TP 1

Exercice 1

Considérons la matrice des données X suivante, résultat de 4 observations sur 10 individus.

I	Moyenne	Age	Taille	Poids
Enfant 1	14	13	1.50	45
Enfant 2	16	13	1.60	50
Enfant 3	15	13	1.65	50
Enfant 4	9	15	1.75	60
Enfant 5	10	14	1.70	60
Enfant 6	7	14	1.70	60
Enfant 7	8	14	1.60	70
Enfant 8	13	13	1.60	65
Enfant 9	17	15	1.55	60
Enfant 10	11	14	1.70	65

Alors:

$$X(J) =$$

	Moyenne arithmétique	Ecart- type	Variances
Moyenne	12	3.316	11
Age	13.8	0.748	0.56
Taille	1.635	0.074	0.005
Poids	58.5	7.433	55.25

1. Calculez le centre de gravité du nuage des données. Afficher le résultat.

$$g = (12, 13, 8, 1, 635, 58, 5).$$

2. Calculer toutes les covariances possibles entre les variables données. Afficher les résultats obtenus dans une matrice notée *V*.

$$V =$$

	Moyenne	Age	Taille	Poids
Moyenne	11	- 0.8	-0.155	-14
Age		0.56	0.748	2.7
Taille			0.005	0.202
Poids				55.25

3. Calculer les coefficients de corrélations des couples : (Moyenne, Taille), (Age, Poids). Que remarquez-vous ? Commenter les résultats obtenus.

	K =			
	Moyenne	Age	Taille	Poids
Moyenne	1		-0.631	
Age		1		0.48
Taille			1	
Poids				1

4. Déterminer les valeurs propres de la matrice *V* ainsi que les vecteurs propres associés aux valeurs propres déterminées.

Détermination des valeurs propres de A

```
>>> np.linalg.eigvals (A)
Array ([ ,....., ])
```

Détermination des valeurs propres et vecteurs propres de X

Remarque

Les colonnes de la matrice obtenue sont les vecteurs propres.

```
>>> B = np.transpose (vecp)
```

Ou bien

5. Proposer une instruction qui vous permettra de vérifier si un vecteur donné Y est le vecteur propre associé à une valeur propre λ d'une matrice A. Appliquer à ce qui précède (aux résultats de la question 9).

Une valeur propre u d'une matrice A vérifie : il existe un vecteur propre v tel que :

$$\mathbf{A} * \mathbf{v} = \mathbf{u} * \mathbf{v}.$$

Le calcul de valeurs propres donne les valeurs suivantes triées dans un ordre décroissant :

$$\lambda_1 = 2.391, \qquad \lambda_2 = 0.750, \qquad \lambda_3 = 0.584, \qquad \lambda_4 = 0.274.$$

Les vecteurs propres associés sont :

$$u_1 = (0.508, 0.503, 0.445, -0.538),$$

 $u_2 = (0.306, -0.464, 0.705, 0.438),$

•

Pour le graphisme

6. Représenter graphiquement le nuage des individus dans le plan des couples :

(Moyenne, Taille), et (Age, Poids).

Présenter les deux graphes dans une même fenêtre. C'est-à-dire **partitionner** la fenêtre de visualisation en **deux sous fenêtres** (horizontales ou verticales à vous de choisir). Dans la première sous fenêtre, présenter le graphe des individus dans le premier plan et le deuxième graphe dans la deuxième sous fenêtre. N'oublier pas de **nommer** (légender) les axes pour les deux graphes et de donner un **titre** pour chaque graphe.

7. Interprétez les graphes obtenus.

Pour les mesures de liaison

1) Mesure de proximités entre les individus en utilisant le mètre comme unité :

- **D** (Enfant 4, Enfant 5) = (2.0025)**(0.5) = 1.415

- **D** (Enfant 4, Enfant 6) = 5**(0.5) = 2.236

- **D** (Enfant 5, Enfant 6) = 9**(0.5) = 3.

Nous en déduisons que l'individu 6 est plus proche (ressemblance) de l'individu 4

2) Mesure de proximités entre les individus en utilisant le centimètre comme unité :

- **D** (Enfant 4, Enfant 5) = (27)**(0.5) = 5.196

- **D** (Enfant 4, Enfant 6) = (30)**(0.5) = 5.477

- **D** (Enfant 5, Enfant 6) = (9)**(0.5) = 3

Nous en déduisons que l'individu 6 est plus proche (ressemblance) de l'individu 5

3) C'est clair que les résultats obtenus sont contradictoires et nous ne pouvons pas en prendre de décision.

Conclusion

- L'impact de l'unité des données sur l'analyse des résultats obtenus.
- La mesure de proximité dépend d'une manière directe de l'unité des données.

Solution

D'où la nécessité de Centrer et de réduire les données.

4) Matrice centrée réduite des données

Pour tout j = 1, 2, ..., n, nous avons :

$$\mathbf{X}^{\mathbf{j}} = (\mathbf{x}_{1}^{\mathbf{j}}, \mathbf{x}_{2}^{\mathbf{j}}, \dots, \mathbf{x}_{\mathbf{m}}^{\mathbf{j}})^{\mathbf{t}} \in \mathbb{R}^{\mathbf{m}}.$$

C'est-à-dire:

$$\mathbf{X}^{\mathbf{j}} = \begin{pmatrix} \mathbf{x}_{1}^{\mathbf{j}} \\ \mathbf{x}_{2}^{\mathbf{j}} \\ \vdots \\ \mathbf{x}_{m}^{\mathbf{j}} \end{pmatrix}.$$

Donc, la variable centrée - réduite est définie par :

$$\mathbf{Z}^{j} = \begin{pmatrix} \frac{\mathbf{x}_{1}^{j} - \overline{\mathbf{X}}^{j}}{\sigma_{\mathbf{X}^{j}}} \\ \frac{\mathbf{x}_{2}^{j} - \overline{\mathbf{X}}^{j}}{\sigma_{\mathbf{X}^{j}}} \\ \vdots \\ \frac{\mathbf{x}_{m}^{j} - \overline{\mathbf{X}}^{j}}{\sigma_{\mathbf{X}^{j}}} \end{pmatrix}.$$

Dans notre cas: m = 10 et n = 4.

J(C-R)	Moyenne	Age	Taille	Poids
Enfant 1	14 – 12	13 – 13.8	1.50 - 1.635	45 - 58.5
	3.316	0.748	0.074	7.433
Enfant 2	16 – 12	13 - 13.8	1.60 - 1.635	50 - 58.5
	3.316	0.748	0.074	7.433
Enfant 3	15 – 12	13 – 13.8	1.65 - 1.635	50 - 58.5
	3.316	0.748	0.074	7.433
Enfant 4	9 – 12	15 – 13.8	1.75 - 1.635	60 - 58.5
	3.316	$\frac{10.748}{0.748}$	0.074	7.433
Enfant 5	10 – 12	14 – 13.8	1.70 – 1.635	60 - 58.5
	$\frac{10-12}{3.316}$	$\frac{14-13.8}{0.748}$	$\frac{1.70 - 1.633}{0.074}$	$\frac{60-38.5}{7.433}$
Enfant 6				
Emant 0	$\frac{7-12}{2.216}$	$\frac{14-13.8}{0.749}$	$\frac{1.70 - 1.635}{0.074}$	$\frac{60-58.5}{7.433}$
E 6 4 7	3.316	0.748	0.074	7.433
Enfant 7	$\frac{8-12}{}$	14 - 13.8	1.60 - 1.635	70 - 58.5
	3.316	0.748	0.074	7.433
Enfant 8	13 – 12	13 - 13.8	1.60 - 1.635	65 - 58.5
	3.316	0.748	0.074	7.433
Enfant 9	17 – 12	15 – 13.8	1.55 – 1.635	60 - 58.5
	$\frac{17-12}{3.316}$	$\frac{13-13.8}{0.748}$	$\frac{1.33 - 1.633}{0.074}$	$\frac{60-38.5}{7.433}$
	3.310	0. /40	0.074	7.433
Enfant 10	11 - 12	14 - 13.8	1.70 - 1.635	65 - 58.5
	3.316	0.748	0.074	7.433

Question

Recalculer les mesures ci-dessus.

Pour le graphisme,

On va voir deux types de présentation

>>> plt.plot ([1,2,3,6],[-1,0,3,6], linestyle = 'none', marker = '+', c = 'y')

Ou bien

Scatter plot = Nuage de points (points de dispersion)

>>> plt.scatter (x, y, c = 'r', marker = 'o')

Présentation de plusieurs courbes (graphes) dans la même fenêtre

Pour ce faire, nous utilisons *l'instruction* : plt.subplot (L C i)

L : le nombre de lignes, C : le nombre de colonnes, i : la position du graphe.

Dans notre cas:

2 lignes, 1 colonnes et 2 graphes.

Ou bien

1 ligne, 2 colonnes et 2 graphes.

>>> plt.subplot (211)

>>> plt.subplot (2*12*)

Sinon

>>> plt.subplot (*12*1)

>>> plt.subplot (*122*)

Exercice 2

1) Ecrire une fonction qui calcule la moyenne arithmétique des 8 variables de la matrice donnée. Prenez 6 chiffres décimaux.

$$>>>$$
 stat.mean(X.T[i]) for i = 0,1, 2,, 9

>>> round(stat.mean(X.T[i]), 6)

9.0 9.0 9.0 9.0 7.500909 7.500909 7.5 7.5009009

Département d'IA et SD 05 Mars 2023 Master 1, Informatique Visuelle

Analyse des données

2) g = [les moyennes]

g = [9.000000, 9.000000, 9.000000, 9.000000, 7.500909, 7.500909, 7.500000, 7.500909]

3) Ecrire une fonction qui calcule la variance des 8 variables de la matrice donnée. Prenez 6 chiffres décimaux.

Var (xi) = (1/11)*somme des carrés (xij-mi). Pour tout i = 0 a 7.

Ou bien

Exploiter les variances prédéfinies et les corriger.

>>> stat.variance(X.T[i])*(10/11)

Variances = vecteur

Variances [10., 10., 10., 10., 3.752062, 3.752390, 3.747836, 3.748408]

4) Calculer les coefficients de corrélation des couples de variables suivantes :

$$(X^1, X^5)$$
, (X^2, X^6) , (X^3, X^7) , (X^4, X^8) .

Corrélation de (x1, x5) = Correlation (X.T[0], X.T[4]) = cov(,)/les écarts types

Les corrélations :

0.817756 0.8162365 0.8162867 0.8165214

Nous remarquons que:

Les couples de variables ont la même corrélation.

Ci-joint les courbes demandées séparément et rassembles dans une même fenêtre.

Representation des individus dans (x2,x6)

Laiche Nacéra MIV)

Analyse des données

Dans notre cas: 2 lignes, 2 colonnes et 4 graphes.

221	22 2
223	224

```
>>> plt.subplot(221)
     <AxesSubplot:>
>>> plt.scatter(x1, x5, c='r', marker = 'o')
     <matplotlib.collections.PathCollection object at 0x0000023EA7C11F90>
>>> plt.title('Representation des individus dans (x1, x5)')
     Text (0.5, 1.0, 'Representation des individus dans (x1, x5)')
>>> plt.subplot (222)
     <AxesSubplot:>
>>> plt.scatter (x2, x6, c='r', marker = 'o')
     <matplotlib.collections.PathCollection object at 0x0000023EA7CAEE60>
>>> plt.title('Representation des individus dans (x2, x6)')
     Text (0.5, 1.0, 'Representation des individus dans (x2, x6)')
>>>> plt.subplot (223)
      <AxesSubplot:>
>> plt.scatter (x3, x7, c='r', marker = 'o')
```

```
<matplotlib.collections.PathCollection object at 0x0000023EA7CD0E50>
>>> plt.title ('Representation des individus dans (x3, x7)')
     Text (0.5, 1.0, 'Representation des individus dans (x3, x7)')
>>> plt.subplot(224)
     <AxesSubplot:>
>>> plt.scatter (x4, x8, c='r', marker = 'o')
     <matplotlib.collections.PathCollection object at 0x0000023EA7D45870>
>>> plt.title('Representation des individus dans (x4, x8)')
     Text (0.5, 1.0, 'Representation des individus dans (x4, x8)')
>>> plt.show()
```


Commentaires

Première constatation: Les variables sont différentes entres elles.

- Le premier graphe montre que les données sont bien dispersées, corrélation positive.
- Dans le deuxième graphe, pas de liaison linéaire, relation parabolique.
- Dans le troisième graphe, les données sont dispersées d'une manière linéaire sauf 1 point
- Dans le dernier graphe, pas de relations (indépendance) sauf un point et donc absence de corrélation.

Attention

Les variables sont différentes entres elles malgré que les résultats de calcul de corrélations montrent carrément autre chose.

Donc, il faut faire attention à l'interprétation des variances, des corrélations.