MANUAL DE SOLUÇÕES

TÉCNICAS DE OTIMIZAÇÃO

1ª EDIÇÃO, REVISTA E ATUALIZADA

NELIO D. PIZZOLATO E ANDRÉ ALVES GANDOLPHO

Colaboradores: Guina Sotomayor Alzamora e Sergio Luis Franklin Jr.

Anexo A

Notação:

- A: versão corrente da matriz dos coeficientes (ou expandida, conforme o caso) após a aplicação das operações elementares informadas – método de Gauss-Jordan.
- $A_i(n)$: multiplicação da linha i da matriz A por n.
- $A_{i,j}(n)$: multiplicação da linha i da matriz A por n e soma deste resultado à linha j.
- Cs = Conjunto de soluções
- Sb = Solução básica

1) Determine a inversa da matriz A

a)

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 1 & -3 & 1 & 0 & 0 \\ 1 & -1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \begin{bmatrix} 5/& 7/& 1/19\\ /19 & /19 & /19\\ -3/19 & -8/19 & /19\\ -4/19 & /19 & /19 \end{bmatrix}$$

b)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1,3}(-1) \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 2 & -1 & -1 & 0 & 1 \end{bmatrix} A_{2,3}(-2) \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & -2 & 1 \end{bmatrix}$$

$$\begin{array}{c}
A_3(-1) \\
A_{3,1}(-1) \Rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 & -2 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 2 & -1
\end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix}
0 & -2 & 1 \\
0 & 1 & 0 \\
1 & 2 & -1
\end{bmatrix}$$

2) Verifique se os seguintes conjuntos de vetores formam uma base no \Re^3

a)
$$(1 -1 2)$$
; $(0 5 0)$; $(2 0 6)$

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ -1 & 5 & 0 & 0 \\ 2 & 0 & 6 & 0 \end{bmatrix} \Rightarrow \frac{A_{1,0}(1)}{A_{1,3}(-2)} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 5 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

$$A_{2}(\frac{1}{5}) \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 2/5 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \Rightarrow A_{3,1}(-2) \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ A_{3,2}(-2/5) & 0 & 0 & 0 \end{bmatrix}$$

Portanto, os vetores são linearmente independentes e formam uma base no \Re^3 .

Alternativamente, poderia ser calculado o determinante de A (= D) e verificado que $D \neq 0$ (ou seja, A é uma matriz não singular), e portanto os vetores são linearmente independentes.

b)
$$(-1 \ 5 \ 1)$$
; $(2 \ 0 \ -2)$; $(1 \ 0 \ 4)$

$$A = \begin{bmatrix} -1 & 2 & 1 & 0 \\ 5 & 0 & 0 & 0 \\ 1 & -2 & 4 & 0 \end{bmatrix} \Rightarrow A_{1,2}(-5) \Rightarrow \begin{bmatrix} 1 & -2 & -1 & 0 \\ 0 & 10 & 5 & 0 \\ 0 & -4 & 5 & 0 \end{bmatrix}$$

Portanto, os vetores são linearmente independentes e formam uma base no \Re^3 .

c)
$$(1 \ 0 \ 0); (1 \ 1 \ 0); (1 \ 1 \ 1)$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \Rightarrow A_{2,1}(-1) \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A_{3,2}(-1) \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Portanto, os vetores são linearmente independentes e formam uma base no \Re^3 .

3) Expresse o vetor (1 1 1) em cada uma das bases do problema anterior.

a)

$$\alpha \cdot (1 - 1 \ 2) + \beta \cdot (0 \ 5 \ 0) + \gamma \cdot (2 \ 0 \ 6) = (1 \ 1 \ 1)$$

$$\alpha + 2.\gamma = 1
-\alpha + 5.\beta = 1$$
 $A = \begin{bmatrix}
1 & 0 & 2 & 1 \\
-1 & 5 & 0 & 1 \\
2 & 0 & 6 & 1
\end{bmatrix}$

$$\begin{array}{c}
A_{1,2}(1) \\
A_{1,3}(-2) \Rightarrow A = \begin{bmatrix}
1 & 0 & 2 & 1 \\
0 & 5 & 2 & 2 \\
0 & 0 & 2 & -1
\end{bmatrix} \Rightarrow \begin{array}{c}
A_{2}(\frac{1}{5}) \\
A_{3}(\frac{1}{2}) \Rightarrow A = \begin{bmatrix}
1 & 0 & 2 & 1 \\
0 & 1 & \frac{2}{5} & \frac{2}{5} \\
0 & 0 & 1 & -\frac{1}{2}
\end{bmatrix}$$

O vetor $\begin{pmatrix} 1 & 1 \end{pmatrix}$ nesta base é $v = \begin{pmatrix} 2 & 3/5 & -1/2 \end{pmatrix}$

b)

$$\alpha \cdot (-1 \quad 5 \quad 1) + \beta \cdot (2 \quad 0 \quad -2) + \gamma \cdot (1 \quad 0 \quad 4) = (1 \quad 1 \quad 1)$$

$$\begin{array}{l}
A_{1}(-1) \\
A_{1,2}(-5) \Rightarrow A = \begin{bmatrix} 1 & -2 & -1 & -1 \\ 0 & 10 & 5 & 6 \\ 0 & 0 & 5 & 2 \end{bmatrix} \Rightarrow \begin{array}{l}
A_{2}(\frac{1}{10}) \\
A_{2,1}(2) \Rightarrow A = \begin{bmatrix} 1 & 0 & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{2} & \frac{3}{5} \\ 0 & 0 & 5 & 2 \end{bmatrix}
\end{array}$$

$$\begin{array}{c}
A_{3}(\frac{1}{5}) \\
A_{3,2}(-\frac{1}{2}) \Rightarrow A = \begin{bmatrix}
1 & 0 & 0 & \frac{1}{5} \\
0 & 1 & 0 & \frac{2}{5} \\
0 & 0 & 1 & \frac{2}{5}
\end{bmatrix}$$

O vetor $\begin{pmatrix} 1 & 1 \end{pmatrix}$ nesta base é $v = \begin{pmatrix} 1/5 & 2/5 & 2/5 \end{pmatrix}$

c)

$$\alpha.(1 \ 0 \ 0) + \beta.(1 \ 1 \ 0) + \gamma.(1 \ 1 \ 1) = (1 \ 1 \ 1)$$

$$A_{2,1}(-1) \Rightarrow \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Rightarrow A_{3,2}(-1) \Rightarrow \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

O vetor $\begin{pmatrix} 1 & 1 \end{pmatrix}$ nesta base é $v = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$

4) Ache todas as soluções básicas dos sistemas

a)

a.1 - Base = $\{x_1, x_2\}$:

$$A_{1,2}(-3) \Rightarrow A = \begin{bmatrix} 1 & -2 & 2 & -4 & 2 \\ 0 & 1 & -5 & 15 & -2 \end{bmatrix} \quad A_{2,1}(2) \Rightarrow A = \begin{bmatrix} 1 & 0 & -8 & 26 & -2 \\ 0 & 1 & -5 & 15 & -2 \end{bmatrix}$$

Cs:
$$(-2+8.x_3-26.x_4,-2+5.x_3-15.x_4,x_3,x_4)$$

Sb:
$$x_3 = x_4 = 0 \Rightarrow (-2 -2 0 0)$$

a.2- Base = $\{x_1, x_3\}$:

$$A_{1,2}(-3) \Rightarrow A = \begin{bmatrix} 1 & -2 & 2 & -4 & 2 \\ 0 & 1 & -5 & 15 & -2 \end{bmatrix}$$

Cs:
$$\left(\frac{6}{5} + \frac{8}{5} \cdot x_2 - 2 \cdot x_4, x_2, \frac{2}{5} + \frac{1}{5} \cdot x_2 + 3 \cdot x_4, x_4\right)$$

Sb:
$$x_2 = x_4 = 0 \Rightarrow \begin{pmatrix} 6/5 & 0 & 2/5 & 0 \end{pmatrix}$$

a.3- Base = $\{x_1, x_4\}$:

$$A_{1,2}(-3) \Rightarrow A = \begin{bmatrix} 1 & -2 & 2 & -4 & 2 \\ 0 & 1 & -5 & 15 & -2 \end{bmatrix}$$

$$A_2(\frac{1}{15}) \Rightarrow A = \begin{bmatrix} 1 & -2 & 2 & -4 & 2 \\ 0 & \frac{1}{15} & -\frac{1}{3} & 1 & -\frac{2}{15} \end{bmatrix}$$

$$A_{2,1}(4) \Rightarrow A = \begin{bmatrix} 1 & -26/ & 2/ & 0 & 22/ \\ 0 & 1/5 & -1/3 & 1 & -2/15 \end{bmatrix}$$

Cs:
$$\left(\frac{22}{15} + \frac{26}{15} \cdot x_2 - \frac{2}{3} \cdot x_3, x_2, x_3, -\frac{2}{15} - \frac{1}{15} \cdot x_2 + \frac{1}{3} \cdot x_3\right)$$

Sb:
$$x_2 = x_3 = 0 \Rightarrow \left(\frac{22}{15}\right)$$
 0 0 $-\frac{2}{15}$

a.4- Base = $\{x_2, x_3\}$:

Cs:
$$\left(x_1, -\frac{3}{4} + \frac{5}{8} \cdot x_1 + \frac{5}{4} \cdot x_4, \frac{1}{4} + \frac{1}{8} \cdot x_1 + \frac{13}{4} \cdot x_4, x_4\right)$$

Sb:
$$x_1 = x_4 = 0 \Rightarrow (0 - \frac{3}{4}) \frac{1}{4} = 0$$

a.5- Base = $\{x_2, x_4\}$:

Cs:
$$\left(x_1, -\frac{11}{13} + \frac{15}{26}, x_1 + \frac{5}{13}, x_3, x_3, -\frac{1}{13} - \frac{1}{26}, x_1 + \frac{4}{13}, x_3\right)$$

Sb:
$$x_1 = x_3 = 0 \Rightarrow \begin{pmatrix} 0 & -\frac{1}{13} & 0 & -\frac{1}{13} \end{pmatrix}$$

a.6- Base = $\{x_3, x_4\}$:

$$\begin{array}{c}
A_{1}(\frac{1}{2}) \\
A_{1,2}(-1)
\end{array} \Rightarrow A = \begin{bmatrix}
1/2 & -1 & 1 & -2 & 1 \\
5/2 & -4 & 0 & 5 & 3
\end{bmatrix}$$

$$\begin{array}{c}
A_2(\frac{1}{5}) \\
A_{2,1}(2)
\end{array} \Rightarrow A = \begin{bmatrix}
3/2 & -13/5 & 1 & 0 & 11/5 \\
1/2 & -4/5 & 0 & 1 & 3/5
\end{bmatrix}$$

Cs:
$$(x_1, x_2, \frac{11}{15} - \frac{3}{2}.x_1 + \frac{13}{5}.x_2, \frac{3}{5} - \frac{1}{2}.x_1 + \frac{4}{5}.x_2)$$

Sb:
$$x_1 = x_2 = 0 \Rightarrow \begin{pmatrix} 0 & 0 & \frac{11}{5} & \frac{3}{5} \end{pmatrix}$$

b)

b.1- Base = $\{x_1, x_2\}$:

$$\begin{array}{c}
A_{1}(\frac{1}{2}) \\
A_{1,2}(-1)
\end{array} \Rightarrow A = \begin{bmatrix}
1 & \frac{3}{2} & \frac{5}{2} & \frac{5}{2} \\
0 & -\frac{11}{2} & -\frac{9}{2} & \frac{1}{2}
\end{bmatrix}$$

$$\frac{A_2(-\frac{2}{11})}{A_{2,1}(-\frac{3}{2})} \Rightarrow A = \begin{bmatrix}
1 & 0 & \frac{14}{11} & \frac{29}{11} \\
0 & 1 & \frac{9}{11} & -\frac{1}{11}
\end{bmatrix}$$

Cs:
$$\left(\frac{29}{11} - \frac{14}{11} \cdot x_3, -\frac{1}{11} - \frac{9}{11} \cdot x_3, x_3\right)$$

Sb:
$$x_3 = 0 \Rightarrow \begin{pmatrix} 29/1 & -1/1 & 0 \end{pmatrix}$$

b.2- Base = $\{x_1, x_3\}$:

$$\begin{array}{c}
A_{1}(\frac{1}{2}) \\
A_{1,2}(-1)
\end{array} \Rightarrow A = \begin{bmatrix}
1 & \frac{3}{2} & \frac{5}{2} & \frac{5}{2} \\
0 & -\frac{11}{2} & -\frac{9}{2} & \frac{1}{2}
\end{bmatrix}$$

$$\begin{array}{c}
A_2(-\frac{2}{9}) \\
A_{2,1}(-\frac{5}{2})
\end{array} \Rightarrow A = \begin{bmatrix}
1 & -\frac{14}{9} & 0 & \frac{25}{9} \\
0 & \frac{11}{9} & 1 & -\frac{1}{9}
\end{bmatrix}$$

Cs:
$$\left(25\sqrt{14}\sqrt{12}, x_2, x_2, -1\sqrt{12}\right)$$

Sb:
$$x_2 = 0 \Rightarrow \left(\frac{25}{9}\right) \quad 0 \quad -\frac{1}{9}$$

b.3- Base = $\{x_2, x_3\}$:

$$\begin{array}{c}
A_{1}(\frac{1}{3}) \\
A_{1,2}(4)
\end{array} \Rightarrow A = \begin{bmatrix}
2/3 & 1 & 5/3 & 5/3 \\
11/3 & 0 & 14/3 & 29/3 \\
11/3 & 0 & 14/3 & 29/3
\end{bmatrix}$$

$$\begin{array}{cccc}
A_{2}(\frac{3}{14}) \\
A_{2,1}(-\frac{5}{3})
\end{array} \Rightarrow A = \begin{bmatrix}
-\frac{9}{14} & 1 & 0 & -\frac{25}{14} \\
1\frac{1}{14} & 0 & 1 & \frac{29}{14}
\end{bmatrix}$$

Cs:
$$(x_1, -25/14 + 9/14 \cdot x_1, 29/14 - 11/14 \cdot x_1)$$

Sb:
$$x_1 = 0 \Rightarrow \begin{pmatrix} 0 & -25/4 & 29/14 \end{pmatrix}$$

5) Dada a matriz A (abaixo) com cinco colunas A_1, A_2, A_3, A_4, A_5 , usando os procedimentos de Gauss-Jordan, pede-se a expressão de A nas bases:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ -2 & 3 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

a)
$$B = (A_1, A_4, A_5)$$

$$\begin{array}{c}
A_{1,2}(2) \\
A_{1,3}(-1) \Rightarrow A = \begin{bmatrix}
1 & 2 & 1 & 0 & 0 \\
0 & 7 & 2 & 1 & 0 \\
0 & 0 & -1 & 0 & 1
\end{bmatrix}$$

b)
$$B = (A_1, A_2, A_5)$$

$$\begin{array}{l}
A_{1,2}(2) \\
A_{1,3}(-1) \Rightarrow A = \begin{bmatrix}
1 & 2 & 1 & 0 & 0 \\
0 & 7 & 2 & 1 & 0 \\
0 & 0 & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{array}{c}
A_2(\frac{1}{7}) \\
A_{2,1}(-2) \Rightarrow A = \begin{bmatrix}
1 & 0 & \frac{3}{7} & -\frac{2}{7} & 0 \\
0 & 1 & \frac{2}{7} & \frac{1}{7} & 0 \\
0 & 0 & -1 & 0 & 1
\end{bmatrix}$$

c)
$$B = (A_1, A_2, A_3)$$

$$\begin{array}{c}
A_{1,2}(2) \\
A_{1,3}(-1) \Longrightarrow A = \begin{bmatrix}
1 & 2 & 1 & 0 & 0 \\
0 & 7 & 2 & 1 & 0 \\
0 & 0 & -1 & 0 & 1
\end{bmatrix}$$

$$\begin{array}{c}
A_2(\frac{1}{7}) \\
A_{2,1}(-2) \Rightarrow A = \begin{bmatrix}
1 & 0 & \frac{3}{7} & -\frac{2}{7} & 0 \\
0 & 1 & \frac{2}{7} & \frac{1}{7} & 0 \\
0 & 0 & -1 & 0 & 1
\end{bmatrix}$$

6) Verifique que cada um dos conjuntos C a seguir é convexo, em que A, x e b têm dimensões compatíveis.

a)
$$C = \{x / A . x = b\}$$

Dados os pontos $x_1 \in C$ e $x_2 \in C$, considere um ponto x combinação convexa de x_1 e x_2 , ou seja, $x = \alpha . x_1 + (1 - \alpha) . x_2$, calcula-se o valor de $A.x \log o$, $A.x_1 = b$, $A.x_2 = b$, formando a combinação convexa: $\alpha(A.x_1) = \alpha b$ e $(1 - \alpha)(A.x_2) = (1 - \alpha)b$

Somando os dois termos:

$$A\alpha x_1 + A(1-\alpha)x_2 = \alpha b + (1-\alpha)b$$

$$A(\alpha x_1 + (1-\alpha)x_2) = \alpha b + b - \alpha b$$

$$A(\alpha x_1 + (1-\alpha)x_2) = b$$

Portanto, a combinação convexa também pertence a C e o conjunto é convexo.

b)
$$C = \{ x / A . x \le b \}$$

Dados os pontos $x_1 \in C$ e $x_2 \in C$, considere um ponto x combinação convexa de x_1 e x_2 , ou seja, $x = \alpha.x_1 + (1-\alpha).x_2$, calcula-se o valor de $A.x \log o$, $A.x_1 \le b$, $A.x_2 \le b$, formando a combinação convexa: $\alpha(A.x_1) \le \alpha b$ e $(1-\alpha)(A.x_2) \le (1-\alpha)b$

Somando os dois termos:

$$A\alpha x_1 + A(1-\alpha)x_2 \le \alpha b + (1-\alpha)b$$

$$A(\alpha x_1 + (1-\alpha)x_2) \le \alpha b + b - \alpha b$$

$$A(\alpha x_1 + (1-\alpha)x_2) \leq b$$

Portanto, a combinação convexa também pertence a C e o conjunto é convexo.

$$x_1 \in C \text{ e } x_2 \in C \Rightarrow x = \lambda . x_1 + (1 - \lambda) . x_2, \ \lambda \in [0, 1]$$

c)
$$C = \{ x / A.x = b, x \ge 0 \}$$

Dados os pontos $x_1 \in C$ e $x_2 \in C$, considere um ponto x combinação convexa de x_1 e x_2 , ou seja, $x = \alpha.x_1 + (1-\alpha).x_2$, calcula-se o valor de $A.x \log_0 A.x_1 = b$, com $x_1 \ge 0$ e $A.x_2 = b$, com $x_2 \ge 0$, formando a combinação convexa: $\alpha(Ax_1) = \alpha b$ e $(1-\alpha)(A.x_2) = (1-\alpha)b$

Somando os dois termos:

$$A\alpha x_1 + A(1-\alpha)x_2 = \alpha b + (1-\alpha)b$$

$$A(\alpha x_1 + (1 - \alpha)x_2) = \alpha b + b - \alpha b$$

$$A(\alpha x_1 + (1-\alpha)x_2) = b$$

Como $x_1 \ge 0, x_2 \ge 0, \alpha \ge 0$, a combinação também pertence a C e o conjunto é convexo.

7) Calcule o posto da matriz A

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -2 & 1 & -1 & 0 \\ 0 & 3 & 1 & 1 \end{bmatrix}$$

$$D_A(A_1, A_2, A_3) = 1 + 0 + (-6) - 0 - (-3) - (-2) = 6 - 6 = 0$$

$$D_A(A_1, A_2, A_4) = 1 + 0 + (-6) - 0 - 0 - (-2) = -6 + 3 = -3 \ (\neq 0)$$

 $\therefore r_A = 3$, pois existe pelo menos um determinante de 3° ordem que não é nulo.

Um método alternativo (e prático) para se encontrar o posto de uma matriz é por meio do escalonamento, ou seja, da transformação da matriz **A** para a matriz **I**, segundo a redução de Gauss-Jordan.

Assim, o posto é igual à dimensão da maior matriz identidade que se poderia obter por meio da redução de Gauss-Jordan.

$$A_{1,2}(2) \Rightarrow A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 3 & 1 & 2 \\ 0 & 3 & 1 & 1 \end{bmatrix} \qquad A_{2,1}(-1) \Rightarrow A = \begin{bmatrix} 1 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 1 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$A_{3,1}(-1) \\ A_{3,1}(-\frac{1}{3}) \Rightarrow A = \begin{bmatrix} 1 & 0 & \frac{2}{3} & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \therefore r_A = 3$$

$$A_{3,2}(-\frac{2}{3})$$

Anexo B

1) Qualifique os pontos extremos de:

a)
$$f(x) = 3.(x-5)^5$$
 no ponto $x = 5$

1^a derivada:
$$f^{1}(x) = 15.(x-5)^{4}$$
; no ponto $x = 5$, $f^{1}(x) = 0$

$$2^{a}$$
 derivada: $f^{2}(x) = 60.(x-5)^{3}$; no ponto $x = 5$, $f^{2}(x) = 0$

$$3^{a}$$
 derivada: $f^{3}(x) = 180.(x-5)^{2}$; no ponto $x = 5$, $f^{3}(x) = 0$

$$4^{a}$$
 derivada: $f^{4}(x) = 360.(x-5)$; no ponto $x = 5$, $f^{4}(x) = 0$

$$5^{a}$$
 derivada: $f^{5}(x) = 360$; no ponto $x = 5$, $f^{5}(x) \neq 0$

A n-ésima derivada que faz a função diferente de zero é n=5.

$$f^{n}(x) > 0$$
; n é impar $\therefore x = 5$ é um ponto de inflexão.

b)
$$f(x) = 3.(x-5)^4$$
 no ponto $x = 5$

1^a derivada:
$$f^{1}(x) = 12.(x-5)^{3}$$
; no ponto $x = 5$, $f^{1}(x) = 0$

2^a derivada:
$$f^2(x) = 36.(x-5)^2$$
; no ponto $x = 5$, $f^2(x) = 0$

3° derivada:
$$f^3(x) = 72.(x-5)$$
; no ponto $x = 5$, $f^3(x) = 0$

4^a derivada:
$$f^{4}(x) = 72$$
; no ponto $x = 5$, $f^{4}(x) \neq 0$

A n-ésima derivada que faz a função diferente de zero é n = 4.

$$f^{n}(x) > 0$$
; n é par $\therefore x = 5$ é um mínimo relativo.

2) Considere o problema

$$Max z = x_1.(30-x_1) + x_2.(50-2.x_2) - 3.x_1 - 5.x_2$$

e identifique seus pontos estacionários, qualificando-os se MIN ou MAX.

$$z = x_1 \cdot (30 - x_1) + x_2 \cdot (50 - 2x_2) - 3x_1 - 5x_2$$

= $-x_1^2 - 2x_2^2 + 27x_1 + 45x_2$

$$\nabla z = [27 - 2.x_1 \quad 45 - 4.x_2]$$

$$f_1 = 27 - 2.x_1 = 0$$

 $f_2 = 45 - 4.x_2 = 0$ $\Rightarrow x_1 = \frac{27}{2}$
 $x_2 = \frac{45}{4}$

O ponto $\begin{bmatrix} 27/2 & 45/4 \end{bmatrix}$ é estacionário.

Encontrando o hessiano H.

$$\begin{aligned}
 f_{11} &= -2 & f_{12} &= 0 \\
 f_{21} &= 0 & f_{22} &= -4
 \end{aligned}
 \Rightarrow \mathbf{H} = \begin{bmatrix} -2 & 0 \\ 0 & -4 \end{bmatrix}$$

Menores principais:

$$H_1 = |f_{11}| = -2 < 0$$

$$H_2 = \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = 8 > 0$$

 \Rightarrow H é negativo definido $\therefore \begin{bmatrix} 27/2 & 45/4 \end{bmatrix}$ é ponto de máximo.

3) Considere a função $f(x_1, x_2) = 2.x_1^2 + 3.x_2^2 - 4.x_1.x_2$. Avalie a função no ponto (3,3) e depois no ponto (4, 4), usando o Teorema de Taylor, h = (1, 1).

$$f(3 \ 3) = 2.(3)^2 + 3.(3)^2 - 4.(3).(3) = 18 + 27 - 36 = 9$$

Teorema de Taylor:
$$f(\mathbf{x}^{\theta} + \mathbf{h}) = f(\mathbf{x}^{\theta}) + \nabla f(\mathbf{x}^{\theta}) \cdot \mathbf{h} + \frac{1}{2} \cdot \mathbf{h}^{T} \cdot \mathbf{H}(\mathbf{x}) \cdot \mathbf{h}; \ \mathbf{x}^{\theta} \leq \mathbf{x} \leq \mathbf{x}^{\theta} + \mathbf{h}$$

Se tomarmos o hessiano no próprio ponto x^{θ} , tem-se uma aproximação; no caso de funções polinomiais, o resultado é exato.

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 4.x_1 - 4.x_2 & 6.x_2 - 4.x_1 \end{bmatrix}$$

$$\nabla f(\mathbf{x}^{\theta}) = \nabla f(3 \quad 3) = \begin{bmatrix} 0 & 6 \end{bmatrix}$$

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 4 & -4 \\ -4 & 6 \end{bmatrix}$$

$$f(4 4) = f((3 3) + (1 1)) = f(3 3) + \nabla f(3 3) \cdot h + \frac{1}{2} \cdot h^T \cdot H \cdot h$$

$$=9+\begin{bmatrix}0 & 6\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}+\frac{1}{2}\cdot\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}4 & -4\\-4 & 6\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}$$

$$= 9 + (0+6) + \frac{1}{2} \cdot \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 16$$

- 4) Seja a função $f(\mathbf{x}) = 5.x_1^2 + 5.x_2^2 + 5.x_3^2 3.x_1.x_2 3.x_1x_3 3.x_2.x_3 + 8.x_1 + 8.x_2 + 8.x_3$
- a) Qual o valor de f(x) no ponto $x^0 = (1, 1, 1)$

$$f(\boldsymbol{x}^{\theta}) = f(1 \quad 1 \quad 1) = 5.(1)^{2} + 5.(1)^{2} + 5.(1)^{2} - 3.(1).(1) - 3.(1).(1) - 3.(1).(1) + 8.(1) + 8.(1) + 8.(1) = 30$$

b) Pela fórmula de Taylor, encontrar o valor da função no ponto $x^0 + h$, onde $h = \begin{bmatrix} 0.5 & 0.3 & 0.2 \end{bmatrix}$.

$$f(x^{\theta} + h) = f(x^{\theta}) + \nabla f(x^{\theta}) \cdot h + \frac{1}{2} \cdot h^{T} \cdot H(x) \cdot h; \ x^{\theta} \le x \le x^{\theta} + h$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 10.x_1 - 3.x_2 - 3.x_3 + 8 & 10.x_2 - 3.x_1 - 3.x_3 + 8 & 10.x_3 - 3.x_1 - 3.x_2 + 8 \end{bmatrix}$$

$$\nabla f(x^0) = \nabla f(1 \ 1 \ 1) = \begin{bmatrix} 12 \ 12 \ 12 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 10 & -3 & -3 \\ -3 & 10 & -3 \\ -3 & -3 & 10 \end{bmatrix}$$

$$f(1,5 \quad 1,3 \quad 1,2) = f((1 \quad 1 \quad 1) + (0,5 \quad 0,3 \quad 0,2))$$

= $f(1 \quad 1 \quad 1) + \nabla f(1 \quad 1 \quad 1) \cdot \mathbf{h} + \frac{1}{2} \cdot \mathbf{h}^T \cdot \mathbf{H} \cdot \mathbf{h}$

$$= 30 + \begin{bmatrix} 12 & 12 & 12 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} + \frac{1}{2} \cdot \begin{bmatrix} 0.5 & 0.3 & 0.2 \end{bmatrix} \begin{bmatrix} 10 & -3 & -3 \\ -3 & 10 & -3 \\ -3 & -3 & 10 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix}.$$

$$\Rightarrow f(1,5 \quad 1,3 \quad 1,2) = 42 + \frac{1}{2} \cdot \begin{bmatrix} 3,5 & 0,4 & -0,4 \end{bmatrix} \begin{bmatrix} 0,5 \\ 0,3 \\ 0,2 \end{bmatrix}$$

$$\Rightarrow f(1.5 \quad 1.3 \quad 1.2) = 42 + \frac{1}{2}.(1.94) = 42.97$$

5) Verifique a concavidade da função f(x) nos três casos abaixo, para valores reais de x, usando os recursos mostrados na seção B.6.

a)
$$f(x_1 x_2 x_3) = -4.x_1^4 - 2.x_2^2 - 3.x_3^2 + 4.x_1 - 4.x_1.x_2$$

Encontrar H:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} -16.x_1^3 + 4 - 4.x_2 & -4.x_2 - 4.x_1 & -6.x_3 \end{bmatrix}$$

$$\boldsymbol{H} = \begin{bmatrix} -48.x_1^2 & -4 & 0 \\ -4 & -4 & 0 \\ 0 & 0 & -6 \end{bmatrix}$$

Menores principais:

$$H_{1} = \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = \begin{vmatrix} -48.x_{1}^{2} & -4 \\ -4 & -4 \end{vmatrix} = (-48.x_{1}^{2}).(-4) - (-4).(-4) = 192.x_{1}^{2} - 16$$

$$H_{3} = \begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix} = \begin{vmatrix} -48.x_{1}^{2} & -4 & 0 \\ -4 & -4 & 0 \\ 0 & 0 & -6 \end{vmatrix} = (-48.x_{1}^{2}).(-4).(-6) - (-4).(-6) = -1.152.x_{1}^{2} + 96$$

f(x) é côncava $\Rightarrow H$ é negativo semidefinido $(H \le 0)$: $H_1 \le 0$; $H_2 \ge 0$; $H_3 \le 0$.

Note que:

 $H_1 \leq 0, \forall x_1 \in \Re$.

$$H_2 \ge 0 \Rightarrow 192.x_1^2 - 16 \ge 0$$
; $192.x_1^2 - 16 = 0 \Rightarrow x_1^2 = \frac{16}{192} = \frac{1}{12} \Rightarrow x_1 = \pm \frac{1}{2} = \frac{1}{3}$

$$\Rightarrow H_2 \ge 0$$
 se $x_1 \notin \text{ao intervalo} \left(-\frac{1}{2 \cdot \sqrt{3}}, \frac{1}{2 \cdot \sqrt{3}} \right)$

$$H_3 \le 0 \Longrightarrow -1.152 \cdot x_1^2 + 96 \le 0;$$

$$-1.152x_1^2 + 96 = 0 \Rightarrow x_1^2 = \frac{96}{1.152} = \frac{1}{12} \Rightarrow x_1 = \pm \frac{1}{2.\sqrt{3}}$$

$$\Rightarrow H_3 \le 0$$
 se $x_1 \notin$ ao intervalo $\left(-\frac{1}{2.\sqrt{3}}, \frac{1}{2.\sqrt{3}}\right)$

∴a função $f(\mathbf{x})$ é côncava se $x_1 \notin$ ao intervalo $\left(-\frac{1}{2.\sqrt{3}}\right)$ $\left(2.\sqrt{3}\right)$

b)
$$f(x_1 x_2) = -4.x_1^4 - 3.x_1^2 - 2.x_2^2 + 4.x_1 - 4.x_1.x_2$$

Encontrar H:

$$\nabla f(\mathbf{x}) = \left[-16.x_1^3 - 6.x_1 + 4 - 4x_2 - 4.x_2 - 4.x_1 \right]$$

$$\mathbf{H} = \begin{bmatrix} -48.x_1^2 - 6 & -4 \\ -4 & -4 \end{bmatrix}$$

Menores principais:

$$H_{1} = |f_{11}| = -48.x_{1}^{2} - 6$$

$$H_{2} = \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = \begin{vmatrix} -48.x_{1}^{2} - 6 & -4 \\ -4 & -4 \end{vmatrix} = (-48.x_{1}^{2} - 6).(-4) - (-4).(-4) = 192.x_{1}^{2} + 8$$

f(x) é estritamente côncava $\Rightarrow H$ é negativo definido $(H \le 0)$: $H_1 < 0$; $H_2 > 0$.

Note que:

$$H_1 < 0, \forall x_1 \in \Re$$
.

$$H_2 > 0, \forall x_1 \in \Re$$

∴a função f(x) é estritamente côncava $\forall x \in \mathbb{R}^2$

NOTA: Favor retificar um erro no gabarito, página 222 do livro.

c)
$$f(x_1 x_2) = 4.x_1^4 + 2.x_1^2 + 3.x_2^2 + 4.x_1 - 4.x_1.x_2$$

Encontrar H:

$$\nabla f(x) = [16.x_1^3 + 4.x_1 + 4 - 4.x_2 6.x_2 - 4.x_1]$$

$$\boldsymbol{H} = \begin{bmatrix} 48.x_1^2 + 4 & -4 \\ -4 & 6 \end{bmatrix}$$

Menores principais:

$$H_{1} = \begin{vmatrix} f_{11} & | = 48.x_{1}^{2} + 4 \end{vmatrix}$$

$$H_{2} = \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = \begin{vmatrix} 48.x_{1}^{2} + 4 & -4 \\ -4 & 6 \end{vmatrix} = (48.x_{1}^{2} + 4).(6) - (-4).(-4) = 288.x_{1}^{2} + 8$$

 $f(\mathbf{x})$ é estritamente convexa $\Leftrightarrow \mathbf{H}$ é positivo definido $(\mathbf{H} > 0)$: $H_1 > 0$; $H_2 > 0$.

Note que:

$$H_1 > 0, \forall x_1 \in \Re$$
.

$$H_2>0, \forall x_1\in\Re$$

∴a função f(x) é estritamente convexa $\forall x \in \Re^2$

6) Considere o problema a seguir e aplique as condições de KT para maximização. Em particular, considere o ponto A = (1, 0).

Max
$$z = x_1$$

Sujeito a
$$x_1^2 + x_2^2 \le 1$$

 $x_1, x_2 \ge 0$

Reescrevendo o problema:

$$Max f(x_1, x_2) = x_1$$

$$g_1(x_1, x_2) = 1 - x_1^2 - x_2^2 \ge 0$$

Sujeito a
$$g_2(x_1, x_2) = x_1 \ge 0$$

$$g_3(x_1, x_2) = x_2 \ge 0$$

Condição (1): o ponto x^* satisfaça as restrições

O ponto A = (1, 0) satisfaz as restrições $(g_1, g_2, g_3 \ge 0)$, pois:

$$1-(1)^2-(0)^2=0\geq 0$$

$$1 \ge 0$$

$$0 \ge 0$$

Condição (2): existam multiplicadores $\mu_i \ge 0, i = 1, 2, 3$ tais que: $\mu_i \cdot g_i(\boldsymbol{x}^*) = 0, \forall i$.

$$\mu_1.(1-x_1^2-x_2^2) = \mu_1.(1-(1)^2-(0)^2) = \mu_1.(0) = 0 (\forall \mu_1) \Rightarrow \mu_1 \ge 0$$

$$\mu_2.(x_1) = \mu_2.(1) = 0 \Rightarrow \mu_2 = 0$$

$$\mu_3.(x_2) = \mu_3.(0) = 0(\forall \mu_3) \Longrightarrow \mu_3 \ge 0$$

Condição (3) para ponto de máximo: $\nabla f(\mathbf{x}^*) + \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mu_1 \begin{bmatrix} -2.x_1 \\ -2.x_2 \end{bmatrix} + \mu_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mu_3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 1 - 2 \cdot \mu_1 \cdot (1) + (0) = 0 \\ -2 \cdot \mu_1 \cdot (0) + \mu_3 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \mu_1 = \frac{1}{2} \\ \mu_3 = 0 \\ \text{Da condição}(2) : \mu_2 = 0 \end{cases}$$

Logo, o ponto A = (1, 0) satisfaz as condições de KT para máximo local.

7) Considere o seguinte problema; escreva as condições de KT e verifique o que elas afirmam para os pontos: (a) (3/2, 9/4); e (b) (0, 6).

$$f(\mathbf{x}) = (x_1 - \frac{9}{4})^2 + (x_2 - 2)^2$$

$$x_1^2 - x_2 \le 0$$
Sujeito a
$$x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0$$

a) Para encontrar os pontos extremos da função, observe que a função objetivo corresponde à equação de um circulo no \Re^2 , onde um ponto no plano é representado por $(x_1 \ x_2)$, e o círculo tem centro em $(9/4 \ 2)$. Portanto, $f(x_1, x_2)$ corresponde ao quadrado do raio deste círculo.

$$f(x_1, x_2) = (x_1 - \frac{9}{4})^2 + (x_2 - 2)^2 = r^2$$

Considere que se deseja maximizar a função (ou seja, o raio do círculo), encontrando um ponto que satisfaça as condições do problema: $x_1^2 - x_2 \le 0$; $x_1 + x_2 \le 6$; $x_1, x_2 \ge 0$.

Uma análise gráfica no \Re^2 permite encontrar o ponto (0, 6) como um ponto de máximo (círculo de maior raio, dadas as restrições do problema).

Para confirmar este resultado, use as condições de KT (para maximização) sobre o ponto (0, 6) – será mostrado mais adiante no item (c).

b) Escreva as condições de KT e verifique o que elas afirmam para o ponto (3/2, 9/4).

$$f(\mathbf{x}) = (x_1 - \frac{9}{4})^2 + (x_2 - 2)^2$$

$$g_1(x_1, x_2) = x_2 - x_1^2 \ge 0$$
s.a.
$$g_2(x_1, x_2) = 6 - x_1 - x_2 \ge 0$$

$$g_3(x_1, x_2) = x_1 \ge 0$$

$$g_4(x_1, x_2) = x_2 \ge 0$$

Condição (1): o ponto x^* satisfaça as restrições

O ponto $(\frac{3}{2}, \frac{9}{4})$ satisfaz as restrições do problema $(g_1, g_2, g_3 \ge 0)$, pois:

$$\frac{9/4 - (3/2)^2 = 0 \ge 0}{6 - 3/2 - 9/4 = 9/4 \ge 0}$$
$$\frac{3/2 \ge 0}{4} \ge 0$$

Condição (2): existam multiplicadores $\mu_i \ge 0, i = 1,2,3,4$ tais que: $\mu_i.g_i(\boldsymbol{x}^*) = 0, \forall i$.

$$\mu_{1}.(x_{2} - x_{1}^{2}) = \mu_{1}.(\frac{9}{4} - (\frac{3}{2})^{2}) = \mu_{1}.(0) = 0 (\forall \mu_{1}) \Rightarrow \mu_{1} \ge 0$$

$$\mu_{2}.(6 - x_{1} - x_{2}) = \mu_{2}.(6 - \frac{3}{2} - \frac{9}{4}) = \mu_{2}.(\frac{9}{4}) = 0 \Rightarrow \mu_{2} = 0$$

$$\mu_{3}.(x_{1}) = \mu_{3}.(\frac{3}{2}) = 0 \Rightarrow \mu_{3} = 0$$

$$\mu_{4}.(x_{2}) = \mu_{4}.(\frac{9}{4}) = 0 \Rightarrow \mu_{4} = 0$$

Condição (3) para ponto de máximo: $\nabla f(\mathbf{x}^*) + \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$\begin{bmatrix} 2.x_1 - \frac{9}{2} \\ 2.x_2 - 4 \end{bmatrix} + \mu_1 \cdot \begin{bmatrix} -2.x_1 \\ 1 \end{bmatrix} + \mu_2 \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} + \mu_3 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mu_4 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 2.(\frac{3}{2}) - \frac{9}{2} - 2.\mu_1 \cdot (\frac{3}{2}) - (0) + (0) = 0 \\ 2.(\frac{9}{4}) - 4 + \mu_1 - (0) + (0) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} 3 - \frac{9}{2} - 3.\mu_1 = 0 \Rightarrow \mu_1 = -\frac{1}{2} \\ (\frac{9}{2}) - 4 + \mu_1 = 0 \Rightarrow \mu_1 = -\frac{1}{2} \end{cases}$$

 $\therefore \mu_1 < 0 \Rightarrow$ o ponto (3/2, 9/4) não satisfaz as condições de KT para máximo local.

Condição (3) para ponto de mínimo: $\nabla f(\mathbf{x}^*) - \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$\begin{bmatrix} 2.x_1 - \frac{9}{2} \\ 2.x_2 - 4 \end{bmatrix} - \mu_1 \cdot \begin{bmatrix} -2.x_1 \\ 1 \end{bmatrix} - \mu_2 \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \mu_3 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \mu_4 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 2.(\frac{3}{2}) - \frac{9}{2} + 2.\mu_1 \cdot (\frac{3}{2}) + (0) - (0) = 0 \\ 2.(\frac{9}{4}) - 4 - \mu_1 + (0) - (0) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} 3 - \frac{9}{2} + 3.\mu_1 = 0 \Rightarrow \mu_1 = \frac{1}{2} \\ (\frac{9}{2}) - 4 - \mu_1 = 0 \Rightarrow \mu_1 = \frac{1}{2} \end{cases}$$

$$\Rightarrow \begin{cases} \mu_1 = \frac{1}{2} \\ \text{Da condição}(2) : \mu_2 = \mu_3 = \mu_4 = 0 \end{cases}$$

Logo, o ponto (3/2, 9/4) satisfaz as condições de KT para mínimo local.

c) Escreva as condições de KT e verifique o que elas afirmam para o ponto (0,
6).

Condição (1): o ponto x^* satisfaça as restrições

O ponto $(0 \ 6)$ satisfaz as restrições do problema $(g_1, g_2, g_3 \ge 0)$, pois:

$$6-(0)^2=6\geq 0$$

$$6 - 0 - 6 = 0 \ge 0$$

$$0 \ge 0; 6 \ge 0$$

Condição (2): existam multiplicadores $\mu_i \ge 0, i = 1,2,3$ tais que: $\mu_i \cdot g_i(\mathbf{x}^*) = 0, \forall i$.

$$\begin{split} &\mu_{1}.(x_{2}-x_{1}^{2})=\mu_{1}.(6-(0)^{2})=\mu_{1}.(6)=0 \Rightarrow \mu_{1}=0 \\ &\mu_{2}.(6-x_{1}-x_{2})=\mu_{2}.(6-0-6)=\mu_{2}.(0)=0 \\ &(\forall \mu_{2})\Rightarrow \mu_{2}\geq 0 \\ &\mu_{3}.(x_{1})=\mu_{3}.(0)=0 \\ &(\forall \mu_{3})\Rightarrow \mu_{3}\geq 0 \\ &\mu_{4}.(x_{2})=\mu_{4}.(6)=0 \Rightarrow \mu_{4}=0 \end{split}$$

Condição (3) para ponto de máximo: $\nabla f(\mathbf{x}^*) + \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$\begin{bmatrix} 2.x_1 - \frac{9}{2} \\ 2.x_2 - 4 \end{bmatrix} + \mu_1 \cdot \begin{bmatrix} -2.x_1 \\ 1 \end{bmatrix} + \mu_2 \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} + \mu_3 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mu_4 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 2.(0) - \frac{9}{2} - 2.(0).(0) - \mu_2 + \mu_3 = 0 \\ 2.(6) - 4 + (0) - \mu_2 + (0) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} -\frac{9}{2} - \mu_2 + \mu_3 = 0 \\ 8 - \mu_2 = 0 \end{cases} \Rightarrow \begin{cases} \mu_2 = 8 \\ \mu_3 = \frac{25}{2} \end{cases}$$

$$\Rightarrow \begin{cases} \mu_1 = 0 \text{ (da condição (2))} \\ \mu_2 = 8 \\ \mu_3 = \frac{25}{2} \\ \mu_4 = 0 \text{ (da condição (2))} \end{cases}$$

Logo, o ponto (0, 6) satisfaz as condições de KT para máximo local.

8) Considere o problema:

$$Max f(x) = x^3$$

s.a.
$$-1 \le x \le 1$$

Reescrevendo o problema:

$$Max f(x) = x^3$$

s.a.
$$g_1(x) = x + 1 \ge 0$$

 $g_2(x) = 1 - x \ge 0$

Usando as condições de KT, o que elas dizem sobre os pontos x = -1, 0 e 1?

a) Para x = -1

Condição (1): o ponto x^* satisfaça as restrições

O ponto x = -1 satisfaz as restrições do problema ($g_1, g_2 \ge 0$), pois:

$$(-1)+1=0\geq 0$$

$$1 - (-1) = 2 \ge 0$$

Condição (2): existam multiplicadores $\mu_i \ge 0, i = 1,2$ tais que: $\mu_i.g_i(\boldsymbol{x}^*) = 0, \forall i$.

$$\mu_1.(x+1) = \mu_1.(-1+1) = \mu_1.(0) = 0(\forall \mu_1) \Longrightarrow \mu_1 \ge 0$$

$$\mu_2.(1-x) = \mu_2.(1-(-1)) = \mu_2.(2) = 0 \Rightarrow \mu_2 = 0$$

Condição (3) para ponto de máximo: $\nabla f(\mathbf{x}^*) + \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$3.x^2 + \mu_1 - \mu_2 = 0 \Rightarrow 3.(-1)^2 + \mu_1 - (0) = 0$$

$$\Rightarrow \mu_1 = -3 < 0$$

Logo, o ponto x = -1 não satisfaz as condições de KT para máximo local.

Condição (3) para ponto de mínimo: $\nabla f(\mathbf{x}^*) - \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$3.x^2 - \mu_1 + \mu_2 = 0 \Rightarrow 3.(-1)^2 - \mu_1 + (0) = 0$$

$$\Rightarrow \begin{cases} \mu_1 = 3 \\ \mu_2 = 0 \text{ (da condição (2))} \end{cases}$$

Logo, o ponto x = -1 satisfaz as condições de KT para mínimo local.

b) Para x = 0

Condição (1): o ponto x^* satisfaça as restrições

O ponto x = 0 satisfaz as restrições do problema ($g_1, g_2 \ge 0$), pois:

$$(0) + 1 = 1 \ge 0$$

$$1-(0)=1\geq 0$$

Condição (2): existam multiplicadores $\mu_i \ge 0, i = 1,2$ tais que: $\mu_i.g_i(\boldsymbol{x}^*) = 0, \forall i$.

$$\mu_1.(x+1) = \mu_1.(0+1) = \mu_1.(1) = 0 \Rightarrow \mu_1 = 0$$

$$\mu_2.(1-x) = \mu_2.(1-0) = \mu_2.(1) = 0 \Rightarrow \mu_2 = 0$$

Condição (3) para ponto de máximo: $\nabla f(\mathbf{x}^*) + \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$3.x^2 + \mu_1 - \mu_2 = 0 \Rightarrow 3.(0)^2 + (0) - (0) = 0$$

Logo, o ponto x = 0 satisfaz as condições de KT para máximo local.

Condição (3) para ponto de mínimo: $\nabla f(\mathbf{x}^*) - \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$3.x^2 - \mu_1 + \mu_2 = 0 \Rightarrow 3.(0)^2 - (0) + (0) = 0$$

$$\Rightarrow \{\mu_1 = \mu_2 = 0 \, (da \, condição(2)) \}$$

Logo, o ponto x = 0 satisfaz as condições de KT para máximo e para mínimo local; o ponto x = 0 é um ponto de inflexão.

c) Para x = 1

Condição (1): o ponto x^* satisfaça as restrições

O ponto x = 1 satisfaz as restrições do problema ($g_1, g_2 \ge 0$), pois:

$$(1) + 1 = 2 \ge 0$$

$$1-(1)=0\geq 0$$

Condição (2): existam multiplicadores $\mu_i \ge 0, i = 1,2$ tais que: $\mu_i.g_i(\boldsymbol{x}^*) = 0, \forall i$.

$$\mu_1.(x+1) = \mu_1.(1+1) = \mu_1.(2) = 0 \Longrightarrow \mu_1 = 0$$

$$\mu_2.(1-1) = \mu_2.(0) = 0(\forall \mu_2) \Rightarrow \mu_2 \ge 0$$

Condição (3) para ponto de máximo: $\nabla f(\mathbf{x}^*) + \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$3.x^2 + \mu_1 - \mu_2 = 0 \Rightarrow 3.(1)^2 + (0) - \mu_2 = 0$$

$$\Rightarrow \begin{cases} \mu_2 = 3 \\ \mu_1 = 0 \, (\text{da condição}(2)) \end{cases}$$

Logo, o ponto x = 1 satisfaz as condições de KT para máximo local.

Condição (3) para ponto de mínimo: $\nabla f(\mathbf{x}^*) - \sum_i \mu_i \cdot \nabla g_i(\mathbf{x}^*) = 0; \mu_i \ge 0 (\forall i)$

$$3.x^2 - \mu_1 + \mu_2 = 0 \Rightarrow 3.(1)^2 - (0) + \mu_2 = 0$$

$$\Rightarrow \mu_2 = -3$$

Logo, o ponto x = 1 não satisfaz as condições de KT para mínimo local.

- 9) Faça o que se pede:
- a) Identifique os pontos extremos da função: $f(x) = 6.x_1^2 4.x_1.x_2 + 4.x_2^2 16.x_2$

Otimização sem restrições.

$$\nabla f(x) = \begin{bmatrix} 12.x_1 - 4.x_2 \\ -4.x_1 + 8.x_2 - 16 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 12.x_1 - 4.x_2 = 0 \\ -4.x_1 + 8.x_2 - 16 = 0 \end{cases} \Rightarrow \begin{cases} 3.x_1 = x_2 \\ -x_1 + 2.x_2 - 4 = 0 \end{cases}$$

$$\Rightarrow -x_1 + 2.(3.x_1) - 4 = 0 \Rightarrow \begin{cases} x_1 = \frac{4}{5} \\ x_2 = \frac{12}{5} \end{cases}$$

O ponto $\begin{bmatrix} 4/5 & 12/5 \end{bmatrix}$ é estacionário.

Encontrando o hessiano H.

$$\begin{aligned}
 f_{11} &= 12 & f_{12} &= -4 \\
 f_{21} &= -4 & f_{22} &= 8
 \end{aligned}
 \Rightarrow \mathbf{H} = \begin{bmatrix} 12 & -4 \\ -4 & 8 \end{bmatrix}$$

Menores principais:

$$H_1 = |f_{11}| = 12 > 0$$

$$H_2 = \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = 80 > 0$$

 \Rightarrow H é positivo definido \Leftrightarrow f(x) é estritamente convexa.

Portanto, $\begin{bmatrix} 4/5 & 12/5 \end{bmatrix}$ é ponto de mínimo global.

b) Levando em conta a resposta do item anterior, resolva o problema:

$$f(x) = 6.x_1^2 - 4.x_1.x_2 + 4.x_2^2 - 16.x_2$$

s.a.
$$x_1^2 - \frac{1}{4} \cdot x_1 \cdot x_2 + \frac{1}{4} \cdot x_2^2 - \frac{2}{3} \cdot x_2 \le 0$$

Verifique se a solução encontrada em (a) - solução ótima do problema de otimização sem restrições - satisfaz as restrições acrescentadas em (b). Caso afirmativo, então ela será a solução ótima de (b).

$$g(\mathbf{x}) = x_1^2 - \frac{1}{4} \cdot x_1 \cdot x_2 + \frac{1}{4} \cdot x_2^2 - \frac{2}{3} \cdot x_2$$

No ponto $\begin{bmatrix} 4/5 & 12/5 \end{bmatrix}$:

$$g(\mathbf{x}) = (\frac{4}{5})^2 - \frac{1}{4}.(\frac{4}{5}).(\frac{12}{5}) + \frac{1}{4}.(\frac{12}{5})^2 - \frac{2}{3}.(\frac{12}{5})$$
$$= \frac{160}{100} - \frac{160}{100} \le 0$$

Portanto, a solução ótima de (b) – ponto de mínimo global - é também o ponto $\begin{bmatrix} 4/&12/5 \end{bmatrix}$

c) Aplique as condições de KT ao problema (b) anterior, e a essas condições aplique o ponto encontrado no item (a) anterior.

Condição (1): o ponto x^* satisfaça as restrições

Vimos em (a) que ponto $\begin{bmatrix} 4/5 & 12/5 \end{bmatrix}$ satisfaz a restrição do problema ($g_1 \le 0$).

Condição (2): existam multiplicadores $\mu_i \ge 0, i = 1$ tais que: $\mu_i \cdot g_i(\mathbf{x}^*) = 0, \forall i$.

$$\mu_1.(x_1^2 - \frac{1}{4}.x_1.x_2 + \frac{1}{4}.x_2^2 - \frac{2}{3}.x_2) = \mu_1.(0) = 0(\forall \mu_1)$$

Condição (3) para ponto de mínimo (quando a restrição está na forma $g(x) \le 0$): $\nabla f(x^*) + \sum_i \mu_i \cdot \nabla g_i(x^*) = 0; \mu_i \ge 0 (\forall i)$

$$\begin{bmatrix} 12.x_1 - 4.x_2 \\ -4.x_1 + 8.x_2 - 16 \end{bmatrix} + \mu \begin{bmatrix} 2.x_1 - \frac{1}{4}.x_2 \\ \frac{1}{2}.x_2 - \frac{1}{4}.x_1 - \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 12.(\frac{4}{5}) - 4.(\frac{12}{5}) + \mu.[2.(\frac{4}{5}) - \frac{1}{4}.(\frac{12}{5})] = 0 \\ -4.(\frac{4}{5}) + 8.(\frac{12}{5}) - 16 + \mu.[\frac{1}{2}.(\frac{12}{5}) - \frac{1}{4}.(\frac{4}{5}) - \frac{2}{3}] = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \mu = 0 \\ 80/5 - 16 + \mu \cdot (1/3) = 0 \end{cases} \Rightarrow \{\mu = 0$$

Logo, o ponto $\begin{bmatrix} 4/5 & 12/5 \end{bmatrix}$ satisfaz as condições de KT para ponto de mínimo.

Capítulo 1

1) Dado o sistema de expressões lineares (restrições):

(i)
$$-x_1 + 2.x_2 \le 4$$

(*ii*)
$$2.x_1 - 3.x_2 \le 3$$

(*iii*)
$$x_1 + 3.x_2 \ge 6$$

$$(iv) \quad x_1, \ x_2 \ge 0$$

Restrição(i): Restrição(ii):

strição(ii): Restrição(iii):

$$x_1 = 0 \Longrightarrow x_2 = 2$$

$$x_1 = 0 \Longrightarrow x_2 = -1$$

 $x_1 = 0 \Longrightarrow x_2 = 2$

$$x_2 = 0 \Longrightarrow x_1 = -4$$

$$x_2 = 0 \Rightarrow x_1 = \frac{3}{2}$$

$$x_2 = 0 \Rightarrow x_1 = 6$$

$$(0,0) \in \operatorname{espaçovi}$$
 ável

$$(0,0) \in \operatorname{espaçovi}$$
 ável

Determine graficamente a solução ótima nos seguintes casos:

a) Min
$$Z = 2.x_1$$
.

b) Max
$$Z = -4.x_2$$
.

c) Max
$$Z = 3.x_1 + 3.x_2$$
.

Gráfico das restrições, a linha pontilhada azul mostra a FO de c):

a) Min
$$Z = 2.x_1$$

Solução ótima: $x_1 = 0$; $x_2 = 2$.

Min
$$Z = 2.(0) = 0$$

b) Max
$$Z = -4.x_2$$

Solução ótima: $x_1 = 3$; $x_2 = 1$

Max
$$Z = -4$$
. (1) = -4

c) Max $Z = 3.x_1 + 3.x_2$

Solução ótima: $x_1 = 18$; $x_2 = 11$ {interseção das restrições (i) e (ii)}¹

$$\text{Max Z} = 3.(18) + 3.(11) = 87$$

2) Modelo de programação linear:

Max
$$2.x_1 + 2.x_2$$

-

 $^{^1}$ A função $Z=3.x_1+3.x_2$ pode ser representada no gráfico por um feixe de retas paralelas, onde cada reta representaria uma "curva de nível" no plano (\Re^2), ou seja, os pontos (x_1,x_2) onde a função $Z=f(x_1,x_2)=K$ (constante) . Por exemplo, tracei a "curva de nível" $Z=3.x_1+3.x_2=9$. A direção de maior crescimento da função é ortogonal à curva de nível.

(i)
$$-6.x_1 + 10x_2 \le 30$$

(ii)
$$4.x_1 + 3.x_2 \ge -12$$

s.a. (iii)
$$x_1 + 2.x_2 \le 10$$

$$(iv)$$
 $x_1 \leq 6$

$$(v)$$
 $x_1, x_2 \ge 0$

$$\begin{array}{lll} \operatorname{Restriç\~ao}(i): & \operatorname{Restriç\~ao}(ii): & \operatorname{Restriç\~ao}(iii): \\ x_1 = 0 \Rightarrow x_2 = 3 & x_1 = 0 \Rightarrow x_2 = -4 & x_1 = 0 \Rightarrow x_2 = 5 \\ x_2 = 0 \Rightarrow x_1 = -5 & x_2 = 0 \Rightarrow x_1 = -3 & x_2 = 0 \Rightarrow x_1 = 10 \\ (0,0) \in \operatorname{espaço\,vi\'avel} & (0,0) \in \operatorname{espaço\,vi\'avel} & (0,0) \in \operatorname{espaço\,vi\'avel} \\ \end{array}$$

GRÁFICO:

Do gráfico, vemos que a solução ótima para esta função objetivo recai no ponto B, que intersecta as retas da (iii) e (iv) restrição, por tanto a solução ótima é no ponto $x_1 = 6$ e $x_2 = 2$. Finalmente Z = 16.

3) Considere o modelo de programação linear. Usando recursos gráficos, ache as soluções para todo o espectro de valores α , $-\infty < \alpha < +\infty$.

Max 2. $x_1 + x_2$

$$(i) \qquad x_1 + 3x_2 \le 18$$

$$(ii) \quad x_1 \quad + x_2 \quad \leq \alpha$$

s.a. (*iii*)
$$3.x_1 + x_2 \le 9$$

$$(iv)$$
 x_1 , $x_2 \ge 0$

No gráfico, desenha-se a região factível, com as restrições (i), (iii) e (iv), sendo que a região solução da restrição (ii) varia segundo o valor de α , assim, a reta da restrição (ii) é desenhada considerando a função objetivo nos diferentes casos (a), (b), (c) e (d).

(a) Se $\propto < 0$ não há valores para x_1 e x_2 que satisfaçam as restrições (iv) (já que $x_1 \ge 0$ e $x_2 \ge 0$) e (ii), portanto, se $\alpha < 0$ não há solução.

(b) As retas (ii) e (iii) se intersectam no ponto: $x_1 = 4.5 - 0.5\alpha$ e $x_2 = 1.5\alpha - 4.5$, sabe-se que $x_2 \ge 0$, então o menor valor de α que satisfaz a restrição (iv) é

 $\alpha=3$ e na restrição (ii), tem-se que $x_1=3$. Logo, no intervalo $0\leq\alpha\leq3$ a melhor solução é alcançada quando $x_1=\propto$ e $x_2=0$.

(c) As retas (i) e (iii) se intersectam no ponto $x_1 = 9/8$ e $x_2 = 45/8$, substituindo este ponto na restrição (ii) se obtém $\alpha = 27/4$. Para validar a restrição (ii), encontra-se a interseção de (ii) e (iii), como visto em (b) é o ponto $x_1 = 4.5 - 0.5\alpha$ e $x_2 = 1.5\alpha - 4.5$, no intervalo $3 \le \alpha \le 27/4$.

(d) Finalmente, se $\alpha > 27/4$ a solução ótima será no ponto encontrado em (c) $x_1 = 9/8$ e $x_2 = 45/8$, já que a retrição (ii) não influirá na solução final.

4) Salim El Sharif.

Sejam: ES = Empréstimo semestral;

 $EM_i = \text{Empréstimo de um mês, feito no mês } i = 1, 2, ..., 6;$

 AM_i = Aplicação financeira de um mês, feita no mês i = 1, 2, ..., 6.

FO:

MIN
$$Z = 0.12 ES + 0.04 (EM_1 + EM_2 + ... + EM_6) - 0.01 (AM_1 + AM_2 + ... + AM_6)$$

s.a.:

$$1000 + 1000 + ES + EM_I = 5000 + AM_I$$
 (equilíbrio financeiro, 1° mês);

$$1,01 \ AM_I + 2000 + EM_2 = 5000 + 1,04 \ EM_I$$
 (equilíbrio financeiro, 2° mês);

$$1,01 AM_2 + 2000 + EM_3 = 6000 + 1,04 EM_2$$
 (equilíbrio financeiro, 3° mês).

••••

$$1,01 AM_5 + 9000 + EM_6 = 2000 + 1,04 EM_5 + 1,12 ES$$
 (6° mês)

$$ES$$
, AM_i , $EM_i \ge 0$

5) Fabricante de sapatos:.

Sejam: X_i = Número de operários no mês i = 1, 2, ..., 6;

 Y_i = Horas extras usadas no mês i;

 E_i = Nível de estoque ao final do mês i.

a) Função objetivo:

MIN Z = 2000
$$(X_1 + X_2 + ... + X_6) + 50 (Y_1 + Y_2 + ... + Y_6) + E_1 + E_2 + ... + E_6$$

s.a.:

$$1000 + 300 X_1 + 60 Y_1 = 5000 + E_1$$

$$E_1 + 300 X_2 + 60 Y_2 = 6000 + E_2$$

....

$$E_5 + 300 X_6 + 60 Y_6 = 5000 + E_6$$

$$E_6 \ge 2000$$

$$X_i \le 20$$
;

$$Y_i \leq 0.2 X_i$$

$$X_i, Y_i, E_i \geq 0$$

b) Na função objetivo, acrescentar: 770 $(XA_1 + ... + XA_6) + 1000 (XD_1 + ... + XD_6)$

e nas restrições:
$$X_i = X_{i-1} + XA_i - XD_i$$
, para $i = 2, 3, ..., 6$,

sendo: $X_I = 15$ e $XA_i = número de contratações no mês <math>i$ e

 XD_i = número de demissões no mês i.

6) Artesanato Itaipava:

Sejam:
$$t = 1, ..., 6$$
, onde $1 = jan$.; $2 = fev$.; ...; $6 = jun$.;

 $X_t = \text{Produção própria no mês } t;$

 I_t = Estoque ao final do mês t;

 k_t = Capacidade produtiva alugada no mês t;

 P_t = Produção subcontratada

FO:

MIN
$$Z = 200 (X_1 + ... + X_6) + 220 (k_1 + ... + k_6) + 250 (P_1 + ... + P_6) + 15 (I_1 + ... + I_6)$$

s.a.:

$$300 + X_1 + P_1 = 4000 + I_1$$

$$I_1 + X_2 + P_2 = 2000 + I_2$$

....

$$I_5 + X_5 + P_5 = 2000 + I_6$$

$$X_t \le 3000 + k_t$$

$$P_t \le 100$$

$$X_t, I_t, k_t, P_t \geq 0$$

7) Natureba Ltda:

Considerando todas as unidades medidas em quilogramas. Sejam:

 X_C = Quantidade de cereal aplicado na produção de NC;

 X_I = Quantidade de cereal aplicado na produção de NI;

 Y_C = Quantidade de vitamina aplicado na produção de NC;

 Y_I = Quantidade de vitamina aplicado na produção de NI

FO:

$$\max Z = 11 (X_c + Y_c) + 14 (X_I + Y_I) - 3 (X_c + X_I) - 5 (Y_c + Y_I)$$
$$= 8X_C + 6Y_C + 11X_I + 9Y_I$$

s.a.:

$$X_C + Y_C \le 150$$

$$X_I + Y_I \leq 150$$

$$X_C > 0.70 (X_C + Y_C)$$
 ou $0.3X_C > 0.7Y_C$

$$Y_I > 0.60 (X_I + Y_I)$$
 ou $0.4 Y_I > 0.6 X_I$

$$X_C, X_I, Y_C, Y_{II} \geq 0$$

8) Licores da Serra

Sejam: X_1 = Número de réplicas do Processo 1;

 X_2 = Número de réplicas do Processo 2

a) FO Max
$$Z = 3(4X_1 + 2X_2) + 2{,}50(X_1 + 4X_2)$$

s.a.:
$$2X_1 + 4X_2 \le 120$$

$$3X_1 + 2X_2 \le 80$$

$$X_1, X_2 \ge 0$$

b) Max Z =
$$12X_1 + 2,50X_1 - q_1 X_1 + 6X_2 + 10X_2 - q_2 X_2 - 2p_A X_1 - 4p_A X_2$$

- $3 p_B X_1 - 2 p_B X_2$

Sujeito às mesmas restrições em (a)

c) Acrescentar na FO em (b) os termos: $-I_x - I_y - S_x - S_y$

e as restrições:
$$4 X_1 + 2 X_2 = L_1 + S_x - I_x$$

$$X_1 + 4 X_2 = L_2 + S_y - I_y$$

$$I_X$$
, I_Y , S_X , $S_Y \ge 0$

9) a) MIN
$$Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

b) MIN
$$Z = x_1 + x_2 + ... + x_6 + 0.9 (Y_1 + Y_2 + ... + Y_6)$$

Capítulo 2

1) Resolva em uma iteração:

Max
$$12.x_1 + 9.x_2 + 10.x_3$$

Convertendo à forma padrão:

Max
$$z = 12.x_1 + 9.x_2 + 10.x_3$$

s.a.
$$(a)$$
 x_1 $+x_2$ $+x_3$ $+x_4$ $=1$
 (b) $\frac{1}{2}.x_1$ $+\frac{7}{4}.x_2$ $+x_3$ $+x_5$ $=5$
 (c) $3.x_1$ $+7.x_2$ $+5.x_3$ $+x_6$ $=5$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

(x_4, x_5, x_6 são variáveis de folga)

Base inicial: x_4, x_5, x_6

Solução básica inicial:
$$\begin{cases} x_1 = 0, & x_2 = 0, & x_3 = 0 \\ x_4 = 1, & x_5 = 5, & x_6 = 5 \end{cases}$$

1° iteração:

A variável não-básica que entra na base é aquela cujo coeficiente da FO (MAX) é mais positivo: x_1 .

35

Ao se aumentar o valor de x_1 , deve-se ter o cuidado de manter as variáveis x_4, x_5, x_6 não negativas. Portanto, $x_1 = \min\{1, 10, \frac{5}{3}\}$.

Para $x_1 = 1$, tem-se $x_4 = 0$. Portanto, x_4 sai da base.

Nova base: x_1, x_5, x_6 .

Expressando o sistema inicial na nova base:

Nova solução básica:
$$\begin{cases} x_4 = 0, & x_2 = 0, & x_3 = 0 \\ x_1 = 1, & x_5 = \frac{9}{2}, & x_6 = 2 \end{cases}$$

Expressando a função objetiva em termos das variáveis não-básicas:

$$z = 12.x_1 + 9.x_2 + 10.x_3 = 12.(1 - x_2 - x_3 - x_4) + 9.x_2 + 10.x_3$$

= 12 - 3.x₂ - 2.x₃ - 12.x₄

Todos os coeficientes da FO são negativos. Portanto, ao se aumentar qualquer uma das variáveis não-básicas, diminui-se o valor da FO. Assim, a solução básica acima é a solução ótima para maximizar z é Max z=12.

2) Resolva o seguinte problema de PL utilizando o Método Simplex

Max
$$x_1 + 2.x_2$$

 $-6.x_1 + 10.x_2 \le 30$
s.a. $x_1 \le 6$
 $x_1, x_2 \ge 0$

Convertendo à forma padrão:

Max
$$x_1 + 2.x_2$$

s.a. $-6.x_1 + 10.x_2 + x_3 = 30$
 $x_1 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$
 $(x_3, x_4 \text{ são variáveis de folga)}$

Base inicial: x_3, x_4

Solução básica inicial:
$$\begin{cases} x_1 = 0, & x_2 = 0, \\ x_3 = 30, & x_4 = 6 \end{cases}$$

Para colocar o sistema na forma de Quadros (forma simplificada de organizar os cálculos), a FO deve ser vista como uma restrição adicional, sendo Z uma variável compondo a base:

FO:
$$Z - x_1 - 2.x_2 = 0$$

Quadro 1:

	Base	Z	X_1	X_2	X_3	X_4	b	Razão
<i>l</i> .0	Max	1	-1	-2	0	0	0	
<i>l</i> .1	\overline{X}_3	0	-6	10	1	0	30	$\frac{30}{10} = 5$
<i>l</i> .2	X_4	0	1	0	0	1	6	∞

A variável não-básica que entra na base é aquela cujo coeficiente da FO (problema MAX.) é mais positivo. Portanto, é aquela cujo coeficiente na linha zero é mais negativo x_2 entra na base.

A variável que sai da base é aquela com menor valor para $\left\{b_i / a_{i,j}, j=2, a_{i,j} > 0\right\}$ $\therefore x_3$ sai da base.

Elemento pivô: $a_{1,2} = 10$.

Nova base: x_2, x_4 .

Pivotamento:

- Dividir a linha 1 por 10
- Multiplicar a linha 1 por 2 e somá-la à linha 0

Quadro 2:

	Base	Z	X_1	X_2	X_3	X_4	b	Razão
<i>l</i> .0	Max	1	$-11/_{5}$	0	$\frac{1}{5}$	0	6	
<i>l</i> .1	\overline{X}_2	0	$-\frac{3}{5}$	1	1/10	0	3	
<i>l</i> .2	$\overline{X_4}$	0	1	0	0	1	6	$\frac{6}{1} = 6$

A variável não-básica que entra na base é aquela cujo coeficiente na linha zero é negativo x_1 entra na base.

A variável que sai da base é aquela com menor valor para $\left\{ b_i / a_{i,j}, j = 1, a_{i,j} > 0 \right\}$ $\therefore x_4$ sai da base.

Elemento pivô: $a_{2,1} = 1$.

Nova base: x_1, x_2 .

Pivotamento:

- Multiplicar a linha 2 por $\frac{11}{5}$ e somá-la à linha 0
- Multiplicar a linha 2 por $\frac{3}{5}$ e somá-la à linha 1

Quadro 3:

	Base	Z	X_1	X_2	X_3	X_4	b	Razão
<i>l</i> .0	Max	1	0	0	1/5	11/5	96/5	
<i>l</i> .1	X_2	0	0	1	1/10	3/5	33/5	
<i>l</i> .2	X_1	0	1	0	0	1	6	

Nenhuma variável não-básica possui coeficiente na linha (0) negativo.

Logo, a solução ótima foi encontrada:

Solução ótima:

$$\begin{cases} x_1 = 6 \\ x_2 = 33/5 \end{cases} \qquad z = x_1 + 2.x_2 = 96/5$$

3) Utilize o Método Simplex para resolver o seguinte problema de PL:

Max
$$5.x_1 + 2.x_2$$

$$\begin{array}{rcl}
x_1 & \leq 4 \\
x_2 & \leq 5 \\
-2.x_1 & +x_2 & \leq 10 \\
x_1, x_2 \geq 0
\end{array}$$

Convertendo à forma padrão:

Max
$$5.x_1 + 2.x_2$$

$$x_1$$
 $+x_3$ $= 4$
s.a. x_2 $+x_4$ $= 5$
 $-2.x_1$ $+x_2$ $+x_5$ $= 10$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

(x_3, x_4, x_5 são variáveis de folga)

Base inicial: x_3, x_4, x_5

Solução básica inicial:
$$\begin{cases} x_1 = 0, & x_2 = 0, \\ x_3 = 4, & x_4 = 5, & x_5 = 10 \end{cases}$$

Para colocar o sistema na forma de Quadros (forma simplificada de organizar os cálculos), a FO deve ser vista como uma restrição adicional, sendo Z uma variável compondo a base:

FO:
$$Z - 5.x_1 - 2.x_2 = 0$$

Quadro 1:

	Base	Z	X_1	X_2	X_3	X_4	X_5	b	Razão
<i>l</i> .0	Max	1	-5	-2	0	0	0	0	
<i>l</i> .1	X_3	0	1	0	1	0	0	4	$\frac{4}{1} = 4$
<i>l</i> .2	X_4	0	0	1	0	1	0	5	7 1
<i>l</i> .3	X_5	0	-2	1	0	0	1	10	

A variável não-básica que entra na base é aquela cujo coeficiente da FO (problema MAX) é mais positivo. Portanto, é aquela cujo coeficiente na linha (0) é mais negativo $\therefore x_1$ entra na base.

A variável que sai da base é aquela com menor valor para $\left\{ b_i / a_{i,j}, j = 1, a_{i,j} > 0 \right\}$

 $\therefore x_3$ sai da base.

Elemento pivô: $a_{1,1} = 1$.

Nova base: x_1, x_4, x_5

Pivotamento:

- Multiplicar a linha 1 por 5 e somá-la à linha 0
- Multiplicar a linha 1 por 2 e somá-la à linha 3

Quadro 2:

	Base	Z	X_1	X_2	X_3	X_4	X_5	b	Razão
<i>l</i> .0	Max	1	0	-2	5	0	0	20	
<i>l</i> .1	X_1	0	1	0	1	0	0	4	
<i>l</i> .2	\overline{X}_4	0	0	1	0	1	0	5	$\frac{5}{1} = 5$
<i>l</i> .3	X_5	0	0	1	2	0	1	18	$\frac{18}{1} = 18$

A variável não-básica que entra na base é aquela cujo coeficiente na linha (0) é negativo x_2 entra na base.

A variável que sai da base é aquela com menor valor para $\left\{b_i / a_{i,j}, j = 2, a_{i,j} > 0\right\}$ $\therefore x_4$ sai da base.

Elemento pivô: $a_{2,2} = 1$.

Nova base: x_1, x_2, x_5

Pivotamento:

- Multiplicar a linha 2 por 2 e somá-la à linha 0
- Multiplicar a linha 2 por -1 e somá-la à linha 3

Quadro 3:

	Base	Z	X_1	X_2	X_3	X_4	X_{5}	b	Razão
<i>l</i> .0	Max	1	0	0	5	2	0	30	
<i>l</i> .1	X_1	0	1	0	1	0	0	4	
<i>l</i> .2	\overline{X}_2	0	0	1	0	1	0	5	
<i>l</i> .3	X_5	0	0	0	2	-1	1	13	

Nenhuma variável não-básica possui coeficiente na linha (0) negativo.

Logo, a solução ótima foi encontrada:

Solução ótima:

$$\begin{cases} x_1 = 4 \\ x_2 = 5 \end{cases} \qquad z = 5.x_1 + 2.x_2 = 30$$

4) Resolva, utilizando o método das duas fases, o seguinte problema de PL:

Max
$$z = x_1 + 2.x_2 + 3.x_3 - x_4$$

 $x_1 + 2.x_2 + 3.x_3 = 15$
s.a. $-2.x_1 - x_2 - 5.x_3 = -20$
 $x_1 + 2.x_2 + x_3 + x_4 = 10$
 $x_1, x_2, x_3, x_4 \ge 0$

Para colocar o problema de PL na forma padrão deve-se multiplicar a linha 2 por -1.

O Método Simplex exige uma base inicial viável. Para criar uma solução inicial, pode-se introduzir variáveis artificiais no sistema (uma para cada equação).

Fase 1:

Min
$$w = \begin{cases} & +x_5 + x_6 + x_7 \end{cases}$$
 = 15
s.a. $2.x_1 + x_2 + 5.x_3 + x_4 + x_5 = 20$
 $x_1 + 2.x_2 + x_3 + x_4 + x_7 = 10$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$
 $(x_3, x_4, x_5 \text{ são variáveis de folga})$

Base inicial: x_5, x_6, x_7

Solução básica inicial:
$$\begin{cases} x_1 = 0, & x_2 = 0, & x_3 = 0, \\ x_5 = 15, & x_6 = 20, & x_7 = 10 \end{cases} x_4 = 0$$

Para colocar o sistema na forma de Quadros (forma simplificada de organizar os cálculos), a FO deve ser vista como uma restrição adicional, sendo w uma variável compondo a base:

FO:
$$w - x_5 - x_6 - x_7 = 0$$

Quadro 1:

	Base	W	X_1	X_2	X_3	X_4	X_{5}	X_6	X_7	b	Razão
l.0	Min	1	0	0	0	0	-1	-1	-1	0	
<i>l</i> .1	X_5	0	1	2	3	0	1	0	0	15	
<i>l</i> .2	X_6	0	2	1	5	0	0	1	0	20	
1.3	X_7	0	1	2	1	1	0	0	1	10	

No primeiro momento da otimização, a FO deve ser escrita em termos das variáveis não-básicas. Para isso, deve-se somar as linhas 1, 2 e 3 à linha 0.²

Quadro 2:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	4	5	9	1	0	0	0	45	
l.1	X_5	0	1	2	3	0	1	0	0	15	15/3 = 5
<i>l</i> .2	X_6	0	2	1	5	0	0	1	0	20	20/5 = 4
1.3	X_7	0	1	2	1	1	0	0	1	10	10/1 = 10
											/ 1

A variável não-básica que entra na base é aquela cujo coeficiente da FO (MIN) é mais negativo. Portanto, é aquela cujo coeficiente na linha (0) é mais positivo $\therefore x_3$ entra na base.

A variável que sai da base é aquela com menor valor para $\begin{cases} b_i / a_{i,j}, j = 3, a_{i,j} > 0 \end{cases}$ $\therefore x_6$ sai da base.

Elemento pivô: $a_{2,3} = 5$.

Nova base: x_3, x_5, x_7

Pivotamento:

- Dividir a linha 2 por 5.
- Multiplicar a linha 2 por -9 e somá-la à linha 0
- Multiplicar a linha 2 por -3 e somá-la à linha 1
- Multiplica a linha 2 por -1 e somá-la à linha 3

$$w = (15 - x_1 - 2.x_2 - 3.x_3) + (20 - 2.x_1 - x_2 - 5.x_3) + (10 - x_1 - 2.x_2 - x_3 - x_4)$$

$$= 45 - 4.x_1 - 5.x_2 - 9.x_3 - x_4$$

$$\Rightarrow w + 4.x_1 + 5.x_2 + 9.x_3 + x_4 = 45$$

² Isso equivale a fazer:

Quadro 3:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	$\frac{2}{5}$	16/5	0	1	0	-9/5	0	9	
<i>l</i> .1	X_5	0	$-\frac{1}{5}$	7/5	0	0	1	$-\frac{3}{5}$	0	3	3.5/7 = 15/7
<i>l</i> .2	X_3	0	2/5	1/5	1	0	0	1/5	0	4	4.5/1 = 20
<i>l</i> .3	X_7	0	3/5	9/5	0	1	0	- 1/5	1	6	6.5/9 = 10/3

A variável não-básica que entra na base é aquela cujo coeficiente na linha (0) é mais positivo x_2 entra na base.

A variável que sai da base é aquela com menor valor para $\left\{\frac{b_i}{a_{i,j}}, j=2, a_{i,j}>0\right\}$ $\therefore x_5$ sai da base.

Elemento pivô:
$$a_{1,2} = \frac{7}{5}$$
.

Nova base:
$$x_2, x_3, x_7$$

Pivotamento:

- Multiplicar a linha 1 por $\frac{5}{7}$.
- Multiplicar a linha 1 por $-\frac{16}{5}$ e somá-la à linha 0
- Multiplicar a linha 1 por $-\frac{1}{5}$ e somá-la à linha 2
- Multiplicar a linha 1 por $-\frac{9}{5}$ e somá-la à linha 3

Quadro 4:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	6/7	0	0	1	$-\frac{16}{7}$	$-\frac{3}{7}$	0	15/7	
<i>l</i> .1	X_2	0	- 1/7	1	0	0	5/7	$-\frac{3}{7}$	0	15/7	
1.2	X_3	0	3/7	0	1	0	- 1/7	2/7	0	25/7	$\frac{25}{3}$
1.3	X_7	0	6/7	0	0	1	- %7	4/7	1	15/7	$\frac{15}{6}$

A variável não-básica que entra na base é aquela cujo coeficiente na linha (0) é mais positivo x_4 entra na base.

A variável que sai da base é aquela com menor valor para $\begin{cases} b_i \\ a_{i,j} \end{cases}$, $j = 1, a_{i,j} > 0$ $\Rightarrow x_7$ sai da base.

Elemento pivô: $a_{3,4} = 1$.

Nova base: x_2, x_3, x_4

Pivotamento:

Multiplicar a linha 3 por -1 e somá-la à linha 0

Quadro 5:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	0	0	0	0	-1	-1	-1	0	
l.1	X_2	0	- 1/7	1	0	0	5/7	$-\frac{3}{7}$	0	15/7	
<i>l</i> .2	X_3	0	3/7	0	1	0	- 1/7	2/7	0	25/7	
<i>l</i> .3	X_4	0	6/7	0	0	1	- 9/7	4/7	1	15/7	

Nenhuma variável não-básica possui coeficiente na linha zero positivo.

Logo, a solução ótima da Fase 1 foi encontrada.

A Fase 1 terminou com W=0 e todas as variáveis artificiais fora da base. Portanto, o Método Simplex produziu uma solução básica a partir da qual começará a Fase 2.

Incluindo a função objetivo original e eliminando as variáveis artificiais, tem-se:

Base inicial: x_2, x_3, x_4

Solução básica inicial:
$$\begin{cases} x_1 = 0, \\ x_2 = 15/7, \quad x_3 = 25/7, \quad x_4 = 15/7 \end{cases}$$

Para colocar o sistema na forma de Quadros (forma simplificada de organizar os cálculos), a FO deve ser vista como uma restrição adicional, sendo Z uma variável compondo a base:

FO:
$$Z - x_1 - 2.x_2 - 3.x_3 + x_4 = 0$$

Quadro 1:

	Base	Z	X_1	X_2	X_3	X_4	b	 Razão
<i>l</i> .0	Min	1	-1	-2	-3	1	0	
l.1	X_2	0	- 1/7	1	0	0	15/7	
<i>l</i> .2	X_3	0	3/7	0	1	0	25/7	
<i>l</i> .3	X_4	0	6/7	0	0	1	15/7	

No primeiro momento da otimização, a FO deve ser escrita em termos da variável não-básica, x_1 . Para isso, deve-se:

- Multiplicar a linha 1 por 2 e somá-la à linha 0
- Multiplicar a linha 2 por 3 e somá-la à linha 0
- Multiplicar a linha 3 por -1 e somá-la à linha 0

Quadro 2:

	Base	Z	X_1	X_2	X_3	X_4	b	Razão
<i>l</i> .0	Min	1	$-\frac{6}{7}$	0	0	0	90/7	
<i>l</i> .1	\overline{X}_2	0	- 1/7	1	0	0	15/7	
<i>l</i> .2	\overline{X}_3	0	3/7	0	1	0	25/7	$\frac{25}{3}$
<i>l</i> .3	X_4	0	6/7	0	0	1	15/7	15/6

A variável não-básica que entra na base é aquela cujo coeficiente da FO (MAX) é mais positivo. Portanto, é aquela cujo coeficiente na linha zero é mais negativo $\therefore x_1$ entra na base.

A variável que sai da base é aquela com menor valor para $\begin{cases} b_i / a_{i,j}, j = 1, a_{i,j} > 0 \end{cases}$ $\therefore x_4$ sai da base.

Elemento pivô: $a_{4,1} = \frac{6}{7}$.

Nova base: x_2, x_3, x_1

Pivotamento:

- Multiplicar a linha 3 por $\frac{7}{6}$
- Multiplicar a linha 3 por $\frac{6}{7}$ e somá-la à linha 0
- Multiplicar a linha 3 por $\frac{1}{7}$ e somá-la à linha 1

• Multiplicar a linha 3 por $-\frac{3}{7}$ e somá-la à linha 2

Quadro 3:

	Base	Z	X_{1}	X_2	X_3	X_4	b	Razão
<i>l</i> .0	Min	1	0	0	0	1	105/7	
l.1	X_2	0	0	1	0	1/6	5/2	
<i>l</i> .2	X_3	0	0	0	1	$-\frac{1}{2}$	5/2	
<i>l</i> .3	X_1	0	1	0	0	7/6	5/2	

Nenhuma variável não-básica possui coeficiente na linha (0) negativo.

Logo, a solução ótima foi encontrada:

Solução ótima:

$$\begin{cases} x_1 = \frac{5}{2} \\ x_2 = \frac{5}{2} \\ x_3 = \frac{5}{2} \\ x_4 = 0 \end{cases}$$
 $z = x_1 + 2 \cdot x_2 + 3 \cdot x_3 - x_4 = \frac{105}{7} = 15$

Este problema pode também ser resolvido usando somente duas variáveis artificiais, isto porque na terceira restrição x_4 não precisa a adição de variável artificial.

5) Resolva o problema de PL:

Max
$$2.x_1 + 3.x_2$$
 $x_1 + 2.x_2 \ge 8$ s.a. $-2.x_1 + 3.x_2 \le 5$ $x_1 + x_2 \ge 6$ $x_1, x_2 \ge 0$

Convertendo à forma padrão:

Max
$$2.x_1 + 3.x_2$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

 $(x_3, x_5$ são variáveis de excesso)

 $(x_4 \text{ é variável de folga})$

 $(x_6, x_7$ são variáveis artificiais)

Método das duas fases.

Fase 1:

Min
$$w = \begin{cases} & +x_6 + x_7 \end{cases}$$

$$x_1 + 2.x_2 - x_3 + x_6 = 8$$
s.a. $-2.x_1 + 3.x_2 + x_4 = 5$

$$x_1 + x_2 - x_5 + x_7 = 6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

Base inicial: x_4, x_6, x_7

Solução básica inicial:
$$\begin{cases} x_1 = 0, & x_2 = 0, & x_3 = 0, \\ x_4 = 5, & x_6 = 8, & x_7 = 6 \end{cases}$$

Para colocar o sistema na forma de Quadros (forma simplificada de organizar os cálculos), a FO deve ser vista como uma restrição adicional, sendo w uma variável compondo a base:

FO:
$$w - x_6 - x_7 = 0$$

Quadro 1:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	0	0	0	0	0	-1	-1	0	
<i>l</i> .1	X_6	0	1	2	-1	0	0	1	0	8	
<i>l</i> .2	X_4	0	-2	3	0	1	0	0	0	5	
1.3	X_7	0	1	1	0	0	-1	0	1	6	

No primeiro momento da otimização, a FO deve ser escrita em termos das variáveis não-básicas. Para isso, deve-se somar as linhas 1 e 3 à linha 0.

Quadro 2:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	2	3	-1	0	-1	0	0	14	
l.1	X_6	0	1	2	-1	0	0	1	0	8	$\frac{8}{2} = 4$
<i>l</i> .2	X_4	0	-2	3	0	1	0	0	0	5	5/2
<i>l</i> .3	X_7	0	1	1	0	0	-1	0	1	6	$\frac{6}{6} = 6$
											/1

A variável não-básica que entra na base é aquela cujo coeficiente da FO (MIN) é mais negativo. Portanto, é aquela cujo coeficiente na linha zero é mais positivo $\therefore x_2$ entra na base.

A variável que sai da base é aquela com menor valor para $\begin{cases} b_i / a_{i,j}, j = 2, a_{i,j} > 0 \end{cases}$ $\therefore x_4$ sai da base.

Elemento pivô: $a_{2,2} = 3$.

Nova base: x_2, x_6, x_7

Pivotamento:

- Dividir a linha 2 por 3.
- Multiplicar a linha 2 por -3 e somá-la à linha 0
- Multiplica a linha 2 por -2 e somá-la à linha 1
- Multiplica a linha 2 por -1 e somá-la à linha 3

Quadro 3:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	4	0	-1	-1	-1	0	0	9	
l.1	X_6	0	7/3	0	-1	$-\frac{2}{3}$	0	1	0	14/3	$\frac{14}{7} = 2$
<i>l</i> .2	X_2	0	$-\frac{2}{3}$	1	0	1/3	0	0	0	5/3	
1.3	X_7	0	5/3	0	0	$-\frac{1}{3}$	-1	0	1	13/3	13/5

A variável não-básica que entra na base é aquela cujo coeficiente na linha (0) é mais positivo x_1 entra na base.

48

A variável que sai da base é aquela com menor valor para $\left\{ b_i / a_{i,j}, j = 1, a_{i,j} > 0 \right\}$ $\therefore x_6$ sai da base.

Elemento pivô:
$$a_{1,1} = \frac{7}{3}$$
.

Nova base:
$$x_1, x_2, x_7$$

Pivotamento:

- Multiplicar a linha 1 por $\frac{3}{7}$.
- Multiplicar a linha 1 por -4 e somá-la à linha 0
- Multiplica a linha 1 por $\frac{2}{3}$ e somá-la à linha 2
- Multiplica a linha 1 por $-\frac{5}{3}$ e somá-la à linha 3

Quadro 4:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	0	0	5/7	1/7	-1	$-\frac{12}{7}$	0	1	
<i>l</i> .1	X_1	0	1	0	$-\frac{3}{7}$	$-\frac{2}{7}$	0	3/7	0	2	
<i>l</i> .2	X_2	0	0	1	$-\frac{2}{7}$	1/7	0	2/7	0	3	
1.3	X_7	0	0	0	5/7	1/7	-1	$-\frac{5}{7}$	1	1	5/7

A variável não-básica que entra na base é aquela cujo coeficiente na linha (0) é mais positivo x_3 entra na base.

A variável que sai da base é aquela com menor valor para $\left\{ b_i / a_{i,j}, j = 1, a_{i,j} > 0 \right\}$ $\therefore x_7$ sai da base.

Elemento pivô:
$$a_{3,3} = \frac{5}{7}$$
.

Nova base:
$$x_1, x_2, x_3$$

Pivotamento:

• Multiplicar a linha 3 por $\frac{7}{5}$.

- Multiplicar a linha 3 por $-\frac{5}{7}$ e somá-la à linha 0
- Multiplica a linha 3 por ³/₇ e somá-la à linha 1
- Multiplica a linha 3 por ²/₇ e somá-la à linha 2

Quadro 5:

	Base	W	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b	Razão
<i>l</i> .0	Min	1	0	0	0	0	0	-1	-1	0	
<i>l</i> .1	X_1	0	1	0	0	$-\frac{1}{5}$	$-\frac{3}{5}$	0	3/5	13/5	
<i>l</i> .2	\overline{X}_2	0	0	1	0	1/5	$-\frac{2}{5}$	0	2/5	17/5	
1.3	\overline{X}_3	0	0	0	1	1/5	$-\frac{7}{5}$	-1	7/5	7/5	

Nenhuma variável não-básica possui coeficiente na linha (0) positivo.

Logo, a solução ótima da Fase 1 foi encontrada.

A Fase 1 terminou com W=0 e todas as variáveis artificiais fora da base. Portanto, o Método Simplex produziu uma solução básica a partir da qual começará a Fase 2.

Incluindo a função objetivo original e eliminando as variáveis artificiais, tem-se:

Base inicial: x_1, x_2, x_3

Solução básica inicial:
$$\begin{cases} x_4 = 0, \\ x_1 = 13/5, \quad x_2 = 17/5, \quad x_3 = 7/5 \end{cases}$$

Para colocar o sistema na forma de Quadros (forma simplificada de organizar os cálculos), a FO deve ser vista como uma restrição adicional, sendo Z uma variável compondo a base:

FO:
$$Z - 2.x_1 - 3.x_2 = 0$$

Quadro 1:

	Base	W	X_1	X_2	X_3	X_4	X_5	b	 Razão
<i>l</i> .0	Min	1	-2	-3	0	0	0	0	
<i>l</i> .1	X_1	0	1	0	0	$-\frac{1}{5}$	$-\frac{3}{5}$	13/5	
<i>l</i> .2	X_2	0	0	1	0	1/5	$-\frac{2}{5}$	17/5	
<i>l</i> .3	X_3	0	0	0	1	1/5	$-\frac{7}{5}$	7/5	

No primeiro momento da otimização, a FO deve ser escrita em termos das variáveis não-básicas, x_4, x_5 . Para isso, deve-se:

- Multiplicar a linha 1 por 2 e somá-la à linha 0
- Multiplicar a linha 2 por 3 e somá-la à linha 0

Quadro 2:

	Base	W	X_1	X_2	X_3	X_4	X_5	b	Razão
<i>l</i> .0	Min	1	0	0	0	1/5	$-12/_{5}$	77/5	
<i>l</i> .1	X_1	0	1	0	0	- 1/5	$-\frac{3}{5}$	13/5	
<i>l</i> .2	\overline{X}_2	0	0	1	0	1/5	$-\frac{2}{5}$	17/5	
<i>l</i> .3	X_3	0	0	0	1	1/5	$-\frac{7}{5}$	7/5	

A variável não-básica que entra na base é aquela cujo coeficiente da FO (MAX) é mais positivo. Portanto, é aquela cujo coeficiente na linha zero é mais negativo $\therefore x_5$ entra na base.

A variável que sai da base é aquela com menor valor para $\left\{ b_i / a_{i,j}, j = 5, a_{i,j} > 0 \right\}$.

Note, porém, que não há coeficientes positivos na coluna de X_5 (j=5). Portanto, o sistema tem solução ilimitada; x_5 pode aumentar indefinidamente dentro do espaço viável de soluções, aumentando indefinidamente o valor da FO que se quer maximizar.

Capítulo 3

1) Considere o seguinte problema de minimização:

Min
$$D = 240.y_1 + 150.y_2 + 80.y_3$$

s.a.
$$\begin{aligned} 2.y_1 &+ 2.y_2 &+ y_3 &\geq 5 & [x_1] \\ 3.y_1 &+ y_2 & \geq 7 & [x_2] \\ 4.y_1 &+ y_2 & \geq 3 & [x_3] \\ y_1, y_2, y_3 \geq 0 & \end{aligned}$$

Quadro ótimo:

	Base	D	Y_1	Y_2	Y_3	SLK_2	SLK_3	SLK_4	b
<i>l</i> .0	Min	1	0	0	- 27,5	-52,5	- 45	0	577,5
<i>l</i> .1	$\overline{Y_1}$	0	1	0	-0,25	0,25	-0,5	0	2,25
<i>l</i> .2	$\overline{Y_2}$	0	0	1	0,75	-0,75	0,5	0	0,25
<i>l</i> .3	SLK ₄	0	0	0	-0,25	0,25	-1,5	1	6,25

a) Qual é o maior valor de c_1 para que y_1 continue básica?

$$FO_{alterada}: D = (240 + \Delta c_1).y_1 + 150.y_2 + 80.y_3$$

Na linha 0 do Quadro ótimo teríamos:

	Base	D	Y_1	Y_2	Y_3	SLK_2	SLK_3	SLK_4	b
<i>l</i> .0	Min	1	$-\Delta c_1$	0	-27,5	-52,5	-45	0	577,5

Para eliminarmos $-\Delta c_1$ da linha 0, adicionamos Δc_1 vezes a linha 1 à linha 0.

Base	D	Y_1	Y_2	Y_3	SLK_2	SLK_3	SLK_4	b
Min	1	0	0	$-\frac{27,5}{-\frac{\Delta c_1}{4}}$	$-52,5$ $+\frac{\Delta c_1}{4}$	$-\frac{\Delta c_1}{2}$	0	$577,5$ $+\frac{9.\Delta c_1}{4}$

Para que o Quadro continue ótimo (MIN):

$$-\frac{\Delta c_1}{4} - 27.5 \le 0 \Longrightarrow -\Delta c_1 \le 110 \Longrightarrow \Delta c_1 \ge -110$$

$$\frac{\Delta c_1}{4} - 52.5 \le 0 \Longrightarrow \Delta c_1 \le 210$$

$$-\frac{\Delta c_1}{2} - 45 \le 0 \Longrightarrow -\Delta c_1 \le 90 \Longrightarrow \Delta c_1 \ge -90$$

Portanto: $-90 \le \Delta c_1 \le 210$.

Logo, o maior valor de c_1 ' para que y_1 continue básica é:

$$c_1' = c_1 + \Delta c_{1\text{max}} = 240 + 210 = 450$$

b) Qual é o menor valor de c_3 para que y_3 se torne básica?

$$FO_{alterada}: D = 240.y_1 + 150.y_2 + (80 + \Delta c_3).y_3$$

Um aumento de Δc_3 (em c_3) na FO corresponde a uma alteração de $-\Delta c_3$ no coeficiente do quadro ótimo.

Portanto, y₃ permanecerá não-básica (probl. MIN.) enquanto:

$$-27.5 - \Delta c_3 \le 0 \Rightarrow \Delta c_3 \ge -27.5$$
.

Logo, para que y_3 se torne básica:

$$\Delta c_3 < -27.5$$

$$c_3' = c_3 + \Delta c_3 = 80 - 27.5 = 52.5$$

c) Para qual faixa de valores de b_1 a presente solução permanece ótima?

Note que a Restrição 1 está ativa.

$$Restriç\~ao_{alterada} \quad 2.y_1 \qquad +2.y_2 \qquad +y_3 \qquad -SLK_2 \quad =5+\Delta b_1$$

O aumento de Δb_1 na Restrição 1 corresponde ao acréscimo de um vetor coluna no Quadro original ao lado do vetor b com coeficientes iguais aos da coluna do Quadro original associada à variável de folga/excesso correspondente multiplicada por Δb_1 . Como esta coluna está sujeita às mesmas operações elementares aplicadas sobre o Quadro Simplex, no Quadro ótimo este vetor coluna será igual ao vetor coluna associado à variável básica correspondente multiplicado por Δb_1 .

Quadro ótimo:

$$Y_1 = 2.25 - 0.25.\Delta b_1 \ge 0 \Longrightarrow \Delta b_1 \le 9$$

$$Y_2 = 0.25 + 0.75.\Delta b_1 \ge 0 \Longrightarrow \Delta b_1 \ge -0.33$$

$$SLK_4 = 6.25 - 0.25.\Delta b_1 \ge 0 \Longrightarrow \Delta b_1 \le 25$$

Portanto: $-0.33 \le \Delta b_1 \le 9$.

Logo, a faixa de valores de b_1 a presente solução permanece ótima é:

$$4,67 \le b_1 \le 14$$

2) Seja o seguinte problema de PL:

Max
$$Z = 3.x_1 + 2.x_2 + 5.x_3$$

$$2.x_1 + 3.x_2 + 4.x_3 \le 10$$

s.a.
$$5.x_1 + 6.x_2 + 2.x_3 \le 12$$

s.a.
$$5.x_1 + 6.x_2 + 2.x_3 \le 12$$

 $x_1, x_2, x_3 \ge 0$

a) Resolva este problema

Convertendo à forma padrão:

Max
$$Z = 3.x_1 + 2.x_2 + 5.x_3$$

s.a.
$$2.x_1 + 3.x_2 + 4.x_3 + x_4 = 10$$

$$5.x_1 + 6.x_2 + 2.x_3 + x_5 = 12$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

 $(x_4, x_5 \, \text{são variáveis de folga})$

Base inicial: x_4, x_5

Solução básica inicial:
$$\begin{cases} x_1 = 0, & x_2 = 0, \\ x_4 = 10, & x_5 = 12 \end{cases}$$

Para colocar o sistema na forma de Quadros (forma simplificada de organizar os cálculos), a FO deve ser vista como uma restrição adicional, sendo Z uma variável compondo a base:

FO:
$$Z - 3.x_1 - 2.x_2 - 5.x_3 = 0$$

Quadro 1:

	Base	Z	X_1	X_2	X_3	X_4	X_5	b	Razão
<i>l</i> .0	Max	1	-3	-2	-5	0	0	0	,
<i>l</i> .1	X_4	0	2	3	4	1	0	10	$\frac{10}{4} = 2.5$
<i>l</i> .2	X_5	0	5	6	2	0	1	12	$\frac{12}{2} = 6$

Note que a FO já está escrita em termos das variáveis não-básicas.

A variável não-básica que entra na base é aquela cujo coeficiente da FO (MAX) é mais positivo. Portanto, é aquela cujo coeficiente na linha zero é mais negativo $\therefore x_3$ entra na base.

A variável que sai da base é aquela com menor valor para $\{b_i / a_{i,j}, j = 3, a_{i,j} > 0\}$ $\therefore x_4$ sai da base.

Elemento pivô: $a_{1,3} = 4$.

Nova base: x_3, x_5 .

Pivotamento:

- Dividir a linha 1 por 4
- Multiplicar a linha 1 por 5 e somá-la à linha 0
- Multiplicar a linha 1 por -2 e somá-la à linha 2

Quadro 2:

	Base	Z	X_1	X_2	X_3	X_4	X_5	b	Razão
<i>l</i> .0	Max	1	$-\frac{1}{2}$	7/4	0	5/4	0	$\frac{25/}{2}$	
l.1	X_3	0	1/2	3/4	1	1/4	0	$\frac{5}{2}$	5
<i>l</i> .2	X_5	0	4	9/2	0	$-\frac{1}{2}$	1	7	4

A variável não-básica que entra na base é aquela cujo coeficiente na linha zero é mais negativo $\therefore x_1$ entra na base.

A variável que sai da base é aquela com menor valor para $\{b_i/a_{i,j}, j=1, a_{i,j}>0\}$ $\therefore x_5$ sai da base.

Elemento pivô: $a_{2,1} = 4$.

Nova base: x_1, x_3 .

Pivotamento:

• Dividir a linha 2 por 4

Multiplicar a linha 2 por ½ e somá-la à linha 0

• Multiplicar a linha 2 por $-\frac{1}{2}$ e somá-la à linha 1

Quadro 3:

	Base	Z	X_1	X_2	X_3	X_4	X_5	b	Razão
<i>l</i> .0	Max	1	0	37/16	0	19/ /16	1/8	107/8	
l.1	\overline{X}_3	0	0	3/16	1	5/16	-1/8	13/8	
<i>l</i> .2	X_1	0	1	9/8	0	-1/8	1/4	7/4	

Nenhuma variável não-básica possui coeficiente na linha (0) negativo.

Logo, a solução ótima foi encontrada:

Solução ótima:

$$\begin{cases} x_1 = \frac{7}{4} \\ x_2 = 0 \\ x_3 = \frac{13}{8} \end{cases}$$
 $Z = 3.x_1 + 2.x_2 + 5.x_3 = \frac{107}{8}$

b) Como fica a nova solução primal se o lado direito fosse $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$

$$x^B = B^{-1} h$$

Caso alguma componente de x^B torne-se negativa, a solução deixa de ser viável, e há que se reotimizar a solução utilizando o Dual Simplex ou resolvendo o problema outra vez.

$$B^{-1} = \begin{bmatrix} 5/6 & -1/8 \\ -1/6 & 1/8 \\ -1/8 & 1/4 \end{bmatrix}$$

$$x^{B} = \begin{bmatrix} x_{3} \\ x_{1} \end{bmatrix} = \begin{bmatrix} 5/4 & -1/8 \\ -1/8 & 1/4 \end{bmatrix} \begin{bmatrix} 8 \\ 6 \end{bmatrix} = \begin{bmatrix} 7/4 \\ 1/2 \end{bmatrix}$$

c) Observando a solução ótima obtida em (a), determine que valor mínimo deve assumir c_2 para que x_2 entre na base.

Note que x_2 na solução ótima é uma variável não-básica.

$$FO_{alterada}: D = 240.y_1 + 150.y_2 + (80 + \Delta c_3).y_3$$

Um aumento de Δc_2 (em c_2) na FO corresponde a uma alteração de $-\Delta c_2$ no coeficiente do quadro ótimo.

Portanto, x_2 permanecerá não-básica (MAX) enquanto:

$$37/16 - \Delta c_2 \ge 0 \Rightarrow \Delta c_2 \le 37/16.$$

Logo, para que x_2 entre na base:

$$\Delta c_2 > \frac{37}{16}$$

$$c_2' = c_2 + \Delta c_{2\min} = 2 + \frac{37}{16} = \frac{69}{16}$$

3) Seja o seguinte problema de PL:

Max
$$Z = 5.x_1 + 4.x_2$$

s.a.
$$3.x_1 + 2.x_2 \le 9$$
$$x_1 + 2.x_2 \le 5$$
$$x_1, x_2 \ge 0$$

Sabe-se que o Quadro ótimo é:

	Base	Z	X_1	X_2	X_3	X_4	b
<i>l</i> .0	Max	1	0	0	3/2	$\frac{1}{2}$	16
l.1	X_1	0	1	0	1/2	$-\frac{1}{2}$	2
<i>l</i> .2	X_2	0	0	1	-1/4	3/4	3/2

a) Para qual intervalo de valores de c_2 a variável x_2 permaneceria básica?

$$FO_{alterada}$$
: $Z = 5.x_1 + (4 + \Delta c_2).x_2$

Na linha 0 do Quadro ótimo teríamos:

	Base	Z	X_1	X_2	SLK_2	SLK_3	b
<i>l</i> .0	Min	1	0	$-\Delta c_2$	$\frac{3}{2}$	1/2	16

Para eliminarmos $-\Delta c_2$ da linha 0, adicionamos Δc_2 vezes a linha 2 à linha 0.

	Base	Z	X_1	X_{2}	SLK ₂	SLK ₃	b
<i>l</i> .0	Min	1	0	0	$\frac{3/2}{-\frac{\Delta c_2}{4}}$	$+\frac{3\Delta c_2}{4}$	$16 + \frac{3.\Delta c_2}{2}$

Para que o quadro continue ótimo (MAX):

$$\frac{3}{2} - \frac{\Delta c_2}{4} \ge 0 \Longrightarrow \Delta c_2 \le 6$$

$$\frac{1}{2} + \frac{3.\Delta c_2}{4} \ge 0 \Rightarrow \Delta c_2 \ge -\frac{2}{3}$$

Portanto:
$$-\frac{2}{3} \le \Delta c_2 \le 6$$
.

Logo, a variável x_2 permaneceria básica para $c_2' = (c_2 + \Delta c_2)$ no intervalo:

$$10/3 \le c_2 \le 10$$

b) Para qual intervalo de valores de b_1 a atual solução permaneceria básica?

Note que a Restrição 1 está ativa.

$$Restriç\~ao_{alterada} \quad 3.x_1 \qquad +2.x_2 \qquad +SLK_2 \quad =9+\Delta b_1$$

O aumento de Δb_1 na Restrição 1 corresponde ao acréscimo de um vetor coluna no Quadro original ao lado do vetor b com coeficientes iguais aos da coluna do Quadro original associada à variável de folga/excesso correspondente multiplicada por Δb_1 . Como esta coluna está sujeita às mesmas operações

elementares aplicadas sobre o Quadro Simplex, no Quadro ótimo este vetor coluna será igual ao vetor coluna associado à variável básica correspondente multiplicado por Δb_1 .

Quadro ótimo:

$$X_1 = 2 + \frac{1}{2} \cdot \Delta b_1 \ge 0 \Longrightarrow \Delta b_1 \ge -4$$

$$X_2 = \frac{3}{2} - \frac{1}{4} \cdot \Delta b_1 \ge 0 \Rightarrow \Delta b_1 \le 6$$

Portanto: $-4 \le \Delta b_1 \le 6$.

Logo, a faixa de valores de b_1 onde a presente solução permanece ótima é:

$$5 \le b_1 \le 15$$

c) Como ficaria a solução ótima se o lado direito fosse $b = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$?

$$x^B = B^{-1}.b$$

Caso alguma componente de x^B torne-se negativa, a solução deixa de ser viável, e há que se reotimizar a solução utilizando o Dual Simplex ou resolvendo o problema outra vez.

$$B^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{4} & \frac{3}{4} \end{bmatrix}$$

$$x^{B} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{4} & \frac{3}{4} \end{bmatrix} \begin{bmatrix} 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{7}{2} \end{bmatrix}$$

Capítulo 4

1) Considere o seguinte problema de Programação Linear:

Max
$$Z = 2.x_1 + 3.x_2$$

a) Escreva o seu dual

Formato padrão do par (P) e (D)

(P')

Max
$$Z = 2.x_1 + 3.x_2$$

 $-2.x_1 + 3.x_2 \le 6$ [y_1]
 $-x_1 - 2.x_2 \le -8$ [y_2]
 $x_1 + x_2 \le 6$ [y_3]
 $x_1, x_2 \ge 0$

(D')

Min
$$D = 6.y_1 - 8.y_2 + 6.y_3$$

 $-2.y_1 - y_2 + y_3 \ge 2$
s.a. $3.y_1 - 2.y_2 + y_3 \ge 3$
 $y_1, y_2 \ge 0$

(D) Fazendo $w = -y_2$

Min
$$D = 6.y_1 + 8.w + 6.y_3$$

 $-2.y_1 + w + y_3 \ge 2$
s.a. $3.y_1 + 2.w + y_3 \ge 3$
 $y_1 \ge 0, w \le 0, y_3 \ge 0$

b) Sabendo que a solução primal é $x_1 = 2.4$ e $x_2 = 3.6$, determine a solução dual.

Como x_1 e x_2 são variáveis básicas, primeiro encontra-se os valores das variáveis não básicas da solução primal, isto é, substitui-se a solução primal nas restrições do problema original, então temos $x_1 = 2,4$, $x_2 = 3,6$ e:

$$[x_3] - 2.x_1 + 3.x_2 + x_3 = 6$$
 $\Rightarrow x_3 = 0$ $[x_4] x_1 + 2.x_2 + x_4 = 8$ $\Rightarrow x_4 = 1.6$ $[x_5] x_1 + x_2 + x_5 = 6$ $\Rightarrow x_5 = 0$

Logo, segundo o teorema da folga complementar se a variável da solução do problema primal é diferente de 0, a restrição equivalente do problema dual é satisfeita com folga 0, e se a restrição do problema tem folga não nula, a variável correspondente no seu dual é zero, então:

$$[y_1] \ge 0$$

 $[w_2] = 0$
 $[y_3] \ge 0$
 $[y_4] = 0$
 $[y_5] = 0$

Já que as variáveis 1 e 2 do problema primal são positivas, e as restrições 1 e 2 do problema dual são satisfeitas com folga zero e que a segunda restrição do primal é ativa, assim a segunda variável do dual zero, temos: $w_2 = y_4 = y_5 = 0$, logo, para resolver o problema dual basta resolver o seguinte sistema de equações:

$$\begin{array}{cccc}
-2.y_1 & +y_3 & =2 \\
3.y_1 & +y_3 & =3
\end{array} \Rightarrow \begin{cases}
y_1 = \frac{1}{5} \\
y_3 = \frac{12}{5}
\end{cases}$$

Portanto, a solução ótima do probl. dual é

$$D = 6.y_1 - 8.y_2 + 6.y_3 = \frac{78}{5} = 15.6.$$

$$\begin{cases} y_1 = \frac{1}{5} \\ y_2 = 0 \\ y_3 = \frac{12}{5} \end{cases}$$

2) Dê o dual do problema a seguir numa tal forma que as variáveis duais sejam não-negativas:

(P)

Max
$$Z = 6.x_1 + 4.x_2 + x_3 + 7.x_4 + 5.x_5$$

 $3.x_1 + 7.x_2 - 8.x_3 + 5.x_4 + x_5 = 2$ [y_1]
s.a. $2.x_1 + x_2 + 3.x_3 + 2.x_4 + 9.x_5 = 6$ [y_2]
 $x_1, x_2, x_3, x_4 \ge 0, x_5$ qual quer

Aplicam-se as seguintes propriedades para construção do probl. dual:

- Se uma restrição do probl. (P) é do tipo (=), então a variável correspondente no probl. (D) é irrestrita em sinal.
- Se uma variável primal é irrestrita em sinal, a restrição dual correspondente é uma igualdade.

(D)

Min
$$D = 2.y_1 + 6.y_2$$

$$3.y_1 + 2.y_2 \ge 6 [x_1]$$

$$7.y_1 + y_2 \ge 4 [x_2]$$
s.a.
$$-8.y_1 + 3.y_2 \ge 1 [x_3]$$

$$5.y_1 + 2.y_2 \ge 7 [x_4]$$

$$y_1 + 9.y_2 = 5 [x_5]$$

$$y_1 \in y_2 \text{ irrestrites em sinal}$$

Nessa formulação do probl. dual, as variáveis y_1 e y_2 são irrestritas em sinal, a formulação. Para se ter uma formulação dual com as variáveis não-negativas deve-se fazer:

$$\begin{cases} y_1 = y_1' - y_1'' \\ y_2 = y_2' - y_2'' \\ y_1', y_1'', y_2', y_2'' \ge 0 \end{cases}$$

Substituindo as equações acima na formulação dual (D):

Min
$$D = 2.y_1' -2.y_1'' +6.y_2' -6.y_2''$$

s.a.
$$3.y_{1}' - 3.y_{1}'' + 2.y_{2}' - 2.y_{2}'' \ge 6$$

$$7.y_{1}' - 7.y_{1}'' + y_{2}' - y_{2}'' \ge 4$$

$$-8.y_{1}' + 8.y_{1}'' + 3.y_{2}' - 3.y_{2}'' \ge 1$$

$$5.y_{1}' - 5.y_{1}'' + 2.y_{2}' - 2.y_{2}'' \ge 7$$

$$y_{1}' - y_{1}'' + 9.y_{2}' - 9.y_{2}'' = 5$$

$$y_{1}', y_{1}'', y_{2}', y_{2}'' \ge 0$$

3) Considere o seguinte problema primal:

(P)

Max
$$Z = c.x$$

s.a
$$\begin{aligned} A.x &= b \\ x &\geq 0 \end{aligned}$$
; Solução ótima: x^*

Suponha que a k-ésima restrição seja multiplicada por um escalar λ , $\lambda \neq 0$. Se y^* é a solução dual ótima do problema primal anterior, qual seria a solução ótima do dual do problema primal cuja k-ésima restrição foi multiplicada por λ ?

(D)

Min
$$D = \boldsymbol{b}^T \cdot \boldsymbol{y}$$

s.a
$$A^T \cdot y \ge c$$

y irrestritoem sinal Solução ótima: y^*

Note que ao multiplicar a k-ésima restrição do primal por λ , a solução ótima do novo primal fica inalterada (= x^*).

Pelo Teorema Principal da Dualidade, o valor ótimo da função objetivo do problema dual também fica inalterado, ou seja: $Z(x^*) = D(y^*)$.

À k-ésima restrição do primal está associada a k-ésima variável dual (y_k) , cujo coeficiente na função objetivo no novo problema dual torna-se λb_k

Portanto, para que o resultado, $D(y^*)$, permaneça inalterado, a k-ésima variável dual na solução ótima terá que ser dividida por λ .

4) Seja o seguinte problema primal:

NOTA: O coeficiente de x_3 vale +5 neste Manual, coerente com o quadro ótimo, enquanto que no livro ele vale erradamente -5.

(P) Max
$$Z = 3.x_1 + x_2 + 5.x_3$$

 $6.x_1 + 3.x_2 + 5x_3 \le 45$ (mão de obra) $[y_1]$
s.a. $3.x_1 + 4.x_2 + 5.x_3 \le 30$ (matéria pri ma) $[y_2]$
 $x_1, x_2, x_3 \ge 0$

Cuja solução ótima é:

$$[y_1] \quad [y_2]$$

	Base	Z	X_1	X_2	X_3	X_4	X_5	b
<i>l</i> .0	Max	1	0	3	0	0	1	30
l.1	X_1	0	1	$-\frac{1}{3}$	0	1/3	$-\frac{1}{3}$	5
<i>l</i> .2	X_3	0	0	1	1	-1/5	2/5	3

a) Escreva o dual e identifique sua solução ótima.

Min
$$D = 45.y_1 + 30.y_2$$

$$6.y_1 + 3.y_2 \ge 3 [x_1]$$
s.a.
$$3.y_1 + 4.y_2 \ge 1 [x_2]$$

$$5.y_1 + 5.y_2 \ge 5 [x_3]$$

$$y_1, y_2 \ge 0$$

Note que os valores ótimos das variáveis duais encontram-se na linha 0 do quadro ótimo primal, associados aos custos reduzidos das variáveis de folga.

$$Y_1 = 0$$
$$Y_2 = 1$$

Alternativamente, pode-se resolver usando o vetor de multiplicadores simplex. A base \mathbf{B} no ponto ótimo é constituída pelos vetores associados às variáveis x_1, x_3 , cujos coeficientes são: $\mathbf{c}_{\mathbf{B}} = \begin{bmatrix} 3 & 5 \end{bmatrix}$.

A inversa **B**⁻¹ encontra-se disponível no quadro ótimo do primal:

$$\mathbf{B}^{-1} = \begin{bmatrix} 1/3 & -1/3 \\ -1/5 & 2/5 \end{bmatrix}$$

A solução dual ótima é igual ao vetor dos multiplicadores simplex, ou seja:

$$y^* = \pi = c_B . B^{-1} = [0 \ 1].$$

Tendo-se Y_1 e Y_2 , pode-se calcular:

$$Y_2 = 6.Y_1 + 3.Y_2 - 3 = 0$$

$$Y_4 = 3.Y_1 + 4.Y_2 - 1 = 3$$

$$Y_5 = -5.Y_1 + 5.Y_2 - 5 = 0$$

b) Suponha que 15 unidades adicionais de matéria prima podem ser obtidas ao custo de \$10. É rentável aceitar?

A matéria prima está associada à segunda restrição, então, acrescentando as unidades adicionais de matéria prima obtemos: $3.x_1 + 4x_2 + 5.x_3 \le 30 + \Delta b_2$, com $\Delta b_2 = 15$ logo, para equilibrar o sistema:

$$x_1 \rightarrow 5 - \frac{1}{3} \Delta b_2 \ge 0 \Rightarrow \Delta b_2 \le 15$$

$$x_3 \rightarrow 3 + \frac{2}{5} \Delta b_2 \ge 0 \Rightarrow \Delta b_2 \ge -15$$

Por tanto, a solução continua ótima no intervalo de $-15/2 \le \Delta b_2 \le 15$, como $\Delta b_2 = 15$ a solução continua ótima, é rentável aceitar a matéria prima. É possível remarcar ainda que o maior valor de b_2 para que a solução continue ótima é 45.

Se fosse avaliado o problema dual, a restrição de matéria prima está associada à segunda variável dual, y_2 . Note que a solução ótima do problema dual nos diz que o preço mínimo pelo qual interessa vender a matéria prima em lugar de transformá-la é $y_2 = \$1$.

Se 15 unidades adicionais de matéria prima podem ser obtidas ao custo de \$10, então 1 unidade de matéria prima pode ser obtida ao custos de $\frac{2}{3}$. A este

preço ($\frac{2}{3}$ < $\frac{2}{3}$), se obtêm também a mesma solução, que é interessante comprar a matéria prima.

 c) Ache a solução ótima caso a quantidade disponível de matéria prima passe para 60 unidades.

Como foi visto na parte b) deste problema, a maior quantidade de matéria prima para que a solução continue ótima é se $b_2 = 45$ no máximo, isto será verificado a seguir:

$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \mathbf{B}^{-1} \cdot \mathbf{b}' = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{5} & \frac{2}{5} \end{bmatrix} \begin{bmatrix} 45 \\ 60 \end{bmatrix} = \begin{bmatrix} -5 \\ 15 \end{bmatrix}$$

Logo, pode-se re-otimizar o sistema, ou como será feito a seguir, aplicar o dual simplex.

Quadro 1:

	Base	Z	X_1	X_2	X_3	X_4	X_5	b
<i>l</i> .0	Max	1	0	3	0	0	1	60
l.1	X_1	0	1	$-\frac{1}{3}$	0	1/3	$-\frac{1}{3}$	-5
<i>l</i> .2	X_3	0	0	1	1	$-\frac{1}{5}$	2/5	15
Raz	zão			-9			-3	

A variável que sai da base é aquela com valor de \bar{b} + negativo $\therefore x_1$ sai da base.

A variável não básica que entra na base (MAX) é aquela com maior valor para $\{-\overline{c}_s/a_{r,s}, r=1, \overline{a}_{r,j}<0\}$ $\therefore x_5$ entra na base.

Elemento pivô: $-\frac{1}{3}$

Nova base: x_5, x_3

Pivotamento:

- Multiplicar a linha 1 por -3.
- Multiplicar a linha 1 por -1 e somá-la à linha 0

• Multiplicar a linha 1 por $-\frac{2}{5}$ e somá-la à linha 2.

Quadro2:

Base	Z	X_1	X_2	X_3	X_4	X_5	b
$l.0 \overline{Max}$	1	3	2	0	1	0	45
$l.1 \overline{X_5}$	0	-3	1	0	-1	1	15
$l.2 \overline{X_3}$	0	6/5	3/5	1	1/5	0	9

Nenhuma variável básica possui o valor de \bar{b} negativo.

Logo, a solução ótima foi encontrada:

Solução ótima:

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 9 \end{cases} \qquad Z = 3.x_1 + .x_2 + 5.x_3 = 45$$

As variáveis de folga são: $x_4 = 0$ e $x_5 = 15$.

d) Para que valores de c_1 a solução permanece ótima?

Note que na solução ótima (quadro ótimo: x_1 é uma variável básica.

$$FOBJ_{alterada}: Z = (3 + \Delta c_1).x_1 + x_2 + 5.x_3$$

Na linha 0 do Quadro ótimo teríamos:

	Base	Z	X_1	X_2	X_3	X_4	X_{5}	b
<i>l</i> .0	Max	1	$-\Delta c_1$	3	0	0	1	30

Para eliminarmos $-\Delta c_1$ da linha 0, adicionamos Δc_1 vezes a linha 1 à linha 0.

	Base	Z	X_{1}	X_2	X_3	X_4	X_{5}	b
<i>l</i> .0	Max	1	0	$\frac{3}{-\frac{\Delta c_1}{3}}$	0	$\frac{\Delta c_1}{3}$	$\frac{1}{-\frac{\Delta c_1}{3}}$	30 + $5.\Delta c_1$

Para que o quadro continue ótimo (MAX):

$$3 - \frac{\Delta c_1}{3} \ge 0 \Rightarrow \Delta c_1 \le 9$$

$$\frac{\Delta c_1}{3} \ge 0 \Longrightarrow \Delta c_1 \ge 0$$

$$1 - \frac{\Delta c_1}{3} \ge 0 \Rightarrow \Delta c_1 \le 3$$

Portanto: $0 \le \Delta c_1 \le 3$.

Logo, a faixa de valores de c_1 onde a presente solução permanece ótima é: $3 \le c_1 \le 6$.

5) Suponha que ao Problema 4, após achada a solução ótima (indicada no quadro), seja incluída a restrição $x_1 + x_2 \ge 4$. Acrescente a nova restrição e resolva usando o Método Dual Simplex.

A nova restrição na forma padrão fica: $-x_1 - x_2 + x_6 = -4$.

Adicionando esta restrição ao quadro ótimo:

	Base	Z	X_1	X_2	X_3	X_4	X_5	X_6	b
<i>l</i> .0	Max	1	0	3	0	0	1	0	30
<i>l</i> .1	X_1	0	1	$-\frac{1}{3}$	0	1/3	$-\frac{1}{3}$	0	5
<i>l</i> .2	\overline{X}_3	0	0	1	1	- 1/5	$\frac{2}{5}$	0	3
1.3	X_6	0	-1	-1	0	0	0	1	-4

Para colocar o quadro na forma canônica, faça o seguinte:

• Somar a linha 1 à linha 3.

Quadro2:

	Base	Z	X_1	X_2	X_3	X_4	X_{5}	X_6	b
<i>l</i> .0	Max	1	0	3	0	0	1	0	30
l.1	X_1	0	1	$-\frac{1}{3}$	0	1/3	$-\frac{1}{3}$	0	5
<i>l</i> .2	X_3	0	0	1	1	- 1/5	$\frac{2}{5}$	0	3
<i>l</i> .3	X_6	0	0	$-\frac{4}{3}$	0	1/3	$-\frac{1}{3}$	1	1

A solução ótima foi encontrada:

Solução ótima:

$$\begin{cases} x_1 = 5 \\ x_2 = 0 \\ x_3 = 3 \end{cases}$$
 $z = 3.x_1 + x_2 + 5.x_3 = 30$

As variáveis de folga são: $x_4 = 0$, $x_5 = 0$ e $x_6 = 1$.

6) Escreva o dual do seguinte problema de programação linear:

Min
$$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}.x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = F_i, \quad i = 1,2,..., m$$
s.a. $\sum_{i=1}^{m} x_{ij} = D_j, \quad j = 1,2,..., n$
 $x_{ij} \ge 0, \quad \text{para } i = 1,2,..., m \text{ e } j = 1,2,..., n$

Desenvolvendo os somatórios:

$$\begin{array}{lll} \text{Min} & Z = c_{11}.x_{11} + c_{12}.x_{12} + \ldots + c_{1n}x_{1n} + \ldots + c_{m1}.x_{m1} + c_{m2}.x_{m2} + \ldots + c_{mn}.x_{mn} \\ & x_{11} + x_{12} + \ldots + x_{1n} = F_1 & [u_1] \\ & x_{21} + x_{22} + \ldots + x_{2n} = F_2 & [u_2] \\ & \vdots & \vdots \\ & x_{m1} + x_{m2} + \ldots + x_{nm} = F_m & [u_m] \end{array}$$

$$\begin{aligned} x_{11} + x_{21} + \ldots + x_{m1} &= D_1 \quad [v_1] \\ x_{12} + x_{22} + \ldots + x_{m2} &= D_2 \quad [v_2] \\ & \vdots & & \vdots \\ x_{1n} + x_{2n} + \ldots + x_{nn} &= D_n \quad [v_n] \end{aligned}$$

O dual é:

$$\begin{aligned} \text{Max} & D = F_1.u_1 + ... + F_m.u_m + ... + D_1.v_1 + ... + D_n.v_n \\ & u_1 + v_1 \leq c_{11} \\ & \vdots \\ & u_1 + v_n \leq c_{1n} \\ & u_2 + v_1 \leq c_{21} \\ & \vdots \\ & u_2 + v_n \leq c_{2n} \\ \text{s.a} & \vdots & \vdots & \vdots \\ & u_m + v_1 \leq c_{m1} \\ & \vdots \\ & u_m + v_n \leq c_{mn} \\ & u_i, v_j & \text{irrestritos em sinal } \forall i, j \end{aligned}$$

Reescrevendo o dual:

Max
$$\sum_{i=1}^{m} F_{i}.u_{i} + \sum_{j=1}^{n} D_{j}.v_{j}$$

$$u_{i} + v_{j} \le c_{ij}, \quad i = 1,..., m$$
s.a
$$j = 1,...n$$

$$u_{i}, v_{j} \text{ irrestritos em sinal } \forall i, j$$

7) Considere o seguinte problema de minimização:

Min
$$D = 240.y_1 + 150.y_2 + 80.y_3$$

$$2.y_1 + 2.y_2 + y_3 \ge 5$$
s.a.
$$3.y_1 + y_2 \ge 7$$

$$4.y_1 + y_2 \ge 3$$

$$y_1, y_2, y_3 \ge 0$$

Resolva o modelo usando o Método Dual Simplex.

Esse problema pode ser reescrito como:

Min
$$D = 240.y_1 + 150.y_2 + 80.y_3$$

$$2.y_1 + 2.y_2 + y_3 - y_4 = 5$$
s.a.
$$3.y_1 + y_2 - y_5 = 7$$

$$4.y_1 + y_2 - y_6 = 3$$

$$y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$$

Este problema poderia ser resolvido com a adição de variáveis artificiais. Porém, o Método Dual Simplex oferece uma alternativa eficiente.

Min
$$D = 240.y_1 + 150.y_2 + 80.y_3$$

$$-2.y_1 - 2.y_2 - y_3 + y_4 = -5$$
s.a.
$$-3.y_1 - y_2 + y_5 = -7$$

$$-4.y_1 - y_2 + y_6 = -3$$

$$y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$$

D expresso em termos das variáveis não-básicas: $D - 240.y_1 - 150.y_2 - 80.y_3 = 0$

Quadro 1:

	Base	Z	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6	b
l.0	Min	1	-240	-150	-80	0	0	0	0
<i>l</i> .1	Y_4	0	-2	-2	-1	1	0	0	-5
<i>l</i> .2	Y_5	0	-3	-1	0	0	1	0	-7
1.3	Y_6	0	-4	-1	0	0	0	1	-3
	Razão		80	150					· ·

A variável que sai da base é aquela com valor de \bar{b} + negativo $\therefore y_5$ sai da base.

A variável não-básica que entra na base (probl. MIN) é aquela com menor valor para $\{-\overline{c}_s/a_{r,s}, r=2, \overline{a}_{r,j}<0\}$ \therefore y_1 entra na base.

Elemento pivô: - 3.

Nova base: y_4, y_1, y_6 .

Pivotamento:

• Multiplicar a linha 2 por $-\frac{1}{3}$.

- Multiplicar a linha 2 por 240 e somá-la à linha 0
- Multiplicar a linha 2 por 2 e somá-la à linha 1.
- Multiplicar a linha 2 por 4 e somá-la à linha 3

Quadro2:

	Base	Z	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6	b
<i>l</i> .0	Min	1	0	-70	-80	0	-80	0	560
l.1	Y_4	0	0	$-\frac{4}{3}$	-1	1	$-\frac{2}{3}$	0	$-\frac{1}{3}$
<i>l</i> .2	Y_1	0	1	1/3	0	0	$-\frac{1}{3}$	0	7/3
<i>l</i> .3	Y_6	0	0	1/3	0	0	$-\frac{4}{3}$	1	19/3
Razão			52,5	80		120	'		

A variável que sai da base é aquela com valor de \bar{b} + negativo $\therefore y_4$ sai da base.

A variável não-básica que entra na base (MIN) é aquela com menor valor para $\{-\overline{c}_s/a_{r,s}, r=1, \overline{a}_{r,j}<0\}$ \therefore y_2 entra na base.

Elemento pivô: $-\frac{4}{3}$.

Nova base: y_2, y_1, y_6 .

Pivotamento:

- Multiplicar a linha 1 por $-\frac{3}{4}$.
- Multiplicar a linha 1 por 70 e somá-la à linha 0
- Multiplicar a linha 1 por $-\frac{1}{3}$ e somá-la à linha 2.
- Multiplicar a linha 1 por $-\frac{1}{3}$ e somá-la à linha 3

Quadro3:

	Base	Z	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6	b
<i>l</i> .0	Min	1	0	0	$-\frac{55}{2}$	-105/2	- 45	0	1155/2
<i>l</i> .1	Y_2	0	0	1	3/4	$-\frac{3}{4}$	1/2	0	1/4
<i>l</i> .2	Y_1	0	1	0	-1/4	1/4	$-\frac{1}{2}$	0	9/4
1.3	Y_6	0	0	0	- 1/4	1/4	$-\frac{3}{2}$	1	25/4

Nenhuma variável básica possui o valor de \bar{b} negativo.

Logo, a solução ótima foi encontrada:

Solução ótima:

$$\begin{cases} y_1 = \frac{9}{4} \\ y_2 = \frac{1}{4} \\ y_3 = 0 \end{cases} D = 240.y_1 + 150.y_2 + 80.y_3 = \frac{1155}{2}$$

As variáveis de folga são: $y_4 = 0$, $y_5 = 0$ e $y_6 = \frac{25}{4}$.

Capítulo 5

NOTA: Nos quadros abaixo, os custos em cada célula estão indicados à direita da célula, precedidas do sinal "\".

1) Estabeleça o melhor plano de transporte, sabendo que o quadro de custos unitários:

!	1	2	3	4	5	6	Oferta
1	9	12	9	6	9	10	5
2	7	3	7	7	5	5	6
3	6	5	9	11	3	11	2
4	6	8	11	2	2	10	9
Demanda	4	4	6	2	4	2	22

Obtenção da solução básica inicial:

a) Regra do Canto Noroeste

Começa no x_{11} :

$$x_{11} = \min(4,5) = 4$$
 $x_{12} = \min(4,1) = 1$ $x_{22} = \min(3,6) = 3$

$$x_{23} = \min(6,3) = 3$$
 $x_{33} = \min(3,2) = 2$ $x_{43} = \min(1,9) = 1$

$$x_{44} = \min(2,8) = 2$$
 $x_{45} = \min(4,6) = 4$ $x_{46} = 2$

 	1	2	3	4	5	6	Oferta
1	4 (9	1 < 12	⟨9	⟨6	⟨9	⟨ 10	5
2	⟨7	3 < 3	3 < 7	⟨7	⟨ 5	⟨ 5	6
3	⟨6	⟨ 5	2 (9	⟨11	⟨3	⟨11	2
4	⟨6	⟨8	1 < 11	2 < 2	4 < 2	2 < 10	9
Demanda	4	4	6	2	4	2	22

$$Z = 4x9 + 12x1 + 3x3 + 3x7 + 2x9 + 11x1 + 2x2 + 4x2 + 2x10 = 139$$

b) Método do Custo Mínimo

Começa no menor custo: c_{44}

$$x_{44} = \min(2,9) = 2$$
 $x_{45} = \min(4,7) = 4$ $x_{22} = \min(4,6) = 4$ $x_{26} = \min(2,6) = 2$ $x_{31} = \min(2,4) = 2$ $x_{41} = \min(2,5) = 2$ $x_{13} = \min(5,6) = 5$ $x_{46} = \min(0,1) = 0$ $x_{43} = \min(1,1) = 1$

;	1	2	3	4	5	6	Oferta
1	⟨9	⟨12	5 (9	⟨6	⟨9	⟨10	5
2	⟨7	4 < 3	⟨ 7	⟨ 7	⟨ 5	2 < 5	6
3	2 < 6	⟨ 5	⟨9	⟨11	⟨3	⟨11	2
4	2 < 6	⟨8	1 < 11	2 < 2	4 < 2	0 < 10	9
Demanda	4	4	6	2	4	2	22

$$Z = 5x9 + 4x3 + 2x5 + 2x6 + 2x6 + 1x11 + 2x2 + 4x2 + 0x10 = 114$$

c) Método de Vogel

 	1	2	3	4	5	6	Oferta	Δ
1	⟨9	⟨12	⟨9	⟨6	⟨9	⟨10	5	3
2	⟨7	⟨3	⟨7	⟨7	⟨5	⟨5	6	2
3	⟨6	⟨5	⟨9	⟨11	⟨3	⟨11	2	2
4	⟨6	⟨8	⟨11	⟨2	⟨2	⟨10	9	0
Demanda	4	4	6	2	4	2	22	
Δ	0	2	2	4	1	5	_	

$$x_{26} = \min(2,6) = 2$$

 	1	2	3	4	5	6	Oferta	Δ
1	⟨9	⟨12	⟨9	⟨6	⟨9	⟨10	5	3
2	⟨7	⟨3	⟨7	⟨7	⟨5	2 < 5	4	2
3	⟨6	⟨5	⟨9	⟨11	⟨3	⟨11	2	2
4	⟨6	⟨8	⟨11	⟨2	⟨2	⟨ 10	9	0
Demanda	4	4	6	2	4	0	22	
Δ	0	2	2	4	1	X		

$$x_{44} = \min(2,9) = 2$$

	1	2	3	4	5	6	Oferta	Δ
1	9	12	9	6	9	10	5	0
2	7	3	7	7	5	2 \ 5	4	2
3	6	5	9	11	3	11	2	2
4	6	8	11	2 \ 2	2	10	7	4
Demanda	4	4	6	0	4	0	22	
Δ	0	2	2	X	1	X		

$$x_{45} = \min(4,7) = 4$$

 	1	2	3	4	5	6	Oferta	Δ
1	⟨9	⟨12	⟨9	6	9	10	5	0
2	⟨7	⟨3	⟨7	7	5	2 \ 5	4	4
3	⟨6	⟨5	⟨9	11	3	11	2	1
4	⟨6	⟨8	⟨11	2 \ 2	4 \ 2	10	3	2
Demanda	4	4	6	0	0	0	22	
Δ	0	2	2	X	X	X		

$$x_{22} = \min(4,4) = 4$$

	1	2	3	4	5	6	Oferta	Δ
1	⟨9	⟨12	⟨9	⟨6	⟨9	⟨10	5	0
2	⟨7	4 < 3	⟨7	⟨7	⟨5	2 < 5	0	X
3	⟨6	⟨5	⟨9	⟨11	⟨3	⟨11	2	3
4	⟨6	⟨8	⟨11	2 < 2	4 < 2	⟨10	3	5
Demanda	4	0	6	0	0	0	22	
Δ	0	0	0	X	X	X		

$$x_{32} = \min(0, 2) = 0$$

	1	2	3	4	5	6	Oferta	Δ
1	⟨9	⟨12	⟨9	⟨6	⟨9	⟨10	5	0
2	⟨7	4 < 3	⟨7	⟨7	⟨5	2 < 5	0	X
3	⟨6	0 < 5	⟨9	⟨11	⟨3	⟨11	2	3
4	⟨6	⟨8	⟨11	2 < 2	4 < 2	⟨10	3	5
Demanda	4	0	6	0	0	0	22	
Δ	3	X	0	X	X	X		

$$x_{41} = \min(4,3) = 3$$

 	1	2	3	4	5	6	Oferta	Δ
1	⟨9	⟨12	⟨9	⟨6	⟨9	⟨10	5	0
2	⟨7	4 \(3	⟨7	⟨7	⟨5	2 < 5	0	X
3	⟨6	0 < 5	⟨9	⟨11	⟨3	⟨11	2	3
4	3 < 6	⟨8	⟨11	2 < 2	4 < 2	⟨10	0	X
Demanda	1	0	3	0	0	0	22	
Δ	3	X	0	X	X	X		

$$x_{31} = \min(1,2) = 1$$

;	1	2	3	4	5	6	Oferta	Δ
1	⟨9	⟨12	⟨9	⟨6	⟨9	⟨10	5	0
2	⟨7	4 < 3	⟨7	⟨7	⟨5	2 < 5	0	X
3	1 (6	0 < 5	⟨9	⟨11	⟨3	⟨11	1	3
4	3 < 6	⟨8	⟨11	2 < 2	4 < 2	⟨10	0	X
Demanda	0	0	3	0	0	0	22	
Δ	X	X	0	X	X	X		

$$x_{13} = 5$$

$$x_{33} = 1$$

Solução inicial pelo método de Vogel:

	1	2	3	4	5	6	Oferta
1	⟨9	⟨12	5 (9	⟨6	⟨9	⟨10	5
2	⟨7	4 < 3	⟨ 7	⟨7	⟨5	2 < 5	6
3	1 (6	0 < 5	1 (9	⟨11	⟨3	⟨11	2
4	3 < 6	⟨8	⟨11	2 < 2	4 < 2	⟨ 10	9
Demanda	4	4	6	2	4	2	22

$$Z = 5 \times 9 + 4 \times 3 + 2 \times 5 + 6 \times 1 + 5 \times 0 + 1 \times 9 + 3 \times 6 + 2 \times 2 + 4 \times 2 = 112$$

Usando a solução inicial pelo Método do Custo Mínimo tenta-se melhorar a solução usando o Método Caminho das Pedras:

 θ em x_{ij} faz o caminho:

$$x_{11} \rightarrow 9 - 9 + 11 - 6 = 5$$
 $x_{12} \rightarrow 12 - 3 + 5 - 10 + 11 - 9 = 6$

$$x_{14} \rightarrow 6 - 9 + 11 - 2 = 6$$
 $x_{15} \rightarrow 9 - 2 + 11 - 9 = 9$

$$x_{16} \rightarrow 10 - 10 + 11 - 9 = 2$$
 $x_{21} \rightarrow 7 - 5 + 10 - 6 = 6$

$$x_{23} \rightarrow 7 - 5 + 10 - 11 = 1$$
 $x_{24} \rightarrow 7 - 5 + 10 - 2 = 10$

$$x_{25} \rightarrow 5 - 5 + 10 - 2 = 8$$
 $x_{32} \rightarrow 5 - 3 + 5 - 10 + 6 - 6 = -3$

$$x_{33} \rightarrow 9 - 11 + 6 - 6 = -2$$
 $x_{34} \rightarrow 11 - 2 + 6 - 6 = 9$

$$x_{35} \rightarrow 3 - 2 + 6 - 6 = 1$$
 $x_{36} \rightarrow 11 - 10 + 6 - 6 = 1$

$$x_{42} \rightarrow 8-10+5-3=0$$

O menor valor é -3:

$$x_{32} \rightarrow$$

$$x_{32} = \theta; x_{22} = 4 - \theta; x_{26} = 2 + \theta; x_{46} = 0 - \theta; x_{41} = 2 + \theta; x_{31} = 2 - \theta$$

$$\theta = 0 \Rightarrow x_{32} = 0$$

$$\leftarrow x_{46}$$

Testando novamente:

$$x_{11} \rightarrow 9 - 9 + 11 - 6 = 5$$
 $x_{12} \rightarrow 12 - 9 + 11 - 6 + 6 - 5 = 9$

$$x_{14} \rightarrow 6 - 2 + 11 - 9 = 6$$
 $x_{15} \rightarrow 9 - 2 + 11 - 9 = 9$

$$x_{16} \rightarrow 10 - 5 + 3 - 5 + 6 - 6 + 11 - 9 = 5$$
 $x_{21} \rightarrow 7 - 6 + 5 - 3 = 3$

$$x_{23} \rightarrow 7 - 11 + 6 - 6 + 5 - 3 = 0$$
 $x_{24} \rightarrow 7 - 2 + 6 - 6 + 5 - 3 = 7$

$$x_{25} \rightarrow 5 - 2 + 6 - 6 + 5 - 3 = 5$$
 $x_{33} \rightarrow 9 - 6 + 6 - 11 = -2$

$$x_{34} \rightarrow 11 - 2 + 6 - 6 = 9$$
 $x_{35} \rightarrow 3 - 2 + 6 - 6 = 1$

$$x_{36} \rightarrow 11 - 5 + 3 - 5 = 4$$
 $x_{42} \rightarrow 8 - 5 + 6 - 6 = 3$

$$x_{46} \rightarrow 10 - 5 + 3 - 5 + 6 - 6 = 3$$

O menor valor é -2:

$$x_{33} \rightarrow$$

$$x_{33} = \theta; x_{43} = 1 - \theta; x_{41} = 6 + \theta; x_{31} = 6 - \theta$$

$$\theta = 1 \Rightarrow x_{33} = 1$$

$$\leftarrow x_{43}$$

$$Z = Z^{0} + x_{43}.\theta = 114 + (-2) = 112$$

Testando novamente:

$$x_{11} \rightarrow 9 - 9 + 9 - 6 = 3$$
 $x_{12} \rightarrow 12 - 9 + 9 - 5 = 7$
 $x_{14} \rightarrow 6 - 2 + 6 - 6 + 9 - 9 = 4$ $x_{15} \rightarrow 9 - 2 + 6 - 6 + 9 - 9 = 7$
 $x_{16} \rightarrow 10 - 5 + 3 - 5 + 9 - 9 = 3$ $x_{21} \rightarrow 7 - 3 + 5 - 6 = 3$
 $x_{23} \rightarrow 7 - 9 + 5 - 3 = 0$ $x_{24} \rightarrow 7 - 2 + 6 - 6 + 5 - 3 = 7$
 $x_{25} \rightarrow 5 - 2 + 6 - 6 + 5 - 3 = 5$ $x_{34} \rightarrow 11 - 2 + 6 - 6 = 9$
 $x_{35} \rightarrow 3 - 2 + 6 - 6 = 1$ $x_{36} \rightarrow 11 - 5 + 3 - 5 = 4$
 $x_{42} \rightarrow 8 - 5 + 6 - 6 = 3$ $x_{42} \rightarrow 11 - 9 + 6 - 6 = 2$

Não há nenhum negativo. Logo, a solução ótima foi encontrada.

Quadro final:

 $x_{46} \rightarrow 10 - 5 + 3 - 5 + 6 - 6 = 3$

	1	2	3	4	5	6	Oferta
1	⟨9	⟨ 12	5 (9	⟨6	⟨9	⟨10	5
2	⟨7	4 < 3	1 < 7	⟨7	⟨5	2 < 5	6
3	1 (6	0 < 5	⟨9	⟨11	⟨3	⟨11	2
4	3 < 6	⟨8	⟨11	2 < 2	4 < 2	⟨10	9
Demanda	4	4	6	2	4	2	22

Observa-se que a solução inicial do Vogel é também solução ótima, neste caso.

2) Custos unitários dados no quadro abaixo:

		A	В	С	D
	I	17	20	13	12
:	II	15	21	23	25
	III	15	14	15	17

Obtenção da solução inicial pelo Método do Custo Mínimo:

$$c_{14} = 12$$

$$c_{21}, c_{31}, c_{33} = 15$$

$$c_{22} = 21$$

$$c_{13} = 13$$

$$c_{11}, c_{34} = 17$$

$$c_{24} = 25$$

$$c_{32} = 14$$

$$c_{12} = 20$$

$$c_{23} = 26$$

Começa no menor custo: c_{14}

$$x_{14} = \min(70.95) = 70$$

$$x_{14} = \min(70,95) = 70$$
 $x_{32} = \min(60,115) = 60$ $x_{21} = \min(50,90) = 50$

$$x_{21} = \min(50.90) = 50$$

$$x_{33} = \min(70.55) = 55$$

$$x_{33} = \min(70,55) = 55$$
 $x_{24} = \min(40,25) = 25$ $x_{23} = 15$

$$x_{23} = 15$$

	A	В	С	D	Oferta
I	⟨17	⟨ 20	⟨13	70 \langle 12	70
II	50 < 15	⟨21	15 \langle 23	25 \langle 25	90
III	⟨ 15	60 < 14	55 \langle 15	⟨17	115
Demanda	50	60	70	95	

Usando a solução inicial pelo Método do Custo Mínimo tenta-se melhorar a solução usando o Método Caminho das Pedras:

$$x_{11} \rightarrow 17 - 15 + 25 - 12 = 15$$

$$x_{11} \rightarrow 17 - 15 + 25 - 12 = 15$$
 $x_{12} \rightarrow 20 - 14 + 15 - 26 + 25 - 12 = 8$

$$x_{13} \rightarrow 13 - 12 + 25 - 26 = 0$$
 $x_{22} \rightarrow 21 - 26 + 15 - 14 = -4$

$$x_{22} \rightarrow 21 - 26 + 15 - 14 = -4$$

$$x_{31} \rightarrow 15 - 15 + 26 - 15 = 11$$
 $x_{34} \rightarrow 17 - 25 + 26 - 15 = 3$

$$x_{34} \rightarrow 17 - 25 + 26 - 15 = 3$$

O menor valor é -4:

$$x_{22} \rightarrow$$

$$\leftarrow x_{23}$$

$$\theta$$
 15- θ

$$\theta = 15$$

$$60-\theta$$
 $55+\theta$

$$Z = Z^{0} + (-4).(\theta) = 4270 - 60 = 4210$$

Testando novamente:

$$x_{11} \rightarrow 17 - 15 + 25 - 12 = 15$$
 $x_{12} \rightarrow 20 - 12 + 25 - 21 = 12$

$$x_{13} \to 13 - 12 + 25 - 21 + 14 - 15 = 4$$
 $x_{31} \to 15 - 14 + 21 - 15 = 7$

$$x_{34} \rightarrow 17 - 25 + 21 - 14 = -1$$
 $x_{23} \rightarrow 26 - 15 + 14 - 21 = 4$

O menor valor é -1:

$$x_{34} \rightarrow \qquad \leftarrow x_{24}$$

$$\begin{array}{ccc}
15 + \theta & 25 - \theta \\
45 - \theta & 70 & \theta
\end{array}$$

$$\theta = 25$$

$$Z = Z^{0} + (-1).(\theta) = 4210 - 25 = 4185$$

Testando novamente:

$$x_{11} \rightarrow 17 - 12 + 17 - 14 + 21 - 15 = 14$$
 $x_{12} \rightarrow 20 - 12 + 17 - 14 = 11$

$$x_{13} \rightarrow 13 - 12 + 17 - 15 = 3$$
 $x_{23} \rightarrow 26 - 15 + 14 - 21 = 4$

$$x_{24} \rightarrow 25 - 17 + 14 - 21 = 1$$
 $x_{31} \rightarrow 15 - 14 + 21 - 15 = 7$

Não há nenhum negativo. Logo, a solução ótima foi encontrada.

Quadro ótimo:

 	A	В	С	D	Oferta
I	⟨17	⟨ 20	⟨13	70 < 12	70
II	50 < 15	40 < 21	⟨23	⟨ 25	90
III	⟨ 15	20 < 14	70 < 15	25 \(17	115
Demanda	50	60	70	95	

3) Empresa Sazonal Ltda.

Sejam as variáveis de decisão:

 X_1 = produção no mês de dezembro

 X_2 = produção no mês de janeiro

 X_3 = produção no mês de fevereiro

 X_4 = produção no mês de março

 Y_I = estoque ao final de dezembro para venda em janeiro

 Y_2 = estoque ao final de janeiro para venda em fevereiro

 Y_3 = estoque ao final de fevereiro para venda em março

 Y_4 = estoque ao final de março para venda em mês posterior

a) FO Min
$$Z = 34 X_1 + 35 X_2 + 32X_3 + 31X_4 + 10(Y_1 + Y_2 + Y_3 + Y_4)$$
 s.a.: $X_1 = 300 + Y_1$
$$Y_1 + X_2 = 450 + Y_2$$

$$Y_2 + X_3 = 450 + Y_3$$

$$Y_3 + X_4 = 250 + Y_4$$

$$X_i \le 0 \ i = 1, 2, 3, 4$$

 $X_i, Y_i \ge 0, i=1,2,3,4$

b)

!	Dez.	Jan.	Fev.	Mar.	Mês	
<u> </u>				; ; ;	posterior	
X_1	⟨ 34	⟨ 10			⟨0	400
X_2		⟨ 35	⟨ 10		⟨0	400
X_3			⟨ 32	⟨10	⟨0	400
X_4				⟨31	⟨0	400
	300	450	450	250	150	1600

4) Resolva os seguintes problemas de designação.

a)

									r		
		4		_		_		4	1	_	1 / 1 1 1 1
			1	• • • • • • • • • • • • • • • • • • • •		- 3	1	/1	1	_	i (min linha) i
i	i	1		_	- 1	3	i	-	i	J	(IIIIIIIIIIIIII)

A	12	8	7	15	4	(4)
В	7	9	17	14	10	(7)
С	9	6	12	6	7	(6)
D	7	6	14	6	10	(6)
Е	9	6	12	10	6	(6)
!					Г	

	1	2	3	4	5	
A	8	4	3	11	0	
В	0	2	10	7	3	
С	3	0	6	0	1	
D	1	0	8	0	4	
Е	3	0	6	4	0	
(min.col.)	(0)	(0)	(3)	(0)	(0)	

	1	2	3	4	5	
A	8	4	0	11	0	
В	0	2	7	7	3	
С	3	0	3	0	1	
D	1	0	5	0	4	
Е	3	0	3	4	0	
	 	 				1

O número mínimo de retas é 5 (n = 5).

Designação ótima:

$$A \rightarrow 3 \ (c_{A3} = 7)$$

$$\mathrm{B} \to 1 \ (c_{\scriptscriptstyle B1} = 7)$$

$$C \rightarrow 2 \ (c_{C2} = 6)$$

$$D \rightarrow 4 \ (c_{D4} = 6)$$

$$E \rightarrow 5 \ (c_{E5} = 6)$$

$$Z = 7 + 7 + 6 + 6 + 6 = 32$$

b)

	1	2	3	4	5	(min.linha)
A	0	15	6	14	18	(0)
В	7	5	10	4	13	(4)

83

С	11	14	13	10	14	(10)
D	17	22	15	26	24	(15)
Е	12	8	10	9	13	(8)

1 1 1	1	2	3	4	5	
A	0	15	6	14	18	
В	3	1	6	0	9	
С	1	4	3	0	4	
D	2	7	0	11	9	
Е	4	0	2	1	5	
(min.col.)	(0)	(0)	(0)	(0)	(4)	

	1	2	3	4	5	
A	0	15	6	14	14	
В	3	1	6	0	5	
С	1	4	3	0	0	
D	2	7	0	11	5	
Е	4	0	2	1	1	

O número mínimo de retas é 5 (n = 5).

Designação ótima:

$$A \to 1 \ (c_{A1} = 0)$$

$$B \to 4 \ (c_{B4} = 4)$$

$$C \to 5 \ (c_{C5} = 14)$$

$$D \to 3 \ (c_{D3} = 15)$$

$$E \rightarrow 2 \ (c_{E2} = 8)$$

$$Z = 0 + 4 + 14 + 15 + 8 = 41$$

c)

	M1	M2	M3	M4	M5	(min.linha)
T1	10	11	4	2	8	(2)
T2	7	11	10	14	12	(7)
Т3	5	6	9	12	14	(5)

84

T4	13	15	11	10	7	(7)	
T5	5	3	3	7	5	(3)	
	,					p	:

	M1	M2	М3	M4	M5	
T1	8	9	2	0	6	
T2	0	4	3	7	5	
Т3	0	1	4	7	9	
T4	6	8	4	3	0	
T5	2	0	0	4	2	
(min.col.)	(0)	(0)	(0)	(0)	(0)	

O número mínimo de retas é 4 (# retas < n).

Menor elemento não coberto por alguma dessas linhas é o número 1.

	M1	M2	М3	M4	M5	
T1	8	8	1	0	6	
T2	0	3	2	7	5	
Т3	0	0	3	7	9	
T4	6	7	3	3	0	
T5	2	0	0	4	2	
	 	[

Agora, o número mínimo de retas é 5 (n = 5).

Designação ótima:

$$T1 \rightarrow M4 \ (c_{T1,M4} = 2)$$

$$T2 \rightarrow M1 \ (c_{T2,M1} = 7)$$

$$T3 \rightarrow M2 \ (c_{T3,M2} = 6)$$

$$T4 \rightarrow M5 \ (c_{T4,M5} = 7)$$

$$T5 \to M3 \ (c_{T5,M3} = 3)$$

$$Z = 2 + 7 + 6 + 7 + 3 = 25$$

5) Sejam:

 $X_t = \text{produção normal no período } t, t=1,...,T$

 Y_t = produção em horas extras no período t, t=1,...,T

 e_t = estoque ao final do período t, t=1,...,T (e_0 =estoque inicial)

 $S_t = unidades$

FO: Min
$$\sum_{t=1}^{T} p_{t} X_{t} + \sum_{t=1}^{T} q_{t} Y_{t} + h \sum_{t=1}^{T} e_{t}$$

$$e_{0} + X_{1} + Y_{1} = S_{1} + e_{1}$$

$$e_{1} + X_{2} + Y_{2} = S_{2} + e_{2}$$
s.a. ...
$$e_{T-1} + X_{T} + Y_{T} = S_{T} + e_{T}$$

$$X_{1}, Y_{2}, e_{t} \ge 0$$

6) Sejam:

 x_{ij} =quantidade de caixas de tomate produzidas na fazenda i e enviadas para a fábrica j, i=1,...,m e j=1,...,n.

 y_{jk} = quantidade de sopa produzida na fábrica j e enviadas para a loja k, j=1,...,n e k=1,...,l

 v_k = vendas da loja k, k=1,...,l

$$\begin{aligned} & \text{Max} & & \sum_{k=1}^{l} h_{k} v_{k} - \sum_{i=1}^{m} f_{i} \cdot \sum_{j=1}^{n} x_{ij} - \sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} x_{ij} - \sum_{j=1}^{n} g_{j} \sum_{k=1}^{l} y_{jk} - \sum_{j=1}^{n} \sum_{k=1}^{l} q_{jk} y_{jk} \\ & & \sum_{j=1}^{n} x_{ij} \leq a_{i} & & i = 1, ..., m \\ & & \sum_{i=1}^{m} x_{ij} = R_{j} \sum_{k=1}^{l} y_{kj} & & j = 1, ..., n \\ & \text{s.a.} & & \sum_{j=1}^{n} y_{jk} = v_{k} & \geq c_{k} \\ & & \sum_{k=1}^{l} y_{jk} = b_{j} \\ & & \text{Todas as variáveis positivas} \ (\geq 0) \end{aligned}$$

Capítulo 6

6.1. Dado o problema abaixo (cf. Balinski)

Min
$$Z = 4x_1 + 5x_2$$

sujeito a $x_1 + 4x_2 \ge 5$
 $3x_1 + 2x_2 \ge 7$
 $x_1, x_2 \ge 0$ e inteiros

Pede-se:

- a) Resolver pelo método dos planos de corte.
- b) Resolver pelo método branch and bound.

Convertendo à forma padrão:

Min
$$4.x_1 + 5.x_2$$

s.a.:

$$x_1 + 4.x_2 - x_3 + x_5 = 5$$

 $3.x_1 + 2.x_2 - x_4 + x_6 = 7$
 $x_1, x_2 \ge 0$ e inteiros

Usando o método das duas fases. Primeira fase:

Base	x_1	x_2	<i>X</i> ₃	χ_4	<i>X</i> ₅	<i>x</i> ₆	b
W	4	6	-1	-1	0	0	12
<i>X</i> ₅	1	4	-1	0	1	0	5
x_6	3	2	0	-1	0	1	7

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	b
W	5/2	0	1/2	-1	-3/2	0	9/2
<i>x</i> ₂	1/4	1	-1/4	0	1/4	0	5/4
<i>x</i> ₆	5/2	0	1/2	-1	-1/2	1	9/2

Base	x_1	x_2	Х3	<i>X</i> ₄	<i>x</i> ₅	<i>x</i> ₆	b
W	0	0	0	0	-1	-1	0
<i>x</i> ₂	0	1	-3/10	1/10	3/10	-1/10	4/5

x_1	1	0	1/5	-2/5	-1/5	2/5	9/5

w = 0, e as variáveis artificiais x_5 e x_6 estão fora da base. Segunda fase:

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	b
Z	0	0	-7/10	-11/10	56/5
x_2	0	1	-3/10	1/10	4/5
x_1	1	0	1/5	-2/5	9/5

A solução ótima é encontrada: $x_1 = 9/5$ e $x_2 = 4/5$, Z = 56/5, mas não são números inteiros.

a) Resolvendo o problema inteiro usando o método de planos de corte:

$$\begin{aligned} x_2 &= 4/5 - (-3/10x_3 + 1/10x_4) \\ x_2 &= (0 + x_3 + 0x_4) + (4/5 - 7/10x_3 - 1/10x_4) \Longrightarrow -7/10x_3 - 1/10x_4 + s_1 = -4/5 \end{aligned}$$

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	s_1	b
W	0	0	-7/10	-11/10	0	56/5
x_2	0	1	-3/10	1/10	0	4/5
x_1	1	0	1/5	-2/5	0	9/5
S ₁	0	0	-7/10	-1/10	1	-4/5

Base	x_1	x_2	<i>X</i> ₃	χ_4	S ₁	b
W	0	0	0	-1	-1	12
x_2	0	1	0	1/7	-3/7	8/7
x_1	1	0	0	-3/7	2/7	11/7
Х3	0	0	1	1/7	-10/7	8/7

Logo:

$$\begin{aligned} x_1 &= 11/7 - (-3/7x_4 + 2/7s_1) \\ x_1 &= (1 + x_4 - 0s_1) + (4/7 - 4/7x_4 - 2/7s_1) \Longrightarrow -4/7x_4 - 2/7s_1 + s_2 = -4/7 \end{aligned}$$

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	S ₁	<i>S</i> ₂	b
W	0	0	0	-1	-1	0	12
<i>x</i> ₂	0	1	0	1/7	-3/7	0	8/7
x_1	1	0	0	-3/7	2/7	0	11/7
х3	0	0	1	1/7	-10/7	0	8/7
<i>s</i> ₂	0	0	0	-4/7	-2/7	1	-4/7

Base	x_1	x_2	<i>X</i> ₃	χ_4	S ₁	<i>S</i> ₂	b
W	0	0	0	0	-1/2	-7/4	13
x_2	0	1	0	0	-1/2	1/4	1
x_1	1	0	0	0	1/2	-3/4	2
х3	0	0	1	0	-3/2	1/4	1
<i>X</i> ₄	0	0	0	1	1/2	-7/4	1

Solução inteira encontrada: $x_1 = 2$ e $x_2 = 1$, Z=13.

b) Usando o método branch-and-bound.

Tem-se: PL-2: $x_1 \le 1$, PL-3: $x_1 \ge 2$, PL-4: $x_2 \le 0$, PL-5: $x_2 \ge 1$.

PL-2: $x_1 \le 1$

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	S _{PL-2}	b
Z	0	0	-7/10	-11/10	0	56/5
x_2	0	1	-3/10	1/10	0	4/5
x_1	1	0	1/5	-2/5	0	9/5
S _{PL-2}	0	0	-1/5	2/5	1	-4/5

Base x_1 x_2	<i>x</i> ₃ <i>x</i> ₄	s _{PL-2} b
------------------	---	---------------------

Z	0	0	0	-25/20	-7/10	14
x_2	0	1	0	-1/2	-3/2	2
x_1	1	0	0	0	1	1
<i>x</i> ₃	0	0	1	-2	-5	4

PL-3: $x_1 \ge 2$

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	S _{PL-3}	b
Z	0	0	-7/10	-11/10	0	56/5
x_2	0	1	-3/10	1/10	0	4/5
x_1	1	0	1/5	-2/5	0	9/5
SPL-3	0	0	1/5	-2/5	1	-1/5

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	S _{PL-4}	b
Z	0	0	-5/4	0	-11/8	47/4
x_2	0	1	-1/4	0	1/4	3/4
x_1	1	0	0	0	-1	2
<i>X</i> ₄	0	0	-1/2	1	-5/2	1/2

PL-4: $x_2 \le 0$

Base	x_1	x_2	x_3	<i>X</i> ₄	S _{PL-4}	b
Z	0	0	-7/10	-11/10	0	56/5
x_2	0	1	-3/10	1/10	0	4/5
x_1	1	0	1/5	-2/5	0	9/5
SPL-4	0	0	3/10	-1/10	1	-4/5

Base	x_1	x_2	<i>X</i> ₃	χ_4	S _{PL-4}	b
Z	0	0	-4	0	-4	20

x_2	0	1	0	0	1	0
x_1	1	0	-1	0	4	5
X4	0	0	-3	1	-10	8

PL-5: $x_2 \ge 1$.

Base	x_1	x_2	<i>X</i> ₃	χ_4	S _{PL-5}	b
Z	0	0	-7/10	-11/10	0	56/5
x_2	0	1	-3/10	1/10	0	4/5
x_1	1	0	1/5	-2/5	0	9/5
SPL-5	0	0	-3/10	1/10	1	-1/5

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	S _{PL-5}	b
Z	0	0	0	13/5	-7/3	35/3
x_2	0	1	0	0	-1	1
x_1	1	0	0	-1/3	5/3	5/3
Х3	0	0	1	-1/3	2/3	2/3

Solução Inviável

Toma-se o caminho de PL-3, acrescentando PL-6: $x_2 \ge 1$.

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	S _{PL-3}	S _{PL-6}	b
Z	0	0	-5/4	0	-11/8	0	47/4
x_2	0	1	-1/4	0	1/4	0	3/4
x_1	1	0	0	0	-1	0	2
X4	0	0	-1/2	1	-5/2	0	1/2
SPL-6	0	0	-1/4	0	1/4	1	-1/4

Base x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	S _{PL-3}	S _{PL-6}	b	
------------	-------	-----------------------	-----------------------	-------------------	-------------------	---	--

Z	0	0	0	0	-21/8	-5	13
x_2	0	1	0	0	0	-1	1
x_1	1	0	0	0	-1	0	2
<i>x</i> ₄	0	0	0	1	-3	-2	1
SPL-6	0	0	1	0	-1	-4	1

Solução ótima alcançada.

6.2. Seja o seguinte problema:

Max
$$Z = 5x_1 + 2x_2$$

sujeito a $x_1 \le 3$
 $x_2 \le 4$
 $x_1 + 2x_2 \le 10$
 $x_1, x_2 \ge 0$ e inteiros

- a) Resolver graficamente.
- b) Resolver pelo método de cortes.
- c) Resolver por branch and bound.

Colocando na forma padrão:

a) Resolvendo graficamente:

No gráfico acima a linha em vermelho representa a função objetivo e a região em amarelo determina a região de factibilidade.

Resolvendo pelo Método Simplex:

Base	Z	X ₁	X ₂	Х3	X4	X5	b	razão
Max	1	-5	-2	0	0	0	0	
Х3	0	1	0	1	0	0	3	3/1
X4	0	0	1	0	1	0	4	
X ₅	0	1	2	0	0	1	10	10/1

$$\begin{array}{l} \text{Min } c_j = -5 \Rightarrow sai \; x_1 \\ \text{Min } \left\{ \frac{3}{1}, \frac{10}{1} \right\} = 3 \Rightarrow \; entra \; x_3 \end{array}$$

Base	Z	x ₁	X2	X3	X4	X5	b
Max	1	0	-2	5	0	0	15
x ₁	0	1	0	1	0	0	3
X ₄	0	0	1	0	1	0	4
X ₅	0	0	2	-1	0	1	7

$$\begin{array}{l} \text{Min } c_{ij} = -2 \Rightarrow x_2 \\ \text{Min } \left\{ \frac{4}{1}, \frac{7}{2} \right\} = \frac{7}{2} \Rightarrow \text{ entra } x_5 \end{array}$$

Base	Z	X ₁	x ₂	X ₃	x_4	X ₅	b
Max	1	0	0	4	0	1	22
x ₁	0	1	0	1	0	0	3
X4	0	0	0	1/2	1	- 1/2	1/2
X ₂	0	0	1	- 1/2	0	1/2	7/2

Como todos os c_{ij} 's ≥ 0 (não negativo), o Tableau está no ótimo!

b) Método de Cortes de Gomory:

$$\begin{array}{l} x_2 = 7/2 - (-\frac{1}{2} \ x_3 + \frac{1}{2} \ x_5) = 3 + \frac{1}{2} - (-(1 - \frac{1}{2}) \ x_3 + \frac{1}{2} \ x_5) \\ x_2 = (3 + x_3 - 0x_5) + (\frac{1}{2} - \frac{1}{2} \ x_3 - \frac{1}{2} \ x_5) \implies \\ (\frac{1}{2} - \frac{1}{2} \ x_3 - \frac{1}{2} \ x_5) \leq 0 \implies \qquad -\frac{1}{2} \ x_3 - \frac{1}{2} \ x_5 + x_6 = -\frac{1}{2} \end{array}$$

Base	Z	x ₁	X ₂	X3	x_4	X ₅	X ₆	b
Max	1	0	0	4	0	1	0	22
x ₁	0	1	0	1	0	0	0	3
X4	0	0	0	1/2	1	- 1/2	0	1/2
X ₂	0	0	1	- 1/2	0	1/2	0	7/2
X ₆	0	0	0	- 1/2	0	- 1/2	1	- 1/2
razão				4 / (-		1 / (-		
				1/2)		1/2)		

Candidato a sair da base: x₆

Pelo teste da razão tem-se que a variável x_5 deve entrar na base no lugar da variável x_6 .

Assim, o elemento pivot é (- ½) e tem-se que fazer uma operação de pivotamento. Abaixo segue o quadro após a operação de pivotamento.

Base	Z	X ₁	X ₂	Х3	X4	X5	Х6	b
Max	1	0	0	3	0	0	2	21
x ₁	0	1	0	1	0	0	0	3
X ₄	0	0	0	1	1	0	-1	1
X ₂	0	0	1	-1	0	0	1	3
Х6	0	0	0	1	0	1	-2	1

A solução ótima inteira foi encontrada: $Z=21; x_1=3 \ e \ x_2=3.$

c) Usando o método do Branch and Bound:

Relaxando as restrições de integralidade tem-se um problema linear, cuja solução ótima é:

$$Z = 22$$
; $x_1 = 3$ e $x_2 = 7/2 = 3.5$.

Como x_2 não é inteiro, tem-se que, a partir do problema linear (PL1) devem ser criados 2 novos problemas, PL2 e PL3:

$$PL2 = PL1 + restrição x_2 \le 3 \Rightarrow x_2 + s_i = 3$$

PL3 = PL1 + restrição:
$$x_2 \ge 3 \Rightarrow -x_2 + s_{ii} = -4$$

PL2: introduzindo a nova restrição no tableau ótimo do PL1 tem-se

Base	Z	X ₁	X ₂	X ₃	X ₄	X ₅	Si	b
Max	1	0	0	4	0	1	0	22
x ₁	0	1	0	1	0	0	0	3
X4	0	0	0	1/2	1	- 1/2	0	1/2
x ₂	0	0	1	- 1/2	0	1/2	0	7/2
Si	0	0	1	0	0	0	1	3

$A_{3,5}(-1)$

Base	Z	X ₁	X ₂	X3	X4	X5	Si	b	
Max	1	0	0	4	0	1	0	22	
X ₁	0	1	0	1	0	0	0	3	
X4	0	0	0	1/2	1	- 1/2	0	1/2	
x ₂	0	0	1	-1/2	0	1/2	0	7/2	
Si	0	0	0	1/2	0	-1/2	1	-1/2	⇒ sai

razão $1/(-\frac{1}{2})$

↑ entra

Pivotando:

Base	Z	x ₁	x ₂	X ₃	X ₄	X ₅	Si	b
Max	1	0	0	3	0	1	2	21
x ₁	0	1	0	1	0	0	0	3
X4	0	0	0	0	1	0	-1	1
X ₂	0	0	1	0	0	0	1	3
X ₅	0	0	0	-1	0	1	-2	1

Neste caso a solução ótima é inteira: Z = 21; $x_1 = 3$ e $x_2 = 3$.

Note que a solução do PL2 é o maior valor para soluções inteiras e, por este motivo, não precisa testar o PL3.

Abaixo segue o diagrama de solução do Branch and Bound:

6.3. Seja o seguinte problema:

Max
$$Z = 2x_1 + 3x_2$$
 sujeito a
$$-x_1 + 2x_2 \le 4$$

$$x_1 + x_2 \le 6$$

$$x_1 + 3x_2 \le 9$$

$$x_1, x_2 \ge 0 \text{ einteiros}$$

- a) Resolver graficamente.
- b) Resolver pelo método de cortes.
- c) Resolver por "branch and bound".

Resolvendo o problema original sem as restrições de integralidade:

Base	Z	X ₁	X ₂	X ₃	X4	X ₅	b	Razão
Max	1	-2	-3	0	0	0	0	
Х3	0	-1	2	1	0	0	4	$4/2 \Rightarrow \text{sai}$
X4	0	1	1	0	1	0	6	6/1
X ₅	0	1	3	0	0	1	9	9/3

↑ entra

Candidato a sair da base: Min $c_j \Rightarrow x_2$.

Candidato a entrar na base a partir do teste da razão: $\Rightarrow x_3$.

$$A_1(\frac{1}{2}); A_{1,0}(3); A_{1,2}(-1), A_{1,2}(-3)$$

Base	Z	х1	X ₂	Х3	X4	X5	b	Razão
Max	1	-7/2	0	3/2	0	0	6	
X2	0	- 1/2	1	1/2	0	0	2	
X ₄	0	3/2	0	- 1/2	1	0	4	2/(3/2)
X5	0	5/2	0	-3/2	0	1	3	3/(5/2) ⇒
								sai

↑ entra

Candidato a sair da base: Min $c_j \Rightarrow x_1$.

Candidato a entrar na base a partir do teste da razão: $\Rightarrow x_4$.

 $A_3(2/5)$; $A_{3,2}(-3/2)$; $A_{3,1}(\frac{1}{2})$, $A_{3,0}(7/2)$

Base	Z	X ₁	X ₂	X ₃	X4	X ₅	b
Max	1	0	0	-3/5	0	7/5	51/5
X ₂	0	0	1	1/5	0	1/5	13/5
X4	0	0	0	2/5	1	-3/5	11/5
x ₁	0	1	0	-3/5	0	2/5	6/5

Razão

(13/5)/(1/5)

 $(11/5)/(2/5) \Rightarrow$

sai

↑ entra

Candidato a sair da base: Min $c_j \Rightarrow x_3$.

Candidato a entrar na base a partir do teste da razão: $\Rightarrow x_4$.

$$A_2(5/2); A_{2,3}(3/5); A_{2,0}(3/5), A_{2,1}(-1/5)$$

Base	Z	x ₁	X ₂	X ₃	x_4	X ₅	b	Razão
Max	1	0	0	0	3/2	1/2	27/2	
x ₂	0	0	1	0	-1/2	1/2	3/2	
Х3	0	0	0	1	5/2	-3/2	11/2	
x ₁	0	1	0	0	3/2	-1/2	9/2	

Quadro ótimo do PL: z = 27/2; $x_1 = 9/2$; $x_2 = 3/2$

a)Solução Gráfica:

b) Método de plano de cortes de Gomory:

$$\begin{split} x_1 &= 9/2 - (3/2x_4 - \frac{1}{2}x_5) = 2 + \frac{1}{2} - [1x_4 + \frac{1}{2}x_4 - (1x_5 - \frac{1}{2}x_5)] \\ x_1 &= (2 - x_4 + x_5) + (\frac{1}{2} - \frac{1}{2}x_4 - \frac{1}{2}x_5) \\ \frac{1}{2} - \frac{1}{2}x_4 - \frac{1}{2}x_5 &\leq 0 \qquad \Rightarrow \qquad \frac{1}{2} - \frac{1}{2}x_4 - \frac{1}{2}x_5 + s_1 = -\frac{1}{2} \end{split}$$

Inserindo no Tableau ótimo tem-se:

Base	Z	x ₁	x ₂	Х3	X4	X5	s_1	b	
Max	1	0	0	0	3/2	1/2	0	27/2	
X ₂	0	0	1	0	-1/2	1/2	0	3/2	
Х3	0	0	0	1	5/2	-3/2	0	11/2	
x ₁	0	1	0	0	3/2	-1/2	0	9/2	
s_1	0	0	0	0	-1/2	-1/2	1	-1/2	⇒ sai
Razão	ı	1		ı	(3/2)/(-1/2)	(1/2)/(-	1	1	_

Razão $(3/2)/(-\frac{1}{2})$ $(\frac{1}{2})/(-\frac{1}{2})$

¹⁄2) ↑ entra

Base	Z	X ₁	X ₂	X3	X4	X5	s_1	b
Max	1	0	0	0	1	0	1	13
x ₂	0	0	1	0	-1	0	1	1
Х3	0	0	0	1	4	0	-3	7
x ₁	0	1	0	0	2	0	-1	5
X ₅	0	0	0	0	1	1	-2	1

Neste caso a solução ótima é inteira: Z = 13; $x_1 = 5$ e $x_2 = 1$.

c) Método Branch and Bound:

Relaxando as restrições de integralidade tem-se um problema linear, cuja solução ótima é:

$$Z = 27/2$$
; $x_1 = 9/2 = 4.5$ e $x_2 = 3/2 = 1.5$.

Como x_1 não é inteiro, tem-se que, a partir do problema linear (PL1) devem ser criados 2 novos problemas, PL2 e PL3:

$$PL2 = PL1 + restrição: x_1 \ge 5 \Rightarrow -x_1 + s_1 = -5$$

$$PL3 = PL1 \, + \, restriç\~ao \; x_1 \leq 4 \Longrightarrow x_1 \, + \, s_2 = 4$$

PL2: introduzindo a nova restrição no tableau ótimo do PL1 tem-se:

Base	Z	x ₁	x ₂	X ₃	X ₄	X ₅	s_1	b	Razão
Max	1	0	0	0	3/2	1/2	0	27/2	
X ₂	0	0	1	0	-1/2	1/2	0	3/2	
Х3	0	0	0	1	5/2	-3/2	0	11/2	
x ₁	0	1	0	0	3/2	-1/2	0	9/2	
s_1	0	-1	0	0	0	0	1	-5	

 $A_{3,1}(1)$

Base	Z	\mathbf{x}_1	\mathbf{x}_2	X3	x_4	X ₅	s_1	b	Razão
Max	1	0	0	0	3/2	1/2	0	27/2	
X ₂	0	0	1	0	-1/2	1/2	0	3/2	
Х3	0	0	0	1	5/2	-3/2	0	11/2	
X ₁	0	1	0	0	3/2	-1/2	0	9/2	
S ₁	0	0	0	0	3/2	-1/2	1	-1/2	⇒ sai

↑ entra

$$A_5(-2)$$
; $A_{4,3}(2)$; $A_{4,2}(3/2)$, $A_{4,1}(-\frac{1}{2})$, $A_{4,0}(-\frac{1}{2})$

Base	Z	x ₁	X ₂	X ₃	x_4	X ₅	s_1	b	Razão
Max	1	0	0	0	1	0	1	13	
X ₂	0	0	1	0	-1	0	1	1	
Х3	0	0	0	1	4	0	-3	7	
x ₁	0	1	0	0	2	0	-1	5	
X ₅	0	0	0	0	1	1	-2	1	

Neste caso a solução ótima é inteira: Z = 13; $x_1 = 5$ e $x_2 = 1$.

Pode-se parar a análise já que o maior valor inteiro possível para 13,5 é 13, então a solução ótima foi encontrada.

6.4. Seja o problema de PL e seu quadro ótimo:

Max
$$Z = 3x_1 + 5x_2$$

sujeito a $2 x_1 + 4 x_2 \le 10$
 $x_1 + 2 x_2 \le 12$
 $x_1, x_2 \ge 0$

Base	Z	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	b
Z	1	0	0	19/16	1/8	107/8
x_1	0	1	0	-1/8	1/4	7/4
x_2	0	0	1	5/16	-1/8	13/8

Suponha que seja colocada agora a restrição que todas as variáveis intervenientes no problema devam ser inteiras. O que você faria, excluindo soluções gráficas?

Pelo método dos planos de corte, em

$$x_1 = 7/4 - (-1/8x_3 + 1/4x_4)$$

$$x_1 = (1 + x_3 + 0x_4) + (3/4 - 7/8x_3 - 1/4x_4) \Rightarrow -7/8x_3 - 1/4x_4 + x_5 = -3/4$$

$$x_2 = 13/8 - (5/16x_3 - 1/8x_4)$$

$$x_2 = (1 + 0x_3 + x_4) + (5/8 - 5/16x_3 - 7/8x_4) \Rightarrow -5/16x_3 - 7/8x_4 + x_6 = -5/8$$

Base	Z	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	x_5	<i>x</i> ₆	b
Z	1	0	0	19/16	1/8	0	0	107/8
x_1	0	1	0	-1/8	1/4	0	0	7/4
x_2	0	0	1	5/16	-1/8	0	0	13/8
<i>X</i> ₅	0	0	0	-7/8	-1/4	1	0	-3/4
<i>x</i> ₆	0	0	0	-5/16	-7/8	0	1	-5/8

Base	Z	x_1	x_2	Х3	<i>X</i> ₄	<i>x</i> ₅	<i>x</i> ₆	b
Z	1	0	0	3/4	0	1/2	0	13
x_1	0	1	0	-2	0	1	0	1
x_2	0	0	1	3/4	0	-1/2	0	2
X5	0	0	0	7/2	1	-4	0	1
<i>X</i> ₆	0	0	0	11	0	-7/2	1	1

Solução ótima.

6.5. Resolver o problema de PLI usando o método do branch and bound.

$$\label{eq:max} \begin{aligned} \text{Max Z} &= & x_1 + 2 \ x_2 \\ \text{sujeito a} & x_1 + & x_2 \leq 10 \\ & 2 \ x_1 + 5 \ x_2 \leq 30 \\ & x_1 \ e \ x_2 \geq 0 \ e \ \text{inteiros} \end{aligned}$$

Usando o método das duas fases. Primeira fase:

Base	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	b
Z	-1	-2	0	0	0
<i>x</i> ₃	1	1	1	0	10
x_4	2	5	0	1	30

102

Base	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	b
Z	-1/5	0	0	2/5	12
<i>x</i> ₃	3/5	0	1	-1/5	4
x_2	2/5	1	0	1/5	6

Base	x_1	x_2	<i>x</i> ₃	x_4	b
Z	0	0	1/3	1/3	40/3
x_1	1	0	5/3	-1/3	20/3
x_2	0	1	-2/3	1/3	10/3

Tableau ótimo encontrado. Usando branch-and-bound em : PL-2: $x_1 \le 6$, e PL-3: $x_1 \ge 7$.

PL-2: $x_1 \le 6$

Base	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	SPL-2	b
Z	0	0	1/3	1/3	0	40/3
x_1	1	0	5/3	-1/3	0	20/3
x_2	0	1	-2/3	1/3	0	10/3
S _{PL-2}	0	0	-5/3	1/3	1	-2/3

Base	x_1	x_2	x_3	x_4	S _{PL-2}	b
Z	0	0	0	2/5	1/5	66/5
x_1	1	0	0	0	1	6
x_2	0	1	0	1/5	-2/5	18/5
<i>x</i> ₃	0	0	1	-1/5	-3/5	2/5

PL-3: $x_1 \ge 7$.

Base	x_1	x_2	<i>x</i> ₃	x_4	S _{PL-3}	b
Z	0	0	1/3	1/3	0	40/3
x_1	1	0	5/3	-1/3	0	20/3
x_2	0	1	-2/3	1/3	0	10/3
SPL-3	0	0	5/3	-1/3	1	-1/3

Base	x_1	x_2	<i>X</i> ₃	<i>X</i> 4	SPL-3	b
Z	0	0	2	0	1	13
x_1	1	0	0	0	-1	7
x_2	0	1	1	0	1	3
x_4	0	0	-5	1	-3	1

Solução ótima.

6.6. Um certo complexo agro-industrial deseja desenvolver um sistema de aprovisionamento d'água a partir de m localizações, potencialmente favoráveis. O custo de bombear água do poço i=1,2,...,m consiste num custo fixo a_{ij} e um custo variável b_i , proporcional à quantidade d'água bombeada, b_iQ_i .

A quantidade máxima d'água produzida pelo poço i é L_i , i=1,2,...,m. O problema consiste em decidir quais poços ativar e quanto bombear de cada um, de forma a minimizar custos, mas atendendo à demanda total d'água Q. Formular um programa linear misto que resolva o problema.

 $Q_i =$ água produzida no poço i

 $Y_i = ativar ou não o poço i, Y_i \in \{0,1\}$

$$Min \quad \sum_{i=1}^{m} b_i Q_i + \sum_{i=1}^{m} a_i Y_i$$

$$Q_{i} \leq L_{i}Y_{i} \quad \forall i$$
 s.a.
$$\sum Q_{i}$$

$$Q_{i} \geq 0 \quad Y_{i} \in \{0,1\}$$

6.7. Seja um caixeiro viajante que dispõe de nove dias para visitar as três cidades A, B e C. as vendas que ele consegue fazer em cada cidade dependem do número de dias despendido na cidade, segundo uma relação decrescente, conforme a tabela. Assim, um dia na cidade A gera \$ 30 em vendas, dois dias \$ 30 mais \$ 20, etc.

DIAS	CIDADES					
DIAS	A	В	C			
1	30	50	40			
2	20	20	30			
3	15	15	20			
4	10	15	10			

Pede-se formular um programa linear inteiro que determine quantos dias passar em cada cidade, mas maximizando as vendas estimadas.

 Y_{AI} = decisão de passar um dia na cidade A

 Y_{A2} = decisão de passar dois dias na cidade B

 Y_{A3} = decisão de passar três dias na cidade C

 Y_{A4} = decisão de passar quatro dias na cidade D

Idem para Y_{B1} , ..., Y_{B4} , e Y_{C1} ,..., Y_{C4} .

Max
$$30Y_{AI} + 20Y_{A2} + 15Y_{A3} + 10Y_{A4} + 50Y_{BI} + 20Y_{B2} + 15Y_{B3} + 15Y_{B4} + 40Y_{CI} + 30Y_{C2} + 20Y_{C3} + 10Y_{C4}$$

s.a. $Y_{AI} + Y_{A2} + Y_{A3} + Y_{A4} + Y_{BI} + Y_{B2} + Y_{B3} + Y_{B4} + Y_{CI} + Y_{C2} + Y_{C3} + Y_{C4} \le 9$
 $Y_{A2} \le Y_{AI}$ $Y_{A3} \le Y_{A2}$ $Y_{A4} \le Y_{A3}$
 $Y_{B2} \le Y_{BI}$ $Y_{B3} \le Y_{B2}$ $Y_{B4} \le Y_{B3}$
 $Y_{C2} \le Y_{CI}$ $Y_{C3} \le Y_{C2}$ $Y_{C4} \le Y_{C3}$

$$Y_{A1}, Y_{A2}, Y_{A3}, Y_{A4}, Y_{B1}, Y_{B2}, Y_{B3}, Y_{B4}, Y_{C1}, Y_{C2}, Y_{C3}, Y_{C4} \in \{0,1\}$$

De forma alternativa:

a)

```
Y_{Aj} = \text{número de dias em } A \notin j
Y_{Bj} = \text{número de dias em } B \notin j
Y_{Cj} = \text{número de dias em } C \notin j

Max 30 \ Y_{AI} + 50 \ Y_{A2} + 65 \ Y_{A3} + 75 \ Y_{A4}
s.a. Y_{AI} + 2 \ Y_{A2} + 3 \ Y_{A3} + 4 \ Y_{A4} \le 9
Y_{AI} + Y_{A2} + Y_{A3} + Y_{A4} \le 1
Y_{AI}, \ Y_{A2}, \ Y_{A3}, \ Y_{A4} \ge 0
```

6.8. A Empresa Distribuidora DOMUS tem cinco entregas a fazer hoje. Ela deve fazer uma entrega de 1.000 kg ao freguês A, 2.000 kg ao freguês B, 3.000 kg ao freguês C, 5.000 kg ao freguês D e 8.000 kg ao freguês E. Trata-se de cargas unitárias que devem ser transportadas numa única viagem.

A empresa tem a oferta de fretar quatro furgões: furgão 1 tem capacidade de 2.000 kg, furgão 2 com 6.000 kg, furgão 3 com 8.000 kg e furgão 4 com 11.000 kg. O custo fixo de fretar o furgão j é c_j .

Denominando $y_j = 1$ ou 0 a decisão de fretar o furgão j ou não fretar e de x_{ij} a decisão de servir o freguês i com o furgão j, pede-se:

- a) Formular um modelo de programação inteira para determinar o custo mínimo de fretar furgões e atender os fregueses, supondo que cada furgão só possa fazer uma única viagem hoje, embora atendendo mais de um freguês.
- b) Mostre como alterar sua formulação se houver um custo adicional c_{ij} quando o cliente i for atendido pelo furgão j.

Min $c_1y_1 + c_2y_2 + c_3y_3 + c_4y_4$ s.a. $1000x_{11} + 2000x_{21} \le 2000 \ y_1$ $1000x_{12} + 2000x_{22} + 3000x_{32} \le 6000 \ y_2$ $1000x_{13} + 2000x_{23} + 3000x_{33} + 5000x_{43} \le 8000 \ y_3$ $1000x_{14} + 2000x_{24} + 3000x_{34} + 5000x_{44} + 8000x_{54} \le 11000 \ y_4$

$$\sum_{j=1}^{4} x_{1j} = 1$$

$$\sum_{j=1}^{4} x_{2j} = 1$$

$$\sum_{j=1}^{4} x_{3j} = 1$$

$$\sum_{j=1}^{4} x_{4j} = 1$$

$$\sum_{i=1}^{4} x_{5j} = 1$$

Nota: nesta formulação cada furgão só pode fazer uma viagem, embora atendendo, eventualmente, a mais de um cliente.

b)

Min
$$\sum_{j=1}^{4} c_j y_j + \sum_{i=1}^{5} \sum_{j=1}^{4} c_{ij} x_{ij}$$

Com as mesmas restrições que em (a).

9. A Empresa Águas Energéticas possui um conjunto de I jazidas de água mineral. Para a jazida $i \in I$ produzir Q_i litros d'água engarrafada ela incorre no custo $c_i Q_i$, com produção máxima limitada a \bar{Q}_i .

Essa água engarrafada deve ser entregue a J centros de distribuição potenciais. Caso o centro de distribuição $j \in J$ seja ativado, ele vai incorrer em um custo fixo f_j e em custos variáveis $h_j v_j$, sendo h um coeficiente de custo por litro e v_j o

volume de água recebido, o qual é limitado a um volume máximo v_j . Toda a água recebida pelo centro de distribuição é vendida no mesmo período e ela gera uma receita de vendas $p_j v_j$.

O custo de entregar um litro de água engarrafada na fonte i ao centro de distribuição j é q_{ij} .

Pede-se:

- a) Formule um modelo de PLI que permita à Empresa Águas Energéticas decidir quais centros de distribuição ativar, de modo a maximizar receitas menos custos de engarrafamento, transporte e vendas.
- b) Reescreva o modelo acima de modo que cada jazida ativada entregue sua produção a um único centro de distribuição j.

c) Reescreva o modelo (a) supondo que as jazidas de água podem ou não ser ativadas. Caso a jazida i seja ativada, para produzir Q_i litros d'água engarrafada, ela incorre no custo $g_i + c_iQ_i$ onde g_i é o custo fixo de abertura da jazida $i \in I$.

Sejam:

 $w_i = \text{decisão de ativar a distribuição em } j \in J$

 $y_{ij} = \text{litros de água engarrafada produzidas em } i \in I$ e entregues em $j \in J$

a)

Max
$$\sum_{j \in J} p_j v_j - \sum_{j \in J} f_j w_j - \sum_{j \in J} h_j v_j - \sum_{i \in I} c_i Q_i - \sum_i \sum_j q_{ij} y_{ij}$$

$$Q_{i} \leq \overline{Q}_{i} \quad i \in I$$

$$v_{j} \leq \overline{V}_{j} \quad j \in J$$

$$\sum_{j \in J} y_{ij} \quad i \in I$$

$$\sum_{i} y_{ij} = v_{j}$$

$$w_{j} \in \{0,1\}$$

$$Q_{i} \geq 0, v_{j} \geq 0, y_{ij} \geq 0 \quad i \in I, j \in J$$

b)

Seja:

 x_{ij} = a fonte $i \in I$ entrega exclusivamente sua produção ao centro de distribuição $j \in J$ (variável 0 ou 1).

Acrescentam-se as restrições:

$$y_{ij} = Q_{ij}x_{ij} \quad i \in I, j \in J$$

$$\sum_{j \in J} x_{ij} = 1 \quad i \in I$$

$$x_{ij} \in \{0,1\} \quad i \in I, j \in J$$

e a terceira restrição de a) é eliminada.

c)

Seja:

 $z_i = \text{decisão de abrir a jazida } i \in I$.

A função objetivo ganha mais um termo: $-g_i z_i$, e a primeira restrição modifica-

se a:

$$Q_i \le \overline{Q}_i z_i$$
$$z_i \in \{0,1\}$$

Capítulo 7

1. Max
$$Z - 3x1 - x2 - 3x3 + 0x4 + 0x5 + 0x6 = 0$$

s.a. $2x1 + x2 + x3 + x4 = 2$
 $x1 + 2x2 + 3x3 + x5 = 5$
 $2x1 + 2x2 + x3 + x6 = 6$
 $xi \ge 0 \quad i = 1,2,....6$

(i) <u>Primeiro passo</u> (entra x1 e sai x4)

Base: (x4 x5 x6)

$$B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\pi = c^B B^{-1} = (0 \quad 0 \quad 0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (0 \quad 0 \quad 0)$$

$$-\bar{c}_1 = -c_1 + \pi a_1 = -3 + (0 \quad 0 \quad 0) \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = -3 \quad (mais \ negativo)$$

$$-\bar{c}_2 = -c_2 + \pi a_2 = -1 + (0 \quad 0 \quad 0) \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = -1$$

$$-\bar{c}_3 = -c_3 + \pi a_3 = -3 + (0 \quad 0 \quad 0) \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = -3$$

	C_B	Base		B ⁻¹		b	V.S.	a1	Quo.
	0	x4	1	0	0	2	х4	2	1
Γ	0	х5	0	1	0	5		1	5
Γ	0	х6	0	0	1	6		2	3

(ii) Segunda passo (entra x3 e sai x5)

Base: (x1 x5 x6)

$$B^{-1} = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$\pi = c^B B^{-1} = (3 \quad 0 \quad 0) \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} = (3/2 \quad 0 \quad 0)$$

$$-\bar{c}_2 = -c_2 + \pi a_2 = -1 + (3/2 \quad 0 \quad 0) \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = -1 + \frac{3}{2} = \frac{1}{2}$$

	В				
2	0	0	1	0	0
1	1	0	0	1	0
2	0	1	0	0	1
				n-1	

				B ⁻¹	
1	0	0	0,5	0	0
0	1	0	-0,5	1	0
0	0	1	-1	0	1

$$-\bar{c}_3 = -c_3 + \pi a_3 = -3 + (3/2 \quad 0 \quad 0) \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = -3 + \frac{3}{2} = -\frac{3}{2}$$
 (único negativo)

$$\bar{a}_3 = B^{-1}a_3 = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 5/2 \\ 0 \end{pmatrix}$$

$$\bar{b} = B^{-1}b = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$

C _B	Base	B ⁻¹			b*	V.S.	a*3	Quo.
3	x1	1/2	0	0	1		1/2	2
0	х5	-1/2	1	0	4	x5	5/2	8/5
0	х6	-1	0	1	4		0	Х

(iii) Terceiro passo (quadro final)

Base: (x1 x2 x6)

$$B^{-1} = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -1/5 & 2/5 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$\pi = c^B B^{-1} = (3 \quad 3 \quad 0) \begin{pmatrix} 3/5 & -1/5 & 0 \\ -1/5 & 2/5 & 0 \\ -1 & 0 & 1 \end{pmatrix} = (6/5 \quad 3/5 \quad 0)$$

$$-\bar{c}_2 = -c_2 + \pi a_2 = -1 + (6/5 \quad 3/5 \quad 0) \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \frac{9}{5}$$

$$-\bar{c}_4 = -c_4 + \pi a_4 = -0 + (6/5 \quad 3/5 \quad 0) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 6/5$$

Como não há coeficientes negativos na linha zero, encontra-se na solução ótima. Portanto:

$$\bar{b} = B^{-1}b = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -1/5 & 2/5 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 8/5 \\ 4 \end{pmatrix}$$

C_B	Base		b*		
3	x1	3/5	-1/5	0	1/5
3	x2	-1/5	2/5	0	8/5
0	х6	-1	0	1	4

$$Z^* = 3 \times \frac{1}{5} + 3 \times \frac{8}{5} + 0 \times 4 = \frac{27}{5}$$

2. Max
$$Z - x1 - 2x2 - 3x3 + x4 + Mx5 + Mx6 + Mx7 = 0$$

s.a. $x1 + 2x2 + 3x3 + x5 = 15$
 $2x1 + x2 + 5x3 + x6 = 20$
 $x1 + 2x2 + x3 + x4 + x7 = 10$

1,67	0	0	1	-0,33	0
0,33	1	0	0	0,33	0
1,67	0	1	0	-0,33	1

				B-1	
1	0	0	0,6	-0,2	0
0	1	0	-0,2	0,4	0
0	0	1	-1	0	1

$$xi \ge 0$$
 $i = 1,2,...7$

(i) Primeiro passo (entra x3 e sai x6)

Base: (x5 x6 x7)

$$B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\pi = c^B B^{-1} = (-M - M - M) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (-M - M - M)$$

$$-\bar{c}_1 = -c_1 + \pi a_1 = -1 + (-M - M) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = -4M$$

$$-\bar{c}_2 = -c_2 + \pi a_2 = -2 + (-M - M) \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = -5M$$

$$-\bar{c}_3 = -c_3 + \pi a_3 = -3 + (-M - M) \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = -9M \text{ (mais negativo)}$$

$$-\bar{c}_4 = -c_4 + \pi a_4 = +1 + (-M - M - M) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = -M$$

C_B	Base		B ⁻¹			V.S.	a3	Quo.
-M	x5	1	0	0	15		3	5
-M	x6	0	1	0	20	х6	5	4
-M	x7	0	0	1	10		1	10

(ii) <u>Segunda passo</u> (entra x2 e sai x5)

Base: (x5 x3 x7)

$$B^{-1} = \begin{pmatrix} 1 & -3/5 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\pi = c^B B^{-1} = (-M \quad 3 \quad -M) \begin{pmatrix} 1 & -3/5 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (-M \quad 3M/5 \quad -M)$$

$$-\bar{c}_1 = -c_1 + \pi a_1 = -1 + (-M \quad 3M/5 \quad -M) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = -\frac{4M}{5}$$

$$-\bar{c}_2 = -c_2 + \pi a_2 = -2 + (-M \quad 3M/5 \quad -M) \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = -\frac{17M}{5}$$
 (mais negativo)

$$-\bar{c}_4 = -c_4 + \pi a_4 = +1 + (-M \quad 3M/5 \quad -M) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = -M$$

	В				
1	3	0	1	0	0
0	5	0	0	1	0
0	1	1	0	0	1
				B ⁻¹	
1	0	0	1	-0,6	0
0	1	0	0	0,2	0
0	1	0	0		0

$$\bar{a}_2 = B^{-1}a_3 = \begin{pmatrix} 1 & -3/5 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 5/2 \\ 0 \end{pmatrix}$$

$$\bar{b} = B^{-1}b = \begin{pmatrix} 1 & -3/5 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 15 \\ 20 \\ 10 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 10 \end{pmatrix}$$

C _B	Base	B ⁻¹			b*	V.S.	a*2	Quo.
-M	х5	1	-3/5	0	3		1/5	15
-3	х3	0	1/5	0	4	x5	5/2	8/5
-M	x7	0	0	1	10		0	Х

(iii) Terceiro passo (entra x4 e sai x7)

Base: (x2 x3 x7)

$$B^{-1} = \begin{pmatrix} 5/7 & -3/7 & 0 \\ -1/7 & 2/7 & 0 \\ -9/7 & 4/7 & 1 \end{pmatrix}$$

$$\pi = c^B B^{-1} = \begin{pmatrix} 2 & 3 & -M \end{pmatrix} \begin{pmatrix} 5/7 & -3/7 & 0 \\ -1/7 & 2/7 & 0 \\ -9/7 & 4/7 & 1 \end{pmatrix} = \begin{pmatrix} 9M/7 & -4M/7 & -M \end{pmatrix}$$

$$-\bar{c}_1 = -c_1 + \pi a_1 = -1 + (9M/7 - 4M/7 - M) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = -6M/7$$

$$-\bar{c}_4 = -c_4 + \pi a_4 = +1 + (9M/7 - 4M/7 - M) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = -M \qquad (mais \ negativo)$$

$$\bar{a}_4 = B^{-1}a_4 = \begin{pmatrix} 5/7 & -3/7 & 0 \\ -1/7 & 2/7 & 0 \\ -9/7 & 4/7 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\bar{b} = B^{-1}b = \begin{pmatrix} 5/7 & -3/7 & 0 \\ -1/7 & 2/7 & 0 \\ -9/7 & 4/7 & 1 \end{pmatrix} \begin{pmatrix} 15 \\ 20 \\ 10 \end{pmatrix} = \begin{pmatrix} 15/7 \\ 25/7 \\ 15/7 \end{pmatrix}$$

C _B	Base	B ⁻¹			b*	V.S.	a*4	Quo.
2	x2	5/7	-3/7	0	15/7		0	х
3	х3	-1/7	2/7	0	25/7		0	х
-M	x7	-9/7	4/7	1	15/7	x7	1	15/7

(iv) Quarto passo (entra x1 e sai x4)

Base: (x2 x3 x4)

$$B^{-1} = \begin{pmatrix} 5/7 & -3/7 & 0 \\ -1/7 & 2/7 & 0 \\ -9/7 & 4/7 & 1 \end{pmatrix}$$
 (mesma base pois $a_4 = a_7$)

	В				
2	3	0	1	0	0
1	5	0	0	1	0
2	1	1	0	0	1

1	1,5	0	0,5	0	0
0	3,5	0	-0,5	1	0
0	-2	1	-1	0	1

B⁻¹

1	0	0	0,714	-0,43	0
0	1	0	-0,14	0,286	0
0	0	1	-1,29	0,571	1

$$\pi = c^B B^{-1} = (2 \quad 3 \quad -1) \begin{pmatrix} 5/7 & -3/7 & 0 \\ -1/7 & 2/7 & 0 \\ -9/7 & 4/7 & 1 \end{pmatrix} = (16/7 \quad -4/7 \quad -1)$$

$$-\bar{c}_1 = -c_1 + \pi a_1 = -1 + \left(\frac{16}{7} - \frac{4}{7} - 1\right) \begin{pmatrix} 1\\2\\1 \end{pmatrix} = -\frac{6M}{7} \quad \text{(\'unica variável n\~ao b\'asica e negativa)}$$

$$\bar{a}_1 = B^{-1}a_1 = \begin{pmatrix} 5/7 & -3/7 & 0 \\ -1/7 & 2/7 & 0 \\ -9/7 & 4/7 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/7 \\ 3/7 \\ 6/7 \end{pmatrix}$$

$$\bar{b} = B^{-1}b = \begin{pmatrix} 5/7 & -3/7 & 0 \\ -1/7 & 2/7 & 0 \\ -9/7 & 4/7 & 1 \end{pmatrix} \begin{pmatrix} 15 \\ 20 \\ 10 \end{pmatrix} = \begin{pmatrix} 15/7 \\ 25/7 \\ 15/7 \end{pmatrix}$$

C_B	Base	B ⁻¹			b*	V.S.	a*1	Quo.
2	x2	5/7	-3/7	0	15/7		-1/7	Х
3	х3	-1/7	2/7	0	25/7		3/7	25/3
-1	х4	-9/7	4/7	1	15/7	x4	6/7	15/6

(iv) Quinto passo (quadro final)

Base: (x2 x3 x1)

$$B^{-1} = \begin{pmatrix} 1/2 & -1/3 & 1/6 \\ 1/2 & 0 & -1/2 \\ -3/2 & 2/3 & 7/6 \end{pmatrix}$$
 (mesma base pois $a_4 = a_7$)

$$\pi = c^B B^{-1} = (2 \ 3 \ 1) \begin{pmatrix} 1/2 & -1/3 & 1/6 \\ 1/2 & 0 & -1/2 \\ -3/2 & 2/3 & 7/6 \end{pmatrix} = (1 \ 0 \ 1)$$

$$-\bar{c}_4 = -c_4 + \pi a_4 = +1 + (1 \quad 0 \quad 1) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 2$$

)	-	•	•	•
1	5	2	0	1	0
2	1	1	0	0	1
1	1 [ΛΓ	ΛΓ	0	_

0	-2	0	-1	0	1
1	0	-0,14	0,714	-0,43	0
0	1	0,429	-0,14	0,286	0

0,857 -1,29 0,571

				B ⁻¹	
1	0	0	0,5	-0,33	0,16
0	1	0	0,5	0	-0,5
0	0	1	-1,5	0,667	1,16

Tendo em vista que as variáveis artificiais já saíram da base e a variável x4 não é uma candidata a entrar na base, chega-se à solução ótima com x2, x3 e x1.

$$\bar{b} = B^{-1}b = \begin{pmatrix} 1/2 & -1/3 & 1/6 \\ 1/2 & 0 & -1/2 \\ -3/2 & 2/3 & 7/6 \end{pmatrix} \begin{pmatrix} 15 \\ 20 \\ 10 \end{pmatrix} = \begin{pmatrix} 5/2 \\ 5/2 \\ 5/2 \end{pmatrix}$$

C_B	Base	B ⁻¹			b*
2	x2	1/2	-1/3	1/6	5/2
3	х3	1/2	0	-1/2	5/2
1	x1	-3/2	2/3	7/6	5/2

$$Z^* = 2 \times \frac{5}{2} + 3 \times \frac{5}{2} + 1 \times \frac{5}{2} = 15$$

3. Seja uma solução conhecida $\mathbf{x} = \mathbf{y} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ para o problema restrito (PR):

$$(PR) \quad MAX \quad Z = 0\lambda_{1} + 0\mu_{1}$$

$$s.a. \quad 0\lambda_{1} + 0\mu_{1} + s = 80 \quad [\pi]$$

$$\lambda_{1} \quad = 1 \quad [\alpha]$$

$$\mu_{1} \quad = 1 \quad [\gamma]$$

$$\lambda_{1} \quad , \quad \mu_{1} \quad , \quad s \geq 0$$

A solução ótima e o vetor dos multiplicadores simplex são:

$$\lambda_1 = 1, \ \mu_1 = 1 \text{ e } s = 80;$$

$$[\pi, \alpha, \gamma]^T = \mathbf{c}_R \mathbf{B}^{-1} = [0 \ 0 \ 0] \cdot \mathbf{B}^{-1} = [0, 0, 0]$$

Tomando-se os vetores definidos no problema, ${\bf c}$, ${\bf d}$, ${\bf A}$ e ${\bf D}$, juntamente com o valor inicial $\pi=0$, os subproblemas (7.21) e (7.22) tornam-se simplesmente

$$MAX \quad Z_x = 5x_1 + 4x_2$$

 $s.a. \quad 3x_1 + 2x_2 \le 9$
 $x_1 + 2x_2 \le 5$
 $x_1 , x_2 \ge 0$

Cujas soluções ótimas geram respectivamente os vértices:

$$\mathbf{x} = \begin{bmatrix} 2 \\ 3/2 \end{bmatrix} \mathbf{e} \quad \mathbf{y} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

No caso do vetor \mathbf{y} existem soluções alternativas, tendo sido feita uma seleção arbitrária. O conhecimento desses dois novos vértices gera um novo problema restrito com mais duas variáveis, λ_2 e μ_2 . Os coeficientes correspondentes são $\mathbf{cx} = 16$; $\mathbf{dy} = 16$; $\mathbf{Ax} = 80$; e $\mathbf{Dy} = 36$. Mantendo-se as três variáveis iniciais mais as duas novas, tem-se o novo (PR):

Cuja solução ótima é: Z = 24,80 e ainda:

$$\lambda_1 = 0.45$$
, $\lambda_2 = 0.55$, $\mu_1 = 0$, $\mu_2 = 1$ e $s = 0$

E o vetor de multiplicadores simplex é obtido no relatório LINDO:

$$[\pi, \alpha, \gamma]^T = [0, 20, 0, 8, 80]$$

Substituindo esses valores nas expressões (7.21) e (7.22) resultam os dois subproblemas (7.23) e (7.24)

$$MAX \quad W_x = 3x_1 - 4x_2$$

 $s.a. \quad 3x_1 + 2x_2 \le 9$
 $x_1 + 2x_2 \le 5$
 $x_1, \quad x_2 \ge 0$ (7.23)

$$MAX \quad W_{y} = 4.8y_{1} + 2.4y_{2} - 8.80$$

 $s.a. \quad 2y_{1} + y_{2} \le 12$
 $y_{1} + 2y_{2} \le 8$
 $y_{1} , y_{2} \ge 0$ (7.24)

As soluções ótimas são, respectivamente

$$\mathbf{x} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \text{ com } W_x^* = 9 \text{ e } \mathbf{y} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \text{ com } W_y^* = 20$$

O vértice \mathbf{x} é novo, mas o vértice \mathbf{y} já havia sido identificado. Assim, o novo vértice permite um novo problema (PR), com mais uma variável, λ_3 , e coeficientes: $\mathbf{c}\mathbf{x}=15$; e $\mathbf{A}\mathbf{x}=\mathbf{30}$:

Cuja solução é: Z = 31,28 e ainda

$$\lambda_1 = 0$$
, $\lambda_2 = 0.28$, $\lambda_3 = 0.72$, $\mu_1 = 0$, $\mu_2 = 1$ e $s = 0$, e, ainda: $[\pi, \alpha, \gamma]^T = [0.020, 14, 40, 15, 28]$

Substituindo esses valores nas expressões (7.21) e (7.22) resultam os dois subproblemas (7.23) e (7.24)

$$MAX \quad W_x = 4.8x_1 + 3.2x_2 - 14.40$$

 $s.a. \quad 3x_1 + 2x_2 \le 9$
 $x_1 + 2x_2 \le 5$
 $x_1 , x_2 \ge 0$ (7.23)

$$MAX$$
 $W_{y} = 5,88y_{1} + 2,94y_{2} - 15,28$
 $s.a.$ $2y_{1} + y_{2} \le 12$
 $y_{1} + 2y_{2} \le 8$
 $y_{1} , y_{2} \ge 0$ (7.24)

As soluções ótimas são, respectivamente:

$$\mathbf{x} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \text{ com } W_x^* = 0 \text{ e } \mathbf{y} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \text{ com } W_y^* = 20$$

Com isso, a solução obtida não gera um novo vértice e a presente solução é ótima.

Os valores de λ e μ correspondem aos valores originais

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0.72 \cdot \begin{bmatrix} 3 \\ 0 \end{bmatrix} + 0.28 \cdot \begin{bmatrix} 2 \\ 3/2 \end{bmatrix} = \begin{bmatrix} 2.72 \\ 0.42 \end{bmatrix}$$
 e
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

$$Z^* = 5x_1 + 4x_2 + 6y_1 + 3y_2 = 13.6 + 1.68 + 36 + 0 = 51.28$$

4. Como feito no texto, suponha conhecidos três vértices, X₀, X₂ e X₄, formandose:

Min
$$Z = X_0 + X_2 + X_4$$

sujeito a $0X_0 + 2X_2 + X_4 \ge 1000$
 $0X_0 + X_2 + 0X_4 \ge 800$
 $0X_0 + 0X_2 + X_4 \ge 600$
 $X_0, X_2, X_4 \ge 0$.

A solução deste problema é: Z=1.000 e as variáveis são: $X_0=0$; $X_2=800$; e $X_4=600$. Os valores duais são: $\pi_1=0$; $\pi_2=1$; e $\pi_3=1$.

Conhecidas as variáveis duais, aplica-se o problema linear restrito (7.25) a três variáveis: [v, w, u], correspondentes aos cortes de 2, 3 e 5 metros, respectivamente, a saber:

Min
$$W = 1 - w - u$$

s.a. $2v + 3w + 5u + p = 8$
 $v, w, u, p \ge 0$ e inteiros.

A solução para este problema é W = -1, com v = 1, w = 2, u = 0 e p = 0, correspondendo ao vértice X_3 . Incluindo-se X_3 no modelo e eliminando-se X_0 , tem-se o modelo parcial:

Min
$$Z = X_2 + X_3 + X_4$$

sujeito a $2X_2 + X_3 + X_4 \ge 1000$
 $X_2 + 2X_3 \ge 800$
 $X_4 \ge 600$
 $X_2 X_3, X_4 \ge 0$.

A solução deste problema é: Z=1.000, os valores das variáveis são: $X_2=0$; $X_3=400$; e $X_4=600$, e os valores das variáveis duais são: $\pi_1=0$; $\pi_2=0.5$; e $\pi_3=1$.

Reaplicando-se o problema linear restrito, tem-se:

Min
$$W = 1 - 0.5w - u$$

s.a. $2v + 3w + 5u + p = 8$
 $v, w, u, p \ge 0$ e inteiros

A solução para este problema é W = -0.5, v = 0, w = 1, u = 1 e p = 0, correspondendo ao vértice X_5 . Incluindo-se esse vértice no modelo e excluindo-se X_1 , tem-se:

Min
$$Z = X_3 + X_4 + X_5$$

sujeito a $2X_3 + X_4 \ge 1000$
 $2X_3 + X_5 \ge 800$
 $X_4 + X_5 \ge 600$
 $X_3, X_4, X_5 \ge 0$.

A solução deste problema é: Z=1.000, os valores das variáveis são: $X_3=400$; $X_4=600$; $X_5=0$; enquanto os valores das variáveis duais são: $\pi_1=0.333$; $\pi_2=0.333$; e $\pi_3=0.666$.

Reaplicando-se o problema linear restrito, tem-se:

Min
$$W = 1 - 0.333v - 0.333w - 0.666u$$

s.a. $2v + 3w + 5u + p = 8$
 $v, w, u, p \ge 0$ e inteiros.

A solução para este problema é W = -0.332, v = 4, w = 0, u = 0 e p = 0, correspondendo ao vértice X_1 . Incluindo-se esse vértice, e eliminando-se X_5 , tem-se o modelo parcial:

Min
$$Z = X_1 + X_3 + X_4$$

sujeito a $4X_1 + X_3 + X_4 \ge 1000$
 $2X_3 \ge 800$
 $X_4 \ge 600$

$$X_1, X_3, X_4 \ge 0.$$

A solução deste problema é: Z=1.000 e os valores das variáveis são: $X_1=0$; $X_3=400$; e $X_4=600$, enquanto os valores das variáveis duais são: $\pi_1=0.25$; $\pi_2=0.375$; e $\pi_3=0.75$.

Reaplicando-se o problema linear restrito, tem-se:

Min
$$W = 1 - 0.25v - 0.375w - 0.75u$$

s.a. $2v + 3w + 5u + p = 8$
 $v, w, u, p \ge 0$ e inteiros.

A solução para este problema é W = -0.125, v = 0, w = 1, u = 1 e p = 0, correspondendo ao vértice X_5 . Incluindo-se esse vértice, tem-se o modelo parcial revisado, com quatro variáveis, para acelerar a conclusão:

Min
$$Z = X_1 + X_3 + X_4 + X_5$$

sujeito a $4X_1 + X_3 + X_4 \ge 1000$
 $2X_3 + X_5 \ge 800$
 $X_4 + X_5 \ge 600$
 $X_1, X_3, X_4, X_5 \ge 0$.

A solução deste problema é: Z=925 e os valores das variáveis são: $X_1=225$; $X_3=100$; e $X_4=0$; $X_5=600$, enquanto os valores das variáveis duais são: $\pi_1=0.25$; $\pi_2=0.375$; e $\pi_3=0.625$.

Reaplicando-se o problema linear restrito, tem-se:

Min
$$W = 1 - 0.25v - 0.375w - 0.625u$$

s.a. $2v + 3w + 5u + p = 8$
 $v, w, u, p \ge 0$ e inteiros.

A solução para este problema é W=0, v=4, w=0, u=0 e p=0. Como W=0 e o vértice encontrado, X_1 , não é um vértice novo, tem-se a solução ótima do problema original, como o leitor pode constatar ao resolver o problema integralmente.