Claims

1. (currently amended) A 2H-benzotriazole compound of the formula

$$Ar^{1} = N N - Y^{3}$$

$$(I),$$

$$Ar^{1} = N N - Y^{1} - N N = Ar^{2}$$

$$N = N N - Y^{1} - N N = Ar^{2}$$

$$(II),$$

Y¹ is a divalent linking group, and

Y³ is C₁-C₂₅alkyl, especially C₄-C₄alkyl, aryl or heteroaryl, which can optionally be substituted, especially C₆-C₃₀aryl, or C₂-C₂₆heteroaryl, which can optionally be substituted,

and
$$Ar^2$$
 N are independently of each other a group of formula Ar^2 Ar^2

wherein

A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸ are independently of each other H, halogen, especially fluorine, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophonyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O- [[,]] or -NR²⁵-; [[,]] -NR²⁵R²⁶, C_1 - C_{24} alkylthio, -PR³²R³², C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_1 - C_2 4perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophonyl, or C_1 - C_{24} haloalkyl;

 C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, fluorine, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, or C_1 - C_{24} haloalkyl;

C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by G, or -CO-R²⁸,

or

A²² and A²³ or A¹¹ and A²³ are a group

$$A^{31}$$
 A^{32}
 A^{34}
 A^{33}
 A^{34}
 A^{34}
 A^{35}
 A^{34}
 A^{35}
 A^{36}
 A^{35}

or

two groups A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸, which are neighbouring to each other, are a

A³¹

$$A^{32}$$
 A^{34}
 A^{34}
 A^{34}
 A^{35}
 A^{34}
 A^{35}
 A^{34}
 A^{35}
 A^{34}
 A^{35}
 A^{35}
 A^{36}
 A^{36}

wherein

 A^{31} , A^{32} , A^{33} , A^{34} , A^{35} and A^{36} are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O- [[,]] or -NR 25 - $\frac{1}{2}$ [[,]] C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_2 4aryl, C_6 - C_2 4aryl which is substituted by G, C_2 - C_2 0heteroaryl, C_2 - C_2 0heteroaryl which is substituted by G, C_2 - C_2 4alkoxy, C_1 - C_2 4alkoxy which is substituted by E and/or interrupted by D, C_7 - C_2 5aralkyl, C_7 - C_2 5aralkyl, which is substituted by G, C_7 - C_2 5aralkoxy which is substituted by G, or -CO- R^{28} [[,]] $\frac{1}{2}$

wherein preferably at least one of the substituents A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸ is C₆-C₂₄aryl which is substituted by fluorine, C₁-C₂₄alkyl, C₆-C₁₂cycloalkyl, C₇-

 C_{25} aralkyl, C_4 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, or C_4 - C_{24} haloalkyl; or C_2 - C_{26} heteroaryl, especially thiophenyl, pyrrolyl, furanyl, benzoxazolyl, or benzothiazolyl, which is substituted by fluorine, C_4 - C_{24} alkyl, C_6 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_4 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, or C_4 - C_2 4haloalkyl, or a group of formula

X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X⁷⁶, X⁷⁷, X⁸⁰, X⁸¹, X⁸², X⁸³, X⁸⁴, X⁸⁵, X⁸⁶, and X⁸⁷ are independently of each other E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, G₆-C₁₂cycloalkyl, C₅-G₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵,]-NR²⁵R²⁶, C₁-C₂₄alkylthio, -PR³², R³², C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₄-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₄-C₂₄perfluoroaryl, especially pentafluorophenyl, or C₄-C₂₄haloalkyl; C₂-C₂₀heteroaryl, C₂-C₂₆heteroaryl which is substituted by G, fluorine, C₄-C₂₄alkyl, C₅-C₄₂cycloalkyl, C₇-C₂₅aralkyl, C₄-C₂₄perfluoroalkyl, C₆-C₄₄perfluoroaryl, especially pentafluorophenyl, or C₄-C₂₄haloalkyl; C₇-C₂₅aralkyl, C₄-C₂₄perfluoroalkyl, C₆-C₄₄perfluoroaryl, especially pentafluorophenyl, or C₄-C₂₄haloalkyl; C₇-C₂₅aralkyl, C₄-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, or -CO-R²⁸, or two groups X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X

$$A^{90}$$
 A^{91}
 A^{92}
 A^{91}
 A^{91}
 A^{96}
 A^{91}
 A^{97}
 A^{96}
 A^{91}
 A^{91}
 A^{91}
 A^{92}

neighbouring to each other, are a group-

 A^{93} , A^{94} , A^{95} , A^{96} and A^{97} are independently of each other H, halogen, especially fluorine, hydroxy, C_1 - C_{24} alkyl, C_4 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_4 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, C_7 - $C_$

E²-is-CR²³=CR²⁴-, especially-CX⁶⁸X⁶⁹-,

 $E^{2'}$ -is -SiR³⁰R³¹-; -POR³²-; especially -S-, -O-, or -NR^{25'}-, wherein R^{25'} is -C₄-C₂₄alkyl, or -C₆-C₄₀aryl,

X⁶⁸, X⁶⁹, X⁷⁸, X⁷⁸, X⁸⁸ and X⁸⁹ are independently of each other C₁-C₁₈-alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₆heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₄-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, or C₂-C₂₅aralkyl, or X⁷⁸-and X⁷⁹, and/or X⁸⁸ and X⁸⁹ form a ring, especially a five- or six-membered ring, or

X⁶⁸ and X⁷⁰, X⁶⁹ and X⁷³, X⁷⁷ and X⁷⁸ and/or X⁸⁴ and X⁸⁹ are a group

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C \equiv C-; and

E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COOR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen;

G is E, or C₁-C₂₄alkyl, wherein

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy; C_1 - C_{24} alkyl; or C_1 - C_2 -alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

R³² is C₁-C₂₄alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl [[,]] which is substituted by C₁-C₂₄alkyl.

2. (currently amended) A 2H-benzotriazole compound according to claim 1, wherein at least one of the substituents A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸, especially A¹², A²¹-

$$X^{41}$$
 X^{42}
 X^{43}
 X^{45}
 X^{44}
 X^{48}
 X^{49}
 X^{49}
 X^{50}
 X^{51}
 X^{52}
 X^{52}

and/or A²³, are is a group of formula

wherein X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} are independently of each other H, fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, C₁-C₂₄alkyl, which is optionally substituted by E and/or interrupted by D, C₁-C₂₄alkenyl, which is optionally substituted by E, C₅-C₁₂cycloalkyl, which is optionally substituted by G, C₆-C₁₈aryl, which is optionally substituted by G, C₁-C₂₄alkoxy, which is optionally substituted by E and/or interrupted by D, C₆-C₁₈aryloxy, which is optionally substituted by G, C₇-C₂₄alkylthio, which is optionally substituted by E and/or interrupted by D, C₆-C₁₈aryloxy, which is optionally substituted by E and/or interrupted by D, C₂-C₂₀heteroaryl which is substituted by G, or C₆-C₁₈aralkyl, which is optionally substituted by G, or

$$X^{43}$$
, X^{65} or X^{52} are a group of formula

or

two groups X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷, which are neighbouring to each other, are a group

$$A^{90}$$
 A^{91}
 A^{91}
 A^{95}
 A^{92}
 A^{91}
 A^{96}
 A^{91}
 A^{96}
 A^{91}
 A^{97}
 A^{96}
 A^{91}
 A^{91}
 A^{92}
 A^{91}
 A^{92}
 A^{93}
 A^{94}
 A^{95}
 A^{96}
and A^{97} are

independently of each other H, halogen, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially-pentafluorophenyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸ . , wherein R²⁵, R²⁶ and R²⁸, D, E-and G are as defined in claim 2 and preferably at least one of the substituents X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷ is fluorine, NR²⁵R²⁶, C₄-C₂₄alkyl, C₆-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₄-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₄-C₂₄haloalkyl.

3. (currently amended) A 2H-benzotriazole compound according to claim 1, wherein at least one of the substituents A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸, especially A¹² and/or-A²³ are is a group of formula

 X^{68} , X^{69} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{42} alkyl, which can be interrupted by one or two oxygen atoms,

 X^{70} , X^{71} , X^{72} , X^{73} , X^{74} , X^{75} , X^{76} , X^{77} , X^{80} , X^{81} , X^{82} , X^{83} , X^{84} , X^{85} , X^{86} and X^{87} are independently of each other H, CN, C_1 - C_{24} alkyl, C_6 - C_{10} aryl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, wherein

 R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, and R^{27} is C_1 - C_{24} alkyl, or

R²⁵ and R²⁶ together form a five or six membered ring, in particular-

 $E^2 E^{2'}$ is -S-, -O-[[,]] or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl.

4. (currently amended) A 2H-benzotriazole compound according to claim 1, wherein Y³ is a group of

$$R^{70}$$
 R^{68} R^{69} R^{73} R^{74} R^{71} R^{72} R^{76} R^{75} , or

, wherein

 R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{77} , R^{80} , R^{81} , R^{82} , R^{83} , R^{84} , R^{85} , R^{86} , and R^{87} are independently of each other H, fluorine, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, -NR²⁵R²⁶, C_1 - C_{24} alkyl, which is optionally substituted by E and/or

interrupted by D, C_1 - C_{24} alkenyl, which is optionally substituted by E, C_5 - C_{12} cycloalkyl, which is optionally substituted by G, C_6 - C_{18} aryl, which is optionally substituted by G, C_1 - C_{24} alkoxy, which is optionally substituted by E and/or interrupted by D, C_6 - C_{18} aryloxy, which is optionally substituted by G, C_7 - C_{18} arylalkoxy, which is optionally substituted by G, C_7 - C_{18} arylalkoxy, which is optionally substituted by E and/or interrupted by D, C_2 - C_2 0heteroaryl which is substituted by G, or C_6 - C_{18} aralkyl, which is optionally substituted by G,

or

R⁴³, R⁶⁵ or R⁵² are a group of formula

or

two groups R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁷⁰, R⁷¹, R⁷², R⁷³, R⁷⁴, R⁷⁵, R⁷⁶, R⁷⁷, R⁸⁰, R⁸¹, R⁸², R⁸³, R⁸⁴, R⁸⁵, R⁸⁶, and R⁸⁷, which are neighbouring to each other, are a group

$$A^{90}$$
 A^{91} A^{95} A^{92} A^{96} A^{97} A^{96} , or A^{91} A^{97} A^{90} , wherein A^{90} , A^{91} , A^{92} , A^{93} , A^{94} , A^{95} , A^{96} and A^{97} are

independently of each other H, halogen, especially fluorine, $-NR^{25}R^{26}$, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O-[[,]] or $-NR^{25}$ -[[,]]; C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{24} alkenyl, C_2 - C_{24} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, C_7 - C_{25} aralkyl, which is substituted by G, C_7 - C_{25} aralkoxy, C_7 - C_{25} aralkoxy which is substituted by G, or - C_9 - C_8 - C_9 - $C_$

R⁶⁸, R⁶⁹, R⁷⁸, R⁷⁹, R⁸⁸ and R⁸⁹ are independently of each other C₁-C₁₈ alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, or C₇-C₂₅aralkyl, or

R⁶⁸ and R⁶⁹, R⁷⁸ and R⁷⁹, and/or R⁸⁸ and R⁸⁹ form a ring, especially a five- or six-membered ring, or

R⁶⁸ and R⁷⁰, R⁶⁹ and R⁷³, R⁷⁷ and R⁷⁸ and/or R⁸⁴ and R⁸⁹ are a group

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C≡C-; and E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COOR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen;

G is E, or C₁-C₂₄alkyl; wherein

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl[[,]] which is substituted by C_1 - C_{24} alkyl[[,]] or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

R³² is C₁-C₂₄alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl[[,]] which is substituted by C₁-C₂₄alkyl, or

R⁴³, or R⁵² are a group of formula

$$R^{70'}$$
 $E^{1'}$
 $R^{73'}$
 $R^{74'}$
 $R^{75'}$
 $R^{75'}$

 $R^{68'}$ and $R^{69'}$ are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms,

R^{70'}, R^{71'}, R^{72'}, R^{73'}, R^{74'}, R^{75'} and R^{76'} are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR^{25'}R^{26'}, -CONR^{25'}R^{26'}, or -COOR^{27'},

 $R^{25'}$ and $R^{26'}$ are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, and $R^{27'}$ is C_1 - C_{24} alkyl; and

 $E^{1'}$ is -S-, -O-[[,]] or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl.

5. (currently amended) A 2H-benzotriazole compound to claim 1, wherein Y¹ is a group of formula

$$\begin{array}{c} R^{7} \\ R^{6} \\ R^{6} \\ R^{6} \\ R^{6} \\ R^{6} \\ R^{6} \\ R^{7} \\$$

wherein

n1, n2, n3, n4, n5, n6, n7 and n8 are 1, 2, or 3, in particular 1, E^1 is -S-, -O-[[,]] or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl[[,]] or C₆-C₁₀aryl,

 R^6 and R^7 are independently of each other H, halogen, especially fluorine, -NR 25 R 26 , hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_2 -perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O-[[,]] or -NR 25 -[[,]] $: C_5$ - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_2 -aryl, C_6 - C_2 -aryl which is substituted by G, C_2 - C_2 -heteroaryl, C_2 - C_2 -heteroaryl which is substituted by G, C_2 - C_2 -alkenyl, C_2 - C_2 -alkynyl, C_1 -

C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by G, or -CO-R²⁸,

 $R^{6'}$ and $R^{7'}$ have the meaning of R^{6} , or together form a group A^{93} , wherein A^{90} , A^{91} , A^{92} , and A^{93} are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_2 perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O-[[,]] or -NR²⁵-[[,]] ; C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_2 4aryl, C_6 - C_2 4aryl which is substituted by G, C_2 - C_2 0heteroaryl, C_2 - C_2 0heteroaryl which is substituted by G, C_2 - C_2 4alkoxy, C_1 - C_2 4alkoxy which is substituted by E and/or interrupted by D, C_7 - C_2 5aralkyl, C_7 - C_2 5aralkyl, which is substituted by G, C_7 - C_2 5aralkoxy which is substituted by E, or -CO- R^{28} .

 R^8 is C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{24} alkenyl, C_2 - C_{24} alkynyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

R⁹ and R¹⁰ form a ring, especially a five- or six-membered ring,

 R^{14} and R^{15} are independently of each other H, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by G,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C \equiv C-, G is E[[,]] or C₁-C₂₄alkyl, and

E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COOR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-, or

R²⁵ and R²⁶ together form a five or six membered ring, in particular-

 R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl, or C_1 - C_2 -alkyl, or C_1 - C_3 -alkyl, or C_1 - C_4 -alkyl, or C_1 - C_5 -alkyl, or C_1 - C_2 -alkyl, or C_1 -

 R^{29} is H, C₆-C₁₈aryl, C₆-C₁₈aryl[[,]] which is substituted by C₁-C₂₄alkyl, C₁-C₂₄alkyl, C₁-C₂₄alkyl, or C₁-C₂₄alkyl which is interrupted by –O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl[[,]] which is substituted by C_1 - C_{24} alkyl, and

R³² is C₁-C₂₄alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl[[,]] which is substituted by C₁-C₂₄alkyl.

6. (currently amended) A 2H-benzotriazole compound to claim 1, wherein the 2H-benzotriazole compound is a compound of formula

wherein A¹² or A²³ are a group of formula

wherein X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} are independently of each other are independently of each other. H, CN, fluorine, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_1 - C_2 4haloalkyl, C_6 - C_{10} aryl, which can optionally be substituted by one[[,]] or more C_1 - C_8 alkyl[[,]] or C_1 - C_8 alkoxy groups; C_1 - C_2 4alkoxy, C_1 - C_2 4alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

or

two groups X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷, which are neighbouring to each other, are a group

, or , wherein preferably at least one of the substituents X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷ is fluorine, NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl,

or A¹² and A²³ are a group of formula

 X^{68} , X^{69} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 - C_{24} alkyl, especially C_{4-} C_{42} alkyl, which can be interrupted by one or two oxygen atoms,

X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X⁷⁶, X⁷⁷, X⁸⁰, X⁸¹, X⁸², X⁸³, X⁸⁴, X⁸⁵, X⁸⁶ and X⁸⁷ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl[[,]] which can optionally be substituted by one[[,]] or more C₁-C₈alkyl[[,]] or C₁-C₈alkoxy groups; C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

$$C_2$$
- C_{10} heteroaryl, especially a group of formula , or , or A^{22} and A^{23} or A^{11} and A^{23} are a group of formula , or ,

A¹¹, A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷, and A¹⁸ are independently of each other H, CN, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially-pentafluorophenyl, C₁-C₂₄haloalkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl, wherein R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, R²⁷ is C₁-C₂₄alkyl, and

Y³ is a group of formula

$$R^{70}$$
 E^{1}
 R^{73}
 R^{74}
 R^{72}
 R^{76}
 R^{75}
 R^{75}

 R^{41} is hydrogen, C_1 - C_{24} alkoxy[[,]] or -OC₇- C_{18} aralkyl, R^{42} is hydrogen[[,]] or C_1 - C_{24} alkyl,

R⁴³ is hydrogen, halogen, -CONR²⁵R²⁶, -COOR²⁷,

$$R^{70}$$
 R^{68} R^{69} R^{73} R^{70} E^{1} R^{73} R^{74} R^{74} R^{71} R^{72} R^{76} R^{75} R^{75} R^{75} R^{75} R^{75} R^{75} R^{75} R^{75}

$$Ph$$
 Ph , or Ph , wherein

A¹¹, A¹², A¹³, and A¹⁴ are independently of each other H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

 E^{1} is -S-, -O-[[,]] or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl[[,]] or C₆-C₁₀aryl,

R¹¹⁰ is H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or

R⁴² and R⁴³ are a group of formula

R⁴⁴ is hydrogen, or C₁-C₂₄alkyl,

R⁴⁵ is hydrogen, or C₁-C₂₄alkyl,

R⁶⁸ and R⁶⁹ are independently of each other C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, which can be interrupted by one or two oxygen atoms,

R⁷⁰, R⁷¹, R⁷², R⁷³, R⁷⁴, R⁷⁵, R⁷⁶, R⁹⁰, R⁹¹, R⁹², and R⁹³ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, and R²⁷ is C₁-C₂₄alkyl.

7. (currently amended) A 2H-benzotriazole compound according to claim 1, wherein the 2Hbenzotriazole compound is a compound of formula

$$\begin{bmatrix} A^{42} & A^{41} & A^{56} & A^{58} \\ A^{43} & A^{44} & A^{57} & A^{58} \\ A^{59} & A^{57} & A^{58} \\ A^{59} & A^{57} & A^{58} \\ A^{59} & A^{54} & A^{54} \\ A^{60} & A^{57} & A^{58} \\ A^{60} & A^{57} & A^{58} \\ A^{60} & A^{60} & A^{64} \\ A^{60} & A^{60} & A^{64} \\ A^{60} & A^{64} & A^{64} \\$$

wherein A⁵² and A⁴³ are a group of formula

or two groups X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷, which are neighbouring to each other, are a group

, or , wherein preferably at least one of the substituents X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} is fluorine, $NR^{25}R^{26}$, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_4 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, or C_4 - C_{24} haloalkyl,

or A⁴³ or A⁵² are a group of formula

 X^{68} , X^{69} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{42} alkyl, which can be interrupted by one or two oxygen atoms,

X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X⁷⁶, X⁷⁷, X⁸⁰, X⁸¹, X⁸², X⁸³, X⁸⁴, X⁸⁵, X⁸⁶ and X⁸⁷ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

 $E^{2} E^{2'}$ is -S-, -O-, or -NR^{25'}-,

A⁴¹, A⁴² and A⁴⁴ are independently of each other hydrogen, halogen, C₁-C₂₄alkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄haloalkyl, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl,

A⁵¹, A⁵³, A⁵⁴, A⁵⁵, A⁵⁶, A⁵⁷, A⁵⁸, A⁵⁹ and A⁶⁰ are independently of each other H, fluorine, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₁-C₂₄haloalkyl, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl, wherein \mathbb{E}^{1} -is O₇-S₇ or -NR²⁵-,

 R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, or R^{25}

and R²⁶ together form a five or six membered ring, in particular

R²⁷ is C₁-C₂₄alkyl, and

Y¹ is a group of formula

wherein

 R^6 is C_1 - C_{24} alkoxy[[,]] or -O- C_7 - C_{25} aralkyl, R^7 is H, or C_1 - C_{24} alkyl, R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{42} alkyl, which can be interrupted by one or two oxygen atoms, and

 R^{25} is C_1 - C_{24} alkyl[[,]] or C_6 - C_{10} aryl.

8. (currently amended) A 2H-benzotriazole compound according to claim 1, wherein the 2H-benzotriazole is a compound of formula

$$A^{23} \longrightarrow N \longrightarrow A^{23} \longrightarrow N \longrightarrow A^{$$

wherein R¹⁰² is C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, in particular or H,

wherein R¹⁰⁰ and R¹⁰¹ are independently of each other H, C₁-C₂₄alkyl, especially C₄-C₁₂alkyl, very

especially tert-butyl, or

, wherein X^{51} , X^{52} , X^{53} , X^{63} , X^{64} , X^{65} and X^{66} are independently of each other fluorine, C1-C24alkyl, especially C1-C12alkyl, very especially tertbutyl, C5-C12cycloalkyl, especially cyclohexyl, which can optionally be substituted by one[[,]] or two C₁-C₈alkyl groups, or 1-adamantyl, C₁-C₂₄perfluoroalkyl, especially C₄-C₄₂perfluoroalkyl, such as CF₃, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, NR²⁵R²⁶, wherein R²⁵ and R²⁶ are C₆-C₁₄aryl, especially phenyl, which can be substituted by one[[,]] or two C₁-C₂₄alkyl groups, or

R²⁵ and R²⁶ together form a five or six membered heterocyclic ring, especially

(IVa), especially
$$A^{12}$$
 (IVb), or A^{12} (IVc), wherein Y^3 is as defined above, or is

wherein Y³ is as defined above, or is

, wherein R²⁵ and R²⁶ are C₆-C₁₄aryl, especially phenyl, 1-naphthyl, 2-naphthyl, which can optionally be substituted by one[[,]] or two C₁-C₈alkyl groups[[,]] or C₁-C₈alkoxy groups, or

a compound of formula IVa, IVb, or IVc, wherein A¹² is

, and
$$Y^3$$
 is is

a compound of formula

independently of each other a group of formula

a compound of formula la, lb, lc, or ld, especially , wherein A^{12} is H, a group

of formula , especially_

or , wherein
$$X^{43}$$
 is C_1 - C_{24} alkyl, especially C_1 - C_{12} alkyl, Y^3 is a group of formula

, wherein R^{70} is C_1 - C_{24} alkyl., especially C_4 - C_{24} alkoxy.

9. (currently amended) A 2H-benzotriazole compound according to claim 8, wherein the 2H-benzotriazole is a compound of formula

$$(IIc), \qquad (IId), \text{ especially} \qquad (IId), \text{ especially} \qquad (IIa), \text{ veryespecially or} \qquad (IIb), \qquad (II$$

wherein R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{42} alkyl, which can be interrupted by one or two oxygen atoms, and R^{25} is C_1 - C_{24} alkyl, especially C_4 - C_{42} alkyl.

10. (currently amended) An electroluminescent device, comprising a 2H-benzotriazole compound according to claim 1. any of claims 1 to 9.

- 11. (original) The electroluminescent device according to claim 10, wherein the electroluminescent device comprises in this order
 - (a) an anode
 - (b) a hole injecting layer and/or a hole transporting layer
 - (c) a light-emitting layer
 - (d) optionally an electron transporting layer and
 - (e) a cathode.
- 12. (original) The electroluminescent device according to claim 11, wherein the 2H-benzotriazole compound forms the light-emitting layer.
- 13. (currently amended) Use of the 2H-benzotriazole compounds according to any of claims 1 to 9 for An electrophotographic photoreceptor [[s]], photoelectric converter[[s]], solar cell[[s]], image sensor[[s]] or [[,]] dye laser[[s]] and electroluminescent devices, comprising a 2H-benzotriazole compound according to claim 1.
- 14. (new) A 2H-benzotriazole compound according to claim 1, wherein at least one of the substituents A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸ A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸ is C₆-C₂₄aryl which is substituted by fluorine, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl or C₁-C₂₄haloalkyl; thiophenyl, pyrrolyl, furanyl, benzoxazolyl or benzothiazolyl which is substituted by fluorine, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroarylor C₁-C₂₄haloalkyl, or a group of formula

each other E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, C₅-C₁₂cycloalkyl,

 C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O- or -NR 25 -; -NR 25 R 26 , C_1 - C_{24} alkylthio, -PR 32 R 32 , C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, or C_1 - C_2 4haloalkyl; C_2 - C_2 0heteroaryl, C_2 - C_2 0heteroaryl which is substituted by G, fluorine, C_1 - C_2 4alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_2 5aralkyl, C_1 - C_2 4perfluoroalkyl, C_6 - C_{14} perfluoroaryl, or C_1 - C_2 4haloalkyl; C_2 - C_2 4alkenyl, C_2 - C_2 4alkynyl, C_1 - C_2 4alkoxy, C_1 - C_2 4alkoxy which is substituted by E and/or interrupted by D, C_7 - C_2 5aralkyl, C_7 - C_2 5aralkyl, which is substituted by G, C_7 - C_2 5aralkoxy which is substituted by G, or - C_7 8.

or

two groups X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X⁷⁶, X⁷⁷, X⁸⁰, X⁸¹, X⁸², X⁸³, X⁸⁴, X⁸⁵, X⁸⁶, and X⁸⁷, which are

$$A^{90}$$
 A^{91}
 A^{90}
 A^{94}
 A^{95}
 A^{92}
 A^{91}
 A^{91}
 A^{97}
 A^{96}
, or A^{91}
, wherein

neighbouring to each other, are a group

 A^{90} , A^{91} , A^{92} , A^{93} , A^{94} , A^{95} , A^{96} and A^{97} are independently of each other H, halogen, hydroxy, C_{1} - C_{24} alkyl, C_{1} - C_{24} alkyl which is substituted by E and/or interrupted by D, C_{1} - C_{24} perfluoroalkyl, C_{6} - C_{14} perfluoroaryl, C_{5} - C_{12} cycloalkyl, C_{5} - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O- or -NR²⁵-; C_{5} - C_{12} cycloalkoxy, C_{5} - C_{12} cycloalkoxy which is substituted by G, C_{6} - C_{24} aryl, C_{6} - C_{24} aryl which is substituted by G, C_{2} - C_{20} heteroaryl, C_{2} - C_{20} heteroaryl which is substituted by G, C_{2} - C_{24} alkenyl, C_{2} - C_{24} alkoxy, C_{1} - C_{24} alkoxy which is substituted by E and/or interrupted by D, C_{7} - C_{25} aralkyl, C_{7} - C_{25} aralkyl, which is substituted by G, C_{7} - C_{25} aralkoxy, C_{7} - C_{25} aralkoxy which is substituted by G, or -CO-R²⁸, E^{2} is -CR²³=CR²⁴- or -CX⁶⁸X⁶⁹-.

 $E^{2'}$ is $-SiR^{30}R^{31}$ -; $-POR^{32}$ -; -S-, -O-, or $-NR^{25'}$ -, wherein $R^{25'}$ is C_1 - C_{24} alkyl, or C_6 - C_{10} aryl, X^{68} , X^{69} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{24} alkenyl, C_2 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or X^{78} and X^{79} , and/or X^{88} and X^{89} form a ring, or

$$A^{90}$$
 A^{91}
 A^{92}

 X^{68} and X^{70} , X^{69} and X^{73} , X^{77} and X^{78} and/or X^{84} and X^{89} are a group

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C \equiv C-; and E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COOR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; G is E, or C₁-C₂₄alkyl, wherein

 R^{25} and R^{26} together form a five or six membered ring, R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by $-O_7$.

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

R³² is C₁-C₂₄alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl which is substituted by C₁-C₂₄alkyl.

- 15. (new) A 2H-benzotriazole compound according to claim 2, wherein at least one of the substituents X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl or C₁-C₂₄haloalkyl.
- 16. (new) A 2H-benzotriazole compound to claim 5, wherein Y¹ is a group of formula

17. (new) A 2H-benzotriazole compound to claim 6, wherein at least one of the substituents X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷ is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl,

and when A^{21} , A^{22} or A^{24} is C_2 - C_{10} heteroaryl, said C_2 - C_{10} heteroaryl is a group of formula

$$N$$
 or N

18. **(new)** A 2H-benzotriazole compound to claim 7, wherein at least one of the substituents X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl,

and when A^{21} , A^{22} or A^{24} is C_2 - C_{10} heteroaryl, said C_2 - C_{10} heteroaryl is a group of formula

$$\frac{1}{\sqrt{N}}$$
 or $\frac{N}{\sqrt{E^1}}$