Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° Semestre 2019

Ayudantía 12

23 de Abril

MAT1106 - Introducción al Cálculo

- 1) Sea $\{x_n\}$ una sucesión. Demuestre que $\lim_{n\to\infty} x_n = \infty$ si y solo si $\lim_{n\to\infty} k \cdot x_n = \infty$ para todo k > 0.
- 2) Sean $\{x_n\}$, $\{y_n\}$ dos sucesiones tales que $\lim_{n\to\infty} x_n = \infty$ y $\lim_{n\to\infty} y_n = -\infty$. ¿Qué se puede decir de $x_n + y_n$ y de $x_n \cdot y_n$?
- 3) Demuestre que si $\lim_{n\to\infty} \{x_n\} = \infty$, entonces $\frac{1}{x_n}$ está acotada inferiormente.
- 4) Sean $\{x_n\}$, $\{y_n\}$ dos sucesiones tales que $\lim_{n\to\infty}y_n=\infty$ y x_n está acotada inferiormente. ¿Se puede decir algo de $x_n\cdot y_n$?
- 5) Sea $\{x_n\}$ una sucesión. Se define $\{s_n\}$ como

$$s_n = \sum_{k=1}^n x_k$$

Demuestre que si $\{x_n\}$ está acotada inferiormente por un m>0 entonces $\lim_{n\to\infty}s_n=\infty$. ¿Es cierto el recíproco? ¿Y el inverso?