

Statistik II

Einheit 7: Regressionsmodelle mit Interaktionen

05.06.2024 | Prof. Dr. Stephan Goerigk

Wiederholung:

Effektarten:

- 1. Haupteffekt
 - Haupteffekte beschreiben den Einfluss einer UV auf die AV unabhängig von anderen UVs (Konstanthaltung)
- 2. Interaktionseffekt
 - Wechselwirkung zwei UVs/Pädiktoen (Interaktion) auf die AV

Abgrenzung zur mehrfaktoriellen ANOVA:

- Bei der ANOVA sind UVs immer kategorial (Mittelwertesvergleiche zw. Gruppen/Kategorien)
- Im Regressionsmodell können kategoriale und stetige UVs verwendet und auch kombiniert werden
- → Im multiplen Regressionsmodell sind weitere Arten von Interaktionen möglich

Mögliche Interaktionen von 2 Prädiktoren im multiplen Regressionsmodell

Die Regression erlaubt alle Kombinationen von Prädiktorentypen (Erweiterung des multiplen Regressionsmodells):

- 1. stetig x stetig
- 2. stetig x diskret
- 3. diskret x diskret
- ightarrow Dabei dürfen die diskreten Prädiktoren 2 oder \geq 2 Stufen haben.

Zum Vergleich - ANOVA erlaubt lediglich die Prüfung einer Art von Interaktion:

1. diskret x diskret

Beispiel: Faktoren für Erfolg einer Therapie

- Datensatz für N=52 Therapeut:innen
- Forschungsfrage: Was kann als Prädiktor für Therapieerfolg gelten? Gibt es Interaktionen?
- Es wurden folgende Variablen gemessen:
 - Therapieerfolg (AV; 0-100 Punkte)
 - Therapieerfahrung der Therapeut:in (UV; niedrig, hoch)
 - Bereitschaft Patient:in zu konfrontieren (UV 0-100 Punkte)
 - Empathiefähigkeit der Therapeut:in (UV; niedrig, hoch)
 - IQ der Therapeut:in (UV; $\mu = 100, \sigma = 15$)
- Die ersten 15 Fälle sind in der Tabelle rechts dargestellt.

Therapieerfolg	Erfahrung	Konfrontativ	Empathie	IQ
89	hoch	61	niedrig	88
54	niedrig	48	hoch	125
62	hoch	23	niedrig	108
36	niedrig	69	niedrig	77
54	niedrig	53	niedrig	90
77	hoch	39	niedrig	87
41	niedrig	62	niedrig	125
46	niedrig	62	niedrig	114
54	niedrig	61	hoch	95
71	hoch	58	hoch	109
50	niedrig	56	niedrig	92
75	hoch	44	hoch	96
51	niedrig	39	hoch	87
66	niedrig	38	hoch	93
73	hoch	32	niedrig	125

Beispiel: Faktoren für Erfolg einer Therapie

Kodierung der diskreten Variablen:

Erinnerung - Diskrete Variablen werden im Regressionsmodell dummy-kodiert:

- Therapieerfahrung (rechts dargestellt)
 - niedrig = 0 (Referenz)
 - hoch = 1
- Empathiefähigkeit
 - niedrig = 0 (Referenz)
 - hoch = 1

```
model = lm(Therapieerfolg ~ Erfahrung, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung, data = df)
## Residuals:
      Min
               10 Median
## -22.720 -6.753 -1.786 6.497 20.148
## Coefficients:
                Estimate Std. Error t value
                                                        Pr(>|t|)
                  51.720
## (Intercept)
                              1.955 26.453 < 0.00000000000000000 ***
## Erfahrunghoch
                  23.132
                              2.713 8.525
                                                 0.0000000000259 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.776 on 50 degrees of freedom
## Multiple R-squared: 0.5924,
                                 Adjusted R-squared: 0.5843
## F-statistic: 72.68 on 1 and 50 DF, p-value: 0.000000000002591
```

o Im Modell berechnete Steigung (eta) repräsentiert durchschnittlichen Unterschied in AV, wenn Person nicht zu Referenzkategoie gehört

Beispiel: Faktoren für Erfolg einer Therapie

Kodierung der diskreten Variablen:

- Theapeut:innen mit niedriger Erfahrung (Erfahrung = 0) haben Thearapieefolg von 51.72 Punkten.
- Theapeut:innen mit hoher Erfahrung (Erfahrung
 1) haben 23.13 Punkte Thearapieefolg mehr.
- Theapeut:innen mit hoher Erfahrung (Erfahrung
 1) haben Thearapieefolg von 51.72 + 23.13 =
 74.85 Punkte

```
model = lm(Therapieerfolg ~ Erfahrung, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung, data = df)
## Residuals:
      Min
               10 Median
                                      Max
  -22.720 -6.753 -1.786 6.497 20.148
## Coefficients:
                Estimate Std. Error t value
                                                        Pr(>|t|)
  (Intercept)
                   51,720
                              1.955 26.453 < 0.00000000000000000 ***
## Erfahrunghoch
                  23.132
                              2.713
                                      8.525
                                                 0.0000000000259 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.776 on 50 degrees of freedom
## Multiple R-squared: 0.5924,
                                  Adjusted R-squared: 0.5843
## F-statistic: 72.68 on 1 and 50 DF, p-value: 0.000000000002591
```


Beispiel: Faktoren für Erfolg einer Therapie

Modell mit 2 Prädiktoren: Erfahrung und Konfrontationsbereitschaft:

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

$$Y_i = a + eta_1 \cdot X_{i1} + eta_2 \cdot X_{i2} + \epsilon_i$$
 $Erfolg = eta_1 \cdot Erfahrung_{(hoch)} + eta_2 \cdot Konfrontationsb. + \epsilon_i$

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

$$Y_i = a + eta_1 \cdot X_{i1} + eta_2 \cdot X_{i2} + eta_3 \cdot (X_{i1} \cdot X_{i2}) + \epsilon_i$$

 $Erfolg = eta_1 \cdot Erfahrung_{(hoch)} + eta_2 \cdot Konfrontationsb. + eta_3 \cdot (Erfahrung_{(hoch)} \cdot Konfrontationsb.) + \epsilon_i$

Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

Mögliche Forschungsfragen im Modell:

- 1. Besteht ein Unterschied zwischen unerfahrenen und erfahrenen Therapeut:innen hinsichtlich des Therapieerfolgs? \rightarrow Steigung Erfahrung
- 2. Verändert sich der Therapieerfolg mit zunehmender Konfrontationsbereitschaft? \rightarrow Steigung Konfrontationsbereitschaft
- 3. Wie viel Varianz der AV (Therapieerfolg) kann das Gesamtmodell mit beiden Prädiktoren erklären ightarrow Bestimmtheitsmaß R^2
- \rightarrow Für Fragen 1 und 2 wird der jeweils andere Prädiktor konstant gehalten.

Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

```
model = lm(Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
## Residuals:
        Min
                      Median
  -26.0175 -5.7825 -0.4526
                               4.4386 18.8281
## Coefficients:
                Estimate Std. Error t value
                                                      Pr(>|t|)
                            4.19638 10.646 0.0000000000000242 ***
## (Intercept)
                44.67633
## Erfahrunghoch 23.64821
                            2.66084
                                      8.887 0.0000000000086793 ***
## Konfrontativ 0.14565
                            0.07729
                                      1.884
                                                        0.0655 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.536 on 49 degrees of freedom
                                 Adjusted R-squared: 0.6045
## Multiple R-squared: 0.62,
## F-statistic: 39.97 on 2 and 49 DF, p-value: 0.000000000005077
```

- Y-Achsenabschnitt (aka. Intercept, *a*): Therapeut:innen mit Erfahrung = 0 (niedrig) und Konfrontationsbereitschaft = 0 haben 44.68 Punkte Therapieerfolg.
- Mit 1 Einheit mehr Erfahrung (1 = hoch) haben
 Therapeut:innen 23.65 Punkte zusätzlichen Therapieerfolg (bei Konstanthaltung von Konfrontationsbereitschaft).
- Mit 1 Einheit mehr Konfrontationsbereitschaft haben Therapeut:innen 0.15 Punkte zusätzlichen Therapieerfolg (bei Konstanthaltung von Erfahrung).

Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

```
model = lm(Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
## Residuals:
       Min
                 10 Median
  -26.0175 -5.7825 -0.4526
                               4.4386 18.8281
## Coefficients:
                Estimate Std. Error t value
                                                      Pr(>|t|)
                           4.19638 10.646 0.0000000000000242 ***
## (Intercept)
                44.67633
                            2.66084
## Erfahrunghoch 23.64821
                                      8.887 0.0000000000086793 ***
## Konfrontativ 0.14565
                            0.07729
                                    1.884
                                                        0.0655 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.536 on 49 degrees of freedom
                               Adjusted R-squared: 0.6045
## Multiple R-squared: 0.62,
## F-statistic: 39.97 on 2 and 49 DF, p-value: 0.000000000005077
```

- Bei Konstanthaltung von Konfrontationsbereitschaft ist Erfahrung signifikant mit Therapieerfolg assoziiert $(t_{(49)}=8.89, p<.001).$
- Bei Konstanthaltung von Erfahrung ist Konfrontationsbereitschaft nicht signifikant mit Therapieerfolg assoziiert $(t_{(49)}=1.89, p=.066)$.
- Das Gesamtmodell kann 62% der Varianz des Therapieerfolgs erklären $(R^2=0.62)$.

Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

```
model = lm(Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
## Residuals:
       Min
                 10 Median
  -26.0175 -5.7825 -0.4526
                              4.4386 18.8281
## Coefficients:
                Estimate Std. Error t value
                                                     Pr(>|t|)
                         4.19638 10.646 0.0000000000000242 ***
## (Intercept) 44.67633
                           2.66084 8.887 0.0000000000086793 ***
## Erfahrunghoch 23.64821
## Konfrontativ 0.14565
                           0.07729
                                    1.884
                                                       0.0655 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.536 on 49 degrees of freedom
## Multiple R-squared: 0.62,
                              Adjusted R-squared: 0.6045
## F-statistic: 39.97 on 2 and 49 DF, p-value: 0.000000000005077
```

Berechnung der Konfidenzintervalle:

```
confint(model)

## 2.5 % 97.5 %

## (Intercept) 36.243399754 53.1092660

## Erfahrunghoch 18.301052243 28.9953688

## Konfrontativ -0.009678479 0.3009798
```


Beispiel: Faktoren für Erfolg einer Therapie

1. Multiples Regressionsmodell ohne Interaktion (diskret + stetig):

Beispiel: Faktoren für Erfolg einer Therapie

model1 = lm(Therapieerfolg ~ Erfahrung, data = df)

Achtung: Unterschiedliche Steigungsparameter für selben Pädiktor (Erfahrung) nach Hinzunahme weiterer Prädiktoren

```
summary(model1)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung, data = df)
## Residuals:
      Min
              10 Median
## -22.720 -6.753 -1.786 6.497 20.148
## Coefficients:
               Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept)
                 51,720
                            ## Erfahrunghoch
                 23.132
                            2.713
                                   8.525
                                              0.0000000000259 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.776 on 50 degrees of freedom
## Multiple R-squared: 0.5924, Adjusted R-squared: 0.5843
## F-statistic: 72.68 on 1 and 50 DF, p-value: 0.000000000002591
```

```
model2 = lm(Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
summary(model2)
##
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung + Konfrontativ, data = df)
## Residuals:
       Min
                     Median
                                          Max
  -26.0175 -5.7825 -0.4526 4.4386 18.8281
## Coefficients:
                Estimate Std. Error t value
                                                     Pr(>|t|)
                44.67633
                            4.19638 10.646 0.0000000000000242 ***
## (Intercept)
## Erfahrunghoch 23.64821
                            2.66084
                                     8.887 0.0000000000086793 ***
## Konfrontativ 0.14565
                            0.07729
                                     1.884
                                                       0.0655 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.536 on 49 degrees of freedom
## Multiple R-squared: 0.62, Adjusted R-squared: 0.6045
## F-statistic: 39.97 on 2 and 49 DF, p-value: 0.00000000005077
```


Beispiel: Faktoren für Erfolg einer Therapie

Achtung: Unterschiedliche Steigungsparameter für selben Pädiktor (Erfahrung) nach Hinzunahme weiterer Prädiktoren

- Steigungsparameter unterscheiden sich marginal:
 - \circ Modell ohne Konfrontationsbereitschaft: $eta_{Erfahrung=hoch}=$ 23.13
 - \circ Modell mit Konfrontationsbereitschaft $eta_{Erfahrung=hoch}=$ 23.65

Begründung:

- Im zweiten Modell ist der Steigungsparameter von Erfahrung für den Einfluss von Konfrontationsbereitschaft **kontrolliert** (Einfluss wurde herausgerechnet)
- Man spricht dann bei der Konfrontationsbereitschaft von einer Kovariaten (Kontrollvariable)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Mögliche Forschungsfragen im Modell:

- 1. Verändert sich der Therapieerfolg von unerfahrenen Therapeut:innen mit zunehmender Konfrontationsbereitschaft?
- 2. Verändert sich der Therapieerfolg von erfahrenen Therapeut:innen mit zunehmender Konfrontationsbereitschaft?
- 3. Ist der Effekt der Konfrontationsbereitschaft auf den Therapieerfolg in den Gruppen signifikant unterschiedlich?
- \rightarrow Die dritte Frage stellt eine sog. Moderationshypothese dar (rechts dargestellt)

- AV: Therapieerfolg
- UV: Konfrontationsbereitschaft
- Moderator: Erfahrung

Moderation: Beeinflusst die Erfahrung den Effekt der Konfrontationsbereitschaft auf den Therapieerfolg? (Beispielserklärung: Erfahrenere Therapeut:innen können besser konfrontieren.)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
        Min
                      Median
  -13.0279 -4.6580 -0.1674
                               4.3870 19.0061
## Coefficients:
                                                                      Pr(>|t|)
                             Estimate Std. Error t value
## (Intercept)
                              73.1303
                                           5.3550 13.657 < 0.00000000000000000 ***
## Erfahrunghoch
                                           6.2921 -2.425
                             -15.2556
                                                                      0.019140 *
## Konfrontativ
                                                                      0.000138 ***
                              -0.4427
                                          0.1069 - 4.143
## Erfahrunghoch:Konfrontativ 0.8216
                                          0.1263
                                                   6.507
                                                                   0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981,
                                  Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.000000000000000022
```

- Therapeut:innen mit niedriger Erfahrung (Erfahrung=0) haben bei einer Konfrontationsbereitschaft = 0 einen geschätzten Therapieerfolg von 73.13 Punkten
- Therapeut:innen mit hoher Erfahrung
 (Erfahrung=1) haben bei einer
 Konfrontationsbereitschaft = 0 einen geschätzten
 Therapieerfolg von -15.26 Punkten weniger, als die Referenzgruppe

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
        Min
                      Median
  -13.0279 -4.6580 -0.1674
                                4.3870 19.0061
## Coefficients:
                              Estimate Std. Error t value
                                                                      Pr(>|t|)
## (Intercept)
                              73.1303
                                           5.3550 13.657 < 0.00000000000000000 ***
## Erfahrunghoch
                                           6.2921 - 2.425
                              -15.2556
                                                                      0.019140 *
## Konfrontativ
                               -0.4427
                                           0.1069 - 4.143
                                                                      0.000138 ***
## Erfahrunghoch:Konfrontativ 0.8216
                                           0.1263
                                                   6.507
                                                                   0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981,
                                  Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.000000000000000022
```

- Mit 1 Einheit zusätzlicher Konfrontationsbereitschaft nimmt der Therapieerfolg von Therapeut:innen mit niedriger Erfahrung um -0.44 Punkte ab $(t_{48}=-4.14,p<.001)$.
- Mit 1 Einheit zusätzlicher Konfrontationsbereitschaft nimmt der Therapieerfolg von Therapeut:innen mit hoher Erfahrung um 0.82 Punkte mehr zu, als bei der Referenzgruppe ($t_{48}=6.51, p<.001$).
- Insgesamt nimmt der Therapieerfolg bei von Therapeut:innen mit hoher Erfahrung mit 1 Einheit zusätzlicher Konfrontationsbereitschaft also um -0.44 + 0.82 = 0.38 Punkte zu

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
Berechnung der Konfidenzintervalle:
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
                                                                               confint(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
                                                                                                                  2.5 %
                                                                                                                           97.5 %
                                                                              ## (Intercept)
                                                                                                             62.3634902 83.897191
## Residuals:
                                                                              ## Erfahrunghoch
                                                                                                            -27.9066443 -2.604596
       Min
                      Median
                                           Max
                                                                              ## Konfrontativ
                                                                                                             -0.6575726 -0.227884
  -13.0279 -4.6580 -0.1674
                               4.3870 19.0061
                                                                              ## Erfahrunghoch:Konfrontativ 0.5676853 1.075428
## Coefficients:
                             Estimate Std. Error t value
                                                                     Pr(>|t|)
## (Intercept)
                              73.1303
                                          5.3550 13.657 < 0.00000000000000000 ***
## Erfahrunghoch
                             -15.2556
                                          6.2921 -2.425
                                                                     0.019140 *
## Konfrontativ
                              -0.4427
                                          0.1069 - 4.143
                                                                     0.000138 ***
## Erfahrunghoch:Konfrontativ 0.8216
                                          0.1263
                                                 6.507
                                                                  0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981,
                                  Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.000000000000000022
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
        Min
                      Median
                                            Max
  -13.0279 -4.6580 -0.1674
                               4.3870 19.0061
## Coefficients:
                             Estimate Std. Error t value
                                                                      Pr(>|t|)
## (Intercept)
                              73.1303
                                           5.3550 13.657 < 0.00000000000000000 ***
## Erfahrunghoch
                                          6.2921 -2.425
                             -15.2556
                                                                      0.019140 *
## Konfrontativ
                              -0.4427
                                          0.1069 - 4.143
                                                                      0.000138 ***
## Erfahrunghoch:Konfrontativ 0.8216
                                          0.1263
                                                  6.507
                                                                   0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981,
                                  Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.000000000000000022
```

Interpretation der Koeffizienten:

Moderationseffekt:

ullet Der Unterschied zwischen den Steigungen der Gruppen mit niedriger und hoher Erfahrung ist signifikant ($eta=0.82, t_{(48)}=6.51, p<.001)$

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
  Residuals:
                      Median
  -13.0279 -4.6580
                     -0.1674
                               4.3870 19.0061
## Coefficients:
                             Estimate Std. Error t value
                                                                     Pr(>|t|)
## (Intercept)
                              73.1303
                                          5.3550 13.657 < 0.00000000000000000 ***
## Erfahrunghoch
                             -15.2556
                                          6.2921 -2.425
                                                                      0.019140 *
## Konfrontativ
                                                                     0.000138 ***
                              -0.4427
                                          0.1069 - 4.143
## Erfahrunghoch:Konfrontativ 0.8216
                                          0.1263
                                                   6.507
                                                                  0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.000000000000000022
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
## Residuals:
        Min
                      Median
  -13.0279 -4.6580
                     -0.1674
                                4.3870 19.0061
## Coefficients:
                                                                      Pr(>|t|)
                              Estimate Std. Error t value
                                                  13.657 < 0.00000000000000000 ***
## (Intercept)
                              73.1303
## Erfahrunghoch
                                           6.2921 - 2.425
                                                                      0.019140 *
                              -15.2556
## Konfrontativ
                                                                      0.000138 ***
                               -0.4427
                                           0.1069
                                                  -4.143
## Erfahrunghoch:Konfrontativ 0.8216
                                           0.1263
                                                   6.507
                                                                   0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981,
                                  Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.000000000000000022
```

Anmerkung:

- Output des Regressionsmodells enthält lediglich einen Signifikanztest für die Steigung der Referenzkategorie $(\beta_{Konfrontativ|Erfahrung=0}=-0.44,t_{48}=-4.14,p<.001)$
- Steigung der anderen Gruppe lässt sich "per Hand" ausrechnen $(\beta_{Konfrontativ|Erfahrung=1} = -0.44 + 0.82 = 0.38$
- Signifikanztest prüft jedoch nur, ob $eta_{Konfrontativ|Erfahrung=0}
 eq eta_{Konfrontativ|Erfahrung=1}
 otage for the statement of the st$

 \rightarrow Dafür müsste die Referenzkategorie getauscht werden, sodass hohe Erfahrung = 0 und niedrige Erfahrung = 1.

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
Anmerkung:
model = lm(Therapieerfolg ~ relevel(Erfahrung, "hoch") * Konfrontativ,
summary(model)
                                                                                • Nun ist "hohe Erfahrung" die Referenzkategorie
                                                                                • Y-Achsenabschnitt (Intercept) und Steigungen beziehen
## Call:
## lm(formula = Therapieerfolg ~ relevel(Erfahrung, "hoch") * Konfrontativ,
                                                                                   sich jetzt auf "hohe Erfahrung" = 0
      data = df
                                                                                • Signifikanztest für die Steigung der Referenzkategorie
  Residuals:
                                                                                  (hohe Erfahrung = 0) nun möglich
       Min
                 10
                      Median
                                   30
                                          Max
                                                                                   (\beta_{Konfrontativ|Erfahrung=0} = 0.38, t_{48} = 5.63, p < .001)
## -13.0279 -4.6580 -0.1674
                              4.3870 19.0061
##
## Coefficients:
                                                                                       Pr(>|t|)
                                                Estimate Std. Error t value
## (Intercept)
                                                57.87472
                                                            3.30370 17.518 < 0.0000000000000000 ***
## relevel(Erfahrung, "hoch")niedrig
                                                15.25562
                                                            6.29205
                                                                      2.425
                                                                                         0.0191 *
## Konfrontativ
                                                 0.37883
                                                            0.06727
                                                                      5.632
                                                                                    0.000000911 ***
## relevel(Erfahrung, "hoch")niedrig:Konfrontativ -0.82156
                                                            0.12626 - 6.507
                                                                                    0.000000042 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.023 on 48 degrees of freedom
## Multiple R-squared: 0.7981, Adjusted R-squared: 0.7855
## F-statistic: 63.24 on 3 and 48 DF, p-value: < 0.000000000000000022
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Die einzelnen Steigungen un deren KIs lassen sich jedoch auch automatisch anzeigen:

```
library(emmeans)
emtrends(model, pairwise ~ Erfahrung, var = "Konfrontativ")
## $emtrends
   Erfahrung Konfrontativ.trend SE df lower.CL upper.CL
           -0.443 \ 0.1069 \ 48 \ -0.658
##
   niedrig
                                                 -0.228
##
   hoch
                       0.379 0.0673 48 0.244 0.514
##
  Confidence level used: 0.95
##
## $contrasts
   contrast estimate SE df t.ratio p.value
   niedrig - hoch -0.822 0.126 48 -6.507 <.0001
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Signifikanz kann auch mittels Omnibustest ermittelt werden:

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
anova(model)
## Analysis of Variance Table
## Response: Therapieerfolg
                         Df Sum Sq Mean Sq F value
                                                                   Pr(>F)
## Erfahrung
                          1 6945.8 6945.8 140.8252 0.0000000000000006985 ***
## Konfrontativ
                          1 322.9
                                     322.9
                                             6.5463
                                                                  0.01372 *
## Erfahrung:Konfrontativ 1 2088.1 2088.1 42.3364 0.0000000420103645563 ***
## Residuals
                         48 2367.5
                                      49.3
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Für jeden Modellfaktor stellt sich die Frage: "Erklärt das Modell mit diesem Faktor signifikant mehr Varinaz als ohne den Faktor?"

- Alle 3 Effekte (2 Haupeffekt + 1 Interaktion signifikant)
- Vorsicht: Bei signifikanter Interaktion muss bei Interpretation der Haupteffekte aufgepasst werden!

 \rightarrow Haupteffekt Konfrontationsbereitschaft deutlich größerer p-Wert, da Effekt in beiden Gruppen gegenläufig (disordinale Interaktion)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

Mögliche Forschungsfragen im Modell:

- 1. Verändert sich der Therapieerfolg von unerfahrenen Therapeut:innen mit zunehmender Empathiefähigkeit?
- 2. Verändert sich der Therapieerfolg von erfahrenen Therapeut:innen mit zunehmender Empathiefähigkeit?
- 3. Ist der Effekt der Empathiefähigkeit auf den Therapieerfolg in den Gruppen signifikant unterschiedlich?
- ightarrow Die dritte Frage stellt eine sog. Moderationshypothese dar (rechts dargestellt)

- AV: Therapieerfolg
- UV: Empathiefähigkeit
- Moderator: Erfahrung

Moderation: Beeinflusst die Erfahrung den Effekt der Empathiefähigkeit auf den Therapieerfolg? (Beispielserklärung: Erfahrenere Therapeut:innen können Empathie besser ausdrücken.)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

```
model = lm(Therapieerfolg ~ Erfahrung * Empathie, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Empathie, data = df)
## Residuals:
      Min
               10 Median
                                      Max
  -19.875 -5.535 -1.665
                            6.795 18.546
## Coefficients:
                                                                     Pr(>|t|)
                             Estimate Std. Error t value
## (Intercept)
                              48.8750
                                          2.2992 21.258 < 0.00000000000000000 ***
## Erfahrunghoch
                                                                  0.000000259 ***
                              21.5795
                                          3.6021
                                                   5.991
## Empathiehoch
                                                                       0.0446 *
                               7.9028
                                          3.8319
                                                   2.062
## Erfahrunghoch: Empathiehoch -0.4823
                                          5.2592 -0.092
                                                                       0.9273
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.197 on 48 degrees of freedom
## Multiple R-squared: 0.6537,
                                  Adjusted R-squared: 0.6321
## F-statistic: 30.21 on 3 and 48 DF, p-value: 0.00000000004051
```

- Therapeut:innen mit niedriger Erfahrung (Erfahrung=0) haben bei einer niedrigen Empathie (Empathie = 0) einen geschätzten Therapieerfolg von 48.88 Punkten
- Therapeut:innen mit hoher Erfahrung
 (Erfahrung=1) haben bei einer niedrigen
 Empathie (Empathie = 0) einen geschätzten
 Therapieerfolg von 21.58 Punkten mehr, als die
 Referenzgruppe

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

```
model = lm(Therapieerfolg ~ Erfahrung * Empathie, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Empathie, data = df)
## Residuals:
      Min
               10 Median
                                       Max
  -19.875 -5.535 -1.665
                            6.795 18.546
## Coefficients:
                              Estimate Std. Error t value
                                                                      Pr(>|t|)
## (Intercept)
                               48.8750
                                           2.2992 21.258 < 0.00000000000000000 ***
## Erfahrunghoch
                                                   5.991
                                                                   0.000000259 ***
                               21.5795
                                           3.6021
## Empathiehoch
                                                                        0.0446 *
                               7.9028
                                           3.8319
                                                   2.062
## Erfahrunghoch: Empathiehoch -0.4823
                                           5.2592 -0.092
                                                                        0.9273
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.197 on 48 degrees of freedom
## Multiple R-squared: 0.6537,
                                  Adjusted R-squared: 0.6321
## F-statistic: 30.21 on 3 and 48 DF, p-value: 0.00000000004051
```

- Mit 1 Einheit zusätzlicher Empathiefähigkeit (Empathie=hoch) nimmt der Therapieerfolg von Therapeut:innen mit niedriger Erfahrung um 7.9 Punkte zu $(t_{48}=2.06,p=.045)$.
- Mit 1 Einheit zusätzlicher Empathiefähigkeit (Empathie=hoch) nimmt der Therapieerfolg von Therapeut:innen mit hoher Erfahrung um -0.48 Punkte weniger zu, als bei der Referenzgruppe $(t_{48}=-0.09,p=.927)$.
- Insgesamt nimmt der Therapieerfolg bei von Therapeut:innen mit hoher Erfahrung mit 1 Einheit zusätzlicher Empathiefähigkeit also um 7.9 + (-0.48) = 7.42 Punkte zu.

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

```
Berechnung der Konfidenzintervalle:
model = lm(Therapieerfolg ~ Erfahrung * Empathie, data = df)
summary(model)
                                                                               confint(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Empathie, data = df)
                                                                                                                  2.5 %
                                                                                                                          97.5 %
                                                                              ## (Intercept)
                                                                                                             44.2522120 53.49779
## Residuals:
                                                                              ## Erfahrunghoch
                                                                                                             14.3370286 28.82206
      Min
               10 Median
                                      Max
                                                                              ## Empathiehoch
                                                                                                              0.1981311 15.60742
  -19.875 -5.535 -1.665
                            6.795 18.546
                                                                              ## Erfahrunghoch: Empathiehoch -11.0566143 10.09197
## Coefficients:
                             Estimate Std. Error t value
                                                                     Pr(>|t|)
## (Intercept)
                              48.8750
                                          2.2992 21.258 < 0.00000000000000000 ***
## Erfahrunghoch
                              21.5795
                                          3.6021
                                                  5.991
                                                                  0.000000259 ***
## Empathiehoch
                               7.9028
                                          3.8319
                                                   2.062
                                                                       0.0446 *
## Erfahrunghoch: Empathiehoch -0.4823
                                          5.2592 -0.092
                                                                       0.9273
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.197 on 48 degrees of freedom
## Multiple R-squared: 0.6537,
                                  Adjusted R-squared: 0.6321
## F-statistic: 30.21 on 3 and 48 DF, p-value: 0.00000000004051
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x diskret):

```
model = lm(Therapieerfolg ~ Erfahrung * Empathie, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Empathie, data = df)
## Residuals:
      Min
               10 Median
                                      Max
  -19.875 -5.535 -1.665
                            6.795 18.546
## Coefficients:
                             Estimate Std. Error t value
                                                                     Pr(>|t|)
                                          2.2992 21.258 < 0.0000000000000000 ***
## (Intercept)
                              48.8750
## Erfahrunghoch
                              21.5795
                                          3.6021
                                                   5.991
                                                                  0.000000259 ***
## Empathiehoch
                               7.9028
                                          3.8319
                                                                       0.0446 *
                                                   2.062
## Erfahrunghoch: Empathiehoch -0.4823
                                          5.2592 -0.092
                                                                       0.9273
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.197 on 48 degrees of freedom
## Multiple R-squared: 0.6537, Adjusted R-squared: 0.6321
## F-statistic: 30.21 on 3 and 48 DF, p-value: 0.00000000004051
```


Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Mögliche Forschungsfragen im Modell:

- 1. Verändert sich der Therapieerfolg von unerfahrenen Therapeut:innen mit zunehmendem IQ?
- 2. Verändert sich der Therapieerfolg von erfahrenen Therapeut:innen mit zunehmendem IQ?
- 3. Ist der Effekt des IQ auf den Therapieerfolg in den Gruppen signifikant unterschiedlich?
- \rightarrow Die dritte Frage stellt eine sog. Moderationshypothese dar (rechts dargestellt)

- AV: Therapieerfolg
- UV: IQ
- Moderator: Erfahrung

Moderation: Beeinflusst die Erfahrung den Effekt der Empathiefähigkeit auf den Therapieerfolg? (Beispielserklärung: Erfahrenere Therapeut:innen können Intelligenz besser einsetzen / geringe Intelligenz kompensieren.)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
df$IO cent = round(df$IO - mean(df$IO))
model = lm(Therapieerfolg ~ Erfahrung * IQ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * IQ, data = df)
## Residuals:
      Min
               10 Median
## -22.096 -6.900 -1.909
                           6.275 20.129
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    64.1096
                               13.8693
                                         4.622 0.0000288 ***
## Erfahrunghoch
                    10.4164
                               21.5182
                                         0.484
                                                   0.631
                    -0.1288
                                                   0.371
## IQ
                                0.1428
                                        -0.903
## Erfahrunghoch:IQ 0.1320
                                0.2125
                                         0.621
                                                   0.537
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.894 on 48 degrees of freedom
## Multiple R-squared: 0.5992,
                                  Adjusted R-squared: 0.5742
```

F-statistic: 23.92 on 3 and 48 DF, p-value: 0.000000001298

Interpretation der Koeffizienten:

- Therapeut:innen mit niedriger Erfahrung (Erfahrung=0) haben bei einem IQ von 0 einen geschätzten Therapieerfolg von 64.11 Punkten
- Therapeut:innen mit hoher Erfahrung (Erfahrung=1) haben bei einem IQ von 0 einen geschätzten Therapieerfolg von 10.42 Punkten mehr, als die Referenzgruppe

VORSICHT: Effekt von Erfahrung in diesem Modell nicht mehr signifikant $(t_{48}=0.48,p=.631)$ - Wie kann dies sein?

ightarrow IQ = 0 ist kein sinnvoller Wert! ightarrow Lösung: **Zentrierung** (folgt gleich)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * IO, data = df)
anova(model)
## Analysis of Variance Table
## Response: Therapieerfolg
               Df Sum Sq Mean Sq F value
                                                  Pr(>F)
               1 6945.8 6945.8 70.9557 0.00000000005083 ***
## Erfahrung
                1 42.0
                            42.0 0.4291
                                                  0.5156
## Erfahrung:IQ 1 37.8
                           37.8 0.3859
                                                  0.5374
             48 4698.7
## Residuals
                            97.9
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Im Omnibustest ist der Haupteffekt von Erfahrung signifikant ($F_{1,48}=70.96, p<.001$)
- Der Faktor Erfahrung scheint also ein signifikantes Maß an Varianz zu erklären.
- Dennoch ist die Steigung nicht signifikant...

 \rightarrow IQ = 0 ist kein sinnvoller Wert! \rightarrow Lösung: **Zentrierung** (nächste Folie)

Beispiel: Faktoren für Erfolg einer Therapie

Zentrierung - Prädiktoren ohne sinnhaften 0-Punkt:

- Einige Koeffizienten im Regressionsmodell gehen von Prädiktor = 0 aus
- Wenn 0 des Prädiktors kein sinnvoller Wert ist, wendet man eine Zentrierung an:

$$x_{izentriert} = x_i - \bar{x}$$

Von jedem Wert wird der Mittelwert abgezogen (Grand-Mean Zentrierung)

Ergebnis: zentrierte Variable

- alle Werte, die genau dem Mittelwert entsprechen sind nun 0 (neuer Nullpunkt)
- Werte $> ar{x}$ sind positiv
- Werte $<ar{x}$ sind negativ
- ightarrow Beispiel: $x_{izentriert}=2$ bedeutet 2 Einheiten mehr als der Durchschnitt

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

Zentrierung des IQ Prädiktors:

$$IQ_izentriert = IQ_i - ar{IQ}$$

- ullet $ar{IQ}=100$ ist der neue Nullpunkt der Variable
- ightarrow Die neue 0 ist als "durchschnittlich intelliergent" interpretierbar

Therapieerfolg	Erfahrung	Konfrontativ	Empathie	IQ	IQ_cent
89	hoch	61	niedrig	88	-12
54	niedrig	48	hoch	125	25
62	hoch	23	niedrig	108	8
36	niedrig	69	niedrig	77	-23
54	niedrig	53	niedrig	90	-10
77	hoch	39	niedrig	87	-13
41	niedrig	62	niedrig	125	25
46	niedrig	62	niedrig	114	14
54	niedrig	61	hoch	95	-5
71	hoch	58	hoch	109	9
50	niedrig	56	niedrig	92	-8
75	hoch	44	hoch	96	-4
51	niedrig	39	hoch	87	-13
66	niedrig	38	hoch	93	-7
73	hoch	32	niedrig	125	25

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig):

```
model = lm(Therapieerfolg ~ Erfahrung * IO cent, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * IO cent, data = df)
## Residuals:
      Min
               10 Median
  -22.096 -6.900 -1.909
                            6.275 20.129
## Coefficients:
                        Estimate Std. Error t value
                                                                 Pr(>|t|)
                                     2.0533 24.948 < 0.0000000000000000 ***
## (Intercept)
                         51.2252
## Erfahrunghoch
                         23.6145
                                     2.8651
                                              8.242
                                                          0.0000000000951 ***
## IO cent
                          -0.1288
                                     0.1428 - 0.903
                                                                    0.371
## Erfahrunghoch:IQ_cent 0.1320
                                     0.2125
                                              0.621
                                                                    0.537
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.894 on 48 degrees of freedom
## Multiple R-squared: 0.5992,
                                  Adjusted R-squared: 0.5742
## F-statistic: 23.92 on 3 and 48 DF, p-value: 0.000000001298
```

Modell mit **zentiertem IQ** als Prädiktor:

- Therapeut:innen mit niedriger Erfahrung (Erfahrung=0) haben bei einem durchschnittlichen IQ (IQ=0) einen geschätzten Therapieerfolg von 51.23 Punkten
- Therapeut:innen mit hoher Erfahrung (Erfahrung=1) haben bei einem durchschnittlichen IQ (IQ=0) einen geschätzten Therapieerfolg von 23.61 Punkten mehr, als die Referenzgruppe \rightarrow Nun wieder signifikant $(t_{48}=8.24,p<.001)$

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (diskret x stetig) :

```
model = lm(Therapieerfolg ~ Erfahrung * IQ_cent, data = df)
summary(model)
## Call:
  lm(formula = Therapieerfolg ~ Erfahrung * IQ_cent, data = df)
## Residuals:
               10 Median
                                       Max
  -22.096 -6.900 -1.909
                            6.275 20.129
## Coefficients:
                        Estimate Std. Error t value
                                                                Pr(>|t|)
## (Intercept)
                         51.2252
                                     2.0533 24.948 < 0.00000000000000000 ***
## Erfahrunghoch
                         23.6145
                                     2.8651
                                              8.242
                                                         0.0000000000951 ***
## IQ_cent
                         -0.1288
                                     0.1428
                                             -0.903
                                                                    0.371
## Erfahrunghoch:IQ_cent 0.1320
                                     0.2125
                                                                   0.537
                                              0.621
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.894 on 48 degrees of freedom
## Multiple R-squared: 0.5992,
                                  Adjusted R-squared: 0.5742
## F-statistic: 23.92 on 3 and 48 DF, p-value: 0.000000001298
```

Für Visualisierung muss IQ diskret gemacht werden (z.B. unter Durchschnitt, Durchschnitt, über Durchschnitt):

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (stetig x stetig):

Mögliche Forschungsfragen im Modell:

- 1. Verändert sich der Therapieerfolg von konfrontativeren Therapeut:innen mit zunehmendem IQ?
- ightarrow Diese Frage stellt eine sog. Moderationshypothese dar (rechts dargestellt)

- AV: Therapieerfolg
- UV: IQ
- Moderator: Erfahrung

Moderation: Beeinflusst die Intelligenz den Effekt der Konfrontationsfähigkeit auf den Therapieerfolg? (Beispielserklärung: Intelligentere Therapeut:innen können besser konfrontieren.)

Beispiel: Faktoren für Erfolg einer Therapie

2. Multiples Regressionsmodell mit Interaktion (stetig x stetig):

```
df$IO cent = round(df$IO - mean(df$IO))
model = lm(Therapieerfolg ~ Konfrontativ * IQ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Konfrontativ * IQ, data = df)
## Residuals:
      Min
               10 Median
## -35.991 -11.893 2.257
                            9.898 29.475
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  111.630738 49.145301
                                          2.271
                                                  0.0276 *
## Konfrontativ
                   -1.407004
                               1.000679 -1.406
                                                 0.1662
                               0.477318 -1.039
## IQ
                   -0.495811
                                                  0.3041
## Konfrontativ:IQ 0.014410
                               0.009679
                                         1.489
                                                 0.1431
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15.03 on 48 degrees of freedom
## Multiple R-squared: 0.07545,
                                  Adjusted R-squared: 0.01766
```

F-statistic: 1.306 on 3 and 48 DF, p-value: 0.2834

- Therapeut:innen mit niedriger Konfrontativität (Konfrontativ=0) haben bei einem IQ von 0 einen geschätzten Therapieerfolg von 111.63 Punkten
- Therapeut:innen mit 1 Einheit zusätzlicher Konfrontativität haben zusätzlichen Therapieerfolg von -1.41 Punkten, im Vergleich zur Referenzgruppe
- Therapeut:innen mit 1 Einheit zusätzlichem IQ haben zusätzlichen Therapieerfolg von -0.5 Punkten, im Vergleich zur Referenzgruppe
- Therapeut:innen mit 1 Einheit zusätzlichem IQ haben bei Zunahme um 1 Punkt Konfrontativität eine zusätzliche Steigung von 0.014 Punkten.

Beispiel: Faktoren für Erfolg einer Therapie

Diskrete Prädiktoren mit > 2 Stufen:

Nehmen wir einmal an, Erfahrung der Therapeut:innen würde 3-stufig definiert:

- niedrig = 0 (Referenz)
- mittel = 1
- hoch = 2

Therapieerfolg	Erfahrung	Konfrontativ	Empathie	IQ
52	mittel	61	niedrig	84
50	niedrig	48	niedrig	94
61	hoch	23	niedrig	86
33	niedrig	69	niedrig	139
50	niedrig	53	niedrig	126
51	mittel	39	hoch	100
89	hoch	62	hoch	118
38	niedrig	62	niedrig	96
78	hoch	61	hoch	100
80	hoch	58	hoch	95
46	niedrig	56	hoch	94
73	hoch	44	niedrig	135
61	niedrig	39	hoch	105
65	hoch	38	hoch	108
42	mittel	32	hoch	107

Beispiel: Faktoren für Erfolg einer Therapie

Diskrete Prädiktoren mit > 2 Stufen:

Dummy-Kodierung: Zerlegung der 3-stufigen in zwei 2-stufige Dummy Variablen:

Dummy-Variable 1:

- niedrig = 0 (Referenz)
- mittel = 1

Dummy-Variable 2:

- niedrig = 0 (Referenz)
- hoch = 1

Modell mit Dummy-Kodierung:

$$Erfolg = eta_1 \cdot Erfahrung_{(mittel)} + eta_2 \cdot Erfahrung_{(hoch)} + eta_3 \cdot Konfrontationsb. \ldots \ + eta_4 \cdot (Erfahrung_{(mittel)} \cdot Konfrontationsb.) + eta_5 \cdot (Erfahrung_{(hoch)} \cdot Konfrontationsb.) + \epsilon_i$$

Beispiel: Faktoren für Erfolg einer Therapie

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
summary(model)
## Call:
## lm(formula = Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
  Residuals:
        Min
                      Median
  -18.7144 -5.1562 -0.1617
                               5,2746 19,2377
## Coefficients:
                                                                     Pr(>|t|)
                                Estimate Std. Error t value
## (Intercept)
                                71.4295
                                             7.1862
                                                      9.940 0.000000000000493 ***
## Erfahrungmittel
                                -20.2295
                                             8.5970 -2.353
                                                                      0.02295 *
## Erfahrunghoch
                               -18.2173
                                            9.7180 -1.875
                                                                      0.06721 .
## Konfrontativ
                                -0.4322
                                             0.1511 - 2.860
                                                                      0.00635 **
## Erfahrungmittel:Konfrontativ
                                 0.4128
                                             0.1791
                                                     2.305
                                                                      0.02572 *
## Erfahrunghoch:Konfrontativ
                                 0.8832
                                             0.1962
                                                     4.503 0.000045661383946 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.376 on 46 degrees of freedom
## Multiple R-squared: 0.7173, Adjusted R-squared: 0.6866
## F-statistic: 23.34 on 5 and 46 DF, p-value: 0.00000000001343
```


Beispiel: Faktoren für Erfolg einer Therapie

```
model = lm(Therapieerfolg ~ Erfahrung * Konfrontativ, data = df)
anova(model)
## Analysis of Variance Table
## Response: Therapieerfolg
                         Df Sum Sq Mean Sq F value
                                                              Pr(>F)
## Erfahrung
                          2 6698.9 3349.4 47.746 0.00000000005978 ***
## Konfrontativ
                          1 19.8
                                      19.8
                                             0.282
                                                           0.5979430
## Erfahrung:Konfrontativ 2 1469.2
                                     734.6
                                           10,472
                                                           0.0001787 ***
                         46 3227.0
                                      70.2
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Der Omnibustest funktioniert wie bei der ANOVA
 (≥ 2 Stufen)
- Alle 3 Steigungen werden auf simultan auf Signifikanz getestet
- So wird eine $\alpha-$ Fehlerkumulierung verhindert
- Welche Steigungen sich genau zwischen den Gruppen unterscheiden, lässt sich mit Post-Hoc Trend-Vergleichen prüfen (nächste Folie)

Beispiel: Faktoren für Erfolg einer Therapie

```
emtrends(model, pairwise ~ Erfahrung, var = "Konfrontativ")
## Semtrends
   Erfahrung Konfrontativ.trend
                                    SE df lower.CL upper.CL
   niedrig
                                             -0.736
                                                      -0.128
                        -0.4322 0.1511 46
   mittel
                                             -0.213
                                                       0.174
                        -0.0194 0.0961 46
   hoch
                         0.4510 0.1251 46
                                             0.199
                                                      0.703
  Confidence level used: 0.95
## $contrasts
   contrast
                                SE df t.ratio p.value
                    estimate
   niedrig - mittel -0.413 0.179 46 -2.305 0.0651
   niedrig - hoch
                      -0.883 0.196 46 -4.503 0.0001
   mittel - hoch
                      -0.470 0.158 46 -2.983 0.0124
## P value adjustment: tukey method for comparing a family of 3 estimates
```

- Bei Therapeut:innen mit hoher Erfahrung steigt Therapieerfolg mit zunehmender Konfrontationsbereitschaft signifikant an.
- Bei Therapeut:innen mit mittlerer Erfahrung nimmt Therapieerfolg mit zunehmender Konfrontationsbereitschaft nicht signifikant ab.
- Bei Therapeut:innen mit niedriger Erfahrung nimmt Therapieerfolg mit zunehmender Konfrontationsbereitschaft signifikant ab.

Beispiel: Faktoren für Erfolg einer Therapie

```
emtrends(model, pairwise ~ Erfahrung, var = "Konfrontativ")
## $emtrends
   Erfahrung Konfrontativ.trend
                                    SE df lower.CL upper.CL
   niedrig
                        -0.4322 0.1511 46
                                            -0.736
                                                     -0.128
   mittel
                       -0.0194 0.0961 46
                                            -0.213
                                                      0.174
   hoch
                         0.4510 0.1251 46
                                             0.199
                                                      0.703
  Confidence level used: 0.95
  $contrasts
   contrast
                    estimate
                                SE df t.ratio p.value
   niedrig - mittel -0.413 0.179 46 -2.305 0.0651
   niedrig – hoch
                      -0.883 0.196 46 -4.503 0.0001
   mittel - hoch
                      -0.470 0.158 46 -2.983 0.0124
## P value adjustment: tukey method for comparing a family of 3 estimates
```

- $eta_{Konfrontativ|Erfahrung=hoch}$ unterscheidet sich signifikant von $(eta_{Konfrontativ|Erfahrung=niedrig}$ (p < .001) und $eta_{Konfrontativ|Erfahrung=mittel}$ (p = .012)
- $egin{align*} eta_{Konfrontativ|Erfahrung=neidrig} & ext{und} \ eta_{Konfrontativ|Erfahrung=mittel} & ext{unterscheiden sich} \ & ext{nicht signifikant} \ (p=.065) \end{aligned}$
- P-Werte sind Tukey-korrigiert, um Typ-I Fehler zu kontrollieren

Take-aways

- Die Regression erlaubt **alle Kombinationen** von [stetig x stetig], [diskret x diskret] und [stetig x diskret] Prädiktoren.
- Testung des Interaktionseffekt entspricht Prüfung einer Moderationshypothese.
- Diskrete Variablen müssen **dummy-codiert** werden. Zur Inspektion der Steigungen aller Stufen muss **Referenzkategorie** ggf. gewechselt werden.
- Bei stetigen Prädiktoren ohne sinnhaften Nullpunkt sollte eine **Zentrierung** durchgeführt werden.
- ullet Bei >2-stufigen diskreten Prädiktoren sollten **Omnibustests** verwendet werden, um Typ-I Fehler zu vermeiden.
- Paarweise Vergleiche von Steigungen innerhalb der Stufen eines Faktors lassen sich mit **Post-Hoc Trend Vergleichen** rechnen.