Pipeline di Data Quality e Machine Learning

Bishara Giovanni -Singh Probjot - 869434

4 giugno 2025

Sommario

Questa relazione descrive una pipeline completa per la gestione della qualità dei dati e l'implementazione di modelli di machine learning. Il sistema combina fasi di preprocessing, trasformazione, verifica della qualità dei dati, addestramento di modelli predittivi (SVM e Decision Tree) e valutazione delle performance. L'intero processo è orchestrato utilizzando il framework Luigi, che garantisce l'esecuzione ordinata delle task e la gestione automatica delle dipendenze.

Indice

1	\mathbf{Intr}	roduzione	2
	1.1	Obiettivi della Pipeline	2
	1.2	Architettura Generale	
2	Teo	ria: Le 4 Dimensioni della Data Quality	3
	2.1	Completezza (Completeness)	3
	2.2	Consistenza (Consistency)	
	2.3	Unicità (Uniqueness)	
	2.4	Accuratezza (Accuracy)	
3	Imp	olementazione della Pipeline	3
	3.1	Preprocessing Dati	3
		3.1.1 DataPreprocessing	3
		3.1.2 DataTransformation	4
		3.1.3 PCATask	4
		3.1.4 SplitDataset	4
	3.2	Modellazione Machine Learning	4
		3.2.1 SVMModel	4
		3.2.2 DTCModel	5
		3.2.3 PerformanceEval	5
	3.3	Verifica Data Quality	5
4	Ese	cuzione e Risultati	5
	4.1	Comando di Esecuzione	5
	4.2	Output Attesi	
	4.3	Interpretazione Risultati	

5	Conclusioni	6
\mathbf{A}	Codice Configurazione Luigi	7
В	Schema Dataset Originale	7

1 Introduzione

1.1 Obiettivi della Pipeline

Questa pipeline è stata progettata per:

- Verificare la qualità dei dati attraverso 4 dimensioni fondamentali
- Addestrare modelli di classificazione per prevedere il tipo di vino (rosso/bianco)
- Valutare oggettivamente le prestazioni dei modelli
- Fornire un framework riproducibile e scalabile

1.2 Architettura Generale

Il processo si articola in tre fasi principali:

- 1. Preprocessing Dati: Pulizia, trasformazione e riduzione dimensionalità
- 2. Modellazione ML: Addestramento di SVM e Decision Tree
- 3. Verifica DQ: Controlli di qualità su 4 dimensioni

Figura 1: Architettura completa della pipeline

2 Teoria: Le 4 Dimensioni della Data Quality

Data Quality si riferisce alla capacità dei dati di soddisfare i requisiti del loro utilizzo previsto. È composta da quattro dimensioni fondamentali:

2.1 Completezza (Completeness)

Misura la presenza di valori mancanti nel dataset. Un dato è completo quando tutti i valori attesi sono presenti.

Soglia: < 3% dei record totali

$$Completeness Score = 1 - \frac{Numero valori mancanti}{Totale valori attesi}$$

2.2 Consistenza (Consistency)

Verifica la coerenza logica dei dati e l'assenza di valori anomali. Utilizza tre approcci:

- 1. Controllo dominio: Valori devono essere in range fisici/chimici accettabili
- 2. Metodo statistico: Identifica outlier con media $\pm 3\sigma$
- 3. Metodo IQR: $[Q1 1.5 \times IQR, Q3 + 1.5 \times IQR]$

2.3 Unicità (Uniqueness)

Garantisce che non ci siano duplicati e che tutte le feature siano informative:

- Record duplicati: Righe identiche
- Feature non informative: Colonne con un solo valore distinto

2.4 Accuratezza (Accuracy)

Verifica la correttezza dei tipi di dato e la conformità agli schemi attesi:

- type: Booleano (0=rosso, 1=bianco)
- Altre feature: Numeriche

3 Implementazione della Pipeline

3.1 Preprocessing Dati

3.1.1 DataPreprocessing

- Input: winetype.csv
- Output: Dataset pulito (winetype_cleaned.csv)
- Operazioni:

- 1. Rimozione record con valori mancanti
- 2. Eliminazione duplicati
- 3. Simulazione dati "sporchi" per test di qualità

3.1.2 DataTransformation

- Input: Dataset pulito
- Output: Dataset trasformato (winetype_transformed.csv)
- Operazioni:
 - 1. Encoding variable target "type" (rosso=0, bianco=1)
 - 2. Rimozione feature "quality" (irrilevante per classificazione)

3.1.3 PCATask

- Input: Dataset trasformato
- Output: Dataset ridotto dimensionalmente (winetype_pca.csv)
- Operazioni:
 - 1. Standardizzazione delle feature
 - 2. Riduzione dimensionalità con PCA (11 feature \rightarrow 5 componenti principali)

3.1.4 SplitDataset

- Input: Dataset PCA
- Output: Training set (80%) e Test set (20%)
- Note: Split stratificato per mantenere la distribuzione delle classi

3.2 Modellazione Machine Learning

3.2.1 SVMModel

- Algoritmo: Support Vector Machine
- Kernel: Lineare
- Output: Modello serializzato (svm_model.pkl)
- Parametri:
 - C=1.0
 - random state=42

3.2.2 DTCModel

• Algoritmo: Decision Tree Classifier

• Output: Modello serializzato (dtc_model.pkl)

• Parametri:

- $-\max_{\text{depth}=5}$
- $-\min_{\text{samples_split}=10}$
- random state=42

3.2.3 PerformanceEval

• Input: Modelli addestrati e test set

• Output: Report metriche (metrics.csv)

• Metriche calcolate:

- Accuratezza (Accuracy)
- Precisione (Precision)
- Recall (Sensibilità)
- F1-score

• Intervalli confidenza: Calcolati con cross-validation stratificata a 10 fold

Formula intervallo confidenza:

$$\bar{x} \pm t \frac{s}{\sqrt{n}}$$

Dove:

• \bar{x} : Media delle metriche

• t: Valore t-distribuzione per $\alpha = 0.05$

 \bullet s: Deviazione standard

• n: Numero di campioni

3.3 Verifica Data Quality

4 Esecuzione e Risultati

4.1 Comando di Esecuzione

La pipeline si avvia con:

python3 -m luigi --module pipeline FullPipeline --local-scheduler

Task	Soglia	Metodo
Completeness	${<}3\%$ valori mancanti	Conteggio valori nulli
Consistency	<3% outlier	3 metodi: dominio, std, IQR
Uniqueness	<3% duplicati	Conteggio record duplicati
Accuracy	100%tipi corretti	Verifica tipi di dato

Tabella 1: Soglie e metodi per i controlli di qualità

4.2 Output Attesi

• datasets/: File CSV trasformati

• models/: Modelli serializzati (SVM e Decision Tree)

• reports/metrics.csv: Report prestazioni modelli

```
model_name, accuracy, precision, recall, f1_score
SVM, 0.92, 0.93, 0.91, 0.92
DecisionTree, 0.88, 0.87, 0.89, 0.88
4
```

• pipeline.log: Log dettagliato dell'esecuzione

4.3 Interpretazione Risultati

• Accuratezza > 90%: Modello eccellente

• Accuratezza 80-90%: Modello buono

• Accuratezza < 80%: Necessità di miglioramento

• **F1-score**: Media armonica tra precisione e recall (ottimo indicatore per dataset sbilanciati)

5 Conclusioni

Questa pipeline rappresenta un framework completo per:

- Garantire dati affidabili attraverso controlli di qualità automatizzati
- Sviluppare modelli ML robusti per la classificazione
- Valutare oggettivamente le prestazioni
- Documentare l'intero processo tramite logging strutturato

L'approccio modulare e configurabile lo rende adattabile a diversi contesti e tipi di dataset, non solo al dominio enologico. L'utilizzo di Luigi garantisce l'esecuzione ordinata delle task e la gestione automatica delle dipendenze.

Riferimenti bibliografici

- [1] Spotify. (2012). Luigi: Python package for building complex pipelines. GitHub repository.
- [2] DAMA International. (2017). DAMA-DMBOK: Data Management Body of Knowledge (2nd ed.).
- [3] Pedregosa, F. et al. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.

A Codice Configurazione Luigi

```
1 [DataPreprocessing]
2 input_csv = datasets/winetype.csv
3 cleaned_csv = datasets/cleaned_data.csv
5 [DataTransformation]
6 transformed_csv = datasets/transformed_data.csv
8 [PCATask]
9 pca_csv = datasets/pca_data.csv
11 [SplitDataset]
train_csv = datasets/train_data.csv
13 test_csv = datasets/test_data.csv
15 [SVMModel]
svm_model_file = models/svm_model.pkl
18 [DTCModel]
19 dtc_model_file = models/dtc_model.pkl
21 [PerformanceEval]
22 metrics_csv = reports/metrics.csv
```

Listing 1: Esempio file luigi.cfg

B Schema Dataset Originale

Feature	Tipo	Descrizione
type	categorico	Rosso (0) o Bianco (1)
fixed acidity	numerico	Acidità fissa (g/dm³)
volatile acidity	numerico	Acidità volatile (g/dm³)
citric acid	numerico	Acido citrico (g/dm³)
residual sugar	numerico	Zuccheri residui (g/dm³)
chlorides	numerico	Cloruri (g/dm³)
free sulfur dioxide	numerico	SO_2 libero (mg/dm ³)
total sulfur dioxide	numerico	SO_2 totale (mg/dm ³)
density	numerico	Densità (g/cm³)
рН	numerico	рН
sulphates	numerico	Solfati (g/dm³)
alcohol	numerico	Alcol (% vol)
quality	categorico	Qualità percepita (0-10)

Tabella 2: Schema del dataset originale del vino