ABSTRACT

A novel transparent film is disclosed. Re (λ) and Rth (λ) of the film defined by the following formulae (I) and (II) satisfy the following formulae (III) and (IV):

- (I) Re $(\lambda) = (nx ny) \times d$,
- (II) Rth $(\lambda) = \{ (nx + ny)/2 nz \} \times d$,
- (III) $0 \le |Re(630)| \le 50$,
- (IV) Rth (400) × Rth (700) \leq 0, and 0 \leq Rth (700) Rth (400) \leq 150,

wherein Re (λ) means an in-plane retardation value at a wavelength λ nm (unit: nm); Rth (λ) means a thickness-direction retardation value at a wavelength λ nm (unit: nm); nx means a refractive index in the in-plane slow-axis direction; ny means a refractive index in the in-plane fast-axis direction; nz means a refractive index in the film thickness direction; and d means a thickness of the film.

1