

MIDO – 3ème année – 2023-2024

Algorithmes dans les graphes

Partiel (durée 2h)

Non				
1	Jenent)			
() () () () () () () () () ()	b			
(listile		``. 		
	nent)		·.,	

GROUPE:	
---------	--

Aucun document ni calculatrice autorisé.

Exercice	Barème	Résultat				
1	3					
2	3					
3	8					
4	6					
Total	20					

Exercice 1 : modélisation (3 points)

Dans une région susceptible de subir des feux de forêt violents, on envisage d'installer des abris anti-feux. La région a recensé l'ensemble des lieux, $L = \{L1, \ldots, L8\}$ où il est possible d'implanter un abris. Pour chaque lieu i, elle a estimé le nombre de personnes qui pourraient être protégées par l'abris.

Le tableau ci-dessous donne la liste des lieux où l'on peut envisager l'installation d'un abris et le nombre de personnes protégées par l'abris en cas de feux.

				L4				
Nombre de personnes	100	80	10	100	20	40	80	50

Il a également été décidé de ne pas implanter deux abris à moins de 4 km l'un de l'autre. Le tableau ci-dessous contient les distances qui séparent les différents lieux.

	L1	L2	L3	L4	L5	L6	L7	L8
L1	0	4.5	3.5	2.5	2	1.5	5	3.5
L2	4.5	0	3	7	6	5	9	3.5
L3	3.5	3	0	6	5.5	5	8.5	5.5
L4	2.5	7	6	0	1	2.5	3	5
L5	2	6	5.5	1	0	2	3.5	3.5
L6	1.5	5	5	2.5	2	0	5	2.5
L7	5	9	8.5	3	3.5	5	0	7
L8	3.5	3.5	5.5	5	3.5	2.5	7	0

On cherche à sélectionner un ensemble de lieux, pour installer un abris sur chacun d'entre eux, afin de maximiser le nombre de personnes protégées.

1. Modéliser le problème à l'aide d'un graphe G (vous prendrez soin de bien définir votre graphe : type de graphe, sommets, arcs ou arêtes, ordre, ...).

Correction

On représente le problème à l'aide d'un graphe non orienté valué d'ordre 8, noté G = (X, E),

avec:

- $X = \{L1, L2, ..., L8\}$ représente les lieux Li où il est envisagé d'installer un abris,
- $\forall Li, Lj \in X \times X, \{Li, Lj\} \in E$ si la distance entre les lieux Li et Lj est inférieure à 4km,
- les sommets sont valués : le poids du sommet Li est égal au nombre de personnes protégées par un abris installé dans Li.
- 2. Donner une représentation graphique du graphe.

Correction

3. Formuler précisément, en utilisant des concepts de la théorie des graphes, le problème à résoudre pour trouver une solution qui maximise le nombre de personnes protégées.

Correction

On doit déterminer un ensemble stable de poids maximal.

4. Proposer une solution au problème.

Correction

 $S = \{L1, L2, L7\}$ de valeur 260.

Exercice 2 (3 points)

1. Lors d'une réunion, les 12 participants se sont échangés mutuellement des poignées de mains pour souhaiter la bienvenue à tous. Chacun des participants a serré la main de tous les autres. Combien de poignées de mains ont-elle été échangées? Pour répondre à cette question, modéliser les données sous la forme d'un graphe et formuler la réponse en utilisant des concepts de la théorie des graphes.

Correction Les participants sont des sommets (n = 12) et une arête représente une poignée de mains. Le graphe forme une clique et on a : 66 = n(n-1)/2 arêtes.

2. Montrer qu'un graphe simple tel que chaque sommet est de degré supérieur ou égal à k contient une chaîne élémentaire de longueur k.

Correction Une chaîne est élémentaire si et seulement si elle passe exactement une fois en chacun de ses sommets. Chaque sommet est de degré $\geq k$, donc partant d'un sommet quelconque i_0 , il est possible d'atteindre un sommet i_1 . Partant de i_1 , il est possible de trouver un sommet i_2 différent de i_0 afin de former une chaine élémentaire de longueur 2... Partant de i_{k-1} , qui a donc au moins k voisins, il est possible d'attendre un sommet différent des k-1 sommets déjà visités $(i_0,i_1,...,i_{k-2})$ pour atteindre i_k et former ainsi une chaîne élémentaire de longueur k.

3. Montrer qu'un graphe simple d'ordre n, tel que chaque sommet est de degré supérieur ou égal à $\frac{n}{2}$, est connexe.

Correction Chaque sommet est de degré supérieur ou égal à $\frac{n}{2}$, donc il existe une chaîne de longueur $\frac{n}{2}$ passant par i un sommet quelconque de G. Donc deux sommets quelconques i et j sont nécessairement reliés par une chaîne car chaîne élémentaire passant par i couvre la moitie des sommets plus 1, et idem pour celle passant par j => ces deux chaînes se rejoignent nécessairement.

Exercice 3 (8 points)

Soit G = (X, E) le graphe simple connexe représenté dans la figure 1 ci-dessous.

FIGURE 1 – Graphe non orienté connexe G

Un sommet v de G est appelé **point d'articulation** si le sous-graphe engendré par l'ensemble X privé de v (noté $X^{\bar{v}} = X \setminus \{v\}$), n'est pas connexe.

1. Identifier les 5 points d'articulation qui existent dans ce graphe (sans justifier votre réponse).

Correction Les 5 points d'articulation sont les sommets 1,3,6,7,8.

2. Représenter l'arborescence \mathcal{A}^1 décrivant le parcours en profondeur d'abord de G à partir du sommet 1 sur le graphe de la figure 1 en explorant les sommets par **ordre croissant d'indice**. Donner les numérotations préfixes de chacun des sommets v (noté pref(v)).

- 3. Etant donné l'arborescence \mathcal{A}^1 , on distingue deux cas pour chaque arête $\{v,w\}\in E$:
 - le cas où $(v, w) \in \mathcal{A}^1$ ou $(w, v) \in \mathcal{A}^1$, et $\{v, w\}$ est alors appelé une arête liaison,
 - le cas où ni (v, w), ni (w, v) n'appartient à \mathcal{A}^1 , et $\{v, w\}$ est alors appelé une arête retour.
 - (a) Lister l'ensemble des arêtes retour, noté \mathcal{R} .

Correction. 3 arêtes retour (cf dessin)

(b) Montrer que, après d'un parcours en profondeur d'abord d'un graphe non-orienté quelconque, chaque arête du graphe est soit une arête liaison, soit une arête retour.

Correction. Si $\{v,w\} \in E$ n'est pas une arête liaison, l'expression booléenne ci-dessous est vrai :

$$\operatorname{NON}((v,w) \in \mathcal{A}^1 \ \operatorname{OU} \ (w,v) \in \mathcal{A}^1)$$

Ce qui est équivalent à : $(v, w) \notin \mathcal{A}^1$ AND $(w, v) \notin \mathcal{A}^1$ et $\{v, w\}$ est bien une arête retour.

- 4. Pour tout sommet v, ord(v) est égal au minimum entre :
 - pref(v),
 - pref(u) pour tout u tel que $\{u, v\} \in \mathcal{R}$,
 - pref(u) pour tout u tel que $\{u, w\} \in \mathcal{R}$ où w est un descendant de v dans \mathcal{A}^1 .

Calculer ord(v) pour chacun des sommets de G.

Correction.

v	1	2	3	4	5	6	7	8	9	10	11	12
ord(v)	1	4	7	8	2	3	3	6	6	6	3	6

- 5. Etant donné un graphe non orienté connexe G=(X,E) et, \mathcal{A}^r l'arborescence décrivant l'exploration par DFS(G) à partir du sommet r, on sait que :
 - (a) r est un point d'articulation si et seulement s'il a au moins deux successeurs dans A^r ,
 - (b) un sommet $v \neq r$ est un point d'articulation si et seulement si v a au moins un successeur w dans A^r tel que ord $(w) > \operatorname{pref}(v)$,

Pour chacun des sommets $v \in X$, en fonction de A^1 et des valeurs pref(v) et ord(v) trouvées précédemment, lister les points d'articulation en vérifiant si on se trouve dans le cas (a) ou (b).

Correction.

Le sommet 1 est un point d'articulation car il a deux successeurs (cas (a)). Cas(b) :

- 6 est un point d'articulation car le sommet 2 est un successeur avec ord(2)=4 > pref(6)=3.
- 7 est un point d'articulation car le sommet 8 est un successeur avec ord(8)=6 > pref(7)=3.
- 3 est un point d'articulation car le sommet 4 est un successeur avec ord(4)=8 > pref(3)=7.
- 8 est un point d'articulation car le sommet 3 est un successeur avec ord(3)=7 > pref(8)=6.

Exercice 4 (6 points)

Soit H = (X, U) le 1-graphe représenté dans la figure 2 ci-dessous.

FIGURE 2 - H = (X, U)

1. Appliquer le parcours en profondeur d'abord sur H à partir du sommet 1 en explorant les sommets par ordre croissant d'indice. Représenter graphiquement le (ou les) arborescence(s) décrivant l'exploration par DFS de H.

Correction

2. Les sommets appartenant à l'arborescence de racine 1 décrivant l'exploration par DFS de H, noté \mathcal{A}^1 , forment-ils une composante connexe? Pour un graphe orienté quelconque G, les sommets appartenant à une arborescence décrivant DFS(G) forment-ils necéssairement une composante connexe? (Si oui, donner la preuve, sinon proposer un contre-exemple)

Correction

Non les sommets appartenant à \mathcal{A}^1 ne forment pas à eux seuls une composante connexe. En effet, le graphe H est connexe et \mathcal{A}^1 ne contient pas tous les sommets.

3. Les sommets appartenant à \mathcal{A}^1 forment-ils une composante fortement connexe? Pour un graphe orienté quelconque G, les sommets appartenant à une arborescence décrivant DFS(G) forment-ils necéssairement une composante fortement connexe? (Si oui, donner la preuve, sinon proposer un contre-exemple)

Correction

Oui dans le cas de H les sommets appartenant à \mathcal{A}^1 forment une composante fortement connexe. Cet ensemble de sommets est relié par un circuit dans H et il est bien maximale au sens de l'inclusion puisqu'il n'existe pas d'arc allant de 1, 2 ou 5 vers un autre sommet de H. Mais dans le cas général ce ne sera pas toujours vrai. Par exemple,

4. Déterminer les composantes fortement connexes à l'aide de l'algorithme de Kosaraju-Sharir (vous prendrez soin de bien détailler chacune des étapes de l'algorithme.

Correction

5. Représenter le graphe réduit et donner un ordre topologique sur les sommets de ce graphe (vous prendrez soin de détailler les étapes de calcul).

Correction

cf dessin précédent