Homework 4

Ασημάχης Κύδρος ΑΕΜ: 3881 asimakis@csd.auth.gr

Μάρτιος 2023

1 Έστω οι boolean συναρτήσεις $f,g:\mathbb{F}_2^n\to\{0,1\}$. Ονομάζουμε correlation coefficient το

$$C(f,g) = \frac{1}{2^n} \sum_{\mathbf{x} \in \mathbb{F}_2^n} (-1)^{f(\mathbf{x}) \oplus g(\mathbf{x})}$$

Υπολογίστε το C(f,g) αν $F,g: \mathbb{F}_2^3 \to \{0,1\}, f=x_1x_2 \oplus x_3, g=x_1 \oplus x_3.$

Αρχικά παρατηρούμε πως

$$f(x) \oplus g(x) = x_1 x_2 \oplus x_3 \oplus x_1 \oplus x_3 \Rightarrow f(x) \oplus g(x) = x_1 x_2 \oplus x_1$$

Επομένως μπορούμε να ξαναγράψουμε την σχέση ως:

$$C(f,g) = \frac{1}{8} \sum_{\mathbf{x} \in \mathbb{F}_2^3} (-1)^{x_1 x_2 \oplus x_1}$$

Υπολογίζοντας το εκθετικό $(-1)^{x_1x_2\oplus x_1}$ για κάθε δυνατή τιμή του \mathbb{F}_2^3 έχουμε:

$(x_1x_2x_3)$	$x_1x_2 \oplus x_1$	$(-1)^{x_1x_2 \oplus x_1}$
000	0	1
001	0	1
010	0	1
011	0	1
100	1	-1
101	1	-1
110	0	1
111	0	1

Η τελευταία στήλη δίνει άθροισμα 4. Επομένως

$$C(f,g) = \frac{1}{8} \cdot 4 = \frac{1}{2}$$

Υλοποιώντας την παραπάνω λύση σε python επιβεβαιώνουμε το αποτέλεσμα: task 1.py

2 Έστω το S-κιβώτιο $S:\mathbb{F}_2^n\to\mathbb{F}_2^m$ της σελίδας 46 των διαφανειών.

Ονομάζουμε Differential Uniformity το

$$Diff(S) = \max_{\mathbf{x} \in \mathbb{F}_2^n - \{0\}, \mathbf{y} \in \mathbb{F}_2^m} |\{\mathbf{z} \in \mathbb{F}_2^n \ni S(\mathbf{z} \oplus \mathbf{x}) \oplus S(\mathbf{z}) = \mathbf{y}\}|$$

Υπολογίστε το Diff(S).

Η λύση δίνεται από το task 2.py. Ουσιαστικά τρέχουμε την σύγκριση $S(\mathbf{z} \oplus \mathbf{x}) \oplus S(\mathbf{z}) = \mathbf{y}$ για όλα τα \mathbf{z} του \mathbb{F}_2^6 για κάθε ζεύγος (\mathbf{x}, \mathbf{y}) του $\mathbb{F}_2^6 - \{0\} \times \mathbb{F}_2^4$ και κρατάμε σε μετρητή το πλήθος των \mathbf{z} που την ικανοποιούν. Ο μέγιστος μεταξύ αυτών των μετρητών δίνει τη λύση, που στη προκειμένη περίπτωση βγαίνει

$$Diff(S) = 16$$

3 Εxtra: Έστω το παίγνιο - απόδειξη μη σημασιολογικής ασφάλειας του ΕCB με CPA της σελίδας 82 των διαφανειών. Γιατί αποτυγχάνει η επίθεση της Eve αν αντί του ΕCB χρησιμοποιηθεί CBC-mode?

Η επίθεση της Ενε στηρίζεται στο ότι γνωρίζει την κρυπτογράφηση του Μ από πριν, καθώς το διαλέγει η ίδια και η Alice της στέλνει το αντίστοιχο C.

Επομένως, εφόσον ο ECB κάνει κρυπτογράφηση κάθε block ανεξάρτητα, βλέποντας το πρώτο block του C[b] μπορεί να καταλάβει αν αντιστοιχεί στο M και επομένως να αποφανθεί για το b.

Στον CBC-mode, πριν την κρυπτογράφηση κάθε αρχικού block γίνεται bit-wise xor του block-plaintext με ένα τυχαίο διάνυσμα IV. Επομένως η Eve δεν έχει πλέον την κρυπτογράφηση του M, και άρα δεν μπορεί να αποφανθεί για το b με τον προηγούμενο τρόπο.