HOMEWORK 8

Due date: Monday of Week 9

Exercises: 2, 4, 5, 6, 7, 9, 10, 11, pages 366-367

Exercises: 3, 6, 7, 8, 17, pages 373-375.

Let V be a finite dimensional inner product space over \mathbb{R} . Note that the normal operator T on V is more complicate because χ_T is not necessary a product of linear factors, and thus T is not (orthogonally) diagonalizable over \mathbb{R} in general. Actually, we have seen that a normal linear operator T is orthogonally diagonalizable if and only if it is self-adjoint. But many other properties of normal vectors still hold. Actually, the following are equivalent

- (1) T is normal, i.e., $TT^* = T^*T$;
- (2) $(T\alpha|T\beta) = (\alpha|\beta)$, for all $\alpha, \beta \in V$;
- (3) $||T\alpha|| = ||\alpha||$, for every $\alpha \in V$;
- (4) T_1 commutes with T_2 , where $T_1 = \frac{T+T^*}{2}$, $T_2 = \frac{T-T^*}{2}$; (5) $T^* = TU$ for some orthogonal operator $U \in \text{End}(V)$, where U is said to be orthogonal if $UU^* = I$ and U is a linear operator on real vector space;
- (6) U commutes with N, where T = UN is the polar decomposition of T with N non-negative and U orthogonal;
- (7) there exists a polynomial $f \in \mathbb{R}[x]$ such that $T^* = f(T)$.

Many of the above equivalences were proved in class; the proofs of the rest are similar to the complex case. Notice the difference between real and complex case. Over the complex field, for a normal operator T, there exists a basis \mathcal{B} such that $[T]_{\mathcal{B}}$ is diagonal. Over the real field \mathbb{R} , this statement is no longer true. The simplest form of $[T]_{\mathcal{B}}$ is given in Theorem 17 and 18.

Problem 1. Let V be a finite dimensional inner product space over \mathbb{R} . Let $T \in \text{End}(V)$.

- (1) Show that T is normal if and only if there exists a polynomial $f \in \mathbb{R}[x]$ such that $T^* = f(T)$.
- (2) Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \in \mathrm{Mat}_{3 \times 3}(\mathbb{R}).$$

Chek that A is normal. Moreover, find a polynomial $f \in \mathbb{R}[x]$ such that $A^t = f(A)$.

(3) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by the matrix A. Find an orthonormal basis \mathcal{B} of \mathbb{R}^3 such that $[T]_{\mathcal{B}}$ is of the form

$$\begin{bmatrix} c & & \\ & a & -b \\ & b & a \end{bmatrix},$$

for $a, b, c \in \mathbb{R}$.

Hint for (1), translate this to a problem on matrix and view the corresponding matrix in $\operatorname{Mat}_{n\times n}(\mathbb{C})$, then use the conclusion in the complex case. Then show the corresponding polynomial is in fact in $\mathbb{R}[x]$. For (2), just go through the proof of (1) and specialize everything to this example. Note that part (1) gives a different proof of Theorem 19, page 354.

1. Various decompositions

It is almost the end of linear algebra part of this course. It is a good time to review what we have learned about various decompositions of matrices, which are important parts of linear algebra. I will remind you those decompositions in the following, and it is helpful to keep a record of a proof for each decomposition. We learned all of these in class or from HW problems.

2 HOMEWORK 8

1.1. Bruhat decomposition. Let F be a general field. Denote by B_n the subset of $GL_n(F)$ consisting of upper triangular invertible matrices with entries in F. Let $W \subset GL_n(F)$ be the subset of permutation matrices. The set W was denoted by P in Recall that a matrix $g \in GL_n(F)$ is called a permutation matrix if in each row and each column of g, there is only one nonzero term and that nonzero term is 1. Also recall that, we have a map

$$S_n \to W$$

$$\sigma \mapsto g_{\sigma} = [e_{\sigma(1)}, \dots, e_{\sigma(n)}],$$

where S_n is the symmetric group on n-elements which consists of bijections $\sigma:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$, e_i is the column vector whose only nonzero entry is 1 and it is at the i-th position. See HW 3 and HW 10 of last year. Recall that we have

$$g_{\sigma\tau} = g_{\sigma}g_{\tau}$$
.

We also consider the special element $w_{\ell} \in W$ defined by

$$w_\ell = \left[egin{array}{ccc} & & 1 \ & & 1 \ & & \ddots & \ & & & \end{array}
ight]$$

Problem 2. Let A be a upper triangular matrix. Show that $w_{\ell}Aw_{\ell}$ is lower triangular.

Proposition 1 (Bruhat decomposition). For any element $g \in GL_n(F)$, there exists $b_1, b_2 \in B$ and $w \in W$ such that $g = b_1wb_2$. The elements b_1, b_2 are not unique in general, but $w \in W$ is uniquely determined by g. In other words, we have the decomposition

$$\operatorname{GL}_n(F) = \coprod_{w \in W} BwB,$$

where \coprod denotes disjoint union (which means $BwB \cap Bw'B = \emptyset$ if $w \neq w'$).

The decomposition $g = b_1 w b_2$ is equivalent to the LUP decomposition, which was in HW 3 of last year. We did not check the uniqueness in our HW.

- **Problem 3.** (1) Show that the Bruhat decomposition in Proposition 1 is equivalent to the LUP decomposition in Problem 5, HW3 of last year.
 - (2) Prove the above Bruhat decomposition for n=2,3,4 by proving the LUP decomposition first. Also check the uniqueness part for $w \in W$ in the decomposition for n=2,3,4.
 - (3) Given $g \in GL_n(F)$. Show that g has an LU decomposition (which means $g = g_1g_2$ for g_1 lower triangular and g_2 upper triangular) if and only if all of its principle minors are all different from zero.
 - (4) Given $g \in GL_n(F)$. Find a condition on g such that g has a decomposition $g = b_1 w_\ell b_2$ for $b_1, b_2 \in B$.

Part (3) is a result from our textbook (Lemma, page 326). You don't need to submit a solution of this but you should know how to prove it. Part (3) is here because it gives you a hint for (4).

1.2. C-R decomposition.

Proposition 2 (C-R decomposition). Let $A \in \operatorname{Mat}_{m \times n}(F)$ be a matrix of rank r. Then there exists a matrix $C \in \operatorname{Mat}_{m \times r}(F)$ and a matrix $R \in \operatorname{Mat}_{r \times n}(F)$ such that A = CR.

A special case of the above decomposition is when A has rank 1, then A = uv for $u \in \operatorname{Mat}_{m \times 1}(F)$ and $v \in \operatorname{Mat}_{1 \times n}(F)$. If m = n, then from A = uv, we can get that $A^2 = \operatorname{tr}(A)A$. The existence of the above C-R (which means column-row) decomposition was given in HW 5 of last year. Here is another related fact. Let k be a position integer with k < r, then there does not exist matrices $C \in \operatorname{Mat}_{m \times k}(F)$, $R \in \operatorname{Mat}_{k \times n}(F)$ such that A = CR.

HOMEWORK 8 3

Problem 4. Let $A \in \operatorname{Mat}_{m \times n}(F)$ be a matrix of rank r and let A = CR be a C-R decomposition with $C \in \operatorname{Mat}_{m \times r}$ and $R = \operatorname{Mat}_{r \times n}$. For any $P \in \operatorname{GL}_r(F)$, if we denote $C' = CP \in \operatorname{Mat}_{m \times r}, R' = P^{-1}R \in \operatorname{Mat}_{r \times n}$, we A = C'R' is another C-R decomposition. The question is: do we know all C-R decomposition has the above form? In other words, suppose that A = CR = C'R' with $C, C' \in \operatorname{Mat}_{m \times r}, R, R' \in \operatorname{Mat}_{r \times n}$ such that

$$A = CR = C'R'.$$

Is there a matrix $P \in GL_r(F)$ such that C' = CP and $R' = P^{-1}R$? If so, prove it. If not, find a counter-example.

This is certain uniqueness of C-R decomposition. If you think this hard, try to consider some examples with small m, n, r, for example, when m = n = 3 and r = 2.

1.3. Jordan decomposition.

Proposition 3 (Jordan decomposition). Let $A \in \operatorname{Mat}_{n \times n}(F)$ be a matrix such that μ_A is a product of linear factors. There exists a unique diagonalizable matrix $D \in \operatorname{Mat}_{n \times n}(F)$ and a unique nilpotent matrix $N \in \operatorname{Mat}_{n \times n}(F)$ such that DN = ND and A = D + N.

Moreover, we know that such D, N are polynomials of A. This is Theorem 13, page 222.

Proposition 4 (Jordan decomposition, semisimple version). Let F be a field of characteristic zero. Let $A \in \operatorname{Mat}_{n \times n}(F)$ be a matrix. Then there exists a unique semi-simple matrix $S \in \operatorname{Mat}_{n \times n}(F)$ and a unique nilpotent matrix $N \in \operatorname{Mat}_{n \times n}(F)$ such that SN = NS and A = S + N.

This is Theorem 13, page 267.

1.4. **Iwasawa decomposition.** Let $F = \mathbb{R}$ or \mathbb{C} . We consider the group $GL_n(F)$. We still let B_n be the upper triangular matrices in $GL_n(F)$. Let $K_n = O_n(\mathbb{R})$ if $F = \mathbb{R}$ and let $K_n = U(n)$ if $F = \mathbb{C}$.

Proposition 5 (Iwasawa decomposition). We have $GL_n(F) = B_n \cdot K_n$. In other words, for any $g \in GL_n(F)$, there exists an element $b \in B_n$ and an element $k \in K_n$ such that g = bk.

This is equivalent to Theorem 14 of page 305. Explain the equivalence between the above Proposition and Theorem 14 of page 305.

Problem 5. Consider the matrix

$$g = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 0 & 9 \\ 4 & 7 & 11 \end{bmatrix} \in GL_3(\mathbb{R}).$$

Find a matrix $b \in B_3$ and $k \in O_3(\mathbb{R})$ such that g = bk.

1.5. Singular value decomposition, polar decomposition and Cartan decomposition. Let $F = \mathbb{R}$ or \mathbb{C} . We consider the group $\mathrm{GL}_n(F)$. We still let A_n be the set of all diagonal matrices in $\mathrm{GL}_n(F)$. Let $K_n = \mathrm{O}_n(\mathbb{R})$ if $F = \mathbb{R}$ and let $K_n = \mathrm{U}(n)$ if $F = \mathbb{C}$.

Proposition 6 (Cartan decomposition). We have $GL_n(F) = K_n \cdot A_n \cdot K_n$. In other words, for any $g \in GL_n(F)$, there exists $k_1, k_2 \in K_n$ and $a \in A_n$ such that $g = k_1 a k_2$.

This is just a slightly different way to say the singular value decomposition.

Proposition 7 (Polar decomposition). For any $g \in GL_n(F)$, there exists a matrix $k \in K_n$ and a positive matrix p such that g = kp.

This is Theorem 14, page 342. Singular value decomposition and polar decomposition are closely related.

1.6. Schur decomposition. Let $F = \mathbb{C}$ and let $K_n = \mathrm{U}(n)$. Let $B_n \subset \mathrm{GL}_n(F)$ be the subset consisting of upper triangular matrices.

Proposition 8 (Schur decomposition). For any $g \in GL_n(F)$, there exists an element $k \in K_n$ and an element $b \in B_n$ such that $g = kbk^{-1}$.

This is Theorem 21, page 316. See also HW 6.