第一阶段原理查找汇报

第23组 陈飞鸢 林钧铭 吴振航

最小系统

• 最小系统, 是最基本的硬件和软件环境。

• 硬件最小系统:

由电源、主板和CPU组成。在这个系统中,没有任何信号线的连接,只有电源到主板的电源连接.在判断的过程中通过声音来判断这一核心组成部分是否可正常工作。

(搜狗百科-最小系统)

核心板

(优信电子) STM32F103C8T6单片机核心板

- 72M主频;
- 64K-FLASH;
- 20K-RAM;
- 高速8M晶振;
- 低频32.768K晶振

预实现功能

按下 mode 切换模式 (秒表模式; 时钟模式; 学号模式)

- A. 秒表模式: 显示分和秒 (mm:ss);
 - ① 按 set 键计时开始;
 - ② 按 enter 键计时停止;
 - ③ 再次按下 set 键复位;
- B. 时钟模式:按下 set 键切换功能 (时钟功能;闹钟功能)
 - ① 时钟功能
 - I. 按下 enter 选择 (右移) 调整位
 - II. 按下 add/sub 当前位加1/减1
 - ② 闹钟功能
 - I. 按下 enter 选择 (右移) 调整位
 - II. 按下 add/sub 当前位加1/减1
- C. 显示学号模式 按下 set 键 切换要显示的学号

各模块 功能及其实现

稳压电路 时钟计数 秒表 闹钟 蜂鸣器 数码管显示 LED 按键扫描

稳压电路

通常单片机的工作电压为 5V (或 3.3V), 而提供的输入电压为 9V (带线的 DC9V 带插头适配)

本电路使用提供的 LM7805 稳压模块

稳压电路将 9V 的电源电压转化为单片机的工作电压 5V

LM7805 为常用的三端线性电源稳压IC, 相对于开关电源, 线性电源是以牺牲电量来转换电压的, 相对来说功耗较大, 但是却有保护电路, 使用起来可靠, 方便, 而且价格便宜等优点

时钟

- 设置每10µs进入中断, 中断计数器加一
- 中断计数器满 105, 秒计数器加一, 中断计数器复位
- 秒计数器满 60, 分计数器加一, 秒计数器复位
- 分计数器满 60, 时计数器加一, 分计数器复位
- 时计数器满 24, 时计数器复位
- 中断采用系统滴答时钟中断函数库

void TimingDelay_Decrement(void)

[参考 STM32F103C8T6例程 \ 基本例程—SysTick (系统滴答定时器) 操作]

进入 设置时间 模式(参考预实现功能)时, 按下 add/sub 直接修改各个计数器的值。

秒表与闹钟

秒表

- 设置每10µs进入中断; 秒表_中断计数器加一
- 秒表_中断计数器满 10⁵; 秒表_秒计数器加一; 秒表中 断计数器复位
- 秒表_秒计数器满 60; 秒表_分计数器加一; 秒表_秒计数器复位
- 秒表_分计数器满 60; 秒表_分计数器复位

(秒表的控制参照预实现功能)

闹钟

比较设置好的闹钟变量与此刻时间的变量是否相等,如果相等,蜂鸣器标志位复位(初始状态为高电平),使蜂鸣器发出提示音

(闹钟的配置与时钟的配置类似,参考预实现功能)

蜂鸣器

DC-5V 蜂鸣器为有源蜂鸣器

有源蜂鸣器内置振荡源,只要有低电平输入,就可以使其发出声音,不等同于无源蜂鸣器,施加不同频率的方波时.可以发出不同的声调,有源蜂鸣器不能改变发出声音的声调

数码管显示

移位寄存器

74HC164 是 8 位边沿触发式移位寄存器, 串行输入/并行输出

- DS1与DS2为数据输入位, Q0 = DS1 | DS2
- 通常情况下, DS1与DS2直接与串行输入数据相连, 当与CP相接的时钟信号上跳变时, Q0~Q7进行移位
- MR为复位端, 当其输入为低电平时, 其他端口无效, 寄存器内部清零

数码管显示

数码管

- 对于共阴极数码管来说, 当某个发光二极管的阳极为高电平时, 发光二极管点亮, 相应的段被显示
- 共阴极数码管是把所有 LED 的阴极连接到共同接点COM, 而每个 LED 的阳极分别为 a、b、c、d、e、f、g 及 dp (小数点), 如右图所示, 图中的 8 个 LED 分别与上面那个图中的 a~dp 各段相对应, 通过控制各个 LED 的亮灭来显示数字

共阴数码管编码表

{ 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71 }

按键扫描

- 按键的识别采用行列式轮询扫描, 本次课程设计需要使用 6 个按键, 故采用 2*3的排列扫描方式
- 在主循环中, 行端口 (PR1, PR2) 依次输出高电平, 列端口 (PC1, PC2, PC3) 输出低电平, 此时诺行端口中一端出现低电平, 其代表对应的按钮被按下
- 当按下按钮时,按键容易发生抖动,此时采用延时检测的方法;即检测一次按下后延时若干时间再次检测按下情况
- 有按键被按下时, 蜂鸣器标志位复位, 使蜂鸣器发出按键音

总流程图

通用部分各部分控制实现预期功能

小组设计任务的预期

步进电机自动窗帘

步进电机

步进电机是将电脉冲信号转变为角位移或 线位移的开环控制电机

- 步进电机必须加驱动才可以运转,驱动信号必须为脉冲信号
- 转动的速度和脉冲的频率成正比
- 改变脉冲的顺序,可以方便的改变转动的方向
- 使用ULN2003模块来驱动步进电机

	Α	В	С	D	E	F	G	Н
1						-	-	-
2				-	-	-		
3		-	-	-				
4	-	-						-
5	+	+	+	+	+	+	+	+

光敏电阻

- 光线越强,阻值越低
- 光敏电阻对光线十分敏感, 其在无光照时, 呈高阻状态, 暗电阻一般可达到1.5MΩ
- 随着光照强度的升高, 电阻值迅速降低 亮电阻值可笑至1KΩ以下。

自动窗帘控制流程图

按下 key 键切换模式

(自动模式; 手动模式)

• 自动模式

- ① 检测到亮度低时, 步进电机反转, 窗帘 关闭
- ② 检测到亮度高时,步进电机正转,窗帘打开

• 手动模式

- ① 检测到 close 按键被按下时, 步进电机 反转, 窗帘关闭
- ② 检测到 open 按键被按下时, 步进电机 正转, 窗帘打开
- ③ 任何时候检测到 stop 按键被按下时, 步进电机立即停止

感谢观看

资料查阅: 林钧铭, 陈飞鸢, 吴振航; 制作: 陈飞鸢; 校对: 林钧铭, 吴振航