Exercise 3. Find terminals in Set^2 , Set^{\rightarrow} and the poset n.

Proof.

- 1. In \mathbf{Set}^2 , any object of the form $\langle \{a\}, \{b\} \rangle$ where $\{a\}$ and $\{b\}$ are singleton sets, is terminal: let $\langle A, B \rangle$ be an object in \mathbf{Set}^2 , there exists a unique function $f \colon A \to \{a\}$ and a unique function $g \colon B \to \{b\}$, since both $\{a\}$ and $\{b\}$ are terminal in \mathbf{Set} . Then $\langle f, g \rangle \colon \langle A, B \rangle \to \langle \{a\}, \{b\} \rangle$ is an arrow of \mathbf{Set}^2 . For all arrows $\langle f', g' \rangle$ of \mathbf{Set}^2 between the same objects, f' is a function $A \to \{a\}$ and g' is a function $B \to \{b\}$. By terminality of $\{a\}$ and $\{b\}$ in \mathbf{Set} , we must then have f' = f and g' = g, so that $\langle \{a\}, \{b\} \rangle$ is terminal in \mathbf{Set}^2 .
- 2. In $\mathbf{Set}^{\rightarrow}$, any object of the form $\{a\} \rightarrow \{b\}$ where $\{a\}$ and $\{b\}$ are singleton sets, is terminal: let $\phi \colon A \rightarrow B$ be an object of $\mathbf{Set}^{\rightarrow}$, there exist unique functions $f \colon A \rightarrow \{a\}$ and $g \colon B \rightarrow \{b\}$. These functions make the following diagram commute:

$$\begin{array}{ccc}
A & \xrightarrow{f} \{a\} \\
\downarrow^{\phi} & \downarrow \\
B & \xrightarrow{g} \{b\}
\end{array} \tag{1}$$

so that $\langle f, g \rangle$ is the unique arrow of $\mathbf{Set}^{\rightarrow}$ between ϕ and $\{a\} \rightarrow \{b\}$.

3. In the poset **n** for $n \ge 1$, for all objects m we have $m \le n-1$, so that there is an arrow $m \to n-1$. As an arrow in a poset, it is unique. Therefore, n-1 is terminal. The poset **0** has a unique object 0 and an unique arrow $\mathbf{1}_0 \colon 0 \to 0$; 0 is therefore terminal.