Cognitive (Neuro) Psychology IV. Psychophysics

Marianne Maertens

Technische Universität Berlin

July 2016

What is real?

"What is real? How do you define real? If you're talking about what you can feel, what you can smell, what you can taste and see, then real is simply electrical signals interpreted by your brain. This is the world that you know." - Morpheus' answer to Neo in *The Matrix*, 1999

• subdiscipline of psychology

- subdiscipline of psychology
- addresses the relationship between physical stimuli, x, and their subjective correlates (percepts), $\Psi(x)$

Outline

- Components of a psychophysical experiment
- Classification of psychophysical experiments
- Measuring performance: The psychometric function

Components of a psychophysics experiment

- stimuli
- task
- method
- analysis
- measure

Example: contrast sensitivity

Stimulus

Measure

Absolute threshold

• The minimum amount of stimulation necessary for a person to detect a stimulus **50%** of the time.

Measure

Absolute threshold

• The minimum amount of stimulation necessary for a person to detect a stimulus **50%** of the time.

Just noticeable difference - JND

The smallest detectable difference between two stimuli.

Task

Method of adjustment

Task

Method of adjustment

 Method of constant stimuli

Method & Analysis

Method of limits

	Trial series											
		↓ 1	† 2	↓ 3	† 4	↓ 5	† 6	↓ 7	† 8			
	20	Y						Y				
	19	Y		Y		Y		Y				
	18	Y		Y		Y		Y				
	17	Y		Y		Y		Y				
	16	Y		Y		Y		Y	Y			
	15	Y	Y	Y	Y	Y	Y	Y	Y			
	14	Y	N	Y	N	Y	N	Y	Y			
	13	N	N	Y	N	Y	N	N	Y			
	12		N	N	N	N	N		N			
	11		N		N		N		N			
	10		N		N		N		N			
		13.5	14.5	12.5	14.5	12.5	14.5	13.5	12.5			

Crossover values (average = 13.5)

Method & Analysis

Method of limits

		Trial series									
		↓1	† 2	↓ 3	† 4	↓ 5	† 6	↓ 7	† 8		
	20	Y						Y			
	19	Y		Y		Y		Y			
	18	Y		Y		Y		Y			
units	17	Y		Y		Y		Y			
Intensity (arbitrary units)	16	Y		Y		Y		Y	Y		
arbit	15	Y	Y	Y	Y	Y	Y	Y	Y		
sity (14	Y	N	Y	N	Y	N	Y	Y		
ntens	13	N	N	Y	N	Y	N	N	Y		
д	12		N	N	N	N	N		N		
	11		N		N		N		N		
	10		N		N		N		N		
		13.5	14.5	12.5	14.5	12.5	14.5	13.5	12.5		

Crossover values (average = 13.5)

· Cross modality matching

Classifications

 all understanding begins with making comparisons and those comparisons, in turn, lead to the construction of categories

Classifications

- all understanding begins with making comparisons and those comparisons, in turn, lead to the construction of categories
- simplify and make explicit design choices
- which method is appropriate for studying which aspect of visual functioning

• nature of measurement e.g. Muller-Lyer illusion

• nature of measurement e.g. Muller-Lyer illusion

nature of measurement e.g. Muller-Lyer illusion

- PSE: point of subjective equality
- objective: correct vs. incorrect

method of data collection

```
method of adjustment = subjective
method of constant stimuli = objective
```

Performance vs. appearance

- How good is an observer in a particular task? e.g. orientation discrimination in the fovea vs. the periphery
- Performance can not be meaningfully considered as 'better' e.g. apparent lightness of targets

Performance vs. appearance

 How good is an observer in a particular task? e.g. orientation discrimination in the fovea vs. the periphery

 Performance can not be meaningfully considered as 'better' e.g. apparent lightness of targets

Performance vs. appearance

 How good is an observer in a particular task? e.g. orientation discrimination in the fovea vs. the periphery

- accuracy
- threshold

 Performance can not be meaningfully considered as 'better' e.g. apparent lightness of targets

- PSE
- scales

Forced-choice vs. non-forced

• criterion-free vs. criterion-dependent

is there a / where is the single stimulus? which of two stimuli is more 'x'?

is there a / where is the single stimulus?

→ absolute threshold: minimum signal for 50% correct detection which of two stimuli is more 'x'?

 is there a / where is the single stimulus?

→ absolute threshold: minimum signal for 50% correct detection which of two stimuli is more 'x'?

→ difference threshold

is there a / where is the single stimulus?

→ absolute threshold: minimum signal for 50% correct detection which of two stimuli is more 'x'?

→ difference threshold

 contrast discrimination - detection of an increment on a pedestal

Psychophysics Summary

Thinking

The two checks indicated by arrows have the same retinal luminance but differ in apparent lightness. Design an experiment to quantify the perceived difference between the two checks!

Psychometric function theories

- 2-IFC: S signal and N noise
- Which of the two intervals contained the stimulus?
- sensory evidence fluctuates from trial to trial $n \sim N(0, 1)$

Psychometric function theories

Psychometric function theories: high threshold theory

Psychometric function theories: high threshold theory

 according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion

- according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion
- F(x): probability that the threshold will be exceeded by a stimulus of intensity x

- according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion
- F(x): probability that the threshold will be exceeded by a stimulus of intensity x

- according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion
- F(x): probability that the threshold will be exceeded by a stimulus of intensity x

- according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion
- F(x): probability that the threshold will be exceeded by a stimulus of intensity x

High threshold theory - decision process

- relation between observable behavior $\Psi(x)$ and unobservable decision mechanism F(x)
- λ : lapse rate, lapse = stimulus not witnessed, response error
- γ : guess rate

High threshold theory - relevance

- amount of sensory evidence accumulated is unavailable to the decision process
- probability that the threshold is exceeded when x=0, i.e. by noise is effectively zero, no false alarms

High threshold theory - relevance

- amount of sensory evidence accumulated is unavailable to the decision process
- probability that the threshold is exceeded when x=0, i.e. by noise is effectively zero, no false alarms
- above assumptions largely discredited
- psychometric function of the type $F(x; \alpha, \beta, \gamma, \lambda) = \gamma + (1 \gamma \lambda) * F(x; \alpha, \beta)$ in practical use
- threshold as the location parameter of the psychometric function characterizes performance

Measuring the magnitude of the Muller Lyer effect

Measuring a psychometric function

Measuring a psychometric function

- at each stimulus level x, observer responds 'yes' with certain probability
- probability increases with increasing x
- $F(\alpha, \beta) = \frac{1}{1 + exp(-\frac{x-\alpha}{\beta})}$
- $F^{-1} \rightarrow \text{threshold}$

Summary

- psychophysics
- absolute vs difference threshold
- methods of threshold estimation
- classification of psychophysical tasks
- theory and praxis of psychometric function fitting

References

 Kingdom, F.A.A. & Prins, N. (2010). Psychophysics. A practical introduction. London, UK: Elsevier Academic Press.