Stat C131A: Statistical Methods for Data Science

Lecture 5: Probability Distributions ...contd

Sep 11 2025

Exams and Schedule

- We will have a written Final Exam.
 - There will likely be a final project as well but **not in lieu** of a written final exam
- Dates
 - Midterm Exam (one only): Thursday October 30th
 - Final Exam: Thursday December 18th
 - Final project* submission: Friday Dec 19th

Coin Flips: Binomial distribution

- Experiment: n independent trials; each trial is success/failure with probability p of success.
- Parameter n: number of trials (not histogram bins).
- Parameter p: success probability per trial.
- x-axis: k = 0,1,2,...,n (every integer count is a point).
- y-axis: P(X = k)
- Note: Seeing only a few x-tick labels (such as 0-5 in top-left) is an axis choice; otherwise the pmf has n+1 discrete points.

Conditional Probability

- Conditional distribution
- Note one but two random events
- Independent events
 - ightharpoonup P(A \cap B) = P(A)P(B)
- ightharpoonup P(A \cap B) = P(B) P(A \cap B)
- ightharpoonup P(A|B) = P(A \cap B) / P(B)
- Bayes theorem
 - P(A | B) = P(B | A) P(A) / P(B)
 - Where
 - P(A) is the prior
 - P(B | A) is the likelihood
 - ► P(B) is to **normalize**
- Independence can be Unconditional, as well as Conditional

Probability Distributions: Expectation, Variance & Continuous Distributions

- References
 - **2.2.4***, 2.3.1, 2.3.3, 2.3.3*

Expectation

The expectation (or mean) of a distribution is defined as

$$E(X) = \sum_{k \in \Omega} k \, p(k)$$

$$E(X) = \sum_{k \in \Omega} k \, p(k) = 1P(X = 1) + 2P(X = 2) + \dots + 6P(X = 6)$$
$$= 1/6(1 + 2 + \dots + 6)$$
$$= 21/6 = 3.5$$

Expectation: Interpretation

- Weighted mean of outcomes
- Probability acts as weight

Expected Body Temperature?

Variance

$$var(X) = E(X - E(X))^2 = \sum_{k \in \Omega} (k - E(X))^2 p(k)$$

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 \frac{1}{n-1}$$

Expectation & Variance

- Expectation: Center
- Variance: Spread

Properties

- E(a + bX) = a + bE(X)
- $ightharpoonup var(a+bX) = b^2 var(X)$
- $E(g(X)) \neq g(E(X))$; generally ...
- $-var(X) = E(X E(X))^2 = E(X^2) [E(X)]^2$

Discrete Distributions —> Continuous Distributions

- ightharpoonup Discrete: Ω countable (dice, coin flips)
- Continuous: Ω interval (e.g. salaries [0,∞))

Key Idea: Infinite Outcomes

- Probability is undefined for a single point!
 - Cannot assign positive probability to each point

WHY ?

Properties of Continuous Distributions

- $ightharpoonup 0 \le P(A) \le 1$, inclusive
- Probabilities are only calculated for events that are intervals, not individual points/outcomes
- $P(\Omega) = 1$

Probabilities over Intervals

ightharpoonup P(a \leq X \leq b) can be > 0

Cumulative Distribution Function

- Probability
 - Discrete distributions: comes from PMF
 - Continuous distributions: comes from from CDF (a bit differently)
- $P(x_1 < X \le x_2) = P(X \le x_2) P(X \le x_1)$
- $-/F(x) = P(X \le x)$
- The function F is the cdf!

Properties of CDFs

- Non-decreasing
- Limit as $x \rightarrow \infty = ?$
- Limit as $x \rightarrow -\infty = ?$

Properties of CDFs

- Non-decreasing
- Limit as $x \rightarrow \infty = 1$
- Limit as $x \rightarrow -\infty = ?$

Properties of CDFs

- Non-decreasing
- Limit as $x \rightarrow \infty = 1$
- Limit as $x \rightarrow -\infty = 0$

Why CDFs?

- The PMF does not apply in the continuous case
- The CDF fully describes the distribution

Interpreting CDFs

► F(x)=0.8 means?

Interpreting CDFs

► F(x)=0.8 means 80% probability $\leq x$

The Probability Density Function

- Probability Density Function (PDF)
 - Like a Histogram
 - The analog of the PMF, for continuous distributions
- Formally, p(x) is the derivative of F(x); if F(X) is differentiable

$$p(x) = \frac{d}{dx}F(x).$$

- Conversely, p(x) is that function such that if you take the area under its curve for the interval (a,b) it give us?
 - The probability of that interval!

$$\int_{a}^{b} p(x) = P(a \le X \le b) = F(b) - F(a)$$

- Relationship
 - PDF = derivative of CDF
 - CDF = integral of PDF

$$p(x) = \frac{1}{4}xe^{-x/2}$$

$$P(5 \le X \le 10)$$

$$\int_{5}^{10} \frac{1}{4} x e^{-x/2}$$

PDF

- Practical use ?
- Computers can compute the area!

PDF Properties

- A probability density function gives the probability of any interval by taking the area under the curve
- The total area under the curve p(x) must be exactly equal to 1
- Unlike probabilities, the value of p(x) can be ≥ 1 !!!

Key Takeaways

- Expectation & variance summarize distributions
- Continuous distributions: probabilities over intervals
- CDF describes continuous distributions