CAPTCHA Images Decoder

Text-based CAPTCHA

Voice-over: Ze Hui Peng

Group Members:

- Ze Hui Peng
- Lijiangnan Tian
- Zijie Tan
- Yuxi Chen

CONTENTS

- Introduction
- Data
- Our four algorithms: CNN, RNN, SVM, KNN
- Comparisons of results
 - Two segmentation-free algorithms
 - > Two segmentation-based algorithms
- Conclusion

Introduction

- CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) has been a popular method to distinguish robots from human users
- Our goal is to use different algorithms to decode/recognise the text-based CAPTCHA images and compare their performance

Evolution of CAPTCHA

Text-based Captcha

ReCAPTCHA

3D Captcha

Mathematical Captcha

Image-based Captcha

Evolution of CAPTCHA

Qualifying question

Just to prove you are a human, please answer the following math challenge.

Q: Calculate:

$$\frac{\partial}{\partial x} \left[5 \cdot \sin\left(4 \cdot x\right) \right] \bigg|_{x=2\pi}$$
.

A: mandatory

Note: If you do not know the answer to this question, reload the page and you'll (probably) get another, easier, question.

Data

- ♦ 10,000 CAPTCHA images of size 200 × 50 pixels^[1]
 - Each has darkened background & 6-character-long string
 - Including 2 type of noise: shadow and fisheye effect
- Generated by the Google Kaptcha Library^{[2][3]}
 - In the name {content}_{index}.jpg
- Supervised classification
 - Multiclass Labels (36 classes, including 10 digits & 26 letters)

A sample CAPTCHA image with content 882m62

Methodology

- Segmentation-free models
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
- Segmentation-based models
 - Support Vector Machine (SVM)
 - \triangleright k-Nearest Neighbours (KNN)
- Measurement
 - > Performance is measured by <u>accuracy</u>
 - Correctly predict all characters in a CAPTCHA?

Segmentation-free Y Segmentation-based

Segmentation-free method: CNN

- Convolutional Neural Network
 - Reduce large data volume images to small data volume
 - Retains image characteristics
- Model
 - ReLU activation function
 - 4 Convolution Layers, 4 Max-pooling Layers, 2 Fully-connected Layers
 - Outputs a sequence of length 216 (6×36)

Segmentation-free method: CNN

Flow of Data

- > The model receives image data as input
- Outputs a sequence of length 216 (6×36)
- Sequence divided into 6 equal-sized segments (36, the same as the number of labels)
- > Obtain the index of the label according to the index of the *maximum* value in segments

Segmentation-free method: RNN

- Recurrent Neural Network
 - Potential to solve variable-length CAPTCHAS
- However
 - Traditional RNN has poor performance on such an Image Recognition problem
 - Accuracy 0.02% after 100 epochs
 - Variation: <u>Encoder-Decoder RNN</u>

Segmentation-free methods: RNN

Encoder-Decoder Model (seq2seq)

Flow of data

Flow of Data for SVM and KNN

Image segmentation

Segmentation-based methods: SVM

- Support Vector Machine
- ♦ Tool used: sklearn.svm.SVC
- Segmentation is required: The CAPTCHA images need to be first segmented into single alphanumeric characters, thus a more complex image preprocessing is required than previous.

Segmentation-based methods: KNN

- ❖ k-Nearest Neighbours
- Tool used: sklearn.neighbours.KNeighborsClassifier
- Classifies each character based on the most common class of its k closest distance neighbours
- Distance is calculated using Euclidean Distance based on the image pixels

Results: segmentation-free

- CNN model has considerably better performance than RNN on this problem
- Possible reason:
 - Spatial properties of CAPTCHA images?

Result: segmentation-based

- For SVM, accuracy can reach around 80%. The kernel type plays a particularly important role in the accuracy
- For KNN, maximum accuracy is around 72% with k = 20 neighbours, but the algorithm is highly susceptible to *noise*

Discussion, Conclusions, Future work

CNN	RNN	SVM	KNN
Champion Best performance Robust	Hope of variable-length CAPTCHA	Good performance even with rudimentary segmentation algo	Good performance with little noise

Thank You forward thing!

Group Members:

- Yuxi Chen
- ☐ Zijie Tan
- Lijiangnan Tian
 - Ze Hui Peng

Voice-over: Ze Hui Peng

RESOURCES

- 1. https://www.kaggle.com/ethan404/captcha6digits
- 2. https://code.google.com/archive/p/kaptcha/
- 3. https://github.com/Ethan707/CAPTCHA-Generator