TD INF567

IoT Protocols Version: Feb. 2024

1 Battery Life Time in LoRa

In this exercice, we estimate the battery lifetime of a LoRa device as a function of its transmission period. We have the following assumptions: $I_{sleep}=0.1~\mu\mathrm{A}$, $I_{tx}=125~\mathrm{mA}$, $I_{rx}=10~\mathrm{mA}$, $T_{sleep}=T-T_{tx}-T_{rx}$, $C=2500~\mathrm{mAh}$, where T is the transmission period and T_{tx} is the packet transmission time. The channel bandwidth is $B=125~\mathrm{kHz}$ and the spreading factor is SF=12. Every transmission is made of a preamble ($q=12~\mathrm{symbols}$), a packet payload of $p=51~\mathrm{Bytes}$ protected by a channel code of rate $r=4/5~\mathrm{and}$ a PHY+MAC overhead of $o=324~\mathrm{bits}$. In Class A, we assume an unacknowledged mode without any traffic on the downlink. Still, the device has to listen to the two receive windows. The duration of a receive window is the time required to detect a preamble.

Question 1 Compute T_{tx} as a function of p, r, o, q, SF and B and give the numerical application.

Question 2 Compute the receive window duration. Deduce T_{rx}^A .

Question 3 What is the battery lifetime in years when the device transmits a packet every 2 hours with Class A.

In Class B, on top of the process described for class A, we assume that the device listens every second ($t_p = 1$ s) to a ping slot (without transmission) and every $t_b = 128$ s to a beacon (10 symbol preamble + 17 Bytes sent with SF = 9, B = 125 kHz and coding rate r = 4/5). We assume that the ping slot duration is the time required to detect a 12 symbol preamble with SF = 12 and B = 125 kHz.

Question 4 Compute the duration of a beacon, of a ping slot, and finally an approximation for T_{rx}^B .

Question 5 Deduce the battery lifetime in years when the device transmits a packet every 2 hours with Class B.

Question 6 Compute T_{rx}^C in Class C.

Question 7 Deduce the battery lifetime in years when the device transmits a packet every 2 hours with Class B.

Figure 1: Vulnerability window in Sigfox.

2 Sigfox MAC Performance

In this exercice, we model and evaluate the performance of the MAC protocol of Sigfox. Assume that N nodes are transmitting packets of duration T at a rate of λ packets/s. System bandwidth is W. Carrier frequency f_c is chosen uniformly random in W. Any transmission in $f_c \pm \delta_f/2$ implies a collision. Messages are repeated r times (r identical packets are sent and they are supposed to be sent independently). Figure 1 shows the vulnerability window, i.e., the time-frequency area around a current transmission within which a new transmission implies a collision. Recall that for Poisson arrivals of rate λ , the probability to have k arrivals in a time interval of T is $\frac{(\lambda T)^k}{k!}e^{-\lambda T}$.

Question 8 What is the arrival rate of packets in the vulnerability window?

Question 9 What is the probability to have at least one arrival from this new process in the vulnerability window?

Question 10 What is the failure probability when r transmissions are allowed?

3 LoRa Coverage

We want to estimate the LoRa coverage. We have the following assumptions:

- Thermal noise spectral density is $N_0 = -174$ dBm/Hz, noise factor is NF = 6 dB.
- System bandwidth is W = 125 kHz.
- Target SNR is around -20 dB (for SF = 12 obtained from [Georgious'16]).
- The transmit power is bounded by the regulation: $P_{tx} = 16.15 \text{ dBm}$
- The typical antenna gain at the BS is $G_r = 6$ dBi (provides a benefit on the uplink but does not allow to increase the ERP on the downlink). We assume that there are two receive antennas for diversity.
- Cable losses are $L_c = 3$ dB and penetration loss for indoor propagation is $L_p = 18$ dB.
- The shadowing standard deviation is $\sigma = 7$ dB. We require an outage probability of $P_{out} = 0.9$.

• Hata model valid for 150-1500 MHz can be applied with f=868 MHz. With $h_B=30$ m, $h_m=1$ m, we have A=127.3 dB, B=35.2, and C=0 in a urban area. We have A=127.3 dB, B=35.2, and C=28.3 in a rural area.

Question 11 Compute the noise power and the receive sensitivity in dBm.

Question 12 Compute the sum of all the gains and losses and compute the shadowing margin.

Question 13 Compute the MAPL and the cell range in a urban area and in a rural area.