Teórico 7

Diseño de Bases de Datos (Normalización)

Objetivos de la Normalización

- Decidir si la relación R está en una "buena" forma.
- En el caso que una relación R no esté en una "buena" forma, descomponer esta en un conjunto de relaciones $\{R1, R2, ..., Rn\}$ tal que:
 - Cada relación está en buena forma.
 - La descomposición es una descomposición sin perdida (lossless-join decomposition).
- Esta teoría está basada en:
 - Dependencias funcionales.
 - Dependencias multivaluadas.

Retomamos el Ejemplo (clase anterior)

Supongamos que estamos trabajando con información de Personas y vehículos, y dicha información está representada con una sola tabla.

R(<u>DNI</u>, NYApellido, Dir, <u>Npat</u>, Modelo, Marca)

Supongamos la siguiente instancia de la relación R

DNI	NYApellido	Dir	Npat	Modelo	Marca
23	Juan Peres	Bs As 345	NDT 454	2000	Fiat
23	Juan Peres	Bs As 345	KJI 566	2005	VW
24	Carlos Puig	Mendoza 2211	GTR 654	2000	Ford

Consideremos la Siguiente Descomposición de R

Personas= (DNI, NYApellido, Dir, Modelo)

Y

Vehiculos= (Npat, Modelo, Marca)

Las Instancias Serían

$$personas = \prod_{Personas}(r)$$

DNI	NYApellido	Dir	Modelo
23	Juan Peres	Bs As 345	2000
23	Juan Peres	Bs As 345	2005
24	Carlos Puig	Mendoza 2211	2000

vehículos = $\Pi_{Vehículos}(r)$

Npat	Modelo	Marca
NDT 454	2000	Fiat
KJI 566	2005	VW
GTR 654	2000	Ford

Para que una división sea válida y no tenga pérdida de información, el join Natural entre las tablas debe ser igual a la tabla original en cuanto a instancias.

 $r = personas \bowtie vehículos$

En nuestro caso: personas \bowtie vehículos \neq r

DNI	NYApellido	Dir	Npat	Modelo	Marca
23	Juan Peres	Bs As 345	NDT 454	2000	Fiat
23	Juan Peres	Bs As 345	GTR 654	2000	Ford
23	Juan Peres	Bs As 345	KJI 566	2005	VW
24	Carlos Puig	Mendoza 2211	GTR 654	2000	Ford
24	Carlos Puig	Mendoza 2211	NDT 454	2000	Fiat

Consideremos la Siguiente Descomposición de R

Personas= (<u>DNI</u>, NYApellido, Dir),

Personas Vehiculos (<u>DNI, Npat</u>)

Y

Vehiculos= (Npat, Modelo, Marca)

Las Instancias Serían

$$personas = \prod_{Personas}(r)$$

DNI	NYApellido	Dir
23	Juan Peres	Bs As 345
24	Carlos Puig	Mendoza 2211

vehículos =
$$\Pi_{Vehículos}(r)$$

Npat	Modelo	Marca
NDT 454	2000	Fiat
KJI 566	2005	VW
GTR 654	2000	Ford

$$personas Vehiculos = \prod_{Personas Vehiculos}(r)$$

DNI	Npat
23	NDT 454
23	KJI 566
24	GTR 654

Haciendo el Join

 $r = personas \bowtie personas Vehiculos \bowtie vehiculos$

Resultado:

•	DNI	NYApellido	Dir	Npat	Modelo	Marca
	23	Juan Peres	Bs As 345	NDT 454	2000	Fiat
	23	Juan Peres	Bs As 345	KJI 566	2005	VW
	24	Carlos Puig	Mendoza 2211	GTR 654	2000	Ford

De esta forma se ve que la descomposición realizada no tiene pérdida de información.

Definición

Sea R un esquema. Un conjunto de esquemas de relación {R1, R2,..., Rn} es una descomposición de R si
 R = R1 ∪ R2 ∪ ... ∪ Rn

• Sea r una instancia de relación del esquema R y sea $r_i = \Pi_{Ri}(r)$ para i = 1,2...n. Es decir $\{r_1r_2....r_n\}$ es la base de datos que resulta de descomponer R en $\{R1, R2,...,Rn\}$, siempre se cumple que:

$$r \subseteq r_1 \bowtie r_2 \bowtie \bowtie r_n$$

• Una relación se dice legal si satisface todas las ligaduras impuestas a nuestra base de datos.

Definición

- Sea C un conjunto de ligaduras en la Base de datos. Una descomposición (R1, R2, ...,Rn) de un esquema de relación R es una descomposición de reunión sin pérdida para R si para todas las instancias r que son legales bajo C, se cumple:
- $\mathbf{r} = \Pi_{R1}(\mathbf{r}) \bowtie \Pi_{R2}(\mathbf{r}) \bowtie ... \bowtie \Pi_{Rn}(\mathbf{r})$

Normalización Utilizando Dependencias Funcionales

• Un conjunto de dependencias funcionales válidas en una base de datos pueden utilizarse para lograr un buen diseño.

Propiedades Deseables de una Descomposición

• Descomposición de reunión sin pérdidas.

Conservación de dependencias.

Descomposición sin Perdida

• Sea R un esquema de relación, y F un conjunto de dependencias funcionales en R. Sea R1 y R2 una descomposición de R. Esta descomposición es una descomposición de reunión sin pérdida de R, si al menos una de las siguientes dependencias está en F⁺:

$$R1 \cap R2 \rightarrow R1$$

 $R1 \cap R2 \rightarrow R2$

Conservación de Dependencias

• Cuando se realiza la descomposición de un esquema de relación R, es deseable que esta descomposición no pierda dependencias funcionales (restricciones a los datos).

Definición

- Sea un esquema R, un conjunto de dependencias funcionales F en R, y una descomposición $\{R_1, R_2, ..., R_n\}$, considerando a F_i un subconjunto de dependencias de F^+ que sólo incluyen atributos de R_i .
 - Dicha descomposición preserva las dependencias si

$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

Definiciones

Atributo Primo

- Un atributo del esquema relación R es **primo** si es miembro de cualquier clave(candidata) de R.

Dependencia Total

 $-X \rightarrow Y$ es una dep. funcional **total** si la eliminación de cualquier atributo A de X hace que la dep. funcional deje de ser válida. (no tiene atr. redundantes a la izq.)

Dependencia Parcial

 $-X\rightarrow Y$ es una dep. funcional **parcial** si es posible eliminar un

atributo A de X, y la dep. funcional sigue siendo válida.

Forma Normal de Byce-Codd(BCNF)

• Un esquema de relación R está en BCNF respecto a un conjunto de dependencias F, si para toda dependencia en F^+ de la forma $\alpha \to \beta$ cumple al menos una de las siguientes condiciones:

- $\alpha \rightarrow \beta$ es trivial
- α es superclave del esquema R.

Algoritmo de Descomposición a BCNF

```
resultado := \{R\};
hecho := false;
computar F^+;
while (not hecho) do
   if (hay un esquema R<sub>i</sub> en resultado que no está en BCNF)
   then
      begin
         dado \alpha \to \beta una dependencia funcional no trivial que vale en R_i tal que
         \alpha \to R_i no está en F^+, y \alpha \cap \beta = \emptyset;
         resultado := (resultado - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
      end
    else
      hecho := true;
```


Algoritmo de Descomposición a BCNF (sigue)

- El algoritmo anterior genera una descomposición en BCNF, además de generar una descomposición sin pérdida.
- El algoritmo no garantiza la conservación de las dependencias.

Tercera Forma Normal (3NF)

Un esquema de relación R está en 3NF respecto a un conjunto de dependencias F, si para toda dependencia en F+ de la forma $\alpha \rightarrow \beta$ cumple al menos una de las siguientes condiciones:

- $\alpha \rightarrow \beta$ es trivial.
- α es superclave del esquema R.
- Cada atributo A en β α está contenido en alguna clave candidata de R (A es primo)

Algoritmo de Descomposición a 3NF

```
Dado F_c un conjunto canónico para F;
i := 0;
for each dependencia funcional \alpha \to \beta en F_c do
        if ninguno de los esquemas R_i, 1 \le i contiene \alpha \beta
           then
              begin
                    i := i + 1;
                    R_i := \alpha \beta
             end
if ninguno de los esquemas R_{i}, 1 \le j \le i contiene una clave candidata de R
        then
          begin
                    i := i + 1;
                    R_i := cualquier clave candidata para R;
          end
return (R_1, R_2, ..., R_i)
```


Comparación entre BCNF y 3NF

- Siempre es posible descomponer una relación en un conjunto de relaciones que estén en 3NF, logrando:
 - Una descomposición sin pérdida.
 - Preservando las dependencias funciones.
- Siempre es posible descomponer una relación en un conjunto de relaciones que estén en BCNF, logrando:
 - Una descomposición sin pérdida.
 - No siempre es posible lograr una descomposición que preserve las dependencias.

Segunda Forma Normal

• Para todo atributo no primo de R, no depende parcialmente de ninguna clave candidata de R.

Primera Forma Normal

• Un esquema de relación R está 1NF si todos sus atributos son atómicos.

• Las formas normales BCNF, 3NF, 2NF y 1NF son inclusivas es decir, si un esquema R está en BCNF, también lo estará en 3NF, si un esquema R está en 3NF, también lo estará en 2NF, y así...

• Intuitivamente:

Ejemplos de Diferentes Formas Normales en Instancias de Tablas

Personas Vehiculos = (<u>DNI</u>, NYApellido, Dir, <u>Npat</u>, Modelo, Marca)

DNI	NYApellido	Dir	Npat	Modelo	Marca
23	Juan Peres	Bs As 345	NDT 454	2000	Fiat
23	Juan Peres	Bs As 345	KJI 566	2005	VW
24	Carlos Puig	Mendoza 2211	KJI 566	2005	VW
24	Carlos Puig	Mendoza 2211	GFT 654	2001	Honda

Dependencias: DNI → NYApellido, Dir

Npat → Modelo Y Marca

PersonaVehiculos está en 1NF

Ciudades(Nprov,nombreProv,capital,Nciudad,nombreC,habitantesC)

Nprov	NombreProv	capital	Nciudad	nombreC	habitantesC
1	Cordoba	c1	c1	Cordoba	2000000
1	Cordoba	c1	c2	Rio Cuarto	160000
1	Cordoba	c1	с3	Rio Tercero	50000
1	Cordoba	c1	c4	Villa Maria	60000
2	Santa fe	c5	c5	Santa fe	250000
2	Santa fe	c5	с6	Rosario	150000
2	Santa fe	с5	с7	Rufino	80000

Dependencias: Nprov → NombreProv, capital
Nciudad → nombreC,habitantesC, Nprov

Ciudades está en 2NF

Imparte = (estudiante, curso, profesor)

• Restricciones: Un profesor dicta sólo un curso y dado un estudiante y un curso se conoce quien es el profesor.

Estudiante	curso	profesor
Juan	Matematica	Cuello
Juan	Fisica	Rodriguez
null	Matematica	Peres
Pedro	Química	Acosta
Carlos	Química	Acosta
Juan	Química	Suares
null	Tecnología	Ludueña

Imparte está en 3NF.

Personas(DNI,NYApellido,Dir)

DNI	NYApellido	Dir
23	Juan Peres	Bs As 345
24	Carlos Puig	Mendoza 2211

Dependencia: DNI → NYApellido, Dir

Personas está en BCNF.

Ejemplos de Normalización

Ejemplo nro 1:

•Vivero (#sector, dni_empleado, nombre_empleado, tipo_planta, nombre_especie, hora, dia, cant_luz)

Que representa la información de un vivero y teniendo en cuenta lo siguiente:

Los números de sector no se repiten.

En un sector pueden trabajar más de un empleado y puede haber más de un tipo de plantas (por ejemplo, margaritas y rosas).

Un empleado puede trabajar en varios sectores pero en un sector se encarga de cuidar un solo tipo de planta.

Los tipos de plantas pertenecen a una única especie.

Todos los días se registra a que hora se empezó a regar cada sector y quién fue el empleado que lo hizo.

Un sector se riega una sola vez por día.

En cada hora del día y por cada sector, se verifica con un sensor, la cantidad de luz que entra.

Primero: Definir las dep. funcionales

- 1) dni_empleado, #sector → tipo_planta
- 2) tipo_planta → nombre_especie
- 3) #sector, dia → hora, dni_empleado
- 4) dia, hora, #sector → cant_luz
- 5) dni empleado → nombre empleado

Segundo: Definir las claves candidatas

(#sector, dia)

• Tercer paso llevar a BCNF o 3NF.

Comienzo dividiendo por 2)

R1 (<u>tipo_planta</u>, nombre_especie)

FR1{2)}

R1 con respecto a FR1 está en BCNF.

R2(<u>#sector</u>, dni_empleado, nombre_empleado, tipo_planta, hora, <u>dia</u>, cant_luz)

FR2{ 1), 3), 4), 5)}

R2 con respecto a FR2 está en 1NF, por lo tanto debo dividirla.

Ahora Divido por 1)

R3(<u>dni_empleado</u>, #sector, tipo_planta)

FR2 (1))

R3 con respecto a FR3 está en BCNF.

R4(<u>#sector</u>, dni_empleado, nombre_empleado, hora, <u>dia</u>, cant_luz)

FR4 {3), 4), 5)}

R4 con respecto a FR4 está en 2NF, por lo tanto debo dividirla.

Div R4 por 3)?

NOOOOO!!!

porque R4 por 3) está en BCNF.

Div R4 por 5)

R5(dni_empleado, nombre_empleado)

FR5 {5)}

R5 con respecto a FR5 está en BCNF.

R6(#sector, dni_empleado, hora, dia, cant_luz)

FR6 {3), 4)}

R6 con respecto a FR6 está en BCNF.

Esquema Final Resultante está en BCNF

El esquema final está compuesto por las siguientes relaciones:

R1, R3, R5 Y R6

Ejemplo nro 2:

Torneo_de_tenis (#cancha, dniJugador, dirJugador, dniArbitro, dirArbitro, hora_partido, fechaPartido, resultado, #partido)

Este esquema representa la información de un torneo de tenis ya realizado y teniendo en cuenta lo siguiente:

El #partido representan el orden de cada partido en el campeonato, los partidos se juegan en una cancha, en una fecha y en un determinado horario. Los jugadores pueden jugar un solo partido por día, por cada partido se conoce su resultado (por ej. 6/3, 6/2) y el arbitro, un arbitro puede dirigir más de un partido por día, pero uno sólo a la vez.

Primero: Definir las dep. funcionales

- 1) #cancha, hora_partido, fechaPartido → #partido
- 2) #partido → #cancha, hora_partido, fechaPartido, resultado, dniArbitro
- 3) dniJugador, fechaPartido → #partido
- 4) dirArbitro, hora_partido, fechaPartido → #partido
- 5) dniJugador → dirJugador
- 6) dniArbitro → dirArbitro

Segundo: Definir las claves candidatas

(dniJugador, fechaPartido) (dniJugador, #partido)

• Tercer paso llevar a BCNF o 3NF.

