7-14 POWER EQUIPMENT

TABLE 4. Horsepower of Power Equipment Used, by Geographic

Aggregate horsepower (prime movers and electric motors driven by purchased energy) $\,$

Transportation equipment

Industry code	Geographic area and industry group	horsenower per production worker	Total	Loading equipment	Highway- type	Other	All other equipment
(1,000)	(1,000)	(1,000)		(1,000)		(1,000)	
East S	South <mark>.</mark> Central <mark>—C</mark> ontinued						
Oil and	oi gas extraction illic minerals mining.	Oil and gas extract ion	130 130 132	125	518 423 95	1,364	21 (X) 21
Oil and No <mark>nm</mark> eta	Central gas extraction allic minerals mining	Nonme tallic minera Is	149 153 106		20.187 18.967 1,072		263 (X) 221
Arkansas Oil and Nonmeta	gas extraction allic minerals mining**	mining	128 83		402 236 133		27 (X) 22
Louisiana. Oil and	gas extraction		US 120		4.115 3,890 225		42 (X) 42
Nonmeta mining <mark>-</mark> . O <mark>lclalio</mark> ma.	allic minerals »,		1 <mark>4</mark> 2 145 95		3.033 2,872 100		38 (X) 20
Oil and Nonmeta	αas extraction allic minerals mining		167 170 124		12.637 11,969 614		156 (X) 137
Oil and Nonmeta	aas extraction allic minerals mining		10 0 83		6.198 2,817 220		400 233
Mountain Metal m Bitumin mining.	ining ous coal and lignite		63 15 4		2,411 750 537		41 (X) 126
Oil and Nonmet	gas extraction allic minerals mining		84		265 216		31 23 (X)
Metal m	ininggas extraction		75 130 58		162 100 62		21 3 18
Idaho Metal mini Nonmetalli	ngc minerals mining		43 145		18 5		69 55
Wvomina	iningous coal mining		146 133 112 177		35 69 1		9 (X) ₅
Oil and Nonmet	gas extractionallic minerals mining.		56 83		57 692		54 19
Metal m	uininaous coal minina		57 41 150		241 50 290		13 (X) 22
Oil and Nonmet	gas extraction allic minerals mining		109 114		111 1.575 1,056		45 (X) 15
Oil and	co gas extraction allic minerals mining		149 56		1,036 185 1.182		83 56
Metal m Oil and	lining gas extraction		92 89 118 98		1,066 4 112		(X) 27 61
Utah Bi <mark>tundn</mark>	allic minerals mining pus coal mining		82 62 144		747 98 148		15 (X) 36
Nevada Metal m	gas extraction		143 144 136		334 260 68		22 14
Nonmeta Paci <mark>f</mark> ic Metal minin	allic minerals mining		145 119 67 164		4 <mark>,</mark> 186 254 24 2,544		327 34 4 (X) 289

229 183 46	34 <mark>4</mark> 2 8 8 29 1	13 (X) 13	14 53	255 24 0 15	68 15
8.111 7,742 325	8 29 1	172 (X) 160	53 39 11 (X)		502 63 7
	17		(X) 3	11 <mark>.6</mark> 41 11,225 366	400 32
138 95 26	200 63 5 106 26	23 (X) 20	52 17 17 (X) 18	214 141 6 <mark>5</mark>	387 142
1.345		35	(X) 18		387 142 16 184 45
1,296 49	542 441 41	(X) 35	109 (X)	2.693 2,594 99	
1.251 1,202 33		20 (X)	21	1.724 1,670 31	879 615 108
5,377	204 164 3 37	16 94	355 342 (X) 13	7 <mark>,0</mark> 10	540 504
5 <mark>.1</mark> 49 217		94 (X) 89		6,820 171	35
1 <mark>,</mark> 716 494 28	149 9 56	1,003 811	223 31 (X)		31 4 43 92
1 <mark>,</mark> 716 494 28 997 197	103 77 22	1,003 811 63 (X) 129	91 83	3.079 1,279 88 1,414 298	
145 33 96		91 79	197	298 270	104 78 24
	1,389 63 6 901 419	(X)	197 27 8	130 120	2 <mark>,2</mark> 73 130
29 14 15	419	29 15	(X) 162	83	6 1 <mark>,6</mark> 43
Sec footnotes at end of table.					