```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv("creditcard.csv")
df.head(8)
```

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Clas
0	0.00	-1.36	-0.07	2.54	1.38	-0.34	0.46	0.24	0.10	0.36		-0.02	0.28	-0.11	0.07	0.13	-0.19	0.13	-0.02	149.62	(
1	0.00	1.19	0.27	0.17	0.45	0.06	-0.08	-0.08	0.09	-0.26		-0.23	-0.64	0.10	-0.34	0.17	0.13	-0.01	0.01	2.69	(
2	1.00	-1.36	-1.34	1.77	0.38	-0.50	1.80	0.79	0.25	-1.51		0.25	0.77	0.91	-0.69	-0.33	-0.14	-0.06	-0.06	378.66	(
3	1.00	-0.97	-0.19	1.79	-0.86	-0.01	1.25	0.24	0.38	-1.39		-0.11	0.01	-0.19	-1.18	0.65	-0.22	0.06	0.06	123.50	(
4	2.00	-1.16	0.88	1.55	0.40	-0.41	0.10	0.59	-0.27	0.82		-0.01	0.80	-0.14	0.14	-0.21	0.50	0.22	0.22	69.99	(
5	2.00	-0.43	0.96	1.14	-0.17	0.42	-0.03	0.48	0.26	-0.57		-0.21	-0.56	-0.03	-0.37	-0.23	0.11	0.25	0.08	3.67	(
6	4.00	1.23	0.14	0.05	1.20	0.19	0.27	-0.01	0.08	0.46		-0.17	-0.27	-0.15	-0.78	0.75	-0.26	0.03	0.01	4.99	(
7	7.00	-0.64	1.42	1.07	-0.49	0.95	0.43	1.12	-3.81	0.62		1.94	-1.02	0.06	-0.65	-0.42	-0.05	-1.21	-1.09	40.80	(

8 rows × 31 columns

This shows the number of non fraudulent (0) and fraudulent (1) transactions print(f"Unique values of target variable $\ \{df['Class'].unique()\}")$ print(f"Number of samples under each target value $\ \{df['Class'].value_counts()\}")$

Unique values of target variable
[0 1]
Number of samples under each target value
0 284315
1 492

Name: Class, dtype: int64

time is irrelevent to classification so it can be removed

```
df = df.drop(['Time'], axis=1)
print(f"list of feature names after removing Time column :- \n{df.columns}")
     list of feature names after removing Time column :-
     Index(['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11',
            'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21',
           'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount', 'Class'],
           dtype='object')
print(f"Dataset info : \n {df.info()}")
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 284807 entries, 0 to 284806
     Data columns (total 30 columns):
          Column Non-Null Count
                                  Dtype
         ۷1
                 284807 non-null float64
      0
         V2
                 284807 non-null float64
      1
      2
         V3
                 284807 non-null float64
      3
                  284807 non-null float64
         ٧4
      4
         V5
                  284807 non-null float64
      5
         ۷6
                 284807 non-null float64
      6
         V7
                  284807 non-null float64
      7
         ٧8
                  284807 non-null float64
      8
          V9
                  284807 non-null float64
      9
         V10
                  284807 non-null float64
         V11
                 284807 non-null float64
      10
         V12
                  284807 non-null float64
      11
      12 V13
                  284807 non-null float64
      13 V14
                  284807 non-null float64
      14 V15
                  284807 non-null float64
      15 V16
                 284807 non-null float64
                  284807 non-null float64
      16
        V17
      17 V18
                  284807 non-null float64
      18 V19
                  284807 non-null float64
      19 V20
                  284807 non-null float64
      20 V21
                 284807 non-null float64
      21 V22
                  284807 non-null float64
                  284807 non-null float64
      22 V23
      23 V24
                  284807 non-null float64
      24 V25
                  284807 non-null float64
      25 V26
                 284807 non-null float64
        V27
                  284807 non-null float64
      26
      27 V28
                 284807 non-null float64
                 284807 non-null float64
         Amount
        Class
                 284807 non-null int64
```

```
dtypes: float64(29), int64(1)
     memory usage: 65.2 MB
     Dataset info :
      None
from sklearn.preprocessing import StandardScaler
# amount needs a smaller range of numbers so it needs to be scaled.
df['norm_amount'] = StandardScaler().fit_transform(df['Amount'].values.reshape(-1,1))
fraud_df = df.drop(['Amount'], axis=1)
print(f"test values from Amount column after applying StandardScaler: \n {fraud_df['norm_amount'][0:4]}")
     test values from Amount column after applying StandardScaler:
           0.24
         -0.34
     1
          1.16
     3
          0.14
     Name: norm_amount, dtype: float64
# creating variables for train and test.
X = df.drop(['Class'], axis=1)
y = df[['Class']]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
     (199364, 30)
     (85443, 30)
     (199364, 1)
     (85443, 1)
```

The first implemented classifier is a neural network similar to assignment five

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
y_train = np.asarray(y_train).astype('float32').reshape((-1,1))
y_test = np.asarray(y_test).astype('float32').reshape((-1,1))
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
n_features = X_train.shape[1]
model = Sequential()
model.add(Dense(15,activation = 'relu',kernel initializer = 'he normal',input shape = (n features,)))
model.add(Dense(10,activation = 'relu',kernel initializer = 'he normal'))
model.add(Dropout(0.5))
model.add(Dense(1,activation='sigmoid'))
model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy',tf.keras.metrics.AUC()])
model.fit(X train, y train,batch size = 1000 ,epochs=150, verbose=2)
     156/156 - 0s - loss: 0.0025 - accuracy: 0.9993 - auc: 0.9905 - 455ms/epoch - 3ms/step
     Epoch 123/150
     156/156 - 0s - loss: 0.0024 - accuracy: 0.9994 - auc: 0.9954 - 401ms/epoch - 3ms/step
     Epoch 124/150
     156/156 - 0s - loss: 0.0023 - accuracy: 0.9994 - auc: 0.9922 - 379ms/epoch - 2ms/step
     Epoch 125/150
     156/156 - 0s - loss: 0.0024 - accuracy: 0.9993 - auc: 0.9905 - 389ms/epoch - 2ms/step
     Epoch 126/150
     156/156 - 0s - loss: 0.0024 - accuracy: 0.9994 - auc: 0.9906 - 348ms/epoch - 2ms/step
     Epoch 127/150
     156/156 - 0s - loss: 0.0024 - accuracy: 0.9993 - auc: 0.9938 - 373ms/epoch - 2ms/step
     Epoch 128/150
     156/156 - 0s - loss: 0.0022 - accuracy: 0.9994 - auc: 0.9939 - 376ms/epoch - 2ms/step
     Epoch 129/150
     156/156 - 0s - loss: 0.0021 - accuracy: 0.9994 - auc: 0.9956 - 382ms/epoch - 2ms/step
     Epoch 130/150
     156/156 - 0s - loss: 0.0023 - accuracy: 0.9994 - auc: 0.9938 - 396ms/epoch - 3ms/step
     Epoch 131/150
     156/156 - 0s - loss: 0.0022 - accuracy: 0.9994 - auc: 0.9906 - 450ms/epoch - 3ms/step
     Epoch 132/150
     156/156 - 0s - loss: 0.0022 - accuracy: 0.9994 - auc: 0.9955 - 477ms/epoch - 3ms/step
     Epoch 133/150
     156/156 - 0s - loss: 0.0025 - accuracy: 0.9994 - auc: 0.9920 - 420ms/epoch - 3ms/step
```

The second classifier is the random forest

<keras.callbacks.History at 0x7fab1cb93d90>

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report

def random_forest_classifier(X_train, y_train, X_test, y_test):
    # initialize object for DecisionTreeClassifier class
```

•

```
rf_classifier = RandomForestClassifier(n_estimators=50)
     # train model by using fit method
     print("Model training starts")
     rf_classifier.fit(X_train, y_train.ravel())
     acc_score = rf_classifier.score(X_test, y_test)
     print(f'Accuracy of model on test dataset : {acc score}')
     # predict result using test dataset
     y_pred = rf_classifier.predict(X_test)
     # confusion matrix
     print(f"Confusion Matrix : \n {confusion_matrix(y_test, y_pred)}")
     # classification report for f1-score
     print(f"Classification Report : \n {classification_report(y_test, y_pred)}")
# calling random_forest_classifier
random_forest_classifier(X_train, y_train, X_test, y_test)
     Model training starts
     Accuracy of model on test dataset : 0.9995903701883126
     Confusion Matrix :
      [[85298
                  9]
              110]]
          26
     Classification Report :
                    precision
                                 recall f1-score
                                                    support
              0.0
                        1.00
                                  1.00
                                            1.00
                                                      85307
              1.0
                        0.92
                                  0.81
                                             0.86
                                                        136
                                             1.00
                                                      85443
         accuracy
        macro avg
                        0.96
                                  0.90
                                             0.93
                                                      85443
     weighted avg
                        1.00
                                  1.00
                                            1.00
                                                      85443
```

The third is the decision tree classifier

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report

def decision_tree_classification(X_train, y_train, X_test, y_test):
    # initialize object for DecisionTreeClassifier class
    dt_classifier = DecisionTreeClassifier()
    # train model by using fit method
```

```
print("Model training starts")
    dt_classifier.fit(X_train, y_train.ravel())
    print("Model training completed")
    acc score = dt classifier.score(X test, y test)
    print(f'Accuracy of model on test dataset : {acc_score}')
   # predict result using test dataset
   y_pred = dt_classifier.predict(X_test)
    # confusion matrix
    print(f"Confusion Matrix : \n {confusion_matrix(y_test, y_pred)}")
   # classification report for f1-score
    print(f"Classification Report : \n {classification_report(y_test, y_pred)}")
# calling decision_tree_classification method to train and evaluate model
decision_tree_classification(X_train, y_train, X_test, y_test)
     Model training starts
     Model training completed
     Accuracy of model on test dataset: 0.999133925541004
     Confusion Matrix :
      [[85263
                 44]
          30 106]]
     Classification Report :
                    precision
                                 recall f1-score
                                                    support
              0.0
                        1.00
                                  1.00
                                            1.00
                                                     85307
              1.0
                        0.71
                                  0.78
                                            0.74
                                                       136
         accuracy
                                            1.00
                                                     85443
        macro avg
                        0.85
                                  0.89
                                            0.87
                                                     85443
     weighted avg
                        1.00
                                  1.00
                                            1.00
                                                     85443
```

The beginning of the Regression section of the project.

```
import pandas as pd
import pandas_profiling
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set_style('whitegrid')
```

```
df2 = pd.read_excel('ENB2012_data.xlsx')
```

		_	_
А	4	⊢	つ

	relative_compactness	surface_area	wall_area	roof_area	overall_height	orientation	glazing_area	<pre>glazing_area_dist</pre>	hea
0	0.98	514.50	294.00	110.25	7.00	2	0.00	0	
1	0.98	514.50	294.00	110.25	7.00	3	0.00	0	
2	0.98	514.50	294.00	110.25	7.00	4	0.00	0	
3	0.98	514.50	294.00	110.25	7.00	5	0.00	0	
4	0.90	563.50	318.50	122.50	7.00	2	0.00	0	
763	0.64	784.00	343.00	220.50	3.50	5	0.40	5	
764	0.62	808.50	367.50	220.50	3.50	2	0.40	5	
765	0.62	808.50	367.50	220.50	3.50	3	0.40	5	
766	0.62	808.50	367.50	220.50	3.50	4	0.40	5	
767	0.62	808.50	367.50	220.50	3.50	5	0.40	5	

768 rows × 10 columns

df2.hist(figsize=(15,15))
plt.show()


```
fig, axs = plt.subplots(1, 8, sharey=True)
df2.plot(kind='scatter', x='relative_compactness', y='heating_load', ax=axs[0], figsize=(14, 6))
df2.plot(kind='scatter', x='surface_area', y='heating_load', ax=axs[1])
df2.plot(kind='scatter', x='wall_area', y='heating_load', ax=axs[2])
df2.plot(kind='scatter', x='roof_area', y='heating_load', ax=axs[3])
df2.plot(kind='scatter', x='overall_height', y='heating_load', ax=axs[4])
df2.plot(kind='scatter', x='orientation', y='heating_load', ax=axs[5])
df2.plot(kind='scatter', x='glazing_area', y='heating_load', ax=axs[6])
df2.plot(kind='scatter', x='glazing_area_dist', y='heating_load', ax=axs[7])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fab9f82a4d0>

df2.isnull().sum()

```
relative_compactness
surface_area
                         0
wall_area
                         0
roof_area
                         0
overall_height
                         0
orientation
                         0
                         0
glazing_area
glazing_area_dist
                         0
heating_load
                         0
```

```
cooling_load
dtype: int64
```

0

df2.info

<bou< th=""><th>nd method Dat</th><th>aFrame.info of</th><th>relat</th><th>:ive_compa</th><th>ctness</th><th>surfa</th><th>ce_area</th><th>wall_area</th><th>roof_area</th><th>overall_height</th><th>\</th></bou<>	nd method Dat	aFrame.info of	relat	:ive_compa	ctness	surfa	ce_area	wall_area	roof_area	overall_height	\
0		0.98	514.5	294.0	110.	25		7.0			
1		0.98	514.5	294.0	110.	25		7.0			
2		0.98	514.5	294.0	110.	25		7.0			
3		0.98	514.5	294.0	110.	25		7.0			
4		0.90	563.5	318.5	122.	50		7.0			
			• • •								
763		0.64	784.0	343.0	220.	50		3.5			
764		0.62	808.5	367.5	220.	50		3.5			
765		0.62	808.5	367.5	220.	50		3.5			
766		0.62	808.5	367.5	220.	50		3.5			
767		0.62	808.5	367.5	220.	50		3.5			
	orientation	glazing_area	glazing ar	rea dist	heating	load	cooling	load			
0	2	0.0	0 0=	_ 0		.5 . 55		- 21.33			
1	3	0.0		0		.5.55		21.33			
2	4	0.0		0	1	.5.55	2	21.33			
3	5	0.0		0		.5.55	2	21.33			
4	2	0.0		0	2	0.84	2	28.28			
	• • •	• • •									
763	5	0.4		5	1	7.88	2	21.40			
764	2	0.4		5	1	.6.54	1	16.88			
765	3	0.4		5	1	6.44	1	17.11			
766	4	0.4		5	1	6.48	1	16.61			
767	5	0.4		5	1	6.64	1	16.03			

[768 rows x 10 columns]>

df2.describe

<bound method<="" th=""><th>NDFrame.describe o</th><th>f r</th><th>relative_compac</th><th>tness s</th><th>urface_area</th><th>wall_area</th><th>roof_area</th><th>overall_height</th><th>\</th></bound>	NDFrame.describe o	f r	relative_compac	tness s	urface_area	wall_area	roof_area	overall_height	\
0	0.98	514.5	294.0	110.25	•	7.0			
1	0.98	514.5	294.0	110.25	•	7.0			
2	0.98	514.5	294.0	110.25	•	7.0			
3	0.98	514.5	294.0	110.25	•	7.0			
4	0.90	563.5	318.5	122.50	•	7.0			
• •	• • •		• • •			• • •			
763	0.64	784.0	343.0	220.50		3.5			
764	0.62	808.5	367.5	220.50	:	3.5			

765		0.62	808.5 367.	5 220.50	3.5
766		0.62	808.5 367.	220.50	3.5
767		0.62	808.5 367.	220.50	3.5
	orientation	glazing_area	<pre>glazing_area_dist</pre>	heating_load	cooling_load
0	2	0.0	0	15.55	21.33
1	3	0.0	0	15.55	21.33
2	4	0.0	0	15.55	21.33
3	5	0.0	0	15.55	21.33
4	2	0.0	0	20.84	28.28
763	5	0.4	5	17.88	21.40
764	2	0.4	5	16.54	16.88
765	3	0.4	5	16.44	17.11
766	4	0.4	5	16.48	16.61
767	5	0.4	5	16.64	16.03

[768 rows x 10 columns]>

plt.figure(figsize=(12,12))
sns.heatmap(df2.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7faba034d610>

pd.set_option('display.float_format',lambda x: $'\{:,.2f\}'$.format(x) if abs(x) < 10000 else $'\{:,.0f\}'$.format(x)) df2.corr()

		relative_compactness	surface_area	wall_area	roof_area	overall_height	orientation	glazing_area	glazin
	relative_compactness	1.00	-0.99	-0.20	-0.87	0.83	0.00	-0.00	
	surface area	-0.99	1.00	0.20	0.88	-0.86	-0.00	0.00	
from	alize inputs, set out sklearn.preprocessing Normalizer(copy=False	import Normalizer							

X = df2.drop(['heating_load','cooling_load'], axis=1)

X = nr.fit_transform(X)

y = df2[['heating_load','cooling_load']]

g.-----g_-----

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 123)

X_new = pd.DataFrame({'relative_compactness': [df2.relative_compactness.min(), df2.relative_compactness.max()]}) X_new.head()

	relative_compactness	1
0	0.62	
1	0.98	

import statsmodels.formula.api as smf

Create fitted model. lm = smf.ols(formula='heating_load ~ relative_compactness', data=df2).fit()

Get coefficients.

lm.params

pred = lm.predict(X_new) pred

> 13.75 35.12 dtype: float64

```
df2.plot(kind='scatter', x='relative_compactness', y='heating_load')
plt.plot(X_new, pred, c='red', linewidth=2)
```

[<matplotlib.lines.Line2D at 0x7faba03bd590>]

array([[0., -0., 0., -0., 0., 0., 0., 0.],

Implementation of Lasso Regression

```
from sklearn.linear_model import Lasso
from sklearn.linear_model import LassoCV

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

lasso_model = Lasso().fit(X_train, y_train)
lasso_model
    Lasso()

lasso_model.intercept_
    array([22.101875 , 24.35225694])

lasso_model.coef_
```

```
[0., -0., 0., -0., 0., 0., 0., 0.]
from sklearn.metrics import mean_squared_error
y_pred = lasso_model.predict(X_test)
np.sqrt(mean_squared_error(y_test, y_pred))
     10.000941383873894
lasso_model.score(X,y)
     -0.0005141088871829513
Implementation of Ridge Regression
from sklearn.linear_model import Ridge
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 42) # Train test split
ridge_model = Ridge(alpha = 5).fit(X_train, y_train)
ridge_model
     Ridge(alpha=5)
ridge_model.intercept_
     array([22.32902789, 24.52907455])
ridge_model.coef_
     array([[ 0.11629168, -11.54544662, 36.83527657, -24.19036159,
              1.88144148, 0.24205811, 0.07361704, 0.41832675],
           [ 0.11410307, -10.71744662, 34.30447853, -22.51096257,
               1.81488642, 0.2554495, 0.05716537, 0.31520485])
ridge_model = Ridge().fit(X_train, y_train)
y_pred = ridge_model.predict(X_train)
RMSE = np.sqrt(mean_squared_error(y_train, y_pred))
RMSE
     5.314821337489512
```