Examen final de SIN: Test del bloc 2 (1,75 punts)

ETSINF, Universitat Politècnica de València, 16 de gener de 2024

Grup, cognoms i nom: 2,

Marca cada requadre amb una única opció. Puntuació: $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/9)$.

1 C En un problema de raonament probabilístic corresponent a diagnòstic de grip, les variables aleatòries d'interés són: Grip (G):{positiu (POS), negatiu (NEG)}; Ventilació (V):{alta (ALT), baixa (BAI)}; Activitat (A):{silenci (SIL), parlant (PAR), exercici (EXE)}. La probabilitat conjunta de les tres variables ve donada en la taula següent: P=0.56

		ALT			BAI	
P(g, v, a)						EXE
POS	0.01	0.02	0.02	0.01	0.03	0.05
NEG	0.29	0.19			0.10	0.04

La probabilitat condicional $P(G = POS \mid V = BAI, A = EXE)$ és:

- A) $P \le 0.25$
- B) $0.25 < P \le 0.50$
- C) $0.50 < P \le 0.75$
- D) $0.75 < P \le 1.0$

 $2 \boxed{\mathrm{D}}$ Siga **x** un objecte a classificar en una classe de C possibles. Indica quin dels següents classificadors no és (de risc) d'error mínim (o escull l'última opció si els tres són d'error mínim):

A)
$$c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} \log p(\mathbf{x} \mid c) + \log p(c)$$

B)
$$c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} e^{p(c|\mathbf{x})} + e^{p(\mathbf{x})}$$

C)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} e^{p(\mathbf{x},c)} - e^{p(\mathbf{x})}$$

D) Els tres classificadors anteriors són d'error mínim.

3 C Siga un problema de classificació en tres classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula. Indica en quin interval es troba l'error del classificador $c(\mathbf{x})$ donat en la taula, ε :

A)
$$\varepsilon < 0.25$$
.

B)
$$0.25 \le \varepsilon < 0.50$$
.

C)
$$0.50 \le \varepsilon < 0.75$$
.

D)
$$0.75 \le \varepsilon$$
.

	x	$P(c \mid \mathbf{x})$				
α	$x_1 x_2$	c=1	c=2	c=3	$P(\mathbf{x})$	$c(\mathbf{x})$
(0 0	0.5	0.1	0.4	0.3	1
() 1	0.6	0.4	0	0.3	2
:	1 0	0.1	0.4	0.5	0.1	2
	1 1	0	0.5	0.5	0.3	1
a = 0.60						

 $\varepsilon = 0.69$

- 4 C Suposeu que estem aplicant l'algorisme Perceptró, amb factor d'aprenentatge $\alpha=1$ i marge b=0.1, a un conjunt de 3 mostres bidimensionals d'aprenentatge per a un problema de 2 classes. Se sap que, després de processar les primeres 2 mostres, s'han obtés els vectors de pesos $\mathbf{w}_1=(0,2,1)^t$, $\mathbf{w}_2=(0,-2,-1)^t$. Així mateix, se sap que, després de processar l'última mostra, (\mathbf{x}_3,c_3) , s'obtenen els vectors de pesos $\mathbf{w}_1=(-1,1,-3)^t$, $\mathbf{w}_2=(1,-1,3)^t$. Quina de les següents mostres és eixa última mostra?
 - A) $((2,1)^t,1)$
 - B) $((3,1)^t,1)$
 - C) $((1,4)^t,2)$
 - D) $((2,4)^t,1)$
- 5 A Donat el classificador en 3 classes definit pels seus vectors de pesos $\mathbf{w}_1 = (2, 1, 1)^t$, $\mathbf{w}_2 = (1, -3, -3)^t$, $\mathbf{w}_3 = (2, 0, -1)^t$ en notació homogènia, quin dels següents conjunts de vectors **no** definix un classificador equivalent al donat?
 - A) $\mathbf{w}_1 = (-2, -1, -1)^t$, $\mathbf{w}_2 = (-1, 3, 3)^t$, $\mathbf{w}_3 = (-2, 0, 1)^t$
 - B) $\mathbf{w}_1 = (4, 2, 2)^t$, $\mathbf{w}_2 = (2, -6, -6)^t$, $\mathbf{w}_3 = (4, 0, -2)^t$
 - C) $\mathbf{w}_1 = (4, 1, 1)^t$, $\mathbf{w}_2 = (3, -3, -3)^t$, $\mathbf{w}_3 = (4, 0, -1)^t$
 - D) $\mathbf{w}_1 = (6, 2, 2)^t$, $\mathbf{w}_2 = (4, -6, -6)^t$, $\mathbf{w}_3 = (6, 0, -2)^t$
- 6 D Indica quina de les següents afirmacions sobre regressió logística és *incorrecta* (o escull l'última opció si les tres primeres són correctes):
 - A) Regressió logística és un model probabilístic de classificació basat en una funció predictora de logits lineal amb l'entrada
 - B) Al tractar-se d'un model probabilístic de classificació, regressió logística permet aplicar regles de decisió més generals que la MAP (decidir-se per la classe de màxima probabilitat a posteriori)
 - C) Regressió logística és un model probabilístic de classificació basat en la distribució categòrica
 - D) Les tres afirmacions anteriors són correctes

7 Donat el conjunt de mostres de 2 classes (o i •) de la figura de la dreta, ¿quin dels següents arbres de classificació és coherent amb la partició representada?

- 8 A Suposeu que estem aplicant l'algorisme d'aprenentatge d'arbres de classificació per a un problema de 3 classes, c=1,2,3. L'algorisme ha arribat a un node t que ha estat dividit en un node esquerre amb 3 mostres de la classe 1, 1 mostra de la classe 2 i 2 mostres de la classe 3; i un node dret amb 1 mostra de la classe 1, 0 mostres de la classe 2 i 0 mostres de la classe 3. Quin decrement d'impuresa s'ha aconseguit amb esta partició? $\Delta \mathcal{I} = 0.13$
 - A) $0.00 \le \Delta \mathcal{I} < 0.25$.
 - B) $0.25 \le \Delta \mathcal{I} < 0.50$.
 - C) $0.50 \le \Delta \mathcal{I} < 0.75$.
 - D) $0.75 \leq \Delta \mathcal{I}$.
- 9 D Es té una partició d'un conjunt de dades 3-dimensionals en un nombre de clústers donat, $C \geq 2$. Considereu la transferència de la dada $\mathbf{x} = (4,10,4)^t$ d'un clúster i a altre $j,\ j \neq i$. Se sap que el clúster i conté 4 dades (comptant \mathbf{x}) i el j 2. Així mateix, se sap que la mitjana del clúster i és $\mathbf{m}_i = (1,8,2)^t$ i la del j $\mathbf{m}_j = (10,2,10)^t$. Si es realitza la dita transferència, es produirà un increment de la suma d'errors quadràtics, ΔJ , tal que: $\Delta J = 68.0$
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \ge 0$

Examen final de SIN: Problema del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 16 de gener de 2024

Grup, cognoms i nom: 2,

Problema sobre regressió logística

La següent taula presenta un conjunt de 2 mostres d'entrenament de 2 dimensions procedents de 2 classes:

$$\begin{array}{c|ccccc}
n & x_{n1} & x_{n2} & c_n \\
1 & 1 & 0 & 2 \\
2 & 1 & 1 & 1
\end{array}$$

Addicionalment, la següent taula representa una matriu de pesos inicials amb els pesos de cadascuna de les classes per columnes::

\mathbf{w}_1	\mathbf{w}_2
0.	0.
0.	0.
0.25	-0.25

Es demana:

- 1. (0.5 punts) Calcula el vector de logits associat a cada mostra d'entrenament.
- 2. (0.25 punts) Aplica la funció softmax al vector de logits de cada mostra d'entrenament.
- 3. (0.25 punts) Classifica cadascuna de les mostres d'entrenament. En cas d'empat, tria qualsevol classe.
- 4. (0.5 punts) Calcula el gradient de la funció NLL en el punt de la matriu de pesos inicials.
- 5. (0.5 punts) Actualitza la matriu de pesos inicials aplicant descens per gradient amb factor d'aprenentatge $\eta = 1.0$.

Solució:

1. Vector de logits per a cada mostra d'entrenament:

n	a_{n1}	a_{n2}
1	0.	0.
2	0.25	-0.25

2. Aplicació de la funció softmax:

$$\begin{array}{c|ccc}
n & \mu_{n1} & \mu_{n2} \\
\hline
1 & 0.5 & 0.5 \\
2 & 0.62 & 0.38
\end{array}$$

3. Classificació de cada mostra:

$$\begin{array}{c|c} n & \hat{c}(x_n) \\ \hline 1 & 2 \\ 2 & 1 \end{array}$$

4. Gradient:

$$\begin{array}{c|cc} g_1 & g_2 \\ \hline 0.06 & -0.06 \\ 0.06 & -0.06 \\ -0.19 & 0.19 \\ \end{array}$$

5. Matriu de pesos actualitzada:

\mathbf{w}_1	\mathbf{w}_2
-0.06	0.06
-0.06	0.06
0.44	-0.44