Zadanie: DOM

Domino

Laboratorium z ASD, zadanie zaliczeniowe 1. Dostępna pamięć: 128 MB. 24.11.2024, 23:59:59

Na każdym polu prostokatnej planszy $k \times n$ jest wpisana liczba całkowita. Rozmieszczenie kamieni domina 1×2 na tej planszy polega na położeniu na niej pewnej liczby kamieni w taki sposób, żeby każdy kamień zajmował dwa pola i żadne pole nie było przykryte przez więcej niż jeden kamień. Wartością takiego rozmieszczenia jest suma liczb na przykrytych polach.

Wejście

W pierwszym wierszu wejścia podane są dwie liczby całkowite: $n, k \ (1 \le n \le 1000, 1 \le k \le 12)$.

W każdym z kolejnych k wierszy znajduje się n liczb całkowitych oddzielonych pojedynczymi spacjami z zakresu od -10^6 do 10^6 oznaczających wartości na polach planszy. Dokładniej, i-ty wiersz $(1 \le i \le k)$ zawiera liczby $a_{i,1},\,a_{i,2},\,\ldots,\,a_{i,n},\,$ gdzie $-10^6\leq a_{i,j}\leq 10^6$ dla $1\leq j\leq n.$ Dla każdego $i=1,\ldots,k$ oraz $j=1,\ldots,n,$ na polu planszy o współrzędnych (i, j) wpisana jest wartość $a_{i,j}$.

Wyjście

Twój program powinien wypisać na wyjście jedną liczbę całkowitą równą największej możliwej wartości rozmieszczenia kamieni domina.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

3 2

14 0 2 5

-2 -3 7

Wyjaśnienie do przykładu

Używajac dwóch kamieni domina możemy otrzymać sume 14:

0	2	5
-2	-3	7