An overview of

ZigBee and

IEEE 802.15.4

Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless
Personal Area Networks (WPANs)

e.m.vaneenennaam@utwente.nl

ZigBee is:

- Spans entire protocol stack (PHY to Appl.Layer)
- Complexity, cost and energy consumption < BT
- Low data rate
- Long battery life (duty cycle)
- · Secure, robust networking
- Self organising / self healing network

Applications:

- Wireless Control (home, office, industry)
- Wireless Monitoring
- Home Automation
- → Wireless Personal Area Networks (WPAN)
- → Wireless Sensor Networks (WSN)

Physical Layer

ZigBee protocol stack

- Layered like OSI model
- Application Layer
- Network Layer (routing)
- Medium Access Control
- · Physical layer, Radio
- Profiles defined by ZigBee Alliance [1]
- MAC and PHY defined in IEEE 802.15.4 [2]

- Defines several profiles (similar to BT)
- Profiles enable interoperability

Application Layer

- With vendor-specific implementations
- Provides security (128 bit AES symmetric key encryption)
- All very nice ... but out of the scope of this talk

ZigBee knows three types of nodes:

- ZigBee Coordinator (ZC) 1 per network
- ZigBee Router (ZR) *
- ZigBee End Device (ZED) *

IEEE 802.14.5 knows two:

- Full Function Device (FFD)
- Reduced Function Device (RFD)
- but... defines a PAN-coordinator (which is a FFD)

Network Topologies

- Routing with Ad hoc On-demand Distance Vector (AODV): build routes only when needed
- Allows multiple network toplogies, depending on application

Node A wants to send data to Node ZC

2. Node A floods RREQ for ZC

Flood RREQ

3. ZC receives RREQ

4. ZC unicasts RREP to A over shortest route

Overvie

Application Lave

Network Layer

Medium Access Control Laye

Physical Laver

5. A sends DATA over shortest part

Overviev

Application Lave

Network Layer

Medium Access Control Laye

Physical Layer

Benefits:

- Routes built when needed (no comm. otherwise)
- · Route in RREP is accurate
- Low setup delay

Drawbacks:

- Can have stale routes
- Flooding can be burden on network

- Ensures every node gets an opportunity to use the medium
- Two modes: Coordinated ("beacon-enabled") and uncoordinated ("beaconless")

beacon-enabled - (Slotted TDMA) ZR sends beacons, ZEDs sync. to beacons, wake up during beacon time. Sleeping enables long duty cycles.

beaconless - (CSMA/CA) Communication can occur at any time.

Only four frametypes are specified:

- Beacon sent by coordinator's MAC, function is to coordinate
- Data encapsulates upper-layer data
- Acknowledgement used to signal correct reception at MAC
- MAC Command MAC management info

Physical lavers

- Manages the radio (off to safe power)
- Selects channel
- Performs energy detection (CCA, Carrier Sense)
- Most important: transmits and receives information

Spectrum

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters		
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols
868/915	868-868.6	300	BPSK	20	20	Binary
	902-928	600	BPSK	40	40	Binary
868/915 (optional)	868-868.6	400	ASK	250	12.5	20-bit PSSS
	902-928	1600	ASK	250	50	5-bit PSSS
868/915 (optional)	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal
	902-928	1000	O-QPSK	250	62.5	16-ary Orthogonal
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal

Modulated using DSSS, 868/915 can also use Parallel Sequence Spread Spectrum [3] ⇒ tradeoff between data rate, energy efficiency and multipath fading resistance at a low electronic complexity.

Overview Application Layer Network Layer Medium Access Control Layer Physical Layer

- Transmit power ≤ 1 mW
- Communication range 10-75m depending on environment and modulation
- Few analog stages, digital circuits whenever possible
- Radio and microcontroller (and sometimes antenna) often integrated in single chip

Questions?

Backup Slides

Beacon frame

Figure 10—Schematic view of the beacon frame and the PHY packet

Data frame

Figure 11—Schematic view of the data frame and the PHY packet

Acknowledgement frame

Figure 12—Schematic view of the acknowledgment frame and the PHY packet

Physical Layer

Command frame

Figure 13—Schematic view of the MAC command frame and the PHY packet

References

- [1] ZigBee Alliance www.zigbee.org
- [2] IEEE Std 802.15.4-2006
- [3] H. Schwetlick and A. Wolf, PSSS Parallel Sequence Spread Spectrum A Physical Layer for RF Communication, 2004
- [4] RFC 3561, http://tools.ietf.org/html/rfc3561

