Première partie

Circuits electriques en régime transitoire

1 Introduction générale

Lorsque une tension et un courant est appliqué un à un circuit ils traversent un état d'excitation. Les tensions et le courants induits constituent la réponse du circuit.

Sans excitation le circuit est au repos.

Il existe 2 types d'excitations : en régime continu ou en régime variable.

La réponse d'un circuit électrique comprend deux phases : le régime transitoire limité puis permanent.

Une tension ou une intensité ne peut jamais présenter de discontinuïté. La tension en échelon n'est qu'une approximation.

2 Régime transitoire dans des circuits du 1er ordre

2.1 Résistance

On se rappelle de l'utilisation des résistances au premier semestre.

2.2 Condensateurs et dipôle (RC)

$$q(t) = C.u_{AB}(t)$$

$$i(t) = C \frac{du_{AB}(t)}{dt}$$

Equivalence des condensateurs

Série : $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$

Dérivation: $C_{eq} = C_1 + C_2$

Energie stockée par le condensateur $\frac{1}{2}CU^2$

Energie perdue par effet Joule dans la résistance : $\frac{1}{2}CU^2$

Décharge du condensateur

$$u(t) = Ri(t)$$
 et $i(t) = -\frac{dq}{dt}$

2.3 Bobines RL

$$u = L \frac{di}{dt}$$

Aspect énergétique

L'énergie stockée par la bobine vaut $\frac{1}{2}LI^2$

2.4 Conclusion

Evolution temporelle

	$t = 0^+$	$t \to +\infty$
Condensateur	Comportement similaire à un fil	Comportement à un fil ouvert
Bobine	Comportement à un fil ouvert	Comportement similaire à un fil

3 Régime transitoire dans des circuits du 2ème ordre. Le dipôle RLC

Analyse d'un circuit : $E - u_c - u_R - u_L = 0$

 $\Rightarrow u_c + LC\frac{d^2u_c}{dt^2} + RC\frac{du_c}{dt} + u_c = 0$ On pose $LC\omega_0^2 = 1$ on résout et on a :

 $\Delta > 0$: Régime apériodique.

 $\Delta = 0$: Régime critique

 $\Delta < 0$: Régime pseudo périodique : oscillations amorties.

Deuxième partie

Amplificateur opérationnel idéal

4 L'AO en régime linéaire

Introduction

Un amplificateur opérationnel permet d'amplifier une différence de tension.

Réel et idéal

$$V_s = A_D(V^+ - V^-) = A_D u_D$$

Linéaire : si $-\epsilon \le U_d \le +\epsilon \Rightarrow U_S = A_d U_d$

Saturé : si $U_d < \epsilon \Rightarrow U_S = cte = -U_{alim}$ ou si $U_d > \epsilon \rightarrow U_s = cte = +U_{alim}$

Résistance Re	$0,1M\Omega$ à $1000G\Omega$	$+\infty$
Intensité	< 1nA	$i^+ = i^- = 0$
Résistance Rs	10 à 500 Ω	0
U_d	•	$U^+ = U^-$
Coefficient d'amplification A_d	10^5 à 10^7	8
Gain-bande passante	> 100MHz	

Les deux régime de l'A.O idéal

- 1. L'AOI est dit en **boucle ouverte** si la sortie S n'a pas de liaison avec les deux entrée U^+ et U^- . Le régime fonctionne en **saturation**.
- 2. L'AOI est dit en boucle fermée avec réaction positive si la sortie S est en liaison avec l'entrée U^+ . Le régime fonctionne en saturation.
- 3. L'AOI est en boucle fermée avec réaction négative si la sortie S est en liaison avec l'entrée inverseuse U^- . Le montage peut fonctionner en régime linéaire tant que :

$$-U_{sat} \le U_S \le U_{sat}$$
 avec $U_S = A_D U_E$

Pour un AO idéal : $i^- = i^+ = 0$ et $U^+ = U^-$.

$$\mbox{Coefficient d'amplification} A = \frac{U_{\rm sortie}}{U_{\rm entrée}}$$

Troisième partie

Circuits électriques en régime sinusoïdal

5 Définitions, généralités

Force de Lorentz

$$\vec{F} = q\vec{v} \wedge \vec{B}$$

5.1 Grandeurs périodiques s(t)

Une grandeur est périodique si s(t+T) = s(t), T est la période.

La fréquence vaut : $f = \frac{1}{T}$

Si s(t) est de signe constant la grandeur est monodirectionnelle.

Si s(t) change de signe la grandeur est bidirectionnelle.

La valeur moyenne vaut :< $s >= \frac{1}{T} \int_{0}^{T} s(t) dt$

La valeur efficace vaut : $s_{eff}^2 = \frac{1}{T} \int_0^T s^2(t) dt$

5.2 Grandeurs sinusoïdales

Soit la grandeur sinusoïdale $s(t) = S_m cos(\omega t + \phi)$

- Sa valeur instantanée est s(t)
- Sa valeur maximum ou valeur crête est S_m
- Sa pulsation est ω , la période est $T = \frac{2\pi}{\omega}$. La fréquence est $f = \frac{1}{T} = \frac{\omega}{2\pi}$.
- Sa phase (à l'origine) est ϕ
- La valeur moyenne pour une grandeur sinusoïdale $\langle s \rangle = 0$
- La valeur efficace est $S_{eff} = \frac{S_m}{\sqrt{2}} \Rightarrow s(t) = S_{eff} \sqrt{2} cos(\omega t + \phi)$

Représentation pratiques de grandeurs sinusoïdales

On utilise le vecteur de Fresnel tournant par le vecteur \vec{OM} de module constant égal à S_m .

Ainsi:
$$x_{s(t)} = x_M$$
 et $y_{s(t)} = y_M = S_m cos(\omega t + \phi)$

Déphasages de 2 grandeurs sinusoïdales de même périodes

$$\phi = 2\pi \frac{x'}{x}(rad)$$

Représentation complexe d'une grandeur sinusoïdale

La grandeur physique est la partie réelle de la grandeur complexe associée.

Conventions d'écritures adoptées pour la suite.

écriture temporelle (ou valeur instantanée)	$s(t) = S_m cos(\omega t + \phi) = S\sqrt{2}cos(\omega t + \phi)$	
valeur maximale	S_m	
valeur efficace	S	
vecteur de Fresnel associé	$\vec{OM} = S$	
amplitude efficace complexe associée	$\underline{S} = Se^{j\phi}$	
notation phaseur	$S \angle \phi$	
amplitude efficace complexe conjugée	$\underline{S} = Se^{-j\phi}$	

5.3 Circuits en régime permanent (ou forcé) sinusoïdal

Conditions de validité d'études

$$e(t) = E_m cos(\omega t + \phi)$$

6 Dipôles en régime permanent sinusoïdal

6.1 Loi d'Ohm- impédance - admittance

Impédance complexe

$$\underline{Z} = \frac{\underline{U}}{\underline{I}} = Z e^{j\phi}$$

$$|\underline{Z}| = \frac{U}{T}$$
 et $arg(Z) = \phi \ \underline{Z} = R + j \mathrm{R\'{e}actance}$

Admitance complexe

$$\underline{Y} = \frac{1}{\underline{Z}}$$

6.2 Impédance élémentaire

Dipôle	Z	U	ϕ
Résistance	R	R . I	0
Bobine	$L\omega$	$L \frac{dI}{dt}$	$\frac{\pi}{2}$
Condensateur	$\frac{1}{C\omega}$	$I = C \frac{dU}{dt}$	$-\frac{\pi}{2}$

6.3 Générateurs sinusoïdaux

FIGURE 1 – Générateur de tension idéal

FIGURE 2 – Générateur de courant idéal

$$g.c \rightarrow g.t \begin{cases} \underline{\underline{E}_t} = \underline{Z_0}.\underline{I_0} \\ \underline{Z_t} = \underline{Z_0} \end{cases}$$

6.4 Association dipôle actif et dipôle passif

Puissance Instantanée

$$P(t) = \frac{dW}{dt} = u(t).i(t)$$

Puissance moyenne

$$P = U.I.cos(\phi)$$

Puissance complexe

$$\underline{P} = \underline{U}.\overline{\underline{I}} = U.I.e^{j\phi} = U.I.cos(\phi) + j.U.I.sin(\phi) = P + jQ$$

 $S=U\!.I$ puissance apparente.

 $P = U.I.cos(\phi)$ puissance active.

 $Q = U.I.sin(\phi)$ puissance réactive.