cin.ufpe.br

Centro de Informática UN FINDE

Projeto Lógico de BD

Modelo Relacional

Apresentado Por:
Robson do Nascimento Fidalgo rdnf@cin.ufpe.br

- Foi definido em 1970 por E.F. Cood
- Principais razões para sua grande aceitação:
 - Simplicidade (teoria dos conjuntos) e Formalismo (álgebra relacional)
- É um modelo lógico que representa dados como relações
 - Neste modelo, o BD é visto como um conjunto de relações
 - Os dados em uma relação representam fatos reais a respeito de uma entidade ou de um relacionamento do mundo real

Formalização Básica

1) Sejam D1,D2,...Dn conjuntos, não necessariamente disjuntos, R é uma relação sobre estes n conjuntos se ela for um conjunto de n-uplas (tuplas) ordenadas <a1,a2,..., an> tal que a1, a2, ..., an pertence a D1, D2, ..., Dn ou a nulo

Onde:

- D1,D2,...Dn = Domínios (Conjunto de valores indivisíveis)
- a1, a2, ..., an = Atributos (Papel desempenhado por algum domínio)
- n = índice máximo da relação (grau da relação ou qtd de atributos)
 - dupla <d1,d2>, tripla <d1,d2,d3>, ..., n-upla <d1,d2,...,dn>

Modelo Relacional - Relações

- Propriedades de uma Relação:
 - Não há tuplas duplicadas em uma mesma relação
 - As tuplas de uma relação não são ordenadas
 - Os atributos em uma tupla não são ordenados
 - Cada relação possui um número fixo de atributos, todos com nomes distintos

- Composição básica de um BD Relacional
 - Tabelas (ou Relações)
 - Compostas de
 - Linhas
 - Colunas
 - Chaves primárias
 - Relacionadas através de
 - Chaves estrangeiras

Terminologias

profissional	acadêmica
tabela	relação
linha	tupla
coluna	atributo
valor de coluna	valor de atributo

[C. Heuser - Projeto de Banco de Dados, Sagra Luzzatto, 2004, 5ª edição]

Mais sinônimos:

- Tabela = Relação = Arquivo
- Linha = Tupla = Registro
- Coluna = Atributo = Campo
- Valor de Coluna = Valor de Atributo = Valor de Campo

Chaves

 Conceito usado para especificar restrições de integridade básicas de um SGBD relacional

Quatro tipos:

- chave candidata
- chave primária
- chave estrangeira
- chave alternativa

- Chave Candidata
 - É uma coluna (chave simples) ou uma combinação de colunas (chave composta) cujos valores distinguem uma linha das demais dentro de uma tabela.
 - Esta deve ser mínima.

EX: Chaves Candidatas
 simples composta

Cliente		
Matrícula	CPF *	Nome
1111	101.010.101-01	Rita
2222	202.020.202-02	Ana
3333	303.030.303-03	Pedro
4444	404.040.404-04	José

Dependente		
Matrícula	Num	Nome
1111	1	Pedro
1111	2	Ruth
2222	1	Rosa
3333	1	João

mformática Modelo Relacional - Chaves

- Chave Primária
 - É a chave candidata que foi escolhida para identificar preferencialmente uma tupla
 - EX:

Chaves Primárias

Simples		
Cliente		
Matrícula	CPF	Nome
1111	101.010.101-01	Rita
2222	202.020.202-02	Ana
3333	303.030.303-03	Pedro
4444	404.040.404-04	José

Dependente		
Matrícula	Num	Nome
1111	1	Pedro
1111	2	Ruth
2222	1	Rosa
3333	1	João

- Chave Estrangeira
 - Uma coluna ou uma combinação de colunas, cujos valores aparecem necessariamente na ch. primária de uma tabela
 - Mecanismo que permite a implementação de relacionamentos em um banco de dados relacional

EX:

Chave Estrangeira

simples

Cliente		
Matrícula	CPF	Nome
1111	101.010.101-01	Rita
2222	202.020.202-02	Ana
3333	303.030.303-03	Pedro
4444	404.040.404-04	José

Dependente		
Matrícula	Num	Nome
1111	1	Pedro
1111	2	Ruth
2222	1	Rosa
3333	1	João

- Chave Estrangeira na mesma tabela
 - EX:

Auto-Relacionamento

- Chave Estrangeira Validação pelo SGBD
 - Quando da inclusão de uma linha na tabela que contém a chave estrangeira
 - O valor da chave estrangeira deve aparecer na coluna da chave primária referenciada
 - Quando da alteração do valor da chave estrangeira
 - O novo valor de uma chave estrangeira deve aparecer na coluna da chave primária referenciada
 - Quando da exclusão de uma linha da tabela que contém a chave primária referenciada pela chave estrangeira
 - Na coluna chave estrangeira não deve aparecer o valor da chave primária que está sendo excluída

- Chave Alternativa
 - É a chave candidata que não foi escolhida como chave primária
 - EX:

Chave Alternativa

simples

Cliente		
Matrícula	CPF *	Nome
1111	101.010.101-01	Rita
2222	202.020.202-02	Ana
3333	303.030.303-03	Pedro
4444	404.040.404-04	José

Dependente		
Matrícula	Num	Nome
1111	1	Pedro
1111	2	Ruth
2222	1	Rosa
3333	1	João

Chave Alternativa não faz relacionamento com Chave Estrangeira!

Modelo Relacional - Valor Vazio

- Um valor de campo pode assumir o valor especial vazio ("null" em inglês)
- Colunas nas quais não são admitidos valores vazios são chamadas de colunas obrigatórias

- Abordagem relacional
 - Todas colunas que compõem a chave primária devem ser obrigatórias
 - As colunas que compõem as demais chaves podem ser opcionais

- Objetivo primordial de um SGBD
 - Garantir a integridade de dados. Isto é, evitar que o BD entre em um estado inconsistente.
- Para garantir a integridade de um BD, os SGBD oferecem o mecanismo de restrições de integridade
- Uma restrição de integridade é uma regra de consistência de dados que é garantida pelo próprio SGBD
- Restrições de integridade são checadas pelo SGBD quando o BD sofre qualquer modificação.

- Restrições de integridade básicas
 - Restrições de Domínio
 - Restrições de Chaves
 - Integridade da Entidade
 - Restrições em Nulo
 - Integridade referencial
- As restrições acima são:
 - Garantidas automaticamente por um SGBD relacional
 - Não sendo exigido que o programador escreva procedimentos para garanti-las explicitamente

Restrições de integridade básicas

Restrições de Domínio

 Especifica que para uma coluna A de uma tabela, todo valor associado a A deve ser atômico e pertencer ao domínio desta coluna.

Restrições de Chaves

Especifica que todas as tuplas em uma relação devem ser distintas.

Integridade da Entidade

Especifica que os valores das chaves primárias não pode ser vazio.

Restrições em Nulo

Controla quais colunas de uma tabela podem receber valores nulos.

Integridade referencial

 Especifica que os valores de uma chave estrangeira devem aparecer na chave primária da tabela referenciada

- Há muitas outras restrições de integridade que não se encaixam nas categorias básicas
- Essas restrições são chamadas de restrições semânticas (ou regras de negócio)
- Exemplos de restrições semânticas:
 - Um empregado n\(\tilde{a}\)o pode ter um sal\(\tilde{a}\)rio maior que seu superior imediato.
- Diferente das restrições de integridade básicas, estas devem ser implementadas pelos programadores.

Esquema Relacional

- Esquema Relacional = definição das tabelas
 - Representação básica (incompleta mas compacta)
 - Exemplo:

Agência (código, tipo, endereço, CEP, ...);

Chave Primária

Conta(número, saldo, dtAbertura, codAgência, ...)

codAgência referencia Agência

Chave Estrangeira

Projeto Lógico de BD

Álgebra Relacional

"Linguagem de Consulta Relacional"

Por:

Robson do Nascimento Fidalgo rdnf@cin.ufpe.br

Linguagens de Consulta Relacionais

- Linguagens de consulta (query languages)
 - Permitem recuperar e manipular dados
- Modelo relacional suporta linguagens de consultas simples e poderosas
 - Forte embasamento formal → permiti desenvolvimento de algoritmos otimizados
- Não são linguagens de programação
 - Não são "computacionalmente completas"
 - Falta de operações de decisão e repetição.
 - Inadequadas para cálculos complexos
 - Oferecem acesso e manipulação fácil e eficiente de BDs

Álgebra Relacional

- Álgebra = um conjunto de objetos + um conjunto de operações sobre estes.
 - EX: Aritmética → conj. de números + operações sobre os números
- Álgebra Relacional
 - Desenvolvida para descrever operações sobre uma BDR
 - Conhecimentos de álgebra relacional ajudam a entender SQL
 - Objetos: são as tabelas (relações)
 - Operações: são as definidas sobre conjuntos + as relacionais
- Principais operações:
 - União
 - Interseção
 - Diferença
 - Produto Cartesiano
 - Complemento

Operações
- Seleção
- Projeção
Relacionais Unárias
Conjuntos
- Junção
- Divisão
Relacionais Binárias

Operações sobre conjuntos

- Duas relações A(a1, a2, .. an) e B(b1, b2, ..bn) são ditas compatíveis em domínio se ambas têm o mesmo grau n e se Dom (ai) = Dom (bi), 1 ≤ i ≤ n.
 - Exemplo:
 - Aluno (nome, idade, curso)
 - Professor (nome, idade, curso)
 - Funcionario (nome,curso, idade)

Dom(nome) = char(30)

Dom(idade) = int

Dom(curso) = char(5)

Dom(depto.) = char(5)

Aluno é compatível com Professor, mas não é com Funcionario.

- Note que :
 - A estrutura de uma relação (tabela) é mais importante do que sua semântica.
 - A ordem dos atributos prevalece

Operações sobre conjuntos

- As operações binárias sobre conjuntos da álgebra relacional podem operar sobre pares de relações compatíveis em domínio
- Tais operações são as usuais da teoria dos conjuntos:
 - União: (A∪B) ⇒ Une as tuplas das relações A e B.
 - Interseção: (A∩B) ⇒ Retorna as tuplas cujos valores sejam comuns às A e B
 - Diferença: (A-B) ⇒ Retorna as tuplas de A cujos valores não estão em B
 - Produto cartesiano: (AXB) ⇒ Combinação de todas as tuplas das relações A e B
 - Complemento ou união exclusiva: (A∪ B) ⇒ Retorna todas as tuplas de A ou a B, que não estão em ambas, ou seja, A∪ B = A∪B A∩B.
- OB: As operações de União, Interseção, Diferença e Complemento só aplicam-se a relações compatíveis em domínio

União

Aluno (nome, idade,curso)

{José, 25, Computação; (José como aluno de Doutorado)

Pedro, 21, Química;

Paulo, 19, Física;

Ana, 19, Computação}

Professor (nome, idade,curso)

{Ruth, 35, Computação;

Rosa, 32, Química;

José, 25, Computação)

EX: Retornar todos os alunos e professores da Universidade

Aluno ∪ Professor = (nome, idade,curso)

{José, 25, Computação;

Pedro, 21, Química;

Paulo, 19, Física;

Ana, 19, Computação;

Ruth, 35, Computação;

Rosa, 32, Química}

Convenciona-se usar os nomes dos atributos da relação a esquerda, quando não especificado.

Note que José só aparece uma vez!

Interseção

Aluno (nome,idade,curso)

{José, 25, Computação; Pedro, 21, Química; Paulo, 19, Física; Ana, 19, Computação}

Professor (nome,idade,curso)

{Ruth, 35, Computação; Rosa, 32, Química; José, 25, Computação}

 EX: Retornar todos que ao mesmo tempo sejam alunos e professores da Universidade

Aluno Professor = (nome,idade,curso) {José, 25, Computação}

Diferença

Aluno (nome,idade,curso)

{José, 25, Computação; Pedro, 21, Química; Paulo, 19, Física; Ana, 19, Computação}

Professor (nome,idade,curso)

{Ruth, 35, Computação; Rosa, 32, Química; José, 25, Computação}

- EX1: Retornar todos os alunos que não são professores
- EX2: Retornar todos os professores que não são alunos

```
EX1:Aluno Professor = (nome,idade,curso)
```

{ Pedro, 21, Química; Paulo, 19, Física; Ana, 19, Computação}

EX2:Professor Aluno=(nome,idade,curso)

{Ruth, 35, Computação; Rosa, 32, Química}

Note que a Diferença não é comutativa, ou seja, A-B ≠ B-A

Produto Cartesiano

Curso (curso, departamento) Professor (nome,idade,curso)

```
{ Computação, EC; {Ruth, 35, Computação; Computação, CC; Rosa, 32, Química; Matemática, MA}
```

 EX: Retornar todas as combinações entre os cursos e os professores da Universidade

Curso X Professor = (curso,departamento,nome,idade,P.curso)

```
{Computação, EC, Ruth, 35, Computação; Computação, EC, Rosa, 32, Química; Computação, EC, José, 25, Computação; Computação, CC, Ruth, 35, Computação; Computação, CC, Rosa, 32, Química; Computação, CC, José, 25, Computação; Matemática, MA, Ruth, 35, Computação; Matemática, MA, Rosa, 32, Química; Matemática, MA, José, 25, Computação}
```


Complemento ou União Exclusiva

Aluno (nome,idade,curso) {José, 25, Computação; Pedro, 21, Química; Paulo, 19, Física; Ana, 19, Computação}

Professor (nome,idade,curso)

{Ruth, 35, Computação; Rosa, 32, Química; José, 25, Computação}

 EX: Retornar todos que ao mesmo tempo não são aluno e professor da Universidade

```
Aluno U Professor = (nome, idade,curso)
```

```
{ Pedro, 21, Química;
Paulo, 19, Física;
Ana, 19, Computação;
Ruth, 35, Computação;
Rosa, 32, Química}
```


Operações relacionais unárias

- Produzem como resultado uma nova relação que é um subconjunto (horizontal ou vertical) da relação origem
- São elas:
 - Seleção: (^o<condição>^(Relação)) ⇒ seleciona tuplas de uma relação que satisfazem um dada condição.
 - Onde (Relação) é uma tabela ou uma expressão de álgebra relacional, e <condição>, uma expressão booleana (and, or, not, =, ≠, < , <= , > , >=) envolvendo atributos da tabela
 - Produz um subconjunto horizontal de uma relação
 - Projeção: (^π<atributos>^(Relação)) ⇒ seleciona de uma relação os atributos de interesse
 - Onde (Relação) é uma tabela ou uma expressão de álgebra relacional, e <atributos>, uma lista de colunas da tabela operando
 - Produz um subconjunto vertical de uma relação

Informática Seleção

Aluno (nome,idade,curso)

{José, 25, Computação; Pedro, 21, Química; Paulo, 19, Física; Ana, 19, Computação}

Professor (nome,idade,curso)

{Ruth, 35, Computação; Rosa, 32, Química; José, 25, Computação}

 EX: Retornar todos os alunos maiores de 20 anos do curso de computação da Universidade

^σ<idade > 20 and curso = "Computação">(Aluno) = (nome,idade,curso) {José, 25, Computação}

Outra solução:

^σ<idade > 20> (^σ<curso="Computação"> (Aluno)) =(nome,idade,curso)

{José, 25, Computação; Ana, 19, Computação}

Projeção

Aluno (nome,idade,curso)

{José, 25, Computação; Pedro, 21, Química; Paulo, 19, Física; Ana, 19, Computação}

Professor (nome,idade,curso)

{Ruth, 35, Computação; Rosa, 32, Química; José, 25, Computação}

EX: Retornar todos os alunos e seus cursos

```
π<nome, curso><sup>(Aluno)</sup> = (nome, curso)
```

{José, Computação; Pedro, Química; Paulo, Física; Ana, Computação}

- OB: Na Projeção pode haver eliminação de linhas
- EX: Retornar todos os cursos que têm alunos matriculados na Universidade

```
\pi<curso>(Aluno) = (curso)
```

{ Computação; Química; Física}

Operações relacionais binárias

- Produz como resultado uma nova relação que é um subconjunto (seleção) do produto cartesiano das relações envolvidas
 - Em geral, após o produto cartesiano, é necessário comparar um ou um grupo de atributos de uma relação com um ou um grupo atributos (compatíveis em domínio) da outra relação.
- São elas:
 - Junção:
 - Divisão:

- Retorna apenas as tuplas do produto cartesiano de seus argumentos que satisfaçam uma dada condição
- Sintaxe: ((R1) ⋈<condição> (R2)) = (^σ<condição> (R1 X R2))
 - Onde (R1) e (R2) são relações ou expressões de álgebra relacional, e <condição>, uma expressão booleana envolvendo os atributos das duas relações.

Junção

Aluno (nome,idade,curso)

{José, 25, Computação; Pedro, 21, Química; Paulo, 19, Física; Ana, 19, Computação; João, 34, Computação}

Professor (nome,idade,curso)

{Ruth, 35, Computação; Rosa, 32, Química; José, 25, Computação}

 EX: Retornar todos os alunos mais velhos do que qualquer professor da Universidade

> ((Aluno) ⋈<Aluno.idade > Professor.idade> (Professor)) = (nome, idade, curso, nome, idade, curso)

> > {João, 34, Computação, Rosa, 32, Química João, 34, Computação, José, 25, Computação}

Divisão

- Utilizada quando se deseja extrair de uma relação R1 uma conjunto de valores que também existem na relação R2
- Produz uma relação R(X) com as tuplas de R1(A) que estão combinadas com todas as tuplas de R2(B), onde:
 B ⊂ A e X = A-B
- Normalmente utilizada em operações que envolve "todos"
- Sintaxe: (R1) ÷ (R2)
 - Onde R1 e Relação2 são tabelas ou expressões de álgebra relacional

nformática Divisão

```
Piloto (nome, avião)
{Pedro,101;
Pedro, 105;
Bruno, 101;
Bruno, 104;
Bruno, 105;
Bruno, 105;
Bruno, 103;
Paulo, 103;
Paulo, 104}

Avião (identificação)
{101;
104;
105;
103}
```

 EX:Retornar os pilotos que estão habilitados para conduzir todos os aviões da companhia.

```
(Piloto) ÷ (Avião) = (nome)
{ Bruno }
```


nformática Divisão

Matricula (nome-a, discipl, nota) {José, IF111, 9,0; Pedro, IF333, 3,5; Paulo, IF111, 7,5; Paulo, IF333, 6,5; José, IF333, 10,0; José, IF222, 6,5; Ana, IF222, 7,0 } Aulas (nome-p, discipl) {Lopes, IF111; Joana, IF222; Lopes, IF333}

 EX:Retornar os alunos que cursam todas as disciplinas ministradas pelo Prof. Lopes?

```
\pi_{\text{enome-a, discipl}}^{(\text{Matricula})} \div \pi_{\text{ediscipl}}  (on the same of the same of
```

Note: Todas as operações podem ser combinadas entre si

Banco de Dados

Normalização

Por:

Robson do Nascimento Fidalgo rdnf@cin.ufpe.br

- Introduzida por E.F.Codd em 1970 (1FN, 2FN e 3FN)
- Processo matemático fundamentado na teoria dos conjuntos
- Aplica uma série de regras sobre as tabelas de um BD para verificar se estas foram bem projetadas

Objetivo

- Gerar um conjunto de esquemas de relações que permita:
 - Armazenar informações sem redundância desnecessária, e
 - Recuperar informações eficientemente.
- Em resumo...
 - Evita anomalias de atualização e redundâncias no projeto do BDR
 - Permite representar eficientemente os dados do mundo real, tornando o modelo mais estável e de fácil manutenção

- Visão geral:
 - Converter progressivamente uma tabela em tabelas menores, até que pouca ou nenhuma redundância de dados exista
 - Processo sistemático de geração de tabelas

- Usada para validação do modelo relacional
- Seu benefício é melhor percebido quando aplicado em modelos relacionais obtidos por engenharia reversa de sistemas de arquivos
- Também pode ser usada para geração do modelo relacional a partir de documentos da organização
 - Gerar tabelas a partir de notas fiscais, históricos escolar, relatórios, etc.

- É baseada no conceito de formas normais (regras)
 - Existem 5 formas normais
 - 1FN, 2FN, 3FN, FNBC, 4FN e 5FN
- Do ponto de vista de desempenho, sua aplicação nem sempre é ideal.
 - Proliferação de tabelas
 - Usar o bom senso!

- Aplicar normalização até qual forma normal?
 - Na prática o processo de normalização encerra-se na 3FN ou FNBC

 Inicialmente, usa-se o conceito de dependência funcional para expressar fatos acerca dos dados.

Normalização — Definições

- Dependência Funcional (DF)
 - Sempre que um conjunto de colunas C₁ identifica uma coluna ou um conjunto de colunas C₂, diz-se que há uma dependência funcional entre C₁ e C₂, onde C₁ é o determinante e C₂ é o dependente.
 - Representação:
 - C₁ → C₂ (lê-se: C₁ determina C₂ ou C₂ é dependente de C₁)
 - EX: Empregado (CPF, Nome, DtNasc, Cargo, Gratificacao)
 - CPF →Nome
 - CPF →DtNasc
 - CPF →Categoria
 - CPF →Salario
 - CPF → (Nome, Cargo, Gratificacao)

Normalização — Definições

- Dependência Funcional Parcial (DFP)
 - Ocorre quando um conjunto de colunas é depende apenas de parte das colunas da ch. primária composta
 - EX:

```
EmpProj(<u>CPF,CodP</u>,DtInicio,Nome,DtNas,Cargo,Gratificacao)
```

- Dependência Funcional Total (DFT)
 - É o oposto da DFP
 - EX: (<u>CPF,CodP</u>) → (Cargo,Gratificacao)

Normalização — Definições

- Dependência Funcional Transitiva (DFT)
 - Dada uma tabela qualquer, diz-se que existe DFT quando um conjunto de colunas C₃ depende de uma coluna C₂, que não é ch. primária, mas que C₂ depende funcionalmente da chave primária C₁
 - Ou seja, se numa relação tivermos $C_1 \rightarrow C_2$ e $C_2 \rightarrow C_3$ então diz-se que C_3 depende transitivamente de C_1 , através de C_2 .
 - EX:
 - Empregado (<u>CPF</u>, Nome, DtNasc, Cargo, Gratificacao)
 - Diz-se que *Gratificacao* é dependente transitivo de *Cargo*.
 Então, se *Cargo* é determinado por *CPF*, este, indiretamente (transitivamente), também determina *Gratificacao*.

- 1^a Forma Normal (1FN)
 - Uma tabela esta na 1FN quando:
 - Os domínios de todas as suas colunas são atômicos. Ou seja, a tabela não pode ter atributo composto ou multivalorado
 - Em resumo: Uma tabela está na 1FN se nesta não houver uma tabela aninhada

- 1^a Forma Normal (1FN)
 - Contra-exemplo (Tabelas aninhadas)

Projeto (CodP, Descricao, {Localizacao}, {Empregado(CPF, Nome, Cargo, Gratificacao)})

Projeto									
<u>CodP</u>	Descricao	Localizacao	Localizacao Epregado (<u>CPF</u> , Nome, Cargo, Gratificacao)						
1010	Tapa Buraco	Av. Sul	10101010	Paulo	Operador N1	2000			
		Av. Norte	20202020	Rui	Operador N1	2000			
		Av. Caxangá	30303030	Rita	Engenheiro	3000			
2020	Asfaltamento	Av. Norte	30303030	Rita	Gerente	4000			
		Av. Recife	40404040	João	Operador N2	2500			
			50505050	Pedro	Operador N2	2500			

Atributo Multivalorado

Atributo Composto e Multivalorado

- 1^a Forma Normal (1FN)
 - Como transformar uma tabela para a 1FN
 - Atributo Composto:
 - Decompor o atributo composto em atributos simples e colocá-los:
 - Na mesma tabela (indicado quando o atributo composto é monovalorado). EX:

```
    » Paciente (<u>CPF</u>, Nome, Endereco(Logradouro, CEP))
    » Paciente (<u>CPF</u>, Nome, Logradouro, CEP)
    ✓ 1FN
```

Em uma tabela relacionada (indicado quando o atributo composto é multivalorado). EX:

```
    » Paciente (<u>CPF</u>, Nome, {Telefone(DDD, Prefixo, Sufixo)})
    » Paciente (<u>CPF</u>, Nome)
    ✓ 1FN
    » PacienteTelefone (CPF, <u>DDD</u>, <u>Prefixo</u>, <u>Sufixo</u>)
    ✓ 1FN
    CPF referencia Paciente
```


- 1ª Forma Normal (1FN) Transformação
 - Como transformar uma tabela para a 1FN
 - Atributo Multivalorado:
 - Decompor o atributo multivalorado em atributos simples e colocá-los:
 - Na mesma tabela (indicado quando a quantidade de valores é pequena e conhecia a priori). EX:

```
» Paciente (<u>CPF</u>, Nome, {GrausDeLente})
× 1FN
```

- » Paciente (<u>CPF</u>, Nome, GrauLenteE, GrauLenteD) ✓ 1FN
- Em uma tabela relacionada (indicado quando a multivaloração é desconhecida ou grande). EX:

```
    » Paciente (<u>CPF</u>, Nome, {ImagemRX})
    » Paciente (<u>CPF</u>, Nome)
    ✓ 1FN
    » PacienteRX (CPF, <u>ImagemRX</u>)
    ✓ 1FN
    CPF referencia Paciente
```


1ª Forma Normal (1FN) - Transformação

Projeto	Projeto								
CodP	Descricao	Localizacao	Epregado (C	PE, Nome	, Cargo, Gratifica	cao)			
1010	Tapa Buraco	Av. Sul	10101010	Paulo	Operador N1	2000			
		Av. Norte	20202020	Rui	Operador N1	2000			
		Av. Caxangá	30303030	Ana	Engenheiro	3000	4		
							× 1FN		
2020	Asfaltamento	Av. Norte	30303030	Ana	Gerente	4000			
		Av. Recife	40404040	João	Operador N2	2500			
			50505050	Pedro	Operador N2	2500			
-									

Projeto				_ocalizacao		ProjetoEmp	regado		1	
<u>CodP</u>	Descricao		<u>CodP</u>	<u>Localizacao</u>		CodP	CPE	Nome	Cargo	Gratificacao
1010	Tapa Buraco		1010	Av. Sul		1010	10101010	Paulo	Operador N1	2000
2020	Asfaltamento		1010	Av. Norte		1010	20202020	Rui	Operador N1	2000
			1010	Av. Caxangá		1010	30303030	Ana	Engenheiro	3000
			2020	Av. Norte		2020	30303030	Ana	Gerente	4000
			2020	Av. Recife		2020	40404040	João	Operador N2	2500
✓ 1FN				2020	50505050	Pedro	Operador N2	2500		
									•	•

- 2^a Forma Normal (2FN)
 - Uma tabela esta na 2FN quando:
 - Está na 1FN,
 - A chave primária é composta e
 - Todas as colunas que não participam da chave primária são dependentes de todas as colunas que compõem a chave primária.
 Isto é, não existe DFP.

- 2^a Forma Normal (2FN)
 - Contra-Exemplo (Dependência Funcional Parcial)

ProjetoEmpregado							
CodP	<u>CPF</u>	Nome	Cargo	Gratificacao			
1010	10101010	Paulo	Operador N1	2000			
1010	20202020	Rui	Operador N1	2000			
1010	30303030	Rita	Engenheiro	3000			
2020	30303030	Rita	Gerente	4000			
2020	40404040	João	Operador N2	2500			
2020	50505050	Pedro	Operador N2	2500			

- 2^a Forma Normal (2FN)
 - Como transformar uma tabela para a 2FN
 - Retira-se a(s) coluna(s) com DFP da tabela original
 - A partir dessa(s) coluna(s) retirada(s), cria-se uma ou mais tabelas compostas pela parte da chave primária e suas colunas dependentes
 - A parte da chave primária que gerou a dependência será a nova chave primária da tabela criada. EX:
 - Consulta(<u>CPF</u>, <u>CRM</u>, NomeP, NomeM, Especialidade, Tipo, Valor)× 2FN
 - Paciente (<u>CPF</u>, NomeP)
 ✓ 2FN
 - Medico (<u>CRM</u>, NomeM, Especialidade)
 ✓ 2FN
 - Consulta (<u>CPF</u>, <u>CRM</u>, Tipo, Valor)
 CPF referencia Paciente
 CRM referencia Medico

√ 2FN

- 2^a Forma Normal (2FN)
 - Como transformar uma tabela para a 2FN

ProjetoEmpregado							
CodP	<u>CPF</u>	Nome	Cargo	Gratificacao			
1010	10101010	Paulo	Operador N1	2000			
1010	20202020	Rui	Operador N1	2000			
1010	30303030	Rita	Engenheiro	3000	× 2FN		
2020	30303030	Rita	Gerente	4000			
2020	40404040	João	Operador N2	2500			
2020	50505050	Pedro	Operador N2	2500			

Empregado		ProjetoEmpregado					
<u>CPF</u>	Nome		CodP	<u>CPF</u>	Cargo	Gratificacao	
10101010	Paulo		1010	10101010	Operador N1	2000	
20202020	Rui		1010	20202020	Operador N1	2000	
30303030	Rita		1010	30303030	Engenheiro	3000	√ 2FN
40404040	João		2020	30303030	Gerente	4000	
50505050	Pedro		2020	40404040	Operador N2	2500	
			2020	50505050	Operador N2	2500	

- 3^a Forma Normal (3FN)
 - Uma tabela esta na 3FN quando:
 - Está na 2FN e
 - Não contém DF Transitiva, sendo que todas as colunas que não participam da chave primária devem ser exclusivamente dependentes desta

3^a Forma Normal (3FN)

ProjetoEmpregado						
CodP	CPF	Cargo	Gratificacao			
1010	10101010	Operador N1	2000			
1010	20202020	Operador N1	2000			
1010	30303030	Engenheiro	3000			
2020	30303030	Gerente	4000			
2020	40404040	Operador N2	2500			
2020 50505050		Operador N2	2500			

- 3^a Forma Normal (3FN)
 - Como transformar uma tabela para a 3FN
 - Retira-se a(s) coluna(s) com DF Transitiva da tabela original
 - A partir dessa(s) coluna(s) retirada(s), cria-se uma ou mais tabelas compostas pela coluna determinante (como chave primária) + suas colunas dependentes
 - Verifica-se a 2FN para cada nova tabela. EX:
 - Consulta (<u>CPF</u>, <u>CRM</u>, Tipo, Valor) × 3FN
 - Consulta (<u>CPF</u>, <u>CRM</u>, Tipo)
 ✓ 3FN
 Tipo referencia ConsultaTipo
 - ConsultaTipo (<u>Tipo</u>, Valor)
 ✓ 3FN
 - OBS: Além de não conter DFT, as tabelas na 3FN não devem possuir colunas com valores calculados (derivados)

- 3^a Forma Normal (3FN)
 - Como transformar uma tabela para a 3FN

ProjetoEmp				
CodP	CPF	Cargo	Gratificacao	
1010	10101010	Operador N1	2000	
1010	20202020	Operador N1	2000	
1010	30303030	Engenheiro 3000		× 3FN
2020	30303030	Gerente	4000	
2020	40404040	Operador N2	2500	
2020	50505050	Operador N2	2500	

ProjetoEmp	regado			CargoGratifica	cao	
<u>CodP</u>	<u>CPF</u>	Cargo		Cargo	Gratificacao	
1010	10101010	Operador N1	•	Operador N1	2000	
1010	20202020	Operador N1		Engenheiro	3000	/ OFN
1010	30303030	Engenheiro		Gerente	4000	✓ 3FN
2020	30303030	Gerente		Operador N2	2500	
2020	40404040	Operador N2				
2020	50505050	Operador N2		• • •		

- Forma Normal BOYCE/CODD (FNBC)
 - É um refinamento da 3FN (usada em casos particulares)
 - Uma relação em FNBC é uma forma mais rigorosa do que a 3FN
 - Uma relação em FNBC está de acordo com a 3FN, mas o contrário não é verdade
 - Uma tabela esta na FNBC quando:
 - Está na 3FN e
 - Todos os determinante da tabela são chaves candidatas

- Forma Normal BOYCE/CODD (FNBC)
 - Contra-Exemplo

Localizacao						
<u>Cidade</u>	<u>Endereço</u>	CEP				
Bom Jesus	Rod. da Paz, 2000	20.020-020				
Bom Jesus	Rod. da Paz, 1000	20.020-020				
Esperança	Rod. da Paz,1000	30.030-030				
Vitória	Av. Luz, 1000	40.040-040				
Vitória	R. Glória, 1000	50.050-050				

Não está na FNBC, pois CEP é determinante e não é chave candidata!

- Forma Normal BOYCE/CODD (FNBC)
 - Como transformar uma tabela para a FNBC
 - Decompor a tabela (em duas ou mais), separando da tabela original as colunas que são determinantes e não são chaves candidatas, e as colunas dependentes destes determinantes
 - O determinante que n\u00e3o \u00e9 chave candidata na tabela original deve fazer parte das chaves prim\u00e1rias das novas tabelas
 - Verifica-se a 3FN para cada nova tabela.

- Forma Normal BOYCE/CODD (FNBC)
 - Como transformar uma tabela para a FNBC
 - Exemplo: Avaliação (Aluno, Disciplina, Professor, Media) × STN FNBC
 - Supondo que cada aluno tem um único professor por disciplina,
 - Cada professor só ensina uma única disciplina e
 - Uma disciplina pode ser ministrada por vários professores
 - Dependências Funcionais:
 - Aluno, Disciplina → Professor, Media
 - Aluno, Professor → Disciplina, Media
 - Professor → Disciplina (Professor é determinante e não é chave candidata)
 - Então:
 - ProfDisciplina (<u>Professor</u>, Disciplina) ✓ FNBC
 - ProfAluno (<u>Professor</u>, <u>Aluno</u>, Media)
 ✓ FNBC

- Forma Normal BOYCE/CODD (FNBC)
 - Como transformar uma tabela para a FNBC

Localizacao Cidade Endereço Bom Jesus Rod. da Paz, 2000 Bom Jesus Rod. da Paz, 1000 Esperança Rod. da Paz,1000 Vitória Av. Luz, 1000 Vitória R. Glória, 1000	CEP 20.020-020 20.020-020 30.030-030 40.040-040 50.050-050	✓ 3FN × FNBC
--	---	-----------------

CEPCidade CEP 20.020-020 30.030-030 40.040-040	Cidade Bom Jesus Esperança Vitória		EndereçoCEP Endereço Rod. da Paz, 2000 Rod. da Paz, 1000 Rod. da Paz,1000 Av. Luz, 1000	CEP 20.020-020 20.020-020 30.030-030 40.040-040	✓ FNBC		
50.050-050	Vitória		Av. Luz, 1000 R. Glória, 1000	50.050-050			

Normalização - Considerações Finais

- A construção de modelos ERs muitas vezes já encontram-se na 3FN, ficando as demais (FNBC, 4FN e 5FN) para serem avaliadas e aplicadas para casos particulares
- Desnormalização: Técnica usada para converter uma ou mais tabelas relacionadas em uma única tabela com informações possivelmente redundantes
 - Usada em casos particulares para evitar junções
 - Preocupar-se com a integridade dos dados redundantes
 - Muito usada no modelo estrela de um Data Warehouse

cin.ufpe.br

Centro de Informática UN FIRE

