

Intelligent Systems

Susana M. Vieira

Universidade de Lisboa, Instituto Superior Técnico IS4, Center of Intelligent Systems, IDMEC, LAETA, Portugal {susana.vieira}@tecnico.ulisboa.pt

FUZZY MODELING

SI4 –Fuzzy Modeling

Reading:

- R. Babuska. *Fuzzy Modeling for Control*. Kluwer Academic Publishers, 1998.
- J.M.C. Sousa and U. Kaymak. *Fuzzy Decision Making in Modeling and Control*. World Scientific Series in Robotics and Intelligent Systems, vol. 27, Dec. 2002.

MODELING

Reading:

Katsuhiko Ogata. Modern Control Engineering, 5th Edition.
 Prentice Hall, 2010.

Modeling techniques

- physical modeling
 - *first principles*: differential equations
 - *linearization* around an operating point

system identification

- measure input-output data
- postulate model structure
- estimate model parameters from data

Mathematical models

- A representation of reality
- However, appropriateness of a model is coupled to one's goals
- A model consists of
 - **Structure**: variables, inputs, outputs and **types of relations** amongst them
 - Parameters: free variables after a structure is selected
 - Search method: method to derive (identify) the optimal parameters (optimization)

Modeling of dynamical systems

- Model of a dynamic system set of equations that represents the system accurately.
- A mathematical model is **not unique** to a given system; it depends on the application of the model.
- Dynamics of many systems (mechanical, electrical, economic, biological, etc.)
 may be described in terms of differential equations.
- **Simplicity vs. accuracy** to improve accuracy of a model, complexity is increased.
- In general, first a simplified model is derived to get a good feeling for the solution.

Linear systems

$$y = \sum_{i=1}^{n} a_i x_i$$

- **Principle of superposition** is valid the response produced by the application of two different inputs is the sum of the two individual responses.
- Linear time-invariant systems differential equation where the coefficients are constants or functions only of the independent variable.
- Linear time-variant systems coefficients are function of time. Example: spacecraft control system.

Nonlinear systems

• The *Principle of superposition* does not apply:

$$\frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^2 + x = A\sin\omega t$$

$$\frac{d^2x}{dt^2} + \left(x^2 - 1\right)\frac{dx}{dt} + x = 0$$

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} + x + x^3 = 0$$

• Systems are generally *nonlinear*, but in limited operating ranges can be *approximated by linear equations*.

Nonlinear systems

• Examples of nonlinearities are, e.g., *saturation*, *dead-zone*, *square-law* (dampers at high velocities become proportional to the square of the velocity).

Modeling in state-space

- State variables: n variables $x_1, x_2, ..., x_n$ necessary to completely describe the behavior of a system.
- State vector: state variables can be considered the n components of a state vector $\mathbf{x}(t)$.
- $\mathbf{x}(t)$ determines uniquely the system state for any time $t \ge 0$, given the state at $t = t_0$ and the input $\mathbf{u}(t)$ for $t \ge 0$.
- State space: n-dimensional space whose coordinate space consists of the $x_1, x_2, ..., x_n$ axis. Any state is represented by a point in the space.

State-space equations

• State-space equations: $\dot{x}_1(t) = f_1(x_1, x_2, ..., x_n, u_1, u_2, ..., u_r; t)$

$$\dot{x}_{1}(t) = f_{1}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{r}; t)$$

$$\dot{x}_{2}(t) = f_{2}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{r}; t)$$

$$\vdots$$

$$\dot{x}_{n}(t) = f_{n}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{r}; t)$$

• Outputs of the system:

$$y_{1}(t) = g_{1}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{r}; t)$$

$$y_{2}(t) = g_{2}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{r}; t)$$

$$\vdots$$

$$y_{m}(t) = g_{m}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{r}; t)$$

State-space vectors

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_m(t) \end{bmatrix}$$

$$\mathbf{u}(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_r(t) \end{bmatrix}$$

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, t) = \begin{bmatrix} \dot{x}_1(t) = f_1(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_r; t) \\ \dot{x}_2(t) = f_2(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_r; t) \\ \vdots \\ \dot{x}_n(t) = f_n(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_r; t) \end{bmatrix}$$

$$\mathbf{g}(\mathbf{x}, \mathbf{u}, t) = \begin{bmatrix} y_1(t) = g_1(x_1, x_2, ..., x_n, u_1, u_2, ..., u_r; t) \\ y_2(t) = g_2(x_1, x_2, ..., x_n, u_1, u_2, ..., u_r; t) \\ \vdots \\ y_m(t) = g_m(x_1, x_2, ..., x_n, u_1, u_2, ..., u_r; t) \end{bmatrix}$$

State-space equations

Equations can be written as:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{x}, \mathbf{u}, t)$$

 Linearizing around a working point, and considering the system time-invariant:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

Nonlinear models

State-space models

Continuous time:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Discrete time:

$$\mathbf{x}(k+1) = \mathbf{f}(\mathbf{x}(k), \mathbf{u}(k), k)$$
$$\mathbf{y}(k) = \mathbf{g}(\mathbf{x}(k), \mathbf{u}(k), k)$$

Input-output models

Continuous time:

$$y^{(n)}(t) = f\left(y^{(n-1)}(t), \dots, y(t), u^{(m)}(t), \dots, u(t)\right)$$

Discrete time:

$$y(k+1) = f(y(k), y(k-1), ..., y(k-n_y+1),$$
$$u(k), u(k-1), ..., u(k-n_u+1))$$

System: inverted pendulum

- M mass of the cart (Kg)
- *m* mass of the pendulum (Kg)
- *b* friction of the cart (N/m/s)
- *l* length to pendulum center of mass (m)
- *F* force applied to the cart (N)
- x cart position coordinate (m)
- θ pendulum angle from vertical (rad)

• Free Body Diagram (horizontal direction): $\sum F_x = 0$

$$F = M\ddot{x} + b\dot{x} + N$$

$$N = m\ddot{x} + ml\ddot{\theta}\cos\theta - ml\dot{\theta}^{2}\sin\theta$$

Substituting the second in the first equation:

$$(M+m)\ddot{x} + b\dot{x} + ml\ddot{\theta}\cos\theta - ml\dot{\theta}^2\sin\theta = F$$

• Free Body Diagram (vertical direction): $\sum F_y = 0$

$$P\sin\theta + N\cos\theta - mg\sin\theta = ml\ddot{\theta} + m\ddot{x}\cos\theta$$

• Sum of moments around the centroid: $\sum_{M=0}^{M=0}$

$$-Pl\sin\theta - Nl\cos\theta = I\ddot{\theta}$$

Combining these equations:

$$(I + ml^2)\ddot{\theta} + mgl\sin\theta = -ml\ddot{x}\cos\theta$$

Nonlinear model:

$$(M+m)\ddot{x} + b\dot{x} + ml\ddot{\theta}\cos\theta - ml\dot{\theta}^{2}\sin\theta = F$$
$$(I+ml^{2})\ddot{\theta} + mgl\sin\theta = -ml\ddot{x}\cos\theta$$

- Linearization around: $\theta = \pi$
 - $\theta = \pi + \phi$, where ϕ is a small angle from the vertical upward direction
 - And so,

$$\cos \theta = \cos(\pi + \phi) \approx -1,$$

$$\sin(\theta) = \sin(\pi + \phi) \approx -\phi,$$

$$\left(\frac{d\theta}{dt}\right)^2 = \left(\frac{d\phi}{dt}\right)^2 \approx 0$$

• Linearized model: $(I+ml^2)\ddot{\phi} - mgl\phi = ml\ddot{x}$ $(M+m)\ddot{x} + b\dot{x} + ml\ddot{\phi} = u$

State-space model:

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\phi} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & \frac{-(I+ml^2)b}{I(M+m)+Mml^2} & \frac{m^2gl^2}{I(M+m)+Mml^2} & 0 \\ 0 & 0 & 1 \\ 0 & \frac{-mlb}{I(M+m)+Mml^2} & \frac{mgl(M+m)}{I(M+m)+Mml^2} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \phi \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{I+ml^2}{I(M+m)+Mml^2} \\ 0 \\ \frac{ml}{I(M+m)+Mml^2} \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \phi \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$

System identification

Parameter identification

Modeling

- Models can be *static* or *dynamic*
- Why build models?
 - For classification purposes
 - To predict a system's behaviour
 - To **explain interactions** and **relationships** between inputs and outputs
 - To simulate a system and design controllers

Modeling process

- specify and parametrize a class of models
- perform parameter identification
- validate model

Data based modeling

- Fuzzy systems
- Radial basis function networks
- Support vector machines
- Multi-layer perceptron
- •
- Fuzzy systems can be interpretable!
- Fuzzy sets can close the gap between *symbolic processing* and *numerical computations*.

Fuzzy modeling

Parameters to be determined:

- Rule base (rule mapping)
- Definition of membership functions (inputs and outputs)
- Estimation of consequent parameters (for Sugeno systems)

How to obtain fuzzy models?

Expert knowledge driven

- Initialize FM using expert knowledge
- Optimize parameters with expert knowledge

Data driven

- Partition input/output spaces and use available data to induce the rules or
- Apply fuzzy clustering with projection of fuzzy clusters
- Refine the parameters (e.g., neuro-fuzzy approach)

Combinations of above

data-driven estimation of optimal parameters after a suitable expert-driven initialization

•

Steps to build fuzzy systems

- Determine the relevant/available input and output variables/features
- Determine suitable universe of discourse and a term set for the variables
- Define membership functions for linguistic terms
- Determine fuzzy rules for the rule base
- Determine model choices and parameters (including inference operators)
- Tune the system

Rule induction

Antecedents

- Location of kernels membership function positions
- *Extension* of kernels spread of membership functions
- Shape of kernels type of membership functions

Consequents

Associated with kernel estimation of consequent parameters

Rule base optimization

Interpretability influenced by:

- Input and output variables
 - number, relevance and interpretation
- Membership functions (MFs)
 - number and label meanings
- Rule base
 - number of rules and interpretation; possibility for incomplete rules

Using expert knowledge

When designing fuzzy systems, use expert knowledge whenever available

Possible strategies:

- initialize rule base with expert knowledge and optimize with data
- design rule base from data and optimize with expert knowledge
- use experts to validate final rule base
- use experts to provide boundary conditions for rule base optimization

Selecting # of antecedents

- A priori knowledge (experts, dynamics, etc.)
- Regularity criterion based on cross-validation
 - Split training set randomly into two parts (A and B)
 - Minimize regularity criterion:

$$RC = \frac{1}{2} \left[\frac{1}{k_A} \sum_{i=1}^{k_A} \left(y_i^A - \hat{y}_i^{AB} \right)^2 + \frac{1}{k_B} \sum_{i=1}^{k_B} \left(y_i^B - \hat{y}_i^{BA} \right)^2 \right]$$

• Variables selected incrementally until regularity criterion increases

•

Selecting # of antecedents

Feature Selection (FS)

- Principal Component Analysis (PCA)
- Curvilinear Component Analysis (CCA)
- •
- Tree search methods
 - Bottom-up
 - Top-down
- Using metaheuristics: genetic algorithms, ant colony optimization, particle swarm optimization,...)

Input space partitioning

- Rule induction partitions the input space into a number of fuzzy (overlapping) regions
- The type of partition generated depends on chosen algorithm
- Optimization modifies membership parameters to define a partition that minimizes output error

Input space partitioning

• Grid partition

• Tree partition

• Scatter partition

Partitioning algorithms

• All rules – product of number of linguistic terms for each antecedent:

$$K = \prod_{i=1}^{n} \# LX^{i}$$

- Partition refinement
- Partition **optimization**, using e.g. neuro-fuzzy methods or genetic algorithms.
- Decision trees (tree partition) based on an information criterion
- Fuzzy clustering to determine best fit of data

Example: optimize MFs

- Define partition and a suitable objective function
- *Use optimization method* to derive MFs
 - Triangular MFs: derivative-free methods
 - Gaussian MFs: derivative-based methods

Example: liquid level revisited

If level is low then increase valve openingIf level is OK then maintain valve openingIf level is high then decrease valve opening

Fired fuzzy rules

If level is OK then Maintain valve opening

If level is High then Decrease valve opening

Aggregation and defuzzifucation

Optimization

Reading: Part I Optimization: Chapter 5,6,and 7

• J.-S. Jang, C.-T. Sun and E. Mizutani. *Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence*. Prentice Hall, New Jersey, 1997.

Optimization

- Derivative-based optimization
 - Steepest descent (gradient) methods
 - Newton's method
- Derivative-free optimization
 - Simplex
 - Simulated Annealing
 - Genetic Algorithms
 - Ant Colony Optimization
 - •

Derivative-based optimization

 Goal: Solving optimization (nonlinear) problems using derivative information

• Methods:

- Gradient based optimization
- Steepest descent
- Newton methods
- Conjugate gradient
- Nonlinear least-squares problems

Derivative-based optimization

- Methods used in:
 - Deriving membership functions
 - Deriving consequents of Takagi-Sugeno models
 - Neural network learning
 - Regression analysis in nonlinear models
 - Optimization of nonlinear neuro-fuzzy models
 - ...
- Methods will be introduced as needed in the next lectures.

DATA CLUSTERING

Reading:

- R. Babuska. Fuzzy Modeling for Control. Kluwer Academic Publishers, 1998.
- J. Valente de Oliveira and W. Pedrycz (Edts). *Advances in Fuzzy Clustering and its Applications*. Wiley, 2007.

Data clustering

- Extensively used for
 - data categorization (e.g. classification)
 - data compression
 - model construction
- Two types
 - Hierarchical clustering
 - Objective function-based clustering
- Partitions data into several groups such that within-group similarity is larger than between-group similarity

Example

Hierarchical clustering

- Proceed by a series of successive mergers of data points (bottom-up) or successive division of data set (top-down)
- Induce a tree-like structure in the data set
- No pre-determined number of clusters
- Clusters are induced after partitioning by thresholding the induced tree based on similarity

Similarity

- Based on some notion of distance
- Inputs are usually normalized to the range [0,1]
- Inversely related to distance, e.g.

$$S(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{1 + d(\mathbf{x}_i, \mathbf{x}_j)}$$

- Similarity is a reflexive and symmetric relation
- Suitable distance metrics can be defined, even for nominal data

Linkage algorithms

Given the data
$$\mathbf{x}_{k} = [x_{1k}, x_{2k}, ..., x_{nk}]^{T}, \quad k = 1, ..., N$$

- 1. Start with N clusters and compute the $N \times N$ matrix of similarities
- 2. Determine most similar clusters i^*, j^*
- 3. Merge clusters i^* and j^* for form new cluster i'.
- 4. Delete the rows and columns corresponding to i^* and j^* in the similarity matrix.
- 5. Determine the similarity between i and all other remaining clusters.

Linkage variations

Linkage example₃

Complete linkage
0.1
0.2
0.3
0.4
0.5
0.6

Clustering 5 objects
with complete and single
linkage algorithms

Cost function-based clustering

- Partition data by optimizing an objective function
- Clusters represented by cluster prototypes
- Objective function usually minimizes the distance to cluster prototypes
- Pre-determined number of clusters
- Simultaneous estimation of partition and cluster prototypes

Crisp vs. fuzzy clustering

Crisp clustering algorithms

- partition the data set into disjoint groups, i.e. each data point belongs to one cluster only
- similarity is quantified using some metric

Fuzzy clustering algorithms

- partition the data set into overlapping groups, i.e. each data point belongs to multiple clusters with varying degree of membership
- similarity is quantified using some metric which is modified by membership values

Clustering algorithms

- Hard c-means (K-means)
- Fuzzy c-means
- Gustafson-Kessel
- Possibilistic clustering
- Mountain clustering
- Subtractive clustering
- And many, many others...

K(C)-means clustering

Partition data into disjoint sets based on similarity amongst patterns

Given the data
$$\mathbf{x}_{k} = [x_{1k}, x_{2k}, ..., x_{nk}]^{T} \in \mathbb{R}^{n}, \ k = 1, ..., N$$

Find the **crisp partition matrix**:

$$\mathbf{U} = \begin{bmatrix} \mu_{11} & \dots & \mu_{1N} \\ \vdots & \ddots & \vdots \\ \mu_{C1} & \dots & \mu_{CN} \end{bmatrix}, \ \mu_{ij} \in \{0,1\}$$

and the cluster centres: $\mathbf{V} = \{\mathbf{v}_1, \dots \mathbf{v}_C\}, \ \mathbf{v}_i \in \mathbb{R}^n$

K-means clustering

 The following cost function of dissimilarity measures is minimized

$$J = \sum_{i=1}^{C} J_i = \sum_{i=1}^{C} \left(\sum_{k, \mathbf{x}_k \in G_i} d(\mathbf{x}_k - \mathbf{v}_i) \right), \text{ often } d(\mathbf{x}_k - \mathbf{v}_i) = \|\mathbf{x}_k - \mathbf{v}_i\|^2$$

• Partition matrix can be calculated if centers are fixed

$$\mu_{ij} = \begin{cases} 1 \text{ if } \|\mathbf{x}_{j} - \mathbf{v}_{i}\|^{2} \leq \|\mathbf{x}_{j} - \mathbf{v}_{k}\|^{2}, k \neq i \\ 0 \text{ otherwise} \end{cases}$$

• Centers can be calculated if partition matrix is fixed $\mathbf{v}_i = \frac{1}{|G_i|} \sum_k \mathbf{x}_k$

$$\mathbf{v}_i = \frac{1}{|G_i|} \sum_{\mathbf{x}_k \in G_i} \mathbf{x}_k$$

C-means algorithm

- 1. Initialize cluster centers V
- 2. Determine the partition matrix ${f U}$
- 3. Compute cost function JStop if J is below a threshold or if it has not improved
- 4. Update the cluster centers ${f V}$ and iterate from step 2.

Note that
$$\sum_{i=1}^{C} \mu_{ij} = 1, \ \forall j = 1,...,N \ \text{ and } \sum_{i=1}^{C} \sum_{j=1}^{N} \mu_{ij} = N$$

FUZZY CLUSTERING

Reading:

- R. Babuska. Fuzzy Modeling for Control. Kluwer Academic Publishers, 1998.
- J. Valente de Oliveira and W. Pedrycz (Edts). *Advances in Fuzzy Clustering and its Applications*. Wiley, 2007.
- J.-S. Jang, C.-T. Sun and E. Mizutani. *Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence*. Prentice Hall, New Jersey, 1997.

Fuzzy c-means

 Partition data into overlapping sets based on similarity amongst patterns

Given the data
$$\mathbf{x}_{k} = [x_{1k}, x_{2k}, ..., x_{nk}]^{T} \in \mathbb{R}^{n}, \ k = 1, ..., N$$

Find the fuzzy partition matrix:
$$\mathbf{U} = \begin{bmatrix} \mu_{11} & \dots & \mu_{1N} \\ \vdots & \ddots & \vdots \\ \mu_{C1} & \dots & \mu_{CN} \end{bmatrix}, \ \mu_{ij} \in [0,1]$$

and the cluster centres: $\mathbf{V} = {\mathbf{v}_1, \dots \mathbf{v}_C}, \ \mathbf{v}_i \in \mathbb{R}^n$

This is a generalization of hard c-means!

Fuzzy clustering

Minimize objective function

$$J(\mathbf{X}, \mathbf{U}, \mathbf{V}) = \sum_{i=1}^{C} \sum_{k=1}^{N} \mu_{ik}^{m} d^{2}(\mathbf{x}_{k}, \mathbf{v}_{i})$$

subject to

$$0 \le \mu_{ik} \le 1, \ i = 1, ..., C, \ k = 1, ..., N$$

$$\sum_{i=1}^{C} \mu_{ik} = 1, \quad k = 1, ..., N$$

$$0 < \sum_{k=1}^{N} \mu_{ik} < N, \ i = 1, ..., C$$

 $m \in (1, \infty)$ is the fuzziness parameter

membership degree

total membership

no cluster empty

Fuzzy c-means algorithm

- Initialize V or U
- Repeat

epeat

1. Compute cluster centers
$$\mathbf{v}_i = \frac{\sum_{k=1}^{N} \mu_{ik}^m \mathbf{x}_k}{\sum_{k=1}^{N} \mu_{ik}^m}$$
Assumes partition matrix is fixed

- 2. Calculate distances $d_{ik}^2 = (\mathbf{x}_k \mathbf{v}_i)^T (\mathbf{x}_k \mathbf{v}_i)$
- Update partition matrix $\mu_{ik} = \frac{1}{\sum_{i=1}^{C} (d_{ik}^2 / d_{jk}^2)^{1/(m-1)}}$ Assumes cluster centers are fixed
- Until $\|\Delta \mathbf{U}\| < \varepsilon$ Other stopping criteria are possible

Fuzzy c-means example

Fuzzy c-means example

Distance measures

• Euclidian norm:

$$d^{2}(\mathbf{x}_{k},\mathbf{v}_{i}) = (\mathbf{x}_{k} - \mathbf{v}_{i})^{T}(\mathbf{x}_{k} - \mathbf{v}_{i})$$

• Inner-product norm:

$$d^{2}(\mathbf{x}_{k}, \mathbf{v}_{i}) = (\mathbf{x}_{k} - \mathbf{v}_{i})^{T} \mathbf{A} (\mathbf{x}_{k} - \mathbf{v}_{i})$$

$$\mathbf{A} \text{ is diagonal}$$

• Mahalanobis norm:

$$d^{2}(\mathbf{x}_{k}, \mathbf{v}_{i}) = (\mathbf{x}_{k} - \mathbf{v}_{i})^{T} \mathbf{F}_{i}^{-1} (\mathbf{x}_{k} - \mathbf{v}_{i})$$

Rotated clusters

Gustafson-Kessel clustering

Uses an adaptive distance metric

$$d^{2}(\mathbf{x}_{k} - \mathbf{v}_{i}) = (\mathbf{x}_{k} - \mathbf{v}_{i})^{T} \mathbf{A}_{i} (\mathbf{x}_{k} - \mathbf{v}_{i})$$
$$\mathbf{A}_{i} = |\mathbf{F}_{i}|^{1/n} \mathbf{F}_{i}^{-1}$$

Fuzzy covariance matrix

$$\mathbf{F}_{i} = \frac{\sum_{k=1}^{N} (\mu_{ik})^{m} (\mathbf{x}_{k} - \mathbf{v}_{i}) (\mathbf{x}_{k} - \mathbf{v}_{i})^{T}}{\sum_{k=1}^{N} (\mu_{ik})^{m}}$$

- Clusters are constrained by volume
- Clusters adapt themselves to the shape and location of data

GK algorithm

- Repeat

epeat

1. Compute cluster centers
$$\mathbf{v}_i = \frac{\sum_{k=1}^N \mu_{ik}^m \mathbf{x}_k}{\sum_{k=1}^N \mu_{ik}^m}$$
Assumes partition matrix is fixed

Calculate covariance matrices and distances

$$d_{ik}^{2} = \left| \mathbf{F}_{i} \right|^{1/n} (\mathbf{X}_{k} - \mathbf{V}_{i})^{T} \mathbf{F}_{i}^{-1} (\mathbf{X}_{k} - \mathbf{V}_{i}) \quad \mathbf{F}_{i} = \frac{\sum_{k=1}^{N} (\mu_{ik})^{m} (\mathbf{X}_{k} - \mathbf{V}_{i}) (\mathbf{X}_{k} - \mathbf{V}_{i})^{T}}{\sum_{k=1}^{N} (\mu_{ik})^{m}}$$

Update partition matrix

$$\mu_{ik} = \frac{1}{\sum_{j=1}^{C} (d_{ik}^2 / d_{jk}^2)^{1/(m-1)}}$$
 Assumes cluster centers are fixed

Until

 $\|\Delta \mathbf{U}\| < \varepsilon$ Other stopping criteria are possible

GK algorithm example

GK algorithm example

Mountain clustering

Algorithm:

- Lay a grid (any type) on the data space
- Compute mountain functions (measure of data density)

$$f(\mathbf{v}_i) = \sum_{k=1}^{N} e^{\left(-\frac{d^2(\mathbf{x}_k - \mathbf{v}_i)}{2\sigma^2}\right)}$$

• Sequentially destroy mountain function after selecting grid point with highest value $C = \frac{d^2(\mathbf{v}_i - \mathbf{v}_j)}{2}$

lue
$$f^{(C)}(\mathbf{v}_i) = f(\mathbf{v}_i) - \sum_{j=1}^{C} f^{(j)}(\mathbf{v}_j) e^{\left(-\frac{d^2(\mathbf{v}_i - \mathbf{v}_j)}{2\beta^2}\right)}$$

Mountain construction

Mountain destruction

Subtractive clustering

- Mountain clustering with four variables and 10 grid lines results in 10⁴ grid points to be evaluated.
- In **subtractive clustering**, the grid consists of the data points themselves.
- Computational complexity independent of the dimension of the data vectors
- Rule of thumb: β = 1.5 σ

Effect of probabilistic constraint

Probabilistic constraint:

$$\sum_{i=1}^{C} \mu_{ik} = 1, \quad k = 1, \dots, N$$

- Problematic if a data point lies far away from all clusters (e.g. outliers)
- Leads to nonconvex clusters

Possibilistic constraint:

$$\sum_{i=1}^{C} \mu_{ik} > 0, \quad k = 1, ..., N$$

Possibilistic clustering

- $m \in (1,\infty)$ is the fuzziness parameter
- η determine the size of the clusters
- suitable values from average inter-cluster distance

$$\eta_{i} = rac{\sum_{k=1}^{N} \mu_{ik}^{m} d_{ik}^{2}}{\sum_{k=1}^{N} \mu_{ik}^{m}}$$

• The optimization problem can now be decomposed into ${\cal C}$ independent optimization problems.

Possibilistic clustering algorithm

Repeat:

peat:
1. Compute cluster centers
$$\mathbf{v}_i = \frac{\sum_{k=1}^N \mu_{ik}^m \mathbf{x}_k}{\sum_{k=1}^N \mu_{ik}^m}$$

Calculate distances
$$d_{ik}^2 = (\mathbf{x}_k - \mathbf{v}_i)^T \mathbf{A} (\mathbf{x}_k - \mathbf{v}_i)$$

$$\mu_{ik} = \frac{1}{1 + \left(\frac{d_{ik}^2}{\eta_i^2}\right)^{\frac{1}{m-1}}}$$

Update partition matrix $\mu_{ik} = \frac{1}{1 + \left(\frac{d_{ik}^2}{\eta_i^2}\right)^{\frac{1}{m-1}}}$ Membership value does not depend on the membership of other clusters

 $\|\Delta \mathbf{U}\| < \varepsilon$ Until

Effect of fuzziness index

- As m increases, clusters overlap more; $\stackrel{\circ}{=}$...
 their centres become more isolated
- As *m* decreases, clusters overlap less; they become crisp
- Often m=2 is selected

Issues in fuzzy clustering

- Normalization
- Initialization
- Cluster volumes
- Number of clusters
- Cluster convexity
- Selection of parameters (e.g. fuzziness m)
- Categorical variables
- Outliers
- Missing values

Normalization

- **➤** How to compare measurements on different scales?
- Data box normalization

$$x'_{jl} = \frac{x_{jl} - \min_{j} x_{jl}}{\max_{j} x_{jl} - \min_{j} x_{jl}}, \ j = 1, ..., N \text{ and } l = 1, ..., n$$

Standard deviation normalization

$$x'_{jl} = \frac{x_{jl} - x_l}{\sigma_l}, j = 1,...,N \text{ and } l = 1,...,n$$

 Adaptive distance metrics as in Gustafson-Kessel clustering are less sensitive to normalization

Initialization

How to avoid local minima during the optimization?

- Randomly select a set of cluster prototypes V
- ullet Randomly select a set of data points as cluster centers ${f V}$
- ullet Randomly initialize the partition matrix ${f U}$
- Use information (e.g. cluster center locations) from a separate clustering step
- Initialize centers far away from data

Cluster volumes

How large should clusters be?

- Extent of clusters
- Data density and distribution
- Size of cluster prototypes
- Cluster volume can be a parameter in

Gustafson-Kessel clustering

FCM cluster centres

Cluster validity

- How good are the clustering results?
 - Correct number of clusters?
 - Well-separated clusters?
 - Compact clusters?
- Cluster validity measures try to quantify the answers to these questions in a formula
- Optimal number of clusters at a local minimum of the validity measure

Validity measures

Gath and Geva index

$$S_G = \sum_{i=1}^C \sqrt{\frac{\left|\sum_{k=1}^N (\mu_{ik})^m (\mathbf{x}_k - \mathbf{v}_i) (\mathbf{x}_k - \mathbf{v}_i)^T\right|}{\sum_{k=1}^N (\mu_{ik})^m}} + \beta C$$

Xie-Beni index

$$S_X = \frac{\sum_{i=1}^{C} \sum_{k=1}^{N} \boldsymbol{\mu}_{ik}^m d^2(\mathbf{x}_k, \mathbf{v}_i)}{N\left(\min_{i,j, i \neq j} d^2(\mathbf{v}_i - \mathbf{v}_j)\right)}$$

Validity measures - example

Validity (Gath and Geva)

Local Models (Gustafson-Kessel)

Clusters

CLUSTERING FOR IDENTIFICATION

Modeling based on clustering

- 1. Determine relevant input and output variables/features and collect data
- 2. Select model structure (Mamdani, Takagi-Sugeno,...)
- 3. Select number of clusters and clustering algorithm
- 4. Cluster the data
- 5. Obtain antecedent membership functions (MF)
- 6. Obtain consequents (MF or parameters)
- 7. Simplify the model, if necessary
- 8. Validate the model

Linguistic models fr. clustering

$$R_i$$
: If x is A_i then y is B_i , $i = 1, 2, ..., K$

- Use fuzzy *c*-means algorithm.
- Cluster data in input—output product space.
- Membership functions obtained by:
 - projection onto variables,
 - membership function parameterization.
- One rule per cluster

Membership functions

 After clustering, MFs are obtained by projections of partition matrix values.

Example of linguistic model

- **If** *income* is **Low then** *tax* is **Low**
- If income is High then tax is High

Data for clustering

• Inputs and output:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \quad \mathbf{Z} = \begin{bmatrix} \mathbf{X} & \mathbf{y} \end{bmatrix}$$

Example of data: what is the structure of the model?

$$\mathbf{Z} = \begin{bmatrix} y_1(2) & y_2(2) & y_2(1) & u_1(2) & y_1(3) \\ y_1(3) & y_2(3) & y_2(2) & u_1(3) & y_1(4) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_1(N-1) & y_2(N-1) & y_2(N-2) & u_1(N-1) & y_1(N) \end{bmatrix}$$

$$y_1(k+1) = f(y_1(k), y_2(k), y_2(k-1), u_1(k))$$

TS models from clustering

$$R_i$$
: If **x** is A_i then $y_i = f_i(\mathbf{x}), i = 1, 2, ..., K$

- Takagi-Sugeno order zero: $y_i = b_i$
- Takagi-Sugeno order one: $y_i = a_i^T \mathbf{x} + b_i$
- Degree of fulfillment $\beta_i \triangleq \mu_{A_i}(\mathbf{x})$
- Model output given by the weighted fuzzy-mean:

$$y = \sum_{k=1}^{K} \gamma_k y_k$$
, with $\gamma_k = \frac{\beta_k}{\sum_{j=1}^{K} \beta_j}$ (normalized β_k)

TS models from clustering

- Use fuzzy clustering algorithm (one rule per cluster)
- Cluster data in input—output product space
- Project clusters onto input variables and fit parametric membership functions to projected clusters
- Estimate consequent parameters

Matrix notation

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \qquad \mathbf{W}^k = \begin{bmatrix} \gamma_{k1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \gamma_{kN} \end{bmatrix}$$

- Consequent parameters:
 - TS order zero: $\theta_k = [b_k], k = 1,..., K$
 - TS order one: $\theta_k = \begin{bmatrix} a_k^T & b_k \end{bmatrix}$
- Extended regression matrix

$$\mathbf{X}_e = \begin{bmatrix} \mathbf{X} & \mathbf{1} \end{bmatrix}$$

Estimation of consequents

Global least squares:

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \mathbf{X}_e & \mathbf{W}_2 \mathbf{X}_e & \cdots & \mathbf{W}_K \mathbf{X}_e \end{bmatrix}$$
$$\mathbf{\theta} = \begin{bmatrix} \theta_1^T & \theta_2^T & \cdots & \theta_K^T \end{bmatrix}$$

• Resulting least squares problem:
$$y = W\theta$$

- Solution: $\mathbf{\theta} = \left(\mathbf{W}^T \mathbf{W}\right)^{-1} \mathbf{W}^T \mathbf{y}$
- Solution of local least squares:

$$\theta_k = \left(\left(\mathbf{X}_e \right)^T \mathbf{W}_k \mathbf{X}_e \right)^{-1} \left(\mathbf{X}_e \right)^T \mathbf{W}_k \mathbf{y}$$

Example: TS order one

Consequents can approximate local linear models of the

system

Example: TS model

Example: TS order zero

Example: pressure control

$$\frac{dP}{dt} = \frac{1000RT}{22.4V_h} \left[\Phi_g - (\pi R_H^2) \sqrt{\frac{2P_0}{\rho_0 K_f} \ln\left(\frac{P}{P_0}\right)} \right]$$

Fermenter: parameters

- R gas constant (8.134 J mol $^{-1}$ K $^{-1}$)
- *T* temperature (305 K)
- V_h gas volume (0.015 m³)
- Φ_g gas flow-rate (3.75×10 $^{-4}$ m 3 s $^{-1}$)
- R_H radius of the outlet pipe (0.0178 m)
- P_0 reference pressure (1.013 ×10⁵ N m⁻²)
- ρ_0 outside air density (1.2 Kg m⁻³)
- P pressure in the tank (N m⁻²)
- K_f valve friction factor (J mol⁻¹)

Takagi-Sugeno fuzzy model

- 1. If y(k) is LOW and u(k) is OPEN then y(k+1) = 0.67y(k) + 0.0007u(k) + 0.35
- 2. **If** y(k) is MEDIUM **and** u(k) is HALF CLOSED **then** y(k+1) = 0.80y(k) + 0.0028u(k) + 0.07
- 3. If y(k) is HIGH and u(k) is CLOSED then y(k+1) = 0.90y(k) + 0.0071u(k) - 0.39

Validation

Example: 3-D representation

Interpretability in fuzzy models

- Interpretability is not obtained automatically
 - Knowledge acquisition ensures transparency.
 - Based on data: some redundancy is unavoidable.
- Redundancy manifests itself in two ways:
 - High number of rules. Trade-off between:
 - model accuracy / model complexity
 - > generalization capability / approximating data
 - Very similar fuzzy sets
 - similarity between fuzzy sets
 - > similarity to the universal fuzzy set

Redundancy in fuzzy models

- High number of rules
- Overlapping similar fuzzy sets
 - Unnecessary complexity
 - Difficult to assign linguistic labels
 - Less transparency and generality

Redundancy in fuzzy clustering

- Number of clusters
- Projection of clusters onto antecedent variables

Methods to solve redundancy

Cluster merging

- Method to determine the 'best' number of clusters
- Merge clusters that are compatible
- Cluster again and continue merging until there are no compatible clusters

Similarity based simplification

- Merge similar antecedent fuzzy sets
- Remove sets similar to universal set
- Combine / merge similar consequents
- Combine rules with equal antecedents

Cluster merging

- Select number of clusters larger than needed and do clustering
- Merge clusters that are compatible
- Cluster again and continue merging until there are no compatible clusters
- Cluster compatibility measured by
 - Compatibility criteria
 How close are clusters?
 How similar are their characteristics? Etc.
 - Similarity measures

Compatible cluster merging

• Select K number of clusters larger than needed.

Repeat

- 1. Perform clustering
- 2. Evaluate compatibility criteria:

$$\left| \phi_{ip'} \cdot \phi_{jp'} \right| \ge k_1, \ k_1 \text{ close to } 1$$

 $\left\| \mathbf{v}_i - \mathbf{v}_i \right\| \le k_2, \ k_2 \text{ close to } 0$

Compatible cluster merging

3. Compute parallelism and closeness μ_{ij}^1 and μ_{ij}^2

4. Compute compatibility s_{ij}

$$S_{ij} = \left(\frac{\left(\mu_{ij}^1\right)^{\gamma} + \left(\mu_{ij}^2\right)^{\gamma}}{2}\right)^{1/\gamma}$$

Compatible cluster merging

- 5. Compute transitive closure of compatibility matrix S and threshold with s^* .
- 6. Merge clusters if

$$\min_{\substack{\mathbf{v}_i \in M \\ \mathbf{v}_k \notin M}} \max_{d_{ik}} > \max_{\mathbf{v}_i, \mathbf{v}_j \in M} d_{ij}$$

Until no clusters can be merged

Example

Initial (10 clusters)

After CCM (6 clusters)

Example

Similarity based simplification

Reduce redundancy in rule and term set

- Merge similar antecedent fuzzy sets
 - create generalized concepts
 - reduce the number of terms
- Remove sets similar to universal set (always fires)
 - reduce number of terms
- Combine/merge similar consequents
 - reduce the number of consequent values
- Combine rules with equal antecedents
 - reduce number of rules

Similarity measures

Similarity measure:

$$S(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Merging of similar sets

- Gives generalizing term
- Merging by aggregating the parameters of the individual sets

Simplification and reduction and reduction then y is ...

Example: algae growth

- Prediction of chlorophyll-a concentration in lake ecosystems.
- 998 observations from nine different lakes.
- Inputs: temperature, N,P,Si, day length, light intensity
- Output: chlorophyll-a concentration
- Takagi-Sugeno model:

If
$$T$$
 is A_T , N is A_N , P is A_P , Si is A_{Si} , D is A_D and I is A_I
then $Chl = p_0 + p_1T + p_2N + p_3P + p_4Si + p_5D + p_6I$

• Method: fuzzy clustering and similarity analysis

Initial rule base

• Seven rules with a total of 42 fuzzy sets; Difficult to assign linguistic labels, inspection is virtually impossible

Simplified rule base

