

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos

PSI 3212 – LABORATÓRIO DE CIRCUITOS ELÉTRICOS

M.N.P.Carreño, C.Itiki e I. Pereyra / 2020

Guia Experimental e Roteiro para Relatório

Versão para simulação da

Experiência 5 - Sinais Senoidais e Fasores

No. USP	Nome	Nota	Bancada
10792132	Tiago de Almeida Takeda		

Objetivos

- Verificar experimentalmente a validade da 2ª lei de Kirchhoff em circuitos DC e AC utilizando multímetro e osciloscópio;
- Determinar atraves de simulação no MultiSim, LTSpice ou outro simulador de circuitos, os fasores das tensões e correntes num circuito com componentes resistivos e reativos (bobina), utilizando multímetro e osciloscópio;
- Determinar atraves de simulação no MultiSim, LTSpice ou outro simulador de circuitos a impedância complexa da bobina (módulo e fase) a partir dos fasores da tensão e corrente na bobina, numa certa faixa de frequências.

Equipamentos e materiais

- Resistor de $1k\Omega$
- Bobina 170 mH
- Osciloscópio
- Multímetro portátil
- Gerador de funções
- Computador

Obs: Esta experiência será feita através da simulação dos circuitos elétricos propostos

Nos lugares onde diz "meça" uma variável (com voltímetro, osciloscópio, etc.) entenda que você deve obter o valor dessa variável a partir das simulações e dos recursos que o programa de simulação fornecer!

1. Validação da 2ª lei de Kirchhoff utilizando multímetro

1a) Monte o circuito abaixo com um resistor $R=1~k\Omega~$ em série com uma Bobina de valor nominal 170 mH e alimente com uma <u>tensão DC</u> de 10 V. Meça com o multímetro as tensões V_E , V_R e V_B . Note que na pratica uma bobina não é um indutor ideal, pois o fio elétrico que forma a bobina é muito fino e longo, possuindo uma resistência elétrica não desprezível. Assim, para efeito de simulação, a bobina deve ser substituída por um indutor ideal L=170~mH em série com uma resistência $R_{SL}=300~\Omega$.

Anote os valores obtidos na tabela abaixo:

Circuito DC						
$oldsymbol{\mathrm{V_E}}$ $oldsymbol{\mathrm{V_R}}$ $oldsymbol{\mathrm{V_B}}$						
10V	-7.69V	-2.31V				

1b) Verifique se os valores obtidos satisfazem a 2^a Lei de Kirchhoff:

Sim, os valores satifazem a 2ª Lei de Kirchhoff.

1c) Agora alimente o mesmo circuito com uma <u>tensão AC</u> senoidal de 1 kHz e 10 V_{pp}, e meça novamente, com o multímetro, as tensões V_E, V_R e V_B. Anote os valores obtidos, indicando claramente as unidades:

Circuito AC					
$ m V_E$ $ m V_R$ $ m V_B$					
6.30V	-76mV	-6.37V			

Verifique que se a soma das tensões no resistor (V_R) e na bobina (V_B) é igual à tensão fornecida pela fonte.

1d) Esse resultado indica que a 2ª Lei de Kirchhoff não é valida em circuitos AC ? Analise e explique claramente o resultado.

Não, este resultado indica que há uma impedância indutiva cuasada pela resposta em regime transiente no indutor.

2. Validação da 2ª lei de Kirchhoff utilizando osciloscópio

Utilizando o mesmo circuito do item anterior, meça com o canal 1 e canal 2 do osciloscópio as tensões $V_E(t)$ e $V_B(t)$ conforme a Fig.2a abaixo. Armazene o sinal $V_B(t)$ na memória do osciloscópio. Para isto, utilize o botão "Save/Recall" e salve num cartão USB, com o formato "Dados da Forma da Onda de Referência [*.h5]", o Canal 2 (com o sinal $V_B(t)$). A seguir, troque a posição do Resistor e da Bobina, e meça os sinais $V_E(t)$ e $V_R(t)$ conforme a Fig.2b.

Utilize a "Save/Recall" e o softKey Recall para recuperar o sinal $V_B(t)$ que você tinha salvado previamente no cartão USB. Note que na tela do osciloscópio aparecerão os 3 sinas $(V_E(t), V_R(t)$ e o sinal $V_B(t)$ salvo). Capture a tela do osciloscópio (ou salve a tela com o cartão USB no osciloscópio, não se esquecendo de inverter as cores para deixar o fundo branco), e imprima a tela do osciloscópio mostrando esses 3 sinais.

2a) Escolha 5 pontos no eixo dos tempos da figura e verifique neles a validade da 2^a Lei de Kirchhoff para cada instante. Indique as somas dos valores na própria figura impressa e ANEXE ao relatório. Obs.: Não deixe de indicar na figura os pontos escolhidos e as contas realizadas para verificar a 2^a Lei de Kirchhoff.

2b) A seguir, utilizando a função MATH, obtenha o sinal $V_{MATH} = V_{E}(t) - V_{R}(t)$. Desenhe na figura abaixo tanto o sinal $V_{B}(t)$ guardado na memória quanto o sinal $V_{MATH}(t) = (V_{E}(t) - V_{R}(t))$.

2c) Descreva o que observa:

Na imagem observamos que a tensão da fonte (em vermelho) e a tensão no resistor (em azul). Também oberservamos que o gráfico em amarelo representa a ooperação CH1 - CH2.

2d) O que pode concluir desse resultado?

Concluimos então que a 2ª Lei de Kirchhoff se conversa neste circuito, dado que a tensão do resistor (em azul) + tensão no indutor (em vermelho: CH1 - CH2) = tesão da fonte (em vermelho).

3. Determinação dos fasores das tensões $\widehat{V}_E,\, \widehat{V}_R$ e \widehat{V}_B utilizando osciloscópio

3a) Com o circuito já montado (Fig.2b), meça com o osciloscópio as tensões de pico de $V_E(t)$, $V_R(t)$ e $V_B(t)$ (= $V_{MATH}(t)$) para as frequências 100 Hz, 500 Hz, 1 kHz e as defasagens Fase($V_R \rightarrow V_E$) e Fase($V_B \rightarrow V_E$)

Frequência	$V_{\rm E}$	V_R	V_{B}	Fase $(V_R \rightarrow V_E)$	Fase $(V_B \rightarrow V_E)$
100 Hz	10V	10V	1,4V	82,53°	90,56°
500 Hz	9,8V	8,7V	4,55V	62,45°	90,11°
1 kHz	9,95V	6,9V	7,2V	43,83°	90,19°

3b) A partir desses valores, escreva a amplitude complexa dos fasores \widehat{V}_E , \widehat{V}_R e \widehat{V}_B para as 3 frequências na forma polar e cartesiana:

	Amplitude Complexa						
Fasor	Forma Polar Forma Cartesiana						
\widehat{V}_{E}	10[0°] 9,8[0°] 9,95[0°]	10,0 9,80 9,95					
\widehat{V}_{R}	10[82,53°]						
\widehat{V}_{B}	1,40[90,56°] 4,55[90,11°] 7,20[90,19°]	1,37e-2 + 1,40i -8,74e-3 + 4,55i -2,39e-2 + 7,20i					

4. Determinação da defasagem entre [\widehat{V}_R e \widehat{V}_E] e [\widehat{V}_B e \widehat{V}_E] utilizando apenas multímetro

Monte o circuito da figura 3. Ajuste inicialmente uma tensão senoidal de frequência **100 Hz** e amplitude pico-a-pico de **10 Vpp**.

Figura 3 – Circuito para determinação das defasagens

4.a) Meça as tensões eficazes com o **multímetro portátil** e preencha a tabela 3. <u>Observações:</u> Nesta seção, a tensão no resistor será tomada como referência das fases. Portanto, adota-se $v_R(t)=V_R\cos(\omega_0 t)$. Além disso, como a bobina tem comportamento indutivo, na faixa de frequências das medidas, o sinal das fases será considerado positivo.

Tabela 3 – Medidas de tensões eficazes para a determinação das fases.

		Medidas AC	Cálo	culos	
frequência	V_E V_B		V_R	$ heta_{\!E}$	$\theta_{\!B}$
100 Hz	-1,142mV 130,368uV		-1,272mV		
500 Hz	756,994uV -394,663uV		-1,152mV		
1 kHz	723,103uV	552,755uV	-170,348uV		

4.b) Desenhe o diagrama fasorial das tensões no resistor, na bobina e no gerador, para a frequência de 1 kHz. Observação: o diagrama representa as fases e as amplitudes de pico $V_p = 1,414 \ V_{ef}$.

4.c)	Calcule os	valores d	as fases o	das tensões	do gerador e	e da bobina e	complete a tabela 3.
4. C)	Culcule 05	valores a	us ruses c	aus terisoes	ao geraaor c	du doddina c	complete a tabela 5.

$$\theta_B = + |\arccos((V_E^2 - V_R^2 - V_B^2)/(2V_RV_B))|$$

$$\theta_E = + |\arccos((V_E^2 + V_R^2 - V_B^2)/(2V_RV_E))|$$

5. Determinação da impedância da bobina (módulo e fase) na faixa entre 100 Hz e 10 kHz utilizando osciloscópio.

Alimente agora o circuito da Figura 3 com um sinal senoidal de 10 Vpp e frequência variando na faixa de 100 Hz a 10 kHz. Meça com o canal 1 do osciloscópio o valor de pico da tensão V_E , com o canal 2 o valor de pico da tensão V_B , e com o recurso "Math" obtenha o valor de pico da tensão V_R . Meça também a Fase $(V_B \rightarrow V_R)$. Calcule a corrente (I_B) e a impedância complexa da bobina (\mathbf{Z}_B) e escreva a mesma na forma polar, complete a tabela 4 indicando claramente as unidades de cada grandeza:

	Medidas			Cálculos	
Frequência	V_{B}	V _R	$Fase(V_B \rightarrow V_R)$	I_{B}	Z _B Forma polar
100 Hz					
200 Hz					
500 Hz					
1 kHz					
2 kHz					
5 kHz					
10 kHz					

