$$K/L$$
, L/F separable K/L , L/F separable.

F[
$$\chi_1, \dots, \chi_n$$
] S_n by $\sigma f(\chi_1, \dots, \chi_n) = f(\chi_{\sigma(n)}, \dots, \chi_{\sigma(n)})$
 f is symmetric if $S_n \cdot f = \{f\}$.

Theorem: For any symmetric polynomial
$$f$$
,
$$f = g(S_1,...,S_n) \text{ where } g \in F[y_1,...,y_n].$$

Examples

(2)
$$(\chi_1 - \chi_2)^2 = S_1^2 - 4S_2$$

$$(3) \quad (\chi_1 - \chi_2) (\chi_1 - \chi_3) (\chi_2 - \chi_3)$$

Consider $K = F(x_1,...,x_n) - ref f_ns in x_1,...,x_n$.

Let $L = F(s_1, ..., s_n) \subseteq K$.

Let I be the subfield of symmetric rational fins.

Then $L \subseteq \widetilde{L}$. $S_n \subset K$, $\widetilde{L} = Fix(S_n)$.

So
$$\left(K:\widehat{\mathcal{L}}\right] = \left|S_n\right| = n!$$

But x, ..., xn are the voots of the pol-1

$$f = \frac{1}{\sqrt{-\chi_1}} \left(\frac{1}{\sqrt{-\chi_2}} \cdots \left(\frac{1}{\sqrt{-\chi_n}} \right) = \frac{1}{\sqrt{-\chi_1}} - \frac{1}{\sqrt{-\chi_1}} + \frac{1}{\sqrt{-\chi_1}} + \frac{1}{\sqrt{-\chi_1}} - \frac{1}{\sqrt{-\chi_1}} + \frac$$

So k is the spl. field of f and [K:L] = n!

$$\leq n!$$
 $\begin{pmatrix} k \\ 1 \\ 1 \end{pmatrix}$ $must be 1, So $\tilde{L} = L$.$

So for any
$$h \in \mathcal{L}$$
, $h = g(S_1,...,S_n)$
(symm, rat'l firs) for some $g \in F(y_1,...,y_n)$.

Corollary:
$$Gal(K/L) = Gal(K/L) \cong S_n$$
.
 $Gal(f)$.

f is "general polynomial of degree n"

$$(GCK, L=Fix(G) \Rightarrow Gal(K/L)=G)$$

Solutions of polynomial eyns in Radicals

Det a Radical Extension is F(Ja)/F Borsone a & F

(aka root extension, simple radical extension)

Def a cyclic extension is a Galois extension whose Galois group is Cyclic.

Theorem Assume that $\omega \in F$, where ω is a primitive root of degree n. (all voots of unity are in F, χ^n-1 splits).

(Froots of unity)

Then my radical extension $F(\nabla a)/F$ is cyclic.

post conjugates of $\alpha = \sqrt{\alpha}$ are $\omega^{\kappa} \alpha$ for some κ , all one in $F(\alpha)$. If $f \in Gal(F(\alpha)/F)$, $(f = f)(\alpha) = \omega^{\kappa} \alpha$ for some κ , $(f_{\kappa} \cdot f_{\varrho})(\alpha) = \omega^{\varrho}(\omega^{\kappa} \alpha) = \omega^{\varrho + \kappa} \alpha$, So $f_{\kappa} \longleftrightarrow \kappa$ is an injetive hom-sm $Gal(F(\alpha)/F) \cong Z_n$, So $Gal(F(\alpha)/F)$ is cyclic of order n.

Somewhat
Conversely Assume that $w \in F$ where w is a primitive
root of unity of degree n ($w \neq 1 \ \forall \ k < n$).

Then \forall cyclic extension K/F of Legres V, K/F is a radical extension, K = F(R) where $x \in F$.

Proof Let K/F be cyclic, let $(fall \ K/F) = \langle \varphi \rangle$, $\varphi^n = 1$. Lagrange resolvent: $\forall \beta \in K$, Let $(\beta, \omega) = \beta + \omega \varphi(\beta) + \cdots + \omega^{n-1} \varphi^{n-1}(\beta)$. Then $\varphi((\beta, \omega)) = \varphi(\beta) + \omega \varphi^2(\beta) + \cdots + \omega^{n-1} \varphi^n(\beta)$ $= \omega^{-1}(\beta, \omega)$.

> So $\varphi((\beta,\omega)^n) = \omega^n(\beta,\omega)^n = (\beta,\omega)^n$, So $(\beta,\omega)^n$ is fixed by $(\varphi) = Gal$. So $(\beta,\omega)^n \in F$. Also, $\forall \kappa < n$, $\varphi^{\kappa}((\beta,\omega)) = \omega^{\kappa}(\beta,\omega) \neq (\beta,\omega)$. So (β,ω) is not fixed by any montrivial element of Gal, if $(\beta,\omega) \neq 0$.

Lemm: $\exists \beta \in K \text{ s.t. } (\beta, \omega) \neq 0.$

So deg $(\beta, \omega) = n$, let $\alpha = (\beta, \omega)$, then $K = F(\alpha)$, $\alpha^n \in F$.

 \int

proof of lema: 1, 4, ..., 4ⁿ⁻¹ - distinct aut-smo

Fact: tuy are linearly independent.

So V coefficients ao,..., an-,

there is some & S.t.

 $\alpha_0 \beta + \alpha_1 \varphi(\beta) + \cdots + \alpha_{n-1} \varphi^{n-1}(\beta) \neq 0.$

In particular, take a= w".

In the proof, we reeded w* # 1 VK<n.

So we need ther FX n.

So we henceforth assume charF=0
or charF> all degrees that will appear.

If F contains all roots of 1,
trun radical extensions = cyclic extensions.

Defor Call an extension

polyradical if it is a

tower of radical extensions

K2 John +25a

Defor Call an extension polycyclic

if it is contained in a

Galoi's extension whose Galois

froop is polycyclic:

 $1 \leq G_1 \leq G_2 \leq \dots \leq G_n = G_{n}$ Sit. $\forall i, G_i / G_{i-1}$ is cyclic.

Fact: Finite Groups are polycyclic iff try are solvable.