TECNOLOGÍA ELECTRÓNICA DE COMPUTADORES

2º Curso – GRADO EN INGENIERÍA INFORMÁTICA EN TECNOLOGÍAS DE LA INFORMACIÓN

> Tema 3: Componentes electrónicos. Diodos y transistores

Lección 4. El transistor bipolar

Lección 4. El transistor bipolar

- 4.1 Visión general. Estructura y configuraciones básicas
- 4.2 Curvas características y zonas de funcionamiento
- 4.3 Aplicaciones
 - Interruptor (electrónica digital)
 - Amplificación (electrónica analógica)
- 4.4. Transistores bipolares especiales

Bibliografía de la lección

Lectura clave

Capítulo 6 de transistores (sin temas opcionales) de A.P. Malvino

Principios de Electrónica

Editorial Mc. Graw Hill

Otras lecturas complementarias

Consultar http://es.rs-online.com/web/

http://es.farnell.com/

para ver transistores

Funcionamiento transistor: http://youtu.be/ZaBLiciesOU

4.1 Visión general. Estructura y configuraciones básicas

Tipos de transistores

Ideas previas: ¿PARA QUÉ SIRVE UN TRANSISTOR?

CIRCUITO DE CONTROL

- Potencia baja
- Corrientes pequeñas
- Tensiones pequeñas

Ej.: salidas de un computador

CIRCUITO DE POTENCIA

- Potencia media o alta
- Corrientes grandes
- Tensiones iguales o mayores

Ej.: lámparas, calefacciones, todo tipo de actuadores

ELEMENTO AMPLIFICADOR DE POTENCIA

- Permite controlar el circuito de potencia desde el circuito de control
- Típico: basado en un transistor

El transistor bipolar (BJT): dos uniones PN

El efecto transistor (aplicado al NPN)

<u>Efecto transistor</u>: Cuando la unión B-E conduce (corriente de base, ib), es posible la conducción de la unión C-E (corriente de colector, ic).

Siempre se cumple que ie=ib+ic

Configuraciones básicas

El BJT es un dispositivo con tres terminales => Un terminal (común) se conecta a la Entrada y a la Salida

4.2. Curvas características y zonas de funcionamiento

Transistor NPN

 $I_B = f(V_{BE}, V_{CE})$ Característica de entrada

En principio necesitamos conocer 3 tensiones y 3 corrientes:

$$I_{C}, I_{B}, I_{E}$$

$$V_{CE}, V_{BE}, V_{CB}$$

En la práctica basta con conocer solo 2 corrientes y 2 tensiones.

Normalmente se trabaja con I_C , I_B , V_{CE} y V_{RF} .

Por supuesto las otras dos pueden obtenerse fácilmente:

$$I_E = I_C + I_B$$

$$V_{CB} = V_{CE} - V_{BE}$$

Característica de entrada

Entre base y emisor el transistor se comporta como un diodo.

La característica de este diodo depende de V_{CE} pero la variación es pequeña.

Característica de salida

 $I_C = f(I_B, V_{CE})$ Característica de salida

La corriente que circula por el colector se controla mediante la corriente de base $I_{\rm B}$.

Linealización y zonas de funcionamiento NPN

Transistor NPN: linealización de la característica de entrada

La característica de entrada corresponde a la de un diodo y se emplean las aproximaciones lineales vistas para los diodos.

Transistor NPN: linealización de la característica de salida

El parámetro fundamental que describe la característica de salida del transistor es la ganancia de corriente β .

Zonas de funcionamiento

- **Zona de corte** (corriente de base=0): equivale a un abierto.
- Zona de saturación (corriente de colector < βI_B): equivale a un corto.
- Zona activa (corriente de colector < βI_B): hay corriente de base y soporta tensión.
 Equivale a amplificar la corriente de base por β (el valor típico está en torno a 100 pero es muy variable).

Transistor NPN: zonas de funcionamiento del transistor ideal

Forma de cálculo (NPN)

1º) Análisis del circuito de base

¡¡ OJO ¡¡ Por el diodo de la unión B-E está circulando ie = ib+ic

2º) Análisis del circuito de colector

Hipótesis:

Transistor en zona activa => i_c = β i_b 0 Hay que comprobar que uce > $u_{ce \ saturación}$

$$U_{ce} = (Vc - Rc i_c) = (Vc - Rc \beta i_b)$$

Si uce > 0V (hipótesis correcta)

Si $u_{ce} < 0V$ (hipótesis falsa)

Transistor saturado:

$$U_{ce} = 0V$$
 ; $i_c = Vc/Rc < \beta i_b$

Ejemplo 1

Determinar el punto de funcionamiento del transistor suponiendo que es ideal.

- ¿Y si se considera una caída de tensión entre base-emisor de 0,6 V?
- ¿Y si la resistencia de colector es de 10 K en lugar de 100 Ω ?

Características eléctricas del transistor bipolar PNP Característica de entrada

Las tensiones y corrientes van en sentido contrario a las de un transistor NPN.

Entre emisor y base se comporta como un diodo. La corriente por la base es saliente.

Característica de salida

 $I_C = f(I_B, V_{CE})$ Característica de salida

La corriente que circula por el colector es saliente y se controla mediante la corriente de base I_B .

Características reales de los transistores

Característica de Salida

Características más importantes proporcionadas por los fabricantes

I_{C-MAX} Corriente máxima de colector

V_{CF-MAX} Tensión máxima CE

P_{MAX} Potencia máxima

V_{CF-SAT} Tensión C.E. de saturación

 $h_{FE} \cong \beta$ Ganancia

<u>Ejemplo</u>

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTORS

BU208A

$$V_{CE} = 1500$$

 $I_{C} = 8$
 $H_{FE} = 20$

4.3 Aplicaciones

- 1.- Funcionamiento como interruptor
 - Funcionamiento en corte/saturación
 - Es un interruptor controlado eléctricamente
 - Clave del desarrollo de la electrónica digital
 - Clave en la electrónica de potencia
- 2.- Funcionamiento como amplificador
 - Funcionamiento en zona lineal (activa)
 - La salida es una "copia" de la entrada, de mayor potencia
 - La potencia "extra" la aporta una fuente de continua

1.- Funcionamiento como interruptor (Ejemplo 2)

Se dispone de un circuito digital que da 5 V y 1 mA como máx. cuando se desea encender un LED rojo (que se pretende encender con 20 mA) y 0 V cuando se desea apagar. Diseñar un circuito como el de la figura para conseguirlo. Transistor ideal (β =100) y caída de tensión en LED 1,5 V.

1.- Funcionamiento como interruptor (Ejemplo 3, gobierno de relés)

¿qué es un relé? ¿por qué es necesario el diodo? ¿cuáles son las características más importantes del relé?

2.- Funcionamiento como amplificador (sólo una idea básica)

¿Cómo funciona un amplificador?

Supongamos que se quiere amplificar una tensión.

La idea puede ser:

- 1. Transformar la tensión a amplificar en una corriente de base proporcional
- 2. Amplificar esta corriente con el transistor (en zona activa la corriente de colector es proporcional a la de base)
- 3. Obtener una tensión proporcional a la tensión de entrada

¿Cómo garantizar la proporcionalidad?

IMPORTANTE: es necesario que el diodo entre base y emisor conduzca siempre.

Así, se tiene:

- Un circuito de polarización (continua)
- Un circuito que permite "sumar" la señal a amplificar (usualmente alterna o variable)

4.4. Transistores bipolares especiales

El fototransistor

La luz (fotones de una cierta longitud de onda) al incidir en la zona de base

desempeñan el papel de corriente de base

El terminal de Base, puede estar presente o no.

No confundir con un fotodiodo.

Optoacoplador

Conjunto LED + fototransistor o fotodiodo

OBJETIVO:

Proporcionar aislamiento galvánico y protección eléctrica.

Detección de obstáculos.

El transistor multiemisor

Transistor muy empleado en Electrónica Digital (tecnología TTL), básico para la implementación de puertas lógicas de varias entradas.

