

AI 프로그래밍

다양한 ANN Architecture

초창기 ANN의 Architecture와 한계

• 초창기 ANN의 architecture

- ANN은 다수의 layer를 쌓아 구성
- 각 layer의 node는 앞 layer와 뒤 layer의 모든 node와 edge로 연결
 - 그래프에서 모든 정점이 연결된 상태를 fully connected라고 함
 - ANN에서 인근 layer의 모든 node들과 edge로 연결된 layer를 fully connected layer라고 함

초창기 ANN의 Architecture와 한계

Fully connected layer (FC)

- 인근 layer의 모든 node와 edge로 연결된 layer
 - 이전 layer의 node가 m개, 현재 layer의 node가 n개 일 때, m × n 개의 edge가 있음
- Node 개수를 일의로 정할 수 있는 장점이 있음
- Node가 많아지면 edge의 개수가 급격히 많아지는 단점이 있음
 - ANN의 메모리 소모가 지나치게 많아질 수 있음

초창기 ANN의 Architecture와 한계

Fully connected layer (FC)

- 일반적으로 ANN의 개별 parameter를 저장하기 위해 32bit (4 bytes) float를 사용
- 256 × 256 사이즈의 작은 RGB 이미지를 처리하는데, 한 layer에서만 750 GB가 필요함

Convolutional layer (Conv)

- 픽셀 수가 많은 이미지를 처리하기 위해 개발된 layer
- 정해진 사이즈의 filter가 sliding window가 되어, 이미지를 훑어보면서 output 생성
 - Weight가 filter에만 존재
- Input 이미지 사이즈가 아무리 커도, weight의 수는 변하지 않음
- Convolutional layer로 이루어진 ANN을 convolutional neural network (CNN)이라 함

- Convolutional layer (Conv)
 - Convolutional filter

- Convolutional layer의 input, output, 그리고 filter는 width, height, channel로 구성
- Filter의 각 칸에는 하나의 weight가, 각 channel에는 하나 bias가 존재함
- Filter는 일반적으로 홀수 × 홀수 사이즈의 정사각형

- Convolutional layer (Conv)
 - Convolutional filter의 작동 방식

- 실제로는 차례대로 훑어보지 않고, feature map의 모든 node를 동시에 계산함
- 단 weight는 동일하게 적용되므로, weight를 저장할 메모리 공간이 크게 절약됨
 - 공통의 weight를 사용하는 것을 weight sharing이라 함

- Convolutional layer (Conv)
 - Convolutional filter의 작동 방식

- Filter의 width와 height가 클 수록 feature map의 width와 height가 작아짐
 - Filter는 input 이미지 밖으로 나갈 수 없음

- Convolutional layer (Conv)
 - Stride : Filter를 배치하는 간격

• Stride가 클 수록 feature map의 width와 height가 작아짐

- Convolutional layer (Conv)
 - Padding : Input 주변에 추가 픽셀을 배치

• Feature map의 width와 height가 줄어드는 것을 방지하고 싶을 때 사용

- Convolutional layer (Conv)
 - Padding : Input 주변에 추가 픽셀을 배치

• Filter의 width, height가 큰 만큼, padding size도 늘어나야 feature map의 width 및 height를 유지할 수 있음

- Convolutional layer (Conv)
 - Padding: Input 주변에 추가 픽셀을 배치

Same padding (padding size = 1)

- Zero padding : 추가 픽셀에 0을 채움
- Same padding : 추가 픽셀에 테두리 값을 복사하여 채움

- Convolutional layer (Conv)
 - Convolutional layer의 channel
 - Filter의 한 channel이 input 이미지의 모든 channel에 적용된 후, pixel-wise로 더해져서 feature map의 한 channel이 됨
 - Feature map은 filter와 같은 channel 수를 가짐

- Pooling layer
 - Pooling : Weight 없이, input의 사이즈를 크게 줄여 압축할 때 활용

- 압축 방법에 따라 max pooling, mean pooling이 있음
- Pooling filter는 일반적으로 짝수 × 짝수의 정사각형으로 구성
- Stride를 조정하여 output의 차원을 조정할 수 있음

- Pooling layer
 - Pooling layer의 channel
 - Input의 각 channel에 개별적으로 수행됨
 - Input의 channel이 유지됨

- Convolutional neural network (CNN)
 - 일반적인 CNN의 구성

- Convolutional neural network (CNN)
 - Filter의 의미

- Filter가 이동하며 input 이미지를 보기 때문에, 이미지 곳곳에서 visual feature를 감지함
- Input의 어느 위치에서도 특정 feature를 찾아 내는 것을 translation invariant라 함

- Convolutional neural network (CNN)
 - Pooling의 의미

- Input를 작게 만들면, filter 사이즈는 유지하면서 더 넓게 보는 효과를 가져옴
 - Filter 사이즈를 늘리지 않으면 weight 수가 늘어나지 않게 할 수 있음
- Input의 사이즈(scale)가 다양할 때도 특정 feature를 찾아 내는 것을 scale invariant라 함

• 초창기 ANN의 sequential data 처리 방법

- 기존의 ANN은 뉴런 값을 계속해서 기억할 수 없음
- 따라서 연속적인 데이터가 필요한 경우 이를 모두 동시에 input으로 주어야 함
 - Sequence가 길어질 수록 weight가 많아짐

Recurrent neural network (RNN)

- 이를 해결하기 위해 뉴런 값을 기억할 cell이란 개념을 추가
- 이러한 형태의 ANN을 recurrent neural network (RNN)이라 함

Long short-term memory (LSTM)

- Recurrent neural network (RNN)의 일종으로 내부적으로 기억(cell, c_t)을 가지는 layer
- 내부적으로 다양한 게이트로 구성됨

Long short-term memory (LSTM)

Forget gate : 이전 기억 c_{t-1}에 sigmoid output을 곱하여 보존 정도를 결정

• Input gate : y_{t-1}, x_t를 종합하여 현재 <mark>기억</mark> c_t를 생성

• Output gate : c_{t-1}, y_{t-1}, x_t를 종합하여 최종 output y_t를 생성, <mark>다음 layer</mark>로 전달

• LSTM의 training과 inference

- RNN은 training과 inference의 ANN architecture가 다름
- Training시에는 cell을 포함한 layer를 sequence 길이만큼 전개함
 - 전개한 layer는 모두 같은 weight를 공유함

- Gradient Vanishing
 - 복잡한 문제를 해결하기 위해선 많은 hidden layer를 쌓아야 함
 - Hidden layer가 많을 수록 ANN이 deep하다고 표현함
 - Hidden layer가 너무 많은 경우 input layer에 가까워 질 수록 gradient가 0에 수렴할 수 있음
 - 따라서, input layer에 가까운 layer들은 training이 일어나지 않음
 - 복잡한 문제 해결을 위해 hidden layer가 많이 쌓아도 소용이 없게 됨
 - 이러한 문제를 해결하기 위해 ResNet과 DenseNet 개발 됨

- ResNet (Residual neural network)
 - Residual block을 통해 인접하지 않은 layer들을 직접 연결(skip connection)

- ResNet (Residual neural network)
 - + 연산을 통해 이전 layer의 값이 더해짐
 - Gradient를 구하기 위해 loss 함수 L을 미분하면 멀리 떨어진 layer의 weight의 영향력이 그대로 유지됨

• Input layer에 가까워지더라도 Gradient가 0으로 수렴되는 것을 방지함

- ResNet (Residual neural network)
 - + 연산을 하려면 차원이 같아야 하므로, 다음 residual block으로 넘어갈 때 유의해야 함
 - 아래 그림에서 r_1 과 s_1 의 차원이 같아야 더할 수 있음

• Residual block이 넘어 갈 때 차원을 줄여야 한다면 skip connection에서도 residual block의 output과 같은 차원을 줄여야 함

- ResNet (Residual neural network)
 - 다음 Residual block의 input이, + 연산을 통해 데이터가 뭉개짐
 - 아래 그림에서 r1과 s1가 더해지면서 그 원래 값을 잃어버림

• 이를 해결하기 위해 DenseNet이 개발됨

- DenseNet
 - 이전 input을 더하는 것이 아니라, concatenate하여 유지시키는 CNN

- Convolutional layer만 사용 가능
- Concatenate로 인해 feature map의 차원이 커지더라도, filter는 정해져 있으므로 weight 수는 일정함

- DenseNet
 - Concatenate를 위해서 dense block의 모든 feature map들은 input과 width 및 height가 같아야 함

• 연산 량이 너무 커지는 것을 막기 위해 각 feature map의 channel 수는 적어야 함

- ResNet과 DenseNet의 비교
 - ResNet
 - 장점
 - + 연산을 사용하므로, residual block output의 dimension (node 개수)이 늘어나지 않음
 - 단점
 - + 연산으로 인해 residual block output이 훼손 됨
 - DenseNet
 - 장점
 - Concatenate를 사용하므로 input 및 이전 feature map이 보존됨
 - 단점
 - Concatenate로 인해 dense block 안에서 feature map의 channel이 너무 커질 수 있음
 - Fully connected layer를 사용할 수 없음

감사합니다

