Interval robotics

Chapter 1: Interval computation

Luc Jaulin, ENSTA-Bretagne, Brest, France 1 Notions on set theory

We define

Exercise: If $\mathbb{X}=\{a,b,c,d\}$ and $\mathbb{Y}=\{b,c,x,y\}$, then

$$\mathbb{X} \cap \mathbb{Y} = ?$$

$$\mathbb{X} \cup \mathbb{Y} = ?$$

$$\mathbb{X}\setminus\mathbb{Y} = ?$$

$$\mathbb{X} \times \mathbb{Y} = ?$$

Exercise: If $\mathbb{X}=\{a,b,c,d\}$ and $\mathbb{Y}=\{b,c,x,y\}$, then

$$X \cap Y = \{b, c\}$$

$$X \cup Y = \{a, b, c, d, x, y\}$$

$$X \setminus Y = \{a, d\}$$

$$X \times Y = \{(a, b), (a, c), (a, x), (a, y),$$

$$\dots, (d, b), (d, c), (d, x), (d, y)\}$$

The $\mathit{direct\ image}\ \mathsf{of}\ \mathbb{X}\ \mathsf{by}\ f$ is

$$f(X) \triangleq \{f(x) \mid x \in X\}.$$

The $reciprocal\ image\ of\ \mathbb{Y}\$ by f is

$$f^{-1}(\mathbb{Y}) \triangleq \{x \in \mathbb{X} \mid f(x) \in \mathbb{Y}\}.$$

Exercise: If f is defined as follows

$$f(A) = ?.$$

 $f^{-1}(B) = ?.$
 $f^{-1}(f(A)) = ?$
 $f^{-1}(f(\{b,c\})) = ?.$

Exercise: If f is defined as follows

$$f(A) = \{2,3,4\} = \text{Im}(f).$$

$$f^{-1}(B) = \{a,b,c,e\} = \text{dom}(f).$$

$$f^{-1}(f(A)) = \{a,b,c,e\} \subset A$$

$$f^{-1}(f(\{b,c\})) = \{a,b,c\}.$$

Exercise: If $f(x) = x^2$, then

$$f([2,3]) = ?$$

 $f^{-1}([4,9]) = ?.$

Exercise: If $f(x) = x^2$, then

$$f([2,3]) = [4,9]$$

 $f^{-1}([4,9]) = [-3,-2] \cup [2,3].$

This is consistent with the property

$$f^{-1}(f(\mathbb{Y}))\supset \mathbb{Y}.$$

2 Interval arithmetic

If
$$\diamond \in \{+,-,\cdot,/,\max,\min\}$$

$$[x] \diamond [y] = [\{x \diamond y \mid x \in [x], y \in [y]\}].$$

$$[-1,3] + [2,5] = [?,?],$$

 $[-1,3] \cdot [2,5] = [?,?],$
 $[-2,6]/[2,5] = [?,?].$

If
$$\diamond \in \{+,-,\cdot,/,\max,\min\}$$

$$[x] \diamond [y] = [\{x \diamond y \mid x \in [x], y \in [y]\}].$$

$$[-1,3] + [2,5] = [1,8],$$

 $[-1,3].[2,5] = [-5,15],$
 $[-2,6]/[2,5] = [-1,3].$

$$[x^-, x^+] + [y^-, y^+] = [x^- + y^-, x^+ + y^+], [x^-, x^+] \cdot [y^-, y^+] = [x^-y^- \wedge x^+y^- \wedge x^-y^+ \wedge x^+y^+, x^-y^- \vee x^+y^- \vee x^-y^+ \vee x^+y^+],$$

If
$$f \in \{\cos, \sin, \operatorname{sqr}, \operatorname{sqrt}, \log, \exp, \dots\}$$

$$f([x]) = [\{f(x) \mid x \in [x]\}].$$

$$\sin([0,\pi]) = ?,$$
 $\operatorname{sqr}([-1,3]) = [-1,3]^2 =?,$
 $\operatorname{abs}([-7,1]) = ?,$
 $\operatorname{sqrt}([-10,4]) = \sqrt{[-10,4]} =?,$
 $\log([-2,-1]) = ?.$

If
$$f \in \{\cos, \sin, \operatorname{sqrt}, \log, \exp, \dots\}$$

$$f([x]) = [\{f(x) \mid x \in [x]\}].$$

$$\sin ([0,\pi]) = [0,1],$$

 $\operatorname{sqr} ([-1,3]) = [-1,3]^2 = [0,9],$
 $\operatorname{abs} ([-7,1]) = [0,7],$
 $\operatorname{sqrt} ([-10,4]) = \sqrt{[-10,4]} = [0,2],$
 $\log ([-2,-1]) = \emptyset.$

3 Boxes

A box, or interval vector $[\mathbf{x}]$ of \mathbb{R}^n is

$$[\mathbf{x}] = [x_1^-, x_1^+] \times \cdots \times [x_n^-, x_n^+] = [x_1] \times \cdots \times [x_n].$$

The set of all boxes of \mathbb{R}^n will be denoted by \mathbb{IR}^n .

The width w([x]) of a box [x] is the length of its largest side. For instance

$$w([1,2] \times [-1,3]) = 4$$

The *principal plane* of [x] is the symmetric plane [x] perpendicular to its largest side.

4 Inclusion function

The interval function [f] from \mathbb{IR}^n to \mathbb{IR}^m , is an *inclusion function* of f if

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \ \mathbf{f([\mathbf{x}])} \subset [\mathbf{f}]([\mathbf{x}]).$$

Inclusion functions [f] and $[f]^*$; here, $[f]^*$ is minimal.

The inclusion function [f] is

monotonic	if	$([\mathrm{x}] \subset [\mathrm{y}]) \Rightarrow ([\mathrm{f}]([\mathrm{x}]) \subset [\mathrm{f}]([\mathrm{y}]))$
minimal	if	$orall \mathbf{x} \in \mathbb{IR}^n, \; \mathbf{[f]}\left(\mathbf{[x]} ight) = \mathbf{[f}\left(\mathbf{[x]} ight)\mathbf{]}$
thin	if	$w([\mathbf{x}]) = 0 \Rightarrow w([\mathbf{f}]([\mathbf{x}]) = 0$
convergent	if	$w([\mathbf{x}]) \to 0 \Rightarrow w([\mathbf{f}]([\mathbf{x}]) \to 0.$

Convergent but non-monotonic

Convergent and monotonic

The natural inclusion function for $f(x) = x^2 + 2x + 4$ is

$$[f]([x]) = ?.$$

For [x] = [-3, 4], compute [f]([x]) and f([x]).

The natural inclusion function for $f(x) = x^2 + 2x + 4$ is

$$[f]([x]) = [x]^2 + 2[x] + 4.$$

If [x] = [-3, 4], we have

$$[f]([-3,4]) = [-3,4]^2 + 2[-3,4] + 4$$

= $[0,16] + [-6,8] + 4$
= $[-2,28]$.

Note that $f([-3, 4]) = [3, 28] \subset [f]([-3, 4]) = [-2, 28]$.

A minimal inclusion function for

$$\mathbf{f}: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x_1, x_2) & \mapsto & \left(x_1 x_2, x_1^2, x_1 - x_2\right). \end{array}$$

is

[f]:
$$\mathbb{IR}^2 \to \mathbb{IR}^3$$

 $([x_1], [x_2]) \to ([x_1] * [x_2], [x_1]^2, [x_1] - [x_2]).$

If f is given by the algorithm

```
Algorithm f(\text{in: } \mathbf{x} = (x_1, x_2, x_3), \text{ out: } \mathbf{y} = (y_1, y_2))

1 z := x_1;
2 for k := 0 to 100
3 z := x_2(z + kx_3);
4 next;
5 y_1 := z;
6 y_2 := \sin(zx_1);
```

Its natural inclusion function is

```
Algorithm [f](in: [x], out: [y])

1  [z] := [x_1];

2  for k := 0 to 100

3  [z] := [x_2] * ([z] + k * [x_3]);

4  next;

5  [y_1] := [z];

6  [y_2] := \sin([z] * [<math>x_1]);
```

Is [f] convergent? thin? monotonic?

Centred inclusion functions

If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable over $[\mathbf{x}]$, and if $\mathbf{m} = \min([\mathbf{x}])$. The mean-value theorem implies

$$\forall \mathbf{x} \in [\mathbf{x}], \exists \mathbf{z} \in [\mathbf{x}] \mid f(\mathbf{x}) = f(\mathbf{m}) + \frac{df}{d\mathbf{x}}(\mathbf{z}) \cdot (\mathbf{x} - \mathbf{m}).$$
 Thus,

$$\forall \mathbf{x} \in [\mathbf{x}], f(\mathbf{x}) \in f(\mathbf{m}) + \frac{df}{d\mathbf{x}}([\mathbf{x}]) \cdot (\mathbf{x} - \mathbf{m}),$$

Therefore, an inclusion function for f is

$$[f_{\mathsf{c}}]([\mathbf{x}]) \stackrel{\mathsf{def}}{=} f(\mathbf{m}) + \left[\frac{df}{d\mathbf{x}}\right]([\mathbf{x}]) \cdot ([\mathbf{x}] - \mathbf{m}).$$

6 Boolean intervals

Boolean intervals

A Boolean number is an element of

$$\mathbb{B} \triangleq \{ \textit{false}, \textit{true} \} = \{0, 1\}$$
.

If we define the relation \leq as

$$0 \le 0, 0 \le 1, 1 \le 1$$
,

then, the set (\mathbb{B}, \leq) is a lattice for which intervals can be defined.

Exercise: The set of *Boolean interval* is

$$IB = \{?, ?, ?, ?\},$$

Exercise: The set of *Boolean interval* is

$$\mathbb{IB} = \{\emptyset, 0, 1, [0, 1]\},$$

Boolean interval arithmetic

$$[a] \lor [b] = \{a \lor b \mid a \in [a], b \in [b]\},$$

 $[a] \land [b] = \{a \land b \mid a \in [a], b \in [b]\},$
 $\neg [a] = \{\neg a \mid a \in [a]\}.$

Exercise: Compute

$$([0,1] \lor 1) \land ([0,1] \land 1) = ?$$

Exercise: Compute

$$([0,1] \lor 1) \land ([0,1] \land 1) = 1 \land [0,1] = [0,1].$$

7 Inclusion tests

A test is a function t from \mathbb{R}^n to \mathbb{B} . An inclusion test [t] is an inclusion function for t. Thus

$$egin{array}{ll} ([t]([\mathbf{x}])=1) &\Rightarrow& (\forall \mathbf{x} \in [\mathbf{x}]\,,\; t(\mathbf{x})=1)\,, \\ ([t]([\mathbf{x}])=0) &\Rightarrow& (\forall \mathbf{x} \in [\mathbf{x}]\,,\; t(\mathbf{x})=0)\,. \end{array}$$

An inclusion test $[t_A]$ for a set A of \mathbb{R}^n is an inclusion test for the test $(\mathbf{x} \in A)$. We have

$$egin{array}{lll} [t_{\mathbb{A}}]\left([\mathbf{x}]
ight) = 1 & \Rightarrow & (orall \mathbf{x} \in [\mathbf{x}] \,,\; t_{\mathbb{A}}(\mathbf{x}) = 1) & \Leftrightarrow & ([\mathbf{x}] \subset \mathbb{A}) \,, \ [t_{\mathbb{A}}]\left([\mathbf{x}]
ight) = 0 & \Rightarrow & (orall \mathbf{x} \in [\mathbf{x}] \,,\; t_{\mathbb{A}}(\mathbf{x}) = 0) & \Leftrightarrow & ([\mathbf{x}] \cap \mathbb{A} = 0) \end{array}$$

[t] is monotonic	if	$([\mathbf{x}] \subset [\mathbf{y}]) \Rightarrow ([t]([\mathbf{x}]) \subset [t]([\mathbf{y}]))$
[t] is minimal	if	$\forall [\mathbf{x}] \in \mathbb{IR}^n, \ [t]([\mathbf{x}]) = t([\mathbf{x}])$
[t] is thin	if	$orall \mathbf{x} \in \mathbb{R}^n, \ [t](\mathbf{x}) eq [0,1].$

If $\mathbb A$ and $\mathbb B$ are two sets, we have

$$t_{\mathbb{A} \cap \mathbb{B}} = t_{\mathbb{A}} \wedge t_{\mathbb{B}}$$
 $t_{\mathbb{A} \cup \mathbb{B}} = t_{\mathbb{A}} \vee t_{\mathbb{B}}$
 $t_{\neg \mathbb{A}} = \neg t_{\mathbb{A}} = \mathbf{1} - t_{\mathbb{A}}.$

Thus

$$egin{aligned} &[t_{\mathbb{A}\cap\mathbb{B}}]([\mathbf{x}]) & riangleq ([t_{\mathbb{A}}] \wedge [t_{\mathbb{B}}])([\mathbf{x}]) = [t_{\mathbb{A}}]([\mathbf{x}]) \wedge [t_{\mathbb{B}}]([\mathbf{x}]), \ &[t_{\mathbb{A}\cup\mathbb{B}}]([\mathbf{x}]) & riangleq ([t_{\mathbb{A}}] \vee [t_{\mathbb{B}}])([\mathbf{x}]) = [t_{\mathbb{A}}]([\mathbf{x}]) \vee [t_{\mathbb{B}}]([\mathbf{x}]), \ &[t_{\mathbb{A}}]([\mathbf{x}]) & riangleq \neg [t_{\mathbb{A}}]([\mathbf{x}]) = 1 - [t_{\mathbb{A}}]([\mathbf{x}]). \end{aligned}$$

Exercise: Consider the test

$$t: \begin{array}{ccc} \mathbb{R}^2 & \to & \{0,1\} \\ (x_1, x_2)^{\mathsf{T}} & \mapsto & (x_1 + x_2^2 \leqslant 5). \end{array}$$

The minimal inclusion test [t] associated with t is

$$[t]([\mathbf{x}]) = \left\{egin{array}{ccc} 1 & ext{if} & ? \ 0 & ext{if} & ? \ [0,1] & ext{if} & ? \end{array}
ight.$$

Exercise: Consider the test

$$t: \begin{array}{ccc} \mathbb{R}^2 & \to & \{0,1\} \\ (x_1, x_2)^\mathsf{T} & \mapsto & (x_1 + x_2^2 \leqslant 5). \end{array}$$

The minimal inclusion test [t] associated with t is

$$[t]([\mathbf{x}]) = \begin{cases} 1 & \text{if } [x_1] + [x_2]^2 \in] - \infty, 5], \\ 0 & \text{if } [x_1] + [x_2]^2 \in]5, \infty[\\ [0, 1] & \text{otherwise,} \end{cases}$$