Inatel	Projeto #2	Turma: C213 L1/L2	Data: 04/06/24	
	${ m C213-Sistemas~Embarcados}$			
Docente: Samuel Baraldi Mafra	PED: Igor Gonçalves de Souza			
Objetivo: Apresentar a proposta para o segundo Projeto Prático da disciplina.				
Integrante 1:				
Integrante 2:				

Projeto Prático de Sistemas Embarcados - Controle Fuzzy PD

Controle de Velocidade e Altura de Elevadores em Prédios Residenciais

O Controle de Velocidade e Altura de Elevadores em Prédios Residenciais é crucial para garantir segurança, eficiência e conforto aos moradores. A velocidade adequada impede que o elevador se mova muito rapidamente, o que pode causar acidentes graves.

Os elevadores possuem Sistemas de Controle de Velocidade que ajudam a evitar paradas bruscas e de freio de emergência que entram em ação se a velocidade exceder um limite seguro, vital para prevenir quedas livres e proteger os passageiros.

Em prédios altos, o Controle de Velocidade ajuda a otimizar o fluxo de pessoas, reduzindo o tempo de espera e melhorando a eficiência do transporte vertical. Em Sistemas Avançados de Controle, sensores monitoram continuamente a velocidade e a altura e podem parar o elevador em uma posição segura em caso de falhas ou emergências.

Modelo Villarta Standard COMPAQ Slim

Os Elevadores de Passageiros Standard são produtos da Villarta Elevadores, empresa Brasileira que fornece soluções de transporte vertical para diversos tipos de edificações [1].

Os modelos são projetados para cumprir rigorosamente normas de segurança nacionais e internacionais, incluindo sistemas de alarmes e iluminação, freio de emergência com controle preciso de aceleração e desaceleração e são energeticamente eficientes, com motores de alto desempenho e sistemas LED para reduzir o consumo de energia [1]. A Figura 1 apresenta a planta baixa de um dos modelos da série Standard.

Figura 1: Planta baixa da linha COMPAQ Slim [2].

A linha de Elevadores Standard COMPAQ Slim suporta até 13 passageiros e pode se deslocar com velocidades entre 0,35 e 1 [m/s], de acordo com as referências da Tabela 1 [2]. Para aplicação neste projeto, os percursos máximos às velocidades de 0,35 e 0,5 [m/s] foram alterados para 9 e 15 [m], respectivamente.

Tabela 1: Diretrizes para dimensões mínimas UA e PC.

$Velocidade \ [m/s]$	P_{Motor} [%]	Percurso máximo [m]
0,35	31,5	9
0,50	45,0	15
1,00	90,0	21

Na planta baixa da Figura 1, é evidenciada a presença dos cabos de tração fixados na suspensão da cabine. Esse mecanismo, juntamente com o freio eletromecânico e o motor que controla a Velocidade de movimento, constituem a máquina de tração do Elevador. O motor é de porte suficiente para movimentar o Elevador na sua capacidade máxima, mas, para evitar operações em condições extremas, é superdimensionado e opera no máximo em 90% da sua potência nominal. Note na Tabela 1 que a Velocidade de movimento é diretamente proporcional à potência do motor.

Nos instantes iniciais de movimento, o motor possui um sistema de aceleração linear que o leva para operação em 31.5% da sua potência nominal em 3s conforme ilustrado no Gráfico da Figura 2. Observe que esse regime para tirar o elevador da inércia deve ocorrer em qualquer situação, independente do SetPoint ou sentido de deslocamento.

Figura 2: Potência do Motor nos instantes iniciais de movimento.

A cabine lateral do Elevador apresenta um painel com botoeiras exibido na Figura 3 em que é possível selecionar o andar para deslocamento do mecanismo. O andares são identificados em T a partir do térreo e crescentes até o $8^{\rm O}$ andar. O dashboard também apresenta o botão de emergência e um indicador de estado atual e sentido de movimento.

Para esta aplicação, é considerado que o sensor de posicionamento do Elevador está localizado na base da cabine. Assim, os referenciais de altura devem considerar sempre a altura mínima do andar em que o Elevador está.

Figura 3: Painel ilustrativo da linha COMPAQ Slim [2].

Estrutura Arbitrária para Prédios Residenciais

O prédio para este projeto possui 11 andares e 36 [m] de altura, conforme ilustrado na Figura 4. Note que o subsolo e o último andares são áreas técnicas com 4 [m] de altura reservadas para instalação de equipamentos mecânicos e elétricos e salas de controle, portanto não são acessíveis aos moradores. Assim, a movimentação dos residentes é possível entre o térreo e o 8º andares, em que há uma área decorada na fachada.

O edifício segue as normas de construção civil e, portanto, os andares têm 3 [m] de altura. O térreo é uma área mais ampla e também possui 4 [m]. Como a base do edifício está no subsolo, a posição inicial do Elevador no térreo é 4 [m].

Figura 4: Deslocamento do Elevador pelos andares do edifício.

Note que é possível utilizar medidas referenciadas de altura para definir o SetPoint do Sistema de Controle, com valores negativos indicando movimento de descida. Por exemplo, um deslocamento do 2° para o 5° andar representa SP=9 [m], enquanto do 1° andar para o térreo, SP=-4 [m]. Opcionalmente, utilize medidas de deslocamentos em módulo para distâncias, evitando SetPoints negativos.

Projeto - Controle Fuzzy PD

O Controle de Velocidade e Altura de Elevadores em Prédios Residenciais é um Sistema de Controle PD baseado em Lógica Fuzzy para controlar a velocidade de movimento do Elevador a partir da posição da cabine. O diagrama da Figura 5 identifica as variáveis do sistema:

Figura 5: Diagrama em blocos do Sistema Fuzzy PD.

Para qualquer Projeto Fuzzy, siga as etapas:

- fuzzyficação: determine as faixas de variação adequadas para as entradas $e/\Delta e$, e a saída P_{Motor} , do Controle Fuzzy PD , identifique as regiões de classificação e as funções de pertinência;
- base de regras: adote uma das estratégias de controle Controle Direto ou Reverso, e defina a Base de Regras a partir dos comportamentos esperados para as combinações das variáveis de entrada. Observe se as regras propostas respeitam as condições necessárias;
- defuzzyficação: atualize a posição do Elevador segundo a Função de Transferência do motor: posiçãoAtual = posiçãoAtual · 0.996 + potênciaMotor · 0.00951.

O Sistema deve apresentar uma interface node red e um dashboard que represente o painel do Elevador da Figura 3. A interface deve apresentar os botões para seleção do andar e um gráfico ilustrando o comportamento da posição ao longo do tempo. Adicionalmente, personalize o dashboard com outra métrica que julgar interessante.

A parametrização do Sistema de Controle é livre: utilizem valores de tolerância, intervalos e classificações etc. conforme desejo. Apenas seja crítico em relação ao resultado obtido... Olhe para o resultado obtido e pense: "Eu entraria nesse elevador?"

Considerações

- A entrega do trabalho deve ser feita via GitHub. O repositório, que pode ser o mesmo do primeiro trabalho, deve conter um *readme* detalhando a proposta da aplicação;
- A apresentação deve conter os detalhes das etapas do projeto supracitadas, mostrando os gráficos e detalhando as características do Sistema de Controle;
- Teste o funcionamento do Sistema de Controle para diferentes SetPoints, sentidos de movimento e andares de partida;
- em caso de instabilidade do Sistema de Controle, faça mínimos ajustes na Função de Transferência da malha.

Referências

- [1] Villarta Elevadores. Fabricação de Elevadores. URL: https://villarta.com.br/>.
- [2] Villarta Elevadores. Catálogo de Produtos. URL: https://villarta.com.br/wp-content/uploads/2023/10/VillartaCatalogoProdutos2023v2024-DIGITAL.pdf/.