

Normalização

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1a FN
 - 2a FN
 - 3a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2ª FN e 3ª FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4ª FN

ICMC - USP - GB

Normalização

- Definições genéricas ⇒levam todas as chaves candidatas em consideração
 - 2ª FN ⇒ todos os atributos não primários possuem dependência total, transitiva ou não, de todas as chaves (primária, secundária, ...)
 - 3ª FN ⇒ todos os atributos não primários possuem dependência total, não transitiva, de todas as chaves (primária, secundária, ...)

Exemplo

 $\operatorname{IdProp} o \operatorname{Municipio}$, NroLote, Área Municipio, NroLote o Área, IdProp Área o Preço

Lotes = {IdProp, Municipio, NroLote, Área, Preço }

- ➤ Analise a relação **Lotes** considerando as definições genéricas de 2ª FN e 3ª FN
 - 2ª FN?
 - 3a FN?

Exemplo

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- ➤ Analise a relação **Treinamento** considerando as definições genéricas de 2ª FN e 3ª FN
 - 2ª FN?
 - 3a FN?

O que acontece com a DF Instrutor → Curso?

Forma Normal de Boyce - Codd (BCNF)

- BCNF ⇒ extensão da 3ª FN (definição genérica)
- •uma relação R está na BCNF se:
- estiver na 3ª FN
- para toda DF não-trivial X → A, X é uma superchave em R

ICMC - USP - GBDI

4

Exemplo

IdProp ightarrow Municipio, NroLote, Área Municipio, NroLote ightarrow Área, IdProp Área ightarrow Preço

Lotes = { IdProp, Municipio, NroLote, Área, Preço }

A relação Lotes está na BCNF?

Exemplo

IdProp o Municipio, NroLote, ÁreaMunicipio, NroLote o Área, IdPropÁrea o Preco

Lotes = {IdProp, Municipio, NroLote, Área, Preço }

> Normalizando para BCNF....

Lotes = {<u>IdProp</u>, Municipio, NroLote, Área}

Área = {Área, Preço}

Exemplo

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- > A relação **Treinamento** está na BCNF?
- > Alternativas normalização por decomposição?

Exemplo

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- > Alternativas de decomposição:
 - 1) {Aluno, Instrutor} e {Aluno, Curso}
 - 2) {Curso, Instrutor} e {Curso, Aluno}
 - 3) {Instrutor, Aluno} e {Instrutor, Curso}

Quais os problemas de cada alternativa? Qual a melhor opção? Por que?

Normalização

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1a FN
 - 2ª FN
 - 3a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2^a FN e 3^a FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4a FN

MC = USP - GBDI

12

Discussão sobre DFs

- Dependência Funcional ⇒ mecanismo formal (fundamental) para definição de restrições e garantia de consistência em bases de dados relacionais
 - A → B
- E quanto às restrições semânticas que não podem ser especificadas com DFs?

ICMC - USP - GBD

13

Exemplo

- Informação sobre empregados a ser armazenada na base de dados de uma empresa:
 - nome do empregado
 - nomes dos projetos em que trabalha
 - nomes de seus dependentes
- atributos: nome, projeto, dependente
- dependências funcionais???

MC – USP - GBDI

14

Exemplo (cont.)

- atributos: nome, projeto, dependente
 - semanticamente:
 - <u>um conjunto de valores</u> de **projeto** é determinado por <u>um</u> valor de **nome**, e <u>somente</u> por **nome**
 - projeto e dependente não têm relação alguma...

Dependência Multivalorada

ICMC - USP -

Dependência Multivalorada

 Dependência Multivalorada (DM): restrição entre dois conjuntos de atributos

A ->> B

 A multidetermina B (ou B é multidependente de A) ⇒ o conjunto de valores de B é determinado pelo valor de A, e somente pelo valor de A

MC – USP - GBDI

16

Exemplo

Empregado = {Nome, Projeto, Dependente}

Nome ->> Projeto

- > Dados:
 - Carlos trabalha no projeto Museu Virtual e tem 2 dependentes: Mário e Joana;
 - Ana trabalha nos projetos Museu Virtual e Cidadania, e tem 2 dependentes: Paulo e Sônia;
- Como armazenar os dados na relação Empregado de maneira a manter a semântica?

Exemplo (cont.)

- Carlos trabalha no projeto Museu Virtual e tem 2 dependentes: Mário e Joana;
- Ana trabalha nos projetos Museu Virtual e Cidadania, e tem 2 dependentes: Paulo e Sônia;

Empregado = {Nome, Projeto, Dependente}

PROBLEMA?

{<Carlos, Museu Virtual, Mário>,

<Carlos, Museu Virtual, Joana>,

<Ana, Cidadania, Paulo>,

<Ana, Museu Virtual, Sônia>}

18

4^a Forma Normal

- evita redundância nas tuplas ⇒ evita inconsistências causadas por inclusão/remoção/alteração de novas tuplas
 - lembrando: não violar uma DMNT significa replicar informação (*para evitar inferência incorreta de relacionamento entre atributos independentes*)... mas redundância pode gerar outras inconsistências...

– USP - GBDI

4^a Forma Normal

- normalização é importante quando atributos multivalorados independentes são misturados na mesma relação (DMNT)
- reduz espaço de armazenamento
- mais restrita que BCNF
- propriedade desejada: decomposição sem perda de junção

MC – USP - GBDI

34

Observação

- Mapeamento ME-R → Modelo Relacional
 - atributos multivalorados definem novas relações
 - sem redundância e sem anomalias

Orientação = {Nome, Orientado}

Programa = {Nome, Programa}

USP - GBDI

35

Considerações Finais quanto à Normalização

- 1°FN, 2° FN, 3° FN, BCNF e 4° FN são consideradas para cada relação
 - base de dados é considerada normalizada para uma determinada FN quando todas as suas relações estiverem nessa FN
- Normalização ⇒ decomposição de relações
 - aumenta consistência
 - reduz desempenho ⇒ operações de junção

MC = USP - GBDI

36

Sugestão de Leitura

- ELMASRI, R; NAVATHE, S.B. –
 Sistemas de Banco de Dados,
 Addison Wesley, 4ª Edição.
 - Capítulo 10 Dependência Funcional e normalização em um banco de dados relacional
 - Capítulo 11 Algoritmos para Projeto de Banco de Dados Relacional e Demais Dependências

ICMC - GBDI