Homework 1

Haoyu Zhen

February 23, 2022

1 Probability Space of Tossing Coins

Problem 1

Obviously, $\emptyset \notin \{C_s\}_{\{0,1\}^n}$.

By the fact that $C_s \subset \Omega$ and $\operatorname{Card}(\{0,1\}^n) < +\infty$, we have $\bigcup_{s \in \{0,1\}^n} C_s \subset \Omega$.

Also, $\forall \omega \in \Omega$, $\omega \in C_{(\omega_1, \dots, \omega_n)}$, which means $\Omega \subset \bigcup_{s \in \{0,1\}^n} C_s$.

 $\forall s_1, s_2 \in \{0,1\}^n, \forall \omega_1 \in C_{s_1} \text{ and } \omega_2 \in C_{s_2}, \omega_1 \neq \omega_2. \text{ Then } C_{s_1} \cap C_{s_2} \neq \varnothing.$

Finally, $\{C_s\}_{s\in\{0,1\}^n}$ forms a partition of Ω .

Problem 2

Firstly, I will prove a lemma and a proposition.

Lemma 1. If C forms a partition of Ω , then $2^{\mathbb{C}}$ is a σ -algebra.

Proof. $\varnothing \in 2^{\mathcal{C}}$.

If $A \in 2^{\mathcal{C}}$, then $\Omega - A \subset \mathcal{C} \Longrightarrow \Omega - A \in 2^{\mathcal{C}}$.

If $A_i \in 2^{\mathcal{C}}$, then $\bigcup_i A_i \subset \mathcal{C}$, which means that $\bigcup_i A_i \in 2^{\mathcal{C}}$.

Proposition 1. $\mathcal{F}_n = 2^{\mathcal{C}_n}$ where $\mathcal{C}_n = \{C_s\}_{s \in \{0,1\}^n}$.

Proof. Trivially, $C_n \subset 2^{C_n}$. Now we suppose that $\exists \sigma$ -algebra \mathcal{F} s.t. $C_n \subset \mathcal{F}$:

For all $A \in 2^{\mathcal{C}_n}$, $A \subset \mathcal{C}$. Then $A = \bigcup C_s$ for some s or $A = \emptyset$. By the defination of σ -algebra, $A \in \mathcal{F}$, which means $2^{\mathcal{C}_n} \in \mathcal{F}$.

Thus $2^{\mathcal{C}_n}$ is the minimal σ -algebra containing sets in \mathcal{C} .

Now we have $\operatorname{Card}(\mathcal{F}_n) = \operatorname{Card}(2^{\mathcal{C}_n}) = \operatorname{Card}(2^{\{0,1\}^n}) = 2^{2^n}$. We could say that $\mathcal{F}_n \sim 2^{\{0,1\}^n}$ or \mathcal{F}_n and $2^{\{0,1\}^n}$ are equinumerous. So there exists a bijection between \mathcal{F} and $2^{\{0,1\}^n}$.

Problem 3

By lemma 1, $\forall n \in \mathbb{N}, \mathcal{F}_n = 2^{\mathcal{C}_n}$.

And obviously $\mathcal{F}_n \neq \mathcal{F}_{n+1}$ because $\mathcal{C}_n \neq \mathcal{C}_{n+1}$ and $\operatorname{Card}(\mathcal{C}_n) \neq \operatorname{Card}(\mathcal{C}_{n+1})$.

 $\forall A \in \mathcal{F}_n, A \subset \mathcal{C}_n$. Assume that $A = \{\omega \in \Omega \mid \omega_1 = s_1, \cdots, \omega_n = s_n\}$. Then

$$\{\omega \in \Omega \mid \omega_1 = s_1, \cdots, \omega_n = s_n, \omega_{n+1} = 0\} \cup \{\omega \in \Omega \mid \omega_1 = s_1, \cdots, \omega_n = s_n, \omega_{n+1} = 1\} = A,$$

where the 2 elements of LHS are in C_{n+1} . Thus $A \in C_{n+1}$.

Ultimately $\forall n \in \mathbb{N}, \, \mathcal{F}_n = 2^{\mathcal{C}_n} \subsetneq 2^{\mathcal{C}_{n+1}} = \mathcal{F}_{n+1}.$

Problem 4

By defination, $\mathcal{F}_{\infty} = \bigcup_{n \geq 1} \mathcal{F}_n$.

For all $A, B \in \mathcal{F}_{\infty}$, $\exists m, n \in \mathbb{N}$, $A \in \mathcal{F}_m$ and $B \in \mathcal{F}_n$. Let $l \stackrel{def}{=} \max(m, n)$. Then $A, B \in \mathcal{F}_l$. Thus $A^c, B^c \in \mathcal{F}_l$ and $A + B \in \mathcal{F}_l \Longrightarrow A^c, B^c, A + B \in \mathcal{F}_l$.

The proposition that F_{∞} is an algebra holds.

Lemma 2. $\forall \omega \in \Omega, \forall n \in \mathbb{N}, \omega \notin \mathcal{F}_n$.

Proof.
$$\forall A \in \mathcal{F}_n, \operatorname{Card}(A) = +\infty \neq \operatorname{Card}(\{\omega\}) = 1$$

Thus $2^{\Omega} \neq \mathcal{F}_{\infty}$.

Problem 5

By lemma 2, we have $\{\omega\} \neq \mathcal{F}_{\infty}$. If not, there exists $n \in \mathbb{N}$ such that $\omega \notin \mathcal{F}_n$, which lead to a contradiction. Now we just need to prove that $\{\omega\} \in \mathcal{B}(\Omega)$.