Problem Set 1 – Solutions

Samuel B. Hopkins

November 11, 2024

Problem 1 (On \models , borrowed from Aaron Potechin). Consider the following polynomial equation in 3 variables, x, y, z.

$$(x^2+1)y=z^2.$$

Because it implies $y = \frac{z^2}{x^2+1}$, any solution (x, y, z) to the above must have $y \ge 0$. We will see if sum-of-squares can capture this reasoning.

- 1. Construct a degree 4 pseudoexpectation $\widetilde{\mathbb{E}}$ in variables x, y, z such that $\widetilde{\mathbb{E}} \models (x^2 + 1)y = z^2$ but $\widetilde{\mathbb{E}} y < 0$. (Computer-aided proofs are allowed.)
 - By $\widetilde{\mathbb{E}} \models (x^2 + 1)y = z^2$, we mean that for any polynomial p of degree at most 1 in x, y, z, $\widetilde{\mathbb{E}} p(x, y, z)(x^2 + 1)y = \widetilde{\mathbb{E}} p(x, y, z)z^2$.
- 2. Despite the above, show that there exists a sum-of-squares refutation to the following system of polynomial inequalities, for any c > 0: $\{(x^2 + 1)y = z^2, y \le -c\}$.

Solution, Part 1 (courtesy of Mahbod Majid)

Recall that $\widetilde{\mathbb{E}}$ is a degree 4 pseudoexpectation in variables x, y, z if and only if

$$\widetilde{\mathbb{E}}\left[(1,x,y,z,xy,yz,xz,x^2,y^2,z^2)(1,x,y,z,xy,yz,xz,x^2,y^2,z^2)^T\right] \geq 0.$$

Therefore, we wish to find a pseudoexpectation $\widetilde{\mathbb{E}}$ satisfying the following constraints.

$$\begin{split} \widetilde{\mathbb{E}}\left[(1,x,y,z,xy,yz,xz,x^2,y^2,z^2)(1,x,y,z,xy,yz,xz,x^2,y^2,z^2)^T\right] &\geq 0 \\ \widetilde{\mathbb{E}}\left[x^2y-z^2\right] &= -\widetilde{\mathbb{E}}\left[y\right] \\ \widetilde{\mathbb{E}}\left[x^3y-xz^2\right] &= -\widetilde{\mathbb{E}}\left[xy\right] \\ \widetilde{\mathbb{E}}\left[x^2y^2-z^2y\right] &= -\widetilde{\mathbb{E}}\left[y^2\right] \\ \widetilde{\mathbb{E}}\left[x^2yz-z^3\right] &= -\widetilde{\mathbb{E}}\left[yz\right] \\ \widetilde{\mathbb{E}}\left[y\right] &< 0 \end{split}$$

Such a pseudoexpectation may be constructed as follows.

	1	\boldsymbol{x}	y	z	xy	yz	zx	x^2	y^2	z^2
1	1	0	-0.5	0	0	0	0	1.5	1	0.5
\boldsymbol{x}	0	1.5	0	0	1	0	0	0	0	0
y	-0.5	0	1	0	0	0	0	1	0.25	1.75
z	0	0	0	0.5	0	1.75	0	0	0	0
xy	0	1	0	0	0.75	0	0	0	0	0
yz	0	0	0	1.75	0	8.25	0	0	0	0
zx	0	0	0	0	0	0	4.75	0	0	0
x^2	1.5	0	1	0	0	0	0	10	0.75	4.75
y^2	1	0	0.25	0	0	0	0	0.75	10	8.25
z^2	0.5	0	1.75	0	0	0	0	4.75	8.25	10

Solution, Part 2 (courtesy of Mahbod Majid)

Indeed, for the given family of polynomials \mathcal{A} , we have that

$$\mathcal{A} \vdash_4 (x^2 + 1)y \le -c(x^2 + 1)$$

$$\mathcal{A} \vdash_4 z^2 \le -c(x^2 + 1)$$

$$\mathcal{A} \vdash_4 0 \le -c(x^2 + 1)$$

$$\mathcal{A} \vdash_4 cx^2 \le -c$$

$$\mathcal{A} \vdash_4 0 \le -c$$

$$\mathcal{A} \vdash_4 0 \le -1$$

as desired.

Problem 2. Suppose $\widetilde{\mathbb{E}}$ is a pseudoexpectation of degree d, with d even, and $\widetilde{\mathbb{E}} \models p \le 0$, $p \ge 0$ for some polynomial p. (Informally, we have been writing $\widetilde{\mathbb{E}} \models p = 0$.) Show that if p has even degree, for every q such that the degree of pq is at most d, we have $\widetilde{\mathbb{E}} pq = 0$. Similarly, show that if p has odd degree, for every q such that the degree of pq is at most d - 1, we have $\widetilde{\mathbb{E}} pq = 0$.

Solution By definition, we have that $\widetilde{\mathbb{E}} pq = 0$ for every sum-of-squares polynomial q such that the degree of pq is at most d. Given an arbitrary polynomial q, we may write it in terms of its Fourier expansion as a sum of monomials $q = \sum \widehat{q}_{\alpha} x^{\alpha}$, in which case it suffices to show that $\widetilde{\mathbb{E}} px^{\alpha} = 0$ for every bounded-degree monomial x^{α} .

Thus, let $q = x^{\alpha}$ and $\deg(q) = k \leq d$. Then, q may be written as the difference of two sum-of-squares polynomials, each of degree at most $\lfloor \frac{k+1}{2} \rfloor$. Indeed, we may write $x^{\alpha} = x^{\beta}x^{\gamma}$ for β , γ each being the indicators on an arbitrary partition of the nonzero indices of α (of which there are at most k) into two sets of size at most $\lfloor \frac{k+1}{2} \rfloor$. Then,

$$x^{\alpha} = \left(\frac{x^{\beta} + x^{\gamma}}{2}\right)^{2} - \left(\frac{x^{\beta} - x^{\gamma}}{2}\right)^{2}.$$

Note that each of the polynomials inside the squares is of degree $\left\lfloor \frac{k+1}{2} \right\rfloor$. If p has even degree, the degree of $p \cdot \left(\frac{x^{\beta} + x^{\gamma}}{2} \right)^2$ is at most d if $\deg(pq) \leq d$. If $\deg(p)$ is odd on the other hand, the degree of $p \cdot \left(\frac{x^{\beta} + x^{\gamma}}{2} \right)^2$ is equal to $\deg(pq) + 1$, which is at most d if $\deg(pq) \leq d - 1$.

The desideratum follows since for such monomials, $\widetilde{\mathbb{E}}\left[p\cdot\left(\frac{x^{\beta}+x^{\gamma}}{2}\right)^{2}\right]=\widetilde{\mathbb{E}}\left[p\cdot\left(\frac{x^{\beta}-x^{\gamma}}{2}\right)^{2}\right]=0$ by the discussion in the first paragraph.