S.-T. Yau College Student Mathematics Contests 2014

Analysis and Differential Equations Team

Please solve 5 out of the following 6 problems.

1. Calculate the integral:

$$\int_0^\infty \frac{\log x}{1+x^2} dx.$$

- **2.** Construct an increasing function on \mathbb{R} whose set of discontinuities is precisely \mathbb{Q} .
- **3.** Prove that any bounded analytic function F over $\{z|r < |z| < R\}$ can be written as $F(z) = z^{\alpha}f(z)$, where f is an analytic function over the disk $\{z||z| < R\}$ and α is a constant.
- **4.** Let $D \subset \mathbb{R}^n$ be a bounded open set, $f: \bar{D} \to \bar{D}$ is a smooth map such that its Jacobian $\left| \frac{\partial f}{\partial x} \right| \equiv 1$, where \bar{D} denotes the closure of D. Prove
 - (a) for each small ball $B_{\epsilon}(x)$, there exists a positive integer k such that $f^{k}(B_{\epsilon}(x)) \cap B_{\epsilon}(x) \neq \emptyset$, where $B_{\epsilon}(x)$ denotes the ball centered at x with radius ϵ ;
 - (b) there exists $x \in \bar{D}$ and a sequence $k_1, k_2, \dots k_j, \dots$ such that $f^{k_j}(x) \to x$ as $k_j \to \infty$.
- **5.** Let u be a subharmonic function over a domain $\Omega \subset \mathbf{C}$, i.e., it is twice differentiable and $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \geq 0$. Prove that u achieves its maximum in the interior of Ω only when u is a constant.
- **6.** Suppose that $\phi \in C_0^{\infty}(\mathbf{R}^n)$, $\int_{\mathbf{R}^n} \phi dx = 1$. Let $\phi_{\epsilon}(x) = \epsilon^{-n} \phi(x/\epsilon)$, $x \in \mathbf{R}^n$, $\epsilon > 0$. Prove that if $f \in L^p(\mathbf{R}^n)$, $1 \le p < \infty$, then $f * \phi_{\epsilon} \to f$ in $L^p(\mathbf{R}^n)$, as $\epsilon \to 0$. It is not true for $p = \infty$.