1. Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam	(midterm exam)^2	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

1 point

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)^2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(4)}$? (Hint: midterm = 69, final = 78 is training example 4.) Please round off your answer to two decimal places and enter in the text box below.

	-0.47	
2.	You run gradient descent for 15 iterations	1 poi
	with $lpha=0.3$ and compute $J(heta)$ after each	
	iteration. You find that the value of $J(heta)$ increases over	
	time. Based on this, which of the following conclusions seems	
	most plausible?	
	ullet Rather than use the current value of $lpha$, it'd be more promising to try a smaller value of $lpha$ (say $lpha=0.1$).	
	\bigcirc Rather than use the current value of $lpha$, it'd be more promising to try a larger value of $lpha$ (say $lpha=1.0$).	
	$\bigcirc \ \ lpha = 0.3$ is an effective choice of learning rate.	
3.	Suppose you have $m=28$ training examples with $n=4$ features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n , what are the dimensions of θ , X , and y in this equation?	1 poi
	igcirc X is $28 imes 4$, y is $28 imes 1$, $ heta$ is $4 imes 4$	
	igcap X is $28 imes 5, y$ is $28 imes 5, heta$ is $5 imes 5$	
	igcirc X is $28 imes 4$, y is $28 imes 1$, $ heta$ is $4 imes 1$	
	Suppose you have a dataset with $m=50$ examples and $n=15$ features for each example. You want to use ltivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the mal equation?	1 point
0	Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.	
0	The normal equation, since it provides an efficient way to directly find the solution.	
•	The normal equation, since gradient descent might be unable to find the optimal $ heta.$	
0	Gradient descent, since it will always converge to the optimal $ heta.$	
	Which of the following are reasons for using feature scaling?	1 point
	It is necessary to prevent the normal equation from getting stuck in local optima. $ \\$	
	It prevents the matrix X^TX (used in the normal equation) from being non-invertable	

It speeds up gradient descent by making it require fewer iterations to get to a good solution.
It speeds up gradient descent by making each iteration of gradient descent less expensive to compute.

4.

5.