

ANÁLISE DE ALGORITMOS DE CLASSIFICAÇÃO E AGRUPAMENTO NA DESCOBERTA E MODELAGEM DE COMPORTAMENTO DE TAREFAS PARALELAS

Aluno: Lesandro Ponciano dos Santos

Curso: Sistemas de Informação - PUC Minas em

Guanhães

Orientador: **Prof. João Paulo D. Silva**Curso: **Sistemas de Informação – PUC Minas em Guanhães**

Co-orientador: Prof. Luís Fabrício W. Góes Curso: Sistemas de Informação – PUC Minas em Guanhães

CONTEXTUALIZAÇÃO

RGSA

- Aplicações que exigem alto poder de processamento;
- Reconfigurable Gang Scheduling Algorithm (RGSA) (Góes e Martins, 2005);
- Algoritmo reconfigurável que utiliza informações do tempo de submissão, tempo de execução e número de processos das tarefas mais executadas em uma arquitetura;
 - Caracterização de Cargas de Trabalho;
- Nos testes realizados com este escalonador as tarefas são classificadas, através do Algoritmo 1, em baixo (L *low*) e alto (H *high*), 4 grupos possíveis (HH, HL, LL, LH).

Algoritmo 1 - Classificação Low e high .

```
se job.n_processos ≤ mediana_n_processos
    se job.tempo_exe ≤ mediana_tempo_exe
    então job.classe = LL;
    senão job.classe = LH;

senão se job.tempo_exe ≤ mediana_tempo_exe
    então job.classe = HL;
    senão job.classe = HH;
```

Problemas

- O algoritmo de Classificação *Low* e *high* é muito sensível à variações da mediana.
- No processo, não há a preocupação em gerar grupos com baixo desvio entre as tarefas que o compõe.

Proposta

- Utilização de algoritmos clássicos de Agrupamento, por similaridade, para gerar os grupos e de Classificação para identificar as regras do agrupamento e subsidiar a predição de novas tarefas.

Objetivo

- Analisar a aplicação dos algoritmos, de agrupamento, *k-means* e, de classificação, *j48* para obter modelos de similaridade de comportamento entre tarefas paralelas.

MODELAGEM E PREDIÇÃO

Classificação Low e High

Figura 1. Classificação *low* e *High*

Agrupamento *K-means* e Classificação *J48*

- Dado um rastro, com dados de tarefas paralelas, executa-se o algoritmo *k-means* com k=4 e identificam-se quatro grupos (G0, G1, G2 e G3), gerados pela similaridade entre as tarefas.
- Executa-se o algoritmo *j48* para identificar as regras que definem os agrupamentos.
- As regras obtidas são utilizadas na classificação e predição do comportamento de tarefas futuras.

Algoritmo 2 - Exemplo de Regras de classificação (LANCM5 outubro/1995)

se job.n_processos <= 64
 então job.classe = G1;
senão

se job.n_processos <= 256
 então job.classe = G0;
 senão

se job.tempo_exe <= 8357
 então job.classe = G2;
 senão job.classe = G3;</pre>

Figura 2. Árvore de decisão *j48*

ESTUDO DE CASO

Planejamento dos Experimentos

- São utilizadas tarefas submetidas, ao longo de sete meses, em quatro supercomputadores reais (HPC2N, SDSC, SHARCNET, LANCM5);
- Para predição de comportamentos, caracteriza-se um mês e testa-se a capacidade de predição para o mês subseqüente;

Resultados Parciais

Tabela 1. Rastros, Períodos e Número de Tarefas

	Número de Tarefas							
	Abr.	Mai.	Jun.	Jul.	Ago.	Set.	Oct.	
HPC2N	29970	17817	20545	24121	7241	5159	11444	
SDSC	5259	8395	8358	5339	7204	8782	9147	
SHARCNE.	87505	76813	52551	95118	90225	63162	158681	
LANCM5	5790	6831	6216	6969	6126	6303	5271	

Tabela 2. Acerto na predição Low e High

		J	, o	3. 3 d. 3 d. 3		9		
	Dias da Semana							
Meses	D	S	Т	Q	Q	S	S	
mai.	73	56	43	65	63	58	65	
jun.	77	62	71	71	71	66	71	
jul.	46	57	53	56	69	49	55	
ago.	55	51	58	57	52	49	58	
set.	65	61	63	57	56	66	60	
out	50	63	76	74	67	61	64	

Tabela 3. Acerto na predição K-means e J48

rabeia 3. Acerto na predição N-ineans e 340									
	Dias da Semana								
Meses	D	S	Т	Q	Q	S	S		
mai.	76	84	70	82	76	82	82		
jun.	76	86	90	92	94	94	90		
jul.	66	76	76	80	80	82	74		
ago.	76	84	82	66	70	70	70		
set.	90	86	86	68	70	76	74		
out.	78	90	82	92	90	88	86		

Gráfico 1. Speedup na predição (k-means j48 e low e high)

Principais conclusões

- Os algoritmos *K-means* e *j48* geram, na média, maior acerto na predição;
- A implementação do algoritmo *low* e *high* é mais simples;
- Os algoritmos *K-means* e *j48* extraem mais informação (regras), da base de dados, em relação ao algoritmo *low* e *high* (Mediana)