Homework of Machine Learning Techniques: Quiz 3

Decision Tree

1. Impurity functions play an important role in decision tree branching. For binary classification problems, let μ_+ be the fraction of positive examples in a data subset, and $\mu_- = 1 - \mu_+$ be the fraction of negative examples in the data subset. The Gini index is $1 - \mu_+^2 - \mu_-^2$. What is the maximum value of the Gini index among all $\mu_+ \in [0, 1]$?

 $\sqrt{0.5}$

 $\bigcirc 0.75$

 \bigcirc 0.25

 \bigcirc 0

 \bigcirc 1

2. Following Question 1, there are four possible impurity functions below. We can normalize each impurity function by dividing it with its maximum value among all $\mu_+ \in [0,1]$ For instance, the classification error is simply $\min(\mu_+,\mu_-)$ and its maximum value is 0.5. So the normalized classification error is $2\min(\mu_+,\mu_-)$. After normalization, which of the following impurity function is equivalent to the normalized Gini index?

 $\sqrt{}$ the squared regression error (used for branching in classification data sets), which is by definition $\mu_{+}(1-(\mu_{+}-\mu_{-}))^{2}+\mu_{-}(-1-(\mu_{+}-\mu_{-}))^{2}$.

 \bigcirc the entropy, which is $-\mu_+ \ln \mu_+ - \mu_- \ln \mu_-$, with $0 \log 0 \equiv 0$.

 \bigcirc the closeness, which is $1 - |\mu_+ - \mu_-|$.

 \bigcirc the classification error min (μ_+, μ_-) .

none of the other choices

Random Forest

3. If bootstrapping is used to sample N' = pN examples out of N examples and N is very large. Approximately how many of the N examples will not be sampled at all?

 $\bigcirc (1 - e^{-1/p}) \cdot N$

 $\bigcirc (1 - e^{-p}) \cdot N$

 $\bigcap e^{-1} \cdot N$

 $\bigcap e^{-1/p} \cdot N$

 $\sqrt{e^{-p}\cdot N}$

4. Consider a Random Forest G that consists of three binary classification trees $\{g_k\}_{k=1}^3$, where each tree is of test 0/1 error $E_{\text{out}}(g_1) = 0.1$, $E_{\text{out}}(g_2) = 0.2$, $E_{\text{out}}(g_3) = 0.3$. Which of the following is the exact possible range of $E_{\text{out}}(G)$?

1

 $\bigcirc 0 \le E_{\text{out}}(G) \le 0.1$

 $0.1 \le E_{\text{out}}(G) \le 0.6$

- \bigcirc $0.2 \le E_{\text{out}}(G) \le 0.3$
- $0.1 \le E_{\text{out}}(G) \le 0.3$
- $\sqrt{0.1} \le E_{\text{out}}(G) \le 0.3$
- 5. Consider a Random Forest G that consists of K binary classification trees $\{g_k\}_{k=1}^K$, where K is an odd integer. Each g_k is of test 0/1 error $E_{\text{out}}(g_k) = e_k$. Which of the following is an upper bound of $E_{\text{out}}(G)$?
 - $\sqrt{\frac{2}{K+1}} \sum_{k=1}^{K} e_k$
 - $\bigcirc \ \ \frac{1}{K} \sum_{k=1}^{K} e_k$
 - $\bigcirc \ \frac{1}{K+1} \sum_{k=1}^{K} e_k$
 - $\bigcirc \min_{1 \leq k \leq K} e_k$
 - $\bigcirc \max_{1 \leq k \leq K} e_k$

Gradient Boosting

- 6. Let ϵ_t be the weighted 0/1 error of each g_t as described in the AdaBoost algorithm (Lecture 208), and $U_t = \sum_{n=1}^N u_n^{(t)}$ be the total example weight during AdaBoost. Which of the following equation expresses U_{T+1} by ϵ_t ?
 - O none of the other choices
 - $\bigcap \prod_{t=1}^{T} \epsilon_t$
 - $\bigcirc \sum_{t=1}^{T} (2\sqrt{\epsilon_t(1-\epsilon_t)})$
 - $\bigcirc \sum_{t=1}^{T} \epsilon_t$
 - $\sqrt{\prod_{t=1}^{T} (2\sqrt{\epsilon_t(1-\epsilon_t)})}$
- 7. For the gradient boosted decision tree, if a tree with only one constant node is returned as g_1 , and if $g_1(\mathbf{x}) = 2$, then after the first iteration, all s_n is updated from 0 to a new constant $\alpha_1 g_1(\mathbf{x}_n)$. What is s_n ?
 - \bigcirc 2
 - none of the other choices
 - $\bigcirc \max_{1 \leq n \leq N} y_n$
 - $\bigcirc \min_{1 \leq n \leq N} y_n$
 - $\sqrt{\frac{1}{N}} \sum_{n=1}^{N} y_n$
- 8. For the gradient boosted decision tree, after updating all s_n in iteration t using the steepest η as α_t , what is the value of $\sum_{n=1}^{N} s_n g_t(\mathbf{x}_n)$?
 - O none of the other choices
 - $\sqrt{\sum_{n=1}^{N} y_n g_t(\mathbf{x}_n)}$
 - $\bigcirc \sum_{n=1}^{N} y_n^2$
 - $\bigcirc \sum_{n=1}^{N} y_n s_n$
 - \bigcirc 0

9. Neural Network

Consider Neural Network with sign(s) instead of tanh(s) as the transformation functions. That is, consider Multi-Layer Perceptrons. In addition, we will take +1 to mean logic TRUE, and -1 to mean logic FALSE. Assume that all x_i below are either +1 or -1. Which of the following perceptron

$$g_A(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^d w_i x_i\right).$$

implements

$$OR(x_1, x_2, ..., x_d)$$
.

$$\sqrt{(w_0, w_1, w_2, \cdots, w_d)} = (d-1, +1, +1, \cdots, +1)$$

$$(w_0, w_1, w_2, \cdots, w_d) = (-d+1, -1, -1, \cdots, -1)$$

none of the other choices

$$(w_0, w_1, w_2, \cdots, w_d) = (d-1, -1, -1, \cdots, -1)$$

$$(w_0, w_1, w_2, \cdots, w_d) = (-d+1, +1, +1, \cdots, +1)$$

- 10. Continuing from Question 9, among the following choices of D, which D is the smallest for some 5-D-1 Neural Network to implement XOR $(x_1, x_2, x_3, x_4, x_5)$?
 - \bigcirc 1
 - \bigcirc 9
 - \bigcirc 7
 - $\sqrt{5}$
 - \bigcirc 3
- 11. For a Neural Network with at least one hidden layer and $\tanh(s)$ as the transformation functions on all neurons (including the output neuron), what is true about the gradient components (with respect to the weights) when all the initial weights $w_{ij}^{(\ell)}$ are set to 0?
 - all the gradient components are zero
 - Only the gradient components with respect to $w_{0j}^{(\ell)}$ for j>0 may non-zero, all other gradient components must be zero
 - O none of the other choices
 - Only the gradient components with respect to $w_{j1}^{(L)}$ for j > 0 may be non-zero, all other gradient components must be zero
 - $\sqrt{}$ only the gradient components with respect to $w_{01}^{(L)}$ may be non-zero, all other gradient components must be zero
- 12. For a Neural Network with one hidden layer and $\tanh(s)$ as the transformation functions on all neurons (including the output neuron), what is always true about the backprop algorithm when all the initial weights $w_{ij}^{(\ell)}$ are set to 1?
 - \bigcirc none of the other choices

$$\sqrt{w_{ij}^{(1)}} = w_{i(j+1)}^{(1)}$$
 for all i and $1 \le j < d^{(1)} - 1$

- \bigcirc all $w_{j1}^{(2)}$ for j > 0 are different
- () $w_{ij}^{(1)} = w_{(i+1)j}^{(1)}$ for $1 \le i < d^{(0)} 1$ and all j
- \bigcirc the gradient components with respect to all $w_{ij}^{(\ell)}$ are zero

Experiments with Decision Tree

13. Implement the simple C&RT algorithm without pruning using the Gini index as the impurity measure as introduced in the class. For the decision stump used in branching, if you are branching with feature i and direction s, please sort all the $x_{n,i}$ values to form (at most) N+1 segments of equivalent θ , and then pick θ within the median of the segment. Run the algorithm on the following set for training:

hw3_train.dat

and	the	followin	g set	for	testing:

hw3_test.dat

How many internal nodes (branching functions) are	there in the resulting tree G ?
\bigcirc 12	
O 8	

 $\sqrt{10}$

 \bigcirc 14

14. Continuing from Question 13, which of the following is closest to the $E_{\rm in}$ (evaluated with 0/1 error) of the tree?

 $\sqrt{0.0}$ $\bigcirc 0.1$ $\bigcirc 0.2$ $\bigcirc 0.3$ $\bigcirc 0.4$

15. Continuing from Question 13, which of the following is closest to the $E_{\rm out}$ (evaluated with 0/1 error) of the tree?

 $\bigcirc 0.05$ $\bigcirc 0.25$ $\bigcirc 0.35$ $\bigcirc 0.00$ $\sqrt{0.15}$

16. Now implement the Bagging algorithm with N'=N and couple it with your decision tree above to make a preliminary random forest G_{RS} . Produce T=300 trees with bagging. Repeat the experiment for 100 times and compute average $E_{\rm in}$ and $E_{\rm out}$ using the 0/1 error. Which of the following is true about the average $E_{\rm in}(g_t)$ for all the 30000 trees that you have generated?

17. Continuing from Question 16, which of the following is true about the average $E_{\rm in}(G_{RF})$?

 \bigcirc 0.06 \leq average $E_{\rm in}(G_{RF}) < 0.09$ \bigcirc 0.09 \leq average $E_{\rm in}(G_{RF}) < 0.12$ \bigcirc 0.12 \leq average $E_{\rm in}(G_{RF}) < 0.50$

$$\sqrt{0.12 \le \text{average } E_{\text{in}}(G_{RF}) < 0.50}$$

 $\bigcirc 0.03 \le \text{average } E_{\text{in}}(G_{RF}) < 0.06$

18. Continuing from Question 16, which of the following is true about the average $E_{\text{out}}(G_{RF})$?

```
\sqrt{0.06} \le \text{average } E_{\text{out}}(G_{RF}) < 0.09
\bigcirc 0.09 \le \text{average } E_{\text{out}}(G_{RF}) < 0.12
\bigcirc 0.03 \le \text{average } E_{\text{out}}(G_{RF}) < 0.06
\bigcirc 0.00 \le \text{average } E_{\text{out}}(G_{RF}) < 0.03
\bigcirc 0.12 \le \text{average } E_{\text{out}}(G_{RF}) < 0.50
```

19. Now, 'prune' your decision tree algorithm by restricting it to have one branch only. That is, the tree is simply a decision stump determined by Gini index. Make a random 'forest' G_{RS} with those decision stumps with Bagging like Questions 16-18 with T=300. Repeat the experiment for 100 times and compute average $E_{\rm in}$ and $E_{\rm out}$ using the 0/1 error. Which of the following is true about the average $E_{\rm in}(G_{RS})$?

```
\sqrt{0.09} \le \text{average } E_{\text{in}}(G_{RS}) < 0.12
\bigcirc 0.03 \le \text{average } E_{\text{in}}(G_{RS}) < 0.06
\bigcirc 0.00 \le \text{average } E_{\text{in}}(G_{RS}) < 0.03
\bigcirc 0.12 \le \text{average } E_{\text{in}}(G_{RS}) < 0.50
\bigcirc 0.06 \le \text{average } E_{\text{in}}(G_{RS}) < 0.09
```

20. Continuing from Question 19, which of the following is true about the average $E_{\text{out}}(G_{RS})$?

```
      \bigcirc 0.06 \leq \text{average } E_{\text{out}}(G_{RS}) < 0.09        \bigcirc 0.09 \leq \text{average } E_{\text{out}}(G_{RS}) < 0.12        \bigcirc 0.03 \leq \text{average } E_{\text{out}}(G_{RS}) < 0.06        \bigcirc 0.00 \leq \text{average } E_{\text{out}}(G_{RS}) < 0.03
```

 $\sqrt{0.12} \le \text{average } E_{\text{out}}(G_{RS}) < 0.50$