Chapitre 3: Estimation ponctuelle

- Définition d'un estimateur
- L'Estimateur par la Méthode des Moments (EMM)
- L'Estimateur de Maximum de Vraisemblance (EMV)
- Qualité d'un estimateur
- Propriétés des EMM et EMV

Introduction

Hypothèse 1 : les données x_1, \ldots, x_n sont les réalisations de variables aléatoires X_1, \ldots, X_n indépendantes et de même loi.

Hypothèse 2: les techniques de statistique descriptive ont permis d'adopter une famille de lois de probabilité précise pour la loi des X_i , mais que la valeur du ou des paramètres θ de cette loi est inconnue.

Introduction

Hypothèse 1 : les données x_1, \ldots, x_n sont les réalisations de variables aléatoires X_1, \ldots, X_n indépendantes et de même loi.

Hypothèse 2: les techniques de statistique descriptive ont permis d'adopter une famille de lois de probabilité précise pour la loi des X_i , mais que la valeur du ou des paramètres θ de cette loi est inconnue.

Estimer θ : donner, au vu des observations x_1, \ldots, x_n , une approximation ou une évaluation de θ que l'on espère la plus proche possible de la vraie valeur inconnue.

- ullet estimation ponctuelle : une unique valeur vraisemblable pour heta
- estimation ensembliste ou région de confiance ensemble de valeurs vraisemblables pour θ

Introduction

Hypothèse 1 : les données x_1, \ldots, x_n sont les réalisations de variables aléatoires X_1, \ldots, X_n indépendantes et de même loi.

Hypothèse 2 : les techniques de statistique descriptive ont permis d'adopter une famille de lois de probabilité précise pour la loi des X_i , mais que la valeur du ou des paramètres θ de cette loi est inconnue.

Estimer θ : donner, au vu des observations x_1, \ldots, x_n , une approximation ou une évaluation de θ que l'on espère la plus proche possible de la vraie valeur inconnue.

- estimation ponctuelle : une unique valeur vraisemblable pour θ
- estimation ensembliste ou région de confiance ensemble de valeurs vraisemblables pour θ

Notations: $F(x; \theta)$ = fonction de répartition des X_i .

v.a. discrètes : probabilités élémentaires $P(X = x; \theta)$

P Ensimag v.a. continues : densité f(x; heta)

Définition d'un estimateur

Une **statistique** t est une fonction des observations x_1, \ldots, x_n :

$$t: \mathbb{R}^n \to \mathbb{R}^m$$

 $(x_1, \dots, x_n) \mapsto t(x_1, \dots, x_n)$

Exemples:
$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i, \ x_1^*, \ (x_1, x_3 + x_4, 2 \ln x_6)$$
 sont des statistiques.

Définition d'un estimateur

Une **statistique** t est une fonction des observations x_1, \ldots, x_n :

$$t: \mathbb{R}^n \to \mathbb{R}^m$$

 $(x_1, \dots, x_n) \mapsto t(x_1, \dots, x_n)$

Exemples:
$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i, \ x_1^*, \ (x_1, x_3 + x_4, 2 \ln x_6)$$
 sont des statistiques.

 $t_n = t(x_1, ..., x_n)$ est une réalisation de la variable aléatoire $T_n = t(X_1, ..., X_n)$.

Définition d'un estimateur

Une **statistique** t est une fonction des observations x_1, \ldots, x_n :

$$t: \mathbb{R}^n \to \mathbb{R}^m$$

 $(x_1, \dots, x_n) \mapsto t(x_1, \dots, x_n)$

Exemples:
$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i, \ x_1^*, \ (x_1, x_3 + x_4, 2 \ln x_6)$$
 sont des statistiques.

$$t_n = t(x_1, ..., x_n)$$
 est une réalisation de la variable aléatoire $T_n = t(X_1, ..., X_n)$.

Un **estimateur** d'une grandeur θ est une statistique T_n à valeurs dans l'ensemble des valeurs possibles de θ .

Une **estimation** de θ est une réalisation t_n de l'estimateur T_n .

Principe : estimer une espérance mathématique par une moyenne empirique, une variance par une variance empirique, etc...

Principe : estimer une espérance mathématique par une moyenne empirique, une variance par une variance empirique, etc...

Si
$$\theta = E[X]$$
, alors l'EMM de θ est $\tilde{\theta}_n = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Principe: estimer une espérance mathématique par une moyenne empirique, une variance par une variance empirique, etc...

Si
$$\theta = E[X]$$
, alors l'EMM de θ est $\tilde{\theta}_n = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Pour $\theta \in \mathbb{R}$, si $E[X] = \varphi(\theta)$, où φ est une fonction inversible, alors $\theta = \varphi^{-1}(E[X])$ et l'EMM de θ est $\tilde{\theta}_n = \varphi^{-1}(\bar{X}_n)$.

Principe: estimer une espérance mathématique par une moyenne empirique, une variance par une variance empirique, etc...

Si
$$\theta = E[X]$$
, alors l'EMM de θ est $\tilde{\theta}_n = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Pour $\theta \in \mathbb{R}$, si $E[X] = \varphi(\theta)$, où φ est une fonction inversible, alors $\theta = \varphi^{-1}(E[X])$ et l'EMM de θ est $\tilde{\theta}_n = \varphi^{-1}(\bar{X}_n)$.

Si la loi des X_i a deux paramètres θ_1 et θ_2 tels que $(E[X], Var[X]) = \varphi(\theta_1, \theta_2)$, où φ est une fonction inversible, alors les EMM de θ_1 et θ_2 sont $\left(\tilde{\theta}_{1n}, \tilde{\theta}_{2n}\right) = \varphi^{-1}\left(\bar{X}_n, S_n^2\right)$, où $S_n^2 = \frac{1}{n}\sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2 = \frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}_n^2$.

Principe : estimer une espérance mathématique par une moyenne empirique, une variance par une variance empirique, etc...

Si
$$\theta = E[X]$$
, alors l'EMM de θ est $\tilde{\theta}_n = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Pour $\theta \in \mathbb{R}$, si $E[X] = \varphi(\theta)$, où φ est une fonction inversible, alors $\theta = \varphi^{-1}(E[X])$ et l'EMM de θ est $\tilde{\theta}_n = \varphi^{-1}(\bar{X}_n)$.

Si la loi des X_i a deux paramètres θ_1 et θ_2 tels que $(E[X], Var[X]) = \varphi(\theta_1, \theta_2)$, où φ est une fonction inversible, alors les EMM de θ_1 et θ_2 sont $\left(\tilde{\theta}_{1n}, \tilde{\theta}_{2n}\right) = \varphi^{-1}\left(\bar{X}_n, S_n^2\right)$, où $S_n^2 = \frac{1}{n}\sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2 = \frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}_n^2$.

etc...

Fonction de vraisemblance

Quand les observations sont toutes discrètes ou toutes continues, on appelle **fonction de vraisemblance** (ou plus simplement vraisemblance) pour l'échantillon x_1, \ldots, x_n , la fonction du paramètre θ :

$$\mathcal{L}(\theta; x_1, \dots, x_n) = \begin{cases} P(X_1 = x_1, \dots, X_n = x_n; \theta) & \text{si les } X_i \text{ sont discrètes} \\ f_{X_1, \dots, X_n}(x_1, \dots, x_n; \theta) & \text{si les } X_i \text{ sont continues} \end{cases}$$

Fonction de vraisemblance

Quand les observations sont toutes discrètes ou toutes continues, on appelle **fonction de vraisemblance** (ou plus simplement vraisemblance) pour l'échantillon x_1, \ldots, x_n , la fonction du paramètre θ :

$$\mathcal{L}(\theta; x_1, \dots, x_n) = \left\{ \begin{array}{ll} P(X_1 = x_1, \dots, X_n = x_n; \theta) & \text{si les } X_i \text{ sont discrètes} \\ \\ f_{X_1, \dots, X_n}(x_1, \dots, x_n; \theta) & \text{si les } X_i \text{ sont continues} \end{array} \right.$$

Quand les X_i sont indépendantes et de même loi, la vraisemblance s'écrit :

$$\mathcal{L}(\theta; x_1, \dots, x_n) = \begin{cases} \prod_{i=1}^n P(X = x_i; \theta) & \text{si les } X_i \text{ sont discrètes} \\ \prod_{i=1}^n f(x_i; \theta) & \text{si les } X_i \text{ sont continues} \end{cases}$$

Maximum de vraisemblance : exemple introductif

n=1. On sait que X_1 est de loi binomiale $\mathcal{B}(15,p)$, avec p inconnu.

On observe $x_1 = 5$ et on cherche à estimer p.

La fonction de vraisemblance est la probabilité d'avoir observé un 5 quand la valeur du paramètre est p:

$$\mathcal{L}(p;5) = P(X_1 = 5; p) = \binom{15}{5} p^5 (1-p)^{15-5}$$

$$p$$
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $\mathcal{L}(p;5)$ 0.01 0.10 0.21 0.19 0.09 0.02 0.003 10^{-4} 2 10^{-7}

Maximum de vraisemblance : exemple introductif

n=1. On sait que X_1 est de loi binomiale $\mathcal{B}(15,p)$, avec p inconnu.

On observe $x_1 = 5$ et on cherche à estimer p.

La fonction de vraisemblance est la probabilité d'avoir observé un 5 quand la valeur du paramètre est p :

$$\mathcal{L}(p;5) = P(X_1 = 5; p) = \binom{15}{5} p^5 (1-p)^{15-5}$$

La valeur la plus vraisemblable de p est celle qui maximise la fonction de vraisemblance.

$$\Rightarrow \hat{p}_n = 1/3$$
.

L'Estimateur de Maximum de Vraisemblance (EMV)

On fait comme si c'était l'éventualité la plus probable qui s'était produite au cours de l'expérience.

L'estimation de maximum de vraisemblance de θ est la valeur $\hat{\theta}_n$ de θ qui rend maximale la fonction de vraisemblance $\mathcal{L}(\theta; x_1, \dots, x_n)$.

L'estimateur de maximum de vraisemblance (EMV) de θ est la variable aléatoire correspondante.

L'Estimateur de Maximum de Vraisemblance (EMV)

On fait comme si c'était l'éventualité la plus probable qui s'était produite au cours de l'expérience.

L'estimation de maximum de vraisemblance de θ est la valeur $\hat{\theta}_n$ de θ qui rend maximale la fonction de vraisemblance $\mathcal{L}(\theta; x_1, \dots, x_n)$.

L'estimateur de maximum de vraisemblance (EMV) de θ est la variable aléatoire correspondante.

Quand $\theta = (\theta_1, \dots, \theta_d) \in \mathbb{R}^d$ et que toutes les dérivées partielles ci-dessous existent, $\hat{\theta}_n$ est solution du système d'équations appelées **équations de vraisemblance** :

$$\forall j \in \{1, \dots, d\}, \quad \frac{\partial}{\partial \theta_j} \ln \mathcal{L}(\theta; x_1, \dots, x_n) = 0$$

Exemple des durées de vie d'ampoules

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} 91.6 35.7 251.3 24.3 5.4 67.3 170.9 9.5 118.4 57.1

Hypothèse : x_1, \ldots, x_n sont des réalisations de variables aléatoires X_1, \ldots, X_n indépendantes et de même loi $\exp(\lambda)$.

EMM = EMV:

- L'estimateur de λ est $\hat{\lambda}_n = 1/\overline{X}_n$.
- L'estimation de λ pour les durées de vie d'ampoules est $\hat{\lambda}_n = 1/\overline{x}_n = 0.012$.

On estime un paramètre $\theta \in \mathbb{R}$ à l'aide d'un estimateur T_n .

• Le biais de T_n est :

$$Biais[T_n] = E[T_n - \theta] = E[T_n] - \theta$$

On estime un paramètre $\theta \in \mathbb{R}$ à l'aide d'un estimateur T_n

• Le **biais** de T_n est :

$$Biais[T_n] = E[T_n - \theta] = E[T_n] - \theta$$

• L'erreur quadratique moyenne est :

$$EQM(T_n) = E\left[(T_n - \theta)^2\right] = Var[T_n] + Biais[T_n]^2$$

On estime un paramètre $\theta \in \mathbb{R}$ à l'aide d'un estimateur T_n .

• Le **biais** de T_n est :

$$Biais[T_n] = E[T_n - \theta] = E[T_n] - \theta$$

• L'erreur quadratique moyenne est :

$$EQM(T_n) = E\left[(T_n - \theta)^2\right] = Var[T_n] + Biais[T_n]^2$$

 T_n est un **estimateur sans biais** de θ si et seulement si $E[T_n] = \theta$.

On estime un paramètre $\theta \in \mathbb{R}$ à l'aide d'un estimateur T_n .

• Le **biais** de T_n est :

$$Biais[T_n] = E[T_n - \theta] = E[T_n] - \theta$$

• L'erreur quadratique moyenne est :

$$EQM(T_n) = E\left[(T_n - \theta)^2\right] = Var[T_n] + Biais[T_n]^2$$

 T_n est un **estimateur sans biais** de θ si et seulement si $E[T_n] = \theta$.

On considèrera que le meilleur estimateur possible de θ est un **estimateur** sans biais et de variance minimale (ESBVM).

 T_n est un **estimateur convergent** de θ si et seulement si T_n converge, en un certain sens, vers θ quand n tend vers l'infini.

 T_n est un **estimateur convergent** de θ si et seulement si T_n converge, en un certain sens, vers θ quand n tend vers l'infini.

Une suite de variables aléatoires $\{X_n\}_{n\geq 1}$ converge presque sûrement vers la variable aléatoire X si et seulement si

$$P\left(\left\{\omega; \lim_{n\to\infty} X_n(\omega) = X(\omega)\right\}\right) = 1$$

 T_n est un **estimateur convergent** de θ si et seulement si T_n converge, en un certain sens, vers θ quand n tend vers l'infini.

Une suite de variables aléatoires $\{X_n\}_{n\geq 1}$ converge presque sûrement vers la variable aléatoire X si et seulement si

$$P\left(\left\{\omega; \lim_{n\to\infty} X_n(\omega) = X(\omega)\right\}\right) = 1$$

Une suite de variables aléatoires $\{X_n\}_{n\geq 1}$ converge en probabilité vers la variable aléatoire X si et seulement si

$$\forall \varepsilon > 0, \lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0$$

Une suite de variables aléatoires $\{X_n\}_{n\geq 1}$ converge en loi vers la loi de probabilité de fonction de répartition F si et seulement si

$$\forall x, \lim_{n\to\infty} F_{X_n}(x) = F(x)$$

Une suite de variables aléatoires $\{X_n\}_{n\geq 1}$ converge en loi vers la loi de probabilité de fonction de répartition F si et seulement si

$$\forall x, \lim_{n\to\infty} F_{X_n}(x) = F(x)$$

Une suite de variables aléatoires $\{X_n\}_{n\geq 1}$ de L^2 converge en moyenne quadratique vers la variable aléatoire X si et seulement si

$$\lim_{n\to\infty} E\left[|X_n - X|^2\right] = 0$$

Théorème Central-Limite

Soit $\{X_n\}_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et de même loi, d'espérance E[X] et d'écart-type $\sigma[X]=\sqrt{Var[X]}$ finis. Pour tout $n\geq 1$, on pose :

$$Z_n = \frac{\sum_{i=1}^n X_i - nE[X]}{\sqrt{nVar[X]}} = \sqrt{n} \frac{\bar{X}_n - E[X]}{\sigma[X]}$$

Alors la suite $\{Z_n\}_{n\geq 1}$ converge en loi vers la loi normale centrée-réduite, ce qui s'écrit :

$$\sqrt{n} \frac{\bar{X}_n - E[X]}{\sigma[X]} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,1)$$

Théorème Central-Limite

Concrètement :

- La loi de toute variable aléatoire égale à la somme d'un nombre "suffisamment grand" de variables aléatoires indépendantes et de même loi est approximativement une loi normale.
- Pour n grand, $\sum_{i=1}^{n} X_i$ est approximativement de loi $\mathcal{N}(nE[X], nVar[X])$.

Loi des grands nombres

Soit $\{X_n\}_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et de même loi, d'espérance E[X]. Soit $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$.

Alors la suite $\{\bar{X}_n\}_{n\geq 1}$ converge presque sûrement vers E[X], ce qui s'écrit :

$$\bar{X}_n \stackrel{ps}{\longrightarrow} E[X]$$

Loi des grands nombres

Soit $\{X_n\}_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et de même loi, d'espérance E[X]. Soit $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$.

Alors la suite $\{\bar{X}_n\}_{n\geq 1}$ converge presque sûrement vers E[X], ce qui s'écrit :

$$\bar{X}_n \stackrel{ps}{\longrightarrow} E[X]$$

Concrètement :

- Quand on fait un très grand nombre d'expériences identiques et indépendantes, la moyenne des réalisations de la variable aléatoire à laquelle on s'intéresse tend vers l'espérance de sa loi.
- Ce résultat permet de justifier l'idée naturelle d'estimer une espérance par une moyenne empirique et une probabilité par une proportion.

Quantité d'information

Pour $\theta \in \mathbb{R}$, si la loi des observations vérifie certaines conditions de régularité, on appelle **quantité d'information** (de Fisher) sur θ apportée par l'échantillon x_1, \ldots, x_n , la quantité :

$$\mathcal{I}_n(\theta) = Var\left[rac{\partial}{\partial heta} \ln \mathcal{L}(heta; X_1, \dots, X_n)
ight]$$

Quantité d'information

Pour $\theta \in \mathbb{R}$, si la loi des observations vérifie certaines conditions de régularité, on appelle **quantité d'information** (de Fisher) sur θ apportée par l'échantillon x_1, \ldots, x_n , la quantité :

$$\mathcal{I}_n(heta) = \mathit{Var}\left[rac{\partial}{\partial heta} \ln \mathcal{L}(heta; X_1, \dots, X_n)
ight]$$

Inégalité de Fréchet-Darmois-Cramer-Rao (FDCR) : Si la loi des observations vérifie les conditions de régularité, alors pour tout estimateur T_n de θ , on a :

$$Var(T_n) \ge rac{\left[rac{\partial}{\partial heta} E[T_n]
ight]^2}{\mathcal{I}_n(heta)}$$

Efficacité d'un estimateur

On appelle efficacité d'un estimateur T_n la quantité :

$$Eff(T_n) = \frac{\left[\frac{\partial}{\partial \theta} E[T_n]\right]^2}{\mathcal{I}_n(\theta) Var[T_n]}$$

On appelle efficacité d'un estimateur T_n la quantité :

$$Eff(T_n) = \frac{\left[\frac{\partial}{\partial \theta} E[T_n]\right]^2}{\mathcal{I}_n(\theta) Var[T_n]}$$

• $0 \le Eff(T_n) \le 1$.

$$Eff(T_n) = \frac{\left[\frac{\partial}{\partial \theta} E[T_n]\right]^2}{\mathcal{I}_n(\theta) Var[T_n]}$$

- $0 \leq Eff(T_n) \leq 1$.
- T_n est dit un estimateur **efficace** si et seulement si $Eff(T_n) = 1$.

$$Eff(T_n) = \frac{\left[\frac{\partial}{\partial \theta} E[T_n]\right]^2}{\mathcal{I}_n(\theta) Var[T_n]}$$

- $0 \leq Eff(T_n) \leq 1$.
- T_n est dit un estimateur efficace si et seulement si $Eff(T_n) = 1$.
- T_n est dit asymptotiquement efficace si et seulement si lim_{n→+∞} Eff(T_n) = 1.

$$Eff(T_n) = \frac{\left[\frac{\partial}{\partial \theta} E[T_n]\right]^2}{\mathcal{I}_n(\theta) Var[T_n]}$$

- $0 \leq Eff(T_n) \leq 1$.
- T_n est dit un estimateur **efficace** si et seulement si $Eff(T_n) = 1$.
- T_n est dit asymptotiquement efficace si et seulement si $\lim_{n \to +\infty} Eff(T_n) = 1$.
- ullet La quantité $\dfrac{1}{\mathcal{I}_n(heta)}$ est appelée la **borne de Cramer-Rao**.

$$Eff(T_n) = \frac{\left[\frac{\partial}{\partial \theta} E[T_n]\right]^2}{\mathcal{I}_n(\theta) Var[T_n]}$$

- $0 \leq Eff(T_n) \leq 1$.
- T_n est dit un estimateur **efficace** si et seulement si $Eff(T_n) = 1$.
- T_n est dit asymptotiquement efficace si et seulement si $\lim_{n \to +\infty} Eff(T_n) = 1$.
- ullet La quantité $\dfrac{1}{\mathcal{I}_n(heta)}$ est appelée la **borne de Cramer-Rao**.
- Si un estimateur sans biais est efficace, sa variance est égale à la borne de Cramer-Rao, donc c'est forcément un ESBVM.

Propriétés des EMM - Moyenne empirique

On estime l'espérance E[X] par la moyenne empirique $ar{X}_n$.

La loi des grands nombres dit que \bar{X}_n converge presque sûrement vers E[X].

Propriétés des EMM - Moyenne empirique

On estime l'espérance E[X] par la moyenne empirique \bar{X}_n .

La loi des grands nombres dit que \bar{X}_n converge presque sûrement vers E[X].

$$E[\bar{X}_n] = E[X]$$
 $Var[\bar{X}_n] = \frac{Var[X]}{n}$

Propriétés des EMM - Moyenne empirique

On estime l'espérance E[X] par la moyenne empirique \bar{X}_n .

La loi des grands nombres dit que \bar{X}_n converge presque sûrement vers E[X].

$$E[\bar{X}_n] = E[X]$$
 $Var[\bar{X}_n] = \frac{Var[X]}{n}$

Donc la moyenne empirique \bar{X}_n est un estimateur sans biais et convergent en moyenne quadratique de E[X].

Propriétés des EMM - Variance empirique

On estime la variance Var[X] par la variance empirique

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}_n^2.$$

Propriétés des EMM - Variance empirique

On estime la variance Var[X] par la variance empirique

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}_n^2.$$

$$E[S_n^2] = \frac{n-1}{n} \ Var[X] \neq Var[X]$$

Donc la variance empirique S_n^2 est un estimateur biaisé de Var[X].

Propriétés des EMM - Variance empirique

On estime la variance Var[X] par la variance empirique

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}_n^2.$$

$$E[S_n^2] = \frac{n-1}{n} \ Var[X] \neq Var[X]$$

Donc la variance empirique S_n^2 est un estimateur biaisé de Var[X].

Mais $S_n'^2 = \frac{n}{n-1} S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ est un estimateur sans biais et convergent en moyenne quadratique de Var[X].

 $S_n^{\prime 2}$ est appelée variance estimée de l'échantillon.

• $\hat{\theta}_n$ converge presque sûrement vers θ .

• $\hat{\theta}_n$ converge presque sûrement vers θ .

•
$$\sqrt{\mathcal{I}_n(\theta)}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$
 ou $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{\mathcal{I}_1(\theta)}\right)$.

- $\hat{\theta}_n$ converge presque sûrement vers θ .
- $\sqrt{\mathcal{I}_n(\theta)}(\hat{\theta}_n \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$ ou $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{\mathcal{I}_1(\theta)}\right)$.
 - \Rightarrow quand n est grand, $\hat{\theta}_n$ est approximativement de loi $\mathcal{N}\left(\theta, \frac{1}{\mathcal{I}_n(\theta)}\right)$.
 - $\Rightarrow \hat{\theta}_n$ est asymptotiquement gaussien, sans biais et efficace.

- $\hat{\theta}_n$ converge presque sûrement vers θ .
- $\sqrt{\mathcal{I}_n(\theta)}(\hat{\theta}_n \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$ ou $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{\mathcal{I}_1(\theta)}\right)$. \Rightarrow quand n est grand, $\hat{\theta}_n$ est approximativement de loi $\mathcal{N}\left(\theta, \frac{1}{\mathcal{I}_n(\theta)}\right)$. $\Rightarrow \hat{\theta}_n$ est asymptotiquement gaussien, sans biais et efficace.
- Si $\hat{\theta}_n$ est l'EMV de θ , alors $\varphi(\hat{\theta}_n)$ est l'EMV de $\varphi(\theta)$.

- $\hat{\theta}_n$ converge presque sûrement vers θ .
- $\sqrt{\mathcal{I}_n(\theta)}(\hat{\theta}_n \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$ ou $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{1}{\mathcal{I}_1(\theta)}\right)$.
 - \Rightarrow quand n est grand, $\hat{\theta}_n$ est approximativement de loi $\mathcal{N}\left(\theta, \frac{1}{\mathcal{I}_n(\theta)}\right)$.
 - $\Rightarrow \hat{ heta}_n$ est asymptotiquement gaussien, sans biais et efficace.
- Si $\hat{\theta}_n$ est l'EMV de θ , alors $\varphi(\hat{\theta}_n)$ est l'EMV de $\varphi(\theta)$.
- ullet Méthode delta : si arphi est dérivable, on a :

$$\sqrt{n}\left[\varphi(\hat{\theta}_n) - \varphi(\theta)\right] \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\varphi'(\theta)^2}{\mathcal{I}_1(\theta)}\right)$$

 \Rightarrow quand n est grand, $arphi(\hat{ heta}_n)$ est approximativement de loi

$$\mathcal{N}\left(\varphi(\theta), \frac{\varphi'(\theta)^2}{\mathcal{I}_n(\theta)}\right)$$