

Basic Statistical Models

Dirk Grunwald University of Colorado, Boulder

Basic Statistical Models

- What do we mean by "model"
- Random samples
- Statistical model for repeated measurements
- Example: disk drive failures
- Distribution features and statistical models
 - Sample expectation
 - Sample variance
- Linear regression models

 We've described various probability distributions and describe how some "real world" data tends to fit those distributions.

- We've described various probability distributions and describe how some "real world" data tends to fit those distributions.
- Now, we turn that on it's head we have empirical data and we seek to understand if the data can be <u>modeled</u> by distributions.

- We've described various probability distributions and describe how some "real world" data tends to fit those distributions.
- Now, we turn that on it's head we have empirical data and we seek to understand if the data can be modeled by distributions.
- To do this, we'll need to <u>estimate</u> parameters of the model from the empirical data.

- We've described various probability distributions and describe how some "real world" data tends to fit those distributions.
- Now, we turn that on it's head we have empirical data and we seek to understand if the data can be modeled by distributions.
- To do this, we'll need to <u>estimate</u> parameters of the model from the empirical data.
- And, we'll need to determine how <u>confident</u> we are in our estimate of those parameters.

Random Sample

Random Sample

A <u>random sample</u> is a collection of random variables

$$X_1, X_2, \ldots, X_n$$

that have the same probability distribution and are mutually independent.

Dirk Grunwald

Random Sample

A <u>random sample</u> is a collection of random variables

$$X_1, X_2, \ldots, X_n$$

that have the same probability distribution and are mutually independent.

Example: Flip a coin 10 times, subsequent flip corresponds to X_1, X_2, \dots, X_{10}

Random Sample

A <u>random sample</u> is a collection of random variables

$$X_1, X_2, \ldots, X_n$$

that have the same probability distribution and are mutually independent.

Example: Flip a coin 10 times, subsequent flip corresponds to X_1, X_2, \dots, X_{10}

Example: Monitor a data center full of disk drives, count the number of failures per month.

Measured data are realization of random samples.

Measured data are realization of random samples.

Statistical Model for Repeated Measurements

A dataset consisting of values x_1, x_2, \ldots, x_n of repeated measurements of the same quantity is modeled as the realization of a random sample X_1, X_2, \ldots, X_n . The model may include a partial specification of the probability distribution function for each X_i .

The probability of X_i is the <u>model distribution</u>, often a collection of distributions

The probability of X_i is the <u>model distribution</u>, often a collection of distributions that have model parameters.

The probability of X_i is the <u>model distribution</u>, often a collection of distributions that have <u>model parameters</u>.

We would believe the <u>model distribution</u> is derived from the specific true distribution.

The probability of X_i is the <u>model distribution</u>, often a collection of distributions that have <u>model parameters</u>.

We would believe the <u>model distribution</u> is derived from the specific true distribution.

Example: Manufactures rate disk drives using an exponential mean-time-to-failure (MTTF) model.

The probability of X_i is the <u>model distribution</u>, often a collection of distributions that have <u>model parameters</u>.

We would believe the <u>model distribution</u> is derived from the specific true distribution.

Example: Manufactures rate disk drives using an exponential mean-time-to-failure (MTTF) model. Accurate?

Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you?, Bianca Schroeder, Garth A. Gibson (CMU), File systems and Storage Technology, 2007.

Figure 5: CDF of number of disk replacements per month in HPC1

 The statistical model includes three parts; birth, mid-life and death.

Example: disk drive failures II

Figure 5: CDF of number of disk replacements per month in HPC1

- The statistical model includes three parts; birth, mid-life and death.
- OK agreement with exponential assumption in mid-life phase.

We've seen empirical estimators in EDA

- We've seen empirical estimators in EDA
- True μ estimated by sample mean

$$E[X] = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

- We've seen empirical estimators in EDA
- True μ estimated by sample mean

$$E[X] = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

• True σ^2 estimated by sample variance

$$s_n^2 = \frac{1}{n-1} \sum_{i=0}^n (x_i - \bar{x}_n)^2$$

 \circ Why n-1?

- We've seen empirical estimators in EDA
- True μ estimated by sample mean

$$E[X] = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

• True σ^2 estimated by sample variance

$$s_n^2 = \frac{1}{n-1} \sum_{i=0}^n (x_i - \bar{x}_n)^2$$

• Why n-1? We'll discuss unbiased estimators later.

Linear Regression Models

• Our model is hardness ~ density of timber

Dirk Grunwald | University of Colorado, Boulder Basic Statistical Models |

10 of 14

Linear Regression Models

- Our model is hardness ~ density of timber
- A <u>regression model</u> would be hardness ~ density of timber + noise

Linear Regression Models

Simple Linear Regression Model

A <u>simple linear regression model</u> for $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ assumes the x_i are non-random and the y_i are realizations of random variables Y_i satisfying

$$Y_i = \alpha + \beta x_i + R_i$$

where R_i are independent random variables with $E[U_i] = 0$ and $Var[U_i] = \sigma^2$.

True distribution sometimes not linear

Figure 1.1 Kidney fitness tot vs age for 157 volunteers. The line is a linear regression fit, showing ± 2 standard errors at selected values of age.

Beyond simple linear regression

Figure 1.2 Local polynomial lowess (x, y, 1/3) fit to the kidney-fitness data, with ± 2 bootstrap standard deviations.

Bootstrapped Models

Figure 1.3 25 bootstrap replications of lowess (x, y, 1/3).