날씨 변화에 따른 GS25와 lala 이 수요 예측

T<mark>4IR</mark> 임채명 김나현 이효정 한대건

CONTENTS

01

주제 선정 분석 목적 02

활용 데이터

데이터 수집

03

분석 기법 분석 과정 04

분석 결과

05

활용 방안 기대 효과

소비자 입장

구매 불가로 인한 불편 소비자 만족도 감소

판매자 입장

재고 폐기 & 손실의 문제 재고 부족 문제

" 날씨에 따른 수요 예측 분석 "

날씨에 따른 소비자의 소비패턴을 분석하여 날씨에 따른 수요예측 분석 실행

소비자, 판매자가 공통으로 가진 재고에 관한 문제 해결

기상 관측 데이터

서울경기 지역의 기상평균 데이터 관측일, 강수량, 기온, 장마기간, 풍속, 체감온도

GS25 편의점데이터

서울경기 지역의 GS25 데이터

관측일, 관측지역, 품목별 판매량, 연령, 성별

lalavla 데이터

서울경기 지역의 lalavla 데이터

관측일, 관측지역, 품목별 판매량, 연령, 성별

Prophet

시계열 데이터를 통한 미래의 데이터 예측 모델

모델의 장점

1 이상치를 잘 다룰 수 있는 모델

2 일일 & 비일일 데이터 분석 가능 모델

3 전체 자동화 분석 모델

기상자료 개방포털 데이터 활용

데이터 수집목록

- 강수량
- 기온
- 장마기간
- 강수량

체감온도 계산

체감온도 공식

체감온도 = 13.12 + 0.6215T - 11.37 V0.16 + 0.3965 V0.16T

T : 기온((°C)) V : 풍속(km/h)

날짜	체감온도
2016-01-01 00:00:00	0.3
2016-01-02 00:00:00	5
2016-01-03 00:00:00	5.4
2016-01-04 00:00:00	-0.8
2016-01-05 00:00:00	-5.5
2016-01-06 00:00:00	-3.5
2016-01-07 00:00:00	-6.1
2016-01-08 00:00:00	-5.2
2016-01-09 00:00:00	-3.8
2016-01-10 00:00:00	-2
2016-01-11 00:00:00	-7.2
2016-01-12 00:00:00	-8.5
2016-01-13 00:00:00	-7.3
2016-01-14 00:00:00	-5.9
2016-01-15 00:00:00	-2.6
2016-01-16 00:00:00	-1.9
2016-01-17 00:00:00	-0.4
2016-01-18 00:00:00	-12.5
2016-01-19 00:00:00	-19.7
2016-01-20 00:00:00	-13.8
2016-01-21 00:00:00	-10.2
2016-01-22 00:00:00	-11.1
2016-01-23 00:00:00	-18
2016-01-24 00:00:00	-20.1
2016-01-25 00:00:00	-12.4
2016-01-26 00:00:00	-5.4
	5,4

GS25 전처리 데이터 시각화

lalavla 전처리 데이터 시각화

1st 시계열 분석

날짜에 따른 Prophet 모델을 이용한 시계열 분석

학습된 과거 맥주 판매량 + 2019년도 GS25 맥주 판매량 예측 그래프

향후 1년 예측값 트렌드

오차허용범위

요일별 트렌드

월별 트렌드

맥주량 예측 모델 정확도 93.8%

2nd 기상 + 시계열 분석

장마, 최고 온도, 최저 온도을 추가하여 해당일자에 특별성 부여

날짜 + 기상을 결합한 Prophet을 이용한 분석

학습된 과거 맥주 판매량 + 2019년도 GS25 맥주 판매량 예측 그래프

향후 1년 예측값 트렌드

오차허용범위

요일별 트렌드

월별 트렌드

1st 모델에 기상 데이터를 추가한후 예측 모델의 정확도 94.3%으로 상승

" 발주량 추천 시스템

새로운 기상예보 데이터를 예측모델에 학습

예측 판매량 추천

추후 실제 판매량 & 예측 판매량 비교

새로운 기상 예보 데이터 & 실제 판매량 모델에 학습

기상변화에 따라 수요예측, 물량 추천&조절 가능

소비자

- ✓ 품절로 인한 소비자의 불편함 해소
- ✓ 제품 구매로 인한 소비자 만족 도 상승
- ✓ GS25 & lalavla는 언제든지 원하는 품목을 살 수 있는 장소로 믿음

판매자

- ✓ 재고 폐기 & 소실 문제 해소
- ✓ 재고 부족으로 인한 이익 창출 기회 손실 문제를 해소
- ✓ 'GS25 & lalavla는 언제든지 원하는 품목을 살 수 있는 장소' 로 소비자에게 믿음 제공 가능

참고논문

채수정, 기상 정보를 이용한 MA-ARIMA-ANN 알고리즘 기반의 판매예측 시스템 설계 및 구현, 한양대학교 공학대학원, 2018

C. Narendra Babu*, B. Eswara Reddy, A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data, Department of Computer Science & Engineering, JNT University College of Engineering, Anantapuramu, India, 2014

