Extending Flexible Boolean Semantics for Plural Definites in Mathematical Language

Investigating the Semantics of Mathematical Language

Shashank Pathak
shashank.pathak@manchester.ac.uk
Department of Computer Science
The University of Manchester, UK

ESSLLI 2025, Student Session 28 July, 2025 Ruhr-Universität Bochum, Germany

A Mathematico-Linguistic Puzzle

(1) A. x and y are prime.

B. x is prime.

(2) A. x and y are coprime.

B. # x is coprime.

(3) A. P and Q are countable.

B. P is countable.

(4) A. P and Q are equinumerous.

B. # P is equinumerous.

Why does A entail B in (1) and (3), but not in (2) and (4)?

Why study the Language of Mathematics?

LoM: Statements found in mathematics papers and textbooks.

Underexplored in formal semantics: Test-bed for semantic theories

Key to understanding how mathematical meaning is constructed

Foundation for auto-formalisation and math-aware NLP

A Mathematico-Linguistic Puzzle

- (1) A. x and y are prime.
 - B. x is prime.
- (2) A. x and y are coprime.
 - B. # x is coprime.
- (3) A. P and Q are countable.
 - B. P is countable.
- (4) A. P and Q are equinumerous.
 - B. #P is equinumerous.

Why does A entail B in (1) and (3), but not in (2) and (4)?

Coordination and Distributivity

X and Y are P

Coordination
2 and 3,
The integers and
the rationals,
The set X and the
set Y

DistributivityPrime, countable

Collectivity
Coprime,
equinumerous

Montague Semantics: Building Meaning from Parts

Montague Semantics in Action: Types

e t
$$e \rightarrow t$$
 $t \rightarrow t$ $e \rightarrow (e \rightarrow t)$ $(e \rightarrow t) \rightarrow t$...

Linguistic Expression	Туре
2 is prime	t
2	е
prime	e → t

Semantic Composition: Zooming In

Montague Semantics in Action: Composition

Boolean Extensions of Montague Semantics

Sentence	Syntactic Category Coordinated	Types
2 is prime and 3 is prime	Sentence	t
2 and 3 are prime	Noun Phrase	е
2 is prime and even	Adjective	e → t

Boolean Semantics:

Domains = Boolean algebras

and = meet

 Λ for t

 \cap for e \rightarrow t

[[2 is prime and 3 is prime]]

= $[2 \text{ is prime}] \land [3 \text{ is prime}]$

= prime $'(2) \land prime'(3)$

[[2 is prime and even]]

= 2 ∈ [[prime and even]]

= 2 ∈ prime' ∩ even'

Boolean Operation on Entities?

Sentence	Syntactic Category Coordinated	Туре
2 and 3 are prime	Noun Phrase	е

Boolean Semantics:

Domains = Boolean algebras

And = meet

 Λ for t

 \cap for $e \rightarrow t$

??? for e

$$M(x) = \{ P \mid P(x) \}$$

[[2 and 3]] =
$$\mathbf{M}(2) \cap \mathbf{M}(3)$$

= { P | P(2) } \cap { Q | Q(3) }

Winter, Y.: Flexibility Principles in Boolean Semantics: The Interpretation of Coordination, Plurality, and Scope in Natural Language, chap. Coordination and Collectivity. The MIT Press (02 2002).

Flexible Boolean Semantics

$$M(x) = \{ P | P(x) \}$$

[[2 and 3]] =
$$M(2) \cap M(3)$$

= $\{ P \mid P(2) \} \cap \{ Q \mid Q(3) \}$
[[2 and 3 are prime]] = prime' \in [[2 and 3]]

 $= prime' \in \{ P \mid P(2) \} \cap \{ Q \mid Q(3) \}$

= prime $'(2) \land prime'(3)$

= [[2 is prime]] ∧ [[3 is prime]]

= [[2 is prime and 3 is prime]]

Flexible!

Sets as Subjects

The integers are countable

- [[-S]]
- [[the]]
- [[integer]]
- [[countable]]

Plural Forming -s

[[integer]] :
$$e \rightarrow t = Z$$

$$[[-s]] : (e \to t) \to ((e \to t) \to t)$$
$$= \lambda P \lambda Q.(Q \neq \emptyset \land Q \subseteq P)$$

[[integers]] :
$$(e \rightarrow t) \rightarrow t$$

= [[-s]] [[integer]]
= $\lambda Q.(Q \neq \emptyset \land Q \subseteq Z)$

Link, G.: The logical analysis of plurals and mass terms: A lattice-theoretical approach. In: Bäuerle, R., Schwarze, C., von Stechow, A. (eds.) Meaning, Use, and Interpretation of Language, pp. 302–323. De Gruyter, Berlin, Boston (1983).

Sharvy, R.: A more general theory of definite descriptions. The Philosophical Review 89(4), 607-624 (1980),

Plural Definite Article

[[the]] :
$$((e \rightarrow t) \rightarrow t) \rightarrow (e \rightarrow t)$$

= λP . (unique largest A s.t. P(A))

[[integers]] :
$$(e \rightarrow t) \rightarrow t$$

= $\lambda Q.(Q \neq \emptyset \land Q \subseteq Z)$

[[the integers]] :
$$e \rightarrow t$$

= [[the]] [[integers]] = Z

[[the reals]] : $e \rightarrow t = R$

Sharvy, R.: A more general theory of definite descriptions. The Philosophical Review 89(4), 607-624 (1980)

Sets as Subjects: Revisited

```
countable : (e \rightarrow t) \rightarrow t
```

countable'(Z), countable'(Q) True countable'(R) False

[[the integers are countable]]
[[countable]][[the integers]]
= countable'(Z)

[[the reals are countable]]
[[countable]][[the reals]]
= countable'(R)

Where Conventional Typing Goes Wrong

Both sets and properties have type $e \rightarrow t$

```
[[The integers and the reals]] = [[the integers]] ∩ [[the reals]]
```

- $= Z \cap R$
- = Z

[The integers and the reals are countable]

- = countable'(Z)
- = [[The integers are countable]]


```
[[prime and even]]
= [[prime]] ∩ [[even]]
```

- x is prime and even
- x belongs to the intersection of prime integers and even integers
- x is prime and x is even
- prime'(x) \land even'(x)

A Typing Fix

Core issue: Sets and properties behave differently when coordinated

Fix: 1. Change the type system by adding another constructor S

2. Let "the integers" and "the reals" have type S(e) instead of $e \rightarrow t$.

```
[[-s]]: (e \rightarrow t) \rightarrow (S(e) \rightarrow t) and not [[-s]]: (e \rightarrow t) \rightarrow ((e \rightarrow t) \rightarrow t) [[the]]: (S(e) \rightarrow t) \rightarrow S(e) and not [[the]]: ((e \rightarrow t) \rightarrow t) \rightarrow (e \rightarrow t)
```

3. Do **not** define "and" as \cap for S(e)

Typing Fix and Flexibility for Correct Derivations

Fix: 4. Extend M

```
\begin{aligned} \textbf{M}: e \rightarrow (e \rightarrow t) \rightarrow t = \lambda \ x \ . \{ \ P \ | \ P(x) \ \} \\ \textbf{M'}: S(e) \rightarrow (S(e) \rightarrow t) \rightarrow t = \lambda \ A. \ \{ \ P \ | \ P(A) \ \} \end{aligned} [[The integers and the reals]] = \begin{aligned} \textbf{M'}([[the \ integers]]) \cap \textbf{M'}([[the \ reals]]) \\ &= \textbf{M'}(Z) \cap \textbf{M'}(R) \\ &= \{ \ P \ | \ P(Z) \ \} \cap \{ \ Q \ | \ Q(R) \ \} \end{aligned}
```

[The integers and the reals are countable]

- = countable' ∈ [[The integers and the reals]]
- = countable' $\in \{ P \mid P(Z) \} \cap \{ Q \mid Q(R) \}$
- = countable′(Z) ∧ countable′(R)
- = [[The integers are countable and the reals are countable]]

Conclusion, Limitations and Future Work

- Flexible Boolean Semantics
- Coordination of sets differs from coordination of properties
- Typing fix which distinguishes between sets and properties

"The integers and reals are countable" is true.

Quantificational vs predicative NPs

• The integers and reals are countable

Generalized quantifier theory

- All prime numbers greater than x are odd.
- Some numbers are irrational.
- Exactly five primes are less than y.

Winter, Yoad. Flexibility principles in Boolean semantics: The interpretation of coordination, plurality, and scope in natural language. MIT press, 2002.