Pesquisa Operacional / Programação Matemática

Otimização discreta

Branch-and-bound (Implementação)

Criando a árvore do B&B

Qual explorar primeiro?

E depois?

Note que a ordem pode influir (e muito!)

Regras de seleção

- Regras a priori
 - determinam previamente a ordem de escolha dos nós;
- Regras adaptativas
 - dependem das informações dos nós.

Regras a priori

- Busca em profundidade com backtracking
 - □ *last-in, first-out*: o último nó a ser incluido na lista é o primeiro a ser examinado
 - □ backtracking: se o nó é podado, retorna-se ao longo do caminho em direção ao nó raiz, até encontrar um nó aberto.
 - ordem: pode-se definir, por exemplo, que o filho à esquerda sempre é examinado primeiro.

Regras a priori

■ Busca em profundidade com backtracking

Regras a priori

- Busca em profundidade com backtracking
- vantagens:
 - □ Nós factíveis são mais facilmente encontrados em níveis mais profundos da árvore (qual a vantagem de se encontrar nós factíveis logo?)
 - \square Pode-se usar re-otimização em nós filhos.
- desvantagem:
 - □ tende a gerar árvores maiores (com muitos nós).

Regras adaptativas

- Melhor limitante
 - □ Selecionar a cada momento, o nó que tem melhor limitante (e que eventualmente, pode fornecer a melhor solução inteira).

Regras adaptativas

- Melhor limitante
- vantagem:
 - $\hfill\Box$ menos nós explorados no final.
- desvantagem:
 - $\hfill \square$ grande número de nós ativos a cada momento (limites de memória ?)

Exemplo

$$z = \max 31x_1 + 126x_2 + 131x_3 + 37x_4 + 180x_5 + 170x_6 + 182x_7 + 123x_8 + 160x_9 + 80x_{10}$$
$$13x_1 + 111x_2 + 101x_3 + 27x_4 + 174x_5 + 136x_6 + 146x_7 + 99x_8 + 145x_9 + 76x_{10} \le 606$$

Solução

busca em profundidade

melhor limitante

Outras estratégias

■ Busca em largura

todos os nós em um dado nível são considerados, antes de passarse para o nível seguinte.

□ Pode ser pouco interessante em um algoritmo exato, mas pode ser conveniente em heurísticas;

(ex.: beam search)

- Exemplo de heurística
 - □ (Escolhe apenas os nós mais promissores para continuar a busca)

. . .

Escolha da variável a ramificar

- Pode influir bastante na velocidade de convergência do algoritmo.
 - □ (idéia: tipicamente, se fixamos algumas variáveis as certas em valores inteiros, as outras naturalmente se tornam inteiras).
 - 🗆 difícil saber quais as variáveis *certas* para ramificar.

Escolha da variável a ramificar

■ Prioridades:

□ Variáveis que definem se uma fábrica deve ou não ser construída devem ser ramificadas antes de variáveis que definem quais máquinas comprar para a fábrica.

Escolha da variável a ramificar

- Outras estratégias:
 - □ escolher a variável que, tornada inteira, mais modifica a função objetivo.
 - □ Generalized upper bound constraints

$$\sum_{j \in Q_i} x_j = 1, \qquad i = 1 \dots, p$$

ramificação:

$$\sum_{j \in Q_i^1} x_j = 1 \qquad \sum_{j \in Q_i \setminus Q_i^1} x_j = 1$$

Outras discussões

Paralelismo

========	========		========		=======
s problem	CPLEX1	GUROBI1	MOSEK1	CPLEX4	GUROBI4
air04 mzzv11 lrn ns1671066 ns1688347	9 89 42 1828 1531	18 116 104 1 315	49 434 f 2474	7 80 36 26 716	13 116 996 1 258
ns1692855 acc5	1674 25	322 247	f 4621	688 30	234 33

http://www.solver.com/gurobi/ (free 15 day trial)