1001 博弈

Problem Description

Alice 和 Bob 又要玩取石子游戏了。有 n 个房间,第 i 个房间中有 k_i 堆石子($k_i \geq 1$)。Alice 和 Bob 轮流进行操作,Alice 先手。每次操作时,玩家可以在**任何**一个房间中选择**任何**一个非空的堆,然后从该堆中取出**任意**个石子。若某位玩家无法进行操作(即所有房间都是空的),则该玩家输掉游戏。

为了增加游戏的乐趣,他们新加了一个规则:在当前房间内还有石子时,不允许到其他房间内取石子。且游戏开始前给定一个长度为 n 的排列 p,表示访问顺序。当 p_i 房间内没有石子的情况下, 才可以去 p_{i+1} 房间内取石子。注意,在游戏开始前,两人都知道这个排列。

在游戏开始前,Alice 可以决定房间的访问顺序。假设 Alice 和 Bob 都是最聪明的。Alice 想知道有多少种**排列**能使她获胜。

由于结果可能非常大,请输出答案对 $10^9 + 7$ 取模。

Input

第一行输入一个整数 T ($1 \le T \le 100$),表示测试的总数。

对于每个测试用例,第一行输入一个整数 n $(1 \le n \le 10^6)$,表示房间的总数。

接下来 n 行,每行的开始有一个整数 k_i ,表示该房间中有多少堆石子。接下来输入 k_i 个整数 a_1, a_2, \dots, a_{k_i} ($1 \le a \le 10^9$),表示每堆石子包含的数量。保证所有样例中 k_i 的总和不超过 10^6 。

Output

对于每个测试,输出一个整数,表示 Alice 获胜的方案数,结果对 10^9+7 取模。

Sample Input

```
2
2
1 1
1 2
4
3 1 2 3
1 1
4 1 2 3 4
5 1 2 3 4 5
```

Sample Output

```
1
14
```

Hint

对于第一个样例,如果房间的顺序是 1 2,那么 Alice 第一步只能取走房间1中唯一的一个石子,然后 Bob 可以把房间2中的石子全部取完,Bob 获胜;如果房间的顺序是 2 1,那么 Alice 可以取走房间2中的一个石子,接下来 Bob 只能取房间2中剩下的一个石子。然后 Alice 取走房间1中剩下的一个石子,最终获胜。因此答案是 1。