Documents autorisés : cours, TD, notes manuscrites, calculatrice. Barème indicatif : 4+8+5+3 Durée : 1h 30.

Les résultats sont présentés avec trois chiffres significatifs, sauf indication particulière.

Exercice 1

Calcul intégral

On note f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{x^3}$ sur $[1, +\infty[$.

- 1. Calculer $\left(-\frac{1}{2x^2}\right)'$ sur $[1, +\infty[$.
- 2. Préciser $F(x) = \int_1^x f(t) dt$.
- 3. En déduire la nature de $\int_1^{+\infty} f(x) dx$ (convergente ou divergente) et sa valeur éventuelle. Expliquer.
- 4. Interpréter graphiquement.

Exercice 2

Loi binomiale et loi conjointe

Deux joueurs lancent indépendamment chacun deux fois une pièce de monnaie parfaite.

On note X le nombre de Face obtenu par le premier joueur, Y le nombre de Face obtenu par le second et M le plus petit des deux nombres.

1. Construire la loi conjointe de X et Y, en précisant les lois marginales de X et de Y. Reproduire et compléter le tableau suivant.

$X \setminus Y$	0	1	2	P(X=i)
0				
1				
2				
P(Y=j)				

Indication:
$$X \sim \mathcal{B}\left(2; \frac{1}{2}\right); Y \sim \mathcal{B}\left(2; \frac{1}{2}\right).$$

2. Faire de même pour le couple (X, M).

$X\backslash M$	0	1	2	P(X=i)
0				
1				
2				
P(M=j)				

3. En déduire la loi de probabilité de ${\cal M}.$

Reproduire et compléter le tableau suivant.

M	0	1	2
P(M=i)			

- 4. Représenter graphiquement la loi de probabilité de M
- 5. Représenter graphiquement la fonction de répartition de M
- 6. Calculer E(M) et V(M).

Exercice 3

Loi binomiale et loi normale

Pour pouvoir assister à une conférence dans un amphithéâtre de 180 places, les personnes intéressées s'inscrivent en ligne. Sachant que la probabilité pour une personne inscrite de venir à la conférence est p=0,85 les organisateurs décident d'accepter 200 inscriptions.

On note X le nombre de personnes se présentant à la conférence.

1. Loi binomiale

On suppose $X \sim \mathcal{B}$ (200; 0,85). Calculer

- (a) $P(X \ge 181)$
- (b) $P(160 \le X \le 180)$

Indication : on pourra utiliser la table donnée en annexe.

- 2. Loi normale
 - (a) Montrer qu'on peut supposer que X suit une loi normale dont on précisera les paramètres m et $\sigma: X \sim \mathcal{N}(m; \sigma)$.
 - (b) On suppose $X \sim \mathcal{N}(m; \sigma)$. Calculer
 - i. $P(X \ge 180, 5)$
 - ii. $P(159, 5 \le X \le 180, 5)$

Indication : on pourra utiliser une table de probabilités.

Exercice 4

Loi de Poisson

Le nombre de voyageurs oubliant leur bagage dans un TGV est une variable aléatoire X qui suit une loi de Poisson de paramètre $\lambda = 3: X \sim \mathcal{P}(3)$.

2

Calculer la probabilité

- 1. pour qu'au plus trois voyageurs oublient leur bagage dans le train.
- 2. pour qu'au moins trois voyageurs oublient leur bagage dans le train.
- 3. pour qu'exactement trois voyageurs oublient leur bagage dans le train.

Indication : on pourra utiliser une table de probabilités.

Annexe: Loi binomiale $\mathcal{B}(n, p)$

$$F(i) = P(X \le i) = \sum_{k=0}^{i} C_n^k p^k (1-p)^{n-k} = \sum_{k=0}^{i} {n \choose k} p^k (1-p)^{n-k}$$

$$\mathbf{n} = \mathbf{200}; \ \mathbf{p} = \mathbf{0}, \mathbf{85}$$

i	$P(X \le i)$
141	0.00000
142	0.00000
143	0.00000
144	0.00000
145	0.00000
146	0.00001
147	0.00002
148	0.00004
149	0.00008
150	0.00015
151	0.00029
152	0.00055
153	0.00101
154	0.00179
155	0.00312
156	0.00529
157	0.00873
158	0.01405
159	0.02200
160	0.03355
161	0.0498
162	0.07198
163	0.10128
164	0.13873
165	0.18504
166	0.24037
167	0.3042
168	0.37525
169	0.45149
170	0.53027

i	$P(X \le i)$
171	0.60858
172	0.68341
173	0.75203
174	0.81238
175	0.86318
176	0.90408
177	0.93550
178	0.95850
179	0.97453
180	0.98512
181	0.99175
182	0.99568
183	0.99786
184	0.99901
185	0.99957
186	0.99983
187	0.99993
188	0.99998
189	0.99999
190	1.00000
191	1.00000
192	1.00000
193	1.00000
194	1.00000
195	1.00000
196	1.00000
197	1.00000
198	1.00000
199	1.00000
200	1.00000