TSP

- Co to je
- Reprezentace
 - Adjacency
 - City j na pozici i <==> existuje hrana z i do j
 - Neintuitivní
 - Nefungují klasické crossovery
 - Funguje se schématy
 - Normální
 - Nefungují klasické crossovery, viz následující seznam
 - První idea každého člověka
 - Reálná čísla
- Crossover
 - PMX
 - https://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators /PMXCrossoverOperator.aspx
 - o CX
 - https://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators /CycleCrossoverOperator.aspx
 - o ER
 - https://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators/ /EdgeRecombinationCrossoverOperator.aspx
 - o OX
 - https://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators /Order1CrossoverOperator.aspx
- Initialization
 - Nearest neighbor
 - Hledáme k poslednímu městu
 - Edge insertion
 - Jako nearest neighbor, ale pro všechny města
- Mutation
 - Náhodně prohodit dvě města
 - 2-opt
 - o Inverze
 - **1234567**89 ->12**76543**89
 - Prohodit dvě podcesty
 - **1234**56**78**9 -> 12**78**56**34**9

Michigan vs Pittsburgh (Evolutionary machine learning)

- Learning of rules = classifiers system
- Cílem je naučit se skupinu pravidel, která korektně klasifikuje data
- Dvě školy genetických algoritmů, aplikujeme je na evoluční machine learning

- Jak má být pravidlový systém reprezentován
- Learning dělíme na
 - Classification
 - Speciální případ supervised learning máme odpovědi
 - Reinforcement learning
 - Obvykle agent v nějakém prostředí a okolí odesílá nějaká data (sensory na robotovy) a dává nám nějaké rewards (robot se dostal na nějaké místo v prostředí), ale tyto odměny nejsou okamžité (po aplikaci jednoho pravidla)
- Výhoda genetických algoritmů je, že obvykle není velký problém je změnit z klasifikace na reinforcement learning (a naopak), obvykle je potřeba nějak změnit vyhodnocování fitness funkce
- Machine learning
 - Chceme získat nějaká data a z nich vytvořit model
- Rule = pravidlo
 - Speciální podmnožina modelu
 - Uvažujeme tvar IF □ THEN □
- Obě dva přístupy jsou použitelné na klasifikaci (Michigan a Pittsburgh)
- Michigan je lepší na reinforcement learning
- Dneska se na klasifikace používá hlavě Pittsburgh
- Klasifikační systémy postavené na pravidlech mohou mít horší výsledky než modely postavené na neuronových sítích, ty ale není možné tak dobře rozumět, proč tak fungují
- Další problém např. Deep learningu je, že potřebuje obrovské množství dat oproti ostatním (klasickým pravidlovým) způsobům
- Michigan
 - University of Michigan
 - John Holland zde pracoval
 - Založeno na jeho původní práci (Simple genetic algorithm)
 - Individuál = 1 pravidlo
 - Máme populaci pravidel = kompletní klasifikační systém
 - Jde použít v reinforcement learning i supervised learning
 - Supervised learning je lehčí (máme správné hodnoty)
 - LCS (learning classifier system)
 - 80' Holland
 - Pouze binární řetězce a hvězdička (znamená 0, nebo 1)
 - Příklad s ideálním partnerem
 - Intelligent 1
 - Hair color *
 - Woman 1
 - Likes music 1
 - Každý jedinec má jednu hodnotu z reálných čísel často zvanou strength nebo weight - použití jako fitness nebo váha pravidla
 - Části: Environment, populace pravidel, mechanismus selekce akce, mechanismus distribuce odměny, GA

- Bucking brigate algorithm (patří k LCS)
 - Původní práce Hollanda
 - Chceme použít s reinforcement learning
 - Strength pravidla by měla mít komplexnější způsob definice
 - Příklad s robotem:
 - Robot provádí sekvenci akcí iniciovanou pravidly
 - Ri -> Rj -> Rk -> R lucky
 - R_lucky bude pravidlo po jehož provedení robot dostane "odměnu" za to, že dosáhl nějaké požadované akce
 - Celou odměnu dostane pravidlo R_lucky, ačkoliv to není fér, protože celá sekvence akcí předtím způsobila, že robot udělal co udělal
 - Bucking brigate algorithm redistribuje odměnu do předchozích pravidel
 - Podmínka pro aplikaci pravidla je, že se okousne trochu z jeho strength za spuštění jeho akce, takto se akumulují jakoby penízky a když dojde k odměně, tak ji redistribujujeme podle ukousnuté strength
 - I gave up some of my strength, but I will receive more in return
 - Málo používané, je obtížné správně zvolit právě tu správnou hodnotu investice ze strength a správnou hodnotu odměnu kterou pak zaplatit zpátky
 - Dobrá myšlenka, v praxi obtížně implementované, dnes opuštěný koncept
 - Jsou tam messages a rules
 - GA operuje nad rules
 - Komplikované i implementovat
- ZCS (Zero classifier system)
 - Nová generace lidí v 90' (Wilson)
 - Zjednodušení (žádné messages a bucket brigade)
 - Nejprve úspěšné
 - Bez bucking brigate, ale historii si nějak pamatovat budeme
 - Příklad
 - Jsem neaplikovatelné pravidlo -> nic se nestane
 - Jsem aplikovatelný -> ale vím, že nejsem správný, nedostanu se aplivací tohoto pravidla do požadovaného stavu, tak snížíme strength (WUT jak to poznám)
 - Každé pravidlo musí dát nějaký strength (malé množství)
 - Zvýšíme strength pravidel, které správné odpověděli, ale pouze těch v předchozím kroku (použiji naakumulované penízky)
 - Nějak jestli jsem pochopil, tak neřešíme komplexní historii, ale pouze jeden dva stavy dozadu
 - COVER operátor (tohle je důležitá součást ZCS)
 - Je těžký mít pořád pravidla, která jsou aplikovatelná na každou situaci

- Řeší právě tuto situaci, nemám pravidlo na aplikování v dané situaci
- Aplikací COVER operátoru vytvoříme nové pravidlo (podle vstupu, na které nebylo aplikovatelné žádné pravidlo)
- Přidáme toto nové pravidlo do populace
- Charakterizace
 - Mnohem jednodušší mechanismus, který si pamatuje pouze několik předchozích kroků
 - Odměňuje aktuální a několik posledních
 - COVER operátor
- XCS (Extended classifier systems)
 - Vylepšená verze ZCS (také od Wilsona)
 - State-of-the-art pro learning klasifikátory
 - Spousta různých popravených variant se dnes používá
 - ZCS fungovali stále dobře, ale měli několik nevýhod
 - Odměny fungují dobře pro předchozí krok, ale ne úplně dobře v dlouhodobém měřítku
 - Vyhrávající pravidla jsou obvykle ta, co jsou více obecně aplikovatelná v různých situacích (oproti specializovaných pravidlům, ačkoliv ty mohou být stejně důležité)
 - Předchozí systémy byly všechny strength based
 - Když bylo víc pravidel na výběr, vybíralo se podle strength
 - Strength is good for reward and výběr akce ale vývoj evoluce by měl být zaměřený na nejspolehlivější pravidla, které dávají přesnější predikce
 - Nová pravidla z úspešných pravidel
 - Používá GA na Action set (kandidáti na úspešná pravidla)

• Pittsburgh

- Specializované na klasifikaci
- První generaci studentů Johna Hollanda
- Tohle je šílené
- Individuál = množina pravidel = klasifikační systém
- Definujeme, že třeba potřebujeme 5 pravidel na ovládání robota, budeme tedy mít takového individuála a vylepšovat ho v rámci nějaké populace, kde všichni individuálové mají 5 pravidel.
- Z více pravidel na jedince vyplývají i složitější genetické operátory
 - Jak provést crossover na všechny pravidla? (mezi jedinci, nebo uvnitř jedince - je to stále crossover?)
 - Mutace i crossover na více úrovních
- o GIL
 - Jednoduché a prakticky použitelné
 - Specializované na binární klasifikaci (prvek spadá do kategorie 0, nebo 1)
 - Pravidla mají implicitní klasifikační skupinu
 - Typy pravidel
 - Complex

- Konjunkce selektorů
- o S1 & S2 & S3
- Jedno pravidlo
- Selector
 - Disjunkce proměnné je disjunkce hodnot z domény
 - \circ (C = R) or (C = B)
- Variable
 - Domain (diskrétní)
 - Values (z této domény)
- Příklad: color (R, G, B)
 - Domain (0, nebo 1)
- Individual je množina complexů
- Jednoduše reprezentovatelné bitmapou → jdou aplikovat standardní genetické operátory
- Existují operátory na úrovni complexů i selektorů a je jich spousta
- Jednoduchá mutace na selektoru (přehodím bit)
- Reduction
 - Specializovaná mutace na selektoru změním 1 → 0
 - Děláme selektor menší
- Extension
 - Opak reduction
 - 0 → 1

Úvod

- Důležitá inspirace biologií
 - Darwinova teorie přirozeného výběru (Darwinova evoluční teorie)
 - Polovina 19. Stol.
 - Opravdová komplexní teorie jak evoluce funguje, reprodukce je klíč života
 - Lépe adaptovaní jedinci mají větší šanci se reprodukovat (a tak se v populaci více rozšířit své geny)
 - Založené na pozorování, Darwin procestoval svět na lodi
 - Žil ve spoustě prostředí
 - Neměl žádný důkaz (fyzikální, biologický) pro jeho teorii
 - Mendelova genetika
 - Pravidla genetiky (založená na logice a statistických experimentech)
 - V podobné době co Darwin
 - Nepovšimnuté polovinu století
 - Na začátku 20. stol znovu objeveno britskými biology
 - Existuje nějaká základní jednotka dědičnosti → dnes ji říkáme gen
 - Gen je diskrétní věc → máme ho, nebo ne
 - Mendel ale nevěděl, jak je gen reprezentován v přírodě
 - Máme 2 páry genů, který vytvoří relevantní informaci o našem fenotypu
 - Pioneer základů genetiky

- Nyní ale víme, že to je více komplikované, genotyp a fenotyp není 1:1 mapování
- o DNA
 - Čekali jsme dalších 100 let
 - Základ jak reprezentovat genetický kód v biologických organismem
 - Double helix (dvojitá šroubovice)
 - Vždy trojice nukleotypů
 - 3 písmena, která kódují jeden z 23 aminokyselin (základní stavební struktura všeho v živých organismech)
 - Dnes v molekulární genetice rozumíme, že DNA přes kodon obsahuje informace, potom existuje proces transkripce do RNA (bijektivní funkce)
 - RNA je pak detailní návrh pro výrobu proteinů
 - Takhle máme mapování z genotypu na fenotyp (DNA → RNA → Protein)
 - Neexistuje cesta zpět fenotyp nemůže ovlivnit genotyp
- Existují další teorie jako např. Lamarkismus, který tvrdí, že získané vlastnosti je možné dědit, dnes víme, že toto není pravda, ale pro evoluční algoritmy se to může hodit.
- Altruism vs Darwinism
 - Mnoho kooperace existuje i v přírodě (mimo lidi)
 - Jak se mohlo altruistické chování vyvinout, když darwinismus snižuje fitness altruistických individuí
 - Tímto se zabývá social biology
- EA je meta algoritmus
 - No free lunch theorem (neexistuje jeden nejlepší algoritmus)
 - Vyplatí se vytvářet specifické varianty EA pro různé účely

Exploration (průzkum) vs exploitation (vykořisťování)

- Co by hledací algoritmy měly dělat
- Exploration: Měli bychom trávit čas explorací nových oblastí možných řešení
- Exploitation: Měli bychom využít naše aktuální znalosti a prohledat do hloubky
- Holland původně vymyslel adaptivní plán motivovaný přírodou
 - Explorace a exploitace jsou v rovnováze
 - Pouze explorace → jenom budu hledat a nikdy znalosti nevyužiji
 - Pouze exploitace → velká šance, že skončím v lokálním optimu
- Jak zajistíme rovnováhu?
 - Inspirace z 2-Armed bandit
 - 1-armed
 - Obyčejný gambling mat, s páčkou, kde vyhraješ money, když dostaneš 3x jablíčko třeba
 - 2-armed je zajímavější z matematického hlediska
 - Máme omezené množství coinů
 - Jak identifikovat a využít "arm", který lépe platí
 - Každé arm má jiné Expected value a varianci...
 - Snažíme se odhadnout statistické hodnoty

- Řešení: Lepší arm hrajeme exponenciálně vícekrát než druhý arm (zajímavé je, že ten druhý ale stále hrajeme) → náš odhad nemusí být správný
- K-armed bandit
 - Důležitý problém reinforcement learningu a optimalizace
 - Zajímavé když nevíme žádné statistické údaje
- Holland tedy použil, že genetický algoritmus alokuje více pokusů pro úspěšnější schémata

Evoluční strategie

- Efektivní a populární způsoby jak optimalizovat floating point problémy
- Alternativa k genetickým algoritmům (GA)
- 60' Rechenberg, Schwefel (Německo)
- Měli optimalizační problém s příliš mnoho proměnnými pro analytické řešení
- Experimenty s randomizovanými algoritmů, které hledají řešení
- Nakonec přišli s tím, čemu dnes říkáme evoluční strategie
- Řeší optimalizaci reálných funkcí, pracují s floating point čísly (vektory) (žádné binary jako u Hollanda)
- Individum má dvě části
 - Genetic parameters (numbers original individual)
 - x1, ..., xn
 - Endogenous parameters (ovlivňuje evolution)
 - Můžeme sem dát třeba sigmu, jejíž hodnotu můžeme vyvíjet např.
 Násobením N(0,1)
 - Tomuto se říká metaevoluce, parametry evoluce procházejí také procesem evoluce
- Nové individum je akceptováno pouze pokud je lepší
- Výběr rodičů se liší oproti GA → zde můžeme mít více rodičů
- Máme ale vždy pouze jednoho potomka (v GA máme 2 obvykle)
- Stále máme spoustu aplikací v deep learningu nebo reinforcement learning
- Máme dvě možnosti na další populaci
 - Buďto vždycky vyměníme starou populaci za novou (jako v GA)
 - Nebo vyrobíme množinu nových a pak vybereme novou populaci ze starých a nových individuí (jako vybereme ty nejlepší)
- Příklad (nejjednodušší evoluční strategie):
 - Minimalizujeme funkci
 - Individum je vektor
 - Populace je jedno individum
 - Vytváříme jednoho potomka
 - Provádíme na něj mutaci (z normálního rozdělení upravíme nějakou složku vektoru)
 - V tomto případě nemáme crossover
- Jak velká by měla být mutace (krok mutace)?
 - Určuje parametr sigma normálního rozdělení

- Když je sigma velká → děláme exploration
- Když je malá → exploitation
- Experimentálně ověřeno, že nejlepší je, když mutace vytvoří lepšího jedince ve 20%
- Můžeme udělat algoritmus tak, že budeme kontrolovat, jak je mutace úspěšná a podle toho dynamicky měnit sigma parametr
- Selekce (detailněji, něco bylo už výše)
 - o Parental
 - totálně random (nevybíráme podle fitness), u GA to bylo ruletou nebo turnajem
 - Environmental
 - Vybereme nejlepšího z populace
 - Potom nová populace jsou buďto nový jedinci (comma strategy)
 - Nebo společně s rodiči (plus strategy) (asi vyberu nejlepší)
 - Comma strategy
 - Noví kandidáti jsou označeni jako L
 - Starý jsou M
 - L > M (musí)
 - Příklad
 - o M = 10
 - L = 100 (vygenerujeme kandidáty)
 - Vybereme 10 z nich a uděláme nové M
 - Sklony k zaseknutí v lokálním optimu
 - Doporučné pro domény z reálných čísel
 - Plus strategy
 - L může být jakékoliv, klidně L=1 což je speciální případ (steady state evolution strategy)
 - Doporučené pro diskrétní domény
- Mutace (detailněji)
 - Nejdříve se vždy mutují endogenous parametry (metaevoluce)
 - o Pravidlo 1/5
- Crossover (detailněji)
 - Libovolné množství rodičů
 - Uniformní (dominant)
 - Aritmetický (intermediate)

Věta o schématech

- První pokus formalizace genetických algoritmů
- John Holland
- Snaží se popsat teoreticky jak genetický algoritmus funguje
- Staré, ne tak dobré
- Jedna z mála teoriích o genetických algoritmech
- Dnes ale máme lepší teorii a poznatky
- Není příliš obecná

- o(S) ... počet pevných pozic schématu (počet 0 a 1)
- d(S) ... vzdálenost mezi první a poslední pevnou pozicí
 - Index poslední pevné pozice index první pevné pozice
- F(S) ... průměrná fitness jedinců v populaci, kterým schéma S odpovídá
- Přeformulovaná verze, nepoetická
 - \circ \forall schémata, která mají malou definující délku d(S), malý řád o(S) a nadprůměrnou fitness F(S) platí, že při běhu GA se exponenciálně množí
 - nadprůměrnou fitness F(S) ~ velká šance, že schéma bude vybráno
 - Malá definující délka d(S) ~ malá šance, že crossover zničí schéma
 - malý řád o(S) ~ malá šance, že mutace zničí schéma
- Budeme se zabývat jak souvisí selection, crossover a mutation se schématy
- Máme nějaká schémata, kterých odpovídají jedinci, kteří jsou využity v GA. Nás bude zajímat které ze schémat budou v další generaci mít nějakého jedince, kterému odpovídají. Jaké jsou vlastnosti schémat, které se stanou součástí další populace?
- O tomhle se budeme bavit v kontextu genetických operátorů (selekce, mutace, crossover)
- Jaká je dobrá vlastnost schématu aby bylo vybráno? (selekce)
 - Selekce je podle fitness
 - Pravděpodobnost souvisí s *F*(*S*)
- Mutace
 - Bavíme se o jedincích v populaci, kteří odpovídají schématu
 - Když mutace chce změnit hodnotu, kde je hvězdička, nic se neděje → schéma přežije
 - Problém je, když se mutace trefí do 0, nebo 1
 - Pravděpodobnost přežití schématu souvisí s o(S)

Crossover

- Kdy může crossover zničit schéma?
- Pokud máme hvězdičky na konci nebo začátku, a crossover dělící čára oddělí tyto hvězdičky, tak schéma nebude zničeno
- Kdekoliv jinde ho ale může zničit
- Pravděpodobnost přežití schématu souvisí s d(S)
- Nyní rozumíme všemu co je potřeba, přesuneme se k důkazu (minimálně nějaký náznak chce)
- Půjdeme od jedné populaci k druhé a budeme se koukat na pravděpodobnost přežití schématu
- C(S,t) ... počet individuálů odpovídající schématu S v populaci P(t)
- Zajímá nás C(S, t + 1)
 - Vypočítáme ve třech krocích (selection, crossover, mutation)
- Selekce
 - \circ $F(t) = \sum F(u)$ kde $u \in P(t)$ (součet fitness prvků v populaci v čase t)
 - $P_S(v) = \frac{F(v)}{F(t)}$ (pravděpodobnost selekce prvku v)
 - $P_{S}(S) = \frac{F(S)}{F(t)}$ (pravděpodobnost výběru schématu)

$$\circ \quad \mathcal{C}(S,t+1) = \mathcal{C}(S,t) \cdot n \cdot P_s(S)$$

- Selekci děláme n krát
- Pro každou selekci máme spočítanou pravděpodobnost výběru schématu

$$\circ$$
 Jde to přepsat na $C(S, t + 1) = C(S, t) \cdot \frac{F(S)}{F_{avg}(t)}$

■
$$F_{avq}(t) = \frac{F(t)}{n}$$
 (průměrná hodnota fitness v populaci v čase t)

My jsme ale předpokládali, že schémata mají nadprůměrnou fitness

■
$$F(S,t) = F_{ava}(t) + \varepsilon \cdot F_{ava}(t)$$
 t je celé číslo ≥ 0

$$C(S, t + 1) = C(S, 0) \cdot (1 + \varepsilon)^{t}$$

Geometrická řada

Crossover

 \circ Víme, že schémata mají malou definující délku d(S)

$$\circ P_d(S) = \frac{d(S)}{m-1}$$

- m ... délka individua (počet 0 a 1)
- m-1 ... počet pozic pro crossover
- Pravděpodobnost, že schéma bude zničeno

$$\circ P_{s}(S) = 1 - \frac{d(S)}{m-1}$$

- Pravděpodobnost, že schémat přežije
- Nesmíme zapomenout, že obvykle to, že crossover nastane má nějakou pravděpodobnost, tu označíme P

$$\circ P_s(S) \ge 1 - P_c \cdot \frac{d(S)}{m-1}$$

o Dohromady s selekcí máme

■
$$C(S, t + 1) \ge C(S, t) \cdot \frac{F(S)}{F_{avg}(t)} \cdot (1 - P_c \cdot \frac{d(S)}{m-1})$$

Mutace

- \circ P_m ... bit nepřežije
- \circ 1 P_m ... bit přežije

$$\circ P_{S}(S) = (1 - P_{m})^{o(S)}$$

Toto je korektní definice, nicméně, pravděpodobnost mutace je nízká o $P_s(S) \approx 1 - P_m \cdot o(S)$

$$\circ P_{s}(S) \approx 1 - P_{m} \cdot o(S)$$

Zkombinujeme se selekcí a crossoverem

■
$$C(S, t + 1) \ge C(S, t) \cdot \frac{F(S)}{F_{ava}(t)} \cdot (1 - P_c \cdot \frac{d(S)}{m-1} - P_m \cdot o(S))$$

Vidíme, že pokud F(S) je velké, d(S) je malé a o(S) je malé, dostaneme růst (exponenciální)

- Problém věty je, že důkaz je postaven na tom, že C(S, t) je vlastně expected value, tedy věta dobře funguje na nekonečných populacích, v praxi to nefunguje na malých populacích
- Hypetéza o stavebních blocích (neplatí, nefunguje)
 - OGA hledá optimální řešení problému kombinací schémat, která mají malou definující délku d(S), malý řád o(S) a nadprůměrnou fitness F(S)

Další věci

- Evoluční programování
 - 1965 Fogel, Owens a Walsh
 - Evoluce konečných automatů
 - Smazán rozdíl mezi genotypem a fenotypem
 - o Důraz na mutace
 - Neexistuje křížení
- Genetické programování
 - o 1992 Koza
 - Evoluce jedinců zakódovaných jako LISPovské stromy
 - Použití (nejen) k evoluci programů
- V původní SGA používal Holland ještě jeden genetický operátor, který dneska nepoužíváme – inverze
 - Obrácení části řetězce
 - Neukázala se jako výhodná