Electrical Sciences-EE101

Mid-Semester Exam

FM: 30; Time: 2 hours

Q.1 (a) Two ideal diodes with ideality factor η =1 are connected back to back as shown below.

5

(i) Show that $exp^{\frac{qV_1}{KT}} + exp^{\frac{-qV_2}{KT}} = 2$; where V₁ and V₂ are voltages drops across diodes.

(ii) Assuming that reverse biased diode is saturated at I₀, Calculate the voltage drop across the forward biased diode (KT/q=25 mV).

(b) A zener diode acts as a voltage regulator. Explain the meaning of this sentence.

1

(c) Plot V₀ vs. V_i for the circuit given below.

(d)Obtain current I flowing through $2K\Omega$ resistor, if transistors have high value of β and V_{BE} =0.65V

3

Q.2 (a) For given amplifier circuit of fig-2(i), Calculate r_e , Z_i , Z_o , A_v , & A_i .

(b) For given amplifier circuit of fig-2(ii) determine IE, VC, & VCE.

5

3

Q. 3 (a) For the circuit given below, verify that $V_0 = \left(1 + \frac{R_2}{R_1} + \frac{2R_2}{R}\right)(V_2 - V_1)$

(b) For the circuit given below, derive $V_0 = \eta V_T \ln(V_{in}/RI_S)$; where I_S is reverse saturation current of diode, V_T is 3 temperature equivalent voltage and η is ideality factor.

2

3