Protein Structure Prediction with Language Models

Shentong Mo

Dec 8, 2022

Recap AlphaFold2

- Multiple Sequence Alignment (MSA) + Templates of Similar Protein Structures
- Evoformer
- Structure Module

Follow-up Papers

- ESMFold (Meta AI, Alexander Rives)
 - Lin et al, Language models of protein sequences at the scale of evolution enable accurate structure prediction
- OmegaFold (Helixon, Jian Peng)
 - Wu et al, High-resolution de novo structure prediction from primary sequence
- HelixFold (Baidu & Biomap, Le Song)
 - Fang et al, HelixFold-Single: MSA-free Protein Structure Prediction by Using Protein Language Model as an Alternative

Presentation Line

- PLM architecture
- PLM training methods
- PLM training data
- Model size
- Evoformer counterpart
- Structure finetuning data

Comparisons

Method	PLM architecture s	PLM training data	masked pretraining objective	Evoformer Counterpart	Structure fine-tuning data	Structure validation data	Freeze PLM or not
ESMFold	ESM-2 (15B)	UniRef50 (60M)	residue	ESM Folding Block	PDB + Alphafold2 Structure	CAMEO CASP14	Freeze
OmegaFold	OmegaPLM (670M)	UniRef50 (60M)	residue, motif, subsequenc e	Geoformer (Geometric Modeling)	PDB	CAMEO CASP13, 14	Freeze
HelixFold	PLM (1B) + Adapter	UniRef30 (260M)	residue	Revised Evoformer (Geometric Modeling)	PDB+ Uniclust30+ Alphafold2 Structure	CAMEO CASP14 MSA Depth Test	Not freeze

Overall Architecture

HelixFol

OmegaFol

PLM Architecture

Add & Norm Feed Forward Multi-Head Attention

Standard Attention

OmegaFol Gated Attention Unit

Algorithm 1: Protein language models based on the Gated Attention Module (GAU)

```
1 def OmegaPLM ( \{n_i\}, d_k = 256, d = 1,280, N_{stack} = 66, d_v = 2,560):

2 | for l \in [1, \dots, N_{stack}] do

3 | r_i = \text{LayerNorm}(n_i)

4 | u_i, v_i, g_i = \text{SiLU} (\text{Linear}(r_i))

5 | \{q_i\} = \text{RoPE}(\{w_q \odot u_i + b_q\})

6 | \{k_i\} = \text{RoPE}(\{w_k \odot u_i + b_k\})

7 | \alpha_{ij} = \text{softmax}_j \left(\frac{\log n}{\sqrt{d_k}} \left(q_i^T k_j\right) + b_{i-j}\right)

8 | o_i = g_i \odot \sum_j \alpha_{ij} v_j

9 | n_i += \text{Linear}(o_i)

10 | end

11 return \{n_i\}
```

Disentangled Attention Transformer

$$egin{aligned} oldsymbol{q} &= oldsymbol{x}_{in} oldsymbol{W_q}, & oldsymbol{k} &= oldsymbol{x}_{in} oldsymbol{W_k}, & oldsymbol{v} &= oldsymbol{x}_{in} oldsymbol{W_v}, & oldsymbol{p} &= oldsymbol{e}_p oldsymbol{W_p}, \ A_{i,j} &= oldsymbol{q}_i oldsymbol{k}_j^\mathsf{T} &+ oldsymbol{q}_i oldsymbol{p}_{\delta(i,j)}^\mathsf{T} \ &= oldsymbol{q}_i oldsymbol{k}_j^\mathsf{T} &+ oldsymbol{q}_i oldsymbol{p}_i^\mathsf{T} oldsymbol{p}_i^\mathsf{T} \ &= oldsymbol{q}_i oldsymbol{k}_j^\mathsf{T} &+ oldsymbol{q}_i oldsymbol{p}_i^\mathsf{T} oldsymbol{p}_i^\mathsf{T} oldsymbol{p}_i^\mathsf{T} \ &= oldsymbol{q}_i oldsymbol{k}_j^\mathsf{T} oldsymbol{q}_i^\mathsf{T} oldsymbol{q}_i^\mathsf{T} oldsymbol{p}_i^\mathsf{T} oldsymbol{q}_i^\mathsf{T} oldsymbol{p}_i^\mathsf{T} oldsymbol{q}_i^\mathsf{T} olds$$

Standard vs Disentangled Attention

Standard Attention

$$egin{aligned} m{Q} &= m{H}m{W_q}, m{K} = m{H}m{W_k}, m{V} = m{H}m{W_v}, m{A} = rac{m{Q}m{K}^\intercal}{\sqrt{d}} \ m{H_o} &= ext{softmax}(m{A})m{V} \end{aligned}$$

Disentangled Attention

$$egin{aligned} oldsymbol{Q_c} &= oldsymbol{HW_{q,c}}, oldsymbol{K_c} &= oldsymbol{HW_{k,c}}, oldsymbol{V_c} &= oldsymbol{HW_{v,c}}, oldsymbol{Q_r} &= oldsymbol{PW_{q,r}}, oldsymbol{K_r} &= oldsymbol{PW_{k,r}} \ & oldsymbol{ ilde{A}_{i,j}} &= oldsymbol{Q_i^c K_j^{c\intercal}} &+ oldsymbol{Q_i^c K_{\delta(i,j)}^{r\intercal}} &+ oldsymbol{K_j^c Q_{\delta(j,i)}^{r\intercal}} \ & oldsymbol{K_j^c Q_{\delta(j,i)}^{r\intercal}} &+ oldsymbol{K_j^c Q_{\delta(j,i)}^{r\intercal}} \ & oldsymbol{H_o} &= oldsymbol{softmax} & oldsymbol{I_{o}} & oldsymbol$$

PLM training objectives

A Pretrained via Masked LM ESM-2 EGRITVYCTVQ... Single Sequence

OmegaFol

PLM model size

ESMFol

	8M	35M	150M	650M	3B	15B
Dataset	UR50/D	UR50/D	UR50/D	UR50/D	UR50/D	UR50/D
Number of layers	6	12	30	33	36	48
Embedding dim	320	480	640	1280	2560	5120
Attention heads	20	20	20	20	40	40
Training steps	500K	500K	500K	500K	500K	270K
Learning rate	4e-4	4e-4	4e-4	4e-4	4e-4	1.6e-4
Weight decay	0.01	0.01	0.01	0.01	0.01	0.1
Clip norm	0	0	0	0	1.0	1.0
Distributed backend	DDP	DDP	DDP	DDP	FSDP	FSDP
•	-					

OmegaFol

No. Layers	66
d	1280
d_k	256
d_v	2560
No. Attention Head	1
Tying Embeddings for input & prediction head	True
Cosine normalization with learned scale (28, 36) at output	True
Clipping thresholds of relative positional bias	[-64, 64]
Normalization type	LayerNorm (37)
Pre- or Post-Norm	Pre-Norm
Learnable parameters in normalization	False

HelixFol

Components	Model size	Layer num	Hidden size	Intermediate size	Head num
PLM-1B PLM-100M	1.09B 100M	$n_{PLM} = 20$ $n_{PLM} = 12$	$d_{PLM}=2048 \ d_{PLM}=768$	8192 3072	$egin{aligned} h_{PLM} &= 16 \ h_{PLM} &= 12 \end{aligned}$

• Disentangled Attention Transformer

Evoformer Counterpart

HelixFol

ESMFol

Folding Block

Block Algorithm

ESMFol

```
Algorithm 1:
FoldingBlock(s, z)
b = Linear(z)
s = s + MultiHeadSelfAttention(s, bias=b)
s = s + MLP(s)
z = z + Linear(Concat([OuterProduct(s), OuterDifference(s)]))
z = z + TriangularMultiplicativeUpdateOutgoing(z)
z = z + TriangularMultiplicativeUpdateIncoming(z)
z = z + TriangularSelfAttentionOutgoing(z)
z = z + TriangularSelfAttentionIncoming(z)
return s, z
```

HelixFol

d

No much details about the algorithm, but similar to ESMFold block, removing

column-wise attention in AlphaFold2

OmegaFol

Algorithm 3: Geometric Transformer

```
def Geoformer ( A_{aa(i)}, \{\boldsymbol{n}_i\}, \{\boldsymbol{w}_{ij}\}, N_1 = 50, N_2 = 8, d_n = 256, d_w = 128) :
           for l \in [1, ..., N_1] do
                  \{\boldsymbol{n}_i\} += \text{NodeAttention}(\{\boldsymbol{n}_i\}, \{\boldsymbol{w}_{ii}\})
                  \{n_i\} += NodeTransition(\{n_i\})
                  \{\boldsymbol{w}_{ij}\} += \text{Node2Edge}(\{\boldsymbol{n}_i\}))
                 for k \in [1, 2] do
                       \{\boldsymbol{w}_{ij}\} += EdgeAttention(\{\boldsymbol{w}_{ij}\})
                 end
 8
                 \{\boldsymbol{w}_{ij}\} += EdgeTransition(\{\boldsymbol{w}_{ij}\}))
           end
10
           for l \in [1, ..., N_2] do
11
                  \{\boldsymbol{n}_i\}, \{\vec{x}_i\} += \text{StructureModule}(\{\boldsymbol{n}_i\}, \{\boldsymbol{w}_{ij}\})
                 \{\boldsymbol{w}_{ij}\} += 3 \text{Dprojection}(A_{aa(i)}, \{\vec{x}_i\})
13
                 \{\boldsymbol{w}_{ij}\} += EdgeAttention(\{\boldsymbol{w}_{ij}\})
14
15
           end
16 return \{\boldsymbol{n}_i\}, \{\boldsymbol{w}_{ij}\}
```

Geometric Transformer

Node Attention

$$egin{aligned} m{q}_i, m{k}_i, m{v}_i &= \operatorname{Linear}(m{n}_i^{(\ell-1)}) \ m{b}_{ij} &= \operatorname{Linear}(m{w}_{ij}) \ m{lpha}_{ij} &= \operatorname{softmax}_j \left(rac{1}{\sqrt{c}} m{q}_i^T m{k}_j + m{b}_{ij}
ight) \ m{o}_i &= \operatorname{sigmoid}(\operatorname{Linear}(m{n}_i^{\ell-1})) \odot \sum_j m{lpha}_{ij} m{v}_j \ m{n}_i^\ell &= \operatorname{Linear}(m{o}_i) \end{aligned}$$

Edge Attention

$$egin{align*} & ilde{m{a}}_{ij}, ilde{m{b}}_{ij} = \operatorname{sigmoid}\left(\operatorname{Linear}(m{w}_{ij})\right) \odot \operatorname{Linear}(m{w}_{ij}) \ & m{q}_{ij}, m{k}_{ij}, m{v}_{ij}, m{b}_{ij} = \operatorname{Linear}(m{w}_{ij}) \ & m{g}_{ij} = \operatorname{sigmoid}(\operatorname{Linear}(m{w}_{ij})) \ & m{lpha}_{itj} = \operatorname{softmax}_t \left(rac{1}{\sqrt{c}} m{q}_{ij}^T (m{k}_{it} + m{k}_{tj}) + m{b}_{it} + m{b}_{tj}
ight) \ & m{o}_{ij} = m{g}_{ij} \odot \left(\sum_k m{lpha}_{itj} (m{v}_{it} + m{v}_{tj} + m{ ilde{a}}_{ti} \odot m{ ilde{b}}_{tj})
ight) \ & m{w}_{ij} = \operatorname{Linear}\left(m{o}_{ij}
ight) \end{aligned}$$

Geometric Transformer (cont.)

Algorithm 4: 3Dprojection

```
ı def 3Dprojection (A_{aa(i)} \in \mathbb{R}^L, \{\vec{x}_i\} \in \mathbb{R}^{L \times 14 \times 3}, n = \overline{3}):
         for i, j \in [1, L] do
              // Embed all atom pair distances:
              d_{ij} = ||\vec{x}_i - \vec{x}_j||
              // Embed all atom frames
               f_{aa(i)}^{(n)} = \operatorname{Frame}_n(\vec{x}_i)
               // Embed distances in both rough and fine bins
               a_{ij} = \text{Linear}(\text{OneHot}(d_{ij}, bins = [3.25A, 20.75A, 16]))
               \boldsymbol{b}_{ij} = \text{Linear}(\text{OneHot}(d_{ij}, bins = [2.3125A, 21.6875A, 64]))
               // Embed frame-position directed distance in Euclidean
                      space:
               \boldsymbol{c}_{ij}^{(n)} = \text{OneHot}(R(\vec{x}_i, f_{aa(i)}^{(n)}), \text{bins} = [-16\text{Å}, 16\text{Å}, 64], \text{space} = Euclidean)
               // Embed frame-position angle distance in spherical space:
              e_{ij}^{(n)} = \text{OneHot}(R(\vec{x}_i, f_{aa(i)}^{(n)}), \text{bins}_{\phi} = [0, 2\pi, 12], \text{bins}_{\psi} = [0, 2\pi, 12], \text{space} = Spherical)
               // Embed pair amino acid types:
               \boldsymbol{g}_{ij} = \operatorname{Linear}(\boldsymbol{a}_{ij} + \boldsymbol{b}_{ij})
              \boldsymbol{h}_{ij} = \operatorname{Linear}(conact_n(\{\boldsymbol{c}_{ij}^{(n)}\}) + \operatorname{conact}_n(\{\boldsymbol{e}_{ij}^{(n)}\}))
               \mathbf{z}_{ij} = A_{aa(i)} + A_{aa(j)}
              oldsymbol{w}_{ij} = \operatorname{Linear}(oldsymbol{z}_{ij} \otimes (oldsymbol{g}_{ij} + oldsymbol{h}_{ii}))
         end
14 return \{\boldsymbol{w}_{ij}\}
```

Structure training loss

AlphaFold2:

$$\mathcal{L} = \begin{cases} 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} & \text{training} \\ 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} + 0.01\mathcal{L}_{\text{exp resolved}} + 1.0\mathcal{L}_{\text{viol}} & \text{fine-tuning} \end{cases},$$

ESMFold:

$$\mathcal{L} = \mathcal{L}_{FAPE} + \mathcal{L}_{dist}$$

• OmegaFold:
$$\mathcal{L} = \begin{cases} \mathcal{L}_{FAPE} + 0.5\mathcal{L}_{aux} + 0.3\mathcal{L}_{dist} + 0.01\mathcal{L}_{conf} & \text{first stage} \\ \mathcal{L}_{FAPE} + 0.5\mathcal{L}_{aux} + 0.3\mathcal{L}_{dist} + 0.01\mathcal{L}_{conf} + 1.0\mathcal{L}_{viol} & \text{second and last stage} \end{cases}$$

HelixFold: removing msa loss in AlphaFold2

Structure training data

- ESMFold: (60M)
 - RCSB PDB: all PDB chains until 2020-05-01 with resolution greater than or equal to 9Å and length greater than 20, cluster resulting in sequences at 40% sequence identity
 - AlphaFold2 Structure Database: predicted IDDT greater than 70%
- OmegaFold: (number not given)
 - RCSB PDB: all PDB chains, cluster resulting in sequences at 40% sequence identity
- HelixFold: (260M)
 - RCSB PDB: all PDB chains until 2020-05-14 with resolution greater than or equal to 9Å and length greater than 20, and number of amino acids larger than 10, cluster resulting in sequences at 40% sequence identity
 - **Distillation-Uniclust30**: Uniclust30 structure predicted by AlphaFold2
 - **Distillation-EBI**: predicted IDDT greater than 50%

Thanks!

Model Structure

- ESM-2 (Replace MSA and templates in AlphaFold2)
- Folding Block (Change evoformer block in AlphaFold2)
- Structure Module

ESM-2

- Architecture: BERT-style encoder with transformers
- Modifications:
 - number of layers
 - number of attention heads
 - hidden size
 - feed-forward hidden size
 - sinusoidal positional encoding > learnable positional embedding
 - RoPE: rotary positional embedding (good for small models, bad for large models)
- Training Objective: unsupervised contact prediction with logistic regression

Unsupervised Contact Prediction

- Let c_{ij} be a boolean random variable which is true if amino acids i, j are in contact
- Suppose our transformer has L layers and K attention heads per layer.
- Let A_{kl} be the symmetrized and Average Product Correction (APC)-corrected attention map for the k-th attention head in the l-th layer of the transformer,
- and α_{ij}^{kl} be the value of that attention map at position i, j.

$$p(c_{ij}) = (1 + \exp(-\beta_0 - \sum_{l=1}^{L} \sum_{k=1}^{K} \beta_{kl} \alpha^{kl}_{ij}))^{-1}$$

TI . A C. ' 'I'. I ' IA I' II ' .' ' ' ' ' I A A A

Perplexity Estimation

- To measure a language model' s uncertainty of a sequence and defined as the exponential of the negative log-likelihood of the sequence
- the perplexity over a large dataset (non-deterministic)

$$Perplexity(x) = \exp \left\{ -\log p(x_{i \in M} | x_{j \notin M} \cup \hat{x}_{i \in M}) \right\}$$

where the mask M be a random variable denoting a set of tokens from input sequence x

the pseudo-perplexity over a single sequence (deterministic)

PseudoPerplexity(x) =
$$\exp\left\{-\frac{1}{L}\sum_{i=1}^{L}\log p(x_i|x_{j\neq i})\right\}$$

where *L* is the length of the sequence

ESM-2 Parameters

	8M	35M	150M	650M	3B	15B
Dataset	UR50/D	UR50/D	UR50/D	UR50/D	UR50/D	UR50/D
Number of layers	6	12	30	33	36	48
Embedding dim	320	480	640	1280	2560	5120
Attention heads	20	20	20	20	40	40
Training steps	500K	500K	500K	500K	500K	270K
Learning rate	4e-4	4e-4	4e-4	4e-4	4e-4	1.6e-4
Weight decay	0.01	0.01	0.01	0.01	0.01	0.1
Clip norm	0	0	0	0	1.0	1.0
Distributed backend	DDP	DDP	DDP	DDP	FSDP	FSDP

Table S1: ESM-2 model parameters at different scales

Training data

- Data source: UniRef50 & UniRef90 (60M protein sequences for training, 250K for validation)
 - MMseqs search to remove all train sequences matching a validation sequence with 50% identity.

Filtering de-novo designed proteins:

- remove any sequence in UniRef50 and UniRef90 that was annotated as "artificial sequence" by a taxonomy search on the UniProt website
- use jackhmmer to remove all hits around a manually curated set of 81 de-novo proteins

Amount and diversity:

- sampled a minibatch of UniRef50 sequences for each training update
- replaced each sequence with a sequence sampled uniformly from the corresponding UniRef90 cluster

Folding Block vs Evoformer Block

Two main changes

- use **standard attention** over this feature space, as the language model features are one dimensional
 - Evoformer block: employs axial attention over the columns and rows of the MSA, as MSAs are two-dimensional.
- input the attention maps from the language model for structure information
 - Evoformer block: pass template information to the model as pairwise distances, input to the residue-pairwise embedding

Folding Block Algorithm


```
Algorithm 1:
                                                      Folding Block
FoldingBlock(s, z)
b = Linear(z)
s = s + MultiHeadSelfAttention(s, bias=b)
 = s + MLP(s)
  = z + Linear(Concat([OuterProduct(s), OuterDifference(s)]))
  = z + TriangularMultiplicativeUpdateOutgoing(z)
  = z + TriangularMultiplicativeUpdateIncoming(z)
  = z + TriangularSelfAttentionOutgoing(z)
  = z + TriangularSelfAttentionIncoming(z)
z = z = MLP(z)
return s, z
```

ESMFold Algorithm

```
Algorithm 2:
esm c s: number of channels in ESM hidden representation
c s = 1024
c z = 128
ESMFold(sequence)
s = ESM hiddens(sequence) # num layers x Length x esm c s
s = (softmax(layer weights) * s).sum(0)
s = MLP(s)
z = PairwiseRelativePositionalEncoding(Length)
for b in folding blocks:
    s, z = b(s, z)
return StructureModule(s, z)
```

ESMFold output

- The IDDT head is output from the hidden representation of the StructureModule.
- The TM head uses the pairwise representation z.
- The distogram is predicted from the pairwise representation z.

ESMFold training loss

AlphaFold2:

$$\mathcal{L} = \begin{cases} 0.5\mathcal{L}_{FAPE} + 0.5\mathcal{L}_{aux} + 0.3\mathcal{L}_{dist} + 2.0\mathcal{L}_{msa} + 0.01\mathcal{L}_{conf} & training \\ 0.5\mathcal{L}_{FAPE} + 0.5\mathcal{L}_{aux} + 0.3\mathcal{L}_{dist} + 2.0\mathcal{L}_{msa} + 0.01\mathcal{L}_{conf} + 0.01\mathcal{L}_{exp \, resolved} + 1.0\mathcal{L}_{viol} & fine-tuning \end{cases},$$

• ESMFold:

$$\mathcal{L} = \mathcal{L}_{FAPE} + \mathcal{L}_{dist}$$

Training structure data

Real Structure:

- all PDB chains until 2020-05-01 with resolution greater than or equal to 9Å and length greater than 20
- cluster resulting in sequences at 40% sequence identity

• Sampling:

- sampling cluster evenly
- Rejection sampling to train longer proteins more frequently

Predicted Structure:

- 13,477,259 structures predicted using AlphaFold2 on MSAs (predicted IDDT greater than 70)
- 75% predicted structures and 25% real structures during training

Validation & Test structure data

- Validation
 - Continuous Automated Model EvaluatiOn (CAMEO) (August 2021 to January 2022)
- Test:
 - CAMEO (194 test proteins from April 01, 2022 through June 25, 2022)
 - CASP14 competition (51 targets)
 - No filtering is performed on these test sets, even included length-2166 target T1044.

Metrics

- Validation Perplexity: exponential of the negative log-likelihood over the validation set or a single sequence (lower is better)
- **P@L**: long-range precision @ L for unsupervised contact prediction performance (higher is better)
- **RMSD**: Root Mean Square Deviation (smaller is better)
- TM-score: Template Modeling score (higher is better)
- **pLDDT**: Model confidence prediction (higher is better)

Scaling up to 15B parameters

- Larger models perform better at all levels
- 150M parameter ESM-2 model performs comparably with the 650M parameter ESM-1b model.
- The largest improvement is seen for sequences with O(10⁴) MMseqs hits

Scaling up to 15B parameters (cont.)

D: Left-to-right shows models from 8M to 15B parameters, consecutively comparing the smaller model (x-axis) against the next larger model (y-axis) in terms of unsupervised contact precision.

 Sequences with large changes in contact prediction performance exhibit large changes in language model understanding measured by pseudo-perplexity.

TM-score on combined CASP14 and CAMEO test sets

structure predictions on CAMEO structure 7QQA and CASP target 1056

More comparisons

Model	# Params	Validation Perplexity	LR P@L	CASP14	CAMEO
	8M	10.33	0.17	0.37	0.48
	35M	8.95	0.30	0.41	0.56
ESM-2	150M	7.75	0.44	0.49	0.65
ESWI-2	650M	6.95	0.52	0.51	0.70
	3B	6.49	0.54	0.52	0.72
	15B	6.37	0.54	0.55	0.72
ESM-1b ¹	650M	_	0.41	0.42	0.64
Prot-T5-XL-UR50 (19)	3B	_	0.48	0.50	0.69
Prot-T5-XL-BFD (19)	3B	_	0.36	0.46	0.63
CARP (44)	640M	_	_	0.42	0.59

Comparison with AlphaFold2

Structure prediction comparison

CASP14 T1076 (6XN8) TM-score ESMFold: 0.98 TM-score Alphafold: 0.99

CASP14 T1057 (7M6B) TM-score ESMFold: 0.98 TM-score Alphafold: 0.97

Imine Reductase (7A3W) TM-score ESMFold: 0.956

L-asparaginase (6QQ8) TM-score ESMFold: 0.985

Ablation Study on ESM-2

	LR P@L	LR P@L/5	Validation Perplexity
Baseline	0.381	0.626	8.42
No RoPE	0.365	0.599	8.62
Older UniRef Data	0.368	0.599	7.98
No UR90 Sampling	0.387	0.631	8.40

Ablation Studies on ESMFold

Inference Time

