Московский физико-технический институт

Лабораторная работа

Петля гистерезиса (статический метод)

выполнила студентка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

Исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра

2 В работе используются:

- генератор тока с блоком питания
- тороид
- соленоид
- баллистический гальванометр с осветителем и шкалой
- амперметры
- магазин сопротивлений
- лабораторный автотрансформатор
- разделительный трансформатор

3 Теоретические положения

Магнитная индукция **B** и напряжённость магнитного поля **H** в ферромагнетике неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. В эксперименте будет исследоваться основная кривая намагничивания OACD и предельная петля гистерезиса DEFD'E'F'D (см. рис. 1).

С помощью баллистического гальванометра и амперметра будем косвенно измерять зависимость индукции магнитного поля от его напряжённости. Напряжённость магнитного поля H в тороиде зависит от тока, текущего в намагничивающей обмотке:

$$H = \frac{N_{T_0}}{\pi D} I,\tag{1}$$

где D - средний диаметр тора, N_{T_0} - количество витков.

Изменение поля приводит к изменению потока магнитной индукции Φ в сердечнике, в измерительной обмотке возникает ЭДС индукции, через гальва-

Рис. 1: Петля гистерезиса ферромагнетика

нометр, в свою очередь, протекает импульс тока, изменяется положение рамки и, следовательно, зайчика. Окончательно (определив также баллистическую постоянную гальванометра, проведя измерения с соленоидом) для изменения магнитной индукции в сердечнике тороида получаем:

$$\Delta B = \mu_0 (\frac{d_C}{d_T})^2 \frac{R}{R_1} \frac{N_{C0}}{N_{T1}} \frac{N_{C1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}, \tag{2}$$

где R - полное сопротивление измерительной цепи тороида, d_C, d_T - диаметр поперечного сечения соленоида и тороида соответственно, N_{C0} - число витков пустотелого соленоида, N_{C1} - число витков короткой измерительной катушки l_C - длина соленоида, $\triangle x_1$ - отклонение зайчика при работе с соленоидом, $\triangle x$ отклонение зайчика в эксперименте.

4 Экспериментальная установка

Рис. 2: Схема установки для исследования петли гистерезиса

После снятия петли гистерезиса необходимо размагнитить сердечник, подключив его к цепи переменного тока, постепенно снижая его амплитуду. Только затем следует приступать к снятию основной кривой намагничивания.

Рис. 3: Схема установки для калибровки гальванометра

5 Ход работы

1. Подготовив к работе экспериментальную установку, снимем зависимость величины скачка Δx от величины силы тока в цепи I. Пройдём по всей петле гистерезиса, результаты занесём в таблицу 1.

Таблица 1: Зависимость $\triangle x$ от I и соответствующие H и $\triangle B$, петля гистерезиса

I, MA	538	244	146.7	96.3	64.7	49.3	39.8	33.9	30.9	27.2	23.6	0.63
$\triangle x$, cm	6.9	6.8	4.95	3.7	2.9	1.7	1.13	0.7	0.4	0.5	0.5	4.1
H, A/M	299.84	135.987	81.760	53.670	36.059	27.476	22.182	18.893	17.221	15.159	13.153	0.351
$\triangle B$, Тл	0.002	0.211	0.166	0.124	0.097	0.057	0.038	0.023	0.014	0.010	0.007	0.007
I, мА	0.00	0.6	23.7	27.3	31.1	34.1	40.2	49.6	64.8	96.3	146.9	244.2
$\triangle x$, cm	0.1	0.1	6.9	1.6	2.3	2.45	7.5	11.8	11.3	12.2	9.3	8.9
H, A/M	0.00	-0.33	-13.21	-15.22	-17.33	-19.01	-22.40	-27.64	-36.12	-53.67	-81.87	-136.1
$\triangle B$, Тл	0.003	0.007	0.231	0.054	0.077	0.082	0.251	0.395	0.379	0.409	0.312	0.298
I, мА	537	244.1	146.8	96.3	64.8	49.3	39.8	33.9	31	27.2	23.5	0.62
$\triangle x$, cm	17.7	11	7.85	5.8	4.6	2.6	1.8	1.15	0.6	0.8	0.8	6.4
H, A/M	-299.3	-136.0	-81.82	-53.67	-36.11	-27.48	-22.18	-18.89	-17.28	-15.16	-13.10	-0.35
								10.00	11.20	10.10	10.10	0.00
$\triangle B$, Тл	0.570	0.369	0.263	0.194	0.154	0.087	0.060	0.039	0.020	0.027	0.027	0.214
$\triangle B$, Тл I , мА	0.570	0.369	0.263 27.3	0.194								
					0.154	0.087	0.060	0.039	0.020	0.027	0.027	
<i>I</i> , мА	0.00	0.6	27.3	31.1	0.154 34.1	0.087	0.060 49.6	0.039 64.9	0.020 96.4	0.027	0.027	7.6

2. Отсоединим цепь от тороида, подсоединим её к пустотелому соленоиду. Откалибруем гальванометр. Получившиеся необходимые значения:

$$I_{max} = 1.473A$$
 $\triangle x_1 = 7.9 \text{ cm}$

3. Размагнитим тороид с помощью источника переменного тока и трансформатора. Снимем начальную кривую намагничивания, результаты занесём в таблицу 2.

Таблица 2: Зависимость $\triangle x$ от I и соответствующие H и $\triangle B$, начальная кривая намагничивания

I, мА	0.6	27.3	31.1	34.1	40.1	49.6	64.9	96.4	146.8	244.1	537	
$\triangle x$, cm	0.1	5.8	1.8	2.5	2.3	5.4	8.4	11.1	15.8	15.5	18.1	18.1
H, A/M	0.368	13.209	15.271	17.389	19.061	22.404	27.699	36.170	53.726	81.927	136.154	299.283
$\triangle B$, Тл	0.001	0.100	0.031	0.043	0.039	0.093	0.144	0.191	0.266	0.271	0.294	0.311

4. В координатах B(H) построим на одном графике петлю гистерезиса и начальную кривую намагничивания (рисунок 4).

По графику определим следующие величины и оценим их погрешности:

• коэрцитивная сила H_c - значение напряжённости магнитного поля, необходимое для полного размагничивания ферромагнитного вещества равна длине отрезка, высекаемого петлёй гистерезиса на горизонтальной оси. $H_c=55\pm3.3~{\rm A/m}$.

Рис. 4: Петля гистерезиса и начальная кривая намагничивания для исследуемого образца

- индукция насыщения B_s максимально достижимое значение внутренней индукции магнитного материала при данной температуре. $B_s=1.95\pm0.3~{\rm Tr}$.
- максимальная дифференциальная магнитная проницаемость $\mu_d=\frac{1}{\mu_0}\frac{dB}{dH}$ характеризующий связь между магнитной индукцией B и напряжённостью магнитного поля H в веществе. $\mu_d=9715\pm270$

Итоговые результаты сведём в таблицу. Теоретические значения возьмём из справочника в пособии к лабораторным работам для технической стали.

Таблица 3: Соответствие теоретических и экспериментальных результатов

	Эксперимент	Справочник
H_c , A/M	55 ± 3.3	80
B_s , Тл	1.95 ± 0.3	2.15
μ_0	9715 ± 270	5000

6 Вывод

В ходе работы были исследованы петля гистерезиса магнитомягкого материала, его начальная кривая намагничивания, с хорошей точностью экспериментально определены некоторые магнитные свойства. По кривой гистерезиса видно, что материал является магнитомягким, так как площадь петли мала. Также она симметрична и в целом соответствует теоретическим изображениям подобных кривых. Различие справочных и экспериментальных данных может объясняться тем, что, скорее всего, образец изготовлен не из чисто технического железа, а из сплава его с другим металлом.