

New/Noteworthy

Clinical Queries LinkOut

Cubby

PubMed Services Journals Database MeSH Database

Single Citation Matcher Batch Citation Matcher

Related Resources

Order Documents

Consumer Health

ClinicalTrials.gov PubMed Central

NLM Gateway TOXNET

Clinical Alerts

Privacy Policy

E-Utilities

PubMed	Nucleotide	Protein	Genome	Structure	PMC	Taxonomy	OMIM	Вс		
Search PubMe	d 📋	for				Go Clear				
		Limits	Preview/Inde	x Hist	ory	Clipboard	Det	tails		
About Entrez	7									
	Disp	lay Abstrac	et 🔝 s	Show: 20	Sort	Send to	Text	1		
Text Version								•		
	□1:	☐ 1: Mol Pharmacol. 2000 Jun;57(6):1165-72.					Related Articles, Links			
Entrez PubMed Overview Help FAQ		FREE full is www.molj	st article at pharm.org							
Tutorial		Two different signaling mechanisms involved in the excitation								

Two different signaling mechanisms involved in the excitation of rat sympathetic neurons by uridine nucleotides.

Bofill-Cardona E, Vartian N, Nanoff C, Freissmuth M, Boehm S.

Department of Pharmacology, University of Vienna, Austria.

UTP stimulates transmitter release and inhibits M-type K(+) channels in rat superior cervical ganglion neurons via G protein-coupled P2Y receptors. To investigate the underlying signaling mechanisms, we treated the neurons with either pertussis or cholera toxin; neither treatment altered the inhibition of M-type K(+) channels by 10 microM UTP. However, pertussis toxin reduced UTP-evoked [(3)H]noradrenaline release by 66%. UTP, UDP, ATP, and ADP caused accumulation of inositol trisphosphate in a pertussis toxininsensitive manner. Pharmacological inhibition of inositol trisphosphateinduced Ca(2+) release (by inhibition of phospholipase C, of inositol trisphosphate receptors, and of the endoplasmic Ca(2+)-ATPase) prevented the UTP-dependent inhibition of M currents but failed to alter UTP-evoked [(3)H]noradrenaline release. Chelation of intracellular Ca(2+) by 1,2-bis(2aminophenoxy)ethane-N, N,N',N'-tetraacetic acid also reduced the inhibition of M currents by UTP. In addition, all these manipulations attenuated the inhibition of M currents by bradykinin, but hardly affected the inhibitory action of oxotremorine M. These results demonstrate that UTP inhibits Mtype K(+) channels via an inositol trisphosphate-dependent signaling cascade that is also used by bradykinin but not by muscarinic acetylcholine receptors. In contrast, the secretagogue action of UTP is largely independent of this signaling cascade but involves pertussis toxin-sensitive G proteins. Thus, UTP-sensitive P2Y receptors excite sympathetic neurons via at least two different signal transduction mechanisms.

PMID: 10825387 [PubMed - indexed for MEDLINE]

Display Abstract Show: 20 Sort Send to	Text	7.