

VBF Higgs to Invisible - Preapproval HIG-14-038, AN-14-243

C. Asawatangtrakuldee, J. Brooke, D. Colling, G. Davies, P. Dunne, A.M. Magnan, A. Nikitenko, Joao Pela

Why Higgs to Invisible?

Experimental motivation

- Current measurements of the 125 GeV Higgs boson are compatible with Standard Model (SM) expectations
 - large uncertainties can still accommodate significant beyond the SM (BSM) properties
- Additional Higgs bosons with exotic decays are not excluded

Theoretical motivation

- ▶ Many BSM theories predict Higgs boson decays to invisible final states:
 - e.g. SUSY, extra dimensions, fourth-generation neutrinos
- ► These final state particles are often dark matter candidates

Talk outline

- For run 1 we had two sets of triggers
- Prompt trigger used for current published result: HIG-13-30
- Parked triggers analysis progress presented today

Overview

- Reminder of prompt analysis
- Why we chose our new analysis strategy
- Details of parked analysis
- Emphasis on changes from established prompt analysis
- Brief look at some other analysis techniques we are investigating

Prompt Analysis

- Single bin counting experiment
- Signal region chosen to eliminate QCD and be above trigger turn ons
- Major backgrounds use data driven estimates:
- $ightharpoonup Z
 ightarrow
 u
 u, W
 ightharpoonup \ell
 u$, QCD
- Minor backgrounds taken from MC:
- \blacktriangleright VV, W γ , $t\bar{t}$, single top
- Expected limit 49% at $m_H = 125$ GeV

Data driven background estimation

W:
$$N_S = N_S^{MC} \frac{N_C^{Data} - N_C^{Bkg}}{N_C^{MC}}$$

Z:
$$N_S^{Z \to \nu \nu} = \left(N_C^{Data} - N_C^{bkg}\right) \cdot \frac{\sigma(Z \to \nu \nu)}{\sigma(Z/\gamma^* \to \mu \mu)} \cdot \frac{\epsilon_S^{ZMC}}{\epsilon_C^{ZMC}}$$

Parked Triggers

- Use already analysed prompt trigger for run A
- One parked trigger for runs B and C, another for run D
- ► All parked and prompt triggers are seeded by L1ETM40
- Parked triggers have looser HLT thresholds
- ► This allows us to look at new regions of phase space and different analysis techniques

HLT

	Run period	MET cut	dijet <i>p_T</i> cut	dijet mass cut
Α		METnoMuons>65 GeV	DiPFJet40	MJJ800
	B&C	N/A	DiJet35	MJJ700
	D	N/A	DiJet30	MJJ700

Software framework strategy

Prompt analysis

- ► Two frameworks: Analyses A and B
- independent ntuples and analysis code

Parked analysis

- ▶ Insufficient manpower to maintain and develop two frameworks
- Moved to one fully developed framework
- New framework is development of analysis B and uses same ntuples
- Synchronised yields in signal and control regions between new framework and old analyses A and B
- Repeated expected limit calculation from HIG-13-030 analysis with the new framework and parked data
- Agrees with HIG-13-030 to within 2%, which is good given rereco, and change of global tag and triggers

Analysis strategy

Initial investigations

- ▶ Planned to define a loose pre-selection and model QCD shape
- Several options for analysis strategy:
- Rectangular cuts and counting experiment
- Rectangular cuts and shape experiment
- MVA and counting experiment
- MVA and shape experiment
- ▶ Due to trigger conditions no appropriate QCD control region found details later

Final plan for parked data

- During QCD studies found new variables which remove QCD
- Signal efficiency significantly higher than prompt selection
- Remaining backgrounds very signal like in variables studied so far
- Opted for cut and count analysis

QCD options tried

Several methods tried to model QCD

Standard MC

- doesn't have enough events

Private VBF+MET enriched QCD MC sample

- Can only enrich in events with real met
- Can't model met from mismeasurement

Data-driven shape using different jet pairs in the event

- Jet kinematics are very biased
- Ordering in p_T and angle have been tried
- Reweighting individual distributions to fix others has been tried

Changes since prompt analysis

Trigger

- ▶ Parked trigger efficiency has been measured including variable correlation
- This allows the trigger turn on region to be used

Signal region

- ► The signal region has been reoptimised for the looser parked triggers
- New region uses new variable has higher signal efficiency with much less QCD

Background estimation

- A top control region has been added
- Minor modifications made to W o au
 u background estimation method
- QCD background estimation method changed
- $lackbox{W}\gamma$ contribution found to be modelled already by our $W o \ell
 u$ Monte Carlo

Trigger efficiency

- ► The variables used in prompt and parked triggers are highly correlated:
- dijet mass, METnoMU, jet 2 p_T
- ► In the prompt analysis we neglected correlations and cut to ensure trigger was > 95% efficient
- For the parked analysis we use a 2D binning in dijet mass and jet 2 p_T
- MJJ: 0,600,800,900,1000,5000
- Jet 2 p_T : 30,40,50,60,1000
- ► In each bin we fit the METnoMU trigger turn on using an error function
- We then combine the turn ons from runs A, BC and D weighted by luminosity and apply this to MC events

Preselection choice

- ► Trigger turn ons and detector acceptance impose the following cuts:
- $\eta_{j1} \cdot \eta_{j2} < 0$, $|\eta_{j1,2}| < 4.7$, jet $1 p_T > 50$ GeV, $\Delta \eta_{jj} > 3.6$, jet $2 p_T > 40$ GeV, METnomu > 90 GeV, $M_{ij} > 800$ GeV
- As in the prompt analysis we also veto events with 'veto' electrons or muons
- QCD in plots is VBF enriched MC doesn't model all QCD
- Poor data-MC agreement from QCD contamination motivates the following additional cuts:
- $\qquad \qquad \frac{\textit{METnomu}}{\sigma_{\textit{METnomu}}} > 3.0, \ \mathsf{Min} \Delta \phi(\textit{all jets p}_T > 30 \ \textit{GeV}, \textit{METnomu}) > 1.0, \ \textit{M}_{jj} > 1000 \ \mathsf{GeV}$

Signal region selection

- Can't model QCD shape so alter cuts to remove most QCD
- Can then tolerate a larger uncertainty on QCD estimation
- Remaining QCD in region $\frac{METnoMU}{\sigma_{METnoMU}} < 4$ and Min $\Delta \phi$ (all jets, METnomu) < 2.0
- Signal contribution also large for some regions of parameter space
- We blind these regions and use as a basis for signal region optimisation

Signal region selection

- ► We optimise by choosing the cut values with the best 95% C.L. expected limit
- Limit calculation details later
- We scanned through jet 2 p_T , dijet mass and Min $\Delta \phi(all\ jets\ , METnomu)$
- Best limit was found for:
 - No additional jet 2 p_T cut
 - $\frac{METnoMU}{\sigma_{METnoMU}} > 4$
- $\mathsf{Min}\Delta\phi(\mathit{all\,jets}, \mathit{METnomu}) > 2.5$
- ► This was used as our "signal region"
- Discrepancy outside signal region is from QCD

Top control region

- ► Top contribution to V+jets control regions is non-negligible
 - up to 16% in W o au
 u
- Use method used for W backgrounds in prompt analysis
- Region: signal region with lepton veto replaced with requirement for 1 tight muon and 1 tight electron
- Very few events in $e\mu$ region so also removed Min $\Delta\phi(\mathit{all\,jets}, \mathit{METnomu})$ cut

ı	N ^{data}	28 ± 5.3(stat.)		
	N_C^{bkg}			
	$N_S^{top\ MC}$	9.6 ± 1.8 (MC stat.)		
$N_C^{top MC}$		42.6 \pm 5.2(MC stat.)		
ı	N_S^{top}	$6.1\pm1.2(extsf{stat.})\pm1.4(extsf{MC stat.})$		

$W o e \nu$

- ► Data-MC agreement good
- ► Same method used as for prompt analysis

$$W \rightarrow \mu \nu$$

- ► Data-MC agreement good
- Same method used as for prompt analysis

$$Z \rightarrow \nu \nu$$

- ► Data-MC agreement good for limited statistics
- ► Same method used as for prompt analysis

$W \to \tau \nu$ control region

- ► For other W+jets backgrounds control region is:
- signal region with lepton veto replaced with a requirement for a single lepton
- For $W \to \tau \nu$ there are not enough events in this region: 2 events for N_C^{Data}
- In prompt analysis we removed the central jet veto (CJV)
- ► CJV no longer used, so we remove the $Min\Delta\phi(all\ jets,\ METnomu)$ cut
- This leads to QCD contamination so we require:
 - $\mathsf{Min}\Delta\phi(\mathit{leading}\,2\,\mathit{jets},\,\mathit{METnomu}) > 1.0$
- We also add an $m_T > 20$ GeV cut on the lepton-MET system to remove QCD contamination

$W \to \tau \nu$ control region

- Estimate error from difference between control region and signal region cuts
- $W \to \mu \nu$ has enough events to see data driven weight variation with Min $\Delta \phi(\textit{all jets}, \textit{METnomu})$ cut
- weight changes by 20% when loosening cut from 2.5 to 1.0.
- We add a 20% systematic on the W
 ightarrow au
 u background

N ^{data}	$88 \pm 9.4 (stat.)$		
N _C ^{bkg}			
NMC	$176.1 \pm 10.5 (MCstat.)$		
NMC	$133.9 \pm 8.0 (MCstat.)$		
$N_S^{\bar{W}}$	$95.7 \pm 12.3(stat.) \pm 10.2(MCstat.)$		

QCD background estimation: Shape region choice

- ► Try modelling QCD shape in preselection region
- ▶ QCD met must come from a jet, use region with low ${\rm Min}\Delta\phi({\it all\ jets}, {\it METnomu})$
- Try inverted region with:
- $\mathsf{Min}\Delta\phi(\mathit{all\,jets},\, \mathit{METnomu}) < 1.0$
- $\mathsf{Min}\Delta\phi(\mathit{leading jets},\,\mathit{METnomu}) > 1.0$
- ► Has good shape agreement with enriched QCD MC
- Use shape taken from requiring:
- $\mathsf{Min}\Delta\phi(\mathit{all\,jets},\, \mathit{METnomu}) < 1.0$
- ► And replacing $Min\Delta\phi(all\ jets,\ METnomu)$ with $Min\Delta\phi(leading\ jets,\ METnomu)$

QCD background estimation: Scale factor

- ► Cannot use ABCD to normalise
- Scale factor shows strong dependence on cut variables
- ► Norm 2 and 3 have large signal contamination
- Norm 3 also has low stats and odd because we forbid jets opposite the met in phi
- ▶ Fit scale factor variation in norm 1
- ► Check consistency in norm 2 and 3

Scale factor variation

Norm 1+2

QCD background estimation: Result and systematics

Region	Factor	Extrapolation	Extrapolation	
		mindphi> 2.5	metsig> 4	
Norm 1	0.22 ± 0.03	0.016 ± 0.009	0.04 ± 0.03	
Norm 1+2	0.15 ± 0.02	0.010 ± 0.003	0.03 ± 0.02	
Norm 1+3	0.41 ± 0.03	0.036 ± 0.062	1.10 ± 0.10	
Norm 2	0.08 ± 0.02	-	0.05±0.04	
Norm 3	1.22 ± 0.15	0.60 ± 0.25	-	

- lacktriangle Good agreement in all Min $\Delta\phi(\mathit{all\,jets},\,\mathit{METnomu})$ extrapolations
- ► Norm 3 agreement in metsig is poor
- As norm 3 has low statistics and is an odd region: drop
- ▶ Use envelope of norm 1 scale factors
- Final prediction: $N_S^{QCD} = 14 \pm 10$
- Expected limit 0.5% better with no QCD, 0.5% worse with double error

Results

Process	Number of events
$Z \rightarrow \nu \nu$	$141.9 \pm 36.4 ({\sf stat.}) \pm 15.0 ({\sf MC stat.})$
W o e u	$59.7 \pm 7.7 ({\sf stat.}) \pm 5.2 ({\sf MC stat.})$
$W o \mu \nu$	$81.2 \pm 5.6 ({\sf stat.}) \pm 5.8 ({\sf MC stat.})$
$W \rightarrow \tau \nu$	$95.7 \pm 12.3 ({\sf stat.}) \pm 10.2 ({\sf MC stat.})$
QCD	14 ± 10
Тор	$6.1\pm1.2(stat.)\pm1.4(MC\;stat.)$
VV	$6.0 \pm 0.6 (MC\;stat.)$
Total bkg.	$405 \pm 39.6 ({\sf stat.}) \pm 19.8 ({\sf MC stat.})$
VBF signal	$313.5 \pm 9.4 (MC\;stat.)$
ggH signal	$22.5\pm6.0 (MC\;stat.)$
Total signal	$336\pm11.1(MC\;stat.)$
	(

Expected limits

- Used Higgs combine package with Asymptotic CLs method
- Performed a single bin counting experiment
- Analysis blind so have expected limits only
- ▶ 95% C.L. Median limit on B(H \rightarrow inv.) for $m_H = 125$ GeV is: 31%
- 1σ band is 23-42%
- 2σ band is 17-57%
- ► Prompt analysis expected limit was 49%
- ► We intend to run other mass points:
- ► 110, 150, 200, 300 and 400 GeV

Uncertainties by decreasing impact Control region statistics $Z \rightarrow \nu \nu - Z/\gamma^* \rightarrow \mu \mu$ extrapolation nb above to be revisited IFS $W \to \tau \nu$ extrapolation MC statistics QCD systematics lepton ID efficiency **JER UFS** luminosity PU weighting theory uncertainties

Uncertainty impact table - impacts larger than 0%

Median expected limit with:				
All Nuisances: 30.8%	No Nuisances: 12.2%			
Nuisance	Removal impact/%	Addition impact/%		
CMS_VBFHinv_zvv_stat:	-12.7%	64.6%		
CMS_VBFHinv_zvv_extrapfacunc:	-7.6%	47.4%		
CMS_scale_j:	-6.3%	19.2%		
CMS_VBFHinv_tau_extrapfacunc:	-4.7%	24.9%		
CMS_VBFHinv_zvv_norm:	-1.9%	18.4%		
CMS_VBFHinv_wtau_stat:	-1.9%	12.0%		
CMS_VBFHinv_wtau_norm:	-1.3%	8.8%		
CMS_VBFHinv_wel_stat:	-1.3%	4.8%		
CMS_VBFHinv_qcd_norm:	-1.3%	4.0%		
CMS_VBFHinv_tau_eff:	-0.6%	5.6%		
CMS_VBFHinv_wmu_norm:	-0.6%	3.2%		
CMS_eff_m:	-0.6%	2.4%		
CMS_VBFHinv_wmu_stat:	-0.6%	2.4%		
CMS_VBFHinv_wel_norm:	-0.6%	2.4%		
CMS_res_j:	-0.6%	0.8%		
CMS_scale_met:	0.0%	0.8%		

BDT Study

- Had a quick look at MVA analysis
- Started from cut based signal region
- Only region with negligible QCD
- ► Best expected limit obtained 30%
- Does not take into account any increased systematic
- Therefore unlikely to be worthwhile
- New variables could make MVA worthwile
- Ability to model QCD would enable looser starting selection which may make MVA worthwhile

Summary

Parked analysis

- ▶ New cut based analysis found with negligible QCD and higher signal efficiency
- Can then accept remaining QCD estimate with large error
- Made possible by looser parked trigger thresholds
- MVA investigated
- Not sufficient benefit without new variables or looser preselection
- Full cut based analysis presented
- Expected limit 31%
- Improved from 49% for prompt analysis

Run 2 prospects

- ▶ Prescaled looser control triggers planned to enable better QCD control region
- ► Will reinvistigate shape analysis and MVA

Backup

VBF enriched QCD MC

 $\triangleright \sum E_{\perp}(\vec{\nu}) > 40 \text{ GeV}$

MC Filter: Dijet Filter

- Select jets with:
 - ▶ $p_{\perp} > 20 \; GeV$
 - ▶ $|\eta| < 5.0$
- From selected jets at least one pair with:
 - ▶ m_{ii} > 700 GeV
 - $\Delta \eta > 3.2$

Į	Sample	Ev. Gen.	Filter Eff.	Events	XS [pb]	Eq. Lumi. $[fb^{-1}]$
	QCD-Pt-80to120	39376000000	0.000049	1614416	1033680	38.09
	QCD-Pt-120to170	7000000000	0.000283	2051000	156293.3	44.79
	QCD-Pt-170to300	1375000000	0.000987	1391500	34138.15	40.28
	QCD-Pt-300to470	80000000	0.002659	207840	1759.549	45.47
	QCD-Pt-470to600	25000000	0.004127	104675	113.8791	219.53

No systematics limits

► Prompt limit with no systematics 16.6%