

Sunitha V R

Department of Science & Humanities

Unit III: Application of Quantum Mechanics to Electrical transport in Solids



- > Suggested Reading
  - 1. Fundamentals of Physics, Resnik and Halliday, Chapter 41
  - 2. Solid state Physics, S.O Pillai, Chapter 6
  - 3. Concepts of Modern Physics, Arthur Beiser, Chapter 9
  - 4. Learning material prepared by the department-Unit III

- > Reference Videos
  - 1. Physics Of Materials-IIT-Madras/lecture-26.html

**Unit III: Application of Quantum Mechanics to Electrical transport in Solids** 



#### **Class #28**

**Merits of Quantum free electron theory:** 

- > Temperature dependence of resistivity
- > Heat capacity due to free electrons
- > Conductivity dependence on electron concentration

### **Temperature dependence of Resistivity**





- ➤ According to the CFET ionic centers are stationary and the resistivity originates from the scattering of the free electrons.
- The QFET takes into account of the thermal vibrations of the ionic array which accounts for the scattering of electrons.

### **Temperature dependence of Resistivity**

- $\triangleright$  The amplitude of the vibrations r of the lattice ions increase with increasing temperature.
- $\triangleright$  When ions vibrate the lattice presents an effective cross sectional area  $A = 2r^2$  for scattering.
- $\triangleright$  Effective cross sectional area A is proportional to temperature A  $\alpha$  T
- > This will increase the probability of electron scattering at higher temperatures .
- $\succ$  Results in reduction of mean free path  $\lambda$  of the electrons  $\lambda \propto 1/T$



## **Temperature dependence of Resistivity**



Expression for is conductivity 
$$\sigma = \frac{ne^2\tau}{m} = \frac{ne^2\lambda}{mv_f}$$

This implies that the conductivity is proportional to the mean free path

The electron mean free path  $\lambda$  is inversely proportional to the scattering cross section.

Hence the conductivity  $\sigma \alpha 1/T$  or resistivity  $\rho \alpha T$ 

### Heat capacity due to free electrons





*U* = No of conduction electrons \* Average energy

At temperature T electrons can gain an energy  $K_BT$ , but only electrons close to the Fermi level participate in the conduction.



### Heat capacity due to free electrons





Then the total energy of electrons in one mole of the material is given by  $U=n_{eff}$ .  $\frac{3}{2}k_BT$   $=\frac{3}{2}k_BT \cdot \frac{N_a}{E_f} \cdot k_BT$ 



### Heat capacity due to free electrons



Electronic specific heat is given by  $C_{el} = \frac{dU}{dT}$ 

$$=3.\frac{N_a}{E_f}.k_B^2T=3R.\frac{k_BT}{E_f}$$

A more accurate evaluation of the electronic specific heat of mono valent metals results in the relation

$$C_{el} = \frac{\pi^2}{2} N \left( \frac{k_B^2 T}{E_f} \right)$$

This analysis gives the correct correlation with the experimental results.



## **Conductivity variations with electron concentrations**



According to QFET the conductivity expression is given by

$$\sigma = \frac{ne^2\tau}{m}$$
 or  $= \frac{ne^2\left(\frac{\lambda}{v_F}\right)}{m}$ 

According to the above equation  $\sigma$  not only depends on the number of electrons per unit volume but also depends on the  $\lambda/v_F$  ratio.

### Class 28. Quiz ...

#### The concepts which are correct are....

- 1. The quantum free electron theory takes accounts of the thermal vibrations of the ionic array, which accounts for the scattering of electrons.
- 2. The probability of electron scattering decreases with increasing temperature.
- 3. According to QFET resistivity of the metal is found to be inversely proportional to temperature.
- 4. For a given mole of electron gas, the fraction of electron that gain energy KT is  $n_{eff} = \frac{N_a}{E_f} \ kT$





# **THANK YOU**

Sunitha VR, Ph.D.

Assistant Professor, Department of Science and Humanities

sunithavr@pes.edu

+91 80 21722683 Extn 716