Tema 4

Exercițiul 1 (Metoda Box-Muller)

Fie U_1 , U_2 două variabile aleatoare independente repartizate uniform $\mathcal{U}([0,1])$. Arătați că variabilele

$$X_1 = \cos(2\pi U_1)\sqrt{-2\log(U_2)}, \quad X_2 = \sin(2\pi U_1)\sqrt{-2\log(U_2)}$$

sunt variabile aleatoare independente repartizate normal $\mathcal{N}(0,1)$.

Exercițiul 2

Fie $(X_n)_{n\geq 1}$ un șir de variabile aleatoare pozitive și independente cu $\mathbb{E}[X_n] = c \in (0,1)$ pentru orice n. Dacă $Y_n = X_1 X_2 \cdots X_n$ atunci ară tați că $Y_n \stackrel{P}{\to} 0$.

Exercițiul 3

Fie X_1, X_2, \ldots, X_n variabile aleatoare i.i.d. repartizate $\mathcal{U}([0, 1])$.

- a) Determinaţi funcţia de repartiţie şi densitatea variabilelor m_n şi M_n , unde $m_n = \min(X_1, X_2, \dots, X_n)$ iar $M_n = \max(X_1, X_2, \dots, X_n)$.
- b) Fie $Z_n = n(1 M_n)$. Arătați că $Z_n \stackrel{d}{\to} Z$, unde Z este o variabilă aleatoare a cărei funcție de repartiție este $F_Z(z) = 1 e^{-z}$.

Exercițiul 4

Fie $X_1, X_2, \dots, X_n \sim \mathcal{N}(\theta, 1)$ variabile aleatoare i.i.d.. Pentru $\alpha \in (0, 1)$ fixat definim intervalul aleator

$$I_{\alpha}(X_1, X_2, \dots, X_n) = \left(\bar{X} - z_{1-\frac{\alpha}{2}} n^{-\frac{1}{2}}, \bar{X} + z_{1-\frac{\alpha}{2}} n^{-\frac{1}{2}}\right),$$

unde z_p este cuantila de ordin p a repartiției normale reduse, i.e. $\Phi(z_p)=p$ iar \bar{X} este media eșantionului. Arătați că

$$\mathbb{P}(I_{\alpha}(X_1, X_2, \dots, X_n) \text{ conține } \theta) = 1 - \alpha.$$

Exercițiul 5

Fie $U_{i1}, U_{i2}, V_i, i \in \{1, 2, ..., n\}$, variabile aleatoare independente repartizate unifom $\mathcal{U}([0, 1])$. Definim variabile aleatoare

$$X_i = \left\{ \begin{array}{ll} 1, & U_{i1}^2 + U_{i2}^2 < 1 \\ 0, & \text{altfel} \end{array} \right. \quad \text{\emptyset} \quad Y_i = \sqrt{1 - V_i^2}, \ i \in \{1, 2, \dots, n\}$$

Arătați că $\hat{\pi}_1 = \frac{4}{n} \sum_{i=1}^n X_i$ și $\hat{\pi}_2 = \frac{4}{n} \sum_{i=1}^n Y_i$ estimează valoarea lui π și aflați care este mai eficient¹.

Grupele: 301, 311, 321 Pagina 1

 $^{^{1}}$ Spunem că un estimator nedeplasat este mai eficient decat un altul dacă varianța lui este mai mică