

Figura 7.2.1 Para Δt peque $\tilde{\mathbf{n}}$ o, $\Delta \mathbf{s} = \mathbf{c}(t + \Delta t) - \mathbf{c}(t) \approx \mathbf{c}'(t) \Delta t$.

Si subdividimos el intervalo [a,b] en n partes iguales $a=t_0 < t_1 < \cdots < t_n = b$, con $\Delta t = t_{i+1} - t_i$, entonces el trabajo realizado por \mathbf{F} es aproximadamente

$$\sum_{i=0}^{n-1} \mathbf{F}(\mathbf{c}(t_i)) \cdot \Delta \mathbf{s} \approx \sum_{i=0}^{n-1} \mathbf{F}(\mathbf{c}(t_i)) \cdot \mathbf{c}'(t_i) \, \Delta t.$$

Cuando $n \to \infty$, esta aproximación cada vez es mejor, por lo que es razonable definir el trabajo como el límite de la suma anterior cuando $n \to \infty$. Este límite está dado por la integral

$$\int_a^b \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt.$$

Definición de integral de línea

La exposición anterior sobre el trabajo nos lleva a la siguiente definición.

Definición Integral de línea Sea \mathbf{F} un campo vectorial en \mathbb{R}^3 que es continuo sobre la trayectoria C^1 \mathbf{c} : $[a,b] \to \mathbb{R}^3$. Definimos $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$, la *integral de línea* de \mathbf{F} a lo largo de \mathbf{c} mediante la fórmula

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt;$$

es decir, integramos el producto escalar de ${\bf F}$ por ${\bf c'}$ sobre el intervalo [a,b].

Como en el caso de las funciones escalares, también podemos definir $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$ si $\mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t)$ es solo continua a trozos.

Para trayectorias \mathbf{c} que satisfacen $\mathbf{c}'(t) \neq \mathbf{0}$, existe otra útil fórmula para la integral de línea: concretamente, si $\mathbf{T}(t) = \mathbf{c}'(t)/\|\mathbf{c}'(t)\|$ denota al vector tangente unitario, tenemos