Cursul 3

Serii de numere reale. Serii cu termeni pozitivi

Conceptul de "serie numerică" este o generalizare naturală a noțiunii de "sumă finită de numere reale" cu observația că se aplică unei mulțimi infinite ale cărei elemente sunt termenii unui șir. Din acest mod de determinare a unei serii numerice, vom preciza legăturile cu șirurile numerice și sumele finite din \mathbb{R} .

Definiția 3.1 Fie $(x_n)_{n\in\mathbb{N}^*}$ un şir de numere reale. Cuplul format din şirurile $(x_n)_{n\in\mathbb{N}^*}$ şi $(S_n)_{n\in\mathbb{N}^*}$, unde

$$S_n = x_1 + x_2 + \ldots + x_n, \forall n \in \mathbb{N}^*,$$

se numește serie de numere reale și se notează prin

$$\sum_{n \in \mathbb{N}^*} x_n \ sau \ \sum_{n > 1} x_n \ sau \ \sum_{n = 1}^{\infty} x_n.$$

Şirul $(S_n)_{n\in\mathbb{N}^*}$ se numeşte **şirul sumelor parţiale ataşat seriei**, iar x_n se numeşte **termen general al** seriei.

Observație: Dacă primii k-1 termeni, $x_1,x_1,\dots,x_{k-1},$ lipsesc, vom nota seria de termen general x_n cu

$$\sum_{n>k} x_n \text{ sau } \sum_{n=k}^{\infty} x_n$$

Definiția 3.2 i) Seria $\sum_{n=1}^{\infty} x_n$ este **convergentă** dacă șirul $(S_n)_{n \in \mathbb{N}^*}$ este convergent, vom nota $\sum_{n=1}^{\infty} x_n(C)$;

- ii) Seria $\sum_{n=1}^{\infty} x_n$ este **divergentă** dacă șirul $(S_n)_{n\in\mathbb{N}^*}$ este divergent (adică dacă șirul (S_n) nu are limită sau are limită infinită). În acest caz, vom nota $\sum_{n=1}^{\infty} x_n(D)$;
- iii) Dacă $\lim_{n\to\infty} S_n = S \in \overline{\mathbb{R}}$, atunci numim S suma seriei $\sum_{n=1}^{\infty} x_n$ și scriem $S = \sum_{n=1}^{\infty} x_n$.

Câteodată, vom adapta această definiție pentru seria $\sum_{n=p}^{\infty} x_n$ (notată și $\sum_{n\geq p} x_n$) atunci când $p\in\mathbb{N}, p\neq 1$.

Dacă vrem să determinăm $natura \ seriei \ \sum_{n=1}^{\infty} x_n$ (adică, dacă este convergentă sau divergentă), nu contează dacă eliminăm un număr finit de elemente din serie. Așadar seria $\sum_{n=1}^{\infty} x_n$ are aceeași natură cu seria $\sum_{n=p}^{\infty} x_n$, unde p>1. Însă suma seriei se poate schimba.

Definiția 3.3 Fie $\sum_{n=1}^{\infty} x_n$ o serie de numere reale. Pentru $p \in \mathbb{N}$, numim **restul de ordin** p al seriei $\sum_{n=1}^{\infty} x_n$,

seria $\sum_{n=p+1}^{\infty} x_n$, pe care, de regulă, o vom nota cu R_p .

Teorema 3.4 Seria $\sum_{n=1}^{\infty} x_n$ este convergentă dacă și numai dacă pentru orice $p \in \mathbb{N}$, seria R_p este convergentă. În plus, dacă seria $\sum_{n=1}^{\infty} x_n$ este convergentă, atunci $\lim_{p \to \infty} R_p = 0$.

Demonstrație: Prima parte a teoremei rezultă imediat, din faptul că nu contează dacă adăugăm sau suprimăm un număr finit de termeni, natura seriei nu se schimbă. Demonstrăm a doua parte. Dacă seria $\sum_{n=1}^{\infty} x_n$ este convergentă având suma S, atunci, pentru orice $p \in \mathbb{N}^*$, avem

$$R_p = S - S_p$$
.

Prin urmare, $\lim_{p\to\infty} R_p = S - \lim_{p\to\infty} S_p = S - S = 0$, deoarece $\lim_{p\to\infty} S_p = S$.

Exemple. Serii remarcabile

1) Seria $\sum_{n=0}^{\infty} q^n$, $q \in \mathbb{R}$, se numește **seria geometrică cu rația** q. Şirul sumelor parțiale atașat ei are termenul general S_n dat prin

$$S_n = 1 + q + q^2 + \ldots + q^n = \begin{cases} \frac{1 - q^{n+1}}{1 - q}, & q \neq 1 \\ n + 1, & q = 1 \end{cases}, \forall n \in \mathbb{N}.$$

Cum (S_n) converge pentru $q \in (-1,1)$ şi diverge pentru $q \in \mathbb{R} \setminus (-1,1)$, avem că $\sum_{n=0}^{\infty} q^n(C)$ pentru $q \in (-1,1)$ şi $\sum_{n=0}^{\infty} q^n(D)$ pentru $q \in \mathbb{R} \setminus (-1,1)$.

De asemenea, avem

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}, \text{ pentru } q \in (-1,1);$$
$$\sum_{n=0}^{\infty} q^n = +\infty, \text{ pentru } q \ge 1;$$

Dacă q = -1, seria $\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + \dots$ se numește *seria lui Grandi*, și este divergentă.

2) Seria $\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{n}\right)$ este divergentă, deoarece sumele ei parțiale tind spre $+\infty$. Pentru orice $n \in \mathbb{N}^*$, putem scrie S_n astfel:

$$S_n = \sum_{k=1}^n \ln\left(1 + \frac{1}{k}\right) = \sum_{k=1}^n \ln\frac{k+1}{k} = \sum_{k=1}^n \left[\ln(k+1) - \ln k\right] = \ln(n+1).$$

Aşadar, $(S_n)_{n\in\mathbb{N}^*}$ are limita $+\infty$.

3) Seria $\sum_{n=2}^{\infty} \frac{n-\sqrt{n^2-1}}{\sqrt{n^2-n}}$ este convergentă, deoarece pentru orice $n \in \mathbb{N}^*, n \geq 2$, avem

$$S_n = \sum_{k=2}^n \frac{k - \sqrt{k^2 - 1}}{\sqrt{k^2 - k}} = \sum_{k=2}^n \left(\frac{k}{\sqrt{k^2 - k}} - \frac{\sqrt{k^2 - 1}}{\sqrt{k^2 - k}}\right) = \sum_{k=2}^n \left(\sqrt{\frac{k}{k - 1}} - \sqrt{\frac{k + 1}{k}}\right) = \sqrt{2} - \sqrt{\frac{n + 1}{n}}.$$

$$\operatorname{Cum} \lim_{n \to \infty} \left(\sqrt{2} - \sqrt{\frac{n+1}{n}} \right) = \sqrt{2} - 1 \in \mathbb{R}, \text{ obţinem că seria este convergentă și } \sum_{n \ge 2} \frac{n - \sqrt{n^2 - 1}}{\sqrt{n^2 - n}} = \sqrt{2} - 1.$$

Observație: În exemplele 2) și 3) de mai sus, am putut scrie sumele parțiale ca *sume telescopice*, fapt ce a facilitat găsirea sumei seriilor.

Teorema 3.5 (condiția necesară de convergență) $Dacă \sum_{n=1}^{\infty} x_n$ este convergentă, atunci $\lim_{n\to\infty} x_n = 0$.

Demonstrație: Fie $S_n = x_1 + x_2 + ... + x_n, n \in \mathbb{N}^*$. Cum seria $\sum_{n=1}^{\infty} x_n$ fiind convergentă, rezultă că $\exists \lim_{n \to \infty} S_n = S$. Pe de altă parte, cum $x_n = S_n - S_{n-1}$, rezultă că

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0.$$

Observație: Dacă pentru seria $\sum_{n=1}^{\infty} x_n$, șirul $(x_n)_{n\in\mathbb{N}^*}$ nu converge la 0, atunci seria este divergentă. Prin urmare, când vrem să vedem dacă o serie este convergentă, primul lucru pe care trebuie sa îl verificăm este că $\lim_{n\to\infty} x_n = 0$, altfel, seria este divergentă. Atenție, $\lim_{n\to\infty} x_n = 0$ nu implică neapărat convergența seriei $\sum_{n=1}^{\infty} x_n!$ Următorul rezultat prezintă un criteriu general de convergență al unei serii de numere reale.

Teorema 3.6 (Criteriul lui Cauchy) Seria $\sum_{n=1}^{\infty} x_n$ este convergentă dacă și numai dacă

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^*, \forall n \geq n_{\varepsilon}, \forall p \in \mathbb{N}^* : |x_{n+1} + x_{n+2} + \ldots + x_{n+n}| < \varepsilon.$$

Demonstrație: Fie $S_n = x_1 + x_2 + \ldots + x_n, n \in \mathbb{N}^*$. Din criteriul lui Cauchy de convergență pentru șiruri (vezi Curs 2), rezultă că seria $\sum_{n=1}^{\infty} x_n$ este convergentă dacă și numai dacă

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^*, \forall n \geq n_{\varepsilon}, \forall p \in \mathbb{N}^* : |S_{n+p} - S_n| < \varepsilon.$$

Dar cum $S_{n+p} - S_n = x_{n+1} + x_{n+2} + \ldots + x_{n+p}$ pentru orice $n, p \in \mathbb{N}^*$, ceea ce demonstrează concluzia. \square Prin negare, enunțul Teoremei 3.6 devine:

Propoziția 3.7 Seria $\sum_{n=1}^{\infty} x_n$ este divergentă dacă și numai dacă

$$\exists \varepsilon > 0, \forall n \in \mathbb{N}^*, \exists k_n \ge n, \exists p_n \in \mathbb{N}^* : |x_{k_n+1} + x_{k_n+2} + \ldots + x_{k_n+p_n}| \ge \varepsilon.$$

Exemplu: Seria armonică $\sum_{n=1}^{\infty} \frac{1}{n}$ este divergentă. (Seria se numește **armonică** întrucât x_n este media armonică a numerelor x_{n-1} și x_{n+1} , adică $\frac{2}{x_n} = \frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}, \forall n \in \mathbb{N}^*, n \geq 2.$)

Considerăm șirul sumelor parțiale $S_n=1+\frac{1}{2}+\ldots+\frac{1}{n}$ și arătăm că $(S_n)_{n\in\mathbb{N}^*}$ nu este șir Cauchy. Fie $n,p\in\mathbb{N}^*,p\geq n$. Atunci avem

$$|S_{n+p} - S_n| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+p} > \frac{p}{n+p} \ge \frac{1}{2}.$$

Aşadar, există $\varepsilon = \frac{1}{2} > 0$ aşa încât $\forall n \in \mathbb{N}^*, \exists k_n := n, p_n := n \in \mathbb{N}^* : \left| \frac{1}{k_n + 1} + \ldots + \frac{1}{k_n + p_n} \right| \ge \frac{k_n}{k_n + p_n} = \frac{1}{2} = \varepsilon$. Prin urmare, seria armonică este divergentă.

Operații cu serii

Fie $\lambda \in \mathbb{R}^*$ şi $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ două serii de numere reale. Seria $\sum_{n=1}^{\infty} (x_n + y_n)$ se numește suma seriilor $\sum_{n=1}^{\infty} x_n$ şi $\sum_{n=1}^{\infty} y_n$, iar seria $\sum_{n=1}^{\infty} (\lambda x_n)$ se numește produsul seriei $\sum_{n=1}^{\infty} x_n$ cu numărul (scalarul) $\lambda \in \mathbb{R}$.

Teorema 3.8 Fie $\lambda \in \mathbb{R}^*$ şi $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ două serii convergente, cu $S := \sum_{n=1}^{\infty} x_n$ şi $T := \sum_{n=1}^{\infty} y_n$. Atunci:

- i) $dac\ \ x_n \leq y_n, \forall n \in \mathbb{N}^*, \ atunci\ S \leq T;$
- ii) seria $\sum_{n=1}^{\infty} (x_n + y_n)$ este convergentă și $\sum_{n=1}^{\infty} (x_n + y_n) = S + T$.
- iii) seria $\sum_{n=1}^{\infty} (\lambda x_n)$ este convergentă și $\sum_{n=1}^{\infty} (\lambda x_n) = \lambda S$.

Observație: Dacă seriile $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ sunt divergente, atunci este posibil ca $\sum_{n=1}^{\infty} (x_n + y_n)$ să fie convergentă. Spre exemplu, seriile $\sum_{n=1}^{\infty} (-1)^n$ și $\sum_{n=1}^{\infty} (-1)^{n+1}$ sunt divergente, pe când seria $\sum_{n=1}^{\infty} \left[(-1)^n + (-1)^{n+1} \right]$ este convergentă, având şirul sumelor parțiale constant.

Teorema 3.9 Dacă într-o serie convergentă se asociază termenii seriei în grupe finite, cu păstrarea ordinii termenilor, atunci se obține tot o serie convergentă, cu aceeași sumă.

Observaţie: Câteodată, asocierea termenilor unei serii divergente definesc o serie convergentă. Spre exemplu, dacă asociem doi câte doi termenii seriei lui Grandi $\sum_{n=1}^{\infty} (-1)^n$, care este divergentă, obţinem seria

$$(-1+1) + (-1+1) + \ldots + (-1+1) + \ldots$$

care este convergentă, având suma 0.

Serii cu termeni pozitivi

Spunem că o serie $\sum_{n=1}^{\infty} x_n$ are **termeni pozitivi** dacă $x_n \geq 0, \forall n \in \mathbb{N}^*$. Cum $x_n \geq 0, \forall n \in \mathbb{N}^*$, este clar că şi şirul sumelor parțiale $(S_n)_{n \in \mathbb{N}^*}$ este crescător. Aşadar, are loc următorul rezultat:

Propoziția 3.10 Seria cu termeni pozitivi $\sum_{n=1}^{\infty} x_n$ este convergentă dacă și numai dacă șirul sumelor sale parțiale, $(S_n)_{n\in\mathbb{N}^*}$, este majorat.

În cele ce urmează, vom prezenta unele criterii de convergență și de divergență pentru serii cu termeni pozitivi.

Teorema 3.11 (Criteriul I de comparație - CCI) Fie seriile cu termeni pozitivi $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$, astfel \hat{n} \hat{n}

i) Dacă
$$\sum_{n=1}^{\infty} y_n$$
 (C), atunci $\sum_{n=1}^{\infty} x_n$ (C);

ii) Dacă
$$\sum_{n=1}^{\infty} x_n$$
 (D), atunci $\sum_{n=1}^{\infty} y_n$ (D).

Demonstrație: i) Fie $S_n = \sum_{k=1}^n x_k$ și $T_n = \sum_{k=1}^n y_k$, $n \in \mathbb{N}^*$. Cum $\sum_{n=1}^\infty y_n$ (C), șirul (T_n) este mărginit, conform Propoziției 3.10. Din ipoteză avem $x_n \leq y_n$, $\forall n \in \mathbb{N}^*$. Prin urmare, obținem că $S_n \leq T_n, \forall n \in \mathbb{N}^*$, adică și (S_n) este majorat. Folosind același rezultat obținem $\sum_{n=1}^\infty x_n$ (C).

ii) Dacă $\sum_{n=1}^{\infty} x_n$ (D) atunci avem (S_n) nemajorat. Prin urmare, folosind Propoziția 3.10, obținem că (S_n) este divergent. Așadar, $\sum_{n=1}^{\infty} y_n$ (D).

Exemple:

1. Seria $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, $\alpha < 1$ este divergentă. Cum pentru orice $n \in \mathbb{N}^*$, $\alpha < 1$, are loc inegalitatea $\frac{1}{n^{\alpha}} > \frac{1}{n}$, iar $\sum_{n=1}^{\infty} \frac{1}{n}$ este divergentă(serie armonică), rezultă că seria $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ este divergentă.

2. Seria $\sum_{n=1}^{\infty} \frac{1}{n^2}$ este convergentă. Observăm că $\frac{1}{n^2} < \frac{1}{n(n-1)}, \forall n \geq 2$, iar seria $\sum_{n=1}^{\infty} \frac{1}{n(n-1)}$ este convergentă (deoarece $S_n = \sum_{n=2}^{n} \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n} \xrightarrow{n \to \infty} 1$). Prin urmare, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ este convergentă.

Teorema 3.12 (Criteriul II de comparație - CCII) Fie seriile cu termeni strict pozitivi $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$ astfel încât

$$\frac{x_{n+1}}{x_n} \le \frac{y_{n+1}}{y_n}, \ \forall n \in \mathbb{N}^*.$$

i) Dacă
$$\sum_{n=1}^{\infty} y_n(C)$$
, atunci $\sum_{n=1}^{\infty} x_n(C)$;

ii) Dacă
$$\sum_{n=1}^{\infty} x_n(D)$$
, atunci $\sum_{n=1}^{\infty} y_n(D)$.

Demonstrație: Înmulțind membru cu membru relațiile

$$\frac{x_2}{x_1} \le \frac{y_2}{y_1}, \ \frac{x_3}{x_2} \le \frac{y_3}{y_2}, \ \dots, \ \frac{x_n}{x_{n-1}} \le \frac{y_n}{y_{n-1}}$$

vom obține că $\frac{x_n}{x_1} \leq \frac{y_n}{y_1}$, $\forall n \in \mathbb{N}^*$. Altfel spus, avem $x_n \leq \frac{x_1}{y_1}y_n$, $\forall n \in \mathbb{N}^*$. Cum $\sum_{n=1}^{\infty} y_n$ este convergentă, avem că $\sum_{n=1}^{\infty} \frac{x_1}{y_n}y_n$ este convergentă. Aplicând criteriul I de comparație obținem concluzia.

Teorema 3.13 (Criteriul III de comparație - CCIII) Fie seriile cu termeni pozitivi $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$, cu $y_n > 0, n \in \mathbb{N}^*$. Dacă există $\lim_{n \to \infty} \frac{x_n}{y_n} = \ell \in [0, \infty]$, atunci:

i) dacă
$$\ell \in (0, +\infty)$$
, atunci seriile $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$ au aceeași natură;

ii) pentru $\ell = 0$, avem

a) dacă
$$\sum_{n=1}^{\infty} y_n(C)$$
 atunci $\sum_{n=1}^{\infty} x_n(C)$;

b) dacă
$$\sum_{n=1}^{\infty} x_n(D)$$
, atunci $\sum_{n=1}^{\infty} y_n(D)$;

iii) pentru $\ell = +\infty$, avem

a) dacă
$$\sum_{n=1}^{\infty} x_n(C)$$
, atunci $\sum_{n=1}^{\infty} y_n(C)$;

b) dacă
$$\sum_{n=1}^{\infty} y_n(D)$$
, atunci $\sum_{n=1}^{\infty} x_n(D)$.

Demonstrație:

i) Dacă există $\lim_{n\to\infty}\frac{x_n}{y_n}=\ell\in[0,\infty)$, atunci, $\forall\,\varepsilon>0,\,\exists\,n_\varepsilon\in\mathbb{N}^*$, așa încât

(*)
$$\ell - \varepsilon < \frac{x_n}{y_n} < \ell + \varepsilon, \forall n \in \mathbb{N}^*, n \ge n_{\varepsilon}.$$

Când $\ell > 0$, alegem $\varepsilon = \frac{\ell}{2}$ și vom avea $\frac{\ell}{2} < \frac{x_n}{y_n} < \frac{3\ell}{2}$, $\forall n \in \mathbb{N}^*, n \geq n_{\varepsilon}$. Astfel, aplicarea criteriului CCI rezultă că seriile $\sum_{n \in \mathbb{N}^*} x_n$ și $\sum_{n \in \mathbb{N}^*} y_n$ au aceeași natură.

- ii) Dacă $0 = \ell = \lim_{n \to \infty} x_n$, atunci pentru $\varepsilon = 1$, $\exists n_1 \in \mathbb{N}^*$ astfel încât $|\frac{x_n}{y_n}| < 1$, $\forall n \ge n_1$, adică $x_n < y_n$, $\forall n \ge n_1$. Deoarece $\sum_{n=1}^{\infty} x_n$ are aceeaşi natură cu seria $\sum_{n=n_1}^{\infty} x_n$, iar $\sum_{n=1}^{\infty} y_n$ are aceeaşi natură cu seria $\sum_{n=n_1}^{\infty} y_n$, din CCI obţinem concluzia.
- iii) Când $\lim_{n\to\infty} x_n = \infty$, consideram $\varepsilon = 1 > 0$. Atunci există $n_1 \in \mathbb{N}^*$ astfel încât $\left|\frac{x_n}{y_n}\right| > 1, \forall n \geq n_1$, adică $x_n > y_n, \forall n \geq n_1$. Concluzia reiese din CCI, inversând rolurile seriilor $\sum_{n=n_1}^{\infty} x_n$ și $\sum_{n=n_1}^{\infty} y_n$.

Exemplu: Seria $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ este divergentă, deoarece dacă vom considera seria armonică $\sum_{n \in \mathbb{N}^*} \frac{1}{n} (D)$ și observând

că există $\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{\sin\frac{1}{n}}{\frac{1}{n}}=1\in(0,+\infty)$, putem spune, prin aplicarea criteriului CCIII, punctul i), că

seria dată este de aceeași natură cu seria $\sum_{n=1}^{\infty} \frac{1}{n}$. Deci $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ (D).

Teorema 3.14 (Cauchy: Criteriul condensării) Fie $(x_n)_{n\in\mathbb{N}^*}$ un şir descrescător de numere pozitive. Atunci seria $\sum_{n=1}^{\infty} x_n$ are aceeași natură cu seria $\sum_{n=1}^{\infty} 2^n x_{2^n}$.

Exemplu:

• Seria armonică generalizată, definită prin $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$ este convergentă pentru $\alpha > 1$ și divergentă pentru $\alpha \leq 1$.

Aplicând criteriul condensării, obținem că natura seriei $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ este aceeași cu a seriei $\sum_{n=1}^{\infty} 2^{n} \left(\frac{1}{2^{n}}\right)^{\alpha} =$

 $\sum_{n=1}^{\infty} \frac{1}{2^{(\alpha-1)n}}$, care nu este alt
ceva decât o serie geometrică cu rația $\frac{1}{2^{\alpha-1}}$. Cum aceasta din urmă este

convergentă când $\frac{1}{2^{\alpha-1}} < 1$, adică pentru $\alpha > 1$ și divergentă în rest, adică pentru $0 \le \alpha \le 1$, concluzionăm că seria armonică generalizată este convergentă pentru $\alpha > 1$ și divergentă când $\alpha \le 1$.

Teorema 3.15 (Criteriul rădăcinii - al lui Cauchy) Fie $\sum_{n=1}^{\infty} x_n$ o serie cu termeni pozitivi.

Dacă există $\ell = \lim_{n \to \infty} \sqrt[n]{x_n} \in [0, \infty]$, atunci:

- i) dacă $\ell < 1$, seria $\sum_{n=1}^{\infty} x_n$ este convergentă;
- ii) dacă $\ell > 1$, seria $\sum_{n=1}^{\infty} x_n$ este divergentă;

Pentru cazul $\ell = 1$, nu ne putem pronunța asupra naturii seriei $\sum_{n=1}^{\infty} x_n$ (spre exemplu seria armonică generalizată). În acest caz, trebuie să aplicăm alte criterii.

Demonstrație: Cum există $\ell = \lim_{n \to \infty} \sqrt[n]{x_n} \in [0, +\infty)$, avem: are loc relația

$$(\bullet) \quad \forall \ \varepsilon > 0, \exists n_\varepsilon \in \mathbb{N}^*, \forall \ n \in \mathbb{N}^*, n \geq n_\varepsilon : \ell - \varepsilon < \sqrt[n]{x_n} < \ell + \varepsilon.$$

- i) Cum $\ell < 1$, considerăm $\varepsilon \in (0, 1 \ell)$ și atunci rezultă că $x_n < (\ell + \varepsilon)^n$, $\forall n \in \mathbb{N}, n \ge n_{\varepsilon}$. Întrucât seria $\sum_{n=1}^{\infty} (\ell + \varepsilon)^n$ este convergentă(serie geometrică cu rația subunitară), rezultă, utilizând CCI, că $\sum_{n=1}^{\infty} x_n \ (C).$
- ii) Cum $\ell > 1$, alegem $\varepsilon \in (0, \ell 1)$ și atunci, din (\bullet) rezultă că $1 < (\ell \varepsilon)^n < x_n, \forall n \in \mathbb{N}$ cu $n \ge n_{\varepsilon}$. Pe baza criteriului CCI, întrucât seria $\sum_{n=1}^{\infty} (l \varepsilon)^n$, în care $l \varepsilon > 1$, este divergentă, rezultă că $\sum_{n=1}^{\infty} x_n(D)$.

Observație: Atunci când nu există $\lim_{n\to\infty} \sqrt[n]{x_n}$, o variantă mai "slabă" a criteriului rădăcinii are loc cu $\overline{\lim_{n\to\infty}} \sqrt[n]{x_n}$ în rolul lui ℓ , la i) și cu $\underline{\lim_{n\to\infty}} \sqrt[n]{x_n}$, în loc de ℓ , la ii).

Teorema 3.16 (Criteriul lui Kummer) Fie seria $\sum_{n=1}^{\infty} x_n$, cu $x_n > 0$, $\forall n \in \mathbb{N}^*$ și fie $(a_n)_{n \in \mathbb{N}^*} \subset \mathbb{R}_+^*$. Dacă există $\lim_{n \to \infty} \left(a_n \frac{x_n}{x_{n+1}} - a_{n+1} \right) = \ell \in \overline{\mathbb{R}}$ atunci:

i)
$$c\hat{a}nd \ \ell > 0$$
, $seria \sum_{n=1}^{\infty} x_n \ (C)$;

ii) dacă
$$\ell < 0$$
 şi $\sum_{n=1}^{\infty} \frac{1}{a_n}$ (D), atunci $\sum_{n=1}^{\infty} x_n$ (D).

Dacă $\ell = 0$ nu putem spune nimic despre natura seriei $\sum_{n=1}^{\infty} x_n$.

Demonstrație: i) Fie $\varepsilon \in (0, \ell)$; găsim $n_0 \in \mathbb{N}^*$ astfel încât

$$a_n \frac{x_n}{x_{n+1}} - a_{n+1} > \varepsilon, \forall n \ge n_0,$$

adică

$$a_n x_n - a_{n+1} x_{n+1} > \varepsilon x_{n+1}, \forall n \ge n_0.$$

Adunând aceste inegalități de la n_0 la n-1, obținem $a_{n_0}x_{n_0}-a_nx_n>\varepsilon(x_{n_0}+\ldots+x_n) \ \forall n\geq n_0$. Prin urmare, avem

$$x_{n_0} + \ldots + x_n < \frac{a_{n_0} x_{n_0} - a_n x_n}{\varepsilon} \le \frac{a_{n_0} x_{n_0}}{\varepsilon}.$$

Acest lucru implică faptul că șirul sumelor parțiale ale seriei $\sum_{n=n_0}^{\infty} x_n$ este mărginit, deci $\sum_{n=1}^{\infty} x_n$ (C).

ii) Deoarece $\ell < 0$, există $n_0 \in \mathbb{N}^*$ astfel încât

$$a_n \frac{x_n}{x_{n+1}} - a_{n+1} < 0, \forall n \ge n_0,$$

adică

$$\frac{x_{n+1}}{x_n} > \frac{a_n}{a_{n+1}} = \frac{\frac{1}{a_{n+1}}}{\frac{1}{a_n}}, \ \forall n \ge n_0.$$

Cum
$$\sum_{n=1}^{\infty} \frac{1}{a_n}$$
 (D), aplicând CC2 obţinem $\sum_{n=1}^{\infty} x_n$ (D).

Particularizând şirurile $(a_n)_{n\in\mathbb{N}^*}$ – $(1)_{n\in\mathbb{N}^*}$, $(n)_{n\in\mathbb{N}^*}$, $(n\ln n)_{n\in\mathbb{N}^*}$ – regăsim următoarele criterii de convergență pentru serii cu termeni pozitivi:

Teorema 3.17 (Criteriul raportului - al lui D'Alembert) Fie seria $\sum_{n=1}^{\infty} x_n$, cu $x_n > 0$, $\forall n \in N^*$, pentru care există limita $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell \in [0, \infty]$. Atunci:

- i) $dac \check{a} \ell < 1$, $atunci \sum_{n=1}^{\infty} x_n (C)$;
- ii) dacă $\ell > 1$, atunci $\sum_{n=1}^{\infty} x_n$ (D);
- iii) dacă $\ell=1$, nu ne putem pronunța asupra naturii seriei $\sum_{n=1}^{\infty} x_n$.

Teorema 3.18 (Criteriul lui Raabe-Duhamel) Fie seria $\sum_{n=1}^{\infty} x_n$, cu $x_n > 0$, $\forall n \in N^*$, astfel încât există

$$\lim_{n \to \infty} \left[n \left(\frac{x_n}{x_{n+1}} - 1 \right) \right] = \rho.$$

i) Dacă
$$\rho > 1$$
, atunci $\sum_{n=1}^{\infty} x_n$ (C);

ii) Dacă
$$\rho < 1$$
, atunci $\sum_{n=1}^{\infty} x_n$ (D);

iii) Dacă $\rho = 1$, nu putem stabili natura seriei.

Dacă, în Teorema 3.16, luăm $a_n = n \ln n, \forall n \in \mathbb{N}^*$, atunci obținem:

Teorema 3.19 (Criteriul lui Bertrand) Fie seria $\sum_{n=1}^{\infty} x_n$, cu $x_n > 0$, $\forall n \in \mathbb{N}^*$. Presupunem că există

$$\lim_{n \to \infty} \left(\frac{x_n}{x_{n+1}} n \ln n - (n+1) \ln (n+1) \right) = \mu \in \overline{\mathbb{R}}.$$

i) Dacă
$$\mu > 0$$
, atunci $\sum_{n=1}^{\infty} x_n$ (C);

ii) Dacă
$$\mu < 0$$
, atunci $\sum_{n=1}^{\infty} x_n$ (D);

iii) Dacă $\mu = 0$, nu ne putem pronunța asupra naturii seriei $\sum_{n=1}^{\infty} x_n$.

Demonstraţie: Pentru a demonstra acest rezultat, vom folosi faptul că seria $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ este divergentă(seria are, conform criteriului condensării, aceeași natură cu seria $\sum_{n=1}^{\infty} \frac{2^n}{2^n \cdot \ln 2^n} = \sum_{n=1}^{\infty} \frac{1}{n \ln 2}$ care este divergentă).

Următorul criteriu prezentat, este și cel mai general, de regulă aplicat atunci când Criteriul Raabe-Duhamel eșuează.

Teorema 3.20 (Criteriul lui Gauss) Fie $\sum_{n=1}^{\infty} x_n$ o serie cu $x_n > 0$, $\forall n \in \mathbb{N}^*$. Presupunem că există $\alpha, \beta \in \mathbb{R}, \gamma \in \mathbb{R}_+^*$ şi $(y_n)_{n \in \mathbb{N}^*}$ un şir mărginit astfel încât

$$\frac{x_n}{x_{n+1}} = \alpha + \frac{\beta}{n} + \frac{y_n}{n^{1+\gamma}}, \forall n \in \mathbb{N}^*.$$

i) dacă
$$\alpha > 1$$
, atunci $\sum_{n=1}^{\infty} x_n$ (C);

ii) dacă
$$\alpha < 1$$
, atunci $\sum_{n=1}^{\infty} x_n$ (D);

iii) dacă
$$\alpha = 1$$
 și $\beta > 1$, atunci $\sum_{n=1}^{\infty} x_n$ (C);

iv) dacă
$$\alpha = 1$$
 și $\beta \leq 1$, atunci atunci $\sum_{n=1}^{\infty} x_n$ (D).

Demonstrație: Deoarece din enunț avem $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\frac{1}{\alpha}$, din criteriul raportului obținem obținem i) și ii). Studiem cazul $\alpha\neq 1$. Cum $\lim_{n\to\infty}n\Big(\frac{x_n}{x_{n+1}}-\alpha\Big)=\beta$, din criteriul Raabe-Duhamel, pentru $\beta\neq 1$, obținem punctele iii) și iv)(pentru $\beta<1$). Tratăm acum cazul $\alpha=1,\beta=1$. Aplicând criteriul lui Bertrand, avem

$$n \ln n \cdot \frac{x_n}{x_{n+1}} - (n+1) \ln (n+1) = n \ln n \left(1 + \frac{1}{n} + \frac{y_n}{n^{1+\gamma}} \right) - (n+1) \ln (n+1)$$

$$= -(n+1) \ln \frac{n+1}{n} + y_n \frac{\ln n}{n^{\gamma}}$$

$$= \ln \left[\left(1 + \frac{1}{n} \right)^{-(n+1)} \right] + y_n \frac{\ln n}{n^{\gamma}}.$$

Deoarece $\lim_{n\to\infty} \ln\left[\left(1+\frac{1}{n}\right)^{-(n+1)}\right] = \ln e^{-1} = -1, \lim_{n\to\infty} \frac{\ln n}{n^{\gamma}} = 0$, iar şirul $(y_n)_{n\in\mathbb{N}^*}$ este mărginit, avem $\lim_{n\to\infty} \left[n\ln n\cdot\frac{x_n}{x_{n+1}} - (n+1)\ln (n+1)\right] = -1 < 0.$

Prin urmare, din criteriul lui Bertrand, seria $\sum_{n=1}^{\infty} \! x_n$ este divergentă.

Teorema 3.21 (Criteriul logaritmului) Fie seria $\sum_{n=1}^{\infty} x_n$, unde $x_n > 0$, $\forall n \in \mathbb{N}^*$.

- i) Dacă $\liminf_{n\to\infty} \frac{\ln\frac{1}{x_n}}{\ln n} > 1$, atunci seria $\sum_{n=1}^{\infty} x_n$ converge;
- ii) Dacă $\limsup_{n\to\infty} \frac{\ln\frac{1}{x_n}}{\ln n} < 1$, atunci seria $\sum_{n=1}^{\infty} x_n$ diverge;
- iii) Presupunem că există limita $\lim_{n\to\infty} \frac{\ln \frac{1}{x_n}}{\ln n} = \ell \in \overline{\mathbb{R}}$, atunci:
 - $dacă \ \ell > 1$, $seria \sum_{n=1}^{\infty} x_n$ este convergentă;
 - $dacă \ \ell < 1$, $seria \sum_{n=1}^{\infty} x_n$ este divergentă;
 - $dacă \ell = 1$, nu ne putem pronunța asupra naturii seriei $\sum_{n=1}^{\infty} x_n$.

Teorema 3.22 (Criteriul logaritmului) Fie seria $\sum_{n=1}^{\infty} x_n$, unde $x_n > 0$, $\forall n \in \mathbb{N}^*$ pentru care există limita $\lim_{n \to \infty} \frac{\ln \frac{1}{x_n}}{\ln n} = \ell \in \mathbb{R}$, atunci:

- i) dacă $\ell > 1$, seria $\sum_{n=1}^{\infty} x_n$ este convergentă;
 - ii) dacă $\ell < 1$, seria $\sum_{n=1}^{\infty} x_n$ este divergentă;
- iii) dacă $\ell=1$, nu ne putem pronunța asupra naturii seriei $\sum_{n=1}^{\infty} x_n$.

Demonstrație: Fie α astfel încât $1 < \alpha < \liminf_{n \to \infty} \frac{\ln \frac{1}{x_n}}{\ln n}$. Din definiția limitei inferioare rezultă că există $n_0 \in \mathbb{N}^*$ astfel încât $\frac{\ln \frac{1}{x_n}}{\ln n} > \alpha$, pentru orice $n \ge n_0$. Rezultă că $x_n < \frac{1}{n^{\alpha}}, \forall n \ge n_0$ și conform criteriului de comparație de specia I, seria $\sum_{n=1}^{\infty} x_n$ converge. Analog se demonstrează și punctul ii). Punctul iii) rezultă din i), ii) și utilizând Teorema 2.25 din Cursul 2.

Bibliografie orientativă

- [1] A. Knopfmacher, J. Knopfmacher Two Constructions of the Real Numbers via Alternating Series, Iternat. J. Math & Math. Sci., Vol. 12, no. 3 (1989), pp 603-613.
- [2] J. Galambos The Representation of Real Numbers by Infinite Series, Lecture Notes in Math., 502, Springer, 1976.
- [3] C. Badea A theorem of irrationality of infinte series and applications, Acta Arithmetica, LXIII, 4 (1993).
- [4] K. Knopp Theory and Application of Infinite Series, Dover Publications, 1990.
- [5] G. Bagni Infinite Series from History to Mathematics Education, 2005.
- [6] Anca Precupanu Bazele analizei matematice (Cap. 3), Editura Polirom, Iași, 1998.
- [7] Rodica Luca-Tudorache Analiză matematică. Calcul Diferențial. (Cap. 2), Editura Tehnopress, Iași, 2005.
- [8] E. Popescu Analiză matematică. Calcul diferențial (Cap. 2), Editura Matrix Rom, București, 2006.
- [9] Marina Gorunescu Lecții de analiză matematică pentru informaticieni, Reprografia Univ. Craiova, 2000.
- [10] Rodica Mihaela Dăneţ ş.a. Curs modern de analiză matematică. Volumul I (Cap. 1), Editura Matrix Rom, Bucureşti, 2009.
- [11] John K. Hunter An Introduction to Real Analysis (Chap. 4), University of California at Davis, 2014.