Aula 9

Topologia em \mathbb{C}

 $\mathbb C$ é um espaço métrico com a distância dada por

$$d(z, w) = |z - w|$$

 \mathbb{C} é isométrico a \mathbb{R}^2

$$B_{\delta}(z) = \{ w \in \mathbb{C} : |w - z| < \delta \}$$

<u>Definição</u>: Diz-se que $A \subset \mathbb{C}$ é um **conjunto aberto**, se para qualquer $z \in A$ existe $\delta > 0$ tal que $B_{\delta}(z) \subset A$. Chama-se **vizinhança aberta** de um ponto z a qualquer conjunto aberto que o contenha.

Proposição:

- Os conjuntos ∅ e ℂ são abertos.
- Intersecções finitas de abertos são abertas.
- Reuniões arbitrárias de abertos são abertas.

<u>Definição</u>: Diz-se que $F \subset \mathbb{C}$ é um **conjunto fechado**, se o complementar $F^c = \mathbb{C} \setminus F$ é aberto.

Proposição:

- Os conjuntos ∅ e ℂ são fechados.
- Reuniões finitas de fechados são fechadas.
- Intersecções arbitrárias de fechados são fechadas.

Definição:

- Diz-se que um conjunto $\Omega \subset \mathbb{C}$ é **limitado** se existe M>0 tal que para todos $z\in\Omega$ se tem $|z|\leq M$. Ou seja, se $\Omega\subset B_M(0)$.
- Diz-se que $z \in C$ é um **ponto fronteiro** de um conjunto $\Omega \subset \mathbb{C}$ se, para todo o $\delta > 0$ se tem $B_{\delta}(z) \cap \Omega \neq \emptyset$ e $B_{\delta}(z) \cap \Omega^c \neq \emptyset$. Designa-se por **fronteira** de Ω e representa-se $\partial \Omega$ o conjunto dos pontos fronteiros de Ω .
- Diz-se que $z \in C$ é um **ponto interior** de um conjunto $\Omega \subset \mathbb{C}$ se existe $\delta > 0$ tal que $B_{\delta}(z) \subset \Omega$. Designa-se por **interior** de Ω e representa-se int Ω o conjunto dos pontos interiores de Ω .
- Diz-se que $z \in C$ é um **ponto exterior** de um conjunto $\Omega \subset \mathbb{C}$ se existe $\delta > 0$ tal que $B_{\delta}(z) \subset \Omega^c$, ou seja, se $z \in \operatorname{int} \Omega^c$. Designa-se por **exterior** de Ω e representa-se ext Ω o conjunto dos pontos exteriores de Ω .
- Diz-se que $z \in C$ é um **ponto aderente** a um conjunto $\Omega \subset \mathbb{C}$ se para todo o $\delta > 0$ se tem $B_{\delta}(z) \cap \Omega \neq \emptyset$. Designa-se por **aderência** ou **fecho** de Ω e representa-se $\overline{\Omega}$ o conjunto dos pontos aderentes a Ω .
- Diz-se que $\Omega \subset C$ é um **subconjunto denso** se $\overline{\Omega} = \mathbb{C}$.

Proposição:

- Dado qualquer conjunto $\Omega \subset \mathbb{C}$ tem-se que \mathbb{C} é dado pela reunião disjunta $\mathbb{C} = \operatorname{int} \Omega \cup \partial \Omega \cup \operatorname{ext} \Omega$.
- Dado qualquer conjunto $\Omega \subset \mathbb{C}$ tem-se que $\overline{\Omega} = \Omega \cup \partial \Omega = (\operatorname{ext} \Omega)^c$.
- $A \subset \mathbb{C}$ é aberto \Leftrightarrow int $A = A \Leftrightarrow \partial A \cap A = \emptyset$.
- $F \subset \mathbb{C}$ é fechado $\Leftrightarrow F = \overline{F} \Leftrightarrow \partial F \subset F$.
- $\Omega \subset \mathbb{C}$ é denso \Leftrightarrow para todo o $\delta > 0$ e todo o $z \in \mathbb{C}$, tem-se $B_{\delta}(z) \cap \Omega \neq \emptyset$.

Sucessões em C

$$\{z_n\}: \mathbb{N} \to \mathbb{C}$$

$$z_n = x_n + iy_n$$

Definição: Diz-se que $L \in \mathbb{C}$ é o limite da sucessão $\{z_n\}$, ou que $\{z_n\}$ converge para $L \in \mathbb{C}$, e representa-se $\lim z_n = L$ ou $z_n \to L$, se qualquer que seja a bola centrada em L, $B_{\delta}(L)$ existe uma ordem $N \in \mathbb{N}$ tal que, para todo n > N os correspondentes termos da sucessão estão todos nessa bola, $z_n \in B_{\delta}(L)$. Ou seja,

$$\forall_{\delta>0} \exists_{N\in\mathbb{N}} : n>N \Rightarrow |z_n-L|<\delta,$$

ou ainda, no sentido de $\mathbb R$

$$d(z_n, L) = |z_n - L| \to 0.$$

Chama-se **sucessão convergente** a uma sucessão que tem limite complexo e sucessão **sucessão divergente** no caso contrário.

Proposição: Seja $\{z_n\}_{n\in\mathbb{N}}$ uma sucessão de números complexos, $z_n=x_n+i\,y_n$ e $L=a+i\,b\in\mathbb{C}$. Então

 $z_n \to L \text{ em } \mathbb{C} \Leftrightarrow x_n \to a \text{ e } y_n \to b \text{ em } \mathbb{R}.$

Proposição: Toda a sucessão convergente é limitada e o limite é único.

Proposição: Sejam $\{z_n\}$ e $\{w_n\}$ sucessões complexas convergentes tais que $z_n \to z$ e $w_n \to w$. Então

- $z_n \pm w_n \rightarrow z \pm w$.
- \bullet $z_n w_n \to zw$.
- $\frac{z_n}{w_n} \to \frac{z}{w}$ $(w_n, w \neq 0)$.