Key to Final Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use red ink.

Exercise 1 (5 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 2 (5 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the circuit below.

Key to Final Exam S2

Exercise 3 (6 points)

The table shown on the <u>answer sheet</u> gives the sequence of a counter we want to design. This counter should be made up of JK flip-flops.

- 1. Complete the table shown on the <u>answer sheet</u>.
- 2. Write down the most simplified expressions of J and K for each flip-flop on the <u>answer sheet</u>. <u>Complete the Karnaugh maps for the solutions that are not obvious</u>. An obvious solution does not have any logical operations apart from the complement (for instance: J0 = 1, $K1 = \overline{Q2}$).

Exercise 4 (4 points)

We want to build a 2-MiB ROM device (labelled M) from several 16-KiB ROM devices (labelled m). The M device has a 16-bit data bus. The m devices have an 8-bit data bus. Answer the questions on the answer sheet.

Key to Final Exam S2 2/5

Last name: Group: Group:

ANSWER SHEET

Exercise 1

1.

Number	S	E	М
-146.3125	1	10000110	0010010010100000000000
0.34375	0	01111101	0110000000000000000000

2.

IEEE-754 Representation	Associated Representation
246800000000000016	3 × 2 ⁻⁴⁴²
7 FFF 00000000000_{16}	NaN
00068000000000016	13 × 2 ⁻¹⁰²⁷

Exercise 3

Q2	Q1	Q0	J2	K 2	J1	K1	J0	K0
1	1	1	Ф	0	Ф	1	Ф	1
1	0	0	Ф	0	0	Ф	1	Ф
1	0	1	Φ	0	1	Ф	Ф	1
1	1	0	Φ	1	Φ	0	1	Φ
0	1	1	0	Φ	Φ	1	Ф	0
0	0	1	0	Ф	0	Ф	Ф	1
0	0	0	1	Φ	1	Φ	1	Φ

Do not use Karnaugh maps for obvious solutions.

$$J0 = 1$$

		Q1 Q0					
	J1	00	01	11	10		
Q2	0	1	0	Ф	Φ		
	1	0	1	Ф	Φ		

$$\mathbf{J1} = \overline{\mathbf{Q2}}.\ \overline{\mathbf{Q0}} + \mathbf{Q2}.\mathbf{Q0} = \overline{\mathbf{Q2} \oplus \mathbf{Q0}}$$

		Q1 Q0					
	J2	00	01	11	10		
Q2	0						
	1						

$$J2 = \overline{Q0}$$

$$\mathbf{K0} = \mathbf{Q2} + \overline{\mathbf{Q1}}$$

	Q1 Q0						
	K1	00	01	11	10		
Q2	0						
	1						

$$K1 = Q0$$

	Q1 Q0					
	K2	00	01	11	10	
Q2	0	Ф	Ф	Ф	Ф	
	1	0	0	0	1	

$$K2 = Q1.\overline{Q0}$$

Exercise 4

Question	Answer
What is the depth of the <i>m</i> memory?	2 ¹⁴ words
What is the depth of the M memory?	2 ²⁰ words
What is the number of address lines of the m memory?	14 lines
What is the number of address lines of the M memory?	20 lines
How many memory devices should be put in parallel?	2 memory devices
How many memory devices should be put in series?	64 memory devices
How many address lines are required to control the <i>CS</i> input of the memory devices?	6 address lines
When the M memory is active, how many m memory devices are active simultaneously?	2 m memory devices

Feel free to use the blank space below if you need to:				