DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139-4307

Donald R. Sadoway John F. Elliott Professor of Materials Chemistry MacVicar Faculty Fellow

3.53 ELECTROCHEMICAL PROCESSING OF MATERIALS

Test 1

April 12, 2001

USE OF Bard & Faulkner PERMITTED. NO NOTES ALLOWED.

1. (a) From the data given in Figure 3.4.5 in Bard & Faulkner (2nd ed.)[¶] estimate *i*_o for the reduction of Mn(IV) to Mn(III) on platinum at 298 K in 7.5 M H₂SO₄ containing 0.353 M Mn(III) and 0.4 M Mn(IV). The platinum microelectrode is 0.8 mm in diameter.

40%

- (b) Estimate the limiting current density for the reduction of Mn(IV) to Mn(III) on platinum at 298 K in 7.5 M $\rm H_2SO_4$ containing 10^{-2} M Mn(III) and 10^{-3} M Mn(IV).
- (c) Estimate the overpotential at which the current for the reduction of Mn(IV) to Mn(III) on platinum at 298 K in 7.5 M H_2SO_4 containing 10^{-2} M Mn(III) and 10^{-3} M Mn(IV) has a value of 3.53 i_0 .
- (d) Estimate the overpotential at which the current density for the oxidation of Mn(III) to Mn(IV) on platinum at 298 K in 7.5 M H₂SO₄ containing 10⁻² M Mn(III) and 10⁻³ M Mn(IV) has a value 10⁻⁴ A/cm².

[¶] Figure 3.5.5 in B&F 1st edition.

3.53 Test 1 April 12, 2001 page 2

2. In a series of experiments involving the use of controlled step potential chronoamperometry, the following data were measured at a stationary planar microelectrode. At each potential, the current was recorded after an elapsed time, τ , of 3.53 seconds. The voltages are referenced against the NHE.

35%

E(V)	$i_{t=\tau}/i_{d}$
-0.361	0.1
-0.411	0.3
-0.436	0.7
-0.459	0.9

The overall reaction is $O + e \rightarrow R$. $C_O^* = 3.53$ mM, and initially there is no R present in solution. From independent measurements E° is known to have a value of -0.22 V against the NHE. The reaction is totally irreversible.

- (a) Estimate the charge transfer resistance, R_{ct} .
- (b) Without performing the numerical calculation, explain how to estimate the mass transfer resistance, R_{mt} , from these data. Include the necessary equations in your explanation.

DATA:

electrode area, $A = 0.01 \text{ cm}^2$ diffusion coefficient of O, $D_O = 6.66 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$

- 3. Solutions of **X** in an appropriate supporting electrolyte were studied by cyclic voltammetry.
- 25%

It is found that ${\bf X}$ can be oxidized at $\approx 0.6~{\rm V}$ to form the radical cation, ${\bf X}^+$, according to

$$\mathbf{X} \rightleftharpoons \mathbf{X}^+ \cdot + e$$

and reduced at ≈ -1.4 V to form the radical anion, X^{-} , according to

$$X + e \rightleftharpoons X^{-}$$

All reaction products appear to be stable.

3.53 Test 1 April 12, 2001 page 3

- (a) On the same graph, sketch cyclic voltammograms for the following experiments. In each case the system begins from the same initial condition: only **X** and no reaction products present in solution. All scans start at –0.1 V and move first in a positive direction.
 - (i) Pt working electrode, scan rate = 10 mV/s, oxidation and reduction peaks appear reversible
 - (ii) Pt WE, scan rate = 100 mV/s, oxidation peak appears reversible, reduction peak appears marginally sluggish (quasi reversible)
 - (iii) vitreous carbon WE, scan rate = 10 mV/s, oxidation and reduction peaks appear highly irreversible
- (b) Why should the choice of WE influence the kinetics of the electron transfer reaction when all reactants and products are soluble?