13 Taylor Coefficients as Quantitative Effects

Discrete Vectors. Let us call a vector $\mathbf{x} \in Q^X$ discrete if $\text{Im}(\mathbf{x}) \in \{0, \infty\}$.

Lemma 27. For all function $f: Q^X \to Q^Y$, if \hat{f} is discrete, then for all discrete $\mathbf{x} \in Q^X$, $f(\mathbf{x})$ is discrete.

Proof. If \hat{f} and \mathbf{x} are both discrete, then for all $y \in Y$ and $\mu \in \mathcal{M}_{\mathrm{f}}(X)$, $\hat{f}_{\mu,y} + \mu \cdot \mathbf{x} \in \{0, \infty\}$: indeed, either $\hat{f}_{\mu,y} = \infty$, either $\mu \cdot \mathbf{x} = \infty$ (which means that for some a in the support of μ , $x_a = \infty$, or both are 0. Hence $f(\mathbf{x}) = \inf_{\mu} \hat{f}_{\mu,y} + \mu \cdot \mathbf{x}$ is an inf computed in the complete lattice $\{0, \infty\}$, so it is in $\{0, \infty\}$.

Observe that the converse of the lemma above needs not hold in general: let $f: Q\langle \mathbf{1} \rangle \to Q\langle \mathbf{1} \rangle$ be the polynomial $f(x) = \min\{0, x+1\} = 0$; then f is obviously finitary-preserving but $\hat{f}_1 = 1$, so \hat{f} is not discrete. THIS EXAMPLE IS PROBLEMATIC, as it seems to imply that currying is not injective. Maybe we must be more careful on the definition of currying!

Lemma 28. For all $f: Q^X \to Q^Y$ and $g: Q^Y \to Q^Z$, if \hat{f} and \hat{g} are discrete, then $\widehat{g \circ f}$ is discrete.

Proof. $\widehat{g \circ f}_{\mu,y} = \inf\{\sum_i \widehat{f}_{\mu_i,z_i} + g_{[z_1,\dots,z_k],y} \mid \mu = \sum_i \mu_i, z_1,\dots,z_k \in Y\}$ which, by hypothesis, is an inf over a set of discrete values, and so it is discrete. \square

Importantly, the interpretation of an ordinary λ -term is always a discrete matrix.

Proposition 29. For all ordinary simply typed λ -term $M: \sigma \to \tau$, the matrix of the interpretation $[\![M]\!]$ of M in the tropical model is discrete.

Proof. By induction on M:

- if M = x, then [M] is a projection, which has a discrete matrix;
- if $M = \lambda x.M'$, we simply apply the induction hypothesis to M';
- if M = NP, then $[\![M]\!] = \operatorname{ev}([\![N]\!], [\![P]\!])$ so we use the induction hypothesis, the fact that $\widehat{\operatorname{ev}}$ is discrete as well as Lemma 28.

EXTEND THIS LEMMA TO: resource λ -terms, PCF? System T?

Measuring Duplications of Discrete Functions. For all finitary functions $f: Q\langle X\rangle \to Q\langle Y\rangle$, define a new function f^* by letting $\widehat{f^*}_{\mu,y} = \widehat{f}_{\mu,y} + \sharp \mu$. Intuitively, f^* keeps track, for each possible "choice" of a multiset μ , the weight of this multiset. This intuition is justified by the lemma below:

Lemma 30. f^* is a finitary function, i.e. $f^*: Q\langle X \rangle \to Q\langle Y \rangle$. Moreover, for all discrete $\mathbf{x} \in Q\langle X \rangle$ and $y \in Y$, if $f(\mathbf{x})_y < \infty$, then $f^*(\mathbf{x})_y = \sharp \mu$, where $\mu = \operatorname{argmin}\{\sharp \nu \mid \widehat{f}_{\nu,y} < \infty\} = \operatorname{argmin}\{\sharp \nu \mid f(\mathbf{x})_y = \widehat{f}_{\nu,y} + \nu \cdot \mathbf{x}\}.$

Proof. Since $|\widehat{f}| = |\widehat{f^*}|$, it follows that f^* is finitary. By finiteness, $f(\mathbf{x})_y = \inf_{\mu} \mu \cdot \mathbf{x} + \widehat{f}_{\mu,y} = \min_{i=1,\dots,k} \mu_i \cdot \mathbf{x} + \widehat{f}_{\mu_i,y}$, and since \widehat{f} is discrete, either $\widehat{f}_{\mu_i,y} = \infty$ for all i (whence $f(\mathbf{x})_y = \infty$), or $f(\mathbf{x})_y = \min\{\mu_j \cdot \mathbf{x} + \widehat{f}_{\mu_j,y} \mid \widehat{f}_{\mu_j,y} < \infty\}$.

Now, $f^*(\mathbf{x})_y = \min\{\mu_j \cdot \mathbf{x} + \hat{f}_{\mu_i,y} + \sharp \mu_i \mid \hat{f}_{\mu_j,y} < \infty\}$, whence if $f(\mathbf{x})_y = \infty$, then $f^*(\mathbf{x})_y = \infty$, and if $f(\mathbf{x})_y = 0$, then $f^*(\mathbf{x})_y = \min\{\sharp \mu_i \mid \hat{f}_{\mu_j,y} < \infty\}$.

Observe that the transformation $f \mapsto f^*$ is not stable under composition. In general $(g \circ f)^*(\mathbf{x})_b \leq g^*(f^*(\mathbf{x}))_b$, for example, we have

$$(\widehat{id}^*)_{\mu,y} = \begin{cases} 1 & \text{if } \mu = [y] \\ \infty & \text{otherwise} \end{cases}$$

from which it follows that $id^*(id^*(\mathbf{x})) = \mathbf{x} + 2 > \mathbf{x} + 1 = id^*(\mathbf{x}) = (id \circ id)^*(\mathbf{x})$. A crucial property of the map $f \mapsto f^*$ is given by the following "commutation" with the differential operator.

Lemma 31. For all $i \in \mathbb{N}$, $\mathsf{D}^{(i)}(f^*)(\mathbf{x}^i, \infty)_b = \mathsf{D}^{(i)}(f)(\mathbf{x}^i, \infty)_b + i$.

Proof. By observing that for any function $f: Q^X \to Q^Y$ and $i \in \mathbb{N}$

$$\left(\widehat{\mathsf{D}^{(i)}(f^*)}\right)_{[x_1,\ldots,x_i]\oplus\mu,y} = \left(\widehat{f^*}\right)_{\mu+[x_1,\ldots,x_i],y} = \left(\widehat{f}\right)_{\mu+[x_1,\ldots,x_i],y} + \sharp \mu + i$$

we deduce that for all \mathbf{x} ,

$$D^{(i)}(f^*)(\mathbf{x}^i, \infty)_b = \inf \left\{ \widehat{f^*}_{[a_1, \dots, a_i], y} + [a_1, \dots, a_i] \cdot \mathbf{x} \mid a_1, \dots, a_i \in X \right\}$$

$$= \inf \left\{ \widehat{f}_{[a_1, \dots, a_i], y} + [a_1, \dots, a_i] \cdot \mathbf{x} + i \mid a_1, \dots, a_i \in X \right\}$$

$$= \inf \left\{ \widehat{f}_{[a_1, \dots, a_i], y} + [a_1, \dots, a_i] \cdot \mathbf{x} \mid a_1, \dots, a_i \in X \right\} + i$$

$$= D^{(i)} f(\mathbf{x}^i, \infty)_b + i.$$

This leads to the following result, which illustrates how the map $f \mapsto f^*$ allows one to extract duplication bounds from ordinary λ -terms.

Theorem 32. For all ordinary λ -terms $M: \sigma \to \mathbf{Nat}$ and $N: \sigma$, $(\llbracket M \rrbracket^*(\llbracket N \rrbracket))_k = n$, where $MN \simeq_{\beta} (\mathsf{D}^{(n)}M \cdot N^n) 0 \simeq_{\beta} \underline{k}$ and for all $m \neq n$, $(\mathsf{D}^{(m)}M \cdot N^m) 0 \simeq_{\beta} 0$.

Proof. By SN arguments we know that MN reduces to a unique normal form \underline{k} . Moreover, by Ehrhard's and Regnier's argument, we know that there exists a unique n such that $(\mathsf{D}^{(n)}M\cdot N^n)0\not\simeq_\beta 0$ and such that $(\mathsf{D}^{(n)}M\cdot N^n)0\simeq_\beta \underline{k}$. For all $m\neq n$, since $(\mathsf{D}^{(m)}M\cdot N^m)0\simeq_\beta 0$, by soundness we deduce that $[\![(\mathsf{D}^{(m)}M\cdot N^m)0]\!]=\infty$ and, using Prop. 29, $[\![(\mathsf{D}^{(n)}M\cdot N^n)0]\!]_k=0$.

Moreover, from the soundness of the Taylor expansion we deduce that

$$\begin{split} (\llbracket M \rrbracket(\llbracket N \rrbracket))_k &= \left(\inf_i \left\{ \mathsf{D}^{(i)} \llbracket M \rrbracket(\llbracket N \rrbracket^i, \infty) \right\} \right)_k \\ &= \left(\inf_i \left\{ \llbracket (\mathsf{D}^{(i)} M \cdot N^i) 0 \rrbracket \right\} \right)_k \\ &= \llbracket (\mathsf{D}^{(n)} M \cdot N^n) 0 \rrbracket_k = 0 \end{split}$$

30

and thus we deduce, using Lemma 31,

$$\begin{split} ([\![M]\!]^*([\![N]\!]))_k &= \left(\inf_i \left\{ \mathsf{D}^{(i)}[\![M]\!]^*([\![N]\!]^i, \infty) \right\} \right)_k \\ &= \left(\inf_i \left\{ \mathsf{D}^{(i)}[\![M]\!]([\![N]\!]^i, \infty) + i \right\} \right)_k \\ &= \left(\inf_i \left\{ [\![(\mathsf{D}^{(i)}M \cdot N^i)0]\!] + i \right\} \right)_k \\ &= [\![(\mathsf{D}^{(n)}M \cdot N^n)0]\!]_k + n = n. \end{split}$$

Corollary 33. For all ordinary λ -terms $M: \sigma \to \mathbf{Nat}$ and $N: \sigma$, with $MN \simeq_{\beta} \underline{k}$, for all $\epsilon < \infty$, the function $[\![M]\!]: Q\langle [\![\sigma]\!] \rangle \to Q\langle \mathbb{N} \rangle$ is $([\![M^*]\!]([\![N]\!]))_k$ -Lipschitz over the open ball of center $[\![N]\!]$ and radius ϵ .

Concretely, this corollary says that if we pick up a point $\mathbf{y} \in Q\langle \llbracket \sigma \rrbracket \rangle$ such that $\lVert \llbracket N \rrbracket - \mathbf{y} \rVert \leq \epsilon$ (here \mathbf{y} could be the interpretation of a non necessarily ordinary λ -term, e.g. the term $\epsilon \cdot M$ or a probabilistic term), then $|f(\mathbf{y})| = |\llbracket MN \rrbracket| = \{k\}$ and the value $f(\mathbf{y})_k$ is bounded by $(\llbracket M^* \rrbracket (\llbracket N \rrbracket))_k \cdot \epsilon$.

This should be related with the fact that for $M:\sigma\to \tau,\ \lambda x.(\mathsf{D}^{(i)}M\cdot x^i)0:$ $!_i\sigma \multimap \tau:$ we are capturing the Lipschitz-constant of M over x.