Лекция 9. Симметрические тензоры. Группы Ли SO(3), SU(2).

Определение 1. Рассмотрим векторное пространство V с базисом e_1, \ldots, e_N . Тензор $a = a^{i_1 \dots i_k} e_{i_1} \otimes \dots \otimes e_{i_k} \in V^{\otimes k}$ называется симметричным если его коэффициенты $a^{i_1 \dots i_k}$ симметричны относительно перестановки индексов. Пространство симметричных тензоров обозначается $S^k V$.

Здесь и далее по повторяющимся индексам сверху и снизу предполагается суммирование.

Определение 2. Тензор $a = a^{i_1 \dots i_k} e_{i_1} \otimes \dots \otimes e_{i_k} \in V^{\otimes k}$ называется кососимметричным если его коэффициенты $a^{i_1 \dots i_k}$ умножаются на знак $(-1)^{|\sigma|}$ при перестановке индексов $\sigma \in S_k$. Пространство кососимметричных тензоров обозначается $\Lambda^k V$.

Более инваривантно можно сказать, что симметричные тензоры это тензоры который при перестановке сомножителей переходят в себя, а кососимметричные тензоры —это тензоры которые при перестановке сомножителей умножаются на знак. В пространствах S^kV и Λ^kV несложно указать базис, в простейшем примере k=2 этот базис имеет вид

$$S^{2}V = \langle e_{i} \otimes e_{j} + e_{j} \otimes e_{i} | 1 \leq i \leq j \leq N \rangle, \quad \Lambda^{2}V = \langle e_{i} \otimes e_{j} - e_{j} \otimes e_{i} | 1 \leq i < j \leq N \rangle.$$

Для произвольного k базис можно выбрать в виде

$$S^k V = \langle e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_k} + \text{sym. terms} | 1 \leq i_1 \leq \ldots \leq i_k \leq N \rangle,$$

 $\Lambda^k V = \langle e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_k} + \text{asym. terms} | 1 \leq i_1 < \ldots < i_k \leq N \rangle.$

Предложение 1. Размерности пространств симметрических и кососимметрических тензоров равны:

$$\dim S^k V = \binom{N+k-1}{k} = \frac{N(N+1)\dots(N+k-1)}{k!} = \frac{N^{\uparrow k}}{k!},$$

$$\dim \Lambda^k V = \binom{N}{k} = \frac{N(N-1)\dots(N-k+1)}{k!} = \frac{N^{\downarrow k}}{k!}.$$

Предложение 2. $V\otimes V=S^2V\oplus\Lambda^2V$, далее появляются еще слагаемые $V^{\otimes k}=S^kV\oplus\Lambda^kV\oplus\ldots$

Для любого линейного преобразования A оператор $A^{\otimes k}\colon V^{\otimes k}\to V^{\otimes k}$ сохраняет подпространства S^kV и Λ^kV . В частности, если V является представлением группы G, то S^kV и Λ^kV также являются представлениями группы G.

Предложение 3. Для любого оператора $A \colon V \to V$ верно

$$\operatorname{Tr} S^2 A = \frac{1}{2}((\operatorname{Tr} A)^2 + \operatorname{Tr} A^2), \quad \operatorname{Tr} \Lambda^2 A = \frac{1}{2}((\operatorname{Tr} A)^2 - \operatorname{Tr} A^2).$$

Из этой формулы находятся характеры представлений $S^2 \rho$ и $\Lambda^2 \rho$:

$$\chi_{S^2\rho}(g) = \frac{1}{2}(\chi_{\rho}(g)^2 + \chi_{\rho}(g^2)), \quad \chi_{\Lambda^2\rho}(g) = \frac{1}{2}(\chi_{\rho}(g)^2 - \chi_{\rho}(g^2)).$$

Теперь обсудим несколько примеров групп Ли.

SO(3) Группа SO(3) состоит из матриц R удовлетворяющих $R^tR=E, \det R=1.$ В терминах матричных элементов

$$R_{ki}R_{kj} = \delta_{ij}, \quad \epsilon_{pqr}R_{1p}R_{2q}R_{3r} = 1,$$

где по повторяющимся индексам подразумевается суммирование и ϵ символ равен нулю если индексы повторяются и знаку перестановки иначе. Второе соотношение можно переписать в более общей форме

$$\epsilon_{pqr}R_{ip}R_{jq}R_{kr} = \epsilon_{ijk}.$$

Свернув с R_{ks} получаем

$$\epsilon_{ijk}R_{ks} = \epsilon_{pqs}R_{ip}R_{jq}.$$

Мы проверяли на прошлой лекции, что группа SO(3) трехмерная. Это означает, что все эти соотношения можно локально разрешить и выразить все матричные элементы через какие-то три, эти три являются локальными координатами на группе. Более геометрически элементы группы SO(3) описываются при помощи углов Эйлера, их опять же три и они тоже являются локальными координатами.

Нам будет удобно ввести координаты на группе SO(3) еще одним способом. Любой элемент SO(3) является вращением относительно некоторой оси на некоторый угол α . Через $\vec{n}=(n_1,n_2,n_3)$ мы обозначим направляющий вектор этой оси. Отнормируем вектор \vec{n} так, что $|\vec{n}|=1$. То есть мы считаем, что любой элемент SO(3) параметризуется точкой двумерной сферы \vec{n} и углом α .

Произвольный вектор \vec{x} разлагается в сумму

$$\vec{x} = \vec{x}_{\parallel} + \vec{x}_{\perp},$$

где $\vec{x}_{\parallel}=(\vec{x},\vec{n})\vec{n}$ параллелен $\vec{n},\,x_{\perp}$ оротогонален $\vec{n}.$ Вращение действует на эти векторы по формуле

$$\vec{x}_{\parallel} \mapsto x_{\parallel}, \quad \vec{x}_{\perp} \mapsto \cos \alpha \vec{x}_{\perp} + \sin \alpha [\vec{n}, \vec{x}_{\perp}].$$

Здесь $[\cdot,\cdot]$ обозначает векторное произведение. Тогда для вектора \vec{x} мы имеем

$$\vec{x} \mapsto \vec{x} + \sin \alpha [\vec{n}, \vec{x}] + (1 - \cos \alpha)((\vec{x}, \vec{n})\vec{n} - \vec{x}).$$

Вычислим теперь это в матричном языке. Оператор векторного умножения на \vec{n} имеет матрицу N, матрица оператора $\vec{x} \mapsto (\vec{x}, \vec{n}) \vec{n} - \vec{x}$ равна N_2 :

$$N = \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}, \quad N_2 = \begin{pmatrix} n_1^2 - 1 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & n_2^2 - 1 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & n_3^2 - 1 \end{pmatrix}.$$

Легко видеть, что $N_2=N^2$. Поэтому матрица поворота на угол α относительно оси натянутой на \vec{n} имеет вид

$$R = E + \sin \alpha N + (1 - \cos \alpha)N^2.$$

Вектор \vec{n} имел единичную длину, поэтому матрица N имеет свойство $N^3 = -N$. Используя разложение в ряд экспоненты мы получаем, что

$$R = \exp(\alpha N)$$
.

Матрица αN является произвольной кососимметричной матрицей 3×3 , т.е. произвольным элементом алгебры Ли $\mathfrak{so}(3)$. Это является иллюстрацией к следующей теореме.

Теорема 4. Пусть G группа Ли и $A \in T_E G$ элемент ее алгебры Ли. Тогда $\exp A \in G$.

Для случая группы SO(2) это утверждение уже видели раньше.

Отметим, что вообще говоря неверно, что $n \omega \delta o u$ элемент группы Ли является экспонентой от элемента алгебры Ли. Но для элементов близких к E это верно, с другой стороны верно, что окрестность E порождает связную компоненту единицы группы G, в этом смысле алгебра Ли в большой мере определяют группу Ли.

Для групп SO(N) при N>3 уже сложно описать все элементы геометрически. С алгеброй Ли можно работать точно также, образующими являются элементарные кососимметрические матрицы $J_{ab}=E_{ab}-E_{ba},\, 1\leq a< b\leq N,$ которые есть разность двух матричных единиц. В примере группы SO(3) эти матрицы соответствуют единичным базисным векторам

$$J_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, J_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, J_3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Коммутаторы в этом базисе имеют вид $[J_a, J_b] = \epsilon_{abc} J_c$ из этого следует, что алгебра Ли $\mathfrak{so}(3)$ изоморфна \mathbb{R}^3 . Матрица N использованная выше по этому базису разлагается просто как $N = n_1 J_1 + n_2 J_2 + n_3 J_3$.

Есть еще одно обобщение, а именно можно рассмотреть группу SO(n,m)) преобразований сохраняющих скалярное произведение с сигнатурой (n,m). Более формально $SO(n,m)=\{g|gSg^t=S\}$, где S матрица Грамма формы. В частности SO(3,1) называется группой Лоренца.

 ${\bf U(2)}$ Группа U(2) состоит матриц g таких, что $gg^*=E$. Запишем эти соотношения явно:

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a\bar{a} + b\bar{b} = 1, \ a\bar{c} + b\bar{d} = 0, \ c\bar{c} + d\bar{d} = 1.$$

Решая эти уравнения получаем, что $c=-\lambda \bar{b},\ d=\lambda \bar{a},\ \text{где }|a|^2+|b^2|=1,\ |\lambda|=1.$ То есть элемент группы U(2) задается точкой трехмерной сферы и еще комплексным числом по модулю равным 1. Группа U(2) четырехмерна, вообще размерность группы U(N) равна N^2 .

SU(2) Если наложить дополнительное условие $\det g=1$, то это фиксирует $\lambda=1$. То есть группа SU(2) состоит из матриц вида $\begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$. Разложив по a,b на вещественную и мнимую часть $a=a_0+\mathrm{i}a_3,\ b=a_2+\mathrm{i}a_1$ мы можем переписать произвольный элемент из SU(2) в виде

$$a_0E + ia_1\sigma_1 + ia_2\sigma_2 + ia_3\sigma_3$$

где σ матрицы Паули определяются по формулам

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Набор параметров (a_0, a_1, a_2, a_3) удовлетворяющие $a_0^2 + a_1^2 + a_2^2 + a_3^2 = 1$ можно воспринимать как точку трехмерной сферы, и это взаимно-однозначное соответствие между трехмерной сферой и SU(2).

Есть еще вариант параметризации при помощи угла α и трехмерного вектора $\vec{n}=(n_1,n_2,n_3)$. А именно, пусть $a_0=\cos\alpha,\ a_1^2+a_2^2+a_3^2=\sin^2\alpha,$ тогда введем n_j так, что $a_j=n_j\sin\alpha.$ Тогда матрица g равна

$$g = \cos \alpha + i \sin \alpha (\vec{n}, \vec{\sigma}). \tag{1}$$

Последняя формула может быть переписана как $\exp(\mathrm{i}\alpha(\vec{n},\vec{\sigma}))$.

Матрицы $i\sigma_1, i\sigma_2, i\sigma_3$ образуют базис в алгебре Ли \mathfrak{su}_2 . Как легко видеть из определения эта алгебра состоит из косоэрмитовых матриц со следом 0. Если их перенормировать на минус двойку, то есть ввести $I_a = -\mathrm{i}\frac{1}{2}\sigma_a, \ a=1,2,3$, то получим, что $[I_a,I_b]=\epsilon_{abc}I_c$, то есть алгебра Ли $\mathfrak{su}(2)$ изоморфна $\mathfrak{so}(3)$. Но группы Ли на самом деле разные, см. задачи.

Предложение 5. а) Алгебра Ли коммутативной группы Ли будет тоже коммутативной.

б) Если группа Ли связна и ее алгебра Ли коммутативна, то и сама группа тоже коммутативна.

Доказательство. а) Напомним, что структура алгебры Ли на касательном пространстве происходила из коммутирования элементов в группе. А именно мы брали две кривые g(t) = E + At + o(t) и h(s) = E + Bs + o(s) и рассматривали коммутатор $h(s)g(t)h(s)^{-1}$. Разлагая его в ряд в первых членах получается $E + h(s)Ah(s)^{-1}$ Теперь оставляя только первый член по s мы получаем [B,A].

Если мы предполагаем, что группа коммутативная, $h(s)g(t)h(s)^{-1}=g(t)$. Оставляя только первый член по t получаем $A=h(s)Ah(s)^{-1}$. Оставляя первый член по s получаем [B,A]=0.

б) Если [A, B] = 0, то $\exp(A)$ и $\exp(B)$ коммутируют. Поскольку для связной группы образ экспоненциального отображения порождает всю группу, то мы получаем, что группа коммутативная. \blacksquare

Домашнее задание

Рашение задач надо прислать до начала лекции 25 апреля. Помимо письменной сдачи надо быть готовым ответить на вопросы по решениям.

Упражнение 1. Пусть $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Задайте матрицами S^2A , Λ^2A , найдите их след.

Упражнение 2. Используя ряды для экспоненты, синуса и косинуса, проверьте, что любой элемент группы SU(2) имеет вид $\exp(\mathrm{i}\alpha(\vec{n},\vec{\sigma}))$.

Задача 3. а) Напишите матрицу обратную для матрицы g заданной формулой (1). Как изменились параметры \vec{n} и α ?

- б) Напишите формулу (матрицу для 3×3) присоединенного действия матрицы $g = \exp(i\alpha\sigma_3)$, проверьте, что получилось ортогональное преобразование (в алгебре Ли $\mathfrak{su}(2)$ удобно взять базис $i\sigma_1$, $i\sigma_2$, $i\sigma_3$).
- в) Покажите, что общему g заданному формулой (1) в присоединенном представлении будет соответствовать ортогональное преобразование.
- г) Является ли полученный гомоморфизм из группы SU(2) в группу SO(3) сюръективным, какое у него ядро?
- **Задача 4.** а) Рассмотрим алгебру $\mathfrak{so}(n)$. Она имеет естественный базис $J_{ab} = E_{ab} E_{ba}$, где E_{ab} это матрица у которых 1 стоит на месте (a,b), а в остальные местах стоит 0. Разложите коммутатор $[J_{ab},J_{cd}]$ по этому базису.
- б)* Докажите, что алгебра Ли $\mathfrak{so}(4)$ изоморфна прямой сумме $\mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

Указание: выразите через J_{ab} другие образующие J_1, J_2, J_3 и J'_1, J'_2, J'_3 так, что каждая тройка удовлетворяет соотношениям $\mathfrak{so}(3)$, а [J, J'] = 0.