

0CL电路

余桃市职成教中心学校 陈雅萍

什么是OCL电路?

无输出电容的功率放大器

双电源互补对称功率放大器

OCL电路

电路构成

特点:

- 1.双电源供电
- 2.两管子特性完全对称(NPN+PNP)
- 3.两管子的基极相连后作为输入端
- 4.两管子的发射极相连后作为输出端
- 5.输出端与负载直接耦合

-1.静态分析

-2.动态分析

设输入信号ui为正弦信号

(1) u_i 为正半周时, VT_1 导通, VT_2 截止

-2.动态分析

互补对称功率放大电路

设输入信号ui为正弦信号

- (1) u_i 为正半周时, VT_1 导通, VT_2 截止,
- (2) u_i 为负半周时, VT_2 导通, VT_1 截止,

-交越失真

-加偏置的OCL电路

为了消除交越失真,OCL电路通常在两只功放管的基极之间串入二极管和电阻,为三极管VT₂、VT₃的发射结提供正向偏置电压,使电路在静态时处于微导通状态,从而减小交越失真。

OCL电路

1.电路特点

双电源供电 互补对称 无输出电容

2.工作过程分析

静态:A点静态电位为0。

动态:两功放管交替工作,向负载提供了完整的输出信号。

3.交越失真

OCL电路存在交越失真。解决的方法:在两功放管的基极之间串入二极管和电阻。