

planetmath.org

Math for the people, by the people.

field

Canonical name Field

Date of creation 2013-03-22 11:48:43 Last modified on 2013-03-22 11:48:43

Owner djao (24) Last modified by djao (24)

Numerical id 9

Author djao (24) Entry type Definition Classification msc 12E99 Classification msc 03A05 A field is a set F together with two binary operations on F, called addition and multiplication, and denoted + and \cdot , satisfying the following properties, for all $a,b,c\in F$:

- 1. a + (b + c) = (a + b) + c (associativity of addition)
- 2. a + b = b + a (commutativity of addition)
- 3. a + 0 = a for some element $0 \in F$ (existence of zero element)
- 4. a + (-a) = 0 for some element $-a \in F$ (existence of additive inverses)
- 5. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity of multiplication)
- 6. $a \cdot b = b \cdot a$ (commutativity of multiplication)
- 7. $a \cdot 1 = a$ for some element $1 \in F$, with $1 \neq 0$ (existence of unity element)
- 8. If $a \neq 0$, then $a \cdot a^{-1} = 1$ for some element $a^{-1} \in F$ (existence of multiplicative inverses)
- 9. $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ (distributive property)

Equivalently, a field is a commutative ring F with identity such that:

- \bullet 1 \neq 0
- If $a \in F$, and $a \neq 0$, then there exists $b \in F$ with $a \cdot b = 1$.