Better Foster Youth to Independence Data Speaks: What can be done?

Gandalf Tech

Origin of Gandalf Tech...

In Middle Earth, Gandalf is a wizard who has great power, but works mostly by encouraging and persuading. He devotes his whole life protecting people from losing their homes, especially the four Hobbit youths.

Nowadays, however, there are still thousands of youths enduring homelessness across the country. This should never happen. Therefore, we aim to be today's Gandalf, who works not only by persuading, but also utilizing business, policy and technology...

Outline

Problem Framing

Theoretical Framework

Data Analysis

Insights and Discussion

Problem Framing: FYI Initiative and Policy Iterations

Provides HCVs to **families involved in the child welfare system** for whom lack of housing is a primary barrier to reunification

provides HCVs to **Youth** at least 18 years and not more than 24 years of age who left foster care or will leave foster care within 90 days Application Process: a youth must be referred by a Public Child Welfare Agency (PCWA) to apply a FYI voucher at PHA. When exploring why PHAs were not serving youth, the main reason cited was lack of referral of youth from PCWAs.

FYI – Less PHA 07/2019

- Only available to PHAs that do not administer FUP vouchers
- Each PHA was capped at 25 vouchers in a year

FYI – More PHA 10/2020

- PHAs that participate in FUP are eligible to request FYI vouchers
- Funded from a setaside of FUP funding of \$20 million

Competitive FYI 01/2021

Designated \$20
million for FUP for
youth, half of which
was to be awarded
competitively and half
on an as-needed
basis

Challenges in promoting FYI and corresponding research focus

Policy Evaluation

Effectiveness of past policy iterations unknown

Constraint in FYI budget

Inadequate cooperation between PHA and PCWA

Promotior Target Unclear of important factors influencing PHA's FYI adoption level and number of homeless youth

Unclear of which counties to target with high priority for promoting FYI

Prove effectiveness of policy iterations by data analysis

Argue whether the constraint in FYI budget is a major challenge

Provide data evidence & give suggestions of facilitating cooperation

4 Identify important factors

Identify important features in locating promising counties for promoting FYI and provide a list of the counties

Outline

Problem Framing

Theoretical Framework

Data Analysis

Insights and Discussion

Theoretical Framework: more than Diffusion of Innovation Theory

Outline

Problem Framing

Theoretical Framework

Data Analysis

Exploratory Data Analysis Modeling

Insights and Discussion

Data acquisition of PHA domain variables

Factor	Variable	Source	Factor	Variable	Source	
	PHA Code				Adoption Q Footon	
	PHA City		External Effects- Socioeconomic	State # Homeless Youth	Adoption & Foster Care Statistics	
	PHA County					
	PHA State	MMC data		County Median Rent	ACS 1-Year	
	PHA FYI Funding	Housing		County Unemployment Rate	BLS	
	PHA First FYI Adoption Date			County GDP	SAIPE	
Internal Effects	PHA FYI Application Count			County Gini Index	ACS 5-Year	
211000	PHA # Housing Inventory			City Density		
	FIIA # Housing inventory	<u>Inventory Count</u>		City Population		
	PHA Annual Budget		External Effects-	County Race Percentage		
	PHA Per Unit Per Month Cost	HUD Dashboard	Demographic	County Age Percentage	Census	
	PHA # Total Vouchers			County Gender Percentage		

Data acquisition of Homeless domain variables

Factor	Variable	Source
	Homeless Race/Ethnicity Distribution	
	Removal Reasons	
	Length Since Latest Removal	Adoption and Foster Care Analysis and
Demand	Average Rural/Urban Level	Reporting (AFCARS) Foster Care Annual File (2021)
/110	The Number of Places the Youth Has Lived	(2021)
(Homeless Individual	Foster Caretaker Race/Ethnicity Distribution	Note: the county FIPS code is unified as "8"
Characteristics	Social Security Act Benefits	if there are fewer than 1000 homeless cases
aggregated to	Physical Condition	in the County. Our analysis therefore focuses only on 125 counties with 1000+
county level)	Mental Condition	homeless cases.
	Caretaker Characteristics	
	Others (see Appendix 1)	
Supply	County Housing Density	ACS 1-Year
(Housing Supply Conditions)	County Housing Price Index	ACS 1-Year

Outline

Problem Framing

Theoretical Framework

Data Analysis

Data Acquisition

Exploratory Data Analysis

Modeling

Insights and Discussion

FYI Policy Revisions are proving effective as FYI Funding boost and more PHAs adopt in recent past

BUDGET/PHA

Cumulative FYI Funding & PHA Count vs Date

Despite the positive effect of budget separation on FYI adoption, the total available funding of \$20M is still under utilized by about ~30%

BUDGET/PHA

Distribution of each PHA FYI budget in the year of adoption

Observations

- PHA FYI spending has gone up significantly in 2021 to ~\$14MM
- Despite increased PHA spend on FYI
 related activities, still the FYI budget is
 under utilized by ~30% for FY2021
 (available total \$20MM)
- There is a significant variation in FYI
 funding across different PHAs in 2021,
 indicating that recently varied size
 PHAs are also adopting the program

80% FYI spending is constituted by top 8 states that contribute to ~73% of FYI voucher unit counts

STATE

State level representation of earliest FYI adoption and funding observed

State level share of FYI voucher units count

FYI Funding (\$) FYI voucher units count** = $\frac{12 * per unit per month cost (\$)}{}$

Cities like Seattle, Chicago, Santa Ana have high FYI voucher units count

PHA-CITY

Map of cities with adopted PHAs showcasing FYI voucher units count

~70% of PHA-cities with more than average FYI spending are struggling to meet even 50% of estimated homeless youth demand

PHA-CITY

Est. avg. homeless youth count served by FYI voucher units per city**

Avg. % of homeless youth demand served by PHA = $\left(\frac{\text{# FYI voucher units count}}{\text{#est. avg. homeless youth count}}\right)$

Est. Avg. homeless youth = # of state total homeless youth $\times_{state\ popopulation}^{city\ population}$

PHA demand serving standing against FYI funding

Overall FYI-adopted PHAs are underserving their homeless youth demand by 86%, indicating a potential friction between PHA and PCWA

PHA-CITY

Cum. log-scale values for each PHA, Est. avg. homeless youth count & FYI voucher units counts

Weak correlation between FYI voucher units count (Y1) and est. homeless youth (Y2) further emphasizes on friction in communication between PHA and PCWA

PHA-CITY

Correlation chart of FYI voucher units count where coef. > 0.01

Observations

- FYI voucher units count is highly correlated (>0.4) with city population, PHA budget, All kind voucher count, Median rent, GDP
- Possibility of multicollinearity is observed across several features and apt treatment should be chosen

Weak correlation is observed between Y

Observations

Estimated avg. homeless youth count is weakly correlated (0.22) with FYI voucher units count

Diffusion theory can be used to explain the FYI policy penetration among PHAs

PHA label	FYI funding	Count
early-high	2,003,919	3
early-low	3,798,784	48
late-high	12,640,418	12
late-low	2,919,727	52

Observations

- Early adopters and early majority have a varied intensity of adoption (FYI funding \$)
- About 94% Early adopters with low intensity of FYI contribute to 65% of early FYI total spending
- Important to investigate the factors that contribute to this difference of intensity

Outline

Problem Framing

Theoretical Framework

Data Analysis

Data Acquisition

Exploratory Data Analysis

Modeling

Insights and Discussion

Models on PHA and counties using machine learning and statistical methods

'HA Prediction

Tech Stack

Regression

Variants of multiple regression will be used to investigate linear dependency of internal and external factors on FYI voucher units count and Est. avg. homeless youth

Models such as
Random Forest and
Gradient Boosting
are used to best
predict the cases
where non-linear
relationship exists
between X & Y

To identify promising counties that can adopt FYI, unsupervised methods based on similarities such as **Spectral Clustering** and **PCA** will be used

Statistical methods including hypothesis testing and PSM will be used to find promising counties on homeless characteristics

et

Targ

County

PHA prediction: after feature engineering, 15 features are finalized to train the model

Data Combination:

Acquired data is filtered, cleaned (JSON extract), restructured, combined and validated

Missing Value Treatment:

Selected niche of dataset is enriched using techniques like MICE, Statistical descriptors

Multicollinearity Check and Treatment:

Conducted VIF test to identify and remove high multicollinearity features

Encoding & Feature development:

Integrate Agency adoption rate related variables using imputed dataset that will help improve statistical inferencing & model prediction

Normalize & Scale:

Experiment with normalization features and scaling to improve model fit

Final Features
PHA Budget
PHA FYI Application Count
PHA # Housing Inventory
PHA # Homeless Youth
City Population
City Density
White Race Percentage
Black or African American Race Percentage
American Indian and Alaska Native Race Percentage
Asian Race Percentage
Unemployment Rate
GDP
Median Rent
Vacant Housing Percentage
Housing Price Index

PHA

Performance of models predicting FYI voucher units count and Est. homeless youth per PHA

Observations

- A Stratified K-fold cross validation of Random Forest model and Gradient Boosting resulted in lowest MAE with 5 features selected using Recursive Feature Elimination method
- Random forest model outperforms as :
 - it works well with non-linearly related feature set
 - it takes advantage of bagging (variance reduction) and boosting (bias reduction)

Important factors and interpretation of Random Forest model

РНА

Υ	Top 5 Important Features	Interpretation
FYI Voucher Units Count	PHA Budget County GDP City Density Est. Homeless Youth per PHA County Median Rent	 FYI adoption level is highly associated with community economic levels: PHA Budget, County GDP, City Density and County Median Inadequate cooperation between PHA and PCWA: # Homeless Youth Per PHA, the data from PCWA, however, is
Est. Homeless Youth per PHA	PHA # Housing Inventory State Housing Price Index County Unemployment Rate City Density County American Indian and Alaska Native alone %	 PHA housing supply is highly related with its Est. homeless youth Socioeconomic factors including Housing price, urbanicity (density) and unemployment rate are good predictors for homeless Race structure also impacts homeless condition

Potential county target: counties clustered in 5 groups based on 34 unique socioeconomic factors

COUNTY

Performance of models predicting FYI vouchers unit count and Est. homeless youth

Clustered Label	Count of County	County with FYI	Adoption %
0	309	23	7%
1	12	0	0%
2	297	28	9%
3	10	0	0%
4	184	34	18%

Observations

- Clustering based on Socioeconomic factors result in 5 groups
- Cluster 4 counties have highest adoption rate
- Cluster 4 counties are highly developed areas or metro cities
- Since Cluster 4 has highest adoption rate the member counties of this cluster can be the next potential adopters

Visualizing next potential adopter counties: Cluster 4 (Blue)

Principle Component Analysis to visualize clusters

Important characteristics of homeless influence decisions in adopting FYI

COUNTY

Using dataset AFCARS, and comparing 33 counties that have adopted FYI and 92 counties that do not have adopted FYI, we found these two groups of counties are SIMILAR except:

Variables	Mean of 33 counties (1)	Mean of 92 counties (0)	P-value
Avg. rate of homeless youth's race being white	0.44	0.54	0.0373
Average rate of homeless youth being white and non-Hispanic	0.25	0.37	0.000418
Avg. rate of homeless youth being in Metro areas	0.53	0.73	0.0108
Avg. rate of homeless youth receiving support under Title XVI or other Social Security Act titles	0.038	0.052	0.0343
Avg. number of no case plan goal has yet been established other than the care and protection of the youth	65.39	52.93	0.0433
Avg. rate of removal reason as parent incarceration	0.048	0.069	0.0131
The number of places the youth has lived, including the current setting, during the current removal episode	55	59	0.0346
Avg. rate of homeless youth reaching majority according to the law by virtue of age, marriage	0.04	0.03	0.0405

Use propensity score matching (PSM) to identify potential counties adopting FYI

COUNTY

Bias reduction in variables that distinguish groups

Three groups of counties based on the likelihood of FYI adoption

- The selection bias is largely reduced after propensity score matching
- Based on that, three groups of counties are effectively identified: 33 counties that have already adopted FYI vouchers, 83 that are likely to adopt, and 9 who are not likely to adop.

Outline

Problem Framing

Theoretical Framework

Data Analysis

Insights and Discussion

Policy Evaluation: effectiveness proved, and suggestions provided

- 1 FYI Policy iterations are proving effective as FYI Funding boost and more PHAs adopt in recent past
- 2 The utilization of FYI budget is only ~70%, indicating FYI budget is not a major limit
- ③ Multiple data evidences indicate inadequate cooperation between PHA and PCWA. Suggestions:

Create clear communication channels to facilitate information sharing

- Maintain communication throughout each stage of the FYI process
- Filter communication through a single POC and encourage broader staff engagement

- Provide financial support to PCWA
- Prioritize serving youth by adding PCWA's performance of serving youth into evaluation

Provide frequent training for PCWA staff through regularly scheduled cross-agency meetings

Leverage community resources through partnerships

Other Organizations
Eg. Continuum of
Care (CoC) Board

Promotion Target: Put more effort on PHAs and counties with addressed features

Future Mission of Gandalf Tech...

- Conduct surveys and informational interviews in local agencies to identify important factors related to internal administrative and organizational behaviors;
- Employ natural language processing and sentiment analysis on stakeholders' comments to evaluate the performance of FYI program;
- Explore the further evaluation of FYI program in a broader way, focusing not only the voucher adoption level of local agencies but also the final changes in homeless youth as the end-user of the policy.
- Gandalf Tech will always be devoted at Tech for Social Good

Appendix 1: all county-level variable names from AFCARS

#9	Child's Date of Birth	#15	Child Race White	#47	Removal Reason-Relinquishment
#10	Child Sex	#16	Child Race Unable to Determine	#48	Removal Reason-Inadequate Housing
#11	Child Race American Indian or Alaska Native	#17	Child Hispanic or Latino Ethnicity	#49	Current Placement Setting
#12	Child Race Asian	#18	Child Has Been Clinically Diagnosed with Disability	#50	The Current Placement Setting is Outside the State
#13	Child Race Black or African American	#19	Mental Retardation	#51	Most Recent Case Plan Goal
#14	Child Race Native Hawaiian or Other Pacific Islander	#20	Visually or Hearing Impaired	#52	Caretaker Family Structure
#79	Title IV-E Adoption Assistance	#21	Physically Disabled	#53	1st Principal Caretaker Year of Birth
#80	Title IV-A TANF Payment	#22	Emotionally Disturbed	#54	2nd Principal Caretaker Year of Birth
#81	Title IV-D Child Support Funds	#23	Other Medically Diagnosed Condition Requiring Special Care	#55	Termination Date of Parental Rights-Mom
#82	Title XIX Medicaid	#24	Child Has Previously Been Adopted	#56	Termination Date of Parental Rights-Dad
#83	SSI or Social Security Act Benefits	#25	Age on Date of Legal Adoption	#57	Date of Parents Loss of Parental Rights
#84	Only State or Other Support	#26	Date of First Removal	#58	Foster Family Structure
#85	Monthly Foster Care Payment	#27	Total Number of Removals from Home	#59	1st Foster Caretaker Year of Birth
#86	Length (Days) Since Latest Removal	#28	Discharge Date for Previous Removal	#60	2nd Foster Caretaker Year of Birth
#87	Length (Days) in Current Placement Setting	#29	Date of Latest Removal from Home	#61	1st Foster Caretaker Race American Indian or Alaska Native
#88	Length (Days) of Previous FC Stay	#30	Removal Transaction Date	#62	1st Foster Caretaker Race Asian
#89	Total Days Stay in FC, All Episodes	#30			
#90	Age on the First Day of the Fiscal Year		Begin Date for Current Placement Setting	#63	1st Foster Caretaker Race Black or African American
#91	Age at Most Recent Removal/Entry into Foster Care	#32	Number of Placement Settings in Current FC Episode	#64	1st Foster Caretaker Race Native Hawaiian or Other Pacific Islander
#92	Age of Child at the End of FFY, or at Exit	#33	Removal Manner	#65	1st Foster Caretaker Race White
#93	Child was in FC at the Beginning of the FFY	#34	Removal Reason-Physical Abuse	#66	1st Foster Caretaker Race Unable to Determine
#94	Child was in FC at the End of the Fiscal Year	#35	Removal Reason-Sexual Abuse	#67	1st Foster Caretaker Hispanic or Latino Ethnicity
#95	Entered Foster Care During the Fiscal Year	#36	Removal Reason-Neglect	#68	2nd Foster Caretaker Race American Indian or Alaska Native
#96	Child was Discharged from Foster Care During the Fiscal Year	#37	Removal Reason-Alcohol Abuse Parent	#69	2nd Foster Caretaker Race Asian
#97	Child was in at Start or Entered FC During the FY	#38	Removal Reason-Drug Abuse Parent	#70	2nd Foster Caretaker Race Black or African American
#98	Child is Waiting for Adoption	#39	Removal Reason-Alcohol Abuse Child	#71	2nd Foster Caretaker Race Native Hawaiian or Other Pacific Islander
#99	Parents Rights Have Been Terminated	#40	Removal Reason-Drug Abuse Child	#72	2nd Foster Caretaker Race White
	-	#41	Removal Reason-Child Disability	#73	2nd Foster Caretaker Race Unable to Determine
#100		#42	Removal Reason-Child Behavior Problem	#74	2nd Foster Caretaker Hispanic or Latino Ethnicity
#101	•	#43	Removal Reason-Parent Death	#75	Date of Discharge from Foster Care
	variable is derived from the five variables	#44	Removal Reason-Parent Incarceration	#76	Date that the Discharge Was Recorded
#102		#45	Removal Reason-Caretaker Inability Cope	#77	Discharge Reason
	variable is derived using the five variables for the child's race	#46	Removal Reason-Abandonment	#78	Title IV-E Foster Care Payments
#103	Rural Urban Continuum Code				
#104	State Foster Care ID				

Appendix 2: list of counties in three groups

FIPSCode	county	state	label 🕶
1073	Jefferson	AL	2
2020	Anchorage Municipality	AK	2
4013	Maricopa	AZ	2
6001	Alameda	CA	2
6029	Kern	CA	2
6037	Los Angeles	CA	2
6059	Orange	CA	2
6065	Riverside	CA	2
8059	Jefferson	CO	2
12009	Brevard	FL	2
12011	Broward	FL	2
12086	Miami-Dade	FL	2
12099	Palm Beach	FL	2
13121	Fulton	GA	2
15003	Honolulu	HI	2
17031	Cook	IL	2
19153	Polk	IA	2
21067	Fayette	KY	2
25017	Middlesex	MA	2
25025	Suffolk	MA	2
26163	Wayne	MI	2
27007	Beltrami	MN	2
30111	Yellowstone	MT	2
36029	Erie	NY	2
36061	New York	NY	2
41051	Multnomah	OR	2
42101	Philadelphia	PA	2
44007	Providence	RI	2
48201	Harris	TX	2
48215	Hidalgo	TX	2
48453	Travis	TX	2
53033	King	WA	2
53053	Pierce	WA	2

FIPSCode	county	state	label 🕶 I
4019		AZ	1
4021		AZ	1
	Contra Costa	CA	1
6019	Fresno	CA	1
6067	Sacramento	CA	1
	San Bernardino	CA	1
6073	San Diego	CA	1
6075	San Francisco	CA	1
6077	San Joaquin	CA	1
6085	Santa Clara	CA	1
6099	Stanislaus	CA	1
6107	Tulare	CA	1
6111	Ventura	CA	1
8001	Adams	СО	1
8031	Denver	СО	1
8041	El Paso	СО	1
9003	Hartford	СТ	1
9009	New Haven	СТ	1
11001	District of Columbia	DC	1
12033	Escambia	FL	1
12057	Hillsborough	FL	1
12081	Manatee	FL	1
12083	Marion	FL	1
12095	Orange	FL	1
12103	Pinellas	FL	1
12127	Volusia	FL	1
13089	DeKalb	GA	1
17143	Peoria	IL	1
17163	St. Clair	IL	1
17167	Sangamon	IL	1
	Winnebago	IL	1
18003	_	IN	1
18089	Lake	IN	1
18095	Madison	IN	1
18097	Marion	IN	1
21111	Jefferson	KY	1

	Baltimore City	IVID	1
25005	Bristol	MA	1
25009		MA	1
25013	Hampden	MA	1
25023	Plymouth	MA	1
25027	Worcester	MA	1
26081	Kent	MI	1
26125	Oakland	MI	1
27053	Hennepin	MN	1
27123	Ramsey	MN	1
27137	St. Louis	MN	1
28047	Harrison	MS	1
29095	Jackson	MO	1
29189	St. Louis	MO	1
31055	Douglas	NE	1
32003	Clark	NV	1
34007	Camden	NJ	1
34013	Essex	NJ	1
35001	Bernalillo	NM	1
37051	Cumberland	NC	1
39035	Cuyahoga	OH	1
39049	Franklin	OH	1
39061	Hamilton	OH	1
39095	Lucas	OH	1
39113	Montgomery	ОН	1
39153	Summit	OH	1
40109	Oklahoma	OK	1
40143	Tulsa	OK	1
42003	Allegheny	PA	1
42011	Berks	PA	1
45045	Greenville	SC	1
47037	Davidson	TN	1
47093	Knox	TN	1
47157	Shelby	TN	1
48027	Bell	TX	1
48029	Bexar	TX	1
48113	Dallas	TX	1
48121	Denton	TX	1
48303	Lubbock	TX	1
48309	McLennan	TX	1
48439	Tarrant	TX	1
49035	Salt Lake	UT	1
53011	Clark	WA	1
53061	Snohomish	WA	1
53063	Spokane	WA	1
	Kanawha	WV	1
55079	Milwaukee	WI	1

24510 Baltimore city

FIPSCode	county	state	label 🕶
5131	Sebastian	AR	0
12031	Duval	FL	0
12071	Lee	FL	0
12101	Pasco	FL	0
12105	Polk	FL	0
18163	Vanderburgh	IN	0
20173	Sedgwick	KS	0
32031	Washoe	NV	0
41039	Lane	OR	0

Reference

- HUD announced FYI
- FYI introduction
- Market Predictors of Homelessness
- FYI initiative webinar series data analytics