HW#2:

1) a)
$$p(N=\omega_1)=\frac{1}{N}$$
 $H(\omega)=-\sum_{u\in V}p(\omega)\log p(\omega)$
 $H(\omega)=-\sum_{u\in V}\frac{1}{N}\log \frac{1}{N}=\sum_{u\in V}\frac{1}{N}\log N$
 $=N(N\log N)=\log N$

If the number of unique words $N=1$ (i.e. all words are identical)

then $H(\omega)=\log 1=0$

i. minimum $H(\omega)=0$; Maximum $H(\omega)=\log N$

Sample Maximum $H(\omega)$ article = $\{\omega_1,\omega_1,\omega_1,\omega_1,\omega_1,\omega_1\}$

(e.g. maximuly homogeneous)

Sample maximum $H(\omega)$ article = $\{\omega_1,\omega_1,\omega_1,\omega_1,\omega_1,\omega_1,\omega_1\}$

(e.g. maximuly homogeneous)

C) Two article which has $H(\omega)=0$ probably mens that the documents themselves Contains one unique word each.

For example, $D_1=\{\omega_1,\omega_1,\omega_1,\omega_1,\ldots,\omega_1\}$ and $D_2=\{\omega_2,\omega_2,\ldots,\omega_2\}$ in that case, when combining the documents, the most distinct set that you would get is $\{\omega_1,\omega_2\}$ so the maximum entropy for As is $\log 2=0.69$