

Name: K.Alekya Batch: COMETFWC024

Date: 16 May 20**25**

Also, it is given that

$$\angle PST = \angle PRQ(2)$$

So,

$$\angle PRQ = \angle PQR$$
 [From (1) and (2)]

Therefore,

$$PQ = PR$$
 (Sides opposite the equal angles)

i.e., PQR is an isosceles triangle.

EXERCISE 6.2

1. In Fig. 6.17, (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

- **2.** E and F are points on the sides PQ and PR respectively of a $\triangle PQR$. For each of the following cases, state whether EF \parallel QR :
 - (i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
 - (ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm
- (iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm
- **3.** In Fig. 6.18, if LM \parallel CB and LN \parallel CD, prove that

$$\frac{AM}{AB} = \frac{AN}{AD}$$

4. In Fig. 6.19, DE \parallel AC and DF \parallel AE. Prove that

$$\frac{BF}{FE} = \frac{BE}{EC}$$

TRIANGLES 85

- **5.** In Fig. 6.20, DE \parallel OQ and DF \parallel OR. Show that EF \parallel QR.
- **6.** In Fig. 6.21, A, B and C are points on OP, OQ and OR respectively such that AB \parallel PQ and AC \parallel PR. Show that BC \parallel QR.

$$\frac{AO}{BO} = \frac{CO}{DO}$$

Fig. 6.20

Fig. 6.21

10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that

$$\frac{AO}{BO} = \frac{CO}{DO}$$

Show that ABCD is a trapezium.

6.4 Criteria for Similarity of Triangles

In the previous section, we stated that two triangles are similar, if (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (or proportion). That is, in $\triangle ABC$ and $\triangle DEF$, if

(i)
$$\angle A = \angle D$$
, $\angle B = \angle E$, $\angle C = \angle F$

(ii)
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$$

then the two triangles are similar (see Fig. 6.22).