电光、计控学院本科生 2015—2016 学年第一学期线性代数课程期末考试试卷 (B卷)

姓名:

成绩:

学号:

年级:

专业:

说明: A^T 表示矩阵 A 的转置矩阵, A^* 表示矩阵 A 的伴随矩阵, E 是单位矩阵, O 是零矩阵, A^{-1} 表示可逆矩阵 A 的逆矩阵, $ A $ 表示方阵 A 的行列式, \langlelpha , eta 表示向量 $lpha$, eta 的内积。				
得 分 $-$.客观题: $1−3$ 小题为判断题,在对的后面括号中填" $√$ ",错的后面括号中填" $×$ ",				
4-8 为单选题,将正确选项前的字母填在括号中. (每小题 2 分,共 16 分)。				
1. 为 n 阶方阵,若 AB = AC, 则 B = C		()
2. 若 A, B 均为 n 阶方阵,则 A > B 当时, A,B 一定不相似。		()
3. 属于同一矩阵不同特征值的特征向量的和仍是该矩阵的特征向量.	()	
4. A 为 n 阶方阵,则 3A = ()		(,)
A. $3 A $ B. $ A $ C. $3^n A $ D. $n^3 A $				
5. 设线性方程组 AX=b,其中 A 是 m×n 矩阵,b≠O,则方程组 AX=b		()
A 有唯一解 B 有无穷多解				
C 无解 D 可能无解				
6. 设有实二次型 $f(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)=3x_1^2+4x_3^2$,则二次型 f 为()二次型。				
A. 正定 B. 负定 C. 不定 D. 半正定				
7. 下列关于矩阵乘法的结论中错误的是	()	
A. 若矩阵A可逆,则A与A ⁻¹ 可交换 B. 可逆阵必与初等矩阵可交换 C. 任一个n阶方阵均与cE _n 可交换,这里c为任意常数 D. 初等矩阵与初等矩阵乘法未必可交换				
8. 设 3 阶矩阵 A 满足 P ⁻¹ AP = diag{1,1,2},其中 P=(α ₁ α ₂ α ₃),令 Q= (α ₃ α ₁ 2α ₂),则 Q ⁻¹ AQ =	=	()
A. diag{4, 1, 1} B. diag{2, 1, 1} C. diag{1, 1, 4} D. diag{1, 1, 2}				

第1页,共9页

草稿区

二、行列式计算 (第1小题6分,第2小题8分,共14分)

2. 计算行列式
$$D_n = \begin{vmatrix} a_1 - b_1 & a_1 - b_2 & L & a_1 - b_n \\ a_2 - b_1 & a_2 - b_2 & L & a_2 - b_n \\ L & L & L & L \\ a_n - b_1 & a_n - b_2 & L & a_n - b_n \end{vmatrix}$$
 (n>=3)的值

(本题 10 分)

$$ax + ay + (a + 1)z = a$$

ax + ay + (a - 1)z = a四、对于线性方程组: (a + 1)x + ay + (2a + 3)z = 1

(本题 14分)

- (1) 当 a 取何值时,无解,有唯一解,有无穷多解?
- (2) 当方程组有无穷多解时求其通解。

五、设 R^3 中的两组基分别为:

(本题 9 分)

草稿 区

- (1) 求由基 θ_1 , θ_2 , θ_3 到基 h_1 , h_2 , h_3 的过渡矩阵 C
- (2) 若向量 α 在基 θ_1 , θ_2 , θ_3 下的坐标为 $\left(2 \ 2 \ 2\right)^T$,求 α 在基 h_1 , h_2 , h_3 下的坐标

(1) t 为何值时,该二次型是正定的

(2) 取 ←1, 用可逆线性变换化二次型为标准型, 并写出所用的线性变换。

草 稿 区

证明: $\beta_1, \beta_2, \cdots, \beta_m$ 线性无关。

得 分

八、设有实对称矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & x \end{pmatrix}$$
, 已知 A 有二重特征值 $\lambda_1 = \lambda_2 = 2$ (本题 9 分)

求 x 和另一个特征值人

得 分

九、设 A 为 $m \times n$ 矩阵,且的秩 R(A)为 n,判断 $A^T A$ 是否为正定阵?证明你的结论。(本题 5 分)