Лабораторная работа 5, ТВМС

Бочарников Андрей, M3238 Ковешников Глеб, M3238 Шишкин Алексей, M3238

4 мая 2020 г.

Формулировка

Для трёх распределений $X \sim N(\alpha, \sigma^2), \ X \sim U(\alpha - \delta/2, \alpha + \delta/2)$ и распределения Лапласа, сравнить следующие оценки параметра a:

1.

2.

3.

!! Сравнивать оценки нужно с точки зрения квадратичного риска. сравнить их выборочные среднеквадратичные отклонения. Сравнить с теоретическими среднеквадратичными отклонениями.

Входные данные

- Объем выборки: $n_1 = 100, n_2 = 10000$
- \bullet $\alpha = 1$
- ?? Параметры нормального распределения:
- ?? Параметры равномерного распределения:
- ?? Параметры распределения Лапласа:

Программа 1

Нормальное распределение.

3.1 Исходный код

```
pkg load statistics

function count_risks(a, sigma, m, n)
    C1 = 0.4;
    X = sort(normrnd(a, sigma, n, m));
    med = median(X);

std1_practical = std(mean(X))
    std1_theoretical = sigma / sqrt(n)

std2 = std(med)
    std2_theoretical = sqrt(pi) * sigma / sqrt(2 * n)

std3 = std((X(1, :) + X(n, :)) / 2)
    std3_theoretical = sqrt(C1) * sigma / sqrt(log(n))
    printf('\n');
endfunction

count_risks(1, 3, 100, 1000);
count_risks(1, 3, 100, 10000);
```

3.2 Выходные данные

$X \sim N(\alpha, \sigma^2), n = 100, m = 100$	$\overline{X_n}$	med_n	$(x_1 + x_n)/2$
σ - теоретическое	0.3	0.37599	0.88416
σ - практическое	0.26937	0.36922	0.87298

$X \sim N(\alpha, \sigma^2), n = 10000, m = 100$	$\overline{X_n}$	med_n	$(x_1 + x_n)/2$
σ - теоретическое	0.03	0.037599	0.62519
σ - практическое	0.028409	0.038104	0.64255

Программа 2

Равномерное распределение.

4.1 Исходный код

```
pkg load statistics

function count_risks(a, delta, m, n)
    X = sort(unifrnd(a - delta / 2, a + delta / 2, n, m));
    med = median(X);

std1_practical = std(mean(X))
    std1_theoretical = delta / sqrt(12 * n)

std2_practical = std(med)
    std2_theoretical = delta / sqrt(4 * n)

std3_practical = std((X(1, :) + X(n, :)) / 2)
    std3_theoretical = delta / (sqrt(2) * n)
    printf('\n');
endfunction

count_risks(1, 10, 100, 1000);
count_risks(1, 10, 100, 10000);
```

4.2 Выходные данные

$X \sim U(\alpha - \delta/2, \alpha + \delta/2), n = 100, m = 100$	$\overline{X_n}$	med_n	$(x_1 + x_n)/2$
σ - теоретическое	0.28868	0.5	0.70711
σ - практическое	0.29632	0.47087	0.58035

$X \sim U(\alpha - \delta/2, \alpha + \delta/2), n = 10000, m = 100$	$\overline{X_n}$	med_n	$(x_1 + x_n)/2$
σ - теоретическое	0.028868	0.5	7.0711e-04
σ - практическое	0.027724	0.46644	7.4985e-04

Программа 3

Распределение Лапласа.

5.1 Исходный код

```
pkg load statistics
function count_risks(a, u, m, n)
    C2 = 0.9;
    X = sort(a + exprnd(u, n, m) - exprnd(u, n, m));
    med = median(X);

std1_practical = std(mean(X))
    std1_theoretical = sqrt(2) * u / sqrt(n)

std2_practical = std(med)
    std2_theoretical = u / sqrt(n)

std3_practical = std((X(1, :) + X(n, :)) / 2)
    std3_theoretical = sqrt(C2) * u
    printf('\n');
endfunction

count_risks(1, 10, 100, 100);
count_risks(1, 10, 100, 10000);
```

5.2 Выходные данные

$L(\alpha, u), n = 100, m = 100$	$\overline{X_n}$	med_n	$(x_1 + x_n)/2$
σ - теоретическое	1.4142	1	9.4868
σ - практическое	1.4465	1.0921	7.8678

$L(\alpha, u), n = 10000, m = 100$	$\overline{X_n}$	med_n	$(x_1 + x_n)/2$
σ - теоретическое	0.14142	0.1	9.4868
σ - практическое	0.11838	0.094565	9.7563

Вывод

Для нормального распределения минимальный квадратичный риск получается при оценке параметра α выборочным средним. Для равномерного минимаксом. Для двойного показательного медианой. Все практические значения получаются того же порядка что и теоретические.