Presentation

Data Logic Design

Group Members

 Shahban Iqbal 142: 	1-116033
--	----------

- Raja Faizan Ali 1421-116032
- Raja Usman 1421-116036
- Usama Hameed 1421-116028

Content:

- Sum of product (SOP)
- Product of sum (POS)
- Standard SOP and POS Forms
- Convert SOP to standard SOP
- Convert POS to Standard POS
- Minterms and Maxterms

Sum of Product

- The sum-of-products (SOP) form is a method (or form) of simplifying the Boolean expressions of logic gates.
- Sum and product derived from the symbolic representations of the OR and AND functions.
- OR (+), AND (.), addition and multiplication.

$$f(A,B,C) = ABC + A'BC'$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Product terms

Product of Sum

- When two or more sum terms are multiplied by a Boolean OR operation.
- Sum terms are defined by using OR operation and the product term is defined by using AND operation.

$$f(A,B,C) = (A'+B) \cdot (B+C')$$

$$\downarrow_{\text{Sum terms}}^{\text{Product}}$$

Standard SOP and POS Forms

- The canonical forms are the special cases of SOP and POS forms.
- These are also known as standard SOP and POS forms.

Canonical Form

- In SOP or POS form, all individual terms do not involve all literals.
- For example AB + A'BC the first product term do not contain literal C.
- If each term in SOP or POS contain all literals then the expression is known as standard or canonical form.

Canonical Form

- Each individual term in the POS form is called Maxterm.
- Each individual term in the SOP form is called Minterm.
- In Minterm, we look for the functions where the output results is "1".
- while in Maxterm we look for function where the output results is "0".
- We perform Sum of minterm also known as Sum of products (SOP).
- We perform Product of Maxterm also known as Product of sum (POS).

Convert SOP to standard SOP form

- Step 1: Find the missing literal in each product term if any.
- Step 2: And each product term having missing literals with terms form by ORing the literal and its complement.
- Step 3: Expends the term by applying, distributive law and reorder the literals.
- Step 4: Reduce the repeated product terms. Because A + A = A (Theorem 1a).

Example:

$$f(A,B,C) = AB + BC + AC$$

Step 1: Find the missing literals in each product term.

Step 2: AND the product term with missing literal + its complement.

$$f(A,B,C) = AB \cdot (C+C') + BC \cdot (A+A') + AC \cdot (B+B')$$

Missing literals and their complements

Step 3: Expends the term and reorder the literals.

$$f(A,B,C) = AB \cdot (C+C') + BC \cdot (A+A') + AC \cdot (B+B')$$

Expand & Reorder:

ABC + ABC' + ABC + A'BC + ABC + AB'C **Step 4:** Omit repeated product terms.

$$f(A,B,C)=ABC+ABC'+ABC+A'BC+AB'C$$

$$f(A,B,C)=ABC+ABC'+A'BC+AB'C$$

Convert POS to standard POS form

- Step 1: Find the missing literal in each sum term if any.
- Step 2: OR each sum term having missing literals with terms form by ANDing the literal and its complement.
- Step 3: Expends the term by applying, distributive law and reorder the literals.
- Step 4: Reduce the repeated product terms. Because A + A = A (Theorem 1a).

Example:

$$f(A,B,C) = (A + B) \cdot (B + C) \cdot (A + C)$$

Step 1: Find the missing literals in each sum term.

$$f(A,B,C) = (A+B) \cdot (B+C) \cdot (A+C)$$

$$Literal A is missing$$

$$Literal C is missing$$

Step 2: OR the sum term with missing literal . its complement.

$$f(A,B,C) = (A + B)+(C.C') + (B + C)+(A.A') + (A + C)+(B.B')$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Missing literals and their complements

Step 3: Expends the term and reorder the literals.

$$f(A,B,C) = (A + B)+(C.C') + (B + C)+(A.A') + (A + C)+(B.B')$$

Expand & Reorder:

$$f(A,B,C)=(A+B+C).(A+B+C').(A+B+C).(A'+B+C).(A+B+C).(A+B'+C)$$

Step 4: Omit repeated sum terms.

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g.x'), there are 2ⁿ m
- Example: Two variables (X and Y)produce 2 x 2 = 4 combinations:

XY(both normal)

XY'(X normal, Y complemented)

X'Y(X complemented, Y normal)

X'Y'(both complemented)

Thus there are four minterms of two variables.

Maxterms

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g. x'), there are 2ⁿ maxterms for n variables.
- Example: Two variables (X and Y) produce 2x2=4 combinations:

X+Y(both normal)

X+Y'(x normal, y complemented)

X'+Y(x complemented, y normal)

X'+Y'(both complemented)

Α	В	С	Minterms	Maxterms
0	0	0	A'B'C' = m ₀	$A+B+C = M_0$
0	0	1	$A'B'C = m_1$	$A+B+C'=M_1$
0	1	0	A'BC' = m ₂	$A+B'+C=M_2$
0	1	1	A'BC = m ₃	$A+B'+C' = M_3$
1	0	0	AB'C' = m ₄	$A'+B+C=M_4$
1	0	1	$AB'C = m_5$	$A'+B+C'=M_5$
1	1	0	ABC' = m ₆	$A'+B'+C=M_6$
1	1	1	$ABC = m_7$	$A'+B'+C'=M_7$

Minterms:

1.
$$f(A,B,C) = A'B'C' + A'BC' + A'BC + ABC$$

= $m_0 + m_2 + m_3 + m_7$
= $\Sigma m(0,2,3,7)$

2.
$$f(A,B,C) = A'B'C + A'BC + AB'C + ABC$$

= $m_1 + m_3 + m_5 + m_7$
= $\Sigma m(1,3,5,7)$

3.
$$f(A,B,C) = A'B'C' + A'BC' + A'BC + ABC'$$

= $m_0 + m_2 + m_3 + m_6$
= $\Sigma m(0,2,3,6)$

Maxterms:

1.
$$f(A,B,C) = (A+B+C).(A+B'+C).(A+B'+C')+(A'+B'+C')$$

 $= M_0 + M_2 + M_3 + M_7$
 $= \Pi M(0,2,3,7)$
2. $f(A,B,C) = (A+B+C').(A+B'+C').(A+B'+C').(A'+B'+C')$
 $= M_1 + M_3 + M_5 + M_7$
 $= \Pi M (1,3,5,7)$
3. $f(A,B,C) = (A+B+C).(A+B'+C).(A+B'+C').(A'+B'+C)$
 $= M_0 + M_2 + M_3 + M_6$
 $= \Pi M (0,2,3,6)$