装 内 颞

学 号

班级

姓名

订 线 不 答案必须写在答题纸上,否则无效!试题页(共2页)可以做演算纸。

- 一、选择题(每空2分,共32分)。将选项按照空格中的编号写在答题纸上。
- 1、 迄今为止, 图灵测试仍然是最重要的机器智能判定标准, 但也备受争议。 例如,它有两个缺点(1)、(2)。
- A) 必须模拟人类的缺点,例如算术运算慢且易错,反应缓慢等
- B) 回避无法说清的 "Can machine thinking?" 这一问题
- C) 不能测试知觉等属于智能的其它属性
- 2、 若表达式 G 是不可满足的, 当且仅当对所有的解释 (3) 。
- A) 必真
- B) 必假
- C) 真假不能断言
- 3、 若状态空间中的任意状态只有有限个后继状态,则下列搜索算法中,具备 完备性的是 (4) 。 A) A*算法 B) 一致代价搜索 C) 以上皆是
- 4、 用 A*搜索算法求解某问题,已构造出 3 个不同的可纳启发函数 h_1 、 h_2 、
- h_3 。令 h_4 =min{ h_1 , h_2 , h_3 }、 h_5 =max{ h_1 , h_2 , h_3 },下列说法正确的是 (5) 。
- A) h₄ 可纳

- B) h₅可纳
- C) 选 h_a 作为启发函数,不可能比选 h_5 少扩展节点 D)以上皆对

- 5、 在一般的树搜索算法的简略描述中, (6) 、 (7) 、 (8) 分别是什么?
- A)根据估值函数,从OPEN表选择一个 结点n
- B) 判断结点 n 是不是一个目标结点
- C) 扩展节点 n

初始化;

循环, 直到 OPEN 表为空:

(8)

(6) (7)

- 6、 遗传算法充分体现了以下哪些优化措施 (9) 。(2分)
- A) 多个搜索线程并行搜索
- B) 不同搜索线程之间进行有效的信息交换
- C) 注意探索和利用上的均衡 D) 以上皆是
- 7、 对于用于分类的决策树学习算法,下列说法正确的是 (10) 。(2分)
- A) 基于贪婪的思想
- B) 基于分治的思想
- C)结点分裂标准以测
- 试属性所减少的不纯度/不确定性/惊奇度为基本标准 D)以上皆对
- 8、在遗传算法的简略描述中, (11) 、__(12) 、__(13) __分别是什么?
- A) 选择
- B) 交叉
- C) 变异

初始化;

循环,直到满足停止条件:

(11) ,模拟适者生存

(12) ,从而产生子代

__(13)___

- 9、 假设全程跟踪记录了 200 名学生的某门课程的学习情况: 20 次课出席情况、20 次课笔记是否完整、历次课后作业分数、编程作业完成情况、各门先修课成绩、期末 成绩等信息。现随机抽取80%同学的数据用来训练,训练后的模型用来预测其余20% 同学的期末成绩(百分制)。关于上述机器学习问题的描述,可以判断这 (14) 监督 学习问题;同时,它(15)回归问题。 A)是 B) 不是
- 对于前馈神经元网络的一个单元,输入向量 $\mathbf{x} = [x_0=1, x_1, x_2, ..., x_n]^T$,权值向量 $\mathbf{w} = [w_0, w_1, w_2, ..., w_n]^T$, 激励函数为 $f(x) = 1/e^{-x}$, 则其输出的计算公式为 (16) 。
- A) $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \cdot \mathbf{x}$ B) $f(\mathbf{x}) = 1/(1 + e^{-\mathbf{w}^{\mathsf{T}} \cdot \mathbf{x}})$ C) 以上皆错

- 二、简答题(共18分)。将答案写在答题纸上。
- 1、(本题 6 分)列举人工智能成功应用的三个领域及其典型成就。
- 2、 (本题 6 分) 启发式搜索中 f(x)=g(x)+h(x)中,解释 f(x)、g(x)、h(x)的含义。
- 3、 (本题 6 分) 朴素爬山法 (最陡上升) 求解八皇后问题时,将会以 0.86 的概率陷 入局部最优而无法找到解。请你给出一种方案改进算法,使之能够满足下列条件之一: (1) 提高一次爬山就能成功求解的概率:或者(2) 跳出局部最优,从而找到一个完 整解。给出你的改进方法,并简述求解能力提升的原因。

三、综合应用题(共50分)。答案写在答题纸上。

1、(本题 16 分)回答本题时,限定使用以下谓词和函数:

谓词 N(x)表示 x 是自然数; 谓词 I(x)表示 x 是整数;

谓词 E(x)表示 x 是偶数; 谓词 GZ(x)表示 x 是大于等于零的数;

谓词 O(x)表示 x 是奇数; 函数 S(x)表示将 x 除以 2 得到 x/2。

(1) 将事实 F_1 、 F_2 、 F_3 分别用谓词公式表示出来。(6分)

事实 F_1 : 自然数是大于等于零的整数; 事实 F_2 : 所有整数不是偶数就是奇数; 事实 F3: 偶数除以 2 是整数。

- (2) 仿照事实 F_1 、 F_2 、 F_3 的自然语言陈述,将结论 G 用自然语言描述出来。(2分) 结论 G: $(\forall x)$ ($N(x) \rightarrow (O(x) \vee I(S(x))$))。
- (3) 将 F₁、F₂、F₃、¬G 化成子句集。(4 分)
- (4) 用归结反演的方法证明 $G \neq F_1$ 、 F_2 、 F_3 的逻辑结论。(4分)
- 2、 (本题 10 分)考虑以熵的增益为结点分裂标准的决策树。训练集如表 1 所示,包 含了7个训练样例,分别属于no、yes两类,每个训练样例都由A、B、C三个属性描 述,目标属性为F。

学 号

班级

姓名

装

订

订 线 内 不 要

表 1					
实例序号 L	A	В	C	F	
1	0	0	0	no	
2	0	0	1	yes	
3	0	1	0	no	
4	0	1	1	yes	
5	1	0	0	yes	
6	1	0	1	yes	
7	1	1	0	no	

- (1) 哪个属性做为根结点 N1 的测试属性? 简要给出你的推理根据。(5分)
- (2) 假设 N2 用属性 A 作为测试属性,请给出中间结点 N5 上的测试属性、 叶结点 N4 上的类别标签、叶结点 N6 上的类别标签。(3 分)
- (3) 用上述决策树预测新实例(1.1.1) 所属的类别。(2分)
- 3、 (本题 9 分) 贝叶斯网络。已知由 5 个随机变量(取图中单词的首字母)构 成的贝叶斯网络,各个条件概率表如图1所示。

- (1) 请写出联合概率 P(D,I,G,S,L)分解为条件概率的分解式。(3分)
- (2) 求 $P(i^1, s^1, g^1) = ?$ (2分)
- (3)全联合概率分布至少要存储多少个概率值?贝叶斯网络用若干个条件概 率表表示全联合概率表以后,一共需要存储多少个概率值? (4分)

4、 (本题 15 分)已有三个用于求解八数码问题的正确程序:程序 P₁采用深度优先 的迭代加深搜索;程序 P_2 采用启发函数为 h_1 的 $A*搜索, <math>h_1$ 表示不在位数字的总数目 (错位数之个数和): 程序 P_3 采用启发函数为 h_2 的 A^* 搜索, h_2 表示所有数字到目标 位置的曼哈顿距离之和(错位数之曼哈顿距离和)。

有人拿到了分别实现上述算法的三个程序, 但不知道到底哪个程序实现了哪种算 法。于是,他首先将三个程序分别标记成 X、Y、Z: 然后,又随机地生成了 1000 个 八数码问题(对应于解路径长度 d=2、4、6、…、20, 各有 100 个八数码问题)作为 测试集;最后,在测试集上分别执行了三个程序,最终得到的实验数据如表 2 所示。 请简短回答下列问题:

- (1) 请你帮他推断出: X、Y、Z与 P_1 、 P_2 、 P_3 的对应关系。说明你依据什么将Y、Z区分开的。(6分)
- (2) 若每个结点 n 的后继结点的集合都避免包括结点 n 的直接祖先,且每个数码在棋 盘上任意位置等概率出现。在采用**无信息的宽度优先搜索算法**时,给出八数码问题的 平均分支因子 R 的一个估计值,并给出估算过程。(3分)

			表 2			
解的	求解每个问题,平均扩展的结点数		有效的平均分支因子		因子	
深度 d	程序X	程序 Y	程序 Z	程序X	程序 Y	程序 Z
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14		539	113		1.44	1.23
16		1301	211		1.45	1.25
18		3056	363		1.46	1.26
20		7276	676		1.47	1.27

- (3) 从表中观察到, Y、Z 程序的平均分支因子比 R 的估计值还小(当 d > 2 时), 请 解释原因。(2分)
- (4) 假设程序 IZ 在 Z 的基础上采用了迭代加深技术。对于较复杂问题,通常会采用 迭代加深搜索,请给出 IZ 相比较 Z 更实用的一个重要原因。(2分)
- (5) 若不能恰当处理重复结点,则迭代加深程序将反复展开相同结点,浪费大量的时 间和空间资源。假设是你正在写一个 24 数码问题 (提示: 状态空间异常大), 你用何 种技术避免重复结点的重复展开问题? (2分)

学号

班 级

姓名

订

订

线内

不

₩

题

东北大学秦皇岛分校

题号	_	 三	总分
得分			
阅卷人			

答题纸

一、选择题(每空2分,共32分)。将选择题选项按空格编号填入下表。

(1)	(2)	(3)	(4)	(5)
(6)	(7)	(8)	(9)	(10)
(11)	(12)	(13)	(14)	(15)
(16)				

- 二、简答题(共18分)。
- 1、(本题6分)

2、(本题6分)

3、(本题6分)

三、综合应用题(共50分)

1、(本题16分)

2、(本题 10 分)

3、(本题9分)

4、(本题 15 分)