Design of a 4-Bit Sequence Detector

FSM in VHDL – Nexys 4 DDR Implementation
Tanner Roberson

Project Requirements

- Detect user-defined 4-bit sequence using FSM
- Allow overlap
- VHDL behavioral modeling in AMD Vivado
- Generalized FSM (not hardcoded)
- Test bench for all 16 sequences
- Implement on Nexys 4 DDR:

SW0: Clock, SW1: Input w

SW5-SW2: Target sequence

CPU Reset: Reset

LD0: Output z

Learning Objectives

- Build sequence detector FSM for any
 4-bit sequence
- Design and simulate VHDL test bench
- Practice behavioral modeling
- Learn generalized FSM design
- Implement and test on FPGA

General Approach

- 1. Define FSM states
- 2. Write behavioral VHDL FSM logic
- 3. Implement reset
- 4. Create test bench for all sequences
- 5. Verify with waveforms
- 6. Deploy on FPGA

FSM Design Details

- Shift inputs into 4-bit register each cycle
- FSM checks if input == target sequence
- Output z=1 on match
- Overlap handled via transitions
- Reset returns to beginning state

Example State Diagram (1010)

Target sequence: 1010

Example State Table (1010)

Current State	Input (W)	Next State	Output (Z)
A	0	A	0
	1	В	0
В	0	A	0
	1	С	0
С	0	D	0
	1	С	0
D	0	A	0
	1	E	0
Е	0	A	1
	1	С	1

Simulation Results

- 10 inputs per sequence
- 5 correct \rightarrow z=1 at 4th input
- 5 incorrect \rightarrow z=0

FPGA Implementation

- Nexys 4 DDR connections:
- SW0: Clock
- SW1: Input w
- SW5–SW2: Target sequence
- Reset: CPU Reset
- LD0: Output z

Observations & Challenges

- Concurrent VHDL statements caused1-cycle delay
- Solution: store last 3 inputs in shift register
- FSM generalized for all 16 sequences

Summary & Takeaways

- Designed generalized FSM sequence detector
- Verified with simulation waveforms
- Implemented on Nexys 4 DDR FPGA
- Learned FSM overlap handling, VHDL modeling, test benching, FPGA deployment