cmt pleiotropy

Description

The cmt_pleiotropy R function is designed to use Complete Mediation Test (CMT) to diagnose pleiotropic genetic variants for Mendelian randomization study

data requirement

The data to be analyzed must contain an outcome variable Y, an exposure variable X, and a set of genetic variants G1-Gk.

We assume these Gs had been screened (e.g., by GWAS) an are legitimate instrumental variables satisfying the following conditions

- (1) G is correlated with Y (in a regression),
- (2) G is correlated with X

Criteria

Individual pleiotropy test: a genetic variant is identified as pleiotropic if both the followings are satisfied:

- (1) The null hypothes H0 is rejected, where H0: X is a complete mediator of G-Y association, or equivalently, no G-Y direct effect
- (2) proportion mediation effect (i.e. indirect effect) <80% (default)

Installation

Before using the cmt_pleiotropy function, make sure you have the required R packages installed.

If not, you can install them using the following commands:

```
install.packages("bda")
install.packages("multilevel")
install.packages("dplyr")
```

Usage

cmt_pleiotropy (outcome,exposure,G,data, Bootstrap_times, prop)

Arguments

Outcome character, name of the outcome variable(numerical). exposure character, name of the exposure variable(numerical).

G vector of characters, name(s) of the SNP(s).

data dataframe.

Bootstrap_times number of bootstrap times. The default is 50.

prop proportion threshold. The default is 0.8.

Value

prop.med the proportion of the effect that is mediated.($\alpha\beta/C$)

Signif "*" indicating pleiotropy.

Signif.level 0.05 / numbers of G

Examples

```
#Please download the data first.
library(readx1)
gout <- read excel("C:/Users/ User-Name/Downloads/gout.xlsx")</pre>
result <- cmt pleiotropy(outcome="gout",
                             exposure="bmi",
                             G=colnames(gout)[-c(1,12)],
                              data=gout,
                             Bootstrap times = 100, prop = 0.8)
result
$Outcome
[1] "gout"
$Exposure
[1] "bmi"
$N
[1] 268
$SNPs
 [1] "rs11731353_C" "rs61794965_G" "rs16890979_T" "rs3775948_G"
```

\$CMT_value

prop.med	Statistics	P .	Value	Signif

rs11731353_C	2.88041	7.4426 0.00000	
rs61794965_G	3.83185	-0.1760 0.86027	
rs16890979_T	0.16047	-2.3108 0.02084	
rs3775948_G	2.26691	-2.8283 0.00468	
rs10516801_T	3.63320	-6.1847 0.00000	
rs2725211_T	0.03337	-1.2834 0.19936	
rs12505410_G	0.12134	2.3069 0.02106	
rs2231142_T	0.02737	-3.3277 0.00088	*
rs72552713_A	0.22751	-2.8369 0.00456	*
rs4148155 G	0.02737	-3.3277 0.00088	*

\$Signif.level

[1] 0.005

\$Note

- [1] "* indicating pleiotropy"
- [2] "prop.med means the proportion of the effect that is mediated.($\alpha\beta/C$)"
- [3] "The function automatically handles missing values by omitting rows with missing data."

\$proportion.threshold

[1] 0.8

Contact Information

If you have any questions or need assistance, you can contact maiblian@gm.ncue.edu.tw