

Prof. Ismar Frango

Correlação

Considerando as relações lineares entre duas variáveis quantitativas, dizemos que elas são **fortes** se os pontos se aproximam de uma reta imaginária, e **fracas** se os pontos estão bastante espalhados em torno dessa mesma reta. Isso pode ser visualmente verificado nos diagramas de dispersão. Porém, precisamos de medidas precisas do quão forte ou fracas são essas associações.

Partindo de um dataset de n elementos, com dados para duas variáveis x e y, a correlação r entre essas variáveis é dada por meio do seguinte procedimento:

- 1. Calcular as médias $(\bar{x} \in \bar{y})$ e os desvios-padrões $(s_x \in s_y)$
- 2. Para todo par de valores x e y:
 - a. calcular a distância entre o valor de x e sua média \bar{x} , dividindo pelo desvio-padrão s_x : $\left(\frac{x_i \bar{x}}{s_x}\right)$
 - b. fazer o mesmo para y: $\left(\frac{y_i \overline{y}}{s_v}\right)$
 - c. Multiplicar um resultado pelo outro: $\left(\frac{x_i \bar{x}}{s_x}\right) \left(\frac{y_i \bar{y}}{s_y}\right)$
- 3. Ao final, somar todos os resultados e dividir por *n-1*

Resumindo em uma fórmula, temos:

$$r = \frac{1}{n-1} \left[\frac{\left(\frac{x_1 - \bar{x}}{s_x}\right) \left(\frac{y_1 - \bar{y}}{s_y}\right) + \left(\frac{x_2 - \bar{x}}{s_x}\right) \left(\frac{y_2 - \bar{y}}{s_y}\right) + \dots + \left(\frac{x_n - \bar{x}}{s_x}\right) \left(\frac{y_n - \bar{y}}{s_y}\right) \right]$$

Uma outra maneira, mais resumida, de escrever essa mesma fórmula, é:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \frac{\left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right)}{\left(\frac{x_i - \bar{x}}{s_y}\right)}$$

Vamos retomar um <u>dataset</u> já trabalhado em uma outra unidade, para compreender este cálculó. Trata-se do *dataset* com massas corporais (em kg) e alturas (em cm) de um grupo de *n*=20 pessoas:

1. Calcular as médias (\bar{x} e \bar{y}) e os desvios-padrões (s_x e s_y)

$$\bar{x} = 77.4$$

$$\bar{y} = 173,5$$

$$s_x = 21,893$$

$$s_Y = 7,619$$

2. Para todo par de valores x e y, calcular

 $-\left(\frac{x_i-\bar{x}}{s_x}\right) e\left(\frac{y_i-\bar{y}}{s_y}\right)$ Multiplicar um resultado pelo outro.

		Ÿ	V I	V	
Massa corporal	Altura	$\left(\frac{x_i - \bar{x}}{s_x}\right)$	$\left(\frac{y_i - \bar{y}}{s_y}\right)$	$\left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right)$	
72	180	-0,24665	0,85310	-0,21042	
80	170	0,11876	-0,45936	-0,05455	
60	175	-0,79477	0,19687	-0,15647	
90	174	0,57553	0,06562	0,03777	
100	185	1,03229	1,50934	1,55808	
120	190	1,94582	2,16557	4,21382	
82	182	0,21011	1,11560	0,23440	
79	179	0,07308	0,72186	0,05276	
78	165	0,02741	-1,11560	-0,03057	
55	165	-1,02316	-1,11560	1,14143	
71	170	-0,29233	-0,45936	0,13429	
75	169	-0,10962	-0,59061	0,06475	
130	177	2,40259	0,45936	1,10366	
105	173	1,26067	-0,06562	-0,08273	
60	172	-0,79477	-0,19687	0,15647	
54	162	-1,06883	-1,50934	1,61323	
58	163	-0,88613	-1,37809	1,22116	
57	167	-0,93180	-0,85310	0,79493	
60	171	-0,79477	-0,32812	0,26078	
62	181	-0,70342	0,98435	-0,69241	

Fonte: Pixabay (Licença CC)

Se for utilizar funções oferecidas por uma planilha de cálculo, lembre-se de usar a função de desvio-padrão da amostra (DESVPAD.A ou STDEV.S).

As planilhas costumam ter uma função (CORREL) que calcula diretamente o valor da correlação.

 Ao final, somar todos os resultados e dividir por n-1

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{11,36036}{20 - 1} = 0,59791$$

Vejamos essa relação em um gráfico de dispersão:

A correlação entre massa corporal e altura, neste *dataset*, é de 0,598 – positiva e não muito forte.

O que isto significa? Veremos a seguir.

Interpretando as correlações

Os valores de correlação sempre resultam em algo entre -1 e 1, ou seja, para qualquer dataset:

$$-1 \le r \le 1$$

Mas o que signficam esses valores?

Veja o exemplo a seguir com os valores de correlação e os gráficos de dispersão obtidos a partir de sete *datasets* diferentes:

Claramente, a correlação r assume um valor positivo quando há uma associação positiva entre as variáveis x e y, e negativo quando a associação entre x e y é negativa.

Sobre o cálculo de r, é importante mencionar que:

não há distinção entre variável explicativa e variável resposta

Para o cálculo de r, é indiferente quem assume o valor de variável explicativa e variável resposta. O valor será sempre o mesmo.

Veja um exemplo com o *dataset* de massas corporais e alturas. À esquerda, o gráfico de dispersão para **Altura** como variável explicativa (x) e **Massa corporal** como variável resposta. À direita, o oposto.

não importa a unidade de medida

Como o valor de r é calculado de maneira padronizada (ou seja, levando-se em consideração o desvio-padrão), a unidade de medida utilizada tanto para x quanto para y é irrelevante.

Desta forma, o coeficiente de relação r é **adimensional**, ou seja, não tem dimensão ou unidade de medida associada;

Usando o mesmo *dataset*, convertemos as massas corporais de quilogramas para libras (1kg = 2,20462lb) e as alturas, de centímetros para polegadas (1cm= 0,39370in). Em ambos os casos, r é o mesmo.

correlação não é causalidade

Não é porque o valor de r entre x e y é forte que podemos dizer que x é a **causa** de y, ou vice-versa. O exemplo a seguir mostra a correlação do número de pessoas afogadas em piscinas com os filmes em que o ator Nicolas Cage apareceu (r = 0,666) – uma coisa não tem a ver com outra.

Veja o exemplo com os veículos da cidade de São Paulo e o número de acidentes registrado por ano (dados de 2008 a 2017).

Ano	Veículos	Acidentes
2008	6369	27739
2009	6705	24918
2010	6954	26371
2011	7186	25391
2012	7363	26928
2013	7578	25501
2014	7888	23547
2015	7980	20260
2016	8370	16052
2017	8604	13483

Note que a correlação aqui é forte e negativa (r = -0,872). Entretanto, é um contrasenso querer afirmar que a diminuição do número de acidentes é explicada pelo aumento do número de carros – e não se pode afirmar isso. A única coisa que pode ser afirmada é que há uma correlação negativa e forte entre essas duas variáveis.

correlação sozinha não basta para descrever uma distribuição

À exceção das distribuições Normais, que podem ser completamente descritas por sua média e seu desvio-padrão, as demais distribuições (que não seguem o comportamento das distribuições Normais) precisam de outras medidas estatísticas para serem descritas, como o resumo dos cinco números e a correlação, por exemplo. Ainda assim, nem sempre os valores abtidos pela Estatística Básica são suficientes, sendo recomendável, na maioria das vezes. uma representação gráfica do dataset.

Observe, a título de exemplo, os quatro *datasets* conhecidos como Quarteto de Ascombe. Note que os quatro *datasets* têm os mesmos valores para as principais medidas estatísticas.

Quarteto 1		Quarteto 2		Quarteto 3		Quarteto 4	
Х	у	Х	у	Х	у	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Os quatro datasets têm as mesmas médias para seus valores de x e y, bem como as mesmas variâncias para seus x e y. A correlação de todos eles também é a mesma

Propriedade estatística	Valor
Média de $x(\bar{x})$	9
Variância de $x(s_x)$	11
Média de y (ȳ)	7.50
Variância de $x(s_y)$	4.12
Correlação entre x e y (r)	0.816

Aqui vemos a importância das representações gráficas na caracterização e compreensão das distribuições!

"O quarteto de Anscombe", em homenagem ao estatístico inglês Francis Anscombe.

Saiba mais, sobre esses datasets e suas curiosas propriedades em:

https://pt.wikipedia.org/wiki/Quarteto de Anscombe

Vejamos mais um exemplo, com dados sobre os países da América do Sul, trabalhados também na unidade sobre Gráficos de Dispersão. No *dataset*, são apresentados os valores para PPP (PIB – Produto Interno Bruto Per Capita, em dólares estadunidenses), anos na escola e o índice Gini (que calcula o coeficiente de desigualdade socioeconômica).

País	IDH 2018	PPP (\$)	Anos na escola	Gini
Chile	0,843	22600	10,3	52,1
Argentina	0,825	21700	9,9	44,3
Uruguai	0,804	22400	8,7	39,7
Venezuela	0,761	13400	10,3	44,8
Brasil	0,759	14600	7,8	54,7
Equador	0,752	12200	8,7	49,3
Peru	0,75	14000	9,2	48,1
Colômbia	0,747	14550	8,3	55,9
Suriname	0,72	14300	8,5	52,9
Paraguai	0,702	11800	8,4	52,4
Bolívia	0,693	9500	8,9	56,3
Guiana	0,654	10500	8,4	44,5

Para saber mais, leia o capítulo 4 do e-book:

MOORE, David S.; NOTZ, William I.; FLINGER, Michael A. A Estatística Básica e sua Prática. 7 ed. Rio de Janeiro: LTC, 2017 — Capítulo 4