

Exhibit 10

Exhibit C

U.S. Pat. No. 10,416,961
Claims 4 and 13

'961 PATENT	INFRINGEMENT EVIDENCE																
<p>4. A device comprising:</p> <p>at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value, wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=10% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.2% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input; and</p> <p>at least one first computing device adapted to control the operation of the at least one first LPHDR execution unit.</p>	<ul style="list-style-type: none"> “Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better training and model accuracy than the IEEE half-precision representation.” https://cloud.google.com/tpu/docs/system-architecture “The following figure shows three floating-point[] formats <ul style="list-style-type: none"> fp32 - IEEE single-precision floating-point fp16 - IEEE half-precision floating point bfloat16 - 16-bit <i>brain floating point</i>” <p>https://cloud.google.com/tpu/docs/bfloat16</p> <table border="1"> <thead> <tr> <th></th> <th>sign</th> <th>exponent</th> <th>fraction</th> </tr> </thead> <tbody> <tr> <td>bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$</td> <td>S</td> <td>8 bits</td> <td>7 bits</td> </tr> <tr> <td>float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$</td> <td>S</td> <td>8 bits</td> <td>23 bits</td> </tr> <tr> <td>float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$</td> <td>S</td> <td>5 bits</td> <td>10 bits</td> </tr> </tbody> </table> <p><i>Id.</i></p> <ul style="list-style-type: none"> “Because general-purpose processors such as CPUs and GPUs must provide good performance across a wide range of applications, they have evolved myriad sophisticated, performance-oriented mechanisms. As a side effect, the behavior of those processors can be difficult to predict, which makes it hard to guarantee a certain latency limit on neural network inference. In contrast, TPU design is strictly minimal and deterministic as it has to run only one task at a time: neural network prediction. You can see its simplicity in the floor plan of the TPU die.” https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu (<i>emphasis in orig.</i>) “In mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state.” https://en.wikipedia.org/wiki/Deterministic_system For each of the possible valid inputs to the multiplication operation performed by the multipliers within the MXU, Singular has computed the result and compared it to the result of an exact mathematical calculation performed on the same inputs. The results of this test showed that for more than 10% of the possible valid inputs, the numerical value represented by the output signal of each MXU multiplier differs by more than 0.2% from the result of an exact mathematical calculation performed on the same inputs. 		sign	exponent	fraction	bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	8 bits	7 bits	float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	8 bits	23 bits	float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$	S	5 bits	10 bits
	sign	exponent	fraction														
bfloat16 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	8 bits	7 bits														
float32 range: $\sim 1e^{-38}$ to $\sim 3e^{38}$	S	8 bits	23 bits														
float16 range: $\sim 5.9e^{-8}$ to $6.5e^4$	S	5 bits	10 bits														