TD 10 : Processus markovien de sauts (2)

Exercice 1:

On suppose qu'une machine a une durée de vie aléatoire de loi exponentielle de paramètre $\lambda>0$. Lorsqu'elle tombe en panne, elle est remplacée, après un délai de loi exponentielle de paramètre $\mu>0$, par une autre machine identique qui tombera en panne après un temps aléatoire de loi exponentielle de paramètre $\lambda>0$, puis remplacée après un délai aléatoire de loi exponentielle de paramètre $\mu>0$, etc.

On suppose donc les durées de vie $(U_n)_{n\geqslant 0}$ des machines sont *i.i.d.* avec $U_1\sim \mathscr{E}(\lambda)$ et que les délais de remplacement $(V_n)_{n\geqslant 0}$ sont *i.i.d.*, indépendantes des durées de vie, et que $V_1\sim \mathscr{E}(\mu)$.

On note pour tout $t \ge 0$, X_t l'état du système : fonctionnel ou non, avec la convention $X_t = 1$ si une machine fonctionne à l'instant t et $X_t = 0$ sinon (si on est en attente de remplacement).

- 1. Montrer que $(X_t)_{t\geqslant 0}$ est un processus markovien de sauts sur $E=\{0,1\}$, et déterminer son générateur infinitésimal A.
- 2. Montrer que le processus $(X_t)_{t\geqslant 0}$ est irréductible récurrent positif.
- 3. Déterminer la probabilité réversible π pour A et en déduire que π est l'unique probabilité invariante de $(X_t)_{t\geqslant 0}$.
- 4. On pose $p_0(t) = P_t(0, 0)$ et $p_1(t) = P_t(1, 1)$. Ecrire les équations (Forward et Backward) de Kolmogorov et déterminer les équations différentielles satisfaites par p_0 et p_1 .
- 5. Résoudre ces équations différentielles et déterminer $p_0(t)$ et $p_1(t)$ pour tout $t \ge 0$.
- 6. Déterminer $\lim_{t\to\infty} p_0(t)$ et $\lim_{t\to\infty} p_1(t)$.

Exercice 2:

Un chauffeur-routier emprunte l'autoroute. On suppose que sa vitesse peut prendre trois valeurs : $v_1 = 100 \, (\text{km/h})$, $v_2 = 110 \, (\text{km/h})$ et $v_3 = 120 \, (\text{km/h})$. On note V_t sa vitesse à l'instant $t \ge 0$.

Son patron le contacte à des instants $T_1^+ < T_2^+ < \cdots$. Si sa vitesse est v_1 ou v_2 il accélère de 10 (km/h) et si sa vitesse est v_3 il la conserve.

Indépendamment, il croise des gendarmes à des instants $T_1^- < T_2^- < \cdots$. Si sa vitesse est v_2 ou v_3 il ralentit de 10 (km/h) et si sa vitesse est v_1 il la conserve.

On suppose que $(T_n^+)_{n\geqslant 1}$ et $(T_n^-)_{n\geqslant 1}$ sont les temps de sauts de deux processus de Poisson indépendants de paramètres respectifs λ^+ et λ^- .

- 1. On suppose $V_0 = v_1$. Soit $S = \inf\{t \ge 0, V_t = v_2\}$ le premier instant auquel le chauffeur atteint la vitesse v_2 . Quelle est la loi de S?

 Même question en supposant $V_0 = v_3$.
- 2. On suppose $V_0 = v_2$. Soit $\tilde{S} = \inf\{t \ge 0, V_t \ne v_2\}$ le premier instant auquel le chauffeur change sa vitesse. Quelle est la loi de \tilde{S} ?

Montrer que \tilde{S} et $V_{\tilde{S}}$ sont indépendantes et donner la loi de $V_{\tilde{S}}$.

- 3. Montrer que $(V_t)_{t\geqslant 0}$ est un processus markovien de sauts et préciser son générateur infinitésimal A.
- 4. Déterminer la loi stationnaire μ du processus $(V_t)_{t\geqslant 0}.$
- 5. Soit $D_t = \int_0^t V_s ds$ la distance totale parcourue par le chauffeur à l'instant t. Montrer que $\frac{D_t}{t}$ a une limite lorsque t tend vers l'infini.

Exercice 3:

Soit $(a_n)_{n\geqslant 1}$ une suite de réels positifs telle que $\sum_{n\geqslant 1}a_n<+\infty$. On considère un processus markovien de saut

 $(X_t)_{t\geqslant 0}$ à valeurs dans $\mathbf N,$ de générateur infinitésimal A vérifiant

$$\forall k \ge 1$$
, $A(0,k) = a_k$, $A(k,k) = -a_k$, $A(k,k-1) = a_k$

1. Préciser les valeurs A(0,0) et A(k,j) pour $k \ge 1$ et $j \notin \{k,k-1\}$.

- 2. Montrer que la chaîne de Markov induite $(Y_n)_{n\geqslant 0}$ est irréductible récurrente et préciser son noyau de transition Q.
- 3. Pour tout $k \ge 1$, on pose

$$\nu(k) = \sum_{j \geqslant k} a_j.$$

Montrer que l'on peut choisir $\nu(0)$ de sorte que la mesure ν sur **N** soit invariante pour la chaîne $(Y_n)_{n\geqslant 0}$.

- 4. Vérifier que $(Y_n)_{n\geqslant 0}$ est récurrente positive si et seulement si $\sum_{n\geqslant 1} na_n < +\infty$.
- 5. Montrer que le processus $(X_t)_{t\geqslant 0}$ est récurrent et déterminer une mesure invariante π .
- 6. Le processus $(X_t)_{t\geqslant 0}$ est-il récurrent positif?

Exercice 4:

Soit $(X_t)_{t\geqslant 0}$ un processus markovien de saut sur $E=\mathbf{N}$ récurrent positif. On note A son générateur infinitésimal et π sa probabilité invariante. On suppose que

$$A(0,0) = -A(0,1).$$

Soit T_1 le premier instant de saut du processus et on pose pour tout $i \in E$,

$$S_i = \inf \{ t \geqslant T_1, \quad X_t = i \}.$$

- 1. Déterminer A(0,k) pour tout $k \in E$.
- 2. Déterminer $\lambda(0) = \frac{1}{\mathbf{E}_0[T_1]}$ et $Q(0,1) = \mathbf{P}_0[X_{T_1} = 1]$.
- 3. Montrer que

$$\mathbf{E}_0[S_0] = \mathbf{E}_0[S_1] + \mathbf{E}_1[S_0]$$

4. En déduire $\mathbf{E}_1[S_0]$ en fonction de π et de λ .