1 Models and Entailment in Propositional Logic

- 1. For each statement below, determine whether the statement is true or false by building the complete model table.
 - (a) $A \wedge \neg B \models A \vee B$
 - (b) $A \vee B \models A \wedge \neg B$
 - (c) $A \Leftrightarrow B \models A \Rightarrow B$
 - (d) $(A \Leftrightarrow B) \Leftrightarrow C \models A \lor \neg B \lor \neg C$
 - (e) $(\neg A \land B) \land (A \Rightarrow B)$ is satisfiable
 - (f) $(\neg A \land B) \land (A \Leftrightarrow B)$ is satisfiable

$\alpha \models \beta$ iff in every model where α is true, β is also true.

- It is not raining (¬P)
- It is raining and I am indoors $(P \land Q)$
- ullet It is raining **or** I am indoors $(P \lor Q)$
- ullet If it is raining, then I am indoors (P
 ightarrow Q)
- ullet If I am indoors, then it is raining (Q
 ightarrow P)
- ullet I am indoors **if and only if** it is raining $(P\leftrightarrow Q)$

Α	В	С	¬ A	¬В	¬С	A ^ ¬B	¬A ^ B	AvB	A→B	A ←→ B	(A←→B) ←→ C	A v ¬B v ¬C
1	1	1	0	0	0	0	0	1	1	1	1	1
1	1	0	0	0	1	0	0	1	1	1	0	1
1	0	1	0	1	0	1	0	1	0	0	0	1
1	0	0	0	1	1	1	0	1	0	0	0	1
0	1	1	1	0	0	0	1	1	0	0	0	0
0	1	0	1	0	1	0	1	1	0	0	0	1
0	0	1	1	1	0	0	0	0	0	1	1	1
0	0	0	1	1	1	0	0	0	0	1	0	1

- a) True
- b) False
- c) False
- d) True

Et uttrykk er "satisfiable" dersom det finnes en kombinasjon som gir uttrykket verdien True.

e) For at uttrykket (¬A ^ B) skal være sant, må A være 0 (A=0), mens B må være 1 (B=1). Det innebærer at uttrykket (A → B) ikke stemmer siden dette uttrykket krever A=1. (Videre refleksjoner: Kan tenke seg at A=0 og B=1 kan fungere)

Not satisfiable

- f) For at uttrykket (¬A ^ B) skal være sant, må A være 0 (A=0), mens B må være 1 (B=1). Dette vil være umulig å forenes med uttrykket (A ← → B) Da dette forutsetter at A=B.

 Not satisfiable
- 2. Consider a logical knowledge base with 100 variables, $A_1, A_2, \ldots, A_{100}$. This will have $Q=2^{100}$ possible models. For each logical sentence below, give the number of models that satisfy it.

Feel free to express your answer as a fraction of Q (without writing out the whole number $1267650600228229401496703205376 = 2^{100}$) or to use other symbols to represent large numbers.

Example: The logical sentence A_1 will be satisfied by $\frac{1}{2}Q = \frac{1}{2}2^{100} = 2^{99}$ models.

- (a) $A_{31} \wedge \neg A_{76}$
- (b) $A_{44} \wedge A_{49} \wedge A_{78}$
- (c) $A_{44} \vee A_{49} \vee A_{78}$
- (d) $A_{70} \Rightarrow \neg A_{92}$
- (e) $(A_7 \Leftrightarrow A_{72}) \wedge (A_{83} \Leftrightarrow A_{84})$
- (f) $\neg A_9 \land \neg A_{19} \land A_{37} \land A_{50} \land A_{68} \land A_{73} \land A_{79} \land A_{81}$

(a)
$$1/2*1/2*Q=Q/4=298$$

(b)
$$\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{Q}{8} = 2^{97}$$

(c)
$$(\frac{1}{2} + \frac{1}{2} * \frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2}) * Q = \frac{7}{8} * Q = 7 * 2^{97}$$

(d)
$$(1/2 + 1/2 * 1/2) * Q = 3/4Q = 3 * 2^{98}$$

(e)
$$((1/2*1/2+1/2*1/2)*(1/2*1/2+1/2*1/2)) = (2/4*2/4)Q = Q/4 = 298$$

(f)
$$\frac{1}{2} * \frac{1}{2} *$$

2 Resolution in Propositional Logic

- 1. Convert each of the following sentences to Conjunctive Normal Form (CNF).
 - (a) $\neg A \lor (B \land C)$
 - (b) $\neg (A \Rightarrow B) \land \neg (C \Rightarrow D)$
 - (c) $\neg (A \Rightarrow B) \lor \neg (C \Rightarrow D)$
 - (d) $(A \Rightarrow B) \Leftrightarrow C$
- 2. Consider the following Knowledge Base (KB):
 - $(X \land \neg Y) \Rightarrow \neg B$
 - $\bullet \ \neg X \Rightarrow C$
 - $B \wedge \neg Y$
 - $A \Rightarrow \neg C$

Use resolution to show that $KB \models \neg A$

3. Do exercise 7.17 / 6.18 from the textboox ("Consider the following sentence..."), but with the following the sentence instead of the one in the textbook:

$$((Food \lor Drinks) \Rightarrow Party) \Rightarrow (\neg Party \Rightarrow \neg Food)$$

CNF: Logical statements without $^{\land}$, \exists , \forall , \rightarrow

1.

b.
$$\neg (A \rightarrow B)^{\land} \neg (C \rightarrow D)$$

CNF:

$$\neg(\neg A \lor B) \land \neg(\neg C \lor D)$$

 $(A \lor \neg B) \land (C \lor \neg D)$

c.
$$\neg (A \rightarrow B) \vee \neg (C \rightarrow D)$$

CNF:

$$\neg(\neg A \lor B) \lor \neg(\neg C \lor D)$$

$$(A \lor \neg(\neg C \lor D)) \lor (\neg B \lor \neg(\neg C \lor D))$$

$$(\mathsf{A} \ \mathsf{v} \ \mathsf{C}) \ \mathsf{v} \ (\mathsf{A} \ \mathsf{v} \ \neg D) \mathsf{v} \ (\neg \mathsf{B} \ \mathsf{v} \ \mathsf{C}) \ \mathsf{v} \ (\neg \mathsf{B} \ \mathsf{v} \ \neg \mathsf{D})$$

 $\mathsf{d.} \quad (A \to B) \leftrightarrow \mathsf{C}$

CNF:

$$(\neg A \lor B) \lor \neg C \land C \lor \neg (\neg A \lor B)$$

 $(\neg A \lor B \lor \neg C) \land (A \lor \neg B \lor C)$

2.

3 Representations in First-Order Logic

- Consider a first-order logical knowledge base that describes worlds containing movies, actors, directors and characters. The vocabulary contains the following symbols:
 - PlayedInMovie(a,m): predicate. Actor/person a played in the movie m
 - PlayedCharacter(a,c): predicate. Actor/person a played character c
 - CharacterInMovie(c,m): predicate. Character c is in the movie m.
 - Directed(p,m): person p directed movie m.
 - Constants related to the name of the movie, person or character with obvious meaning (to simplify you may use the surname or abbreviation).

Express the following statements in First-Order Logic:

- (a) The character "Batman" was played by Christian Bale, George Clooney and Val Kilmer.
- (b) Heath Ledger and Christian Bale did not play the same characters.
- (c) Christian Bale played in all "Batman" movies directed by Christopher Nolan (*tip*: note that in this case Batman is a character of the movie, not the name of the movie).
- (d) "The Joker" and "Batman" are characters that appear together in some movies.
- (e) Kevin Costner directed and starred in the same movie.
- (f) George Clooney and Tarantino never played in the same movie and Tarantino never directed a film that George Clooney played.
- (g) Uma Thurman played a character in some movies directed by Tarantino.

Symbols: ∃:There exist an x such that...or for some x...

- (a) PlayedCharacter(Bale,Batman) ^ PlayedCharacter(Clooney,Batman) ^ PlayedCharacter(Kilmer, Batman)
- (b) $\neg \exists c$ PlayedCharacter(Ledger,c)=PlayedCharacter(Bale,c)
- (c) $\forall m \ Directed(Nolan, m) \rightarrow PlayedCharacter(Bale, Batman)$
- (d) ¬∀m CharacterInMovie(Batman, m)^CharacterInMovie(Joker, m)
- (e) ∃*m Directed*(Costner, m) ^ PlayedInMovie(Costner, m)
- (f) ¬∃m PlayedInMovie(Clooney, m) ^ PlayedInMovie(Tarantino, m) v Directed(Tarantino, m) ^ PlayedInMovie(Clooney, m)
- (g) $\exists m \ Directed(Tarantino, m) \land PlayedCharacter(Thurman, m)$
- 2. Arithmetic assertions can be written using FOL. Use the predicates (<, \leq , \neq ,=), usual arithmetic operations as function symbol (+,-,x,/), biconditionals to create new predicates, and integer number constants to express the following statements in FOL:
 - (a) An integer number x is divisible by y if there is some integer z less than x such that $x = z \times y$ (in other words, define the predicate Divisible(x, y)).
 - (b) A number is even if and only if it is divisible by 2 (define the predicate Even(x)).
 - (c) The result of summing an even number with 1 is an odd number (define the predicate Odd(x)).
 - (d) A prime number is divisible only by itself.
 - (a) Devisible(x,y)= $\frac{x}{y}$ | $\exists z \ z < x \land x = z \times y$
 - (b) Even(x) \leftrightarrow xmod2=0
 - (c) $Odd(x) \leftrightarrow xmod2=1$
 - (d) Prime(x) $\leftrightarrow \neg \exists y \ Divisible(x, y) \ | y \neq x$