МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса

Вариант №4

 Студент гр. 1383
 Манучарова А.С.

 Преподаватель
 Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Изучить режимы адресации и формирование исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы.

- 1. Были изменены значения vec1, vec2, matr согласно варианту.
- 2. Была проведена попытка трансляции файла с получением ошибок, которые показаны на рисунке 1.

```
O Warning Errors
O Severe Errors

D:\masm lr2_comp.asm
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [lr2_comp.OBJ]:
Source listing (NUL.LST]: lr2_comp
Cross-reference [NUL.CRF]:
lr2_comp.asm(42): error A2052: Improper operand type
lr2_comp.asm(50): warning A4031: Operand types must match
lr2_comp.asm(50): warning A4031: Operand types must match
lr2_comp.asm(51): error A2055: Illegal register value
lr2_comp.asm(74): error A2046: Multiple base registers
lr2_comp.asm(75): error A2046: Multiple index registers
lr2_comp.asm(82): error A2046: Multiple index registers
lr2_comp.asm(82): error A2060: Phase error between passes

47800 + 459460 Bytes symbol space free

2 Warning Errors
5 Severe Errors
```

Рисунок 1 — Ошибки при первой трансляции файла

- 3. Были закомментированы строки:
 - a) mov mem3, [bx] обращение к области памяти возможно только через регистр.
 - b) mov cx, vec2[di] различие в величине операндов. Регистр cx имеет размер 26, a vec2[di] 16.
 - c) mov cx, matr[bx][di] разная длина операндов. cx 26, matr[bx][di] –
 16.
 - d) mov ax, matr[bx*4][di] в базово-индексной адресации не предусмотрено масштабирование. Оно уместно в тех случаях, когда массив состоит не из байт, а из слов. В таком случае применяется базово-индексная адресация с масштабированием.
 - e) mov ax, matr[bp+bx] базовый регистр должен быть один.
 - f) mov ax, matr[bp+di+si] индексный регистр должен быть один.
 - g) для очищения стека были добавлены pop ax, pop bx
- 4. Выполнена трансляция файла.
- 5. Начальное состояние режимов:

$$CS = 1A0A$$
, $DS = 19F5$, $ES = 19F5$, $SS = 1A05$

Таблица 1. Протокол lr2_comp.exe

Адрес	Символический код	16-ричный код	Содрежимое регистров и ячеек памяти			
команды	команды	команды	До выполнения	После выполнения		
0000	push dx	1E	IP = 0000	IP = 0001		
			SP = 0018	SP = 0013		
			+0 0000	+0 19F5		
0001	sub ax, ax	2B C0	IP = 0001	IP = 0003		
			SP = 0013	SP = 0016		
0003	push ax	50	IP = 0003	IP = 0004		
			SP = 0016	SP = 0014		
			+0 19F5	+0 0000		
			+2 0000	+2 19F5		
0004	mov ax, 1A07	B8 07 1A	IP = 0004	IP = 0007		
			AX = 0000	AX = 1A07		
0007	mov ds, ax	8E D8	IP = 0007	IP = 0009		
			DS = 19F5	DS = 1A07		
0009	mov ax, 01F4	B8 F4 01	AX = 1A07	AX = 01F4		
			IP = 0009	IP = 000C		
000C	mov cx, ax	8B C8	CX = 0000	CX = 01F4		
			IP = 000C	IP = 000E		
000E	mov bl, 24	B3 24	$\mathbf{BX} = 0000$	BX = 0024		
			IP = 000E	IP = 0010		
0010	mov bh, ce	B7 CE	BX = 0024	BX = CE24		
			IP = 0010	IP = 0012		
0012	mov [0002], FFCE	C7 06 02 00 CE	IP = 0012	IP = 0018		
		FF				
0018	mov bx, 0006	BB 06 00	BX = CE24	BX = 0006		
			IP = 0018	IP = 001B		
001B	mov [0000], ax	A3 00 00	IP = 001B	IP = 001E		

001E	mov al, bx	8A 07	AX = 01F4 $IP = 001E$	AX = 010C $IP = 0020$
0020	mov al, [bx + 3]	8A 47 03	IP = 0020 $AX = 010C$	IP = 0023 $AX = 0109$
0023	mov cx, [bx + 3]	8B 4F 03	IP = 0023 CX = 01F4	IP = 0026 CX = 0509
0026	mov di, 0002	BF 02 00	DI = 0000	DI = 0002
0029	mov al, [000E + di]	8A 85 0E 00	IP = 0026 $AX = 0109$ $IP = 0029$	IP = 0029 $AX = 0128$ $IP = 002D$
002D	mov bx, 0003	BB 00 03	BX = 0006 $IP = 002D$	BX = 0003 $IP = 0030$
0030	mov al, [0016 + bx + di]	8A 81 16 00	AX = 0128 $IP = 0030$	AX = 07F9 $IP = 0034$
0034	mov ax, 1A07	B8 07 1A	AX = 07F9 IP = 0034	AX = 1A07 $IP = 0037$
0037	mov es, ax	8EC0	ES = 19F5 IP = 0037	ES = 1A07 IP = 0039
0039	mov ax, es:[bx]	26 8B 07	AX = 1A07 IP = 0039	AX = 00FF $IP = 003C$
003C	mov ax, 0000	B8 00 00	AX = 00FF $IP = 003C$	AX = 0000 $IP = 003F$
003F	mov es, ax	8E C0	ES = 1A07 $IP = 003F$	ES = 0000 $IP = 0041$
0041	push ds	1E	IP = 0041 +0 0000	IP = 0042 +0 1A07
			+2 19F5 +4 0000	+0 1A07 +2 0000 +4 19F5
0042	pop es	07	ES = 0000 IP = 0042	ES = 1A07 IP = 0043
			+0 1A07	+0 0000

			+2 0000	+2 19F5
			+4 19F5	+4 0000
0043	mov cx, es:[bx-01]	26 8B 4F FF	CX = 0509	CX = FFCE
	, ,		IP = 0043	IP = 0047
0047	xchg ax,cx	91	AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
			IP = 0047	IP = 0048
0048	mov di, 0002	BF 02 00	DI = 0002	DI = 0002
			IP = 0048	IP = 004B
004B	mov es:[bx + di], ax	26 89 01	IP = 004B	IP = 004E
004E	mov bp, sp	8B EC	BP = 0000	BP = 0014
			IP = 004E	IP = 0050
0050	push [0000]	FF 36 00 00	SP = 0014	SP = 0012
			IP = 0050	IP = 0054
			+0 0000	+0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0054	push [0002]	FF 36 02 00	SP = 0012	SP = 0010
			IP = 0054	IP = 0058
			+0 01F4	+0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	mov bp, sp	8B EC	BP = 0014	BP = 0010
			IP = 0058	IP = 005A
005A	mov dx, [bp + 02]	8B 56 02	DX = 0000	DX = 01F4
			IP = 005D	IP = 005A
005D	pop ax	58	AX = FFCE	AX = FFCE
			IP = 005D	IP = 005E
			+0 FFCE	+0 01F4
			+2 01F4	+2 0000
			+4 0000	+4 19F5

			+6 19F5	+6 0000
005E	pop bx	5B	BX = 0000	BX = 01F4
			IP = 005E	IP = 005F
005F	ret far	СВ	IP = 005F	IP = 0000
			CS = 1A0A	CS = 19F5
			SP = 0014	SP = 0018
			+0 01F4	+0 0000
			+2 0000	+2 0000
			+4 19F5	+4 000
			+6 0000	+6 0000
0000	int 20	cd 20		

Выводы.

Были изучены режимы адресации и формирование исполнительного адреса на языке Ассемблер.

ПРИЛОЖЕНИЕ А

КОД ПРОГРАММЫ

lr2_comp.asm:

sub AX, AX

```
; Программа изучения режимов адресации процессора
IntelX86
    EOL EQU '$'
    ind EQU 2
    n1 EQU 500
    n2 EQU -50
    ; Стек программы
    AStack SEGMENT STACK
     DW 12 DUP(?)
    AStack ENDS
    ; Данные программы
    DATA SEGMENT
    ; Директивы описания данных
    mem1 DW 0
    mem2 DW 0
    mem3 DW 0
    vec1 DB 12,11,10,9,5,6,7,8
    vec2 DB -40,-50,40,50,-20,-30,20,30
    matr DB 5,6,7,8,-8,-7,-6,-5,1,2,3,4,-4,-3,-2,-1
    DATA ENDS
    ; Код программы
    CODE SEGMENT
    ASSUME CS:CODE, DS:DATA, SS:AStack
    ; Головная процедура
    Main PROC FAR
    push DS
```

```
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1, ax
; Косвенная адресация
mov al, [bx]
;mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
;mov cx, vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
;mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
```

```
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
 mov ax, es:[bx]
 mov ax, 0
; ----- вариант 2
mov es, ax
 push ds
 pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
 ;mov ax,matr[bp+bx]
 ;mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
 mov dx, [bp]+2
 pop ax
 pop bx
 ret
Main ENDP
CODE ENDS
 END Main
```

ПРИЛОЖЕНИЕ В ЛИСТИНГ ПРОГРАММЫ

lr2_comp.lst:

	n 2_comj	p.15t.						
	□Micro	soft	(I	₹)	Macro	Asse	mbler	Version
5.10				10/9	9/22 13:	26:48		
	Pag	ge	1-1					
				; Проз	грамма и	зучения	режи�	
			•	фов а	дресаци	и процес	ccopa I	
]	ntelX	36			
	= 002	4		ΕC	OL EQU '	\$'		
	= 000	2		iı	nd EQU 2			
	= 01F	4		n.î	1 EQU 50	0		
	=-003	2		n2	2 EQU -5	0		
				; Сте	к програ	ММЫ		
	0000			AS	Stack SE	GMENT S	TACK	
	0000	000C[DW 1	2 DUP(?)	
		????						
]					
	0018			AS	Stack EN	IDS		
				; Дані	ные прог	раммы		
	0000			DZ	ATA SEGM	IENT		
				; Дире	ективы с	писания	данн�	
			•	Q X				
	0000	0000		me	em1 DW C	1		

0002 0000 mem2 DW 0

0004 0000 mem3 DW 0 0006 OC OB OA O9 O5 O6 vec1 DB 12,11,10,9,5,6,7,8 07 08 000E D8 CE 28 32 EC E2 vec2 DB -40,-50,40,50,-20, -30, 20, 30 14 1E 0016 05 06 07 08 F8 F9 matr DB 5,6,7,8,-8,-7,-6, -5, 1, 2, 3, 4, -4, -3, -2, -1FA FB 01 02 03 04 FC FD FE FF 0026 DATA ENDS ; Код программы 0000 CODE SEGMENT ASSUME CS:CODE, DS:DATA, SS:AStack ; Головная процедура 0000 Main PROC FAR 0000 1Epush DS 0001 2B C0 sub AX, AX 0003 50 push AX 0004 B8 ---- R mov AX, DATA 0007 8E D8 mov DS, AX ; ПРОВЕРКА РЕЖИМОВ АДРЕСА� **Ф**ИИ НА УРОВНЕ СМЕЩЕНИЙ ; Регистровая адресация B8 01F4 0009 mov ax, n1 000C 8B C8 mov cx, ax 000E вз 24 mov bl, EOL 0010 B7 CE mov bh, n2 ; Прямая адресация

```
0012 C7 06 0002 R FFCE mov mem2, n2
    0018 BB 0006 R
                      mov bx, OFFSET vec1
    001B A3 0000 R
                          mov mem1,ax
                 ; Косвенная адресация
                          mov al, [bx]
    001E 8A 07
                  ;mov mem3,[bx]
                  ; Базированная адресация
   □Microsoft (R) Macro Assembler Version
5.10
                    10/9/22 13:26:48
       Page 1-2
    0020 8A 47 03 mov al, [bx]+3
    0023 8B 4F 03 mov cx,3[bx]
                ; Индексная адресация
    0026 BF 0002
                         mov di, ind
    0029 8A 85 000E R mov al, vec2[di]
                  ;mov cx,vec2[di]
                  ; Адресация с базирование�
                  • и индексированием
    002D BB 0003
                          mov bx,3
    0030 8A 81 0016 R
                         mov al,matr[bx][di]
                   ;mov cx,matr[bx][di]
                   ;mov ax, matr[bx*4][di]
                  ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                  ♦NИ С УЧЕТОМ СЕГМЕНТОВ
                  ; Переопределение сегмент
```

а

```
; ---- вариант 1
0034 B8 ---- R
                     mov ax, SEG vec2
0037 8E CO
                     mov es, ax
                mov ax, es:[bx]
0039 26: 8B 07
003C B8 0000
                     mov ax, 0
              ; ----- вариант 2
003F
     8E CO
                      mov es, ax
0041
     1E
                push ds
0042
     07
                  pop es
0043 26: 8B 4F FF mov cx, es:[bx-1]
0047 91
                  xchq cx, ax
             ; ----- вариант 3
0048 BF 0002
                    mov di, ind
004B 26: 89 01
                mov es:[bx+di],ax
              ; ---- вариант 4
004E 8B EC
                      mov bp,sp
              ;mov ax,matr[bp+bx]
              ;mov ax,matr[bp+di+si]
              ; Использование сегмента �
              ◆тека
0050 FF 36 0000 R push mem1
0054 FF 36 0002 R
                     push mem2
0058
    8B EC
                      mov bp,sp
005A 8B 56 02
                      mov dx, [bp] + 2
005D
    58
                  pop ax
005E
    5B
                  pop bx
005F
    СВ
                  ret
0060
                 Main ENDP
0060
                 CODE ENDS
               END Main
```

 \square Microsoft (R) Macro Assembler Version 5.10 10/9/22 13:26:48

Symbols-1

Segments and Groups:

					N	a	m
е		Length	Align	Combine (Class		
	ASTACK .				0018	PARA	S
TACF							
ONE	CODE				0060	PARA	N
ONE	DATA				0026	PARA	N
ONE							
	Symbols:						
					N	а	m
е		Туре	Value	Attr	-	G	
	EOL				NUMBER	0024	
	IND				NUMBER	0002	
	N (7) T N I						П
PROC	MAIN .		 Lenath	= 0060	• • •	•	F
	MATR .					•	L
BYTE	E 0016	DATA					

	MEM1 .	• •	•	•	•	•	•	•	•	•	•	L
WORD	0000	DATA										
	MEM2 .			•	•	•		•	•		•	L
WORD	0002	DATA										
	MEM3 .			•	•	•		•	•	•	•	L
WORD	0004	DATA										
	N1					•	• •	NUM	IBEI	₹ (01F4	
	N2					•	• •	NUM	IBEI	ξ -	-0032	
	VEC1 .			•	•	•		•	•	•	•	L
BYTE	0006	DATA										
	VEC2 .			•	•	•		•	•	•	•	L
BYTE	000E	DATA										
	@CPU .					•		TEX	T	01	01h	
	@FILENAN	ME				•		TE	TX	1:	r2_comp	
	@VERSION	ν	• •			•	• •	TEX	T	510	0	
	0.5											
		Source										
		Total	Line	es								
	19	Symbols										
	45000	45046	0		,	-		6				
	4/800	+ 45946	n RÀi	ces	symk	001	space	ire	ee			
	\cap	Warning	Erro	are								
		Severe										
	U	$\supset \subset \lor \subset \bot \subset$		\smile \perp \smile								