CS60010: Deep Learning Spring 2021

Sudeshna Sarkar

Recurrent Neural Network – Part 2 LSTM

22 Feb 2021

RNN for Language Modelling

• Predict the next word

Problem of Long-Term Dependencies

- I did my schooling from Kolkata though my family is from Tamil Nadu.
 I speak fluent _____."
 - We need the context from further back.
 - Large gap between relevant information and point where it is needed

Vanishing Gradient: The problem of Long-term Dependencies

- Vanishing Gradient problem
- Multiply many small numbers together
- Errors due to further back time steps have smaller and smaller gradients

Addressing Vanishing / exloding gradients

Some strategies

- Design a model that operates at multiple time scales
 - Some parts of the model operate at fine-grained time scales and can handle small details
 - Other parts operate at coarse time scales and transfer information from the distant past to the present more efficiently.
- Strategies for building both fine and coarse time scales: Addition of skip connections across time
 - Add direct connections from variables in the distant past to variables in the present: Construct RNNs with longer delays
 - Introduce time delay of d
 - Gradients diminish as a function of τ/d rather than τ

Weight Initialization using Identity-RNN

- Identity RNN:
- Basic RNN with ReLU as nonlinearity
- Initialize hidden-to-hidden matrix to identity matrix
- RNNs composed of rectified linear units are relatively easy to train and are good at modeling long-range dependencies.

Gated RNNs

• Gated RNNs contain gates to control what information is passed through.

Gated Cells

LSTM, GRU, etc

LSTMs and GRUs: Gates

- Think of h as a state memory: you read the content h_{t-1} to write new content at h_t .
- At each computation step, the entire state is read, and the entire is possibly rewritten

Using binary gate vector g to control access to memory s'.

- element of x should be copied in memory s.
- (1 g) specifies what should be kept.
 - ⊙ : Hadamard product Elementwise multiplication

These gates serve as building blocks: But they have to be differentiable.

Replace $g \in \{0,1\}^n$ with $g' \in \mathbb{R}^n$ which is then passed through a sigmoid function $\sigma(g') \in \{0,1\}^n$

LSTMs: learnable gates

These gates serve as building blocks: But they have to be differentiable. Replace $g \in \{0,1\}^n$ with $g' \in R^n$ which is then passed through a sigmoid function $\sigma(g') \in \{0,1\}^n$ Split the hidden layer into two vectors \mathbf{c} and \mathbf{h} and have three learnable gates

$$g_{t} = tanh(U_{g}h_{t-1} + W_{g}x_{t})$$

$$i_{t} = \sigma(U_{i}h_{t-1} + W_{i}x_{t})$$

$$f_{t} = \sigma(U_{f}h_{t-1} + W_{f}x_{t})$$

$$o_{t} = \sigma(U_{o}h_{t-1} + W_{o}x_{t})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot tanh(c_{t})$$

$$g_{t} = tanh(U_{g}h_{t-1} + W_{g}x_{t})$$

$$i_{t} = \sigma(U_{i}h_{t-1} + W_{i}x_{t})$$

$$f_{t} = \sigma(U_{f}h_{t-1} + W_{f}x_{t})$$

$$o_{t} = \sigma(U_{o}h_{t-1} + W_{o}x_{t})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot tanh(c_{t})$$

 Long Short Term Memory networks – usually just called "LSTMs" – are a special kind of RNN, capable of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber (1997)

LSTMs operate using a series of gates. These gates control what information is still relevant to the network.

LSTMs introduce self-loops to produce paths where the gradient can flow for long durations.

Basic RNN unit

LSTM unit

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

LSTMs operate using a series of gates. These gates control what information is still relevant to the network.

LSTMs introduce self-loops to produce paths where the gradient can flow for long durations.

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Information added or removed through gates.

Ex: sigmoid net and pointwise multiplication

(1) Forget (2) Input (3) Update (4) Output

The key to LSTMs is the **cell state**, the horizontal line running through the top of the diagram.

It runs straight down the entire chain, with only some minor linear interactions.

LSTM forget gate

Forget irrelevant parts of the previous state

Next decide what new information we're going to store in the cell state. This has two parts.

- a sigmoid layer called the "input gate layer" decides which values we'll update.
- 2. a tanh layer creates a vector of new candidate values, \tilde{C}_t , that could be added to the state.

It's now time to update the old cell state, C_{t-1} , into the new cell state C_t .

$$C_{t-1}$$

Finally, we need to decide what we're going to output.

LSTM gradient flow is uninterrupted.

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f, no matrix multiply by W

Application: Language Model

Machine Translation

Image Captioning