24.1 The Bellman-Ford Algorithm

The Bellman-Ford algorithm solves the single-source shortest paths problem in more general settings.

- ➤ Unlike Dijkstra's algorithm, it allows edges of negative length. However, it takes much longer time.
- ➤ Unlike Dijkstra's algorithm that adopts the greedy policy, the Bellman-Ford algorithm adopts Dynamic Programming technique, progressively decreasing the estimate of *v*. *d* the distance from *s* to node *v* until the estimate is precise.

The algorithm returns **true** if and only if the graph does not contain any negative cycles that are reachable from the source.

```
Bellman_Ford(G, w, s)
            s.d \leftarrow 0;
     2 s.\pi \leftarrow NIL;
     3
           for all v \in V \setminus \{s\} do
                 v.d \leftarrow \infty;
     5
                 v.\pi \leftarrow NIL;
           for i \leftarrow 1 to |V| - 1 do
     6
                  for each edge (u, v) \in E do
     8
                       Relax(u, v, w);
            for each edge (u, v) \in E do
     9
                  if v.d > u.d + w(u,v) then /* i.e., (u,v) can still be relaxed */
     10
                       return false
     11
     12
            return true.
```

The running time of algorithm Bellman_Ford is O(|V||E|).

This example is from page 652 of the textbook. Here, each iteration relaxes the edges in the order (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y). Figures (b)-(e) show the result after each iteration.

Proof of the correctness.

As usual with relaxation, v.d can only decrease, and if $\delta(s,v)$ is defined (there are no negative cycles reachable from the source), we always have $v.d \geq \delta(s,v)$. A phase or a pass is one iteration of the **for** loop of lines 6–8, where each edge is relaxed once.

Case (1): Suppose there is no negative cycle reachable from *s*.

Consider some shortest path $s \to v_1 \to v_2 \to \cdots \to v_{k-1} \to v_k$. We can assume $k \le |V| - 1$.

- * When (s, v_1) is relaxed in the 1st phase, v_1 . d is set to $\delta(s, v_1)$ if it isn't already.
- * When (v_1, v_2) is relaxed in the 2nd phase, v_2 . d is set to $\delta(s, v_2)$ if it isn't already.
- * • •
- * When (v_{k-1}, v_k) is relaxed in the kth phase, v_k . d is set to $\delta(s, v_k)$ if it isn't already.

So, $v \cdot d = \delta(s, v)$ for all v after |V| - 1 phases, and no edges are still relaxable.

Case (2): Suppose there is a negative cycle reachable from s.

Say the cycle is $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = v_0$.

Consider the situation after |V|-1 phases. Note that at this point, all the v.d values of vertices in the cycle are **finite**.

By contradiction: suppose that none of the edges on the cycle are relaxable. That is,

$$v_i.d \le v_{i-1}.d + w(v_{i-1},v_i)$$
 for $i = 1,...,k$.

Summing this inequality over i = 1, ..., k, we find a contradiction since the sum of $w(v_{i-1}, v_i)$ is negative by the assumption.

Therefore, some edge of the negative cycle is still relaxable.

24.8 Special Shortest Paths Problems

- > SSP in a DAG
- > Special linear programming

24.2 Single-Source Shortest Paths in DAGs

For a directed acyclic graph (DAG), we can relax the edges according to the topological order of their start vertices, from left to right.

```
DAG\_Shortest\_Paths(G, w, s)
            s.d \leftarrow 0;
           s.\pi \leftarrow NIL;
            for all v \in V - \{s\} do
     3
     4
                v.d \leftarrow \infty;
                 v.\pi \leftarrow NIL;
     5
            determine the topological order of each vertex v \in V, using the DFS technique;
     6
            for each vertex u in increasing topological order do
     8
                 for v \in G. Adj[u] do
     9
                      Relax(u, v, w).
```

The time complexity of algorithm DAG_Shortest_Paths is O(|V| + |E|).

This example is from page 656 of our textbook.

24.2 Shortest Paths in DAGs (continued)

Proof of the correctness.

Consider any shortest path $s \to v_1 \to v_2 \to \cdots \to v_{k-1} \to v_k$. The algorithm relaxes the edges from left to right.

- ▶ When (s, v_1) is relaxed, $v_1.d$ is set to $\delta(s, v_1)$ (note that it was ∞ before this point).
- \blacktriangleright When (v_1, v_2) is relaxed, v_2 . d is set to $\delta(s, v_2)$ if it isn't already.
- **>** ...
- When (v_{k-1}, v_k) is relaxed, v_k . d is set to $\delta(s, v_k)$ if it isn't already.

So $v.d = \delta(s, v)$ for all v by the time all edges are relaxed.

24.4 Difference constraints

Suppose we have to schedule n tasks T_1, T_2, \ldots, T_n , and we have a set of constraints like these:

 T_3 must be done at least 15 minutes after T_7

 T_2 must be done before T_9

 T_2 must be done at least 5 minutes before T_4

 T_5 must be done at most 10 minutes after T_1

: We wish to know if this arrangement is possible, and if so, find a schedule.

If T_i is scheduled at time x_i , then the above constraints can be written as:

$$x_7 - x_3 \le -15$$

$$x_9 - x_2 \le 0$$

$$x_2 - x_4 \le -5$$

$$x_5 - x_1 \le 10$$

24.4 Difference constraints (continued)

In general, we have real variables x_1, x_2, \dots, x_n , and some numbers of constraints of the form $x_i - x_i \le b_k$.

We will define a weighted graph G = (V, E, w), called the constraint graph.

There are n + 1 vertices $V = \{v_0, v_1, v_2, ..., v_n\}$.

There is a directed edge (v_0, v_i) of length 0 from v_0 to v_i for all i with i = 1, 2, ..., n.

For each constraint $x_j - x_i \le b_k$, there is a directed edge (v_i, v_j) from v_i to v_j with length b_k .

Interesting fact: If the constraint graph has a negative cycle, there is no solution. Otherwise, an example of a solution is

$$x_i = \delta(v_0, v_i)$$
 for $i = 1, 2, ..., n$.

Is the solution is unique?

24.4 Example system of difference constraints

$$x_1 - x_2 \le 0,$$
 (1)
 $x_1 - x_5 \le -1,$ (2)
 $x_2 - x_5 \le 1,$ (3)
 $x_3 - x_1 \le 5,$ (4)
 $x_4 - x_1 \le 4,$ (5)
 $x_4 - x_3 \le -1,$ (6)
 $x_5 - x_3 \le -3,$ (7)
 $x_5 - x_4 \le -3.$ (8)

24.4 Example constraint graph and solution

