COMP760 Week 9- Equivariant Networks Part II

Group Actions

- 1. We have a set \mathcal{X} and $f \colon \mathcal{X} \to \mathbb{C}$
- 2. Group G acts on $\mathscr X$

$$T_g: \mathcal{X} \to \mathcal{X} \quad \forall g \in G$$

$$\forall g1,g2 \in G, T_{g2g1} : T_{g2} \circ T_{g1}$$

If \mathcal{X} is a (finite) Vector Space then $T_g \in GL(n)$

3. Extending the action to functions

$$\mathbb{T}_g: f \to f' \qquad f'(T_g(x)) = f(x)$$

Groups

- 1. $e \in G$ Identity
- $2.(a \circ b) \circ c = a \circ (b \circ c)$ Associativity
- 3. $\forall a \in G \ \exists b \in G$ $a \circ b = e$

Unique Inverses

Equivariance

$$L_{(V_1)}(\mathcal{X}_1) \xrightarrow{\mathbb{T}_g} L_{(V_1)}(\mathcal{X}_1)$$

$$\phi \downarrow \qquad \qquad \downarrow \phi$$

$$L_{(V_2)}(\mathcal{X}_2) \xrightarrow{\mathbb{T}_g'} L_{(V_2)}(\mathcal{X}_2)$$

Equivariance Networks Recipe

Equivariance from Invariance:

Lemma: Let $f: \mathbb{R}^d \to \mathbb{R}$ be invariant with respect to G and assume that R_g is orthogonal for $g \in G$. Then $\nabla_u f(u)$ is equivariant with respect to G

Proof: Read Equivariance Section in Normalizing Flow Review Paper by Papamakarios et. Al 2019

Representation Theory Perspective

Linear Actions

- **1.** G acts on a set S by $x \mapsto R_g(x)$
- **2.** $f: S \to \mathbb{R}$ is a function on S and we want to learn $f \mapsto h(f)$
- **3.** The induced action \mathbb{T}^{ind} on the function space $f\mapsto f'$ where $f'(x)=f(T_g^{-1}(x))$
- **4.** The induced action is $\mathbb{T}^{ind}:L(S)\to L(S)$ is automatically linear

Basic facts on Representations

1. Two representation R and R' are said to be equivalent if

$$R'(g) = UR(g)U^{\dagger}$$
 for some Unitary Matrix U

2. A representation R is said to be (completely) reducible if

$$R(g) = U\left(\begin{array}{c|c} R_1(g) & \\ \hline R_2(g) \end{array}\right) U^{\dagger}$$

Complete Reducibility

Theorem. Let R be a representation of a compact group G on a vector space V. If R fixes the subspace W, then it also fixes W^{\perp} .

$$R(g) = U\left(\begin{array}{c|c} R_1(g) & B(g) \\ \hline & R_2(g) \end{array}\right) U^{\dagger} \qquad \Longrightarrow \qquad B(g) = 0$$

Corollary. Any representation of a compact group is reducible into a direct sum of irreducible representations. This is Maschke's Theorem if the group is finite, and Peter-Weyl (part 2) for continuous.

Example: The dihedral group D_4

e

S

 $r^4 = e$

1

rs

 $s^2 = e$

 r^2

 r^2s

 $srs = r^{-1}$

r³

 r^3s

	R_0	R_1	R_2	R_3	R_4
e	(1)	(1)	(1)	(1)	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
	(1)	(1)	(-1)	(-1)	$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$
r ²	(1)	(1)	(1)	(1)	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
1.3	(1)	(1)	(-1)	(-1)	$\begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$
S	(1)	(-1)	(1)	(-1)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
rs established	(1)	(-1)	(-1)	(1)	$\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$
r^2s	(1)	(-1)	(1)	(-1)	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
r^3s	(1)	(-1)	(-1)	(1)	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

Application to ML: Disentanglement

Definition (Informal Higgins et. Al 2018): A vector representation is called a disentangled representation to a particular decomposition of a symmetry group into subgroups, if it decomposes into independent subspaces, where each subspace is affected by the action of a single subgroup and the action of all other subgroups leave the subspace unaffected.

Schur's Lemma

Theorem: Let $\phi: v \mapsto h$ be a linear map and assume that v transforms according to irrep R of a compact group G while w transforms according to irrep R'. Then either R = R' and ϕ is a multiple of the identity map or $\phi = 0$.

Designing an Equivariant Neuron

Designing an Equivariant Neuron

Equivariant Linear Part:

Theorem. For each irrep R_i we may concatenate the parts of the incoming activations transforming according to R_i into a matrix F_i^{in} . Then the preactivation in a neutron is equivariant iff it is of the form

$$F_i^{pre} = F_i^{in} W_i$$

For learnable weight matrices W_0, W_1, \cdots

Equivariant Non-Linearity

1. Express the pre-activations as a function G and apply a point wise non-linearity and transform back.

2. Derive a new non-linear transformation directly expressed using the irreducible parts of the pre-activation.

Tensor product Non-Linearity

$$v_a \mapsto R_a(g)v_a$$

$$v_b \mapsto R_a(g)v_b$$

Must be decomposed into an irrep

Representation, but not an irrep