Cluster Expansions

Results

Conclusion and Outlook

Cluster Expansions of Thermal States using Tensor Networks

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

June 22, 2021

Simulation

Cluster Expansions

Results

Conclusion and

Introduction

Introduction

Overview Simulation

Cluster Expansions

Results

- Overview condensed matter physics
 - Macroscopic and microscopic physical properties of matter
 - Metals
 - semiconductors
 - Liquids
 - Bose-Einstein Condensates
 - Magnets
 - Different disciplines
 - Experimental
 - Theoretical
 - Engineering

Introduction

Overview
Simulation

Cluster Expansions

Results

- Overview condensed matter physics
- Strongly correlated materials [1]
 - Superconductors
 - Quantum spin liquids
 - Strange metals
 - Correlated topological matter

Introduction

Overview Simulation

Cluster Expansions

Results

- Overview condensed matter physics
- Strongly correlated materials
- How to proceed
 - Material synthesis and discovery
 - Analytical methods
 - Numerical methods

Simulating Quantum Many-body Systems

Introduction

Overview Simulation

Cluster Expansions

Results

- Equations are known
- Curse of dimensionality
- Numerical methods
 - Exact diagonalisation
 - (post-) Hartree Fock methods, DFT methods
 - Monte Carlo methods
 - Tensor Networks

Tensor Networks

Introductior

Overview Simulation

Cluster

Results

$$|\Psi\rangle = \sum_{i_1, \dots, i_n} C^{i_1 i_2 \dots i_n} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_n\rangle.$$
 (1)

$$C^{i_1 i_2 \cdots i_n} = w_l C^{i_1} C^{i_2} \cdots C^{i_n} w_r$$

$$= \chi \chi \cdots \cdots \qquad (2)$$

- MPS
- Relevant corner Hilbert space

Operator Exponential

Introduction

Simulation

Cluster Expansions

Results

Conclusion and Outlook ■ (Real) Time evolution:

$$\hat{O} = e^{-i\hat{H}t} \qquad (3)$$

Statistical ensembles:

$$\hat{O} = \frac{e^{-\beta \hat{H}}}{\mathsf{Tr}\left(e^{-\beta \hat{H}}\right)}$$
 (4)

Imaginary time ($\beta = it$)

Cluster Expansions

Results

Conclusion and

Cluster Expansions

Introduction

Cluster Expansions

Results

$$e^{\hat{H}} = \sum_{\{B\}} \bigotimes_{i} B_{i}$$

$$e^{H(1)} = (6)$$

Introduction

Cluster Expansions

Results

- $lacksquare e^{\hat{H}} = \sum_{\{B\}} igotimes_i B_i$
- Finite number of blocks
- Encoded by 1 tensor

$$O^{abcd} = \begin{array}{c|c} & b & i_c \\ \hline & i_d & \end{array}$$
 (6)

Introduction

Cluster Expansions

Results

Introduction

Cluster Expansions

Results

- Multiple choices for encoding
- Solvers
 - Linear
 - Nonlinear

Advantages

Introduction

Cluster Expansions

Results

- Doesn't break symmetry
- Thermodynamic limit
- Tensor Network toolbox

Results

Results

1D: Transverse Field Ising (TFI)

Introduction

Cluster Expansions

1D Exact
TFI Phase Diagran

- \blacksquare Relative error ϵ
- Different encodings:
 - A: Small
 - E: Strict
 - F: well-conditioned
- bond dimension

		Encoding	
		Α	E/F
Order	3	5	10
	5	21	42
	7	85	170

Conclusion

Introduction

Cluster Expansions

Results

1D Exact

TFI Phase Diagram

- lacktriangle Large eta-steps
- Real time evolution
- Encoding
- $\blacksquare \ \, \mathsf{Truncation} \,\, \chi$

2D TFI: Introduction

Introduction

Cluster Expansions

Results

TFI Phase Diagram

- Phase Transition
- Criticality
- Finite size scaling
 - Observables: m, S and ξ
 - Parameters: T_c , exponents
- Γ = 2.5
- VUMPS (χ, δ^{-1})

Figure taken from [2]

TFI Phase Diagram: $\Gamma = 2.5$

Introduction

Cluster Expansions

Results

1D Exact

TFI Phase Diagram

Conclusion and

Data from [3]

Cluster Expansions

Results

Conclusion and Outlook

Conclusion

Introduction

Cluster Expansions

Results

- Construction fast and stable
- Cluster expansions work well in 1D and 2D
- Real time evolution

Outlook

Introduction

Cluster Expansions

Results

- 3D
- Incorperating internal symmetries
- Lattices

References I

Introductio

Cluster Expansion

Results

Conclusion and Outlook A. Alexandradinata, N. P. Armitage, A. Baydin, W. Bi, Y. Cao, H. J. Changlani, E. Chertkov, E. H. d. S. Neto, L. Delacretaz, I. E. Baggari, G. M. Ferguson, W. J. Gannon, S. A. A. Ghorashi, B. H. Goodge, O. Goulko, G. Grissonnanche, A. Hallas, I. M. Haves, Y. He, E. W. Huang, A. Kogar, D. Kumah, J. Y. Lee, A. Legros, F. Mahmood, Y. Maximenko, N. Pellatz, H. Polshyn, T. Sarkar, A. Scheie, K. L. Seyler, Z. Shi, B. Skinner, L. Steinke, K. Thirunavukkuarasu, T. V. Trevisan, M. Vogl, P. A. Volkov, Y. Wang, Y. Wang, D. Wei, K. Wei, S. Yang, X. Zhang, Y.-H. Zhang, L. Zhao, A. Zong, The Future of the Correlated Electron Problem (oct 2020). arXiv:2010.00584. URL http://arxiv.org/abs/2010.00584

References II

Introductio

Cluster Expansion

Results

Conclusion and Outlook

S. Hesselmann, S. Wessel, Thermal Ising transitions in the vicinity of two-dimensional quantum critical points, PHYSICAL REVIEW B 93 (2016) 155157.

doi:10.1103/PhysRevB.93.155157.

P. Czarnik, P. Corboz, Finite correlation length scaling with infinite projected entangled pair states at finite temperature, Physical Review B 99 (2019) 245107.

doi:10.1103/PhysRevB.99.245107.

Tensor Networks

Linear Solver

TFI Collapses

Direct Results

Solvers

Tensor Networks

Tensor Networks: Introduction

Tensor Networks

$$|\Psi\rangle = \sum_{i_1 i_2 \cdots i_n} C^{i_1 i_2 \cdots i_n} |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_n\rangle.$$
 (6)

$$C^{i_1i_2\cdots i_n}=Tr(C^{i_1}C^{i_2}\cdots C^{i_n}M). \tag{7}$$

Tensor Networks: Graphical Notation

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

conventional	Einstein	tensor notation
\vec{x}	x_{α}	<u>x</u> —
М	$M_{lphaeta}$	<u> </u>
$\vec{x}\cdot\vec{y}$	$x_{\alpha}y_{\alpha}$	x - y

Tensor Networks: MPS

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

Tensor Networks: Operators

Tensor Networks

ear Solve

Construction

TFI Collapses

Direct Results

Solvers

$$\hat{O} = \cdots \longrightarrow \cdots$$
 (10)

< ≣ ▶ ∢ ≣ ▶ **⋽**|च **୬**९(

(11)

Tensor Network

Linear Solver

Construction

TFI Collapses

Direct Results

Solvers

Linear Solver

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

Tensor Networks

Linear Solver

Construction

TEL Collapses

Direct Posulte

- Invert A^i separately
 - Fast
 - Numerically unstable

Tensor Networks

Linear Solver

Construction

TFI Collanses

Direct Results

- Invert *Aⁱ* separately
 - Fast
 - Numerically unstable

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

- Invert A^i separately
- Full inversion
 - Slow
 - Stable for pseudoinverse

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

- Invert A^i separately
- Full inversion
- Sparse full inversion

$$A^i = U^i \Sigma^i V^{i\dagger}$$

Tensor Networks

Linear Solver

Construction

10

3D

TFI Collapses

Direct Results

Solvers

Construction

Notation

Construction

$$O^{01}O^{10} = \bigcirc 1$$
 (14)

(13)

Construction

$$\bigcirc = \exp\left(-\beta H(\bigcirc)\right)$$

$$\bigcirc \frac{1}{} \bigcirc = \exp{-\beta H} (\bigcirc \frac{}{})$$

(15)

(16)

Construction

Tensor Netw

Linear Solve

Construction

1D

2D

Divoct Posulto

Direct Results

(17)

Tensor Netw

Linear Solve

Construction

Constituction

2D

2D ____

Direct Posults

Salvara

(17)

1D: Variant A

(18a)

(18b)

(18c)

(18d)

(18e)

31 / 19

1D: Variant E

(19a)

(19b)

(19c)

(19d)

1D: Variant F

 $\bigcirc 1 \bigcirc 2 \bigcirc 1 \bigcirc +$

1 2 2 1

(20a)

(20b)

(20c)

(20d)

(20e)

Tonsor Notworks

Linear Solver

Construction

Construction

1D

__. _ ..

Direct Results

2D: Linear Blocks

(22c)

(22a)

(22b)

2D: Nonlinear Blocks

Tensor Network

Linear Solve

Constructior

1D

...

Direct Results

Direct Results

)

(24)

(23)

Tensor Networks

Linear Solver

Construction

TFI Collapses

g = 0.0

g = 2.9

Direct Results

Solvers

TFI Collapses

TFI Phase Diagram: Classical Ising

Tensor Networks

Linear Solver

Construction

TFI Collaps

g = 0.0

. . .

Tensor Networks Linear Solver

Construction

TEL Colla

g = 0.0

Direct Results

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

2D Exact

Solvers

Direct Results

1D: Transverse Field Ising (TFI): full

Tensor Networks

Linear Solver

Construction

TFI Collapse

Direct Results

1D: Heisenberg XXX

Tensor Networks

Linear Solver

Construction

TFI Collapses

Direct Results

2D: Encodings + Error Measure

- Tensor Networks
- Linear Solver
- Construction
- TFI Collapses
- Direct Results
 2D Exact
- Solvers

- lacktriangle Relative error ϵ more challenging
- Encodings based on A (order 5)

	χ
no loops	21
plaquette	27
extensions	43

2D: Transverse Field Ising

2D Exact

Tensor Network

2.....

TEL Collapses

Direct Results

Solvers

Nonlinear Solver

Sequential Linear Solve

Linear solver

Tensor Networks

Linear Solve

Construction

TFI Collapses

Direct Populto

Solvers

Linear Solver

Nonlinear Sol

Sequential Linear Solver

- Invert leg per leg
- Pseuodinverse

Linear Solver: Applicability

Tensor Networks

Linear Solvei

Construction

TFI Collapses

Direct Results

Solvers

Linear Solver

Nonlinear Sol

Sequential Linear Solver

Nonlinear Solver

Nonlinear Solver

- Nonlinear least squares
- Jacobian
- Permutations

(28)

Sequential Linear Solver

Tensor Networks

Linear Solve

Construction

TFI Collapses

Direct Results

Solvers

Linear Solver

Nonlinear Solve

Sequential Linear Solver

- Based on linear solver
- Sweep over unknown tensors
- Permutations