

密级状态: 绝密() 秘密() 内部资料() 公开(√)

RKISPV1_Camera_User_Manual

文件状态:	文件标识:	//-
[] 草稿	当前版本:	2.0
[] 正式发布 [√] 正在修改	作 者:	邓达龙、钟以崇、欧阳亚凤、张云 龙、叶志明、黄春成
	完成日期:	2016-08-19

RockChip Camera 联系人:

图形系统部门:

钟以崇zyc@rock-chips.com邓达龙ddl@rock-chips.com欧阳亚凤oyyf@rock-chips.com张云龙zhangyl@ rock-chips.com叶志明yzm@rock-chips.com

黄春成 hardy.huang@rock-chips.com

MID:

郑应航 zyh@rock-chips.com

温定贤 shawn.wen@rock-chips.com

BOX:

许碧绿 xbl@rock-chips.com

历史版本

版本	日期	描述	作者	审核
V1. 0	2015-3-17	建立文档,主要介绍	张云龙	
		RK3288/RK3368Camera 的注意事项		
V2. 0	2016-8-19	添加 RK3399 Camera 的注意事项	黄春成	
		√.	15/	

目录

目	录	3
1.	文档适用平台	4
	1.1. 平台说明	4
	1) RK3288	4
	2) RK3368	4
	3) RK3399	4
2.	硬件说明	
	2.1. DVP SOC Camera Sensor	4
	1) RK3288	4
	2) RK3368	4
	3) RK3399	4
	2.2. MIPI Camera Sensor	4
	2.3. 2 个 Camera Sensor 同时工作的限制说明	5
	1) RK3288、RK3368	5
	2) RK3399 2.4. RAW Camera Sensor 选型说明	5
	2.4. RAW Camera Sensor 选型说明	5
	文件目录说明	
4.	版本说明	6
	4. 1. 版本获取方式如何注册 DVP/MIPI Sensor	6
5.		
	5. 1. Sensor 注册信息	
	5.2. VCM 注册信息	
	5.3. 软件功能配置信息	. 12
	5.4. FLASH 注册信息	.15
	5. 5. cam_board.xml 支持多个 sensor 配置	. 17
	5. 6. 如何测试 CTS_Verify FOV	. 18
	5. 7. 如何解决开启 Camera 最初几帧的偏色问题	. 18
	5. 8. Camera 插值说明	. 18
6.	Sensor 支持列表	. 18

1. 文档适用平台

该文档适用于 RK3288、RK3368 和 RK3399 平台。

1.1. 平台说明

1) RK3288

两个 PHY, PHY0 以及 PHY1 都支持 1lane、2lane、4lane,最大支持 13M pixel raw sensor。

2) RK3368

一个 PHY,PHY 支持 1lane、2lane、4lane,最大支持 8M pixel raw sensor。

3) RK3399

一个 PHY,PHY 支持 1lane、2lane、4lane,最大支持 13M pixel raw sensor。

2. 硬件说明

2.1. DVP SOC Camera Sensor

1) RK3288

建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3288 CIF_D2 - CIF D9

2) RK3368

建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3368 CIF_D4 - CIF D11

3) RK3399

建议将该类 Sensor 输出的 YUV 数据 bit0-bit7 对应连接至 RK3399 CIF_D0 - CIF_D7

2.2. MIPI Camera Sensor

(模组的 MIPI Lane 数 >= PHY 支持的 MIPI Lane 数) 满足这一条件都可以连接到对应的 PHY,但是最后实际使用的 Lane 数以 PHY 支持的 Lane 数为准;

MIPI Camera Sensor 在选用时,建议事先查阅 RockChip 的认证列表:《RKISPV1_Camera_Module_AVL》,确认是否调试通过.

2.3. 2 个 Camera Sensor 同时工作的限制说明

- 1) RK3288, RK3368
 - 1、2 个 Sensor 只能有一个是 RAW Sensor:
 - 2、必须有一个是 MIPI Sensor;

2) RK3399

1、2 个 Sensor 都为 RAW Sensor 或者 mipi sensor;

2.4. RAW Camera Sensor 选型说明

- 1、事先获取 RockChip 的认证列表: 《RKISPV1 Camera Module AVL》;
- 2、列表中已经有相关型号,并且状态显示 Ready,那么建议按照列表中的模组配置信息让模组厂进行打样;
- 3、列表中没有相关型号,或是想选择不同配置(镜头、VCM)的模组,那么建议填写《RockChip 摄像头模组调试需求申请表》,同时发给 RockChip。
 - 注: RAW Camera Sensor 调试周期在 4 周左右; 模组配置更换 调试周期在 3 周左右;

3. 文件目录说明

```
3288 Android:
     | hardware\rk29\camera
                                         CameraHal 源码
        |CameraHal
                                         Camera 配置文件信息及 isp 库
        |Config
                                         ISP 库相关头文件信息
        |SiliconImage
                                         Sensor 驱动源码
           |isi\drv
             IOV8825\calib
                                         Sensor 模组 tunning 参数
3368 Android:
     | hardware\rockchip\camera
                                         CameraHal 源码
        |CameraHal
                                         Camera 配置文件信息及 isp 库
        |Config
                                         ISP 库相关头文件信息
        |SiliconImage
           |isi\drv
                                         Sensor 驱动源码
```



```
IOV8825\calib
                                           Sensor 模组 tunning 参数
 Kernel:
     |drivers\media\video\rk camsys
                                            CamSys 驱动源码
     |include\media\camsys head.h
3399 Android:
      | hardware\rockchip\camera
                                           CameraHal 源码
         |CameraHal
                                           Camera 配置文件信息及 isp 库
         |Config
        |SiliconImage
                                           ISP 库相关头文件信息
                                           Sensor 驱动源码
           |isi\drv
                                           Sensor 模组 tunning 参数
             |OV8825\calib
 Kernel:
     |drivers\media\video\rk camsys
                                            CamSys 驱动源码
     |include\media\camsys_head.h
```

4. 版本说明

4.1. 版本获取方式

在机器的 shell 中执行以下命令:

root@rk3288:/ # getprop

[sys_graphic.cam_camboard.ver]: [0.2.0]

的版本

[sys_graphic.cam_drv_camsys.ver]: [0.8.0]

[sys graphic.cam hal.ver]: [0.9.0] [sys_graphic.cam_isi.ver]: [0.1.0]

[sys graphic.cam libisp.ver]: [0.4.0]

[sys graphic. 0V8825. ver]: [0.9.0]

支持 cam board. xml

camsys 驱动版本 CameraHal 版本

ISI 接口版本

ISP 库版本

sensor 驱动版本号

由于各个源码以及库之间版本需要匹配使用,所以在代码中已经做了版本 校验规则,如果出现 panic 等信息,麻烦先关注是否是版本之间的不匹配导致!!

例如:

D/CameraHal (1739): CamSys Head.h Version Check:

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

D/CameraHal(1739): Kernel camsys_head.h: v0.6.0
D/CameraHal(1739): Kernel camsys_drv: v0.8.0
D/CameraHal(1739): CameraHal camsys_head.h: v0.7.0
D/CameraHal(1739):
D/CameraHal(1739):
D/CameraHal(1739):
F/CameraHal(1739): static int
camera_board_profiles::RegisterSensorDevice(rk_cam_total_info*):
F/CameraHal(1739): VERSION-WARNING: camsys_head.h version isn't
match in Kernel and CameraHal

5. 如何注册 DVP/MIPI Sensor

注册 DVP/MIPI Sensor 方式通过填写 cam_board. xml 来实现,该文件使用简要说明如下:

注: 如果机器中没有 DVP/MIPI Sensor, 删除 cam_board. xml 文件即可;

<BoardXmlVersion version="v0.2.0">

以上标识的为当前 xml 文件的版本号,如果与

sys_graphic.cam_camboard.ver不一致,可能导致错误,麻烦更新cam_board.xml。

5. 1. Sensor 注册信息

<SensorName name="0V8858" ></SensorName>

填写 Sensor 名字, 该名字必须与 Sensor 驱动的名字一致, 目前提供的 Sensor 驱动如下:

libisp_isi_drv_TC358749XBG.so	
libisp_isi_drv_OV8858.so	
libisp_isi_drv_SP2518.so	
libisp_isi_drv_GC0308.so	
libisp_isi_drv_GC2035.so	
libisp_isi_drv_GC2155.so	
libisp_isi_drv_GS8604.so	
libisp_isi_drv_HM2057.so	
libisp_isi_drv_IMX214.so	
libisp_isi_drv_NT99252.so	
libisp_isi_drv_OV2659.so	
libisp_isi_drv_OV2680.so	
libisp_isi_drv_OV2685.so	112
libisp_isi_drv_OV5640.so	
libisp_isi_drv_OV5645.so	
libisp_isi_drv_OV5648.so	X
libisp_isi_drv_OV8820.so	
libisp_isi_drv_OV8825.so	110
libisp_isi_drv_OV13850.so	V K13
libisp_isi_drv_OV13860.so	
libisp_isi_drv_OV2710.so	
libisp_isi_drv_HM5040.so	

<SensorLens name="LG-9569A2"></SensorLens>

填写模组所配置的镜头型号,镜头型号必须根据模组实际配置填写,这个将直接影响到最后的成像质量。

注意: 非 OTP 模组及有 OTP 但读取不到 lens ID 则以这里配置的为准; 有 OTP 且能读取到 lens ID 则以读取到的镜头型号为准。

目前 tuning 过的 sensor 及可配置镜头型号如下:

0V8825:

LG-5008A7

0V8820:

LG-5008A7

0V8858:

SUNNY-3813A

LG-9569A2

R5AV08

0V5648:

CHT-842B-MD

XY-LE001B1

<SensorDevID IDname="CAMSYS_DEVID_SENSOR_1A"></sensorDevID>

填写 Sensor 软件 ID, 注册的 ID 只需要不一致即可,可填写以下值: CAMSYS_DEVID_SENSOR_1A

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

CAMSYS_DEVID_SENSOR_1B CAMSYS DEVID SENSOR 2

〈SensorI2cBusNum busnum="3"></SensorI2cBusNum> 填写 Sensor 所连接的主控 I2C 通道号

⟨SensorI2cAddrByte byte="2"⟩⟨/SensorI2cAddrByte⟩ 填写 Sensor 寄存器地址长度,单位: Byte

⟨SensorI2cRate rate="100000"⟩⟨/SensorI2cRate⟩ 填写 Sensor 的 I2C 频率,单位: Hz

<SensorAvdd name="NC" min="28000000" max="28000000"
delay="0"></SensorAvdd>

填写 Sensor AVDD 的 PMU LDO 名称,如果不是连接到 PMU,那么只需填写 NC

<SensorDovdd name="NC" min="18000000" max="18000000"
delay="5000"></SensorDovdd>

填写 Sensor DOVDD 的 PMU LDO 名称,如果不是连接到 PMU,那么只需填写 NC,注意 min 以及 max 值必须填写,这决定了 Sensor 的 IO 电压; RK3399 中有 delay,调整上电时序;

<SensorDvdd name="NC" min="12000000" max="12000000"
delay="0"></SensorDvdd> 填写 Sensor DVDD 的 PMU LDO 名称,如果不是连接到 PMU,那么只需填写 NC

<SensorGpioPwdn ioname="RK30_PIN1_PC2" active="0"
delay="0"></SensorGpioPwdn>

填写 Sensor PowerDown 引脚,直接填写名称即可, active 填写休眠的有效电平:

RK3399中phy0、phy1有单独的"SensorGpioPwdn",分别为"SensorGpioPwdn 0"、"SensorGpioPwdn 1";

⟨SensorGpioPwen ioname="NC" active="1" delay="1000"⟩
〈SensorGpioPwen〉
填写 Sensor Power 引脚,直接填写名称即可, active 填写电源有效电平

<SensorFacing facing="front"></SensorFacing>

填写 Sensor 作为前置还是后置,可填写如下值:

front back

<SensorInterface mode="CCIR601"></SensorInterface>

填写 Sensor 的接口方式,可填写如下值:

CCIR601

CCIR656,

MIPI,

SMIA

<SensorMirrorFlip mirror="0"></SensorMirrorFlip> 暂不支持

⟨Sensor0rientation orientation="0"⟩⟨/Sensor0rientation⟩
填写 Sensor 的角度信息

<SensorPowerupSequence seq="1234"></SensorPowerupSequence>

暂不支持

〈SensorFovParemeter h="60.0" v="60.0"〉〈/SensorFovParemeter〉 FOV 配置选项, h 代表水平视角度数,v 代表垂直视角度数 理论上,FOV 值可以由模组规格书中获得,由于可能不精确,在测试 Cts_Verify FOV 选项时,可以先测试一张全分辨率照片,查看具体的 FOV 值,然后将测试出的 FOV 值重新填入该处,重新烧写固件测试。

<SensorAWB_Frame_Skip fps="15"></SensorAWB_Frame_Skip>

设置 Camera 进入时,过滤 awb 不稳定的最大帧数 如果 sensor 帧率可以达到 30 帧,建议设置成 15 帧;

如果 sensor 帧率只在 15 帧左右,建议跳桢数减少,避免刚进入黑屏时间较长。

DVP Sensor:

> Sensor 接口硬件连接方式,可填写如下值: CamSys Phy Cif

sensor_d0_to_cif_d:

Sensor DVP 输出数据位 DO 对应连接的主控 DVP 接口的数据位号码

cif_num:

Sensor DVP 连接到主控 DVP 接口编号

sensorFmt:

Sensor 输出的数据格式,目前支持 CamSys_Fmt_Raw_10b 和 CamSys_Fmt_Raw_12b

MIPI Sensor:

<SensorPhy phyMode="CamSys_Phy_Mipi" lane="1" phyIndex="0"
sensorFmt="CamSys_Fmt_Raw_10b"></SensorPhy>

phyMode:

Sensor 接口硬件连接方式,可填写如下值: CamSys_Phy_Mipi

lane:

Sensor mipi 接口数据通道数

phyindex:

Sensor mipi 连接的主控 mipi phy 编号

RK3368 仅支持 phyIndex="0"

sensorFmt

Sensor 输出数据格式,目前仅支持 CamSys_Fmt_Raw_10b

5.2. VCM 注册信息

<VCMDrvName name="NC"></VCMDrvName>

填写马达驱动 IC 的名称,如果 Sensor 集成马达驱动 IC 的话,请填写:BuiltInSensor

<VCMName name="NC"></VCMName>

填写马达的名称

<VCMI2cBusNum busnum="0"></VCMI2cBusNum>

填写马达驱动 IC 的连接的主控 I2C 通道号,一般与 Sensor 同一个通道

<VCMI2cAddrByte byte="0"></VCMI2cAddrByte>

填写马达驱动 IC的 i2c 地址字节数

<VCMI2cRate rate="0"></VCMI2cRate>

填写马达驱动 IC 的 i2c 速率

<VCMVdd name="NC" min="0" max="0"></VCMVdd>

填写模组上连接 AF VCC (马达电源) 的 PMU LDO 名称

本文档为瑞芯微电子成员撰写及提供,不得用于工作之外的使用及交流。

<VCMGpioPwdn ioname="NC" active="0"></VCMGpioPwdn>

填写模组上马达驱动 IC 的休眠使能 IO, 一般与 Sensor 的休眠使能 IO 一致

<VCMCurrent start="20" rated="80" vcmmax="100" stepmode="13"
drivermax="100"></VCMCurrent>

填写马达的电流参数:

start: 马达的启动电流 rated: 马达的额定电流 vcmmax: 马达的最大电流

stepmode: 马达驱动 ic 的电流输出方式,该指标关系到马达的移动速

度,麻烦参考驱动 icdatasheet;

drivermax: 马达驱动 ic 的最大输出电流

注意事项: start、rated、stepmode 这3项指标有可能会导致马达在对焦过程中的异响问题;

如果出现模组对焦远处无法清晰,近处可以清晰,麻烦确认启动电流相对马达实际启动电流是否配置过大;

5.3. 软件功能配置信息

<AWB>

<AWB_Auto support="1"></AWB_Auto>

<AWB Incandescent support="1"></AWB Incandescent>

<AWB Fluorescent support="1"></AWB Fluorescent>

<AWB_Warm_Fluorescent support="1"></AWB_Warm_Fluorescent>

<AWB Daylight support="1"></AWB Daylight>

<AWB_Cloudy_Daylight support="1"></AWB_Cloudy_Daylight>

<AWB Twilight support="1"></AWB_Twilight>

<AWB Shade support="1"></AWB Shade>

</AWB>

配置 AWB 模式

- 1: 使能该功能
- 0: 屏蔽该功能

<Sence>

<Sence_Mode_Auto support="1"></Sence_Mode_Auto>

<Sence_Mode_Action support="1"></Sence Mode Action>

<Sence_Mode_Portrait support="1"></Sence_Mode_Portrait>

<Sence_Mode_Landscape support="1"></Sence_Mode_Landscape>

<Sence_Mode_Night support="1"></Sence_Mode_Night>

Sence Mode Night Portrait


```
support="1"></Sence_Mode_Night_Portrait>
   <Sence_Mode_Theatre support="1"></Sence_Mode_Theatre>
   <Sence_Mode_Beach support="1"></Sence_Mode_Beach>
   <Sence_Mode_Snow support="1"></Sence_Mode_Snow>
   <Sence_Mode_Sunset support="1"></Sence_Mode_Sunset>
   <Sence_Mode_Steayphoto support="1"></Sence_Mode_Steayphoto>
   <Sence Mode Pireworks support="1"></Sence Mode Pireworks>
   <Sence Mode Sports support="1"></Sence Mode Sports>
   <Sence Mode Party support="1"></Sence Mode Party>
   <Sence_Mode_Candlelight support="1"></Sence_Mode_Candlelight>
   <Sence_Mode_Barcode support="1"></Sence_Mode_Barcode>
   <Sence Mode HDR support="1"></Sence Mode HDR>
</Sence>
    配置 Scence 功能, 暂不支持
<Effect>
   <Effect_None support="1"></Effect_None>
   <Effect Mono support="1"></Effect Mono>
   <Effect Solarize support="1"></Effect Solarize>
   <Effect_Negative support="1"></Effect Negative>
   <Effect Sepia support="1"></Effect Sepia>
   <Effect_Posterize support="1"></Effect_Posterize>
   <Effect Whiteboard support="1"></Effect Whiteboard>
   <Effect_Blackboard support="1"></Effect_Blackboard>
   <Effect Aqua support="1"></Effect Aqua>
</Effect>
   配置 Effect 功能, 暂不支持
<FocusMode>
   <Focus Mode Auto support="1"></Focus Mode Auto>
   <Focus_Mode_Infinity support="1"></Focus_Mode_Infinity>
   暂不支持
   <Focus_Mode_Marco support="1"></Focus_Mode_Marco>
   暂不支持
   <Focus Mode Fixed support="1"></Focus Mode Fixed>
   暂不支持
   <Focus_Mode_Edof support="1"></Focus_Mode_Edof>
   暂不支持
   <Focus Mode Continuous Video</pre>
support="1"></Focus Mode Continuous Video>
   配置是否使能录像时预览界面的连续对焦功能
   1:
       使能该功能
   0:
       屏蔽该功能
```


<Focus_Mode_Continuous_Picture</pre>

support="1"></Focus Mode Continuous Picture>

配置是否使能拍照预览界面的连续对焦功能

- 1: 使能该功能
- 0: 屏蔽该功能

</FocusMode>

<FlashMode>

<Flash_Mode_Off support="1"></Flash_Mode_Off>

<Flash_Mode_On support="1"></Flash_Mode_On>

<Flash_Mode_Torch support="1"></Flash_Mode_Torch>

<Flash Mode Auto support="1"></Flash Mode Auto>

<Flash_Mode_Red_Eye support="1"></Flash_Mode_Red_Eye>

</FlashMode>

配置 Flash 功能, 暂不支持

<AntiBanding>

<Anti_Banding_Auto support="1"></Anti_Banding_Auto>

<Anti_Banding_50HZ support="1"></Anti_Banding_50HZ>

<Anti_Banding_60HZ support="1"></Anti_Banding_60HZ>

<Anti_Banding_Off support="1"></Anti_Banding_Off>

</AntiBanding>

配置 AntiBanding 功能, 暂不支持

<HDR support="0"></HDR>

配置 HDR 功能, 暂不支持

<ZSL support="0"></ZSL>

配置 ZSL 功能, 暂不支持

<DigitalZoom support="1"></DigitalZoom>

配置是否使能数码变焦功能

- 1: 使能该功能
- 0: 屏蔽该功能

<Continue SnapShot support="1"></Continue SnapShot>

配置是否使能连拍功能

- 1: 使能该功能
- 0: 屏蔽该功能

<InterpolationRes resolution="0"></InterpolationRes>

配置插值分辨率,目前支持的插值像素 1M/2M/3M/5M/8M。 比如想插值到 5M, 那么设置 resolution="5000000"。

<PreviewSize width="0" height="0"></PreviewSize>

配置客户强制需求的预览分辨率,一般来说,宽高各设置成 0,由系统来进行选择;但是有可能系统选择出来的分辨率帧率过低,那么可以指定你所需要的分辨率;

注: 目前 ov8825, 建议将该项设置成 1920x1080;

<FaceDetect support="1" MaxNum="1"></FaceDetect>

配置是否支持人脸检测功能

- 1: 使能该功能
- 0: 屏蔽该功能

<Cproc support="1" contrast="1.1" saturation="1.0" hue="0"
brightness="0"></Cproc>

配置是否调整色彩效果;

- 1: 使能该功能
- 0: 屏蔽该功能

Contras(对比度): (0.0, 1.992)

Saturation(饱和度): (0.0, 1.992)

Hue (色相): (-90, 87.188)

Brightness (亮度): (-128, 127)

5. 4. FLASH 注册信息

<FlashName name="Internal"></FlashName>

Flash 的名称,采用默认值

<FlashI2cBusNum busnum="0"></FlashI2cBusNum>

暂不支持

<FlashI2cAddrByte byte="0"></FlashI2cAddrByte>

暂不支持

<FlashI2cRate rate="0"></FlashI2cRate>

暂不支持

<FlashTrigger ioname="NC" active="0"></FlashTrigger>

填写 ISP 的 FLASHTRIGOUT 使能的有效电平

rk3288:对应 GPIO7-B5

rk3368: 对应 GPIO3-C4

rk3399: 对应 GPIO1-A3

<FlashEn ioname="NC" active="0"></FlashEn>

填写 ISP 的 PRILIGHTTRIG 使能的有效电平

rk3288: 对应 GPIO7-B6

rk3368: 对应 GPIO3-C5

rk3399: 对应 GPIO1-A4

<FlashLuminance luminance="0"></FlashLuminance>

暂不支持

<FlashColorTemp colortemp="0"></FlashColorTemp>

暂不支持

<FlashModeType mode="1"></FlashModeType>

填写 Flash 的工作方式,目前支持以下两种 flash 工作模式:

Mode 1:

该模式下 prelight_trig 和 flash_trig 的时序图如下:

prelight_trig 为高,flash_trig 为低时进入 movie/torch mode; prelight_trig 为低,flash_trig 为高时进入 flash mode。

以 SGN3780 芯片为例:

ENF <----> FlashTrigger <----> GPIO7-B5

ENM <----> FlashEn <----> GPIO7-B6

ENM 为低,ENF 为高时进入 flash 模式; ENM 为高,ENF 为低时进入 Movie/Torch 模式。

Mode 2:

该模式下 prelight_trig 和 flash_trig 的时序图如下:

prelight_trig 为高,flash_trig 为低进入 movie/torch mode; prelight_trig 为高,flash_trig 为高时进入 flash mode。

以 SGM3140 芯片为例:

FLASH <----> FlashTrigger<----> GPIO3-C4

EN <----> FlashEn <----> GPIO3-C5

EN 为高,FLASH 为高时进入 flash 模式; EN 为高,FLASH 为低时进入 torch 模式。

注意: 在 mode2 情况下,FlashTrigger 和 FlashEn 的有效电平须配置一致,否则会导致 panic 错误。

5. 5. cam_board.xml 支持多个 sensor 配置

Cam_board.xml 支持多个 sensor device 配置,在 xml 里添加自己可能用到的 <CamDevie>,填写上面所述相应所需的硬件信息即可。 例如下图:

5. 6. 如何测试 CTS_Verify FOV

麻烦参考 5.1 章节(Sensor 注册信息)中关于<SensorFovParameter>的说明

5.7. 如何解决开启 Camera 最初几帧的偏色问题

麻烦参考 5.1 章节(Sensor 注册信息)中关于<SensorAWB_Frame_Skip >的说明;

5. 8. Camera 插值说明

麻烦参考 5.3 章节(软件功能配置信息)中关于〈InterpolationRes〉的说明。

6. Sensor 支持列表

Camera Sensor	Туре	Optical format	VCM	VCM driver	IR-cut filter	Dimensio n(mm)	Lens	Module Vendor and Module number	
	1/6/								
raw sensor	raw sensor 参见文件《RKISPV1_Camera_Module_AVL》								
MIPI soc SE	MIPI soc SENSOR								
2Mega	2Mega								
Ov2685									
GC2155									
DVP soc SE	DVP soc SENSOR								
5Mega									
OV5640									
HM5065									
2Mega									

福州瑞芯微电子股份有限公司

GC2035							
HM2057							
NT99252							
SP2518							
OV2659							
0.3Mega							
GC0308							

