- $\lim_{n\to\infty} a_n = +\infty$: 对任给M > 0,存在N, 当n > N时, $a_n > M$.
- $\lim_{n\to\infty} a_n = -\infty$: 对任给M < 0,存在N, 当n > N时, $a_n < M$.
- $\lim_{n\to\infty} a_n = \infty$: 对任给M > 0,存在N, 当n > N时, $|a_n| > M$. 则有 $\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} |a_n| = +\infty$.
- 若 $\lim_{n\to\infty} a_n = +\infty$ 或者 $\lim_{n\to\infty} a_n = -\infty$, 则有 $\lim_{n\to\infty} a_n = \infty$.
- 例: $\lim_{n\to\infty} \ln n = +\infty$, $\lim_{n\to\infty} (-1)^n \ln n = \infty$.

- $\lim_{n\to\infty} a_n = +\infty$: 对任给M > 0,存在N, 当n > N时, $a_n > M$.
- $\lim_{n\to\infty} a_n = -\infty$: 对任给M < 0,存在N, 当n > N时, $a_n < M$.
- $\lim_{n\to\infty} a_n = \infty$: 对任给M > 0,存在N, 当n > N时, $|a_n| > M$. 则有 $\lim_{n\to\infty} a_n = \infty$ ⇔ $\lim_{n\to\infty} |a_n| = +\infty$.
- 若 $\lim_{n\to\infty} a_n = +\infty$ 或者 $\lim_{n\to\infty} a_n = -\infty$, 则有 $\lim_{n\to\infty} a_n = \infty$.
- \emptyset : $\lim_{n\to\infty} \ln n = +\infty$, $\lim_{n\to\infty} (-1)^n \ln n = \infty$.

- $\lim_{n\to\infty} a_n = +\infty$: 对任给M > 0,存在N, 当n > N时, $a_n > M$.
- $\lim_{n\to\infty} a_n = -\infty$: 对任给M < 0,存在N, 当n > N时, $a_n < M$.
- $\lim_{n\to\infty} a_n = \infty$: 对任给M > 0,存在N, 当n > N时, $|a_n| > M$. 则有 $\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} |a_n| = +\infty$.
- 若 $\lim_{n\to\infty} a_n = +\infty$ 或者 $\lim_{n\to\infty} a_n = -\infty$,则有 $\lim_{n\to\infty} a_n = \infty$.
- \emptyset : $\lim_{n\to\infty} \ln n = +\infty$, $\lim_{n\to\infty} (-1)^n \ln n = \infty$.

- $\lim_{n\to\infty} a_n = +\infty$: 对任给M > 0,存在N, 当n > N时, $a_n > M$.
- $\lim_{n\to\infty} a_n = -\infty$: 对任给M < 0,存在N, 当n > N时, $a_n < M$.
- $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = \infty$: 对任给M > 0,存在N, 当n > N时, $|a_n| > M$. 则有 $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = \infty \Leftrightarrow \lim_{\substack{n \to \infty \\ n \to \infty}} |a_n| = +\infty$.
- 若 $\lim_{n\to\infty} a_n = +\infty$ 或者 $\lim_{n\to\infty} a_n = -\infty$, 则有 $\lim_{n\to\infty} a_n = \infty$.
- \emptyset : $\lim_{n \to \infty} \ln n = +\infty$, $\lim_{n \to \infty} (-1)^n \ln n = \infty$.

- $\lim_{n\to\infty} a_n = +\infty$: 对任给M > 0,存在N, 当n > N时, $a_n > M$.
- $\lim_{n\to\infty} a_n = -\infty$: 对任给M < 0,存在N, 当n > N时, $a_n < M$.
- $\lim_{n\to\infty} a_n = \infty$: 对任给M > 0,存在N, 当n > N时, $|a_n| > M$. 则有 $\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} |a_n| = +\infty$.
- 若 $\lim_{n\to\infty} a_n = +\infty$ 或者 $\lim_{n\to\infty} a_n = -\infty$, 则有 $\lim_{n\to\infty} a_n = \infty$.
- \mathfrak{F}]: $\lim_{n\to\infty} \ln n = +\infty$, $\lim_{n\to\infty} (-1)^n \ln n = \infty$.

右极限

• 右极限是x从a的右侧趋于a的极限即x > a,x任意靠近a时,f(x)任意接近l,则称f(x)以l为右极限.

• 右极限的定义($\epsilon - \delta$ 语言): 对任意 $\epsilon > 0$, 存在 δ , 使得当 $0 < x - a < \delta$ 时, $|f(x) - I| < \epsilon$, 则称 $x \to a + 0$ 时,f(x)以I为右极限,记为 $\lim_{x \to a + 0} f(x) = I$.

右极限

• 右极限是x从a的右侧趋于a的极限即x > a,x任意靠近a时,f(x)任意接近I,则称f(x)以I为右极限.

• 右极限的定义($\epsilon - \delta$ 语言): 对任意 $\epsilon > 0$, 存在 δ , 使得当 $0 < x - a < \delta$ 时, $|f(x) - I| < \epsilon$, 则称 $x \to a + 0$ 时,f(x)以I为右极限,记为 $\lim_{x \to a + 0} f(x) = I$.

左极限

• 左极限的定义($\epsilon-\delta$ 语言): 对任意 $\epsilon>0$, 存在 δ , 使得当 $0<a-x<\delta$ 时, $|f(x)-I|<\epsilon$, 则称 $x\to a-0$ 时,f(x)以I为左极限,记为 $\lim_{x\to a-0}f(x)=I$.

• $f(x) = \operatorname{sgn}(x)$, $\lim_{x \to 0+0} f(x) = 1$, $\lim_{x \to 0-0} f(x) = -1$.

左极限

• 左极限的定义($\epsilon-\delta$ 语言): 对任意 $\epsilon>0$, 存在 δ , 使得当 $0<a-x<\delta$ 时, $|f(x)-I|<\epsilon$, 则称 $x\to a-0$ 时,f(x)以I为左极限,记为 $\lim_{x\to a-0}f(x)=I$.

• \mathfrak{G} : $f(x) = \operatorname{sgn}(x)$, $\lim_{x \to 0+0} f(x) = 1$, $\lim_{x \to 0-0} f(x) = -1$.

(双侧)极限的定义

• (双侧)极限的定义($\epsilon - \delta$ 语言): y = f(x)在a的某个空心邻域(a - r, a) \cup (a, a + r)上有定义,若存在l,对任意 $\epsilon > 0$,存在 $\delta < r$,使得当 $0 < |x - a| < \delta$ 时, $|f(x) - l| < \epsilon$,则称 $x \to a$ 时,f(x)以l为极限,记为 $\lim_{x \to a} f(x) = l$.

- 性质: $\lim_{x\to a} f(x)$ 存在 $\Leftrightarrow \lim_{x\to a\pm 0} f(x)$ 存在且相等.
- 性质: 若 $p < \lim_{x \to a} f(x) < q$, 则存在 δ , 使得 $0 < |x a| < \delta$ 时, p < f(x) < q. 证明: 设 $\lim_{x \to a} f(x) = I$, 取 $\epsilon = \min\{I p, q I\}$. $|f(x) I| < \epsilon$ 时, p < f(x) < q.
- 性质: $\lim_{x\to 0} f(kx) = \lim_{x\to 0} f(x)$, $\lim_{x\to a} f(x) = \lim_{x\to b} f(x+a-b)$. 证明: 若 $\lim_{x\to a} f(x) = I$, 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 当 $0 < |x-b| < \delta$ 时, 有 $0 < |(x+a-b)-a| < \delta$, 因此 $|f(x+a-b)-I| < \epsilon$.

- 性质: $\lim_{x\to a} f(x)$ 存在 $\Leftrightarrow \lim_{x\to a+0} f(x)$ 存在且相等.
- - 证明: 设 $\lim_{x \to a} f(x) = I$, 取 $\epsilon = \min\{I p, q I\}$. $|f(x) I| < \epsilon$ 时,p < f(x) < q.
- 性质: $\lim_{x\to 0} f(kx) = \lim_{x\to 0} f(x)$, $\lim_{x\to a} f(x) = \lim_{x\to b} f(x+a-b)$. 证明: 若 $\lim_{x\to a} f(x) = I$, 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 当 $0 < |x-b| < \delta$ 时, 有 $0 < |(x+a-b)-a| < \delta$, 因此 $|f(x+a-b)-I| < \epsilon$.

- 性质: $\lim_{x\to a} f(x)$ 存在 $\Leftrightarrow \lim_{x\to a\pm 0} f(x)$ 存在且相等.
- 性质: 若 $p < \lim_{x \to a} f(x) < q$, 则存在 δ , 使得 $0 < |x a| < \delta$ 时, p < f(x) < q.

证明: 设 $\lim_{x\to a} f(x) = I$, 取 $\epsilon = \min\{I - p, q - I\}$. $|f(x) - I| < \epsilon$ 时, p < f(x) < q.

• 性质: $\lim_{x\to 0} f(kx) = \lim_{x\to 0} f(x)$, $\lim_{x\to a} f(x) = \lim_{x\to b} f(x+a-b)$. 证明: 若 $\lim_{x\to a} f(x) = I$, 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当0 < $|x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 当0 < $|x-b| < \delta$ 时, $|f(x)-I| < \epsilon$.

- 性质: $\lim_{x\to a} f(x)$ 存在 $\Leftrightarrow \lim_{x\to a\pm 0} f(x)$ 存在且相等.
- 性质: 若 $p < \lim_{x \to a} f(x) < q$, 则存在 δ , 使得 $0 < |x a| < \delta$ 时, p < f(x) < q. 证明: 设 $\lim_{x \to a} f(x) = I$, 取 $\epsilon = \min\{I p, q I\}$. $|f(x) I| < \sum_{x \to a} f(x) = I$

 ϵ 时,p < f(x) < q.

• 性质: $\lim_{x\to 0} f(kx) = \lim_{x\to 0} f(x)$, $\lim_{x\to a} f(x) = \lim_{x\to b} f(x+a-b)$. 证明: 若 $\lim_{x\to a} f(x) = I$, 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 当 $0 < |x-b| < \delta$ 时, $|f(x)-I| < \epsilon$.

- 性质: $\lim_{x\to a} f(x)$ 存在 $\Leftrightarrow \lim_{x\to a+0} f(x)$ 存在且相等.
- 性质: 若 $p < \lim_{\substack{x \to a \\ x \to a}} f(x) < q$, 则存在 δ , 使得 $0 < |x a| < \delta$ 时,p < f(x) < q. 证明: 设 $\lim_{\substack{x \to a \\ x \to a}} f(x) = I$,取 $\epsilon = \min\{I - p, q - I\}$. $|f(x) - I| < \epsilon$ 时,p < f(x) < q.
- 性质: $\lim_{x\to 0} f(kx) = \lim_{x\to 0} f(x)$, $\lim_{x\to a} f(x) = \lim_{x\to b} f(x+a-b)$. 证明: 若 $\lim_{x\to a} f(x) = I$, 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当0 < $|x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 当0 < $|x-b| < \delta$ 时, 有0 < $|(x+a-b)-a| < \delta$, 因此 $|f(x+a-b)-I| < \epsilon$.

• 若极限 $\lim_{x\to a} f(x)$ 存在,则有 $\lim_{x\to a} |f(x)|$ 存在,且 $\lim_{x\to a} |f(x)| = |\lim_{x\to a} f(x)|$.

证明: 若设 $\lim_{x\to a} f(x) = I$. 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当0 < $|x-a| < \delta$ 时, $|f(x)-I| < \epsilon$, 则有 $|f(x)| - |I|| < \epsilon$.

- 例: $\lim_{x\to 0} \operatorname{sgn}(x)$ 不存在, $\lim_{x\to 0} |\operatorname{sgn}(x)| = 1$.
- $\lim_{x \to a} f(x) = 0$ 的充分必要条件是 $\lim_{x \to a} |f(x)| = 0$. 证明: $|f(x) - 0| \le \epsilon \Leftrightarrow ||f(x)| - 0| \le \epsilon$.

- 若极限 $\lim_{x\to a} f(x)$ 存在,则有 $\lim_{x\to a} |f(x)|$ 存在,且 $\lim_{x\to a} |f(x)| = \lim_{x\to a} f(x)|$.
 - 证明: 若设 $\lim_{\substack{x \to a \\ |x-a|}} f(x) = I$. 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x-a| < \delta$ 时, $|f(x) I| < \epsilon$. 则有 $|f(x)| |I|| < \epsilon$.
- 例: $\lim_{x\to 0} \operatorname{sgn}(x)$ 不存在, $\lim_{x\to 0} |\operatorname{sgn}(x)| = 1$.
- $\lim_{x \to a} f(x) = 0$ 的充分必要条件是 $\lim_{x \to a} |f(x)| = 0$. 证明: $|f(x) - 0| \le \epsilon \Leftrightarrow ||f(x)| - 0| \le \epsilon$.

- 若极限 $\lim_{x\to a} f(x)$ 存在,则有 $\lim_{x\to a} |f(x)|$ 存在,且 $\lim_{x\to a} |f(x)| = |\lim_{x\to a} f(x)|$.
 - 证明: 若设 $\lim_{x\to a} f(x) = I$. 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当0 <
 - $|x-a|<\delta$ 时, $|f(x)-I|<\epsilon$,则有 $||f(x)|-|I||<\epsilon$.
- 例: $\lim_{x\to 0} \operatorname{sgn}(x)$ 不存在, $\lim_{x\to 0} |\operatorname{sgn}(x)| = 1$.
- $\lim_{x \to a} f(x) = 0$ 的充分必要条件是 $\lim_{x \to a} |f(x)| = 0$. 证明: $|f(x) - 0| \le \epsilon \Leftrightarrow ||f(x)| - 0| \le \epsilon$.

- 若极限 $\lim_{x\to a} f(x)$ 存在,则有 $\lim_{x\to a} |f(x)|$ 存在,且 $\lim_{x\to a} |f(x)| = |\lim_{x\to a} f(x)|$.
 - 证明: 若设 $\lim_{x\to a} f(x) = I$. 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当0 <
 - $|x-a|<\delta$ 时, $|f(x)-I|<\epsilon$,则有 $||f(x)|-|I||<\epsilon$.
- 例: $\lim_{x\to 0} \operatorname{sgn}(x)$ 不存在, $\lim_{x\to 0} |\operatorname{sgn}(x)| = 1$.
- $\lim_{\substack{x \to a \\ x \to a}} f(x) = 0$ 的充分必要条件是 $\lim_{\substack{x \to a \\ x \to a}} |f(x)| = 0$. 证明: $|f(x)| 0| < \epsilon \Leftrightarrow ||f(x)|| 0| < \epsilon$.

• 若极限 $\lim_{x\to a} f(x)$ 存在,则有 $\lim_{x\to a} |f(x)|$ 存在,且 $\lim_{x\to a} |f(x)| = |\lim_{x\to a} f(x)|$.

证明: 若设 $\lim_{x\to a} f(x) = I$. 对任意的 $\epsilon > 0$, 存在 $\delta > 0$, 当0 <

$$|x-a|<\delta$$
时, $|f(x)-I|<\epsilon$,则有 $||f(x)|-|I||<\epsilon$.

- 例: $\lim_{x\to 0} \operatorname{sgn}(x)$ 不存在, $\lim_{x\to 0} |\operatorname{sgn}(x)| = 1$.
- $\lim_{x \to a} f(x) = 0$ 的充分必要条件是 $\lim_{x \to a} |f(x)| = 0$. 证明: $|f(x) - 0| \le \epsilon \Leftrightarrow ||f(x)| - 0| \le \epsilon$.

• $\lim_{x \to a} \sqrt{x} = \sqrt{a} \ (a > 0), \lim_{x \to 0+0} \sqrt{x} = 0.$

$$|\sqrt{x} - \sqrt{a}| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}} \le \frac{|x - a|}{\sqrt{a}}$$

取 $\delta = \max\{\sqrt{a}\epsilon, a\}$, 则有当 $0 < |x-a| < \delta$ 时, $|\sqrt{x} - \sqrt{a}| < \epsilon$. 对于第二个极限, $\sqrt{x} < \epsilon \Leftrightarrow x < \epsilon^2$,取 $\delta = \epsilon^2$,则有当 $0 < x < \delta$ 时, $|\sqrt{x} - | < \epsilon$.

• $\lim_{x \to a} \sqrt{x} = \sqrt{a} \ (a > 0), \lim_{x \to 0+0} \sqrt{x} = 0.$ 证明: a > 0时,

$$|\sqrt{x}-\sqrt{a}|=\frac{|x-a|}{\sqrt{x}+\sqrt{a}}\leq \frac{|x-a|}{\sqrt{a}}.$$

取 $\delta = \max\{\sqrt{a\epsilon}, a\}$, 则有当 $0 < |x-a| < \delta$ 时, $|\sqrt{x} - \sqrt{a}| < \epsilon$. 对于第二个极限, $\sqrt{x} < \epsilon \Leftrightarrow x < \epsilon^2$, 取 $\delta = \epsilon^2$, 则有当 $0 < x < \delta$ 时, $|\sqrt{x} - | < \epsilon$.

• $\lim_{x \to a} \sqrt{x} = \sqrt{a} \ (a > 0)$, $\lim_{x \to 0+0} \sqrt{x} = 0$. 证明: a > 0时,

$$|\sqrt{x}-\sqrt{a}|=\frac{|x-a|}{\sqrt{x}+\sqrt{a}}\leq \frac{|x-a|}{\sqrt{a}}.$$

取 $\delta = \max\{\sqrt{a}\epsilon, a\}$, 则有当 $0 < |x-a| < \delta$ 时, $|\sqrt{x} - \sqrt{a}| < \epsilon$. 对于第二个极限, $\sqrt{x} < \epsilon \Leftrightarrow x < \epsilon^2$, 取 $\delta = \epsilon^2$, 则有当 $0 < x < \delta$ 时, $|\sqrt{x} - | < \epsilon$.

• $\lim_{x \to a} \sin(x) = \sin(a)$, $\lim_{x \to a} \cos(x) = \cos(a)$.

证明: 对任意的 $\epsilon>0$, 要使 $|\sin(x)-\sin(a)|<\epsilon$, 即 $|2\sin\frac{x-a}{2}\cos\frac{x+a}{2}|<\epsilon$, 只要 $|\sin\frac{x-a}{2}|<\frac{\epsilon}{2}$. 取 $\delta=\epsilon$, $|x-a|<\delta$ 时, $|\sin\frac{x-a}{2}|\leq \frac{|x-a|}{2}<\frac{\epsilon}{2}$.

• $\lim_{\substack{x \to x_0 \\ \text{证明:}}} a^x = a^{x_0}.$ 证明: 设a > 1. 要使 $|a^x - a^{x_0}| < \epsilon$, $\mathbb{P}|a^{x-x_0} - 1| < a^{-x_0}\epsilon$,

$$1 - a^{-x_0} \epsilon < a^{x - x_0} < 1 + a^{-x_0} \epsilon \Leftrightarrow \log_a (1 - a^{-x_0} \epsilon) < x - x_0 < \log_a (1 + a^{-x_0} \epsilon)$$
取 $\delta = \min\{|\log_a (1 - a^{-x_0} \epsilon)|, \log_a (1 + a^{-x_0} \epsilon)\}$ 即

- $\lim_{x \to a} \sin(x) = \sin(a)$, $\lim_{x \to a} \cos(x) = \cos(a)$. 证明: 对任意的 $\epsilon > 0$, 要使 $|\sin(x) \sin(a)| < \epsilon$, 即 $|2\sin\frac{x-a}{2}\cos\frac{x+a}{2}| < \epsilon$, 只要 $|\sin\frac{x-a}{2}| < \frac{\epsilon}{2}$. 取 $\delta = \epsilon$, $|x-a| < \delta$ 时, $|\sin\frac{x-a}{2}| \leq \frac{|x-a|}{2} < \frac{\epsilon}{2}$.
- $\lim_{x \to x_0} a^x = a^{x_0}$. 证明: 设a > 1. 要使 $|a^x - a^{x_0}| < \epsilon$, 即 $|a^{x-x_0} - 1| < a^{-x_0}\epsilon$,

$$1-a^{-x_0}\epsilon < a^{x-x_0} < 1+a^{-x_0}\epsilon \Leftrightarrow \log_a(1-a^{-x_0}\epsilon) < x-x_0 < \log_a(1+a^{-x_0}\epsilon)$$
 取 $\delta = \min\{|\log_a(1-a^{-x_0}\epsilon)|, \log_a(1+a^{-x_0}\epsilon)\}$ 即

- $\lim_{x \to a} \sin(x) = \sin(a)$, $\lim_{x \to a} \cos(x) = \cos(a)$. 证明: 对任意的 $\epsilon > 0$, 要使 $|\sin(x) \sin(a)| < \epsilon$, 即 $|2\sin\frac{x-a}{2}\cos\frac{x+a}{2}| < \epsilon$, 只要 $|\sin\frac{x-a}{2}| < \frac{\epsilon}{2}$. 取 $\delta = \epsilon$, $|x-a| < \delta$ 时, $|\sin\frac{x-a}{2}| \leq \frac{|x-a|}{2} < \frac{\epsilon}{2}$.
- $\lim_{x \to x_0} a^x = a^{x_0}$. 证明: 设a > 1. 要使 $|a^x - a^{x_0}| <$ 即 $|a^{x-x_0} - 1| < a^{-x_0}\epsilon$,

$$1 - a^{-x_0} \epsilon < a^{x - x_0} < 1 + a^{-x_0} \epsilon \Leftrightarrow \log_a (1 - a^{-x_0} \epsilon) < x - x_0 < \log_a (1 + a^{-x_0} \epsilon)$$
取 $\delta = \min\{|\log_a (1 - a^{-x_0} \epsilon)|, \log_a (1 + a^{-x_0} \epsilon)\}$ 即

- $\lim_{x \to a} \sin(x) = \sin(a)$, $\lim_{x \to a} \cos(x) = \cos(a)$. 证明: 对任意的 $\epsilon > 0$, 要使 $|\sin(x) \sin(a)| < \epsilon$, 即 $|2\sin\frac{x-a}{2}\cos\frac{x+a}{2}| < \epsilon$, 只要 $|\sin\frac{x-a}{2}| < \frac{\epsilon}{2}$. 取 $\delta = \epsilon$, $|x-a| < \delta$ 时, $|\sin\frac{x-a}{2}| \leq \frac{|x-a|}{2} < \frac{\epsilon}{2}$.
- $\lim_{\substack{x \to x_0 \\ x \to x_0}} a^x = a^{x_0}.$ 证明: 设a > 1. 要使 $|a^x - a^{x_0}| < \epsilon$, $\mathbb{P}|a^{x-x_0} - 1| < a^{-x_0}\epsilon$,

$$|\sin \theta| \le |\theta|$$

$$1-a^{-x_0}\epsilon < a^{x-x_0} < 1+a^{-x_0}\epsilon \Leftrightarrow \log_a(1-a^{-x_0}\epsilon) < x-x_0 < \log_a(1+a^{-x_0}\epsilon)$$
 取 $\delta = \min\{|\log_a(1-a^{-x_0}\epsilon)|,\log_a(1+a^{-x_0}\epsilon)\}$ 即可.

- 定理: 设f(x), g(x), h(x)在a的某个空心邻域(a-r, a) \cup (a, a+r)上有定义, 且 $h(x) \leq f(x) \leq g(x)$. 若 $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = I$, 则有 $\lim_{x \to a} f(x) = I$.
 - 证明: 对任意 $\epsilon > 0$, 存在 $\delta > 0$, $0 < |x a| < \delta$ 时, $1 \epsilon < h(x) \le f(x) \le g(x) < 1 + \epsilon$.
- 推论: $0 \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = 0$, 则有 $\lim_{x \to a} f(x) = 0$.
- 注:对单边极限, 也有类似的夹逼定理成立.
- 例: $\lim_{x \to a} x \sin \frac{1}{x} = 0$. 证明: $0 \le |x \sin \frac{1}{x}| \le |x| \to 0$

• 定理: 设f(x), g(x), h(x)在a的某个空心邻域(a-r, a) \cup (a, a+r)上有定义, 且 $h(x) \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = I$, 则有 $\lim_{x \to a} f(x) = I$.

证明:对任意 $\epsilon > 0$,存在 $\delta > 0$,0 $< |x - a| < \delta$ 时, $I - \epsilon < h(x) \le f(x) \le g(x) < I + \epsilon$.

- 推论: $0 \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = 0$, 则有 $\lim_{x \to a} f(x) = 0$.
- 注:对单边极限, 也有类似的夹逼定理成立.
- 例: $\lim_{x \to a} x \sin \frac{1}{x} = 0$. 证明: $0 \le |x \sin \frac{1}{x}| \le |x| \to 0$

• 定理: 设f(x), g(x), h(x)在a的某个空心邻域(a-r, a) \cup (a, a+r)上有定义, 且 $h(x) \leq f(x) \leq g(x)$. 若 $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = I$, 则有 $\lim_{x \to a} f(x) = I$.

证明:对任意 $\epsilon > 0$,存在 $\delta > 0$, $0 < |x - a| < \delta$ 时, $I - \epsilon < h(x) \le f(x) \le g(x) < I + \epsilon$.

- 推论: $0 \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = 0$, 则有 $\lim_{x \to a} f(x) = 0$.
- 注:对单边极限,也有类似的夹逼定理成立.
- 例: $\lim_{x \to a} x \sin \frac{1}{x} = 0$. 证明: $0 \le |x \sin \frac{1}{x}| \le |x| \to 0$

• 定理: 设f(x), g(x), h(x)在a的某个空心邻域(a-r, a) \cup (a, a+r)上有定义, 且 $h(x) \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = I$, 则有 $\lim_{x \to a} f(x) = I$.

证明:对任意 $\epsilon > 0$,存在 $\delta > 0$,0 < $|x - a| < \delta$ 时, $I - \epsilon < h(x) \le f(x) \le g(x) < I + \epsilon$.

- 推论: $0 \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = 0$, 则有 $\lim_{x \to a} f(x) = 0$.
- 注:对单边极限, 也有类似的夹逼定理成立.
- 例: $\lim_{x \to a} x \sin \frac{1}{x} = 0$. 证明: $0 \le |x \sin \frac{1}{x}| \le |x| \to 0$

• 定理: 设f(x), g(x), h(x)在a的某个空心邻域(a-r, a) \cup (a, a+r)上有定义, 且 $h(x) \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = I$, 则有 $\lim_{x \to a} f(x) = I$.

证明:对任意 $\epsilon > 0$,存在 $\delta > 0$,0 < $|x-a| < \delta$ 时, $I - \epsilon < h(x) \le f(x) \le g(x) < I + \epsilon$.

- 推论: $0 \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = 0$, 则有 $\lim_{x \to a} f(x) = 0$.
- 注:对单边极限,也有类似的夹逼定理成立.
- \mathfrak{H} : $\lim_{x\to a} x \sin\frac{1}{x} = 0$.

证明: $0 \le |x \sin \frac{1}{x}| \le |x| \to 0$

• 定理: 设f(x), g(x), h(x)在a的某个空心邻域(a-r, a) \cup (a, a+r)上有定义, 且 $h(x) \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = I$, 则有 $\lim_{x \to a} f(x) = I$.

证明: 对任意 $\epsilon > 0$, 存在 $\delta > 0$, $0 < |x - a| < \delta$ 时, $I - \epsilon < h(x) \le f(x) \le g(x) < I + \epsilon$.

- 推论: $0 \le f(x) \le g(x)$. 若 $\lim_{x \to a} g(x) = 0$, 则有 $\lim_{x \to a} f(x) = 0$.
- 注:对单边极限,也有类似的夹逼定理成立.
- 例: $\lim_{x \to a} x \sin \frac{1}{x} = 0$. 证明: $0 \le |x \sin \frac{1}{x}| \le |x| \to 0$.

一个重要极限

• 一个重要极限: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

证明:由几何意义可以看出,当0 < $x < \frac{\pi}{2}$ 时, $\sin x < x < \tan x$,从而对当0 < $|x| < \frac{\pi}{2}$ 时,

$$\cos x < \frac{\sin x}{x} < 1$$

由 $\lim_{x\to 0} \cos(x) = 1$ 及夹逼定理即得.

一个重要极限

• $- \uparrow \Rightarrow \chi \in \lim_{x \to 0} \frac{\sin x}{x} = 1.$

证明:由几何意义可以看出,当0 < $x < \frac{\pi}{2}$ 时, $\sin x < x < \tan x$,从而对当0 < $|x| < \frac{\pi}{2}$ 时,

$$\cos x < \frac{\sin x}{x} < 1,$$

由 $\lim_{x\to 0} \cos(x) = 1$ 及夹逼定理即得.

函数极限的四则运算

设f(x), g(x)在a的某个空心邻域 $(a-r,a)\cup(a,a+r)$ 上有定义. 若 $\lim_{x\to a}f(x)=I_1$, $\lim_{x\to a}g(x)=I_2$,

- $\bullet \lim_{x\to a} (f(x)\pm g(x)) = I_1\pm I_2.$
- $l_2 \neq 0$ 时, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$. 证明: $l_2 \neq 0$,存在 $\delta_1 > 0$,使得 $0 < |x x_0| < \delta_1$ 时, $|g(x)| > \frac{l_2}{2}$,

$$\left| \frac{f(x)}{g(x)} - \frac{l_1}{l_2} \right| = \frac{|(f(x) - l_1)l_2 - l_1(g(x) - l_2)|}{|g(x)|l_2}$$

$$\leq \frac{2}{|l_2|} |(f(x) - l_1)| + \frac{2|l_1|}{|l_2|^2} |g(x) - l_2|$$

函数极限的四则运算

设f(x), g(x)在a的某个空心邻域 $(a-r,a)\cup(a,a+r)$ 上有定义. 若 $\lim_{x\to a}f(x)=I_1$, $\lim_{x\to a}g(x)=I_2$,

- $\lim_{x \to a} (f(x) \pm g(x)) = l_1 \pm l_2$.
- $\bullet \lim_{x \to a} (f(x) \cdot g(x)) = I_1 \cdot I_2.$
- $l_2 \neq 0$ 时, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$. 证明: $l_2 \neq 0$,存在 $\delta_1 > 0$,使得 $0 < |x x_0| < \delta_1$ 时, $|g(x)| > \frac{l_2}{2}$,

$$\left| \frac{f(x)}{g(x)} - \frac{l_1}{l_2} \right| = \frac{|(f(x) - l_1)l_2 - l_1(g(x) - l_2)|}{|g(x)|l_2}$$

$$\leq \frac{2}{|l_2|} |(f(x) - l_1)| + \frac{2|l_1|}{|l_2|^2} |g(x) - l_2|$$

函数极限的四则运算

设f(x), g(x)在a的某个空心邻域 $(a-r,a)\cup(a,a+r)$ 上有定义. 若 $\lim_{x\to a}f(x)=I_1$, $\lim_{x\to a}g(x)=I_2$,

- $\lim_{x \to a} (f(x) \pm g(x)) = l_1 \pm l_2.$
- $\bullet \lim_{x \to a} (f(x) \cdot g(x)) = I_1 \cdot I_2.$
- $l_2 \neq 0$ $\exists t$, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$.

证明: $l_2 \neq 0$, 存在 $\delta_1 > 0$, 使得 $0 < |x - x_0| < \delta_1$ 时, $|g(x)| > \frac{l_2}{2}$,

$$\left| \frac{f(x)}{g(x)} - \frac{l_1}{l_2} \right| = \frac{|(f(x) - l_1)l_2 - l_1(g(x) - l_2)|}{|g(x)|l_2}$$

$$\leq \frac{2}{|l_2|} |(f(x) - l_1)| + \frac{2|l_1|}{|l_2|^2} |g(x) - l_2|$$

函数极限的四则运算

设f(x), g(x)在a的某个空心邻域(a-r,a) \cup (a,a+r)上有定义. 若 $\lim_{x\to a} f(x) = I_1$, $\lim_{x\to a} g(x) = I_2$,

- $\bullet \lim_{x\to a} (f(x)\pm g(x)) = l_1\pm l_2.$
- $l_2 \neq 0$ 时, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$. 证明: $l_2 \neq 0$,存在 $l_1 > 0$,使得 $l_2 < |x - x_0| < l_2$,时, $|g(x)| > \frac{l_2}{2}$,

$$\left| \frac{f(x)}{g(x)} - \frac{l_1}{l_2} \right| = \frac{|(f(x) - l_1)l_2 - l_1(g(x) - l_2)|}{|g(x)|l_2}$$

$$\leq \frac{2}{|l_2|} |(f(x) - l_1)| + \frac{2|l_1|}{|l_2|^2} |g(x) - l_2|$$

• 例: 求 $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x+\sin x}$.

$$\widehat{\mathsf{H}}:\ \frac{\sqrt{1+x-1}}{x+\sin x} = \frac{x}{(\sqrt{1+x}+1)(x+\sin x)} = \frac{1}{(\sqrt{1+x}+1)(1+\frac{\sin x}{x})} \to \frac{1}{4}.$$

$$\frac{\sin 5x - \tan 3x}{2x} = \frac{\sin 5x}{5x} \cdot \frac{5}{2} - \frac{\tan 3x}{3x} \cdot \frac{3}{2} \to 1$$

• 例: 求 $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x+\sin x}$.

解:
$$\frac{\sqrt{1+x}-1}{x+\sin x} = \frac{x}{(\sqrt{1+x}+1)(x+\sin x)} = \frac{1}{(\sqrt{1+x}+1)(1+\frac{\sin x}{x})} \to \frac{1}{4}$$
.

• $\lim_{x \to 0} \frac{\sin 5x - \tan 3x}{2x}$.

Example 1. Example 2.

$$\frac{\sin 5x - \tan 3x}{2x} = \frac{\sin 5x}{5x} \cdot \frac{5}{2} - \frac{\tan 3x}{3x} \cdot \frac{3}{2} \to 1$$

• 例: 求 $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x+\sin x}$.

解:
$$\frac{\sqrt{1+x}-1}{x+\sin x} = \frac{x}{(\sqrt{1+x}+1)(x+\sin x)} = \frac{1}{(\sqrt{1+x}+1)(1+\frac{\sin x}{x})} \to \frac{1}{4}$$
.

• $xightarrow \lim_{x \to 0} \frac{\sin 5x - \tan 3x}{2x}$.

解:

$$\frac{\sin 5x - \tan 3x}{2x} = \frac{\sin 5x}{5x} \cdot \frac{5}{2} - \frac{\tan 3x}{3x} \cdot \frac{3}{2} \to 1$$

• 例: 求 $\lim_{\substack{x \to 0 \ x + \sin x}} \frac{\sqrt{1+x}-1}{x+\sin x}$. 解: $\frac{\sqrt{1+x}-1}{x+\sin x} = \frac{x}{(\sqrt{1+x}+1)(x+\sin x)} = \frac{1}{(\sqrt{1+x}+1)(1+\frac{\sin x}{x})} \to \frac{1}{4}$.

• $\lim_{x\to 0} \frac{\sin 5x - \tan 3x}{2x}$. \Re :

$$\frac{\sin 5x - \tan 3x}{2x} = \frac{\sin 5x}{5x} \cdot \frac{5}{2} - \frac{\tan 3x}{3x} \cdot \frac{3}{2} \to 1$$

极限不等式

- 定理:设f(x),g(x)在a的某个空心邻域上有定义, $\lim_{\substack{x \to a \\ x \to a}} f(x) = I_1$, $\lim_{\substack{x \to a \\ x \to a}} g(x) = I_2$, $I_1 > I_2$.则存在 $\delta > 0$,使得当 $0 < |x a| < \delta$ 时,f(x) > g(x).
- 推论: 若 $\lim_{x\to a} f(x) = I > 0$, 则存在 $\delta > 0$, 当 $0 < |x-a| < \delta$ 时, f(x) > 0.
- 定理: 设f(x), g(x)在a的某个空心邻域上有定义,且在这个空心邻域上有 $f(x) \ge g(x)$. 若极限 $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ 存在,则有 $\lim_{x \to a} f(x) \ge \lim_{x \to a} g(x)$.

极限不等式

- 定理:设f(x),g(x)在a的某个空心邻域上有定义, $\lim_{\substack{x \to a \\ x \to a}} f(x) = I_1$, $\lim_{\substack{x \to a \\ x \to a}} g(x) = I_2$, $I_1 > I_2$.则存在 $\delta > 0$,使得当 $0 < |x a| < \delta$ 时,f(x) > g(x).
- 推论: 若 $\lim_{\substack{x \to a \\ \delta \mapsto 1}} f(x) = 1 > 0$, 则存在 $\delta > 0$, 当 $0 < |x a| < \delta$ 时, f(x) > 0.
- 定理: 设f(x), g(x)在a的某个空心邻域上有定义,且在这个空心邻域上有 $f(x) \ge g(x)$. 若极限 $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ 存在,则有 $\lim_{x \to a} f(x) \ge \lim_{x \to a} g(x)$.

极限不等式

- 定理:设f(x),g(x)在a的某个空心邻域上有定义, $\lim_{\substack{x \to a \\ x \to a}} f(x) = I_1$, $\lim_{\substack{x \to a \\ x \to a}} g(x) = I_2$, $I_1 > I_2$.则存在 $\delta > 0$,使得当 $0 < |x a| < \delta$ 时,f(x) > g(x).
- 推论: 若 $\lim_{x\to a} f(x) = I > 0$, 则存在 $\delta > 0$, 当 $0 < |x-a| < \delta$ 时, f(x) > 0.
- 定理: 设f(x), g(x)在a的某个空心邻域上有定义,且在这个空心邻域上有 $f(x) \geq g(x)$. 若极限 $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ 存在,则有 $\lim_{x \to a} f(x) \geq \lim_{x \to a} g(x)$.

- 设f(x), g(x)在a的某个空心邻域上有定义, 且 $\lim_{x\to a} f(x) = I$. 若 $\{x_n\}$ 是在该空心邻域内取值的序列, 且 $\lim_{n\to\infty} x_n = a$, 则有 $\lim_{n\to\infty} f(x_n) = I$.
 - 证明: 由 $\lim_{x\to a} f(x) = I$,对任意 $\epsilon > 0$,存在 $\delta > 0$,使得当 $0 < |x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 由于 $\lim_{n\to\infty} x_n = a$,且 $x_n \neq a$,存在N,n > N时, $0 < |x_n a| < \delta$,从而 $|f(x_n) I| < \epsilon$.
- 注: 若对任意的 $x_n \to a$, 有 $f(x_n) \to I$, 则有 $\lim_{x \to a} f(x) = I$.
- 若 $f(x) = |\operatorname{sgn}(x)|, x_n \equiv 0 \to 0$,但 $\lim_{n \to \infty} f(x_n) = 0 \neq \lim_{x \to 0} f(x) = 1$. 若取 $x_n = \frac{1}{n} \sin \frac{n\pi}{2}$, $\lim_{n \to \infty} f(x_n)$ 不存在.

- 设f(x), g(x)在a的某个空心邻域上有定义, 且 $\lim_{x\to a} f(x) = I$. 若 $\{x_n\}$ 是在该空心邻域内取值的序列, 且 $\lim_{n\to\infty} x_n = a$, 则 有 $\lim_{n\to\infty} f(x_n) = I$.
 - 证明: 由 $\lim_{x \to a} f(x) = I$, 对任意 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $0 < |x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 由于 $\lim_{n \to \infty} x_n = a$, 且 $x_n \neq a$, 存在N, n > N时, $0 < |x_n a| < \delta$, 从而 $|f(x_n) I| < \epsilon$.
- 注: 若对任意的 $x_n \to a$, 有 $f(x_n) \to I$, 则有 $\lim_{x \to a} f(x) = I$.
- 若 $f(x) = |\operatorname{sgn}(x)|, x_n \equiv 0 \to 0$,但 $\lim_{n \to \infty} f(x_n) = 0 \neq \lim_{x \to 0} f(x) = 1$. 若取 $x_n = \frac{1}{n} \sin \frac{n\pi}{2}$, $\lim_{x \to 0} f(x_n)$ 不存在.

- 设f(x), g(x)在a的某个空心邻域上有定义, 且 $\lim_{x\to a} f(x) = I$. 若 $\{x_n\}$ 是在该空心邻域内取值的序列, 且 $\lim_{n\to\infty} x_n = a$, 则有 $\lim_{n\to\infty} f(x_n) = I$.
 - 证明: 由 $\lim_{x \to a} f(x) = I$,对任意 $\epsilon > 0$,存在 $\delta > 0$,使得当 $0 < |x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 由于 $\lim_{n \to \infty} x_n = a$,且 $x_n \neq a$,存在N, n > N时, $0 < |x_n a| < \delta$,从而 $|f(x_n) I| < \epsilon$.
- 注:若对任意的 $x_n \to a$,有 $f(x_n) \to I$,则有 $\lim_{x \to a} f(x) = I$.
- 若 $f(x) = |\operatorname{sgn}(x)|, x_n \equiv 0 \to 0$,但 $\lim_{n \to \infty} f(x_n) = 0 \neq \lim_{x \to 0} f(x) = 1$. 若取 $x_n = \frac{1}{n} \sin \frac{n\pi}{2}$, $\lim_{x \to \infty} f(x_n)$ 不存在.

- 设f(x), g(x)在a的某个空心邻域上有定义, 且 $\lim_{x\to a} f(x) = I$. 若 $\{x_n\}$ 是在该空心邻域内取值的序列, 且 $\lim_{n\to\infty} x_n = a$, 则有 $\lim_{n\to\infty} f(x_n) = I$.
 - 证明: 由 $\lim_{x\to a} f(x) = I$, 对任意 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $0 < |x-a| < \delta$ 时, $|f(x)-I| < \epsilon$. 由于 $\lim_{n\to\infty} x_n = a$, 且 $x_n \neq a$, 存在N, n > N时, $0 < |x_n a| < \delta$, 从而 $|f(x_n) I| < \epsilon$.
- 注:若对任意的 $x_n \to a$,有 $f(x_n) \to I$,则有 $\lim_{x \to a} f(x) = I$.
- 若 $f(x) = |\operatorname{sgn}(x)|, x_n \equiv 0 \to 0$,但 $\lim_{n \to \infty} f(x_n) = 0 \neq \lim_{x \to 0} f(x) = 1$.若取 $x_n = \frac{1}{n} \sin \frac{n\pi}{2}, \lim_{n \to \infty} f(x_n)$ 不存在.

- 推论: 若存在 $x_n \to a$, $x'_n \to a$, 且 x_n , x'_n 都不取a, 极限 $\lim_{n \to \infty} f(x_n)$ 和 $\lim_{n \to \infty} f(x'_n)$ 都存在但不相等,则 $\lim_{x \to a} f(x)$ 不存在.
- 例: $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在, $x_n = \frac{1}{2n\pi}$, $x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$, $\lim_{n\to \infty} f(x_n) = 0$ $\lim_{n\to \infty} f(x_n') = 1$, 从而 $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在.
- 例: $f(x) = \chi_{\mathbb{Q}}$, 对任意a, 极限 $\lim_{x \to a} f(x)$ 不存在.

- 推论: 若存在 $x_n \to a$, $x'_n \to a$, $\mathbb{E}[x_n, x'_n]$ 都不取a,极限 $\lim_{n \to \infty} f(x_n)$ 和 $\lim_{n \to \infty} f(x'_n)$ 都存在但不相等,则 $\lim_{x \to a} f(x)$ 不存在.
- 例: $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在, $x_n = \frac{1}{2n\pi}$, $x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$, $\lim_{n\to \infty} f(x_n) = 0$ $\lim_{n\to \infty} f(x_n') = 1$,从而 $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在.
- 例: f(x) = XQ, 对任意a, 极限 lim _{x→a} f(x)不存在.

- 推论: 若存在 $x_n \to a$, $x'_n \to a$, $\mathbb{E}[x_n, x'_n]$ 都不取a,极限 $\lim_{n \to \infty} f(x_n)$ 和 $\lim_{n \to \infty} f(x'_n)$ 都存在但不相等,则 $\lim_{x \to a} f(x)$ 不存在.
- 例: $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在, $x_n = \frac{1}{2n\pi}$, $x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$, $\lim_{n\to \infty} f(x_n) = 0$ $\lim_{n\to \infty} f(x_n') = 1$,从而 $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在.

• 例: $f(x) = \chi_{\mathbb{Q}}$, 对任意a, 极限 $\lim_{x \to a} f(x)$ 不存在.

- 推论: 若存在 $x_n \to a$, $x'_n \to a$, $\exists x_n, x'_n$ 都不取a, 极限 $\lim_{n \to \infty} f(x_n)$ 和 $\lim_{n \to \infty} f(x'_n)$ 都存在但不相等,则 $\lim_{x \to a} f(x)$ 不存在.
- 例: $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在, $x_n = \frac{1}{2n\pi}$, $x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$, $\lim_{n\to \infty} f(x_n) = 0$ $\lim_{n\to \infty} f(x_n') = 1$,从而 $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在.
- 例: $f(x) = \chi_{\mathbb{Q}}$, 对任意a, 极限 $\lim_{x \to a} f(x)$ 不存在.
- \emptyset $\lim_{n\to\infty} n \sin \frac{1}{n} = 1$

• $\lim_{x \to +\infty} f(x) = I$: 存在a, f(x)在 $(a, +\infty)$ 上有定义. 对任意 $\epsilon > 0$, 存在M > a, 使得当x > M时, $|f(x) - I| < \epsilon$, 则称 $x \to +\infty$ 时,f(x)以I为极限,记为 $\lim_{x \to +\infty} f(x) = I$.

• $\lim_{\substack{x \to -\infty \\ 0, \text{ } \neq \epsilon}} f(x) = I$: 存在a, f(x)在 $(-\infty, a)$ 上有定义. 对任意 $\epsilon > 0$, 存在M < a, 使得当x < M时, $|f(x) - I| < \epsilon$, 则称 $x \to -\infty$ 时,f(x)以I为极限,记为 $\lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x) = I$.

• $\lim_{x \to +\infty} f(x) = I$: 存在a, f(x)在 $(a, +\infty)$ 上有定义. 对任意 $\epsilon > 0$, 存在M > a, 使得当x > M时, $|f(x) - I| < \epsilon$, 则称 $x \to +\infty$ 时,f(x)以I为极限,记为 $\lim_{x \to +\infty} f(x) = I$.

• $\lim_{\substack{x \to -\infty \\ 0, \text{ } \neq \epsilon}} f(x) = I$: 存在a, f(x)在 $(-\infty, a)$ 上有定义. 对任意 $\epsilon > 0$, 存在M < a, 使得当x < M时, $|f(x) - I| < \epsilon$, 则称 $x \to -\infty$ 时,f(x)以I为极限,记为 $\lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x) = I$.

• $\lim_{\substack{x \to \infty \\ x \to \infty}} f(x) = I$: 存在a > 0, f(x)在 $\{x : |x| > a\}$ 上有定义. 对任意 $\epsilon > 0$, 存在M > a, 使得当|x| > M时, $|f(x) - I| < \epsilon$, 则称 $x \to \infty$ 时,f(x)以I为极限,记为 $\lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x) = I$.

- $\lim_{\substack{x \to a \\ \delta \mapsto f}} f(x) = +\infty$: 对任意M, 存在 $\delta > 0$, 使得当 $0 < |x a| < \delta$ 时,f(x) > M,则称 $x \to a$ 时,f(x)趋向于 $+\infty$. (此时极限不存在)
- $\lim_{x \to a} f(x) = \infty$: 对任意M, 存在 $\delta > 0$, 使得当 $0 < |x a| < \delta$ 时, |f(x)| > M, 则称 $x \to a$ 时, f(x)趋向于 ∞ .
- $\lim_{x \to +\infty} f(x) = +\infty$: 对任意M, 存在A > 0, 使得当x > A时,f(x) > M, 则称 $x \to +\infty$ 时,f(x)趋向于 $+\infty$.
- 类似可定义 $\lim_{x \to a} f(x) = -\infty$, $\lim_{x \to a \pm 0} f(x) = \pm \infty$, $\lim_{x \to a \pm 0} f(x) = \infty$. $\lim_{x \to +\infty} f(x) = \infty$, $\lim_{x \to +\infty} f(x) = \infty$, $\lim_{x \to \infty} f(x) = \infty$, ...

- $\lim_{\substack{x \to a \\ \delta}} f(x) = +\infty$: 对任意M, 存在 $\delta > 0$, 使得当 $0 < |x a| < \delta$ 时,f(x) > M,则称 $x \to a$ 时,f(x)趋向于 $+\infty$. (此时极限不存在)
- $\lim_{\substack{x \to a \\ \delta \mapsto 1}} f(x) = \infty$: 对任意M, 存在 $\delta > 0$, 使得当 $0 < |x a| < \delta \mapsto$, |f(x)| > M, 则称 $x \to a \mapsto$, f(x)趋向于 ∞ .
- $\lim_{\substack{x \to +\infty \\ f(x) > M, \, \text{则称}x \to +\infty \text{ H}}} f(x) = +\infty$: 对任意M, 存在A > 0, 使得当x > AH,
- 类似可定义 $\lim_{x\to a} f(x) = -\infty$, $\lim_{x\to a\pm 0} f(x) = \pm \infty$, $\lim_{x\to a\pm 0} f(x) = \infty$. $\lim_{x\to +\infty} f(x) = \infty$, $\lim_{x\to \infty} f(x) = \pm \infty$, $\lim_{x\to \infty} f(x) = \infty$, ...

- $\lim_{\substack{x \to a \\ \delta}} f(x) = +\infty$: 对任意M, 存在 $\delta > 0$, 使得当 $0 < |x a| < \delta$ 时,f(x) > M,则称 $x \to a$ 时,f(x)趋向于 $+\infty$. (此时极限不存在)
- lim_{x→a} f(x) = ∞: 对任意M, 存在δ > 0, 使得当0 < |x a| < δ时, |f(x)| > M, 则称x → a时, f(x)趋向于∞.
- $\lim_{x \to +\infty} f(x) = +\infty$: 对任意M, 存在A > 0, 使得当x > A时,f(x) > M, 则称 $x \to +\infty$ 时,f(x)趋向于 $+\infty$.
- 类似可定义 $\lim_{x\to a} f(x) = -\infty$, $\lim_{x\to a\pm 0} f(x) = \pm \infty$, $\lim_{x\to a\pm 0} f(x) = \infty$. $\lim_{x\to +\infty} f(x) = \infty$, $\lim_{x\to +\infty} f(x) = \infty$, $\lim_{x\to \infty} f(x) = \infty$, ...

- $\lim_{\substack{x \to a \\ \delta \mapsto f}} f(x) = +\infty$: 对任意M, 存在 $\delta > 0$, 使得当 $0 < |x a| < \delta$ 时,f(x) > M,则称 $x \to a$ 时,f(x)趋向于 $+\infty$. (此时极限不存在)
- $\lim_{\substack{x \to a \\ \delta \mapsto 1}} f(x) = \infty$: 对任意M, 存在 $\delta > 0$, 使得当 $0 < |x a| < \delta \mapsto$, |f(x)| > M, 则称 $x \to a \mapsto$, f(x)趋向于 ∞ .
- $\lim_{\substack{x \to +\infty \\ f(x) > M, \ \text{则称} x \to +\infty}} f(x) = +\infty$: 对任意M, 存在A > 0, 使得当x > A时,f(x) 趋向于 $+\infty$.
- 类似可定义 $\lim_{x\to a} f(x) = -\infty$, $\lim_{x\to a\pm 0} f(x) = \pm \infty$, $\lim_{x\to a\pm 0} f(x) = \infty$. $\lim_{x\to +\infty} f(x) = \infty$, $\lim_{x\to \infty} f(x) = \pm \infty$, $\lim_{x\to \infty} f(x) = \infty$,

- $\bullet \lim_{x\to 0+0} \frac{1}{x} = +\infty.$
- $\bullet \lim_{x \to 0-0} \frac{1}{x} = -\infty.$
- $\bullet \lim_{x \to 0 \pm 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x\to 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x \to \pm \infty} \frac{1}{x} = 0.$

- $\bullet \lim_{x \to 0+0} \frac{1}{x} = +\infty.$
- $\bullet \lim_{x \to 0-0} \frac{1}{x} = -\infty.$
- $\bullet \lim_{x\to 0\pm 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x\to 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x \to \pm \infty} \frac{1}{x} = 0.$
- $\bullet \lim_{x\to\infty} \frac{1}{x} = 0.$

- $\bullet \lim_{x \to 0+0} \frac{1}{x} = +\infty.$
- $\bullet \lim_{x \to 0-0} \frac{1}{x} = -\infty.$
- $\bullet \lim_{x\to 0\pm 0} \tfrac{1}{x} = \infty.$
- $\bullet \lim_{x\to 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x \to \pm \infty} \frac{1}{x} = 0.$
- $\bullet \lim_{x\to\infty} \frac{1}{x} = 0.$

- $\bullet \lim_{x \to 0+0} \frac{1}{x} = +\infty.$
- $\bullet \lim_{x \to 0-0} \frac{1}{x} = -\infty.$
- $\bullet \lim_{x\to 0\pm 0} \tfrac{1}{x} = \infty.$
- $\bullet \lim_{x\to 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x \to \pm \infty} \frac{1}{x} = 0.$

- $\bullet \lim_{x \to 0+0} \frac{1}{x} = +\infty.$
- $\bullet \lim_{x \to 0-0} \frac{1}{x} = -\infty.$
- $\bullet \lim_{x\to 0\pm 0} \tfrac{1}{x} = \infty.$
- $\bullet \lim_{x\to 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x \to \pm \infty} \frac{1}{x} = 0.$
- $\bullet \lim_{x\to\infty} \frac{1}{x} = 0.$

- $\bullet \lim_{x \to 0+0} \frac{1}{x} = +\infty.$
- $\bullet \lim_{x \to 0-0} \frac{1}{x} = -\infty.$
- $\bullet \lim_{x\to 0\pm 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x\to 0} \frac{1}{x} = \infty.$
- $\bullet \lim_{x\to\pm\infty} \tfrac{1}{x} = 0.$
- $\bullet \lim_{x\to\infty} \frac{1}{x} = 0.$

- $x \to \pm \infty$ 或 ∞ 时, 相应的夹逼定理,四则运算定理, 函数极限与序列极限的关系均成立.
- $\lim_{x \to \infty} f(x) = I \Leftrightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = I$,这里/可以是有限或无穷.
- $\lim_{x \to a} f(x) = \infty \Leftrightarrow \lim_{x \to a} |f(x)| = +\infty$, 这里a可以是有限或无穷.
- $\bullet \lim_{x \to \pm \infty} f(x) = \lim_{x \to 0 \pm 0} f(\frac{1}{x}), \lim_{x \to \infty} f(x) = \lim_{x \to 0} f(\frac{1}{x}).$

- $x \to \pm \infty$ 或 ∞ 时, 相应的夹逼定理,四则运算定理, 函数极限与序列极限的关系均成立.
- $\lim_{x \to \infty} f(x) = I \Leftrightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = I$, 这里/可以是有限或无穷.
- $\lim_{x \to a} f(x) = \infty \Leftrightarrow \lim_{x \to a} |f(x)| = +\infty$, 这里a可以是有限或无穷.
- $\bullet \lim_{x \to \pm \infty} f(x) = \lim_{x \to 0 \pm 0} f(\frac{1}{x}), \lim_{x \to \infty} f(x) = \lim_{x \to 0} f(\frac{1}{x}).$

- $x \to \pm \infty$ 或∞时, 相应的夹逼定理,四则运算定理, 函数极限 与序列极限的关系均成立.
- $\lim_{x \to \infty} f(x) = I \Leftrightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = I$,这里I可以是 有限或无穷.
- $\lim_{x \to a} f(x) = \infty \Leftrightarrow \lim_{x \to a} |f(x)| = +\infty$, 这里a可以是有限或无 穷.
- $\lim_{x \to +\infty} f(x) = \lim_{x \to 0+0} f(\frac{1}{x}), \lim_{x \to \infty} f(x) = \lim_{x \to 0} f(\frac{1}{x}).$

- $x \to \pm \infty$ 或 ∞ 时, 相应的夹逼定理,四则运算定理, 函数极限与序列极限的关系均成立.
- $\lim_{x \to \infty} f(x) = I \Leftrightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = I$, 这里/可以是有限或无穷.
- $\lim_{\substack{x \to a \\ \widehat{S}}} f(x) = \infty \Leftrightarrow \lim_{\substack{x \to a \\ }} |f(x)| = +\infty$, 这里a可以是有限或无
- $\bullet \lim_{x \to \pm \infty} f(x) = \lim_{x \to 0 \pm 0} f(\frac{1}{x}), \lim_{x \to \infty} f(x) = \lim_{x \to 0} f(\frac{1}{x}).$

无穷大量

- 定义: 若 $\lim_{\substack{x \to a \ x \to a}} f(x) = \pm \infty$, 则称 $x \to a$ 时,f(x)为正(负) 无穷大量;若 $\lim_{\substack{x \to a \ x \to a}} f(x) = \infty$, 则称 $x \to a$ 时,f(x)为无穷大量。(这里a可以是有限或无穷)
- 类似可定义序列的无穷大量: $\ddot{a} \lim_{n \to \infty} f(x) = \pm \infty$, 则称 a_n 为 正(负)无穷大量; $\ddot{a} \lim_{n \to \infty} f(x) = \infty$, 则称 a_n 为无穷大量.
- 注: 无穷大量是变量, 不是一个数.

无穷大量

- 定义: 若 $\lim_{\substack{x \to a \\ x \to a}} f(x) = \pm \infty$, 则称 $x \to a$ 时,f(x)为正(负) 无穷大量;若 $\lim_{\substack{x \to a \\ x \to a}} f(x) = \infty$, 则称 $x \to a$ 时,f(x)为无穷大量. (这里a可以是有限或无穷)
- 类似可定义序列的无穷大量: 若 $\lim_{n\to\infty} f(x) = \pm \infty$, 则称 a_n 为 正(负)无穷大量; 若 $\lim_{n\to\infty} f(x) = \infty$, 则称 a_n 为无穷大量.
- 注: 无穷大量是变量, 不是一个数.

无穷大量

- 定义: 若 $\lim_{\substack{x \to a \ x \to a}} f(x) = \pm \infty$, 则称 $x \to a$ 时,f(x)为正(负) 无穷大量;若 $\lim_{\substack{x \to a \ x \to a}} f(x) = \infty$, 则称 $x \to a$ 时,f(x)为无穷大量. (这里a可以是有限或无穷)
- 类似可定义序列的无穷大量: 若 $\lim_{n\to\infty} f(x) = \pm \infty$, 则称 a_n 为 正(负)无穷大量; 若 $\lim_{n\to\infty} f(x) = \infty$, 则称 a_n 为无穷大量.
- 注: 无穷大量是变量, 不是一个数.

• 设 $x_0 \in (a,b), y_0 \in (c,d), f(x): (a,b) \setminus \{x_0\} \to (c,d) \setminus \{y_0\}, \lim_{x \to x_0} f(x) = y_0. g(y): (c,d) \setminus \{y_0\} \to \mathbb{R}, \lim_{y \to y_0} g(x) = I. 则 有 \lim_{x \to x_0} g(f(x)) = I.$ 证明: 由于 $\lim_{y \to y_0} g(x) = I$,对任意 $\epsilon > 0$,存在 δ_1 ,使得 $\delta_1 = 0$ $\delta_2 = 0$ $\delta_3 = 0$ $\delta_3 = 0$ $\delta_4 = 0$ $\delta_3 = 0$ $\delta_3 = 0$ $\delta_4 = 0$ $\delta_3 = 0$ $\delta_4 = 0$ $\delta_3 = 0$ $\delta_4 = 0$ $\delta_5 = 0$ $\delta_5 = 0$ $\delta_5 = 0$ $\delta_6 = 0$

• 设 $x_0 \in (a,b), y_0 \in (c,d), f(x) : (a,b) \setminus \{x_0\} \rightarrow (c,d) \setminus \{y_0\}, \lim_{x \to x_0} f(x) = y_0. g(y) : (c,d) \setminus \{y_0\} \rightarrow \mathbb{R}, \lim_{y \to y_0} g(x) = I. 则有 \lim_{x \to x_0} g(f(x)) = I. 证明: 由于 \lim_{y \to y_0} g(x) = I, 对任意 \epsilon > 0, 存在 \delta_1, 使得当 0 < |y - y_0| < \delta_1 时, |g(y) - g(y_0)| < \epsilon. 有由 \lim_{x \to x_0} f(x) = y_0 \mathcal{R}f(x) \neq y_0, 存在 \delta < r, 使得当 0 < |x - x_0| < \delta 时 0 < |f(x) - f(x_0)| < \delta. 因此当 0 < |x - x_0| < \delta 时 1 |g(f(x)) - I)| < \epsilon.$

- 注:上面定理中,g(y)在 y_0 处可以没有定义.即使g(y)在 y_0 处有定义,由于 $f(y_0)$ 与极限无关,f(x)也不能等于 y_0 .如 $g(y) = |sgn y|, <math>f(x) = x \sin \frac{1}{x}$, 取 $x_0 = y_0 = 0$.
- 注: $a, y_0 = \pm \infty, \infty$, 或 $I = \pm \infty, \infty$ 时,也有类似的结论成立. 如:若g(y) = f(x)的复合g(f(x))在 x_0 的 $(a, +\infty)$ 上有定义, $若\lim_{x \to x_0} f(x) = +\infty$, $\lim_{y \to +\infty} g(x) = I$, 则有 $\lim_{x \to x_0} g(f(x)) = I$.

- 注:上面定理中,g(y)在 y_0 处可以没有定义.即使g(y)在 y_0 处有定义,由于 $f(y_0)$ 与极限无关,f(x)也不能等于 y_0 .如 $g(y) = |sgn y|, <math>f(x) = x \sin \frac{1}{x}$, 取 $x_0 = y_0 = 0$.
- 注: $a, y_0 = \pm \infty, \infty$, 或 $I = \pm \infty, \infty$ 时,也有类似的结论成立. 如: 若g(y)与f(x)的复合g(f(x))在 x_0 的 $(a, +\infty)$ 上有定义,若 $\lim_{x \to x_0} f(x) = +\infty$, $\lim_{y \to +\infty} g(x) = I$, 则有 $\lim_{x \to x_0} g(f(x)) = I$.

例子1

 $\bullet \lim_{x \to +\infty} e^{-x} = 0.$

•
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e.$$
if \mathbb{H} :
$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n+1})^n = e. \ x \to +\infty \, \mathbb{H},$$

$$(1 + \frac{1}{x})^x \le (1 + \frac{1}{[x]})^{[x]+1}, \qquad (1 + \frac{1}{x})^x \ge (1 + \frac{1}{[x]+1})^{[x]}$$

$$x \to -\infty \, \mathbb{H}, \quad (1 + \frac{1}{x})^x = (1 + \frac{1}{-x-1})^{-x-1}(1 + \frac{1}{-x-1}) \to e.$$

$$\bullet \lim_{x \to +\infty} e^{-x} = 0.$$

•
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e.$$

• $\lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n+1})^n = e. \ x \to +\infty \text{ bf},$

$$(1 + \frac{1}{x})^x \le (1 + \frac{1}{[x]})^{[x]+1}, \qquad (1 + \frac{1}{x})^x \ge (1 + \frac{1}{[x]+1})^{[x]}$$

$$x \to -\infty \text{ bf}, \quad (1 + \frac{1}{x})^x = (1 + \frac{1}{-x-1})^{-x-1}(1 + \frac{1}{-x-1}) \to e.$$

$$\lim_{x \to +\infty} e^{-x} = 0.$$

•
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e.$$

• $\lim_{x \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n+1})^n = e.$ $x \to +\infty$ Ft,

$$(1 + \frac{1}{x})^x \le (1 + \frac{1}{[x]})^{[x]+1}, \qquad (1 + \frac{1}{x})^x \ge (1 + \frac{1}{[x]+1})^{[x]},$$
 $x \to -\infty$ Ft, $(1 + \frac{1}{x})^x = (1 + \frac{1}{-x-1})^{-x-1}(1 + \frac{1}{-x-1}) \to e.$

•
$$\lim_{x\to 0} (1+kx)^{\frac{1}{x}} = \lim_{y\to 0} (1+y)^{\frac{k}{y}} = e^k$$
.

 $\lim_{x \to +\infty} \frac{x}{e^x} = 0.$

证明:
$$\lim_{n \to +\infty} \frac{n}{e^n} = 0$$
. $\frac{x}{e^x} \le \frac{[x]+1}{e^{[x]}} = \le \frac{[x]}{e^{[x]}} + \frac{1}{e^{[x]}} \to 0$

$$\bullet \lim_{x \to +\infty} x^{\frac{1}{x}} = 1.$$

证明:
$$\lim_{n \to +\infty} n^{\frac{1}{n}} = 1$$
. $1 \le x^{\frac{1}{x}} \le ([x] + 1)^{\frac{2}{[x]+1}} \to 1$

- $\lim_{x\to 0} (1+kx)^{\frac{1}{x}} = \lim_{y\to 0} (1+y)^{\frac{k}{y}} = e^k$.
- $\bullet \lim_{x \to +\infty} \frac{x}{e^x} = 0.$

证明:
$$\lim_{n \to +\infty} \frac{n}{e^n} = 0$$
. $\frac{x}{e^x} \le \frac{[x]+1}{e^{[x]}} = \le \frac{[x]}{e^{[x]}} + \frac{1}{e^{[x]}} \to 0$

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = 1.$$

证明:
$$\lim_{n \to +\infty} n^{\frac{1}{n}} = 1$$
. $1 \le x^{\frac{1}{x}} \le ([x] + 1)^{\frac{2}{[x] + 1}} \to 1$

•
$$\lim_{x \to 0} (1 + kx)^{\frac{1}{x}} = \lim_{y \to 0} (1 + y)^{\frac{k}{y}} = e^{k}$$
.

 $\bullet \lim_{x \to +\infty} \frac{x}{e^x} = 0.$

证明:
$$\lim_{n \to +\infty} \frac{n}{e^n} = 0$$
. $\frac{x}{e^x} \le \frac{[x]+1}{e^{[x]}} = \le \frac{[x]}{e^{[x]}} + \frac{1}{e^{[x]}} \to 0$.

 $\bullet \lim_{x \to +\infty} x^{\frac{1}{x}} = 1.$

证明:
$$\lim_{n \to +\infty} n^{\frac{1}{n}} = 1$$
. $1 \le x^{\frac{1}{\kappa}} \le ([x] + 1)^{\frac{2}{|x|+1}} \to 1$

•
$$\lim_{x \to 0} (1 + kx)^{\frac{1}{x}} = \lim_{y \to 0} (1 + y)^{\frac{k}{y}} = e^{k}$$
.

证明:
$$\lim_{n \to +\infty} \frac{n}{e^n} = 0$$
. $\frac{x}{e^x} \le \frac{[x]+1}{e^{[x]}} = \le \frac{[x]}{e^{[x]}} + \frac{1}{e^{[x]}} \to 0$.

 $\bullet \lim_{x \to +\infty} x^{\frac{1}{x}} = 1.$

证明:
$$\lim_{n \to +\infty} n^{\frac{1}{n}} = 1$$
. $1 \le x^{\frac{1}{x}} \le ([x] + 1)^{\frac{2}{|x|+1}} \to 1$

- $\lim_{x \to 0} (1 + kx)^{\frac{1}{x}} = \lim_{y \to 0} (1 + y)^{\frac{k}{y}} = e^{k}$.
- $\bullet \lim_{x \to +\infty} \frac{x}{e^x} = 0.$

证明:
$$\lim_{n \to +\infty} \frac{n}{e^n} = 0$$
. $\frac{x}{e^x} \le \frac{[x]+1}{e^{[x]}} = \le \frac{[x]}{e^{[x]}} + \frac{1}{e^{[x]}} \to 0$.

 $\bullet \lim_{x \to +\infty} x^{\frac{1}{x}} = 1.$

证明:
$$\lim_{n \to +\infty} n^{\frac{1}{n}} = 1$$
. $1 \le x^{\frac{1}{x}} \le ([x] + 1)^{\frac{2}{[x]+1}} \to 1$.

- 定义: y = f(x)在 x_0 附近有定义,若 $\lim_{x \to x_0} f(x) = f(x_0)$,则 称f(x)在 x_0 处连续⇔ 对任意 $\epsilon > 0$,存在 $\delta > 0$,当 $|x x_0| < \delta$ 时, $|f(x) f(x_0)| < \epsilon$.
- 定义: y = f(x)在(a,b)上有定义, 若f(x)在(a,b)上上处处连续, 则称y = f(x)在(a,b)上连续.
- 注:连续是一个局部概念,每点处的连续性只与该点附近的 取值有关.

- 定义: y = f(x)在 x_0 附近有定义,若 $\lim_{x \to x_0} f(x) = f(x_0)$,则 称f(x)在 x_0 处连续⇔ 对任意 $\epsilon > 0$,存在 $\delta > 0$,当 $|x x_0| < \delta$ 时, $|f(x) f(x_0)| < \epsilon$.
- 定义: y = f(x)在(a,b)上有定义,若f(x)在(a,b)上上处处连续,则称y = f(x)在(a,b)上连续.
- 注:连续是一个局部概念,每点处的连续性只与该点附近的 取值有关.

- 定义: y = f(x)在 x_0 附近有定义,若 $\lim_{x \to x_0} f(x) = f(x_0)$,则 称f(x)在 x_0 处连续⇔ 对任意 $\epsilon > 0$,存在 $\delta > 0$,当 $|x x_0| < \delta$ 时, $|f(x) f(x_0)| < \epsilon$.
- 定义: y = f(x)在(a,b)上有定义,若f(x)在(a,b)上上处处 连续,则称y = f(x)在(a,b)上连续.
- 注:连续是一个局部概念,每点处的连续性只与该点附近的 取值有关.

- 定义: y = f(x)在[x_0 , b]上有定义,若 $\lim_{x \to x_0 + 0} f(x) = f(x_0)$, 则称f(x)在 x_0 处右连续. 类似可定义左连续.
- 定义: y = f(x)在[a,b]上有定义,若f(x)在(a,b)上上处处连续,而且在a点右连续,在b点左连续,则称y = f(x)在[a,b]上连续.

- 定义: y = f(x)在[x_0 , b]上有定义,若 $\lim_{x \to x_0 + 0} f(x) = f(x_0)$, 则称f(x)在 x_0 处右连续. 类似可定义左连续.
- 定义: y = f(x)在[a,b]上有定义,若f(x)在(a,b)上上处处连续,而且在a点右连续,在b点左连续,则称y = f(x)在[a,b]上连续.

- 定义: y = f(x)在[x_0 , b]上有定义,若 $\lim_{x \to x_0 + 0} f(x) = f(x_0)$, 则称f(x)在 x_0 处右连续. 类似可定义左连续.
- 定义: y = f(x)在[a,b]上有定义,若f(x)在(a,b)上上处处连续,而且在a点右连续,在b点左连续,则称y = f(x)在[a,b]上连续.

例子

•
$$f(x) = xD(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$
. 0是唯一的连续点.

- sin x, cos x, xⁿ是ℝ上的连续函数.
- \sqrt{x} 是[0,+ ∞)上的连续函数, $\sqrt{x(1-x)}$ 是[0,1]上的连续函数.
- sgn x 在ℝ上有唯一的间断点0.

例子

- $f(x) = xD(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. 0是唯一的连续点.
- sin x, cos x, xⁿ是ℝ上的连续函数.
- \sqrt{x} 是[0,+ ∞)上的连续函数, $\sqrt{x(1-x)}$ 是[0,1]上的连续函数.
- sgn x 在ℝ上有唯一的间断点0.

- $f(x) = xD(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. 0是唯一的连续点.
- sin x, cos x, xⁿ是ℝ上的连续函数.
- \sqrt{x} 是[0,+ ∞)上的连续函数, $\sqrt{x(1-x)}$ 是[0,1]上的连续函数.
- sgn x 在ℝ上有唯一的间断点0.

- $f(x) = xD(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. 0是唯一的连续点.
- sin x, cos x, xⁿ是ℝ上的连续函数.
- \sqrt{x} 是[0,+ ∞)上的连续函数, $\sqrt{x(1-x)}$ 是[0,1]上的连续函数.
- sgn x 在ℝ上有唯一的间断点0.

连续的四则运算

- 定理: 设f(x)和g(x)在 x_0 处连续,则有f(x)±g(x), f(x)g(x), $\frac{f(x)}{g(x)}(g(x_0) \neq 0)$ 在 x_0 处连续.
- 注:对于左(右)连续,区间上连续的相应四则运算定理也成立.
- 例: $y = \tan x$, $\cot x$ 在各自定义域内连续. $f(x) = \begin{cases} 1, & x = 0 \\ \frac{\sin x}{x}, & x \neq 0 \end{cases}$ 在 \mathbb{R} 上连续.

连续的四则运算

- 定理: 设f(x)和g(x)在 x_0 处连续,则有f(x)±g(x), f(x)g(x), $\frac{f(x)}{g(x)}(g(x_0) \neq 0)$ 在 x_0 处连续.
- 注:对于左(右)连续,区间上连续的相应四则运算定理也成立.
- 例: $y = \tan x$, $\cot x$ 在各自定义域内连续. $f(x) = \begin{cases} 1, & x = 0 \\ \frac{\sin x}{x}, & x \neq 0 \end{cases}$ 在R上连续.

连续的四则运算

- 定理: 设f(x)和g(x)在 x_0 处连续,则有f(x)±g(x), f(x)g(x), $\frac{f(x)}{g(x)}(g(x_0) \neq 0)$ 在 x_0 处连续.
- 注:对于左(右)连续,区间上连续的相应四则运算定理也成立.
- 例: $y = \tan x$, $\cot x$ 在各自定义域内连续. $f(x) = \begin{cases} 1, & x = 0 \\ \frac{\sin x}{x}, & x \neq 0 \end{cases}$ 在 \mathbb{R} 上连续.

- 定理: 设 $f(x):(a,b)\to(c,d)$ 在 x_0 处连续, $g(y):(c,d)\to\mathbb{R}$ 在 $y_0=f(x_0)$ 处连续,则复合函数 $g\circ f$ 在 x_0 处连续.
 - 证明:由于g(y)在 y_0 处连续,对任意的 $\epsilon > 0$,存在 $\delta_1 > 0$,使得当 $|y-y_0| < \delta_1$ 时, $|g(y)-g(y_0)| < \epsilon$.又由于f(x)在 x_0 处连续,存在 $\delta > 0$,使得当 $|x-x_0| < \delta$ 时, $|f(x)-f(x_0)| < \delta_1$,从而有 $|g(f(x))-g(f(x_0))| < \epsilon$.
- - 例: $f(x) = x^2$, $g(y) = \sqrt{y}$, $g \circ f = |x|$ 在 \mathbb{R} 上连续.
- 注: 若f(x): [a,b) → (c,d)在x = a处右连续, g(y): (c,d) →
 ℝ. 在y₀ = f(a) ∈ (c,d) 处连续, 则复合函数g ∘ f在a处右连续.

- 定理: 设f(x): $(a,b) \to (c,d)$ 在 x_0 处连续,g(y): $(c,d) \to \mathbb{R}$ 在 $y_0 = f(x_0)$ 处连续,则复合函数 $g \circ f$ 在 x_0 处连续. 证明: 由于g(y)在 y_0 处连续,对任意的 $\epsilon > 0$,存在 $\delta_1 > 0$,使得当 $|y-y_0| < \delta_1$ 时, $|g(y)-g(y_0)| < \epsilon$.又由于f(x)在 x_0 处连续,存在 $\delta > 0$,使得当 $|x-x_0| < \delta$ 时, $|f(x)-f(x_0)| < \delta_1$,从而有 $|g(f(x))-g(f(x_0))| < \epsilon$.
- - 例: $f(x) = x^2$, $g(y) = \sqrt{y}$, $g \circ f = |x|$ 在 \mathbb{R} 上连续.
- 注: 若f(x): [a,b) → (c,d)在x = a处右连续, g(y): (c,d) →
 ℝ. 在y₀ = f(a) ∈ (c,d) 处连续, 则复合函数g ∘ f在a处右连续.

- 定理: 设f(x): $(a,b) \to (c,d)$ 在 x_0 处连续,g(y): $(c,d) \to \mathbb{R}$ 在 $y_0 = f(x_0)$ 处连续,则复合函数 $g \circ f$ 在 x_0 处连续. 证明: 由于g(y)在 y_0 处连续,对任意的 $\epsilon > 0$,存在 $\delta_1 > 0$,使得当 $|y-y_0| < \delta_1$ 时, $|g(y)-g(y_0)| < \epsilon$.又由于f(x)在 x_0 处连续,存在 $\delta > 0$,使得当 $|x-x_0| < \delta$ 时, $|f(x)-f(x_0)| < \delta_1$,从而有 $|g(f(x))-g(f(x_0))| < \epsilon$.
- 注: 若f(x): (a,b) → [c,d)在x₀处连续, g(y): [c,d) → ℝ.
 若x₀ ∈ (a,b), c = f(x₀). 若f(x)在x₀处连续, g(y)在c处右连续, 则复合函数g∘f在x₀处连续.
 - 例: $f(x) = x^2$, $g(y) = \sqrt{y}$, $g \circ f = |x|$ 在 \mathbb{R} 上连续.
- 注: 若f(x): [a,b) → (c,d)在x = a处右连续, g(y): (c,d) →
 ℝ. 在y₀ = f(a) ∈ (c,d) 处连续, 则复合函数g ∘ f在a处右连续.

- 定理: 设f(x): $(a,b) \to (c,d)$ 在 x_0 处连续,g(y): $(c,d) \to \mathbb{R}$ 在 $y_0 = f(x_0)$ 处连续,则复合函数 $g \circ f$ 在 x_0 处连续. 证明: 由于g(y)在 y_0 处连续,对任意的 $\epsilon > 0$,存在 $\delta_1 > 0$,使得当 $|y-y_0| < \delta_1$ 时, $|g(y)-g(y_0)| < \epsilon$.又由于f(x)在 x_0 处连续,存在 $\delta > 0$,使得当 $|x-x_0| < \delta$ 时, $|f(x)-f(x_0)| < \delta_1$,从而有 $|g(f(x))-g(f(x_0))| < \epsilon$.
- - 例: $f(x) = x^2$, $g(y) = \sqrt{y}$, $g \circ f = |x|$ 在 \mathbb{R} 上连续.
- 注: 若f(x): [a,b) → (c,d)在x = a处右连续, g(y): (c,d) →
 ℝ. 在y₀ = f(a) ∈ (c,d) 处连续, 则复合函数g∘f在a处右连续.

- 定理: 设f(x): $(a,b) \to (c,d)$ 在 x_0 处连续,g(y): $(c,d) \to \mathbb{R}$ 在 $y_0 = f(x_0)$ 处连续,则复合函数 $g \circ f$ 在 x_0 处连续。证明: 由于g(y)在 y_0 处连续,对任意的 $\epsilon > 0$,存在 $\delta_1 > 0$,使得当 $|y-y_0| < \delta_1$ 时, $|g(y)-g(y_0)| < \epsilon$.又由于f(x)在 x_0 处连续,存在 $\delta > 0$,使得当 $|x-x_0| < \delta$ 时, $|f(x)-f(x_0)| < \delta_1$,从而有 $|g(f(x))-g(f(x_0))| < \epsilon$.
- - 例: $f(x) = x^2$, $g(y) = \sqrt{y}$, $g \circ f = |x|$ 在 \mathbb{R} 上连续.

• 定理: 设 $x_0 \in (a,b)$, f(x): $(a,b)\setminus\{x_0\} \to (c,d)$, g(y): $(c,d) \to \mathbb{R}$. 若 $\lim_{x \to x_0} f(x) = y_0$, 而g(y)在 y_0 处连续,则有 $\lim_{x \to x_0} g \circ f(x) = g(y_0)$. 证明: 由于g(y)在 y_0 处连续,对任意 的 $\epsilon > 0$, 存在 $\delta_1 > 0$, 使得当 $|y-y_0| < \delta_1$ 时, $|g(y)-g(y_0)| < \epsilon$. 又由于 $\lim_{x \to x_0} f(x) = y_0$,存在 $\delta > 0$, 使得当 $0 < |x-x_0| < \delta$ 时, $|f(x)-y_0| < \delta_1$,从而有 $|g(f(x))-g(y_0)| < \epsilon$.

• 定理: 设 $x_0 \in (a,b)$, f(x): $(a,b)\setminus\{x_0\} \to (c,d)$, g(y): $(c,d) \to \mathbb{R}$. 若 $\lim_{x \to x_0} f(x) = y_0$, 而g(y)在 y_0 处连续,则有 $\lim_{x \to x_0} g \circ f(x) = g(y_0)$. 证明: 由于g(y)在 y_0 处连续,对任意 的 $\epsilon > 0$, 存在 $\delta_1 > 0$, 使得当 $|y-y_0| < \delta_1$ 时, $|g(y)-g(y_0)| < \epsilon$. 又由于 $\lim_{x \to x_0} f(x) = y_0$,存在 $\delta > 0$,使得当 $0 < |x-x_0| < \delta$ 时, $|f(x)-y_0| < \delta_1$,从而有 $|g(f(x))-g(y_0)| < \epsilon$.

- $\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln e = 1.$
- $I = \lim_{x \to 0} \frac{x}{e^{x} 1}$, 作变换 $x = \ln t$, 得到

$$I = \lim_{t \to 1} \frac{\ln t}{t - 1} = \lim_{s \to 0} \frac{\ln(s + 1)}{s} = 1$$

•
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln e = 1.$$

•
$$I = \lim_{x \to 0} \frac{x}{e^x - 1}$$
, 作变换 $x = \ln t$, 得到

$$I = \lim_{t \to 1} \frac{\ln t}{t - 1} = \lim_{s \to 0} \frac{\ln(s + 1)}{s} = 1.$$

- 定理: 设 $f(x):(a,b)\to(c,d)$ 是一一满射,并且是严格单调函数.则f是(a,b)上连续函数,且 f^{-1} 是(c,d)上的连续函数.
- 注:上面定理中a,c可以取 $-\infty$,b,d可以取 $+\infty$.
- 注:定理中开区间换成闭区间时,结论也成立.

- 定理: 设 $f(x):(a,b)\to(c,d)$ 是一一满射,并且是严格单调函数.则f是(a,b)上连续函数,且 f^{-1} 是(c,d)上的连续函数.
- 注:上面定理中a,c可以取 $-\infty$,b,d可以取 $+\infty$.
- 注:定理中开区间换成闭区间时,结论也成立.

- 定理:设 $f(x):(a,b)\to(c,d)$ 是一一满射,并且是严格单调函数.则f是(a,b)上连续函数,且 f^{-1} 是(c,d)上的连续函数.
- 注:上面定理中a,c可以取 $-\infty$,b,d可以取 $+\infty$.
- 注:定理中开区间换成闭区间时,结论也成立.

 定理证明:不妨设f是严格增函数.对任意xn∈(a,b), 设 $y_0 = f(x_0)$. 对任意的 $\epsilon > 0$, 不 妨设 $\epsilon < \min\{v_0 - c, d - v_0\}$. 则 有 $c < v_0 - \epsilon < v_0 < v_0 + \epsilon < d$. $\Rightarrow x_1 = f^{-1}(y_0 - \epsilon), x_2 = f^{-1}(y_0 + \epsilon)$ ϵ), $\delta = \min(x_2 - x_0, x_0 - x_1)$, \emptyset 当 $|x - x_0| < \delta$ 时, $x_1 < x < x_2$, 即得 $y_0 - \epsilon < f(x) < y_0 + \epsilon, f(x)$ exp 在x0 处连续. f^{-1} 和f满足同样的条 件,故同样连续,

 $x_0 x_2$

- ullet $\cos x:[0,\pi]
 ightarrow [-1,1]$, $\arccos[-1,1]
 ightarrow [0,\pi]$.
- $\sin x : [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$, $\arcsin[-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$.
- $x^a : [0, +\infty) \to [0, +\infty)$.
- $1 \neq a > 0$, $a^x : (-\infty, +\infty) \rightarrow (0, +\infty)$, $\log_a : (0, +\infty) \rightarrow (-\infty, +\infty)$.
- $\tan x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, +\infty\right)$, $\arctan: \left(-\infty, +\infty\right) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\cot x : (0, \pi) \to (-\infty, +\infty)$, $\arctan : (-\infty, +\infty) \to (0, \pi)$.
- 所有基本初等函数在其定义域上连续,从而所有初等函数在 其定义域上连续.

- $\cos x : [0, \pi] \to [-1, 1]$, $\arccos[-1, 1] \to [0, \pi]$.
- $\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \left[-1, 1 \right]$, $\arcsin[-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
- $x^a : [0, +\infty) \to [0, +\infty)$.
- $1 \neq a > 0$, $a^x : (-\infty, +\infty) \rightarrow (0, +\infty)$, $\log_a : (0, +\infty) \rightarrow (-\infty, +\infty)$.
- $\tan x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, +\infty\right)$, $\arctan: \left(-\infty, +\infty\right) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\cot x : (0, \pi) \to (-\infty, +\infty)$, $\arctan : (-\infty, +\infty) \to (0, \pi)$.
- 所有基本初等函数在其定义域上连续,从而所有初等函数在 其定义域上连续.

- ullet $\cos x:[0,\pi]
 ightarrow [-1,1]$, $\arccos[-1,1]
 ightarrow [0,\pi]$.
- $\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \left[-1, 1 \right]$, $\arcsin[-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
- $x^a: [0, +\infty) \to [0, +\infty)$.
- $1 \neq a > 0$, $a^x : (-\infty, +\infty) \rightarrow (0, +\infty)$, $\log_a : (0, +\infty) \rightarrow (-\infty, +\infty)$.
- $\tan x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, +\infty\right)$, $\arctan: \left(-\infty, +\infty\right) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\cot x : (0, \pi) \to (-\infty, +\infty)$, $\arctan : (-\infty, +\infty) \to (0, \pi)$.
- 所有基本初等函数在其定义域上连续,从而所有初等函数在 其定义域上连续.

- $\cos x : [0, \pi] \to [-1, 1]$, $\arccos[-1, 1] \to [0, \pi]$.
- $\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \left[-1, 1 \right]$, $\arcsin[-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
- $x^a: [0, +\infty) \to [0, +\infty)$.
- $1 \neq a > 0$, $a^x : (-\infty, +\infty) \rightarrow (0, +\infty)$, $\log_a : (0, +\infty) \rightarrow (-\infty, +\infty)$.
- $\tan x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, +\infty\right)$, $\arctan: \left(-\infty, +\infty\right) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\cot x : (0, \pi) \to (-\infty, +\infty)$, $\arctan : (-\infty, +\infty) \to (0, \pi)$.
- 所有基本初等函数在其定义域上连续,从而所有初等函数在 其定义域上连续.

- $\cos x : [0, \pi] \to [-1, 1]$, $\arccos[-1, 1] \to [0, \pi]$.
- $\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \left[-1, 1 \right]$, $\arcsin[-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
- $x^a: [0, +\infty) \to [0, +\infty)$.
- $1 \neq a > 0$, $a^x : (-\infty, +\infty) \rightarrow (0, +\infty)$, $\log_a : (0, +\infty) \rightarrow (-\infty, +\infty)$.
- $\tan x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, +\infty\right)$, $\arctan: \left(-\infty, +\infty\right) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\cot x : (0, \pi) \to (-\infty, +\infty)$, $\arctan : (-\infty, +\infty) \to (0, \pi)$.
- 所有基本初等函数在其定义域上连续,从而所有初等函数在 其定义域上连续.

- $\cos x : [0, \pi] \to [-1, 1]$, $\arccos[-1, 1] \to [0, \pi]$.
- $\sin x: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$, $\arcsin[-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- $x^a: [0, +\infty) \to [0, +\infty)$.
- $1 \neq a > 0$, $a^x : (-\infty, +\infty) \rightarrow (0, +\infty)$, $\log_a : (0, +\infty) \rightarrow (-\infty, +\infty)$.
- $\tan x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, +\infty\right)$, $\arctan: \left(-\infty, +\infty\right) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\cot x : (0,\pi) \to (-\infty,+\infty)$, $\arctan : (-\infty,+\infty) \to (0,\pi)$.
- 所有基本初等函数在其定义域上连续,从而所有初等函数在 其定义域上连续.

- $\cos x : [0, \pi] \to [-1, 1]$, $\arccos[-1, 1] \to [0, \pi]$.
- $\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \left[-1, 1 \right]$, $\arcsin[-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
- $x^a: [0, +\infty) \to [0, +\infty)$.
- $1 \neq a > 0$, $a^x : (-\infty, +\infty) \rightarrow (0, +\infty)$, $\log_a : (0, +\infty) \rightarrow (-\infty, +\infty)$.
- $\tan x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, +\infty\right)$, $\arctan: \left(-\infty, +\infty\right) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\cot x : (0,\pi) \to (-\infty,+\infty)$, $\arctan : (-\infty,+\infty) \to (0,\pi)$.
- 所有基本初等函数在其定义域上连续,从而所有初等函数在 其定义域上连续.

• $f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases} = \frac{\sqrt{x^2}}{x}$ 是初等函数,在定义域 $\mathbb{R}\setminus\{0\}$ 上 连续.

• 符号函数sgn f(x)= $\begin{cases} 1, & x>0 \\ 0, & x=0 \end{cases}$ 不是初等函数,有间断 $-1, & x<0 \end{cases}$

函数与极限

例子1

• $f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases} = \frac{\sqrt{x^2}}{x}$ 是初等函数,在定义域 $\mathbb{R} \setminus \{0\}$ 上连续.

• 符号函数sgn $f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \end{cases}$ 不是初等函数,有间断点0.

- 若极限 $\lim_{n\to\infty} a_n = a > 0$, $\lim_{n\to\infty} b_n = b$ 均存在,则有 $\lim_{n\to\infty} a_n^{b_n} = a^b$. 证明: $a_n^{b_n} = e^{b_n \ln a_n}$, $\lim_{n\to\infty} (b_n \ln a_n) = b \ln a$, 从而有 $\lim_{n\to\infty} a_n^{b_n} = e^{b \ln a} = a^b$.
- $\lim_{x \to 0+0} x^x = \lim_{x \to 0+0} e^{x \ln x} = 1$,
- $\bullet \lim_{x \to +\infty} x^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = 1, \lim_{x \to 0+0} x^{\frac{1}{x}} = \lim_{x \to 0+0} e^{\frac{\ln x}{x}} = 0,$

- 若极限 $\lim_{n\to\infty} a_n = a > 0$, $\lim_{n\to\infty} b_n = b$ 均存在,则有 $\lim_{n\to\infty} a_n^{b_n} = a^b$. 证明: $a_n^{b_n} = e^{b_n \ln a_n}$, $\lim_{n\to\infty} (b_n \ln a_n) = b \ln a$,从而有 $\lim_{n\to\infty} a_n^{b_n} = e^{b \ln a} = a^b$.
- $\lim_{x \to 0+0} x^x = \lim_{x \to 0+0} e^{x \ln x} = 1$,
- $\bullet \lim_{x \to +\infty} x^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = 1, \lim_{x \to 0+0} x^{\frac{1}{x}} = \lim_{x \to 0+0} e^{\frac{\ln x}{x}} = 0,$

例子2

- 若极限 $\lim_{n\to\infty} a_n = a > 0$, $\lim_{n\to\infty} b_n = b$ 均存在,则有 $\lim_{n\to\infty} a_n^{b_n} = a^b$. 证明: $a_n^{b_n} = e^{b_n \ln a_n}$, $\lim_{n\to\infty} (b_n \ln a_n) = b \ln a$, 从而有 $\lim_{n\to\infty} a_n^{b_n} = e^{b \ln a} = a^b$.
- $\lim_{x \to 0+0} x^x = \lim_{x \to 0+0} e^{x \ln x} = 1$,
- $\bullet \lim_{x \to +\infty} x^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = 1, \lim_{x \to 0+0} x^{\frac{1}{x}} = \lim_{x \to 0+0} e^{\frac{\ln x}{x}} = 0,$

- 若极限 $\lim_{n\to\infty} a_n = a > 0$, $\lim_{n\to\infty} b_n = b$ 均存在,则有 $\lim_{n\to\infty} a_n^{b_n} = a^b$. 证明: $a_n^{b_n} = e^{b_n \ln a_n}$, $\lim_{n\to\infty} (b_n \ln a_n) = b \ln a$, 从而有 $\lim_{n\to\infty} a_n^{b_n} = e^{b \ln a} = a^b$.
- $\lim_{x \to 0+0} x^x = \lim_{x \to 0+0} e^{x \ln x} = 1$,
- $\bullet \lim_{x \to +\infty} x^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = 1, \lim_{x \to 0+0} x^{\frac{1}{x}} = \lim_{x \to 0+0} e^{\frac{\ln x}{x}} = 0,$

- 间断点: f(x)在x0附近有定义, f(x)在x0点不连续, 则称x0是f的间断点
- x_0 是f的间断点 \Leftrightarrow 极限 $\lim_{x\to x_0} f(x)$ 不存在,或者极限存在但不等于 $f(x_0)$.
- 第一类间断点: 设 x_0 是f的间断点. 若 $\lim_{x \to x_0+0} f(x)$ 和 $\lim_{x \to x_0-0} f(x)$ 都 存在,则称 x_0 是f的第一类间断点.
- 第二类间断点: \overline{Z} $\lim_{x \to x_0 + 0} f(x)$ 和 $\lim_{x \to x_0 = 0} f(x)$ 至少有一个不存在,则称 x_0 是f的第二类间断点.

- 间断点: f(x)在x0附近有定义, f(x)在x0点不连续, 则称x0是f的间断点
- x_0 是f的间断点 \Leftrightarrow 极限 $\lim_{x\to x_0} f(x)$ 不存在,或者极限存在但不等于 $f(x_0)$.
- 第一类间断点: 设 x_0 是f的间断点. 若 $\lim_{x \to x_0+0} f(x)$ 和 $\lim_{x \to x_0-0} f(x)$ 都存在,则称 x_0 是f的第一类间断点.
- 第二类间断点: \overline{Z} $\lim_{x \to x_0 + 0} f(x)$ 和 $\lim_{x \to x_0 = 0} f(x)$ 至少有一个不存在,则称 x_0 是f的第二类间断点.

- 间断点: f(x)在x0附近有定义, f(x)在x0点不连续, 则称x0是f的间断点
- x_0 是f的间断点 \Leftrightarrow 极限 $\lim_{x\to x_0} f(x)$ 不存在,或者极限存在但不等于 $f(x_0)$.
- 第一类间断点: 设 x_0 是f的间断点. 若 $\lim_{x\to x_0+0} f(x)$ 和 $\lim_{x\to x_0-0} f(x)$ 都存在,则称 x_0 是f的第一类间断点.
- 第二类间断点: $\overline{X} \lim_{x \to x_0 + 0} f(x)$ 和 $\lim_{x \to x_0 = 0} f(x)$ 至少有一个不存在,则称 x_0 是f的第二类间断点.

- 间断点: f(x)在x0附近有定义, f(x)在x0点不连续, 则称x0是f的间断点
- x_0 是f的间断点 \Leftrightarrow 极限 $\lim_{x\to x_0} f(x)$ 不存在,或者极限存在但不等于 $f(x_0)$.
- 第一类间断点: 设 x_0 是f的间断点. 若 $\lim_{x\to x_0+0} f(x)$ 和 $\lim_{x\to x_0-0} f(x)$ 都存在,则称 x_0 是f的第一类间断点.
- 第二类间断点: 若 $\lim_{x\to x_0+0} f(x)$ 和 $\lim_{x\to x_0-0} f(x)$ 至少有一个不存在,则称 x_0 是f的第二类间断点.

- 注: 第一类间断点有两种,一是 $\lim_{x \to x_0+0} f(x) = \lim_{x \to x_0-0} f(x) \neq f(x_0)$,此时称 x_0 是f的可去间断点;另一种是 $\lim_{x \to x_0+0} f(x) \neq \lim_{x \to x_0-0} f(x)$.
- y = sgn x, x = 0 是第一类间断点.
- Dirichlet函数,所有点是第二类间断点.

•
$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 0是第二类间断点.

- 注: 第一类间断点有两种,一是 $\lim_{x \to x_0+0} f(x) = \lim_{x \to x_0-0} f(x) \neq f(x_0)$,此时称 x_0 是f的可去间断点;另一种是 $\lim_{x \to x_0+0} f(x) \neq \lim_{x \to x_0-0} f(x)$.
- y = sgn x, x = 0是第一类间断点.
- Dirichlet函数,所有点是第二类间断点.

•
$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 0是第二类间断点.

- 注: 第一类间断点有两种,一是 $\lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 0} f(x) \neq f(x_0)$,此时称 x_0 是f的可去间断点;另一种是 $\lim_{x \to x_0 + 0} f(x) \neq \lim_{x \to x_0 0} f(x)$.
- y = sgn x, x = 0是第一类间断点.
- Dirichlet函数,所有点是第二类间断点.

•
$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 0是第二类间断点.

- 注: 第一类间断点有两种,一是 $\lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 0} f(x) \neq f(x_0)$,此时称 x_0 是f的可去间断点;另一种是 $\lim_{x \to x_0 + 0} f(x) \neq \lim_{x \to x_0 0} f(x)$.
- y = sgn x, x = 0是第一类间断点.
- Dirichlet函数,所有点是第二类间断点.

•
$$f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 0 是第二类间断点.

介值定理

- 定理:设f(x)是闭区间[a,b]上的连续函数,则对于f(a)与f(b)之间的任意值 η (η 不等于f(a),f(b)),则存在 $\xi \in (a,b)$,使得 $f(\xi) = \eta$.
- 注:定理证明要用到实数的连续性,如可用区间套定理证明,每次去中点,构造递减闭区间套 $[a_n,b_n]$ 使得 $f(a_n)$ 和 $f(b_n)$ 一个大于 η ,一个小于 η . a_n , b_n 的极限满足条件.
- 推论: f(x)是闭区间[a,b]上的连续函数,则f(x)的的值域是一个区间.事实上任意区间上的连续函数的值域是一个区间

介值定理

- 定理: 设f(x)是闭区间[a,b]上的连续函数,则对于f(a)与f(b)之间的任意值 η (η 不等于f(a), f(b)),则存在 $\xi \in (a,b)$,使得 $f(\xi) = \eta$.
- 注:定理证明要用到实数的连续性,如可用区间套定理证明,每次去中点,构造递减闭区间套 $[a_n,b_n]$ 使得 $f(a_n)$ 和 $f(b_n)$ 一个大于 η ,一个小于 η . a_n,b_n 的极限满足条件.
- 推论: f(x)是闭区间[a,b]上的连续函数,则f(x)的的值域是一个区间。事实上任意区间上的连续函数的值域是一个区间

介值定理

- 定理: 设f(x)是闭区间[a,b]上的连续函数,则对于f(a)与f(b)之间的任意值 η (η 不等于f(a), f(b)) ,则存在 $\xi \in (a,b)$,使得 $f(\xi) = \eta$.
- 注:定理证明要用到实数的连续性,如可用区间套定理证明,每次去中点,构造递减闭区间套[a_n,b_n]使得f(a_n)和f(b_n)一个大于η,一个小于η. a_n,b_n的极限满足条件.
- 推论: f(x)是闭区间[a,b]上的连续函数,则f(x)的的值域是一个区间。事实上任意区间上的连续函数的值域是一个区间

介值定理的应用

- 推广:设f(x)是闭区间 $[a,+\infty)$ 上的连续函数, $\lim_{x\to+\infty} f(x) = B$ 存在,则对于f(a)与B之间的任意值 η (η 不等于f(a),B),存在 $\xi \in (a,+\infty)$,使得 $f(\xi) = \eta$.在 $(-\infty,b]$, $(-\infty,+\infty)$ 上也有类似推广.
- 例: $a_0 \neq 0$, $P(x) = a_0 x^5 + a_1 x^4 + \dots + a_5 = 0$ 至少有一个实根.

介值定理的应用

- 推广:设f(x)是闭区间 $[a,+\infty)$ 上的连续函数, $\lim_{x\to+\infty} f(x) = B$ 存在,则对于f(a)与B之间的任意值 η (η 不等于f(a),B),存在 $\xi \in (a,+\infty)$,使得 $f(\xi) = \eta$.在 $(-\infty,b]$, $(-\infty,+\infty)$ 上也有类似推广.
- 例: $a_0 \neq 0$, $P(x) = a_0 x^5 + a_1 x^4 + \dots + a_5 = 0$ 至少有一个实根.

- 定理:设f(x)是闭区间[a,b]上的连续函数,则f(x)在[a,b]上有最大值与最小值.即存在 x_1 和 x_2 使得对任意性 $x \in [a,b]$ 有 $f(x_1) \leq f(x) \leq f(x_2)$.
- 推论: f(x)是闭区间[a,b]上的连续函数,则f(x)的的值域是一个闭区间.
- 推论:设f(x)是闭区间[a,b]上的连续函数,则f(x)是[a,b]上的有界函数.
- 注:上面定理和推论中的区间若不是闭区间,则结论不成立. 如 $f(x) = \frac{1}{2}$ 在(0,1)上无界.

- 定理:设f(x)是闭区间[a,b]上的连续函数,则f(x)在[a,b]上有最大值与最小值.即存在 x_1 和 x_2 使得对任意性 $x \in [a,b]$ 有 $f(x_1) \leq f(x) \leq f(x_2)$.
- 推论: f(x)是闭区间[a,b]上的连续函数,则f(x)的的值域是一个闭区间.
- 推论:设f(x)是闭区间[a,b]上的连续函数,则f(x)是[a,b]上的有界函数.
- 注:上面定理和推论中的区间若不是闭区间,则结论不成立.如 $f(x) = \frac{1}{2}$ 在(0,1)上无界.

- 定理:设f(x)是闭区间[a,b]上的连续函数,则f(x)在[a,b]上有最大值与最小值.即存在 x_1 和 x_2 使得对任意性 $x \in [a,b]$ 有 $f(x_1) \leq f(x) \leq f(x_2)$.
- 推论: f(x)是闭区间[a,b]上的连续函数,则f(x)的的值域是一个闭区间.
- 推论:设f(x)是闭区间[a,b]上的连续函数,则f(x)是[a,b]上的有界函数.
- 注:上面定理和推论中的区间若不是闭区间,则结论不成立.如 $f(x) = \frac{1}{2}$ 在(0,1)上无界.

- 定理:设f(x)是闭区间[a,b]上的连续函数,则f(x)在[a,b]上有最大值与最小值.即存在 x_1 和 x_2 使得对任意性 $x \in [a,b]$ 有 $f(x_1) \leq f(x) \leq f(x_2)$.
- 推论: f(x)是闭区间[a,b]上的连续函数,则f(x)的的值域是一个闭区间.
- 推论:设f(x)是闭区间[a,b]上的连续函数,则f(x)是[a,b]上的有界函数.
- 注:上面定理和推论中的区间若不是闭区间,则结论不成立.如 $f(x) = \frac{1}{x} \dot{a}(0,1)$ 上无界.

- 定理: 设 $f(x):(a,b) \to (c,d)$ 是一一满射,并且是严格单调函数.则f是(a,b)上连续函数,且 f^{-1} 是(c,d)上的连续函数.即:双射+严格单调⇒连续.
- 命题: f(x)是(a,b)上的连续函数,且映射f(x): (a,b) → **R**单射,则f严格单调. 即: 双射+连续⇒ 严格单调. 证明: 反设f不是单调函数,则存在 $x_1 < x_2 < x_3$,使得 $f(x_1) > f(x_2)$, $f(x_2) < f(x_3)$ (或者 $f(x_1) < f(x_2)$, $f(x_2) > f(x_3)$), 取 $\eta \in (f(x_2), f(x_1)) \cap (f(x_2), f(x_3))$,则存在 $\xi_1 \in (x_1, x_2)$, $\xi_2 \in (x_2, x_3)$,使得 $f(\xi_1) = f(\xi_2) = \eta$.
- 定理: 设f(x): $(a,b) \to (c,d)$ 是双射,且f(x)是连续函数,则 f^{-1} 连续. 证明: 设f(x): $(a,b) \to (c,d)$ 是双射,且f(x)是连续函数,从而且f(x)是严格单调函数.从而 f^{-1} 是双射且严格单调,从而连续.

- 定理: 设 $f(x):(a,b) \to (c,d)$ 是一一满射,并且是严格单调函数.则f是(a,b)上连续函数,且 f^{-1} 是(c,d)上的连续函数.即:双射+严格单调⇒连续.
- 命题: f(x)是(a,b)上的连续函数,且映射f(x): $(a,b) \to \mathbb{R}$ 单射,则f严格单调. 即: 双射+连续 \Rightarrow 严格单调.
 - 证明: 反设f不是单调函数,则存在 $x_1 < x_2 < x_3$,使得 $f(x_1) > f(x_2), f(x_2) < f(x_3)$ (或者 $f(x_1) < f(x_2), f(x_2) > f(x_3)$), 取 $\eta \in (f(x_2), f(x_1)) \cap (f(x_2), f(x_3))$,则存在 $\xi_1 \in (x_1, x_2), \xi_2 \in (x_2, x_3)$,使得 $f(\xi_1) = f(\xi_2) = \eta$.
- 定理: 设 $f(x):(a,b)\to(c,d)$ 是双射,且f(x)是连续函数,则 f^{-1} 连续.

证明:设f(x): $(a,b) \rightarrow (c,d)$ 是双射,且f(x)是连续函数,从而且f(x)是严格单调函数.从而 f^{-1} 是双射且严格单调,从而连续.

- 定理: 设f(x): $(a,b) \to (c,d)$ 是一一满射,并且是严格单调函数.则f是(a,b)上连续函数,且 f^{-1} 是(c,d)上的连续函数.即:双射+严格单调⇒连续.
- 命题: f(x)是(a,b)上的连续函数, 且映射f(x): $(a,b) \to \mathbb{R}$ 单射,则f严格单调.即:双射+连续⇒ 严格单调.证明:反设f不是单调函数,则存在 $x_1 < x_2 < x_3$,使得 $f(x_1) > f(x_2), f(x_2) < f(x_3)$ (或者 $f(x_1) < f(x_2), f(x_2) > f(x_3)$),取 $f \in (f(x_2), f(x_1)) \cap (f(x_2), f(x_3))$,则存在 $f \in (x_1, x_2), f \in (x_2, x_3)$,使得 $f(\xi_1) = f(\xi_2) = \eta$.
- 定理: 设f(x): $(a,b) \to (c,d)$ 是双射,且f(x)是连续函数,则 f^{-1} 连续. 证明: 设f(x): $(a,b) \to (c,d)$ 是双射,且f(x)是连续函数,从而且f(x)是严格单调函数.从而 f^{-1} 是双射且严格单调,从而连续.

- 定理: 设f(x): $(a,b) \to (c,d)$ 是一一满射,并且是严格单调函数.则f是(a,b)上连续函数,且 f^{-1} 是(c,d)上的连续函数.即:双射+严格单调⇒连续.
- 命题: f(x)是(a,b)上的连续函数, 且映射f(x): $(a,b) \to \mathbb{R}$ 单射,则f严格单调.即:双射+连续⇒ 严格单调.证明:反设f不是单调函数,则存在 $x_1 < x_2 < x_3$,使得 $f(x_1) > f(x_2), f(x_2) < f(x_3)$ (或者 $f(x_1) < f(x_2), f(x_2) > f(x_3)$),取 $f \in (f(x_2), f(x_1)) \cap (f(x_2), f(x_3))$,则存在 $f \in (x_1, x_2), f \in (x_2, x_3)$,使得 $f(\xi_1) = f(\xi_2) = \eta$.
- 定理: 设 $f(x):(a,b)\to(c,d)$ 是双射, 且f(x)是连续函数,则 f^{-1} 连续.

证明:设f(x): $(a,b) \rightarrow (c,d)$ 是双射,且f(x)是连续函数,从而且f(x)是严格单调函数.从而 f^{-1} 是双射且严格单调,从而连续.

- 定理: 设f(x): $(a,b) \to (c,d)$ 是一一满射,并且是严格单调函数.则f是(a,b)上连续函数,且 f^{-1} 是(c,d)上的连续函数.即:双射+严格单调⇒ 连续.
- 命题: f(x)是(a,b)上的连续函数, 且映射f(x): $(a,b) \to \mathbb{R}$ 单射,则f严格单调.即:双射+连续⇒ 严格单调.证明:反设f不是单调函数,则存在 $x_1 < x_2 < x_3$,使得 $f(x_1) > f(x_2), f(x_2) < f(x_3)$ (或者 $f(x_1) < f(x_2), f(x_2) > f(x_3)$),取 $\eta \in (f(x_2), f(x_1)) \cap (f(x_2), f(x_3))$,则存在 $\xi_1 \in (x_1, x_2), \xi_2 \in (x_2, x_3)$,使得 $f(\xi_1) = f(\xi_2) = \eta$.
- 定理:设f(x):(a,b)→(c,d)是双射,且f(x)是连续函数,则f⁻¹连续.
 证明:设f(x):(a,b)→(c,d)是双射,且f(x)是连续函数,

从而且f(x)是严格单调函数. 从而 f^{-1} 是双射且严格单调,从而连续.