Contents

1	Sets and Classes	2
	1.1 Classes	2
2	Axiomatic Set Theory	4
	2.1 Axioms of Zermelo-Fraenkel (ZF)	4

1

Sets and Classes

1.1 Classes

Russell's Paradox states the following:

Russell's Paradox

Let *X* be the set of all sets which do not contain themselves, i.e.,

$$X = \{S : S \notin S\}.$$

Now consider X. If $X \in X$, it means that X contains itself and should not be a member of X, i.e., $X \in X \implies X \notin X$. If $X \notin X$, it means that X does not contain itself and therefore should be a member of X, i.e. $X \notin X \implies X \in X$. Hence, we have a paradox and such a set X does not exist.

However, in some cases it is still useful to consider the "set" of all sets for practical reasons. Therefore, we introduce the notion of a *class* to avoid Russell's Paradox.

Definition 1.1.1 ▶ Class

Let ϕ be some formula and \boldsymbol{u} be a vector, the collection

$$\mathbb{C} = \{X : \phi(X, \boldsymbol{u})\}\$$

is called a **class** of all sets satisfying $\phi(X, \mathbf{u})$, where \mathbb{C} is said to be **definable** from \mathbf{u} . Equivalently, we say that

$$X \in \mathbb{C} \iff \phi(X, \boldsymbol{u}).$$

In particular, if $\mathbb{C} = \{X : \phi(X)\}$, i.e., ϕ only has one free variable, then we say that \mathbb{C} is **definable**.

Remark. It is easy to see that every set *X* is a class given by $\{x: x \in X\}$.

Intuitively, two classes are equal if they contain exactly the same members. We are able to give the following rigorous version of the notion of equality:

Definition 1.1.2 ► **Equality between Classes**

Let $\mathbb{C} = \{X : \phi(X, \mathbf{u})\}\$ and $\mathbb{D} = \{X : \psi(X, \mathbf{v})\}\$, we say that $\mathbb{C} = \mathbb{D}$ if for all X,

$$\phi(X, \mathbf{u}) \iff \psi(X, \mathbf{u}).$$

There are clearly two types of classes — the ones which are also sets and the ones which are not. Formally, this is put as follows:

Definition 1.1.3 ▶ **Proper Class**

A class \mathbb{C} is said to be a **proper class** if $\mathbb{C} \neq X$ for all sets X.

Like sets, we can define subclasses:

Definition 1.1.4 ► **Subclass**

Let A and B be classes. We say that A is a **subclass** of B if every member of A is also a member of B, i.e.,

$$\mathbb{A}\subseteq\mathbb{B}\iff(X\in\mathbb{A}\implies X\in\mathbb{B}).$$

We shall also define the operations applicable to classes:

Definition 1.1.5 ► **Intersection**, **Union and Difference**

Let $\mathbb A$ and $\mathbb B$ be classes. The **intersection**, **union** and **difference** between $\mathbb A$ and $\mathbb B$ are given by

$$A \cap B := \{X : X \in A \land X \in B\},\$$

$$A \cup B := \{X : X \in A \lor X \in B\},\$$

$$\mathbb{A} - \mathbb{B} := \{ X : X \in \mathbb{A} \land X \notin \mathbb{B} \}$$

respectively.

Finally, we shall introduce the universal class:

Definition 1.1.6 ▶ **Universal Class**

The universal class is the class of all sets, denoted by

$$V \coloneqq \{X : X = X\}.$$

Remark. It is easy to prove that the universal class is **unique**.

2

Axiomatic Set Theory

2.1 Axioms of Zermelo-Fraenkel (ZF)

In Naïve Set Theory, we define a set as "a collection of mathematical objects which satisfy certain definable properties". However, such a definition is problematic (e.g. it leads to the Russell's Paradox). Thus, instead of viewing a set as a clearly defined mathematical object, we can think a set as an object entirely defined by a set of axioms to which it complies. In this sense, we avoid paradoxes by making the notion of a set undefined but only specify rigorously the axioms a set must satisfy.

Axiom 2.1.1 ▶ Existence

There exists a set X such that X = X.

Axiom 2.1.2 ▶ Extensionality

Let X and Y be sets, then X = Y if for all $u, u \in X$ if and only if $u \in Y$.

Axiom 2.1.3 ▶ Pairing

For all u and v, there exists a set X such that for all $z, z \in X$ if and only if z = u or z = v.

Remark. Note that Axiom 2.1.3 essentially says that given any sets u and v, there exists a set whose elements are exactly u and v.