

Tentamen i Linjär algebra för civilingenjörer

MA503G, 2018-01-15, kl. 08:15-13:15

Hjälpmedel: Skrivdon

Betygskriterier: Framgår av separat dokument publicerat på Blackboard. Uppgifterna är fördelade på två nivåer. En grundläggande nivå om totalt 36 poäng bestående av uppgifterna 1-6 (var och en värd 6 poäng), och en fördjupad nivå om totalt 24 poäng bestående av uppgifterna 7-9 (var och en värd 8 poäng). Totalt kan man få 60 poäng. Betyg 3 respektive 4 ges till den som erhåller minst 30 respektive 40 poäng på tentan. För betyg 5 krävs minst 50 poäng på tentan samt att minst två av uppgifterna är belönade med full poäng.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg och svara exakt. Svara på högst en uppgift per blad.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Jens Fjelstad

Lycka till!

Grundläggande nivå

1. På denna uppgift ska endast svar anges, lämna alltså inte in några beräkningar. Skriv svaren på alla deluppgifter på samma blad.

(a) Låt
$$\mathbf{u} = (1,0,2), \mathbf{v} = (5,1,-2), \mathbf{w} = (-2,3,0)$$
. Beräkna $\mathbf{u} - 3\mathbf{v}$ och $\mathbf{w} \times \mathbf{u}$. (2p)

- (b) A är en 4×6 -matris sådan att den allmäna lösningen till det homogena linjära (1p) ekvationssystemet med koefficientmatris A (dvs ekvationssystemet med matrisform A**x** = **0**) har 3 fria parametrar. Ange A:s rang.
- (c) Den kvadratiska matrisen B har karakteristiskt polynom (1p)

$$p(\lambda) = (\lambda - 3)(\lambda + 3)(\lambda - 4)(\lambda + 2).$$

Finns det en matris P sådan att $D = P^{-1}BP$ är diagonal? Ange i så fall (en möjlig sådan diagonalmatris) D.

$$\begin{vmatrix}
1 & 0 & 3 & 2 \\
5 & 1 & 3 & 1 \\
2 & 1 & 2 & 2 \\
4 & 0 & -1 & -1
\end{vmatrix}$$
(2p)

2. (a) Lös ekvationssystemet

$$\begin{cases} x + 2y + z + v &= 1 \\ 2x + y + 2z + 2v &= 2 \\ x + 2y + 3z + 4v &= 2 \\ x + 3y + 5z + 7v &= 3 \end{cases}$$

(b) Låt
$$\mathbf{u} = (1, 1, 1, 1, 1)$$
 och

$$U = \{ \mathbf{v} \in \mathbb{R}^5 | \mathbf{v} \cdot \mathbf{u} = 0 \},$$

dvs U består av alla vektorer i \mathbb{R}^5 som är ortogonala mot vektorn **u**. Visa att U är ett delrum till \mathbb{R}^5 .

3. Låt

$$A = \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 1 \\ 2 & 5 & 3 & 6 \end{pmatrix}.$$

Bestäm baser för kolonnrummet K(A) och nollrummet N(A), och ange dessutom dimensionerna hos båda dessa rum.

4. Låt

$$\mathbf{u}_1 = (1, 2), \ \mathbf{u}_2 = (1, 3).$$

- (a) Ange definitionen av en bas för ett vektorrum V. (2p)
- (b) Visa att $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ är en bas för \mathbb{R}^2 . (2p)
- (c) Bestäm koordinaterna för vektorn $\mathbf{v} = (1, 4)$ i basen B. (2p)

5. Låt

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right), \ B = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \ C = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

(a) Avgör om A, B och C är linjärt oberoende i \mathcal{M}_{22} (vektorrummet av alla (4p) reella 2×2 -matriser).

(3p)

(3p)

$$D = \left(\begin{array}{cc} 0 & 2\\ 2 & 4 \end{array}\right), \ E = \left(\begin{array}{cc} 1 & 2\\ 3 & 4 \end{array}\right)$$

det linjära höljet span $\{A, B, C\}$?

6. Låt

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

- (a) Bestäm A:s egenvärden samt egenrum.
- (b) Bestäm en ortogonal matris P sådan att P^TAP är diagonal. (2p)

(4p)

Fördjupad nivå

- 7. Betrakta följande fyra punkter $P:(1,2,3),\ Q:(2,3,4),\ R:(2,4,4),\ S:(2,1,1).$ Punkterna $P,\ Q,$ och R är hörnen i en triangel. Bestäm triangelns area, avståndet mellan triangelns plan och punkten S, samt en ekvation för triangelns plan.
- 8. Låt

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix},$$

och betrakta matrisekvationen

$$AXC + BXC = D.$$

- (a) Vilken storlek måste X ha för att vänsterledet i ekvationen ska vara väldefinierat?(2p)
- (b) Lös ekvationen. (6p)
- 9. Låt $P: \mathbb{R}^3 \to \mathbb{R}^3$ vara matrisavbildningen som projicerar vektorer ortogonalt på planet $\Pi: x-y+2z=0$ (se figur).
 - (a) Bestäm standardmatrisen för P. (6p)

Ledning: Det går att beskriva hur P verkar på en godtycklig vektor genom att dela upp vektorn i lämpliga komposanter, jämför med figuren nedan. Lämpligtvis bestämmer en först en normalvektor till planet.

(b) Låt ℓ vara linjen genom origo med riktningsvektor (1, 2, 3). Bestäm vad P (2p) avbildar ℓ på (dvs bestäm P(x, y, z) för alla $(x, y, z) \in \ell$).

