

CSCI 5090/7090- Machine Learning

Spring 2018

Mehdi Allahyari Georgia Southern University

Graphical Models

(slides borrowed from Tom Mitchell, Ali Borji)

A patient comes into a doctor's office with a fever and a bad cough.

Hypothesis space H:

 h_1 : patient has flu

 h_2 : patient does not have flu

Data D:

coughing = true, fever = true, smokes = true

 $P(flu \mid cough, fever) \approx P(flu)P(cough \mid flu)P(fever \mid flu)$

What if attributes are not independent?

What if more than one possible cause?

Full joint probability distribution

smokes					
	cough		← cough		
	$Fever \leftarrow Fever$		Fever	← Fever	
flu	p_1	p_2	p ₃	p_4	
←flu	p ₅ p ₆		p ₇	p ₈	

Sum of all boxes is 1.

In principle, the full joint distribution can be used to answer any question about probabilities of these combined parameters.

	←	smokes		
	cough		$\leftarrow cc$	ough
	fever	← fever	fever	← fever
flu	p_9	p_{10}	p ₁₁	p ₁₂
←flu	p ₁₃	p ₁₄	p ₁₅	p ₁₆

However, size of full joint distribution scales exponentially with number of parameters so is expensive to store and to compute with.

Full joint probability distribution

smokes					
	cough		← ce	ough	
	Fever ← Fever		Fever	← Fever	
flu	p_1 p_2		p ₃	p ₄	
←flu	p ₅ p ₆		p_7	p ₈	

For example, what if
we had another
attribute, "allergies"?

How many probabilities would we need to specify?

	←	smokes		
	cough		← co	ough
	fever	← fever	fever	← fever
flu	p_9	p_{10}	p ₁₁	p ₁₂
←flu	p ₁₃	p ₁₄	p ₁₅	p ₁₆

←Allergy						
	smokes					
	сои	gh	← ce	ough		
	Fever	←Fever	Fever	← Fever		
flu	p_{17} p_{18}		p ₁₉	p ₂₀		
←flu	p ₂₁	p ₂₂	p ₂₃	p ₂₄		

Allergy ← smokes					
	сои	igh .	← co	ough	
	fever	← fever	fever	← fever	
flu	p ₉	p ₁₀	p ₁₁	p ₁₂	
←flu	p ₁₃	p ₁₄	p ₁₅	p ₁₆	

←Allergy					
		← smoke	2S		
	cough		← co	ough	
	fever	← fever	fever	← fever	
flu	p ₂₅	p ₂₆	p ₂₇	p ₂₈	
←flu	p ₂₉	p ₃₀	p ₃₁	p ₃₂₈	

←Allergy						
	smokes					
	cough		← cough			
	Fever	←Fever	Fever	← Fever		
flu	p ₁₇ p ₁₈		p ₁₉	p ₂₀		
←flu	p ₂₁	p ₂₂	p ₂₃	p ₂₄		

Allergy				
← smokes				
	cough		← c	ough
	fever	← fever	fever	\leftarrow fever

←Allergy ← smokes				
	cough		← cough	
	fever ← fever		fever	← fever

But can reduce this if we know which variables are conditionally independent

flu	p ₉	p_{10}	p ₁₁	p ₁₂
←flu	p ₁₃	p ₁₄	p ₁₅	p ₁₆

flu	p ₂₅	p ₂₆	p ₂₇	p ₂₈
←flu	p ₂₉	p ₃₀	p ₃₁	p_{329}

Graphical Models

Key Idea:

- Conditional independence assumptions useful
- but Naïve Bayes is extreme!
- Graphical models express sets of conditional independence assumptions via graph structure
- Graph structure plus associated parameters define joint probability distribution over set of variables
- Two types of graphical models:
 - Directed graphs (aka Bayesian Networks)
 - Undirected graphs (aka Markov Random Fields)

Graphical Models- Why Care?

- Among most important ML developments of the decade
- Graphical models allow combining:
 - Prior knowledge in form of dependencies/independencies
 - Prior knowledge in form of priors over parameters
 - Observed training data
- Principled and ~general methods for
 - Probabilistic inference
 - Learning
- Useful in practice
 - Diagnosis, help systems, text analysis, time series models, ...

Bayesian networks

 Idea is to represent dependencies (or causal relations) for all the variables so that space and computation-time requirements are minimized.

"Graphical Models"

coursera

Global Partners

Courses

Specializations New

Institutions About ▼ | Sign In Sign Up

Stanford

Probabilistic Graphical Models

In this class, you will learn the basics of the PGM representation and how to construct them, using both human knowledge and machine learning techniques.

Preview Lectures

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write P(X|Y,Z) = P(X|Z)

E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Represent Join Probability Distribution over Variables

Eric Xing

Describe Network of Dependencies

Bayesian Networks

Bayesian Networks = Bayesian Belief Networks = Bayes Nets

Bayesian Network: Alternative representation for complete joint probability distribution

"Useful for making probabilistic inference about models domains characterized by inherent complexity and uncertainty"

Uncertainty can come from:

- incomplete knowledge of domain
- inherent randomness in behavior in domain

Bayesian Networks

Bayes Nets define Joint Probability Distribution in terms of this graph, plus parameters

Benefits of Bayes Nets:

- Represent the full joint distribution in fewer parameters, using prior knowledge about dependencies
- Algorithms for inference and learning

Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines P(X_i / Pa(X_i))
- The joint distribution over all variables is defined to be

$$P(X_1...X_n) = \prod_i P(X_i|Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

		cou	ıgh
flu	smoke	true	false
True	True	0.95	0.05
True	False	0.8	0.2
False	True	0.6	0.4
false	false	0.05	0.95

Conditional probability tables for each node

flu	
true	0.01
false	0.99

		fever	
lu	true	false	
rue	0.9	0.1	
false	0.2	0.8	

Inference in Bayesian networks

If network is correct, can calculate full joint probability distribution from network.

$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

where $pa(X_i)$ denotes specific values of parents of X_i .

Naïve Bayes Example

 $P(flu \mid cough, fever) \approx P(flu)P(cough \mid flu)P(fever \mid flu)$

Calculate

$$P(cough = t \land fever = f \land flu = f \land smoke = f)$$

Calculate

$$P(cough = t \land fever = f \land flu = f \land smoke = f)$$

$$= \prod_{i=1}^{n} P(X_i = x_i \mid parents(X_i))$$

$$= P(cough = t \mid flu = f \land smoke = f)$$

$$\times P(fever = f \mid flu = f)$$

$$\times P(flu = f)$$

$$\times P(smoke = f)$$

$$= .05 \times .8 \times .99 \times .8$$

$$= .032$$

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two different students (Student_A and Student_B)

What is the probability that Student A is late?

What is the probability that Student B is late?

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two different students (Student_A and Student_B)

What is the probability that Student A is late?

What is the probability that Student B is late?

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two different students (Student A and Student B)

Unconditional ("marginal") probability. We don't know if there is a train strike.

What is the probability that Student A is late?

What is the probability that Student B is late?

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two different students (Student_A and Student_B)

Unconditional ("marginal") probability. We don't know if there is a train strike.

P(StudentALate) = P(StudentALate | TrainStrike)P(TrainStrike)

+P(StudentALate | ¬ TrainStrike)P(¬ TrainStrike)

 $= 0.8 \times 0.1 + 0.8 \times 0.9 = 0.17$

P(StudentBLate) = P(StudentBLate | TrainStrike)P(TrainStrike)

+P(StudentBLate | ¬ TrainStrike)P(¬ TrainStrike)

 $= 0.6 \times 0.1 + 0.5 \times 0.9 = 0.51$

Now, suppose we know that there is a train strike. How does this revise the probability that the students are late?

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two different students (Student A and Student B)

Now, suppose we know that there is a train strike. How does this revise the probability that the students are late?

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two different students (Student_A and Student_B)

Evidence: There is a train strike.

$$P(StudentALate) = 0.8$$

$$P(StudentBLate) = 0.6$$

Now, suppose we know that Student A is late.

How does this revise the probability that there is a train strike?

How does this revise the probability that Student B is late?

Notion of "belief propagation".

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two different students (Student A and Student B)

Evidence: Student A is late.

Now, suppose we know that Student A is late.

How does this revise the probability that there is a train strike?

How does this revise the probability that Student B is late?

Notion of "belief propagation".

Evidence: Student A is late.

Figure 1. BBN detailing the likely implications of a train strike on the arrival time of two different students (Student A and Student B)

P(StudentBLate) = P(StudentBLate | TrainStrike)P(TrainStrike) + P(StudentBLate | ¬TrainStrike)P(¬TrainStrike) = 0.6 × 0.47 + 0.5 × 0.53 = 0.55

Another example

smoking		
yes 0.2		
no	0.8	

	temperature	
pneumonia	yes	no
yes	0.9	0.1
no	0.2	8.0

		cough	
pneumonia	smoking	true	false
true	yes	0.95	0.05
true	no	8.0	0.2
false	yes	0.6	0.4
false	no	0.05	0.95

What is *P*(*cough*)?

Bayesian Network - Example

Nodes = random variables

A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parents(N))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

The joint distribution over all variables:

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Bayesian Network

Bayesian Network

What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents.

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Some helpful terminology

Parents = Pa(X) = immediate parents

Antecedents = parents, parents of parents, ...

Children = immediate children

Descendents = children, children of children, ...

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

Bayesian Networks

CPD for each node X_i
 describes P(X_i / Pa(X_i))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1
(W	

Chain rule of probability says that in general:

$$P(S, L, R, T, W) = P(S)P(L|S)P(R|S, L)P(T|S, L, R)P(W|S, L, R, T)$$

But in a Bayes net:
$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

How many parameters?

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	8.0
¬L, ¬R	0.9	0.1

WindSurf

To define joint distribution in general?

To define joint distribution for this Bayes Net?

Complexity of Bayesian Networks

For *n* random Boolean variables:

- Full joint probability distribution: 2ⁿ entries
- Bayesian network with at most k parents per node:
 - Each conditional probability table: at most 2^k entries
 - Entire network: n 2^k entries

Inference in Bayes Nets

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

P(S=1, L=0, R=1, T=0, W=1) =

Learning a Bayes Net

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	8.0
¬L, ¬R	0.9	0.1

WindSurf

Consider learning when graph structure is given, and data = { <s,l,r,t,w> } What is the MLE solution? MAP?

Algorithm for Constructing Bayes Networks

- Choose an ordering over variables, e.g., X₁, X₂, ... X_n
- For i=1 to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1 ... X_{i-1}$ such that

$$P(X_i|Pa(X_i)) = P(X_i|X_1,...,X_{i-1})$$

Notice this choice of parents assures

$$P(X_1 ... X_n) = \prod_i P(X_i | X_1 ... X_{i-1})$$
 (by chain rule)
= $\prod_i P(X_i | Pa(X_i))$ (by construction)

- Bird flu and Allegies both cause Nasal problems
- Nasal problems cause Sneezes and Headaches

What is the Bayes Network for X₁, ..., X₄ with NO assumed conditional independencies?

What You Should Know

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- BN = Graph plus parameters of CPD's
 - Defines joint distribution over variables
 - Can calculate everything else from that
 - Though inference may be intractable
- Reading conditional independence relations from the graph
 - Each node is cond indep of non-descendents, given only its parents
 - 'Explaining away'