

Nipun Sadvilkar Pycon India 2017

## < About me >

- Machine Learning Engineer @Juxt-Smart Mandate
- AI and ML Enthusiast
- Likes to crack puns- Ni..pun (^-^)
- @nipunsadvilkar on GitHub
- More on website:

https://nipunsadvilkar.github.io/

## #Questions:

- 1. How many of you are from heavy mathematical background? E.g. Engineering, Physics
- 2. How many of you have used ML libraries like sklearn in your work?
- 3. How many of you want to get into following fields?
  - Artificial Intelligence
  - Machine Learning
  - Deep Learning
  - Data Science

# MOTIVATION #1

# Prerequisite for any famous AI and ML course/Book



#### CS229 Machine Learning Autumn 2016

#### **Course Information**

#### Instructors:

Andrew Ng, John Duchi

#### **Course Description**

This course provides a broad introduction to machine learning and statistical (generative/discriminative learning, parametric/non-parametric learning, neur dimensionality reduction, kernel methods); learning theory (bias/variance trac control. The course will also discuss recent applications of machine learning, bioinformatics, speech recognition, and text and web data processing.

#### **Prerequisites**

Students are expected to have the following background:

- Knowledge of basic computer science principles and skills, at a level sufficiency
- Familiarity with the probability theory. (CS 109 or STATS 116)
- Familiarity with linear algebra (any one of Math 104, Math 113, or CS 20

#### **Deep Learning**

**An MIT Press book** 

lan Goodfellow and Yoshua Bengio and Aaron Courville

#### **Deep Learning**

- Table of Contents
- Acknowledgements
- Notation
- 1 Introduction
- Part I: Applied Math and Machine Learning Basics
  - 2 Linear Algebra
  - 3 Probability and Information Theory
  - 4 Numerical Computation
  - 5 Machine Learning Basics
- Part II: Modern Practical Deep Networks

## Those who struggle with math be like:



# Hackers' approach to learn Math

- Math is difficult but through coding, we can make it more interactive and intuitive.
- I like this quote:

"Statistics is Hard.

Using programming skills it can be easy"

- Jake VanderPlas (Statistics for Hackers Pycon 2016)
- [Same for Probability]
- Though, I want you to focus more on concepts and not on code (Code is available on GitHub. Have a look at it later)

#### MOTIVATION #2

# Modern AI

"Study and design of any agent that behaves in an intelligent way"



### Demo Time!

# WHO LIKES CHOCOLATES HERE?



# MOTIVATION #2

## HISTORY OF AI



### Conclusion





"Not once, but twice AI was revolutionized by people who understood Probability Theory"

- Stanford University | CS 109: Probability for Computer Scientists

#### TARGET

## To be able to understand following math

$$p(C_k \mid \mathbf{x}) = rac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$

$$p(C_k \mid x_1, \ldots, x_n) \propto p(C_k, x_1, \ldots, x_n)$$

"Naive" conditional independence assumptions

$$\propto p(C_k) \ p(x_1 \mid C_k) \ p(x_2 \mid C_k) \ p(x_3 \mid C_k) \ \cdots$$

$$\propto p(C_k) \prod_{i=1}^n p(x_i \mid C_k)$$
 .

$$\hat{y} = rgmax_{k \in \{1,\ldots,K\}} p(C_k) \prod_{i=1}^n p(x_i \mid C_k).$$

# Diving into Probability

Obligatory coin toss experiment (interactive way)



#### Using:

1. Virtual Coin with



2. Comparing theoretical Vs experimental probability with



3. Simulating experiment with Python



Introduction to Probability.ipynb

## #Activity 1 - Virtual Coin with





#### FLIP THE COIN

CHOOSE YOUR FAVOURITE COIN:

[MINE IS ₹10]









# #Activity 2 - Comparing theoretical to experimental probability with



#### Chance Events

Randomness is all around us. Probability theory is a mathematical framework that allows us to analyze chance events in a logically sound manner. The probability of an event is a number indicating how likely that event will occur. This number is always between 0 and 1, where 0 indicates impossibility and 1 indicates certainty. A classic example of a random experiment is a fair coin toss, in which the two possible outcomes are heads or tails. In this case, the probability of flipping a head or a tail is 1/2. In an actual series of coin tosses, however, we may get more or less than exactly 50% heads.



For an unfair or weighted coin, the two outcomes are not equally likely. You can change the weight of the coin by dragging the true probability bars up or down.



# #Activity 3 - Simulating coin-toss experiment with Python



#### For number of coin-toss (n) = 100000

```
In [17]: n = 100000
    heads_so_far = 0
    fraction_of_heads = []
    for i in range(n):
        if comp_prob_inference.flip_fair_coin() == 'heads':
            heads_so_far += 1
            fraction_of_heads.append(heads_so_far / (i+1))
In [18]: plt.figure(figsize=(8, 4))
    plt.plot(range(1, n+1), fraction_of_heads)
    plt.xlabel('Number of flips')
    plt.ylabel('Fraction of heads')
```



# Ingredients to Modelling Uncertainty

### 1. Sample space:

The set of all possible outcomes for the experiment

$$\Omega = \{ ext{heads, tails} \}$$

## 2. The probability of each outcome:

For each possible outcome, assign a probability that is at least 0 and at most 1. For the fair coin flip:

$$\mathbb{P}( ext{heads}) = rac{1}{2}$$
 and  $\mathbb{P}( ext{tails}) = rac{1}{2}$ 

## Introduction to Random Variables

$$\begin{array}{ccc}
Random & Possible & Random \\
Variable & Values & Events
\end{array}$$

$$X = \begin{cases}
0 & \longleftarrow & \bigcirc \\
1 & \longleftarrow & \bigcirc
\end{cases}$$

Introducing Random Variables.ipynb

## Relation between Random Variables

- 1. Joint Probability
- 2. Marginal Probability
- 3. Conditional Probability
- 4. Dependence & Independence

## Demystifying Bayes theorem



# Application of Probability Theory learnt so far in Machine learning

Naive Bayes
Algorithm
As a Spam filter



## Take Away:

- Mathematics is Hard, using programming skills it can be easy
- Intuition of Probability theory behind simple yet fast Naive Bayes algorithm

## ~ Thank you! ~





https://nipunsadvilkar.github.io



https://github.com/nipunsadvilkar



https://facebook.com/nipunsadvilkar



nipunsadvilkar@gmail.com



- 1. MITx: 6.008.1x Computational Probability and Inference, Edx
- 2. CS 109: Probability for Computer Scientists, Stanford University
- 3. Prob140: Probability for Data Science, UC Berkeley
- 4. Mathsisfun.com
- 5. <a href="https://en.wikipedia.org/wiki/Naive\_Bayes\_classifier">https://en.wikipedia.org/wiki/Naive\_Bayes\_classifier</a>
- 6. Seeing Theory, Brown University
- 7. <a href="https://github.com/wintersummermint/coin-flip-javascript">https://github.com/wintersummermint/coin-flip-javascript</a>