Fundação Hermínio Ometto Bacharelado em Sistemas de Informação

SIF009 - Linguagem de Programação I Prof. Dr. Sérgio Luis Antonello

Plano de ensino

- Unidade I Programação estruturada e Linguagem C (objetivos b, c e d).
 - 1.1. Conceitos de programação estruturada.
 - 1.2. Estrutura de um programa de computador.
 - 1.3. Códigos fonte, objeto e executável.
 - 1.4. Biblioteca de códigos.
 - 1.5. Compiladores e Interpretadores.
 - 1.6. Processos de compilação e link edição.
 - 1.7. Identificação dos tipos de erros e alertas (léxicos, sintáticos e semânticos).
 - 1.8. Depuração de código.
 - 1.9. Palavras reservadas.
 - 1.10. Tipos de dados.
 - 1.11. Constantes. Variáveis simples e estruturadas. Escopo de variáveis.
 - 1.12. Operadores e precedência.
 - 1.13. Expressões aritméticas, lógicas e relacionais.
 - 1.14. Comandos.
 - 1.15. Ambientes de desenvolvimento e programação.
- Unidade II Estruturas de controle (sequência, decisão e repetição), registro e arquivo
 - 2.1. Comandos if e switch.
 - 2.2. Comandos for, while e do while.
 - 2.3. Blocos de comandos e aninhamento.
 - 2.4. Definição de tipos.
 - 2.5. Registro.
 - 2.6. Arquivo: leitura e gravação de dados em disco.
- Unidade III Ponteiros e Funções (objetivos a, c, d, e).
 - 3.1. Ponteiros.
 - 3.2. Funções.
 - 3.3. Passagem de parâmetro por valor.
 - 3.4. Passagem de parâmetro por referência.
- Unidade IV- Strings e Variáveis indexadas (objetivos a, c, d).
 - 4.1. Manipulação de strings.
 - 4.2. Manipulação de caracteres.
 - Declaração e manipulação de vetores.
 - 4.4. Declaração e manipulação de matrizes.

Plano de ensino

Data	Atividade
04/08	Aula 01
11/08	Aula 02
18/08	Aula 03
25/08	Aula 04
01/09	Aula 05
08/09	Aula 06
15/09	Prova 1
22/09	Aula 08
29/09	Aula 09
06/10	Aula 10

Data	Atividade				
13/10	Aula 11				
20/10	Maratona FHO de Programação				
27/10	Aula 13				
03/11	Aula 14				
10/11	Aula 15				
17/11	Prova 2 Entrega Trabalho				
24/11	Semana Científica				
01/12	Prova SUB				
08/12	Aula 19				
15/12	Aula 20				

Sumário da aula

Primeiro momento (revisão)

- ✓ Conceitos de variáveis indexadas
 - ✓ Vetor
 - ✓ Matriz

Segundo momento (conteúdo)

✓ Aplicação prática dos conteúdos trabalhados

Terceiro momento (síntese)

✓ Retome pontos importantes da aula

Uma matriz bidimensional precisa de 2 índices;

Uma matriz tridimensional precisa de 3 índices; etc.

Um elemento da matriz pode ser usado no programa como qualquer outra variável.

Para cada dimensão é necessário um índice;

O primeiro elemento da matriz tem **índice zero na linha** e **índice zero na coluna**.

int matriz [2]
$$[5] = \{ \{1, 2, 3, 4, 5\}, \{6, 7, 8, 9, 10\} \}$$

MATRIZ	coluna [0]	coluna [1]	coluna [2]	coluna [3]	coluna [4]
linha [0]	1	2	3	4	5
linha [1]	6	7	8	9	10

Rotina clássica para acessar sequencialmente todos os elementos da matriz.

Exemplo:

```
int main() {
   int AluNotas[5][3];
   int indalu, indnot;

   for(indalu=0; indalu<5; indalu++) {
      for (indnot=0; indnot<3; indnot++) {
        scanf("%d", &AluNotas[indalu][indnot]);
      }
   }
}</pre>
```

Correção de exercícios

2. Segundo momento

Aplicação prática dos conteúdos trabalhados

3. Exercícios

Vamos Programar!

4. Exercícios

1) Desenvolver conjuntamente os exercícios propostos.

- O typedef permite definir um tipo de dados a ser usado no programa.
- O struct possibilita especificar um dado estruturado (composto por mais de uma variável).
- Ler e escrever dados em um arquivo texto na linguagem C é feito por meio de stream. Os comandos básicos para isso são fopen(), fclose(), fscanf() e fprintf().

As strings são formadas por conjunto de caracteres.

Existem funções específicas para manuseio de strings. Essas funções são encontradas na biblioteca string.h.

Existem funções específicas para manuseio de caracteres. Essas funções são encontradas na biblioteca ctype.h.

As funções são rotinas que resolvem problemas específicos dentro do programa.

A comunicação de dados entre o código principal e uma função ou entre funções ocorre por meio da passagem de parâmetros.

Na passagem de parâmetros por valor, uma cópia do conteúdo do argumento é encaminhado para o parâmetro da função. Se o conteúdo do parâmetro for alterado, o valor do argumento fica preservado.

Na passagem de parâmetros por referência, o endereço de memória do argumento é encaminhado para o parâmetro da função. Se o conteúdo do parâmetro for alterado, o valor do argumento também é alterado.

As variáveis indexadas usam índices para acessar cada um de seus elementos.

Um vetor usa um índice.

Uma matriz bidimensional usa dois índices, um para especificar a linha e outro para especificar a coluna da matriz.

Rotinas com loops aninhados possibilitam acessar individualmente todos os elementos de uma matriz.