

Universidade Federal de Viçosa Departamento de Informática INF 498 - Seminário I

Implementação de algoritmos de mineração em FPGA

Aluno: Michael Canesche

Orientador: Ricardo dos Santos Ferreira

Co-orientador: Giovanni Ventorim Comarela

Sumário

- Resumo da apresentação anterior
- O que foi planejado
- Gerador Parametrizável em GPU
- HARP v.2
- Artigo
- Cronograma
- Referência
- Agradecimentos

^{*} Imagem sugestiva retirada no google imagens

Resumo da apresentação anterior

- O que será feito
- Os algoritmos que serão implementados em FPGA e GPU
 - K-Means
- Eficiência será comparada com outros aceleradores em plataformas heterogêneas
 - GPU
- Validação dos algoritmos será por meio de bases de dados
- O trabalho final será entregue em forma de artigo

O que foi planejado

Tarefas	Março	Abril	Maio	Junho	Julho
Definição do Tema	X				
Revisão Bibliográfica	X	X	X	X	X
Implementação		X	X	X	
Redação do artigo			X	X	X

• Dados os valores k e d, geram um código em GPU.

Imagem retirada da internet da Placa de Vídeo K-40.

Mostrar execução do gerador...

Т	k	n	Pontos	Operações**	T de 1 iter. (ms)	T total
Grupo	4	4	134217728	6308233216	0.68	525686101
Artigo	4	4	1000000	4700000	12.0	6911764

- * USCensus1990.data.txt 100k pontos
- * Artigo do Clemens 128M pontos

```
** operações = m * [ 2*(k*n) + k*(n-1) + k-1 ]

m = número de pontos em cada interação

k = número de centróides

n = número de dimensão
```

Lutz, Clemens, et al. "Efficient k-Means on GPUs." (2018).

Т	k	n	Pontos	Operações**	T de 1 iter. (ms)	T total
Grupo	4	4	134217728	6308233216	0.68	525686101
Artigo	4	4	1000000	4700000	12.0	6911764

O artigo do "Alemão" é 76% melhor ou 3 vezes...

- * USCensus1990.data.txt 100k pontos
- * Artigo do Clemens 128M pontos
- ** operações = m * [2*(k*n) + k*(n-1) + k-1]

m = número de pontos em cada interação

k = número de centróides

n = número de dimensão

Lutz, Clemens, et al. "Efficient k-Means on GPUs." (2018).

https://versus.com/br/nvidia-geforce-gtx-1080-vs-nvidia-tesla-k40

- Mas, ...
 - O código criado faz uma execução na GPU e retorna para o Host (CPU)
 - Ótimo quando é o caso de grande quantidade de dados e dimensões
 - Péssimo para pequenas bases de dados

- O código faz atomicidade quando é setado a posição do novo cluster
 - Segurança dos dados (acesso único à região crítica)
 - Problema de gargalo

- Algumas melhorias a que podem serem feitas no código
 - Memória compartilhada

Utilizar o reuso de registradores sobre os dados dentro da GPU

Vai Brasil...

HARP v.2

Mostrar vídeo...

O que foi feito (Artigo)

- "Terminado" a Introdução
- "Terminado" o desenvolvimento (K-Means)
- Partes da Arquitetura do acelerador do K-Means
- Partes do gerador de códigos para o GPU
- Trabalhos relacionados

^{*} Imagem retirada do google

Cronograma - 2018/1*

Tarefas	Março	Abril	Maio	Junho	Julho
Definição do Tema	X				
Revisão Bibliográfica	X	X	X	X	X
Implementação		X	X	X	X
Redação do artigo			X	X	X
Procura de novos algoritmos					X

^{*} O cronograma pode ser mutável.

Referência

- [1] Lutz, Clemens, et al. Efficient k-Means on GPUs, 2018.
- [2] Gschwind, M.; Salapura, V.; Maurer, D. **FPGA prototyping of a RISC processor core for embedded applications**, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 9, 2001.
- [3] Chen, D.; Cong, J. and Pan, P; **FPGA Design Automation: A Survey**, Eletronic Design Automation, Vol. 1, No 3, 2006.
- [4] Cong, J.; et al; Understanding Performance Differences of FPGAs and GPUs, FCCM, 2018

Links Interessantes: https://www.nextplatform.com/

http://isfpga.org/

http://www2.sbc.org.br/wscad/current/index.html

Agradecimentos

Agradecimentos

Em especial a todos presentes!

Contatos

E-mail: michael.canesche@gmail.com

Projeto: https://github.com/canesche/INF496

Michael Canesche canesche

I'm student Computer Science at UFV. I love coffee and code.

Dúvidas?

