

Geometria Analítica e Álgebra Linear

Professora Vanussa Gislaine Dobler de Souza

1) Determine x, y, z e w se
$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

2) Sendo A =
$$\begin{bmatrix} 1 & -1/9 \\ 2/3 & 2 \end{bmatrix}$$
, B = $\begin{bmatrix} -5 & 1/3 \\ 2/5 & -1 \end{bmatrix}$ e C = $\begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$ calcule:

a)
$$2\left(\frac{1}{4}A + \frac{1}{4}B\right)$$

c)
$$\frac{5}{3}B - \frac{5}{3}C$$

3) Calcular X tal que X + A = B sabendo que :
$$A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$
 e B = $(b_{ij})_{2x2}$ onde $b_{ij=3i-j}^3$.

4) Sendo A =
$$[1 2 4]$$
, B = $[3 -1 7]$ determine X tal que $\frac{1}{2} X (2A - 3B)^T$.

5) Sejam:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}, C = \begin{bmatrix} 3 & -1 & 3 \\ 4 & 1 & 5 \\ 2 & 1 & 3 \end{bmatrix}, D = \begin{bmatrix} 3 & -2 \\ 2 & 4 \end{bmatrix}, E = \begin{bmatrix} 2 & -4 & 5 \\ 1 & 0 & 4 \\ 3 & 2 & 1 \end{bmatrix}, F = \begin{bmatrix} -4 & 5 \\ 2 & 3 \end{bmatrix}$$

Se possível, calcule:

e) CB+D e)
$$A(C+E)$$
 e $AC+AE$ g) $(AB)^T$ e B^TA^T h) $(C+E)^T$

$$(AB)^{T} e B^{T}A^{T}$$

6) Calcule
$$A + B$$
 onde A e B são matrizes $3x2$ com $aij = i - j$ e $bij = j - i$.

7) Calcule a matriz X tal que X + A = B + C onde:

$$A = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ 7 & -1 \end{bmatrix} e C = \begin{bmatrix} 5 & 8 \\ -9 & 2 \end{bmatrix}$$

8) Consideremos uma pequena indústria que faz a montagem de dois modelos de bicicletas: um modelo simples e outro composto. O número de pedais e o número de faróis que se utiliza em cada bicicleta constam na seguinte tabela:

	Modelo simples	Modelo composto
nº de pedais	2	4
nº de faróis	1	2

Geometria Analítica e Álgebra Linear

Professora Vanussa Gislaine Dobler de Souza

Suponhamos que em 3 dias determinados, a produção de bicicletas é como se segue:

	1° dia	2° dia	3° dia
Modelo simples	10	15	20
Modelo composto	5	8	10

Quantos pedais e quantos faróis foram empregados em cada dia, na montagem das bicicletas?

9) Uma indústria automobilística produz carros *X* e *Y* nas versões *standard*, *luxo* e *superluxo*. Para a montagem destes veículos são utilizadas peças A, B e C em quantidades dadas nas tabelas abaixo:

	Carro X	Carro Y
Peça A	2	6
Peça B	3	4
Peça C	5	2

	Standard	Luxo	Superluxo
Carro X	2	4	3
Carro Y	3	2	1

Com estas informações, calcule o número de peças de cada tipo (A, B e C) utilizadas na fabricação destes carros nas três versões citadas.

10) Calcule o valor de x nas igualdades abaixo:

a)
$$\begin{vmatrix} 3x & 3 \\ 4 & x+3 \end{vmatrix} = 0$$
 b) $\begin{vmatrix} 3x & 1 \\ 8 & \frac{2}{3}x \end{vmatrix} = 0$ c) $\begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 3 \\ 1 & x & 3 \end{vmatrix} = 0$ d) $\begin{vmatrix} 2 & 1 & 3 \\ 4 & -1 & x-1 \\ x & 0 & x \end{vmatrix} = 12$

11) Calcule o valor de x para que se tenha:

$$\begin{vmatrix} 1 & 1 & 3 \\ x & x & 4 \\ 0 & x & 2 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 1 & x \end{vmatrix}.$$