

MARE-Madeira 2025

Movement speed estimation

Using the 'ctmm' R package

Inês Silva

i.simoes-silva@hzdr.de

10 meters/second

Instantaneous **velocity**

The instantaneous rate of change of the **position vector** with respect to **time** (i.e., examined for a **very small time interval**)

$$V_t = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t}$$

>> For **speed**, take the magnitude only.

Average **velocity Displacement** divided by **time**

Instantaneous velocity

The instantaneous rate of change of the **position vector** with respect to **time** (i.e., examined for a **very small time interval**)

$$V_t = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t}$$

ncreasing spatiotemporal scale

Speed- and distance-related metrics provide quantifiable links between **behavior and energetics**, can inform on risk/reward tradeoffs or as signals of **anthropogenic disturbance**.

Adapted from Nathan et al. (2008)

Speed and distance traveled are among the most routinely estimated metrics from animal tracking data.

Usually estimated by summing the **straight-line distance (SLD)** between location estimates...

$$\hat{d} = |\Delta \mathbf{r}| = \sqrt{\Delta x^2 + \Delta y^2}$$

... and divide that by Δt if speed if the desired metric.

Speed and distance traveled are among the most routinely estimated metrics from animal tracking data.

Usually estimated by summing the **straight-line distance (SLD)** between location estimates...

$$\hat{d} = |\Delta \mathbf{r}| = \sqrt{\Delta x^2 + \Delta y^2}$$

... and divide that by Δt if speed if the desired metric.

Speed and distance traveled are among the most routinely estimated metrics from animal tracking data.

Usually estimated by summing the **straight-line distance (SLD)** between location estimates...

$$\hat{d} = |\Delta \mathbf{r}| = \sqrt{\Delta x^2 + \Delta y^2}$$

... and divide that by Δt if speed if the desired metric.

Although SLD is easy to quantify, it is also *heavily biased*.

Solution: Increase the sampling frequency until the straight lines provide a better **approximation** of a curve?

However,

If error is uncorrelated in time, estimates converge to **infinity** with infinite sampling frequency ($\Delta t \rightarrow O$).

Why? The actual distance traveled by the animal goes to 0 in the limit where $\Delta t \rightarrow 0$, but the magnitude of uncorrelated measurement error is **independent of t**.

 \mathcal{L} Noonan et al. (2020)

Autocorrelation

Model	Position	Velocity	Restricted	Parameters:
IID	No	No	Yes	τ = NULL
BM	Yes	No	No	7 = ∞
OU	Yes	No	Yes	τ = τ _p
IOU	Yes	Yes	No	$\tau = \{\infty, \tau_{v}\}$
OUF	Yes	Yes	Yes	$\tau = \{\tau_{\rm p}, \tau_{\rm v}\}$

Requires a correlated velocity model.

 \mathbb{R} Noonan et al. (2020)

Select best-fit movement model, so we can repeat over multiple rounds of simulations.

Sampling frequency (max)
1 fix every 15 minutes

White-nosed coati
(Nasua narica)

Sampling frequency (max)
1 fix every 15 minutes

White-nosed coati
(Nasua narica)

Wood turble
(Glyptemys insculpta)

Speed (mm/s)

1.2x10⁻³

8x10⁻⁴

 $4x10^{-4}$

To keep in mind...

