Підготовка даних до аналізу

Мета

Ознайомитись з методикою первинної обробки даних. Після завершення цієї лабораторної роботи ви зможете:

- Досліджувати структуру завантажених даних
- Виправляти формати даних
- Знаходити та заповнювати пропуски в даних
- Знаходити викиди та некоректні значення
- Будувати прості візуалізації

Завдання, що оцінюються

- 1. Скачати дані із файлу <u>'Data2.csv'</u>. Записати дані у dataframe. Дослідити структуру ланих
- 2. Виправити помилки в даних.
- 3. Заповнити пропуски.
- 4. Додати стовпчик із щільністю населення.
- 5. Побудувати діаграми розмаху та гістограми.

V

Завдання #1:

Дослідити структуру даних

Зчитую дані з файлу у датафрейм

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання %pip install pandas import pandas as pd

DATASET = 'Data2.csv'
df = pd.read_csv(DATASET, sep=';', encoding='cp1252')
```

Defaulting to user installation because normal site-packages is not writeable Collecting pandas

Using cached pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl (11.3 MB)
Requirement already satisfied: tzdata>=2022.7 in /Users/saszco/Library/Python,
Requirement already satisfied: pytz>=2020.1 in /Users/saszco/Library/Python/3
Requirement already satisfied: python-dateutil>=2.8.2 in /Users/saszco/Library
Requirement already satisfied: numpy>=1.22.4 in /Users/saszco/Library/Python/3
Requirement already satisfied: six>=1.5 in /Applications/Xcode.app/Contents/Destabling collected packages: pandas
Successfully installed pandas-2.2.3

WARNING: You are using pip version 21.2.4; however, version 25.0.1 is available You should consider upgrading via the '/Applications/Xcode.app/Contents/Development Note: you may need to restart the kernel to use updated packages.

▶ Натисніть тут, щоб побачити підказку

Досліджую структуру даних

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
pd.set option('display.max rows', None);
#let's look at heading (column's name)
print(df.columns)
#looking at all data
df.info
#there is only one column - "Population"
df.describe()
#Look at all info about every column, not only "Population"
#For this use include="all"
df.describe(include="all")
#We have missing values alredy marked as NaN
#Let's check the data types of columns
df.dtypes
#As we discovered that columns which have the numbers should have the float datat
#let's check if we have not data with '-' symbol, as all numbers should be positi
negative_check = df.applymap(lambda x: str(x).strip().startswith("-") if pd.notna
print(negative_check.any())
#We have a '-' symbol in column "Area"
#So let's check wich column has empty data
empty counts = (df.isna() | (df == "")).sum()
print(empty_counts[empty_counts > 0])
missing data = df.isnull()
missing_data.head() #True - value is empty
```

for column in missing_data.columns.values.tolist():

```
print(column)
   print(missing_data[column].value_counts())
   print("")
#GDP per capita, Population and Area columns have empty values
dtype='object')
    Series([], dtype: int64)
    Country Name
    Country Name
    False
            217
    Name: count, dtype: int64
    Region
    Region
    False
            217
    Name: count, dtype: int64
    GDP per capita
    GDP per capita
            217
    False
    Name: count, dtype: int64
    Population
    Population
    False
            217
    Name: count, dtype: int64
    CO2 emission
    CO2 emission
    False
            217
    Name: count, dtype: int64
    Area
    Area
    False
            217
    Name: count, dtype: int64
    Population Density
    Population Density
    False
            217
    Name: count, dtype: int64
```

Бачу наступні проблеми в даних:

- 1. Некоректні назви стовпчика "Populatiion". Повинно бути "Population"
- 2. В стовпчиках GDP per capita, CO2 emission, Area значення відокремлюються комою. Числові значення повинні відокремлюватись крапкою
- 3. Такі стовпці як GDP per capita, CO2 emission, Area мають тип object. Натомість потрібно встановити тип значення float, оскільки дані, що містять ці стовпці є числовими.
- 4. Стовпець "Агеа" має негативні значення.

5. У стовпчиках "GDP per capita", "Populatiion", "Area" є пусті поля.

Завдання #2:

Виправити помилки в даних

Проблема 1.

Для виправлення зміню назву "Populatiion" на коректну "Population"

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання df.rename(columns={"Population": "Population"}, inplace=True) print(df.columns)
```

Проблема 2.

Для виправлення заміню знак "кома" на знак "крапка" у стовпчиках GDP per capita та CO2 emission

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання columns_to_add_dots = ["GDP per capita", "CO2 emission", "Area"]
```

df[columns_to_add_dots] = df[columns_to_add_dots].apply(lambda x: x.str.replace("
print(df[columns_to_add_dots].head())

\rightarrow		GDP per capita	CO2 emission	Area
	0	561.7787463	9809.225	652860
	1	4124.98239	5716.853	28750
	2	3916.881571	145400.217	2381740
	3	11834.74523	NaN	200
	4	36988.62203	462.042	470

Проблема 3.

Для виправлення зміню типи даних стовпців GDP per capita, CO2 emission, Area тип даних на float

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання columns_to_convert = ["GDP per capita", "CO2 emission", "Area"] df[columns_to_convert] = df[columns_to_convert].astype(float) print(df.dtypes)
```

```
Country Name object
Region object
GDP per capita float64
Population float64
CO2 emission float64
Area float64
dtype: object
```

Проблема 4.

Для виправлення приберу знак "-" у стопчику Area та GDP per capita

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
df["Area"] = df["Area"].abs()
print(df["Area"].head())
df['GDP per capita'] = df['GDP per capita'].abs()
negative_count = (df['Area'] < 0).sum()</pre>
positive_count = (df['Area'] >= 0).sum()
print(negative count, positive count)
    0
          652860.0
    1
            28750.0
    2
         2381740.0
    3
              200.0
              470.0
    Name: Area, dtype: float64
    0 217
```

V

Завдання #3:

Заповнити пропуски

Заповнювати пропуски для ознаки "GDP per capita" буду середнім значенням, тому що у нас лише не велика частина даних в комірках відсутня, тому ми не можемо собі дозволити на стільки радикальну дію. Те ж саме стосується стовпчика Population, де у нас лише одне пусте значення - тому ми теж замінимо його середнім. І аналогічно зі стопцем CO2 emission, який містить 12 пустих комірок, тому ми теж замінимо на середнє значення.

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання import numpy as np

avg_population = round(df['Population'].astype('float').mean())
print("Average value of population: ", avg_population)
```

```
avg_gdp = df['GDP per capita'].astype('float').mean(axis=0)
print("Average value of GDP per capita: ", avg_gdp)
avg_emission = df['CO2 emission'].astype('float').mean(axis=0)
print("Average value of CO2 emission: ", avg_emission)
df['Population'] = df['Population'].fillna(avg population)
df['GDP per capita'] = df['GDP per capita'].fillna(avg_gdp)
df['C02 emission'] = df['C02 emission'].fillna(avg emission)
Average value of population:
                                   34322560
    Average value of GDP per capita: 13445.593416057369
    Average value of CO2 emission: 165114.1163365854
Досліджую структуру даних, чи всі пропуски заповнено
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
for column in missing data.columns.values.tolist():
   print(column)
   print(missing data[column].value counts())
   print("")

→ Country Name

    Country Name
    False
             217
    Name: count, dtype: int64
    Region
    Region
    False
             217
    Name: count, dtype: int64
    GDP per capita
    GDP per capita
             217
    False
    Name: count, dtype: int64
    Population
    Population
    False
             217
    Name: count, dtype: int64
    CO2 emission
    CO2 emission
    False
             217
    Name: count, dtype: int64
    Area
    Area
    False
             217
    Name: count, dtype: int64
```

Завдання #4:

Додати стовпчик із щільністю населення

Щільність населення розрахую по формулі такій-то і додам у стовпчик такий-то.

Напишіть ваш код нижче та натисніть Shift+Enter для виконання df['Population Density'] = df['Population'] / df['Area'].replace(0, np.nan) print(df["Population Density"])

→ 0	53.083405
1	100.038296
2	17.048902
3	277.995000
4	164.427660
5	23.111786
6	229.461364
7	15.770188
8	98.346200
9	582.344444
10	3.116713
11	104.285435
12	112.728337
13	28.186744
14	1848.470817
15	1103.783513
16	662.781395
17	45.795376
18	371.705175
19	15.975359
20	94.739439
21	1306.620000
22	20.778377
23	9.910869
24	68.674400
25	3.868221
26	24.384508
27	204.406667
28	73.344194
29	64.214613
30	67.998078
31	378.157276
32	133.885856
33	87.065676
34	49.299994
35	3.634214
36	230.170455
37	7.375230
38	11.255875
39	866.005263
40	23.687143
40 41	144.167921
41 42	42.613060
42 43	42,613060
43 44	
	33.578189
45	14.987781

```
95.054286
47
          73.484832
          73.698533
48
49
         104,441045
50
         360.358108
51
         126.500000
52
         133.911918
53
         133.524020
54
          40.617802
55
          98.057333
         218.795788
56
```

Завдання #5:

Побудувати діаграми розмаху та гістограми

Для побудови графіків скористайтесь бібліотекою Matplotlib. Спробуйте погратись з кольорами, розмірами та підписами.

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 5, figsize=(16, 16))
fig.suptitle('Діаграми розмаху', fontsize=16)
for ax in axs:
    ax.grid(True, linestyle="--", alpha=0.6)
axs[0].set_facecolor('#f0f0f0')
axs[1].set_facecolor('#ffebcd')
axs[2].set_facecolor('#e6e6fa')
axs[3].set_facecolor('#dff0d8')
axs[4].set_facecolor('#c4d9ff')
axs[0].set_title('GDP per capita')
axs[0].boxplot(df['GDP per capita'])
axs[1].set_title('Population')
axs[1].boxplot(df['Population'])
axs[2].set_title('CO2 emission')
axs[2].boxplot(df['CO2 emission'])
axs[3].set_title('Area')
axs[3].boxplot(df['Area'])
axs[4].set_title('Population Density')
axs[4].boxplot(df['Population Density'])
```

```
plt.show()

#2nd
region_co2 = df.groupby('Region')['C02 emission'].sum()
plt.figure(figsize=(16, 8))
plt.bar(region_co2.index, region_co2.values, color='skyblue', edgecolor='black')

plt.title("Сумарні викиди C02 по perioнax")
plt.xlabel("Регіон")
plt.ylabel("Викиди C02")
plt.xticks(rotation=30)
plt.grid(axis='y', linestyle="--", alpha=0.6)
```


Діаграми розмаху

▶ Натисніть тут, щоб побачити підказку

V

Додаткове завдання:

Дайте відповіді на питання

- 1. Яка країна має найбільший ВВП на людину (GDP per capita)?
- 2. Яка країна має найменшу площу?
- 3. Знайдіть країну з найбільшою щільністю населення у світі? У Європі та центральній Азії?
- 4. Покажіть топ 5 країн та 5 останніх країн по ВВП на людину.
- ▶ Натисніть тут, щоб побачити підказку

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
max_gdp_country = df.loc[df['GDP per capita'].idxmax(), 'Country Name']
max_gdp = df['GDP per capita'].max()
print(f"Country with the highest GDP per capita: {max_gdp_country} ({max_gdp})")

min_area_country = df.loc[df['Area'].idxmin(), 'Country Name']
min_area = df['Area'].min()
print(f'Country with the smallest area: {min_area_country} ({min_area})')

max_density_country = df.loc[df['Population Density'].idxmax(), ['Country Name',
df_europe_asia = df[df['Region'] == 'Europe & Central Asia']
max_density_europe_asia = df_europe_asia.loc[df_europe_asia['Population Density']
print(f"Country with the highest population density in world: {max_density_countr
print(f"Country with the highest population density in Europe and Central Asia: {
```