Curso de Tecnologia em Sistemas de Computação Disciplina - Probabilidade e Estatística Gabarito da AD1/2° semestre de 2008

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

1- Primeira questão (2,5 pontos):

Conhece-se os resultados de pesquisas aplicadas aos funcionários do setor de contabilidade de duas empresas, apresentados a seguir, onde n_i é a freqüência de ocorrência de cada valor e, para a variável escolaridade temos que:

- 1 significa que o funcionário tem o curso fundamental completo
- 2 significa que o funcionário tem o curso médio completo
- 3 significa que o funcionário tem o curso superior completo

Empresa A

Tabela A-1

	faixa salarial		
	(em reais)	n _i	escolaridade
1	300,00 - 800,00	24	1
2	800,00 - 1300,00	8	1
3	1300,00 - 1800,00	18	2
4	1800,00 - 2300,00	12	2
5	2300,00 - 2800,00	5	3
6	2800,00 - 3300,00	2	3
7	3300,00 - 3800,00	2	3
8	3800,00 - 4300,00	1	3
9	4300,00 - 4800,00	3	3
10	4800,00 - 5300,00	1	3
11	5300,00 - 5800,00	1	3
12	5800,00 - 6300,00	2	3
13	6300,00 - 6800,00	5	3
14	6800,00 - 7300,00	7	3
Total		91	

Empresa B

Tabela B-1

	faixa salarial		
	(em reais)	ni	escolaridade
1	300,00 - 800,00	6	1
2	800,00 - 1300,00	4	1
3	1300,00 - 1800,00	2	2
4	1800,00 - 2300,00	2	2
5	2300,00 - 2800,00	2	2
6	2800,00 - 3300,00	1	3
7	3300,00 - 3800,00	1	3
8	3800,00 - 4300,00	1	3
9	4300,00 - 4800,00	1	3
10	4800,00 - 5300,00	1	3
Total		21	

Pergunta-se:

1.1- Primeira questão -Parte 1- (1,0 pontos)

Comparando as duas empresas verifique:

a) verifique como é a distribuição dos funcionários em relação à escolaridade nas 2 empresas (proporção de funcionários de nível fundamental, médio e superior). Calcule qual tem a maior proporção de funcionários que não concluíram o nível superior.

Resposta:

Empresa A

p. 00a / .			
Escolaridade	n_{i}	freq. relativa	fac
1	32	0,35	0,35
2	30	0,33	0,68
3	29	0,32	1,00
Total	91	1	_

Empresa B

Escolaridade	n _i	freq. relativa	fac
1	10	0,48	0,48
2	6	0,29	0,76
3	5	0,24	1,00
total	21	1,00	-

- Na empresa A 35% dos funcionários têm curso fundamental completo, 33% tem o curso médio completo e 32% têm o curso superior enquanto que na empresa B, 48% têm o curso fundamental completo, 29% têm o curso médio completo e apenas 24% completaram o curso superior.
- Em relação aos funcionários que não concluíram o nível superior (escolaridade 1 + escolaridade 2): na empresa B 76% dos funcionários não concluíram o curso superior e na empresa A 68% dos funcionários estão na mesma situação, ou seja somente com o curso fundamental ou médio completo.

 b) (1,5 pontos) qual a média, dos salários dos funcionários com curso superior? E em que faixa salarial se encontra a moda e a mediana? (Considere para o cálculo da média, a média de salários da respectiva faixa).

Resposta:

Empresa A

Os funcionários com nível superior, escolaridade 3, são 29 funcionários que vão da faixa salarial 5 até a faixa 14 na tabela, que pode ser reescrita como:

	n _i	escolaridade	salário médio por faixa (R\$)
5	5	3	2550,00
6	10	3	3050,00
7	2	3	3550,00

8	1	3	4050,00
9	3	3	4550,00
10	1	3	5050,00
11	1	3	5550,00
12	2	3	6050,00
13	3	3	6550,00
14	1	3	7050,00
Total	91		

Assim, o cálculo da média salarial da empresa A pode ser dado por:

$$x_{obs} = \frac{\sum_{i=5}^{14} n_i x_i}{29} = \frac{5*2550,00+2*3050,00+2*3350,00+1*4050,00+3*4550,00+1*5050,00+1*5550,00+2*6050,00+5*6550,00+7*7050,00}{29} = \frac{148.450,00}{29} = 5118,97$$

Ou seja, a média salarial dos funcionários de nível superior da empresa A é R\$5118,97, a moda está na faixa 1, com 24 funcionários e a mediana, posição 46, está na terceira faixa salarial, de R\$ 1300,00 a R\$1800,00.

Empresa B

Os funcionários com nível superior desta empresa, são 5 funcionários que vão da faixa salarial 6 a faixa 10 na tabela. Assim, o cálculo da média salarial da empresa B (mostrado agora como tabela) pode ser dado por:

	faixa salarial (em reais)	ni	escolaridade	média em real (por faixa)	ni*média/faixa
6	2800,00 - 3300,00	1	3	3050,00	3050,00
7	3300,00 - 3800,00	1	3	3550,00	3550,00
8	3800,00 - 4300,00	1	3	4050,00	4050,00
9	4300,00 - 4800,00	1	3	4550,00	4550,00
10	4800,00 - 5300,00	1	3	5050,00	5050,00
Total		5		Somatório=	20250,00

$$x_{obs} = \frac{\sum_{6}^{10} n_i x_i}{5} = \frac{20250,00}{5} = 4050,00$$

Para a empresa B, o salário médio dos funcionários com nível superior é R\$ 4050,00, a moda também está na faixa 1, com 6 funcionários e a mediana, posição 11, está na terceira faixa salarial, de R\$ 1300,00 a R\$1800,00.

1.2- Primeira questão -Parte 2- (2,0 pontos)

a) (1,5 pontos) Sabendo que a média dos salários da Empresa A é R\$ 2445,60 e da Empresa B é R\$ 1907,14 e que o desvio padrão dos salários da Empresa A é R\$ 2128,45. Calcule o desvio padrão da Empresa B. Qual deve ser o aumento salarial da Empresa B para que as duas empresas tenham o mesmo desvio padrão?

Resposta:

Sabendo que:

$$\begin{aligned} var_{obs} &= \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{obs})^2 = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - x_{obs})^2 = \frac{1}{n} \sum_{i=1}^{k} n_i (desvio)^2 \\ com \quad x_i - x_{obs} &= desvio \\ e \\ dp_{obs} &= \sqrt{\text{var}_{obs}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2} \end{aligned}$$

O cálculo do desvio padrão da Emprea B, que tem média x = R\$1907,14, é apresentado na tabela a seguir:

faixa	n _i	média em real (por faixa)	desvio	(desvio) ²	ni *(desvio)²
1	6	550,00	-1357,14	1841828,98	11050973,88
2	4	1050,00	-857,14	734688,98	4408133,88
3	2	1550,00	-357.14	127548,98	510195,92
4	2	2050,00	142,86	20408,98	40817,96
5	2	2550,00	642,86	413268,98	826537,96
6	1	3050,00	1142,86	1306128,98	2612257,96
7	1	3550,00	1642,86	2698988,98	2698988,98
8	1	4050,00	2142,86	4591848,98	4591848,98
9	1	5050,00	2642,86	6984708,98	6984708,98
10	1	5550,00	3142,86	9877568,98	9877568,98
Total	21			somatório=	43602033,48

$$var_{obs} = \frac{1}{21} \sum_{i=1}^{k} n_i (desvio)^2 = \frac{45.821.488,57}{21} = 2.181.975,65$$

$$var_{obs} = \frac{1}{21} \sum_{i=1}^{k} n_i (desvio)^2 = \frac{43602033,48}{21} = 2076287,31$$

$$dp_{ops} = \sqrt{var_{obs}} = \sqrt{2076287,31} = 1440.94$$

Em relação ao aumento necessário na empresa B para que ele tenha o mesmo desvio padrão da empresa A, sabemos que se multiplicarmos os valores de uma tabela por um valor constante, o desvio padrão também será multiplicado por esse valor. Assim:

$$dp_{oys_b}Xvalor = dp_{oys_a}$$

 $1440.94Xvalor = 2128.45$
 $valor = 1.48$

Ou seja, a empresa B deve ter 48% de aumento para que seu desvio padrão fique igual ao da empresa A.

b) (0,5 pontos)Classifique cada variável das tabelas A e B (salário e escolaridade).

Resposta

Salário: variável quantitativa contínua Escolaridade: variável qualitativa ordinal

2- Segunda questão - (2,5 pontos)

2.1 - Segunda questão -Parte 1- (1,5 ponto)

Num cassino foi encontrado um dado que tinha um contrapeso. Alguns testes mostraram que, neste dado, havia uma probabilidade três vezes maior de sair a face com o número 6 e tanto a face 2 quanto a 4, havia uma probabilidade duas vezes maior do que as faces 1, 3 e 5. Foram feitos dois lancamentos. Pergunta-se:

- 1) Qual a probabilidade de ter saído a face 2;
- 2) Qual a probabilidade de ter saído a face 3;
- 3) Qual a probabilidade de ter saído as faces 5 ou 6.
- 4) Qual a probabilidade de ter saído as faces 5 e 6.
- 5) Qual a probabilidade de ter saído a face 5 e não ter saído a 6.

Resposta:

Admitindo que a probabilidade de sair as faces 1, 3 e 5 seja p, temos: a face 6 tem probabilidade 3p e as faces 2 e 4 tem probabilidade 2p.

Como o somatório das probabilidades de sair cada uma das diferentes faces é igual a 1 (um) temos:

$$p+p+p+3p+2p+2p=1 => p=1/10$$

1) A probabilidade de ter saído face 2:

Sabemos que a probabilidade de sair a face 2 em uma jogada é: P(face2) = 2*0,1=0,2. Queremos saber da probabilidade de sair a face 2 em pelo menos um dos lançamentos, ou seja, de sair a face 2 ou no primeiro lançamento, ou no segundo ou, finalmente, nos 2 lançamentos. Assim, chamando de A_i a probabilidade de sair a face 2 no lançamento "i" e de B_i a probabilidade de não sair a face 2 no lançamento "i", com $P(B_i) = 0.8$, temos :

$$P(face2)=P(A_1 \cap B_2) + P(A_2 \cap B_1) + P(A_1 \cap A_2)$$

$$P(face2)=0.2*0.8+0.8*0.2+0.2*0.2=0.36$$

Ou, alternativamente:

$$P(face2)=P(A_1) + P(A_2) - P(A_1 \cap A_2) = 0.2 + 0.2 - 0.2*0.2=0.36.$$

2) Da mesma forma que no item anterior, sendo que a probabilidade de sair a face 3 é: P(face3)= 0,1. Assim:

$$P(face3)=P(A_1)+P(A_2)-P(A_1\cap A_2)=0,1+0,1-0,1*0,1=0,19.$$

3) A probabilidade de ter saído as faces 5 ou 6:

Nesse caso, chamando de C o lançamento com a face 5 e D o lançamento com a face 6, com P(C) = 0.1 e P(D) = 0.3, temos:

$$P(face5 \ ou \ face6) = P(C \ U \ D) + P(D \ U \ C) = 2*P(C \ U \ D) = 2*(0.1 + 0.3) = 0.8.$$

4) Probabilidade de faces 5 e 6:

Neste caso temos as possibilidades:

face5 e face 5 face5 e face 6 face6 e face6 face6 e face5

P(face5 e face6)= 2*P(face5)*P(face6)= 2*0.03=0.06

5) A probabilidade de ter saído a face5 e não ter saído a 6

Chamando de C o lançamento com a face 5 e de D_{-} , não sair a face 6, com P(C) = 0.1 e $P(D_{-}) = 0.7$, temos:

 $P(face5 e não face6) = P(face5 \cap não face6) + P(não face6 \cap face5) = 2*0,1*0,7 = 0,14$

2.2 - Segunda questão -Parte 2- (1,0 ponto)

Sabe-se que uma determinada moeda viciada, quando lançada, mostra a face cara (c) quatro vezes mais do que a face coroa (r), ou seja, se: P(r) = p tem-se que P(c) = 4p. Esta moeda é lançada 4 vezes. Sendo X o número de caras que podem aparecer nesse lançamentos, monte uma tabela com as possíveis ocorrências nesses 4 lançamentos e determine:

- a) a média e a variância
- b) P(X > 2)

Resposta:

Seja
$$P(r) = p$$
 e $P(c) = 4p$ com $p + 4p = 1 \Rightarrow p = \frac{1}{2}$, logo

$$P(c) = \frac{4}{5} = 0.8$$

$$P(r) = \frac{1}{2} = 0.5$$

$$P(X = 0) = P(4r) = (0.2)^4 = 0.0015$$

$$P(X = 1) = P(1c e 3r) = (0.8) * (0.2)^3 = 0.0256$$

$$P(X = 2) = P(2c e 2r) = (0.8)^2 * (0.2)^2 * 6 = 0.1536$$

$$P(X = 3) = P(3c e 1r) = (0.8)^3 * (0.2) * 4 = 0.4096$$

$$P(X = 4) = P(4c) = (0.8)^4 = 0.4096$$

X	<i>P</i> (<i>X</i>)	$X^*P(X)$	$X^{2*}P(X)$
0	0.0016	0	0
1	0.0256	0.0256	0.0256
2	0.1536	0.3072	0.6144
3	0.4096	1.2288	3.6864
4	0.4096	1.6384	6.5536
	1	3.20	10.88

(a)
$$E(X)=3.20$$

VAR(X) = 10.88 - 3.20² = 0.64

(b)
$$P(X>2) = P(X=3) + P(X=4) = 0.4096 + 0.4096 = 0.8192$$

3 - Terceira questão (1,0 ponto)

Sabe-se que uma loja terceiriza o fabricação de calças jeans utilizando o serviço de 3 fábricas: F_1 , F_2 , F_3 . Cada uma delas (F_1 , F_2 , F_3) produz calças jeans em lotes semanais de 150, 200 e 350 calças respectivamente e sabe-se que a probabilidade de se encontrar calças defeituosas na produção de cada uma das fábricas é de 2%, 10% e 5% (respectivamente). Ao chegarem à loja as calças são misturadas recebendo etiquetas indistintamente. Selecionando-se uma dessas calças ao acaso, determine a probabilidade de:

a) (0,5 pontos) ser defeituosa;

Resposta:

$$\begin{split} P(Def) &= P(Def|F_1)P(F_2) + P(Def|F_2)P(F_2) + P(Def|F_3)P(F_2) \\ &= 0.02 * \frac{150}{700} + 0.1 * \frac{200}{700} + 0.05 * \frac{350}{700} = 0.0578 \end{split}$$

b) (0.5 pontos) ser da fábrica F_1 , sabendo que a peça é defeituosa.

Resposta:

$$P\left(\frac{F_{z}}{Def}\right) = \frac{P(Def|F_{z})P(F_{z})}{P(Def)} = \frac{0.02 * \frac{150}{700}}{0.0578} = 0.0741$$

4 - Quarta questão - (2,0 pontos)

Um fabricante de um determinado produto eletrônico suspeita que 2% de seus produtos apresentam algum defeito. Se sua suspeita for correta

4.1- Quarta questão -Parte 1- (1,0 ponto)

Utilize o modelo binomial e determine qual a probabilidade de que, numa amostra com 9 de seus produtos.

i- não haja nenhum defeituoso

Resposta:

$$P(x=0) = {9 \choose 0} \times (0.02)^{0} \times (0.98)^{9}$$

$$P(x=0) = {9! \over 0!(9-0)!} \times (0.02)^{0} \times (0.98)^{9}$$

$$P(x=0) = 1 \times 1 \times 0.8337$$

$$P(x=0) = 0.8337$$

ii- haja no máximo um defeituoso

Resposta:

$$P(x=0) + P(x=1) = 0.8337 + \binom{9}{1} \times (0.02)^{1} \times (0.98)^{8}$$

$$P(x=0) + P(x=1) = 0.8337 + 0.1531$$

$$P(x=0) + P(x=1) = 0.9868$$

4.2- Quarta questão -Parte 2- (1,0 ponto)

Utilize o modelo geométrico para saber se esse fabricante for escolher aleatoriamente 4 desses produtos para mostrar a um vendedor, qual a probabilidade de somente o quinto estar defeituoso?

Resposta:

Para o modelo geométrico temos:

X: número de vezes necessárias para encontrar o quinto defeituoso.

p = 0.02

q = 0.98

$$P(x = 5) = (0.98)^4 \times (0.02)^1$$

$$P(x = 5) = 0.0184$$

5 - Quinta questão - (1,0 ponto)

Em uma pesquisa para avaliar a efetividade de um determinado tratamento, pesquisadores acompanham o crescimento de 10 ratos de diferentes espécies: 6 da espécie A e 4 da espécie B, avaliando periodicamente seus pesos e tamanhos. Se em determinado dia de avaliação três diferentes ratos forem capturados, utilize um modelo de probabilidade para determinar a probabilidade:

- (i) da maioria ser da espécie A;
- (ii) de pelo menos 1 ser da espécie A.

Dados do problema:

- Modelo Hipergeométrico.
- Tamanho da população n = 10
- Tamanho da amostra r = 3
- Sucesso da população (espécie A) m = 6
- Sucesso da amostra k = ?

Resposta:

(i)A maioria, neste caso, quer dizer x = 2

$$P(x=2) = \frac{\binom{m}{k} \binom{n-m}{r-k}}{\binom{n}{r}}$$
$$P(x=2) = \frac{\binom{6}{2} \binom{4}{1}}{\binom{10}{3}}$$

$$P(x=2) = \frac{\binom{6}{2}\binom{4}{1}}{\binom{10}{3}}$$

$$P(x=2) = \frac{15 \times 4}{120}$$

$$P(x = 2) = 0.5$$

$$P(x=3) = \frac{\binom{m}{k} \binom{n-m}{r-k}}{\binom{n}{r}}$$

$$\binom{6}{4}$$

(ii)
$$P(x=3) = \frac{\binom{6}{3}\binom{4}{0}}{\binom{10}{3}}$$

$$P(x=3) = \frac{20 \times 1}{120}$$

$$P(x=3) = 0.1667$$

$$P(x \ge 1) = P(x = 1) + P(x = 2) + P(x = 3)$$

$$P(x=1) = \frac{\binom{m}{k}\binom{n-m}{r-k}}{\binom{n}{r}}$$

$$P(x=1) = \frac{\binom{6}{1}\binom{4}{2}}{\binom{10}{3}}$$

(ii)
$$P(x=1) = \frac{6 \times 6}{120}$$

$$P(x = 1) = 0.30$$

$$P(x \ge 1) = 0.30 + 0.50 + 0.1667$$

$$P(x \ge 1) = 0.9667$$

Um determinado artigo é vendido em caixas a um preço de R\$ 20,00 a unidade. Normalmente, em cada caixa há em torno de 20% desses artigos com defeitos. Um comprador fez a seguinte proposta ao fabricante: de cada caixa ele escolhe, ao acaso, 25 artigos e paga:

- R\$ 25,00 se não houver nenhum desses artigos com defeito;
- R\$ 17,00 se um ou dois artigos forem defeituosos;
- R\$ 10,00 se três ou mais forem defeituosos.

O que é melhor para o fabricante, aceitar a proposta do comprador ou vender por R\$20,00 a unidade? (Sugestão: calcule o valor médio, ou esperança, da proposta apresentada pelo comprador e compare com o preço do fabricante).

Dados do problema:

- Peças defeituosas: 20% ou 0,20 por caixa.
- x representa as peças defeituosas.

Resposta:

Para resolver o problema é usada a distribuição binomial. Para calcular as probabilidades de termos nenhum, ou um ou dois, ou três ou mais, artigos defeituosos. Portanto temos:

Probabilidade de não ter peça defeituosa P(x = 0):

$$P(x=0) = {25 \choose 0} \times (0,20)^0 \times (0,80)^{25}$$

$$P(x=0) = {25! \over 0!(25-0)!} \times (0,20)^0 \times (0,80)^{25}$$

$$P(x=0) = 1 \times 1 \times 0,003778$$

$$P(x=0) = 0.003778$$

Probabilidade de ter uma ou duas peças defeituosas $P(1 \le x \le 2)$:

$$P(1 \le x \le 2) = P(x=1) + P(x=2)35$$

$$P(x=1) = {25 \choose 1} \times (0,20)^{1} \times (0,80)^{24}$$

$$P(x=1) = {25! \over 1!(25-1)!} \times (0,20)^{1} \times (0,80)^{24}$$

$$P(x=1) = 25 \times 0,20 \times 0,004722$$

$$P(x=1) = 0,023612$$

$$P(x=2) = {25 \choose 2} \times (0,20)^{2} \times (0,80)^{23}$$

$$P(x=2) = {25! \over 2!(25-2)!} \times (0,20)^{2} \times (0,80)^{23}$$

$$P(x=2) = 300 \times 0,04 \times 0,005903$$

$$P(x=2) = 0,070835$$

$$P(1 \le x \le 2) = 0,023612 + 0,0070835$$

$$P(1 \le x \le 2) = 0,094447$$

Probabilidade de ter três ou mais peças defeituosas $P(x \ge 3)$:

$$P(x \ge 3) = 1 - P(x < 3)$$

$$P(x \ge 3) = 1 - (P(x = 0) + P(x = 1) + P(x = 2))$$

$$P(x \ge 3) = 1 - (0,00378 + 0,02361 + 0,07084)$$

$$P(x \ge 3) = 1 - 0,09823$$

$$P(x \ge 3) = 0,90177$$

Com base nas probabilidades anteriores, podemos montar uma tabela de custos e calcular a esperança, que é o valor médio do preço, por caixa, da proposta do comprador:

$$E(X) = \sum_{i=1}^{k} x_i p_i$$

Peças com defeitos	Probabilidade de defeito	Custo	E(Peças_defeituosas)
7(0)	0.00070	D#05.00	0.0045
P(x=0)	0,00378	R\$25,00	0,0945
$P(1 \le x \le 2)$	0.09445	R\$17,00	1,60565
$I (I \equiv X \equiv Z)$	<u> </u>		,
$P(x \ge 3)$	0,90177	R\$10,00	9,0177
-	1		10,71785

Assim

$$E(Peças_defeituosas) = 0.00378*25.00 + 0.09445*17.00 + 0.9177*10.00$$

$$E(Peças_defeituosas) \cong 10,72$$

Isso significa que se ele aceitar a proposta do comprador, o valor médio dos artigos será R\$ 10,72.