Abschlussklausur zur Vorlesung Chemie für Physiker

Ankündigungen

Prof. M. Nest

- Bitte schreiben Sie auf jedes Ihrer Lösungsblätter in Druckschrift oben rechts Name, Vorname, Matrikelnummer und Fachrichtung.
- Behandeln Sie alle Aufgaben unter Angabe aller verwendeten Gleichungen und aller Zwischenschritte.
- Schalten Sie Ihr Handy aus. Die Benutzung von MP3-Playern und ähnlichen Geräten ist nicht erlaubt.
- Erlaubte Hilfsmittel: Ein Taschenrechner, der weder programmierbar noch graphikfähig sein darf.
- Jede Benutzung nicht erlaubter Hilfsmittel wird als Täuschungsversuch geahndet.
- Geben Sie Ergebnisse mit mindestens 3 signifikanten Stellen korrekt an.

Klausuraufgaben

- 1. Welches Atom der folgenden Atompaare hat die höhere Ionisierungsenergie? (3 Punkte)
 - H, He
 - Li, Na
 - Ne, Na
- 2. Geben Sie die Elektronenkonfiguration von B, S und Ni an, sowie jeweils die Zahl ungepaarter Elektronen. (3 Punkte)
- 3. Formulieren Sie die Mesomerie von Salpetersäure einschliesslich einsamer Elektronenpaare und Formalladungen. $(3 \ Punkte)$

- 4. Warum kann man Stickstoff nicht als Treibgas in Spraydosen verwenden? (1 Punkt)
- 5. Auf der letzten Seite der Aufgaben finden Sie das Molekülorbital-Diagramm von O_2 . (2 Punkte)
 - (a) Wie ist die Bindungsordnung von O_2^- ?
 - (b) Wie verändert sich die Bindungslänge, wenn ein Elektronen aus dem Molekül entfernt wird?
- 6. Für die Reaktion $A \to X + Z$ lautet das Geschwindigkeitsgesetz $v(A) = kc^x(A)$. Der Zahlenwert von k sei 0,100, die Konzentration von A sei 0,050 mol/l. In welchen Einheiten ist k anzugeben, und wie groß ist die Reaktionsgeschwindigkeit, wenn die Reaktion nach a) der nullten, b) der ersten und c) der zweiten Ordnung abläuft? (3 Punkte)
- 7. Für die Reaktion

NiO (s) + CO (g)
$$\rightleftharpoons$$
 Ni (s) + CO₂ (g) ist K = 4,54·10³ bei 936 K und 1,58·10³ bei 1125 K. (6 Punkte)

- Ist die Reaktion exo- oder endotherm? Wie wird das Gleichgewicht beeinflusst, wenn:
- Die Temperatur gesenkt wird?
- Der Druck erniedrigt wird?
- CO entfernt wird?
- CO₂ entfernt wird?
- Ein Katalysator eingebracht wird?
- 8. Für die Reaktion

$$CaCO_3$$
 (s) \rightarrow CaO (s) + CO_2 (g)
ist $\Delta H^0 = 178$ kJ/mol und $\Delta S^0 = 160$ J/(mol K). (2 Punkte)

- (a) Läuft die Reaktion bei 25°C spontan ab? (Begründung!)
- (b) Läuft die Reaktion bei 1000°C spontan ab? (Begründung! Nehmen Sie an, dass ΔH^0 und ΔS^0 temperaturunabhängig sind.)
- 9. Geben Sie jeweils die Strukturformeln und den Namen an für (8 Punkte)
 - (a) ein Alken
 - (b) einen Alkohol
 - (c) einen Ether

- (d) eine Organische Säure
- 10. Geben Sie die Strukturformeln für folgende Verbindungen an: (3 Punkte)
 - (a) 2,3-Dimethylpentan
 - (b) trans-2-Hexen
 - (c) 1,1,2-Trichlorethan
- 11. Zur Gewinnung von Aluminium (M = 26.9815 g/mol) wird Aluminiumoxid in einer Schmelze elektrolysiert. Die Elektrodenreaktionen sind

Anode:
$$C + 2O^{2-} \rightarrow CO_2 + 4e^{-}$$

Kathode:
$$3e^- + Al^{3+} \rightarrow Al$$

Die Anode besteht aus Kohlenstoff (M = 12.0107 g/mol) und wird durch die Reaktion verbraucht. (2 Punkte)

- Welche Kohlenstoffmasse wird verbraucht, während sich 1,00 kg Al abscheidet?
- Wie lange dauert es, bis das Aluminium zur Herstellung einer Getränkedose (5,00 g) abgeschieden ist, wenn bei einer Stromstärke von 50 000 A gearbeitet wird, und die Ausbeute 90,0 % beträgt?
- 12. Elektrochemische Zelle: $Mg|Mg^{2+}||Sn^{2+}|Sn$

(3 Punkte)

- (a) Wie gross ist ΔE ?
- (b) Formulieren Sie die Zellenreaktionen.
- (c) Welche Elektrode ist der Pluspol?
- 13. Vervollständigen Sie die folgenden Gleichungen und sagen Sie voraus, ob die Reaktionen in saurer Lösung stattfinden. Nehmen Sie für alle beteiligten Stoffe Einheitsaktivitäten an, und begründen Sie. (6 Punkte)

(a)
$$H_2O_2 + Cu^{2+} \to Cu + O_2$$

(b)
$$H_2O_2 + Ag^+ \to Ag + O_2$$

(c)
$$PbO_2 + Cl^- \rightarrow Pb^{2+} + Cl_2$$

14. Quantenchemie

(3 Punkte)

- (a) Zählen Sie die drei Arten potentieller Energie auf, die im Fock-Operator vorkommen.
- (b) Wie wird das Verfahren zur Bestimmung der Eigenfunktionen des Fock-Operators genannt?
- (c) Wieso ist die CIS-Grundzustandsenergie gleich der HF-Energie?

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 lr	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At	88 Rr
87 Fr	88 Ra		104 Rf	105 Da	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub						
		57 La	56 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Konstanten:

$N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}$ R = 8.314 J/(mol K) $k_B = 1.381 \cdot 10^{-23} \text{ J/K}$ F = 96485 C

MO-Diagramm von O_2

Normalpotentiale (V)

т:+		T:	-3,045
$Li^+ + e^-$			
$K^{+} + e^{-}$		K	-2,925
$Na^+ + e^-$	\rightleftharpoons	Na	-2,714
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg	-2,363 <
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn	-0,763
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe	-0,440
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni	-0,250
$\mathrm{Sn^{2+}} + 2\mathrm{e^{-}}$	\rightleftharpoons	Sn	-0,136
$2H^{+} + 2e^{-}$	\rightleftharpoons	H_2	0,000
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu	$0,337 \leftarrow$
$I_2 + 2 e^-$	\rightleftharpoons	$2I^-$	0.536
$O_2 + 2H^+ + 2e^-$	\rightleftharpoons	$\mathrm{H_2O_2}$	0.682 ←
$Ag^+ + e^-$	\rightleftharpoons	Ag	0,799 🚣
$Pt^{2+} + 2e^{-}$	\rightleftharpoons	Pt	1,200
$O_2 + 4H^+ + 4e^-$	\rightleftharpoons	$2H_2O$	1,229
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$\mathrm{Mn^{2+}} + 2\mathrm{H_2O}$	1,230
$Cl_2 + 2e^-$	\rightleftharpoons	2Cl-	1,360
$PbO_2 + 4H^+ + 2e^-$		$Pb^{2+} + 2H_2O$	1.455 -
$Au^+ + e^-$	\rightleftharpoons	Au	1,691
$O_3 + 2H^+ + 2e^-$	\rightleftharpoons	$O_2 + H_2O$	2,070
$F_2 + 2e^-$	\rightleftharpoons	$2F^-$	2,870