Data Structures

R. K. Ghosh

IIT Bhilai

Data structures: Computational Model

Turing Machine

- ▶ A. M. Turing gave an abstract definition of a computation using abstract machine called TM.
- ▶ A TM manipulates a string of 0s, 1s and spaces on a strip of tape according a table of rule (program book).
- ▶ There is control (automaton):
 - It has a knowledge of its current state.
 - It examines each cell on the tape at a time.
 - It consults a program book which tells it what to do in the current state.

Turing Machine

- After examining current input, RW-head of TM either moves left or right.
- Changes its state as specified by the program.

Turing Machine

- ▶ **Initial conditions**: entire input string *w* is present on the tape surrounded by infinite number of blanks.
- ▶ Final state: if TM halts in final state then it accepts w
- ightharpoonup TM halts in a non final state w is rejected.
- ▶ In general a transition is expressed as: $\delta(q, X) = (p, Y, D)$,
 - q: current state,
 - X: TM's RW-head at tape symbol X
 - Y: Output symbol, RW-head erases X and replaces it by Y.
 - p: New state
 - D: could be R or L specifying movement of RW-head

Computation versus Language

- ► Calculation: Takes an input value and outputs a value.
- ▶ Language: A set of string meeting certain criteria.
- So, language for a calculation basically a set of strings of the form "<input, output>", where output correspond to value calculated from the input.

Computation versus Language

Membership question: Verifying a solution <13+12, 25> belongs to L_{add} or not?

Random Access Machine

- Disconnect between a TM and real computer is sequential tape vs random access memory.
- A RAM is a simplified abstraction of real world computer
 - It has an unbounded memory and capable of storing an arbitrarily large integer in each memory cell.
 - A RAM can access content of any random memory cell.
 - However, to access a random cell, RAM needs to read the address for the cell in a different register.
 - For description of algorithms it is practical to use RAM, since it is closest to a real program.

RAM Model

- Instructions are executed sequentially.
- Impractical to define instructions of each machine, and their corresponding costs.
- Therefore, a set of commonly found instructions in a computer are assumed:
 - Arithmetic: ADD, SUB, MULTI, DIV,
 - Data movement: LOAD, STORE, WRITE, READ
 - Control: JUMP, JGTZ, JZERO, HALT.
- Assume each instruction takes one unit of time.
- ▶ A RAM program is not stored in memory of RAM, so instructions cannot be modified.

RAM Model

RAM Model

- Programs of RAM not stored in the memory, so cannot be modified.
- ightharpoonup All computation take place in register r_0 (accumulator)
- An operand can be one of the following type:
 - Immdiate Addressing (= i): integer i itself.
 - Direct Addressing (i): c(i) contents of register r_i .
 - Indirect Addressing (*i): c(c(i)), if c(c(i)) < 0, machine halts.
- ▶ Initially c(i) = 0 for all $i \ge 0$.
- ▶ LC (PC) is set to first instruction of program *P*.
- After execution of k instruction LC = k + 1, automatically unless k instruction is JUMP, JGTZ, or JZERO.

Meaning of an Instruction & Program

- ▶ Value v(a) of an operand a is defined as follows:
 - -v(=i)=i, v(i)=c(i), v(*i)=c(c(i)).
- Program is essentially defines a mapping of input tape to output tape.
- Since, program may not halt for some input, the mapping is only partial.

An Example

Pseudo Code

For algorithm that accepts strings (with end marker 0) having equal number of 1s and 2s.

```
begin d=0\,; read x; while x\neq 0 do begin // 0 is used as endmarker if x\neq 1 then d=d-1\,; else d=d+1\,; read x; end; if d==0 then write 1 end
```

An Example

RAM Program

```
LOAD
                =0
                                                 JUMP
                                                          endif
                         d = 0
                2
       STORE
                                                 LOAD
                                                          2
                                           one:
                                                                 else d = d + 1
       READ
                         read x
                                                 ADD
                                                           =1
while:
       LOAD
                                                 STORE
                         while x \neq 0 do
                endwhile
                                                                 read x
       JZERO
                                          endif:
                                                 READ
       LOAD
                                                 JUMP
                                                          while
                         if x \neq 1
       SUB
                =1
                                      endwhile:
                                                 LOAD
                                                          2
       JZERO
                                                 JZERO
                                                          output if d = 0
                one
                                                                 then write 1
       LOAD
                                                 HALT
                         then d = d - 1
       SUB
                =1
                                        output:
                                                 WRITE
                                                           =1
       STORE
                                                 HALT
```

Assignment #2

Questions (Full Marks 35)

In each case you have to provide the theoretical solution in LATEX. All programs should be submitted as per instructions provided in the course website.

- Give a RAM Program for computing n^k , using squaring each time. [15]
- Write a TM program for doubling of an input consisting of k consecutive 1s. Replace the input with 2k consecutive 1s. [10]
- Write a TM program that accepts a binary number if it is divisible by 3. [10]

Complexity

- ► Two important measures of an algorithm: Running time and Space requirement.
- Worst case time complexity: For a given input size, the complexity is measured as the maximum of time taken over all possible inputs of that size.
- ► Average case time complexity: Equals to average of the time complexity over all input of a given size.
- Average case complexity is difficult to determine.
 - It requires assumptions about distribution of inputs.
 - These assumption may at times won't be mathematically tractable.

Notion of Running Time

- ➤ Sorting of 1000 elements takes more time than sorting of 3 elements.
- Even the same algorithm may take different amounts of time for the different inputs of same size.
 - Data shifting is not required in insertion sort for a sorted sequence.
 - But required for a reverse sorted sequence.

Example

for
$$(i = 0; i < n; i++)$$
 sum $+= a[i];$

Time Complexity

Description	Times executed
Initialization step	1
Comparison step	n+1
Addition and assignment	2n
Increment step	n
Total	4n + 2.

Example

```
for(i = 0; i < n; i++)
  for(j = 0; j < n; j++) sum += b[i][j];</pre>
```

Time Complexity

Description	Times executed
Initialization	1 + n (1 for i , n for j)
Comparison step	(n+1) + n(n+1)
Addition and assignment	$2n \times n$
Increment step for first loop	n
Increment step for second loop	n^2
Total	$4n^2 + 4n + 2$

Example

```
for (i = 0; i < n; i++)
  for (j = i + 1; j < n; j++)
    if (a[i] < a[j]) swap(a[i], a[j]);</pre>
```

Time Complexity

- ► The input is *n*-element array, so code will result in:
 - n-1 comparisons for a[0]
 - n-2 comparisons for a[1], and so on.
 - In general, n-i-1 comparisons for a[i]
- ► Therefor, total number of comparisons = $\sum_{i=0}^{n-1} (n-i-1)$ or $\sum_{i=1}^{n-1} i = n(n-1)/2$

Comparison of Relative Execution Speeds

Suppose an algorithm A takes time 5000n and another algorithm B takes time 1.1n

Execution Speeds

Input	Algorithm A	Algorithm B	
n	5000n	1.1 ⁿ	
10	50000	5500	
100	500,000	13,781	
1000	5,000,000	2.5×10^{41}	
1,000,000	5.10 ⁹	4.8.10 ⁴¹³⁹²	

Comparing Algorithms

The largest Input Size for a Problem

Find the largest problem size n that can be solved in 1 minute by each of the four algorithms with different running times (in microsconds): (a) $\log n$, (b) \sqrt{n} , (c) n, (d) n^2 , and (e) 2^n

- (a) $\log n = 6 \times 10^7$, so $n = 2^{6*10^7}$
- (b) $\sqrt{n} = 6 \times 10^7$, so $n = 36 * 10^{14}$
- (c) $n = 6 \times 10^7$, so nothing to solve here.
- (d) $n^2 = 6 \times 10^7$, so $n = \sqrt{n^2} = 7745$
- (e) $2^n = 6 \times 10^7$, so $n = \log 6 \times 10^7 = 58$

Influence of Machine Speeds

Execution Speeds

Complexity	Size of the Largest Problem Instance in 1 hour		
	With M1	With M2	With M3
n	N1	100N1	1000N1
n^2	N2	10 N2	31.6 N2
n^3	N3	4.64 N2	10 N2
2^n	N4	N4 + 6.64	N4 + 9.97
3^n	N5	N5 + 4.19	N5 + 6.29

- For 2^n case, in 1hr = N4 with slow computer
- For fast computer $100 \times 2^{N4} = 2^{Nx}$, $Nx = N4 + (\log 100 / \log 2) = N4 + 6.64$

Comparing Running Times

- ▶ Algorithms with exponential running times are inefficient and can solve only small problems of small sizes.
- Constant and logarithmic running times are most efficient.
- Sublinear and linear runing time are also very good.
- In general, algorithm with running times in polynomial of input size are considered efficient.
- Increasing machine speed does not help in scaling up.
- Therefore, the important measure of efficiency of a program is:
 - How the number of steps (time) grows with the input size?

Big Oh Notation

Definition of Big Oh

- Growth function is defined by Big-O notation.
- f(n) is **big-Oh** of g(n), if

$$g: R \to R$$

 $- f: R \to R,$

and there exist positive constants c > 0, and $n_0 \in N$ such that

$$f(n) \le cg(n)$$
, for all $n \ge n_0$

Big Oh is Upper Bound

- f(n) is bounded above by g(n) from some point onwards. where
 - g(n) is formulated as a simpler function.
 - g(n) exhibits same trend in growth as f(n).
- ▶ Since we are interested for large n, it is alright if $f(n) \le cg(n)$ for $n > n_0$.

Example

$$f(n) = n^2 + 2n + 1 \le n^2 + 2n^2$$
, if $n \ge 2$
= $3n^2$

Therefore, for c=3 and $n_0=2$, $f(n) \le cn^2$, whenever $n \ge n_0$.

Smallest Simple Function for Big Oh

- ▶ If f(n) is $O(n^2)$, is it also $O(n^3)$?
 - Since $O(n^3)$ grows faster than $O(n^2)$, it is true.
 - However, $O(n^3)$ over estimates an $O(n^2)$ function.
- So, our attempt will be to find the smallest simple function for which f(n) is O(g(n)).
- Some well known growth functions in order of growth:
 - 1, $\log n$, n, $n \log n$, n^2 , n^3 , 2^n , etc.
- ▶ Notice that only +ve integral values of *n* are of interest.

Guidelines for Computing Big Oh

- Find the dominant term of the function and find its order.
 - A logarithmic function dominates all constants.
 - A polynomial function dominates all logarithmic functions.
 - A polynomial of degree k dominates all lower degree polynomials.
 - An exponential function dominates all polynomial functions.
- Basis here is that:
 - The dominant term grows more rapidly compared to others.
 - It will quickly outgrow non-dominant terms.

Other Simple Rules

- ▶ If $T_1(n) = O(f_1(n))$, and $T_2(n) = O(f_2(n))$, then $T_1(n) + T_2(n) = \max\{ O(f_1(n)), O(f_2(n)) \}$ $T_1(n) * T_2(n) = O(f_1(n) * f_2(n))$
- ▶ If T(n) is a polynomial of k then $T(n) = \Theta(n^k)^1$
- $ightharpoonup \log^k n = O(n)$ for any constant k
- ▶ For checking whether g(n) and f(n) are comparable find $\lim \frac{f(n)}{g(n)} \le k$, where k > 0 is a constant?
- ► E.g.: $\lim \frac{n^2}{n^2+6} = \lim \frac{2n}{2n} = 1$
- $ightharpoonup \lim \frac{\log n}{\log n^2} = \lim \frac{(1/n)}{2(1/n)} = 1/2.$

¹Not defined yet

Some Examples

- Examples of O(n^2) functions: n^2 , $n^2 + n$, $n^2 + 1000n$, $100n^2 + 1000n$, n, n/100, $n^{1.99999}$, $n^2/(\log \log \log n)$

$$\log n! = \log 1 + \log 2 + \ldots + \log n$$

$$\leq \log n + \log n + \ldots + \log n = n \log n$$

- $ightharpoonup 2^{n+1} = 2.2^n \text{ for all } n.$
 - So with $c = 2, n_0 = 1, 2^{n+1} = O(2^n)$.
- ▶ But $2^{2n} \neq O(2^n)$ can be proved by contradiction.
 - We have $0 \le 2^{2n} = 2^n . 2^n \le c . 2^n$, then $2^n \le c$.
 - But no constant is greater than 2^n .

Exercise 1

Prove that $n^3 + 20n + 1$ is not $O(n^2)$.

- ▶ Assume that $n^3 + 20n + 1$ is $O(n^2)$.
- ▶ By definition of big-Oh it implies $n^3 + 20n + 1 \le c.n^2$.
- ▶ Divide both side of the inequality by n^2 .
- ▶ So, $n + \frac{20}{n} + \frac{1}{n} \le c$.
- ▶ Since left side grows with *n*, *c* cannot be a constant.

Exercise 2

Prove that $f(n) = \frac{n^2 + 5 \log n}{2n+1}$ is O(n)

- ▶ $5 \log n < 5n < 5n^2$, for all n > 1
- ▶ 2n+1>2n, so $\frac{1}{2n+1}<\frac{1}{2n}$ for all n>0
- ▶ Thus $\frac{n^2 + 5 \log n}{2n + 1} \le \frac{n^2 + 5n^2}{2n} = 3n$ for all n > 1.
- ▶ So, with c = 3 and $n_0 = 1$ we have f(n) < c.n

Exercise 3

Let $f(n) = n^k$, and m > k, then $f(n) = O(n^{m-\epsilon})$, where $\epsilon > 0$

- ▶ Set $\epsilon = (m-k)/2$, so $m \epsilon = (m+k)/2 > k$.
- ▶ Hence, $n^{(m-\epsilon)}$ dominates n^k .

Exercise 4

Let $f(n) = n^k$, and m < k, then $f(n) = \Omega(n^{m+\epsilon})^a$, where $\epsilon > 0$

 ${}^a\Omega$ not defined yet

- Set $\epsilon = (k-m)/2$, so $m + \epsilon = (m+k)/2 < k$.
- ▶ Hence, $n^{(m+\epsilon)}$ is dominated by n^k .

Exercise 5

Show $f(n) = n^k$ is of $O(n^{\log \log n})$ for any constant k > 0

- $ightharpoonup n^k < n^{\log \log n}$ iff $k < \log \log n$, i.e., $n > 2^{2^k}$.
- ▶ Setting $n_0 = 2^{2^k}$, we have $n^k = O(n^{\log \log n})$.

Computing Big Oh of Programs

- Single loops: for, while, do-while, repeat until
 - Number of operations is equal to number of iterations times the operations in each statement inside loop.
- Nested loops:
 - Number of statements in all loops times the product of the loop sizes.
- Consecutive statements:
 - Use addition rule: O(f(n)) + O(g(n)) = max(g(n), f(n))
- Conditional statement:
 - Number of operations is equal to running time of conditional evaluation and the maximum of running time of if and else clauses.

Computing Big Oh of Programs

Switch statements:

- Take the complexity of the most expensive case (with the highest number of operations).
- Function calls:
 - First, evaluate the complexity of the method being called.
- Recursive calls:
 - Write down recurrence relation of running time.
 - Solution mostly possible by observing pattern of growth and prove the same on the basis of induction from the base case.
 - For divide and conquer algorithms Master Theorem can be used.

Analysis of for Loops

- ▶ First for loop: n times
- ▶ Nested for loops: n² times
- ► Total: $O(n + n^2) = O(n^2)$

Switch Case Statement

```
char key;
2 5
   int X[5], Y[5][5], i, j;
6
   switch(key) {
     case 'a':
8
         for (i = 0; i < sizeof(X)/sizeof(X[0]); i++)
             sum = sum + X[i];
                                      \Rightarrow O(n)
10
         break:
    case 'b' :
11
12
         for (i = 0; i < sizeof(Y)/sizeof(Y[0]); i++)
13
             for (j = 0; j < sizeof(Y[0]) / sizeof(Y[0][0]); j++)
                  sum = sum + Y[i][i]; => O(n^2)
14
15
        break:
16 } // End of switch block
```

▶ So using switch statement rule: $O(n^2)$

for & if else

```
1  char key;
2  int A[5][5], B[5][5], C[5][5];
3  ...
4  if(key == '+') {
5   for(i = 0; i < n; i++)
6   for(j = 0; j < n; j++)
7    C[i][j] = A[i][j] + B[i][j];
8  } // End of if block  => O(n²)
9  else if(key == 'x')
10  C = matrixMult(A, B);  => O(n³)
11  else
12  printf("Error! Enter '+' or 'x'! :");  => O(1)
```

▶ Overall complexity is: $O(n^3)$.

Exponential Algorithm are Expensive

Exercise 6

Let us first prove $n^k = O(b^n)$ whenever $0 < k \le c$,

Solution

$$\lim \frac{n^k}{b^n} = \lim \frac{kn^{k-1}}{\ln b \cdot b^n} \text{ (set } b^n = e^{n \ln b})$$

- ► The numerator's exponent decremented after each application of L Hospital's rule.
- ▶ So, b^n dominates n^k for any finite k.

Big Oh for Recursive Algorithms

```
\begin{array}{c} \textbf{procedure} \ \mathsf{T}(n \colon \mathsf{size} \ \mathsf{of} \ \mathsf{the} \ \mathsf{problem}) \ \{ \\ & \ \mathsf{if} \ (n < 1) \\ & \ \mathsf{exit} \ () \\ & \ \mathsf{Do} \ \mathsf{work} \ \mathsf{of} \ \mathsf{amount} \ n^k \\ \\ & \ \mathsf{T}(n/b) \ // \ \mathit{Repeat} \ \mathit{for} \ \mathit{a} \ \mathit{times} \\ & \ \mathsf{T}(n/b) \\ & \dots \\ & \ \mathsf{T}(n/b) \ \} \end{array}
```

- ▶ The original problem is recursively divided into a subproblems of n/b.
- ▶ In each recursive call $O(n^k)$ work is done.

Big Oh for Recursive Algorithms

Master Theorem

► The expression for time complexity is

$$T(n) = aT(n/b) + O(n^k)$$
, where $a > 0, b > 1$ and $k \ge 0$

The time complexity for recursive algorithms is given by:

$$T(n) = \begin{cases} O(n^k) \text{ if } a < b^k \\ O(n^k \log n) \text{ if } a = b^k \\ O(n^{\log_b a}) \text{ if } a > b^k \end{cases}$$

Recursion Tree

- ▶ Before solving, let us take a look at recursion tree.
- ightharpoonup n is assumed to be a power of b, if not pad n to be larger.
- ▶ It requires more than b to be added to n.
- \blacktriangleright At level 0, when we start the problem size is n.
- ▶ At level 1, we have a problems of size n/b each.
- ▶ In general, at level i, we have a^i problems of size n/b^i each.

Recursion Tree

Solution of Master's Theorem

First let us unfold the recurrence relation:

$$T(n) = aT\left(\frac{n}{b}\right) + n^k$$

$$= a\left(aT\left(\frac{n}{b^2}\right) + \frac{n^k}{b^k}\right) + n^k$$

$$\vdots$$

$$= n^k + \frac{a}{b^k}n^k + \frac{a^2}{(b^k)^2}n^k + \dots + \frac{a^L}{(b^k)^L}n^k$$

$$= n^k\left(1 + \frac{a}{b^k} + \left(\frac{a}{b^k}\right)^2 + \left(\frac{a}{b^k}\right)^3 + \dots + \left(\frac{a}{b^k}\right)^L\right)$$

 $\blacktriangleright \text{ Here, } L = \log_b n.$

Solution of Master's Theorem: Case I

► The expression within brackets is a GP, of the form

$$1+r+r^2+r^3+\cdots+r^L$$
, where $r=rac{a}{b^k}$ and $L=\log_b n$

- ▶ In this case $a < b^k$, $r = \frac{a}{b^k} < 1$
- ▶ Therefore, the first term dominates the running time.
- ▶ In other words, the level 0 of the recursion dominates the runtime.
- ▶ Hence, the solution in this case will be $O(n^k)$.

Solution of Master's Theorem: Case II

- ▶ In this case $a = b^k$, or r = 1 in the expression for the running time.
- ▶ In this case, equal work $(=n^k)$ is done at every level of the recursion.
- Since depth of recursion is $1 + \log n$, the running time in this case is $O(n^k \log n)$.

Solution of Master's Theorem: Case III

- ▶ Here, $a > b^k$, which implies $\frac{a}{b^k} > 1$.
- ► This means the last term in the sum dominates the runtime.
- So, the runtime should be $O(n^k \left(\frac{a}{b^k}\right)^L) = O(a^L)$, as $(b^k)^L = (b^L)^k = n^k$
- Now replace L by $\log_b n$ to get $O(a^{\log_b n})$
- $a^L = (b^{\log_b a})^{\log_b n} = (b^{\log_b n})^{\log_b a} = n^{\log_b a}.$

Definition Of Big Omega

- ► Let *f*(*n*) and *g*(*n*) be functions defined over positive integers.
- ▶ f(n) is $\Omega(g(n))$, if $\exists c > 0$, and $n_0 > 1$ such that

$$f(n) \ge c.g(n)$$

for all values of $n \ge n_0$.

Theorem

Prove $f(n) = n^3 + 20n$ is $\Omega(n^2)$

- Find c > 0, and $n_0 > 0$ such that $n^3 + 20n \ge c.n^2$
- $\qquad \qquad \mathsf{Or,}\ c \leq n + \tfrac{20}{n}.$
- ▶ RHS of above expression is minimum, when $n = \sqrt{20}$
- ▶ So, with $n_0 = 5$ and $c \le 9$ $f(n) \ge c.n^2$ for $n \ge n_0$.
- ▶ Note this is same as saying n^2 is $O(n^3 + 20n)$.

Theorem

Prove $f(n) = n^3 + 20n$ is $\Omega(n^3)$

- Find c > 0, and $n_0 > 0$ such that $n^3 + 20n \ge c.n^3$
- ▶ I.e., $c \le 1 + \frac{20}{n^2}$,
- ▶ Let c = 1 and $n_0 = 1$, then $f(n) \ge c.n^3$ for $n \ge n_0$.

Theorem

Prove that f(n) is $\Omega(g(n))$ iff g(n) = O(f(n)).

- ▶ If $f(n) = \Omega(g(n))$ then $\exists c > 0$ and $n_0 \ge 1$ such that $f(n) \ge c.g(n)$.
- ▶ It implies $g(n) \leq \frac{1}{c}f(n)$.
- ▶ Let $\frac{1}{c} = c_1$. Since c > 0, $c_1 > 0$.
- ▶ So, we have $g(n) \le c_1 f(n)$ for a $c_1 > 0$, and $n > n_0 \ge 1$,
- Converse part can be proved likewise.

Example

Prove that $n^2 - 2n + 1$ is $\Omega(n^2)$

- ▶ Eliminate lowest order term 1 > 0, $f(n) > n^2 2n$
- ▶ If n > 10, then -10 > -n, implies -2 > 0.2n
- ▶ Now -2 > -0.2n implies $-2n > -0.2n^2$
- ► So, $n^2 2n > n^2 0.2n^2 = 0.8n^2$
- ► Furthermore, n > 10 implies $.8n^2 > n^2/2$
- ► Therefore, $n^2 2n + 1 > n^2/2$ for $n > n_0 = 10$.

Big Theta

Definition Of Big Theta

- ► Let *f*(*n*) and *g*(*n*) be functions defined over positive integers.
- f(n) is $\Theta(g(n))$, if $\exists c_1 > 0$, $c_2 > 0$ and $n_0 > 1$ such that

$$c_1.g(n) \le f(n) \ge c_2.g(n)$$

for all values of $n \ge n_0$.

Big Theta

Example

Show that $f(n) = 3n^2 + 8n \log n$ is $\Theta(n^2)$.

- For n > 1, since $0 \le 8n \log n \le 8n^2$, we have $3n^2 + 8n \log n \le 11n^2$
- ► Also n^2 is $O(3n^2 + 8n \log n)$.
- ► Hence, $3n^2 + 8n \log n = \Theta(n^2)$.

Use of Limits

ightharpoonup A quick way to determine if f(n) is O(g(n)) is to find if

$$\lim_{n \to \infty} \frac{|f(n)|}{|g(n)|}$$

exists and finite.

- ▶ Similarly, if the above limit is not equal to zero. then f(n) is $\Theta(g(n))$.
- ▶ If above limit is some constant c, where $0 < c < \infty$ then f(n) is $\Omega(g(n))$.

Little oh and Little omega

- ▶ There are two other asymptotic bounds called little ω and little o.
- These bounds are loose bounds.
- ▶ If $\lim_{n\to\infty} \frac{|f(n)|}{|g(n)|} = 0$ then f(n) is o(g(n))
- ▶ If $\lim_{n\to\infty} \frac{|f(n)|}{|g(n)|} = \infty$ then f(n) is $\omega(g(n))$

Use of Limits

Exercise

Prove f(n) = 7n + 8, is $o(n^2)$.

$$\lim_{n \to \infty} \frac{7n+8}{n^2} = \lim_{n \to \infty} \frac{7}{n}, \text{ by l'Hospital}$$

$$= 0$$

Upper & Lower Bounds

- Upper and lower bounds give only incomplete information.
- Bounds are important when we have incomplete knowledge of execution time.
- Upper (or lower) bound is not the same as the worst (the best) case input size.
- The best and the worst cases are not tied to input sizes.
 - They express the distribution of the input elements, so that for a given size what would be the maximum (or the minimum) execution time.

Upper & Lower Bounds

Upper & Lower Bounds

Upper bound	Closed problems have identical bounds
Lower bound	
Upper bound	
	LB & UB differ: Unknown space
Lower bound	

► For closed problems, better algorithms are possible: it does not change big-Oh but reduces hidden constant.

Tractable and Intractable Problems

Problems		Algorithms
Polynomial	Tractable	Reasonable
Exponential	Intractable	Unreasonable

Definition (Tractable)

If upper and lower bounds have only polynomial factors.

Definition (Intractable)

If both upper and lower bounds have an exponential factor.

Assignment #3

Assignment on Running Time

It will be a theoretical assignment which will be posted soon. Due date for the assignment will be as indicated in the sheet.

Summary

Computational Concepts

- ► Introduced theoretical models of computation: TM and RAM
- Notion of running time
- ▶ Big Oh, Big Omega, Big Theta, little oh and little omega.
- Some worked out examples.
- Upper bound and lower bounds.