AM 1 - PO Resolução Lista 4

Felipe Pinto - 61387

12/04 2021.1

Conteúdo

Questãol 4 $u_{n+1} = \sqrt{2 u_n}$	2
$4 - a) u_n \in [1, 3] \forall n \in \mathbb{N} \dots \dots \dots \dots \dots \dots \dots \dots$	2
$4 - b) u_{n+2} - u_{n+1} \le \frac{\sqrt{2}}{2} u_{n+1} - u_n \dots \dots \dots \dots \dots \dots$	2
Queștão) $5 u_{n+1} = 1.5 u_n + 1$	2
5 - a) Prove que u_n é convergente	2

 $\overline{\mathbf{Questão} \ \mathbf{4}} \quad u_1 = 1; \quad u_{n+1} = \sqrt{2 u_n}$

4 - a)
$$u_n \in [1,3] \quad \forall n \in \mathbb{N}$$

$$\iff 1 \le u_n \le 3 \iff 2 \le 2 u_n \le 6 \iff 1 \le \sqrt{2} \le \sqrt{2 u_n} \le \sqrt{6} \le 3$$

4 - b)
$$|u_{n+2} - u_{n+1}| \le \frac{\sqrt{2}}{2} |u_{n+1} - u_n|$$

$$\iff \left| \sqrt{2 \, u_{n+1}} - \sqrt{2 \, u_n} \right| = \left| \frac{2 \, u_{n+1} - 2 \, u_n}{\sqrt{2 \, u_{n+1}} + \sqrt{2 \, u_n}} \right|; u_n \ge 1 \quad \forall \, n \in \mathbb{N} \implies$$

$$\implies \frac{2}{\sqrt{2 \, u_{n+1}} + \sqrt{2 \, u_n}} \left| u_{n+1} - u_n \right| \le \frac{2}{2\sqrt{2}} \left| u_{n+1} - u_n \right| = \frac{\sqrt{2}}{2} \left| u_{n+1} - u_n \right|$$

Questão 5
$$u_1 = 0$$
; $u_{n+1} = 1.5 u_n + 1$

5 - a) Prove que u_n é convergente

$$\iff 1 \le \frac{|u_{n+2} - u_{n+1}|}{|u_{n+1} - u_n|} = \frac{|1.5 u_{n+1} + 1 - 1.5 u_n + 1|}{|u_{n+1} - u_n|} = 1.5 \frac{|u_{n+1} - u_n + 4/3|}{|u_{n+1} - u_n|}$$