Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Mon May 31 15:26:49 2021 Program finished at Tue Jun 1 00:41:10 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 609477468

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * * *	* * * * * *
12 LaJolla	* *	* * * *	* * * * * *
12 Labolia			
Order of param	neters:		
1	Θ_1 =	Θ_1 [m]	<displayed></displayed>
2	$\Theta_2^1 =$	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1^{1} [m]	
4	$\Theta_4^3 =$	Θ_1 [m]	
5	$\Theta_5^4 =$	Θ_1 [m]	
6	$\Theta_6^3 =$	Θ_1 [m]	
7	$\Theta_7^0 =$	Θ_1^{1} [m]	
8	Θ_8' =	$\Theta_1^{'}$ [m]	
9	$\Theta_{0} =$	$\Theta_1^{'}$ [m]	
10	Θ_{10} =	$\Theta_1^{'}$ [m]	
11	Θ_{11}	1	<displayed></displayed>
12	Θ_{12}^{11}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1}^{2} =$	$M_{2->1}^{2}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1} =$	$M_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5} =$	$M_{2->1}^{2}$ [m]	
18	$M_{7->1}^{0} =$	$M_{2->1}^{2}$ [m]	
19	$M_{8->1} =$	$M_{2->1}^{2}$ [m]	
20	$M_{9->1}^{0} =$	$M_{2->1}^{2}$ [m]	
21	$M_{10->1} =$	$M_{2->1}$ [m]	
22	$M_{11->1} =$	$M_{2->1}$ [m]	
23	$M_{12->1} =$	$M_{2->1}$ [m]	
24	$M_{1} = $	$M_{2->1}$ [m]	
25	$M_{3->2} =$	M $_{2->1}$ [m]	
26	$ V _{4->2} =$	M_{2-1} [m]	
27	IVI _{5->2} =	$M_{2->1}$ [m]	
28	M _{6->2} =	IVI _{2_>1} [m]	
29	IVI 7 > 2 =	$M_{2->1}$ [m]	
30	$M_{8\rightarrow 2} = M_{9\rightarrow 2} = M_{8\rightarrow 2} $	M_{2-1} [m]	
31	$M_{9->2} =$	M $_{2->1}$ [m]	
32	$ V _{10-2} =$	M_{2-1} [m]	
33	$M_{11->2} =$	M $_{2->1}$ [m]	
34	$ V _{12->2} =$	M $_{2->1}$ [m]	
35	$ V _{1->3} =$	M $_{2->1}$ [m]	
36	$M_{2->3} =$	M_{2-1} [m]	
37	$ V _{4->3} =$	M $_{2->1}$ [m]	
38	$M_{5->3} =$	M_{2-1} [m]	
39	$M_{6->3} =$	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	
1			

41	M _{8->3} =	$M_{2->1}$ [m]		
42	$M_{9->3} =$	$M_{2->1}$ [m]		
43	$M_{10->3} =$	$M_{2->1}^{2}$ [m]		
44	$M_{11->3} =$	$M_{2->1}^{2->1}$ [m]		
45	$M_{12->3} =$	$M_{2->1}$ [m]		
46	$M_{1->4}^{12->3} =$	$M_{2->1}$ [m]		
47	$M_{2->4}^{1->4} =$	$M_{2->1}$ [m]		
48	$M_{3->4}^{2->4} =$	$M_{2->1}$ [m]		
49	$M_{5->4}^{5->4} =$	$M_{2->1}$ [m]		
50	$M_{6->4} =$	$M_{2->1}$ [m]		
51	$M_{7->4} =$	$M_{2->1}^{2->1}$ [m]		
52	M _{8->4} =	$M_{2->1}^{2->1}$ [m]		
53	$M_{9->4} =$	$M_{2->1}^{2}$ [m]		
54	$M_{10->4} =$	$M_{2->1}^{2->1}$ [m]		
55	$M_{11->4} =$	$M_{2->1}$ [m]		
56	$M_{12->4} =$	M $_{2->1}$ [m]		
57	$M_{1->5} =$	$M_{2\sim1}$ [m]		
58	$M_{2->5} =$	$M_{2->1}$ [m]		
59	$M_{3->5} =$	$[V]_{2\rightarrow 1}$ [m]		
60	$M_{4->5} =$	M $_{2->1}$ [m]		
61	$M_{6->5} =$	M_{2-1} [m]		
62	$M_{7->5} =$	$M_{2->1}$ [m]		
63	$M_{8->5} =$	$M_{2\rightarrow 1}$ [m]		
64	$M_{9->5} =$	$M_{2->1}$ [m]		
65	$M_{10->5} =$	M_{2-1} [m]		
66	$M_{11->5} =$	M $_{2->1}$ [m]		
67	$M_{12->5} =$	$M_{2->1}$ [m]		
68	$M_{1->6} =$	M_{2-1} [m]		
69	$M_{2->6} =$	M_{2-1} [m]		
70	$M_{3->6}^{2->0} =$	IVI $_{2->1}$ [m]		
71	$ V _{4->6} =$	M $_{2->1}$ [m]		
72	IVI _{5->6} =	$[V]_{2\rightarrow 1}$ [m]		
73	$M_{7->6} =$	IVI _{2->1} [m]		
74	IVI _{8->6} =	$M_{2->1}$ [m]		
75 	IVI 0 >6 =	$M_{2->1}$ [m]		
76	$ V _{10->6} =$	$M_{2->1}^{2->1}$ [m]		
77	$M_{11->6} =$	$M_{2->1}$ [m]		
78	$M_{12->6} =$	$M = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ [m]		
79	$M_{1->7} = M_{2} = M_{1}$	M = [m]		
80		$M = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ [m]		
81	$M_{3\rightarrow 7}^{2\rightarrow 7} = M_{4\rightarrow 7}^{2} =$	$M_{2\rightarrow 1} [m]$		
82 83	4-//	$M = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ [m]		
84		M = [m] $M = [m]$		
85		$M = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ [m]		
00	$M_{8->7} =$	M $_{2->1}$ [m]		

```
\overline{\mathsf{M}}_{9->7} =
                                     _{2\rightarrow 1} [m]
86
                 M _{10->7} =
87
                                  M_{2->1} [m]
                                  M_{2->1} [m]
88
                     11->7 =
                                  M _{2->1} [m]
89
                 M
                     12->7 =
                                  M_{2->1} [m]
90
                 M
                     1->8 =
91
                 M
                                  M_{2->1} [m]
                     2->8 =
92
                 M
                                  M _{2->1} [m]
                     3->8 =
                                  M _{2->1} [m]
93
                     4->8 =
94
                 M
                                  M_{2->1} [m]
                     5->8 =
95
                 M
                                  M_{2->1} [m]
                     6->8 =
                 M _{7->8} =
96
                                  M _{2->1} [m]
97
                 M_{9->8} =
                                  M_{2->1} [m]
                 M _{10->8} =
98
                                  M _{2->1} [m]
                 M _{11->8} =
99
                                  M_{2->1} [m]
100
                                  M_{2->1} [m]
                     12->8 =
                 M_{1->9} =
101
                                  M_{2->1} [m]
102
                 M
                                  M_{2->1} [m]
                     2->9 =
103
                 M
                     3->9 =
                                  M _{2->1} [m]
104
                                  M_{2->1} [m]
                 M
                     4->9 =
105
                 M
                                  M _{2->1} [m]
                     5->9 =
106
                 M
                                  M_{2->1} [m]
                     6->9 =
107
                                  M_{2->1} [m]
                     7->9 =
108
                                  M _{2->1} [m]
                 M
                     8->9 =
109
                 M
                                  M_{2->1} [m]
                     _{10->9} =
110
                 M
                     <sub>11->9</sub> =
                                  M_{2->1} [m]
111
                 M
                                  M_{2->1} [m]
                     12->9 =
                                  M _{2->1} [m]
112
                     1->10
                 M _{2->10} =
113
                                  M_{2->1} [m]
114
                 M
                                  M _{2->1} [m]
                     _{3->10} =
                                  M _{2->1} [m]
115
                 M
                     4->10
116
                                  M _{2->1} [m]
                     5->10 =
117
                 M
                     6->10
                                  M_{2->1} [m]
                                  M _{2->1} [m]
118
                     7->10
                                  M _{2->1} [m]
119
                     8->10 =
120
                 M
                                  M _{2->1} [m]
                    9->10
                                  M _{2->1} [m]
121
                 M
                     11->10
122
                 M
                     12->10
                                  M _{2->1} [m]
                 M _{1->11}
123
                                                    <displayed>
                 M _{2\rightarrow11}
124
                                                    <displayed>
                 M _{3->11}
125
                                                    <displayed>
                 M _{4->11}
126
                                                    <displayed>
                 M _{5->11}
127
                                                    <displayed>
128
                 Μ
                                                    <displayed>
                     6->11
129
                 M
                                                    <displayed>
                     7->11
130
                 M
                                                    <displayed>
                     8->11
```

Swapping interval is 1

			milary migrato and	aryolo or ivi. camorr	ilanao o o i napi	otypes for Evolution 2 -
131	M ₉₋	->11	<(displayed>		
132	N A)->11	<(displayed>		
133	N/I	2->11	<(displayed>		
134	NΛ	->12	<(displayed>		
135	N/I	->12	<(displayed>		
136	R A	->12	<(displayed>		
137	N/I	->12	<(displayed>		
138	N/I	->12	<(displayed>		
139	R A	->12	<(displayed>		
140	N/I	->12	<(displayed>		
141	N /	->12	<(displayed>		
142	N /	->12	<(displayed>		
143	N/I)->12	<(displayed>		
144	NΛ	l->12	<(displayed>		
Mutation	rate among loc	i:			Ŋ	Mutation rate is constar
Analysis	strategy:					Bayesian inference
Proposa	l distributions for	r parameter				
Paramet	er		Proposal			
Theta		Me	tropolis sampling			
М			Slice sampling			
Prior dis	tribution for para	meter				
Paramet	er Prior	Minimum	Mean*	Maximum	Delt	
Theta	Exp window	0.000010	0.010000	10.000000	1.00000	
M	Exp window	0.000100	100000.000000	1000000.000000	100000.000000	0 500
Markov	chain settings:					Long cha
	of chains					Long cha
						1000
	ded steps [a] nent (record eve	ny v eton [h]				1000
	er of concurrent		cates) [c]			3
	er or concurrent d (sampled) para	` •	,			300000
	er of discard tree					1000
INUITID	ei oi uistaiu (186	es hei ciialli	(Dulli-III)			1000
Multiple	Markov chains:					
-	heating scheme)			4 c	hains with temperature
				1000	00.00 3.0	· ·

Print options:

	outfile bayesf
Print data:	
Print genealogies [only some for some data type]:	
	No

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193
	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01187
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01061
1	M _{2->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{3->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{4->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{5->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{6->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{7->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{8->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{9->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->1}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	$M_{3->2}$	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{4->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{5->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{6->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{7->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{8->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{9->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->2}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->3}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{2->3}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{4->3}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	$M_{5->3}$	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	$M_{6->3}$	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{7->3}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{8->3}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	$M_{9->3}$	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->3}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->3}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->3}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{2->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{3->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{5->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{6->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{7->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{8->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{9->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->4}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{2->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{3->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{4->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{6->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{7->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{8->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{9->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->5}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{2->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{3->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	3->6 M _{4->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	4->6 M _{5->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	5->6 M _{7->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{8->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{9->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{2->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	$M_{3->7}$	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{4->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{5->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{6->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{8->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{9->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->7}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{2->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{3->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{4->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{5->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{6->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{7->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{9->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->8}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{2->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{3->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{4->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{5->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{6->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{7->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{8->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{10->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->9}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	12->9 M _{1->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	1->10 M _{2->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	2->10 M _{3->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{4->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{5->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{6->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{7->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{9->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{11->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{12->10}	34000.0	46000.0	63000.0	70000.0	92000.0	65000.0	62706.9
1	M _{1->11}	40000.0	70000.0	93000.0	112000.0	178000.0	101000.0	103865.8
1	M _{2->11}	0.0	22000.0	63000.0	0.00008	100000.0	71000.0	91565.6
1	M _{3->11}	0.0	0.0008	25000.0	40000.0	56000.0	37000.0	81286.7
1	M _{4->11}	28000.0	76000.0	93000.0	140000.0	178000.0	105000.0	103859.9
1	M _{5->11}	42000.0	70000.0	95000.0	112000.0	150000.0	97000.0	95603.1
1	M _{6->11}	0.0	4000.0	23000.0	38000.0	46000.0	131000.0	116064.1
1	M _{7->11}	104000.0	126000.0	157000.0	194000.0	236000.0	185000.0	317221.1
1	M _{8->11}	20000.0	48000.0	69000.0	0.00088	128000.0	73000.0	72193.2
1	M _{9->11}	52000.0	92000.0	113000.0	162000.0	274000.0	151000.0	160178.9
1	M _{10->11}	0.0	0.0	15000.0	32000.0	46000.0	107000.0	124708.4
1	M _{12->11}	44000.0	64000.0	81000.0	98000.0	146000.0	89000.0	91203.6
1	M _{1->12}	0.0	10000.0	23000.0	38000.0	126000.0	61000.0	61131.5
1	M _{2->12}	30000.0	110000.0	133000.0	154000.0	178000.0	139000.0	171185.2
1	M _{3->12}	12000.0	22000.0	35000.0	48000.0	178000.0	93000.0	89447.1
1	M _{4->12}	66000.0	90000.0	117000.0	142000.0	192000.0	129000.0	129668.9
1	M _{5->12}	32000.0	50000.0	71000.0	92000.0	146000.0	81000.0	84353.3
1	M _{6->12}	38000.0	52000.0	71000.0	92000.0	166000.0	131000.0	224679.1
1	M _{7->12}	62000.0	86000.0	125000.0	152000.0	170000.0	139000.0	159066.7
1	M _{8->12}	34000.0	100000.0	119000.0	150000.0	186000.0	125000.0	120185.6
1	M _{9->12}	48000.0	64000.0	77000.0	92000.0	158000.0	103000.0	102221.3
1	M _{10->12}	2000.0	18000.0	29000.0	40000.0	62000.0	33000.0	31817.8
1	M _{11->12}	0.0	0.0	1000.0	20000.0	24000.0	99000.0	104027.9

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci Freq Freq 600.00 -600.00 400.00 -400.00 200.00 -200.00 0.00 -0.00 - Θ_1 8 2 2 8 6 6 Θ_{11} Freq Freq 150.0 600.00 100.0 400.00 50.0 200.00 0.00 0.0 Θ_{12} 200000 400000 600000 800000 8 M _{2->1} Freq Freq 60.0 80.0 60.0 40.0 40.0 20.0 20.0 0.0 0.0 200000 400000 600000 800000 200000 400000 600000 800000 M _{2->11} M $_{1->11}$

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 15:26:49]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2412.217436	(1a)
	-2277.835701	(1b)
Harmonic mean	-1979.117325	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	13/1032	0.01260
Θ_2	13/1032	0.01260
Θ_3^2	13/1032	0.01260
Θ_4°	13/1032	0.01260
Θ_5^{τ}	13/1032	0.01260
Θ_6°	13/1032	0.01260
Θ_7°	13/1032	0.01260
$\Theta_{8}^{'}$	13/1032	0.01260
$\Theta_{\mathbf{q}}$	13/1032	0.01260
Θ_{10}	13/1032	0.01260
Θ_{11}^{10}	739/1042	0.70921
Θ_{12}^{11}	674/1000	0.67400
$M_{2->1}^{12}$	1060/1060	1.00000
M $\frac{2^{->1}}{3->1}$	1060/1060	1.00000
$M_{4\rightarrow 1}^{3\rightarrow 1}$	1060/1060	1.00000
$M_{5\rightarrow 1}^{4\rightarrow 1}$	1060/1060	1.00000
$M_{6\rightarrow 1}^{5\rightarrow 1}$	1060/1060	1.00000
M 7->1	1060/1060	1.00000
$M_{8->1}$	1060/1060	1.00000
$M_{9->1}^{8->1}$	1060/1060	1.00000
M 10->1	1060/1060	1.00000
M 11->1	1060/1060	1.00000
M 12->1	1060/1060	1.00000
$M_{1\rightarrow 2}^{12\rightarrow 1}$	1060/1060	1.00000
$M_{3\rightarrow 2}^{1\rightarrow 2}$	1060/1060	1.00000
$M_{4\rightarrow 2}^{3\rightarrow 2}$	1060/1060	1.00000
\ <i>1</i>	1060/1060	1.00000
)—>2 \1	1060/1060	1.00000
M _{7 > 2}	1060/1060	1.00000
/->Z	1060/1060	1.00000
8->2 \1	1060/1060	1.00000
9- <i>></i> 2	1060/1060	1.00000
10->2 \ /	1060/1060	1.00000
11->2 \ /	1060/1060	1.00000
M	1060/1060	1.00000
1->3 M	1060/1060	1.00000
VI 2->3 VI 4 2	1060/1060	1.00000

M _{5->3}	1060/1060	1.00000
M _{6->3}	1060/1060	1.00000
M _{7->3}	1060/1060	1.00000
M _{8->3}	1060/1060	1.00000
M _{9->3}	1060/1060	1.00000
$M_{10->3}$	1060/1060	1.00000
$M_{11->3}$	1060/1060	1.00000
$M_{12->3}$	1060/1060	1.00000
M 1->4	1060/1060	1.00000
$M_{2\rightarrow 4}$	1060/1060	1.00000
$M_{3\rightarrow 4}$	1060/1060	1.00000
M _{5->4}	1060/1060	1.00000
M _{6->4}	1060/1060	1.00000
M _{7->4}	1060/1060	1.00000
$M_{8\rightarrow4}$	1060/1060	1.00000
$M_{9->4}$	1060/1060	1.00000
M 10->4	1060/1060	1.00000
M 11->4	1060/1060	1.00000
M _{12->4}	1060/1060	1.00000
M _{1->5}	1060/1060	1.00000
M _{2->5}	1060/1060	1.00000
$M_{3->5}$	1060/1060	1.00000
M _{4->5}	1060/1060	1.00000
M _{6->5}	1060/1060	1.00000
M _{7->5}	1060/1060	1.00000
M _{8->5}	1060/1060	1.00000
M _{9->5}	1060/1060	1.00000
M _{10->5}	1060/1060	1.00000
M _{11->5}	1060/1060	1.00000
M _{12->5}	1060/1060	1.00000
M _{1->6}	1060/1060	1.00000
M 2->6	1060/1060	1.00000
M 3->6	1060/1060	1.00000
M _{4->6}	1060/1060	1.00000
M 5->6	1060/1060	1.00000
M 7->6	1060/1060	1.00000
M 8->6	1060/1060	1.00000
M 9->6	1060/1060	1.00000
M 10->6	1060/1060	1.00000
M 11->6	1060/1060	1.00000
M 12->6	1060/1060	1.00000
M 1->7	1060/1060	1.00000
M 2->7	1060/1060	1.00000
M 3->7	1060/1060	1.00000
M _{4->7}	1060/1060	1.00000

M _{5->7}	1060/1060	1.00000
M _{6->7}	1060/1060	1.00000
M _{8->7}	1060/1060	1.00000
M _{9->7}	1060/1060	1.00000
M 10->7	1060/1060	1.00000
M 11->7	1060/1060	1.00000
M _{12->7}	1060/1060	1.00000
M _{1->8}	1060/1060	1.00000
$M_{2->8}$	1060/1060	1.00000
$M_{3->8}$	1060/1060	1.00000
$M_{4->8}$	1060/1060	1.00000
$M_{5->8}$	1060/1060	1.00000
M _{6->8}	1060/1060	1.00000
M _{7->8}	1060/1060	1.00000
$M_{9->8}$	1060/1060	1.00000
M 10->8	1060/1060	1.00000
$M_{11->8}^{10->8}$	1060/1060	1.00000
$M_{12->8}^{11->8}$	1060/1060	1.00000
$M_{1->9}$	1060/1060	1.00000
$M_{2->9}$	1060/1060	1.00000
$M_{3->9}$	1060/1060	1.00000
M _{4->9}	1060/1060	1.00000
M _{5->9}	1060/1060	1.00000
M _{6->9}	1060/1060	1.00000
M _{7->9}	1060/1060	1.00000
M _{8->9}	1060/1060	1.00000
M _{10->9}	1060/1060	1.00000
M _{11->9}	1060/1060	1.00000
M _{12->9}	1060/1060	1.00000
M _{1->10}	1060/1060	1.00000
M _{2->10}	1060/1060	1.00000
M _{3->10}	1060/1060	1.00000
M 4->10	1060/1060	1.00000
M 5->10	1060/1060	1.00000
M 6->10	1060/1060	1.00000
M 7->10	1060/1060	1.00000
M _{8->10}	1060/1060	1.00000
M _{9->10}	1060/1060	1.00000
M 11->10	1060/1060	1.00000
M 12->10	1060/1060	1.00000
M 1->11	1003/1003	1.00000
M 2->11	1033/1033	1.00000
M 3->11	1030/1030	1.00000
M 4->11	1076/1076	1.00000
M _{5->11}	1093/1093	1.00000

M _{6->11}	1030/1030	1.00000
M _{7->11}	1074/1074	1.00000
M _{8->11}	1055/1055	1.00000
M _{9->11}	1083/1083	1.00000
$M_{10->11}$	1048/1048	1.00000
$M_{12->11}$	1018/1018	1.00000
M _{1->12}	1039/1039	1.00000
$M_{2->12}$	1050/1050	1.00000
$M_{3->12}$	1057/1057	1.00000
$M_{4->12}$	1018/1018	1.00000
$M_{5->12}$	1071/1071	1.00000
$M_{6->12}$	1108/1108	1.00000
$M_{7->12}$	1069/1069	1.00000
$M_{8->12}$	1014/1014	1.00000
$M_{9->12}$	1052/1052	1.00000
$M_{10->12}$	1041/1041	1.00000
$M_{11->12}$	1035/1035	1.00000
Genealogies	22149/150013	0.14765

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.99281	10.81
Θ_{γ}	0.99281	10.81
Θ_3^2	0.99281	10.81
Θ_4°	0.99281	10.81
) ₅	0.99281	10.81
) ₆	0.99281	10.81
) ₇	0.99281	10.81
) ₈	0.99281	10.81
	0.99281	10.81
10	0.99281	10.81
11	0.79330	349.86
12	0.80699	324.70
1 ¹² _{2->1}	0.98952	15.79
1 3->1	0.98952	15.79
1 4->1	0.98952	15.79
1 5->1	0.98952	15.79
6->1	0.98952	15.79
7->1	0.98952	15.79
8->1	0.98952	15.79
9->1	0.98952	15.79
10->1	0.98952	15.79
11->1	0.98952	15.79
12->1	0.98952	15.79
1->2	0.98952	15.79
3->2	0.98952	15.79
4->2	0.98952	15.79
5->2	0.98952	15.79
1 6->2	0.98952	15.79
7->2	0.98952	15.79
1 8->2	0.98952	15.79
9->2	0.98952	15.79
10->2	0.98952	15.79
11->2	0.98952	15.79
1 12->2	0.98952	15.79
1 1->2	0.98952	15.79
1 2->3	0.98952	15.79
1 4->3	0.98952	15.79

M _{5->3}	0.98952	15.79
M 6->3	0.98952	15.79
M 7->3	0.98952	15.79
M _{8->3}	0.98952	15.79
$M_{9->3}^{6->3}$	0.98952	15.79
$M_{10->3}^{9->3}$	0.98952	15.79
M 11->3	0.98952	15.79
$M_{12->3}^{11->3}$	0.98952	15.79
I M	0.98952	15.79
M 1->4 M 2->4	0.98952	15.79
$M_{3\rightarrow 4}^{2\rightarrow 4}$	0.98952	15.79
NA 3->4	0.98952	15.79
3->4	0.98952	15.79
NA 0->4	0.98952	15.79
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98952	15.79
NA 0->4	0.98952	15.79
9->4 NA	0.98952	15.79
10->4 NA	0.98952	15.79
11->4 M	0.98952	15.79
12->4	0.98952	15.79
1->3	0.98952	15.79
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98952	15.79
NA 3->3	0.98952	15.79
4->3	0.98952	15.79
0->3	0.98952	15.79
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98952	15.79
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98952	15.79
NA 9->3	0.98952	15.79
10->3	0.98952	15.79
M 11->3	0.98952	15.79
M 12->3	0.98952	15.79
M 1->6 M 2 > 6	0.98952	15.79
M 2->6 M 3->6	0.98952	15.79
$M_{4\rightarrow 6}^{3\rightarrow 0}$	0.98952	15.79
M _{5->6}	0.98952	15.79
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98952	15.79
M 7->6 M 8->6	0.98952	15.79
$M_{9->6}^{8->6}$	0.98952	15.79
9->0	0.98952	15.79
10->0	0.98952	15.79
M 11->6 M 12->6	0.98952	15.79
M 1->7	0.98952	15.79
M 2->7	0.98952	15.79
$M_{3->7}^{2->7}$	0.98952	15.79
M 4->7	0.98952	15.79
4-//		

		1 71
M _{5->7}	0.98952	15.79
M _{6->7}	0.98952	15.79
M _{8->7}	0.98952	15.79
M _{9->7}	0.98952	15.79
M 10->7	0.98952	15.79
M 11->7	0.98952	15.79
M 12->7	0.98952	15.79
$M_{1->8}^{12->7}$	0.98952	15.79
$M_{2->8}^{1->8}$	0.98952	15.79
$M_{3->8}^{2->8}$	0.98952	15.79
I N /	0.98952	15.79
4->8	0.98952	15.79
N 3−>8	0.98952	15.79
NA 0->0	0.98952	15.79
NA /->0	0.98952	15.79
NA 9->0	0.98952	15.79
10->8	0.98952	15.79
11->8 NA	0.98952	15.79
M 12->0	0.98952	15.79
1->9	0.98952	15.79
1 1 2->9	0.98952	15.79
NA 3->9	0.98952	15.79
M 4->9 M 5->9	0.98952	15.79
M 3->9	0.98952	15.79
M 6->9 M _{7->9}	0.98952	15.79
M _{8->9}	0.98952	15.79
M 10->9	0.98952	15.79
M 11->9	0.98952	15.79
M _{12->9}	0.98952	15.79
M _{1->10}	0.98952	15.79
M _{2->10}	0.98952	15.79
M _{3->10}	0.98952	15.79
M _{4->10}	0.98952	15.79
M _{5->10}	0.98952	15.79
M _{6->10}	0.98952	15.79
M _{7->10}	0.98952	15.79
M _{8->10}	0.98952	15.79
M _{9->10}	0.98952	15.79
M _{11->10}	0.98952	15.79
M _{12->10}	0.98952	15.79
M 1->11	0.93147	107.53
M 2->11	0.89300	170.18
M 3->11	0.89716	162.84
M _{4->11}	0.96671	50.77
M _{5->11}	0.89206	172.25

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M _{6->11}	0.88302	186.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\ A	0.90792	145.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\ A	0.89962	159.44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A A	0.87872	194.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. /	0.91943	127.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.90869	145.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.86606	216.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.87316	204.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.86194	223.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.86560	219.92
$M_{6\rightarrow 12}$ 0.83942 261.67 $M_{7\rightarrow 12}$ 0.86108 225.67 $M_{8\rightarrow 12}$ 0.87060 211.32 $M_{9\rightarrow 12}$ 0.90377 152.59 $M_{10\rightarrow 12}$ 0.87765 199.58 $M_{11\rightarrow 12}$ 0.90077 157.00	A	0.89505	166.46
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	A	0.83942	261.67
$M_{8\rightarrow12}$ 0.87060 211.32 0.90377 152.59 $M_{10\rightarrow12}$ 0.87765 199.58 $M_{11\rightarrow12}$ 0.90077 157.00	Λ	0.86108	225.67
$M_{9->12}$ 0.90377 152.59 $M_{10->12}$ 0.87765 199.58 $M_{11->12}$ 0.90077 157.00	Λ	0.87060	211.32
$M_{10\to 12}$ 0.87765 199.58 $M_{11\to 12}$ 0.90077 157.00	Λ	0.90377	152.59
$M_{11\to12}$ 0.90077 157.00	Λ	0.87765	199.58
	<i>1</i>	0.90077	157.00
		0.98665	20.16

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- _____
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Taram To: Encouve sample size of fair seems too short.
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
·	