Práctica 2: Algoritmos divide y vencerás

Grupo Ciri

MARTÍN QUIRÓS, JUAN ANTONIO MARTÍNEZ IÁÑEZ, GONZALO POZO RAMÍREZ, RAFAEL SANTOS SALVADOR, JOSÉ SORIA GONZÁLEZ, RAÚL

Objetivos

- Convertir un algoritmo en divide y vencerás.
- Calcular la matriz traspuesta en c++ mediante un algoritmo de divide y vencerás.
- Realizar un algoritmo de divide y vencerás para el problema de Comparación de preferencias.

Eficiencia teórica

Código de la traspuesta sin Divide y vencerás.

```
for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) matriz\_traspuesta[j][i] = matriz\_original[i][j];
```

La eficiencia es $O(n^2)$.

Código de la traspuesta con Divide y Vencerás.

```
void traspuesta(int **m, int **res, int inif, int finf, int inic, int finc){
  if(inif == finf)
      res[inif][inic] = m[inic][inif];
  else{
      int centrof = (inif + finf)/2;
      int centroc = (inic + finc)/2;
      traspuesta(m, res, inif, centrof, inic, centroc);
      traspuesta(m, res, inif, centrof, centroc + 1, finc);
      traspuesta(m, res, centrof + 1, finf, inic, centroc);
      traspuesta(m, res, centrof + 1, finf, centroc + 1, finc);
```

$$T(n) = 4T(n/4) + cn$$

Cambio de variable,
$$n = 4^k$$

 $T(4^k) = 4T(4^k/4) + c4^k$; $T(4^k) = 4T(4^{k-1}) + c4^k$

Cambio de variable,
$$T(4^k) = t_k$$

 $t_k = 4t_{k-1} + c4^k$; $t_k - 4t_{k-1} = c4^k$

Ecuación característica:
$$(x - 4)(x - 4) = 0$$
; $(x - 4)^2 = 0$
 $t_k = c_1 4^k + c_2 k 4^k$

Deshacer el cambio
$$k = log_4 n$$

 $t_k = c_1 4 log_4 n + c_2 (log_4 n) 4^{log_4 n}$
 $t_k = c_1 n^{log_4 4} + c_2 log_4 n (n^{log_4 4})$
 $t_k = c_2 n (log_4 n) + c_1 n$

La eficiencia es O(n*log₄n)

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
					70	10	''
48	49	50	51	52	53	54	55

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	8			
1	9			

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	8	16	24		
1	9	17	25		

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	8	16	24		
1	9	17	25		
2	10				
3	11				

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	8	16	24		
1	9	17	25		
2	10	18	26		
3	11	19	27		

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	8	16	24		
1	9	17	25		
2	10	18	26		
3	11	19	27		
4	12	20	28		
5	13	21	29		
6	14	22	30		
7	15	23	31		

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	8	16	24	32	40	48	56
1	9	17	25	33	41	49	57
2	10	18	26	34	42	50	58
3	11	19	27	35	43	51	59
4	12	20	28				
5	13	21	29				
6	14	22	30				
7	15	23	31				

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

0	8	16	24	32	40	48	56
1	9	17	25	33	41	49	57
2	10	18	26	34	42	50	58
3	11	19	27	35	43	51	59
4	12	20	28	36	44	52	60
5	13	21	29	37	45	53	61
6	14	22	30	38	46	54	62
7	15	23	31	39	47	55	63

Eficiencia empírica

Eficiencia empírica

Eficiencia empírica

	Sin DyV	Con DyV
512	321	1271
1024	1898	5285
2048	23876	18526
4096	126280	65017

Eficiencia híbrida

$$f(x) = a_0^* x^2 + a_1^* x + a_2$$

$$a0 = 0.0109336$$

$$a1 = -14.1681$$

$$a2 = 2691.4$$

Eficiencia híbrida

$$f(x) = a_0^* x^* \log_4 x + a_1^* x$$

$$a_0 = 41.9085$$

 $a_1 = -230.173$

Comparación de preferencias

Comparación de preferencias

Planteamiento del problema

El algoritmo de comparación de preferencias se basa en calcular qué tan parecidos son las "preferencias" de 2 usuarios contando el número de inversiones que tienen entre sí.

Para realizar ésto, se realiza calculando si dos preferencias están o no invertidas entre sí. Por ej: El usuario A, "prefiere" a ntes el valor 1 al 4 y el usuario B, prefiere antes el valor 4 al 1, así pues tendrían preferencias invertidas y viceversa.

Α	В
1	3
2	1
3	5
4	2
5	4

Cambio Próximo cambio

Caso inicial

Α	В
1	3
2	1
3	5
4	2
5	4

Α	В
1	3
2	1
3	5
4	2
5	4

Α	В	
1	1	
2	3	
3	5	
4	2	
5	4	

Α	В	
1	1	
2	2	
3	3	
4	5	
5	4	

Α	В
1	1
2	2
3	3
4	4
5	5

+1

+2

+1

Eficiencia teórica

Comparación de preferencias

$$T(n) = 2T(n/2) + cn$$

Cambio de variable, $n = 2^k$. $T(2^k) = 2T(2^k/2) + c2^k$; $T(2^k) = 2T(2^{k-1}) + c2^k$

Cambio de variable, $T(2^{k}) = t_{k}$. $t_{k} = t_{k-1} + c2k$; $t_{k} - t_{k-1} = c2^{k}$

Ecuación característica: $(x - 2)^2 = 0$. $t_k = c_1 2^k + c_2 k 2^k$

Deshacer el cambio de variable, $k = log_2 n$ $t_k = c_1 2^{log_2 n} + c_2 log_2 n (2^{log_2 n})$ $t_k = c_1 n + c_2 n (log_2 n)$ La eficiencia es O(n*log₂n)

FIN