Projet de Recherche . 2020-2021

FACULTÉ DES SCIENCES ET TECHNIQUES MASTER 1 - MATHS. CRYPTIS

Polynômes de Permutations

A l'attention de : M. NECER

Rédigé par :
PIARD A.
JACQUET R.
CARVAILLO T.

Table des matières

1	Construction des Corps Finis		
	1.1	Existence et unicité	3
	1.2	Construction	4
2	Pol	ynômes de permutations	4

Introduction

1 Construction des Corps Finis

1.1 Existence et unicité

Soit \mathbb{K} un corps quelconque et soit φ le morphisme suivant :

$$\varphi: \left| \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{K} \\ n & \longmapsto & n \cdot 1_{\mathbb{K}} \end{array} \right|$$

Définition 1. Soit \mathbb{K} un corps quelconque. Toute partie \mathcal{P} de \mathbb{K} vérifiant :

- $-\mathcal{P}$ est non vide et est une partie stable pour + et \times de \mathbb{K} et \mathcal{P} muni des lois induites par celles de \mathbb{K} est lui-même un corps.
- \mathcal{P} est un sous anneau de \mathbb{K} , $1 \in \mathcal{P}$ et $(p \in \mathcal{P}^* = \mathcal{P} \{0\} \Rightarrow p^{-1} \in \mathcal{P}^*)$.
- \mathcal{P} est un sous groupe de $(\mathbb{K},+)$ et \mathcal{P}^* muni de la loi \times est un sous groupe multiplicatif (\mathbb{K}^*,\times) .

est appelée sous-corps de K.

Définition 2. Soit K un corps quelconque.

- K est dit premier s'il ne contient aucun sous-corps strict.
- Si \mathbb{K} est un corps, le sous-corps de \mathbb{K} engendré par 1_K est un corps premier, c'est le sous-corps premier de \mathbb{K} .

Le noyau de ce morphisme est un idéal de \mathbb{Z} et donc de la forme $k\mathbb{Z}$ pour $k \in \mathbb{Z}$. Par le premier théorème d'isomorphisme on a $\operatorname{Im}(\varphi) \cong \mathbb{Z}/n\mathbb{Z}$. Par intégrité de $\mathbb{Z}/n\mathbb{Z}$, n=0 ou n est un nombre premier. Si n=0 alors φ est injective et donc le sous-corps premier de \mathbb{K} est isomorphe à \mathbb{Q} . Si $n \neq 0$ alors le sous-corps premier est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ et n s'appelle la caractéristique de \mathbb{K} .

Définition 3. Soient L et \mathbb{K} deux corps. Si L/K est une extension de corps alors L est un espace vectoriel sur K, où l'addition vectorielle est l'addition dans L et la multiplication par un scalaire $K \times L$ est la restriction à $K \times L$ de la multiplication dans L. La dimension du K-espace vectoriel L est appelée le degré de l'extension et est notée [L:K].

Définition 4. Soit P un polynôme sur un corps K. On appelle corps de décomposition de P sur K une extension L de K telle que :

- dans L[X], P est produit de facteurs de degré 1,
- les racines de P engendrent L.

Proposition 1. Soit P un polynôme sur un corps K. Alors P admet un corps de décomposition, unique à K-isomorphisme près.

Proposition 2.

- Le cardinal de \mathbb{K} est une puissance de p.
- Réciproquement, pour tout $n \in \mathbb{N}^*$, il existe un corps \mathbb{K} de cardinal p^n . En outre \mathbb{K} est unique à isomorphisme près.

Démonstration.

- Puisque le sous-corps premier de \mathbb{K} est isomorphe à $\mathbb{Z}/p\mathbb{Z}$ alors \mathbb{K} est naturellement muni d'une structure de $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel. On note $n = [\mathbb{K} : \mathbb{Z}/p\mathbb{Z}]$ alors $\#\mathbb{K} = \#(\mathbb{Z}/p\mathbb{Z})^n = p^n$.
- Soit $n \in \mathbb{N}^*$. Si \mathbb{K} est un corps fini de cardinal p^n alors \mathbb{K} est le corps de décomposition de $X^{p^n} X$ sur $\mathbb{Z}/p\mathbb{Z}$: en effet, puisque pour tout $x \in \mathbb{K}$, x est racine de $X^{p^n} X$ donc $X^{p^n} X$ possède ses p^n racines dans \mathbb{K} . Réciproquement, soit K le corps de décomposition de X^{p^n} sur $\mathbb{Z}/p\mathbb{Z}$. Soit K l'ensemble des éléments de K qui sont racines de $X^{p^n} X$. On vérifie que K est un sous-corps de K. Puisque $1_K \in K$, et si $x, y \in K$ alors $x^{p^n} = x$ et $y^{p^n} = y$, donc $(x+y)^{p^n}x + y$ et $(xy^{-1})^{p^n} = xy^{-1}$, si bien que $x+y, xy^{-1} \in K$. Par ailleurs la dérivée formelle, $(X^{p^n} X)' = -1$ est premier avec $X^{p^n} X$ donc les racines de $X^{p^n} X$ sont simples. On en déduit alors que $\#K = p^n$. Finalement K = K est un corps à p^n éléments et il est unique à isomorphisme près en vertu de l'unicité du corps de décomposition de $X^{p^n} X$ sur $\mathbb{Z}/p\mathbb{Z}$.

On notera dorénavant \mathbb{F}_q le corps fini à $q = p^n$ éléments.

1.2 Construction

Soit $P \in \mathbb{F}_p[X]$ un polynôme irréductible sur \mathbb{F}_p . On note $n = \deg(P)$. Puisque P est irréductible, l'idéal (P) est donc maximal. Le quotient $\mathbb{F}_p[X]/(P)$ est le corps de rupture de P sur \mathbb{F}_p de cardinal p^n . Afin de montrer que l'on peut toujours construire les corps finis nous allons montrer le résultat suivant :

2 Polynômes de permutations

Rappelons d'abord ce qu'est un polynôme dans le cas général.

Définition 5. Soit K un ensemble non vide. On appelle polynôme en l'indéterminée X, toute application

$$P: K \longrightarrow K$$

$$X \longmapsto \sum_{i=0}^{n} a_i X^i, a_i \in K.$$

Définition 6. Soit K un ensemble fini de cardinal $n \in \mathbb{N}^*$. Une permutation de K est une bijection de K dans K.

Définition 7. Soit P un polynôme de $\mathbb{F}_q[X]$. P est appelé **polynôme de permutation** de \mathbb{F}_q si et seulement si la fonction associée

$$P: \quad \mathbb{F}_q \quad \longrightarrow \mathbb{F}_q$$
$$x \quad \longmapsto P(x)$$

est une permutation, c'est à dire est bijective.

Exemples. On se place dans \mathbb{F}_5 .

1. Le polynôme X^3 est un polynôme de permutation. En effet, l'application

$$P: \ \mathbb{F}_5 \longrightarrow \mathbb{F}_5$$
$$X \longmapsto X^3$$

est clairement bijective.

2. Le polynôme X^2 n'est pas un polynôme de permutation. Considérons l'application

$$P: \quad \mathbb{F}_5 \quad \longrightarrow \mathbb{F}_5$$
$$X \quad \longmapsto X^2.$$

Il faut montrer que cette application n'est pas bijective.