DIC HW4

312510190 張家瑋

4-1:
PART1: Synthesize the 2x2 convolution kernel provided
by TA based on ASAP 7nm standard cells.

Startpoint: INW_3[2] (input port) Endpoint: Output[8] (output port) Path Group: default Path Type: max			
Point	Incr	Path	
input external delay INW_3[2] (in) mult_19_4/b[2] (Convolution_DW_mult_uns_0) mult 19 4/U116/Y (NAND2xp33 ASAP7 75t R)	0.00 0.00 0.00 20.81	0.00 f 0.00 f 0.00 f 20.81 r	
mult_19_4/U114/Y(NOR2xp33_ASAP7_75t_R) mult_19_4/U39/SN(FAx1_ASAP7_75t_R)	30.77 61.57	51.58 f 113.15 f	
mult_19_4/U95/Y (XNOR2xp5_ASAP7_75t_R) mult_19_4/U92/Y (NAND2xp33_ASAP7_75t_R) mult_19_4/U91/Y (NAND2xp33_ASAP7_75t_R)	28.23 12.63 25.12	141.37 r 154.01 f 179.12 r	
mult_19_4/U87/Y (NAND2xp33_ASAP7_75t_R) mult_19_4/U86/Y (NAND2xp33_ASAP7_75t_R) mult_19_4/U82/Y (NAND2xp33_ASAP7_75t_R)	14.50 25.11 14.50	193.62 f 218.74 r 233.23 f	
mult_19_4/U81/Y (NAND2xp33_ASAP7_75t_R) mult_19_4/U78/Y (XOR2xp5_ASAP7_75t_R)	25.11 39.48	258.34 r 297.82 r	
mult_19_4/product[6] (Convolution_DW_mult_uns_0) add_1_root_add_0_root_add_19_3/B[6] (Convolution_DW0:		297.82 r	
add_1_root_add_0_root_add_19_3/U1_6/SN (FAx1_ASAP7_7	0.00 5t_R) 40.86	297.82 r 338.68 r	
add_1_root_add_0_root_add_19_3/U11/Y (INVx1_ASAP7_75		356.55 f	
add_1_root_add_0_root_add_19_3/SUM[6] (Convolution_D		356.55 f	
add_0_root_add_0_root_add_19_3/B[6] (Convolution_DW0:		356.55 f	
add_0_root_add_0_root_add_19_3/U1_6/CON (FAx1_ASAP7_	22.90	379.45 r	
add_0_root_add_0_root_add_19_3/U4/Y (INVx1_ASAP7_75t_	15.27	394.72 f	
add_0_root_add_0_root_add_19_3/U1_7/CON (FAX1_ASAP7_)	20.30	415.02 r	
add_0_root_add_0_root_add_19_3/U3/Y (INVx1_ASAP7_75t_	15.27	430.29 f	
add_0_root_add_0_root_add_19_3/U1_8/SN (FAx1_ASAP7_75 add_0_root_add_0_root_add_19_3/U11/Y (INVx1_ASAP7_75	37.50	467.79 f	
add_0_root_add_0_root_add_19_3/SUM[8] (Convolution_D	8.03	475.82 r	
Output[8] (out)	0.00 0.00	475.82 r 475.82 r	
data arrival time		475.82	
max_delay output external delay data required time	500.00 0.00	500.00 500.00 500.00	
data required time data arrival time		500.00 -475.82	
slack (MET)		24.18	

Critical Path: From IFM_3[0] to Output[8]

.

Input Pattern:

Vector	IFM0	INW0	IFM1	INW1	IFM2	INW2	IFM3	INW3	Output
num									Сатрат
1	0000	0000	0000	0000	0000	0000	0000	0000	000000000
	0	0	15	15	15	2	0	1	255
2	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
3	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
4	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
5	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
6	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
7	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
8	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
9	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
	0	0	15	15	15	2	1	1	256
10	0000	0000	1111	1111	1111	0010	0001	0001	0 1 00000000
11	0000	0000	1111	1111	1111	0010	0001	0001	0 1 00000000
12	0000	0000	1111	1111	1111	0010	0001	0001	0 1 00000000
13	0000	0000	1111	1111	1111	0010	0001	0001	0 1 00000000
14	0000	0000	1111	1111	1111	0010	0001	0001	0 1 00000000
15	0000	0000	1111	1111	1111	0010	0001	0001	0 1 00000000
16	0000	0000	1111	1111	1111	0010	0001	0001	0 1 00000000
17	0000	0000	1111	1111	1111	0010	0001	0001	0 1 00000000
	0	0	15	15	15	2	0	1	255
18	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
19	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
20	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
21	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
22	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
23	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
24	0000	0000	1111	1111	1111	0010	0000	0001	0011111111
25	0000	0000	1111	1111	1111	0010	0000	0001	0100000011

PART2: Analyze and Plot EDP-voltage figure.

VDD (V)	Power (uW)	Energy (fJ)	Delay (ps)	Product (J·s)
1.0	43.2955	259.7730	226.7129	$58.8942 e^{-24}$
0.9	33.7150	202.2900	246.6001	49.8846 e^{-24}
0.8	25.6047	153.6282	279.7146	42.9720 e^{-24}
0.7	18.8691	113.2146	337.3468	$38.1924 e^{-24}$
0.6	13.4108	80.4648	446.4564	$35.9241 e^{-24}$
0.5	8.9527	53.7162	699.0870	$37.5522 e^{-24}$
0.4	5.4503	32.7018	1559.0	$50.9982 e^{-24}$

如何得到 Energy?

Step1: 測量 power	<pre>.meas tran AVG_Power_Convolution AVG power power_delay_product= 5.9873f</pre>				
Step2:	.tran 0.1ps 6ns				
乘 transition time	energy_delay_product= 3.5924e-23				

PART3:Find out the minimal energy-delay product of the 2x2 convolution kernel by voltage scaling

在 VDD=0.6V,可得到最小的 product (最佳解);波形及 delay、power 等資訊如下圖所示:


```
***** transient analysis tnom=
                                 25.000 temp=
                                               25.000 *****
avg_power_convolution= 13.4108u
                                  from=
                                                               6.0000n
worst_case_delay_rise= 453.4589p
                                          3.2593n
                                                            2.8058n
                                 targ=
                                                    trig=
worst_case_delay_fall= 439.4539p
                                  targ=
                                          4.8436n
                                                            4.4042n
                                                    trig=
worst_case_delay= 446.4564p
power_delay_product=
                       5.9873f
energy_delay_product= 3.5924e-23
         ***** job concluded
*****
```

4-2:

PART1: Synthesize the comparator provided by TA based on ASAP 7nm standard cells then convert the .v to .sp for measurement.

*********	****		
Operating Conditions: PVT_0P7V_25C Vire Load Model Mode: top	Library: asap	p7sc7p5t_INVBUF_RVT_TT_0830	92018
Startpoint: B[47] (input port) Endpoint: Out (output port) Path Group: default Path Type: max			
Point	Incr	Path	
input external delay B[47] (in) U79/Y (XNOR2xp5_ASAP7_75t_R) U87/Y (NAND4xp25_ASAP7_75t_R) U74/Y (NOR5xp2_ASAP7_75t_R) U83/Y (NAND4xp25_ASAP7_75t_R) U10/Y (NOR5xp2_ASAP7_75t_R) Out (out) data arrival time max_delay output external delay data required time	0.00 14.28 18.47 26.10 21.97 17.38 0.00		
data required time data arrival time		280.00 -98.19	
slack (MET)		181.81	

.sp 檔模擬成功結果:

```
Command Line Threads Count :
 Available CPU Count :
                                  256
 Actual Threads Count
 ***** Circuit Statistics *****
 # nodes = 9422 # elements = 
# resistors = 8502 # capacitors =
                                             20922
                                             11488 # inductors
                                             0 # vcvs
0 # volt_srcs
0 # bjts
                     0 # vccs =
 # mutual_inds =
                                                                  =
                                                                           2
 # cccs = 0 # ccvs
# curr_srcs = 0 # diodes
# jfets = 0 # mosfets
 # jfets =
# T elements =
# S elements =
                                               802 # U elements =
                                                                           Θ
                                              0 # B elements =
                      0 # W elements =
                                                                           0
                        0 # P elements =
                                                0 # va device =
 # vector_srcs = 128 # N elements =
 ***** Runtime Statistics (seconds) *****
 analysis
                                         tot. iter
                     time
                              # points
                                                     conv.iter
 op point
                     0.44
                                                91
 transient
                     0.05
                                 60001
                                                 62
                                                              31 rev=
                                                                               0
                     0.18
 readin
                     0.10
 errchk
 setup
                     0.20
                     0.00
 output
                                    435.73 megabytes
          peak memory used
           total cpu time
                                     0.98 seconds
                                      1.21 seconds
          total elapsed time
                              20:02:47 12/04/2023
20:02:48 12/04/2023
           job started at
           job ended at
info:
               ***** hspice job concluded
                                     1.21 seconds
          job total runtime
lic: Release hspice token(s)
lic: total license checkout elapse time:
                                                   0.22(s)
```

透過增加 INVBUF RVT datasheet 中的 buffer 來降低 delay:

```
XU93 VSS VDD n44_t n44 BUFx2_ASAP7_75T_R

XU56 VSS VDD n55 n56 n57 n58 n59 n44_t NOR5xp2_ASAP7_75t_R

XU57 VSS VDD B[56] A[56] n59 XOR2xp5_ASAP7_75t_R
```

由圖可以發現,out 的 Tr 及 Tf 都小於 100ps,且 minimum delay 小於 1.5ns:

PART2: Measure the PPA at 0.4v and 0.7v of minimized and synthesized comparator, and analyze

Under 0.4V:

Under 0.7V:

V	Worst_delay	power	Area counts
0.4v	1499.6ps	5.9525uW	9114
0.7v	279.8368ps	10.6244uW	9114

由此可知,當 0.7V 時,雖功率增加約一倍,但 minimum worst delay 縮小 5 倍之多,為 ECO 的效用。