Hyperpartisian News detection

Florian Biebel Daan Middendorp

July 10, 2019

Table of contents

Introduction

Different basic attemps
Pipeline
Article measures
Scores

CNN-Approach

Conclusion

Introduction

- ► Hyperpartisian News
 - "Extremely biased in favor of a political party"
- ► SemEval 2019 competition

Datasets

- 1. byarticle (\sim 600 articles directly labeled, 2,7MB; *quality data*)
- 2. bypublisher ($\sim 600k$ articles indirectly labeled by publisher, 2,6GB; *quantity data*)
- 3. byart-bypub-mix (byarticle + 1100 articles from bypublisher)

due to time and ressource constraints, only byarticle and mix were used, as well as a seed

Attempts

- Classifiers
 - Logistic Regression
 - SGD Classifier
 - Random Forest Classifier
 - Naive Base Classifier
 - CNN Keras
- Feature Unions
 - Length of article
 - Number of capitalized words
 - Number of exclamation marks

Pipeline

- XML-parser
- Transformer
 - CountVectorizer
 - ▶ TfidfTransformer
- ► Bag of Words
- Classifier

Article measures

- Hyperpartisian
 - Average of 596 words per article
 - Average of 7 capitalized words per article
 - Average of 0.98 exclamation marks per article
- Non-Hyperpartisian
 - Average of 415 words per article
 - Average of 5 capitalized words per article
 - Average of 0.36 exclamation marks per article
- ▶ How to tokenize?

Measure tokenization

- Add as word
 - ► LONGARTICLE
 - ► CAPITALUSAGE
 - EXCLAMATIONMARK
- ► Feature Union
 - Concatenates results of multiple transformer objects.

Scores (20 runs)

Method	Acc.	Prec.	Rec.	F1
Logistic regression	0,70-0,82	0,65-0,81	0,38-0,60	0,51-0,70
SGD Classifier	0,62-0,76	0,51-0,79	0,52-0,78	0,59-0,70
Random Forest	0,63-0,78	0,60-0,88	0,27-0,47	0,41-0,59
Naive Bayes	0,65-0,78	0,50-0,75	0,57-0,80	0,59-0,71
Log. reg. FU	0,71-0,82	0,67-0,92	0,39-0,64	0,49-0,70
SGD FU	0,34-0,70	0,00-0,40	0,00-1,00	0,0-0,58

Baselines

- ► Logistic Regression
- ► SGDClassifier (SVM)

Logistic Regression

	Quality	Mix	
Accuracy	80	68	-
Precision	76	67	consistent results due to the seed
Recall	60	50	
F1	67	57	

SVM

	Quality	Mix	
Accuracy	71-76	63-69	•
Precision	55-64	56-60	inconsistent results despite seed
Recall	65-80	59-70	
F1	60-66	59-65	
-l 4 - C4	h : - C	d: D-	

due to Stochastic Gradient Descent

CNN

	Quality	Mix
Accuracy	69-74	59-66
Precision	53-63	51-61
Recall	47-67	57-72
F1	52-60	57-61

Techniques

- BatchNormalization
- Dropout
- ► (Global)MaxPooling
- Learning Embeddings and Pre-Learned Embeddings (ELMo/Word2Vec/GloVe)

CNN Graph

ELMo Model

Conclusion

- ▶ Logistic regression seems to be the best baseline
- Small improvements possible adding extra features
- Bypublisher dataset makes it worse
- It is hard to apply CNN's, not as easy as thought
- Great resources are needed, also for small machinelearning tasks