

Assignment 1

Department of Electrical & Computer Engineering

North South University

Submitted By

Name: Mohammed Mahmudur Rahman

Student ID: 1520386043

Course: Electrical Circuits (EEE141)

Section: 05

Faculty Advisor

Syeda Sarita Hassan (SSH1)

Question 5.2 (2)

2. Find the total resistance R_T for each configuration in Fig. 5.86. Note that only standard resistor values were used.

EFE141. (5.2.5.3, 5.4, 5.5, 5,6 (5,7, 5.5) 5-2(2) @ 000 BD. RT - 8 BY KR +10 a) An ûtin a penier cincuit, so total resistance RT = R1 + R2+R3. =(0.1+0.30+1.5) KD. =1.69 KA (b) since it is series circuit, So, RT = R, + R2+ R3 = (1.2 +2.7 +8.2) 1 = 12.1 1. Odince it's a series circuit, 80, RT = R1+R2+R3+R4+R5 = (8.2 + 10+9.1 +1.8+2.7) K-2 = 31.8 KD DA - 1272 12 8 20-2 4030

Here, R_1 , R_2 are one in serien. 90, $R_{12} = R_1 + R_2 = (47 + 820)\Omega = 867\Omega$. Again, R_3 , R_4 are in Serien. $2 \cdot R_{34} = 472 \times 10^3 R_3 + R_4 = 1.2 \times 10^4 + 91\Omega$.

Question NO: 5.2 (4)

- 4. For the circuit in Fig. 5.88, composed of standard values:
 - a. Which resistor will have the most impact on the total resistance?
 - b. On an approximate basis, which resistors can be ignored when determining the total resistance?
 - c. Find the total resistance, and comment on your results for parts (a) and (b).

FIG. 5.88

Question 5.2 (1)

 For each configuration in Fig. 5.85, find the individual (not combinations of) elements (voltage sources and/or resistors) that are in series. If necessary, use the fact that elements in series have the same current. Simply list those that satisfy the conditions for a series relationship. We will learn more about other combinations later.

(5.3(7))

For the series configuration, find

- @ Total perintance.
- 6) Notal Current
- © Voltage across each penintive

(a) Here, Total Resistance, RT = (10+12+18) 1 = 401.

De An per Ohm'n law, Current, $I_S = \frac{C}{R_T} = \frac{120}{40} A$.

@ Amp Applying Ohm's law for each resistive elements we can obtain voltage across each of them.

So,
$$V_{R_1} = 1_1 R_1 = [(3A)(10)]V = 30V - V_{R_2} = 1_1 R_2 = [3A * 12 \cdot 1]V = 36V - V_{R_3} = 1_1 R_3 = [180 * 3A] = 84V$$

Go,
$$E = 1 \times R_T = (3 \times 10^{-3} \times 8.5 \times 10^{3}) V$$
.

 $= 25.5 V$.

(a) Applying Ohmin law we can obtain voltage actions each element.

for 10+ figure,

 $V_{4.74} = 1 \times R = (4 \times 1)(4.7 \times 1) = 18.8 V$.

 $V_{3.3} \times 1 = 1 \times R = (3 \times 10^{-3}) \times 10^{-3} \times 10^{-3$

Question 5.4 (12)

- 12. For the circuit in Fig. 5.96, constructed of standard value resistors:
 - a. Find the total resistance, current, and voltage across each element.
 - b. Find the power delivered to each resistor.
 - c. Calculate the total power delivered to all the resistors.
 - **d.** Find the power delivered by the source.
 - e. How does the power delivered by the source compare to that delivered to all the resistors?
 - f. Which resistor received the most power? Why?
 - g. What happened to all the power delivered to the resistors?
 - h. If the resistors are available with wattage ratings of 1/2 W, 1 W, 2 W, and 5 W, what minimum wattage rating can be used for each resistor?

FIG. 5.96

(a) Here Total repristant,
$$R_7 = (3 + 1 + 2) K \Omega$$

= $6 K \Omega$.

Total leverent,
$$I_S = \frac{E}{R_T} = \frac{120 \text{ V}}{6 \text{ kl}} = 20 \text{ mA} - \frac{120 \text{ V}}{6 \text{ kl}} = \frac{120 \text{ V}}{6 \text{ kl}}$$

Vollage across each element?

rage across each elements
$$V_{R_1} = (20 \,\text{mA})(3 \,\text{k.D}) = 60 \,\text{V} \,.$$

$$V_{R_2} = (1 \cdot R_2) = (20 \,\text{mB})(1 \,\text{k.D}) = 20 \,\text{V} \,.$$

$$V_{R_3} = (1 \cdot R_3) = (20 \,\text{mA})(2 \,\text{k.D}) = 40 \,\text{V} \,.$$

(b) An per law, wood of the

Power across a element, RP= J2R.

$$P_{R_2} = J_2^2 R_2 = (20 \text{ mA})^2 (1 \text{ kg}) = 0.4 \text{ W}.$$

$$P_{R_3} = I_3^2 R_3 = (20 \text{ mA})^2 (2 \text{ kg}) = 0.8 \text{ W}.$$

$$P_{R_3} = I_3^2 R_3 = (20 \text{ mA})^2 (2 \text{ kg}) = 0.8 \text{ W}.$$

Total
Resinton
Resinton
Resinton
Prover delivered by rowree, Pr=PR+PR2+PR3
=1.2N+0.4N+0.8W=2.4W

(a) Total Resistance, RT = (22+10+47+3) 2=822.

levent,
$$J_S = \frac{E}{R_T} = \frac{20.5 \text{ V}}{82 \, \text{ R}} = 250 \, \text{mA}$$
.

Voltage ac nons each element!

$$N_{R_1} = J_1 R_1 = (250 \text{ mA}) (222) = 5.5 \text{ V}.$$
 $N_{R_2} = J_2 R_2 = (250 \text{ mA}) (102) = 2.5 \text{ V}.$
 $N_{R_3} = J_3 R_3 = (260 \text{ mA}) (442) = 11.75 \text{ V}.$
 $N_{R_3} = J_3 R_3 = (260 \text{ mA}) (442) = 0.75 \text{ V}.$

$$\begin{array}{l} \text{(b)} \ P_{R_1} = 1,^2 R_1 = (250 \, \text{mÅ})^2 \cdot 22 \, \Omega = 1.98 \, \text{w} \, . \\ \\ P_{R_2} = 1,^2 R_2 = (250 \, \text{mÅ})^2 \, (10 \, \Omega) = 625 \, \text{mW} \, . \\ \\ P_{R_3} = 1,^2 R_3 \, (260 \, \text{mÅ})^2 \, (27 \, \Omega) = 2.94 \, \text{w} \, . \\ \\ P_{R_4} = 1,^2 R_4 = (250 \, \text{mÅ})^2 \, (3 \, \Omega) = 187.5 \, \, \text{mW} \end{array}$$

- @ P = E]s = (20.5V) (250mh)=5.13W.
- @ Power delivered by source = Power received by resistor = 5.13W .
- An 470 is the largest resistor it received the
- @ Power delivered to resistos are dissipated.
- B of the resistors are available with waltage rating of 1/2 w , I w, 2 w & 5 w min ionum waltage for each resistor would be:

@ Pg = Pp.+ Pp. 1 Pp. + Pp. = 1.38 W. 625 m.M.

 $R_1 \rightarrow 2W$ (mode) = 24sI = 9V $R_2 \rightarrow 1/2W$ (mode) = 24sI = 9V

Ry - 5W (mode) = 19 9 V

Ru - 1/2W = 242 = 29 W - W88.) = 958. 5 (A mozs) = 95, [= 99 ()

Question No 5.4 (15)

- Eight holiday lights are connected in series as shown in Fig. 5.99.
 - a. If the set is connected to a 120 V source, what is the current through the bulbs if each bulb has an internal resistance of 28½ Ω?
 - Determine the power delivered to each bulb.
 - Calculate the voltage drop across each bulb.
 - d. If one bulb burns out (that is, the filament opens), what is the effect on the remaining bulbs? Why?

① Here, Total resistance, $R_{+}=NR_{1}=8(28\frac{1}{8}\Omega)=225\Omega$. So, luvrent, $I=E/R_{T}=120V/225\Omega=0.53A$.

(b) Here, P=12P=(28) (0.63)2(28)=8W.

O voltage drop ar nons each bulb. $V = IR = (0.53) \left(\frac{2252}{8}\right) = 15V.$

a) If one bulb tourns out remaining bulbs will be turned off as the circuit would be opened in place of tourned bulb.

source letween points a & b.

(1)

for figure @,

Vab = - 4V - 8V+12V=0.

for figure B Vab = -4V - 8V + 6V = -6V.

for figure O Vab = -10v+18V-6v+12v=14V.

5.5(18)

Determine the current 1 & it's direction for following figure. Before solving for I, redraw each figure with a single voltage source.

8 for 6 f = -4v+18v+12v = 2v.

VOIT VOI VOO 6 realization.

for Bredrawn, RT = (4:7+1:2+5.6) = 11.52.
So, J =
$$\frac{2V}{11.5-2}$$
 = 173.91 mA (clock-wine)

5.5 (19) Find the emknown voltage source & resistors for the metworks in following figures. First, combine servier voltage sources into a single source. Indicate te direction of resulting aureroil.

@ Here, P=8 mW = J2 R. VA = VB - VA = J2

$$\frac{1}{1^{2}} = \frac{8mW}{(2mA)^{2}} = \frac{2k\Omega}{(2mA)^{2}} = \frac{3mW}{(2mA)^{2}} = \frac{3mW}{(2m$$

Again,
$$J = \frac{E}{R_T} = \frac{20V - E}{3k\Omega + 2k\Omega} = \frac{2mA}{Clock wine}$$
.

$$\Rightarrow 20V - £ = (2 mA) (5kQ) = 10V.$$

B Here,
$$I = \frac{16V}{2kD} = 8 \text{ mA}$$
.

 $R = \frac{V}{1} = \frac{12V}{8mA} = 1.5kD$.

 $R = \frac{1}{100} = \frac{12V}{8mA} = \frac{1.5kD}{8mA}$.

$$\frac{1}{1} = \frac{E - 4 - 10V}{RT} = \frac{E - 14V}{2K2 + 1.5K2} = \frac{8 \text{ mA}}{3.5 \text{ k.2}} = \frac{8 \text{ mA}}{\text{Counter Clock}}$$
wine).

15.6 (20) Using Kirchaff's voltage law find the unknown holtages

Here, applying kVL, +10V+4V-3V-V=0. 2V=14V-3V=11V

16V + 4V - + 4V - + 60V - + 60

+30V+20V-8V-V=0

Applying KVL, +16V-10V-4V-V+60V=0. 2.V = 76V-14V=62V. 5.6(21)

Uping KVL, find the unknown Voltage:

Applying KVL, 460V-12V-V-20V=0 1. V=60V-32V=28V.

Applying KVL, +E-14V-6V-2V+18V=0 A E = 22V-18V=4V.

Using KVL, find the

the worknown voltage.

920V T 10V T 10V

Applying XVL, 10V 10V + 20V - V, - 2V - 1V 20.

Again, (000) $+10V - 2V - V_2 = 0$. $2. V_2 = 8V$

B + V, - -6V +

Applying KVL, +10V-V, +6V-2V-3V =0.

Again, +10V-V2-3V=0 5.7 (24)

Determine the values of unknown resistors.

$$\Rightarrow \frac{1}{2\varrho} = \frac{500}{R_2}$$

$$R_{2} = \frac{(500)(20)}{1000} = 1000$$

Again,
$$\frac{V_1}{R_1} = \frac{V_3}{R_3}$$

$$\frac{10}{20} = \frac{1000}{R_3}$$

5.7 (30)

- . @ Determine 1/2.
- B) Calculate Vg.
- @ Determine Rg

Here,
$$\frac{V_1}{R_1} = \frac{V_2}{R_2}$$

$$\frac{4V}{10.2} = \frac{V_2}{20.2}$$

B Here, $V_3 = E - V_1 - V_2 = 40V - 4V - 8V = 28V$

$$\frac{V_1}{R_1} = \frac{V_3}{R_3}$$

$$\frac{4V}{10R} = \frac{28V}{R_3}$$

$$\frac{4V}{10R} = \frac{28V}{R_3}$$

$$\frac{(28V)(10R)}{4V} = 70R$$

24

Find the voltage across each resistor.

Here Total Resistance, RT= R, +R2+R3 = 2R3 + 7R3+R3 = 18Rg.

Again,
$$\frac{V_{R3}}{R_3} = \frac{V_{total}}{R_{total}} = \frac{60V}{R_{total}} = \frac{60V}{R_{tot$$

23 % Determine curvent 1 (with direction) & voltage U (with polarity)
or the following figure.

for figure @, 5.9 (36) for the following figure. for figure @, Here, V= 80 V - 26 V = 54 V. & RT = 61131=92. -.] = 54V = 6A. & V=1P = (6A)(32) The direction would be Clockwine as 80V>26V. for figure 9. E = +70V-10V=60V. RT = 102 1262+302=602. $\frac{1}{2} = \frac{E}{R_1} = \frac{60^{\circ}}{60.0} = 14$ Direction in clock-wine Again, V=1R= ()A) (102)=10U.

Po per law.

$$1_{R_2} = \frac{\mathbf{v}_{R_1} - \mathbf{v}_{R_2}}{R_2} = \frac{4 - (-4)}{8 \cdot 2} = \frac{8 \cdot V}{8 \cdot 2} = 1 \cdot A$$
.

 $R_2 = \frac{8 \cdot V}{8 \cdot 2} = \frac{4 \cdot V}{8 \cdot 2} = \frac{8 \cdot V}{8 \cdot 2} = 1 \cdot A$

Determine Vo, V4, V7, V10, V23, V30

Determine
$$V_0, V_4, V_7, V_{10}, V_{23}, V_{30}$$
 $V_{67}, V_{56} \text{ and } T(\text{magnitude})$
 $S \text{ direction}$

Here, $V_0 = OV \text{ (ground)}$.

 $V_4 = -V_1 = 2V$

$$V_{56} = -2V - 4V = -6V$$
.

Here, current,
$$J = \frac{\sqrt{23}}{42} = \frac{BV}{4D} = 1.8A$$
 is $\frac{1}{4}$ in clock-wise (1).