Sequential circuits

* The digital circuits we have learned so far (gates, multiplexer, demultiplexer, encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only on the present values of the inputs and not on their past values.

Sequential circuits

The digital circuits we have learned so far (gates, multiplexer, demultiplexer, encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only on the present values of the inputs and not on their past values

 In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state

Sequential circuits

The digital circuits we have learned so far (gates, multiplexer, demultiplexer, encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only on the present values of the inputs and not on their past values.

- * In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state.
- * In other words, a sequential circuit has a *memory* (of its past state) whereas a combinatorial circuit has no memory.

Sequential circuits

- * The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only on the present values of the inputs and not on their past values
- In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state
- * In other words, a sequential circuits has a *memory* (of its past state) whereas a combinatorial circuit has no memory.
- * Sequential circuits (together with combinatorial circuits) make it possible to build several useful applications, such as counters, registers, arithmetic/logic unit (ALU), all the way to microprocessors.

M.B. Patil, IIT Bombay

NAND latch (RS latch) A B X₁ X₂ 1 0 0 1 1 1 0 0 0 * A, B: inputs, X_1 , X_2 : outputs * Consider A = 1, B = 0. B = $0 \Rightarrow X_2 = 1$

NAND latch (RS latch) A B X₁ X₂ 1 0 0 1 1 1 1 0 0 * A, B: inputs, X₁, X₂: outputs * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = AX_2 = 1 \cdot 1 = 0$.

A B X₁ X₂
1 0 0 1
0 1
1 1
0 0

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = AX_2 = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.

NAND latch (RS latch)

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1.

Α	В	X ₁	X_2
1	0	0	1
0	1	1	0
1	1		
0	0		

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.

NAND latch (RS latch)

Α	В	X ₁	X_2
1	0	0	1
0	1	1	0
1	1		
0	0		

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = AX_2 = 1 \cdot 1 = 0.$ Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1.

Α	В	X ₁	X_2
1	0	0	1
0	1	1	0
1	1		
0	0		

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{A X_2} = \overline{X_2}, \ X_2 = \overline{B X_1} = \overline{X_1} \Rightarrow \overline{X_1} = \overline{X_2}$

NAND latch (RS latch)

Α	В	$X_1 X_2$	
1	0	0 1	
0	1	1 0	
1	1	previous	
0	0		

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{A} X_2 = \overline{X_2}, X_2 = \overline{B} X_1 = \overline{X_1} \Rightarrow \overline{X_1 = \overline{X_2}}$

Α	В	X ₁ X	2
1	0	0	1
0	1	1	0
1	1	previous	
0	0		

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{AX_2} = \overline{X_2}, X_2 = \overline{BX_1} = \overline{X_1} \Rightarrow X_1 = \overline{X_2}$

If $X_1 = 1$, $X_2 = 0$ previously, the circuit continues to "hold" that state.

NAND latch (RS latch)

1 0 0 1 1 1	0	1
	4	-
1 1	- 1	0
	prev	/ious
0 0		

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{AX_2} = \overline{X_2}, \ X_2 = \overline{BX_1} = \overline{X_1} \Rightarrow X_1 = \overline{X_2}$

If X_1 = 1, X_2 = 0 previously, the circuit continues to "hold" that state. Similarly, if X_1 = 0, X_2 = 1 previously, the circuit continues to "hold" that state.

Α	В	X ₁ X	2
1	0	0	1
0	1	1	0
1	1	previous	
0	0		

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{A} X_2 = \overline{X_2}, X_2 = \overline{B} X_1 = \overline{X_1} \Rightarrow X_1 = \overline{X_2}$

If $X_1 = 1$, $X_2 = 0$ previously, the circuit continues to "hold" that state. Similarly, if $X_1 = 0$, $X_2 = 1$ previously, the circuit continues to "hold" that state. The circuit has "latched in" the previous state.

NAND latch (RS latch)

Α	В	X ₁ X	2
1	0	0	1
0	1	1	0
1	1	prev	/ious
0	0		

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1.

 $X_1 = \overline{AX_2} = \overline{X_2}, \ X_2 = \overline{BX_1} = \overline{X_1} \Rightarrow X_1 = \overline{X_2}$

If X_1 = 1, X_2 = 0 previously, the circuit continues to "hold" that state. Similarly, if X_1 = 0, X_2 = 1 previously, the circuit continues to "hold" that state. The circuit has "latched in" the previous state.

* For A = B = 0, X_1 and X_2 are both 1. This combination of A and B is *not* allowed for reasons that will become clear later.

Α	В	X ₁ X	2
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

- * A, B: inputs, X₁, X₂: outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = 1 \cdot 1 = 0$. Overall, we have $X_1 = 0$, $X_2 = 1$.
- * Consider A = 0, B = 1. $\rightarrow X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1.

 $X_1 = \overline{AX_2} = \overline{X_2}, \ X_2 = \overline{BX_1} = \overline{X_1} \Rightarrow X_1 = \overline{X_2}$

If $X_1 = 1$, $X_2 = 0$ previously, the circuit continues to "hold" that state. Similarly, if $X_1 = 0$, $X_2 = 1$ previously, the circuit continues to "hold" that state. The circuit has "latched in" the previous state.

* For A = B = 0, X_1 and X_2 are both 1. This combination of A and B is *not* allowed for reasons that will become clear later.

NAND latch (RS latch) A B X_1X_2 1 0 0 1 0 1 1 0 1 1 previous 0 0 invalid * The combination A = 1, B = 0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).

Α	В	X ₁ X ₂	
1	0	0 1	
0	1	1 0	
1	1	previous	
0	0	invalid	

- * The combination A = 1, B = 0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (irrespective of the previous state of the latch).

* In other words, A = 1, $B = 0 \rightarrow$ latch gets reset to 0. A = 0, $B = 1 \rightarrow$ latch gets set to 1.

NAND latch (RS latch)

- * The combination A = 1, B = 0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (irrespective of the previous state of the latch).

* In other words, A = 1, B = 0 → latch gets reset to 0. A = 0, B = 1 → latch gets set to 1.

* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

Α	В	X ₁ X ₂	
1	0	0 1	
0	1	1 0	
1	1	previous	
0	0	invalid	

- * The combination A = 1, B = 0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (irrespective of the previous state of the latch).

* In other words, A = 1, B = 0 → latch gets reset to 0. A = 0, $B = 1 \rightarrow$ latch gets set to 1.

- * The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.
- * X_1 is denoted by Q, and X_2 (which is X_1 in all cases except for A = B = 0) is denoted by Q.

NAND latch (RS latch)

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	prev	/ious
0	0	inva	alid

- * The combination A = 1, B = 0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (irrespective of the previous state of the latch).

* In other words, A = 1, B = 0 → latch gets reset to 0. A = 0, $B = 1 \rightarrow$ latch gets set to 1.

- * The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.
- * X_1 is denoted by Q, and X_2 (which is X_1 in all cases except for A = B = 0) is denoted by Q.

NAND latch (RS latch) R S Q Q 1 0 0 1 0 1 1 0 0 1 1 0 0 0 invalid Why not allow R = S = 0? It makes $Q = \overline{Q} = 1$, i.e., Q and \overline{Q} are not inverse of each other any more. More importantly, when R and S both become 1 simultaneously (starting from R = S = 0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on the delays associated with the two NAND gates.

NAND latch (RS latch) R S Q Q 1 0 0 1 0 1 1 0 0 1 1 0 0 0 invalid Why not allow R = S = 0? - It makes $Q = \overline{Q} = 1$, i.e., Q and \overline{Q} are not inverse of each other any more. - More importantly, when R and Sboth become 1 simultaneously (starting from R = S = 0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on the delays associated with the two NAND gates.

NAND latch (RS latch) R S Q Q 1 0 0 1 1 1 previous 0 0 invalid Why not allow R = S = 0? - It makes $Q = \overline{Q} = 1$, i.e., Q and \overline{Q} are not inverse of each other any more. - More importantly, when R and S both become 1 simultaneously (starting from R = S = 0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q = 0, Q = 1 or Q = 1, Q = 0, depending on the delays associated with the two NAND gates.

NOR latch (RS latch)

- * The NOR latch is similar to the NAND latch:
 When R = 1, S = 0, the latch gets reset to Q = 0.
 When R = 0, S = 1, the latch gets set to Q = 1.
- * For R = S = 0, the latch retains its previous state (i.e., the previous values of Q and \overline{Q}).

NOR latch (RS latch)

- * The NOR latch is similar to the NAND latch:
 When R = 1, S = 0, the latch gets reset to Q = 0.
 When R = 0, S = 1, the latch gets set to Q = 1.
- * For R = S = 0, the latch retains its previous state (i.e., the previous values of Q and \overline{Q}).
- * R= S= 1 is not allowed for reasons similar to those discussed in the context of the NAND latch.

Comparison of NAND and NOR latches						
R——	R	s	Q Q			
	1	0	0 1			
	0	1	1 0			
ā	1	1	previous			
s —	0	0	invalid			
	R	s	Q Q			
R Q	1	0	0 1			
	0	1	1 0			
	0	0	previous			
s Do La			invalid			
	1	1	ii ivaliü			

* When the switch is thrown from A to B, V_o is expected to go from 0 V to V_s (say, 5 V). * However, mechanical switches suffer from "chatter" or "bouncing," i.e., the transition from A to B is not a single, clean one. As a result, V_o oscillates between 0 V and 5 V before settling to its final value (5 V).

The "clock"	
* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the variesignals are synchronised with the clock.	ous

The "clock"

- * Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various signals are synchronised with the clock.
- * Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.

The "clock"

- * Complex digital circuits are generally designed for *synchronous* operation, i.e., transitions in the various signals are synchronised with the *clock*.
- * Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.
- * A clock is a periodic signal, with a positive-going transition and a negative-going transition.

The "clock"

- * Complex digital circuits are generally designed for *synchronous* operation, i.e., transitions in the various signals are synchronised with the *clock*.
- * Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.
- * A clock is a periodic signal, with a positive-going transition and a negative-going transition.

* The clock frequency determines the overall speed of the circuit. For example, a processor that operates with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock.

The "clock"

- * Complex digital circuits are generally designed for *synchronous* operation, i.e., transitions in the various signals are synchronised with the *clock*.
- * Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.
- * A clock is a periodic signal, with a positive-going transition and a negative-going transition.

* The clock frequency determines the overall speed of the circuit. For example, a processor that operates with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock. Intel 80286 (IBM PC-AT): 6 MHz Modern CPU chips: 2 to 3 GHz.

Edge-triggered flip-flops

* The clocked RS latch seen previously is *level-sensitive*, i.e., if the clock is active (CLK = 1), the flip-flop output is allowed to change, depending on the R and S inputs.

Edge-triggered flip-flops

- * The clocked RS latch seen previously is *level-sensitive*, i.e., if the clock is active (CLK = 1), the flip-flop output is allowed to change, depending on the R and S inputs.
- * In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition from 0 to 1 or from 1 to 0).

Edge-triggered flip-flops

- * The clocked RS latch seen previously is *level-sensitive*, i.e., if the clock is active (CLK = 1), the flip-flop output is allowed to change, depending on the R and S inputs.
- * In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition from 0 to 1 or from 1 to 0).
- * Edge-sensitive flip-flops are denoted by the following symbols:

JK flip-flop: asynchronous inputs

S_{d}	R₀	CLK	J	K	Q _{n+1}	
0	1	Х	Χ	Х	0	•
1	0	Х	Х	Х	1	
1	1	Х	Х	Х	invalid	
0	0	Ť	0	0	Qn	
0	0	Ť	0	1	0	normal
0	0	Ť	1	0	1	operation
0	0	Ť	1	1	Q _n	

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, S_d and R_d , (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

JK flip-flop: asynchronous inputs

S_d	R₀	CLK	J	K	Q _{n+1}
0	1	Х	Х	Х	0
1	0	Х	Х	Х	1
1	1	Х	Х	Х	invalid
0	0	1	0	0	Qn
0	0	1	0	1	0
0	0	1	1	0	1
0	0	Ť	1	1	$\overline{Q_n}$

- * Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, S_d and R_d, (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).
- * The S_d and R_d inputs may be active low; in that case, they are denoted by S_d and R_d .

			- 1	. (0	1	1	$A_3A_2A_1A_0$	(decimal 11)
		×				0		$B_3B_2B_1B_0$	(decimal 13)
_						1	1	since B ₀ = 1	
+		0				0	z		
-		0	1			1	1	addition	
+	1					z			
-	1	1	_	_	_	_	1	addition	
+						Z			
-	100						_	addition	(decimal 143)
								denote 0s which	

Multiplication	n usir	ng	sh	ift a	and	d a	dd										
			1	0	1	1	$A_3A_2A_1A_0$	(decimal 11)		Reg	ister 2			Reg	ister 1		
_		×	1	1	0	1	$B_3B_2B_1B_0$	(decimal 13)	Z	Z	Z	Z	Z	Z	Z	Z	initialize
+		٥			1		since $B_0 = 1$ since $B_1 = 0$										
_			_	_	1	_	addition		Г								
+	1						since B ₂ = 1		F				\vdash				
+	1		0		1	1	addition since B ₃ = 1		F								J
_	100					_	addition	(decimal 143)	F								
							lenote 0s which										

Multiplication us	ing	shi	ift a	anc	la	dd												
		1	0	1	1	$A_3A_2A_1A_0$	(decimal 11)			Reg	ister 2				Regi	ster 1		
	×	1	1	0	1	$B_3B_2B_1B_0$	(decimal 13)		Z	Z	Z	Z	Z	2	Z	Z	Z	initialize
+	_		-	1	-	-			1	0	1	1						load 1011 since B ₀ = 1
		_	_		_	since B ₁ =0												1
+				7		addition since B ₂ = 1			Н			Н	F	_				
	1			1	_	addition							L					
						since B ₃ = 1												
100	0	1	1	1	1	addition	(decimal 143)											
													Ē	T				
						enote 0s which												
indoporta	01110		, , , ,	111001		ang manaphod.			Н			Ш						
								4				Ш	F	4				
													L					

Multiplication us	sing	s	hit	ft a	and	a	dd											
			1	0	1	1	$A_3A_2A_1A_0$	(decimal 11)			Regi	ster 2			Regi	ster 1		
	>	<	1	1	0	1	$B_3B_2B_1B_0$	(decimal 13)		Z	Z	Z	Z	Z	Z	Z	Z	initialize
+					1		since $B_0 = 1$			1	0	1	1					load 1011 since B ₀ = 1
	(_	0	0	0	_	since B ₁ = 0		i	1	0	1	1	Z	Z	Z	Z	add
+)			1		addition		ļ		Ů				-	-	-	buu
	_	_			Z	_	since B ₂ = 1		Į									
	1 1		-		1 Z		addition since B ₃ = 1											
10						_	addition	(decimal 143)	Ì									
			•		Ċ	•	addition	(dodina 110)	l I					\vdash]
							enote 0s which		ا									
independ	dent	of t	he	nun	nber	s be	ing multiplied.											
									i					F				
									l I				Н					
																		1

Multiplication using	shift	and	l a	dd											
	1 () 1	1	$A_3A_2A_1A_0$	(decimal 11)			Regi	ster 2			Regi	ster 1		
×	1 1	0	1	$B_3B_2B_1B_0$	(decimal 13)		Z	Z	Z	Z	Z	Z	Z	Z	initialize
+ 0	1 0		1	since $B_0 = 1$ since $B_1 = 0$			1	0	1	1					load 1011 since B ₀ = 1
	1 (_	addition		Ī	1	0	1	1	Z	Z	Z	Z	add
_			z	since B ₂ = 1		ĺ	Z	1	0	1	1	Z	Z	Z	shift
1 1 + 10 1	0 1		1 Z	addition since B ₃ = 1						П					
100 0			_	addition	(decimal 143)										
		_				[
Note that Z = independent of															
						٦i				一					
										$\overline{\Box}$	F				
															1

Multiplication using	n chif	tor	.d 0	dd										
www.phoation using	J 31111	ı aı	iu a	uu										
	1	0 1	1	$A_3A_2A_1A_0$	(decimal 11)		Regi	ster 2			Regi	ster 1		
:	× 1	1 (1	$B_3B_2B_1B_0$	(decimal 13)	Z	Z	Ζ	Z	Z	Z	Z	Z	initialize
	1	0 1		since B ₀ = 1					_					load 1011
+ (0 0					1	0	1	1					since B ₀ = 1
						1	0	1	1	Z	Z	Z	Z	add
		0 1		addition			-				_			
1 (0 1	1 Z	. z	since $B_2 = 1$		Z	1	0	1	1	Z	Z	Z	shift
. 1	1 0	1 1	1	addition			-	_						load 0000
+ 10	1 1	ZZ	Z	since $B_3 = 1$		0	0	0	0					since B ₁ = 0
100 (0 1	1 1	1	addition	(decimal 143)									
					,				_					J
				denote 0s which eing multiplied.										
						Щ								
									=					·]

Multiplication using	chift	and a	dd										
Widitiplication using				(decimal 11)		Regist	er 2			Regi	ster 1		
,			$A_3A_2A_1A_0$ $B_3B_2B_1B_0$	(decimal 11)	Z		Z	Z	Z	Z	Z	Z	initialize
+	1 0		since B ₀ = 1		1	0	1	1					load 1011 since B ₀ = 1
	0 0				1	0	1	1	Z	Z	Z	Z	add
		1 1 Z Z	addition since B ₂ = 1		Z	1	0	1	1	Z	Z	Z	shift
+ 10		1 1 Z Z	addition since B ₃ = 1		0	_	0	0					load 0000 since B ₁ = 0
) 1 1		_	(decimal 143)	0	1	0	1	1	Z	Z	Z	add
Note that 7	- 0 Mou	m7 to	denote 0s which	2 000									
			eing multiplied										
						T							
						Ī							

Multiplication	n	usir	ng										Dogi	ster 2			Dog	ister 1		
			×				0		$A_3A_2A_1A_0$ $B_3B_2B_1B_0$	(decimal 11) (decimal 13)	ſ	Z	Z	Z	Z	Z	Z	Z	Z	initialize
+				1		0	1 0	1	since B ₀ = 1 since B ₁ = 0	(=======	[1	0	1	1	_	_	_	_	load 1011 since B ₀ = 1
+			0	1		0	1	1	addition			1	0	1	1	Z	Z	Z	Z	add
_			1	1	_	_	Z 1	Z 	since B ₂ = 1 addition			Z	1	0	1	1	Z	Z	Z	shift
+		10				•	•	z	since B ₃ = 1		Į	0	0	0	0					load 0000 since B ₁ = 0
	-	100	0	1		1	1	1	addition	(decimal 143)		0	1	0	1	1	Z	Z	Z	add
									enote 0s which			Z	0	1	0	1	1	Z	Z	shift
ind	lep	ende	nt o	f th	e r	nun	nber	s be	ing multiplied.			1	0	1	1					load 1011 since B ₂ = 1
]
]

Multiplication using shift	nd add			
1 0	1 1 A ₃ A ₂ A ₁ A ₀ (decimal 11)	Register 2	Register 1	
× 1 1	1 B ₃ B ₂ B ₁ B ₀ (decimal 13)	Z Z Z Z	Z Z Z Z	initialize
+ 1 0		1 0 1 1		load 1011 since B ₀ = 1
0 0 0	2 since B ₁ = 0	1 0 1 1	ZZZZ	add
+ 0 1 0				
		Z 1 0 1	1 Z Z Z	shift
+ 1 1 0 1 + 10 1 1 2	1 1 addition Z Z since B ₃ = 1	0 0 0 0		load 0000 since B ₁ = 0
100 0 1 1	1 1 addition (decimal 143)	0 1 0 1	1 Z Z Z	add
		Z 0 1 0	1 1 Z Z	shift
	Z to denote 0s which are		1 1 2 2	load 1011
independent of the nu	ers being multiplied.	1 0 1 1		since B ₂ = 1
		1 1 0 1	1 1 Z Z	add
		Z 1 1 0	1 1 1 Z	shift
				1

				1	0	1	1	$A_3A_2A_1A_0$	(decimal 11)				Reg	ister 2			F	Regis	ster 1		
			×	1	1	0	1	$B_3B_2B_1B_0$	(decimal 13)			Z	Z	Z	Z	Z	Τ	Z	Z	Z	initialize
+				1	0	1	1	since B ₀ = 1				1	0	1	1						load 1011
-			0	0	0	0	Z	since B ₁ =0				Ë	-		بنا		_				since B ₀ = 1
_			0	1	0	1	1	addition				1	0	1	1	Z		Ζ	Z	Z	add
_		1	0	1	1	Z	z	since $B_2 = 1$				Z	1	0	1	1	Τ	Z	Z	Z	shift
+		1	1	0	1	1	1	addition				0	0	0	0						load 0000
_	1	0	1	1	Z	Z	Z	since B ₃ = 1				U	U	U	U						since B ₁ = 0
	10	0	0	1	1	1	1	addition	(decimal 143)			0	1	0	1	1		Z	Z	Z	add
												Z	0	1	0	1	Τ	1	Z	Z	shift
								lenote 0s which eing multiplied.				1	0	1	1						load 1011
												Ŀ	Ü	<u> </u>	لنبا						since $B_2 = 1$
												1	1	0	1	1		1	Z	Z	add
												Z	1	1	0	1	T	1	1	Z	shift
												1	0	1	1						load 1011
												<u> </u>	_	<u> </u>	۳						since B ₃ = 1
											1	0	0	0	1	1		1	1	Z	add
										_	_						-				

* Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen? * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. * Similarly, work out the other entries in the table.

1 0 0 0 0 2 0 0 1 3 0 1 0 4 0 1 1 5 1 0 0 0 1 1 X 1 5 1 0 0 0 0 X	2 0 0 1 3 0 1 0 4 0 1 1 5 1 0 0	state				J ₂	K ₂	J ₁	K ₁	J_0	K ₀	CLK	Q _n Q _{n+}	1	J	K
3 0 1 0 4 0 1 1 5 1 0 0	3 0 1 0 4 0 1 1 5 1 0 0											1	0	0	0	Χ
4 0 1 1 5 1 0 0	4 0 1 1 5 1 0 0											1	0	1	1	Χ
↑ 1 1 X 0	γ 1 1 X 0											1	1	0	Х	1
		5	1	0	0								1	1	Х	0
1 0 0 0		1	0	0	0											

1 2		_ 0	0	Q ₀	J ₂	X	J1	IX1	J 0	K ₀	CLK	Q_n	Q _{n+1}	J	K
2	_	0	0	1	U	^					1	0	0	0	Χ
3		0	1	0							1	0	1	1	Χ
4	ļ	0	1	1							1	1	0	Χ	1
5 1		1	0	0							1	1	1	Χ	0

state	Q_2	Q	1 Q			J ₁	K ₁	J_0	K ₀	CLK	Qn	Q _{n+1}	J	K
1 2	0	0		0	Х	0	Х	1	Χ	1	0	0	0	Χ
3	0	1	0							1	0	1	1	Χ
4	0	1	1							1	1	0	Х	1
5 1	1 0	0	0							1	1	1	Х	0

			Q_0	J ₂		J ₁		J_0	K ₀	CLK	Qn	Q _{n+1}	J	K
1	0	0	0	0	X	0	Х	1	Χ	1	0	0	0	Χ
3	$\binom{0}{1}$	1	0	U	^					1	0	1	1	Χ
4	0	1	1							1	1	0	Х	1
5 1	1	0	0							1	1	1	Х	0

1	C	١	0	Q ₀	J ₂	X	J ₁	X	J ₀	K ₀	CLK (Q _n Q _{n+}	1	J	K
2			0	_ 1	0	X	1	X	X	1	1	0	0	0	Χ
3				0	Ŭ						1	0	1	1	Χ
4	C)	1	1							1	1	0	Х	1
5	1	l	0	0							1	1	1	Х	0

1		0	0	Q ₀	J ₂	X	J ₁	X	J ₀	K ₀	CLK (Q _n Q _{n+}	1	J	K
2		0	0	1	0	X	1	X	X	1	1	0	0	0	Χ
3		_0	1	0	0	Х	·	,,			1	0	1	1	Χ
4	٠ (0	1	1							1	1	0	Х	1
5 1		1 0	0	0							1	1	1	Х	0

state	Q ₂			J ₂			K ₁	J ₀	K ₀	CLK (Q _n Q _{n+}	1	J	K
1 2	0	0	0	0	X	0	X	1 X	X 1	1	0	0	0	Χ
3	0	1	0	0	X	X	0	1	X	1	0	1	1	X
4	0	1	< ₁								1	0	Х	1
5	1	0	0							1	1	1	Х	0

2 0 0 1 0 X 1 X X 1 3 0 1 0 0 X X 0 1 X 4 0 1 1 X 5 1 0 0	2 0 0 1 0 X 1 X X 1 3 0 1 0 0 X X 0 1 X ↑ 0 1 1 X 4 0 1 1 1 X ↑ 1 0 X 1	2 0 0 1 0 X 1 X X 1 3 0 1 0 0 X X 0 1 X 4 0 1 1 1 X 5 1 0 0 1 1 X ↑ 1 0 X 1 ↑ 1 1 X 0				K
4 0 1 1 1 X 1 1 X 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 0 1 1 1 X 1 1 X 0	2 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	X
5 1 0 0 1 1 X 0	5 1 0 0 1 1 X 0	5 1 0 0 1 1 X 0	3 0 1 0 0 X X 0 1 X	1	1	Χ
↑ 1 1 X 0	1 1 X 0	1 1 X 0		0	Х	1
1 0 0 0	1 0 0 0	1 0 0 0	5 1 0 0	1	Х	0
1 0 0 0			1 0 0 0			

1 2	0		Q_0	J ₂		J ₁	K ₁		K ₀	CL	K Q	n Qn+1		J	K
	0	0	0	0	X	0	X	1 X	X 1	-		0	0	0	Χ
3	0	1	0	0	X	X	0	1	X	1		0	1	1	X
4	0	1	_1	1	Χ	Χ	1	Χ	1	1		1	0	Х	1
5 1	1 0	C	0							1		1	1	Х	0

state			Q ₀		K ₂		K ₁		K ₀	CLK (Q _n Q _{n+}	1	J	K
1 2	0	0	0	0	X	0	X	1 X	X 1	1	0	0	0	Χ
3	0	1	0	0	X	X	0	1	X	1	0	1	1	Χ
4	0	1	1	1	Χ	Χ	1	Х	1	1	1	0	Х	1
5 1	ζ_0^1	0	0	Х	1					1	1	1	Х	0

state			Q ₀	_		J ₁		J ₀	K ₀	CLK (Qn Qn+	1	J	K
1 2	0	0	0	0	X	0	X	1 X	X 1	1	0	0	0	Χ
3	0	1	0	0	X	X	0	1	X	1	0	1	1	Χ
4	0	1	1	1	Х	Χ		Х	1	1	1	0	Х	1
5	1	0	<0 0	Х	1	0	Χ	0	Χ	1	1	1	Х	0

Design of synchronous counters

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K ₁	J_0	K ₀
1					Х				
					X				
					X				
4	0	1	1	1	Χ	X	1	X	1
5	1	0	0	Χ	1	0	X	0	Χ
1	0	0	0						

CLK	Q_n	Q _{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Х	1
1	1	1	Χ	0

- * We now have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_0 , Q_1 , Q_2 . The next step is to find logical functions for each of them.
- * Note that we have not tabulated the J and K values for those combinations of Q₀, Q₁, Q₂ which do not occur in the state transition table (such as Q₂Q₁Q₀ = 110). We treat these as don't care conditions.

 Big Thanks to Prof. M.B. Patil, IIT Bombay to provide such a wonderful slides for Sequential circuits to understand stepwise.