TRƯỜNG ĐẠI HỌC XÂY DỰNG HÀ NỘI

Đề kiểm tra ĐQT môn: Toán học tính toán, Đề số 93

Bộ môn Toán ứng dụng

Được dùng tài liệu. Không trao đổi, hỏi bài.

Họ và tên:	MSSV:	Lớp MH:

Câu 1. Bằng phương pháp bình phương tối thiểu, tìm xấp xỉ của hàm số có giá trị trong bảng sau bởi đa thức bậc nhất (hai biến) và đánh giá sai số.

(hai bien) va dann gia sai so.								
	(x, y)	(-3.4, -4.8)	(-3.3, -0.7)	(-0.4, 5.0)	(4.2, 0.3)			
	Z	(-3.4, -4.8) -9.4	-5.6	6.1	11.1			
$ \text{Câu 2. Cho hệ phương trình} \begin{cases} x_1 = 0.13x_1 - 0.07x_2 - 0.2x_3 - 0.04x_4 - 2.3 \\ x_2 = -0.1x_1 + 0.13x_2 - 0.1x_3 + 0.06x_4 - 2.5 \\ x_3 = -0.25x_1 - 0.21x_2 - 0.13x_3 + 0.17x_4 - 0.2 \end{cases} . \text{ Bằng phương pháp lặp điểm bất } $								
$k \mid x_{\cdot}^{(k)}$		$\chi_{0}^{(k)}$	$\chi_{0}^{(k)}$	X	(k)	£.		

k	$X_1^{(k)}$	$X_{2}^{(k)}$	$X_3^{(k)}$	$X_4^{(k)}$	$\varepsilon_{\mathbf{k}}$
1					
2					
3					