Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 03

Abgabedatum: 07.05.24, 14 Uhr

1. (A) Bilinearformen und Skalarprodukte

Prüfen Sie jeweils für B_1 , B_2 und B_3 , ob die entsprechende Abbildung eine Bilinearform oder sogar ein Skalarprodukt ist.

a) $B_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x, y) \mapsto \sum_{i=1}^n j x_i y_i$ (2)

a)
$$D_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x, y) \mapsto \sum_{j=1}^n J x_j y_j$$
 (2)

b)
$$B_2 \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x, y) \mapsto \sum_{j=1}^n (-1)^j x_j y_j$$
 (2)

c)
$$B_3: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x, y) \mapsto \sum_{j=1}^n x_j y_j^2$$

2. (A) Matrixnormen

Seien $x \in \mathbb{R}^n$, $A \in M(m \times n, \mathbb{R})$ und seien $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$, $||\cdot||' : \mathbb{R}^m \to \mathbb{R}$ jeweils Normen auf \mathbb{R}^n und \mathbb{R}^m . Wir definieren die induzierte **Matrixnorm** auf $M(m \times n, \mathbb{R})$ durch

$$||A|| := \sup_{x \neq 0} \frac{||Ax||'}{||x||}.$$

a) Wir wählen für $||\cdot||$ und für $||\cdot||'$ jeweils die ∞ -Norm $||x||_{\infty} := \max_{j} |x_{j}|$.

i) Zeigen Sie
$$||Ax||' \le \max_{j} \left(\sum_{k=1}^{n} |a_{jk}| \right) \cdot ||x||$$
 (1)

für alle $x \in \mathbb{R}^n$.

ii) Zeigen Sie
$$||A|| = \max_{j} \left(\sum_{k=1}^{n} |a_{jk}| \right). \tag{1}$$

Hinweis: Setzen Sie einen geeigneten Vektor für x ein, um in (a) Gleichhei zu erhalten.

b) Nun wählen wir für $||\cdot||$ und für $||\cdot||'$ jeweils die 1-Norm $||x||_1 := \sum_j |x_j|$.

i) Zeigen Sie
$$||Ax||' \le \max_{k} \left(\sum_{j=1}^{m} |a_{jk}| \right) \cdot ||x||$$
 (1)

für alle $x \in \mathbb{R}^n$.

ii) Zeigen Sie
$$||A|| = \max_k \left(\sum_{i=1}^m |a_{jk}| \right). \tag{1}$$

c) Schließlich wählen wir für $||\cdot||$ und für $||\cdot||'$ jeweils die Euklidische bzw. 2-Norm $||x||_2 := \sqrt{\sum_j |x_j|^2}$.

i) Zeigen Sie
$$||Ax||' < ||A||_{E} \cdot ||x||$$

für alle $x \in \mathbb{R}^n$, wobei $||\cdot||_F$ die Frobenius-Norm

$$||A||_F := \sqrt{\sum_j \sum_k |a_{jk}|^2}$$

bezeichnet. Hinweis: Benutzen Sie die Cauchy-Schwarzsche Ungleichung.

ii) Zeigen Sie, dass $||\cdot||_F$ nicht die von $||\cdot||$ und $||\cdot||'$ induzierte Matrixnorm (1) ist, indem Sie den Fall $m = n, A = E_n$ betrachten.

3. (A) Determinanten

Berechnen Sie die Determinanten folgender Matrizen über ihren jeweiligen Körpern:

$$A = \begin{pmatrix} \cos \varphi \cos \vartheta & -r \sin \varphi \cos \vartheta & -r \cos \varphi \sin \vartheta \\ \sin \varphi \cos \vartheta & r \cos \varphi \cos \vartheta & -r \sin \varphi \sin \vartheta \\ \sin \vartheta & 0 & r \cos \vartheta \end{pmatrix} \in M(3 \times 3, \mathbb{R}) \text{ mit } \vartheta, \varphi, r \in \mathbb{R},$$

$$B = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & -1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 2 & -2 \end{pmatrix} \in M(4 \times 4, \mathbb{R})$$

$$C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in M(3 \times 3, \mathbb{F}_2)$$

$$(2)$$

Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.