1

Assignment 16

Pulkit Saxena

1 Problem Hoffman Pg 242 Q7A

Find the minimal polynomials and the rational forms of the following real matrices

$$\begin{pmatrix}
0 & -1 & -1 \\
1 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}$$
(1.0.1)

2 Theorems

Theorem 1 A Rational canonical form is a matrix **R** that is Direct sum of companion matrix.

 $R=C(p_1)\oplus\cdots\oplus C(p_r)$

$$\mathbf{R} = \begin{pmatrix} \mathbf{C}(\mathbf{p_1}) & 0 & 0 & \dots & 0 \\ 0 & \mathbf{C}(\mathbf{p_2}) & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \mathbf{C}(\mathbf{p_r}) \end{pmatrix}$$
(2.0.1)

where $C(\mathbf{p_i})$ is the k_i x k_i companion matrix of p_i where polynomial $p_1, p_2 \dots p_r$ are called invariant factors for Given Matrix . Where k_i denotes the degree of annihilator of p_i .

This representation is called rational form.

Theorem 2 | If $p_i(x) = x + a_0$ then its companion matrix $\mathbf{C}(\mathbf{p})$ is 1 x 1 matrix as $(-a_0)$.

If $k_i \ge 2$ then $p(x) = x^k + a_{k-1}x^{k-1} + \cdots + a_1x + a_0$ then its companion matrix is

$$\mathbf{C}(\mathbf{p_i}) = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ 0 & 0 & 1 & \dots & 0 & -a_3 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -a_{k-1} \end{pmatrix}$$
(2.0.2)

TABLE 1: Illustration of theorem.

3 Solution

Given

$$\mathbf{A} = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

Characteristics and Minimal Polynomial

Characteristics polynomial of the matrix is $det(x\mathbf{I} - \mathbf{A})$

$$\det(x\mathbf{I} - \mathbf{A}) = \begin{vmatrix} (x) & 1 & 1 \\ -1 & (x) & 0 \\ 1 & 0 & (x) \end{vmatrix} = x(x^2) - 1(-x) - x = x^3$$

Characteristic Polynomial = x^3

Minimal Polynomial can be x, x^2 or x^3 of lowest degree satisfying $p(\mathbf{A}) = 0$

Let take
$$p(x) = x \implies p(\mathbf{A}) = \mathbf{A} = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \neq 0$$

Let take
$$p(x) = x^2 \implies p(\mathbf{A}) = \mathbf{A}^2 = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \neq 0$$

Take
$$p(x) = x^3 \implies p(\mathbf{A}) = \mathbf{A}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{0}$$

Thus minimal polynomial $p(x) = x^3$.

Companion Matrix and Rational Form

Since

Characteristics polynomial=Minimal polynomial=Invariant factors $p(x) = x^3 + 0x^2 + 0x + 0$

So Companion Matrix is of dimention 3x3 and from theorem 2

$$\mathbf{C}(\mathbf{p}) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Since there is only one minimal polynomial of degree 3 which is equal to characteristics equation therefore Rational matix=companion matrix

$\mathbf{R} = \mathbf{C}(\mathbf{p}) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
which is in rational form.

TABLE 2: Solution Table