What We Can Learn About Running from Barefoot Running: An Evolutionary Medical Perspective¹

Daniel E. Lieberman

Philip Blumin, Jonathan Lam, Joshua Yoon

¹ Lieberman, Daniel E. "What we can learn about running from barefoot running: an evolutionary medical perspective." *Exercise and sport sciences reviews* 40.2 (2012): 63-72.

Introduction

- People's and researcher's perspectives on barefoot running
- Reasons why runners get injured a lot
 - Running is by nature an injurious activity
 - People are not acquainted to log distance running to do biomechanical abnormalities (asymmetries)
 - o "Training errors"
- Barefoot running may help runners avoid injuries
- Author's proposed hypothesis
 - Human bodies adapted to barefoot style
 - Generate less forceful impact peaks, which may strengthen feet

Why Does Evolution Matter

- Evolutionary field medicine
- Mismatch hypothesis
- Consequences shoes could have on injuries
 - Shoes limit proprioception
 - Modern shoes could encourage different running forms that human nature not used to
 - Shoes can lead to weak and inflexible feet
- Evolutionary medicine perspectives
 - Correct null hypothesis is that running barefoot is less injurious than running in a shoe

What Do We Know About Barefoot Running?

- Use habitually shod runners (people running in shoes) for previous studies
- Findings
 - Shod runners likely to rearfoot strike (RFS) while running on soft surfaces like grass
 - Shod runners likely to forefoot strike (FFS) and
 midfoot strike (MFS) when running on hard surfaces
 - Habitual barefoot runners have relatively short strides and a fast stride rate regardless of speed
 - Over 170 steps per minute
 - Short stride explains why barefoot runners land on foot more vertically aligned with knee and hip

Footstrike

- Rear vs. mid. vs. front footstrike (RFS, MFS, FFS)
- RFS causes much higher initial ground reaction force
 - o Running shoes greatly decrease rate of loading but not as much peak load
- Barefoot runners tend to MFS or FFS
- RFS: stiff ankle, high impulse/rate of reversal of momentum
- FFS: compliant ankle, controlled dorsiflexion
- Several ways to modify lower extremity compliance other than using shoes
 - E.g., shorter strides, more knee flexion, less overstride

Stride Rate and Length

Elite shod runners: 170-180 steps per minute (spm)

Nonelite shod runners: 150-160spm

Why? We don't know

Nonelite barefoot runners: 175-182spm

Stride Rate and Length

• Elite shod runners: 170-180 steps per minute (spm)

Nonelite shod runners: 150-160spm

Why? We don't know

Nonelite barefoot runners: 175-182spm

Why shorten stride?

- Tends to avoid RFS
- Knee, ankle tends to be more flexed and compliant
- Requires less plantarflexion to FFS

Anatomical Adaptations

Calluses form on toe and heel due to stimulation from friction

Do not reduce impact but protect against injury

Anatomical Adaptations

Calluses form on toe and heel due to stimulation from friction

Do not reduce impact but protect against injury

FFS/MFS cause more eccentric loads than RFS → stronger plantar muscles

- Both the plantar flexors (posterior leg muscles) and sole muscles
- Foot arch gets stretched more due to FFS than RFS

Performance

• FFS runners hold many world records

Abebe Bikila

Performance

- FFS runners hold many world records
- Shoe Mass: Increases running cost by 1% for every 100g per unit per mass

Abebe Bikila

Performance

- FFS runners hold many world records
- Shoe Mass: Increases running cost by 1% for every 100g per unit per mass
- Running in minimal shoes is 2.4% 3.3% more
 economical than running in standard running shoes

Abebe Bikila

 "What about the way that barefoot runners tend to run affects injury rates and patterns?"

- "What about the way that barefoot runners tend to run affects injury rates and patterns?"
- Way you run vs what you wear

- "What about the way that barefoot runners tend to run affects injury rates and patterns?"
- Way you run vs what you wear
- Impact peak vs high loads on Achilles tendon and plantarflexors vs overstriding

- "What about the way that barefoot runners tend to run affects injury rates and patterns?"
- Way you run vs what you wear
- Impact peak vs high loads on Achilles tendon and plantarflexors vs overstriding
- Shoe cushioning vs Foot Sensors and Proprioception vs Leg stiffness

- "What about the way that barefoot runners tend to run affects injury rates and patterns?"
- Way you run vs what you wear
- Impact peak vs high loads on Achilles tendon and plantarflexors vs overstriding
- Shoe cushioning vs Foot Sensors and Proprioception vs Leg stiffness
- Shoe protection vs Foot Sensors and Proprioception

Running barefoot is not inherently bad.

- Running barefoot is not inherently bad.
- "Humans not only evolved to run but also to run barefoot."

- Running barefoot is not inherently bad.
- "Humans not only evolved to run but also to run barefoot."
- Questions:
 - "How much do variations in running form affect injury rates?"

- Running barefoot is not inherently bad.
- "Humans not only evolved to run but also to run barefoot."
- Questions:
 - "How much do variations in running form affect injury rates?"
 - "How much does the lack of prioprioception in a minimal shoe affect running form?"

- Running barefoot is not inherently bad.
- "Humans not only evolved to run but also to run barefoot."
- Questions:
 - "How much do variations in running form affect injury rates?"
 - "How much does the lack of prioprioception in a minimal shoe affect running form?"
 - "Can we identify which runners are most likely to benefit from or should avoid barefoot running?"

- Barefoot runners have the following characteristics:
 - more proprioceptive feedback
 - shorter strides
 - higher stride frequency
 - avoid RFS and lessen impact peaks,
 - strong feet