AB Calculus: Continuity

A function is continuous if you can draw the function without ever lifting your pencil. The following graphs demonstrate three types of discontinuous graphs.

Removable Discontinuity
Hole in the graph

Non-Removable Discontinuity
Vertical Asymptote

Non-Removable Discontinuity

Jump

There are two types of discontinuities, removable and non-removable. A hole in the graph is an example of a removable discontinuity. It is considered removable because you can easily make the graph continuous again by filling the hole. Vertical asymptotes and jumps are examples of non-removable discontinuities. They cannot be made continuous without drastically changing the function itself.

Example 1: Find the points (intervals) at which the function below is continuous, and the points at which it is discontinuous over the interval 0 < x < 5.

 $\frac{\text{Continuous}}{0 < x < 1}$ 1 < x < 2 2 < x < 4

Continuity at a point

A function y = f(x) is continous at point c if

definition of continuit

$$\lim_{x \to c} f(x) = f(c)$$

Or in other words,

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = f(c)$$

"The limit from the left, equals the limit from the right, equals the function value."

Properties of Continuity

If b is a real number and f and g are continuous at x = c, then the following functions are continuous at c.

Constant multiple: $b \cdot f$

2. Sum and Difference: $f \pm g$

Product: $f \cdot g$

4. Quotient: $\frac{f}{g}$; $g(c) \neq 0$

Extended Functions

An extended function is a function that is obtained after a discontinuity is removed. To write an extended function, find where the hole in the graph, then write a piecewise function to fill the hole.

Example 4: Write an extended function to remove the removable discontinuity from the function f(x).

a)
$$f(x) = \frac{x^2 - 6x + 5}{x - 1}$$

a)
$$f(x) = \frac{x^2 - 6x + 5}{x - 1}$$
 $(x-5)(x-1)$

$$f(x) = \begin{cases} x-5 \\ -4 \end{cases}$$

b)
$$f(x) = \frac{x^2 - 3x - 18}{x + 3}$$

b)
$$f(x) = \frac{x^2 - 3x - 18}{x + 3}$$
 $(x - b)(x + 3)$

$$f(x) = \begin{cases} -6 \\ x - 6 \end{cases}$$

Intermediate Value Theorem (IVT)

WHY DID THE CHICKEN CROSS THE ROAD?

THE INTERMEDIATE VALUE THEOREM.

For the car to go from point W to point Z safely, do you have to go through points X and Y? Why or Why not?

es Stay on track

Intermediate Value Theorem (IVT)

+these are x-values

If f is continuous on the closed interval [a,b] then f takes every value between f(a) and f(b)

Suppose k is a value between f(a) and f(b), then there is at least one number c in [a,b] such that f(c)=k.

7 15 a y-value

The Intermediate Value Theorem tells you that at least one c exists, but it does not give you a method of € → 1s an element of finding c. This theorem is an example of an existence theorem.

Example 5: In the Intermediate Value Theorem ...

What are the necessary requirements in order to apply this theorem?

f has to continuous on closed interval (in notation form X = [a,b]

- k is on which axis?
- c is on which axis?

Example 6: Consider the function below and answer the questions.

- a) Is f continuous on [a, b]?
- b) Is k between f(a) and f(b)?
- In this example, if a < c < b, then there are 3c's such that f(c) = k.
- d) Label the c's on the graph as $c_1, c_2, ...$

Example 7: Verify that the Intermediate Value Theorem applies to the following function f(x) over the

interval
$$\left[\frac{5}{2}, 4\right]$$
 explain why IVT guarantees an x -value of c where $f(c) = 6$, and find c .

$$f(x) = \frac{x^2 + x}{x - 1}$$

$$f(x) = \frac{x^2 + x}{x - 1}$$
therefore $f(x)$ is conton $\left[\frac{5}{2}, 4\right]$

$$f(\frac{5}{2}) = \frac{(\frac{5}{2})^2 + \frac{5}{2}}{\frac{5}{2} - 1(\frac{2}{2})} = \frac{\frac{25}{4} + \frac{10}{4}}{\frac{3}{2} + \frac{6}{4}} \rightarrow \frac{\frac{35}{4}}{\frac{6}{4}} \rightarrow \frac{35}{6} = 5\%$$

$$f(4) = \frac{4^2 + 4}{4 - 1} = \frac{16 + 4}{3} = \frac{20}{3} = 6^2/3$$

By IVT, Since
$$5\%$$
 6 < 62/3 there is a $\frac{5}{2}$ < $\frac{2}{2}$ < $\frac{6}{2}$ < $\frac{5}{2}$ < \frac