In the Claims

1. (previously presented) A colour developer of the formula (1)

$$(R_1)_{m} \longrightarrow O \longrightarrow A \longrightarrow O \longrightarrow (R_2)_{n}$$

$$(1)$$

wherein

A stands for a unsubstituted or substituted divalent aromatic radical, and

 R_1 and R_2 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted phenyl, m stands for 0, 1, 2, 3, 4 or 5, n stands for 0, 1, 2, 3, 4, or 5, with the proviso, that if A stands for para-phenylene, R_1 for hydroxy (m \neq 0), then R_2 is not hydroxy.

- 2. (original) A colour developer according to claim 1, wherein the divalent aromatic radical is phenylene, biphenylene, naphthylene, or anthrylene, which can be substituted.
- **3.** (previously presented) A colour developer according to claim 1, wherein the divalent aromatic radical is

$$(R_{3})_{p} \qquad (R_{3})_{q_{1}} \qquad (R_{3})_{q_{2}} \qquad (R_{3})_{q_{3}} \qquad (R_{3})_{q_{4}} \qquad (R_{3})_{r_{1}} \qquad (R_{3})_{r_{2}} \qquad (R_{3})_{r_{3}}$$
 or
$$(R_{3})_{r_{6}} \qquad (R_{3})_{r_{4}} \qquad (R_{3})_{r_{5}} \qquad (R_{3})_{r_{6}} \qquad (R_{3})_{r_$$

wherein R_3 stands for hydrogen, hydroxy, unsubstituted or substituted phenyl or naphthyl, unsubstituted or substituted C_5 - C_{10} cycloalkyl, unsubstituted or substituted phenyoxy or naphthyloxy, halomethyl, - $COOR_4$, wherein R_4 stands for hydrogen or C_1 - C_8 alkyl, - $CONR_5$ R₆, wherein R_5 and R_6 , independently from each other stand for hydrogen or C_1 - C_8 alkyl, or - NO_2 , p, q1 and q2, independently from each other stand for 0, 1, 2, 3, 4, q3, q4, r1, r3 and r5, independently from each other, stand for 0, 1, 2, or 3, r2, r4 and r6, independently from each other, stand for 0, 1 or 2.

4. (original) A mixture consisting of

(a) a color developer (1a)

$$(R_7)_s$$
 O A' O $(R_8)_t$ $(1a)$

wherein

A' stands for a unsubstituted or substituted divalent aromatic radical,

 R_7 and R_8 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted phenyl, s stands for 0, 1, 2, 3, 4 or 5, t stands for 0, 1, 2, 3, 4, or 5,

and

(b) a compound of formula (2)

$$(R_{13})_{x1}$$
 O D O $(R_{14})_{x2}$ (2)

wherein D stands for

wherein D' stands for a unsubstituted or substituted divalent aromatic radical, R_{13} stands for a substituent as defined for R_7 , R_{14} stands for a substituent as defined for R_8 , x1 stands for 0, 1, 2, 3, 4 or 5, x2 stands for 0, 1, 2, 3, 4, or 5,

and wherein the weight ratio of (1a) to (2) is chosen in the range from 99.9:0.1 to 0.1:99.9.

- 5. (original) A compound of formula (2) as defined in claim 4.
- 6. (original) A heat sensitive composition consisting of
- a) a colour forming compound, and
- b) a colour developer of the formula (1) as defined in claim 1.
- 7. (original) A heat sensitive composition consisting of
- a) a colour forming compound, and
- b) a mixture of colour developer of the formula (1a) and compound of formula (2) as defined in claim 4.
- **8.** (previously presented) A heat sensitive recording material comprising the colour developer (1) as defined in claim 1.
- **9.** (previously presented) A heat sensitive recording material comprising the heat sensitive composition as defined in claim **6**.
- **10.** (currently amended) A process for the manufacture of a colour developer of formula (1) according to claim 1, by reacting a benzoic acid derivative with a dihalogen derivative, characterized in

(a) reacting benzoic acid derivative of formula (A1)

(A1)

with a dihalogen derivative of formula (B1)

(B1)

wherein R_{16} stands for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a}R_{1b}, wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, z1 stands for 0, 1, 2, 3, 4 or 5, A₁ stands for a unsubstituted or substituted divalent aromatic radical, or

(b) reacting a mixture of benzoic derivatives (A1) and (A2)

with a dihalogen derivative of formula (B1),

wherein R_{17} , different from R_{16} , stands for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, -C(O)R_{1a}, or -NR_{1a}R_{1b}, z2 stands for 0, 1, 2, 3, 4 or 5,

or

(c) reacting benzoic acid derivative of formula (A1) with dihalogen derivative (B1) to yield compound (C1)

$$(R_{16})_{z1}$$
 O A_1 Hall

and then reacting compound (C1) with compound of formula (A2), wherein the molar ratio of (A1) or ((A1)+(A2)) to (B1) is chosen in the range of from 3:1 to 10:1.

11. (currently amended) A process for the manufacture of a mixture of colour developer (1)

$$(R_1)_m$$
 O A O $(R_2)_n$ (1)

wherein

A stands for a unsubstituted or substituted divalent aromatic radical, and

 R_1 and R_2 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a}R_{1b}, wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted or substituted phenyl, m stands for 0, 1, 2, 3, 4 or 5, n stands for 0, 1, 2, 3, 4, or 5, with the proviso, that if A stands for para-phenylene, R_1 for hydroxy (m \neq 0), then R_2 is not hydroxyl,

and compound of formula (2)

$$(R_{13})_{x1}$$
 O D O $(R_{14})_{x2}$ (2)

wherein D stands for

. :21.

wherein D' stands for a unsubstituted or substituted divalent aromatic radical, R₁₃ stands for a substituent as defined for R₂, R₁₄ stands for a substituent as defined for R₈, x1 stands for 0, 1, 2, 3, 4 or 5, x2 stands for 0, 1, 2, 3, 4, or 5,

 R_7 and R_8 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} is defined as above, -C(O) R_{1a} , or -N R_{1a} R_{1b} , wherein R_{1b} is defined as above.

by reacting a benzoic acid derivative with a dihalogen derivative, characterized in

(a) reacting benzoic acid derivative of formula (A1) as defined in claim 10, with a dihalogen derivative of formula (B1) as defined in claim 10, or (b) reacting a mixture of benzoic derivatives (A1) and (A2) as defined in claim 10, with a dihalogen derivative of formula (B1),

or

(c) reacting benzoic acid derivative of formula (A1) with dihalogen derivative (B1) to yield compound (C1) as defined in claim 10 and then reacting compound (C1) with compound of formula (A2),

(a) reacting benzoic acid derivative of formula (A1)

(A1)

with a dihalogen derivative of formula (B1)

(B1)

wherein R₁₆ stands for -OH, unsubstituted or substituted C₁-C₈alkyl, unsubstituted or substituted C₁-C₈alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C₁-C₈alkyl, benzyl or unsubstituted or substituted phenyl, -C(O)R_{1a}, or -NR_{1a}R_{1b}, wherein R_{1b}, independently from R_{1a}, stands for hydrogen, unsubstituted or substituted or substituted or substituted phenyl, z1 stands for 0, 1, 2, 3, 4 or 5, A₁ stands for a unsubstituted or substituted divalent aromatic radical, or

(b) reacting a mixture of benzoic derivatives (A1) and (A2)

with a dihalogen derivative of formula (B1),

wherein R_{17} , different from R_{16} , stands for -OH, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, -C(O)R_{1a}, or -NR_{1a}R_{1b}, z2 stands for 0, 1, 2, 3, 4 or 5,

<u>or</u>

(c) reacting benzoic acid derivative of formula (A1) with dihalogen derivative (B1) to yield compound (C1)

$$(R_{16})_{z1}$$
 $(C1)$

and then reacting compound (C1) with compound of formula (A2),

wherein the molar ratio of (A1) or ((A1)+(A2)) to (B1) is chosen in the range of less than 3:1.

- **12.** (previously presented) A process for the manufacture of a heat sensitive recording material by incorporating the compounds of formula (1) as defined in claim 1 into a coating composition which is applied to a substrate to generate a heat sensitive recording material.
- 13. (previously presented) A process for the manufacture of a heat sensitive recording material by incorporating the mixture of developer (1a) and compound (2) as defined in claim 4 into a coating composition which is applied to a substrate to generate a heat sensitive recording material.

- 14. (previously presented) A process for the manufacture of a heat sensitive recording material by incorporating the compound of formula (2) as defined in claim 5 into a coating composition which is applied to a substrate to generate the heat sensitive recording material.
- **15.** (previously presented) A mixture of a colour developer of formula (1)

wherein

A stands for a unsubstituted or substituted divalent aromatic radical, and

 R_1 and R_2 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} , independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted phenyl, m stands for 0, 1, 2, 3, 4 or 5, n stands for 0, 1, 2, 3, 4, or 5, with the proviso, that if A stands for para-phenylene, R_1 for hydroxy (m \neq 0), then R_2 is not hydroxyl,

and a compound of formula (2)

$$(R_{13})_{x1}$$
 O D O $(R_{14})_{x2}$ (2)

wherein D stands for

wherein D' stands for a unsubstituted or substituted divalent aromatic radical, R_{13} stands for a substituent as defined for R_7 , R_{14} stands for a substituent as defined for R_8 , x1 stands for 0, 1, 2, 3, 4 or 5, x2 stands for 0, 1, 2, 3, 4, or 5,

15 6

 R_7 and R_8 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} is defined as above, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} is defined as above,

wherein the mixture is a product by the process as defined in claim 11.

16. (currently amended) A process for the manufacture of compound (2)

$$(R_{13})_{x1}$$
 O O O $(R_{14})_{x2}$ (2)

wherein D stands for

wherein D' stands for a unsubstituted or substituted divalent aromatic radical, R_{13} stands for a substituent as defined for R_7 , R_{14} stands for a substituent as defined for R_8 , x1 stands for 0, 1, 2, 3, 4 or 5, x2 stands for 0, 1, 2, 3, 4, or 5,

 R_7 and R_8 are independent of each other and stand for -OH, unsubstituted or substituted C_1 - C_8 alkyl, unsubstituted or substituted C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a}, wherein R_{1a} is stands for hydrogen, unsubstituted or substituted C_1 - C_8 alkyl, benzyl or unsubstituted or substituted phenyl, -C(O) R_{1a} , or -NR_{1a} R_{1b} , wherein R_{1b} independently from R_{1a} , stands for hydrogen, unsubstituted or substituted or substituted phenyl,

characterized in reacting compound (C1)

$$(R_{16})_{z1}$$
O
 A_1
Hal

(C1)

A₁ stands for a unsubstituted or substituted divalent aromatic radical, wherein R₁₆ stands for -OH, unsubstituted or substituted C₁-C₈alkyl, unsubstituted or substituted

 C_1 - C_8 alkoxy, unsubstituted or substituted phenyl or naphthyl, -COOR_{1a} and R_{1a} is defined as above, -C(O)R_{1a}, or -NR_{1a}R_{1b}, wherein R_{1b} is defined as above,

and z1 stands for 0, 1, 2, 3, 4 or 5,

with colour developer (1) as defined in claim 1, where R_1 and/or R_2 of developer (1) is hydroxy and m is 1, 2, 3, 4 or 5.

- **17.** (previously presented) A heat sensitive recording material comprising the mixture as defined in claim **4**.
- **18.** (previously presented) A heat sensitive recording material comprising the heat sensitive composition as defined in claim **7**.

⇒Vc).