

MATH1131 Mathematics 1A – Algebra

Lecture 14: Complex Polynomials

Lecturer: Sean Gardiner - sean.gardiner@unsw.edu.au

Based on slides by Jonathan Kress

Definition

Suppose $n \in \mathbb{N}$. A complex polynomial of degree n is a complex-valued function p of the form

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 \quad \text{for all } z \in \mathbb{C},$$

where $a_0, ..., a_n \in \mathbb{C}$ are the coefficients of p (with with $a_n \neq 0$).

Definition

Suppose $n \in \mathbb{N}$. A complex polynomial of degree n is a complex-valued function p of the form

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 \quad \text{for all } z \in \mathbb{C},$$

where $a_0, ..., a_n \in \mathbb{C}$ are the coefficients of p (with with $a_n \neq 0$).

• If $a_0, ..., a_n \in \mathbb{R}$ then p is a real polynomial.

Definition

Suppose $n \in \mathbb{N}$. A complex polynomial of degree n is a complex-valued function p of the form

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 \quad \text{for all } z \in \mathbb{C},$$

where $a_0, ..., a_n \in \mathbb{C}$ are the coefficients of p (with with $a_n \neq 0$).

- If $a_0, ..., a_n \in \mathbb{R}$ then p is a real polynomial.
- If $a_n = 1$ then p is called monic.

Definition

Suppose $n \in \mathbb{N}$. A complex polynomial of degree n is a complex-valued function p of the form

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
 for all $z \in \mathbb{C}$,

where $a_0, ..., a_n \in \mathbb{C}$ are the coefficients of p (with with $a_n \neq 0$).

- If $a_0, ..., a_n \in \mathbb{R}$ then p is a real polynomial.
- If $a_n = 1$ then p is called monic.
- The zero polynomial is the function given by

$$p(z) = 0$$
 for all $z \in \mathbb{C}$.

Definition

Suppose $n \in \mathbb{N}$. A complex polynomial of degree n is a complex-valued function p of the form

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
 for all $z \in \mathbb{C}$,

where $a_0, ..., a_n \in \mathbb{C}$ are the coefficients of p (with with $a_n \neq 0$).

- If $a_0, ..., a_n \in \mathbb{R}$ then p is a real polynomial.
- If $a_n = 1$ then p is called monic.
- The zero polynomial is the function given by

$$p(z) = 0$$
 for all $z \in \mathbb{C}$.

• The degree of the zero polynomial is undefined.

Complex polynomials Examples

These are polynomials:

$$p(z) = z^3 + z + 1$$
 $q(z) = 2z^3 - iz^2 + 4$
 $r(z) = 4z^5 - z^2 + 3i$ $s(z) = i$
 $f(z) = z + 1$ $g(z) = z^2 + 1$

Complex polynomials Examples

These are polynomials:

$$p(z) = z^3 + z + 1$$
 $q(z) = 2z^3 - iz^2 + 4$
 $r(z) = 4z^5 - z^2 + 3i$ $s(z) = i$
 $f(z) = z + 1$ $g(z) = z^2 + 1$

These are not polynomials:

$$p(z) = \sin z$$
 $q(z) = e^z$ $r(z) = \frac{z+1}{z-1}$ $s(z) = z^2 + z - 1 + \sqrt{z}$

• If $p(\alpha) = 0$, then α is called a root (or zero) of p.

• If $p(\alpha) = 0$, then α is called a root (or zero) of p. For example, $p(z) = z^2 + 1$ has roots $\pm i$ because

$$p(i) = i^2 + 1 = -1 + 1 = 0$$
 and $p(-i) = (-i)^2 + 1 = -1 + 1 = 0$.

• If $p(\alpha) = 0$, then α is called a root (or zero) of p. For example, $p(z) = z^2 + 1$ has roots $\pm i$ because

$$p(i) = i^2 + 1 = -1 + 1 = 0$$
 and $p(-i) = (-i)^2 + 1 = -1 + 1 = 0$.

• If p(z) = q(z)g(z), then q(z) and g(z) are factors of p(z).

• If $p(\alpha) = 0$, then α is called a root (or zero) of p.

For example, $p(z) = z^2 + 1$ has roots $\pm i$ because

$$p(i) = i^2 + 1 = -1 + 1 = 0$$
 and $p(-i) = (-i)^2 + 1 = -1 + 1 = 0$.

• If p(z) = q(z)g(z), then q(z) and g(z) are factors of p(z).

For example, $p(z) = z^2 + 1 = (z + i)(z - i)$ has factors z + i and z - i.

Remainder Theorem

When p(z) is divided by $z - \alpha$, the remainder is $r = p(\alpha)$.

Remainder Theorem

When p(z) is divided by $z - \alpha$, the remainder is $r = p(\alpha)$.

Proof

Remainder Theorem

When p(z) is divided by $z - \alpha$, the remainder is $r = p(\alpha)$.

Proof

Write
$$p(z) = q(z)(z - \alpha) + r(z)$$
.

Remainder Theorem

When p(z) is divided by $z - \alpha$, the remainder is $r = p(\alpha)$.

Proof

Write
$$p(z) = q(z)(z - \alpha) + r(z)$$
.

The degree of the remainder r(z) must be smaller than the degree of $z - \alpha$ and so r(z) must be constant.

Remainder Theorem

When p(z) is divided by $z - \alpha$, the remainder is $r = p(\alpha)$.

Proof

Write
$$p(z) = q(z)(z - \alpha) + r(z)$$
.

The degree of the remainder r(z) must be smaller than the degree of $z - \alpha$ and so r(z) must be constant.

Therefore, in particular when $z = \alpha$,

$$r(z) = r(\alpha)$$

Remainder Theorem

When p(z) is divided by $z - \alpha$, the remainder is $r = p(\alpha)$.

Proof

Write
$$p(z) = q(z)(z - \alpha) + r(z)$$
.

The degree of the remainder r(z) must be smaller than the degree of $z - \alpha$ and so r(z) must be constant.

Therefore, in particular when $z = \alpha$,

$$r(z) = r(\alpha)$$

= $p(\alpha) - q(\alpha)(\alpha - \alpha)$

Remainder Theorem

When p(z) is divided by $z - \alpha$, the remainder is $r = p(\alpha)$.

Proof

Write
$$p(z) = q(z)(z - \alpha) + r(z)$$
.

The degree of the remainder r(z) must be smaller than the degree of $z - \alpha$ and so r(z) must be constant.

Therefore, in particular when $z = \alpha$,

$$r(z) = r(\alpha)$$

$$= p(\alpha) - q(\alpha)(\alpha - \alpha)$$

$$= p(\alpha).$$

Example

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z - 4.

Example

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z - 4.

Writing $p(z) = z^3 + 5z^2 - 6z + 3$, the remainder after division by z - 4 will be p(4) by the Remainder Theorem.

Example

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z - 4.

Writing $p(z) = z^3 + 5z^2 - 6z + 3$, the remainder after division by z - 4 will be p(4) by the Remainder Theorem.

So the remainder is $p(4) = 4^3 + 5 \times 4^2 - 6 \times 4 + 3 = 123$.

Example

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z - 4.

Writing $p(z) = z^3 + 5z^2 - 6z + 3$, the remainder after division by z - 4 will be p(4) by the Remainder Theorem.

So the remainder is $p(4) = 4^3 + 5 \times 4^2 - 6 \times 4 + 3 = 123$.

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z + 4.

Example

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z - 4.

Writing $p(z) = z^3 + 5z^2 - 6z + 3$, the remainder after division by z - 4 will be p(4) by the Remainder Theorem.

So the remainder is $p(4) = 4^3 + 5 \times 4^2 - 6 \times 4 + 3 = 123$.

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z + 4.

Here dividing by z + 4 is the same as dividing by z - (-4). So the remainder will be p(-4) by the Remainder Theorem.

Example

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z - 4.

Writing $p(z) = z^3 + 5z^2 - 6z + 3$, the remainder after division by z - 4 will be p(4) by the Remainder Theorem.

So the remainder is $p(4) = 4^3 + 5 \times 4^2 - 6 \times 4 + 3 = 123$.

Example

Find the remainder when $z^3 + 5z^2 - 6z + 3$ is divided by z + 4.

Here dividing by z+4 is the same as dividing by z-(-4). So the remainder will be p(-4) by the Remainder Theorem.

So the remainder is $p(-4) = (-4)^3 + 5 \times (-4)^2 - 6 \times (-4) + 3 = 43$.

Factor Theorem

 α is a root of p if and only if $z - \alpha$ is a factor of p(z).

Factor Theorem

 α is a root of p if and only if $z - \alpha$ is a factor of p(z).

Proof

Factor Theorem

 α is a root of p if and only if $z - \alpha$ is a factor of p(z).

Proof

Let r be the remainder of p(z) when divided by $z - \alpha$.

Factor Theorem

 α is a root of p if and only if $z - \alpha$ is a factor of p(z).

Proof

Let r be the remainder of p(z) when divided by $z - \alpha$. Then α is a root of p

Factor Theorem

 α is a root of p if and only if $z - \alpha$ is a factor of p(z).

Proof

Let r be the remainder of p(z) when divided by $z - \alpha$. Then α is a root of p

$$p(\alpha) = 0$$

Factor Theorem

 α is a root of p if and only if $z - \alpha$ is a factor of p(z).

Proof

Let r be the remainder of p(z) when divided by $z - \alpha$. Then

$$r = p(\alpha) = 0$$

Factor Theorem

 α is a root of p if and only if $z - \alpha$ is a factor of p(z).

Proof

Let r be the remainder of p(z) when divided by $z - \alpha$. Then

Factorisation

The Fundamental Theorem of Algebra says that every complex polynomial of degree $n \ge 1$ has at least one (complex) root.

Factorisation

The Fundamental Theorem of Algebra says that every complex polynomial of degree $n \ge 1$ has at least one (complex) root.

This leads to...

The Factorisation Theorem

Every complex polynomial p of degree $n \ge 1$ has a factorisation

$$p(z) = a(z - \alpha_1)(z - \alpha_2) \dots (z - \alpha_n),$$

where the *n* complex numbers $\alpha_1, \alpha_2, ... \alpha_n$ are the roots of *p*, and $a \in \mathbb{C}$.

Factorisation

The Fundamental Theorem of Algebra says that every complex polynomial of degree $n \ge 1$ has at least one (complex) root.

This leads to...

The Factorisation Theorem

Every complex polynomial p of degree $n \ge 1$ has a factorisation

$$p(z) = a(z - \alpha_1)(z - \alpha_2) \dots (z - \alpha_n),$$

where the *n* complex numbers $\alpha_1, \alpha_2, ... \alpha_n$ are the roots of *p*, and $a \in \mathbb{C}$.

Note that this means every complex polynomial of degree n has exactly n complex roots, counting with multiplicity (i.e. counting repeated roots separately).

Factorisation – Examples

Example

Factorise $z^2 - 4$ into linear factors.

Example

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2)$$

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2) = 2z(z - 1)(z + 2)$$

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2) = 2z(z - 1)(z + 2)$$

Example

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2) = 2z(z - 1)(z + 2)$$

Example

$$z^3 - 8i = 0$$
 when $z^3 = 8i$

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2) = 2z(z - 1)(z + 2)$$

Example

$$z^3 - 8i = 0$$
 when $z^3 = 8i = 8e^{i\frac{\pi}{2}}$

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2) = 2z(z - 1)(z + 2)$$

Example

$$z^3 - 8i = 0$$
 when $z^3 = 8i = 8e^{i\frac{\pi}{2}} = 8e^{i(\frac{\pi}{2} + 2k\pi)}$ for $k \in \mathbb{Z}$.

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2) = 2z(z - 1)(z + 2)$$

Example

Factorise $z^3 - 8i$ into linear factors.

$$z^3 - 8i = 0$$
 when $z^3 = 8i = 8e^{i\frac{\pi}{2}} = 8e^{i(\frac{\pi}{2} + 2k\pi)}$ for $k \in \mathbb{Z}$.

So the three roots are $z=2e^{i\frac{\pi}{6}}$, $2e^{i\frac{5\pi}{6}}$, $2e^{-i\frac{\pi}{2}}$.

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2) = 2z(z - 1)(z + 2)$$

Example

Factorise $z^3 - 8i$ into linear factors.

$$z^3 - 8i = 0$$
 when $z^3 = 8i = 8e^{i\frac{\pi}{2}} = 8e^{i(\frac{\pi}{2} + 2k\pi)}$ for $k \in \mathbb{Z}$.

So the three roots are $z=2e^{i\frac{\pi}{6}}$, $2e^{i\frac{5\pi}{6}}$, $2e^{-i\frac{\pi}{2}}$.

So
$$z^3 - 8i = (z - 2e^{i\frac{\pi}{6}})(z - 2e^{i\frac{5\pi}{6}})(z - 2e^{-i\frac{\pi}{2}})$$

Example

Factorise $z^2 - 4$ into linear factors.

$$z^2 - 4 = (z - 2)(z + 2)$$

Example

Factorise $2z^3 + 2z^2 - 4z$ into linear factors.

$$2z^3 + 2z^2 - 4z = 2z(z^2 + z - 2) = 2z(z - 1)(z + 2)$$

Example

Factorise $z^3 - 8i$ into linear factors.

$$z^3 - 8i = 0$$
 when $z^3 = 8i = 8e^{i\frac{\pi}{2}} = 8e^{i(\frac{\pi}{2} + 2k\pi)}$ for $k \in \mathbb{Z}$.

So the three roots are $z=2e^{i\frac{\pi}{6}}$, $2e^{i\frac{5\pi}{6}}$, $2e^{-i\frac{\pi}{2}}$.

So
$$z^3 - 8i = (z - 2e^{i\frac{\pi}{6}})(z - 2e^{i\frac{5\pi}{6}})(z - 2e^{-i\frac{\pi}{2}})$$

= $(z - (\sqrt{3} + i))(z - (i - \sqrt{3}))(z + 2i)$.

Theorem

If $\alpha \in \mathbb{C}$ is a root of a real polynomial p, then $\overline{\alpha}$ is also a root of p.

Proof

Theorem

If $\alpha \in \mathbb{C}$ is a root of a real polynomial p, then $\overline{\alpha}$ is also a root of p.

Proof

Suppose p is a real polynomial and $\alpha \in \mathbb{C}$ is a root of p, that is,

$$p(z) = a_n z^n + ... + a_1 z + a_0$$
 for all $z \in \mathbb{C}$,

where $a_0, a_1, ..., a_n$ are real, and $p(\alpha) = 0$.

Theorem

If $\alpha \in \mathbb{C}$ is a root of a real polynomial p, then $\overline{\alpha}$ is also a root of p.

Proof

Suppose p is a real polynomial and $\alpha \in \mathbb{C}$ is a root of p, that is,

$$p(z) = a_n z^n + ... + a_1 z + a_0$$
 for all $z \in \mathbb{C}$,

where $a_0, a_1, ..., a_n$ are real, and $p(\alpha) = 0$. Then

$$p(\overline{\alpha}) = a_n \overline{\alpha}^n + \dots + a_1 \overline{\alpha} + a_0$$

$$= \overline{a_n} \overline{\alpha}^n + \dots + \overline{a_1} \overline{\alpha} + \overline{a_0}$$

$$= \overline{a_n \alpha^n + \dots + a_1 \alpha + a_0}$$

$$= \overline{p(\alpha)}$$

$$= \overline{0}$$

$$= 0.$$

Theorem

If $\alpha \in \mathbb{C}$ is a root of a real polynomial p, then $\overline{\alpha}$ is also a root of p.

Proof

Suppose p is a real polynomial and $\alpha \in \mathbb{C}$ is a root of p, that is,

$$p(z) = a_n z^n + ... + a_1 z + a_0$$
 for all $z \in \mathbb{C}$,

where $a_0, a_1, ..., a_n$ are real, and $p(\alpha) = 0$. Then

$$p(\overline{\alpha}) = a_n \overline{\alpha}^n + \dots + a_1 \overline{\alpha} + a_0$$

$$= \overline{a_n} \overline{\alpha}^n + \dots + \overline{a_1} \overline{\alpha} + \overline{a_0}$$

$$= \overline{a_n \alpha^n + \dots + a_1 \alpha + a_0}$$

$$= \overline{p(\alpha)}$$

$$= \overline{0}$$

$$= 0.$$

Hence $\overline{\alpha}$ is also a root of p.

Suppose that the real polynomial p has a non-real root α .

Suppose that the real polynomial p has a non-real root α .

Then $\overline{\alpha}$ is also a root and $z - \alpha$ and $z - \overline{\alpha}$ are factors of p(z).

Suppose that the real polynomial p has a non-real root α .

Then $\overline{\alpha}$ is also a root and $z - \alpha$ and $z - \overline{\alpha}$ are factors of p(z).

So a quadratic factor of p(z) is given by:

$$(z-\alpha)(z-\overline{\alpha}) = z^2 - (\alpha + \overline{\alpha})z + \alpha\overline{\alpha}$$

Suppose that the real polynomial p has a non-real root α .

Then $\overline{\alpha}$ is also a root and $z - \alpha$ and $z - \overline{\alpha}$ are factors of p(z).

So a quadratic factor of p(z) is given by:

$$(z - \alpha)(z - \overline{\alpha}) = z^2 - (\alpha + \overline{\alpha})z + \alpha \overline{\alpha}$$

= $z^2 - 2\text{Re}(\alpha)z + |\alpha|^2$

Suppose that the real polynomial p has a non-real root α .

Then $\overline{\alpha}$ is also a root and $z - \alpha$ and $z - \overline{\alpha}$ are factors of p(z).

So a quadratic factor of p(z) is given by:

$$(z - \alpha)(z - \overline{\alpha}) = z^2 - (\alpha + \overline{\alpha})z + \alpha\overline{\alpha}$$
$$= z^2 - 2\operatorname{Re}(\alpha)z + |\alpha|^2$$

Since $Re(\alpha)$ and $|\alpha|^2$ are real, this quadratic factor is real.

Suppose that the real polynomial p has a non-real root α .

Then $\overline{\alpha}$ is also a root and $z - \alpha$ and $z - \overline{\alpha}$ are factors of p(z).

So a quadratic factor of p(z) is given by:

$$(z - \alpha)(z - \overline{\alpha}) = z^2 - (\alpha + \overline{\alpha})z + \alpha\overline{\alpha}$$
$$= z^2 - 2\operatorname{Re}(\alpha)z + |\alpha|^2$$

Since $Re(\alpha)$ and $|\alpha|^2$ are real, this quadratic factor is real.

Using this method, every real polynomial can be factored into real linear and quadratic factors.

Example

Express $z^6 - 1$ as a product of linear factors, and again as a product of **real** linear and quadratic factors.

Example

Express $z^6 - 1$ as a product of linear factors, and again as a product of **real** linear and quadratic factors.

$$z^6 - 1 = 0$$
 when $z^6 = 1$

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

$$z^6 - 1 = 0$$
 when $z^6 = 1 = e^{i \times 2k\pi}$ for $k \in \mathbb{Z}$.

Example

Express $z^6 - 1$ as a product of linear factors, and again as a product of **real** linear and quadratic factors.

$$z^6 - 1 = 0$$
 when $z^6 = 1 = e^{i \times 2k\pi}$ for $k \in \mathbb{Z}$.

So the six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

$$z^6 - 1 = 0$$
 when $z^6 = 1 = e^{i \times 2k\pi}$ for $k \in \mathbb{Z}$.

So the six (complex) roots are z=1 , $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1 , $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$

So as a product of linear factors,

$$z^6-1=(z-1)(z-e^{i\frac{\pi}{3}})(z-e^{i\frac{2\pi}{3}})(z+1)(z-e^{-i\frac{2\pi}{3}})(z-e^{-i\frac{\pi}{3}}).$$

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

$$(z-e^{i\frac{\pi}{3}})(z-e^{-i\frac{\pi}{3}})$$

Example

Express $z^6 - 1$ as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

$$(z - e^{i\frac{\pi}{3}})(z - e^{-i\frac{\pi}{3}}) = z^2 - (e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}})z + e^{i\frac{\pi}{3}}e^{-i\frac{\pi}{3}}$$

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

$$(z - e^{i\frac{\pi}{3}})(z - e^{-i\frac{\pi}{3}}) = z^2 - (e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}})z + e^{i\frac{\pi}{3}}e^{-i\frac{\pi}{3}}$$
$$= z^2 - 2\operatorname{Re}(e^{i\frac{\pi}{3}})z + |e^{i\frac{\pi}{3}}|^2$$

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

$$(z - e^{i\frac{\pi}{3}})(z - e^{-i\frac{\pi}{3}}) = z^2 - (e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}})z + e^{i\frac{\pi}{3}}e^{-i\frac{\pi}{3}}$$
$$= z^2 - 2\operatorname{Re}(e^{i\frac{\pi}{3}})z + |e^{i\frac{\pi}{3}}|^2$$
$$= z^2 - 2\cos\left(\frac{\pi}{3}\right)z + 1$$

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

$$(z - e^{i\frac{\pi}{3}})(z - e^{-i\frac{\pi}{3}}) = z^2 - (e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}})z + e^{i\frac{\pi}{3}}e^{-i\frac{\pi}{3}}$$

$$= z^2 - 2\operatorname{Re}(e^{i\frac{\pi}{3}})z + |e^{i\frac{\pi}{3}}|^2$$

$$= z^2 - 2\cos(\frac{\pi}{3})z + 1$$

$$= z^2 - z + 1$$

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

To find the real quadratic factors, consider the non-real roots in pairs of conjugates: $e^{i\frac{\pi}{3}}$ with $e^{-i\frac{\pi}{3}}$, and $e^{i\frac{2\pi}{3}}$ with $e^{-i\frac{2\pi}{3}}$.

$$(z - e^{i\frac{\pi}{3}})(z - e^{-i\frac{\pi}{3}}) = z^2 - (e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}})z + e^{i\frac{\pi}{3}}e^{-i\frac{\pi}{3}}$$

$$= z^2 - 2\operatorname{Re}(e^{i\frac{\pi}{3}})z + |e^{i\frac{\pi}{3}}|^2$$

$$= z^2 - 2\cos\left(\frac{\pi}{3}\right)z + 1$$

$$= z^2 - z + 1$$

Similarly, $(z - e^{i\frac{2\pi}{3}})(z - e^{-i\frac{2\pi}{3}})$

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

$$(z - e^{i\frac{\pi}{3}})(z - e^{-i\frac{\pi}{3}}) = z^2 - (e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}})z + e^{i\frac{\pi}{3}}e^{-i\frac{\pi}{3}}$$

$$= z^2 - 2\operatorname{Re}(e^{i\frac{\pi}{3}})z + |e^{i\frac{\pi}{3}}|^2$$

$$= z^2 - 2\cos\left(\frac{\pi}{3}\right)z + 1$$

$$= z^2 - z + 1$$

Similarly,
$$(z - e^{i\frac{2\pi}{3}})(z - e^{-i\frac{2\pi}{3}}) = z^2 - 2\cos(\frac{2\pi}{3})z + 1$$

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

$$(z - e^{i\frac{\pi}{3}})(z - e^{-i\frac{\pi}{3}}) = z^2 - (e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}})z + e^{i\frac{\pi}{3}}e^{-i\frac{\pi}{3}}$$

$$= z^2 - 2\operatorname{Re}(e^{i\frac{\pi}{3}})z + |e^{i\frac{\pi}{3}}|^2$$

$$= z^2 - 2\cos\left(\frac{\pi}{3}\right)z + 1$$

$$= z^2 - z + 1$$

Similarly,
$$(z - e^{i\frac{2\pi}{3}})(z - e^{-i\frac{2\pi}{3}}) = z^2 - 2\cos\left(\frac{2\pi}{3}\right)z + 1 = z^2 + z + 1$$
.

Example

Express z^6-1 as a product of linear factors, and again as a product of **real** linear and quadratic factors.

The six (complex) roots are z=1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$, $e^{-i\frac{\pi}{3}}$.

$$(z - e^{i\frac{\pi}{3}})(z - e^{-i\frac{\pi}{3}}) = z^2 - (e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}})z + e^{i\frac{\pi}{3}}e^{-i\frac{\pi}{3}}$$

$$= z^2 - 2\operatorname{Re}(e^{i\frac{\pi}{3}})z + |e^{i\frac{\pi}{3}}|^2$$

$$= z^2 - 2\cos\left(\frac{\pi}{3}\right)z + 1$$

$$= z^2 - z + 1$$

Similarly,
$$(z - e^{i\frac{2\pi}{3}})(z - e^{-i\frac{2\pi}{3}}) = z^2 - 2\cos\left(\frac{2\pi}{3}\right)z + 1 = z^2 + z + 1$$
.
So $z^6 - 1 = (z - 1)(z + 1)(z^2 - z + 1)(z^2 + z + 1)$.