DS084- Underfitting & Overfitting the Model

By: eng. Esraa Madhi

https://youtu.be/o3DztvnfAJg

https://youtu.be/o3DztvnfAJg

How to Detect Underfitting and Overfitting?

- Underfitting: In this case, train error is large and val/test error is large too.
- Overfitting In this case, train error is very small and val/test error is large.
- When you find a good model, train error is small, and val/test error is small too.

User-uploaded image: Blank-diagram-2-1.jpg

Techniques to prevent underfitting and overfitting:

Techniques to fight underfitting and overfitting		
	Underfitting	Overfitting
Complexity of the model	More complex model	More simple model
	Try a more powerful model with a larger number of parameters Ensemble learning	Try a less powerful model with a fewer number of parameters
	More layers / number of neurons per layer	Less layers / number of neurons per layer
Regularization	Less regularization	More regularization
	Decrease regularization	Increase regularization impact Early stopping, L1 / L2 regularization, dropout
Quantity of features	A larger quantity of features	A smaller quantity of features
	Get additional features, feature engineering, polynomial features, etc.	Remove all additional features, feature selection
Data	Data cleaning, hold-out validation or cross validation.	Data cleaning, hold-out validation or cross validation.
	Getting more data most likely will not help	Getting more data most likely will help (data augmentation)

 Using cross-validation can safeguard against overfitting more effectively than using a simple train/test split. This is because it ensures that the model's ability to generalize is not just due to a lucky split of data, but rather a consistent pattern across multiple splits.

Resources:

- https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-bestfitting-machine-learning/
- https://www.baeldung.com/cs/ml-underfittingoverfitting#:~:text=However%2C%20an%20overfitted%20model%20generates, even%20with%20the%20training%20data.
- https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
- http://www.r2d3.us/visual-intro-to-machine-learning-part-2/