Jake Soloff

Education

2016– PhD Student, Statistics, University of California, Berkeley.

2012–2016 ScB, Mathematics, Brown University.

Concentration Advisor: Richard Evan Schwartz

Research Advisor: Erik Sudderth

Graduate Courses: recent applications of probability and statistics, stochastic epidemic

models, probabilistic graphical models, probability theory, stochastic processes.

Interests

Computational statistics, Bayesian nonparametric statistics, computationally adaptive and scalable inference, combinatorial stochastic processes, affective computing.

Awards and Honors

- 2016 Bennett Prize (for pure math)
- 2016 Jerome L. Stein Memorial Award (for undergraduate excellence in applied math)
- 2015 Phi Beta Kappa (elected junior year)
- 2012-2016 Sidney E. Frank Scholarship (Brown, Full Funding)
 - 2011 Dean's Scholarship (Brown, Summer Session Funding)

Experience

- 2016 **NPBayes Research**, LEARNING, INFERENCE, AND VISION GROUP, Brown.

 Using Bayesian nonparametrics to model multi-resolution time series. Derived and implemented part of variational inference procedure for a nonparametric HMM with nonparametric emission distributions, contributing to Mike C. Hughes' open-source Python package BNPy.
- 2015 Personalization Intern, THE NEW YORK TIMES.
 Generalized topic regression model for recommendation engine to incorporate multiple behavior signals. Implemented and tested a real-time graph-diffusion-based rec engine, obtaining over four times the mean recall as the original.
- 2014 Data Science Intern. FARMLOGS.
 - Utilized large satellite image databases and existing research on remote sensing and statistical shape-modeling to predict crop growth stage across a farm. Final product went into software available to over a third of American farmers.
- 2013 **Computational Intern**, Institute for Brain and Neural Systems, Brown. Devised simulations to measure the distribution of energy deposited during radiation therapy.
- 2012 **Graph Theory Research**, DEPARTMENT OF MATH AND CS, Arcadia University. Let $P_v(G)$ be the subgraph of edges on shortest paths from v in G. I proved (among other things) that this operation splits over the product, i.e. $P_{(v,w)}(G \square H) = P_v(G) \square P_w(H)$.

Published Work

- 1. **J. A. Soloff**, R. A. Márquez, and L. M. Friedler, Products of geodesic graphs and the geodetic number of products. *Discussiones Mathematicae Graph Theory*, Vol. 35, 2015.
- 2. J. Shriver, **J. A. Soloff**, and N. Molen. Data driven farming: delivering the benefits of remotely sensed data and decision support tools to farmers. *American Geophysical Union*, Annual Meeting, 2014.

Talks

- Aug 2015 Research and Development Data Group, The New York Times.
- Dec 2014 Annual Meeting, American Geophysical Union.

Teaching

Rhode Island Department of Corrections

Spring 2016 Teaching Assistant, Introductory Geography (GEOG 1010).

Brown University

- Fall 2015 Curricular Advising Fellow, Crime and the City (URBN 1230).
- Spring 2015 TA and Grader, Recent Applications of Probability and Statistics (APMA 2610).
 - Fall 2014 TA and Grader, Computational Probability and Statistics (APMA 1690).
 - Fall 2014 Teaching Assistant, Crime and the City (URBN 1230).

Computer skills

- Experience using Python, Matlab, LATEX, Mathematica, and more.
- Version control with GitHub and Bitbucket for open source and team projects.
- Experience sharing results with IPython and Plotly.