Assignment 10: Data Scraping

Meg Manning

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on data scraping.

Directions

- 1. Rename this file <FirstLast>_A10_DataScraping.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure your code is tidy; use line breaks to ensure your code fits in the knitted output.
- 5. Be sure to **answer the questions** in this assignment document.
- 6. When you have completed the assignment, **Knit** the text and code into a single PDF file.

Set up

- 1. Set up your session:
- Load the packages tidyverse, rvest, and any others you end up using.
- Check your working directory

```
#1
library(tidyverse)
library(rvest)
library(lubridate)
library(here); here()
```

[1] "/Users/margaretmanning/Desktop/GitHub/ENVIRON 872/EDE_Fall2023"

- 2. We will be scraping data from the NC DEQs Local Water Supply Planning website, specifically the Durham's 2022 Municipal Local Water Supply Plan (LWSP):
- $\bullet \ \ Navigate \ to \ https://www.ncwater.org/WUDC/app/LWSP/search.php$
- Scroll down and select the LWSP link next to Durham Municipality.
- Note the web address: https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010&year=2022

Indicate this website as the as the URL to be scraped. (In other words, read the contents into an rvest webpage object.)

```
#2 Read in the contents of the webpage
webpage <- read_html('https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010&year=2022')
webpage

## {html_document}
## <-html_xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
## [1] <-head>\n<title>DWR :: Local Water Supply Planning</title>\n<meta http-equ ...
## [2] <-body id="plan">\r\n<!--<div id="division-header">\r\n<a name="top" href= ...</pre>
```

- 3. The data we want to collect are listed below:
- From the "1. System Information" section:
- Water system name
- PWSID
- Ownership
- From the "3. Water Supply Sources" section:
- Maximum Day Use (MGD) for each month

In the code chunk below scrape these values, assigning them to four separate variables.

HINT: The first value should be "Durham", the second "03-32-010", the third "Municipality", and the last should be a vector of 12 numeric values (represented as strings)".

```
#3 Scrape each variable we want
#Water System Name
water_system <- webpage %>%
 html_nodes("div+ table tr:nth-child(1) td:nth-child(2)") %>%
 html text()
water_system
## [1] "Durham"
#PWSID
PWSID <- webpage %>%
 html_nodes("td tr:nth-child(1) td:nth-child(5)") %>%
 html_text()
PWSID
## [1] "03-32-010"
#Ownership
ownership <- webpage %>%
 html_nodes("div+ table tr:nth-child(2) td:nth-child(4)") %>%
 html_text()
ownership
```

```
#Maximum day use (MGD) for each month
MGD_bymonth <- webpage %>%
  html_nodes("th~ td+ td") %>%
  html_text()
MGD_bymonth
```

```
## [1] "36.1000" "43.4200" "52.4900" "30.5000" "42.5900" "34.8800" "39.9100"
## [8] "43.3200" "32.5300" "34.6600" "41.8000" "37.5300"
```

4. Convert your scraped data into a dataframe. This dataframe should have a column for each of the 4 variables scraped and a row for the month corresponding to the withdrawal data. Also add a Date column that includes your month and year in data format. (Feel free to add a Year column too, if you wish.)

TIP: Use rep() to repeat a value when creating a dataframe.

NOTE: It's likely you won't be able to scrape the monthly widthrawal data in chronological order. You can overcome this by creating a month column manually assigning values in the order the data are scraped: "Jan", "May", "Sept", "Feb", etc... Or, you could scrape month values from the web page...

5. Create a line plot of the maximum daily withdrawals across the months for 2022

```
#4 convert to dataframe
df_watersupply <- data.frame("Month" = rep(1:12),</pre>
                              "Year" = rep(2022, 12),
                              "Max Day Use" = as.numeric(MGD bymonth))
# Tidy up dataframe and add date, ownership, and PWSID
df_watersupply <- df_watersupply %>%
  mutate(water_system = !!water_system,
         PWSID = !!PWSID,
         Ownership = !!ownership,
         Date = my(paste(Month, "-", Year)))
#5 create line plot of max daily withdrawals across 2022
ggplot(df_watersupply,aes(x=Date,y=Max_Day_Use)) +
  geom line() +
  labs(title = paste("2022 Monthly Max Daily Water Usage Data for", water_system),
       subtitle = PWSID,
       y="Withdrawal (mgd)",
       x="Month")
```

2022 Monthly Max Daily Water Usage Data for Durham 03–32–010

6. Note that the PWSID and the year appear in the web address for the page we scraped. Construct a function using your code above that can scrape data for any PWSID and year for which the NC DEQ has data. Be sure to modify the code to reflect the year and site (pwsid) scraped.

```
#6. Construct a function using code above for any PWSID
PWSID <- "03-32-010"
the_year <- 2015
scrape.it <- function(PWSID, the_year){</pre>
  the_website <- read_html(paste0('https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=',
                                   PWSID, "&year=", the_year))
  water_system_tag <- "div+ table tr:nth-child(1) td:nth-child(2)"</pre>
  PWSID_tag <- "td tr:nth-child(1) td:nth-child(5)"</pre>
  ownership_tag <- "div+ table tr:nth-child(2) td:nth-child(4)"</pre>
  MGD_bymonth_tag <- "th~ td+ td"
  water_system <- the_website %>% html_nodes(water_system_tag) %>% html_text()
  PWSID <- the_website %>% html_nodes(PWSID_tag) %>% html_text()
  ownership <- the_website %>% html_nodes(ownership_tag) %>% html_text()
  MGD_bymonth <- the_website %>% html_nodes(MGD_bymonth_tag) %>% html_text()
  df_watersupply <- data.frame("Month" = rep(1:12),</pre>
                                "Year" = rep(the_year,12),
```

7. Use the function above to extract and plot max daily withdrawals for Durham (PWSID='03-32-010') for each month in 2015

```
#7 Extract and plot max daily withdrawals for Durham
durham_df <- scrape.it("03-32-010", 2015)
view(durham_df)

#plot the max daily withdrawals for Durham
ggplot(durham_df,aes(x=Date,y=Max_Day_Use)) +
    geom_col(fill = "lightblue") +
    labs(title = paste(the_year, "Monthly Max Daily Water Usage data for", water_system),
        subtitle = PWSID,
        y="Withdrawal (mgd)",
        x="Month")</pre>
```

2015 Monthly Max Daily Water Usage data for Durham 03–32–010

8. Use the function above to extract data for Asheville (PWSID = 01-11-010) in 2015. Combine this data with the Durham data collected above and create a plot that compares Asheville's to Durham's water withdrawals.

```
#8 Extract data for Asheville in 2015
asheville_df <- scrape.it('01-11-010', 2015)
view(asheville_df)

combined_data <- rbind(durham_df, asheville_df)
view(combined_data)

ggplot(combined_data, aes(y = Max_Day_Use, x=Date, fill = water_system)) +
    geom_col()+
    labs(title = paste("Monthly Water Usage Data for Durham Compared with Asheville"),
        subtitle = "2015",
        y="Withdrawal (mgd)",
        x="Month",
        fill = "Water System")</pre>
```

Monthly Water Usage Data for Durham Compared with Asheville 2015

9. Use the code & function you created above to plot Asheville's max daily withdrawal by months for the years 2010 thru 2021.Add a smoothed line to the plot (method = 'loess').

TIP: See Section 3.2 in the "10_Data_Scraping.Rmd" where we apply "map2()" to iteratively run a function over two inputs. Pipe the output of the map2() function to bindrows() to combine the dataframes into a single one.

```
#9 "Map" the "scrape.it" function to retrieve data for 2010 through 2021
the_years <- seq(2010,2021)
PWSID <- rep("01-11-010", length(the_years))
```

'geom_smooth()' using formula = 'y ~ x'

Monthly Water Usage Data for Asheville 2010–2021

Question: Just by looking at the plot (i.e. not running statistics), does Asheville have a trend in water usage over time? > Answer: Based on the curved line, it appears that Asheville's daily water withdrawal decreased slightly from around 2010 to 2015, but since 2015 it seems to have a positive trend, and overall it appears that Asheville is increasing their daily water usage. >