Project Euler #99: Largest exponential

This problem is a programming version of Problem 99 from projecteuler.net

Comparing two numbers written in index form like 2^{11} and 3^7 is not difficult, as any calculator would confirm that $2^{11}=2048<3^7=2187$.

However, confirming that $632382^{518061} > 519432^{525806}$ would be much more difficult, as both numbers contain over three million digits.

You are given N base exponent pairs, each forming a large number you have to find the K^{th} smallest number of them. K is 1-indexed.

Input Format

First line containts an integer N, number of base exponent pairs. Followed by N lines each have two space separated integers B and E, representing base and exponent. Last line containts an integer K, where K <= N

Constraints

```
1 \leq N \leq 10^5 1 \leq K \leq N 1 \leq B \leq 10^9 1 \leq E \leq 10^9 No two numbers are equal.
```

Output Format

Print the base and exponent in one line separated by space.

Sample Input

Sample Output

3 7