1. Choose the equation of the function graphed below.

A.
$$f(x) = -\sqrt[3]{x-6} - 7$$

B.
$$f(x) = \sqrt[3]{x+6} - 7$$

C.
$$f(x) = -\sqrt[3]{x+6} - 7$$

D.
$$f(x) = \sqrt[3]{x-6} - 7$$

- E. None of the above
- 2. Choose the graph of the equation below.

x

В.

A.

C.

D.

E. None of the above.

3. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{6x+3} - \sqrt{4x+3} = 0$$

- A. $x \in [-0.27, 0.27]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x_1 \in [-1, -0.63]$ and $x_2 \in [-0.66, -0.05]$
- D. $x_1 \in [-0.67, -0.47]$ and $x_2 \in [-0.15, 0.38]$
- E. $x \in [-3.27, -2.54]$
- 4. What is the domain of the function below?

$$f(x) = \sqrt[3]{-4x - 3}$$

- A. The domain is $(-\infty, a]$, where $a \in [-1.1, -0.6]$
- B. $(-\infty, \infty)$
- C. The domain is $(-\infty, a]$, where $a \in [-3.1, -1.1]$
- D. The domain is $[a, \infty)$, where $a \in [-1.81, -0.76]$
- E. The domain is $[a, \infty)$, where $a \in [-0.91, 0.11]$

5. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{36x^2 - 12} - \sqrt{11x} = 0$$

- A. $x \in [-0.77, -0.27]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x \in [0.64, 0.83]$
- D. $x_1 \in [0.15, 0.62]$ and $x_2 \in [-4, 2]$
- E. $x_1 \in [-0.77, -0.27]$ and $x_2 \in [-4, 2]$