## Propagators: An Introduction

George Wilson

Data61/CSIRO

george.wilson@data61.csiro.au

November 13, 2017





What?



Why?

Beginnings as early as the 1970's at MIT

- Guy L. Steele Jr.
- Gerald J. Sussman
- Richard Stallman

More recently:

Alexey Radul



## And then

• Edward Kmett





$$x \le y \implies f(x) \le f(y)$$

Propagators

| The <i>propagator model</i> is a model of computation We model computations as <i>propagator networks</i> |  |
|-----------------------------------------------------------------------------------------------------------|--|
|                                                                                                           |  |
|                                                                                                           |  |
|                                                                                                           |  |

# The *propagator model* is a model of computation We model computations as *propagator networks*

## Propagator networks:

- are extremely expressive
- lend themselves to parallel and distributed evaluation
- allow different strategies of problem-solving to seamlessly cooperate

## A propagator network comprises

- cells
- propagators
- connections between cells and propagators

































 $y \leftarrow z - x$ 









Propagators let us express multi-directional relationships!

$$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$$



$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

 $^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$ 



$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

 $^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$ 



$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$













We can combine networks into larger networks!















































## Cells accumulate information in a bounded join-semilattice

## A bounded join-semilattice is:

- A partially ordered set
- with a least element
- such that any set of elements has a least upper bound

## Cells accumulate information in a bounded join-semilattice

## A bounded join-semilattice is:

- A partially ordered set
- with a least element
- such that any set of elements has a least upper bound

"Least upper bound" is denoted as  $\vee$  and is usually pronounced "join"













- ∨ has useful algebraic properties. It is:
  - A monoid
  - that's commutative
  - and idempotent

$$\text{Left identity} \\ \epsilon \vee x = x$$

Right identity 
$$x \lor \epsilon = x$$

Associativity 
$$(x \lor y) \lor z = x \lor (y \lor z)$$

$$Commutative \\ x \vee y = y \vee x$$

| These laws and some other conditions make propagator networks deterministic, even in the face of parallelism and distribution |
|-------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                               |
|                                                                                                                               |
|                                                                                                                               |

| These laws and some other conditions make propagator networks deterministic, |  |
|------------------------------------------------------------------------------|--|
| even in the face of parallelism and distribution                             |  |
|                                                                              |  |

Bounded join-semilattices are already popular in the distributed systems world

See: Conflict Free Replicated Datatypes





data Perhaps a = Unknown | Known a | Contradiction

```
data Perhaps a = Unknown | Known a | Contradiction
instance Eq a => BoundedJoinSemiLattice (Perhaps a) where
 bottom = Unknown
  (\/\) Unknown x = x
  (\/\) \times Unknown = X
  (\/) Contradiction _ = Contradiction
  (\/) Contradiction = Contradiction
  (\/\) (Known a) (Known b) =
   if a == b
     then Known a
     else Contradiction
```

























[1, 5]

 $[1,5] \cup [2,7] = [2,5]$ 











## Alexey Radul's work on propagators:

- Art of the Propagator
   http://web.mit.edu/~axch/www/art.pdf
- Propagation Networks: A Flexible and Expressive Substrate for Computation http://web.mit.edu/~axch/www/phd-thesis.pdf

Lindsey Kuper's work on LVars is closely related, and works today:

• Lattice-Based Data Structures for Deterministic Parallel and Distributed Programming https://www.cs.indiana.edu/~lkuper/papers/lindsey-kuper-dissertation.pdf

• lvish library
https://hackage.haskell.org/package/lvish

## Edward Kmett has worked on:

- Making propagators go fast
- Scheduling strategies and garbage collection
- Relaxing requirements (Eg. not requiring a full join-semilattice, admitting non-monotone functions)

## Ed's stuff:

- http://github.com/ekmett/propagators
- http://github.com/ekmett/concurrent
- Lambda Jam talk (Easy mode):
  - https://www.youtube.com/watch?v=acZkF6Q2XKs
- Boston Haskell talk (Hard mode):
- https://www.youtube.com/watch?v=DyPzPeOPgUE

## In conclusion, propagator networks:

- Admit any Haskell function you can write today . . .
- ...and more functions!
- compute bidirectionally
- give us constraint solving and search
- parallelise and distribute

