

Современная теория информации

Лекция 3. Энтропия на сообщение дискретного источника. Префиксные коды.

Содержание лекции

- Энтропия на сообщение дискретного источника.
- Префиксные коды.
- Неравенство Крафта.
- Прямая и обратная теоремы побуквенного кодирования.
- 🧿 Код Хаффмана.

Рассмотрим $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ из $X_1X_2\ldots X_n=X^n$. Энтропия $H(X_1X_2\ldots X_n)=H(X^n)$ называется n-мерной энтропией процесса.

Энтропия на символ для последовательности длины n определяется как: $H(X^n)$

 $H_n(X) = \frac{H(X^n)}{n}.$

Другой способ:

$$H(X_n|X_1,\ldots,X_{n-1})=H(X|X^{n-1}).$$

Энтропия на сообщение:

$$\lim_{n\to\infty} H_n(X)$$
 и $\lim_{n\to\infty} H(X|X^n)$.

Theorem

Для дискретного стационарного процесса (источника)

- A. $H(X|X^n)$ не возрастает с увеличением n;
- В. $H_n(X)$ не возрастает с увеличением n;
- C. $H_n(X) \ge H(X|X^{n-1});$
- D. $\lim_{n\to\infty} H_n(X) = \lim_{n\to\infty} H(X|X^n)$.

Доказательство.

А. Следует из невозрастания энтропии с увеличением числа условий.

C.
$$H(X^n) = H(X) + H(X|X^1) + ... + H(X|X^{n-1}) \ge$$

 $\ge nH(X|X^{n-1}) \ge nH(X|X^n)$

B.
$$H(X^{n+1}) \stackrel{\text{(a)}}{=} H(X_1...X_nX_{n+1})$$

$$\stackrel{\text{(b)}}{=} H(X_1...X_n) + H(X_{n+1}|X_1,...,X_n)$$

$$\stackrel{\text{(c)}}{\leq} nH_n(X) + H_n(X)$$

$$\stackrel{\text{(d)}}{=} (n+1)H_n(X).$$

$$H(X^{n+1}) \leq (n+1)H_n(X).$$

$$\Longrightarrow \frac{H(X^{n+1})}{n+1} = H_{n+1}(X) \leq H_n(X)$$

Доказательство.

- D1. $H_n(X)$ и $H(X|X^n)$ ограничены снизу (≥ 0) и не возрастают, т.е., существуют пределы $\lim_{n\to\infty} H_n(X)$ и $\lim_{n\to\infty} H(X|X^n)$. Из С следует, что: $\lim_{n\to\infty}H_n(X)\geq\lim_{n\to\infty}H(X|X^n).$
- D2. Для m < n:

$$H(X^{n}) = H(X_{1} ... X_{n}) = = H(X_{1} ... X_{m}) + H(X_{m+1}|X_{1}, ..., X_{m}) + \cdots + H(X_{n}|X_{1}, ..., X_{n-1}) \leq {}^{a}mH_{m}(X) + (n-m)H(X|X^{m}).$$

После деления на n: $\lim_{n \to \infty} H_n(X) \le H(X|X^m)$, для любого m.

Устремляем $m \to \infty$: $\lim_{n\to\infty} H_n(X) \leq \lim_{m\to\infty} H(X|X^m).$

^аВ правой части учитываем *т* предыдущих символов, вместо *п*

Обозначим
$$H_\infty(X)=\lim_{n o\infty}H_n(X),\ H(X|X^\infty)=\lim_{n o\infty}H(X|X^n),$$
 тогда $H_\infty(X)=H(X|X^\infty)$

Два способа кодирования:

- Расширение алфавита: буквы это последовательности исходных букв длины n.
- ullet Учёт зависимости текущей буквы от n предшествующих букв.

Дискретный стационарный источник без памяти

- $H(X_1...X_n) = H(X_1) + ... + H(X_n)$.
- $\bullet \ H(X^n) = nH(X).$
- $H_n(X) = H(X)$,
- $H_{\infty}(X) = H(X)$.
- $H(X|X^n) = H(X_{n+1}|X_1,...,X_n) = H(X),$
- $\bullet \ \ H(X|X^{\infty})=H(X).$

Отсюда не следует, что для такого источника нужно кодировать каждую букву независимо от других.

Марковский источник

•
$$H(X|X^n) = H(X_{n+1}|X_1,...,X_n) = H(X_{n+1}|X_{n-s+1},...,X_n) = H(X|X^s).$$

- $\bullet \ \ H(X|X^{\infty}) = H(X|X^{s}).$
- $H(X^n) = H(X_1 ... X_s X_{s+1} ... X_n)$

$$=H(X_1\ldots X_s)+H(X_{s+1}\ldots X_n|X_1,\ldots,X_s).$$

•
$$H(X_{s+1}...X_n|X_1,...,X_s) = H(X_{s+1}|X_1,...,X_s) +$$

$$+ H(X_{s+2}|X_2,...,X_{s+1}) + ...$$

$$+ H(X_n|X_{n-s},...,X_{n-1})$$

$$= (n-s)H(X|X^s).$$

Выводы

- Информационная производительность дискретного источника без памяти определяется его энтропией H(X).
- $H(X) \leq \log |X|$, равенство когда все символы равновероятны.
- ullet Энтропия на символ дискретного стационарного источника определяется как $\lim_{n \to \infty} H_n(X) = \lim_{n \to \infty} H(X|X^n)$
- Наилучшее сжатие может быть достигнуто либо кодированием длинных блоков символов, либо с учётом длинной предыстории для каждого символа.

Неравномерное побуквенное кодирование¹

Рассмотрим дискретный источник без памяти.

- $m{\bullet}\ X=\{1,...,M\},\ \{p_1,...,p_M\}.\ C=\{m{c}_1,...,m{c}_M\}$, кодовые слова длины J_1,\ldots,J_M .
- Средняя длина кодового слова:

$$\bar{I} = \mathsf{E}[I_i] = \sum_{i=1}^M p_i I_i$$

H(X) – нижняя граница для \bar{I} .

Неравномерное побуквенное кодирование код Морзе

Буква	Кодовое слово
е	•
a	•
j	·
q	

Декодировать: · - - - - -

Неравномерное побуквенное кодирование код Морзе

Буква	Кодовое слово
е	
a	•
j	•
q	·-

Декодировать: $\cdot - - - \cdot - o aq$ или ja ?

Для однозначного декодирования кода необходимы разделители ("паузы") между кодовыми словами.

Префиксные коды

Пример: $X = \{a, b, c, d\}$

Рис.: Пример двоичного кодового дерева

Буква	Кодовое слово	
a	1	
b	00	Декодировать: 0101001010
С	010	
d	011	

Префиксные коды

Свойства:

- Код называется префиксным, если ни одно кодовое слово не является началом другого кодового слова.
- Префиксный код является однозначно декодируемым.
- Если только листья двоичного дерева соответствуют кодовым словам, то код является префиксным.
- Однозначно декодируемый код не обязательно является префиксным.
- Древовидный код является префиксным.

Префиксные коды Пример

$$X = \{0, 1, 2, 3\}$$

Какой код является

- префиксным?
- однозначно декодируемым?
- $C_1 = \{00, 01, 10, 11\};$
- $C_2 = \{1,01,001,000\};$
- $C_4 = \{0, 1, 10, 01\};$

Неравенство Крафта

Theorem

Необходимым и достаточным условием существования префиксного кода объёмом с длинами кодовых слов $l_1,...,l_M$ является выполнение неравенства:

$$\sum_{i=1}^M 2^{-l_i} \le 1.$$

Неравенство Крафта

Необходимость

Неравенство верно для любого префиксного кода.

Выберем L, такое что $L \ge \max_i I_i$. Концевая вершина исходного дерева, расположенная на глубине I_i , имеет 2^{L-I_i} потомков на глубине L.

Неравенство Крафта

Достаточность

Если неравенство Крафта выполняется, то существует код с заданным набором длин кодовых слов.

Пример: $l_1 = 1$, $l_2 = 2$, $l_3 = l_4 = 3$.

На каждом шаге количество "свободных" вершин равно 2, т.е., можно поместить следующее кодовое слово.

Неравенство Крафта Достаточность

Сортируем $\{I_i\}$ по убыванию.

Пошагово строим код:

$$2^{l_2} - 2^{l_2 - l_1} \ge 1$$

$$2^{I_3} - 2^{I_3 - I_2} - 2^{I_3 - I_1} \ge 1$$

. . .

$$2^{l_M} - 2^{l_M - l_{M-1}} - 2^{l_M - l_{M-2}} - \dots - 2^{l_M - l_1} \ge 1$$

Однозначно декодируемый код

Theorem

Для любого однозначно декодируемого двоичного кода объёмом M с длинами кодовых слов I_1, \ldots, I_M справедливо неравенство:

$$\sum_{i=1}^{M} 2^{-l_i} \leq 1.$$

Прямая теорема неравномерного побуквенного кодирования

Theorem

Для ансамбля $X = \{x, p(x)\}$ с энтропией H(X) = H существует побуквенный неравномерный префиксный код со средней длиной кодовых слов $\bar{I} < H + 1$.

Доказательство.

- **1** Пусть $I_i = \lceil -\log p_i \rceil$. Тогда $\sum_{i=1}^M 2^{-l_i} = \sum_{i=1}^M 2^{-\lceil -\log p_i \rceil} \le \sum_{i=1}^M 2^{\log p_i} = 1 \Rightarrow$ такой префиксный код существует.
- $\overline{l} = \sum_{m=1}^{M} p_m l_m < \sum_{m=1}^{M} p_m (-\log p_m + 1) < H + 1.$

Обратная теорема неравномерного побуквенного кодирования

Theorem

Для любого однозначно декодируемого кода для дискретного источника $\{X, p(x)\}$ с энтропией $H, \bar{I} > H$.

Доказательство.

$$H - \bar{l} = -\sum_{x \in X} p(x) \log p(x) - \sum_{x \in X} p(x) l(x)$$

$$= \sum_{x \in X} p(x) \log \frac{2^{-l(x)}}{p(x)} \le \log e \sum_{x \in X} p(x) \left(\frac{2^{-l(x)}}{p(x)} - 1\right)$$

$$\le \log e \left(1 - \sum_{x \in X} p(x)\right) = 0$$

Оптимальный побуквенный код.

Свойства оптимального кода:

- 1. Если $p_i < p_j$, то $l_i \geq l_j$.
- 2. Не менее двух кодовых слов имеют одинаковую длину $I_M = \max_m I_m$. Если у нас имеется только одно кодовое слово максимальной длины, то код не оптимален, так как мы можем убрать последний символ такого кодового слова.
- 3. Среди кодовых слов длиной $I_M = \max_m I_m$ найдутся два слова, различающиеся только в одном последнем символе.

Оптимальный побуквенный код.

Свойства оптимального кода:

- 4. Пусть $p_1 \ge p_2 \ge ... \ge p_M$.
 - Для ансамбля $X=\{1,...,M\}$ и кода C, удовлетворяющего свойствам 1–3, введем ансамбль $X'=\{1,...,M-1\}$, сообщениям которого приписаны вероятности $\{p_1',...,p_{M-1}'\}$ так, что

$$p'_1 = p_1,$$

 $p'_2 = p_2,$
 $p'_{M-1} = p_{M-1} + p_M.$

- ▶ Из кода C построим код C' для ансамбля X', приписав сообщениям $x_1', ..., x_{M-2}'$ те же кодовые слова, что и в коде , т.е. $c_i' = c_i$, а сообщению x_{M-1}' слово c_{M-1}' , как общую часть слов C_{M-1} и C_M .
- lacktriangle Тогда, если C' оптимален для X', то код C оптимален для X.

Оптимальный побуквенный код.

Доказательство свойства 4

Из свойства 3 следует, что:

Тогда средняя длина кодового слова:

$$\bar{I} = \sum_{m=1}^{M} p_m I_m = \sum_{m=1}^{M-2} p_m I_m + p_{M-1} I_{M-1} + p_M I_M =
= \sum_{m=1}^{M-2} p_m I_m + (p_{M-1} + p_M)(I'_{M-1} + 1) =
= \sum_{m=1}^{M-2} p'_m I'_m + p'_{M-1} I'_{M-1} + p_{M-1} + p_M =
= \sum_{m=1}^{M-1} p'_m I'_m + p_{M-1} + p_M = \bar{I}' + p_{M-1} + p_M.$$

где
$$\overline{l}' = \sum_{m=1}^{M-1} p_m' l_m' - \mathsf{среднее}$$
 длина кодового слово кода C' .

а	11
b	01
	101
d	100
е	001
f	

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$
$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

а	11
b	01
	101
d	100
е	001
f	

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$
$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

a	11
b	01
	101
d	100
е	001
f	

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$
$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

а	11
b	01
	101
d	100
е	001
f	

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$
$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

а	11
b	01
	101
d	100
е	001
f	

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$
$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

11
01
101
100
001
000

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$
$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

11
01
101
100
001
000

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$

$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

11
01
101
100
001
000

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$

$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

11
01
101
100
001
000

$$H = -\sum_{x} p(x) \log p(x) = 2.4016$$

$$\bar{l} = \sum_{x} l(x)p(x) = 2.4500$$

- Р матрица, в которой хранятся вероятности появления сообщений.
- L матрица длин кодовых слов.
- ullet C матрица кодовых слов размером M imes M.
- ullet T матрица потомков узлов M imes M.

- **4** Два сообщения x_2 и x_3 с минимальными вероятностями объединяются. Вероятность нового сообщения записывается во вторую строку P.
- ② $C[2, L[2]] \leftarrow 0, C[3, L[3]] \leftarrow 1.$
- lacktriangled Во вторую строку матрицы T записываются номера потомков объединенного узла, то есть все номера узлов, которые находились в строках 2 и 3.
- **1** $L[2] \leftarrow L[2] + 1, L[3] \leftarrow L[3] + 1.$

$$P = \left(\begin{array}{c} 0.5 \\ 0.25 \\ 0.25 \\ - \end{array}\right), C = \left(\begin{array}{cccc} - & - & - & - \\ - & - & - & - \\ 0 & - & - & - \\ 1 & - & - & - \end{array}\right), T = \left(\begin{array}{cccc} 0 & - & - & - \\ 1 & - & - & - \\ 2 & 3 & - & - \\ - & - & - & - \end{array}\right), L = \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}\right).$$

- Объединяются x₁ и x₂₃.
- $C[1, L[1]] \leftarrow 0$, $C[2, L[2]] \leftarrow 1$, $C[3, L[3]] \leftarrow 1$.
- В T[1][..] записываются номера потомков, которые находились в первой и второй строках.
- $L[T[1][..]] \leftarrow L[T[1][..]] + 1$.

$$P = \begin{pmatrix} 0.5 \\ 0.5 \\ - \\ - \end{pmatrix}, C = \begin{pmatrix} - & - & - & - \\ 0 & - & - & - \\ 0 & 1 & - & - \\ 1 & 1 & - & - \end{pmatrix}, T = \begin{pmatrix} 0 & - & - & - \\ 1 & 2 & 3 & - \\ - & - & - & - \\ - & - & - & - \end{pmatrix}, L = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 2 \end{pmatrix}.$$

- Объединяются x₀ и x₁₂₃.
- $C[0, L[0]] \leftarrow 0$, $C[1, L[1]] \leftarrow 1$, $C[2, L[2]] \leftarrow 1$, $C[3, L[3]] \leftarrow 1$.
- В T[0][..] записываются номера потомков, которые находились в нулевой и первой.
- $L[T[0][..]] \leftarrow L[T[0][..]] + 1$.

Реализация декодера

- Так как длина кодовых слов не кратна 8 битам, кодер должен использовать промежуточный буфер в 2-4 байта.
- На практике используется заранее подготовленная таблицу декодирования.

Таблица: Пример однобитной таблицы декодирования для $X = \{x_0, x_1, x_2, x_3\}$ и $C = \{0, 10, 110, 111\}$

Адрес, <i>а</i>	b_j	f [a]	Адрес перехода, <i>А[а</i>]	x[a]
0	0	0	-	<i>x</i> ₀
1	1	1	2	_
2	0	0	_	<i>x</i> ₁
3	1	1	4	-
4	0	0	_	<i>X</i> 2
5	1	1	_	X3

Реализация однобитного декодера

Реализация двубитного декодера

	а	$b_j b_{j+1}$	f [a]	<i>l</i> [a]	A[a]	x[a]
	0	00	1	1	_	<i>x</i> ₀
	1	01	1	1	1	<i>x</i> ₀
	2	10	1	2	_	<i>X</i> 1
	3	11	0	-	4	_
	4	00	1	4	_	<i>X</i> ₂
	5	01	1	4	-	<i>X</i> 3
	6	10	1	4	_	X ₄
5	7	11	0	-	8	_
,	8	00	1	5	1	<i>X</i> 5
	9	01	1	5	_	X ₅
5	10	10	1	5	_	<i>x</i> ₆
5	11	11	1	5	_	<i>X</i> ₆