VAA_NC_Reportweek1_Thuong

Một số lệnh Linux cơ bản

https://ubuntu.com/tutorials/command-line-for-beginners?fbclid=lwAR2JurY8qGj6yedoYT6PpwkNX_zFfl4-NnX8Yi1HVRmhJfHS4CJtnslNlhU#4-creating-folders-and-files

Các lênh cơ bản:

- Pwd thư mục đang làm việc hiện tại
- · Mkdir tao thư mục mới
- Cd đường dẫn
- Cd / thư mục gốc
- Cd ~ trở về thư mục mặc định

Vd từ root trở về desktop cd ~/Desktop

- Cd .. trở về thư mục mẹ
- Liêt kê : Is

vd ls > output.txt xuất ra những cái có trên desktop đưa vào output.txt

• Rm -r xóa

Vd 123.txt trên desktop

· Cp copy

vd Cp 123.txt 123 (123 folder)

• +Mv di chuyển

Vd mv 123.txt 123

Sour code chuyển ảnh thành ảnh xám bằng open cv

Link tham khảo:

 $\underline{https://dev-akash.github.io/posts/how-to-convert-color-image-to-grayscale-in-opencv-with-python.html}$

import cv2

Reading color image

img = cv2.imread("Test.png")

Converting color image to grayscale image

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Showing the converted image

cv2.imshow("Converted Image",gray)

waiting for key event

cv2.waitKey(0)

destroying all windows

cv2.destroyAllWindows()

Source code sử dụng sobel và laplacian để phát hiện cạnh của ảnh

Link tham khảo:

https://www.includehelp.com/python/edge-detection-of-image-using-opencv-cv2.aspx

https://bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Gradient_Sobel_Laplacian_Derivatives_Edge_Dete

Sử dụng sobel

```
# importing the module
import cv2
# read the image and store the data in a variable
image=cv2.imread("Test.png")
# make it grayscale
Gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
# Make it with the help of sobel
# make the sobel_horizontal
# For horizontal x axis=1 and yaxis=0
\# for vertical x axis=0 and y axis=1
Horizontal=cv2.Sobel(Gray,0,1,0,cv2.CV_64F)
# the thresholds are like
\label{eq:condition} \mbox{$\#$ (variable,0,<x axis>,<y axis>,cv2.CV\_64F)}
Vertical = cv2.Sobel(Gray, 0, 0, 1, cv2.CV\_64F)
# DO the Bitwise operation
Bitwise_Or=cv2.bitwise_or(Horizontal, Vertical)
# Show the Edged Image
cv2.imshow("Sobel Image",Bitwise_Or)
cv2.imshow("Original Image",Gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
```


Sử dụng laplacian

```
# importing the module
import cv2

# read the image and store the data in a variable
image=cv2.imread("Test.png")

# make it grayscale
Gray=cv2.cvtColor(image,cv2.CoLOR_BGR2GRAY)

# Make Laplacian Function
Lappy=cv2.Laplacian(Gray,cv2.CV_64F)

cv2.imshow("Laplacian",Lappy)
cv2.imshow("Original",Gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
```


Dùng sobel và laplacian vs matplotlib

```
import cv2
import numpy as np
from matplotlib import pyplot as plt
# loading image
img0 = cv2.imread("Test.png")
# converting to gray scale
gray = cv2.cvtColor(img0, cv2.COLOR_BGR2GRAY)
# remove noise
img = cv2.GaussianBlur(gray,(3,3),0)
# convolute with proper kernels
laplacian = cv2.Laplacian(img,cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5) # x
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5) # y
plt.subplot(2,2,1), plt.imshow(img, cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2), plt.imshow(laplacian, cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3), plt.imshow(sobelx, cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4), plt.imshow(sobely, cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
```

