Course	18CSC204J	Course	DESIGN AND ANALYSIS OF ALGORITHMS	Course	С	Professional Core	L	Т	P	С
Code		Name		Category			3	0	2	4

Pre-requisite 18CSC201J, 18CSC202J	Co-requisit	: [18CSC207]	Progressive	Nil
Courses	Courses		Courses	
Course Offering Department Com	puter Science and Engineering	Data Book / Codes/Standards	Nil	

Course Learning Rationale The purpose of learning this course is to:			Learning Program Learning Outcomes (PLO)																	
(CLR):																				
CLR-1: Design efficient algorithms in s	olving complex real time problems	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Analyze various algorithm des	ign techniques to solve real time problems in polynomial time					ge		nt								e e				
CLR-3: Utilize various approaches to s	solve greedy and dynamic algorithms		C,	ut		led		me		ره						nanc	50			
CLR-4: Utilize back tracking and bras	nch and bound paradigms to solve exponential time problems] &	Ę.	l iii		OW	SI.	velopi	1,	sage	e e			Team	_	먎	in in			
CLR-5: Analyze the need of approxima	ation and randomization algorithms, utilize the importance Non polynomial algorithms	inkii	Profici	air		Knowledge	nalysis	evel	sign,		ultu	× .		T _e	100	8	arr			
CLR-6 : Construct algorithms that are e	efficient in space and time complexities] [#	Pr	At			\ns	ρ̈́	Des	00	\circ	en l	Î	8	cat	鼓	F			
] [Ę.	ed	ed		eri	В	જ	sis,]	υŢ	8	E 4	5	idual	ūni	Σ	ong	_	7	3
Course Learning Outcomes	At the end of this course, learners will be able to:	_ = _	£ 5	ect		ji.	ble	sign	5 4	Jen	iety	[.g.,	ICS	1 5 -	E E	<u>c</u>	니	-		_
(CLO):		Fea				Engineering	Problem	Des	Anal	Moc	Soci	Env	Eth	Indi	5 G \$O	Proj	Life	PSC	PSC	PSC
CLO-1: Apply efficient algorithms to re	educe space and time complexity of both recurrent and non-recurrent relations	3	80	70		Ĺ	Н	-	Н	L	-	-	-	L	L	-	Н	-	-	-
CLO-2: Solve problems using divide and conquer approaches			85	75		M	Н	L	M	L	-	-	-	M	L	-	Н	-	-	-
CLO-3: Apply greedy and dynamic programming types techniques to solve polynomial time problems.			75	70		M	Н	M	Н	L	-	-	-	M	L	-	Н	-	-	-
CLO-4: Create exponential problems using backtracking and branch and bound approaches.			85	80		M	Н	M	Н	L	-	-	-	M	L	-	Н	-	-	-
CLO-5: Interpret various approximation algorithms and interpret solutions to evaluate P type, NP Type, NPC, NP Hard problems			85	75		Н	Н	M	Н	L	-	-	-	M	L	-	Н	-	-	-
CLO-6: Create algorithms that are efficient in space and time complexities by using divide conquer, greedy, backtracking technique			80	70		L	Н	M	Н	L	-	-	-	L	L	-	Н	-	-	-

	Duration 15 (hour)		15	15	15	15
S-1	SLO-1	Introduction-Algorithm Design	Introduction-Divide and Conquer	Introduction-Greedy and Dynamic Programming	Introduction to backtracking - branch and bound	Introduction to randomization and approximation algorithm
	SLO-2	Fundamentals of Algorithms	Maximum Subarray Problem	Examples of problems that can be solved by using greedy and dynamic approach	N queen's problem - backtracking	Randomized hiring problem
S-2	SLO-1	Correctness of algorithm	Binary Search	Huffman coding using greedy approach	Sum of subsets using backtracking	Randomized quick sort
	SLO-2	Time complexity analysis	Complexity of binary search	Comparison of brute force and Huffman method of encoding	Complexity calculation of sum of subsets	Complexity analysis
S-3	SLO-1	Insertion sort-Line count, Operation count	Merge sort	Knapsack problem using greedy approach	Graph introduction	String matching algorithm
	SLO-2	Algorithm Design paradigms	Time complexity analysis	Complexity derivation of knapsack using greedy	Hamiltonian circuit - backtracking	Examples
S 4-5	SLO-1 SLO-2	Lab 1: Simple Algorithm-Insertion sort	Lab 4: Quicksort, Binary search	Lab 7: Huffman coding, knapsack and using greedy	Lab 10: N queen's problem	Lab 13: Randomized quick sort
S-6	SLO-1	Designing an algorithm	Quick sort and its Time complexity analysis	Tree traversals	Branch and bound - Knapsack problem	Rabin Karp algorithm for string matching
	SLO-2	And its analysis-Best, Worst and Average case	Best case, Worst case, Average case analysis	Minimum spanning tree - greedy Kruskal's algorithm - greedy	Example and complexity calculation. Differentiate with dynamic and greedy	Example discussion
S-7	SLO-1					

				T		
		Asymptotic notations Based on growth	Strassen's Matrix multiplication and its	Minimum spanning tree - Prims algorithm	Travelling salesman problem using branch and	Approximation algorithm
		functions.	recurrence relation		bound	
	SLO-2	Ο,Ο, Θ , ω, Ω	Time complexity analysis of Merge sort	Introduction to dynamic programming	Travelling salesman problem using branch and	Vertex covering
		-7-7-7-17		J	bound example	
S-8	SLO-1	Mathematical analysis	Largest sub-array sum	0/1 knapsack problem	1	Introduction Complexity classes
	020 1	1viainematicai anatysis	Largesi suo-array sum	Of T knapsack proviem		Introduction Complexity trasses
	OT 0. 4				bound example	
	SLO-2	Induction, Recurrence relations	Time complexity analysis of Largest sub-array	Complexity calculation of knapsack problem	Time complexity calculation with an example	P type problems
			sum			
S	SLO-1	Lab 2: Bubble Sort	Lab 5: Strassen Matrix multiplication	Lab 8: Various tree traversals, Krukshall's	Lab 11: Travelling salesman problem	Lab 14: String matching algorithms
9-10	SLO-2			MST		
S-11	SLO-1	Solution of recurrence relations	Master Theorem Proof		Graph algorithms	Introduction to NP type problems
0 11	020 1	Solution of recurrence relations	Naster Theorem Proof	Matrix chain multiplication using dynamic	Grapii aigoruims	Introduction to INP type problems
	OT 0. •			programming		
	SLO-2	Substitution method	Master theorem examples	Complexity of matrix chain multiplication	Depth first search and Breadth first search	Hamiltonian cycle problem
0.40	OT 0. 4					
S-12	SLO-1	Solution of recurrence relations	Finding Maximum and Minimum in an array	Longest common subsequence using dynamic	Shortest path introduction	NP complete problem introduction
				programming		
	SLO-2	Recursion tree	Time complexity analysis-Examples	Explanation of LCS with an example	Floyd-Warshall Introduction	Satisfiability problem
				1 3	3	J J1
S-13	SLO-1	Solution of recurrence relations	Algorithm for finding closest pair problem	Optimal binary search tree (OBST)using	Floyd-Warshall with sample graph	NP hard problems
		,		dynamic programming	1 0 1	
	SLO-2	Examples	Convex Hull problem	Explanation of OBST with an example.	Floyd-Warshall complexity	Examples
		Lexamples	Convex 11uu proviem	Explanation of ODS 1 with an example.	1 toya-w arshau complexity	Examples
S	SLO-1	Lab 3: Recurrence Type-Merge sort, Linear	Lah 6: Finding Maximum and Minimum in	Lab 9: Longest common subsequence	Lab 12: BFS and DFS implementation with	Lab 15: Discussion over analyzing a real time
14-15	SLO-2	l -		Luo 2. Longesi common suosequence	*	
		search	an array, Convex Hull problem		array	problem

Learning	1.	Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms, 3 [™] ed., The MIT	3.	Ellis Horowitz, Sartajsahni, Sanguthevar, Rajesekaran, Fundamentals of Computer Algorithms,
Resources		Press Cambridge, 2014		Galgotia Publication, 2010
	2.	Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2 [™] ed., Pearson Education, 2006	4.	S. Sridhar, Design and Analysis of Algorithms, Oxford University Press, 2015

Learning Ass	earning Assessment														
	Final Examination (50% weightage)														
	Level of	CLA –	1 (10%)	CLA -	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	1					
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%				
	Understand														
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%				
	Analyze														
Level 3	Evaluate	10%	10%		15%	15%	15%	15%	15%	15%	15%				
	Create			\15%											
	Total	100) %	100	0 %	100	0 %	10	0 %		-				

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. G. Venkiteswaran, Wipro Technologies, gvenki@pilani.bits-pilani.ac.in	1. MiteshKhapra, IITM Chennai, miteshk@cse.iitm.ac.in	1. Mr.K.Senthil Kumar, SRMIST
	2. V. Masilamani. IIITDM, masila@iiitdm.ac.in	2. Dr.A.Razia Sulthana, SRMIST

2. Dr.SainarayananGopalakrishnan, HCL Technologies, sai.jgk@gmail.com	
	3. Mr. V. Sivakumar, SRMIST
	4. Ms. R. Vidhya, SRMIST