### POWERED BY Dialog

Solder for joining electronic components - contains tin, nickel, cobalt, boron, lead, lithium carbonate, additional iron and manganese, and copper

Patent Assignee: ELTRN TECH MATERIALS RES INST

Inventors: LOPAREVA N V; PONOMAREV V A; STADNIK V G

### Patent Family (1 patent, 1 country)

| Patent Number | Kind | Date     | <b>Application Number</b> | Kind | Date     | Update | Туре |
|---------------|------|----------|---------------------------|------|----------|--------|------|
| RU 2011497    | C1   | 19940430 | SU 4951976                | A    | 19910628 | 199504 | В    |

Priority Application Number (Number Kind Date): SU 4951976 A 19910628

### **Patent Details**

| Patent Number | Kind | Language | Pages | Drawings | Filing Notes |
|---------------|------|----------|-------|----------|--------------|
| RU 2011497    | C1   | RU       | 3     | 0        |              |

**Alerting Abstract:** RU C1

Addn. of Fe and Mn to the solder for joining electronic details, improves its properties. The solder contains (in wt.%): Sn 19-21, Ni 2-3, Co 0.2-0.4, B 0.2-0.4, Pb 4-5, Li2CO3 0.2-0.4, Fe 0.4-0.6, Mn 0.1-0.3 and Cu the rest, and is used, in particular, to join the bodies of UHF transistors to metallised ceramics.

USE - In the mfr. of transistors

ADVANTAGE - M.pt. of the solder is reduced from 950-1000 to 820-980 (deg)C, and no slag is formed on the surface of the weld after crystallisation.

**International Classification (Main):** B23K-035/30

### **Original Publication Data by Authority**

### Russia

Publication Number: RU 2011497 C1 (Update 199504 B)

Publication Date: 19940430

Assignee: ELTRN TECH MATERIALS RES INST (ELTE-R)
Inventor: PONOMAREV V A STADNIK V G LOPAREVA N V

Language: RU (3 pages, 0 drawings)

Application: SU 4951976 A 19910628 (Local application)

Original IPC: B23K-35/30(A) Current IPC: B23K-35/30(A)

Derwent World Patents Index

© 2007 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 7015074



# (19) **RU** (11) 2 011 497 (13) **C1**

(51) Int. Cl.<sup>5</sup> B 23 K 35/30

[1]

# RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

### (12) ABSTRACT OF INVENTION

- (21), (22) Application: 4951976/08, 28.06.1991
- (46) Date of publication: 30.04.1994
- (71) Applicant:
  VSESOJUZNYJ NAUCHNO-ISSLEDOVATEL'SKIJ
  INSTITUT MATERIALOV EHLEKTRONNOJ
  TEKHNIKI
- (72) Inventor: PONOMAREV V.A., STADNIK V.G., LOPAREVA N.V., GUREEV N.V.
- (73) Proprietor:
  NAUCHNO-ISSLEDOVATEL'SKIJ INSTITUT
  MATERIALOV EHLEKTRONNOJ TEKHNIKI
- (54) SOLDER FOR BRAZING PRODUCTS OF ELECTRONIC INDUSTRY
- (57) Abstract:

FIELD: metal machining. SUBSTANCE: solder contains by mass percent; 19-21 tin, 2-3 nickel, 0.2-0.4 cobalt, 0.2-0.4 boron,

4-5 lead, 0.2-0.4 lithium carbonate, 0.4-0.6 iron, 0.1-0.3 manganese, and the balance copper. EFFECT: improved product quality. 1 tbl

J 2011497

Z



# (19) RU (11) 2 011 497 (13) C1

(51) MOK<sup>5</sup> B 23 K 35/30

## РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

### (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 4951976/08, 28.06.1991

(46) Дата публикации: 30.04.1994

- (71) Заявитель: Всесоюзный научно-исследовательский институт материалов электронной техники
- (72) Изобретатель: Пономарев В.А., Стадник В.Г., Лоларева Н.В., Гуреев Н.В.
- (73) Патентообладатель: Научно-исследовательский институт материалов электронной техники

#### (54) ПРИПОЙ ДЛЯ ПАЙКИ ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ

(57) Реферат:

Использование: пайка ножек корпусов с металлизированной керамикой в СВЧ транзисторах. Сущность изобретения: припой содержит компоненты, мас. %: олово 19 - 21;

никель 2 - 3; кобальт 0,2 - 0,4; бор 0,2 - 0,4; свинец 4 - 5; карбонат лития 0,2 - 0,4; железо 0,4 - 0,6; марганец 0,1 - 0,3; медь остальное. 1 табл.

=

O

2011497

Z

Изобретение относится к пайке, а именно к припою, используемому для пайки изделий электронной техники, в частности ножек корпусов с металлизированной керамикой в СВЧ транзисторах.

Известны припои, содержащие в качестве основы медь и олово, легированные никелем, бором, свинцом и карбонатом лития, предназначенные для пайки ножек корпусов в полупроводниковых приборах.

Наиболее близким к предлагаемому является припой [2], содержащий компоченты в следующих количествах, мас. %: Олово 12-16 Никель 1-3 Кобальт 0,4-0,6 Бор 0,1-0,3 Свинец 3-5 Карбонат лития 0,1-0,3 Медь Остальное

Этот прилой предназначен для пайки меди со сталью и молибденом, имеет температуру плавления 950-1000 °С и для пайки изделий, имеющих допустимую температуру нагрева менее указанной температуры плавления припоя, использовать невозможно. Кроме того, у известного припоя при кристаллизации расплава на поверхности образуется шлаковый налет, который при воздействии ударных и вибрационных нагрузок подвержен скалыванию и образованию шлаковых осколков, что может привести к коротким замыканиям в приборе.

Целью изобретения является снижение температуры плавления припоя и исключение шлакового налета на поверхности припоя после его кристаллизации.

Для достижения указанной цели в припой на основе меди и олова, содержащий никель, кобальт, бор, свинец и карбонат лития, дополнительно введены железо и марганец при следующем соотношении компонентов, мас. %: Олово 19-21 Никель 2-3 Кобальт 0,2-0,4 Бор 0,2-0,4 Свинец 4-5 Карбонат лития 0,2-0,4 Железо 0,4-0,6 Марганец 0,1-0,3 Медь Остальное

Введение марганца способствует снижению температуры пайки и уменьшению шлаковых включений в расплаве припоя за счет взаимодействия меди с марганцем. Введение железа также уменьшает содержание шлаковых включений в расплаве припоя за счет диффузии железа в медь и снижения ее активности.

Уменьшение содержания железа менее 0,4 и марганца менее 0,1 мас. % не обеспечивает снижения температуры плавления припоя и уменьшения шлаковых включений в расплаве. Увеличение содержания железа более 0,6 и марганца более 0,3 мас. % приводит к снижению пластических свойств припоя и увеличения шлаковых включений за счет увеличения количества окислов марганца и нерастворенных включений железа.

Увеличение содержания олова по сравнению с прототипом до 19-21 мас. % позволяет снизить температуру плавления припоя.

Уменьшение содержания кобальта по сравнению с прототипом до 02, -0.4 мас. % способствует уменьшению удельного электросопротивления припоя за счет снижения количества растворенного кобальта в меди.

Увеличение содержания бора и карбоната лития по сравнению с прототипом до 0,4% мас. % позволяет обеспечить восстановление окислов никеля, железа на поверхности паяемых деталей и одновременно исключает образование окислов марганца в припое.

Пример. Для получения припойного материала было подготоявялено пять смесей порошков исходных компонентов с содержанием олова 18; 19; 20; 21; 22 мас. %, никеля 1; 2; 2,5; 3; 4 мас. %, кобальта 0,1; 0,2; 0,3; 0,4; 0,5 мас. %, бора 0,1; 0,2; 0,3; 0,4; 0,5 мас. %, железа 0,3; 0,4; 0,5; 0,6; 0,7 мас. %; марганца 0,05; 0,1; 0,2; 0,3; 0,5 мас. %; остальное до 100% медь, а также смесь порошков прилоя-прототипа.

Смесь порошков прокатывали в полосы размером 0.2x100x100 мм, спекали по режиму  $500^{\circ}$ С, время выдержки 60 мин и затем прокатывали до толщины 0.1 мм.

Из полученных полос изготовляли образцы размером 0,1 х 30 х 30 мм, накладывали их на никелевую полосу размером 1,0 х 60 х 100 мм и помещали в водородную печь типа ЦЭП-272 на 15 мин при 820-980°С через каждые 20°С. На обработанных таким образом образцах визуально оценивали наличие шлакового налета и оплавление припоя. Результат опробования представлены в таблице.

Из таблицы следует, что температура плавления припоя уменьшилась на 100-120 °C, шлаковый налет на поверхности припоя отсутствует.

Предлагаемый припой по сравнению с прототипом обладает следующими преимуществами:

имеет на 100-120°C ниже температуру плавления, что позволяет уменьшить энергозатраты на пайку изделий на 10-15%;

отсутствие на поверхности припоя шлакового налета исключает появление при вибрационных и ударных нагрузках осколков шлака в корпусах полупроводниковых приборов, что повышает их надежность на 20-25%.

Формула изобретения:

ПРИПОЙ ДЛЯ ПАЙКИ ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ, содержащий олово, никель, кобальт, бор, свинец, карбонат лития, медь, отличающийся тем, что, с целью снижения температуры плавления и исключения шлакового налета на поверхности припоя после его кристаллизации, он дополнительно содержит железо и марганец при следующем соотношении компонентов, мас. %:

Олово 19 - 21 Никель 2 - 3 Кобальт 0,2 - 0,4 Бор 0,2 - 0,4 Свинец 4 - 5 Карбонат лития 0,2 - 0,4 Железо 0,4 - 0,6 Марганец 0,1 - 0,3 Медь Остальное

55

60

| Those | Manes | Bps-   | Pasme-          | 1030¢   | RUMENT | Назнячение        | нячение просете |            | Гаубына поверхност-    | Приничие                         |  |
|-------|-------|--------|-----------------|---------|--------|-------------------|-----------------|------------|------------------------|----------------------------------|--|
| ⊷ep   | CTOP  | -64 CM | DM 1010.        | PMTS    |        | <b> </b> '        | <del></del>     | CHELBEHOLD | **** DEGESTOR NO 1010* | F                                |  |
|       |       | rpena. | 8020            | перед   | uncus  | подгруппа         | · Kn            | CADA, NA   | вом проката            | }                                |  |
|       | 1     | 7      | BDOOM*          | Drive-  | 0FHE-  | İ                 |                 | ì          | 1                      | l                                |  |
|       | i     |        |                 | KOXIJNI | WETHE  | l                 |                 | 1.         |                        | L                                |  |
| 1     | 40    | 6      | ep. 80          | 3.0     | 7,25   | •                 | 0.2             | . 2,0      | Her                    | По притотилу                     |  |
| 2     | 40    | 5      | ep. 60          | 3,0     | 1.25   |                   | 0.2             | 0.0        | В пределах допуска     | По предлагаемому способу         |  |
| 3     | 40    | 5      | ւր. 80          | 3.0     | 7,25   |                   | 0.2             | 0.5        | Больше допустилов      |                                  |  |
| 4     | 40    | 5      | що, 80          | 3.0     | 7.25   | ,                 | 0               | 3.0        | Her                    | По прототипу.                    |  |
| 5     | 40    | 5      | ND. 80          | 3.0     | 7.25   | j r               | Ó               | 1.0        | Her                    | (до вребивььюю спосод).          |  |
| 6     | 40    | 5      | ap. 80          | 3.0     | 7.25   | ,                 | 0               | 1.0        | Eers                   | ·                                |  |
| 7     | 45X   | 4      | ≕p. 160         | 2.0     | 2,75   |                   | 0.2             | 2.0        | Нет                    | По прототилу                     |  |
| 6     | 45×   | 4      | ep. 160         | 2.0     | 2.75   | •                 | 0.2             | 1.4        | В предвлах допуска     | По предлагаемому способу         |  |
| 9     | 45X   | 4      | <b>u</b> p. 160 | 2.0     | 2.75   |                   | 0,2             | 1.0        | Больше допустника      |                                  |  |
| 10    | 45X   | •      | rp. 160         | 2.0     | 2.75   | ,                 | 0               | 3,0        | Heri                   | По протопилу                     |  |
| 11    | 45X   | •      | вр. 160         | 2.0     | 2.75   | . •               | 0               | 1.7        | Herr                   | По предняг, спос <del>гб</del> у |  |
| 12    | 45X   | 4      | kp. 160         | 2.0     | 2,73   |                   | 0               | 1.5        | Ecrs.                  |                                  |  |
| 13    | IDX15 | 12     | ×p. 120         | 2.0     | 4.65   | Трубная заготочча | 1.0             | 1,8        | Her                    | По прокетину                     |  |
| 14    | ш×15  | 17     | ED. 120         | 2,0     | 4.65   | ٠.                | 1.0             | 0          | В пределах допуска     | По предлаг, способу              |  |

C 1

R □

### POWERED BY Dialog

Paste for high temp. brazing of steels - contains flux, organic binder, powdered solder and binder oxidising agent and improves brazed joint quality

Patent Assignee: LAKOMOV V I

**Inventors:** LAKOMOV V I

### Patent Family (1 patent, 1 country)

| Patent Number | Kind | Date     | <b>Application Number</b> | Kind | Date     | Update | Туре |
|---------------|------|----------|---------------------------|------|----------|--------|------|
| SU 1562091    | A    | 19900507 | SU 4480437                | A    | 19880629 | 199101 | В    |

Priority Application Number (Number Kind Date): SU 4480437 A 19880629

**Alerting Abstract: SU A** 

The brazing paste is used in the form of a sheet that is cut to the required shape. Normally, the paste contains (wt.%): a flux 6-8, an organic binder 3-12, a binder oxidising agent 3-5 and balance powdered solder. Sodium nitrate can be used as the oxidising agent, which dissociates at 380 deg. C. Polyethylene shavings is used as the organic binder.

ADVANTAGE - The brazed joint quality is improved owing to reduced porosity level. Bul.17/7.5.90 @ (2pp Dwg.No. 0/0)

International Classification (Additional/Secondary): B23K-035/24

### **Original Publication Data by Authority**

#### **Soviet Union**

Publication Number: SU 1562091 A (Update 199101 B)

Publication Date: 19900507

Assignee: LAKOMOV V I (LAKO-I)

Inventor: LAKOMOV V I

Language: RU

Application: SU 4480437 A 19880629 (Local application)

Original IPC: B23K-35/24 Current IPC: B23K-35/24

Derwent World Patents Index

© 2007 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 5407604