## Brief Introduction to GNN

Jingru Li 04.21

### Content

- Introduction
- Models
  - Graph Neural networks
  - Variants of GNN
  - General Frameworks
- Applications
- Open Problems
- Conclusion

### Introduction

- A unique non-Euclidean data structure of machine learning
- Deep Learning Method operated on graph domain
- Motivation:
  - CNN
  - Graph Embedding



Fig. 1. Left: image in Euclidean space. Right: graph in non-Euclidean space

## Introduction – Why GNN is worthy

Firstly, the standard neural networks like CNNs and RNNs cannot handle the graph input properly in that they stack the feature of nodes by a specific order.

Secondly, an edge in a graph represents the information of dependency between two nodes.

Thirdly, reasoning is a very important research topic for high-level artificial intelligence and the reasoning process in human brain is almost based on the graph which is extracted from daily experience.

## Model – GNN[1]

### Target of GNN:

- Learn a state embedding  $\mathbf{h}_v$  containing info of neighbor.

#### Local learning:

$$\mathbf{h}_v = f(\mathbf{x}_v, \mathbf{x}_{co[v]}, \mathbf{h}_{ne[v]}, \mathbf{x}_{ne[v]})$$
 (1)

$$\mathbf{o}_v = g(\mathbf{h}_v, \mathbf{x}_v) \tag{2}$$

#### Global learning:

$$\mathbf{H} = F(\mathbf{H}, \mathbf{X}) \tag{3}$$

$$O = G(H, X_N) \tag{4}$$

TABLE 1 Notations used in this paper.

| Notations                                      | Descriptions                              |  |  |
|------------------------------------------------|-------------------------------------------|--|--|
| $\mathbb{R}^m$                                 | m-dimensional Euclidean space             |  |  |
| $a, \mathbf{a}, \mathbf{A}$ $\mathbf{A}^T$     | Scalar, vector, matrix                    |  |  |
| $\mathbf{A}^T$                                 | Matrix transpose                          |  |  |
| $\mathbf{I}_N$                                 | Identity matrix of dimension $N$          |  |  |
| $g_{\theta} \star x$ $N$                       | Convolution of $g_{\theta}$ and $x$       |  |  |
|                                                | Number of nodes in the graph              |  |  |
| $N^v$                                          | Number of nodes in the graph              |  |  |
| $N^e$                                          | Number of edges in the graph              |  |  |
| $\mathcal{N}_v$                                | Neighborhood set of node v                |  |  |
| $\mathbf{a}_v^t$                               | Vector a of node $v$ at time step $t$     |  |  |
| $\mathbf{h}_v$                                 | Hidden state of node $v$                  |  |  |
| $\mathbf{h}_v^t$                               | Hidden state of node $v$ at time step $t$ |  |  |
| $\mathbf{e}_{vw}$                              | Features of edge from node $v$ to $w$     |  |  |
| $\mathbf{e}_k$                                 | Features of edge with label $k$           |  |  |
| $\mathbf{o}_v^t$ $\mathbf{W}^i, \mathbf{U}^i,$ | Output of node v                          |  |  |
| $\mathbf{W}^i, \mathbf{U}^i,$                  | Matrices for computing i, o,              |  |  |
| $\mathbf{W}^{o}, \mathbf{U}^{o},$              | Matrices for computing 1, 0,              |  |  |
| $\mathbf{b}^{i},\mathbf{b}^{o},$               | Vectors for computing i, o,               |  |  |
| σ                                              | The logistic sigmoid function             |  |  |
| ρ                                              | An alternative non-linear function        |  |  |
| tanh                                           | The hyperbolic tangent function           |  |  |
| LeakyReLU                                      | The LeakyReLU function                    |  |  |
| ·                                              | Element-wise multiplication operation     |  |  |
|                                                | Vector concatenation                      |  |  |





(c) Propagation Steps

### Directed Graph(ADGPM[2])

$$\mathbf{H}^{t} = \sigma(\mathbf{D}_{p}^{-1}\mathbf{A}_{p}\sigma(\mathbf{D}_{c}^{-1}\mathbf{A}_{c}\mathbf{H}^{t-1}\mathbf{W}_{c})\mathbf{W}_{p})$$
(7)

where  $\mathbf{D}_p^{-1}\mathbf{A}_p$ ,  $\mathbf{D}_c^{-1}\mathbf{A}_c$  are the normalized adjacency matrix for parents and children respectively.

### Heterogeneous Graphs

Concept of metapath into the propagation on the heterogeneous graph.



(a) Graph Types

Graphs with Edge Information

Convert the graph to a bipartite graph(G2S[3])

$$\mathbf{h}_v^t = \rho(\frac{1}{|\mathcal{N}_v|} \sum_{u \in \mathcal{N}_v} \mathbf{W}_r(\mathbf{r}_v^t \odot \mathbf{h}_u^{t-1}) + \mathbf{b}_r)$$

Adapt different weight matrices for the propagation on different kinds of edges.(r-GCN[4])

$$\mathbf{W}_r = \sum_{1}^{B} a_{rb} \mathbf{V}_b$$

| Name                    | Variant                              | Aggregator                                                                                                                                         | Updater                                                                                                                                   |
|-------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                         | ChebNet                              | $\mathbf{N}_k = \mathbf{T}_k(	ilde{\mathbf{L}})\mathbf{X}$                                                                                         | $\mathbf{H} = \sum_{k=0}^{K} \mathbf{N}_k \mathbf{\Theta}_k$                                                                              |
| Spectral<br>Methods     | 1 <sup>st</sup> -order<br>model      | $egin{aligned} \mathbf{N}_0 &= \mathbf{X} \ \mathbf{N}_1 &= \mathbf{D}^{-rac{1}{2}} \mathbf{A} \mathbf{D}^{-rac{1}{2}} \mathbf{X} \end{aligned}$ | $\mathbf{H} = \mathbf{N}_0 \mathbf{\Theta}_0 + \mathbf{N}_1 \mathbf{\Theta}_1$                                                            |
|                         | Single<br>parameter                  | $\mathbf{N} = (\mathbf{I}_N + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}) \mathbf{X}$                                          | $\mathbf{H} = \mathbf{N}\mathbf{\Theta}$                                                                                                  |
|                         | GCN                                  | $\mathbf{N} = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X}$                                   | $\mathbf{H} = \mathbf{N}\mathbf{\Theta}$                                                                                                  |
|                         | Convolutional<br>networks in<br>[33] | $\mathbf{h}_{\mathcal{N}_v}^t = \mathbf{h}_v^{t-1} + \sum_{k=1}^{\mathcal{N}_v} \mathbf{h}_k^{t-1}$                                                | $\mathbf{h}_v^t = \sigma(\mathbf{h}_{\mathcal{N}_v}^t \mathbf{W}_L^{\mathcal{N}_v})$                                                      |
| Non-spectral<br>Methods | DCNN                                 | Node classification:<br>$N = P^*X$                                                                                                                 | $\mathbf{H} = f(\mathbf{W}^c \odot \mathbf{N})$                                                                                           |
|                         | DCIVIV                               | Graph classification:<br>$\mathbf{N} = 1_N^T \mathbf{P}^* \mathbf{X} / N$                                                                          | 11 – J (** © 14)                                                                                                                          |
|                         | GraphSAGE                            | $\mathbf{h}_{\mathcal{N}_v}^t = \text{AGGREGATE}_t \left( \left\{ \mathbf{h}_u^{t-1}, \forall u \in \mathcal{N}_v \right\} \right)$                | $\mathbf{h}_{v}^{t} = \sigma \left( \mathbf{W}^{t} \cdot \left[ \mathbf{h}_{v}^{t-1} \  \mathbf{h}_{\mathcal{N}_{v}}^{t} \right] \right)$ |

| Graph<br>Attention<br>Networks      | GAT  | $\alpha_{vk} = \frac{\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{T}[\mathbf{W}\mathbf{h}_{v}  \mathbf{W}\mathbf{h}_{k}]\right)\right)}{\sum_{j \in \mathcal{N}_{v}} \exp\left(\text{LeakyReLU}\left(\mathbf{a}^{T}[\mathbf{W}\mathbf{h}_{v}  \mathbf{W}\mathbf{h}_{j}]\right)\right)}$ $\mathbf{h}_{\mathcal{N}_{v}}^{t} = \sigma\left(\sum_{k \in \mathcal{N}_{v}} \alpha_{vk} \mathbf{W}\mathbf{h}_{k}\right)$ Multi-head concatenation: $\mathbf{h}_{\mathcal{N}_{v}}^{t} = \left\ _{m=1}^{M} \sigma\left(\sum_{k \in \mathcal{N}_{v}} \alpha_{vk}^{m} \mathbf{W}^{m} \mathbf{h}_{k}\right)\right.$ Multi-head average: $\mathbf{h}_{\mathcal{N}_{v}}^{t} = \sigma\left(\frac{1}{M} \sum_{m=1}^{M} \sum_{k \in \mathcal{N}_{v}} \alpha_{vk}^{m} \mathbf{W}^{m} \mathbf{h}_{k}\right)$ | $\mathbf{h}_v^t = \mathbf{h}_{\mathcal{N}_v}^t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gated Graph<br>Neural Net-<br>works | GGNN | $\mathbf{h}_{\mathcal{N}_v}^t = \sum_{k \in \mathcal{N}_v} \mathbf{h}_k^{t-1} + \mathbf{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{z}_{v}^{t} = \sigma(\mathbf{W}^{z} \mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{U}^{z} \mathbf{h}_{v}^{t-1})$ $\mathbf{r}_{v}^{t} = \sigma(\mathbf{W}^{r} \mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{U}^{r} \mathbf{h}_{v}^{t-1})$ $\widetilde{\mathbf{h}_{v}^{t}} = \tanh(\mathbf{W} \mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{U}(\mathbf{r}_{v}^{t} \odot \mathbf{h}_{v}^{t-1}))$ $\mathbf{h}_{v}^{t} = (1 - \mathbf{z}_{v}^{t}) \odot \mathbf{h}_{v}^{t-1} + \mathbf{z}_{v}^{t} \odot \widetilde{\mathbf{h}_{v}^{t}}$ |

| Graph LSTM | Tree LSTM<br>(Child sum) | $\mathbf{h}_{\mathcal{N}_v}^t = \sum_{k \in \mathcal{N}_v} \mathbf{h}_k^{t-1}$                                                                                                                                                                                                                                                                                                                   | $\begin{aligned} \mathbf{i}_{v}^{t} &= \sigma(\mathbf{W}^{i}\mathbf{x}_{v}^{t} + \mathbf{U}^{i}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{b}^{i}) \\ \mathbf{f}_{vk}^{t} &= \sigma\left(\mathbf{W}^{f}\mathbf{x}_{v}^{t} + \mathbf{U}^{f}\mathbf{h}_{k}^{t-1} + \mathbf{b}^{f}\right) \\ \mathbf{o}_{v}^{t} &= \sigma(\mathbf{W}^{o}\mathbf{x}_{v}^{t} + \mathbf{U}^{o}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{b}^{o}) \\ \mathbf{u}_{v}^{t} &= \tanh(\mathbf{W}^{u}\mathbf{x}_{v}^{t} + \mathbf{U}^{u}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{b}^{u}) \\ \mathbf{c}_{v}^{t} &= \mathbf{i}_{v}^{t} \odot \mathbf{u}_{v}^{t} + \sum_{k \in \mathcal{N}_{v}} \mathbf{f}_{vk}^{t} \odot \mathbf{c}_{k}^{t-1} \\ \mathbf{h}_{v}^{t} &= \mathbf{o}_{v}^{t} \odot \tanh(\mathbf{c}_{v}^{t}) \end{aligned}$ |
|------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Tree LSTM<br>(N-ary)     | $\begin{aligned} \mathbf{h}_{\mathcal{N}_v}^{ti} &= \sum_{l=1}^K \mathbf{U}_l^i \mathbf{h}_{vl}^{t-1} \\ \mathbf{h}_{\mathcal{N}_vk}^{tf} &= \sum_{l=1}^K \mathbf{U}_{kl}^f \mathbf{h}_{vl}^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{to} &= \sum_{l=1}^K \mathbf{U}_l^o \mathbf{h}_{vl}^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{tu} &= \sum_{l=1}^K \mathbf{U}_l^u \mathbf{h}_{vl}^{t-1} \end{aligned}$ | $\begin{aligned} \mathbf{i}_{v}^{t} &= \sigma(\mathbf{W}^{i} \mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{ti} + \mathbf{b}^{i}) \\ \mathbf{f}_{vk}^{t} &= \sigma(\mathbf{W}^{f} \mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}k}^{tf} + \mathbf{b}^{f}) \\ \mathbf{o}_{v}^{t} &= \sigma(\mathbf{W}^{o} \mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{to} + \mathbf{b}^{o}) \\ \mathbf{u}_{v}^{t} &= \tanh(\mathbf{W}^{u} \mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{tu} + \mathbf{b}^{u}) \\ \mathbf{c}_{v}^{t} &= \mathbf{i}_{v}^{t} \odot \mathbf{u}_{v}^{t} + \sum_{l=1}^{K} \mathbf{f}_{vl}^{t} \odot \mathbf{c}_{vl}^{t-1} \\ \mathbf{h}_{v}^{t} &= \mathbf{o}_{v}^{t} \odot \tanh(\mathbf{c}_{v}^{t}) \end{aligned}$                                                            |
|            | Graph LSTM in [34]       | $\begin{aligned} \mathbf{h}_{\mathcal{N}_v}^{ti} &= \sum_{k \in \mathcal{N}_v} \mathbf{U}_{m(v,k)}^i \mathbf{h}_k^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{to} &= \sum_{k \in \mathcal{N}_v} \mathbf{U}_{m(v,k)}^o \mathbf{h}_k^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{tu} &= \sum_{k \in \mathcal{N}_v} \mathbf{U}_{m(v,k)}^u \mathbf{h}_k^{t-1} \end{aligned}$                                       | $\begin{aligned} \mathbf{i}_{v}^{t} &= \sigma(\mathbf{W}^{i}\mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{ti} + \mathbf{b}^{i}) \\ \mathbf{f}_{vk}^{t} &= \sigma(\mathbf{W}^{f}\mathbf{x}_{v}^{t} + \mathbf{U}_{m(v,k)}^{f}\mathbf{h}_{k}^{t-1} + \mathbf{b}^{f}) \\ \mathbf{o}_{v}^{t} &= \sigma(\mathbf{W}^{o}\mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{to} + \mathbf{b}^{o}) \\ \mathbf{u}_{v}^{t} &= \tanh(\mathbf{W}^{u}\mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{tu} + \mathbf{b}^{u}) \\ \mathbf{c}_{v}^{t} &= \mathbf{i}_{v}^{t} \odot \mathbf{u}_{v}^{t} + \sum_{k \in \mathcal{N}_{v}} \mathbf{f}_{vk}^{t} \odot \mathbf{c}_{k}^{t-1} \\ \mathbf{h}_{v}^{t} &= \mathbf{o}_{v}^{t} \odot \tanh(\mathbf{c}_{v}^{t}) \end{aligned}$                                          |

## Model Example - Convolutions

$$\mathbf{g}_{\theta} \star \mathbf{x} = \mathbf{U}\mathbf{g}_{\theta}(\mathbf{\Lambda})\mathbf{U}^{T}\mathbf{x}$$

$$\mathbf{L} = \mathbf{I}_{N} - \mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{T}$$

#### For ChebNet[5]:

$$\mathbf{g}_{ heta} \star \mathbf{x} pprox \sum_{k=0}^{K} \theta_k \mathbf{T}_k(\tilde{\mathbf{L}}) \mathbf{x}$$

#### For GCN[6]:

$$\mathbf{g}_{\theta} \star \mathbf{x} \approx \theta \left( \mathbf{I}_{N} + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \right) \mathbf{x}$$

For Non-spectral methods, they define convolutions directly on the graph, operating on spatially close neighbors

## Model Example – Attention[7]

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{T}[\mathbf{W}\mathbf{h}_{i}||\mathbf{W}\mathbf{h}_{j}]\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp\left(\text{LeakyReLU}\left(\mathbf{a}^{T}[\mathbf{W}\mathbf{h}_{i}||\mathbf{W}\mathbf{h}_{k}]\right)\right)}$$

$$\mathbf{h}_i' = \sigma \bigg( \sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \mathbf{h}_j \bigg)$$

#### For multi-head attention:

$$\mathbf{h}_{i}' = \prod_{k=1}^{K} \sigma \Big( \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \mathbf{h}_{j} \Big)$$

$$\mathbf{h}_{i}' = \sigma \left( \frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \mathbf{h}_{j} \right)$$

## Model Example – Gate Method

During propagation, gate method diminishes the restrictions in the former GNN models and improve the long-term propagation of information across the graph structure.

$$\mathbf{a}_{v}^{t} = \mathbf{A}_{v}^{T} [\mathbf{h}_{1}^{t-1} \dots \mathbf{h}_{N}^{t-1}]^{T} + \mathbf{b}$$

$$\mathbf{z}_{v}^{t} = \sigma \left( \mathbf{W}^{z} \mathbf{a}_{v}^{t} + \mathbf{U}^{z} \mathbf{h}_{v}^{t-1} \right)$$

$$\mathbf{r}_{v}^{t} = \sigma \left( \mathbf{W}^{r} \mathbf{a}_{v}^{t} + \mathbf{U}^{r} \mathbf{h}_{v}^{t-1} \right)$$

$$\widetilde{\mathbf{h}_{v}^{t}} = \tanh \left( \mathbf{W} \mathbf{a}_{v}^{t} + \mathbf{U} \left( \mathbf{r}_{v}^{t} \odot \mathbf{h}_{v}^{t-1} \right) \right)$$

$$\mathbf{h}_{v}^{t} = \left( 1 - \mathbf{z}_{v}^{t} \right) \odot \mathbf{h}_{v}^{t-1} + \mathbf{z}_{v}^{t} \odot \widetilde{\mathbf{h}_{v}^{t}}$$

## Model – Training Methods



(b) Training Methods

## Model – General Frameworks

### MPNN(Message Passing Neural Networks)[9]

Containing two phases, message passing and readout.

$$\mathbf{m}_{v}^{t+1} = \sum_{w \in \mathcal{N}_{v}} M_{t} \left( \mathbf{h}_{v}^{t}, \mathbf{h}_{w}^{t}, \mathbf{e}_{vw} \right)$$

$$\mathbf{h}_{v}^{t+1} = U_{t} \left( \mathbf{h}_{v}^{t}, \mathbf{m}_{v}^{t+1} \right)$$

$$\hat{\mathbf{y}} = R(\{\mathbf{h}_{v}^{T} | v \in G\})$$

$$M_{t} \left( \mathbf{h}_{v}^{t}, \mathbf{h}_{w}^{t}, \mathbf{e}_{vw} \right) = \mathbf{A}_{\mathbf{e}_{vw}} \mathbf{h}_{w}^{t}$$

$$U_{t} = GRU \left( \mathbf{h}_{v}^{t}, \mathbf{m}_{v}^{t+1} \right)$$

$$R = \sum_{v \in V} \sigma \left( i(\mathbf{h}_{v}^{T}, \mathbf{h}_{v}^{0}) \right) \odot \left( j(\mathbf{h}_{v}^{T}) \right)$$

## Model – General Frameworks

#### Non-local Neural Networks[10]

Have proposed the Non-local Neural Networks (NLNN) for capturing long-range dependencies with deep neural networks.

$$\mathbf{h}'_i = \frac{1}{\mathcal{C}(\mathbf{h})} \sum_{\forall j} f(\mathbf{h}_i, \mathbf{h}_j) g(\mathbf{h}_j)$$

We should figure out f and g function, including:

- Gaussian
- Embed Gaussian
- Dot Product
- Concatenation

## Model – General Frameworks

### Graph Networks[11]

Graph Network (GN) framework generalizes and extends various graph neural network, MPNN and NLNN approaches.

#### **Design Principles:**

- Flexible representations
- Configurable within-block structure.
- Composable multi-block architectures



Fig. 3. Examples of architectures composed by GN blocks. (a) The sequential processing architecture; (b) The encode-process-decode architecture; (c) The recurrent architecture.

# Applications

| Area | Application                     | Algorithm     | Deep Learning Model         |
|------|---------------------------------|---------------|-----------------------------|
|      |                                 | GCN           | Graph Convolutional Network |
|      | Text classification             | GAT           | Graph Attention Network     |
|      | Text classification             | DGCNN         | Graph Convolutional Network |
|      |                                 | Text GCN      | Graph Convolutional Network |
|      |                                 | Sentence LSTM | Graph LSTM                  |
|      | Sequence Labeling (POS, NER)    | Sentence LSTM | Graph LSTM                  |
|      | Sentiment classification        | Tree LSTM     | Graph LSTM                  |
|      | Semantic role labeling          | Syntactic GCN | Graph Convolutional Network |
|      | Neural machine translation      | Syntactic GCN | Graph Convolutional Network |
| Text | Neural machine translation      | GGNN          | Gated Graph Neural Network  |
|      |                                 | Tree LSTM     | Graph LSTM                  |
|      | Relation extraction             | Graph LSTM    | Graph LSTM                  |
|      |                                 | GCN           | Graph Convolutional Network |
|      | Event extraction                | Syntactic GCN | Graph Convolutional Network |
|      | AMR to text generation          | Sentence LSTM | Graph LSTM                  |
|      | AWIK to text generation         | GGNN          | Gated Graph Neural Network  |
|      | Multi-hop reading comprehension | Sentence LSTM | Graph LSTM                  |
|      | Relational reasoning            | RN            | MLP                         |
|      |                                 | Recurrent RN  | Recurrent Neural Network    |
|      |                                 | IN            | Graph Neural Network        |
|      |                                 | IN            | Graph Neural Network        |

# Applications

|           | Social Relationship Understanding | GRM            | Gated Graph Neural Network  |
|-----------|-----------------------------------|----------------|-----------------------------|
|           | Image classification              | GCN            | Graph Convolutional Network |
|           |                                   | GGNN           | Gated Graph Neural Network  |
|           | Image classification              | ADGPM          | Graph Convolutional Network |
|           |                                   | GSNN           | Gated Graph Neural Network  |
|           | Visual Question Answering         | GGNN           | Gated Graph Neural Network  |
| Image     | Object Detection                  | RN             | Graph Attention Network     |
| mage      | Interaction Detection             | GPNN           | Graph Neural Network        |
|           | Interaction Detection             | Structural-RNN | Graph Neural Network        |
|           | Region Classification             | GCNN           | Graph CNN                   |
|           |                                   | Graph LSTM     | Graph LSTM                  |
|           | Semantic Segmentation             | GGNN           | Gated Graph Neural Network  |
|           |                                   | DGCNN          | Graph CNN                   |
|           | Physics Systems                   | 3DGNN          | Graph Neural Network        |
|           |                                   | IN             | Graph Neural Network        |
|           |                                   | VIN            | Graph Neural Network        |
|           |                                   | GN             | Graph Networks              |
| Science   | Molecular Fingerprints            | NGF            | Graph Convolutional Network |
| Science   | 0 1                               | GCN            | Graph Convolutional Network |
|           | Protein Interface Prediction      | GCN            | Graph Convolutional Network |
|           | Side Effects Prediction           | Decagon        | Graph Convolutional Network |
|           | Disease Classification            | PPIN           | Graph Convolutional Network |
| Knowledge | KB Completion                     | GNN            | Graph Neural Network        |
| Graph     | KG Alignment                      | GCN            | Graph Convolutional Network |

# Applications

|                            | structure2vec    | Graph Convolutional Network |
|----------------------------|------------------|-----------------------------|
| Combinatorial Optimization | GNN              | Graph Neural Network        |
|                            | GCN              | Graph Convolutional Network |
|                            | AM               | Graph Attention Network     |
|                            | NetGAN           | Long short-term memory      |
|                            | GraphRNN         | Rucurrent Neural Network    |
| Graph Generation           | Regularizing VAE | Variational Autoencoder     |
|                            | GCPN             | Graph Convolutional Network |
|                            | MolGAN           | Relational-GCN              |

Mainly focus on the application on images and texts, and some generative methods.

## Open Problems

- Shallow Structure
- Dynamic Graphs
- Non-Structural Scenarios
- Scalability

### Resources

### **GNN** paper links:

https://github.com/thunlp/GNNPapers

### Survey Papers:

https://arxiv.org/pdf/1812.08434.pdf https://arxiv.org/pdf/1901.00596.pdf https://arxiv.org/pdf/1812.04202.pdf