

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik

Lineare Algebra für Informatik (MA0901)

PD Dr. S. Borgwardt, Dr. R. Brandenberg

Aufgabenblatt 1

Präsenzaufgabe 1.1 (Cantorsches Diagonalverfahren)

Das kartesische Produkt zweier Mengen A, B ist definiert als $A \times B := \{(a, b) : a \in A, b \in B\}$. Für das kartesische Produkt $A \times A$ einer Menge A mit sich selbst schreiben wir auch kurz A^2 .

a) Erklären Sie anhand der folgenden Tabelle, wieso es möglich ist alle Paare von Zahlen (p,q) mit $p,q \in \mathbb{N} := \{1,2,3,\ldots\}$ "abzuzählen", dass heißt eine bijektive Abbildung $f: \mathbb{N}^2 \to \mathbb{N}$ zu bestimmen.

	1	2	3	4	
1	(1,1)	(1, 2)	(1,3)	(1,4)	
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	
	(3, 1)				
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	
:	:	:	•	•	٠

b) Erklären Sie mithilfe von Teil (a), dass N und Q gleichmächtig sind.

Lösung zu Aufgabe 1.1

a) Das Verfahren nennt sich Cantorsches Diagonalverfahren und funktioniert durch das Aneinanderreihen der Gegendiagonalen in obiger Tabelle:

Wer mag verifiziert noch, dass die sich ergebende bijektive Abbildung

$$f(p,q) = q + \frac{1}{2}(p+q-1)(p+q-2) = \frac{1}{2}((p+q-2)^2 + (p+q-2)) + q$$

ist und beweist ihre Bijektivität.

b) Es genügt zu erklären, dass \mathbb{N} und $\mathbb{Q}_0^+ := \{r \in \mathbb{Q} : r \geq 0\}$ gleichmächtig sind. Wir können dann die negativen rationalen den negativen ganzen Zahlen zuordnen und wissen aus der Vorlesung, dass \mathbb{N} und \mathbb{Z} gleichmächtig sind.

Nun lässt sich jede rationale Zahl $r \in \mathbb{Q}_0^+$ darstellen als $r = \frac{p}{q}$ mit $p, q \in \mathbb{N}$ (nicht eindeutig!). Damit ist \mathbb{Q}_0^+ aber nicht mächtiger als \mathbb{N}^2 und die Gleichmächtigkeit von \mathbb{N} und \mathbb{N}^2 folgt aus (a).

Präsenzaufgabe 1.2 (Eigenschaften von Relationen)

Untersuchen Sie die folgenden Relationen bezüglich Reflexivität, (Anti-)Symmetrie und Transitivität und geben Sie im Falle einer Äquivalenzrelation eine möglichst einfache Beschreibung der Äquivalenzklassen an. Wir schreiben dabei stets abkürzend $x \sim y$ für $(x, y) \in R$.

- a) $R \subset \mathbb{Z} \times \mathbb{Z}, x \sim y :\Leftrightarrow x y = 5,$
- b) $R \subset \mathbb{Z} \times \mathbb{Z}, x \sim y : \Leftrightarrow 4x + y \text{ ist durch 5 teilbar,}$

Lösung zu Aufgabe 1.2

a) Reflexivität: $1-1=0 \neq 5$ also $1 \not\sim 1$, d.h. R ist nicht reflexiv

Symmetrie: Da $x \sim y$ bedeutet, dass x - y = 5, folgt y = x - 5 und damit y - x = -5. Also kann nicht $y \sim x$ gelten, egal welche Werte x und y haben. Eine solche Relation nennt man "asymmetrisch".

Transitivität: Es gilt $10 \sim 5$ und $5 \sim 0$, aber nicht $10 \sim 0$. Damit ist R nicht transitiv.

b) Reflexivität: Für alle $x \in \mathbb{Z}$ gilt 4x + x = 5x, also durch 5 teilbar. Also gilt für alle $x \in \mathbb{Z}$: $x \sim x$, d.h. R ist reflexiv.

Symmetrie: Es seien $x, y \in \mathbb{Z}$ mit $x \sim y$. Das heißt es existiert $k \in \mathbb{Z}$: 4x + y = 5k also y = 5k - 4x bzw. 4y + x = 20k - 15x. Damit ist 4y + x ebenfalls durch 5 teilbar. Es gilt also $y \sim x$, also ist R symmetrisch.

Transitivität: Es seien $x, y, z \in \mathbb{Z}$ mit $x \sim y$ und $y \sim z$. Es gilt also: $\exists k, l \in \mathbb{Z} : 4x + y = 5k, 4y + z = 5l \Rightarrow \exists k, l \in \mathbb{Z} : 4x + z = 5k - y + 5l - 4y = 5k + 5l - 5y$. Damit gilt $x \sim z$ und R ist transitiv.

Insgesamt ist R also eine Äquivalenzrelation. Für ein beliebiges $x \in \mathbb{Z}$ lautet die Äquivalenzklasse:

$$[x]_{\sim} = \{y \in \mathbb{Z} : x \sim y\} = \{y \in \mathbb{Z} : y = x \mod 5\}.$$

Damit ergibt sich: $[0]_{\sim} = \{y \in \mathbb{Z} : 5 \text{ teilt } y\} = \{y \in \mathbb{Z} : y = 0 \mod 5\}, [1]_{\sim} = \{y \in \mathbb{Z} : 5 \text{ teilt } 4 + y\} = \{y \in \mathbb{Z} : y = 1 \mod 5\}, \ldots, [4]_{\sim} = \{y \in \mathbb{Z} : y = 4 \mod 5\}.$ Da die Mengen $[0]_{\sim}, \ldots, [4]_{\sim}$ bereits eine Partition von \mathbb{Z} ergeben, sind dies alle Äquivalenzklassen.

Präsenzaufgabe 1.3 (Injektivität und Surjektivität)

Untersuchen Sie die folgenden Abbildungen bezüglich Injektivität und Surjektivität:

- a) $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3 + x$.
- b) $f: \mathbb{N} \to \mathbb{N}, 1 \mapsto 2, x \mapsto x 1 \text{ für } x > 1.$
- c) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x + y.$

Lösung zu Aufgabe 1.3

a) f ist injektiv und surjektiv.

Injektivität: Seien $x, y \in \mathbb{R}$, x < y.

- Ist $y \le 0$, dann gilt $x^2 > y^2$ und $x^3 = xx^2 < yx^2 < yy^2 = y^3$,
- ist $x \ge 0$, dann gilt $y^2 > x^2$ und $x^3 = xx^2 \le xy^2 < yy^2 = y^3$, und
- ist x < 0 < y, so ist $x^3 < 0 < y^3$.

In jedem Fall ist also $x^3 < y^3$ und damit $f(x) = x^3 + x < y^3 + y = f(y)$.

(Das $x^3 < y^3$ folgt zusammengefasst auch aus der Darstellung $x^3 = \text{sign}(x)|x|^3$. Alternativ kann man die strenge Monotonität auch durch Betrachtung der Ableitung beweisen.)

Surjektivität: Offensichtlich ist f als Polynomfunktion stetig und streng monoton (s.o.) mit $f(x) \to -\infty (x \to -\infty)$ und $f(x) \to \infty (x \to \infty)$. Dann existiert aber zu jedem $y \in \mathbb{R}$ ein $x \in \mathbb{R}$, sodass f(x) = y.

- b) f ist surjektiv, da man zu $y \in \mathbb{N}$ einfach x = y + 1 wählen kann und es gilt dann wegen x > 1, dass f(x) = x 1 = y. Die Abbildung ist aber nicht injektiv, da f(1) = f(3) = 2.
- c) Injektivität: Da f((2,2)) = f((1,3)) ist f nicht injektiv.

Surjektivität: Sei $z \in \mathbb{R}$ beliebig. Dann gilt für x = z und y = 0, dass f((x, y)) = z. Folglich ist f surjektiv.

Präsenzaufgabe 1.4 (Abelsche Gruppe)

Zeigen Sie, dass $(2\mathbb{Z}, +)$ eine abelsche Gruppe ist.

Lösung zu Aufgabe 1.4

Zunächst stellen wir fest, dass es sich um eine innere Verknüpfung auf $2\mathbb{Z}$ handelt, d.h. für alle $a, b \in 2\mathbb{Z}$ gilt $a + b \in 2\mathbb{Z}$. (Addiert man 2 gerade Zahlen so ist das Ergebnis wieder gerade.)

Nun weisen wir die Gruppeneigenschaften nach:

- (i) Assoziativgesetz: seien $a, b, c \in 2\mathbb{Z}$, dann gilt offensichtlich (a + b) + c = a + (b + c).
- (ii) Neutrales Element: ist die Null.
- (iii) Inverses Element: sei $a \in 2\mathbb{Z}$, dann gilt a + b = 0, genau dann wenn b = -a gilt, womit -a das eindeutige inverse Element ist.
- (iv) Kommutativgesetz: seien $a, b \in 2\mathbb{Z}$, dann gilt offensichtlich a + b = b + a.

Hausaufgabe 1.5 (Relationen - falscher Beweis zur Reflexivität)

Untersuchen Sie die folgenden Relationen bezüglich Reflexivität, (Anti-)Symmetrie und Transitivität und geben Sie im Falle einer Äquivalenzrelation eine möglichst einfache Beschreibung der Äquivalenzklassen an.

- a) $R \subset \mathbb{R}^2 \times \mathbb{R}^2$, $(x_1, x_2) \sim (y_1, y_2) :\Leftrightarrow x_1^2 + x_2^2 = y_1^2 + y_2^2$.
- b) $R \subset \mathbb{N} \times \mathbb{N}, x \sim y : \Leftrightarrow x \mid y : \Leftrightarrow \exists c \in \mathbb{N} : cx = y.$

Diese Relation heißt Teilbarkeitsrelation, wobei $x \sim y$ hier als "x teilt y" zu lesen ist.

Lösung zu Aufgabe 1.5

a) Reflexivität: Für alle $(x_1, x_2) \in \mathbb{R}^2$ gilt $x_1^2 + x_2^2 = x_1^2 + x_2^2$ also ist R reflexiv. Symmetrie: Für alle $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$ gilt $x_1^2 + x_2^2 = y_1^2 + y_2^2 \Rightarrow y_1^2 + y_2^2 = x_1^2 + x_2^2$ also ist R symmetrisch.

Transitivität: Für $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2$ mit $x_1^2 + x_2^2 = y_1^2 + y_2^2$ und $y_1^2 + y_2^2 = z_1^2 + z_2^2$ gilt auch $x_1^2 + x_2^2 = z_1^2 + z_2^2$. Damit ist R transitiv.

Insgesamt ist R eine Äquivalenzrelation. Für ein beliebiges $(x_1, x_2) \in \mathbb{R}^2$ setze $\rho^2 := x_1^2 + x_2^2$. Damit lautet die Äquivalenzklasse von (x_1, x_2) :

$$[(x_1, x_2)]_{\sim} = \left\{ (y_1, y_2) \in \mathbb{R}^2 : y_1^2 + y_2^2 = x_1^2 + x_2^2 \right\} = \left\{ (y_1, y_2) \in \mathbb{R}^2 : y_1^2 + y_2^2 = \rho^2 \right\}$$

Das heißt die Äquivalenzklasse von (x_1, x_2) ist ein Kreis vom Radius ρ . Eine einfache Beschreibung aller Äquivalenzklassen lautet also z.B. $\{[(\rho, 0)]_{\sim} : \rho \geq 0\}$.

b) Reflexivität: Da $1 \in \mathbb{N}$ und 1x = x gilt $x \sim x$ für alle $x \in \mathbb{N}$. Symmetrie: Die Relation ist antisymmetrisch: Gilt $x \sim y$ und $y \sim x$, so existieren $c_1, c_2 \in N$ mit $c_1x = y$ und $c_2y = x$. Es gilt also $y = c_1x = c_1c_2y$ und damit $c_1c_2 = 1$ was nur für $c_1 = c_2 = 1$ möglich ist. (Beachten Sie, dass diese Relation über \mathbb{Z} betrachtet $-x \sim x$ und $x \sim -x$ für alle $x \in \mathbb{Z}$ ergibt, dann also nicht mehr antisymmetrisch ist.)

Transitivität: Die Relation ist transitiv: Gilt $x \sim y$ und $y \sim z$, so existieren $c_1, c_2 \in N$ mit $c_1x = y$ und $c_2y = z$. Es gilt also $z = c_2y = c_2c_1x$. Nun ist aber $c = c_2c_1 \in \mathbb{N}$ und damit $x \sim z$.

Hausaufgabe 1.6 (Injektivität und Surjektivität)

- a) Untersuchen Sie die folgenden Abbildungen bezüglich Injektivität und Surjektivität:
 - (i) $f: \mathbb{Z} \to \mathbb{Z}, x \mapsto x 1$.
 - (ii) $f: (-\infty, 0) \to (1, \infty), x \mapsto f(x) = 1 + x^2$.
 - (iii) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 + y^2 1.$
 - (iv) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x + 2y, 2x y)$.
- b) Geben Sie jeweils 2 Abbildungen von N nach N an, die
 - (i) injektiv, aber nicht surjektiv,
 - (ii) surjektiv, aber nicht injektiv, bzw.
 - (iii) injektiv und surjektiv sind.

Lösung zu Aufgabe 1.6

- a) (i) f ist injektiv, da aus x-1=y-1 sofort x=y folgt, und auch surjektiv, da für $y \in \mathbb{Z}$ die Wahl x:=y+1 dazu führt, dass f(x)=y gilt.
 - (ii) Injektivität: Seien $x_1, x_2 \in (-\infty, 0)$, sodass $f(x_1) = f(x_2)$. Dann gilt:

$$1 + x_1^2 = 1 + x_2^2 \Leftrightarrow x_1^2 = x_2^2 \Leftrightarrow |x_1| = |x_2|$$

also (aufgrund des Definitionsbereichs) $x_1 = x_2$.

 $Surjektivit \ddot{a}t:$ Sei $y\in (1,\infty)$ beliebig. Wähle $x=-\sqrt{y-1}.$ Dann gilt $f(x)=1+(-\sqrt{y-1})^2=1+y-1=y.$

(iii) Injektivität: Da $f((1,1)) = f_2((-1,1)) = 1 + 1 - 1 = 1$ ist f nicht injektiv.

Surjektivität: Da $x^2 + y^2 - 1 \ge -1$ besitzen alle z < -1 kein Urbild (kein Element (x, y) mit f((x, y)) = z.

- (iv) Injektivität: Seien (x_1, y_1) , $(x_2, y_2) \in \mathbb{R}^2$ mit $f((x_1, y_1)) = f((x_2, y_2))$. Dann muss also gelten, dass
 - (I.) $x_1 + 2y_1 = x_2 + 2y_2$ und
 - (II.) $2x_1 y_1 = 2x_2 y_2$.

Addiert wir das doppelte von II. zu I. so ergibt sich $5x_1 = 5x_2$ also $x_1 = x_2$. Subtrahieren wir dagegen II. vom doppelten von I. so folgt $5y_1 = 5y_2$ und daher $y_1 = y_2$. Insgesamt muss also $(x_1, y_1) = (x_2, y_2)$ gelten.

Surjektivität: Sei $(a,b) \in \mathbb{R}^2$ beliebig. Gesucht ist $(x,y) \in \mathbb{R}^2$, sodass f((x,y)) = (a,b) gilt. Dazu muss gelten:

(I.)
$$x + 2y = a$$
 und

(II.)
$$2x - y = b$$
.

Setze $x = \frac{1}{5}(a+2b)$ und $y = \frac{1}{5}(2a-b)$. Dann ist leicht nachzurechnen, dass sowohl I. als auch II. erfüllt ist.

b) (i)
$$f_{a1}(x) = 2x$$
:

 $2x_1 = 2x_2 \Rightarrow x_1 = x_2$, also ist f_{a1} injektiv. Da aber zu $3 \in \mathbb{N}$ kein $x \in \mathbb{N}$ existiert, sodass $f_{a1}(x) = x$ gilt, ist f nicht surjektiv.

$$f_{a2}(x) = x^2$$
:

 $x_1^2 = x_2^2 \Rightarrow |x_1| = |x_2| \Rightarrow x_1 = x_2$ in \mathbb{N} , also ist f_{a2} injektiv. Erneut existiert aber kein $x \in \mathbb{N}$, sodass f(x) = 3. Also ist f_{a2} auch nicht surjektiv.

(ii)
$$f_{b1}(x) = \begin{cases} x/2 & \text{falls } x \text{ gerade} \\ (x+1)/2 & \text{falls } x \text{ ungerade} \end{cases}$$
:

Da $f_{b1}(1) = f_{b1}(2)$ ist f nicht injektiv, aber für $y \in \mathbb{N}$ beliebig können wir (z.B.) x = 2y wählen und es gilt f(x) = x/2 = y. Die Abbildung ist also surjektiv.

$$f_{b2}(x) = \begin{cases} 10 - x & \text{falls } x \le 9\\ x - 9 & \text{falls } x \ge 10 \end{cases}$$

Da $f_{b2}(9) = f_{b2}(10)$ ist f nicht injektiv, aber für $y \in \mathbb{N}$ beliebig können wir (z.B.) x = y + 9 wählen und es gilt f(x) = x - 9 = y. Die Abbildung ist also surjektiv.

(iii) Die Identität $f_{c1}(x) = x$ ist natürlich bijektiv – hier gibt es auch nichts weiter zu zeigen.

$$f_{c2}(x) = \begin{cases} x - 1 & \text{falls } x \text{ gerade} \\ x + 1 & \text{falls } x \text{ ungerade} \end{cases}$$
:

Da f_{c2} alle geraden Zahlen auf ungerade und alle ungeraden auf gerade Zahlen abbildet, genügt es die beiden Zweige der Abbildung für die Injektivität getrennt zu betrachten: Seien x_1, x_2 zunächst ungerade. Dann gilt $0 = f(x_1) - f(x_2) = x_1 + 1 - x_2 - 1$ genau dann wenn $x_1 = x_2$ und das gleiche folgt analog für x_1, x_2 gerade. Sei schließlich $y \in \mathbb{N}$ beliebig. Ist y gerade, so setze x = y - 1, andernfalls x = y + 1. Es gilt dann $f_{c2}(x) = x + 1 = y$, falls y gerade und $f_{c2}(x) = x - 1 = y$, falls y ungerade ist.

Hausaufgabe 1.7 (Endliche Körper)

Wir definieren: $[p] := \{1, 2, 3, \dots, p\}$ und $[p]_0 := [p] \cup \{0\}$.

- a) Sei $\tilde{+}, \tilde{\cdot}$ Verknüpfungen auf $[p-1]_0$, definiert durch:
 - $a\tilde{+}b := (a+b) \mod p$ und
 - $a \cdot b := (a \cdot b) \mod p$,

wobei "+" und "·" die übliche Addition und Multiplikation natürlicher Zahlen bezeichne.

Zeigen Sie, dass für jede Primzahl p durch $GF_p := ([p-1]_0, \tilde{+}, \tilde{\cdot})$ ein Körper gegeben ist.

b) Was geht schief, wenn p nicht prim ist?

Hinweis: Zeigen Sie (u.a.) die Hilfsaussage: $[p-1] = M_a := \{1\tilde{\cdot}a, 2\tilde{\cdot}a, \dots, (p-1)\tilde{\cdot}a\}$. (Wozu?)

Lösung zu Aufgabe 1.7

- a) (i) $([p-1]_0, \tilde{+})$ ist eine kommutative Gruppe:
 - Abgeschlossen: klar, aufgrund der Modulorechnung liegt das Ergebnis immer in $[p-1]_0$.
 - Assoziativgesetz: Seien $a, b, c \in [p-1]_0$, dann gilt $((a+b) \mod p + c) \mod p = (a+b+c) \mod p = (a+(b+c) \mod p) \mod p$.
 - Neutrales Element: offensichtlich 0.
 - Inverses Element: die 0 ist offensichtlich zu sich selbst invers. Zu $a \in [p-1]$ sei a' := p a, dann gilt $a + a' = (a + (p-a)) \mod p = p \mod p = 0$.
 - Kommutativgesetz: klar, aufgrund der Kommutativität der herkömmlichen Addition.
 - (ii) $([p-1],\tilde{\cdot})$ ist eine kommutative Gruppe:
 - Abgeschlossen: aufgrund der Modulorechnung liegt das Ergebnis immer in $[p-1]_0$.
 - Assoziativgesetz: Seien $a, b, c \in [p-1]$, dann gilt $((ab) \mod p \cdot c) \mod p = (abc) \mod p = (a \cdot (bc) \mod p) \mod p$.
 - Neutrales Element: offensichtlich 1.
 - Inverses Element: Sei $a \in [p-1]$. Wir zeigen $[p-1] = M_a := \{1\tilde{\cdot}a, 2\tilde{\cdot}a, \cdot, (p-1)\tilde{\cdot}a\}$. Da damit auch folgt, dass $1 \in M_a$ existiert dann also ein inverses Element zu a.

Wir nehmen an, dass $M_a \subsetneq [p-1]$. Dann muss es $r, s \in [p-1]$, r > s geben, sodass $r\tilde{a} = s\tilde{a}$, also $(ra) \mod p = (sa) \mod p$. Damit wäre $((r-s)a) \mod p = 0$. D.h. es existiert ein $n \in \mathbb{N}$, sodass (r-s)a = np. Damit wäre (r-s)a/n = p ganzzahlig, d.h. es existieren $n_1, n_2 \in \mathbb{N}$ mit $n = n_1 n_2$ und $r - s/n_1, a/n_2 \in [p-1]$, sodass $(r-s/n_1)(a/n_2) = p$, im Widerspruch zu p prim.

- Kommutativgesetz: klar, aufgrund der Kommutativität der üblichen Multiplikation.
- (iii) Distributivgesetz: Für alle $a, b, c \in [p-1]_0$ gilt: $(a \cdot (b+c) \mod p) \mod p = (a(b+c)) \mod p = (ab+ac) \mod p = ((ab) \mod p + (ac) \mod p) \mod p$.

b) Falls p nicht prim ist, ist $([p-1], \tilde{\cdot})$ keine Gruppe. Die Eigenschaft p prim war beim Beweis der Existenz des inversen Elements essentiel.

Sind etwa $a, b \in [p-1]$ so gewählt, dass ab = p, dann gilt $\tilde{ab} = 0$, obwohl weder a noch b 0 sind. Es wurde in der Vorlesung aber mithilfe der Existenz des Inversen gezeigt, dass für einen Körper $\tilde{ab} = 0$ sofort a = 0 oder b = 0 impliziert.

Hausaufgabe (R) 1.8 (Matrizenrechnen 2)

Über dem Körper R seien folgende Matrizen gegeben:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, \quad B = \begin{pmatrix} 1 & 5 & 0 \\ 0 & 2 & 1 \\ 1 & 4 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}, \quad C = \begin{pmatrix} 2 & 1 \\ 0 & 0 \\ 1 & 0 \\ 1 & -1 \end{pmatrix} \in \mathbb{R}^{4 \times 2},$$

$$D = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix} \in \mathbb{R}^{4 \times 1}, \quad E = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \in \mathbb{R}^{1 \times 3}, \quad F = \begin{pmatrix} 3 \end{pmatrix} \in \mathbb{R}^{1 \times 1}.$$

Berechnen sie alle möglichen Produkte von je zwei der gegebenen Matrizen.

Lösung zu Aufgabe 1.8

Folgende Produkte können gebildet werden:

$$AB = \begin{pmatrix} 1 & 9 & 2 \\ 1 & 6 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, \quad CA = \begin{pmatrix} 2 & 5 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & -1 \end{pmatrix} \in \mathbb{R}^{4 \times 3}, \quad DE = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{4 \times 3},$$

$$DF = \begin{pmatrix} 3 \\ 6 \\ 0 \\ -3 \end{pmatrix} \in \mathbb{R}^{4 \times 1}, \quad EB = \begin{pmatrix} 1 & 3 & -1 \end{pmatrix} \in \mathbb{R}^{1 \times 3}, \quad FE = \begin{pmatrix} 3 & -3 & 0 \end{pmatrix} \in \mathbb{R}^{1 \times 3}.$$

Wir haben hier F streng als 1×1 Matrix aufgefasst. Fasst man F etwas "schlampig" als Skalarelement auf, dann kann es mit allen anderen Matrizen multipliziert werden (von links oder rechts spielt dann keine Rolle).