

Physical Storage Systems 2

Instructor: Beom Heyn Kim

beomheynkim@hanyang.ac.kr

Department of Computer Science

Overview

- Flash Memory
- RAID
- Dist-Block Access

Flash Memory

- Two types of flash memory:
 - NOR flash vs NAND flash
- NAND flash
 - used predominantly for data storage
 - cheaper than NOR flash
 - read/write at a page granularity (page: 512 bytes to 4 KB)
 - 20 to 100 μs for a page read, while 100 μs for a page write (random access on disks takes 5 to 10 ms)
 - Not much difference between sequential and random read
 - Page can only be written once
 - Must be erased first to allow rewrite

Solid state disks

- Built using NAND flash
- Provide the same block-oriented disk interfaces
- Transfer rate of up to 500 MB/s using SATA, and up to 3 GB/s using NVMe PCIe (200 MB/s with magnetic disks)

NAND Flash Operation's Granularity

Flash Memory (Cont.)

- Erase happens in units of erase block
 - A group of pages to erase
 - Erase block typically 256 KB to 1 MB (128 to 256 pages)
 - Takes 2 to 5 ms
 - There is a limit (around 100,000 and 1,000,000 times) to how many times a flash page can be erased
 - After 100,000 to 1,000,000 erases, erase block becomes unreliable and cannot be used
 - wear leveling

Remapping Logical Pages

Remapping of logical page addresses to physical page addresses avoids waiting for erase

Flash Translation Table

For quick access, in-memory Flash Translation Table tracks mapping

Flash Translation Layer

Remapping is carried out by Flash Translation Layer (FTL)

SSD Performance

- Random reads/writes per second
 - Typical 4KB reads: 10,000 reads per second (10,000 IOPS)
 - Typical 4KB writes: 40,000 IOPS
 - SSDs support parallel reads
 - Typical 4KB reads:
 - 100,000 IOPS with 32 requests in parallel (QD-32) on SATA
 - 350,000 IOPS with QD-32 on NVMe PCIe
 - Typical 4KB writes:
 - 100,000 IOPS with QD-32, even higher on some models
- Data transfer rate for sequential reads/writes
 - 400 MB/sec for SATA3, 2 to 3 GB/sec using NVMe PCIe
- Hybrid disks: combine small amount of flash cache with larger magnetic disk

Overview

- Flash Memory
- RAID
- Dist-Block Access

Redundant Array of Independent Drives

The term "RAID" was invented by David Patterson, Garth A. Gibson, and Randy Katz at the University of California, Berkeley in 1987.

- RAID: Redundant Arrays of Independent Disks
 - high reliability by storing data redundantly, so that data can be recovered even if a disk fails
 - high capacity and high speed by using multiple disks in parallel
- The chance that some disk out of a set of *N* disks will fail is much higher than the chance that a specific single disk will fail.
 - E.g., a system with 100 disks, each with MTTF of 100,000 hours
 (approx. 11 years), will have a system MTTF of 1000 hours (approx. 41 days)
 - Techniques for using redundancy to avoid data loss are critical with large numbers of disks

Improvement of Reliability via Redundancy

- Redundancy store extra information that can be used to rebuild information lost in a disk failure
- E.g., Mirroring (or shadowing)
 - Logical disk consists of two physical disks.
 - Duplicate every disk.
 - Every write is carried out on both disks
 - Reads can take place from either disk
 - If one disk in a pair fails, data still available in the other
 - Data loss would occur only if both disks fail (e.g., fire or building collapse or electrical power surges)
 - The probability is very low
- Mean time to data loss depends on mean time to failure, and mean time to repair
 - E.g., MTTF of 100,000 hours, mean time to repair of 10 hours gives mean time to data loss of 500*10⁶ hours (or 57,000 years) for a mirrored pair of disks (ignoring dependent failure modes)

Improvement in Performance via Parallelism

- Two main goals of parallelism in a disk system:
 - 1. Load balance multiple small accesses to increase throughput
 - 2. Parallelize large accesses to reduce response time.
- Improve transfer rate by striping data across multiple disks.
- **Bit-level striping** split the bits of each byte across multiple disks
 - In an array of eight disks, write bit i of each byte to disk i.
 - Each access can read data at eight times the rate of a single disk.
 - But seek/access time worse than for a single disk
 - Bit level striping is not used much anymore
- Block-level striping with n disks, block i of a file goes to disk (i mod n) +
 - Requests for different blocks can run in parallel if the blocks reside on different disks
 - A request for a long sequence of blocks can utilize all disks in parallel

RAID Levels

- Schemes to provide redundancy at lower cost by using disk striping combined with parity bits
 - Different RAID organizations, or RAID levels, have differing cost, performance and reliability characteristics
- RAID Level 0: Block striping; non-redundant.
 - Used in high-performance applications where data loss is not critical.
- RAID Level 1: Mirrored disks with block striping
 - Offers best write performance.
 - Popular for applications such as storing log files in a database system.

(a) RAID 0: nonredundant striping

C: A second copy of the data

(b) RAID 1: mirrored disks (a.k.a. RAID 1+0 or RAID 10)

RAID Levels (Cont.)

- Parity blocks: Parity block j stores XOR of bits from block j of each disk
 - When writing data to a block j, parity block j must also be computed and written to disk
 - Can be done by using old parity block, old value of current block and new value of current block (2 block reads + 2 block writes)
 - Or by recomputing the parity value using the new values of blocks corresponding to the parity block
 - More efficient for writing large amounts of data sequentially
 - To recover data for a block, compute XOR of bits from all other blocks in the set including the parity block

Consider following block striping:

Disk 1 = 1111

Disk 2 = 1110

Disk 3 = 1100

Disk 4 = 1000

- 1. What is the parity block?
- 2. If Disk 1 gets updated to 1100, can you recompute parity block? (Try both methods)
- 3. Let's say you lost Disk 2, restore it by using the parity block

RAID Levels (Cont.)

- RAID Level 5: Block-Interleaved Distributed Parity; partitions data and parity among all N + 1 disks, rather than storing data in N disks and parity in 1 disk.
 - E.g., with 5 disks, parity block for nth set of blocks is stored on disk (n mod 5) + 1, with the data blocks stored on the other 4 disks.
 - Block writes occur in parallel if the blocks and their parity blocks are on different disks.

(c) RAID 5: block-interleaved distributed parity

P0	0	1	2	3
4	P1	5	6	7
8	9	P2	10	11
12	13	14	P3	15
16	17	18	19	P4

RAID Levels (Cont.)

RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but stores two
error correction blocks (P, Q) instead of single parity block to guard against
multiple disk failures. This scheme uses error-correcting codes such as the
Reed-Solomon codes. (see

https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction)

- Better reliability than Level 5 at a higher cost (slower write performance)
 - Becoming more important as storage sizes increase

(d) RAID 6: P + Q redundancy

- There are other RAID levels but not used in practice:
 - RAID 2, RAID 3, RAID 4

Choice of RAID Level

- Factors in choosing RAID level
 - Monetary cost
 - Performance: Number of I/O operations per second, and bandwidth during normal operation
 - Performance during failure
 - Performance during rebuild of failed disk
 - Including time taken to rebuild failed disk
- RAID 0 is used only when data safety is not important
 - E.g., data can be recovered quickly from other sources

Choice of RAID Level (Cont.)

- Level 1 provides much better write performance than level 5
 - Level 5 requires at least 2 block reads and 2 block writes to write a single block, whereas Level 1 only requires 2 block writes
- Level 1 had higher storage cost than level 5
- Level 5 is preferred for applications where writes are sequential and large (many blocks), and need large amounts of data storage
- RAID 1 is preferred for applications with many random/small updates
- Level 6 gives better data protection than RAID 5 since it can tolerate two disk (or disk block) failures
 - Increasing in importance since latent block failures on one disk,
 coupled with a failure of another disk can result in data loss with RAID
 1 and RAID 5.

Hardware Issues

- Software RAID: RAID implementations done entirely in software, with no special hardware support
- Hardware RAID: RAID implementations with special hardware
 - Use non-volatile RAM to record writes that are being executed
 - Beware: power failure during write can result in corrupted disk
 - E.g., failure after writing one block but before writing the second in a mirrored system
 - Such corrupted data must be detected when power is restored
 - Recovery from corruption is similar to recovery from failed disk
 - NV-RAM helps to efficiently detect potentially corrupted blocks
 - Otherwise all blocks of disk must be read and compared with mirror/parity block

Hardware Issues (Cont.)

- Latent failures: data successfully written earlier gets damaged
 - o can result in data loss even if only one disk fails
- Data scrubbing:
 - continually scan for latent failures, and recover from copy/parity
- Hot swapping: replacement of disk while system is running, without power down
 - Supported by some hardware RAID systems,
 - reduces time to recovery, and improves availability greatly
- Many systems maintain spare disks which are kept online, and used as replacements for failed disks immediately on detection of failure
 - Reduces time to recovery greatly
- Many hardware RAID systems ensure that a single point of failure will not stop the functioning of the system by using
 - Redundant power supplies with battery backup
 - Multiple controllers and multiple interconnections to guard against controller/interconnection failures

Overview

- Flash Memory
- RAID
- Dist-Block Access

Optimization of Disk-Block Access

- Buffering: in-memory buffer to cache disk blocks
- Read-ahead: Read extra blocks from a track in anticipation that they will be requested soon
- Disk-arm-scheduling algorithms re-order block requests so that disk arm movement is minimized
- elevator algorithm

Inner track Outer track

Assignments

- Reading: Ch12.4-12.6
- Practice Excercises: 12.3, 12.4, 12.6, 12.7

Solutions to the Practice Excercises:

https://www.db-book.com/Practice-Exercises/index-solu.html

The End