This appendix provides a reference for the numeric implementation in the C programming language. It summarizes the data formats available and tells how to determine the floating-point class for a value. It also lists functions that control the floating-point environment, functions that perform floating-point operations, and the exceptions those functions might raise.

### Floating-Point Data Formats

Figure E-1 Floating-point data formats



Table E-1 Interpreting floating-point values

| If biased <sup>*</sup> exponent <i>e</i> is: | And fraction <i>f</i> is: | Then value <i>v</i> is:                          | And class of $v$ is: $^{\dagger}$                 |
|----------------------------------------------|---------------------------|--------------------------------------------------|---------------------------------------------------|
| $0 < e < max^{\ddagger}$                     | (any)                     | $v = (-1)^s \times 2^{(e-bias)} \times (1.f) $ § | FP_NORMAL                                         |
| e = 0                                        | $f \neq 0$                | $v = (-1)^s \times 2^{minexp} \times (0.f)^{\P}$ | FP_SUBNORMAL                                      |
| e = 0                                        | f = 0                     | $v = (-1)^s \times 0$                            | FP_ZERO                                           |
| e = max                                      | f = 0                     | $v = (-1)^s \times \infty$                       | FP_INFINITE                                       |
| e = max                                      | $f \neq 0$                | v = NaN                                          | FP_SNAN (first bit is 0) FP_QNAN (first bit is 1) |

#### Table E-2 Class and sign inquiry macros

fpclassify(x) isnormal(x)

isfinite(x)

isnan(x)

signbit(x)

 $<sup>^*</sup>$  bias = 127 for float; 1023 for double and long double.

† From enumerated type NumKind.

‡ max = 255 for float; 2047 for double and long double.

§ For long double both head and tail are evaluated this way and added together. minexp = -126 for float; -1022 for double and long double.

### **Environmental Controls**

Table E-3 Environmental access

| Action  | Function prototype                                |
|---------|---------------------------------------------------|
| Get     | <pre>void fegetenv (fenv_t *envp);</pre>          |
| Set     | <pre>void fesetenv (const fenv_t *envp);</pre>    |
| Save    | <pre>int feholdexcept (fenv_t * envp);</pre>      |
| Restore | <pre>void feupdateenv (const fenv_t *envp);</pre> |

 Table E-4
 Floating-point exceptions

| Exceptions   | Actio<br>n | Function prototype                                                 |
|--------------|------------|--------------------------------------------------------------------|
| FE_INEXACT   | Get        | <pre>void fegetexcept(fexcept_t *flagp, int excepts);</pre>        |
| FE_DIVBYZERO | Set        | <pre>void feraiseexcept (int excepts);</pre>                       |
| FE_UNDERFLOW | Clear      | <pre>void feclearexcept (int excepts);</pre>                       |
| FE_OVERFLOW  |            | <pre>void fesetexcept (const fexcept_t *flagp, int excepts);</pre> |
| FE_INVALID   | Test       | <pre>int fetestexcept (int excepts);</pre>                         |

 Table E-5
 Rounding direction modes

| Modes         | Actio<br>n | Function prototype                     |
|---------------|------------|----------------------------------------|
| FE_TONEAREST  | Get        | <pre>int fegetround (void);</pre>      |
| FE_TOWARDZERO | Set        | <pre>int fesetround (int round);</pre> |
| FE_UPWARD     |            |                                        |
| FE_DOWNWARD   |            |                                        |

## Operations and Functions

Environmental Controls E-3

#### Note

Throughout the tables that follow, in the Exceptions column, I = invalid; X = inexact; O = overflow; U = underflow; D = divide-by-zero.

 Table E-6
 Arithmetic operations

| Compute     | Syntax                                              | Valid input range | Exceptions |
|-------------|-----------------------------------------------------|-------------------|------------|
| Sum         | x + y                                               | -∞ to +∞          | I X O U -  |
| Difference  | х - у                                               | -∞ to +∞          | I X O U -  |
| Product     | x * y                                               | -∞ to +∞          | I X O U -  |
| Quotient    | х / у                                               | -∞ to +∞          | I X O U D  |
| Square root | sqrt(x)                                             | 0 to +∞           | I X        |
| Remainder   | <pre>remainder(x,y) remquo(x,y,quo) fmod(x,y)</pre> | -∞ to +∞          | I          |

 Table E-7
 Conversions to integer type

| Compute                       | Syntax         | Valid input range       | Exceptions |
|-------------------------------|----------------|-------------------------|------------|
| Round in current direction    | $rinttol(x)^*$ | $-2^{31}$ to $2^{31}-1$ | I X        |
| Add 1/2 to magnitude and chop | roundtol(x)*   | $-2^{31}$ to $2^{31}-1$ | I X        |

 $<sup>^{\</sup>ast}$  Return type of long int.

 Table E-8
 Conversions to integer in floating-point type

| Compute Round in current direction | Syntax rint(x) | Valid input range  -∞ to +∞ | Exceptions - X |
|------------------------------------|----------------|-----------------------------|----------------|
| direction                          | nearbyint(x)   | -∞ to +∞                    |                |
| Round upward                       | ceil(x)        | -∞ to +∞                    |                |
| Round downward                     | floor(x)       | -∞ to +∞                    |                |
| Add 1/2 to magnitude and chop      | round(x)       | -∞ to +∞                    | - X            |
| Round toward zero                  | trunc(x)       | -∞ to +∞                    |                |

 Table E-9
 Conversions between binary and decimal formats

| Compute                          | Syntax           | Valid input range | Exceptions |
|----------------------------------|------------------|-------------------|------------|
| Convert decimal struct to binary | dec2num(&d)      | decimal struct    |            |
| Convert binary to                | num2dec(&f,x,&d) | -∞ to +∞          |            |

 Table E-10
 Conversions between decimal formats

| Compute                          | Syntax                | Valid input<br>range | Exceptions |
|----------------------------------|-----------------------|----------------------|------------|
| Convert decimal struct to string | dec2str(&f,&d,s)      | decimal struct       |            |
| Convert decimal string to struct | str2dec(s,&ix,&d,&vp) | Numeric string       |            |

 Table E-11
 Comparison operations

|                          |               | Valid input          |            |
|--------------------------|---------------|----------------------|------------|
| Compute                  | Syntax        | Valid input<br>range | Exceptions |
| Positive difference or 0 | fdim(x,y)     | -∞ to +∞             | - X O U -  |
| Maximum of 2 numbers     | fmax(x,y)     | -∞ to +∞             |            |
| Minimum of 2 numbers     | fmin(x,y)     | -∞ to +∞             |            |
| Relationship of x, y     | relation(x,y) | -∞ to +∞             |            |

 Table E-12
 Sign manipulation functions

| Compute       | Syntax        | Valid input range | Exceptions |
|---------------|---------------|-------------------|------------|
| Copy the sign | copysign(x,y) | -∞ to +∞          |            |
| x             | fabs(x)       | -∞ to +∞          |            |

 Table E-13
 Exponential functions

| Comput<br>e    | Syntax     | Valid input<br>range | Exceptions |
|----------------|------------|----------------------|------------|
| $e^x$          | exp(x)     | -∞ to +∞             | - X O U -  |
| $2^x$          | exp2(x)    | -∞ to +∞             | - X O U -  |
| $e^{x} - 1$    | expm1(x)   | -∞ to +∞             | - X O U -  |
| $x \times 2^n$ | ldexp(x,n) | -∞ to +∞             | - X O U -  |
|                | scalb(x,n) |                      | - X O U -  |
| <i>x y</i>     | pow(x,y)   | -∞ to +∞             | IXOUD      |

 Table E-14
 Logarithmic functions

| Compute Fraction and exponent fields of floating-point number | Syntax frexp(x,&n) | Valid input range<br>-∞ to +∞ | Exceptions |
|---------------------------------------------------------------|--------------------|-------------------------------|------------|
| ln x                                                          | log(x)             | 0 to +∞                       | I X D      |
| $\log_{10} x$                                                 | log10(x)           | 0 to +∞                       | I X D      |
| $\ln\left(x+1\right)$                                         | log1p(x)           | >-1                           | I X D      |
| $\log_2 x$                                                    | log2(x)            | 0 to +∞                       | I X D      |
| Exponent field of floating-point number                       | logb(x)            | -∞ to +∞                      | D          |
| Split real number into fractional part and integer part       | modf(x,&y)         | -∞ to +∞                      |            |

 Table E-15
 Trigonometric functions

| Compute    | Syntax     | Valid input range | Exceptions |
|------------|------------|-------------------|------------|
| cos x      | cos(x)     | Any finite number | I X        |
| $\sin x$   | sin(x)     | Any finite number | I X - U -  |
| tan x      | tan(x)     | Any finite number | I X - U -  |
| arccos x   | acos(x)    | -1 to +1          | I X        |
| arcsin x   | asin(x)    | -1 to +1          | I X - U -  |
| arctan x   | atan(x)    | -∞ to +∞          | - X - U -  |
| arctan y/x | atan2(x,y) | -∞ to +∞          | - X - U -  |

 Table E-16
 Hyperbolic functions

| Compute          | Syntax   | Valid input range | Exceptions |
|------------------|----------|-------------------|------------|
| $\cosh x$        | cosh(x)  | -∞ to +∞          | - X O      |
| sinh <i>x</i>    | sinh(x)  | -∞ to +∞          | - X O U -  |
| tanh x           | tanh(x)  | -∞ to +∞          | - X        |
| arccosh x        | acosh(x) | 1 to +∞           | I X        |
| arcsinh <i>x</i> | asinh(x) | -∞ to +∞          | - X - U -  |
| arctanh <i>x</i> | atanh(x) | -1 to +1          | I X - U -  |

 Table E-17
 Financial functions

| Compute           | Syntax        | Valid input range | Exceptions |
|-------------------|---------------|-------------------|------------|
| Compound interest | compound(r,p) | 0 to +∞           | I X D      |
| Annuity           | annuity(r,p)  | 0 to +∞           | I X D      |

 Table E-18
 Error and gamma functions

| Compute           | Syntax    | Valid input range | Exceptions |
|-------------------|-----------|-------------------|------------|
| error             | erf(x)    | -∞ to +∞          | - X - U -  |
| 1 – error         | erfc(x)   | -∞ to +∞          | - X - U -  |
| $\Gamma(x)$       | gamma(x)  | 0 to +∞           | I X O      |
| $ln( \Gamma(x) )$ | lgamma(x) | 0 to +∞           | I X O      |

 Table E-19
 Miscellaneous functions

| <b>Compute</b> Create NaN                               | Syntax nan(tagp) | Valid input range character string | Exceptions |
|---------------------------------------------------------|------------------|------------------------------------|------------|
| Next representable number after $x$ in direction of $y$ | nextafterd(x,y)  | -∞ to +∞                           | - X O U -  |
| Hypotenuse                                              | hypot(x,y)       | -∞ to +∞                           | - X O U -  |
| Random number generator                                 | randomx(&x)      | 1 to $2^{31} - 2$                  |            |