Convex Hulls and Jensen's Inequality

Dennis L. Sun

Let X be a random variable and $\langle X \rangle$ its expected value. In the case where X is equally likely to be any of the values $x_1,...,x_n,\langle X \rangle$ is simply the arithmetic mean $\frac{1}{n}\sum_{i=1}^n x_i$.

Jensen's inequality says that $g(\langle X \rangle) \leq \langle g(X) \rangle$ for any convex (i.e., concave up) function g. Taking $g(x) = x^2$, one obtains the inequality between the arithmetic mean and the root mean square [1].

Jensen's inequality says that $g(\langle X \rangle) \geq \langle g(X) \rangle$ for any concave (i.e., concave down) function g. Taking $g(x) = \log x$, one obtains the AM-GM inequality [1].

References

1. S. Kung, Harmonic, geometric, arithmetic, root mean inequality, College Mathematics Journal 21 (1990) 227.