_____ P4 de Álgebra Linear I – 2011.2

28 de novembro de 2011.

Nome:	Matrícula:
Assinatura:	Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma). Provas sem nome não serão corrigidas e terão nota ZERO. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

Q	1.a	1.b	1.c	1.d	2.a	2.b	3.a	3.b	3.c	4.a	4.b	4.c	soma
\mathbf{V}	1.0	1.0	1.0	0.5	1.0	1.0	0.5	1.0	1.0	0.7	0.7	0.6	10.0
N													

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos</u>!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.
- Se estiver fazendo a prova para subir nota e não quiser que sua prova seja corrigida escreva a caneta de forma clara **Não corrigir** no retângulo no canto superior esquerdo. Caso contrário a prova será corrigida e a nota lançada.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

Questão 1) Considere a transformação linear $A\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica é

$$[A] = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- a) Determine uma base ortonormal β de autovetores de A.
- b) Determine a matriz de A na base β escolhida no item (a).
- c) Determine a matriz de A^5 na base β escolhida no item (a).
- d) Determine uma base γ da imagem de Atal que todo vetor da base γ seja unitário.

Questão 2)

- a) Considere uma transformação linear $A \colon \mathbb{R}^2 \to \mathbb{R}^2$ que
 - não possui inversa,
 - não é diagonalizável e
 - $\bullet\,$ a matriz de A na base canônica é

$$[A] = \begin{pmatrix} 1 & a \\ b & c \end{pmatrix}, \quad a, b, c \in \mathbb{Z}.$$

Sabendo que (1,1) é um autovetor determine a,b e c.

b) Considere uma transformação linear $B: \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz [B] na base canônica é simétrica e tem traço 3. Sabemos que

$$B(1,0,-1) = 2(1,0,-1)$$

e que a imagem de B é o plano

imagem
$$(B) = \{ \bar{v} = (x, y, z) \in \mathbb{R}^3 \colon x + y + z = 0 \}.$$

Determine uma base ortonormal β formada por autovetores de B.

Nota: as coordenadas dos vetores estão escritas na base canônica.

Questão 3) Considere o sub-espaço vetorial \mathbb{W} de \mathbb{R}^3 definido por

$$\mathbb{W} = \{ v = (x, y, z) \colon x - y + 2z = 0 \}$$

e as bases ortonormais γ de \mathbb{W} e η de \mathbb{R}^3

$$\gamma = \left\{ \left(\frac{2}{\sqrt{5}}, 0, \frac{-1}{\sqrt{5}} \right), \left(\frac{1}{\sqrt{30}}, \frac{5}{\sqrt{30}}, \frac{2}{\sqrt{30}} \right) \right\}$$

е

$$\eta = \left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right) \right\}.$$

- a) Determine as coordenadas do vetor $\bar{v} = (-1, 3, 2) \in \mathbb{W}$ na base γ .
- **b)** Determine uma base ortonormal α de \mathbb{R}^3 que contenha os vetores da base γ .
- c) Considere a transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base η é

$$[T]_{\eta} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Determine a diagonal da matriz de T na base canônica.

Nota: as coordenadas dos vetores estão escritas na base canônica.

 ${f Quest\~{ao}}$ 4) Considere o sistema linear de equações

$$x + y + z = 1,$$

 $x + 2y + 3z = 1,$
 $x + 3y + az = b.$

- a) Encontre os valores de a e b para que o sistema tenha solução única.
- b) Encontre os valores de a e b para que o sistema tenha infinitas soluções.
- ${\bf c}$) Encontre os valores de a e b para que o sistema não tenha solução.