```
In [1]: import numpy as np
import pandas as pd
import sklearn
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
import keras
import tensorflow as tf
from keras.utils import to_categorical
```

In [2]: data = pd.read_csv("breast-cancer.data",header=None)
 data.columns = ['Class','age','menopause','tumor-size','inv-nodes','node-caps','d

In [3]: data

Out[3]:

	Class	age	menopause	tumor- size	inv- nodes	node- caps	deg- malig	breast	breast- quad	irradiat
0	no-recurrence- events	30 - 39	premeno	30-34	0-2	no	3	left	left_low	no
1	no-recurrence- events	40 - 49	premeno	20-24	0-2	no	2	right	right_up	no
2	no-recurrence- events	40- 49	premeno	20-24	0-2	no	2	left	left_low	no
3	no-recurrence- events	60- 69	ge40	15-19	0-2	no	2	right	left_up	no
4	no-recurrence- events	40- 49	premeno	0-4	0-2	no	2	right	right_low	no
					•••			•••		
281	recurrence- events	30 - 39	premeno	30-34	0-2	no	2	left	left_up	no
282	recurrence- events	30 - 39	premeno	20-24	0-2	no	3	left	left_up	yes
283	recurrence- events	60 - 69	ge40	20-24	0-2	no	1	right	left_up	no
284	recurrence- events	40- 49	ge40	30-34	3-5	no	3	left	left_low	no
285	recurrence- events	50 - 59	ge40	30-34	3-5	no	3	left	left_low	no

286 rows × 10 columns

```
In [4]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for i in data:
    data[i] = le.fit_transform(data[i])
```

```
In [5]: | x= data.drop("irradiat",axis=1)
          y = data["irradiat"]
 In [6]: x
 Out[6]:
                Class age menopause tumor-size inv-nodes node-caps deg-malig breast breast-quad
             0
                   0
                                    2
                                              5
                        1
                                                                   1
                                                                                                2
             1
                   0
                        2
                                   2
                                              3
                                                        0
                                                                   1
                                                                             1
                                                                                    1
                                                                                                5
             2
                        2
                                    2
                                                                                                2
                   0
                                              3
                                                        0
                                                                                    0
             3
                   0
                        4
                                    0
                                              2
                                                        0
                                                                                    1
                                                                                                3
                                                                   1
                                                                             1
                                    2
             4
                   0
                        2
                                              0
                                                        0
                                                                             1
                                                                                    1
                                                                                                4
                                                                   1
                                   ...
           281
                   1
                        1
                                   2
                                              5
                                                        0
                                                                   1
                                                                             1
                                                                                    0
                                                                                                3
                                    2
                                              3
                                                                             2
           282
                                                        0
                                                                   1
                                                                                    0
                                                                                                3
                   1
                        1
           283
                   1
                        4
                                    0
                                              3
                                                        0
                                                                   1
                                                                             0
                                                                                    1
                                                                                                3
                                    0
                                              5
                                                                             2
                                                                                                2
           284
                        2
                                                        4
                                                                   1
                                                                                    0
                   1
                                              5
                                                                             2
                                                                                                2
           285
                        3
                                    0
                                                        4
                                                                   1
                                                                                    0
          286 rows × 9 columns
 In [7]:
 Out[7]: 0
                  0
          1
                  0
          2
                  0
          3
                  0
          4
                  0
                 . .
          281
                  0
          282
                  1
          283
                  0
          284
                  0
          285
          Name: irradiat, Length: 286, dtype: int32
 In [8]: x.shape
 Out[8]: (286, 9)
 In [9]: y.shape
 Out[9]: (286,)
In [10]: from sklearn.model_selection import train_test_split
          xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.25,random_state=0)
```

```
In [11]: | xtrain1 = np.array(xtrain)
        xtest1 = np.array(xtest)
        ytrain1 = np.array(ytrain)
        ytest1 = np.array(ytest)
In [12]: xtrain1 = xtrain1.reshape(xtrain1.shape[0],xtrain1.shape[1],1)
        xtest1 = xtest1.reshape(xtest1.shape[0],xtest1.shape[1],1)
In [13]: |xtrain1.shape
Out[13]: (214, 9, 1)
In [14]: xtest1.shape
Out[14]: (72, 9, 1)
In [15]: |ytrain1.shape
Out[15]: (214,)
In [16]: |ytest1.shape
Out[16]: (72,)
In [17]: from keras.layers import LSTM, Dense, Activation, Flatten
        from keras.models import Sequential
In [18]: | model = Sequential()
        model.add(LSTM(256,input shape=(xtrain1.shape[1],1)))
        model.add(Dense(1, activation='softmax'))
        model.compile(loss='categorical_crossentropy', optimizer='adam')
In [19]: model.summary()
        Model: "sequential"
        Layer (type)
                                   Output Shape
                                                           Param #
        ______
        1stm (LSTM)
                                   (None, 256)
                                                           264192
        dense (Dense)
                                   (None, 1)
                                                           257
        ______
        Total params: 264,449
        Trainable params: 264,449
        Non-trainable params: 0
In [20]: model.compile(metrics= ["accuracy"],optimizer="adam",loss="categorical_crossentro")
```

```
In [21]: history = model.fit(xtrain1, ytrain1,batch_size=10,epochs=250)
      Epoch 1/250
      22/22 [============ ] - 0s 13ms/step - loss: 0.0000e+00 - ac
      curacy: 0.2383
      Epoch 2/250
      curacy: 0.2383 0s - loss: 0.0000e+00 - accura
      Epoch 3/250
      curacy: 0.2383
      Epoch 4/250
      22/22 [============== ] - 0s 15ms/step - loss: 0.0000e+00 - ac
      curacy: 0.2383
      Epoch 5/250
      22/22 [============== ] - 0s 14ms/step - loss: 0.0000e+00 - ac
      curacy: 0.2383
      Epoch 6/250
      curacy: 0.2383
      Epoch 7/250
                                 ^ 43 / ±
                                               0 0000 -00
In [22]: history = pd.DataFrame(history.history)
      history
```

Out[22]:

	loss	accuracy
0	0.0	0.238318
1	0.0	0.238318
2	0.0	0.238318
3	0.0	0.238318
4	0.0	0.238318
245	0.0	0.238318
246	0.0	0.238318
247	0.0	0.238318
248	0.0	0.238318
249	0.0	0.238318

250 rows × 2 columns

In [23]: history.plot(figsize=(15,10))

Out[23]: <AxesSubplot:>


```
In [24]: ypredict = np.argmax(model.predict(xtest1), axis=-1)
```

In [25]: from sklearn.metrics import accuracy_score
accuracy_score(ytest1,ypredict)

Out[25]: 0.7638888888888888