

Particle physics

입자 가속기

물리학과 201410373 고예은

목치

- ✓프로젝트 소개
- ✓시뮬레이션 설계
- ✔데이터 분석
- ✓향후 연구

프로젝트 목표

✓새로운 물질을 밝혀내는 입자 가속기에 대한 탐구

✓물리적 원리와 이에 대한 결 과물을 분석할 수 있는 탐구적 시각

Figure 1. CERN(Conseil Européenne pour la Recherche Nucléaire) 의 LHC(Large Hadron Collider) 모식도
(https://home.cern/)

프로젝트 목표

시뮬레이션(시각화)

• Linac2 \rightarrow PSB \rightarrow PS \rightarrow SPS \rightarrow LHC

Particle physics

데이터 분석

• 가속 중 특정 지점에서 측정한 입자의 데 이터를 수집하여, 입자의 물리학적 상태를 측정한다.

CERN Open Data Portal

시스템 구조

✓ AWS(Amazon Web Service), MySQL, Matlab

프로젝트 진행

	10월 4주	11월 1주	11월 2주	11월 3주	11월 4주	12월 1주
물리적 이론 조사						
물리적 모델 설계						
입자 가속 계산						
시뮬레이션 생성						
충돌 데이터 분석						
코딩						
점검						

이론적 배경

✔ 입자와 힘의 종류

• 입자(표준 모형, Standard Model)

> : 입자는 쿼크(Quark), 렙톤(Lepton), 보손(Boson)으로 이루어져 있다.

힘

:힘은 중력, 전자기력, 강력, 약력으로 나뉜다.

이론적 배경

Particle physics

✓ 입자 가속기

✓ 선형 입자 가속기

$$\vec{E}(r,z,t) = E(r,z)\cos(\omega t) = E(r,z)\cos\left(\frac{2\pi}{\beta\lambda}\right)$$

$$\Delta W = qe \int_{-\infty}^{+\infty} E(r, z) \cos(\omega t) dz$$
$$= qe \int_{-\infty}^{+\infty} E(r, z) \cos\left(\frac{\omega z}{\beta c}\right) dz$$

$$= qe \int_{-\frac{g}{2}}^{+\frac{g}{2}} \frac{V}{g} \cos\left(\frac{2\pi}{\beta\lambda}z\right) dz = qV \frac{\sin\left(\frac{\pi g}{\beta\lambda}\right)}{\frac{\pi g}{\beta\lambda}} \stackrel{\text{def}}{=} gVT\cos\phi,$$
(g. gap length. Tytransition time factor)

(g: gap length, T: transition time factor)

$$\left(\omega = 2\pi f, z = \beta ct, \lambda = \frac{c}{f} = \frac{2\pi c}{\omega}\right)$$

이론적 배경

✓ 원형 입자 가속기

$$m = \frac{m_0}{\sqrt{1 - (\frac{v}{c})^2}}$$

$$\int \vec{\nabla} \cdot \vec{E} \, d\vec{\tau} = \oint \vec{E} \cdot d\vec{a} = \frac{Q}{\epsilon_0}$$

$$\vec{F} = q\vec{v} \times \vec{B}$$

$$\frac{d}{dt}\vec{p} = \vec{f} = m_0 \frac{d}{dt} (\gamma \vec{v})$$

$$\frac{dE}{dt} = \frac{qc^2}{E} \vec{p} \cdot (\vec{E} + \vec{v} \wedge \vec{B}) = \frac{qc^2}{E} \vec{p} \cdot \vec{E}$$

✔ Matlab을 활용하여, 6개의 코스 Linac2 , PSB , PS , SPS , LHC를 지 나는 양성자를 시뮬레이션 하였다.

• LINAC: 반지름 26.7km(=26700m) , 깊이 50~150m

• PSB: 반지름 6.9km(=6900m)

• PS: 반지름 628m

• SPS: 반지름 157m

, 깊이 40m

깊이 40m

깊이 40m

시뮬레이션 설계


```
✓ 주된 함수: Pause 간격과 원의 점 개수를 조정하여 속도를 조정했다.
```

for i=index

```
global coords LHC coords_SPS coords_TTS2 coords_PS
[coords_LHC, h_LHC] = ellipse3D(26700, 26700, 0, 0, 0);
[coords_SPS, h_SPS] = ellipse3D(6900, 6900, 19800/sqrt(2), -19800/sqrt(2), 0);
[coords_PS, h_PS] = ellipse3D(628, 628, 32523, -30743, 0, 90);
points_number = 200;
coords_TTS2 = zeros(3,points_number);
coords_TTS2(1,:) = linspace( coords_PS(1,end), coords_SPS(1,262), points_number);
coords_TTS2(2,:) = linspace( coords_PS(2,end), coords_SPS(2,262), points_number);
[coords_PSB, h_PSB] = ellipse3D(628, 628, 22983, -29693, 0,80);
points_numb_iso = 250;
coords_iso = zeros(3,points_numb_iso);
coords_iso(1,:) = linspace( coords_PSB(1,end), coords_PS(1,1), points_numb_iso);
coords_iso(2,:) = linspace( coords_PSB(2,end), coords_PS(2,1), points_numb_iso);
time_increase = 0.0005;

[coords_LHC, h_LHC] = ellipse3D(26700, 26700, 0, 0, 0);
```

```
hFig = figure(1);
set(hFig, 'units', 'normalized', 'outerposition', [0 0 1 1])
px SPS = coords SPS(1,i);
py SPS = coords SPS(2,i);
pz SPS = coords SPS(3,i);
px SPS opposite = coords SPS(1,length(coords SPS(1,:))-i+1);
py SPS opposite = coords SPS(2,length(coords SPS(2,:))-i+1);
pz SPS opposite = coords SPS(3,length(coords SPS(3,:))-i+1);
plot3 ( coords LHC(1,:), coords LHC(2,:), coords LHC(3,:)); hold on;
plot3( coords PS(1,:), coords PS(2,:), coords PS(3,:)); hold on;
plot3 (coords TTS2(1,:), coords TTS2(2,:), coords TTS2(3,:)); hold on;
plot3( coords iso(1,:), coords iso(2,:), coords iso(3,:)); hold on;
plot3( coords_PSB(1,:), coords_PSB(2,:), coords_PSB(3,:)); hold on;
plot3( coords_SPS(1,:), coords_SPS(2,:), coords_SPS(3,:), px_SPS, py_SPS, pz_SPS,'.-', 'MarkerSize',20);
hold on;
plot3( coords SPS(1,:), coords SPS(2,:), coords SPS(3,:), px SPS opposite, py SPS opposite, pz SPS opposite, '.-', 'MarkerSize',20);
hold off;
%pause(0.01)
pause(0.01-time increase *0.1*j);
j=j+1;
```

시뮬레이션 설계

Particle physics

✔ 양성자 2개가 가속하다가 LHC(가장 큰 원)에서 충돌한다.

데이터분색및DB저장

데이터분석

✓ 충돌 지점 중, CMS에서의 데이터를 가져와 분석한 후 AWS의 DB 에 분석 결과를 저장하였다.

데이터 부석

Particle physics

✓ momentum 과 위치 (theta...), transverse enery, transverse momentum, 손실 값들을 기반으로 Invariant Mass 를 계산하여 이 를 정규화한 그래프로 나타내었다.

```
function pushbutton4 Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
-% handles structure with handles and user data (see GUIDATA)
% Momentum
 global pxl px2 pyl py2 pzl pz2 el e2
 global px py pz p
 px = px1+px2;
pv = pv1+pv2;
pz = pz1+pz2;
p = [px py pz];
 assignin('base','px',px);
 assignin('base','py',py);
 assignin('base','pz',pz);
 assignin('base','p',p);
 figure('Name', 'Momentum', 'NumberTitle', 'off');
 makePipe([abs(min(pz))+10], min(px)-30, max(px)+30); hold on
 scatter3(px,py,pz,30,p,'filled');
 title('Momentum');
 xlabel({'px'}); ylabel({'py'}); zlabel({'pz'});
```

```
global pxl px2 pyl py2 pzl pz2 el e2 px py pz p type n dxy met
global e sizeP mass
assignin('base','e',e);
assignin('base', 'sizeP', sizeP);
assignin('base', 'mass', mass);
if type n==1
    disp('suc')
   sizeP = sqrt(px.^2 + py.^2 + pz.^2); % no norm!
    mass = sqrt(e.^2 - sizeP.^2);
    figure('Name', 'Invariant Mass', 'NumberTitle', 'off');
    morebins(histogram(mass, 50));
    % 'count', 'countdensity', 'cumcount', 'probability', 'pdf', 'cdf'
    % morebins(histogram(mass, 50, 'Normalization', 'countdensity'));
    % histM = hist(mass)./sum(mass);
   % bar(histM);
    title('Invariant Mass');
    xlabel({'mass'}); ylabel({'frequency'});
elseif type n==2
   mass = sgrt(
    figure('Name', 'Invariant Mass', 'NumberTitle', 'off');
    morebins (histogram (met, 50));
```

데이터 분석

✔ momentum을 그래프로 나타낼 때에는, 가속관을 만드는 함수를 정의하여 만들었다

- ✔ Collider table : 충돌 지점에 대한 정보를 저장
- ✔ Physial_property: 각 이벤트에 대한 정보를 저장

Figure 1. DB 논리적 설계


```
mysql> show tables;
   Tables in CERN LHC
   Collider
  Physial property
2 rows in set (0.00 sec)
 set @@foreign_key_checks=0;
 CREATE TABLE Collider
   collider_name VARCHAR(10) NOT NULL,
   event_name VARCHAR(100) NOT NULL,
   event number VARCHAR(100) NOT NULL,
   primary key (event_name, event_number)
CREATE TABLE Physial_property
  invariant_mass Double,
  event number
              VARCHAR(100) NOT NULL,
  px Double,
     Double,
  pz Double,
  event_name VARCHAR(100),
  primary key(event number)
)ENGINE INNODB;
alter table Physial property
add foreign key (event_name, event_number)
references Collider(event_name, event_number);
```


✓ Matlab에서 mysql-java 드라이버를 경로에 추가하고 DB에 연결하 도록 하는 connJDBC 함수를 생성하여 이를 기반으로 데이터를 삽 입하고 선택하도록 하였다.

```
CMS 2014 leptons.m × CERN.m × CMS.m ×
                                          Cone.m × arrow3.m ×
                                                                ellipse3D.m × connJDBC.m ×
     function [conn] = connJDBC()
     - %UNTITLED Summary of this function goes here
       -% Detailed explanation goes here
       javaaddpath('/mysql-connector-java-8.0.13.jar')
       datasource = 'CERN LHC';
       username = 'root';
       password = 'dbroot';
       driver = 'com.mysql.cj.jdbc.Driver';
       url = 'jdbc:mysql://18.191.183.16:3306/';
10 -
       conn = database(datasource, username, password, driver, url);
11 -
12
13
```


✓ insert 쿼리를 DB로 보내는 함수

```
function pushbutton6 Callback(hObject, eventdata, handles)

% Collider DB

% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
-% handles structure with handles and user data (see GUIDATA)
global conn event_name collider_name event_numb event temp1 data
conn = connJDBC();

event_numb = string(num2str(event));
collider_name = repmat("CMS",length(event_numb),l);
event_name = repmat(string(temp1), length(event_numb),l);
assignin('base','conn',conn);

data = table(collider_name(1:10), event_name(1:10),event_numb(1:10),'VariableNames',{'collider_name' 'event_name' 'event_number' });
assignin('base','data',data);

sqlwrite(conn, 'Collider', data);
```


collider_name

Dimuon events with invarian...

Dimuon events with invarian... 1007957044

4	X.					_	
	invariant_mass	event_number	рх	ру	pz	event_r	name
	4.5200	1007912007	4.2032	4.2032	4.2032	Dimuon	eve
	2.7338	1007957044	-1.3739	-1.3739	-1.3739	Dimuon	eve
	3.0733	1008000431	18.6478	18.6478	18.6478	Dimuon	eve
	3.1325	1008032300	-7.3589	-7.3589	-7.3589	Dimuon	eve
	2.1553	1008075983	2.3778	2.3778	2.3778	Dimuon	eve
	2.1117	1008203315	0.6504	0.6504	0.6504	Dimuon	eve
	2.1060	1008209356	2.3882	2.3882	2.3882	Dimuon	eve
	2.2557	1008225333	2.4440	2.4440	2.4440	Dimuon	eve
	2.3181	1008234146	-2.5530	-2.5530	-2.5530	Dimuon	eve
	2.8344	1008257850	-1.6548	-1.6548	-1.6548	Dimuon	eve

X

✓ DB 저장 확인(Collider table)

```
collider name | event name
                                                                                                       eve
nt number
                | Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
7912007
                | Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
7957044
                Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
8000431
                Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
8032300
                | Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
8075983
                | Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
8203315
                | Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
8209356
                | Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
8225333
                | Dimuon events with invariant mass range 2-5 GeV for public education and outreach | 100
 CMS
```


향후 연구

- ✓ CERN LHC 연구에 대한 이해와 데이터들의 자유로운 활용
- ✓ DB의 삽입/선택에 대한 원활한 처리
- ✓시뮬레이션을 만들 때, 충돌지점을 find로 찾을 수 없어 knn 알고리 증을 활용하여 충돌지점을 찾았는데(knn search 함수를 이용하였다), 만족스러운 결과가 아니기에 결국 ginput(1)으로 직접 지점을 입력하여 사용하였다. 더욱 좋은 ML 알고리즘을 사용하여서 근삿 값을 찾아보고 싶다.