模块二 三角恒等变换

重点知识回顾

一、和差角公式

- 1. $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$, $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$;
- 2. $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$, $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$;
- 3. $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 \tan \alpha \tan \beta}$, $\tan(\alpha \beta) = \frac{\tan \alpha \tan \beta}{1 + \tan \alpha \tan \beta}$;
- 4. 辅助角公式: $a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$, 其中 $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\tan \varphi = \frac{b}{a}$. 在

辅助角公式中,若 a>0 ,则 $\varphi\in(-\frac{\pi}{2},\frac{\pi}{2})$; 若 a<0 ,可先提负号到外面,再用辅助角公式合并.

二、二倍角公式

- 1. 二倍角公式: $\sin 2\alpha = 2\sin \alpha\cos \alpha$, $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha = 2\cos^2 \alpha 1 = 1 2\sin^2 \alpha$, $\tan 2\alpha = \frac{2\tan \alpha}{1 \tan^2 \alpha}$.
- 2. 降次公式: $\sin^2 \alpha = \frac{1-\cos 2\alpha}{2}$, $\cos^2 \alpha = \frac{1+\cos 2\alpha}{2}$, $\sin \alpha \cos \alpha = \frac{1}{2}\sin 2\alpha$.
- 3. 升次公式: $1+\cos 2\alpha = 2\cos^2 \alpha$, $1-\cos 2\alpha = 2\sin^2 \alpha$, $1\pm\sin 2\alpha = (\sin \alpha \pm \cos \alpha)^2$, $1=\sin^2 \alpha + \cos^2 \alpha$.

三、万能公式

1.
$$\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$
; 2. $\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$; 3. $\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$

第1节 和差角、辅助角、二倍角公式(★★)

内容提要

和差角、辅助角、二倍角公式是三角函数的核心公式,本节涉及一些有关公式应用的基础题.

【例 1】已知 $\sin(\frac{\pi}{4} + \alpha) = \frac{1}{3}$,则 $\sin 2\alpha = .$

【变式】(2022・新高考 II 卷) 若 $\sin(\alpha+\beta) + \cos(\alpha+\beta) = 2\sqrt{2}\cos(\alpha+\frac{\pi}{4})\sin\beta$,则()

- (A) $\tan(\alpha + \beta) = 1$ (B) $\tan(\alpha + \beta) = -1$ (C) $\tan(\alpha \beta) = 1$ (D) $\tan(\alpha \beta) = -1$

【例 2】若 $\tan(\alpha - \frac{\pi}{4}) = \frac{1}{6}$,则 $\tan \alpha =$ _____.

【变式 1】已知 $\tan \alpha = -2$, $\tan(\alpha + \beta) = \frac{1}{7}$,则 $\tan 2\beta$ 的值为.

【变式 2】已知 α , β 均为锐角, $(1-\sqrt{3}\tan\alpha)(1-\sqrt{3}\tan\beta)=4$,则 $\alpha+\beta=($

- (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) $\frac{3\pi}{4}$ (D) $\frac{\pi}{2}$

【例 3】已知 $\theta \in (\frac{3\pi}{2}, 2\pi)$,且 $\cos 2\theta + \cos \theta = 0$,则 $\sin 2\theta + \sin \theta =$ ()

- (A) 0 (B) $\sqrt{3}$ (C) $-\sqrt{3}$ (D) $\sqrt{2}$

【例 4】 $\cos 15^{\circ} \cos 45^{\circ} - \cos 75^{\circ} \sin 45^{\circ} = .$

【变式 1】
$$\frac{\sin 110^{\circ} \sin 20^{\circ}}{\cos^2 155^{\circ} - \sin^2 155^{\circ}} = .$$

【变式 2】 $\tan 25^{\circ} + \tan 35^{\circ} + \sqrt{3} \tan 25^{\circ} \tan 35^{\circ} = .$

【例 5】设 $f(x) = \sin x - \sqrt{3} \cos x$,则 f(x) 的最大值为.

【变式 1】设 $f(x) = \sin x - \sqrt{3} \cos x (0 \le x \le \frac{2\pi}{3})$,则 f(x) 的最大值为.

【变式 2】已知 $f(x) = \sin x + 2\cos x (0 \le x \le \frac{\pi}{2})$,则 f(x) 的值域为.

强化训练

- 1. $(2022 \cdot 南充模拟 \cdot \bigstar \star)$ 锐角 α 满足 $\sin \alpha = \frac{\sqrt{10}}{10}$,则 $\cos(2\alpha + \frac{\pi}{6}) = .$
- 2. $(2022 \cdot 安徽模拟 \cdot \star \star)$ 若 α 是第二象限的角,且 $\sin(\pi \alpha) = \frac{3}{5}$,则 $\tan 2\alpha = .$
- 3. $(2022 \cdot 北京模拟 \cdot \star \star \star)$ 若 $\cos(\pi \alpha) = -\frac{\sqrt{10}}{10}$, $\alpha \in (0, \frac{\pi}{2})$, $\tan(\alpha + \beta) = \frac{1}{2}$, 则 β 可以为. (写出一个满足条件的 β)

- 4. $(2022 \cdot 全国二模 \cdot \star \star \star)$ 若 $\tan(\frac{\pi}{4} x) = 2\tan(\frac{\pi}{4} + x)$,则 $\sin 2x = ($)
- (A) $-\frac{3}{5}$ (B) $\frac{3}{5}$ (C) $-\frac{1}{3}$ (D) $\frac{1}{3}$

- 5. $(2022 \cdot 全国乙卷 \cdot ★★) \cos^2 \frac{\pi}{12} \cos^2 \frac{5\pi}{12} = ($)
- (A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$
- 6. (2022 黑龙江模拟 ★★) 数学家华罗庚倡导的"0.618 优选法"在各领域都有广泛应用, 0.618 就是 黄金分割比 $m = \frac{\sqrt{5}-1}{2}$ 的近似值,黄金分割比还可以表示成 $2\sin 18^\circ$,则 $\frac{2m\sqrt{4-m^2}}{2\cos^2 27^\circ - 1} = ($)

- (A) 4 (B) $\sqrt{5}+1$ (C) 2 (D) $\sqrt{5}-1$
- 7. (2022 •常州模拟 •★★★) 已知 $a = \frac{\sqrt{2}}{2}(\cos 1^{\circ} \sin 1^{\circ})$, $b = \frac{1 \tan^{2} 22.5^{\circ}}{1 + \tan^{2} 22.5^{\circ}}$, $c = \sin 22^{\circ} \cos 24^{\circ} + \cos 22^{\circ} \sin 24^{\circ}$, 则 a、b、c 的大小关系为 ()
- (A) b > a > c (B) c > b > a (C) c > a > b (D) b > c > a
- 8. $(\star\star\star)$ 设当 $x=\theta$ 时,函数 $f(x)=\sin x-2\cos x$ 取得最大值,则 $\cos\theta=$.