Fractal Dimensions in Recursion Theory

Jan Reimann

April 21, 2006

Overview

1 Randomness for Individual Reals

- 2 Hausdorff Measures and Hausdorff Dimension
- 3 Effective Hausdorff Dimension
- 4 The Dimension of Cones and Degrees

The Quest for Randomness

Von Mises vs Kolmogorov

- Von Mises tried to base probability on individual objects.
 Probabilities could be assigned by studying a single instance in a Collective (Kollektiv).
 ("First the collective, then the probability.")
- Von Mises ideas ("admissible selection rules") led to the theory of stochasticity. (Wald, Church, Loveland, ...)
- The modern theory of probability follows Kolmogorov's approach: measure theoretic, random variables instead of individual random objects.

The Quest for Randomness

Martin-Löf's approach

- Martin-Löf proposed a definition of randomness by combining measure theory and recursion theory (effective nullsets).
- This approach is supported by the fact that it coincides with the definition of randomness as "incompressibility" (Kolmogorov complexity).

- A premeasure is a function $\rho: 2^{<\omega} \to \mathbb{R}_0^+ \cup \{\infty\}$.
- One can obtain an outer measure μ_{ρ} from ρ by letting

$$\mu_{\rho}(X) = \inf_{C \subseteq 2^{<\omega}} \left\{ \sum_{\sigma \in C} \rho(\sigma) : \bigcup_{\sigma \in C} N_{\sigma} \supseteq X \right\},$$

where \textit{N}_{σ} is the basic open cylinder induced by $\sigma.$ (Set $\mu_{\rho}(\emptyset)=0.)$

— $\quad \mu = \mu_{\rho}$ is a countably subadditive, monotone set function.

The way we constructed outer measures, $\mu(A)=0$ is equivalent to the existence of a sequence $(C_n)_{n\in\omega}$, $C_n\subseteq 2^{<\omega}$, such that for all n,

$$A \subseteq \bigcup_{C_n} N_{\sigma}$$
 and $\sum_{C_n} \rho(\sigma) \leqslant 2^{-n}$.

— Thus, every nullset is contained in a $G_δ$ nullset.

By requiring that the covering nullset is effectively G_{δ} (in a presentation of ρ), we obtain a notion of effective nullsets.

Definition

Let μ (= μ_{ρ}) be an outer measure. A set A is effectively μ -null if there exists a function f recursive in ρ such that for all n,

$$A\subseteq \bigcup_{W_{f(n)}} N_{\sigma}$$
 and $\sum_{W_{f(n)}} \rho(\sigma)\leqslant 2^{-n}.$

Definition A real $X \in 2^{\omega}$ is μ -random iff $\{X\}$ is not μ -null.

Randomness

Stronger notions of randomness

- One can obtain stronger (or weaker) versions of randomness by relaxing the effectiveness condition:
- Stronger:
 - f recursive in $\emptyset^{(n)}$,
 - f arithmetical,
 - replace uniformly r.e. by Π_1^1 [Hjorth and Nies],
- Weaker:
 - replace uniformly r.e. by unif. recursive [Schnorr],
 - instead with covers work with martingales and impose subrecursive rescource bounds [Lutz].

Randomness

Directions of study

- There seem to be two directions of study:
- From reals to measures:
 Given a real (or a set of reals), study the measures with respect to which this is random, and for which level of randomness. [Reimann and Slaman]
- From measures to reals: Given a measure (usually the uniform distribution $\rho(\sigma) = 2^{-|\sigma|}$), study the corresponding random reals. Reals random with respect to the uniform distribution are usually called Martin-Löf random. (Algorithmic randomness, a lot of progress over the last decade.)

This talk

Hausdorff measures

Hausdorff Measures

— (Generalized) Hausdorff measures \mathcal{H}^h correspond to premeasures of the type

$$\rho(\sigma) = h(|\sigma|),$$

where h is a decreasing function with $\lim_{n} h(n) = 0$.

- Note: ρ depends only on the length of σ, that is, the diameter of the accordant open set.
- Usually: $h(n) = 2^{-ns}$, s a nonnegative real number. In this case, we simply write \mathcal{H}^s and call it the s-dimensional Hausdorff measure.
- \mathcal{H}^1 corresponds to the uniform distribution, i.e. Lebesgue measure λ on 2^{ω} .

Hausdorff Measures

Short remark

- The actual definition of the Hausdorff measure \mathcal{H}^h is a little more involved. (One wants to ensure that for the resulting measures, all Borel sets are measurable.)
- We are primarily concerned with nullsets. For nullsets the more involved definition coincides with the one given here.

— It is not hard to see that if s < t, then

$$\mathcal{H}^{s}(A) = 0 \Rightarrow \mathcal{H}^{t}(A) = 0.$$

 Hausdorff dimension "picks" the "right" scaling factor for a set.

Definition The Hausdorff dimension of A is defined as

$$\dim_{\mathsf{H}} A = \inf\{s \geqslant 0 : \, \mathcal{H}^s(A) = 0\}.$$

Famous examples

— Mandelbrot set – $dim_H = 2$

Famous examples

— Koch snowflake – $\dim_H = \log 4/\log 3$

Famous examples

— Cantor set – $\dim_H = \log 2/\log 3$

— Frequency sets – For $0 \leqslant p \leqslant 1$, let

$$A_p = \left\{ X \in 2^{\omega} : \lim_{n} \frac{|\{i < n : X(i) = 1\}|}{n} = p \right\}.$$

Then
$$\dim_{\mathsf{H}} A_p = H(p) = -[p \log p + (1-p) \log (1-p)]$$
 [Eggleston].

Properties of Hausdorff Dimension

- Lebesgue measure: $\lambda(A) > 0$ implies $\dim_H(A) = 1$.
- Monotony: $A \subseteq B$ implies $\dim_{\mathsf{H}}(A) \leqslant \dim_{\mathsf{H}}(B)$.
- Stability: For $A_1, A_2, \dots \subseteq 2^{\omega}$ it holds that

$$\dim_{\mathsf{H}}(\bigcup A_i) = \sup \{\dim_{\mathsf{H}}(A_i)\}.$$

(Immediately implies that all countable sets have dimension 0.)

— Geometric transformations: If h is Hölder continuous, i.e. if there are constants c, r > 0 for which

$$(\forall x, y) \ d(h(x), h(y)) \leqslant cd(x, y)^r,$$

then

$$\dim_{\mathsf{H}} h(A) \leqslant (1/r) \dim_{\mathsf{H}}(A).$$

— For r = 1, h is Lipschitz continuous. If h is bi-Lipschitz, then

$$\dim_{\mathsf{H}} h(A) = \dim_{\mathsf{H}}(A).$$

Definition

The effective Hausdorff dimension of $A \subseteq 2^{\omega}$ is defined as

$$\dim_{\mathsf{H}}^1 A = \inf \, \{ s \in \mathbb{Q}_0^+ : \, A \text{ is effectively } \mathcal{H}^s\text{-null} \}.$$

[Lutz 2000]

- There are single reals of non-zero dimension: every λ -random real has dimension one.
- Effective dimension has an important stability property:

$$\dim_{\mathsf{H}}^1 A = \sup \{ \dim_{\mathsf{H}}^1 \{X\} : X \in A \}.$$

[Lutz 2000]

Effective Dimension and Algorithmic Entropy

— Kolmogorov complexity: U a universal Turing-machine. Define

$$C(\sigma) = C_U(\sigma) = \min\{|p|: p \in 2^{<\omega}, U(p) = \sigma\},\$$

i.e. $C(\sigma)$ is the length of the shortest program (for U) that outputs σ .

- Kolmogorov's invariance theorem: C is optimal (up to an additive constant).
- A prefix-free Turing machine is a TM with prefix-free domain. The prefix-free version of C (use universal prefix free TM) is denoted by K.

Effective Dimension and Algorithmic Entropy

Effective dimension as algorithmic density

 A fundamental theorem of algorithmic randomness establishes that randomness is incompressibility:

$$\alpha \ \lambda$$
-random \Leftrightarrow $(\exists c) (\forall n) \ K(\alpha \upharpoonright_n) \geqslant n - c$.

[Schnorr 1971]

 Effective Hausdorff dimension can be interpreted as a degree of incompressibility.

Theorem

For every real X,

$$\dim_{\mathsf{H}}^1 X = \liminf_{n \to \infty} \frac{\mathsf{K}(X \upharpoonright_n)}{n}.$$

[Ryabko 1984; Mayordomo 2002]

The three basic examples

— Let 0 < r < 1 rational. Given a Martin-Löf random set X, define X_r by

$$X_r(m) = \begin{cases} X(n) & \text{if } m = \lfloor n/r \rfloor, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\dim_{\mathsf{H}}^1 X_r = r$.

Geometry: Hölder transformation of Cantor set
 Information theory: Insert redundancy

The three basic examples

— Let $μ_p$ be a Bernoulli ("coin-toss") measure with bias p ∈ ℚ ∩ [0, 1], and let B be random with respect to $μ_p$. Then

$$\dim_{\mathsf{H}}^1 B = H(\mu_p) := -[p \log p + p \log(1-p)].$$

 Kolmogorov complexity can be seen as an effective version of entropy.

The three basic examples

— Let U be a universal, prefix-free machine. Given a computable real number $0 < s \leqslant 1$, the binary expansion of the real number

$$\Omega^{(s)} = \sum_{\sigma \in \mathsf{dom}(U)} 2^{-\frac{|\sigma|}{s}}$$

has effective dimension s [Tadaki 2002].

— Note that $\Omega^{(1)}$ is just Chaitin's Ω .

The basic examples imply fully random content

- Each of the three examples actually computes a Martin-Löf random real.
- This is obvious for the "diluted" sequence.
- For recursive Bernoulli measures, one may use Von-Neumann's trick to turn a biased random real into a uniformly distributed random real. More generally, Levin and Kautz have shown that any real which is random with respect to a recursive measure computes a Martin-Löf random real.
- $\Omega^{(s)}$ computes a fixed-point free function. It is of r.e. degree, and hence it follows from the Arslanov completeness criterion that $\Omega^{(s)}$ is Turing complete (and thus T-equivalent to a Martin-Löf random real).

The Dimension Problem

Are there "genuine" reals of non-integral dimension?

— The stability property implies that the Turing lower cone of each of the three examples has effective dimension 1.

Question

Are there any Turing lower cones of non-integral dimension?

 This is an open problem. Any such lower cone would come from a real of non-integral dimension for which it is not possible to extract some content of higher degree of randomness effectively.

Upper Cones

Upper cones always have maximal dimension

- For upper cones, the situation is quite clear.
- The Turing upper cone of a real has Lebesgue measure zero unless the real is recursive [Sacks 1963].

Theorem

For any real X, the many-one upper cone of X has (classical) Hausdorff dimension 1.

Lower Cones and Degrees

- The dimension of a lower cone and a degree coincide.
- This follows from the sparse coding technique: Given two reals $A \leqslant_r B$, choose a recursive set R of density $\lim_n |R \cap \{0, \ldots, n-1\}|/n = 1$, and let C equal A on R and B on the complement of R.
- C will be r-equivalent to B and be of the same dimension as A. It follows that the dimension of the degree and the lower cone of a set coincide.

Symmetry of Information

An important tool: Symmetry of algorithmic information.

$$K(\langle x, y \rangle) \stackrel{+}{=} K(x) + K(y|x, K(x))$$

Many-One Reducibility

Theorem

Let μ_p be a computable Bernoulli measure with bias p. If A is μ_p -random, then

$$B \leqslant_{\mathsf{m}} A \Rightarrow \dim_{\mathsf{H}}^1 B \leqslant H(\mu_p).$$

[Reimann and Terwijn 2004]

- Proof. Given an m-reduction f, define $F = \{n : (\forall m < n)f(m) \neq f(n)\}$, so F is the set of all positions of B, where an instance of A is queried for the first time.
- F induces a Kolmogorov-Loveland place selection rule. If A is μ_p -random, this selection rule will yield a new sequence with the same limit frequency as A.

Weaker Reducibilities

- This technique does not extend to weaker reducibilities, since for Bernoulli measures the Levin-Kautz result holds for a total Turing reduction.
- Stephan [2005] was able to construct wtt-lower cone of non-integral effective dimension in a relativized world:

There is a real A and an oracle B such that

$$1/3 \leqslant \dim_{\mathsf{H}}^{B} \{D : D \leqslant_{\mathsf{wtt}}^{B} A\} \} \leqslant 1/2.$$

Wtt-Reducibility

A Wtt Lower Cone of Non-Integral Dimension

Theorem

For each rational α , $0\leqslant \alpha\leqslant 1$, there is a real $X\leqslant_{\mathrm{wtt}}\emptyset'$ such that

$$\dim_{\mathsf{H}}^1 X = \alpha$$
 and $(\forall Z \leqslant_{\mathsf{wtt}} X) \dim_{\mathsf{H}}^1 Z \leqslant \alpha$.

[Nies and Reimann 2006]

A Wtt Lower Cone of Non-Integral Dimension The strategy

— Requirements:

$$R_{\langle e,j\rangle}: Z = \Psi_e(X) \Rightarrow \exists (k \geqslant j) \, K(Z \upharpoonright_k) \leqslant^+ (\alpha + 2^{-j}) k$$

where (Ψ_e) is a uniform listing of wtt reduction procedures.

We can assume each Ψ_e also has a certain (non-trivial) lower bound on the use g_e , because otherwise the reduction would decrease complexity anyway.

A Wtt Lower Cone of Non-Integral Dimension The strategy

— We construct X inside the Π_1^0 class

$$P = \{Y : (\forall n \geqslant n_0) K(Y \upharpoonright_n) \geqslant |\alpha n|\}$$

(This ensures X has dimension at least α .)

- P is given as an effective approximation through clopen sets P_s .
- We approximate longer and longer initial segments σ_j of X, where σ_j is a string of length m_j , both σ_j , m_j controlled by R_i .

- Define a length k_j where we intend to compress Z, and let $m_j = g_e(k_j)$.
- Define σ_j of length m_j in a way that, if $x = \Psi_e^{\sigma_j}$ is defined then we compress it down to $(\alpha + 2^{-b_j})k_j$, by constructing an appropriate nullset L.
- The opponent's answer could be to remove σ_j from P. (σ_i is not of high dimension.)
- In this case, the capital he spent for this removal exceeds what we spent for our request, so we can account our capital against his.
- Of course, usually σ_j is much longer than x. So we will only compress x when the measure of oracle strings computing it is large.

A Wtt Lower Cone of Non-Integral Dimension

Combining the strategies R_j

- In the course of the construction, some R_j might have to pick a new σ_j .
- In this case we have to initialize all R_n of lower priority (n > j).
- We have to make sure that this does not make us enumerate too much measure into L.
- We therefore have to assign a new length k_n to the strategies R_n .
- For this, it is important to know the use of the reduction related to R_i .

The Turing Case

 The Turing case appears to be much harder. Currently, the best known result is the following.

Theorem

There exists recursive, non-decreasing, unbounded function h and a real X such that for all n,

$$K(X \upharpoonright_n) \geqslant h(n) \tag{*}$$

and X does not compute a Martin-Löf random set.

[Kjos-Hanssen, Merkle, and Stephan 2004; Reimann and Slaman 2004]

 The condition (*) can be interpreted in terms of (generalized) Hausdorff measures. Reals satisfying (*) are called complex.

Complex Reals and DNR Functions

- The proof by Kjos-Hanssen, Merkle, and Stephan reveals an interesting connection between entropy and diagonally nonrecursive functions.
- A function f is diagonally nonrecursive (dnr) if for all n, $f(n) \neq \varphi_n(n)$.
- Kjos-Hanssen, Merkle, and Stephan showed that a real is complex iff it truth-table computes a dnr function.
- Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman [2004] showed that there exists a dnr function that does not compute a dnr function whose values are bounded by a recursive function.
- It is known that every Martin-Löf random real computes a 0-1 valued dnr function.

Further Rescources

 For papers, preprints, and my thesis on effective dimension:

http://math.uni-heidelberg.de/logic/reimann