

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUCAÇÃO PLANO DE ENSINO

Nome do Componente Curricu Introdução à Álgebra Linear	Código: MTM 112 Turmas 81, 85, 86						
Nome e sigla do departamento: DEMAT	Unidade acadêmica: ICEB						
Nome do docente: Isaque Viza de Souza							
Carga horária semestral 60 horas	Carga horária semanal teórica 4 horas	Carga horária semanal prática					
'							
Data de aprovação na assembleia departamental:							
Ementa: Matrizes; Sistemas Lineares; Determinantes. Espaços Vetoriais. Transformações Lineares; Diagonalização.							
Conteúdo programático:							

1-MATRIZES

Definição; Operações com matrizes e suas propriedades; Matrizes: Identidade, transposta, simétrica, antissimétrica, ortogonal, idempotente, nilpotente e triangular.

2-DETERMINANTES

Permutações, transposições; Desenvolvimento por cofatores; Matriz adjunta; Propriedades do determinante.

3-INVERSÃO DE MATRIZES

Matriz inversa, matrizes singulares; Propriedades da matriz inversa; Operações elementares sobre matrizes; Inversão de matrizes por meio de operações elementares.

4-SISTEMAS DE EQUAÇÕES LINEARES

Definição; Tipos de Sistemas; Sistemas Equivalentes; Resolução de Sistemas usando operações elementares; Discussão de Sistemas.

5-ESPAÇOS VETORIAIS

Definição; Subespaços vetoriais; Combinação, gerador de um espaço; Dependência e Independência linear; Bases e dimensão; Vetor-coordenador e matriz-coordenada de um vetor; Espaço linha, espaço coluna; Posto de uma matriz; Produto interno em um espaço vetorial (desigualdade de Cauchy-Schwarz); Comprimento e ângulo.

6-TRANSFORMAÇÕES LINEARES

Definição; Operador linear; Funcional linear; Propriedades das transformações lineares; Núcleo e imagem de uma transformação; Matrizes de transformações lineares (L(IRⁿ, IR^m)= M_{mxn}(IR)); Mudança de base; Semelhança (Matrizes semelhantes).

7-DIAGONALIZAÇÃO

Valor característico de uma matriz; Vetor característico de uma matriz; Polinômio característico, equação característica; Espaço característico; Diagonalização.

OBJETIVOS

Como objetivos gerais, espera-se que o aluno desenvolva ao longo do curso a habilidade em resolução de sistemas lineares e a compreensão dos conceitos em espaços vetoriais de dimensão finita. Espera-se também que o aluno compreenda o conceito de transformações lineares entre estes espaços vetoriais, bem como o processo de diagonalização.

METODOLOGIA

- 1) Serão promovidas discussões e interações no ambiente virtual de aprendizagem;
- 2) Aulas expositivas que serão gravadas e disponibilizadas para todos os estudantes;
- 3) Indicação de material extra com a finalidade de ampliar as discussões das aulas (aulas disponíveis na plataforma Youtube podem ser utilizadas como material de apoio);
- 4) Desenvolvimentos de atividades e dinâmicas no ambiente virtual de aprendizagem;

RECURSOS UTILIZADOS

- 5) Ferramentas dos ambientes virtuais de aprendizagem adotados, Moodle e Google Sala de Aula:
- 6) Videoaulas assíncronas disponibilizadas semanalmente e sessões de atendimento síncronas agendadas por e-mail (exceção das semanas de exame);

AVALIACÕES

Nesta disciplina serão distribuídos **10 pontos** na forma de **quatro avaliações assíncronas** realizadas via plataforma Moodle. São necessários **6 pontos para aprovação** na disciplina.

Exame 1: 1,5 pontos Exames 2 e 3: 2,5 pontos Exame 4: 3,5 pontos

Os exames versarão sobre o conteúdo das semanas posteriores ao último exame (se houver) até o conteúdo da última aula anterior ao exame.

DESTAQUES:

- 1) A utilização de meios ilícitos para realização das atividades elencadas acima acarretará a perda dos pontos correspondentes às mesmas para TODAS as partes envolvidas e passível de processo administrativo disciplinar conforme disposto na Resolução CUNI nº 2060 Anexo 0.
- 2) Exame Especial O exame especial será no dia 11/01/2022. A atividade avaliativa será disponibilizada na plataforma Moodle na data prevista. O conteúdo do exame será todo o conteúdo trabalhado na disciplina.
- 3) As avaliações serão disponibilizadas no Moodle ao meio-dia, na data estabelecida no cronograma. O aluno irá dispor de um prazo de 36 horas para iniciar o exame. Uma vez iniciado o exame, este deve ser finalizado em até 3 horas. Cada aluno pode realizar **apenas uma tentativa** por exame.
- 4) Problemas técnicos e/ou de saúde que impossibilitem a realização dos exames dentro dos prazos pré-estabelecidos devem ser informados ao professor por e-mail com as devidas justificativas.

Resolução CEPE 2880 de 05/2006: É assegurado a todo aluno regularmente matriculado com frequência mínima de setenta e cinco por cento e média inferior a seis, o direito de ser avaliado por Exame Especial.

	CRONOGRAMA			
SEMANA 1	Apresentação do curso;			
20/09 a 24/09	Matrizes;			
SEMANA 2	Sistemas Lineares: Gauss-Jordan, matrizes equivalentes			
27/09 a 01/10	e sistemas lineares homogêneos;			
SEMANA 3	EXAME 1: 05/10/2021			
04/10 a 08/10	Inversão de matrizes: métodos e propriedades;			
SEMANA 4	Inversão de matrizes: métodos e propriedades;			
13/10 a 15/10	Determinantes: definição, método dos cofatores;			
SEMANA 5	Determinantes: propriedades, regra de Cramer;			
18/10 a 22/10				
SEMANA 6	EXAME 2: 26/10/2021			
25/10 a 29/10	Espaços Vetoriais: combinações lineares, independência linear;			
SEMANA 7	Espaços Vetoriais: subespaços, bases e dimensão;			
03/11 a 05/11				
SEMANA 8	Espaços vetoriais abstratos;			
08/11 a 12/11	Espaço Linha e Espaço Coluna: posto, nulidade, imagem;			
SEMANA 9	Ortogonalidade: Produto interno; bases ortogonais e ortonormais;			
16/11 a 19/11				
SEMANA 10	EXAME 3: 23/11/2021			
22/11 a 26/11	Transformações Lineares: definição, exemplo e propriedades;			
SEMANA 11	Transformações Lineares: núcleo e imagem;			
29/11 a 03/12	Transformações Lineares: mudança de base;			
SEMANA 12	Transformações Lineares: operadores lineares, semelhança;			
06/12 a 10/12	Diagonalização de Matrizes: autovalores e autovetores;			
SEMANA 13	Diagonalização de Matrizes: polinômio característico, diagonalização;			
13/12 a 16/12	EXAME 4: 14/12/2021			
SEMANA 14	DÚVIDAS +			
SEMANA 14 03/01/22 a 07/01/22				
	EXAME ESPECIAL PARCIAL: 04/01/22			
SEMANA 15	EXAME ESPECIAL TOTAL: 11/01/2022			
10/01/22 a 14/01/22				

Bibliografia básica:

- 1. KOLMAN, Bernard; HILL, David Ross, Introdução à Álgebra Linear com Aplicações, 8ª edição, disponível em *E-books Minha Biblioteca* via https://bit.ly/2VGyuuG
- 2. David Poole, Álgebra Linear: Uma Introdução Moderna tradução da 4a ed, 2a ed., Disponivel em *E-books Minha Biblioteca* via https://bit.ly/3olpkjE
- 3. Álgebra Linear com Aplicações, 10th Edition, ANTON, Howard; RORRES, Chris, Disponível em *E-books Minha Biblioteca* via https://bit.ly/36OAXcS

Bibliografia complementar:

- 1. SANTOS, Reginaldo J. Introdução à Álgebra Linear Imprensa Universitária da UFMG, 2013. Disponibilizado pelo autor em https://bit.ly/3qvxjwh
- 2. BOLDRINI, José Luiz, Álgebra Linear 3a ed. Sao Paulo: Harper & Row do Brasil.