128MB Buffered EDO DRAM DIMM 16-Mword × 72-bit, 4k Refresh, 1 Bank Module (18 pcs of 16M × 4 components)

HITACHI

ADE-203-1123 (Z) Preliminary Rev. 0.0 Sep.30, 1999

Description

The HB56UW1673E belongs to 8-byte DIMM (Dual in-line Memory Module) family, and have been developed an optimized main memory solution for 4 and 8-byte processor applications. The HB56UW1673E is a 16 M × 72 Dynamic RAM Module, mounted 18 pieces of 64-Mbit DRAM (HM5165405) sealed in TSOP package and 2 pieces of 16-bit line driver sealed in TSSOP package. The HB56UW1673E offers Extended Data Out (EDO) Page Mode as a high speed access mode. An outline of the HB56UW1673E is 168-pin socket type package (dual lead out). Therefore, the HB56UW1673E makes high density mounting possible without surface mount technology. The HB56UW1673E provides common data inputs and outputs. Decoupling capacitors are mounted beside each TSOP on the its module board.

Features

• 168-pin socket type package (Dual lead out)

— Lead pitch: 1.27 mm

• Single 3.3 V supply : 3.3 ± 0.3 V

High speed

— Access time: $t_{RAC} = 50 \text{ ns/}60 \text{ ns (max)}$

— Access time: $t_{CAC} = 18 \text{ ns}/20 \text{ ns (max)}$

• Low power dissipation

— Active mode: 8.46 W/7.16 W (max)

— Standby mode (TTL): 166 mW (max)

Buffered input except RAS and DQ

• 4 byte interleave enabled, dual address input (A0/B0)

Preliminary: The specification of this device are subject to change without notice. Please contact your nearest Hitachi's Sales Dept. regarding specification.

- JEDEC standard outline buffered 8-byte DIMM
- EDO page mode capability
- 4096 refresh cycles: 64 ms
- 2 variations of refresh
 - RAS-only refresh
 - $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh

Ordering Information

Type No.	Access time	Package	Contact pad
HB56UW1673E-5F HB56UW1673E-6F	50 ns 60 ns	168-pin dual lead out socket type	Gold

Pin Arrangement

Pin No.	Signal na	me Pin No.	Signal na	me Pin No.	Signal na	me Pin No.	Signal name
1	V _{ss}	43	V _{ss}	85	V _{ss}	127	V _{ss}
2	DQ0	44	ŌE2	86	DQ36	128	NC
3	DQ1	45	RE2	87	DQ37	129	NC
4	DQ2	46	CE4	88	DQ38	130	NC
5	DQ3	47	NC	89	DQ39	131	NC
6	V _{cc}	48	WE2	90	V _{cc}	132	PDE
7	DQ4	49	V _{cc}	91	DQ40	133	V _{cc}
8	DQ5	50	NC	92	DQ41	134	NC
9	DQ6	51	NC	93	DQ42	135	NC
10	DQ7	52	DQ18	94	DQ43	136	DQ54
11	DQ8	53	DQ19	95	DQ44	137	DQ55
12	V _{ss}	54	V _{SS}	96	V _{SS}	138	V _{SS}
13	DQ9	55	DQ20	97	DQ45	139	DQ56
14	DQ10	56	DQ21	98	DQ46	140	DQ57
15	DQ11	57	DQ22	99	DQ47	141	DQ58

Pin Arrangement (cont)

Pin No.	Signal na	me Pin No.	Signal nam	ne Pin No.	Signal na	me Pin No.	Signal name
16	DQ12	58	DQ23	100	DQ48	142	DQ59
17	DQ13	59	V _{cc}	101	DQ49	143	V _{cc}
18	V _{cc}	60	DQ24	102	V _{cc}	144	DQ60
19	DQ14	61	NC	103	DQ50	145	NC
20	DQ15	62	NC	104	DQ51	146	NC
21	DQ16	63	NC	105	DQ52	147	NC
22	DQ17	64	NC	106	DQ53	148	NC
23	V _{ss}	65	DQ25	107	V_{ss}	149	DQ61
24	NC	66	DQ26	108	NC	150	DQ62
25	NC	67	DQ27	109	NC	151	DQ63
26	V_{cc}	68	V _{ss}	110	V _{cc}	152	V _{ss}
27	WE0	69	DQ28	111	NC	153	DQ64
28	CE0	70	DQ29	112	NC	154	DQ65
29	NC	71	DQ30	113	NC	155	DQ66
30	RE0	72	DQ31	114	NC	156	DQ67
31	ŌE0	73	V _{cc}	115	NC	157	V _{cc}
32	V _{ss}	74	DQ32	116	V _{ss}	158	DQ68
33	A0	75	DQ33	117	A1	159	DQ69
34	A2	76	DQ34	118	А3	160	DQ70
35	A4	77	DQ35	119	A5	161	DQ71
36	A6	78	V_{ss}	120	A7	162	V _{SS}
37	A8	79	PD1	121	A9	163	PD2
38	A10	80	PD3	122	A11	164	PD4
39	NC	81	PD5	123	NC	165	PD6
40	V_{cc}	82	PD7	124	V _{cc}	166	PD8
41	NC	83	ID0(V _{ss})	125	NC	167	ID1 (V _{ss})
42	NC	84	V _{cc}	126	В0	168	V _{cc}

Pin Description

Pin name	Function
A0 to A11, B0	Address input
	Row address A0 to A11, B0
	Column address A0 to A11, B0
	Refresh address A0 to A11, B0
DQ0 to DQ71	Data input/output
RE0, RE2	Row address strobe (RAS)
CE0, CE4	Column address strobe (CAS)
WE0, WE2	Read/Write enable
OE0, OE2	Output enable
PD1 to PD8	Presence detect
ID0, ID1	ID bit
PDE	Presence detect Enable
V _{cc}	Power supply
V_{SS}	Ground
NC	No connection

Presence Detect Pin Assignment (Controlled by $\overline{\mbox{PDE}}\mbox{ pin)}$

		PDE = Low		PDE = High
Pin name	Pin No.	50 ns	60 ns	All
PD1	79	1	1	High-Z
PD2	163	1	1	High-Z
PD3	80	1	1	High-Z
PD4	164	1	1	High-Z
PD5	81	1	1	High-Z
PD6	165	0	1	High-Z
PD7	82	0	1	High-Z
PD8	166	0	0	High-Z

^{1 :} High level (driver output)

^{0 :} Low level (driver output)

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Terminal voltage on any pin relative to $V_{\rm ss}$	V _T	-0.5 to +4.6	V
Power supply voltage relative to V _{ss}	V _{cc}	-0.5 to +4.6	V
Short circuit output current	lout	50	mA
Power dissipation	P _T	19	W
Storage temperature range	Tstg	-55 to +125	°C

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage	V _{cc}	3.0	3.3	3.6	V	1, 2
	V _{ss}	0	0	0	V	2
Input high voltage	V_{IH}	2.0	_	$V_{CC} + 0.3$	V	1
Input low voltage	V _{IL}	-0.3	_	0.8	V	1
Ambient temperature range	Та	0	_	70	°C	

Notes: 1. All voltage referred to $V_{\rm SS}$.

^{2.} The supply voltage with all V_{cc} pins must be on the same level. The supply voltage with all V_{ss} pins must be on the same level.

DC Characteristics

HB56UW1673E

		วบ ทร		ชบ ทร			
Parameter	Symbol	Min	Max	Min	Max	Unit	Test conditions
Operating current*1, *2	I _{CC1}	_	2350	_	1990	mA	t _{RC} = min
Standby current	I _{CC2}	_	46	_	46	mA	TTL interface RAS, CAS = V _{IH} Dout = High-Z
		_	19	_	19	mA	$\frac{\text{CMOS interface}}{\text{RAS}, \text{CAS}} \geq \text{V}_{\text{cc}} - \text{0.2 V}$ $\text{Dout} = \text{High-Z}$
RAS-only refresh current*2	I _{CC3}	_	2350	_	1990	mA	t _{RC} = min
Standby current*1	I _{CC5}	_	100	_	100	mA	$\overline{RAS} = V_{IH}, \overline{CAS} = V_{IL}$ Dout = enable
CAS-before-RAS refresh current	I _{CC6}	_	2350	_	1990	mA	t _{RC} = min
EDO page mode current*1, *3	I _{CC7}	_	1990	_	1810	mA	$\overline{RAS} = V_{IL}$, \overline{CAS} cycle, $t_{HPC} = t_{HPC}$ min
Input leakage current	I _{LI}	- 5	5	- 5	5	μΑ	$0 \text{ V} \le \text{Vin} \le \text{V}_{CC} + 0.3 \text{ V}$
Output leakage current	I _{LO}	- 5	5	- 5	5	μА	0 V ≤ Vout ≤ V _{CC} Dout = disable
Output high voltage	V _{OH}	2.4	V _{cc}	2.4	V _{cc}	V	High lout = -2 mA
Output low voltage	V _{OL}	0	0.4	0	0.4	V	Low lout = 2 mA

Notes : 1. I_{cc} depends on output load condition when the device is selected. I_{cc} max is specified at the output open condition.

- 2. Address can be changed once or less while $\overline{RAS} = V_{IL}$.
- 3. Measured with one sequential address change per EDO cycle, t_{HPC} .

Capacitance (Ta = 25°C, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$)

Parameter	Symbol	Тур	Max	Unit	Notes
Input capacitance (Address)	C _{I1}	_	20	pF	1
Input capacitance (CAS, WE, OE)	C _{I2}	_	20	pF	1
Input capacitance (RAS)	C _{I3}	_	78	pF	1
I/O capacitance (DQ)	C _{I/O}	_	20	pF	1, 2

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable Dout.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 3.3 V \pm 0.3 V, V_{SS} = 0 V) *1, *2,*19

Test Conditions

• Input rise and fall times: 2 ns

• Input levels: $V_{IL} = 0 \text{ V}, V_{IH} = 3.0 \text{ V}$

• Input timing reference levels: 0.8 V, 2.0 V

 $\bullet~$ Output timing reference levels: $0.8~V,\,2.0~V$

• Output load: 1 TTL gate + C_L (100 pF) (Including scope and jig)

Read, Write, Read-Modify-Write and Refresh Cycles (Common parameters)

		50 ns		60 ns			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	84	_	104	_	ns	
RAS precharge time	t _{RP}	30	_	40	_	ns	
CAS precharge time	t _{CP}	8	_	10	_	ns	
RAS pulse width	t _{RAS}	50	10000	60	10000	ns	
CAS pulse width	t_{CAS}	8	10000	10	10000	ns	
Row address setup time	t _{ASR}	5	_	5	_	ns	
Row address hold time	t _{RAH}	8	_	10	_	ns	
Column address setup time	t _{ASC}	0	_	0	_	ns	
Column address hold time	t _{CAH}	8	_	10	_	ns	
RAS to CAS delay time	t _{RCD}	12	32	14	40	ns	3
RAS to column address delay time	t_{RAD}	10	20	12	25	ns	4
RAS hold time	t _{RSH}	18	_	20	_	ns	
CAS hold time	t _{CSH}	35	_	40	_	ns	
CAS to RAS precharge time	t _{CRP}	10	_	10	_	ns	
OE to Din delay time	t_{OED}	18	_	20	_	ns	5
OE delay time from Din	t _{DZO}	0		0		ns	6
CAS delay time from Din	t _{DZC}	0	_	0	_	ns	6
Transition time (rise and fall)	t _T	2	50	2	50	ns	7

Read Cycle

		50 ns		60 ns			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Access time from RAS	t _{RAC}	_	50	_	60	ns	8, 9
Access time from CAS	t _{CAC}	_	18	_	20	ns	9, 10, 17
Access time from address	t _{AA}	_	30	_	35	ns	9, 11, 17
Access time from OE	t _{OEA}	_	18	_	20	ns	9
Read command setup time	t _{RCS}	0	_	0	_	ns	
Read command hold time to CAS	t _{RCH}	0	_	0	_	ns	12
Read command hold time from RAS	t _{RCHR}	50	_	60	_	ns	
Read command hold time to RAS	t _{RRH}	0	_	0	_	ns	12
Column address to RAS lead time	t_{RAL}	30	_	35	_	ns	
Column address to CAS lead time	t _{CAL}	15	_	18	_	ns	
CAS to output in low-Z	t _{CLZ}	2	_	2	_	ns	
Output data hold time	t_{OH}	3	_	3	_	ns	21
Output data hold time from OE	t _{oho}	3	_	3	_	ns	
Output buffer turn-off time	t _{OFF}	_	18	_	20	ns	13, 21
Output buffer turn-off to OE	t_{OEZ}	_	18	_	20	ns	13
CAS to Din delay time	t _{CDD}	18	_	20	_	ns	5
Output data hold time from RAS	t_{OHR}	3	_	3	_	ns	21
Output buffer turn-off to RAS	t _{OFR}	_	13	_	15	ns	13, 21
Output buffer turn-off to WE	t _{wez}	_	18	_	20	ns	13
WE to Din delay time	t _{WED}	18		20		ns	
RAS to Din delay time	t _{RDD}	13		15		ns	

Write Cycle

		50 ns		60 ns			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write command setup time	t _{wcs}	0	_	0	_	ns	14
Write command hold time	t _{wch}	8	_	10	_	ns	
Write command pulse width	t _{WP}	8	_	10	_	ns	
Write command to RAS lead time	t _{RWL}	18	_	20	_	ns	
Write command to CAS lead time	t _{cwL}	8	_	10	_	ns	
Data-in setup time	t _{DS}	0	_	0	_	ns	15
Data-in hold time	t _{DH}	13	_	15	_	ns	15

Read-Modify-Write Cycle

Read-modify-write cycle time

Column address to $\overline{\text{WE}}$ delay time

RAS to WE delay time

CAS to WE delay time

OE hold time from WE

	HB56U	W1673E				
	50 ns		60 ns			
Symbol	Min	Max	Min	Max	Unit	Notes
t _{RWC}	116	_	140	_	ns	
$t_{\scriptscriptstyle RWD}$	72	_	84	_	ns	14
t _{CWD}	30	_	34	_	ns	14

14

ns

ns

49

15

Refresh Cycle

Parameter

		50 ns		60 ns			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
CAS setup time (CBR refresh cycle)	t _{CSR}	10	_	10	_	ns	
CAS hold time (CBR refresh cycle)	t _{CHR}	8	_	10	_	ns	
WE setup time (CBR refresh cycle)	t _{WRP}	5	_	5	_	ns	
WE hold time (CBR refresh cycle)	t _{wr}	8	_	10	_	ns	
RAS precharge to CAS hold time	t _{RPC}	5	_	5	_	ns	

42

13

 $\mathbf{t}_{\mathrm{AWD}}$

 $\mathbf{t}_{\mathsf{OEH}}$

EDO Page Mode Cycle

		50 ns		60 ns			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
EDO page mode cycle time	t _{HPC}	20	_	25	_	ns	20
EDO page mode RAS pulse width	t _{RASP}	_	100000	_	100000	ns	16
Access time from CAS precharge	t _{CPA}	_	33	_	40	ns	9, 17
RAS hold time from CAS precharge	t _{CPRH}	33	_	40	_	ns	
Output data hold time from CAS low	t _{DOH}	3	_	3	_	ns	9, 22
CAS hold time referred OE	t _{COL}	8	_	10	_	ns	
CAS to OE setup time	t _{COP}	5	_	5	_	ns	
Read command hold time from CAS precharge	t _{RCHC}	28		35		ns	
Write pulse width during $\overline{\text{CAS}}$ precharge t_{WPE}		8	_	10	_	ns	
OE precharge time	t _{OEP}	8	_	10	_	ns	

EDO Page Mode Read-Modify-Write Cycle

		50 ns		60 ns			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
EDO page mode read- modify-write cycle time	t _{HPRWC}	57	_	68	_	ns	
WE delay time from CAS precharge	t _{CPW}	45	_	54	_	ns	14

Refresh

Parameter	Symbol	Max	Unit	Notes
Refresh period	t _{REF}	64	ms	4096 cycles

Notes: 1. AC measurements assume $t_T = 2 \text{ ns.}$

- 2. An initial pause of 200 μs is required after power up followed by a minimum of eight initialization cycles (any combination of cycles containing RAS-only refresh or CAS-before-RAS refresh).
- 3. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, than the access time is controlled exclusively by t_{CAC} .
- 4. Operation with the t_{RAD} (max) limit insures that t_{RAC} (max) can be met, t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA}.
- 5. Either t_{OED} or t_{CDD} must be satisfied.
- 6. Either t_{DZO} or t_{DZC} must be satisfied.
- 7. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max).
- 8. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 9. Measured with a load circuit equivalent to 1 TTL loads and 100 pF.
- 10. Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $t_{RCD} + t_{CAC}$ (max) $\ge t_{RAD} + t_{AA}$ (max).
- 11. Assumes that $t_{RAD} \ge t_{RAD}$ (max) and $t_{RCD} + t_{CAC}$ (max) $\le t_{RAD} + t_{AA}$ (max).
- 12. Either t_{RCH} or t_{RRH} must be satisfied for a read cycles.
- 13. t_{OFF} (max), t_{OEZ} (max), t_{WEZ} (max) and t_{OFR} (max) define the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.
- 14. t_{WCS} , t_{RWD} , t_{CWD} , t_{AWD} and t_{CPW} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{RWD} \ge t_{RWD}$ (min), $t_{CWD} \ge t_{CWD}$ (min), and $t_{AWD} \ge t_{AWD}$ (min), or $t_{CWD} \ge t_{CWD}$ (min), $t_{AWD} \ge t_{AWD}$ (min) and $t_{CPW} \ge t_{CPW}$ (min), the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 15. t_{DS} and t_{DH} are referred to CAS leading edge in early write cycles and to WE leading edge in delayed write or read-modify-write cycles.
- 16. t_{RASP} defines \overline{RAS} pulse width in EDO page mode cycles.
- 17. Access time is determined by the longest among t_{AA} , t_{CAC} and t_{CPA} .
- 18. In delayed write or read-modify-write cycles, \overline{OE} must disable output buffer prior to applying data to the device.

- 19. When output buffers are enabled once, sustain the low impedance state until valid data is obtained. When output buffer is turned on and off within a very short time, generally it causes large V_{cc}/V_{ss} line noise, which causes to degrade V_{IH} min/ V_{IL} max level.
- 20. t_{HPC} (min) can be achieved during a series of EDO page mode write cycles or EDO page mode read cycles. If both write and read operation are mixed in a EDO page mode \overline{RAS} cycle (EDO page mode mix cycle (1), (2)), minimum value of \overline{CAS} cycle ($t_{CAS} + t_{CP} + 2 t_{T}$) becomes greater than the specified t_{HPC} (min) value. The value of \overline{CAS} cycle time of mixed EDO page mode is shown in EDO page mode mix cycle (1) and (2).
- 21. Data output turns off and becomes high impedance from later rising edge of \overline{RAS} and \overline{CAS} . Hold time and turn off time are specified by the timing specifications of later rising edge of \overline{RAS} and \overline{CAS} between t_{OHR} and t_{OH} and between t_{OFR} and t_{OFF} .
- 22. t_{DOH} defines the time at which the output level go cross. $V_{OL} = 0.8 \text{ V}$, $V_{OH} = 2.0 \text{ V}$ of output timing reference level.
- 23. XXX: H or L (H: V_{IH} (min) $\leq V_{IN} \leq V_{IH}$ (max), L: V_{IL} (min) $\leq V_{IN} \leq V_{IL}$ (max)) //////: Invalid Dout

When the address, clock and input pins are not described on timing waveforms, their pins must be applied V_{IH} or V_{IL} .

Timing Waveforms*23

Read Cycle

Early Write Cycle

Delayed Write Cycle*18

Read-Modify-Write Cycle*18

RAS-Only Refresh Cycle

\overline{CAS} -Before- \overline{RAS} Refresh Cycle

EDO Page Mode Read Cycle (1)

EDO Page Mode Read Cycle (2)

EDO Page Mode Early Write Cycle

EDO Page Mode Delayed Write Cycle*18

EDO Page Mode Read-Modify-Write Cycle*18

EDO Page Mode Mix Cycle (1)*20

EDO Page Mode Mix Cycle (2)*20

Physical Outline

HB56UW1673E Series

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http:semiconductor.hitachi.com/ Europe

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281

Telex: 40815 HITEC HX

Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
0.0	Sep. 30, 1999	Initial issue		_
		(referred to HM5164405F/HM5165405F Series Rev. 1.0)		