Analysis VIII/Linear Differential Equations Final Report Problems

Solve at least 3 problems from the following, and submit it to a report box. If you would like to submit it electrically for some reason, let me know by e-mail.

Deadline: 25 July 2023

(If you find errors in the problems, correct them suitably.)

Kenichi Ito

[1] Let

$$\Omega = \{ \zeta \in \mathbb{C}^d; |\operatorname{Im} \zeta| < \epsilon |\operatorname{Re} \zeta| \}, \quad \epsilon > 0,$$

and assume that $a \colon \Omega \to \mathbb{C}$ is holomophic, and that there exists C > 0 such that for any $\zeta \in \Omega$

$$|a(\zeta)| \le C(1+|\zeta|^2)^{m/2}.$$

For any $\chi \in C_0^{\infty}(\mathbb{R}^d)$ with $\chi(\xi) = 1$ in a neighborhood of $\xi = 0$ set

$$b(x,\xi) = (1 - \chi(\xi))a(\xi).$$

Then show $b \in S^m(\mathbb{R}^{2d})$.

- [2] Let $a \in S_{0,0}^0(\mathbb{R}^{2d})$.
 - 1. Verify formally or rigorously, whichever, the identity

$$\mathcal{F}a^{\mathrm{W}}(x,D_x)\mathcal{F}^* = a^{\mathrm{W}}(-D_{\xi},\xi) \colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d).$$

2. For any $t \in \mathbb{R}$ define the free Schrödinger propagator as

$$\mathrm{e}^{\mathrm{i}t\Delta/2} = \mathcal{F}^*\mathrm{e}^{-\mathrm{i}t\xi^2/2}\mathcal{F}\colon \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d).$$

Then verify formally or rigorously, whichever, the identity

$$e^{-it\Delta/2}a^{W}(x,D)e^{it\Delta/2} = a^{W}(x+tD,D).$$

[3]

- 1. Deduce the elliptic a priori estimate from the Gårding inequality.
- 2. Deduce the Gårding inequality from the sharp Gårding inequality.

- [4] Compute the wave front sets of the following distributions.
 - 1. The Dirac delta funcion δ on \mathbb{R}^d .
 - 2. $\delta(x') \otimes 1(x'')$ for $(x', x'') \in \mathbb{R}^p \times \mathbb{R}^q$.
 - 3. $\delta_{\mathbb{S}^{d-1}}$ on \mathbb{R}^d .
 - 4. $(x + i0)^{-1}$ on \mathbb{R} .
 - 5. The characteristic function χ_{Γ} of an angular domain

$$\Gamma = \left\{ (r\cos\theta, r\sin\theta) \in \mathbb{R}^2; \ r > 0, \ \theta \in (0, \alpha) \right\}, \quad \alpha \in (0, 2\pi).$$

- [5] Let $a \in S^m_{\rho,\delta}(\mathbb{R}^{2d})$ with $m \in \mathbb{R}$, $0 \le \delta < \rho \le 1$, and assume a(x,D) is local.
 - 1. Show, if m < -d, then $a \equiv 0$.
 - 2. Show, for any $\alpha \in \mathbb{N}_0^d$, $(\partial_{\varepsilon}^{\alpha} a)(x, D)$ is also local.
 - 3. Show a(x, D) is a partial differential operator.
- [6] We consider a differential operator on \mathbb{R}^2 :

$$a(x,D) = D_1 + ib(x_1)D_2.$$

We assume $b \in C^{\infty}(\mathbb{R}; \mathbb{R})$, and

$$\pm b(x_1) > 0$$
 for $\pm x_1 > 0$,

respectively, and set

$$\psi(x) = B(x_1) - ix_2 - (B(x_1) - ix_2)^2; \quad B(x_1) = \int_0^{x_1} b(y) \, dy.$$

1. Show for some neighborhood $U \subset \mathbb{R}^2$ of the origin and c, C > 0

$$c(B(x_1) + x_2^2) \le \text{Re}\,\psi(x) \le C(B(x_1) + x_2^2)$$
 in U .

2. Show that for any neighborhood $V \subset \mathbb{R}^2$ of the origin, $s,t \in \mathbb{R}$ and c > 0 there exists $v \in C_0^{\infty}(V)$ such that

$$||a^*(x,D)v||_{H^s} \le c||v||_{H^t}.$$

In particular, a(x, D) is not locally solvable at the origin.

(Hint. Take $\chi \in C_0^{\infty}(V)$ with $\chi = 1$ in a neighborhood of the origin, and set

$$v_{\mu}(x) = \chi(x)e^{-\mu\psi(x)}, \quad \mu \ge 1.$$

To estimate $||v_{\mu}||_{H^t}$ compute (v_{μ}, ϕ_{μ}) for some $\phi_{\mu}(x) = \phi(\mu x), \phi \in C_0^{\infty}(V)$.)