

NOME:____

AED - 2014-2015 - 2º Semestre Algoritmos e Estruturas de Dados

_____ NÚMERO:_____

Questão	1	2	3	4	5	6	7	8
Resposta								
que o pont processado Indique da	o de saída o pelo algor	do labirinto itmo Quich	encontra Union te	-se na célu endo resulta 11 9 9 1	la 15, e q ado na se 0 15 13	roblema de oue o conjunte tabel 14 10 15 e atingir a s	to de célul a:]	as ligada
A. Considere inicialment		B do seguinte	e sequência			3. árvore ordo	D. enada bala	10.
Considere inicialment Das hipóte a árvore co	a inserção te vazia.	do seguinte es identifiquenada e ba	e sequência {14,17, ne qual o n lanceada A	11, 7, 53, 4, túmero tota AVL no fin	ros numa 13, 12, 8} al acumula al e após	árvore ordo ado de rota cada inserç	enada bala ções necessa	nceada A

```
int findmax(int * array, int size)
{
  int max;

  if (size == 1) return array[0];
  else {
    max = findmax(array, size-1);
    if (max >= array[size-1]) return max;
    else return array[size-1];
  }
}
```

Assumindo que o array tem dimensão n, das hipóteses seguintes identifique qual o par que corresponde à recorrência/solução que descreve a recursivade da função findmax.

```
 \begin{array}{|c|c|c|c|c|} \hline A. & c(n) = c(n-1)+1 & c(n) = O(n). \\ C. & c(n) = c(n/2)+1 & c(n) = O(\log(n)). \\ \hline \end{array} \quad \begin{array}{|c|c|c|c|c|} B. & c(n) = c(n-1)+n-1 & c(n) = O(n). \\ D. & c(n) = c(n-1)+1 & c(n) = O(n^2). \\ \hline \end{array}
```

5. Seja o algoritmo QuickSort aplicado à tabela seguinte com o objectivo de a ordenar crescentemente.

```
5 19 16 13 22 4 7 10
```

Pretende-se identificar a sequência de pivots utilizada pelo algoritmo. Das hipóteses seguintes, indique qual a sequência correcta de pivots para a tabela anterior.

Α.	$\{10, 4, 5, 22, 13, 19\}.$	В.	$\{10, 5, 4, 13, 19, 22\}.$
С.	$\{10, 5, 4, 22, 19, 13\}.$	D.	$\{10, 4, 5, 13, 22, 19\}.$

6. Considere a expressão matemática ((6 × (4 + 5) - 8)/(2 + 3)), a qual se pretende representar numa árvore binária, em que cada nó ou é um algarismo ou um símbolo aritmético {+, -, ×, /}. Suponha que para a representação da árvore se utiliza um vector de acordo com o formato utilizado no laboratório 3, ou seja, no vector existem números inteiros maiores ou iguais a zero, ou iguais a -1. Um número maior ou igual a zero significa que a árvore tem um nó com esse número. O número -1 significa que um nó pai não tem um filho.

A seguir, apresenta-se um exemplo de uma árvore e do vector que a representa:

Pretende-se determinar que árvores devem ser definidas de forma a que o respectivo varrimento pré-fixado, in-fixado e pós-fixado resulta na expressão matemática anterior.

Das opções seguintes indique qual não permite obter a expressão pretendida.

7. Seja o grafo apresentado na figura seguinte:

Considerando que os pesos das arestas são todos positivos (não nulos), indique todos os valores possíveis para o peso X de forma a que o nó D **SEJA** um nó filho do F na MST com raíz no nó A.

A. {2}.	B. {1, 2}.	$C. \{2,3\}.$	D. $\{3, 4, 5, \ldots\}$.
(-).	-· (-,-)·	□, □, □, ·	-· (°, -, °,···)·

8. Interpretando 'p' como a operação abstracta push e 'P' como a operação pop, considere a seguinte sequência de operações sobre uma pilha que armazena caracteres: pppPppPPPpppP. Assuma que cada operação push retira um caracter de uma tabela de caracteres, a partir do início da mesma, e que cada operação pop é seguida da escrita do caracter removido da pilha. Qual das tabelas abaixo permite produzir a palavra: "razar"?

A. [rarzarar] B. [zarza	a r a] C. [r z a a r r a a]	$D. [r \ a \ r \ r \ a \ z \ z \ r]$
-------------------------	-----------------------------	---------------------------------------

PARTE II - Questões de Desenvolvimento

Responda a cada uma das questões de desenvolvimento em **folhas de exame separadas** e devidamente identificadas com nome e número.

9. Considere uma sequência de letras do alfabeto (A a Z, incluindo K, W e Y)). A sequência diz-se ter "passo constante" se a distância entre caracteres consecutivos na sequência for sempre a mesma. A distância entre A e B é de 1, entre D e F é 2, P e V é 6, entre Z e C é 3, etc.. As duas sequências abaixo possuem "passo constante":

$$ACEG...$$
 passo = 2
 $AZYX...$ passo = 25

[5.0]

Note que a contagem de distância é circular, onde A é a letra que segue a letra Z.

Duas ou mais sequências dizem-se "entrelaçadas" se os seus elementos adjacentes estiverem separados por exactamente um elemento de cada uma das outras sequências. Por exemplo, as sequências seguintes são "entrelaçadas":

AQBRCSDT... sequências ABCD... passo = 1
$$QRST... \ passo = 1$$
 AZTAYRAXP... sequências AAA... passo = 0
$$ZYX... \ passo = 25$$

[2.0] a) Escreva uma função em linguagem C que receba uma sequência de 12 caracteres e indique quantas subsequências entrelaçadas existem. A assinatura da função é

TRP... passo = 24

As sequências passadas como argumento possuem sempre comprimento 12 e contêm sempre ou duas ou três subsequências, ou nenhuma. O objectivo da função é apenas determinar quantas existem

Dadas as sequências acima, esta função deveria retornar 2 para a primeira e 3 para a segunda. A função deverá retornar -1 quando a sequência dada não possui nem 2 nem 3 subsequências entrelaçadas de passo constante.

[3.0] b) Com base no resultado da função anterior e para cada uma das sequências processadas, escreva outra função que produz os 12 caracteres seguintes, escrevendo-os para stdio, juntamente com a sequência original. A assinatura da função deverá ser

```
void complete_sequence(char * s, int n);
```

em que n é o número de sequências entrelaçadas que s possui. Caso a sequência dada não corresponda ao padrão esperado, a função deverá escrever apenas a sequência original. Por exemplo:

AZTAYRAXPAWN AVLAUJATHASF ABCDXDCBAXAB XXYHZRABBLCV DFEPFZGJHTID

Nota: Se se pretendesse escrever um programa que lesse cada uma das sequências a partir de um ficheiro e as completasse, a linha de código para completar cada sequência seria complete_sequence(one_string, count_interlaced(one_string));

[6.0] 10. Considere a matriz de adjacências de um grafo ponderado não direcionado que se apresenta abaixo e assuma que os vértices estão numerados de 1 a 10. Justifique convenientemente os cálculos que efectuar para a resolução das alíneas abaixo.

```
 \begin{bmatrix} 0 & 6 & 4 & 8 & \infty & 3 & \infty & \infty & \infty & \infty \\ 6 & 0 & 1 & \infty & 5 & \infty & \infty & \infty & 2 & \infty \\ 4 & 1 & 0 & \infty & \infty & 3 & 9 & \infty & \infty & 3 \\ 8 & \infty & \infty & 0 & 2 & \infty & 5 & \infty & \infty & 10 \\ \infty & 5 & \infty & 2 & 0 & \infty & 2 & \infty & 3 & \infty \\ 3 & \infty & 3 & \infty & \infty & 0 & \infty & \infty & 4 & 7 \\ \infty & \infty & 9 & 5 & 2 & \infty & 0 & 3 & 6 & 5 \\ \infty & \infty & \infty & \infty & \infty & \infty & 3 & 0 & 2 & 5 \\ \infty & 2 & \infty & \infty & 3 & 4 & 6 & 2 & 0 & \infty \\ \infty & \infty & \infty & 3 & 10 & \infty & 7 & 5 & 5 & \infty & 0 \end{bmatrix}
```

- [2.5] a) Tomando o vértice 4 como fonte, determine a Árvore de Caminhos mais Curtos por aplicação do algoritmo de Dijkstra.
- [1.0] b) Trace a árvore resultante.
- [2.0] c) Tomando o vértice 6 como fonte, determine a Árvore Mínima de Suporte por aplicação do algoritmo de Prim.
- [0.5] d) Qual o custo da MST que produziu na alínea anterior?
- [3.0] 11. Considere a seguinte tabela palavras da "ThreeLetterWordsLand", onde todas as palavras são exclusivamente compostas por três caracteres:

[fgt uto pro tyu tat pss jol aar abr cap bba bzt iop iii kal zig gih]

Suponha que pretende transformar aquela tabela num acervo, considerando que uma palavra é mais prioritária que outra se for alfabeticamente anterior. Essencialmente, existem duas formas de construir um acervo a partir de uma tabela: com cópia, transferindo cada elemento da tabela para um acervo inicialmente vazio; ou *in situ*, em que a construção do acervo se faz na própria tabela original.

- [1.25] a) Construa o acervo com cópia.
- [1.25] b) Construa o acervo in situ.
- [0.50] c) Os dois acervos assim obtidos são/deveriam ser iguais? Porquê?

.0.00]