Algorithmen und Datenstrukturen (Master) WiSe 19/20

Benedikt Lüken-Winkels

November 27, 2019

Contents

1	Übung	8
2	Allgemeines	9
	2.1 Einschub: Erwartungswerte	9

Wörterbuchproblem

Menge S mit n Schlüssln aus einem Universum U. Operationen: INSERT (darauf achten, dass die Balance nicht verloren geht), DELETE, LOOKUP (Im Baum runterlaufen, bis das Element gefunden wurde)

Situationen

- 1. U linear geordnet, also existiert ein \leq -Test \Rightarrow Suchbäume
- 2. U ist ein Intervall $\{0, ..., N-1\}$ der gesamten Zahlen \Rightarrow Hashing

<u>zu 1:</u>

Randomisierte Suchbäume Idee: Benutze Zufallszahlen zur Balancierung eines binären Suchbaums

Binärer Suchbaum (Knoten-Orientiert) Schlüssel werden in den n Knoten eines binären Baums gespeichert, sodass im linken Unterbaum des Knotens mit Schlüssel x alle Schlüssel < x und im rechten Unterbaum alle > x. Balanciert $\Rightarrow H\ddot{o}he(T) \leq logn$. Degeneriert $\Rightarrow H\ddot{o}he(T) = O(n)$

Definition: Randomized Search Tree (RST)

Sei $S = \{x_1, ..., x_n\}$ eine Menge von
n Schlüsseln. Jedem x_i wird eine zusätzlich eine Zufallszahl (auch Priorität genannt) $prio(x_i)$ zugeordnet. $prio(x_i)$ sind gleichverteilte reelle Zufallszahlen $\in [0, 1]$ (Implementierung wären int-Zahlen, zB 32-bit).

Ein RST für S ist eine binärer Suchbaum für die Paare $(x_i, prio(x_i), 1 \le i \le n, \text{ sodass})$

- 1. normaler Knoten-orientierter Suchbaum für die Schlüssel $x_i, ..., x_n$
- 2. Maximumsheap bzgl der Prioritäten. dh $prio(v) \ge prio(u)$, falls v Parent. ((u,v) sind Knoten in einem Baum). \Rightarrow Wurzel enthält maximale Priorität.

Existenz durch Algorithmus zum Aufbau (rekursiv).

- Wurzel einthält (x_i, p_i) mit $p_i = prio(x_i)$ maximal
- Linker Unterbaum: RST für $\{(x_i, p_i) | x_i < x_i\}$
- Rechter Unterbaum: RST für $\{(x_k, p_k)|x_k > x_i\}$

Beispiel: $S = \{1, ..., 10\}$

- Schreibe Tabelle mit Prioriäten und Werten.
- Teile die Tabelle beim Maximum und schreibe es in die Wurzel. Wiederhole, bis alle Elemente geschrieben.

 \Rightarrow Wenn sich die Prioritäten genauso oder umgekehrt, wie die Schlüssel verhalten, erhält man einen degenrierten Baum. (bzgl \leq). zB $prio(x_i) = x_i$. Dieser Fall ist sehr unwahrscheinlich, wenn sich bei der Priorität um gleichverteilte Zufallszahlen handelt.

Operationen

- Lookup(x): normale suche in binärem Baum. Kosten $O(H\ddot{o}he(T))$
- Insert(x): Füge einen neuen Knoten v als Blatt (x, prio(x)) gemäß des Schlüssels in den binären Baum ein, wobei prio(x) neue Zufallszahl (kann die Prio-Ordnung zerstören). Dann: Rotiere v nach oben, bis die Heap-Eigenschaft gilt, also $prio(v) \leq prio(parent(v))$. Kosten: O(#Rotationen) = O(Höhe(T)). Alternativ: normales einfügen in binären Baum in absteigender Reihenfolge der Prioritäten.
- DELETE(x): Sei v der knoten mit Schlüssel x (v = Lookup(x)). Kosten: O(#Rotationen) = O(1 + |L| + |R|)
 - 1. Rotiere v nach unten, bis v ein Blatt ist. R = linkes Rückgrat des rechten Unterbaums von v. L = rechtes Rückgrat des linken Unterbaums.
 - 2. Entferne das Blatt.
- Split(y) $\to S_1 = \{x \in S | x \leq y\}, S_2 = \{x \in S | x \geq y\}$ (Teile den Baum, indem y mit maximaler Priorität zur Wurzel rotiert wird)
 - 1. Insert $(y + \epsilon)$ mit Priorität ∞
 - 2. Entferne die Wurzel
- Join (T_1, T_2) : $S \leftarrow S_1 \cup S_2$. T_1 RST für S_1 und T_2 RST für S_2
 - 1. Konstruiere T (Füge y zwischen $Max(S_1)$ und $Min(S_2)$ ein. Voraussetzung: $Max(S_1) < Min(S_2)$
 - 2. Lösche die Wurzel (Durch runterrotieren des eingefügten Knotens y)

Analyse des RST

Wir analysieren die erwarteten Kosten einer Delete-Operation (Insert \rightarrow umgekehrtes Delete). Seit T ein RST für die Menge $\{x_1,...,x_n\}mitx_1 < x_2 < ... < x_n$ der durch Inserts aufgebaut wurde. Bertrachte die Operation Delete (x_k) für eine $k, 1 \leq k \leq n$. Für einen Knoten x_k im Baum T mit Suchpfad P_k , L_k rechtes Rückgrad von T_l und R_k linkes Rückgrad von T_r . Kosten $O(|P_k| + |L_k| + |R_k|)$. Wir schätzen die Erwartungswerte

Lemma 1:

• a)
$$E(|P_k|) = H_k + H_{n-k+1} - 1$$

$$k - te \ HarmonischeZahl = H_k = \sum_{i_1}^k \frac{1}{i} \ H_k \le ln(x) + 1$$

• b)
$$E(|L_k|) = 1 - \frac{1}{k}$$

• c)
$$E(|R_k|) = 1 - \frac{1}{n-k+1}$$

Beweis Betrachte eine Permutation $\pi:[1..n] \to [1..n]$ (bijektive Abbildung), die die Schlüssel absteigend nach ihren Prio Werten sortiert. Dann gilt:

- 1. Jede Permutation π ist gleichwahrscheinlich (Wahrscheinlichkeit $\frac{1}{n!}$), da die Prioritäten gleichverteilte Zufallszahlen sind.
- 2. Man erhält den selben binären Baum durh einfügen der Schlüssel in einen unbalancierten Baum in der Reihenfolge, die π angibt. \rightarrow gleiches Vehalten, wie ein zufälliger binärer Baum.
- 3. Baum wächst nur an den Blättern.

Trick: arbeite ab jetzt mit zufälliger Permutation statt den Prioritäten. \rightarrow normaler Binärbaum mit zufälliger Einfügereihenfolge.

Teil a) des Lemmas P_k ist Suchpfad für Knoten x_k . Seien P'_k und P''_k Teilfolgen von P_k mit: $\forall v \in P'_k, key(v) \leq x_k$ und $\forall u \in P''_k, key(u) \geq x_k$.

Proof. Beobachtungen:

- 1. $|P_k| = |P'_k| + |P''_k| 1$ (x_k in beiden Teilfolgen)
- 2. P'_k = Menge der knoten v mit:
 - \bullet Wenn v eingefügt wird, gilt key(v) ist maximal mit key(v) $\leq x_k$
- 3. $P_k'' = \text{Menge der knoten u mit:}$
 - Wenn u eingefügt wird, gilt key(u) ist minimal mit key(u) $\geq x_k$

Wir zeigen

- 1. $E(|P'_k|) = H_k$
- 2. $E(|P_k''|) = H_{n-k+1}$

zu 1) K mögliche Kandidaten für $P'_k\{x_1,...,x_k\}$. Spiel: Ziehe zufällig Schlüssel aus $\overline{\{x_1,...,x_k\}}$. $\mathrm{E}(|P'_k|)=\mathrm{Erwartungswert}$, wie of ein Kandidat gezogen wird, der \geq als alle vorher gezogenen ist (neues Maximum). $A^k=E(|P'_k|)$ (Spiel A)

$$A^{k} = \sum_{i=1}^{k} \frac{1}{k} \cdot (1 + A^{k-i})$$

Im Zug x_i schließt $x_1...x_i$ au. Dann gleiches Spiel mit K-i Kandidaten.

$$A^{k} = \frac{1}{k} (k + \sum_{i=1}^{k} A^{k-i})$$
$$= 1 + \frac{1}{k} \sum_{i=1}^{k} A^{k-i}$$

Wir zeigen durch Induktion über k, dass $A^k = H_k$

IA

$$=1+\frac{1}{k}\sum_{i=0}^{k}H_{i}$$

Eigenschaften der harmonischen Zahlen:

1.

$$\sum_{i=0}^{k} H_i = k \cdot (H_k - 1)$$

2.

$$H_k \le 1 + lnk$$

aus 1) folgt:

$$A^{k} = 1 + \frac{1}{k} \cdot k \cdot (H_{k} - 1)$$
$$= 1 + H_{k} - 1$$
$$= H_{k}$$

Der Erwartungswert ist ist gleich der k-ten Harmonischen Zahl. $E(P'_k) = H_k$. Abschätzung von $E(P''_k) =: B^k$. (Spiel B) kandidaten $\{x_k...x_n\}$: Zähle, wie of ein neues Minimum gezogen wird. Dann sieht man leicht, dass

$$B^k = H_{n-k+1}$$

Beweis: symmetrisch.

$$E(|P_k|) = E(|P'_k|) + E(|P''_k|) - 1$$
$$= A^k + B^k - 1$$
$$= H_k + H_{n-k+1} - 1$$

Teil b) des Lemmas

Proof. L_k und R_k Seien $L_k = v_1, ..., v_l$ und $R_k = u_1, ..., u_m$

Erwartungswerte Spiel C: Ziehe zufällig Elemente aus $\{x_1...x_n\}$. Sobald x_k gezogen wird: ??? Trigger ??? Sei C^k der Erwartungswert dieses Spiels, dh $C^k = E(|L_k|)$.

$$C^{k} = \frac{1}{k} \cdot A^{k-1} + \sum_{i=1}^{k-1} \frac{1}{k} \cdot C^{k-i}$$

im 1. Zug x_k , dass Spiel mit k-1 Kandidaten (alle kleiner, als x_k).

$$C^{k} = \frac{1}{k} (\cdot H_{k-1} + \sum_{i=0}^{k-1} \cdot C^{i})$$

Trick: Schätze die Differenz zweier aufeinanderfolgender C^i s = $\delta_j = C^{j+1} - C^j$ ab.

$$\Rightarrow C^k = \sum_{j=1}^k \delta_j + C^0$$

Beatrachte:

$$(j+1) \cdot C^{j+1} - j \cdot C^{j}$$

$$= (j+1)\frac{1}{j+1}(H_j + \sum_{i=0}^{j} C^i) - j\frac{1}{j}(H_{j-1} + \sum_{i=0}^{j} C^i)$$

$$= H_j + \sum_{i=0}^{j} C^i - (H_{j-1} + \sum_{i=0}^{j} C^i)$$

$$= H_j - H_{j-1} + C^i$$

$$= \frac{1}{j} + C^j$$

Wir wissen nun, dass

$$(j+1) \cdot C^{j+1} - j \cdot C^{j} = \frac{1}{j} + C^{j}$$

$$\frac{1}{j} = (j+1)C^{j+1} - (j+1) \cdot C^{j}$$

$$\frac{1}{j(j+1)} = C^{j+1} - C^{j} = \delta_{j}$$

$$\Rightarrow \delta_{j} = \frac{1}{j(j+1)} = \frac{1}{j} - \frac{1}{j+1}$$

$$C^{k} = \sum_{j=1}^{k-1} \delta_{j} = \sum_{j=1}^{k-1} (\frac{1}{j} - \frac{1}{j+1})$$

$$= 1 - \frac{1}{k}$$

Teil c) des Lemmas Spiel $D^k = E(|R_k|)$: Wie oft wird ein neues Minimum größer x_k gezogen, nachdem x_k gezogen wurde (Trigger).

Proof. symmetrisch:

$$D^{k} = \frac{1}{n-k+1} \cdot B^{k-1} + \sum_{i=1}^{k-1} \frac{1}{n+k-1} D^{i-k??}$$
$$D^{k} = 1 - \frac{1}{n-k+1}$$

Satz Sie T ein RST für eine Menge von n Schlüsseln. Dann gilt:

- 1. Die erwartete Laufzeit fpr Insert, Delete und Lookup ist O(logn)
- 2. Die erwartete Zahl der Rotationen bei Delete ist < 2

Beweis

- 1. Kosten von Lookup = $O(|P_k|)$, Insert und Delete = $O(|P_k| + |L_k| + |R_k|)$ Kosten: $O(H_k + H_{n-k+1} + 1 \frac{1}{k} + 1 \frac{1}{n-k+1}) = O(H_n) = O(lnn) = O(logn)$
- 2. Erwartete Zahl der Rotationen: $E(|L_k|) + E(|R_k|) < 2$

1 Übung

Übung 3:

- 1) Durch entfernen von Kanten soll der Graph zerlegt werden. (Unions in umgekehrter Reihenfolge)
- 2) Zu zeigen:

$$a(z,n) \le \lfloor \frac{4m}{n} \rfloor f \ddot{\mathbf{u}} r \ z = \alpha(m,n)$$

Definition von a und α

$$a(z,n) = \min\{j | A(z,j) > logn\}$$

$$\alpha(m,n) = \min\{i | A(i, \lfloor \frac{4m}{n} \rfloor) > logn\}$$

Behauptung:

$$a(\alpha(m,n),n) \le \lfloor \frac{4m}{n} \rfloor$$

Beweis: indirekt. Annahme:

$$a(\alpha(m,n),n) > \lfloor \frac{4m}{n} \rfloor$$

$$\Rightarrow A(\alpha(m,n), \lfloor \frac{4m}{n} \rfloor) \leq log n$$

Widerspruch zur Definition von α , denn

$$A(\alpha(m,n),\lfloor\frac{4m}{n}\rfloor) > logn$$

- **3.a)** Union-Split-Find. (van Emde-Boas aht Datenstruktur mit log log n für Union-Split-Find.) Gegeben ist eine Array
 - Split(i): Markiere i
 - Find(x): Finde nächste Markierung
 - \bullet Union(x): Lösche Markierung x

Balancierter (blatt-orientierter) Baum zur Speicherung der markierten Elemente. Einfügen der markierten Elemente als Blätte rdes Baums

- \bullet Split = Insert
- Union = Delete
- Find = Locate

Platz = #Intervalle, Zeit O(logn)

3.b)

- Insert = Split
- \bullet Delete = Union
- FindMin = Find(1)

2 Allgemeines

2.1 Einschub: Erwartungswerte

Situation: n Ereignisse, die mit einer gweissen Wahrscheinlichkeit prob(i) auftreten. Jedes Ereignis besitzt einen Wert val(i).

$$E(val) = \sum_{i_1}^{n} prob(i) \cdot val(i)$$

Spezialfall: Gleichverteilung: $prob(i) = \frac{1}{n} f \ddot{\mathbf{u}} r$ $1 \leq i \leq n.$ Dann gilt:

$$E(val) = \frac{1}{n} \sum_{i=1}^{n} val(i) = Mittelwert$$