ИУ7. 10-й сем., Численные методы, даб. раб. 1

Формулировка задачи

Найти температуру u(x,t) тонкого стержня длиной l с теплоизолированной боковой поверхностью, на концах которого задан температурный режим: один конец поддерживается при заданной фиксированной температуре или теплоизолирован, на другой конец извне подается заданный тепловой поток. Коэффициент теплопроводности K меняется в зависимости от температуры по заданному закону K = K(u). В начальный момент времени t=0 стержень находится при фиксированной температуре u_0 по всей длине. Найти момент времени T, в который температура в середине стержня будет наибольшей.

Указания по решению задачи

Для приближенного решения поставленной краевой задачи можно использовать явную, неявную или смешанную разностную схему, определяемую шагом h по x и шагом τ по t. Для выбранной разностной схемы следует провести анализ на устойчивость и сходимость и обосновать выбор шага по координате и по времени, оценив точность полученного решения.

Решение представляется в табличном виде и графически. Качество составленной программы можно проверить на следующих тестовых примерах.

- 1. Исходные данные задачи: $l=1,~K=c=\rho=1,~\varphi(x)=\cos\frac{\pi x}{2},~\frac{\partial u}{\partial x}(0,t)=0,$ u(l,t)=0. Решение задачи: $u(x,t)=e^{-\frac{\pi^2 t}{4}}\cos\frac{\pi x}{2}.$
- 2. Исходные данные задачи: $l=1,\,K=c=\rho=1,\,\varphi(x)=1-x^2,\,\frac{\partial u}{\partial x}(0,t)=0,\,u(l,t)=0.$ Решение задачи можно найти методом Фурье. Для оценки суммы остатка ряда Фурье можно использовать мажоранту $\sum\limits_{n=0}^{\infty}\frac{1}{(2n+1)^3},$ скорость сходимости которой оценивается в соответствии с интегральным признаком Коши:

$$\sum_{n=N+1}^{\infty} \frac{1}{(2n+1)^3} \le \int_{N}^{\infty} \frac{dx}{(2x+1)^3}.$$

Литература

- 1. Самарский А.А., Тихонов А.Н. Уравнения математической физики. М.: Наука, 1977.
- 2. Калиткин Н.Н. Численные методы. М.: Наука, 1978.
- 3. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 4. $\it Camapcĸuŭ~A.A.$, $\it Huколаев~E.C.$ Методы решения сеточных уравнений. М.: Наука, 1978.
 - 5. Самарский А.А. Теория разностных схем. М.: Наука, 1989.

ИУ7, 10-й сем., Численные методы, лаб. раб. 1

Варианты задания

В каждом из указанных ниже вариантов $l=1,\, \rho=1.$ Коэффициент теплопроводности K(u) определяется формулой $K(u)=a+bu^\sigma.$ Подаваемый тепловой поток на одном из концов задается одной из функций

$$W_1(t) = \begin{cases} Q, & 0 \leqslant t < t_0; \\ 0, & t \geqslant t_0; \end{cases} \qquad W_2(t) = \begin{cases} 2Qt, & 0 \leqslant t < t_0; \\ 0, & t \geqslant t_0; \end{cases}$$

$$W_3(t) = \begin{cases} 2Q(t_0 - t), & 0 \leqslant t < t_0; \\ 0, & t \geqslant t_0; \end{cases} \qquad W_4(t) = \begin{cases} 2Qt, & 0 \leqslant t < 0.5t_0; \\ 2Q(t_0 - t), & 0.5t_0 \leqslant t < t_0; \\ 0, & t \geqslant t_0, \end{cases}$$

где $t_0=0.5,\ Q=10$ во всех вариантах. Удельная теплоемкость c стержня, плотность массы ρ , начальная температура u_0 стержня и постоянные $a,\ b,\ \sigma$, а также вид температурного режима (W для заданного теплового потока, u для заданной температуры) на концах стержня заданы в зависимости от варианта задания в следующей таблице.

№	c	a	b	σ	u_0	Тепловой режим		№	c	a	b	σ	u_0	Тепловой режим	
						слева	справа							слева	справа
1	1	1	1	0,5	0,1	$W = W_1$	W = 0	17	0,5	1	2	0,25	0,1	$W = W_1$	W = 0
2	1	1	1	0,5	0,1	$W = W_2$	W=0	18	0,5	1	2	0,25	0,1	$W = W_2$	W=0
3	1	1	1	0,5	0,1	$W = W_3$	W=0	19	0,5	1	2	0,25	0,1	$W = W_3$	W=0
4	1	1	1	0,5	0,1	$W = W_4$	W = 0	20	0,5	1	2	0,25	0,1	$W = W_4$	W=0
5	2	0,5	2	1,25	0,2	W=0	$W = W_1$	21	2	0,5	2	1,25	0,2	W=0	$W = W_1$
6	2	0,5	2	1,25	0,2	W = 0	$W = W_2$	22	2	0,5	2	1,25	0,2	W = 0	$W = W_2$
7	2	0,5	2	1,25	0,2	W=0	$W = W_3$	23	2	0,5	2	1,25	0,2	W=0	$W = W_3$
8	2	0,5	2	1,25	0,2	W=0	$W = W_4$	24	2	0,5	2	1,25	0,2	W=0	$W = W_4$
9	0,5	0,1	1	2	0,1	$W = W_1$	$u = u_0$	25	0,5	1	1	0,5	0,1	$W = W_1$	$u = u_0$
10	0,5	0,1	1	2	0,1	$W = W_2$	$u = u_0$	26	0,5	1	1	0,5	0,1	$W = W_2$	$u = u_0$
11	0,5	0,1	1	2	0,1	$W = W_3$	$u = u_0$	27	0,5	1	1	0,5	0,1	$W = W_3$	$u = u_0$
12	0,5	0,1	1	2	0,1	$W = W_4$	$u = u_0$	28	0,5	1	1	0,5	0,1	$W = W_4$	$u = u_0$
13	2	5	0,1	2,5	0,05	$u = u_0$	$W = W_1$	29	2	3	0,7	1,5	0,05	$u = u_0$	$W = W_1$
14	2	5	0,1	2,5	0,05	$u = u_0$	$W = W_2$	30	2	3	0,7	1,5	0,05	$u = u_0$	$W = W_2$
15	2	5	0,1	2,5	0,05	$u = u_0$	$W = W_3$	31	2	3	0,7	1,5	0,05	$u = u_0$	$W = W_3$
16	2	5	0,1	2,5	0,05	$u = u_0$	$W = W_4$	32	2	3	0,7	1,5	0,05	$u = u_0$	$W = W_4$

ИУ7, 10-й сем., Численные методы Лабораторная работа № 2 Колебания струны

Формулировка задачи

Найти функцию u(x,t), описывающую поперечные малые колебания однородной струны длины l=1, концы которой движутся по заданным законам. Значение u(x,t) задает величину отклонения точки струны с координатой x в момент времени t от положения равновесия. Движение левого конца струны (x=0) определяется законом $u(0,t)=\mu(t)$, правого (x=l)— законом $u(l,t)=\nu(t)$. Начальное положение струны $u(x,0)=\varphi(x)$, начальная скорость $u_t(x,0)=\psi(x)$. Закон колебаний струны определяется дифференциальным уравнением $u_{tt}=a^2u_{xx}$.

Указания по решению задачи

Для приближенного решения поставленной краевой задачи рекомендуется использовать разностную схему "крест", определяемую шагом h по x и τ по t.

Провести анализ указанной разностной схемы на устойчивость и сходимость.

Решение представить в табличном виде и графически. Обосновать выбор шага по координате и по времени. Оценить точность полученного решения.

Качество составленной программы можно проверить на следующих тестовых примерах.

- 1. Исходные данные задачи: $l=1,\, a=1,\, \varphi(x)=\sin \pi x.\, \psi(x)=0,\, \mu(t)=\nu(t)=0.$ Решение задачи: $u(x,t)=\sin \pi x\, \cos \pi t.$
- 2. Исходные данные задачи: $l=1, a=1, \varphi(x)=x(x-1), \psi(x)=0, \mu(t)=\nu(t)=0.$

Решение задачи найти методом Фурье. Для оценки суммы остатка ряда Фурье, записанного только по нечетным степеням, использовать мажоранту $\sum\limits_{n=0}^{\infty} \frac{1}{(2n+1)^3}$, скорость сходимости которой оценивается в соответствии с интегральным признаком Коши:

$$\sum_{n=N+1}^{\infty} \frac{1}{(2n+1)^3} \leqslant \int_{N}^{\infty} \frac{dx}{(2x+1)^3}.$$

Литература

- 1. Самарский А.А., Тихонов А.Н. Уравнения математической физики. М.: Наука, 1977.
- 2. Калиткин Н.Н. Численные методы. М.: Наука, 1978.
- 3. $\it Camapcĸuŭ A.A., \, \it \Gamma yлин \, A.B. \,$ Численные методы. М.: Наука, 1989.
- 4. *Самарский А.А.*, *Николаев Е.С.* Методы решения сеточных уравнений. М.: Наука, 1978.
 - 5. Самарский А.А. Теория разностных схем. М.: Наука, 1989.

Варианты задания

№	arphi(x)	$\psi(x)$	$\mu(t)$	u(t)
1.	x(2-x)	$\cos x$	0	$1 + 0.5t^2$
2.	$x\cos\frac{\pi x}{2}$	x(2-x)	$t + 0.2t^2$	0
3.	$\cos \frac{\pi x}{2}$	x^2	1 - 0.5t	0,5t
4.	(x+0.5)(1-x)	$\sin(x+0.2)$	0.5(1+t)	2t
5.	x(x+1)	$2\sin x$	0	2-t
6.	$(x+0,2)\sin\frac{\pi x}{2}$	$1+x^2$	0	$0.6(2-t^2)$
7.	$x \sin \pi x$	$(x+1)^2$	t	0
8.	3x(1-x)	$\cos(x+0.5)$	2t	0
9.	x(2x-0.5)	$\cos 2x$	t^2	1,5
10.	$(x+1)\sin \pi x$	x(x+1)	0	0,5t
11.	$(1-x)\cos\frac{\pi x}{2}$	2x+1	$1 + t - t^2$	0
12.	0.5x(x+1)	$x \cos x$	$2t^2$	1
13.	$0.5(x^2+1)$	$\cos 2x$	$0.5 + 2t - t^2$	1
14.	$(x+1)\sin\frac{\pi x}{2}$	x^2	0,5t	$2-t^2$
15.	$x^2 \cos \pi x$	$x^2 - x - 1$	0.5t	t-1
16.	$(1-x^2)\cos\pi x$	2x + 0.6	1 + 0.4t	0
17.	$(x+0.5)^2 - x$	$(x+1)\sin x$	0.5(0.5+t)	1,25
18.	$1,2x-x^2$	$(x+0.6)\sin x$	0	0.2 + 0.5t
19.	(x+0.5)(x+1)	$\cos(x+0.5)$	0,5	3-2t
20.	$0.5(x+1)^2$	$(x+1)\cos\pi x$	0,5	2-2t
21.	$(x+0,4)\sin\pi x$	$(x+1)^2$	0,5t	0
22.	$(2-x)\sin\pi x$	$(x+0.6)^2$	t^2	$3(t-t^2)$
23.	$x\cos\frac{\pi x}{2}$	$2x^2$	0	t^2
24.	$(x+0,5)\cos\frac{\pi x}{2}$	$1 + x - x^2$	$0.5(1+t) - t^2$	$t - 0.5t^2$
25.	$1,5(x-x^2)$	$2\sin(x+0.4)$	0	$2t - 1.5t^2$
26.	$0.4(x+0.5)^2$	$x\sin(x+0.6)$	0.1 + 0.5t	0,9
27.	$(x^2 + 0.5)\cos \pi x$	$(x+0.7)^2$	0,5	2t - 1,5
28.	(x+2)(1-0.5x)	$2\cos\left(x + \frac{\pi}{6}\right)$	2	$1,5-t^2$
29.	$(x^2+1)(1-x)$	$1 + \sin x$	1	0,5t
30.	$(x+0,2)\sin\frac{\pi x}{2}$	$1 + x^2$	0,6t	1,2

5

ИУ7, 10-й сем., Численные методы Лабораторная работа № 3 Уравнение Пуассона

Формулировка задачи

Найти решение краевой задачи для уравнения Пуассона в прямоугольнике $0 \le x \le a$, $0 \le y \le b$ в следующей формулировке:

$$\Delta u + f = 0,$$

$$u\big|_{x=0} = \varphi_0(y), \quad u\big|_{y=0} = \psi_0(x),$$

$$u\big|_{x=a} = \varphi_a(y), \quad u\big|_{y=b} = \psi_b(x),$$

Указания по решению задачи

Для приближенного решения краевой задачи рекомендуется использовать метод конечных разностей с разностной схемой "крест", выбирая по каждой из осей одинаковое число N+1 равноотстоящих узлов. Решение разностной задачи провести итерационным методом (верхней релаксации).

Провести анализ указанной разностной схемы на устойчивость и сходимость. Оценить точность полученного решения. Для этого повторить вычисления, уменьшив вдвое шаг по каждой оси и сравнив результаты двух расчетов по совпадающим узлам.

Решение представить в табличном виде и графически.

Качество составленной программы можно проверить на следующих тестовых примерах.

1. Исходные данные задачи: $a=1,\ b=1,\ \varphi_0(y)=\varphi_a(y)=0,\ \psi_0(x)=0,\ \psi_b(x)=\sin\pi x,$ f(x,y)=0.

Решение задачи: $u(x,t) = \sin \pi x \frac{\sin \pi y}{\sin \pi}$.

2. Исходные данные задачи: $a=1,\,b=1,\,\varphi_0(y)=\varphi_a(y)=0,\,\psi_0(x)=0,\,\psi_b(x)=x(x-1),\,f(x,y)=0.$

Решение задачи найти методом Фурье. Для оценки суммы остатка ряда Фурье, записанного только по нечетным степеням, использовать мажоранту $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^3}$, скорость сходимости которой оценивается в соответствии с интегральным признаком Коши:

$$\sum_{n=N+1}^{\infty}\frac{1}{(2n+1)^3}\leqslant \int\limits_{N}^{\infty}\frac{dx}{(2x+1)^3}.$$

Литература

- 1. *Канатников А.Н.*, Яковенко М.Г. Численные методы решения эллиптических уравнений математической физики. М.: Изд-во МГТУ, 1992.
 - 2. Самарский А.А., Тихонов А.Н. Уравнения математической физики. М.: Наука, 1977.
 - 3. Калиткин Н.Н. Численные методы. М.: Наука, 1978.
 - 4. $\it Camapcĸuŭ A.A., \it \Gamma yлин A.B.$ Численные методы. М.: Наука, 1989.
 - 5. Самарский А.А. Теория разностных схем. М.: Наука, 1989.

Варианты задания

№	a	b	$arphi_0(y)$	$arphi_a(y)$	$\psi_0(x)$	$\psi_b(x)$	f(x,y)	
1.	1	1	$\sin \pi y$	$\sin \pi y$	$x-x^2$	$x-x^2$	$\sin^2 \pi xy$	
2.	2	1	2y(1-y)	2y(1-y)	$\sin^2 \pi x$	$\sin^2 \pi x$	x-y	
3.	1	1	$y-y^2$	$y-y^2$	$\sin 2\pi x$	$\sin 2\pi x$	$\sin^3 \pi xy$	
4.	1	1	3y	0	0	$3(1-x^2)$	$20(x^2+y^2)$	
5.	1	1	$y-y^2$	$(y-y^2)e^y$	$x-x^2$	$x-x^2$	$x^2 - y^2 - x + y$	
6.	2	3	$y^2 - 3y$	$y^3 - 9y$	x^2-2x	$x^3 - 4x$	$-e^{-xy^2}$	
7.	1	2	$\sin^2 \pi y$	$e^{\sin \pi y} - 1$	x(1-x)	$x(1-x)e^x$	$(x-y)^2$	
8.	1	1	10y	$10\cos\frac{\pi y}{2}$	$10\sin\frac{\pi x}{2}$	10(1-x)	0	
9.	1	1	$y(1-y^2)$	0	$\sin \pi x$	0	10x + y	
10.	2	1	$\sin^2 \pi y$	$\sin^2 2\pi y$	$\sin^2 \pi x$	$\sin^2 2\pi x$	x^2-2y	
11.	1	1	y	y^2	2x(1-x)	1	0	
12.	1	1	0	$y(1-y^2)$	x(1-x)	x(1-x)	0	
13.	1	1	$3\sin \pi y$	2y	3x(1-x)	2x	$4x^2(y-y^2)$	
14.	3	1	$\sin^2 \pi y$	0	$\operatorname{ch}(x^2 - 3x) - 1$	0	ch(x-y)	
15.	1	1	0	0	$\sin^2 \pi x$	$\sin 2\pi x$	$arctg \frac{x+1}{y+1}$	
16.	1	1	$3\sin \pi y$	2y	2x(1-x)	$5x - 3x^2$	$5 + x^2$	
17.	1	1	$y-y^2$	$\sin^2 \pi y$	x(1-x)	$\sin 2\pi x$	x-y	
18.	1	1	$5\sin \pi y$	$3y^2$	$5\sin\pi x$	3x	0	
19.	1	1	$2y^2$	$2\sin \pi y$	$x-x^2$	2-2x	5+x+y	
20.	2	2	$2y - y^2$	$2y - y^2$	$\sin \pi x$	$-\sin \pi x$	$\sin^2 \pi (x+y)$	
21.	1	1	$y-y^2$	$(y-y^2)e^y$	$x-x^2$	$(x-x^2)e^x$	$(x-y)^2$	
22.	1	2	y	$\frac{y^2}{2}$	2x(1-x)	$\frac{3}{2} + \frac{1}{2}\cos 2\pi x$	$3 + 2y - y^2$	
23.	1	2	$\sin^2 \pi y$	$\sin^2 2\pi y$	$\sin^2 2\pi x$	$\sin^2 \pi x$	$(x-y)^2$	
24.	1	1	$\operatorname{sh}(1-y)(1-\operatorname{ch} y)$	0	$e^{x-x^2}-1$	0	$\sin^2 \pi xy$	
25 .	1	1	$3\cos\frac{\pi y}{2}$	3y	3(1-x)	$3\sin\frac{\pi x}{2}$	0	
26.	2	3	$y^3 - 9y$	$y^2 - 3y$	x^3-4x	$x^2 - 2x$	$(x-y)^2$	
27.	1	3	$\sin \pi y$	0	$\operatorname{ch}(x-x^2)-1$	0	sh(x+y)	
28.	1	1	y^2	y^3	$\sin \pi x$	1	$\sin^2 \pi xy$	
29.	2	1	$y(1-y)\operatorname{ch} y$	$y(1-y) \operatorname{sh} y$	$\sin^2 \pi x$	$e^{x^2-2x}-1$	$x^2 + xy + y^2$	
30.	1	1	0	0	$5\operatorname{sh}^2(x-x^2)$	$\sin^2 \pi x$	$x^4 + y^4$	