P-142-2014

히드록실아민 등의 화재·폭발예방에 관한 기술지침

2014. 6.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자: 한우섭
- Ο 제정 경과
 - 2014년 6월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - Jan Reedijk, Comprehensive Inorganic Chemistry, Vol.2, Elsevier, 1973
 - 危險物ハンドブック, 第5版, 丸善, 1998
 - ヒドロキシルアミン等の爆發危險性と安全な取扱いについて, JNIOSH, NIIS-SG-No.1, 2001
 - ヒドロキシルアミン等の安全な取扱い等に關する技術上の指針, 厚生勞動省 令 第212号, 2001
- O 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2014년 7월 21일

제 정 자: 한국산업안전보건공단 이사장

P-142-2014

히드록실아민 등의 화재·폭발 예방에 관한 기술지침

1. 목적

이 지침은 반도체산업, 의약품 제조업, 농약 제조시의 중간원료, 원자력분야(핵연료재처리제) 등의 다양한 공업적 용도에서 많이 사용되고 있는 히드록실아민 (Hydroxylamine)과 그 염(이하 "히드록실아민 등"으로 함)을 제조 또는 취급하는 사업장에서 히드록실아민 등의 화재·폭발사고 위험을 예방하고 제조, 취급 시의주의 사항 및 위험성 정도를 판정하는데 필요한 사항을 제공하는데 그 목적이 있다.

2. 적용범위

이 지침은 히드록실아민 등을 제조 취급하는 설비, 작업장에서 폭발사고 예방 및 안전예방대책을 수립할 때에 적용한다.

3. 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "히드록실아민 (Hydroxylamine)"이라 함은 수산기와 아민의 결합에 의한 화학 물질로서 물 및 알콜에 용해되며 자외선과 접촉하거나 130 ℃ 부근의 온도에서 폭발하는 암모니아와 유사한 백색 결정의 물질을 말한다.
 - (나) "조해성 (Deliquescent)"이라 함은 고체가 대기 속에서 습기를 빨아들여 녹는 성질을 말한다.
 - (다) "옥심 (Oxime)"이라 함은 히드록실아민을 알데히드·케톤·퀴논과 반응시킬 때생성되는 질소를 포함한 유기화합물(분자 내에 C=N-OH로 표시되는 구조를 갖고 있음)을 말한다.
 - (라) "유도결합 플라즈마 분광분석기 (ICP; Inductively Coupled Plasma Atomic

P-142-2014

Emission Spectrometer)"라 함은 고온의 아르곤 플라즈마 중심에 주입된 원자가 해리하여 여기상태가 되고 여기된 원자가 다시 안정한 바닥상태로 돌아 올때 방출하는 고유한 발광 에너지를 검출하여 농도를 측정하는 장치를 말한다.

- (마) "원자흡광광도계 (Atomic absorption spectrometer)"라 함은 빛이 원자 증기층을 통과할 때 기저상태의 원자가 특유 파장의 빛을 흡수하는 현상을 이용하여 검체 중 피검원소의 양을 측정하는 분석장치를 말한다.
- (바) "착화화합물 (Complex)"라 함은 하나의 원자나 이온을 중심으로 하여 그 주위에 다른 이온, 원자, 원자단이 입체적으로 배치되어 생긴 분자나 이온을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정의하는 바에 의한다.

4. 일반 사항

4.1 물리적 성질

- (1) 히드록실아민(Hydroxylamine, NH₂OH)은 암모니아(NH₃)에서 수소 1개가 수산기 (OH)로 치환되어 생성된 무색의 침상결정을 물질로서 분자량 33.03, 융점 33.05 ℃, 끓는점 58 ℃, 20 ℃의 조건에서 밀도는 1.204 이다.
- (2) 히드록실아민은 조해성(deliquescent)이 강한 불안정한 물질로 실온에서도 습기와 이산화탄소가 존재하면 서서히 분해, 가열되면서 격렬하게 폭발한다.
- (3) 히드록실아민 수용액은 용매로서 물과 비슷하여 KI, KCN, KBr, NaNO₃, Ba (NO₃)₂, NaCl 등 많은 무기염을 녹일 수 있다.
- (4) 히드록실아민 수용액(Hydroxylamine aqueous solution, NH₂OH-H₂O)은 무색 투명의 액체로서 냄새가 거의 없으며 50 wt%의 농도의 경우에는 녹는점 9 ℃, 끓는점 107 ℃, 20 ℃의 조건에서 밀도는 1.11 이다.
- (5) 주요 히드록실아민 염류 및 수용액으로는 황산 히드록실아민, 염산 히드록실아민

P-142-2014

- 이 있으며 모두 수용성이며 강한 산성을 나타낸다.
- (6) 질산, 아질산, 이산화질소 등의 환원에 의해 생성되며 일반적으로 황산 히드록실 악모늄과 같은 염류 형태로 제조 판매된다.
- (7) 물, 메탄올, 에탄올, 글리세린 및 액체 암모니아 등에는 용해되나, 에틸에테르, 클로포름, 벤젠 등에는 난용성이다.
- (8) 히드록실아민 수용액은 50 wt% 수용액으로서 판매되고 있으며 산화성과 환원성의 양방의 성질을 가지고 있다.
- (9) 히드록실아민 수용액은 알칼리성이며, 무기, 유기산과 반응하여 쉽게 그 염을 생성하며 강염기에 대해서는 산으로 작용하여 NaONH₂와 같은 염을 만든다.
- (10) 히드록실아민 수용액은 환원성을 나타내며 각종 귀금속 염으로부터 금속을 유리시키는 한편 조건에 따라서는 자신이 환원되어 암모니아 또는 암모늄염이 된다.

4.2 화학적 성질

- (1) 히드록실아민 수용액은 알데히드, 케톤, 유기산 에스테르 등과 발열적으로 반응하여 옥심, 히드록삼산, 이소옥사졸 등의 화합물을 생성한다.
- (2) 히드록실아민 등은 가열에 의해 격렬한 분해, 폭발위험성을 가지며, 분해폭발로 인하여 H_2 , N_2 , N_2 O, NH_3 , H_2 O 등을 생성한다. 예를 들면 분해폭발에 의한 히드록실아민 등의 화학반응식은 다음과 같다.
 - (7) $7NH_2OH \rightarrow 3 NH_3 + N_2O + N_2 + 6 H_2$
 - (나) $4NH_2OH \rightarrow N_2O + 2NH_3 + 3H_2O$
 - (다) $3NH_2OH \rightarrow N_2 + NH_3 + 3 H_2O$
 - (라) $2NH_2OH \rightarrow N_2 + H_2 + 2H_2O$
- (3) 금속 이온에 의한 발화 분해 폭발위험성이 있으며, 철, 구리, 크롬, 니켈, 티타늄 이 온 등 금속 이온과 접촉하면 상온에서도 발화한다.
- (4) 중금속 화합물, 산화제, 환원제, 산 및 알칼리 류와 혼합하면 급격하게 분해된다.

P-142-2014

- (5) 섬유상의 넓은 표면상에서 공기와 접촉하면 산화에 의해 급격히 가열된다.
- (6) 과산화팔리움이 히드록실아민 수용액 또는 히드록실아민 고체와 접촉하면 발화 위험성이 있다.
- (7) 산화 바륨, 이산화 납, 과망간산칼륨 등이 히드록실아민 고체와 접촉하면 발화한다.
- (8) 중크롬산 칼륨, 중크롬산 나트륨이 히드록실아민 수용액 또는 히드록실아민 고체와 접촉하면 격렬한 폭발이 일어난다.
- (9) 히드록실아민 등은 염소가스 분위기에서 발화한다.
- (10) 히드록실아민 등은 차아염소산염과 격렬한 산화가 일어난다.
- (11) 3염화인, 5염화인, 황산구리(II) 무수물은 히드록실아민 등과 접촉하면 발화한다.
- (12) 나트륨은 히드록실아민 단독과 접촉하면 발화하지만, 에테르 용액에서 완만하게 반응하여 N-히드록실아미드 나트륨 염을 생성하며 생성물은 공기 중에서 자연 발화 가능성이 있다.
- (13) 아연 분말은 히드록실아미드와 혼합하여 가열하면 폭발 위험성이 있다.
- (14) 히드록실아민 등이 칼슘과 접촉하면 비스히드록실아미드를 생성시키며 이것은 180 ℃에서 발화하여 폭발한다.

4.3 화재·폭발 위험성

- (1) 히드록실아민 등은 가열에 의해 발화, 폭발 위험성을 나타내며 발화온도는 130 ℃ 이다.
- (2) 히드록실아민 수용액은 미량의 철이온 등의 혼입에 의해 위험한 분해반응이 일어 난다.
- (3) 히드록실아민 등 및 히드록실아민 수용액의 화재·폭발위험성은 농도가 높을수록 증가하며, 특히 히드록실아민 수용액이 75 wt%를 넘는 농도에서는 폭광 (Detonation)으로 이어질 매우 큰 위험성을 가지고 있다.

P-142-2014

(4) 50 wt%의 히드록실아민 수용액은 상온에서는 분해반응 위험성이 없으나 스테인 레스 재질의 밀폐용기에 보관하는 경우에는 40 ℃에서부터 자기발열 분해가 서서히 일어난다.

5. 화재·폭발 예방대책

5.1 일반사항

- (1) 히드록실아민 등 및 히드록실아민 수용액이 피부, 점막, 눈 등에 접촉하면 염증이 나 메트헤모글로빈혈증의 위험성이 있다.
- (2) 히드록실아민 등은 철, 구리, 니켈, 크롬 등의 금속 이온 (이하 "철 이온 등"이라 한다)의 촉매 작용에 의해 발열 분해 위험성이 있다.
- (3) 히드록실아민 등의 발열 분해 위험성은 철 이온 등이 증가하거나 가열에 의해 촉진되며 농도 등의 사용 조건에 따라 폭발 위험이 있으므로 히드록실아민 등의 제조 또는 취급 작업에 있어서는 다음 사항에 유의할 필요가 있다.
 - (가) 철 이온 등과 혼합하거나 접촉하지 않도록 한다.
 - (나) 가열하지 않도록 한다.
 - (다) 가급적 낮은 농도에서 사용하거나 취급한다.

5.2 철 이온 등과의 이상반응 예방

- (1) 히드록실아민 등이 철 이온 등의 촉매 작용에 의해 발열 분해가 촉진되어 폭발이 일어나지 않도록 히드록실아민 등의 종류, 농도, 취급 상태에 따라 예방 대책을 강 구해야 한다.
- (2) 철 이온 등의 혼입 방지 조치
 - (가) 히드록실아민 등이 접촉하는 용기, 배관, 밸브, 교반기, 펌프 등은 사용 조건에 따라 다음 중 하나의 대책을 강구한다.
 - (1) 폴리에틸렌, 폴리프로필렌, 폴리염화비닐 등의 플라스틱 재료로 한다. 그러

P-142-2014

나 폴리카보네이트는 사용할 수 없다.

- ② 내면을 유리, 고무, 불소 수지 등의 재질을 사용하여 라이닝 또는 코팅한다. 그러나 니트릴고무, 석면은 사용할 수 없다.
- (나) 상기 (가)에 의한 방법이 곤란한 경우에는 재료에 스테인리스강(SUS304, SUS316 등)을 사용하여 산화 피막에 의한 표면 처리를 하거나 또는 철 이온 등의 용출이 되지 않는 재료를 사용한다.
- (다) 철 이온 등의 농도를 정기적으로 측정하는 것이 필요하며 이를 위해 유도결합 플라즈마 분광분석기(ICP) 또는 원자흡광광도계(Atomic absorption spectrometer) 등을 사용하여 철 이온 등의 농도를 수시로 측정하고 히드록실 아민 등에 혼입하는 철 이온 등의 농도를 관리한다.
- (라) 금속 조각 등의 혼입방지를 위하여 금속 조각, 공기 중에 부유하는 금속 가루가 히드록실아민 등의 용액에 혼입 될 우려가 있는 경우에는 용기를 포장하는 방법 등의 대책을 강구한다.
- (3) 철 이온 등의 반응 억제 대책
 - (가) 히드록실아민 등에 대해서, 철 이온 등과 착화화합물(complex)를 형성하고 히드록실아민 등의 분해를 감소시키는 반응억제 물질을 첨가한다.
 - (나) 황산 히드록실아민 수용액의 경우에는 소량의 황산을 첨가하는 방법을 사용하여 철 이온 등에 대한 안정성을 확보 할 수 있다.

5.3 온도 상승 및 국소적 발열 방지대책

- (1) 철 이온 등의 혼입 방지 및 반응 억제 조치를 강구하였음에도 불구하고 철 이온 등과의 반응에 의한 온도 상승의 우려가 있는 경우에는 용기 및 배관의 내부 온도를 수시로 측정 할 수 있는 장치를 설치하고 설정 온도 상한을 초과하는 경우에는 냉각수에 의한 긴급 희석 조치를 신속히 강구한다.
- (2) 온도상승 방지를 위하여 하는 온도조정장치 등을 사용하여 온도관리를 한다.
- (3) 관로 내에 설치된 순환 펌프의 축부의 마찰 등에 의해 발열의 우려가 있는 부분에 는 온도 센서를 설치하여 온도를 지속적으로 모니터링하고 국소적인 발열에 의한

P-142-2014

위험을 방지하기 위해 이상 온도를 알리는 자동경보장치를 설치한다.

5.4 가열작업 시의 안전대책

(1) 온도조절장치

- (가) 비정상적인 온도 상승으로 인한 폭발위험을 방지하기 위해서, 히드록실아민 등의 온도 조절을 할 수 있는 조치를 강구한다.
- (나) 히드록실아민 등의 성상에 따라 안전한 온도를 유지하기 위해 가열 시설로 온도 자동 조절 장치를 설치하여야 한다.
- (다) 열전대 식 온도계, 봉상(막대 모양) 온도계 등에 의해 내부 온도를 수시로 측정 할 수 있도록 하고, 가열을 위한 증기 및 온수의 송급량을 수동으로 조절하는 밸브나 콕크를 설치하여 안전한 온도로 적절히 조정할 수 있도록 한다.

(2) 자동경보장치

- (가) 히드록실아민 등이 그 성상에 따라 안전 온도를 초과 할 우려가 있는 때에는 온도조절장치 이외에도 자동경보장치의 설치를 강구한다.
- (나) 이상온도 상승을 조기에 파악하기 위해서는 필요한 자동 경보 장치를 설치하여야 한다.
- (다) 히드록실아민 등의 원재료의 송급을 차단하거나 또는 제품 등을 방출하기 위한 장치를 설치하거나 비상 냉각 또는 냉각수에 의한 긴급 희석 수 있는 장치를 마련해야 한다.

(3) 국소적인 가열 방지

(가) 국소적인 온도 상승이 발생하지 않도록 하기 위한 조치를 강구한다.

5.5 작업관리

(1) 작업표준의 작성

다음 사항에 대하여 작업 표준을 정하고 이에 따라 작업을 실시한다.

- (가) 가열 장치, 그 부속 설비의 조작 및 절차
- (나) 온도 측정 장치, 온도 조정 장치의 제어 및 온도 조절
- (다) 이상 발생 시에 작업자가 취해야 할 응급 조치

P-142-2014

(2) 안전작업지휘자의 선임

안전작업지휘자를 선임하여 가열에 관련한 작업을 관리하도록 하는 동시에 다음 사항을 수행하도록 한다.

- (가) 가열 설비 및 그 부속 시설을 수시로 점검하고 이상이 발견된 경우에는 즉시 필요한 대책을 강구한다.
- (나) 히드록실아민 등의 온도를 점검하고 이상이 발견 된 때에는 즉시 필요한 조 치를 강구한다.
- (다) 조치를 강구한 사항에 대해서는 기록을 한다.

5.6 폭발 위험성의 판정

- (1) 시험에 의한 판정을 하지 않은 경우에는 히드록실아민 등의 종류에 따라 기준 농도를 초과한 경우에는 폭발 위험성이 있는 것으로 한다.
- (2) 히드록실아민 등의 종류와 기준 농도는 <표1>과 같다.

<표 1> 히드록실아민 등의 종류에 따른 폭발위험판정 기준 농도

히드록실아민 등의 종류	농도(wt%)
히드록실아민 수용액	15
황산 히드록실아민 수용액	20
염산 히드록실아민 수용액	35

6. 취급 시 안전대책

- 6.1 저장, 운송, 보관 시의 주의 사항
 - (1) 열 및 발화원으로부터 격리되고 통풍이 양호한 건조한 냉소에 보관한다.
 - (2) 화기 엄금 조치를 한다.
 - (3) 국소 배기 시설을 설치한다.
 - (4) 세안 및 세척 시설을 설치한다.

P-142-2014

(5) 저장 용기에는 분해가스 발생에 의한 내압 상승을 방지하기 위하여 압력 릴리프 밸브를 설치한다.

6.2 폐기 시 처리방법

6.2.1 일반 사항

- (1) 히드록실아민 수용액의 처리법은 옥심(oxime) 및 그 염으로 처리하거나 직접 분 해 처리하는 방법 또는 소각 처리하는 방법을 사용한다.
- (2) 폐기 시의 처리방법은 어느 정도 위험성이 있으므로 소량 씩 사용하여 안전을 확인된 다음에 단계적으로 처리량을 증가시켜 적절한 처리량을 결정하여 안전하게 처리해야 한다.
- (3) 처리 전문업자에게 의뢰하는 경우에는 다음과 같다.
 - (가) 히드록실아민에 대해 1.2 배 몰 이상의 케톤류 (아세톤 등)를 서서히 첨가하여 옥심(oxime)으로 하거나 산을 첨가(pH 약 3)하여 히드록실아민 염으로 하여 처리 전문업자에게 위탁한다.
 - (나) 처리 과정에서 분해 반응열에 따른 발열 위험성에 주의한다.

6.2.2 연소법

- (가) 직접 가연성 용제 (알코올, 중유 등)에 혼합하여 가연성 용제와 함께 버너와 스크라버를 구비한 소각로에서 소각하거나 일단 옥심(oxime)으로 한 후에 소 각한다.
- (나) 불순물을 포함하고 있는 용제를 사용하면 분해 반응이 생길 수 있으므로 용제 와 섞은 물질의 밀봉 보관은 피한다.

6.2.3 아질산 법

- (가) 히드록실아민을 물로 희석하여 약 10 wt% 정도의 수용액으로 한다.
- (나) 35 wt% 염산 또는 황산으로 중화(pH 약 2)하고 염산히드록실아민 수용액으로 한다.
- (다) 염산히드록실아민 수용액이 냉각되지 않은 따듯한 상태에서 아질산 소다 수용 액을 아산화질소 가스의 발생량에 주의하면서 서서히 가한다.
- (라) 반응이 완료된 것을 확인하는 방법은 pH 약 2에서 가스가 나오지 않을 때까지로 한다.
- (마) 과도한 아질산 소다가 남아 있으면 산이나 과산화수소로 분해되며 이 때 발열

P-142-2014

및 발생 가스에 주의한다.

6.3 소화방법

- (1) 대량의 물에 의한 냉각을 실시한다.
- (2) 소화 활동은 엄폐물 뒤에서 실시한다.
- (3) 가열되면 폭발 할 수 있으므로 주변부 화재 시에는 다량의 물로 냉각한다.
- (4) 용기는 물 분무하여 냉각시키고 안전한 장소로 옮긴다.

6.4 유출, 비산 시의 대처방법

- (1) 유출 된 위치의 주변에 로브를 치는 등 사람의 출입을 금지한다.
- (2) 작업 시에는 반드시 보호 장비를 착용하고 바람이 부는 환경에서는 작업을 하지 않는다.
- (3) 부근에 착화원이 될 수 있는 것은 신속히 제거한다.
- (4) 착화원 등의 위험이 없을 때는 누설 부분을 차단하고 동시에 작업자를 물 분무로 보호하며 누설 장소의 증기는 물 분무로 침강시키도록 한다.
- (5) 유출 물질은 방호벽으로 차단시키고 응고 될 때까지 냉각시킨 다음에 밀폐 용기에 넣어 제거하고 이 때 스파크가 발생하는 도구를 사용하지 않는다.

6.5 응급처치

- (1) 히드록실아민 등 및 히드록실아민 수용액이 피부, 점막, 눈 등에 접촉하면 염증이 나 메트헤모글로빈혈증의 위험성이 있다.
- (2) 눈에 들어간 경우에는 즉시 다량의 흐르는 물로 15분 이상 씻어 낸다.
- (3) 피부에 접촉한 경우에는 오염된 의복이나 신발을 벗기고 부착된 부분 또는 접촉 부분을 비누 등을 사용하여 세정하고 다량의 물로 씻어 낸다.
- (4) 호흡한 경우에는 즉시 환자를 담요 등으로 감싸서 안정시키고 신선한 공기가 있는 곳으로 옮긴다. 만일 호흡 곤란 또는 호흡이 정지하고 있는 경우에는 즉시 인공 호흡을 실시한다.
- (5) 입에 들어간 경우에는 입 안을 다량의 물로 헹구어 낸다.