Введение

Текущий спад в экономике затрагивает и жилищную сферу, зависящую от экономической активности, доходов населения и доступности кредитования. Текущие трудности в данной сфере важно видеть на фоне общей картины за последние 15-20 лет.

Четверть века назад Россия вошла в период рыночных преобразований, которые должны были трансформировать и всю жилищную сферу. При низкой обеспеченности населения жильем это было сложно, в связи с чем приватизация жилья стала одной из ключевых реформ. Она создала существенную зависимость темпов строительства от роста экономики, финансового положения семей и степени социального неравенства.

Тренды на рынке жилья отражают социальное неравенство в стране: стабильно высокий объем ввода индивидуальных жилых домов со средней площадью около 135 кв. м — при более умеренном росте (после огромного снижения в 1990-х годах) ввода обычных квартир, средняя площадь которых снижается на протяжении последних 10 лет и с 2012 года составляет менее 60 кв. м.

Колебания динамики строительства жилья отражают специфику этой сферы, зависящей от конъюнктурных факторов — благосостояния семей, их ожиданий и стоимости кредита. В период снижения экономической активности наблюдается инерционное увеличение ввода жилых помещений, что вызвано завершением реализации ранее начатых проектов. В то же время уже обозначается тренд на снижение объемов нового строительства, который в полной мере, с учетом строительного цикла, отразится в статистике в ближайшие годы. Замедление темпов жилищного строительства негативно повлияет на покупки семьями товаров длительного пользования, характерные при приобретении новых квартир.

Динамика финансирования строительства зависит от колебаний в экономике страны: спадов, инфляции, девальвации. Рынок жилищных

закладных сформировался, но стоимость ипотечного кредита высока, и велики риски держателей валютной ипотеки.

Цены на недвижимость отражают динамику роста экономики страны в 2010-2016 годах и использование нефтяной ренты, «просачивавшейся» к российским семьям. Развитие рынков и устойчивый спрос на недвижимость шли взаимосвязанно, вызвав сильный рост стоимости жилья, особенно в Московской агломерации и крупных городах. Но потребительский бум по длительного пользования в 2010-2014 основным товарам годах трансформировался масштабный сфере подъем В жилищного В строительства. От девальвации на рынке элитного жилья выиграли владельцы валютных активов.

Масштабы социального и регионального неравенства выражаются в региональных различиях обеспеченности и динамики жилищного строительства в 2010-2016 годах.

Затягивание спада экономической активности в России будет сказываться на объемах ввода жилья и покупок товаров длительного пользования. В частности, это связано с необходимостью адаптации страны к потере большой доли нефтяной ренты.

Экономическое оживление в жилищной сфере в будущем может быть связано (как во многих рыночных экономиках мира) с ростом строительства недорогого жилья и связанных с ним объектов инфраструктуры и рекреации.

Плотность населения в России — 8,4 чел./кв. км, а в Москве и области (суммарно) — 409 чел./кв. км, что сопоставимо, например, с Голландией (405 чел./кв. км). Вопрос обеспеченности населения жильем является актуальным для большинства жителей столичного региона. Этим обусловлена актуальность исследования.

Цель исследования – проанализировать динамику строительства жилья в Московском регионе.

Гипотеза исследования — ввод в действие жилых домов в Московском регионе за последние 15 лет имеет тенденцию к росту.

В соответствии с целью в работе поставлены следующие задачи:

- проанализировать динамику ввода в действие жилых домов в Московском регионе;
 - построить ряд распределения, вычислить его характеристики;
- построить доверительные интервалы для генеральных математического ожидания и дисперсии;
 - проверить гипотезу о виде распределения.

В работе использованы следующие статистические методы: построение и анализ рядов динамики, построение и анализ вариационных рядов распределения, проверка гипотез о виде распределения.

Анализ динамики строительства жилья в Московском регионе

Для анализа будем использовать данные о вводе жилых домов в Москве и Московской области за последние 15 лет, представленные на официальном сайте статистики Российской Федерации (www.gks.ru).

Таблица 1 — Ввод в действие жилых домов в Москве и Московской области, тыс.м² общей площади

Годы	Ввод в действие жилых домов, тыс.м ² общей площади
2001	6519
2002	7689
2003	8558
2004	10299
2005	9946
2006	11264
2007	12630
2008	11145
2009	11156
2010	9707
2011	10052
2012	9670
2013	10553
2014	13287
2015	13543

Построим вариационный ряд распределения, образовав по формуле Стреджесса $n = 1 + 3.32 \lg N = 1 + 3.32 \lg 15 \approx 5$ группы с равными интервалами.

Определим величину интервала группировки
$$h = \frac{x_{\text{max}} - x_{\text{min}}}{5} = \frac{13543 - 6519}{5} = 1404,8 \text{ тыс. } \text{м}^2.$$

Тогда интервальная группировка примет вид, представленный в таблице 2.

Таблица 2 – Интервальный ряд распределения

Ввод в действие жилых домов, тыс.м ²	Число лет,	Кумулятивные
общей площади	частоты	частоты
6519 - 7923,8	2	2
7923,8 - 9328,6	1	3
9328,6 - 10733,4	6	9
10733,4 - 12138,2	3	12
12138,2 - 13543	3	15
Итого	15	

Данные таблицы 2 представим графически в виде гистограммы частот и кумуляты (рисунок 1 и 2).

Рисунок 1. Гистограмма частот

Рисунок 2. Кумулята

Определим моду и медиану аналитически.

Найдем моду, для этого сначала найдем модальный интервал, т.е. интервал с наибольшей частотой. Это интервал 9328,6 – 10733,4 с частотой 6 и представителем 10031.

Рассчитаем основные описательные статистики совокупности по изучаемому признаку: среднее значение, дисперсию, среднее квадратическое отклонение, коэффициент вариации. Построим расчетную таблицу.

Таблица 3 – Расчетная таблица

n =	15
Хср (точечное) =	10401,2
S^2 =	3232741,277
S =	1797,982558
d =	1404,8
Хср (интервальное)	10405,61333
	-
y3 =	4,013650352
y4 =	28,01996103
Кэ =	0,179547506

Номер класса т		1	2	3	4	5	Σ
Fno	Xj min	6519	7923,8	9328,6	10733,4	12138,2	46643
Граница класса	Xj max	7923,8	9328,6	10733,4	12138,2	13543	53667
Средняя точка класса	a Xj	7221,4	8626,2	10031	11435,8	12840,6	50155
Частота nj		2	1	6	3	3	15
относительная частот	a nj	0,133333333	0,066666667	0,4	0,2	0,2	1
(Xj -Xcp)		-3179,8	-1775	-370,2	1034,6	2439,4	-1851
Nj(Xj-Xcp)^2		20222256,08	3150625	822288,24	3211191,48	17852017,08	45258377,88
Nj(Xj-Xcp)^3		-64302729883	-5592359375	-304411106,4	3322298705	43548210465	-23328991194
Nj(Xj-Xcp)^4		2,0447E+14	9,92644E+12	1,12693E+11	3,43725E+12	1,06232E+14	3,24178E+14
tj		-1,768537735	-0,987217586	-0,205897437	0,575422712	1,356742861	-1,029487184
	P'j(tj)	0,083508956	0,245063526	0,390574944	0,338072746	0,158926392	1,216146563
	Pj	0,06524723	0,19147307	0,305164073	0,264143048	0,124172392	0,950199814
Нормальное распределение	Ej	0,978708451	2,872096055	4,577461101	3,962145724	1,862585881	14,25299721
	Ej-nj	1,021291549	1,872096055	1,422538899	0,962145724	1,137414119	6,415486345
	(Ej-nj)^2/nj	0,521518214	3,504743638	0,337269487	0,308574798	0,431236959	5,103343096
	P'j(tj)	0,057979624	0,175045369	0,528476713	0,313378299	0,103799124	1,178679129
	Pj	0,045300648	0,136766474	0,412909504	0,24484878	0,081100347	0,920925753
Распределение Лапласа	Ej	0,679509727	2,051497103	6,193642559	3,672731694	1,216505208	13,81388629
	Ej-nj	1,320490273	1,051497103	0,193642559	0,672731694	1,783494792	5,02185642
	(Ej-nj)^2/nj	0,871847281	1,105646157	0,006249573	0,150855977	1,060284558	3,194883546
	Pj	7,03057E-05	0,000348659	0,001138952	0,004429258	0,051252847	0,057240022
Danier	Ej	5,49313E-05	0,000272414	0,000889886	0,003460669	0,040044882	0,044722783
Распределение Симпсона	Ej-nj	1,999945069	0,999727586	5,999110114	2,996539331	2,959955118	14,95527722
	(Ej-nj)^2/nj	1,999890139	0,999455246	5,998220359	2,993082654	2,920444766	14,91109316

Рассчитаем средний размер ввода в действие жилых домов, в качестве вариант используя середины интервалов: $\bar{x} = \frac{\sum x_i' f_i}{\sum f_i} = \frac{156084,2}{15} = 10405,6$ тыс,м²

Найдем дисперсию
$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2 f_i}{\sum f_i} = \frac{45258085,72}{15} = 3017205,715.$$

Найдем среднее квадратическое отклонение $\sigma = \sqrt{\sigma^2} = \sqrt{3017205,715} \approx 1737,0 \text{ тыс,m}^2$

Найдем коэффициент вариации
$$V_{\sigma} = \frac{\sigma}{\overline{x}} \cdot 100\% = \frac{1737.0}{10405.6} \cdot 100\% = 16,7\%$$
.

Т.к. коэффициент вариации меньше 33%, то совокупность является однородной.

Несмещенная оценка дисперсии — исправленная дисперсия $S^2 = \frac{\sum (x_i - \overline{x})^2 f_i}{\sum f_i - 1} = \frac{45258085,72}{14} \approx 3232720,41 \quad \text{и} \quad \text{исправленное} \quad \text{среднее}$ квадратическое отклонение $S = \sqrt{3232720,41} \approx 1797,98$ тыс.м².

Проверим гипотезу о том, что X распределено по нормальному закону с помощью критерия согласия Пирсона $K = \sum \frac{(n_i - np_i)^2}{np_i}$, где p_i — вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону

Для вычисления вероятностей p_i применим формулу и таблицу функции Лапласа $p_i = \Phi \left(\frac{x_{i+1} - \overline{x}}{s} \right) - \Phi \left(\frac{x_i - \overline{x}}{s} \right)$.

Таблица 4 – Таблица для проверки о нормальном законе распределении

Интервал ы	n_i	$x_1 = \frac{x_i - \overline{x}}{s}$	$x_2 = \frac{x_i - \overline{x}}{s}$	$\Phi(x_1)$	$\Phi(x_2)$	p_i	15 <i>p</i> _i	K_i
6519 -	2	-2,1617	-1,3803	-0,4854	-0,4177	0,0677	1,0155	0,9544
7923,8	2	2,1017	1,5005	0,4054	0,4177	0,0077	1,0133	0,7544
7923,8 -	1	-1,3803	-0,599	-0,4177	-0,2257	0,192	2,88	1,2272

9328,6								
9328,6 -	6	-0,599	0,1823	-0,2257	0,0753	0,301	4,515	0,4884
10733,4	O	-0,577	0,1023	-0,2237	0,0733	0,501	7,313	0,4004
10733,4 -	3	0,1823	0,9636	0,0753	0,334	0,2587	3,8805	0,1997
12138,2	3	0,1023	0,7030	0,0733	0,554	0,2307	3,0003	0,1777
12138,2 -	3	0,9636	1,745	0,334	0,4599	0,1259	1,8885	0,6541
13543	3	0,7030	1,743	0,334	0,4399	0,1239	1,0003	0,0341
	15							3,5238

Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение $K_{\text{набл}}$, тем сильнее довод против основной гипотезы.

Поэтому критическая область для этой статистики всегда правосторонняя: $[K_{\kappa p}; +\infty)$.

Её границу $K_{\kappa p} = \chi^2(\text{k-r-1};\alpha)$ находим по таблицам распределения χ^2 и заданным значениям $s,\,k,\,r=2$.

$$K_{\kappa p} = 5,99; K_{\mu a \delta n} = 3,52$$

Наблюдаемое значение статистики Пирсона не попадает в критическую область, поэтому нет оснований отвергать основную гипотезу. Данные выборки распределены по нормальному закону.

Рисунок 3. Гистограмма частот с теоретическим распределением

Доверительный интервал для генерального среднего $\left(\overline{x} - t_{\kappa p} \frac{s}{\sqrt{n}}; \overline{x} + t_{\kappa p} \frac{s}{\sqrt{n}}\right)$.

Поскольку $n \leq 30$, то определяем значение $t_{\kappa p}$ по таблице распределения Стьюдента $t_{\kappa p}$ =2,145.

$$\varepsilon = t_{\kappa p} \frac{s}{\sqrt{n}} = 2,145 \cdot \frac{1797,98}{\sqrt{15}} \approx 995,79$$

Доверительный интервал для генерального среднего (10405,6-995,8;10405,6+995,8) = (9409,8;11401,4). тыс.м².

С вероятностью 0,95 можно утверждать, что среднее значение при выборке большего объема не выйдет за пределы найденного интервала. Доверительный интервал для дисперсии.

Вероятность выхода за нижнюю границу равна $P(\chi^2_{n-1} < h_H) = (1-\gamma)/2 = (1-0.95)/2 = 0.025$. Для количества степеней свободы k = 14 по таблице распределения χ^2 находим: $\chi^2(14;0.025) = 26.11895$.

Случайная ошибка дисперсии нижней границы: $t_H = \frac{(n-1)S^2}{h_H} = \frac{14\cdot1797,98^2}{26,11895} = 1732768,19 \,.$

Вероятность выхода за верхнюю границу равна $P(\chi^2_{n-1} \ge h_B) = 1$ - $P(\chi^2_{n-1} < h_B) = 1$ - P

Случайная ошибка дисперсии верхней границы: $t_{\scriptscriptstyle B} = \frac{(n-1)S^2}{h_{\scriptscriptstyle B}} = \frac{14\cdot 1797,98^2}{5,62873} = 8040550,13\,.$

Таким образом, интервал (1732768,19; 8040550,13) покрывает параметр S^2 с надежностью $\gamma = 0.95$.

Проверим гипотезу о том, что математическое ожидание генральной совокупности равно $10500 \; \text{тыс.m}^2$

$$H_0: a = 10500$$
,

$$H_1: a \neq 10500$$

Критическая область – двусторонняя.

Для проверки нулевой гипотезы используется случайная величина: $T = \frac{\overline{x} - a}{S} \sqrt{n} = \frac{10405,6 - 10500}{1797,98} \sqrt{15} = -0,20 \, .$

Поскольку n \leq 30, то определяем значение $t_{\kappa p}$ по таблице распределения Стьюдента $t_{\kappa p}$ =2,145.

Экспериментальное значение критерия T не попало в критическую область $T < t_{\kappa p}$, поэтому нулевую гипотезу следует принять. Значение математического ожидания генеральной совокупности можно принять равным $10500~{\rm Tыc.m}^2$.

Выводы

На Москву приходится 10% продаж всего строительства жилой недвижимости в России в многоквартирных домах. По данным Росстата и правительства Москвы, в 2016 г в столице было сдано около 3-3,3 млн кв м жилья или около 60 000 квартир (при средней площади квартиры в 55 кв м). Это мало. Для сравнения, объемы строительства в Москве такие же, как и в Санкт-Петербурге при том, что население столицы в два раза больше, и есть дополнительный спрос со стороны регионов. Однако в последние годы объем строительства в Москве стабильно растет за счет улучшения условий для застройщиков со стороны правительства Москвы и предоставления им крупных участков под застройку в бывших промзонах.

В работе была проанализирована динамика строительства жилья в Московском регионе за последние 15 лет.

Список использованной литературы

- 1. Годин, А. М. Статистика: учебник / А. М. Годин. Москва: Дашков и К°, 2012.
- 2. Гореева, Н. М. Статистика в схемах и таблицах /. Москва: Эксмо, 2007.
- 3. Статистика: теория и практика в Excel: учебное / В. С. Лялин, И. Г. Зверева, Н. Г. Никифорова. Москва: Финансы и статистика: Инфра–М, 2010.