Generating Random WMC Instances An Empirical Analysis with Varying Primal Treewidth

Paulius Dilkas

National University of Singapore

30th May 2024

Overview

- Introduction
- 2 Background
- 3 Generating Random WMC Instances
- 4 Experiments
 - Validation
 - Hardness
 - Statistical Analysis
 - Miscellaneous
- Conclusion

Which Algorithm Is Better? It Depends on the Data

The runtime data is from Dilkas and Belle (2021): various Bayesian networks encoded using the approach by Darwiche (2002)

The Problem: Weighted Model Counting (WMC)

- A generalisation of propositional model counting (#SAT)
- Applications:
 - graphical models
 - probabilistic programming
 - neuro-symbolic Al
- WMC algorithms use:
 - dynamic programming
 - knowledge compilation
 - SAT solvers

Example

$$w(x) = 0.3, \ w(\neg x) = 0.7,$$

 $w(y) = 0.2, \ w(\neg y) = 0.8$

$$WMC(x \lor y) = w(x)w(y) + w(x)w(\neg y) + w(\neg x)w(y) = 0.44$$

(Some of the) WMC Algorithms

- CACHET (Sang et al. 2004)
 - a SAT solver with clause learning and component caching
- C2D (Darwiche 2004)
 - knowledge compilation to d-DNNF
- D4 (Lagniez and Marquis 2017)
 - knowledge compilation to decision-DNNF
- MINIC2D (Oztok and Darwiche 2015)
 - knowledge compilation to decision-SDDs
- DPMC (Dudek, Phan and Vardi 2020)
 - dynamic programming with ADDs and tree decomposition based planning

Q: Why isn't SharpSAT-TD included in the experiments?

A: Because I started setting up these experiments eight days after the ${
m SHARPSAT\text{-}TD}$ paper came out

- Q: Why isn't SharpSAT-TD included in the experiments?
- A: Because I started setting up these experiments eight days after the SHARPSAT-TD paper came out
- Q: Why isn't GANAK included in the experiments?
- A: Because it's easy to argue that probabilistic algorithms are out of scope (and I had lots of algorithms already)

- Q: Why isn't SharpSAT-TD included in the experiments?
- A: Because I started setting up these experiments eight days after the ${\it SHARPSAT-TD}$ paper came out
- Q: Why isn't GANAK included in the experiments?
- A: Because it's easy to argue that probabilistic algorithms are out of scope (and I had lots of algorithms already)
- Q: Why am I giving a talk about this now?

Overview

- Introduction
- 2 Background
- 3 Generating Random WMC Instances
- 4 Experiments
 - Validation
 - Hardness
 - Statistical Analysis
 - Miscellaneous
- Conclusion

Negation normal form: ¬ is only applied to variables

Negation normal form: ¬ is only applied to variables

Decomposability: for every $\alpha \wedge \beta$, $Vars(\alpha) \cap Vars(\beta) = \emptyset$

Negation normal form: ¬ is only applied to variables

Decomposability: for every $\alpha \wedge \beta$,

 $\mathsf{Vars}(\alpha) \cap \mathsf{Vars}(\beta) = \emptyset$

Determinism: for every $\alpha \vee \beta$, $\alpha \wedge \beta \equiv \bot$

Negation normal form: ¬ is only applied to variables

Decomposability: for every $\alpha \wedge \beta$,

 $\mathsf{Vars}(\alpha) \cap \mathsf{Vars}(\beta) = \emptyset$

Determinism: for every $\alpha \vee \beta$, $\alpha \wedge \beta \equiv \bot$

Decision: all disjunctions are of the

form

The Parameterised Complexity of WMC Algorithms

Let n be the number of variables and m be the number of clauses.

- Component caching (used in CACHET) is $2^{\mathcal{O}(w)}n^{\mathcal{O}(1)}$, where w is the branchwidth of the underlying hypergraph (Bacchus, Dalmao and Pitassi 2009)
 - Branchwidth is within a constant factor of primal treewidth
- C2D is based on an algorithm, which is $\mathcal{O}(2^w mw)$, where w is at most primal treewidth (Darwiche 2001; Darwiche 2004)
- DPMC can be shown to be $\mathcal{O}(4^w mn)$, where w is an upper bound on primal treewidth

Early History of Random SAT

- Goldberg, Purdom Jr. and Brown (1982) show that (simplified)
 Davis-Putnam procedures run in polynomial time on average on the following model:
 - Fix the numbers of variables and clauses
 - Let $p \in (0, 0.5)$
 - For each clause C and variable x:
 - Add x to C w.p. p
 - Or add $\neg x$ to C w.p. p
 - Or do nothing w.p. 1 2p

Early History of Random SAT

- Goldberg, Purdom Jr. and Brown (1982) show that (simplified)
 Davis-Putnam procedures run in polynomial time on average on the following model:
 - Fix the numbers of variables and clauses
 - Let $p \in (0, 0.5)$
 - For each clause C and variable x:
 - Add x to C w.p. p
 - Or add $\neg x$ to C w.p. p
 - Or do nothing w.p. 1 2p
- Franco and Paull (1983) proposed what became the standard random k-CNF model:
 - Fix the numbers of variables, clauses, and clause width
 - Sample each clause independently as a subset of all possible literals
 - **3** Reject clauses that have x and $\neg x$ for some variable x
 - They show that the Davis-Putnam procedure requires exponential time w.p. 1

 Phase transitions for decision problems have been studied both experimentally and theoretically for a long time (see, e.g., Cheeseman, Kanefsky and Taylor (1991))

- Phase transitions for decision problems have been studied both experimentally and theoretically for a long time (see, e.g., Cheeseman, Kanefsky and Taylor (1991))
- Phase transitions are characterised by a parameter k such that:
 - For low values of k, the problem is easy
 - For high values of k, the problem is easy again
 - Average values of k is where the problem becomes hard

- Phase transitions for decision problems have been studied both experimentally and theoretically for a long time (see, e.g., Cheeseman, Kanefsky and Taylor (1991))
- Phase transitions are characterised by a parameter k such that:
 - For low values of k, the problem is easy
 - For high values of k, the problem is easy again
 - Average values of k is where the problem becomes hard
- For SAT-based problems, (clause) density is the standard parameter
 - i.e., the number of clauses divided by the number of variables

- Phase transitions for decision problems have been studied both experimentally and theoretically for a long time (see, e.g., Cheeseman, Kanefsky and Taylor (1991))
- Phase transitions are characterised by a parameter k such that:
 - For low values of k, the problem is easy
 - For high values of k, the problem is easy again
 - Average values of k is where the problem becomes hard
- For SAT-based problems, (clause) density is the standard parameter
 - i.e., the number of clauses divided by the number of variables
- The most comprehensive (experimental) study of phase transitions for SAT algorithms is by Coarfa et al. (2003)
 - They show that the transition from polynomial to exponential time depends on the solver

Overview

- Introduction
- 2 Background
- 3 Generating Random WMC Instances
- Experiments
 - Validation
 - Hardness
 - Statistical Analysis
 - Miscellaneous
- Conclusion

Generating Random WMC Instances: The Algorithm

```
\phi \leftarrow \text{empty CNF formula};
 G \leftarrow \text{empty graph};
for i \leftarrow 1 to m do \leftarrow
                                                                                                                                                                                                                                                                                                                                                      ---- • the number of
                               X \leftarrow \emptyset:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     clauses
                             for i \leftarrow 1 to k do \leftarrow
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              clause width
                                                             x \leftarrow \text{newVariable}(X, G); \leftarrow 
                                                          X \leftarrow X \cup \{x\};
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     a variable
                                                        \mathcal{V}(G) \leftarrow \mathcal{V}(G) \cup \{x\};
                                                                                                                                                                                                                                                                                                                                                                                                                                        ____ a (fair) coin flip
                                        | \mathcal{E}(G) \leftarrow \mathcal{E}(G) \cup \{\{x,y\} \mid y \in X\}; 
                               \phi \leftarrow \phi \cup \{\{ \land \mathcal{U}\{x, \neg x\} \mid x \in X \} \};
```

How to Pick a Variable

Parameter $\rho \in [0,1]$ biases the probability distribution towards adding variables that would introduce fewer new edges.

Function newVariable (set of variables X, primal graph G):

```
\begin{split} & N \leftarrow \{\, e \in \mathcal{E}(G) \mid |e \cap X| = 1 \,\}; \\ & \text{if } N = \emptyset \text{ then return } x \leadsto \mathcal{U}(\{\, x_1, x_2, \ldots, x_n \,\} \setminus X); \\ & \text{return} \\ & x \leadsto \left( \{\, x_1, x_2, \ldots, x_n \,\} \setminus X, y \mapsto \frac{1-\rho}{n-|X|} + \rho \frac{|\{\, z \in X \mid \{\, y, z\,\} \in \mathcal{E}(G)\,\}|}{|N|} \,\right); \end{split}
```

From Random SAT to Random WMC

Example partially-filled formula:

$$(\neg x_5 \lor x_2 \lor x_1) \land (x_5 \lor ? \lor ?)$$

Its primal graph:

The probability distribution for the next variable

Base probability of each variable being chosen:

$$\frac{1-\rho}{4}$$

Both x_1 and x_2 get a bonus probability of $\rho/2$ for each being the endpoint of one out of the two neighbourhood edges.

Overview

- Introduction
- 2 Background
- 3 Generating Random WMC Instances
- 4 Experiments
 - Validation
 - Hardness
 - Statistical Analysis
 - Miscellaneous
- Conclusion

The Relationship Between ρ and Primal Treewidth

Experiment 1 (Validation)

- Set the number of variables to 100
- Consider a geometric sequence of 11 densities from 0.4 to 14.1
- Let ρ range from 0 to 1 in steps of 0.01
- Generate ten 2-, 3-, 4-, and 5-CNF formulas

The Relationship Between ρ and Primal Treewidth

Overview

- Introduction
- 2 Background
- 3 Generating Random WMC Instances
- 4 Experiments
 - Validation
 - Hardness
 - Statistical Analysis
 - Miscellaneous
- Conclusion

Density, Primal Treewidth, and Runtime

Experiment 2 (The Main One)

- Set the number of variables to 70
- Consider densities ranging from 1 to 4.3 in steps of 0.3
- Let ρ range from 0 to 0.5 in steps of 0.01
- Generate one 3-CNF formula

Peak Hardness w.r.t. Density

Let μ denote the density, i.e., the number of clauses divided by the number of variables.

- CACHET is known to peak at $\mu = 1.8$ (Sang et al. 2004)
- Bayardo Jr. and Pehoushek (2000) show some #SAT algorithms to peak at $\mu=1.2$ and $\mu=1.9$

Peak Hardness w.r.t. Density

Let μ denote the density, i.e., the number of clauses divided by the number of variables.

- CACHET is known to peak at $\mu = 1.8$ (Sang et al. 2004)
- Bayardo Jr. and Pehoushek (2000) show some #SAT algorithms to peak at $\mu=1.2$ and $\mu=1.9$
- In our experiments:
 - DPMC peaks at $\mu = 2.2$
 - ullet all other algorithms peak at $\mu=1.9$

Peak Hardness w.r.t. Density (when $\rho = 0$)

Hardness w.r.t. Primal Treewidth (when $\mu=1.9$)

Overview

- Introduction
- 2 Background
- Generating Random WMC Instances
- 4 Experiments
 - Validation
 - Hardness
 - Statistical Analysis
 - Miscellaneous
- Conclusion

Is The Relationship Exponential: Two Approaches

Linear Regression

We fit the model $\ln t \sim \alpha w + \beta$, i.e., $t \sim e^{\beta} (e^{\alpha})^{w}$, where t is runtime, and w is primal treewidth

Empirical Scaling Analyzer (ESA) v2 (Pushak and Hoos 2020)

Prepare a list of hypotheses about scalability, e.g.:

```
exponential: t \sim \alpha \beta^w, polynomial: t \sim \alpha w^\beta
```

- 2 Use 30 % of the data with the largest values of w for testing
- For each hypothesis, ESA produces:
 - estimates of parameter values,
 - support loss, and
 - challenge loss

How Well Does Linear Regression Explain the Data?

4.3 -	0.62	0.33	1	0.94	0.53
4 -		0.49	0	0.97	0.43
3.7 -	0.57	0.71	0.83	0.94	0.18
3.4 -	0.47	0.85	0.8	0.97	0.53
3.1 -	0.88	0.92	0.91	0.91	0.9
3 2.8 -	0.97	0.96	0.98	0.98	0.95
2.5 -	0.98	0.98	0.97	1	0.98
2.2 -	0.99	0.98	0.98	0.99	0.98
1.9 -	0.98	0.99	0.98	0.99	0.98
1.6 -	0.99	0.99	0.98	1	0.96
1.3 -	0.98	1	0.99	0.99	0.9
1 -	0.91	0.99	0.99	0.87	0.79
	c2d	CACHET	D4	DPMC	MINIC2D

The Base of the Exponential

Overview

- Introduction
- 2 Background
- Generating Random WMC Instances
- 4 Experiments
 - Validation
 - Hardness
 - Statistical Analysis
 - Miscellaneous
- Conclusion

Does Real Data Confirm Our Observations?

Bonus: How DPMC Reacts to Redundancy in Weights

Overview

- Introduction
- 2 Background
- 3 Generating Random WMC Instances
- Experiments
 - Validation
 - Hardness
 - Statistical Analysis
 - Miscellaneous
- Conclusion

Summary

- This work introduced a random model for WMC instances with a parameter that indirectly controls primal treewidth
- Observations:
 - All algorithms scale exponentially w.r.t. primal treewidth
 - The running time of DPMC:
 - peaks at a higher density
 - and scales worse w.r.t. primal treewidth
- Future work:
 - A theoretical relationship between ρ and primal treewidth
 - Non-k-CNF instances
 - Algorithm portfolios for WMC

References I

- Bacchus, F., S. Dalmao and T. Pitassi (2009). 'Solving #SAT and Bayesian Inference with Backtracking Search'. In: *J. Artif. Intell. Res.* 34, pp. 391–442.
- Bayardo Jr., R. J. and J. D. Pehoushek (2000). 'Counting Models Using Connected Components'. In: AAAI/IAAI. AAAI Press / The MIT Press, pp. 157–162.
- Bischl, B. et al. (2016). 'ASlib: A benchmark library for algorithm selection'. In: *Artif. Intell.* 237, pp. 41–58.
- Cheeseman, P. C., B. Kanefsky and W. M. Taylor (1991). 'Where the Really Hard Problems Are'. In: *IJCAI*. Morgan Kaufmann, pp. 331–340.
- Coarfa, C. et al. (2003). 'Random 3-SAT: The Plot Thickens'. In: Constraints An Int. J. 8.3, pp. 243–261.
- Darwiche, A. (2001). 'Decomposable negation normal form'. In: *J. ACM* 48.4, pp. 608–647.

References II

- Darwiche, A. (2002). 'A Logical Approach to Factoring Belief Networks'. In: KR. Morgan Kaufmann, pp. 409–420.
- (2004). 'New Advances in Compiling CNF into Decomposable Negation Normal Form'. In: *ECAI*. IOS Press, pp. 328–332.
- Dilkas, P. and V. Belle (2021). 'Weighted Model Counting Without Parameter Variables'. In: *SAT*. Vol. 12831. Lecture Notes in Computer Science. Springer, pp. 134–151.
- Dudek, J. M., V. H. N. Phan and M. Y. Vardi (2020). 'DPMC: Weighted Model Counting by Dynamic Programming on Project-Join Trees'. In: CP. Vol. 12333. Lecture Notes in Computer Science. Springer, pp. 211–230.
- Franco, J. and M. C. Paull (1983). 'Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem'. In: *Discret. Appl. Math.* 5.1, pp. 77–87.

References III

- Goldberg, A., P. W. Purdom Jr. and C. A. Brown (1982). 'Average Time Analyses of Simplified Davis-Putnam Procedures'. In: *Inf. Process. Lett.* 15.2, pp. 72–75.
- Lagniez, J. and P. Marquis (2017). 'An Improved Decision-DNNF Compiler'. In: *IJCAI*. ijcai.org, pp. 667–673.
- Oztok, U. and A. Darwiche (2015). 'A Top-Down Compiler for Sentential Decision Diagrams'. In: *IJCAI*. AAAI Press, pp. 3141–3148.
- Pushak, Y. and H. H. Hoos (2020). 'Advanced statistical analysis of empirical performance scaling'. In: *GECCO*. ACM, pp. 236–244.
- Sang, T. et al. (2004). 'Combining Component Caching and Clause Learning for Effective Model Counting'. In: *SAT*.

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

