Data Models

Objectives

- Why data models are important
- About the basic data-modeling building blocks
- What business rules are and how they influence database design
- How the major data models evolved
- How data models can be classified by level of abstraction

The Importance of Data Models

Data models

- Relatively simple representations, usually graphical, of complex real-world data structures
- Facilitate interaction among the designer, the applications programmer, and the end user

The Importance of Data Models (continued)

- End-users have different views and needs for data
- Data model organizes data for various users

Data Model Basic Building Blocks

- Entity anything about which data are to be collected and stored
- Attribute a characteristic of an entity
- Relationship describes an association among entities
 - One-to-many (1:M) relationship
 - Many-to-many (M:N or M:M) relationship
 - One-to-one (1:1) relationship
- Constraint a restriction placed on the data

Business Rules

- Brief, precise, and unambiguous descriptions of a policies, procedures, or principles within a specific organization
- Apply to any organization that stores and uses data to generate information
- Description of operations that help to create and enforce actions within that organization's environment

Business Rules (continued)

- Must be rendered in writing
- Must be kept up to date
- Sometimes are external to the organization
- Must be easy to understand and widely disseminated
- Describe characteristics of the data as viewed by the company

Discovering Business Rules

Sources of Business Rules:

- Company managers
- Policy makers
- Department managers
- Written documentation
 - Procedures
 - Standards
 - Operations manuals
- Direct interviews with end users

Translating Business Rules into Data Model Components

- Standardize company's view of data
- Constitute a communications tool between users and designers
- Allow designer to understand the nature, role, and scope of data
- Allow designer to understand business processes
- Allow designer to develop appropriate relationship participation rules and constraints
- Promote creation of an accurate data model

Discovering Business Rules (continued)

- Generally, nouns translate into entities
- Verbs translate into relationships among entities
- Relationships are bi-directional

The Evolution of Data Models (continued)

- Hierarchical
- Network
- Relational
- Entity relationship
- Object oriented (OO)

The Hierarchical Model

- Developed in the 1960s to manage large amounts of data for complex manufacturing projects
- Basic logical structure is represented by an upside-down "tree"

- The hierarchical structure contains levels, or segments
- Depicts a set of one-to-many (1:M) relationships between a parent and its children segments
 - Each parent can have many children
 - each child has only one parent

Advantages

- Many of the hierarchical data model's features formed the foundation for current data models
- Its database application advantages are replicated, albeit in a different form, in current database environments
- Generated a large installed (mainframe) base, created a pool of programmers who developed numerous tried-and-true business applications

- Disadvantages
 - Complex to implement
 - Difficult to manage
 - Lacks structural independence
 - Implementation limitations
 - Lack of standards

The Network Model

- Created to
 - Represent complex data relationships more effectively
 - Improve database performance
 - Impose a database standard
- Conference on Data Systems Languages (CODASYL)
- Database Task Group (DBTG)

Schema

 Conceptual organization of entire database as viewed by the database administrator

Subschema

- Defines database portion "seen" by the application programs that actually produce the desired information from data contained within the database
- Data Management Language (DML)
 - Defines the environment in which data can be managed

- Schema Data Definition Language (DDL)
 - Enables database administrator to define schema components
- Subschema DDL
 - Allows application programs to define database components that will be used
- DML
 - Works with the data in the database

- Resembles hierarchical model
- Collection of records in 1:M relationships
- Set
 - Relationship
 - Composed of at least two record types
 - Owner
 - Equivalent to the hierarchical model's parent
 - Member
 - Equivalent to the hierarchical model's child

- Disadvantages
 - Too cumbersome
 - The lack of ad hoc query capability put heavy pressure on programmers
 - Any structural change in the database could produce havoc in all application programs that drew data from the database
 - Many database old-timers can recall the interminable information delays

The Relational Model

- Developed by Codd (IBM) in 1970
- Considered ingenious but impractical in 1970
- Conceptually simple
- Computers lacked power to implement the relational model
- Today, microcomputers can run sophisticated relational database software

- Relational Database Management System (RDBMS)
- Performs same basic functions provided by hierarchical and network DBMS systems, in addition to a host of other functions
- Most important advantage of the RDBMS is its ability to hide the complexities of the relational model from the user

- Table (relations)
 - Matrix consisting of a series of row/column intersections
 - Related to each other through sharing a common entity characteristic
- Relational diagram
 - Representation of relational database's entities, attributes within those entities, and relationships between those entities

- Relational Table
 - Stores a collection of related entities
 - Resembles a file
- Relational table is purely logical structure
 - How data are physically stored in the database is of no concern to the user or the designer
 - This property became the source of a real database revolution

The Relational Model

(continued)

FIGURE 2.3

Linking relational tables

Database name: Ch02_InsureCo Table name: AGENT (first six attributes)

	AGENT_CODE	AGENT_LNAME	AGENT_FNAME	AGENT_INITIAL	AGENT_AREACODE	AGENT_PHONE
•	501	Alby	Alex	В	713	228-1249
	502	Hahn	Leah	F	615	882-1244
	503	Okon	John	T	615	123-5589

Link through AGENT_CODE

Table name: CUSTOMER

	CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE	CUS_RENEW_DATE	AGENT_CODE
•	10010	Ramas	Alfred	A	615	844-2573	05-Apr-2006	502
	10011	Dunne	Leona	K	713	894-1238	16-Jun-2006	501
	10012	Smith	Kathy	W	615	894-2285	29-Jan-2007	502
	10013	Olowski	Paul	F	615	894-2180	14-Oct-2006	502
	10014	Orlando	Myron		615	222-1672	28-Dec-2006	501
	10015	O'Brian	Amy	В	713	442-3381	22-Sep-2006	503
	10016	Brown	James	G	615	297-1228	25-Mar-2006	502
	10017	Williams	George		615	290-2556	17-Jul-2006	503
	10018	Farriss	Anne	G	713	382-7185	03-Dec-2006	501
	10019	Smith	Olette	K	615	297-3809	14-Mar-2006	503

- Rise to dominance due in part to its powerful and flexible query language
- Structured Query Language (SQL) allows the user to specify what must be done without specifying how it must be done
- SQL-based relational database application involves:
 - User interface
 - A set of tables stored in the database
 - SQL engine

The Entity Relationship Model

- Widely accepted and adapted graphical tool for data modeling
- Introduced by Chen in 1976
- Graphical representation of entities and their relationships in a database structure

The Entity Relationship Model (continued)

- Entity relationship diagram (ERD)
 - Uses graphic representations to model database components
 - Entity is mapped to a relational table
- Entity instance (or occurrence) is row in table
- Entity set is collection of like entities
- Connectivity labels types of relationships
 - Diamond connected to related entities through a relationship line

The Entity Relationship Model (continued)

STORE

The basic Chen ERD **FIGURE** 2.5 A One-to-Many (1:M) Relationship: a PAINTER can paint many PAINTINGs; each PAINTING is painted by one PAINTER. PAINTER PAINTING paints A Many-to-Many (M:N) Relationship: an EMPLOYEE can learn many SKILLs; each SKILL can be learned by many EMPLOYEEs. M **EMPLOYEE** SKILL learns A One-to-One (1:1) Relationship: an EMPLOYEE manages one STORE; each STORE is managed by one EMPLOYEE.

manages

EMPLOYEE

The Entity Relationship Model (continued)

The basic Crow's foot FRD **FIGURE** 2.6 A One-to-Many (1:M) Relationship: a PAINTER can paint many PAINTINGs; each PAINTING is painted by one PAINTER. PAINTER PAINTING A Many-to-Many (M:N) Relationship: an EMPLOYEE can learn many SKILLs; each SKILL can be learned by many EMPLOYEEs. **EMPLOYEE** SKILL learns A One-to-One (1:1) Relationship: an EMPLOYEE manages one STORE: each STORE is managed by one EMPLOYEE. **EMPLOYEE** STORE

The Object Oriented Model

- Modeled both data and their relationships in a single structure known as an object
- Object-oriented data model (OODM) is the basis for the object-oriented database management system (OODBMS)
- OODM is said to be a semantic data model

The Object Oriented Model (continued)

- Object described by its factual content
 - Like relational model's entity
- Includes information about relationships between facts within object, and relationships with other objects
 - Unlike relational model's entity
- Subsequent OODM development allowed an object to also contain all operations
- Object becomes basic building block for autonomous structures

The Object Oriented Model (continued)

- Object is an abstraction of a real-world entity
- Attributes describe the properties of an object
- Objects that share similar characteristics are grouped in classes
- Classes are organized in a class hierarchy
- Inheritance is the ability of an object within the class hierarchy to inherit the attributes and methods of classes above it

The Object Oriented Model (continued)

Other Models

- Extended Relational Data Model (ERDM)
 - Semantic data model developed in response to increasing complexity of applications
 - DBMS based on the ERDM often described as an object/relational database management system (O/RDBMS)
 - Primarily geared to business applications

Database Models and the Internet

- Internet drastically changed role and scope of database market
- OODM and ERDM-O/RDM have taken a backseat to development of databases that interface with Internet
- Dominance of Web has resulted in growing need to manage unstructured information

Data Models: A Summary

- Each new data model capitalized on the shortcomings of previous models
- Common characteristics:
 - Conceptual simplicity without compromising the semantic completeness of the database
 - Represent the real world as closely as possible
 - Representation of real-world transformations (behavior) must comply with consistency and integrity characteristics of any data model

Data Models: A Summary (continued)

Degrees of Data Abstraction

- Way of classifying data models
- Many processes begin at high level of abstraction and proceed to an ever-increasing level of detail
- Designing a usable database follows the same basic process

Degrees of Data Abstraction (continued)

- American National Standards Institute (ANSI) Standards Planning and Requirements Committee (SPARC)
 - Defined a framework for data modeling based on degrees of data abstraction(1970s):
 - External
 - Conceptual
 - Internal

Degrees of Data Abstraction (continued)

The External Model

- End users' view of the data environment
- Requires that the modeler subdivide set of requirements and constraints into functional modules that can be examined within the framework of their external models

The External Model (continued)

Advantages:

- Easy to identify specific data required to support each business unit's operations
- Facilitates designer's job by providing feedback about the model's adequacy
- Creation of external models helps to ensure security constraints in the database design
- Simplifies application program development

The External Model (continued)

The Conceptual Model

- Represents global view of the entire database
- Representation of data as viewed by the entire organization
- Basis for identification and high-level description of main data objects, avoiding details
- Most widely used conceptual model is the entity relationship (ER) model

The Conceptual Model (continued)

The Conceptual Model (continued)

- Provides a relatively easily understood macro level view of data environment
- Independent of both software and hardware
 - Does not depend on the DBMS software used to implement the model
 - Does not depend on the hardware used in the implementation of the model
 - Changes in either hardware or DBMS software have no effect on the database design at the conceptual level

The Internal Model

- Representation of the database as "seen" by the DBMS
- Maps the conceptual model to the DBMS
- Internal schema depicts a specific representation of an internal model

The Internal Model

The Physical Model

- Operates at lowest level of abstraction, describing the way data are saved on storage media such as disks or tapes
- Software and hardware dependent
- Requires that database designers have a detailed knowledge of the hardware and software used to implement database design

The Physical Model (continued)

TABLE 2.3

Levels of Data Abstraction

MODEL	DEGREE OF ABSTRACTION	FOCUS	INDEPENDENT OF
External	High	End-user views	Hardware and software
Conceptual	1	Global view of data (independent of database model)	Hardware and software
Internal	 	Specific database model	Hardware
Physical	Low	Storage and access methods	Neither hardware nor software

Summary

- A data model is a (relatively) simple abstraction of a complex real-world data environment
- Basic data modeling components are:
 - Entities
 - Attributes
 - Relationships
 - Constraints

Summary (continued)

- Hierarchical model
 - Depicts a set of one-to-many (1:M) relationships between a parent and its children segments
- Network data model
 - Uses sets to represent 1:M relationships between record types
- Relational model
 - Current database implementation standard
 - ER model is a popular graphical tool for data modeling that complements the relational model

Summary (continued)

- Object is basic modeling structure of object oriented data model
- The relational model has adopted many object-oriented extensions to become the extended relational data model (ERDM)
- Data modeling requirements are a function of different data views (global vs. local) and level of data abstraction