ECO4010 Tutorial 1

- 1. Consider a choice problem with choice set $X = \{x, y, z\}$. Consider the following choice structures:
 - (a) $(\mathcal{B}_1, C(\cdot))$, in which $\mathcal{B}_1 = \{\{x, y\}, \{y, z\}, \{x, z\}, \{x\}, \{y\}, \{z\}\}\}$ and $C(\{x, y\}) = \{x\}, C(\{y, z\}) = \{y\}, C(\{x, z\}) = \{z\}, C(\{x\}) = \{x\}, C(\{y\}) = \{y\}, C(\{z\}) = \{z\}.$
 - (b) $(\mathscr{B}_2, C(\cdot))$, in which $\mathscr{B}_2 = \{\{x, y, z\}, \{x, y\}, \{y, z\}, \{x, z\}, \{x\}, \{y\}, \{z\}\}\}$ and $C(\{x, y, z\}) = \{x\}, C(\{x, y\}) = \{x\}, C(\{y, z\}) = \{z\}, C(\{x, z\}) = \{z\}, C(\{x\}) = \{x\}, C(\{y\}) = \{y\}, C(\{z\}) = \{z\}.$
 - (c) $(\mathcal{B}_3, C(\cdot))$, in which $\mathcal{B}_3 = \{\{x, y, z\}, \{x, y\}, \{y, z\}, \{x, z\}, \{x\}, \{y\}, \{z\}\}\}$ and $C(\{x, y, z\}) = \{x\}, C(\{x, y\}) = \{x\}, C(\{y, z\}) = \{y\}, C(\{x, z\}) = \{x\}, C(\{x\}) = \{x\}, C(\{y\}) = \{y\}, C(\{z\}) = \{z\}.$

For every choice structure, comment on if the WARP is satisfied and if there exists a rational preference relation \succeq that rationalizes $C(\cdot)$ relative to its \mathscr{B} . If such a rationalization is possible, write it down.

- 2. Define two alternative versions of WARP: assume $C(\cdot)$ on (X, \mathcal{B}) satisfies $WARP^*$ iff for each $A, B \in \mathcal{B}, C(A) \cap B \neq \emptyset \Rightarrow C(B) \cap A \subset C(A)$ $WARP^{**}$ iff for each $A, B \in \mathcal{B}, x, y \in A \cap B, x \in C(A), y \notin C(A) \Rightarrow y \notin C(B)$
 - (a) Show that $WARP^*$ is equivalent to WARP.
 - (b) Show that $WARP^{**}$ is equivalent to WARP.

(Hint: Firstly verify that WARP can be rewritten as: for each $A, B \in \mathcal{B}, x, y \in A \cap B, x \in C(A), y \in C(B) \Rightarrow y \in C(A)$ or $\Rightarrow x \in C(B)$.)

- 3. Show that if X is finite and \succeq is rational, then $C_{\succeq}(B) \neq \emptyset$ for any $B \in \mathscr{B}$. (Hint: Use induction.)
- 4. Let X be a finite set with more than $N \geq 1$ elements, \mathscr{B} its non-empty subsets, and \succsim_1, \succsim_2 two rational preference relations on X. Suppose that someone follows the following choice procedure: for each $B \in \mathscr{B}$, if B has more than N elements, then C(B) is based on \succsim_1 ; if B has no more than N elements, then C(B) is based on \succsim_2 . Show that this choice rule violates WARP.

- 5. The path-invariance property has the following definition: For every pair $B_1, B_2 \in \mathcal{B}$ such that $B_1 \cup B_2 \in \mathcal{B}$ and $C(B_1) \cup C(B_2) \in \mathcal{B}$, we have $C(B_1 \cup B_2) = C(C(B_1) \cup C(B_2))$, that is, the decision problem can safely be subdivided.
 - (a) Show that a choice structure $(\mathcal{B}, C(\cdot))$ for which a rationalizing preference relation \succeq exists satisfies the *path-invariance* property.
 - (b) Find examples of choice procedures that do not satisfy this property.
- 6. Suppose that choice structure $(\mathcal{B}, C(\cdot))$ satisfies WARP. In the lecture, the revealed (at-least-as-good-as) preference relation \succsim_C is defined by:

$$x \succsim_C y \Leftrightarrow \exists B \in \mathscr{B} \ s.t. \ x, y \in B \ \text{and} \ x \in C(B)$$

Consider the following other two possible revealed preferred relations, \succ^* and \succ^{**} :

$$x \succ^* y \Leftrightarrow \exists B \in \mathscr{B} \ s.t. \ x, y \in B, x \in C(B), \text{ and } y \notin C(B)$$

 $x \succ^{**} y \Leftrightarrow x \succsim_C y \text{ but not } y \succsim_C x$

- (a) Show that \succ^* and \succ^{**} give the same relation over X; that is, for any $x, y \in X$, $x \succ^* y \Leftrightarrow x \succ^{**} y$. Is this still true if $(\mathcal{B}, C(\cdot))$ does not satisfy WARP?
- (b) Must \succ^* be transitive?
- (c) Show that if \mathscr{B} includes all subsets of X up to 3 elements, then \succ^* is transitive.
- 7. Monotonicity and nonsatiation are two properties of \succsim . This exercise investigates the relationship between them. Suppose \succsim is defined on the consumption set $X = R_+^L$. According to MWG, we have the following definitions regarding monotonicity in a slightly different way from the definitions in the lecture:
 - \succsim on X is monotone if $x, y \in X, y >> x \Rightarrow y \succ x$
 - $\succsim \ \, \text{on } X \text{ is strongly monotone if } x,y \in X, y \geq x \text{ and } y \neq x \Rightarrow y \succ x$
 - $\succsim \ \, \text{on} \,\, X \text{ is weakly monotone if} \,\, x,y \in X, y \geq x \Rightarrow y \succsim x$

where y >> x means that every element of y is greater than every element of x.

- (a) Show that if \succeq is strongly monotone, then it is monotone.
- (b) Show that if \succeq is monotone, then it is locally nonsatiated. (Hint: For $x, y \in R_+^L$, the Euclidean distance between x and y is defined as $||x-y|| = [\sum_{l=1}^L (x_l y_l)^2]^{\frac{1}{2}}$.)
- (c) Draw a convex preference relation that is locally nonsatiated but is not monotone to show that the converse proposition of (b) does not hold, that is, local nonsatiation is a weaker assumption than monotonicity.
- (d) Show that if \succeq is transitive, locally nonsatiated, and weakly monotone, then it is monotone.
- 8. Let \succeq be a preference relation on a set X. Suppose \succeq is complete and transitive. Recall the definitions of \succ and \sim derived from \succeq in the lecture.
 - (a) Show that \succ is:

- (1) Irreflexive: $x \succ x$ never holds
- (2) Transitive: $x \succ y, y \succ z \Rightarrow x \succ z$
- (3) Asymmetric: $x \succ y \Rightarrow y \not\succ x$
- (4) Satisfying negative transitivity: $x \not\succ y, y \not\succ z \Rightarrow x \not\succ z$
- (b) Show that \sim is:
 - (1) Reflexive: $x \sim x$ always holds
 - (2) Transitive: $x \sim y, y \sim z \Rightarrow x \sim z$
 - (3) Symmetric: $x \sim y \Rightarrow y \sim x$
- (c) Define I(x) to be the set of all $y \in X$ for which $y \sim x$. Show that the set $\{I(x)|x \in X\}$ is a partition of X, that is,
 - (1) $\forall x \in X, I(x) \neq \emptyset$
 - (2) $\forall x \in X, \exists y \in X \text{ such that } x \in I(y)$
 - (3) $\forall x, y \in X$, either I(x) = I(y) or $I(x) \cap I(y) = \emptyset$