Election Campaign Dynamics

Updates, Website

Anahita Poulad Emre Canbazer Amir Jamali Melina Chioutakou February 3, 2022

OUTLINE

1. Updates

2. Website

Updates

UPDATES

- Refining the Twitter Corpus
 - Requests from clients
 - · New candidate: Koenig
 - · Retreated/Eliminated candidates: Montebourg, Larrouturou, Bertrand
 - · New features: Separate date and hours

CANDIDATE TOPIC RELATION OVER TIME

```
similarity = {'dates':[].'sim':[]}
for ind in candid_ltopics_.nindex:
candid_lt_e = candid_ltopics_.riopic[ind]
candid_lt_e = candid_ltopics_.rtopic[ind]
docl = nip[candid_lt]
docl = nip[candid_lt]
docl = nip[candid_lt]
soci = nip[candid_lt]
soci = nip[candid_lt]
similarity[similarity[similarity]
similarity[similarity]
similarity[similarity]
similarity[similarity]
```

Figure 1: Get the semantic similarity based on time

	dates	sim
0	2022-01-16	0.790
1	2022-01-17	0.836
2	2022-01-18	0.669
3	2022-01-19	0.923
4	2022-01-20	0.681
5	2022-01-21	0.727
6	2022-01-22	0.800

Figure 2: Resulting similarity dataframe

CANDIDATE TOPIC RELATION OVER TIME

Figure 3: Zemmour and Le Pen's topics similarity over a week

INTER-TOPIC DISTANCE

TOPIC SIMILARITY

```
In [29]: 1 import fasttext
          2 model = fasttext.load_model("gensim-data\\cc.fr.300.bin\\cc.fr.300.bin")
         Warning: 'load model' does not return WordVectorModel or SupervisedModel any more, but a 'FastTex
In [30]: 1 import numpy as no
          3 df = pd.DataFrame({"questions":topic_list_1})
          5 df["vecs"] - df["questions"].apply(model.get sentence vector)
          7 from scipy.spatial.distance import pdist, squareform
          8 out = pdist(np.stack(df['vecs']), metric="cosine")
          9 cosine similarity = squareform(out)
         10 print(cosine similarity)
         ITO.
                     0.56311359 0.45381749 0.6564606 0.64648623 0.59208383
          [0.56311359 0.
                                0.57012764 0.53140708 0.60120124 0.56137877]
          [0.45381749 0.57012764 0.
                                          0.50060046 0.59027854 0.519126
          [0.6564606 0.53140708 0.50060046 0.
                                                     0.62654354 0.68910435]
          [0.64648623 0.60120124 0.59027854 0.62654354 0.
          [0.59208383 0.56137877 0.519126 0.68910435 0.58767631 0.
```

TOPIC SIMILARITY

EVALUATION

- · Evaluating a topic model is a challenging task
 - · unsupervised models
 - The absence of standard measures and well-established tools
- Normalized Point-wise Mutual Information (NPMI)
- It measures the topic coherence between high scoring words in the topic
- ♦ Ranges from [-1,1]
- The higher positive NMPI the better

Website

DOCKER IMAGE AND DEPLOY

- · Creating the dockerfile
- · Building the docker image
- Tagging the docker image on ACR (Azure Container Registry)
- Pushing the tagged docker image to be deployed

DOCKER IMAGE HAS ALREADY BEEN BUILT

A docker image has been successfully built

Election2022

DEPLOYMENT ON AZURE

Docker image can be easily pushed and deployed into Azure

VISUALIZASION

Bringing the abilities of Matplotlib and Plotly into the browser by creating an HTML file (Click Here)

In the next presentation, we will connect this possibility to the candidate names

Thank you!