final189

Kalyani Cauwenberghs

3/7/2020

Part 1

Part 2

Instructions: For the final project, look back at all the analysis approaches you have used throughout the quarter. Consider HealthGen as the outcome, grouped into Excellent/Vgood, versus Good/Fair/Poor. (In the dataset dat.Rda, the HealthGen variable is assigned value 1 if its original value is Excellent/Vgood and is assigned value 0 otherwise.) Consider all other variables as potential predictors. Develop a comprehensive and reproducible analysis report, to explore the relationship between these variables and the outcome. Pay attention to (but not limited to) the following:

1.)

Missing data: do not remove observations with any missing data from the start; after screening you might reduce to a smaller set of variables, therefore remove fewer observations at that point. Also you may consider removing variables with too much missing.

```
## [1] "our final screened variables:"
## [1] "Age" "Education" "MaritalStatus" "BMI_WHO"
## [5] "SleepTrouble" "CompHrsDay"
```

2.)

Include "Table 1"

3.)

After univariate screening, building a multiple logistic regression model to predict the general health outcome of very good or excellent versus otherwise. State clearly your criteria at each step in the narrative.

```
## [1] "Final model:"
##
                  (Intercept)
                                                     Age
                                                           Education9 - 11th Grade
##
                -1.767844403
                                            -0.017383837
                                                                        1.066092225
##
        EducationHigh School
                                  EducationSome College
                                                              EducationCollege Grad
                 1.499309047
                                             1.698981822
                                                                        2.393716018
##
##
    MaritalStatusLivePartner
                                   MaritalStatusMarried MaritalStatusNeverMarried
                 0.287987778
                                             0.247213482
                                                                        0.055079865
##
      MaritalStatusSeparated
                                   MaritalStatusWidowed
                                                                BMI_WH018.5_to_24.9
##
```

##	0.216977250	-0.321665887	0.964961151
##	BMI_WHO25.0_to_29.9	BMI_WHO30.0_plus	SleepTroubleYes
##	0.598235207	-0.384106182	-0.895935885
##	CompHrsDayO_to_1_hr	CompHrsDay1_hr	CompHrsDay2_hr
##	0.115407406	0.377522538	0.303841361
##	CompHrsDay3_hr	CompHrsDay4_hr	${\tt CompHrsDayMore_4_hr}$
##	0.001982988	-0.223866436	-0.099279708

4.)

Assess the predictability of the model by computing the (generalized) R-squared and the area under the ROC curve (AUC), as well as the cross-validated AUC.

[1] 2337

[1] 2337

[1] 2337

Find generalized R-squared:

##generalized R-squared: 0.1747409

ROC and AUC

[1] "Plotting ROC of our selected model"

[1] "AUC of our selected model"

Area under the curve: 0.7459

Cross-validated ROC and AUC

[1] "final AUC:"

5.)

Use the variables that have passed the univariate screening, to build a classification tree. Describe clearly how you arrive at the final tree. Compute the error rate of your classification tree.

6.)

Discuss any limitations in the analysis.

Bonus

Explore random forest on the data above.