Metody numeryczne 1 Lista nr 6

1. Korzystając z metody różnicy centralnej rzędu h⁴ oblicz pierwszą, drugą i trzecią pochodną funkcji

$$f(x) = \ln\left(\tanh\left(\frac{x}{x^2 + 1}\right)\right)$$

w punkcie x=0.2. Dla jakich wartości h obliczone pochodne mają największą dokładność?

2. Na podstawie danych z tabeli oblicz f'(0.2) najdokładniej, jak to tylko możliwe:

Х	0.0	0.1	0.2	0.3	0.4
f(x)	0.0	0.078348	0.13891	0.192916	0.244981

3. Korzystając z interpolacji wielomianowej, oblicz f'(0) i f''(0), jeśli

Х	-2.2	-0.3	0.8	1.9
f(x)	-15.18	10.962	1.92	-2.04

4. Oblicz całkę

$$\int_{-1}^{1} \cos(2\cos^{-1}x) dx$$

korzystając ze wzoru Simpsona dla 3, 5 i 7 węzłów. Wyjaśnij wyniki.

5. Okres T wahadła matematycznego o długości L zadany jest wzorem

$$T = 4\sqrt{\frac{L}{g}}h(\theta_0)$$

gdzie g to przyspieszenie ziemskie, a θ_0 to amplituda oraz

$$h(\theta_0) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - \sin^2\left(\frac{\theta_0}{2}\right) \sin^2\theta}}$$

Oblicz $h(15^\circ)$, $h(30^\circ)$ i $h(45^\circ)$. Porównaj te wartości z $h(0) = \pi/2$ stosowanym w przybliżeniu harmonicznym.

6. Oblicz całkę

$$\int_{1}^{\pi} \frac{\ln x}{x^2 - 2x + 2} dx$$

metodą Gaussa-Legendre'a dla 2 i 4 węzłów.

7. Oblicz całkę

$$\int_{-1}^{1} \frac{\cos x - e^x}{\sin x} dx$$

z co najmniej 10 dokładnymi cyframi dziesiętnymi.

8. Oblicz numerycznie całkę

$$\int_{0}^{1} dx \int_{0}^{x} dy \sin(\pi x) \sin(\pi (y-x))$$