TECEPTO) V RF cret. Design. 2215/13

P3-upq-Feb.-13KL-146 A4 E

~	7000	13
Can.	7283-	- [.5.

GS-9018

ampuskeeda.com

	(3 Hours)	[Total Marks: 100
	(1) Question No. 1 is compulsory.	
	(2) Answer any four out of remaining six questions. (3) Assume suitable data wherever required and justify the sa	T22 A
•	(3) Assume suitable data wherever required and justify the sa	me.
1. (a)	Draw lumped element circuit model for transmission line. Deriv for voltage and current travelling waves.	e the expression 5
	Explain simplified Ebers-Mall model for forward active mode Explain current flow in pn junction and give the expression for	
. 4	diffusion constant and Vdiff in terms of doping concentration.	
(d)	Discuss terminations used for microstrip lines.	5
• •	Prove the first three Kureda's Identities by computing appropriate Explain construction and functionality of HEMT.	ABCD matrices. 10
3. (a)	Discuss power considerations in transmission line when (i) Source and Load impedances are matched	10
(b)	(ii) Load impedance is matched and source. Explain with equivalent circuits the RF behaviour of resistor, induct	or and capacitor. 10
4. (a)	Explain Insertion loss, Ripple factor and bandwidth in relation to f ideal filter response cannot be realised?	ilter design. Why 6
(b)	If $Z_0 = 50\Omega$, plot the following impedances on Smith chart.	4
	$23 + j42\Omega$, $12-j109\Omega$, $72 + j42.5\Omega$ & $115 - j22\Omega$	1 Λ
	Find corresponding admittances and VSWR.	10
5. (a)	Define & derive AC parameters for BJT and FET.	10
(b)	Explain the role of scattering parameters and its properties at RF a	nd microwaves. 10
6. (a)	Explain schottley contact with help of energy band diagram for metacontact.	el semiconductor 10
(b)	Derive expression for internal, external and loaded quality facts series and parallel resonant circuit.	ors for standard 10
7. W	rite short notes on :—	
	(a) Realization of capacitors and inductors using sections of tra	nsmission lines 7
	(b) Microstrip transmission lines	7
	(c) Butterworth filter.	0