浙江大学课程设计

课程名称: 机械设计课程设计(甲)

学生姓名: 武 鑫

专业: 机械电子工程

学 号: 315010xxxx

浙沙大学 2018.03-04

目录

一、	设计任务书	. 1
(—)	目标	. 1
(二)	原始条件和数据	. 1
二、	整体分析与思路	. 2
三、	设计说明书	. 3
(—)	传动方案设计	
	午局	
	选择电动机	
	传动比计算与分配	
4.ì	十算传动装置的运动和动力参数	
(二)	齿轮传动设计计算	
1.高	高速级齿轮传动设计	. 6
2.1	氐速级齿轮传动设计	. 9
(三)	轴的结构设计计算及校核	12
1.	齿轮受力计算	
2.	中间轴结构设计计算及校核	
3.	高速轴结构设计计算及校核	
4.	低速轴结构设计计算及校核	21
(四)	轴承的选择与校核	25
1.	中间轴轴承的选择与校核	
2.	高速轴轴承的选择与校核	26
3.	低速轴轴承的选择与校核	
(五)	键的选择和校核	28
1.	中间轴键的选择与校核	28
2.	高速轴键的选择与校核	29
3.	低速轴键的选择与校核	29
(六)	联轴器的选择和校核	30
1.	输入联轴器的选择和校核	30
2.	输出联轴器的选择和校核	30
(七)	箱体的设计	30

	1.	箱体的结构型式30)
	2.	箱体的结构分析30)
	3.	箱体的结构尺寸32	1
()	(\/	润滑和密封的选择32	2
	1.	润滑32	2
	2.	密封33	3
(7	ቲ)	附件及说明34	
	1.	轴承盖34	
	2.	调整垫片组3!	
	3.	油标	5
	4.	排油孔螺塞33	
	5.	检查孔盖版	
	6.	通气器	3
	7.	起吊装置39	9
	8.	定位销	Э
	9.	起盖螺钉40)
四、		设计小结4	1
五、		参考资料	
六、		附录——MATLAB 绘图代码43	
1.		水平弯矩图生成代码43	3
2.		垂直弯矩图生成代码43	3
3.		合成弯矩图生成代码44	1
4.	. :	扭矩图生成代码44	1
5.		当量弯矩图生成代码49	5

(一) 目标

设计一用于胶带输送机卷筒的传动装置。

图 1-1 胶带输送机

(二) 原始条件和数据

输送机两班连续单向运转,载荷平稳,空载启动,室内工作,有粉尘;使用期限 10 年,大修期 3 年。该机动力来源为三相交流电,在中等规模机械厂小批量生产。输送带允许速度误差为±5%。

输送带工作拉力 2400N, 输送带速度 1.2m/s, 卷筒直径 300mm。

二、 整体分析与思路

一般的工作机通常由原动机、传动装置和工作装置三个基本部分组成。设计一个用于传送带工作轴的转的装置,即是为电动机和输送机设计一个减速装置。

实现两回转轴之间传动的常用机构有很多种,譬如普通平带、V 带传动,链传动,普通 齿轮转动,涡轮蜗杆传动以及行星轮传动等。不同的方案又有不同的特点,以实现不同的工 作需求。譬如带传动可以实现大跨度的传动,但承载能力较差;链传动平均传动比准确,但 运转不均匀,有冲击;涡轮蜗杆传动比大,但承载能力及效率均不如齿轮等等。

在本减速器的设计方案中,选择了两级齿轮传动的传动方案。对于两级齿轮的传动方案,在齿轮布置的型式上也有很多选择,如展开式、分流式、同轴线式等。

本减速器参考了《机械设计课程设计(第四版)》的相关内容,选用两级展开式齿轮减速器,是两级减速器中应用最为广泛的一种。其中齿轮相对于轴承不对称,因此要求轴具有较大的刚度,伸出轴上的齿轮常布置在远离伸出轴的一边,以减少因弯曲变形所引起的载荷沿齿宽分布不均匀现象,输入轴与输出轴分布于减速器的两边。减速器高速级使用一对斜齿轮,低速级使用一对直齿轮,用于载荷较为平稳的场合,以达到减速传动的要求。

 设计内容	计算及说明	结果
1.布局	(一) 传动方案设计采用二级圆柱齿轮减速器。	
2.选择电动机 (1)选择电 动机类型 (2)确定电 动机功率, 择型号	题设条件中得知,点击动力来源为三相交流电,则采用 Y 系列三相交流异步电机。 传动带平带开式传动效率为 $\eta_{ m \#}=0.98$,联轴器效率定为 $\eta_{ m W}=0.99$,(一对) 轴承的效率定为 $\eta_{ m ah}=0.99$,8 级精度 的一般齿轮传动(稀油润滑)效率为 $\eta_{ m R}=0.97$ 。 $\eta_{ m W}=\eta_{ m #}\times\eta_{ m W}=0.97$ $P_{ m W}=\frac{F_{ m W}\cdot v_{ m W}}{1000\eta_{ m W}}=2.97~kW$ $\eta=\eta_{ m W}^2\times\eta_{ m 2H}^3\times\eta_{ m 2H}^2=0.89$ $P_0=\frac{P_{ m W}}{\eta}=3.32~kW$ 常用电动机同步转速有 1000r/min 和 1500r/min 两种,考虑到转速较小,可以是传动比较小,从而减小减速其整体尺寸,选用同步转速 1000r/min 的电动机。	采用 Y 系列三相交 流异步电机 $\eta_{\#} = 0.98$ $\eta_{¥} = 0.99$ $\eta_{4a} = 0.99$ $\eta_{w} = 0.97$ $\eta_{w} = 0.97$ $P_{w} = 2.97 kW$ $\eta = 0.89$ $P_{0} = 3.32 kW$

查[2]表 8-184 知,符合条件的电动机中最合适的型号为Y132M1-6,其相关参数如下表所示:

选择额定功率 P=4.0kW 的电机, 型号为 Y132M1-6

型号	Y132M1-6
额定功率(kW)	4.0
同步转速(r/min)	1000
满载转速(r/min)	960
堵转转矩/额定转矩	2.0
最大转矩/额定转矩	2.2
质量(kg)	73
转轴直径(mm)	38

- 3. 传动比计 算与分配
 - (1) 总传动 比

$$n_{w} = \frac{v_{w}}{\pi \cdot D} = 76.39 \, r/min$$

$$i = \frac{n_{m}}{n_{w}} = 12.57$$

查表知, 普通齿轮传动比一般为 3~5, 则所选两级展开式圆柱齿轮减速器可以满足转动比要求。

(2) 分配各 级传动比 ${f i}={f i}_f imes{f i}_s$,为使减速器外廓尺寸协调,相差不悬殊,试取 ${f i}_s=3$, 则 ${f i}_f=rac{{f i}}{{f i}_s}=4.19$ 。 验 证 $rac{{f i}_f}{{f i}_s}=1.40$, 满 足 ${f i}_fpprox$ (1.3~1.6) ${f i}_s$,分配合理。

4.计算传动装置的运动和动

力参数

(1) 各轴转速

两联轴器处 $i_{0-I}=1$, $i_{III-w}=1$ 。 $n_{I}=\frac{n_{m}}{i_{0-I}}=960\,r/min$ $n_{II}=\frac{n_{I}}{i_{I-II}}=229.12\,r/min$

 $n_{\rm w} = 76.39 \, r/min$

i = 12.57

 $i_f = 4.19$ $i_s = 3$

 $i_{0-I} = 1$ $i_{III-w} = 1$

 $\rm n_I = 960\,r/min$

	$n_{III} = \frac{n_{II}}{i_{II-III}} = 76.37 \ r/min$ $n_{w} = \frac{n_{III}}{i_{III-w}} = 76.37 \ r/min$	$n_{II} = 229.12 r/min$ $n_{III} = 76.37 r/min$ $n_{w} = 76.37 r/min$
(2) 各轴输 入功率	$P_{I} = P_{0} \cdot \eta_{0-I} = P_{0} \cdot \eta_{\cancel{K}} = 3.29 \ kW$	$P_{\rm I} = 3.29 kW$
	$\begin{aligned} P_{II} &= P_{I} \cdot \eta_{I-II} = P_{I} \cdot \eta_{\frac{1}{2}} \cdot \eta_{\frac{1}{2}} = 3.16 \ kW \\ \\ P_{III} &= P_{II} \cdot \eta_{II-III} = P_{II} \cdot \eta_{\frac{1}{2}} \cdot \eta_{\frac{1}{2}} = 3.03 \ kW \\ \\ P_{W} &= P_{III} \cdot \eta_{III-W} = P_{III} \cdot \eta_{\frac{1}{2}} \cdot \eta_{\frac{1}{2}} = 2.97 \ kW \end{aligned}$	$P_{II} = 3.16 kW$ $P_{III} = 3.03 kW$ $P_{w} = 2.97 kW$
(3) 各轴输 入转矩	$T_{0} = 9550 \frac{P_{0}}{n_{m}} = 33.03 N \cdot m$ $T_{I} = 9550 \frac{P_{I}}{n_{I}} = 32.73 N \cdot m$ $T_{II} = 9550 \frac{P_{II}}{n_{II}} = 131.71 N \cdot m$	$T_{0} = 33.03 N \cdot m$ $T_{I} = 32.73 N \cdot m$ $T_{II} = 131.71 N \cdot m$ $T_{III} = 378.90 N \cdot m$
将!	$T_{III} = 9550 rac{P_{III}}{n_{III}} = 378.90 \ N \cdot m$ $T_w = 9550 rac{P_w}{n_w} = 371.40 \ N \cdot m$ 以上算得的运动和动力参数列表如下:	$T_w = 371.40 \ N \cdot m$

軸名	电动机轴	4	轴	0	轴	III \$	油	工作轴
转速 n(r/min)	960	Ö	960	229	0.12	76.3	37	76.37
功率 P(kW)	3.32	3	3.29	3	16	3.0	3	2.97
转矩 T(N·m)	33.03	32	2.73	131	71	378.	90	371.40
传动比 i 1 4.		19	;	3		1		
	0.99		0.	.96	0.	96		0.98

(二) 齿轮传动设计计算
考虑到减速器传动平稳性,高速级、低速级齿轮均采用斜
齿圆柱齿轮。

1.高速级齿轮

传动设计

(1) 齿轮材 料选择

小齿轮采用 40MnB 钢调质, 大齿轮采用 45 钢正火。查阅 [2]表 6-5, 得到两齿轮材料主要力学性能如下:

小齿轮: 40MnB 钢

调质

大齿轮: 45 钢正火

材料牌	热处理	抗拉强度	屈服极限	硬度
号	方法	$\sigma_{\rm B}(MPa)$	$\sigma_{\rm s}(MPa)$	(<i>HBS</i>)
40MnB	调质	735	490	241~286
45	正火	588	294	169~217

由于两齿轮齿面硬度范围均小于 350HBS, 即均属于软齿 面齿轮, 根据软齿面闭式齿轮传动中一般为齿面点蚀失效 的特点, 选择先按照齿面接触强度条件确定主要参数和传 动尺寸,然后再按弯曲强度条件进行校核计算。

(2) 按齿面

接触强度设计

公式计算

已求得

一对钢齿轮接触强度的设计公式:

$$d_1 \ge \sqrt[3]{\left(\frac{590}{[\sigma]}\right)^2 \cdot \frac{u+1}{u} \cdot \frac{KT_1}{\psi_d}} \quad (mm)$$

① 小齿轮传 递的转矩

$$T_1 = 32.73 (N \cdot m) = 32730 (N \cdot mm)$$

② 选择齿轮 齿数

齿数比 $u = i_f = 4.19$, 小齿轮齿数 $z_1 = 21$ 时, $z_2 = uz_1 =$ 88, 恰好都是整数。

$$u = i_f = 4.19$$

 $z_1 = 21$ $z_2 = 88$

③ 确定齿轮 精度

普通减速齿轮,精度选择8级,参考[2]表6-4,圆周速度 不得大于8 m/s。

4 系数选择

载荷平稳, 非对称分布, 参考[2]表 6-6, 载荷综合系数K = 1.3, 参考[2]表 6-9, 齿宽系数 $\psi_d = 0.9$ 。

$$K = 1.3$$

 $\psi_{\rm d} = 0.9$

⑤ 确定许用接触应力

高速级齿轮的许用应力的数值大小应该是一对齿轮中较 小的许用应力值。

许用应力计算公式:

$$[\sigma_H] = \frac{\sigma_{Hlim}}{S_{Hmin}}$$

参考[2]图 6-28, $\sigma_{Hlim1}=720 \textit{MPa}$, $\sigma_{Hlim2}=460 \textit{MPa}$;

参考[2]表 6-8, S_{Hmin} = 1。

将查得数据代入上式,得 $[\sigma_{H1}]=720MPa$, $[\sigma_{H2}]=460MPa$,所以 $[\sigma_{H}]=[\sigma_{H1}]=460MPa$ 。

 $[\sigma_{\rm H}] = 460MPa$

⑥ 计算小齿 轮分度圆 直径

$$d_1 \ge \sqrt[3]{\left(\frac{590}{460}\right)^2 \cdot \frac{4.19 + 1}{4.19} \cdot \frac{1.3 \times 32730}{0.9}} = 45.84 \ (mm)$$

 $d_1 \ge 45.84 \, mm$

⑦ 计算中心 距

按照 $d_1 = 45.84 \, \text{mm}$ 初步计算中心距 a :

$$a = \frac{d_1}{2}(1+u) = 118.95 (mm)$$

对结果进行圆整, 取a = 120 mm。

8 计算螺旋角及模数

螺旋角β常取 $8^{\circ}\sim20^{\circ}$,这里初取β = 15° 。

齿轮模数:

$$m_n = \frac{2a\cos\beta}{z_1 + z_2} = 2.1268 \ (mm)$$

参考[2]表 6-1,圆整取 $m_n = 2 mm$ 。

计算螺旋角β:

$$\beta = \arccos \frac{m_n(z_1 + z_2)}{2a} = 24.72^{\circ}$$

经多次尝试,发现在当前条件下很难找到8°~20°范围内

的β角, 经顾大强老师确认, 考虑到24.72°没有偏离理想值

太远, 认为该值有效。最终选定 $m_n=2~mm$, $\beta=24.72^\circ$ 。

$$m_n = 2 mm$$

$$\beta = 24.72^{\circ}$$

9 计算齿轮

主要尺寸

分度圆直径:

$$d_1 = \frac{m_n z_1}{\cos \beta} = 46.237 \ (mm)$$

$$d_2 = \frac{m_n z_2}{\cos \beta} = 193.763 \ (mm)$$

中心距:

$$a = \frac{1}{2}(d_1 + d_2) = 120 (mm)$$

齿轮宽度:

$$b = \psi_d \cdot d_1 = 41.613 (mm)$$

小 齿 轮 齿 宽 比 大 齿 轮 齿 宽 大 $5\sim10~\text{mm}$,则 取 $b_1=47\text{mm},b_2=42\text{mm}$ 。强度计算中以 b_2 为准,即 $b=b_2$ 。

 $a = 120 \, mm$

 $d_1 = 46.237 \ mm$

 $d_2 = 193.763 \, mm$

$$b_1 = 47 \, mm$$

$$b = b_2 = 42 mm$$

⑩ 验算圆周

速度

圆周速度:

$$v = \frac{\pi d_1 n_I}{60 \times 1000} = 2.324 \ (m/s)$$

满足8级精度的速度要求。

 $v = 2.324 \, m/s$

(3) 按齿面

斜齿轮弯曲强度校核公式:

弯曲强度校核

公式校核

$$\sigma_F = \frac{1.6KT_1Y_{FS}}{bd_1m_n} \le [\sigma_F] \; (MPa)$$

① 确定复合

齿形系数

小齿轮:

$$z_{v1} = \frac{z_1}{\cos^3 \beta} = 28.02$$

大齿轮:

$$z_{v2} = \frac{z_2}{\cos^3 \beta} = 117.41$$

由[2]图 6-30 查得复合齿形系数 $Y_{Fs1} = 4.20$, $Y_{Fs2} = 3.92$ 。

$$z_{v1} = 28.02$$

$$z_{v2} = 117.41$$
 $Y_{Fs1} = 4.20$

$$Y_{Fs2} = 3.92$$

② 确定许用

弯曲应力

由[2]图 6-31 查得 $\sigma_{Flim1}=530MPa$, $\sigma_{Flim2}=360MPa$ 。

由[2]表 6-8 查得 $S_{Fmin} = 1$,则:

$$[\sigma_{\rm F1}] = \frac{\sigma_{Flim1}}{S_{\rm Fmin}} = 530 \; (MPa)$$

 $[\sigma_{F1}] = 530 MPa$

③ 校核齿面 弯曲强度(4) 结构设 计	$\sigma_{F1}=rac{1.6KT_1Y_{Fs1}}{bd_1m_n}=73.62<[\sigma_{F1}]=530\ (MPa)$ $\sigma_{F2}=\sigma_{F1}rac{Y_{Fs2}}{Y_{Fs1}}=68.71<[\sigma_{F2}]=360\ (MPa)$ 校核计算安全。	$\sigma_{F1} < [\sigma_{F1}]$ $\sigma_{F2} < [\sigma_{F2}]$ 安全 齿轮 $1:$ 齿轮轴 齿轮 $2:$ 锻造腹板
/		式齿轮
2.低速级齿轮		
传动设计		
(1) 齿轮材	同样选择 40MnB 调质钢和 45 正火钢作为小齿轮和大齿	小齿轮:40MnB 钢
料选择	轮的材质,相关力学性能同高速级部分表格所示。 	调质
		大齿轮:45 钢正火
	先按照齿面接触强度条件确定主要参数和传动尺寸, 然后	
	再按弯曲强度条件进行校核计算,理由同高速级部分。	
	1, 10010	
(2) 按齿面	一对钢齿轮接触强度的设计公式:	
接触强度设计	$d_1 \ge \sqrt[3]{\left(\frac{590}{[\sigma]}\right)^2 \cdot \frac{u+1}{u} \cdot \frac{KT_1}{\psi_d}} (mm)$	
公式计算	$\sqrt{\langle [0] \rangle} u \psi_d$	
① 小齿轮传	已求得	
递的转矩	$T_1 = 131.71(N \cdot m) = 131710 (N \cdot mm)$	
② 选择齿轮	齿数比 $u = i_s = 3$,选择小齿轮齿数 $z_1 = 24$, $z_2 = uz_1 = 1$	$u = i_s = 3$ $z_1 = 24$
齿数	72。	$z_1 = 72$
	9	

 $[\sigma_{F2}] = \frac{\sigma_{Flim2}}{S_{Fmin}} = 360 \ (MPa)$

 $[\sigma_{F2}] = 360 \, MPa$

③ 确定齿轮精度

普通减速齿轮,精度选择8级,参考[2]表6-4,圆周速度不得大于8m/s。

④ 系数选择

载荷平稳, 非对称分布, 参考[2]表 6-6, 载荷综合系数K = 1.3, 参考[2]表 6-9, 齿宽系数 $\psi_d = 0.9$ 。

K = 1.3

 $\psi_d = 0.9$

⑤ 确定许用接触应力

低速级齿轮的许用应力的数值大小应该是一对齿轮中较 小的许用应力值。

许用应力计算公式:

$$[\sigma_{\rm H}] = \frac{\sigma_{\rm Hlim}}{S_{\rm Hmin}}$$

参考[2]图 6-28, $\sigma_{Hlim1}=720$ MPa, $\sigma_{Hlim2}=460$ MPa; 参考[2]表 6-8, $S_{Hmin}=1$ 。

将查得数据代入上式,得 $[\sigma_{H1}]$ =720MPa, $[\sigma_{H2}]$ =460MPa, 所以 $[\sigma_{H}]$ = $[\sigma_{H1}]$ =460MPa。

 $[\sigma_{\rm H}] = 460 MPa$

⑥ 计算小齿 轮分度圆 直径

$$d_1 \ge \sqrt[3]{\left(\frac{590}{460}\right)^2 \cdot \frac{3+1}{3} \cdot \frac{1.3 \times 131710}{0.9}} = 74.73 \ (mm)$$

 $d_1 \ge 74.73 \ mm$

⑦ 计算中心距

按照 $d_1 = 74.73 \text{ mm}$ 初步计算中心距 a:

$$a = \frac{d_1}{2}(1+u) = 149.46 (mm)$$

对结果进行圆整, 取a = 150 mm。

⑧ 计算螺旋角及模数

螺旋角β常取 $8^{\circ} \sim 20^{\circ}$, 这里初取β = 15° 。

齿轮模数:

$$m_{\rm n} = \frac{2a\cos\beta}{z_1 + z_2} = 3.0185 \ (mm)$$

参考[2]表 6-1,圆整取 $m_n = 3 mm$ 。

 $m_n = 3 mm$

计算螺旋角β:

$$\beta = \arccos\frac{m_n(z_1 + z_2)}{2a} = 16.26^{\circ}$$

$$\beta = 16.26^{\circ}$$

9 计算齿轮

主要尺寸

分度圆直径:

$$d_1 = \frac{m_n z_1}{\cos \beta} = 75.000 \ (mm)$$

$$m_n z_2$$

$$d_1 = 75.000 (mm)$$
 d_2

= 225.000 (mm)

$$d_2 = \frac{m_n z_2}{\cos \beta} = 225.000 \ (mm)$$

中心距:

$$a = \frac{1}{2}(d_1 + d_2) = 150 (mm)$$

a = 150 (mm)

齿轮宽度:

$$b = \psi_d \cdot d_1 = 67.50 \ (mm)$$

小齿轮齿宽比大齿轮齿宽大5~10 mm,则取 b_1 = 73mm, b_2 = 68mm。强度计算中以 b_2 为准,即 b= b_2 。

$$b_1 = 73 mm$$

$$b = b_2 = 68 mm$$

⑩ 验算圆周

速度

圆周速度:

$$v = \frac{\pi d_1 n_{II}}{60 \times 1000} = 0.900 \ (m/s)$$

 $v = 0.900 \, m/s$

满足8级精度的速度要求。

(3) 按齿面

弯曲强度校核

公式校核

斜齿轮弯曲强度校核公式:

$$\sigma_F = \frac{1.6KT_1Y_{FS}}{bd_1m_n} \leq [\sigma_F] \; (MPa)$$

① 确定复合

齿形系数

小齿轮:

$$z_{v1} = \frac{z_1}{\cos^3 \beta} = 27.13$$

 $z_{v1} = 27.13$

大齿轮:

$$z_{v2} = \frac{z_2}{\cos^3 \beta} = 81.38$$

由[2]图 6-30 查得复合齿形系数 $Y_{Fs1} = 4.10$, $Y_{Fs2} = 3.93$ 。

$$z_{v2} = 81.38$$
 $Y_{Fs1} = 4.10$

$$Y_{Fs2}=3.93$$

② 确定许用 专曲应力 自②图
$$6-31$$
 查得 $\sigma_{Flim1}=530MPa$, $\sigma_{Flim2}=360MPa$ 。 由②表 $6-8$ 查得 $S_{Pmin}=1$,则:
$$[\sigma_{F1}] = \frac{\sigma_{Flim2}}{S_{Pmin}}=530 \ (MPa)$$

$$[\sigma_{F2}] = \frac{\sigma_{Flim2}}{S_{Pmin}}=360 \ (MPa)$$

$$[\sigma_{F2}] = \frac{\sigma_{Flim2}}{S_{Pmin}}=360 \ (MPa)$$

$$\sigma_{F1} < [\sigma_{F1}] = 530 \ MPa$$

$$\sigma_{F1} < [\sigma_{F1}] = 530 \ MPa$$

$$\sigma_{F1} < [\sigma_{F1}] = 530 \ (MPa)$$

$$\sigma_{F$$

 $F_{a1} = F_{t1}tan\beta = 0.652(kN)$

 $F_{a1} = 0.652kN$

轴向力:

(2) 低速级 齿轮 4	$F_{t4} = \frac{2T_{III}}{d_4} = 3.368(kN)$ $F_{r4} = \frac{F_{t4}tan\alpha}{cos\beta} = 1.277(kN)$ $F_{a4} = F_{t4}tan\beta = 0.982(kN)$	$F_{t4} = 3.368kN$ $F_{r4} = 1.277kN$ $F_{a4} = 0.982kN$
(3) 中间级 齿轮 2、3	齿轮 2: $F_{t2} = F_{t1} = 1.416(kN)$ $F_{r2} = F_{r1} = 0.567(kN)$ $F_{a2} = F_{a1} = 0.652(kN)$ 齿轮 3: $F_{t3} = F_{t4} = 3.368(kN)$ $F_{r3} = F_{r4} = 1.277(kN)$ $F_{a3} = F_{a4} = 0.982(kN)$	$F_{t2} = 1.416kN$ $F_{r2} = 0.567kN$ $F_{a2} = 0.652kN$ $F_{t3} = 3.368kN$ $F_{r3} = 1.277kN$
 中间轴结构设计计算及校核 1)轴的材料选择 	减速器功率不大,转速较低,无特殊要求,故选最常用的 45号钢并做正火处理。 根据[2]表 12-1 查得:	F _{a3} = 0.982 <i>kN</i> 中间轴选择 45 号 钢正火
	硬度 (HBS) 170~217 抗拉强度σ _B (MPa) 600 屈服极限σ _S (MPa) 300 弯曲疲劳极限σ ₋₁ (MPa) 240 剪切疲劳极限τ ₋₁ (MPa) 140	
(2) 按转矩 估算最小直径	根据[2]表 12-2,取C = 118,代入公式: $d \ge C \sqrt[3]{\frac{P}{n}} = 28.298(mm)$	

考虑到键槽对轴的削弱作用,圆整为 $d_{min} = 30mm$ 。

 $d_{min} = 30mm$

(3) 轴的结

构设计

根据估算所得直径、轮毂宽及安装情况等条件,对轴的结构及尺寸进行草图设计。

① 轴承选择

轴承同时承受径向力和轴向力,采用一对角接触球轴承; 考虑到轴承内径需不小于 $\mathbf{d}_{min}=30mm$ 。查[2]表 8-158, 选择 7207AC 型 (GB/T292-1994) 角接触球轴承,其主要 几何参数如下:

内径 d(mm)	外径 D(mm)	宽度 B(mm)	
35	72	17	_

两端的轴承都用套筒定位和固定。

② 轴的轴向 尺寸确定

轴与齿轮选用平键连接。根据减速器的内壁到齿轮和轴承端面的距离,参考设计手册中有关经验数据,轴承跨距为160mm,将轴的结构尺寸初步取定如图所示:

(4) 轴承反 力计算

水平面:

$$R_{\text{IIIH}} = \frac{-F_{a2}\frac{d_2}{2} + 122.5F_{r2} - F_{a3}\frac{d_3}{2} - 53F_{r3}}{160}$$
$$= -0.614(kN)$$

 $R_{\rm IIIH} = -0.614kN$

$$R_{IVH} = \frac{F_{a3} \frac{d_3}{2} - 107F_{r3} + F_{a2} \frac{d_2}{2} + 37.5F_{r2}}{160}$$
$$= -0.096(kN)$$

 $R_{IVH} = -0.096kN$

垂直面:

$$R_{IIIV} = \frac{122.5F_{t2} + 53F_{t3}}{160} = 2.200(kN)$$

$$R_{IVV} = \frac{107F_{t3} + 37.5F_{t2}}{160} = 2.584(kN)$$

 $R_{IIIV} = 2.200kN$ $R_{IVV} = 2.584kN$

(5) 绘制弯 矩图

① 水平弯矩

冬

$$M'_{2H} = 37.5R_{IIIH} = -23.019(N \cdot m)$$

$$M''_{2H} = 69.5F_{r3} - F_{a3}\frac{d_3}{2} + 122.5R_{IVH} = 40.148(N \cdot m)$$

$$M'_{3H} = 53R_{IVH} = -5.096(N \cdot m)$$

$$M_{3H}^{"} = -69.5F_{r2} + F_{a2}\frac{d_2}{2} + 107R_{IIIH} = -41.921(N \cdot m)$$

 $M'_{2H} = -23.019N$ $\cdot m$

 $M_{2H}^{"} = 40.148N$

· m

 $M'_{3H} = -5.096N$

 $\cdot m$

 $M_{3H}^{"} = -41.921N$

· m.

② 垂直弯矩

$$M_{2V} = 37.5R_{IIIV} = 82.492(N \cdot m)$$

$$M_{3V} = 53R_{IVV} = 136.964(N \cdot m)$$

 $M_{2V} = 82.492N \cdot m$ $M_{3V} = 136.964N$ $\cdot m$

③ 合成弯矩

冬

$$M_2' = \sqrt{{M_{2H}'}^2 + {M_{2V}}^2} = 85.643(N \cdot m)$$

$$M_2'' = \sqrt{{M_{2H}''}^2 + {M_{2V}}^2} = 91.742(N \cdot m)$$

$$M_3' = \sqrt{{M_{3H}'}^2 + {M_{3V}}^2} = 137.059(N \cdot m)$$

$$M_3'' = \sqrt{{M_{3H}''}^2 + {M_{3V}}^2} = 143.236(N \cdot m)$$

 $M_2' = 85.643N \cdot m$

 $\mathsf{M}_2^{\prime\prime} = 91.742N \cdot m$

 $M_3' = 137.059N$

 $\cdot m$

 $M_3'' = 143.236N$

 $\cdot m$

(6) 绘制扭

矩图

已求得轴 || 所受扭矩 $T_2 = 131.71N \cdot m$ 。

(7) 绘制当量弯矩图

已知 $\sigma_B = 600$ MPa,由[2]表 12-3 查得[σ_{-1}]_b = 55MPa,

$$[\sigma_0]_b = 95 \text{MPa}, \quad \text{Ma} = \frac{55}{95} \approx 0.58_\circ$$

$$\alpha T_2 = 76.392(N \cdot m)$$

$$M'_{2e} = \sqrt{{M'_2}^2 + (\alpha T_2)^2} = 114.763(N \cdot m)$$

$$M_{2e}^{"} = \sqrt{{M_2^{"}}^2 + (\alpha T_2)^2} = 119.383(N \cdot m)$$

$$M'_{3e} = \sqrt{{M'_3}^2 + (\alpha T_2)^2} = 156.910(N \cdot m)$$

$$M_{3e}^{"} = \sqrt{M_3^{"^2} + (\alpha T_2)^2} = 162.334(N \cdot m)$$

(8) 校核危险截面处直径

$$d_3 \ge \sqrt[3]{\frac{M_{3e}^{"}}{0.1[\sigma_{-1}]_b}} = 30.904(mm)$$

直径条件(35mm)满足要求,强度足够。如所选轴承和键联接等经计算、确认寿命和强度均能满足,则以上轴的结构设计无需修改。

(9) 精确校

危险截面(齿轮3)处:

$$\alpha T_2 = 76.392 N \cdot m$$

$$M'_{2e} = 114.763N$$

$$\cdot m$$

$$M_{2e}^{\prime\prime} = 119.383N$$

$$M'_{3e} = 156.910N$$

. m

$$M_{3e}^{"}=162.334N$$

 $\cdot m$

 $35mm > d_3$

≥ 30.904mm 危险截面处安全 核轴的疲劳强

度

$$\sigma_a = \frac{M_3''}{W} = 3.460(MPa)$$

$$\sigma_m = 0$$

$$\tau_a = \tau_m = \frac{T}{2W_T} = 0.795(MPa)$$

轴的弯曲等效系数 $\psi_{\sigma} = 0.2$,剪切等效系数 $\psi_{\tau} = 0.1$ 。

查表[2]12-4 得 $k_{\sigma} = 1.76$, $k_{\tau} = 1.54$, $\epsilon_{\sigma} = 0.81$, $\epsilon_{\tau} = 0.76$.

查表[2]12-8 得 β = 0.95。取寿命系数 K_N = 1, [S] = 1.5。

$$S_{\sigma} = \frac{K_N \sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma} \beta} \sigma_a + \psi_{\sigma} \sigma_m} = 30.33$$

$$S_{\tau} = \frac{K_N \tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau} \beta} \tau_a + \psi_{\tau} \tau_m} = 78.82$$

$$S = \frac{S_{\sigma}S_{\tau}}{\sqrt{{S_{\sigma}}^2 + {S_{\tau}}^2}} = 28.30 > 1.5$$

S = 28.30 > 1.5 安全

安全。

. 高速轴结

构设计计算及

校核

(1) 轴的材

料选择

减速器功率不大,转速较低,无特殊要求,故选最常用的45号钢并做正火处理。

(2) 按转矩

估算最小直径

**_

根据[2]表 12-2,取C = 118,代入公式:

构及尺寸进行草图设计。

钢材硬度和相关力学参数已在中间轴部分列出。

$$d \ge C \sqrt[3]{\frac{p}{n}} = 17.79(mm)$$

3)轴的结构设计

考虑到键槽对轴的削弱作用,圆整为 $d_{min}=20mm$ 。

 $d_{min} = 20mm$

根据估算所得直径、轮毂宽及安装情况等条件,对轴的结

① 轴承选择

轴承同时承受径向力和轴向力,采用一对角接触球轴承;

考虑到轴承内径需不小于 $\mathbf{d}_{min}=20mm$ 。查[2]表 8-158, 选择 7205AC 型 (GB/T292-1994) 角接触球轴承,其主要几何参数如下

内径 d(mm)	外径 D(mm)	宽度 B(mm)
25	52	15

一端的轴承用套筒固定,另一端用轴肩固定。

② 轴的轴向 尺寸确定

选用齿轮轴。根据减速器的内壁到齿轮和轴承端面的距离,参考设计手册中有关经验数据,轴承跨距为 160mm,将轴的结构尺寸初步取定如图所示:

水平面:

$$R_{IH} = \frac{F_{a1}\frac{d_1}{2} + 112.5F_{r1}}{160}$$
$$= 0.497(kN)$$

$$R_{IIH} = \frac{-F_{a1}\frac{d_1}{2} + 47.5F_{r1}}{160} = 0.070(kN)$$

 $R_{IIH} = 0.070kN$

 $R_{\rm IH} = 0.497kN$

垂直面:

$$R_{IV} = \frac{-112.5F_{t1}}{160} = -1.020(kN)$$

$$R_{\rm HV} = \frac{-47.5F_{t1}}{160} = -0.396(kN)$$

 $R_{IV} = -1.020kN$

 $R_{IIV} = -0.396kN$

(5) 绘制弯

矩图

① 水平弯矩

$$M'_{1H} = 47.5R_{IH} = 23.619(N \cdot m)$$

 $M'_{1H} = 23.619N \cdot m$

冬

 $M_{1H}^{\prime\prime} = 8.546N \cdot m$

② 垂直弯矩 冬

 $M_{1V} = -48.467N$ $\cdot m$

③ 合成弯矩 冬

$$M_1' = \sqrt{M_H'^2 + M_V^2} = 53.915(N \cdot m)$$

 $M_1'' = \sqrt{M_H''^2 + M_V^2} = 49.214(N \cdot m)$

(6) 绘制扭 矩图

已求得轴 I 所受扭矩 $T_1 = 32.73N \cdot m$ 。

在中间轴部分已查得 $\sigma_B = 600 MPa \setminus [\sigma_{-1}]_b = 55 MPa \setminus [\sigma_{-1}]_b$

$$[\sigma_0]_b=95$$
MPa,则 $\alpha=\frac{55}{95}pprox0.58$ 。

$$\alpha T_1 = 18.983 (N \cdot m)$$

$$M'_{1e} = \sqrt{{M'_1}^2 + (\alpha T_1)^2} = 57.160(N \cdot m)$$

$$M_{1e}^{\prime\prime} = M_{1}^{\prime\prime} = 49.214(N \cdot m)$$

 $\alpha T_1 = 18.983 N \cdot m$

 $M_e' = 57.160N \cdot m$

 $M_e^{\prime\prime} = 49.214N \cdot m$

(8) 校核危险截面处直径

$$d_0 \ge \sqrt[3]{\frac{M_{0e}^{"}}{0.1[\sigma_{-1}]_b}} = 15.113(mm)$$

$$d_1 \ge \sqrt[3]{\frac{M_{3e}^{"}}{0.1[\sigma_{-1}]_b}} = 21.685(mm)$$

直径条件满足要求,强度足够。如所选轴承和键联接等经计算、确认寿命和强度均能满足,则以上轴的结构设计无需修改。

(9) 精确校 核轴的疲劳强 度

位置 0 处:

$$\sigma_a = \sigma_{\rm m} = 0$$

$$\tau_a = \tau_{\rm m} = \frac{T}{2W_{\rm T}} = 10.424 (MPa)$$

轴的弯曲等效系数 $\psi_{\sigma}=0.2$,剪切等效系数 $\psi_{\tau}=0.1$ 。

在中间轴部分已查得 $k_{\sigma}=1.76$ 、 $k_{\tau}=1.54$ 、 $\epsilon_{\sigma}=$

0.81、 $\epsilon_{ au}=0.76$ 、 $\beta=0.95$ 。 取寿命系数 $K_{N}=1$, [S] =

 $1.5_{\,\circ}$

$$S = S_{\tau} = \frac{K_N \tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau} \beta} \tau_a + \psi_{\tau} \tau_m} = 6.015 > 1.5$$

安全。

齿轮1处:

$$\sigma_a = \frac{M_3''}{W} = 5.440(MPa)$$
$$\sigma_m = 0$$

 $20mm > d_0$ $\geq 15.113mm$ 安全

 $25mm > d_1$ $\geq 21.685mm$ 安全

$$\tau_a = \tau_{\rm m} = \frac{T}{2W_{\rm T}} = 0.844(MPa)$$

轴的弯曲等效系数 $\psi_{\sigma} = 0.2$,剪切等效系数 $\psi_{\tau} = 0.1$ 。

在中间轴部分已查得 $k_{\sigma}=1.76$ 、 $k_{\tau}=1.54$ 、 $\epsilon_{\sigma}=0.81$ 、 $\epsilon_{\tau}=0.76$ 、 $\beta=0.95$ 。取寿命系数 $K_{N}=1$, [S] =

1.5。

安全。

$$S_{\sigma} = \frac{K_N \sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma} \beta} \sigma_a + \psi_{\sigma} \sigma_m} = 19.29$$

$$S_{\tau} = \frac{K_N \tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau} \beta} \tau_a + \psi_{\tau} \tau_m} = 74.32$$

$$S = \frac{S_{\sigma}S_{\tau}}{\sqrt{{S_{\sigma}}^2 + {S_{\tau}}^2}} = 18.669 > 1.5$$

S = 18.669 > 1.5 安全

4. 低速轴结

构设计计算及

校核

(1) 轴的材

料选择

减速器功率不大,转速较低,无特殊要求,故选最常用的 45号钢并做正火处理。

(2) 按转矩估算最小直径

钢材硬度和相关力学参数已在中间轴部分列出。

$$d \ge C \sqrt[3]{\frac{P}{n}} = 40.25(mm)$$

- 3)轴的结构设计
- 考虑到键槽对轴的削弱作用,圆整为 $d_{min} = 41mm$ 。

 $d_{min} = 41mm$

① 轴承选择

根据估算所得直径、轮毂宽及安装情况等条件,对轴的结构及尺寸进行草图设计。

轴承同时承受径向力和轴向力,采用一对角接触球轴承;

考虑到轴承内径需不小于 $\mathbf{d}_{min}=41mm$ 。查[2]表 8-158, 选择 7209AC 型 (GB/T292-1994) 角接触球轴承,其主要几何参数如下:

内径 d(mm)	外径 D(mm)	宽度 B(mm)
45	85	19

② 轴的轴向 尺寸确定

一端的轴承用轴肩固定,另一端用套筒固定。

轴与齿轮选用平键连接。根据减速器的内壁到齿轮和轴承端面的距离,参考设计手册中有关经验数据,轴承跨距为160mm,将轴的结构尺寸初步取定如图所示:

(4) 轴承反 力计算

水平面:

$$R_{VH} = \frac{-F_{a4}\frac{d_4}{2} + 53F_{r4}}{160} = -0.267(kN)$$

$$R_{VIH} = \frac{F_{a4} \frac{d_4}{2} + 107F_{r4}}{160} = 1.544(kN)$$

$$R_{VH} = -0.267kN$$

$$R_{VIH} = 1.544kN$$

垂直面:

$$R_{VV} = \frac{-53F_{t4}}{160} = -1.116(kN)$$

$$R_{VIV} = \frac{-107F_{t4}}{160} = -2.252(kN)$$

$$R_{VV} = -1.116kN$$

 $R_{VIV} = -2.252kN$

(5) 绘制弯 矩图

① 水平弯矩

冬

$$M'_{4H} = -28.619N$$
 $\cdot m$
 $M''_{4H} = 81.857N$
 $\cdot m$

② 垂直弯矩 冬

$$M_{4V} = 107R_{IV} = -119.375(N \cdot m)$$

$$M_{4V} = -119.375N$$
$$\cdot m$$

③ 合成弯矩 冬

$$M'_4 = \sqrt{{M'_H}^2 + {M_V}^2} = 122.757(N \cdot m)$$
 $M''_4 = \sqrt{{M''_H}^2 + {M_V}^2} = 144.744(N \cdot m)$

(6) 绘制扭

矩图

已求得轴 III 所受扭矩 $T_3 = 378.9N \cdot m$ 。

(7) 绘制当 量弯矩图

在中间轴部分已查得 $\sigma_B=600$ MPa、 $[\sigma_{-1}]_b=55$ MPa、

$$[\sigma_0]_b = 95 \text{MPa}, \quad \text{Ma} = \frac{55}{95} \approx 0.58_\circ$$

$$\alpha T_3 = 219.762(N \cdot m)$$
 $M'_e = M'_4 = 122.757(N \cdot m)$

$$M_e^{\prime\prime} = \sqrt{{M^{\prime\prime}}^2 + (\alpha T_2)^2} = 263.147 (N \cdot m)$$

 $\alpha T_1 = 219.762N$

 $M_{\rm e}' = 122.757N \cdot m$

 $M_e'' = 263.147N$

 $\cdot m$

 $\cdot m$

(8) 校核危 险截面处直径 $d_4 \ge \sqrt[3]{\frac{M_{3e}^{"}}{0.1[\sigma_{-1}]_b}} = 36.303(mm)$

直径条件(45mm)满足要求,强度足够。如所选轴承和

键联接等经计算、确认寿命和强度均能满足,则以上轴的

 $45mm > d_4$ $\geq 36.303mm$ 危险截面处安全

(9) 精确校 核轴的疲劳强

齿轮4处:

结构设计无需修改。

$$\sigma_a = \frac{M_3''}{W} = 0.130(MPa)$$

$$\sigma_m = 0$$

$$\tau_a = \tau_m = \frac{T}{2W_T} = 12.142(MPa)$$

轴的弯曲等效系数 $\psi_{\sigma} = 0.2$,剪切等效系数 $\psi_{\tau} = 0.1$ 。

在中间轴部分已查得 $k_{\sigma}=1.76$ 、 $k_{\tau}=1.54$ 、 $\epsilon_{\sigma}=0.81$ 、 $\epsilon_{\tau}=0.76$ 、β=0.95。取寿命系数 $K_{N}=1$, [S]=1.5。

$$S_{\sigma} = \frac{K_N \sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma} \beta} \sigma_a + \psi_{\sigma} \sigma_m} = 810.28$$

$$S_{\tau} = \frac{K_N \tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau} \beta} \tau_a + \psi_{\tau} \tau_m} = 5.16$$

$$S = \frac{S_{\sigma}S_{\tau}}{\sqrt{{S_{\sigma}}^2 + {S_{\tau}}^2}} = 5.16 > 1.5$$

安全。

位置 5 处: $\sigma_a = \sigma_{\rm m} = 0$ τ

$$\tau_a = \tau_{\rm m} = \frac{\rm T}{\rm 2W_T} = 1.754(MPa)$$

轴的弯曲等效系数 $\psi_{\sigma} = 0.2$,剪切等效系数 $\psi_{\tau} = 0.1$ 。

在中间轴部分已查得 $k_{\sigma}=1.76$ 、 $k_{\tau}=1.54$ 、 $\epsilon_{\sigma}=$

0.81、 $\epsilon_{\tau}=0.76$ 、 $\beta=0.95$ 。取寿命系数 $K_{N}=1$, [S] =

1.5。

$$S = S_{\tau} = \frac{K_N \tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau} \beta} \tau_a + \psi_{\tau} \tau_m} 1.75 > 1.5$$

S = 1.75 > 1.5 安全

安全。

(四) 轴承的选择与校核

对于角接触球轴承:

查[2]表 14-7, 取温度系数Kt为 1;

查[2]表 14-10, 得 e = 0.68;

查[2]表 14-11,得 AC 型角接触球轴承S = 0.68R;

查[2]表 14-9,取 $K_P = 1.1$ 。

球轴承 $\varepsilon=3$,寿命计算公式 $L_{10h}=\frac{10^6}{60n_{II}}(\frac{C}{P_{III}})^{\varepsilon}$ 。

 $K_t = 1$

e = 0.68

 $K_P = 1.1$

1. 中间轴轴

承的选择

选用角接触球轴承 7207AC。

与校核 轴承处的径向载荷:

$$R_{\rm III} = \sqrt{{R_{IIIH}}^2 + {R_{IIIV}}^2} = 2283.8N$$

$$R_{IV} = \sqrt{{R_{IVH}}^2 + {R_{IVV}}^2} = 2586.0N$$

则:

$$S_{III} = 0.68R_{III} = 1553.0N$$

$$S_{IV} = 0.68R_{IV} = 1758.5N$$

$$F_{IIa} = F_{a3} - F_{a2} = 330N$$
,方向向左。

 $R_{\rm III}=2283.8N$

 $R_{IV} = 2586.0N$

 $S_{III} = 1553.0N$

 $S_{IV} = 1758.5N$

		1
	$S_{IV} + F_{IIa} > S_{III}$, $\bigcirc A_{III} = S_{IV} + F_a = 2088.5N$, $A_{IV} = S_{IV} + S_{III} + S_{IIII} + S_{III} + S_{IIII} + S_{III} + S_{IIII} + S_{III} + S_{IIII} + S_{III} + S_{I$	$A_{III} = 2088.5N$
	$S_{IV}=1758.5N_{\circ}$	$A_{IV} = 1758.5N$
	$\frac{A_{III}}{R_{III}} = 0.91 > e$, $\text{MJ}X_{III} = 0.41, Y_{III} = 0.87$;	
	$rac{A_{IV}}{R_{IV}} = 0.68 = e$,则 $X_{IV} = 1$, $Y_{IV} = 0$ 。	
	$P_{III} = K_P(X_{III}R_{III} + Y_{III}A_{III}) = 3028.7$ N	$P_{III} = 3028.7$ N
	$P_{IV} = K_P(X_{IV}R_{IV} + Y_{IV}A_{IV}) = 2844.6$ N	$P_{IV} = 2844.6$ N
	查[2]表 14-5 得C = 22.50kN。	
	轴承寿命:	
	$L_{10hII} = \frac{10^6}{60n_{II}} (\frac{C}{P_{III}})^{\varepsilon} = 29823.9h$. \
١	大修期三年,两班制总时间:	4.00
ĺ	$8 \times 2 \times 300 \times 3 = 14400 \text{h} < 29823.9 \text{h}$	$14400h < L_{10hII}$
	轴承寿命合格。	= 29823.9h
		合格
		□ 1H
		□1 □
	选用角接触球轴承 7205AC。	61 6
	选用角接触球轴承 7205AC。 轴承处的径向载荷:	2/
		$R_{\rm I} = 1135.1N$
	轴承处的径向载荷:	2/
	轴承处的径向载荷: $R_{\rm I} = \sqrt{{R_{IH}}^2 + {R_{IV}}^2} = 1135.1N$	$R_{\rm I} = 1135.1N$
	轴承处的径向载荷: $R_{\rm I} = \sqrt{{R_{IH}}^2 + {R_{IV}}^2} = 1135.1N$ $R_{II} = \sqrt{{R_{IIH}}^2 + {R_{IIV}}^2} = 401.8N$	$R_{\rm I} = 1135.1N$
	轴承处的径向载荷: $R_{\rm I} = \sqrt{{R_{IH}}^2 + {R_{IV}}^2} = 1135.1N$ $R_{II} = \sqrt{{R_{IIH}}^2 + {R_{IIV}}^2} = 401.8N$ 则:	$R_{\rm I} = 1135.1N$ $R_{\rm II} = 401.8N$
	轴承处的径向载荷: $R_I = \sqrt{{R_{IH}}^2 + {R_{IV}}^2} = 1135.1N$ $R_{II} = \sqrt{{R_{IIH}}^2 + {R_{IIV}}^2} = 401.8N$ 则: $S_I = 0.68R_I = 771.9N$	$R_{II} = 1135.1N$ $R_{II} = 401.8N$ $S_{I} = 771.9N$
	轴承处的径向载荷: $R_{I} = \sqrt{{R_{IH}}^2 + {R_{IV}}^2} = 1135.1N$ $R_{II} = \sqrt{{R_{IIH}}^2 + {R_{IIV}}^2} = 401.8N$ 则: $S_I = 0.68R_I = 771.9N$ $S_{II} = 0.68R_{II} = 273.2N$	$R_{II} = 1135.1N$ $R_{II} = 401.8N$ $S_{I} = 771.9N$
	轴承处的径向载荷: $R_{I} = \sqrt{{R_{IH}}^2 + {R_{IV}}^2} = 1135.1N$ $R_{II} = \sqrt{{R_{IIH}}^2 + {R_{IIV}}^2} = 401.8N$ 则: $S_I = 0.68R_I = 771.9N$ $S_{II} = 0.68R_{II} = 273.2N$ $F_{Ia} = F_{a1} = 652N, 方向向右。$	$R_{I} = 1135.1N$ $R_{II} = 401.8N$ $S_{I} = 771.9N$ $S_{II} = 273.2N$
	轴承处的径向载荷: $R_{I} = \sqrt{{R_{IH}}^2 + {R_{IV}}^2} = 1135.1N$ $R_{II} = \sqrt{{R_{IIH}}^2 + {R_{IIV}}^2} = 401.8N$ 则: $S_I = 0.68R_I = 771.9N$ $S_{II} = 0.68R_{II} = 273.2N$ $F_{Ia} = F_{a1} = 652N, 方向向右。$ $S_I + F_{Ia} > S_{II} , 则 \ A_I = S_I = 771.9N, \ A_{II} = S_I + F_{Ia} = 80.00$	$R_{II} = 1135.1N$ $R_{II} = 401.8N$ $S_{I} = 771.9N$ $S_{II} = 273.2N$ $A_{I} = 771.9N$

2. 高速轴轴

承的选择

与校核

$$\frac{A_{II}}{R_{II}}=3.54>e$$
, 则 $X_{II}=0.41,Y_{II}=0.87$ 。
$$P_I=K_P(X_IR_I+Y_IA_I)=1248.6N$$

$$P_{II}=K_F(X_{II}R_{II}+Y_{II}A_{II})=1543.9N$$
查[2]表 $14-5$ 得C = 12.20 kN。
轴承寿命:
$$L_{10hI}=\frac{10^6}{60n_I}(\frac{C}{P_I})^s=16195.2h$$
大修期三年,两班制总时间:
$$8\times2\times300\times3=14400h<16195.2h$$
台格

选用角接触球轴承 7209 AC。
轴承处的径向载荷:
$$R_V=\sqrt{R_{VIH}^2+R_{VIV}^2}=1147.3N$$

$$R_{VI}=\sqrt{R_{VIH}^2+R_{VIV}^2}=2731.0N$$
则:
$$S_V=0.68R_V=780.2N$$

$$S_{VI}=0.68R_{VI}=1857.1N$$

$$F_{IIIa}=F_{a4}=982N, j f) 向|fd-c$$

$$S_V+F_{IIIa}, 则 $A_V=S_{VI}-F_{IIIa}=875.1N$, $A_{VI}=S_{VI}=1857.1N$

$$A_{VI}=1857.1N$$

$$A_{VI}=1857.1N$$

$$A_{VI}=1857.1N$$

$$A_{VI}=1857.1N$$

$$A_{VI}=1857.1N$$

$$A_{VI}=1354.9N$$$$

3. 低速轴轴

承的选择

与校核

 $P_{VI} = 3004.1$ N

 $P_V = K_P(X_V R_V + Y_V A_V) = 1354.9$ N

 $P_{VI} = K_P(X_{VI}R_{VI} + Y_{VI}A_{VI}) = 3004.1$ N

轴承寿命: $L_{10hIII} = \frac{10^6}{60n_{III}} (\frac{C}{P_{VI}})^{\varepsilon} = 16195.2h$ $14400h < L_{10hIII}$ = 16195.2h大修期三年, 两班制总时间: 合格 $8 \times 2 \times 300 \times 3 = 14400 \text{h} < 180522.0 \text{h}$ 轴承寿命合格。 (五) 键的选择和校核 1. 中间轴键 的选择与 校核 齿轮 2 处: (1) 中间轴 齿轮 2 处选择普通 选择普通平键A型。 查[1]表 8-61, 选取各参数如下: 平键A型 键的选择 键宽b 12_{mm} 键高h 8mm 键长L 28_{mm} 齿轮3处: 选择普通平键A型。 齿轮 3 处选择普通 查[1]表 8-61, 选取各参数如下: 平键A型 键宽b 14mm 键高h 9mm 键长L 56mm (2) 中间轴 键的材料为钢, 齿轮轮毂为锻钢, 静载荷, 查[2]表 11-10, 键的校核 知,许用挤压应力 $[\sigma_p] = 125 \sim 150 MPa$,取 $[\sigma_p] =$ $[\sigma_p] = 150MPa$ $150MPa_{\circ}$ 传递转矩 $T_2 = 131.71N \cdot m$ 。 计算长度: $L_{C2} = L_2 - b_2 = 16mm$, $L_{C3} = L_3 - b_3 =$ $42mm_{\circ}$ 则: $\sigma_{p2} < [\sigma_p]$ $\sigma_{p2} = \frac{4T_2}{dhL_{C2}} = 95.72MPa < \left[\sigma_p\right]$ $\sigma_{p3} < [\sigma_p]$ $\sigma_{p3} = \frac{4T_2}{dhL_{C3}} = 36.46MPa < [\sigma_p]$ 强度满足要求

查[2]表 14-5 得C = 28.20kN。

强度满足要求。

2. 高速轴键

的选择与

校核

(1) 高速轴

联轴器处:

选择普通平键A型。

键的选择

查[1]表 8-61, 选取各参数如下:

键宽b	6mm
键高h	6mm
键长L	40mm

(2) 高速轴

键的校核

键和联轴器的材料为钢,静载荷,查[2]表 11-10,知,许用挤压应力 $[\sigma_p]=125\sim150MPa$,取 $[\sigma_p]=150MPa$ 。传递转矩 $T_1=32.73N\cdot m$ 。

计算长度: $L_{C1} = L_1 - b_1 = 34mm$ 。

则:

$$\sigma_{p1} = \frac{4T_1}{dhL_{C1}} = 32.09MPa < [\sigma_p]$$

强度满足要求。

PI

 $[\sigma_p] = 150MPa$

输入端联轴器处选

择普通平键 A 型

 $\sigma_{p1} < [\sigma_p]$ 强度满足要求

3. 低速轴键

的选择与

校核

键的选择

齿轮 4 处:

(1) 低速轴 选择普通平键 A 型。

查[1]表 8-61, 选取各参数如下:

键宽b	16mm
键高h	10mm
键长L	56mm

联轴器处

选择普通平键A型。

查[1]表 8-61, 选取各参数如下:

键宽b	10mm
···········键高h	8mm
··················键长L	45mm

(2) 低速轴

键的校核

键的材料为钢,齿轮轮毂为锻钢,静载荷,查[2]表 11-10,知, 许用挤压应力 $\left[\sigma_p\right]=125\sim150MPa$, 取 $\left[\sigma_p\right]=150MPa$ 。

齿轮 4 处选择普通 平键 A 型

输出端联轴器处选

择普通平键 A 型

 $[\sigma_p] = 150MPa$

		传递转矩 $T_3=378.9N\cdot m$ 。	
		计算长度: $L_{C4} = L_4 - b_4 = 40mm$, $L_{C5} = L_5 - b_5 =$	
		32 mm 。 则: $\sigma_{p4}=\frac{4T_3}{dhL_{C4}}=71.49MPa<\left[\sigma_p\right]$	$\sigma_{p4} < \left[\sigma_p\right]$ $\sigma_{p5} < \left[\sigma_p\right]$
		$\sigma_{p5}=rac{4T_3}{dhL_{C5}}=146.29MPa<\left[\sigma_p ight]$ 强度满足要求。	强度满足要求
		(六) 联轴器的选择和校核	
	入联轴 的选择 □校核	输入轴选择的联轴器为 LX2 型弹性柱销联轴器(GB/T 5014-2003),公称转矩为560N.m,许用转速6300r/min,联轴器的计算转矩: $T_{c1} = K_A \cdot T_1 = 49.10N \cdot m < 560N.m$ 电动机转速960r/min小于许用转速6300r/min,满足要	输入轴 LX2 型弹性 柱销联轴器
器	出联轴 的选择 □校核	求。 两端轴孔直径分别选择 38 mm及 20 mm。 输出轴选择的联轴器为 GY6 凸缘联轴器(GB/T $5843-2003$),公称转矩为 900 N.m,许用转速 6800 r/min,联轴器的计算转矩 $T_{c2} = K_A \cdot T_3 = 568.35 N \cdot m < 900$ N.m 转速 76.37 r/min/小于许用转速 6800 r/min,满足要求。 两端轴孔直径分别选择 38 mm及 38 mm。	输出轴 GY6 凸缘联轴器
	1	(七) 箱体的设计	5/
1. 箱(体的结	考虑到铸造箱体适宜成批生产, 刚性好, 易获得合理和复	
构	7型式	杂的外形,易于切削,减速器采用铸造箱体,材料为 HT200。	
2. 箱1	体的结	角体分为箱盖和箱座。箱座壁厚为 δ ,箱盖壁厚为 δ_1 。箱	
构	分析	体内侧壁与齿轮两端面有间距Δ2, 与齿顶圆间距Δ1, 箱座	
		底壁与大齿轮齿顶圆间距不小于30~50mm,按结构或油	
		的容量确定(最好输入轴与电机轴同高以方便安装)。为使	
		上下箱可靠地定位和联接, 其接合面均向外做出一定厚度	

的凸缘、凸缘宽度由其联接螺栓的扳手空间决定。

为适应轴承宽度和安放轴承盖,在座孔周围箱壁外扩成具有一定宽度L的轴承座,并在轴承座两旁设置凸台结构,使联接螺栓能紧靠座孔以提高联接刚性。两旁的联接螺栓S在满足S≈D2(D2为轴承座外径)的基础上尽量靠近,但不能与油沟相通,以免漏油和油沟失去供油作用。凸台高度h应保证足够的扳手空间。由于轴承座间两凸台相距较近,因此用连成一片的结构,以免两凸台间形成狭缝结构使铸造砂型易碎裂,浇注时铁水难流进。

为使箱座与其他座架联接,箱座也需做出凸缘底座。箱座底面设计成矩形凸缘,凸缘宽度由地脚螺栓的扳手空间决定,并要求宽度超过箱座内壁位置。

为增加轴承座的刚性, 轴承座处设计肋板结构, 肋板厚度 为壁厚的 0.85 倍。

减速器中的滚动轴承采用飞溅润滑时,需在箱座接合面上制出输油沟和作为接合面间密封用的回油沟。为保证密封性,接合面应精刨,且控制接合面联接螺栓的间距不大于100~150mm,并对称布置。

箱盖采用两圆弧及切线的形式,大齿轮所在一侧箱盖外表面的圆弧以大齿轮轴心为圆心,半径 $R_2=\frac{d_{a4}}{2}+\Delta 1+\delta 1$ 。小齿轮所在一侧箱盖的外表面圆弧位于该处轴承座凸台以外的地方。

箱体还需在适当的部位设置检查孔,油面指示装置,通气器,排油孔,起吊装置等。

3. 箱体的结 构尺寸

依据上述设计要求,参考[1]图 4-52 及[1]表 4-6,结合实际情况,经过迭代与尝试,确定箱体各主要尺寸如下:

名称

符号

型式及尺寸 (MM)

箱座壁厚	δ		8	
箱盖壁厚	δ_1		8	
箱座、箱盖、箱座底凸缘厚	b, b ₁ , b ₂	1:	2、12、2	0
度				
地脚螺栓直径及数目	$\mathrm{d_f},\ n$		14、6	
轴承旁连接螺栓直径	d ₁		10.5	
箱盖、箱座连接螺栓直径	d_2		8	
轴承端盖螺钉直径及数目	d_3	8	3、10、10)
检查孔盖螺钉直径	d ₄	Z .	8	
		$\mathbf{d_f}$	d_1	\mathbf{d}_2
$\mathbf{d_f}$ 、 $\mathbf{d_1}$ 、 d_2 至箱外壁距离		uf	u ₁	
	c ₁	20		14
$egin{aligned} & \mathbf{d_f} & \mathbf{d_1} & \mathbf{d_2}$ 至箱外壁距离 $\mathbf{d_f} & \mathbf{d_2}$ 至凸缘边缘距离	c ₁	<u> </u>	16	
		20	16	14
${f d_f}$ 、 ${f d_2}$ 至凸缘边缘距离	C ₂	20 18 92	16	14 12 20
$\mathbf{d_f}$ 、 $\mathbf{d_2}$ 至凸缘边缘距离 轴承座外径	C ₂	20 18 92	16 14 、112、1	14 12 20
d _f 、d ₂ 至凸缘边缘距离 轴承座外径 轴承旁联接螺栓距离	C ₂ D ₂ S	20 18 92	16 14 、112、1 、135、1	14 12 20
d _f 、d ₂ 至凸缘边缘距离 轴承座外径 轴承旁联接螺栓距离 轴承旁凸台半径	c_2 D_2 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_8	20 18 92	16 14 112, 1 135, 1	14 12 20
d _f 、d ₂ 至凸缘边缘距离 轴承座外径 轴承旁联接螺栓距离 轴承旁凸台半径 轴承旁凸台高度	C ₂ D ₂ S R ₁ h	20 18 92	16 14 112, 1 135, 1 14 30	14 12 20
d _f 、d ₂ 至凸缘边缘距离 轴承座外径 轴承旁联接螺栓距离 轴承旁凸台半径 轴承旁凸台高度 箱外壁至轴承座端面距离	C ₂ D ₂ S R ₁ h L ₁	20 18 92	16 14 112, 1 135, 1 14 30 48	14 12 20

铸造斜度、过渡尺寸、铸造外圆角、内圆角等参数可参考[1]表 8-9、8-10、8-11、8-12

	(八) 润滑和密封的选择	
1. 润滑	齿轮 2 圆周速度 $v_2 = 2.32m/s$,齿轮 4 圆周速度 $v_4 =$	
(1) 齿轮	0.90m/s。速度均在0.5m/s~12m/s的范围内, 可采用浸油	齿轮浸油润滑
的润	润滑;同时,速度小于2.5m/s,选用320工业闭式齿轮	选用 320 工业闭式
滑	油。	齿轮油
	查[1]表 8-167,得润滑油参数:	
	运动粘度 288~352	

粘度指数	90
闪点	200 ℃
 倾点	-8℃

为了使高速级和低速级大齿轮都达到足够的浸油深度,用 挡板隔开两级大齿轮,分开浸油润滑,两级大齿轮的浸油 深度均为10mm。 用挡板隔开两级大 齿轮,分开浸油润 滑

(2) 轴承的润

 $v_2 = 2.32 m/s > 2 m/s$,采用飞溅润滑。为使润滑可靠,在箱座接合面上制出输油沟。在箱盖内壁与其接合面处制出倒棱,以便于油液流入油沟。输油沟尺寸:a = 5 mm,b = 6 mm。

轴承飞溅润滑 在箱座接合面上制 出输油沟

2. 密封

(1) 轴伸出处密封

选择毡圈式密封。利用矩形截面的毛毡圈嵌入梯形槽中所产生的对轴的压紧作用,获得防止润滑油漏出和外界杂志灰质等侵入轴承室的密封效果。

参考[1]表 8-173, 可得毡圈相关尺寸:

高速轴轴径20mm,则毡圈外径D=33mm,毡圈内径 $d_1=19$ mm,毡圈宽度B=6mm,沟槽外径 $D_0=32$ mm,沟槽内径 $d_0=21$ mm,沟槽宽度b=5mm,密封处宽度 $\delta=12$ mm。

低速轴轴径38mm,对应D = 49mm, d_1 = 34mm, $B=7mm,\;\;D_0=48mm,\;\;d_0=36mm,\;\;b=6mm,\;\;\delta=15mm,$

(2) 箱盖

与箱

座接

合面

的密

在箱盖与箱座接合面上涂密封胶密封。

毡圈式密封

箱盖与箱座接合面 涂密封胶密封

			1	
	封			
(3)	其他	检查孔盖板、排油螺塞、油标与箱体的接合	其它接合面加纸封	
	部位	封油垫。轴承端盖与箱体需加密封垫片。	油垫	
	的密			
	封			
		(九) 附件及说明		
1. 车	油承盖	轴承盖的结构型式为螺钉联接式,并且设 ⁻	计透盖和闷盖。	选用螺钉联接式轴
(1) 结构		材料为 HT150。其中透盖的结构如下图所:	承盖	
(2)	尺寸	闷盖与透盖相比,区别在于盖中心没有透过。 中间轴:	1,其余结构相	38
		轴承外径D	72mm	
		轴承盖联接螺钉直径d ₃	10mm	
		轴承盖螺钉孔直径d ₀	11mm	
		轴承盖螺钉孔中心距D ₀	97mm	
		轴承盖外径D ₂	122mm	
		轴承盖顶住轴承处的内径D ₄	62mm	
		轴承盖板宽度e	12mm	
		密封处宽度b	8mm	
		油沟高度h	8mm	

D	52m
d_3	8mm
d ₀	9mm
D_0	72mm
D_2	92mm
D_4	42mm
e	9.6mm
b	8mm
h	8mm
	QC 100
D	85m
	85m 10mm 11mm
D d ₃	10mm 11mm
D d ₃ d ₀	10mm 11mm 110mm
D d ₃ d ₀ D ₀	10mm 11mm 110mm
D d ₃ d ₀ D ₀ D ₂	10mm 11mm 110mm 135mm
d ₃ d ₀ D ₀ D ₂ D ₄	10mm 11mm 110mm 135mm 75mm

2. 调整垫片

组

(1) 结构

调整垫片组的作用为调整轴承游隙及支承的轴向位置。垫片组由若干种厚度的垫片根据需要调整的厚度叠合而成,材料选为 08F 钢抛光。

(2) 尺寸

参考[1]表 4-9,选择 A 组,调整垫片厚度 0.5mm 的片数 为 3,厚度 0.2mm 的片数为 4,厚度 0.1mm 的片数为 2。调整垫片组内径 $d_2 = D + (2\sim4)$ mm,其中 D 为轴承外径,其余尺寸与轴承盖相同,则:

高速轴 $d_2=54mm$; 中间轴 $d_2=74mm$; 低速轴 $d_2=87mm_\circ$

3. 油标

游标用来指示箱内油面高度,选用杆式游标 M12 (16H9/d9)。结构尺寸如图:

相关尺寸如下表:

$\mathbf{d_1}$	d ₂	$\mathbf{d_3}$	h	a	b	С	D	D ₁
4	12	6	28	10	6	4	20	16

单位为 mm。

选择 A 组调整垫片

选用杆式游标 M12

4. 排油孔螺塞

在箱座底部设排油孔,用于换油及清洗箱体时排出油污。 平时排油孔用螺塞及封油垫封住。排油孔螺塞采用 Q235, 封油垫采用石棉橡胶纸。排油孔螺塞及封油垫尺寸参考[1] 表 4-13。

螺塞选用 M20×1.5。其余相关尺寸如下:

D_0	30			
L	28			
1	15			
a	4			
D	25.5			
S	22			
D_1	20.9			
d_1	22			
Н	3			

单位为 mm。

5. 检查孔盖 版

检查传动件啮合情况、润滑状态及向箱内注油,在箱盖上部便于观察传动件啮合区的位置开足够大的检查孔,平时则将检查孔盖板盖上并用螺钉予以固定,盖板与箱盖凸台接合面间加装防渗漏的石棉橡胶纸。

盖板材料选择 Q215。螺钉选用 M8, 检查孔及其盖板的结

排油孔螺塞 M20×

1.5

构尺寸参考[1]表 4-14, 如图:

相关尺寸:

A	150mm
A1	198mm
A2	174mm
B1	166mm
В	118mm
B2	142mm
d4	8mm
R	5mm
h	8mm

6. 通气器

为沟通箱体内外的气流使箱体内的气压不会因为减速器运转时的温升而增大,从而造成减速器密封处渗漏,在箱盖顶部或检查孔盖板上安装通气器。通气器结构尺寸如图所示:

相关尺寸:

 $d \qquad \quad d_1 \qquad \quad d_2 \quad d_3 \quad d_4 \quad h \quad D \quad a$

M24	M48×1.5		12	5	22	50	55	15
b	С	h ₁	R	D_1	S	K	e	f
8	20	22	60	36.9	32	7	2	2

单位为 mm, 其中 S 为扳手宽度。

在箱盖上铸出吊耳和吊耳环,用来起吊箱盖。

7. 起吊装置

吊耳环形状及尺寸如下:

8. 定位销

定位销用来确定箱座与箱盖的相互位置。为保证轴承座孔的镗孔精度与装配精度,在箱体的联接凸缘上距离尽量远处安置两个定位销,并设置在不对称的位置。选择圆锥销作为定位销,公称直径 $d=(0.7-0.8)d_2,d_2$ 为箱座、箱盖凸缘联接螺栓直径,选择 $d_2=8$ mm,则取d=6mm。长度稍大于箱体联接凸缘的总厚度,以利拆装,取长度为26mm。数量2个对角布置。定位销孔是在箱盖和箱座剖分面加工完毕并用螺栓固联后进行配钻和配绞的。

9. 起盖螺钉

起盖螺钉选择 M10,数目 1 只。螺纹长度大于箱盖凸缘厚度,取长度为 16mm,钉杆端部制成直径较细的圆柱端,以免经常拧动时损坏杆端螺纹。起盖螺钉材料为 35 号钢并通过热处理使硬度达 28-38HRC。

起盖螺钉 M10, 1 只

四、 设计小结

从设计到计算,从计算到绘图,从绘图到校核,这不是一个线性的过程,一个实际的机械设计项目很可能是需要不断迭代的。在最初我想过能不能把整个的设计流程抽象出来,整理成一份代码,这样我只需要输入想要的机构特性,程序就可以自动完成设计、校核甚至建模绘图的工作,这个模型不需要非常精确,即使有一些瑕疵,我也可以在它的基础上再进行后续处理,这样还是会大大简化我的工作(以及之后所有需要设计减速器的人的工作:))。但是实践证明,这个目标似乎并不那么好达到。一开始我以为只需要将关系式写出来,再把相关标准里面的规定参数录入,剩下的问题无非是多种结构尺寸的排列组合,而这种大量的无脑计算正是计算机所擅长的。但是,我发现这个系统中所含的关系式似乎是高度耦合的,不同变量之间的关系并不是单向的,因此抽象难度大大提升。考虑到时间成本,我只好放弃这个想法,老老实实手动"搬砖"。虽然想法失败了,但是我注意到参考资料[1]中提到了一种叫做"外点混合罚函数法"的方法,正好可以解决我遇到的参数耦合程度太大的问题。本质上减速器设计就是在给出一定条件(材料许用极限、标准限定系数等)的前提下,求这个系统的最优解——体积小、寿命长、安全性好等等,也就是一个最优化问题。做出一个减速器通用的设计方法,这个目标很大,但不是遥不可及,我希望以后有机会还可以研究一下,。

具体在本次机械设计训练中,我也收获了很多有意义的经验。这是我第一次将所学的机械设计知识综合运用到实际项目中来,才知道纸上得来终觉浅。归纳起来,大概有以下几点粗浅的认识:

- 1. 对系统中起到主要作用的机构要谨慎设计,要考虑到它对之后整个系统设计的巨大影响。如减速器中的轴系,必须合理安排轴及齿轮的位置关系;
- 在设计初期,多画草图是一个很明智的做法,在草图中发现问题、不断修改,会避免之后绘图与校核时再出现比较大的问题
- 对不太清楚的零件尺寸,要多查阅相关标准,基本上所有尺寸都有对应的标准存在, 在一开始按照标准处理会避免之后再回来修改;
- 4. 掌握一定的 CAD 制图技巧很重要, 无论是平面图还是三维图, AutoCAD、SolidWorks等工程软件中都有很多可以大幅提高工作效率的技巧;

五、 参考资料

- [1]. 陈秀宁、施高义. 机械设计课程设计[M]. 第四版. 杭州. 浙江大学出版社. 2012
- [2]. 陈秀宁、顾大强. 机械设计[M]. 第一版. 杭州. 浙江大学出版社. 2010

六、 附录——MATLAB 绘图代码

1. 水平弯矩图生成代码

```
%% 高速轴
plot([0 73.5 73.5+37.5 73.5+37.5 73.5+37.5+122.5], [0 0 23.619 8.546 0],
'.-k', 'LineWidth',2)
patch([0 73.5 73.5+37.5 73.5+37.5 73.5+37.5+122.5], [0 0 23.619 8.546
0], [0.76 0.76 0.76])
text(120, 23, 'MH1''', 'FontSize', 20)
text(120, 8, 'MH1'''', 'FontSize', 20)
%% 中间轴
plot([0 37.5 37.5 37.5+69.5 37.5+69.5 37.5+69.5+53], [0 -23.019 40.148 -
41.921 -5.096 0], '.-k', 'LineWidth',2)
patch([0 37.5 37.5 37.5+69.5 37.5+69.5 37.5+69.5+53], [0 -23.019 40.148
-41.921 -5.096 0], [0.76 0.76 0.76])
text(40, -27, 'MH2''', 'FontSize', 20)
text(40, 40, 'MH2'''', 'FontSize', 20)
text(110, -8, 'MH3''', 'FontSize', 20)
text(110, -40, 'MH3'''', 'FontSize', 20)
%% 低速轴
plot([0 107 107 107+53 107+53+78], [0 -28.619 81.857 0 0], '.-k',
'LineWidth',2)
patch([0 107 107 107+53 107+53+78], [0 -28.619 81.857 0 0], [0.76 0.76
text(110, -30, 'MH4''', 'FontSize', 20)
text(110, 85, 'MH4'''', 'FontSize', 20)
```

2. 垂直弯矩图生成代码

```
### plot([0 73.5 73.5+37.5 73.5+37.5+122.5], [0 0 -48.467 0], '.-k', 'LineWidth',2)

patch([0 73.5 73.5+37.5 73.5+37.5+122.5], [0 0 -48.467 0], [0.76 0.76 0.76])

text(110, -47, 'MV1', 'FontSize', 20)

### plot([0 37.5 37.5+69.5 37.5+69.5+53], [0 82.492 136.964 0], '.-k', 'LineWidth',2)

patch([0 37.5 37.5+69.5 37.5+69.5+53], [0 82.492 136.964 0], [0.76 0.76 0.76])
```

```
text(26, 83, 'MV2', 'FontSize', 20)
text(110, 135, 'MV3', 'FontSize', 20)

%% 低速轴
plot([0 107 107+53 107+53+78], [0 -119.375 0 0], '.-k', 'LineWidth',2)
patch([0 107 107+53 107+53+78], [0 -119.375 0 0], [0.76 0.76 0.76])
text(110, -115, 'MV4', 'FontSize', 20)
```

3. 合成弯矩图生成代码

```
%% 高速轴
plot([0 73.5 73.5+37.5 73.5+37.5 73.5+37.5+122.5], [0 0 52.770 48.022
0], '.-k', 'LineWidth',2)
patch([0 73.5 73.5+37.5 73.5+37.5 73.5+37.5+122.5], [0 0 52.770 48.022
0], [0.76 0.76 0.76])
text(110, 55, 'M1''', 'FontSize', 20)
text(110, 47, 'M1'''', 'FontSize', 20)
%% 中间轴
plot([0 37.5 37.5 37.5+69.5 37.5+69.5 37.5+69.5+53], [0 85.643 91.742
143.236 137.059 0], '.-k', 'LineWidth',2)
patch([0 37.5 37.5 37.5+69.5 37.5+69.5 37.5+69.5+53], [0 85.643 91.742
143.236 137.059 0], [0.76 0.76 0.76])
text(40, 85, 'M2''', 'FontSize', 20)
text(40, 100, 'M2'''', 'FontSize', 20)
text(110, 130, 'M3''', 'FontSize', 20)
text(110, 145, 'M3'''', 'FontSize', 20)
%% 低速轴
plot([0 107 107 107+53 107+53+78], [0 122.757 144.744 0 0], '.-k',
'LineWidth',2)
patch([0 107 107 107+53 107+53+78], [0 122.757 144.744 0 0], [0.76 0.76
[0.76]
text(78, 140, 'M4''', 'FontSize', 20)
text(78, 120, 'M4'''', 'FontSize', 20)
```

4. 扭矩图生成代码

```
%% 高速轴
plot([0 0 73.5+37.5 73.5+37.5 73.5+37.5+122.5], [0 32.73 32.73 0 0], '.-
k', 'LineWidth',2)
patch([0 0 73.5+37.5 73.5+37.5 73.5+37.5+122.5], [0 32.73 32.73 0 0],
[0.76 0.76 0.76])
```

```
text(115, 33, 'aT1', 'FontSize', 20)

/// 中间轴

plot([0 37.5 37.5 37.5+69.5 37.5+69.5 37.5+69.5+53], [0 0 131.71 131.71 0 0], '.-k', 'LineWidth',2)

patch([0 37.5 37.5 37.5+69.5 37.5+69.5 37.5+69.5+53], [0 0 131.71 131.71 0 0], [0.76 0.76 0.76])

text(110, 130, 'aT2', 'FontSize', 20)

/// 低速轴

plot([0 107 107 107+53+78 107+53+78], [0 0 378.9 378.9 0], '.-k', 'LineWidth',2)

patch([0 107 107 107+53+78 107+53+78], [0 0 378.9 378.9 0], [0.76 0.76 0.76])

text(80, 375, 'aT3', 'FontSize', 20)
```

5. 当量弯矩图生成代码

```
%% 高速轴
plot([0 0 73.5 73.5+37.5 73.5+37.5 73.5+37.5+122.5], [0 18.983 18.983
57.160 49.214 0], '.-k', 'LineWidth',2)
patch([0 0 73.5 73.5+37.5 73.5+37.5 73.5+37.5+122.5], [0 18.983 18.983
57.160 49.214 0], [0.76 0.76 0.76])
text(115, 58, 'Me1''', 'FontSize', 20)
text(115, 45, 'Me1'''', 'FontSize', 20)
%% 中间轴
plot([0 37.5 37.5 37.5+69.5 37.5+69.5 37.5+69.5+53], [0 114.763 119.383
162.334 156.910 0], '.-k', 'LineWidth',2)
patch([0 37.5 37.5 37.5+69.5 37.5+69.5 37.5+69.5+53], [0 114.763 119.383
162.334 156.910 0], [0.76 0.76 0.76])
text(40, 110, 'Me2''', 'FontSize', 20)
text(40, 125, 'Me2'''', 'FontSize', 20)
text(110, 150, 'Me3''', 'FontSize', 20)
text(110, 165, 'Me3'''', 'FontSize', 20)
%% 低速轴
plot([0 107 107 107+53 107+53+78 107+53+78], [0 122.757 263.147 219.762
219.762 0], '.-k', 'LineWidth',2)
patch([0 107 107 107+53 107+53+78 107+53+78], [0 122.757 263.147 219.762
219.762 0], [0.76 0.76 0.76])
text(115, 130, 'Me4''', 'FontSize', 20)
text(89, 273, 'Me4'''', 'FontSize', 20)
```