

FIG. 2B

F/G. 3

FIG. 4B

$$\overline{\gamma_{\alpha I}} = \Gamma_{\alpha I} - \sum_{i=1}^{3} \left(\overline{B_{iI}} \sum_{J=1}^{8} \overline{X}_{iJ} \Gamma_{\alpha J} \right)$$
 510

$$\hat{S}_{i\alpha} = \sum_{J=1}^{8} \bar{\gamma}_{\alpha J} (\hat{x}_{iJ} - \bar{X}_{iJ})$$
 520

FIG. 5A

$$\hat{G}_{ii} = \mu \left[\left(\bar{H}_{jj} + \bar{H}_{kk} \right) \hat{g}_{ii} + \bar{H}_{ij} \hat{g}_{jj} + \bar{H}_{ik} \hat{g}_{kk} \right]$$

$$\hat{G}_{ij} = \frac{2\mu}{1-\nu} \left[\bar{H}_{ii} \hat{g}_{ji} + \nu \bar{H}_{ij} \hat{g}_{ij} \right]$$

$$\hat{G}_{i4} = \frac{\mu}{3} \left[\frac{2}{(1-\nu)(1-2\nu)} \bar{H}_{ii} + \bar{H}_{jj} + \bar{H}_{kk} \right] \hat{g}_{i4}$$

$$= \frac{8}{3} \frac{8}{$$

$$\bar{H}_{ii} = \frac{1}{3} \frac{\sum_{J=1}^{8} \xi_{jJ} \bar{X}_{jJ} \sum_{J=1}^{8} \xi_{kJ} \bar{X}_{kJ}}{\sum_{J=1}^{8} \xi_{iJ} \bar{X}_{iJ}} - 535$$

$$\bar{H}_{ij} = \frac{1}{3} \sum_{J=1}^{8} \xi_{kJ} \bar{X}_{kJ}$$

$$\hat{f}_{i\alpha J} = \hat{G}_{i\alpha} \overline{\gamma}_{\alpha J} - 540$$

FIG. 5B

280							
8	-	-	7-	1			
2	-	1	1	7			
9	-	7	-	-			
5	-	7	7	-			
4	7	7	-	-1			
က	-	7	7	-			
2	1-	1	7	-1			
-	-	1-	-	1			
7	$\Gamma_{1,\mathrm{J}}$	Γ_{2J}	Γ_{3J}	Γ_{4J}			

FIG. 5C

∞	7-	1	-				
7	-	-	-				
9	_	7	_				
2	7	7	_				
4	7	-	7				
3	l	1	7				
2	1	-1	7				
1	-1	7	7				
٦	513	ξ2,	ξ3,				

F/G. 5D

7	3	2	-	3	2	1
•—	2	3	3	1	. 1	2
.1	—	1	2	2	3	3

FIG. 5F

$$k_{11} = \mu H_{11} \left[\frac{2}{1 - \nu} (\gamma_2 \gamma_2^T + \gamma_3 \gamma_3^T) + \frac{2(1 - \nu)}{3(1 - 2\nu)} \gamma_4 \gamma_4^T \right]$$

$$+ \mu (H_{22} + H_{33}) \left(\gamma_1 \gamma_1^T + \frac{1}{3} \gamma_4 \gamma_4^T \right)$$

$$k_{22} = \mu H_{22} \left[\frac{2}{1 - \nu} (\gamma_1 \gamma_1^T + \gamma_3 \gamma_3^T) + \frac{2(1 - \nu)}{3(1 - 2\nu)} \gamma_4 \gamma_4^T \right]$$

$$+ \mu (H_{11} + H_{33}) \left(\gamma_2 \gamma_2^T + \frac{1}{3} \gamma_4 \gamma_4^T \right)$$

$$k_{33} = \mu H_{33} \left[\frac{2}{1 - \nu} (\gamma_1 \gamma_1^T + \gamma_2 \gamma_2^T) + \frac{2(1 - \nu)}{3(1 - 2\nu)} \gamma_4 \gamma_4^T \right]$$

$$+ \mu (H_{11} + H_{22}) \left(\gamma_3 \gamma_3^T + \frac{1}{3} \gamma_4 \gamma_4^T \right)$$

FIG. 5G

$$k_{12} = \mu H_{12} \left[\frac{2\nu}{1 - \nu} \gamma_2 \gamma_1^T + \gamma_1 \gamma_2^T \right]$$

$$k_{13} = \mu H_{13} \left[\frac{2\nu}{1 - \nu} \gamma_3 \gamma_1^T + \gamma_1 \gamma_3^T \right]$$

$$k_{23} = \mu H_{23} \left[\frac{2\nu}{1 - \nu} \gamma_3 \gamma_2^T + \gamma_2 \gamma_3^T \right]$$

$$k_{21} = k_{12}^T$$

$$k_{31} = k_{13}^T$$

$$k_{32} = k_{23}^T$$

$$596$$

FIG. 5H

