

### Lecture Outline (Part 1)

- What is money?
  - How to measure quantity of money?
- Money supply
  - Jointly determined by actions of:
    - Commercial banks
    - Depositors
    - Central bank
      - How does central bank control money supply?
- Money supply and inflation in the long run

### Lecture Outline (Part 2)

- Money demand
- Money market
  - Money demand and money supply
- How does central bank control interest rate?
- How does interest rate affect the economy?
- Monetary policy



- The demand for money is the amount of wealth held in the form of money
- In a highly simplified world, you can hold your wealth in
  - 1. Money
    - No interest
    - Ease in making payment
  - 2. Bonds
    - Earn interest
    - Difficult in making payment

- How much money should an individual hold?
  - Cost-Benefit Principle: people will balance the marginal cost of holding money versus the marginal benefit
- The **benefit** of holding money is its usefulness in making transactions
  - MB of holding money is higher when a individual's income is higher
  - MB of holding money is lower for an individual living in a society that has greater technological and financial sophistication

- The cost of holding money is the interest foregone
  - Most forms of money pay little or no interest
    - Assume nominal i/r on money is 0
  - Alternative assets such as bonds have a positive nominal interest rate
- The higher the nominal interest rate, the smaller the quantity of money demanded
- Business demand for money is similar to individuals'

- Demand for money depends on:
  - Nominal interest rate (i)
    - The higher the interest rate, the lower the quantity of money demanded
  - Real income or output (Y)
    - The higher the level of income, the greater the quantity of money demanded
  - ► The price level (*P*)
    - The higher the price level, the greater the quantity of money demanded

### Money Demand Curve

- The **money demand curve** shows the relationship between the aggregate quantity of money demanded (*M*) and the nominal interest rate (*i*)
  - An increase in nominal interest rate increases the opportunity cost of holding money
  - Negative slope



### Money Demand Curve

- Changes in factors other than the nominal i/r cause a shift in the money demand curve
- A change in demand for money can result from anything that affects the cost or benefit of holding money
  - Increase in output
  - Higher price levels
  - Technological and financial advances
  - Foreign demand for dollars





## **Money Market**



is where money demand and money supply come together

# Money Market

- Since the Fed controls the money supply, MS curve is drawn as a vertical line
- Money supply and demand determine the interest rate
- Equilibrium is at E
- i is the equilibrium nominal interest rate





# How does the Fed Control Interest Rates?

Fed Controls the Nominal Interest Rate Fed policy is stated in terms of target interest rates



# Fed Controls the Nominal Interest Rate

- Fed policy is stated in terms of target interest rates
  - The tool they use is the supply of money
  - The Fed increases/decreases money supply to achieve its desired interest rate
- The Fed cannot set interest rate and money supply independently
  - A particular interest rate implies a particular size of money supply, and vice versa

# Fed Controls the Nominal Interest Rate

- Initial equilibrium at E
- To increase interest rate, Fed decreases the money supply to *MS*'
  - New equilibrium at F
  - ▶ Interest rate increases to i'
- To decrease interest rate, Fed increases the money supply



Fed
Controls
the
Nominal
Interest
Rate

- Fed policy is announced in terms of interest rates because
  - Public is not familiar with the size of money supply
  - Main effects of monetary policy on the economy work through interest rates
  - Interest rates are easier to monitor than money supply

### **Federal Funds** Rate



Search quotes, news & videos

FEDERAL RESERVE

#### Fed hikes its benchmark interest rate by 0.75 percentage point, the biggest increase since 1994

PUBLISHED WED, JUN 15 2022-2:00 PM EDT | UPDATED THU, JUN 16 2022-7:32 AM EDT











- The Federal Reserve raised its benchmark interest rates three-quarters of a percentage point in its most aggressive hike since 1994.
- · According to the "dot plot" of individual members' expectations, the Fed's benchmark rate will end the year at 3.4%, an upward revision of 1.5 percentage points from the March estimate.
- Officials also significantly cut their outlook for 2022 economic growth, now anticipating just a 1.7% gain in GDP, down from 2.8% from March.



### Federal Funds Rate

- The **federal funds rate** is the rate commercial banks charge each other on short-term (usually overnight) loans
  - Banks borrow from each other if they have insufficient funds
  - Market determined rate
  - Targeted by the Fed
- To decrease the federal funds rate the Fed conducts open market purchases
  - Reserves increase
- Interest rates tend to move together

Federal Funds Rate, 1970-2020



# Can The Fed Control The Real Interest Rate?

- Fed controls the money supply to control the **nominal interest rate**, *i*
- Investment and saving decisions are based on the real interest rate, r
- Fed has some control over the real interest rate:

 $r = i - \pi$ , where  $\pi$  is the rate of inflation

- The Fed has good control over i
- Inflation changes relatively slowly
- Changes in nominal rates become changes in real rates

# Controls over the Money Supply

Money supply is determined by:

$$MS = Currency + \frac{Bank Reserves}{Reserve-Deposit Ratio}$$

- The Fed can affect money supply by affecting:
  - Bank reserves
    - Open-market operations
    - Discount window lending
  - Reserve requirement
    - Minimum values of the ratio of bank deposits that must be held in reserves

Excess
Reserves:
The Norm
since 2008

- Reserve requirements do not prevent banks from maintaining reserve-deposit ratios that are well above that minimum level.
- Excess reserves: Bank reserves in excess of the reserve requirements set by the central bank.
- As a result, the money supply may not change even if the fed changes the supply of reserves

### Zero Lower Bound

- In Dec 2008, the Fed reduced the targeted fed funds rate to 0 to ¼ percent
  - Zero lower bound: a level, close to zero, below which the Fed cannot further reduce short-term interest rates
- Fed funds rate remained effectively zero in years after Dec 2008, but other interest rates remained significantly above zero

# Additional Controls over the Money Supply

- Quantitative Easing (QE): an expansionary monetary policy in which a central bank buy long-term financial assets, thereby lowering longer-term interest rates while increasing money supply
- Forward Guidance: central bank provides indications of its future monetary-policy path so as to influence markets' expectation
- Interest on Reserves: an increase in the interest rates on reserves will lead to an increase fed funds rate



# How does Interest Rate Affect the Economy?

# Planned Spending and Real Interest Rate

- Planned aggregate expenditure has components that are affected by r
  - Saving decisions of households
    - More saving at higher real interest rates
    - Higher saving means less consumption
  - Investment by firms
    - Higher interest rates mean less investment
      - Investments are made if the cost of borrowing is less than the return on the investment
- Consumption spending and planned investment spending decrease when the interest rate increases

# Interest Rate in the Keynesian Model – An Example

Components of aggregate spending are

$$C = 640 + 0.8 (Y - T) - 400r$$
  
 $I^{P} = 250 - 600r$   
 $G = 300$   
 $NX = 20$   
 $T = 250$ 

- If *r* increases from 0.04 to 0.05 (that is, from 4% to 5%)
  - Consumption decreases by 400 x 0.01 = 4
  - Planned investment decreases by 600 x0.01 = 6
- A one percentage point increase in *r* reduces planned spending by 10, before multiplier is considered

### Planned Aggregate Expenditure

$$PAE = C + I^{P} + G + NX$$
  
 $PAE = 640 + 0.8 (Y - 250) - 400r + 250 - 600r + 300 + 20$   
 $PAE = 1,010 - 1,000r + 0.8Y$ 

- In this example, planned aggregate expenditure depends on both the real interest rate and the level of output
- Equilibrium output can only be found once we know the value of r

### Planned Aggregate Expenditure

$$PAE = 1,010 - 1,000r + 0.8Y$$

- Suppose the real interest rate is 5%, or 0.05
- Planned aggregate expenditure becomes

$$PAE = 1,010 - 1,000 (0.05) + 0.8Y$$
  
 $PAE = 960 + 0.8Y$ 

Short-run equilibrium output is *PAE* = *Y* 

$$Y = 960 + 0.8Y$$
  
 $0.2Y = 960$ 

$$Y = $4,800$$



# **Monetary Policy**



### Monetary Policy

#### **Recessionary Gap**



#### **Expansionary Gap**



### The Fed Fights Recession

- To close recessionary gaps
  - The Fed lowers interest rates
  - Increase consumption spending and planned investment spending
  - Increase planned aggregate expenditure
  - Increase equilibrium output

### The Fed Fights Recession

- PAE = 1,010 1,000r + 0.8Y
- Real interest rate, *r*, is 5%
  - PAE = 960 + 0.8Y
  - ▶ SR equilibrium output is \$4,800
- Potential output is \$5,000
  - Recessionary gap is \$200
- Multiplier is 5
- Monetary policy can be used to increase PAE
  - Change in spending required is 200/5 = 40
  - ightharpoonup 1,000 ( $\Delta r$ ) = 40
  - $\triangle r = 40/1,000 = 0.04$
- The Fed should decrease the real interest rate to 1%
  - PAE = 1,010 1,000r + 0.8Y = 1000 + 0.8Y

The Fed Fights Recession



# Fed's Response to recession and 9/11

- U.S. economy began slowing in late 2000
- In late 2000, fed funds rate was 6.5%
  - January 2001, the Fed cut the rate to 6.0%
  - More rate cuts followed
  - July 2001, the rate was below 4%
- 9/11 terrorist attack led to contraction in travel, financial, and other industries
  - The Fed temporarily lowered the rate to 1.25% in the week following the attack
  - In the aftermath, the Fed grew concerned that consumers would decrease spending
    - Interest rate was 2.0% in November 2001; 4.5 percentage points lower than a year before
- Combination of tax cuts and aggressive monetary policy helped keep the 2001 recession shallow and short

### The Fed Fights Inflation

- Expansionary gap can lead to inflation
- To close expansionary gaps
  - The Fed raises interest rates
  - Decrease consumption spending and planned investment spending
  - Decrease planned aggregate expenditure
  - Decrease equilibrium output

### The Fed Fights Inflation

- PAE = 1,010 1,000r + 0.8Y
- Real interest rate, r, is 5%
  - PAE = 960 + 0.8Y
  - ▶ SR equilibrium output is \$4,800
- Potential output is \$4,600
  - Expansionary gap is \$200
- Multiplier is 5
- Monetary policy can be used to decrease PAE
  - Change in spending required is 200/5 = 40
  - ightharpoonup 1,000 ( $\Delta r$ ) = 40
  - $\triangle r = 40/1,000 = 0.04$
- The Fed should increase the real interest rate to 9%
  - PAE = 1,010 1,000r + 0.8Y = 920 + 0.8Y

### The Fed Fights Inflation



Interest Rates Increase in 2004 -2006

- Fed funds rate was 1.0% in June 2003
- GDP growth rate was nearly 6% in 2<sup>nd</sup> half of 2003, and nearly 4% in 2004
  - Unemployment had fallen to 5.6% in June 2004
  - Inflation began to rise in 2004, mainly due to oil prices
- Fed began tightening in June 2004 to prevent emergence of inflationary gap
  - Fed funds rate increased from 1.0% to 1.25% in June 2004
  - The Fed raised interest rates 17 times in a row between 2004 and 2006
  - The rate was 5.25% in June 2006

# The Fed's Policy Reaction Function

- Policy reaction function describes how the action a policymaker takes depends on the state of the economy
- ► Taylor Rule:

$$r = 0.01 + 0.5 \left(\frac{Y - Y^*}{Y^*}\right) + 0.5\pi$$

- r is the real interest rate set by the Fed
- $\triangleright$  Y Y\* is the current output gap
- ► (Y Y\*)/Y\* is the output gap relative to potential output
- $\triangleright$   $\pi$  is the inflation rate expressed as a decimal
- The Fed responds to both output gaps and the rate of inflation

An Example of a Fed Policy Reaction Function





# THANKS!

#### **Any questions?**

You can find me at

ahysng@ntu.edu.sg