI	1	2	Н	CH ₂ Br
Cl	Н	CHCI	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	Н	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Н	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	H	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CI	CH ₂	1	1	Н	CH ₂ Cl
Cl	CI	CH ₂	1	1	Н	CH ₂ Br
Cl	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CH ₂	1	2	н	CH ₂ Cl
Cl	Cl	CH ₂	1	2	н	CH ₂ Br
Cl	Cl	CH ₂	1	2	$C(=O)CH_3$	CH ₂ CI
Cl	Cl	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Br

Cl	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
CI	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHF	1	1	Н	CH ₂ CI
Cl	Cl	CHF	1	1	Н	CH ₂ Br
Cl	Cl	CHF	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	Cl	CHF	1	1	$C(=0)CH_3$	CH ₂ Br
CI	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl	CHF	. 1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Ci	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHF	1	2	Н	CH ₂ CI
Cl	Cl	CHF	1	2	Н	CH ₂ Br
Cl	Cl	CHF	1	2	C(=0)CH ₃	CH ₂ CI
Cl	C1 .	CHF	1	2	C(=0)CH ₃	CH ₂ Br
CI	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHF	1 .	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCi	1	1	H	CH ₂ Cl
CI	CI	CHCI	1	1	H	СН2Вг
Cl	Cl	CHCI	i	1	C(=0)CH ₃	CH ₂ Cl
CI	Cl	CHCI	1	1	C(=0)CH ₃	СН2Вг
Cl	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CI	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Cì	CHCI	i	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	i	2	н	CH ₂ CI
Cl	CI	CHCI	1	2	Н	CH ₂ Br
Cl	CI	CHCI	i	2	C(=0)CH ₃	CH ₂ CI
Cl	Ci	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Ci	CHCI	1	2	CO_2CH_3	CH ₂ Cl
Cl	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Cl	CHCI	t	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	ı	ı	Н	CH ₂ Cl
Cl	Br	CH ₂	1	1	Н	CH ₂ Br

CI	Br	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
CI	Br	СH ₂	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	со ₂ сн ₃	CH ₂ CI
CI	Br	CH ₂	1	t	со ₂ сн ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
CI	Br	CH ₂	1	2	Н	CH ₂ Cl
C1	Br	CH ₂	1	2	Н	CH ₂ Br
Cl	Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Cl
CI	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
CI	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	1	Н	CH ₂ CI
Cl	Br	CHF	1	1	н	CH ₂ Br
CI	Br	CHF	1	1	C(=0)CH ₃	CH ₂ Cl
CI	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHF	1	1	CH ₂ C≕CH	CH ₂ Br
Cl	Br	CHF	1	2	н	CH ₂ Cl
Ci	Br	CHF	1	2	Н	CH ₂ Br
Cl	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHF	1	2	СН ₂ С≡СН	CH ₂ Cl
C1	Br	CHF	1	2	СН ₂ С≡СН	CH ₂ Br
CI	Br	CHCI	1	1	Н	CH ₂ Cl
Cl	Br	CHCI	1	1	н	CH ₂ Br
Cl	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ Cl
Cl	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHCI	1	1	СН ₂ С≡СН	CH ₂ Br

CI	Br	CHCI	1	2	н	CH ₂ CI
Cľ	Br	CHCI	ı	2	Н	CH ₂ Br
Cl	Br	CHCI	i -	2	C(=O)CH ₃	CH ₂ Cl
CI	Br	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
CÏ	CN	CH ₂	1	1	Н	CH ₂ Cl
Cl	CN	CH ₂	1	1	Н	CH ₂ Br
Cl ⁻	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
Ci	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1 .	CH ₂ C≡CH	CH ₂ CI
CI	CN	CH ₂	1	1	CH ₂ C≅CH	CH ₂ Br
CI	CN	CH ₂	1	2	H	CH ₂ Cl
Cl	CN	CH ₂	1	2	Н	CH ₂ Br
Cl	CN	CH ₂	1	2	$C(=0)CH_3$	CH ₂ Cl
Cl	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1 '	2	CH ₂ C≡CH	CH ₂ Cl
Çl	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
CI	CN	CHF	1	1	H ·	CH ₂ Cl
CI	CN	CHF	1	1 '	Н	CH ₂ Br
Cl	CN	CHF	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	CN	CHF	1	1	$C(=0)CH_3$	CH ₂ Br
Ċl	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHF	1	1	CO_2CH_3	CH ₂ Br
Cl	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHF	1	2	H	CH ₂ Cl
Cl	CN	CHF	1	2	Н	CH ₂ Br
ci	CN	CHF	1	2	$C(=O)CH_3$	CH ₂ CI
Cl	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHF	1	2	со ₂ сн ₃	CH ₂ Br

			116			
CI	CN	CHF	1	2	CH ₂ C≅CH	CH ₂ Cl
Cl	CN	CHF	1	2	- CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCI	1	1	Н	CH ₂ CI
Cl	CN	CHCI	1	1	н	CH ₂ Br
CI	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
CI	CN	CHCl	1	1	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHCl	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Ci	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
CI	CN	CHCI	1	1	СН ₂ С≡СН	CH ₂ Br
CI	CN	CHCI	1	2	н	CH ₂ CI
Cl	CN	CHCI	1	2	H	CH ₂ Br
Cl	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
Cl	CN	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
J = 19, Q =	O, and R ²⁴	<u>= CN</u>				
X	Y	Z	n	m	\mathbb{R}^1	<u>R²</u>
F	H	CH ₂	1	1	н	CH ₂ Cl
F	H	CH ₂	1	1	н	CH ₂ Br
F	H	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
F	H	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
F	Н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
F	Н	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	Н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
F	H	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	H	CH ₂	1	2	н	CH ₂ CI
F	H	CH ₂	1	2	Н	CH ₂ Br
F	H	CH ₂	I	2	C(=O)CH ₃	CH ₂ CI
F	Н	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
F	H	CH ₂	1	2	СО ₂ СН ₃	CH ₂ CI
F	H	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	H	СH ₂	ı	2	CH ₂ C≡CH	CH ₂ Cl
F	Н	CH ₂	i	2	- CH ₂ C≅CH	CH ₂ Br
					=	~

F ·	н	CHF	1	1	н	CH ₂ CI
F	Н	CHF	1	1	Н	CH ₂ Br
F	н	CHF	1 .	1	C(=O)CH ₃	CH ₂ CI
F	Н	CHF	1	1	C(=O)CH ₃	CH ₂ Br
F	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
F	H	CHF	1 .	1	CO ₂ CH ₃	CH ₂ Br
F	н	CHF	1	1	CH ₂ C≡CH	CH ₂ Cl
F	н	CHF	1	1 .	CH ₂ C≡CH	CH ₂ Br
F	Н	CHF	1	2	Н	CH ₂ Cl
F	Н	CHF	1	2	Н	CH ₂ Br
F	н	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
F '	Н	CHF	1	2	C(=0)CH ₃	CH ₂ Br
F	н	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
F	н	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Н	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Н	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Н	CHCl	1	1 '	H	CH ₂ CI
F	H	CHCI	1	1	Н	CH ₂ Br
F	н	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
F	H	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
F	Н	CHCl	1	1	CO ₂ CH ₃	CH ₂ Cl
F	н .	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Н	CHCI	1 ·	1 .	CH ₂ C≡CH	CH ₂ Cl
F	н	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	H	CHCI	1	2	Н	CH ₂ Cl
F	Н	CHCl	1	2	н	CH ₂ Br
F	Н	CHCl	1	2	C(=O)CH ₃	CH ₂ Cl
F	н	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
F	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
F	Н	CHCl	1	2	CO ₂ CH ₃	CH ₂ Br
F	Н	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
F	н	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CH ₂	1	l	н	CH ₂ CI
F	Cl	CH ₂	1	1	н	CH ₂ Br
F	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
F	Cl	CH ₂	1	i	C(=0)CH ₃	CH ₂ Br
F	Cl	CH ₂	1	i	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br

F	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	СH ₂	1	2	н	CH ₂ Cl
F	Cl	CH ₂	1	2	Н	CH ₂ Br
F	Cl	CH ₂	1	2	C(=O)CH3	CH ₂ CI
F	Cl	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
F	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	1	Н	CH ₂ Cl
F	CI	CHF	1	1	н	CH ₂ Br
F	Cl	CHF	1	1	C(=0)CH ₃	CH ₂ Cl
F	Cl	CHF	1	1	C(=0)CH ₃	CH ₂ Br
F	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Cl	CHF	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHF	1	2	Н	CH ₂ Cl
F	Cl	CHF	1	2	H	CH ₂ Br
F	Cl	CHF	1	2	C(=O)CH ₃	CH ₂ CI
F	Cl	CHF	1	2	C(=0)CH ₃	CH ₂ Br
F	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	CI	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	1	Н	CH ₂ CI
F	Cl	CHCI	1	1	H	CH ₂ Br
F	Cl	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
F	Cl	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
F	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
F	Cl	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Cl	CHCI	1	2	Н	CH ₂ CI
F	Cl	CHCI	1	2	Н	CH ₂ Br
F	Cl	CHCI	1	2	C(=O)CH ₃	CH ₂ Cl
F	CI	CHCI	1	2	C(=O)CH ₃	CH ₂ Br

F	CI	CHCI	l	2	CO_2CH_3	CH ₂ CI
F	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Cl
F.	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	1	Н	CH ₂ CI
. F	Br	CH ₂	1	1	Н	CH ₂ Br
F	Br	CH ₂	1	1 .	C(=O)CH ₃	CH ₂ CI
F	Br	CH ₂	1	1	$C(=O)CH_3$	CH ₂ Br
F	Br	CH ₂	1 ,	1 .	CO ₂ CH ₃	CH ₂ Cl
·F	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Cl
F	Br	CH ₂	1 .	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CH ₂	1	2	H	CH ₂ CI
F	Br	CH ₂	1	2	H	CH ₂ Br
F	Br	CH ₂	1	2	C(=O)CH ₃	CH ₂ CI
F	Br	CH ₂	1.	2	$C(=O)CH_3$	CH ₂ Br
F	Br	CH ₂	1 .	2 .	CO ₂ CH ₃	CH ₂ CI
F	Br	CH ₂	1	2 .	CO ₂ CH ₃	CH ₂ Br
F	Br 🕡	CH ₂	1	2	CH ₂ C≖CH	CH ₂ Cl
F	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	Br	CHF	1	1	H,	CH ₂ Cl
F	Br	CHF .	1	1	H [CH ₂ Br
F	Br	CHF	1	1	C(=0)CH ₃	CH ₂ Cl
F	Br	CHF	1	1	C(=0)CH ₃	CH ₂ Br
F	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
F	Br	CHF	1	1	CO ₂ CH ₃	. CH ₂ Br
F.	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
F	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
F .	Br	CHF	1	2	Н	CH ₂ CI
F (Br	CHF	1	2 ;	Н	CH ₂ Br
F	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ Cl
F	Br	CHF	1	2	$C(=O)CH_3$	CH ₂ Br
F	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
F	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
F	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Cl
F	Br	CHF	1	2	CH ₂ C≡CH	СН ₂ Вг
F	Br	CHCI	1	1	Н	CH ₂ CI
F	Br	CHCI	1	1	Н	CH ₂ Br

F	Br	CHCI	1	1	C(=0)CH ₃	CH ₂ Cl
F	Br	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
F	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
F	Br	CHCI	1	1	СО ₂ СН ₃	CH ₂ Br
F	Br	CHCI	I	1	CH ₂ C≡CH	CH ₂ CI
F	Br	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
F	Br	CHCI	1	2	Н	CH ₂ CI
F	Br	CHCI	1	2	н	CH ₂ Br
F	Br	CHCI	1	2	C(=0)CH ₃	CH ₂ CI
F	Br	CHCI	. 1	2	C(=0)CH ₃	CH ₂ Br
F	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
F	Вг	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
F	Вг	CHCI	1	2	CH ₂ C≅CH	CH ₂ CI
F	Br	CHCI	1	2	CH ₂ C≝CH	CH ₂ Br
F	CN	CH ₂	1	1	Н	CH ₂ CI
F	CN	CH ₂	1	1	H	CH ₂ Br
F	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
F	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Cl
F	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
F	CN	СH ₂	1	1	CH ₂ C≖CH	CH ₂ Cl
F	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
F	CN	CH ₂	1	2	н	CH ₂ Cl
F	CN	CH ₂	1	2	н	CH ₂ Br
F -	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ Cl
F	CN	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
F -	CN	CH ₂	1	2	СО ₂ СН ₃	CH ₂ Cl
F	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
F	CN	СH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
F -	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
F	CN	CHF	1	1	н	CH ₂ Cl
F -	CN	CHF	1	1	Н	CH ₂ Br
F -	CN	CHF	1	1	C(=0)CH ₃	CH ₂ CI
F -	CN	CHF	1	1	C(=0)CH ₃	CH ₂ Br
F	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
F	CN	CHF	i	1	CO ₂ CH ₃	CH ₂ Br
F	CN	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
F	CN	CHF	1	1	CH ₂ C≡CH	СН ₂ Вг
						-

٠.	· F	CN	CHF	1	2	Н	CH ₂ CI
	F	CN	CHF	1	2	H	CH ₂ Br
	F	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
	F .	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
	F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
	·F	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
	F ·	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
	F·	CN	CHF	1	2	сн ₂ с≡сн	CH ₂ Br
-	F	CN	CHCI	1	1	H	CH ₂ CI
•	F	CN	CHCI	1	1	н	CH ₂ Br
	F	CN	CHCl	1	1	C(=O)CH ₃	CH ₂ CI
	F.	CN	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
	F	CN	CHCI	1	1	CO_2CH_3	CH ₂ Cl
	F	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
	F	CN	CHCI	1.	1	CH ₂ C≡CH	CH ₂ Cl
	F	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
	F	CN	CHCl-	1 ·	2	H	CH ₂ Cl
	F	CN	CHCl	1	2	H	CH ₂ Br
	F	CN	CHCl	1 .	2	C(=O)CH ₃	CH ₂ CI
	F	CN	CHCl	1	2	$C(=O)CH_3$	CH ₂ Br
	F ·	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
.•	F	CN	CHCI	1 .	2	CO ₂ CH ₃	CH ₂ Br
	F	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
2 .	F	CN	CHCI	1 .	2	CH ₂ C≡CH	CH ₂ Br
	Cl	H	CH ₂	1	1	Н	CH ₂ Cl
•	Cl	н	CH ₂	1	1	Н	CH ₂ Br
٠.	Cl	н	CH ₂	1	1	C(=0)CH ₃	CH ₂ Cl
•	Cl .	н -	СH ₂	1	1	$C(=O)CH_3$	CH ₂ Br
• .	Cl	Н	СH ₂ ·	1 ,	1	CO ₂ CH ₃	CH ₂ Cl
	CI	н	СH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
	Cl	н	CH ₂	1	1	CH ₂ C≖CH	CH ₂ CI
	Cl	Н	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
	Cl	Н	CH ₂	1	2	н	CH ₂ CI
	Cl	н	CH ₂	1	2	н	CH ₂ Br
	Cl	н	CH ₂	. 1	2	$C(=O)CH_3$	CH ₂ CI
	Cl	н	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
.•	Cl	н	СH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
	Cl ·	Н	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br

Cl	H	CH ₂	1	2	СН ₂ С≡СН	CH ₂ CI
Cl	H	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	H	CHF	1	1	н	CH ₂ CI
Cl	Н	CHF	1	1	н	CH ₂ Br
Cl	H	CHF	1	1	C(=O)CH ₃	CH ₂ Cl
Cl	H	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Н	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Н	CHF	ì	1	CO ₂ CH ₃	CH ₂ Br
Cl	H	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Н	CHF	1	1	СН ₂ С≡СН	CH ₂ Br
Cl	H	CHF	1	2	н	CH ₂ CI
Cl	Н	CHF	1	2	н	CH ₂ Br
Cl	H	CHF	1	2	C(=O)CH ₃	CH ₂ CI
Cl	H	CHF	1	2	C(=O)CH ₃	СН ₂ Вг
Cì	H	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	н	CHF	1	2	CO ₂ CH ₃	СН ₂ Вг
Cl	H	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	H	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Н	CHCl	1	1	н	CH ₂ CI
Cl	H	CHCI	1	1	н	CH ₂ Br
Cl	H	CHCI	1	1	C(=O)CH ₃	CH ₂ CI
Cl	H	CHCI	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Н	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	H	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	H	CHCI	1	1	СН ₂ С≖СН	CH ₂ CI
Cl	Н	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	H	CHCI	1	2	H	CH ₂ Cl
Cl	Н	CHCI	1	2 .	Н	CH ₂ Br
Cl	Н	CHCI	1	2	C(=O)CH ₃	CH ₂ CI
Cl	Н	CHCI	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Н	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	H	CHCl	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	H	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
CI	H	CHC	i	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CH ₂	1	1	н	CH ₂ CI
CI	Cl	CH ₂	1	I	н	CH ₂ Br
CI	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ CI
CI	Cl	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
						~

ČI .	Cl ·	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1 **	1	СО ₂ СН ₃	CH ₂ Br
CI	Cl	CH ₂	1 .	1	CH ₂ C≡CH	CH ₂ Cl
CI	CI	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CI	CH ₂	1.	2	н.,	CH ₂ Cl
Cl	Cl	CH ₂	1	2 ·	Н	CH ₂ Br
CI	Cl	CH ₂	1 .	2 .	C(=O)CH ₃	CH ₂ CI
Cì	Cl	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
CI	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl ·	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
CI	CI	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl '	CHF	1	1	H	CH ₂ CI
CI	Cl	CHF	1	1 .	H	CH ₂ Br
Cl	C I .	CHF	1 .	1 '	C(=0)CH ₃	CH ₂ Cl
CI	Cl ·	CHF	1 .	1	C(=O)CH ₃	CH ₂ Br
Ci	CI	CHF	1	1 .	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl	CHF	1	1 .	CO ₂ CH ₃	CH ₂ Br
CI	Cl	CHF	1 .	1	CH ₂ C≡CH	CH ₂ CI
Cl	Cl	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHF	1	2 ·	н	CH ₂ CI
CI	Cl	CHF	1	2	Н	CH ₂ Br
Cl	Cl ·	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Cl	CHF	1	2	$C(=O)CH_3$	CH ₂ Br
Cl	Cl	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHF	i	2	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
CI	Cl	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	1	1	н	CH ₂ CI
CI	Cl	CHCI	1	1	Н	CH ₂ Br
Cl	Cl	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
CI	Cl	CHCI	1 .	1 .	C(=0)CH ₃	СH ₂ Вт
CI	Cl	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Cl	CHCI	i	1	CO ₂ CH ₃	CH ₂ Br
Cl	Cl	CHC	1	1	CH ₂ C≡CH	CH ₂ CI
CI	Cl	СНСІ	1 .	1	CH ₂ C≡CH	CH ₂ Br
Cl	Cl	CHCI	1	2	н	CH ₂ CI
Cl	Cl	CHCI	1	2	н	CH ₂ Br

CI	CI	CHCI	t	2	C(=0)CH ₃	CH ₂ CI
Cl	CI	CHCI	l	2	C(=O)CH ₃	CH ₂ Br
Cl	CI	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Cl	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CI	CHCI	1	2	CH ₂ C ≡ CH	CH ₂ CI
Cl	Cl	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	1	Н	CH ₂ CI
Cl	Br	CH ₂	1	1	Н	CH ₂ Br
Cl	Br	CH ₂	1	1	C(=0)CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	CO_2CH_3	CH ₂ CI
Cl	Br	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	1	СН ₂ С≡СН	CH ₂ CI
Cl	Br	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CH ₂	1	2	H	CH ₂ CI
CI	Br	CH ₂	1	2	н	CH ₂ Br
Cl	Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	2	C(=0)CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br	CH ₂	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	1	Н	CH ₂ CI
Cl	Br	CHF	1	1	Н	CH ₂ Br
Cl	Br	CHF	1	1	C(=O)CH ₃	CH ₂ CI
Cl	Br	CHF	1	1	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHF	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHF	1	1	со ₂ сн ₃	CH ₂ Br
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHF	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHF	1	2	н	CH ₂ CI
CI	Br	CHF	1	2	Н	CH ₂ Br
CI	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Cl
Cl	Br	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Cl	Br	CHF	1	2	CO ₂ CH ₃	CH ₂ CI
Ci	Вг	CHF	1	2	CO ₂ CH ₃	CH ₂ Br
CI	Вг	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	Br	CHF	1	2	CH ₂ C≡CH	CH ₂ Br

Cl	Br	CHCI	1	1	н	CH ₂ Cl
Cl	Вг	CHCI	i	1	Н	CH ₂ Br
Cl	Br.	CHCI	1 .	1 .	$C(=O)CH_3$	CH ₂ CI
Cl	Br	CHCI	1	1	$C(=O)CH_3$	CH ₂ Br
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	Вг	CHCI	1	1	CH ₂ C≡CH	CH ₂ CI
Cl	Br .	CHCI	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	Br	CHCI	1	2	Н	CH ₂ Cl
Cl	Br	CHCI	· 1	2	Н	CH ₂ Br
CI	Br	CHCI	ì	2	C(=O)CH ₃	CH ₂ Cl
Cl	Br	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
C l	Br	CHCI	1	2	CO ₂ CH ₃	CH ₂ CI
Cl	Br	CHCl	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	Br	CHCI	1 .	2	CH ₂ C≡CH	CH ₂ Cl
Cl	Br ·	CHCI	1	2	CH ₂ C≡CH	CH ₂ Br
CI	CN	CH ₂	1	1	H	CH ₂ Cl
Cl	CN	CH ₂	1	1	H	CH ₂ Br
Cl	CN	CH ₂	1	1	C(=O)CH ₃	CH ₂ Cl
Cl	CN	CH ₂	1	1	C(=0)CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	1.	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CH ₂	1	1	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CH ₂	1	2	H	CH ₂ CI
Cl	CN	CH ₂	i	2	H	CH ₂ Br
Cl	CN	CH ₂	1	2	$C(=O)CH_3$	CH ₂ Cl
Cl	CN	CH ₂	1	2	C(=O)CH ₃	CH ₂ Br
· Cl	CN	CH ₂	1	2 .	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CH ₂	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CH ₂	1	2	CH ₂ C≡CH	CH ₂ CI
CI	CN	CH ₂	1 .	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHF	1	1	Н	CH ₂ CI
Cl	CN	CHF	1.	1	Н	CH ₂ Br
Cl	CN	CHF	1	1	$C(=O)CH_3$	CH ₂ Cl
Cl	CN	CHF	1	1	C(=0)CH ₃	CH ₂ Br
Cl	CN	CHF	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHF	ī	1	CO_2CH_3	CH ₂ Br

٠	-	-
ı	Z	n

CI	CN	CHF	1	i	CH ₂ C≅CH	CH ₂ CI
CI	CN	CHF	1	1	CH ₂ C≖CH	CH ₂ Br
CI	CN	CHF	1	2	Н	CH ₂ CI
Cl	CN	CHF	1	2	н	CH ₂ Br
Cl	CN	CHF	1	2	C(=0)CH ₃	CH ₂ Ci
Cl	CN	CHF	1	2	C(=O)CH ₃	CH ₂ Br
Cl	CN	CHF	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHF	1	2	со ₂ сн ₃	CH ₂ Br
Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHF	1	2	CH ₂ C≡CH	CH ₂ Br
Cl	CN	CHCI	1	1	Н	CH ₂ Cl
Cl	CN	CHCI	1	1	н	CH ₂ Br
Cl	CN	CHCI	1	1	C(=0)CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1	C(=0)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ CI
Cl	CN	CHCI	1	1	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	1	CH ₂ C≡CH	CH ₂ Cl
Cl	CN	CHCI	1	1	CH ₂ C ≡ CH	CH ₂ Br
Cl	CN	CHCI	1	2	н	CH ₂ Cl
Cl	CN	CHCI	1	2	Н	CH ₂ Br
Cl	CN	CHCI	1	2	C(=0)CH ₃	CH ₂ Cl
Cl	CN	CHCI	1	2	C(=0)CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Cl
Cl	CN	CHCI	1	2	CO ₂ CH ₃	CH ₂ Br
Cl	CN	CHCI	1	2	CH ₂ C≡CH	CH ₂ CI
Cl	CN	CHCI	1	2	СН ₂ С≡СН	CH ₂ Br

J = 19, X = F, Y = Cl, n = m = 1

<u>z</u>	<u>R</u> 1	<u>R²</u>	<u>R²⁴</u>
CHF	H	CH ₂ CI	CO ₂ CH ₂ CH ₃
CHF	H	CH ₂ Cl	$C(O)N(CH_2CH_3)_2$
CHF	H	CH ₂ Cl	C(O)NHCH ₃
CHF	Н	CH ₂ CI	C(O)—N
CHF	Н	CH ₂ CI	C(O)—N_O

CHF	Н	CH ₂ Br	CO ₂ CH ₂ CH ₃
CHF	н	CH ₂ Br	$C(O)N(CH_2CH_3)_2$
CHF	Н	CH ₂ Br	C(O)NHCH ₃
CHF	H	CH ₂ Br	C(O)—N
CHF	Н	CH ₂ Br	
	·	2	C(O)—N, O
	**	CULE	CO-CH-CH-
CHF	H	CH ₂ F	CO2CH2CH3
CHF	H	CH ₂ F	C(O)N(CH ₂ CH ₃) ₂
CHF	H	CH ₂ F	C(O)NHCH ₃
CHF	H	CH ₂ F	C(O)—N
CHF	н	CH ₂ F	
CIII	•• :	C2-	C(O)—N O
	•		
CHF	H	CH ₂ OCH ₃	CO ₂ CH ₂ CH ₃
CHF	Н	CH ₂ OCH ₃	$C(O)N(CH_2CH_3)_2$
CHF	H	CH ₂ OCH ₃	C(O)NHCH ₃
CHF	Н	CH ₂ OCH ₃	C(O)—N
CHF	Н	CH ₂ OCH ₃	
			C(O)—N O
CHF	н	CH ₂ CN	CO ₂ CH ₂ CH ₃
CHF	H	CH ₂ CN	C(O)N(CH ₂ CH ₃) ₂
CHF	Н	CH ₂ CN	C(O)NHCH ₃
	н	CH ₂ CN	(o)o,
CHF	п	Ch ₂ Civ	C(O)—N
CHF	н	CH ₂ CN	
			C(O)—N O
CHF	н	CH₂SCH₃	CO ₂ CH ₂ CH ₃
CHF	н	CH ₂ SCH ₃	$C(O)N(CH_2CH_3)_2$
CHF	н	CH ₂ SCH ₃	C(O)NHCH ₃
CHF	н	CH ₂ SCH ₃	
			C(0)—N

CHF	Н	CH ₂ SCH ₃	C(O)—N_O
CHF	Н	CH ₂ SO ₂ CH ₃	CO ₂ CH ₂ CH ₃
CHF	Н	CH ₂ SO ₂ CH ₃	$C(O)N(CH_2CH_3)_2$
CHF	Н	CH ₂ SO ₂ CH ₃	C(O)NHCH ₃
CHF	н	CH ₂ SO ₂ CH ₃	C(O)—N
CHF	Н	CH ₂ SO ₂ CH ₃	C(O)—N_O
CHCI	Н	CH ₂ CI	CO ₂ CH ₂ CH ₃
CHCI	H	CH ₂ Cl	C(O)N(CH2CH3)2
CHCI	H	CH ₂ CI	C(O)NHCH ₃
CHCI	Н	CH ₂ Cl	C(O)—N
СНСІ	Н	CH ₂ Cl	C(O)—N_O
CHCI	Н	CH ₂ Br	CO ₂ CH ₂ CH ₃
CHCl	Н	CH ₂ Br	C(O)N(CH ₂ CH ₃) ₂
CHCI	H	CH ₂ Br	C(O)NHCH ₃
CHCI	Н	CH ₂ Br	C(O)—N
CHCI	Н	CH ₂ Br	C(O)—N_O
CHCI	H	CH ₂ F	CO ₂ CH ₂ CH ₃
CHCI	H	CH ₂ F	$C(O)N(CH_2CH_3)_2$
CHCI	H	CH ₂ F	C(O)NHCH ₃
CHCI	Н	CH ₂ F	C(O)—N
CHCI	н	CH ₂ F	C(O)—N_O
CHCI	H	CH ₂ OCH ₃	CO ₂ CH ₂ CH ₃
CHCI	Н	CH ₂ OCH ₃	C(O)N(CH ₂ CH ₃) ₂
CHCI	Н	CH ₂ OCH ₃	C(O)NHCH ₃

CHCI	Н	CH ₂ OCH ₃	C(O)—N
CHCI	н	CH ₂ OCH ₃	C(O)—NO
CHCI	H	CH ₂ CN	CO ₂ CH ₂ CH ₃
CHCl	н	CH ₂ CN	$C(O)N(CH_2CH_3)_2$
CHCI	Н	CH ₂ CN	C(O)NHCH ₃
CHCl	Н	CH ₂ CN	C(O)—N
CHCI	н	CH ₂ CN	C(O)—N O
CHCI	н	CH ₂ SCH ₃	CO ₂ CH ₂ CH ₃
CHCI	н	CH ₂ SCH ₃	$C(O)N(CH_2CH_3)_2$
CHCl	н	CH ₂ SCH ₃	C(O)NHCH ₃
CHCI	н	CH ₂ SCH ₃	C(O)—N
СНСІ	Н	CH ₂ SCH ₃	C(O)—N_O
CHCI	H	CH ₂ SO ₂ CH ₃	CO ₂ CH ₂ CH ₃
CHCl	H	CH ₂ SO ₂ CH ₃	$C(O)N(CH_2CH_3)_2$
CHCI	Н	CH ₂ SO ₂ CH ₃	C(O)NHCH ₃
CHCI	Н	CH ₂ SO ₂ CH ₃	C(0)—N
СНСІ	Н	CH ₂ SO ₂ CH ₃	C(O)—N_O
CHBr	н	CH ₂ Cl	CO ₂ CH ₂ CH ₃
CHBr	Н	CH ₂ Cl	$C(O)N(CH_2CH_3)_2$
CHBr	н	CH ₂ Cl	C(O)NHCH ₃
CHBr	Н	CH ₂ Cl	C(O)—N
CHBr	H	CH ₂ Cl	C(O)—NO
СНВг	н	CH ₂ Br	$CO_2CH_2CH_3$
СНВг	н	CH ₂ Br	C(O)N(CH ₂ CH ₃) ₂
		-	

CHBr	Н	CH ₂ Br	C(O)NHCH3
CHBr	Н	CH ₂ Br	C(O)—N
_			
CHBr	Н	CH ₂ Br	C(O)—N O
CHBr	н	CH ₂ F	CO ₂ CH ₂ CH ₃
CHBr	Н	CH ₂ F	$C(O)N(CH_2CH_3)_2$
CHBr	H	CH ₂ F	C(O)NHCH ₃
СНВг	Н	CH ₂ F	C(0)—N
CHBr	Н	CH ₂ F	C(O)—N_O
CHBr	н	CH ₂ OCH ₃	CO ₂ CH ₂ CH ₃
CHBr	Н	CH ₂ OCH ₃	C(O)N(CH2CH3)2
CHBr	Н	CH ₂ OCH ₃	C(O)NHCH ₃
CHBr	H	CH ₂ OCH ₃	C(O)—N
CHBr	н	CH ₂ OCH ₃	C(O)—N_O
CHBr	Н	CH ₂ CN	CO ₂ CH ₂ CH ₃
CHBr	H	CH ₂ CN	C(O)N(CH2CH3)2
CHBr	H	CH ₂ CN	C(O)NHCH ₃
CHBr	Н	CH ₂ CN	C(O)—N
CHBr	Н	CH ₂ CN	C(O)—N_O
CHBr	Н	CH ₂ SCH ₃	CO ₂ CH ₂ CH ₃
CHBr	Н	CH ₂ SCH ₃	C(O)N(CH ₂ CH ₃) ₂
CHBr	Н	CH ₂ SCH ₃	C(O)NHCH ₃
CHBr	Н	CH ₂ SCH ₃	C(O)—N
CHBr	н	CH ₂ SCH ₃	C(O)—N O
СНВг	н	CH ₂ SO ₂ CH ₃	CO ₂ CH ₂ CH ₃

10

15

20

CHBr CHBr	н н	CH ₂ SO ₂ CH ₃ CH ₂ SO ₂ CH ₃	C(O)N(CH ₂ CH ₃) ₂ C(O)NHCH ₃
CHBr	H	CH ₂ SO ₂ CH ₃	C(O)—N
CHBr	Н	CH ₂ SO ₂ CH ₃	C(O)—N_O

Formulation/Utility

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid. formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

	Weight Percent		
• • • • • • • • • • • • • • • • • • •	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	0–94	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40–95	0–15
Dusts Granules and Pellets	1-25 0.01n99	70–99 5–99.99	0–5 0–15
High Strength Compositions	90–99	0–10	0–2

10

15

20

25

30

35

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, N,N-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, N,N-dimethylformamide, dimethyl sulfoxide, N-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17

133

and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-J.

	Example A		
	High Strength Concentrate		
	Compound 23	98.5%	
10	silica aerogel	0.5%	· :
	synthetic amorphous fine silica	1.0%.	
•	Example B	* * * * *	
	Wettable Powder	-	
	Compound 25	65.0%	
15	dodecylphenol polyethylene glycol ether	2.0%	***
	sodium ligninsulfonate	4.0%	
	sodium silicoaluminate	6.0%	÷
•, • •	montmorillonite (calcined)	23.0%.	洲
• •	Example C		
20	Granule	* * 3	A. 33
	Compound 21	10.0%	9.
	attapulgite granules (low volatile matter,	. •	•
•	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.	
•	Example D		
25	Extruded Pellet	•	•
	Compound 52	25.0%	
	anhydrous sodium sulfate	10.0%	
	crude calcium ligninsulfonate	5.0%	
•	sodium alkylnaphthalenesulfonate	1.0%	
30	calcium/magnesium bentonite	59.0%.	
50		ention are high	ly act

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to alfalfa,

barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

Compounds of this invention can be used alone or in combination with other 10 commercial herbicides, insecticides or fungicides. Compounds of this invention can also be used in combination with commercial herbicide safeners such as benoxacor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein 15 (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate. anilofos, asulam, atrazine, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, bifenox, bromacil, bromoxynil, bromoxynil octanoate, butachlor, butralin, butylate, chlomethoxyfen, chloramben, chlorbromuron, chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, 20 chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, 25 dichlobenil, dichlorprop, diclofop-methyl, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate, diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, 30 endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethyl α ,2-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1*H*-1,2,4-triazol-1-yl]-4-fluorobenzenepropanoate (F8426), fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, flumetsulam. flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, 35 fluridone, flurochloridone, fluroxypyr, fomesafen, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium,

glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-ethyl,

haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox (AC 299 263), imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, isoxaben, isoxaflutole (RPA 201772), lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, 5 mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methyl [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4a]pyridazin-1-ylidene)amino]phenyl]thioacetate (KIH 9201), methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate 10 (AKH-7088), methyl 5-[[[[(4,6-dimethyl-2pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4-carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron, norflurazon, oryzalin, oxadiazon, 3-oxetanyl 2-[[[[(4,6-dimethyl-2-15 pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoate (CGA 277476), oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propyzamide, prosulfuron, pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyrithiobac, pyrithiobac-sodium, 20 quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone, sulfometuron-methyl, TCA, TCA-sodium, tebuthiuron, terbacil, terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390), thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron, tribenuron-methyl, triclopyr, triclopyr-butotyl, 25 triclopyr-triethylammonium, tridiphane, trifluralin, triflusulfuron-methyl, and vernolate.

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

Certain combinations of compounds of this invention with other herbicides may provide synergistic herbicidal effects on weeds or may provide enhanced crop safety.

10

15

30

Preferred for better control of undesired vegetation in corn (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds in corn are mixtures of a compound of this invention with one or more of the herbicides selected from the group rimsulfuron, thifensulfuronmethyl, chlorimuron-ethyl, nicosulfuron, prosulfuron, primsulfuron, atrazine, terbuthylazine, dicamba, 2,4-D, bomoxynil, pyridate, sulcotrione, glufosinate, glyphosate, glyphosate-trimesium, fluthiacet-methyl, quizalofop-p-ethyl, bentazone, clopyralid, flumetsulam, halosulfuron, sethoxydim, flumiclorac-pentyl, imozamox, acetachlor, alachlor, dimethenamid, isoxaflutole, metolachlor, metribuzin, pendimethalin, and thiafluimid.

Preferred for better control of undesired vegetation in soybeans (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds in soybeans are mixtures of a compound of this invention with one or more of the herbicides selected from the group chlorimuron-ethyl, thifensulfuron-methyl, clethodim, sethoxydim, fluazifop-p-butyl, haloxyfop, imazethapyr, imozamox, imazaquin, glufosinate, glyphosate, glyphosate-trimesium, lactofen, fluthiacet-methyl, quizalofop-p-ethyl, acifluorfen-sodium, oxasulfuron, imazameth, flumiclorac-pentyl, and bentazone.

Preferred for better control of undesired vegetation in winter wheat, winter barley, spring wheat, spring barley, and peas (e.g., lower use rate, broader spectrum of weeds 20 controlled, or enhanced crop safety) or for preventing the development of resistant weeds in winter wheat, winter barley, spring wheat, spring barley, and peas are mixtures of a compound of this invention with one or more of the herbicides selected from the group tribenuron-methyl, thifensulfuron-methyl, metsulfuron-methyl, chlorsulfuron, triasulfuron, 2,4-D, dicamba, bromoxynil, MCPA, fluroxypyr, clopyralid, fenoxaprop, 25 fenchlorazole, diclofop, tralkoxydim, clodinafop, cloquintocet-mexyl, imazamethabenz, sulfosulfuron, difenzoquat, propanil, prosulfuron, metribuzin, glyphosate, triallate, trifluralin, paraquat, diallate, linuron, diflufenican, pendimethalin, cyanazine, neburon, terbutryn, prosulfocarb, isoproturon, chlortoluron, methabenzthiazuron, metoxuron, simazine, ioxynil, mecoprop, metosulam, fluroglycophen-ethyl, flamprop-M-isopropyl, and benzoylpropethyl.

137

Specifically preferred mixtures for use in corn are selected from the group:
a) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination	:	Combination	e e e
Number	Mixture partner B	Number	Mixture partner B
<u></u>	rimsulfuron	. 2	thifensulfuron-methyl
3	chlorimuron-ethyl	4	rimsulfuron (B1) in
			combination with thifensulfuron-methyl (B2)
5	nicosulfuron	6	rimsulfuron (B3) in combination with
			nicosulfuron (B4)
7	rimsulfuron (B5) in	8	prosulfuron
	combination with	•	and the second second
	nicosulfuron (B6) in		
	combination with	•	•
• •	thifensulfuron-methyl (B7)		**************************************
. 9	prosulfuron (B8) in	10	atrazine
· .	combination with		
• .	primsulfuron (B9)		* **
11	terbuthylazine	12	dicamba
13	2,4-D	14	bromoxynil
15	pyridate	16	sulcotrione
17	glufosinate	18	glyphosate
19	glyphosate-trimesium		•

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:20 to 4:1, with B being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha.

Combination 2 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha.

Combination 3 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha.

Combination 4 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B2 being applied at a rate

10

15

20

25

30

35

of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 6 is generally used in a ratio of A to B3 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B4 of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B3 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B4 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 7 is generally used in a ratio of A to B5 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B6 of 1:2,000 to 5:1, preferably 1:50 to 2:1, and a ratio of A to B7 of 1:500 to 50:1, preferably 1:10 to 20:1, with B5 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B6 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha, and B7 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 9 is generally used in a ratio of A to B8 of 1:1,000 to 5:1, preferably 1:60 to 1:1, and a ratio of A to B9. of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B8 being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha, and B9 being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:10, preferably 1:1,000 to 1:25, with B being applied at a rate of 500 to 3,000 g/ha, preferably 500 to 1,000 g/ha. Combination 11 is generally used in a ratio of A to B of 1:50,000 to 1:10, preferably 1:2,000 to 1:25, with B being applied at a rate of 500 to 5,000 g/ha, preferably 500 to 2,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 16 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 17 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 18 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:30,000 to 1:40. preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha. preferably 200 to 1,000 g/ha.

15

b) (6S-cis)-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]-N-[(chloromethyl)sulfonyl]acetamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination	·	Combination	•
<u>Number</u>	Mixture partner B	Number	Mixture partner B
1	rimsulfuron	2	thifensulfuron-methyl
• 3	chlorimuron-ethyl	4	rimsulfuron (B1) in
•			combination with
			thifensulfuron-methyl (B2)
5	nicosulfuron	6	rimsulfuron (B3) in
•			combination with
**************************************			nicosulfuron (B4)
7	rimsulfuron (B5) in	8	prosulfuron
•	combination with		1000
	nicosulfuron (B6) in	• . • • • •	
	combination with		- Pag - 187-
	thifensulfuron-methyl (B7)		
9	prosulfuron (B8) in	10	atrazine 😲
•	combination with		}
•	primsulfuron (B9)		
11	terbuthylazine	12	dicamba
13	2,4-D	14	bromoxynil
15	pyridate	16	sulcotrione
17	glufosinate	18	glyphosate
19	glyphosate-trimesium		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:20 to 4:1, with B being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha. Combination 2 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 4 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A

10

15

20

25

30

to B of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 6 is generally used in a ratio of A to B3 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B4 of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B3 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B4 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 7 is generally used in a ratio of A to B5 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B6 of 1:2,000 to 5:1, preferably 1:50 to 2:1, and a ratio of A to B7 of 1:500 to 50:1, preferably 1:10 to 20:1, with B5 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B6 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha, and B7 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 9 is generally used in a ratio of A to B8 of 1:1,000 to 5:1, preferably 1:60 to 1:1, and a ratio of A to B9 of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B8 being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha, and B9 being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:10, preferably 1:1,000 to 1:25, with B being applied at a rate of 500 to 3,000 g/ha, preferably 500 to 1,000 g/ha. Combination 11 is generally used in a ratio of A to B of 1:50,000 to 1:10, preferably 1:2,000 to 1:25, with B being applied at a rate of 500 to 5,000 g/ha, preferably 500 to 2,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 16 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 17 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 18 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:30,000 to 1:40, 35 preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha.

c) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

J	

Combination		Combination	
Number	Mixture partner B	<u>Number</u>	Mixture partner B
1	rimsulfuron	2	thifensulfuron-methyl
3	chlorimuron-ethyl	4	rimsulfuron (B1) in
			combination with
			thifensulfuron-methyl (B2)
5	nicosulfuron	. 6	rimsulfuron (B3) in
			combination with
			nicosulfuron (B4)
7	rimsulfuron (B5) in	8	prosulfuron :
	combination with	•	A CONTRACTOR OF THE STATE OF TH
	nicosulfuron (B6) in		** ** ** ** ** ** ** ** ** ** ** ** **
	combination with		· · · · · · · · · · · · · · · · · · ·
	thifensulfuron-methyl (B7)		
9	prosulfuron (B8) in	10	atrazine
<i>y</i>	combination with		•
	primsulfuron (B9)		
11	terbuthylazine	12	dicamba
13	2,4-D	14	bromoxynil
15	pyridate	16	sulcotrione
17	glufosinate	18	glyphosate
19	glyphosate-trimesium		•

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:20 to 4:1, with B being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha. Combination 2 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 4 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A

to B of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 6 is generally used in a ratio of A to B3 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B4 of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B3 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B4 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 7 is generally used in a ratio of A to B5 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B6 of 1:2,000 to 5:1, preferably 1:50 to 2:1, and a ratio of A to B7 of 1:500 to 50:1, preferably 1:10 to 20:1, with B5 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B6 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha, and B7 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is 10 generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 9 is generally used in a ratio of A to B8 of 1:1,000 to 5:1, preferably 1:60 to 1:1, and a ratio of A to B9 of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B8 being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha, and B9 being applied at a rate of 10 to 100 g/ha, 15 preferably 20 to 60 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:10, preferably 1:1,000 to 1:25, with B being applied at a rate of 500 to 3,000 g/ha, preferably 500 to 1,000 g/ha. Combination 11 is generally used in a ratio of A to B of 1:50,000 to 1:10, preferably 1:2,000 to 1:25, with B being applied at a rate of 500 to 5,000 g/ha, preferably 500 to 2,000 g/ha. Combination 12 is generally used in a 20 ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate 25 of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 16 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 17 is 30 generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 18 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:30,000 to 1:40, 35 preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha.

d) (6S-cis)-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl)-N-[(chloromethyl)sulfonyl]acetamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
1	rimsulfuron	2	thifensulfuron-methyl
3	chlorimuron-ethyl	4	rimsulfuron (B1) in
	· ·	•	combination with
·	•		thifensulfuron-methyl (B2)
5	nicosulfuron	6	rimsulfuron (B3) in
	•		combination with
			nicosulfuron (B4)
7	rimsulfuron (B5) in	8	prosulfuron
• • • •	combination with		
•	nicosulfuron (B6) in		
	combination with		Attent
	thifensulfuron-methyl (B7)		
 9	prosulfuron (B8) in	10	atrazine
	combination with		
	primsulfuron (B9)		•
11	terbuthylazine	12	dicamba
13	2,4-D	14	bromoxynil
15	pyridate	16	sulcotrione
17	glufosinate	18	glyphosate
19	glyphosate-trimesium		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:20 to 4:1, with B being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha. Combination 2 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 4 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A

to B of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 6 is generally used in a ratio of A to B3 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B4 of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B3 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and 5 B4 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 7 is generally used in a ratio of A to B5 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B6 of 1:2,000 to 5:1, preferably 1:50 to 2:1, and a ratio of A to B7 of 1:500 to 50:1, preferably 1:10 to 20:1, with B5 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B6 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. 10 and B7 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 9 is generally used in a ratio of A to B8 of 1:1,000 to 5:1, preferably 1:60 to 1:1, and a ratio of A to B9 of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B8 being applied at a rate of 10 to 100 15 g/ha, preferably 20 to 60 g/ha, and B9 being applied at a rate of 10 to 100 g/ha. preferably 20 to 60 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:10, preferably 1:1,000 to 1:25, with B being applied at a rate of 500 to 3,000 g/ha, preferably 500 to 1,000 g/ha. Combination 11 is generally used in a ratio of A to B of 1:50,000 to 1:10, preferably 1:2,000 to 1:25, with B being applied at a rate of 20 500 to 5,000 g/ha, preferably 500 to 2,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate 25 of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 16 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being 30 applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 17 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 18 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 35 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha. preferably 200 to 1,000 g/ha.

e) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monosodium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	<u>Number</u>	Mixture partner B
1	rimsulfuron	2	thifensulfuron-methyl
3	chlorimuron-ethyl	4	rimsulfuron (B1) in
	•	•	combination with
	•		thifensulfuron-methyl (B2)
5	nicosulfuron	6	rimsulfuron (B3) in
•	•		combination with
for the state of			nicosulfuron (B4)
7	rimsulfuron (B5) in	8 :	prosulfuron
	combination with		
* * * * * * * * * * * * * * * * * * * *	nicosulfuron (B6) in		
	combination with	• .	**
	thifensulfuron-methyl (B7)		
9	prosulfuron (B8) in	10	atrazine de la
· ·	combination with		ur.
	primsulfuron (B9)		
11	terbuthylazine	12	dicamba
13	2,4-D	14	bromoxynil
15	ругidate	16	sulcotrione
17	glufosinate	18	glyphosate
19	glyphosate-trimesium		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:20 to 4:1, with B being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha. Combination 2 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 4 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A

to B of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 6 is generally used in a ratio of A to B3 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B4 of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B3 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and 5 B4 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 7 is generally used in a ratio of A to B5 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B6 of 1:2,000 to 5:1, preferably 1:50 to 2:1, and a ratio of A to B7 of 1:500 to 50:1, preferably 1:10 to 20:1, with B5 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B6 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha, and B7 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is 10 generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 9 is generally used in a ratio of A to B8 of 1:1,000 to 5:1, preferably 1:60 to 1:1, and a ratio of A to B9 of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B8 being applied at a rate of 10 to 100 15 g/ha, preferably 20 to 60 g/ha, and B9 being applied at a rate of 10 to 100 g/ha. preferably 20 to 60 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:10, preferably 1:1,000 to 1:25, with B being applied at a rate of 500 to 3,000 g/ha, preferably 500 to 1,000 g/ha. Combination 11 is generally used in a ratio of A to B of 1:50,000 to 1:10, preferably 1:2,000 to 1:25, with B being applied at a rate of 20 500 to 5,000 g/ha, preferably 500 to 2,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate 25 of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 16 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being 30 applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 17 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 18 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 35 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha.

10

15

147

f) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monopotassium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

			• •
Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
1	rimsulfuron	· 2	thifensulfuron-methyl
3	chlorimuron-ethyl	4	rimsulfuron (B1) in
		•	combination with
			thifensulfuron-methyl (B2)
5	nicosulfuron	, 6	rimsulfuron (B3) in
		•	combination with
			nicosulfuron (B4)
7	rimsulfuron (B5) in	8	prosulfuron
	combination with		
	nicosulfuron (B6) in		77 . J
	combination with		
	thifensulfuron-methyl (B7)		
9	prosulfuron (B8) in	10	atrazine
	combination with		• • • ;
•	primsulfuron (B9)	•	
11	terbuthylazine	12	dicamba
13	2,4-D	14	bromoxynil
15	pyridate	16	sulcotrione
17	glufosinate	18	glyphosate
19	glyphosate-trimesium		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:20 to 4:1, with B being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha. Combination 2 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 4 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A

to B of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 6 is generally used in a ratio of A to B3 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B4 of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B3 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and 5 B4 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 7 is generally used in a ratio of A to B5 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B6 of 1:2,000 to 5:1, preferably 1:50 to 2:1, and a ratio of A to B7 of 1:500 to 50:1, preferably 1:10 to 20:1, with B5 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B6 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha, and B7 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is 10 generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 9 is generally used in a ratio of A to B8 of 1:1,000 to 5:1, preferably 1:60 to 1:1, and a ratio of A to B9 of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B8 being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha, and B9 being applied at a rate of 10 to 100 g/ha, 15 preferably 20 to 60 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:10, preferably 1:1,000 to 1:25, with B being applied at a rate of 500 to 3,000 g/ha, preferably 500 to 1,000 g/ha. Combination 11 is generally used in a ratio of A to B of 1:50,000 to 1:10, preferably 1:2,000 to 1:25, with B being applied at a rate of 20 500 to 5,000 g/ha, preferably 500 to 2,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate 25 of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 16 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being 30 applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 17 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 18 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 35 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha. preferably 200 to 1,000 g/ha.

149

g) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monosodium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

		Combination	
Combination			Mississe norther B
<u>Number</u>	Mixture partner B	Number	Mixture partner B
1	rimsulfuron	2	thifensulfuron-methyl
3	chlorimuron-ethyl	4	rimsulfuron (B1) in
			combination with
			thifensulfuron-methyl (B2)
5	nicosulfuron	6	rimsulfuron (B3) in
3			combination with
·	,		nicosulfuron (B4)
7	rimsulfuron (B5) in	8	prosulfuron
	combination with		
	nicosulfuron (B6) in		
	combination with		<u> </u>
• •	thifensulfuron-methyl (B7)		•
9	prosulfuron (B8) in	. 10	atrazine Sar
	combination with		£
	primsulfuron (B9)		
11	terbuthylazine	12	dicamba
13	2,4-D	14	bromoxynil
15	pyridate	16	sulcotrione
17	glufosinate	18	glyphosate
19	glyphosate-trimesium		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:20 to 4:1, with B being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha. Combination 2 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 4 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A

to B of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 6 is generally used in a ratio of A to B3 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B4 of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B3 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B4 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 7 is 5 generally used in a ratio of A to B5 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B6 of 1:2,000 to 5:1, preferably 1:50 to 2:1, and a ratio of A to B7 of 1:500 to 50:1, preferably 1:10 to 20:1, with B5 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B6 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha, and B7 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is 10 generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 9 is generally used in a ratio of A to B8 of 1:1,000 to 5:1, preferably 1:60 to 1:1, and a ratio of A to B9 of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B8 being applied at a rate of 10 to 100 15 g/ha, preferably 20 to 60 g/ha, and B9 being applied at a rate of 10 to 100 g/ha. preferably 20 to 60 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:10, preferably 1:1,000 to 1:25, with B being applied at a rate of 500 to 3,000 g/ha, preferably 500 to 1,000 g/ha. Combination 11 is generally used in a ratio of A to B of 1:50,000 to 1:10, preferably 1:2,000 to 1:25, with B being applied at a rate of 500 to 5,000 g/ha, preferably 500 to 2,000 g/ha. Combination 12 is generally used in a 20 ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate 25 of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 16 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being 30 applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 17 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 18 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:30,000 to 1:40, 35 preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha.

h) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monopotassium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
<u>Number</u>	Mixture partner B	Number	Mixture partner B
1	rimsulfuron	2	thifensulfuron-methyl
3	chlorimuron-ethyl	4	rimsulfuron (B1) in combination with thifensulfuron-methyl (B2)
5	nicosulfuron	6	rimsulfuron (B3) in
		.	combination with
		·	nicosulfuron (B4)
7	rimsulfuron (B5) in	8	prosulfuron
,	combination with		
	nicosulfuron (B6) in		
	combination with		462-94.
• • • • • •	thifensulfuron-methyl (B7)		
9	prosulfuron (B8) in	10	atrazine
•	combination with		
	primsulfuron (B9)		
11	terbuthylazine	12	dicamba
13	2,4-D	14	bromoxynil
15	pyridate	16	sulcotrione
17	glufosinate	18	glyphosate
19	glyphosate-trimesium		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:20 to 4:1, with B being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha. Combination 2 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 4 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A

to B of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 6 is generally used in a ratio of A to B3 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B4 of 1:2,000 to 5:1, preferably 1:50 to 2:1, with B3 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B4 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha. Combination 7 is 5 generally used in a ratio of A to B5 of 1:500 to 50:1, preferably 1:20 to 4:1, and a ratio of A to B6 of 1:2,000 to 5:1, preferably 1:50 to 2:1, and a ratio of A to B7 of 1:500 to 50:1, preferably 1:10 to 20:1, with B5 being applied at a rate of 1 to 50 g/ha, preferably 5 to 20 g/ha, and B6 being applied at a rate of 10 to 200 g/ha, preferably 10 to 50 g/ha, and B7 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is 10 generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha. Combination 9 is generally used in a ratio of A to B8 of 1:1,000 to 5:1, preferably 1:60 to 1:1, and a ratio of A to B9 of 1:1,000 to 5:1, preferably 1:60 to 1:1, with B8 being applied at a rate of 10 to 100 g/ha, preferably 20 to 60 g/ha, and B9 being applied at a rate of 10 to 100 g/ha, 15 preferably 20 to 60 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:10, preferably 1:1,000 to 1:25, with B being applied at a rate of 500 to 3,000 g/ha, preferably 500 to 1,000 g/ha. Combination 11 is generally used in a ratio of A to B of 1:50,000 to 1:10, preferably 1:2,000 to 1:25, with B being applied at a rate of 500 to 5,000 g/ha, preferably 500 to 2,000 g/ha. Combination 12 is generally used in a 20 ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a 25 ratio of A to B of 1:10,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 16 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 17 is 30 generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 18 is generally used in a ratio of A to B of 1:30,000 to 1:40, preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:30,000 to 1:40, 35 preferably 1:1,000 to 1:10, with B being applied at a rate of 200 to 3,000 g/ha, preferably 200 to 1,000 g/ha.

10

15

20

25

Specifically preferred mixtures for use in soybeans are selected from the group:
a) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	<u>Number</u>	Mixture partner B
1	chlorimuron-ethyl	2	thifensulfuron-methyl
3	chlorimuron-ethyl (B1) in combination with	4	clethodim
•	thifensulfuron-methyl (B2)	,	er en e
5	sethoxydim	6	fluazifop-p-butyl
7	haloxyfop	8	imazethapyr
9	imozamox	10	imazaquin
11	glufosinate	12	glyphosate
- 13	glyphosate-trimesium	14	lactofen

Combination 1 is generally used in a ratio of A to B of 1:1,000 to 10:1, preferably 1:25 to 4:1, with B being applied at a rate of 5 to 100 g/ha, preferably 5 to 25 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:10 to 10:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:1,000 to 50:1, preferably 1:50 to 4:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 100 g/ha, preferably 5 to 50 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 g/ha, preferably 10 to 50 g/ha. Combination 5 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 6 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 7 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 8 is generally used in a ratio of A to B of 1:5.000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 9 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 10 is generally used in a ratio of A to B of

1:10,000 to 1:2, preferably 1:400 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 400 g/ha. Combination 11 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 13 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 14 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha.

b) (6S-cis)-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]-N-[(chloromethyl)sulfonyl]acetamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

15

20

25

10

5

Combination		Combination	
<u>Number</u>	Mixture partner B	<u>Number</u>	Mixture partner B
1	chlorimuron-ethyl	2	thifensulfuron-methyl
3	chlorimuron-ethyl (B1) in combination with thifensulfuron-methyl (B2)	4	clethodim
5	sethoxydim	6	fluazifop-p-butyl
7	haloxyfop	8	imazethapyr
9	imozamox	10	imazaquin
11	glufosinate	12	glyphosate
13	glyphosate-trimesium	14	lactofen

Combination 1 is generally used in a ratio of A to B of 1:1,000 to 10:1, preferably 1:25 to 4:1, with B being applied at a rate of 5 to 100 g/ha, preferably 5 to 25 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:10 to 10:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:1,000 to 50:1, preferably 1:50 to 4:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 100 g/ha, preferably 5 to 50 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 g/ha, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 g/ha, preferably 10 to 50 g/ha. Combination 5 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha,

preferably 50 to 200 g/ha. Combination 6 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha. preferably 50 to 200 g/ha. Combination 7 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 8 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 9 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 10 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:400 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 400 g/ha. Combination 11 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 13 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 14 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha.

20

10

15

c) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
1	chlorimuron-ethyl	2	thifensulfuron-methyl
· 3	chlorimuron-ethyl (B1) in	4	clethodim
	combination with	•	
	thifensulfuron-methyl (B2)		•
5	sethoxydim	6 -	fluazifop-p-butyl
7	haloxyfop	. 8	imazethapyr
9	imozamox	10	imazaquin
- 11	glufosinate	12	glyphosate
13	glyphosate-trimesium	14	lactofen

Combination 1 is generally used in a ratio of A to B of 1:1,000 to 10:1, preferably 1:25 to 4:1, with B being applied at a rate of 5 to 100 g/ha, preferably 5 to 25 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:10 to 10:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:1,000 to 50:1, preferably 1:50 5 to 4:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 100 g/ha, preferably 5 to 50 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 10 g/ha, preferably 10 to 50 g/ha. Combination 5 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 6 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 7 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, 15 preferably 50 to 200 g/ha. Combination 8 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 9 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, 20 preferably 10 to 100 g/ha. Combination 10 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:400 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 400 g/ha. Combination 11 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 12 is generally used in a ratio of 25 A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 13 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 14 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:200 to 1:2, with B being 30 applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha.

d) (6S-cis)-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl)-N-[(chloromethyl)sulfonyl]acetamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

15

20

25

157

Combination	•	Combination	
<u>Number</u>	Mixture partner B	Number	Mixture partner B
1	chlorimuron-ethyl	2	thifensulfuron-methyl
3	chlorimuron-ethyl (B1) in combination with thifensulfuron-methyl (B2)	4	clethodim
· 5	sethoxydim	6	fluazifop-p-butyl
· · · · 7	haloxyfop	8	imazethapyr
9	imozamox	10	imazaquin
11	glufosinate	12	glyphosate
13	glyphosate-trimesium	14	lactofen

Combination 1 is generally used in a ratio of A to B of 1:1,000 to 10:1, preferably 1:25 to 4:1, with B being applied at a rate of 5 to 100 g/ha, preferably 5 to 25 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:10 to 10:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:1,000 to 50:1, preferably 1:50 to 4:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 100 g/ha, preferably 5 to 50 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 g/ha, preferably 10 to 50 g/ha. Combination 5 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha. preferably 50 to 200 g/ha. Combination 6 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 7 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 8 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 9 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 10 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:400 to 1:5, with B being applied at a rate of 100 to 1:000 g/ha, preferably 100 to 400 g/ha. Combination 11 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of

100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 13 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 14 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha.

e) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monosodium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

15

20

25

5

Combination	•	Combination	
<u>Number</u>	Mixture partner B	Number	Mixture partner B
1	chlorimuron-ethyl	2	thifensulfuron-methyl
3	chlorimuron-ethyl (B1) in combination with	4	clethodim
	thifensulfuron-methyl (B2)		
5	sethoxydim	6	fluazifop-p-butyl
7	haloxyfop	8	imazethapyr
9	imozamox	10	imazaquin
11	glufosinate	12	glyphosate
13	glyphosate-trimesium	14	lactofen

Combination 1 is generally used in a ratio of A to B of 1:1,000 to 10:1, preferably 1:25 to 4:1, with B being applied at a rate of 5 to 100 g/ha, preferably 5 to 25 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:10 to 10:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:1,000 to 50:1, preferably 1:50 to 4:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 100 g/ha, preferably 5 to 50 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 g/ha, preferably 10 to 50 g/ha. Combination 5 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 6 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 7 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 8 is generally used in a ratio of A to B of

1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 9 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 10 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:400 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 400 g/ha. Combination 11 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 13 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 14 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha.

f) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monopotassium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	•
Number	Mixture partner B	Number	Mixture partner B
1	chlorimuron-ethyl	2	thifensulfuron-methyl
3	chlorimuron-ethyl (B1) in combination with thifensulfuron-methyl (B2)	4	clethodim
5	sethoxydim	6	fluazifop-p-butyl
7	haloxyfop	8	imazethapyr
9	imozamox	10	imazaquin
11 ·	glufosinate	12	glyphosate
13	glyphosate-trimesium	14	lactofen

20

25

10

15

Combination 1 is generally used in a ratio of A to B of 1:1,000 to 10:1, preferably 1:25 to 4:1, with B being applied at a rate of 5 to 100 g/ha, preferably 5 to 25 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:10 to 10:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:1,000 to 50:1, preferably 1:50 to 4:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 100 g/ha, preferably 5 to 50 g/ha, and B2 being applied at a rate

of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 g/ha, preferably 10 to 50 g/ha. Combination 5 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 6 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 7 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 8 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, 10 preferably 50 to 200 g/ha. Combination 9 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 10 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:400 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 400 g/ha. Combination 11 is generally used in a ratio of A to B 15 of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 13 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a 20 rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 14 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha.

g) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monosodium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
1	chlorimuron-ethyl	2	thifensulfuron-methyl
3	chlorimuron-ethyl (B1) in combination with	4	clethodim
	thifensulfuron-methyl (B2)		
5	sethoxydim	6	fluazifop-p-butyl
7	haloxyfop	8	imazethapyr

10

15

20

25

30

35

161

9	imozamox	10	imazaquin
11	glufosinate	12	glyphosate
13	glyphosate-trimesium	14	lactofen

Combination 1 is generally used in a ratio of A to B of 1:1,000 to 10:1, preferably 1:25 to 4:1, with B being applied at a rate of 5 to 100 g/ha, preferably 5 to 25 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:10 to 10:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:1,000 to 50:1, preferably 1:50 to 4:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 100 g/ha, preferably 5 to 50 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 g/ha, preferably 10 to 50 g/ha. Combination 5 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 6 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 7 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 8 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 9 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 10 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:400 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 400 g/ha. Combination 11 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 13 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 14 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha.

h) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monopotassium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
<u>Number</u>	Mixture partner B	Number	Mixture partner B
1	chlorimuron-ethyl	2	thifensulfuron-methyl
3	chlorimuron-ethyl (B1) in	4	clethodim
	combination with		
	thifensulfuron-methyl (B2)		
5	sethoxydim	6	fluazifop-p-butyl
7	haloxyfop	8	imazethapyr
9	imozamox	10	imazaquin
11	glufosinate	12	glyphosate
13	glyphosate-trimesium	14	lactofen

Combination 1 is generally used in a ratio of A to B of 1:1,000 to 10:1, preferably 1:25 to 4:1, with B being applied at a rate of 5 to 100 g/ha, preferably 5 to 25 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:10 5 to 10:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 10 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:1,000 to 50:1, preferably 1:50 to 4:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 100 g/ha, preferably 5 to 50 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A 10 to B of 1:5,000 to 50:1, preferably 1:50 to 2:1, with B being applied at a rate of 1 to 500 g/ha, preferably 10 to 50 g/ha. Combination 5 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 6 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, 15 preferably 50 to 200 g/ha. Combination 7 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 8 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha. Combination 9 is generally used in a ratio of A to B of 20 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 10 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:400 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 400 g/ha. Combination 11 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 25 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 12 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of

100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 13 is generally used in a ratio of A to B of 1:40,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 4,000 g/ha, preferably 200 to 1,000 g/ha. Combination 14 is generally used in a ratio of A to B of 1:5,000 to 50:1, preferably 1:200 to 1:2, with B being applied at a rate of 10 to 500 g/ha, preferably 50 to 200 g/ha.

Specifically preferred mixtures for use in winter wheat, winter barley, spring wheat, spring barley, and peas are selected from the group:

a) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	<u>Number</u>	Mixture partner B
- 1 ·	tribenuron-methyl	· 2	thifensulfuron-methyl
 3	thifensulfuron-methyl (B1)	4	metsulfuron-methyl
	in combination with		
	tribenuron-methyl (B2)		Art Control of the Co
5 () :	thifensulfuron-methyl (B3)	6	thifensulfuron-methyl
	in combination with		(B5) in combination with
:	metsulfuron-methyl (B4)	•	tribenuron-methyl (B6)
			in combination with
		•	metsulfuron-methyl (B7)
7	chlorsulfuron	8	chlorsulfuron (B8) in
		•	combination with
	•		metsulfuron-methyl (B9)
9	triasulfuron	10	2,4-D
11	dicamba	12	bromoxynil
13	MCPA	14	bromoxynil (B10) in
	•	•	combination with
			MCPA (B11)
15	fluroxypyr	16	clopyralid
17	fenoxaprop (B12) in	18	diclofop
•	combination with		
	fenchlorazole (B13)		
19	tralkoxydim	20	clodinafop (B14) in
			combination with
			cloquintocet-mexyl (B15)

21	imazamethabenz	22	sulfosulfuron
23	difenzoquat	24	propanil
25	prosulfuron	26	metribuzin
27	glyphosate	28	triallate
29	trifluralin		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 20:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 1 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:200 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B3 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B4 of 1:200 to 50:1, preferably 1:20 to 20:1, with B3 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B4 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 6 is generally used in a ratio of A to B5 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B6 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B7 of 1:200 to 50:1, preferably 1:20 to 20:1, with B5 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B6 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B7 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 7 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is generally used in a ratio of A to B8 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B9 of 1:200 to 50:1, preferably 1:20 to 20:1, with B8 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B9 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 9 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 3,000 g/ha, preferably 100 to 500 g/ha. Combination 11 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 12 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B

10

15

20

25

30

of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B10 of 1:20,000 to 1:2, preferably 1:500 to 1:5, and ratio of A to B11 of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B10 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha, and B11 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 5 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 16 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 17 is generally used in a ratio of A to B12 of 1:5,000 to 5:1, 10 preferably 1:500 to 1:5, and ratio of A to B13 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B12 being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha, and B13 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 18 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 15 19 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 20 is generally used in a ratio of A to B14 of 1:2,000 to 5:1, preferably 1:60 to 2:1, and ratio of A to B15 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B14 being applied at a 20 rate of 10 to 200 g/ha, preferably 10 to 60 g/ha, and B15 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 21 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 22 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 23 is generally used in a ratio of A to B of 25 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 24 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 25 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 30 10 to 100 g/ha, preferably 10 to 50 g/ha. Combination 26 is generally used in a ratio of A to B of 1:10,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 1,000 g/ha, preferably 10 to 100 g/ha. Combination 27 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 35 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 28 is generally used in a ratio of A to B of 1:20,000 to 1:20, preferably 1:1,500 to 1:50, with B being applied at a rate of 1,000 to 2,000 g/ha, preferably 1,000 to 1,500 g/ha. Combination 29 is generally

used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha.

b) (6S-cis)-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]-N-[(chloromethyl)sulfonyl]acetamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
1	tribenuron-methyl	2	thifensulfuron-methyl
3	thifensulfuron-methyl (B1)	4	metsulfuron-methyl
	in combination with		·
	tribenuron-methyl (B2)		
5	thifensulfuron-methyl (B3)	6	thifensulfuron-methyl
	in combination with		(B5) in combination with
	metsulfuron-methyl (B4)		tribenuron-methyl (B6)
			in combination with
			metsulfuron-methyl (B7)
7	chiorsulfuron	8	chlorsulfuron (B8) in
			combination with
			metsulfuron-methyl (B9)
9	triasulfuron	10	2,4-D
11	dicamba	12	bromoxynil
13	MCPA	14	bromoxynil (B10) in
			combination with
			MCPA (B11)
15	fluroxypyr	16	clopyralid
17	fenoxaprop (B12) in	18	diclofop
	combination with		
	fenchlorazole (B13)		
19	tralkoxydim	20	clodinafop (B14) in
			combination with
			cloquintocet-mexyl (B15)
21	imazamethabenz	22	sulfosulfuron
23	difenzoquat	24	propanil
25	prosulfuron	26	metribuzin
27	glyphosate	28	triallate
29	trifluralin		

20

25

30

35

167

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. 5 Combination 3 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20 to 20:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 1 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:200 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 10 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B3 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B4 of 1:200 to 50:1, preferably 1:20 to 20:1, with B3 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B4 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 6 is generally used in a ratio of A to B5 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B6 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B7 of 1:200 to 50:1, preferably 1:20 to 20:1, with B5 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B6 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B7 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 7 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is generally used in a ratio of A to B8 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B9 of 1:200 to 50:1, preferably 1:20 to 20:1, with B8 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B9 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 9 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 3,000 g/ha, preferably 100 to 500 g/ha. Combination 11 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 12 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B10 of 1:20,000 to 1:2, preferably 1:500 to 1:5, and ratio of A to B11 of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B10 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha, and B11 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to

PCT/US96/16111

5

10

15

20

25

30

35

168

500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 16 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 17 is generally used in a ratio of A to B12 of 1:5,000 to 5:1, preferably 1:500 to 1:5, and ratio of A to B13 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B12 being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha, and B13 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 18 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 20 is generally used in a ratio of A to B14 of 1:2,000 to 5:1, preferably 1:60 to 2:1, and ratio of A to B15 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B14 being applied at a rate of 10 to 200 g/ha, preferably 10 to 60 g/ha, and B15 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 21 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 22 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 23 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 24 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 25 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 100 g/ha, preferably 10 to 50 g/ha. Combination 26 is generally used in a ratio of A to B of 1:10,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 1,000 g/ha, preferably 10 to 100 g/ha. Combination 27 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 28 is generally used in a ratio of A to B of 1:20,000 to 1:20, preferably 1:1,500 to 1:50, with B being applied at a rate of 1,000 to 2,000 g/ha, preferably 1,000 to 1,500 g/ha. Combination 29 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha.

c) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
<u>Number</u>	Mixture partner B	Number	Mixture partner B
1	tribenuron-methyl	2	thifensulfuron-methyl
3	thifensulfuron-methyl (B1)	4	metsulfuron-methyl
	in combination with		,-
	tribenuron-methyl (B2)		•
5	thifensulfuron-methyl (B3)	6	thifensulfuron-methyl
•	in combination with		(B5) in combination with
	metsulfuron-methyl (B4)		tribenuron-methyl (B6)
			in combination with
			metsulfuron-methyl (B7)
7	chlorsulfuron	8	chlorsulfuron (B8) in
		•	combination with
•	,		metsulfuron-methyl (B9)
9	triasulfuron	10	2,4-D
11	dicamba	12	bromoxynil
13	MCPA	14	bromoxynil (B10) in
	•	•	combination with
			MCPA (B11)
15	fluroxypyr	16	clopyralid
17	fenoxaprop (B12) in	18	diclofop
	combination with		
	fenchlorazole (B13)		
19	tralkoxydim	20	clodinafop (B14) in
			combination with
	*		cloquintocet-mexyl (B15)
21	imazamethabenz	22	sulfosulfuron
23	difenzoquat	24	propanil
25	prosulfuron	26	metribuzin
. 27	glyphosate	28	triallate
29	trifluralin		•

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20

to 20:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 1 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:200 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B3 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B4 of 1:200 to 50:1, preferably 1:20 to 20:1, with B3 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B4 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 6 is generally used in a ratio of A to B5 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B6 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to 10 B7 of 1:200 to 50:1, preferably 1:20 to 20:1, with B5 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B6 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B7 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 7 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. 15 Combination 8 is generally used in a ratio of A to B8 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B9 of 1:200 to 50:1, preferably 1:20 to 20:1, with B8 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B9 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 9 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 100 g/ha, preferably 1 to 20 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 3,000 g/ha, preferably 100 to 500 g/ha. Combination 11 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 12 is generally used in a ratio of A to B of 25 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B10 of 1:20,000 to 1:2, preferably 1:500 to 1:5, and ratio of A to B11 of 1:20,000 to 1:2, 30 preferably 1:500 to 1:5, with B10 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha, and B11 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 16 is generally used in a ratio of A to B of 1:5,000 to 5:1, 35 preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 17 is generally used in a ratio of A to B12 of 1:5,000 to 5:1, preferably 1:500 to 1:5, and ratio of A to B13 of 1:1,000 to 50:1, preferably 1:20 to

20:1, with B12 being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha, and B13 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 18 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with 5 B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 20 is generally used in a ratio of A to B14 of 1:2,000 to 5:1, preferably 1:60 to 2:1, and ratio of A to B15 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B14 being applied at a rate of 10 to 200 g/ha, preferably 10 to 60 g/ha, and B15 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 21 is generally used in a ratio of A to B 10 of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 22 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 23 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 15 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 24 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 25 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 20 10 to 100 g/ha, preferably 10 to 50 g/ha. Combination 26 is generally used in a ratio of A to B of 1:10,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 1,000 g/ha, preferably 10 to 100 g/ha. Combination 27 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 28 is generally used in a ratio 25 of A to B of 1:20,000 to 1:20, preferably 1:1,500 to 1:50, with B being applied at a rate of 1,000 to 2,000 g/ha, preferably 1,000 to 1,500 g/ha. Combination 29 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha.

d) (6S-cis)-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-30 c]imidazol-2(3H)-yl)-4-fluorophenyl)-N-[(chloromethyl)sulfonyl]acetamide (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
1	tribenuron-methyl	2	thifensulfuron-methyl
3	thifensulfuron-methyl (B1)	4	metsulfuron-methyl
	in combination with		
	tribenuron-methyl (B2)		
5	thifensulfuron-methyl (B3)	6	thifensulfuron-methyl
	in combination with		(B5) in combination with
	metsulfuron-methyl (B4)		tribenuron-methyl (B6)
			in combination with
			metsulfuron-methyl (B7)
7	chlorsulfuron	8	chlorsulfuron (B8) in
			combination with
			metsulfuron-methyl (B9)
9	triasulfuron	10	2,4-D
11	dicamba	12	bromoxynil
13	MCPA	14	bromoxynil (B10) in
			combination with
			MCPA (B11)
15	fluroxypyr	16	clopyralid
17	fenoxaprop (B12) in	18	diclofop
	combination with		
10	fenchlorazole (B13)		
19	tralkoxydim	20	clodinafop (B14) in
			combination with
0.1			cloquintocet-mexyl (B15)
21	imazamethabenz	22	sulfosulfuron
23	difenzoquat	24	propanil
25	prosulfuron	26	metribuzin
27	glyphosate	28	triallate
29	trifluralin		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha.

Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha.

Combination 3 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20

to 20:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 1 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:200 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 5 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B3 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B4 of 1:200 to 50:1. preferably 1:20 to 20:1, with B3 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B4 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 6 is generally used in a ratio of A to B5 of 1:1,000 to 50:1, preferably 1:20 10 to 20:1, and ratio of A to B6 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B7 of 1:200 to 50:1, preferably 1:20 to 20:1, with B5 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B6 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B7 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 7 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 15 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is generally used in a ratio of A to B8 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B9 of 1:200 to 50:1, preferably 1:20 to 20:1, with B8 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B9 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 9 is generally used in a ratio of A 20 to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 3,000 g/ha, preferably 100 to 500 g/ha. Combination 11 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 25 g/ha, preferably 10 to 100 g/ha. Combination 12 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to 30 B10 of 1:20,000 to 1:2, preferably 1:500 to 1:5, and ratio of A to B11 of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B10 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha, and B11 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 35 100 g/ha. Combination 16 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 17 is generally used in a ratio of A to B12 of 1:5,000 to 5:1, preferably 1:500 to 1:5, and ratio of A to B13 of 1:1,000 to 50:1, preferably 1:20 to

WO 97/15576 PCT/US96/16111

174

20:1, with B12 being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha, and B13 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 18 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 20 is generally used in a ratio of A to B14 of 1:2,000 to 5:1, preferably 1:60 to 2:1, and ratio of A to B15 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B14 being applied at a rate of 10 to 200 g/ha, preferably 10 to 60 g/ha, and B15 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 21 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 22 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 23 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 24 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 25 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 100 g/ha, preferably 10 to 50 g/ha. Combination 26 is generally used in a ratio of A to B of 1:10,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 1,000 g/ha, preferably 10 to 100 g/ha. Combination 27 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 28 is generally used in a ratio of A to B of 1:20,000 to 1:20, preferably 1:1,500 to 1:50, with B being applied at a rate of 1,000 to 2,000 g/ha, preferably 1,000 to 1,500 g/ha. Combination 29 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha.

10

15

20

25

30

e) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monosodium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

175

Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
1	tribenuron-methyl	2	thifensulfuron-methyl
3	thifensulfuron-methyl (B1)	4	metsulfuron-methyl
	in combination with		•
	tribenuron-methyl (B2)		•
5	thifensulfuron-methyl (B3)	6	thifensulfuron-methyl
	in combination with		(B5) in combination with
	metsulfuron-methyl (B4)		tribenuron-methyl (B6)
			in combination with
			metsulfuron-methyl (B7)
7 -	chlorsulfuron	8	chlorsulfuron (B8) in
			combination with
			metsulfuron-methyl (B9)
9 .	triasulfuron	10	2,4-D
11	dicamba	12	bromoxynil
13	MCPA	14	bromoxynil (B10) in
•		• •	combination with
	•		MCPA (B11)
15	fluroxypyr	16	clopyralid
17	fenoxaprop (B12) in	18	diclofop
	combination with		
:	fenchlorazole (B13)		
19	tralkoxydim	20	clodinafop (B14) in
•			combination with
			cloquintocet-mexyl (B15)
21	imazamethabenz	22	sulfosulfuron
23	difenzoquat	24	propanil
25	prosulfuron	26	metribuzin
27	glyphosate	28	triallate
29	trifluralin		•

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20

to 20:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 1 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:200 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B3 of 5 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B4 of 1:200 to 50:1, preferably 1:20 to 20:1, with B3 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B4 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 6 is generally used in a ratio of A to B5 of 1:1,000 to 50:1, preferably 1:20 10 to 20:1, and ratio of A to B6 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B7 of 1:200 to 50:1, preferably 1:20 to 20:1, with B5 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B6 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B7 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 7 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. 15 Combination 8 is generally used in a ratio of A to B8 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B9 of 1:200 to 50:1, preferably 1:20 to 20:1, with B8 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B9 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 9 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 100 g/ha, preferably 1 to 20 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 3,000 g/ha, preferably 100 to 500 g/ha. Combination 11 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 12 is generally used in a ratio of A to B of 25 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to 30 B10 of 1:20,000 to 1:2, preferably 1:500 to 1:5, and ratio of A to B11 of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B10 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha, and B11 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 16 is generally used in a ratio of A to B of 1:5,000 to 5:1, 35 preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 17 is generally used in a ratio of A to B12 of 1:5,000 to 5:1, preferably 1:500 to 1:5, and ratio of A to B13 of 1:1,000 to 50:1, preferably 1:20 to

20:1, with B12 being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha, and B13 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 18 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 20 is generally used in a ratio of A to B14 of 1:2,000 to 5:1, preferably 1:60 to 2:1, and ratio of A to B15 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B14 being applied at a rate of 10 to 200 g/ha, preferably 10 to 60 g/ha, and B15 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 21 is generally used in a ratio of A to B 10 of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 22 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 23 is generally used in a ratio of A to B of 15 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 24 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 25 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 20 10 to 100 g/ha, preferably 10 to 50 g/ha. Combination 26 is generally used in a ratio of A to B of 1:10,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 1,000 g/ha, preferably 10 to 100 g/ha. Combination 27 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 28 is generally used in a ratio **25** . of A to B of 1:20,000 to 1:20, preferably 1:1,500 to 1:50, with B being applied at a rate of 1,000 to 2,000 g/ha, preferably 1,000 to 1,500 g/ha. Combination 29 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha.

f) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1Hpyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monopotassium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
1	tribenuron-methyl	2	thifensulfuron-methyl
3	thifensulfuron-methyl (B1)	4	metsulfuron-methyl
	in combination with		,
	tribenuron-methyl (B2)		•
5	thifensulfuron-methyl (B3)	6	thifensulfuron-methyl
	in combination with		(B5) in combination with
	metsulfuron-methyl (B4)		tribenuron-methyl (B6)
			in combination with
			metsulfuron-methyl (B7)
7	chlorsulfuron	8	chlorsulfuron (B8) in
			combination with
			metsulfuron-methyl (B9)
9	triasulfuron	10	2,4-D
11	dicamba	12	bromoxynil
13	MCPA	14	bromoxynil (B10) in
			combination with
			MCPA (B11)
15	fluroxypyr	16	clopyralid
17	fenoxaprop (B12) in	18	diclofop
	combination with		
	fenchlorazole (B13)		
19	tralkoxydim	20	clodinafop (B14) in
			combination with
			cloquintocet-mexyl (B15)
21	imazamethabenz	22	sulfosulfuron
23	difenzoquat	24	propanil
25	prosulfuron	26	metribuzin
27	glyphosate	28	triallate
29	trifluralin		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 3 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20

to 20:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 1 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:200 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B3 of 5 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B4 of 1:200 to 50:1, preferably 1:20 to 20:1, with B3 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B4 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 6 is generally used in a ratio of A to B5 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B6 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to 10 B7 of 1:200 to 50:1, preferably 1:20 to 20:1, with B5 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B6 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B7 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 7 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. 15 Combination 8 is generally used in a ratio of A to B8 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B9 of 1:200 to 50:1, preferably 1:20 to 20:1, with B8 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B9 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 9 is generally used in a ratio of A 20 to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 3,000 g/ha, preferably 100 to 500 g/ha. Combination 11 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 25 g/ha, preferably 10 to 100 g/ha. Combination 12 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to B10 of 1:20,000 to 1:2, preferably 1:500 to 1:5, and ratio of A to B11 of 1:20,000 to 1:2, 30 preferably 1:500 to 1:5, with B10 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha, and B11 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 16 is generally used in a ratio of A to B of 1:5,000 to 5:1. 35 preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 17 is generally used in a ratio of A to B12 of 1:5,000 to 5:1, preferably 1:500 to 1:5, and ratio of A to B13 of 1:1,000 to 50:1, preferably 1:20 to

10

15

20

25

20:1, with B12 being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha, and B13 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 18 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 20 is generally used in a ratio of A to B14 of 1:2,000 to 5:1, preferably 1:60 to 2:1, and ratio of A to B15 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B14 being applied at a rate of 10 to 200 g/ha, preferably 10 to 60 g/ha, and B15 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 21 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 22 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 23 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 24 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 25 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 100 g/ha, preferably 10 to 50 g/ha. Combination 26 is generally used in a ratio of A to B of 1:10,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 1,000 g/ha, preferably 10 to 100 g/ha. Combination 27 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 28 is generally used in a ratio of A to B of 1:20,000 to 1:20, preferably 1:1,500 to 1:50, with B being applied at a rate of 1,000 to 2,000 g/ha, preferably 1,000 to 1,500 g/ha. Combination 29 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha.

g) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1Hpyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monosodium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

Combination		Combination	
Number	Mixture partner B	Number	Mixture partner B
. 1	tribenuron-methyl	2	thifensulfuron-methyl
3	thifensulfuron-methyl (B1)	. 4	metsulfuron-methyl
	in combination with		
	tribenuron-methyl (B2)	•	•
-5	thifensulfuron-methyl (B3)	6	thifensulfuron-methyl
	in combination with		(B5) in combination with
•	metsulfuron-methyl (B4)		tribenuron-methyl (B6)
			in combination with
		-	metsulfuron-methyl (B7)
7	chlorsulfuron	8	chlorsulfuron (B8) in
The second second	•	•	combination with
•			metsulfuron-methyl (B9)
···· 9 ·· ···	triasulfuron	10	2,4-D
17.11	dicamba	12	bromoxynil
13.	MCPA	14	bromoxynil (B10) in
to province of the second		•	combination with
			MCPA (B11)
15	fluroxypyr	16	clopyralid
17	fenoxaprop (B12) in	18	diclofop
	combination with		
	fenchlorazole (B13)	,	
19	tralkoxydim	20	clodinafop (B14) in
•			combination with
		•	cloquintocet-mexyl (B15)
21	imazamethabenz	22	sulfosulfuron
23	difenzoquat	24	propanil
25	prosulfuron	26	metribuzin
27	glyphosate	28	triallate
29	trifluralin	•	•

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha.

Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha.

Combination 3 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20

15

25

182

to 20:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 1 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:200 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B3 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B4 of 1:200 to 50:1, preferably 1:20 to 20:1, with B3 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B4 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 6 is generally used in a ratio of A to B5 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B6 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B7 of 1:200 to 50:1, preferably 1:20 to 20:1, with B5 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B6 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B7 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 7 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is generally used in a ratio of A to B8 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B9 of 1:200 to 50:1, preferably 1:20 to 20:1, with B8 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B9 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 9 is generally used in a ratio of A 20 to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 3,000 g/ha, preferably 100 to 500 g/ha. Combination 11 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 12 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to 30 B10 of 1:20,000 to 1:2, preferably 1:500 to 1:5, and ratio of A to B11 of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B10 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha, and B11 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 16 is generally used in a ratio of A to B of 1:5,000 to 5:1. 35 preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 17 is generally used in a ratio of A to B12 of 1:5,000 to 5:1, preferably 1:500 to 1:5, and ratio of A to B13 of 1:1,000 to 50:1, preferably 1:20 to

- 6

20:1, with B12 being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha, and B13 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 18 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with 5 B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 20 is generally used in a ratio of A to B14 of 1:2,000 to 5:1, preferably 1:60 to 2:1, and ratio of A to B15 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B14 being applied at a rate of 10 to 200 g/ha, preferably 10 to 60 g/ha, and B15 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 21 is generally used in a ratio of A to B 10 of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 22 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 23 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 15 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 24 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 25 is generally used in a a ratio of A to B of 1:1,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 100 g/ha, preferably 10 to 50 g/ha. Combination 26 is generally used in a ratio of 20 A to B of 1:10,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 1,000 g/ha, preferably 10 to 100 g/ha. Combination 27 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 28 is generally used in a ratio 25 of A to B of 1:20,000 to 1:20, preferably 1:1,500 to 1:50, with B being applied at a rate of 1,000 to 2,000 g/ha, preferably 1,000 to 1,500 g/ha. Combination 29 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha.

h) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1Hpyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monopotassium salt (mixture partner A, generally applied at a rate of 0.1 to 50 g/ha, preferably applied at a rate of 1 to 20 g/ha) in combination with:

PCT/US96/16111

Combination		Combination	
Number	Mixture partner B	<u>Number</u>	Mixture partner B
1	tribenuron-methyl	2	thifensulfuron-methyl
3	thifensulfuron-methyl (B1)	4	metsulfuron-methyl
	in combination with		•
	tribenuron-methyl (B2)		
5	thifensulfuron-methyl (B3)	6	thifensulfuron-methyl
	in combination with		(B5) in combination with
	metsulfuron-methyl (B4)		tribenuron-methyl (B6)
			in combination with
			metsulfuron-methyl (B7)
7	chlorsulfuron	8	chlorsulfuron (B8) in
			combination with
			metsulfuron-methyl (B9)
9	triasulfuron	10	2,4-D
11	dicamba	12	bromoxynil
13	MCPA	14	bromoxynil (B10) in
			combination with
			MCPA (B11)
15	fluroxypyr	16	clopyralid
17	fenoxaprop (B12) in	18	diclofop
	combination with		
	fenchlorazole (B13)		
19	tralkoxydim	20	clodinafop (B14) in
			combination with
			cloquintocet-mexyl (B15)
21	imazamethabenz	22	sulfosulfuron
23	difenzoquat	24	propanil
25	prosulfuron	26	metribuzin
27	glyphosate	28	triallate
29	trifluralin		

Combination 1 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha.

Combination 2 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha.

Combination 3 is generally used in a ratio of A to B1 of 1:500 to 50:1, preferably 1:20

to 20:1, and ratio of A to B2 of 1:500 to 50:1, preferably 1:10 to 20:1, with B1 being applied at a rate of 1 to 50 g/ha, preferably 1 to 20 g/ha, and B2 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 4 is generally used in a ratio of A to B of 1:200 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 5 is generally used in a ratio of A to B3 of 5 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B4 of 1:200 to 50:1, preferably 1:20 to 20:1, with B3 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B4 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 6 is generally used in a ratio of A to B5 of 1:1,000 to 50:1, preferably 1:20 to 20:1, and ratio of A to B6 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B7 of 1:200 to 50:1, preferably 1:20 to 20:1, with B5 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha, and B6 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B7 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 7 is generally used in a ratio of A to B of 1:500 to 50:1, preferably 1:10 to 15 20:1, with B being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha. Combination 8 is generally used in a ratio of A to B8 of 1:500 to 50:1, preferably 1:10 to 20:1, and ratio of A to B9 of 1:200 to 50:1, preferably 1:20 to 20:1, with B8 being applied at a rate of 1 to 50 g/ha, preferably 1 to 10 g/ha, and B9 being applied at a rate of 1 to 20 g/ha, preferably 1 to 10 g/ha. Combination 9 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 20 100 g/ha, preferably 1 to 20 g/ha. Combination 10 is generally used in a ratio of A to B of 1:30,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 3,000 g/ha, preferably 100 to 500 g/ha. Combination 11 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 25 g/ha, preferably 10 to 100 g/ha. Combination 12 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 13 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:500 to 1:5, with B being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 14 is generally used in a ratio of A to 30 B10 of 1:20,000 to 1:2, preferably 1:500 to 1:5, and ratio of A to B11 of 1:20,000 to 1:2. preferably 1:500 to 1:5, with B10 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha, and B11 being applied at a rate of 100 to 2,000 g/ha, preferably 100 to 500 g/ha. Combination 15 is generally used in a ratio of A to B of 1:5,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 16 is generally used in a ratio of A to B of 1:5,000 to 5:1, 35 preferably 1:100 to 2:1, with B being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha. Combination 17 is generally used in a ratio of A to B12 of 1:5,000 to 5:1, preferably 1:500 to 1:5, and ratio of A to B13 of 1:1,000 to 50:1, preferably 1:20 to

WO 97/15576 PCT/US96/16111

5

10

15

20

25

30

35

186

20:1, with B12 being applied at a rate of 10 to 500 g/ha, preferably 10 to 100 g/ha, and B13 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 18 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 19 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 20 is generally used in a ratio of A to B14 of 1:2,000 to 5:1, preferably 1:60 to 2:1, and ratio of A to B15 of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B14 being applied at a rate of 10 to 200 g/ha, preferably 10 to 60 g/ha, and B15 being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 21 is generally used in a ratio of A to B of 1:10,000 to 1:2, preferably 1:300 to 1:5, with B being applied at a rate of 100 to 1,000 g/ha, preferably 100 to 300 g/ha. Combination 22 is generally used in a ratio of A to B of 1:1,000 to 50:1, preferably 1:20 to 20:1, with B being applied at a rate of 1 to 100 g/ha, preferably 1 to 20 g/ha. Combination 23 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 24 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 25 is generally used in a ratio of A to B of 1:1,000 to 5:1, preferably 1:50 to 2:1, with B being applied at a rate of 10 to 100 g/ha, preferably 10 to 50 g/ha. Combination 26 is generally used in a ratio of A to B of 1:10,000 to 5:1, preferably 1:100 to 2:1, with B being applied at a rate of 10 to 1,000 g/ha, preferably 10 to 100 g/ha. Combination 27 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha. Combination 28 is generally used in a ratio of A to B of 1:20,000 to 1:20, preferably 1:1,500 to 1:50, with B being applied at a rate of 1,000 to 2,000 g/ha, preferably 1,000 to 1,500 g/ha. Combination 29 is generally used in a ratio of A to B of 1:20,000 to 1:2, preferably 1:1,000 to 1:10, with B being applied at a rate of 100 to 2,000 g/ha, preferably 200 to 1,000 g/ha.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.001 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-K for compound descriptions. The following abbreviation is used in the Index Tables which follow: CN = cyano. The

abbreviation "dec" indicates that the compound appeared to decompose on melting. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

Index Table A

<u>Cmpd</u>	<u>R</u> a	<u> R</u> b	Rc	<u>R</u> d	X	Y	<u>R</u> 1	m.p. (°C)
1	H	H	H	H	F	Cl	H	136-139
2	H,	H	H	H	F	CI	CH ₂ C≡CH	. *
3	H	H	H	Н	F	CI	SO ₂ CH ₂ CI	213-216
4	H	H	H	H	F	Cl	C(O)CH(CH ₃) ₂	185
5	H	H	H	H	F	Cl	C(O)CH ₃	200
6	Br	ОН	H	H	F	CI	н	169-172
7	Br	Br	H	Н	F	CI	H	218-219
8	Br	F	H	Н	F	Cl	H	202-205

Index Table B

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

<u>Cmpd</u>	X	Y	<u>R¹</u>	m.p. (°C)
9	F	Cl	H	173-176
10	F	Cl	SO ₂ CH ₂ Cl	210-214

188 Index Table C

$$\begin{array}{c|c}
 & X \\
 & X \\
 & Y \\
 & X \\
 & Y \\
 & X \\
 & Y \\$$

<u>Cmpd</u>	X	Y	<u>R¹</u>	<u>R²</u>	m.p. (°C)
11	Cl	Cl	Н	CH ₂ CI	209-211
12	Cl	Cl	C(O)CH ₃	CH ₂ CI	89-90
13	Cl	Cl	CH ₂ C≡CH	CH ₂ CI	78-80
14	Cl	Cl	C(O)CH ₂ CI	CH ₂ Cl	204-206
15	Cl	Cl	н	CF ₃	*
16	Cl	Cl	SO ₂ CH ₂ CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CI	148-152
17	Cl	Cl	H	CH ₂ CH ₂ CH ₂ CI	192-194
18	Cl	Cl	Н	CH=CH ₂	
19	CI	Cl	SO ₂ CH=CH ₂	CH=CH ₂	*

Index Table D

<u>Cmpd</u>	<u>R</u> a	<u>R</u> b	X	Y	<u>R¹</u>	m.p. (°C)
20	F	H	F	Cl	CH ₂ C ≡ CH	*
21 (Ex. 1)	F	H	F	Cl	H	169-170*
22	F	H	F	Cl	SO ₂ CH ₂ CI	200 (dec)
23 (Ex. 3)	F	н	F	Cl	C(O)CH ₃	198-200
24	CI	H	F	CI	SO ₂ CH ₂ CI	*
25 (Ex. 2)	Cl	H	F	Cl	Н	169-170
26	Н	Н	F	Cl	Н	72-74
27	Н	н	F	Cl	SO ₂ CH ₂ Cl	216-217

28	н	Н	Cl	Cl	Н	216
29	Н	Н	Cì	Cl	SO ₂ CH ₂ Cl	196
30	F	н	Cl	Cl	Н	205
31 (Ex. 8)	Cl	Н	F	Cl	CH ₃	120-124
32 (Ex. 4)	Cl	н	F	Cl	C(O)CH ₃	180-181
33 (Ex. 9)	Cl	н	F	Cl	CH ₂ CH ₃	152-154
34 (Ex. 6)	F	H	F	Cl	CH ₂ CH ₃	198-200
35 (Ex. 5)	F	Н	F	Cl	CH ₃	90-92
36 (Ex. 10)	Cl	н	F	Cl	CO ₂ CH ₃	117-124
37 (Ex. 7)	F	Н	F	Cl	CO ₂ CH ₃	108-115
38	H	ОН	F	Cl	H	207-209

Index Table E

Cmpd	<u>M</u> ⊕	Ra	m.p. (°C)
39	Na	F	198-200
40	HN(CH ₂ CH ₃) ₃	F	73-76
41	K	F	194-196
42	Li	F	208-217
43	HN(CH ₂ CH ₂ OH) ₃	F	55-57
44	H ₂ N(CH(CH ₃) ₂) ₂	F	76-80
45	H ₂ N	CI	160-162

190 Index Table F

Cmpd	$\mathbb{R}^{\mathbf{a}}$	<u>R</u> b	X	Y	<u>R1</u>	m.p. (°C)
46	F	H	F	Cl	H	170-172
47	F	Н	F	Cl	SO ₂ CH ₂ Cl	110-111
48	Cl	H	F	Cl	Н	*
49	Н	F	F	Cl	н	78 (dec)
50	Н	F	F	Cl	SO ₂ CH ₂ CI	201-203 (dec)
51	Cl	Н	F	Cl	SO ₂ CH ₂ CI	140-142

Index Table G

Cmpd	Ra	<u>R</u> b	X	Y	<u>R</u> 1	m.p. (°C)
52	F	CO ₂ CH ₃	F	CI	Н	77 (dec)
53	Cl	CO ₂ CH ₃	F	CI	H	145-150
54	F	CO ₂ CH ₂ CH ₃	F	CI	Н	*
55	Cl	CO ₂ CH ₂ CH ₃	F	Cl	Н	*
56	F	C(O)—N	F	Cl	н	129-130
57	F	C(O)—N_O	F	Cl	Н	108-110
58	Cl	CO ₂ CH ₃	F	Cl	C(O)CH ₃	115-118

59	F	CO ₂ CH ₃	F	Cl	CH ₃	76-77 (dec)
60	F	C(O)NHOCH ₃	F	Cl	H	160 (dec)
61	Cl	C(O)NHOCH ₃	F	Cl	H	66-70
62	Cl	C(O)—N_O	F	Cl	Н	68-72
63	Cl	C(O)—N	F	Cl	Н	80

Index Table H

$$F \xrightarrow{H} O X \\ N \xrightarrow{N} Y$$

$$R^{1} N \xrightarrow{R^{2}}$$

<u>Cmpd</u>	X	Y	\mathbb{R}^{1}	<u>R²</u>	m.p. (°C)
64	F	Cl	H	SO ₂ CH ₂ Br	60-65 (dec)
65	F	C l	H	SO2CH2SO2CH3	90-95 (dec)

Index Table I

Cmpd	\mathbb{R}^{1}	<u>m.p. (°C)</u>
66 (Ex. 13)	H	234-237
67	SO ₂ CH ₂ CI	144-147

Index Table J

<u>Cmpd</u>	Structure	m.p. (°C)
68	O F NHSO ₂ CH ₂ CI	98-100
69	CI NHSO ₂ CH ₂ CI	*
70 (Ex. 12)	F NHSO ₂ CH ₂ CI	60-64
71	N-CI NHSO ₂ CH ₂ CI	89-94
72	ON H ON NHSO ₂ CH ₂ CI	94-98
73 (Ex. 11)	HO., NHSO2CH2CI	•

^{*}See Index Table K for ¹H NMR data.

Index Table K

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
2	δ 7.56 (d, 1H), 7.40 (d, 1H), 4.68 (m, 1H), 4.66 (s, 2H), 4.29 (m, 1H), 2.44
	(m, 4H), 1.84 (m, 4H).
15	δ 7.83 (s, 1H), 7.54 (s, 1H), 6.96 (s, 1H), 3.70 (m, 2H), 3.31 (quintet, 1H),
	2.78 (t, 2H), 2.01 (m, 4H), 1.39 (d, 6H).
18	(DMSO-d ₆) δ 10.05 (s, 1H), 7.92 (d, 1H), 7.47 (d, 1H), 6.96 (ddd, 1H), 6.05
	(dd, 2H), 3.57 (t, 2H), 2.68 (t, 2H), 1.78-1.99 (m, 4H).
19	(DMSO-d ₆) & 8.14 (s, 1H), 7.68 (s, 1H), 7.25 (dd, 2H), 6.45 (dd, 2H), 6.35
	(dd, 2H), 3.56 (m, 2H), 2.69 (t, 2H), 1.89 (m, 2H), 1.81 (m, 2H).
20	δ 7.9-7.7 (m, 2H), 5.7-5.5 (m, 1H), 4.7 (dd, 1H), 4.5 (s, 2H), 3.4 (s, 1H),
	3.5-3.3 (m, 2H), 2.5-2.1 (m, 2H).
21	δ 7.62 (d, 1H), 7.34 (d, 1H), 7.26 (br s, 1H), 5.5 (m, 1H), 4.60 (dd, 1H),
	4.52 (s, 2H), 4.12 (m, 1H), 3.62 (dd, 1H), 2.64 (m, 1H), 2.06 (m, 1H).
24	δ 7.78 (d, 1H), 7.42 (d, 1H), 5.31 (dd, 2H), 4.90 (dd, 2H), 4.79 (m, 2H),
	4.22 (dd, 1H), 3.62 (dd, 1H), 2.60 (m, 1H), 2.32 (m, 1H).
48	δ 7.70 (d, 1H), 7.38 (d, 1H), 7.08 (br s, 1H), 4.56 (br s, 3H), 4.42 (dd, 1H),
	4.30 (d, 1H), 3.52 (dd, 1H), 2.36 (m, 2H).
54	δ 8.42 (d, 1H), 7.18 (d, 1H), 6.96 (br s, 1H), 5.32 (m, 1H), 4.58 (s, 2H), 4.22
	(q, 2H), 4.06 (m, 3H), 2.46 (m, 2H).
55	δ 8.42 (d, 1H), 7.21 (d, 1H), 7.0 (br s, 1H), 4.64 (t, 1H), 4.60 (s, 2H), 4.58
	(m, 1H), 4.24 (q, 2H), 3.92 (m, 2H), 2.60 (m, 2H).
69	δ 7.65 (d, 1H), 7.35 (d, 1H), 4.70 (br s, 1H), 4.55 (s, 3H), 4.10-4.00 (m, 1H),
	3.5-3.35 (m, 1H), 2.6-2.5 (br d, 1H), 2.1 (m, 3H).
73	(DMSO-d ₆) δ 10.1 (br s, 1H), 7.75 (m, 1H), 7.4 (dd, 1H), 5.1 (m, 1H), 4.9
	(s, 2H), 4.1-3.9 (m, 3H), 3.75 (m, 1H), 2.95 (m, 1H), 2.05 (m, 1H), 1.9 (br d,
	1H), 1.2 (m, 1H).

a 1H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated
 by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dd)-doublet of doublets, (dt)-doublet of triplets, (br s)-broad singlet.

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

Seeds of barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), crabgrass (Digitaria spp.), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), morningglory (Ipomoea spp.), sorghum (Sorghum bicolor), velvetleaf (Abutilon theophrasti), and wild oat (Avena fatua) were planted into a sandy loam soil and treated preemergence by soil drench (PDRN), with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time, these crop and weed species were also treated postemergence sprayed to runoff (STRO), with test chemicals formulated in the sam0 manner.

Plants ranged in height from two to eighteen cm and were in the two to three leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately eleven days, after which all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash (-) response means no test results.

Table A	CC	OMPO	OUN	TD CIT	Table A	C	OME	OUI	1D
Rate 2000 g/ha	45 5	50 5	59	68	Rate 1000 g/ha	45	50	59	68
PDRN					STRO				
Barnyardgrass	10 1	10 1	10	9	Barnyardgrass	10	10	10	8
Cocklebur	10 1	10 1	10	10	Cocklebur	10	10	10	10
Crabgrass	10	9 1	LO	8 -	Crabgrass	6	8	9	3
Downy brome	7	8	9	2	Downy brome	4	10	8	3
Giant foxtail	10 1	10 1	10	9	Giant foxtail	7	7	9	3
Morningglory	10 1	10 1	10	10	Morningglory	10	10	10	10
Sorghum	5	3 1	10	0	Sorghum .	6	5	7	3
Velvetleaf	10 1	10 1	10	10	Velvetleaf	10	10	10	10
Wild oats	9	9	9	9	Wild oats	5	9	5	2

TEST B

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

Table B	COMPOUND	Table B C	OMPOUND
Rate 1000 g/ha		Rate 1000 g/ha	1
POSTEMERGENCE	•	PREEMERGENCE	
	3	Barley	0
Barley	•	Barnyardgrass	6
Barnyardgrass	9		•
Bedstraw	7	Bedstraw	10
Blackgrass	3	Blackgrass	1
Chickweed	6	Chickweed	8
Cocklebur	10	Cocklebur	8
Corn	7	Corn	0
Cotton	10	Cotton	10
Crabgrass	2	Crabgrass	3
Downy brome	2	Downy brome	2
Giant foxtail	3	Giant foxtail	10
Lambsquarter	8	Lambsquarter	10
Morningglory	10	Morningglory	6
Nutsedge	3	Nutsedge	0
Rape	10	Rape	10
Rice	5	Rice	1
Sorghum	3	Sorghum	0
Soybean	9	Soybean	1
Sugar beet	10	Sugar beet	9
Velvetleaf	10	Velvetleaf	10
Wheat	3	Wheat	0
Wild buckwhea	t 10	Wild buckwheat	7
Wild oat	2	Wild oat	2
		•	

Table B				C	OMP	ומטכ)		
Rate 400 g/ha	6	7	8	9	10	38	66	67	70
POSTEMERGENCE									
Barley	3	3	· 3	3	3	0	1	1	4
Barnyardgrass	4	9	9	10	3	1	4	2	10
Bedstraw	10	-	9	10	10	2	7	3	10
Blackgrass	4	4	3	4	3	1	5	2	8
Chickweed	9	10	10	9	10	3	3	2	10
Cocklebur	7	10	9	10	10	1	3	2	10
Corn	2	2	1	5	1	1	2	1	7
Cotton	10	10	10	10	10	4	9	4	10
Crabgrass	1	2	2	3	3	1	2	1	4
Downy brome	3	5	4	3	3	1	4	2	4
Giant foxtail	3	2	2	3	2	2	6	2	6
Lambsquarter	7	9	10	9	9	3	4	4	10
Morningglory	5	10	10	10	10	3	2	3	10
Nutsedge	2	4	3	3	2	0	1	0	4
Rape	8	10	10	10	10	0	7	4	10
Rice	3	4	4	3	3	0	8	2	8
Sorghum	2	2	2	2	2	1	2	2	7
Soybean	3	5	4	6	7	1	6	4	7
Sugar beet	7	10	10	10	9	1	6	2	10
Velvetleaf	10	10	10	10	10	1	9	2	10
Wheat	3	2	3	3	2	0	9	4	8
Wild buckwheat	5	10	10	10	10	2	1	2	10
Wild oat	3	4	4	4	3	1	3	1	3

Table B				CC	MPC	UNI)		
Rate 400 g/ha	6	7	8	9	10	38	66	67	70
PREEMERGENCE									
Barley	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	2	0	0	6	0	9
Bedstraw	-	9	3	8	10	0	-	3	10
Blackgrass	0	0	2	0	2	1	3	1	4
Chickweed	4	10	9	10	10	-	-	4	10
Cocklebur	2	7	3	10	7	0	4	0	10
Corn	0	0	0	0	0	0	0	0	0
Cotton	0	6	0	6	0	0	0	0	10
Crabgrass	0	0	0	0	2	0	0	0	0
Downy brome	0	1	3	0	1	0	3	0	2
Giant foxtail	0	0	0	0	0	0	4	0	0
Lambsquarter	5	10	9	10	10	0	0	0	10
Morningglory	3	10	2	9	10	0	7	0	10
Nutsedge	0	0	0	0	0	0	0	0	10
Rape	0	10	10	8	6	3	0	0	10
Rice	0	0	2	0	0	0	4	0	8
Sorghum	0	0	0	0	0	0	0	0	4
Soybean	0	1	0	0	0	0	1	0	3
Sugar beet	4	10	10	10	9	0	5	4	10
Velvetleaf	10	10	10	8	1	0	0	0	10
Wheat	0	0	2	0	0	0	0	0	0
Wild buckwheat	0	6	6	8	7	3	0	0	10
Wild oat	0	1	0	0	3	0	0	1	0

....

. ,

Table B										වි	COMPOUND	S												
Rate 200 g/ha	-	~	11	15	16	17	18 1	19	20 2	21	31	32	33 3	34 3	35 3	36 3	37 4	47 53	3 58		61 6	62 63		65
PREEMERGENCE																								
Barley	0	0	0	0	0	0	0	0	2	4	0	0	0	3	က	0	0	0	0	0	0	0	0	н
Barnyardgrass	0	4	m	m	m	4	0	0	9	7	7	ю	10 1	10	9	5 1	10	0	0	0	&	0	0	
Bedstraw	7	0	0	0	0	m	0	0	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10	7 10	0 10	0	0	7		
Blackgrass	0	-	0	0	0	0	~	0	4	۳	н	S	7	6	4	-	9		_	0	7	0	0	0
Chickweed	0	7	7	0	0	ស	0	0	6	6	10 1	10 1	10 1	10 1	10 1	10 1	10	6	9 10	0	0	ص ص	0	
Cocklebur	0	~	0	0	0	0	0	0	10 1	10	9 1	10	8	10 1	10 1	10 1	10	1 10	0 10	0	0	0	10 1	10
Corn	0	0	7	0	7	0	0	0	0	7	н	0	m	4	6	7	-	0	0	0	0	0	0	0
Cotton	ហ	4	0	0	10	2	0	1	10 1	10 1	10 1	10	7 1	10 1	10 1	10 1	10	0 10		0 10		0	0	8
Crabgrass	0	9	0	7	œ	٣	0	0	0	S	0	2 1	10 1	10	œ	7	9	7	0	0	0	0	0	0
Downy brome	0	-	0	0	0	0	~	m	m	m	က	m	7	&	2	٣	N	0	0	0	0	0	0	7
Giant foxtail	7	က	0	0	~	7	0	0	σ	~	4	0	8 1	10	9	m	7	0	0	0	0	0	0	0
Lambsquarter	10 1	10	10	Q	10	10 1	10	7	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 10	010	01 0				
Morningglory	ı	4	m	0	0	0	0	0	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 10	0 10	0 10	_	0	0	10
Nutsedge	ı	œ	2	0	0	0	0	0	~	0	0	0	6	4	4 1	10		0		0 10		0	9	_
Rape	œ	0	9	0	0	9	4	Ŋ	9 1	10	8	10	7	0	9 1	10 1	10	9 10) 10) 10		9	_	
Rice	0	m	٣	0	4	٣	0	0	٣	-	4	_	4	6	Ŋ	7	4	0		0	0	0	_	0
Sorghum	0	0	0	0	0	0	0	0	7	0	0	0.	m	&	~	0	-	0	0	_	0	0	_	0
Soybean	0	~	0	0	9	7	0	0	٣	3 1	10	0	6	6.	10 1	10 1	10	0	_	0	_	0	0	
Sugar beet	6	6	10	m	0	σ	9	5 1	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 10	0 10	10	0 10		.,	7	
Velvetleaf	10	7	10	9	0	10	0	0	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10 1	10	9 10	10	10		٥.	9 10	_
Wheat	0	0	0	0	0	0	0	0	m	က	0	0	٣	2	9	8	ص ص	0	0		0	0	0	_
Wild buckwheat	7	0	0	0	0	7	0	0	91	2	9 1	10	8 1	10 1	10 1	10 10		0 10	10	10	~	· ~		•
Wild oat	0	7	0	0	0	0	~	0	4	m	4	0	S	80	_	9	&	0	0		0	_		_

Table B								COM	POU	ND						
Rate 100 g/ha	6	7	8	9	10	38	39	40	41	. 42	43	44	66	67	70	72
POSTEMERGENCE																
Barley	0	3	3	3	3	0	3	3	3	3	4	3	2	0	3	3
Barnyardgrass	1	4	7	2	2	0	10	10	10	10	10	10	2	1	10	5
Bedstraw	-	-	9	10	10	2	10	10	10	10	10	9	-	-	-	9
Blackgrass	3	3	3	2	3	1	3	3	3	3	3	5	2	1	4	2
Chickweed	5	10	-	9	9	-	10	10	10	10	10	10	2	1	10	4
Cocklebur	5	10	9	10	8	0	10	10	10	10	10	10	2	2	10	7
Corn	1	1	1	2	1	0	5	7	6	4	7	8	1	1	7	3
Cotton	10	10	10	10	10	4	10	10	10	10	10	10	9	-	10	10
Crabgrass	2	2	1	2	2	1	2	4	3	2	4	4	1	1	2	7
Downy brome	2	3	2	2	2	Ö	3	3	3	3	4	6	2	1	3	2
Giant foxtail	2	2	2	2	2	1	3	4	3	3	3	4	2	2	5	· 3
Lambsquarter	5	9	9	9	9	1	10	10	10	10	10	10	3	2	10	· 9
Morningglory	5	2	10	10	10	2	10	10	10	10	10	10	1	2	10	8
Nutsedge	0	1	1	2	2	0	2	2	2	2	2	3	0	0	2	·1
Rape	2	10	10	9	10	Ó	10	10	10	10	10	10	5	3	10	6
Rice	1	4	4	2	3	0	2	2	3	3	3	5	3	1	8	4
Sorghum	1	2	2	1	1	0	2	5	3	4	6	2	2	1	6	4
Soybean	2	3	3	4	4	0	2	5	4	4	6	8	2	3	7	5
Sugar beet	6	10	10	9	9	0	10	10	10	10	10	10	6	1	10	7
Velvetleaf	7	10	10	10	10	1	10	10	10	10	10	10	6	2	10	8
Wheat	0	3	3	3	2	0	4	5	3	5	4	4	4	3	6	3
Wild buckwheat	4	9	7	6	10	2	10	10	10	10	10	10	1	2	10	9
Wild oat	2	2	2	3	2	1	3	3	3	3	3	3	2	1	2	2

WO 97/15576 PCT/US96/16111

Table B								COM	POU	ND						
Rate 100 g/ha	6	7	8	9	10	38	39	40	41	42	43	44	66	67	70	72
PREEMERGENCE																
Barley	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	1	0	0	4	8	5	6	8	8	0	0	9	0
Bedstraw	2	2	0	4	9	0	10	10	10	10	10	10	-	-	10	-
Blackgrass	0	0	0	0	1	0	0	2	1	0	1	0	0	0	1	0
Chickweed	1	-	8	8	9	0	10	10	10	10	10	10	0	0	10	0
Cocklebur	0	2	-	2	0	0	10	10	10	10	10	10	0	0	10	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	0	0	0	0	0	0	10	10	10	10	10	10	0	0	10	0
Crabgrass	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	2
Downy brome	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Giant foxtail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lambsquarter	1	8	7	9	8	0	9	10	10	10	10	10	0	0	10	6
Morningglory	0	4	0	1	0	0	10	10	10	10	10	10	3	_	10	6
Nutsedge	0	0	-	0	0	0	0	0	0	0	0	0	0	0	1	3
Rape	0	10	4	7	0	0	10	10	10	10	10	10	0	0	10	0
Rice	0	0	0	0	0	0	0	4	0	0	0	0	0	0	5	0
Sorghum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
Soybean	0	0	0	0	0,	0	0	0	0	0	0	0	0	0	3	0
Sugar beet	0	8	4	9	7	0	10	10	10	10	10	10	0	0	10	0
Velvetleaf	0	10	8	7	0	0	10	10	10	10	10	10	0	0	10	0
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wild buckwheat	0	0	0	6	3	0	9	10	10	6	8	9	0	0	8	0
Wild oat	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0

·203

10 10 10 10 10 10 10 10 10 10 31 2 20 29 28 ~ 27 26 10 Q 10 20 21 23 24 10 10 COMPOUND 10 10 10 10 10 -2 10 10 10 10 16 2 2 50 g/ha POSTEMERGENCE Wild buckwheat Barnyardgrass Giant foxtail Lambsquarter Morningglory Downy brome Blackgrass Sugar beet Velvetleaf Chickweed Cocklebur Crabgrass Bedstraw Nutsedge Sorghum Soybean Rate Cotton Corn Rice Rape

er F

-1

Table B					C	OME	OUN	ID				
Rate 50 g/ha	47	48	50	51	53	58	59	61	62	63	65	68
POSTEMERGENCE												
Barley	1	1	1	0	3	3	1	1	0	0	2	2
Barnyardgrass	2	3	5	2	4	3	2	5	1	0	3	1
Bedstraw	2	8	4	4	8	10	6	_	_	1	6	6
Blackgrass	2	1	1	1	2	2	1	2	1	1	2	2
Chickweed	3	3	6	2	9	10	8	3	2	1	4	2
Cocklebur	8	5	9	1	10	10	8	10	8	.3	9	2
Corn	2	1	6	1	1	2	1	3	0	0	1	1
Cotton	10	10	10	9	10	10	10	10	9	6	10	10
Crabgrass	1	1	3	1	1	2	4	3	1	0	2	1
Downy brome	2	0	1	0	3	2	3	1	0	0	2	2
Giant foxtail	1	2	2	1	1	2	3	3	1	0	2	1
Lambsquarter	7	4	9	4	8	9	8	8	4	2	10	7
Morningglory	10	10	7	2	10	10	10	10	7	4	10	2
Nutsedge	0	1	1	1	1	0	2	3	1	0	1	0
Rape	9	9	10	2	10	10	10	10	7	1	10	3
Rice	1	2	3	2	2	2	4	3	0	0	2	1
Sorghum	1	2	2	1	1	2	3	3	0	0	2	1
Soybean	2	2	3	2	2	3	6	4	2	0	3	2
Sugar beet	10	3	8	2	10	9	10	10	6	2	10	8
Velvetleaf	10	7	10	5	10	10	8	10	1	0	10	10
Wheat	3	2	1	0	2	2	1	2	1	0	3	1
Wild buckwheat	8	6	10	6	10	10	10	3	1	0	10	3
Wild oat	2	1	1	1	3	2	2	1	1	0	2	2

WO 97/15576

205

Table B					C	OME	OUN	Œ				
Rate 50 g/ha	47	48	50	51	53	58	59	61	62	63	65	68
PREEMERGENCE												
Barley	0	0	1	0	0	o	0	0	0	0	0	0
Barnyardgrass	0	0	0	0	0	0	0	2	0	0	0	0
Bedstraw	0	5	10	-	9	10	3	10	0	0	_	1
Blackgrass	0	0	2	0	0	0	2	0	0	0	0	2
Chickweed	3	0	9	0	9	10	9	10	0	0	_	6
Cocklebur	0	0	3	0	10	10	2	10	0	6	0	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	0	0	0	0	3	0	0	9	0	0	4	0
Crabgrass	0	0	0	0	0	0	2	0	0	0	0	0
Downy brome	0	0	2	0	0	0	1	0	0	0	0	0
Giant foxtail	0	0	0	0	0	0	1	0	0	0	0	0
Lambsquarter	7	0	10	0	10	10	10	10	0	0	-	7
Morningglory	0	0	0	0	10	10	3	5	0	0	10	0
Nutsedge	0	0	0	0	0	0	0	0	0	2	0	0
Rape	3	0	3	0	8	10	0	10	0	0	_	3
Rice	0	0	0	0	0	. 0	0	0	0	0	0	0
Sorghum	0	0	0	0	0	0	0	0	0	0	0	0
Soybean	0	0	0	0	0	0	0	0	0	0	0	0
Sugar beet	4	0	10	0	7	9	10	10	5	0	-	8
Velvetleaf	3	0	0	0	10	10	10	10	3	2	10	0
Wheat	0	0	1	0	0	0	1	0	0	0	0	0
Wild buckwheat	0	1	0	0	4	5	9	4	0	0	-	3
Wild oat	0	0	3	0	2	0	2	0	0	0	0	3

Table	В					COM	POU	ND	
Rate	20	g/ha	39	40	41	42	43	44	72
POSTE	MERGE	NCE							
Barle	Y		3	3	2	2	3	3	2
Barny	ardgr	ass	10	10	10	10	8	10	1
Bedst:	raw		9	10	9	10	9	9	8
Black	grass		2	1	2	1	2	2	1
Chick	weed		10	10	10	10	9	10	2
Cockl	ebur		10	10	10	10	10	10	7
Corn			1	3	2	2	2	2	1
Cotto	n.		10	10	10	10	10	10	10
Crabg	rass		2	2	2	2	2	2	4
Downy	brom	e	2	2	2	2	2	3	1
Giant	foxt	ail	2	2	3	2	3	4	1
Lambso	quart	er	9	10	10	10	10	10	8
Mornin	ngglo	ry	10	10	10	10	10	10	6
Nutsec	ige		1	-	1	1	1	2	1
Rape			10	10	10	10	10	10	2
Rice			2	2	2	2	2	3	3
Sorghu	ım		2	2	3	2	2	2	-
Soybea	ın		2	3	2	3	3	3	3
Sugar	beet		10	10	10	10	10	10	3
Velvet	leaf		10	10	10	10	10	10	3
Wheat			2	3	3	3	4	3	1
Wild b	uckwl	heat	10	10	10	10	10	10	7
Wild o	at		2	2	2	2	3	2	1

WO 97/15576

Table	В					СОМ	POU	ND	
Rate	20 9	g/ha	39	40	41	42	43	44	72
PREEME	RGEN	CE							
Barley	,		0	0	0	0	0	0	0
Barnya	rdgra	ass	1	2	3	3	1	4	0
Bedstr	aw		10	9	8	10	9	10	0
Blackg	rass		0	0	0	0	0	0	0
Chickw	eed		10	10	10	10	10	10	0
Cockle	bur		10	10	10	10	10	10	0
Corn			0	0	0	0	0	0	0
Cotton	ı		9	10	10	10	10	10	0
Crabgr	ass		0	0	0	0	0	0	0
Downy	brome	=	0	0	0	0	0	0	0
Giant	foxta	ail	0	0	0	0	0	0	0
Lambsq	uarte	er	9	10	9	10	10	10	0
Mornin	gglor	Ϋ́	10	10	10	10	10	10	3
Nutsed	ge		0	0	0	0	0	0	0
Rape			9	10	10	10	10	9	0
Rice			0	0	0	0	0	0	0
Sorghu	m		0	0	0	0	0	0	0
Soybea	n		0	0	0	0	0	0	0
Sugar	beet		10	10	10	10	10	10	0
Velvet	leaf		10	10	10	10	10	10	0
Wheat			0	0	0	0	0	0	0
Wild b	uckwh	eat	6	9	2	4	6	9	0
Wild or	at		0	0	ο	O	٥	O	n

Table B								•	COM	POUI	MD.								
Rate 10 g/ha	4	. 5	12	13	14	23	24	26	27	28	29	30	45	48	50	51	59	68	
POSTEMERGENCE																			
Barley	1	1	. 1	2	1	3	1	1	1	0	0	1	0	0	0	0	0	0	
Barnyardgrass	1	3	2	1	3	3	3	4	2	1	1	3	4	1	1	1	2	1	
Bedstraw	4	6	4	5	5	9	9	7	7	3	0	9	_	3	3	1	3	6	
Blackgrass	1	1	0	2	1	2	1	1	1	0	0	1	1	0	1	0	1.	2	
Chickweed	2	3	2	1	0	9	9	3	2	0	0	3	10	0	1	1	8	. 1	
Cocklebur	7	7	3	3	6	10	10	4	3	1	1	9	10	1	5	1	7	0	
Corn	2	3	1	1	0	1	1	1	1	1	1	. 1	1	0	2	1	2	0	
Cotton	10	10	10	10	-	10	10	10	9	8	9 ِ	10	10	9	3	9	9	8	
Crabgrass	2	2	1	3	1	1	1	1	1	1	1	1	1	0	2	1	.2	0.	
Downy brome	2	1	1	3	1	2	0	0	1	. 0	0	1	1	0	1	0	1	1.	
Giant foxtail	2	3	1	2	1	2	1	1	1	.1	1	1	2	1	0:	1	2	1	
Lambsquarter	3	2	8	9	9	9	9	9	. 8	3	3	9	. 8	3	7	0	7.	5 -	
Morningglory	8	10	2	1	5	10	10	8	10	1	1	10	7	1	6	1	10	1	
Nutsedge	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	
Rape	9	2	3	6	5	9	10	1	0	0	0 -	8	9	2	10	0	3	2	
Rice	3	3	2	3	1	2	2	1	1	0	0	2	2	0	1	0	2	0	
Sorghum	3	3	2	3	2	1	2	1	2	0	0	1	. 2	0	1	0	2	0	
Soybean	6	3	2	4	0	2	3	0	1	0	. 0	2	2	1	1	o	5	1.	
Sugar beet	7	8	10	9	9	10	10	9	6	1	1	10	10	1	5	0	8 -	6	
Velvetleaf	8	10	10	4	10	10	10	8	8	1	1	10	10	3	5	2	4	6	
Wheat	2	1	0	2	1	2	1	0	,0	0	0	, 2	1	0	0	0	1	0	
Wild buckwheat	6	10	6	7	8	10	10	4	5	1	0	9	6	2	6	1	3	2	
Wild oat	1	1	0	1	1	2	1	0	1	0	0	1	1	٥	Ω	O	1	1	

WO 97/15576 PCT/US96/16111

0 51 59 68 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0	0 0 1 1
0 0 0 0	0
0 0 0 0	0
0 0 1 0 0 1 0 0 0	1
0 0 1	1
0 0 0	
	0
0 0 0	
	0
0 0 0	0
0 0 0	0
0 0 0	0
0 0 0	3
0 0 0	2
0 10 0)
0 0 0)
0 0 0	3
0 0 0	2
0 0 0	2
0 0 0	5
0 0 0)
0 3 6	5
0 1 0)
0 0 0	כ
0 0 3	3
0 0 3	3
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TEST C

The compounds evaluated in this test were formulated in a non-phytoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application), to water that covered the soil surface (flood application), and to plants that were in the one-to-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the flood test. Water depth was approximately 2.5 cm for the flood test and was maintained at this level for the duration of the test.

Plant species in the preemergence and postemergence tests consisted of barnyardgrass (Echinochloa crus-galli), barley (Hordeum vulgare), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), of barnyardgrass (Echinochloa crus-galli), barley (Hordeum vulgare), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), com (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), johnsongrass (Sorghum halpense), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), ryegrass (Lolium multiflorum), soybean (Glycine max), speedwell (Veronica persica), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua). All plant species were planted one day before application of the compound for the preemergence portion of this test. Plantings of these species were adjusted to produce plants of appropriate size for the postemergence portion of the test. Plant species in the flood test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa), barnyardgrass (Echinochloa crus-galli) and Late watergrass (Echinocloa oryzicola) grown to the 2 leaf stage for testing.

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty one days after application of the test compound. Plant response this ratings, summarized in Table C, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table C	COMPOUND	Table C	COMPOUND
Rate 125 g/ha	2	Rate 125 g/ha	2
POSTEMERGENCE		PREEMERGENCE	
Barley Igri	35	Barley Igri	0
Barnyard 2	35	Barnyardgrass	50
Barnyardgrass	45	Bedstraw	35
Bedstraw	-	Blackgrass	40
Blackgrass	35	Chickweed	40
Chickweed	95	Cocklebur	10
Cocklebur	100	Corn	0
Corn	20	Cotton	-
Cotton	100	Crabgrass	60
Crabgrass	65	Downy Brome	0
Downy Brome	30	Giant foxtail	25
Duck salad	0	Italn. Rygrass	0
Giant foxtail	70	Johnsongrass	75
Italn. Rygrass	10	Lambsquarter	100
Johnsongrass	30	Morningglory	65
Lambsquarter	100	Rape	0
Morningglory	100	Redroot Pigweed	75
Rape	100	Soybean	20
Redroot Pigweed	100	Speedwell	70
Rice Japonica	40	Sugar beet	100
Soybean	70	Velvetleaf	100
Speedwell.	95	Wheat	0
Sugar beet	100	Wild buckwheat	30
Umbrella sedge	0	Wild oat	0
Velvetleaf	100		
Watergrass 2	30		
Wheat	25		
Wild buckwheat	100		
Wild oat	35		

rable C

Sugar beet	100	100	•	100	100	100 100 - 100 100 80 70 100 100 100 100 100	1	80	70	100	100	100	100	100	100	٠	١	•
Umbrella sedge	0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 - 0 -	0	0	0	0	0	0	0	0	0	0	25	0	0	0	•	0	ı
Velvetleaf	100	100	100	100	100	100 100 100 100 100 100 90 100 90 100 10	90	100	90	100	100	100	100	100	100	100	100	100
Watergrass 2	15	30	15	15	15	15 30 15 15 15 20 10 65 0 25 20	ı	•	1	20	10	65	0	25	20	•	1	1
Wheat	35	25	30	25	30	35 25 30 25 30 0 10 20 20 20 35 40 40 30 25 0 0 10	10	20	20	20	35	40	40	30	25	0	0	10
Wild buckwheat 100 95 100 100 100 70 85 90 70 85 100 95 100 100 100 100 100	100	95	100	100	100	70	85	90	70	85	100	95	100	100	100	100	100	100
Wild oat	30	35	35	25	25	30 35 35 25 25 10 40 20 40 10 35 45 40 35 30 0 30 20	40	20	40	10	35	45	40	35	30	0	30	20

Table C		8	COMPOUND	Q														
Rate 62 g/ha	1	7	m	4	Ŋ	7	Φ	Q	10	11	12	13	14	20	21	45	65	70
PREEMERGENCE																		
Barley Igri	0	0	0	0	0	0	0	0	0	0	0	15	0	20	0	0	10	0
Barnyardgrass	0	20	0	20	0	0	0	10	0	20	0	20	0	80	35	30	0	20
Bedstraw	10	35	0	0	82	0	0	90	40	20	0	0	0	100	100	9	100	20
Blackgrass	0	40	0	0	10	0	0	0	0	20	0	0	0	0	20	0	20	20
Chickweed	10	40	0	0	0	9	30	70	100	0	0	10	0	100	100	100	ı	100
Cocklebur	0	10	20	10	20	9	10	30	0	20	0	0	0	100	100	100	9	100
Corn	0	0	0	0	0	0	0	0	0	0	0	0	30	10	0	0	0	0
Cotton	0	0	20	0	40	0	0	0	0	20	0	0	0	100	100	9	70	09
Crabgrass	0	20	0	90	0	0	0	0	0	0	0	20	0	100	0	0	30	0
Downy Brome	0	0	10	0	0	0	0	0	0	0	0	0	0	0	20	0	0	10
Giant foxtail	20	25	0		0	0	0	0	Ο.	20	0	10	0	90	20	0	10	40
Italn. Rygrass	0	0	0	0	10	0	0	0	0	0	20	20	0	10	30	0	0	0
Johnsongrass	ı	9	0	20	0	0	10	0	0	0	0	30	0	40	0	0	0	0
Lambsquarter	100	100	90	100	100	100	40	70	9	35	100	100	100	100	100	100	100	100
Morningglory	20	65	30	10	0	30	0	. 30	0	09	0	10	0	100	100	100	100	100
Rape	70	0	0	10	100	0	0	30		10	15	0	30	100	100	100	30	100
Redroot Pigweed	100	•	80	75	0	0	20	35	0	100	20	30	90	100	100	100	100	100
Soybean	20	0	0	0	0	10	0	0	0	10	0	0	0	09	45	0	10	0
Speedwel1	100	70	100	100	100	9	0	80	90	0	0	0	25 1	100	100	95	30	100
Sugar beet	100	90	100	100	100	9	0	9	0	100	100	100	100 1	100	100	100	ı	100
Velvetleaf	100	80	100	100	100	100	100	0	100	100	100	30 1	100 1	100 1	100	100	100	100
Wheat	ò	0	0	0	["] O	0	0	0	0	0	0	0	.0	0	10	0	0	0
Wild buckwheat	10	30	10	0	o	10	0	0	0	25	.0	0	25	90	95 1	100	30	90
Wild oat	0	0	10	0	. 10	0	0	0	0	0	0	0	0	.0	0	0	10	0

COMPOUND

Table C

	30		25	10	0	0	15	0	0	0	0	0	0	0	Ŋ	0	0	'n		0				
			0		001 (5 70		06 0	100	30	100	30			35	10	20	95	100	100	100	0	40	
	29			10	9	45	15		9	10	90	20	0	0	15	10	20	9	9	0	90	0	35	
	28		10	10	9	45	15	40	70	20	90	20	0	0	20	0	30	95	90	10	80	15	40	
	27		20	15	70	90	15	20	80	25	100	35	0	0	25	10	40	95	100	70	100	20	65	
	26		20	20	85	90	20	70	80	35	100	35	10	0	25	0	9	95	100	35	90	20	35	
	25		40	0	100	100	20	100	100	30	100	20	25	0	20	45	70	100	100	100	100	0	20	
	23		30	20	100	100	25	100	100	20	100	9	25	0	20	20	í	100	100	100	100	20	35	
	21		35	25	90	100	10	100	100	40	100	40	0	0	70	0	40	100	100	100	100 1	20	40	
	20		40	15	20	100	10	100	100	25	100	35	20	0	40	25	30	1001	100 1	1001	1001	25	80	
	14		35	0	40	45	25	55	40	40	90 1	20	25	0	30	20	35	100	50 1	85 1	1001	15	35	
	13		40	20	30	40	30	30	20	35	90	25	20	0	35	0	40	- 1	80	95	1001	35	09	
	12		25	0	20	45	10	30	35	30	95	30	15	0	35	0	30	95	09	90	1001	0	35	
	11		30	25	75	ı	15	70	90	35	100	30	0	0	30	0	35	95	ı	95	1001	25	25	
	10		20	10	0	35	10	75	80	10	90 1	20	0	10	10	0	10	40	70	20	40 1	0	30	
	6		10	0	0	20	0	90	70	15	100	10	0	40	20	0	10	09	100	40	30	20	30	
	œ		10	0	10	70	30	ı	80	15	1001	10	0	0	10	ō.	0	09	100 1	707	20	0	30	
	7		0	0	10	40	10		100	10	1001	50	0	0	10	0	10	70		40 2	70	0	30 3	
	2		30	15	40	, 001	20	65	95 1(30	100 1(40	10	0	40 1	15	40 1	85 7	90 100	80	90 7	25	40 3	
	4		. 52	70	35 ,	50 1(702	35 (90	30		20 4	30	0	40 4	25 1	30 4	95 8	85 9	40 8		20 2		
	m		ñ.	20 7	30		10 2	10 3	6 06	20 3	0 100	40 2	20 3	0	4	20 2					0 100		09 0	
	7		35 3	30 2	30 3	00 100	30 1	80 1	6 06	15 2	0 100	40 4	30 2	0	09	0 2	5 50	001 0	06 (0 10	06 (0 20	5 40	
•	-					80 10	0 3				100 100	-		0	_	7	~	100 100	90 100	90 100	80 100	m	S	
			30	20	20	ã		80	90	20	10	30	20	Ū	30	25	•	100	8	9		30	40	
	Rate 31 g/ha	POSTEMERGENCE	Barley Igri	Barnyard 2	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Duck salad	Giant foxtail	Italn. Rygrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Rice Japonica	Soybean	

Sugar beet	100	100 100 100 100 100	100	100	100	- 60 60 100 100 100 100 100 100 100 100 1	1	9	90	100	100	100	100	100	100	100	100	100	100	90	80	100	
Umbrella sedge	0	0	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	20	0	0	0	0	0	0	20	0	0	0	
Velvetleaf	100	100	100	100	100	90	90	30	80	100	100	100	100	100	100	100	100	100	100	85	9	100	
Natergrass 2	10 30 15 15 15 10 0 50 0 20 20 35 - 25 10 10 0 10	30	15	15	15	ı	1	•	١	10	0	20	0	20	20	35	1	25	10	10	0	10	
Wheat	30	20	30	25	30	0	0	10	10	15	-20	40	30	20	20	30	35	20	15	10	10	20	
Wild buckwheat	85	80	100		80 100 - 100 70 40 90 60 85 95 95 95 100 100 100 100 95 70 65 100	70	40	90	09	85	.95	95	95	100	100	100	100	100	95	70	65	100	
Vild oat	30	35	35	25	30 35 35 25 25 0, 35, 0 30 10 35 45 35 30 25 25 15 15 10 0 25	0	35.	0	30	10	i,	45	35	35	30	25	2.5	<u>د</u>	7	C	c	25	

Table C		Ö	COMPOUND	Ð														
Rate 31 g/ha	36	37	45	46.	49	52	53	54	26	57	9	64	65	68	69	70	73	
POSTEMERGENCE																		
Barley Igri	20	20	0	20	30	30	35	30	25	30	20	20	20	0	30	20	0	
Barnyard 2	ı	ı	ı	10	•	10	0	0	0	0	ı	0	0	0	0	1	0	
Barnyardgrass	20	80	9	55	95	100	100	100	55	90	52	9	40	10	80	80	0	
Bedstraw	100	100	100	20	20	90	85	82	100	100	20	95	70	0	100	100	ı	
Blackgrass	25	30	20	0	25	25	20	25	15	25	10	10	10	0	10	40	0	
Chickweed	100	100	1	10	95	100	100	95	9	9	100	95	•	0	95	1	0	
Cocklebur	100	100	100	70	100	100	100	100	80	100	100	100	100	40	100	100	20	
Corn	10	10	10	20	35	30	30	20	20	75	10	15	10	10	20	90	Ŋ	
Cotton	100	100	100	100	100	100	100	100	80	100	100	100	100	80	100	100	10	
Crabgrass	10	20	20	30	30	30	20	20	09	9	20	30	15	10	30	20	0	
Downy Brome	10	20	10	0	10	25	10	0	20	70	10	25	0	0	25	20	0	
Duck salad	i	1	'	0	1	0	0	0	0	0	1	0	0	0	0	•	0	
Giant foxtail	15	25	30	20	25	35	40	20	9	70	20	20	15	0	30	75	0	
Italn. Rygrass	20	20	15	0	10	20	0	0	20	40	10	20	10	0	25	30	0	
Johnsongrass	10	20	25	30	20	25	20	40	20	90	10	20	40	10	20	20	10	
Lambsquarter	95	100	100	70	82	100	100	100	70	100	90	95	70	82	65	80	10	
Morningglory	100	100	100	100	85	100	100	100	80	100	100	100	100	35	100	100	30	
Rape	100	100	100	90	95	100	100	100	95	100	100	100	100	0	100	100	0	
Redroot Pigweed	100	100	100	100	90	100	90	100	90	100	100	95	80	09	90	90	15	
Rice Japonica	ı	1	ı	20	ı	0	0	0	0	0	•	0	0	10	0	ı	0	
Soybean	80	9	20	40	. 25	20	35	20	40	•	20	40	40	30	09	09	30	
Speedwell	100	100	100	100	100 100	100	100	100	90	100	100	95	100	0	100	100	0	

Sugar beet	90	100	90 100 - 100 100 100 100 100 40 25 100 100 - 65 100 - 0	100	100	100	100	100	40	25	100	100	1	6 2	100	,	0	
Umbrella sedge	,	1	0 - 0 0 0 0 - 0 0 0 0 0 - 0	0	1	0	0	0	0	0	1	0	0	0	0	ı	0	
/elvetleaf	100	100	100	100	100	100	100	100	90	100	100	100	100	100	100	100	100 100 100 100 100 100 100 100 90 100 10	
Watergrass 2	•	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	1	ı	•	ı	١	1	•	•	1		1	•	1	
Wheat	10	10	10 10 0 40 30 30 30 25 25 30 10 25 0 0 30 20 0	40	30	30	30	25	25	30	10	25	0	0	30	20	0	
Wild buckwheat 100 100 90 80 100 100 100 100 100 100 100 100 100	100	100	90	80	100	100	100	100	100	100	100	100	100	35	95	90	0	
Wild oat	10	25	10 25 0 10 20 35 0 25 30 45 10 25 10 0 25 0 0	10	20	35	0	25	30	45	10	25	10	0	25	0	0	

Table C		Θ O O	COMPOUND	Д																		
Rate 31 g/ha	н	~	m	4	S	7	œ	9	10	11	12	13 1	14 2	50	21	23	25	26 2	27 2	28 29		30
PREEMERGENCE																						
Barley Igri	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0
Barnyardgrass	0	10	0	0	1	0	0	0	0	0		040	0	20	30	20	0	0	0	0		0
Bedstraw	0	35	0	0	0	0	0	0	40	20		0	0 10	00	100	Ä ,	8				0	0
Blackgrass	0	30	0	0	10	0	0	0	0	10		0	0	0	.,	25	0	0				0
Chickweed	0	40	0	0	0	0	30	09	75	0	0	0	0 10	00 1	100 10	100	95	70 9	90 3			35
Cocklebur	0	0	0	0	1	10	0	0	0	0			_	00 1	100 10	100 1(100	0		0	• •	100
Corn	0	0	0	0	•	0	0	0	0	0	0			0	0	0						0
Cotton	0	0	30	0	•	0	0	0	0	10				70 1(100 1(-						09
Crabgrass	0	0	0	30	0	0	0	0	0	0		0	0	20		0	0	0	0	0 0		0
Downy Brome	0	0	0	0	0	0	0	0		0	0				10							0
Giant foxtail	0	0	0	0	0	0	0	0		0				06								0
Italn. Rygrass	0	0	0	0	10	0	0	0		0				0								0
Johnsongrass	10	0	0	20	ı	0	10	0					0	30	0							0
Lambsquarter	95	95	90	95	95	80	30	10			95 1(00 10	00 100		1001	100 10	100	95 9	0 25			0
Morningglory	10	20	20	10	0	20	0	10	0	0	0		0 100		100 100		100 100		10 5		0 100	0
Rape	30	0	0	10	45	0	0	0	0	0	0	0	20 100		100 100		100	10 1	10			S
Redroot Pigweed	90	55	70	75	0	0	10	0	0	00	40 ;	20 4	40 100		100 100		100 100	00 100	0 80	0 95	5 100	0
Soybean	0	0	0	ı	•	0	0	0	0	0	0	0	0	30	0	0	0	0	0		0	1
Speedwell	100	65	100	100	100	09	0	20	80	ı	0	0	0 100		100 10	100 10	100	0	35	0 100	0 100	0
Sugar beet	100	70	30	95	100	20	0	0	0	00 1(00 1(00 100	0 100		100 10	100 10	100 10	00 10	00	0 10	001 0	0
Velvetleaf	100	20	85	80	100	20	09	0	0	00	70	10 4	40 100		100 100		100	0	35		0 100	0
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Wild buckwheat	0	30	0	0	0	0	0	0	0	20	0		0	5 06	90 10	00 10	100	0	0 35		•	40
Wild oat	0	0	10	0	10	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0

rable C		ပ	COMPOUND	Ð														
Rate 31 g/ha	36	37	45	46	49	52	53	54	26	57	9	64	65	68	69	70	73	
PREEMERGENCE)	
Barley Igri	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	
Barnyardgrass	0	20	10	0	10	30	0	0	40	100	10		0	0	, o	0	0	
Bedstraw	70	100	40	0	10	75	30	95	95	100	55	0	40	0	95	100	0	
Blackgrass	0	20	•	0	0	0	25	0	9	100	2		10	20	0	10	10	
Chickweed	•	1	100	10	95	0	90	95	95	100	95	100	•	100	95	0	0	
Cocklebur	100	75	65	0	0	40	100	9	0	85	90	30	40	20	0	25	20	
Corn	0	0	0	10	10	2	0	0	0	25	0	0	0	0	0	0	0	
Cotton	20	80	40	20	0	100	100	90	20	100	100	30	30	10	100	100	0	
Crabgrass	0	20	0	0	20	20	0	9	100	100	0	0	15	0	0	0	0	
Downy Brome	0	0	0	10	0	0	10	0	0	35	0	0	0	0	0	0	0	
Giant foxtail	0	9	.0	0	0	10	0	0	100	100	0	0	0	0	0	0	0	
Italn. Rygrass	20	0	0	10	0	0	0	0	10	85	0	0	0	0	0	0	0	
Johnsongrass	0	40	0	0	0	0	0	0	40	95	0	0	0	30	0	20	0	
Lambsquarter	100	100	100	90	95	100	100	100	100	100	100	100	100	95	100	100	0	
Morningglory	100	100 100	100	0	0	100	75	100	30	85	100	100	100	0	80	100	20	
Rape	95	100	100 100	100	8	100	100	95	10	90	100	95	10	100	100	100	0	
Redroot Pigweed	100	100	100	30	20	10	95	100	100	100	100	80	. 80	•	100	100	0	
Soybean	30	10	0	0	0	10	0	0	20	100	0	0	0	0	0	20	0	
Speedwell	100	100	95	25	100	100	90	100	. 95	100	100	100	1	100	100	100	0	
Sugar beet	1	١.	100	10	100	100	100	100	90	100 100		100	•	0	100	ı	65	
Velvetleaf	100	100	100	0	100 .100		100	100	100	100	100	100	100	0	100	100	0	
Wheat	0	0	0	0	0	0	0	0	0	55	0	0	0	52	0	0	0	
Wild buckwheat	9	82	30	0	10	9	06	80	95	100	45	15.	0	0	0	40	0	
wild oat	0	0	0	0	0	0	10	0	0	90	0 :	0	0	25	0	0	0	•

COMPOUND

Table C

~	3	50	7	œ	6	10 1	11 12	2 13	3 14	20	21	23	24	25	26 2	27 28	3 29
35 25 30			0	0	10 2	20 2	20 10	0 40	25	30	30	30	0	35	15 1	15 10	0
10 15 15			0	0	0	0	25	0 0	0	0	10	20	0	0	10 1	10 10	10
25 35 35			0	0	0	9 0	60 50	0 25	3 40	30	70	95	30 1	100	80	60 40	40
95 50 95	95	•	40	20	30 2	20	0 40	0 35	40	90	90	100	95 1	100	30 4	40 40	40
10 20 20			0	•	0	0 1	10 10	0 30	20	10	10	20	10	25	10 1	10 10	01
10 20 60 4	09	4	40	1	50 4	40 4	45 10	0 30	52	95	100	100	95 1	100	50 5	50 25	0
7 06 08 06	06	7	20	70	9 09	8 09	80 30	0 50	40	100	100	1001	1001	100	70 8	80 50	50
15 25 20 1	20	-	10	10	10 1	10 2	20 20	0 25	10	25	35	20	20	70 7	25 2	20 10	10
100 90 100 9	100	σ	90	90	90 7	70 100	0 80	06 0	85	100	100	100	1001	100 1(100 100	0 80	90
30 20 35 20	35	~	0	10	10 1	10 1	15 25	5 25	35	ı	30	20	20	20 %	25 2	20 15	15
10 25 0 (0		0	0	0	0	0 10	0 20	15	20	0	22	0	0	10	0 0	-
0 0 0	0		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30 35 40	40		0	10	15	0	20 25	30	25	35	9	20	30	40 2	25 1	15 20	15
0 20 15 0	15			0	0	0	0	0	70	20	0	15	0	0	0	0	0
40 30 30	30	_	0	0	0	10 3	35 20	35	25	20	25	20	20	50	30 3	30 20	10
100 95 85 40	85	4(_	40 4	40 3	30 95		1	100	100	100	100	-	100	6 06	90 95	9
85 80 90 9	90	9	90	70	i i	50 90	0 40) 50	35	100	100	1001	1001	100	6 06	90 70	20
10 40 70 10	70	Ä		10	20 3	30 95	5 75	90	80	100	100	1001	1001	100	30 3	35 0	0
09 08 06 06	80	Ğ	0	40 2	20 2	20 90	0 100	100	100	100	100	100	90	06	- 100	09 0	80
15 15 25 (25		0	0	0	0 25		0 25	10	0	20	20	0	0	20 2	20 15	0
35 50 35 2	35	~	20	25 2	25 2	25 20	0 10	20	25	70	35	35	35	40 2	5 45	5 25	25
100 100 100 7	100	7	70	30	0	0	0 35	80	80	100	100	1001	1001	100	90 80	0 30	0

ugar beet	100	100	100	100	100 100 100 100 95 30 60 100 100 100 100 100 100 100 100 100	•	ı	30	9	100	100	100	100	100	100	100	100	100	100	100	40	30
Jmbrella sedge	0	0	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0
elvetleaf	100	100	100	100	100	80	80	30	20	100	95	90	100	100	100	100	100	100	100	100	ın	30
latergrass 2	10	30	10	15	12	•	1	. 1	ı	10,	0	45	0	. 0	0	50	ı	ı	25	10	10	0
heat	25	15	25	25	30		0	0	0	10,	10	40	10	10	10	25	. •	25	15	10	0	0
ild buckwheat	65 75 90 100 95 50 40 50 50 70 5	75	90	100	95	20	40	20	20	70	20	95	95	100	100	100	70	100	95	95 70 30	70	30
ild oat	30	35	35	25	25	, • ,	20	0	20	10	35	35	30	35	20	10 35 35 30 35 20 25 0 10 15 15 10	0	. 01	15	15	10	0

Table C		Ö	OMPOUND	Ð																	
Rate 16 g/ha	30	31	32	33	34	35	36	37	39	40	41	42	43	44	45	46	48 4	49	52 5	53 54	26
POSTEMERGENCE																					
Barley Igri	25	30	20	25	30	30	20	20	15	20	10	30	15	10	0	0	0	25	30 3	30 30	25
Barnyard 2	0	0	0	0	0	0	•	ı	45	20	0	ı	0	0	1	0	0	1	0	0 0	0
Barnyardgrass	90	30	20	15	10	10	10	09	100	80	80	90	75	90	20	35 4	40 8	80 1(100 70	0 95	35
Bedstraw	20	9	95	90	90	82	100	100	90	100	100	70	75 1	100	80	0	10 5	20	85 85	5 85	82
Blackgrass	10	10	10	10	10	20	25	25	20	30	20	25	10	10	1	0	20 1	10 2	20 20	0 20	10
Chickweed	82	90	100	95	95	80	100	100	100	95	1001	100	95 1	100	ı	0	45 8	80	95 100	0 95	20
Cocklebur	100	80	100	9	90	20	100	100	06	100	100 1	100 1	1001	1001	100	50 4	40 9	90 100	0 100	0 100	70
Corn	20	25	20	20	20	10	10	10	35	25	10	20	10	15		10 1	10 2	20 3	30 15	5 15	10
Cotton	100 100	100	100	90	100	90	100	100	100	100	1001	1001	100 1	100 10	100 1(100 8	80 100	0 100	0 100	001 (70
Crabgrass	20 60	9	9	20	20	30	10	15	35	20	20	20	50	10	10	20 3	35 2	20 2	20 30) 40	40
Downy Brome	0	0	0	10	10	0	10	20	10	30	0	10	15 1(100	0	0 1	10	0	20 10	0	10
Duck salad	0	0	0	0	0	0	ı	1	0	10	0	•	0	0	1	0	0	ı	0 0	0	0
Giant foxtail	25	20	9	20	20	30	10	15	20	20	20	30	40	25	20 %	20 3	30 1	15 3	30 30	35	30
Italn. Rygrass	10	0	0	10	10	0	10	10	10	35	10	.0	10	0	10	0 1	10	0 1	10 0	0	10
Johnsongrass	10	30	10	30	40	20	0	10	30	30	20	15	30	35	0	20	- 40		25 30	30	30
Lambsquarter	95 100	100	100	95	95	90	80	90 1	100	100	1001	100 1	1001	100 100		20	0 85	5 100	0 100	100	70
Morningglory	100	90	100	90	90	90	100	100	100	100	100 1	100 1	100 10	100 100	0 100	0 80	0 70	0 100	0 100	100	70
Rape	95	70	100	92	95	70	100	100	100	100	100 1	1001	100 10	100 100		80 80		- 100	0 100	100	75
Redroot Pigweed	80	80	100	70	80	09	100	100	100 1	1001	1001	1001	100 100	100		90 40	0	0 100	0 85	100	75
Rice Japonica	0	0	0	0	0	0	ı	1	30	30	0	ı	0	0		0			0 0	0	0
Soybean	40	70	35	09	20	40	10	09	ı	35	25	20	30 3	30 1	10 3	30 30) 20) 50	0 30	40	40
Speedwell	82	92	100	75	90	06	100	1001	100 1	100 1	1001	100 1	100 100	0 100		35	0 85		- 100	100	ı

Sugar beet	100	92	100	100	100	100	90	100	100	100	15 100 100 100 100 90 100 100 100 100 100	100	100	90	ı	100	09	100	100	001	100	20
Umbrella sedge	0	0	0 0 0 0	0	0	0	1	ı	0	0	0 0 0 0 - 0 0 - 0 0 - 0 0 0	ı	0	0	1	0	0	ı	0	0	0	0
Velvetleaf	100	70	100	9	90	82	100	100	100	100	100 60 90 85 100 100 100 100 100 100 100 100 100 10	100	100	100	100	100	80	100	100	001	100	90
Watergrass 2	10	1	ı	١.	1	1	•	1	65	20	0	1	ı	1	• 1	0	. 1	I I	ı	1	1	ı
Wheat	20	20	25	30	35	30	0	0	20	15	20 25 30 35 30 0 0 20 15 20 35 10 0 0 30 0 30 25 20 20	35	10	0	0	30	0	30	25	20	20	20
Wild buckwheat 100	100	80	90	90	100	95	100	100	90	100	80 90 90 100 95 100 100 90 100 100 95 100 90 90 70 65 95 100 100 100	95	100	96	90	70	65	95	100	001	100	95
Wild oat	25	70	25	20	10	35	0	25	20	15	20 25 20 10 35 0 25 20 15 10 0 10 100 0 0 15 10 30 0 20 25	0	10	100	0	0	15	10	30	0	20	25

Table C		CO	MPOU	ND					
Rate 16 g/ha	57	58	60	64	65	68	69	70	73
POSTEMERGENCE									
Barley Igri	30	0	10	0	10	0	30	0	0
Barnyard 2	0	О	-	0	0	0	0	_	0
Barnyardgrass	60	20	25	40	30	0	60	70	0
Bedstraw	100	65	40	70	40	0	90	60	0
Blackgrass	15	0	10	10	0	0	10	30	0
Chickweed	60	70	90	95	20	0	90	_	0
Cocklebur	100	100	100	100	90	30	100	100	10
Corn	35	10	10	10	5	0	15	40	0
Cotton	100	100	100	100	65	80	100	100	0
Crabgrass	50	20	10	20	10	10	25	40	0
Downy Brome	60	0	10	25	0	0	0	10	0
Duck salad	0	0	-	0	0	0	0	-	0
Giant foxtail	50	20	10	20	15	0	20	60	0
Italn. Rygrass	40	0	0	10	0	0	10	20	0
Johnsongrass	80	20	10	10	20	0	30	50	0
Lambsquarter	95	80	90	85	50	0	65	80	0
Morningglory	100	100	100	100	100	25	100	100	20
Rape	95	100	100	100	100	0	100	100	0
Redroot Pigweed	100	80	100	90	80	50	90	80	10
Rice Japonica	0	0	-	0	0	10	0	_	0
Soybean	90	30	20	30	30	20	50	60	20
Speedwell	-	100	95	90	80	0	100	100	0
Sugar beet	20	100	100	100	-	65	100	-	0
Umbrella sedge	0	0	-	0	0	0	0	-	0
Velvetleaf	100	100	100	100	90	90	100	100	0
Watergrass 2	-	-	-	-	-	-	_	-	_
Wheat	30	0	10	25	0	0	25	15	0
Wild buckwheat	100	100	100	85	100	0	85	80	0
Wild oat	45	0	10	0	0	0	25	0	0

COMPOUND

Table C

Rate 16 g/ha	7	7	m	4	ß	7	ω	σ	10	11	12	13	14	20	21	23	24	25	26	27	28	29
PREEMERGENCE																						
Barley Igri	0	0	0	0	0	0	0	0			0		0	0	0	0		0		0	0	0
Barnyardgrass	0	•	0	0	0	0	0	0			0		0	30	10	10	0	0	0	0	0	0
	0	15	0	0	0	0	0	0			0		0	1	9	100		75		0	0	0
Blackgrass	0	20	0	0	10	0	0	0			0		0	0	0	0		0		0	0	0
Chickweed	0	40	0	0	0	0	0	0			0		0	001	100	95		95		35	30	0
Cocklebur	0	0	0	0	0	0	0	0			0	0	0			100		100		10	0	0
	0	0	0	0	0			0			0		0			0		0	0	0	0	0
	0	0	20	0	20	0	0	0			0		0	30				100		0	10	0
Crabgrass	0	0	0	0	0	0	0	.0			0		0	10		0	0	0		0	0	0
Downy Brome	0	0		Ö	0	0	0	į			0		Ö	0				0		0	0	0
Giant foxtail	0	0	0	0	0	0	0	0			0		0	30				0		0	0	0
Italn. Rygrass	0	0	0	0	0	0	0	0			0		0	0	20			0		0	0	0
Johnsongrass	0	0	0	0	0	0	0	0			0	•	0	30				0		0	10	20
Lambsquarter	82	70	90	95	90	30	20	0			90		95 1		100	100		001		85	25	70
Morningglory	10	20	0	0	0	0	0	0	0	1	. •		0					001		0	0	0
	0	0	0	0	0	0	0	0			0		· •	80	100	100	10	100	0	0	0	0
Redroot Pigweed	75	25	22	20	0	0	10	0			40	0	•	100	100			001	001	90	09	09
	0	0	0	0	0	0	0	0			0	0	0					0	0	0	0	0
Speedwell	100	65	100	100	100	10	0	10			0	, O	0		100	95 1		95	0	0	0	
Sugar beet	90	0	20	96	85	0	0	ı			00	0		100	100			100	10	85	0	0
Velvetleaf	90	0	9	20	20	30	09	0			10	0		100	100			100	0	20	.0	0
	0	0	0	0	0	0	0	0			0	0	0	0	0			0	0	0	0	0
Wild buckwheat	0	30	.0	0	0	0	0	0	0		. 0	0	0	55	70	75	0	55	0	0	0	20
	0	0	,0	0	0	0	0	0			0	0	0	0	0	10	c	Ç	c	c	٠ ح	ċ

Table C		ខ្ល	COMPOUND	Ð																	
Rate 16 g/ha	30	31	32	33	34	35	36	37	39	40	41	42	43	44	45	46	48	49	52 5	53 54	4 56
PREEMERGENCE																					
Barley Igri	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	0	30	0	0	30	0	10	10	0	10	0	0	0	0	0	20	0	0 30
Bedstraw	0	0	100	0	100	20	30	100	10	20	55	20	70	25	30	0	0	10 1	10 3	30 95	5 90
Blackgrass	0	0	0	0	0	10	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0 40
Chickweed	35	15	20	95	95	40	ı	1	20	0	82	09	70	95 1	100	10	0	90	0	90 85	5 85
Cocklebur	30	0	100	0	0	0	70	9	80	90	70	1001	100	10	30	0	0	0	30 8	80 60	·
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	40	10	100	0	0	0	0	1	20	100		100	80	20	20	20	40	-	00 100	0 90	
Crabgrass	0	0	20	0	40	0	0	10	0	10	0	0	0	0	0	0	0	0	0		100
Downy Brome	0	0	0	0	0	0	0	0	0	0	0	0	0	0		10	0			0	
Giant foxtail	10	0	0	0	10	35	0	10	20	10	0	0	10	10		0	0		0	0	Ä
Italn. Rygrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Johnsongrass	0	0	0	0	0	0	0	30	0	80	0	10	0	0		0	0			0	
Lambsquarter	95 10	100	100	100	100	100	100	100	100	100	100	1001	1001	1001	100	06	70 9	95 95	5 100	001 (95
Morningglory	100	9	100	0	0	0	100	100	100	100	50	100	50 1	1001	100	0	0	0 100		- 60	10
Rape	0	0	100	0	0	0	20	06	100	100	100	1001	100 1	100	95	0	0	10 35	5 30		0
Redroot Pigweed 100	100	90	100	0	70	0	100	100	100	100	90	100 1	1001	1001	100	30	10	- 10		90	100
Soybean	30	0	0	0	0	0	20	0	0	0	10	0	0	0	0	0	0	0 0	0	0	10
Speedwell	70	95	100	1	100	100	100	100	100	100	100	1001	100 1	100		-	00 100	0 100		. 100	85
Sugar beet	100 1(100	100	90	100	100	1	,	100	100	100	1001	100 1	100	90	0	60 100	0 100	0 100	100	85
Velvetleaf	100 10	100	100	0	20	10	100	100	100	100 1	100 1	100 1	100 1	100 1	100	1	0 3	30 100	06 0	100	40
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0	0	0	0
Wild buckwheat	30	10	10	0	15	0	0	09	10	70	25	30	45	0	30	0	0	0 60	30	- 65	95
Wild oat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0

Table C		СО	MPOU	ND					
Rate 16 g/ha	57	58	60	64	65	68	69	70	73
PREEMERGENCE		,							
Barley Igri	40	0	0	. 0	0	0	0	0	0
Barnyardgrass	90	0	0	0	0	0	0	0	0
Bedstraw	100	0	25	. 0	-	0	-	100	0
Blackgrass	85	0	0	0	0	10	0	0	10
Chickweed	100	85	95	95	-	100	0	0	0
Cocklebur	70	0	-	· -	30	0	0	0	10
Corn	10	0	. 0	0	0	0	. 0	0	0
Cotton	95	30	70	-	30	0	30	60	0
Crabgrass	90	0	0	0	0	0	0	0	0
Downy Brome	25	0	0	0	0	0	0	0	0
Giant foxtail	100	Ó	0	0	0	0	0	0	0
Italn. Rygrass	60	0	. 0	0	O	. 0	0	0	0
Johnsongrass	95	0	, 0	0	0	0	0	10	0
Lambsquarter	100	100	100	100	100	95	100	100	Ó
Morningglory		0	80	100	100	0	70	100	0
Rape	30	0	95	90	0	100	90	100	0
Redroot Pigweed	100	, 0	100	80	20	-	70	100	0
Soybean	100	0	0	. 0	0	0	0	10	0
Speedwell	20	100	100	100	0	0	100		0
Sugar beet	100	45	80	100	~	0	100	-	0
Velvetleaf	100	10	100	100	100	0	80	70	0
Wheat	30	0	0	0	0	25	0	0	0
Wild buckwheat	100	. 0	20	. 0	-	0	0	30	0
Wild oat	65	0	0	0	. 0	25	0	0	0

COMPOUND

Table C

	_		_	_	_		_																	
	29		0	10	30	40	0	0	20	0	20	10	0	0	10	0	0	35	30	0	70	0	10	0
	28		0	10	30	25	0	0	30	0	9	10	0	0	15	0	10	90	40	0	9	10	15	0
	27		10	10	40	40	10	20	70	15	90	20	0	0	10	0	20	90	90	20	80	20	40	70
	26		10	10	75	30	0	20	20	15	90	15	10	0	20	0	20	90	82	0	75	20	20	85
	25		35	0	70	82	20	100	100	10	100	35	0	0	30	0	20	100	100	100	90	0	35	100
	24		0	0	20	95	0	80	100	10	100	15	0	0	20	0	15	95 1	80 1	100	80	0	25	90 1
	23		30	15	75	100	20	100	100	15	100	20	10	0	40	10	25	100	100	1001	100	20	20	ı
	22		40	ı	95	45	10	90 1	100	30	100	35	0	ı	30	0	40	1001	1001	1001	1001	ı	20	00
	21		10	0	9	1	10	100	100	25	100	30	0	0	40	0	20	100	1001	1001	1001	20	35	100 1
,	20		30	0	20	20	10	80	80	25	100	25	20	0	25	20	10	1001	1001	1001	1001	0	70	95 1
	14		20	0	25	0	10	52	25	10	55	30	10	0	15	20	10	100 1	30 1	60 1	1001	10	10	1
	13		35	0	20	20	25	30	45	25	82	25	20	0	30	0	25	,	20	90	1001	0	20	80
	13		10	0	30	40	10	10	20	15	80	20	0	0	15	0	10	1	35	65	1001	0	1	30
:	11		20	25	20	0	10	32	70	10	90	10	0	0	20	0	10	95	80	80	90 1	25	20	0
,	10		10	0	0	20	0	1	90	10	ı	10	0	0	0	0	0	20	20	20	ı	0	20	0
	O.		0	0	0	0	0	20	40	10	70	10	0	0	10	0	0	20	100	0	20	0	20	0
•	œ		0	0	0	20	0	ı	70	10	09	10	0	0	2	0	0	40	40 1	10	40	0	20	1
1	7		0	0	0	30	0	20	09	10	90	10	0	0	0	0.	0	40	90	10	09	0	20	30
•	S.		30	10	30	80	10	20	82	15	100	30	0	0	30	10	30	82	80	10	09	25	30	1
•	4		20	15	20	20	20	15	40	20	06	20	10	0	35	10	20	95	75	30	90	15	40	100
•	m		30	10	20	20	0	10	80	10	001	30	10	0	25	0	40	95	85	ı	80	10	35	70 1
•			30	0	35	20	0	0	20	10	90 10	25	10	0	25	20	ı	09	85	85	80	10	25	9.0
	Rate 8 g/ha	POSTEMERGENCE	Barley Igri	Barnyard 2	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Duck salad	Giant foxtail	Italn. Rygrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Rice Japonica	Soybean	Speedwell

Sugar Deer	100	700	100	35	•	100 100 100 95 60 100 100 100 100 90 100 100 100 100 95 95 30 0	ı	09	100	100	100	100	90	100	100	100	100	100	92	95	30	0
Umbrella sedge	0	0	0	0	0	0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Velvetleaf	100	••	100	100	80	90 100 100 80 60 0 50 100 95 90 100 100 100 100 100 100 100 80	0	20	100	95	90	100	100	100	100	100	100	100	100	.08	30	20
Watergrass 2	10	01	10 10 10	10	١.	Ė	, 1 .	•	10	0	ö	Ö	.0	0	,	15			20	10	0,1	0
Wheat	25	52	25	25	0	0	0	0	10	10	40	0	10	10	25	25	0	20	.0	0	.0	0
Wild buckwheat	65	90	100	95.	30	90 100 95 30 30 30 40 70 25 85 90 100 100 100 - 70 100 70 70 40 10	30	40	70	25	82	90	100	100	100	•	70	100	70	70	40	10
Wild oat	25	35	20	20	0	10	0	10	10	10.	35.	25	30	15	20	15	0	c	10	9	c	٠.

Table C			Ö	OMPOUND	e																		
Rate 8	8 g/ha	30	31	32	33	34	35	36	37	39	40	41	42	43	44	45	46	48 4	49	25	53 5	54	26
POSTEMERGENCE	ENCE																						
Barley Igri	īri	20	30	10	25	30	30	10	20	10	10	0	30	10	10	0	0	0	70	30	20 3	30	25
Barnyard 2	8	0	0	0	0	0	0	ı	•	35	40	0	ı	0	0	ı	0	0		0	0	0	0
Barnyardgrass	rass	80	20	40	10	10	10	10	45	70	80	9	70	30	80	30	25 '	640	. 05	70	5 09	95 1	15
Bedstraw		20	9	ı	80	9	85	100	20	90	80 1	100	20	40	90	09	0	0	50	20	8 09	808	85
Blackgrass	ຮູ	10	10	10	0	10	20	10	25	10	25	10	10	0	10	35	0	10 1	10	10	20 2	20 1	10
Chickweed		80	70	100	65	95	70	100	75	90	95 1	100	95	90	90	1	0	0	. 09	75	70 9	90	30
Cocklebur		100	70	100	9	70	30	100	100	90	100	1001	1001	1001	1001	100	10	30 5	50 1(100 1	100 100		30
Corn		10	15	15	15	15	10	ın,	2	20	15	10	15	S	10	2	10	0	10	20	10 1	10 1	10
Cotton		95 100	100	100	80	100	90	100	100	100	100 1	100 1	1001	1001	1001	100	90	60 100		1001	100 100		70
Crabgrass		15	20	40	10	20	20	10	15	30	30	15	15	20	10	10	10	20 1	15 ;	70	20 3	30 1	10
Downy Brome	ame	0	0	0	10	10	0	0	0	10	10	0	10	10 1	100	0	0	0	0	10	0	0	10
Duck salad	Ð	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	0	0	0
Giant foxtail	tail	20	20	20	10	20	20	10	15	40	35	15	25	20	15	15	10	20 1	10 2	25 ;	20 3	30 2	20
Italn. Rygrass	grass	0	0	0	10	0	0	0	0	10	20	0	0	0	0	10	0	0	0	10	0	0	10
Johnsongrass	ass	0	20	10	20	30	10	0	10	ı	30	15	10	20	25	0	10	'n	30 1	15	30 3	30 2	20
Lambsquarter	ter	90	80	100	9	90	80	80	90 1	100	100	90	95	90	95 1	100	20	0 7	70 10	100 1(100 100		09
Morningglory		100	90	100	90	90	90	100	100	100 1	1001	1001	100 1	1001	1001	100	75 7	7 07	70 10	100 10	100 100	0	
Rape		06	30	100	90	09	20	100	100	100	1001	100 1	100 1	100 1	1001	100	0	25 9	95 10	100 10	100 100		70
Redroot Pigweed	igweed	9	09	100	09	80	09	80	100	100 1	100	100	90 1	100	100	06	80	30 5	50 100		70 9	90 3	30
Rice Japonica	nica	0	0	0	0	0	0	1	,	25	25	0		0	0	4	0	0	,	0	0	0	0
Soybean		35	70	30	20	40	40	70	09	30	35	15	15	25	25	10	20 2	20 1	15 5	50 3	30 4	40 2	20
Speedwell		70	95	90	10	90	75	90	90 1	100 1	100	80	95		90 1	100	30	- 7	75 100		100 100		20

Sugar beet	100	95	95 100 95 100 100 90 100 100 100 100 100 100 80 - 0 10 100 100 100 15	95	100	100	90	100	100	100	100	100	100	80	ı	0	10	001	001	100	100	15
Jmbrella sedge	0	0	0 0 0 0 - 0 0 - 0 0 - 0 0 0 0 0 0 0	0	0	0	1	1	0	0	0	•	0	0	ı	0	0	1	0	0	0	0
elvetleaf/	100	70	70 100 60 70 - 100 100 100 100 100 100 100 100 100	9	70	t	100	100	100	100	100	100	100	100	100	80	70	06	100	100	100	30
latergrass 2	10	1	40 40	•	•	•	•	1	40	40	7	.1	Ł	1	1	0	,	i	ı	1	ı	1
lheat	15	0	10	30	35	30	0	0	20	10	10	25	0	0	0	0	0	10	20	10	10	10
ild buckwheat	95	80	80 90 75 95 90 90 100 90 100 90 95 100 90 80 30 40 80 100 100 100 95	75	95	90	90	100	90	100	90	95	100	90	80	30	40	80	001	100	100	95
ild oat	25	20	20 10 10 0 30 0 0 10 10 5 0 10 100 0 0 0 0 30 0 0 15	10	0	30	0	0	10	10	Ŋ	0	10	100	0	0	0	0	30	C	C	2.

Table C				COMP	OUND				
Rate 8 g/ha	57	7 58	60	64	65	68	69	70	73
POSTEMERGENCE									
Barley Igri	25	5 0	C) (10	C	30	0	0
Barnyard 2	0	0	-	0	0	0	0	-	0
Barnyardgrass	30	10	10	30	20	0	50	70	0
Bedstraw	95	65	20	70	40	0	-	-	0
Blackgrass	15	0	0	10	0	0	0	20	0
Chickweed	60	45	70	90	20	0	90	-	0
Cocklebur	80	100	100	90	90	20	100	90	0
Corn	20	10	5	10	5	0	10	30	0
Cotton	100	100	100	100	50	70	100	100	0
Crabgrass	40	20	0	15	10	10	20	35	0
Downy Brome	40	0	0	10	0	0	0	0	0
Duck salad	0	0	-	0	0	0	0	-	0
Giant foxtail	50	15	10	15	10	0	20	35	0
Italn. Rygrass	30	0	0	0	0	0	0	0	0
Johnsongrass	60	10	0	10	0	0	30	40	0
Lambsquarter	95	80	60	85	50	0	65	70	0
Morningglory	90	100	100	100	60	20	100	100	0
Rape	60	100	90	85	100	0	100	100	0
Redroot Pigweed	100	80	90	90	60	40	80	70	0
Rice Japonica	0	0	-	0	0	0	0	-	0
Soybean	80	20	15	20	20	10	50	50	10
Speedwell	95	15	95	50	80	0	100	90	0
Sugar beet	20	55	95	100	-	65	100	-	0
Umbrella sedge	0	0	_	0	0	0	0	-	0
Velvetleaf	100	100	100	100	50	80	90	100	0
Watergrass 2	-	-	-	-	-	-	_	-	-
Wheat	25	0	0	0	0	0	25	10	0
Wild buckwheat	100	85	90	-	100	0	-	80	0
Wild oat	35	0	0	0	0	0	20	0	0

COMPOUND

Table C

Rate 8 g/ha	-	m	4	Ŋ	7	œ	σ	10	11	12	13	14	20	21	22	23	24	25	26	27	28	29
PREEMERGENCE																						
Barley Igri	0	0	0	0	0	0	0					0		0								0
Barnyardgrass	0	0	0	0	0	0	0					0		0								0
Bedstraw	0	0	0	0	0	0	0					0										0
Blackgrass	0	0	0	10	0	0	0					0	0	0	0							0
Chickweed	0	0	0	0	0	0	0					0		20								0
Cocklebur	0	0	0	0	0	0	0					0		100		100	10 1	001				0
Corn	0	0	0	0	0	Ö	0				- 1		0	0								0
Cotton	0	10	0	ı	0	0	0										•					0
Crabgrass	0	0	0	0	0	0	0								10							0
Downy Brome	0	0	0	Ö	0	0	0															0
Giant foxtail	0	0	0	0	0	0	0				- 1											0
Italn. Rygrass	0	0	0	0	0	0	0															0
Johnsongrass	0	0	Ĺ	0	0	0	0															0
Lambsquarter	09	90	95	1	0	10	0			_						•	**					70
Morningglory	0	0	0	0	0	0	0								100							0
Rape	0	0	0	0	0	0	0															0
Redroot Pigweed	09	0	20	0	0	0	0						70 1									20
Soybean	0	0	0	0	0	0	0					0	0	0	0	0	0					0
Speedwell	95	95]	100	95	0	0	0					0	00 1		100	95 1						00
Sugar beet	20	0	45	•	0	0	0						70 1	1 001	00	.00	1001					0
Velvetleaf	20	10	0	20	0		0					0	85 10	.00	00		•					0
Wheat	0	0	0	0	0	0	0				- ' .	0	0	0	0							0
Wild buckwheat	0	0	0	0	0	0	0	0	0	0	0	0		30	0	35	.0	40	0		0	10
Wild oat	0	0	0	0	Ģ	0	0					0	0	0.	0		•					0

nable o		Š	COMPOTINT	_																		
Rate 8 g/ha	30	31	32	33	34	35	36	37	39	40	41	42	43	44	45	46	48	49	52	53	54	26
PREEMERGENCE																						
Barley Igri	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
Bedstraw	0	0	70	0	82	0	0	20	0	20	35	30	70	0	ı	0	0	0	0	1	0	75
Blackgrass	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
Chickweed	35	0	•	80	90	0	•	•	0	0	85	20	ı	•	40	0	0	85	0	80	0	85
Cocklebur	30	0	20	0	0	0	20	1	20	20	30	40	30	10	0	0	0	0	20	30	10	ı
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	40	0	09	0	0	0	0	20	20	30	Ω	09	80	20	0	0	30	0	40	20	40	0
Crabgrass	0	0	20	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	10
Downy Brome	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Giant foxtail	0	0	0	0	0	0	0	0	0	10	0	0	10	0	0	0	0	0	0	0	0	95
Italn. Rygrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
Johnsongrass	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0		0	0	0	0	10
Lambsquarter	95	0	001	001	100	100	100	100	100	100	100	06	100	001	001	25	10		95 1	00	00	90
Morningglory	100	0	20	0	0	0	100	100	100	100	30	80	40	100	001	0	0	0 1	100	0	30	0
Rape	.0	0	90	0	0	0	20	90	100	95	100	35	95	0	20	0	0	0	10	25	70	0
Redroot Pigweed 100		30	90	0	20	0	70	100	100	100	80	100	100	001	40	30	0	0	10	70	90 1	00
Soybean	30	0	0	0	0	0	0	0	0	0	10	0	0	0	0		0	0	0	0	0	0
Speedwell	70	95 1	.001	001	100	100	100	10	95	100	100	100	001	95	0	25	7	00	0	90 1	00	80
Sugar beet	100	55	90	70	100	ı	1	1	100	100	100	100	100	001	90	0		95 1	00	45 1	100	10
Velvetleaf	100	60 1	00	0	0	10	100	100	100	100	100	001	001	001	30	0	0	0	09	70	20	10
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wild buckwheat	10	0	0	0	0	0	0	20	0	30	25	0	52	0	20	0	0	0	40	0	0	90
Wild oat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table C		co	MPOU	ND					
Rate 8 g/ha	57	58	60	64	65	68	69	70	73
PREEMERGENCE									
Barley Igri	10	0	0	0	0	0	0	0	0
Barnyardgrass	20	, 0	0	0	0	0	0	0	0
Bedstraw	25	0	20	0	20	0	95	100	0
Blackgrass	60	0	. 0	0	0	10	0	0	10
Chickweed	35	65	80	95	-	100	0	0	0
Cocklebur	50	0	40	-	15	0	0	0	-
Corn	0	0	0	0	0	0	0	0	0
Cotton	85	0	40	_	10	0	20	30	0
Crabgrass	35	0	0	0	0	0	0	0	0
Downy Brome	0	Ó	0	. 0	0	0	0	0	0
Giant foxtail	95	O	0	0	0	0	0	0	0
Italn. Rygrass	30	. 0	. 0	. 0	. 0	0	0	0 .	0
Johnsongrass	40	. 0	. 0	0	0	0	0	0	0
Lambsquarter	100	100	100	100	100	-	70	95	0
Morningglory	70	0	40	0	100	0	10	. 0	0
Rape	0	0	0	90	0	100	80	30	0
Redroot Pigweed	100	0	100	-	10	-	50	60	0
Soybean	15	0	0	0	0	0	0	0	0
Speedwell	20	100	100	100	<u>-</u>	0	100	90	0
Sugar beet	100	35	<u>-</u>	100		0	100	-	0
Velvetleaf	100	10	100	80	100	0	80	30	0
Wheat	0	0	0	0	0	25	0	0	0
Wild buckwheat	90	0	0	0	0	0	0	10	0
Wild oat	30	0	.0	0	0	20	0	0	0

Table C		Ö	COMPOUND	B																		
Rate 4 g/ha	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	39	40	41	42	43
POSTEMERGENCE																						
Barley Igri	20	40	25	0	20	0	0	0	0	20	30	0	10	25	25	10	10	10	10	0	25	0
Barnyard 2	10	ı	15	0	0	10	10	10	10	0	0	0	0	0	0	,	,	20	30	0	,	0
Barnyardgrass	9	75	9	10	20	35	30	20	20	09	20	30	10	10	0	10	40	20	70	30	20	25
Bedstraw	40	45	95	80	85	10	10	20	10	30	09	80	40	09	80	40	40	90	80	70	20	1
Blackgrass	10	10	20	0	20	0	10	0	0	10	0	0	0	10	10	0	. 02	10	25	10	2	0
Chickweed	100	35	90	80	95	30	30	0	0	65	70	95	9	70	45	. 07	75	70	80 1	100	85	90
Cocklebur	100 100	100	100	70	100	30	09	30	30	90	50 1	100	40	40	20 1	100 1	100	90 1	1001	1001	1001	100
Corn	15	30	10	Ŋ	10	10	ß	0	0	10	15	10	10	10	10	S.	5	15	10	'n	10	2
Cotton	100 100	100	100	90	100	80	90	40	40	90 1	100 1	100	80	90	85	90 1(100 1(1001	1001	100 1	1001	100
Crabgrass	25	35	35	10	30	10	10	0	10	10	35	25	10	15	15	10	15 2	. 52	30	10	10	10
Downy Brome	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0
Duck salad	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	ı	0
Giant foxtail	35	25	40	10	25	10	10	10	10	10	40	40	10	15	15	10	10	30	30	10	15	10
Italn. Rygrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	. •
Johnsongrass	35	30	15	10	20	10	10	0	0	0	15	'n	50	50	10	0	0	15	30	10	Z.	10
Lambsquarter	100 100	100	1	90	95	82	06	80	35	80	0 1	100	45	80	80	808	80	90 1	100	70	80	80
Morningglory	100 100	100	100	70	100	82	90	35	25	95	90 1	100	80	06	. 06	70 1(100 10	100 1	1001	100 1	1001	100
Rape	100 100	100	95	100	100	0	0	0	0	85	30 1	100	, 59	40	10 8	80 10	100	95 1(1001	1001	100	90
Redroot Pigweed 100 100	100	100	100	70	80	70	9	30	20	40	45 1	100		70	20 2	70	90 10	100 1(1001	100	85 1	100
Rice Japonica	0	1	20	0	0	15	20	10	0	0	0	0	0	0	0	1	,	70 .	25	0	ı	0
Soybean	35	40	15	15	25	10	40	0	0	20	20	25 '	40		30	50 5	50 3	30	35	10 1	10	20
Speedwell	100 100	100	90	90	100	80	0	0	0	09	90	,	. 10	70 (6 09	6 06	90 100		95	80	06	ı

Sugar beet	100	100	100 100 100 95 100 90 95 0 0 100 95 100 - 100 95 80 95 100 100 100 100	95	100	90	95	0	0	100	95	100	•	100	92	80	95	100	100	001	100	100	
Umbrella sedge	0	1	0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -	0	0	0	0	0	0	0	0	0	0	0	0	ı	,	0	0	0	ı	0	
Velvetleaf	100	100	100	90	100	100	80	20	10	100	09	100	9	70	09	100	001	100	100	001	100	100	
Watergrass 2	0	ı	15	.*	1	10	10	10	0	10	ı			1	1	1	1	25	20	1	. 1		
Wheat	20	70	10	0	10	0	0	0	0	0	,0	.0	10	25	25	0	0	10	.01	0	20	0	
Wild buckwheat	100	100	100	1	100	70	30	25	10	95	30	90	75	80	90	70	90	90	90	90	90	90	
Wild oat	10 40 15 0 0 10 0 0 0 25 20 10 10 0 0 0 10 10 0 0 10	40	15	0	0	10		0	0	25	50.	10	10	0	0	0	0	10	10	0	0	10	

7		n
,	4	IJ

Table C		8	COMPOUND	₽													
Rate 4 g/ha	44	46	48	49	52	53	54	56	57	28	9	64	68	69	70	73	
POSTEMERGENCE																	
Barley Igri	10	0	0	0	25	10	0	0	25	0	0	0	0	30	0	0	
Barnyard 2	0	0	0	ı	0	0	0	0	0	0	ı	0	0	0	١	0	
Barnyardgrass	9	10	20	35	20	30	70	0	10	10	10	10	0	35	40	0	
Bedstraw	90	0	0	20	20	9	80	0	95	65	10	20	0	75	30	0	
Blackgrass	10	0	0	0	10	0	20	0	10	0	0	0	0	0	10	0	
Chickweed	90	0	0	9	30	55	80	0	55	45	40	82	0	85	1	0	
Cocklebur	100	0	30	30	100	90	100	1	80	70	100	75	0	100	70	0	
Corn	10	0	0	10	15	10	10	0	20	0	0	5	0	Ŋ	20	0	
Cotton	100	90	20	90	100	100	100	10	80	100	100	100	40	100	80	0	
Crabgrass	0	10	10	10	20	10	20	0	15	15	0	10	ß	20	35	ဂ	
Downy Brome	0	0	0	0	10	0	0	0	10	0	0	10	0	0	0	0	
Duck salad	0	0	0	ı	0	0	0	0	0	0	ı	0	0	0	ı	0	
Giant foxtail	15	0	10	Ŋ	15	15	25	0	20	10	10	10	0	15	35	0	
Italn. Rygrass	0	0	0	0	10	0	0	0	25	0	0	0	0	0	0	0	
Johnsongrass	15	0	0	20	10	20	20	0	30	10	0	10	0	20	30	0	
Lambsquarter	90	20	0	70	100	0	95	0	85	75	45	80	0	9	20	0	
Morningglory	100	35	20	1	100	82	100	0	80	20	100	100	20	100	100	0	
Rape	100	0	10	95	95	100	100	0	30	95	90	82	0	100	90	0	
Redroot Pigweed	100	40	20	40	95	9	80	0	90	70	82	80	30	20	70	0	
Rice Japonica	0	0	0	ı	0	0	0	0	0	0	ı	0	0	0	1	0	
Soybean	20	10	10	10	35	25	35	0	20	15	10	10	0	40	40	0	
Speedwell	90	•	0	65	100	95	95	0	06	10	09	20	0	100	90	0	

ugar beet	70	0	10	65	100	100	70 0 10 65 100 100 100 0 10 45 95 100 10 80 - 0	0	10	45	95	100	10	80	ı	0
mbrella sedge	0	0	0	1	0	0	0 - 0 0 0 - 0 0 0 0 0 0 - 0 0 0	0	0	0	•	0	0	0	t	0
elvetleaf	100	9	40	20	100	100	100 60 40 50 100 100 100 0 90 90 100 100 40 90 100 0	0	90	90	100	100	40	90	100	0
atergrass 2	1	0	1	1	١.	١.		1	1	1.	• •	•	1	•	١,	1
heat	0	0	0	10	10	0	0	0	15	0	0	0	0	25	0	0
ild buckwheat	1	0	20	9	95	95	- 0 20 60 95 95 100 0 95 65 70 85 0 70 50 0	0	95	65	70	85	0	70	20	0
ild oat	20	0	0	0	25	0	0	0	30	0	0	0	c	10	c	c

Table C			COMI	COMPOUND	_																		
Rate 4 g	4 g/ha	21	22	23	24	. 25	36	27	82	29	30	31	32	33	34	35	36	37	39	40	41 ,	42	43
PREEMERGENCE	ы																						
Barley Igri		0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0			0
Barnyardgrass	SS	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0		0	0		0
Bedstraw		0	35	0	0	0		0	0	0	0		35	0	0	0	0	ı				10	0
Blackgrass		0	0	0	0	0		0	0	0	0		0	0	0	0	0	0			0		0
Chickweed		90	9	0	20	20		0	30	0	35		20	0	90	0		1	0				0/
Cocklebur		40	0	30	0	90		0	0	0	0		0	0	0	0		30					0
Corn		0	0	0	0	0		0	0	0	0		0	0	0	0		0					0
Cotton		ı	20	20	20	30		0	0	0	30		30	0	0	0		30	15				2
Crabgrass		0	10	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0		10	0	0	0
Downy Brome		0	0	0	0	0		0	0	0	0		0	0	0	0		0					0
Giant foxtail	11	0	0	0	0	0		0	0	0	0		0	0	0	0		0					0
Italn. Rygrass	នួន	0	0	0	0	0		0	0	0	0		0	0	0	0		0	0				0
Johnsongrass	ທ	0	20	0		0		0	0	0	0		0			0		10					0
Lambsquarter	я.	95	100	95		700		20	25	70	85	- 1	-	-		95 1	00 1	1001	1001		00		100
Morningglory		1001	100	30	0	10		0	0	0	70	ı		0	0	0	50 1	100	09		20		30
Rape		100	0	95	_	70	0	0	0		0				0	0	0	30 1	100	95	0		95
Redroot Pigweed	weed	95 1	100	90		40		10	20	٠.	001				40		20 1	100	70 1		10	90 1(100
Soybean		0	0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0
Speedwell	_	1001	001	85 1	100	85		0	0		70	95 1	1001	00	7	00	40	0	95 1	100 1(100 10	100 100	8
Sugar beet	_	1001	8	100	30	30	10	10	0	0	35	10		30	25 10	00	,	,	00	001	25	70	85
Velvetleaf		1001	001	95	30	001		0	0	0	30	0 1	00	0	0	0	00	00 1	00	100 1(00 10	00	35
Wheat		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Wild buckwheat	eat	30	0	1	0	0		0	0	0	10	0	0	0	0	0	0	30	0	,	0	0	0
Wild oat		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ı

Table C		S	COMPOUND	Α													
Rate 4 g/ha	44	46	48	49	52	53	54	26	57.	28	9	64	68	69	70	73	
PREEMERGENCE																	
Barley Igri	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Barnyardgrass	0	0	0	0	0	0	0	10	10	0	0	0	0	0	0	0	
Bedstraw	0	0	0	0	0	10	0	70	25	0	20	0	0	9	100	0	
Blackgrass	0	0	0	0	0	0	0	0	35	0	0	0	0	0	0	10	•
Chickweed	82	0	0	70	0	20	0	85	35	9	70	95	100	0	0	0	
Cocklebur	0	0	0	0	10	ı	1	0	10	0	20	20	0	0	0	0	
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Cotton	20	0	0	0	30	30	30	0	40	0	25	20	0	1	0	0	
Crabgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Downy Brome	0	0	0	0	0	0	.0	0	0	0	0	0	0	0	0	0	
Giant foxtail	0	0	0	0	0	0	0	70	25	0	0	0	0	0	0	0	
Italn. Rygrass	0	Ö	0	. 0	0	0	0	0	25	0	0	0	0	0	0	0	
Johnsongrass	0	0	0	0	0	0	0	10	30	0	0	0	0	0	0	0	
Lambsquarter	100	25	10	45	90	100	100	9	95	75	95	100	92	70	90	0	
Morningglory	0	0	0	0	100	0	30	0	30	0	20	0	0	0	•	0	
Rape	t	0	0	0	0	10	65	0	0	0	0	10	0	10	20	0	
Redroot Pigweed	80	0	0	0	10	70	20	35	100	0	100	Γ,	ŀ	0	9	0	
Soybean	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Speedwell	1	0	•	82	í	t	90	70	20	95	100	20	0	100	90	0	
Sugar beet	100	0	•	10	35	20	90	10	45	10	45	90	0	80	١	0	
Velvetleaf	82	0	0	0	1	20	20	0	100	0	30	0	0	30	30	0	
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	25	0	0	0	
Wild buckwheat	0	0	0	0	0	0	0	85	82	0	0	0	0	0	0	0	
Wild oat	0	0	0	0	0	0	0	0	20	0	0	0	15	0	0	0	

Table C		Ö	COMPOUND	Ð																		
Rate 2 g/ha	21	22	23	24	22	56	28	30	31	32	33	34	35	39	40	41	42	43	44	46	48	25
POSTEMERGENCE												٠										
Barley Igri	10	35	10	0	0	0	0	10	10	0	0	20	0	0	0	0	10	0	10	0	0	20
Barnyard 2	0	•	15	0	0	10	10	0	0	0	0	0	0	10	20	0	1	0	0	0	0	0
Barnyardgrass	35	9	20	10	40	20	10	30	10	20	10	10	0	40	40	20	30	50	30	0	20	35
Bedstraw	40	40	82	80	55	0	0	30	30	75	40	40	09	75	80	40	30	ı	80	0	0	10
Blackgrass	10	10	10	0	10	0	0	10	0	0	0	0	0	0	20	0	Ŋ	0	0	0	0	0
Chickweed	80	20	75	10	70	20	0	09	70	75	65	20	40	09	80	80	9	80	90	0	0	30
Cocklebur	100	80	100	70	100	1	10	40	35	90	30	20	20	90 1	100	90 1	100	90 1	100	0	20 1	100
Corn	15	25	10	0	0	0	0	0	15	10	Ŋ	10	2	10	10	S.	2	S	2	0	0	10
Cotton	100	100	100	90	100	09	25	80	90	90	20	80	80 1	1001	1001	1001	1001	1001	100	30	40	06
Crabgrass	25	30	25	2	30	10	0	10	25	15	10	15	10	20	30	0	Ŋ	0	0	0	0	20
Downy Brome	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
Duck salad	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	t	0	0	0	0	0
Giant foxtail	25	20	35	10	20	0	0	0	20	35	10	10	10	25	30	10	10	10	10	0	0	10
Italn. Rygrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	10
Johnsongrass	30	25	10	10	10	10	0	0	10	'n	15	10	10	ı	20	0	Ŋ	0	10	0	0	10
Lambsquarter	100	95	100	70	95	82	40	80	1	95	35	45	20	90 1	100	70	20	9	90	45	0	95
Morningglory	100	82	100	40	100	65	15	95	80 1	100	40	70	70 1	1001	100 1	100 1	100	90 1	100	20	20	90
Rape	100	100	95	90	100	0	0	70	30	90	20	40	10	90	90	06	95	90 1	100	0	10	95
Redroot Pigweed 100	100	100	100	70	80	35	20	10	40	95	20	09	40 1	100	90	82	70 1(100	80	ı	10	95
Rice Japonica	0	1	20	0	0	15 .	10	0	0	0	0	0	0	15	15	0	ı	0	0	0	0	0
Soybean	25	35	15	10	20	0	0	15	40	20	30	40	25	30	30	10	5	15	15	0	0	30
Speedwell	70	90	85	10	95	70	0	30	55	80	10	55	20 1	100		09	30 8	80	75	0	0	0

Sugar beet	100	100	100 100 70 100 90 0 100 50 55 90 100 30 80 100 100 100 100 60 0 0 100	70	100	90	0	100	20	55	90	100	30	80	100	100	100	100	09	0	0	001
Umbrella sedge	0	,	0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Velvetleaf	100	100	100 100 90 100 40 10 70 40 100 20 60 20 100 100 100 100 100 100 30 30 100	90	100	40	10	70	40	100	20	09	20	100	100	100	100	100	100	30	30	001
Watergrass 2	0	1	10	1	•	10	10	0	ı	•		1	1	15	20	ı	•	1	•	0	•	ı
Wheat	0	20	10	0	0	0	0	0	0	0	0	0	0	10	0	0	10	0	,0	0	0	10
Wild buckwheat	100	95	100	55	100	45	20	90	30	82		75	75	80	90	80	10	80	80	0	20	95 100 55 100 45 20 90 30 85 65 75 75 80 90 80 10 80 80 0 20 80
Wild oat	10	35	15 10 0 0 0 0 10 10 0 0 0 0 10 0 0 0 15	0		0	0	10	10	0	0	0	0	10	0	0	0	0	10	0	C	<u>ر</u> بر

Table C		COM	POUN	D	
Rate 2 g/ha	53	54	56	57	58
POSTEMERGENCE					
Barley Igri	10	0	-	-	0
Barnyard 2	0	0	0	0	0
Barnyardgrass	20	50	-	-	0
Bedstraw	30	70	_	-	50
Blackgrass	0	20	-	-	0
Chickweed	50	75	-	-	35
Cocklebur	75	100	-	-	70
Corn	10	5	-	-	0
Cotton	90	100	-	-	90
Crabgrass	10	20	-	-	10
Downy Brome	0	0	-	-	0
Duck salad	0	0	0	0	0
Giant foxtail	10	25	-	-	5
Italn. Rygrass	0	0	-	-	0
Johnsongrass	10	20	-	-	0
Lambsquarter	0	95	-	-	45
Morningglory	75	70	-	-	30
Rape	95	95	-	-	70
Redroot Pigweed	_	65	-	-	60
Rice Japonica	0	0	0	0	0
Soybean	20	35	-	-	10
Speedwell	90	95	-	-	10
Sugar beet	100	90	-	-	40
Umbrella sedge	0	0	0	0	0
Velvetleaf	80	100	-	-	60
Watergrass 2	-	-	-	-	-
Wheat	0	0	-	-	0
Wild buckwheat	95	95	-	-	65
Wild oat	0	0	-	-	0

COMPOUND

Table C

61		_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
52										0														٠	
48		0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	1	0	0	0	.0	
46										0										0	0	0	0	0	0
44										0										ı		20	0	0	0
43		0	0	0	0	70	0	0	0	0	0	0	0	0	100	0	90	20	0	100	35	20	0	0	. !
42										0									0	30	20	100	0	0	C
41		0	0	0	0	0	0	0	0	0	0	0	0	0	100	10	0	0	0	100	0	30	0	0	O.
40		0	0	0	0	0	15	0	30	10	0	0	0	0	95	65	20	95	.0	100	20	95	0	0	0
39		0	0	0	0	0	0	0	10	0	0	0	0	0	100	20	80	70	0	20	100	09	0	0	.0
35		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	0	0	0	0
34		0	0	0	0	90	0	0	0	0	0	0	0	0	95	0	0	40	0	•	0	0	0	0	0
33		0	0	0	0	0	0	0	0	0	0	0	0	0	25	0	0	0	0	35	0	0	0	0	0
32		0	0	0	0	40	0	0	0	20	0	0	0	0	001	•	0	0	0	001	30	35	0	0	Ö
31		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0
30		0	0	0	0	35	0	0	30	0	0	0	0	0	70	20	0	80	30	0	30	20	0	0	0
28		0	0	0	0	25	0	0	0	0	0	0	0	0	25	0	0	0	· o	0	0	0	0	0	0
26		0	0	0	0	30	0	0	0	0	0	0	0	0	70	0	0	40	0	0	10	0	0	0	0
25		0	0	0	0	9	10	0	0	0	0	0	0	0	00	0	25	10	0	80	30	35	0	. 0	0
24		0	0	0	0	0	0	0	10	0	0	0	0	0	25 1	0	0	0	0	45	0	20	0	0	0
23		0	0	0	0	0	10	0	•	0	0	0	0	0	001	. 02	10	80	0	82	30	20	0	0	0
22		0	0	35	0	0	0	0	0	10	0	0	0	0	80 1	00	0	30	0	95	00	30	0	.0	0
21		0	0	0	0	90	0	0	10	0	0	0	0	0	90	100 100	80	95	0	100	95 100	100	0	0	0
Rate 2 g/ha	PREEMERGENCE	Barley Igri	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Giant foxtail	Italn. Rygrass	Johnsongrass	Lambsquarter	Morningglory 1	Rape	Redroot Pigweed	Soybean	Speedwell	Sugar beet	Velvetleaf 1	Wheat	Wild buckwheat	Wild oat

Table C		COM	POUND
Rate 2 g/ha	53	54	58
PREEMERGENCE			
Barley Igri	0	0	0
Barnyardgrass	0	O	0
Bedstraw	0	0	0
Blackgrass	0	0	0
Chickweed	20	0	60
Cocklebur	10	0	0
Corn	0	0	0
Cotton	20	20	, 0
Crabgrass	0	0	0
Downy Brome	0	0	0
Giant foxtail	0	0	0
Italn. Rygrass	0	0	0
Johnsongrass	0	0	0
Lambsquarter	100	95	0
Morningglory	0	20	0
Rape	0	30	0
Redroot Pigweed	50	50	0
Soybean	0	0	0
Speedwell	85	90	-
Sugar beet	20	25	10
Velvetleaf	40	0	0
Wheat	0	0	0
Wild buckwheat	0	0	0
Wild oat	0	0	0

					1
Table C		co	MPOU	ND	Table C
Rate 1 g/ha	21	22	39	40	Rate 1 g/ha
POSTEMERGENCE					PREEMERGENCE
Barley Igri	10	30	0	0	Barley Igri
Barnyard 2	0	-	0	10	Barnyardgrass
Barnyardgrass	30	50	30	30	Bedstraw
Bedstraw	40	30	70	50	Blackgrass
Blackgrass	0	10	0	15	Chickweed
Chickweed	20	10	50	70	Cocklebur
Cocklebur	90	70	90	100	Corn
Corn	10	25	10	10	Cotton
Cotton	100	90	100	100	Crabgrass
Crabgrass	20	25	10	30	Downy Brome
Downy Brome	0	0	0	0	Giant foxtail
Duck salad	0	-	0	0	Italn. Rygrass
Giant foxtail	20	10	20	20	Johnsongrass
Italn. Rygrass	0	0	0	0	Lambsquarter
Johnsongrass	20	25	10	10	Morningglory
Lambsquarter	30	95	90	100	Rape
Morningglory	100	70	95	100	Redroot Pigweed
Rape	90	90	90	90	Soybean
Redroot Pigweed	100	85	100	90	Speedwell
Rice Japonica	0	-	10	10	Sugar beet
Soybean	20	35	25	20	Velvetleaf
Speedwell	70	80	70	75	Wheat
Sugar beet	100	95	70	100	Wild buckwheat
Umbrella sedge	0	-	0	0	Wild oat
Velvetleaf	100	40	100	100	
Watergrass 2	0	-	10	0	
Wheat	0	20	0	0	
Wild buckwheat	85	90	65	90	
Wild oat	0	25	0	0	

Table C	COMPOUND			
Rate 1 g/ha	21	22	39	40
PREEMERGENCE				
Barley Igri	0	0	0	0
Barnyardgrass	0	0	0	0
Bedstraw	0	35	0	0
Blackgrass	0	0	0	0
Chickweed	70	0	0	0
Cocklebur	0	0	0	0
Corn	0	0	0	0
Cotton	0	0	10	20
Crabgrass	0	10	0	0
Downy Brome	0	0	0	0
Giant foxtail	0	0	0	0
Italn. Rygrass	0	0	0	0
Johnsongrass	0	0	0	0
Lambsquarter	40	80	20	0
Morningglory	10	40	50	-
Rape	80	0	0	0
Redroot Pigweed	95	30	-	95
Soybean	0	0	0	0
Speedwell	100	95	20	95
Sugar beet	20	10	20	20
Velvetleaf	20	-	60	70
Wheat	0	0	0	0
Wild buckwheat	0	0	. 0	0
Wild oat	0	0	0	Ò

TEST D

Seeds of barnyardgrass (Echinochloa crus-galli), bindweed (Concolculus arvensis), black nightshade (Solanum ptycanthum dunal), cassia (Cassia obtusifolia), cocklebur (Xanthium strumarium), common ragweed (Ambrosia artemisiifolia), corn (Zea mays), cotton (Gossypium hirsutam), crabgrass (Digitaria spp.), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), jimsonweed (Datura stramonium), johnsongrass (Sorghum halepense), lambsquarter (Chenopodium album), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), prickly sida (Sida spinosa), shattercane (Sorghum vulgare), signalgrass (Brachiaria platyphylla), smartweed (Polygonum pensylvanicum), soybean (Glycine max), sunflower (Helianthus annuus), velvetleaf (Abutilon theophrasti), wild proso (Pancium miliaceum), woolly cupgrass (Eriochloa villosa), yellow foxtail (Setaria lutescens) and purple nutsedge (Cyperus rotundus) tubers were planted into a sandy loam soil. These crops and weeds were grown in the greenhouse until the plants ranged in height from two to eighteen cm (one to four leaf stage), then treated postemergence with the test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. Pots receiving preemergence treatments were planted immediatley prior to test chemical application. Pots treated in this fashion were placed in the greenhouse and maintained according to routine greenhouse procedures.

Treated plants and untreated controls were maintained in the greenhouse approximately 14-21 days after application of the test compound. Visual evaluations of plant injury responses were then recorded. Plant response ratings, summarized in Table D, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

Table D	COM	POUND	Table D	COM	POUND
Rate 35 g/ha	20	21	Rate 35 g/ha	20	21
POSTEMERGENCE			PREEMERGENCE		
Barnyardgrass	50	100	Barnyardgrass	50	10
Bindweed	100	100	Bindweed	_	100
Blk Nightshade	100	100	Blk Nightshade	-	100
Cassia	70	60	Cassia	-	100
Cocklebur	100	100	Cocklebur	-	100
Corn	30	20	Corn	20	10
Cotton	100	100	Cotton	70	100
Crabgrass	50	50	Crabgrass	80	20
Fall Panicum	60	60	Fall Panicum	100	40
Giant Foxtail	40	50	Giant Foxtail	50	0
Green Foxtail	50	60	Green Foxtail	100	20
Jimsonweed	100	100	Jimsonweed	-	100
Johnson Grass	70	40	Johnson Grass	70	20
Lambsquarter	100	100	Lambsquarter	, –	100
Morningglory	100	100	Morningglory	-	100
Nutsedge	10	10	Nutsedge	-	0
Pigweed	100	100	Pigweed	÷	100
Prickly Sida	100	100	Prickly Sida	-	100
Ragweed	100	100	Ragweed		100
Shattercane	40	90	Shattercane	50	20
Signalgrass	-50	70	Signalgrass	40	20
Smartweed	100	100	Smartweed	-	100
Soybean	50	40	Soybean	100	0
Sunflower	50	80	Sunflower	70	100
Velvetleaf	100	100	Velvetleaf	-	100
Wild Proso	50	30	Wild Proso	80	50
Woolly cupgrass	35	60	Woolly cupgrass	80	30
Yellow Foxtail	65	80	Yellow Foxtail	50	10

Table D		С	ОМРО	UND			Table 1	D	COM	POUND	
Rate 17 g/ha	20	21	23	25	32		Rate	17 g/ha	20	21	
POSTEMERGENCE							PREEME	RGENCE			
Barnyardgrass	30	100	100	55	60		Barnya	rdgrass	0	0	
Bindweed	100	100	100	100	100		Bindwee	eđ	_	100	
Blk Nightshade	100	100	100	100	100		Blk Nig	ghtshade	_	100	
Cassia	70	50	0	50	0		Cassia		_	0	
Cocklebur	100	100	100	100	100		Cocklei	our	_	100	
Corn	30	5	20	20	15		Corn		20	0	
Cotton	100	100	100	100	100		Cotton		100	100	
Crabgrass	30	20	20	30	20		Crabgra	ass	50	0	
Fall Panicum	50	50	0	10	30		Fall Pa	nicum	50	20	
Giant Foxtail	30	40	50	20	50		Giant E	oxtail	0	0	
Green Foxtail	30	50	50	50	50		Green F	oxtail	50	0	
Jimsonweed	90	100	100	100	100		Jimsonw	veed	_	100	
Johnson Grass	40	5	50	10	40		Johnson	Grass	80	0	
Lambsquarter	90	100	70	80	100		Lambsqu	arter	_	100	
Morningglory	100	100	100	100	100		Morning	glory	-	100	
Nutsedge	5	5	0	5	0		Nutsedg	re	-	0	
Pigweed	100	100	100	100	100		Pigweed	l	_	100	
Prickly Sida	100	100	100	100	100		Prickly	Sida	-	100	
Ragweed	100	100	100	100	100		Ragweed	ı	-	100	
Shattercane	40	50	60	5	50		Shatter	cane	0	-	
Signalgrass	30	40	0	5	0		Signalg	rass	0	0	
Smartweed	100	100	80	40	60		Smartwe	eđ	-	100	
Soybean	50	20	15	30	20		Soybean		100	0	
Sunflower	45	80	95	80	85		Sunflow	er	10	50	
Velvetleaf	100	100	100	100	100		Velvetl	eaf	_	100	
Wild Proso	40	30	40	20	60	ł	Wild Pr	oso	100	20	
Woolly cupgrass	10	60	50	30	50		Woolly	cupgrass	50	30	
Yellow Foxtail	50	60	50	50	60		Yellow	Foxtail	50	0	

Table D		C	ОМРО	UND			Table D	COM	POUND
Rate 8 g/ha	20	21	23	25	32		Rate 8 g/ha	20	21
POSTEMERGENCE							PREEMERGENCE		
Barnyardgrass	10	90	50	5	40		Barnyardgrass	0	0
Bindweed	100	100	100	100	100		Bindweed	-	100
Blk Nightshade	-	100	100	100	100		Blk Nightshade	-	100
Cassia	50	50	. 0	5	0		Cassia	-	0
Cocklebur	100	100	100	100	100		Cocklebur	-	100
Corn	25	5	15	10	15		Corn	0	0
Cotton	100	100	100	100	100		Cotton	0	100
Crabgrass	10	10	20	10	10		Crabgrass	0	0
Fall Panicum	30	10	0	5	10		Fall Panicum	0	0
Giant Foxtail	30	30	45	20	50		Giant Foxtail	0,	0
Green Foxtail	20	20	20	20	20	, ,	Green Foxtail	0	
Jimsonweed	85	100	100	100	100	i.	Jimsonweed	· -	100
Johnson Grass	40	5	5	. 5	20	:	Johnson Grass	10	. 0
Lambsquarter	80	100	70	70	80		Lambsquarter	-	100
Morningglory	100	100	100	100	100		Morningglory	-	100
Nutsedge	5	0	0	0	0		Nutsedge	-	0
Pigweed	100	100	100	100	100		Pigweed	-	100
Prickly Sida	100	100	100	100	100		Prickly Sida	-	100
Ragweed	100	100-	100	100	100		Ragweed	-	100
Shattercane	20	10	40	5	30		Shattercane	0	0
Signalgrass	30	40	0.	5	0		Signalgrass	0	. 0
Smartweed	70	70	70	35	60		Smartweed	-	100
Soybean	50	5	5	30	15		Soybean	0	-
Sunflower	40	75	85.	80	80		Sunflower	0	20
Velvetleaf	100	100	100	100	100		Velvetleaf	-	100
Wild Proso	10	10	30.	10	40		Wild Proso	0	0
Woolly cupgrass	10	50	40	10	50		Woolly cupgrass	0	10
Yellow Foxtail	10	30	15	10	60		Yellow Foxtail	0	0

Table D		C	OMPO	JND			Table D	COM	POUND
Rate 4 g/ha	20	21	23	25	32		Rate 4 g/ha	20	21
POSTEMERGENCE							PREEMERGENCE		
Barnyardgrass	10	40	30	0	10		Barnyardgrass	0	0
Bindweed	100	100	100	100	100		Bindweed	_	100
Blk Nightshade	70	100	100	100	100		Blk Nightshade	-	100
Cassia	50	5	0	5	0		Cassia	-	0
Cocklebur	85	100	100	100	100		Cocklebur	-	100
Corn	5	5	10	5	10		Corn	0	0
Cotton	95	100	100	100	100		Cotton	0	100
Crabgrass	5	5	0	5	0		Crabgrass	0	0
Fall Panicum	10	10	0	5	0		Fall Panicum	0	0
Giant Foxtail	10	30	40	10	40		Giant Foxtail	0	0
Green Foxtail	10	5	10	20	5		Green Foxtail	0	0
Jimsonweed	70	70	100	100	100		Jimsonweed	-	100
Johnson Grass	40	5	5	5	5		Johnson Grass	0	0
Lambsquarter	75	90	50	40	30		Lambsquarter	_	100
Morningglory	100	100	100	100	100		Morningglory	-	100
Nutsedge	0	0	0	0	0		Nutsedge	-	0
Pigweed	100	100	100	70	100		Pigweed	-	100
Prickly Sida	100	100	100	80	100		Prickly Sida	_	80
Ragweed	70	100	100	100	100		Ragweed	_	100
Shattercane	20	5	20	5	30		Shattercane	0	0
Signalgrass	10	10	0	0	0		Signalgrass	0	0
Smartweed	50	60	50	30	40		Smartweed	-	0
Soybean	40	5	0	20	0		Soybean	0	0
Sunflower	20	50	80	50	70	l	Sunflower	0	0
Velvetleaf	100	100	100	100	100		Velvetleaf	-	100
Wild Proso	10	5	30	10	10		Wild Proso	0	0
Woolly cupgrass	5	20	10	5	30		Woolly cupgrass	0	0
Yellow Foxtail	10	10	5	5	30		Yellow Foxtail	0	0

Table D		C	OMPO	UND			Table I)	COM	POUND
Rate 2 g/ha	20	21	23	25	32		Rate	2 g/ha	20	21
POSTEMERGENCE							PREEMER	RGENCE		
Barnyardgrass	10	10	0	0	0		Barnyar	dgrass	0	0
Bindweed	100	100	100	100	100		Bindwee	ed .	-	100
Blk Nightshade	60	40	100	20	10		Blk Nig	ghtshade	-	70
Cassia	20	5	0	5	0		Cassia		_	0
Cocklebur	80	100	100	100	100		Cockleb	our	-	10
Corn	5	0	5	5	0		Corn		0	0
Cotton	95	80	100	60	100		Cotton		0	50
Crabgrass	5	5	0	5	0		Crabgra	ıss	0	0
Fall Panicum	5	0	0	5	0		Fall Pa	nicum	0	0
Giant Foxtail	5	10	35	5	20		Giant F	oxtail	0	0
Green Foxtail	10	5	5	5	5		Green F	oxtail	0	0
Jimsonweed	70	70	100	60	70		Jimsonw	reed -	_	100
Johnson Grass	10	0	5	, 0	5		Johnson	Grass	. 0	0
Lambsquarter	50	85	50	20	30		Lambsqu	arter	_	50
Morningglory	100	100	100	100	100		Morning	glory	-	0
Nutsedge	0	0	0	0	0		Nutsedg	е	_	0
Pigweed	100	100	100	70	80		Pigweed		_	100
Prickly Sida	100	80	70	80	60		Prickly	Sida	_	80
Ragweed	60	90	100	80	100		Ragweed		-	50
Shattercane	5	5	20	5	20		Shatter	cane ·	0	0
Signalgrass	0	0	0	0	0		Signalg	rass	0	. 0
Smartweed	40	40	50	10	40		Smartwe	eđ	_	100
Soybean	15	0	0	15	0		Soybean		0	0
Sunflower	5	20	80	35	40	i	Sunflow	er	0	0
Velvetleaf	60	100	100	100	100		Velvetl	eaf	_	10
Wild Proso	5	5	25	10	5		Wild Pro	oso	0	0
Woolly cupgrass	5	5	10	5	5		Woolly	cupgrass	0	0
Yellow Foxtail	5	10	5	5	5		Yellow 1		0	0
						•				

Table D		CC	MPOU	DATE)		Table D		COMB	OUND
Rate 1 g/ha	20	21	23	25	32		g/ha	20	21
	20	21	23	23	32		•	20	21
POSTEMERGENCE	_	•	_	•	•	PREEMERGEN		_	_
Barnyardgrass	5	0	0	0	0	Barnyardgı	ass	0	0
Bindweed		100		50	100	Bindweed		-	0
Blk Nightshade	50	40	100	-	10	Blk Nights	hade	-	30
Cassia	5	0	0	0	0	Cassia		-	0
Cocklebur	30	70	100	60	100	Cocklebur		-	0
Corn	5	0	10	5	0	Corn		0	0
Cotton	60	80	100	60	100	Cotton		0	30
Crabgrass	5	5	0	5	0	Crabgrass		0	0
Fall Panicum	5	0	0	0	20	Fall Panio	cum	0	0
Giant Foxtail	5	5	30	5	15	Giant Fox	tail	0	0
Green Foxtail	5	5	5	5	5	Green Fox	tail	0	0
Jimsonweed	70	20	80	40	60	Jimsonweed	i	-	0
Johnson Grass	10	0	5	0	5	Johnson G	rass	0	0
Lambsquarter	45	50	30	20	5	Lambsquar	ter	-	100
Morningglory	100	100	100	100	100	Morninggle	ory	-	. 0
Nutsedge	0	0	.0	0	0	Nutsedge		-	0
Pigweed	50	100	100	40	50	Pigweed		-	100
Prickly Sida	50	60	100	40	60	Prickly S	ida	-	20
Ragweed	55	65	100	50	50	Ragweed		-	0
Shattercane	5	5	15	5	5	Shatterca	ne	0	0
Signalgrass	0	0	0	0	0	Signalgra	SS	0	0
Smartweed	10	20	50	5	20	Smartweed		_	0
Soybean	10	0	0	15	0	Soybean		0	0
Sunflower	5	5	75	30	20	Sunflower		0	0
Velvetleaf	60	100	100	60	100	Velvetlea	£	-	0
Wild Proso	5	5	10	10	5	Wild Pros	0	0	0
Woolly cupgrass	5	5	5	5	5	Woolly cu	pgrass	0	0
Yellow Foxtail	5	5	5	5	5	Yellow Fo	xtail	0	0

TEST E

Compounds evaluated in this test were formulated in a non-phytoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were in the one-to four leaf stage (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include annual bluegrass (Poa annua), black nightshade (Solanum nigra), blackgrass (Alopecurus grown using normal greenhouse practices. Crop and weed species include annual bluegrass (Poa annua), black nightshade (Solanum nigra), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), deadnettle (Lamium amplexicaule), downy brome (Bromus tectorum), field violet (Viola arvensis), galium (Galium aparine), green foxtail (Setaria viridis), jointed goatgrass (Aegilops cylindrica), kochia (Kochia scoparia), lambsquarters (Chenopodium album), littleseed canarygrass (Phalaris minor), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), Russian thistle (Salsola kali), ryegrass (Lolium multiflorum), sentless chamonile (Matricaria inodora), speedwell (Veronica persica), spring barely (Hordeum vulgare cv. 'Klages'), spring wheat (Triticum aestivum cv. 'ERA'), sugar beet (Beta vulgaris cv. 'US1'), sunflower (Helianthus annuus cv. 'Russian Giant'), Veronica hederaefolia, wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), windgrass (Apera spica-venti), winter barley (Hordeum vulgare cv. 'Igri') and winter wheat (Triticum aestivum cv. 'Talent').

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table E, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

Table E		COMPOUND	Table E		COMPOUND
Rate 62 g/ha	20		Rate 62 g/ha	20	
POSTEMERGENCE			PREEMERGENCE		
Annual Bluegras	-	•	Blk Nightshade	100	
Blackgrass (2)	-		Chickweed	95	
Blk Nightshade	100		Deadnettle	100	
Chickweed	100		Field violet	75	
Deadnettle	100		Galium (2)	100	
Downy brome	-		Kochia	100	
Field violet	95		Lambsquarters	100	
Galium (2)	100		Redroot Pigweed	100	
Green foxtail	-		Russian Thistle	-	
Jointed Goatgra	-		Scentless Chamo	-	
Kochia	100		Speedwell	100	
Lambsquarters	100		Spring Barley	30	
LS Canarygrass	-		Veronica hedera	-	
Rape	-		Wheat (Spring)	5	
Redroot Pigweed	100	:	Wheat (Winter)	5	
Russian Thistle	-		Wild buckwheat	100	
Ryegrass	-		Winter Barley	30	
Scentless Chamo	100				
Speedwell	100				
Spring Barley	45				
Sugar beet	-				
Sunflower	-				
Veronica hedera	-				
Wheat (Spring)	35				
Wheat (Winter)	15				
Wild buckwheat	100				
Wild mustard	-				
Wild oat (2)	-				
Winter Barley	25				

Table E		CO	MPOU	ND		
Rate 31 g/ha	3	4	5	20	21	23
POSTEMERGENCE						
Annual Bluegras	10	20	20	-	-	-
Blackgrass (2)	10	20	10	-	-	-
Blk Nightshade	100	100	100	100	100	100
Chickweed	20	20	10	100	100	100
Deadnettle	30	20	20	80	100	60
Downy brome	٠ -	-	-	· 	· -	20
Field violet	50	100	45	95	80	75
Galium (2)	30	50	30	100	100	100
Green foxtail	-		-	-	-	100
Jointed Goatgra	-	-	-		-	40
Kochia	100	100	100	100	100	100
Lambsquarters	60	65	30	100	100	100
LS Canarygrass	20	30	10	-	_	. –
Rape	75	100	50	_	-	100
Redroot Pigweed	60	45	60	100	100	100
Russian Thistle	· -	-			· -	-
Ryegrass	-	-	-	-	-	30
Scentless Chamo	50	60	65	-	100	100
Speedwell	75	65	100	100	100	100
Spring Barley	10	15	10	45	20	20
Sugar beet	100	100	100	-	-	100
Sunflower	60	60	50	-	-	100
Veronica hedera	-	-	-	-	-	-
Wheat (Spring)	10	10	10	25	20	20
Wheat (Winter)	10	10	10	10	20	20
Wild buckwheat	100	100	55	100	100	100
Wild mustard	60	80	10	-	-	-
Wild oat (2)	-	-	-	-	-	30
Winter Barley	10	20	10	25	30	30

Table E		COM	(POUN	ID.
Rate 31 g/ha	20	21	31	32
PREEMERGENCE				
Blk Nightshade	95	85	65	60
Chickweed	95	45	60	100
Deadnettle	95	. 15	60	60
Field violet	25	20	30	10
Galium (2)	100	100	75	100
Kochia	90	100	50	45
Lambsquarters	100	100	100	100
Redroot Pigweed	100	100	65	60
Russian Thistle	-	-	100	100
Scentless Chamo	-	-	100	100
Speedwell	90	100	-	-
Spring Barley	10	0	10	10
Veronica hedera	-	-	100	100
Wheat (Spring)	0	0	10	C
Wheat (Winter)	0	5	0	C
Wild buckwheat	100	95	100	100
Winter Barley	5			

WO 97/15576 PCT/US96/16111

Table E		CO	1POUI	ND					
Rate 16 g/ha	20	21	25	30	31	32	52	53	54
PREEMERGENCE									
Blk Nightshade	95	95	70	50	45	50	65	50	60
Chickweed	95	30	75	30	50	100	50	50	50
Deadnettle	70	10	20	30	30	65	50	30	65
Field violet	0	0	40	20	30	0	10	10	60
Galium (2)	100	100	100	50	25	100	100	60	100
Kochia	100	100	100	30	30	30	50	100	30
Lambsquarters	100	90	100	100	60	60	100	100	100
Redroot Pigweed	85	65	100	100	50	55	100	100	100
Russian Thistle	-	-	10	50	50	30	100	20	95
Scentless Chamo	-	-	100	75	75	75	85	100	50
Speedwell	80	60	-	-	-	_	-	-	-
Spring Barley	10	0	10	10	0	0	10	0	20
Veronica hedera	-	-	100	85	30	65	100	100	100
Wheat (Spring)	0	0	10	10	0	0	20	0	0
Wheat (Winter)	0	0	0	0	0	0	30	0	0
Wild buckwheat	90	80	100	30	60	55	30	75	60
Winter Barley	5	10	30	20	30	10	20	20	10

Table E		Ö	COMPOUND	۵																		
Rate 8 g/ha	m	4	ß	12	13	14	20	21	23	25	30	32	33	34	35	43	48	49	52	53	54	55
POSTEMERGENCE																						
Annual Bluegras	10	10	10	ı	ı	ı	ı	١	1	1	ı	ı	•	1	1	ı	ı	ı	ı	1	,	1
Blackgrass (2)	10	20	10	ı	ı	1	ı	ı	1	1	1	t	t	1	1	ı	ı	ı	1	ı		ı
shade	100 100	100	100	1	٠	•	100	100	100	_	100	1001	100		100	100	35 1	00	1001	100 1	00	
Chickweed	10	10	10	ı	ı	ı	82	100		100				100	60	100					100	ı
Deadnettle	15	10	30	40	40	40	9	9	70	75	30			65	55 1	100	10		50			50
Downy brome	,	ı	ı	1	ı	ı	ı	1	20	•	•	1	ı	ı	ı	•	ı	ı	ı			1
Field violet	9	22	30	20	9	35	75.	70			100	1001	1001		100	100	10	60 1	1001	100 1	100	80
Galium (2)	40	35	40	40	30	04		100	95	100		100	55 1	100		100	30					70
Green foxtail	1	1	ı	ı	٠	ı	1	4	40	1		,	ı	ı	•	1	ı		ı	ı	ı	1
Jointed Goatgra	1	1	,	1	1	•	1	•	10	•	1	·	ı	•	1	ı	•	ı	,	ı	,	1
Kochia	100	80		100	100	100	100	100	100	100	100	1001	1001	100	100	100	35	60 1	1001	1001	100	100
Lambsquarters	30	20	10	20	100	70	100			100	100	1001				100						80
LS Canarygrass	20	30	10	ı	ı	ı	ı	1	•	ı	1	ı	1	ı	,	·						,
Rape	9	09	22	ı	1	ı	ı	1	100	•			ı	ı	1	,	. 1	1	1		1	1
Redroot Pigweed	30	22	30	ı	ı	•	100	100	100		100	1001	100	100	100	100	10		100	1	00	1
Russian Thistle	1	ı	7	001	100	100	ı	1	1	100	7		1001			100	- 1	100	,	,	1	ı
Ryegrass	t	,	1	1	•	ı	ı		20	ı	: ₁	-			ı	ı	•	1	1	ı	ı	
Scentless Chamo	30	45	20	09	40	9	70	09	100	65	65	70	09	09	50 1	100			65 1	100	. 02	0.0
Speedwell	20	20	9	40	40	0		100	100	ì	100	1	1	ı	•		20		1001	1001		100
Spring Barley	10	10	10	0	20	0	45	10	10	20	10	20	20	30	30	20	2	15	10	15	20	2
Sugar beet	100	100	100		•	ı	ı	ı	100	ı	•	1	•	ı	ı	1	1	1	ı			
Sunflower	20	40	09	•	•	ı	ı	ı	100	1	í	, 1	ı	1	ı	,	1	1	1	,	ı	ı
Veronica hedera	ı	1	1	ı	١	,	ı	ı	ı	95	1		60 1	1001	1001	100	•	20	1		ı	ı
Wheat (Spring)	10	10	10	10	20	0	20		20			30			20	20	0		20			10
Wheat (Winter)	10	10	10	0	10	0	2	10	10	20	10.		25	20	20	20	~	10		20	20	15
at	100	100	20	40	20	09	85 1		100 1		- :			1001	1001	00	50 1	-	-	_	-	00
Wild mustard	70	09	25	ı	•	ı	1	1	ı	1		,i	1	1	. ,	ı	ı					
Wild oat (2)	1	ı	•	1	ı	•	1	1	30	ı	1.	!	i	. ι	7	ı	1		ı		: ₁	ı
Winter Barley	10	10	10	0	20	0	20	20	15	20	10	30	20·	30	30.	20	ις.	10	20	10	20	. 51

Table E		COI	MPOUI	ND					
Rate 8 g/ha	20	21	25	30	31	32	52	53	54
PREEMERGENCE									
Blk Nightshade	90	50	20	20	0	30	50	60	50
Chickweed	35	30	75	25	30	70	30	20	30
Deadnettle	10	0	10	20	20	60	10	20	50
Field violet	0	20	10	0	30	20	0	0	30
Galium (2)	80	65	60	40	10	50	100	60	50
Kochia	90	100	30	10	20	20	0	0	_
Lambsquarters	100	90	100	50	70	30	100	100	100
Redroot Pigweed	100	90	100	100	70	30	100	70	100
Russian Thistle	-	-	10	30	30	35	50	20	75
Scentless Chamo	-	-	75	30	70	70	90	70	_
Speedwell	70	50	-	-	-	-	_	_	-
Spring Barley	-	0	0	0	0	0	0	0	10
Veronica hedera	-	-	75	0	70	40	-	65	75
Wheat (Spring)	0	0	0	10	0	0	10	0	0
Wheat (Winter)	0	0	0	0	0	0	20	0	0
Wild buckwheat	85	50	55	-	10	30	50	30	50
Winter Barley	0	10	20	20	0	0	25	0	10

COMPOUND

Table E

55	ı	1	, ,	2 1	Ç	} '	9	3 6	3 '	•	70	2 6	2 1	•	ı	•	•	20	202), I		,	· ·	יט ר	٠ ۶	3 .	' '	; S
54	1) 1	ן פ		, .)	100	2 2	3 1	1	100	02	2 1	١	100	} '	,	9	9	20	'	.t	1	10	2 -	2 5	֡ ֭֓֞֞֝֞֝		15
53		1	100	5 6	40	<u>'</u>	5	300)	ı	100	75	. 1		100	, ,	.!	52	100	10	•	,	١	10	2 0	2 6	2	1 1	20
52	ı	•	100	100	30	, ,	100	95	, ,	ì	100	100	1	ı	100	, ,	ı		100			ı	•	10	2 0	2 6		1	10
48	1	ı	20	20	10	•	ú	20	, ,	ı	10		, ,	•	Ŋ				10			•	•	c	· c	, ,)))		5
43	•	t	100	100	100	•	100	100	1	ı	100	100	'	1	100	100		001	•	15	1	1	00	15	15	2 2) }	,	20
35	•	•	100	_	_		100		; . 1	1		70		. 1	100				. 1			ļ		20				•	50
34	ı	ı	100	_	20	ı				i.	100				100		-	20	٠,	20	. 1			20.		,	•	, ,	20
33	1	١	100		20	1						70			100									20					20
32	1	•		100	20	ı	100	20	٠,	ı	100	. 001							1									•	, .
31	:	ı	100		30	ı		30		ı	. 09				100			20	ı	15	ı	1	20			65 1	'	•	20
30	ı	ı	100		20	ŧ	9	10	ı	ı	00	70	ı		100 1			20	35	10	ı	1	ı	10	10	00			10
25	ı	ı	100		20	1	001	70	,	ı		100			100				ı			1	55	10	10				10
23	ı	1	100			10				15	100				100							80			10	-		15	10
21	•	ı		100			9				100				100											-		t	20
20		ŧ		75		t		60	ı	ı	100		,	ı	90 1				60 1		:	1			z	_			25
14	ı	1	ï	•	30	ı	30	30	•	ı	_	09	ı	ı	ì	100	ı	20	0	0	ı	ı		0		20	1		0
13	٠	1	ı	ı	20	i	20	20	ı	1	70	100	1	1	ı	1001	•	30	10	15	ı	ı	ı	15	0	9	:		15
12	1	ı	1	10	20	•	40	30	•	ı	100		1	ı		70 1	ı	30	30	10	ı	ı	,	10	20	40		,	0
Rate 4 g/ha POSTEMERGENCE	Annual Bluegras	Blackgrass (2)	Blk Nightshade	Chickweed	Deadnettle	Downy brome	Field violet	Galium (2)	Green foxtail	Jointed Goatgra			LS Canarygrass	Rape	Redroot Pigweed	Russian Thistle	Ryegrass	Scentless Chamo	Speedwell	Spring Barley	Sugar beet	Sunflower	Veronica hedera	Wheat (Spring)		Wild buckwheat	Wild mustard	Wild oat (2)	Winter Barley

Table E		CO	1POUI	MD.			
Rate 4 g/ha	20	21	25	30	52	53	54
PREEMERGENCE							
Blk Nightshade	15	50	30	10	0	30	0
Chickweed	0	15	70	20	50	0	10
Deadnettle	0	10	10	10	30	20	30
Field violet	0	. 20	0	0	0	0	0
Galium (2)	10	-	30	0	100	60	0
Kochia	5	85	95	30	100	0	0
Lambsquarters	100	100	100	30	70	100	50
Redroot Pigweed	5	50	100	40	60	-	100
Russian Thistle	-	-	0	-	0	10	10
Scentless Chamo	-	-	70	75	100	0	0
Speedwell	10	-	-	-	-	-	-
Spring Barley	5	0	0	10	0	0	0
Veronica hedera	-	-	100	0	100	60	100
Wheat (Spring)	0	10	10	0	20	10	0
Wheat (Winter)	0	0	0	0	0	0	0
Wild buckwheat	20	60	40	-	40	0	0
Winter Barley	0	15	20	20	25	10	20

Table E		CO	MPOU	ND						•					
Rate 2 g/ha	20	21	23	25	31	32	33	34	35	43	49	52	54	55	
POSTEMERGENCE															
Annual Bluegras	-	-	-	-	_	-	-	-	-	-	-	-	-	-	
Blackgrass (2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
Blk Nightshade	100	100	100	100	60	100	100	100	70	100	60	100	100	80	• .
Chickweed	30	75	100	65	20	50	30	50	30	60	20	-	-	-	
Deadnettle	40	65	40	40	40	30	45	55	40	40	30	50	50	30	
Downy brome	-	-	5	٠ -	-	_	-	-	-	-	-	-	-	• -	
Field violet	35	40	50	75	70	100	65	100	100	100	30	50	70	50	•
Galium (2)	30	100	65	50	30	45	25	60	30	30	20	50	70	50	
Green foxtail	-	-	25	-	-	-	-	-	-	-	-	_	_	_	
Jointed Goatgra	-	-	10	-	-	-	-	-	_	-	-	-	_	-	
Kochia	100	100	100	70	40	70	70	70	65	100	40	100	100	50	. ,
Lambsquarters	100	100	75	75	60	100	60	70-	60	100	50	100	90	30	
LS Canarygrass	-	-	_		· **	<u> </u>	_;	-	· _	~; <u> </u>	` -	_	_ :	·	· · · · · · · · · · · · · · · · · · ·
Rape	_	_	100	-	_	-	· _	_	· _	· -	-	- -	. <u>-</u>	-	1 3
Redroot Pigweed	100	100	100	100	100	100	100	100	100	100	30	100	100	-	
Russian Thistle	-	-	-	100	70	100	100	100	100	100	50	_	_		
Ryegrass	-	-	10	-	-		-	-	-	-	-	_	_	-	
Scentless Chamo	30	55	70	50	50	60	50	30	30	65	30	50	60	60	
Speedwell	55	100	60		_	-	_	_	-	_	_	100	60	60	
Spring Barley	15	.5	10	10	10	10	10	10	15	10	10	5	5	0	
Sugar beet	_	_	100	-	_	٠_	-	_	-	_	_	-	_	_	
Sunflower	-	-	50	_	-	_	_	_	_	_	_	_	_	-	
Veronica hedera	-	-	-	60	50	50	60	50	50	60	10	_	-	_	
Wheat (Spring)	20	5	10	5	10	10	10	20	10	10	5	5	5	5	
Wheat (Winter)	15	5	10	10	10	10	10	10	10	10	0	5	5	0	
Wild buckwheat	100	100	100	100	55	100	30	65	70	100		100	_	60	
Wild mustard	-	_	٠_	_	_	-	_	_	-	_	-	_	_	_	
Wild oat (2)	-	_	10	-	-	_	_	_	_	_	_	_	_	-	
Winter Barley	20	10	10	10	10	10	20	20	20	10	10	5	5	0	

Table E		COMPOUND	Table E		COM	IPOUN	ID		
Rate 2 g/ha	20	21	Rate 1 g/ha	25	31	32	52	54	55
PREEMERGENCE			POSTEMERGENCE						
Blk Nightshade	0	50	Annual Bluegras	-	-	-	-	-	~
Chickweed	0	0	Blackgrass (2)	-	-	-	-	-	-
Deadnettle	0	10	Blk Nightshade	100	60	100	100	100	30
Field violet	_	10	Chickweed .	50	10	50	_	-	-
Galium (2)	0	50	Deadnettle	30	30	30	20	50	30
Kochia	0	100	Downy brome	_	-	-	-	-	-
Lambsquarters	15	80	Field violet	70	50	65	50	60	30
Redroot Pigweed	0	70	Galium (2)	30	50	20	40	50	. 50
Russian Thistle	-	-	Green foxtail	-	-	_	-	-	-
Scentless Chamo	0	-	Jointed Goatgra	-	-	-	-	-	-
Speedwell	0	15	Kochia	75	35	100	80	70	40
Spring Barley	0	0	Lambsquarters	70	60	60	70	90	20
Veronica hedera	-	-	LS Canarygrass	-	-	-	-	-	-
Wheat (Spring)	0	10	Rape	-	-	-	-	-	-
Wheat (Winter)	0	0	Redroot Pigweed	100	100	100	100	100	30
Wild buckwheat	0	30	Russian Thistle	100	70	75	-	-	-
Winter Barley	0	10	Ryegrass	-	-	-	-	-	-
			Scentless Chamo	30	55	55	50	-	20
			Speedwell	-	-	-	50	50	50
			Spring Barley	5	5	5	5	0	0
			Sugar beet	-	-	-	-	-	-
			Sunflower	-	-	-	-	-	-
			Veronica hedera	-	30	50	-	-	-
			Wheat (Spring)	5	5	10	5	5	5
•			Wheat (Winter)	5	5	2	5	0	0
			Wild buckwheat	100	45	55	20	60	50
			Wild mustard	-	-	-	-	-	-
			Wild oat (2)	_	-	-	-	-	_
			Winter Barley	10	10	10	5	0	0
			I						

269 ·

TEST F

Compounds evaluated in this test were formulated in a non-phytoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include annual bluegrass (Poa annua), black nightshade (Solanum nigra), blackgrass (Alopecurus myosuroides). chickweed (Stellaria media), deadnettle (Lamium amplexicaule), downy brome (Bromus tectorum), field violet (Viola arvensis), galium (Galium aparine), green foxtail (Setaria viridis), jointed goatgrass (Aegilops cylindrica), kochia (Kochia scoparia), lambsquarters (Chenopodium album), littleseed canarygrass (Phalaris minor), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), Russian thistle (Salsola kali), ryegrass (Lolium multiflorum), sentless chamonile (Matricaria inodora), speedwell (Veronica persica), spring barely (Hordeum vulgare cv. 'Klages'), spring wheat (Triticum aestivum cv. 'ERA'), sugar beet (Beta vulgaris cv. 'US1'), sunflower (Helianthus annuus cv. 'Russian Giant'), Veronica hederaefolia, wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), windgrass (Apera spica-venti), winter barley (Hordeum vulgare cv. 'Igri') and winter wheat (Triticum aestivum cv. 'Talent').

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table F, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

Table F		COM	IPOUN	1D					
Rate 35 g/ha	23	25	30	48	52	53	54	60	71
POSTEMERGENCE									
Arrowleaw Sida	100	100	75	45	100	100	100	70	25
Barnyardgrass	40	40	15	15	35	25	50	55	15
Cocklebur	100	100	75	25	100	100	100	100	25
Common Ragweed	100	100	100	30	100	100	100	85	40
Corn	25	10	10	5	10	15	10	20	10
Cotton	100	100	100	100	100	100	100	100	100
Estrn Blknight	100	100	95	25	100	100	100	100	85
Fall Panicum	45	25	15	15	20	15	20	20	10
Field Bindweed	100	100	100	70	100	100	100	100	35
Fl Beggarweed	65	- 85	80	20	80	100	75	70	40
Giant Foxtail	40	35	10	10	40	20	30	25	15
Hairy Beggartic	100	100	100	25	100	100	100	100	35
Ivyleaw Mrnglry	100	100	100	85	85	100	100	100	20
Johnsongrass	30	25	15	5	15	20	15	20	5
Ladysthumb	100	60	60	20	90	50	65	90	20
Lambsquarters	100	100	95	30	100	-	-	. 80	65
Large Crabgrass	30	20	15	15	25	25	25	15	10
Purple Nutsedge	15	5	0	0	0	0	0	10	5
Redroot Pigweed	100	100	100	80	100	100	100	100	100
Soybean	40	50	75	20	60	45	30	35	15
Surinam Grass	25	30	10	15	30	25	30	45	15
Velvetleaf	100	100	100	. 50	100	100	100	90	40
Wild Poinsettia	100	100	100	65	100	100	100	100	100

Table F		COI	мрои	ND				
Rate 35 g/ha	23	25	30	48	52	53	54	71
PREEMERGENCE								
Arrowleaw Sida	100	100	65	0	100	100	100	15
Barnyardgrass	10	10	0	0	0	10	15	0
Cocklebur	30	100	100	0	100	100	95	0
Common Ragweed	100	100	100	15	100	100	100	45
Corn	0	0	0	0	· 0	0	0	0
Cotton	100	30	45	0	100	100	100	10
Estrn Blknight	-	100	100	20	100	100	100	·90
Fall Panicum	50	10	15	0	10	0	15	25
Field Bindweed	-	100	100	10	100	100	100	0
Fl Beggarweed	-	100	40	. 0	100	100	100	20
Giant Foxtail	20	10	0	0	20	15	10	10
Hairy Beggartic	100	100	100	0	100	100	100	15
Ivyleaw Mrnglry	100	100	.75	.: 0	100	100	100	15
Johnsongrass	-	· 0	0	0	0	0	. 0	0
Ladysthumb	-	100	0	0	100	95	100	35
Lambsquarters	100	100	100	0	100	100	100	100
Large Crabgrass	0	. 0	0	0	0	15	10	. 10
Purple Nutsedge	0	0	0	0	0	0	0	0
Redroot Pigweed	100	100	100	15	100	100	100	50
Soybean	0	0	10	0	20	15	20	10
Surinam Grass	10	0	0	O	0	0	5	0
Velvetleaf	100	100	100	0	100	100	100	35
Wild Poinsettia	100	100	45	0	100	100	100	-

COMPOUND

Table F

	10	10	15	35	ហ	100	35	ស	25	35	10	20	10	0	15	22	10	0	100	S	10	25	9
	10	40	100	82	20	100	100	ß	100	15	10	100	100	10	40	20	10	0	90	9	10	100	100
	ì	82	100	100	20	100	100	20	100	80	25	100	100	10	20	95	20	0	100	20	25	100	100
	70	52	100	70	15	100	100	20	100	09	25	100	100	15	80	70	15	0	100	20	40	90	100
	100	52	100	100	10			15		70	25		100	15	35	١	20	0	100	25	25	100	100
	90	20	100	100	10	100		10	100	80	15	100	100	10	45	1	15	0	100	40	20	100	100
	100	25	100	100	15	100		10	100	70	25	100	75	10	9	100	20	0	100	35	20	100	100
	20	S	0	15	0	65	0	10	20	15	2	Ŋ	25	Ŋ	0	15	10	0	75	ß	10	15	10
	100	65	100	100	15	100	100	35	100	82	35	100	100	35	100	100	35	0	1	20	30	100	100
	100	65	100		15		100	35		90	30	100		30	100	100	30	0	•	45	25	100	100
	100	15	100		15			9		70	20	100	100	15	100	100	15	10	100	15	15	100	100
	35	10	1		10		75	10		75	S	82	35	10	52	90	10	0	100	30	Ŋ	100	80
	85	25	100		10		100	10		70	20	65	75	20	20	90	15	0	100	20	25	100	100
	100	30			20			30		20	25	100	100	25	90	100	15	0	100	•	15	100	100
		35			25			35			30			30	90	85	25	30	100	20	35	100	100
	100	40	100	100	20	100	100	40	100	100	45	100	100	30	100	95	20	65	100	45	25	100	100
POSTEMERGENCE	Arrowleaw Sida	Barnyardgrass	Cocklebur	Common Ragweed	Corm	Cotton	Estrn Blknight	Fall Panicum	Field Bindweed	Fl Beggarweed	Giant Foxtail	Hairy Beggartic	Ivyleaw Mrnglry	Johnsongrass	Ladysthumb	Lambsquarters	Large Crabgrass	Purple Nutsedge	Redroot Pigweed	Soybean	Surinam Grass	Velvetleaf	Wild Poinsettia
	POSTEMERGENCE	ENCE Sida 100 100 100 85 35 100 100 100 20 100 90 100 70 - 10	NCE Sida 100 100 100 85 35 100 100 100 20 100 90 100 70 - 10 ass 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40	ENCE Sida 100 100 100 85 35 100 100 100 20 100 90 100 70 - 10 rass 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 100 100 100 100 100 - 100 100 100 100 10	FINCE Sida 100 100 100 85 35 100 100 100 20 100 90 100 70 - 10 rass 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 100 100 100 100 100 100 100 100 100 1	Wleaw Sida 100 100 100 85 35 100 100 100 20 100 90 100 70 - 10 yardgrass 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 lebur 100 100 100 100 100 100 100 100 100 10	wleaw Sida 100 100 100 85 35 100 100 100 20 100 90 100 70 - 10 yardgrass 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 lebur 100 100 100 100 100 100 100 100 100 100	wleaw Sida 100 100 85 35 100 100 100 20 100 90 100 70 - 10 yardgrass 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 lebur 100 100 100 100 - 100 100 100 100 100 1	wleaw Sida 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Meaw Sida 100 100 85 35 100 100 100 20 100 90 100 70 - 10 yardgrass 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 lebur 100 100 100 100 100 100 100 100 100 10	wleaw Sida 100 100 100 85 35 100 100 100 20 100 90 100 70 - 10 yardgrass 40 35 30 25 10 100 100 100 100 100 100 100 100 100	Ha 100 100 100 85 35 100 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 100 100 100 100 100 100 100 100 100 1	100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 25 85 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 25 55 85 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 20 55 55 85 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 50 55 55 85 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 25 55 85 40 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td>100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<td>100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 55 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 25 55 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>100 100 85 35 100 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 5 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10</td></t<></td></t<></td></td>	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td>100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 55 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 25 55 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>100 100 85 35 100 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 5 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10</td></t<></td></t<></td>	100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 55 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 25 55 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>100 100 85 35 100 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 5 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10</td></t<></td></t<>	100 100 85 35 100 100 20 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 25 55 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>100 100 85 35 100 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 5 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10</td></t<>	100 100 85 35 100 100 90 100 70 - 10 40 35 30 25 10 15 65 65 5 25 5 55 85 40 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Table F		S	COMPOUND	Q										
Rate 17 g/ha	21	22	23	25	30	32	39	40	48	52	53	54	71	
PREEMERGENCE														
Arrowleaw Sida	100	100	100	65	20	90	100	100	0	100	100	100	0	
Barnyardgrass	10	0	0	0	0	10	0	0	0	0	Ω,	10	0	
Cocklebur	100		. 1	100	25	9	100	100	0	100	. 4 .	20	0	
Common Ragweed	100	40	70	100	75	100	100	100	ß	100	100		0	
Corn	0	10	0	0	0	100	0	0	0	0	0	.0	0	
Cotton	100	20	100	15	35	75	100	100	0	100	45	100	0	
Estrn Blknight	1	: "	'	100	100	100		1	10	100	100	100	55	
Fall Panicum	0	30	10		0	0	40	15	0	0	0	0	10	
Field Bindweed	100	1	1	100	70	100	100	100	0	100	100	100	0	
Fl Beggarweed	0	١		100	25	10	100	100	. 0	100	100	100	0	
Giant Foxtail	35	20	0	0	0	0	25	10	0	0	.0	,0	0	
Hairy Beggartic	100	1	100	70	100	85	100	100	0	9	90	100	. 0	•
Ivyleaw Mrnglry	90	10	100	100	50	100	52	30	0	100	100	100	. 0	
Johnsongrass	0	0	0	0	0	0	0	0	0	0		: 1	0	
Ladysthumb	ı	•	ı	20	0	0	75	100	0	20	0	100	0	
Lambsquarters	100	100	100	100	100	100	•	٠	0	100	100	100	35	
Large Crabgrass	20	9	0	0	0	10	15	10	0	0	0	ß.	0	
Purple Nutsedge	ı	ı	•	0	0	0	0	0	0	0		0	0	
Redroot Pigweed	100	100	100	100	75	100	100	100	0	100	100	100	10	
Soybean	20	0	0	0	0	10	0	0	0	1.	S	10	0	
Surinam Grass	10	15	0	0	0	<u>.</u>	2	10	0	0		0	. 0	
Velvetleaf	100	100	100	100	90	100	100	100	0	100	100	100	. 0	
Wild Poinsettia	100	•	22	45	32	100	100	100	0	80	8	100	20	

PCT/US96/16111

Table F		COM	POUN	ID									
Rate 8 g/ha	21	22	23	25	30	32	39	40	48	52	53	54	71
PREEMERGENCE													
Arrowleaw Sida	15	90	25	40	15	75	100	100	0	35	100	100	0
Barnyardgrass	10	0	0	0	0	0	0	0	0	0	0	0	0
Cocklebur	100	-	15	100	0	-	15	15	0	35	0	20	0
Common Ragweed	50	35	-	60	50	90	100	50	0	50	100	80	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	100	-	10	0	15	45	100	100	0	40	-	100	0
Estrn Blknight	-	-	-	100	95	40	-	-	0	95	100	100	30
Fall Panicum	0	0	0	0	0	0	10	10	0	0	0	0	0
Field Bindweed	100	-	-	100	40	100	100	100	0	100	100	100	0
Fl Beggarweed	-	-	-	100	10	10	100	85	0	60	25	100	0
Giant Foxtail	15	0	0	0	0	0	10	0	0	0	0	0	0
Hairy Beggartic	30	45	100	60	85	30	100	100	0	35	55	100	0
Ivyleaw Mrnglry	45	0	100	55	15	70	25	0	0	100	70	80	0
Johnsongrass	0	0	0	0	0	0	0	0	0	0	0	0	0
Ladysthumb	-	-	0	35	-	-	65	100	0	10	0	100	0
Lambsquarters	100	100	100	100	70	100	-	-	0	95	100	100	15
Large Crabgrass	15	25	0	0	0	0	10	0	0	0	0	0	0
Purple Nutsedge	-	0	-	0	0	0	0	0	. 0	0	0	0	0
Redroot Pigweed	100	100	100	100	60	85	100	100	0	100	100	100	0
Soybean	10	0	0	0	0	10	0	0	0	0	5	0	0
Surinam Grass	10	0	0	0	0	0	0	0	0	0	0	0	0
Velvetleaf	100	100	100	100	35	100	100	100	0	75	100	100	0
Wild Poinsettia	100	_	_	_	20	100	35	55	0	75	80	100	0

Table F		ဗ	COMPOUND	S S													
Rate 8 g/ha	21	22	23	25	30	32	39	40	48	52	53	54	9	64	69	71	
POSTEMERGENCE)	•	,	}	!	
Arrowleaw Sida	80	100	20	80	20	100	95	100	0	35	85	95	50	0	0	0	
Barnyardgrass	35	25	15	15	0	10	35	40	0	15	10	15	50	9	30	0	
Cocklebur	100	100	100	100	40	100	100	100	0	100	90	100	80	100	75	10	
Common Ragweed	100	100	100	100	100	100	100	100	10	100		100.100	70	100	75	20	
Corn	15	15	15	10	S	15	15	15	0	10	10	Ŋ	10	20	20		
Cotton	100	100	100	100	95	100	100	100	30	100		100 100	80	100	95	45	
Estrn Blknight	100	100	85	90	65	100	100	100	0	0.100		100.100	70	100	100	25	
Fall Panicum	20	70	15	2	10	55	25	20	ស	10	10	10	20	10	2	2	
Field Bindweed	100	100	100	100	90	100	100	100	0	100	100	100 100	45	100	100	10	
Fl Beggarweed	100	100	20	65	65	1	75	75	10	65	20	20 60	9	65	10	25	
Giant Foxtail	25	20	10	10	0	20	20	20	0	15	10	15	20	15	10	0	
Hairy Beggartic	100	95	100	55	20	100	100	100	0	100	95	100	75	100	65	0	
Ivyleaw Mrnglry	100	100	100	65	20	100	100	100	10	70	100	100	85	100	20	0	
Johnsongrass	25	25	15	15	10	10	25	25	0	0	10	10	10	10	10	0	
Ladysthumb	75	65	45	35	40	100	70	100	0	45	40	20	70	80	40	10	
Lambsquarters	80	82	100	90	80	80	100	100	10	100		1	65	95	30	40	
Large Crabgrass	15	15	ഗ	15	10	15	15	20	ß	15	10	15	10	20	10	ហ	
Purple Nutsedge	45	20	0	0	0	10	0.	0	0	0	0	. 0	0	0	0	0	
Redroot Pigweed	100	100	100	100	100	100	ı	ı	45	100	100	100.	75	100	75	35	
Soybean	40	45	30	40	10	15	35	35	ស	30	35	20	t	30	50	Ŋ	
Surinam Grass	20	30	10	20	0	15	15	25	0	15	15	15	30	2	10	0	
Velvetleaf	100	100	100	100	09	100	100	100	0	100	100	100	65	100	100	0	
Wild Poinsettia	100	100	100	100	70	100	100	100	0	100	100	100	100	100	100	45	
												•					

rable F		Ö	COMPOUND	Ď						,	;	•	;	•	;	i
4 g/ha	21	22	23	25	30	32	39	40	48	22	53	54	9	64	69	11
POSTEMERGENCE																
Arrowleaw Sida	75	55	20	25	10	9	90	75	0	25	52	90	20	0	0	0
Barnyardgrass	20	20	10	10	0	10	20	20	0	0	10	15	45	10	10	0
Cocklebur	100	100	100	100	25	85	100	100	0	90	80	100	75	100	75	0
Common Ragweed	100	95	100	100	20	100	100	100	0	100	100	100	9	20	0	0
	10	10	15	S	Ŋ	10	10	10	0	10	Ŋ	S	10	10	15	0
	100	100	100	100	95	100	100	100	25	100	100	100	75	90	80	35
Estrn Blknight	100	100	80	85	30	100	100	100	0	80	95	95	9	100	80	10
Fall Panicum	10	15	2	S	S	40	15	10	0	0	5	ហ	15	Ŋ	S	0
Field Bindweed	100	100	100	100	45	100	100	100	0	100	55	100	40	95	90	0
Fl Beggarweed	9	100	30	45	30	20	70	9	0	9	30	35	20	52	10	0
Giant Foxtail	20	15	2	10	0	15	15	15	0	10	10	10	15	ស	S	0
Hairy Beggartic	100	9	100	40	25	80	95	100	0	65	75	100	70	100	65	0
Ivyleaw Mrnglry	100	100	100	20	15	100	100	100	0	25	9	100	82	100	75	0
Johnsongrass	10	15	10	10	2	10	15	20	0	0	S	ß	10	Ŋ	10	0
Ladysthumb	20	•	45	30	25	25	40	09	0	30	30	20	70	20	40	2
Lambsquarters	9	75	100	82	70	70	100	100	2	70	,	١	9	80	20	20
Large Crabgrass	10	10	Ŋ	10	5	15	10	15	0	10	'n	10	10	20	10	2
Purple Nutsedge	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Redroot Pigweed	100	100	100	100	40	100	ı	i	10	100	100	100	75	100	20	15
	35	35	25	30	0	10	25	30	0	20	10	15	15	30	20	0
Surinam Grass	15	25	S	15	0	15	10	20	0	10	10	10	20	2	10	0
Velvetleaf	100	100	100	9	35	100	100	100	0	100	100	100	45	100	100	0
Wild Poinsettia	100	100	100	100	25	100	100	100	0	90	100	100	100	100	100	0

Table F		CO	MPOU	ND									
Rate 4 g/ha	21	22	23	25	30	32	39	40	48	52	53	54	71
PREEMERGENCE													
Arrowleaw Sida	-	0	0	35	10	75	35	95	0	20	100	100	0
Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0
Cocklebur	20	-	0	20	0	50	0	0	0	10	0	0	0
Common Ragweed	35	35	-	40	20	55	35	25	0	-	95	60	0
Corn	0	0	0	0	0	0	0	0	0.	0	0	0	0
Cotton	20	35	0	0	0	35	100	0	0	25	0	15	0
Estrn Blknight	-	-	-	100	90	40	-	-	0	75	100	100	25
Fall Panicum	0	0	0	0	0	. 0	.0	10	0	0	0	0	0
Field Bindweed	100	0		40	0	100	100	100	0	90	100	100	0
Fl Beggarweed	0	-	0	50	0	10	85	-	0	40	-	100	0
Giant Foxtail	10	0	. 0	0	0	0	0	0	0	. 0	0	0	0
Hairy Beggartic	, . -		50	45	15	30	100	100.	0		20	100	0
Ivyleaw Mrnglry	. 0	0	10	30	Ò	60	15	0	0	50	50	55	0
Johnsongrass	0	0	0	, ; o	· .:O	. 0	. 0	. 0	· O	9	0	0 -	0
Ladysthumb	. .		. 0		· <u>-</u> .	<u> </u>	. 15	45.	0	0		100	·· ö
Lambsquarters	100	40	95	100	50	100	_	· -	Ō	70	100	95	o
Large Crabgrass	15	10	. 0	. 0	0	. 0	0	. 0	0		0	0	, O.
Purple Nutsedge	-	0	0	. 0	0	0	0	0	. 0	0	0	0	Ö
Redroot Pigweed	100	100	100	100	50	55	85	100	0	65	90	100	Ó
Soybean	0	0	0	0	0	10	0	0	0	0	0	. 0	o
Surinam Grass	0	0	0	0	0	0	0	0.	0	0	0	0 -	. 0
Velvetleaf	100	35	60	85	10	100	100	65	0	60	75	85	0
Wild Poinsettia	65	· –	25	. 0	0	85	25	. 30	0	20	. 70	100	'n

Table F		S	COMPOUND	Д												
Rate 2 g/ha	21	22	23	25	30	32	39	40	48	22	23	54	64	69	71	
POSTEMERGENCE															,	
Arrowleaw Sida	70	20	15	15	0	45	70	35	0	10	10	100	0	0	0	
Barnvardgrass	15	20	'n	0	0	10	15	15	0	0	2	0	10	Ŋ	0	
Cocklebur	100	90	100	100	15	75	90	95	0	65	25	22	100	45	0	
Common Radweed	100	80	100	82	35	100	100	90	0	100	100	100	20	0	0	
Corn	ß	2	Ŋ	S	0	10	10	S	0	Ŋ	S	0	10	S	0	
Cotton	100	100	100	100	30	100	95	100	10	80	100	100	80	80	20	
Estrn Blknight		100	80	6	ស	100	95	100	0	75	20	90	100	40	Ŋ	
Fall Panicum	ß	10	Ŋ	0	0	40	10	ហ	0	0	Ω.	0	ß	0	0	
Field Bindweed	100	95	100	25	15	90	100	100	0	100	20	9	100	9	0	
Fl Beagarweed	40	09	20	1	0	40	65	55	0	35	25	25	10	0	0	
Giant Foxtail	10	10	S	2	0	15	10	10	0	ഗ	S	20	Ŋ	0	0	
Hairy Beggartic	85	35	100	30	0	65	95	85	0	15	65	90	09	10	0	
Tuyleaw Mrnglry	100	100	100	30	0	80	100	100	0	20	35	92	100	65	0	
Tohnsongrass		10	Ŋ	2	0	10	15	10	0	0	Ŋ	0	ស	S	0	
Ladvsthumb	30	50	20	20	20	25	30	35	0	10	25	15	10	0	0	
Lambsquarters	55	65	65	80	50	65	100	85	0	52	1	1	75	10	10	
Large Crabgrass	10	10	2	S	ß	10	10	10	0	5	2	Ŋ	10	ស	0	
Purple Nutsedge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Redroot Pigweed	100	100	95	100	25	100	1.	1	0	100	100	100	100	20	10	
Sovbean	25	35	25	25	0	10	25	25	0	15	10	10	20	20	0	
Surinam Grass	10	10	S	10	0	15	10	10	0	0	10	ß	S	10	0	
Velvetleaf	100	100	100	45	10	100	100	100	0	100	100	100	100	20	0	
wild Poinsettia		95	100	100	15	100	100	100	0	75	80	95	100	92	0	

Table F		CO	MPOU	ND									
Rate 2 g/ha	21	22	23	25	30	32	39	40	48	52	53	54	71
PREEMERGENCE													
Arrowleaw Sida	0	0	0	20	0	65	0	85	0	0	60	100	o
Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0
Cocklebur	0	-	0	0	0	35	0	0	0	0	0	0	0
Common Ragweed	0	20	0	15	0	55	0	0	0	30	70	55	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	0	0	0	0	0	20	100	-	0	0	0	0	0
Estrn Blknight	-	-	-	100	60	30	-	-	0	60	90	80	-
Fall Panicum	0	0	0	0	0	0	0	0	0	0	0	0	0
Field Bindweed	45	0	-	20	0	100	100	90	0	15	100	100	0
Fl Beggarweed	0	0	-	20	0	10	35	20	0	0	0	100	0
Giant Foxtail	0	0	0	0	0	0	0	0	0	0	0	0	0
Hairy Beggartic	-	30	20	15	0	15	100	80	0	-	20	100	0
Ivyleaw Mrnglry	-	0	0	25	0	40	0	0 -	0	25	0	25	0
Johnsongrass	0	. 0	0	0	. 0	0	0	0	Ó	0	; Ó.	O	0,
Ladysthumb	. :	10	0	10	·, -	20		0,	0,	0	0	50	0
Lambsquarters	0	35	50	80	30	85	-	-	0	25	0	90	0
Large Crabgrass	10	. 0	O,	0	0	. 0	0.	. 0	· o	. 0	0	0	0
Purple Nutsedge	0	-	-	0	0	0	0	0	0	0	0	0	0
Redroot Pigweed	100	100	100	25	-	40	45	95	0	50	15	80	٥
Soybean	0	0	0	0	0	0	0	0	0	0	0	0	0
Surinam Grass	0	0	0	0	0	0	0	0	0	0	0	0	0.
Velvetleaf	30	0	10	30	0	30	15	15	0	20	50	75	0
Wild Poinsettia	10	0	10	0	0	80	10	20	0	0	20	100	0

Table F		COM	IPOUN	D										
Rate 1 g/ha	21	22	25	30	32	39	40	48	52	53	54	64	69	71
POSTEMERGENCE														
Arrowleaw Sida	60	40	10	0	0	60	30	0	0	0	10	0	0	0
Barnyardgrass	10	10	0	0	10	10	10	0	0	0	0	5	5	0
Cocklebur	100	80	35	0	60	80	80	0	0	15	40	75	40	0
Common Ragweed	30	55	20	10	20	75	65	0	40	45	60	0	0	0
Corn	0	0	0	0	10	5	5	0	0	0	. 0	10	5	0
Cotton	100	90	65	10	85	100	80	0	35	100	80	80	40	15
Estrn Blknight	100	90	5	0	100	85	80	0	20	30	25	85	5	0
Fall Panicum	0	5	0	0	30	5	0	0	0	0	0	0	0	0
Field Bindweed	75	55	15	0	85	90	100	0	85	-	15	80	25	0
Fl Beggarweed	25	50	20	0	15	50	35	0	-	15	5	5	0	0
Giant Foxtail	5	10	0	0	10	10	10	0	5	0	5	0	0	0
Hairy Beggartic	30	25	15	0	45	60	75	0	0	15	20	40	10	0
Ivyleaf Mrnglry	80	95	10	0	70	70	90	0	10	25	30	95	30	0
Johnsongrass	0	0	5	0	10	5	5	0	0	0	0	0	5	0
Ladysthumb	25	20	10	10	25	25	20	0	0	20	0	5	0	0
Lambsquarters	40	40	75	35	50	90	80	0	40	-	-	45	10	0
Large Crabgrass	5	5	0	0	10	5	5	0	0	0	0	10	5	0
Purple Nutsedge	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Redroot Pigweed	90	95	100	20	100	· -	-	0	50	20	100	100	20	0
Soybean	20	25	10	0	0	15	15	0	5	5	5	20	20	0
Surinam Grass	10	5	10	0	10	5	5	0	0	5	5	5	5	0
Velvetleaf	100	90	20	0	50	75	100	0	20	70	100	100	30	0
Wild Poinsettia	80	80	35	10	80	95	95	0	45	90	50	95	40	0

Table F		CO	MPOU	ND								
Rate 1 g/ha	21	22	25	30	32	39	40	48	52	53	54	71
PREEMERGENCE												
Arrowleaw Sida	. 0	0	0	0	60	0	20	0	0	50	95	0
Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0
Cocklebur Cocklebur	0	0	0	0	25	0	0	0	0	0	0	0
Common Ragweed	. 0	10	0	0	55	0	0	0	0	_	50	0
Corn	0	0	0	0	0	-	0	0	0	0	0	0
Cotton	0	0	0	0	20	0	_	. 0	0	0	0	0
Estrn Blknight	-	-	50	50	30	_	_	0	40	90	65	0
Fall Panicum	0	0	0	0	0	0	0	0	0	0	0	0
Field Bindweed	0	0	0	0	50	20	0	0	Ö	0	45	0
Fl Beggarweed	-	. 0	0	-	10	0	-	0	0	-	30	0
Giant Foxtail	0	. 0	0	0	0	. 0	0	0	0	0	0	0
Hairy Beggartic	0	20	. 0	0	15	20	30	0	0	. 0	30	0
Ivyleaw Mrnglry	0	0	10	0	30	0	0	0	10	0	25	0
Johnsongrass	0	-	0	0	0	0	0	0	0	0	0	0
Ladysthumb	-	-	-	0	-	0	-	0	0	-	0	0
Lambsquarters	0	15	75	10	80	-		0	0	0	90	0
Large Crabgrass	0	0	0	0	0	0	. 0	0	0	0	0	0
Purple Nutsedge	-	0	0	0	0	0	٥.	0	0	0	0	0
Redroot Pigweed	60	0	15	0	40	20	90	0	15	0	20	0
Soybean	0	-	0	0	0	0	٥ _	0	0	0	0	0
Surinam Grass	0	0	0	0	0	0	0	0	0	0	0	0
Velvetleaf	0	0	0	0	15	0	0	0	10	10	60	0
Wild Poinsettia	0	0	0	0	60	0	0	0	0	20	100	n

WO 97/15576 PCT/US96/16111

282

TEST G

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), bermudagrass (Cynodon dactylon), broadleaf signalgrass (Brachiaria plantyphylla), common purslane (Portulaca oleracea), common ragweed (Ambrosia elatior), cotton (Gossypium hirsutum), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), guineagrass (Panicum maximum), itchgrass (Rottboellia exaltata), johnson grass (Sorghum halepense), large crabgrass (Digitaria sanguinalis), peanuts (Arachis hypogaea), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), and surinam grass (Brachiaria decumbens) were planted into greenhouse pots or flats containing greenhouse planting medium. Plant species were grown in separate pots or individual compartments. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to twenty cm).

Test chemicals were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied preemergence and postemergence to the plants. Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table G, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

Table G		COM	POUN	D		Table G		COM	POUN	D
Rate 250 g/h	a 21	23	52	57		Rate 250 g/ha	21	23	52	57
POSTEMERGENCE						PREEMERGENCE				
Alexandergrass	30	0	0	0		Alexandergrass	65	. 0	0	0
Bermudagrass	0	20	0	0		Bermudagrass	50	0	0	0
Brdlf Sgnlgras	s 100	75	0	0		Brdlf Sgnlgrass	100	70	60	0
Cmn Purslane	100	100	100	95		Cmn Purslane	100	100	100	100
Cmn Ragweed	100	100	-	-		Cmn Ragweed	100	100	100	-
Cotton	100	100	100	98		Cotton	100	100	100	0
Dallisgrass	25	20	35	0		Dallisgrass	65	30	10	0
Goosegrass	0	0	. 0	0		Goosegrass	98	40	20	0
Guineagrass	60	0	0	0		Guineagrass	0	. 0	25	0
Itchgrass	60	-	-	-		Itchgrass	35	· -	. 0	0
Johnson grass	50	0	40	. 0		Johnson grass	65	. 0	. 0	0
Large Crabgras:	s _; 5	20	0	0	1967 1961	Large Crabgrass	40	0	0	0
Peanuts	40	10	10	0		Peanuts	10	20	10	20
Pit Morninglory	100	100	100	75		Pit Morninglory	100	100	100	40
Purple Nutsedge	10	10	0	0	·	Purple Nutsedge	60	60	60	0
Sandbur	20	40	65	-	*	Sandbur	100	35	25	60
Sourgrass	100	40	0	0		Sourgrass	100	100	70	0
Sugarcane	-	-	-	-		Sugarcane	-	-	-	-
Surinam grass	30	0	0	20	ı	Surinam grass	70	65	65	0

. .2

.

Table G Co	MPOUND	Table G CC	DMPOUND
Rate 125 g/ha	57	Rate 125 g/ha	57
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass	0	Alexandergrass	0
Bermudagrass	0	Bermudagrass	0
Brdlf Sgnlgrass	0	Brdlf Sgnlgrass	0
Cmn Purslane	85	Cmn Purslane	100
Cmn Ragweed	30	Cmn Ragweed	0
Cotton	75	Cotton	0
Dallisgrass	0	Dallisgrass	0
Goosegrass	0	Goosegrass	0
Guineagrass	0	Guineagrass	0
Itchgrass	-	Itchgrass	0
Johnson grass	0	Johnson grass	0
Large Crabgrass	0	Large Crabgrass	0
Peanuts	0	Peanuts	0
Pit Morninglory	60	Pit Morninglory	0
Purple Nutsedge	0	Purple Nutsedge	0
Sandbur	-	Sandbur	0
Sourgrass	0	Sourgrass	0
Sugarcane	-	Sugarcane	-
Surinam grass	0	Surinam grass	0

Table G	COMP	OUND	Table G	COM	POUND
Rate 64 g/ha	22	57	Rate 64 g/h	a 22	57
POSTEMERGENCE			PREEMERGENCE		
Alexandergrass	10	0	Alexandergrass	10	0
Bermudagrass	80	0	Bermudagrass	0	0
Brdlf Sgnlgrass	90	0	Brdlf Sgnlgras	s 0	0
Cmn Purslane	100	80	Cmn Purslane	100	0
Cmn Ragweed	100	30	Cmn Ragweed	100	0
Cotton	100	50	Cotton	100	0
Dallisgrass	70	0	Dallisgrass	45	0
Goosegrass	60	0	Goosegrass	0	0
Guineagrass	45	0	Guineagrass	10	0
Itchgrass	25	-	Itchgrass	0	Ö
Johnson grass	20	0	 Johnson grass	45	.,. 0 ''
Large Crabgrass	60	0	 Large Crabgras	s ⁵ 30	0
Peanuts	10	0	Peanuts	: 30	98
Pit Morninglory	100	50	Pit Morninglor	y 100	· 0
Purple Nutsedge	98	0	Purple Nutsedg	e 10	0
Sandbur	45	-	Sandbur	0	0
Sourgrass	0	0	Sourgrass	0	0
Sugarcane	-	-	Sugarcane	_	-
Surinam grass	10	0	Surinam grass	0	0

m 1.3		
Table G CO	MPOUND	Table G COMPOUND
Rate 35 g/ha	21	Rate 35 g/ha 21
POSTEMERGENCE		PREEMERGENCE
Alexandergrass	-	Alexandergrass -
Bermudagrass	-	Bermudagrass -
Brdlf Sgnlgrass	-	Brdlf Sgnlgrass -
Cmn Purslane	-	Cmn Purslane -
Cmn Ragweed	-	Cmn Ragweed -
Cotton	-	Cotton -
Dallisgrass	-	Dallisgrass -
Goosegrass	-	Goosegrass -
Guineagrass	-	Guineagrass -
Itchgrass	-	Itchgrass -
Johnson grass	-	Johnson grass -
Large Crabgrass	-	Large Crabgrass -
Peanuts	15	Peanuts 40
Pit Morninglory	-	Pit Morninglory -
Purple Nutsedge	-	Purple Nutsedge -
Sandbur	-	Sandbur -
Sourgrass	-	Sourgrass -
Sugarcane	15	Sugarcane 10
Surinam grass	-	Surinam grass -

		-	
Table G C	OMPOUND	Table G C	DMPOUND
Rate 32 g/ha	57	Rate 32 g/ha	57 .
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass	0	Alexandergrass	0
Bermudagrass	0	Bermudagrass	0
Brdlf Sgnlgrass	0	Brdlf Sgnlgrass	0 .
Cmn Purslane	75	Cmn Purslane	0
Cmn Ragweed	30	Cmn Ragweed	0
Cotton	0	Cotton	0
Dallisgrass	0	Dallisgrass	0
Goosegrass	0	Goosegrass	0
Guineagrass	0	Guineagrass	0
Itchgrass	-	Itchgrass	0
Johnson grass	0	Johnson grass	0
Large Crabgrass	· · · · · · · · · · · · · · · · · · ·	Large Crabgrass	O MARKET PROBUSE PROBUSE
Peanuts	Ó	Peanuts	30
Pit Morninglory	40	Pit Morninglory	0
Purple Nutsedge	0	Purple Nutsedge	0
Sandbur	-	Sandbur	0
Sourgrass	0	Sourgrass	0
Sugarcane	-	Sugarcane	-
Surinam grass	0	Surinam grass	0

Table G CC	MPOUND	Table G	COMPOUND
Rate 17.5 g/ha	21	Rate 17.5 g/h	a 21
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass	- ·	Alexandergrass	-
Bermudagrass	-	Bermudagrass	_
Brdlf Sgnlgrass	-	Brdlf Sgnlgras	s -
Cmn Purslane	-	Cmm Purslane	_
Cmn Ragweed	-	Cmn Ragweed	_
Cotton	-	Cotton	_
Dallisgrass	-	Dallisgrass	_
Goosegrass	-	Goosegrass	_
Guineagrass	-	Guineagrass	_
Itchgrass	-	Itchgrass	_
Johnson grass	-	Johnson grass	_
Large Crabgrass	-	Large Crabgrass	; -
Peanuts	10	Peanuts	30
Pit Morninglory	-	Pit Morninglory	-
Purple Nutsedge	-	Purple Nutsedge	-
Sandbur	-	Sandbur	_
Sourgrass	-	Sourgrass	-
Sugarcane	65	Sugarcane	20
Surinam grass	-	Surinam grass	-

289 --

	1
Table G COMPOUND	Table G COMPOUND
Rate 16 g/ha 57	Rate 16 g/ha 57
POSTEMERGENCE	PREEMERGENCE
Alexandergrass 0	Alexandergrass 0
Bermudagrass 0	Bermudagrass 0
Brdlf Sgnlgrass 0	Brdlf Sgnlgrass 0
Cmn Purslane 65	Cmm Purslane 0
Cmn Ragweed 20	Cmm Ragweed -
Cotton 0	Cotton 0
Dallisgrass 0	Dallisgrass 0
Goosegrass 0	Goosegrass 0
Guineagrass 0	Guineagrass 0
Itchgrass -	Itchgrass 0
Johnson grass 0	Johnson grass 0
Large Crabgrass 0	Large Crabgrass 0
Peanuts 9.70 Prom	Peanuts 0
Pit Morninglory 35	Pit Morninglory 0
Purple Nutsedge 0	Purple Nutsedge 0
Sandbur -	Sandbur 0
Sourgrass -	Sourgrass 0
Sugarcane -	Sugarcane -
Surinam grass 0	Surinam grass 0

WO 97/15576

PCT/US96/16111

Table G	COMP	OUND	Table G	COME	OUND
Rate 8 g/ha	21	57	Rate 8 . g/h	a 21	57
POSTEMERGENCE			PREEMERGENCE		
Alexandergrass	-	0	Alexandergrass	_	0
Bermudagrass	-	0	Bermudagrass	-	0
Brdlf Sgnlgrass	-	0	Brdlf Sgnlgras	s -	0
Cmn Purslane	-	60	Cmn Purslane	_	0
Cmn Ragweed	-	20	Cmn Ragweed	-	-
Cotton	-	0	Cotton	-	0
Dallisgrass	-	0	Dallisgrass	-	0
Goosegrass	-	0	Goosegrass	-	0
Guineagrass	-	0	Guineagrass	-	0
Itchgrass	-	-	Itchgrass	_	0
Johnson grass	-	0	Johnson grass	-	0
Large Crabgrass	-	0	Large Crabgras	s -	0
Peanuts	20	0	Peanuts	35	0
Pit Morninglory	-	30	Pit Morninglor	у -	0
Purple Nutsedge	-	0	Purple Nutsedg	e -	0
Sandbur	-	-	Sandbur		0
Sourgrass	-	0	Sourgrass	_	0
Sugarcane	15	-	Sugarcane	0	-
Surinam grass	-	0	Surinam grass	-	0

Table G	СОМР	OUND		Table	G		COMP	OUND				
Rate 4 g/ha	21	57		Rate	4	g/ha	21	57				
POSTEMERGENCE				PREEME	ERGEN	CE						
Alexandergrass	-	0		Alexar	derg	rass	-	0				
Bermudagrass	-	0		Bermud	lagra	SS	-	0				
Brdlf Sgnlgrass	-	0		Brdlf	Sgnl	grass	~	0				
Cmn Purslane	-	50		Cmn Pu	ırsla	ne	· -	-				
Cmn Ragweed	-	10		Cmn Ra	gwee	đ	-	0				
Cotton	-	-		Cottor	1		_	0				
Dallisgrass	-	0		Dallis	gras	s	-	0				
Goosegrass	-	0	•	Gooseg	grass		-	0				
Guineagrass	-	0		Guinea	gras	s	-	0				
Itchgrass	-	-		Itchgr	ass		• -	0				
Johnson grass		0		Johnso	n gr	ass		.0				. i
Large Crabgrass	,. -	0	43 . 47	Large	Crab	grass	ŗ. <u>-</u>	0		-		
Peanuts	15	0	•	Peanut	s		20	0	. :		<i>;</i> ·	
Pit Morninglory	-	30		Pit Mo	rnin	glory	-	. 0				
Purple Nutsedge	-	0		Purple	Nut	sedge	-	0				
Sandbur	-	-		Sandbu	ır		-	0				
Sourgrass	-	0		Sourgr	ass		-	0				
Sugarcane	10	-		Sugaro	ane		0	-				
Surinam grass	-	0		Surina	m gr	ass	-	0				

Table G COM	(Double	1
	IPOUND	Table G COMPOUND
Rate 2 g/ha	21	Rate 2 g/ha 21
POSTEMERGENCE		PREEMERGENCE
Alexandergrass	-	Alexandergrass -
Bermudagrass	-	Bermudagrass -
Brdlf Sgnlgrass	-	Brdlf Sgnlgrass -
Cmn Purslane	-	Cmn Purslane -
Cmn Ragweed	-	Cmn Ragweed -
Cotton	-	Cotton -
Dallisgrass	-	Dallisgrass -
Goosegrass	-	Goosegrass -
Guineagrass	-	Guineagrass -
Itchgrass	-	Itchgrass -
Johnson grass	-	Johnson grass -
Large Crabgrass	-	Large Crabgrass -
Peanuts	15	Peanuts 20
Pit Morninglory	-	Pit Morninglory -
Purple Nutsedge	-	Purple Nutsedge -
Sandbur	-	Sandbur -
Sourgrass	-	Sourgrass -
Sugarcane	5	Sugarcane 0
Surinam grass	-	Surinam grass -

TEST H

Compounds evaluated in this test were formulated in a non-phytoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test, and 13 days after the last postemergence planting.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include Acanthospermum hispidum, alexandergrass (Brachiaria plantaginea), american black nightshade (Solanum americanum), apple-of-Peru (Nicandra physaloides), arrowleaf sida (Sida rhombifolia), brazilian sicklepod (Cassia tora Brazilian), brazilian signalgrass (Brachiaria decumbens), capim-colchao (Digitaria horizontalis), cristalina soybean (Glycine max Cristalina), florida beggarweed (Desmodium purpureum), hairy beggarticks (Bidens pilosa), slender amaranth (Amaranthus viridis), southern sandur (Cenchrus echinatus), tall morningglory (Ipomoea purpurea), tropical spiderwort (Commelina benghalensis), W20 Soybean (Glycine max W20), W4-4 Soybean (Glycine max W4-4) and wild pointsettia (Eupohorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 13 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table H, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

Table H CC	OMPOUND			Table H C	OMPOUND
Rate 35 g/ha	21			Rate 35 g/ha	21
POSTEMERGENCE				PREEMERGENCE	
Acanthospermum	100			Acanthospermum	100
Alexandergrass	20			Alexandergrass	5
Apple-of-Peru	70			Apple-of-Peru	100
Arrowleaf Sida	100			Arrowleaf Sida	100
B. Signalgrass	10			B. Signalgrass	30
Bl. Nightshade	100			Bl. Nightshade	100
Braz Sicklepod	40			Braz Sicklepod	75
Capim-Colch	5			Capim-Colch	10
Crist. Soybean	60			Crist. Soybean	10
Fl. Beggarweed	100			Fl. Beggarweed	100
H. Beggarticks	100			H. Beggarticks	100
Morningglory	100			Morningglory	100
Sl. Amaranth	85			Sl. Amaranth	100
Southern Sandur	10			Southern Sandur	
Tr. Spiderwort	100			Tr. Spiderwort	100
Wld Pointsettia	100			Wld Pointsettia	
W20 Soybean	35			W20 Soybean	5
W4-4 Soybean	35			W4-4 Soybean	_
	5 5			wa-a Soybean	5
Table H	CO	MPOUN	D	Table H C	OMPOUND
Rate 17 g/ha	21 2	3 25	32	Rate 17 g/ha	21
POSTEMERGENCE				PREEMERGENCE	
Acanthospermum Alexandergrass				Acanthospermum	100
Apple-of-Peru	15 4! 60 10		20 100	Alexandergrass	5
Arrowleaf Sida	100 100		100	Apple-of-Peru Arrowleaf Sida	100
B. Signalgrass	5 80	_	25	B. Signalgrass	
Bl. Nightshade	85 10	100		Bl. Nightshade	
Braz Sicklepod	30 60	40	20	Braz Sicklepod	20
Capim-Colch	5 59	5 50	40	Capim-Colch	10
Crist. Soybean	50 70	25	30	Crist. Soybean	5
Fl. Beggarweed	85 100		80	Fl. Beggarweed	100
	100 100		100	H. Beggarticks	100
Morningglory	85 100			Morningglory	100
Sl. Amaranth Southern Sandur	75 100	85	80	S1. Amaranth	100
	5 - 100 100	100	_	Southern Sandur	40
Wld Pointsettia			100	Tr. Spiderwort Wld Pointsettia	100
W20 Soybean	30 50		30	W20 Soybean	5
W4-4 Soybean	30 45		30	W4-4 Soybean	5
_			•		•

Table H	cc	MPOUND	Table H COMPOUND
Rate 8 g/ha	21 23	25 32	Rate 8 g/ha 21
POSTEMERGENCE			PREEMERGENCE
Acanthospermum	80 100	85 80	Acanthospermum 100
Alexandergrass	10 35	20 20	Alexandergrass 5
Apple-of-Peru	55 100	80 100	Apple-of-Peru 100
Arrowleaf Sida	85 100	80 100	Arrowleaf Sida 100
B. Signalgrass	5 55	40 20	B. Signalgrass 20
Bl. Nightshade	75 100	100 100	Bl. Nightshade 100
Braz Sicklepod	20 60	20 15	Braz Sicklepod 15
Capim-Colch	5 55	30 30	Capim-Colch 5
Crist. Soybean	15 60	25 20	Crist. Soybean 0
Fl. Beggarweed	75 75	60 65	Fl. Beggarweed 100
H. Beggarticks	100 100	100 100	H. Beggarticks 100
Morningglory	80 100	100 100	Morningglory 90
Sl. Amaranth	70 100	75 75	Sl. Amaranth 100
Southern Sandur	5 -	1. La 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Southern Sandur 10
Tr. Spiderwort	80 100	•	Tr. Spiderwort 70
Wld Pointsettia	100 100	100 100	Wld Pointsettia 100
W20 Soybean	10 35	15 25	W20 Soybean 5
W4-4 Soybean	15 35	20 25	W4-4 Soybean 5
	•		
Table H	СОМ	POUND	Table H COMPOUND
Rate 4 g/ha	21 23	25 32	Rate 4 g/ha 21
POSTEMERGENCE			PREEMERGENCE
Acanthospermum	80 100 5 30		Acanthospermum 100
Alexandergrass Apple-of-Peru	5 30 50 100		Alexandergrass 0 Apple-of-Peru 55
Arrowleaf Sida	70 100	70 100	Apple-of-Peru 55 Arrowleaf Sida 0
B. Signalgrass	0 50	40 20	B. Signalgrass 20
Bl. Nightshade	65 100	100 100	Bl. Nightshade 100
Braz Sicklepod	0 20	0 15	Braz Sicklepod 10
Capim-Colch	5 55	25 30 .	Capim-Colch 0
Crist. Soybean	15 50	20 15	Crist. Soybean 0
Fl. Beggarweed	55 55	50 65	Fl. Beggarweed 100
H. Beggarticks	85 100	100 100	H. Beggarticks 75
Morningglory Sl. Amaranth	75 100 70 80	100 100 75 75	Morningglory 85 Sl. Amaranth 100
Southern Sandur	5 -		Sl. Amaranth 100 Southern Sandur 5
Tr. Spiderwort	70 100	60 -	Tr. Spiderwort 60
Wld Pointsettia		100 100	Wld Pointsettia 100
W20 Soybean	10 25	15 20	W20 Soybean 5
W4-4 Soybean	10 30	20 20	W4-4 Soybean 5

Table H		COMP	OUNI)	Table H CO	MPOUND
Rate 2 g/ha	21	23	25	32	Rate 2 g/ha	21
POSTEMERGENCE					PREEMERGENCE	
Acanthospermum	60	100	70	60	Acanthospermum	60
Alexandergrass	0	25	10	10	Alexandergrass	0
Apple-of-Peru	40	100	60	-	Apple-of-Peru	55
Arrowleaf Sida	65	100	55	100	Arrowleaf Sida	0
B. Signalgrass	0	40	20	20	B. Signalgrass	15
Bl. Nightshade	55	100	85	100	Bl. Nightshade	85
Braz Sicklepod	0	20	0	15	Braz Sicklepod	-
Capim-Colch	5	15	25	30	Capim-Colch	0
Crist. Soybean	15	30	55	10	Crist. Soybean	0
Fl. Beggarweed	50	35	50	55	Fl. Beggarweed	100
H. Beggarticks	70	100	60	70	H. Beggarticks	60
Morningglory	70	100	70	80	Morningglory	55
Sl. Amaranth	60	75	55	70	S1. Amaranth	100
Southern Sandur	0	-	-	-	Southern Sandur	0
Tr. Spiderwort	70	100	15	-	Tr. Spiderwort	50
Wld Pointsettia	80	100	70	100	Wld Pointsettia	80
W20 Soybean	10	20	10	15	W20 Soybean	0
W4-4 Soybean	10	25	15	15	W4-4 Soybean	5

Table H		COM	POUN	D
Rate 1 g/ha	21	23	25	32
POSTEMERGENCE				
Acanthospermum	60	100	70	40
Alexandergrass	10	20	10	10
Apple-of-Peru	90	100	55	100
Arrowleaf Sida	80	80	55	75
B. Signalgrass	0	30	15	10
Bl. Nightshade	70	80	80	100
Braz Sicklepod	15	15	50	10
Capim-Colch	0	10	20	15
Crist. Soybean	25	25	10	10
Fl. Beggarweed	15	70	20	55
H. Beggarticks	80	100	60	55
Morningglory	50	100	70	70
Sl. Amaranth	75	7,5	55	50
Southern Sandur	. ,		 -	,
Tr. Spiderwort	-		10	
Wld Pointsettia	75	75	100	100
W20 Soybean	20	15	0	15
W4-4 Soybean	25	20	10	20

TEST I

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture and applied to the surface of the water which was contained in each pot. Individual containers of barnyardgrass (*Echinochloa oryzicola*), small flower umbrella sedge (*Cyperus difformus*), common falsepimpernel (*Lindernia procumbens*), monochoria (*Monochoria vaginalis*) and bulrush (*Scirpus juncoides*) were seeded and allowed to grow until the 1.5 to 2.5 leaf stage of development. A Sultama clay loam soil was used for this propagation. Japonica rice (*Oryza sativa*) was transplanted at 0 and 2 cm depth five days before application of the test compound to the water surface. An early and late stage of each weed species was treated, the stage of development being related to the concurrent planting of Scirpus juncoides which was then treated at the 1.5 (early) and the 2.5 (late) leaf stage.

Treated plants and untreated controls were maintained under greenhouse conditions for twenty to thirty days at which time treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table I, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) indicated that no test result was recorded.

Table I COMPO	UND	Table I	C	OMPO	UND
Rate 250 g/ha 11 13	21 ·	Rate 125 g/ha	11	13	21
Flood Saita soi		Flood Saita soi			
	-		_	-	-
barnyard early 0 100	95	barnyard early	0	90	85
barnyard late 30 100	90	barnyard late	0	70	85
C. difformis ea 100 100	100	C. difformis ea	40	100	100
C. difformis la 50 100	100	C. difformis la	30	50	100
Japoni rice 0cm 10 85	80	Japoni rice 0cm	10	80	50
Japoni rice 2cm 20 55	50	Japoni rice 2cm	25	40	30
L. procumben ea 70 100	100	L. procumben ea	0	100	100
L. procumben la 100 100	100	L. procumben la	20	85	100
M. vaginalis ea 20 80	100	M. vaginalis ea	0	75	100
M. vaginalis la 20 100	100	M. vaginalis la	20	50	85
S. juncoides 1. 60 80	90	S. juncoides 1.	30	65	75
S. juncoides 2. 40 85	65	S. juncoides 2.	40	50	55
	and the second state	Burgara Barrell	$Q_{ij}^{(i)}$	93 2 2 3 T	أسريكاني
Table I COMPO	DIND	Table I			
Table I COMPOR	IND 21				
	ND	Table I	CC	MPOU	IND
Rate 64 g/ha 11 13	ND	Table I Rate 32 g/ha	CC	MPOU	IND
Rate 64 g/ha 11 13 Flood Saita soi	ND 21	Table I Rate 32 g/ha	11	13	JND 21
Rate 64 g/ha 11 13 Flood Saita soi N N	21 -	Table I Rate 32 g/ha Flood Saita soi	11 I	MPOU 13 L	JND 21 L
Rate 64 g/ha 11 13 Flood Saita soi N N N barnyard early 0 60	21 - 65 60	Table I Rate 32 g/ha Flood Saita soi barnyard early	11 1 0	13 L 30 40	JND 21 L 60
Rate 64 g/ha 11 13 Flood Saita soi N N barnyard early 0 60 barnyard late 0 50 C. difformis ea 0 100	21 - 65 60	Table I Rate 32 g/ha Flood Saita soi barnyard early barnyard late	11 1 0 0	13 L 30 40	DND 21 L 60 50
Rate 64 g/ha 11 13 Flood Saita soi N N barnyard early 0 60 barnyard late 0 50 C. difformis ea 0 100	21 - 65 60 100	Table I Rate 32 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea	11 0 0 0	13 L 30 40	L 60 50
Rate 64 g/ha 11 13 Flood Saita soi N N barnyard early 0 60 barnyard late 0 50 C. difformis ea 0 100 C. difformis la 10 40	21 - 65 60 100	Table I Rate 32 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la	11 0 0 0	13 L 30 40 70	L 60 50 100
Rate 64 g/ha 11 13 Flood Saita soi N N barnyard early 0 60 barnyard late 0 50 C. difformis ea 0 100 C. difformis la 10 40 Japoni rice 0cm 30 60	21 - 65 60 100 100 35 20	Table I Rate 32 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm	11 0 0 0 0 5	13 L 30 40 70 30	L 60 50 100 60 0
Rate 64 g/ha 11 13 Flood Saita soi N N barnyard early 0 60 barnyard late 0 50 C. difformis ea 0 100 C. difformis la 10 40 Japoni rice 0cm 30 60 Japoni rice 2cm 0 25 L. procumben ea 0 100	21 - 65 60 100 100 35 20	Table I Rate 32 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm Japoni rice 2cm	11 0 0 0 0 5 0	13 L 30 40 70 30 50	L 60 50 100 60 0 5
Rate 64 g/ha 11 13 Flood Saita soi N N barnyard early 0 60 barnyard late 0 50 C. difformis ea 0 100 C. difformis la 10 40 Japoni rice 0cm 30 60 Japoni rice 2cm 0 25 L. procumben ea 0 100 L. procumben la 0 95 M. vaginalis ea 0 40	21 - 65 60 100 100 35 20 100	Table I Rate 32 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm Japoni rice 2cm L. procumben ea	11 0 0 0 0 5 0	13 L 30 40 70 30 50 20	L 60 50 100 60 0 5
Rate 64 g/ha 11 13 Flood Saita soi N N barnyard early 0 60 barnyard late 0 50 C. difformis ea 0 100 C. difformis la 10 40 Japoni rice 0cm 30 60 Japoni rice 2cm 0 25 L. procumben ea 0 100 L. procumben la 0 95	21 - 65 60 100 100 35 20 100 100	Table I Rate 32 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm Japoni rice 2cm L. procumben ea L. procumben la	11 0 0 0 0 5 0	13 L 30 40 70 30 50 20	L 60 50 100 60 0 5
Rate 64 g/ha 11 13 Flood Saita soi N N barnyard early 0 60 barnyard late 0 50 C. difformis ea 0 100 C. difformis la 10 40 Japoni rice 0cm 30 60 Japoni rice 2cm 0 25 L. procumben ea 0 100 L. procumben la 0 95 M. vaginalis ea 0 40	21 - 65 60 100 100 35 20 100 100 100	Table I Rate 32 g/ha Flood Saita soi barnyard early barnyard late C. difformis ea C. difformis la Japoni rice 0cm Japoni rice 2cm L. procumben ea L. procumben la M. vaginalis ea	11 0 0 0 0 5 0 0	13 L 30 40 70 30 50 20 100	L 60 50 100 60 0 5

TEST J

Plastic pots were partially filled with silt loam soil. The soil was then saturated with water. Rice (Oryza sativa) seed or seedlings at the 2.0 to 3.5 leaf stage; seeds, tubers or plant parts selected from barnyardgrass (Echinochloa crus-galli), common waterplantain (Alisma plantago-aquatica), ducksalad (Heteranthera limosa), early watergrass (Echinochloa oryzoides), gooseweed (Sphenoclea zeylanica), junglerice (Echinochloa colonum), late watergrass (Echinochloa oryzicola), monochoria (Monochoria vaginalis), redstem (Ammania species), rice flatsedge (Cyperus iria). ricefield bulrush (Scirpus mucronatus), smallflower flatsedge (Cyperus difformis), tighthead sprangletop (Leptochloa fasicularis) and water-clover (Marsilea quadrifolia) into this soil. Plantings and waterings of these crops and weed species were adjusted to produce plants of appropriate size for the test. At the two leaf stage, water levels were raised to 3 cm above the soil surface and maintained at this level throughout the test. Chemical treatments were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied directly to the paddy water, by pipette, or to the plant foliage, by an air-pressure assisted, calibrated belt-conveyer spray system.

Treated plants and controls were maintained in a greenhouse for approximately 21 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table J, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table J		CC	OMPO	UND		Table J		COM	POUN	D
Rate 1000 g/ha	12	21	25	39	40	Rate 750 g/ha	21	25	39	40
PD/TA						PD/TA				*
barnyardgrass	60	-	-	-	-	barnyardgrass	-	-	_	-
ducksalad	100	0	20	60	50	ducksalad	0	. 0	60	0
early watergras	-	-	-	-	-	early watergras	-	-	-	-
gooseweed	-	100	-	100	95	gooseweed	90	100	85	85
junglerice	65	-	-	-	-	junglerice	, -	_	-	-
late watergrass	70	-	-	-	-	late watergrass	_	_	-	_
monochoria	-	65	_	85	65	monochoria	55	60	60	55
redstem	100	10	0	40	30	redstem	0	0	30	20
rice flatsedge	100	85	80	75	90	rice flatsedge	75	75	80	90
ricefield bulru	-	60	-	65	50	ricefield bulru	60	60	60	35
smallflower fla	100	0	0	0	40	smallflower fla	0	Ö	0	30
tighthead spran	0	0	20	30	25	tighthead spran	0	60	0	40
water-clover	-	75	75	- 60	45	water-clover	85	. 20	45	50 -
A. plantago-aqu	un E	100	, 1.T.	. 90	100	A. plantago-aqu	100	100	: '98	100
2 LF direct see	30	15	20	20	40	2 LF direct see	15	20	10	-35 ⋅
2 LF transp. in	45	10	15	15	35	2 LF transp. in	10	15	10	25 .

. . .

Table J		CO	MPOU	MD		Table J		COM	POUND)
Rate 500 g/ha	12	21	25	39	40	Rate 375 g/ha	21	25	39	40
PD/TA						PD/TA				
barnyardgrass	40	-	-	-	-	barnyardgrass	-	-	-	-
ducksalad	100	0	0	30	10	ducksalad	20	0	0	0
early watergras	-	-	-	-	-	early watergras	-	-	_	-
gooseweed	-	98	85	80	85	gooseweed	80	45	90	85
junglerice	45	_	-	-	-	junglerice	-	-	-	_
late watergrass	45	-	-	-	-	late watergrass	-	-	-	-
monochoria	-	55	45	40	60	monochoria	40	40	25	40
redstem	100	0	0	0	20	redstem	0	0	0	10
rice flatsedge	100	55	60	30	20	rice flatsedge	35	30	70	15
ricefield bulru	-	50	30	60	40	ricefield bulru	40	15	65	35
smallflower fla	100	0	0	0	0	smallflower fla	0	0	0	0
tighthead spran	65	0	0	0	40	tighthead spran	0	0	0	0
water-clover	-	45	15	40	60	water-clover	40	10	20	10
A. plantago-aqu	-	100	90	90	90	A. plantago-aqu	90	45	100	85
2 LF direct see	35	15	15	10	20	2 LF direct see	15	10	10	20
2 LF transp. in	35	10	10	10	20	2 LF transp. in	10	10	10	20
mahla T		-	MDOI	n**		l m-23			_	
Table J	10		MPOU		40	Table J	COMP		ס	
Table J Rate 250 g/ha PD/TA	12	21	MPOU 25	ND 39	40	Table J Rate 125 g/ha PD/TA	COMP	POUNI 21	0	
Rate 250 g/ha	12 35				40	Rate 125 g/ha			0	
Rate 250 g/ha PD/TA		21				Rate 125 g/ha PD/TA	12	21	o O	
Rate 250 g/ha PD/TA barnyardgrass	35	21 30	25	39	_	Rate 125 g/ha PD/TA barnyardgrass	12 15	21	o.	
Rate 250 g/ha PD/TA barnyardgrass ducksalad	35 100	21 30 60	25 - 0	39 - 0	- 0	Rate 125 g/ha PD/TA barnyardgrass ducksalad	12 15 80	21 15 40	D.	
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras	35 100 -	30 60 35	25 - 0 -	39 - 0 -	- 0 -	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras	12 15 80	21 15 40 45)	
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed	35 100 - -	30 60 35 60	25 - 0 - 75	39 - 0 - 75	- 0 - 60	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed	15 80 - - 40	21 15 40 45	ס	
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice	35 100 - - 35	30 60 35 60	25 - 0 - 75 -	39 - 0 - 75 -	- 0 - 60	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice	15 80 - - 40	21 15 40 45 -	D.	
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass	35 100 - - 35 25	30 60 35 60 -	25 - 0 - 75 -	39 - 0 - 75 -	- 0 - 60 -	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass	15 80 - - 40	21 15 40 45 -		
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria	35 100 - - 35 25	30 60 35 60 - 35 35	25 - 0 - 75 - - 40	39 - 0 - 75 - - 25	- 0 - 60 - - 30	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria	15 80 - - 40 20	21 15 40 45 - - 30		
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem	35 100 - - 35 25 - 95	30 60 35 60 - 35 35 85	25 - 0 - 75 40 0	39 - 0 - 75 - - 25 0	- 0 - 60 - - 30 10	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem	15 80 - - 40 20 - 75	21 15 40 45 - 30 - 55		
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge	35 100 - - 35 25 - 95	30 60 35 60 - 35 35 85 98	25 - 0 - 75 - - 40 0 30	39 - 0 - 75 - - 25 0 20	- 0 - 60 - - 30 10	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge	15 80 - - 40 20 - 75	21 15 40 45 - 30 - 55		
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge ricefield bulru	35 100 - - 35 25 - 95 95	30 60 35 60 - 35 35 85 98 30	25 - 0 - 75 - 40 0 30 10	39 - 0 - 75 - - 25 0 20	- 0 - 60 - - 30 10 60	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge ricefield bulru	15 80 - - 40 20 - 75 85	21 15 40 45 - 30 - 55 85		
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge ricefield bulru smallflower fla	35 100 - - 35 25 - 95 95	30 60 35 60 - 35 35 85 98 30 65	25 - 0 - 75 - - 40 0 30 10 10	39 - 0 - 75 - - 25 0 20 20	- 0 - 60 - 30 10 60	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge ricefield bulru smallflower fla	15 80 - - 40 20 - 75 85 - 95	21 15 40 45 - 30 - 55 85 - 60		
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge ricefield bulru smallflower fla tighthead spran	35 100 - - 35 25 - 95 95 -	30 60 35 60 - 35 35 85 98 30 65 20	25 - 0 - 75 - 40 0 30 10 10 0	39 - 0 - 75 - - 25 0 20 20 0 10	- 0 - 60 - 30 10 60 10	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge ricefield bulru smallflower fla tighthead spran	15 80 - - 40 20 - 75 85 - 95	21 15 40 45 - 30 - 55 85 - 60		
Rate 250 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge ricefield bulru smallflower fla tighthead spran water-clover	35 100 - - 35 25 - 95 95 - 90 50	30 60 35 60 - 35 35 85 98 30 65 20	25 - 0 - 75 - 40 0 30 10 10 0	39 - 0 - 75 - 25 0 20 20 10 20	- 0 - 60 - 30 10 60 10 0	Rate 125 g/ha PD/TA barnyardgrass ducksalad early watergras gooseweed junglerice late watergrass monochoria redstem rice flatsedge ricefield bulru smallflower fla tighthead spran water-clover	15 80 - - 40 20 - 75 85 - 95 40 -	21 15 40 45 - 30 - 55 85 - 60 45 -		

Table J	COMPOUND	Tabl	e J COMPOUND
Rate 64 g/ha	12 21	Rate	32 g/ha 21
PD/TA		PD/T	A
barnyardgrass	10 0	barn	yardgrass 0
ducksalad	50 20	duck	salad 0
early watergras	- 15	earl	y watergras 0
gooseweed		goos	eweed -
junglerice	35 -	jung	lerice -
late watergrass	10 25	late	watergrass 0
monochoria		mono	choria -
redstem	10 40	reds	tem 35
rice flatsedge	80 98	rice	flatsedge 40
ricefield bulru		rice	field bulru -
smallflower fla	90 55	smal:	lflower fla 30
tighthead spran	30 0 .	tight	thead spran 0
water-clover		water	r-clover -
A. plantago-aqu		, 22 A P	lantago-aqu 🚌 🕬
2 LF direct see	15 10		direct see 0
2 LF transp. in	10 0	2 LF	transp. in 0

Table J	COMPOUND
Rate 16 g/ha	21
PD/TA	
barnyardgrass	0
ducksalad	0
early watergra	s 20
gooseweed	-
junglerice	-
late watergras	s 15
monochoria	-
redstem	25
rice flatsedge	20
ricefield bulr	u -
smallflower fl	a 30
tighthead spra	n 75
water-clover	-
A. plantago-aq	u -
2 LF direct see	e 10
2 LF transp. in	n 10

CLAIMS

What is claimed is:

1. A compound selected from Formula I, N-oxides and agriculturally suitable salts thereof,

5

10

15

20

25

$$R_1$$
 N — $S(O)_2R^2$
 X

I

wherein

X is H, F or Cl;

Y is F, Cl, Br, cyano, nitro, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy or C(S)NH₂;

R¹ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, formyl, C₂-C₂₀ alkylcarbonyl, C₄-C₇ cycloalkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₃-C₆ alkoxyalkylcarbonyl, C₂-C₆ haloalkoxycarbonyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₄-C₇ cycloalkylalkyl, C₄-C₇ halocycloalkylalkyl, S(O)₂R², C(O)SR³, C(O)NR⁴R⁵ or benzoyl;

R² is C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ haloalkyl, C₃-C₆ cylcloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkoxyalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ cyanoalkyl, C₁-C₆ nitroalkyl, (CH₂)_p-OR⁶, CH=CH(CH₂)_q-OR⁶, C=C(CH₂)_q-OR⁶, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₃-C₈ alkoxycarbonylalkyl, C₃-C₈ alkylcarbonyloxyalkyl or oxiranyl optionally substituted with 1-3 C₁-C₃ alkyl;

 R^3 is H, C_1 - C_3 alkyl or C_1 - C_3 haloalkyl; or R^3 is phenyl optionally substituted with C_1 - C_3 alkyl, 1-3 halogen, 4-5 fluorine, 1-2 nitro, C_1 - C_3 alkoxy or CF_3 ;

R⁴ is H, C₁-C₃ alkyl or C₁-C₃ haloalkyl; or R⁴ is phenyl optionally substituted with C₁-C₃ alkyl, 1-3 halogen, 4-5 fluorine, 1-2 nitro, C₁-C₃ alkoxy or CF₃; R⁵ is C₁-C₃ alkyl or C₁-C₃ haloalkyl; or

30 R⁴ and R⁵ are taken together as -CH-CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, or -CH₂CH₂OCH₂CH₂-;

 R^6 is C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylsulfonyl or $P(=O)(OR^7)(OR^8)$; or R^6 is phenylsulfonyl optionally substituted with C_1 - C_6 alkyl, 1-3 halogen, 4-5 fluorine, C_1 - C_6 alkoxy, CF_3 or C_2 - C_4 alkylcarbonyl;

 R^7 and R^8 are each independently H, C_1 - C_3 alkyl or C_1 - C_3 haloalkyl;

J is

5

J-14

10

306

J-17

wherein the dashed line in J-1, J-5, J-6, J-18, and J-19 indicates that the left-hand ring contains only single bonds or one bond in the ring is a carbon-carbon double bond;

m and n are each independently 0, 1, 2 or 3, provided that m + n is 2 or 3;

Z is CR^9R^{10} , O, S, S(O), S(O)₂, N(C₁-C₄ alkyl) or $(C_1-C_4 \text{ alkyl})$:

 Z^1 is CR^9R^{23} , O, S, S(O), S(O)₂, N(C₁-C₄ alkyl) or $(C_1-C_4 \text{ alkyl})$:

each R⁹ is independently H, C₁-C₆ alkyl, halogen, hydroxy, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₂-C₆ alkylcarbonyloxy or C₂-C₆ haloalkylcarbonyloxy;

each R^{10} is independently H, C_1 - C_6 alkyl, hydroxy or halogen; or when R^9 and R^{10} are bonded to adjacent carbon atoms they can be taken together

with the carbons to which they are attached to form

-HC-CHoptionally
substituted with at least one member selected from 1-2 halogen and 1-2

C₁-C₃ alkyl;

each R^{11} is independently H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkoxyalkyl;

35

307

- R¹² is H, halogen, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₁-C₆ haloalkyl or C₂-C₆ alkoxyalkyl;
- R¹³ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, HC(=O), C₂-C₅ alkylcarbonyl or N(R¹¹)₂;
- 5 R¹⁴ is C₁-C₆ alkyl, C₁-C₆ alkylthio, C₁-C₆ haloalkyl or N(CH₃)₂; W is N or CR¹⁵:
 - R^{15} is H, C_1 - C_6 alkyl or halogen; or R^{15} is phenyl optionally substituted with C_1 - C_6 alkyl, 1-3 halogen, 4-5 fluorine, C_1 - C_6 alkoxy or CF_3 ;

 R^{16} is C_1 - C_6 alkyl, halogen or C_1 - C_6 haloalkyl;

- 10 R¹⁷ and R¹⁸ are each independently H, C₁-C₆ alkyl or C₁-C₆ haloalkyl;
 - R^{19} and R^{20} are each independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 haloalkynyl;
 - R²¹ is H, halogen, cyano, C₁-C₃ alkoxy or C₁-C₃ haloalkoxy;
 - R^{22} is C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; or R^{22} is phenyl optionally substituted with C_1 - C_6 alkyl, 1-3 halogen, 4-5 fluorine, 1-2 nitro, C_1 - C_6 alkoxy or CF_3 ;

r vinggreinger åre, ogbyr i til til

R²³ is C₁-C₃ alkyl, hydroxy or halogen;

 R^{24} is cyano or $C(Q)R^{25}$;

R²⁵ is OR²⁶ or NR²⁷R²⁸.

 R^{26} is C_1 - C_6 alkyl or C_1 - C_6 haloalkyl;

- 20 each R^{27} is independently H or C_1 - C_6 alkyl;
 - R^{28} is H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy or $NR^{27}R^{29}$; or
 - R²⁷ and R²⁸ can be taken together as -CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, or -CH₂CH₂CH₂-;
 - R²⁹ is H, C₁-C₃ alkyl, C₂-C₄ alkylcarbonyl, C₂-C₄ alkoxycarbonyl or C₁-C₃
- 25 alkylsulfonyl;

Q is independently O or S;

 Q^{I} is O or S;

p is 1, 2 or 3; and

q is 0, 1, 2 or 3;

- 30 provided that,
 - (a) when J is J-5, X is F, Y is Cl, R¹ is H, Q is O, R⁹ and R¹⁰ are H, Z¹ is O, n is 2, and m is 1, then R² is other than CF₃;
 - (b) when J is J-6, X is F, Y is Cl, R¹ is H, Q is O, R⁹ and R¹⁰ are H, Z is CHCl or CHBr, n is 1, and m is 1, then R² is other than CF₃;
 - (c) when J is J-8, X is F, Y is Cl, R¹ is H, R¹⁷ and R¹⁸ are H, Q is O, R⁹ and R¹⁰ are H, Z is CH₂, and (m+n) is 2 or 3, then R² is other than CF₃;
 - (d) when J is J-8, X is F, Y is Cl, R^1 is H, R^{17} and R^{18} are H, Q is O, R^9 and R^{10} are H, Z is O, n is 1, and m is 2, then R^2 is other than CF_3 ; and

- (e) when J is J-11, X is F, Y is Cl, R^1 is H, R^{21} is Cl, R^9 and R^{10} are H, Z is CH₂, and (m+n) is 3, then R^2 is other than CF₃.
- 2. A compound of Claim 1 wherein:

X is F or Cl;

5

10

25

Y is F, Cl or Br;

R¹ is H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ alkoxyalkyl, C₃-C₆ haloalkenyl, C₃-C₆ alkoxyalkylcarbonyl, C₂-C₆ alkoxyarbonyl, C₂-C₆ alkoxycarbonyl, S(O)₂R² or C(O)NR⁴R⁵;

R² is C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ haloalkyl, C₃-C₆ cylcloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkoxyalkyl or C₂-C₆ haloalkoxyalkyl;

J is J-5, J-6, J-11, J-17 or J-19;

Z is CR^9R^{10} , O, S or $N(C_1-C_4 \text{ alkyl})$;

each R⁹ is independently H, halogen or C₁-C₆ haloalkoxy; each R¹⁰ is independently H, hydroxy or halogen;

each Q is O; Z^1 is CR^9R^{23} , O, S or $N(C_1-C_4$ alkyl); and

R²³ is halogen.

20 3. A compound of Claim 2 wherein:

Y is F or Cl:

R¹ is H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ alkoxyalkyl, C₃-C₆ haloalkenyl, C₂-C₆ alkoxycarbonyl;

 R^2 is C_1 - C_6 haloalkoxy, C_1 - C_6 haloalkyl, C_3 - C_6 halocycloalkyl, C_2 - C_6 alkoxyalkyl or C_2 - C_6 haloalkoxyalkyl;

Z is CR^9R^{10} or O; and

 Z^1 is CR^9R^{23} or O.

- 4. A compound of Claim 2 wherein:
- 30 J is J-19;

R¹ is H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;

 R^2 is C_1 - C_6 haloalkyl;

R⁹ is H:

35 R¹⁰ is hydroxy or halogen;

Z is CR9R10;

n is 1; and

m is 1.

10

15

20

25

30

35

- A compound of Claim 3 wherein:
 J is J-6; and
 Z is CR⁹R¹⁰.
- 6. The compound of Claim 5 which is selected from the group:
- a) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide;
 - b) (6S-cis)-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]-N-[(chloromethyl)sulfonyl]acetamide;
 - c) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide;
 - d) (6S-cis)-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl)-N-[(chloromethyl)sulfonyl]acetamide;
 - e) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monosodium salt;
 - f) (6S-cis)-1-chloro-N-[2-chloro-4-fluoro-5-(6-fluorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)phenyl]methanesulfonamide monopotassium salt;
 - g) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monosodium salt: and
 - h) (6S-cis)-1-chloro-N-[2-chloro-5-(6-chlorotetrahydro-1,3-dioxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-4-fluorophenyl]methanesulfonamide monopotassium salt.
- 7. A mixture comprising a herbicidally effective amount of a compound of Claim 6 with a herbicidally effective amount of one or more compounds selected from rimsulfuron, thifensulfuron-methyl, chlorimuron-ethyl, nicosulfuron, prosulfuron, primsulfuron, atrazine, terbuthylazine, dicamba, 2,4-D, bomoxynil, pyridate, sulcotrione, glufosinate, glyphosate, glyphosate-trimesium, fluthiacet-methyl, quizalofop-p-ethyl, bentazone, clopyralid, flumetsulam, halosulfuron, sethoxydim, flumiclorac-pentyl, imozamox, acetachlor, alachlor, dimethenamid, isoxaflutole, metolachlor, metribuzin, pendimethalin, thiafluimid, clethodim, fluazifop-p-butyl, haloxyfop, imazethapyr, imazaquin, lactofen, acifluorfen-sodium, oxasulfuron, imazameth, tribenuron-methyl, metsulfuron-methyl, chlorsulfuron, triasulfuron, bromoxynil, MCPA, fluroxypyr, fenoxaprop, fenchlorazole, diclofop, tralkoxydim, clodinafop, cloquintocet-mexyl, imazamethabenz, sulfosulfuron, difenzoquat, propanil, triallate, trifluralin, paraquat, diallate, linuron, diflufenican, cyanazine, neburon, terbutryn, prosulfocarb, isoproturon,

chlortoluron, methabenzthiazuron, metoxuron, simazine, ioxynil, mecoprop, metosulam, fluroglycophen-ethyl, flamprop-M-isopropyl, and benzoylpropethyl.

- 8. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 9. A herbicidal composition comprising a herbicidally effective amount of a mixture of Claim 7 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 10. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
- 10 11. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a mixture of Claim 7.

INTERNATIONAL SEARCH REPORT

Inter nat Application No PC1/US 96/16111

IPC 6	FICATION OF SUBJECT MATTER CO7D487/04 CO7D471/04 CO7D251/4 A01N43/90 A01N43/64 A01N47/38 209:00),(CO7D471/04,235:00,221:00)	3 //(C07D487/04,235: ,(C07D471/04,249:00,221	00.
According to	o International Patent Classification (IPC) or to both national classification	eation and IPC	
	SEARCHED		
Minimum d IPC 6	ocumentation searched (classification system followed by classificated CO7D A01N	n symbols)	
Documentat	non searched other than minimum documentation to the extent that st	sch documents are included in the fields sea	urched
Electronic d	late base consulted during the international search (name of data base	and, where practical, search terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re-	evant passages	Relevant to claim No.
A	EP 0 077 938 A (MITSUBISHI) 4 May see claims 1,12	1983	1,8
A	EP 0 364 797 A (BAYER) 25 April 1 see claims 1,6	990	1,8
P,X	WO 95 29158 A (BAYER) 2 November see claims 1,8; example 24	1995	1,8
Fur	ther documents are listed in the continuation of box C.	Patent family members are listed in	n annex.
'A' docur cons 'E' earlier fling 'L' docur which citati 'O' docur other 'P' docur later	ategories of cited documents: ment defining the general state of the art which is not dered to be of particular relevance r document but published on or after the international date of the state of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means ment published prior to the international filing date but than the priority date claimed	"I" later document published after the inter- or priority date and not in conflict wi- cited to understand the principle or the invention. "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do- "Y" document of particular relevance; the cannot be considered to involve an in- document is combined with one or in ments, such combination being obvior in the art. "&" document member of the same patent	th the application but secry underlying the claimed invention be considered to cument is taken alone claimed invention eventive step when the ore other such docusts to a person skilled
1	e actual completion of the international search 12 February 1997	Date of mailing of the international se	_
	I mailing address of the ISA European Patent Office, P.B. \$818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer Alfaro Faus, I	
	Fam (+ 31 30) 340 3016	I MITOLO LOUS * T	

INTERATIONAL SEARCH REPORT

Inter	onal Application No	

A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 (C07D487/04,239:00,209:00)	
According to International Patent Classification (IPC) or to both national	classification and IPC
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed by class	
Documentation searched other than minimum documentation to the extent	
Electronic data base consulted during the international search (name of da	ta base and, where practical, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category * Citation of document, with indication, where appropriate, of	the relevant passages Relevant to claim No.
Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
"Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report.
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer

Internation Plication No.

JT/US 96/16111

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Int	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	On grounds of Articles 6 and 17.2a(ii) of the PCT (conciseness of claims) and of the Guidelines for Examination in the EPO, Part B, Chapter III, 2.2 (economic reasons) the search has been restricted to a generalization of the preparation examples disclosed in the description.
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This [n	ternational Searching Authority found multiple inventions in this international application, as follows:
₹,	
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remar	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

iformation on patent family members

PC1/US 96/16111

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-77938	04-05-83	JP-A-	58072562	30-04-83
		JP-C-	1634028	20-01-92
		JP-B-	2057543	05-12-90
		JP-A-	58103363	20-06-83
		AU-A-	8946382	28-04-83
EP-A-364797	25-04-90	DE-A-	3835168	19-04-90
		DE-D-	58906982	24-03-94
		JP-A-	2164864	25-06-90
		US-A-	5069711	03-12-91
		US-A-	5221318	22-06-93
WO-A-9529158	02-11-95	DE-A-	4414568	02-11-95
201 2222	-	AU-A-	2308295	16-11-95
		CA-A-	2188796	02-11-95
		EP-A-	0757673	12-02-97

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPED)