Predicting Financial Market Crashes using Log-periodic Oscillation and Critical Slowing Down

Daniel Štancl

Institute of Economic Studies Charles University

June 10, 2019

Outline

- Motivation
- 2 Hypothesis
- Research Question
- 4 Literature Review and Theory
- 5 Data and Test Methodology
- 6 Results
- Conclusion

Motivation
Hypothesis
Research Question
Literature Review and Theory
Data and Test Methodology
Results
Conclusion

Motivation

Various resources of motivation to study forecasting of financial crises

- Monetary authorities supervising country's economy health
- Private financial institutions avoiding excessive investment losses

Hypothesis and Objectives

Multiple objectives

- Verification of the validity of the LPPL Model and CSD and comparison of their performance
- Testing two versions of the LPPL Model
- Enrichment of the LPPL model's literature by a description of non-linear methods
- Investigation of a proposal of cross-correlation as another leading indicator

Motivation
Hypothesis
Research Question
Literature Review and Theory
Data and Test Methodology
Results
Conclusion

Research Question

No single financial theory capable to explain the biggest stock market crash on Black Monday

Log-periodic Power Law Model Sornette (2003)

Accelerating growth punctuated by shortening local drops

Critical Slowing Down Scheffer et al. (2009)

Gradually worsening system's conditions leading to a sluggish recovery rate

Self-organization

Definition Camazine et al. (2003)

In self-organizing systems, pattern formulation occurs through interactions internal to the system, without intervention by external directing influences.

Simple power law:

$$\chi = A(K_c - K)^{-\gamma}$$

Self-organization

 $|K_c - K| \gg 0$

 $|K_c - K| \rightarrow 0$

Figures retrieved from Sornette (2003).

The Log-periodic Power Law Model

Initially, the simple Power Law Model was introduced

$$\log[p(t)] = A + B(t_c - t)^m$$

Sornette et al. (1996)

LPPL1 Model Sornette (2003)

$$\log[p(t)] = A + B(t_c - t)^m + C(t_c - t)^m \cos(\omega \log(t_c - t) - \phi)$$

LPPL2 Model Filimonov and Sornette (2013)

$$\log[p(t)] = A + B(t_c - t)^m + C_1(t_c - t)^m \cos(\omega \log(t_c - t)) + C_2(t_c - t)^m \sin(\omega \log(t_c - t))$$

Critical Slowing Down

Leading indicators Scheffer et al. (2009)

- Serial correlation of order one
- Variance
- Cross-correlation

Detrended fluctuations

$$y(t) = \log[p(t)] - \frac{\sum_{r=1}^{t} G(r-t) \log[p(r)]}{\sum_{r=1}^{t} G(r-t)}, \ t = 1, \dots, T,$$

Diks et al. (2015)

Data

Calibration set

- Past four financial crashes
- Daily time series data with a length between 0.5 year and 5 years

"Out-of-sample" set

- Two occasions, ca 15 predictions made over time
- Daily time series data with a varying time window from 1 year up to 2.5 years

CSD - 100 or 200 days prior to the end of time series.

Test Methodology

LPPL model

- \bullet The goodness-of-fit measured by R^2 and RMSE
- Parameters lying within the confined intervals

Critical Slowing Down

- Visual inspection of leading indicators
- Measuring a relationship by the Kendall rank correlation coefficient

Results - LPPL Model

A. Calibration set

Model	t _c	t _{Creal}
LPPL1	1988.058	1987.792
LPPL2	1987.838	1907.792
LPPL1	1994.114	1994.107
LPPL2	1994.180	1994.107
LPPL1	1997.837	1997.800
LPPL2	1997.780	1997.000
LPPL1	2000.281	2000.191
LPPL2	2000.262	2000.191

Results - LPPL Model

B. "Out-of-sample" set

Burst of Bitcoin Bubble

Motivation Hypothesis Research Question Literature Review and Theory Data and Test Methodology Results Conclusion

Results - Critical Slowing Down

A. Calibration set

- Serial correlation of order one X
- Variance ✓
- Cross-correlation X

Results - Critical Slowing Down

Conclusion

- The LPPL Model seems to be more promising
- Analysis of variance of detrended fluctuations is worthy
- Variance of residuals as a possible aspirant for completion of the LPPL Model
- Other recommendations: Flickering, more advanced versions of the LPPL model, exploiting combinations of different frameworks

Thank you!

Daniel Štancl daniel.stancl@gmail.com

References

- S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, E. Bonabeau, and G. Theraula. *Self-organization in biological systems*. Princeton university press, 2003.
- C. Diks, C. Hommes, and J. Wang. Critical slowing down as an early warning signal for financial crises? Empirical Economics, pages 1–28, 2015.
- V. Filimonov and D. Sornette. A stable and robust calibration scheme of the log-periodic power law model. *Physica A: Statistical Mechanics and its Applications*, 392(17):3698–3707, 2013.
- M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. Van Nes, M. Rietkerk, and G. Sugihara. Early-warning signals for critical transitions. *Nature*, 461(7260):53–59, 2009.
- D. Sornette. Why stock markets crash: critical events in complex financial systems. Princeton University Press, 2003.
- D. Sornette, A. Johansen, and J.-P. Bouchaud. Stock market crashes, precursors and replicas. *Journal de Physique I*, 6(1):167–175, 1996.