

4 mai 2019

EPREUVE DE MATHEMATIQUES

Consignes aux candidats

Durée de l'épreuve : 1h30

Vous devez commencer par <u>remplir la partie administrative de votre fiche optique</u>, avec indication de votre nom, prénom, et en cochant les cases de votre identifiant personnel : le numéro QCM.

- L'épreuve de Mathématiques se déroule sur 1h30 et est constituée de 6 questions obligatoires et de 6 questions à choisir parmi les questions numérotées de 7 à 14.
- Chaque question comporte cinq propositions : A, B, C, D, E.
- Pour chaque question :
 - Vous cochez la (ou les) case(s) V de la fiche optique correspondant à toute proposition que vous jugez vraie.
 - Vous cochez la (ou les) case(s) F de la fiche optique correspondant à toute proposition que vous jugez fausse.
 - Les cinq propositions peuvent être toutes vraies ou toutes fausses
- Toute case correctement remplie entraîne une bonification. Toute erreur est pénalisée. Il est donc préféré une absence de réponse à une réponse inexacte.
- <u>Seule la fiche optique</u> est ramassée en fin d'épreuve.

LES CALCULATRICES NE SONT PAS AUTORISÉES

Vérifiez que votre épreuve est constituée de 6 pages numérotées de 1 à 6. Dans le cas contraire, demandez un nouveau sujet.

Concours Advance 4 mai 2019

Épreuve de mathématiques

Durée: 1 h 30

Questions obligatoires

1. a.
$$\lim_{x \to +\infty} \frac{x^2 - x}{2x^2 + 1} = \frac{1}{2}$$
.

b.
$$\lim_{x \to +\infty} \frac{x}{e^x} = 0.$$

c.
$$\lim_{x \to 0} \ln(x) = 0$$
.

d. Si
$$2\ln(a) + 1 > 0$$
 alors $a > \sqrt{e}$.

- e. Sur $]0, +\infty[$, la dérivée de la fonction $x \mapsto x \ln(x)$ est la fonction $x \mapsto \ln(x)$.
- 2. Le plan complexe est muni d'un repère orthonormal d'origine O.

Pour tout point M du plan, l'affixe de M est noté Z_M .

A, B et C désignent trois points du plan distincts de O.

a. Si
$$Z = \frac{1+i}{\sqrt{2}-i\sqrt{6}}$$
 alors $|Z| = \frac{1}{2}$ et $\arg(Z) = \frac{7\pi}{12} [2\pi]$.

b. Si
$$Z = -2\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$$
 alors $|Z| = 2$ et $\arg(Z) = -\frac{3\pi}{4}[2\pi]$.

- c. Si les points A et B sont symétriques par rapport à O alors $Z_A = \overline{Z_B}$.
- d. Si $|Z_A| = |Z_B| = |Z_C|$ alors ABC est un triangle équilatéral.
- e. Si $\arg(Z_A) = \pi + \arg(Z_B) [2\pi]$ alors O, A et B sont alignés.
- 3. f est une fonction définie et dérivable sur un ensemble D.

a. Si
$$D = \mathbb{R}$$
 et $f(x) = \frac{x^2 - 1}{x^2 + 1}$ alors $f'(x) = \frac{4x}{(x^2 + 1)^2}$.

b. Si
$$D = \mathbb{R}^*$$
 et $f(x) = (x^2 - x)e^{1/x}$ alors $f'(x) = e^{1/x} \left(\frac{2x^2 - 2x + 1}{x} \right)$.

c. Si
$$D = \mathbb{R}^*$$
 et $f(x) = \ln(x^2 + 1)$ alors $f'(x) = \frac{1}{x^2 + 1}$.

d.
$$\int_0^1 \frac{4x}{x^2 + 1} dx = \ln(2)$$
.

e.
$$\int_0^{\pi/2} \sin(2x + \pi) dx = 0$$
.

- 4. Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^{1-x}$ et \mathscr{C} la courbe représentant f dans un repère orthonormal. Soit d la droite d'équation y = ex + 15 et D la droite d'équation y = x.
 - a. $\lim_{x \to +\infty} f(x) = +\infty$.
 - b. $\lim_{x \to -\infty} f(x) = -\infty$.
 - c. Pour tout réel x, $f'(x) = (1-x)e^{1-x}$.
 - d. Il existe une tangente T à $\mathscr C$ qui est parallèle à la droite d.
 - e. \mathscr{C} est en dessous de la droite D sur $]-\infty,0[$.
- 5. Soit g la fonction définie sur $]0,+\infty[$ par $g(x)=\frac{\left(\ln(x)\right)^2}{x},$ représentée par la courbe $\mathscr C$ dans un repère orthonormal.

Soit h la fonction définie sur $]0, +\infty[$ par $h(x) = \frac{1}{x}$, représentée par la courbe \mathscr{C}' .

- a. $\lim_{x \to 0} g(x) = 0$.
- b. Pour tout réel x strictement positif, $g'(x) = \frac{2\ln(x) (\ln(x))^2}{x^2}$.
- c. Pour tout réel x strictement positif, $\frac{g(x)}{2} = \left(\frac{\ln\left(\sqrt{x}\right)}{\sqrt{x}}\right)^2$.
- d. ${\mathscr C}$ admet une asymptote parallèle à l'axe des abscisses.
- e. $\mathscr C$ est au-dessus de $\mathscr C'$ sur $\left]\frac{1}{e},+\infty\right[.$
- 6. Un magasin d'électroménager vend deux modèles de robot au même prix et de marques M_1 et M_2 .

Les deux robots ont les mêmes caractéristiques et sont proposés en deux couleurs : noir et blanc.

D'après une étude sur les ventes de ces deux modèles, 70 % des acheteurs ont choisi le robot M_1 et, parmi eux, 60 % ont préféré la couleur noire. Par ailleurs 20 % des clients ayant acheté un robot M_2 l'ont choisi de couleur blanche.

On utilise la liste des clients ayant acheté l'un ou l'autre des robots précédemment cités et on choisit un client au hasard.

Soient A et B deux événements indépendants d'un même univers Ω tels que P(A)=0,3 et $P(A\cup B)=0,65$.

- a. La probabilité qu'un client choisi au hasard ait acheté un robot M_2 de couleur noire est égale à $\frac{6}{25}$.
- b. La probabilité qu'un client choisi au hasard ait acheté un robot de couleur noire est égale à $\frac{6}{25}$.
- c. Le client a choisi un robot de couleur noire. La probabilité qu'il soit de marque M_2 est égale à $\frac{33}{50}$.
- d. La probabilité de l'événement B est égale à 0.5.
- e. A et \overline{B} sont indépendants.

Questions à choisir

- 7. Soit f la fonction définie par $f(x) = \ln((1 e^x)^2)$ et \mathscr{C} la courbe représentant f dans un repère orthonormal du plan.
 - a. Pour tout $x \neq 0$, f(x) > 0.
 - b. L'axe des abscisses est une asymptote de $\mathscr C$ en $-\infty$.
 - c. Pour tout $x \neq 0$, $f(x) = 2\ln(1 e^x)$.
 - d. Pour tout $x \neq 0$, (f(x) > 0 si et seulement si x < 0).
 - e. f est décroissante sur $]-\infty, 0[$.
- 8. Soit (u_n) la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{3}u_n + n 2$.

Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = -2u_n + 3n - \frac{21}{2}$.

On considère l'algorithme ci-dessous.

N est un entier, U est un réel

$$U \longleftarrow 1; N \longleftarrow 0;$$

Tant que $(U \leqslant 0 \text{ ou } N = 0)$

$$U \longleftarrow \frac{U}{3} + N - 2$$

$$N \longleftarrow N + 1$$

Fin Tant que

Afficher U

a.
$$u_3 = -\frac{14}{27}$$
.

- b. L'algorithme affiche la valeur de u_3 .
- c. Pour tout $n \in \mathbb{N}$, $(n \ge 5 \Longrightarrow u_n \ge n-3)$.
- d. (v_n) est une suite géométrique de raison 3.
- e. $\lim_{n \to +\infty} u_n = +\infty$.

9. Soit (u_n) la suite définie par $u_0 = 4$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ où f est une fonction définie et dérivable sur \mathbb{R} .

Soit (v_n) la suite définie par $v_0 = 1$ et, pour tout $n \in \mathbb{N}$, $\ln(v_{n+1}) = \ln(v_n) - 1$.

- a. Si pour tout réel x, f'(x) < 0 alors (u_n) est strictement décroissante.
- b. (v_n) est une suite géométrique.
- c. (v_n) est convergente.
- d. La suite (t_n) définie pour tout $n \in \mathbb{N}$ par $t_n = (n^2 200)\sqrt{n}$ est décroissante.
- e. $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{2^k} = +\infty.$
- 10. f est une fonction définie sur \mathbb{R} .
 - a. Si pour tout réel x > 1, $1 + \frac{1}{x} < f(x) < \frac{x^2 + x + 100}{x^2 + 1}$ alors $\lim_{x \to +\infty} f(x) = 1$.
 - b. Si $f(x) = 2x + 3 \sin(2x)$ alors pour tout réel $x, f(x) \le 2x + 2$.
 - c. $\lim_{x \to +\infty} 2x \sin\left(\frac{1}{2x}\right) = 1$.
 - d. $\lim_{n \to +\infty} \frac{3+2^n}{3+4^n} = 1$.
 - e. Si 0 < x < 1 alors $\lim_{n \to +\infty} [(1-x)^n (1+x)^n] = +\infty$.
- 11. Dans le plan complexe muni d'un repère orthonormal d'origine O, on considère les points E et F d'affixes respectives -2 + i et 2 + 4i et \mathscr{E} l'ensemble des points M d'affixe z vérifiant |z + 2 i| = |z 2 4i|. Pour tout point M du plan, l'affixe de M est notée z_M .
 - a. Le point G d'affixe $3 \frac{3}{2}i$ appartient à \mathscr{E} .
 - b. \mathscr{E} est le cercle de diamètre [EF].
 - c. Le triangle OEF est rectangle.
 - d. Si $z_A = 2 3i$, $z_B = -26 + 18i$ et $z_C = -2$ alors A, B et C sont alignés.
 - e. Si $z_A=3e^{2i\pi/3}$ et $z_B=2e^{-5i\pi/6}$ alors le triangle OAB est rectangle.

12. L'espace est rapporté à un repère orthonormal $(O, \vec{i}, \vec{j}, \vec{k})$.

On considère les points suivants définis par leurs coordonnées : A(1;-1;2), B(3;3;8), C(-3;5;4) et D(1;2;3).

On considère les points suivants définis par leurs coordonnées :
$$A(1;-1;2), B(3;3;8)$$

On note d la droite ayant pour représentation paramétrique
$$\begin{cases} x=1+t\\ y=-1+2t, t\in \mathbb{R}\\ z=-2+3t \end{cases}$$

On note d' la droite ayant pour représentation paramétrique $\left\{\begin{array}{l} x=1+k\\ y=3+k\ ,k\in\mathbb{R}\\ z=4-k \end{array}\right.$

On note P le plan d'équation x + y - z + 2 = 0.

- a. Le point C appartient à la droite d.
- b. Les droites d et d' sont parallèles.
- c. Le plan P contient la droite d et est orthogonal à la droite d'.
- d. Le triangle BCD est rectangle.
- e. On note P' le plan contenant la droite d' et le point A. Un vecteur normal à ce plan est : $\vec{n}(3;-1;2)$.
- 13. On considère les deux fonctions f et g définies par $f(x) = (x-1)^2$ et g(x) = -x+1 représentées graphiquement par leurs courbes respectives \mathscr{C}_f et \mathscr{C}_g .

Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \frac{x^n}{1+x} dx$.

a. L'aire du domaine compris entre \mathscr{C}_f et \mathscr{C}_g (pour $x \in [0,1]$) est égale à $\frac{1}{6}$.

b.
$$\int_0^1 (x-1)^2 dx = \frac{2}{3}$$
.

c.
$$\int_0^1 \frac{1}{(1+x)^2} \, \mathrm{d}x = \frac{1}{2}.$$

- d. Pour tout $n \in \mathbb{N}$, $u_{n+1} + u_n = \frac{1}{n+1}$.
- e. $\ln\left(\frac{3}{2}\right) < \int_0^1 \frac{e^x}{e^x + 1} \, dx < \ln(2)$.
- 14. Le temps d'attente, exprimé en minutes, à un guichet, est une variable aléatoire T qui suit une loi exponentielle de paramètre 0,7.

Marc se rend à son travail à pied ou en bus. Dans la ville où il habite, il pleut un jour sur quatre.

Lorsqu'il pleut, Marc se rend en bus à son travail dans 80 % des cas.

Lorsqu'il ne pleut pas, il se rend à pied à son travail dans 60~% des cas.

- a. La probabilité qu'un client attende moins de 5 minutes à ce guichet est égale à $\frac{e^{3,5}-1}{e^{3,5}}$.
- b. Sachant qu'un client attend depuis 5 minutes, la probabilité qu'il attende au total plus de 10 minutes à ce guichet est égale à $e^{-3.5}$.
- c. Marc prend le bus un jour sur deux.
- d. Soient A et B deux événements liés à une même épreuve aléatoire qui vérifient : P(A) = 0.4, $P_A(B) = 0.7$ et $P_{\overline{A}}(\overline{B}) = 0.1$.

Alors la probabilité de l'événement A sachant que l'événement B est réalisé est égale à $\frac{14}{89}$.

e. Soit X une variable aléatoire prenant ses valeurs dans l'intervalle $[1, +\infty[$ et dont la loi de probabilité admet comme densité la fonction f définie par $f(x) = \frac{2}{x^3}$.

Alors
$$P(1 \leqslant X \leqslant 4) = \frac{15}{16}$$
.

CORRIGÉ DU SUJET OFFICIEL

DE L'ÉPREUVE MATHÉMATIQUES

(V)rai ou (F)aux

N°	Α	В	С	D	Е
1	V	V	F	F	F
2	V	F	F	F	V
3	V	V	F	F	F
4	F	V	V	V	V
5	F	V	F	V	F
6	V	F	F	V	V
7	F	V	ŀ	F	V
8	V	F	V	F	V
9	F	V	V	F	F
10	V	F	V	F	F
11	V	F	V	V	V
12	F	F	F	V	V
13	V	F	V	V	V
14	V	V	V	F	V