Chapter 24: Continuous RVs and PDFs

Meike Niederhausen and Nicky Wakim 2023-11-08

Table of contents

- Learning Objectives
- Discrete vs. Continuous RVs
- How to define probabilities for continuous RVs?
- What is a probability density function?
- Let's demonstrate the PDF with an example (1/5)
- Let's demonstrate the PDF with an example (2/5)
- Let's demonstrate the PDF with an example (3/5)
- Let's demonstrate the PDF with an example (4/5)
- Let's demonstrate the PDF with an example (5/5)
- What is a cumulative distribution function?
- Let's demonstrate the CDF with an example
- Derivatives of the CDF
- Finding the PDF from a CDF
- Let's go through another example (1/7)
- Let's go through another example (2/7)
- Let's go through another example (3/7)
- Let's go through another example (4/7)
- Let's go through another example (5/7)
- Let's go through another example (6/7)
- Let's go through another example (7/7)

Learning Objectives

- 1. Distinguish between discrete and continuous random variables.
- 2. Calculate probabilities for continuous random variables.
- 3. Calculate and graph a density (i.e., probability density function, PDF).
- 4. Calculate and graph a CDF (i.e., a cumulative distribution function)

Discrete vs. Continuous RVs

- For a **discrete** RV, the set of possible values is either finite or can be put into a countably infinite list.
- **Continuous** RVs take on values from continuous *intervals*, or unions of continuous intervals

	Discrete	Continuous
probability	mass (probability mass	density (probability density
function	function; PMF)	function; PDF)
	$0 \le p_X(x) \le 1$	$0 \le f_X(x)$
		(not necessarily ≤ 1)
	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
	$P(0 \le X \le 2)$	$P(0 \le X \le 2)$
	= P(X = 0) + P(X = 1) +	$= \int_0^2 f_X(x) dx$
	P(X=2) if X is integer valued	
	$P(X \le 3) \ne P(X < 3)$	$P(X \le 3) = P(X < 3)$
	when $P(X=3) \neq 0$	since $P(X=3) = 1$ ($X < 3$)
cumulative	$F_X(a) = P(X \le a)$	$F_X(a) = P(X \le a)$
distribution	$= \sum_{x \le a} P(X = a)$	$= \int_{-\infty}^{a} f_X(x) dx$
function	graph of CDF is a	graph of CDF is
(CDF)	step function with jumps	nonnegative and
$F_X(x)$	of the same size as	continuous, rising
	the mass, from 0 to 1	up from 0 to 1
examples	counting: defects, hits,	lifetimes, waiting times,
	die values, coin heads/tails,	height, weight, length,
	people, card arrangements,	proportions, areas, volumes,
	trials until success, etc.	physical quantities, etc.
named	Bernoulli, Binomial,	Continuous Uniform,
distributions	Geometric, Negative	Exponential, Gamma,
	Binomial, Poisson,	Beta, Normal
	Hypergeometric,	
	Discrete Uniform	T7 (11) C (20)
expected	$\mathbb{E}(X) = \sum_{x} x p_X(x)$	$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$
value	$\mathbb{E}(g(X)) = \sum_{x} g(x) p_X(x)$	$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
$\mathbb{E}(X^2)$	$\mathbb{E}(X^2) = \sum_x x^2 p_X(x)$	$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$
variance	Var(X) =	Var(X) =
	$\mathbb{E}(X^2) - (\mathbb{E}(X))^2$	$\mathbb{E}(X^2) - (\mathbb{E}(X))^2$
std. dev.	$\sigma_X = \sqrt{\operatorname{Var}(X)}$	$\sigma_X = \sqrt{\operatorname{Var}(X)}$

Figure from Introduction to Probability TB (pg. 301)

How to define probabilities for continuous RVs?

What is a probability density function?

Probability density function

The probability distribution, or **probability density function (pdf)**, of a continuous random variable X is a function $f_X(x)$, such that for all real values a, b with $a \le b$,

$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

Remarks:

- 1. Note that $f_X(x) \neq \mathbb{P}(X = x)!!!$
- 2. In order for $f_X(x)$ to be a pdf, it needs to satisfy the properties
 - $f_X(x) \ge 0$ for all x
 - $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Let's demonstrate the PDF with an example (1/5)

Example 1.1

Let
$$f_X(x) = 2$$
, for $a \le x \le 3$.

1. Find the value of a so that $f_X(x)$ is a pdf.

Let's demonstrate the PDF with an example (2/5)

Example 1.2

Let
$$f_X(x) = 2$$
, for $a \le x \le 3$.

2. Find
$$\mathbb{P}(2.7 \le X \le 2.9)$$
.

Let's demonstrate the PDF with an example (3/5)

Example 1.3

Let
$$f_X(x) = 2$$
, for $a \le x \le 3$.

3. Find
$$\mathbb{P}(2.7 < X \le 2.9)$$
.

Let's demonstrate the PDF with an example (4/5)

Example 1.4

Let
$$f_X(x) = 2$$
, for $a \le x \le 3$.

4. Find
$$P(X = 2.9)$$
.

Let's demonstrate the PDF with an example (5/5)

Example 1.5

Let $f_X(x) = 2$, for $a \le x \le 3$.

5. Find $P(X \le 2.8)$.

What is a cumulative distribution function?

Cumulative distribution function

The **cumulative distribution function (cdf)** of a continuous random variable X, is the function $F_X(x)$, such that for all real values of x,

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(s) ds$$

Remarks: In general, $F_X(x)$ is increasing and

- $\lim_{x\to -\infty} F_X(x) = 0$
- $\lim_{x\to\infty} F_X(x) = 1$

Let's demonstrate the CDF with an example

Example 2

Let $f_X(x) = 2$, for $2.5 \le x \le 3$. Find $F_X(x)$.

Derivatives of the CDF

Theorem 1

If X is a continuous random variable with pdf $f_X(x)$ and cdf $F_X(x)$, then for all real values of x at which $F_X'(x)$ exists,

$$\frac{d}{dx}F_X(x) = F_X'(x) = f_X(x)$$

Finding the PDF from a CDF

Example 3

Let X be a RV with cdf

$$F_X(x) = \begin{cases} 0 & x < 2.5 \\ 2x - 5 & 2.5 \le x \le 3 \\ 1 & x > 3 \end{cases}$$

Find the pdf $f_X(x)$.

Let's go through another example (1/7)

Example 4

Let X be a RV with pdf $f_X(x) = 2e^{-2x}$, for x > 0.

- 1. Show $f_X(x)$ is a pdf.
- 2. Find $\mathbb{P}(1 \le X \le 3)$.
- 3. Find $F_X(x)$.
- 4. Given $F_X(x)$, find $f_X(x)$.
- 5. Find $\mathbb{P}(X \ge 1 | X \le 3)$.
- 6. Find the median of the distribution of X.

Let's go through another example (2/7)

Example 4.1

Let X be a RV with pdf $f_X(x) = 2e^{-2x}$, for x > 0.

1. Show $f_X(x)$ is a pdf.

Let's go through another example (3/7)

Do this problem at home for extra practice. The solution is available in Meike's video!

Example 4.2

Let X be a RV with pdf $f_X(x) = 2e^{-2x}$, for x > 0.

2. Find $\mathbb{P}(1 \le X \le 3)$.

Let's go through another example (4/7)

Example 4.3

Let X be a RV with pdf $f_X(x) = 2e^{-2x}$, for x > 0.

3. Find $F_X(x)$.

Let's go through another example (5/7)

Do this problem at home for extra practice. The solution is available in Meike's video!

Example 4.4

Let X be a RV with pdf $f_X(x) = 2e^{-2x}$, for x > 0.

4. Given $F_X(x)$, find $f_X(x)$.

Let's go through another example (6/7)

Example 4.5

Let X be a RV with pdf $f_X(x) = 2e^{-2x}$, for x > 0.

5. Find $\mathbb{P}(X \ge 1 | X \le 3)$.

Let's go through another example (7/7)

Example 4.6

Let X be a RV with pdf $f_X(x) = 2e^{-2x}$, for x > 0.

6. Find the median of the distribution of X.