Branch: CSE/IT

Batch: Hinglish

Discrete Mathematics II Set Theory

DPP-02

[MCQ]

- 1. Suppose A, B, C and D are subsets of U (the universe) with A as a subset of B and C as subset of D i.e $A \subseteq B$ and $C \subseteq D$, then consider the following statements
 - $I. \quad A \cap C \subseteq B \cap D$
 - II. $A \cup C \subseteq B \cup D$

Which of the following is correct options?

- (a) Only I is true
- (b) Only II is true
- (c) Neither I nor II is true
- (d) Both I and II are true

[NAT]

2. Let A = {1, 2, 3, ... 15}. How many subsets of A contains all of the odd integers in A?

[MCQ]

- **3.** Determine whether each of the following statements is true of false. For each false statement, given a counterexample.
 - (a) If A and B are infinite sets, then $A \cap B$ is infinite.
 - (b) If B is infinite and $A \subseteq B$, then A is infinite.

- (c) If $A \subseteq B$ with B finite, then A is finite.
- (d) If $A \subseteq B$ with A finite, then B is finite.

[NAT]

4. Let U be a given universe with $A, B \subseteq U, A \cap B = \phi$, |A| = 12, and |B| = 10. If seven elements are selected from $A \cup B$, what is the probability the selection contains four elements from A and three from B?

[MCQ]

5. Let $A, B \subseteq \mathbb{R}$, where $A = \{x | x^2 - 7x = -12\}$ and

$$B = \{x \mid x^2 - x = 6\}$$
. Determine $A \cup B$ and $A \cap B$.

- (a) $A \cup B = \{5\}$ and $A \cap B = \{-2, 3, 4\}$
- (b) $A \cup B = \{3\}$ and $A \cap B = \{-2, 3, 4\}$
- (c) $A \cup B = \{-2, 3, 4\}$ and $A \cap B = \{3\}$
- (d) $A \cup B = \{2, 3, 4\}$ and $A \cap B = \{5\}$

Answer Key

1. (d)

2. (128)

3. (a)

4. (0.3483)

5. (c)

Hints and Solutions

1. (d)

I. $A \cap C \subseteq B \cap D$, is True.

Let a be an arbitrary element of $A \cap C$, so $a \in A \cap C$ then $a \in A \subseteq B$, so $a \in B$ and $a \in C \subseteq D$, so $a \in D$. That concludes that $a \in B$ and $a \in D$, therefore by definition $a \in B \cap D$. If follows that every element of $A \cap C$ belongs to $B \cap D$, which by definition means $A \cap C \subseteq B \cap D$.

II. $A \cup C \subseteq B \cup D$, is True.

If a is an arbitrary element that belongs to $A \cup C \text{ then it definitely belongs to } B \cup D \text{ as } A$ $\subseteq B \text{ and } C \subseteq D.$

2. (128)

In the given set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$

There are 8 odd integers. For all odd integer we have choices whether to include it or not with the 7 even integers in the set.

Therefore possiblities = $2^7 = 128$.

- 3. (c)
 - (a) False: Let

$$A = \{0, 1, 2, 3, ...\}, B = \{0, -1, -2, ...\}.$$
 Then A, B are infinite but $|A \cap B| = |\{0\}| = 1$

- **(b)** False: Let $A = \{1, 2\}$ and $B = Z^+$.
- (c) True
- (d) False: Let $A = \{1, 2\}$ and $B = Z^+$.

4. (0.3483)

Since $|A \cap B| = 0$, $|A \cup B| = 12 + 10 = 22$. There are $\binom{22}{7}$ ways to select seven elements from $A \cup B$.

Among these selections $\binom{12}{4}\binom{10}{3}$ contain four

elements from A and three from B. Consequently, the probability sought here is

$$\binom{12}{4} \binom{10}{3} / \binom{22}{7} = (495)(120) / (170,544) \doteq 0.3483.$$

5. (-2, 3, 4)

$$x^{2} - 7x = -12 \Rightarrow x^{2} - 7x + 12 = 0 \Rightarrow (x - 4)(x - 3) = 0 \Rightarrow x = 4, x = 3.$$

 $x^{2} - x = 6 \Rightarrow x^{2} - x - 6 = 0 \Rightarrow (x - 3)(x + 2) = 0 \Rightarrow x = 3, x = -2.$

Consequently, $A \cap B = \{3\}$ and $A \cup B = \{-2, 3, 4\}$.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

