微分積分学・同演習 A

4月25日分質問への回答

質問 $x \to 2$ のとき 0 に収束しないことを考えるから , $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 0$ で話を進めるんじゃないですか?

一 違います.関数 f(x) が点 x=a で連続であることの定義は, $x\to a$ の極限が存在してそれが f(a) に一致することですので,まずは (f(a) の値とは無関係に) $\lim_{x\to a} f(x)$ を計算して,その後で値 f(a) と比較するのです.質問 今日の講義の使い方がわかりませんでした。おしえてほしいです。

— 小テストの極限 $(\lim_{x\to 2} \frac{x^2-4}{x-2}=4)$ を ε - δ 論法で書くと,次のようになります. $\varepsilon>0$ を任意にとる.このとき $\delta=\varepsilon$ ととれば, $0<|x-2|<\delta$ のとき

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| = |x - 2| < \delta = \varepsilon$$

であるので, $\lim_{x\to 2} \frac{x^2-4}{x-2}=4$ となる.今 f(2)=0 なので $\lim_{x\to 2} \frac{x^2-4}{x-2}\neq f(2)$ ゆえ f は点 x=2 で連続でない.

一般の関数では $\lim_{x\to a}f(x)$ の値 (そもそも存在しないこともある) と f(a) の値とは独立なので,はじめから $|f(x)-f(2)|<\varepsilon$ とすると上手くいきません.ちなみに関数 f(x) が $x\to a$ のときにある数 b に収束しないことを ε , δ を用いて表せば

ある正の数 arepsilon>0 が存在して,どんな正の数 $\delta>0$ に対しても $0<|x-a|<\delta$ かつ $|f(x)-b|\geq arepsilon$ となる

ですが、論理記号が入った式の否定は慣れていないと少し難しいので、これは講義では(今のところ)紹介していません。

質問 $\mathrm{Def}\ 3.9$ 関数 f(x) が区間 I で有界 $\Leftrightarrow \exists M>0 \mathrm{\ s.t.\ } |f(x)|< M$ がよく分かりません .

一 大雑把なイメージで言うと,下図のように上と下に境があって,そこから大きく(小さく)なることはないということです。

質問 $\delta = \min(\bigcirc, \triangle)$ の意味がわかりませんでした.

質問 $\delta = \min(\bigcirc, \triangle)$ \leftarrow この記号の意味を知りたい

— $\min(a,b)$ は a と b のうちで小さい方を選ぶというものです.たとえば $\min(2,3)=2$ です.また, $\min(1,a)$ だったら, $a\leq 1$ のときは $\min(1,a)=a$,1< a のときは $\min(1,a)=1$ になります.

質問 難しい

質問 (^ω ^) わかんね

— 小テストの時間にも言いましたが,関数の極限も ε - δ 論法を用いて厳密に定義しなおしましたが,実際の計算は,多くの場合は高校までの手法が使えます.もちろん ε - δ 論法を用いないとうまくいかない時もありますの

で , そのような場合にも困らないように ε - δ 論法で定義しなおす必要がありました .

質問 定義しなおした方のも理解はできるのですが,やっぱり抽象度が抜けてないと感じます。仕方ないのですかね。

— 抽象度は抜けません.というよりも,抽象化することによって厳密性や汎用性を獲得した,という方がよいかもしれません.

質問 なし.

— はい.