Intégration et

probabilités

Transformée de Fourier

Question 1/19

$$\lambda_d(\mathrm{d}x)$$

Réponse 1/19

$$\frac{\mathrm{d}x}{\left(2\pi\right)^{d/2}}$$

Question 2/19

$$\mathcal{F}(\mathrm{e}_y f)$$

Réponse 2/19

$$au_y\,\mathcal{F} f$$

Question 3/19

Intégrale de Gauss

Réponse 3/19

$$g_{\sigma}(x) = \frac{1}{\sigma^d} \exp\left(\frac{|x|^2}{2\sigma^2}\right)$$
$$\int_{\mathbb{R}^d} g_{\sigma}(x) \, \lambda_d(\mathrm{d}x) = 1$$

Question 4/19

Régularité de
$$\mathcal{F}: \mathcal{L}^1 \longrightarrow \mathcal{C}_0(\mathbb{R}^d, \mathbb{C})$$

 $f \longmapsto \mathcal{F}f$

Réponse 4/19

 \mathcal{F} est 1-lipschitzienne

Question 5/19

$$\mu * \nu$$

Réponse 5/19

$$\mu * \nu(A) = \int_{\mathbb{R}^d \times \mathbb{R}^d} \mathbb{1}_A(x+y) \, \mu \otimes \nu(\mathrm{d}x\mathrm{d}y)$$

Question 6/19

Théorème d'inversion de Fourier

Réponse 6/19

Si
$$f \in \mathcal{L}^1$$
 telle que $\mathcal{F}f \in \mathcal{L}^1$ λ_d presque partout alors $f(x) = \int_{\mathbb{R}^d} \mathcal{F}f(\xi) e^{i\xi \cdot x} \lambda_d(d\xi)$

Question 7/19

Théorème d'inversion de Fourier pour les mesures

Réponse 7/19

Soit μ une mesure signée sur \mathbb{R}^d telle que $\mathcal{F}\mu \in \mathcal{L}^1(\mathbb{R}^d)$ alors μ admet une densité par rapport à $\mathcal{RFF}\mu$ λ_d presque partout

Question 8/19

$$\mathcal{F}\!(au_y f)$$

Réponse 8/19

$$\operatorname{e}_{-y} \mathcal{F} f$$

Question 9/19

Lemme de réciprocité pour des mesures

Réponse 9/19

Si
$$\mu$$
 et ν sont deux mesures signées,

$$\int_{\mathbb{R}^d} \mathcal{F}\mu(x) \, \nu(\mathrm{d}x) = \int_{\mathbb{R}^d} \mathcal{F}\nu(x) \, \mu(\mathrm{d}x)$$

Question 10/19

Limite de $\mathcal{F}f$

Réponse 10/19

$$\mathcal{F}f$$
 est continue et $\mathcal{F}f(\xi) \xrightarrow[|\xi| \to +\infty]{} 0$

Question 11/19

$$\mathcal{F}g(\xi)$$
 $f \in \mathcal{L}^1, M \in \mathrm{GL}_d(\mathbb{R}), g(x) = f(M^{-1}x)$

Réponse 11/19

$$|\det(M)| \mathcal{F}f(M^{\top}\xi)$$

Question 12/19

$$\mathcal{F}(f*g)$$

Réponse 12/19

$$\mathcal{F}f \times \mathcal{F}g$$

Question 13/19

Théorème de Hahn-Jordan

Réponse 13/19

Si μ est une mesure signée sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ alors μ se décompose de manière unique en deux mesures positives μ_+ et μ_- étrangères telles que $\mu = \mu_+ - \mu_-$

Question 14/19

Lemme de réciprocité

Réponse 14/19

Si
$$f$$
 et g sont deux fonctions dans \mathcal{L}^1 ,
$$\int_{\mathbb{R}^d} \mathcal{F}f(x)g(x) \,\lambda_d(\mathrm{d}x) = \int_{\mathbb{R}^d} f(x) \,\mathcal{F}g(x) \,\lambda_d(\mathrm{d}x)$$

Question 15/19

$$\mathcal{F}\mu$$

Réponse 15/19

$$\int_{\mathbb{R}^d} e^{-i\xi \cdot x} \, \mu(\mathrm{d}x)$$

Question 16/19

Régulatité de $\mathcal{F}f$

Réponse 16/19

Si
$$|x|^k f \in \mathcal{L}^1$$
 alors $\mathcal{F}f \in \mathcal{C}^k(\mathbb{R}^d, \mathbb{C})$ et pour tout $\alpha \in \mathbb{N}^d$, $|\alpha| \leq k$,

tout
$$\alpha \in \mathbb{N}^d$$
, $|\alpha| \le k$,
$$\frac{\partial^{|\alpha|\mathcal{F}f}}{\partial x^{\alpha}}(\xi) = \int_{\mathbb{R}^d} (-\mathrm{i}x)^{\alpha} f(x) \mathrm{e}^{-\mathrm{i}\xi \cdot x} \, \lambda_d(\mathrm{d}x)$$

$$\frac{\partial^{|\alpha| \cdot j}}{\partial x^{\alpha}}(\xi) = \int_{\mathbb{R}^d} (-\mathrm{i}x)^{\alpha} f(x) \mathrm{e}^{-\mathrm{i}\xi \cdot x} \, \lambda_d(\mathrm{d}x)$$

En particulier,
$$\mathcal{F}f(\xi) = \underset{|\xi| \to +\infty}{\text{o}} \left(\frac{1}{|\xi|^k}\right)$$

Question 17/19

$$\mathcal{F}f(\xi)$$

Réponse 17/19

$$\int_{\mathbb{R}^d} f(x) e^{-i\xi \cdot x} \lambda_d(dx)$$

Question 18/19

Proporété de
$$\mathcal{F}: \mathcal{M}_s(\mathbb{R}^d) \to \mathcal{C}(\mathbb{R}^d, \mathbb{C})$$

Réponse 18/19

 \mathcal{F} est injective

Question 19/19

Formule de Fourier-Plancherel

Réponse 19/19

L'unique application $\Phi: L^2 \to L^2$ continue telle que $\Phi_{|L^1 \cap L^2} = \mathcal{F}_{|L^1 \cap L^2}$ Φ est une isométrie