立体視用印刷物の製造方法、立体視用印刷物

本願では、2002年11月12日に出願された日本特許出願2002-32 8834、2002-328869の内容がそのまま含まれる。

BACKGROUND OF THE INVENTION

本発明は、立体視用印刷物の製造方法及び立体視用印刷物に関する。

従来より、左目に相当するカメラで撮った左目用の画像と、右目に相当するカメラで撮った右目用の画像とを用意し、これらの画像をアナグリフ(anaglyph) 処理などにより合成し、立体視用画像(立体視用印刷物)を得る技術が知られている(例えば特開2000-56411号公報)。

さて、人間が物体の立体感を感じるのは、(1) 左右の目が空間的に離れていることに起因して網膜の結像がずれる両限視差(視線角度のずれ)、(2) 左右の目が内側に向く機能である輻輳(ふくそう)、(3) 水晶体の厚さが物体までの距離に応答するピント調整(焦点距離)という3つの生理的機能に起因する。そして人間は、これらの3つの生理的機能である両眼視差、輻輳、ピント調整を脳内で処理して立体感を感じている。

そして、これらの3つの生理的機能の関係は、通常、脳内において関連づけられている。従って、この関係に誤差や矛盾が生じると、脳が無理に立体と関連づけようとして、不自然さを感じたり、或いは立体として認知できなかったりする 事態が生じる。

ところが、従来の立体視では、両眼視差や輻輳だけを利用して、立体視を表現していた。このため、ピント(焦点距離)は、立体視用画像(立体視用印刷物)の面内においてほぼ一定なのに対し、両眼視差や輻輳のずれは、立体視用画像のほとんどの場所において生じており、人間の脳に無型の無い立体視を実現できなかった。

BRIEF SUMMARY OF THE INVENTION

一実施形態は、立体視のための第1の左目用画像を作成し、立体視のための第1の右目用画像を作成し、第1の左目用画像の基準面での画像のパースペクティブを無くすための補正処理を、第1の左目用画像に対して施して、第2の左目用画像を作成し、第1の右目用画像の基準面での画像のパースペクティブを無くすための補正処理を、第1の右目用画像に対して施して、第2の右目用画像を作成し、第2の左目用画像と第2の右目用画像とに基づいて立体視用印刷物を作成する立体視用印刷物の製造方法に関係する。

別の実施形態は、立体視用印刷物の製造方法であって、被写体と、基準面において長方形を構成する第1~第4のマークを、左目用視点位置から撮影することで、立体視のための第1の左目用画像を作成し、被写体と、基準面において長方形を構成する第1~第4のマークを、右目用視点位置から撮影することで、立体視のための第1の右目用画像を作成し、第1の左目用画像の第1~第4のマークを、長方形の頂点位置に移動させる補正処理を行うことで、第1の左目用画像から第2の左目用画像を作成し、第1の右目用画像の第1~第4のマークを、長方形の頂点位置に移動させる補正処理を行うことで、第1の右目用画像から第2の右目用画像を作成し、第2の左目用画像と第2の右目用画像とに基づいて立体視用印刷物を作成する立体視用印刷物の製造方法に関係する。

更に別の実施形態は、左日用画像と右目用画像とが合成されて印刷された立体 視用印刷物であって、左目用画像、右目用画像が、基準面に配置された物体の画 像を含み、左目用画像の物体画像と右目用画像の物体画像とが基準面位置におい て一致しており、且つ、基準面から離れるほど左目用画像の物体画像と右目用画 像の物体画像のずれが大きくなる立体視用印刷物に関係する。

更に別の実施形態は、左目用視点位置とオブジェクトの各点を結ぶ投影方向で、 視線方向に非直交の基準面に対してオブジェクトの各点を投影して基準面にレン ダリングすることで、左目用画像を作成し、右目用視点位置とオブジェクトの各 点を結ぶ投影方向で、視線方向に非直交の基準面に対してオブジェクトの各点を 投影して基準面にレンダリングすることで、右目用画像を作成し、左目用画像と 右目用画像とに基づいて立体視用印刷物を作成する立体視用印刷物の製造方法に

関係する。

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

- 図1は、本実施形態の第1の立体視方式のフローチャートである。
- 図2は、本実施形態の第1の立体視方式の説明図である。
- 図3は、左目用画像IL1の一例である。
- 図4は、右目用画像IR1の一例である。
- 図5は、左目用画像IL2の一例である。
- 図6は、右目用画像IR2の一例である。
- 図7は、立体視用画像 (アナグリフ画像) の一例である。
- 図8A、図8B、図8Cはパースペクティブを無くす補正処型の説明図である。
- 図9は、本実施形態により得られた立体視用画像の特徴の説明図である。
- 図10は、複数の基準面を設ける手法の説明図である。
- 図11は、複数の基準面を設ける手法のフローチャートである。
- 図12は、複数の基準面を設ける手法の説明図である。
- 図13は、本実施形態の第2の立体視方式の説明図である。
- 図14A、図14B、図14Cは第2の立体視方式の説明図である。
- 図15A、図15Bは従来の方式の説明図である。
- 図16は、視点位置の設定手法の説明図である。
- 図17は、実写画像を用いた立体視用印刷物の作成手法の説明図である。
- 図18は、実写画像を用いた立体視用印刷物の作成手法の説明図である。
- 図19A、図19BはCG画像を用いた立体視用印刷物の作成手法の説明図である。
 - 図20は、テクスチャマッピングを用いた補正処理の説明図である。
 - 図21は、画像生成システムの構成例である。
 - 図22は、座標系についての説明図である。
- 図23は、 $G1\sim G4$ から $G1'\sim G4'$ への変換、 $G1'\sim G4'$ から $F1\sim F4$ への変換についての説明図である。

図24は、第2の立体視方式の変換式を導くための図である。

図25A、図25Bは第2の立体視方式を構成する変換の説明図である。

図26は、第2の立体視方式を構成する変換の説明図である。

図27は、第1の立体視方式の変換でのずれ量についての説明図である。

DETAILED DESCRIPTION OF THE EMBODIMENT

以下、本実施形態について図面を用いて説明する。

なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。

さて、本実施形態では以下に説明する2つの方式で立体視を実現している。

1. 第1の立体視方式

図1に本実施形態の第1の立体視方式のフローチャートを示す。

まず、立体視のための第1の左目用画像IL1と第1の右目用画像IR1を作成(生成)する(ステップS1、S2)。具体的には、左目用視点位置VPLから見える左目用画像IL1と、右目用視点位置VPRから見える右目用画像IR1を作成(生成)する。

ここで左日用、右日用視点位置VPL、VPRは、図2に示すように、観者(Viewer)の左目、右目の位置として想定される位置である。例えば、カメラ(デジタルカメラ)による実写により左目用、右目用画像IL1、IR1を作成する場合には、これらのVPL、VPRの位置にカメラを配置して、左日用、右目用画像IL1、IR1を撮影する。この場合、2台のカメラをVPL、VPRに配置して同時に撮影してもよいし、1台のカメラの位置を変えて撮影してもよい。

一方、CG(コンピュータグラフィックス)画像やゲーム画像(リアルタイム 動画像)を生成するシステムにより左目用、右目用画像IL1、IR1を生成す る場合には、これらのVPL、VPRの位置に仮想カメラを配置して左日用、右 日用画像IL1、IR1を生成する。即ち、オブジェクト空間においてVPL、 VPRから見える画像を生成する。 図3、図4に左月用画像 I L 1、右月用画像 I R 1 の一例を示す。これらは、カメラ (デジタルカメラ)による実写により I L 1、 I R 1を作成した場合の例である。基準面 (物体が置かれる最置面)の上には、ミカン、箱、ボールペン、ステープラーなどの種々の物体 (狭義には被写体又はオブジェクト。以下の説明でも同様)が配置されている。そして左目用画像 I L 1 は、左目用視点位置 V P Lにカメラを配置して、物体 (注視点、物体の代表点)の方にカメラの視線 (方向)を向けて撮影したものである。また右目用画像 I R 1 は、右目用視点位置 V P R にカメラを配置して、物体の方にカメラの視線を向けて撮影したものである。そして図3、図4に示すように、これらの左目用、右目用画像 I L 1、 I R 1では視線角度 (見え方)がずれており、この視線角度のずれによる両眼視差を利用して立体視が実現される。

なお本実施形態では、立体視時において立体視用印刷物を載置する面(机やテーブルの面。水平面)を、基準面として設定できる。

また、CGやゲームの場合には、オブジェクト空間内に設定された基準面の上に、オブジェクト(ミカン、箱、ボールペン、ステープラー等をモデル化したオブジェクト)を配置し、VPL、VPRに仮想カメラを配置する。そして、仮想カメラの視線(方向)をオブジェクト(注視点、オブジェクトの代表点)の方に向けて、仮想カメラから見える画像を生成することで、図3、図4と同様な画像を生成できる。

次に図1のステップS3に示すように、基準面BSでの画像のパースペクティブ (perspective) を無くすための補正処理を、ステップS1で得られた第1の左目用画像IL1に施し、第2の左目用画像IL2を作成(生成)する。またステップS4に示すように、基準面BSでの画像のパースペクティブ(遠近感)を無くすための補正処理を、ステップS2で得られた第1の右目用画像IR1に施し、第2の右目用画像IR2を作成(生成)する。

図5、図6に、補正処型により得られた左日用画像IL2、右日用画像IR2 の一例を示す。例えば図3、図4では、基準面BSに描かれている長方形RTG (正方形も含む広義の意味の長方形。以下の説明でも同様) にパースペクティブ がついている。これに対して図5、図6では、長方形RTGのパースペクティブが無くなっている。

ここで、本実施形態におけるパースペクティブを無くす補正処理とは、図8Aに示すように、基準面BS自体の画像や、基準面に描かれている画像IM1や、物体OB(オブジェクト)の画像のうち基準面BSに接する部分の画像のパースペクティブ(奥行き感)を無くす処理である。即ち図8AのB1では、視点から奥側に行くほど、頂点間の距離が狭まるが、図8AのB2では、視点から奥側に行っても、頂点間の距離が変わらない。このような補正処理を行うことで、基準面BSの画像については、あたかも真上から見たような画像が作成(生成)されるようになる。なお、この補正処理により、パースペクティブが完全に厳密に無くなる必要はなく、立体視に違和感が生じない程度にパースペクティブが無くなればよい。

次に図1のステップS5に示すように、第2の左目用画像IL2と第2の右目 用画像IR2に基づき、立体視用画像(画像データ)を作成(生成)する。より 具体的には、IL2とIR2とに基づきアナグリフ処理などを行って立体視用画 像を作成(生成)する。

そして、この立体視用画像(実写画像又はCG画像)を、インクジェット方式 やレーザプリンタ方式などのカラープリンタ(広義には印刷機)を用いて、印刷 媒体に印刷することで、立体視用印刷物を製造できる。なお、カラープリンタ(印 刷機)により印刷された原盤となる立体視用印刷物を複製することで、立体視用 印刷物を製造してもよい。このようにすれば、立体視用印刷物を短期間で大量に 製造できるという利点がある。

また立体視用画像を、画像生成システムの表示部に表示すれば、ゲーム画像(動画像)のリアルタイム生成が可能になる。なお、この場合に、アナグリフ処理等により得られた立体視用画像を直接に表示部に表示し、これを色フィルタ(赤、青)が設けられた眼鏡(広義には器具)を用いて見るようにしてもよい。或いは、左目用、右目用画像IL2、IR2を異なるフレームで例えば交互に表示部に表示し、これを液晶シャッタ等が設けられた眼鏡を用いて見るようにしてもよい。

図7に、図5、図6の左目用、右目用画像IL2、IR2に基づきアナグリフ 処理を行うことで得られた立体視用画像の一例を示す。

この図7の立体視用画像では、左目用画像IL2(IL)と右日用画像IR2(IR)とが合成されている。そして左日用画像IL2と右目用画像IR2は、各々、基準面BSに配置された物体OBの画像を含む。また基準面BSの画像も含む。

そして図9のA1に示すように、左目用画像IL2の物体画像と右目用画像IR2の物体画像は、基準面BSの位置において一致している(但し必ずしも完全に一致している必要はない)。即ち、左日用画像IL2の物体画像の印刷位置(表示位置)と右目用画像の物体画像IR2の印刷位置(表示位置)が、基準面BSにおいて一致している。

一方、図9のA2に示すように、基準面BSから離れるほど左目用画像IL2 の物体画像と、右目用画像IR2の物体画像のずれが大きくなっている。より具体的には、物体OBの部分のうち基準面BSから上方に位置する部分の画像ほど、 左目用画像IL2での印刷位置(表示位置)と、右目用画像IR2での印刷位置 (表示位置)とがずれている。

この図7、図9の立体視用画像をプリント媒体に印刷することで立体視用印刷物を製造できる。そして、その立体視用印刷物を、例えば左日に赤色フィルタが設けられ右目に青色フィルタが設けられた眼鏡で見ることで、立体視を実現できる。また図7、図9の立体視用画像を表示部に表示することで、立体視用のゲーム画像を生成できる。

さて、これまでの立体視では図8Bに示すように、立体視用印刷物PM(或いは表示部の表示画面。以下の説明でも同様)を、その而が鉛直面に対して平行になるように配置し、観者が、立体視用印刷物PMを正対して見ることが想定されていた。このため、例えば図3、図4のような左目用、右目用画像IL1、IR1に対してそのままアナグリフ処型を施して、立体視用印刷物PMを作成していた。そして、図3、図4の画像ではパースペクティブが残っているため、図8Bのように立体視用印刷物PMを正対して見た場合に、遠近感に関する限りは、正

しい画像になる。

しかしながら図8Bのように観者が立体視用印刷物PMを正対して見た場合に、ピント(焦点距離)については、PMの全面において同一になってしまう。従って、人間の脳内において、ピント調整と、両眼視差、輻輳との関係に矛盾や誤差が生じてしまう。従って、脳が無理に立体と関連づけようとして、不自然さを感じたり、立体として認知できなくなってしまう。また、従来の方式で作成された立体視用印刷物PMを、水平面に平行になるように机に配置して見てしまうと、奥行き感に矛盾が生じ、不自然な立体視になってしまう。即ち図3、図4の長方形RTGは、高さが零の平面であり、この長方形RTGが立体に見えてはいけないからである。

そこで本実施形態では、図8 Cに示すように、立体視用印刷物 PM (表示画面)を、観者が机(水平面に平行な基準面 BS)の上に配置して見ることを想定するようにしている。即ち、このような配置が本方式のデフォルトの配置となる。そして、このように水平面に平行に立体視用印刷物 PM を配置した場合に、図3、図4の画像をそのままアナグリフ処理して立体視用印刷物 PM を作成すると、遠近感に矛盾が生じる。

そこで本実施形態では図5、図6、図8Aで説明したように、基準面の画像のパースペクティブを無くす補正処理を行う。そして基準面でのパースペクティブを無くした補正後の図5、図6の画像に基づいて、アナグリフ処理を行い、立体視用印刷物PMを作成し、作成された立体視用印刷物PMを図8Cのように水平面に平行に配置すれば、基準面の画像(長方形RTG)には適正なパースペクティブがつくようになる。また、図8Cのように配置すれば、立体視用印刷物PMの面上の各点の焦点距離が同一ではなく異なるようになる。このため、ピント調整についても現実世界のピント調整と近いものになる。従って、ピント調整と、in眼視差や輻輳との間の関係のずれも軽減され、より自然で、実在感のある立体視を実現できる。

なお、本実施形態の立体視方式では、物体の高さが高い場合に奥行き感等にず れが生じる可能性がある。このような場合には例えば図10に示すように、2つ の基準面BS1、BS2(広義には複数の基準面)を設ければよい。

ここで基準面BS1は例えば水平面に平行な面である。一方、基準面BS2は、 基準面BS1と所定の角度(例えば直角)をなす面である。そして、基準面BS 1、BS2は境界BDにおいて連結されている。

物体OB(オブジェクト)は、基準面BS1の上方で且つ基準面BS2の手前側 (VPL、VPR側)に配置する。そして図1の代わりに図11に示す処理を行う。

図11のステップS11、S12は、図1のステップS1、S2と同様である。 そしてステップS13では、基準面BS1でのパースペクティブを無くすための 補正処理を、左目用画像IL1の基準面BS1に対応する領域(IL1のうち境 界BDを基準にしてBS1側の第1の領域)に対して施す。また、基準面BS2 でのパースペクティブを無くすための補正処理を、IL1の基準面BS2に対応 する領域(IL1のうち境界BDを基準にしてBS2側の第2の領域)に対して 施す。そして、これらの補正処理により生成された画像を繋げた画像である左目 用画像I12を作成(生成)する。

またステップS14では、基準面BS1でのパースペクティブを無くすための補正処理を、右目用画像IR1の基準面BS1に対応する領域(IR1のうち境界BDを基準にしてBS1側の第1の領域)に対して施す。また、基準面BS2でのパースペクティブを無くすための補正処理を、IR1の基準面BS2に対応する領域(IR1のうち境界BDを基準にしてBS2側の第2の領域)に対して施す。そして、これらの補正処理により生成された画像を繋げた画像である右目用画像IR2を作成(生成)する。

そして最後にステップS15のように、IL2、IR2に基づき、例えばアナグリフ処理等を行って、立体視用画像を作成(生成)する。そして、得られた立体視用画像を印刷媒体に印刷して立体視用印刷物を製造したり、立体視用画像を表示部に表示することでリアルタイム動画像であるゲーム画像を生成する。

このようにすることで図12に示すように、OBが、基準面BS1からの高さが高い物体である場合にも、より自然で、実在感のある立体視を実現できる。即

ち、物体OBの足下付近の領域(境界BSの下側の第1の領域)では、基準面BS1を利用した立体視の処型により、奥行き感やピント調整に無理の無い立体視を実現できる。一方、それ以外の領域(境界BSの上側の第2の領域)では、基準面BS2を利用した立体視の処理により、奥行き感に無理の無い立体視を実現できる。

なお、基準面は2つに限定されず、3つ以上の基準面(連結された複数の基準面)を用いてもよい。

2. 第2の立体視方式

図13に本実施形態の第2の立体視方式のフローチャートを示す。前述の図1 の方式は、カメラにより実写した画像を用いて立体視用印刷物を作成するのに最 適な方式であるのに対して、図13の方式は、CC画像を用いて立体視用印刷物 を作成するのに最適な方式である。

まず、左目用視点位置VPLとオブジェクトOBの各点を結ぶ投影方向で、基準面BS(図10の場合はBS1又はBS2)にOBの各点を投影して基準面BSにレンダリングし、左目用画像ILを作成(生成)する(ステップS21)。

次に、右目用視点位置VPRとオプジェクトOBの各点を結ぶ投影方向で、基準而BS(図10の場合はBS1又はBS2)にOBの各点を投影して基準面BSにレンダリングし、右目用画像IRを作成(生成)する(ステップS22)。なお、基準面BSは、例えば視線方向(視点位置と注視点を結ぶ方向)に直交しない面である。即ち、基準面BSは、視線方向に常に直交する透視投影スクリーンとは異なる面である。

ステップS21、S22の処理では、VPL(或いはVPR)からオブジェクトOBの方に向かって仮想的な光を投射し、その光を用いて、OBの画像を基準面BS(BS1又はBS2)である仮想紙に焼き付けるようにして、仮想紙にレンダリングする。これにより、図14Aに示すように、オブジェクトOBの点P1、P2、P3、P4の画像(色等のプロパティ)が、其準面BS上の投影点P1、P2、P3、P4、にレンダリングされる。なお、基準面BS上の点P5、P6の画像については、そのまま、その点P5、P6の位置にレンダリン

グされる。そして例えば図14Bに示すように、基準面BS(仮想紙)の全面を ラスタスキャンするようにレンダリングすることで、図5、図6のIL2、IR 2と同様の左目用画像IL、右日用画像IRを作成できる。即ち、基準面の画像 のパースペクティブが無くなった左目用、右目用画像IL、IRを作成できる。

そして、これらの左目用、右目用画像 I L、I Rに基づき、例えばアナグリフ処理等を行って、立体視用画像を作成(生成)する(ステップ S 2 3)。これにより、図7に示すような立体視用画像を得ることができる。そして、得られた立体視用画像を印刷媒体に印刷して立体視用印刷物を製造したり、立体視用画像を表示部に表示することでゲーム画像を生成できる。

そして例えば図14Cに示すように立体視用印刷物PM(或いは表示画面)を 水平面(基準面)に平行になるように配置して見ることで、より自然で実在感の ある立体視を実現できる。

例えば図15Aでは、オブジェクトOBを透視投影スクリーンSCR(視線方向に直交する面)に透視投影して左目用画像、右目用画像を作成している。そして、得られた左日用画像、右日用画像を合成して立体視用印刷物PMを作成する。そして図15Bに示すように、観者は、立体視用印刷物PMに正対してPMを見ることになる。

この図15Aの方式では、オブジェクトOBの点P2、P3は、投影投影スクリーンSCR上の点P2"、P3"に投影される。そして、立体視用印刷物PMは図15Bのように正対して見ることになるため、P2"、P3"の焦点距離差L2が0になってしまう。即ち、実際の点P2、P3の焦点距離差L1は0ではないのに、L2が0となるため、ピント調整が実際のものと異なってしまう。従って、ピント調整と両眼視差の関係に矛盾が生じ、人間の脳に混乱が生じ、違和感のある立体視になってしまう。

これに対して本実施形態では、立体視用印刷物 PM(表示画面)を図14Cに示すように机に置いて見ることになるため、図14Aに示すように、点P2、P3、の焦点距離差L2は、実際の点P1、P2の焦点距離差L1と同様に、0ではない。従って手前の部分(点P2)は手前に見え、奥にある部分(P3)は

奥に見えるようになるため、ピント調整と両限視差の関係に矛盾が生じず、人間 の脳に混乱が生じないため、より自然な立体視を実現できる。

即ち本実施形態は、立体視用印刷物PMを机に置いて斜めから見る方式であるため、机の面と、立体視の対象となるオブジェクトOBが載っている基準面BS (零面)とは、同一面となり、現実的であり、立体視に無理が生じない。そして、オブジェクトOBが、基準面BS (零面)に対して、数センチメートルだけ浮き上がって見える様子を表現できればよいため、奥行き方向についての矛盾はほとんど生じない。しかも、基準面BSが机の面であるため、あたかも机の上に本当に立体の物体が配置されているかのように見え、物体の実在感が向上する。即ち従来の図15A、図15Bの方式では、基準面があやふやであるため、立体感は確かにあるが、物体の実在感が幻のようにしかならなかったのである。

なお、図13の方式においても、図10で説明したように、複数の基準面を設定して立体視用画像を作成(生成)してもよい。この場合には、図13のステップS21、S22において、基準面BS1に投影される点については基準面BS1にレンダリングし、基準面BS2に投影される点については基準面BS2にレンダリングすればよい。

3. アナグリフ処理

次に図1のステップS5、図11のステップS15、図13のステップS23で行われるアナグリフ処理について簡単に説明する。

アナグリフ処理では、1枚の印刷媒体に、左目用画像と右目用画像を色を変えて印刷して、立体視用印刷物を作成する。そしてこの立体視用印刷物を、左右の目で異なる色フィルタ(例えば左目が赤、右目が青)を介して見る。この時に、左目では左目用画像だけが見え、右目では右目用画像だけが見えるようになり、立体視が実現される。

例えばモノクロのアナグリフ処型では、左日用画像(IL2、IL)をグレースケールに変換する。そして変換後の画像データをアナグリフ画像(RGB)のRチャンネルにコピーする。次に、右目用画像(IR2、IR)をグレースケールに変換する。そして変換後の画像データを、アナグリフ画像(RGB)のGチ

ャンネルとBチャンネルにコピーする。これにより、モノクロのアナグリフ画像が作成される。なお、右目用画像をBチャンネルだけにコピーするようにしてもよい。

またカラーのアナグリフ処理では、左目用画像(IL2、IL)のRチャンネルを、アナグリフ画像(RGB)のRチャンネルにコピーする。また右目用画像(IR2、IR)のGチャンネルを、アナグリフ画像(RGB)のGチャンネルにコピーする。また右日用画像のBチャンネルをアナグリフ画像(RGB)のBチャンネルにコピーする。これにより、カラー(疑似カラー)のアナグリフ画像を作成できる。

なお、立体視の実現手法(図1のステップS5、図11のステップS15、図13のステップS23)は、少なくとも、左目用画像(IL2、IL)と右目用画像(IR2、IR)を用いて実現されるものであればよく、アナグリフ処理に 限定されない。

例えばレンチキュラーレンズと呼ばれる特殊なレンズを使って、左目には左目 用画像の像だけが入り、右目には右目用画像の像だけが入るようにして、立体視 を実現していもよい。

また左目用画像、右目用画像の前に偏光板を配置し、左目用画像の前に置かれた偏光板と右目用画像の前に置かれた偏光板とで、偏向方向を異ならせておく。そして、それに応じた偏向方向を持つ偏光板をレンズ部分に取り付けた眼鏡を観者がかけることで、立体視を実現してもよい。

また左目用画像と右目用画像を、例えばフレームを異ならせて交互に表示する。 そして左目用画像の表示に同期して開く左目用のシャッター (例えば液晶シャッター) と、右目用画像の表示に同期して開く右目用のシャッターが設けられた眼 鏡を観者がかけることで、立体視を実現してもよい。

4. 視点位置の設定

次に視点位置の設定手法について説明する。

図2、図10の左目用、右目用視点位置VPL、VPRは、立体視用印刷物や 立体視用表示画面を観者が実際に見る時の観者の左目、右目の想定位置に基づい て配置することが望ましい。例えば図2、図10において、物体〇B(オブジェクト、被写体)と観者の日との間の距離DVB(例えば40cm)、視線角度 θ (視線方向SL)、両目間の距離DLR(例えば7cm)に基づいて、た目用、右目用視点位置VPL、VPRを設定する。

但し、縮小表示や拡大表示を行う場合には、縮小率や拡大率に応じてVPL、 VPRの位置を移動させる。この場合には図16に示すような手法で視点位置を 移動させることが望ましい。

例えば物体OB(被写体、オブジェクト)と視点位置(VPLとVPRの中点CP)と間の距離DVBを長くした場合には、その長さの変化(比)に応じて、 左目用視点位置VPLと右目用視点位置VPRとの間の距離DLRを長くする。 即ち例えばDVBの長さの変化に比例してDLRを長くする。

また物体OB(被写体、オブジェクト)と視点位置($VPL \ \ VPR$ の中点CP) との間の距離DVBを変化させる場合に、基準面BSに対して所定の角度 θ をなす直線LN(視線方向)に沿って移動するように、視点位置(中点CP、VPL、VPR)を移動させる。

このようにすることで、VPL、VPRを移動させた場合にも、距離DVBや 距離DLRが等倍比で変化するようになるため、立体感に破綻が生じる事態を防 止できる。これにより、適正な立体感を維持しながら縮小表示や拡大表示を実現 できるようになる。

5. 実写画像を用いた立体視用印刷物の作成

次に、実写画像を用いて立体視用印刷物を作成(製造)する手法の詳細について説明する。この場合には図1で説明した第1の方式が適している。

実写画像を用いる場合には、撮影時の環境をそのまま再現する必要がある。従って、観者が見る時の位置関係に近いレイアウトで、実写用のカメラ(デジタルカメラ等)を配置する。例えば標準的な机に立体視用印刷物等を置いて、観者が椅子に座って見た場合を想定して、実写用のカメラを配置する。

5.1 基準面が1つの場合

図 2 のように基準面が 1 つである場合には、両月間の距離D L R (約 7 c m)、

視点と被写体OBとの距離DVB、視線の角度heta、印刷紙の縦サイズD1、横サイズD2 (印刷範囲)を設定する。

次に観者の左目、右目の位置と想定される位置にカメラを配置する。そして印刷範囲(D1、D2)の目安となるマークMK1~MK4(第1~第4のマーク)が書かれた紙を置く。このマークMK1~MK4は、基準面BS上の長方形(正方形も合む広義の長方形)の頂点を構成する。

次に、被写体OBを紙に載せる。この時に、カメラの位置から見て、マークM K1~MK4で構成される長方形(印刷範囲)の外に被写体OBがはみ出さないように、OBを置く。そして、左目、右目の位置と想定される位置にセッティングされたカメラを用いて、被写体OBとマークMK1~MK4が入るように撮影し、図3、図4に示すような左日用、右目用の画像IL1、IR1を作成する。

次に、撮影された左日用、右目用画像IL1、IR1を画像生成システム(パーソナルコンピュータ、情報処理装置)に取り込み、画面上に表示する。そして表示された画像の中から、紙のマークMK1~MK4を見つけ出す。

次に、図17に示すように、D1対D2の縦横比の長方形(正方形も含む広義の意味の長方形)の頂点VX1~VX4の位置に、マークMK1~MK4を移動させて、画像をゆがめる補正処理を行う。この補正処理を、左目用、右目用画像IL1、IR1のそれぞれに対して行うことで、図5、図6の示すような左目用、右目用画像IL2、IR2を作成する。

次に、印刷範囲以外の余計な部分をトリミングする。そして、アナグリフ処理のソフトウェアを使用して、左目用、右目用画像IL2、IR2から、図7に示すような立体視用画像(アナグリフ画像)を作成する。そして、得られた立体視用画像を、D1、D2のサイズの印刷範囲で紙に印刷して、立体視用印刷物を完成する。

5.2 基準面が2つの場合

図10のように基準面を2つ設ける場合には、両目間の距離DLR(約7cm)、 視点と被写体OBとの距離DVB、視線の角度0、印刷紙の縦サイズD1、横サイズD2、高さサイズD3(印刷範囲)を設定する。 次に、観者の左目、右目の位置と想定される位置にカメラを配置する。そして印刷範囲(D1、D2)の目安となるマークMK1~MK4(第1~第4のマーク)が書かれた1枚目の紙(基準面BS1)を置く。このマークMK1~MK4は、基準面BS1上の長方形の頂点を構成する。

次に、印刷範囲(D 2、D 3)の日安となるマークMK $5\sim$ MK 8(第 $5\sim$ 第 8のマーク)が書かれた 2枚目の紙(基準而BS 2)を、 1 枚目の紙の後ろに垂 演に立てて置く。このマークMK $5\sim$ MK 8は、基準面BS 2上の長方形の頂点を構成する。

次に、被写体OBを1枚目の紙に載せる。この時に、カメラの位置から見て、マークMK1~MK4で構成される長方形及びマークMK5~MK8で構成される長方形(印刷範囲)の外に被写体OBがはみ出さないように、OBを置く。そして、左目、右目の位置と想定される位置にセッティングされたカメラを用いて、被写体OBとマークMK1~MK4、MK5~MK8が入るように撮影し、左目用、右目用の画像IL1、IR1(写真)を作成する。

次に、撮影された左目用、右目用画像 I L 1、 I R 1を画像生成システム(パーソナルコンピュータ)に取り込み、画面上に表示する。そして表示された画像の中から、紙のマーク $MK1\sim MK4$ 、 $MK5\sim MK8$ を見つけ出す。なお、マークMK3、MK4とMK6、MK5は同じマークとすることができる。

次に、図18に示すように、D1対D2の縦横比の長方形の頂点VX1~VX4の位置に、マークMK1~MK4を移動させて、画像をゆがめる補正処型を行う。また、D3対D2の縦横比の長方形の頂点VX5~VX8の位置に、マークMK5~MK8を移動させて、画像をゆがめる補正処理を行う。そして、得られた2枚の画像を繋げる。この補正処理を、左目用、右目用画像IL1、IR1のそれぞれに対して行うことで、左目用、右日用画像IL2、IR2を作成する。

次に、印刷範囲以外の余計な部分をトリミングする。そして、アナグリフ処理のソフトウェアを使用して、左目用、右目用画像 I L 2、 I R 2 から、立体視用画像 (アナグリフ画像)を作成する。そして、得られた立体視用画像を、D 1、D 2、D 3 のサイズの印刷範囲で紙に印刷して、立体視用印刷物を完成する。

6. CG画像を用いた立体視用印刷物の作成

次に、CG (コンピュータグラフィックス) 画像を用いて立体視用印刷物を作成 (製造) する手法について説明する。この場合には図13で説明した第2の方式が適している。但し図1の第1の方式で実現することも可能である。

まず、観者が見る時の位置関係に近いレイアウトで、仮想カメラ(視点)をオプシェクト空間内に配置する。例えば標準的な机に立体視用印刷物等を置いて、 観者が椅子に座って見た場合を想定して、仮想カメラを配置する。

そして図2のように、両目間の距離DLR(約7cm)、視点とオブジェクトOBとの距離DVB、視線の角度 θ 、印刷紙の縦サイズD1、横サイズD2(印刷範囲)を設定する。

次に観者の左目、右目の位置と想定される位置に仮想カメラを配置する。そし て仮想紙(仮想紙オブジェクト)上にオブジェクトを配置する。

次に、左目用視点位置VPLからオブジェクトOBの方に向かって仮想的な光を投射し、その光を用いて、OBの画像を仮想紙に焼き付けるようにしてレンダリングする。これにより左目用画像ILが作成される。これは、日から見た画像を、机の上の仮想紙にプロジェクタで投射する処理と同様の処理である。

次に、右目用視点位置VPRからオブジェクトOBの方に向かって仮想的な光を投射し、その光を用いて、OBの画像を仮想紙に焼き付けるようにしてレンダリングする。これにより右目用画像IRが作成される。

次に、アナグリフ処理のソフトウェアを使用して、左目用、右目用画像IL、IRから、立体視用画像(アナグリフ画像)を作成する。そして、得られた立体 視用画像を、D1、D2のサイズの印刷範囲で紙に印刷して、立体視用印刷物を 完成する。

なお、図10のように複数の基準面を設けて、CG画像を用いた立体視用印刷 物を作成してもよい。

また、基準面BSに対して投影されるオブジェクトOBは、その全部が、図2のように基準面BS上に配置されるオブジェクトであってもよいし、図19Aのように、その一部が、基準面BSの奥側に配置されるオブジェクトであってもよ

い。或いは、図19Bのように、その全部が、基準面BSの奥側に配置されるオブジェクトであってもよい。

例えば図19Aでは、基準面BSの奥側の点P1、P2、P3が手前の点P1, P2, P3, に投影される。これにより、オブジェクトOBに開いている 穴などを表現できる。また図19AのC1の位置では、オブジェクトOBが仮想 紙にめり込んだ様子を表現できる。

以上のようにCG画像を用いる本実施形態の手法によれば、ゲームマニュアル に添付するのに最適な立体視用印刷物を作成できる。

例えば、平面的なマップの絵しか添付されていない従来のゲームマニュアルでは、マップの形状等をプレーヤが把握するのが難しいという課題があった。

これに対して本実施形態の手法を用いれば、立体的に見えるマップの印刷物を ゲーム・マニュアルに添付することが可能になる。例えば、マップの形状データ は、ゲームデータとして存在するため、このゲームデータを利用することで、マ ップの立体視用印刷物を容易に作成できる。また本実施形態の手法によれば、机 などに置いて見たときに最も立体感がハッキリと出る立体視用印刷物を提供でき る。従って、プレーヤにとって使いやすく便利で、ゲームマニュアルに添付する のに最適な立体視用印刷物を提供できる。

なお、例えば車、戦車、飛行機のゲームなどにおいて、登場する車、戦車、飛 行機が立体的に表される立体視用印刷物をゲームマニュアルに添付してもよい。 或いは、モンスターカードゲームに本実施形態の手法を適用すれば、カードのモ ンスターが立体的に飛び出して見えるようなカードゲームを実現できる。特にカ ードゲームでは、机やテーブルなどの水平面にカードを置いてゲームを楽しむも のであるため、水平面(基準面)においた時に最も効果的な立体視が可能になる 本実施形態の手法は最適である。

7. ゲーム画像の生成

次に、リアルタイム動画像であるゲーム画像を生成する手法について説明する。 この場合には図1で説明した第1の方式が適している。但し図13の第2の方式 で実現することも可能である。

まず、プレーヤが見る時の位置関係に近いレイアウトで、仮想カメラ(視点) をオプジェクト空間内に配置する。例えば標準的な机に立体視用印刷物等を置い て、プレーヤが椅子に座って見た場合を想定して、仮想カメラを配置する。

そして図2のように、両目間の距離DLR(約7cm)、視点とオブジェクトOBとの距離DVB、視線の角度 θ 、表示画面の縦サイズD1、横サイズD2(表示画面サイズ)を設定する。

次にプレーヤの左目、右目の位置と想定される位置である左目用、右目用視点位置VPL、VPRに、仮想カメラを配置する。また、仮想カメラの被写体となるオブジェクト〇Bをオブジェクト空間内に配置する。これらの仮想カメラは、基本的に、左目用、右目用視点位置VPL、VPRからオブジェクト空間内のオブジェクト(注視オブジェクト)の方向に向けられる。

次に、左目用、右目用視点位置VPL、VPRに配置された仮想力メラから見える左目用、右目用画像IL1、IR1を生成する。そして、生成された左目用、右日用画像IL1、IR1を、VRAMのテクスチャ領域(テクスチャ空間)に書き込み、これらの画像を、図20に示すようなテクスチャー画像TEXに設定する。

次に、パースペクティブのついたテクスチャ画像TEX(図3、図4参照)を、D1、D2のサイズの長方形(正方形を含む広義の意味の長方形)のポリゴンPLG(プリミティブ面)にマッピングする。具体的には、テクスチャ画像TEXのテクスチャ座標(TX1、TY1)、(TX2、TY2)、(TX3、TY3)、(TX4、TY4)を、ポリゴンPLGの頂点VX1、VX2、VX3、VX4にコーディネートして、テクスチャ画像TEXをポリゴンPLGにマッピングする。これにより、図6、図7に示すように基準面の画像のパースペクティブが無

くなった画像を生成できる。そして、このようなテクスチャマッピング処理を、 左目用、右目用画像 I L 1、 I R 1 のそれぞれについて行うことで、左目用、右 目用画像 I L 2、 I R 2 を生成する。

次に、得られた左目用、右目用画像 I L 2、 I R 2を、アナグリフ処理を用いて 1 枚の立体視用画像に合成する。そして合成された立体視用画像を表示部に出力する。

なお、液晶シャッタ等を用いて立体視を実現する場合には、生成された左目用、 右目用画像 I L 2、I R 2を、異なるフレームで交互に表示部に出力すればよい。

8. 画像生成システム

図21に、本実施形態の画像生成システムの機能ブロック図の例を示す。なお、 本実施形態の画像生成システムは、図21の構成要素(各部)を全て含む必要は なく、その一部を省略した構成としてもよい。

この図21の画像生成システムは、ゲーム画像(リアルタイム動画像)を生成するシステムとして用いることができる。また、CG画像(静止画像)により立体視用画像を作成し、立体視用印刷物を作成するための画像生成システム(CGツール)としても用いることができる。また、カメラで撮った実写画像を取り込み、この実写画像により立体視用画像を作成し、立体視用印刷物を作成するための画像生成システムとしても用いることができる。

操作部160は、プレーヤ(操作者)が操作データを入力するためのものであ り、その機能は、レバー、ボタン、ステアリング、シフトレバー、アクセルペダ ル、ブレーキペダル、マイク、センサー、タッチパネル、或いは筐体などのハー ドウェアにより実現できる。

記憶部170は、処理部100や通信部196などのワーク領域となるもので、 その機能はRAMなどのハードウェアにより実現できる。

情報記憶媒体180 (コンピュータにより読み取り可能な媒体)は、プログラムやデータなどを格納するものであり、その機能は、光ディスク(CD、DVD)、 光磁気ディスク(MO)、磁気ディスク、ハードディスク、磁気テープ、或いはメモリ(ROM)などのハードウェアにより実現できる。処理部100は、この 情報記憶媒体180に格納されるプログラム(データ)に基づいて本実施形態の 種々の処理を行う。即ち情報記憶媒体180には、本実施形態の各部としてコン ピュータを機能させるためのプログラム(各部の処理をコンピュータに実行させ るためのプログラム)が記憶(記録、格納)される。

表示部190は、本実施形態により生成された画像を出力するものであり、その機能は、CRT、LCD、タッチパネル、或いはHMD(ヘッドマウントディスプレイ)などのハードウェアにより実現できる。

音出力部192は、本実施形態により生成された音を出力するものであり、その機能は、スピーカ、或いはヘッドフォンなどのハードウェアにより実現できる。

携帯型情報記憶装置194は、プレーヤの個人データやゲームのセーブデータなどが記憶されるものであり、この携帯型情報記憶装置194としては、メモリカードや携帯型ゲーム装置などがある。

通信部196は、外部(例えばホスト装置や他の画像牛成システム)との間で 通信を行うための各種の制御を行うものであり、その機能は、各種プロセッサ又 は通信用ASICなどのハードウェアや、プログラムなどにより実現できる。こ の通信部196を用いて、カメラで撮影された実写画像を画像生成システムに取 り込んだり、作成された立体視用画像をプリンタに出力することが可能になる。

なお本実施形態の各部としてコンピュータを機能させるためのプログラム(データ)は、ホスト装置(サーバー)が有する情報記憶媒体からネットワーク及び 通信部196を介して情報記憶媒体180(記憶部170)に配信するようにしてもよい。このようなホスト装置(サーバー)の情報記憶媒体の使用も本発明の 範囲内に含まれる。

処理部100(プロセッサ)は、操作部160からの操作データやプログラムなどに基づいて、ゲーム処理、画像生成処理、或いは音生成処理などの各種の処理を行う。この場合、処理部100は、記憶部170内の主記憶部172をワーク領域として使用して、各種の処理を行う。この処理部100の機能は、各種プロセッサ(CPU、DSP等)又はASIC(ゲートアレイ等)などのハードウェアや、プログラム(ゲームプログラム)により実現できる。

処理部100は、ゲーム処理部110、第1の画像生成部120、第2の画像 生成部122、立体視用画像生成部126、音生成部130を含む。

ここでゲーム処型部110は、操作部160(ゲームコントローラ)からの操作データに基づいて、ゲーム画像を生成するための種々のゲーム処理を行う。このゲーム処理としては、ゲーム開始条件に基づいてゲームを開始する処理、ゲームを進行させる処理、ゲームに登場するオブジェクト(表示物)を配置する処理、オブジェクトの移動情報(位置、速度、加速度)や動作情報(モーション情報)を求める処理、オブジェクトを表示するための処理、ゲーム結果を演算する処理、或いはゲーム終了条件が満たされた場合にゲームを終了させる処理などがある。

第1の画像生成部120は、オブジェクト空間内において左目用視点位置(左目用仮想カメラ)から見える画像である第1の左目用画像を生成する処理を行う。また、オブジェクト空間内において右目用視点位置(右目用仮想カメラ)から見える画像である第1の右目用画像を生成する処理を行う。この場合、第1の左目用画像、第1の右目用画像は、立体視のための画像であり、例えば両眼視差がついた画像である。具体的には、左目用視点位置に仮想カメラを配置し、この仮想カメラの視線方向をオブジェクト(注視点)の方に向けて、第1の左目用画像を生成する。また右目用視点位置に仮想カメラを配置し、この仮想カメラの視線方向をオブジェクト(注視点)の方に向けて、第1の右目用画像を生成する。

なお、仮想カメラから見える画像は、次のようにして生成できる。即ち、まず、 座標変換、クリッピング処理、透視変換或いは光源処理等のジオメトリ処理を行い、その処理結果に基づいて、描画データ(プリミティブ面の頂点の位置座標、 テクスチャ座標、色データ、法線ベクトル或いはα値等)を作成する。そして、 この描画データ(プリミティブ面データ)に基づいて、透視変換後(ジオメトリ 処理後)のオブジェクト(1又は複数プリミティブ面)を、描画バッファ174 (フレームバッファ、ワークバッファ等のピクセル単位で画像情報を記憶できる バッファ)に描画する。これにより、オブジェクト空間内において仮想カメラか ら見える画像が生成される。

第2の画像生成部122は、第1の左目用画像に対して、基準面での画像のパ

一スペクティブを無くすための補正処理を施して、第2の左目用画像を生成する。 また、第1の右日用画像に対して、基準面での画像のパースペクティブを無くす ための補正処理を施して、第2の右目用画像を生成する(図1、図8A参照)。

この場合の補正処理は、テクスチャマッピング部124が図20で説明したテクスチャマッピング処理を行うことで実現される。具体的には、第1の画像生成部120で生成された第1の左目用画像、第1の右目用画像は、テクスチャ画像としてテクスチャ記憶部176に記憶される。そしてテクスチャマッピング部124は、この記憶された第1の左目用画像のテクスチャを、長方形のポリゴンにマッピングすることで、第2の左目用画像を生成する。また、この記憶された第1の右目用画像のテクスチャを、長方形のポリゴンにマッピングすることで、第2の右目用画像を生成する。

また第2の画像生成部122が、図13で説明した方式に基づいて、左目用画像、右目用画像を生成してもよい。即ち第2の画像生成部122が、左目用視点位置とオプジェクトの各点を結ぶ投影方向で、基準面に対してオブジェクトの各点を投影してレンダリングすることで、左目用画像を生成する。また、右目用視点位置とオブジェクトの各点を結ぶ投影方向で、基準面に対してオブジェクトの各点を投影してレンダリングすることで、右目用画像を生成する。

立体視用画像生成部126は、第2の左目用画像(左日用画像)と第2の右目 用画像(右目用画像)とに基づいて立体視用画像を生成する処理を行う。例えば、 第2の左目用画像(左目用画像)と第2の右目用画像(右目用画像)をアナグリ フ処理により合成して、立体視用画像を生成し、表示部190に出力する。この 場合には、プレーヤは、例えば赤の色フィルタと青の色フィルタが左目、右目に 設けられた眼鏡をかけて、ゲームをプレイすることになる。

或いは、立体視用画像生成部126が、第2の左目用画像(左目用画像)と第2の右目用画像(右日用画像)を異なるフレームで表示部190に出力する処理を行い、立体視を実現してもよい。この場合には、プレーヤは、フレームに回期してシャッターが開閉するシャッター付き眼鏡をかけて、ゲームをプレイすることになる。

音生成部130は、処理部100で行われる種々の処理の結果に基づいて音処理を行い、BGM、効果音、又は音声などのゲーム音を生成し、音出力部192 に出力する。

なお、本実施形態の画像生成システムは、1人のプレーヤのみがプレイできるシングルプレーヤモード専用のシステムにしてもよいし、このようなシングルプレーヤモードのみならず、複数のプレーヤがプレイできるマルチプレーヤモードも備えるシステムにしてもよい。

また複数のプレーヤがプレイする場合に、これらの複数のプレーヤに提供する ゲーム画像やゲーム音を、1つの端末を用いて生成してもよいし、ネットワーク (伝送ライン、通信回線) などで接続された複数の端末(ゲーム機、携帯電話) を用いて生成してもよい。

9. 第1、第2の立体視方式の解析

次に図1、図13で説明した本実施形態の第1、第2の立体視方式を数学的に解析する。第1の立体視方式は、基準面(机)スクリーンに直接射影(C1)できない現実世界の物体の像が、カメラの撮影(C2)で得られた写真(図3、図4)と、それに対する後処理(C3。図8Aのパースペクティブを無くす処理)によって、実用上は差し支えない範囲で再構成が可能なことを示している。そこで、この第1の立体視方式と、基準面(机)スクリーンに物体の点を直接射影する第2の立体視方式との違いについて、数学的な解析を行う。

9.1 第1の立体視方式の数学的解析

まず視点 (v) と、カメラのスクリーン (s) と、物体と、それらに対する座標系を図22のように定める。図22では、視点からの射影によって、物体の点(x,y,z) が、スクリーン(カメラのスクリーン)上の点 (x^*,y^*) に投影されている。

まずカメラの撮影(C2)は、下式(I)の回転Rxの行列と、下式(2)の 射影Pzの行列との合成により表すことができる。

$$Rx(\theta = \frac{\pi}{2} - \alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \sin\alpha & -\cos\alpha & 0 \\ 0 & \cos\alpha & \sin\alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \dots (1)$$

$$P_{z(z=s)} = \begin{pmatrix} s-v & 0 & 0 & 0 \\ 0 & s-v & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -v \end{pmatrix} \dots (2)$$

ここで回転Rxの行列は、斜め方向の視線方向をZ軸方向に平行になるように回転させる行列である。また射影Pzの行列は、視点(Z=v)からカメラのスクリーン(Z=s)への射影を表す行列である。なお α は視線方向と基準面スクリーンとのなす角度である。

従って、カメラの撮影 (C2) は下式 (3) のように表すことができる。

$$\begin{pmatrix} X \\ Y \\ 0 \\ H \end{pmatrix} = Pz(z = s) \times Rx(\theta = \frac{x}{2} - \alpha) \times \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \dots (3)$$

但し
$$\begin{cases} x' = x/H \\ y' = y/H \end{cases}$$

この上式(3)は下式(4)のような変換式で表すこともできる。

$$x' = \frac{s - v}{y\cos\alpha + z\sin\alpha - v} x$$

$$y' = \frac{s - v}{y\cos\alpha + z\sin\alpha - v} (y\sin\alpha - z\cos\alpha) \dots (4)$$

$$z' = s$$

例えば図23に示すように、机等の基準面上(Z=0)に、正方形を構成する4つの格子点G1= (a、a、0)、G2= (-a、a、0)、G3= (-a、-a、0)、G4= (a、-a0) を設定する。なお「t」は転置を意味する。

$$G1 \begin{pmatrix} a \\ a \\ 0 \end{pmatrix} \Rightarrow G1' \begin{pmatrix} c \\ csin\alpha \\ s \end{pmatrix} \Rightarrow F1 \begin{pmatrix} b \\ b \end{pmatrix} \cdots (5)$$

$$G2 \begin{pmatrix} -a \\ a \\ 0 \end{pmatrix} \Rightarrow G2' \begin{pmatrix} -c \\ csin\alpha \\ s \end{pmatrix} \Rightarrow F2 \begin{pmatrix} -b \\ b \end{pmatrix} \cdots (6)$$

$$G3 \begin{pmatrix} -a \\ -a \\ 0 \end{pmatrix} \Rightarrow G3' \begin{pmatrix} d \\ dsin\alpha \\ s \end{pmatrix} \Rightarrow F3 \begin{pmatrix} -b \\ -b \end{pmatrix} \cdots (7)$$

$$G4 \begin{pmatrix} a \\ -a \\ 0 \end{pmatrix} \Rightarrow G4' \begin{pmatrix} -d \\ dsin\alpha \\ s \end{pmatrix} \Rightarrow F4 \begin{pmatrix} b \\ -b \end{pmatrix} \cdots (8)$$

第1の立体視方式の後処理(C3。パースペクティブを無くす処理)は、これらの格子点G1'~G4'を、写真上の2次元正方形を構成する格子点F1= (b、b)、F2= (-b、b)、F3= (-b、-b)、F4= (b、-

b) に写す射影変換である。即ち図3のマーカMK1 \sim MK4(G1' \sim G4'に相当)の位置を、図5のマーカMK1 \sim MK4(F1 \sim F4に相当)の位置に写す射影変換である。

このような射影P1を表す行列は、行列の要素 a_{11} 、 a_{12} 、 a_{13} ・・・ a_{33} についての連立方程式を解くことで、下式(9)のように求められる。

$$P1 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} \frac{b}{a} \times \frac{v}{v-s} & 0 & 0 \\ 0 & \frac{b}{a} \times \frac{v}{v-s} \csc \alpha & 0 \\ 0 & \frac{1}{v-s} \cot \alpha & 1 \end{pmatrix} \cdots (9)$$

従って、カメラの撮影(C 2)と後処型(C 3)の合成である第1の立体視方式の変換は、上式(1)の回転R xの行列と、上式(2)の射影P zの行列と、上式(9)の射影P 1の行列の合成で表すことができ、下式(10)のように表すことができる。

$$\begin{pmatrix} X \\ Y \\ 0 \\ H \end{pmatrix} = P1 \times Pz(z = s) \times Px(\theta = \frac{x}{2} - \alpha) \times \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \\
= \frac{b}{a} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -\cot \alpha & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{volia} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \quad \dots \quad (10)$$

$$\blacksquare U \cdot \begin{cases} x' = X/H \\ y' = Y/H \end{cases}$$

この上式(10)は下式(11)のような変換式で表すこともできる。

$$x' = \frac{b}{a} \times \frac{x}{1 - \frac{z}{u \sin \alpha}}$$

$$y' = \frac{b}{a} \times \frac{y - z \cot \alpha}{1 - \frac{z}{u \sin \alpha}} \quad \dots \quad (1 \ 1)$$

以上のように、図1の第1の立体視方式は、上式(10)又は上式(11)のような数式で表現できる。

9. 2 第2の立体視方式の数学的解析

物体の点を基準面スクリーンに直接投影する図13の第2の立体視方式の変換は、図24から、下式(12)のように表すことができる。

$$\begin{pmatrix} X \\ Y \\ 0 \\ H \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -v\cos\alpha \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{v\sin\alpha} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \dots (12)$$

但し、
$$\begin{cases} x^* = X/H \\ y^* = Y/H + v\cos\alpha \end{cases}$$

この上式(12)は下式(13)のような変換式で表すこともできる。

$$x^* = \frac{x}{1 - \frac{z}{v \sin \alpha}}$$

$$y^* = \frac{y - v \cos \alpha}{1 - \frac{z}{v \sin \alpha}} + v \cos \alpha \qquad \dots \quad (1 \ 3)$$

上式(12)(13)で表される第2の立体視方式の変換は、図25Aに示すような物体OBの平行移動Ty(y方向での-vcosαの平行移動)と、図25Bに示すような平行移動後の物体OBの射影P2と、図26に示すような射影

後の物体OBの平行移動Ty(y方向でのvcosαの平行移動)の3つの変換から成り立っている。

9. 3 第1、第2の立体視方式の比較

以上のように、数学的には、第1の立体式方式の変換は下式(14)又は(15)のように表され、第2の立体視方式の変換は下式(16)又は(17)のように表される。

$$\begin{pmatrix}
X \\
Y \\
0 \\
H
\end{pmatrix} = \frac{b}{a} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & -cot\theta & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{vina} & 1
\end{pmatrix} \begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix} \dots (14)$$
但し、
$$\begin{cases}
x' = X/H \\
y' = Y/H
\end{cases}$$

$$x' = \frac{b}{a} \times \frac{x}{1 - \frac{x}{v \sin \alpha}}$$

$$y' = \frac{b}{a} \times \frac{y - z \cot \alpha}{1 - \frac{x}{v \sin \alpha}}$$
... (15)

$$\begin{pmatrix} X \\ Y \\ 0 \\ H \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -v\cos\alpha \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{v\sin\alpha} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \dots (16)$$

但し、
$$\begin{cases} x^* = X/H \\ y^* = Y/H + v \cos \alpha \end{cases}$$

$$x^* = \frac{x}{1 - \frac{x}{\text{usina}}}$$

$$y^* = \frac{y - v \cos \alpha}{1 - \frac{x}{\text{usina}}} + v \cos \alpha \qquad \dots \quad (17)$$

上式(14)と(16)との相違部分は、J1に示す項とK1に示す項である。 上式(15)と(17)では、この相違部分は、J2に示す項とK2に示す項の 相違になる。

これらの相違部分を、図を用いて直感的に説明すると次のようになる。即ち、前述のように第2の立体視方式は図25A、図25B、図26の3つの変換により成り立っている。そして第1の立体視方式が第2の立体視方式と異なるのは、最初の図25Aの平行移動でのずれ量である。即ち第1の立体視方式では、このずれ量はz cot α になる(上式(14)(15)のJ 1、J 2参照)。これに対して第2の立体視方式では、このずれ量はv cos α (上式(16)(17)のv 1、v 2 参照)になる。

このように第2の立体視方式では、ずれ量($vcos\alpha$)は、視点(v)と視線方向(α)に依存する。一方、第1の立体視方式では、ずれ量($zcot\alpha$)は、高さ(z)と視線方向(α)に依存し、視点(v)そのものには依存しない。そしてこの第1の立体視方式でのずれ量($zcot\alpha$)は、図27に示すように、物体の点(x、y、z)から下ろした垂線が、基準面(机)スクリーンとが交わる点N1と、物体の点(x、y、z)から、射影方向ではなく視線方向に延ばした線と、基準面スクリーンとが交わる点N2との間の距離に等しい。

このように第1の立体視方式では、図25 Aの平行移動のずれ量(z c o t α)が、高さ(z)に依存する。従って、物体の点(x、y、z)の高さ(z)に応じて、第1の立体視方式での立体視の見え方と、第2の立体視方式での立体視の見え方と、第2の立体視方式での立体視の見え方に差異が生じるようになり、この点において第1、第2の立体視方式は異なる。

なお本発明は、上記実施形態で説明したものに限らず、種々の変形実施が可能

である。

例えば、明細書又は図面中の記載において広義な用語(物体、プリミティブ面等) として引用された用語(オブジェクト・被写体、ポリゴン等)は、明細書又は図面中の他の記載においても広義な用語に置き換えることができる。

また、左目用画像、右目用画像、立体視用画像の作成(生成)手法も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。

また本発明の手法で作成(生成)された立体視用画像を、立体視用印刷物やゲ - ム画像以外の用途に用いることも可能である。

また本実施形態で説明した第1、第2の方式と均等な方式で、立体視用画像を 生成する場合も本発明の範囲に含まれる。

また、本発明のうち従属請求項に係る発明においては、従属先の請求項の構成 要件の一部を省略する構成とすることもできる。また、本発明の1の独立請求項 に係る発明の要部を、他の独立請求項に従属させることもできる。

また、本発明は種々のゲーム(格闘ゲーム、競争ゲーム、シューティングゲーム、ロボット対戦ゲーム、スポーツゲーム、ロールプレイングゲーム等)に適用できる。

また本発明は、業務用ゲームシステム、家庭用ゲームシステム、多数のプレーヤが参加する大型アトラクションシステム、シミュレータ、マルチメディア端末、ゲーム画像を生成するシステムボード等の種々の画像生成システム(ゲームシステム) に適用できる。

以上述べた本実施形態の構成に関して以下の事項を開示する

一実施形態は、立体視のための第1の左目用画像を作成し、立体視のための第1の右目用画像を作成し、第1の左目用画像の基準面での画像のパースペクティブを無くすための補正処理を、第1の左目用画像に対して施して、第2の左目用画像を作成し、第1の右目用画像の基準面での画像のパースペクティブを無くすための補正処理を、第1の右目用画像に対して施して、第2の右目用画像を作成し、第2の左目用画像と第2の右目用画像とに基づいて立体視用印刷物を作成する立体視用印刷物の製造方法に関係する。

本実施形態によれば、基準面での画像(例えば基準面自体の画像や、基準面に接する部分での物体の画像等)のパースペクティブを無くすための補正処理を行うことで、第1の左目用画像から第2の左目用画像が作成され、第1の右目用画像から第2の右目用画像が作成される。そしてこれらの第2の左目用画像、第2の右目用画像に基づいて、立体視用印刷物が作成される。これにより、ピント調整や奥行き感の矛盾が少なく、より自然な立体視を実現できる立体視用印刷物を提供できる。

また本実施形態は、基準面が、第1の基準面と、第1の基準面に対して所定の角度をなす第2の基準面を含み、第1の左目用画像の第1の基準面での画像のパースペクティブを無くすための第1の補正処理を、第1の左目用画像の第1の基準面に対応する領域に対して施すと共に、第1の左目用画像の第2の基準面での画像のパースペクティブを無くすための第2の補正処理を、第1の左目用画像の第2の基準面でから領域に対して施して、第2の左目用画像を作成し、第1の右目用画像の第1の基準面での画像のパースペクティブを無くすための第1の補正処理を、第1の右目用画像の第1の基準面に対応する領域に対して施すと共に、第1の右目用画像の第2の基準面での画像のパースペクティブを無くすための第2の補正処理を、第1の右日用画像の第2の基準面での画像のパースペクティブを無くすための第2の補正処理を、第1の右日用画像の第2の基準面に対応する領域に対して施して、第2の右目用画像を作成するようにしてもよい。

このようにすることで、1つの基準面を設定しただけでは、奥行き感等に不自 然さが生じるような場合にも、これを解消できる。なお、3つ以上の基準面を設 定するようにしてもよい。また複数の基準面(第1、第2の基準面)は連結させ ることができる。

別の実施形態は、被写体と、基準面において長方形を構成する第1~第4のマークを、左目用視点位置から撮影することで、立体視のための第1の左目用画像を作成し、被写体と、基準面において長方形を構成する第1~第4のマークを、右目用視点位置から撮影することで、立体視のための第1の右目用画像を作成し、第1の左目用画像の第1~第4のマークを、長方形の頂点位置に移動させる補正処理を行うことで、第1の左目用画像から第2の左目用画像を作成し、第1の右

日用画像の第1~第4のマークを、長方形の頂点位置に移動させる補正処理を行うことで、第1の右目用画像から第2の右目用画像を作成し、第2の左目用画像 と第2の右目用画像とに基づいて立体視用印刷物を作成する立体視用印刷物の製造方法に関係する。

本実施形態によれば、第1の左目用画像の第1~第4のマークを、長方形の頂点位置(第1~第4の頂点の位置)に移動させる補正処型が行われて、第2の左目用画像が作成され、第1の右日用画像の第1~第4のマークを、長方形の頂点位置に移動させる補正処理が行われて、第2の右目用画像が作成される。そして、得られた第2の左目用画像、第2の右目用画像に基づいて立体視用印刷物が作成される。このような補正処理を行うことで、例えば基準面でのバースペクティブを無くす処理を、簡素な処理で実現できる。

なお本実施形態における長方形は、正方形も含む広義の意味の長方形である。 また基準面において第1~第4のマークを構成する長方形と、第1~第4のマークの移動先となる頂点で構成される長方形とは、縦横比を等しくすることができる。

また本実施形態では、基準面が、第1の基準面と、第1の基準面に対して所定の角度をなす第2の基準面を含み、被写体と、第1の基準面において長方形を構成する第1~第4のマークと、第2の基準面において長方形を構成する第5~第8のマークを、左日用視点位置から撮影することで、立体視のための第1の左目用画像を作成し、被写体と、第1の基準面において長方形を構成する第1~第4のマークと、第2の基準面において長方形を構成する第5~第8のマークを、右目用視点位置から撮影することで、立体視のための第1の右目用画像を作成し、第1の左目用画像の第1~第4のマークを、長方形の頂点位置に移動させる第1の補正処理を行うと共に、第1の左目用画像の第5~第8のマークを、長方形の頂点位置に移動させる第2の補正処理を行うことで、第1の左目用画像から第2の左目用画像を作成し、第1の右目用画像の第1~第4のマークを、長方形の頂点位置に移動させる第1の補正処理を行うと共に、第1の右目用画像の第5~第8のマークを、長方形の頂点位置に移動させる第2の補正処理を行うと共に、第1の右目用画像の第5~第

1の右目用画像から第2の右目用画像を作成するようにしてもよい。

このようにすることで、1つの基準面だけでは、奥行き感等に不自然さが生じるような場合にも、これを解消できる。なお、3つ以上の基準面を設定してもよい。また、第3、第4のマークを第6、第5のマークとして共通使用してもよい。

また本実施形態では、被写体を左日用視点位置から撮影することで、第1の左 目用画像を作成し、被写体を右目用視点位置から撮影することで、第1の右日用 画像を作成し、被写体と視点位置との間の距離を長くした場合に、その長さの変 化に応じて左目用視点位置と右目用視点位置との間の距離を長くするようにして もよい。

なお視点位置は例えば左目用視点位置と右目用視点位置の中点である。

また本実施形態では、被写体を左目用視点位置から撮影することで、第1の左 目用画像を作成し、被写体を右目用視点位置から撮影することで、第1の右目用 画像を作成し、被写体と視点位置との間の距離を変化させる場合に、基準面に対 して所定の角度をなす直線に沿って視点位置を移動させるようにしてもよい。

また本実施形態では、立体視時において立体視用印刷物を載置する面を、基準面として設定するようにしてもよい。

このようにすれば、立体視用印刷物を例えば載微面に平行に載置した場合に、 最適で実在感のある立体視を実現できる。

また本実施形態では、第2の左目用画像と第2の右目用画像とをアナグリフ処理により合成することで、立体視用印刷物を作成するようにしてもよい。

なお、本実施形態では、アナグリフ処理以外の手法で、立体視用印刷物を作成 してもよい。

また本実施形態は、上記のいずれかの製造方法により作成された立体視用印刷物に関係する。また本実施形態は、上記のいずれかの製造方法により作成された立体視用印刷物を複製することで作成された立体視用印刷物に関係する。

更に別の実施形態は、左目用画像と右目用画像とが合成されて印刷された立体 視用印刷物であって、左日用画像、右目用画像が、基準面に配置された物体の画 像を含み、左目用画像の物体画像と右目用画像の物体画像とが基準面位置におい て一致しており、且つ、基準而から離れるほど左目用画像の物体画像と右目用画像の物体画像のずれが大きくなる立体視用印刷物に関係する。

本実施形態によれば、左日用画像の物体画像と右目用画像の物体画像とが基準 面位置において一致する。例えば、基準面位置において印刷位置や表示位置が一 致する。そして基準面から離れるほど(基準面から所定の方向に離れるほど)、 左目用画像の物体画像と右目用画像の物体画像のずれ(例えば印刷位置や表示位 置のずれ)が大きくなる。これにより、これまでの立体視では得ることが難しかった、自然で実在感のある立体視を実現できる。

更に別の実施形態は、左目用視点位置とオブジェクトの各点を結ぶ投影方向で、 視線方向に非直交の基準面に対してオブジェクトの各点を投影して基準面にレン ダリングすることで、左目用画像を作成し、右目用視点位置とオブジェクトの各 点を結ぶ投影方向で、視線方向に非直交の基準面に対してオブジェクトの各点を 投影して基準面にレンダリングすることで、右目用画像を作成し、左目用画像と 右目用画像とに基づいて立体視用印刷物を作成する立体視用印刷物の製造方法に 関係する。

本実施形態によれば、左目用視点位置とオブジェクトの各点を結ぶ投影方向で、 基準面に対してオブジェクトの各点を投影してレンダリングすることで、左目用 画像が作成される。また、右日用視点位置とオブジェクトの各点を結ぶ投影方向 で、基準面に対してオブジェクトの各点を投影してレンダリングすることで、右 目用画像が作成される。そしてこれらの左目用画像、右目用画像に基づいて、立 体視用印刷物が作成される。これにより、ピント調整や奥行き感の矛盾が少なく、 より自然な立体視を実現できる立体視用印刷物を提供できる。なお、基準面は、 例えば視線方向(左目用視点位置と右目用視点位置の中点と仮想カメラの注視点 を結ぶ方向)とは直交しない面である。別の言い方をすれば、視線方向と直交す る透視変換スクリーンとは異なる面である。

また本実施形態では、基準面に対して投影されるオプジェクトが、基準而上に 配置されるオプジェクトであってもよい。また本実施形態では、基準面に対して 投影されるオプジェクトが、その一部又は全部が、左目用視点位置及び右目用視 点位置から見て基準面の奥側に配置されるオブジェクトであってもよい。

また本実施形態では、基準面が、第1の基準面と、第1の基準面に対して所定の角度をなす第2の基準面を含み、左目用視点位置とオブジェクトの各点を結ぶ投影方向で、第1又は第2の基準面に対してオブジェクトの各点を投影して第1又は第2の基準面にレンダリングすることで、左目用画像を作成し、右目用視点位置とオブジェクトの各点を結ぶ投影方向で、第1又は第2の基準面に対してオブジェクトの各点を投影して第1又は第2の基準面にレンダリングすることで、右目用画像を作成するようにしてもよい。

このようにすることで、1つの基準面を設定しただけでは、奥行き感等に不自然さが生じるような場合にも、これを解消できる。なお、3つ以上の基準面を設定するようにしてもよい。また複数の基準面(第1、第2の基準面)は連結させることができる。

また本実施形態では、オブジェクトと視点位置との間の距離を長くした場合に、 その長さの変化に応じて左日用視点位置と右目用視点位置との間の距離を長くす るようにしてもよい。

また本実施形態では、オブジェクトと視点位置との間の距離を変化させる場合 に、基準面に対して所定の角度をなす直線に沿って視点位置を移動させるように してもよい。

What is claimed is:

1. 立体視用印刷物の製造方法であって、

立体視のための第1の左目用画像を作成し、

立体視のための第1の右月川画像を作成し、

第1の左目用画像の基準面での画像のパースペクティブを無くすための補正処理を、第1の左目用画像に対して施して、第2の左目用画像を作成し、

第1の右目用画像の基準面での画像のパースペクティブを無くすための補正処 型を、第1の右目用画像に対して施して、第2の右目用画像を作成し、

第2の左目用画像と第2の右目用画像とに基づいて立体視用印刷物を作成する ことを特徴とする立体視用印刷物の製造方法。

2. 請求項1において、

基準面が、第1の基準面と、第1の基準面に対して所定の角度をなす第2の基準面を含み、

第1の左目用画像の第1の基準面での画像のパースペクティブを無くすための 第1の補正処理を、第1の左目用画像の第1の基準面に対応する領域に対して施 すと共に、第1の左日用画像の第2の基準面での画像のパースペクティブを無く すための第2の補正処理を、第1の左目用画像の第2の基準面に対応する領域に 対して施して、第2の左目用画像を作成し、

第1の右目用画像の第1の基準面での画像のパースペクティブを無くすための第1の補正処理を、第1の右目用画像の第1の基準面に対応する領域に対して施すと共に、第1の右目用画像の第2の基準面での画像のパースペクティブを無くすための第2の補正処理を、第1の右目用画像の第2の基準面に対応する領域に対して施して、第2の右目用画像を作成することを特徴とする立体視用印刷物の製造方法。

3. 立体視用印刷物の製造方法であって、

被写体と、基準而において長方形を構成する第1~第4のマークを、左目用視 点位置から撮影することで、立体視のための第1の左目用画像を作成し、

被写体と、基準面において長方形を構成する第1〜第4のマークを、右目用視 点位置から撮影することで、立体視のための第1の右目用画像を作成し、

第1の左目川画像の第1~第4のマークを、長方形の頂点位置に移動させる補 正処理を行うことで、第1の左目用画像から第2の左目用画像を作成し、

第1の右日用画像の第1~第4のマークを、長方形の頂点位置に移動させる補 正処理を行うことで、第1の右日用画像から第2の右目用画像を作成し、

第2の左目用画像と第2の右目用画像とに基づいて立体視用印刷物を作成する ことを特徴とする立体視用印刷物の製造方法。

4、 請求項3において、

基準面が、第1の基準面と、第1の基準面に対して所定の角度をなす第2の基準面を含み、

被写体と、第1の基準値において長方形を構成する第1〜第4のマークと、第 2の基準面において長方形を構成する第5〜第8のマークを、左目用視点位置か ら撮影することで、立体視のための第1の左日用画像を作成し、

被写体と、第1の基準面において長方形を構成する第1〜第4のマークと、第 2の基準面において長方形を構成する第5〜第8のマークを、右目用視点位置か 5撮影することで、立体視のための第1の右目用画像を作成し、

第1の左目用画像の第1~第4のマークを、長方形の頂点位置に移動させる第 1の補正処理を行うと共に、第1の左目用画像の第5~第8のマークを、長方形 の頂点位置に移動させる第2の補正処理を行うことで、第1の左目用画像から第 2の左目用画像を作成し、

第1の右目用画像の第1~第4のマークを、長方形の頂点位置に移動させる第 1の補正処理を行うと共に、第1の右目用画像の第5~第8のマークを、長方形 の頂点位置に移動させる第2の補正処理を行うことで、第1の右目用画像から第 2の右目用画像を作成することを特徴とする立体視用印刷物の製造方法。

5. 請求項1において、

被写体を左日用視点位置から撮影することで、第1の左目用画像を作成し、 被写体を右目用視点位置から撮影することで、第1の右日用画像を作成し、 被写体と視点位置との間の距離を長くした場合に、その長さの変化に応じて左 目用視点位置と右目用視点位置との間の距離を長くすることを特徴とする立体視 用印刷物の製造方法。

6. 請求項3において、

被写体を左目用視点位置から撮影することで、第1の左目用画像を作成し、 被写体を右目用視点位置から撮影することで、第1の右目用画像を作成し、 被写体と視点位置との間の距離を長くした場合に、その長さの変化に応じて左 目用視点位置と右目用視点位置との間の距離を長くすることを特徴とする立体視 用印刷物の製造方法。

7. 請求項1において、

被写体を左目用視点位置から撮影することで、第1の左目用画像を作成し、 被写体を右目用視点位置から撮影することで、第1の右目用画像を作成し、 被写体と視点位置との間の距離を変化させる場合に、基準面に対して所定の角 度をなす直線に沿って視点位置を移動させることを特徴とする立体視用印刷物の 製造方法。

8. 請求項3において、

被写体を左目用視点位置から撮影することで、第1の左目用画像を作成し、 被写体を右目用視点位置から撮影することで、第1の右目用画像を作成し、 被写体と視点位置との間の距離を変化させる場合に、基準面に対して所定の角 度をなす直線に沿って視点位置を移動させることを特徴とする立体視用印刷物の 製造方法。 9. 請求項1において、

立体視時において立体視用印刷物を報置する面を、基準面として設定すること を特徴とする立体視用印刷物の製造方法。

10. 請求項3において、

立体視時において立体視用印刷物を載置する面を、基準面として設定することを特徴とする立体視用印刷物の製造方法。

11. 請求項1において、

第2の左日用画像と第2の右日用画像とをアナグリフ処理により合成することで、立体視用印刷物を作成することを特徴とする立体視用印刷物の製造方法。

12. 請求項3において、

第2の左目用画像と第2の右目用画像とをアナグリフ処理により合成することで、立体視用印刷物を作成することを特徴とする立体視用印刷物の製造方法。

- 13. 請求項1の製造方法により作成された立体視用印刷物。
- 14. 請求項3の製造方法により作成された立体視用印刷物。
- 15. 請求項1の製造方法により作成された立体視用印刷物を複製することで作成された立体視用印刷物。
- 16. 請求項3の製造方法により作成された立体視用印刷物を複製することで作成された立体視用印刷物。
- 17. 左目用画像と右目用画像とが合成されて印刷された立体視用印刷物であ

って、

左目用画像、右目用画像が、基準面に配置された物体の画像を含み、

左目用画像の物体画像と右目用画像の物体画像とが基準面位置において一致しており、且つ、基準而から離れるほど左日用画像の物体画像と右日用画像の物体画像のずれが大きくなることを特徴とする立体視用印刷物。

18. 立体視用印刷物の製造方法であって、

左目用視点位置とオブジェクトの各点を結ぶ投影方向で、視線方向に非直交の 基準面に対してオブジェクトの各点を投影して基準面にレンダリングすることで、 左目用画像を作成し、

右目用視点位置とオブジェクトの各点を結ぶ投影方向で、視線方向に非直交の 基準面に対してオブジェクトの各点を投影して基準面にレンダリングすることで、 右目用画像を作成し、

左目用画像と右目用画像とに基づいて立体視用印刷物を作成することを特徴と する立体視用印刷物の製造方法。

19. 請求項18において、

基準面に対して投影されるオブジェクトが、基準面上に配置されるオブジェクトであることを特徴とする立体視用印刷物の製造方法。

20. 請求項18において、

基準面に対して投影されるオブジェクトが、その一部又は全部が、左目用視点 位置及び右目用視点位置から見て基準面の奥側に配置されるオブジェクトである ことを特徴とする立体視用印刷物の製造方法。

21. 請求項18において、

基準面が、第1の基準面と、第1の基準面に対して所定の角度をなす第2の基 準面を含み、 左日用視点位置とオブジェクトの各点を結ぶ投影方向で、第1又は第2の基準 面に対してオブジェクトの各点を投影して第1又は第2の基準而にレンダリング することで、左目用画像を作成し、

右日用視点位置とオブジェクトの各点を結ぶ投影方向で、第1又は第2の基準 面に対してオブジェクトの各点を投影して第1又は第2の基準面にレンダリング することで、右目用画像を作成することを特徴とする立体視用印刷物の製造方法。

22. 請求項18において、

オブジェクトと視点位置との間の距離を長くした場合に、その長さの変化に応 じて左日用視点位置と右日用視点位置との間の距離を長くすることを特徴とする 立体視用印刷物の製造方法。

23. 請求項18において、

オブジェクトと視点位置との間の距離を変化させる場合に、基準面に対して所 定の角度をなす直線に沿って視点位置を移動させることを特徴とする立体視用印 刷物の製造方法。

24. 請求項18において、

立体視時において立体視用印刷物を載置する面を、基準面として設定することを特徴とする立体視用印刷物の製造方法。

25. 請求項18において、

左目用画像と右目用画像とをアナグリフ処理により合成することで、立体視用 印刷物を作成することを特徴とする立体視用印刷物の製造方法。

- 26. 請求項18の製造方法により作成された立体視用印刷物。
- 27. 請求項18の製造方法により作成された立体視用印刷物を複製すること

で作成された立体視用印刷物。

ABSTRACT OF THE DISCLOSURE

立体視のためのた目用、右目用画像IL1、IR1を作成し、IL1、IR1の基準面での画像のパースペクティブを無くすための補正処理を施して、左目用、右目用画像IL2、IR2を作成し、IL2、IR2に基づき、アナグリフ処理等により立体視用印刷物を作成する。左目用視点位置VPLとオブジェクトOBの各点を結ぶ投影方向で、基準面BSに対してオブジェクトの各点を投影してレンダリングすることで、左目用画像ILを作成し、右目用視点位置VPLとオブジェクトOBの各点を結ぶ投影方向で、基準面BSに対してオブジェクトOBの各点をおぶ投影方向で、基準面BSに対してオブジェクトOBの各点を投影してレンダリングすることで、右日用画像IRを作成する。そしてIL、IRに基づき、アナグリフ処理等により立体視用印刷物の作成する。