Exercice 1

Cet exercice porte sur les bases de données relationnelles et le langage SQL.

L'énoncé de cet exercice utilise les mots-clés du langage SQL suivants : SELECT, FROM, WHERE, JOIN...ON, UPDATE...SET, INSERT INTO...VALUES..., COUNT, ORDER BY.

La clause ORDER BY suivie d'un attribut permet de trier les résultats par ordre croissant de l'attribut. SELECT COUNT(*) renvoie le nombre de lignes d'une requête.

Un zoo souhaite pouvoir suivre ses animaux et ses enclos. Tous les représentants d'une espèce sont réunis dans un même enclos. Plusieurs espèces, si ell es peuvent cohabiter ensemble, pourront partager le même enclos.

Il crée une base de données utilisant le langage SQL avec une relation (ou table) animal qui recense chaque animal du zoo. Vous trouverez un extrait de cette relation ci-dessous (les unités des attributs age, taille et poids sont respectivement ans, m et kg):

animal						
id_animal	nom	age	taille	poids	nom_espece	
145	Romy	18	2.3	130	tigre du Bengale	
52	Boris	30	1.10	48	bonobo	
	•••	•••	•••			
225	Hervé	10	2.4	130	lama	
404	Moris	6	1.70	100	panda	
678	Léon	4	0.30	1	varan	

Il crée la relation enclos dont vous trouverez un extrait ci-dessous (l'unité de l'attribut surface est m²) :

enclos						
num_enclos	ecosysteme	surface	struct	date_entretien		
40	banquise	50	bassin	04/12/2024		
18	forêt tropicale	200	vitré	05/12/2024		
	•••	•••	•••			
24	savane	300	clôture	04/12/2024		
68	désert	2	vivarium	05/12/2024		

Il crée également la relation espece dont vous trouverez un extrait ci-dessous :

espece						
nom_espece	nom_espece classe alimentation					
impala	mammifères	herbivore	15			
ara de Buffon	oiseaux	granivore	77			
	•••	•••	•••			
tigre du Bengale	mammifères	carnivore	18			
caïman	reptiles	carnivore	45			
manchot empereur	oiseaux	carnivore	40			
lama	mammifères	herbivore	13			

- Q1. Cette question porte sur la lecture et l'écriture de requêtes SQL simples.
 - (a) Écrire le résultat de la requête ci-dessous.

```
SELECT age, taille, poids FROM animal WHERE nom = 'Moris';
```

- **(b)** Écrire une requête qui permet d'obtenir le nom et l'âge de tous les animaux de l'espèce bonobo, triés du plus jeune au plus vieux.
- Q2. Cette question porte sur le schéma relationnel.
 - (a) Citer, en justifiant, la clé primaire et la clé étrangère de la relation espece. Donner le modèle relationnel de la base de données du zoo. On soulignera les clés primaires et on fera précéder les clés étrangères d'un #.
- Q3. Cette question porte sur les modifications d'une table.

L'espèce **ornithorynque** a été entrée dans la base comme étant de la classe des oiseaux alors qu'il s'agit d'un mammifère.

- (a) Écrire une requête qui corrige cette erreur dans la table espece.
 Le couple de lamas du zoo vient de donner naissance au petit lama nommé "Serge" qui mesure 80 cm et pèse 30 kg.
- **(b)** Écrire une requête qui permet d'enregistrer ce nouveau venu au zoo dans la base de données, sachant que les clés primaires de 1 à 178 sont déjà utilisées.
- **Q4.** Cette question porte sur la jointure entre deux tables.
 - (a) Recopier sur votre feuille la requête SQL et compléter les ... afin de recenser le nom et l'espèce de tous les animaux carnivores vivant en vivarium dans le zoo.

```
SELECT ...

FROM animal

JOIN espece ON ...

JOIN enclos ON ...

WHERE enclos.struct = 'vivarium' and ...;
```

On souhaite connaître le nombre d'animaux dans le zoo qui font partie de la classe des oiseaux.

(b) Écrire la requête qui permet de compter le nombre d'oiseaux dans tout le zoo.

Exercice 2

Cet exercice porte sur les bases de données relationnelles et le langage SQL.

L'énoncé de cet exercice utilise les mots clefs du langage SQL suivants : SELECT, FROM, WHERE, JOIN ON, UPDATE, SET, INSERT INTO VALUES, COUNT, ORDER BY.

La ligue féminine de basket-ball publie les données relatives à chaque saison sur le site web de la ligue. On y retrouve des informations concernant les équipes participantes, les calendriers et les résultats des matchs ainsi que les statistiques des joueuses. Dans cet exercice, nous allons nous intéresser à la base de données relationnelle LFB_2021_2022 permettant le stockage et la gestion des données de la saison régulière de basket-ball féminin 2021-2022.

Q1. Voici ci-dessous le contenu entier de la relation (tab
--

id_equipe	nom	adresse	telephone
1	Saint-Amand	39 avenue du Clos, 59230 Saint-Amand-les-Eaux	03 04 05 06 07
2	Basket Landes	15 place Saint-Roch, 40000 Mont-De-Marsan	05 06 07 08 09
3	Villeneuve d'Ascq	2 rue Breughel, 59650 Villeneuve-d'Ascq	03 02 01 00 01
4	Tarbe	Quai de l'Adour, 65000 Tarbes	05 04 03 02 02
5	Lyon	451 cours Emile Zola, 69100 Villeurbanne	04 05 06 07 08
6	Bourges	6 rue du Pré Doulet, 18000 Bourges	02 03 04 05 06
7	Charleville-Mézières	Rue de la Vieille Meuse, 08000 Charleville-Mézières	03 05 07 09 01
8	Landerneau	Kerouel, 29410 Pleyber-Christ	02 04 06 08 00
9	Angers	330 rue Saint-Léonard, 49000 Angers	02 00 08 06 04
10	Lattes Montpellier	157 rue de la Porte Lombarde, 34970 Lattes	04 03 02 01 00
11	Charnay	Allée des Ecoliers, 71850 Charnay-lès-Mâcon	03 01 09 07 05
12	Roche Vendée	BP 151, 85004 La Roche-Sur-Yon Cedex	02 05 08 01 04

On donne ci-contre le schéma relationnel de la table Equipe. Dans ce schéma, un attribut souligné indique qu'il s'agit d'une clé primaire.

Equipe			
id_equipe INT			
nom	VARCHAR(50)		
adresse	VARCHAR(100)		
telephone	VARCHAR(20)		

(a) Après le chargement de la table Equipe, expliquer pourquoi la requête suivante produit une erreur :

```
INSERT INTO Equipe
VALUES (11, "Toulouse", "2 rue du Nord, 40100 Dax", "05 04 03 02 01");
```

- (b) Expliquer le choix du domaine pour l'attribut telephone.
- (c) Donner le résultat de la requête suivante :

```
SELECT nom, adresse, telephone FROM Equipe WHERE id_equipe = 5;
```

(d) Donner et expliquer le résultat de la requête suivante :

```
SELECT COUNT(*) FROM Equipe ;
```

- (e) Écrire la requête SQL permettant d'afficher les noms des équipes par ordre alphabétique.
- **(f)** Écrire la requête SQL permettant de corriger le nom de l'équipe dont l'id_equipe est égal à 4. Le nom correct est "Tarbes".

Q2. Sur le site web de la fédération de basket-ball féminin, nous pouvons consulter la composition des équipes. Pour chaque joueuse, on peut y lire en plus de son nom, sa date de naissance, sa taille ainsi que le poste occupé dans l'équipe. Ces informations sont présentées dans une page web dont le titre est « Fiche Joueuse », page construite à partir de la table Joueuse dont voici un extrait :

id_joueuse	nom	prenom	date_naissance	taille	poste	id_equipe
1	Berkani	Lisa	19/05/1997	176	2	7
2	Alexander	Kayla	05/01/1991	193	5	5
3	Magarity	Regan	30/04/1996	192	4	2
4	Muzet	Johanna	08/07/1997	183	3	11
5	Kalu	Ezinne	26/06/1992	173	2	8
6	Sigmundova	Jodie Cornelie	20/04/1993	193	5	9
7	Dumerc	Céline	09/07/1982	162	2	2
8	Slonjsak	Iva	16/04/1997	183	3	9
9	Michel	Sarah	10/01/1989	180	2	6
10	Lithard	Pauline	11/02/1994	164	1	1

On donne ci-contre le schéma relationnel de la table Joueuse. Un attribut souligné indique qu'il s'agit d'une clé primaire. Le symbole # devant un attribut indique qu'il s'agit d'une clé étrangère.

La clé étrangère Joueuse.id_equipe fait référence à la clé primaire Equipe.id_equipe de la table Equipe.

Joueuse				
id_joueuse	INT			
nom	VARCHAR(50)			
prenom	VARCHAR (50)			
date_naissance	DATE			
taille	INT			
poste	INT			
#id_equipe	INT			

- (a) Expliquer pourquoi l'attribut id_equipe a été déclaré clé étrangère.
- **(b)** On souhaite supprimer toutes les informations relatives à une équipe. Expliquer pourquoi on ne peut pas directement supprimer cette équipe dans la table Equipe.
- (c) Écrire la requête SQL qui permet d'afficher les noms et les prénoms des joueuses de l'équipe d'Angers par ordre alphabétique des noms. On supposera que l'utilisateur qui écrit cette requête ne connaît pas l'identifiant de l'équipe d'Angers.
- Q3. Les résultats des matchs sont aussi publiés sur le site web de la ligue. Par exemple, pour le match n° 10 qui a opposé l'équipe de Villeneuve d'Ascq à l'équipe de Bourges le 23/10/2021 on retrouve les informations suivantes :

Match nº 10					
23/10/2021					
Villeneuve d'Ascq 73 78 Bourges					

Le score final du match a été de 73 points pour l'équipe de Villeneuve d'Ascq qui a joué à domicile (nom affiché à gauche sur la page) contre 78 points pour l'équipe de Bourges qui a joué en déplacement (nom affiché à droite sur la page).

- (a) À partir de l'analyse de cet exemple, proposer un schéma relationnel pour la table Match. Si des clés étrangères sont définies, préciser quelles tables et quels attributs elles référencent.
- **(b)** Écrire la requête SQL qui permet l'insertion dans la table Match de l'enregistrement correspondant à l'exemple donné ci-dessus.
- **Q4.** En plus du score final, sur la page web sont affichées des informations relatives aux performances des joueuses pendant le match.

Nous allons retenir ici seulement 3 critères : le nombre de points marqués, les rebonds et les passes décisives effectués.

Voici un extrait des statistiques du match $n^{\rm o}$ 53 qui a opposé l'équipe de Landerneau à celle de Charleville-Mézières le 16/04/2022 :

Match nº 53 16/04/2022							
Lar	Landerneau 56 64 Charleville-Mézières						
Extrait des statistique	S				:		
Equipe	Nom	Nom Prénom Points Rebonds Passes décisives					
Charleville-Mézières	Pouye	Tima	18	6	2		
Charleville-Mézières	Akhator	Evelyn	15	17	0		
Charleville-Mézières	Bouderra	Amel	10	3	9		
Landerneau	Mane	Marie	18	2	3		
Landerneau	Amukamara	Promise	12	2	5		
Landerneau	Geiselsoder	Luisa	4	10	2		

- (a) Proposer un schéma relationnel pour stocker les informations relatives aux statistiques des joueuses dans la base de données, telles que présentées ci-dessus.
- **(b)** Écrire la requête SQL qui a été utilisée pour afficher la partie « Extrait des statistiques » de l'exemple ci-dessus.