## BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES AUX POLYGONES

CHRISTOPHE BAL

 $Document,\ avec\ son\ source\ L^{A}T_{E}\!X,\ disponible\ sur\ la\ page\\ https://github.com/bc-writings/bc-public-docs/tree/main/drafts.$ 

## Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".



Table des matières

Date: 18 Jan. 2025 - 19 Fev. 2025.

Fait 1. Soit  $n \in \mathbb{N}_{\geq 3}$  un naturel fixé.

le plan d'un repère orthonormé direct  $(O; \vec{i}, \vec{j})$ 

 $\alpha: \mathcal{U} \to \mathbb{R}_+$  qui à un uplet de  $\mathcal{U}$  associe l'aire généralisée du n-cycle qu'il représente. Cette fonction est continue d'après le fait 1.

## Démonstration. GGGGG

pour les raisons suivantes où  $\mathcal{L} = A_1 A_2 \cdots A_n$  désigne un *n*-cycle.

- AireGene( $\mathcal{L}$ ) =  $\sum_{i}$  Aire( $\mathcal{P}_{i}$ ) où  $\bigcup_{i} \mathcal{P}_{i}$  est frontière de la surface impaire de  $\mathcal{L}$ .
- Si  $\bigcup_{i} \mathcal{P}_i = \emptyset$ , alors AireGene( $\mathcal{L}$ ) = 0.
- Si  $\bigcup_{i} \mathcal{P}_{i} \neq \emptyset$ , en posant  $\mathcal{P}_{i} = A_{i,1}A_{i,2}\cdots A_{i,n_{i}}$ , le fait ?? nous permet d'écrire, en calculant les aires algébriques via l'origine O du repère, AireGene $(\mathcal{L}) = \frac{1}{2} \sum_{i} \left| \sum_{k=1}^{n_{i}} \left( x(A'_{i,k}) y(A'_{i,k+1}) y(A'_{i,k}) x(A'_{i,k+1}) \right) \right|$ .
- XXXXX
- XXXXX
- XXXXX
- XXXXX

Fait 2. Soit  $n \in \mathbb{N}_{\geq 3}$  un naturel fixé. Parmi tous les n-cycles de longueur fixée, non nulle, il en existe au moins un d'aire généralisée maximale, un tel n-cycle devant être a minima un n-gone convexe.

 $D\acute{e}monstration$ . Notons  $\ell$  la longueur fixée.

- Munissant le plan d'un repère orthonormé direct  $(O; \vec{\imath}, \vec{\jmath})$ , on note  $\mathcal{Z}$  l'ensemble des n-cycles  $\mathcal{L} = A_1 A_2 \cdots A_n$  tels que  $\operatorname{Long}(\mathcal{L}) = \ell$  et  $A_1 (0; 0)$ ,  $^1$  puis  $\mathcal{U} \subset \mathbb{R}^{2n}$  l'ensemble des uplets de coordonnées  $(x(A_1); y(A_1); \dots; x(A_n); y(A_n))$  pour  $A_1 A_2 \cdots A_n \in \mathcal{Z}$ .
- $\mathcal{U}$  est clairement fermé dans  $\mathbb{R}^{2n}$ .  $^2$  De plus, il est borné, car les coordonnées des sommets des n-cycles  $\mathcal{L}$  considérés le sont, d'après la contrainte  $\mathrm{Long}(\mathcal{L}) = \ell$ . En résumé,  $\mathcal{U}$  est un compact de  $\mathbb{R}^{2n}$ .
- Nous définissons la fonction  $\alpha: \mathcal{U} \to \mathbb{R}_+$  qui à un uplet de  $\mathcal{U}$  associe l'aire généralisée du n-cycle qu'il représente. Cette fonction est continue d'après le fait 1.
- Finalement, par continuité et compacité,  $\alpha$  admet un maximum sur  $\mathcal{U}$ . Or, un tel maximum ne peut être atteint qu'en un n-gone convexe, au moins, selon le fait ??.  $\square$

Fait 3. Soit  $n \in \mathbb{N}_{\geq 3}$  un naturel fixé. Parmi tous les n-gones de périmètre fixé, il en existe au moins un d'aire maximale, un tel n-gone devant être a minima convexe.

Démonstration. Il suffit de convier les faits ??, ?? et 2 au même banquet des idées.

<sup>1.</sup> Le mot « Zeile » est une traduction possible de « ligne » en allemand.

<sup>2.</sup> Il est faux d'affirmer que l'ensemble des n-gones est fermé : penser par exemple à un n-gone dont tous les sommets seraient fixés sauf un que l'on ferait d'entre vers l'un de ses voisins : ceci fait passer d'un n-gone à k-gone avec  $k \le n-1$ . On peut aussi penser à des n-gones que l'on ferait tendre, en les « aplatissant », vers un n-cycle totalement « plat ».