Question 1: You toss a coin 10,000 times. How many heads do you see?

Question 2: Coupon collector problem. Have N coupons and we need to collect them all. How many coupons do we need to sample to get all N?

Question 3: Largest common subsequence problem: have sequences X_1, \ldots, X_n and Y_1, \ldots, Y_n of iid Bern(1/2) random variables. What is the largest k such that there exist $i_1 < i_2 < \ldots < i_k$ and $j_1 < j_2 < \ldots, < j_k$ such that $X_{i_1} = Y_{j_1}, \ldots, X_{i_k} = Y_{j_k}$?

Question 1: we have various possible answers:

- 5,000. Indeed if we let X_i be the indicator of the event that we see heads on the ith toss, the number of heads is $S = \sum_{i=1}^{10000} X_i$ and $\mathbb{E}S = 5000$. But $\mathbb{P}(S = 5000) = \binom{10000}{5000} 2^{-1000} \approx 0.008$.
- Weak Law of Large Numbers: let $(X_i)_{i\geq 1}$ be iid with finite expectation μ and finite second moments. Then for every $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\varepsilon\right)\xrightarrow{n\to\infty}0.$$

Therefore for large enough n, the number of heads lies in $[n(1/2-\varepsilon), n(1/2+\varepsilon)]$ with high probability. The main problem is that this is an asymptotic result - we don't know how large n should be.

• Central Limit Theorem: let $(X_i)_{i\geq 1}$ be iid with finite mean μ and finite second moment $\sigma^2 + \mu^2$. Then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu)\stackrel{d}{\to}\mathcal{N}(0,1).$$

Therefore $\sum_{i=1}^{n} (X_i - \mu)$ has deviations of the order $\sqrt{n}\sigma$. Suppose we pretend 10000 is big: then

$$S = \sum_{i=1}^{10000} X_i \in [5000 - Q^{-1}(0.005)\sqrt{100}/2, 5000 + Q^{-1}(0.005)\sqrt{100}/2]$$

$$\approx [5000 \pm 128]$$

with probability 0.99, where $Q(x) = \mathbb{P}(Z \ge x)$ for $Z \sim \mathcal{N}(0,1)$. However we have the same issue again - is n = 10000 large enough?

We can however give some non-asymptotic answers to Question 1:

Proposition (Chebyshev's inequality). Let X be any random variable with mean μ and variance σ^2 . Then

$$\mathbb{P}(|X - \mu| > t) \le \frac{\sigma^2}{t^2}.$$

With this, we have

$$\mathbb{P}\left(\left|\sum_{i=1}^{10000} X_i - 5000\right| > t\right) \le \frac{10000 \times \frac{1}{4}}{t^2} = \frac{2500}{t^2}.$$

So in particular, if t=500 the RHS is 0.01. So we have $S\in[4500,5500]$ with probability 0.99. However note that this is a weaker result than what the Central Limit Theorem gives.

Question 2: the number of samples S is equal to $\sum_{i=1}^{N} X_i$ where $X_i \sim \text{Geo}(i/N)$. Thus $\mathbb{E}S = \sum_{i=1}^{N} \frac{N}{i} = N \sum_{i=1}^{N} \frac{1}{i} \approx N \log N$.

Question 3: we have a function $f(X_1, ..., X_n, Y_1, ..., Y_n)$ which gives the longest common subsequence. It turns out this function is "smooth" in a certain sense, for which we can use "Talagrand's Principle".