Professor: Jeferson Almir

Aluno(a):			Nž:	
Deter	/	/		

1 Problemas

- 001. Seja ABC um triângulo. Prove que suas medianas CD, AE e BF são concorrentes. **Dicas:**
- 002. Seja ABC um triângulo. Prove que suas alturas AE, CF e BD são concorrentes. **Dicas:**
- 003. Prove que as bissetrizes internas de um $\triangle ABC$ são concorrentes. **Dicas:**
- **004.** Seja ABC um triângulo. Seu incírculo toca AB, BC e CA nos pontos C_1 , A_1 e B_1 respectivamente. Prove que as retas CC_1 , BB_1 e AA_1 são concorrentes. **Dicas:**
- 005. Prove que as mediatrizes dos lados de um dado $\triangle ABC$ são concorrentes. Dicas:
- **006.** Seja ABC um triângulo de circuncírculo k. Sejam l_A, l_B e l_C as retas tangentes a k pelos pontos A, B e C respectivamente. Se $l_A \cap l_B = C_1, l_B \cap l_C = A_1$ e $l_C \cap l_A = B_1$, prove que as retas AA_1, BB_1 e CC_1 são concorrentes. **Dicas:**
- 007. Seja ABC um triângulo. Sejam A_1 , B_1 e C_1 os pontos de tangência dos segmentos BC, CA e AB com os exincírculos de $\triangle ABC$. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- 008. Seja ABC um triângulo e seja N seu ponto de Nagel (ponto de concorrência do exercício anterior). Digamos que AN, BN e CN intersectem o incírculo de $\triangle ABC$ nos pontos A_1 , B_1 e C_1 , e os lados BC, CA e AB nos pontos A_2 , B_2 e C_2 , respectivamente. Prove que $AA_1 = NA_2$, $BB_1 = NB_2$ e $CC_1 = NC_2$. Dicas:
- 009. Seja ABC um triângulo. Os triângulos equiláteros $\triangle ABC_1$, $\triangle AB_1C$ e $\triangle A_1BC$ são construídos no exterior do triângulo ABC. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- 010. Seja ABC um triângulo. Os triângulos equiláteros $\triangle ABC_1$, $\triangle AB_1C$ e $\triangle A_1BC$ são construídos no interior do triângulo ABC. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- **011.** Prove que para um dado $\triangle ABC$, existe algum ponto X tal que vale $AX \cdot BC = BX \cdot AC = CX \cdot AB$. **Dicas:**
- 012. Prove que para um dado $\triangle ABC$, exatamente dois pontos satisfazem a condição da questão anterior. Dicas:

- 013. Seja ABC um triângulo. Prove que existe um ponto único S tal que vale BC + AS = CA + BS = AB + CS. Dicas:
- **014.** Seja ABC um triângulo. Prove que existe um ponto único S tal que vale BC AS = CA BS = AB CS. **Dicas:**
- 015. Três circunferências $k_1(A)$, $k_2(B)$ e $k_3(C)$ são dadas, e elas são todas tangentes externamente entre si. Seja C_1 e B_1 os pontos de tangência de k_1 com k_2 , e de k_1 com k_3 , respectivamente. Seja A_1 o ponto de tangência de k_2 com k_3 . A circunferência k_4 toca as outras três circunferências externamente. Prove que o primeiro centro de Soddy do $\triangle ABC$ (problema 13) coincide com o centro de k_4 . Dicas:
- 016. Três circunferências $k_1(A)$, $k_2(B)$ e $k_3(C)$ são dadas, e elas são todas tangentes externamente entre si. Seja C_1 e B_1 os pontos de tangência de k_1 com k_2 , e de k_1 com k_3 , respectivamente. Seja A_1 o ponto de tangência de k_2 com k_3 . A circunferência k_4 toca as outras três circunferências internamente. Prove que o segundo centro de Soddy do $\triangle ABC$ (problema 14) coincide com o centro de k_4 . Dicas:
- **017.** Seja ABC um triânguloe sejam S_1 e S_2 seus primeiro e segundo centros de Soddy (problemas 13 e 14), respectivamente. Prove que os pontos A, B e C estão sobre uma elipse de focos S_1 e S_2 . **Dicas:**
- **018.** Seja ABC um triânguloe seja S_1 seu primeiro centro de Soddy (problema 13). Prove que existe uma circunferência inscrita no quadrilátero convexo formado pelas retas CS_1 , BS_1 , AC e AB. **Dicas:**
- 019. Seja ABC um triânguloe seja S_2 seu segundo centro de Soddy (problema 14). Prove que existe uma circunferência que toca as retas BA e BC e os segmentos AS_2 e CS_2 . Dicas:
- **020.** Seja ABC um triângulocom exincírculos ω_a , ω_b e ω_c . Sejam I_a , I_b e I_c os centros de ω_a , ω_b e ω_c respectivamente. Seja A_1 o ponto de tangência de ω_a com o lado BC. Defina os pontos B_1 e C_1 analogamente. Prove que as retas C_1I_c , B_1I_b e A_1I_a são concorrentes. **Dicas:**
- **021.** Seja ABC um triângulo. O primeiro ponto de Brocard Br_1 é definido como o ponto para o qual $\angle BABr_1 = \angle ACBr_1 = \angle CBBr_1$. Prove que esse ponto sempre existe. **Dicas:**