# Pacote Padrão IEEE 1164

FGA - UnB

Prática de Eletrônica Digital 1

Prof. Henrique M. T. Menegaz

### Insuficiência do Bit







**LIBRARY** ieee

**USE** ieee.std\_logic\_1164.ALL

# std\_ulogic

| valor do tipo std_ulogic |          | estado lógico corresponde |           |                      |           |  |
|--------------------------|----------|---------------------------|-----------|----------------------|-----------|--|
| U                        |          | uninitialized             |           | não inicializado     |           |  |
| X                        |          | forcing unknown           |           | impondo desconhecido |           |  |
| 0                        | 1        | forcing 0                 | forcing 1 | impondo 0            | impondo 1 |  |
| W                        |          | weak unknown              |           | desconhecido fraco   |           |  |
| L                        | H weak 0 |                           | weak 1    | 0 fraco              | 1 fraco   |  |
| Z                        |          | high impedance            |           | alta impedância      |           |  |
| •                        |          | do not care               |           | não importa          |           |  |

## std\_ulogic Vs std\_logic



- std\_ulogic: unresolved
- **std\_logic:** resolved
  - Subtipo de std\_ulogic

#### Função de resolução – tipos std\_logic

2 controladores acionando o mesmo sinal



| U   |  |  |  |  |  |
|-----|--|--|--|--|--|
| X   |  |  |  |  |  |
| 0/1 |  |  |  |  |  |
| W   |  |  |  |  |  |
| L/H |  |  |  |  |  |
| Z   |  |  |  |  |  |
| -   |  |  |  |  |  |

| U | U   | U       | U   | U       | U | U |
|---|-----|---------|-----|---------|---|---|
| X | X   | X       | Х   | Х       | Х | U |
| Х | 0/1 | 0 / 1   | 0/1 | *Nota A | Х | U |
| Х | W   | W       | W   | 0/1     | Х | U |
| Х | L/H | *Nota B | W   | 0/1     | Х | U |
| Х | Z   | L/H     | W   | 0/1     | Х | U |
| Х | Х   | Х       | Х   | Х       | Х | U |
| - | Z   | L/H     | W   | 0 / 1   | X | U |

\*Nota A: controladores com níveis lógicos: <u>iguais</u> → resultam <u>no mesmo valor</u>; <u>diferentes</u> → resultam <u>no valor X</u>

\*Nota B: controladores com níveis lógicos: <u>iguais</u> → resultam <u>no mesmo valor</u>

<u>diferentes</u> → resultam <u>no valor W</u>

- Subtipos de std\_ulogic
- Troca de valores possíveis
- Todos definidos com função de resolução (denominada resolved)
  - mais de um controlador pode acionar

```
SUBTYPE std_logic IS resolved std_ulogic;

SUBTYPE X01 IS resolved std_ulogic RANGE 'X' TO '1'; --('X','0','1')

SUBTYPE X01Z IS resolved std_ulogic RANGE 'X' TO 'Z'; --('X','0','1','Z')

SUBTYPE UX01 IS resolved std_ulogic RANGE 'U' TO '1'; --('U','X','0','1')

SUBTYPE UX01Z IS resolved std_ulogic RANGE 'U' TO 'Z'; --('U','X','0','1','Z')
```

#### Operadores lógicos para tipos std\_ulogic

Válidos para os subtipos:

```
- std logic X01 X01Z UX01 UX01Z
```

- Valor de retorno tipo UX01:
  - modela a porta que impõe estados com maior força: 1 0 U X

```
FUNCTION "and" ( l : std_ulogic; r : std_ulogic ) RETURN UX01;

FUNCTION "nand" ( l : std_ulogic; r : std_ulogic ) RETURN UX01;

FUNCTION "or" ( l : std_ulogic; r : std_ulogic ) RETURN UX01;

FUNCTION "nor" ( l : std_ulogic; r : std_ulogic ) RETURN UX01;

FUNCTION "xor" ( l : std_ulogic; r : std_ulogic ) RETURN UX01;

FUNCTION "xnor" ( l : std_ulogic; r : std_ulogic ) RETURN UX01;

FUNCTION "not" ( l : std_ulogic; r : std_ulogic ) RETURN UX01;

FUNCTION "not" ( l : std_ulogic ) RETURN UX01;
```

Nota: a função xnor não é suportada no padrão VHDL-1987

#### Operadores lógicos para tipos std\_ulogic

• Exemplo: valor de retorno para a função "and"



```
FUNCTION "and" ( l : std_ulogic; r : std_ulogic ) RETURN UX01;
```

• **Observe**: retorna tipo **UX01** (modela saída com força elevada)

|   | U | X | 0 | 1 | Z | W | L | Н | - |
|---|---|---|---|---|---|---|---|---|---|
| U | U | U | 0 | U | U | U | 0 | U | U |
| X | U | X | 0 | X | X | X | 0 | X | X |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | U | X | 0 | 1 | X | X | 0 | 1 | X |
| Z | U | X | 0 | X | X | X | 0 | X | X |
| W | U | X | 0 | X | X | X | 0 | X | X |
| L | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| н | U | X | 0 | 1 | X | X | 0 | 1 | X |
| - | U | X | 0 | X | X | X | 0 | X | X |

#### Operadores lógicos para tipos std\_logic\_vector std\_ulogic\_vector

```
FUNCTION "and" ( 1, r : std logic vector ) RETURN std logic vector;
FUNCTION "and" ( 1, r : std ulogic vector) RETURN std ulogic vector;
FUNCTION "nand" ( 1, r : std logic vector ) RETURN std logic vector;
FUNCTION "nand" ( 1, r : std ulogic vector) RETURN std ulogic vector;
FUNCTION "or" ( 1, r : std logic vector ) RETURN std logic vector;
FUNCTION "or" ( 1, r : std ulogic vector) RETURN std ulogic vector;
FUNCTION "nor" ( 1, r : std logic vector ) RETURN std logic vector;
FUNCTION "nor" ( 1, r : std_ulogic_vector) RETURN std ulogic vector;
FUNCTION "xor" ( 1, r : std logic vector ) RETURN std logic vector;
FUNCTION "xor" ( 1, r : std ulogic vector) RETURN std ulogic vector;
FUNCTION "xnor" ( 1, r : std logic vector ) RETURN std logic vector; -- VHDL-1993
FUNCTION "xnor" ( 1, r : std ulogic vector) RETURN std ulogic vector; -- VHDL-1993
FUNCTION "not" ( 1 : std logic vector ) RETURN std logic vector;
FUNCTION "not" ( 1 : std ulogic vector) RETURN std ulogic vector;
```

- Nota: std\_logic\_vector n\u00e3o \u00e9 um subtipo de std\_ulogic\_vector:
  - é necessário definir funções para cada tipo

#### Conversão para std\_logic\_vector std\_ulogic\_vector

- Conversões para std\_logic std\_ulogic std\_logic\_vector std\_ulogic\_vector:
  - mudam o tipo mantendo o valor

- Nota: std\_logic\_vector n\u00e3o \u00e9 um subtipo de std\_ulogic\_vector:
  - é necessário definir funções para cada tipo

#### Detecção de bordas de subidas ou descidas

• Úteis para a descrição de circuitos sensíveis a bordas de um sinal de relógio

```
FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;
```

- Detecção de valores sem correspondência com nível lógico alto ou baixo
  - Retornam verdadeiro para: U X Z W -

```
FUNCTION Is_X ( s : std_ulogic_vector ) RETURN BOOLEAN;
FUNCTION Is_X ( s : std_logic_vector ) RETURN BOOLEAN;
FUNCTION Is_X ( s : std_ulogic ) RETURN BOOLEAN;
```