§2. Прямая как линия первого порядка.

Общее уравнение прямой на плоскости. Уравнение прямой, проходящей через данную точку перпендикулярно заданному вектору

Введём на плоскости прямоугольную декартову систему координат Oxy и рассмотрим уравнение первой степени относительно x, y:

$$Ax + By + C = 0, A^2 + B^2 \neq 0.$$
 (2.1)

Теорема 2.1. Любая прямая на плоскости может быть задана в произ-вольной прямоугольной декартовой системе координат уравнением вида (2.1).

▶Пусть L – любая прямая на плоскости. Введём на плоскости прямоугольную декартову систему координат Oxy так, чтобы ось Ox совпала с L (рис. 2.1). Равенство y=0 есть уравнение L в выбранной системе координат, ибо ему удовлетворяют

Рис. 2.1. Иллюстрация к доказательству теоремы 2.1

координаты любой точки L и не удовлетворяют координаты точек, не принадлежащих L. Кроме того, это уравнение первой степени, так как оно получается из (2.1) при A =0, B=1, C=0. При выборе любой другой прямоугольной декар-товой системы координат порядок алгебраической линии не изменяется (теорема 1.1), поэтому и в новой системе координат прямая L будет задана уравнением первой

степени, т.е. уравнением вида (2.1). ◀

Теорема 2.2. Любое уравнение вида (2.1) определяет на плоскости прямую.

▶ Уравнение (2.1) в силу условия $A^2 + B^2 \neq 0$ имеет хотя бы одно решение. Например, если $A \neq 0$, то x = -C/A, y = 0 – решение этого уравнения. Пусть $x = x_0$, $y = y_0$ – любое решение (2.1), имеем

$$Ax_0 + By_0 + C = 0. (2.2)$$

Вычтем из уравнения (2.1) почленно последнее равенство. После перегруппировки слагаемых получим:

$$A(x - x_0) + B(y - y_0) = 0. (2.3)$$

Левую часть уравнения (2.3) можно считать скалярным произведением векторов $\vec{n} = (A,B)$ и $\overline{M_0M} = (x-x_0,y-y_0)$, $M_0(x_0,y_0)$, M(x,y). Это скалярное произведение равно нулю, поэтому

Рис. 2.2. Иллюстрация к доказательству теоремы 2.2

векторы \vec{n} и $\overline{M_0M}$ ортогональны. Рассмотрим прямую L, проходящую через точку M_0 перпендикулярно вектору \vec{n} (рис. 2.2). Координаты любой точки M(x,y) этой прямой удовлетворяют уравнению (2.3), ибо векторы $\overline{M_0M}$ и \vec{n} ортогональны, а координаты любой точки M'(x',y'), не принадлежащей L, ему не удовлетворяют, так как векторы $\overline{M_0M'}$ и \vec{n} неорто-гональны (рис. 2.2). Итак, равенство (2.3) по определению является уравнением прямой L. Покажем, что и уравнение (2.1) является уравнением этой же прямой. Раскроем скобки в левой части (2.3) и перегруппируем слагаемые:

$$Ax + By - Ax_0 - By_0 = 0.$$

Заменив $-Ax_0 - By_0$ в силу (2.2) на C, приходим к уравнению (2.1). ◀

Из теорем 2.1 и 2.2 следует, что прямая на плоскости и только она является линией первого порядка.

Уравнение (2.1) называется *общим уравнением* прямой на плоскости. Его коэффициенты A и B имеют определённый геометрический смысл, а именно, они являются координатами вектора \vec{n} , перпендикулярного прямой, определяемой этим уравнением. Этот вектор называется *вектором нормали*, или *нормальным вектором* к данной прямой.

Уравнение (2.3) при различных значениях коэффициентов A, B задаёт все прямые плоскости, проходящие через точку $M_0(x_0, y_0)$. Оно называется *уравнением пучка прямых с центром в точке* M_0 . Выбор конкретных значений A и B в (2.3) соответствует выбору той прямой пучка, которая проходит через точку M_0 перпендикулярно заданному вектору $\vec{n} = (A, B)$ (рис. 2.3).

В случае, когда один из коэффициентов A или B равен нулю, уравнение (2.1) задаёт прямую, параллельную одной из осей координат, а именно, при A=0 – прямую, параллельную оси Ox, а при B=0 – оси Oy. При C=0 уравнение (2.1) задаёт прямую, проходящую через начало координат.

Пример 2.1. Написать уравнение прямой L, проходящей через точку $M_0(-1,2)$ перпендикулярно вектору $\vec{n} = (3,-2)$.

▶ Напишем уравнение пучка прямых с центром в точке $M_0(-1,2)$:

$$A(x+1) + B(y-2) = 0. (2.3)$$

Коэффициентами уравнения (2.3), как отмечено выше, являются координаты вектора нормали к прямой L, каковым здесь можно считать вектор $\vec{n} = (3, -2)$ из условия задачи. Подставив в (2.3) вместо A и B координаты вектора \vec{n} , после очевидных преобразований получаем уравнение прямой L: 3x-2y+7=0.

Рис. 2.3. К уравнению пучка прямых

Пример 2.2. При каком значении параметра α прямая $L: (\alpha^2 - 4)x + (\alpha^2 - 3\alpha + 2)y + \alpha - 4 = 0$: 1) параллельна оси абсцисс? 2) параллельна оси ординат? 3) проходит через начало координат?

- ► Параметр $\alpha \neq 2$, иначе коэффициенты при x и y в данном уравнении обращаются одновременно в нуль, и оно не определяет никакой прямой.
 - 1. $\alpha^2 4 = 0$ и $\alpha \neq 2$, отсюда $\alpha = -2$. Уравнение *L* имеет вид y = 1/2.
 - 2. $\alpha^2 3\alpha + 2 = 0$, $\alpha \neq 2$, отсюда $\alpha = 1$. Уравнение L имеет вид x = -1.
 - 3. $\alpha = 4$, её уравнение имеет вид 2x + y = 0. ◀