

Purification of diffusion juice in sugar production industry - comprises introduction of solution of polyacrylamide at pre-defecation stage, at specified pH level

Patent Assignee: UVAROSAKHAR STOCK CO; VORON TECHN ACAD

Inventors: LOSEVA V A; NAUMCHENKO I S; TIKUNOV M E

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
RU 2105817	C1	19980227	RU 95108412	A	19950529	199841	B

Priority Applications (Number Kind Date): RU 95108412 A (19950529)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
RU 2105817	C1		4	C13D-003/02	

Abstract:

RU 2105817 C

Purification of diffusion juice comprises: (a) progressive pre-defecation with introduction of flocculant in form of polyacrylamide; (b) main defecation stage; (c) first saturation; (d) filtration of first saturation juice with separation of suspension of first saturation deposit; (e) second saturation; and (f) recirculation of suspension of first saturation deposit. To improve results: (i) the solution of polyacrylamide is introduced at pre-defecation stage, after the pH of the juice has reached 9.5-10.0, in an amount of 0.009-0.011% per weight of juice; (ii) pre-defecated juice is left to settle; (iii) separated clarified juice is sent to the main defecation stage; and (iv) separated pre-defecation deposit is mixed with recirculated suspension of first saturation deposit; (v) addition of 0.1-0.3% of calcium oxide; (vi) saturation to pH 10.0-10.2; (vii) filtration; (viii) passing obtained filtrate to main defecation stage; and (ix) removing deposit from process.

USE - The method is useful in the sugar production industry.

ADVANTAGE - The method improves sedimentation-filtration characteristics of deposit of pre-defecated juice, and improves quality of purified diffusion juice.

Dwg.0/0

Derwent World Patents Index

© 2005 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 12062806

(19) RU (11) 2 105 817 (13) С1
(51) МПК⁶ С 13 D 3/02

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 95108412/13, 29.05.1995

(46) Дата публикации: 27.02.1998

(56) Ссылки: 1. SU, авторское свидетельство N 1118675, С 13 D 3/04, 1984. 2. SU, авторское свидетельство 1100312, С 13 D 3/02, 1984.

(71) Заявитель:
Воронежская государственная технологическая академия,
Акционерное общество открытого типа
"Уваровосахар"

(72) Изобретатель: Лосева В.А.,
Наумченко И.С., Тикунов М.Е., Михалев
Ю.А., Шахбулатова Л.Н.

(73) Патентообладатель:
Воронежская государственная технологическая академия,
Акционерное общество открытого типа
"Уваровосахар"

(54) СПОСОБ ОЧИСТКИ ДИФФУЗИОННОГО СОКА

(57) Реферат:

Использование: изобретение относится к технологии сахарной промышленности. Сущность: способ очистки диффузионного сока предусматривает прогрессивную преддефекацию, введение в сок при достижении pH 9,5 - 10,0 раствора полиакриламида в количестве 0,009 - 0,011% к массе сока и отстаивание преддефекованного сока. Полученный при

этом осветленный сок направляют на основную дефекацию, I сатурацию, фильтрацию и II сатурацию. Отделенный преддефекованный осадок смешивают с рециркулируемой суспензией осадка I сатурации, вводят в смесь 0,1 - 0,3% CaO и сатурируют до pH 10,0 - 10,2 с последующей фильтрацией. Полученный фильтрат направляют на основную дефекацию, а осадок выводят из процесса. 1 табл.

R
U

2 1 0 5 8 1 7

C 1

R
U
2 1 0 5 8 1 7 C 1

(19) RU (11) 2 105 817 (13) C1
(51) Int. Cl.⁶ C 13 D 3/02

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 95108412/13, 29.05.1995

(46) Date of publication: 27.02.1998

(71) Applicant:
Voronezhskaja gosudarstvennaja
tekhnologicheskaja akademija,
Aktionerное общество открытого типа
"Uvarovosakhar"

(72) Inventor: Loseva V.A.,
Naumchenko I.S., Tikunov M.E., Mikhalev
Ju.A., Shakbulatova L.N.

(73) Proprietor:
Voronezhskaja gosudarstvennaja
tekhnologicheskaja akademija,
Aktionerное общество открытого типа
"Uvarovosakhar"

(54) METHOD OF DIFFUSION SAP REFINING

(57) Abstract:

FIELD: sugar industry. SUBSTANCE: method involves progressive predefecation, addition of polyacrylamide at amount 0.009-0.011% of sap mass at pH 9.5-10.0 and predefecated sap settling. The obtained cleared sap is fed to basic defecation, I-st saturation, filtration and II-d saturation. The separated defecated precipitate is mixed

with recirculated suspension precipitate after the I-st saturation, 0.1-0.3% CaO is added to mixture and saturated to pH 10.0-10.2 followed by filtration. The obtained filtrate is fed to the basic defecation and precipitate is removed from process. EFFECT: improved technology of process. 1 tbl

RU ? 1 0 5 8 1 7 C 1

R
U

2 1 0 5 8 1 7

C 1

РС2105817С1

Изобретение относится к технологии сахарной промышленности.

Известен способ очистки диффузионного сока, предусматривающий преддефекацию, дополнительное осаждение несахаров бикарбонатом кальция, образующимся при сатурировании сока до кислотности по фенолфталеину 0,01 - 0,05% CaO, нагревание сока до 80°C, его дефекацию, I-сатурацию до pH 10,8, фильтрацию сока и II сатурацию фильтрованного сока [1].

Недостатком способа является то, что супензия преддефекованного сока имеет осадок с недостаточно хорошими фильтрационными свойствами и в связи с этим создаются трудности при его отделении на фильтрационном оборудовании.

Ближайшим техническим решением к предложеному является способ очистки диффузионного сока, предусматривающий прогрессивную преддефекацию с введением флокулянта раствора полиакриламида при достижении pH 20 сока 10,2-11,3 в количестве 0,0011-0,008% к массе сухих веществ сока, основную дефекацию, I сатурацию, фильтрацию сока I сатурации с отделением супензии осадка I сатурации, II сатурацию и рециркуляцию супензии осадка I сатурации на преддефекацию [2].

Недостатком способа является то, что осадок, образующийся на преддефекации, не обладает достаточно хорошими седиментационно-фильтрационными свойствами, позволяющими эффективно его отделять. Дальнейшая очистка сока без отделения преддефекованного осадка приводит к снижению эффекта очистки.

Технический результат изобретения заключается в улучшении седиментационно-фильтрационных свойств осадка преддефекованного сока и улучшении качества очищенного сока.

Для достижения этого результата в предложенном способе очистки диффузионного сока, предусматривающем прогрессивную преддефекацию с введением флокулянта раствора полиакриламида, основную дефекацию, I сатурацию, фильтрацию сока I сатурации с отделением супензии осадка I сатурации, II сатурацию и рециркуляцию супензии осадка I сатурации, раствор полиакриламида вводят на преддефекации при достижении pH сока 9,5-10,0 в количестве 0,009-0,011% к массе сока и преддефекованный сок отстаивают, при этом осветленный сок направляют на основную дефекацию, а отделенный преддефекованный осадок смешивают с рециркулируемой супензией осадка I сатурации. Вводят в смесь 0,1-0,3% CaO и сатурируют до pH 10,0-10,2 с последующей фильтрацией. Полученный фильтрат направляют на основную дефекацию, а осадок выводят из процесса.

Способ очистки диффузионного сока заключается в следующем. Диффузионный сок нагревают до температуры 55-60°C, проводят прогрессивную преддефекацию возвратом нефильтрованного сока I сатурации и известковым молоком. При достижении pH сока на преддефекации, равном 9,5-10,0, вводят в него раствор полиакриламида в количестве 0,009-0,011% к массе сока. При достижении заданного конечного значения pH сока его отстаивают

при pH 10,6-10,7. Осветленный сок направляют на основную дефекацию известковым молоком, затем I сатурацию, фильтрацию и II сатурацию. Отделенный преддефекованный осадок смешивают с рециркулируемой супензией осадка I сатурации, вводят в смесь 0,1-0,3% CaO (до pH 11,2-11,3) и сатурируют до pH 10,0-10,2 с последующей фильтрацией. Полученный фильтрат направляют на основную дефекацию, а осадок выводят из процесса. Отделение основной массы высокомолекулярных веществ (ВМС) до основной дефекации позволяет получить на I сатурации почти чистый CaCO₃. Следовательно, при проведении процесса прогрессивной предварительной дефекации с введением раствора полиакриламида (ПАА) на преддефекации при pH 9,5-10,0, образуется более прочная мостиковая связь между частицами CaCO₃ и молекулами ПАА, что приводит к образованию укрупненных конгломератов, отличающихся высокой скоростью осаждения. Это приводит к уменьшению времени пребывания в отстойниках и снижению распада сахарозы и нарастанию цветности. Возврат супензии I сатурации и дополнительное введение известкового молока в количестве 0,1-0,3% к массе CaO с последующим сатурированием увеличивает удельную поверхность CaCO₃ для дополнительной адсорбции несахаров, что также улучшает скорость фильтрования и качество фильтрата. Это позволяет использовать существующее на заводе фильтрационное оборудование без дополнительных затрат.

Таким образом, только комплексное использование флокулянта ПАА при его оптимальном режиме на преддефекации в сочетании с сатурированием отделенного преддефекованного осадка и дополнительным количеством CaO приводит к созданию условий для более полной коагуляции высокомолекулярных и коллоидных веществ на прогрессивной предварительной дефекации и получению структуры осадка преддефекованного сока с высокими седиментационно-фильтрационными свойствами, что позволяет отделить его путем отстаивания в обычных заводских отстойниках.

Пример. Берут пробу диффузионного сока, нагревают до температуры 60°C, проводят преддефекацию добавлением 50% нефильтрованного сока I сатурации и известковым молоком. При pH 10,0 вводят 1%-ный раствор полиакриламида в количестве 0,011% к массе сока, доводят до 10,7 и направляют на отстаивание.

После отстаивания декантат нагревают до температуры 85°C, проводят основную дефекацию известковым молоком (1,5% CaO к массе сока), I сатурацию, фильтрование II сатурацию, фильтрование. Очищенный сок анализируют.

Преддефекованную супензию смешивают с супензией осадка I сатурации (50% к массе преддефекованной супензии), добавляют 0,3% CaO (pH 11,3), сатурируют до pH 10,2 и фильтруют. Параллельно проводят очистку диффузионного сока по известному способу.

В таблице приведены сравнительные данные по качеству сока, полученные

предложенным и известным способами.

Из приведенных данных в таблице можно сделать вывод, что предложенный способ позволяет повысить S_s -скорость отстаивания преддефекованного сока в 1,2 раза, снизить F_k -коэффициент фильтрации преддефекованной суспензии в 1,4 раза. При этом улучшается качество очищенного сока. Так, чистота увеличивается на 0,3% уменьшается содержание солей Ca на 20-25% РВ редуцирующих веществ на 10-12% D-оптическая плотность снижается на 7-8%

Формула изобретения:

Способ очистки диффузионного сока, предусматривающий прогрессивную преддефекацию с введением флокулянта раствора полиакриламида, основную

дефекацию, I сатурацию, фильтрацию сока I сатурации с отделением суспензии осадка I сатурации, II сатурацию и рециркуляцию суспензии осадка I сатурации, отличающийся тем, что раствор полиакриламида вводят на преддефекации при достижении pH сока 9,5 10,0 в количестве 0,009 0,011% к массе сока преддефекованный сок отстаивают, при этом осветленный сок направляют на основную дефекацию, а отделенный преддефекованный смешивают с рециркулируемой суспензией осадка I сатурации, вводят в смесь 0,1 0,3% CaO и сатурируют до pH 10,0 10,2 с последующей фильтрацией, причем полученный фильтрат направляют на основную дефекацию, а осадок выводят из процесса.

20

25

30

35

40

45

50

55

60

R U 2 1 0 5 8 1 7 C 1

95108412

Таблица

№ п/п	ПАА, % к массе сока	рН предде- фекации	рН авве- дения ПАА	СaO для обра- ботки сус- penзии, %	рН сuspензии после са- турации	Преддефекованный сок		Сок II сатурации	
						S ₁ , см/мин	F ₁ , преддефекован- ной супензии	Ч, %	Д-оптическая плотность на 100 г СВ
Предлагаемый способ									
1	0,009	10,60	9,50	0,20	10,1	6,2	2,0	89,9	0,193
2	0,010	10,65	9,75	0,10	10,0	7,0	2,0	90,2	0,170
3	0,011	10,70	10,00	0,30	10,2	5,0	1,5	90,0	0,210
4	0,008	10,50	9,40	0,05	9,6	4,8	3,5	89,0	0,270
5	0,012	10,80	10,10	0,40	10,5	4,3	3,0	89,5	0,230
Известный способ									
1	0,0011	11,0	10,2	-	-	5,3	4,3	89,4	0,224
2	0,005	11,2	10,8	-	-	6,0	4,6	89,5	0,195
3	0,008	11,3	11,3	-	-	4,5	3,7	89,2	0,240
4	0,0009	10,9	10,1	-	-	4,0	3,9	88,8	0,265
5	0,010	11,4	11,4	-	-	4,6	4,4	89,0	0,237

R U ? 1 0 5 8 1 7 C 1

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.