Turingmaschine: $M = (\Sigma, m, T, \Gamma, Z, z_0, \delta)$ Mit: $\Sigma =$ Eingabealphabet, m = Stelligkeit der Eingabe, T = Ausgabealphabet, $\Gamma =$ Bandalphabet, $\Gamma =$ Bandalphabet, $\Gamma =$ Menge der Zustände, $\Gamma =$ Anfangszustand, $\Gamma =$ Stelligkeit der Eingabe, $\Gamma =$ Ausgabealphabet, $\Gamma =$ Bandalphabet, $\Gamma =$ Menge der Zustände, $\Gamma =$ Anfangszustand, $\Gamma =$ Eingabealphabet, $\Gamma =$ Bew × Z

Registeroperator: m-Registeroperator zur Berechnung von f ist

RO = {Befehle wie s (=Subtraktion) oder a (= Addition) | bis Register leer ist}

Registermaschine: Eine f berechnende Registermaschine ist die 3-Registermaschine

 $RM = (m, n, Z, z_0, \delta)$

mit m = Registeranzahl $\geq n + 1$, n = Eingabeelemente, Z = Zustandsmenge, z_0 = Anfangs Zustand,

 $\delta = \text{Durchf\"{u}hrungsfunktion}$ von oben nach Unten durchgef\"{u}hrt

 $\delta Z \to (OPER \times Z) \cup (Test \times Z \times Z)$ wobei der Test funktioniert, indem wenn das abgefragte Register leer ist, wird in den 2. Zustand gewechselt, sonst in den ersten

Primitive Rekursion: i) $S, U_i^n, C_j^m \in F(PRIM)$ ii) $g^n, h_1^m, ..., h_n^m \in F(PRIM) \Rightarrow g(h_1, ..., h_n) \in F(PRIM)$

iii) $g^{n-1}, h^{n+1} \in F(PRIM) \Rightarrow PR(g,h) \in F(PRIM)$

Rekursive Funktionen: Eine Rekursive Funktion ist Total i) - iii) wie bei Prim Rek iv) Ist $g^{(n+1)} \in F(REK)$ so auch $\mu(g)^n$ Wobei der μ Operator das kleinste existierende $y \in \mathbb{N}$ sucht s.d. $g(\overrightarrow{x}, y) = 0 \& \forall z < y(g(\overrightarrow{x}, z) \downarrow)$

 $\{Beschränkter\ Addition,\ Beschränkter\ Multiplikation,\ Maximum\ Bildung,\ Minimum\ Bildung,\ Iteration\}\in F(REK)\ und\in F(PRIM)$

Außerdem ist F(PRIM) gegen den beschränken μ -Operator abgeschlossen. F(REK) und F(PRIM) sind gegen endliche Fallunterscheidung mit Operationen aus dem jeweiligen abgeschlossen.

Sprachen: Kontextsensitiv - , Kontextfrei - , linkslinear - , rechtslinear -

Chomsky Normalform: Kontextfrei: Heißt die Beschriebene Grammatik ist λ -treu, und eine Variable darf nie auf eine Kombination von Variable und Ausgabezeichen oder mehrere Ausgabezeichen oder auf $\neq 2$ Variablen geschickt werden.

Rechtslinear: Ähnlich wie die Kontextfreie, nur dass hier die Variablen entweder auf ein Ausgabezeichen und eine Variable oder ein Ausgabezeichen geschickt werden darf, sonst nichts.

Pumpinlemma: $L \subseteq \Sigma^*$ eine KF Sprache $\exists p \in \mathbb{N} \forall z \in L : |z| \geq p \exists$ Zerlegung $z = uvwxy, u, v, w, x, y \in \Sigma^*$ mit Eigenschaften i) $vx \neq \lambda$ ii) $|vwx| \leq p$ iii) $\forall n \geq 0 \{z_n = uv^n wx^n y \in L\}$

Rechtslineare Sprache/Endlicher Automat: 5-Toupel $M = (\Sigma, Z, \delta, z_0, E)$

Meistens darf man ein gewohntes Übergangdiagramm zeichnen - Trivial.

Nicht Deterministischer Automat darf theoretisch in mehreren Zuständen gleichzeitig existieren - Die Zuweisung muss nicht eindeutig sein. Bei Deterministischen halt schon.