Composition, structure and dynamic properties of the Earth and planetary interiors: insights from lab experiments

Geeth Manthilake

Laboratoire Magmas et Volcans - CNRS Universite Clermont Auvergne Clermont Ferrand

1. Introduction

Earth's evolution from a fire-ball state to a habitable planet

Early Earth

- Formation of the metallic core
- Magma ocean crystallization
- Solidification of the inner core
- Compositional stratification

Source: TITEC

Present-day Earth

Seismic wave velocity

Geophysical profiles represent variation in

- temperature
- composition
- density
- physical state

Electrical resistivity

Heat flow

Source: Institute of Physics

2. Applications

Material circulation

Mantle heterogeneities

Heat transport in the Earth and Planetary bodies

Transport of water into the lower mantle

- High water contents (2 wt. %) in OIBs fed by plumes rising from the LM (Deschamps et al. 2011)
- Continental sediment components in OIBs (Hart 1988) EM-II
- K-hollandite (liebermannite):
 - principal phase in continental sediments (30 vol. %),
 - K-rich MORB
- Stable from the crust to core
 - K-feld K-Hol (low P) K-Hol (High P)
- tunnel structure a repository for incompatible cations
- possible water carrier

K-hollandite- A super ionic conductor

Superionic conduction: fast motion of K⁺ or H⁺ in the tunnel

Tracer mineral for subduction pathways of continental sediments

Water in the Earth's upper mantle

• The earth's upper mantle contains 50-200 et. ppm water

Mantle upwelling

$$\frac{c_x - c_0}{c_s - c_0} = 1 - \operatorname{erf}(\frac{x}{2\sqrt{Dt}})$$

C_s = Concentration of source

 C_x = Concentration at distance

 $C_0 = Concentration of h0st$

Conductivity profile of the upper mantle

Physical properties of fluids

- Dehydration of hydrous phases releases aqueous fluids into the mantle wedge
 - Affect the oxidation conditions
 - Mantle flow
 - carrier for the trace elements

Wetting properties

Pressure (GPa)

Electrical properties

Seismic properties

Fluid in subduction zones

Manthilake et al. 2015,2016,2021a, 2021b

Electrical conductivity as a geothermometer

- Slab surface temperature stability of minerals, melting, deeply subducting slab
- A numerical model based on finite element analyses (e.g. Syracuse et. al 2011)

Application to NE-Japan subduction system

Recycling of carbon through subduction

- The decarbonation and dehydration in subduction zones are intricately related.
 Most studies evaluate them separately
- Physical properties of CHO fluids
- carbon circulation in the mantle wedge
- the mechanisms of deep carbon subduction

Starting materials: Carbonate-bearing chrysotile

HP-HT Experiments: 4 GPa and up to 975 K

Recycling of carbon through subduction

 The presence of carbonaceous materials suggests the following reactions

$$CO_2 = C + O_2$$
,
 $CO_2 + 2H_2O = CH_4 + 2O_2$

The presence of diamonds at low T suggests the reactions:

$$CH_4 = C + 2H_2$$

 $CH_4 + O_2 = C + 2H_2O$

Supports the formation of subduction-related microdiamonds in ultrahigh-pressure metamorphic terrains

 Crystallization of dolomite could be a key process responsible for transporting carbon into the deep Earth

Partial melt layer atop the mantle transition zone

1st Vs drop - Wad to OI transition

2nd Vs drop - melting

• Stable melt layer atop the mantle transition zone

- The density of melt 3.56- 3.74 g cm⁻¹
- Neutrally buoyant at 350-410 km depth
- 4 % shear velocity drop: compatible with 0.7 - 1.0% melt
- MTZ water contents ~ 0.22 ± 0.02 wt. %
- MTZ is water undersaturated

• Deformation of Ol+Opx mixtures in upper mantle conditions

Soustelle and Manthilake 2017

Deformation of Ol+Opx mixtures

diaGBS – dislocation-accommodated grain boundary sliding difGBS – diffusion-accommodated grain boundary sliding

Planetary heat transport

•Heat flows through TBL via conduction

Key parameters

- -Thermal conductivity
- -Temperature

$$\frac{\Delta Q}{\Delta t} = -\kappa A \frac{\Delta T}{\Delta x}$$

Pressure and temperature dependence TC of brigmanite

$$\kappa = \kappa_{ref} \left(\frac{T_{ref}}{T} \right)^a \left(\frac{\rho}{\rho_{ref}} \right)^g$$

Effect of impurities – incorporation of Fe, Al decrease the κ by 50 %

Core-mantle boundary heat flux

pure MgO-MgSiO3 aggregate of 18.9-15.4 W/ m K

lattice thermal conductivity at TBL 8-9 W/ m K

CMB heat flow 11±1.4 TW

Towards a comprehensive core-mantle boundary heat flow model

Thermal conductivity of constituent phases along and across the TBL

Garnero and McNamara (2008)

According to seismology, CMB may consist of a mixture of

- Brg, Fp and PPv
- Subducted materials (MORB)
- Core reactant products,
- Partial melt, metallic alloys

Thermal instabilities at the CMB

- Formation of mantle plumes
- Evolution of the TBL/heat flow with time
 - Sets the age of the inner core
- constrains the radiogenic isotopes budget in the core/CMB

A comprehensive core-mantle boundary heat flow model

• The work in progress

Characterization of thermal conductivity of a melt bearing system

Zhao et al. in prep

Thermal evolution of the planet Mercury

Thermal conductivity of Fe-S alloys

Wiedemann-Franz law

$$\frac{\kappa}{\sigma} = LT$$

Calculated heat flow at Mercury's CMB

Thermal evolution of the planet Mercury

(a) early stage

magma ocean

-large heat flux
 -thermally driven dynamo

(b) intermediate stage

solid silicate mantle solidification of the inner core crystallization of FeS

-intermediate heat flux-thermally driven dynamo

(c) present stage

solid silicate mantle + solid FeS layer

-low heat flux
-thermally and chemically
driven dynamo

Heat flow is slightly higher than the adiabatic heat flow

Les devises Shadok

IL VAUT MIEUX POMPER MÊME S'IL NE SE PASSE RIEN QUE RISQUER QU'IL SE PASSE QUELQUE CHOSE DE PIRE EN NE POMPANT PAS.