

Brainstorming and finding an appropiate Data set

Research Focus:

- Rent Distribution in land Brandenburg (Germany)
- Which city has the most expensive and cheapest rent in Land Brandenburg?
- What are the factors (such as rooms, balcony, parking space) which can influence on rent price in the most expensive city of Brandenburg?
- Comparing KNN and Linear regression models in order to predict rent prices

1. Data Cleaning and Exploration

- Restricting data to special region(Brandenburg) as dataset is really big
- Renaming and Standartize the columns
- Removing all duplicates
- Checking missing values (dropping if needed and replacing them)

```
brandenburg df = brandenburg df.loc[:,['regio1','regio2',
          'balcony', 'livingSpace', 'totalRent', 'serviceCharge',
          'baseRent','lift','petsAllowed','floor','noRooms','garden','cellar','noParkSpaces']]
         brandenburg df.head()
Out[8]:
                                            regio2 balcony livingSpace totalRent serviceCharge baseRent
                                                                                                            lift petsAllowed floor noRooms garden cellar noP
                    regio1
            50 Brandenburg
                                   Oder_Spree_Kreis
                                                       True
                                                                  36.29
                                                                            377.0
                                                                                           50.0
                                                                                                    285.0
                                                                                                           True
                                                                                                                   negotiable
                                                                                                                                              False
                                                                                                                                                     True
                             Märkisch_Oderland_Kreis
                                                                  60.71
                                                                            435.0
                                                                                                                              0.0
           114 Brandenburg
                                                       True
                                                                                           65.0
                                                                                                    300.0 False
                                                                                                                        NaN
                                                                                                                                              False
                                                                                                                                                     True
               Brandenburg Brandenburg_an_der_Havel
                                                                  67.80
                                                                            590.0
                                                                                          170.0
                                                                                                          True
                                                                                                                                              False
                                                       True
                                                                                                                                                     True
                                                                  88.00
                                                                           1300.0
                                                                                          300.0
                                                                                                           True
                                                                                                                                                     True
           232 Brandenburg
                                           Potsdam
                                                       True
                             Dahme_Spreewald_Kreis
                                                                  69.00
                                                                            533.0
                                                                                                                              2.0
               Brandenburg
                                                       True
                                                                                          150.0
                                                                                                    370.0 False
                                                                                                                   negotiable
                                                                                                                                               True
                                                                                                                                                     True
```

Rent price distribution in Land Brandenburg

2. Dealing with outliers

3. Analysis of Data (correlation)

4. Main Factors which has an impact on total rent price

Less impact on total rent price

5. Comparing Linier and KNN regression models in order to predict the total price

- Splitting the data
- Scaling and Transforming columns
- Appyling the KNN and Linier Regression Models

```
Linear Regression
In [14]: #Apply linear regression
         from sklearn.linear model import LinearRegression as LinReg
         linreg=LinReg() # model
         linreg.fit(X_train_f, y_train) # model train
         y test pred linreg=linreg.predict(X test f) # model prediction
        y_train_pred_linreg=linreg.predict(X_train_f) # model prediction
In [15]: #stoing linear
         #with open("../Models/Linear.pkl", "wb") as file:
          # pickle.dump(linreg, file, pickle.HIGHEST PROTOCOL)
         K-NN
In [16]: # help(KNeighborsRegressor)
In [17]: from sklearn.neighbors import KNeighborsRegressor
         regressor = KNeighborsRegressor(n_neighbors=15, weights='distance')
         regressor.fit(X train f, y train)
Out[17]: KNeighborsRegressor(n_neighbors=15, weights='distance')
```

Model Validation

```
In [23]: print ('Linear: train R2: {} -- test R2: {}'.format(linreg.score(X_train_f, y_train),
                                                      linreg.score(X test f, y test)))
          print ('KNN: train R2: {} -- test R2: {}'.format(regressor.score(X train f, y train),
                                                      regressor.score(X test f, y test)))
          Linear: train R2: 0.702711868203153 -- test R2: 0.6711008808731851
          KNN: train R2: 0.9826771109528131 -- test R2: 0.6718832275006406
In [25]: from sklearn.metrics import mean_absolute_error as mae
         train mae=mae(linreg.predict(X train f), y train)
         test mae=mae(linreg.predict(X test f), y test)
         print ('Linear: train MAE: {} -- test MAE: {}'.format(train mae, test mae))
         train mae=mae(regressor.predict(X train f), y train)
         test mae=mae(regressor.predict(X test f), y test)
         print ('KNN: train MAE: {} -- test MAE: {}'.format(train mae, test mae))
         Linear: train MAE: 81.57288338180335 -- test MAE: 86.01133954172518
         KNN: train MAE: 8.512774966975657 -- test MAE: 80.77195489568828
```

Result: When we look at "R2"score both model has almost same performance on the test set. However Linier has a bit high "mae" performance.

Thank you for your Attention