10/712,797

-2-

Amendments to the Claims

Please cancel Claims 1, 2, 9 and 10. Please amend Claims 3, 5-7, 11, 13-15, 17. The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing

- 1. (Cancel)
- 2. (Cancel)
- 3. (Currently amended) A The method of elaim 2, wherein, transmitting frames on a communication link comprising:

monitoring the communications link to determine a probability of error on the link; and

selecting frame size as a function of the determined probability and as a function of overhead, the selected frame size being is selected from a set of frame sizes computed numerically as the solution to $1 + \frac{O}{F_{\nu\mu} + O} = \frac{\alpha F_{\nu\mu}}{1 - e^{-\alpha F_{\nu\mu}}}$ where O is overhead, F_{opt} is optimum frame size and $\alpha = -\ln(1-\text{probability of bit error})$.

- 4. (Original) The method of claim 3, wherein if overhead is significantly larger than the frame size, the selected frame size is inversely proportional to the natural logarithm of the determined probability.
- 5. (Currently Amended) The method of claim $\frac{1}{2}$, wherein the step of monitoring monitors the signal to noise ratio on the communications link.
- 6. (Currently Amended) The method of claim ± 3 , wherein the step of monitoring monitors a frame error rate on the communications link.

10/712,797

- 3 -

- (Currently Amended) The method of claim + 3, wherein frames are transmitted over the communications link using the IEEE 802.11 media access control and physical layer protocol.
- 8. (Original) The method of claim 7 wherein the frame is one of a plurality of fragments in a transmitted fragment burst.
- 9. (Cancel)
- 10. (Cancel)
- 11. (Currently amended) A The system of claim 9, for transmitting frames on a communication link comprising:

a monitoring routine which monitors the communications link to determine a probability of error on the link; and

a frame sizer which selects frame size as a function of the determined probability and as a function of overhead, wherein, the frame size being is selected from a set of frame sizes computed numerically as the solution to $1 + \frac{O}{F_{\omega \mu} + O} = \frac{\alpha F_{\omega \mu}}{1 - e^{-\omega F_{\omega \mu}}}$ where O is overhead, $F_{\omega \mu}$ is optimum frame size and $\alpha = -\ln(1-\text{probability of bit error})$.

- 12. (Original) The system of claim 11, wherein if overhead is significantly larger than the frame size, the selected frame size is inversely proportional to the natural logarithm of the determined probability.
- 13. (Currently Amended) The system of claim 9 11, wherein the monitoring routine monitors signal to noise ratio on the communications link.
- 14. (Currently Amended) The system of claim 9 11, wherein the monitoring routine monitors a frame error rate on the communications link.

10/712,797

- 4 -

- 15. (Currently Amended) The system of claim 9 11, wherein frames are transmitted over the communications link using the IEEE 802.11 media access control and physical layer protocol.
- 16. (Original) The system of claim 15, wherein the frame is one of a plurality of fragments in a transmitted fragment burst.
- 17. (Currently amended) A system for transmitting frames on a communication link comprising:

means for monitoring the communications link to determine a probability of error on the link; and

means for selecting frame size as a function of the determined probability and as a function of overhead, the frame size being selected from a set of frame sizes computed

numerically as the solution to $1 + \frac{O}{F_{upt} + O} = \frac{\alpha F_{opt}}{1 - e^{-\alpha r_{upt}}}$ where O is overhead, F_{opt} is optimum frame size and $\alpha = -\ln(1-\text{probability of bit error})$.