Real-Time Tracking via On-line Boosting

Helmut Grabner, Michael Grabner, Horst Bischof

Graz University of Technology
Institute for Computer Graphics and Vision

Tracking "Shrek"

M. Grabner, H. Grabner and H Bischof. Real-time tracking with on-line feature selection. CVPR 2006.

Tracking Requirements

Adaptivity

Appearance changes (e.g. out of plane rotations)

Robustness

Occlusions, cluttered background, illumination conditions

♦ Generality

Any object

Outline

- **♦ Tracking as Classification**
- Boosting for Feature selection
 - From Off-line to On-line
 - On-line Feature Selection
- ◆ Tracking
- **♦ Experimental Results**
- Conclusion

Tracking as Classification

♦ Tracking as binary classification

S. Avidan. Ensemble tracking. CVPR 2005.

J.Wang, et al. Online selecting discriminative tracking features using particle filter. CVPR 2005.

Tracking as Classification

- ◆ Tracking as binary classification problem
 S Avidan Ensemble tracking CVPR 20
 - J.Wang, et al. Online selecting discriminative tracking features using particle filter. CVPR 2005.
- Object <u>and</u> background changes are robustly handled by <u>on-line</u> updating!

Boosting for Feature Selection

Object Detector

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

Fixed Training set General object detector

Object Tracker

On-line update
Object vs. Background

Combination of simple image features using Boosting as Feature Selection

On-Line Boosting for Feature Selection

H. Grabner and H. Bischof. **On-line boosting** and vision. CVPR, 2006.

Given:

- set of labeled training samples
- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997.

Given:

- set of labeled training samples
- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

Given:

- set of labeled training samples
- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

 α_1 .

Given:

- set of labeled training samples
- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

Given:

- set of labeled training samples
- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

 α_2

$$=\alpha_{1}\cdot \boxed{ }+\alpha_{2}\cdot$$

Given:

- set of labeled training samples
- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

Result:

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

off-line

on-line

Given:

- set of labeled training samples

$$\mathcal{X} = \{\langle \mathbf{x}_1, y_1 \rangle, ..., \langle \mathbf{x}_L, y_L \rangle \mid y_i \pm 1\}$$

- weight distribution over them $D_0=1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

off-line

on-line

Given:

- set of labeled training samples

$$\mathcal{X} = \{\langle \mathbf{x}_1, y_1 \rangle, ..., \langle \mathbf{x}_L, y_L \rangle \mid y_i \pm 1\}$$

- weight distribution over them $D_0=1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Given:

for n = 1 to N

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

off-line

only one training example to update the classifier

on-line

Given:

- set of labeled training samples

$$\mathcal{X} = \{\langle \mathbf{x}_1, y_1 \rangle, ..., \langle \mathbf{x}_L, y_L \rangle \mid y_i \pm 1\}$$

- weight distribution over them $D_0=1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Given:

- ONE labeled training sample $\langle \mathbf{x},y
 angle \mid y \pm 1$
- strong classifier to update

for n = 1 to N

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

off-line

update importance for the current sample

on-line

Given:

- set of labeled training samples

$$\mathcal{X} = \{\langle \mathbf{x}_1, y_1 \rangle, ..., \langle \mathbf{x}_L, y_L \rangle \mid y_i \pm 1\}$$

- weight distribution over them $D_0=1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Given:

- ONE labeled training sample $\langle \mathbf{x},y
 angle \mid y \pm 1$
- strong classifier to update

- initial importance $\lambda=1$

for n = 1 to N

- update importance weight λ

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

off-line

online update the weak classifier

on-line

Given:

- set of labeled training samples

$$\mathcal{X} = \{\langle \mathbf{x}_1, y_1 \rangle, ..., \langle \mathbf{x}_L, y_L \rangle \mid y_i \pm 1\}$$

- weight distribution over them $D_0=1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Given:

- ONE labeled training sample $\langle \mathbf{x},y
 angle \mid y \pm 1$
- strong classifier to update
- initial importance $\lambda=1$ for n = 1 to N
 - update the weak classifier using samples and importance

$$h_n^{meak}(\mathbf{x}) = \mathcal{L}(h_n^{meak}, \langle \mathbf{x}, y \rangle, \lambda)$$

- update importance weight $\pmb{\lambda}$ next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

off-line

update errors and weights

on-line

Given:

- set of labeled training samples

$$\mathcal{X} = \{\langle \mathbf{x}_1, y_1 \rangle, ..., \langle \mathbf{x}_L, y_L \rangle \mid y_i \pm 1\}$$

- weight distribution over them $D_0=1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Given:

- ONE labeled training sample $\langle \mathbf{x},y
 angle \mid y \pm 1$
- strong classifier to update
- initial importance $\lambda=1$ for n = 1 to N
 - update the weak classifier using samples and importance

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(h_n^{weak}, \langle \mathbf{x}, y \rangle, \lambda)$$

- update error estimation $\widehat{e_n}$
- update weight $lpha_n=f(\widehat{e}_n)$
- update importance weight λ

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

off-line

Given:

- set of labeled training samples

$$\mathcal{X} = \{\langle \mathbf{x}_1, y_1 \rangle, ..., \langle \mathbf{x}_L, y_L \rangle \mid y_i \pm 1\}$$

- weight distribution over them $D_0=1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

on-line

Given:

- ONE labeled training sample $\langle \mathbf{x},y
 angle \mid y \pm 1$
- strong classifier to update
- initial importance $\lambda=1$ for n = 1 to N

- update the weak classifier using samples and importance

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(h_n^{weak}, \langle x, y \rangle, \lambda)$$

- update error estimation $\widehat{e_n}$
- update weight $\alpha_n = f(\hat{e}_n)$
- update importance weight λ

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

 $= \alpha_1 \cdot$

On-line Boosting

Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

next

 $+\alpha_2$ ·

Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

On-line Boosting for Feature Selection 1/3

 Each feature corresponds to a weak classifier

Features

- Haar-like wavelets
- Orientation histograms
- Locally binary patterns (LBP)

Fast computation using efficient data structures

- integral images
- integral histograms
 - F. Porikli. Integral histogram: A fast way to extract histograms in cartesian spaces. CVPR 2005.

On-line Boosting for Feature Selection 2/3

Introducing "Selector"

selects one feature from its local feature pool

$$\mathcal{H}^{weak} = \{h_1^{weak}, ..., h_M^{weak}\}\$$

 $\mathcal{F} = \{f_1, ..., f_M\}$

$$h^{sel}(\mathbf{x}) = h^{weak}_m(\mathbf{x})$$

 $m = \arg\min_i e_i$

On-line boosting is performed on the Selectors and not on the weak classifiers directly.

H. Grabner and H. Bischof. **On-line boosting** and vision. CVPR, 2006.

On-line Boosting for Feature Selection 3/3

Tracking 1/2

Tracking 2/2

Tracking

Confidence Map

Max. Confidence Value

On-line Feature Exchange

Public Sequences

J. Lim, D. Ross, R. Lin, and M. Yang. **Incremental learning for visual tracking.** NIPS 2005.

A. D. Jepson, D. J. Fleet, and T.F. El-Maraghi. Robust online appearance models for visual tracking.

CVPR 2001.

"Tracking the Invisible"

Conclusion

♦ Tracking as Classification

- Continuously updating a classifier which discriminates the object from the background
- Adaptivity
- Robustness
- Generality

♦ Real-Time

- Efficient data structures for all basic image features types
- Shared Feature Pool

Thank you for your attention. Questions?

Combination: Detection, Tracking and Recognition