Statistiek voor MBW / KW Uitwerkingen huiswerkopgaven

Dr. ir. D.A.M.P. Blom & Dr. J.B.M. Melissen

2025

Week 10: hypothesetoetsen

Hoofdstuk 9

Opdracht 9.m1: Een kritiek gebied $Z \dots$

- (a) bestaat uit alle hypothesen die moeten worden verworpen.
- (b) mag geen waarneming bevatten.
- (c) geeft voor de toetsingsgrootheid aan welke uitkomsten daarvan tot verwerping van de nulhypothese zullen leiden.
- (d) heeft een kans van 1α .

Uitwerking

Het juiste antwoord is (c).

Opdracht 9.m2: Een fout van de eerste soort fout wordt gemaakt als ...

- (a) de nulhypothese wordt verworpen indien deze toch juist is.
- (b) reeds bij het nemen van de steekproef fouten worden gemaakt.
- (c) een onjuiste toetsingsprocedure wordt gevolgd.
- (d) de alternatieve hypothese wordt verworpen.

Uitwerking

Het juiste antwoord is (a).

Opdracht 9.m3: Het verwerpen van een juiste alternatieve hypothese . . .

- (a) heet een fout van de eerste soort.
- (b) heet een fout van de tweede soort.
- (c) heet een steekproeffout.
- (d) kan alleen als de toetsingsgrootheid een waarde in het kritieke gebied heeft laten zien.

Uitwerking

Het juiste antwoord is (b).

Opdracht 9.m4: Als bij een toetsingsprocedure wordt gewerkt met de zogeheten overschrijdingskansen μ , dan . . .

- (a) dient de nulhypothese te worden verworpen als μ groter is dan α .
- (b) dient de nulhypothese te worden verworpen als bij tweezijdige toetsing de p-waarde kleiner is dan $\frac{1}{2}\alpha$.
- (c) is 1 p het onderscheidingsvermogen.
- (d) mag p niet groter zijn van 0,05.

Uitwerking

Het juiste antwoord is (b).

Opdracht 9.m5: Een vulmachine is zodanig ingesteld dat deze verpakking vult met een vulgewicht X dat een normale verdeling volgt met $\mu=1510$ gram en $\sigma=20$ gram. Regelmatig wordt met een steekproef gecontroleerd of de instelling (μ) van de machine nog correct is. We nemen dan een steekproef van zestien verpakkingen en we toetsen tweezijdig met $\alpha=0,05$. We veronderstellen dat σ niet is veranderd. De grenzen van het kritieke gebied zijn dan:

- (a) 1500, 2 en 1519, 8
- (b) 1477 en 1543
- (c) 1507, 55 en 1512, 45
- (d) 1461 en 1559

Uitwerking

In deze vraag wordt tweezijdig getoetst met de volgende nulhypothese en alternatieve hypothese:

$$H_0: \mu = 1510$$

 $H_1: \mu \neq 1510$

Gegeven is dat $X \sim N(\mu=?;\sigma=20)$, want we mochten veronderstellen dat σ niet was veranderd. Onder de nulhypothese H_0 geldt, dankzij de centrale limietstelling dat het steekproefgemiddelde $\overline{X} \sim N(\mu=?;\frac{\sigma}{\sqrt{16}})$ Omdat $\alpha=0,05$, gebruiken we $z_{\alpha/2}=\mathrm{InvNorm}(opp=1-\alpha/2)=\mathrm{InvNorm}(opp=0,975)\approx 1,9600$.

Het acceptatiegebied is dan gegeven door

$$\begin{split} &[\mu - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{16}}; \mu - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{16}}] \\ &= [1510 - 1,9600 \cdot \frac{20}{\sqrt{16}}; 1510 - 1,9600 \cdot \frac{20}{\sqrt{16}}] \\ &= [1500,2;1519,8] \end{split}$$

Het kritieke gebied \mathbb{Z} wordt gevormd door alle waardes die buiten het acceptatiegebied liggen, oftewel:

$$(-\infty; 1500, 2)$$
 en $(1519, 8, \infty)$.

Het juiste antwoord is (a).

Opdracht 9.m6: Voor een normaal verdeelde variabele met onbekende μ en σ wordt een toets voor μ verricht. De volgende gegevens zijn van belang: $H_0: \mu=60; H_1: \mu<60; \alpha=0,05; s^2=16; n=25;$ het steekproefgemiddelde is 62. Bij deze toets vinden we dus een berekende t^* -waarde of z^* -waarde die gelijk is aan . . .

- (a) 2,50
- **(b)** 0,625
- (c) 1,568
- (d) 1,316

Uitwerking

Omdat $\alpha=0,05$ en n=25 gebruiken we de t-verdeling. De formule voor de $t^*\text{-waarde}$ is gegeven door

$$t^* = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$

Omdat geldt dat $s^2=16$, weten we dat s=4. Verder kunnen we onder de nulhypothese aannemen dat $\mu=60$ en is het steekproefgemiddelde $\overline{x}=62$. De bijbehorende t^* -waarde is gelijk aan

$$t^* = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{62 - 60}{\frac{4}{\sqrt{25}}} = 2, 5.$$

Het juiste antwoord is (a).