FIN2010 Financial Management Lecture 16: Project Evaluation Criteria

Course Outline

- Financial Institutions
- Time Value of Money
- Bond and Stock Valuation
- Risk and Return
- Derivatives
- Project Budgeting
 - Project Evaluation Criteria (Lecture 16)
 - Cash Flows of a Project (Lecture 17,18)
 - Project Analysis (Lecture 19)
- Capital Structure
- Personal Investment

Example of Capital Budgeting

- Project: Open a restaurant in CUHK (SZ)
- Question: can I make money?
 - ... but what exactly does "make money" mean? Most of the projects require investment at the beginning and only generate cash flows in the future.
 - Today: how do we evaluate the profitability or a project with given cash flow?
 - Lecture 16 & 17: what is the cash flow of the project?
 - Lecture 18: what are the risks of the project and how do we account for the risks?

A Simulation Game

- The Founder (https://thefounder.biz/play/)
 - To experience what is like to run a company

- It is very likely that you go bankrupt very quickly the first time you play because you do not know how to make good decisions
- Lecture 16-21: how should we make decisions in a firm?

Agenda

- Evaluating a project
 - Net present value
 - Payback period
 - Discounted payback period
 - Internal rate of return
 - Profitability index
- Multiple projects
 - Mutually exclusive projects
 - Capital rationing

Our Case Study

• Suppose we plan to rent a spot on campus and provide food service. We have two choices. The cost of capital is 12% per year.

Time	Coffee shop CF	Sandwich shop CF
0	(20,000)	(20,000)
1	15,000	6,000
2	15,000	7,000
3	13,000	6,000
4	3,000	6,000

Agenda

- Evaluating a project
 - Net present value
 - Payback period
 - Discounted payback period
 - Internal rate of return
 - Profitability index
- Multiple projects
 - Mutually exclusive projects
 - Capital rationing

NPV—Decision Rule

- If the NPV is non-negative, accept the project
- A non-negative NPV means that the project is expected to add value to the firm and will therefore increase the wealth of the owners.
- Since our goal is to increase owner wealth, NPV is a direct measure of how well this project will meet our goal.

NPV—Computation

Time	Time Discount	Coffee shop CF	PV(CF)	Sandwich shop CF	PV(CF)
0	1	(20,000)	(20,000)	(20,000)	(20,000)
1	1.12-1=0.893	15,000	13,393	6,000	5,357
2	1.12-2=0.797	15,000	11,958	7,000	5,580
3	1.12-3=0.712	13,000	9,253	6,000	4,271
4	1.12-4=0.636	3,000	1,907	6,000	3,813
NPV			16,510		(979)

Based on the NPV decision rule, we should

- Accept the coffee shop project
- Reject the sandwich shop project

NPV Profile for the Project

NPV profile: a graph that illustrates a project's NPV against various discount rates, with the NPV on the y-axis and the cost of capital on the xaxis.

When future cash flows (CF1, CF2...) are all positive: Conditional on future cash flows, the higher discount rate, the lower NPV.

NPV—Pros and Cons

Advantages

- Easy to understand
- Accounts for the time value of money
- Offers information on the valued added by a project to the firm

Disadvantages

- Requires estimation of cost of capital
- May not include managerial options embedded in the project (we will discuss this in lecture 19)

Payback Period—Definition

How long does it take to get the initial cost back in a nominal sense?

- To compute,
 - Estimate the cash flows
 - Subtract the future cash flows from the initial cost until the initial investment has been recovered (i.e., the first time the cumulative CF turns positive)
- Decision Rule Accept if the payback period is less than some preset limit

Payback Period—Computation

Suppose we want to recover the cost within 2 years.

Time	Coffee shop CF	Cumulative CF	Sandwich shop CF	Cumulative CF
0	(20,000)	(20,000)	(20,000)	(20,000)
1	15,000	(5,000)	6,000	(14,000)
2	15,000	10,000	7,000	(7,000)
3	13,000	23,000	6,000	(1,000)
4	3,000	26,000	6,000	5,000

- Coffee shop's payback period = less than 2 years
- Sandwich shop's payback period = less than 4 years
- We should accept the coffee shop and reject the sandwich shop according to the payback period rule!

Payback Period - Pros and Cons

Advantages

- Easy to understand
- No need to forecast long term cash flows

Disadvantages

- Ignores the time value of money
- Requires an arbitrary cutoff point
- Ignores cash flows beyond the cutoff date
- Biased against long-term projects, such as research and development

Discounted Payback Period—Definition

 Compute the present value of each cash flow and then determine how long it takes to pay back on a discounted basis

 Decision Rule - Accept the project if it pays back on a discounted basis within the specified time

Computing Discounted Payback for the Project

Suppose we want to recover the cost within 2 years.

	Coffee shop		Cumulative	Sandwich		Cumulative
Time	CF	PV(CF)	PV	shop CF	PV(CF)	CF
0	-20,000	-20,000	-20,000	-20,000	-20,000	-20,000
1	15,000	13,393	-6,607	6,000	5,357	-14,643
2	15,000	11,958	5,351	7,000	5,580	-9,063
3	13,000	9,253	14,604	6,000	4,271	-4,792
4	3,000	1,907	16,510	6,000	3,813	-979

- Coffee shop's **discounted payback period** = less than 2 years
- Sandwich shop's discounted payback period = more than 4 years
- We should accept the coffee shop and reject the sandwich shop according to the discounted payback period rule!

Discounted Payback Period—Pros and Cons

Advantages

- Includes time value of money
- Easy to understand
- Does not accept negative NPV projects when all future cash flows are positive

Disadvantages

- May reject positive NPV projects
- Requires an arbitrary cutoff point
- Ignores cash flows beyond the cutoff point
- Biased against long-term projects, such as R&D and new products

Internal Rate of Return (IRR)—Definition

- Definition: IRR is the return that makes the NPV = 0
- Decision Rule Accept the project if the IRR is no less than a required rate of return
 - This required rate of return is often called the hurdle rate
- This is the most important alternative to NPV. It is often used in practice and is intuitively appealing.

IRR—Computation

- Computers use a trial-and-error process to find IRR
 - Guides on Excel and financial calculator at the end

 We should accept the coffee shop and reject the sandwich shop according to the IRR rule!

IRR—Caveats

- NPV and IRR will generally give us the same result.
 - Given the required rate of return R, $NPV > 0 \Leftrightarrow IRR > R$
- However, if we have unconventionally cash flows, there might be multiple IRRs or no IRR.
 - Conventional cash flows: outflow first (investment), inflow later (profit).
 In this case, IRR is unique.
 - Unconventional cash flows: when cash flows switch signs more than once, IRR may not be unique!
 - Maximum possible IRRs = Number of times CFs change signs

Example—Multiple IRRs

 Consider a project with negative cash flow at the end

Time	CF
0	(90,000)
1	132,000
2	100,000
3	-150,000

• $IRR_1 = 10.11\%$, $IRR_2 = 42.66\%$

Discount Rate

Which IRR should we use?

- None!
- When evaluating a project with non-conventional cash flow, you should not use IRR at all.
 - IRR tries to answer the question: what is the rate of return given my initial investment and future profits.
 - If the cash flows do not fit this pattern, then IRR becomes difficult to interpret.

IRR—Pros and Cons

Advantages

- Generates a rate of return (so does not require you to estimate a required of return)
- Easy to compare between projects
- Accounts for the time value of money
- Closely related to NPV, often leading to identical decisions

Disadvantages

- Difficult to calculate
- Does not offers information on the valued added of a project
- May have multiple IRRs

Profitability Index—Definition

- Definition: PI = NPV / Initial Investment + 1
- Decision rule Accept the project if PI is no less than 1
 - This is the same as NPV≥0
- Measures the <u>benefit per unit cost</u>, based on the time value of money
- A profitability index of 1.1 implies that for every \$1 of investment, we create an additional \$0.10 in value
- This measure can be very useful in situations in which we have limited capital

Profitability Index—Computation

Time	Coffee shop CF	PV(CF)	Sandwich shop CF	PV(CF)
0	(20,000)	(20,000)	(20,000)	(20,000)
1	15,000	13,393	6,000	5,357
2	15,000	11,958	7,000	5,580
3	13,000	9,253	6,000	4,271
4	3,000	1,907	6,000	3,813
NPV		16,510		(979)
Investment		20,000		20,000
PI		1.8255		0.9511
		$=\frac{16510}{20000}+1$		$=\frac{-979}{20000}+1$

Based on the profitability index decision rule, we should

- Accept the coffee shop project
- Reject the sandwich shop project

Profitability Index—Pros and Cons

Advantages

- Closely related to NPV, generally leading to identical decisions
- Easy to understand and communicate
- May be useful when available investment funds are limited

Disadvantages

- Does not provide information on value creation
- Cannot be used on project with unconventional cash flows

Summary of Decisions for the Project

Criteria	Benchmark	Coffee shop	Sandwich
Net Present Value	0	16510	-979
Payback Period	2	<2	<4
Discounted Payback Period	2	<2	>4
Internal Rate of Return	12%	54.7%	9.6%
Profitability Index	1	1.83	0.95

Survey evidence on the use of capital budgeting methods

Percent of CFOs who always or almost always use a given technique

Fig. 2. Survey evidence on the popularity of different capital budgeting methods. We report the percentage of CFOs who always or almost always use a particular technique. IRR represents internal rate of return, NPV is net present value, P/E is the price-to-earnings ratio, and APV is adjusted present value. The survey is based on the responses of 392 CFOs.

• Source: Graham, J.R. and Harvey, C.R. (2001) The Theory and Practice of Corporate Finance: Evidence from the Field. Journal of Financial Economics, 60, 187-243.

Agenda

- Evaluating a project
 - Net present value
 - Payback period
 - Discounted payback period
 - Internal rate of return
 - Profitability index
- Multiple projects
 - Mutually exclusive projects
 - Capital rationing

Mutually Exclusive Projects

- So far we discussed whether to accept one single project
- Some projects are mutually exclusive
 - If you choose one, you can't choose the other
 - E.g., you can choose to attend university at either CUHK (Shenzhen) or Southern University of Science and Technology, but not both
- Intuitively, you would use the following decision rules:
 - NPV choose the project with the higher NPV
 - IRR choose the project with the higher IRR
 - PI choose the highest PI
- When the rules yield different rankings, the NPV decision rule should be followed. Potential reasons for conflict:
 - Scale of Investment
 - Cash-flow Pattern

Why Disagreement—Scale Difference

Compare a small (S) and a large (L) project. R=10%

	NET CAS	H FLOWS
END OF YEAR	Project S	Project L
0	-\$100	-\$100,000
1	0	0
2	\$400	\$156,250
	IRR: 100% NPV: \$231 PI: 3.31	25% \$29,132 1.29

- Based on your intuition, which one should you choose?
 - L is better because it creates more value for the investment opportunity.
 IRR and PI methods fail to consider the magnitude of projects

Why Disagreement—Different Cash Flow Patterns

Year	Investment A	Investment B
0	-\$100	-\$100
1	50	20
2	40	40
3	40	50
4	30	60

IRR rule: choose A.

NPV rule: decision varies with r

- If the cost of capital is [0,11.1%], choose B
- If the cost of capital = 11.1%, indifferent between A and B
- If the cost of capital > 11.1%, choose A

What should We Do with Conflicting Results?

- Always follow the NPV rule for mutually exclusive projects!
 - Goal: maximize the firm's value
 - Therefore, we should choose the 1 project that adds the most value
- Why does IRR rule sometime differ from the NPV rule?
 - IRR methods assume reinvestment rate at IRR
 - Therefore, different projects have different IRRs
 - NPV methods assume reinvestment rate at the required rate of return
 - The discount rate is same for all projects in a firm

Year	Investment A	Investment B
0	-\$100	-\$100
1	50	20
2	40	40
3	40	50
4	30	60
IRR	24%	21%

Capital Rationing

- Capital Rationing occurs when a constraint (or budget ceiling)
 is placed on the total size of capital expenditures during a
 particular period.
 - Example: a company only has \$32,500, and can take any combination of the following 8 projects:

Project	Investment	IRR	NPV	PI
А	500	18%	50	1.1
В	5000	25%	6500	2.3
С	5000	37%	5500	2.1
D	7500	20%	5000	1.67
Е	12500	26%	500	1.04
F	15000	28%	21000	2.4
G	17500	19%	7500	1.43
Н	25000	15%	6000	1.24

Choosing Projects with Highest NPVs

Project	Investment	IRR	NPV	PI
F	15000	28%	21000	2.4
G	17500	19%	7500	1.43
В	5000	25%	6500	2.3
Н	25000	15%	6000	1.24
С	5000	37%	5500	2.1
D	7500	20%	5000	1.67
Е	12500	26%	500	1.04
Α	500	18%	50	1.1

Projects ranked according to NPV

Budget: \$32,500

- Projects F and G have highest NPVs and they are chosen
- Increase in shareholder's value: \$28,500

Choosing Projects with Highest IRRs

Project	Investment	IRR	NPV	PI
С	5000	37%	5500	2.1
F	15000	28%	21000	2.4
Е	12500	26%	500	1.04
В	5000	25%	6500	2.3
D	7500	20%	5000	1.67
G	17500	19%	7500	1.43
Α	500	18%	50	1.1
Н	25000	15%	6000	1.24

Projects ranked according to IRR

Budget: \$32,500

- Projects C, F and E have highest IRRs and they are chosen
- Increase in shareholder's value: \$27,000

Choosing Projects with Highest Pls

Project	Investment	IRR	NPV	PI
F	15000	28%	21000	2.4
В	5000	25%	6500	2.3
С	5000	37%	5500	2.1
D	7500	20%	5000	1.67
G	17500	19%	7500	1.43
Н	25000	15%	6000	1.24
Α	500	18%	50	1.1
Е	12500	26%	500	1.04

Projects ranked according to PI

Budget: \$32,500

- Projects F, B, C and D have highest PIs and they are chosen
- Increase in shareholder's value: \$38,000

Horserace of Different Selection Criteria

Method	Projects Selected	Value Added
PI	F, B, C, D	\$38,000
NPV	F, G	\$28,500
IRR	C, F, E	\$27,000

• PI generates the greatest increase in shareholder wealth when a limited capital budget exists for a single period.

Summary

- Net Present Value
- Payback Period
- Discounted Payback Period
- Internal Rate of Return
 - Multiple IRR problem
- Profitability Index
- Mutual exclusive projects
 - Always use NPV!
- With limited capital
 - Sort by PI

Evaluating a single project

When dealing with multiple projects

Next Time—Cash Flows of a Project I

- Definition and principles
- Incremental cash flows
 - Definition
 - Relevant considerations
 - Formula
- Example-HomeNet