Mecânica Analítica

2020-2021

Série 6

Responsáveis: Hugo Terças, Pedro Cosme

Nesta série, estudamos as oscilações forçadas e ilustramos os principais aspectos do formalismo Hamiltoniano.

- ** Problema 1. O pêndulo invertido. Considere um pêndulo de massa m e haste de comprimento ℓ , suportado num ponto de massa desprezável que se pode deslocar verticalmente.
- a) Mostre que a equação do movimento para θ é

$$\ddot{\theta} - \frac{\ddot{Y}}{\ell}\sin\theta + \frac{g}{\ell}\sin\theta = 0.$$

Começamos por notar que, escolhendo o eixo yy a "apontar para baixo", as coordenadas do pêndulo são $x=\ell\sin\theta$ e $y=Y+\ell\cos\theta$. Como a energia cinética é $T=(m/2)(\dot{x}^2+\dot{y}^2)$ e V=-mgy, o Lagrangeano em termos da coordenada θ é^a

$$L(\theta,\dot{\theta}) = \frac{1}{2}m(\ell^2\dot{\theta}^2 + \dot{Y}^2 - 2\ell\dot{\theta}\dot{Y}\sin\theta) + mg\ell\cos\theta + mgY.$$

Usando a equação de Euler-Lagrange, $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = 0,$

$$m\ell^2\ddot{\theta} - m\ell\ddot{Y}\sin\theta + m\ell\dot{Y}\dot{\theta}\cos\theta - m\ell\dot{Y}\dot{\theta}\cos\theta + mg\ell\sin\theta = 0.$$

Dividindo tudo por $m\ell^2$, obtemos a equação do movimento.

b) Considere agora que a massa executa o movimento oscilatório $Y(t) = A\cos(\Omega t)$. Linearize o problema em torno dos pontos de equilíbrio $\theta_0 = 0$ e $\theta_0 = \pi$ para obter a equação de Mathieu

$$\ddot{\theta} \pm \omega_0^2 \left[1 \pm \epsilon \cos(\Omega t) \right] \theta = 0, \quad (\omega_0 = \sqrt{g/\ell}).$$

Com $Y = A\cos(\Omega t)$, a equação do movimento vem

 $[^]a \mbox{Note}$ que Ynão é grau de liberdade (é um parâmetro), pelo que podemos eliminá-lo do termo do potencial

$$\ddot{\theta} + \frac{A}{\ell}\Omega^2 \cos(\Omega t) \sin \theta + \omega_0^2 \sin \theta = 0,$$

$$\ddot{\theta} + \omega_0^2 \left[1 + \underbrace{\frac{A\Omega^2}{\ell\omega_0^2}}_{\epsilon} \cos(\Omega t) \right] \sin \theta = 0.$$

Perto de $\theta = 0$, $\sin \theta \simeq \theta$, ao passo que para valores em torno de $\theta = \pi$, $\sin(\theta + \pi) \simeq -\theta$. Assim, o sinal antes dos parêntesis é + (-) para a linearização em torno de 0 (π) e o sinal dentro dos parêntesis é sempre o positivo, +.

c) Na aula teórica, procurando soluções do tipo $\theta(t+T)=e^{\mu T}\theta(t)$ (onde T é o período), vimos que as oscilações perto do ponto $\theta_0=0$ são instáveis ($\mu>0$) se

$$\left(2 - \frac{\epsilon}{2}\right) < \frac{\Omega}{\omega_0} < \left(2 + \frac{\epsilon}{2}\right).$$

Pretendemos perceber o que acontece genericamente (qualquer ângulo) para o caso $\Omega \gg \omega_0$. Para tal, separemos a solução numa parte lenta e numa parte rápida, $\theta = \varphi + \delta$, de tal forma que a componente rápida seja a parte forçada da equação de Mathieu, $\delta = (A/\ell)\cos(\Omega t)\sin(\varphi)$. Desprezando os termos $\mathcal{O}(\delta^2)$, e fazendo uma média sobre a parte rápida, mostre que a equação para a parte lenta se obtém

$$\ddot{\varphi} \simeq -\left(\omega_0^2 \sin \varphi + \frac{A^2 \Omega^2}{2\ell^2} \sin \varphi \cos \varphi\right).$$

$$\ddot{\theta} + \omega_0^2 \sin \theta + \frac{A}{\ell} \Omega^2 \cos(\Omega t) \sin \theta = 0$$

Utilizando a separação de escalas $\theta = \varphi + \delta$, com $\delta \sim \frac{A}{\ell} \ll \varphi$,

$$\ddot{\varphi} + \ddot{\delta} + \omega_0^2 \sin(\varphi + \delta) + \frac{A}{\ell} \Omega^2 \cos(\Omega t) \sin(\varphi + \delta) = 0,$$

$$\Leftrightarrow \ddot{\varphi} + \ddot{\delta} + \omega_0^2 \left[\sin \varphi + \cos \varphi \ \delta \right] + \frac{A}{\ell} \Omega^2 \cos(\Omega t) \left[\sin \varphi + \cos \varphi \ \delta \right] + \mathcal{O}(\delta^2) = 0.$$

Tomando médias temporais nos termos de alta frequência,

$$\ddot{\varphi} + \omega_0^2 \sin \varphi + \langle \ddot{\delta} \rangle + \omega_0^2 \langle \delta \rangle \cos \varphi + \left\langle \frac{A}{\ell} \Omega^2 \cos(\Omega t) \right\rangle \sin \varphi + \left\langle \frac{A}{\ell} \Omega^2 \cos(\Omega t) \delta \right\rangle \cos \varphi = 0,$$

o último termo é $\left\langle \frac{A^2}{\ell^2} \Omega^2 \cos^2(\Omega t) \right\rangle \sin \varphi = \frac{A^2 \Omega^2}{2\ell^2} \sin \varphi.$

d) Mostre que o ângulo $\varphi=\pi$ pode ser estabilizado neste regime e determine a frequência ω das pequenas oscilações δ .

A equação do movimento para a parte lenta pode ser escrito em termos na forma

$$\ddot{\varphi} = -\frac{d}{d\varphi} \underbrace{\left(-\omega_0^2 \cos \varphi - \frac{A^2 \Omega^2}{4\ell^2} \cos^2 \varphi\right)}_{V_{\text{ef.}(\varphi)}}.$$

Para $A\Omega < \sqrt{2}\ell\omega_0$, o potencial possui um ponto de equilíbrio instável em $\varphi = 0$, e um ponto de equilíbrio estável (global) em $\varphi = 0$. Para $A\Omega > \sqrt{2}\ell\omega_0$, $V''_{\rm ef.}(\pi)$ muda de sinal, revelando um ponto de equilíbrio estável (local) em $\theta = \pi$. Isto mostra que podemos estabilizar o ponto vertical.

Fazendo $\varphi = \pi + \delta$, encontraremos a frequência de oscilação para pequenas perturbações do pêndulo estabilizado na posição invertida

$$\ddot{\delta} \simeq -\left(\omega_0^2 \sin(\pi + \delta) + \frac{A^2 \Omega^2}{2\ell^2} \sin(\pi + \delta) \cos(\pi + \delta)\right)$$
$$\ddot{\delta} + \underbrace{\left(\frac{A^2 \Omega^2}{2\ell^2} - \omega_0^2\right)}_{\omega^2} \delta = 0.$$

Claramente, vemos que ω só é real na situação em que o pêndulo está estabilizado $(A\Omega > \sqrt{2\ell\omega_0})$. Por curiosidade, podemos calcular como oscila agora o pêndulo perto do seu ponto de equilíbrio $\varphi = 0$.

$$\ddot{\delta} + \underbrace{\left(\frac{A^2\Omega^2}{2\ell^2} + \omega_0^2\right)}_{\ell^2} \delta = 0.$$

As oscilações perto do ponto de equilíbrio global têm a frequência $\omega' = \omega_0 \sqrt{1 + \frac{A^2 \Omega^2}{2\ell^2 \omega_0^2}}$.

* Problema 2. Transformações de Legendre. Seja $L = L(q_i, \dot{q}_i, t)$ um Lagrangeano de um determinano sistema de n graus de liberdade. Definimos o Hamiltoniano $H = H(q_i, p_i, t)$ através de uma transformação de Legendre do tipo

$$H(q_i, p_i, t) = p_i \dot{q}_i - L(q_i, \dot{q}_i, t).$$

a) Obtenha as equações do movimento em termos das coordenadas q_i e p_i .

Começamos por calcular o diferencial de H

$$dH = d(p_i \dot{q}_i) - dL = \dot{q}_i dp_i + p_i d\dot{q}_i - \frac{\partial L}{\partial q_i} dq_i - \frac{\partial L}{\partial \dot{q}_i} d\dot{q}_i - \frac{\partial L}{\partial t} dt.$$

Usando as equações de Euler-Lagrange, $p_i = \frac{\partial L}{\partial \dot{q}_i}$ e $\dot{p}_i = \frac{\partial L}{\partial q_i}$, de onde resulta

$$dH = \dot{q}_i dp_i - \dot{p}_i dq_i - \frac{\partial L}{\partial t} dt.$$

Como $H=H(q_i,p_i,t)$, identificamos os coeficientes com as derivadas parciais em relação às variáveis, i.e.

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}.$$

b) Usando o método variacional, e impondo a condição de extremo para a variação $-\delta$,

$$\delta \int_{t_1}^{t_2} L(q_i, \dot{q}_i, t) dt = 0$$

mostre que as mesmas equações do movimento poderiam ser obtidas. Verifica-se, assim, a consistência entre as equações de Hamilton e o princípio variacional de Hamilton.

Invertendo a transformação de Legendre, $L = p_i \dot{q}_i - H$,

$$\delta S = \delta \int_{t_1}^{t_2} \underbrace{[p_i \dot{q}_i - H(q_i, p_i, t)]}_{f(q_i, \dot{q}_i, p_i, t)} dt = 0.$$

Dada a dependência funcional de f, a variação $-\delta$ deve corresponder a

$$\int_{t_1}^{t_2} \left(\frac{\partial f}{\partial q_i} \delta q_i + \frac{\partial f}{\partial \dot{q}_i} \delta \dot{q}_i + \frac{\partial f}{\partial p_i} \delta p_i \right) dt = 0.$$

Impondo a condição $\delta q_i(t_\alpha) = \delta p_i(t_\alpha) = 0$, com $\alpha = \{1, 2\}$, obtemos

$$\int_{t_1}^{t_2} \left[\left(\frac{\partial f}{\partial q_i} - \frac{d}{dt} \frac{\partial f}{\partial \dot{q}_i} \right) \delta q_i + \left(\frac{\partial f}{\partial p_i} \right) \delta p_i \right] dt = 0.$$

Como as variações δq_i e δp_i são independentes, ambos os coeficientes têm de se anular identicamente. Daqui resultam imediatamente as equações de Hamilton.

c) Considere a transformação de Legendre do tipo

$$K(\dot{q}_i, \dot{p}_i, t) = \dot{p}_i q_i - L(q_i, \dot{q}_i, t).$$

Que equações de movimento obteria neste caso? Para um sistema com n graus de liberdade, de quantas condições iniciais necessita para integrar as equações do movimento?

Procedendo como na alínea a)
$$\dot{p_i}$$

$$dK = \dot{p_i}dq_i + q_id\dot{p_i} - \overbrace{\frac{\partial L}{\partial q_i}}^{p_i}dq_i - \overbrace{\frac{\partial L}{\partial \dot{q}_i}}^{p_i}d\dot{q_i} - \frac{\partial L}{\partial t}dt = q_id\dot{p_i} - p_id\dot{q_i} - \frac{\partial L}{\partial t}dt.$$

Daqui resulta imediatamente

$$q_i = \frac{\partial K}{\partial \dot{p}_i}, \quad p_i = -\frac{\partial K}{\partial \dot{q}_i}, \quad \frac{\partial K}{\partial t} = -\frac{\partial L}{\partial t}.$$

Continuamos a necessitar de 2n condições iniciais. Isto revela que as transformações de Legendre conservam as equações do movimento, apenas servindo para as re-escrever numa outra forma.

 \star Problema 3. O pêndulo revisitado. Considere um pêndulo simples com haste indeformável de comprimento ℓ , que pode movimentar-se sob a acção da gravidade. Considere θ como sendo o ângulo que a haste faz com a vertical. Um Lagrangeano do sistema é dado por

$$L(\theta, \dot{\theta}) = \frac{1}{2}m\ell^2\dot{\theta}^2 + mg\ell\cos\theta.$$

a) Construa o Hamiltoniano correspondente a este sistema e obtenha as equações do movimento.

Usando a trasformação de Legendre para relacionar H e L,

$$H(\theta, p_{\theta}) = p_{\theta}\dot{\theta} - L(\theta, \dot{\theta}) = p_{\theta}\dot{\theta} - \frac{1}{2}m\ell^2\dot{\theta}^2 - mg\ell\cos\theta.$$

Resta-nos eliminar $\dot{\theta}$. Para isso, fazemos uso da definição de momento canónico, $p_{\theta} = \partial_{\dot{\theta}} L = m\ell^2\dot{\theta}$, ou seja, $\dot{\theta} = p_{\theta}/(m\ell^2)$. Assim, obtemos

$$H(\theta, p_{\theta}) = \frac{p_{\theta}^2}{2m\ell^2} - mg\ell \cos \theta.$$

As equações do movimento são

$$\dot{\theta} = \frac{\partial H}{\partial p_{\theta}} = \frac{p_{\theta}}{m\ell^2}, \quad \dot{p}_{\theta} = -\frac{\partial H}{\partial \theta} = -mg\ell \sin \theta.$$

Estas equações de primeira ordem são equivalentes a uma equação de segunda ordem

$$\ddot{\theta} + \frac{g}{\ell}\sin\theta = 0.$$

b) Justifique se o Hamiltoniano é, ou não, conservado e se corresponde, ou não, à energia mecânica do sistema.

$$H = T + V = E.$$

Por outro lado, $H \neq H(t)$, pelo que H é convervado. Daqui resulta imediatamente que a energia mecânica do sistema se conserva.

c) Construa o espaço de fases¹ (p_{θ}, θ) e descreva qualitativamente o movimento em função da energia E.

Uma vez que H=E, podemos resolver para p_{θ} e escrever

$$p_{\theta} = \pm p_0 \sqrt{\epsilon + \cos \theta},$$

onde $p_0 = \sqrt{2m^2\ell^3g}$ e $\epsilon = E/(mg\ell)$.

Para $\epsilon < 1$, as órbitas no espaço de fases são limitadas, i.e. $-\pi < \theta < \pi$ (movimento de libração); para $\epsilon > 1$, as órbitas são abertas, correspondendo à situação em que θ varre todos os valores possíveis (movimento de rotação). À curva que divide estes dois movimentos dá-se o nome de *separatriz* (curva a tracejado, obtida para $\epsilon = 1$).

d) Estude a estabilidade perto do pontos de equilíbrio e perceba como retirar essa informação directamente do espaço das fases, i.e. sem ter de resolver as equações do movimento.

Para o potencial $V = -mg\ell \cos \theta$, temos dois pontos de equilíbrio: $\theta = 0$ e $\theta = \pi$. O primeiro corresponde a um equilíbrio estável (V''(0) > 0), ao passo que o segundo corresponde a um ponto de equilíbrio instável (V''(0) < 0). Esta informação pode ser retirada directamente do espaço de fases: pontos de equilíbrio estáveis são rodeados de órbitas fechadas; pontos de equilíbrio instáveis correspondem a pontos de cruzamento entre curvas no espaço de fases. Obviamente, para distinguirmos entre pontos de equilíbrio instável e pontos de sela teríamos de estudar a matriz Hessiana de $\partial^2 V/(\partial\theta\partial p_{\theta})$ perto desses pontos. Contudo, no nosso caso não existe essa ambiguidade.

** Problema 4. O potencial central revisitado. Considere o problema do potencial central no plano (r, θ) , cujo Lagrangeano é

$$L(r,\dot{r},\theta,\dot{\theta}) = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - V(r).$$

a) Obtenha o Hamiltoniano do sistema, $H = H(r, p_r, \theta, p_\theta)$.

¹Também conhecido como "retrato de fases".

Neste problema, temos dois graus de liberdade, (r, θ) . Vamos usar o formalismo que permite obter directamente o Hamiltoniano a partir do Lagrangeano (ver aula teórica)

$$H = \frac{1}{2} \left(\mathbf{p}^{T} - \mathbf{a}^{T} \right) \cdot \mathbf{T}^{-1} \cdot (\mathbf{p} - \mathbf{a}) - L_{0}.$$

Como $\mathbf{a} = 0$ ($L_1 = 0$, i.e. o Lagrangeano não contém termos lineares nas velocidades generalizadas), e identificando $L_0 = -V(r)$, resta-nos determinar \mathbf{T}^{-1} . Aqui temos

$$\mathbf{T} = \begin{bmatrix} m & 0 \\ 0 & mr^2 \end{bmatrix} \Longrightarrow \mathbf{T}^{-1} = \begin{bmatrix} \frac{1}{m} & 0 \\ 0 & \frac{1}{mr^2} \end{bmatrix}.$$

Daqui vem, então

$$H = \frac{1}{2} [p_r \quad p_{\theta}] \begin{bmatrix} \frac{1}{m} & 0 \\ 0 & \frac{1}{mr^2} \end{bmatrix} \begin{bmatrix} p_r \\ p_{\theta} \end{bmatrix} + V(r) = \frac{p_r^2}{2m} + \frac{p_{\theta}^2}{2mr^2} + V(r).$$

b) Identifique a(s) coordenada(s) cíclica e obtenha o problema reduzido.

Uma vez que $H \neq H(\theta)$, θ é uma coordenada cíclica. Assim, $\dot{p}_{\theta} = \frac{\partial H}{\partial \theta} = 0$, de onde se conclui que $p_{\theta} = \text{constante}$. Da equação para r retiramos

$$\dot{p}_r = -\frac{\partial H}{\partial r} = \frac{p_\theta^2}{mr^3} - \frac{\partial V}{\partial r} = -\frac{\partial}{\partial r} \left(\frac{p_\theta^2}{2mr^2} + V(r) \right).$$

c) Construa o espaço de fases (p_r, r) para o potencial V(r) = -k/r. Descreva qualitativamente todos os tipos de órbitas que encontra.

Uma vez que $H \neq H(t)$, H = T + V = E é conservado. Assim,

$$p_r = \pm p_0 \sqrt{\epsilon - \left(\frac{1}{2x^2} - \frac{1}{x}\right)},$$

onde $x = r/r_0, r_0 = p_{\theta}^2/(km), p_0 = \sqrt{2}mk/p_{\theta}$ e $\epsilon = Ep_{\theta}^2/(k^2m)$.

Para $\epsilon < 0$, obtermos órbitas limitadas. De acordo com o Teorema de Bertrand, sabemos que essas órbitas são fechadas (elipses). Para $\epsilon = 0$ (separatriz), a órbita é aberta, correspondendo a uma órbita parabólica. Finalmente, para $\epsilon > 0$, as órbitas são abertas (hipérboles).

d) Repita o procedimento anterior para o potencial

$$V(r) = -\frac{k_1}{r} - k_2 r^2$$

e mostre que a separatriz é finita, fechando-se num raio r_c .

Para este caso, o espaço de fases pode ser obtido como

$$p_r = \pm p_0 \sqrt{\epsilon - \left(\frac{1}{2x^2} - \frac{1}{x} - ax^2\right)},$$

onde $a = k_2/r_0^2$.

A discussão qualitativa repete-se, com a única diferença de que, neste caso, a separatriz corresponde a uma órbita limitada^a. O ponto x_c onde a órbita se fecha é uma dos pontos extremos do potencial efectivo,

$$\frac{d}{dx}\left(\frac{1}{2x^2} - \frac{1}{x} - ax^2\right)\bigg|_{x_a} = 0.$$

Infelizmente, para este caso, não existe solução analítica simples para x_c .

^aNOTA: órbitas fechadas no espaço de fases não são necessariamente fechadas no espaço das configurações. Representam apenas órbitas limitadas!