

HYPOTHESIS

The hypothesis is that fact of moving bitcoins from one wallet to another can cause price changes.

PLAN

Transaction database

trx 1	1 BTC from Wallet 1 to Wallet 2
trx 2	4 BTC from Wallet 3 to Wallet 4
trx 3	42 BTC from Wallet 4 to Wallet 1

1) Taking raw transactional data from database

Wallet's features

	balance	frequency	trx size	
Wallet 2				
Wallet 3				

2) Derive features of each wallet based on their transactional activity

Date	transaction	
April 1	trx1	
April 2	trx2	
April 3	trx3	
April 4	trx4	

3) Cluster wallets based on their features. Then label each transaction regarding the cluster where the transaction has happened

Datetime	1 -> 2	2 -> 3	3 -> 4	BTC price
April 1	1000	- 2000	200	60000
April 2	- 1000	300	3000	61000
April 3	- 5000	- 5000	- 1000	59000
April 4	3000	200	100	58000

4) Based on the amount of transaction between cluster predict price of the coin in upcoming periods (next day)

ARCHITECTURE OVERVIEW

