Pseudo-Riemannian manifold

In <u>differential</u> geometry, a **pseudo-Riemannian manifold**,^{[1][2]} also called a **semi-Riemannian manifold**, is a <u>differentiable manifold</u> with a <u>metric tensor</u> that is everywhere <u>nondegenerate</u>. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space.

A special case used in <u>general relativity</u> is a four-dimensional **Lorentzian manifold** for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike.

Contents

Introduction

Manifolds

Tangent spaces and metric tensors

Metric signatures

Definition

Lorentzian manifold

Applications in physics

Properties of pseudo-Riemannian manifolds

See also

Notes

References

External links

Introduction

Manifolds

In <u>differential geometry</u>, a <u>differentiable manifold</u> is a space which is locally similar to a <u>Euclidean space</u>. In an n-dimensional Euclidean space any point can be specified by n real numbers. These are called the coordinates of the point.

An *n*-dimensional differentiable manifold is a generalisation of *n*-dimensional Euclidean space. In a manifold it may only be possible to define coordinates *locally*. This is achieved by defining <u>coordinate</u> <u>patches</u>: subsets of the manifold which can be mapped into *n*-dimensional Euclidean space.

See Manifold, Differentiable manifold, Coordinate patch for more details.

Tangent spaces and metric tensors

Associated with each point p in an n-dimensional differentiable manifold M is a <u>tangent space</u> (denoted T_pM). This is an n-dimensional <u>vector space</u> whose elements can be thought of as <u>equivalence classes</u> of curves passing through the point p.

A <u>metric tensor</u> is a <u>non-degenerate</u>, smooth, symmetric, <u>bilinear map</u> that assigns a <u>real number</u> to pairs of tangent vectors at each tangent space of the manifold. Denoting the metric tensor by g we can express this as

$$g:T_pM imes T_pM o \mathbb{R}.$$

The map is symmetric and bilinear so if $X,Y,Z\in T_pM$ are tangent vectors at a point p to the manifold M then we have

- g(X,Y) = g(Y,X)
- g(aX+Y,Z)=ag(X,Z)+g(Y,Z)

for any real number $a \in \mathbb{R}$.

That g is <u>non-degenerate</u> means there are no non-zero $X \in T_pM$ such that g(X,Y)=0 for all $Y \in T_pM$.

Metric signatures

Given a metric tensor g on an n-dimensional real manifold, the <u>quadratic form</u> q(x) = g(x, x) associated with the metric tensor applied to each vector of any <u>orthogonal basis</u> produces n real values. By <u>Sylvester's law of inertia</u>, the number of each positive, negative and zero values produced in this manner are invariants of the metric tensor, independent of the choice of orthogonal basis. The <u>signature</u> (p, q, r) of the metric tensor gives these numbers, shown in the same order. A non-degenerate metric tensor has r = 0 and the signature may be denoted (p, q), where p + q = n.

Definition

A **pseudo-Riemannian manifold** (M,g) is a <u>differentiable manifold</u> M equipped with an everywhere non-degenerate, smooth, symmetric metric tensor g.

Such a metric is called a **pseudo-Riemannian metric**. Applied to a vector field, the resulting scalar field value at any point of the manifold can be positive, negative or zero.

The signature of a pseudo-Riemannian metric is (p, q), where both p and q are non-negative. The non-degeneracy condition implies that p and q remain the same throughout the manifold.

Lorentzian manifold

A **Lorentzian manifold** is an important special case of a pseudo-Riemannian manifold in which the <u>signature of the metric</u> is (1, n-1) (equivalently, (n-1, 1); see <u>sign convention</u>). Such metrics are called **Lorentzian metrics**. They are named after the Dutch physicist Hendrik Lorentz.

Applications in physics

After Riemannian manifolds, Lorentzian manifolds form the most important subclass of pseudo-Riemannian manifolds. They are important in applications of general relativity.

A principal premise of general relativity is that <u>spacetime</u> can be modeled as a 4-dimensional Lorentzian manifold of signature (3, 1) or, equivalently, (1, 3). Unlike Riemannian manifolds with positive-definite metrics, an indefinite signature allows tangent vectors to be classified into *timelike*, *null* or *spacelike*. With a signature of (p, 1) or (1, q), the manifold is also locally (and possibly globally) time-orientable (see *Causal structure*).

Properties of pseudo-Riemannian manifolds

Just as <u>Euclidean space</u> \mathbb{R}^n can be thought of as the model <u>Riemannian manifold</u>, <u>Minkowski space</u> $\mathbb{R}^{n-1,1}$ with the flat <u>Minkowski metric</u> is the model Lorentzian manifold. Likewise, the model space for a pseudo-Riemannian manifold of signature (p,q) is $\mathbb{R}^{p,q}$ with the metric

$$g = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2$$

Some basic theorems of Riemannian geometry can be generalized to the pseudo-Riemannian case. In particular, the <u>fundamental theorem of Riemannian geometry</u> is true of pseudo-Riemannian manifolds as well. This allows one to speak of the <u>Levi-Civita connection</u> on a pseudo-Riemannian manifold along with the associated <u>curvature tensor</u>. On the other hand, there are many theorems in Riemannian geometry which do not hold in the generalized case. For example, it is *not* true that every smooth manifold admits a pseudo-Riemannian metric of a given signature; there are certain <u>topological</u> obstructions. Furthermore, a <u>submanifold</u> does not always inherit the structure of a pseudo-Riemannian manifold; for example, the metric tensor becomes zero on any <u>light-like curve</u>. The <u>Clifton-Pohl torus</u> provides an example of a pseudo-Riemannian manifold that is compact but not complete, a combination of properties that the <u>Hopf-Rinow theorem</u> disallows for Riemannian manifolds. [3]

See also

- Causality conditions
- Globally hyperbolic manifold
- Hyperbolic partial differential equation
- Orientable manifold
- Spacetime

Notes

- 1. Benn & Tucker (1987), p. 172.
- 2. Bishop & Goldberg (1968), p. 208
- 3. O'Neill (1983), p. 193.

References

 Benn, I.M.; Tucker, R.W. (1987), An introduction to Spinors and Geometry with Applications in Physics (First published 1987 ed.), Adam Hilger, ISBN 0-85274-169-3

- Bishop, Richard L.; Goldberg, Samuel I. (1968), <u>Tensor Analysis on Manifolds</u> (https://archive.org/details/tensoranalysison00bish) (First Dover 1980 ed.), The Macmillan Company, ISBN 0-486-64039-6
- Chen, Bang-Yen (2011), *Pseudo-Riemannian Geometry, [delta]-invariants and Applications*, World Scientific Publisher, ISBN 978-981-4329-63-7
- O'Neill, Barrett (1983), Semi-Riemannian Geometry With Applications to Relativity (https://books.google.com/books?id=CGk1eRSjFIIC&pg=PA193), Pure and Applied Mathematics,
 103, Academic Press, ISBN 9780080570570
- Vrănceanu, G.; Roşca, R. (1976), *Introduction to Relativity and Pseudo-Riemannian Geometry*, Bucarest: Editura Academiei Republicii Socialiste România.

External links

■ 🊵 Media related to Lorentzian manifolds at Wikimedia Commons

Retrieved from "https://en.wikipedia.org/w/index.php?title=Pseudo-Riemannian_manifold&oldid=934957242"

This page was last edited on 9 January 2020, at 15:19 (UTC).

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use and Privacy Policy</u>. Wikipedia® is a registered trademark of the <u>Wikimedia Foundation</u>, Inc., a non-profit organization.