Rappels de Cours - Espaces de Hilbert. Opérateurs.

Une excellente réference pour tous les rappels mentionnés ici est le livre « Analyse Fonctionnelle » de Francis Hirsch et Gilles Lacombes. Je l'ai d'ailleurs recopié sans vergogne pour la plupart des résultats qui suivent.

Dans toute la suite H désignera un \mathbb{K} -espace ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de Hilbert muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et de la norme associée $\| \cdot \|$. $\mathscr{L}(H)$ désignera l'ensemble des opérateurs linéaires continus de H dans lui-même, muni de la norme subordonnée $\| \cdot \|$. Si cela ne prête pas à confusion, on notera parfois $\| \cdot \|$ la norme des opérateurs. Enfin, le dual topologique de H (les formes linéaires continues, ou encore $\mathscr{L}(H,\mathbb{K})$) sera noté H'.

1 Espaces de Hilbert

Théorème:

Soit C une partie convexe fermée et non vide de H. Alors, pour tout point $x \in E$, il existe un unique point $y \in C$ tel que ||x - y|| = d(x, C). Ce point, appelé **projection de** x **sur** C et noté $p_C(x)$, est caractérisé par la propriété suivante : pour tout $y \in C$ et pour tout élément $z \in C$, $\text{Re}(\langle x - y, z - y \rangle) \leq 0$. L'application p_C ainsi définie sur H tout entier est de plus 1-lipschitzienne.

Le cas où C est un sous-espace de H implique aisément le résultat suivant :

Proposition : Pour tout sous-espace vectoriel F de H, on a la décomposition $H = \overline{F} \oplus F^{\perp}$. En particulier, F est dense dans H si et seulement si $F^{\perp} = \{0\}$.

Théorème : (Riesz)

L'application de H sur H' définie par $u \mapsto \Phi_u := \langle \cdot, u \rangle$ est une isométrie linéaire surjective. En d'autres termes, pour toute forme linéaire continue $\Phi \in H'$, il existe un unique $u \in H$ vérifiant

$$\forall x \in H, \quad \Phi(x) = \langle x, u \rangle,$$

 $et \ de \ plus \ ||\Phi|| = ||u||.$

Proposition:

Pour tout $T \in \mathcal{L}(H)$, il existe un unique opérateur $T^* \in \mathcal{L}(H)$ vérifiant

$$\forall x, y \in H, \quad \langle T(x), y \rangle = \langle x, T^*(y) \rangle.$$

 T^* est appelé l'**adjoint** de T et vérifie de plus $||T^*|| = ||T||$.

Définition : Une suite $(x_n)_{n\in\mathbb{N}}$ de H est dite faiblement convergente vers $x\in H$ $(x_n\rightharpoonup x)$ si

$$\forall y \in H, \quad \langle x_n, y \rangle \underset{n \to \infty}{\longrightarrow} \langle x, y \rangle.$$

Théorème : De toute suite bornée de H on peut extraire une sous-suite faiblement convergente.

Proposition-Définition:

On dit qu'une famille $(e_i)_{i \in I}$ d'éléments de H est une base hilbertienne de H si elle est orthonormale et si de plus $\overline{\text{Vect}\{e_i: i \in I\}} = H$. Une telle base hilbertienne vérifie alors, pour tout $x, y \in H$

$$\sum_{i \in I} |\langle x, e_i \rangle|^2 = \|x\|^2, \quad \langle x, y \rangle = \sum_{i \in I} \langle x, e_i \rangle \langle e_i, y \rangle, \quad \sum_{i \in I} \langle x, e_i \rangle e_i = x,$$

la dernière somme étant à comprendre au sens des familles sommables dans H.

Remarque : Dans la proposition précédente la famille $(e_i)_{i\in I}$ peut être a priori indénombrable.

Proposition : H est séparable si et seulement si il possède une base hilbertienne dénombrable.

Corollaire: À isomorphisme isométrique près, il n'existe qu'un seule espace de Hilbert complexe séparable de dimension infinie : $\ell^2(\mathbb{C})$ (idem dans le cas réel).

2 Opérateurs

2.1 Spectre et valeurs propres

Soit $(E, \|\cdot\|)$ un espace de Banach sur un corps \mathbb{K} (\mathbb{R} ou \mathbb{C}). $\mathcal{L}(E)$ désigne l'ensemble des opérateurs continus de E dans E muni de la norme subordonnée $\|\cdot\|$. Comme précédemment, si cela ne prête pas à confusion, on notera parfois $\|\cdot\|$ la norme des opérateurs.

Proposition : L'ensemble \mathcal{I} des éléments inversibles (opérateurs bijectifs) de $\mathcal{L}(E)$ est un ouvert.

Définition:

Soit $T \in \mathcal{L}(E)$. On appelle **valeur spectrale** de T tout élément $\lambda \in \mathbb{K}$ tel que $T - \lambda \operatorname{Id}_E \notin \mathcal{I}$. L'ensemble des valeurs spectrales (le spectre) est noté $\sigma(T)$. On appelle valeur propre tout élément $\lambda \in \mathbb{K}$ tel que $T - \lambda \operatorname{Id}_E$ ne soit pas injectif, *i.e.* $E_{\lambda} := \operatorname{Ker}(T - \lambda \operatorname{Id}_E) \neq \{0\}$ et on note $\operatorname{vp}(T)$ l'ensemble de ces valeurs propres. E_{λ} est appelé espace propre associé à λ .

Remarque : On a clairement $vp(T) \subset \sigma(T)$ mais l'égalité est fausse en général.

Proposition:

Soit $T \in \mathcal{L}(E)$. La suite $(\|T^n\|^{1/n})_{n \in \mathbb{N}}$ converge vers un nombre que l'on note r(T), le **rayon spectral**. Par ailleurs, le spectre de T est un compact de \mathbb{K} (éventuellement vide) et inclus dans le disque (ou le segment) $\{\lambda \in \mathbb{K} : |\lambda| \leq r(T)\}$.

Proposition : Supposons $\mathbb{K} = \mathbb{C}$. Alors tout élément $T \in \mathcal{L}(E)$ possède un spectre non vide. De plus $r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$.

2.2 Le cas hilbertien

On reprend les notations de la section 1 concernant l'espace de hilbert H.

Proposition:

Soit $T \in \mathcal{L}(H)$, alors

- (i) $\operatorname{Ker}(T) = \operatorname{Im}(T^*)^{\perp}$,
- (ii) $\overline{\operatorname{Im}(T)} = \operatorname{Ker}(T^*)^{\perp}$,
- (iii) T est inversible si et seulement si T* est l'est et l'inversion commute alors avec l'adjonction.

Corollaire: $\sigma(T^*) = \overline{\sigma(T)}$ (conjugaison complexe).

Remarque : Dans le cas réel les spectres sont donc égaux. Par contre il n'y a en général pas de rapport entre les valeurs propres de T et celles de T^* .

Définition : On dit qu'un opérateur $T \in \mathcal{L}(H)$ est **auto-adjoint** lorsque $T = T^*$. De manière plus générale, T est dit normal lorsqu'il commute avec son adjoint : $T \circ T^* = T^* \circ T$.

Théorème:

Soit $T \in \mathcal{L}(H)$ un opérateur auto-adjoint. Alors

- (i) le spectre de T est réel : $\sigma(T) \subset \mathbb{R}$,
- (ii) les espaces propres de T associés à des valeurs propres différentes sont orthogonaux.

2.3 Opérateurs compacts

Soient E, F des espaces de Banach et H un espace de Hilbert.

Définition : On appelle opérateur compact de E dans F tout élément $T \in \mathcal{L}(E,F)$ pour lequel l'image de toute partie bornée de E est relativement compacte dans F. On note K(E,F) l'ensemble des opérateurs compacts de E dans F ou simplement K(E) si E = F.

Proposition : K(E,F) est un idéal **bilatère** pour le produit de composition \circ et également un sousespace **fermé** de $\mathcal{L}(E,F)$ contenant tous les opérateurs de rang fini. Dans le cas particulier où F est un espace de Hilbert, on a précisément $K(E,F) = \{u: E \to F: \dim(u(E)) < \infty\}$.

Proposition:

Soit $T \in K(E)$. Alors

- (i) le sous-espace $Ker(T Id_E)$ est de dimension finie,
- (ii) le sous-espace $\operatorname{Im}(T-\operatorname{Id}_E)$ est $\operatorname{ferm\'e},$
- (iii) l'opérateur $T \mathrm{Id}_E$ est inversible si et seulement si il est injectif.

Remarque: On sait qu'en dimension finie l'injectivité d'un opérateur linéaire est équivalente à sa surjectivité. Cette propriété tombe bien sûr en défaut en dimension infinie. Le point (iii) de la proposition précédente précise le cadre de validité de ce critère: si T est la somme d'un opérateur inversible et d'un opérateur compact alors injectivité et surjectivité de T se valent.

Théorème:

Soit $T \in K(E)$. On a que

- (i) si E est de dimension infinie, 0 est une valeur spectrale de T, i.e. T ne peut pas être inversible,
- (ii) toute valeure spectrale **non nulle de T** est une valeur propre et le sous-espace propre associé est de dimension finie,
- (iii) le spectre de T est au plus dénombrable. Si il est infini, on peut ranger ses éléments non nuls en une suite $(\lambda_n)_{n\in\mathbb{N}}$ décroissante en module et tendant vers 0.

On termine par un résultat de « diagonalisation » valable pour les opérateurs normaux compacts sur un espace de Hilbert :

Théorème : (dit « spectral »)

Soit H un espace de Hilbert **complexe** de dimension infinie et T un opérateur normal et compact de $\mathcal{L}(H)$. Alors

- (i) l'ensemble $\operatorname{vp}(T)\setminus\{0\}$ des valeurs propres de T non nulles est une partie au plus dénombrable de $\mathbb C$ (et même de $\mathbb R$ si T est auto-adjoint) admettant éventuellement 0 comme unique point d'accumulation. On peut l'indexer comme dans le théorème précédent en une suite $(\lambda_n)_{n\in\mathbb N}$ qui est donc soit stationnaire $(\operatorname{vp}(T) \text{ fini})$ soit convergente vers 0,
- (ii) les sous-espaces propres de T sont orthogonaux deux à deux,
- (iii) si on note, pour $\lambda \in vp(T)$, P_{λ} le projecteur orthogonal sur l'espace propre E_{λ} , on a

$$T = \sum_{n \in \mathbb{N}} \lambda_n P_{\lambda_n},$$

au sens de la convergence dans $\mathcal{L}(H)$,

(iv) on a la décomposition

$$H = \overline{\bigoplus_{\lambda \in \operatorname{vp}(T)} E_{\lambda}} = \overline{\bigoplus_{n \in \mathbb{N}} E_{\lambda_n} \oplus \operatorname{Ker}(T)},$$

toutes les sommes directes étant orthogonales,

(v) si H est séparable, H admet une base hilbertienne formée de vecteurs propres de T.