

## What is database searching?

 Goal: find similar (homologous) sequences of a query sequence in a sequence of database

- Input: query sequence & database
- Output: hits (pairwise alignments)



## Basics of database searching

- Core: pairwise alignment algorithm
- Speed (fast sequence comparison)
- Relevance of the search results (statistical tests)
- Recovering all information of interest
  - The results depend of the search parameters like gap penalty, scoring matrix.
- Specificity (TN/N) and sensitivity (TP/P)

## What program to use for searching?

#### BLAST

- fastest and easily accessed on the Web
- A suite; BLASTP, BLASTN, BLASTX

#### FASTA

- more sensitive for DNA-DNA comparisons
- FASTX and TFASTX can find similarities in sequences with frameshifts
- Smith-Waterman is slower, but more sensitive
  - known as a "rigorous" or "exhaustive" search

### **FASTA**

- Derived from logic of the dot plot
  - compute best diagonals from all frames of alignment
- Word method looks for exact matches between words in query and test sequence
  - hash tables
  - DNA words are usually 6 bases
  - protein words are 1 or 2 amino acids
  - only searches for diagonals in region of word matches = faster searching



Find runs of identitical words



### **FASTA**

- after all diagonals found, tries to join diagonals by adding gaps
- computes alignments in regions of best diagonals
- Dynamic Programming



### **BLAST**

- BLAST= Basic Local Alignment Search Tool
- The central idea of the BLAST algorithm is that a statistically significant alignment is likely to contain a high-scoring pair of aligned words
- Uses word matching like FASTA
  - Does not require identical words
  - 3 amino acids or 11 bases
- If no words are similar, then no alignment
  - won't find matches for very short sequences
- Priginal BLAST does not handle gaps well; the "gapped" blast is better

### The BLAST SEARCH ALGORITHM



## **BLAST: Word Matching**

#### **MEAAVKEEISVEDEAVDKNI**

MEA
EAA
AAV
AVK
VKE
KEE
EEI

Break query into words:



EIS ISV

Break database sequences into words:

\<u>\_\_\_</u>\_\_\_

Compare word lists by Hashing (allow near matches)

### **BLAST: Extend Hits**

 For each word, extend the alignment in both directions to find alignments that score greater than a threshold of value S



Use two word matches as anchors to build an alignment between the query and a database sequence

## Gapped BLAST algorithm

- The NCBI's BLAST website now uses "gapped BLAST"
- This algorithm is more complex than the original BLAST
- It requires two word matches close to each other on a pair of sequences (i.e. with a gap) before it creates an alignment allow gaps (using Smith-Waterman algorithm)
- Ref: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. NAR 25(17):3389,1997

### Statistical tests

- Evaluate the probability of an event taking place by chance
- P-value
  - Randomized data
  - Distribution under the same setup
- Example
  - Height of a person, BLAST Score
- E-value
  - represents the likelihood that the observed alignment is due to chance alone.
  - the number of alignments expected by chance (E) during a sequence database search
  - E = 1 indicates that an alignment this good would happen by chance
  - with any random sequence searched against the same database

# **BLAST Options**

| Program | Query   | Database | Comparison    | Common use                                                          |
|---------|---------|----------|---------------|---------------------------------------------------------------------|
| blastn  | DNA     | DNA      | DNA level     | Seek identical DNA sequences and splicing patterns                  |
| blastp  | Protein | Protein  | Protein level | Find homologous proteins                                            |
| blastx  | DNA     | Protein  | Protein level | Analyze new DNA<br>to find genes and<br>seek homologous<br>proteins |
| tblastn | Protein | DNA      | Protein level | Search for genes in unannotated DNA                                 |
| tblastx | DNA     | DNA      | Protein level | Discover gene structure                                             |

## **BLAST** is approximate

- BLAST makes similarity searches very quickly because it takes shortcuts.
  - looks for short, nearly identical "words" (11 bases)
- It also makes errors
  - misses some important similarities
  - makes many incorrect matches
    - easily fooled by repeats or skewed composition

## Interpretation of BLAST hits

very low E values (e-100) are homologs

moderate E values are related genes

 long list of gradually declining of E values indicates a large gene family

long regions of moderate similarity are more significant than short regions of high identity

## Biological relevance

• Depends on several things....

 Were you looking for a short region of nearly identical sequence or a larger region of general similarity?

 Are the matching regions important structural components of the genes or just introns and flanking regions?

Are the mismatches conservative ones?

### References

- Lecture notes of Colin Dewey @ University of Wisconsin-Madison
- Lecture notes of Arne Elofsson @ Stockholm University
- Lecture notes of Yuzhen Ye @ Indiana University

