Diagramme de Nyquist - Critère de stabilité

Définition:

Tracé de l'amplitude $A = |KG(j\omega)|$ et de son angle de phase $\varphi = \angle KG(j\omega)$ pour $0 \le \omega \le +\infty$

Règles générales :

- L'angle de phase φ est maximum lorsque $\omega = +\infty$
- $\varphi_{max} = -90^{\circ}(n-m)$. n: nombre de pôles, m: nombre de zéros.
- Le diagramme de Nyquist est symétrique par rapport à l'axe des réels (x): Le tracé de $0 \le \omega \le +\infty$ est symétrique par rapport à celui de $-\infty \le \omega \le 0$
- Pour chaque intégration $\left(\frac{1}{s}\right)$ dans la fonction de transfert $KG(j\omega)$, un retard de 90° sera produit $(\varphi = -90^\circ)$
- Pour chaque intégration, un demi-cercle symétrique par rapport à l'axe des réels sera ajouté à droite de la partie symétrique $(-\infty \le \omega \le 0)$.
- Les systèmes de type 0 : pas de courbes asymptotiques.
- Les systèmes de type 1 : les courbes sont asymptotiques à l'axe imaginaire négatif $(\varphi=-90^\circ)$ lorsque $\omega=0$
- Les systèmes de type 2 : les courbes sont asymptotiques à l'axe réel négatif $\left(\varphi=-180^{\circ}\right)$ lorsque $\omega=0$

Critère de stabilité de Nyquist :

P: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles instables (dans le demi-plan droit) de la boucle fermée.

Z = N - P

Si Z=0, le système est stable.

Exemple #1 : Système premier ordre : Type 0, n-m=1-0=1

$$KG(s) = \frac{23.8}{0.138s + 1}$$

$$KG(j\omega) = \frac{23.8}{0.138j\omega + 1}$$

$$|KG(j\omega)| = \frac{23.8}{\sqrt{1 + 0.02\omega^2}}$$

$$\varphi = -tan^{-1}(0.138\omega)$$

$$\omega = 0$$
 \rightarrow $|KG(j\omega)| = 23.8$
 \rightarrow $\varphi = 0^{\circ}$

$$\omega = \omega_c = \frac{1}{0.138} = 7.25 \, rad/s \quad \rightarrow \quad |KG(j\omega)| = \frac{23.8}{\sqrt{2}}$$

$$\rightarrow \quad \varphi = -tan^{-1}(0.138\omega) = -tan^{-1}(1) = -45^{\circ}$$

$$\omega \to \infty$$
 \to $|KG(j\omega)| = 0$
 \to $\varphi = \varphi_{max} = -90^{\circ}(n-m) = -90^{\circ}$

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens anti-horaire.

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #2 :Système second ordre : Type 0, n-m=2-0=2

$$KG(s) = \frac{0.5}{(s+0.5)(s+1.5)}$$

$$KG(j\omega) = \frac{0.5}{(j\omega + 0.5)(j\omega + 1.5)}$$

$$|KG(j\omega)| = \frac{0.5}{\sqrt{(0.75 - \omega^2)^2 + 4\omega^2}}$$

$$\varphi = -tan^{-1} \left(\frac{2\omega}{0.75 - \omega^2} \right)$$

$$\omega = 0$$
 \rightarrow $|KG(j\omega)| = 0.66$
 \rightarrow $\varphi = 0^{\circ}$

$$\omega = \omega_n = \sqrt{0.75} = 0.86 \, rad/s \rightarrow |KG(j\omega)| = \frac{0.5}{2\sqrt{0.75}} = 0.29$$

$$\to \varphi = -tan^{-1}(-\infty) = -90^{\circ}$$

$$\omega \to \infty \quad \to \quad |KG(j\omega)| = 0$$

$$\to \quad \varphi = \varphi_{max} = -90^{\circ}(n-m) = -180^{\circ}$$

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #3 : Système second ordre : Type 0, n-m=2-0=2

$$KG(s) = \frac{10}{(s+1)(s+2)}$$

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #4 : Système second ordre : Type 1, n-m=2-0=2

$$KG(s) = \frac{10}{s(s+2)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A = |KG(j\omega)| = \infty$.

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #5 : Système troisième ordre : Type 0, n-m=3-0=3

$$KG(s) = \frac{20}{(s+1)(s+2)(s+5)}$$

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #6 : Système troisième ordre : Type 1, n-m=3-0=3

$$KG(s) = \frac{20}{s(s+2)(s+5)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A = |KG(j\omega)| = \infty$.

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #7 : Système troisième ordre : Type 2, n-m=3-0=3

$$KG(s) = \frac{20}{s^2(s+5)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A = |KG(j\omega)| = \infty$.

Critère de stabilité de Nyquist :

P=0: Nombre de pôles dans le demi-plan droit de la boucle ouverte.

N=2: Nombre d'encerclements autour du point critique (-1,0) dans le sens **horaire.**

Z: Nombre de pôles instables (dans le demi-plan droit) de la boucle fermée.

Exemple #8 : Système troisième ordre : Type 1, n-m=3-1=2

$$KG(s) = \frac{10(s+2)}{s(s+1)(s+5)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A=|KG(j\omega)|=\infty$.

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #9 : Système quatrième ordre : Type 1, n-m=4-0=4

$$KG(s) = \frac{300}{s(s+3)(s+4)(s+8)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A = |KG(j\omega)| = \infty$.

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #10 : Système quatrième ordre : Type 1, n-m=4-0=4

$$KG(s) = \frac{500}{s(s+3)(s+4)(s+8)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A = |KG(j\omega)| = \infty$.

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=1: Nombre d'encerclements autour du point critique (-1,0) dans le sens horaire.

Z: Nombre de pôles instables (dans le demi-plan droit) de la boucle fermée.

Exemple #11 : Système troisième ordre : Type 1, n-m=3-0=3

$$KG(s) = \frac{40}{s(s+2)(s+10)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A = |KG(j\omega)| = \infty$.

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles dans le demi-plan droit de la boucle fermée.

Exemple #12 : Système troisième ordre : Type 1, n-m=3-0=3

$$KG(s) = \frac{400}{s(s+2)(s+10)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A = |KG(j\omega)| = \infty$.

Critère de stabilité de Nyquist :

P=0: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=1: Nombre d'encerclements autour du point critique (-1,0) dans le sens **horaire.**

Z: Nombre de pôles instables (dans le demi-plan droit) de la boucle fermée.

Exemple #13 : Système second ordre : Type 1, n-m=2-1=1

$$KG(s) = \frac{0.5(s+1)}{s(s-1)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A=|KG(j\omega)|=\infty$.

Critère de stabilité de Nyquist :

P=1: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=0: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles instables (dans le demi-plan droit) de la boucle fermée.

Exemple #14 : Système second ordre : Type 1, n-m=2-1=1

$$KG(s) = \frac{10(s+1)}{s(s-1)}$$

On ne peut pas voir les allures complètes de Nyquist car Matlab ne peut pas tracer le module $A=|KG(j\omega)|=\infty$.

Critère de stabilité de Nyquist :

P=1: Nombre de pôles instables (dans le demi-plan droit) de la boucle ouverte.

N=1: Nombre d'encerclements autour du point critique (-1,0) dans le sens **anti-horaire.**

Z: Nombre de pôles instables (dans le demi-plan droit) de la boucle fermée.