

Engenharia de Software 2

Prof. Esp. João Paulo S. Araújo

Modelagem UML

Diagrama de Atividades

- Permite modelar o comportamento do sistema, denotando os caminhos lógicos que um *processo* pode seguir.
 - Destaca a lógica de realização de uma tarefa.
- É um dos diagramas que compõem a visão dinâmica da UML.
- É usado para esclarecer fluxos de controles ou atividades em operações complexas e em casos de uso.

- É o diagrama com maior ênfase ao nível de algoritmo da UML
 - e provavelmente um dos mais detalhistas.
- Era considerado um caso especial do Diagrama de Gráficos de Estados.
 - A partir da UML 2.0 tornou-se um diagrama totalmente independente.

- São semelhantes aos Fluxogramas
- Descreve os PASSOS a serem percorridos para a conclusão de um método ESPECÍFICO e NÃO de um processo completo (sequência / colaboração).

Quando usar?

- Análise e detalhamento de casos de uso individuais;
- Compreensão de fluxos entre casos de uso;
- Representação de paralelismo.

- Principais elementos
 - Atividades;
 - Transições;
 - Condição de guarda
 - Pontos de Decisões e de Uniões;
 - Estados iniciais e finais;
 - Barras de Sincronização;
 - Partições.

Atividades

- Atividade é uma etapa em um processo, onde algum trabalho esta sendo realizado.
- É uma ação a ser desenvolvida, e quando finalizada transfere automaticamente o fluxo de controle para outras atividades.
- Representado por um retângulo com os cantos arredondados

Sacar Dinheiro

• <u>Transições</u>

- A transição indica o caminho a ser seguido de uma atividade para outra.
- Normalmente, tem uma atividade ou decisão como origem ou término.
- Representado por uma linha contínua com uma seta indicando a direção da transição

- Atividades e Transições
 - Um diagrama de Atividades é uma série de atividades ligadas por transições, ou seja, setas conectando cada atividade.
 - Normalmente, a transição ocorre porque a atividade foi concluída.
 - Exemplo de Atividades e transições:

Condição de guarda

- As vezes a transição deve ser usada quando certas condições acontecerem.
- A condição guarda pode ser atribuída a uma transição para restringir seu uso.

 O segmento do diagrama de atividades acima, diz que não pode sair da mesa do jantar a menos que tenha acabado de comer os vegetais.

- Ponto de Decisões (ou ponto de ramificação)
 - Decisão é um recurso utilizado para controlar desvios no fluxo de controle de um diagrama de atividade.
 - É composto de condições booleanas e cada condição, quando satisfeita, dispara uma transição correspondente.
 - Cada opção é identificada por meio de uma condição de guarda.
 - Possui uma única transição de entrada e várias transições de saída.
 - Para cada transição de saída, há uma condição de guarda associada.

Ponto de Decisões – Representação Gráfica

O **losango** do diagrama de Atividades é um *ícone de decisão*, assim como nos fluxogramas.

Ponto de Decisões – Exemplo

No exemplo ao lado, o Caixa Eletrônico fornecerá o dinheiro ao Cliente **SE** o Saldo for Suficiente, **SENÃO** o sistema irá negar o saque.

Ponto de Decisões – Exemplo

Ponto de Decisões

- Cada condição deve ser mutuamente exclusiva, de modo que somente uma opção seja possível em qualquer ponto de decisão.
- Essa construção está relacionada a instruções case ou estruturas ifthen-else.

Ponto de Decisões – Exemplo

- Ponto de Uniões (ou ponto de convergência)
 - Consiste no ponto onde dois ou mais caminhos alternativos se juntam e continuam como um.
 - Ou seja, existe mais de uma transição de entrada e apenas uma transição de saída.
 - Reúne diversas transições que, direta ou indiretamente, têm um ponto de ramificação em comum.

- Ponto de Uniões Notação Gráfica
 - O ícone de losango também é usado para modelar um ponto de união, o local onde dois caminhos alternativos se juntam e continuam como um.

Ponto de Uniões – Exemplo

- Barras de Sincronização
 - São utilizadas para indicar o início e o término de processos paralelos.
 - Uma transição que começa numa barra de sincronização somente é executada quando <u>TODAS</u> as transições que chegam nesta barra ocorrerem.
 - Quando uma transição chega a uma barra de sincronização, as transições que partem desta barra ocorrem simultaneamente e independentemente.
 - Ou seja, dois ou mais fluxos (transições) são executados simultaneamente.

- Barras de Sincronização
 - Existe dois tipos de barras de Sincronização:
 - 1. <u>Barra de bifurcação (concorrência):</u> recebe <u>uma transição de</u> entrada, e cria dois ou mais fluxos (transições) de controle paralelos.
 - Cada fluxo é executado independentemente e em paralelo com os demais.
 - 2. <u>Barra de junção (sincronismo)</u>: recebe duas ou mais transições de entrada e une os fluxos em um único fluxo.

Barras de Sincronização – Representação Gráfica

- Estados Iniciais e Finais
 - O estado inicial indica o início do fluxo de controle do diagrama.
 - O estado final indica o término do diagrama.
 - Todo diagrama de atividade possui um estado inicial e pelo menos um estado final.
 - Existe apenas um estado inicial, mas podem existir vários estados finais.

• <u>Estados Iniciais e Finais – Representação Gráfica</u>

Estado Inicial

Estado Final

Diagrama de Atividades - Decisão e convergência

Diagrama de Atividades - Concorrência e sincronismo

Decisão e convergência

Concorrência e sincronismo

Diagrama de Atividades - Resumo

Outro exemplo...

Partições

- Identifica os diversos setores, departamentos ou mesmo os atores que interagem com um processo.
- Dividem o diagrama de atividade em compartimentos.
- Cada compartimento contém atividades que são realizadas por uma entidade.

31

- Também conhecidas como raias de natação (swim lanes).

Partições – Exemplo 1

Partições — Exemplo 2

Desenvolva o Diagramas de Atividades para um Pedido de Compra considerando os casos de uso a seguir:

- Nome do caso de uso: Seleciona Cliente
- Diálogo do caso de uso:
 - O usuário consulta cliente (Consultar Cliente)
 - Se não for encontrado o Cliente,
 - Cadastrar Cliente
 - Senão (localizado)
 - Prossegue
 - Abrir Pedido.

- Atividade: Validar Cliente
- Ações:
 - Consultar Cliente
 - Cadastrar Cliente
 - Abrir Pedido.

- Nome do caso de uso: Selecionar Produto
- Diálogo do caso de uso:
 - O usuário Consulta o Produto
 - O usuário Consulta o Estoque
 - Adiciona o Produto.
 - Se houver mais produtos (cliente vai continuar comprando)
 - Consultar Produto
 - Senão
 - Fechar Pedido.

- Atividade: Verificar Produto
- Ações:
 - Consultar Produto
 - Consultar o Estoque
 - Adicionar Produto ao Pedido
 - Fechar Pedido

• Verificar Produto (c/ verificação de estoque)

- Nome do caso de uso: Liberar Produto
- Diálogo do caso de uso:

• Atividade: Concluir Venda Emitir Nota Fiscal Confirmar Pagamento Separar Produto Pagamento Confirmado? Cancelar a NF Baixar Estoque [não] [sim] Cancelar Pedido

Diagrama de Atividades – Exemplo 1 completo

Exercício sugerido

• Conforme identificado e sugerido por alguns alunos no *Exemplo 1*:

-Criar um novo diagrama de atividades buscando melhorar o fluxo das atividades e com isso todo o processo descrito no exemplo. ;)

Diagrama de Atividades – Exemplo 2

Preparar/Pegar Bebida

- Procure o pó de café
 - Caso tenha pó, defina as atividades para coar o café;
 - Caso não tenha pó, pegue um refrigerante.

Diagrama de Atividades – Exemplo 2

