فرآيندهاي تصادفي

دانشكده مهندسي كامپيوتر

حمیدرضا ربیعی پاییز ۱۴۰۱

نمره: ۱۰۰

پروژه درس

تاریخ تحویل: ۴ بهمن ۱۴۰۱

بخش اول: HMM (۵۰ نمره)

* برای دانلود دادهها می توانید از این لینک استفاده کنید.

در این بخش از پروژه هدف آشنایی با الگوریتمهای HMM و یادگیری پارامترها و بررسی دنبالهها با استفاده از الگوریتمهای متفاوت است. در هر قسمت به شما گراف و مجموعهای از دادهها داده شده است تا با استفاده از آنها خواستههای مسئله را بدست آورید.

١.١ قسمت اول (٣٠ نمره)

فرض کنید ماشینی داریم که هر روز یکی از محصولات G F E D C B A را تولید میکند. میدانیم که این ماشین ۵ سطح عملکرد دارد که هر روز بین این حالتها جابجا میشود. نحوهی انجام این جابجاییها در شکل ۱ مشاهده میشود. در هر کدام از این سطح عملکردها توزیع تولید محصولات متفاوت است.

شكل ١: گراف مربوط به بخش اول قسمت اول

- حال با استفاده از دادههای q۱-train و پیادهسازی الگوریتم Baum─Welch پارامترهای مربوط به HMM را یاد بگیرید. در گزارش خود پارامترهای یاد گرفته شده را به همراه روش پیادهسازی و چالشهایی که برخورد کردید ارائه دهید. (پارامترهای یاد گرفته شده شامل توزیع ابتدایی، ماتریس انتقال و توزیع تولید داده در هر حالت را در فایلهای csv خوانا با نامگذاری مناسب ذخیره کرده و در کنار گزارش خود سابمیت کنید)
- با استفاده از دادههای q۱-test و الگوریتم forward-backward پارامترهای یاد گرفته شده را با بدست آوردن احتمال هر دنباله ارزیابی کنید. در گزارش خود روش پیادهسازی و چالشهایی که برخورد کردید را ارائه دهید. (احتمالهای بدست آمده را در یک فایل csv قرار دهید و در کنار گزارش خود سابمیت کنید)

۲.۱ قسمت دوم (۲۰ نمره)

ماشین قسمت قبل را در نظر بگیرید که روابط سطح عملکرد آن به صورت شکل ۲ تغییر کرده (دقت کنید که احتمالها و بقیهی پارامترها نیز تغییر کردهاند و این HMM جدیدی است)

● حال با استفاده از دادههای q۲-train و q۲-train-hidden-cleaned که شامل هاobservation و هاhidden-state میباشند پارامترهای مدل را تخمین بزنید.

شكل ٢: گراف مربوط به بخش اول قسمت دوم

- با استفاده از مدل تخمین زده شده در قسمت قبل و استفاده از الگوریتم viterbi محتمل ترین دنبالهی حالت مخفی را برای دادههای q۲-test بدست آورید.
- روش تخمین پارامترها، پیادهسازی الگوریتم و چالشهایی که برخورد کردهاید را در گزارش قرار دهید. همچنین فایل تخمینهای خود را در یک csv قرار دهید و در کنار گزارش خود ارسال کنید.

بخش دوم: حذف نویز از تصویر بوسیلهی نمونهبرداری گیبس (۵۰ نمره)

در این بخش از پروژه یک تصویر سیاه و سفید نویزی در اختیار داریم (فایل img_noisy.png). در این بخش میخواهیم به صورت گام به گام و با استفاده از نمونهبرداری گیبس، نویز را از تصویر داده شده حذف کنیم.

۱.۲ گام یک (۱۰ نمره)

الگوریتم نمونهبرداری گیبس را توضیح دهید.

تصویر نویزی را با X نشان میدهیم. هدف این بخش از پروژه بدست آوردن تصویر بدون نویز Y است. هر تصویر را میتوان آرایهای دو بعدی از پیکسلهای بین ۱ ـ و ۱ در نظر گرفت. مقدار ۱ ـ نشاندهندهی رنگ سفید و مقدار ۱ نشاندهندهی رنگ سیاه است.

كاهش نويز را مي توان به صورت يك استنتاج احتمالاتي مدل كرد. از قانون بيز مي دانيم:

$$P(Y|X) = \frac{P(x|Y)P(Y)}{P(X)} \tag{1}$$

برای بدست آوردن Y از تخمین MAP استفاده میکنیم. از آنجا که تصویر نویزی به ما داده شده است بیشینه کردن توزیع پسین در فضای لگارتیمی معادل با کمینه کردن عبارت زیر است:

$$\underset{y}{argmin} - \log P(X|Y) - \log P(Y) \tag{Y}$$

 X_{ij} تصویر را به صورت یک میدان تصادفی مارکوف مدل میکنیم (همانند شکل زیر). در این مدل هر گره تصویر اصلی Y_{ij} به گره متناظر در تصیر نویزی X_{ij} و چهار گره همسایه ی خود (بالا، پایین، چپ و راست) متصل است. بنابراین با داشتن ۵ همسایه ی Y_{ij} میتوانیم توزیع احتمال سیاه بودن آن را بدون در نظر گرههای دیگر مشخص کنیم.

X: noisy pixels Y: "true" pixels

شكل ٣: نحوهي مدلسازي تصوير به صورت ميدان تصادفي ماركوف

همان طور که گفته شد تصمیم داریم مقدار $P(X,Y) = Y|Y_{Neighbours}$ را بیشینه کنیم. فرض کنید سایز تصویر P(X,Y) باشد. توزیع P(X,Y) را به صورت زیر در نظر بگیرید:

$$P(Y,X) = \frac{1}{Z} exp \left(\eta \sum_{i=1}^{N} \sum_{j=1}^{M} x_{ij} y_{ij} + \beta \sum_{i'j' \in N(ij)} y_{ij} y_{i'j'} \right)$$

در رابطه ی بالا η و eta پارامترهای توزیع هستند. Z ضریب نرمال سازی است. همچنین N(i,j) به همسایه های Y_{ij} بجز X_{ij} به اشاره دارد.

۲.۲ گام دوم (۱۰ نمره)

با توجه به توزيع توام بالا ثابت كنيد:

$$P(y_{ij} = 1 | y_{N(ij)}, x_{ij}) = \frac{1}{1 + exp(-Yw_{ij})}$$

$$where \ w_{ij} = \eta x_{ij} + \beta \sum_{N(ij)} y_{N(ij)}$$
(7)

۳.۲ گام سوم (۳۰ نمره)

با استفاده از روابطی که برای تخمین MAP از گام دوم بدست آوردید. نویز را از تصویر داده شده حذف کنید. مقادیر η و β را در ابتدا برابر با ۱ قرار دهید. تمامی پارامترهای دیگر (تعداد نمونههایی که نیاز است و ...) را طوری تنظیم کنید که بهترین کاهش نویز را داشته باشید. دقت کنید که تنها استفاده از کتابخانههای معمول (مثل numpy) مجاز است و نمونهبرداری گیبس را باید خودتان پیادهسازی کنید.

تحویل دادنی های پروژه

- ١. كد كامل هر بخش
- ۲. توضیحات خواسته شده در بخش ها
- ۳. گزارش کد و نحوه حل مسئله (در صورت توضیحات کافی در نوت بوک، نیازی به تکرار آن ها در گزارش نیست)
 - ۴. خروجي كدها