Vector embeddings

Eugeny Malyutin

So we want to solve NLP classification task:

So we want to solve NLP classification task:

Previously:

$$TF-IDF(w,d,C) = rac{count(w,d)}{count(d)} * log(rac{\sum_{d' \in C} 1(w,d')}{|C|})$$

One-hot encoding drawback:

- "monkeys eat bananas" and "apes consume fruits" similarity equals to 0
- «Pouteria is widespread throughout the tropical regions of the world and monkeys eat their fruits»(c). What is Pouteria? Is it a tree?
- «a word is characterized by the company it keeps» John Rupert Firth
- Ideally, we want vector representations where similar words end up with similar vectors.
 Dense vectors. And when I say similar a mention some similarity measure (cosine).
- Even better, we'd want more similar representations when the words share some properties such as if they're both plural or singular, verbs or adjectives or if they both reference to a male.

How can we build our vectors?

- Ok, let us imagine that this matrix can be decomposed into two separ... Stop, it's another story (look at pLSA/LDA)
- The co-occurrence number alone is not a good number to measure the co-occurrence probability of two words because it does not take into account how many times each of them occur. («the monkey»)
- This PMI method leads to many log(0)
 (i.e. -∞) entries (every time two words do not cooccur).
- The computation time in order to count all this is very expensive, especially if it's done naively. Fortunately, there are ways to do this requiring just a single pass through the entire corpus to collect the statistics.

Co-occurrence matrix	1	love	monkeys	and	apes	bananas
I	0	1	1	0	0	0
love	1	0	2	1	0	1
monkeys	1	2	0	1	1	1
and	0	1	1	0	1	0
apes	0	0	1	1	0	0
bananas	0	1	1	0	0	0

$$PMI(w,c) = \log \frac{\hat{P}(w,c)}{\hat{P}(w)\hat{P}(c)} = \log \frac{\#(w,c)\cdot|D|}{\#(w)\cdot\#(c)}$$

How can we build our vectors?

- This PMI method leads to many log(0)
 (i.e. -∞) entries (every time two words do not co-occur).
- The computation time in order to count all this is very expensive, especially if it's done naively. Fortunately, there are ways to do this requiring just a single pass through the entire corpus to collect the statistics.
- And then (in 2013) Tomas Mikolov came and saved everyone.

//Mikolov T. et al. Distributed representations of words and phrases and their compositionality //Advances in neural information processing systems. – 2013. – C. 3111-3119.

Word2vec scheme:

- It has an input layer that receives **D** one-hot encoded words which are of dimension **V** (the size of the vocabulary).
- It «averages» them, creating a single input vector.
- That input vector is multiplied by a weights
 matrix W (that has size VxD, being D nothing less than
 the dimension of the vectors that you want to create).
 That gives you as a result a D-dimensional vector.
- The vector is then multiplied by another matrix (R reverse W), this one of size DxV. The result will be a new V-dimensional vector.
- That V-dimensional vector is normalized to make all the entries a number between 0 and 1, and that all of them sum 1, using the softmax function, and that's the output. It has in the i-th position the predicted probability of the i-th word in the vocabulary of being the one in the middle for the given context.

The skipgram model

 We assume that, given the central target word, the context words are generated independently of each other.

P(the, man, his, son | loves) = P(the | loves) * P(man | loves) * P(his | loves) * P(son | loves)

• And
$$p(w_o | w_c) = \frac{exp(u_o^T v_c)}{\sum_{i \in V} exp(u_i^T v_c)}$$
 cond. probability, u and v — vector representations.

u_0 - context,v_c - central target.

The likelihood function of the skip-gram model:

$$\prod_{i=1}^{T} \prod_{-m \le j \le m} P(w^{(t+j)} | w^t)$$

Skipgram model training

• Loss function
$$-\sum_{t=1}^{T}\sum_{-m\leq j\leq m,\ j\neq 0}\log\mathbb{P}(w^{(t+j)}\mid w^{(t)})$$

- If we want to SGD it we need to compute gradient of conditional probability:
- Through differentiation, we can get the gradient from the formula above.
- Any problems?

$$\log \mathbb{P}(w_o \mid w_c) = \mathbf{u}_o^{\mathsf{T}} \mathbf{v}_c - \log \left(\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c) \right)$$

$$\begin{split} \frac{\partial \log \mathbb{P}(w_o \mid w_c)}{\partial \mathbf{v}_c} &= \mathbf{u}_o - \frac{\sum_{j \in \mathcal{V}} \exp(\mathbf{u}_j^\top \mathbf{v}_c) \mathbf{u}_j}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^\top \mathbf{v}_c)} \\ &= \mathbf{u}_o - \sum_{j \in \mathcal{V}} \left(\frac{\exp(\mathbf{u}_j^\top \mathbf{v}_c)}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^\top \mathbf{v}_c)} \right) \mathbf{u}_j \\ &= \mathbf{u}_o - \sum_{j \in \mathcal{V}} \mathbb{P}(w_j \mid w_c) \mathbf{u}_j. \end{split}$$

Skipgram model training

• Loss function
$$-\sum_{t=1}^{T}\sum_{-m\leq j\leq m,\ j\neq 0}\log\mathbb{P}(w^{(t+j)}\mid w^{(t)})$$

- If we want to SGD it we need to compute gradient of conditional probability:
- Through differentiation, we can get the gradient from the formula above:
- Its computation obtains the conditional probability for all the words in the dictionary given the central target word w_c
 We then use the same method to obtain the gradients for other word vectors.

$$\log \mathbb{P}(w_o \mid w_c) = \mathbf{u}_o^{\mathsf{T}} \mathbf{v}_c - \log \left(\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c) \right)$$

$$\begin{split} \frac{\partial \log \mathbb{P}(w_o \mid w_c)}{\partial \mathbf{v}_c} &= \mathbf{u}_o - \frac{\sum_{j \in \mathcal{V}} \exp(\mathbf{u}_j^{\mathsf{T}} \mathbf{v}_c) \mathbf{u}_j}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c)} \\ &= \mathbf{u}_o - \sum_{j \in \mathcal{V}} \left(\frac{\exp(\mathbf{u}_j^{\mathsf{T}} \mathbf{v}_c)}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c)} \right) \mathbf{u}_j \\ &= \mathbf{u}_o - \sum_{j \in \mathcal{V}} \mathbb{P}(w_j \mid w_c) \mathbf{u}_j. \end{split}$$

Negative sampling:

• Given a context window for the central target word w_c , we will treat it as an event for context word $w_{-}o$ to appear in the context window and compute the probability of this event from

$$\mathbb{P}(D=1\mid w_c, w_o) = \sigma(\mathbf{u}_o^{\mathsf{T}}\mathbf{v}_c),$$

• Now we consider maximizing the joint probability $\prod^{T} \prod P(D = 1 \mid w^{(t)}, w^{(t+j)})$.

$$\prod_{t=1}^{T} \prod_{-m \le j \le m, \ j \ne 0} \mathbb{P}(D=1 \mid w^{(t)}, w^{(t+j)}).$$

However, the events included in the model only consider positive examples. We need to sample additional negative events (never occurred in the same context) and then:

$$\mathbb{P}(w^{(t+j)} \mid w^{(t)}) = \mathbb{P}(D=1 \mid w^{(t)}, w^{(t+j)}) \prod_{k=1, w_k \sim \mathbb{P}(w)}^K \mathbb{P}(D=0 \mid w^{(t)}, w_k).$$

Negative sampling:

• Now we consider maximizing the joint probability

$$\prod_{t=1}^{T} \prod_{-m \le j \le m, \ j \ne 0} \mathbb{P}(D = 1 \mid w^{(t)}, w^{(t+j)}).$$

 However, the events included in the model only consider positive examples. We need to sample additional negative K events (never occurred in the same context) and then:

$$\mathbb{P}(w^{(t+j)} \mid w^{(t)}) = \mathbb{P}(D=1 \mid w^{(t)}, w^{(t+j)}) \prod_{k=1, w_k \sim \mathbb{P}(w)}^{K} \mathbb{P}(D=0 \mid w^{(t)}, w_k).$$

- The logarithmic loss for the conditional probability above is
- Here, the gradient computation in each step of the training is no longer related to the dictionary size, but linearly related to K

$$= -\log \sigma \left(\mathbf{u}_{i_{t+j}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right) - \sum_{k=1, w_{k} \sim \mathbb{P}(w)}^{K} \log \left(1 - \sigma \left(\mathbf{u}_{h_{k}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right)\right)$$

$$= -\log \sigma \left(\mathbf{u}_{i_{t+j}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right) - \sum_{k=1, w_{k} \sim \mathbb{P}(w)}^{K} \log \sigma \left(-\mathbf{u}_{h_{k}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right).$$

 $-\log \mathbb{P}(w^{(t+j)} \mid w^{(t)}) = -\log \mathbb{P}(D=1 \mid w^{(t)}, w^{(t+j)}) - \sum_{k=0}^{K} \log \mathbb{P}(D=0 \mid w^{(t)}, w_k)$

Negative sampling:

• The logarithmic loss for the conditional probability above is

$$-\log \mathbb{P}(w^{(t+j)} \mid w^{(t)}) = -\log \mathbb{P}(D = 1 \mid w^{(t)}, w^{(t+j)}) - \sum_{k=1, w_k \sim \mathbb{P}(w)}^{K} \log \mathbb{P}(D = 0 \mid w^{(t)}, w_k)$$

 Here, the gradient computation in each step of the training is no longer related to the dictionary size, but linearly related to K

$$= -\log \sigma \left(\mathbf{u}_{i_{t+j}}^{\top} \mathbf{v}_{i_{t}}\right) - \sum_{k=1, w_{k} \sim \mathbb{P}(w)}^{K} \log \left(1 - \sigma \left(\mathbf{u}_{h_{k}}^{\top} \mathbf{v}_{i_{t}}\right)\right)$$

$$= -\log \sigma \left(\mathbf{u}_{i_{t+j}}^{\top} \mathbf{v}_{i_{t}}\right) - \sum_{k=1, w_{k} \sim \mathbb{P}(w)}^{K} \log \sigma \left(-\mathbf{u}_{h_{k}}^{\top} \mathbf{v}_{i_{t}}\right).$$

• **Key idea:** sample additional negatives and learn your positive probabilities «opposite to» them.

Hierarchical softmax:

- L(w) the number of nodes on the path (including the root and leaf nodes)
- $n_{-}(w,j)$ the *j*th node on this path, with the context word vector $\mathbf{u}_{-}(n(w,j))$
- will approximate the conditional probability in the skip-gram model as:

$$\mathbb{P}(w_o \mid w_c) = \prod_{i=1}^{L(w_o)-1} \sigma\left(\llbracket n(w_o, j+1) = \mathbf{leftChild}(n(w_o, j)) \rrbracket \cdot \mathbf{u}_{n(w_o, j)}^{\mathsf{T}} \mathbf{v}_c \right),$$

 $n(w_3, 1)$

 $n(w_3, 3)$

And for w3:

$$\mathbb{P}(w_3 \mid w_c) = \sigma(\mathbf{u}_{n(w_3,1)}^{\mathsf{T}} \mathbf{v}_c) \cdot \sigma(-\mathbf{u}_{n(w_3,2)}^{\mathsf{T}} \mathbf{v}_c) \cdot \sigma(\mathbf{u}_{n(w_3,3)}^{\mathsf{T}} \mathbf{v}_c).$$

 $n(w_3, 2)$

Hierarchical softmax:

• $\sigma(x)+\sigma(-x)=1$, the condition that the sum of the conditional probability of any word generated based on the given central target word $\mathbb{P}(w \mid w_c) = 1.$

 $w \in \mathcal{V}$

What is u_n(w_3, 2) (for example) — separate vectors we should learn (lurk refs for moar math)

 $n(w_3, 2)$

 $n(w_3, 1)$

HSoftmax reduce softmax calculation from O(n) to O(log(n)) where n = |V|

We can also use Huffman trees to encode more frequent words with shorter paths

So what? (Synonyms)

```
get_similar_tokens('chip', 3, glove_6b50d)

get_similar_tokens('baby', 3, glove_6b50d)

cosine sim=0.856: chips
cosine sim=0.749: intel
cosine sim=0.749: electronics

get_similar_tokens('baby', 3, glove_6b50d)

cosine sim=0.839: babies
cosine sim=0.800: boy
cosine sim=0.893: gorgeous
cosine sim=0.830: wonderful
```

- get_similar_tokens top-K words by cosine measure to the target word;
- glove_6b50d glove model on some common corpora (Wikipedia?) with 6B of words and vector dimension equals to 50;

So what? (2) (Finding Analogies)

```
get_analogy('man', 'woman', 'son', glove_6b50d)

'daughter'
```

get_analogy('bad', 'worst', 'big', glove_6b50d)
'biggest'

get_analogy('do', 'did', 'go', glove_6b50d)

'went'

"Capital-country" analogy

"Adjective-superlative adjective" analogy

"Present tense verb-past tense verb" analogy

- And it's only x = vec(c) + vec(b) vec(a)
- And then top word for x

So What? (country-capital)

Based on Wikipedia training corpora

Any problems?

Out-of-vocabulary

How we can train it? How big our doc's collection should be?

Stop, firstly we talk about text and word2vec is about words

Any problems?

Out-of-vocabulary

Yeah, it's true. But there are few extensions; (fastText)

Stop, firstly we talk about text and word2vec is about words

Ok, average it; Or average with weights; Or do not average and learn some averaging embedding; (look to BERT model)

• How we can train it? How big our doc's collection should be?

Really big; Starting from 10+M of symbols; Use pertained vectors;

FastText

- First, we add the special characters "<" and ">" at the beginning and end of the word to distinguish the subwords used as prefixes and suffixes.
- Then, we treat the word as a sequence of characters to extract the *n*-grams.

where = {"<wh", "whe", "her", "ere", "re>",} + "<where>"

$$\mathbf{u}_{w} = \sum_{g \in \mathcal{G}_{w}} \mathbf{z}_{g}.$$

And there rest as in skiagram model;

- Any thoughts?
- It needs a **MUCH MORE** space to store the model (8Gb vs 1-2Gb)
- It needs a **MUCH MORE** corpora to train sufficient model (billions vs millions of symbols)
- It allows us to approximate our unknown word by n-grams it contains;
 For example «ЧЕБУПЕЛИ» by known «ЧЕБУРЕКИ» and «ПЕЛЬМЕНИ»

Word to text:

- Average words vectors:
 - More words you averages -> more un-informative representation you get (kind of dimensionality curse). Practically starts from 5-10 words;
- Average words vectors with some weights (TF-IDF):
 - Same problems, yeah. Start 10-15 words;
- Try to «learn» your text's embeddings from word embeddings:
 - Bring LDA-like approach to word2vec (glove);
 - Use transformers-attention-trillions of TPU's and spend all money you have on AWC (BERT);

Word2Vec myths:

- Word2vec is the best word vector algorithm
- Word vectors are created by deep learning
- Word vectors are used only with deep learning
- Statistical and predictive methods have nothing to do with each other
- There's a perfect set of word vectors that can be used in every NLP project

Use cases:

- There are some semantic-oriented task (for example topic classification) and you have not a lot of data (you have a need to bring outer semantic info into your corpora)
- You need to build quick (and maybe not so good) similarity measurement for your recommendation system. (works great for a cold start)
- You can use vector embeddings as a simple representation for any kind of classification task (but you should use an algorithm with unlimited dimension as input)

Use cases:

- Embedding (layer) turns your words into vector representation
- Deep Network turns your sentence (with «no limitation» on it's length) into compressed representation.
- Fully Connected Layer performs classification (regression/binary classification etc.)
- Output Layer transform predictions into answers; Sigmoid for binary classification or Softmax for both binary and multi classification

Refs:

- Word2vec: https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
- Vectors: http://vectors.nlpl.eu/repository/
- Russian vectors on Russian national corpora: https://rusvectores.org/ru/
- There is word2vec learning and inference in gensim: https://radimrehurek.com/gensim/
 models/word2vec.html

•

Refs

- Perfect mxnet tutorial on words vectors:
 http://www.d2l.ai/chapter_natural-language-processing-pretraining/approx-training.html
- Good article «for Dummies»: https://monkeylearn.com/blog/word-embeddings-transform-text-numbers/
- Another good article: <u>https://towardsdatascience.com/machine-learning-word-embedding-sentiment-classification-using-keras-b83c28087456</u>
- Some articles if u want MOAR MATH (softmax tricks explained): http://ruder.io/word-embeddings-softmax/index.html#hierarchicalsoftmax
- And really you can google BERT, ELMO and GloVe by yourself