基因编辑(gene)

考虑什么样的 (i,j) 可以做出贡献,首先有 $i < l ext{ 且 } r < j$ 。同时要求 (i,j) 是唯一的 (s_i,s_j) ,那么有:

- 1. i 是第一个颜色为 s_i 的位置,j 是最后一个颜色为 s_j 的位置。
- 2. j 在 i 的下一个颜色为 s_i 的位置的左侧。
- 3.i 在 j 的上一个颜色为 s_i 的位置的右侧。

发现对于第一个限制,就是确定了哪些点能够做i,哪些点能够做j。

对于第三个限制,决定了 j 只对一段区间内的 i 有用,所以我们从 1 扫到 l,那么每一个 j 都会在某一个时刻开始可以被选;由于 j 在 i 的下一个同色位置的左侧,所以只需要检验最小的 j 是否比它小即可。

时间复杂度 $O(n \log n)$ 或者 O(n)。

长野原龙势流星群(tree)

发现有一个很显然的二分答案做法,我们先二分答案 X,然后把 i 点的权值变成 w_i-X ,就是检验是否存在以这个点为根的权值和 ≥ 0 的连通块了。这个问题是有一个很显然的贪心的的: f_i 表示以 i 为根的答案,那么就有 $f_i=w_i-X+\sum_{y\in son(i)}\max(f_v,0)$,可以认为是它只选择那些 >0 的儿子。

但是发现二分没有前途,所以我们考虑对于 X 进行扫描,直接从大到小,那么所有点的权值也都从 w_i-X 开始从小往大增大。

如果我们能在这个过程中动态维护所有的 f_i ,那么我们就只需要关注每一个 f_i 变成 0 的时刻的 X 即 σ_i

而对于一个 f_i ,其变成 0 之后,随着 X 的增大,其必然一直保持 $f_i > 0$,那么在其父亲的决策中就必然会选择这个点。那么我们就可以让其和其父亲所在的连通块合并。

那么我们就变成了合并树上的两个连通块,以及查询当前所有 <0 的 f_i 中最早变成 0 的 f_i (也就是找最小的 $\frac{f_i}{siz_i}$) 。发现可以直接使用并查集和可删堆分别处理,时间复杂度 $O(n\log n)$ 。

京都观光(kyoto)

行走的路径是一条折线,因此,问题的重点就在于什么情况下会选择转弯。

例如考虑 l,r 两行,以及 x,y,z 三列,什么时候会选择路径 $(l,x) \to (l,y) \to (r,y) \to (r,z)$,而不是 $(l,x) \to (r,x) \to (r,z)$ 或 $(l,x) \to (l,z) \to (r,z)$ 。

分别计算三种情况的代价:

- $ullet (l,x)
 ightarrow (l,y)
 ightarrow (r,y)
 ightarrow (r,z) \colon A_l(y-x) + A_r(z-y) + B_u(r-l)$.
- (l,x) o (r,x) o (r,z): $B_x(r-l) + A_r(z-x)$.
- $(l,x) \rightarrow (l,z) \rightarrow (r,z)$: $A_l(z-x) + B_z(r-l)$.

求解不等式组
$$\left\{egin{aligned} A_l(y-x)+A_r(z-y)+B_y(r-l) & \leq B_x(r-l)+A_r(z-x) \ A_l(y-x)+A_r(z-y)+B_y(r-l) & \leq A_l(z-x)+B_z(r-l) \end{aligned}
ight.$$
有:

$$\frac{B_y - B_x}{y - x} \le \frac{A_r - A_l}{r - l} \le \frac{B_z - B_y}{z - y}$$

发现如果是从 y 列转弯,就需要上述不等式成立,而上述不等式可能成立的前提条件为 $\frac{B_y-B_x}{y-x} \leq \frac{B_z-B_y}{z-y} \text{。这一个对于 } B \text{ 单独的斜率型的限制,说明了,只有所有 } (i,B_i) \text{ 构成的下凸包 } D \text{ 上的点对应的列上,才有可能纵向移动。} A 序列同理。$

使用单调栈对 A 和 B 建立凸包,而根据上页的不等式可知,实际移动的路线会选择斜率更小一侧移动,而在 A 和 B 的凸包上,斜率是分别单调递增的。

对于 A 和 B 同时维护两个指针,使用类似归并的方式处理,就可以得到移动的路径,进而计算出答案。时间复杂度 O(H+W)。

求和避免(sum)

首先考虑求解 N 的值。

如果 $a\in A$,则必然有 $(S-a)\not\in A$ 。因此将 [1,S) 中和为 S 的数两两匹配,每一对数中只能够选择一个。因此有 $N\le \left|\frac{S-1}{2}\right|$ 。

同时这个上界也是可以取到的,具体的,取每一对数中较大的那个,也就是所有 $> \frac{S}{2}$ 的数。此时,任意两个数的和都 > S,满足第二条限制。

再考虑如何最小化字典序。

从小到大枚举 t , 如果将 t 加入 A 中仍然合法,就直接加入。可以证明这样的方法仍然能够满足 N 最大:

如果 t 不能加入 A ,说明对于当前已经加入 $A=\{a_1,a_2,\dots a_{N'}\}$,不存在非负整数列 $\{x_1,x_2\dots x_{N'}\}$ 使得 $\sum\limits_{i=1}^{N'}x_ia_i=t$ 。

证明考虑反证法,如果存在一组 $\{x\}$,使得 $\sum\limits_{i=1}^{N'} x_i a_i = t$,由于 t 不能加入,说明存在非负整数列 $\{x_1', x_2' \dots x_N', y\} (y \neq 0)$,使得 $\sum\limits_{i=1}^{N'} x_i' a_i + yt = S$,将前式带入可以得到 $\sum\limits_{i=1}^{N'} (x_i + yx_i') a_i = S$ 。 这与当前的 A 合法矛盾。

从此以后加入的元素都 >t,因此无论如何 A 中元素无法组成 t,说明将 S-t 加入 A 中将是合法的。

这也就是说明,这样贪心处理所有 $t \leq \frac{S}{2}$ 的正整数,即可直接唯一确定 $> \frac{S}{2}$ 部分的选择,使得 A 数列的大小达到理论最大值。

但是由于 S 太大了,需要尝试加速上面贪心的过程。

对于 A 中的第一个元素,其应当是最小的满足 $t \nmid S$ 的正整数 d。而由于 $\mathrm{lcm}(1,2,\dots 50) > 10^{18}$,所以有 d < 50。

仿照上页的证明方式,我们可以证明,对于任意 $a,b\in A$,若 a+b< S,则有 $a+b\in S$ 。特别地,取 b=d,能够说明只需要对于每一个 $r=0,1\dots d-1$,确定最小的正整数 $a \bmod d=r$,使得有 $a\in S$ 。

设 f_i 表示当前已经确定了最小的满足 $x_0 \mod d = i$ 且能够加入 A 中的 x_0 是多少。

那么初始时就有
$$f_i = \left\{egin{array}{ll} d & , i = 0 \ +\infty & , i
eq 0 \end{array}
ight.$$

考虑当前能够新加入的最小的 v 是多少:假设一组方案中选择了 i 个 v $(i=1,2\dots d-1)$,且希望 v 能够合法,就必然有 $f_{(S-iv) \bmod d}+iv>S$ 。

移项后得到:
$$iv>S-f_{(S-iv) \bmod d}$$
,即 $v\geq \left\lfloor \frac{S-f_{(S-iv) \bmod d}}{i} \right\rfloor+1$ 。那么也就有 $v\geq \max_{i=1}^{d-1}(\left\lfloor \frac{S-f_{(S-iv) \bmod d}}{i} \right\rfloor+1)$ 。

后半部分取 \max 的式子只与 $v \mod d$ 的值有关,因此对于还没有确定最小值的 f_r ,计算出在 $v \mod d = r$ 的时候 v 的最小值 v_r 。在所有的 v_r 中选择最小的那一个更新。

更新时,首先有 $f_r \leftarrow v_r$ 。然后需要进行一个类似于同余最短路的操作,对于所有 i,j 进行 $f_{(i+rj) \bmod d} \leftarrow \min(f_i + v_r j)$ 的操作。

由于每一个 $f_r \leftarrow v_r$ 只会进行一次,所以这一部分的复杂度为 $O(d^3)$ 。

对于找到第 K 小的,可以通过二分答案来确定。这一部分的时间复杂度为 $O(d \log n)$ 。