Instructor(s): Panagiotis E. Souganidis

Agustín Esteva aesteva@uchicago.edu Due Date: March 27, 2025

Problem 1

Define

$$c_0 := \{(a_n) \in \ell^{\infty} : a_n \to 0\}$$

Show that $c_0^* = \ell^1$.

SOLUTION: Let $x \in c_0$. We represent x via a Schauder basis:

$$x = \sum_{n=1}^{\infty} x_n e_n,$$

where $e_n = \delta_{ni}$ (kronecker-delta) and $x_n \in \mathbb{R}$. Evidently, this representation is unique for each x. Thus, we have that for any $f \in c_0^*$,

$$\langle f, x \rangle = \langle f, \sum_{n=1}^{\infty} x_n e_n \rangle = \sum_{n=1}^{\infty} x_n f(e_n).$$

We define $f(e_n) = a_n$. Thus,

$$f(x) = \sum_{n=1}^{\infty} x_n a_n.$$

Uniqueness comes from the uniqueness of the Schauder basis. We note that

$$|f(x)| \le ||f||_{c_0^*} ||x||_{\infty} \tag{1}$$

We will next show that $(a_n) \in \ell^1$. Define

$$x_i = \begin{cases} sign(a_n), & n \le N \\ 0, & n > N \end{cases}.$$

Evidently, $x \in c_0$ with $||x||_{\infty} = 1$ We use (1) and see that

$$\sum_{n=1}^{N} |a_n| = |f(x)| = \left| \sum_{n=1}^{\infty} x_n a_n \right| \le ||f||_{c_0^*} ||x||_{\infty} = ||f||_{c_0^*}$$
 (2)

Thus, because $f \in c_0^*$ then $||f|| < \infty$ and because $x \in c_0$. Thus, because (2) holds for any N, we see that $a \in \ell^1$. To see that $f \to a$ is an isometry, we need to show that $||f||_{c_0^*} = ||a||_1$. We use Hölder's inequality for one side:

$$|f(x)| = \sum_{n=1}^{\infty} x_n a_n \le ||x||_{\infty} ||a||_1 \implies \sup_{||x||_{\infty} = 1} |f(x)| = ||f||_{c_0^*} \le ||a||_1.$$

We use (2) to directly show that $||a||_1 \le ||f||_{c_0^*}$.

Finally, we see that f is bounded. f linear is obvious from the definition.

Show that $(\ell^1)^* = \ell^{\infty}$.

Solution: Let $x \in \ell^1$. We represent x via a Schauder basis:

$$x = \sum_{n=1}^{\infty} x_n e_n$$

as in the problem above. Thus, for any $f \in (\ell^1)^*$:

$$\langle f, x \rangle = \langle f, \sum_{n=1}^{\infty} x_n e_n \rangle = \sum_{n=1}^{\infty} x_n f(e_n).$$

We define $f(e_n) = a_n$. Thus,

$$f(x) = \sum_{n=1}^{\infty} x_n a_n.$$

Uniqueness comes from the uniqueness of the Schauder basis. We note that

$$|f(x)| \le ||f||_{c_0^*} ||x||_1$$

To show that $a = (a_n) \in \ell^{\infty}$, simply notice that

$$|a_n| = |f(e_n)| \le ||f|| ||e_n||_1 = ||f|| \implies ||a||_{\infty} = \sup_{n} |a_n| \le ||f||$$
 (3)

Thus, $a \in \ell^{\infty}$.

To see that $f \mapsto a$ is an isometry, we use Hölder's inequality:

$$|f(x)| = \left| \sum_{n=1}^{\infty} x_n a_n \right| \le ||x||_1 ||a||_{\infty} \implies ||f|| = \sup_{||x||_1 = 1} |f(x)| \le ||a||_{\infty}.$$

We use (3) to see the other side of the inequality.

Suppose $p \in (1, \infty)$ and $q \in \mathbb{R}$ with $\frac{1}{p} + \frac{1}{q} = 1$. Prove that $(\ell^p)^* = \ell^q$.

SOLUTION: Let $x \in \ell^p$. We represent x via a Schauder basis:

$$x = \sum_{n=1}^{\infty} x_n e_n$$

as in the problem above. Let $f \in (\ell^p)^*$. Then

$$\langle f, x \rangle = \langle f, \sum_{n=1}^{\infty} x_n e_n \rangle = \sum_{n=1}^{\infty} x_n f(e_n).$$

We define $f(e_n) = a_n$. Thus,

$$f(x) = \sum_{n=1}^{\infty} x_n a_n,$$

and so

$$|f(x)| \le ||f|| ||x||_p$$
.

To show that $a \in \ell^q$, we define

$$x_n = \begin{cases} \frac{|a_n|^q}{a_n}, & a_n \neq 0, n \leq N \\ 0, & a_n = 0, n > N \end{cases}$$

Thus, we see that

$$|f(x)| = \left| \sum_{n=1}^{\infty} x_n a_n \right| = \sum_{n=1}^{N} |a_n|^q \le ||f|| ||x||_p = ||f|| \left(\sum_{n=1}^{\infty} |a_n|^{(q-1)p} \right)^{\frac{1}{p}} = ||f|| \left(\sum_{n=1}^{\infty} |a_n|^q \right)^{\frac{1}{p}},$$

and so taking $N \to \infty$ and dividing by the very last term, we see that $a \in \ell^q$ since $||a||_q \le ||f||$. We use Hölder again:

$$|f(x)| \le \sum_{n=1}^{\infty} |x_n| |a_n| \le ||x||_p ||a||_q \implies ||f|| = \sup_{||x||_p = 1} \le ||a||_q.$$

Let C be a convex symmetric subset of a Banach space X. Assume that the linear functional f on X is continuous at 0 when restricted to C. Show that $f|_{C}$ is uniformly continuous.

SOLUTION: Since $f|_C$ is continuous at 0, then for all $\epsilon > 0$, there exists some $\delta > 0$ such that if $v \in C$ with $||v|| < \delta$, then $||f(v)|| < \epsilon$. Take $x, y \in C$ with $||x - y|| < \delta$. Since $y \in C$ and C is symmetric, then $-y \in C$. Take $t = \frac{1}{2}$, then by convexity,

$$g(t) := tx + (1-t)(-y) \implies g(\frac{1}{2}) = \frac{1}{2}x - \frac{1}{2}y = \frac{1}{2}(x-y) \in C.$$

Thus,

$$\|\frac{1}{2}(x-y)\| < \delta \implies \|f(\frac{1}{2}(x-y))\| = \frac{1}{2}\|f(x) - f(y)\| < \epsilon,$$

and so f is uniformly continuous on C.

Let f be a linear functional on a Banach space X. Suppose $f \not\equiv 0$, then the following are equivalent:

- (a) f is continuous.
- (b) f is continuous at 0.
- (c) $f^{-1}(\{0\})$ is closed.

Solution: $(i \mapsto ii)$ is obvious.

(ii \mapsto iii) Let $(x_n) \in f^{-1}(0)$ with $x_n \to x$. We want to show that f(x) = 0. Since f is continuous at 0, then for all $\epsilon > 0$, there exists a $\delta > 0$ such that if $v \in X$ with $||v|| < \delta$, then $||f(v)|| < \epsilon$.

For n large, we have that $||x_n - x|| < \delta$, and thus since $f(x_n) = 0$:

$$||f(x)|| = ||f(x) - f(x_n)|| = ||f(x - x_n)|| < \epsilon,$$

and thus f(x) = 0, and so $x \in f^{-1}(0)$.

(iii \mapsto i) Suppose that for each n, there exists some $x_n \in X$ with $x_n \neq 0$ such that

$$||f(x_n)|| \ge n||x_-n|,$$

that is X is not bounded. Let

$$z_n := x_1 - f(x_1) \frac{x_n}{f(x_n)}.$$

Thus, $f(z_n) = 0$, and so $z_n \in f^{-1}(\{0\})$. Moreover, $z_n \to x_1$ since

$$||z_n - x_1|| = ||x_1 - f(x_1)\frac{x_n}{f(x_n)} - x_1|| = ||f(x_1)\frac{x_n}{f(x_n)}|| = |f(x_1)|\frac{||x_n||}{|f(x_n)|} \le |f(x_1)|\frac{1}{n}$$

Thus, $z_n \to x_1$ but $f(x_1) \ge |x_1| > 0$ and so $x_1 \notin f^{-1}(\{0\})$, and thus $f^{-1}(\{0\})$ is not closed, a contradiction. Thus, f is bounded and so f is continuous.

Suppose X is finite dimensional Banach space and C is a convex subset that is dense in X. Then C = X.

SOLUTION: Suppose not. Then let $x_0 \in C \setminus C$. Since C and $\{x_0\}$ are convex, disjoint, and nonempty, then the finite dimensional Hahn-Banach states that there exists some closed hyperplane $H = [f = \alpha]$ such that

$$f(C) \le \alpha \le f(x_0)$$
.

Let $z_0 = x_0 + \frac{x_0}{f(x_0)} \in X$. Then

$$f(C) \le \alpha \le f(x_0) < f(z_0) = f(x_0) + 1. \tag{4}$$

Let $\epsilon = \frac{f(z_0)}{2}$. By continuity of f, there exists some $\delta > 0$ such that if $||x - z_0|| < \delta$, we have that $||f(x) - f(z_0)|| < \frac{f(z_0)}{2}$. Since C is dense in X, we can find some $c \in C$ with $||c - z_0|| < \delta$, a contradiction to (4).

Suppose $C \subset X$ with X Banach and $f: C \to \mathbb{R}$ Lipshitz. Show that f can be extended to all of X.

Solution: Define $F: X \to \mathbb{R}$ such that

$$F(x) := \inf_{c \in C} [f(c) + L ||x - c||].$$

If $c_0 \in C$, then

$$F(c_0) = \inf_{c \in C} [f(c) + L ||c_0 - c||] \le f(c_0) + L ||c_0 - c_0|| = f(c_0).$$

We also have that for any $c \in C$:

$$f(c_0) - f(c) \le L \|c_0 - c\| \implies f(c_0) \le f(c) + L \|x_0 - c\| \implies f(c_0) \le F(x).$$

We see that $F|_C = f$.

Suppose $x, y \in X$. By definition, for all $\epsilon > 0$, there exists some $c_x \in C$ such that

$$F(x) \ge f(c_x) + L||x - c_x|| - \epsilon.$$

Since $c_x \in C$, then

$$F(y) \le f(c_x) + L||y - c_x||.$$

Using the reverse triangle inequality:

$$F(y) - F(x) \le f(c_x) + L||y - c_x|| - f(c_x) - L||x - c_x|| + \epsilon$$

$$\le L||y - c_x|| - L||c_x - x|| + \epsilon$$

$$\le L||y - x|| + \epsilon$$

Because this is true for all $\epsilon > 0$, we see that $F(y) - F(x) \le L||y - x||$.

For all $\epsilon > 0$, there exists some $c_y \in C$ such that

$$F(y) \ge f(c_y) + L||y - c_y|| - \epsilon.$$

Since $c_y \in C$, we have that

$$F(x) \le f(c_y) + L||x - c_y||.$$

Using the reverse triangle inequality:

$$F(x) - F(y) \le f(c_y) + L||x - c_y|| - [f(c_y) + L||y - c_y|| - \epsilon]$$

$$= f(c_y) + L||x - c_y|| - f(c_y) - L||y - c_y|| + \epsilon$$

$$= L(||x - c_y|| - ||c_y - y||) + \epsilon$$

$$\le L(||x - y||) + \epsilon,$$

and so $F(x) - F(y) \le L||x - y||$. Putting it together, we see that

$$|F(x) - F(y)| \le L||x - y||$$

Let $X = \mathbb{R}^2$ with

$$||x|| = (|x_1|^4 + |x_2|^4)^{\frac{1}{4}}.$$

Calculate directly the dual norm on X^* .

Solution: Let $x \in \mathbb{R}^2$.

$$f(x) = f(x_1e_1 + x_2e_2) = x_1f(e_1) + x_2f(e_2).$$

Thus, using Hölder's inequality:

$$|f(x)| = |x_1 f(e_1) + x_2 f(e_2)|$$

$$\leq |x_1||f(e_1)| + |x_2||f(e_2)|$$

$$\leq (|x_1|^4 + |x_2|^4)^{\frac{1}{4}} (|f(e_1)|^{\frac{4}{3}} + |f(e_2)|^{\frac{4}{3}})^{\frac{3}{4}}.$$

Thus,

$$\sup_{\|x\|=1} |f(x)| \le (|f(e_1)|^{\frac{4}{3}} + |f(e_2)|^{\frac{4}{3}})^{\frac{3}{4}}.$$

Let $x \in \mathbb{R}^2$ with

$$x_n = \begin{cases} \frac{|f_n|^{\frac{4}{3}}}{f_n}, & f_n \neq 0\\ 0, & f_n = 0 \end{cases}$$
.

Thus, we see that

$$|f(x)| = \left| \sum_{n=1}^{2} x_n f_n \right| = \sum_{n=1}^{2} |f_n|^{\frac{4}{3}} \le ||f|| ||x|| = ||f|| \left(\sum_{n=1}^{2} |x_n|^4 \right)^{\frac{1}{4}} = ||f|| \left(\sum_{n=1}^{2} |f_n|^{\frac{4}{3}} \right)^{\frac{1}{4}}.$$

Dividing by the very last term, we see that

$$\left(\sum_{n=1}^{2} |f_n|^{\frac{4}{3}}\right)^{\frac{3}{4}} \le ||f||.$$

Thus,

$$||f|| = \left(\sum_{n=1}^{2} |f_n|^{\frac{4}{3}}\right)^{\frac{3}{4}}$$

Let X, Y be Banach spaces and suppose $T \in \mathcal{L}(X, Y)$. Show the following are equivalent:

- (a) T(X) is closed.
- (b) T is an open mapping from X unto T(X)
- (c) There exists some M > 0 such that for all $y \in T(X)$, there exists some $x \in T^{-1}(y)$ such that $||x||_X \leq M||y||_Y$.

SOLUTION: (i \mapsto ii) Suppose T(X) is closed. Since $T(X) \subset Y$ and Y is Banach, then T(X) is Banach. Thus, T is surjective unto T(X), and so by the open mapping theorem, T is an open map from X unto T(X).

(ii \mapsto iii) Suppose T is an open map from X unto T(X). Thus, there exists some c > 0 such that $B_c^F(0) \subset T(B_E)$. Let $y \in T(X)$. Then $\frac{1}{c}y \in B_c^F(0)$, and so $\frac{1}{c}y \in T(B_E)$. Thus, there exists some $x \in B_E$ such that $T(x) = \frac{1}{c}y$. That is, $x = T^{-1}(\frac{1}{c}y)$. Thus,

$$||x|| = ||T^{-1}\frac{1}{c}y|| \le \frac{1}{c}||T|| ||y||_Y.$$

Let $M = \frac{1}{c} ||T^{-1}||$. It suffices to show that $T^{-1} : T(X) \to Y$ is bounded, but this comes from the fact that $T^{-1}(B_c^F(0)) \subset B_E$.

(iii \mapsto i) Define $\pi: E \to E/\ker T$ to be the canonical surjection. We know that

$$\|\pi x\| = \operatorname{dist}\|x - N(T)\|,$$

and that $T = \tilde{T} \circ \pi$, where $\tilde{T} : E/\ker T \to F$ is a bijection from $E/\ker T$ to R(T) with $R(T) = R(\tilde{T})$ Moreover, $||T|| = ||\tilde{T}||$. Since \tilde{T} is bijective and it is known that $E/\ker T$ is a Banach Space, then $R(\tilde{T}) \subset F$ is closed if and only if $R(\tilde{T})$ is a Banach space if and only if (by a corollary of the open mapping theorem) \tilde{T}^{-1} is continuous if and only if there exists some M > 0 such that for all $y \in R(T)$, we have that

$$\|\tilde{T}^{-1}y\| = \|x\| \le M\|y\|.$$

Without using the open mapping theorem, we have that \tilde{T}^{-1} is continuous since \tilde{T} is an isomorphism. Thus, we see that if $y_n \to y$ with $(y_n) \in T(X)$, then (y_n) is Cauchy and so for large enough n, we get that if $x_n = \tilde{T}^{-1}y_n$

$$||x_n - x_m|| \le M||T(x_n - x_m)|| = M||Tx_n - Tx_m|| = M||y_n - y_m|| < \epsilon,$$

and so $(x_n) \in X$ is Cauchy and thus converges to some x via the completeness of X, and we claim that Tx = y:

$$||Tx - y|| \le ||Tx - Tx_n|| + ||Tx_n - y|| \le ||T|| ||x - x_n|| + ||y_n - y|| < \epsilon.$$

Let X, Y be Banach and suppose $T \in \mathcal{L}(X, Y)$. Show that if T maps closed sets in X unto closed sets on Y, then T(X) is closed in Y.

SOLUTION: By the previous problem, it suffices to show that T is an open mapping from X unto T(X). By class, it suffices to show that there exists some c > 0 such that $B_c^F(0) \subset T(B_E)$. We will show this result for \tilde{T} . That is, $T = \tilde{T} \circ \pi$, where $\tilde{T} : X/\ker T \to Y$ is a bijection from $E/\ker T$ to R(T) with $R(T) = R(\tilde{T})$ Moreover, $||T|| = ||\tilde{T}||$ and \tilde{T} is bijective.

To show that \tilde{T} maps closed sets (in $X/\ker T$ with the norm $\|[x]\|_{X/\ker T} = \operatorname{dist}(x - \ker T)$) to closed sets in Y, let K be closed in $X/\ker T$. Let $(y_n) \in \tilde{T}(K)$ with $y_n \to y$. Since \tilde{T} is bijective, then the inverse exists and is continuous, and thus there exists $(x_n) \in X \setminus \ker T$ such that $x_n = y_n$ and $\|x\| = \|\tilde{T}^{-1}y_n\| \le \|T^{-1}\|\|y_n\| \le C\|y_n\|$. Thus, since (y_n) is Cauchy, then for large n, m:

$$||x_n - x_m|| \le C||y_n - y_m|| < \epsilon,$$

and thus (x_n) is Cauchy. We wish to show that $x_n \to x \in K$, so it suffices to notice that K is closed and $X/\ker T$ is Banach, and thus K is Banach. Of course, it remains to check that $X/\ker T$ is actually Banach:

Let $M \subset X$ be closed and suppose $\pi: X \to X/M$ is the natural surjection. Then let $(\pi(x_n)) \in X/M$ be Cauchy. We can assume by passing unto a subsequence that

$$\|\pi(x_{n_{k+1}}) - \pi(x_{n_k})\|_{X/M} < \frac{1}{2^k}$$

By the definition of the norm, there exists some $(m_{n_k}) \in M$ such that

$$||x_{n_{k+1}} - x_{n_k} - m_{n_k}||_X < \frac{1}{2^k}.$$

Without any issue, we write $m_{n_k} = u_{n_{k+1}} - u_{n_k}$ and $(u_{n_1} = 0)$ to see that $x_{n_k} - u_{n_k}$ is Cauchy in X, and thus converges to a limit in X, and so $\pi(x_{n_k} - u_{n_k}) = \pi(x_{n_k})$ also converges to a limit, and since the sequence is Cauchy, then the entire sequence converges to a limit.

Thus, we find that since ker T is closed, then $X/\ker T$ is Banach, and so we have found that $x \in K$. To see that Tx = y, notice that for large n:

$$||Tx - y|| \le ||Tx - Tx_n|| + ||Tx_n - y|| \le ||T|| ||x - x_n|| + ||y_n - y|| < \epsilon.$$

Thus, \tilde{T} maps closed maps into closed maps.

Suppose \tilde{T} is not an open mapping. Then for all n > 0, there exists some $y_n \in R(\tilde{T})$ with $\|y_n\| \leq \frac{1}{n}$ such that $y_n \notin \tilde{T}(B_{x/\ker T})$. By the bijectivity of \tilde{T} , there exist $x_n \in X/\ker T$ such that $x_n = \tilde{T}^{-1}y_n$ and $\|x_n\| \geq 1$. Since \tilde{T}^{-1} is continuous, then $\|x_n\| \leq C\|y_n\|$ for all n, and thus if

$$\hat{y}_n = \frac{y_n}{\|x_n\|}$$

and $\hat{x}_n = \tilde{T}^{-1}\hat{y}_n$, then $\hat{x}_n \in \overline{B_{X/\ker T}}$ for any n since $\|\hat{x}_n\| = 1$. Notice how we have that $\|\hat{y}_n\| < \frac{1}{n}$, and so $y_n \to y$, where $(\hat{y}_n) \in \tilde{T}(\overline{B_{X/\ker T}})$. Since \tilde{T} is a closed mapping, then $\hat{y} \in \tilde{T}(B_{X/\ker T})$, and since $\|\hat{y}_n\| < \frac{1}{n}$, $\hat{y} = 0$. There exists some $\hat{x} \in B_{X/\ker T}$ such that $\tilde{T}\hat{x} = \hat{y}$. To see that $\hat{x}_n \to x$, consider that

$$\|\hat{x}_n - \hat{x}\| = \|T^{-1}(\hat{y}_n - \hat{y})\| \le C\|\hat{y}_n - \hat{y}\| < \epsilon.$$

We have that $\hat{x} \in B_{X/\ker T}$ and in fact, $||\hat{x}|| = 1$. However,

$$T\hat{x}_n = \hat{y}_n \to \hat{y} = 0$$

But

$$T\hat{x}_n \to T\hat{x} \neq 0$$
,

a contradiction!

Thus, \tilde{T} is an open mapping unto $R(\tilde{T})$. By the previous problem, $R(\tilde{T})$ is closed. Finally, we use that $R(\tilde{T}) = R(T)$ and we conclude.

Let $T \in \mathcal{L}(X,Y)$. Prove the following:

- (a) $\ker(T) = R(T^*)^{\perp}$
- (b) $\ker(T^*) = R(T)^{\perp}$
- (c) $\overline{R(T)} = \ker(T^*)^{\perp}$
- (d) $\overline{R(T^*)} \subset \ker(T)^{\perp}$

SOLUTION: (a) We begin by noting the definitions:

$$\ker(T) = \{x \in X : Tx = 0\}$$

$$R(T^*)^{\perp} = \{ x \in X : \langle T^*v, x \rangle = 0, \ \forall \ v \in Y^* \}.$$

Let $x \in \ker T$, then Tx = 0, and so

$$\langle T^*v, x \rangle = \langle v, Tx \rangle = \langle v, 0 \rangle = 0,$$

and so $x \in R(T^*)^{\perp}$. Thus $\ker T \subset R(T^*)^{\perp}$.

Let $x \in R(T^*)^{\perp}$ and suppose $x \notin \ker(T)$. Thus, $(x,0) \notin G(T)$. T is continuous, and so G(T) is closed. Thus, we use Hahn-Banach. There exist $(f,q) \in E^* \times F^*$ such that

$$\langle f, x \rangle + \langle g, Tx \rangle < \alpha < \langle f, u \rangle + \langle g, 0 \rangle = \langle f, u \rangle, \quad \forall x \in D(T).$$

Because G(T) is a linear subspace, then

$$\langle f, x \rangle + \langle g, Tx \rangle = 0 \tag{5}$$

and thus $|\langle g, Tx \rangle| \leq ||f|| ||x||$, and so $g \in D(T^*)$. Using (5), we see that

$$\langle f + T^*g, x \rangle = 0, \quad \forall x \in D(T) \implies f = T^*(g).$$

Thus, $\langle f, u \rangle = \langle T^*g, u \rangle > 0$, but $u \in R(T^*)^{\perp}$, and so $\langle T^*g, u \rangle = 0$. A contradiction! Thus, we get (a).

To see (b), we let $v \in \ker(T^*)$. Thus, $T^*v = 0$, and so for any $x \in D(T)$, we have that

$$0 = \langle T^*v, x \rangle = \langle v, Tx \rangle,$$

and so $v \in R(T)^{\perp}$.

Let $v \in R(T)^{\perp}$. Then for all $x \in D(T)$, $\langle v, Tx \rangle = 0$. Thus, $|\langle T^*v, x| \leq 0 ||x||$. If $v \in D(T^*)$, then $0 = \langle v, Ax \rangle = \langle T^*v, x \rangle = 0$ for all $x \in D(T)$ and so T * v = 0 and so $v \in \ker(T^*)$. This shows (b).

For (c), it suffices to see that $(M^{\perp})^{\perp} = \overline{M}$, where $M \subset X$ is a linear subspace.

$$M^{\perp} = \{ f \in Y^* \ : \ \langle f, x \rangle = 0, \ \forall \, x \in X \} \subset Y^*.$$

Thus,

$$(M^{\perp})^{\perp} = \{ x \in X : \langle x, f \rangle = 0, \quad \forall \ f \in M^{\perp} \} \subset X$$

Evidently, $M \subset (M^{\perp})^{\perp}$. $(M^{\perp})^{\perp}$ is closed, and thus $\overline{M} \subset (M^{\perp})^{\perp}$.

Suppose there is some $x_0 \in \overline{M}$ such that $x \notin (M^{\perp})^{\perp}$. We use Hahn Banach to separate $\{x_0\}$ and \overline{M} . There exists some closed $f = [H = \alpha]$ such that

$$f(\overline{M}) < \alpha < f(x_0), \tag{6}$$

and thus f(M) = 0, and so for all $x \in M$, we have that $\langle f, x \rangle = 0$, and so $f \in M^{\perp}$ and thus $\langle f, x_0 \rangle = 0$, a contradiction to (6). Thus, since $R(T) \subset Y$ is a linear subspace, then $(R(T)^{\perp})^{\perp} = \overline{R(T)}$, and by (c), we see that $\overline{R(T)} = \ker(T^*)^{\perp}$.

Suppose that $M \subset E^*$. We want to show that $\overline{M} \subset (M^{\perp})^{\perp}$. This is clear from the definition and the above. Thus the result follows directly from (a).

Let X, Y be Banach with $T \in \mathcal{L}(X, Y)$. Show that T maps X unto a dense set if and only if T^* is injective.

Solution: T^* is injective if and only if $\ker T^* = \{0\}$ if and only if $\ker (T^*)^{\perp} = Y$ if and only if $\overline{R(T)} = Y$.