

8. Numerische Lösung von instationären pDGL

A Practical Course in Numerical Methods for Engineers

Barbara Wirthl, M.Sc.
Technische Universität München
Lehrstuhl für Numerische Mechanik

2D FE stationär: Problemstellung

$$\lambda(x, y) = 48.0 \frac{W}{mK}$$
 in Ω

Neumann-Rand:

$$\lambda \nabla T \cdot \mathbf{n} = 0.0 \text{ auf } \{ \Gamma \setminus (\Gamma_D^1 \cup \Gamma_D^2) \}$$

Dirichlet-Rand:

$$T = 600 \,\mathrm{K} \,\mathrm{auf} \,\Gamma_D^1$$

$$T = 300 \,\mathrm{K} \,\mathrm{auf} \,\Gamma_D^2$$

$$r = 0.02 \,\mathrm{m}, \, b = 0.3 \,\mathrm{m}, \, h = 0.3 \,\mathrm{m}$$

Pingo

Stationäre Wärmeleitung

Wie weit sind Sie bei dieser Aufgabe bekommen?

- ► Alles korrekt gelöst.
- evaluate_stat fehlt/falsch.
- ► assemble fehlt/falsch.
- Etwas anderes fehlt/falsch.

2D FE stationär

Herleitung 000

 $T_{15} = 492.64$, $T_{16} = 472.02$, $T_{17} = 447.45$, $T_{18} = 300.0$

2D FE stationär

Maximal zulässige Temperatur $T_k = 450 \,\mathrm{K}$

Herleitung

 $T_{15} = 492.64$, $T_{16} = 472.02$, $T_{17} = 447.45$, $T_{18} = 300.0$, r = 0.02 m $T_{15} = 445.48$, $T_{16} = 416.27$, $T_{17} = 377.64$, $T_{18} = 300.0$, $r^* = 0.08$ m \checkmark

Aufgabenblatt 8

2D FE stationär

FEM – Instationäre Wärmeleitungsgleichung 2D

$$\begin{split} & \rho \boldsymbol{c} \frac{\partial T}{\partial t} - \nabla \cdot (\lambda \nabla T) = \dot{q} & \text{in } \Omega \times [0, t^*] \\ & \text{mit} & T = T_D & \text{auf} & \Gamma_D & \forall t, \qquad \lambda \nabla T \cdot \boldsymbol{n} = 0 & \text{auf} & \Gamma_N & \forall t \\ & \text{mit} & T = T_0 & \text{in } \Omega & \text{für } t = 0. \end{split}$$

Die Dichte ρ sowie die spezifische Wärmekapazität c sind vom Material abhängig und gegeben. Unter Beibehaltung aller Einschränkungen und Definitionen aus Arbeitsblatt 7 ($\dot{q}=0$ und $\lambda\nabla T\cdot \mathbf{n}=0$ an den Neumann-Rändern) soll nun die instationäre Wärmeleitungsgleichung in 2D mittels Matlab gelöst werden. Erweitern Sie das in Arbeitsblatt 7 erstellte Programm für den instationären Fall so, dass die bereits erstellten Funktionen zur Zeitintegration (Fkt. IX, Fkt. X, Fkt. XI, Fkt. XI) verwendet werden können.

Schwache Form

Starke Form der instationären Wärmeleitungsgleichung:

$$\rho c \frac{\partial T}{\partial t} - \nabla \cdot (\lambda \nabla T) = \dot{q} \quad \text{in } \Omega \times [0, t^*]$$

1. Schritt: Multiplikation mit der Testfunktion v und Integration über das Gebiet Ω

$$\partial c \int_{\mathbf{U}} \Lambda \frac{\partial f}{\partial f} \, d\bar{x} - \int_{\mathbf{U}} \Lambda \Delta (\gamma \Delta L) \, d\bar{x} = 0$$

2. Schritt: Partielle Integration des Terms auf der linken Seite

$$gc \int_{\Omega} v \frac{\partial t}{\partial t} dx + \int_{\Omega} \lambda \nabla v \cdot \nabla t dx - \int_{\Gamma} v \lambda \nabla t \cdot \underline{n} dg = 0$$

3. Schritt: Ausnutzung der Randbedingungen $\Gamma = \Gamma_N + \Gamma_D$ $\int_{\Gamma} \sqrt{\lambda} \, \nabla \Gamma \cdot \underline{\mathbf{p}} \, d\underline{\delta} = 0$

Schwache Form:

$$\partial_c \int_0^{\infty} A \frac{9f}{91} q^{\bar{x}} + \int_0^{\infty} \gamma \Delta A \cdot \Delta A q^{\bar{x}} = 0$$

Endlich-dimensionaler Ansatzraum

Ansatzfunktionen für Testfunktion und Temperaturfeld:

$$v^h(\boldsymbol{x}) = \sum_i N^i(\boldsymbol{x}) \hat{v}_i \qquad T^h(\boldsymbol{x}) = \sum_j N^j(\boldsymbol{x}) \hat{T}_j$$

Einsetzen:

$$\rho c \int_{\Omega} v^h \frac{\partial T^h}{\partial t} \, \mathrm{d} \boldsymbol{x} + \int_{\Omega} \lambda \nabla v^h \cdot \nabla T^h \, \mathrm{d} \boldsymbol{x} = 0$$

$$\sum_{i} \hat{\mathbf{v}}_{i} \sum_{j} \left[\rho c \int_{\Omega} N^{i}(\mathbf{x}) N^{j}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \frac{\partial \hat{T}_{j}}{\partial t} + \int_{\Omega} \lambda \nabla N^{i}(\mathbf{x}) \cdot \nabla N^{j}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \, \hat{T}_{j} \right] = 0$$

Muss für beliebige Werte \hat{v}_i gelten:

$$\sum_{i} \left[\frac{\partial c}{\partial c} \sum_{i} N_{i}(\bar{x}) N_{i}(\bar{x}) \, d\bar{x} \, \frac{\partial f}{\partial t} + \sum_{i} \chi_{i} \chi_{i}(\bar{x}) \cdot \Delta N_{i}(\bar{x}) \, d\bar{x} \, \underline{t}^{2} \, \underline{t}^{2} \right] = 0 \, \, \forall i$$

Vergleichen Sie diese Form mit der DGL auf Blatt 6: $M \frac{d\phi(t)}{dt} = B(t)\phi(t) + C(t)$

One–Step– θ -Verfahren zur Zeitintegration

Präsentation 6 (Folie 13) mit C(t) = 0:

$$M\phi_{n+1} = M\phi_n + \theta \Delta t B(t_{n+1})\phi_{n+1} + (1-\theta)\Delta t B(t_n)\phi_n$$

$$\sum_{j} \left[M_{ij} - \theta \Delta t B_{ij} \right] \widehat{T}_{j}^{n+1} = \sum_{j} \left[M_{ij} + (1-\theta)\Delta t B_{ij} \right] \widehat{T}_{j}^{n} \quad \forall i$$
ges.

Verwenden Sie die in Arbeitsblatt 6 erstellten Funktionen für jedes einzelne Element:

$$\sum_{e} \sum_{j} \left[M_{ij}^{(e)} - \theta \Delta t B_{ij}^{(e)} \right] \hat{T}_{j}^{n+1} = \sum_{e} \sum_{j} \left[M_{ij}^{(e)} + (1 - \theta) \Delta t B_{ij}^{(e)} \right] \hat{T}_{j}^{(e),n} \quad \forall i$$

$$LHS_{ij}^{(e)} \qquad RHS_{i}^{(e)}$$

Ergibt die Elementsteifigkeitsmatrix und den Elementlastvektor:

$$\mathsf{LHS}^{(\theta)}_{ij} \longrightarrow \mathsf{elemat} \qquad \qquad \mathsf{RHS}^{(\theta)}_{i} \longrightarrow \mathsf{elevec} \qquad \qquad \boxed{ \ \ \, } \ \, 4\times$$

Umsetzung im Programm: Programmaufbau

2D FE stationär

Zusätzliche Zeitschleife um den gesamten restlichen Code:

Schleife über alle Zeitschritte		
	Schleife über alle Elemente	
		Funktion Evaluieren()
		Schleife über alle Gaußpunkte im Element
		Schleife über alle Zeilen der Elementmatrix
		Schleife über alle Spalten der Elementmatrix
		Anwenden der Zeitintegrationsmethoden z.B. Funktion OST(), hier nicht LHS\RHS \$
		Funktion Assemblieren() elemat sysmat elevec ths
	Funk	tion Dirichlet()
	Funk	tion Lösen() etst hier sysmal ths!

2D FE stationär

Umsetzung im Programm: Schematischer Workflow

Umsetzung im Programm: Initialbedingung

2D FE stationär

Zur Zeitintegration wird die Lösung T^0 zum Zeitpunkt t=0 benötigt: $T^0=300\,\mathrm{K}$

Herleitung

Einige Punkte, die zur Vereinfachung weggelassen wurden:

 $\Rightarrow \dot{q} \neq 0$

2D FE stationär

- $\lambda = \lambda(x, y)$
- $ightharpoonup T_D = g(t)$ auf Γ_D
- $\lambda \nabla T \cdot \mathbf{n} \neq 0.0$ auf Γ_N
- andere Elementtypen (z.B. Dreieckselemente)
- Funktion, die das Netz (Knoten, Elemente, DBC) erstellt

(nicht überprüfungsrelevant)

Und los...

Nächste Tutorsprechstunden:

```
Montag 19.12. 10:00 – 12:15 Uhr MW1264
Mittwoch 21.12. 15:30 – 17:45 Uhr MW1264
```

Montag 09.01. 10:00 – 12:15 Uhr MW1264 Mittwoch 11.01. 15:30 – 17:45 Uhr MW1264

Nächstes Aufgabenblatt:

Donnerstag 12.01. 17:00 - 17:45 Uhr MW2050 + Zoom