

二元关系的性质

- ■自反性
- 反自反性
- ■对称性
- ■反对称性
- ■传递性

自反性与反自反性

定义 设R为A上的关系,

- (1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$, 则称R在A上是自反的.
- (2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$, 则称R在A上是反自反的.

实例:

自反关系: A上的全域关系 E_4 , 恒等关系 I_4

小于等于关系 L_A , 整除关系 D_A

反自反关系: 实数集上的小于关系

幂集上的真包含关系

实例

例1
$$A=\{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中 $R_1=\{<1,1>,<2,2>\}$ $R_2=\{<1,1>,<2,2>,<3,3>,<1,2>\}$ $R_3=\{<1,3>\}$

 R_2 自反,

 R_3 反自反,

 R_1 既不是自反也不是反自反的

对称性与反对称性

定义 设R为A上的关系,

- (1) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R$),则称R为A上对称的关系.
- (2) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y)$, 则称R为A上的反对称关系.

实例:

对称关系: A上的全域关系 E_A ,恒等关系 I_A 和空关系 \emptyset

反对称关系: 恒等关系 I_A ,空关系是A上的反对称关系.

实例

例2 设 $A = \{1,2,3\}, R_1, R_2, R_3 和 R_4 都 是 A 上 的 关 系,$

其中

$$R_1 = \{<1,1>,<2,2>\}, R_2 = \{<1,1>,<1,2>,<2,1>\}$$

$$R_3 = \{<1,2>,<1,3>\}, R_4 = \{<1,2>,<2,1>,<1,3>\}$$

 R_1 对称、反对称.

 R_2 对称,不反对称.

 R_3 反对称,不对称.

 R_4 不对称、也不反对称.

传递性

定义 设R为A上的关系,若 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)$, 则称R是A上的传递关系.

实例:

A上的全域关系 E_A ,恒等关系 I_A 和空关系Ø 小于等于关系,小于关系,整除关系,包含关系, 真包含关系

实例

例3 设
$$A = \{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中 $R_1 = \{<1,1>,<2,2>\}$ $R_2 = \{<1,2>,<2,3>\}$ $R_3 = \{<1,3>\}$

 R_1 和 R_3 是A上的传递关系 R_2 不是A上的传递关系

关系性质的充要条件

设R为A上的关系,则

- (1) R在A上自反当且仅当 $I_A \subseteq R$
- (2) R在A上反自反当且仅当 $R \cap I_A = \emptyset$
- (3) R在A上对称当且仅当 $R=R^{-1}$
- (4) R在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
- **(5)** *R*在*A*上传递当且仅当 *R*°*R*⊆*R*

关系性质判别

	自反	反自反	对称	反对称	传递
表达式	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R^{\circ}R\subseteq R$
关系 矩阵	主对 角线 元素 全是1	主对角 线元素 全是0	矩阵是对称 矩阵	若r _{ij} =1, 且 i≠j, 则r _{ji} = 0	对M ² 中1 所在位置, M中相应 位置都是1
关系图	每 顶 都 环	每个顶 点都没 有环	如果两个顶 点之间有边, 是一对方向 相反的边 (无单边)	如果两点 之间有边, 是一条有 向边(无双 向边)	如果顶点 x_i 连通到 x_k ,则从 x_i 到 x_k 有边

实例

例8 判断下图中关系的性质,并说明理由.

- (a)不自反也不反自反;对称,不反对称;不传递。
- (b)反自反,不是自反的;反对称,不是对称的; 是传递的.
- (c)自反,不反自反;反对称,不是对称;不传递.

自反性证明

证明模式 证明R在A上自反 任取x,

 $x \in A \Rightarrow \dots \Rightarrow \langle x, x \rangle \in R$ 前提 推理过程 结论

例4 证明若 $I_A \subseteq R$,则 R在A上自反. 证 任取x,

 $x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$ 因此 R 在 A 上是自反的.

《二元关系的性质》

对称性证明

证明模式 证明R在A上对称 任取< x, y> $< x,y> \in R \Rightarrow \Rightarrow < y,x> \in R$ 前提 推理过程 结论

例5 证明若 $R=R^{-1}$,则R在A上对称. 证 任取< x,y> $< x,y> \in R \Rightarrow < y,x> \in R^{-1} \Rightarrow < y,x> \in R$ 因此 R 在 A 上是对称的.

> 雨课堂 Rain Classroom

反对称性证明

```
证明模式 证明R在A上反对称
任取< x, y>
< x, y> \in R \land < y, x> \in R \Rightarrow ..... \Rightarrow x=y
前提 推理过程 结论
```

例6 证明若 $R \cap R^{-1} \subseteq I_A$,则R在A上反对称. 证 任取 $\langle x,y \rangle$ $\langle x,y \rangle \in R \land \langle y,x \rangle \in R \Rightarrow \langle x,y \rangle \in R \land \langle x,y \rangle \in R^{-1}$ $\Rightarrow \langle x,y \rangle \in R \cap R^{-1} \Rightarrow \langle x,y \rangle \in I_A \Rightarrow x = y$ 因此 R 在 A 上是反对称的.

传递性证明

证明模式 证明R在A上传递 任取< x, y>,< y, z> $< x,y> \in R \land < y, z> \in R \Rightarrow \Rightarrow < x,z> \in R$ 前提 推理过程 结论

例7 证明若 $R^{\circ}R \subseteq R$,则R在A上传递.

证 任取<*x*,*y*>, <*y*, *z*>

 $\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,z \rangle \in R^{\circ}R \Rightarrow \langle x,z \rangle \in R$ 因此 R 在 A 上是传递的.

运算与性质的关系

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		\checkmark
$R_1 \cap R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
$R_1 \cup R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	×
R_1 – R_2	×	$\sqrt{}$	$\sqrt{}$		×
$R_1 \circ R_2$	$\sqrt{}$	×	×	×	×

关系的闭包

- ■闭包定义
- 闭包的构造方法
 - □ 集合表示
 - □ 矩阵表示
 - □ 图表示
- ■闭包的性质

闭包定义

定义 设R是非空集合A上的关系,R的自反(对称或传递)闭包是A上的关系R′,使得R′满足以下条件:

- (1) R'是自反的(对称的或传递的)
- (2) $R\subseteq R'$
- (3)对A上任何包含R的自反(对称或传递) 关系 R'' 有 R'⊆R''.
- 一般将 R 的自反闭包记作 r(R), 对称闭包记作 s(R), 传递闭包记作 t(R).

定理(不动点) 若R $\subseteq A \times A$,则

① R是自反的iff r(R)=R

② R是对称的 iff s(R)=R

③ R是传递的iff t(R)=R

定理(单调性) 若R,S⊆A×A,且R⊆S则

① *r*(*R*)⊆*r*(*S*)

② s(R)⊆s(S)

③ *t*(*R*)⊆*t*(*S*)

闭包的构造方法

定理 设R为A上的关系,则有

$$(1) r(R) = R \cup R^0$$

(2)
$$s(R) = R \cup R^{-1}$$

(3)
$$t(R) = R \cup R^2 \cup R^3 \cup ...$$

说明:

• 对于有穷集合A(|A|=n)上的关系,(3)中的并最多不超过 \mathbb{R}^n .

闭包运算与性质的关系

	自反性	对称性	传递性
r(R)	√ (定义)	√ ₍₂₎	√ (3)
s(R)	√ (1)	√(定义)	× _(反例)
t(R)	√ (1)	V ₍₂₎	√ (定义)

定理 若R⊆A×A,则

- ① rs(R)=sr(R)
- ② rt(R)=tr(R)
- 3 st(R) ⊆ts(R)

100

例2. 10 设A \neq Ø且R \subseteq A \times A,对R依次求三种闭包, 共有6种不同顺序,其中哪些顺序一定导致等价 关系? (说明: tsr(R)=t(s(r(R))))

解 由于 sr(R)=rs(R), tr(R)=rt(R), st(R)⊆ts(R), 所以6种顺序至多产生两种结果:

	tsr(R)=trs(R)=rts(R)	str(R)=srt(R)=rst(R)
自反	√	√
对称	√	√
传递	√	×
等价关系	√(等价闭包)	家×ルシンタ

闭包的构造方法(续)

设关系R, r(R), s(R), t(R)的关系矩阵分别为M, M_r , M_s 和 M_t , 则

$$M_r = M + E$$

$$M_s = M + M'$$

$$M_t = M + M^2 + M^3 + \dots$$

E 是和 M 同阶的单位矩阵, M'是 M 的转置矩阵. 注意在上述等式中矩阵的元素相加时使用逻辑加.

闭包的构造方法(续)

设关系R, r(R), s(R), t(R)的关系图分别记为G, G_r , G_s , G_t , 则 G_r , G_s , G_t 的顶点集与G 的顶点集相等. 除了G 的边以外, 以下述方法添加新边:

考察G的每个顶点,如果没有环就加上一个环,最终得到 G_r . 考察G的每条边,如果有一条 x_i 到 x_j 的单向边, $i \neq j$,则在G中加一条 x_j 到 x_i 的反方向边,最终得到 G_s . 考察G的每个顶点 x_i ,找从 x_i 出发的每一条路径,如果从 x_i 到路径中任何结点 x_j 没有边,就加上这条边. 当检查完所有的顶点后就得到图 G_t .

实例

例1 设 $A=\{a,b,c,d\}, R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle,$

 $\{d,b\}$, R和 r(R), s(R), t(R)的关系图如下图所示.

传递闭包的计算——Warshall算法

算法思路:

考虑 n+1个矩阵的序列 M_0, M_1, \dots, M_n ,将矩阵 M_k 的 i 行 j 列的元素记作 $M_k[i,j]$. 对于 $k=0,1,\dots,n$, $M_k[i,j]=1$ 当且仅当在 R 的关系图中存在一条从 x_i 到 x_j 的路径,并且这条路径 除端点外中间只经过 $\{x_1,x_2,\dots,x_k\}$ 中的顶点. 不难证明 M_0 就是R 的关系矩阵,而 M_n 就对应了R 的传递闭包.

Warshall算法:

从 M_0 开始,顺序计算 M_1, M_2, \dots ,直到 M_n 为止.

雨课堂 Rain Classroom

Warshall算法的依据

从 $M_k[i,j]$ 计算 $M_{k+1}[i,j]$: $i,j \in V$. 顶点集 $V_1 = \{1,2,...,k\}$, $V_2 = \{k+2,...,n\}$, $V = V_1 \cup \{k+1\} \cup V_2$, $M_{k+1}[i,j] = 1 \Leftrightarrow$ 存在从i 到 j 中间只经过 $V_1 \cup \{k+1\}$ 中点的路径

这些路径分为两类:

第1类: 只经过 1/1中点

第2类: 经过 k+1点

存在第1类路径: $M_k[i,j]=1$

存在第2类路径:

 $M_k[i,k+1]=1 \land M_k[k+1,j]=1$

Warshall算法及其效率

算法4.1 Warshall算法

输入: M(R) 的关系矩阵)

输出: M_t (t(R)的关系矩阵)

1. $M_t \leftarrow M$

2. for $k \leftarrow 1$ to n do

3. for $i \leftarrow 1$ to n do

4. for $j \leftarrow 1$ to n do

5. $M_t[i,j] \leftarrow M_t[i,j] + M_t[i,k] \cdot M_t[k,j]$

时间复杂度 $T(n)=O(n^3)$