Turingův stroj, jazyky Turingových strojů

Jan Konečný

24.9.2014

Turingův stroj (Turing machine)

Turingův stroj (TS)

- Alan Turing, 1936 (a-machine)
- účel: porozumět omezením mechanického výpočtu

TS se skládá

- z řídicí jednotky, která se vždy nachází v jednom z konečného množství stavů
- ze zleva omezené nekonečné pásky rozdělené na políčka. V každém políčku je zapsán jeden symbol.
- z čtecí/zapisovací hlavy, která je vždy umístěna nad jedním políčkem pásky.

Konečné automaty – připomínka z KMI/FJAA

(pedagogická berlička)

Definice

Konečný automat je dán

- Q abecedou stavů,
- Σ abecedou symbolů,
- $\delta: Q \times \Sigma \to Q$ přechodovou funkcí,
- $q_0 \in Q$ počátečním stavem,
- $F \subseteq Q$ množinou přijímacích (koncových) stavů.

Definice

Konfigurace konečného automatu: $\langle q,w \rangle \in Q \times \Sigma^*$

- $q \in Q$ aktuální stav,
- $w \in \Sigma^*$ nezpracovaná část vstupního slova.

Definice

Krok výpočtu \vdash KA $\mathbf{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ je binární relace nad množinou konfigurací KA \mathbf{A} definovaná takto:

$$\langle q_1, w_1 \omega \rangle \vdash \langle q_2, \omega \rangle$$
 právě když $\delta(q_1, w_1) = q_2.$

Výpočet je \vdash^* – reflexivní, tranzitivní uzávěr relace \vdash .

Definice

Říkáme, že KA $\mathbf{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ přijímá slovo $w\in\Sigma^*$, pokud $\langle q_0,w\rangle\vdash^*\langle f,\varepsilon\rangle$ a $f\in F.$ V opačném případě říkáme, že KA zamítá slovo w.

 $(\varepsilon$ označuje prázdný řetězec)

Definice

Jazyk konečného automatu ${\bf A}$ je množina slov, které automat přijímá. Značíme $L({\bf A}).$

Grafová reprezentace KA

(furt ještě berlička)

Orientovaný graf

stavy – uzly

počáteční stav a přijímací stavy

ullet přechody $\delta(q,x)=q'$ – orientované ohodnocené hrany

(konec berličky)

Turingův stroj, definice

Program Turingova stroje lze chápat jako množinu elementárních instrukcí ve tvaru:

"Pokud je řídicí jednotka ve stavu q a čtecí/zapisovací hlava čte symbol a, tak změň stav řídicí jednotky na q', na pásku zapiš a' a posuň čtecí/zapisovací hlavu o jedno políčko směrem d."

Takováto instrukce se zapisuje jako $\delta(q,a)=(q',a',d)$ budeme ji nazývat přechod. Celý program, tedy množinu takovýchto instrukcí, pak nazýváme přechodovou funkcí TS.

Definice

Turingův stroj je struktura $\langle Q, \Sigma, \Gamma, \delta, q_{\rm start}, q_+, q_- \rangle$ daná:

- $oldsymbol{0}$ neprázdnou konečnou množinou stavů Q,
- 2 vstupní abecedou Σ , t.ž. $\downarrow \notin \Sigma$,
- **3** páskovou abecedou Γ , t.ž. $\Sigma \subset \Gamma$, $\zeta \in \Gamma$,
- \bullet přechodovou funkcí $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$,
- $oldsymbol{\circ}$ počátečním stavem $q_{\mathsf{start}} \in Q$,
- přijímacím stavem $q_+ \in Q$ a zamítacím stavem $q_- \in Q$. $q_+ \neq q_-$.

Příklad

TS $M_1 = \langle Q, \Sigma, \Gamma, \delta, q_0, q_+, q_- \rangle$, kde

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_+, q_-\},\$
- $\Sigma = \{0\}$,
- $\Gamma = \Sigma \cup \{ \bot, \times \}$,
- ullet δ je dána následující tabulkou:

	0	J	X
q_0	$(q_1, \underline{\ }, R)$	$(q, \underline{\ }, R)$	(q, x, R)
q_1	(q_2,x,R)	(q_+, \lrcorner, R)	(q_1, x, R)
q_2	$(q_3, 0, R)$	(q_4, \llcorner, L)	(q_2,x,R)
q_3	(q_2,x,R)	(q, \llcorner, R)	(q_3, x, R)
q_4	$(q_4,0,L)$	$(q_1, \underline{\ }, R)$	$(q_4,0,L)$

Turingův stroj, konfigurace

Definice

Konfigurace TS $T = \langle Q, \Sigma, \Gamma, \delta, q_{\rm start}, q_+, q_- \rangle$ je uspořádaná trojice

$$(q, \alpha, n) \in Q \times \Gamma^* \times \mathbb{N}_0.$$

Slovy:

Konfigurace TS T – trojice, která zachycuje aktuální status všech tří komponent Turingova stroje:

- q je aktuální stav řídící jednotky,
- ullet α je obsah pásky,
- ullet n je pozice hlavy.

Konfigurace (q, α_{-}, n) a (q, α, n) budeme považovat za totožné.

Definice

Iniciální konfigurace TS T pro vstup $w \in \Sigma^*$ je $(q_0, w, 0)$.

Přijímající konfigurace TS T je konfigurace

$$(q_+, \alpha, n)$$
 pro jakékoli $\alpha \in \Gamma^*$ a $n \in \mathbb{N}_0$.

Zamítající konfigurace TS T je konfigurace

$$(q_-, \alpha, n)$$
 pro jakékoli $\alpha \in \Gamma^*, n \in \mathbb{N}_0$.

Iniciální konfigurace – řídící jednotka nachází v q_0 , na pásce je zapsáno vstupní slovo (následované nekonečným počtem prázdných symbolů $_$) a hlava je nad nejlevějším políčkem pásky (s indexem 0).

Přijímající konfigurace – řídící jednotka je v q_+ .

Zamítající konfigurace – řídící jednotka je v q_- .

Přijímající nebo zamítající konfigurace je koncová konfigurace.

Jiná konfigurace je nekoncová konfigurace.

Alternativně budeme konfiguraci zapisovat jako řetězec $\alpha q\beta \in \Gamma^*Q\Gamma^*$. Konfigurace $\alpha q\beta$ přestavuje status stroje, který má na pásce zapsán řetězec $\alpha\beta$, hlava je nad prvním symbolem řetězec β , řídicí jednotka je ve stavu q.

Definice

Krok výpočtu TS je definován jako binární relace na množině konfigurací: Nechť $(q,a_0\dots a_n,i)$ je taková konfigurace T, kde $q\neq q_\pm, n\in\mathbb{N}_0, a_0,\dots,a_n\in\Gamma, i\leq n$.

(a) Je-li
$$1 \leq i \leq n$$
 a $\delta(q,a_i) = (q',b,\mathbf{L})$, pak

$$(q, a_0, \dots a_n, i) \vdash (q', a_0 \dots a_{i-1} b a_{i+1} \dots a_n, i-1).$$

(b) Je-li
$$\delta(q, a_0) = (q', b, L)$$
, pak

$$(q, a_0 \dots a_n, 0) \vdash (q', ba_1 \dots a_n, 0).$$

(c) Je-li
$$\delta(q,a_i)=(q',b,\mathbf{R})$$
, pak

$$(q, a_0 \dots a_n, i) \vdash (q', a_0 \dots a_{i-1} b a_{i+1} \dots a_n, i+1).$$

Definice kroku říká, jakým způsobem lze z nekoncové konfigurace odvodit novou podle přechodové funkce δ :

Pokud jsme ve stavu q a hlava čte páskový symbol a_i , a máme přechod $\delta(q,a_i)=(q',b,{\bf X})$, pak:

- ullet řídící jednotka změní stav na q',
- na pásku se do pollíčka, nad kterým je hlava, zapíše b (přepíše se tedy původní symbol a_i)
- pohyb hlavy:
 - (a) Pokud X=L a hlava není nad nejlevějším políčkem pásky, pohne o jedno políčko doleva.
 - (b) Pokud X=L a hlava je nad nejlevějším políčkem pásky, hlava se nepohne vůbec.
 - (c) Pokud X = R, hlava se pohne o jedno políčko doprava.

Definice

Výpočet \vdash^* TS je reflexivní, tranzitivní uzávěr relace \vdash .

Zápis $C \vdash C'$ čteme takto:

 $konfigurace \ \mathcal{C}'$ je odvoditelná $z \ konfigurace \ \mathcal{C} \ jedním \ krokem výpočtu.$

Zápis $\mathcal{C} \vdash^* \mathcal{C}'$ čteme takto:

konfigurace C' je odvoditelná z konfigurace C.

Definice

Nechť T je TS a $w \in \Sigma^*$:

T přijímá w, pokud $\mathcal{C}_0^w \vdash^* \mathcal{C}_+$, kde \mathcal{C}_0^w je iniciální konfigurace T pro vstup w a \mathcal{C}_+ je přijímající konfigurace stroje T.

T zamítá w, pokud $\mathcal{C}_0^w \vdash^* \mathcal{C}_-$, kde \mathcal{C}_0^w je iniciální konfigurace T pro vstup w a \mathcal{C}_- je zamítající konfigurace stroje T.

T cyklí pro w, pokud w nepřijímá ani nezamítá.

TS
$$M_1 = \langle Q, \Sigma, \Gamma, \delta, q_0, q_+, q_- \rangle$$
, kde

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_+q_-\},$
- $\Sigma = \{0\}$,
- $\bullet \ \Gamma = \Sigma \cup \{ _, \times \},$
- ullet δ je dána následující tabulkou:

	0	J	X
$\overline{q_0}$	(q_1, \llcorner, R)	$(q, \underline{\ }, R)$	(q, x, R)
q_1	(q_2,x,R)	(q_+, \lrcorner, R)	(q_1, x, R)
q_2	$(q_3, 0, R)$	(q_4, \llcorner, L)	(q_2, x, R)
q_3	(q_2, x, R)	$(q, \underline{\ }, R)$	(q_3, x, R)
q_4	$(q_4,0,L)$	$(q_1, \underline{\ }, R)$	(q_4,x,L)

Příklad

Iniciální konfigurace M_1 pro vstupní slovo w=00000 je $(q_0,\underline{0}0000,0)$. Z této konfigurace je v jednom kroku odvoditelná konfigurace $(q_1,\underline{0}000,1)$. Celý výpočet nad slovem w by vypadal takto:

$$\begin{array}{l} (q_0,\underline{0}0000,0) \vdash (q_1,\underline{0}000,1) \vdash (q_2,\underline{x}\underline{0}00,2) \vdash (q_3,\underline{x}0\underline{0}0,3) \vdash (q_2,\underline{x}0x\underline{0},4) \vdash (q_3,\underline{x}0x\underline{0}\underline{0},5) \vdash (q_-,\underline{x}0x\underline{0}\underline{0},6). \end{array}$$

Výpočet tedy končí v zamítající konfiguraci $(q_-, \ x0x0_-, 6)$, TS M_1 tedy zamítá slovo 00000.

TS
$$M_1 = \langle Q, \Sigma, \Gamma, \delta, q_0, q_+, q_- \rangle$$
, kde

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_+q_-\},$
- $\Sigma = \{0\}$,
- $\Gamma = \Sigma \cup \{ \bot, \times \}$,
- ullet δ je dána následující tabulkou:

	0	J	Х
$\overline{q_0}$		$(q, \underline{\ }, R)$	(q, x, R)
q_1		(q_+, \lrcorner, R)	(q_1, x, R)
	$(q_3, 0, R)$	(q_4, \llcorner, L)	(q_2, x, R)
	(q_2, x, R)	$(q, \underline{\ }, R)$	(q_3, x, R)
q_4	$(q_4,0,L)$	$(q_1, \underline{\ }, R)$	(q_4,x,L)

Příklad

Přechodový diagram – grafová reprezentace TS

Orientovaný graf

• stavy - uzly

počáteční stav a koncové stavy

Zamítací stav (a do něj vedoucí přechody) se nezakreslují.

ullet přechody $\delta(q,x)=(q',y,D)$ – orientované ohodnocené hrany

$$q$$
 x, y, D q'

více přechodů se (někdy) dá zakreslit jako jeden, když jsou mezi stejnými stavy:

$$\delta(q, y) = (q', y, D)$$
 a $\delta(q, x) = (q', y, D)$.

Grafová reprezentace TS (přechodový diagram TS)

 $(q_0, \underline{0}000, 0)$

 $(q_1, _000, 1)$

 $(q_2, _ \times \underline{0}0, 2)$

 $(q_3, \ \ x00, 3)$

20 / 59

$$(q_2, _x0x_, 4)$$

$$(q_4, _ \times 0 \underline{\times} _, 3)$$

 $(q_4, \ \ x0x, 2)$

 $(q_4, _x0x_, 1)$

$$(q_4, _x0x__, 0)$$

$$(q_1, \underline{\times}0\times\underline{\ }, 1)$$

$$(q_1, \exists x \underline{0} x \exists, 2)$$

 $(q_2, \exists xxx \exists , 3)$

$$(q_2, _xxx_, 4)$$

 $(q_2, \exists xxx \exists , 3)$

 $(q_2, \exists x \underline{x} x \exists, 2)$

 $(q_2, \underline{\times} \times \times , 1)$

$$(q_2, _xxx_, 0)$$

$$(q_+, _xxx__, 5)$$

Definice

Množinu všech slov $w\in \Sigma^*$, které TS T přijímá značíme L(T) a nazýváme jazykem Turingova stroje, t.j.

$$L(T) = \{ w \mid w \in \Sigma^*, (w, q_0, 0) \vdash^* \mathcal{C}_+ \}$$

Jazyk L(T) nazýváme jazyk přijímaný $TS\ T$.

Říkáme, že TS T přijímá jazyk L(T).

Pokud navíc platí, že TS T zamítá každé $w \notin L(T)$, nazýváme jazyk L(T) jazyk rozhodovaný TS T.

Říkáme, že TS T rozhoduje jazyk L(T).

A říkáme, že TS T rozhoduje jazyk, pokud rozhoduje nějaký jazyk L(T).

Pozn.: To znamená, že pokud TS rozhoduje jazyk, p.k. nikdy necyklí.

Pozn.: TS, který rozhoduje jazyk, je nazýván také decider.

Definice

 $\mathsf{Jazyk}\ L\subseteq \Sigma^*\ \mathsf{nazveme}$

- jazyk rozhodovaný TS, pokud existuje TS T, který jej rozhoduje.
- jazyk přijímaný TS, pokud existuje TS T, který jej přijímá.

Jazykům rozhodovaným TS říkáme také *rekurzivní jazyky*; jazykům přijímaným TS říkáme také *částečně rekurzivní jazyky* nebo *rekurzivně spočetné jazyky*.

Příklad

Například $A=\{0^{2^n}\,|\,n\geq 0\}$ je jazyk rozhodovaný TS, protože M_1 jej rozhoduje.

Třídu všech rekurzivních jazyků značíme R.

Třídu všech částečně rekurzivních jazyků značíme ČR.

Jasně platí $R \subseteq \check{C}R$.

Rozhodovací problémy

Rozhodovací problém (též jen problém) je otázka, na kterou se odpovídá "ano" nebo "ne".

Instance problému je otázka doplěná konkrétními hodnotami, pro které je ta otázka pokládána.

Podle odpovědi budeme rozlišovat

- instance s odpovědí "ano" a
- instance s odpovědí "ne".

Příklad

Rozhodovacím problémem je například:

"Je x menší než y?",

kde instance jsou dvojice x, y přirozených čísel.

x=3,y=7 je instance s odpovědí "ano".

x = 3, y = 3 je instance s odpovědí "ne".

Problémy budu zapisovat následovně

název problému

Instance: instance

Otázka: otázka

Máme-li problém \mathcal{P} ,

- ullet pro instance x s odpovědí "ano" píšeme $x \in \mathcal{P}$,
- $\bullet \ \, \text{pro instance} \,\, x \,\, \text{s odpov\'ed\'i ,,ne\'i p\'i\'seme} \,\, x \not\in \mathcal{P}.$

Příklad

Např.: Označme $\mathcal{P}_{x < y}$ problém z předchozího slajdu:

Porovnání čísel $(\mathcal{P}_{x < y})$

 $\textbf{Instance:}\ x,y\in\mathbb{N}$

Otázka: Platí x < y?

Píšeme například $\langle x=3,y=7\rangle \in \mathcal{P}_{x< y}$ a $\langle x=3,y=3\rangle \notin \mathcal{P}_{x< y}.$

Nadále budeme uvažovat pouze problémy jejichž instance jsou konečné a lze je tedy reprezentovat řetězci.

Reprezentaci instance x řetězcem budeme nazývat zakódování a značit [x]

Příklad

instance problému $\mathcal{P}_{x < y}$, tedy dvojice x, y můžeme zakódovat takto

$$[x,y] = 0^x 10^y.$$

Definice

Říkáme, že TS T řeší problém P, pokud

- přijímá všechny jeho instance s odpovědí "ano",
- zamítá všechny jeho instance s odpovědí "ne".

Říkáme, že TS T částečně řeší problém P, pokud přijímá právě všechny jeho instance s odpovědí "ano".

Definice

Problém $\mathcal P$ nazveme

- řešitelný, pokud existuje TS T, který ho řeší.
- částečně řešitelný, pokud existuje TS T, který ho částečně řeší.

Jazyk a problém je tatáž věc

ullet Problém ${\mathcal P}$ můžeme chápat jako jazyk $L_{{\mathcal P}}$

$$L_{\mathcal{P}} = \{[x] \, | \, x \text{ je instancí } \mathcal{P} \text{ s odpovědí "ano"} \}$$

ullet Jazyk $L\in \Sigma^*$ pak můžeme chápat jako jako problém \mathcal{P}_L :

Problém \mathcal{P}_L

Instance: Řetězec $x \in \Sigma^*$

Otázka: Patří x do jazyka L?

Příklad

Problém $\mathcal{P}_{x < y}$ můžeme považovat za jazyk

$$L_{x < y} = \{0^x 10^y \mid x, y \in \mathbb{N}, x < y\}$$

Zjevně také platí, že:

- řešitelný problém je rekurzivní jazyk,
- částečně řešitelný problém je částečně rekurzivní jazyk.

Příklady problémů z FJaA: Problém, který je řešitelný

Ekvivalence konečných automatů

Instance: Konečné automaty K_1 a K_2 . **Otázka:** Přijímají K_1 a K_2 stejný jazyk?

Problém, který je částečně řešitelný, ale není řešitelný

Nonekvivalence bezkontextových gramatik

Instance: Bezkontextové gramatiky G_1 a G_2 .

Otázka: Generují G_1 a G_2 různé jazyky?

Problém, který není částečně řešitelný

Ekvivalence bezkontextových gramatik

Instance: Bezkontextové gramatiky G_1 a G_2 .

Otázka: Generují G_1 a G_2 stejný jazyk?

Definice

Nechť $f:\Sigma^* \to \Sigma^*$ je funkce.

Říkáme, že (deterministický) TS vyčísluje funkci f, pokud pro každé vstupní slovo $w \in \Sigma^*$ zapíše na pásku f(w) a skončí.

Funkce f se nazývá vyčíslitelná, pokud existuje (deterministický) TS, který ji vyčísluje.

Poznámka: Stroji, který vyčísluje funkci se také říká *algoritmus*. Toto je v souladu s tím, jak známe tento pojem z KMI/ALM1.

Příklad

TS vyčíslující funkci $f:\{0,1\}^* \to \{0,1\}^*$ zobrazující $w\mapsto 0w$ (tedy přidání počáteční nuly).

- Označíme začátek pásky (první symbol).
- 2 Najdeme konec vstupního slova.
- Ookud nepřesuneme označené symboly, přesouváme každý symbol vstupního slova o jedno pole doprava.
- Přidáme počáteční nulu.

- Označíme začátek pásky (první symbol).
- 2 Najdeme konec vstupního slova.
- Dokud nepřesuneme označené symboly, přesouváme každý symbol vstupního slova o jedno pole doprava.
- Přidáme počáteční nulu.

- Označíme začátek pásky (první symbol).
- Najdeme konec vstupního slova.
- Ookud nepřesuneme označené symboly, přesouváme každý symbol vstupního slova o jedno pole doprava.
- Přidáme počáteční nulu.

- Označíme začátek pásky (první symbol).
- 2 Najdeme konec vstupního slova.
- Ookud nepřesuneme označené symboly, přesouváme každý symbol vstupního slova o jedno pole doprava.
- 4 Přidáme počáteční nulu.

- Označíme začátek pásky (první symbol).
- 2 Najdeme konec vstupního slova.
- Ookud nepřesuneme označené symboly, přesouváme každý symbol vstupního slova o jedno pole doprava.
- 4 Přidáme počáteční nulu.

- Označíme začátek pásky (první symbol).
- 2 Najdeme konec vstupního slova.
- Ookud nepřesuneme označené symboly, přesouváme každý symbol vstupního slova o jedno pole doprava.
- 4 Přidáme počáteční nulu.

- Označíme začátek pásky (první symbol).
- 2 Najdeme konec vstupního slova.
- Ookud nepřesuneme označené symboly, přesouváme každý symbol vstupního slova o jedno pole doprava.
- Přidáme počáteční nulu.

- Označíme začátek pásky (první symbol).
- 2 Najdeme konec vstupního slova.
- Ookud nepřesuneme označené symboly, přesouváme každý symbol vstupního slova o jedno pole doprava.
- Přidáme počáteční nulu.

Celý stroj:

Zakódování TS

 $\mathsf{TS}\ T\ \mathsf{do}\ \mathsf{\check{r}et\check{e}zce}\ [T].$

- Q Předpokládejme, $Q = \{q_1, q_2, \dots, q_n\}$. Množinu zakódujeme jako: 0^n .
- Σ a Γ : Předpokládejme, $\Sigma = \{a_1,a_2,\ldots,a_m\}, \Gamma = \Sigma \cup \{a_m+1,\ldots,a_{m+p}\} \text{ a } a_{m+p} = \omega.$ Kódujeme jako: 0^m10^p .
 - δ : Každý přechod $\delta(q_i,a_j)=(q_l,a_k,\mathrm{X})$ zakódujeme jako

$$0^i10^j10^l10^k10^x, \text{ kde } x = \begin{cases} 1 & \text{pokud } \mathbf{X} = \mathbf{L}, \\ 2 & \text{pokud } \mathbf{X} = \mathbf{R}. \end{cases}$$

Celou přechodovou funkci pak zakódujeme jako zřetězení zakódování jednotlivých přechodů oddělených dvěma jedničkami 11.

- q_{start} nekódujeme, uvažujeme $q_{\mathsf{start}} = q_1$.
 - q_+ zakódujeme jako 0^e takže $q_+ = q_e$.
 - q_- zakódujeme jako 0^f takže $q_-=q_f$.

Zakódování celého TS je pak zřetězení všech těchto částí oddělených třemi jedničkami 111: tedy

$$[Q]111[\Sigma,\Gamma]111[\delta]111[q_{+}]111[q_{-}]$$

Zakódování TS $M_1=\langle Q,\Sigma,\Gamma,\delta,q_0=q_1,q_+=q_6,q_-=q_7\rangle$, kde

•
$$Q = \{q_1, \ldots, q_7\},$$

•
$$\Sigma = \{0 = a_1\},\$$

$$\Gamma = \Sigma \cup \{\mathsf{x} = a_2, \mathsf{z} = a_3\},$$

ullet δ je dána následující tabulkou:

	0	J	Χ
q_1		$(q_7, \underline{\ }, R)$	(q_7, x, R)
q_2	(q_3, x, R)	$(q_6, \underline{\ }, R)$	(q_2, x, R)
q_3	$(q_4, 0, R)$	(q_5, \llcorner, L)	(q_3, x, R)
q_4	(q_3, x, R)	$(q_6, \underline{\ }, R)$	(q_4, x, R)
q_5	$(q_5,0,L)$	$(q_2, \underline{\ }, R)$	(q_5,x,L)

000000111

0100111

- To samozřejmě není jediný způsob jak kódovat TS.
- K jednomu stroji existuje několik kódů (např. přechody mohou být kódované v libovolném pořadí)

Důsledkem toho, že TS lze kódovat do řetězců je: ČR je spočetně nekonečná, R je spočetně nekonečná.

Víme, že jazyků nad jakoukoli abecedou je nespočetně mnoho... protože kdyby ne, šly by očíslovat, seřadit do řádků tabulky, jako je tahle (sloupce reprezentují řetězce, x znamená přítomnost řetězce v jazyce)

	s_1	s_2	s_3	s_4	
L_1	Х				
L_2	X X		X		
L_3		X	X		
L_1 L_2 L_3 L_4	×			X	
÷					

Jazyk $L_? = \{s_n \mid s_n \notin L_n\}$ nemůže být v žádném řádku tabulky – spor.

To mimo jiné znamená, že

- neřešitelných problémů je nekonečněkrát víc než řešitelných.
- náhodně vybraný problém je řešitelný s pravěpodobností 0.

ALMOST NO PROBLEM CAN BE SOLVED!

 naštěstí problémy, které jsou důležité v praxi, mají obvykle jasně specifikované zadání a obvykle řešitelné jsou. Kódování slov, konfigurací a výpočtů.

• slova (nad abecedou $\Sigma = \{a_1, a_2 \dots, a_m\}$)

$$[a_{i_1}a_{i_2}\dots a_{i_n}] = 0^{i_1}10^{i_2}1\dots 10^{i_n}$$

 $\mathsf{nap\check{r}}.: [a_1a_2a_2a_3a_1] = 010010010010$

konfigurace

$$(q, \alpha, n) = [q]11[\alpha]110^n$$

• výpočet $k_1 \vdash k_2 \vdash \cdots \vdash k_n$

$$[k_1]111[k_2]111\dots 111[k_n]$$

Poznámka: doteď jsme v žádném zakódování neměli víc, jak tři jedničky po sobě. čtyři jedničky budeme používat jako oddělovač.

Např. zakódování TS M se vstupním slovem w, tedy [M,w]=[M]1111[w]. Tímto způsobem můžeme "předat Turingovu stroji více vstupů".

Church-Turingova Teze

Intuitivní pojem algoritmu = algoritmus TS.

cvičení 1

- Navrhněte TS, který rozhoduje jazyk 0^{3m+1}. (hint: toto je regulání jazyk vzpomeňte si na kurz FJAA)
- **3** Navrhněte TS vyčíslující *nulovou funkci* o(n) = 0 pro každé $n \in \mathbb{N}_0$.
- **3** Navrhněte TS vyčíslující funkci následníka s(n) = n + 1 pro každé $n \in \mathbb{N}_0$.

Na co byste měli být schopní odpovědět: Jak je definován TS, výpočet, jak TS přijímá a zamítá slova, kdy TS cyklí, co jsou rekurzivní jazyky, částečně rekurzivní jazyky. Co je rozhodovací problém, co je instance problému, a jak to souvisí s jazyky. Co je řešitelnost problému a částečná řešitelnost problému. Jak vypadá grafová reprezentace TS, jak dá zakódovat TS, jak se dá zakódovat slovo, konfigurace, výpočet? Kolik je kterých problémů a proč má informatik depresi?

Reading assignment: Pročtěte si někde, kdo to byli Alan Mathison Turing, Alonzo Church, Stephen Cole Kleene, Emil Leon Post.