CLAIMS:

2

5

6 7

8

١Ĵ

What is claimed is:

1 1. An apparatus comprising:

a main memory for storing data;

3 one or more I/O devices for receiving data from or sending 4 data to said main memory;

a control unit for controlling said I/O devices;

an I/O processor (IOP) for controlling I/O operations for sending data between said main memory and said I/O devices;

disparate channels between said IOP and said control unit, said disparate channels including multiple channel paths for $10\sqrt[6]{6}$ carrying data between said main memory and said I/O devices 11 $\frac{\sqrt{3}}{\sqrt{5}}$ during said I/O operations; and

a computer program executed by said IOP for assigning a path 12 [weight to selected ones of said channel paths whereby the next 14 channel path to carry data between said main memory and said I/O 15 devices is selected.

- fu The apparatus of claim 1 wherein said disparate channels 2 🗓 includes more than one type of channels. ļ.,
- 3. 1 The apparatus of claim 1 wherein said disparate channels
- 2 comprises one or more channel types including ESCON channels,
- 3 FICON bridge (FCV) channels, or FICON Native (FC) channels.
- 1 4. The apparatus of claim 2 wherein said computer program
- 2 includes an algorithm for assigning a path weight to a channel
- 3 path candidate dependent upon the type of channel containing the
- 4 channel path candidate.

- 1 5. The apparatus of claim 4 wherein the next channel path
- 2 candidate is selected by a round robin algorithm.
- 1 6. The apparatus of claim 4 comprising channel busy data (CBD)
- 2 stored by each channel for containing the status of channel
- 3 paths in the respective channel, and an IOP copy of said CBDs
- 4 stored by said IOP, and said computer program includes an
- 5 algorithm for using data in said CBDs for assigning a path weight
- 6 to a channel path candidate.
- 1 7. The apparatus of claim 6 wherein said computer program
- 2 classes a channel path candidate as a great candidate, a bad
- 3 candidate, or an OK candidate dependent on the value of the given
- 4 channel path's path weight value, said computer program further
- 5 $\frac{1}{2}$ including an algorithm for selecting the channel path candidate
- 6 to initiate the I/O operation on if it is classed as a great
- 7 candidate, evaluating the next candidate if it is classed as an
- 8 U OK channel path or a bad channel path, or selecting the OK
- 9 candidate with the least path weight to initiate the I/O
- 10 operation on if there are no great candidates found while
- 11 rejecting any bad candidates.
- 1 44 8. The apparatus of claim 7 further comprising multiple IOPs,
- 2 each channel path having an affinity to one IOP, a work queue
- 3 having work elements for each IOP, and said computer program
- 4 comprises a loop for determining the best class of available
- 5 candidates, and from that class picking the candidate that has
- 6 affinity to the IOP with the least number of work elements on its
- 7 work queue.

- 9. A data processing system having a main memory for storing
- 2 data, one or more I/O devices for receiving data from or sending
- 3 data to said main memory, and an I/O processor (IOP) for

8

9

10

4 controlling I/O operations for sending data between said main 5 memory and said I/O devices, an apparatus for selecting paths

6 between the main memory and the I/O devices comprising:

disparate channels between the IOP and the I/O devices, said disparate channels including multiple channel paths for carrying data between the main memory and the I/O devices during the I/O operations; and

a computer program executed by said IOP for assigning a path weight to selected ones of said channel paths whereby the next channel path to carry data between said main memory and said I/O devices is selected.

- 1 10. The apparatus of claim 9 wherein said disparate channels 2 pincludes more than one type of channels.
- 1 II 11. The apparatus of claim 9 wherein said disparate channels 2 comprises one or more channel types including ESCON channels, 3 FICON bridge (FCV) channels, or FICON Native (FC) channels.
- 1 12. The apparatus of claim 10 wherein said computer program
 2 includes an algorithm for assigning a path weight to a channel
 3 in path candidate dependent upon the type of channel containing the
 4 in channel path candidate.
- 1 13. The apparatus of claim 12 wherein the next channel path candidate is selected by a round robin algorithm.
- 1 14. The apparatus of claim 12 comprising channel busy data (CBD)
 2 stored by each channel for containing the status of channel
 3 paths in the respective channel, and an IOP copy of said CBDs
 4 stored by said IOP, and said computer program includes an
- 5 algorithm for using data in said CBDs for assigning a path weight
- 6 to a channel path candidate.

D

- The apparatus of claim 14 wherein said computer program 1 2 classes a channel path candidate as a great candidate, a bad candidate, or an OK candidate dependent on the value of the given 3 channel path's path weight value, said computer program further 4 including an algorithm for selecting the channel path candidate 5 6 to initiate the I/O operation on if it is classed as a great 7 candidate, evaluating the next candidate if it is classed as an OK channel path or a bad channel path, or selecting the OK 8 candidate with the least path weight to initiate the I/O 9 10 operation on if there are no great candidates found while 11 rejecting any bad candidates.
- 1 16. The apparatus of claim 15 further comprising multiple IOPs,
 2 15 each channel path having an affinity to one IOP, a work queue
 3 16 having work elements for each IOP, and said computer program
 4 16 comprises a loop for determining the best class of available
 5 16 candidates, and from that class picking the candidate that has
 6 17 affinity to the IOP with the least number of work elements on its
 7 17 work queue.
- 1 (0 17. A method for selecting channel paths in a data processing system having a main memory for storing data, one or more I/O 3 devices for receiving data from or sending data to said main memory, an I/O processor (IOP) for controlling I/O operations for 4 5 sending data between said main memory and said I/O devices, and 6 disparate channels between the IOP and the I/O devices, said 7 disparate channels including multiple channel paths for carrying 8 data between the main memory and the I/O devices during the I/O 9 operations, said method comprising:
- assigning a path weight to selected ones of said channel paths; and

- 12 selecting the next channel path to carry data between said
- 13 main memory and said I/O devices based on said path weight.
- 1 18. The method of claim 17 comprising including more than one
- 2 type of channel within said disparate channels.
- 1 19. The method of claim 17 further comprising including within
- 2 said disparate channels, one or more channel types including
- 3 ESCON channels, FICON bridge (FCV) channels, or FICON Native (FC)
- 4 channels.

Ш

- 1 20. The method of claim 18 further comprising assigning a path
- 2 weight to a channel path candidate dependent upon the type of
- 3 🖺 channel containing the channel path candidate.
- 1 $\mbox{\em 1}$ 21. The method of claim 20 further comprising selecting the next
- 2 dichannel path candidate by a round robin algorithm.
- 1 = 22. The method of claim 18 comprising storing channel busy data
- 2 🖺 (CBD) by each channel, said CBD containing the status of channel
- 3 $\frac{11}{11}$ paths in the respective channel, and storing by said IOP, an IOP
- 4 🗓 copy of said CBDs, and said using data in said CBDs for assigning
- 5 4 a path weight to a channel path candidate.
- 1 23. The method of claim 22 further comprising:
- 2 classifying a channel path candidate as a great candidate, a
- 3 bad candidate, or an OK candidate dependent on the value of the
- 4 given channel path's path weight value; and
- 5 selecting the channel path candidate to initiate the I/O
- 6 operation on if it is classed as a great candidate, evaluating
- 7 the next candidate if it is classed as an OK channel path or a
- 8 bad channel path, or selecting the OK candidate with the least

- 9 path weight to initiate the I/O operation on if there are no
- 10 great candidates found while rejecting any bad candidates.
- 1 24. The method of claim 23 wherein said data processing system
- 2 includes multiple IOPs, each channel path having an affinity to
- 3 one IOP, a work queue having work elements for each IOP, and said
- 4 method further comprises:
- 5 performing a loop for determining the best class of
- 6 available candidates; and
- 7 from that class, picking the candidate that has affinity to
- 8 the IOP with the least number of work elements on its work queue.
- 1 25. A program product usable with in a data processing system
- 2 🗓 having a main memory for storing data, one or more I/O devices
- 3 $\ddot{\mathbb{Q}}$ for receiving data from or sending data to said main memory, an
- 4 ¶ I/O processor (IOP) for controlling I/O operations for sending
- 5 data between said main memory and said I/O devices, and disparate
- 6 U channels between the IOP and the I/O devices, said disparate
- 7 The channels including multiple channel paths for carrying data
- 8 @ between the main memory and the I/O devices during the I/O
- 9 Toperations, said program product comprising:
- 10(1) A computer readable medium having recorded thereon computer
- 11 treadable program code means for performing the method comprising:
- assigning a path weight to selected ones of said channel
- 13 paths; and
- selecting the next channel path to carry data between said
- 15 main memory and said I/O devices based on said path weight.
- 1 26. The program product of claim 25 wherein said method
- 2 comprises including one or more type of channel within said
- 3 disparate channels.

- 1 27. The program product of claim 25 wherein said method further
- 2 comprises including within said disparate channels, one or more
- 3 channel types including ESCON channels, FICON bridge (FCV)
- 4 channels, or FICON Native (FC) channels.
- 1 28. The program product of claim 26 wherein said method further
- 2 comprises assigning a path weight to a channel path candidate
- 3 dependent upon the type of channel containing the channel path
- 4 candidate.

74

3

4 5

6

7

8

9

10

11

- 1 29. The program product of claim 28 wherein said method further
- 2 comprises selecting the next channel path candidate by a round
- 3 robin algorithm.
- 1 30. The program product of claim 26 wherein said method
 2 comprises storing channel busy data (CBD) by each channel, said
 3 CBD containing the status of channel paths in the respective
 4 channel, and storing by said IOP, an IOP copy of said CBDs, and
 5 said using data in said CBDs for assigning a path weight to a
 6 channel path candidate.
- 1 $\ensuremath{\mathbb{Q}}$ 31. The program product of claim 30 wherein said method further 2 $\ensuremath{\mathbb{Q}}$ comprises:

classifying a channel path candidate as a great candidate, a bad candidate, or an OK candidate dependent on the value of the given channel path's path weight value; and

selecting the channel path candidate to initiate the I/O operation on if it is classed as a great candidate, evaluating the next candidate if it is classed as an OK channel path or a bad channel path, or selecting the OK candidate with the least path weight to initiate the I/O operation on if there are no great candidates found while rejecting any bad candidates.

6

7 8

performing a loop for determining the best class of available candidates; and

from that class, picking the candidate that has affinity to the IOP with the least number of work elements on its work queue.