

General information

Designation

Ochroma spp. (MD)

Tradenames

FLEXICORE, CONTOURKORE, PRO-BALSA

Typical uses

Cores for sandwich structures; model building; floatation; insulation;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (tropical)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%
------	-----	---

Price

Dela -	* ^ 7	40.0	LIOD/I
Price	^ 6. <i>1</i>	- 10.8	USD/kg

Physical properties

Density	170	-	210	kg/m^3
Relative density	0.1	-	0.15	
Cells/volume	500	-	1e3	/mm^3
Anisotropy ratio	10	-	30	

Mechanical properties

• • • • • • • • • • • • • • • • • • •				
Young's modulus	0.15	-	0.19	GPa
Yield strength (elastic limit)	0.6	-	1	MPa
Tensile strength	0.7	-	1.2	MPa
Elongation	* 1.26	-	1.54	% strain
Compressive strength	0.62	-	1.2	MPa
Compressive stress @ 25% strain	1.1	-	2.1	MPa
Flexural modulus	0.14	-	0.17	GPa
Flexural strength (modulus of rupture)	0.9	-	1	MPa
Shear modulus	* 0.016	-	0.023	GPa
Shear strength	* 9.6	-	11.7	MPa
Rolling shear strength	* 0.35	-	1.06	MPa
Bulk modulus	* 0.08	-	0.1	GPa

SEDUPIICK	
Poisson's ratio	* 0.02 - 0.04
Shape factor	5.1
Hardness - Vickers	* 0.28 - 0.34 HV
Hardness - Brinell	* 4.6 - 5.7 MPa
Hardness - Janka	* 0.28 - 0.34 kN
Fatigue strength at 10^7 cycles	* 0.25 - 0.33 MPa
Mechanical loss coefficient (tan delta)	* 0.06 - 0.074
Densification strain	0.65 - 0.75
Differential shrinkage (radial)	* 0.05 - 0.06 %
Differential shrinkage (tangential)	* 0.07 - 0.09 %
Radial shrinkage (green to oven-dry)	* 3.2 - 7 %
Tangential shrinkage (green to oven-dry)	4 - 4.8 %
Volumetric shrinkage (green to oven-dry)	6.8 - 8.3 %
Work to maximum strength	* 1.3 - 1.6 kJ/m^3
Import 9 fracture properties	
Impact & fracture properties	0.023 - 0.029 MPa.m^0.5
Fracture toughness	0.025 - 0.029 WFa.IIP0.5
Thermal properties	
Glass temperature	77 - 102 °C
Maximum service temperature	120 - 140 °C
Minimum service temperature	* -7323 °C
Thermal conductivity	* 0.037 - 0.045 W/m.°C
Specific heat capacity	1.66e3 - 1.71e3 J/kg.°C
Thermal expansion coefficient	* 18.5 - 27.2 µstrain/°C
Electrical properties	
Electrical properties Electrical resistivity	* 2.1e14 - 7e14 µohm.cm
Dielectric constant (relative permittivity)	* 1.68 - 2.05
Dissipation factor (dielectric loss tangent)	* 0.014 - 0.017
Dielectric strength (dielectric breakdown)	4.85 - 4.9 MV/m
,	
Magnetic properties	
Magnetic type	Non-magnetic
Optical properties	
Transparency	Opaque
Durability	
Water (fresh)	Limited use
Water (salt)	Limited use

Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Limited use
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* 0.574	-	0.633	kg/kg
Water usage	* 665	-	735	l/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.518	-	0.573	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0389	-	0.043	kg/kg
Fine machining energy (per unit wt removed)	* 0.909	-	1	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.0682	-	0.0753	kg/kg
Grinding energy (per unit wt removed)	* 1.34	-	1.48	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.101	-	0.111	kg/kg

Recycling and end of life

restraining and on the	
Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	√
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

rocessUniverse	
eference	
hape	

