Triangle Assignment

G. Sai Harshith - EE22BTECH11022

Consider a triangle with vertices:

$$\mathbf{A} = \begin{pmatrix} -3\\1 \end{pmatrix} \tag{1}$$

$$\mathbf{B} = \begin{pmatrix} 3\\2 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \tag{2}$$

$$\mathbf{C} = \begin{pmatrix} 1 \\ -4 \end{pmatrix} \tag{3}$$

I. vectors

1. VECTORS			
parameter	value	description	
m _{AB}	$\begin{pmatrix} 6 \\ 1 \end{pmatrix}$	Direction vector of AB	
$\mathbf{n}_{\mathbf{A}\mathbf{B}}^{ op}$	$\begin{pmatrix} 1 & -6 \end{pmatrix}$	Normal vector of AB	
$ \mathbf{B} - \mathbf{A} $	6.083	Length of AB	
m _{BC}	$\begin{pmatrix} -2 \\ -6 \end{pmatrix}$	Direction vector of BC	
$\mathbf{n}_{\mathrm{BC}}^{\scriptscriptstyle op}$	(-6 2)	Normal vector of BC	
$\ \mathbf{C} - \mathbf{B}\ $	6.325	Length of BC	
m _{CA}	$\begin{pmatrix} -4 \\ 5 \end{pmatrix}$	Direction vector of CA	
$\mathbf{n}_{\mathbf{C}\mathbf{A}}^{ op}$	(5 4)	Normal vector of CA	
A - C	6.403	Length of CA	
$rank \begin{pmatrix} 1 & 1 & 1 \\ A & B & C \end{pmatrix}$	3	Non Collinear	
area	17	Area of Triangle	
∠A	60.80	angle between AB and AC	
∠ <i>B</i>	62.10	angle between BA and BC	
∠C	57.10	angle between CB and CA	

TABLE I.1 VECTORS

Fig. I.1. Triangle generated using python

II. MEDIAN

parameter	value	description
D	$\begin{pmatrix} 0.5 \\ 2 \end{pmatrix}$	Midpoint of AD
Е	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$	Midpoint of BE
F	$\begin{pmatrix} -1.5 \\ -3 \end{pmatrix}$	Midpoint of CF
$\mathbf{n}_{1}^{ op}$	(7 0.5)	normal form of AD
c_1	4.5	
$\mathbf{n}_{2}^{ op}$	(1 7)	normal form of BE
c_2	3	
$\mathbf{n}_{3}^{ op}$	(-8 6.5)	normal form of CF
<i>c</i> ₃	-7.5	
G	$\begin{pmatrix} 0.66 \\ -0.33 \end{pmatrix}$	Centroid of the triangle

TABLE II.1 Median

Fig. II.1. Triangle generated using python

III. ALTITUDE

parameter	value	description
$\mathbf{n}_1^{\scriptscriptstyle op}$	(9 6)	normal form of AD
c_1	-21	normal form of AD_1
$\mathbf{n}_{2}^{ op}$	$\begin{pmatrix} -4 & -10 \end{pmatrix}$	normal form of BE_1
c_2	26	normal form of BE ₁
$\mathbf{n}_{3}^{ op}$	(-5 4)	normal form of CF_1
c_3	-5	
Н	$\begin{pmatrix} 2.833 \\ -0.833 \end{pmatrix}$	Orthocentre of Triangle

TABLE III.1
ALTITUDE

Fig. III.1. Triangle generated using python

IV. PERPENDICULAR BISECTOR

parameter	value	description
$\mathbf{n}_1^{\scriptscriptstyle op}$	(5 -4)	Perpendicular bisector of AB
c_1	4.5	
$\mathbf{n}_{2}^{ op}$	(-9 -16)	Perpendicular bisector of BC
c_2	-16.5	respendicular disector of Be
$\mathbf{n}_3^{ op}$	(4 10)	Perpendicular bisector of CA
c_3	12	
0	(1.40)	Circumcircle and Circumradius
	(0.63)	
radius	5.65	
TABLE IV.1		

PERPENDICULAR BISECTOR

Fig. IV.1. Triangle generated using python

V. ANGLE BISECTOR

parameter	value	description
$\mathbf{n}_1^{ op}$	(1.55 0.40)	Angular bisector of ∠A
c_1	-0.49	Aligular disector of ZA
$\mathbf{n}_{2}^{ op}$	(-0.06 -1.61)	Angular bisector of $\angle B$
c_2	1.89	Aligural disector of 2B
$\mathbf{n}_{3}^{ op}$	(-1.48 1.20)	Angular bisector of $\angle C$
<i>c</i> ₃	-1.39	Aligulal disector of 2c
Ţ	(-0.008)	
1	(-1.173)	Incircle and Inradius
radius	2.35	

TABLE V.1 Angle Bisector

Fig. V.1. Triangle generated using python