

Code Presentation

IA368DD_2023S1: Deep Learning aplicado a Sistemas de Buscas Student: Marcus Vinícius Borela de Castro

Trade-off custo x desempenho de alguns pipelines

```
custo indexacao tempo = B
44 armular custo por tempo
for tempo valor in parm dados | 'tempo indexacao segundo' |:
    if tempo valor['tipo'] -- 'cpu';
        custo indexacao tempo += tempo valor['valor'] * CUSTO CPU ALOCADA SEGUNDO
    elif tempo valor['tipp'] -- 'gpu':
        custo indepacao tempo += tempo valor['valor'] * CUSIO CPU ALOCADA SEGUNDO
        raise Exception()f"Tipo de tempo deveria ser cpu ou gpu e não (tempo_valor['tipo'])")
custo cou dia = 24 * CUSTO CPU ALOCADA HORA
custo memoria dia - 24 ° parm dados['memoria indice byte ram'] ° CUSTO RAM CPU HORA BYTE
custo dia - custo memoria dia + custo cou dia
custo gou dia - 0
if parm contexto -- "utilização perfeita": #(assim que terminou de processar uma query, já tem outra)
    if parm dados['se retrieval usa gpu']:
        custo gou dia - 24 * 3600 * custo gou segundo[parm tipo gou]
        custo dia «- custo gou dia
        print(f"para (para_contexto) custo gpu dia: {custo_gpu_dia}")
    num queries dia - (24 * 3600) / parm dados['retrieval tempo medio por query']
    custo query - round(custo dia / num queries dia, 18)
elif parm contexto — 'utilizacao precaria 188': *(188 queries/dia)
    if parm dados['se retrieval usa gpu']:
        custo gpu dia = 100 * pare dados['retrieval_tempo_medio_por_query'] * custo_gpu_segundo[parm_tipo_gpu]
       custo dia + custo gou dia
        print(|"para (para contexto) custo gpu dia: (custo gou dia)")
    num queries dia - 188
   custo_query - round(custo_dia / num_queries_dia, 18)
return ("usd query": custo query,
        'usd dia': custo dia,
        'usd gpu dia': custo gpu dia,
        'usd mes': (30 * custo dia),
        'usd indexecso tempo': custo indexecso tempo,
```


Salvando informações a cada experimento — Truques do código


```
1 resultado execucao['ndcq 10'] = round(100*results['NDCGm10'],2)
     resultado pipeline nome pipeline] = resultado execucao
      print(resultado pipeline[nome pipeline])
{'tempo indexacao segundo': [{'tipo': 'cpu', 'valor': 0.109634}], 'memoria indice byte ram': 269772727, 'se retrieval usa gpu'
True, 'retrieval tempo medio por query': 1.722126, 'ndcg 10': 71.25}
     avaliação pipeline contexto[nome pipeline] = retorna calculo contexto(resultado execução, parm tipo gpu='3090')
      print(avaliacao pipeline contexto[nome pipeline] )
para utilizacao perfeita custo opu dia: 5.999616
para utilizacao precaria 100 custo gpu dia: 0.011958442944000001
{'utilizacao perfeita': {'usd query': 0.0001345363, 'usd dia': 6.749761483605887, 'usd gpu dia': 5.999616, 'usd mes':
202.49284450817663, 'usd indexacao tempo': 9.135801219999999e-07}, 'utilizacao precaria 100': {'usd query': 0.0076210393,
'usd dia': 0.7621039265498879, 'usd gpu dia': 0.011958442944000001, 'usd mes': 22.86311779649664, 'usd indexacao tempo':
9.135801219999999e-07}}
```

Desejava executar novamente o InPars com modelo correto. Mas Hugging Face estava fora. • Então optei por experimentar mudanças no Splade.

Problemas encontrados e soluções

Estimativa de custo para Gpu 3090

6	pipeline	ndcg_10	retrieval tempo medio por query
1	bm25@100_mranking_minim	74.85	0.273581
	splade cocondenser max com sep-		0.104524
	splade_cocondenser_max_sem_sep	72.00	0.050790
	bm25@500_reranking_minilm	71.47	1.347039
4	bri25@76 reranking morebert	71.25	1.722126
	bri25/950 reranking merebert		1.255988
10	spiede@100_reranking_minilm	70.18	0.354109
11	spiede@500 reranking minilm		
0	brigh	61.55	0.044992
9	splade max com sep sem exp query lucene texto exp	42.31	0.052678
7	splade cocondenser max com sep sem exp query I	17.13	0.040139
8	splade max com sep sem exp query lucene		0.042195

Resultados interessantes

Alguns números

pipeline	ndcg_10	retrieval_tempo_medio_por_query	se_retrieval_usa_gpu
splace cocondenser max com sep sem exp query L.	17.13	0.040139	Take
splade may com sep sem exp query lucere		0.042195	Talke
bm25	61.88	0.044992	febr
place mux com sep sem cap query bicane texto esp		0.052678	Palsa
splade_coconderser_max_sem_sep		0.058798	
splade cocondenser max com sep	72.14	0.104524	
bm25@100_reranking_mini.m.		0.279501	The
splede@100 rerarking mini m	70.68	0.354909	
brs25@50 rerenking monobert		1.255988	
tm25@500_reranking_mini.m.	71.47	1.347039	
splade@600 reranking mini m	69.25	1.537312	
bm25@70_reranking_monobert	71.25	1.722126	miro

Visualizando no gráfico é melhor

legenda e eixo x em comum

Custo no tempo

contexto

- utilizacao_perfeita
- utilizacao_precaria_100

Custo por query

contexto

- utilizacao_perfeita
- utilizacao_precaria_100

No primeiro caso, seria necessário computar o tempo de se mover o modelo para a GPU? [to(device)]

Dado que temos um modelo treinado localmente, quais os passos Tópicos avancados para portar ele e o servico para a nuvem (exemplo: Azure ou AWS)