Hyperparameter tuning, Batch Normalization, Programming Frameworks

LATEST SUBMISSION GRADE

100%

1.	If searching among a large number of hyperparameters, you should try values in a grid rather than random values, so that you can carry out the search more systematically and not rely on chance. True or False?	1/1 point
	○ True	
	False	
	✓ Correct	
2.	Every hyperparameter, if set poorly, can have a huge negative impact on training, and so all hyperparameters are about equally important to tune well. True or False? True False	1/1 point
	Correct Yes. We've seen in lecture that some hyperparameters, such as the learning rate, are more critical than others.	
3.	During hyperparameter search, whether you try to babysit one model ("Panda" strategy) or train a lot of models in parallel ("Caviar") is largely determined by:	1/1 point
	Whether you use batch or mini-batch optimization	
	The presence of local minima (and saddle points) in your neural network	
	The amount of computational power you can access	
	The number of hyperparameters you have to tune	
	✓ Correct	

the	recommended way to sample a value for beta?	
0	1 r = np.random.rand() 2 beta = r*0.09 + 0.9	
•	1 r = np.random.rand() 2 beta = 1-10**((- r - 1)	
0	1 r = np.random.rand() 2 beta = 1-10**((- r + 1)	
0	1 r = np.random.rand() 2 beta = r*0.9 + 0.09	
	✓ Correct	
the	ling good hyperparameter values is very time-consuming. So typically you should do it once at start of the project, and try to find very good hyperparameters so that you don't ever have to sit tuning them again. True or false?	1/1 point
•	True False	
	✓ Correct	
	atch normalization as presented in the videos, if you apply it on the l th layer of your neural work, what are you normalizing? $a^{[l]}$	1/1 point
 	$oldsymbol{W}^{[l]}$ $oldsymbol{z}^{[l]}$	
	✓ Correct	

4. If you think eta (hyperparameter for momentum) is between on 0.9 and 0.99, which of the following is

1 / 1 point

7.	In the normalization formula $z_{norm}^{(i)}=rac{z^{(i)}-\mu}{\sqrt{\sigma^2+arepsilon}}$, why do we use epsilon?	1/1 point
	In case μ is too small To avoid division by zero To speed up convergence To have a more accurate normalization	
	✓ Correct	
8.	Which of the following statements about γ and β in Batch Norm are true?	1/1 point
	✓ Correct	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	\square The optimal values are $\gamma=\sqrt{\sigma^2+arepsilon}$, and $eta=\mu$.	
	They can be learned using Adam, Gradient descent with momentum, or RMSprop, not just with gradient descent.	
	✓ Correct	

9.	After training a neural network with Batch Norm, at test time, to evaluate the neural network on a new example you should:	1/1 point
	Ouse the most recent mini-batch's value of μ and σ^2 to perform the needed normalizations.	
	If you implemented Batch Norm on mini-batches of (say) 256 examples, then to evaluate on one test example, duplicate that example 256 times so that you're working with a mini-batch the same size as during training.	
	$\ $ Perform the needed normalizations, use μ and σ^2 estimated using an exponentially weighted average across mini-batches seen during training.	
	\bigcirc Skip the step where you normalize using μ and σ^2 since a single test example cannot be normalized.	
	✓ Correct	
10.	Which of these statements about deep learning programming frameworks are true? (Check all that apply)	1 / 1 point
	Deep learning programming frameworks require cloud-based machines to run.	
	Even if a project is currently open source, good governance of the project helps ensure that the it remains open even in the long term, rather than become closed or modified to benefit only one company.	
	✓ Correct	
	A programming framework allows you to code up deep learning algorithms with typically fewer lines of code than a lower-level language such as Python.	
	✓ Correct	