Taller de Lógica Digital

Organización del Computador 1 Primer Cuatrimestre 2021

3. Antes de Empezar

Completar la siguiente tabla indicando los resultados para Op1 + Op2

Opera	andos	Sin Signo					Complemento a 2				
Op1	Op2	Op110	Op210	Res(bits)	Res ₁₀	V?	Op110	Op210	Res(bits)	Res ₁₀	V?
1111	0001	15	1	0000	0	1	-1	1	0000	0	0
0001	1111	1	15	0000	0	1	1	-1	0000	0	0
0101	0101	5	5	1010	10	0	5	5	1010	-6	1
1000	0111	8	7	1111	15	0	-8	7	1111	-1	0
0110	1010	6	10	0000	0	1	6	-6	0000	0	0

Completar la siguiente tabla indicando los resultados para Op1 - Op2

Opera	ndos		S	in Signo				Complemento a 2			
Op1	Op2	Op110	Op210	Res(bits)	Res ₁₀	V?	Op110	Op210	Res(bits)	Res ₁₀	V?
1000	0010	8	2	0110	6	0	-8	2	0110	6	1

0001	1111	1	15	0010	2	1	1	-1	0010	2	0
0101	0101	5	5	0000	0	0	5	5	0000	0	0
1000	0111	8	7	0001	1	0	-8	7	0001	1	1
0110	1010	6	10	1100	12	1	6	-6	1100	-4	1

4i). ALU sin signo

Es posible hacer la suma y la resta sin signo pues se interpretan de esta manera en S. Luego al sumar podremos ver el overflow en la flag C (carry) y al restar en N (negativo)

5. Validación de los resultados

Completar la siguiente tabla indicando los resultados utilizando la ALU de 4 bits.

Operandos Sumador Restador	
----------------------------	--

A	В	S	Z	C	V	N	S	Z	C	V	N
1111	0001	0000	1	1	0	0	1110	0	0	0	1
0001	1111	0000	1	1	0	0	0010	0	1	0	0
0101	0101	1010	0	0	0	1	0000	1	0	0	0
1000	0111	1111	0	0	1	1	0001	0	0	1	0
0110	1010	0000	1	1	0	0	1100	0	1	0	1