BIRDS-4 EM Long Range Test Report

Prepared by: Marloun P. Sejera

26 August 2019

CONTENTS

- Antenna Orientation
- Effective Downlink Attenuation (EDA)
- Effective Uplink Attenuation (EUA)
- Uplink Sensitivity Test
- Link Budget

Antenna Orientation

- ☐ Satellite was placed on the platform facing KyuTech GS with azimuth of 40°.
- BIRDS GS antenna was rotated facing Mt. Sarakaura. Using spectrum analyzer, received power of satellite's beacon was measured. Maximum received power was achieved at

Azimuth = 215°

Elevation = 5^0

BIRDS-4 EM at Mt. Sarakura, facing KyuTech GS

Effective Downlink Attenuation (EDA)

Satellite transmitted 437.375 MHz continuous beacon (19 dBm), BIRDS GS measured received power using spectrum analyzer.

1 0 .	J			
Satellite	BIRDS GS received power			
antenna angle	BIRDS-4 EM	BIRDS-3 FM Back-up		
O_0	-83.7 dBm	-67.97 dBm		
45 ⁰	-69.5 dBm	-67.35 dBm		
90 ⁰	-69.5 dBm	-66.74 dBm		

BIRDS-4

BIRDS-4 EM facing GS antenna

Effective Uplink Attenuation (EUA)

	Ref. dipole received power BIRDS-4 EM Birds-3 FM Back-up			
P_{TX} (GS)	45 dBm	44 dBm		
P _{RX} (ref.)	-45 dBm	-45 dBm		

EUA = (45 dBm) - (-45 dBm) = 90 dB

Reference dipole was used to measure received power at Mt. Sarakura

Effective Attenuation Comparison

Effective Attenuation	BIRDS-4 EM	BIRDS-3 FM Back-up	BIRDS-2 UPD (Dec 2018 LRT)	
Uplink	90 dB	89 dB	97 dB	
Downlink	88.5 dB	88 dB	103 dB	

- ☐ BIRDS-4 EM effective attenuation are almost similar to BIRDS-3 FM-B.
- ☐ BIRDS-4 EM effective uplink and downlink attenuation are almost similar.

Uplink Sensitivity Test Setup

Kyutech L

- BIRDS GS sends uplink command. When ACK from satellite is received, it is considered success. Uplink command is sent 10 times.
- Additional attenuator is placed and test is again conducted. This is repeated until success rate is zero.

Uplink sensitivity is defined at 50% success

BIRDS4

EM

BIRDS-4 Uplink Sensitivity Test Result

Added Attenuators in GS	Total Attenuation	P _{RX} at Mt. Sarakura	Success Rate
40 dB	130 dB	-85 dBm	9/10
42 dB	132 dB	-87 dBm	10/10
44 dB	134 dB	-89 dBm	10/10
46 dB	136 dB	-91 dBm	9/10
48 dB	138 dB	-93 dBm	9/10
50 dB	140 dB	-95 dBm	10/10

Added Attenuators in GS	Total Attenuation	P _{RX} at Mt. Sarakura	Success Rate
52 dB	142 dB	-97 dBm	9/10
54 dB	144 dB	-99 dBm	8/10
55 dB	145 dB	-100 dBm	7/10
56 dB	146 dB	-101 dBm	6/10
57 dB	147 dB	-102 dBm	3/10
58 dB	148 dB	-103 dBm	1/10

P_{TX} (GS): 45 dBm

EUA: 90dB

Total Attenuation = EUA + Added Attenuators P_{RX} (estimated) = P_{T} (GS) – Total Attenuation

Uplink Sensitivity Comparison

BIRDS-4

	BIRDS-4 EM	BIRDS-3 FM Back-up	BIRDS-2 UPD (Dec 2018 LRT)	
Uplink Sensitivity	-101 dBm	-92 dBm	-87 dBm*	

- *BIRD-2 UPD sensitivity used signal generator setup.
- BIRDS-4 EM and BIRDS-3 FM-B both used iCOM radio setup.
- BIRDS-4 EM has 9 dB higher sensitivity than BIRDS-3 FM-B.
- RF Shielding at OBC, FAB, and COM board may contribute to improve sensitivity.

Uplink Sensitivity Comparison

In the last test conducted in anechoic chamber, a comparison between uplink sensitivity during shielded and unshielded conditions was achieved. Result showed that the uplink sensitivity is 9 dB better with RF shielding in OBC, FAB and COM.

BIRDS-4 Uplink Sensitivity Test in Anechoic Chamber (July 28)

Shielded OBC +	Unshielded OBC
FAB + COM	+ FAB + COM
-101 dBm	-92 dBm

Uplink Sensitivity Comparison

BIRDS-4

Aluminum sheet as RF shield in FAB

Aluminum sheet as RF shield in COM board

In BIRDS-4 EM, RF shield was placed in OBC, FAB and COM board to reduce internal noise and improve SNR.

BIRDS-4 EM Link Budget

		10^0	30°	50°	70°	80°	90^{0}
		Elevation	Elevation	Elevation	Elevation	Elevation	Elevation
Transmit Output Power	[dBm]	47	47	47	47	47	47
Antenna Gain	[dBi]	22	22	22	22	22	22
Transmission Line Loss	[dB]	3	3	3	3	3	3
EIRP	[dBm]	66	66	66	66	66	66
Antenna Pointing Loss	[dB]	5	5	5	5	5	5
Polarization Loss	[dB]	3	3	3	3	3	3
Atmospheric + Ionospheric Losses	[dB]	1.4	1.4	1.4	1.4	1.4	1.4
Path Loss	[dB]	148.3	142.6	139.4	137.7	137.3	137.2
Effective Attenuation	[dB]	138.7	133	129.8	128.1	127.7	127.6
Power at the satellite	[dBm]	-91.7	-86	-82.8	-81.1	-80.7	-80.6
In the satellite							
Antenna Pointing Loss	[dB]	3	3	3	3	3	3
Antenna Gain + Pointing Loss	[dB]	0.5	0.5	0.5	0.5	0.5	0.5
Satellite Received Power	[dBm]	-95.2	-89.5	-86.3	-84.6	-84.2	-84.1
Satellite Sensitivity	[dBm]	-101	-101	-101	-101	-101	-101
Link Margin	[dB]	5.8	11.5	14.7	16.4	16.8	16.9

BIRDS-3 Link Budget

	10 deg Elevation	30 deg Elevation	60 deg Elevation	80 deg Elevation
TX power Out	50 watt (47 dBm)			
Ant gain	22 dB	22 dB	22 dB	22 dB
TX line loss	3 dB	3 dB	3 dB	3 dB
EIRP	66 dBm	66 dBm	66 dBm	66 dBm
Ant pointing loss	5dB	5dB	5dB	5dB
Polarization loss	3dB	3dB	3dB	3dB
Atmospheric + Ionospheric loss	1.4 dB	1.4 dB	1.4 dB	1.4 dB
Path loss	148.54 dB	142.7 dB	138.6 dB	137.5 dB
Effective attenuation	-138.94 dB	-133.1 dB	-129 dB	-127.9 dB
Power at the satellite	-91.94 dBm	-86.1 dBm	-82 dBm	-80.9 dBm
In the satellite				
Antenna pointing loss	3 dB	3 dB	3 dB	3 dB
Antenna gain + Cable loss	0.5 dB	0.5 dB	0.5 dB	0.5 dB
Received power	-94.44 dBm	-88.6 dBm	-84.5 dBm	-83.4 dBm
Required power	-97 dBm	-97 dBm	-97 dBm	-97 dBm
Link margin (Received power – Required power)	2.56 dB	8.4 dB	12.5 dB	13.6 dB