Regresion

En este tema vamos a entrar en el aprendizaje supervisado, el aprendizaje supervisado lo podemos dividir en dos tipos de problemas, de regresión y de clasificación.

A lo largo de este tema vamos a centrarnos en los problemas de regresión, concretamente vamos a enfocarnos en un tipo de regresión: Regresión Lineal.

Existen distintos métodos para hacer regresiones, muchos de ellos regresiones que no son lineales, pero para vamos a enfocarnos en la regresión lineal para adquirir bien los fundamentos de la regresión.

Modelado predictivo

Empezamos dando un paso atras, para los problemas de aprendizaje supervisado tendremos una matriz de nxp features que llamaremos X y un n-vector con las "etiquetas" que llamaremos y. En todos los problemas de aprendizaje **supervisado** la intención es construir un modelo f que mapee las filas de la matriz X a cada etiqueta de y:

$$f(X_{j\cdot})pprox y_{j}$$
 .

Todos los problemas de aprendizaje supervisado pueden ser representados de este modo, siendo los siguientes los parámetros variables:

1. El modelo f. Este modelo solo representa modelos lineales. Normalmente asumiremos que una de la columnas de X será la constante 1, de este modo

$$f(X_{j\cdot}) = X_{ji} \cdot \beta_i$$

representa el modelo lineal, incluido el intercepto.

Linear Regression

La regresión lineal es posiblemente el modelo mas sencillo:

$$f(X_{j\cdot}) = \sum_i eta_i X_{ji}$$

El modelo de error asume que las y son independientes y normalmente distribuidas al rededdor de $X_{ji} \cdot \beta_i$ con una desviacion estándar σ .

Likelihood and cost functions

Suponemos que sabemos que el modelo correcto fue dado por algun beta. Dada la asunción de arriba sobre el modelo de error, la probabilidad de medir y es:

$$egin{aligned} P(y_j \mid eta_i) &= \ \prod_j rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp} \ \left[-\left(rac{X_{ji} \cdot eta_i - y_j}{2\sigma}
ight)^2
ight] \end{aligned}$$

Sin embargo, no conocemos ese beta. Tenemos que encontrarlos, dada la y, tenemos que encontrar betas que maximicen la probabilidad de beta condicionada a y: $P(\beta_i \mid y_i)$. Por lo que con la regla de bayes sabemos:

$$egin{aligned} P(eta_i \mid y_j) \ &= P(y_j \mid eta_i) rac{P(eta_i)}{P(y_j)} \end{aligned}$$

Sahemos también el nrimer termino de RHS, v. $P(u_i)$ que es independiente de β_i . De este modo, solamente

-and the contrast of printer continuous contrast, j. \pm $(g_{JJ}$ que de macronaleme de \wp_I r be dete mede, definition to

 $P(\beta_i)$ es desconocido. En modelos de regresión lineal, suponemos que no tenemos un conocimiento de antemano o *prior* como en bayes. De este modo, el modelo mas probable es determinado maximizando la función de likelihood:

$$egin{aligned} L(eta) &= \ \prod_{j} rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp} \ \left[-\left(rac{X_{ji}\cdoteta_i - y_j}{2\sigma}
ight)^2
ight] \ &\propto P(eta_i \mid y_j) \end{aligned}$$

Ejercicios:

- 1. ¿Que es el intercepto?
- 2. ¿Que pasa si $p\gg n$? ¿Como abordariamos este problema?
- 3. ¿Que pasa si X tiene dos columnas co-lineares? ¿Por que puede pasar esto?
- 4. ¿Cual es el efecto de los outliers? ¿Como lo arreglarías?

Regresión lineal en practica

```
In [1]:
```

```
%matplotlib inline
import matplotlib
import seaborn as sns
matplotlib.rcParams['savefig.dpi'] = 144
sns.set_theme()
```

In [3]:

```
from sklearn import datasets, linear_model, utils, preprocessing
import pandas as pd
import matplotlib.pylab as plt
import numpy as np
import seaborn as sns

mnist = pd.read_pickle("data/mnist.pkl")
original_columns = ["CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRAT
IO", "B", "LSAT"]

np.random.seed(42)
Xraw, y = utils.shuffle(mnist.data, mnist.target)
Xraw = pd.DataFrame(Xraw, columns=original_columns)
y = pd.Series(y)
```

In [4]:

```
Xraw.head()
```

Out[4]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSAT
0	0.09178	0.0	4.05	0.0	0.510	6.416	84.1	2.6463	5.0	296.0	16.6	395.50	9.04
1	0.05644	40.0	6.41	1.0	0.447	6.758	32.9	4.0776	4.0	254.0	17.6	396.90	3.53
2	0.10574	0.0	27.74	0.0	0.609	5.983	98.8	1.8681	4.0	711.0	20.1	390.11	18.07
3	0.09164	0.0	10.81	0.0	0.413	6.065	7.8	5.2873	4.0	305.0	19.2	390.91	5.52
4	5.09017	0.0	18.10	0.0	0.713	6.297	91.8	2.3682	24.0	666.0	20.2	385.09	17.27

```
0
     23
1
     32
2
     13
3
     22
4
     16
dtype: int64
In [6]:
X1 = Xraw[['RM']]
linreg = linear_model.LinearRegression(fit_intercept=True) # This is the default
linreg.fit(X1, y)
plt.plot(X1, y, '.')
x = np.linspace(3, 9).reshape(-1,1)
plt.plot(x, linreg.predict(x), '-')
plt.xlabel('RM')
plt.ylabel('Home Price')
Out[6]:
Text(0, 0.5, 'Home Price')
```



```
In [7]:

df = Xraw.copy()
df['home price'] = y
```

In [8]:

y.head()
Out[5]:

df

Out[8]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSAT	home price
0	0.09178	0.0	4.05	0.0	0.510	6.416	84.1	2.6463	5.0	296.0	16.6	395.50	9.04	23
1	0.05644	40.0	6.41	1.0	0.447	6.758	32.9	4.0776	4.0	254.0	17.6	396.90	3.53	32
2	0.10574	0.0	27.74	0.0	0.609	5.983	98.8	1.8681	4.0	711.0	20.1	390.11	18.07	13
3	0.09164	0.0	10.81	0.0	0.413	6.065	7.8	5.2873	4.0	305.0	19.2	390.91	5.52	22
4	5.09017	0.0	18.10	0.0	0.713	6.297	91.8	2.3682	24.0	666.0	20.2	385.09	17.27	16
501	0.17120	0.0	8.56	0.0	0.520	5.836	91.9	2.2110	5.0	384.0	20.9	395.67	18.66	19
502	0.29916	20.0	6.96	0.0	0.464	5.856	42.1	4.4290	3.0	223.0	18.6	388.65	13.00	21
503	0.01501	80.0	2.01	0.0	0.435	6.635	29.7	8.3440	4.0	280.0	17.0	390.94	5.99	24
504	11.16040	0.0	18.10	0.0	0.740	6.629	94.6	2.1247	24.0	666.0	20.2	109.85	23.27	13
505	0.22876	0.0	8.56	0.0	0.520	6.405	85.4	2.7147	5.0	384.0	20.9	70.80	10.63	18

```
In [9]:
```

```
cols = ['CRIM', 'ZN', 'NOX', 'AGE', 'RAD', 'LSAT', 'home price']
```

In [10]:

```
sns.pairplot(df[cols])
```

Out[10]:

<seaborn.axisgrid.PairGrid at 0x7fe8b895eac8>

In [11]:

```
X = Xraw.copy()
X["INV_CRIM"] = 1./X.CRIM
X["INDUS7"] = X.INDUS <= 7.
X["INDUS16"] = 1. * (X.INDUS <= 16.)
X["INV_NOX"] = 1./X.NOX
X["AGE75"] = 1. * (X.AGE <= 76.)
X["RAD15"] = 1. * (X.RAD <= 15.)</pre>
```

```
X["TAX500"] = 1. * (X.TAX <= 500.)
X["PTRATIO19"] = X.PTRATIO <= 19.
X["B350"] = 1. * (X.B <= 350.)
X["INV_LSAT"] = 1. / X.LSAT
X=X.astype(float)
X.head()</pre>
```

Out[11]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	 INV_CRIM	INDUS7	INDUS16	INV_NOX	AGE75
0	0.09178	0.0	4.05	0.0	0.510	6.416	84.1	2.6463	5.0	296.0	 10.895620	1.0	1.0	1.960784	0.0
1	0.05644	40.0	6.41	1.0	0.447	6.758	32.9	4.0776	4.0	254.0	 17.717931	1.0	1.0	2.237136	1.0
2	0.10574	0.0	27.74	0.0	0.609	5.983	98.8	1.8681	4.0	711.0	 9.457159	0.0	0.0	1.642036	0.0
3	0.09164	0.0	10.81	0.0	0.413	6.065	7.8	5.2873	4.0	305.0	 10.912265	0.0	1.0	2.421308	1.0
4	5.09017	0.0	18.10	0.0	0.713	6.297	91.8	2.3682	24.0	666.0	 0.196457	0.0	0.0	1.402525	0.0

5 rows × 23 columns

In [12]:

```
plt.subplots_adjust(wspace=0.8, hspace=1)
for i, col in enumerate(X):
    plt.subplot(5, 5, i+1)
    plt.plot(X[col], y, '.')
    plt.locator_params(nbins=6)
    plt.xlabel(col)
    plt.ylabel('Home Price')
```


Comparamos el performance del modelo con diferentes sets de features

In [13]:

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe8ba642278>

In [14]:

```
[col for col in original_columns if abs_corr(X[col], y) > .6]
Out[14]:
```

['RM', 'LSAT']

Regularization

En el problema anterior hemos utilizado un criterio $\ ad ext{-}hoc$ para seleccionar features. Sin embargo, una aproximación mas realista sería seleccionar una distribucion para $P(\beta_i)$ que tenga su pico sobre $\beta_i=0$, en lugar de uniforme.

$$P(\beta_i) \propto \prod_i \exp \left[-rac{lpha}{2} \left(rac{eta_i}{\sigma}
ight)^2
ight],$$

entonces

$$L(eta) \propto \prod_{j} \exp \left[-rac{1}{2} igg(rac{X_{ji} \cdot eta_i - y_j}{\sigma}igg)^2
ight]$$

$$\prod_{i} \exp \left| -\frac{\alpha}{2} \left(\frac{\beta^{i}}{\sigma} \right) \right|.$$

Así la log-likelihood negativa es (para transformación lineal)tion)

$$-\log(L(eta)) \sim \|y - Xeta\|^2 \ + lpha \|eta\|^2 \, .$$

Después de completar el cuadrado, resulta que la solución tiene una forma cerrada,

$$\hat{\beta} = (X^T X + \alpha I)^{-1} X^T y$$
.

Para tener una idea de que está pasando, usamos SVD

$$X = U\Sigma V^T$$

Vemos que

$$\hat{eta} = VDU^Ty$$

donde

$$D_{ii} = rac{\Sigma_{ii}}{\Sigma_{ii}^2 + lpha} \, .$$

Cuando $\alpha=0$, $D_{ii}=\frac{1}{\Sigma_{ii}}$ y decrece hasta 0 cuando alpha tiende a infinito. Cuanto mas pequeño es Σ_{ii} , mas rapido decrece hasta 0.

Hemos visto una técnica de regularización que se llama Ridge o L2.

In [15]:

```
import numpy as np
np.random.seed(42)

alphas = np.logspace(-4., 0, 20)
ridge_models = pd.DataFrame(
    [(alpha,
        "Ridge Regression with alpha = %f" % alpha,
        compute_error(linear_model.Ridge(alpha=alpha), X, y)) for alpha in alphas],
    columns=['alpha', 'Model', 'MSE'])
ridge_models.plot(x='alpha', y='MSE', logx=True, title='MSE')
```

Out[15]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fe8bb6f2588>

In [16]:

Out[16]:

Text(0, 0.5, 'Coefficients')

Regularización Lasso

La regularión Lasso es como Ridge, pero tiene la habilidad de seleccionar features de manera automatica. La función objetivo a minimizar es:

$$rac{1}{2n} \|y - X^T eta\|^2 + lpha \ \|eta\|_1$$

Donde $\|\beta\|_1 = \sum_i |\beta_i|$ es la norma L^1 de β y n es el numero de ejemplos.

Esta técnica es llamada regularización Lasso o L1 debido a que es como Ridge pero con un *penalty* L1 en lugar de L2.

Lasso tiene una propiedad de feature selection donde muchos pesos de features pueden ser cero (y por tanto esas features serían no seleccionadas)

```
In [17]:
```

```
beta = np.linspace(-1,2,100)
base_error = (beta - 1)**2 - 1

for pow in [2,1]:
    plt.subplot(123 - pow)
    for a in range(0, 5):
        plt.plot(beta, base_error + a * abs(beta)**pow, label=r'$\alpha = \%i$' \% a)
    plt.ylim(-2, 4)
    plt.xlabel(r'$\beta$')
    plt.ylabel(r'$\beta$')
    plt.ylabel(r'$\cdot \cdot \cd
```


In [18]:

```
np.random.seed(42)
alphas = np.logspace(-5., -1., 20)

lasso_models = pd.DataFrame(
   [(alpha,
      "Lasso with alpha = %f" % alpha,
      compute_error(linear_model.LassoLars(alpha=alpha), X, y)) for alpha in alphas],
   columns=['alpha', 'Model', 'MSE'])
lasso_models.plot(x='alpha', y='MSE', logx=True, title='MSE')
```

Out[18]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fe8bc25e748>

In [19]:

Out[19]:

Text(0, 0.5, 'Coefficients')

Elastic Net

La combinación de los dos tipos de regularizaciones (L1 y L2) se llama ElasticNet