order1

October 13, 2024

```
[1]: import numpy as np
  import pandas as pd
  import statsmodels.api as sm
  import matplotlib.pyplot as plt
  from statsmodels.stats.diagnostic import acorr_ljungbox
```

[4]: # Gerar uma série de ruído branco com média 0 e desvio padrão 1 ruido_branco = np.random.normal(0, 1, 1280)

[5]: plt.plot(ruido_branco) plt.show()


```
[6]: sm.graphics.tsa.plot_acf(ruido_branco) plt.show()
```



```
[7]: # Realizar o teste de Ljung-Box para autocorrelação
ljung_box_result = acorr_ljungbox(ruido_branco, lags=[10], return_df=True)
print(ljung_box_result)

lb_stat lb_pvalue
10 11.583225   0.313917

[8]: data = pd_read_csv('/home/darkcover/Documentos/Out/dados/odds_200k_1.csv')

array1, array2, array3 = [], [], []
for i in range(0, len(data)):
    if data['Odd'][i] >= 2:
        array1.append(1)
    else:
        array1.append(0)

for j in range(60, 1280):
    array = array1[j - 60: j]
```

```
media = sum(array)/60 - 0.5
array2.append(media)

for k in range(60,1280):
   media = sum(array1[0:k]) / len(array1[0:k]) - 0.5
   array3.append(media)
```

[9]: plt.plot(array3)

[9]: [<matplotlib.lines.Line2D at 0x7859f00fa870>]


```
[10]: sm.graphics.tsa.plot_acf(np.array(array3))
plt.show()
```


[11]: plt.plot(array2)

[11]: [<matplotlib.lines.Line2D at 0x7859f0231820>]


```
[12]: sm.graphics.tsa.plot_acf(np.array(array2))
plt.show()
```


[13]: # Realizar o teste de Ljung-Box para autocorrelação ljung_box_result = acorr_ljungbox(array2, lags=range(60,120), return_df=True) print(ljung_box_result)

	lb_stat	lb_pvalue
60	17258.192397	0.0
61	17266.552189	0.0
62	17272.654486	0.0
63	17276.979578	0.0
64	17279.617582	0.0
65	17281.095918	0.0
66	17281.855783	0.0
67	17282.133870	0.0
68	17282.174848	0.0
69	17282.221264	0.0
70	17282.526297	0.0
71	17283.388777	0.0
72	17285.020283	0.0
73	17287.547238	0.0
74	17291.091216	0.0
75	17296.431336	0.0

```
76
     17303.675919
                          0.0
77
     17313.984608
                          0.0
78
                          0.0
     17327.733539
79
     17344.809364
                          0.0
                          0.0
80
     17365.342923
81
     17389.880508
                          0.0
82
     17418.268552
                          0.0
83
     17450.792484
                          0.0
84
     17488.600381
                          0.0
85
                          0.0
     17533.070316
     17584.791363
                          0.0
86
                          0.0
87
     17641.855838
                          0.0
88
     17705.115740
89
                          0.0
     17775.846112
90
                          0.0
     17852.668176
91
     17936.201749
                          0.0
92
     18027.493572
                          0.0
93
     18125.933653
                          0.0
94
     18229.702949
                          0.0
95
     18339.658520
                          0.0
96
     18456.348949
                          0.0
97
     18578.975653
                          0.0
98
     18707.624575
                          0.0
99
     18840.664841
                          0.0
100
     18976.445981
                          0.0
     19113.658196
                          0.0
101
                          0.0
102
     19250.971376
                          0.0
103
     19387.123477
                          0.0
104
     19519.876751
105
     19649.991004
                          0.0
106
     19775.563684
                          0.0
107
     19896.355177
                          0.0
108
     20012.451934
                          0.0
109
     20123.822250
                          0.0
     20228.734092
                          0.0
110
111
     20326.243473
                          0.0
                          0.0
112
     20418.582824
113
     20504.612663
                          0.0
114
     20584.450297
                          0.0
115
     20657.828045
                          0.0
116
     20724.778092
                          0.0
     20785.768731
                          0.0
117
118
     20840.051336
                          0.0
     20888.449561
                          0.0
```

[14]: from statsmodels.tsa.ar_model import AutoReg

```
# Ajustar o modelo AR ao array2
model_ar = AutoReg(array2, lags=60)  # Ajuste o lag conforme sua análise de ACF
model_ar_fit = model_ar.fit()

# Exibir sumário do modelo AR
print(model_ar_fit.summary())
```

AutoReg Model Results

Dep. Variable:	у	No. Observations:	1220
Model:	AutoReg(60)	Log Likelihood	3558.778
Method:	Conditional MLE	S.D. of innovations	0.011
Date:	Sun, 13 Oct 2024	AIC	-6993.556
Time:	18:02:24	BIC	-6680.073
Sample:	60	HQIC	-6875.272

1220

=======	========	=======	========		_	
	coef	std err	Z	P> z	[0.025	0.975]
const	-0.0006	0.000	-1.728	0.084	-0.001	8.41e-05
y.L1	0.9328	0.029	31.812	0.000	0.875	0.990
y.L2	0.0283	0.040	0.706	0.480	-0.050	0.107
y.L3	0.0610	0.040	1.520	0.128	-0.018	0.140
y.L4	-0.0150	0.040	-0.374	0.708	-0.094	0.064
y.L5	-0.0636	0.040	-1.586	0.113	-0.142	0.015
y.L6	0.0613	0.040	1.529	0.126	-0.017	0.140
y.L7	-0.0097	0.040	-0.242	0.809	-0.088	0.069
y.L8	0.0539	0.040	1.348	0.178	-0.024	0.132
y.L9	-0.1323	0.040	-3.322	0.001	-0.210	-0.054
y.L10	0.0351	0.040	0.876	0.381	-0.043	0.114
y.L11	0.0469	0.040	1.172	0.241	-0.032	0.125
y.L12	-0.0164	0.040	-0.411	0.681	-0.095	0.062
y.L13	0.0378	0.040	0.947	0.344	-0.041	0.116
y.L14	0.0183	0.040	0.459	0.647	-0.060	0.097
y.L15	-0.0845	0.040	-2.119	0.034	-0.163	-0.006
y.L16	0.0507	0.040	1.270	0.204	-0.028	0.129
y.L17	-0.0249	0.040	-0.623	0.533	-0.103	0.053
y.L18	-0.0206	0.040	-0.515	0.606	-0.099	0.058
y.L19	-0.0203	0.040	-0.509	0.610	-0.099	0.058
y.L20	0.0396	0.040	0.992	0.321	-0.039	0.118
y.L21	-0.0296	0.040	-0.741	0.459	-0.108	0.049
y.L22	0.0125	0.040	0.314	0.753	-0.066	0.091
y.L23	0.0308	0.040	0.773	0.440	-0.047	0.109
y.L24	0.0090	0.040	0.226	0.821	-0.069	0.087
y.L25	0.0178	0.040	0.448	0.654	-0.060	0.096
y.L26	-0.1005	0.040	-2.522	0.012	-0.179	-0.022
y.L27	0.1177	0.040	2.957	0.003	0.040	0.196
y.L28	-0.0260	0.040	-0.650	0.515	-0.104	0.052

y.L20	0.0212	0.010	0.005	0.430	0.100	0.001
y.L30	-0.0068	0.040	-0.170	0.865	-0.085	0.071
y.L31	-0.0014	0.040	-0.034	0.973	-0.080	0.077
y.L32	-0.0501	0.040	-1.257	0.209	-0.128	0.028
y.L33	-0.0192	0.040	-0.483	0.629	-0.097	0.059
y.L34	0.1172	0.040	2.951	0.003	0.039	0.195
y.L35	-0.0432	0.040	-1.087	0.277	-0.121	0.035
y.L36	-0.0298	0.040	-0.749	0.454	-0.108	0.048
y.L37	0.0274	0.040	0.688	0.492	-0.051	0.105
y.L38	-0.0470	0.040	-1.180	0.238	-0.125	0.031
y.L39	0.0513	0.040	1.290	0.197	-0.027	0.129
y.L40	-0.0130	0.040	-0.326	0.744	-0.091	0.065
y.L41	0.0035	0.040	0.088	0.930	-0.075	0.082
y.L42	0.0163	0.040	0.409	0.683	-0.062	0.094
y.L43	-0.0344	0.040	-0.865	0.387	-0.112	0.044
y.L44	0.0374	0.040	0.941	0.347	-0.041	0.115
y.L45	-0.0243	0.040	-0.611	0.542	-0.102	0.054
y.L46	0.0164	0.040	0.413	0.680	-0.061	0.094
y.L47	-0.0715	0.040	-1.804	0.071	-0.149	0.006
y.L48	0.0207	0.040	0.521	0.602	-0.057	0.098
y.L49	0.0209	0.040	0.527	0.598	-0.057	0.099
y.L50	0.0482	0.040	1.214	0.225	-0.030	0.126
y.L51	0.0442	0.040	1.114	0.265	-0.034	0.122
y.L52	-0.1304	0.039	-3.302	0.001	-0.208	-0.053
y.L53	0.0548	0.040	1.382	0.167	-0.023	0.132
y.L54	-0.0396	0.040	-0.998	0.318	-0.117	0.038
y.L55	0.0816	0.040	2.057	0.040	0.004	0.159
y.L56	-0.0410	0.040	-1.032	0.302	-0.119	0.037
y.L57	-0.0268	0.040	-0.677	0.498	-0.105	0.051
y.L58	0.0429	0.040	1.083	0.279	-0.035	0.120
y.L59	0.0383	0.040	0.967	0.334	-0.039	0.116
y.L60	-0.0636	0.029	-2.191	0.028	-0.120	-0.007
			Roots			
	Real	I	maginary	Modu	lus	Frequency
AR.1	-1.0301		-0.0575j	1.0	 317	-0.4911
AR.2	-1.0301		+0.0575j	1.0	317	0.4911
AR.3	-1.0205		-0.1646j	1.0	337	-0.4745
AR.4	-1.0205		+0.1646j	1.0		0.4745
AR.5	-0.9920		-0.2966j	1.0	354	-0.4538
AR.6	-0.9920		+0.2966j	1.0		0.4538
AR.7	-0.9452		-0.4055j	1.0		-0.4355
AR.8	-0.9452		+0.4055j	1.0		0.4355
AD O	_0 0760		0 E490÷	1 0		_0 /110

y.L29

AR.9

AR.10

AR.11

AR.12

-0.8768

-0.8768

-1.1164

-1.1164

-0.0272

0.040

-0.683

0.495

-0.105

0.051

1.0345

1.0345

1.2506

1.2506

-0.4110

-0.4256

0.4256

0.4110

-0.5489j

+0.5489j

-0.5635j

+0.5635j

AR.13	-0.8223	-0.6499j	1.0481	-0.3936
AR.14	-0.8223	+0.6499j	1.0481	0.3936
AR.15	-0.7331	-0.7267j	1.0323	-0.3757
AR.16	-0.7331	+0.7267j	1.0323	0.3757
AR.17	-0.6416	-0.8001j	1.0255	-0.3576
AR.18	-0.6416	+0.8001j	1.0255	0.3576
AR.19	-0.5680	-0.8922j	1.0576	-0.3402
AR.20	-0.5680	+0.8922j	1.0576	0.3402
AR.21	-0.4640	-0.9297j	1.0370	-0.3237
AR.22	-0.4640	+0.9297j	1.0390	0.3237
		_		
AR.23	-0.3633	-0.9938j	1.0581	-0.3058
AR.24	-0.3633	+0.9938j	1.0581	0.3058
AR.25	-0.2600	-0.9888j	1.0224	-0.2909
AR.26	-0.2600	+0.9888j	1.0224	0.2909
AR.27	-0.1503	-1.0360j	1.0468	-0.2729
AR.28	-0.1503	+1.0360j	1.0468	0.2729
AR.29	-0.0428	-1.0231j	1.0240	-0.2567
AR.30	-0.0428	+1.0231j	1.0240	0.2567
AR.31	0.0746	-1.0248j	1.0275	-0.2384
AR.32	0.0746	+1.0248j	1.0275	0.2384
AR.33	0.1928	-1.0118j	1.0300	-0.2200
AR.34	0.1928	+1.0118j	1.0300	0.2200
AR.35	0.3112	-0.9803j	1.0285	-0.2011
AR.36	0.3112	+0.9803j	1.0285	0.2011
AR.37	0.4621	-0.9337j	1.0417	-0.1769
AR.38	0.4621	+0.9337j	1.0417	0.1769
AR.39	0.5224	-1.0005j	1.1287	-0.1734
AR.40	0.5224	+1.0005j	1.1287	0.1734
AR.41	0.5803	-0.8767j	1.0513	-0.1569
AR.42	0.5803	+0.8767j	1.0513	0.1569
AR.43	0.6588	-0.7850j	1.0248	-0.1389
AR.44	0.6588	+0.7850j	1.0248	0.1389
AR.45	0.7593	-0.7002j	1.0329	-0.1186
AR.46	0.7593	+0.7002j	1.0329	0.1186
		ŭ		
AR.47	0.8480	-0.6221j	1.0517	-0.1007
AR.48	0.8480	+0.6221j	1.0517	0.1007
AR.49	0.9212	-0.5275j	1.0615	-0.0828
AR.50	0.9212	+0.5275j	1.0615	0.0828
AR.51	0.9360	-0.4525j	1.0397	-0.0717
AR.52	0.9360	+0.4525j	1.0397	0.0717
AR.53	0.9941	-0.3317j	1.0480	-0.0513
AR.54	0.9941	+0.3317j	1.0480	0.0513
AR.55	1.0144	-0.2287j	1.0398	-0.0353
AR.56	1.0144	+0.2287j	1.0398	0.0353
AR.57	1.0351	-0.1139j	1.0414	-0.0174
AR.58	1.0351	+0.1139j	1.0414	0.0174
AR.59	1.0170	-0.0349j	1.0176	-0.0055
AR.60	1.0170	+0.0349j	1.0176	0.0055

[20]: # Previsão de 0 passos à frente
previsao = model_ar_fit.predict(start=len(array2), end=len(array2)+ 640)
print("Previsão das médias futuras (AR):", previsao)

Previsão das médias futuras (AR): [-0.0602307 -0.06355093 -0.06375526 -0.05837954 -0.05948014 -0.0600288 -0.05658683 -0.05583314 -0.05822094 -0.05709541 -0.05569757 -0.05485859-0.0523286 -0.05161318 -0.04541339 -0.04232935 -0.04068978 -0.03860122-0.04400248 -0.04445518 -0.04128352 -0.04054832 -0.04447759 -0.04171924-0.04088192 -0.03819706 -0.03554492 -0.03462488 -0.03222155 -0.03154688-0.03167294 -0.02833924 -0.03212698 -0.02974319 -0.02761224 -0.02941296-0.0298343 -0.02855489 -0.02898059 -0.02670216 -0.02362663 -0.02220037 $-0.02141486 \ -0.02083179 \ -0.01939296 \ -0.01669577 \ -0.0206265 \ -0.01909168$ -0.01758674 -0.01714515 -0.01676151 -0.0161129 -0.01745837 -0.01722627 $-0.01646749 \ -0.01512638 \ -0.01453448 \ -0.01408873 \ -0.01193896 \ -0.01210502$ -0.01259404 -0.01176442 -0.01122094 -0.01182111 -0.01149461 -0.00951926-0.01002079 -0.00960661 -0.00900781 -0.00896156 -0.00813689 -0.00786004 $-0.00740387 \ -0.00775678 \ -0.00762255 \ -0.00716686 \ -0.00700633 \ -0.00813197$ -0.00772897 -0.00687503 -0.00773003 -0.0078768 -0.00726365 -0.00757078-0.00683145 -0.00674247 -0.00677195 -0.00724514 -0.00767097 -0.00736651-0.00733102 -0.0081035 -0.00770019 -0.00776347 -0.00835231 -0.00804703-0.00820074 -0.00895136 -0.00862176 -0.0083658 -0.00829437 -0.00885851 $-0.00912694 \ -0.00924948 \ -0.00947343 \ -0.01020807 \ -0.00988117 \ -0.01012599$ $-0.01054643 \ -0.01038737 \ -0.0107097 \ -0.01113634 \ -0.01130048 \ -0.01128125$ -0.01153812 -0.01183475 -0.0118487 -0.01210502 -0.01245563 -0.01278975-0.01265415 -0.01294868 -0.01338605 -0.01329947 -0.01344248 -0.01375717-0.01382186 -0.01394288 -0.0142851 -0.01429717 -0.01443195 -0.01475054-0.01508778 -0.01520342 -0.01515403 -0.01537534 -0.01569951 -0.01565353-0.01587345 -0.01616462 -0.01612834 -0.01622138 -0.01649948 -0.01646377 $-0.01657528 \ -0.01672708 \ -0.0169531 \ -0.01710879 \ -0.01710603 \ -0.01724887$ -0.0173148 -0.01727872 -0.01750602 -0.01761958 -0.01756262 -0.01768145-0.01788671 -0.01778417 -0.01783368 -0.01791272 -0.01802558 -0.01806845-0.01809204 -0.01820454 -0.0181938 -0.01815158 -0.01826034 -0.01830047-0.01824077 -0.01830664 -0.01836808 -0.01828942 -0.018326 -0.01837851 -0.01836323 -0.01832509 -0.01836084 -0.01839142 -0.0183397 -0.01827756 $-0.01830821 \ -0.01831984 \ -0.0182501 \ \ -0.01828643 \ -0.0182517 \ \ -0.01815717$ -0.0181749 -0.01818583 -0.01811592 -0.01808952 -0.01810115 -0.01807537-0.01800699 -0.01795578 -0.01794346 -0.01790554 -0.01783406 -0.01786821-0.01782024 -0.01772222 -0.01771352 -0.01768605 -0.01761922 -0.01758869-0.01756382 -0.0175248 -0.01747632 -0.01743632 -0.01739528 -0.01733265-0.01728381 -0.01729661 -0.01723213 -0.01716658 -0.01715757 -0.0171176-0.01705094 -0.01703049 -0.01700665 -0.01695682 -0.01691578 -0.01688709-0.01685665 -0.01680375 -0.01676983 -0.01676119 -0.01671118 -0.01667509 $-0.01666236 \ -0.01662172 \ -0.01657118 \ -0.01656709 \ -0.01654978 \ -0.01650563$ $-0.01648121 \ -0.01646017 \ -0.01643558 \ -0.01640145 \ -0.01638232 \ -0.01637129$

```
-0.01634164 -0.01632436 -0.01631917 -0.01628493 -0.01625633 -0.01626008
-0.0162453 \quad -0.01621988 \quad -0.01621754 \quad -0.01620552 \quad -0.01618684 \quad -0.01617084
-0.01616741 -0.0161609 -0.01614276 -0.01613961 -0.01614593 -0.01612717
-0.01611475 -0.01612136 -0.01611288 -0.0161062 -0.01611257 -0.01610758
-0.01610139 -0.01610025 -0.0161049 -0.0161021 -0.01609853 -0.01610555
-0.01611244 -0.01610489 -0.01610812 -0.01611955 -0.01611535 -0.01611828
-0.01613109 -0.01613374 -0.01613413 -0.01614043 -0.01614873 -0.01615185
-0.01615805 -0.01616866 -0.01617595 -0.01617692 -0.01618705 -0.01619847
-0.01619862 \ -0.01620684 \ -0.01622149 \ -0.0162273 \ \ -0.01623228 \ -0.01624251
-0.0162499 \quad -0.01625593 \quad -0.01626551 \quad -0.01627639 \quad -0.01628407 \quad -0.01628956
-0.01630082 \ -0.01631017 \ -0.01631298 \ -0.01632339 \ -0.01633512 \ -0.01634008
-0.01634788 -0.01635927 -0.01636458 -0.01637004 -0.01637954 -0.01638901
-0.01639531 -0.01640083 -0.01641057 -0.01641772 -0.01642117 -0.01642999
-0.01643786 -0.0164419 -0.01644901 -0.01645721 -0.01646059 -0.01646555
-0.01647271 -0.01647835 -0.0164826 -0.01648777 -0.01649426 -0.01649755
-0.01650029 -0.01650681 -0.01651126 -0.01651315 -0.01651814 -0.01652308
-0.01652439 -0.01652751 -0.01653156 -0.01653387 -0.01653605 -0.01653958
-0.01654268 -0.01654337 -0.01654469 -0.01654804 -0.01654952 -0.01654965
-0.01655238 -0.01655424 -0.01655377 -0.01655513 -0.01655648 -0.01655625
-0.01655668 -0.01655798 -0.01655844 -0.01655773 -0.01655778 -0.01655835
-0.01655758 -0.01655674 -0.01655766 -0.01655699 -0.01655527 -0.01655547
-0.01655503 -0.01655319 -0.01655236 -0.01655213 -0.01655101 -0.01654935
-0.01654838 -0.01654744 -0.01654559 -0.01654408 -0.01654361 -0.01654182
-0.0165398 \quad -0.01653898 \quad -0.01653736 \quad -0.01653512 \quad -0.01653389 \quad -0.01653268
-0.01653068 -0.01652892 -0.01652763 -0.01652592 -0.01652371 -0.01652211
-0.01652102 \ -0.01651895 \ -0.01651708 \ -0.01651592 \ -0.01651399 \ -0.01651189
-0.01651065 -0.01650917 -0.01650715 -0.01650567 -0.01650441 -0.01650267
-0.01650078 -0.01649943 -0.01649822 -0.01649643 -0.01649501 -0.01649397
-0.01649231 -0.01649071 -0.01648974 -0.01648844 -0.01648692 -0.01648592
-0.01648486 -0.01648353 -0.01648231 -0.01648141 -0.01648037 -0.01647915
-0.01647836 -0.01647765 -0.01647645 -0.0164755 -0.01647499 -0.01647408
-0.01647316 -0.01647269 -0.01647206 -0.01647126 -0.01647065 -0.01647022
-0.01646963 -0.01646901 -0.01646871 -0.01646838 -0.01646779 -0.01646744
-0.01646728 -0.01646681 -0.0164665 -0.01646647 -0.01646623 -0.01646593
-0.01646584 -0.01646579 -0.01646559 -0.01646548 -0.01646556 -0.01646556
-0.01646544 -0.01646554 -0.01646566 -0.01646556 -0.01646567 -0.01646593
-0.01646598 -0.01646606 -0.01646631 -0.0164665 -0.01646659 -0.01646681
-0.01646712 -0.01646732 -0.0164675 -0.01646784 -0.01646813 -0.01646829
-0.01646861 -0.01646899 -0.01646922 -0.01646952 -0.01646991 -0.01647019
-0.01647046 -0.01647084 -0.01647121 -0.0164715 -0.01647182 -0.01647224
-0.01647256 \ -0.01647282 \ -0.01647322 \ -0.0164736 \ -0.01647388 \ -0.01647423
-0.01647463 -0.01647493 -0.01647523 -0.0164756 -0.01647594 -0.01647623
-0.01647656 \ -0.01647692 \ -0.0164772 \ \ -0.01647747 \ -0.01647782 \ \ -0.01647811
-0.01647836 -0.01647868 -0.01647899 -0.01647921 -0.01647947 -0.01647976
-0.01648
            -0.01648022 -0.01648049 -0.01648074 -0.01648093 -0.01648114
-0.01648138 -0.01648156 -0.01648173 -0.01648195 -0.01648214 -0.01648227
-0.01648245 -0.01648262 -0.01648275 -0.01648288 -0.01648304 -0.01648317
-0.01648326 -0.01648338 -0.0164835 -0.01648358 -0.01648366 -0.01648377
```

```
-0.01648385 -0.0164839 -0.01648398 -0.01648404 -0.01648407 -0.01648412
      -0.01648418 -0.0164842 -0.01648422 -0.01648425 -0.01648428 -0.01648427
      -0.01648427 -0.0164843 -0.01648429 -0.01648427 -0.01648427 -0.01648426
      -0.01648422 -0.0164842 -0.01648419 -0.01648415 -0.01648411 -0.01648408
      -0.01648404 -0.01648399 -0.01648394 -0.01648391 -0.01648385 -0.01648379
      -0.01648375 -0.01648369 -0.01648362 -0.01648356 -0.01648351 -0.01648343
      -0.01648337 -0.01648332 -0.01648324 -0.01648317 -0.01648311 -0.01648304
      -0.01648296 -0.0164829 -0.01648284 -0.01648276 -0.01648268 -0.01648262
      -0.01648255 -0.01648248 -0.01648241 -0.01648235 -0.01648228 -0.01648221
      -0.01648215 -0.01648208 -0.01648201 -0.01648195 -0.01648189 -0.01648182
      -0.01648176 \ -0.01648171 \ -0.01648165 \ -0.01648158 \ -0.01648153 \ -0.01648148
      -0.01648142 -0.01648137 -0.01648132 -0.01648127 -0.01648122 -0.01648118
      -0.01648114 \ -0.01648109 \ -0.01648105 \ -0.01648101 \ -0.01648097 \ -0.01648093
      -0.0164809 -0.01648086 -0.01648083 -0.0164808 -0.01648077 -0.01648074
      -0.01648071 \ -0.01648069 \ -0.01648067 \ -0.01648064 \ -0.01648063 \ -0.01648061
      -0.01648059 -0.01648057 -0.01648056 -0.01648054 -0.01648053 -0.01648052
      -0.01648051 \ -0.0164805 \ -0.01648049 \ -0.01648049 \ -0.01648048 \ -0.01648048
      -0.01648048 -0.01648047 -0.01648047 -0.01648047 -0.01648047 -0.01648047
      -0.01648048 -0.01648048 -0.01648049 -0.01648049 -0.0164805 ]
[26]: array_previsao = np.array(previsao)
      junto = np.concat([array2, array_previsao])
[27]: plt.plot(junto)
```

[27]: [<matplotlib.lines.Line2D at 0x7859edf72870>]


```
[32]: # Função para gerar oscilação controlada
      def gerar_oscillacao(valor_inicial, incremento, tamanho, limite_inferior=0.28 -__
       \rightarrow 0.5, limite_superior=0.63 - 0.5):
          osc_final = [valor_inicial]
          for i in range(1, tamanho):
              probabilidade = np.random.rand()
              if probabilidade < 1/3:
                  proximo_valor = osc_final[-1] + incremento
              elif probabilidade < 2/3:
                  proximo_valor = osc_final[-1]
              else:
                  proximo_valor = osc_final[-1] - incremento
              proximo_valor = np.clip(proximo_valor, limite_inferior, limite_superior)
              osc_final.append(proximo_valor)
          return osc_final
      array_osc = gerar_oscillacao(valor_inicial=array2[-1], incremento=1/60,__
       →tamanho=120)
      junto2 = np.concatenate([array2,array_osc])
```

```
plt.plot(junto2)
```

[32]: [<matplotlib.lines.Line2D at 0x7859edde2780>]


```
if probabilidade < 1/3:
            proximo_valor = osc_final[-1] + incremento
        elif probabilidade < 2/3:
            proximo_valor = osc_final[-1]
        else:
            proximo_valor = osc_final[-1] - incremento
        # Aplicar os limites e o controle da previsão AR
        proximo_valor = np.clip(proximo_valor, max(limite_inferior,__
 →referencia_ar - incremento),
                                min(limite_superior, referencia_ar +_
 →incremento))
        osc_final.append(proximo_valor)
    return osc_final
# Supondo que você já tenha um modelo <math>AR treinado e qerado previsões de <math>60\sqcup
 ⇔passos
previsao_ar = model_ar_fit.predict(start=len(array2), end=len(array2) + 60)
# Gerar oscilações baseadas na previsão AR
array_osc = gerar_oscillacao(valor_inicial=array2[-1], incremento=1/60,__
→tamanho=120, previsao_ar=previsao_ar)
# Concatenar a previsão e a oscilação
junto2 = np.concatenate([array2, array_osc])
# Plotar o gráfico resultante
plt.plot(junto2)
plt.title('Previsão e Oscilação Controlada')
plt.xlabel('Passos')
plt.ylabel('Valores')
plt.show()
```


SARIMAX Results

Dep. Variable:	у	No. Observations:	1220
Model:	ARIMA(60, 0, 0)	Log Likelihood	3735.235
Date:	Sun, 13 Oct 2024	AIC	-7346.469
Time:	18:12:09	BIC	-7029.860
Sample:	0	HQIC	-7227.302

- 1220

opg

=======	========	========				=======
	coef	std err	z	P> z	[0.025	0.975]
const	-0.0148	0.008	-1.841	0.066	-0.031	0.001
ar.L1	0.9263	0.029	32.151	0.000	0.870	0.983
ar.L2	0.0297	0.039	0.766	0.444	-0.046	0.106
ar.L3	0.0593	0.040	1.494	0.135	-0.018	0.137
ar.L4	-0.0085	0.039	-0.217	0.829	-0.086	0.069
ar.L5	-0.0583	0.039	-1.480	0.139	-0.135	0.019
ar.L6	0.0580	0.041	1.421	0.155	-0.022	0.138
ar.L7	-0.0120	0.040	-0.300	0.764	-0.090	0.066
ar.L8	0.0533	0.039	1.350	0.177	-0.024	0.131
ar.L9	-0.1322	0.039	-3.394	0.001	-0.209	-0.056
ar.L10	0.0359	0.041	0.874	0.382	-0.045	0.116
ar.L11	0.0540	0.041	1.323	0.186	-0.026	0.134
ar.L12	-0.0208	0.041	-0.511	0.610	-0.100	0.059
ar.L13	0.0334	0.040	0.832	0.405	-0.045	0.112
ar.L14	0.0184	0.040	0.455	0.649	-0.061	0.097
ar.L15	-0.0829	0.041	-2.045	0.041	-0.162	-0.003
ar.L16	0.0569	0.038	1.490	0.136	-0.018	0.132
ar.L17	-0.0309	0.041	-0.757	0.449	-0.111	0.049
ar.L18	-0.0249	0.041	-0.614	0.539	-0.104	0.055
ar.L19	-0.0134	0.041	-0.325	0.745	-0.094	0.067
ar.L20	0.0286	0.041	0.691	0.490	-0.053	0.110
ar.L21	-0.0196	0.040	-0.484	0.628	-0.099	0.060
ar.L22	0.0119	0.042	0.282	0.778	-0.071	0.095
ar.L23	0.0363	0.040	0.897	0.370	-0.043	0.116
ar.L24	0.0106	0.041	0.255	0.799	-0.071	0.092
ar.L25	-0.0016	0.042	-0.039	0.969	-0.084	0.081
ar.L26	-0.0919	0.041	-2.250	0.024	-0.172	-0.012
ar.L27	0.1121	0.040	2.776	0.006	0.033	0.191
ar.L28	-0.0089	0.040	-0.222	0.824	-0.088	0.070
ar.L29	-0.0321	0.041	-0.786	0.432	-0.112	0.048
ar.L30	-0.0124	0.040	-0.312	0.755	-0.090	0.066
ar.L31	-0.0024	0.041	-0.060	0.952	-0.082	0.077
ar.L32	-0.0411	0.042	-0.981	0.327	-0.123	0.041
ar.L33	-0.0226	0.041	-0.558	0.577	-0.102	0.057
ar.L34	0.1148	0.042	2.755	0.006	0.033	0.196
ar.L35	-0.0380	0.039	-0.961	0.337	-0.115	0.039
ar.L36	-0.0444	0.040	-1.121	0.262	-0.122	0.033
ar.L37	0.0388	0.040	0.961	0.337	-0.040	0.118
ar.L38	-0.0477	0.041	-1.161	0.246	-0.128	0.033
ar.L39	0.0488	0.041	1.194	0.232	-0.031	0.129
ar.L40	-0.0145	0.041	-0.355	0.722	-0.094	0.065
ar.L41	0.0030	0.040	0.075	0.940	-0.076	0.082
ar.L42	0.0164	0.039	0.417	0.677	-0.061	0.094

```
ar.L43
              -0.0264
                            0.039
                                      -0.673
                                                  0.501
                                                             -0.103
                                                                           0.051
ar.L44
               0.0333
                            0.040
                                      0.827
                                                  0.408
                                                             -0.046
                                                                           0.112
ar.L45
              -0.0220
                            0.040
                                      -0.549
                                                  0.583
                                                             -0.101
                                                                           0.057
ar.L46
                           0.041
                                                             -0.073
                                                                           0.087
               0.0072
                                      0.177
                                                  0.860
ar.L47
              -0.0604
                           0.042
                                     -1.433
                                                  0.152
                                                             -0.143
                                                                           0.022
ar.L48
               0.0110
                            0.041
                                       0.267
                                                  0.789
                                                             -0.069
                                                                           0.091
ar.L49
               0.0243
                           0.042
                                       0.581
                                                  0.561
                                                             -0.058
                                                                           0.106
ar.L50
               0.0506
                           0.041
                                       1.238
                                                  0.216
                                                             -0.029
                                                                           0.131
                           0.039
ar.L51
               0.0421
                                      1.069
                                                  0.285
                                                             -0.035
                                                                           0.119
ar.L52
              -0.1306
                           0.041
                                      -3.191
                                                  0.001
                                                             -0.211
                                                                          -0.050
ar.L53
               0.0507
                           0.042
                                      1.218
                                                  0.223
                                                             -0.031
                                                                           0.132
ar.L54
              -0.0332
                           0.040
                                      -0.835
                                                  0.404
                                                             -0.111
                                                                           0.045
ar.L55
               0.0784
                           0.041
                                      1.934
                                                  0.053
                                                             -0.001
                                                                           0.158
ar.L56
              -0.0417
                           0.040
                                      -1.055
                                                  0.292
                                                             -0.119
                                                                           0.036
ar.L57
              -0.0261
                           0.041
                                      -0.639
                                                  0.523
                                                             -0.106
                                                                           0.054
ar.L58
               0.0426
                                      1.043
                                                  0.297
                                                             -0.037
                           0.041
                                                                           0.123
ar.L59
               0.0391
                           0.041
                                       0.943
                                                  0.346
                                                             -0.042
                                                                           0.120
              -0.0640
                           0.031
                                      -2.097
                                                  0.036
                                                             -0.124
                                                                          -0.004
ar.L60
                                      17.856
                                                  0.000
                                                              0.000
                                                                           0.000
sigma2
               0.0001
                        7.15e-06
```

===

```
Ljung-Box (L1) (Q): 1.14 Jarque-Bera (JB):
```

39.12

Prob(Q): 0.29 Prob(JB):

0.00

Heteroskedasticity (H): 0.98 Skew:

-0.02

Prob(H) (two-sided): 0.83 Kurtosis:

2.12

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

SARIMAX Results

===========			=========
Dep. Variable:	у	No. Observations:	1219
Model:	ARIMA(60, 0, 0)	Log Likelihood	3896.610
Date:	Sun, 13 Oct 2024	AIC	-7669.220
Time:	18:23:45	BIC	-7352.661
Sample:	0	HQIC	-7550.067
	- 1219		
Covariance Type:	opg		

=======		========	========			=======
	coef	std err	z 	P> z	[0.025	0.975]
const	-7.677e-05	0.000	-0.492	0.623	-0.000	0.000
ar.L1	-0.0335	0.025	-1.355	0.175	-0.082	0.015
ar.L2	-0.0227	0.024	-0.939	0.348	-0.070	0.025
ar.L3	0.0169	0.025	0.667	0.505	-0.033	0.067
ar.L4	0.0192	0.025	0.752	0.452	-0.031	0.069
ar.L5	-0.0152	0.025	-0.604	0.546	-0.065	0.034
ar.L6	-0.0007	0.026	-0.027	0.979	-0.051	0.050
ar.L7	0.0099	0.025	0.404	0.686	-0.038	0.058
ar.L8	0.0341	0.025	1.353	0.176	-0.015	0.083
ar.L9	-0.0327	0.025	-1.333	0.182	-0.081	0.015
ar.L10	-0.0176	0.025	-0.695	0.487	-0.067	0.032
ar.L11	0.0069	0.026	0.262	0.793	-0.044	0.058
ar.L12	-0.0185	0.025	-0.729	0.466	-0.068	0.031
ar.L13	0.0026	0.025	0.105	0.916	-0.046	0.052
ar.L14	0.0617	0.025	2.435	0.015	0.012	0.111
ar.L15	-0.0343	0.026	-1.342	0.179	-0.084	0.016
ar.L16	0.0335	0.025	1.342	0.180	-0.015	0.082
ar.L17	-0.0152	0.026	-0.585	0.559	-0.066	0.036
ar.L18	-0.0246	0.025	-0.972	0.331	-0.074	0.025
ar.L19	-0.0458	0.025	-1.798	0.072	-0.096	0.004
ar.L20	-0.0179	0.026	-0.680	0.497	-0.070	0.034
ar.L21	-0.0283	0.025	-1.132	0.258	-0.077	0.021
ar.L22	-0.0422	0.025	-1.679	0.093	-0.092	0.007
ar.L23	0.0175	0.026	0.680	0.496	-0.033	0.068
ar.L24	0.0144	0.025	0.573	0.567	-0.035	0.064
ar.L25	0.0285	0.026	1.096	0.273	-0.023	0.080
ar.L26	-0.0448	0.025	-1.776	0.076	-0.094	0.005
ar.L27	0.0099	0.026	0.380	0.704	-0.041	0.061
ar.L28	0.0152	0.026	0.594	0.553	-0.035	0.065
ar.L29	0.0063	0.025	0.250	0.802	-0.043	0.056
ar.L30	-0.0071	0.026	-0.275	0.783	-0.058	0.044
ar.L31	-0.0051	0.026	-0.199	0.842	-0.055	0.045
ar.L32	-0.0339	0.026	-1.302	0.193	-0.085	0.017
ar.L33	-0.0410	0.025	-1.622	0.105	-0.090	0.009
ar.L34	0.0126	0.025	0.502	0.616	-0.037	0.062
ar.L35	0.0211	0.024	0.882	0.378	-0.026	0.068
ar.L36	-0.0288	0.026	-1.123	0.261	-0.079	0.021
ar.L37	0.0052	0.026	0.200	0.842	-0.045	0.056
ar.L38	-0.0564	0.026	-2.153	0.031	-0.108	-0.005
ar.L39	-0.0117	0.025	-0.460	0.646	-0.062	0.038
ar.L40	-0.0115	0.025	-0.457	0.648	-0.061	0.038
ar.L41	-0.0321	0.025	-1.276	0.202	-0.081	0.017
ar.L42	-0.0020	0.025	-0.082	0.935	-0.050	0.046
ar.L43	-0.0221	0.025	-0.877	0.380	-0.071	0.027
ar.L44	0.0258	0.025	1.023	0.307	-0.024	0.075

ar.L45	-0.0213	0.026	-0.818	0.413	-0.072	0.030
ar.L46	0.0251	0.026	0.956	0.339	-0.026	0.077
ar.L47	-0.0369	0.026	-1.436	0.151	-0.087	0.013
ar.L48	-0.0470	0.025	-1.882	0.060	-0.096	0.002
ar.L49	-0.0175	0.025	-0.701	0.483	-0.066	0.031
ar.L50	0.0117	0.026	0.452	0.652	-0.039	0.062
ar.L51	0.0363	0.025	1.456	0.145	-0.013	0.085
ar.L52	-0.0284	0.026	-1.112	0.266	-0.078	0.022
ar.L53	-0.0010	0.025	-0.039	0.969	-0.051	0.049
ar.L54	-0.0338	0.026	-1.307	0.191	-0.084	0.017
ar.L55	0.0126	0.026	0.481	0.631	-0.039	0.064
ar.L56	0.0072	0.025	0.286	0.775	-0.042	0.056
ar.L57	-0.0136	0.026	-0.528	0.598	-0.064	0.037
ar.L58	-0.0002	0.025	-0.007	0.995	-0.049	0.049
ar.L59	0.0217	0.026	0.845	0.398	-0.029	0.072
ar.L60	-0.5088	0.029	-17.422	0.000	-0.566	-0.452
sigma2	9.623e-05	5.51e-06	17.474	0.000	8.54e-05	0.000

===

```
Ljung-Box (L1) (Q): 0.44 Jarque-Bera (JB):
```

43.11

Prob(Q): 0.51 Prob(JB):

0.00

Heteroskedasticity (H): 0.92 Skew:

0.05

Prob(H) (two-sided): 0.42 Kurtosis:

2.08

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[18]: from statsmodels.tsa.stattools import adfuller

# Realizar o teste de Dickey-Fuller na série array2

adf_result = adfuller(array2)

print('ADF Statistic: %f' % adf_result[0])

print('p-value: %f' % adf_result[1])

# Se o p-value for menor que 0.05, rejeitamos a hipótese nula e consideramos a

→ série estacionária.
```

ADF Statistic: -4.260079

p-value: 0.000520

```
[19]: # Obter os resíduos do modelo ARIMA ajustado
    residuals = model_arima_fit.resid

# Plotar os resíduos
    plt.plot(residuals)
    plt.title('Resíduos do Modelo ARIMA')
    plt.show()

# Testar autocorrelação nos resíduos (devem ser ruído branco)
    sm.graphics.tsa.plot_acf(residuals, lags=40)
    plt.show()
```


[29]: # Ajustar o modelo AR apenas com lags significativos
significant_lags = [1, 9, 26, 27, 34]
model_ar1 = AutoReg(array2, lags=significant_lags)
model_ar_fit1 = model_ar.fit()
print(model_ar_fit1.summary())

AutoReg Model Results

Dep. Variable:			y No.	Observations:		1220
Model:		AutoReg	g(60) Log	Likelihood		3558.778
Method:	(Conditional	L MLE S.D.	of innovation	ons	0.011
Date:	Sı	un, 13 Oct	2024 AIC			-6993.556
Time:		18:5	56:07 BIC			-6680.073
Sample:			60 HQI	C		-6875.272
			1220			
=========	=======				=======	========
	coef	std err	z	P> z	[0.025	0.975]
const	-0.0006	0.000	-1.728	0.084	-0.001	8.41e-05
y.L1	0.9328	0.029	31.812	0.000	0.875	0.990
y.L2	0.0283	0.040	0.706	0.480	-0.050	0.107

y.L3	0.0610	0.040	1.520	0.128	-0.018	0.140
y.L4	-0.0150	0.040	-0.374	0.708	-0.094	0.064
y.L5	-0.0636	0.040	-1.586	0.113	-0.142	0.015
y.L6	0.0613	0.040	1.529	0.126	-0.017	0.140
y.L7	-0.0097	0.040	-0.242	0.809	-0.088	0.069
y.L8	0.0539	0.040	1.348	0.178	-0.024	0.132
y.L9	-0.1323	0.040	-3.322	0.001	-0.210	-0.054
y.L10	0.0351	0.040	0.876	0.381	-0.043	0.114
y.L11	0.0469	0.040	1.172	0.241	-0.032	0.125
y.L12	-0.0164	0.040	-0.411	0.681	-0.095	0.062
y.L13	0.0378	0.040	0.947	0.344	-0.041	0.116
y.L14	0.0183	0.040	0.459	0.647	-0.060	0.097
y.L15	-0.0845	0.040	-2.119	0.034	-0.163	-0.006
y.L16	0.0507	0.040	1.270	0.204	-0.028	0.129
y.L17	-0.0249	0.040	-0.623	0.533	-0.103	0.053
y.L18	-0.0206	0.040	-0.515	0.606	-0.099	0.058
y.L19	-0.0203	0.040	-0.509	0.610	-0.099	0.058
y.L20	0.0396	0.040	0.992	0.321	-0.039	0.118
y.L21	-0.0296	0.040	-0.741	0.459	-0.108	0.049
y.L22	0.0125	0.040	0.314	0.753	-0.066	0.091
y.L23	0.0308	0.040	0.773	0.440	-0.047	0.109
y.L24	0.0090	0.040	0.226	0.821	-0.069	0.087
y.L25	0.0178	0.040	0.448	0.654	-0.060	0.096
y.L26	-0.1005	0.040	-2.522	0.012	-0.179	-0.022
y.L27	0.1177	0.040	2.957	0.003	0.040	0.196
y.L28	-0.0260	0.040	-0.650	0.515	-0.104	0.052
y.L29	-0.0272	0.040	-0.683	0.495	-0.105	0.051
y.L30	-0.0068	0.040	-0.170	0.865	-0.085	0.071
y.L31	-0.0014	0.040	-0.034	0.973	-0.080	0.077
y.L32	-0.0501	0.040	-1.257	0.209	-0.128	0.028
y.L33	-0.0192	0.040	-0.483	0.629	-0.097	0.059
y.L34	0.1172	0.040	2.951	0.003	0.039	0.195
y.L35	-0.0432	0.040	-1.087	0.277	-0.121	0.035
y.L36	-0.0298	0.040	-0.749	0.454	-0.108	0.048
y.L37	0.0274	0.040	0.688	0.492	-0.051	0.105
y.L38	-0.0470	0.040	-1.180	0.238	-0.125	0.031
y.L39	0.0513	0.040	1.290	0.197	-0.027	0.129
y.L40	-0.0130	0.040	-0.326	0.744	-0.091	0.065
y.L41	0.0035	0.040	0.088	0.930	-0.075	0.082
y.L42	0.0163	0.040	0.409	0.683	-0.062	0.094
y.L43	-0.0344	0.040	-0.865	0.387	-0.112	0.044
y.L44	0.0374	0.040	0.941	0.347	-0.041	0.115
y.L45	-0.0243	0.040	-0.611	0.542	-0.102	0.054
y.L46	0.0164	0.040	0.413	0.680	-0.061	0.094
y.L47	-0.0715	0.040	-1.804	0.071	-0.149	0.006
y.L48	0.0207	0.040	0.521	0.602	-0.057	0.098
y.L49	0.0209	0.040	0.527	0.598	-0.057	0.099
y.L50	0.0482	0.040	1.214	0.225	-0.030	0.126

y.L51	0.0442	0.040	1.114	0.265	-0.034	0.122
y.L52	-0.1304	0.039	-3.302	0.001	-0.208	-0.053
y.L53	0.0548	0.040	1.382	0.167	-0.023	0.132
y.L54	-0.0396	0.040	-0.998	0.318	-0.117	0.038
y.L55	0.0816	0.040	2.057	0.040	0.004	0.159
y.L56	-0.0410	0.040	-1.032	0.302	-0.119	0.037
y.L57	-0.0268	0.040	-0.677	0.498	-0.105	0.051
y.L58	0.0429	0.040	1.083	0.279	-0.035	0.120
y.L59	0.0383	0.040	0.967	0.334	-0.039	0.116
y.L60	-0.0636	0.029	-2.191	0.028	-0.120	-0.007
			Roots			
=======	Real	I	maginary	Modu	lus	Frequency
AR.1	-1.0301		 -0.0575j	1.0	 317	-0.4911
AR.2	-1.0301		+0.0575j	1.0317		0.4911
AR.3	-1.0205		-0.1646j	1.0337		-0.4745
AR.4	-1.0205		+0.1646j	1.0337		0.4745
AR.5	-0.9920		-0.2966j	1.0354		-0.4538
AR.6	-0.9920		+0.2966j	1.0354		0.4538
AR.7	-0.9452		-0.4055j	1.0	286	-0.4355
AR.8	-0.9452		+0.4055j	1.0	286	0.4355
AR.9	-0.8768		-0.5489j	1.0345		-0.4110
AR.10	-0.8768		+0.5489j	1.0345		0.4110
AR.11	-1.1164		-0.5635j	1.2506		-0.4256
AR.12	-1.1164		+0.5635j	1.2506		0.4256
AR.13	-0.8223		-0.6499j	1.0481		-0.3936
AR.14	-0.8223		+0.6499j	1.0481		0.3936
AR.15	-0.7331		-0.7267j	1.0323		-0.3757
AR.16	-0.7331		+0.7267j	1.0323		0.3757
AR.17	-0.6416		-0.8001j	1.0255		-0.3576
AR.18	-0.6416		+0.8001j	1.0255		0.3576
AR.19	-0.5680		-0.8922j	1.0576		-0.3402
AR.20	-0.5680		+0.8922j	1.0	1.0576	
AR.21	-0.4640		-0.9297j	1.0	390	-0.3237
AR.22	-0.4640		+0.9297j	1.0	390	0.3237
AR.23	-0.3633		-0.9938j	1.0	581	-0.3058
AR.24	-0.3633		+0.9938j	1.0	581	0.3058
AD OF	0.0000		0 0000:	4 0	004	0 0000

-0.9888j

+0.9888j

-1.0360j

+1.0360j

-1.0231j

+1.0231j

-1.0248j

+1.0248j

-1.0118j

+1.0118j

1.0224

1.0224

1.0468

1.0468

1.0240

1.0240

1.0275

1.0275

1.0300

1.0300

-0.2909

-0.2729

-0.2567

0.2909

0.2729

0.2567

0.2384

0.2200

-0.2200

-0.2384

AR.25

AR.26

AR.27

AR.28

AR.29

AR.30

AR.31

AR.32

AR.33

AR.34

-0.2600

-0.2600

-0.1503

-0.1503

-0.0428

-0.0428

0.0746

0.0746

0.1928

0.1928

	0.0440		4 0005	0.0044
AR.35	0.3112	-0.9803j	1.0285	-0.2011
AR.36	0.3112	+0.9803j	1.0285	0.2011
AR.37	0.4621	-0.9337j	1.0417	-0.1769
AR.38	0.4621	+0.9337j	1.0417	0.1769
AR.39	0.5224	-1.0005j	1.1287	-0.1734
AR.40	0.5224	+1.0005j	1.1287	0.1734
AR.41	0.5803	-0.8767j	1.0513	-0.1569
AR.42	0.5803	+0.8767j	1.0513	0.1569
AR.43	0.6588	-0.7850j	1.0248	-0.1389
AR.44	0.6588	+0.7850j	1.0248	0.1389
AR.45	0.7593	-0.7002j	1.0329	-0.1186
AR.46	0.7593	+0.7002j	1.0329	0.1186
AR.47	0.8480	-0.6221j	1.0517	-0.1007
AR.48	0.8480	+0.6221j	1.0517	0.1007
AR.49	0.9212	-0.5275j	1.0615	-0.0828
AR.50	0.9212	+0.5275j	1.0615	0.0828
AR.51	0.9360	-0.4525j	1.0397	-0.0717
AR.52	0.9360	+0.4525j	1.0397	0.0717
AR.53	0.9941	-0.3317j	1.0480	-0.0513
AR.54	0.9941	+0.3317j	1.0480	0.0513
AR.55	1.0144	-0.2287j	1.0398	-0.0353
AR.56	1.0144	+0.2287j	1.0398	0.0353
AR.57	1.0351	-0.1139j	1.0414	-0.0174
AR.58	1.0351	+0.1139j	1.0414	0.0174
AR.59	1.0170	-0.0349j	1.0176	-0.0055
AR.60	1.0170	+0.0349j	1.0176	0.0055