第三章 多维随机变量及其分布

第三节 相互独立的随机变量

随机变量相互独立的定义

- 离散型随机变量的相互独立
- 连续型随机变量的相互独立
- n个随机变量的相互独立

一. 随机变量相互独立的定义

若P(AB) = P(A)P(B)则称事件A, B相互独立.

设 (X,Y) 的 联合分布函数及边缘分布函数为F(x,y)

及
$$F_X(x)$$
, $F_Y(y)$. 若对任意的 x , y 都有:

$$P(X \le x, Y \le y) = P(X \le x) \cdot P(Y \le y)$$

即
$$F(x, y) = F_X(x) \cdot F_Y(y)$$

则称随机变量 X和 Y是相互独立的.

二. 离散型随机变量的相互独立

设 (X,Y) 是离散型随机变量, (x_i,y_j) 是 (X,Y) 所有可能的取值

若
$$P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j)$$

则称随机变量X和Y相互独立。

例1. 设 X,Y 相互独立,它们的分布律分别为:

\boldsymbol{X}	0	1	Y	1	2	3
D	2	1	D	1	2	1
P	3	3	1	4	4	4

求: (X,Y) 的联合分布律.

结论: 对离散型随机变量而言,已知联合分布律可求出其相应的边缘分布律,但反之则不然。而一旦已知 X,Y 相互独立条件后,则可由边缘分布律直接求得其联合分布律。

	XY	1	2	3		
依次可得 (X,Y)	0	2	4	2	2	
1000 4 14 (2-)2)	U	12	12	12	3	
的联合分布律为	5 :	1	2	1	1	
	1	12	12	12	$\overline{3}$	
		<u>1</u>	2	<u>1</u>		
		4	4	4	四京公子	

4

概率统计3-3

X,Y(离散) 相互独立

$$\forall i, j, \quad p_{ij} = p_{i \bullet} \cdot p_{\bullet j}$$

						$P\{X=x_i\}$
\boldsymbol{x}_1	p_{11}	p_{12}	• • •	p_{1j} p_{2j} \vdots	•••	p _{1•}
\boldsymbol{x}_2	p_{21}	p_{22}	• • •	p_{2j}	• • •	p _{2•}
•	• •	•	• • •	•	• • •	
\boldsymbol{x}_{i}	p_{i1}	p_{i2}	• • •	p_{ij}	• • •	$-p_{i}$
:	:	:	•••	:	•••	:
$\left\{ Y=y_{j}\right\}$						

例2 设X,Y相互独立,填表:

X	1	2	3	
1	1/12	1/6	1/4	1/2
2	1/12	1/6	1/ /4	::: <u>1</u> /2
•••••	1/6	1/3	1/2	1

三. 连续型随机变量的相互独立

设 (X,Y) 是连续型随机变量, 如果对任意的 x,y 有:

$$f(x,y) = f_X(x) \cdot f_Y(y)$$

则称随机变量X和Y是相互独立的。

例3 设
$$(X, Y)$$
 的密度 $f(x,y) = \begin{cases} e^{-x}, & x > 0, 0 < y < 1, \\ 0, & \text{其他} \end{cases}$ $i) X, Y$ 是否相互独立 $ii)$ 求 $F(x,y)$

解
$$i)$$
 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$

$$= \begin{cases} \int_0^1 e^{-x} dy = e^{-x}, & x > 0, \\ 0, & \text{ #} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$

$$=\begin{cases} \int_0^\infty e^{-x} dx = 1, & 0 < y < 1, \\ 0, & \text{ #} \text{ #} \end{cases}$$

例3 设
$$(X, Y)$$
 的密度 $f(x,y) = \begin{cases} e^{-x}, & x > 0, 0 < y < 1, \\ 0, & \text{其他} \end{cases}$ $i) X, Y$ 是否相互独立 $ii)$ 求 $F(x,y)$

解
$$f_X(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & 其他 \end{cases}$$
 $f_Y(y) = \begin{cases} 1, & 0 < y < 1, \\ 0, & 其他 \end{cases}$

$$\therefore f(x,y) = f_X(x) f_Y(y)$$

故X,Y相互独立。

例3 设
$$(X, Y)$$
 的密度 $f(x,y) = \begin{cases} e^{-x}, & x > 0, 0 < y < 1, \\ 0, & \text{其他} \end{cases}$

$$i) X,Y是否相互独立 \quad ii) 求 $F(x,y)$

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x,y) dx dy$$

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x,y) dx dy$$

$$= \begin{cases} \int_{0}^{1} dy \int_{0}^{x} e^{-x} dx, & x > 0, y \ge 1, \\ \int_{0}^{y} dy \int_{0}^{x} e^{-x} dx, & x > 0, 0 < y < 1, \\ 0, & \text{其他} \end{cases}$$$$

例3 设
$$(X, Y)$$
 的密度 $f(x,y) = \begin{cases} e^{-x}, & x > 0, 0 < y < 1, \\ 0, & \text{其他} \end{cases}$ $i) X, Y$ 是否相互独立 $ii)$ 求 $F(x,y)$

解
$$ii$$
)
$$\therefore F(x,y) = \begin{cases} 1-e^{-x}, & x>0, y\geq 1, \\ y(1-e^{-x}), & x>0, 0< y<1, \\ 0, & 其他 \end{cases}$$

另解:因X,Y相互独立,

所以
$$F(x,y) = F_X(x)F_Y(y)$$

例4 设 (X, Y) 的分布函数为

$$F(x,y) = \begin{cases} 1 - e^{-x} - e^{-y} + e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{ item} \end{cases}$$

i) X,Y是否相互独立 ii) 求 X,Y 取值均大于0.1 的概率

解 i)
$$F_X(x) = F(x,+\infty) = \begin{cases} 1-e^{-x}, & x>0, \\ 0, & \text{其他} \end{cases}$$

$$F_Y(y) = F(+\infty,y) = \begin{cases} 1-e^{-y}, & y>0, \\ 0, & \text{其他} \end{cases}$$

$$\longrightarrow F(x,y) = F_X(x)F_Y(y) \quad \text{故 } X,Y \text{相互独立}.$$

ii)
$$P\{X > 0.1, Y > 0.1\} = P\{X > 0.1\}P\{Y > 0.1\}$$

= $(1 - F_X(0.1))(1 - F_Y(0.1)) = e^{-0.2}$

例4 设 (X, Y) 的分布函数为

$$F(x,y) = \begin{cases} 1 - e^{-x} - e^{-y} + e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{ it } \end{cases}$$

i) X,Y是否相互独立 ii) 求 X,Y 取值均大于0.1 的概率

解 ii)
$$P\{X > 0.1, Y > 0.1\}$$
 $F_X(x) = \begin{cases} 1 - e^{-x}, & x > 0, \\ 0, & \text{其他} \end{cases}$ $= P\{X > 0.1\}P\{Y > 0.1\}$ $= (1 - F_X(0.1))(1 - F_Y(0.1))$ $F_Y(y) = \begin{cases} 1 - e^{-y}, & y > 0, \\ 0, & \text{其他} \end{cases}$ $= e^{-0.2}$

例5. 设 (X,Y) 服从正态分布: $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$

问: X和 Y相互独立的充分必要条件是什么?

所以
$$f_X(x) \cdot f$$
 (v) $Y \sim N(\mu_2, \sigma_2^2)$ $Y \sim N(\mu_2, \sigma_2^2)$ $Y \sim N(\mu_2, \sigma_2^2)$ $Y \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ $Y \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}} e^{\frac{1}{2}\left[\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}}\right]}$$

$$\not\equiv f_{X}(x) \cdot f_{Y}(y) = f(x,y) \mapsto \rho = 0$$

$$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}$$

结论

$$(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$$

则 ①
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$

② X,Y相互独立 $\longleftrightarrow \rho = 0$

四. n个随机变量相互独立的概念

关于 X 的边缘 分布函数

定义1. 若对所有的 x_1, x_2, \dots, x_n 有:

$$F(x_1, x_2, \dots, x_n) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdots F_{X_n}(x_n)$$

$$\text{Then } X \quad X \quad \text{where } X \text{ is the problem}$$

则称 X_1, X_2, \dots, X_n 是相互独立的。

定义2. 若对所有的 $x_1, x_2, \dots, x_m; y_1, y_2, \dots, y_n$ 有: $F(x_1, x_2, \dots, x_m; y_1, y_2, \dots, y_n)$ $= F_1(x_1, x_2, \dots, x_m) \cdot F_2(y_1, y_2, \dots, y_n)$

其中 F_1 , F_2 , F 依次为随机变量(X_1 , X_2 , ..., X_m), (Y_1 , Y_2 , ..., Y_n) 和 (X_1 , X_2 , ..., X_m ; Y_1 , Y_2 , ..., Y_n) 的分布函数。则称 (X_1 , X_2 , ..., X_m)和 (Y_1 , Y_2 , ..., Y_n) 是相互独立的。

关于独立性的三个定理:

定理1 若连续型随机向量 $(X_1,...,X_n)$ 的概率密度 函数 $f(x_1,...,x_n)$ 可表示为 n 个函数 $g_1,...,g_n$ 之积,其中 g_i 只依赖于 x_i ,即

$$f(x_1, ..., x_n) = g_1(x_1) ... g_n(x_n)$$

则 $X_1, ..., X_n$ 相互独立,且 X_i 的边缘密度 $f_i(x_i)$ 与 $g_i(x_i)$ 只相差一个常数因子.

定理2 若 $X_1, ..., X_n$ 相互独立,而:

$$Y_1 = g_1(X_1, ..., X_m)$$
, $Y_2 = g_2(X_{m+1}, ..., X_n)$ 则 Y_1 与 Y_2 相互独立.

定理3 设 (X_1, X_2, \dots, X_m) 和 (Y_1, Y_2, \dots, Y_n) 相互独立则 X_i $(i = 1, 2, \dots, m)$ 和 Y_j $(j = 1, 2, \dots, n)$ 相互独立。又若 h, g是连续函数,则: $h(X_1, X_2, \dots, X_m)$ 和 $g(Y_1, Y_2, \dots, Y_n)$ 相互独立。