Assignment 6

Paolo Deidda (paolo.deidda@usi.ch) Raffaele Perri (raffaele.perri@usi.ch)

https://github.com/USI-Projects-Collection/Computer_Vision.git

Problem 1 [5 points]

1. Separate the purely quadratic part

Write the polynomial in vector form

$$F(x,y) = \underbrace{\begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix}}_{\text{guadratic}} + 2g^T \begin{bmatrix} x \\ y \end{bmatrix} + f, \qquad A = \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}, \ g = \frac{1}{2} \begin{bmatrix} d \\ e \end{bmatrix}.$$

2. Definiteness of A

Because $\delta = b^2 - 4ac < 0$,

$$\det A = a c - \left(\frac{b}{2}\right)^2 = \frac{-\delta}{4} > 0.$$

A symmetric 2×2 matrix with positive determinant is **definite**; its sign is the sign of its trace:

- If $a + c > 0 \Rightarrow A$ is **positive definite**.
- If $a + c < 0 \Rightarrow A$ is negative definite.

3. Translate to the centre of the conic

The gradient of F vanishes at

$$\mathbf{x}_0 = -A^{-1}g.$$

Completing the square gives the standard form

$$F(x,y) = (\mathbf{x} - \mathbf{x}_0)^T A(\mathbf{x} - \mathbf{x}_0) + \left(f - g^T A^{-1} g\right). \tag{*}$$

4. Express the constant term via $\det C$

For a block matrix $C = \begin{pmatrix} A & g \\ g^T & f \end{pmatrix}$ the Schur complement formula gives

$$\det C = \det A \left(f - g^T A^{-1} g \right) \implies f - g^T A^{-1} g = \frac{\det C}{\det A}.$$

Insert this into (\star) :

$$F(x,y) = (\mathbf{x} - \mathbf{x}_0)^T A(\mathbf{x} - \mathbf{x}_0) + \frac{\det C}{\det A}.$$
 (**)

5. Compare the two terms in $(\star\star)$

Recall

- $\det A > 0$ (Step 2),
- A is definite with the same sign as a + c,
- assumption $(a + c) \det C > 0$ says $\det C$ has the same sign as A.

Case 1: A positive definite (a + c > 0)

- $\det C > 0 \Rightarrow \frac{\det C}{\det A} > 0$.
- The first term $(\mathbf{x} \mathbf{x}_0)^T A(\mathbf{x} \mathbf{x}_0)$ is **non-negative**, vanishing only at $\mathbf{x} = \mathbf{x}_0$.

Hence $F(x,y) \ge \frac{\det C}{\det A} > 0$ for every $(x,y) \in \mathbb{R}^2$; the equation F = 0 has **no real solution**.

Case 2: A negative definite (a + c < 0)

- $\det C < 0 \Rightarrow \frac{\det C}{\det A} < 0$.
- The quadratic term is **non-positive**, again zero only at \mathbf{x}_0 .

Thus $F(x,y) \leq \frac{\det C}{\det A} < 0$ for all (x,y); the equation F=0 is likewise **unsatisfiable**.

6. Conclusion

In both cases the sign of the constant term in $(\star\star)$ matches the sign of the definite quadratic part, so their sum **never vanishes** on \mathbb{R}^2 .

$$\mathcal{C} = \varnothing$$

Therefore the conic determined by C is imaginary (has no real points) whenever

$$\delta = b^2 - 4ac < 0,$$
 $(a+c) \det C > 0,$ $\det C \neq 0.$

Problem 2 [5 points]

The goal of this task was to rectify a 300×400 grayscale image A ("homework6.pgm") and generate a 300×370 output image B by applying a projective transformation h. This transformation maps the quadrilateral defined by the following points in image A:

$$p_1 = (244, 263),$$

 $p_2 = (238, 353),$
 $p_3 = (199, 350),$
 $p_4 = (201, 262)$

to the following points in image B:

$$q_1 = (232, 216),$$

 $q_2 = (232, 311),$
 $q_3 = (197, 311),$
 $q_4 = (197, 216)$

To accomplish this, the inverse of the homography matrix H that maps destination points q_i to source points p_i was computed using cv2.findHomography. This inverse transformation was then used to warp the original image using bilinear interpolation via cv2.warpPerspective, thereby generating image B. The output image has a fixed resolution of 300×370 as required.

Resulting image:

Figure 1: Rectified image B with a resolution of 300×370