REINFORCEMENT LEARNING

Real-Time DQN Training for CartPole Environment with Live Performance Plottings

Reinforcement Learning Steps

- 1. Formulate Problems
- 2. Create Environment
- 3. Define Reward
- 4. Create Agent
- 5. Train Agent
- 6. Validate Agent
- 7. Deploy Policy

OBJECTIVE	Train a DQN agent to balance a pole on a cart in the CartPole-v1 environment using reinforcement learning.
GOAL	Develop an agent that maximizes its balance time by making intelligent decisions based on observations.
APPROACH	Use DQN algorithm with experience replay and epsilon-greedy policy, implemented with TensorFlow in OpenAI Gym's CartPole environment.
KEY TECHNIQUES	DQN, experience replay, and epsilon-greedy policy for balancing exploration and exploitation.
OUTCOMES	The trained agent learns to balance the pole for extended periods, evaluated by episode rewards and fine-tuned hyperparameters.

Hyper Fine Tuning

gamma (0.95), epsilon (1.0), epsilon decay (0.995), epsilon minimum (0.01), and learning rate (0.001)

1. Formulate Problems	Task of keeping the pole upright.
2. Create Environment	OpenAI Gym to simulate the CartPole environment.
3. Define Reward	Reward for staying upright; penalty for failure.
4. Create Agent	Build a neural network to predict actions
5. Train Agent	Learn from interactions and replay experiences.
l 6. Validate Agent	Test performance in the environment.
I 7. Deploy Policy	Finalize and apply the trained policy.

1. Formulate Problems

2. Create Environment

3. Define Reward

4. Create Agent

5. Train Agent

6. Validate Agent

CartPole-v0	Balance a pole on a moving cart.	Quick reflexes and real-time decisions.
MountainCar-v0	Drive a car up a hill using momentum.	Control acceleration and physics.
LunarLander-v2	Land a spacecraft on a designated pad.	Balance fuel use and landing accuracy.
Breakout-v0	Hit a ball to break blocks in a game.	Prediction and timing.
Atari Games	Classic games requiring strategic play.	Unique mechanics per game.
Roboschool	Simulated robotic environments for control learning.	Complex physics and precise control.

1. Formulate Problems

2. Create Environment

3. **Define Reward**

4. Create Agent

5. Train Agent

6. Validate Agent

Environment	Reward Structure	Description
CartPole-v0	+ve for each timestep the pole is balanced.	Encourages longer balance time.
MountainCar-v0	+ve for reaching the flag, -ve for timestep.	Motivates climbing to the goal.
LunarLander-v2	+ve for landing successfully, -ve for crashes/fuel usage.	Balances careful landing and fuel efficiency.
Breakout-v0	+ve for each block destroyed, -ve for missing the ball.	Rewards aggressive play and accuracy.
Atari Games	rewards for scoring and achieving objectives.	Encourages varied gameplay strategies.
Roboschool	+ve for completing tasks, -ve for failures	Promotes effective task execution.

Estimate Models Used

- 1. Formulate Problems
- 2. Create Environment
- 3. Define Reward
- 4. Create Agent
- 5. Train Agent
- 6. Validate Agent
- 7. Deploy Policy

Deliverable	Description
Trained Q-Table	A Q-table with learned values for state-action pairs.
Average Reward	The average reward achieved by the trained agent.
Policy for CartPole	A learned policy for the CartPole environment.
Exploration Decay Curve	A plot showing how the exploration rate decays over episodes.
Performance Evaluation	Statistics on how well the agent performs in the environment.

Estimate Equations Used

2. Create Environment

3. Define Reward

4. Create Agent

5. Train Agent

6. Validate Agent

7. Deploy Policy

Bellman Equation (for value function approximation)

V(s): Value function R(s): Reward function γ: Discount factor Σ: Summation over possible states s' P(s, s'): Transition probability from state s to s' (s prime) Policy Gradient Equation (for policy optimization)

 $\nabla J(\theta) = \Sigma \nabla \pi(a)$

Policy Gradient Equation (for policy optimization)

 ∇ J(θ): Gradient of the objective function with respect to policy parameters θ ∇ π (a): Gradient of the policy with respect to an action a - DQN-Learning Equation (for action-value function)

 $Q(s,a;\theta)=r+\gamma a'\max Q(s',a';\theta-)$

Q-Learning Equation (for actionvalue function)

- θ\thetaθ: Parameters (weights) of the neural network
- θ-\theta^{-}θ-: Target network parameters

Bellman Equation Importance: enables agents to estimate and optimize future rewards

Reinforcement Learning Steps

- 1. Formulate Problems
- 2. Create Environment
- 3. **Define Reward**
- 4. Create Agent
- 5. Train Agent
- 6. Validate Agent
- 7. Deploy Policy

Comparision b/w Reinforcement Learning & Symbolic Al

Aspect	Symbolic AI	Reinforcement Learning
Problem-Solving Approach	Deductive reasoning, rule- based Trial and error, reward- based	
When to Use Them	When you know the rules and facts	When you need to explore and learn
Combining Both	Can provide prior May incorporate symbols knowledge knowledge	
Example	Medical (Mycin)	Tesla Car -Auto Pilot

Example:

Reinforcement Learning = Tesla Car -Auto Pilot Symbolic AI = Medical (Mycin)

Neural-symbolic architectures / hybrid intelligence

Try brid intettigence			
Neural-Symbolic Architectures / Hybrid Intelligence	Application	How They Are Applied	Examples
Neural-Symbolic Integration	Combining neural networks and symbolic reasoning	Enhancing AI systems with the strengths of both approaches	Doctors (for Medical Diagnosis)
Knowledge Graph Embeddings	Linking symbolic Improving knowledge to reasoning and neural inference with representations neural networks		Movie Recommendations
Explainable AI (XAI)	natwork decisions I transparancy and II		Explanations (for Al decisions)
Natural Language Processing with Logic	Incorporating symbolic logic into NLP tasks	Enhancing natural language understanding with logic	Smart Chatbots (for Natural Language Understanding)

Example:

Medical Diagnosis, Movie Recommendations, NLP Chatbot

1. Formulate Problems

2. Create Environment

3. Define Reward

4. Create Agent

5. Train Agent

6. Validate Agent

Environment	Training Focus	Learning Challenge
CartPole-v1	Balance a pole on a moving cart.	Quick decision-making, stability control.
MountainCar-v0	Drive up a steep hill.	Requires long-term planning, momentum control.
LunarLander-v2	Safely land a lunar module.	Precision landing, balancing fuel and landing force.
Breakout-v0	Break bricks with a ball and paddle. Reaction timing, ai strategies.	
Pong-v0	Play table tennis against an AI opponent.	Competitive play, fast reflexes, strategy.
BipedalWalker-v3	Make a bipedal robot walk on uneven Complex control moveme	

1. Formulate Problems

2. Create Environment

3. Define Reward

4. Create Agent

5. Train Agent

6. Validate Agent

Validation Method	Description	Environments
Episode Reward	Total reward over episodes.	CartPole, MountainCar, LunarLander, Pong
Success Rate	Percent of goals achieved.	LunarLander, MountainCar, BipedalWalker
Survival Time	Time agent stays active before failure.	CartPole, Pong, BipedalWalker
Action Efficiency	Minimizing steps to complete tasks.	Breakout, LunarLander, MountainCar
Precision in Actions	Accuracy in performing tasks.	LunarLander, Breakout, Pong
Policy Consistency	Consistent actions across similar states.	All environments

ESTIMATE AWS SAGEMAKER PRICING

1. Formulate Problems

I

2. Create Environment

3. Define Reward

4. Create Agent

5. Train Agent

6. Validate Agent

7. Deploy Policy

Let's calculate the approximate monthly cost in INR:

Monthly Cost (in USD) = \$3.06 * 24 hours * 30 days = \$2,206.40 Monthly Cost (in INR) ≈ \$2,206.40 * 73.5 INR/USD

Monthly Cost (in USD) ≈ \$2,203.20 USD

Pricing:- p3.2xlarge instance: Approximately \$3.825 Pricing/Hour

Instance Type	GPU	vCPU	Memory (RAM)	Storage	Notes
p3.2xlarge (or similar)	NVIDI A V100 GPU	8	16 GB	EBS volumes as needed for data/model storage	GPU acceleration for RL training

AWS DeepRacer Pricing

AWS Link:https://aws.amazon.com/deepracer/pricing/

1. Formulate Problems

2. Create Environment

3. **Define Reward**

4. Create Agent

5. Train Agent

6. Validate Agent

7. Deploy Policy

With AWS DeepRacer, you can create your own machine learning models (in a process called 'training') and race them (in a process called 'evaluation').

Free Tier	Service pricing
10 free hours to train or evaluate models for 30 days	Training or evaluation: \$3.50 per hour
5GB of free storage during your first month.	Model storage: \$0.023 per GB-month

Device pricing	Pricing
AWS DeepRacer	(\$399) is a fully autonomous 1/18th scale, four-wheel drive car.Using a single 4 megapixel camera with 1080p resolution to view the track
AWS DeepRacer Evo	(\$598) is the next generation in autonomous racing.
AWS DeepRacer Sensor Kit	(\$249).

Pricing Example:

AWS DeepRacer Jobs		Hours	Cost per hour (\$)	Total (\$)
Model training		2	\$3.50	\$7.00
Model evaluation		0.083	\$3.50	\$0.29
Total				\$7.29
AWS DeepRacer Storage	GB	GB-month used	Cost per GB-month (\$)	Total (\$)
Model storage	3.96	3.96	\$0.02	\$0.09