Truth Tables

Binary Logic

What do we know up to now?

- We know how to derive an output binary expression from a given ...
- ... Logic Circuit.

Today ...

- We will learn how to derive an output binary expression from ...
- ... a Truth Table.

Truth Table

Given a Truth Table

Output expressions ...

Simplify

Gates

Truth Table → Simplified Circuit

How can we derive an output expression from a Truth Table?

Truth Table → Output logic expression(s)

Algorithm:

- Write an AND term (Boolean expression) for each case in the truth table the output is logic 1
- 2. All the AND terms are then ORed together to produce the final output expression.

Example: Derive the Truth Table

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise it is zero(0).

Example: Truth Table

Α	В	С	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise it is zero(0).

Example: Truth Table: Done

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise it is zero(0).

Example: Write Terms for X = 1

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

ABC ABC

Example: Output expression

Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

SOP = Sum-Of-Products

Example: Simplify

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

Lets simplify...

5 Minutes...

Simplification using Boolean Theorems

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

$$= \overline{ABC} + \overline{ABC} +$$

Simplification using Boolean Theorems

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Result

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{BC} (\overline{A+A}) + \overline{AC}(\overline{B+B}) + \overline{AB}(\overline{C+C})$$

$$= \overline{BC} + \overline{AC} + \overline{AB}$$

Implementation: Logic Circuit

Conclusion

- The algebraic simplification procedure is very unsystematic ... not easy to be implemented using a programming language
- Next a more systematic simplification procedure is presented.