

1 agatttgaat cgccggaccc gttggcagag gtggcgccg ggccatgggt gccccgacgt
 61 tggccctgc ctggcagccc ttctcaagg accaccgcatt ctcatacc aagaactggc
 121 ctttcttggaa gggctgcggc tgacacccgg agcggatggc cgaggctggc ttcatccact
 181 gccccactga gaacggggca gacttggccc agtgttctt ctgcttcaag gagctggaaag
 241 gctgggagcc agatgacgac cccatagagg aacataaaaaa gcattcgtcc ggttgcgtt
 301 tcctttctgt caagaaggcag tttaaaaatgaaat taacccttgg tgaatttttg aaactggaca
 361 gagaaggaggc caagaacaaa attgcaaaagg aaaccaacaa taagaagaaaaa gaatttgagg
 421 aaactgcgaa gaaagtgcgc cgtccatcg aggactggc tgccatggat tgaggccct
 481 ggccggagct gcctggtccc agagtggctg caccactcc aggttatt ccctgggtgcc
 541 accaggcctc ctgtggccc cttagcaatg tcttagaaaaa gtagatcaac atttcaaat
 601 tagatgttca aactgtgtc ttgttttgtc ttgaaaatgg caccagggt gctctct
 661 gtgcagggg tgcgtgtgtt aacagtggct gcttctctt ctctctctt ccctgggg
 721 ctcatttttgc ctgttttgtt aactgtgtc ttgttttgtt aacagtggctt accagggt
 781 agtgtccctt ttgcttaggg ctcattttttttt tttttttttt ttccgggtt
 841 tgcgtctggaa cctcatgtt ttgagggtt tttttttttt ttccgggtt
 901 ctgttgaatc tgagctgcag gttccttatc ttgttgcacactt
 961 ttttttgtt tttttttttt ttgttgcacactt
 1021 aatggagaca gagtcccccc ctcctctact ttgttgcacactt
 1081 gaattttaa ttccagaat agcacaactt acaattaaaaa ctaaggcacaa agccattcta
 1141 agtcattggg gaaacggggt gaacttcagg tggatggaga gacagaatag agtgatagga
 1201 agcggtctggc agataactct ttgtccactt ctgtgtgtt agacaggccc agtgagcc
 1261 gggccacatg ctggccggctc ctccctcaga aaaaaggcgtt ggcctaaatc
 1321 gacttggctc gatgtgtgg gggactggc gggctgtgtt
 1381 caacccatc atctgtcacg ttctccacac gggggagaga
 1441 gcttttttg gaggcaggcag ctcccgagg gctgaaatgtt
 1501 attcggccctc ctcctgtca tagagctgc ggggtggattt
 1561 tctggaggc atctcggtt ttcctgagaa ataaaaaggc
 1621 aaaaaaaaaaaa aaa (SEQ ID NO: 1) HUMAN SURVIVIN

FIG. 1

FIG. 2

HUMAN SURVIVIN

MGAPTLPPAWQPFLKDHRISTFKNWPFLLEGCACTPERMAEAGFIHCPTENE
PDLAQCFCCFKELEGWEPDPPDPIEEHKHKSSGCAFLSVKQQFEELTIGEFL
KLDREAKNKIAKETNNKKKEETAKVRRATEQLAAMD (SEQ ID NO: 2)

1	ggcacgagg	ggccgggct	ctcccgcat	gctctgggc	gcccctccg	ccgcgcgatt
61	tgaatcctgc	gttggatcg	tcttggcgg	ggtgtgttg	acggccatcat	gggaggtcccg
121	gcgctggcc	agatctggca	gctgtaccc	aagaactacc	gcatacc	tttcaagaac
181	tggccctcc	tggaggactg	cgcctgacc	ccagaggcgaa	tggggaggcc	tggcttcata
241	cactgccta	ccgagaacga	gcctgatttgc	gcccagtgtt	ttttctgttt	taaggaaatttg
301	gaaggctgg	aaccggatga	caaccggata	gaggaggata	gaaaggactc	ccctggctgc
361	gccttcctca	ctgtcaaagaa	gcagatggaa	gaactaaccg	tcaagtgaatt	tttggaaactg
421	gacagacaga	gagccaaagaa	caaatttgc	aaggagacca	acaacaaggca	aaaaggattt
481	gaagagactg	caaagactac	ccgtcagtca	attggcaggc	tggctggccta	atgctgagcc
541	tttgctgaga	taacttggac	ctgagtgaca	tgccacatct	aagccacgca	tcccaggcttt
601	tccaggcagg	gcctccttag	aggatcttag	agaaggagac	tgaaacttgg	ttttggatattt
661	tatcaaatat	tttggtttt	gctttaaagt	ggcttacctct	ctttgggttt	gtggctttgc
721	tctattgtga	cgtggactta	agcaataaagg	aagtgtatgaa	tctctgacag	tctctgacag
781	gacctgtgg	ggtcgggggtg	cctgtcaag	gggacagtgat	tgattgtgtat	atttccatac
841	agggtgtcta	atgcaggccca	tgggttaaagt	tggtttatatg	tgtttgtgtatg	gataatttttg
901	tcctgtatgag	ttttccttacc	acggggtaaac	ggaataaaaaat	cacttggaaaa	agtgg

FIG. 3

(MURINE TIA P)

FIG. 4

(MURINE TIAP)

MGAPALPQIWQLYLKNYRIATEKNWPELIEDCACTPERMAEAGEFIHCPTENE
PDLAQCFCCFKLEGWE PDDNPIEEHRKHS PGCAFLTVKKQMEELTVSEFL
KLDRQRRAKNNKIAKETNNKQKE.FEE.TAKTTTRQSIEQLAA (SEQ ID NO: 4)

FIG. 5

1	cttgcagctg	cccaccccac	cctcagctct	ggccctttac	tcaccctcta	ccacagacat
61	ggctcagtca	ctggctctga	gcctcccttat	cctggttctg	gcctttggca	tccccaggac
121	ccaaggcagt	gatgggggg	ctcaggactg	ttggctcaag	tacagccaaa	gaaagattcc
181	cgc当地	gtccgc当地	accggaaagca	ggaaccaagc	ttaggctgct	ccatcccage
241	tatcccttcc	ttggcccgca	aggctctca	ggcaggacta	tgtggagacc	caaaggaggct
301	ctgggtcgag	cagctgtatgc	agcatctgga	caagacacca	tcccccacaga	aaccagccca
361	gggctggcagg	aaggacaggg	gggcctccaa	gactggcaag	aaaggaaagg	gctccaaagg
421	ctgcaaggagg	actgggggt	cacagacccc	taaaggggcca	tagcccgatg	agcaggcctgg
481	agccctggag	accaccagg	cctcaccaac	gcttgaagcc	tgaacccaaag	atgcaagaag
541	gaggctatgc	tcaaggggccc	tggaggcaggc	accccatgtc	ggccttgcca	cactttct
601	cctggctttaa	ccacccatc	tgcattccca	gctctaccct	gcatggctga	gctgccaca
661	gcagggccagg	tccaggagaga	ccgaggaggg	agagtctccc	agggaggcatg	agaggaggca
721	gcaggactgt	cccccggaaag	gagaatcatc	aggacccctgg	acctgatacg	gctcccccagt
781	acacccacc	tcttccttgt	aaatatgatt	tataacctaac	tgaataaaaa	gctgttctgt
841	cttccaccc	gc	(SEQ ID NO: 5)			

(HUMAN SLC)

FIG. 6

MAQSLALSLLILVLAFGIPIRTQGS DGGAQDCCLKY SQRKI PAKVVRSYRKQ
EPSLGCSI PAILFLPRKRSQAELCADPKELWVQQLMQHILDKT PSPQKPAQG
CRKDRGASKT GKGSKGCKRTERSQT PKGP (SEQ ID NO: 6)

(HUMAN SLC)

FIG. 7

1 gaattcggcc aaaggaggcc acggccaaag agggctaaac ttgcggctgt ccatctcacc
61 tacagctctg gtctcatcc caactcaacc acaaatcatgg ctcagatgt gactctgagc
121 ctcccttagcc tggccctggc tctctgcatc ccctggacc aaggcagtga tggagggggt
181 caggactgct gccttaagta cagccagaag aaaattccct acagtattgt ccgaggctat
241 aggaagcaag aaccaatgtt aggctgtccc atccccggcaa tcctgttctc accccggaaag
301 cactctaagg ctgagctatg tgccaaacctt gaggaaggct gggtgccgaaa cctgatggcg
361 cgccctggacc agcctccagc cccaggaaaa caaagccccg gctgcaggaa gaaccggggaa
421 acctctaagt ctggaaagaa agggaaaggc tc当地aagggt gcaaggaaac tgaacagaca
481 cagccctcaa gagatagcc cagtagccg cctggagccc aggagatccc ccacgaaactt
541 caaggctgggt ggttcacggc ccaactcaca ggccaaaggagg gagctagaaa acagactcag
601 gagccggctag tcgag (MURINE SLC CCL21b)

(SEQ ID NO: 7)

FIG. 8

MAQMMTLSLLSLVLAICIPWTQGSDGGGQDCCLKYSQKKIPIYSIVRGYRKQ
EPSLGCPIPAILESPRKHSKPELCANPEEGVWVQNLMMRRLDQPPAPGKQSPG
CRKNRGTSKSGKKGSKGCKRTEQTQPSRG (SEQ ID NO: 8)

(MURINE SLC CCL21b)

FIG. 9

FIG. 10

Murine minor histocompatibility antigen H60 (partial)

1 tgagggaaaga ccatggcaaa gggagccacc agcaaggagca accatgcct gatttgagc
61 ctttcattc tgctgagcta tctgggacc atactggcag atggtacaga ctcttaagt
121 tgtgaattaa ctttcaacta tcgtaatcta catggacagt gctcagtgaa tgaaaggact
181 ctcccttgatt ttggtgataa aaaacatgag gaaaatgcta ctaagatgtg tgctgatttg
241 tcccääaaccc tgaggagat ttccagaagg atgtggaaagt tacaatcagg taatgataacc
301 ttgaatgtca caacacaat tcagttataat caagggaaat tcattgtgg attctgggc
361 atcaacactg atgaacagca tagcatctac ttttatccac ttaaatatgac ctggagagaa
421 agtcattctg ataacagcag tgccatggag cagtggaaaga acaagaacct agagaaagat
481 atgagggaaatt tcctcatcac atatttcagt cactgcctca acaaatcgtc atcacactt
541 agagaatgc caaatcaac attaaagggtg ccggatacca cccaaacgtac aaatgcccact
601 cagattcatc ctacagtgaa taacttccga cataattctg acaaccaggg tctgagtgtc
661 acctggattg tgattatag tataggagga ttagtgtctt tcatggcatt catggattc
721 gcttggtta tgctgaagaa aaaaaa (SEQ ID NO: 9)

FIG. 11

MINOR histocompatibility antigen H60 (partial)

MAKGATSKSNHCLILSFLILLSYLGTIILADGTDLSCEILTENYR
NLHGQCSVNGKTLLEDGDKKHEENATKMCADLSQNLREJSEEMWKLQSGNDTLNVTTQ
SQYNQGKFIDGEWAINTDEQHSIYFYPLNMTRRESHSDNNSAMEQWKKNKLEKDMRNF
LITYFSHCLNKSSSHFREMPKSTLKVPDTTQRTNATQIHPPTVNNFRHNSDNQGLSVTW
IVIIIGGLVSEMAFMVFAWCMLKKK (SEQ ID NO: 10)

FIG. 12

Expression constructs for SLC and TIAP in a pBudCE4.1vector

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

Production of intracellular IFN- γ by DNA vaccine

FIG. 18

FIG. 19

FIG. 20

FIG. 21

BALB/c mice were immunized 3 times at 2 week intervals with attenuated *Salmonella typhimurium* harboring the vectors as indicated. Two weeks after the last immunization, mice were sacrificed, splenocytes were isolated and stimulated with irradiated CT-26 cells. Cells were harvested 5 days later and cytotoxic assays performed with either CT-26 or Yac-1 cells as targets.

Prophylactic models

BALB/c mice were immunized 3 times at 2 week intervals with attenuated *Salmonella typhimurium* harboring the vectors as indicated. Two weeks after the last immunization, mice were challenged i.v. with 1×10^5 CT-26. Mice were sacrificed 25 days later, and lung metastasis were assessed. Normal lung weight is about 0.2g.

FIG. 22

Therapeutic models

BALB/c mice were inoculated i.v. 1×10^5 CT-26 on day 0. Mice were treated with attenuated *Salmonella typhimurium* harboring the vectors as indicated on days 5 and 19. Experiments were terminated on day 26, and lung metastasis of the survivor mice were assessed.

FIG. 23

B.

A. Expression of H60: 293T cells were transfected with either empty vector (red) or pH60 (green) for 24 hours, harvested, stained with NKG2D tetramer and analyzed by flow cytometry. Transfection efficiency is around 45% assessed by pGFP transfection. **B. Expression of TIAP:** 293T cells were transfected with either empty vector or pTIAP for 24 hours, harvested, lysed and analyzed by western blot.

FIG. 24

1 atcccagccc acgcacagac ccccaactg cagctgccca cctcacccctc agctctggcc
 61 tcttactcac cctctaccac agacatggct cagtcaactgg ctctgaggcct ctttatccctg
 121 gttctggctt ttggcatccc caggacccaa cggcgttgatg ggggggttcga ggactgttgtgc
 181 ctcaagtaca gccaaaggaa gattccggcc aagggttgtcc gcagctaccg gaaggaggaa
 241 ccaagcttag gctgctccat cccagctata ctttcttgc cccgcaaggcg ctctcaggca
 301 gagctatgtg cagacccaa ggaggtctgg gtgcaggcagg tgatggacaag tctggacaag
 361 acaccatccc cacggaaacc agcccaggc tgaggaaagg acaggggggc ctccaagact
 421 ggcaagaag gaaaggggctc caaaggctgc aaggaggactg agggttcaca gaccctaaa
 481 gggccatagg ccagttagca gcctggggcc ctggagaccc caccaggcctc accaggcgctt
 541 gaaggcctgaa cccaaagatgc aagaaggagg ctatgtcag gggccctggc gcagccaccc
 601 catgtggcc ttggccacact ttgttctccctg ctttaaacac cccatctgca ttcccaagctc
 661 tacccatgtcat ggcttagctg cccacaggcag gcagggttcca gaggaggccga ggaggggagg
 721 tctccaggg agcatggag gaggcaggag gactgtcccc ttgaaggaga atcatcaggaa
 781 ccctggacct gatacggctc cccaggacac cccacccctt ctttgttaat atgatttata
 841 cctaactgaa taaaaaggctg ttctgtctc ccacccaa (MURINE SLC CCL21a)

(SEQ ID NO: 11)

FIG. 25

MAQSLALSLILVLAFGIPIPRTQGSDDGGAQDCCLKYSQRKIPAKVVRSYRKQ
EPSLGCSCIPAIIFLPRKRSQAELCADPKEIWLWVQQIMQHILDKTSPSPQKPAQG
CRKDRGASKTGGKGSKGCKRTERSQTPKGP (SEQ ID NO: 12)

(MURINE SLC CCL21α)

FIG. 26

Human MICA

1 atggggctgg gccccggctt cctgcttc tgccatctg gctggcatct tcccttttgt acctccggga
61 gctgctgctg agccccacag tcttcgttat tgaggtaat aacc tacgg tgctgtcctg ggatggatct
121 gtgcagtca ggttctcac tgaggtaat ctggatggtc agcc tacgg tgctgtcctg gcgctgtgac
181 aggccaaat gcaggccaaa gcccaggga cagtggcag aagatgtcctg gggaaaataag
241 acatggaca gaggaccagg agacttgaca gggAACggaa aggacccctg gatgacccctg
301 gctcatatca aggaccaga aagaaggctg cattccctcc aggagattag ggtctgtgag
361 atccatgaag acaacagcac caggagctcc cagcatttct actacgatgg ggagctcttc
421 ctctccaaa acctgtggac taaggaatgg acaa atgccccc agtcctccag agtctcagacc
481 ttggccatga acgtcaggaa tttcttgaag gaagatgcc tgaagacccaa gacacactat
541 cacgctatgc atgcagactg cctgcaggaa ctacgggat atcta aaaaatc cggcgtagtc
601 ctgaggagaa cagtcccc catggtaat gtcccccgc atatcacact gagctggcgt
661 attaccgtga catgcaggcc ttctggctc tatccctggaa atatcacact gagctggcgt
721 caggatgggg tatctttag ccacgacacc cagcaggccatggg gggatgtcct gcctgatggg
781 aatggaaacct accagacactg ggtggccacc aggattgcc aaggagagga
841 acctgctaca tggAACACAG cggaaatcac agcactcacc ctgtgcctc
901 ctggtgcttc agaggcatgg gcagacatcc catgttctg ctgttgctgc tgctgtgct
961 atttttgtta ttatatttt ctatgtccgt tggtaaga agaaaaacatc agctgcagag
1021 ggtccaggag tcgttagcc gcaggccctg gatcaaacacc cagttggac
1081 agggatgc ca caggatgcg atttcagctc ctgatgtcag atcttgggtc
1141 actggggcg cctag (SEQ ID NO: 13)

FIG. 27

Human MICA

MGLGPVFLLLAGIFPFAPPGAAEPHSLRYNLTVILSWDGSVQSGFLTEVHL
DGQPFLRCDRQKCRAKPQQWAEDVLGNKTWDRETRDLTGNNGKDLRMTLAH
IKDQKEGLHSIQEIRVCEIHEDNSSTRSSQHFYYDGELFLSQNILETKEWTMP
QSSRAQTLAMNVRNFIKEDAMKTKTHYHAMHAADCLQELRRYLKSGVVILRRT
VPPPMVNVTSEASEGNITVTCRASGFYPWNITLSSWRQDGVSLSHDTQQWGD
VLPDGNGTYQTWVATRICQGEEQRFTCYMEHSGNHSTHPVPSGKVVLVILQSH
WQTFHVSAVAAAIAFVIIIFIYVRCCKKKTSAAEGPELVSLQVLDQHPVGT
SDHRDATQLGFQPLMSDLGSTGSTECA (SEQ ID NO: 14)

FIG. 28

Human MICB

1	ggccatgg	gtggccgg	gtcctgtgtt	ttctggccgt	tttgacaccc
61	cggcagccgc	cgctgagccc	cacagtctc	tcccaggatg	tccctgcgct
121	gatctgtca	gtcagggtt	ctcgctgagg	gttacaacct	ttcgttgctg
181	atgacaggca	gaaacggagg	gcaaaggccc	gacatctgga	tgcctggag
241	ctgagacctg	ggacacagag	accgaggact	aggacagatg	ggcagaagat
301	ccctgactca	tatcaaaggac	cagaaaggag	tgacagagaa	tggcaagac
361	gtgagatcca	tgaagacagc	agcaccaggg	gcttgcattc	cctccaggag
421	ttttcctctc	ccaaaacctg	gagactcaag	tttctactac	attagggtct
481	agaccttggc	tatgaacgtc	acaaattttc	aatcggatgt	aatccgggg
541	actatccgc	tatgcaggca	gactgcctgc	ggatcatgtc	aaatccgggg
601	tggccatcag	gagaacacgtt	ccccccatgg	gcaactaca	gtctcagagg
661	gcaacatcac	cgtgacatgc	agggttcca	tgaatgtcac	gtcctgcctg
721	ggcgtcagga	tgggttatct	ttgagccaca	gttgcggat	acactgacct
781	atgggaatgg	aacctaccag	acctgggtgg	tgccatggaa	accacccat
841	ggttcacctg	ctacatggaa	cacaggggaa	tttttttttt	ccctctggga
901	aggcgttgtt	gcttcagagt	caacggacag	tttttttttt	gttttttttt
961	gttttgttat	tattatttt	actttccata	tttttttttt	gctatgccat
1021	agggtccaga	gcttgtgagc	ctctgtgtcc	tttttttttt	tcagcggcag
1081	acaggatgc	agcacagctg	ctgcagggtcc	tttttttttt	gaggaggacc
1141	ccactgggg	cgccctagact	ggatttcaggc	tttttttttt	tccactgggt
1201	tcaccaggac	tttccctctg	ctacagccag	tttttttttt	tgcctggatc
1261	ttgttgttgg	atgttgcaaa	tttttttttt	tttttttttt	cacttattta
1321	agaggcagca	aaggatcat	tttttttttt	tttttttttt	tgccacgttag
		gaccaactca	tttttttttt	tttttttttt	tgatcaaaca

FIG. 29

1381	gcaatttgtt	tatcatgaat	gcaggatgtg	ggcaaactca	cgactgctcc	tgccaaacaga
1441	aggtttgctg	aggcattca	ctccatggtg	ctcatggag	gttatctactg	ggtcatactg
1501	agcctattgt	ttgaggaatg	cagtcttaca	agcctactct	ggacccaggca	gctgactcctg
1561	tcttcaccc	ctcttcttg	tatctcctat	accaataaat	acgaagggct	gtggaaagatc
1621	agagcccttg	ttcacgagaa	gcaagaaggcc	ccctgaccct	ttgttccaaa	tatactcttt
1681	tgtctttctc	tttattccca	cgttcgccc	tgtttagtc	caatacaggg	ttgtggggcc
1741	cttaacagtg	ccatattaat	tggtatcatt	atttctgttg	tttttgttt	tgttttgtt
1801	tttgttttg	agacagaggc	tcactctgtc	accaggctg	cagttcactg	gtgtgatctc
1861	agctcaactgc	aacctctgccc	tcccagggttc	aagcacttct	cgtacacctcag	actccccgaat
1921	agctgggatt	acagacaggc	accaccacac	ccagctaatt	tttgttatttt	tttgttagagac
1981	gggttgcgc	caagttgaccc	agcccaaggtt	caaactcctg	acctcagggt	atctgctgc
2041	cttggcatcc	caaagtgtg	ggattacaag	aatgaggccac	cgtgcccggc	ctattttatt
2101	atattgttaat	atattttat	atatttagcca	ccatggctgt	cctattttct	tatgttttaa
2161	tatattttaa	tatattacat	gtgcagtaat	tagattatca	tgggtgaaact	ttatgaggtaa
2221	gtatcttggt	gatgactcc	cctgaccaggc	ccaggaccag	ctttcttgc	accttgagggt
2281	cccctcgccc	cgtcacacccg	ttatgcattta	ctctgtgtct	actattatgt	gtgcataaatt
2341	tataccgtaa	atgttttactc	tttaaataga	aaaaaaaaaa	aaaaaa	aaaaaa

(SEQ ID NO: 15)

FIG. 29 Cont.

Human MICB

MGLGRVLLFLAVAFFPAPPAAAEPHSSLRYNLMVILSQDGSVQSGFLAEG
HLDGQPFLRYDRQKRAKPQQWAEDVLGAETWDTETEDLTENGQDLRR
TLTHIKDQKGGLHSLQEIRVCEIHEDSSTRGSRHFYYNGELFILSQNILET
QESTVPQSSRAQTLMNVNTFWKE DAMKTKTHYRAMQA DCLQKLQRYILK
SGVAIRRTVPPMVNVTCSEVSEGNNITVTCRASSFYPRNTTLTWQRDGVS
LSHNTQQWGDVLPDGNNGTYQTWWVATRIRQGEQRFTCYMEHSGNHGTHP
VPSGKALVLQSQRTDFPYVSAAMPCFVIIILCVPCCKKTSAAEGPEL
VSLQVLDQHPVGTDHRDAAQLGFPQLMSATGSTGSTECA

(SEQ ID NO: 16)

FIG. 30

Human ULBP1

1 atggcaggcg ccgcaggccc cgccttcctt ctgtgccccc cgcttctgca cctgctgtct
61 ggctggtccc gggcaggatg ggtcgacaca cactgtcttt gctatgactt catcatcact
121 cctaagtcca gacctgaacc acagtggtgt gaagttcaag gcctgggtga tgaaaggccct
181 ttcttcact atgactgtgt taaccacaag gccaaaggcct ttgcttctct gggaaagaaa
241 gtcaaatgtca caaaaacctg ggaagaacaa actgaaacac taagagacgt ggtggatttc
301 cttaaaggcc aactgcttga cattcaagtg gagaatttaa tacccattga gcccctcacc
361 ctgcaggcca ggatgtcttg tgaggcatgaa gcccattggac acggcaggagg atcttggcag
421 ttccctttca atggacagaa gttccctccc tttgactcaa acaacagaaaa gtggacagca
481 cttcatccctg gagccaagaa gatgacagag aagtggaga agaacaggaa tggaccatg
541 ttcttccaga agatttcact gggggattgt aagatgtgg ttgaagaatt ttgtatgtac
601 tggaaacaaa tgctggatcc aacaaacca ccctctgg ccccaggcac aaccaccc
661 aaggccatgg ccaccacccct cagtcctgg agcccttcata tcatcttcatt ctgcttcatt
721 ctagctggca gatga (SEQ ID NO: 17)

FIG. 31

Human ULBPI

MAAAASPAFLLCLPLLIHLLSGWSRAGWVVDTHCLCYDFITTPKSRSRPEPQWCERV
QGLVDERPFLHYDCVNHHKAKAFASLGGKKVNVTKTWEEQTETLIRDVVDFLKGQ
LLDIQVENLIPIEPLTLQARMSCHEHEAHGHGRGSWQFLFNGQKFLLFDSNNR
KWTALHPGAKKMITEKWEKNRDVTMFFQKISLGDCKMMWLEEFILMYWEQMLDPT
KPPSLAPGTTQPKAMATTLSPWSSLIIIFLCFILAGR (SEQ ID NO: 18)

FIG. 32

Human ULBP2

1 atggcaggag ccgcgcgtac caagatccctt ctgtgccctcc cgcttcgtctcg cctgctgtcc
61 ggctggccc gggctggcg agccgcacct cactcttt gctatgacat caccgtcatc
121 cctaaggttca gacctggacc acgggttgtt ggggttcaag gccagggttgg tgaaaagact
181 ttcttcact atgactgtgg caacaagaca gtcacacctg tcagtccccct ggggaagaaa
241 ctaaatgtca caacggccctg gaaaggcacag aaccctgtac tgaggaggat ggtggacata
301 cttacagagg aactggctgt cattcaggctg gagaattaca cacccaaagg acccctcacc
361 ctgcaggcaa ggatgtcttg tgaggcagaaa gctgaaaggac acaggcagtgg atcttggcag
421 ttccaggat atggcaggat cttccctccct tttgactcag agaaggagaat gtggacaacg
481 gttcatcctg gagccagaaa gatggaaa aagtggaga atgacaaggat tggccatg
541 tccttccatt acttctcaat gggagactgt ataggatggc ttgaggactt ctggatggc
601 atggacagca ccctggaggc aagtgcaggc gcaccactcg ccatgtccctc aggacacaacc
661 caactcaggg ccacagccac caccctcatc ctttgctgcc tcctcatcat
721 ttccatcctcc ctggccatctg a (SEQ ID NO: 19)

FIG. 33

Human ULBP2

MAAAATKILLCLPLLLLSSGRAGADPHSLCYDITVIPKFPRGPRWC
AVQGQQVDEKTFILHYDCGNKTVTPVSPLGKKLNVTТАWKAQNPNPVLREVVDI
LTEQLRDIQLENYTPKEPLTLQARMSCEQKAEGHSSGSWQFSDGQIFLL
FDSEKRMWTTVHPGARKMKEKWENDKVVAMSFYFSMGGDCIGWLEDFLMG
MDSTLEPSAGAPLAMSSGTTQLRATATLILCCLLILBPCFILPGI
(SEQ ID NO: 20)

FIG. 34

Human ULBP3

1 atggcaggcc cgcccgcccc cgggacggg ccggatcc ttccggccgc gctca
61 ttcgactggt ccggatcc ggcaacatgg cctatgtactt cttcaccatc
121 attcattgtc ccggatcc tggtggatgg aaggccagg tctggataaa
181 aattttctct cctatgtactt aaggctttat agatcagggt
241 cagctgtatg ccacagatgc ctggggaaaa caactggaaa ctatggtca
301 aggctcagac tggaaactggc tgacactggc tggtggatgg
361 acgcttcagg tcaggatgtc ttgtggatgtt gatacatcc
421 cagttcagct tcgatggacy gaagttcc tccttgact
481 gtggttcacg ctggagccag gcggatgaaa gagaagtgg
541 accttctca agatggtctc aatggagac tgcaaggatct
601 cacaggaaga agaggctgg acccacagca ccacccacca
661 cccaaaggcca tagccaccac cctcaggatccc tggaggctcc
721 ctcctggca tctgaa (SEQ ID NO: 21)

FIG. 35

Human ULBP3

MAAAASPAILPRLAILPYLLFDWSGTGRADAHSLWYNFTIIHLPRHQQW
CEVQSQVDQKNEFLSYDCGSDKVLSMGHLEEQLYATDAWGKQLEMLREVGQ
RLRLELADELEDFTPSGPLTLQVRMSCECEADGYIRGSSWQFSDGRKFL
LFDSNNRKWTVVHAGARRMKEKWEKDSDLTFFKMIVSMRDCKSWLRDFLM
HRKKRLEPTAPPMTAPGLAQPKAIATTLSPWSTLCFILPGI
(SEQ ID NO: 22)

FIG. 36

MGAPTLPPAWQPFLKDHRISTFKNWPFLEGCACTPERMAEAGFIHCPTENE
PDLAQCFCCFKELLEGWEPDPPDPIGPGBTVAYACNTSTLGGGRITREEHKK
HSSGCAFLSVKKQFEELTLGEFLKLDRERAKNKIAKETNNKKKEFEETAKK
VRRAIEQLAAMD (SEQ ID NO: 23)

HUMAN SURVIVIN-2B splice variant

MGAPTLPPAWQPFLKDHRISTFKNWPFLEGCACTPERMAEAGFIHCPTENE
PDLAQCFCCFKELLEGWEPDPPDPMQRKPPTIRRKNLRKIRRKCAVPSSSWI.PWI
EASGRSCLVPEWLHHFQGLFPGATSLPVGPLAMS (SEQ ID NO: 24)

HUMAN SURVIVIN-ΔEx3 splice variant

FIG. 37

GENBANK NP_005922. MHC class I polyp...[gi:5174565] BLink, Domains, Links
 LOCUS MICB 383 aa linear PRI 13-DEC-2002
 DEFINITION MHC class I polypeptide-related sequence B; MHC class I-like
 molecule PERB11.2-IMX; stress inducible class I homolog; MHC class
 I mic-B antigen; MHC class I chain-related protein B; MHC class I
 molecule [Homo sapiens].
 ACCESSION NP_005922
 VERSION NP_005922.1 GI:5174565
 DBSOURCE REFSEQ: accession NM_005931.2
 KEYWORDS .
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (residues 1 to 383)
 AUTHORS Bahram,S., Bresnahan,M., Geraghty,D.E. and Spies,T.
 TITLE A second lineage of mammalian major histocompatibility complex
 class I genes
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 91 (14), 6259-6263 (1994)
 MEDLINE 94294361
 PUBMED 8022771
 REFERENCE 2 (residues 1 to 383)
 AUTHORS Bahram,S. and Spies,T.
 TITLE Nucleotide sequence of a human MHC class I MICB cDNA
 JOURNAL Immunogenetics 43 (4), 230-233 (1996)
 MEDLINE 96163024
 PUBMED 8575823
 REFERENCE 3 (residues 1 to 383)
 AUTHORS Nalabolu,S.R., Shukla,H., Nallur,G., Parimoo,S. and Weissman,S.M.
 TITLE Genes in a 220-kb region spanning the TNF cluster in human MHC
 JOURNAL Genomics 31 (2), 215-222 (1996)
 MEDLINE 96422187
 PUBMED 8824804
 REFERENCE 4 (residues 1 to 383)
 AUTHORS Groh,V., Bahram,S., Bauer,S., Herman,A., Beauchamp,M. and Spies,T.
 TITLE Cell stress-regulated human major histocompatibility complex class
 I gene expressed in gastrointestinal epithelium
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 93 (22), 12445-12450 (1996)
 MEDLINE 97057262
 PUBMED 8901601
 REFERENCE 5 (residues 1 to 383)
 AUTHORS Bahram,S., Shiina,T., Oka,A., Tamiya,G. and Inoko,H.
 TITLE Genomic structure of the human MHC class I MICB gene
 JOURNAL Immunogenetics 45 (2), 161-162 (1996)
 MEDLINE 97113304
 PUBMED 8952966
 REFERENCE 6 (residues 1 to 383)
 AUTHORS Groh,V., Steinle,A., Bauer,S. and Spies,T.
 TITLE Recognition of stress-induced MHC molecules by intestinal
 epithelial gammadelta T cells
 JOURNAL Science 279 (5357), 1737-1740 (1998)
 MEDLINE 98163553
 PUBMED 9497295
 REFERENCE 7 (residues 1 to 383)
 AUTHORS Steinle,A., Groh,V. and Spies,T.
 TITLE Diversification, expression, and gamma delta T cell recognition of
 evolutionarily distant members of the MIC family of major
 histocompatibility complex class I-related molecules
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 95 (21), 12510-12515 (1998)
 MEDLINE 98445401
 PUBMED 9770516
 REFERENCE 8 (residues 1 to 383)
 AUTHORS Braud,V.M., Allan,D.S. and McMichael,A.J.

TITLE Functions of nonclassical MHC and non-MHC-encoded class I molecules
 JOURNAL Curr. Opin. Immunol. 11 (1), 100-108 (1999)
 MEDLINE 99158668
 PUBMED 10047540
 REFERENCE 9 (residues 1 to 383)
 AUTHORS Cerwenka,A., Bakker,A.B., McClanahan,T., Wagner,J., Wu,J.,
 Phillips,J.H. and Lanier,L.L.
 TITLE Retinoic acid early inducible genes define a ligand family for the
 activating NKG2D receptor in mice
 JOURNAL Immunity 12 (6), 721-727 (2000)
 MEDLINE 20350669
 PUBMED 10894171
 REFERENCE 10 (residues 1 to 383)
 AUTHORS Steinle,A., Li,P., Morris,D.L., Groh,V., Lanier,L.L., Strong,R.K.
 and Spies,T.
 TITLE Interactions of human NKG2D with its ligands MICA, MICB, and
 homologs of the mouse RAE-1 protein family
 JOURNAL Immunogenetics 53 (4), 279-287 (2001)
 MEDLINE 21383614
 PUBMED 11491531
 REFERENCE 11 (residues 1 to 383)
 AUTHORS Borrego,F., Kabat,J., Kim,D.K., Lieto,L., Maasho,K., Pena,J.,
 Solana,R. and Coligan,J.E.
 TITLE Structure and function of major histocompatibility complex (MHC)
 class I specific receptors expressed on human natural killer (NK)
 cells
 JOURNAL Mol. Immunol. 38 (9), 637-660 (2002)
 MEDLINE 21848355
 PUBMED 11858820
 COMMENT REVIEWED REFSEQ: This record has been curated by NCBI staff. The
 reference sequence was derived from U65416.1 and BU684700.1.
 Summary: This gene encodes a heavily glycosylated protein which is
 a ligand for the NKG2D type II receptor. Binding of the ligand
 activates the cytolytic response of natural killer (NK) cells, CD8
 alphabeta T cells, and gammadelta T cells which express the
 receptor. This protein is stress-induced and is similar to MHC
 class I molecules; however, it does not associate with
 beta-2-microglobulin or bind peptides.
 FEATURES Location/Qualifiers
 source 1..383
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="6"
 /map="6p21.3"
 Protein 1..383
 /product="MHC class I polypeptide-related sequence B"
 /note="MHC class I-like molecule PERB11.2-IMX; stress
 inducible class I homolog; MHC class I mic-B antigen; MHC
 class I chain-related protein B; MHC class I molecule"
 Region 24..198
 /region_name="Class I Histocompatibility antigen, domains
 alpha 1 and 2"
 /note="MHC I"
 /db_xref="CDD:pfam00129"
 variation 59
 /allele="C"
 /allele="Y"
 /db_xref="dbSNP:1051786"
 variation 64
 /allele="R"
 /allele="C"
 /db_xref="dbSNP:2240858"
 variation 75

FIG. 38 Cont.

```

/allele="N"
/allele="D"
/allele="N"
/allele="D"
/db_xref="dbSNP:3131639"
variation 80
/allele="K"
/allele="E"
/allele="K"
/db_xref="dbSNP:1065075"
variation 121
/allele="M"
/allele="I"
/allele="M"
/db_xref="dbSNP:3134900"
variation 136
/allele="N"
/allele="D"
/allele="H"
/allele="N"
/allele="D"
/db_xref="dbSNP:1051788"
variation 148
/allele="E"
/allele="K"
/db_xref="dbSNP:1051791"
Region 222..292
/region_name="Immunoglobulin C-Type"
/note="IGc1"
/db_xref="CDD:smart00407"
variation 238
/allele="S"
/allele="T"
/db_xref="dbSNP:1051799"
variation 383
/allele="A"
/allele="T"
/allele="A"
/allele="T"
/db_xref="dbSNP:1065076"
CDS 1..383
/gene="MICB"
/coded_by="NM_005931.2:6..1157"
/db_xref="LocusID:4277"
/db_xref="MIM:602436"
ORIGIN
1 mglgrvllfl avafpfappa aaaephslyr nlmvlsgdgs vqsgflaegh ldgqpflryd
61 rqkrrakpqg qwaedvlgae twdtetedlt engqdllrrtl thikdqkggl hslqeirvce
121 ihedsstrgs rhfyngelf lsqnletqes tvpqssraqt lamnvtnfwk edamktkthy
181 ramqadclqk lqrylksgva irrtvppmvn vtcsevsegm itvtcrassf yprnitltwr
241 qdgvsllshnt qqwgvdvlpdg ngttyqtwvat rirqgeeqrf tcymehsgnh gthpvpsgka
301 lvlqsqrtdf pyvsaaampcf viiiilcvpc ckkktsaaeg pelvslqvld qhpvgtdhr
361 daaqlgfqpl msatgstgst ega
//
```

FIG. 38 Cont.

Human livin alpha splice variant

1 ccctggata ctcccctccc agggtgtctg gtggcaggcc tgtgcctatc cctgctgtcc
61 ccaggggtggg cccccgggggt caggagctcc agaagggccca gctgggcata ttctgagatt
121 ggccatcagc ccccatttct gctgcaaacc tggtcagagc cagtttccc tccatggac
181 ctaaagacag tgccaagtgc ctgcaccgtg gaccacagcc gagccactgg gcagccgtg
241 atggtcccac gcaggagcgc tggacccc gctctctggg cagccctgtc ctaggcctgg
301 acacctgcag agcctggac cacgtggatg ggcagatcc gggccagctg cggccctga
361 cagaggagga agaggaggag ggcgcgggg ccaccttgc cagggggcct gcctccccg
421 gcatgggctc tgaggagttt cgctggcct cttcttatga ctggccgtg actgctgagg
481 tgccacccga gctgctggct gctgccggct tcttccacac aggccatcag gacaagggtga
541 ggtgctctt ctgctatggg ggcctgcaga gctgaaagcg cgggacgac ccctggacgg
601 agcatgccaat gtggttcccc agctgtcagt ttctgctccg gtcaaaaagga agagacttg
661 tccacagtgt gcaggagact cactcccagc tgctggcct ctgggaccccg tggaaagaac
721 cggaaagacgc agccctgtg gccccctccg tccctgcctc tgggtaccct gagctgcca
781 caccaggag agaggtccag tctgaaagtg cccaggagcc aggaggggtc agtccagccg
841 aggcccagag ggcgtggtgq gttcttgagc cccaggagc caggatgtg gaggcgcacg
901 tgcggccgct gcaggaggag aggacgtgca aggtgtgcct ggaccgcgc gtgtccatcg
961 tctttgtgcc gtgcggccac ctggctctgt ctgagtgtgc cccggcctg cagctgtgcc
1021 ccatctgcag agcccccgtc cgcagccgc tgccgcaccc cctgtccctag gccaggtgcc
1081 atggccggcc aggtgggctg cagagtggc tccctgcctt tctctgcctg ttctggactg
1141 tggctggc ctgctgagga tggcagagct ggtgtccatc cagactgac cagccctgat
1201 tccccgacca ccgcccaggg tggagaagga ggcccttgc tggcgtggg gatggctaa
1261 ctgtacctgt ttggatgctt ctgaatagaa ataaagtggg tttccctgg aggtacccag
1321 ca

(SEQ ID NO: 26)

FIG. 39

Human livin alpha splice variant

MGPKDSAKCLHRGPQPSHWAAGDGPTQERCGPRSLGSPVLGLDTCRAWD
HVDGQILGQLRPLTEEEEEEGAGATLSRGPAFPGMGSEELRLASFYDWP
LTAEVPPPELLAAAGFFHTGHQDKVRCCFCYGGLQSWKRGDDPWTEHAKW
FPSCQFLLRSKGRDFVHSVQETHSQLGSWDPWEEPEDAAPVAPSVPAS
GYPELPTPRREVQSESAQEPGGVSPAEEAQRAWWVLEPPGARDVEAQLRR
LQEERTCKVCLDRAVSIVFVPCGHLVCAECAPGLQLCPICRAPVRSRVR
TFLS

(SEQ ID NO: 27)

FIG. 40

Human livin beta splice variant

```
1 ccctggata ctcccctccc agggtgtctg gtggcaggcc tgtgcctatc cctgctgtcc
61 ccagggtggg cccccgggggt cagggactcc agaaggggcca gctgggcata ttctgagatt
121 ggccatcagc ccccatttct gctgcaaacc tggtcagagc cagtttccc tccatggac
181 ctaaagacag tgccaagtgc ctgcaccgtg gaccacagcc gagccactgg gcagccgtg
241 atggtcccac gcaggagcgc tgtggacccc gctctctgg cagccctgtc ctaggcctgg
301 acacctgcag agcctggac cacgtggatg gcagatctt gggccagctg cggccctga
361 cagaggagga agaggaggag ggcgcgggg ccaccttgc cagggggctt gcctccccg
421 gcatgggctc tgaggagttt cgtctggct cttcttatga ctggccgtg actgctgagg
481 tgccacccga gctgctggct gctgccggct tttccacac aggcacatca gacaagggtga
541 ggtgctctt ctgctatggg ggcctgcaga gctgaaagcg cggggacgac ccctggacgg
601 agcatgccaa gtggttcccc agctgtcagt tctgtctcg gtcaaaagga agagactttg
661 tccacagtgt gcaggagact cactcccagc tgctgggtc ctgggacccg tgggaagaac
721 cggaaagacgc agccctgtg gccccctccg tccctgcctc tgggtaccct gagctgcca
781 caccaggag agagggtccag tctgaaagtgc cccaggagcc aggagccagg gatgtggagg
841 cgcagctgcg gcccgtgcag gaggagagga cgtgcaaggt gtgcctggac cgcgcgtgt
901 ccatcgctt tggccgtgc ggcacctgg tctgtctga gtgtcccccc ggcctgcagc
961 tgtccccat ctgcagagcc cccgtccgca gccgcgtgcg caccccttg tcctaggcca
1021 ggtgccatgg cccggccaggt gggctgcaga gtgggctccc tgccctctc tgcctgttct
1081 ggactgtgtt ctgggcctgc tgaggatggc agagctggg tccatccagc actgaccagc
1141 cctgattccc cgaccaccgc ccagggtgga gaaggaggcc cttgcttgc gtggggatg
1201 gcttaactgt acctgtttgg atgcttctga atagaaataa agtgggtttt ccctggaggt
1261 acccagca
```

FIG. 41

Human livin beta splice variant

MGPKDSAKCLHRGPQPSHWAAGDGPTQERCGPRSLGSPVLGLDTCRAWD
HVDGQILGQLRPLTEEEEEEGAGATLSRGPAFPGMGSEELRLASFYDWP
LTAEVPPPELLAAAGFFHTGHQDKVRCCFCYGGLQSWKRGDDPWTEHAKW
FPSCQFLLRSKGRDFVHSVQETHSQLLGSWDPWEEPEDAAPVAPSVPAS
GYPELPTPRREVQSESAQE PGARDVEAQLRRLQEERTCKVCLDRAVSIV
FVPCGHLVCAECAPGLQLCPICRAPVRSRVRTFLS

(SEQ ID NO: 29)

FIG. 42