### Exercice 1

Donnez la table de vérité et la fonction logique de chacun des circuits suivants :

a)



b)



c)



#### Exercice 2

Simplifiez les fonctions logiques suivantes à l'aide de la méthode algébrique puis à l'aide de la méthode de Karnaugh :

a) 
$$f1 = a \cdot b \cdot c + a \cdot b \cdot c$$

b) 
$$f2 = a \cdot b \cdot c + a \cdot b \cdot c + a \cdot b \cdot c + a \cdot b \cdot c$$

c) 
$$f3 = a \cdot b \cdot c + a \cdot b \cdot c + a \cdot b \cdot c + a \cdot b \cdot c$$

d) 
$$f4 = a \cdot b \cdot c + a \cdot b \cdot c + a \cdot b \cdot c + a \cdot b \cdot c$$

e) 
$$f5 = a.b.c + a.b.c + a.b.c + a.b.c$$

#### Exercice 3



- a) Donnez la fonction logique et la table de vérité de ce circuit.
- b) Simplifiez la fonction à l'aide de la méthode algébrique et de la méthode de Karnaugh
- c) Donnez le circuit simplifié correspondant

## Exercice 4

a) Donnez les circuits logiques correspondant aux fonctions logiques S1 et S2

| a | b | c | $S_1$ | a | b | c | $S_2$ |
|---|---|---|-------|---|---|---|-------|
| 0 | 0 | 0 | 0     | 0 | 0 | 0 | 1     |
| 0 | 0 | 1 | 0     | 0 | 0 | 1 | 1     |
| 0 | 1 | 0 | 1     | 0 | 1 | 0 | 0     |
| 0 | 1 | 1 | 0     | 0 | 1 | 1 | 1     |
| 1 | 0 | 0 | 0     | 1 | 0 | 0 | 1     |
| 1 | 0 | 1 | 1     | 1 | 0 | 1 | 0     |
| 1 | 1 | 0 | 0     | 1 | 1 | 0 | 1     |
| 1 | 1 | 1 | 1     | 1 | 1 | 1 | 0     |

b) Simplifiez les fonctions logiques S3 et S4 à l'aide de la méthode de Karnaugh puis donnez les circuits logiques correspondants

| a | b | c | $\mid d \mid$ | $S_3$ | a | b | c | $\mid d \mid$ | $S_4$ |
|---|---|---|---------------|-------|---|---|---|---------------|-------|
| 0 | 0 | 0 | 0             | 1     | 0 | 0 | 0 | 0             | 1     |
| 0 | 0 | 0 | 1             | 0     | 0 | 0 | 0 | 1             | 0     |
| 0 | 0 | 1 | 0             | 1     | 0 | 0 | 1 | 0             | 1     |
| 0 | 0 | 1 | 1             | 1     | 0 | 0 | 1 | 1             | 1     |
| 0 | 1 | 0 | 0             | 0     | 0 | 1 | 0 | 0             | 1     |
| 0 | 1 | 0 | 1             | 0     | 0 | 1 | 0 | 1             | 1     |
| 0 | 1 | 1 | 0             | 1     | 0 | 1 | 1 | 0             | 0     |
| 0 | 1 | 1 | 1             | 1     | 0 | 1 | 1 | 1             | 1     |
| 1 | 0 | 0 | 0             | 0     | 1 | 0 | 0 | 0             | 1     |
| 1 | 0 | 0 | 1             | 0     | 1 | 0 | 0 | 1             | 0     |
| 1 | 0 | 1 | 0             | 0     | 1 | 0 | 1 | 0             | 1     |
| 1 | 0 | 1 | 1             | 1     | 1 | 0 | 1 | 1             | 1     |
| 1 | 1 | 0 | 0             | 0     | 1 | 1 | 0 | 0             | 1     |
| 1 | 1 | 0 | 1             | 0     | 1 | 1 | 0 | 1             | 1     |
| 1 | 1 | 1 | 0             | 0     | 1 | 1 | 1 | 0             | 0     |
| 1 | 1 | 1 | 1             | 1     | 1 | 1 | 1 | 1             | 1     |

# Rappels:

| Constantes        | a + 0 = a  a + 1 = 1                          | $a \cdot 0 = 0  a \cdot 1 = a$              |  |  |  |
|-------------------|-----------------------------------------------|---------------------------------------------|--|--|--|
| Idempotence       | a + a = a                                     | $a \cdot a = a$                             |  |  |  |
| Complémentation   | $a + \overline{a} = 1$                        | $a \cdot \overline{a} = 0$                  |  |  |  |
| Commutativité     | a + b = b + a                                 | $a \cdot b = b \cdot a$                     |  |  |  |
| Distributivité    | a + (bc) = (a+b)(a+c)                         | a(b+c) = (ab) + (ac)                        |  |  |  |
| Associativité     | a + (b + c) = (a + b) + c =                   | = a + b + c                                 |  |  |  |
|                   | a(bc) = (ab)c = abc                           |                                             |  |  |  |
| Lois de De Morgan | $\overline{ab} = \overline{a} + \overline{b}$ | $\overline{a+b} = \overline{a}\overline{b}$ |  |  |  |
| Autres relations  | $\overline{\overline{a}} = a$                 | $a \oplus b = (a+b)\overline{ab}$           |  |  |  |
|                   |                                               |                                             |  |  |  |