MASTERING ALGORITHMS

Mentors

1)Venkatesh 2)Kumar Shivam

3) Nipun Nohria 4) Yash Pratap Singh

Motivation(WHY?)

"Algorithms are the building blocks of problem-solving"

- Algorithmic problem solving is important in many areas of modern life, from hard and soft sciences to art and entertainment, especially in Computer Science.
- Enhances critical thinking and Algorithmic Problem solving Skills.
- Helpful in Placements Being experienced in competitive programming, gives an edge during coding rounds of job interviews.

Learning Outcomes

The project aims to:

- Introduce efficient Algorithmic Problem Solving methods.
- Enhance problem-solving skills through competitive programming challenges and math puzzles.
- Explore the applications of number theory, graph theory, and combinatorics to solve complex problems efficiently.
- Delve into frequently used algorithms and techniques in competitive programming and algorithmic puzzles for a deeper understanding.

Table Of Content

Topics

Week Distribution

Methodology

Evaluation Criteria

Our Team

Topics

- Week 1: Basics of C++, time complexity, STL
- Week 2: Modular Arithmetic, Sieve of Eratosthenes, Theorems in number theory, bit manipulation, Constructions
 - Week 3: Hashing, searching and sorting
 - Week 4 and Week 5 : Heaps, Recursion, Greedy Algos
 - Week 6 and Week 7: Dynamic Programming
 - Week 7 and Week 8: Graph Algorithms

Topics and Timeline

Dynamic Programming and Graphs

Heaps, Recursion, backtracking, Greedy Algos

Hashing, searching and sorting techniques

Math for CP - Number theory, bit manipulation...

Basics of C++, time complexity, STL

- Basic concepts of C++
- Time complexity in programming
 - Introduction to vectors
- Introduction to Stacks and problems related to stacks.
 - Introductions to Queues and related problems.

- Number theory
- Primes and Modular arithmetic
 - Bit manipulations
 - Basic Combinatorics
 - Game theory
 - Probability

- Brute force, Divide and conquer
- Sorting and Searching algorithms
 - Hashing
 - Sliding window
 - Two pointer method

Week 4 and Week 5

- Introduction to Heaps
- Advanced concepts in heaps
 - Recursion
 - BackTracking
 - Greedy Algorithms

- Introduction to dynamic programming
- Recursion problems using dynamic programming
 - Solving greedy problems using dynamic programming
 - Travelling salesman using dp
 - Longest common subsequence problem
 - Knapsack Problem

Week 7 and Week 8

- Basics of graphs
 - Adjacency lists
- BFS and DFS Traversal
- Theoretical discussion as well as code implementation
 - Dijkstra's Algorithm
 - Spanning Trees

Methodology

- Step 1: Theoretical description of the concept using examples
 - Step 2: C++ code implementation of the problem
- Step 3: Reference material for students to refer to for additional clarity in the topic.
- Step 4: Topicwise codeforces/leetcode/hackerRank/geeksforgeeks weekly problems with deadline.
- Step 5: Doubt sessions and active whatsapp participation
 An Algorithmic Puzzle every alternate day, typically have the flavor of Project Euler

Evaluation Criteria

- 1) Weekly assignment/practice problems
- 2) 2 major programming assignments one before midterm and one before end term
- 3) Mid term and End term Report

Our Team

Yash Pratap Singh Y22 CSE 7007519537

Kumar Shivam Y22 CSE 6299712990 Nipun Nohria Y22 CSE 8556827697

Venkatesh Y22 CSE 9014764100

THANK YOU!