ΜΙΚΡΟΕΠΕΞΕΡΓΑΣΤΕΣ – ΑΣΚΗΣΕΙΣ

(Million Instructions per Second)	
$MIPS = \frac{Instruction Count}{Execution Time *10^6} = \frac{Clock Rate}{CPI *10^6}$	$Time = \frac{Seconds}{Program} = Instruction * CPI * ClockRate$

Subthreshold Leakage (Διαρροή Υποκατωφλίου)

 $\underline{\acute{o}}$ ταν \mathbf{V} gs \mathbf{V} t (Gate Voltage \mathbf{V} t (Gate Voltage) (Τάση Πύλης \mathbf{V} τάση Κατωφλίου)

$$P_{leakage} \approx V_{dd} * I_{leakage}$$
 $I_{leakage} \approx I_{o} * e^{\left(\frac{V_{gs} - V_{t}}{n*V_{T}}\right)}$

$$I_0 = \mu_0 * C_{ox} * \frac{W}{L} * (n-1) * V_T^2$$

Μονοπάτι Μονάδας	V_{dd}	λόγω				
Κρίσιμο (Critical)	Ύψιστο	Χρονικοί Περιορισμοί				
Μη-Κρίσιμο	Ελάχιστο	Μείωση Ενέργειας				

<u>πχ.: Ἑστω</u> : Vdd=2.2V,Vt=0.5V,FUsDelay=10ns												
Κρίσιμο Μονοπάτι												
Operations (Λειτουργίες)	02,05,06,07, 08,09,010,011		Length (Μήκος)		10+10+10+10+10+10 =60ns							
Multi-Cycled FUs Candidates	01, 03, 04		Delay of Multi-Cycled		o1=50ns, o3=20ns, o4=40ns							

SWITCHING ACTIVITY = πόσες φορές bit 0→1 or 1→0									
Με πίνακα τιμών	# of switches observed								
Με πινακα τιμών	$Esw = {\# \text{ of maximum possible switches}}$								
Με πιθανότητες	Esw = 2*P _{out} *(1-P _{out})								

<u>πχ.</u> : [
Time	t ₁	t ₂	t ₃	t ₄	t ₅	
Input1	0	1	0	1	1	
Input2	1	1	0	0	1	
Output	0	1	0	0	1	⇒ Esw=3/

AND										
ln1	Out									
0	0	0								
0	1	0								
1	0	0								
1	1	1								
Esw	<i>y</i> = 0.5*0.5	= 1/4								

OR										
In1 In2 Out										
0	0	0								
0	1	1								
1	0	1								
1	1	1								
Esw = 0.5*	0.5+(10.5)*(10.5) = 3/4								

NO	TC	F	ND		Z	AN	D			OR			1	NOF	R)	KOF	₹	X	NO	R
Ā	Ī	Δ	\ * E	3	$\overline{A * B}$			A + B			$\overline{A+B}$		$A \oplus B$		$\overline{A \oplus B}$		\overline{B}				
<u> </u>	>> <u>*</u>	A B	\supset	<u>x</u>			٩			D	-	→~		\Rightarrow							
Α	Х	В	Α	X	В	Α	X		В	Α	X		В	Α	X	В	Α	X	В	Α	X
0	1	0	0	0	0	0	1		0	0	0		0	0	1	0	0	0	0	0	1
1	0	0	1	0	0	1	1		0	1	1		0	1	0	0	1	1	0	1	0
		1	0	0	1	0	1		1	0	1		1	0	0	1	0	1	1	0	0
		1	1	2	1	1	0		1	1	1		1	1	0	1	1	0	1	1	1

]	πχ. : Με Γνωστό Φόρτο Εργασίας												
		а	b	С		е	f		d				
t1		0	1	0		0	1		0				
t2		1	1	0		1	1		1				
t3		1	0	0		0	1		0				
t4		0	0	1		0	0		0				
Esw						2/3	1/3		2/3				

$Pd = V_{dd}^2 * F_{clk} * C_L * E_{SW} * 0.5$	F _{clk}	Clock Frequency
	C_L	Capacitance Seen by Gate
P _{dynamic(circuit)} = Pd(e) + Pd(f) + Pd(d)	Esw	Gate Switching Activity (0↔1)

Προσομοίωση Κυκλωμάτων – Ταξινόμηση Πίνακα

Μαρκάρουμε τα αρχικά Element, και σταδιακά τις επόμενους εξόδους

ΕlementsTableSorted =

{} → {E1,E2} → {E1,E2,E3,E4,E5} → {E1,E2,E3,E4,E5,E6,E7,E8,E9}

Περιγραφή Κυκλώματος – Σε Κώδικα

SignalsTable = $\{0,0,0,0,0,0,0\}$ // a,b,c,d,e,f

E1.type = 'AND'; **E1.inputs** = [1,2]; **E1.output** = 5;

E2.type = 'NOT; **E2.inputs** = [3]; **E2.output** = 6;

E3.type = 'AND'; **E3.inputs** = [5,6]; **E3.output** = 4;

ElementsTable = {E1,E2,E3}

for i : size(ElementsTable)

process(ElementsTable[i])

function process(element)

if (element.type == 'AND')

SignalsTable [element.output] = spAND (SignalsTable [element.input[1]], SignalsTable [element.input[2]])

elseif

SignalsTable [element.output] = spNOT (SignalsTable [element.input[1])

ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΓΙΣΤΗΣ ΔΥΝΑΜΙΚΗΣ ΚΑΤΑΝΑΛΩΣΗΣ

BHMA

		Αρχικός Πληθυσμός		L	Μέγεθος Χρονοσειράς – Πλήθος Διανυσμάτων Εισόδου
1	1			N	Πλήθος Ξεχωριστών Φόρτων Εργασίας
	-	Ξεκινάμε με N Individ ι	ual	Wo	rkload (IW), που το καθένα είναι χρονοσειρά μήκους L

2	Μέτρηση Κατανάλωσης	Υπο	λογίζουμε:	Swit	tivity (SI) του κάθε IW				
3	Φυσική Επιλογή	Επ	ιλέγουμε:	Γονείς:	ε ίς : Τα 2 ΙW με το μεγαλύτερο SI				
	Διασταύρωση	Па	ιράγουμε:	Νέο Πλη παιδια	-	Αρχικά οι γονείς ία πρόσμιξη με διαίρεση			
4		R	Τυχαία Γραμμή Διαχωρισμού Από 1 έως L-1						
					ώτες R γραμμές του λοιπες από τον άλλο γονέα				

			Ριψη Νομιομαίος	τια αλλαγιη τη γονεα					
5	Μετάλλαξη	m	Συντελεστής Μετάλλαξης (mutation rate) (πολύ μικρό)						
•	Πετωνιαζή		Η πιθανότητα να αλλάξουν bit των παιδιών της δια						

πχ.: Αρχικός Πληθυσμός για L=3 <u>και</u> N=4																	
1 ^{rst} Generation																	
		I	W 1	ı		IW 2				I	W3	3		IW 4			
t		а	b	С		а	b	С		а	b	С		а	b	С	
t1		1	1	1		0	0	1		0	1	1		1	1	1	
t2		0	0	1		0	1	0		1	1	1		0	0	0	
t3		1	1	0		1	0	1		0	0	1		1	0	1	

2 nd Generation																	
	Γονέας 1					Го	νέα	; 2		П	αιδί	1		Παιδί 2			
										C=	:1, R	=2		C=2, R=1			
		IW 1				IW 2				IW 3				IW 4			
t		а	b	С		а	b	С		а	b	С		а	b	С	
t1		0	0	1		0	1	1		0	1	1		1	1	1	
t2		0	1	0		1	1	1		1	1	1		0	0	0	
t3		1	0	1		0	0	1		0	0	1		1	0	1	