Image 3D Estimation du bruit et débruitage

HITIER Jérémy

20 décembre 2013

Table des matières

	TD1 - Estimation du bruit		
1	1.1	Génér	ation du bruit et estimation du PSNR
		1.1.1	Génération du bruit gaussien
		1.1.2	Génération du bruit ricien
	1.2	Estima	ation du niveau de bruit dans le cas gaussien à l'aide de l'estimateur MAD
		1.2.1	La transfomée en ondelette
		1.2.2	L'estimateur MAD
1.	1.3	Estima	ation à l'aide de la distribution des statistiques locales de l'image
		1.3.1	Les moyennes locales
		1.3.2	Les variances locales
	1.4	Comp	araison
		1.4.1	Moyennes locales contre Variances locales

Chapitre 1

TD1 - Estimation du bruit

1.1 Génération du bruit et estimation du PSNR

1.1.1 Génération du bruit gaussien

On génère un bruit gaussien de 5% sur l'image 3D MRIT1w. Ci-dessous les résultats obtenus.

(a) Original

(b) Avec 5% de bruit gaussien

Figure 1.1 – Visualisation de la 90ème coupe

1.1.2 Génération du bruit ricien

On génère un bruit ricien de 5%. Ci dessous le résultat (Fig. 1.2) :

FIGURE 1.2 – Bruit Ricien à 5 sur la coupe 90%

On calcul ensuite le PSNR pour des niveaux de bruit ricien allant de 1% à 21% tous les 1%. Les résultats sont reportés dans le graphique suivant (Fig. 1.3).

Figure 1.3 - PSNR

1.2 Estimation du niveau de bruit dans le cas gaussien à l'aide de l'estimateur MAD

1.2.1 La transfomée en ondelette

La transformée en ondelette permet de passer notre image dans le domaine fréquentiel tout en conservant de l'information temporelle. Ci-dessous les coupes LLL et HHH :

FIGURE 1.4 – Visualisation des bandes LLL et HHH après transformée en ondelette

1.2.2 L'estimateur MAD

Afin d'estimer le niveau de bruit dans notre image, on utilise l'estimateur "Median Absolute Deviation". L'erreur d'estimation a été calculé pour les niveaux de bruit gaussien de 1 à 21% et les résultats sont cidessous :

FIGURE 1.5 – Courbe d'erreur pour l'estimateur MAD

On peut voir que l'erreur réduit fortement puis se stabilise.

1.3 Estimation à l'aide de la distribution des statistiques locales de l'image

1.3.1 Les moyennes locales

Résultat du filtre par moyennes locales (Fig. 1.6) :

FIGURE 1.6 – Image par filtre des moyennes locales

1.3.2 Les variances locales

Résultat du filtre par variances locales (Fig. 1.7):

FIGURE 1.7 – Image par filtre des variances locales

1.4 Comparaison

1.4.1 Moyennes locales contre Variances locales

Le graphique suivant présente l'erreur d'estimation entre les deux estimateurs ci-dessus :

Figure 1.8 – Courbe d'erreur pour les estimateurs statistiques

L'estimateur utilisant les moyennes locales donne de meilleurs résultats que celui des variances locales.

Chapitre 2

TD2 - Méthode de débruitage