

David Maykon Krepsky Silva Daniel Galbes Bassanezi

Laboratório de Instrumentação Eletrônica - Laboratório 1 - Medição de Resistências

Data de realização do experimento:
02 de Abril de 2015
Série/Turma:
1000/1011
Prof. Dr. José Alexandre de França

Sumário

1	Obj	jetivo	2
2		rodução Experimento 1	
3	Res	sultados	4
	3.1	Experimento 1	4
	3.2	Pergunta 1	4
	3.3	Experimento 2	4
	3.4	Pergunta 2	5
1	Δne	evos	5

1 Objetivo

Revisar o uso de aplificadores operacionais, que são muito utilizados na instrumentação eletrônica.

2 Introdução

2.1 Experimento 1

Nesse experimento foi utilizado um diodo zenner como tensão de referência para a leitura de uma resistência.

Figura 1: Circuito com três escalas de resistência.

- Calcular o valor de Rz.
- Calcular o valor de R1, R2 e R3 de modo que fiquem três escalas distintas para a medição da resistência.
- Calcular o valor de Rm para limitar a corrente de acordo com a escala do amperímetro.
- Montar o circuito da figura 1 e utilizar 2 valores de resistência para cada escala. Medir a corrente no amperímetro e anotar os valores obtidos.

2.2 Experimento 2

Neste experimento foi projetado um circuito amplificador com ganho controlado digitalmente.

Figura 2: Amplificador com ganho variável.

- Definir o valor dos resistores para 8 ganhos diferentes.
- Montar o circuito da 2 e aplicar um sinal senoidal na entrada.
- Analizar o ganho do circuito.

3 Resultados

3.1 Experimento 1

Para Rz foi considerado que o diodo D1 necessita de uma corrente de 80mA para manter a tensão estável. Sendo assim, o valor de Rz (calculado com a eq. 1) foi de 108.75Ω , com valor comercial mais próximo de 120Ω .

$$Rz = \frac{Vcc - Vz}{80mA} \tag{1}$$

Foram definidas as escalas $1k\Omega$, $10k\Omega$ e $100k\Omega$, de modo que quando o valor de Rx for o limite da escala, a saída Vo será 10V. Os valores encontrados para os resistores R1, R2 e R3 são 330Ω , $3.3k\Omega$ e $33k\Omega$, respectivamente.

A tabela 1 mostra o valor das resistências testadas, o valor na saída Vo e a corrente mensurada com o amperimetro.

Tabe<u>la 1: Valores de Vo e Iout me</u>didos.

$\operatorname{Rx}\left[\Omega\right]$	Vo [V]	Iout $[\mu A]$
560	5.24	818
820	7.84	958
2.2k	2.07	649
4.7k	4.46	777
15k	1.43	615
47k	4.52	780

3.2 Pergunta 1

Qual amplificador você poderia usar para reduzir erros de offset e corrente de polarização?

Poderia ser utilizado um AmpOp de melhor qualidade, como por exemplo amplificadores operacionais feitos com JFET (TL082).

3.3 Experimento 2

A tabela 2 mostra o valor das resistências escolhidas, o ganho calculado para cada resistência e o ganho medido.

O ganho calculado foi obtido através da equação do ganho para amplificadores não-inversores (eq. 2).

$$G = 1 + \frac{Rx}{R8} \tag{2}$$

O ganho medido foi obtido aplicando-se uma entrada senoidal de frequência 1KHz e amplitude 1 mV.

Foram considerados para o projeto a capacidade de sink/source do CI 4051 e a saturação do AmpOp.

Tabela 2: Ganho calculado e medido para cada resistor.

$\operatorname{Rx}\left[\Omega\right]$	G calculado [V/V]	G medido [V/V]
1k	2	1.7
4.7k	5.7	5.3
8.2k	9.2	9.0
22k	23	22.4
47k	48	48.0
100k	101	100.4
220k	221	222.0
470k	471	469.6

3.4 Pergunta 2

Que modificação poderia ser feita no circuito anterior para o ganho unitário ser possível?

Poderia ser utilizado dois amplificadores inversores em cascata.

4 Anexos

Figura 3: Montagem do experimento 1.

Figura 4: Montagem do experimento 2.