



CS 0007 Introduction to Computer Programming

Luís Oliveira

Summer 2020

# **COMPUTERS**

Where do they come from?

#### THEY ARE OLD!



### The Antikythera Mechanism

- Thousands of years old
  - Late second/early first century BC
  - That's like -100 ish
- Used for astronomy
  - Eclipses
  - Astronomical positions

### THEY ARE NOT (ALL) WAR MACHINES



### Jacquard machine

- Mechanical loom (1804)
  - Programmed using perforated cards
  - Used to produce complex patterns



CS 0007 - Summer 2020

#### THE PRE-HISTORY OF COMPUTERS



# The Differential Engine

- Designed by Charles Babbage
  - **1792-1871**
- Ermmm... Designed... right!
  - It was intended as a programmable calculator
  - A multipurpose calculator!

### The pre-history of computers

- The Differential Engine
  - Devised by J.H. Müller in the Hessian army (1784)
  - Designed by Charles Babbage (1819-ish)
  - Built at Science Museum library in London (1980s)
  - Outputs to a table that can be used for printing
    - Copying was a source of error
    - It still is nowadays
    - So never copy results manually if you can avoid it

### The Analytical Engine



- Designed by Charles Babbage
  - YES! Designed... again!
- Mechanical general-purpose computer
  - Which had many modern characteristics

No actual picture because... it was never built

CS 0007 – Summer 2020

### The pre-history of computers

- The Analytical Engine
  - It already included the essential ideas of modern computers
    - Inputs and outputs
    - Execution of operations
    - Automatic control of operation
  - However, due to its complexity (lack of funding) it was never built
    - And the fact that new features were constantly being added!
    - And old features were never completed
      - Does this sound familiar? It will, it will! ©

### "The Enchantress of Numbers" - the first programmer

- Augusta Ada King, Countess of Lovelace
  - Wrote algorithms for this computer →
    - Yeah, that one!
    - But they probably would have worked
  - Translating a paper, she added notes
  - A LOT of notes
    - More than the actual paper
  - Including instructions on how to calculate a number series
    - Note G
  - Studied the relation between maths and music





CS 0007 – Summer 2020

#### PART OF NOTE G

The Analytical Engine has no pretensions (...) to *originate* anything. It can do whatever we know how to order it to perform.

It can follow analysis; but it has no power of anticipating any analytical relations or truths.

CS 0007 – Summer 2020  $10^{\circ}$ 

#### THE PRE-HISTORY OF COMPUTERS

(replica)





# Hollerith Electric Tabulating System

- Census happen every 10 years
  - Hey, they just did!
- It took people 8 years to count responses (in 1880)
  - It would soon take more than 10!
  - 7,000 cards a day using this system
- Company would become IBM
  - After a merge with others

### **BUBBLES**



- Check what Bubbles has to say about it @
  - https://www.youtube.com/watch?v=L7jAOcc9kBU

### Driven by the need for complex calculations

https://computerhistory.org/blog/first-steps-lectures-from-the-dawn-of-computing/

- George Stibitz (Bell Labs)
  - Day-job: Electrical engineer
  - Model K binary addition with relays (Boolean algebra)
  - Complex Number Computer used remotely via telegraph lines!!
  - Art with Amiga (1990s) http://stibitz.denison.edu/art.html
- Konrad Zuse (Germany)
  - Day-job: Aircraft designer (civil engineer)
  - World's first programmable computer
  - Several computers used for military calculations
- John Atanasoff (Iowa State)
  - Day-job: Physics professor
  - Built the ABC (Atanasoff-Berry Computer)
    - solved 30 equations in 30 unknowns

### **ENIAC** (Electronic Numerical Integrator and Computer)



U. S. Army Photo

- 1946 ENIAC
  - University of Pennsylvania
  - Developed during WWII to calculate balistic missile trajectories
  - Designed by :
    - John Mauchly
    - J. Presper Eckert
  - Joined by a huge team!
  - Modular and reconfigurable
    - Flipping switches and connecting cables

### **ENIAC** (Electronic Numerical Integrator and Computer)

### Some numbers:

- 18000 valves (tubes)
- 1500 relays
- 30 tons
- 175 kW
- 5000 additions / s
- 357 multiplications / s
- 40 divisions / s
- Programs "hardwired"



U. S. Army Photo

### **EDVAC (Electronic Discrete Variable Automatic Computer)**



U. S. Army Photo

- 1947 EDVAC
  - University of Pennsylvania
  - The ENIAC team joined by John Von Neumann
  - A computer with a new concept:
    - "Memory Stored Program" same as data





### **EDSAC** (Electronic Delay Storage Automatic Calculator)



https://en.wikipedia.org/wiki/EDSAC

• 1949 – EDSAC

- Cambridge University
- Designed by Maurice Wilkes
- Based on the first EDVAC draft
  - Not to be better, but to be used!
    - accessible and practical vs. push technology
  - Was completed before the EDVAC!
- Used for scientific research
  - Chemistry, Medicine, Physics

### **UNIVAC** (Universal Automatic Computer)



- 1951 UNIVAC
  - First commercial computer!
    - Sold 46! Units
    - Used to predict the 1952 presidential election
  - Used MERCURY!! memory (as did the EDSAC)

Delay

Storage



https://en.wikipedia.org/wiki/Delay\_line\_memory

#### THEN CAME THE TRANSISTOR



https://en.wikipedia.org/wiki/Transistor

- The symbol for a transistor
  - Photo taken in the university where I did my masters
- They were tiny
  - Didn't get HOT!
  - Didn't break as often



#### THEN CAME THE INTEGRATED CIRCUIT

# 2300 of these in there





- Things became tiny
  - More transistors could be fitted
  - Cheaper circuits
  - More affordable

### **Extremely brief story of Intel CPUs**

- 1971 Intel 4004
  - 4-bit microprocessor
  - with 2300! Transistors

- 2004 Pentium 4
  - x86 32-bit
  - 125 Million transistors

- 2017 Kaby Lake
  - x86\_64 64-bit
  - >1000 Million! (undisclosed?)



#### The First Nehalem Processor



### Moore's Law

#### Moore's Law – The number of transistors on integrated circuit chips (1971-201)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two yea This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products - linked to Moore's law.





Illustration:

https://www.wired.com/2013/05/ neurologist-markam-human-brain/

# THE HARDWARE

All different but all (mostly) the same

### What hardware?

Central Processing Unit (CPU)











Secondary memory (Hard Drive, Solid State Drive, CD/DVD/BluRay)



Motherboard



Monitor

Graphics Card (Accelerators)

### All connected



#### SOME ARE SMALL AND CHEAP





- They run a single program
  - E.g your refrigerator
- Are used by hobbyists
  - For small projects

#### SOME ARE SMALL, CHEAP, AND POWERFUL



### The Raspberry Pi

- Affordable, yet powerful
- **-** ~\$35
- Can be used for A LOT of projects
  - Home automation
  - Affordable PC
  - Great to learn how to program on a budget

#### SOME ARE SMALL, EXPENSIVE, AND POWERFUL



- My Moto G3 ⊗
  - I sacrificed it for you!
    - (battery was bloated, it had to go)
  - Had to rip some parts :D
  - Mobility is important (~1 day)
  - Portability is important
  - But it runs beefy apps!

### We hold them in our laps (does anyone do that often?)



- Power and mobility
  - Battery life is important
    - We want to fly with them 🕾
  - Weight is important
  - Run demanding programs!

#### WE HAVE THEM AT HOME



My computer

### Desktop computers

- Wide range of prices (\$300 to +\$5k)
- Energy consumption not important
  - Beyond cost and heat generation
- Performance
  - Games
  - Browsers!!
  - Word?

That's a Raspberry Pi

#### WE HAVE THEM IN WAREHOUSES



- Server on a "drawer" (rack)
  - Don't have monitors
    - People don't "use them" directly
    - Non-interactive
  - Crunch numbers and return results
    - Webpages
    - Remote storage (e.g., box)

## They come in all shapes and sizes



#### THEY LOOK DIFFERENT, BUT FOLLOW THE SAME PRINCIPLES

**Stored-Program Computer** 



- The Von Neumann architecture
  - Was developed for the EDVAC
- CPU
  - Control → Reads code & manages execution
  - ALU -> Performs calculations on data
- Memory
  - Contains information
    - The programs
    - The data
- Inputs and outputs
  - Connect the computer and the world
    - Keyboards, Disk drives, monitors, etc.

### The Hardware is hard (ah!) to change

- Once the circuits are made, there is not much you can change
  - It is still configurable and limited modifications are possible
  - Flipping switches and connecting cables (ENIAC) ©
- But what if we want to use the computer for something new?
  - We need something flexible!
  - Something soft (ah!) and mouldable
- We need Software
  - Something the ENIAC programmers (the original computers) learned
    - Not "refrigerator ladies" → → → → → → → → → → →
  - Leading to the development of programming languages
    - Famously: Grace Hopper and Betty Holberton (COBOL and Fortran)
    - Top Secret Rosies: The Female "Computers" of WWII



CS 0007 – Summer 2020

# THE SOFTWARE

Why do we want to program?



CS 0007 - Summer 2020

### MACHINE WITH A SINGLE FUNCTION



### We want computers to do different things

- Computers are useful in many situations
  - Because they are programable!
- Computers can run different programs
  - Program: A set of instructions that tell the computer what to do
  - Computers are not very smart actually, they do what programs tell them
- Examples of software:
  - Windows, OSX, Linux Operating Systems (OS) that manage your computer
  - Word, Firefox, Animal Crossing Applications ran by the user

#### PROGRAMMABLE MACHINE























## How a program runs



### How a program runs



### Fetch

- Read from memory the next instruction (code)
- I.e., what is next thing to do

### Decode

- What does the instruction want me to do?
- E.g., I want to add two numbers (A and B)

### Execute

- Do the operation
- E.g. add
- Repeat

### But how do we do it?

To program a computer we must learn to speak (one of) its language(s)



But importantly, we need to learn how to program.

### What's the difference?

- Know words you do, right?
  - But can you write a 1000 pages novel?
    - We'll aim a bit lower, maybe a couple of 100 pages?

CS 0007 – Summer 2020 4.2

#### GOOD NEWS!!!

- The Java language uses patterns very similar to other languages
  - That's because those patterns serve programmers well.

- Other languages are not the same!
  - But they will be similar enough
- Once you learn those patterns, picking up a different language is easier
  - Why would you?
  - Would you use an atomic bomb to kill a fly?