

HOW DATA CAN HELP BUSINESS

Final project for Data Analytics course presented by André Vitta

GALANCK

Connected backpack that combines GPS navigation, safety, ergonomy and style

MOBILITY - WITHOUT FEAR - WITHOUT RISK - WITHOUT POLLUTING

Who says we have to choose between style and safety? Who said good taste can't save lives?

HOW IT WORKS ?

PROJECT GOALS

PRODUCT DEVELOPMENT

Improve Customer Product experience

02 OPERATIONAL REQUIREMENTS

User Data online processing and Storage

TECHNICAL IMPROVEMENTS

AutoNav routing

04

FINAL REMARKS

Make insightful propositions based on User data

OVERALL DIAGNOSTIC

QUESTIONS?

- What is the "Value" of Data (if there is enough)
- What is the Reroute event rate?
- What are the reroute events situation?
- What are the relevant Navigation statistics?
- How much improvement in operation can be achieved?

HOW CAN

DATA ANALYSIS HELP?

- Understand the problem
- Get data
- Clean data
- **Exploratory Data Analysis**
- **Feature Engineering**
- Define and Run models
- **Model Validation**

UNDERSTAND THE PROBLEM

PRODUCT PERFORMANCE

Better routing algorithm can increase number of AutoNav users and their product perception

DATA QUALITY PARAMETERS

Having this parameters can help to monitor product performance and development requirements

ADDRESS PROFESSIONAL USERS

High number of trips per day Navigation precision has impact on productivity

Improving Data Storage and Estimating Cloud processing requirements

DATASET

TRIP DATA

- Plan route
- Actual route
- BLE Orders

TERMINAL AND BAG INFO

Bag ID

- Firmware version
 - Phone model
 - App Version
 - App status
 - Phone Baterry

HOW DATA IS COLLECTED

DATA CLEANING AND MANIPULATION

327 TRIPS

Extracting GPS data and Events descriptions and Timestamps

TURNS CLASSIFICATION

Find all turns and verify if they were successful or not

CALCULATING ADDITIONAL PARAMETERS

Calculating some KPIs and some new variables as Gps Accuracy Variation and Time Gap

FINAL DATA

7 categorical features		
10 numerical	GOOD TURN	132
1 target	REROUTE	89
2216 row and 18 features		

FEATURE ENGINEERING

FEATURES WITH DIFFERENT SCALES

Lat, Lon - Degrees
Distance - Meters
Time Gap - ms
Categorical Data - 1 to 5
Target - 0 and 1

NO PCA !!!

Since the goal is to understand how features impact on rerouting, having PCA don't really help

DUMMIES

Users Event Types and OSVersion had multiple categories so they were dummy

MODEL DEFINITION

LoGit
KNeighborsClassifier
GaussianNB
DecisionTreeClassifier
RandomForestClassifier
XGBClassifier
SVC
LogisticRegression
CatBoostClassifier
NuSVC

RESULTS

	Accuracy Score	F1 Score	Recall Score	Precision Score
GaussianNB	0.45	0.59	0.98	0.42
KNeighborsClassifier	0.69	0.63	0.65	0.61
SVC	0.69	0.60	0.56	0.63
NuSVC	0.70	0.63	0.65	0.62
LogisticRegression	0.71	0.61	0.57	0.66
DecisionTreeClassifier	0.74	0.67	0.67	0.67
RandomForestClassifier	0.76	0.71	0.71	0.71
CatBoostClassifier	0.79	0.74	0.74	0.73
XGBClassifier	0.81	0.76	0.75	0.77

RESULTS

		Logit Regre	ession Resu	ılts				
Dep. Variable:		badturn		ervations:		2216		
Model: Method:		Logit MLE	<pre>Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null:</pre>		2209 6 0.1346			
Date:	Fri	06 Mar 2020						
Time:	112,	12:29:25			12:29:25 Log-Likelihood:			-1292.9
converged:	22	True			-1494.0			
Covariance Typ	riance Type: nonrobust LLR p-value:		itue:	9.107e-84				
	coef	std err	Z	P> z	[0.025	0.975		
events	-0.5534	0.051	-10.947	0.000	-0.653	-0.454		
elevation	-0.2246	0.050	-4.516	0.000	-0.322	-0.127		
accuracy_var	-0.2657	0.077	-3.440	0.001	-0.417	-0.114		
terminalID	-0.2061	0.052	-3.989	0.000	-0.307	-0.105		
distFinish	0.2711	0.054	4.982	0.000	0.164	0.378		
Nreroute	0.7308	0.059	12.345	0.000	0.615	0.847		
NgoodTurn	-0.4678	0.058	-8.033	0.000	-0.582	-0.354		

Use N of reroute to the momen t of turn Same for good turn

RESULTS

RESULTS SUMMARY

What is the "Value" of Data (if there is enough)

More better data - More users sending data to improve model but better selecting features to store

• What is the Reroute event rate?

With the current data rate is around 40% but there are not enough data just for KPI per trip

What are the reroute events situation?

As suggested by the models GPS accuracy variation and Type of Turns (need more details)

What are the relevant Navigation statistics?

Number of rerouting, Distance to Finish, Trip Duration, trip Distance

How much improvement in operation can be achieved?

Just by processing the data prior to storage reduce 18% of data files

More UserData Is needed

Automating and Optimizing the KPIs script

Storage

- Map tool parameters (firmware change)
- Cloud computing
- Less data but more relevant

Model

- Improve cleaning (speed, direction, turn direction)
- Hyperparameter tuning

KPIs and additional features

Actual route vs Planned Route and Add crossroad types

Mapbox query against Google Maps