Abstract

We will survey many of the important results related to sequences and series of functions. The culmination of this document will be proving the Weierstrass M-test and Cauchy-Hadamard theorem.

Sequences of Functions

Definition 1. Let Ω be a set, (X, d) a metric space, and $(f_n)_n$ a sequence of functions in X^{Ω} .

(1) $(f_n)_n$ converges *pointwise* to $f \in X^{\Omega}$ if:

$$(\forall x \in \Omega)(\forall \epsilon > 0)(\exists N_{x,\epsilon} \in \mathbf{N}) : (\forall n \in \mathbf{N})(n \geqslant N \implies d(f_n(x), f(x)) < \epsilon).$$

(2) $(f_n)_n$ converges uniformly to $f \in X^{\Omega}$ if:

$$\begin{split} (\forall \varepsilon > 0) (\exists N_{\varepsilon} \in \mathbf{N}) : (\forall n \in \mathbf{N}) (\forall x \in \Omega) \big(n \geqslant N \implies d(f_{n}(x), f(x)) < \varepsilon \big) \\ &\equiv (\forall n \in \mathbf{N}) \big(n \geqslant N \implies \sup_{x \in \Omega} d(f_{n}(x), f(x)) < \varepsilon \big) \\ &\equiv (\forall n \in \mathbf{N}) \big(n \geqslant N \implies D_{\mathfrak{u}}(f_{n}, f) < \varepsilon \big). \end{split}$$

Example 1. Let $(f_n)_n$ be a sequence in $\mathbf{R}^{[0,1]}$ defined by $f_n(x) = x^n$ for all $n \in \mathbf{N}$. If $x \in [0,1)$, then $(f_n(x))_n \to 0$. If x = 1, then $(f_n(x))_n \to 1$. Thus $(f_n)_n \to \mathbf{1}_1$ pointwise.

Example 2. Let $(f_n)_n$ be a sequence in $\mathbb{R}^{\mathbb{R}}$ defined by $f_n(x) = \frac{nx}{1+n^2x^2}$. If x = 0, then $(f_n(x))_n \to 0$. If $x \neq 0$, observe that:

$$|f_n(x)| = \left| \frac{nx}{1 + n^2 x^2} \right|$$

$$= \frac{n|x|}{1 + n^2 x^2}$$

$$\leq \frac{|x|}{nx^2}$$

$$= \frac{1}{n|x|}.$$

Since x is fixed, $(f_n(x))_n \to 0$. Thus $(f_n)_n \to 0_{\mathbb{R}^R}$ pointwise.

Example 3. Let $(h_n)_n$ be a sequence in $\mathbf{R}^{[0,\infty)}$ defined by $h_n(x) = x^{\frac{1}{n}}$. If x > 0, then $(h_n(x))_n \to 1$. If x = 0, then $(h_n(x))_n \to 0$. Thus $(h_n)_n \to \mathbf{1}_{(0,\infty)}$ pointwise.

Definition 2. Let Ω be a set and (X, d) a metric space.

- (1) The set of all bounded functions from Ω to X is denoted $Bd(\Omega, X)$.
- (2) The *uniform metric* between two bounded functions $f, g \in Bd(\Omega, X)$ is defined by $D_{\mathfrak{u}}(f,g) = \sup_{x \in \Omega} d(f(x),g(x)).$

Proposition 1. Let Ω be a set, (X, d) a metric space, and $(f_n)_n$ a sequence in X^{Ω} . The following are equivalent:

- (1) The sequence $(f_n)_n$ converges uniformly to f;
- (2) The sequence $(f_n)_n$ converges to f in $(Bd(\Omega, X), D_u)$;
- (3) The sequence $(D_{\mathfrak{u}}(f_{\mathfrak{n}},f))_{\mathfrak{n}}$ converges to 0.

Example 4. Let $(f_n)_n$ be a sequence in \mathbb{R}^R defined by $f_n = \mathbf{1}_{[n,n+1]}$. Claim: $(f_n)_n \to 0_{\mathbb{R}^R}$. Let $x \in \mathbb{R}$ and $\epsilon > 0$. Find N large so N > x. If $n \ge N$, then $|f_n(x) - 0_{\mathbb{R}^R}(x)| = |f_n(x)| = |\mathbf{1}_{[n,n+1]}(x)| = 0$. Thus $(f_n)_n \to 0_{\mathbb{R}^R}$ pointwise.

Note that each f_n is bounded, and furthermore:

$$D_{u}(f_{n}, f) = \sup_{x \in \mathbf{R}} |f_{n}(x) - 0_{\mathbf{R}^{\mathbf{R}}}(x)|$$
$$= \sup_{x \in \mathbf{R}} |f_{n}(x)|$$
$$= 1$$

Thus $(f_n)_n$ does *not* converge uniformly to $0_{\mathbb{R}^R}$.

Theorem 2. Let (X, d) be a metric space. Suppose $(f_n)_n$ is a sequence in $C(\Omega, X)$ which converges uniformly to $f: \Omega \to X$. Then $f \in C(\Omega, X)$.

Theorem 3. *Interchange of derivative and limit*

Theorem 4. Let (X, d) be compact. Suppose $(f_n)_n$ is a monotonically decreasing sequence in $C(X, \mathbf{R})$ which converges pointwise to 0. Then $(f_n)_n$ converges uniformly to 0.

Proof. Let $\varepsilon > 0$. Since $(f_n)_n$ converges pointwise to 0, for each $x \in X$ there exists $N_x \in \mathbf{N}$ such that $n \ge N_x$ implies $f_n(x) < \frac{\varepsilon}{2}$. Because f_{N_x} is continuous at x, there exists $\delta_x > 0$ such that, for every $z \in X$, $d(x,z) < \delta_x$ implies $|f_{N_x}(x) - f_{N_x}(z)| < \frac{\varepsilon}{2}$. The collection $\{U(x,\delta_x)\}_{x\in X}$ covers X, so by compactness there is a finite set $F \subseteq X$ with $X = \bigcup_{x\in F} U(x,\delta_x)$. Set $N = \max_{x\in F} N_x$. Let $z\in X$ be arbitrary and locate $x\in F$ such that $z\in U(x,\delta_x)$. Notice that our choice of N does not depend on z. For $n\ge N$:

$$f_{n}(z) \leq f_{N_{x}}(z)$$

$$= f_{N_{x}}(z) - f_{N_{x}}(x) + f_{N_{x}}(x)$$

$$\leq |f_{N_{x}}(z) - f_{N_{x}}(x)| + f_{N_{x}}(x)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Thus for $n \ge N$, we have $||f_n||_u \le \epsilon$.

Theorem 5 (Dini's Theorem). Let (X, d) be compact. Suppose $(f_n)_n$ is a monotone sequence in $C(X, \mathbf{R})$ which converges pointwise to f. Then $(f_n)_n$ converges uniformly to f.

Proof. If $(f_n)_n$ is decreasing, apply Theorem 4 to $f_n - f$. If $(f_n)_n$ is increasing, apply Theorem 4 to $f - f_n$.