Simulasi Perbaikan System Maintenance dengan Pendekatan Konsep Lean Maintenance

Irfan^{1)*}, Muhammad Ikhsan Hamdy²⁾

¹Jurusan Teknik Industri, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl. HR. Soebrantas No. 155 Simpang Baru, Panam, Pekanbaru, 28293

Naskah diterima 27/02/2019; direvisi 17/04/2019; disetujui 22/04/2019 doi: https://doi.org/10.24843/JEM.2019.v12.i01.p03

Abstrak

PT. Perkebunan Nusantara V mengolah kelapa sawit yang menghasilkan *Crude Palm Oil* (CPO) dengan produksi 60-ton TBS/jam. Proses produksi yang berlangsung di Perusahaan sering mengalami pemberhentian yang diakibatkan oleh tingginya frekuensi kerusakan mesin *thresher* dikarenakan sistem perawatan yang belum optimal menyebabkan waktu penundaan (*Down Time*) 2-3 jam untuk proses perbaikan di mesin tersebut. Hal ini dapat dilihat pada data kondisi mesin *thresher* tahun 2018 yaitu terdapat 18 kali komponen mesin yang harus mengalami perawatan di luar dari perawatan mesin. Permasalahan ini bisa terjadi 4-5 kali dalam 1 bulan berdampak buruk pada perusahaan yaitu menurunkan jumlah rendemen. Maka dari itu pada penelitian ini akan dilakukan penentuan aktifitas perawatan mesin *tresher* agar kerusakan pada mesin dapat diminimalisir dengan pendekatan *Failure Mode Effect Analysis* (FMEA) dan *Realibility Centered Maintenance* (RCM). Dari hasil FMEA terhadap 18 komponen mesin *tresher* dengan RPN terbesar adalah *Gearbox* dengan nilai 648 poin. Selanjutnya dari hasil RCM dengan aktifitas perawatan *schedule on condition* dan *schedule on restoration task* terdapat 9 komponen. Untuk hasil dari MVSM pada proses penggantian komponen mesin *tresher* terdapat *delay* maka dilakukan simulasi arena dan penjadwalan penggantian komponen mesin, maka nilai efisiensi penggantian meningkat untuk komponen *Gearbox* dari 40% naik menjadi 54,26%.

Kata kunci: FMEA, MVSM, RCM, RPN, Simulasi Arena.

Abstract

PT. Perkebunan Nusantara V processes oil palm which produces Crude Palm Oil (CPO) with a production of 60 tons of FFB / hour. The production process that takes place at the Company often has a stop caused by the high frequency of damage to the engine thresher because the maintenance system that has not been optimal causes a delay time (Down Time) of 2-3 hours for the repair process on the engine. This can be seen in the data on the condition of the thresher engine in 2018, which is 18 times the engine components that have to be treated outside the engine maintenance. This problem can occur 4-5 times in 1 month which has a negative impact on the company, namely reducing the amount of yield. Therefore, this research will determine the tresher engine maintenance activities so that damage to the engine can be minimized using the Failure Mode Effect Analysis (FMEA) approach and Reliability Centered Maintenance (RCM). From the results of the FMEA on the 18 components of the tresher engine with the largest RPN is Gearbox with a value of 648 points. Furthermore, from the RCM results with maintenance schedule on condition activities and schedule on restoration tasks there are 9 components. For the results of MVSM in the replacement process of tresher engine components there is delay, then an arena simulation and scheduling of engine components are replaced, then the value of replacement efficiency increases for Gearbox components from 40% to 54.26%.

Keywords: FMEA, MVSM, RCM, RPN, Arena Simulation.

1. Pendahuluan

Proses produksi yang berlangsung di PT. Perkebunan Nusantara V Sei Galuh sering mengalami pemberhentian ketika produksi berlangsung. Faktor yang menyebabkan masalah proses produksi sering terhenti diakibatkan oleh tingginya frekuensi kerusakan mesin dikarenakan sistem perawatan yang belum optimal. Adapun mesin yang mengalami kerusakan yang dimaksud adalah mesin *tresher*. Mesin *Thresher* adalah alat yang digunakan untuk pemilahan jenjang dengan buah setelah proses pemilahan. Mesin ini berfungsi sebagai pemisahan antara buah sawit dan tandannya. Umumnya di stasiun tersebut mempunyai 3-unit mesin, 2 *thresher* biasa dan 1 *double thresher*.

Ketika mesin *thresher* mengalami kerusakan menyebabkan waktu penundaan (*Down Time*) proses produksi yang cukup lama yaitu memakan waktu 2-3 jam untuk proses perbaikan di mesin tersebut. Pada tahun 2018 terdapat 18 kali komponen mesin yang harus mengalami perawatan di luar dari perawatan mesin. Pada saat penggantian komponen dari mesin *tresher* ini yang menyebabkan kegiatan *non value added.* Hal ini disebabkan karena waktu penggantian

komponen yang tidak tepat karena dilakukan pada saat mesin sedang bekerja. Selain itu, adanya waktu menunggu (waiting time) untuk melakukan penggantian komponen pada mesin tresher. Permasalahan ini bisa terjadi 4-5 kali dalam 1 bulan, yang mana dapat berdampak buruk pada perusahaan yaitu menurunkan jumlah rendemen yang didapatkan.

ISSN: 2302-5255 (p)

ISSN: 2541-5328 (e)

Saat melakukan wawancara pada operator mesin *Thresher* kerusakan yang sering terjadi adalah *Gearbox Theresser* dan *Under Theressing*. Hal ini terjadi karena sisi-sisi pintu dari kotoran minyak yang lengket dan sampah-sampah yang menumpuk pada *Under Theressing*. Selain itu, sering terjadi keausan akibat gesekan yang terjadi di *Gearbox Theresser*, keausan ini diakibatkan oleh kurangnya pelumasan diantara poros komponen mesin.

Langkah yang dilakukan untuk menyelesaikan permasalahan tersebut pada mesin *thresher* di PT. Perkebunan Nusantara V Sei Galuh Kampar adalah, pertama dengan melakukan pemilihan tindakan perawatan yang tepat dari masing-masing komponen yaitu mengurangi kegiatan yang tidak memiliki nilai tambah terhadap proses pergantian ataupun

*Korespondensi:

E-mail: irfangalaticos@gmail.com

pembersihan dapat menggunakan metode MVSM dan metode RCM. Kedua dengan melakukan pemilihan tindakan perawatan yang tepat dari masing-masing komponen yang memiliki nilai *Risk Priority Number* (RPN) yang tinggi menggunakan metode FMEA dan menggunakan metode RCM. Sedangkan untuk mengurangi atau menghilangkan *waiting time* yang terlalu lama, maka digunakanlah *software* simulasi arena.

1.1 Maintenance

FMEA adalah jenis desain dan teknologi untuk keandalan pencegahan, merupakan formula yang sistematis terstruktur untuk mengidentifikasi modus kerusakan yang potensial dalam desain atau manufaktur, kemudian mempelajari kerusakan kemudian pengaruh pada sistem, mengambil langkah-langkah yang diperlukan untuk mengkoreksi dan sebagai metode pencegahan sementara yang mengarah pada masalah dalam sistem keandalan (Effendi,2015).Dari hasil FMEA maka dilakukan penentuan aktifitas menggunakan metode RCM. Pendekatan RCM adalah kegiatan perawatan yang dilakukan menjadi lebih efektif dikarenakan waktu downtime yang berkurang dan waktu penggunaan mesin akan semakin maksimal digunakan (Moubray, 1997).

Maintenance Value Stream Map (MVSM) adalah metode yang digunakan untuk menggambarkan alur kegiatan perawatan yang dikembangkan dari VSM untuk mengidentifikasi pemborosan. Pemborosan tersebut terjadi pada setiap kegiatan perawatan yang tidak memiliki nilai tambah terhadap proses perawatan tersebut (Kurniawati dkk, 2017). Dalam proses metode MVSM terbagi menjadi 2 proses yaitu proses sebelum dilakukan perbaikan (current state map) dan setelah dilakukan perbaikan (future State Map). Setelah mengidentifikasi kegiatan yang tidak memiliki nilai tambah pada current state map selanjutnya membuat alur kegiatan baru yang sudah diminalisir kegiatan yang tidak memiliki nilai tambah pada future state map berdasarkan analisa diagram sebab akibat (Kanaan, 2015). Pada tahapan analisis fishbone diagram tahapan yang digunakan merupakan penyebab terjadinya pemborosan saat aktivitas perawatan digambarkan pada current state map. Berdasarkan hasil pengamatan dan wawancara terhadap perusahaan maka didapatkan bentuk pemborosan yaiu aktivitas delay (Kurniawati, 2017).

1.2 Simulasi Arena

Simulasi dengan arena dapat mempresentasikan sebuah sistem produksi dan membangun model eksperimen dengan menggunakan model-model yang menyatakan proses atau logika dalam system. Metode simulasi telah banyak digunakan untuk memperbaiki kinerja suatu sistem produksi manufaktur maupun sistem pelayanan/jasa (Riyanto, 2016).

2. Metode Penelitian

Penelitian ini melakukan perbaikan perawatan mesin *tresher* pertama adalah pengumpulan data. Data yang diperlukan untuk pengolahan data adalah data komponen mesin *tresher* yang mengalami kerusakan selama tahun 2018, komponen-komponen mesin *tresher* dan data urutan aktifitas perawatan mesin *tresher* di PT. Perkebunan Nusantara V Sei Galuh Kampar.

Dari data yang di peroleh langkah awal adalah penentuan komponen prioritas menggunakan metode FMEA dari komponen prioritas. Dari komponen prioritas akan diketahui komponen dari mesin genset yang terlebih dahulu perlu untuk dilakukan perbaikan tindakan aktifitas perawatan. selanjutnya dilakukan penentuan tindakan aktifitas perawatan komponen mesin *tresher* menggunakan metode RCM. Penentuan ini untuk melihat dari komponen mesin *tresher* yang perlu untuk dilakukan penggantian komponen yang dilakukan secara berkala.

Perbaikan aktifitas perawatan komponen mesin *tresher* dilakukan dengan mengetahui urutan kegiatan perawatan di PT. Perkebunan Nusantara V Sei Galuh Kampar. Adapun urutan kegiatan di Perusahaan ini ditunjukkan dalam Gambar 1.

Dari gambar di atas dapat dilihat proses pertama ketika mesin *tresher* rusak adalah mengidentifikasi sumber masalah, mengkomunikasikan masalah kepada tim *maintenance*, mengidentifikasi SDM, mengidentifikasi sumber daya peralatan dan komponen yang dibutuhkan, mempersiapkan perintah kerja, melakukan perbaikan mesin dan melakukan inspeksi terhadap komponen yang di ganti apakah sudah berfungsi seperti semula.

Setelah mendapatkan alur kegiatan perawatan, maka dilakukan perhitungan efisiensi perawatan dengan menggunakan *current state map.* Dari hasil yang di peroleh, maka dilakukan analisa penyebab masalah pada proses perawatan. Dan yang terakhir adalah pembuatan *future state map* menggunakan *software* simulasi arena untuk membandingkan apakah efisiensi perawatan meningkat.

Gambar 1. Alur kegiatan perawatan mesin tresher di PT. Perkebunan Nusantara V Sei Galuh Kampar

3. Hasil dan Pembahasan

Dari pengumpulan data yang telah dilakukan di PT. Perkebunan Nusantara V Sei Galuh Kampar diantaranya: data kerusakan mesin *tresher* tahun 2018, data komponen mesin *tresher* DST-100 B dan data alur aktifitas perawatan mesin *tresher*. Maka dari data tersebut selanjutnya dilakukan pengolahan data untuk mendapatkan hasil yang ingin di capai.

Langkah pertama dalam pengolahan data adalah menentukan masing-masing komponen prioritas menggunakan metode FMEA, hasil yang diperoleh dari penentuan komponen prioritas menggunakan FMEA dapat dilihat pada tabel 1 Nilai RPN dapat dilihat komponen Gearbox memiliki nilai yang terbesar dengan kategori severity sebesar 9 poin, occurance sbesar 9 poin dan detection sebesar 8 poin maka nilai RPN untuk komponen Gearbox sebesar 648, sedangkan untuk komponen-komponen yang memiliki nilai RPN terkecil adalah Gearbox Thresser dengan nilai RPN sebesar 8 poin.

Dari nilai RPN yang di peroleh digunakan untuk melakukan tindakan aktifitas perawatan pada masingmasing komponen mesin *tresher* menggunakan metode RCM.

Tabel 1. Nilai RPN

Tabel	I. MIIGI IXI IX				
No	Komponen	S	0	D	RPN
1	Gearbox	9	9	8	648
2	Electromotor	8	8	9	576
3	Housting Crane	8	8	8	512
4	Gearbox Traveling H. Crane	8	9	7	504
5	Gearbox Tuang H. Crane	8	9	7	504
6	Electromotor Traveling	7	10	7	490
7	Electromotor Telting	7	10	7	490
8	Electromotor Liveting	7	10	7	490
9	Incinerator	6	10	5	300
10	Under Thressing	7	7	6	294
11	Double Conveyor	6	7	6	252
12	Bunch Cruicher	5	1	7	35
13	Empty Bunch Hopper	5	1	6	30
14	Auto Feeder	6	1	5	30
15	Gearbox Auto Feder	4	1	4	16
16	Fruit Elevator	3	1	5	15
17	Thresser	3	1	3	9
18	Gearbox Thresser	2	1	4	8

Untuk mendapatkan tindakan aktifitas perawatan komponen maka dilakukan perhitungan menggunakan metode RCM Dari tabel 2 dapat di simpulkan pada perusahaan tindakan aktifitas perawatan mesin *tresher* menggunakan metode RCM *Decition Worksheet* terdapat 2 jenis aktifitas perawatan yaitu *Scheduled On Condition Task* dan *Schedule On Restoration Task*.

Pada Scheduled on Condition Task terdapat 9 komponen yaitu Housting Crane, Gearbox Traveling H. Crane, Gearbox Tuang H. Crane, Incinerator, Double Conveyor, Bunch Cruicher, Gearbox Auto Feder, Fruit Elevator dan Thresser. Tindakan aktifitas Schedule on Restoration Task melakukan tindakan aktivitas perawatan untuk mengetahui kegagalan potensial yang bisa dicegah dan dideteksi kerusakan komponen

dengan cara inspeksi menggunakan suatu alat, karena inspeksi komponen memiliki waktu yang berbeda.

Pada Schedule On Restoration task terdapat 9 komponen yaitu Gearbox, Electromotor, Electromotor Traveling, Electromotor Telting, Electromotor Liveting, Under Thressing, Empty Bunch Hopper, Auto Feeder dan Gearbox Thresser. Tindakan aktifitas Schedule on Restoration task melakukan penggantian terhadap komponen pada mesin tresher yaitu pada interval waktu atau batas usia pemakaian masing-masing komponen meskipun komponen dalam kondisi baik ataupun sudah rusak.

Tabel 2. RCM aktifitas perawatan komponen mesin

Tabel 2. RCM aktifitas perawatan komponen mesin					
Komponen	Proposed Task	Initial Interval	Can be Done By		
Gearbox	Schedule on Restoration Task	480 Jam	Mekanik		
Electromotor	Schedule on Restoration Task	720 Jam	Mekanik		
Housting Crane	Scheduled on Condition Task	720 Jam	Mekanik		
Gearbox Traveling H. Crane	Scheduled on Condition Task	480 Jam	Mekanik		
Gearbox Tuang H. Crane	Scheduled on Condition Task	480 Jam	Mekanik		
Electromotor Traveling	Schedule on Restoration Task	240 Jam	Mekanik		
Electromotor Telting	Schedule on Restoration Task	240 Jam	Mekanik		
Electromotor Liveting	Schedule on Restoration Task	240 Jam	Mekanik		
Incinerator	Scheduled on Condition Task	240 Jam	Operator		
Under Thressing	Schedule on Restoration Task	50 Hari	Mekanik		
Double Conveyor	Scheduled on Condition Task	50 Hari	Operator		
Bunch Cruicher	Scheduled on Condition Task	100 Hari	Operator		
Empty Bunch Hopper	Schedule on Restoration Task	60 Hari	Mekanik		
Auto Feeder	Schedule on Restoration Task	45 Hari	Mekanik		
Gearbox Auto Feder	Scheduled on Condition Task	53 Hari	Operator		
Fruit Elevator	Scheduled on Condition Task	840 Jam	Mekanik		
Thresser	Scheduled on Condition Task	672 Jam	Operator		
Gearbox Thresser	Schedule on Restoration Task	65 Hari	Operator		

Setelah mendapatkan aktifitas perawatan selanjutnya melakukan perbaikan perawatan mesin melaui Pendekatan aktifitas perawatan aktual pada mesin tresher menggunakan metode MVSM untuk mengurangi kegiatan-yang dilakukan operator maupun mekanik dalam melakukan penggantian inspeksi terhadap mesin tresher yang tidak memberikan nilai tambah non value added.

Dalam melakukan pengeliminasian kegiatan-kegiatan pada aktifitas perawatan mesin *tresher* waktu yang boleh dieliminasi adalah kategori waktu *Mean Time to Orginize* (MTTO) dan *Mean Time to Yield* (MTTY). MTTO yaitu waktu yang dibutuhkan untuk mempersiapkan peralatan, material atau komponen mesin dan juga sumber daya manusianya. MTTY yaitu waktu yang dibutuhkan operator dalam memeriksa peralatan yang diperbaiki atau diinspeksi sudah sesuai dengan yang diharapkan agar mesin dapat berfungsi sebagaimana mestinya.

Current state map merupakan gambaran awalan terhadap proses Penggantian komponen mesin tresher di perusahaan ini. Pada current state map ini terdapat penjelasan dari waktu masing-masing kegiatan, kategori waktu kegiatan dan juga alur proses kegiatan dari awal hingga selesai. Proses ini dilakukan pada masing-masing komponen pada mesin tresher yaitu Gearbox dan Incinerator. Gearbox berfungsi untuk memindahkan dan mengubah tenaga dari electromotor yang berputar. Data aktifitas penggantian diambil pada

tanggal 1-2 Maret 2019 pada komponen *Gearbox*. Gambaran *current state map* ditunjukkan dalam Gambar 2..

Pada gambar 2 terdapat 8 proses kegiatan yang terjadi pada saat proses penggantian komponen Gearbox. Adapun waktu kegiatan yang tidak memberikan nilai tambah terhadap proses penggantian sebesar 105 menit sedangkan kegiatan yang memberikan nilai tambah adalah sebesar 70 menit. Dari nilai waktu yang di peroleh tersebut akan dilakukan perhitungan efisiensi proses penggantian pada komponen Gearbox dengan menggunakan data kategori waktu. Adapun kategori waktu pada proses penggantian komponen Gearbox ditunjukkan dalam Tabel 3.

% Efisiensi perawatan =
$$\frac{MMTR}{MMLT}$$
 X 100
= $\frac{70}{175}$ X 100= 40%

Dari perhitungan efisiensi perawatan pada proses penggantian *Gearbox* nilai efisiensi perawatan sebesar 40% dengan waktu nya sebesar 70 menit, yang artinya dari keseluruhan proses kegiatan perawatan hanya 40%. *Incinerator* berfungsi sebagai tempat pengumpulan sementara janjangan. Data aktifitas penggantian diambil pada tanggal 1-2 Maret 2019 pada komponen *Incinerator*. Gambaran *current state map* ditunjukkan dalam Gambar 3.

Gambar 2. Framework penggantian Gearbox

Tabel 3. Kategori waktu penggantian Gearbox

No	Urutan Kegiatan	Waktu	Kategori Waktu
1	Gearbox rusak	-	-
2	Mengkomunikasikan masalah ke tim maintenance	10	MTTO
3	Delay menentukan dan mempersiapkan pekerja yang memperbaiki	18	MTTO
4	Mengidentifikasi sumber masalah	15	MTTO
5	Mengidentifikasi sumber daya peralatan dan komponen yang dibutuhkan	16	MTTO
6	Delay akibat komponen tidak ada di penyimpanan	28	MTTO
7	Mempersiapkan perintah kerja	12	MTTO
8	Melakukan perbaikan mesin	70	MTTR
9	Melakukan inspeksi terhadap komponen yang di ganti apakah sudah berfungsi seperti semula	6	MTTY
MLLT		175	
MTTO		99	
MTTR		70	
MTTY	•	6	

Gambar 3. Framework penggantian Incinerator

Tabel 4. Kategori waktu penggantian Incinerator

No	Urutan Kegiatan	Waktu	Kategori Waktu
1	Incinerator rusak		-
2	Mengkomunikasikan masalah ke tim maintenance	10	MTTO
3	Delay mempersiapkan peralatan operator untuk perbaikan	20	МТТО
4	Mengidentifikasi sumber masalah	26	MTTO
5	Melakukan perbaikan mesin	31	MTTR
6	Melakukan inspeksi terhadap komponen yang di ganti apakah sudah berfungsi seperti semula		MTTY
MLL	Γ	94	
MTTO		56	
MTTR		31	
MTT'	Υ	7	

Gambar 4. Diagram Fishbone Delay Mekanik

Gambar 5. Diagram Fishbone Delay Operator

% Efisiensi perawatan =
$$\frac{MMTR}{MMLT}$$
 X 100
= $\frac{31}{94}$ X 100 = 32,97%

Dari perhitungan efisiensi perawatan pada proses penggantian *Incinerator* didapati nilai efisiensi perawatan sebesar 32,97% dengan waktu 31 menit, dari keseluruhan proses kegiatan perawatan hanya 40% yang memberikan nilai tambah terhadap penggantian *Incinerator*.

Selanjutnya dari penggambaran awal current state map dilakukan analisa menggunakan diagram sebab akibat (fishbone) mekanik dan operator. Pada diagram sebab akibat ini menganalisa faktor dari manusia (man), metode kerja (work-method), mesin atau peralatan kerja lainnya (machine/equipment), bahan baku (raw materials) dan lingkungan kerja (work environment). Pada analisa current state map diagram menggunakan sebab akibat untuk menyelesaikan kegiatan non value added lebih ditekankan pada Delay 1 yaitu akibat peralatan operator tidak tersedia Delay 2 yaitu Delay akibat bahan baku atau komponen dan Delay 3 yaitu akibat sumber daya manusia sehingga hasil dari diagram sebab akibat ini dapat menghilangkan Delay yang terjadi. Sebab akibat terjadinya Delay mesin tresher di PT. Perkebunan Nusantara V Sei Galuh Kampar selanjutnya ditunjukkan pada Gambar 4 dan 5.

Dari gambar 4 dapat dilihat terdapat 3 faktor yang menyebabkan *Delay* 1, *Delay* 2 dan *Delay* 3 pada proses maintenance di PT. Perkebunan Nusantara V Sei Galuh Kampar yaitu:

1. Faktor Manusia

Faktor manusia berpengaruh pada terjadinya delay 3 karena SDM mekanik tidak tersedia dan kualifikasi teknisi tidak sesuai yang menyebabkan proses perbaikan mesin tertunda. Untuk mencegah hal ini terjadi, perlu adanya penjadwalan rutin komponen mesin.

2. Faktor Metode

Faktor metode yang menyebabkan terjadinya *delay* yaitu tidak ada penjadwalan untuk masing-masing komponen mesin dan tidak adanya SOP *maintenance* yang baik, faktor dari metode inilah yang paling berpengaruh terjadinya *delay* 1, *delay* 2 dan *delay* 3. Untuk menyelesaikan *delay* ini maka perlu dibuat penjadwalan dan SOP *maintenance* yang sistematis untuk masing-masing komponen yang diperhitungkan pada metode MVSM. Berikut adalah penjadwalan penggantian komponen mesin *tresher* PT. Perkebunan Nusantara V Sei Galuh Kampar dapat dilihat pada Tabel 5.

3. Faktor Material

Faktor material berpengaruh terhadap terjadinya delay 2 akibat tidak tersedianya komponen cadangan yang dibutuhkan mekanik, tidak ada *stock* komponen di gudang dan harus melakukan pembelian komponen

terlebih dahulu. Untuk menghilangkan *delay* ini dapat dilakukan *safety stock* dan pembelian komponen sebelum melakukan *maintenance*.

ISSN: 2302-5255 (p)

ISSN: 2541-5328 (e)

4. Faktor Tools

Faktor tools sangat berpengaruh terhadap terjadinya delay 1 akibat tidak tersedianya peralatan operator yang dibutuhkan operator. Untuk menghilangkan delay ini dapat dilakukan persiapan dini masing-masing peralatan operator, sehingga dapat melakukan perbaikan mesin tresher tanpa harus menunggu.

Future state map merupakan gambaran proses penggantian mesin tresher di perusahaan setelah dilakukan perbaikan pada current state map. Pada future state map menggunakan software arena dengan penjelasan dari waktu masing-masing kegiatan, kategori waktu kegiatan dan juga alur proses kegiatan dari awal hingga selesai. Tujuan dari software ini adalah menghilangkan delay pada suatu komponen. Proses kegiatan dari future state map ini dilakukan pada komponen mesin tresher.

Pada gambar 6 terdapat 7 proses kegiatan yang terjadi pada saat proses penggantian komponen Gearbox. Adapun waktu kegiatan yang tidak memberikan nilai tambah terhadap proses penggantian sebesar 59 menit dan memberikan nilai tambah adalah sebesar 70 menit. Dari nilai waktu yang di peroleh dilakukan perhitungan efisiensi proses penggantian komponen Gearbox menggunakan data kategori waktu. Perhitungan nilai efisiensi perawatan sebesar 54,26% dengan waktu nya sebesar 70 menit, yang artinya dari keseluruhan proses kegiatan perawatan hanya 54,26% yang memberikan nilai tambah terhadap penggantian Gearbox.

Pada gambar 7 terdapat 4 proses kegiatan yang terjadi pada saat proses penggantian komponen *Incinerator*. Waktu kegiatan yang tidak memberikan nilai tambah terhadap proses penggantian sebesar 43 menit dan memberikan nilai tambah sebesar 31 menit. Selanjutnya dilakukan perhitungan efisiensi proses penggantian komponen *Incinerator* dengan menggunakan data kategori waktu. Nilai efisiensi perawatan sebesar 41,89% dengan waktu sebesar 31 menit, jadi keseluruhan proses kegiatan perawatan hanya 41,89%. Keseluruhan proses perbaikan dari aktifitas perawatan mesin mengalami kenaikan efisiensi perawatan mesin pada Tabel 7.

*Korespondensi:

E-mail: irfangalaticos@gmail.com

Tabel 5. Jadwal Pemeliharaan Komponen Mesin PT. Perkebunan Nusantara V Sei Galuh Kampar

	Jadwal Pem	neliharaan Komponen Mesin <i>Treshe</i>	r PT. Perkebunan Nus	santara V Sei Galuh k	Kampar
Nama Mesin : Tresher Tahun 2019 Tipe Mesin : DST-100 B Power Mesin : 800 Kva, 620 Kw					
No	Nama	Tindakan	Jadwal Pemeliharaan untuk Periode 1Tahun		
INO	INama	Ппакап	Pemeliharaan I	Pemeliharaan II	Pemeliharaan III
1	Gearbox	Schedule on Restoration Task	480 Jam	960 Jam	1440 Jam
2	Electromotor	Schedule on Restoration Task	720 Jam	1440 Jam	2160 Jam
3	Housting Crane	Schedule on Condition Task	720 Jam	1440 Jam	2160 Jam
4	Gearbox Traveling H. Crane	Schedule on Condition Task	480 Jam	960 Jam	1440 Jam
5	Gearbox Tuang H. Crane	Schedule on Condition Task	480 Jam	960 Jam	1440 Jam
6	Electromotor Traveling	Schedule on Restoration Task	240 Jam	480 Jam	720 Jam
7	Electromotor Telting	Schedule on Restoration Task	240 Jam	480 Jam	720 Jam
8	Electromotor Liveting	Schedule on Restoration Task	240 Jam	480 Jam	720 Jam
9	Under Thressing	Schedule on Restoration Task	50 Hari	100 Hari	150 Hari
10	Empty Bunch Hopper	Schedule on Restoration Task	60 Hari	120 Hari	180 Hari
11	Auto Feeder	Schedule on Restoration Task	45 Hari	90 Hari	135 Hari
12	Fruit Elevator	Schedule on Restoration Task	840 Jam	1680 Jam	2520 Jam
13	Incinerator	Schedule on Condition Task	240 Jam	480 Jam	720 Jam
14	Double Conveyor	Schedule on Condition Task	50 Hari	100 Hari	150 Hari
15	Bunch Cruicher	Schedule on Condition Task	100 Hari	200 Hari	300 Hari
16	Gearbox Auto Feder	Schedule on Condition Task	53 Hari	106 Hari	159 Hari
17	Thresser	Schedule on Condition Task	672 Jam	1344 Jam	2016 Jam
18	Gearbox Thresser	Schedule on Restoration Task	65 Hari	130 Hari	195 Hari

Gambar 6. Future State Map Penggantian Gearbox

Gambar 7. Future State Map Penggantian Incinerator

Tabel 7. Perbandingan % efisiensi perbaikan perawatan

Nama Komponen	% Efisiensi Current State Map	% Efisiensi <i>Future</i> State Map	% Peningkatan Efisiensi
Gearbox	40	54,26	14,26
Electromotor	41,66	56,52	14,86
Housting Crane	40,64	55,75	15,11
Gearbox Traveling H. Crane	36,58	51,28	14,7
Gearbox Tuang H. Crane	36,58	51,28	14,7
Electromotor Traveling	41,66	57,47	15,81
Electromotor Telting	41,66	57,47	15,81
Electromotor Telting	41,66	57,47	15,81
Electromotor Telting	41,66	57,47	15,81
Electromotor Liveting	41,66	57,47	15,81
Incinerator	32,97	41,89	8.92
Under Thressing	27,77	33,89	6,12
Double Conveyor	33,75	42,85	9,1
Bunch Cruicher	34,24	43,10	8,86
Empty Bunch Hopper	26,08	38,29	12,21
Auto Feeder	18,84	30,23	11,39
Gearbox Auto Feder	22,05	27,77	5,72
Fruit Elevator	20,75	31,42	10,67
Thresser	31,52	38,15	6,63
Gearbox Thresser	20,40	23,80	3,14

4. Simpulan

Adapun kesimpulan dari penelitian ini adalah terdapat kegiatan non value added yaitu delay 3 dan delay 2 pada aktifitas perawatan mekanik serta delay 1 pada aktifitas perawatan operator. Dengan menggunakan software arena pada Future State Map

MVSM maka dapat menghilangkan *delay* pada aktifitas perawatan. Selain itu, adanya penjadwalan khusus pada komponen mesin *tresher* sehingga aktifitas perawatan lebih efisien.

Besar efisiensi sebelum dan sesudah dilakukannya *preventive maintenance* dengan

perbandingan % efisiensi perbaikan perawatan pada komponen mesin *tresher*. Besar % peningkatan efisiensi perawatan tertinggi kompon *Electromotor*, *Electromotor Traveling*, *Electromotor Telting*, dan *Electromotor Liveting* yaitu sebesar 15,81%, sedangkan besar % peningkatan efisiensi perawatan terendah terjadi pada komponen *Gearbox Thresser* yaitu sebesar 3,14%.

Adapun saran mengenai penelitian yaitu bagi pihak perusahaan dapat menjadi masukan dan menerapkan hasil untuk mengurangi permasalahan breakdown mesin tresher dan mengurangi downtime mesin. Diharapkan pada penelitian selanjutnya dapat meminimalisir NVA dari proses-proses perawatan di perusahaan dengan membuat langkah-langkah perbaikan mesin berupa SOP perawatan yang baik dengan pendekatan lean manufacture. SOP yang dimaksud adalah pelaksanaan perawatan mesin tresher dari awal persiapan perbaikan hingga proses pengecekan setelah perbaikan dilakukan.

Daftar Pustaka

- [1] Effendi, M & Arifin, M. Perbedaan risk priority number dalam failure mode and effect analysis FMEA sistem alat berat heavy duty truck HD 785-7. Spektrum industri, volume XII. 2015
- [2] Kannan, Soundararajan, et. al. Developing A Maintenance Value Stream Map. Department of Industrial and Information Engineering The University of Tennessee. Knoxville. TN 37996-2210. 2007.
- [3] Kurniawati, Dwi Agustina dan M Lutfan Muzaki. Analisis Perawatan Mesin dengan Pendekatan RCM dan MVSM. *Jurnal Optimasi Industri-Vol.16 No. 2(2017) 89-105.* 2017.
- [4] Moubray, John. *Reliability Centered Maintenance II 2nd Edition*. Butterworth: Heinemann:Oxford. 1997.
- [5] Riyanto, Ong Andre Wahyu. Simulasi Model Kerja pada Departemen *Injection* untuk Meminimasi Waktu *Work-In Process. Prodi Teknik Industri Universitas Wijaya Putra*, No. 1-3. 2016