1 KalmanFilter3 Algorithm

1.1 Process Model: physical equations

k is the sample index

- z_k is the altitude, in cm
- v_k is the vertical velocity, in cm/s
- a_k is the vertical acceleration, in cm/s^2

 b_k is the vertical acceleration bias, in cm/s^2 . This is the residual bias after accelerometer calibration and can drift unpredictably.

The true vertical acceleration is the measured acceleration minus the acceleration bias.

These variables at time index k are related to the state variables at time k-1 by the equations

$$z_k = z_{k-1} + dt * v_{k-1} + \frac{dt^2}{2} * (a_{k-1} - b_{k-1})$$
$$v_k = v_{k-1} + dt * (a_{k-1} - b_{k-1})$$
$$b_k = b_{k-1} + \eta_b$$

where dt is the time interval between samples and η_b is a random variable representing acceleration bias noise.

1.2 Process Model: state transition Representation

In vector/matrix notation, these equations can be written as

$$\begin{bmatrix} z_k \\ v_k \\ b_k \end{bmatrix} = \begin{bmatrix} 1 & dt & \frac{-dt^2}{2} \\ 0 & 1 & -dt \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_{k-1} \\ v_{k-1} \\ b_{k-1} \end{bmatrix} + \begin{bmatrix} \frac{dt^2}{2} & 0 \\ dt & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{k-1} \\ \eta_b \end{bmatrix}$$

which is a state-transition equation in the form

$$x_k = Fx_{k-1} + Lw_k$$

 x_k is our state vector

$$x_k = \left[\begin{array}{c} z_k \\ v_k \\ b_k \end{array} \right]$$

F is the state transition matrix

$$F = \left[\begin{array}{ccc} 1 & dt & \frac{-dt^2}{2} \\ 0 & 1 & -dt \\ 0 & 0 & 1 \end{array} \right]$$

 w_k is the process noise (environmental perturbation), in which a_k represents the random acceleration input, and η_b is a random variable representing acceleration bias noise

$$w_k = \left[\begin{array}{c} a_k \\ \eta_b \end{array} \right]$$

L is the process noise transformation matrix

$$L = \begin{bmatrix} \frac{dt^2}{2} & 0\\ dt & 0\\ 0 & 1 \end{bmatrix}$$

The process state covariance matrix $P_k = E(x_k * x_k^T)$

$$P_{k} = \begin{bmatrix} P_{zz} & P_{zv} & P_{zb} \\ P_{vz} & P_{vv} & P_{vb} \\ P_{bz} & P_{bv} & P_{bb} \end{bmatrix}$$

Note the state covariance matrix is symmetric, i.e. $P_{zv}=P_{vz},\ P_{zb}=P_{bz}, P_{vb}=P_{bv}.$

1.3 Sensor Measurements

In this model, a barometric sensor provides periodic measurements for altitude zm. These measurements are assumed to be corrupted by (additive, zero-mean gaussian) altitude sensor noise ν_z .

The sensor measurement is related to the process model state variables by the equations

$$zm_k = z_k + \nu_z$$

In vector/matrix notation

$$[zm_k] = \begin{bmatrix} & 1 & 0 & 0 & \end{bmatrix} \begin{bmatrix} z_k \\ v_k \\ b_k \end{bmatrix} + [v_z]$$

or

$$m_k = H_k * x_k + \nu_k$$

where m_k is the measurement vector, H_k is the measurement model matrix transforming the process state vector to the measurement vector space, and ν_k is the measurement noise vector. In this case, both m_k and ν_k are scalars.

Note that we are also getting periodic gravity-compensated acceleration measurements a_k , but we cheat and use the acceleration measurements as input in the prediction step.

1.4 Prediction

Assuming the process noise w can be described by zero-mean gaussian probability distributions, the process noise covariance matrix Q_k is

$$Q_k = L * E(w_k * w_k^T) * L^T$$

Let

$$N_k = E(w_k * w_k^T)$$

$$N_k = \left[\begin{array}{cc} \sigma_a^2 & 0\\ 0 & \sigma_b^2 \end{array} \right]$$

where σ_a^2 is the statistical variance of the acceleration perturbations from the environment, and σ_b^2 is the statistical variance of the acceleration bias noise.

$$Q_k = L * N_k * L^T$$

$$Q_k = \begin{bmatrix} \left(\frac{dt^4}{4}\sigma_a^2\right) & \left(\frac{dt^3}{2}\sigma_a^2\right) & 0\\ \left(\frac{dt^3}{2}\sigma_a^2\right) & \left(dt^2\sigma_a^2\right) & 0\\ 0 & 0 & \sigma_b^2 \end{bmatrix}$$

The predicted (a priori) state estimate x_k^- (assuming process model noise is additive and zero-mean) is

$$\hat{x_k} = F_{k-1} * \hat{x_{k-1}}$$

Here we cheat and use the measured gravity-compensated acceleration am_k to predict z_k^- and v_k^- using

$$z_k^- = z_{k-1}^+ + (v_{k-1}^+ * dt)$$

$$v_k^- = v_{k-1}^+ + (am_{k-1} * dt)$$

The predicted (a priori) state covariance estimate P_k^- is

$$P_k^- = F_{k-1} * P_{k-1}^+ * F_{k-1}^T + Q_{k-1}$$

1.5 Update

We update the predicted state estimate $\hat{x_k}$ using the new measurement m_k to generate the best estimate $\hat{x_k}$ at time sample k.

The predicted measurement $\hat{m_k}$ is

$$\hat{m_k} = H_k * \hat{x_k}$$

The innovation error $\tilde{y_k}$ is the difference between the new measurement and the predicted measurement :

$$\tilde{y_k} = m_k - \hat{m_k}$$

The measurement noise covariance R_k is

$$R_k = E(\nu_k * \nu_k^T)$$

In this case R_k is a scalar $= \sigma_{zm}^2$ where σ_{zm}^2 is the statistical variance of the altitude sensor noise.

The innovation covariance S_k is

$$S_k = H_k * P_k^- * H_k^T + R_k$$

$$S_k = \left[\begin{array}{ccc} 1 & 0 & 0 \end{array} \right] P_k^{-1} \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] + \sigma_{zm}^2$$

$$S_k = P_{zz} + \sigma_{zm}^2$$

i.e. S_k is also a scalar variable.

The updated (a posteriori) state estimate $\hat{x_k}$ is

$$\hat{x_k^+} = \hat{x_k^-} + K_k * \tilde{y_k}$$

where K_k is the [3x1] Kalman gain matrix calculated as a ratio of the current state uncertainty and innovation uncertainty

$$K_k = P_k^- * H_k^T * S_k^{-1}$$

$$K_k = P_k^- \begin{bmatrix} 1\\0\\0 \end{bmatrix} \frac{1}{(P_{zz} + \sigma_{zm}^2)}$$

$$K_k = \frac{1}{(P_{zz} + \sigma_{zm}^2)} \left[\begin{array}{c} P_{zz} \\ P_{vz} \\ P_{bz} \end{array} \right]$$

This effectively blends the updated state estimate between the predicted state estimate and the new measurement depending on the relative uncertainty in state estimate and uncertainty in the new measurement.

The updated (a posteriori) state covariance estimate P_k^+ is

$$P_k^+ = (I - K_k * H_k) * P_k^-$$

When the filter is working as expected, the process covariance $trace(P_k^+)$ should reduce as new measurements arrive.

2 KalmanFilter4 algorithm

The KalmanFilter3 algorithm cheats by using sensor acceleration measurements in the prediction phase without including them in the measurement model. The updated KalmanFilter4 algorithm explicitly includes acceleration in the process state vector and measurement model. This results in a 4x4 process covariance matrix and more complex computation.

However, the performance is still acceptable running on an ESP32 microcontroller clocked at $80\mathrm{MHz}$.

KalmanFilter3 Predict +Update	~50uS
${ m KalmanFilter 4\ Predict\ +\ Update}$	~80uS

We are sampling raw data from the MPU9250 IMU sensor at 500Hz. So all additional tasks between reading IMU samples

- 1. Barometric pressure sensor reading and pressure-to-altitude conversion
- 2. AHRS algorithm to compute orientation and gravity-compensated acceleration
- 3. Kalman filter prediction and update steps
- 4. Data logging

need to be completed well within 2mS.

2.1 Process Model: physical equations

k is the sample index

 z_k is the altitude sample, in cm

 v_k is the vertical velocity, in cm/s

 a_k is the vertical acceleration, in cm/s^2

 b_k is the vertical acceleration bias, in cm/s^2 . This is the residual acceleration bias after accelerometer calibration and is assumed to drift unpredictably. The true vertical acceleration is the measured acceleration minus the acceleration bias

These variables at time index k are related to the state variables at time k-1 by the equations

$$z_k = z_{k-1} + dt * v_{k-1} + (dt^2/2) * (a_{k-1} - b_{k-1})$$

$$v_k = v_{k-1} + dt * (a_{k-1} - b_{k-1})$$

$$a_k = a_{k-1} + \eta_a$$

$$b_k = b_{k-1} + \eta_b$$

where η_a represents the random acceleration perturbation from the environment, and η_b represents the random acceleration bias noise input.

This is our physical process model.

2.2 Process Model: state transition representation

In vector/matrix notation, the process model can be written as

$$\begin{bmatrix} z_k \\ v_k \\ a_k \\ b_k \end{bmatrix} = \begin{bmatrix} 1 & dt & (dt^2/2) & (-dt^2/2) \\ 0 & 1 & dt & -dt \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_{k-1} \\ v_{k-1} \\ a_{k-1} \\ b_{k-1} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_a \\ \eta_b \end{bmatrix}$$

$$x_k = F_k * x_{k-1} + L_k * w_k$$

where x is the process model state vector, F is the state transition matrix, w is the process model noise vector, and L is the process model noise sensitivity matrix.

The process state covariance matrix $P_k = E(x_k * x_k^T)$

$$P_{k} = \begin{bmatrix} P_{zz} & P_{zv} & P_{za} & P_{zb} \\ P_{vz} & P_{vv} & P_{va} & P_{vb} \\ P_{az} & P_{av} & P_{aa} & P_{ab} \\ P_{bz} & P_{bv} & P_{ba} & P_{bb} \end{bmatrix}$$

Note that P_k is a symmetric matrix.

2.3 Sensor Measurements

In this model, sensors provide periodic measurements for altitude zm and vertical acceleration am. These measurements are assumed to be corrupted by (additive, zero-mean gaussian) altitude sensor noise ν_z and acceleration sensor noise ν_a .

The sensor measurements are related to the process model state variables by the equations

$$zm_k = z_k + \nu_z$$
$$am_k = a_k + \nu_a$$

In vector/matrix notation

$$\left[\begin{array}{c}zm_k\\am_k\end{array}\right] = \left[\begin{array}{ccc}1&0&0&0\\0&0&1&0\end{array}\right] \left[\begin{array}{c}z_k\\v_k\\a_k\\b_k\end{array}\right] + \left[\begin{array}{c}\nu_z\\\nu_a\end{array}\right]$$

or

$$m_k = H_k * x_k + \nu_k$$

where m_k is the measurement vector, H_k is the measurement model matrix transforming the process state vector to the measurement vector space, and ν_k is the measurement noise vector.

2.4 Prediction

Assuming the process noise w can be described by zero-mean gaussian probability distributions, the process noise covariance matrix Q_k is

$$Q_k = L * E(w_k * w_k^T) * L^T$$

or

$$Q_k = L * N_k * L^T$$

where

$$N_k = \left[\begin{array}{cc} \sigma_a^2 & 0\\ 0 & \sigma_b^2 \end{array} \right]$$

where σ_a^2 is the statistical variance of the random acceleration perturbations, and σ_b^2 is the statistical variance of the random acceleration bias noise.

The predicted (a priori) state estimate $\hat{x_k}$ (assuming process model noise is additive and zero-mean) is

$$\hat{x_k} = F_{k-1} * \hat{x_{k-1}}$$

The predicted (a priori) state covariance estimate P_k^- is

$$P_k^- = F_{k-1} * P_{k-1}^+ * F_{k-1}^T + Q_{k-1}$$

2.5 Update

We update the predicted state estimate $\hat{x_k}$ using the new measurement m_k to generate the best estimate $\hat{x_k}$ at time sample k.

The predicted measurement $\hat{m_k}$ is

$$\hat{m_k} = H_k * \hat{x_k}$$

The innovation error $\tilde{y_k}$ is the difference between the new measurement and the predicted measurement :

$$\tilde{y_k} = m_k - \hat{m_k}$$

The measurement noise covariance R_k is

$$R_k = E(\nu_k * \nu_k^T)$$

$$R_k = \left[\begin{array}{cc} \sigma_{zm}^2 & 0\\ 0 & \sigma_{am}^2 \end{array} \right]$$

where σ_{zm}^2 is the statistical variance of the altitude sensor noise, and σ_{am}^2 is the statistical variance of the acceleration sensor noise.

The innovation covariance S_k is

$$S_k = H_k * P_k^- * H_k^T + R_k$$

The updated (a posteriori) state estimate $\hat{x_k^+}$ is

$$\hat{x_k^+} = \hat{x_k^-} + K_k * \tilde{y_k}$$

where K_k is the [4x2] Kalman gain matrix calculated as a ratio of the current state uncertainty and innovation uncertainty

$$K_k = P_k^- * H_k^T * S_k^{-1}$$

This effectively blends the updated state estimate between the predicted state estimate and the new measurement depending on the relative uncertainty in state estimate and uncertainty in the new measurement.

The updated (a posteriori) state covariance estimate P_k^+ is

$$P_k^+ = (I - K_k * H_k) * P_k^-$$

When the filter is working as expected, the process covariance $trace(P_k^+)$ should reduce as new measurements arrive.