РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ ИЗПИТА ПО "ДИЗАЙН И АНАЛИЗ НА АЛГОРИТМИ" (РЕДОВНА СЕСИЯ — СУ, ФМИ, 27 ЮНИ 2017 Г.)

Задача 1. В клетките на електронна таблица са въведени формули. Например, ако в клетката В8 е написана формулата "= A4 + C7 - 2 * D9", то трябва първо да се пресметнат стойностите на клетките A4, C7 и D9, а след това — на В8. Предложете възможно най-бърз алгоритъм, който да определя в какъв ред да се изчисляват стойностите на клетките. Опишете алгоритъма словесно.

Решение: Моделираме задачата чрез ориентиран граф: върхове са клетките, ребра са зависимостите между клетките. По-точно, ако формулата в клетката X се позовава на стойността на клетката Y, то графът съдържа ребро от Y към X. В задачата се търси такова подреждане на върховете (клетките), че всяка клетка да предхожда всички клетки, зависещи от нея. Затова задачата се решава с помощта на известния алгоритъм за *топологично сортиране*, който извършва *обхождане в дълбочина*. Времевата сложност е $\Theta(m+n)$, където n е броят на върховете, а m е броят на ребрата на графа.

Задача 2. N пристанища са свързани с мрежа от M канала. Канал № i има дължина L_i и дълбочина D_i . Кораб трябва да пристигне възможно най-бързо от пристанището A до пристанището B. Корабът гази дълбочина D, тоест плава само по достатъчно дълбоки канали: с $D_i \ge D$ (в по-плитките засяда). Съставете възможно най-бърз алгоритъм за навигация. Опишете го с думи.

Решение: Моделираме задачата чрез тегловен граф: върхове са пристанищата, ребра са каналите, тегла на ребрата са дължините на каналите. Най-къс път в граф с положителни тегла на ребрата се търси чрез *алгоритъма на Дейкстра* за време $\Theta(M+N\log N)$, ако се ползва реализацията с пирамида на Фибоначи.

Изискването $D_i \ge D$ може да бъде удовлетворено по два начина:

- Чрез промяна на графа: с едно обхождане за време $\Theta(M+N)$ изтриваме ребрата с дълбочини $D_i < D$. Няма значение дали обхождането е в ширина, или в дълбочина. Общото време (на целия алгоритъм) остава $\Theta(M+N\log N)$.
- Чрез промяна на алгоритьма на Дейкстра: новият алгоритьм проверява дълбочините и обработва само тези ребра, за които $D_i \ge D$; останалите ребра пренебрегва. Времевата сложност на тази версия е пак $\Theta(M+N\log N)$, защото допълнителната проверка увеличава незначително (с константно събираемо) времето за обработка на всяко ребро.

Задача 3. Професор има n научни публикации. Масивът A [1...n] съдържа данни за това, колко пъти всяка от тях е била цитирана от други учени; тоест A [k] е броят на цитиранията на k-тата публикация. Предложете алгоритъм за пресмятане на т. нар. k-индекс — най-голямото цяло k, за което е вярно, че професорът има поне k публикации, всяка от които е цитирана поне k пъти.

Алгоритъм с времева сложност $T(n) = O(n \log n)$ се оценява с 20 точки; за сложност T(n) = O(n) се дават 40 точки. За по-бавни алгоритми: 0 точки.

Опишете алгоритъма с думи и го демонстрирайте. Анализирайте сложността.

Решение: Първи алгоритъм: За време $\Theta(n \log n)$ сортираме масива A в намаляващ ред с някой бърз алгоритъм, например пирамидално сортиране. После за време O(n) намираме (чрез последователно или двоично търсене) най-голямото h, за което $A[h] \ge h$. Времето на целия алгоритъм се определя от по-бавния етап — първия; т.е. времевата сложност е $\Theta(n \log n)$.

Вторият алгоритьм е модификация на първия. Ускоряваме първия етап до време $\Theta(n)$ с помощта на сортиране чрез броене. То не бива да се прилага направо върху оригиналните данни (те може да са много големи цели числа). Но ако заменим с n всички числа, по-големи от n, това няма да повлияе на n. Сега вече числата са малки в сравнение с n, затова можем да приложим това сортиране. На практика няма нужда да променяме оригиналните данни.

Времевата сложност на първите два цикъла е $\Theta(n)$, а на третия цикъл е O(n), защото броячът k намалява с единица на всяка стъпка, а цикълът завършва най-късно при k=0. Затова сложността по време на целия алгоритъм е $\Theta(n)$.

Трети алгоритъм — с време $\Theta(n)$: Намираме медианата с *алгоритъма РІСК*. После разбиваме масива: поставяме големите елементи наляво от медианата, а малките — надясно. Нека k е новият индекс на медианата. Следва рекурсия: ако $A[k] \ge k$, то $h \ge k$ и търсенето продължава в дясната половина на масива; ако A[k] < k, то h < k и търсенето продължава в лявата половина на масива; т.е. извършваме *двоично търсене*. Дъно на рекурсията: масив с един елемент. При достигане на дъното: ако $A[k] \ge k$, то h = k; ако A[k] < k, то h = k-1.

Анализ: $T(n) = T\left(\frac{n}{2}\right) + n$; събираемото n е времето на алгоритъма РІСК, другото събираемо е времето за рекурсията. От мастър-теоремата следва, че $T(n) = \Theta(n)$.

Задача 4. Задачата SubsetSum(A[1...n], S: positive integers) остава ли NP-пълна, когато всеки две числа от масива A се различават поне два пъти?

Решение: В този случай задачата не е NP-пълна, а е полиномиална. По-точно, $T(n,S) = \Theta(n \log n)$. Това се вижда от следния алгоритъм:

```
SubsetSum (A[1...n], S: positive integers): bool
Sort(A) // например пирамидално сортиране
for k ← n downto 1 do
   if S ≥ A[k]
        print A[k] // A[k] участва в сбора (ако той е възможен)
        S ← S - A[k]

if S = 0
   return true // Може да се образува сбор S.

else
   return false // Не може да се образува сбор S.
```

След сортирането $A[k] \ge 2A[k-1]$. Оттук с помощта на индукция следва, че $A[1] + A[2] + \ldots + A[k-1] < A[k]$. Затова, когато $S \ge A[k]$, числото A[k] със сигурност участва в сбора, защото другите числа A[1], A[2], ..., A[k-1], дори взети всички, дават сбор, по-малък от S.

Задача 5. По дадени цели положителни числа A_1 , A_2 , ..., A_n и B намерете броя на решенията на уравнението

$$A_1 x_1 + A_2 x_2 + \ldots + A_n x_n = B$$

в цели неотрицателни числа, тоест броя на наредените n-орки (x_1, x_2, \dots, x_n) от цели неотрицателни числа, които удовлетворяват уравнението.

Предложете итеративен алгоритъм. Опишете го на псевдокод като функция numSolEq(A[1...n]: array of int, B: int): int

с време O(nB) и динамична таблица с O(nB) клетки. (10 точки)

Демонстрирайте алгоритьма при A = (2; 3; 5) и B = 9. (10 точки)

Оптимизирайте сложността по памет до динамична таблица с $\mathrm{O}(\mathit{B})$ клетки. Опишете оптимизирания алгоритъм на псевдокод. (10 точки)

Решение:

```
numSolEq(A[1...n]: array of int, B: int): int dyn[1...n][0...B]: array of int for \widetilde{n} \leftarrow 0 to n do dyn[\widetilde{n}][0] \leftarrow 1 for \widetilde{B} \leftarrow 1 to B do dyn[0][\widetilde{B}] \leftarrow 0 for \widetilde{n} \leftarrow 1 to n do for \widetilde{B} \leftarrow 1 to B do if A[\widetilde{n}] > \widetilde{B} dyn[\widetilde{n}][\widetilde{B}] \leftarrow \text{dyn}[\widetilde{n}-1][\widetilde{B}] else dyn[\widetilde{n}][\widetilde{B}] \leftarrow \text{dyn}[\widetilde{n}-1][\widetilde{B}] + \text{dyn}[\widetilde{n}][\widetilde{B}-A[\widetilde{n}]] return dyn[n][B]
```

Предпоследният ред се основава на правилото за събиране: всички решения на уравнението $A_1x_1+A_2x_2+\ldots+A_nx_n=B$ в цели неотрицателни числа са два вида — такива, в които $x_n=0$ (броят им се дава от първото събираемо), и такива, в които $x_n>0$ (второто събираемо, т.е. броят на решенията на уравнението $A_1x_1+A_2x_2+\ldots+A_ny=B-A_n$ в цели неотрицателни числа, където е положено $y=x_n-1$).

Демонстрация на алгоритъма при A = (2; 3; 5) и B = 9:

dyn	$\widetilde{B} = 0$	$\widetilde{B} = 1$	$\widetilde{B}=2$	$\widetilde{B}=3$	$\widetilde{B} = 4$	$\widetilde{B} = 5$	$\widetilde{B} = 6$	$\widetilde{B} = 7$	$\widetilde{B}=8$	$\widetilde{B} = 9$
$\widetilde{n}=0$	1	0	0	0	0	0	0	0	0	0
$\widetilde{n} = 1$	1	0	1	0	1	0	1	0	1	0
$\widetilde{n}=2$	1	0	1	1	1	1	2	1	2	2
$\widetilde{n}=3$	1	0	1	1	1	2	2	2	3	3

В клетката dyn [\widetilde{n}] [\widetilde{B}] се пази броят на решенията на уравнението $A_1x_1 + A_2x_2 + \ldots + A_{\widetilde{n}}x_{\widetilde{n}} = \widetilde{B}$ в цели неотрицателни числа.

От долния десен ъгъл dyn [n][B], тоест dyn [3][9], се получава отговорът на задачата. Следователно уравнението $2x_1 + 3x_2 + 5x_3 = 9$ има три решения в цели неотрицателни числа.

Оптимизация по памет може да се постигне, като се пази само един ред от динамичната таблица.

```
numSolEq(A[1...n]: array of int, B: int): int dyn[0...B]: array of int dyn[0] \leftarrow 1

for \widetilde{B} \leftarrow 1 to B do
  dyn[\widetilde{B}] \leftarrow 0

for \widetilde{n} \leftarrow 1 to n do
  for \widetilde{B} \leftarrow A[\widetilde{n}] to B do
  dyn[\widetilde{B}] \leftarrow dyn[\widetilde{B}] + dyn[\widetilde{B} - A[\widetilde{n}]]

return dyn[B]
```

Сложността по време обаче остава $\Theta(nB)$ в най-лошия случай, колкото е при първата версия. Вложеният цикъл прави малка оптимизация на времето: то намалява при големи коефициенти на уравнението, но това е най-добрият, а не най-лошият случай.

Задача 6. Докажете, че задачата за разпознаване, дали даден ориентиран граф съдържа хамилтонов цикъл, остава NP-пълна, когато графът е двуделен.

Решение: Общият случай (произволен граф) чрез полиномиална редукция се свежда до разглеждания частен случай (двуделен граф). Редукцията се състои в разцепването на всеки връх v на два нови върха — v_1 и v_2 . Ребрата, които преди разцепването влизат във v, след разцепването влизат във v_1 . Ребрата, които преди разцепването излизат от v, след разцепването излизат от v_2 . Освен това се добавя ребро от v_1 към v_2 .

Модифицирането става с едно обхождане на графа, т.е. нужно е линейно (значи, полиномиално) време. При по-внимателно реализиране — копиране на указателите към списъците Adj, а не на самите списъци — даже няма нужда от обхождане на ребрата, затова времевата сложност е $\Theta(n)$, а не $\Theta(m+n)$.

Коректността на редукцията следва от два факта:

- 1) Модифицираният граф е двуделен. Доказателството се състои в оцветяването на върховете му в два цвята цвят 1 и цвят 2 (индексите на върховете). Графът е двуделен, тъй като по построение всяко ребро свързва върхове с различни цветове.
- 2) Оригиналният граф съдържа хамилтонов цикъл тогава и само тогава, когато модифицираният граф съдържа хамилтонов цикъл. Доказателството следва чрез биекция между множествата от хамилтоновите цикли в двата графа. На всеки хамилтонов цикъл в оригиналния граф съответства хамилтонов цикъл в модифицирания граф, получен чрез удвояване на всеки връх и добавяне на индекси 1 и 2 пред първия и втория екземпляр съответно. (Само последният връх не се удвоява.)

 $\Pi p u m e p$: Ако pavdxp е хамилтонов цикъл в оригиналния граф, то $p_1p_2a_1a_2v_1v_2d_1d_2x_1x_2p_1$ е хамилтонов цикъл в модифицирания граф.

Изображението е инекция, защото всяка промяна на върховете в първия цикъл води до съответна промяна на върховете във втория цикъл, тоест на различни хамилтонови цикли в оригиналния граф съответстват различни хамилтонови цикли в модифицирания граф.

Хамилтоновите цикли в модифицирания граф по построение се състоят само от двойки върхове, именувани с еднакви букви, но с различни индекси, като индексите 1 и 2 се редуват (защото модифицираният граф е двуделен). От всеки хамилтонов цикъл в модифицирания граф можем да получим хамилтонов цикъл в оригиналния граф, изтривайки индексите, а после — и втория екземпляр от всяка буква.

 $\Pi \ p \ u \ m \ e \ p$: Ако $p_1 p_2 a_1 a_2 v_1 v_2 d_1 d_2 \ x_1 x_2 \ p_1$ е хамилтонов цикъл в модифицирания граф, то pavdxp е хамилтонов цикъл в оригиналния граф.

Затова описаното изображение е сюрекция. Щом то е инекция и сюрекция, следва, че е биекция. Значи, в оригиналния граф има хамилтонов цикъл тогава и само тогава, когато в модифицирания граф има хамилтонов цикъл. С това е доказана коректността на описаната полиномиална редукция.

Дотук видяхме, че задачата, дали двуделен граф е хамилтонов, е NP-трудна. Остава да докажем, че тя е от класа NP, тоест че предложено решение (пермутация на върховете, описваща предполагаем хамилтонов цикъл) може да бъде проверено (дали наистина е такъв цикъл) за полиномиално време.

```
Check (G(V,E): bipartite graph; // n = |V|, m = |E|
       Certificate: array[1...n] of vertices)
Visited: array[1...n] of bool
for k \leftarrow 1 to n do
   Visited[k] \leftarrow false
for k \leftarrow 1 to n do
   Visited[Certificate[k]] ← true
for k \leftarrow 1 to n do
   if Visited[k] = false
      return false // цикълът пропуска връх
for k \leftarrow 1 to n-1 do
   if Certificate[k+1] ∉ Adj (Certificate[k])
      return false // цикълът минава по липсващо ребро
if Certificate[1] ∉ Adj (Certificate[n])
   return false // цикълът минава по липсващо ребро
return true
```

Проверката за принадлежност на ребро към списък Adj изисква обхождане на списъка. Последният цикъл (с проверката след него) обхожда списъците на всички върхове, затова времето му е $\Theta(m+n)$. Останалите три цикъла изразходват време $\Theta(n)$. Времето за цялата проверка е линейно: $\Theta(m+n)$, следователно полиномиално. Затова разглежданата задача е от класа NP.