

Multi-population Modified L-SHADE for Single Objective Bound Constrained Optimization

Yann-Chern Jou, Shuo-Ying Wang, Jia-Fong Yeh and Tsung-Che Chiang Department of Computer Science and Information Engineering, National Taiwan Normal University, Taiwan

Outline

CEC-17 Special Session on Associated with CEC2020 Numerical Optimization Competitions

- 1. Introduction
- 2. DE / L-SHADE / mL-SHADE
- 3. Proposed algorithm Multi-population Modified L-SHADE (mpmL-SHADE)
- 4. Experiments and Results
- 5. Conclusion

Introduction

- Differential evolution (DE) is one of the most popular evolutionary algorithms in solving real-parameter optimization problems.
- We proposed a variant of DE with success history adaptive parameter control.
 - Multi-population Modified L-SHADE (mpmL-SHADE)
- Participate CEC2020 Single Objective Bound Constrained Optimization Competition.

Differential Evolution (DE)

• Scaling Factor \mathbf{F} $v_i = x_{r1} + \mathbf{F} \cdot (x_{r2} - x_{r3})$

$$v_i = x_{r1} + F \cdot (x_{r2} - x_{r3})$$

Crossover Rate CR

DE flowchart

Adaptive DE

Success history

 SaDE (Qin and Suganthan, 2005)

> **Update** mean F mean CR

 JADE (Zhang and Sanderson, 2009)

 SHADE (Tanabe and Fukunaga, 2013)

Success history based DE flowchart

L-SHADE (Tanabe et al., 2014)

Success history memory

- Record multiple pairs of successful mean values of F and CR.
 - M_F : mean value of F
 - M_{CR}: mean value of CR
 - H: the size of success history memory

1					
M_F	M _{F,1}	M _{F,2}	*****	M _{F,H-1}	M _{F,H}
M _{CR}	M _{CR,1}	M _{CR,2}	•••••	M _{CR,H-1}	M CR,H

 \boldsymbol{H}

• Use different ranges of parameter values on different individuals in a generation.

L-SHADE (Tanabe and Fukunaga, 2014)

Success history memory

(
M_F	M _{F,1}	M _{F,2}	•••••	M _{F,H-1}	M _{F,H}
M _{CR}	M _{CR,1}	M _{CR,2}	*****	M _{CR,H-1}	M _{CR,H}

- Creating history memory table.
- 2. Randomly select a pair of M_F and M_{CR} from history memory for each target vector to generate F and CR.
- Testing *F* and *CR* in each iteration.
- Store the successful F and CR value.
- 5. Update by calculating weighted Lehmer mean

L-SHADE flowchart

L-SHADE (Tanabe and Fukunaga, 2014)

Linear population size reduction (LPSR)

mL-SHADE (Yeh et al., 2019)

Removal of terminal value

Observation (L-SHADE):

If the new mean of CR is zero, L-SHADE will set the $M_{CR,k}$ by a terminal value \bot and will never update it. When \bot is chosen, CR is set by zero and thus only a single gene is exchanged. Sometimes all M_{CR} elements are set to \bot at the early stage of the evolutionary process. This leads to too strong exploitation.

Solution (mL-SHADE):

mL-SHADE removes the terminal value to keep the exploration ability.

mL-SHADE (Yeh et al., 2019)

History Memory perturbation

Observation (L-SHADE):

- The fitness value stops improving because the control parameter values are not suitable for the current population.
- The memory may not be updated for a long time.

Solution (mL-SHADE):

 If the evolution gets stuck for N^{stuck} generations, mL-SHADE perturbs the success history memory by resetting one of them.

 $M_{CR,k} = 1.0 - M_{CR,k}$

 $M_{F,k} = 1.0 - M_{F,k}$

[L-SHADE] R. Tanabe, and A. S. Fukunaga, "Improving the Search Performance of SHADE Using Linear Population Size Reduction," in IEEE CEC, pp. 1658–1665, 2014. [mL-SHADE] J. Yeh, T. Chen and T. Chiang, "Modified L-SHADE for single objective real-parameter optimization," in IEEE CEC, pp. 381-386, 2019.

SPONSORS:

11

mpmL-SHADE Algorithm overview

Multiple population
 with cluster partition

Evolve by mL-SHADE
 with two intensity polynomial mutation

Multiple populations

• An effective approach to enhance the diversity and the search ability for DE to solve optimization problems.

W. Gao, G. G. Yen and S. Liu, "A cluster-based differential evolution with self-adaptive strategy for multimodal optimization," *IEEE Transactions on Cybernetics*, vol. 44, no. 8, pp. 1314-1327, Aug. 2014

Algorithm overview

Based on mL-SHADE

- Polynomial mutation with two intensity
- Dynamic parameter control
 - Probabilistic history memory perturbation
 - Linear scale parameter increment (LSPI) mechanism

Sub-population Evolve

Polynomial mutation with two intensity

 When multiple individuals have the same fitness value in a generation, we mutate the individual to increase the diversity of population.

- It is controlled by two values of the parameter η .
 - Exploitation, while η value is large.
 - Exploration, while η value is small.

```
while fitness x_i == fitness x_j do

if randu(0.0, 1.0) \le nfe/MAX\_NFE then

x_j = PolynomialMutation(x_j, 1.0/D, big \eta)

else

x_j = PolynomialMutation(x_j, 1.0/D, small \eta)

nfe = nfe + 1

end while
```

M. Hamdan, "The distribution index in polynomial mutation for evolutionary multiobjective optimisation algorithms: An experimental study", In: Proceedings of International Conference on Electronics Computer Technology, 2012.

SPONSORS:

15

Probabilistic history memory perturbation

• Remove the fix parameter Nstuck in mL-SHADE.

 nfe^{ns} : The number of fitness evaluations since last improvement.

SPONSORS:

16

Linear scale parameter increment (LSPI)

Observation:

In the late phase of evolution, M_F value in the memory are all getting smaller.

Solution:

- LSPI increase the scale of Cauchy distribution for scale factor F.
- It provides Cauchy distribution more chance to generate bigger F value for exploration.

$$scale = scale_{min} + \frac{(scale_{max} - scale_{min}) \times nfe}{MAX_NFE}$$

 $F_i = randc(M_{F,r}, scale)$

Benchmark functions

- CEC2020 Single Objective Bound Constrained Optimization Competition
 - Ten test functions
 - Four different dimensions: D = 5, 10, 15, 20
 - Search ranges of decision variables:
 [-100, 100]
 - Maximum number of fitness function evaluations:

Problem Dimension	MAX_NFE	
D=5	50,000	
D = 10	1,000,000	
<i>D</i> = 15	3,000,000	
D = 20	10,000,000	

C. T. Yue, K. V. Price, P. N. Suganthan, J. J. Liang, M. Z. Ali, B. Y. Qu, N. H. Awad, and Partha P Biswas, "Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization," Technical Report, Nanyang Technological University, Singapore, November 2019.

Parameter setting

Parameter	Meaning	Value	
N^{init}	size of the initial population	18 D∙ C	
N^{min}	minimal sub-population size	4	
Н	size of the success history memory	6	
r ^{arc}	archive size $ A = \text{round}(r^{arc} \cdot N^{subpop})$	2.6	
p	required in cur-to-pbest/1 mutation	0.11	
$[M_c^F]^0, [M_c^{CR}]^0$	initial values of c^{th} sub-population's F/CR memory	0.5	L-SHADE
C	the number of sub-populations	0.2·D	
$scale_{min}$	required in LSPI	0.1	
$scale_{max}$	required in LSPI	0.2	
p_m , η	parameters of polynomial mutation	1/D, 5 or 20	mpmL-SHADE

Analysis of the number of sub-populations

We compared the six variants by the evaluation criteria in the CEC2020 competition.

Score 1: based on sums of normalized best error values (50%)

Score 2: based on sums of weighted rank mean error values (50%)

Number of Sub-populations	0.2·D	0.3·D	$0.4 \cdot D$	$0.5 \cdot D$	$0.6 \cdot D$	0.7·D
Score1	50	48.2995	44.1225	41.7733	45.9315	39.7564
Score2	49.0814	47.9487	50	47.1033	44.6301	43.7939
Total Score	99.0814	96.2482	94.1225	88.8766	90.5615	83.5503

Experiments and Results Error value of mpmL-SHADE (D = 5)

Func.	Best	Worst	Median	Mean	Std	
f_1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	
f_2	0.0000E+00	3.7470E-01	6.2947E-02	1.1661E-01	1.3654E-01	
f_3	0.0000E+00	5.4146E+00	5.1482E+00	4.7000E+00	1.4661E+00	
f_4	2.3494E-02	1.4360E-01	1.0851E-01	9.6084E-02	3.0934E-02	
f_5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	
f_8	0.0000E+00	1.0000E+02	0.0000E+00	3.3333E+00	1.7951E+01	
f_9	0.0000E+00	3.0000E+02	1.0000E+02	1.0333E+02	4.0689E+01	
f_{10}	3.0000E+02	3.4737E+02	3.4737E+02	3.4105E+02	1.6102E+01	

Experiments and Results Error value of mpmL-SHADE (D = 10)

Func.	Best	Worst	Median	Mean	Std
f_1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
f_2	6.3009E-02	3.6023E+00	2.5191E-01	6.8095E-01	1.1259E+00
f_3	1.0367E+01	1.1365E+01	1.0461E+01	1.0565E+01	2.3384E-01
f_4	1.6905E-01	4.0592E-01	2.7884E-01	2.8404E-01	5.8284E-02
f_5	0.0000E+00	4.1629E–01	2.0814E-01	1.2489E-01	1.1526E-01
f_6	1.5651E–04	1.3554E-01	3.8008E-02	5.0894E-02	4.0899E–02
f_7	7.0608E-06	4.3363E-01	2.7867E-02	1.3732E-01	1.5459E-01
f_8	0.0000E+00	1.0000E+02	1.0000E+02	9.6667E+01	1.7951E+01
f_{9}	0.0000E+00	3.3186E+02	3.2635E+02	2.7606E+02	9.8182E+01
f_{10}	3.9774E+02	4.4578E+02	3.9801E+02	4.0260E+02	1.3855E+01

Experiments and Results Error value of mpmL-SHADE (D = 15)

Func.	Best	Worst	Median	Mean	Std
f_1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
f_2	0.0000E+00	2.3601E+00	1.2491E-01	1.8306E-01	4.0725E-01
f_3	1.5567E+01	1.5567E+01	1.5567E+01	1.5567E+01	2.0963E-13
f_4	2.4114E-01	4.5490E-01	3.9389E-01	3.8242E-01	4.4318E-02
f_5	1.5612E-01	2.1460E+00	3.1224E-01	5.4042E-01	5.0447E-01
f_6	4.6535E-01	9.6453E-01	7.2995E-01	7.2517E-01	1.2459E-01
f_7	1.7299E-01	7.0814E-01	5.0000E-01	5.4320E-01	1.1498E-01
f_8	1.0000E+02	1.0000E+02	1.0000E+02	1.0000E+02	4.9118E-13
f_9	3.8708E+02	3.8968E+02	3.8968E+02	3.8959E+02	4.6649E-01
f_{10}	4.0000E+02	4.0000E+02	4.0000E+02	4.0000E+02	4.9815E-13

Experiments and Results Error value of mpmL-SHADE (D = 20)

Func.	Best	Worst	Median	Mean	Std
f_1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
f_2	0.0000E+00	9.3685E-02	3.1228E-02	3.9673E-02	2.1195E-02
f_3	2.0387E+01	2.0387E+01	2.0387E+01	2.0387E+01	4.6736E-13
f_4	4.1611E-01	5.6583E-01	5.0069E-01	4.9748E-01	4.2334E-02
f_5	2.0817E-01	6.3861E+00	1.2552E+00	1.3801E+00	1.4521E+00
f_6	7.9020E-02	2.9642E-01	2.1061E-01	2.0522E-01	4.7101E-02
f_7	2.5517E-01	7.5000E-01	4.8157E-01	5.0994E-01	1.1874E-01
f_8	1.0000E+02	1.0000E+02	1.0000E+02	1.0000E+02	7.4723E-13
f_9	4.0031E+02	4.0278E+02	4.0133E+02	4.0139E+02	6.6822E-01
f_{10}	4.1366E+02	4.1366E+02	4.1366E+02	4.1366E+02	2.7413E-04

Performance Comparison

We did *t*-test at the significance level of 0.05. The symbols +, -, and ≈ mean that the proposed mpmL-SHADE is better than (+), worse than (-) and not statistically different from (≈) the compared algorithm.

mpmL-SHADE vs.	mL-SHADE			L-SHADE		
	+	≈	_	+	≈	_
D=5	1	7	0	0	8	0
D = 10	5	5	0	7	3	0
D = 15	5	4	1	6	4	0
D = 20	3	6	1	7	2	1
Total	14	22	2	20	17	1

Conclusions

- We proposed an adaptive differential evolution algorithm mpmL-SHADE for solving real-parameter single objective optimization problems. It has three features:
 - multi-population evolution
 - dynamic control of hyper-parameters
 - mutation with dynamic intensity
- The results showed that the multi-population is well perform on CEC2020 benchmark.
- In the future, we will work on:
 - How to form sub-populations and design the interaction between sub-populations.
 - How to dynamically control the exploration and exploitation for maintaining diversity of populations.

Thanks for your attention!

Meta-heuristics Laboratory,

Department of Computer Science and Information Engineering,

National Taiwan Normal University, Taiwan

