University of Rajshahi Department of Computer Science and Engineering B.Sc. (Engg.) Part-2, Even Semester Examination-2017 Course No.: MATH2231 (Numerical Methods) Marks: 35 Time: 2:00 Hours

(Answer any four questions taking at least two from each Part)

Section-A

1. (a) What do you mean by numerical method? Distinguish between direct and numerical									3
1. (a)	method.	method. Numerical method approaches are essential in modern science and engineering field,							2.75
	why? Explain.						3		
(c)	Define r	iumericai, e	ngcorate an			l mai	hod		3
2. (a)	the least on the convertice of foot in and								3
(b)	Eind n ro	al root of the	he equation	x^3-x^2	-1 = 0 corr	rect to 3 de	cimal place	es by faise	2.75
(c)	rinu a re	ar root or a method	no equanos						
3. (a) (b) (c)	(b) Derive Lagrange's interpolation for unequal distance data.							3 3 2.75	
	Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	
						5.075	(906	8.013	
.	y(x)	2.631	3.328	4.097	. 4.944	5.875	6.896	6.015	-
- 1									

Section-B

	 4. (a) Define curve fitting. Explain the purpose of it. (b) Describe the least square curve fitting procedure for a straight line. (c) The exponential function y = ae^{bx} is fitted to the data: 	1. 4 3	.75
	Find the values of a and b.		
5. (a (b) (c)	(a) Describe the geometrical meaning of Trapezoidal rule. (b) Explain Gaussian Elimination method to solve linear system of equation	ns.	2 4 2.75
	2x + 20y - 2z = -44 $-2x + 3y + 10z = 22$		
6. (a)		laces if $y(x)$	5
(b)	D. d. d. C	.1 given that	3.75

University of Rajshahi

Department of Computer Science and Engineering

B.Sc. (Engg.) Part-II (Even Semester) Examination-2016 Course: MATH2231 (Numerical Methods)

Full Marks: 35

Time: 2 Hours

[N.B. Answer any Four questions taking Two from each Part.]

Part A

	Part A	
		2.75
	you have appears to study it.	2
1. (a)	What is numerical method? Write the reasons to study it.	2
(b)	What is numerical method? Write the relative and truncation error. Define inherent error, round-off error and truncation error. Define inherent error, round-off error and percentage errors?	2
(c)	Define inherent error, round-off error and trutheuton. How can you measure absolute, relative and percentage errors? How can you measure absolute, relative and percentage errors?	
(4)	How can you measure absolute, relative and percentage. Define algebraic and transcendental expression with example.	3.5
(d)	Define algebraic and transcendental expression. Describe the bisection method for finding root of equation $f(x) = 0$ with its merits and demerits.	0.06
2 ()	Describe the bisection method for finding root of equation (4)	2.25
2. (a)	Describe the discontinuity for finding root of equation $f(x) = 0$.	3
(b)	Describe the bisection method for finding root of equation $f(x) = 0$. Describe Secant method for finding root of equation $f(x) = 0$. To obtain a root correct to three decimal places of equation $x^3 - x - 4 = 0$ using false position	
(c)	To obtain a root correct to three decimal places of a	
(0)	method.	3
	what are forward differences? Briefly discuss the forward difference table. Determine the	2
2 (2)	What are forward differences? Briefly discuss the forward table:	3
3. (a)	What are forward differences? Briefly discuss the difference table for the values of y given in the following table:	
	difference table for the	
	3 4 5 6 7	
	X 3 3 51.2 72.9	
	125 216 34.3 31.2	
	y 2.7 6.4 12.5 2.10	

(b) Find the value of y(1) and y(2) derived from the above table using the difference table.

2.75

Part B

- 1.75 4. (a) Explain the purpose of curve fitting procedure. 4 (b) Describe the least square curve fitting procedure for a straight line. 3
 - (c) Find the values of a and b so that $Y = ae^{bx}$ fits the data given in the table:

T _V	110	1.2	1.4	1.6
v	40.17	73.19	133.3	243.
, ,	0	6	72	02

- 3.75 5. (a) Classify System of Linear Equations and explain them based on graphical representation. 5
 - (b) Solve the following set of simultaneous equations using the Gauss-elimination method:

$$2x - 4y + 6z = 5$$

 $x + 3y - 7z = 2$

$$7x + 5y + 9z = 4$$

- 6. (a) Derive Euler's method and modified Euler's method for solution of ordinary differential equations.
 - (b) Use Euler's method to solve the equation $\frac{dy}{dx} = x + y$, y(0) = 0. Choose h = 0.2 and compute y(0.4) and y(0.6).

University of Rajshahi

Department of Computer Science and Engineering B.Sc. (Engg.), Part-II, Even Semester, Examination 2015 Course No: MATH2231 (Numerical Methods)

Marks: 35

Time: 2 Hours

[Answer any Four (04) questions taking at least two from each Part.]

Part-A

1. (a) (b) (c) (d)	Why do o	occur nume vou measu	rical errors re absolute	ite the reaso ? Explain di , relative and ? Write the r	fferent types d percentage	of errors.	iy is am		2 3 3 0.75
2. (a)	Describe Iterative method for finding root of an equation. Explain how can the convergence of root finding iteration method be accelerated. The standard files convergence $x^3 - 2x - 5 = 0$ correct to 4 decimal places by false								5.75
(b) 3. (a) (b) (c)	 Find a real root of the equation x³ - 2x - 5 = 0 correct to 4 decimal places by false position method. Write the procedure of successive approximation method. What is forward differences? Briefly discuss the forward difference table. 							2 3 3.75	
		1 2	4	5	6	7	8	9	
	$\begin{array}{c} x \rightarrow \\ y \rightarrow \end{array}$	2.7	6.4	12.5	21.6	34.3	51.2	72.9	

Part-B

4. (a) Derive Langrange's interpolation formula for unequal distance.(b) Find the value of tan(0.05) from the following table.	4.75
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	*
 5. (a) Explain Gauss-Seidel method for solution of linear system. (b) Solve the following system using Gaussian Elimination method 2x + y + z = 10 	4.75 4
3x + 2y + 3z = 18	
x + 4y + 9z = 16	4
6. (a) Derive Simpson's 1/3 rule for numerical integration. (b) Find the area bounded by the curve and the x-axis from x=7.47 to x=7.52 using Simpson's 1/3 rule form the following table.	4.75
x 7.47 7.48 7.49 7.50 7.51 7.52	•

2.03

2.01

2.06

University of Rajshahi

Department of Computer Science and Engineering

B.Sc(Engg), Part-II Even Semester Examination 2014

Course: MATH 2231 (Numerical Methods)

Time: 2 Hours

Marks: 35

(Answer any FOUR taking at least TWO from any part)

<u>Part-A</u>

1. (a)	What do you mean by exact and approximate number? Give example. How can you measure absolute, relative and percentage errors?				
(-)	Round off the following numbers to four significant figures: i) 38.46235 ii) 0.70029 iii) 0.0022218 iv) 19.235101	2			
	a Calling root of an equation.	5.75			

Describe False Position and Newton-Raphson method for finding root of an equation. Find a real root of the equation $x^3 - x^2 - 1 = 0$ correct to 3 decimal places by false position 3 2. (a) (b)

4.75 Derive Netwon's forward difference interpolation formula for equal distance data. 3. (a) The following values of x and y are given. Find y(0.543). (b)

0.7 0.6 0.5 0.4 0.3 0.2 0.1 6.896 8.013 5.875 4.944 4.097 3.328 2.631 y(x)

Part-B

Describe the least square curve fitting procedure for a straight line. 4. (a)

Find the values of a_0 and a_1 so that $y = a_0 + a_1 x$ fits the data given in the table (b)

Find the va	nues of a_0	and a_1	$0 \text{ that } y = u_{.0}$	1	1	0
	1	12	3	4	6	0
X	11	2 1	2.5	4.2	5.0	6.0
l y	2.4	3.1	3.3	7.2	10.0	

- Is it possible to find solution of a system of linear equation with singular augmented matrix by 5. (a) Gaussian Elimination Method? Justify your answer.
 - Solve the following system by Gauss-Jordan Method. (b)

$$2x + y + z = 10$$

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16$$

Derive Simpson's 3/8 rule for numerical integration. 6. (a)

Derive Trapezoidal rule. (b)

From the Taylor series for y(x), find y(0.1) correct to five decimal places if y(x) satisfies (c) $y' = x^2y - 1$ and y(0) = 1.

4.75

2.2

4.75

4

University of Rajshahi
Department of Computer Science and Engineering
B.Sc. Engg. Part-II Even Semester Examination 2013 Course No: MATH2231 (Numerical Methods)
Marks: 35 Time: 2 Hours

Answer any four questions taking two from each Part

Part-A

1. (a) (b) (c)	How can you measure absolute, relative and percentage errors?	3 4 1.75
2. (a)	x^3 -2x-5=0, using	5.75
. ,	bisection method. Explain the advantages and disadvantages of bisection method.	3
	Describe how can the convergence of root finding iteration method be accelerated.	3.75
(1.)	Using synthetic division find the three roots of the following polynomias	5
(0)	Sing synthetic division, and the division, and $x^3 - x^2 - 10x - 8 = 0$. Use an initial estimate of $x_0 = 6$ for the first root.	

Part-B

T all t D	
 4. (a) Derive Lagrange's interpolation for unequal distance data. (b) Develop an interpolation polynomial for the following data using the finite 	3.75 5
difference approach. Estimate the f(x) for x = 2.7 5. (a) Classify System of Linear Equations and explain them based on graphical	3.75
representation. (b) Solve the following set of simultaneous equations using the Gauss-Jordan method: 4x - 2y + 3z = 15.7	5
-2x + 4y - z = -14.1 3x + y - 3z = -4.2	5
6. (a) Derive Simpson's 3/8 rule for numerical integration. (b) From the Taylor series for $y(x)$, find $y(0.1)$ correct to five decimal places if $y(x)$	2
satisfies $y' = x^2y - 1$ and $y(0) = 1$. (c) What is the local error term in Trapezoidal formula and in Simpson's 1/3 rule?	1.75

•				7
91	1	2	3	
f(a)	3	5	8	
1009	<u> </u>	-	1	

University of Rajshahi Department of Computer Science and Engineering B.Sc(Engg) 2nd year 2nd semister, 2012

Course- MATH2231 (Numerical Methods)

Time: 3 Hours

Marks:35

 $8\frac{3}{4} \times 4 = 35$

(Answer FOUR questions taking any TWO from each group)

Part-A

- Define absolute and relative errors by giving suitable example. 1.(a) Show that the order of convergence of Newton-Raphson method is two. (b) Find a positive real root of equation $x^3 - 3x + 1 = 0$ by Newton-Raphson's method, (c) correct to 4 decimal places. (with $\varepsilon = 0.0001$) 1 Define transcendental equation with example. 2. (a) How do you consider the initial approximation to the root of the equation f(x)=0? (b) Write the procedure of successive approximation method. When does this method 3 (c) converge? Use iteration method to evaluate $\sqrt{30}$ correct to three decimal places with an accuracy 3 (d) of 10^{-3} .
- 3. (a) What is forward differences? Briefly discuss the forward difference table. Determine the difference table for the values of y given in the following table. $5\frac{3}{4}$

						0	0
	1	1 4	5	6	. 7	1 8 1	9
X	1 3	1 4)	U			72.0
/ \			45.5	016	212	1 512	12.9
• • •	27	6.4	12.5	21.6	34.3	31.2	
V	Z.1	0.7	12.5				

(b) Find the value of y(1) and y(10) from the above table using the difference table.

5. (a) Derive Simpson's 1/3 rule for numerical Integration.

- $3\frac{3}{4}$
- (b) Evaluate $I = \int_{0}^{1} \frac{dx}{1+x}$, Correct to 3 decimal places using both Trapezoidal and Simpson's rule for h=0.25
- 5
- 6. (a) Describe the Modified Euler's method to solve the ordinary differential equation. What is the advantage of Modified Euler's method over Euler's method?
- 5

(b) Using Euler's formula, solve the following differential equation.

$$\frac{dy}{dx} - 1 = y^2$$
, y(0)=0.

In each case take h=0.1 and y(0.1) and y(0.3).