## Полупроводниковые интегральные ЗУ

- 1 Краткая характеристика
- 2 Интегральные микросхемы памяти (ИМСП)
- 3 Построение блоков памяти на основе ИМСП
- Знать: принципиальные электрические схемы статического и динамического элемента памяти, структуры и технические характеристики ИМСП.
- <u>Уметь:</u> разработать функциональную схему ЗУ на ИМСП с заданными техническими характеристиками.
- Помнить: о типах выводов ИМСП.
- <u>Литература:</u> [1,14].

## 1 Краткая характеристика

- Интегральная технология (система элементов): ЭСЛ, ТТЛ, И $^2$ Л, К-МОП, N-МОП, Р-МОП.
- Тип элемента памяти: статические ЗУ, динамические ЗУ.
- Тип выводов данных: "обычный", отключаемый (с состоянием высокого импеданса), с открытым коллектором.
- Тип адресных входов: с мультиплексированием и без мультиплексирования.
- Возможность смены информации: оперативные ЗУ, постоянные ЗУ (программируемые изготовителем, программируемые пользователем, перепрограммируемые).

## Три уровня рассмотрения ЗУ



## 2 Интегральные микросхемы памяти

Условное графическое обозначение и режимы работы



| Входы |    |    | ЭП | DO       | Pe- |
|-------|----|----|----|----------|-----|
| CS    | WR | DI |    |          | жим |
| 1     | X  | X  | q  | <b>∞</b> | XP  |
| 0     | 0  | X  | q  | q        | ЧТ  |
| 0     | 1  | d  | d  | (d)      | 3П  |

А0...А9 – адресные входы;

DI – вход, а DO – выход данных;

CS – вход выбора кристалла;

WR – вход чтения и записи.

# 3 Построение блоков памяти на основе ИМСП

#### Параметры ИМСП:

$$V = 2^n \times m$$
 - объем.

### Параметры ЗУ:

$$V = 2^N \times M$$
 - объем.

#### Возможны 4 случая построения ЗУ:

1) 
$$n > = N, m > = M,$$

2) 
$$n \ge N$$
,  $m < M$ ,

3) 
$$n < N, m > = M,$$

Пример: n=10, m=2; N=11, M=4.

### Функциональная схема блока памяти

