Medidas electrónicas I Anteproyecto "Voltímetro DC y AC true RMS"

Año Lectivo: 2024

Alumnos

Baigorria, Tomás Masman, Álvaro

4R07

Profesores

Eduardo Grosso Ezequiel Hernández

Definición del problema

Como parte de los requerimientos de aprobación y/o regularización de la materia Medidas electrónicas I se plantea la necesidad de construir un sistema que plasme/aplique los conocimientos adquiridos en dicha materia. Dicho trabajo deberá ser presentado funcionando y con su respectivo informe antes de la fecha establecida por la cátedra.

Solución propuesta por el equipo de trabajo

Diseño y construcción de un voltímetro autorango capaz de medir tensiones DC y AC true RMS.

<u>Justificación</u>

Un voltímetro true RMS integra gran parte del contenido y conceptos del programa analítico de la materia, por lo que resulta una buena opción como tema de trabajo final. Además, es una sugerencia tradicional de parte de los profesores a cargo y se puede ensayar y contrastar fácilmente. También hay información disponible de circuitos ya diseñados y probados, notas de aplicación, etc.

Alcances y limitaciones

El circuito será capaz de realizar mediciones de tensión, tanto continua como alterna. No tendrá limitaciones relacionadas a la forma de onda, ya que se plantea implementar un true RMS. El mismo será capaz de medir tensiones en un amplio rango, desde 100 mV a 300 V. La impedancia de entrada será superior a los $10M\Omega$, como la mayoría de los voltímetros comerciales. Respecto al ancho de banda, éste se encuentra limitado por los componentes que conforman el circuito de medición, y se establecerá en 1MHz.

En cuanto a la eficiencia energética, se debe tener en cuenta que la alimentación será provista por una batería de 9V, como el resto de los equipos de medición de la gama.

Diagrama en bloque

Diagrama esquemático

Descripción de las partes y funcionamiento del circuito

 Divisor resistivo: este bloque cumple la función de adaptar el nivel de señal a valores manejables por el microcontrolador. Para esto, se coloca una resistencia de 10MΩ en serie con la fuente y resistencias en paralelo, para conseguir modificar el alcance y, al mismo tiempo, conseguir fijar la impedancia de entrada entre 10MΩ y 20MΩ.

Para conseguir la funcionalidad de autorango, es necesario emplear llaves electrónicas que seleccionen el alcance adecuado según la tensión a medir. Para

esto, se utiliza un multiplexor 4:1, cuyas entradas de selección serán controladas por el microcontrolador.

- Selección de modo AC/DC: mediante un demultiplexor, el microcontrolador elegirá el camino adecuado para tratar la señal a medir. Además, se agrega un buffer como etapa separadora para evitar afectar el funcionamiento del divisor resistivo.
- Rectificador de precisión: si el microcontrolador determina que la señal es alterna, la misma pasa a una etapa de rectificación, en donde se utilizan amplificadores operacionales para evitar la caída de tensión de un puente de diodos convencional y poder medir tensiones de bajo valor.
- Regulador de tensión (LM7805): para poder alimentar el microcontrolador y los amplificadores operacionales, se debe disminuir el nivel de tensión de 9V que entrega la batería a 5V.

Tabla de materiales y componentes

- Resistencias: 5 de $10k\Omega$, 2 de $10M\Omega$, 1 de $1M\Omega$, 1 de $560k\Omega$ y 1 de $100k\Omega$
- Capacitores: 2 de 100nF
- 2 multiplexores ADG704
- 2 diodos Schottky 1N5819
- Regulador LM7805
- 3 amplificadores operacionales TL081
- Placa de desarrollo ESPWROOM-32
- Batería de 9V
- Cables varios
- 2 conectores para puntas
- 2 puntas de medición