March 21, 2023 09:02

23.1 Cosets

If *H* is a multiplicative subgroup of *G* and for some fixed $g \in G$:

- The left coset of *H* in *G* is $gH = \{gh: h \in H\}$
- The right coset of *H* in *G* is $Hg = \{hg: h \in H\}$

For an additive subgroup H, we define the cosets as:

- The left coset: $g + H = \{g + h: h \in H\}$
- The right coset: $H + g = \{h + g : h \in H\}$

+ Theorems

$$G \text{ abelian } \to gH = Hg \ \forall g \in G \text{ and } H \leq G$$

$$H \leq Z(G) \to gH = Hg \ \forall g \in G$$

$$g \in Z(G) \to gH = Hg \ \forall H \leq G$$

$$gH \neq Hg$$
but in general,

- ▶ gH = Hg means $\forall h_1$, $\exists h_2 gh_1 = h_2 g$

23.2 Index

[G: H] = Number of left cosets of H in G, is the index of H in G

+ Theorems

Let $H \leq G$ and $g_1, g_2 \in G$. The following are equivalent:

- ▶ Left Version:
 - $g_1H = g_2H$
 - $Hg_1^{-1} = Hg_2^{-1}$
 - $g_1H \subseteq g_2H$, $g_2H \subseteq g_1H$
 - $g_1 \in g_2H$, $g_2 \in g_1H$
 - $g_2^{-1}g_1 \in H$, $g_1^{-1}g_2 \in H$
- ▶ Right Version:
 - $Hg_1 = Hg_2$
 - $g_1^{-1}H = g_2^{-1}H$
 - $Hg_1 \subseteq Hg_2$, $Hg_2 \subseteq Hg_1$
 - $g_1 \in Hg_2$, $g_2 \in Hg_1$
 - $g_1g_2^{-1} \in H$, $g_2g_1^{-1} \in H$

25.1 Equivalence Relations in Cosets

Suppose $H \le G$. Define $g_1 \sim g_2$ if $g_1H = g_2H$ or $Hg_1 = Hg_2$

This is an equivalence relation where the equivalence classes are the left, right cosets

$$[g_1] = \{g_2: g_1 \sim g_2\} = \{g_2: g_1 H = g_2 H\} = \{g_1 h: h \in H\} = g_1 H$$

+ Theorems

- ▶ Left (or right) cosets of *H* in *G* partition *G*
- ▶ $|\{gH: g \in G\}| = |\{Hg: g \in G\}|$ The number of left cosets is equal to the number of right cosets
- ► For H < G and for any $g \in G$, \exists bijections: $\begin{cases} H \to gH \\ H \to Hg \end{cases}$
- $\blacktriangleright |H| = |gH| = |Hg|$

25.2 Lagrange

For *G*, a finite group, and *H* a subgroup of *G*, then $|G| = [G:H] \times |H|$

+ Theorems

- ▶ |*G*| is prime \rightarrow *G* = $\langle a \rangle \forall a \neq \epsilon$
- ▶ If K < H < G, then |G| = [G: H][H: K] |K|, [G: K] = [G: H][H: K]
- ▶ Suppose [G: H] = 2, then $gHg^{-1} = H \ \forall g \in G$
- For *G* cyclic and finite, if *m* divides |G|, then $\exists H$, a subgroup of *G*, such that |H| = m
- ▶ For *G* abelian and finite, if *m* divides |G|, then $\exists H$, a subgroup of *G*, such that |H| = m
- ▶ In General:
 - $H < G \rightarrow |H|$ divides |G|
 - $g \in G \rightarrow |g|$ divides |G|
 - $m \text{ divides } |G| \rightarrow \exists H < G \text{ with } |H| = m$
 - m divides $|G| \rightarrow \exists g \in G$ with |g| = m
 - m divides |G| $\exists H < G \text{ with } |H| = m$ $\Rightarrow \exists g \in G \text{ with } |g| = m$
- ▶ If *G* is finite and cyclic:
 - $m \text{ divides } |G| \rightarrow \exists ! H < G \text{ with } |H| = m$
 - $m ext{ divides } |G| \to \exists g \in G ext{ with } |g| = m$
- ▶ If *G* is finite and abelian:
 - m divides $|G| \rightarrow \exists H < G$ with |H| = m
 - m divides $|G| \rightarrow \exists g \in G$ withh |g| = m