Name of the Experiment: To calibrate a Polarimeter and hence to determine the specific rotation of a sugar solution by means of a Polarimeter.

Data Collection:

Table for angular rotation

Strength of sugar solution (%)	First reading with water (P)	Angular rotation (Q~P)	Mean angular rotation	Specific rotation (s)
20%				
10%				
5%				

Specific rotation =
$$\frac{10\theta}{lc}$$

Experiment Name: Determination of moment of inertia of a flywheel about its axis of rotation.

Data Collection:

Table 1: Determination of n_1 , n_2 and t:

Mass	Height	No. of	Average	No. of	Average	Time	Average	Moment	Average
M	h	Revolutions	\mathbf{n}_1	Revolution	n ₂	t	t	of Inertia	I
gm	cm	$\mathbf{n_1}$		s n ₂				I	

Table 2: Determination of the radius of the axle:

LSR (X) (cm)	VSD	VC (cm)	VSR Y =(VSD×VC) (cm)	Total Reading = X+Y cm	Average Diameter cm	Radius r cm

Calculation:

$$\omega = \frac{4\pi n_2}{t}$$
 and $I = \frac{2mgh - m \ \omega^2 r^2}{\omega^2 (1 + \frac{n_1}{n_2})}$

Name of the Experiment: To determine the Specific resistance of a wire using a Meter Bridge

Data Collection:

Table 1: Reading for the Galvanometer balance point.

No. of observation	Value of resistance, R(Ω)	Length,l	(100 – <i>l</i>) cm	$X = \frac{R(100-l)}{l} (\Omega)$	Mean X(Ω)
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

Table 2: Reading for the radius of the experimental wire. (Using Slide Calipers)

No. of obs.	Liner scale reading (L.S.R) cm	Circular scale divisions (C.S.D)	Least count (L.C) cm	Circular scale reading (C.S.R) = (CSD x L.C) cm	Total diameter D cm	Mean diameter D cm	Mean radius r=D/2 cm
1							
2							
3							

Specific Resistance
$$\rho = \frac{\pi r^2 X}{L}$$

Name of the Experiment: To determine the e.m.f of a cell with a potentiometer of known resistance

Data collection:

- (A) Resistance of the potentiometer wire, $R = 72 \Omega$
- (B) Total length of the potentiometer, L=1000 cm.

		Null	points			
No. of obs.	Miliammeter readings = i mA	On wire number	Scale reading in cm	Total length for balance <i>l</i> cm	e.m.f of the cell $E = \frac{iRl}{1000L}$ Volts.	Mean E' Volts.
1		10th				
		9th				
2						
		8th				
3						
4		7th				

Experiment Number-6
Name of The Experiment: To compare the e.m.f of two cells with a potentiometer

Data collection:

Table 1: Data for the value of E_1/E_2

No. of	Cell	Null	points	Total	$E_1/E_2 = l_1/l_2$	Mean E ₁ /E ₂
observations		On wire	Scale	length in		
		number	reading in	cm		
			cm			
1	First (E ₁)					
	Second					
	(E_2)					
2	First (E ₁)					
	Second					
	(E_2)					
3	First (E ₁)					
	Second					
	(E ₂)					

Name of The Experiment: To determine the wavelength of various spectral lines by a spectrometer using a plane diffraction grating.

Data Collection:

Table 1: Data for determination of grating constant

λ) for	(n)			Readin	gs of the	angle of	f dif	fraction	l			Gratin
	er	Left s	ide			Right	side			² R)		gs
Wave length Yellow 1	Order number	M.S.R (degree)	V.S.D	V.C	Total R (degree)	M.S.R (degree)	V.S.D	V.C	Total L (degree)	$2\theta = (L \sim I)$		consta nt $N=\frac{\sin\theta}{n\lambda}$
5893 AU	1											

Table 2: Data for determination of wavelength of spectral lines for Mercury discharge tube

Color or the spectral lines	Left side	~ 0 ~	Left side Right side	Left side Right side	Left side Right side	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	M.S.R V.S.D	M.S.R V.C V.C Total R M.S.R	M.S.R V.C V.C W.S.D V.C Total	M.S.R V.C V.C W.S.D V.S.D V.C 1 V.C V.C V.C V.C V.C V.C V.C V.C	M.S.R V.C V.C V.S.D V.S.D V.C Total L L	M.S.R V.C V.C V.S.D V.C V.C V.C V.C Wavele
et						
Blue- Violet						
Blue- Green						
Green						
w w						

Name of the Experiment: To determine the value of unknown resistance and verify the laws of series and parallel resistance by Post Office Box.

Data collection:

Table 1: Reading for the Unknown resistance.

Value of P (Ω)	Value of Q (Ω)	Value of R (Ω)	Value of S $= \frac{QxR}{P}(\Omega)$	Mean , $S(\Omega)$
10	10			
10	100			
100	1000			

Table 2: Reading for the series resistance, S_s

Value of P (Ω)	Value of Q (Ω)	Value of R (Ω)	Series resistance, $S_s = \frac{QxR}{P}(\Omega)$	Mean S₅(Ω)
10	10			
10	100			
100	1000			

Table 3: Reading for the parallel resistance, S

Value of P (Ω)	Value of Q (Ω)	Value of R (Ω)	Parallel resistance $S_{p} = \frac{Q \times R}{P} (\Omega)$	Mean, S _p (Ω)
10	10			
10	100			
100	1000			