ASSIGNMENT I MSO 202 A

COMPLEX NUMBERS, HOLOMORPHICITY, AND C-R EQUATIONS

Exercise 0.1: Verify the following for all complex numbers z and w:

- $(1) |z + w| \le |z| + |w|.$
- $(2) ||z| |w|| \le |z + w|.$

Solution. (1) Let Re(z) denotes the real part of the complex number z. Note that $(z+w)\overline{(z+w)} = |z+w|^2 \le (|z|+|w|)^2$. However,

$$(z+w)\overline{(z+w)} = (z+w)(\overline{z}+\overline{w}) = |z|^2 + z\overline{w} + \overline{z}w + |w|^2$$
$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2.$$

But $\operatorname{Re}(z\overline{w}) \leq |z||w|$.

(2) The argument is similar to one given in (1).

Exercise 0.2: Let $z, w \in \mathbb{C}$ belong to the upper half plane. Show that the distance between z and w is at most the distance between z and \overline{w} .

Solution. Let Im(z) denotes the imaginary part of the complex number z. We need to verify that $|z-w| \leq |z-\overline{w}|$ if $\text{Im}(z), \text{Im}(w) \geq 0$. Note that

$$|z-w|^2 = \text{Re}(z-w)^2 + \text{Im}(z-w)^2, \ |z-\overline{w}|^2 = \text{Re}(z-\overline{w})^2 + \text{Im}(z-\overline{w})^2.$$

However, $\operatorname{Re}(z-w) = \operatorname{Re}(z-\overline{w})$ and $\operatorname{Im}(z-\overline{w}) = \operatorname{Im}(z+w)$. Hence $|z-w| \leq |z-\overline{w}|$ holds provided

$$|\operatorname{Im}(z) - \operatorname{Im}(w)| = |\operatorname{Im}(z - w)| \le |\operatorname{Im}(z + w)| = |\operatorname{Im}(z) + \operatorname{Im}(w)|,$$

which holds trivially if Im(z), Im(w) > 0.

Recall the De Moivers formula: If $z = r(\cos(\theta) + i\sin(\theta))$ then

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

Exercise 0.3: Find all complex numbers z such that $z^3 + 1 = 0$.

Solution. Note that $z^3 = -1$, and hence |z| = 1. By De Moivers formula,

$$z^3 = \cos(3\theta) + i\sin(3\theta) = -1.$$

In particular, $\cos(3\theta) = -1$ and $\sin(3\theta) = 0$. The possible choices for θ are $\theta = \frac{\pi + 2k\pi}{3}$ for integers k. This yields the desired solutions

$$\cos(\pi/3) + i\sin(\pi/3), \cos(\pi) + i\sin(\pi), \cos(5\pi/3) + i\sin(5\pi/3).$$

A map f from \mathbb{C} is $\underline{\mathbb{R}\text{-linear}}$ if f(z+w)=f(z)+f(w) and $f(a\ z)=a\ f(z)$ for all $z,w\in\mathbb{C}$ and $a\in\mathbb{R}$. A map f from \mathbb{C} is $\underline{\mathbb{C}\text{-linear}}$ if f(z+w)=f(z)+f(w) and $f(a\ z)=a\ f(z)$ for all $z,w\in\mathbb{C}$ and $a\in\mathbb{C}$.

Exercise 0.4: For given scalars $a, b \in \mathbb{C}$, show that $f(z) = az + b\overline{z}$ is always \mathbb{R} -linear, where $\overline{z} = x - iy$ for z = x + iy. Verify further that f is \mathbb{C} -linear if and only if b = 0.

Solution. The first part follows from $\overline{z+w}=\overline{z}+\overline{w}$ and $\overline{az}=a\overline{z}$ for $z,w\in\mathbb{C}$ and $a\in\mathbb{R}$. To see the second part, note that if $f(i\cdot 1)=if(1)$ then ai-bi=ai+bi, which implies that b=0. If b=0 then clearly f(z)=az is \mathbb{C} -linear.

Exercise 0.5: Let $f: \mathbb{C} \to \mathbb{C}$ be a function such that

(0.1)
$$f(az) = a f(z) \text{ for all } z, w, a \in \mathbb{C}.$$

Show that there exists $\alpha \in \mathbb{C}$ such that $f(z) = \alpha z$ for all $z \in \mathbb{C}$.

Solution. Apply (0.1) to a = w and z = 1 to conclude that

$$f(w) = f(w \cdot 1) = wf(1)$$
 for any $w \in \mathbb{C}$.

Hence one may take $\alpha = f(1)$.

Exercise 0.6: Show that a holomorphic function $f = u + iv : \mathbb{C} \to \mathbb{C}$ is constant if $\overline{f} = u - iv$ is holomorphic.

Solution. Suppose that \overline{f} is holomorphic. By C-R equations, $u_x = (-v)_y$ and $u_y = -(-v)_x$, that is, $u_x = -v_y$ and $u_y = v_x$. But since f is holomorphic, we also have $u_x = v_y$ and $u_y = -v_x$. As a consequence, we obtain $u_x = u_y = 0 = v_x = v_y$, and hence u and v are constant.

Exercise 0.7: Show that a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ is constant if the range of f is contained in a circle.

Solution. Suppose the range of f is contained in a circle $|z-z_0|=R$. Then the range of the holomorphic function $g=\frac{1}{R}(f-z_0)$ is contained in the unit circle centered at 0. Suppose g=u+iv. Then $u^2+v^2=1$. But then

$$2uu_x + 2vv_x = 0 = 2uu_y + 2vv_y.$$

By C-R equations, $uu_x - vu_y = 0 = uu_y + vu_x$. This gives the system

$$\begin{bmatrix} u_x & -u_y \\ u_y & u_x \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 0,$$

Since u and v can not be 0 simultaneously (as $u^2 + v^2 = 1$), the determinant must be 0, and hence $u_x^2 + u_y^2 = 0$. We have seen in the class that $g' = u_x^2 + u_y^2$. This shows that g' = 0 or equivalently g is constant.

Exercise 0.8: Show that a a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ is constant if the range of f is contained in a parabola.

Solution. Without loss of generality, assume that the range of f is contained in the parabola $(Y - k)^2 = p(X - h)$ for real constants p, h and k with $p \neq 0$. But then g = f - (h + ik) is also holomorphic and satisfies $v^2 = pu$, where g = u + iv. Since $2vv_x = pu_x$, $2vv_y = pu_y$, by C-R equations,

$$-2vu_y = pu_x, \ 2vu_x = pu_y,$$

which can be solved to obtain $-2v\frac{(2vu_x)}{p} = pu_x$, that is, $-4v^2u_x = p^2u_x$. Thus we have $(p^2 + 4v^2)u_x$ implying $u_x = 0$ and hence $u_y = 0$. This proves that u is constant. It can be seen similarly that v is constant.