

# Naval Research Laboratory

Stennis Space Center, MS 39529-5004



NRL/MR/7320--08-9154

# User's Manual for the Polar Ice Prediction System (PIPS) Version 3.0

PREPARED FOR:

*Naval Oceanographic Office  
Systems Integration Division*

PREPARED BY:

PAMELA G. POSEY  
LUCY F. SMEDSTAD  
RUTH H. PRELLER  
E. JOSEPH METZGER

*Ocean Dynamics and Prediction Branch  
Oceanography Division*

AND

SUZANNE N. CARROLL  
*Planning Systems, Inc.  
Stennis Space Center, Mississippi*

November 5, 2008

Approved for public release; distribution is unlimited.

# REPORT DOCUMENTATION PAGE

*Form Approved  
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                  |                                                                      |                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
| 1. REPORT DATE (DD-MM-YYYY)<br>05-11-2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2. REPORT TYPE<br>Memorandum Report | 3. DATES COVERED (From - To)     |                                                                      |                                                             |
| 4. TITLE AND SUBTITLE<br><br>User's Manual for the Polar Ice Prediction System (PIPS) Version 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                  | 5a. CONTRACT NUMBER                                                  |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                  | 5b. GRANT NUMBER                                                     |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                  | 5c. PROGRAM ELEMENT NUMBER<br>0602435N                               |                                                             |
| 6. AUTHOR(S)<br><br>Pamela G. Posey, Lucy F. Smedstad, Ruth H. Preller, E. Joseph Metzger,<br>and Suzanne N. Carroll*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                  | 5d. PROJECT NUMBER                                                   |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                  | 5e. TASK NUMBER                                                      |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                  | 5f. WORK UNIT NUMBER<br>73-6057-08-5                                 |                                                             |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                  | 8. PERFORMING ORGANIZATION REPORT NUMBER<br><br>NRL/MR/7320--08-9154 |                                                             |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br><br>Office of Naval Research<br>One Liberty Center<br>875 North Randolph St.<br>Arlington, VA 22203-1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                  | 10. SPONSOR / MONITOR'S ACRONYM(S)<br>ONR                            |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                  | 11. SPONSOR / MONITOR'S REPORT NUMBER(S)                             |                                                             |
| 12. DISTRIBUTION / AVAILABILITY STATEMENT<br><br>Approved for public release; distribution is unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                  |                                                                      |                                                             |
| 13. SUPPLEMENTARY NOTES<br><br>*Planning Systems, Inc., MSAAP Building 9121, Stennis Space Center, MS 39529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                  |                                                                      |                                                             |
| 14. ABSTRACT<br><br>The Polar Ice Prediction System (PIPS) Version 3.0 is a dynamic sea-ice model that forecasts conditions in all sea-ice covered areas in the northern hemisphere (down to 30° north in latitude). It has a horizontal resolution of approximately 9 km. The vertical resolution in the model has been set at 45 levels so that Arctic shelves, continental slopes, and submarine ridges are accurately represented. Currently, the domain includes the Irminger, Labrador, North, and Baltic Seas on the Atlantic side and the Bering Sea, Sea of Japan, and the Sea of Okhotsk on the Pacific. The PIPS 3.0 system is based on the Los Alamos ice model and coupled (via file transfer) to the operational, global Navy Coastal Ocean Model (gNCOM). The system forecasts daily ice thickness, concentration, and drift in the Arctic Ocean. This report documents the setup and execution of the PIPS 3.0 system. |                                     |                                  |                                                                      |                                                             |
| 15. SUBJECT TERMS<br><br>Ice forecast      Ice edge<br>Ice drift      Ice model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                  |                                                                      |                                                             |
| 16. SECURITY CLASSIFICATION OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 17. LIMITATION OF ABSTRACT<br>UL | 18. NUMBER OF PAGES<br>83                                            | 19a. NAME OF RESPONSIBLE PERSON<br>Pamela Posey             |
| a. REPORT<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b. ABSTRACT<br>Unclassified         | c. THIS PAGE<br>Unclassified     |                                                                      | 19b. TELEPHONE NUMBER (include area code)<br>(228) 688-5596 |

## TABLE OF CONTENTS

|                                                |                                                         |           |
|------------------------------------------------|---------------------------------------------------------|-----------|
| <b>1.0</b>                                     | <b>INTRODUCTION.....</b>                                | <b>1</b>  |
| 1.2                                            | DOCUMENT OVERVIEW.....                                  | 2         |
| <b>2.0</b>                                     | <b>APPLICATION.....</b>                                 | <b>3</b>  |
| 2.1                                            | DESCRIPTION OF PIPS 3.0 USAGE .....                     | 3         |
| 2.2                                            | DIRECTORY STRUCTURE .....                               | 3         |
| 2.3                                            | RUNNING ENVIRONMENT .....                               | 5         |
| 2.3.1                                          | <i>PIPS 3.0 Compile Script (comp_ice).....</i>          | 5         |
| 2.3.2                                          | <i>Run_ice Script (cice3.1_lsf).....</i>                | 7         |
| 2.3.3                                          | <i>PIPS 3.0 Macros File .....</i>                       | 8         |
| 2.3.4                                          | <i>PIPS 3.0 Makefile .....</i>                          | 9         |
| 2.3.5                                          | <i>PIPS 3.0 Input File Namelist Parameters .....</i>    | 10        |
| 2.3.5.1                                        | Ice Namelist (ice_nml).....                             | 10        |
| 2.3.5.2                                        | Ice Fields Namelist (icefields_nml) .....               | 12        |
| 2.4                                            | CODE MODIFICATIONS .....                                | 16        |
| <b>3.0</b>                                     | <b>LIMITATIONS AND ASSUMPTIONS.....</b>                 | <b>17</b> |
| <b>4.0</b>                                     | <b>OPERATING GUIDELINES .....</b>                       | <b>18</b> |
| 4.1                                            | SETTING UP THE GRID, BOUNDARY CONDITIONS AND MASKS..... | 18        |
| 4.2                                            | INITIALIZATION AND COUPLING .....                       | 20        |
| 4.3                                            | CHOOSING AN APPROPRIATE TIME STEP .....                 | 20        |
| 4.4                                            | MODEL OUTPUT .....                                      | 22        |
| 4.4.1                                          | <i>Output Discussion .....</i>                          | 22        |
| 4.4.2                                          | <i>Types of model output available.....</i>             | 23        |
| 4.4.3                                          | <i>Examples of Model Output .....</i>                   | 24        |
| 4.5                                            | EXECUTION PROCEDURES .....                              | 29        |
| <b>5.0</b>                                     | <b>TROUBLESHOOTING .....</b>                            | <b>30</b> |
| 5.1                                            | INITIAL SETUP ISSUES .....                              | 30        |
| 5.2                                            | SLOW EXECUTION .....                                    | 31        |
| 5.3                                            | DEBUGGING HINTS.....                                    | 31        |
| 5.4                                            | KNOWN BUGS .....                                        | 31        |
| <b>6.0</b>                                     | <b>FUNCTIONAL DESCRIPTION .....</b>                     | <b>32</b> |
| <b>7.0</b>                                     | <b>TECHNICAL REFERENCES.....</b>                        | <b>33</b> |
| 7.1                                            | PIPS 3.0 SOFTWARE DOCUMENTATION.....                    | 33        |
| 7.2                                            | GENERAL TECHNICAL DOCUMENTATION .....                   | 33        |
| <b>8.0</b>                                     | <b>NOTES .....</b>                                      | <b>35</b> |
| 8.1                                            | ACRONYMS AND ABBREVIATIONS.....                         | 35        |
| <b>APPENDIX A .....</b>                        | <b>37</b>                                               |           |
| PIPS 3.0 PRIMARY VARIABLES AND PARAMETERS..... | 37                                                      |           |
| <b>APPENDIX B.....</b>                         | <b>50</b>                                               |           |
| TABLE OF NAMELIST OPTIONS .....                | 50                                                      |           |
| <b>APPENDIX C .....</b>                        | <b>54</b>                                               |           |

|                                                       |           |
|-------------------------------------------------------|-----------|
| SAMPLE SCRIPTS AND FILES FOR PIPS 3.0 EXECUTION ..... | 54        |
| C1 MACROS.AIX FILE .....                              | 54        |
| C2 MAKEFILE.....                                      | 55        |
| C3 ICE_IN INPUT PARAMETER FILE .....                  | 59        |
| C4 CLEAN_ICE SCRIPT.....                              | 62        |
| <b>APPENDIX D .....</b>                               | <b>64</b> |
| SAMPLE SCRIPTS FOR PIPS 3.0/NCOM EXECUTION.....       | 64        |
| D1 LAUNCH_PIPS SCRIPT .....                           | 65        |
| D2 NCOM2PIPS SCRIPT .....                             | 66        |
| D3 LAUNCH_NCOM SCRIPT .....                           | 67        |
| D4 PIPS2NCOM SCRIPT .....                             | 68        |
| D5 REGRID_PIPS_POE SCRIPT .....                       | 70        |
| D6 REGRID_PIPS SCRIPT .....                           | 71        |
| D7 FILL4 SCRIPT .....                                 | 74        |
| D8 LANDMASK SCRIPT .....                              | 75        |
| D9 GRDMATH SCRIPT .....                               | 77        |

## TABLES AND FIGURES

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| TABLE 1: FILES AND DIRECTORIES CREATED ONCE PIPS 3.0 IS COMPILED.....                                                                                                                                                                                                                                                                                                                                                                                           | 8  |
| TABLE 2: PIPS 3.0 MACROS FROM MACROS.AIX.TXT FILE .....                                                                                                                                                                                                                                                                                                                                                                                                         | 9  |
| TABLE 3: ICE NAMELIST PARAMETERS.....                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 |
| TABLE 4: ICE FIELDS NAMELIST PARAMETERS .....                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 |
| FIGURE 1: GRID PARAMETERS FOR A SAMPLE ONE-DIMENSIONAL, 20-CELL GLOBAL DOMAIN DECOMPOSED INTO<br>FOUR LOCAL SUBDOMAINS. EACH LOCAL DOMAIN INCLUDES ONE GHOST CELL ON EACH SIDE, AND THE<br>PHYSICAL PORTION OF THE LOCAL DOMAINS ARE DENOTED $I_{LO} : I_{HI}$ . THE PARAMETER $INT\_LOCAL$ IS<br>DEFINED AS THE TOTAL NUMBER OF CELLS IN THE LOCAL DOMAIN, INCLUDING GHOST CELLS. THE SAME<br>NUMBERING SYSTEM IS APPLIED TO EACH OF THE FOUR SUBDOMAINS. .... | 19 |
| TABLE 5: PIPS 3.0 TIMERS. ....                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23 |
| FIGURE 2: PIPS 3.0 MODEL GRID. UNCLASSIFIED DATA. DISTRIBUTION UNLIMITED.....                                                                                                                                                                                                                                                                                                                                                                                   | 25 |
| FIGURE 3: EXAMPLE DAILY OUTPUT OF TOTAL ICE CONCENTRATION (%) WITH PIPS 3.0 COUPLED WITH NCOM<br>FOR MARCH 15, 2008 AT THE NORTH POLE. UNCLASSIFIED DATA. DISTRIBUTION UNLIMITED.....                                                                                                                                                                                                                                                                           | 26 |
| FIGURE 4: DAILY ICE THICKNESS IN METERS FOR PIPS 3.0 COUPLED WITH NCOM AT THE NORTH POLE ON<br>MARCH 15, 2008. UNCLASSIFIED DATA. DISTRIBUTION UNLIMITED. ....                                                                                                                                                                                                                                                                                                  | 27 |
| FIGURE 5: DAILY AVERAGE SEA SURFACE TEMPERATURE (C) FOR PIPS 3.0 COUPLED WITH NCOM ON MARCH<br>15, 2008. UNCLASSIFIED DATA. DISTRIBUTION UNLIMITED.....                                                                                                                                                                                                                                                                                                         | 28 |
| TABLE 6: PRECOMPILER OPTIONS IN COMP_ICE FOR RUN CONFIGURATION.....                                                                                                                                                                                                                                                                                                                                                                                             | 29 |

## 1.0 INTRODUCTION

The software described in this document is identified as the Polar Ice Prediction System (PIPS) Version 3.0. PIPS 3.0 is a dynamic sea-ice model that forecasts conditions in all sea-ice covered areas in the northern hemisphere (down to 30° north in latitude). It has a horizontal resolution of approximately 9 km. The vertical resolution in the model has been set at 45 levels so that Arctic shelves, continental slopes and submarine ridges are accurately represented. This allows for 17 levels in the upper 300 m of the water column and a maximum layer thickness in the deep ocean of 300 m. The array size is 1280 x 720. Currently the domain includes the Irminger, Labrador, North and Baltic Seas on the Atlantic side and the Bering Sea, Sea of Japan and the Sea of Okhotsk on the Pacific side.

PIPS 3.0 model bathymetry south of 64° N is derived from the following databases: ETOP05 database, Navy Research Laboratory charts and Canadian Hydrographic Service charts. Bathymetry north of 64° N comes from the 2.5 km resolution digital International Bathymetric Chart of the Arctic Ocean ([IBCAO](#)).

The PIPS 3.0 system uses the Los Alamos ice model, CICE (version 3.1), containing improved procedures for model thermodynamics, physics parameterizations and energy based ridging [6], [7] and [13]. It has the ability to predict multi-category ice thickness. The CICE model is presently being coupled (via file transfer) to the operational, global Navy Coastal Ocean Model (NCOM), to predict ice thickness, concentration, and drift in the Arctic Ocean. NCOM is a baroclinic, hydrostatic, Boussinesq; free-surface ocean model that allows its vertical coordinate to consist of sigma coordinates for the upper layers and z-levels below a user-specified depth [4], [5] and [12]. NCOM runs operationally at NAVOCEANO at a resolution of 1/8 degree globally. PIPS 3.0 also forecasts surface ocean current and temperature in the surrounding seas. The scripts shown in the main document reflect how the sea ice model is run and not the coupled system. Appendix D describes how files are transferred between the ice model and the NCOM model for the daily coupled forecast run.

PIPS 3.0 is driven by heat fluxes and surface winds from the Navy Operational Global Atmospheric Prediction System (NOGAPS). Daily ice concentration updates are accomplished through an objective analysis of ice concentration data from the Special Sensor Microwave/Imager (SSM/I) located on the Defense Meteorological Satellite Program (DMSP) satellite.

There are four primary components that work together to comprise the PIPS 3.0 model:

- a thermodynamic model that calculates snowfall as well as local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes;
- an ice dynamics model, which predicts the velocity field of the ice pack based on a model of the material strength of the ice;
- a transport model that depicts advection of the aerial concentration, ice volumes and other state variables;

- a ridging parameterization that transports ice among thickness categories based on energetic balances and rates of strain.

## 1.2 Document Overview

The purpose of this Software User's Manual (SUM) is to describe the setup and execution of the Polar Ice Prediction System (PIPS) Version 3.0. Because the PIPS 3.0 model is largely based on the CICE model, this document reflects the information found in the Los Alamos Sea Ice (CICE) Software User's Manual [1]. This User's Manual includes the installation, setup and execution of the model specific to the needs and environment of the Naval Oceanographic Office. This document, along with a Software Design Description [2] and a Validation Test Report [3], forms a comprehensive documentation package for the PIPS 3.0 model system.

## 2.0 APPLICATION

### 2.1 Description of PIPS 3.0 Usage

This manual describes in detail the procedures for running the Navy Polar Ice Prediction System (PIPS) Version 3.0 at the Naval Oceanographic Office (NAVOCEANO). The program is compiled by running the **comp\_ice** script, along with a **Macros.AIX** file, on the IBM “Babbage” system at NAVOCEANO. PIPS 3.0 is configured so that the user can manipulate the input parameters file, **ice\_in**, and the variables in **cice3.1\_lsf** file to specify the environment for a model run. Contact Pamela Posey at the Naval Research Laboratory for assistance and access to setup files specific to the user’s needs.

This User’s Manual is largely based on the Los Alamos CICE User’s Manual [1]. A separate technical manual complements this document and contains the mathematical formulation, solution procedure, and code of the model as well as flow charts and descriptions of the programs and sub-programs [2].

Generally speaking, subroutine names are given in *italic* and file names are **boldface** in this document. Symbols used in the code are typewritten, while corresponding symbols in this document are in the *math* font which is similar to *italic*.

### 2.2 Directory Structure

The present code distribution includes makefiles, input files and several scripts. The primary directory is **pips/**, and a run directory (**rundir**) is created upon the initial run of the **comp\_ice** script.

```
+pips3/ - primary directory
  +README_V3.1 - basic information
  +bld/ - makefiles
    +Macros.<OS> - macro definitions for the given operating system, used by
      Makefile.<OS>
    +Makefile.<OS> - primary makefile for a given operating system
      (<std> works for most systems)
      +makedep.c - perl script that determines module dependencies
    +clean_ice - script that removes files from the compile directory
    +comp_ice - script that sets up the run directory and compiles the code
  +doc/ - documentation
    +PIPS_SDD.doc- software design description
    +PIPS_UM.doc- user’s manual
    +PIPS_VTR.doc- validation test report
    +cicedoc.pdf - CICE: the Los Alamos Sea Ice Model Doc and User’s Manual
```

+-**PDF/** - PDF documents of several publications related to CICE  
 +-**ice.log.<OS>** - sample diagnostic output files  
 +-**source/** - PIPS 3.0 source code.  
     +-**CICE.F** - main program  
     +-**ice\_albedo.F** - albedo parameterization  
     +-**ice\_atmo.F** - stability-based parameterization for calculation of turbulent ice-atm fluxes  
     +-**ice\_calendar.F** - keeps track of what time it is  
     +-**ice\_constants.F** - physical and numerical constants and parameters  
     +-**ice\_coupling.F** - interface with the flux coupler  
     +-**ice\_diagnostics.F** - miscellaneous diagnostic and debugging routines  
     +-**ice\_domain.F** - MPI subdomain sizes and related parallel processing info  
     +-**ice\_dyn\_evap.F** - elastic-viscous-plastic dynamics component  
     +-**ice\_exit.F** - aborts the model, printing an error message  
     +-**ice\_fileunits.F** - unit numbers for I/O  
     +-**ice\_flux.F** - fluxes needed/produced by the model  
     +-**ice\_flux\_in.F** - Reads and interpolates forcing data for stand-alone ice model runs  
     +-**ice\_grid.F** - grid and land masks  
     +-**ice\_history.F** - netCDF output routines and restart read/write  
     +-**ice\_init.F** - namelist and initializations  
     +-**ice\_itd.F** - utilities for managing ice thickness distribution  
     +-**ice\_itd\_linear.F** - linear remapping for transport in thickness space  
     +-**ice\_kinds\_mod.F** - basic definitions of reals, integers, etc.  
     +-**ice\_mechred.F** - mechanical redistribution component (ridging)  
     +-**ice\_model\_size.F** - grid size and number of thickness categories and vertical layers  
     +-**ice\_model\_size.F** - specific ice\_model\_size.F for use by scripts  
     +-**ice\_mpi\_internal.F** - utilities for internal MPI parallelization  
     +-**ice\_ocean.F** - mixed layer ocean model  
     +-**ice\_read\_write.F** - utilities for reading and writing files  
     +-**ice\_scaling.F** - ice-area scaling of variables for the coupler  
     +-**ice\_state.F** - essential arrays to describe the state of the ice  
     +-**ice\_therm\_itd.F** - thermodynamic changes related to ice thickness distribution (post-coupling)  
     +-**ice\_therm\_vertical.F** - vertical growth rates and fluxes (pre-coupling thermodynamics)  
     +-**ice\_timers.F** - timing routines  
     +-**ice\_transport\_mpdata.F** - horizontal advection via MPDATA or upwind  
     +-**ice\_transport\_remap.F** - horizontal advection via incremental remapping  
     +-**ice\_work.F** - globally accessible work arrays  
 +-**rundir/** - execution or "run" directory generated when the code is compiled

```

        using the comp_ice script
+-cice - code executable
+-compile/ - directory containing object files, etc.
+-grid - horizontal grid file from pips/input_templates/
+-ice.log.[ID] - diagnostic output file
+-ice_in - namelist input data from pips/input_templates
+-hist/iceh.[timeID].nc - monthly average output history file
+-kmt - land mask file from pips/input_templates/
+-run_ice - batch run script file from pips/input_templates/

```

## 2.3 Running Environment

The requirements to run a simulation are limited to the model's compile script **comp\_ice**, the model run script **cice3.1\_lsf**, macro files for compiling on the IBM systems, makefiles, and the model input parameter file, **ice\_in**. Therefore, it may be convenient to set up the input files and look at the model output on a computer separate from the one on which the model itself is being run (e.g., where interactive plotting is available to make it easier to inspect the fields).

The input/output files are IEEE binary, ASCII files or netcdf format and should be fully portable to the different computers that are normally used (Sun, SGI, Cray T3E, IBM-SP, DecAlpha).

### 2.3.1 PIPS 3.0 Compile Script (*comp\_ice*)

The **comp\_ice** script compiles the PIPS 3.0 code for execution. The variables at the beginning of the script may be changed for tailoring a specific model run. The variables seen in the sample **comp\_ice** script below, however, are common to a run performed at NAVOCEANO. This script has been tested on NAVOCEANO's "BABABGE" machine.

```

#!/bin/csh
#
#@ job_name = pips3.1
#@ output = $(job_name).log
#@ error = $(job_name).log
#@ restart = yes
#@ job_type = parallel
#@ network.MPI = csss,not_shared,us
#@ environment = MP_EUILIB=us
#@ node = 4
#@ total_tasks = 32
#@ node_usage = not_shared
#@ resources = ConsumableCpus(1) ConsumableMemory(500mb)
#@ wall_clock_limit = 2:00:00

```

```

#@ account_no = NRLSS015
#@ class = batch
#@ queue
set echo
setenv SITE NAVO
setenv SYSTEM_USERDIR /scr/posey/pips3

# MPI runs
setenv NX 2
setenv NY 16
setenv BINTYPE MPI
# Set SRCDIR and EXEDIR to your own paths!
setenv SRCDIR /scr/posey/pips3
setenv EXEDIR $SYSTEM_USERDIR/rundir.pips.v3.1 ; if !(-d $EXEDIR) mkdir -p $EXEDIR

setenv CBLD $SRCDIR/bld
setenv OBJDIR $EXEDIR/compile ; if !(-d $OBJDIR) mkdir -p $OBJDIR
setenv RSTDIR $EXEDIR/restart ; if !(-d $RSTDIR) mkdir -p $RSTDIR

setenv ARCH `uname -s`
echo ARCH, $ARCH
if ( $ARCH == 'UNICOS/mp' ) setenv ARCH UNICOS

cd $EXEDIR

if !(-e grid)          cp $SRCDIR/regional.cice.r grid
if !(-e ice_in)         cp $SRCDIR/ice_in ice_in
if !(-e run_ice)        cp $SRCDIR/run_ice run_ice

cd $RSTDIR

if !(-e ice.restart_file) cp $SRCDIR/ice.restart_file .

cd $OBJDIR

# Filepath: List of source code directories (in order of importance).
echo $SRCDIR
cat >! Filepath << EOF
$SRCDIR/source
EOF

cc -o makdep $CBLD/makdep.c                                || exit 2
gmake VFILE=Filepath EXEC=$EXEDIR/cice NX=$NX NY=$NY \
-f $CBLD/Makefile MACFILE=$CBLD/Macros.$ARCH || exit 2
cd $SRCDIR

```

### 2.3.2 Run\_ice Script (*cice3.1\_lsf*)

The **cice3.1\_lsf file** is the script used to run PIPS 3.0 at NAVOCEANO. Once PIPS 3.0 is run, data files from PIPS 3.0 are then processed and then used by NCOM to make the next ocean run.

```
#!/bin/csh
#
#@ job_name = cice31.72
#@ output = $(job_name).log
#@ error = $(job_name).log
#@ restart = yes
#@ job_type = parallel
#@ network.MPI = csss,not_shared,US
#@ environment = MP_EUILIB=us
#@ node = 4
#@ total_tasks = 32
#@ node_usage = not_shared
#@ resources = ConsumableCpus(1) ConsumableMemory(500mb)
#@ wall_clock_limit =24:00:00
#@ account_no = NRLSS015
#@ class = standard
#@ queue
set echo
limit stacksize 2000000
cd /scr/posey/pips3
set stamp = `date -u '+%y%m%d%H%M'`
setenv ICE_LOG_FILE cice31.${stamp}
/usr/bin/poe cice31 >&! $ICE_LOG_FILE
# Exit
#
rm core*
exit 0
```

There are several directories and files created once PIPS 3.0 is compiled on a machine. These are defined in Table 1 below.

| Directory/File          | Description                                   |
|-------------------------|-----------------------------------------------|
| rundir/                 | execution or "run" directory                  |
| cice*                   | code executable                               |
| grid                    | horizontal grid file                          |
| ice.log.<OS>            | sample diagnostic output files                |
| ice_in                  | namelist input file                           |
| iceh.[timeID].incond.nc | output history file for the initial condition |
| iceh.[timeID].nc        | output history file                           |
| kmt                     | land mask file from                           |
| run_ice                 | batch run script from                         |
| rundir/compile/         | directory containing object files, etc.       |
| rundir/restart/         | restart directory                             |
| iced                    | initial condition                             |
| ice.restart_file        | restart pointer                               |

**Table 1: Files and directories created once PIPS 3.0 is compiled.**

### 2.3.3 PIPS 3.0 Macros File

**Macros.AIX.txt** is a file of macros necessary for compiling the PIPS 3.0 code on the NAVOCEANO IBM platform “Babbage”. An example of the entire Macros.AIX file can be found in Appendix A. The primary macros available in this file are summarized in the table below.

| Macro               | Description                                              |
|---------------------|----------------------------------------------------------|
| -lmass              | IBM - tuned intrinsic library                            |
| -qsmp=noauto        | enables SMP directives, but does not add any             |
| -qstrict            | don't turn divides into multiplies, etc                  |
| -qhot               | higher-order -transformations (eg. loop padding)         |
| -qalias=noaryoverlp | assume no array overlap with respect to equivalence, etc |
| -qmaxmem=1          | memory available to compiler during optimization         |
| -qipa=level=2       | InterProcedure Analysis (eg. inlining) => slow           |

| Macro                | Description                                       |
|----------------------|---------------------------------------------------|
|                      | compiles                                          |
| -p -pg               | enable profiling (use in both FFLAGS and LDFLAGS) |
| -qreport             | for smp/omp only                                  |
| -bmaxdata:0x80000000 | use maximum allowed data segment size             |
| -g                   | always leave it on because overhead is minimal    |
| -qfltrap=...         | enable default sigtrap (core dump)                |
| -C                   | runtime array bounds checking (runs slow)         |
| -qinitauto=...       | initializes automatic variables                   |

**Table 2: PIPS 3.0 macros from Macros.AIX.txt file.**

### 2.3.4 PIPS 3.0 Makefile

A makefile is used in the execution of PIPS 3.0 at NAVOCEANO. The entire makefile is shown in Appendix B.

Command-line variables

1. MACFILE=<file> ~ The macros definition file to use/include in a run.
2. EXEC=<name> ~ The name given to an executable. The default is *a.out*.
3. VPATH=<vpath> ~ VPATH , default is . (cwd only).
4. SRCS=<files> ~ A list of source files. The default is all *.c .F .F90* files in VPATH.
5. VPFILE=<file> ~ A file with a list of directories. It is used to create VPATH.
6. SRCFILE=<file> ~ A file with a list of source files. It is used to create SRCS.
7. DEPGEN=<exec> ~ A dependency generator utility, with a default of *makdep*.
8. <macro defns> ~ Any macro definitions found in this file or the included MACFILE will be over-ridden by command line macro definitions.
9. MODEL=<model> ~ A standard macro definition, often found in the included MACFILE. It is used to trigger special compilation flags.

Usage examples:

```
% gmake MACFILE=Macros.AIX VPFILE=Filepath MODEL=ccm3 EXEC=atm
% gmake MACFILE=Macros.AIX VPFILE=Filepath SRCFILE=Srclist EXEC=pop
% gmake MACFILE=Macros.C90 VPATH="dir1 dir2" SRCS="file1.c file2.F90"
% gmake MACFILE=Macros.SUN SRCS="test.F"
```

## 2.3.5 PIPS 3.0 Input File Namelist Parameters

### 2.3.5.1 Ice Namelist (*ice\_nml*)

The **ice\_in.txt** file is an input file of namelist parameters used in running the PIPS 3.0 model. The variables are described in the order they appear in the **ice\_in.txt**.

| Name         | Type/Options  | Description                                                                 | Default Values / Directory Location |
|--------------|---------------|-----------------------------------------------------------------------------|-------------------------------------|
| year_init    | yyyy          | The initial year, if not using restart                                      | = 0001                              |
| istep0       | integer       | Initial time step number                                                    | = 0                                 |
| dt           | seconds       | Thermo/transport time step length                                           | = 2800.                             |
| ndte         | integer       | Number of EVP subcycles                                                     | = 120                               |
| npt          | integer       | Total number of time steps to take                                          | = 70                                |
| diagfreq     | integer       | Frequency of diagnostic output in dt<br>eg., 10 is once every 10 time steps | = 30                                |
| histfreq     | y, m, w, d, h | Write history output once a year, month, week, day, or every time step      | = 'h'                               |
| dumpfreq     | y, m, d       | Write restart every dumpfreq_n years, months, days                          | = 'd'                               |
| dumpfreq_n   | integer       | Frequency restart data is written                                           | = 1                                 |
| hist_avg     | true/false    | Write time-averaged data if true<br>Write snapshots of data if false        | = .true.                            |
| restart      | true/false    | Initialize using restart file                                               | = .true.                            |
| print_points | true/false    | Print diagnostic data for two grid points                                   | = .true.                            |
| print_global | true/false    | Print diagnostic data, global sums                                          | = .true.                            |
| kitd         | 0/1           | If 0, delta function ITD approx.<br>If 1, linear remapping ITD approx.      | = 1                                 |
| kcatbound    | 0/1           | If 0, original category                                                     | = 1                                 |

| Name         | Type/Options                           | Description                                                                                                                | Default Values / Directory Location       |
|--------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|              |                                        | boundary formula<br>If 1, new category boundary formula                                                                    |                                           |
| kdyn         | 0 / 1                                  | If 0, EVP dynamics OFF<br>If 1, EVP dynamics ON                                                                            | = 1                                       |
| kstrength    | 0 / 1                                  | If 0, [5] ice strength formulation<br>If 1, [13] ice strength formulation                                                  | = 1                                       |
| krdg_partic  | 0/1                                    | If 0, old ridging participation function<br>If 1, new ridging participation function                                       | = 1                                       |
| krdg_redist  | 0/1                                    | If 0, old ridging redistribution function<br>If 1, new ridging redistribution function                                     | = 1                                       |
| evp_damping  | true/false                             | If true, damp elastic waves, [6]                                                                                           | = .false.                                 |
| advection    | remap, mpdata,<br>upwind               | remap: Linear remapping<br>advection<br>mpdata: 2 <sup>nd</sup> order<br>MPDATA<br>upwind: 1 <sup>st</sup> order<br>MPDATA | = 'remap'                                 |
| grid_type    | rectangular,<br>displaced_pole<br>pips | rectangular: Defined in <i>rectgrid</i><br>pips: Read from file in <i>pipsgrid</i>                                         | = 'pips'                                  |
| grid_file    | filename                               | Name of grid file to be read                                                                                               | = 'grid_cice_1280x720.r'                  |
| kmt_file     | filename                               | Name of land mask file to be read                                                                                          | = 'kmt'                                   |
| dump_file    | filename prefix                        | Output file for restart dump                                                                                               | = 'iced'                                  |
| restart_dir  | path/                                  | path to restart directory                                                                                                  | = '/scr/posey/pips3c/'                    |
| pointer_file | pointer filename                       | Contains restart filename                                                                                                  | =<br>'/scr/posey/pips3c/ice.restart_file' |
| hist_dir     | path/                                  | path to history output directory                                                                                           | = '/scr/posey/pips3c/'                    |
| history_file | filename prefix                        | Output file for history                                                                                                    | = 'iceh'                                  |

| Name            | Type/Options     | Description                              | Default Values / Directory Location |
|-----------------|------------------|------------------------------------------|-------------------------------------|
| diag_file       | filename         | Diagnostic output file                   | = 'ice_diag.d'                      |
| oceancmixed_ice | true/false       | Active ocean mixed layer calculation     | = .true.                            |
| albicev         | $0 < \alpha < 1$ | Visible ice albedo for thicker ice       | = 0.65                              |
| albicei         | $0 < \alpha < 1$ | Near infrared ice albedo for thicker ice | = 0.65                              |
| albsnowv        | $0 < \alpha < 1$ | Visible, cold snow albedo                | = 0.85                              |
| albsnowi        | $0 < \alpha < 1$ | Near infrared, cold snow albedo          | = 0.85                              |
| ycycle          | integer          | No. of years in forcing data cycle       | = 1                                 |
| fyear_init      | yyyy             | First year of atmospheric forcing data   | = 2008                              |
| atm_data_dir    | path/            | Path to atm forcing data directory       | = '/scr/posey/pips3c/data_in/'      |
| ocn_data_dir    | path/            | Path to oceanic forcing data directory   | = '/scr/posey/pips3c/data_in/'      |

**Table 3: Ice namelist parameters.****2.3.5.2 Ice Fields Namelist (*icefields\_nml*)**

| Name    | Description                                                 | Default Values |
|---------|-------------------------------------------------------------|----------------|
| f_hi    | Ice thickness                                               | = .true.       |
| f_hs    | Snow thickness                                              | = .true.       |
| f_Tsfc  | Temperature of ice/snow top surface (in category <i>n</i> ) | = .false.      |
| f_aice  | Ice concentration                                           | = .true.       |
| f_uvel  | <i>x</i> -component of velocity                             | = .true.       |
| f_vvel  | <i>y</i> -component of velocity                             | = .true.       |
| f_fswdn | Incoming shortwave radiation down                           | = .true.       |
| f_flwdn | Incoming longwave radiation down                            | = .false.      |
| f_snow  | Snowfall rate                                               | = .false.      |

| Name        | Description                                         | Default Values |
|-------------|-----------------------------------------------------|----------------|
| f_snow_ai   | Snowfall rate weighted by aice                      | = .false.      |
| f_rain      | Rainfall rate                                       | = .false.      |
| f_rain_ai   | Rainfall rate weighted by aice                      | = .false.      |
| f_sst       | Sea surface temperature                             | = .true.       |
| f_sss       | Sea surface salinity                                | = .true.       |
| f_uocn      | Ocean current, $x$ direction                        | = .true.       |
| f_vocn      | Ocean current, $y$ direction                        | = .true.       |
| f_frzmlt    | Freezing/melting potential                          | = .false.      |
| f_fswabs    | Absorbed shortwave radiation                        | = .false.      |
| f_fswabs_ai | Absorbed shortwave radiation weighted by aice       | = .false.      |
| f_albsni    | Snow/ice broad band albedo                          | = .false.      |
| f_alvdr     | Visible direct albedo                               | = .false.      |
| f_alidr     |                                                     | = .false.      |
| f_flat      | Latent heat flux                                    | = .false.      |
| f_flat_ai   | Latent heat flux weighted by aice                   | = .false.      |
| f_fsens     | Sensible heat flux                                  | = .false.      |
| f_fsens_ai  | Sensible heat flux weighted by aice                 | = .false.      |
| f_flwup     | Incoming longwave radiation upward                  | = .false.      |
| f_flwup_ai  | Incoming longwave radiation upward weighted by aice | = .false.      |
| f_evap      | Evaporation water flux                              | = .false.      |
| f_evap_ai   | Evaporation water flux weighted by aice             | = .false.      |
| f_Tref      | 2m atmospheric reference temperature                | = .false.      |

| Name         | Description                                                          | Default Values |
|--------------|----------------------------------------------------------------------|----------------|
| f_Qref       | 2 m atmospheric reference specific humidity                          | = .false.      |
| f_congel     | Basal ice growth                                                     | = .false.      |
| f_frazil     | Frazil ice growth                                                    | = .false.      |
| f_snoice     | Snow-ice formation                                                   | = .false.      |
| f_meltt      | Top ice melt                                                         | = .false.      |
| f_meltb      | Basal ice melt                                                       | = .false.      |
| f_meltl      | Lateral ice melt                                                     | = .false.      |
| f_fresh      | Fresh water flux to ocean                                            | = .false.      |
| f_fresh_ai   | Fresh water flux to ocean weighted by aice                           | = .false.      |
| f_fsalt      | Net salt flux to ocean                                               | = .false.      |
| f_fsalt_ai   | Net salt flux to ocean weighted by aice                              | = .false.      |
| f_fhnet      | Net heat flux to ocean                                               | = .false.      |
| f_fhnet_ai   | Net heat flux to ocean weighted by aice                              | = .true.       |
| f_fswthru    | Shortwave penetrating to ocean                                       | = .false.      |
| f_fswthru_ai | Shortwave penetration to ocean weighted by aice                      | = .false.      |
| f_strairx    | Stress on ice by air in the <i>x</i> -direction (centered in U cell) | = .true.       |
| f_strairy    | Stress on ice by air in <i>y</i> -direction (centered in T cell)     | = .true.       |
| f_strltx     | Surface stress due to sea surface slope in <i>x</i> -direction       | = .false.      |
| f_strlty     | Surface stress due to sea surface slope in <i>y</i> -direction       | = .false.      |
| f_strcorx    | Coriolis stress ( <i>x</i> )                                         | = .true.       |
| f_strcory    | Coriolis stress ( <i>y</i> )                                         | = .true.       |
| f_strocnx    | Ice-ocean stress, <i>x</i> dir. (U)                                  | = .true.       |

| <b>Name</b>            | <b>Description</b>                                     | <b>Default Values</b> |
|------------------------|--------------------------------------------------------|-----------------------|
|                        | cell)                                                  |                       |
| f_strocny              | Ice-ocean stress, $y$ -dir. (T cell)                   | = .true.              |
| f_strintx              | Divergence of internal ice stress, $x$ -direction      | = .true.              |
| f_strnty               | Divergence of internal ice stress, $y$ -direction      | = .true.              |
| f_strength             | Ice strength (pressure)                                | = .true.              |
| f_opening              | Lead area opening rate                                 | = .false.             |
| f_divu                 | Strain rate I component, velocity divergence           | = .false.             |
| f_shear                | Strain rate II component                               | = .false.             |
| f_sig1                 | Principal stress components (diagnostic)               | = .false.             |
| f_sig2                 | Principal stress components (diagnostic)               | = fasle.              |
| f_dvidtt               | Ice volume tendency due to thermodynamics              | = .false.             |
| f_dvidtd               | Ice volume tendency due to dynamics/transport          | = .false.             |
| f_daidtt               | Ice area tendency due to thermodynamics                | = .false.             |
| f_daidtd               | Ice area tendency due to dynamics/transport            | = .false.             |
| f_mlt_onset            | Day of year that surface melt begins                   | = .false.             |
| f_frz_onset            | Day of year that freezing begins                       | = .false.             |
| f_dardg1dt             | Ice area ridging rate                                  | = .false.             |
| f_dardg2dt             | Ridge area formation rate                              | = .false.             |
| f_dvirdgdt             | Ice volume ridging rate                                | = .false.             |
| f_hisnap               | Ice volume snapshot                                    | = .false.             |
| f_aisnap               | Ice area snapshot                                      | = .false.             |
| f_aice1<br>(through 5) | Ice concentration in grid cell in categories 1 through | = .true.              |

| Name                    | Description                                               | Default Values |
|-------------------------|-----------------------------------------------------------|----------------|
|                         | 5                                                         |                |
| f_aice6<br>(through 10) | Ice concentration in grid cell in categories 6 through 10 | = .false.      |
| f_vice1<br>(through 5)  | Volume per unit area of ice in categories 1 through 5     | = .true.       |
| f_vice6<br>(through 10) | Volume per unit area of ice in categories 6 through 10    | = .false.      |

**Table 4: Ice fields namelist parameters**

## 2.4 Code Modifications

This current model release is PIPS Version 3.0. It replaces PIPS 2.0, which has been operational since 1996. Although the model physics is similar to that of PIPS version 2.0, the ice code has changed considerably. The following is a list of the major changes:

1. Many modules have been rewritten to run efficiently on vector platforms such as the Cray X1 and the Earth Simulator. Shorter loops over categories and vertical layers have been moved outside longer horizontal ( $i,j$ ) loops. Single-column state variables (of dimension  $ncat$ ) have been eliminated. Directives have been put in place to enforce vectorization over certain loops. Nested  $i,j$  loops have in many cases been joined into a single loop to increase vector length.
2. The mechanical redistribution module, **ice\_mechred.F**, has been altered to run more stably in swiftly deformatting regions.
3. The dynamics scheme now handles lower concentration regions more accurately, consistent with the free drift theory.
4. The MPDATA and incremental remapping transport schemes, previously in **ice\_transport.F**, have been separated into two routines, **ice transport mpdata.F** and **ice\_transport\_remap.F**. The remapping module has been revised for efficiency and user-friendliness. For example, it is simpler now to transport additional tracers specified by the user.
5. The open water fraction is now transported horizontally.
6. The two thermodynamics routines have been reorganized. Thermodynamic computations before the *to\_coupler* call are now in **ice therm vertical.F**, and computations after the *to\_coupler* call are in **ice\_therm\_itd.F**. These modules replace **ice\_therm.F** and **ice\_therm\_driver.F**.
7. The lateral melting scheme from the CCSM Community Sea Ice Model (CSIM) has been added to PIPS 3.0.
8. Helpful utilities have been added to **ice\_itd.F**.
9. Several history fields and namelist options have been added.

10. Additional global diagnostics can be written out. These diagnostics are used for examining conservation of heat, water, and salt.
11. One restart variable (*fhocn*) has been taken out, and another (*fsalt*) has been added. Therefore, **ice\_history.F** must be modified if starting a PIPS 3.0 run with a restart file generated by version 2.0.
12. The coupling routine, **ice\_coupling.F**, has been updated to conform to the latest CCSM coupler. Two more fields, *Qrefand* and *fswabs*, are now passed to the coupler.
13. The routine that reads forcing data, **ice\_flux\_in.F**, has been rewritten so that it is more tailored to read data in different formats. Temporal interpolation is now linear instead of cubic.
14. Standard ProTeX prologues have been added to the beginning of each module and subroutine. The prologues permit automated generation of LaTeX documentation from Fortran 90 code.
15. Several minor bugs have been fixed.
16. Many variables and subroutines have been renamed to enhance their description and consistency.
17. Code formatting has been standardized, and some outdated coding practices have been eliminated.

### 3.0 LIMITATIONS AND ASSUMPTIONS

The user must be aware of the following model limitations before completing a PIPS 3.0 model run.

1. Fluxes sent to the coupler could have incorrect values in grid cells that fluctuate from an ice-free state to having ice during the given time step, or vice versa, due to scaling by the ice area. The flux coupler authors insist on area scaling so that the ice and land models are considered consistently in the coupler (Note that, unlike the ice area, the land area does not suddenly become zero in a grid cell).
2. A sizable fraction (more than 10%) of the total shortwave radiation is absorbed at the surface but preferably should be penetrating into the ice interior. This is due to use of the aggregated, effective albedo instead of the bare ice albedo when *snowpatch* < 1, and solving the problem will require more albedo arrays to be added to the code.
3. The date-of-onset diagnostic variables, *melt\_onset* and *frz\_onset*, are not included in the restart file. They, therefore, may be incorrect for the current year if the run is restarted after January 1. Also, these variables were applied with the Arctic in mind and may be incorrect for the Antarctic.
4. Timers are architecture dependent.
5. Local domains are not padded for uneven partition of the global domain.

## 4.0 OPERATING GUIDELINES

PIPS 3.0 is written in fixed-format FORTRAN90 and runs on UNIX host platforms, including SGI Origin 3000 (<OS> = **IRIX64** below), SGI Altix (**Linux**), IBM Power4 (**AIX**) and Cray X1 (**UNICOS**). The code is parallelized through grid decomposition with MPI for message passing between processors, with four processors allocated to each hemisphere. The code has been optimized for vector architectures and tested on Fujitsu VPP 5000, Cray X1, and NEC platforms. At NAVOCEANO, PIPS 3.0 is run using 32 processors on an IBM platform with a ConsumableMemory of 500 mb. With respect to hardware resources, a one-day run of PIPS 3.0 at NAVOCEANO requires 0.85 Processor Hrs.

### 4.1 Setting Up the Grid, Boundary Conditions and Masks

The spatial discretization is customized for a generalized orthogonal B-grid as in [15] or [10]. The ice and snow area, volume and energy are provided at the center of the cell, velocity is defined at the corners, and the internal ice stress tensor takes four different values within a grid cell. Bilinear approximations are used for the stress tensor and the ice velocity across the cell, as given in [9]. This tends to sidestep the grid decoupling problems associated with the B-grid.

Since ice thickness and thermodynamic variables such as temperature are given in the center of each cell, the grid cells are referred to as “T cells.” Occasionally we make reference to “U cells,” which are centered on the northeast corner of the corresponding T cells, and each have velocity in their centers. The velocity components are aligned along grid lines.

Generally, the global gridded domain is `imt_globalxjmt_global`, while the subdomains found in the MPI grid decomposition are `imt_localxjmt_local`. The physical part of a subdomain is indexed as `[ilo:ihi,jlo:jhi]`, with `num_ghost_cells` “ghost” cells lying outside the domain being used for boundary conditions. These parameters are shown in one dimension in Figure 1. The routines `global_scatter` and `global_gather` allocate information from the global domain to the local domains and back again, respectively. If MPI is not being used for grid decomposition in PIPS 3.0, these routines basically switch the indexing on the global domain to the single, local domain index coordinates. It is recommended that the user select the number of local domains so that the global domain is evenly divided. If the global domain is not evenly distributed among the number of processors, then the last subdomain will contain nonphysical points, or “padding”. In addition to a loss of efficiency due to computing at these points, other issues may arise due to incompatible initializations and spurious data values.



**Figure 1: Grid parameters for a sample one-dimensional, 20-cell global domain decomposed into four local subdomains. Each local domain includes one ghost cell on each side, and the physical portion of the local domains are denoted `ilo:ihii`. The parameter `int_local` is defined as the total number of cells in the local domain, including ghost cells. The same numbering system is applied to each of the four subdomains.**

The user may choose from three grid routines: *pipsgrid* reads grid lengths and other parameters for a nonuniform, *popgrid* or *tripole* grid. The input file **grid\_cice\_1280x720** holds PIPS grid and land mask information. This is a binary unformatted, direct access files generated on an SGI (Big Endian).

In the present implementation with a bipolar, displaced-pole grid, no less than one row of grid cells along the north and south boundaries are understood to be located on land. Along domain boundaries not masked by land, periodic conditions envelop the domain around the globe. The original boundary routine is *bound*. The other boundary routines enhance parallel performance by not filling all four boundaries when that is unwarranted, and by updating multiple spatial arrays at one time. The boundary routines also perform boundary communications between local domains when MPI is in use.

A land mask  $hm$  ( $M_h$ ) is specified at the cell centers, with 0 for land and 1 for ocean cells. A corresponding mask  $uvm$  ( $M_u$ ) for velocity and other corner quantities is given by

$$M_u(i, j) = \min\{M_h(l), l = (i, j), (i+1, j), (i, j+1), (i+1, j+1)\}.$$

The logical masks `tmask` and `umask` (which are consistent with the real masks `hm` and `uvm`, respectively) are of use in conditional statements.

In addition to the land masks, two other masks are employed in *evp\_prep* in order to reduce the dynamics component's role on a global grid. At each time step the logical masks `ice_tmask` and `ice_umask` are established from the current ice extent, so that they have the value ``true" wherever ice exists. These masks also include a border of cells

surrounding the ice pack for numerical purposes. The logical masks are used in the dynamics component to prevent unnecessary computations on grid points where no ice exists. They are not used in the thermodynamics component, so that ice may form in formerly ice-free cells. Like the land masks `hm` and `uvm`, the ice extent masks `ice_tmask` and `ice_umask` are for T cells and U cells, respectively.

Two extra masks are created for the user's convenience: `mask_n` and `mask_s` may be used to compute or write data specific to the northern or southern hemispheres, respectively.

## 4.2 Initialization and Coupling

The PIPS 3.0 parameters and variables are initialized in many stages. Several constants and physical parameters are set in `ice_constants.F`. Namelist variables (see Appendix B) are handled in the subroutine `input_data` (see Appendix B) and values may be changed at run time. The namelist variables are assigned default values in the code, which may then be altered once the input file `ice_in` is read. Many of the variables provided in the namelist declaration given in `ice_init.F` are not usefully implemented in the current version of PIPS 3.0, but these variables are used in the NCAR CCSM ice model and are mentioned in the namelist declaration for consistency with that code. Physical constants, variables, and numerical parameters are first set in initialization routines for each ice model component or module. Then, if PIPS 3.0 is being restarted from a previous run, some variables are then read and reinitialized in the `restartfile` subroutine. Lastly, albedo is initialized based on the initial ice state. Some of these parameters will be explained in more detail in Appendix B.

The ice component corresponds with the flux coupler by passing messages using MPI, which is started in the `setup_mpi` subroutine for both coupled and stand-alone MPI runs. Further initialization for coupling takes place in `ice_coupling_setup` and `init_cpl`. The subroutines `to_coupler` and `from_coupler` respectively pack and unpack the data being passed between the ice component and the flux coupler, and perform any needed averaging and unit conversions.

For stand-alone runs, routines in the `ice_flux_in.F` module read and interpolate data from files. They are intended solely to provide guidance for the user to write his or her own routines. Whether the PIPS 3.0 code is to be run in stand-alone or coupled mode is decided at compile time, as described below.

## 4.3 Choosing an Appropriate Time Step

The time step is selected based on the stability of the transport component (both horizontal and in thickness space) and on the resolution of the physical forcing. PIPS 3.0 permits the dynamics, ridging, and advection portion of the code to be run with a shorter timestep,  $\Delta t_{dyn}$  (`dt_dyn`), than the thermodynamics timestep  $\Delta t$  (`dt`). In this case, `dt` and the integer `ndyn_dt` are specified, and `dt_dyn = dt/ndyn_dt`.

A conservative estimate of the horizontal transport time step bound, or CFL condition, under remapping produces

$$\Delta t_{dyn} < \frac{\min(\Delta x, \Delta y)}{2 \max(u, v)}.$$

As discussed in Section 5.2.2.3 of the PIPS 3.0 SDD [2] and [11], the maximum time step in practice is typically determined by the time scale for large modifications in the ice strength (which partially depends on wind strength). Using the strength parameterization of [14] limits the time step to 30 minutes for the old ridging scheme, and to two hours for the new ridging scheme, assuming  $\Delta x = 10$  km. Practical limits could be somewhat less, contingent on the strength of the atmospheric winds.

Transport in thickness space requires a similar restriction on the time step. This is given by the ice growth/melt rate and the smallest scale of thickness among the categories,  $\Delta t < \min \Delta H / 2 \max f$ , where  $\Delta H$  is the distance between category boundaries and  $f$  represents the thermodynamic growth rate. For the five-category ice thickness distribution employed as the default in this distribution, this is not a strict limitation:  $\Delta t < 19.4$  hr, assuming  $\max f = 40$  cm/day.

The dynamics component is subcycled `ndte` ( $N$ ) times per time step so that the elastic waves basically disappear before the next time step. The subcycling time step ( $\Delta t_e$ ) is then

$$\text{dte} = \text{dt\_dyn}/\text{ndte}.$$

A second parameter,  $E_\circ$  (`eyc`), must be chosen, which defines the elastic wave damping timescale  $T$ , discussed in Section 5.2.2.4 of the PIPS 3.0 SDD [2] as `eyc*dt_dyn`. The forcing terms are not updated during the subcycling. Given the small step (`dte`) at which the EVP dynamics model is subcycled,  $E$  the elastic parameter, is also limited by stability constraints, as discussed in [8]. Linear stability analysis for the dynamics component shows that the numerical method is stable providing the subcycling time step  $\Delta t_e$  sufficiently resolves the damping timescale  $T$ . For the stability analysis several simplifications of the problem had to be made. Therefore the location of the boundary between stable and unstable regions is simply an estimate. In practice, the ratio  $\Delta t_e : T : \Delta t = 1 : 40 : 120$  supplies both stability and acceptable efficiency for time steps ( $\Delta t$ ) on the order of one hour.

Notice that only  $T$  and  $\Delta t_e$  figure into the stability of the dynamics component;  $\Delta t$  does not. The thermodynamics module is stable for any time step. Although the time step may not be closely limited by stability considerations, large time steps (eg.,  $\Delta t = 1$  day, given daily forcing) do not generate accurate results in the dynamics component. The reasons for this error are discussed in [8]; see [10] for its practical effects.

## 4.4 Model Output

### 4.4.1 Output Discussion

Model output data is averaged over the period given by `histfreq` and written to netCDF files prepended by `history_file` in `ice_in`. That is to say, if `history_file='iceh'` then the filenames will have the form `iceh.[timeID].nc`. If `history_file='iced'` then restart files are written at the “dump” frequency in `ice_in`. Once the restart files are written, the filename is then written into the file `ice_restart_file`. Header information for data enclosed in these files is displayed with the command `ncdump -h filename.nc`. With this model version, standard ice data fields are output. The user can add (or subtract) variables not readily available in the namelist by following the instructions in `ice_history.F`.

A small number of thermodynamic variables have special `_hist` forms in addition to the standard quantity used in the code. These are variables that are initialized in the middle of the time step (at the start of the second thermodynamics routine, `thermo_itd`), immediately after being sent to the coupler, although they can change at the beginnings of the time step (in `thermo_vertical`). The “standard” variable initialized as such holds a full time step’s worth of data when it is sent to the coupler; its history complement is initialized at the beginning of the time step and therefore also contains a full time step’s worth of data, although its value might be somewhat different from that sent to the coupler. This code modification was prepared for coupled model load balancing.

The normalized principal components of internal ice stress are calculated in `principal_stress` and written to the history file. This computation is unnecessary for the simulation. Principal stresses are computed merely for diagnostic purposes and included here for the user’s convenience.

Like `histfreq`, the parameter `diagfreq` may be used to control how often output is written. In the present PIPS 3.0 release, `diagfreq` is used to determine the frequency that diagnostic data are written to the log file. The log file unit to which diagnostic output is written is established in `ice_fileunits.F`. If `diag_type = 'stdout'`, it is written to standard out (or to `ice.log.[ID]` if standard out is redirected as in `run_ice`). Otherwise it is written to the file provided by `diag_file`. Other than the standard diagnostic output (maximum area-averaged thickness, average albedo, velocity, total ice area, and total ice and snow volumes), the namelist options `print_points` and `print_global` cause extra diagnostic information to be computed and written. The option `print_global` produces global sums that are helpful for checking global conservation of mass and energy. `print_points` writes data for two specified grid points. For the current version of PIPS 3.0, one point is near the North Pole and the other is in the Weddell Sea. These can be changed in `ice_diagnostics.F`.

A binary unformatted file is generated that holds all of the data that PIPS 3.0 uses for a full restart. The filename begins with the character string `dumpfile`, and the restart dump

frequency is provided by `dumpfreq` and `dumpfreq_n`. The pointer to the filename from which the restart data is to be read is established in `pointer_file`.

Timing routines are built into **ice\_timers.F**. To use the timers, initialize them first with `ice_timer_clear`, then wrap the portion of code to be timed with `ice_timer_start` and `ice_timer_stop`. Lastly, use `ice_timer_print` to write the results to the log file. Each of these subroutines requires a single argument, the timer number. Calling `ice_timer_clear` or `ice_timer_print` with an argument of -1 starts all of the timers at the same time, or prints all of the timings, instead of calling each individually. Currently, the timers are set up as in Table 5.

| Timer Number | Label    | Description                                      |
|--------------|----------|--------------------------------------------------|
| 0            | Total    | the entire run                                   |
| 1            | TimeLoop | total minus initialization and exit              |
| 2            | Dynamics | EVP                                              |
| 3            | Advectn  | horizontal transport                             |
| 4            | Column   | all vertical (column) processes                  |
| 5            | Thermo   | vertical thermodynamics                          |
| 6            | Ridging  | mechanical redistribution                        |
| 7            | Cat Conv | transport in thickness space                     |
| 8            | Coupling | sending/receiving coupler messages               |
| 9            | ReadWrit | reading/writing files                            |
| 10           | Bound    | boundary conditions and subdomain communications |

**Table 5: PIPS 3.0 timers.**

The timings given by these timers are not mutually exclusive. For example, the column timer (4) includes timings from 5, 6 and 7. Subroutine `bound` (timer 10) is called from several places in the code, including the dynamics and advection modules. The timers use `MPI_WTIME` for parallel runs and the F90 intrinsic `system_clock` for single-processor runs.

#### 4.4.2 Types of model output available

1. **Daily Ocean** files which include surface heat flux, surface freshwater flux, sea surface height (SSH; cm), 3D total velocity, u and v (cm/sec), 3D temperature and salinity (T and S) fields ( $^{\circ}\text{C}$  and ppt).

2. **Daily Ice** files, such as ice u and v velocity (m/s), ice thickness (m), ice concentration fraction (x 100 to get %), heat flux from ice to ocean ( $\text{W}/\text{m}^2$ ), atmosphere/ice stress ( $\text{N}/\text{m}^2$ ), and ocean to ice stress ( $\text{N}/\text{m}^2$ ).

The daily ice files are ~120 MB following conversion to netCDF format.

#### 4.4.3 Examples of Model Output

The figures shown below provide an example of the PIPS 3.0 model grid domain, as well as just a few of the many examples of graphical output available from the model. Graphics are available in .jpg, .ps and .tif formats.

PIPS 3.0 Grid (1280x720) - 9.26 km  
Every 10th point plotted



**Figure 2: PIPS 3.0 model grid. Unclassified data. Distribution unlimited.**

**PIPS 3.0 NCOM 3Ac Total Ice Concentration(%)  
20080315**



**Figure 3: Example daily output of total ice concentration (%) with PIPS 3.0 coupled with NCOM for March 15, 2008 at the North Pole. Unclassified data. Distribution unlimited.**

**PIPS 3.0 NCOM 3Ac Ice Thickness (m)**  
**20080315**



**Figure 4: Daily ice thickness in meters for PIPS 3.0 coupled with NCOM at the North Pole on March 15, 2008. Unclassified data. Distribution unlimited.**



**Figure 5: Daily average sea surface temperature (C) for PIPS 3.0 coupled with NCOM on March 15, 2008. Unclassified data. Distribution unlimited.**

## 4.5 Execution Procedures

To compile and execute the code, go to the source directory and

1. Alter directories in the script **comp\_ice** (see [Section 2.3.1](#)),
2. Run **comp\_ice**. This will set up the run directory and create the executable '**cice31**',
3. Alter the script **clean\_ice** (see [Appendix C4](#)) and execute it. This will clean the compile directory and allow the model to start fresh.

In the run directory,

1. Alter `atm_data_dir` and `ocn_data_dir` in the namelist file **ice\_in** (see [Appendix C3](#)),
2. Alter the script **run\_ice** for your system (see [Section 2.3.2](#)),
3. Execute **run\_ice**.

If this fails, see [Section 5.1](#) for troubleshooting the initial setup.

This procedure creates the output log file **ice.log.[ID]**. If `npt` is long enough compared with `dumpfreq` and `histfreq`, then dump files **iced.[timeID]** and netCDF history output files **iceh.[timeID].nc** are created. The log file must be similar to **ice.log.< OS >**, which is provided for the user's convenience. These log files were created using MPI on eight processors (`NX=4` and `NY=2`), on the PIPS 3.0 grid.

Several precompiler options are available in **comp\_ice** for configuring the run, shown in the table below:

| <b>Location</b>       | <b>Variable</b> | <b>Options</b> | <b>Description</b>                                             |
|-----------------------|-----------------|----------------|----------------------------------------------------------------|
| <code>comp_ice</code> |                 |                |                                                                |
|                       | BINTYPE         | MPI            | use MPI for internal parallelization                           |
|                       | NX, NY          | (integers)     | number of MPI processors assigned to each coordinate direction |

**Table 6: Precompiler options in comp\_ice for run configuration.**

The scripts describe a number of environment variables, typically as directories that are needed to edit your own environment. Two of these environment variables are defined externally, `$HOME`, which points to your home directory (where the PIPS 3.0 directory should be installed), and `$SYSTEM_USERDIR`, which points to scratch disks on the machines at the Naval Oceanographic Office.

PIPS 3.0 namelist variables available for changes after compile time are seen in **ice.log.\***

with values read in from the file **ice\_in**; Definitions are given in Appendix B. For instance, to run for a different length of time, say two days, set `npt=60` in **ice\_in**. Presently, the user furnishes the time step `dt`, the number of dynamics/advection/ridging subcycles `ndyn_dt`, and the number of evp subcycles `ndte`, and `dte` is then calculated in subroutine `init_evp`. The main reason for doing it this way is to guarantee that `ndte` is an integer.

To restart from a previous run, set the filename in **ice.restart\_file** (created by the previous run) to the desired data file (**iced.[timeID]**), then set `restart=.true.` in **ice\_in**. Restarts are exact for MPI or single processor runs.

The structure and flow of the PIPS 3.0 code are quite well outlined in the main driver routine **CICE.F**. Notice that the thermodynamics routine is broken into two sections, so that fluxes may be returned to the coupler as soon as possible. This allows the flux coupler to deliver the thermodynamic fluxes to other component models while the ice model keeps running.

## 5.0 TROUBLESHOOTING

### 5.1 Initial Setup Issues

The script **comp\_ice** (see Section 2.3.1) is configured so that the files **grid.kmt**, **ice\_in**, **run\_ice**, **iced\_gx3\_v3.1** and **ice.restart\_file** are NOT overwritten following the first setup. To make changes to the original files in **input\_templates/** rather than to those in the run directory, either remove the files from the run directory before executing **comp\_ice** or edit the script.

If the code fails to compile or run, or if the model configuration has changed, try the following:

- Create **Macros.\***, **Makefile.\*** and **run\_ice.\*** files for your specific platform, if they do not already exist. Type 'uname -s' at the prompt and compare the result with the file suffixes; (UNICOS/mp has been renamed as UNICOS for simplicity). Samples of the Macros and Makefile are found in Appendix C. The **run\_ice** script is found in Section 2.3.2.
- Modify the **INCLUDE** directory path and other settings for your system in the scripts, as well as in the **Macros.\*** and **Makefile.\*** files.
- Change directory paths, file names and the execution command as necessary in the **run\_ice** and **ice\_in** scripts.
- Set the internal parallelization method and number of processors (**BINTYPE**, **NX**, **NY**) in **Macros.\***. **NX** and **NY** should evenly divide the respective number of grid points in each direction. Try **NY** ≤ 2 for load balancing; otherwise processors assigned subdomains near the equator have little work to do.
- For stand-alone runs, make sure that **-Dcoupled** is *not* set in the **Macros.\*** file. For coupled runs, check that **-Dcoupled** and **-DCCSMcoupled** are set in the **Macros.\*** file. The option **-Dfcd\_coupled** controls another model

configuration not available in this PIPS 3.0 distribution.

- Change the grid size and other parameters in **source/ice\_model\_size.F**.

## 5.2 Slow Execution

On some architecture, underflows ( $10^{-300}$  for example) are not flushed automatically to zero. Typically a compiler flag is available to do this, but if it is not, then uncomment the block of code at the end of subroutine *stress*, found in **ice\_dyn\_evap.F**. The extra computations will slow down the run, but it will not be worse than running with the underflows.

## 5.3 Debugging Hints

Several utilities are available that can be useful when debugging the code. Not all of these will work ubiquitously in the code, due to potential conflicts in module dependencies.

- *debug\_ice* (**CICE.F**)- A wrapper for *print\_state* that is effortlessly called from numerous points during the timestepping loop (see **CICE.F\_debug**).
- *print\_state* (**ice\_diagnostics.F**)- Prints the ice state and forcing fields for a given grid cell.
- *ice\_global\_real\_minmax* (**ice\_mpi\_internal.F**)- Computes and prints the minimum and maximum values for a real array. A sister routine, *ice\_global\_real\_sum*, prints the global sum of all elements in a real array.
- *diag = .true.* (in calls to *ice\_read*)- Prints global max and min values for the field being read.
- *Debug = .true.* (**ice\_in**)- Prints many diagnostic quantities for forcing data read in **ice\_flux\_in.F**.
- *print\_global (ice\_in)* - If true, it computes and prints several global sums for energy and mass balance analysis. This option could significantly degrade code efficiency.
- *print\_points (ice\_in)* - If true, several diagnostic quantities are printed for two grid cells, one close to the North Pole and another in the Weddell Sea. This utility also supplies the local grid indices and processor number (*ip*, *jp*, *my\_task*) for these points, which can be used in combination with *check\_step*, to call *print\_state*. These flags are set in **ice\_diagnostics.F**. This option can be quite slow, due to gathering data from MPI subdomains.

## 5.4 Known Bugs

1. Fluxes sent to the coupler could have incorrect values in grid cells that transform from an ice-free state to having ice during the given time step, or vice versa, due to scaling by the ice area. The flux coupler must have area scaling so that the ice and land models are treated reliably in the coupler (but note that the land area does not suddenly become zero in a grid cell, as does the ice area).

2. A significant fraction (more than 10%) of the total shortwave radiation is absorbed at the surface. It should, however, be penetrating into the ice interior instead. This is due to use of the aggregated, effective albedo rather than the bare ice albedo when `snowpatch < 1`. Repairing the problem will require more albedo arrays to be added to the code.
3. The date-of-onset diagnostic variables, `melt_onset` and `frz_onset`, are not included in the restart file. These could therefore be incorrect for the current year if the run is restarted after Jan 1. Also, these variables were employed with the Arctic in mind and may be incorrect for the Antarctic.
4. The single-processor `system_clock` time could give erratic displays on some architecture.
5. Local domains are not padded for uneven partition of the global domain.
6. History files that hold time averaged data (`hist_avg = .true.` in `ice_in`) will be incorrect if the user is restarting from midway through an averaging period.
7. In stand-alone runs, restarts from the end of `ycycle` will not be accurate.

## 6.0 FUNCTIONAL DESCRIPTION

For a discussion of the functional description see the accompanying Software Design Description (SDD) manual [2].

## 7.0 TECHNICAL REFERENCES

### 7.1 PIPS 3.0 Software Documentation

- [1] E.C. Hunke and W.H. Lipscomb, “CICE: the Los Alamos Sea Ice Model Documentation and Software”, available at <http://climate.lanl.gov/Models/CICE/>
- [2] P.G. Posey, L.F. Smedstad, R.H. Preller, E.J. Metzger and S.N. Carroll. “Software Design Description For The Polar Ice Prediction System (PIPS) Version 3.0”, NRL/MR/7320—08-9150, Ocean Modeling Division, Naval Research Laboratory, Stennis Space Center, MS, 2008.
- [3] P.G. Posey, L.F. Smedstad, R.H. Preller, E.J. Metzger and S.N. Carroll. “Validation Test Report For The Polar Ice Prediction System (PIPS) Version 3.0”, PSI Technical Report SSC-003-06, Ocean Modeling Division, Naval Research Laboratory, Stennis Space Center, MS, 2008.

### 7.2 General Technical Documentation

- [4] C.N. Barron, A.B. Kara, P.J. Martin, R.C. Rhodes, and L.F. Smedstad. Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). *Ocean Modelling*, 11:347-375, 2006.
- [5] C.N. Barron, A.B. Kara, R.C. Rhodes, C. Rowley and L.F. Smedstad. Validation Test Report for the 1/8° Global Navy Coastal Ocean Model Nowcast/Forecast System. NRL/MR/7320—07-9019, Naval Research Laboratory, Stennis Space Center, MS, 2007.
- [6] W.D. Hibler. A dynamic thermodynamic sea ice model. *J. Phys. Oceanogr.*, 9:817-846, 1979.
- [7] E.C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. *J. Comput. Phys.* 170:18-38, 2001.
- [8] E.C. Hunke and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. *J. Phys. Oceanogr.*, 27:1849–1867, 1997.
- [9] E. C. Hunke and J. K. Dukowicz. The Elastic-Viscous-Plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere—Effect of metric terms. *Mon. Wea. Rev.*, 130:1848– 1865, 2002.
- [10] E.C. Hunke and Y. Zhang. A comparison of sea ice dynamics models at high resolution. *Mon. Wea. Rev.*, 127:396–408, 1999.
- [11] W.H. Lipscomb, E.C. Hunke, W. Maslowski, and J. Jakacki. Improving ridging schemes for high resolution sea ice models. *J. Geophys. Res.-Oceans*, 112, 2007.

- [12] R.J. Murray. Explicit generation of orthogonal grids for ocean models. *J. Comput. Phys.*, 126:251– 273, 1996.
- [13] R.C. Rhodes, H.E. Hurlburt, A.J. Wallcraft, C.N. Barron, P.J. Martin, E.J. Metzger, J.F. Shriver, D.S. Ko, O.M. Smedstad, S.L. Cross and A.B. Kara. Navy Real-Time Global Modeling Systems. *Oceanography*, 15(1): 29-44, 2002.
- [14] D.A. Rothrock. The energetics of the plastic deformation of pack ice by ridging. *J. Geophys. Res.*, 80:4514–4519, 1975.
- [15] R.D. Smith, S. Kortas, and B. Meltz. Curvilinear coordinates for global ocean models. Technical Report LA-UR-95-1146, Los Alamos National Laboratory, 1995.

## 8.0 NOTES

### 8.1 Acronyms and Abbreviations

| <b>Acronym</b> | <b>Definition</b>                                                |
|----------------|------------------------------------------------------------------|
| CCSM           | Community Climate System Model                                   |
| CICE           | Los Alamos Sea-Ice Model                                         |
| DMSP           | Defense Meteorological Satellite Program                         |
| DTG            | Date-Time-Group                                                  |
| EVP            | Elastic-Viscous-Plastic                                          |
| FNMOC          | Fleet Numerical Meteorology and Oceanography Center              |
| HYCOM          | HYbrid Coordinate Ocean Model                                    |
| IBCAO          | International Bathymetric Chart of the Arctic Ocean              |
| I/O            | Input/Output                                                     |
| ITD            | Ice Thickness Distribution model                                 |
| LANL           | Los Alamos National Laboratory                                   |
| MPDATA         | Multidimensional Positive Definite Advection Transport Algorithm |
| MPI            | Message Passing Interface                                        |
| NAVOCEANO      | Naval Oceanographic Office                                       |
| NCAR           | National Center for Atmospheric Research                         |
| NCOM           | Navy Coastal Ocean Model                                         |
| NOGAPS         | Navy Operational Global Atmospheric Prediction System            |
| NRL            | Navy Research Laboratory                                         |
| PIPS           | Polar Ice Prediction System                                      |
| POP            | Parallel Ocean Program model                                     |
| PSI            | Planning Systems, Incorporated                                   |

|       |                                         |
|-------|-----------------------------------------|
| S     | Salinity                                |
| SDD   | Software Design Description             |
| SGI   | Silicon Graphics Incorporated           |
| SHEBA | Surface Heat Budget of the Arctic Ocean |
| SSC   | Stennis Space Center                    |
| SSM/I | Special Sensor Microwave/Imager         |
| SSS   | Sea Surface Salinity                    |
| SST   | Sea Surface Temperature                 |
| SUM   | Software Users Manual                   |
| T     | Temperature                             |

## APPENDIX A

### PIPS 3.0 Primary Variables and Parameters

The following table defines many of the symbols frequently used in the PIPS 3.0 code. Values appearing in this list are either fixed or recommended; most namelist parameters are indicated (\*) with their default values. For other namelist options, see Appendix B. All quantities in the code are expressed in MKS units (temperatures may take either Celsius or Kelvin units).

| Name         | Description                                                      | Default Values |
|--------------|------------------------------------------------------------------|----------------|
| <b>A</b>     |                                                                  |                |
| advection    | type of advection algorithm used                                 | 'remap'        |
| ahmax        | thickness above which ice albedo is constant                     | 0.5 m          |
| aice0        | fractional open water area                                       |                |
| aice(n)      | total concentration of ice in grid cell (in category <i>n</i> )  |                |
| aice_init    | concentration of ice at beginning of <i>dt</i> (for diagnostics) |                |
| Ain_min      | minimum fractional ice area allowed in each category             |                |
| albicei      | *near infrared ice albedo for thicker ice                        | 0.36           |
| albicev      | *visible ice albedo for thicker ice                              | 0.78           |
| albsnowi     | *near infrared, cold snow albedo                                 | 0.70           |
| albsnowv     | *visible, cold snow albedo                                       | 0.98           |
| albocn       | ocean albedo                                                     | 0.06           |
| alpha        | floe shape constant for lateral melt                             | 0.66           |
| astar        | e-folding scale for participation function                       | 0.05           |
| awtidf       | weighting factor for near-ir, diffuse albedo                     | 0.16           |
| awtidr       | weighting factor for near-ir, direct albedo                      | 0.31           |
| awtvdf       | weighting factor for visible, diffuse albedo                     | 0.24           |
| awtvdr       | weighing factor for visible, direct albedo                       | 0.29           |
| ANGLE        | for conversions between the ocean grid and lat-lon grids         |                |
| ANGLET       | ANGLE converted to T-cells                                       |                |
| atm_data_dir | *directory for atmospheric forcing data                          |                |

| Name            | Description                                          | Default Values             |
|-----------------|------------------------------------------------------|----------------------------|
| avgsiz          | number of fields that may be written to history file | 91                         |
| <b>C</b>        |                                                      |                            |
| Cf              | ratio of ridging work to PE change in ridging        | 17.                        |
| char_len        | length of character variable strings                 | 80                         |
| char_len_long   | length of longer character variable strings          | 128                        |
| check_step      | time step for writing debugging data                 |                            |
| cldf            | cloud fraction                                       |                            |
| congel          | basal ice growth                                     | m                          |
| cosw            | cosine of the turning angle in water                 | 1.                         |
| Cp_air          | specific heat of air                                 | 1005.0 J/kg/K              |
| Cp_wv           | specific heat of water vapor                         | $1.81 \times 10^3$ J/kg/K  |
| Cp_ice          | specific heat of fresh ice                           | 2106. J/kg/K               |
| Cp_ocn          | specific heat of sea water                           | 4218. J/kg/K               |
| Cm_to_m         | cm to meters conversion                              | 0.01                       |
| c<math>n</math> | real( $n$ )                                          |                            |
| Cs              | fraction of shear energy contributing to ridging     | 0.5                        |
| Cstar           | constant in Hibler ice strength formula              | 20                         |
| <b>D</b>        |                                                      |                            |
| daidtd          | ice area tendency due to dynamics/transport          | 1/s                        |
| daidtt          | ice area tendency due to thermodynamics              | 1/s                        |
| dalb_mlt        | [see <b>ice_albedo.F</b> ]                           | -0.075                     |
| dalb_mlti       | [see <b>ice_albedo.F</b> ]                           | -0.100                     |
| dalb_mltv       | [see <b>ice_albedo.F</b> ]                           | -0.150                     |
| dardg1dt        | rate of fractional area loss by ridging ice          | 1/s                        |
| dardg2dt        | rate of fractional area gain by new ridges           | 1/s                        |
| dvirdgdt        | ice volume ridging rate                              | m/s                        |
| dbl_kind        | definition of double precision                       | selected_real_kind<br>(13) |
| dbug            | *write forcing data diagnostics                      | .false.                    |
| Delta           | function of strain rates (see Section 5.2.2.4)       |                            |
| depressT        | ratio of freezing temps to salinity of brine         | 0.054 deg/psu              |
| diag_file       | *diagnostic output file (alternative to stdout)      |                            |

| Name       | Description                                                  | Default Values                    |
|------------|--------------------------------------------------------------|-----------------------------------|
| diag_type  | *where diagnostic output is written                          | stdout                            |
| diagfreq   | *how often diagnostic output is written (10 = once/10 $dt$ ) | 24                                |
| divu       | strain rate I component, velocity divergence                 | 1/s                               |
| divu_adv   | divergence associated with advection                         | 1/s                               |
| Dt         | *thermo/transport time step                                  | 3600.s                            |
| dt_dyn     | dynamics/transport time step ( $\Delta t_{dyn}$ )            |                                   |
| Dte        | subcycling time step for elastic dynamics ( $\Delta t_e$ )   | s                                 |
| dtei       | $1/dte$ , where $dte$ is the EVP subcycling time step        | 1/s                               |
| dT_mlt     | [see ice_albedo.F]                                           | 1. deg                            |
| dump_file  | * output file for restart dump                               |                                   |
| dumpfreq   | * dump frequency for restarts, y, m, or d                    | y                                 |
| dumpfreq_n | *restart output frequency                                    | 1                                 |
| dragw      | drag coefficient for water on ice* $\rho_w$                  | 0.00536*rhow<br>kg/m <sup>3</sup> |
| dxt        | width of T cell ( $\Delta x$ ) through the middle            | m                                 |
| dxu        | width of U cell ( $\Delta x$ ) through the middle            | m                                 |
| Dyt        | height of T cell ( $\Delta y$ ) through the middle           | m                                 |
| dyu        | height of U cell ( $\Delta y$ ) through the middle           | m                                 |
| dvidtd     | ice volume tendency due to dynamics/transport                | m/s                               |
| dvidtt     | ice volume tendency due to thermodynamics                    | m/s                               |
| <b>E</b>   |                                                              |                                   |
| ecc        | yield curve major/minor axis ratio, squared                  | 4.                                |
| eice(n)    | energy of melting of ice per unit area (in category $n$ )    | J/m <sup>2</sup>                  |
| emissivity | emissivity of snow and ice                                   | 0.95                              |
| eps04      | a small number                                               | $10^{-4}$                         |
| eps11      | a small number                                               | $10^{-11}$                        |
| eps12      | a small number                                               | $10^{-12}$                        |
| eps13      | a small number                                               | $10^{-13}$                        |
| eps15      | a small number                                               | $10^{-15}$                        |
| esno(n)    | energy of melting of snow per unit area (in category $n$ )   | J/m <sup>2</sup>                  |
| evap       | evaporative water flux                                       | kg/m <sup>2</sup> /s              |

| Name         | Description                                                   | Default Values                   |
|--------------|---------------------------------------------------------------|----------------------------------|
| evp_damping  | *if true, use evp damping procedure [6]                       | F                                |
| eyc          | coefficient for calculating the parameter E, $0 < eyc < 1$    | 0.36                             |
| <b>F</b>     |                                                               |                                  |
| fcor         | Coriolis parameter                                            | 1/s                              |
| ferrmax      | max allowed energy flux error (thermodynamics)                | $1 \times 10^{-3} \text{ W/m}^2$ |
| fhnet        | net heat flux                                                 | $\text{W/m}^2$                   |
| fhnet_hist   | net heat flux to ocean ( <i>fhnet</i> ) for history           | $\text{W/m}^2$                   |
| flat         | latent heat flux                                              | $\text{W/m}^2$                   |
| floediam     | effective flue diameter for lateral melt                      | 300. m                           |
| Flw          | incoming longwave radiation                                   | $\text{W/m}^2$                   |
| flwout       | outgoing longwave radiation                                   | $\text{W/m}^2$                   |
| frain        | rainfall rate                                                 | $\text{kg/m}^2/\text{s}$         |
| frazil       | frazil ice growth                                             | m                                |
| fresh        | fresh water flux to ocean                                     | $\text{kg/m}^2/\text{s}$         |
| fresh_hist   | fresh water flux ( <i>fresh</i> ) for history                 | $\text{kg/m}^2/\text{s}$         |
| frzmlt       | freezing/melting potential                                    | $\text{W/m}^2$                   |
| Frz_onset    | day of year that freezing begins                              |                                  |
| fsalt        | net salt flux to ocean                                        | $\text{kg/m}^2/\text{s}$         |
| fsalt_hist   | salt flux to ocean ( <i>fsalt</i> ) for history               | $\text{kg/m}^2/\text{s}$         |
| fsens        | sensible heat flux                                            | $\text{W/m}^2$                   |
| fsnow        | snowfall rate                                                 | $\text{kg/m}^2/\text{s}$         |
| fsnowrdg     | snow fraction that survives in ridging                        | 0.5                              |
| Fsw          | incoming shortwave radiation                                  | $\text{W/m}^2$                   |
| fswabs       | absorbed shortwave radiation                                  | $\text{W/m}^2$                   |
| fswthru      | shortwave penetrating to ocean                                | $\text{W/m}^2$                   |
| fswthru_hist | shortwave penetrating to ocean ( <i>fswthru</i> ) for history | $\text{W/m}^2$                   |
| fyear        | current data year                                             |                                  |
| fyear_final  | last data year                                                |                                  |
| fyear_init   | *initial data year                                            |                                  |
| <b>G</b>     |                                                               |                                  |
| gravit       | gravitational acceleration                                    | $9.80616 \text{ m/s}^2$          |
| grid_file    | *input file for grid info                                     |                                  |

| Name             | Description                                                      | Default Values        |
|------------------|------------------------------------------------------------------|-----------------------|
| grid_type        | *‘rectangular’ or ‘displace_pole’ or ‘column’                    | displaced_pole        |
| Gstar            | used to compute ridging participation function                   | 0.15                  |
| <b>H</b>         |                                                                  |                       |
| hfrazilmin       | minimum thickness of new frazil ice                              | 0.05 m                |
| hi_min           | minimum ice thickness for thinnest ice category                  | 0.01 m                |
| hicen            | ice thickness in category $n$                                    | m                     |
| Hin_max          | category limits                                                  | m                     |
| hist_avg         | *if true, write averaged data instead of snapshots               | T                     |
| histfreq         | *history output frequency; y, m, w, d or 1                       | m                     |
| history_dir      | *path to history output files                                    |                       |
| history_file     | *output file for history                                         |                       |
| Hm               | land/boundary mask, thickness (T-cell)                           |                       |
| hmix             | ocean mixed layer depth                                          | 20 m                  |
| hsnomin          | minimum thickness for which $T_s$ is computed                    | $1. \times 10^{-6}$ m |
| Hstar            | determines mean thickness of ridged ice                          | 25. m                 |
| HTE              | length of eastern edge ( $\Delta y$ ) of T-cell                  | m                     |
| HTN              | length of northern edge ( $\Delta x$ ) of T-cell                 | m                     |
| HTS              | length of southern edge ( $\Delta x$ ) of T-cell                 | m                     |
| HTW              | length of western edge ( $\Delta y$ ) of T-cell                  | m                     |
| <b>I</b>         |                                                                  |                       |
| i0vis            | fraction of penetrating visible solar radiation                  | 0.70                  |
| icells           | number of grid cells with specified property (for vectorization) |                       |
| Ice_ref_salinity | reference salinity for ice-ocean exchanges                       | 4. psu                |
| iceruf           | ice surface roughness                                            | $5. \times 10^{-4}$ m |
| icetmask         | ice extent mask (T-cell)                                         |                       |
| iceumask         | ice extent mask (U-cell)                                         |                       |
| idate            | the date at the end of the current time step<br>(yyyymmdd)       |                       |
| ierr             | general-use error flag                                           |                       |
| i(j)hi           | last $i(j)$ index of physical domain (local)                     |                       |
| i(j)lo           | first $i(j)$ index of physical domain (local)                    |                       |
| ilyr1            | index of the top layer in each cat (for <i>eicen</i> )           |                       |

| Name                 | Description                                                  | Default Values |
|----------------------|--------------------------------------------------------------|----------------|
| ilyrn                | index of the bottom layer in each cat (for <i>eicen</i> )    |                |
| i(j)mt_global        | number of physical gridpts in $x(y)$ direction, local domain |                |
| i(j)mt_local         | total no. of gridpoints in $x(y)$ direction, local domain    |                |
| Int_kind             | definition of an integer                                     | kind(1)        |
| ip, jp               | local processor coordinates for writing debugging data       |                |
| istep                | local step counter for time loop                             |                |
| istep0               | *number of steps taken in previous run                       | 0              |
| istep1               | total number of steps at current time step                   |                |
| <b>K</b>             |                                                              |                |
| kappav               | visible extinction coeff. In ice, wavelength < 700 nm        | 1.4/m          |
| kappan               | visible extinction coeff. In ice, wavelength > 700 nm        | 17.6/m         |
| kcatbound            | *category boundary formula                                   | 0              |
| kdyn                 | *type of dynamics (1 = EVP, 0 = off)                         | 1              |
| Kg_to_g              | kg to g conversion factor                                    | 1000.          |
| kice                 | thermal conductivity of fresh ice                            | 2.03 W/m/deg   |
| kimin                | minimum conductivity of saline ice                           | W/m/deg        |
| kitd                 | *type of ITD conversions (1 = delta fxn, 1 = linear remap)   | 1              |
| kmt_file             | *input file for land mask info                               |                |
| krdg_partic          | *ridging participation function                              | 1              |
| krdg_redist          | *ridging redistribution function                             | 1              |
| ksmooth              | *1 = smooth the ice strength                                 | 0              |
| ksno                 | thermal conductivity of snow                                 | 0.30 W/m/deg   |
| kstrength            | *ice strength formulation (1 = [13], 0 = [5])                | 1              |
| <b>L</b>             |                                                              |                |
| l_conservation_check | if true, check conservation                                  |                |
| Lfresh               | latent heat of melting of fresh ice = $L_{sub}=L_{vap}$      | J/kg           |
| lhcoef               | transfer coefficient for latent heat                         |                |
| Log_kind             | definition of a logical variable                             | kind(.true.)   |

| <b>Name</b>   | <b>Description</b>                                       | <b>Default Values</b>                       |
|---------------|----------------------------------------------------------|---------------------------------------------|
| Lsub          | latent heat of sublimation for fresh water               | $2.835 \times 10^6$ J/kg                    |
| Lvap          | latent heat of vaporization for fresh water              | $2.501 \times 10^6$ J/kg                    |
| <b>M</b>      |                                                          |                                             |
| m_to_cm       | meters to cm conversion                                  | 100.                                        |
| m1            | constant for lateral melt rate                           | $1.6 \times 10^{-6}$ m/s deg <sup>-m2</sup> |
| m2            | constant for lateral melt rate                           | 1.36                                        |
| m2_to_km2     | m <sup>2</sup> to km <sup>2</sup> conversion             | $1 \times 10^{-6}$                          |
| mask_n(s)     | northern (southern) hemisphere mask                      |                                             |
| master_task   | task ID for the controlling processor                    |                                             |
| mday          | day of the month                                         |                                             |
| meltb         | basal ice melt                                           | m                                           |
| meltl         | lateral ice melt                                         | m                                           |
| meltt         | top ice melt                                             | m                                           |
| melt_onset    | day of year that surface melt begins                     |                                             |
| month         | the month number                                         |                                             |
| MPI_COMM_ICE  | communicator for ice model internal communications (MPI) |                                             |
| mps_to_cmpdy  | m per s to cm per day conversion                         | $8.64 \times 10^6$                          |
| mps_to_compyr | m per s to cm per year conversion                        |                                             |
| mtask         | local processor number that writes debugging data        |                                             |
| My_task       | task ID for the current processor                        |                                             |
| <b>N</b>      |                                                          |                                             |
| nbr_<dir>     | processor numbers for the N, S, E, W neighbor processors |                                             |
| ncat          | number of ice categories                                 | 5                                           |
| ndte          | *number of subcycles                                     | 120                                         |
| ndyn_dt       | *number of dynamics/advection steps under thermo         | 1                                           |
| new_day       | flag for beginning new day                               |                                             |
| new_month     | flag for beginning new month                             |                                             |
| new_week      | flag for beginning new week                              |                                             |
| new_year      | flag for beginning new year                              |                                             |
| ngroups       | number of groups of flux triangles in remapping          | 5                                           |
| nilyr         | number of ice layers                                     | 4                                           |

| Name             | Description                                           | Default Values               |
|------------------|-------------------------------------------------------|------------------------------|
| Npt              | *total number of time steps ( $dt$ )                  | 24                           |
| ntilay           | sum of number of layers in all categories             |                              |
| ntracer          | number of tracers transported in remapping            |                              |
| Nu_diag          | unit number for diagnostics output file               | 6                            |
| Nu_dump          | unit number for dump file for restarting              | 50                           |
| Nu_forcing       | unit number for forcing data file                     | 49                           |
| Nu_grid          | unit number for grid file                             | 11                           |
| Nu_kmt           | unit number for land mask file                        | 12                           |
| Nu_nml           | unit number for namelist input file                   | 21                           |
| Nu_restart       | unit number for restart input file                    | 50                           |
| Nu_RST_pointer   | unit number for pointer to latest restart file        | 52                           |
| num_ghost_cells  | no. of rows of ghost cells surrounding each subdomain | 1                            |
| nyr              | year number                                           |                              |
| <b>O</b>         |                                                       |                              |
| oceannmixed_file | *data file containing ocean forcing data              |                              |
| oceannmixed_ice  | *if true, use internal ocean mixed layer              | T                            |
| ocn_data_dir     | *directory for ocean forcing data                     |                              |
| omega            | angular velocity of Earth                             | $7.292 \times 10^{-5}$ rad/s |
| one              | array of ones which is often useful                   | 1.                           |
| opening          | rate of ice opening due to divergence and shear       | 1/s                          |
| <b>P</b>         |                                                       |                              |
| p001             | 1/1000                                                |                              |
| p01              | 1/100                                                 |                              |
| p027             | 1/36                                                  |                              |
| p055             | 1/18                                                  |                              |
| p1               | 1/10                                                  |                              |
| p111             | 1/9                                                   |                              |
| p15              | 15/100                                                |                              |
| p166             | 1/6                                                   |                              |
| p2               | 1/5                                                   |                              |
| p222             | 2/9                                                   |                              |
| p25              | 1/4                                                   |                              |

| Name         | Description                                                    | Default Values                              |
|--------------|----------------------------------------------------------------|---------------------------------------------|
| p333         | 1/3                                                            |                                             |
| p4           | 2/5                                                            |                                             |
| p5           | ½                                                              |                                             |
| p52083       | 25/48                                                          |                                             |
| p5625m       | -9/16                                                          |                                             |
| p6           | 3/5                                                            |                                             |
| p666         | 2/3                                                            |                                             |
| Pi           | $\pi$                                                          |                                             |
| Pih          | $\pi/2$                                                        |                                             |
| pi2          | $2\pi$                                                         |                                             |
| pointer_file | *input file for restarting                                     |                                             |
| potT         | atmospheric potential temperature                              | K                                           |
| precip_units | *liquid precipitation data units                               |                                             |
| print_global | *if true, print global data                                    | F                                           |
| print_points | *if true, print point data                                     | F                                           |
| Pstar        | ice strength parameter                                         | $2.75 \times 10^4$ N/m                      |
| puny         | a small positive number                                        | $1 \times 10^{-11}$                         |
| <b>Q</b>     |                                                                |                                             |
| Qa           | specific humidity at 10 m                                      | kg/kg                                       |
| qdp          | deep ocean heat flux                                           | $\text{W}/\text{m}^2$                       |
| qqqice       | for saturated specific humidity over ice                       | $1.16378 \times 10^7$<br>kg/m <sup>3</sup>  |
| qqqocn       | for saturated specific humidity over ocean                     | $6.275724 \times 10^6$<br>kg/m <sup>3</sup> |
| Qref         | 2 m atmospheric reference specific humidity                    | kg/kg                                       |
| <b>R</b>     |                                                                |                                             |
| Rad_to_deg   | degree-radian conversion                                       | $180/\pi$                                   |
| radius       | earth radius                                                   | $6.37 \times 10^6$ m                        |
| real_kind    | definition of single precision real                            | selected_real_kind(<br>6)                   |
| restart      | *if true, initialize using restart file instead of<br>defaults | T                                           |
| restart_dir  | *path to restart/dump files                                    |                                             |
| restore_sst  | *restore SST to data                                           |                                             |

| Name             | Description                                                              | Default Values                                          |
|------------------|--------------------------------------------------------------------------|---------------------------------------------------------|
| rhoa             | air density                                                              | kg/m <sup>3</sup>                                       |
| rhofresh         | density of fresh water                                                   | 1000.0 kg/m <sup>3</sup>                                |
| rhoi             | density of ice                                                           | 917. kg/m <sup>3</sup>                                  |
| rhos             | density of snow                                                          | 330. kg/m <sup>3</sup>                                  |
| rhow             | density of seawater                                                      | 1026 kg/m <sup>3</sup>                                  |
| rnilyr           | real( <i>nlyr</i> )                                                      |                                                         |
| rside            | fraction of ice that melts laterally                                     |                                                         |
| <b>S</b>         |                                                                          |                                                         |
| saltmax          | max salinity, at ice base                                                | 3.2 ppm                                                 |
| Sec              | seconds elapsed into idate                                               |                                                         |
| secday           | number of seconds in a day                                               | 86400.                                                  |
| shear            | strain rate II component                                                 | 1/s                                                     |
| shcoef           | transfer coefficient for sensible heat                                   |                                                         |
| Sig1(2)          | principal stress components (diagnostic)                                 |                                                         |
| sinw             | sine of the turning angle in water                                       | 0.                                                      |
| snoice           | snow-ice formation                                                       | m                                                       |
| snowpatch        | length scale for parameterizing nonuniform snow coverage                 | 0.02 m                                                  |
| spval            | special value (generally over land or undefined regions, in place of 0)  | 10 <sup>3</sup> 0                                       |
| ss_tlx(y)        | sea surface slope in the <i>x(y)</i> direction                           | m/m                                                     |
| Sss              | sea surface salinity                                                     | psu                                                     |
| Sss_data_type    | *source of surface salinity data                                         |                                                         |
| Sst              | sea surface temperature                                                  | C                                                       |
| Sst_data_type    | *source of surface temperature data                                      |                                                         |
| stefan-boltzmann | Stefan-Boltzmann constant                                                | 5.67 x 10 <sup>-8</sup> W/m <sup>2</sup> K <sup>4</sup> |
| stop_now         | if 1, end program execution                                              |                                                         |
| strairx(y)       | stress on ice by air, in the <i>x(y)</i> -direction (centered in U cell) | N/ m <sup>2</sup>                                       |
| strairx(y)T      | stress on ice by air, <i>x(y)</i> -direction (centered in T cell)        | N/ m <sup>2</sup>                                       |
| strength         | ice strength (pressure)                                                  | N/m                                                     |
| stressp          | internal ice stress, $\sigma_{11} + \sigma_{22}$                         | N/m                                                     |

| Name        | Description                                                       | Default Values          |
|-------------|-------------------------------------------------------------------|-------------------------|
| stressm     | internal ice stress, $\sigma_{11} - \sigma_{22}$                  | N/m                     |
| stress12    | internal ice stress, $\sigma_{12}$                                | N/m                     |
| strintx(y)  | divergence of internal ice stress, $x(y)$                         | N/ m <sup>2</sup>       |
| strocnx(y)  | ice-ocean stress in the $x(y)$ -direction (U-cell)                | N/ m <sup>2</sup>       |
| strocnx(y)T | ice-ocean stress in the $x(y)$ -dir. (T-cell)                     | N/ m <sup>2</sup>       |
| strtlx(y)   | surface stress due to sea surface slope                           | N/ m <sup>2</sup>       |
| swv(n)dr(f) | incoming shortwave radiation, visible (near IR), direct (diffuse) | W/ m <sup>2</sup>       |
| <b>T</b>    |                                                                   |                         |
| Tair        | air temperature at 10 m                                           | K                       |
| tarea       | area of T-cell                                                    | m <sup>2</sup>          |
| tarean      | area of northern hemisphere T-cells                               | m <sup>2</sup>          |
| tarear      | 1/tarea                                                           | 1/ m <sup>2</sup>       |
| tareas      | area of southern hemisphere T-cells                               | m <sup>2</sup>          |
| Tf          | freezing temperature                                              | C                       |
| Tffresh     | freezing temp of fresh ice                                        | 273.15K                 |
| time        | total elapsed time                                                | s                       |
| time_forc   | time of last forcing update                                       | s                       |
| Timelt      | melting temperature of ice top surface                            | 0. C                    |
| tinyarea    | puny * tarea                                                      | m <sup>2</sup>          |
| TLAT        | latitude of cell center                                           | radians                 |
| TLON        | longitude of cell center                                          | radians                 |
| tmask       | land/boundary mask, thickness (T-cell)                            |                         |
| tmass       | total mass of ice and snow                                        | kg/m <sup>2</sup>       |
| Tmin        | minimum allowed internal temperature                              | -100 ° C                |
| Tref        | 2m atmospheric reference temperature                              | K                       |
| trestore    | *SST restoring time scale                                         | days                    |
| Tsfc(n)     | temperature of ice/snow top surface (in category $n$ )            | C                       |
| Tsf_errmax  | max allowed $T_{sfc}$ error (thermodynamics)                      | $5. \times 10^{-4}$ deg |
| Tsmelt      | melting temperature of snow top surface                           | 0. C                    |
| TTTice      | for saturated specific humidity over ice                          | 5897.8 K                |
| TTTocn      | for saturated specific humidity over ocean                        | 5107.4 K                |

| Name          | Description                                     | Default Values |
|---------------|-------------------------------------------------|----------------|
| <b>U</b>      |                                                 |                |
| uarea         | area of U-cell                                  | m <sup>2</sup> |
| uarear        | $1/uarea$                                       |                |
| u(v)atm       | wind velocity, $x(y)$                           | m/s            |
| ULAT          | latitude of U-cell centers                      | radians        |
| ULON          | longitude of U-cell centers                     | radians        |
| umask         | land/boundary mask, velocity (U-cell)           |                |
| umin          | min wind speed for turbulent fluxes             | 1. m/s         |
| u(v)ocn       | ocean current, $x(y)$ direction                 | m/s            |
| uvel(vvel)    | $x(y)$ -component of velocity                   | m/s            |
| uvm           | land/boundary mask, velocity (U-cell)           |                |
| <b>V</b>      |                                                 |                |
| vice(n)       | volume per unit area of ice (in category $n$ )  | m              |
| vonkar        | von Karman constant                             | 0.4            |
| vsno(n)       | volume per unit area of snow (in category $n$ ) | m              |
| <b>W</b>      |                                                 |                |
| week          | week of the year                                |                |
| wind          | wind speed                                      | m/s            |
| work_g1       | allocatable, dbl_kind work array                |                |
| work_g2       | allocatable, dbl_kind work array                |                |
| work_gr       | allocatable, real_kind work array               |                |
| write_history | if true, write history now                      |                |
| write_ic      | if true, write initial conditions now           |                |
| work_l1       | (imt_local, jmt_local) work array               |                |
| work_l2       | (imt_local, jmt_local) work array               |                |
| work_a        | (ilo:ihi, jlo:jhi) work array                   |                |
| work_b        | (ilo:ihi, jlo:jhi) work array                   |                |
| write_restart | if 1, write restart now                         |                |
| <b>Y</b>      |                                                 |                |
| ycycle        | *number of years in forcing data cycle          |                |
| yday          | day of the year                                 |                |

| Name      | Description                                      | Default Values |
|-----------|--------------------------------------------------|----------------|
| year_init | *the initial year                                |                |
| <b>Z</b>  |                                                  |                |
| zlvl      | atmospheric level height                         | m              |
| zref      | reference height for stability                   | 10. m          |
| zTrf      | reference height for $T_{ref}$ , $Q_{ref}$       | 2. m           |
| zvir      | gas constant (water vapor)/gas constant (air) -1 | 0.606          |

## APPENDIX B

**Table of Namelist Options**

| Name          | Type/Options     | Description                                 | Default Values / Directory Location |
|---------------|------------------|---------------------------------------------|-------------------------------------|
| albicei       | $0 < \alpha < 1$ | near infrared ice albedo for thicker ice    |                                     |
| albicev       | $0 < \alpha < 1$ | visible ice albedo for thicker ice          |                                     |
| albsnowi      | $0 < \alpha < 1$ | near infrared, cold snow albedo             |                                     |
| albsnowv      | $0 < \alpha < 1$ | visible, cold snow albedo                   |                                     |
| advection     | remap            | linear remapping advection                  | 'remap'                             |
|               | mpdata           | 2nd order MPDATA                            |                                     |
|               | upwind           | 1st order MPDATA                            |                                     |
| atm_data_dir  | path/            | path to atmospheric forcing data directory  |                                     |
| atm_data_type | default          | constant values defined in the code         |                                     |
|               | ncar             | NCAR bulk forcing data                      |                                     |
|               | LYq              | AOMIP/Large-Yeager forcing data             |                                     |
| Dbug          | true/false       | if true, write atm/ocn data diagnostics     | .false.                             |
| diag_file     | filename         | diagnostic output file                      |                                     |
| diag_type     | stdout           | write diagnostic output to stdout           | 'stdout' (if uncoupled)             |
|               | file             | write diagnostic output to file             |                                     |
| diagfreq      | integer          | frequency of diagnostic output in <i>dt</i> | 24                                  |
|               | <i>e.g.</i> , 10 | once every 10 time steps                    |                                     |
| dt            | seconds          | thermo/transport time step length           | 3600.                               |
| Dump_file     | filename prefix  | output file for restart dump                | 'iced'                              |

| Name         | Type/Options                   | Description                                                                                 | Default Values / Directory Location |
|--------------|--------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|
| dumpfreq     | y, m, d                        | write restart every <i>dumpfreq_n</i> for years, months, days                               | 'y'                                 |
| dumpfreq_n   | integer                        | frequency restart data is written                                                           |                                     |
| evp_damping  | true/false                     | if true, damp elastic waves [6]                                                             | .false.                             |
| Fyear_init   | yyyy                           | first year of atmospheric forcing data                                                      |                                     |
| f_<var>      | true/false                     | write <var> to history                                                                      |                                     |
| grid_file    | filename                       | name of grid file to be read                                                                | 'grid'                              |
| grid_type    | rectangular,<br>displaced_pole | rectangular: defined in <i>rectgrid</i><br>displaced_pole: read from file in <i>popgrid</i> | 'displaced_pole'                    |
| hist_avg     | true/false                     | write time-averaged data if true<br>write snapshots of data if false                        | .true.                              |
| hist_dir     | path/                          | path to history output directory                                                            |                                     |
| histfreq     | y, m, w, d, l                  | write history output once a year, month, week, day, or every time step                      | 'm'                                 |
| history_file | filename prefix                | output file for history                                                                     | 'iceh'                              |
| ice_ic       | default                        | latitude and SST dependent                                                                  | 'default'                           |
|              | none                           | no ice                                                                                      |                                     |
| Istep0       | integer                        | initial time step number                                                                    | 0                                   |
| kcatbound    | 0/1                            | if 0, original category boundary formula<br>if 1, new category boundary formula             | 0                                   |
| Kdyn         | 0 /1                           | if 0, EVP dynamics OFF<br>if 1, EVP dynamics ON                                             | 1                                   |
| kitd         | 0 /1                           | if 0, delta function ITD approx.<br>if 1, linear remapping ITD approx.                      | 1                                   |
| kmt_file     | filename                       | name of land mask file to be read                                                           | 'kmt'                               |

| Name             | Type/Options     | Description                                                                            | Default Values / Directory Location |
|------------------|------------------|----------------------------------------------------------------------------------------|-------------------------------------|
| krdg_partic      | 0/1              | if 0, old ridging participation function<br>if 1, new ridging participation function   | 1                                   |
| krdg_redist      | 0/1              | if 0, old ridging redistribution function<br>if 1, new ridging redistribution function | 1                                   |
| kstrength        | 0 /1             | if 0, [5] ice strength formulation<br>if 1, [13] ice strength formulation              | 1                                   |
| ndte             | integer          | number of EVP subcycles                                                                | 120                                 |
| Ndyn_dt          | integer          | number of dynamics/advection/ridging steps per thermo timestep                         | 1                                   |
| npt              | integer          | total number of time steps to take                                                     |                                     |
| oceannmixed_file | filename         | data file containing ocean forcing data                                                |                                     |
| oceannmixed_ice  | true/false       | active ocean mixed layer calculation                                                   | .true. (if uncoupled)               |
| ocn_data_dir     | path/            | path to oceanic forcing data directory                                                 | '/scr/posey/pips3/data_in/'         |
| Print_points     | true/false       | print diagnostic data for two grid points                                              | .false.                             |
| precip_units     | mm_per_month     | liquid precipitation data units                                                        |                                     |
|                  | mm_per_sec       | (default; MKS units)                                                                   |                                     |
| Print_global     | true/false       | print diagnostic data, global sums                                                     | .false.                             |
| pointer_file     | pointer filename | contains restart filename                                                              |                                     |
| restart          | true/false       | initialize using restart file                                                          | .true.                              |
| restart_dir      | path/            | path to restart directory                                                              |                                     |
| restore_sst      | true/false       | restore SST to data                                                                    |                                     |
| sss_data_type    | default          | constant values defined in the code                                                    |                                     |
|                  | clim             | climatological data                                                                    |                                     |
|                  | ncar             | POP ocean forcing data                                                                 |                                     |

| <b>Name</b>   | <b>Type/Options</b> | <b>Description</b>                     | <b>Default Values / Directory Location</b> |
|---------------|---------------------|----------------------------------------|--------------------------------------------|
| sst_data_type | default             | constant values defined in the code    |                                            |
|               | clim                | climatological data                    |                                            |
|               | ncar                | POP ocean forcing data                 |                                            |
| trestore      | integer             | SST restoring time scale (days)        |                                            |
| ycycle        | integer             | no. of years in forcing data cycle     |                                            |
| year_init     | yyyy                | the initial year, if not using restart |                                            |

## APPENDIX C

### Sample Scripts and Files for PIPS 3.0 Execution

#### C1 Macros.AIX File

This macros file is used for compiling on the IBM “Babbage” machine at NAVOCEANO.

```
=====
=====
# CVS $Id: Macros.AIX,v 1.2 2004/02/09 17:55:37 lipscomb Exp $
# CVS $Source: /home/climate/CVS-COSIM/cice/bld/Macros.AIX,v $
# CVS $Name:  $
=====
=====
# Makefile macros for "romulus" at NAVO
#
# Notes: (see xlf user's guide for the details)
# -lmass      => IBM-tuned intrinsic lib
# -qsmp=noauto => enable SMP directives, but don't add any
# -qstrict     => don't turn divides into multiplies, etc
# -qhot        => higher-order-transformations (eg. loop padding)
# -qalias=noaryoverlp => assume no array overlap wrt equivalence, etc
# -qmaxmem=-1    => memory available to compiler during optimization
# -qipa=level=2   => InterProcedure Analysis (eg. inlining) => slow
compiles
# -p -pg        => enable profiling (use in both FFLAGS and LDFLAGS)
# -qreport      => for smp/omp only
# -bmaxdata:0x80000000 => use maximum allowed data segment size
# -g            => always leave it on because overhead is minimal (?)
# -qflttrap=...  => enable default sigtrap (core dump)
# -C            => runtime array bounds checking (runs slow)
# -qinitauto=... => initializes automatic variables
=====
=====

INCLDIR    := -I. -I/usr/local/include -I/usr/include -
I/usr/lpp/ppe.poe/include \
           -I/site/netcdf/include \
           -I/site/netcdf/include/mod32
SLIBS      := -L /usr/local/lib \
           -L /usr/local/lib32/r4i4 -L /site/netcdf/lib
ULIBS      :=
CPP         := /lib/cpp
CPPFLAGS   := -P
CPPDEFS   := -DAIX
#CFLAGS     := -c -O2 -DDISABLE_TIMERS
CFLAGS     := -c -O2
FIXEDFLAGS := -qsuffix=f=f    -qfixed=132
```

```

FREEFLAGS  := -qsuffix=f=f90 -qfree=f90
FC        := mpxlf90_r
FFLAGS    := -O3 -qstrict -qrealsize=8 -qarch=pwr3 -qtune=auto
MOD_SUFFIX := mod
LD        := $(FC)
LDFLAGS   := -bmaxdata:0x80000000

CPPDEFS  := $(CPPDEFS) -DNPROC_X=$(NX) -DNPROC_Y=$(NY)
#CPPDEFS := $(CPPDEFS) -Dfcfd_coupled -Dcoupled

ifeq ($(BINTYPE), MPI)
  CPPDEFS := $(CPPDEFS) -D_MPI
  SLIBS   := $(SLIBS) -lmpi -lnetcdf
endif

```

## C2 Makefile

```

#-----
-----
# CVS $Id: Makefile.std,v 1.1 2004/02/09 18:13:52 lipscomb Exp $
# CVS $Source: /home/climate/CVS-COSIM/cice/bld/Makefile.std,v $
# CVS $Name:  $
#-----
#
# Common Makefile: a framework for building all CCSM components and more
#
# Command-line variables
#  MACFILE=<file> ~ the macros definition file to use/include
#  EXEC=<name>      ~ name given to executable, default is a.out
#  VPATH=<vpath>     ~ VPATH                 , default is . (cwd only)
#  SRCS=<files>      ~ list of src files, default is all .c .F .F90 files
#  in VPATH
#  VPFILE=<file>     ~ file with list of dirs, used to create VPATH
#  SRCFILE=<file>     ~ file with list of src files, used to create SRCS
#  DEPGEN=<exec>     ~ dependency generator utility, default is makdep
#
#  <macro defns>    ~ any macro definitions found in this file or the
# included
#                  MACFILE will be over-ridden by cmd-line macro
# definitions
#  MODEL=<model>    ~ a standard macro definition, often found in the
# included
#                  MACFILE, used to trigger special compilation flags
#
# Usage examples:
#  % gmake MACFILE=Macros.AIX VPFILE=Filepath MODEL=ccm3 EXEC=atm
#  % gmake MACFILE=Macros.AIX VPFILE=Filepath SRCFILE=Srclist EXEC=pop
#  % gmake MACFILE=Macros.C90 VPATH="dir1 dir2" SRCS="file1.c
# file2.F90"
#  % gmake MACFILE=Macros.SUN SRCS="test.F"

```

```

#-----
-----
#-----#
# parse cmd-line and establish values for EXEC, VPATH, SRCS, OBJS, etc
#-----#
-----

EXEC      := a.out
MACFILE   := NONE
MODEL     := NONE
VPFILE    := NONE
VPATH     := .
SRCFILE   := NONE
SRCS      := NONE
DEPGEN    := ./makdep # an externally provided dependency generator

ifeq ($(VPATH),.)
    # this variable was specified on cmd line or in an env var
else
    ifneq ($(VPFILE),NONE)
        # explicit list of VPATH dirs is provided
        VPATH := $(wildcard . $(shell cat $(VPFILE) ) )
    endif
endif

ifeq ($(SRCS),NONE)
    # this variable was specified on cmd line or in an env var
else
    ifneq ($(SRCFILE),NONE)
        # explicit list of src files is provided
        SRCS := $(shell cat $(SRCFILE) )
    else
        # list of src files is all .F90 .F .c files in VPATH
        SRCS := $(wildcard $(addsuffix /*.F90 , $(VPATH)) \
                           $(addsuffix /*.[cF] , $(VPATH)) )
    endif
endif

OBJS    := $(addsuffix .o, $(sort $(basename $(notdir $(SRCS)))))
DEPS    := $(addsuffix .d, $(sort $(basename $(notdir $(SRCS)))))
INCS    := $(patsubst %,-I%, $(VPATH))
RM      := rm

.SUFFIXES:
.SUFFIXES: .F90 .F .c .o

all: $(EXEC)
```

```

#-----
-----
# include the file that provides macro definitions required by build
rules
# note: the MACFILE may not be needed for certain goals
#-----
-----

ifneq ($(MAKECMDGOALS), db_files)
    -include $(MACFILE)
endif

#-----
-----
# echo file names, paths, compile flags, etc. used during build
#-----
-----

db_files:
    @echo " "
    @echo "* EXEC      := $(EXEC)"
    @echo "* MACFILE   := $(MACFILE)"
    @echo "* VFILE     := $(VFILE)"
    @echo "* VPATH     := $(VPATH)"
    @echo "* SRCFILE   := $(SRCFILE)"
    @echo "* INCS      := $(INCS)"
    @echo "* SRCS      := $(SRCS)"
    @echo "* OBJS      := $(OBJS)"
    @echo "* DEPS      := $(DEPS)"

db_flags:
    @echo " "
    @echo "* cpp       := $(CPP) $(CPPFLAGS) $(CPPDEFS) $(INCS)
$(INCLDIR)"
    @echo "* cc        := cc -c $(CFLAGS) $(INCS) $(INCLDIR)"
    @echo "* .F.o     := $(FC) -c $(FFLAGS) $(FIXEDFLAGS) $(INCS)
$(INCLDIR)"
    @echo "* .F90.o   := $(FC) -c $(FFLAGS) $(FREEFLAGS) $(INCS)
$(INCLDIR)"

#-----
-----
# build rules: MACFILE, cmd-line, or env vars must provide the needed
macros
#-----
-----

$(EXEC): $(OBJS)
    $(LD) -o $(EXEC) $(LDFLAGS) $(OBJS) $(ULIBS) $(SLIBS)

.c.o:
    cc $(CFLAGS) $(CPPDEFS) $(INCS) $(INCLDIR) $<

```

```

.F.o:
$(CPP) $(CPPFLAGS) $(CPPDEFS) $(INCS) $(INCLDIR) $< > $*.f
$(FC) -c $(FFLAGS) $(FIXEDFLAGS) $(INCS) $(INCLDIR) $*.f

.F90.o:
$(CPP) $(CPPFLAGS) $(CPPDEFS) $(INCS) $(INCLDIR) $< > $*.f90
$(FC) -c $(FFLAGS) $(FREEFLAGS) $(INCS) $(INCLDIR) $*.f90

mostlyclean:
$(RM) -f *.f *.f90

clean:
$(RM) -f *.f *.f90 *.d *.mod *.o
# $(RM) -f *.f *.f90 *.d *.$(MOD_SUFFIX) $(OBJS)

realclean:
$(RM) -f *.f *.f90 *.d *.$(MOD_SUFFIX) $(OBJS) $(EXEC)

#-----
-----#
# Build & include dependency files
#-----
-----#
# ASSUMPTIONS:
# o an externally provided dependency generator, $(DEPGEN), is
available,
#   its cmd line syntax is compatible with the build rules below. Eg,
for
#   each .o file, there is a corresponding .d (dependency) file, and
both
#   will be dependent on the same src file, eg.    foo.o foo.d : foo.F90
#   Also, the dependency generator's capabilities, limitations, and
assumptions
#   are understood & accepted.
#-----
-----#

%.d : %.c
@ echo "Building dependency for $@"
@ $(DEPGEN) -f $(INCS) $< | head -3 > $@
%.d : %.F
@ echo "Building dependency for $@"
@ $(DEPGEN) -f $(INCS) $< > $@
%.d : %.F90
@ echo "Building dependency for $@"
@ $(DEPGEN) -f $(INCS) $< > $@
%.d : %.H
@ echo "Building dependency for $@"
@ $(DEPGEN) -f $(INCS) $< > $@

# the if-tests prevent DEPS files from being created when they're not
needed

```

```

ifneq ($MAKECMDGOALS), db_files)
ifneq ($MAKECMDGOALS), db_flags)
ifneq ($MAKECMDGOALS), mostlyclean)
ifneq ($MAKECMDGOALS), clean)
ifneq ($MAKECMDGOALS), realclean)
    -include $(DEPS)
endif
endif
endif
endif
endif
endif

```

### C3 Ice\_in Input Parameter File

```

&ice_nml
    year_init      = 0001
    , istep0        = 0
    , dt            = 2880.0
    , ndte          = 120
    , npt           = 70
    , diagfreq      = 30
    , histfreq      = 'h'
    , dumpfreq      = 'd'
    , dumpfreq_n    = 1
    , hist_avg       = .false.
    , restart        = .true.
    , print_points  = .true.
    , print_global   = .true.
    , kitd           = 1
    , kcatbound     = 1
    , kdyn           = 1
    , kstrength      = 1
    , krdg_partic   = 1
    , krdg_redist   = 0
    , evp_damping    = .false.
    , advection      = 'remap'
    , grid_type      = 'pips'
    , grid_file      = 'grid_cice_1280x720.r'
    , kmt_file       = 'kmt'
    , dump_file      = 'iced'
    , restart_dir    = '/scr/posey/pips3/'
    , pointer_file   = '/scr/posey/pips3/ice.restart_file'
    , history_dir    = '/scr/posey/pips3/'
    , history_file   = 'iceh'
    , diag_file      = 'ice_diag.d'
    , oceanmixed_ice = .true.
    , albicev        = 0.65
    , albicei        = 0.65
    , albsnowv       = 0.85
    , albsnowi       = 0.85
    , ycycle          = 1

```

```

, fyear_init    = 2008
, atm_data_dir = '/scr/posey/pips3/data_in/'
, ocn_data_dir = '/scr/posey/pips3/data_in/'
/

&icefields_nml
  f_hi          = .true.
  f_hs          = .true.
  f_Tsfc        = .false.
  f_aice        = .true.
  f_uvel        = .true.
  f_vvel        = .true.
  f_fswdn       = .false.
  f_flwdn       = .false.
  f_snow         = .false.
  f_snow_ai     = .false.
  f_rain         = .false.
  f_rain_ai     = .false.
  f_sst          = .true.
  f_sss          = .true.
  f_uocn         = .true.
  f_vocn         = .true.
  f_frzmlt      = .false.
  f_fswabs       = .false.
  f_fswabs_ai   = .false.
  f_albsni      = .false.
  f_alvdr        = .false.
  f_alidr        = .false.
  f_flat         = .false.
  f_flat_ai     = .false.
  f_fsens        = .false.
  f_fsens_ai    = .false.
  f_flwup        = .false.
  f_flwup_ai    = .false.
  f_evap         = .false.
  f_evap_ai     = .false.
  f_Tref         = .false.
  f_Qref         = .false.
  f_congel       = .false.
  f_frazil       = .false.
  f_snoice       = .false.
  f_meltt        = .false.
  f_meltb        = .false.
  f_meltl        = .false.
  f_fresh        = .false.
  f_fresh_ai    = .false.
  f_fsalt         = .false.
  f_fsalt_ai    = .false.
  f_fhnet        = .false.
  f_fhnet_ai    = .true.
  f_fswthru      = .false.

```

```
, f_fswthru_ai= .false.  
, f_strairx = .false.  
, f_strairy = .false.  
, f strtltx = .false.  
, f strtlty = .false.  
, f strccrx = .false.  
, f strccry = .false.  
, f strocnx = .true.  
, f strocny = .true.  
, f strintx = .true.  
, f strinty = .true.  
, f strength = .true.  
, f opening = .false.  
, f divu = .false.  
, f shear = .false.  
, f sigl = .false.  
, f sig2 = .false.  
, f dvidtt = .false.  
, f dvidtd = .false.  
, f daidtt = .false.  
, f daidtd = .false.  
, f mlt_onset = .false.  
, f frz_onset = .false.  
, f dardg1dt = .false.  
, f dardg2dt = .false.  
, f dvirdgdt = .false.  
, f hisnap = .false.  
, f aisnanp = .false.  
, f aice1 = .true.  
, f aice2 = .true.  
, f aice3 = .true.  
, f aice4 = .true.  
, f aice5 = .true.  
, f aice6 = .false.  
, f aice7 = .false.  
, f aice8 = .false.  
, f aice9 = .false.  
, f aice10 = .false.  
, f vice1 = .true.  
, f vice2 = .true.  
, f vice3 = .true.  
, f vice4 = .true.  
, f vice5 = .true.  
, f vice6 = .false.  
, f vice7 = .false.  
, f vice8 = .false.  
, f vice9 = .false.  
, f vice10 = .false.  
/
```

## C4 Clean\_ice script

```
#!/bin/csh -f

#setenv SYSTEM_USERDIR /pvfs/lipscomb # ORNL defines this automatically
setenv SRCDIR $HOME/cice.v3.1/cice

setenv CBLD    $SRCDIR/bld
setenv EXEDIR  $SYSTEM_USERDIR/rundir
setenv OBJDIR  $EXEDIR/compile

cd $OBJDIR
pwd

# Clean compile directory
gmake -f $CBLD/Makefile clean || exit 2

cd $EXEDIR
```

## APPENDIX D

### Sample Scripts for PIPS 3.0/NCOM Coupled Execution

After the global NCOM (GNCOM) runs each day, it calls a regional post-processing script (*launch\_pips.com*) which runs *ncom2pips.com* for the current day. *Ncom2pips.com* uses the MODAS regridding routines to regrid the GNCOM surface temperature and ocean velocities onto the PIPS grid in a netCDF format. A program (*average\_file\_realtime.f*) then takes the 3 hourly outputs from GNCOM and makes a daily mean for input into the ice model. These GNCOM fields (SST and ocean currents) are read directly into PIPS and used to make a 96 hour (4-day) forecast.

After PIPS runs each day, it calls a post\_processing script (*launch\_ncom.com*) which runs *pips2ncom.com*. This script launches a parallel process, *regrid\_pips\_poe.com* of serial jobs *regrid\_pips.com* to regrid the PIPS output every 3 hours onto the GNCOM grid. The ice concentration, heat flux and ice-ocean stresses are regridded in this manner. The SST files are only regridded at the 00 hour. The *fill4.com* routine masks noise at the land-sea boundaries and then *landmask.com* scripts puts the GCNOM landmask onto the newly gridded fields.

The ice-ocean stresses, heat fluxes and ice concentration are brought into *ncom\_4.0/bin/sigz.global/ncom\_nc2atmice.exe* which makes an “atmice.A” file. The PIPS fields are used through hour 96 and then persisted for an additional 24 hours. The “atmice.A” file is saved for the following day.

The following day, *ncom\_4.0/bin/sigz.global/ncom\_atmuvhtms\_icemask3.01.exe* is run after the NOGAPS forcing OSFLX\_1.A is made. A check is then made to the NOGAPS forcing field - when PIPS forecasts indicate that ice is present (concentration > 1%):

- 1) the PIPS ice-ocean stresses replaces the NOGAPS wind stresses
- 2) the PIPS heat flux replaces the GNCOM bulk-formulae heat fluxes

The SST outputs are blended into the MODAS 2D synthetics, by using PIPS ice concentration to determine where there is ice coverage. A new ice mask (blendmask) is made and applied to the PIPS SST netCDF output. An inverse ice mask (blendmaski) is also made and applied to the MODAS sstf output. These two fields are added together using *grdmath.com* in the GNCOM synthetic pre-processing to be used the following day. Persisted fields are used to make up the last 24 hours.

The cycle is repeated daily.

**D1 launch\_pips.com**

```

#!/bin/csh
#
# script to make PIPS3 inputs
# Programmer: Lucy F. Smedstad, NRL Code 7323
#      12 February 2008
#
set echo
set verbose
goto START

START:

#
if (!($?NSCRIPTS)) setenv NSCRIPTS /u/home/ooc/models/ncoml/scripts
set unflaggedargs = (idtglanalysis idtg1start idtg1end)
source $NSCRIPTS/arg_eval.com
source NCOM.env
/bin/cp $HOMD/NCOM.env .
/bin/cp $HOMD/NCOM.env /scr/ooc/data/ncoml/glb8_3b/work/pips3
source NCOM.env
cd $PIPSHOMD

#
set c =
/scr/ooc/data/ncoml/pips/pipsfrcst/ncom2pips_${idtglanalysis}.com
awk -f today.awk idtglanalysis=$idtglanalysis ncom2pips.com >! $c

bsub < $c

DONE:
exit
ERROR:
echo $idtglanalysis 'not run for NCOM'
exit 1

```

## D2 ncom2pips.com

```
#!/bin/csh
#BSUB -a ncom2pips
#BSUB -o /scr/ooc/data/ncom1/glb8_3b/work/pips3/ncom2pips.log
#BSUB -e /scr/ooc/data/ncom1/glb8_3b/work/pips3/ncom2pips.log
#BSUB -P NAVOSOOC      # Charging project or group name.
#BSUB -W 01:35          # Wall clock time of 35 minutes.
#BSUB -q internal      # Queue name.
#BSUB -n 1              # Number of processors or total tasks.
#BSUB -R "span[ptile=8]"

set echo
set verbose
set idtg2s = ( 00 03 06 09 12 15 18 21 )
set idtg2sf = ( 000 003 006 009 012 015 018 021 024 027 030 033 036 039
042 045 048 051 054 057 060 063 066 069 072 075 078 081 084 087 090 093
096 )
#if ($#argv > 0) then
#  set idtg1start = $1
#else
#  set idtg1start = `date +%Y%m%d`
#endif
# set idtglas = IDTG1ANALYSIS
source NCOM.env
set i = `$BIN_MODAS/addndays yyyyymmdd $idtglas -1` 

setenv XLF RTEOPTS namelist=old

while ($i < $idtg1end)

  set i = `$BIN_MODAS/addndays yyyyymmdd $i 1` 
  if ($i < $idtg1end) then
    foreach idtg2 ($idtg2sf)
      echo $MODAS2HOME
      setenv | grep MODAS2
      ${NSCRIPTS}/regrid_ncomtostandard.com
${NCDIR}/sst_${runname}_${i}00_t${idtg2}h.nc
${PIPSDIR}/sst_ncom_${i}00_t${idtg2}h.nc -NCDIRMASTER ${NCDIRMASTER} -
fileout ${PIPSNCMASTER}/model_lon.nc -fileout ${PIPSNCMASTER}/model_lat.nc
-AREA none -DEPTH none
#      ${NSCRIPTS}/regrid_ncomtostandard.com
${NCDIR}/sss_${runname}_${i}${idtg2}.nc ${PIPSDIR}/sss_ncom_${i}${idtg2}.nc
-NCDIRMASTER ${NCDIRMASTER} -fileout ${PIPSNCMASTER}/model_lon.nc -fileout
${PIPSNCMASTER}/model_lat.nc -AREA none -DEPTH none
      ${NSCRIPTS}/regriduv_ncomtostandard.com
${NCDIR}/ssu_${runname}_${i}00_t${idtg2}h.nc
${NCDIR}/ssv_${runname}_${i}00_t${idtg2}h.nc
```

```

$PIPSDIR/ssu_ncom_${i}${idtg2}us.nc $PIPSDIR/ssv_ncom_${i}${idtg2}us.nc
-NCDIRMASTER $NCDIRMASTER -filexout $PIPSNCMASTER/model_lon.nc -fileayout
$PIPSNCMASTER/model_lat.nc -AREA none -DEPTHs none -gridtypein c -
gridtypeout a
$PIPSHOMD/do_smooth.com $PIPSDIR/ssu_ncom_${i}${idtg2}us.nc
$PIPSDIR/ssu_ncom_${i}00_t${idtg2}h.nc 9
$PIPSHOMD/do_smooth.com $PIPSDIR/ssv_ncom_${i}${idtg2}us.nc
$PIPSDIR/ssv_ncom_${i}00_t${idtg2}h.nc 9
      end
    endif
#
end

chdir $PIPSHOMD
awk -f tmp.awk tmp=$idtglasys \
  pips3_tmp.lsf >! pips3_run.lsf
#
bsub < pips3_run.lsf

```

### D3 launch\_ncom.com

```

#!/bin/csh
#
#  script to get NCOM inputs
#  modification of lsf script
#  by Chris DeHaan modification of script by:
#  Programmers: Lucy F. Smedstad and Charlie N. Barron, NRL Code 7323
#      21 May 2004
#
set echo
set verbose
goto START

START:

#
if (!($?NSCRIPTS)) setenv NSCRIPTS /u/home/ooc/models/ncom1/scripts
set unflaggedargs = (idtglasys idtg1start idtglend)
source $NSCRIPTS/arg_eval.com
set HOMD = /u/home/ooc/models/ncom1/glb8_3b
echo $idtglasys
/bin/cp $HOMD/NCOM.env .
source NCOM.env

#
cd $PIPSHOMD
/bin/rm $PIPSDIR_W/pips2ncom.log

```

```

set c = $PIPSDIR_W/pips2ncom_${idtglas}.com
awk -f today.awk idtglas=$idtglas pips2ncom.com >! $c

bsub < $c

DONE:
exit
ERROR:
exit 1

```

## D4 pips2ncom.com

```

#!/bin/csh
#BSUB -a pips2ncom
#BSUB -o /scr/ooc/data/ncom1/pips/pipsfrcst/pips2ncom.log
#BSUB -e /scr/ooc/data/ncom1/pips/pipsfrcst/pips2ncom.log
#BSUB -P NAVOSOOC      # Charging project or group name.
#BSUB -W 01:55          # Wall clock time of 55 minutes.
#BSUB -q internal       # Queue name.
#BSUB -n 1              # Number of processors or total tasks.
#BSUB -R "span[ptile=8]"

# 1a. make sure BIN and NSCRIPTS are defined correctly

set echo
set verbose
# set idtglas = IDTG1ANALYSIS
source NCOM.env
/bin/cp $NCOMHOMD/NCOM.env $PIPSDIR_W
/bin/cp $NCOMHOMD/NCOM.env .

#if ($#argv > 0) then
#  set idtglas = $1
#else
#  set idtglas = `date +%Y%m%d`
#endif
# set idtglas = IDTG1ANALYSIS
set mm = `echo $idtglas | awk '{a=$1;b=substr(a,5,2);print b}'` 
set dd = `echo $idtglas | awk '{a=$1;b=substr(a,7,2);print b}'` 
set pipsend = `$BIN_NCOM/addndays yyyyymmdd $idtg1end -1` 
set pipsstart = `$BIN_NCOM/addndays yyyyymmdd $idtg1start 2` 
set i = `$BIN_NCOM/addndays yyyyymmdd $idtg1start -1` 
set nrec = 0
chdir $PIPSDIR_W
touch newpips_$.lis
/bin/rm RUNNING_*
foreach p (aice ustr vstr hflx)
  /bin/rm ${p}???.nc

```

```

end
while ($i < $pipsstart)
    set i = `\$BIN_NCOM/addndays yyyyymmdd $i 1`
    foreach tt ( $outtimes)
        @ nrec = 1 + $nrec
        set nn = `echo $nrec | awk '{printf "%02.2d\n",$1}'`
        if (-e strocnx_ncom_${i}${tt}fm.nc) ln -fs
strocnx_ncom_${i}${tt}fm.nc ustr${nn}.nc
        if (-e strocny_ncom_${i}${tt}fm.nc) ln -fs
strocny_ncom_${i}${tt}fm.nc vstr${nn}.nc
        if (-e fhnet_ai_ncom_${i}${tt}fm.nc) ln -fs
fhnet_ai_ncom_${i}${tt}fm.nc hflx${nn}.nc
        if (-e aice_ncom_${i}${tt}fm.nc) ln -fs aice_ncom_${i}${tt}fm.nc
aice${nn}.nc
    end
end
set i = `\$BIN_NCOM/addndays yyyyymmdd $pipsstart -1`
while ($i < $pipsend)
    set i = `\$BIN_NCOM/addndays yyyyymmdd $i 1`
    set yyyy = `echo $i | awk '{a=$1;b=substr(a,1,4);print b}'`
    set mm = `echo $i | awk '{a=$1;b=substr(a,5,2);print b}'`
    set dd = `echo $i | awk '{a=$1;b=substr(a,7,2);print b}'`
    set PIPSYeardiff = 0
@ PIPSYeardiff = $PIPSyeardiff + $yyyy - $PIPSstartyear
    set PIPSYEAR = 00$PIPSyeardiff
    set n = 0
    foreach pfile ($PIPS/iceh.${PIPSYEAR}-${mm}-${dd}*.*.nc)
        @ tthour = $n * $PIPSHINC
        set tt = `echo $tthour | awk '{printf "%02.2d\n",$1}'`
        @ n = $n + 1
        ln -sf $pfile iceh_${i}${tt}.nc
        echo ${i}${tt} >> newpips_$.lis
    end
end
set c = regrid_pips_${idtganalysis}.com

set jn = `echo $c | sed -e 's/.com//'` 
if (-e $c) /bin/rm $c
echo "#!/bin/csh" >! $c
echo "#BSUB -J $jn" >> $c
echo "#BSUB -o $PIPSDIR_W/${jn}.log" >> $c
echo "#BSUB -e $PIPSDIR_W/${jn}.log" >> $c
echo "#BSUB -n $PIPSprocs" >> $c
echo "#BSUB -a poe" >> $c
echo "#BSUB -W 1:55" >> $c
echo "#BSUB -P NAVOSOOC" >> $c
echo "#BSUB -q internal" >> $c
echo "#BSUB -R 'span[ptile=$tasks_allowed_per_node]'" >> $c
echo "#" >> $c
echo "setenv MP_PROCS $PIPSprocs" >> $c
echo "chdir $PIPSDIR_W" >> $c

```

```

    echo "mpirun.lsf $PIPSHOMD/regrid_pips_poe.com
$PIPSDIR_W/newpips_$$$.lis 1 -idtganalysis $idtganalysis -pulse 0" >>
$c
    echo "wait" >> $c
    bsub < $c
DONE:
exit
ERROR:
exit 1

```

## D5 regrid\_pips\_poe.com

```

#!/bin/csh -f
#
# script to run regrid_pips jobs under in parallel
# Lucy F. Smedstad
# NRL Code 7323
# 14 September 2007
#
cd /u/home/$user/models/ncoml/pips3
source NCOM.env
if ($#argv > 0) then
    set daylist = $PIPSDIR_W/$1
    if (!(-e $daylist)) then
        set daylist = $1
    endif
    if (!(-e $daylist)) then
        set daylist = $PIPSDIR_W/regrid_pips_days.lis
    endif
endif
if (!(-e $daylist)) then
    echo file $daylist not found
    goto ERROR
endif
set ntidgs = `cat $daylist | wc -l`
# note that $MP_CHILD is a number from zero to the total processors -1
set mynode = $MP_CHILD
@ idate = $mynode + 1
#
set i = $idate
#while ($i > $tasks_3d_used_per_node)
#  if ($i <= $tasks_allowed_per_node) then
#    goto DONE
#  endif
#  @ i = $i - $tasks_allowed_per_node
#  @ idleprocs_per_node = $tasks_allowed_per_node -
#  $tasks_3d_used_per_node
#  @ idate = $idate - $idleprocs_per_node

```

```

#endif
if ($idate > $nidtgs) then
    goto DONE
else
    set i = `cat $daylist | head -$idate | tail -1`
endif

#
set c = ${PIPSDIR_W}/regrid_pips_${i}.com
set l = ${PIPSDIR_W}/regrid_pips_${i}.log
if (-e $l) /bin/rm $l
echo "#" >! $c
echo "set echo" >> $c
echo "set verbose" >> $c
echo "echo MP_CHILD $MP_CHILD" >> $c
echo "chdir $PIPSDIR_W" >> $c
echo "set idtg1 = $i" >> $c
cat regrid_pips.com >> $c
chmod 755 $c
csh -f $c >&! $l
if ($status != 0) then
    echo ERROR in $c
    goto ERROR
endif

DONE:
exit
ERROR:
exit 1

```

## D6 regrid\_pips.com

```

set echo
set verbose
set tt = `echo $idtg1 | awk '{a=$1;b=substr(a,9,2);print b}'` 
set i8 = `echo $idtg1 | awk '{a=$1;b=substr(a,1,8);print b}'` 
source NCOM.env
chdir $PIPSDIR_W
touch RUNNING_${idtg1}
    $BIN_NCOM/extractfrompips iceh_${idtg1}.nc -idtglin $idtg1
    $BIN_NCOM/extractfrompips iceh_${idtg1}.nc -idtglin $idtg1 -f
fnnet_ai
    if ($tt == '00') then
        $BIN_NCOM/extractfrompips iceh_${idtg1}.nc -idtglin $idtg1 -f sst
        set infile = $PIPSDIR_W/sst_iceh_${idtg1}.nc
        set outfile = pipssst_${idtg1}.nc

```

```

        set maskfile = $PIPSHOMD/pips_mask.nc
        set landmaskfile = $PIPSHOMD/pips_landmask.nc
        $PIPSHOMD/grdmath.com $infile $maskfile out_$$_.nc mask 0 0
        $PIPSHOMD/fill4.com out_$$_.nc outf_$$_.nc
        $PIPSHOMD/grdmath.com outf_$$_.nc $landmaskfile out2_$$_.nc mask 0
0
        $PIPSHOMD/grdmath.com out2_$$_.nc none out_$$_.nc maskbull 2.0 0
        $PIPSHOMD/fill4.com out_$$_.nc out2f_$$_.nc
        $PIPSHOMD/grdmath.com out2f_$$_.nc $landmaskfile $outfile mask 0 0
#      /bin/rm out_$$_.nc out2_$$_.nc
        ${LSCRIPTS}/regrid_ncomtostandard.com pipssst_${idtg1}.nc
$SYNWORK/sst_pipsmodas_${idtg1}.nc -NCDIRMASTER $PIPSNCMASTER -AREA
$SYNCOM/region.area -DEPTHHS none -gridtypein $gridpips -gridtypeout
$gridpips
        endif

foreach field ( aice )
        set infile = ${field}_iceh_${idtg1}.nc
        set outfile = fixed_${infile}
        set maskfile = $PIPSHOMD/pips_mask.nc
        set landmaskfile = $PIPSHOMD/pips_landmask.nc
        $PIPSHOMD/grdmath.com $infile $maskfile out_$$_.nc mask 0 0
        $PIPSHOMD/fill4.com out_$$_.nc outf_$$_.nc
        $PIPSHOMD/grdmath.com outf_$$_.nc $landmaskfile out2_$$_.nc mask 0
0
        $PIPSHOMD/grdmath.com out2_$$_.nc none out_$$_.nc maskbull 2.0 0
        $PIPSHOMD/fill4.com out_$$_.nc out2f_$$_.nc
        $PIPSHOMD/grdmath.com out2f_$$_.nc $landmaskfile $outfile mask 0 0
#      /bin/rm out_$$_.nc out2_$$_.nc
        end
        ${LSCRIPTS}/regrid_ncomtostandard.com fixed_aice_iceh_${idtg1}.nc
aice_pipsmodas_${idtg1}.nc -NCDIRMASTER $PIPSNCMASTER -AREA
$SYNCOM/region.area -DEPTHHS none -gridtypein $gridpips -gridtypeout
$gridpips
NEWSST:
        # put special values in areas with very little or no ice
        $PIPSHOMD/grdmath.com aice_pipsmodas_${idtg1}.nc none
aicesp_$$_.nc min 0.0001 0
        # put ones in areas with some ice
        $PIPSHOMD/grdmath.com aicesp_$$_.nc none aicelsp_$$_.nc linear 1 0
        # expand out to define with ones areas very near or under ice
        $PIPSHOMD/fillcreep.com aicelsp_$$_.nc aicenear1sp_$$_.nc 6
        # expand out to define with ones areas somewhat near or under ice
        $PIPSHOMD/fillcreep.com aicenear1sp_$$_.nc aicenear2sp_$$_.nc 16
        # change open water special values to zeros
        $PIPSHOMD/grdmath.com aicenear2sp_$$_.nc none aicenear2_$$_.nc
fspval 0 0
        # put special values in areas somewhat near ice
        $PIPSHOMD/grdmath.com aicenear2_$$_.nc none aicefar0sp_$$_.nc max
0.0001 0
        # make a blend mask with ones under or very near ice, zeros far
from ice, spval in between

```

```

$PIPSHOMD/grdmath.com aicenear1sp_$$ .nc aicefar0sp_$$ .nc
preblendmask_$$ .nc fill 0 0
    # blend between very near ice 1 and far from ice 0
$PIPSHOMD/fillsq.com preblendmask_$$ .nc blendmask_$$ .nc
    # invert mask to have 1 far from ice, 0 near
$PIPSHOMD/grdmath.com blendmask_$$ .nc none blendmaski_${idtg1}.nc
linear 1 -1
    # fill to have cice sst values in regions somewhat near ice
$PIPSHOMD/fillcreep.com $SYNWORK/sst_pipsmodas_${idtg1}.nc
sst_pipsmodasf_$$ .nc 27
    # replace cice spval with large number to help spot errors in
masks
$PIPSHOMD/grdmath.com sst_pipsmodasf_$$ .nc none
sst_pipstest_$$ .nc fspval 1000000 0
    # multiply cice sst times cice blend mask
$PIPSHOMD/grdmath.com sst_pipstest_$$ .nc blendmask_$$ .nc
$SYNWORK/sst_pipsblend_${idtg1}.nc product 1 0

${LSCRIPTS}/regriduv_ncomtostandard.com strocnx_iceh_${idtg1}.nc
strocnx_iceh_${idtg1}.nc strocnx_ncom_${idtg1}.nc
strocnx_ncom_${idtg1}.nc -NCDIRMASTER $PIPSNCMASTER -filexout
$NCDIRMASTER/model_lon.nc -fileayout $NCDIRMASTER/model_lat.nc -AREA none
-DEPTHs none -fileangout $NCDIRMASTER/model_ang.nc -gridtypein $gridpips
-gridtypeout $gridpips
${LSCRIPTS}/regrid_ncomtostandard.com fixed_aice_iceh_${idtg1}.nc
aice_ncom_${idtg1}.nc -NCDIRMASTER $PIPSNCMASTER -filexout
$NCDIRMASTER/model_lon.nc -fileayout $NCDIRMASTER/model_lat.nc -AREA none
-DEPTHs none -gridtypein $gridpips -gridtypeout $gridpips -fileangout
$NCDIRMASTER/model_ang.nc
${LSCRIPTS}/regrid_ncomtostandard.com fhnet_ai_iceh_${idtg1}.nc
fhnet_ai_ncom_${idtg1}.nc -NCDIRMASTER $PIPSNCMASTER -filexout
$NCDIRMASTER/model_lon.nc -fileayout $NCDIRMASTER/model_lat.nc -AREA none
-DEPTHs none -gridtypein $gridpips -gridtypeout $gridpips -fileangout
$NCDIRMASTER/model_ang.nc

foreach d ( x y )
    $PIPSHOMD/landmask.com strocn${d}_ncom_${idtg1}.nc
$NCDIRMASTER/model_h.nc
    $PIPSHOMD/fill.com strocn${d}_ncom_${idtg1}m.nc
strocn${d}_ncom_${idtg1}f.nc
    $PIPSHOMD/landmask.com strocn${d}_ncom_${idtg1}f.nc
$NCDIRMASTER/model_h.nc
end

$PIPSHOMD/landmask.com aice_ncom_${idtg1}.nc $NCDIRMASTER/model_h.nc
$PIPSHOMD/fill.com aice_ncom_${idtg1}m.nc aice_ncom_${idtg1}f.nc
$PIPSHOMD/landmask.com aice_ncom_${idtg1}f.nc
$NCDIRMASTER/model_h.nc
    $PIPSHOMD/landmask.com fhnet_ai_ncom_${idtg1}.nc
$NCDIRMASTER/model_h.nc
    $PIPSHOMD/fill.com fhnet_ai_ncom_${idtg1}m.nc
fhnet_ai_ncom_${idtg1}f.nc
    $PIPSHOMD/landmask.com fhnet_ai_ncom_${idtg1}f.nc
$NCDIRMASTER/model_h.nc

```

```

/bin/rm RUNNING_${idtg1}
if ($MP_CHILD == 0) then
    @ ntries = 0
    set i = 1
    while ( $i > 1 )
        @ ntries = $ntries + 1
        if ($ntries > 100) then
            echo ERROR: regrid unsucessful
            goto ERROR
        endif
        sleep 60
        ls RUNNING_* > regrid_done
        set i = `cat regrid_done | wc -l`
        /bin/rm regrid_done
    end
    set echo
    set verbose
    set idtg1analysis = `$BIN_NCOM/addndays yyyymmdd $i8 1`
    echo $idtg1analysis
    set c = $PIPSDIR_W/remeke_ncom_inputs_${idtg1analysis}.com
    awk -f $PIPSHOMD/today.awk idtg1analysis=$idtg1analysis
    $PIPSHOMD/remeke_ncom_inputs.com >! $c
    csh $c
endif
DONE:
exit 0

```

## D7 fill4.com

```

#!/bin/csh -f
goto START
USAGE:
echo 'usage fill.com infile.nc [outfile.nc]'
echo 'default outfile is replacement of infile.nc with filled version'
echo fill uses creepbotfill
goto ERROR

START:

if ($#argv < 1) goto USAGE

set unflaggedargs = (infile outfile)
source NCOM.env
source $NSCRIPTS/arg_eval.com
set infile = $1
set outfile = $2

```

```

if (!(-e $infile)) goto USAGE
if (!$?outfile) set outfile = $infile
if ($outfile == $infile) then
    set overwrite = 1
    set outfile = t_$$_.nc
else
    set overwrite = 0
endif

setenv BIN_MODAS /u/home/ooc/models/MODAS2/bin
setenv XLF RTEOPTS namelist=old
set ncreep = 4
#
#  if isds > 0 then only the isds data set is processed
#  if isds <=0  then the first, last, and increment data sets
#      are given by itlsds, lstsds, incsds
#
#-----
-----
# time $BIN_MODAS/fill << END
&inputs
    filein  = '$infile'
    fileout = '$outfile'
    isds    = 1
    itlsds  = 1
    lstsds  = 1
    incsds  = 1
    creeping = t
    itermax = 5
    ncreep = $ncreep
&end
END
if ( $status != 0 ) then
    echo " ** Error in GDEMGRD.  FATAL ERROR, EXITING SCRIPT ** "
endif

if ($overwrite == 1) /bin/mv $outfile $infile

#
DONE:
exit
ERROR:
echo ERROR in fill.com $0
exit 1

```

## D8 landmask.com

```

#!/bin/csh
#
# script to mask one netcdf file with another
#
# programmer: Charlie Barron, NRL code 7323
# Date: 17 July 2001
#
setenv BIN_MODAS /u/home/ooc/models/MODAS2/bin
setenv BIN_MODAS /u/home/fitzgrld/models/modas2/bin
#
if ($#argv < 2) then
    echo USAGE landmask.com datafile.nc maskfile.nc [maskeddatafile.nc]
[mode]
    echo default output is named "datafile"m.nc where input is
"datafile".nc
    echo note that to set mode 4 arguments are required
    echo the maskfile is assumed to indicate land with nonnegative values
    goto ERROR
endif

set datafile = $1
set maskfile = $2

if (!(-e $datafile)) then
    echo ERROR: data file $datafile does not exist
    goto ERROR
endif

if (!(-e $maskfile)) then
    echo ERROR: mask file $maskfile does not exist
    goto ERROR
endif

set samename = 0
set mode = 0
if ($#argv > 2) then
    set maskeddatafile = $3
    if ($maskeddatafile == $datafile) then
        set samename = 1
        set maskeddatafile = tmp_$$_.nc
    endif
    if ($#argv > 3) then
        set mode = $4
    endif
else
    set maskeddatafile = `echo $datafile | sed -e 's/.nc$//' -e
's/$/m.nc/'`
endif

```

```

setenv XLFRTEOPTS namelist=old
$BIN_MODAS/botmask << END
&inputs
  filein    = '$datafile'
  filebotin = '$maskfile'
  fileout   = '$maskeddatafile'
  npastbot  = 0
  mode      = $mode
&end
END
if ( $status != 0 ) then
  echo " ** Error in botmask.  FATAL ERROR, EXITING SCRIPT ** "
  goto ERROR
else
  if ($samename == 1) then
    /bin/mv $maskeddatafile $datafile
    set maskeddatafile = $datafile
  endif
  echo masked data file is stored in $maskeddatafile
endif
# done
DONE:
exit
ERROR:
echo ERROR in landmask.com
exit 1

```

## D9      **grdmath.com**

```

#!/bin/csh -f
#
# script to simplify calls to grdmath
# Programmer: Charlie Barron, NRL code 7323
# 15 Jun 2004
#
source NCOM.env
setenv XLFRTEOPTS namelist=old
set LBIN = /u/home/fitzgrld/models/modas2/bin

set echo
set verbose
set minarg = 6
if ($#argv < $minarg) then
  echo 'USAGE: grdmath.com fileain filebin filecout operation vala valb
[...]'
  goto DONE
endif

```

```

set fileain = $1
set filebin = $2
set filecout = $3
set operation = "$4"
set vala = $5
set valb = $6
set idtg1 = 0
set idtg2 = 0
set hh = 0

source $NSCRIPTS/arg_eval.com
if (!($?quiet)) setenv quiet 1

if (!($?fileain)) then
    echo ERROR: fileain is not defined
    goto ERROR
endif
if (!(-e $fileain)) then
    echo ERROR: fileain $fileain is not found
    goto ERROR
endif
if (!($?filebin)) set filebin = none
if ($?nfiles) then
    if ($nfiles == 1) set filebin = none
endif
if ($filebin != 'none') then
    if (!(-e $filebin)) then
        echo ERROR: file b $filebin not found
        goto ERROR
    else
        set nfiles = 2
    endif
else
    set nfiles = 1
endif

if (!($?filecout)) then
    echo ERROR: output file $filecout not defined
    goto ERROR
endif
set samename = 0
set filefinalout = $filecout
if ($filecout == $fileain) then
    set filecout = cout_tmp_$$_.nc
    set samename = 1
endif
if ($filecout == $filebin) then
    set filecout = cout_tmp_$$_.nc
    set samename = 1
endif

```

```

if (!($?vala)) set vala = 0.
if (!($?valb)) set valb = 0.

if (!($?operation)) then
    echo ERROR: grdmath operation is not defined
    goto ERROR
endif

if (!($?zmtoft)) set zmtoft = f
if (!($?newlabel)) set newlabel = none
if (!($?newdunit)) set newdunit = none
if (!($?newdfmt)) set newdfmt = none
set idtg2 = `echo $idtg2 $hh | awk '{i=$1;h=$2;if
(i<=0){i=1000000*h};printf "%08.8d\n",i}'` 

$LBIN/grdmath << END
&dinput
    fileain   = '$fileain'
    filebin   = '$filebin'
    filecout  = '$filecout'
    nfiles    = $nfiles
    vala      = $vala
    valb      = $valb
    operation = '$operation'
    zmtoft   = $zmtoft
    newlabel  = '$newlabel'
    newdunit  = '$newdunit'
    newdfmt   = '$newdfmt'
    idtg(1)   = $idtg1
    idtg(2)   = $idtg2
&end
END
if ( $status != 0 ) then
    echo " ** Error in grdmath.  FATAL ERROR, EXITING SCRIPT ** "
endif
if ($samename == 1) then
    /bin/mv $filecout $filefinalout
endif

DONE:
exit
ERROR:
echo ERROR in grdmath.com
exit 1

```

