Part (a) of Theorem 11.4 shows that

$$\dim(E) \leq \dim(E^*).$$

When E is of finite dimension n and (u_1, \ldots, u_n) is a basis of E, by part (c), the family (u_1^*, \ldots, u_n^*) is a basis of the dual space E^* , called the *dual basis* of (u_1, \ldots, u_n) . This fact was also proven directly in Theorem 3.23.

Define the function \mathcal{E} (\mathcal{E} for equations) from subspaces of E to subspaces of E^* and the function \mathcal{Z} (\mathcal{Z} for zeros) from subspaces of E^* to subspaces of E by

$$\mathcal{E}(V) = V^0, \quad V \subseteq E$$

 $\mathcal{Z}(U) = U^0, \quad U \subseteq E^*.$

By Parts (c) and (d) of Theorem 11.4,

$$(\mathcal{Z} \circ \mathcal{E})(V) = V^{00} = V$$
$$(\mathcal{E} \circ \mathcal{Z})(U) = U^{00} = U,$$

so $\mathcal{Z} \circ \mathcal{E} = \operatorname{id}$ and $\mathcal{E} \circ \mathcal{Z} = \operatorname{id}$, and the maps \mathcal{E} and \mathcal{Z} are inverse bijections. These maps set up a *duality* between subspaces of E and subspaces of E^* . In particular, every subspace $V \subseteq E$ of dimension m is the set of common zeros of the space of linear forms (equations) V^0 , which has dimension n-m. This confirms the claim we made about the dimension of the subspace defined by a set of linear equations.

One should be careful that this bijection does not extend to subspaces of E^* of infinite dimension.

We now discuss some applications of the duality theorem.

Problem 1. Suppose that V is a subspace of \mathbb{R}^n of dimension m and that (v_1, \ldots, v_m) is a basis of V. The problem is to find a basis of V^0 .

We first extend (v_1, \ldots, v_m) to a basis (v_1, \ldots, v_n) of \mathbb{R}^n , and then by part (c) of Theorem 11.4, we know that $(v_{m+1}^*, \ldots, v_n^*)$ is a basis of V^0 .

Example 11.6. For example, suppose that V is the subspace of \mathbb{R}^4 spanned by the two linearly independent vectors

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix},$$