אלגוריתמים חמדניים

בעיית אופטימיזציה- בהנתן קלט, יש מס' פתרונות חוקיים.

לכל פתרון חוקי יש ערך.

פלט: בבעיית מקסימיזציה הפתרון החוקי בעל הערך המקסימלי.

בבעיית מינימיזציה הפתרון החוקי בעל הערך המינימלי.

אלגוריתמים חמדניים

אלגוריתמים חמדניים לרוב פותרים בעיית אופטימיזציה

באינטואיציה אלגוריתם חמדני הוא אלגוריתם שבכל שלב מקבל את ההחלטה שנראית הכי טובה לפי המידע שיש כרגע.

שלבים של אלגוריתם חמדני

- 1. ממיינים קבוצת מועמדים מהטוב לגרוע.
 - 2. מתחילים מפתרון ריק
- 3. עוברים על המועמדים לפי הסדר הממויין שלהם ובכל שלב מוסיפים את המועמד לפתרון אם הוספתו תשאיר את הפתרון חוקי.

<u> KnapSack - בעיית תרמיל הגב</u>

 $w_i > 0$ ונתון משקל אף ונתון $w_i > 0$ ומשקל וושקל איש ונתון משקל ווערן $v_i > 0$ ונתון משקל איש

 $(x_{-1}, x_{-2}, ... x_{-n})$ -וקטור - פתרון חוקי

 $0 \le x_i \le 1$ כך שלכל i מתקיים

$$\sum_{i=1}^n x_i w_i \leq W$$
 וכך ש

 $V(X) = \sum_{i=1}^n x_i v_i$ הערך הוא $X = (x_-1, x_-2, ... x_-n)$ ערך-לכל פתרון חוקי

. פתרון חוקי בעל ערך מקסימלי -

<u>אלגוריתם חמדני לבעית תרמיל הגב</u>

מי יהיו המועמדים? שקי החומרים השונים.

רעיונות לסידור המועמדים מהטוב לגרוע

- 1. רווחיות יורדת .
 - . משקל עולה
 - . יורד $\frac{v_i}{w_i}$.3

3 הסידור שעובד הוא

<u>תובנות</u>

. אם $w_i \leq \sum_{i=1}^n w_i$ אז הפתרון האופטימלי הוא לקחת הכל. $\sum_{i=1}^n w_i > w$ נניח שהבעיה מעניינת, כלומר

בי תמיד נעדיף לקחת עוד מחומר כלשהו. w לפתרון האופטימלי תמיד יהיה משקל w

האלגוריתם הבא מקבל את החפצים אחרי שכבר מוינו:

```
KnapSack(w[1...n],v[1...n],w)
 3
        for i <- 1...n
 4
            x[i] < -0
        weight <- 0
 6
        i=1
 7
        while(weight < w AND i <= n)</pre>
 8
 9
             if (weight + w[i] \le w)
10
                 x[i] <- 1
11
             else
12
                 x[i] \leftarrow (w-weight)/w[i]
13
14
             weight <- weight +x[i]*w[i]</pre>
15
             i+1
16
17
        return x
18 }
```

דוגמה

$$w = 100 \{1,2,3,4,5\}$$

i	1	2	3	4	5
w_i	10	20	30	40	50
v_i	20	30	66	40	60
$\frac{v_i}{w_i}$	2	1.5	2.2	1	1.2

$$3,1,2,5,4$$
 - יורד
$$\left(1,1,1,0,\frac{4}{5}\right)$$

$$1\cdot 20+1\cdot 30+1\cdot 66+\frac{4}{5}\cdot 60=156$$

<u>סיבוכיות</u>

 $\Theta(nlogn)$ – מיון $\Theta(n)$ לולאה ראשונה $\Theta(n)$ לולאה שניה $\Theta(nlogn)$ סה"כ

משפט

האלגוריתם מחזיר פתרון אופטימלי . (בעל הרווח המקסימלי מבין הפתרונות החוקיים)

<u>הוכחה</u>

 $\frac{v_i}{w_i}$ יהי (ניח שהפריטים כבר ממוינים לפי הפתרון שהאלגוריתם מחזיר. $x = (x_1, ... x_n)$ יהי

. $x_j < 1$ את האנדקס הנמוך ביותר שעבורו j

 $x_i = 1$ i < j כלומר לכל

 $x_i = 0$ i > j לכל

נשים לב שx של גנסמן ב עוממן ב $\sum_{i=1}^n x_i w_i = w$ נשים לב לב א

$$V(x) = \sum_{i=1}^{n} x_i v_i$$

נסמן ב $y = (y_1, ..., y_n)$ נסמן ב

$$\sum_{i=1}^{n} y_i w_i \le w$$

ומכך נובע

$$\sum_{i=1}^{n} x_i w_i - \sum_{i=1}^{n} y_i w_i = \sum_{i=1}^{n} (x_i - y_i) w_i \ge 0$$

 $V(y) = \sum_{i=1}^{n} y_i v_i$ נסמן ב

$$V(x) - V(y) = \sum_{i=1}^{n} (x_i - y_i)v_i = \sum_{i=1}^{n} \frac{(x_i - y_i)v_i}{w_i} \cdot w_i$$

i < j אם

$$x_i = 1$$
 כי $x_i - y_i \ge 0$

בגלל שממויין לפי $\frac{v}{w_i} \ge \frac{v_i}{w_j}$ יורד

$$(x_i - y_i) \frac{v_i}{w_i} \ge (x_i - y_i) \frac{v_j}{w_j}$$
ולכן

i > j אם

$$x_i = 0$$
 or $x_i - y_i \le 0$

בגלל שממויין בסדר יורד $\frac{v_i}{w_i} \leq \frac{v_j}{w_i}$

$$(x_i - y_i) \frac{v_i}{w_i} \ge (x_i - y_i) \frac{v_j}{w_i}$$
 . ולכן

$$V(x) - V(y) = \sum_{i=1}^{n} \frac{(x_i - y_i)v_i}{w_i} \cdot w_i \ge \sum_{i=1}^{n} \frac{(x_i - y_i)v_j}{w_j} \cdot w_i = \frac{v_j}{w_j} \sum_{i=1}^{n} (x_i - y_i) \cdot w_i \ge 0$$

לכן הרווחיות של x גדולה או שווה לרווחיות של כל פתרון חוקי, כנדרש.

<u>תזמון</u>

א. תזמון ללא דד-ליין

נתונות n משימות שלא יכולות להתבצע במקביל.

t_i לכל משימה יש משך זמן ביצוע

נגדיר תזמון- סדר של המשימות.

עבור תזמון X לכל i נסמן ב $T_i\left(X\right)$ את משך הזמן שהמשימה i נמצאת במערכת- כלומר כמות הזמן שהמשימה ויכתה להתבצע +הזמן שהתבצעה (t_i) .

 $T(X) = \sum_{i=1}^n T_i(X)$: את משך הזמן הכללי של כל המשימות במערכת לומר T את משך הזמן הכללי

נרצה תזמון של כל המשימות שבו משך הזמן של כל המשימות במערכת הכי קטן.

בעיית האופטימיזציה

המשימה. לכל משימה ו נסמן ב t_i את משך הפעולה של המשימה. לכל משימה איכולות להתבצע במקביל.

פתרון חוקי-תזמון שבו כל המשימות מתבצעות.

T(X) ערך-עבור פתרון חוקי X הערך הוא

פלט-פתרון חוקי בעל ערך מינימלי.

<u>דוגמה</u>

$$t_1 = 5$$
 $t_2 = 10$ $t_3 = 3$
 $T(123) = 5 + 15 + 18 = 38$
 $T(132) = 5 + 8 + 18 = 31$
 $T(213) = 10 + 15 + 18 = 43$
 $T(231) = 10 + 13 + 18 = 41$
 $T(312) = 3 + 8 + 18 = 29 < = = = = !$ הקצר ביותר $T(321) = 3 + 13 + 18 = 34$

<u>האלגוריתם</u>

. נמיין את המשימות לפי t_i עולה.

.1 נחזיר תזמון שהסדר שלו הוא לפי סעיף 1.

<u>משפט</u>

האלגוריתם מחזיר תזמון אופטימלי.

נוכיח משפט חזק יותר:

בכל תזמון אופטימלי המשימות מסודרות לפי עולה.

הוכחה

יהיו $P=(p_1,\dots,p_n)$ ויהיה ויהיה t_1,t_2,\dots,t_n תזמון אופטימלי. משימות בעלי אוני ביצוע ביצוע יהיו ויהיה . $S_i=t_{p_i}$

. P את זמן השהיה הכללי של כל המשימות לפי התזמון T(P) נסמן ב

$$T(P) = S_1 + (S_1 + S_2) + (S_1 + S_2 + S_3) + \dots + (S_1 + S_2 + S_3 + \dots + S_n)$$

$$T(P) = \sum_{i=1}^{n} (n - i + 1)S_i$$

. עולה. S_i נניח בשלילה ש P לא מסודר לפי נניח בשלילה ש a < b כלומר קיימים a ו b כלומר קיימים

. b ו a יהיה זהה לתזמון p חוץ מההחלפה של המשימות P'

נשים לב:

$$T(P) = \sum_{i=1, i \neq a, i \neq b}^{n} (n-i+1)S_i + (n-a+1)S_a + (n-b+1)S_b$$

$$T(P') = \sum_{i=1, i \neq a, i \neq b}^{n} (n-i+1)S_i + (n-b+1)S_a + (n-a+1)S_b$$

$$T(P) - T(P') = (n-a+1)S_a + (n-b+1)S_b - (n-b+1)S_a - (n-a+1)S_b$$

$$T(P) - T(P') = (n-a+1-n+b-1)S_a + (n-b+1-n+a-1)S_b$$

$$= (b-a)S_a + (a-b)S_b = (b-a)(S_a - S_b) > 0$$

בסתירה לאופטימליות של t_i ולכן כל תזמון אופטימלי מסודר לפי t_i עולה,כנדרש.