Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera.

1. Plan pomiarów

a. Generowanie grafów

Aby uniknąć generowania zbyt wielu grafów, wszystkie algorytmy zostały wykonane na tych samych grafach, nieskierowanych i na płaszczyźnie(wymagane do heurystyki A*)

Wszystkie grafy zostały wylosowane w następujący sposób:

- i. Wylosowanie każdemu wierzchołka dwóch współrzędnych w przedziale [0, 8191]
- ii. Dodanie krawędzi 0-1, 1-2, 1-3, n-0 w celu zagwarantowania spójności grafu
- iii. Utworzenie zbioru wszystkich możliwych krawędzi(z wyłączeniem już dodanych)
- iv. Wyliczenie na podstawie zadanej gęstości docelowej ilości krawędzi
- v. Losowe wybieranie ze zbioru wyliczonej ilości krawędzi i dodawanie ich do grafu z wagą odpowiadającą odległości między odpowiadającymi wierzchołkami

b. Metoda pomiaru czasu i platforma testowa

Do pomiaru czasu użyto funkcji QueryPerformanceCounter.

Program kompilowana w trybie realease(optymalizacja o2) w Visual Studio 2015. Testy przeprowadzano na laptopie z procesorem Intel Core i7-4720HQ, 6MB cache, taktowanie ograniczone do 2,6 GHz

Wszystkie pomiary wykonano według schematu:

- i. Dla każdego rozmiaru grafu
 - 1. Dla każdej gęstości grafu
 - a. 100 razy
 - i. Wygenerować graf dla obu reprezentacji
 - ii. Zmierzyć czas wykonania każdego z algorytmów
 - b. Uśrednić czasy

2. A*, wyszukiwanie ścieżki

a. Heurystyka

A* jest algorytmem wymagającym heurystyki do optymalnego działania(w przeciwnym razie staje się wolnym Dijkstrą i w sumie) więc moja implementacja A* przyjmuje za heurystykę dystans między wierzchołkami(punkt 1a: generowanie grafów).

b. Złożoność obliczeniowa

Ponieważ A* nie rozpatruje wszystkich wierzchołków jeśli nie musi(w instancjach testowych graf jest spójny więc droga zawsze istnieje, a heurystyka jest poprawna) złożoność obliczeniowa jest O(n) gdzie to ilość zbadanych wierzchołków. Ilość badanych wierzchołków powinna rosnąć wraz z rozmiarem grafu co widać na wykresach poniżej

c. Wyniki pomiarów

	Gęstość(%)						
Liczba wierzchołków	A* List	25	50	75	100		
	100	0,0291	0,0277	0,0287	0,0313		
	200	0,0687	0,0656	0,0643	0,0774		
	300	0,1057	0,1069	0,1090	0,1091		
	400	0,1297	0,1437	0,1621	0,1485		
	500	0,1672	0,1833	0,1678	0,1775		
	Gęstość(%)						
	A* Matrix	25	50	75	100		
	100	0,0469	0,0452	0,0424	0,0401		
	200	0,1102	0,0576	0,0754	0,0854		
	300	0,1243	0,0975	0,1127	0,1085		
	400	0,1336	0,1304	0,1299	0,1425		
	500	0,1355	0,1481	0,1872	0,1696		

3. Boruvka, szukanie MST

a. Złożoność obliczeniowa

Algorytm Boruvki powinien działać ze złożonością czasową O(E log V), co ładnie widać dla grafów o mniejszych gęstości ale trudniej znaleźć dopasowanie dla większych. Prawdopodobnie jest to spowodowane sposobem implementacji łączenia podgrafów, zrealizowaną przez łączenie drzew(struktury danych), wymagające realokacji pamięci.

W przypadku formy listowej i grafu o 400 wierzchołkach, gęstości 50%, albo wylosowało się parę dziwnych grafów, albo windows uznał mój projekt może poczekać aż się zainstalują jakieś aktualizacje. Zignorowałbym tą próbkę.

b. Wyniki pomiarów

	Gęstość[%]						
	Boruvka List	25	50	75	100		
	100	3,58	4,74	4,82	5,18		
	200	29,65	41,34	38,80	43,65		
λý	300	197,92	100,23	97,46	96,83		
ołkc	400	374,23	1049,79	216,27	202,43		
rzch	500	383,15	363,63	283,82	234,72		
Liczba wierzchołków	Gęstość[%]						
zba	Boruvka Matrix	25	50	75	100		
Lic	100	2,03	4,07	5,58	6,38		
	200	9,32	17,60	24,54	35,08		
	300	40,28	46,86	62,72	79,63		
	400	190,66	195,47	127,90	156,83		
	500	193,28	284,48	234,78	258,82		

4. Ford-Fulkerson, szukanie maksymalnego przepływu

a. Złożoność obliczeniowa

Wikipedia podaje złożoność czasową metody Forda-Fulkersona jako O(Ef), gdzie f to wartość maksymalnego przepływu, co na pewno jest prawdą przy grafach nieważonych, ale wydaje mi się być mało precyzyjne, więc spróbuję sam:

Używam algorytmu przeszukiwania wszerz(BFS) do znajdywania ścieżek w grafie rezydualnym, co ma złożoność O(V+E) co dla gęstych grafów daje $O(V^2)$ co pięknie widać na wykresie dla grafów pełnych. BFS wykona się maksymalnie E razy więc szacuję całość na $O(E^*(V+E)) = O(E^{2*}V)$. Kwadratowy przyrost czasu wykonania widać na większości grafów, więc chyba się zgadza.

Utworzenie grafu rezydualnego wymaga skopiowania grafu żeby nie niszczyć instancji testowej, co prawdopodobnie ma złożoność czasową $O(V^2)$ dla reprezentacji macierzowej i O(E) dla listowej ale instrukcje kopiowania są tak proste że można je pominąć.

b. Wyniki pomiarów

	Jilliai O VV							
	Gęstość[%]							
Liczba wierzchołków	FF List	25	50	75	100			
	100	67,88	117,38	119,53	121,72			
	200	569,30	930,68	928,55	988,11			
	300	2634,33	3739,09	3743,66	3714,19			
	400	4198,57	6886,71	9230,01	9645,44			
	500	8811,69	10605,00	17033,71	18114,96			
	Gęstość[%]							
	FF Matrix	25	50	75	100			
	100	11,14	35,57	80,33	122,55			
	200	95,53	341,67	685,03	1052,70			
	300	333,53	1263,37	2476,55	4244,06			
	400	974,59	3291,90	6080,16	8666,88			
	500	2114,18	6497,04	12089,07	16735,24			

5. Konkluzje

Reprezentacja macierzowa jest szybsza, chociaż dla grafów rzadkich i drzew będzie zajmować więcej pamięci niż reprezentacja listowa grafu.

A* jest wspaniały i rozumiem dlaczego jest powszechnie wykorzystywana przy tworzeniu gier komputerowych.

Moja implementacja Boruvki jest okropna(zbiory rozłączne), ale algorytm ma duży potencjał ponieważ pozwala na wykorzystanie wielu wątków.

6. Literatura

http://eduinf.waw.pl/inf/alg/001_search/index.php

https://www.wikipedia.org/

Procedural Content Generation for C++ Game Development, Dale Green, ISBN 978-1-78588-671-3, rozdział 8