FRE-GY 6233: Assignment 2

Raymond Luo

September 20, 2020

Problem 1:

- (i) Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space where $\Omega = \{a, b, c, d, e, f\}$, \mathcal{F} is σ -algebra, and \mathbb{P} is uniform (so $\mathbb{P}(a) = \mathbb{P}(b) = \cdots = \frac{1}{6}$).
- (ii) Let X, Y, Z be r.v. given by

$$X(a) = 1, X(b) = X(c) = 3, X(d) = X(e) = 5, X(f) = 7$$

 $Y(a) = Y(b) = 2, Y(c) = Y(d) = 1, Y(e) = Y(f) = 7$
 $Z(a) = Z(b) = Z(c) = Z(d) = 3, Z(e) = Z(f) = 2$ (1)

Solve the follow questions:

1. Write down $\sigma(X)$, $\sigma(X)$, $\sigma(Z)$. Are there any relationships between them?

Solution:

$$\sigma(X) = \{\emptyset, \Omega, \{a\}, \{b, c\}, \{d, e\}, \{f\}, \{a, b, c\}, \{a, d, e\}, \{a, f\}, \{b, c, d, e\}, \{b, c, f\}, \{d, e, f\}, \{a, b, c, d, e\}, \{b, c, d, e, f\}, \{a, d, e, f\}, \{a, b, c, f\}\}$$

$$\sigma(Y) = \{\emptyset, \Omega, \{a, b\}, \{c, d\}, \{e, f\}, \{a, b, c, d\}, \{a, b, e, f\}, \{c, d, e, f\}\}$$

$$\sigma(Z) = \{\emptyset, \Omega, \{a, b, c, d\}, \{e, f\}\}$$

We note that $\sigma(Z) \subset \sigma(Y)$.

2. Define a r.. $\mathbb{E}[X \mid \sigma(Y)]$

Solution: As
$$\mathbb{E}[X|Y] = \sum_{i \in \{1,2,7\}} \mathbb{E}[X|Y=i] \mathbb{1}_i(y)$$
, we consider the following: If $Y = 1$, $\mathbb{P}(Y^{-1}(1) = c) = \frac{\mathbb{P}(c)}{\mathbb{P}(c) + \mathbb{P}(d)} = \frac{1}{2}$, $\mathbb{P}(Y^{-1}(1) = d) = \frac{1}{2}$ So, $\mathbb{E}[X|Y=1] = (X(c) \cdot \frac{1}{2} + X(d) \cdot \frac{1}{2}) = 3 \cdot \frac{1}{2} + 5 \cdot \frac{1}{2} = 4$ If $Y = 2$, $\mathbb{P}(Y^{-1}(2) = a) = \frac{\mathbb{P}(a)}{\mathbb{P}(a) + \mathbb{P}(b)} = \frac{1}{2}$, $\mathbb{P}(X^{-1}(2) = b) = \frac{1}{2}$

So,
$$\mathbb{E}[X|Y=2] = (X(a) \cdot \frac{1}{2} + X(b) \cdot \frac{1}{2}) = 2$$

If $Y=7$, $\mathbb{P}(Y^{-1}(7)=e) = \frac{\mathbb{P}(e)}{\mathbb{P}(e)+\mathbb{P}(f)} = \frac{1}{2}$, $\mathbb{P}(Y^{-1}(7)=f) = \frac{1}{2}$
So, $\mathbb{E}[X|Y=7] = (X(e) \cdot \frac{1}{2} + X(f) \cdot \frac{1}{2}) = 6$

3. Check directly the averaging property

$$\mathbb{E}[\mathbb{E}[X \mid \sigma(Y)]] = \mathbb{E}[X]$$

Solution: $\mathbb{E}[\mathbb{E}[X \mid \sigma(Y)]] = \sum_{i \in \{1,2,7\}} \mathbb{E}[X|Y=i] \cdot \mathbb{P}[Y=i]$. As $\mathbb{P}[Y=i] = \frac{1}{3}$ for $i \in \{1,2,7\}$, we have that $\mathbb{E}[\mathbb{E}[X \mid \sigma(Y)]] = \frac{1}{3} \cdot (4+2+6) = 4$.

We then note that:

 $\mathbb{E}[X] = \sum_{i \in \{a, b, c, d, e, f\}} \mathbb{P}[i] \cdot X(i) = \frac{1}{6}(1 + 3 + 3 + 5 + 5 + 7) = \frac{24}{6} = 4.$

From this we have checked the averaging property.

4. Show directly (by calculating) that

$$\mathbb{E}[\mathbb{E}[X \mid \sigma(Y)] \mid \sigma(Z)] = \mathbb{E}[X \mid \sigma(Z)]$$

Solution: We first show the RHS:

Let us denote events $\omega_{z1} = \{a, b, c, d\}$, $\omega_{z2} = \{e, f\}$ to partition Ω to form $\sigma(Z)$. We then denote events $\omega_{x1} = \{a\}, \omega_{x2} = \{b, c\}, \omega_{x3} = \{d, e\}, \omega_{x4} = \{f\}$ to partition Ω to form $\sigma(X)$.

We then note that $\omega_{z1} \cap \omega_{x1} = \{a\}$, $\omega_{z1} \cap \omega_{x2} = \{b, c\}$, $\omega_{z1} \cap \omega_{x3} = \{d\}$. We then have

$$\mathbb{E}[X \mid \omega_{z1}] = X(\omega \in \{a\}) \frac{\mathbb{P}(\{a\})}{\mathbb{P}(\omega_{z1})} + X(\omega \in \{b,c\}) \frac{\mathbb{P}(\{b,c\})}{\mathbb{P}(\omega_{z1})} + X(\omega \in \{d\}) \frac{\mathbb{P}(\{d\})}{\mathbb{P}(\omega_{z1})} = 1 \cdot \frac{1}{4} + 3 \cdot \frac{2}{4} + 5 \cdot \frac{1}{4} = 3$$

We also note that $\omega_{z2} \cap \omega_{x3} = \{e\}, \omega_{z2} \cap \omega_{x4} = \{f\}$ so that we have $\mathbb{E}[X \mid \omega_{z2}] = X(\omega \in \{e\}) \frac{\mathbb{P}(\{e\})}{\mathbb{P}(\omega_{z2})} + X(\omega \in \{f\}) \frac{\mathbb{P}(\{f\})}{\mathbb{P}(\omega_{z2})} = 5 \cdot \frac{1}{2} + 7 \cdot \frac{1}{2} = 6$

We write this as:

$$\mathbb{E}[X \mid \sigma(Z)] = \begin{cases} 3, & \text{for } \omega \in \omega_{z1} = \{a, b, c, d\} \\ 6, & \text{for } \omega \in \omega_{z2} = \{e, f\} \end{cases}$$

We then look at the LHS:

In part (ii), we had subtly defined $X \mid \sigma(Y)$ over events $\omega_{y1} = \{a, b\}, \omega_{y2} = \{c, d\}, \omega_{y3} = \{e, f\}$ that partition Ω to form $\sigma(Y)$. From that we received the

following random variable:

$$\mathbb{E}[X \mid \sigma(Y)] = \begin{cases} 2, & \text{for } \omega \in \omega_{y1} = \{a, b\} \\ 4, & \text{for } \omega \in \omega_{y2} = \{c, d\} \\ 6, & \text{for } \omega \in \omega_{y3} = \{e, f\} \end{cases}$$

We also noted that $\sigma(Z) \subset \sigma(Y)$. It follows that as $\omega_{y_1} \cup \omega_{y_2} = \omega_{z_1}$ and $\omega_{y_3} = \omega_{z_3}$,

$$\begin{split} & \mathbb{E}[X \mid \sigma(Y)] \mid \omega_{z1}] \\ & = \left(\mathbb{E}[X \mid \omega_{y1}] \mid \omega_{z1} \right) \cdot \frac{\mathbb{P}(\omega_{y1} \cap \omega_{z1})}{\omega_{z1}} + \left(\mathbb{E}[X \mid \omega_{y2}] \mid \omega_{z1} \right) \cdot \frac{\mathbb{P}(\omega_{y2} \cap \omega_{z1})}{\omega_{z1}} \\ & = 2 \cdot \frac{1}{2} + 4 \cdot \frac{1}{2} = 3 \end{split}$$

$$\mathbb{E}[X \mid \sigma(Y)] \mid \omega_{z2}]$$

$$= (\mathbb{E}[X \mid \omega_{y3}] \mid \omega_{z2}) \cdot \frac{\mathbb{P}(\omega_{y3} \cap \omega_{z2})}{\omega_{z2}} = \mathbb{E}[X \mid \omega_{z3}] = 6$$

We then have:

$$\mathbb{E}[X \mid \sigma(Y)] \mid \sigma(Z)] = \begin{cases} 3, & \text{for } \omega \in \omega_{z1} = \{a, b, c, d\} \\ 6, & \text{for } \omega \in \omega_{z2} = \{e, f\} \end{cases}$$

So it is evident that LHS = RHS.

5. Check if X and Y, or Y and Z are independent under given probability.

Solution: It is straightforward to see that X and Y are not independent; otherwise, $\mathbb{E}[X \mid \sigma(Y)] = \mathbb{E}[X]$. We have shown that $\mathbb{E}[X] = 4$, which is clearly not what we have shown to be $\mathbb{E}[X \mid \sigma(Y)]$ in the problems above.

To show that Y and Z are not independent, we proceed by using the definition of independence. We check that for some $\omega_1 \in \sigma(Y), \omega_2 \in \sigma(Z)$, that $\mathbb{P}(\omega_1 \cap \omega_2) \neq \mathbb{P}(\omega_1) \cdot \mathbb{P}(\omega_2)$. It is most evident that as $\omega_{z2} = \omega_{y3}$ we would have $\mathbb{P}(\omega_{z2} \cap \omega_{y3}) = \mathbb{P}(\omega_{z2}) = \mathbb{P}(\omega_{z2}) \mathbb{P}(\omega_{y3}) = \mathbb{P}(\omega_{z2})^2$. As $\mathbb{P}(\omega_{z2}) = \frac{1}{3}$, this cannot be true. As the two sigma-algebra are not independent, random variables Y and Z are not independent.

Problem 2: Prove Markov and Tchebyshev inequalities.

Solution: Markov Inequality: For $\lambda, p > 0$ and nonnegative random variable X, we have:

$$\mathbb{P}(\omega : |X(\omega)| \ge \lambda) \le \frac{1}{\lambda^p} \mathbb{E}[|X|^p]$$

Proof. We first by showing the above inequality for p = 1. This follows directly from the definition of expectation:

If we fix $\lambda > 0$ and define set $A = \{\omega : X(\omega) \ge \lambda\}$

$$\mathbb{E}[X] = \int_{\mathbb{R}} X(\omega) dP(\omega) = \int_{A} X(\omega) dP(\omega) + \int_{\mathbb{R} \backslash A} X(\omega) dP(\omega)$$

 $\geq \int_A X(\omega)dP(\omega) \geq \int_A \lambda dp(\omega)$ [this follows from the condition that $X(\omega) \geq \lambda$ in set A]

$$= \lambda \int_A dp(\omega) = a\mathbb{P}(\omega : |X(\omega)| \ge \lambda).$$

 \Rightarrow

$$\mathbb{P}(\omega : |X(\omega)| \ge \lambda) \le \frac{1}{\lambda^p} \mathbb{E}[|X|^p]$$

To extend it to all other p > 0, we consider function $\phi(x) = |x|^p$. If ϕ is positive and non-decreasing, we have that $\mathbb{P}[X \geq \lambda] \leq \mathbb{P}[\phi(X) \geq \phi(\lambda)] \leq \mathbb{E}[\phi(X)]/\phi(\lambda)$. As ϕ is positive and non-decreasing, we are done.

Tchebychev Inequality: If X is a r.v. with mean μ and variance σ^2 , then

$$\mathbb{P}(\omega : |X(\omega) - \mu| \ge \lambda) \le \frac{\sigma^2}{\lambda^2}$$

Proof. The above inequality follows from Markov's inequality on $(X - \mu)$ with p = 2. We observe that $\mathbb{P}(\omega : |X(\omega) - \mu| \ge \lambda) \le \frac{\mathbb{E}[|X - \mu|^2]}{\lambda^2} = \frac{\mathbb{E}[X^2 - 2\mu \cdot X + \mu^2]}{\lambda^2}$ $= \frac{1}{\lambda^2} \cdot \left(\mathbb{E}[X^2] - 2\mu^2 + \mu^2\right) = \frac{1}{\lambda^2} \cdot \left(\mathbb{E}[X^2] - \mathbb{E}[X]^2\right) = \frac{\sigma^2}{\lambda^2}$

Problem 3: Let X be a r.v. and $\lambda > 0$. Prove that the following bound holds:

$$\mathbb{P}(X \ge \lambda) \le \frac{\mathbb{E}[e^{tX}]}{e^{\lambda t}}, \forall t > 0$$

Use Markov inequality.

Solution: We note that the function $\phi(x) = e^{tx}$ for t > 0 is a positive and non-decreasing function. We first have by Markov's inequality that $\mathbb{P}(X \ge \lambda) = \mathbb{P}(\phi(x) \ge \phi(\lambda))$ $\le \frac{1}{\phi(\lambda)} \mathbb{E}[\phi(X)] \Rightarrow \mathbb{P}(X \ge \lambda) \le \frac{\mathbb{E}[e^{tX}]}{e^{\lambda t}}, \forall t > 0.$