Рубежный контроль №1

Гришин Илья Алексеевич, ИУ5-62Б, Вариант 6. Задание 1.

Задача №1.

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель. Для произвольной колонки данных построить гистограмму.

Технологии разведочного анализа и обработки данных.

Этот набор данных создан для прогнозирования поступления в аспирантуру с точки зрения Индии.

Набор данных содержит несколько параметров, которые считаются важными при подаче заявки на программу магистратуры. Включены следующие параметры:

- Результаты **GRE** (из **340**)
- Результаты **TOEFL** (из **120**)
- Рейтинг вуза (из 5)
- Заявление о целях и рекомендательное письмо (из 5 возможных)
- Средний балл бакалавриата (из 10)
- Опыт исследования (0 или 1)
- Шанс допуска (от 0 до 1)

В dataset обозначены как:

- (GRE Scores)
- (TOEFL Scores)
- (University Rating)
- (Statement of Purpose and Letter of Recommendation Strength)
- (Undergraduate GPA)
- (Research Experience)
- (Chance of Admit)

Шанс допуска (Chance of Admit) является целевым признаком

In [24]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

```
In [5]:
# размер набора данных
data.shape
Out[5]:
(400, 9)
In [6]:
# типы колонок
data.dtypes
Out[6]:
Serial No.
                      int64
GRE Score
                      int64
                       int64
TOEFL Score
University Rating
                      int64
SOP
                    float64
LOR
                    float64
CGPA
                    float64
                      int64
Research
Chance of Admit float64
dtype: object
In [9]:
# проверим есть ли пропущенные значения
data.isnull().sum()
Out[9]:
Serial No.
                     0
GRE Score
TOEFL Score
University Rating
                     0
SOP
                     0
LOR
                     0
                     0
CGPA
Research
Chance of Admit
dtype: int64
In [8]:
# Первые 5 строк датасета
data.head()
```

data = pd.read_csv('Admission_Predict.csv', sep=",")

Out[8]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

In [11]:

Основные статистические характеристки набора данных data.describe()

Out[11]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chanc A
cour	t 400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000
mea	n 200.500000	316.807500	107.410000	3.087500	3.400000	3.452500	8.598925	0.547500	0.724
st	d 115.614301	11.473646	6.069514	1.143728	1.006869	0.898478	0.596317	0.498362	0.142
mi	n 1.000000	290.000000	92.000000	1.000000	1.000000	1.000000	6.800000	0.000000	0.340
259	6 100.750000	308.000000	103.000000	2.000000	2.500000	3.000000	8.170000	0.000000	0.640
50 9	6 200.500000	317.000000	107.000000	3.000000	3.500000	3.500000	8.610000	1.000000	0.730
759	6 300.250000	325.000000	112.000000	4.000000	4.000000	4.000000	9.062500	1.000000	0.830
ma	x 400.000000	340.000000	120.000000	5.000000	5.000000	5.000000	9.920000	1.000000	0.970
4									<u> </u>

Гистограмма

Построим гистрограмму, которая позволит оценить плотность вероятности распределения данных.

In [27]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['CGPA'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551:
FutureWarning: `distplot` is a deprecated function and will be removed in a futur e version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[27]:

<AxesSubplot:xlabel='CGPA', ylabel='Density'>

Информация о корреляции признаков

In [12]:

data.corr()

Out[12]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
Serial No.	1.000000	0.097526	-0.147932	-0.169948	- 0.166932	- 0.088221	0.045608	- 0.063138	0.042336
GRE Score	0.097526	1.000000	0.835977	0.668976	0.612831	0.557555	0.833060	0.580391	0.802610
TOEFL Score	- 0.147932	0.835977	1.000000	0.695590	0.657981	0.567721	0.828417	0.489858	0.791594
University Rating	- 0.169948	0.668976	0.695590	1.000000	0.734523	0.660123	0.746479	0.447783	0.711250
SOP	- 0.166932	0.612831	0.657981	0.734523	1.000000	0.729593	0.718144	0.444029	0.675732
LOR	- 0.088221	0.557555	0.567721	0.660123	0.729593	1.000000	0.670211	0.396859	0.669889
CGPA	0.045608	0.833060	0.828417	0.746479	0.718144	0.670211	1.000000	0.521654	0.873289
Research	- 0.063138	0.580391	0.489858	0.447783	0.444029	0.396859	0.521654	1.000000	0.553202
Chance of Admit	0.042336	0.802610	0.791594	0.711250	0.675732	0.669889	0.873289	0.553202	1.000000

In [22]:

```
fig, ax = plt.subplots(figsize=(15,15))
sns.heatmap(data.corr(), annot=True, fmt='.4f', cmap="YlGnBu")
```

Out[22]:

<AxesSubplot:>

In [23]:

```
# Вывод значений в ячейках fig, ax = plt.subplots(figsize=(15,15)) mask = np.zeros_like(data.corr(), dtype=bool) mask[np.tril_indices_from(mask)] = True sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.4f', cmap="YlGnBu")
```

Out[23]:

<AxesSubplot:>

Выводы о коррелирующих признаках

На основе нашей корреляционной матрице, визуализированной с помощью тепловой карты, определим признаки которые коррелируют с нашим целевым признаком.

Отрицательный коэффициент корреляции показывает, что две переменные могут быть связаны таким образом, что при возрастании значений одной из них значения другой убывают.

- **Serial No.** является числовым идентификатором записей от **1** до **400**, который никаким образом не влияет на построение модели, однако в целях удаления лишних признаков его можно удалить
- Наиболее коррелируемым признаком является **Undergraduate GPA** (C**GPA**) (Средний балл бакалавриата) (0,8733), поэтому оставляем его в модели
- Вторым по коэффициенту корреляции является **GRE Scores (GRE)** (Результаты **GRE)** (0,8026), поэтому оставляем его в модели
- Целевой признак хорошо коррелирует со следующими признаками: TOEFL Scores (0,7916), University Rating (0,7113), Statement of Purpose (SOP) (0,6757), Letter of Recommendation (LOR)

(0,6699), Research Experience (0,5532)

- Признак **TOEFL Scores** сильно коррелирует с признаком **GRE Scores (0,8360),** поэтому в модели можно оставить лишь один из них
- Признак GRE Scores сильно коррелирует с признаком Undergraduate GPA (CGPA) (0,8331), поэтому в модели можно оставить лишь один из них
- Также, признак **TOEFL Scores** сильно коррелирует с признаком **Undergraduate GPA** (CGPA) (0,8284), поэтому в модели можно оставить лишь один из них
- Таким образом, из-за сильных корреляций признака Undergraduate GPA (CGPA) с признаками GRE Scores и TOEFL Scores, а также значительными корреляциями с другими признаками, этот признак можно удалить, однако именно он дает самую большую корреляцию с целевым признаком, поэтому наиболее подходящий признак к удалению: GRE Scores