The Data Science Process

- 1. Identify the question
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Model the data
- 6. Communicate the results

The Data Science Process

- 1. Identify the question
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Model the data
- 6. Communicate the results

The Data Science Process

- 1. Identify the question
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Model the data
- 6. Communicate the results

Identify the question

Identify the question

- Answerable
- Actionable
- Narrow
- Specific

Get the data

Data Sources

- kaggle.com/datasets
- https://registry.opendata.aws
- https://cloud.google.com/bigquery/public-data/
- data.gov
- archive.ics.uci.edu/ml/
- https://github.com/fivethirtyeight/data
- https://www.quandl.com/search
- public APIs (e.g., Twitter, Facebook, Spotify)
- web scraping
- your company

Data Sources

Google Dataset Search

toolbox.google.com/datasetsearch

ProPublica Data Store

propublica.org/datastore

NASA's Open Data Portal

data.nasa.gov

World Bank Open Data

data.worldbank.org

Data Science

Python Libraries for Data Analysis

NumPy NumPy

Pandas

Matplotlib

Scikit-learn

What is Machine Learning?

$$F = C * 1.8 + 32$$

Celsius	0	8	15	22	38
Fahrenheit	32	46.4	59	71.6	100.4

Input: [0, 8, 15 22]

Input: [0, 8, 15 22]

Input: [0, 8, 15 22]

Relationship: ?

Common ML Algorithms

Linear Regression

Logistic Regression

Naïve Bayes

Support Vector Machine

Decision Tree

K-Nearest Neighbor

Input: [0, 8, 15 22]

Relationship:

Input: [0, 8, 15 22]

Relationship: input *1.8 + 32

Input: [0, 8, 15 22]

Relationship: input *1.8 + 32 ← Model

ML Model

input *1.8 + 32

ML Model

New input: **38** → input *1.8 + 32

ML Model

New input: $38 \longrightarrow input *1.8 + 32 \longrightarrow output: 100.4$

DATA

DATA

NEW DATA

PREDICTIONS

Types of Machine Learning

Supervised Unsupervised

Song	Artist	Genre	Liked
Breathing Light	Frameworks	Alternative Rock	Yes
Superior	Silver Maple	Рор	No
Icicle	AK	Рор	No
Jazzin	Flap Jack	R&B	Yes
The Way You Do	Schlomo	R&B	Yes
Mirror Maru	Cashmere	Rock	Yes
Never Too Far	Sorrow	Рор	No

Music

Features → (X)

Song	Artist	Genre	Liked
Breathing Light	Frameworks	Alternative Rock	Yes
Superior	Silver Maple	Рор	No
Icicle	AK	Рор	No
Jazzin	Flap Jack	R&B	Yes
The Way You Do	Schlomo	R&B	Yes
Mirror Maru	Cashmere	Rock	Yes
Never Too Far	Sorrow	Рор	No

Music

Song	Artist	Genre	Liked
Breathing Light	Frameworks	Alternative Rock	Yes
Superior	Silver Maple	Рор	No
Icicle	AK	Рор	No
Jazzin	Flap Jack	R&B	Yes
The Way You Do	Schlomo	R&B	Yes
Mirror Maru	Cashmere	Rock	Yes
Never Too Far	Sorrow	Рор	No

Music

Song	Artist	Genre	Liked
Breathing Light	Frameworks	Alternative Rock	Yes
Superior	Silver Maple	Рор	No
Icicle	AK	Рор	No
Jazzin	Flap Jack	R&B	Yes
The Way You Do	Schlomo	R&B	Yes
Mirror Maru	Cashmere	Rock	Yes
Never Too Far	Sorrow	Рор	No

Supervised

Features	Label
	Yes
	No
	No
	Yes
	Yes
	Yes
	No

Unsupervised

Features	Label

- 1

- J

Supervised

Unsupervised

Regression

Clustering

Classification

Data

The best data has 3 qualities:

- Clean
- Coverage
- Complete

The best data has 3 qualities:

Feature 1	Feature 2	Feature 3	Feature 4
Male	200	1	Yes
Female	316	3	No
F	190	1	No
Male	244		Yes
Male	128	2	Yes
Male		3	Yes
Female	302	2	No

Clean

Feature 1	Feature 2	Feature 3	Feature 4
Male	200	1	Yes
Female	316	3	No
F	190	1	No
Male	244	13	Yes
Male	128	2	Yes
Male		3	Yes
Female	302	2	No

Coverage

Feature 1	Feature 2	Feature 3	Feature 4
Male	200	1	Yes
Female	316	3	No
F	190	1	No
Male	244		Yes
Male	128	2	Yes
Male		3	Yes
Female	302	2	No

Complete

breadth

Feature 1	Feature 2	Feature 3	Feature 4
Male	200	1	Yes
Female	316	3	No
F	190	1	No
Male	244		Yes
Male	128	2	Yes
Male		3	Yes
Female	302	2	No

Prediction	Label
0	1
1	1
0	0
0	1
1	0
0	0

Prediction	Label
0	1
1	1
0	0
0	1
1	0
0	0

Prediction	Label
0	1
1	1
0	0
0	1
1	0
0	0

Prediction	Label
1	1
1	1
0	0
1	1
0	0
0	0

Prediction	Label
1	1
1	1
0	0
1	1
0	0
0	0

Evaluate the Model

Evaluate the Model

Training Data

Test Data

What data should you use? Is it labeled?

Is your data complete, clean, does it have coverage?

Which algorithms should you use?

What level of performance is sufficient?

Make predictions.