COLD-ENVIRONMENT ROBOT CHASSIS DESIGN SPECIFICATIONS

COLD-ENVIRONMENT ROBOT CHASSIS DES

Document ID: PDR-SPEC-2024-001

Version: 3.2

Effective Date: January 11, 2024

Classification: CONFIDENTIAL - PROPRIETARY INFORMATION

1. INTRODUCTION

1 This document contains proprietary design specifications for cold-en

2 These specifications detail the required engineering standards, mat
2. DEFINITIONS
1 "BlueCore(TM) Platform" means the Company's proprietary cold-res
2 "Critical Operating Temperature" means the minimum temperature
3 "Thermal Stress Points" means designated areas of the chassis sub
3. CHASSIS STRUCTURAL SPECIFICATIONS
1 Base Frame Construction
- Primary frame: 6061-T6 aluminum alloy with proprietary cold-hardening

- -2-

Wall thickness: 4.2mm 0.1mm

_

Maximum dimensional variance: 0.05mm at -40 C

-

Structural integrity rating: 2.5x safety factor at maximum payload

2 Thermal Management System

-

Integrated heating channels: 12 primary circuits

-

Temperature sensor array: 24 distributed monitoring points

_

Active thermal regulation range: -45 C to +5 C

-

Maximum thermal gradient: 8 C/meter

3 Load-Bearing Specifications

_

Maximum payload capacity: 750kg at -40 C

-

Dynamic load rating: 1000kg at 1.5m/s

_

Impact resistance: 25J at critical points

-

Torsional rigidity: 45,000 Nm/degree

4. MATERIAL REQUIREMENTS

1 Primary Materials

4 -		
Frame components: Cold-rated aluminum alloy (spec: PD-AL-2023)		
-		
Thermal barriers: Proprietary composite (spec: PD-TB-2023)		
-		
Fasteners: Cryogenic-rated steel alloy (spec: PD-FR-2023)		
2 Surface Treatments		
-		
External surfaces: Cold-resistant polymer coating (spec: PD-CT-2023		
-		
Internal surfaces: Thermal management coating (spec: PD-TM-2023)		
_		

Critical joints: Anti-seize compound rated to -50 C

5. ASSEMBLY PROTOCOLS

1 Environmental Controls

-

Assembly area temperature: 20 C 2 C

-

Humidity: 45% 5%

-

Cleanliness: ISO Class 7 equivalent

2 Torque Specifications

-

Primary structural bolts: 45 Nm 2 Nm

-

Secondary fasteners: 25 Nm 1 Nm

- -6-

Thermal system components: 15 Nm 0.5 Nm

6. QUALITY CONTROL REQUIREMENTS

1 Testing Protocols

-

Thermal cycling: 500 cycles (-40 C to +20 C)

-

Load testing: 120% rated capacity for 24 hours

-

Vibration testing: 10-2000 Hz sweep at -40 C

2 Inspection Requirements

-

Full dimensional inspection at room temperature

-

Thermal imaging analysis at -40 C

-

NDT of critical joints post-thermal cycling

7. INTELLECTUAL PROPERTY NOTICE

1 These specifications contain trade secrets and confidential informat

2 Protected under U.S. Patents 11,234,567; 11,234,568; 11,234,569

8. REVISION HISTORY

Version 3.2 - January 11, 2024

- 8 -

Updated thermal management specifications

_

Added new quality control requirements

-

Revised material specifications

Version 3.1 - July 15, 2023

-

Enhanced load-bearing specifications

-

Updated assembly protocols

9. APPROVAL

APPROYED BY:
_
Dr. James Barrett
Chief Robotics Officer
Polar Dynamics Robotics, Inc.
Date: _
_
Marcus Chen
Chief Technology Officer
Chief Technology Officer Polar Dynamics Robotics, Inc.

