Prova 3

Rafael Amauri Diniz Augusto

Questão 3

Resolver essa questão utilizando programação dinâmica envolve o uso de uma matriz M de dimensões Lx e Ly, onde Lx é o tamanho da primeira string e Ly é o tamanho da segunda string.

M contém as strings X e Y como os eixos X e Y, da seguinte forma:

	Α	В	С	Α
В				
Α				
D				

Questão 3

Após a montagem de M, basta percorrer a matriz linha por linha, comparando o valor das linhas com as colunas e somar 1 onde os caracteres são iguais da seguinte forma (não somando nas repetições):

Assim temos indicação de onde ficam os caracteres recorrentes. Agora basta percorrer M na mesma ordem (linha por linha, da esquerda para a direita) e adicionar os primeiros valores recorrentes (quando a coluna tem o mesmo caractere que a linha) e quando foi somado +1 naquela posição da matriz) em uma terceira string vazia.

Depois basta retirar os caracteres dessa terceira string de X e Y e adicioná-los na terceira string, respeitando a ordem que eles pertecem e calcular o tamanho dessa terceira string. Por exemplo, "C" não será adicionado antes de B na terceira string, pois em X a letra C vem depois de B.

Questão 3

Com o exemplo dado, segue a resolução passo a passo:

Matriz após achar os caracteres:

	Α	В	С	Α
В	0	1	1	1
Α	2	2	2	2
D	2	2	2	2

Terceira string: B A \rightarrow A B A \rightarrow A B C A \rightarrow A B C A D

Tamanho da MSC = len("ABCAD") = 5

Custo da implementação = O(N*M), onde N é o tamanho da primeira string e M é o tamanho da segunda string.