Design of a locust-inspired miniature jumping robot

Yaolei Shen, Wenjie Ge*, Xiaojuan Mo, Zhenghang Hou, Wenbin Song, Yifei Chen, Shaofeng Jin School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China

- The jumping function of locust was briefly introduced.
- The tumble of locust at flight phase after takeoff was analyzed.
- Physical prototype was made to mimic the jump of locust.

Virtual prototype of the jumping robot

Outline

- 1. Background of jumping robot
- 2. Jump locomotion of locust
- 3. Biological experiment
- 4. Analysis of locust take-off
- 5. Design of jumping robot
- 6. Physical prototype experiment
- 7. Conclusion and future work

Background of jumping robot

(a) Wheeled robot [1]

(b) Walking robot [2]

(c) Snake-like robot [3]

(d) Jumping robot [4] Some types of terrain mobile robots

Advantages of jumping robot

- Simple mechanical structure
- Fewer drivers
- Overcome obstacles

Jump locomotion of locust

Structure of locust

The **hind limb** is the most important part for locust to jump.

Structure of hind limb

Jump locomotion of locust

Initial flexion of tibiae

Three stages of locust take-off

Extension of tibiae

extensor and flexor

Biological experiment of locust jump

Experimental video of locust jump

- Basic parameters (length, mass)
- Variation of joint angles

Calibration of joint angles

Kinematical analysis of locust take-off

The trajectory of locust centroid is approximatively a **straight line**, which makes locust has a certain jump direction.

Analysis the tumble at locust jump

Angular momentum of each part at take-off

The **positive rotation** of **body** and **femur** directly cause the positive tumble.

Locust use its **abdomen** to adjust when it tumbles at jumping process.

Design of jumping robot

Mechanism of jumping robot

Design targets

- Morphological similarity
- Jump function
- Negative rotation of body

Design of jumping robot

Virtual prototype in CAD

Virtual prototype keep stable at flight phase.

Jump simulation in ADAMS

Rotation of body during jump

Physical prototype experiment

SS 05 50 07 57 07

Jump 1

Jump 2

Two jump experiments. Jump 1 was on foam board, Jump 2 was on nylon cushion.

Trajectory of body centroid

Rotation of body during jump

Conclusion and future work

Conclusion

- Analyze the tumble
- Physical prototype
- Improve the jump stability

Future work

- Mimic the grasping of tarsus
- Analyze landing process

Reference

- [1] S. Nakajima. "Concept of a novel four-wheel-type mobile robot for rough terrain, RT-Mover." IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3257-3264, 2009.
- [2] B. G. A. Lambrecht, A. D. Horchler, and R. D. Quinn. "A small, insectinspired robot that runs and jumps." IEEE International Conference on Robotics and Automation, pp. 1240-1245, 2005.
- [3] B. Lin, S. Ma, C. Y, et al. "Development of an amphibious snake-like robot." Proceedings of the 8th World Congress on Intelligent Control and Automation, pp. 613-618, 2010.
- [4] U. Scarfogliero, F. Li, D. Chen, C. Stefanini, W. Liu, P. Dario. "Jumping mini-robot as a model of scale effects on legged locomotion." IEEE International Conference on Robotics and Biomimetics, pp. 853-858, 2007.