Definiere eine gewöhnliche Differentialgleichung (implizit). Was versteht man unter einer Lösung der DGL?	Seien G ein Gebiet im \mathbb{R}^{n+2} , I ein Intervall, eine Funktion $x:I\to\mathbb{R},t\mapsto x(t)$ n mal differenzierbar und $F:G\to\mathbb{R}$. Dann heißt $F(t,x,\dot{x},\ldots,x^{(n)})=0$
	implizite gewöhnliche DGL der Ordnung n . Sei $x \in C^n, x:(a,b) \mapsto \mathbb{R}.$ x ist eine Lösung der DGL falls:
	1. $(t, x(t), \dot{x}(t), \dots x^{(n)}(t)) \in G \forall_{t \in (a,b)}, \text{ und}$

1.
$$(t, x(t), \dot{x}(t), \dots x^{(n)}(t)) \in G$$
 $\forall_{t \in (a,b)}$, und
2. die Gleichung $F = 0$ ist erfühlt $\forall_{t \in (a,b)}$.

Definiere eine gewöhnliche Differentialgleichung (explizit). Sei \tilde{G} ein Gebiet im \mathbb{R}^{n+1} , I ein Intervall, eine Funktion $x:I\to\mathbb{R}$, $t\mapsto x(t)$ n mal differenzierbar und $f:\tilde{G}\to\mathbb{R}$. Dann heißt $x^{(n)}=f(t,x,\dot{x},\ldots,x^{(n-1)})$ explizite gewöhnliche DGL der Ordnung n. Sei $x\in C^n$, $x:(a,b)\mapsto\mathbb{R}$. x ist eine Lösung der DGL falls:

1.
$$\left(t, x(t), \dot{x}(t), \dots x^{(n-1)}(t)\right) \in \tilde{G}$$
 $\forall_{t \in (a,b)}$, und

2. die Gleichung
$$f = 0$$
 ist erfühlt für alle $t \in (a, b)$.

Ein Anfangswertproblem heißt korrekt gestellt, wenn..

genau eine Lösung existiert und eine stetige Abhängigkeit von den Anfangsbedingungen gewährleistet ist.

Wie löst man $\dot{x} + f(t)x = g(t)$ mit der Eulerschen Methode?

• Multipliziere mit
$$\exp\left(\int_{t_0}^t f(t') dt'\right)$$
.

- Fasse LHS als eine Abletiung nach x.
- Integriere es auf.

Sei (X,d) vollständiger metrischer Raum, sei $A\subseteq X$ abgeschlossen, $T:A\to A$ kontrahierend mit Konktraktionszahl q . Dann:
1. T hat genau einen Fixpunkt x^* in A ,
2. für beliebige $x_0 \in A$ konvergiert $x_{n+1} = Tx_n$ gegen x^* mit $n \in \mathbb{N}$,
3. es gilt die Abschätzung:

	$mit n \in \mathbb{N},$
3.	es gilt die Abschätzung:
	$d(x_n, x^*) \le \frac{q^n}{1 - q} d(x_1, x_0)$

$$f:G\subseteq\mathbb{R}^2\to\mathbb{R}\quad (t,x)\mapsto f(t,x)$$
 genügt einer Lippschitzbedingung bzg. des 2. Arguments auf G , wenn

$$\exists L > 0 \quad \forall t, x_1, x_2 \quad \text{mit} \quad (t, x_1), (t, x_2) \in G$$

$$|f((t, x_1) - f(t, x_2))| \le L|x_1 - x_2|$$

Definiere die Lippschitzbedingung für Vektorfunktionen.

 $\underline{f}:\mathbb{R}^{n+1}\supseteq D(\underline{f}\to\mathbb{R}^n:(t,\underline{x})\mapsto f(t,vecx)$ genügt einer Lippschitzbedingungbzgl. \underline{x} in $D(\underline{f}),$ wenn $\forall\underline{x},\underline{y}$ mit $(t,\underline{x}),(t,y)\in D(f)\ \exists L>0$:

$$\left\| \underline{f}(t,\underline{x}) - \underline{f}(t,\underline{y}) \right\|_n \le L \left\| \underline{x} - \underline{y} \right\|_n$$

 $\|\cdot\|_n$ ist beliebige Norm in \mathbb{R}^n .

Wie lautet der Satz von Picard-Lindelöf über die Existenz

und Eindeutigkeit der Lösung.

Sei $\dot{x} = f(t,x)$ mit $x_0 = x(t_0)$ ein Anfangswertproblem (AWP) gegeben, f erfülle die folgenden Bedingungen:

•
$$\exists a,b \in \mathbb{R}_{>0}$$
 so, dass f auf dem Rechteck

$$Q := \{(t, x) \in \mathbb{R}^2 : |t - t_0| \le a, |x - x_0| \le b\}$$

stetig und durch M beschränkt ist.

• f ist auf Q Lippschitzstetig bzg. x mit Lippschitzkonstante L.

Dann existiert geanu eine lokale Lösung des AWP, d.h. $\exists \sigma >$ 0 so ,dass auf $J \coloneqq [t_0 - \sigma, t_0 + \sigma]$ genau eine Lösung existiert. Man kann σ so wählen: $\sigma < \min \left\{ a, \frac{b}{m}, \frac{1}{L} \right\}$.

Ein explizites Differentialgleichungssystem n -ter Ordnung der Dimension k ist definiert als:	$\underline{x}^{(n)} = \underline{f}($
	wobei $\underline{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_k(t) \end{pmatrix}$, .

$$\underline{x}^{(n)} = \underline{f}(t, \underline{x}(t), \dots, \underline{x}^{n-1}(t))$$
vobei $\underline{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_k(t) \end{pmatrix}, f : \mathbb{R} \times \mathbb{R}^{n \cdot k} \supseteq D(f) \to \mathbb{R}^k.$

Wie lässt sich eine Differentialgleichung n-ter Ordnung auf ein Differentialgleichungssystem 1. Ordnung der Dimension k transformieren?

Sei $x \in C^n((\alpha, \beta), \mathbb{R})$ eine Lösung einer skalaren DGL n-ter Ordnung $(x^{(n)} = f(t, x, \dots, x^{(n-1)})$ eventuell mit Anfangsbedingungen.

Definiere $\underline{z}(t) \in \mathbb{R}^n$ mit $z_i(t) = x(t)^{(i-1)}$, $i \in \{1, \dots, n\}$. Es gilt $\dot{z}_i = z_{i+1} = x^{(i)}$.

 $z = \underline{z}(t)$ eine Lösung des n-dim. DGL-Systems 1. Ordnung:

$$\underline{\dot{z}}(t) = \begin{pmatrix} z_2(t) \\ \vdots \\ z_n(t) \\ f(t,\underline{z}) \end{pmatrix} = \underline{g}(t,\underline{z}) \qquad D(\underline{g}) = (\alpha,\beta) \times \mathbb{R}^n$$

Für $\underline{z}(t_0) = \underline{z_0}$ setze $z_i^0 = x^{(i-1)}(t_0)$.

Definiere den Begriff einer Fortsetzung einer Lösung.

Eine Lösung y des AWP

$$\dot{x} = f(t, x(t)), D(f) \subseteq \mathbb{R} \times \mathbb{R}^{3} x(t_{0}) = X_{0}$$

auf einem Intervall (a',b') heißt Fortsetzung von x (x eine lokale Lösung des AWP auf (a,b)), wenn:

- $(a,b) \subset (a',b')$,
- $y(t) \equiv x(t) \forall_{t \in (a,b)}$

Wie lautet der Satz über die Eindeutigkeit der Fortsetzung?

Sei ein

AWP:
$$\begin{cases} \dot{x} = f(t, x(t)), D(f) \subseteq \mathbb{R} \times \mathbb{R} \\ x(t_0) = x_0 \end{cases}$$

gegeben.

Sei $Q = [t_1, t_2] \times [x_1, x_2]$ eine Menge auf der das AWP mit $(t_0, x_0) \in Q$ lokal lösbar ist. Sei x auf $(a, b) \in [t_1, t_2]$ eine Lösung des AWPs. Seien y_1, y_2 zwei Fortsetzungen von x auf $(a', b') \in [t_1, t_2]$. Dann gilt:

$$y_1(t) = y_2(t) \qquad \forall_{t \in (a',b')}$$

Eine Lösung, die nicht mehr fortsetzbar ist, heißt	maximal.
Eine Lösung heißt maximal, wenn	sie nicht mehr fortsetzbar ist.
Wie lautet der Satz über die maximale Lösung?	Sei $G \subset \mathbb{R}^2$ ein beschränktes Gebiet. $f: G \to \mathbb{R}$ genüge den Bedingungen vom Satz von Picard/Lindelöf. Dann gilt: 1. $\exists !$ eine maximal Lösung x_{\max} des AWP (auf (a,b)). 2. Für $u \coloneqq \lim_{t \to a^+} x_{\max}(t), v \coloneqq \lim_{t \to b^-} x_{\max}(t)$ gilt $(a,u), (b,v) \in \partial G$.
Wie lautet der Satz über die Abschätzung der Differenz von Lösungen (stetige Abhängigkeit)?	Sei $\dot{x}=f(t,x),\ f$ stetig auf einem Streifen $(a,b)\times\mathbb{R}$. Für jedes abgeschlossene Intervall $[a',b']\subset (a,b)$ existieren eine Lippschitzkonstante L' mit: $\forall_{t\in[a',b']}\forall_{x_1,x_2\in\mathbb{R}}:\ \left f(t,x_1)-f(t,x_2)\right \leq L'\ x_1-x_2\ $ Seien nun $x(t),\hat{x}(t)$ Lösungen eines AWP mit $x(t_0)=x_0,$ $\hat{x}(t_0)=\hat{x}_0$ auf $[a',b']$ MIT $t_0\in(a',b')$. Dann gilt: $\forall_{t\in[a',b']}:\ \left x(t)-\hat{x}(t)\right \leq e^{L' t-t_0 }\cdot\ x_0-\hat{x}_0\ $

Wie ist ein linearer DGL-System 1. Ordnung definiert?	$\dot{x} = A(t)f(t)$, homogen falls $f(t) = 0$
	$x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, A(t) = \begin{pmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{pmatrix},$
	$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$ gegeben auf $t \in I = (a, b)$

Gibt den Satz über die Existenz und Eindeutigkeit der Lösung eines AWP zu einer linearen DGL an.

Sei $L(t,x)=f(t), x^{(i)}(t_0)=\chi_i, i\in\{0,\ldots,n-1\}$ ein AWP. Die Koeffizienten $a_i(t)$ von L(t,x) seien aus $\mathbb C$ oder $\mathbb R$ und stetig auf $I\subset\mathbb R$, f stetig auf I. Seien $t_0\in I, \chi_i\in\mathbb R$ gegeben. Dann besitzt das AWP genau eine Lösung.

Dann besitzt das AWP genau eine Lösung. Diese existiert auf dem ganzen Intervall I und hängt auf jedem kompakten Teilintervall von I von den ABen $a_i(t)$, f(t) stetig ab.

Sei ein linearer homogener DGL-System 1. Ordnung und n-ten Dimension gegeben. Dann heißt ein System von n lin. unabhängigen Lösungen...

Fundamental system.

Die Fundametalmatrix ist...

die Lösungsmatrix $\Phi(t)$ ($(x_1|x_2|...)$ Lösungen als Spalten.) aus n lin. unabhängigen Lösungen. (Das zugehörige homogene LDGLS ist n-ter Ordnung).

Gib drei äquivalente Aussage zu: Eine quadratische Lösungsmatrix $\Phi(t)$ ist die Fundamentalmatrix.	 Die Spalten von Φ(t) bzw. die einzelne Lösungen sind linear unabhängig , ∀_{t∈I} : rangΦ(t) ist maximal, ∃_{t∈I} : rangΦ(t) ist maximal.
	I Stetigkeitsintervall auf dem das LDGLS gegeben ist.

Wronskideterminante ist definiert als...

... die Determinante der Fundamentalmatrix.

Die Determinante der Fundamentalmatrix heißt...

... Wronskideterminante.

Satz über die Wronski-Determinante. Für n Lösungen eines homogenen LDGLS 1.Ordnung und n-ter Dimension sind

- äquivalent:
 Die Lösungen bilden ein Fundamentalsystem.
 - ...

- $\forall t \in I \ W(t) \neq 0$,
- $\exists t \in I \ W(t) \neq 0$,

I Stetigkeitsintervall auf dem das LDGLS gegeben ist. W(t) Wronski-Determinante.

Satz über die Existenz und Eindeutigkeit der Fundamentalmatrix lautet:
(+Beweisidee)

Es gäbe ein homogenes lineares DGL-System mit der Ordnung 1 und Dimension n.

$$\underline{\dot{x}} = A(t)\underline{x}$$

Die Koeffizientenmatrix A(t) sei stetig auf I=(a,b). Dann existiert,für die obige Gleichung, auf I eine Fundamentalmatrix von n Lösungen.

Beweisidee:

Wähle n beliebige, voneinander linear unabhängige Anfangswerte, für ein festes $t_0 \in I$. Dann gibt es eine eindeutige Lösung zu jedem der AWP auf ganz I. Es genügt zu zeigen, dass die Lösungen für ein t linear unabhängig sind. Das gilt aber für t_0 .

Wie lautet der Satz über die Bedeutung der Fundamentalmatrix?

Es gäbe ein homogenes lineares DGL-System ersten Ordnung:

$$\dot{x} = A(t)x$$

Ist $\Phi(t)$ eine Fundamentalmatrix von dem DGL-System auf (a,b), dann ist die Allgemeine Lösung der Gleichung auf dem Gebiet $G = \{(t,x) \mid t \in (a,b), \|x\| < \infty\}$:

$$x(t) = \Phi(t) \cdot c$$

wobei c ein beliebiger Vektor ist.

Wie findet man die Lösung eines inhomogenen linearen DGL-System, falls die Fundamentalmatrix Φ des zugehörigen homogenen DGL-System schon bekannt ist?

Die Lösung hat die Form:

$$x(t) = \underbrace{\Phi \cdot c}_{\text{allg. Lsg. der hom. Glg.}} + \underbrace{\Psi}_{\text{eine spezielle Lsg. der inhom. Glg.}}$$

Sie kann mittels Variation der Konstanten bestimmt werden. Es gilt die folgende Lösungsformel:

$$x(t) = \Phi(t) \left[c + \int_{t_0}^t \Phi^{-1}(t') f(t') dt' \right]$$

Es gäbe einen linearen DGL-System der Dimension n mit konstanten Koeffizienten.

$$\dot{x} = Ax$$

Wie löst man das System mit der Ansatzmethode?

Ansatz: $x(t) = c \cdot e^{\lambda t}, \quad \lambda \in \mathbb{C}, c \in \mathbb{C}^n.$

⇒ Eigenwertgleichung:

$$Ac = \lambda c \Rightarrow \det(A - \lambda \mathbb{1}) \stackrel{!}{=} 0$$

Bestimme die Eigenwerte und Eigenvektoren.

Dann sind $x_i = c_i e^{\lambda_i t}$ Lösungen.

Es gäbe einen linearen homogenen DGL-System der Dimension n mit konstanten Koeffizienten x = Ax.

Was gilt für Lösungen, die mit der Ansatzmethode bestimmt wurden, falls A ∈ ℂ^{n×n} und was gilt für A ∈ ℝ^{n×n}?

• Fundamentalsystem wenn A n lin. unab. Eigenvektoren besitzt.

• Ein komplexer Eigenwert tritt immer gemeinsam mit einem dazu c.c. auf.

• Aus einer komplexen Lösung x(t) bekommt man zwei reelle Lösungen u(t) = ℜ(x(t)) und v(t) = ℜ(x(t)).

Es gäbe einen homogenen linearen DGL-System der Dimension n mit konstanten Koeffizienten $\dot{x}=Ax$. Außerdem gäbe es zu dem System ein AWP mit $x(t_0)=x_0$. Dann ist $e^At...$

... Fundamental matrix von dem DGL-System auf $I=(-\infty,\infty).$

Das Anfangswertproblem hat die Lösung:

$$x(t) = e^{(t-t_0)A} \cdot x_0$$

Es gäbe ein AWP zu einem inhomogenen linearen DGL-System der Dimension n mit konstanten Koeffizienten $\dot{x} = Ax + f(t), x(t_0) = x_0$. Wie berechnet man die Lösung?

Es gilt die folgende Lösungsformel:

$$x(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-t')A}f(t') dt'$$
 (1)

Wie berechnet man $e^A t$ wenn A diagonal?

$$e^{At} = \begin{pmatrix} e^{a_{11}t} & & \\ & \ddots & \\ & & e^{a_{nn}t} \end{pmatrix}$$

Wie berechnet man e^At wenn A diagonalisierbar?	$A=SDS^{-1}$ S eine reguläre Matrix, D ist diagonal. $e^{At}=Se^{Dt}S^{-1}$ Diagonalisieren: Man findet D mit dem Charakteristischen Polynom $\chi_A=0$. Als spalten von S nimmt man die zu den Eigenwerten zugehörige Eigenvektoren.
Wie berechnet man $e^A t$ wenn A nicht diagonalisierbar?	Man bringt es auf die Jordansche Normalform mit r Jordan-Blöcken. $e^{At} = Se^{Jt}S^{-1}$ $= S \operatorname{diag}\left(e^{J_1(\lambda(1))t}, \dots, e^{J_r(\lambda_r)t}\right)S^{-1}$ $= S \operatorname{diag}\left(e^{\lambda_1 t}H_1(t), \dots, e^{\lambda_r t}H_r(t)\right)S^{-1}$ $H_i = \begin{pmatrix} 1 & \frac{t}{1!} & \dots & \frac{t^{n-1}}{(n-1)!} \\ & \ddots & \ddots & \vdots \\ & & \ddots & \frac{t}{1!} \\ & & & 1 \end{pmatrix}$