

Date	15 March 2024
Team id	SWUID20240034764
Project title	Predicting Full Load Electrical Power Output
	of a Base Load Operated Combined Cycle
	Power Plant Using Machine Learning
Maximum marks	4 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

МО	TUNED HYPERPARAMETERS	OPTIMAL VALUES
DEL		
LR	LRmodel.fit(xtrain, ytrain)	0.9325315554761302
	LinearRegression()	0.9323313334761302
	LRpred=LRmodel.predict(xtest)	
	# Importing R Square Library	
	from sklearn.metrics import r2_score	
	# Checking for accuracy score with actual data and pr	
	LRscore=r2_score(ytest, LRpred)	
	LRscore	

```
DT
       xtest.shape
                                                          : 0.9212701843289313
       (1914, 4)
       from sklearn.linear_model import LinearRegression
       from sklearn.tree import DecisionTreeRegressor
       from sklearn.ensemble import RandomForestRegresson
       from sklearn.linear_model import LinearRegression
       LRmodel = LinearRegression()
       LRmodel.fit(xtrain, ytrain)
       from sklearn.tree import DecisionTreeRegressor
       DTRmodel = DecisionTreeRegressor()
       DTRmodel.fit(xtrain, ytrain)
       from sklearn.ensemble import RandomForestRegresson
       RFmodel = DecisionTreeRegressor()
       RFmodel.fit(xtrain, ytrain)
RF
       # Random Forest Regressor
       from sklearn.ensemble import RandomForestRegressor
       # Initializing the model
       RFmodel=RandomForestRegressor()
                                                                  0.9650934927089813
       # Train the data with Random Forest model
       RFmodel.fit(xtrain, ytrain)
       RFpred=RFmodel.predict(xtest)
       #Checking for accuracy score with actual data and
       RFscore=r2_score (ytest, RFpred)
       RFscore
```

Final Model Selection Justification

Final Model	Reasoning
Random Forest	The random forest model was selected due
	to its robustness, accuracy, and ability to
	handle large, complex datasets with both
	numerical and categorical features. Its
	ensemble approach, combining multiple
	decision trees, helps reduce overfitting, can
	manage missing values and improve
	generalization with project objectives,
	justifying its selection as the final model