

SOLUTION

	A, in^2	\overline{x} , in.	\overline{y} , in.	$\overline{x}A$, in ³	$\overline{y}A$, in ³
1	$8 \times 6 = 48$	-4	9	-192	432
2	$16 \times 12 = 192$	8	6	1536	1152
Σ	240			1344	1584

Then

$$\overline{X} = \frac{\Sigma \overline{x}A}{\Sigma A} = \frac{1344 \text{ in}^3}{240 \text{ in}^2}$$

or $\overline{X} = 5.60$ in.

and

$$\overline{Y} = \frac{\Sigma \overline{y}A}{\Sigma A} = \frac{1584 \text{ in}^3}{240 \text{ in}^2}$$

or $\bar{Y} = 6.60 \text{ in.} \blacktriangleleft$

SOLUTION

	A, mm ²	\overline{x} , mm	\overline{y} , mm	$\overline{x}A$, mm ³	$\overline{y}A$, mm ³
1	$\frac{1}{2} \times 60 \times 75 = 2250$	40	25	90 000	56 250
2	$105 \times 75 = 7875$	112.5	37.5	885 900	295 300
Σ	10 125			975 900	351 600

Then

$$\bar{X} = \frac{\Sigma \bar{x}A}{\Sigma A} = \frac{975\,900\,\text{mm}^3}{10\,125\,\text{mm}^2}$$

or
$$\overline{X} = 96.4 \,\mathrm{mm}$$

and

$$\overline{Y} = \frac{\Sigma \overline{y}A}{\Sigma A} = \frac{351\ 600\ \text{mm}^3}{10\ 125\ \text{mm}^2}$$

or
$$\overline{Y} = 34.7 \text{ mm}$$

Locate the centroid of the plane area shown.

SOLUTION

For the area as a whole, it can be concluded by observation that

$$\overline{Y} = \frac{2}{3} (24 \text{ in.})$$

or
$$\bar{Y} = 16.00 \text{ in.} \blacktriangleleft$$

	A, in ²	\overline{x} , in.	$\overline{x}A$, in ³
1	$\frac{1}{2} \times 24 \times 10 = 120$	$\frac{2}{3}(10) = 6.667$	800
2	$\frac{1}{2} \times 24 \times 16 = 192$	$10 + \frac{1}{3}(16) = 15.333$	2944
Σ	312		3744

Then

$$\overline{X} = \frac{\Sigma \overline{x}A}{\Sigma A} = \frac{3744 \text{ in}^3}{312 \text{ in}^2}$$

or $\bar{X} = 12.00 \text{ in.} \blacktriangleleft$

Locate the centroid of the plane area shown.

SOLUTION

	A, mm ²	\bar{x} , mm	y, mm	$\overline{x}A$, mm ³	$\overline{y}A$, mm ³
1	$21 \times 22 = 462$	1.5	11	693	5082
2	$-\frac{1}{2}(6)(9) = -27$	-6	2	162	-54
3	$-\frac{1}{2}(6)(12) = -36$	8	2	-288	-72
Σ	399			567	4956

Then

$$\overline{X} = \frac{\Sigma \overline{x}A}{\Sigma A} = \frac{567 \text{ mm}^3}{399 \text{ mm}^2}$$

or $\overline{X} = 1.421 \text{ mm}$

and

$$\overline{Y} = \frac{\Sigma \overline{y}A}{\Sigma A} = \frac{4956 \text{ mm}^3}{399 \text{ mm}^2}$$

or $\overline{Y} = 12.42 \text{ mm}$

Locate the centroid of the plane area shown.

SOLUTION

	A, mm ²	\overline{x} , mm	\overline{y} , mm	$\overline{x}A$, mm ³	$\overline{y}A$, mm ³
1	$120 \times 200 = 24\ 000$	60	120	1 440 000	2 880 000
2	$-\frac{\pi(60)^2}{2} = -5654.9$	94.5	120	-534 600	-678 600
Σ	18 345			905 400	2 201 400

Then

$$\overline{X} = \frac{\Sigma \overline{x}A}{\Sigma A} = \frac{905 \ 400 \ \text{mm}^3}{18 \ 345 \ \text{mm}^2}$$

or
$$\overline{X} = 49.4 \text{ mm}$$

and

$$\overline{Y} = \frac{\Sigma \overline{y}A}{\Sigma A} = \frac{2\ 201\ 400\ \text{mm}^3}{18\ 345\ \text{mm}^2}$$

or
$$\overline{Y} = 93.8 \text{ mm}$$

Locate the centroid of the plane area shown.

SOLUTION

	A, in ²	\overline{x} , in.	\overline{y} , in.	$\overline{x}A$, in ³	$\overline{y}A$, in ³
1	$\frac{\pi(9)^2}{4} = 63.617$	$\frac{-4(9)}{(3\pi)} = -3.8917$	3.8917	-243	243
2	$\frac{1}{2}(15)(9) = 67.5$	5	3	337.5	202.5
Σ	131.1			94.5	445.5

Then

$$\overline{X} = \frac{\Sigma \overline{x}A}{\Sigma A} = \frac{94.5 \text{ in}^3}{131.1 \text{ in}^2}$$

or $\bar{X} = 0.721 \text{ in. } \blacktriangleleft$

and

$$\overline{Y} = \frac{\Sigma \overline{y}A}{\Sigma A} = \frac{445.5 \text{ in}^3}{131.1 \text{ in}^2}$$

or $\overline{Y} = 3.40$ in.

Locate the centroid of the plane area shown.

SOLUTION

First note that symmetry implies $\overline{X} = \overline{Y}$

	A, mm ²	\overline{x} , mm	$\overline{x}A$, mm ³
1	$40 \times 40 = 1600$	20	32 000
2	$-\frac{\pi(40)^2}{4} = -1257$	16.98	-21 330
Σ	343		10 667

Then

$$\overline{X} = \frac{\Sigma \overline{x}A}{\Sigma A} = \frac{10 667 \text{ mm}^3}{343 \text{ mm}^2}$$

or
$$\overline{X} = 31.1 \text{ mm}$$

and
$$\overline{Y} = \overline{X} = 31.1 \text{ mm}$$

Locate the centroid of the plane area shown.

SOLUTION

First note that symmetry implies

 $\overline{X} = 0$

	A, in ²	\overline{y} , in.	$\overline{y}A$, in ³
1	$-\frac{\pi(4)^2}{2} = -25.13$	1.6977	-42.67
2	$\frac{\pi \left(6\right)^2}{2} = 56.55$	2.546	144
Σ	31.42		101.33

Then

$$\overline{Y} = \frac{\Sigma \overline{y}A}{\Sigma A} = \frac{101.33 \text{ in}^3}{31.42 \text{ in}^2}$$

or
$$\overline{Y} = 3.23$$
 in.

For the area of Problem 5.8, determine the ratio r_2/r_1 so that $\overline{y} = 3r_1/4$.

SOLUTION

	A	\overline{y}	$\overline{y}A$
1	$-\frac{\pi}{2}r_1^2$	$\frac{4r_1}{3\pi}$	$-\frac{2}{3}r_1^3$
2	$\frac{\pi}{2}r_2^2$	$\frac{4r_2}{3\pi}$	$\frac{2}{3}r_2^3$
Σ	$\frac{\pi}{2} \left(r_2^2 - r_1^2\right)$		$\frac{2}{3}(r_2^3-r_1^3)$

Then

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

or

$$\frac{3}{4}r_1 \times \frac{\pi}{2} \left(r_2^2 - r_1^2\right) = \frac{2}{3} \left(r_2^3 - r_1^3\right)$$

$$\frac{9\pi}{16} \left[\left(\frac{r_2}{r_1} \right)^2 - 1 \right] = \left(\frac{r_2}{r_1} \right)^3 - 1$$

Let

$$p = \frac{r_2}{r_1}$$

$$\frac{9\pi}{16} [(p+1)(p-1)] = (p-1)(p^2 + p + 1)$$

or

$$16p^2 + (16 - 9\pi)p + (16 - 9\pi) = 0$$

PROBLEM 5.9 CONTINUED

Then

$$p = \frac{-(16 - 9\pi) \pm \sqrt{(16 - 9\pi)^2 - 4(16)(16 - 9\pi)}}{2(16)}$$

or

$$p = -0.5726$$
 $p = 1.3397$

Taking the positive root

$$\frac{r_2}{r_1} = 1.340$$