Decimals

Problems about decimal numbers.

Problem 1 On the number line below, a point is marked A. Select all options which could be candidates for the value of A.

Select All Correct Answers:

- (a) 3.6278 ✓
- (b) 3.627783 ✓
- (c) 3.68
- (d) 3.62788983 ✓
- (e) 3.629

Problem 2 Select all fractions below which have terminating decimal representation.

Select All Correct Answers:

- (a) $\frac{1}{10}$ \checkmark
- (b) $\frac{1}{30}$
- (c) $\frac{1}{80}$ \checkmark
- (d) $\frac{1}{64}$ \checkmark
- (e) $\frac{1}{125}$ \checkmark

Decimals

(f)
$$\frac{1}{250}$$
 \checkmark

(g)
$$\frac{1}{385}$$

(h)
$$\frac{1}{2048} \checkmark$$

(i)
$$\frac{1}{4228}$$

(j)
$$\frac{1}{2^{19} \times 5^{47}} \checkmark$$

Problem 3 A harder version of the previous problem: select all fractions below which have terminating decimal representation.

Select All Correct Answers:

(a)
$$\frac{14}{10}$$
 \checkmark

(b)
$$\frac{6}{30}$$
 \checkmark

(c)
$$\frac{4}{60}$$

(d)
$$\frac{7}{98}$$

(e)
$$\frac{11}{125}$$
 \checkmark

(f)
$$\frac{3}{150}$$
 \checkmark

(g)
$$\frac{11}{385}$$

(h)
$$\frac{2}{2049}$$

(i)
$$\frac{1057}{4228}$$
 \checkmark

(j)
$$\frac{3^4 \times 7^{11} \times 19}{3^2 \times 5^{22} \times 19} \checkmark$$

Hint: Don't forget to reduce the fractions to lowest terms!

Problem 4 Give an example of an irrational number. For a challenge, don't pick π , e, or \sqrt{p} where p is prime.

Free Response: Hint: One of my favorites is 0.0100100010000100001.... This number's decimal representation is neither terminating nor repeating, though it does have a pattern!

Problem 5 Without doing the long division, after how many places would you expect $\frac{1}{47}$ to repeat?

We expect the repetition to occur after at most 46 places.

Problem 6 Without doing the long division, after how many places would you expect $\frac{3}{104}$ to repeat?

We expect the repetition to occur after at most 103 places.

Problem 7 We have seen that $0.\overline{9} = 1$. Using these same ideas, what are the following numbers equal to?

- (a) $1.\overline{9} = \boxed{2}$
- (b) $0.5\overline{9} = \boxed{0.6}$
- (c) $2.34\overline{9} = 2.35$
- (d) $0.87893\overline{9} = \boxed{0.87894}$