4.3. Измерение абсолютной активности препарата ^{60}Co методом $\gamma-\gamma$ совпадений.

Хурсик Екатерина

1 Цель работы

Определить абсолютную активность радиоактивного препарата ^{60}Co с использованием каскадного перехода γ -квантов при его распаде.

2 Метод достижения цели

Чтобы определить абсолютную активность ^{60}Co

- измеряем полную скорость счёта и фон для каждого счётчика,
- вычисляем истинные скорости счёта каждого источника как разность полной скорости счёта и фона,
- в режиме совпадений измеряем полное число совпадений и число случайных совпадений,
- ullet вычисляем скорость истинных совпадений $N_{
 m cobn}$ как их разность,
- по формуле (1) находим абсолютную активность кобальта.

3 Ход работы

3.1

Вначале проведём проверку работоспособности установки. Будем подносить один из блоков $\Phi \ni V$ к источнику ^{60}Co , затем уберём его. Наблюдаем изменение скорости счёта по пересчётному прибору (т.е. установка "чувствует" присутствие γ -источника). Повторяем те же действия со вторым блоком $\Phi \ni V$.

3.2

Отодвинем $\Phi \ni \mathbb{V}$ подальше от источника и измерим фон этого счётчика с точностью порядка 1%. Те же измерения проведём со вторым счётчиком.

$$n_{1_{\oplus}} = 18,72, \qquad n_{2_{\oplus}} = 61,68.$$

3.3

Установим источник ^{60}Co между двумя счётчиками и измерим полную скорость счёта в первом и во втором счётчиках с точностью порядка 0.5%.

$$n_{1_{\pi}} = 2661, 07, \qquad n_{2_{\pi}} = 2341, 2.$$

Затем по имеющимся полной скорости счёта и фону рассчитаем для каждого счётчика по формулам

$$N_1 = n_{1_{\pi}} - n_{1_{\Phi}}$$
 $N_2 = n_{2_{\pi}} - n_{2_{\Phi}}$

Все результаты измерений занесём в таблицу

	№1	№2
n_{Φ}	18.72	61.68
$n_{\scriptscriptstyle \Pi}$	2661.07	2341.2
N	2648.35	2279.52
ΔN	26.79	24.03

3.4

Включим прибор СС в режим совпадений и измерим скорости счёта совпадений для всех разрешающих времён, указанных на приборе, с точностью порядка 1%. Определим N_0 в Ки по формуле

$$N_0 = 1,08 \frac{N_1 N_2}{2N_{\text{COBII}}} \tag{1}$$

для всех щначений разрешающих времён τ . Результаты измерений занесём в таблицу.

τ , ns	100	200	500
$n_{ m cob}$	2.83	4.77	9.1
$n_{ m cлуq}$	1.24	2.49	6.22
$N_{\text{совп}}$	1.59	2.28	2.88
ΔN	0.05	0.13	0.28
N_0	$2.05*10^6$	$1.43*10^6$	$1.13*10^6$

Построим график зависимости N_0 и τ .

