TD1: RAPPEL DES LIMITES

Exercice 1. On considère une suite de polynômes $(f_n)_{n\in\mathbb{N}}\in\mathbb{Q}[t]^{\mathbb{N}}$ definie par $f_0(t)=1$ et $f_n(t)=\frac{t\,(t-1)\cdots(t-n+1)}{n!}$ et un operateur $\Delta:\mathbb{C}[t]\to\mathbb{C}[t]$ sur polynômes defini par $(\Delta\,f)(t)=f(t+1)-f(t)$ pour tout polynôme f. On remarque que $\Delta\,f_0=0$ et $\Delta\,f_{n+1}=f_n$ pour $n\in\mathbb{N}$.

- 1. Montrer que pour tout entier $d \in \mathbb{N}$ et polynôme $f \in \mathbb{C}[t]$ de degré $\leq d$, il existe a_0 , a_1, \dots, a_d tel que $f = \sum_{k=0}^d a_k f_k$. De plus, $a_k = (\Delta^k f)(0)$ pour $k = 0, \dots, d$.
- 2. Calculer $\sum_{j=0}^{n} f_k(j)$ pour tout entier $n, k \in \mathbb{N}$.
- 3. En déduire la valeur de $\sum_{j=0}^{n} f(j)$ pour tout polynôme $f \in \mathbb{C}[t]$ en termes des $(\Delta^k f)(0)$ pour $k \in \mathbb{N}$. Écrire explicitement la valuer de $\sum_{j=0}^{n} j^2$ et $\sum_{j=0}^{n} j^3$.
- 4. Soient $z \in \mathbb{C}$ et $f \in \mathbb{C}[t]$. Étudier la convergence de $\sum_{j=0}^{n} f(j) z^{j}$ quand $n \to \infty$ sans calculer la valeur.
- 5. Calculer le polynôme $\sum_{j=0}^{n} f_k(j) u^{j-k} \in \mathbb{Q}[u]$ pour $n, k \in \mathbb{N}$. On remarque que $f_k(j) = 0$ quand j < k. [Indication: considerons l'identité $\sum_{j=0}^{n} u^j = (u^{n+1} 1)/(u 1)$ et prenons les dérivées itérées.]
- 6. En déduire la valeur de $\sum_{j=0}^n f(j) z^j$ pour $z \in \mathbb{C}$ et polynôme $f \in \mathbb{C}[t]$ en termes des $(\Delta^k f)(0)$ pour $k \in \mathbb{N}$. Écrire explicitement la valuer de $\sum_{j=0}^n j z^j$.
- 7. De la même façon, calculer $\sum_{j=0}^{n} f(j) \binom{n}{j}$ pour $f \in \mathbb{C}[t]$. Écrire explicitement les valeurs de $\sum_{j=0}^{n} \binom{n}{j}$, $\sum_{j=0}^{n} j \binom{n}{j}$ et $\sum_{j=0}^{n} j^2 \binom{n}{j}$.

Exercice 2. Déterminer des limites des fonctions suivantes:

1.
$$\frac{\sin 3x}{\sin 5x} \text{ en } x = 0,$$

2.
$$\frac{\sqrt{x+1} - \sqrt{x^2+1}}{x}$$
 en $x = 0$,

3.
$$u_n = \left(1 + \frac{1}{n}\right)^n$$
 quand $n \to \infty$,

4.
$$u_n = \left(1 + \frac{1}{n^2}\right)^n$$
 quand $n \to \infty$,

5. $v_n = (d^{-1} \sum_{k=1}^d x_k^{1/n})^n$ quand $n \to \infty$, où les x_k sont des réels strictement positifs.

Exercice 3. Pour tout entier $n \in \mathbb{N}^*$, on définit $u_n = \sum_{k=0}^n 1/k!$ et $v_n = 1/(n \cdot n!) + \sum_{k=0}^n 1/k!$.

- 1. Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes,
- 2. On note e leur limite commune. Montrer que $e \notin \mathbb{Q}$.

Exercice 4. Soient $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite des réels telle que $\lim_{n\to\infty}(a_{n+1}-a_n)=0$ et $l\leq L$ deux valeurs d'adhérence de la suite (a_n) . Montrer que pour tout $v\in[l,L]$, v est une valeur d'adhérence de la suite (a_n) .

Exercice 5. Soient $f:[0,1] \to [0,1]$ une fonction continue et $x \in [0,1]$. On définit une suite $(a_n)_{n \in \mathbb{N}}$ par $a_0 = x$ et $a_{n+1} = f(a_n)$. Montrer que la suite (a_n) converge si et seulement si $\lim_{n \to \infty} (a_{n+1} - a_n) = 0$.

Exercice 6. Calculer les intégrales suivantes:

1.
$$\int_{1}^{2} \frac{x+1}{x^2+x+1} \, \mathrm{d}x$$
,

- $2. \int_2^3 \cos(x) \exp(x) \, \mathrm{d}x,$
- 3. $\int_{\pi/6}^{\pi/2} \cos(x) \sin(x)^{-2} dx$,
- 4. $\int_{2}^{3} (x^{2} + 2x) \exp(x) dx$.

Exercice 7. Soit $f: \mathbb{R}_{>0} \to \mathbb{R}$ une fonction continue et pour tout $x \in \mathbb{R}_{>0}$, on a $\lim_{n \to \infty} f(nx) = 0$. Montrer que $\lim_{x \to +\infty} f(x) = 0$. [Indication: pour tout $\varepsilon > 0$, montrer qu'il existe un intervalle ouvert (non-vide et fini) $I \subseteq [1, 2]$ et un entier N > 0 tels que pour tout $x \in I$ et $n \ge N$, on a $|f(nx)| \le \varepsilon$.]