Arquitetura de sistemas cloud computing

Compreendendo a Cloud Computing

Prof. Ronierison Maciel

O que veremos hoje?

O que é Cloud Computing?

Visão Geral: laaS, PaaS, SaaS

Introdução

→ O que é Cloud Computing?

Computação em nuvem é o fornecimento de serviços de computação — incluindo servidores, armazenamento, bancos de dados, redes, software, análise e inteligência — pela Internet ('a nuvem') para oferecer inovações mais rápidas, recursos flexíveis e economias de escala.

→ A atual importância

♠ Acessibilidade Global:

Custo-Eficiência:

 Reduz significativamente os custos de infraestrutura de TI para empresas, com modelos de pagamento conforme o uso.

Escala e Flexibilidade:

 Facilita o escalonamento de recursos de acordo com a demanda, adaptando-se rapidamente às necessidades empresariais e de usuários.

♠ Inovação e Agilidade:

 Acelera o desenvolvimento e a implementação de novas aplicações, impulsionando a inovação tecnológica.

Visão Geral: IaaS, PaaS, SaaS

→ Introdução

• Os três principais modelos de serviços de computação em nuvem são laaS, PaaS e SaaS. Cada um oferece diferentes níveis de controle, flexibilidade e gerenciamento, atendendo a necessidades variadas de TI.

Diferenças Básicas

→ Diferenças Básicas: IaaS, PaaS, SaaS

- ♦ laaS:
 - Mais controle sobre a infraestrutura.
 - Usuários gerenciam sistemas operacionais, aplicativos.
 - Exemplo: AWS, Azure.
- PaaS:
 - Foco no desenvolvimento de aplicativos.
 - N\u00e3o requer gerenciamento de hardware ou sistemas operacionais.
 - Exemplo: Google App Engine, Heroku.
- ◆ SaaS:
 - Software entregue por assinatura.
 - Usuários não gerenciam a infraestrutura ou a plataforma.
 - Exemplo: Gmail, Salesforce.

Diagrama Ilustrativo

IaaS (Infrastructure as a Service)

→ Definição

♦ laaS é um modelo de serviço em nuvem que fornece recursos de infraestrutura de TI virtualizados através da internet.

Características do IaaS

- → Escalabilidade:
 - Capacidade de ajustar recursos de forma rápida e eficiente conforme a demanda.
- → Controle sobre a infraestrutura:
 - Os usuários gerenciam sistemas operacionais, aplicativos e dados.
- → Modelo de pagamento conforme o uso:

Os clientes pagam apenas pelos recursos que utilizam.

Vantagens e Desvantagens do IaaS

→ Vantagens:

- Flexibilidade e escalabilidade.
- Redução de custos com infraestrutura física.
- Pagamento conforme o uso.

→ Desvantagens:

- Dependência da estabilidade e segurança do provedor.
- Complexidade na gestão de algumas infraestruturas.

Exemplos de IaaS

- → Amazon EC2:
 - Oferece capacidade de computação escalável na nuvem da Amazon.
- → Google Compute Engine:
 - Fornece máquinas virtuais que rodam em data centers do Google.

Seguindo...

PaaS (Platform as a Service)

→ Definição:

PaaS é um modelo de serviço de computação em nuvem que fornece uma plataforma que permite aos clientes desenvolver, executar e gerenciar aplicações sem a complexidade de construir e manter a infraestrutura geralmente associada ao desenvolvimento e lançamento de um app.

PaaS - Plataform as a Service

Características do PaaS

- → Desenvolvimento simplificado de aplicativos:
 - Ferramentas e suporte para desenvolvimento e teste de aplicativos.
- → Gestão de infraestrutura:
 - A infraestrutura subjacente é gerida pelo provedor, incluindo rede, servidores e armazenamento.
- → Suporte para várias linguagens de programação:
 - Suporta diversas linguagens e frameworks.

Vantagens e Desvantagens do PaaS

Vantagens:

- Redução de custos e tempo de desenvolvimento.
- Facilidade de colaboração.
- Escalabilidade automática.

Desvantagens:

- Menos controle sobre a infraestrutura.
- Dependência do provedor de serviços.
- Possíveis problemas de integração com aplicações e serviços existentes.

Exemplos de PaaS

→ Microsoft Azure:

 Oferece uma ampla gama de serviços de PaaS para desenvolvimento, teste, implantação e gerenciamento de aplicações.

→ Heroku:

Plataforma amplamente usada para desenvolvimento e hospedagem de aplicações web.

Seguindo...

SaaS (Software as a Service)

→ Definição:

SaaS é um modelo de distribuição de software em que aplicações são hospedadas por um provedor de serviços e disponibilizadas aos usuários pela internet.

Características do SaaS

- → Acessibilidade:
 - Acesso a software de qualquer lugar através da internet.
- → Modelo de assinatura:
 - Pagamento com base em assinatura, sem necessidade de compra de licença permanente.
- → Manutenção e atualizações automáticas:
 - O provedor gerencia a infraestrutura, manutenção e atualizações.

Vantagens e Desvantagens do SaaS

→ Vantagens:

- Facilidade de uso e implementação.
- Redução de custos com hardware e software.
- Escalabilidade e integração.

→ Desvantagens:

- Menos controle sobre a infraestrutura e segurança.
- Dependência da conexão com a internet.
- Limitações de personalização.

Exemplos de SaaS

- → Salesforce:
 - Plataforma de gerenciamento de relacionamento com o cliente (CRM).
- → Google Apps (G Suite):
 - Conjunto de ferramentas de produtividade e colaboração.

Comparativo: IaaS vs PaaS vs SaaS

Vantagens	IaaS	PaaS	SaaS
Flexibilidade	Alto	Média	Baixa
Custo Inicial	Variável	Menor	Menor
Manutenção	Pelo usuário	Parcial	Pelo provedor

Desvantagens	IaaS	Paas	SaaS
Complexidade	Alta	Média	Baixa
Personalização	Alta	Média	Baixa
Depe, do Provedor	Menor	Moderada	Alta

Características	IaaS	Paas	SaaS
Controle	Alto	Médio	Baixo
Gestão de Infra	Pelo usuário	Parcialmente pelo user	Pelo provedor
Facilidade de Uso	Baixa	Média	Alta

Resumo

→ Benefícios da laaS

- Major escalabilidade e flexibilidade.
- Redução de custos com infraestrutura física.
- Melhoria na gestão de recursos de TI.

→ Benefícios da PaaS

- Agilidade no desenvolvimento de aplicações.
- Menor preocupação com manutenção de infraestrutura.
- Facilidade na integração e atualização de aplicativos.

→ Benefícios da SaaS

- Acesso simplificado a ferramentas avançadas.
- Redução de custos com licenças de software.
- Colaboração e acessibilidade melhoradas.

Reflexão sobre IaaS, PaaS e SaaS

→ Perguntas para discussão:

- Em que tipo de projeto ou empresa cada modelo seria mais vantajoso?
- ◆ Como a escolha entre laaS, PaaS e SaaS pode impactar o desenvolvimento e a gestão de um projeto de TI?
- Quais são os desafios de migrar de um modelo para outro?

Curiosidade

A plataforma de nuvem mais utilizada no mercado, segundo dados de 2023, é a Amazon Web Services (AWS), que lidera com quase metade do mercado mundial de infraestrutura de nuvem pública. Outros grandes players incluem Microsoft Azure, Alibaba Cloud, e Google Cloud Platform. A AWS registrou receita de US\$ 15,4 bilhões em 2018, com um crescimento de 26,8% em relação ao ano anterior, e suas receitas combinadas para os dois primeiros trimestres de 2019 foram de US\$ 16,1 bilhões, um crescimento de 39% em relação ao primeiro semestre de 2018 [https://kinsta.com/pt/blog/cloud-market-share/]

Vamos praticar!

Fundamentos Cloud Computing

→ Fundamentos

• Os fundamentos da computação em nuvem abrangem os princípios básicos e as características definidoras da tecnologia. Isso inclui a onipresença, que se refere à capacidade de acessar recursos e serviços de qualquer lugar.

→ Elasticidade e Escalabilidade

- A elasticidade e a escalabilidade são também fundamentais, permitindo que os recursos sejam rapidamente ajustados para atender a demandas variáveis, garantindo assim eficiência e custo-benefício.
- ◆ Por fim, os fundamentos também englobam questões de segurança e conformidade, assegurando que os dados e aplicações hospedados na nuvem sejam protegidos e que os provedores de nuvem cumpram com as regulamentações pertinentes.

Mecanismos Cloud Computing

→ Mecanismos

• Os mecanismos de computação em nuvem são as tecnologias e processos subjacentes que permitem a funcionalidade da nuvem. Isso inclui virtualização, que permite a criação de várias máquinas virtuais independentes em um único servidor físico.

→ Outros mecanismos

- Outros mecanismos importantes incluem a automação de processos, que permite a rápida provisão e gerenciamento de recursos, e os sistemas de gerenciamento que monitoram e mantêm o desempenho e a segurança dos recursos da nuvem.
- Além disso, mecanismos de balanceamento de carga são usados para distribuir o tráfego e as demandas de processamento de maneira eficiente entre os recursos disponíveis

Cloud Pública, Privada e Híbrida

→ Cloud Pública:

Refere-se a serviços de computação em nuvem oferecidos por provedores externos, acessíveis através da internet. É ideal para empresas que buscam escalabilidade e custo-benefício, pois os recursos são compartilhados entre vários usuários.

→ Cloud Privada:

♦ É uma infraestrutura de nuvem dedicada a uma única organização. Oferece maior controle e segurança, sendo uma escolha popular para empresas que lidam com dados sensíveis ou têm requisitos específicos de conformidade.

→ Cloud Híbrida:

Combina elementos de clouds públicas e privadas, permitindo que as empresas aproveitem a flexibilidade e a economia de custos da nuvem pública, mantendo operações críticas e dados sensíveis em uma nuvem privada.

Load Balancer

→ Load Balancer

Um Load Balancer distribui automaticamente o tráfego de entrada entre vários servidores ou recursos, ajudando a evitar sobrecargas em qualquer servidor individual e melhorando a eficiência e a disponibilidade dos serviços. É essencial para sistemas de alta disponibilidade e para gerenciar picos de tráfego.

2023

Empregabilidade nas Áreas de Cloud Computing 2023

Fonte: Tech Target - Cloud Computing

Cloud Security

Cloud Security

- A segurança na computação em nuvem envolve proteger dados, aplicações e infraestruturas associadas a ameaças cibernéticas. Inclui a implementação de políticas, tecnologias e controles rigorosos para proteger dados, aplicações e a infraestrutura associada.
- As estratégias comuns incluem criptografia de dados, autenticação multifator, firewalls, e monitoramento contínuo para identificar e mitigar ameaças.

Mecanismos Orientados a Dados

→ Mecanismos Orientados a Dados

- Estes mecanismos estão focados em gerenciar e processar grandes volumes de dados dentro de ambientes de nuvem. Incluem tecnologias como bancos de dados distribuídos, armazenamento de dados em nuvem, e ferramentas de análise de dados.
- Permitem que as organizações armazenam, processam e analisam grandes conjuntos de dados de maneira eficiente e escalável, aproveitando os recursos da nuvem.

Gerenciamento de Recursos e Automação

Em um ambiente de nuvem, o gerenciamento eficiente de recursos e a automação são cruciais. Isso inclui a alocação dinâmica de recursos, automação de processos de TI e o uso de orquestração para gerenciar complexos workflows de aplicações.

Serviços Baseados em Containers

Os containers permitem que aplicações sejam empacotadas com todas as suas dependências, facilitando a implantação e a portabilidade entre diferentes ambientes de nuvem. São fundamentais para estratégias de desenvolvimento ágeis e DevOps.

Segurança em Cloud Computing

→ Tipos de Serviços e Exposição de Dados:

A computação em nuvem oferece uma variedade de serviços, aumentando a exposição de dados e, consequentemente, os riscos de segurança associados. Especialmente em plataformas laaS, há uma exposição significativa devido à oferta direta das propriedades mais notáveis da nuvem.

→ Ameaças Físicas e Malware:

Ataques físicos e colapsos de equipamentos são considerados riscos de segurança significativos. Além disso, a infestação de malware na arquitetura de computação em nuvem é uma das maiores ameaças, muitas vezes devido a configurações inadequadas e falta de proteção no nível do software

→ Ataques Internos e Externos:

A segurança em cloud pode ser comprometida tanto por ameaças internas (como funcionários mal-intencionados) quanto por atacantes externos. O acesso não autorizado a informações sensíveis pode levar a violações de dados significativas

Segurança em Cloud Computing

→ Desafios de Armazenamento e Backups:

♦ É essencial que os provedores de nuvem garantam que os dados sejam regularmente respaldados e que todas as medidas de segurança sejam tomadas. No entanto, frequentemente os dados de backup são encontrados em formatos não criptografados, expondo-os a acessos indesejados.

→ Sequestro de Serviços:

• Usuários não autorizados podem obter controle ilícito sobre serviços autorizados, como hackear software, explorar falhas ou realizar fraudes.

→ Problemas de Segurança em Modelos de Implantação:

Diferentes modelos de implantação de nuvem, como PaaS, apresentam desafios únicos de segurança. Por exemplo, a segurança em PaaS depende fortemente da rede e da confiabilidade da plataforma em si, além da segurança das aplicações que nela são hospedadas.

Segurança em Cloud Computing

→ Vulnerabilidades em APIs e Interfaces:

♦ APIs e interfaces fracas podem colocar as empresas em risco de vulnerabilidades de segurança, incluindo problemas de anonimato, rastreabilidade e escalabilidade

→ Segurança na Infraestrutura:

♦ Em ambientes como PaaS, é difícil para os desenvolvedores de software acessarem as camadas subjacentes, tornando-se responsabilidade dos provedores proteger tanto a infraestrutura quanto os serviços de aplicativos.

→ Problemas de Pooling de Recursos:

 O agrupamento de recursos pode levar a questões como vazamento de dados e exposição da legitimidade das máquinas. O acesso não autorizado ocorre como resultado do compartilhamento de recursos pela mesma rede.

Deploy de uma aplicação usando o EBS

Projeto