Chapter 7 Registers, Counters & the Memory Units

Registers

FIGURE 7-1

4-bit register

Register with Parallel Load

FIGURE 7-2

4-bit register with parallel load

Register with Parallel Load

FIGURE 7-3

Register with parallel load using D flip-flops

Shift Register

TABLE 7-1 Serial-Transfer Example

Timing Pulse	Shift Register A				Shift Register B					Serial Output of B
Initial value	Λ,	-0-	_1	1		0,	0.	1,	0	0
After T_1	71	14	70	71	1	1	70	\ 0 \	1	1
After T_2	1	1	l	0		1	1	0	0	0
After T_3	0	1	1	1		0	1	1	0	0
After T ₄	1	0	1	1		l	0	1	1	1

4-Bit Bidirectional Shift Register with Parallel Load

4-Bit Binary Ripple Counter

4-Bit Binary Ripple Counter

TABLE 7-4
Count Sequence for a Binary Rippie Counter

C	Count S	equenc	e						
A4	A_3	Az	Aı	Conditions for Complementing Flip-Flops					
0	0	0	0	Complement A ₁					
0	0	0	1	Complement A ₁	A_1 will go from 1 to 0 and complement A_2				
0	0	1	0	Complement A ₁					
0	0	1	1	Complement A ₁	A_1 will go from 1 to 0 and complement A_2 ;				
	\mathcal{C}	\ <u></u>	\checkmark	-	A_2 will go from 1 to 0 and complement A_3				
0	i	ő	Ò	Complement A ₁					
0	1	0	1	Complement A ₁	A_1 will go from 1 to 0 and complement A_2				
0	1	1	0	Complement A ₁					
0	1	1	1	Complement A ₁	A_1 will go from 1 to 0 and complement A_2 ;				
				-	A_2 will go from 1 to 0 and complement A_3 ;				
	\ C	\(\(\)	\downarrow		A_3 will go from 1 to 0 and complement A_4				
ì	ď	ő	ò	and so on					

BCD Ripple Counter

4 Bit Synchronous Binary Counter

4 Bit Binary Up Down Counter

Johnson Counter

(a) Four-stage switch-tail ring counter

Sequence	$\mathbf{Fli}_{\mathbf{j}}$	p-flor	outp	outs	AND gate required
number	Ā	В	С	E	for output
1	0	0	0	0	A'E'
2	1	0	0	0	AB'
3	1	1	0	0	BC'
4	1	1	1	0	CE'
5	1	1	1	1	AE
6	0	1	1	1	A'B
7	0	o	1	1	B' C
8	0	0	0	1	C'E

(b) Count sequence and required decoding.

FIGURE 7-23

Construction of a Johnson counter

Memory Cell (Binary Cell)

(a) Logic diagram

(b) Block diagram

FIGURE 7-26

Logical Construction of RAM (4 X 3)

1K X 8 RAM

FIGURE 7-28

Block diagram of a $1K \times 8$ RAM chip.

4K X 8 RAM

1K X 16 RAM

FIGURE 7-30

Block diagram of a 1K > 16 RAM.