Impariamo LATEX

4BLSA

28/04/25

Contents

1	Introduzione		
	1.1 Sottosezione	2	
2	Formule	3	
	2.1 Tante formule	3	

1 Introduzione

Questa è l'introduzione.

1.1 Sottosezione

Questa è una sottosezione. Sia λ un numero reale.

$$x + 1 = 3$$

$$x^{3}$$

$$x^{3+y}$$

$$\sqrt[3]{3+x^{2}}$$

$$\frac{3z+4}{z^{5}}$$

$$\sin x$$

$$\log_{10} \frac{1}{2}$$

$$\epsilon_{0}$$

$$\lambda$$

$$\Omega$$

$$\zeta$$

$$\xi$$

$$\int_{a}^{b} f(x)dx$$

$$A \subseteq B$$

$$L = -\frac{1}{4}G_{\mu\nu}^{a}G^{a\mu\nu} + \sum_{f} \bar{\psi}_{f} (i\gamma^{\mu}D_{\mu} - m_{f}) \psi_{f}$$

$$G_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} + gf^{abc}A_{\mu}^{b}A_{\nu}^{c}$$

$$D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}T^{a}$$

2 Formule

2.1 Tante formule

Scriviamo la seconda legge di Ohm:

$$R = \rho \frac{L}{A}$$

$$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{d^2}$$

$$\vec{F} = q\vec{E}$$

$$\Gamma = \vec{E} \cdot \Delta \vec{s} = |\vec{E}| |\Delta \vec{s}| \cos \alpha$$

Colonna 1	Colonna 2	Colonna 3
Valore 1	Valore 2	Valore 3
Valore 4	$F_{\mu\nu} = \partial_{\mu} A_{\nu}$	F = ma

- Punto 1
- Punto 2
- \bullet Punto 3
- 1. Punto 1
- 2. Punto 2
- 3. Punto 3

$$\sin x = 0 \iff x = k\pi \tag{1}$$