

TRIGONOMETRY

Chapter 1

LEVEL

Razones
Trigonométricas de un
Ángulo Agudo

TRIGONOMETRY

indice

01. Motivating Strategy 🔊

02. Helico Theory

 \triangleright

03. Helico Practice

04. Helico Worskhop 🕑

TEOREMA DE PITÁGORAS CON CUBOS

Play

MOTIVATING STRATEGY

Material Digital

Resumen \odot

HELICO THEORY

TRIÁNGULO RECTÁNGULO

Es aquel triángulo donde uno de sus ángulos interiores es recto.

Triángulo ABC recto en C a, b son catetos c es la hipotenusa

Teorema de Pitágoras

$$c^2 = a^2 + b^2$$

ASOCIACIÓN EDUCATIVA

SACO OLIVEROS

SISTEMA HELICOIDAL

Ejemplo: Calcule x en cada figura.

 Triángulos pitagóricos más conocidos:

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Es el cociente que se establece entre las longitudes de los lados de un triángulo rectángulo con respecto a un ángulo agudo interior.

Con respecto a θ :

a: longitud del cateto opuesto (Co)

b: longitud del cateto adyacente (Ca)

c: longitud de la hipotenusa (H)

Las razones trigonométricas se definen así:

sen	cos	tan	cot	sec	csc	
Со	Ca	Со	Ca	Н	Н	
H	H	Ca	Co	Ca	Co	

CoCa CoCa Helada Helada

Observación: Para calcular las RT del ángulo mitad de un ángulo agudo, se sugiere la prolongación de la hipotenusa.

$$\tan \theta = \frac{Co}{Ca + H}$$

$$\theta$$

$$\cot \theta$$

$$\theta$$

$$\cot \theta$$

$$\theta$$

$$\cot \theta$$

Resolución de Problemas

Problema 01 (S)

Problema 02 (>)

Problema 03 💿

Problema 04 (S)

Problema 05 🗇

HELICO PRACTICE

Problema 01 🏵

1. Si $tan\theta = \frac{2}{3}$ y θ es un ángulo agudo, calcule

$$K = \sqrt{13} (sen\theta + cos\theta)$$

Resolución

Dato:

$$H^2 = 2^2 + 3^2$$
 $H = \sqrt{13}$

Efectuamos: $K = \sqrt{13} (sen\theta + cos\theta)$

$$K = \sqrt{13} \left(\frac{2}{\sqrt{13}} + \frac{3}{\sqrt{13}} \right) = \sqrt{13} \left(\frac{5}{\sqrt{13}} \right)$$

∴ K = 5

Problema 02 2

M

2. Si $sec\alpha = 2, 6$ y α es un ángulo agudo, calcule $M = cot\alpha + csc\alpha$

Resolución

Dato:

$$\sec \alpha = \frac{26}{10} = \frac{13}{5} = \frac{H}{Ca}$$

sen	cos	tan	cot	sec	csc
Co	Ca	Co	Ca	H	H
H	H	Ca	Co	Ca	Co

$$13^2 = 5^2 + Co^2$$
 $Co = 12$

Efectuamos: $M = \cot \alpha + \csc \alpha$

$$M = \frac{5}{12} + \frac{13}{12} = \frac{18}{12}$$

$$\therefore \mathbf{M} = \frac{3}{2}$$

Problema 03 ②

3. En un triángulo rectángulo ABC(A = 90°) calcule E = tanB . tanC + 2

Resolución

Efectuamos:

 $E = tanB \cdot tanC + 2$

sen	cos	tan	cot	sec	csc
Co	Ca	Co	Ca	H	H
H	H	Ca	0	Ca	Co

$$\mathbf{E} = \frac{\mathbf{b}}{\mathbf{c}} \cdot \frac{\mathbf{c}}{\mathbf{b}} + 2 = 1 + 2$$

 $\therefore E = 3$

Problema 04 **⊘**

M

4.

Pedro irá a visitar a María por ser su cumpleaños, pero su padre quiere saber a qué distancia está su casa. - Determine dicha distancia si ella está dada por d = (5 tanA) km; siendo el triángulo ABC rectángulo (recto en C), cumpliéndose que : 9 senA + 4 cosB = 12.

Resolución

Dato:

$$9 \operatorname{senA} + 4 \operatorname{cosB} = 12$$

$$9.\frac{a}{c} + 4.\frac{a}{c} = 12$$

$$13.\frac{a}{c}=12$$

$\Rightarrow \frac{a}{c} = \frac{12}{13}$

Calculamos d:

$$d = (5 tanA) km$$

$$d = 5(\frac{12}{5}) \text{ km}$$

$$d = 12 \text{ km}$$

Problema 05 **⊘**

5.

Se desea conectar una extensión de internet y se desea saber qué distancia mide.

Determine qué distancia mide el cable que está sobre la hipotenusa del triángulo rectángulo ABC ($B = 90^{\circ}$), el cual tiene un perímetro de 60 m y además la tangente de uno de sus ángulos agudos es 0,75.

Resolución

sen	cos	tan	cot	sec	csc
Co	Ca	Co	Ca	H	H
H	H	Ca	Co	Ca	Co

Datos

$$tanA = \frac{75}{100} = \frac{3k}{4k} = \frac{co}{cA}$$

Perimetro = 60 m

$$5k + 4k + 3k = 60 m$$

$$12k = 60 \text{ m} \implies k = 5 \text{ m}$$

Calculamos AC:

$$AC = 5k$$

$$AC = 5 (5 m)$$

$$\therefore$$
 AC = 25 m

Problemas Propuestos

Problema 07 🕑

Problema 08 😥

Problema 09 🕑

Problema 10 🕑

HELICO WORKSHOP

Problema 06 💿

Si $\cot \alpha = 5/12$ y α es un ángulo agudo, calcule:

 $N = 13(sen\alpha + cos\alpha)$

- A)26
- B) 34
- C) 17
- D) 5 E) 25

Si $\csc\beta = 2$ y β es un ángulo agudo, calcule

$$P = \sec \beta + \tan \beta$$

- A) $\sqrt{3}$
- B) $2\sqrt{3}$
- C) 3

D)
$$\frac{\sqrt{3}}{3}$$

E)
$$\frac{1}{3}$$

Según el gráfico, calcule

$$Q = (a + 1) \cdot \text{sen}\alpha$$

A) 80 D) 10

- B) 60
- E) 40

Problema 09 💿

José desea cancelar una deuda a Pedro que es igual a "100S" soles. Calcule el número de soles que pagará José si $\csc\alpha = 1,25$, α un ángulo agudo y $S = sen\alpha + cos\alpha$.

- A) 100
- B) 140 C) 160

- D) 180
- E) 200

Bruno recibirá una propina por sus buenas calificaciones, esta asciende al monto de 4M soles. Determine la cantidad que recibirá Bruno si se cumple que en un triángulo rectángulo ABC (B=90°), $M = \cot A \cdot \cot C + 4$.

- A) S/25
- B) S/12
- C) S/13
- D) S/15
- E) S/20

