پاسخ تمرین سری دوم موعد تحویل: ساعت ۱۰ صبح روز شنبه ۱۳۹۸/۰۹/۰۲

مدارهاي الكترونيكي

دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی

۱. با فرض مدل ایده آل دیود، مدارهای شکل زیر را تحلیل کرده و مقادیر خواسته شده را به دست آورید.

یاسخ:

الف) به راحتی مشاهده می شود که دیود D_1 خاموش و دیود D_2 روشن است. به دلیل اینکه اگر دیود D_1 بخواهد روشن باشد، ولتاژ خروجی باید برابر ۱ ولت باشد ولی این مقدار ولتاژ خروجی باعث روشن بودن دیود D_2 می شود که در این صورت ولتاژ خروجی باید ۲ ولت باشد. در نتیجه دیود D_1 حتماً خاموش است. ولتاژ خروجی برابر ۲ ولت است. در نتیجه به راحتی جریان مدار محاسبه می شود. جریان برابر است با:

$$I = \frac{v - (-3)}{2^{k\Omega}} = \frac{2 - (-3)}{2^{k\Omega}} = 2.5mA$$

ب) به راحتی مشاهده می شود که دیود D_1 روشن و دیود D_2 خاموش است. در نتیجه ولتاژ خروجی برابر ۱ ولت است. جریان مدار در این حالت برابر است با

$$I = \frac{3 - v}{2^{k\Omega}} = \frac{3 - 1}{2^{k\Omega}} = 1mA$$

 $V_B=+1$ ر ابرای دو مقدار V_X برحسب I_{R_1} و همچنین I_{R_1} برحسب I_X را برای دو مقدار I_X . در مدارهای شکل زیر مشخصههای I_X برحسب I_X و همچنین $V_B=-1$ ر رسم نمایید. مدل ولتاژ ثابت دیود را استفاده کنید.

پاسخ:

الف) در این حالت، فارغ از روشن یا خاموش بودن دیود و همچنین بدون تاثیرپذیری از منبع ولتاژ ورودی، ولتاژ ورودی، ولتاث در این حالت $I_{R_1}=rac{V_B}{R_1}$ است. همچنین، در این حالت دو سر مقاومت $I_{R_1}=rac{V_B}{R_1}$ است. همچنین، در این حالت دیود زمانی روشن می شود که $V_x=V_{D,on}$ باشد. به عبارت دیگر $V_x\geq V_B+V_{D,on}$ و $V_x=0.7$ و $V_{D,on}=0.7$

 $V_{D,on}=0.7v$ و $V_{B}=+1v$ برای

ب) در این حالت دیود زمانی روشن میشود که $V_x-V_B\geq V_{D,on}$ باشد. در صورت روشن شدن دیود، جریان (باین حالت دیود زمانی روشن میشود که $I_{R_1}=rac{V_{D,on}}{R_1}$ باشد. در صورت روشن شدن دیود، جریان مقاومت I_X ثابت و برابر همان جریان I_X است.

$$V_{Don} = 0.7v$$
 و $V_{B} = -1v$ برای

 $V_{D,on}=0.7v$ و $V_B=+1v$ برای

ج) در این حالت، فارغ از روشن یا خاموش بودن دیود، ولتاژ دو سر مقاومت R_1 برابر R_2 است. بنابراین جریان این شاخه همواره برابر $I_{R_1}=rac{V_X-V_B}{R_1}$ است. جریان کل مدار I_X نیز برابر مجموع جریانهای شاخه جریان این شاخه همواره برابر $I_{R_1}=rac{V_X-V_B}{R_1}$

حاوی مقاومت R_1 و شاخه حاوی مقاومت R_2 است. به عبارت دیگر

$$I_X = I_{R_1} + I_{R_2} = \frac{V_X - V_B}{R_1} + \frac{V_X - V_B - V_{D,on}}{R_2} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) V_X - \frac{V_B}{R_1} - \frac{V_B + V_{D,on}}{R_2}$$

$$V_{D,on} = 0.7v \text{ g } V_B = -1v \text{ g. }$$

$$V_{D.on} = 0.7v$$
 و $V_{B} = +1v$ برای

 $V_0=3v$ و ورودی یک یکسوکننده تمامموج، سیگنال سینوسی $V_{in}=V_0\cos\omega t$ است که در آن $V_0=3v$ و $V_{in}=V_0\cos\omega t$ است. با فرض $V_{D,on}=700mv$ و همچنین خازن هموارکننده $\omega=2\pi\left(60Hz\right)$ اهمی، دامنه ریپل را حساب کنید.

پاسخ: با توجه به رابطه اثبات شده در کلاس داریم:

$$V_R \approx \frac{1}{2} \times \frac{V_0 - 2V_{D,on}}{R_L C f_{in}} = \frac{1}{2} \times \frac{3 - 2 \times 0.7}{30 \times 1000 \times 10^{-6} \times 60} = \frac{1.6}{2 \times 1.8} = 0.44$$

۴. هنگام ساخت یکسوکننده تمامموج، اشتباهی رخ می دهد و ترمینالهای دیود D_3 به صورت معکوس قرار می گیرد. رفتار مدار را توضیح می گیرد. به عبارت دیگر جای کاتد و آند این دیود سهواً به جای همدیگر قرار می گیرد. رفتار مدار را توضیح دهید که چه اتفاقی می افتد.

پاسخ: این مدار به عنوان یکسوساز تمام موج کار نخواهد کرد.

همانطور که مشاهده می شود، فقط نیم سیکلهای منفی را از طریق دیودهای D_1 و D_2 عبور خواهد داد. اما برای نیم سیکلهای مثبت، هیچ مسیر مستقیمی برای عبور جریان وجود ندارد. دیودهای D_3 و D_3 اجازه عبور جریان برای نیم سیکلهای مثبت را نخواهند داد. بنابراین مدار فوق به مانند یکسوساز نیم موجی که نیم سیکلهای منفی را عبور می دهد، کار خواهد کرد.

موفق باشيد

صفوي