# CEG2136 LAB 3 Group 21

Ryan Fleck - 8276723 Xiuzhu Li - 8571645

November 6, 2017

# Contents

| 1 | The 1.1 1.2 1.3 | Lab Objectives                                                                                      |
|---|-----------------|-----------------------------------------------------------------------------------------------------|
| 2 | Des 2.1 2.2 2.3 | ign 1   QUARTUS II Circuit Diagrams 1   Implemented Solution 8   Challenging Problems Encountered 8 |
| 3 | <b>Imp</b> 3.1  | Simulation Results                                                                                  |
| 4 | Des             | ign And Implementation Log                                                                          |
| 5 | 5.1<br>5.2      | Errors Encountered                                                                                  |
| L | ıst             | of Figures                                                                                          |
|   | 1<br>2<br>3     | One-Bit Logic and Shift Circuit                                                                     |
|   | 4<br>5<br>6     | Second Iteration of the Four-Bit Register                                                           |
|   | 7<br>8<br>9     | Second Iteration of the Four-Bit Arithmetic Circuit                                                 |
|   | 10<br>11<br>12  | ALU                                                                                                 |

# 1 Theoretical Implementation

#### 1.1 Lab Objectives

The general objectives for this lab are as follows:

- Students will design an ALU.
- The designed ALU will be implemented in Altera Quartus II.
- The ALU will be tested using simulated waveforms.
- The ALU's operations will be verified on an Altera DE2-115 FPGA.

#### 1.2 Discussion of Requirements

#### 1.3 Proposed Algorithmic Solution

# 2 Design

#### 2.1 QUARTUS II Circuit Diagrams



Figure 1: One-Bit Logic and Shift Circuit



Figure 2: Four-Bit Logic and Shift Circuit



Figure 3: Four-Bit Register



Figure 4: Second Iteration of the Four-Bit Register



Figure 5: One-Bit Arithmetic Circuit "ABXIO"



Figure 6: Four-Bit Arithmetic Circuit



Figure 7: Second Iteration of the Four-Bit Arithmetic Circuit



Figure 8: Full Adder



Figure 9: Status Indicator Circuit



Figure 10: ALU

### 2.2 Implemented Solution



Figure 11: Successful Compilation

### 2.3 Challenging Problems Encountered

# 3 Implementation

As seen in Figure 10, our fully implemented ALU, we were able to successfully design and connect all of the lower-level circuits to create a functional final product.

#### 3.1 Simulation Results



Figure 12: Complete Waveform File and Failed Waveform Generation

# 4 Design And Implementation Log

1. When performing the prelab...

### 5 Discussion

#### 5.1 Errors Encountered

#### 5.2 Conclusions