EEC 687/787 Mobile Computing (Spring, 2007)

Ns-2 Laboratory #1

Chansu Yu

Cleveland State University

Contents

- □ Download & Install
- ☐ Basic TCL
- ☐ Introduction to ns-2
 - ns-2 overview
 - What can ns-2 do?
 - ns-2 structure
 - How to use ns-2?
- ☐ Simulation in MANETs
 - What is MANETs?
 - Simulation scenario configuration
 - Simulation results analysis

Download and Install

- □ Reading
 - Wireless and Mobility Extensions to ns-2 (http://www.isi.edu/nsnam/ns/tutorial/nsindex.html).
 - Ns2 manual, "Mobile networking in ns," Ch. 16
- □ Download the latest ns-2 (version 2.30) with additional components source from

http://www.isi.edu/nsnam/dist/ns-allinone-2.30.tar.gz and put it to your desirable folder, say /home/student.

- □ Run the following commands at /home/student :
 - % gunzip ns-allinone-2.30.tar.gz
 - % tar –xvf ns-allinone-2.30.tar
- □ Run the script at /home/student/ns-allinone-2.30 : "% ./install"
 - This installation script will check your Linux environment, compile and install your ns-2 system.

Hello World - Interactive Mode

swallow 71% ns
% set ns [new Simulator]
_o3
% \$ns at 1 "puts \"Hello World!\""
1
% \$ns at 1.5 "exit"
2
% \$ns run
Hello World!

swallow 72%

Hello World - Passive Mode

```
simple tcl
   set ns [new Simulator]
   $ns at 1 "puts \"Hello World!\""
   $ns at 1.5 "exit"
   $ns run
swallow 74% ns simple.tcl
Hello World!
swallow 75%
```

```
Basic tcl
     set a 43
     set b 27
     set c [expr $a + $b]
     set d [expr [expr $a - $b] * $c]
    for \{set k \ 0 \} \{k < 10 \} \{incr k \} \{
          if \{\$k < 5\} {
                   puts "k < 5, pow= [expr pow($d, $k)]"
          } else {
                   puts "k >= 5, mod= [expr $d % $k]"
 test
```

ns-2 Overview □ What is ns-2? ■ Abbreviation of Network Simulator ■ Discrete event simulator targeted at networking (wired and wireless) research □ Where to get? ■ Free and open source ■ ns website http://www.isi.edu/nsnam/ns/ □ Working platforms ■ Most UNIX or UNIX-like systems; e.g. linux ■ Windows (not stable)

Simulation with ns-2
☐ Creating the event scheduler
☐ Creating network: nodes, links & queue ☐ Computing routes ☐ Creating connection ☐ Creating traffic
□ Inserting errors □ Tracing
□ Wireless Support

Protocols or Controls Implemented in ns2

- ☐ Transport layer (traffic agent) TCP; UDP
- □ Network layer (routing agent)
 - Wired
 - Distance vector; Link state (patch needed)
 - Wireless
 - AODV; DSR; DSDV; TORA
- □ Interface queue
 - FIFO queue; DropTail queue; Priority queue; etc.
- ☐ Logic link control layer
 - IEEE 802.2; ARP

Protocols or Controls Implemented in ns2 (cont.)

- □ MAC layer
 - Wired
 - ☐ IEEE 802.3 (CSMA/CD)
 - Wireless
 - □ IEEE 802.11 (CSMA/CA)

 - DCFPCF (partially implemented)
- □ Physical layer
 - Wired
 - □ IEEE 802.3
 - Wireless
 - □ IEEE 802.11

 - DSSS (Direct Sequence Spread Spectrum)
 FHSS (Frequency-Hopping Spread Spectrum); not implemented
 - IR (Infrared); not implemented

Protocols or Controls Implemented in ns2 (cont.) Wireless channel Friss-space model Two-ray ground model Shadowing model Fading model (patch needed) Omni directional antenna

] In	nplementation structure
	C++ for data (low level)
	☐ Protocol implementation
	□ Packet action
	□ otcl-level user command implementation
	otcl for control (high level)
	☐ Configuration and control in simulation
	☐ Periodic or triggered action

How to Use ns-2? □ Design simulation Determine simulation scenario, parameters. □ Build ns-2 script using tcl If necessary implement algorithm using C++. □ Run simulation For convenience use shell batch file. □ Analyze simulation results Use shell command or programming languages.

What Is MANETs? Abbreviation of mobile ad hoc networks Collection of wireless mobile nodes Without infrastructures Dynamic network topology Wireless channel; CSMA/CA Distributed algorithms

Simulation Scer Ad Hoc Network	
□Network topology	
□Traffic pattern	
□Node configuration	ו
□Trace file	

Network Topology Number of nodes Moving range Initial positions Moving pattern Direction Velocity Acceleration

A	Node-Movement Generator
	Generating idea Node moves randomly. (distribution of nodes: uniform)
	Location ~ns/indep-utils/cmu-scen-gen/setdest/setdest{.cc; .h}
	Command format setdest [-n ##] [-p ##] [-s ##] [-t ##] [-x ##] [-y ##]
	Option explanation n: number of nodes; p: pause time; s: maximum speed; t: simulation time; x: maximum x; y: maximum y
	Build your own node-movement generator

Traffic Pattern	
□Number of connections □Traffic source/destination □Connection type	
TCP/UDP □Packet size	
□Packet rate	

A CDK Hailic	Generator
□What is CBR? Constant Bit Rate. □Generating idea Randomly pick up nod destinations. □Location	
~ns/indep-utils/cmu-s Command form ns cbraen.tcl [-type ##]	J , J

cbrgen.tcl (cont.) □ Option explanation type: traffic/connection type. Must be tcp or cbr. nn: number of nodes. seed: seed for generating random number. It is used to generate the random starting time of the traffic. mc: maximum number of connections. rate: packet rate = 1 / packet interval □ Generate real random traffic cbrgen.tcl does not generate the real random traffic.

Simple Configuration for Wireless Nodes val(adhocRouting) **DSR** set val(II) set LL val(mac) Mac/802 11 set val(netif) Phy/WirelessPhy set \$ns_ node-config \ \$val(adhocRouting) \ -adhocRouting -IIType \$val(II) \ -macType \$val(mac) \ \$val(netif) \ -phyType

Further Configuration for Wireless Nodes ☐ Mac Layer Mac/802 11 CWMin_ 31 set Mac/802_11 set CWMax_ 1023 Mac/802_11 0.000020 set SlotTime_ Mac/802 11 set SIFS 0.000010 PreambleLength_ Mac/802_11 set 144 Mac/802_11 PLCPHeaderLength 48 set Mac/802_11 PLCPDataRate_ 1.0e6 set Mac/802 11 RTSThreshold 0 set Mac/802_11 ShortRetryLimit_ 7 set Mac/802_11 LongRetryLimit_ set 4

l Link Layer		mindala.	Ε0
LL	set	mindelay_	
LL	set	delay_	25us
Physical Laye	er		
Phy/WirelessPhy	set	CPThresh_	10.0
Phy/WirelessPhy	set	CSThresh_	1.559e-11
Phy/WirelessPhy	set	RXThresh_	3.652e-10
Phy/WirelessPhy	set	bandwidth	2e6
Phy/WirelessPhy	set	Pt	0.28183815
Phy/WirelessPhy		freq	914e+6
Phy/WirelessPhy			1.0

Further Configuration For Wireless Nodes (cont.)

☐ Radio Propagation Model

```
Propagation/Shadowing
                              pathlossExp 2.0
                       set
Propagation/Shadowing
                              std db
                                           4.0
                       set
Propagation/Shadowing
                       set
                              dist0
                                           1.0
Propagation/Shadowing
                       set
                              seed
                                           0
                                           0
Antenna/OmniAntenna
                       set
                              Χ
Antenna/OmniAntenna
                              Υ
                                           0
                       set
Antenna/OmniAntenna
                                           1.5
                       set
Antenna/OmniAntenna
                       set
                              Gt_
                                           1.0
Antenna/OmniAntenna
                              Gr
                                           1.0
                       set
```

Trace File Format

```
r 100.381997477 _1_ AGT --- 82 tcp 1060 [13a 1 0 800] ------ [0:0 1:0 32 1]
  [32 0] 1 0
r: receive event;
                             100.381997477: time stamps;
_1_ : nod:e 1;
                            AGT: trace generated by agent;
82:
       event(pkt) id;
                            tcp: tcp packet;
1060: packet size;
13a: expected duration of pkt transmission;
       sender mac id;
                            0:
                                    transmitter mac id;
800: pkt type;
                             0:0:
                                    sender address:port#;
       receiver address:port#;
1:0:
                                    32: TTL;
1:
       next hop address;
                            [32 0] : TCP sequence #, ack #.
```

S١	ımmarize Trace File
J	Ising simple linux commands
C	at, grep, wc, , >, >>, etc.
	g. Calculate packet delivery ratio from a trace file aaa.tr)
	■ Number of sent packets
	cat aaa.tr grep AGT grep cbr grep ^s wc -l
	■ Number of received packets
	cat aaa.tr grep AGT grep cbr grep ^r wc -l
]	Simple programming
	hell, awk, etc.
	dvanced programming
	/C++, Java, VB, etc.

2	awk
	Calling format
	awk `/pattern-to-match/ {program to run}` trace- file
	eg. awk `\$1 == "s" {print}` aaa.tr
	■ awk _f awk-script trace-file
E	1 Characteristics
	■ Flexible (C style)
	■ Simple (no pointers, no references)
	■ Powerful
	☐ Float calculation.
	☐ Automatic data type assignment and check.
	☐ Branch/Loop control.
	□ Function call.

awk (cont.) □ Script structure ■ Initialization BEGIN { ... } ■ Body { ... } Important: Every row in the trace file is scanned by the commands in the body part one time, just ONE time. ■ Summarization END { ... }

An Example Of awk Script (cont.)

```
BEGIN {
  idHighestPacket = 0;
                                  idLowestPacket = 10000;
  rStartTime = 1000.0;
                                  rEndTime = 0.0;
  nSentPackets = 0;
                                  nReceivedPackets = 0;
  nReceivedBytes = 0;
                                  rTotalDelay = 0.0;
}
  strEvent = $1;
                                  rTime = $2;
  strAgt = $4;
                                  idPacket = $6;
  strType = $7;
                                  nBytes = $8;
```

An Example Of awk Script (cont.)

An Example Of awk Script (cont.)

NS website http://www.isi.edu/nsnam/ns/
NS Manual
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
Marc Greis's Tutorial
http://www.isi.edu/nsnam/ns/tutorial
http://www.cs.virginia.edu/~cs757/slidespdf/cs757-
ns2-tutorial-exercise1.pdf
http://nile.wpi.edu/NS/
http://nesl.ee.ucla.edu/courses/ee206a/2002s/guest_
presentations/GP02_Park_ns2.ppt
http://www.ece.ubc.ca/~elec565/ns2_tutorial.ppt

□ <u>ex6sta.tcl (fil.awk,</u> fil6.awk)	fil2.awk, fil4.awk,
□ <u>infra.tcl</u> (<u>fil-tcp.aw</u>	<u>k</u>)
□wireles-test.tcl	