#### SOO AND MATCHING

Annie Chen

Jan. 29, 2020

#### REVIEW

$$ATT = \mathbb{E}[Y_i(1) - Y_i(0)|D_i = 1]$$

- Is this identified when D is not randomized?
- Fundamental Problem of Causal Inference

Under what assumptions can the ATE and ATT be non-parametrically identified?

- $\{Y_i(0), Y_i(1)\} \perp D_i \mid X_i = x \text{ for all } x \in \mathcal{X}$
- $0 < \Pr(D_i = 1 \mid X_i = x) < 1 \text{ for all } x \in \mathcal{X}$

# IDENTIFICATION OF ATT UNDER CI AND COMMON SUPPORT

$$\tau_{ATT} = \mathbb{E}[Y_i(1) - Y_i(0)|D_i = 1]$$

- =  $\int \mathbb{E}[Y_i(1) Y_i(0)|X_i = x, D_i = 1]f(x|D_i = 1)dx$  by law of iterated expectation<sup>1</sup>
- =  $\int \{\mathbb{E}[Y_i(1)|X_i=x,D_i=1] \mathbb{E}[Y_i(0)|X_i=x,D_i=1]\}f(x|D_i=1)dx$ linearity of expectation
- $\bullet = \int \mathbb{E}[Y_i|X_i = x, D_i = 1] \mathbb{E}[Y_i|X_i = x, D_i = 0]f(x|D_i = 1)dx^2$

Similarly,  $au_{ATE} = \mathbb{E}[Y_i(1) - Y_i(0)]$ 

- $\bullet = \int \mathbb{E}[Y_i(1) Y_i(0)|X_i = x]f(x)dx$
- $\bullet = \int (\mathbb{E}[Y_i|X_i=x,D_i=1] \mathbb{E}[Y_i|X_i=x,D_i=0])f(x)dx$

Annie Chen

<sup>&</sup>lt;sup>1</sup>Recall:  $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$  and  $\mathbb{E}[X] = \int xf(x)dx$  (continuous)

 $<sup>^2</sup>$ Turns out, ATT is identifiable under a weaker set of assumptions. Compare overlap and ignorability assumptions required for identification in ATE v. ATT.

#### MATCHING PACKAGE

#### The workhorse of the package:

- Match(Y, Tr, X, estimand = "ATT", M = 1, exact, Weight...)
  - By default, the function estimates the ATT, exact = NULL, replace
     TRUE, and uses one-to-one matching (M = 1).
  - Other arguments: (ties, caliper, BiasAdjust, CommonSupport)
  - Weight = 2 (Mahalanobis distance), 3 (custom supplied by Weight.matric)
  - use summary() on matched object

#### MATCHING PACKAGE

Check the balance before and after matching using these functions to create tables:

- MatchBalance(formula, data, match.out...)
- baltest.collect(matchbal.out, var.names)

## ALTERNATIVELY, THE MATCHIT PACKAGE

- matchit(formula, data, method = "nearest", discard =
   "none", distance = "logit")
- method = ["genetic", "exact", "subclass", "nearest",
  ...]
- I.e. nearest selects the r (default = 1) best control matches for each individual in the treatment group (excluding discarded).

# Job Training Example (Lalonde 1986)

#### data(lalonde)

This is a subsample of the original data consisting of the National Supported Work Demonstration (NSW) treated group and the comparison sample from the Population Survey of Income Dynamics (PSID). (non-experimental study)

treat: participation in the job training program

• re78: 1978 real earnings

## Job Training Example (Lalonde 1986)

A naive comparison of earnings for those who participated and those who did not.

```
lalonde %>% group_by(treat) %>%
summarise(Income1978 = mean(re78), n = n())
```

```
## # A tibble: 2 x 3

## treat Income1978 n

## <int> <dbl> <int> ## 1 0 6984. 429

## 2 1 6349. 185
```

Specify pre-treatment covariates to match on.

Let's check the pre-matching balance.

Annie Chen SOO and Matching Jan. 29, 2020 9/20

TABLE 1: Covariate Balance in Unmatched Data

|          | mean.Tr | mean.Co | sdiff  | sdiff.pooled | var.ratio | T pval | KS pval |
|----------|---------|---------|--------|--------------|-----------|--------|---------|
| age      | 25.82   | 28.03   | -30.94 | -24.19       | 0.44      | 0.00   | 0.00    |
| educ     | 10.35   | 10.24   | 5.50   | 4.48         | 0.50      | 0.58   | 0.02    |
| black    | 0.84    | 0.20    | 175.68 | 166.77       | 0.82      | 0.00   |         |
| hispan   | 0.06    | 0.14    | -34.89 | -27.69       | 0.46      | 0.00   |         |
| married  | 0.71    | 0.60    | 24.43  | 23.50        | 0.86      | 0.01   |         |
| nodegree | 0.19    | 0.51    | -82.41 | -71.95       | 0.62      | 0.00   |         |
| re74     | 2095.57 | 5619.24 | -72.11 | -59.58       | 0.52      | 0.00   | 0.00    |
| re75     | 1532.06 | 2466.48 | -29.03 | -28.70       | 0.96      | 0.00   | 0.00    |
| re78     | 6349.14 | 6984.17 | -8.07  | -8.37        | 1.16      | 0.35   | 0.14    |

#### Now, check the post-matching balance.

TABLE 2: Covariate Balance in Matched Data

|          | mean.Tr | mean.Co | sdiff | sdiff.pooled | var.ratio | T pval | KS pval |
|----------|---------|---------|-------|--------------|-----------|--------|---------|
| age      | 25.82   | 24.35   | 20.47 | 20.47        | 0.69      | 0.00   | 0.00    |
| educ     | 10.35   | 10.43   | -4.30 | -4.30        | 1.08      | 0.09   | 0.94    |
| black    | 0.84    | 0.82    | 5.93  | 5.93         | 0.90      | 0.04   |         |
| hispan   | 0.06    | 0.06    | 0.00  | 0.00         | 1.00      | 1.00   |         |
| married  | 0.71    | 0.71    | 0.00  | 0.00         | 1.00      | 1.00   |         |
| nodegree | 0.19    | 0.18    | 1.38  | 1.38         | 1.02      | 0.32   |         |
| re74     | 2095.57 | 1856.22 | 4.90  | 4.90         | 1.47      | 0.21   | 0.00    |
| re75     | 1532.06 | 1112.68 | 13.03 | 13.03        | 2.05      | 0.00   | 0.41    |
| re78     | 6349.14 | 5158.26 | 15.14 | 15.14        | 1.82      | 0.00   | 0.35    |
|          |         |         |       |              |           |        |         |

#### summary(match\_out)

```
##
## Estimate... 1190.9
## AI SE..... 543.05
## T-stat..... 2.1929
## p.val..... 0.028312
##
## Original number of observations.....
                                              614
## Original number of treated obs.....
                                              185
## Matched number of observations.....
                                              185
## Matched number of observations (unweighted).
                                              185
##
## Number of obs dropped by 'exact' or 'caliper'
                                              0
```

### PROPENSITY SCORE

$$\pi(X_i) \equiv Pr(D_i = 1|X_i)$$

What is the functional form of  $\hat{\pi}(\cdot)$ ?

- I.e. estimate propensity scores using logistic regression.
- Exercise: Try matching on a PS! Create a balance table before and after matching.
- ullet Workflow:  $\hat{\pi}(X_i) o exttt{Match} o exttt{MatchBalance} o exttt{baltest.collect}$

#### Propensity Score



Annie Chei

#### Matching on the PS.



TABLE 3: Covariate Balance in Propensity Score Matched Data

|          | mean.Tr | mean.Co | sdiff  | sdiff.pooled | var.ratio | T pval | KS pval |
|----------|---------|---------|--------|--------------|-----------|--------|---------|
| age      | 25.82   | 24.51   | 18.28  | 18.28        | 0.44      | 0.18   | 0.00    |
| educ     | 10.35   | 10.48   | -6.79  | -6.79        | 0.63      | 0.55   | 0.09    |
| black    | 0.84    | 0.85    | -2.97  | -2.97        | 1.06      | 0.32   |         |
| hispan   | 0.06    | 0.03    | 10.42  | 10.42        | 1.67      | 0.16   |         |
| married  | 0.71    | 0.65    | 12.74  | 12.74        | 0.91      | 0.23   |         |
| nodegree | 0.19    | 0.22    | -6.88  | -6.88        | 0.91      | 0.42   |         |
| re74     | 2095.57 | 2100.16 | -0.09  | -0.09        | 1.58      | 0.99   | 0.00    |
| re75     | 1532.06 | 1920.09 | -12.05 | -12.05       | 1.00      | 0.24   | 0.00    |
| re78     | 6349.14 | 7035.08 | -8.72  | -8.72        | 1.19      | 0.33   | 0.00    |

• How does this compare to our previous approach to matching?

#### WEIGHTING

- Idea: weight each observation in the control group such that it looks like the treatment group (i.e., good covariate balance)<sup>3</sup>
- Suppose, there are two types of cats, each with a different probability of receiving treatment *D*. In this example, we can assign the lone cats in the off-diagonal cells a weight of 3.



<sup>&</sup>lt;sup>3</sup>Matching is a special case of weighting!

## INVERSE PROBABILITY WEIGHTING (IPW)

Weighting on the Propensity Score  $\pi(X_i)$ 

$$au_{ATE} = \mathbb{E} \Big[ Y_i \cdot rac{D_i - \hat{\pi}(X_i)}{\hat{\pi}(X_i) \cdot [1 - \hat{\pi}(X_i)]} \Big]$$

The sample analog is  $(\hat{\tau}_{ATE})$ :

$$\frac{1}{N} \sum_{i=1}^{N} \left\{ Y_i \cdot \frac{D_i - \hat{\pi}(X_i)}{\hat{\pi}(X_i) \cdot [1 - \hat{\pi}(X_i)]} \right\} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{D_i \cdot Y_i}{\hat{\pi}(X_i)} \right\} - \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{(1 - D_i) \cdot Y_i}{[1 - \hat{\pi}(X_i)]} \right\}$$

Annie Chen

## INVERSE PROBABILITY WEIGHTING (IPW)

$$au_{ATT} = \mathbb{E}ig[Y_i \cdot rac{D_i - \hat{\pi}(X_i)}{1 - \hat{\pi}(X_i)}ig] \cdot \mathbb{P}(D_i = 1)^{-1}$$

With sample analog:

$$\hat{\tau}_{ATT} = \frac{1}{N_1} \sum_{i=1}^{N} \left\{ Y_i \cdot \frac{D_i - \hat{\pi}(X_i)}{1 - \hat{\pi}(X_i)} \right\}$$

## Additional Notes