Math 565 - Homework 9

Due Monday March 22, 2021

- 1. Complete problem 4 on page 104 of Do Carmo.
- 2. Compute the components R^l_{ijk} of the curvature tensor and the sectional curvature for
 - (a) the cylinder, and
 - (b) the hyperbolic upper half plane.
- 3. Let $\omega \in \Omega^2(\mathbb{R}^3)$ be given by

$$\omega = e^{xz} dx \wedge dy - \sin(y)z^2 dy \wedge dz.$$

Compute $d\omega$.

- 4. Let V be a finite dimensional vector space. Prove that there is a canonical isomorphism (basis-independent) between the space of bilinear maps of $V \times V^*$ ($V \otimes V^*$) and the space of linear maps from V to V denoted $\operatorname{Hom}(V,V)$. **Hint:** To a linear transformation $A:V \to V$ we associate a bilinear map $(v,\varphi) \mapsto \langle Av,\varphi \rangle$ on $V \times V^*$ to \mathbb{R} .
- 5. Show that the restriction of $\sigma = x^1 dx^2 x^2 dx^1 + x^3 dx^4 x^4 dx^3$ from \mathbb{R}^4 to the sphere S^3 is never zero on S^3 .
- 6. As in problem (1) of Homework 4 prove that the set of all covector fields on M is a $C^{\infty}(M)$ module.