§1.3 频率与概率

历史上概率的四次定义

- ③ 几何定义
- ④公理化定义 ____1930年后由前

苏联数学家柯尔莫哥洛夫给出

一、频率

对于一个事件(除必然事件和不可能事件外) 来说,它在一次试验中可能发生,也可能不发生。 我们常常希望知道某些事件在一次试验中发生的可 能性究竟有多大。例如,为了确定水坝的高度,就 要知道河流在造水坝地段每年最大洪水达到某一高 度这一事件发生的可能性的大小。我们希望找到一 个合适的数来表征事件在一次实验中发生的可能性 的大小。为此,首先引入频率,它描述了事件发生 的频繁程度, 进而引出表征事件在一次试验中发生 的可能性的大小——概率。

随机事件的频率Frequency

◆ 随机试验

抛掷一枚均匀的硬币

◆ 试验总次数n

将硬币抛掷n次

◆ 随机事件

A="出现正面"

◆ 事件A出现次数m

出现正面m次

◆ 随机事件的频率

$$f_n(A)$$

$$\frac{m}{n}$$

$$f_n(A) = \frac{$$
事件A出现的次数 m 试验总次数n

频率稳定性的实例

Experiment of tossing coin

试验	n=5		n =50		n=500	
序号	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$
1	2	0.4	22	0.44	251	0.502
2	3	0.6	25	0.50	249	0.498
3	1	0.2	21	0.42	256	0.512
4	5	1.0	25	0.50	253	0.506
5	1	0.2	24	0.48	251	0.502
6	2	0.4	21	0.42	246	0.492
7	4	0.8	18	0.36	244	0.488
8	2	0.4	24	0.48	258	0.516
9	3	0.6	27	0.54	262	0.524
10	3	0.6	31	0.62	247	0.494

频率稳定性的实例

Experiment of tossing coin

◆ 历史纪录

试验者	抛掷次数n	出现正面的次数m	出现正面的频率m/n
德.摩 根	2048	1061	0.518
蒲丰	4040	2048	0.5069
皮尔逊	12000	6019	0.5016
皮尔逊	24000	12012	0.5005
维尼	30000	14994	0.4998

** 频率的性质:

1°
$$0 \le f_n(A) \le 1$$

$$2^{\circ} f_n(S) = 1$$

3° 若
$$A_1, A_2, \dots, A_k$$
两两互不相容,则 $f_n(\bigcup_{i=1}^k A_i) = \sum_{i=1}^k f_n(A_i)$

且 $f_n(\mathbf{p})$ n的增大渐趋稳定,记稳定值为p.

■ 二 概率

- \mathbb{P} 定义1: $f_n(A)$ 的稳定值p定义为A的概率,记为P(A)=p
- ♥定义2: 将概率视为测度,且满足:

- 1° $0 \le P(A) \le 1$
- $2^{\circ} P(S) = 1$
- 3° 若 A_1, A_2, \dots, A_k 两两互不相容,则 $P(\bigcup_{i=1}^{\kappa} A_i) = \sum_{i=1}^{\kappa} P(A_i)$

称P(A)为事件A的概率。

说明:

- 1、频率从本质上来讲即是概率,故要求 概率具有频率的性质。
- 2、概率是事件的一种固有属性。由事件自身确定,并且客观存在,好比一根木棒有长度,一块土地有面积,是随机事件发生的可能性大小的度量。

概率的性质

$$P(\emptyset) = 0$$

证明

$$S = S \cup \emptyset \cup \emptyset \cup \emptyset \cup \cdots$$

由公理3知

$$P(S) = P(S) + P(\emptyset) + P(\emptyset) + \cdots$$

所以

$$P(\emptyset) = 0$$

不可能事件的概率为零

有限可加性

设 A_1 , A_2 , …, A_n 两两互不相容,则

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P\left(A_{i}\right)$$

在公理3中,取A_i =
$$(i=n+1,n+2,\cdots)$$

$$P(\bigcup_{i=1}^{n} A_i) = P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{n} P(A_i) + \sum_{i=n+1}^{\infty} P(\Phi)$$

$$= \sum_{i=1}^{n} P(A_i)$$

$$P(A \cup B) = P(A) + P(B) \qquad AB = \Phi$$

$$AB = \Phi$$

17世纪法国赌场中,赌场老板愿意用一对一的赌注设赌局,规则是:若玩家将一颗骰子抛掷四次,至少出现一次"6"点,则玩家赢。也有人提出另一种规则:若玩家将两颗骰子抛掷24次,至少出现一次"双6"点,则玩家赢。

赌徒梅德尔认为上述两种赌博玩家赢的机会相同。他 的推理如下

掷一颗骰子一次,有1/6的机会得"6"点,因此,在4次抛掷中,有4×1/6=2/3的机会得到至少出现一次"6"点;掷一对骰子一次,有1/36的机会得"双6"点,因此,在24次抛掷中,有24×1/36=2/3的机会得到至少出现一次"双6"点。根据这种推理,两种情况下玩家赢的机会相同。

但是,梅德尔在大量的抛掷骰子的试验中发现,第一种情况比第二种情况更可能出现,这是怎么回事?问题究竟出在哪里?

■ 差事件的概率

若 A
$$(B, D) = P(B) - P(A)$$

$$B = A \cup (B - A)$$

$$P(B) = P(A \cup (B - A)) = P(A) + P(B - A)$$

$$P (B-A) = P (B) - P (A)$$

□ 对任意两个事件A, B, 有

$$P(B-A) = P(B) - P(AB)$$

$$\therefore P(B) = P(AB \cup (B-A)) = P(AB) + P(B-A)$$

■ 加法定理

对任意两个随机事件A、B,有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$A \cup B = A \cup (B - AB)$$
$$\exists A \cap (B - AB) = \emptyset$$

$$P(A \cup B) = P(A \cup (B - AB))$$

$$= P(A) + P(B - AB)$$

$$P(B - AB) = P(B) - P(AB)$$

■ 加法定理

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(AB) - P(BC) - P(AC) + P(ABC)$$

- 15/21页 -

对立事件的概率

$$P\left(\overline{A}\right) = 1 - P(A)$$

证明 由于A与其对立事件互不相容,由性质2有

$$P(A \cup \overline{A}) = P(A) + P(\overline{A})$$

$$\overline{}$$
 $A \cup \overline{A} = \Omega, P(\Omega) = 1$

所以
$$P(A) + P(\overline{A}) = 1$$

例 甲、乙两人同时向目标射击一次,设甲击中的概率

为 0.85, 乙击中的概率为 0.8. 两人都击中的概率为

0.68. 求目标被击中的概率.

解 设A="甲击中目标", B="乙击中目标",

C="目标被击中", 则

$$P(C) = P(A \cup B) = P(A) + P(B) - P(AB)$$

$$= 0.85 + 0.8 - 0.68 = 0.97$$

例 设A, B是互不相容的事件,已知P(A)=0. 4, P(B)=0. 5, 求P(\overline{A}), P(AUB),P($\overline{A}\overline{B}$),P($\overline{A}\overline{B}$),P($\overline{A}\overline{U}\overline{B}$)。

解、
$$P(\overline{A})=1-P(A)=1-0.4=0.6$$

:: *A*, *B*互不相容

$$\therefore P(A \cup B) = P(A) + P(B) = 0.4 + 0.5 = 0.9$$

$$\therefore P(A\overline{B}) = P(A) = 0.4$$

$$P(\overline{A}\overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 0.1$$

$$P(\overline{A} \cup \overline{B}) = P(\overline{AB}) = 1 - P(AB) = 1$$

例 小王参加"智力大冲浪"游戏,他能答出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王

- (1) 答出甲类而答不出乙类问题的概率
- (2) 至少有一类问题能答出的概率
- (3) 两类问题都答不出的概率

解 事件A,B分别表示"能答出甲,乙类问题"

(1)
$$P(A\overline{B}) = P(A) - P(AB) = 0.7 - 0.1 = 0.6$$

(2)
$$P(A \cup B) = P(A) + P(B) - P(AB) = 0.8$$

(3)
$$P(\overline{A}\overline{B}) = P(\overline{A \cup B}) = 0.2$$

思考:

例1中小王他能答出第一类问题的概率为0.7,答出第二类问题的概率为0.2,两类问题都能答出的概率为0.1.为什么不是0.7×0?2

若是的话,则应有

$$P(A_1A_2) = P(A_1)P(A_2)$$

而现在题中并未给出这一条件.

在§1.6中将告诉我们上述等式成立的

条件是:事件

相互独立.

^例 设A, B两个不同的事件 验证事件A和事件B恰有一个发生的概率为 P(A)+P(B)-2P(AB)