শিক্ষা নিয়ে গড়বো দেশ

তথ্য-প্রযুক্তির বাৎলাদেশ

## Bangabandhu Sheikh Mujibur Rahman Digital University, Bangladesh



# LAB REPORT-08

## COURSE NO.-ICT 4256 COURSE TITLE-COMPUTER NETWORKING LAB

## SUBMITTED BY

Mehrin Farzana

ID: 2101013

Department of IRE

Session: 2021-2022

Bangabandhu Sheikh Mujibur Rahman Digital

University, Bangladesh

## **SUBMITTED TO**

Md.Toukir Ahmed

Lecturer

Department of IRE, BDU

Bangabandhu Sheikh Mujibur Rahman Digital

University, Bangladesh

Date of Submission: 19 May, 2023

## **Lab Introduction:**

In this lab, we'll be learning about classless IP addresses, subnetting and how to implement it using Cisco Packet Tracer.

## **Objectives:**

- To learn what classless IP addresses are
- To learn what subnetting is
- How classless IP addressing is used in subnetting
- How to configure subnets
- Importance of subnetting

## Index

| Experiment No. | Experiment Title                      | Page |
|----------------|---------------------------------------|------|
| 01             | Subnetting                            | 2    |
| 02             | Subnetting using a class C IP address | 9    |
| 03             | Subnetting using a class B IP address | 15   |
| 04             | Subnetting using a class A IP address | 21   |

#### **Experiment No.: 1**

**Experiment Title:** Subnetting.

### **Objectives:**

- To learn what classless IP addresses are
- To learn what subnetting is
- How a class full IP address is converted into a classless IP address in favour of subnetting
- How classless IP addressing is used in subnetting
- How to configure subnets

#### **Discussion:**

When a network is divided into multiple smaller networks, the process is called subnetting.

Here we take an IP address, classless or class-full, and borrow some bits from it's host portion and use them as network bits, or to be exact, subnetwork bits.

#### **Methodology:**

- Create the network topology.
- Configuration of the Network Nodes.
- Choose the Statistics.
- Run the Simulation.
- Analysis of the Results.

#### Working procedure:

#### 1. Giving the geometric shape of the topology

#### Taken devices:

- a. Six PCs
- b. Two 2960-24TT switches
- c. One 2911 Router

Connecting 6 PCs to 2 switches, 3 per each, and then connecting the 2 switches to a router with straight through copper cable, as they are different typed devices.



Fig 1.1: Simulating the topology using CPT.

#### 2. Configuring the devices

Here we have taken a class C IP address for subnetting;

Given network address: 192.168.0.0

Subnet mask: 255.255.255.0

Since we have 2 LANs, we only need 2 subnetting addresses.

We know,  $2^1 = 2$ 

Therefore, we only need to take 1 bit from the host portion of our initial class C IP address.

As a class C IP address already has 24 bits from the left, meaning, 3 octets fixed for it's network portion, we take 1 bit from the 4<sup>th</sup> octet for subnetting.

| 8 bits       | 8 bits | 8 bits | 1 bit      | 7 bits    |
|--------------|--------|--------|------------|-----------|
| Network bits |        |        | Subnet bit | Host bits |

Now,

Network address: 192.168.0.0/25Subnet mask: 255.255.255.128Number of possible subnets:  $2^1 = 2$ Number of hosts per subnet:  $2^7 - 2 = 126$ Subnet range: 192.168.0.0 - 192.168.0.127

192.168.0.128 - 192.168.0.255

## 2.1. Configure the PCs with the following IP addresses and Subnet Masks Here the Subnet Masks have to be manually added.

| Host | IP Address    | Subnet Mask     | <b>Default Gateway</b> |
|------|---------------|-----------------|------------------------|
| PC0  | 192.168.0.1   | 255.255.255.128 | 192.168.0.4            |
| PC1  | 192.168.0.2   | 255.255.255.128 | 192.168.0.4            |
| PC2  | 192.168.0.3   | 255.255.255.128 | 192.168.0.4            |
| PC3  | 192.168.0.129 | 255.255.255.128 | 192.168.0.132          |
| PC4  | 192.168.0.130 | 255.255.255.128 | 192.168.0.132          |
| PC5  | 192.168.0.131 | 255.255.255.128 | 192.168.0.132          |

#### 2.2. Configure the router with the following IP addresses and Subnet Masks

| Host Port |        | IP Address    | Subnet Mask     |  |
|-----------|--------|---------------|-----------------|--|
| Router1   | Gig0/0 | 192.168.0.4   | 255.255.255.128 |  |
|           | Gig0/1 | 192.168.0.132 | 255.255.255.128 |  |

#### 3. Sending data across PCs

#### 3.1. Connection tests across PCs

Ping PCs by there IP addresses from another PC in Command Prompt. If connection is there, four replies will come.

Command: ping<space>'IP address of some other PC'

For first time communication, some packets may be lost.

```
PC0
                                                                                ×
Physical Config Desktop Programming Attributes
                                                                                     X
Cisco Packet Tracer PC Command Line 1.0 C:\>ping 192.168.0.129
Pinging 192.168.0.129 with 32 bytes of data:
Request timed out.
 Reply from 192.168.0.129: bytes=32 time=1ms TTL=127
 Reply from 192.168.0.129: bytes=32 time=1ms TTL=127
 Reply from 192.168.0.129: bytes=32 time=1ms TTL=127
 Ping statistics for 192.168.0.129:
 Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in milli-seconds:
     Minimum = 1ms, Maximum = 1ms, Average = 1ms
 C:\>ping 192.168.0.129
 Pinging 192.168.0.129 with 32 bytes of data:
 Reply from 192.168.0.129: bytes=32 time=1ms TTL=127
Reply from 192.168.0.129: bytes=32 time<1ms TTL=127
Reply from 192.168.0.129: bytes=32 time<1ms TTL=127
 Reply from 192.168.0.129: bytes=32 time<1ms TTL=127
 Ping statistics for 192.168.0.129:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
 C:\>
```

Fig 1.2: Pinging PC3 from PC0



Fig 1.3: Pinging using the broadcast address of Subnet1 from PC0

```
₽C0
                                                                                             \times
Physical Config Desktop Programming Attributes
                                                                                                   X
 Reply from 192.168.0.4: bytes=32 time=1ms TTL=255
 Reply from 192.168.0.4: bytes=32 time=1ms TTL=255
 Ping statistics for 192.168.0.255:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 32ms, Average = 12ms
 C:\>ping 192.168.0.0
 Pinging 192.168.0.0 with 32 bytes of data:
 Reply from 192.168.0.4: bytes=32 time<1ms TTL=255
 Reply from 192.168.0.3: bytes=32 time<1ms TTL=128
 Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
 Reply from 192.168.0.4: bytes=32 time<1ms TTL=255 Reply from 192.168.0.3: bytes=32 time=1ms TTL=128
 Reply from 192.168.0.2: bytes=32 time<1ms TTL=128 Reply from 192.168.0.4: bytes=32 time<1ms TTL=255
 Reply from 192.168.0.3: bytes=32 time<1ms TTL=128
 Reply from 192.168.0.2: bytes=32 time<1ms TTL=128 Reply from 192.168.0.4: bytes=32 time<1ms TTL=255
 Reply from 192.168.0.3: bytes=32 time<1ms TTL=128
 Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
 Ping statistics for 192.168.0.0:
 Packets: Sent = 4, Received = 12, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
      Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Fig 1.4: Pinging using the subnet address of Subnet1 address of Subnet1 from PC0

#### **Simulation:**



Fig 1.5: Successful packets travel across PCs



Fig 1.6: PDU information at the OSI model at Router1



Fig 1.7: Inbound and Outbound Protocol data unit details at Router0

#### **Conclusion:**

Subnetting allows to create multiple networks using a single network address.

#### Benefits of subnetting;

- 1. Less network traffic
- 2. High performance of network
- 3. Easy to manage
- 4. Network can e elaborated
- 5. Easy to divide the network
- 6. Save of cost of buying more network addresses
- 7. Convenient
- 8. Allows isolated localization of a LAN

#### Caution:

- During device configuration,
  - It is very important to note the range of IP addresses in a given subnet. The subnet address of a subnet must be different from other subnets connected to that router. Otherwise, the addresses will overlap and the network won't be successfully established.
  - One must manually input the proper subnet masks

#### **Experiment No.: 2**

**Experiment Title:** Subnetting using a class C IP address.

### **Objectives:**

- To learn what classless IP addresses are
- To learn what subnetting is
- How a class full IP address is converted into a classless IP address in favour of subnetting
- How classless IP addressing is used in subnetting
- How to configure subnets

#### **Discussion:**

When a network is divided into multiple smaller networks, the process is called subnetting.

Here we take an IP address, classless or class-full, and borrow some bits from it's host portion and use them as network bits, or to be exact, subnetwork bits.

#### Methodology:

- Create the network topology.
- Configuration of the Network Nodes.
- Choose the Statistics.
- Run the Simulation.
- Analysis of the Results.

#### **Working procedure:**

### 1. Giving the geometric shape of the topology

#### Taken devices:

- a. Six PCs
- b. Two 2960-24TT switches
- c. One 2911 Router

Connecting 6 PCs to 2 switches, 3 per each, and then connecting the 2 switches to a router with straight through copper cable, as they are different typed devices.



Fig 2.1: Simulating the topology using CPT.

#### 2. Configuring the devices

Here we have taken a class C IP address for subnetting;

Given network address: 192.168.10.0

Subnet mask: 255.255.255.0

Since we have 2 LANs, we only need 2 subnetting addresses.

We know,  $2^1 = 2$ 

Therefore, we only need to take 1 bit from the host portion of our initial class C IP address.

As a class C IP address already has 24 bits from the left, meaning, 3 octets fixed for it's network portion, we take 1 bit from the  $4^{th}$  octet for subnetting.

| 8 bits       | 8 bits | 8 bits | 1 bit      | 7 bits    |
|--------------|--------|--------|------------|-----------|
| Network bits |        |        | Subnet bit | Host bits |

Now,

Network address: 192.168.10.0/25Subnet mask: 255.255.255.128Number of possible subnets:  $2^1 = 2$ Number of hosts per subnet:  $2^7 - 2 = 126$ Subnet range: 192.168.10.0 - 192.168.10.127

192.168.10.128 - 198.162.10.255

## 2.1. Configure the PCs with the following IP addresses and Subnet Masks Here the Subnet Masks have to be manually added.

| Host | IP Address     | Subnet Mask     | <b>Default Gateway</b> |
|------|----------------|-----------------|------------------------|
| PC0  | 192.168.10.1   | 255.255.255.128 | 192.168.10.4           |
| PC1  | 192.168.10.2   | 255.255.255.128 | 192.168.10.4           |
| PC2  | 192.168.10.3   | 255.255.255.128 | 192.168.10.4           |
| PC3  | 192.168.10.129 | 255.255.255.128 | 192.168.10.132         |
| PC4  | 192.168.10.130 | 255.255.255.128 | 192.168.10.132         |
| PC5  | 192.168.10.131 | 255.255.255.128 | 192.168.10.132         |

#### 2.2. Configure the router with the following IP addresses and Subnet Masks

| Host    | Host Port |                | Subnet Mask     |
|---------|-----------|----------------|-----------------|
| Router1 | Gig0/0    | 192.168.10.4   | 255.255.255.128 |
|         | Gig0/1    | 192.168.10.132 | 255.255.255.128 |

#### 3. Sending data across PCs

#### 3.1. Connection tests across PCs

Ping PCs by there IP addresses from another PC in Command Prompt. If connection is there, four replies will come.

Command: ping<space>'IP address of some other PC'

For first time communication, some packets may be lost.

```
PC0
                                                                    X
Physical Config Desktop Programming
                          Attributes
Command Prompt
                                                                         Χ
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.10.129
Pinging 192.168.10.129 with 32 bytes of data:
Reply from 192.168.10.129: bytes=32 time=1ms TTL=127
Reply from 192.168.10.129: bytes=32 time<1ms TTL=127
Reply from 192.168.10.129: bytes=32 time=1ms TTL=127
Reply from 192.168.10.129: bytes=32 time<1ms TTL=127
Ping statistics for 192.168.10.129:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>
```

Fig 2.2: Pinging PC3 from PC0

#### **Simulation:**



Fig 21.3: Successful packets travel across PCs



Fig 2.4: PDU information at the OSI model at Router1



Fig 2.5: Inbound Protocol data unit details at Router0

#### **Conclusion:**

Subnetting allows to create multiple networks using a single network address.

#### Benefits of subnetting;

- 9. Less network traffic
- 10. High performance of network
- 11. Easy to manage
- 12. Network can be elaborated
- 13. Easy to divide the network
- 14. Save of cost of buying more network addresses
- 15. Convenient
- 16. Allows isolated localization of a LAN

#### Caution:

- During device configuration,
  - It is very important to note the range of IP addresses in a given subnet. The subnet address of a subnet must be different from other subnets connected to that router. Otherwise, the addresses will overlap and the network won't be successfully established.
  - One must manually input the proper subnet masks

#### **Experiment No.: 3**

Experiment Title: Subnetting using a class B IP address.

#### **Objectives:**

- To learn what classless IP addresses are
- To learn what subnetting is
- How a class full IP address is converted into a classless IP address in favour of subnetting
- How classless IP addressing is used in subnetting
- How to configure subnets

#### **Discussion:**

When a network is divided into multiple smaller networks, the process is called subnetting.

Here we take an IP address, classless or class-full, and borrow some bits from it's host portion and use them as network bits, or to be exact, subnetwork bits.

#### Methodology:

- Create the network topology.
- Configuration of the Network Nodes.
- Choose the Statistics.
- Run the Simulation.
- Analysis of the Results.

#### **Working procedure:**

#### 1. Giving the geometric shape of the topology

#### Taken devices:

- a. Six PCs
- b. Three 2960-24TT switches
- c. Two 2911 Routers

Connecting 6 PCs to 3 switches, 2 per each, and then connecting the Switch0 with Router0 and Switch1, Switch2 with Router 1 and then connecting the 2 routers with each other with straight through copper cable, as they are different typed devices.



Fig 3.1: Simulating the topology using CPT.

#### 2. Configuring the devices

Here we have taken a class B IP address for subnetting;

Given network address: 172.16.0.0

Subnet mask: 255.255.0.0

We will be taking 4 bits for subnetting

We know,  $2^4 = 16$ 

Since we have 4 LANs, we only need 4 subnetting addresses.

As a class B IP address already has 16 bits from the left, meaning, 2 octets fixed for it's network portion, we take 4 bits from the 3<sup>rd</sup> octet for subnetting.

| 8 bits | 8 bits   | 4 bits      | 12 bits   |
|--------|----------|-------------|-----------|
| Netwo  | ork bits | Subnet bits | Host bits |

Now,

Network address: 172.16.0.0/20 Subnet mask: 255.255.240.0

Number of possible subnets:  $2^4 = 16$ Number of hosts per subnet:  $2^{12} - 2 = 4094$ 

Subnet range: 172.16.0.0 - 172.16.15.255

172.16.16.0 - 172.16.31.255 172.16.32.0 - 172.16.47.255 172.16.48.0 - 172.16.63.255

#### 2.1. Configure the PCs with the following IP addresses and Subnet Masks

| Host | IP Address  | Subnet Mask   | <b>Default Gateway</b> |
|------|-------------|---------------|------------------------|
| PC0  | 172.16.0.1  | 255.255.240.0 | 172.16.0.3             |
| PC1  | 172.16.0.2  | 255.255.240.0 | 172.16.0.3             |
| PC2  | 172.16.32.1 | 255.255.240.0 | 172.16.32.3            |
| PC3  | 172.16.32.2 | 255.255.240.0 | 172.16.32.3            |
| PC4  | 172.16.48.1 | 255.255.240.0 | 172.16.48.3            |
| PC5  | 172.16.48.2 | 255.255.240.0 | 172.16.48.3            |

#### 2.2. Configure the routers with the following IP addresses and Subnet Masks

| Host    | Port   | IP Address  | Subnet Mask   |
|---------|--------|-------------|---------------|
| Router0 | Gig0/0 | 172.16.0.3  | 255.255.240.0 |
|         | Gig0/1 | 172.16.16.1 | 255.255.240.0 |
| Router1 | Gig0/0 | 172.16.16.2 | 255.255.240.0 |
|         | Gig0/1 | 172.16.32.3 | 255.255.240.0 |
|         | Gig0/2 | 172.16.48.3 | 255.255.240.0 |

## 2.3. Configure the static routes of the routers with the following Network IP addresses and Subnet Masks and Next Hop IP addresses

| Host     | #Route | Network IP  | Subnet Mask   | Next Hop's IP |
|----------|--------|-------------|---------------|---------------|
| Router   | 1      | 172.16.32.0 | 255.255.240.0 | 172.16.16.2   |
| 0        | 2      | 172.16.48.0 | 255.255.240.0 | 172.16.16.2   |
| Router 1 | 1      | 172.16.0.0  | 255.255.240.0 | 172.16.16.1   |

Note, Even though using RIP is far more convenient than using Static Routing; the drawback of RIP is that it is only applicable for class-full IP addresses.

#### 3. Sending data across PCs

#### 3.1. Connection tests across PCs

Ping PCs by there IP addresses from another PC in Command Prompt. If connection is there, four replies will come.

Command: ping<space>'IP address of some other PC'

For first time communication, some packets may be lost.

```
PC0
                                                                    X
Physical
      Config Desktop Programming
                          Attributes
                                                                         Χ
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 172.16.48.2
Pinging 172.16.48.2 with 32 bytes of data:
Reply from 172.16.48.2: bytes=32 time=10ms TTL=126
Ping statistics for 172.16.48.2:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
C:\>
```

Fig 3.2: Pinging PC5 from PC0

#### 4. Simulation:



Fig 3.3: Successful packets travel across PCs



Fig 3.4: PDU information at the OSI model in Router0



Fig 3.5: Inbound Protocol data unit details at Router0

#### **Conclusion:**

Subnetting allows to create multiple networks using a single network address.

#### Benefits of subnetting;

- 17. Less network traffic
- 18. High performance of network
- 19. Easy to manage
- 20. Network can be elaborated
- 21. Easy to divide the network
- 22. Save of cost of buying more network addresses
- 23. Convenient
- 24. Allows isolated localization of a LAN

#### Caution:

- During device configuration,
  - It is very important to note the range of IP addresses in a given subnet. The subnet address of a subnet must be different from other subnets connected to that router. Otherwise, the addresses will overlap and the network won't be successfully established.
  - One must manually input the proper subnet masks

#### **Experiment No.: 4**

**Experiment Title:** Subnetting using a class C IP address.

### **Objectives:**

- To learn what classless IP addresses are
- To learn what subnetting is
- How a class full IP address is converted into a classless IP address in favour of subnetting
- How classless IP addressing is used in subnetting
- How to configure subnets

#### **Discussion:**

When a network is divided into multiple smaller networks, the process is called subnetting.

Here we take an IP address, classless or class-full, and borrow some bits from it's host portion and use them as network bits, or to be exact, subnetwork bits.

#### Methodology:

- Create the network topology.
- Configuration of the Network Nodes.
- Choose the Statistics.
- Run the Simulation.
- Analysis of the Results.

#### Working procedure:

### 1. Giving the geometric shape of the topology

#### Taken devices:

- a. Four PCs
- b. Two 2960-24TT switches
- c. One 2911 Router

Connecting 4 PCs to 2 switches, 2 per each, and then connecting the 2 switches to a router with straight through copper cable, as they are different typed devices.



Fig 4.1: Simulating the topology using CPT.

#### 2. Configuring the devices

Here we have taken a class A IP address for subnetting;

Given network address: 1.0.0.0

Subnet mask: 255.0.0.0

Since we have 2 LANs, we only need 2 subnetting addresses.

We know,  $2^1 = 2$ 

Therefore, we only need to take 1 bit from the host portion of our initial class A IP address.

As a class A IP address already has 8 bits from the left, meaning, 1 octet fixed for it's network portion, we take 1 bit from the 2<sup>nd</sup> octet for subnetting.

| 8 bits       | 1 bit      | 7 bits | 8 bit     | 8 bits |
|--------------|------------|--------|-----------|--------|
| Network bits | Subnet bit |        | Host bits |        |

Now,

Network address: 1.0.0.0/9 Subnet mask: 255.128.0.0

Number of possible subnets:  $2^1 = 2$ 

Number of hosts per subnet:  $2^{23} - 2 = 8388606$ 

Subnet range: 1.0.0.0 - 1.127.255.255

1.128.0.0 - 1.255.255.255

## 2.1. Configure the PCs with the following IP addresses and Subnet Masks Here the Subnet Masks have to be manually added.

| Host | IP Address | Subnet Mask | <b>Default Gateway</b> |  |  |  |  |
|------|------------|-------------|------------------------|--|--|--|--|
| PC0  | 1.0.0.1    | 255.128.0.0 | 1.0.0.3                |  |  |  |  |
| PC1  | 1.0.0.2    | 255.128.0.0 | 1.0.0.3                |  |  |  |  |
| PC2  | 1.128.0.1  | 255.128.0.0 | 1.128.0.3              |  |  |  |  |
| PC3  | 1.128.0.2  | 255.128.0.0 | 1.128.0.3              |  |  |  |  |

#### 2.2. Configure the router with the following IP addresses and Subnet Masks

| Host    | Port   | IP Address | Subnet Mask |  |  |
|---------|--------|------------|-------------|--|--|
| D       | Gig0/0 | 1.0.0.3    | 255.128.0.0 |  |  |
| Router1 | Gig0/1 | 1.128.0.3  | 255.128.0.0 |  |  |

#### 3. Sending data across PCs

#### 3.1. Connection tests across PCs

Ping PCs by there IP addresses from another PC in Command Prompt. If connection is there, four replies will come.

Command: ping<space>'IP address of some other PC'

For first time communication, some packets may be lost.

```
PC0(1)
                                                                    X
Physical Config Desktop Programming Attributes
                                                                        Χ
 Command Prompt
 C:\>ping 1.128.0.1
 Pinging 1.128.0.1 with 32 bytes of data:
 Reply from 1.128.0.1: bytes=32 time<1ms TTL=127
 Reply from 1.128.0.1: bytes=32 time<1ms TTL=127
 Reply from 1.128.0.1: bytes=32 time=11ms TTL=127
 Reply from 1.128.0.1: bytes=32 time<1ms TTL=127
 Ping statistics for 1.128.0.1:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 11ms, Average = 2ms
 C:\>ping 1.128.0.1
 Pinging 1.128.0.1 with 32 bytes of data:
 Reply from 1.128.0.1: bytes=32 time<1ms TTL=127
 Reply from 1.128.0.1: bytes=32 time=1ms TTL=127
 Reply from 1.128.0.1: bytes=32 time=1ms TTL=127
 Reply from 1.128.0.1: bytes=32 time<1ms TTL=127
 Ping statistics for 1.128.0.1:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
 C:\>
Top
```

Fig 4.2: Pinging PC3(1) from PC0(1)

#### **Simulation:**

| Fire | Last Status | Source | Destination | Туре        | Color | Time(sec) | Periodic | Num | Edit   | Delete   |
|------|-------------|--------|-------------|-------------|-------|-----------|----------|-----|--------|----------|
| •    | Successful  | PC0(1) | PC3(1)      | <b>ICMP</b> |       | 0.000     | N        | 0   | (edit) | (delete) |
| •    | Successful  | PC0(1) | PC4(1)      | <b>ICMP</b> |       | 0.000     | N        | 1   | (edit) | (delete) |
| •    | Successful  | PC1(1) | PC3(1)      | ICMP        |       | 0.000     | N        | 2   | (edit) | (delete) |

Fig 4.3: Successful packets travel across PCs



Fig 4.4: PDU information at the OSI model at Router1



Fig 4.5: Inbound Protocol data unit details at Router0

#### **Conclusion:**

Subnetting allows to create multiple networks using a single network address.

#### Benefits of subnetting;

- 1. Less network traffic
- 2. High performance of network
- 3. Easy to manage
- 4. Network can be elaborated
- 5. Easy to divide the network
- 6. Save of cost of buying more network addresses
- 7. Convenient
- 8. Allows isolated localization of a LAN

#### Caution:

- During device configuration,
  - It is very important to note the range of IP addresses in a given subnet. The subnet address of a subnet must be different from other subnets connected to that router. Otherwise, the addresses will overlap and the network won't be successfully established.
  - One must manually input the proper subnet masks

#### **Lab Conclusion:**

From this lab we got to know about,

- Subnetting
  - > The process of dividing a network into smaller manageable networks.
  - Taking a single network address and converting it into multiple sub-network addresses.
- Subnetting using a class C IP address
  - A class C IP address has 3 octets reserved for network id and only 1 octet for host id. There for it's not ideal for subnetting a big network.
- Subnetting using a class B IP address
  - A class B IP address has 2 octets reserved for network id and 2 octets for host id. There for it's okay for subnetting a big network.
- Subnetting using a class A IP address
  - A class A IP address has 1 octet reserved for network id and 3 octets for host id.
  - There for it's ideal for subnetting a big network.
- In case of subnetting, the subnet masks must be manually input and Static Routing have to be used instead of RIP or Dynamic Routing.