E1	Les	s nom	bres	parfait	s sont	des	nombres	égaux	à	la	somme	de	leurs	diviseurs	(sauf	eux-mêmes)
Par e	xempl	e, le	nom	bre 6 es	t parf	ait	car :									

$$1+2+3=6$$
.

- a. Vérification: Montre que 28 est un nombre parfait en calculant la somme de ses diviseurs.
- **b.** Recherche: Parmi les nombres suivants, lesquels sont des nombres parfaits? Justifie ta réponse en trouvant la somme de leurs diviseurs:

12 15 496 20

- c. Exploration: Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même dépasse le nombre (nombres abondants). Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même est inférieure au nombre (nombres déficients).
- **d. Défi :** Le prochain nombre parfait après 496 est 8128. Montre que 8128 est parfait en calculant la somme de ses diviseurs.

Les **nombres parfaits** sont des nombres égaux à la somme de leurs diviseurs (sauf eux-mêmes). Par exemple, le nombre 6 est parfait car :

$$1+2+3=6$$
.

- a. Vérification : Montre que 28 est un nombre parfait en calculant la somme de ses diviseurs.
- **b. Recherche :** Parmi les nombres suivants, lesquels sont des nombres parfaits ? Justifie ta réponse en trouvant la somme de leurs diviseurs :

12 15 496 20

- c. Exploration: Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même dépasse le nombre (nombres abondants). Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même est inférieure au nombre (nombres déficients).
- **d. Défi :** Le prochain nombre parfait après 496 est 8128. Montre que 8128 est parfait en calculant la somme de ses diviseurs.

Les **nombres parfaits** sont des nombres égaux à la somme de leurs diviseurs (sauf eux-mêmes). Par exemple, le nombre 6 est parfait car :

$$1+2+3=6$$
.

- a. Vérification: Montre que 28 est un nombre parfait en calculant la somme de ses diviseurs.
- **b. Recherche :** Parmi les nombres suivants, lesquels sont des nombres parfaits ? Justifie ta réponse en trouvant la somme de leurs diviseurs :

496

20

- c. Exploration: Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même dépasse le nombre (nombres abondants). Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même est inférieure au nombre (nombres déficients).
- **d. Défi :** Le prochain nombre parfait après 496 est 8128. Montre que 8128 est parfait en calculant la somme de ses diviseurs.

Les **nombres parfaits** sont des nombres égaux à la somme de leurs diviseurs (sauf eux-mêmes). Par exemple, le nombre 6 est parfait car :

$$1 + 2 + 3 = 6$$
.

- a. Vérification : Montre que 28 est un nombre parfait en calculant la somme de ses diviseurs.
- **b. Recherche :** Parmi les nombres suivants, lesquels sont des nombres parfaits ? Justifie ta réponse en trouvant la somme de leurs diviseurs :

12 15 496 20

15

12

- c. Exploration: Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même dépasse le nombre (nombres abondants). Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même est inférieure au nombre (nombres déficients).
- **d. Défi :** Le prochain nombre parfait après 496 est 8128. Montre que 8128 est parfait en calculant la somme de ses diviseurs.