Utilization of Non-Destructive Tools for In-Situ Determination of Hydrogen Content in Advanced Materials

Angelique Lasseigne, Kamalu Koenig, David L. Olson, Joshua Jackson, and Brajendra Mishra

G2MT

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate or regarding this burden estimate or regarding this properties.	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE FEB 2009		2. REPORT TYPE		3. DATES COVE	red 00-00-2009
4. TITLE AND SUBTITLE		5a. CONTRACT	NUMBER		
Utilization of Non-	ation of	of 5b. GRANT NUMBER			
Hydrogen Content		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)	5d. PROJECT NUMBER				
			5e. TASK NUMBER		
			5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE rials Technology LI 504		Foxfire	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A		10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited			
13. SUPPLEMENTARY NO 2009 U.S. Army Co	orrosion Summit, 3-	5 Feb, Clearwater l	Beach, FL		
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 31	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Introduction
- Common Factor Between Electronic Tools and Hydrogen Measurements
- Non-Destructive Hydrogen Content Sensors
 - Thermoelectric Power Measurements
 - Low Frequency Impedance Measurements
- Results
- Summary

NDE Progress and Challenges

The NDE Community has made impressive advancements in assessment of material defects and increased structural integrity

New Challenges:

- To Assess Material Health
 - Aging

- Properties

- Specifications

- Stability

- Strain State
- To non-destructively characterize material in technical assemblies with electronic, magnetic, and elastic metallography techniques
- To be integrated in agile vertical manufacturing systems
- To rapidly perform real-time testing, data acquisition, and assessment, to qualify materials during manufacturing

Early Metallurgical Approach

Hume-Rothery

Darken-Gurry

Gschneider

Waber

Early Metallurgical Approach

Miedema-Chelikowsky

Related to Bulk Modulus/Vol.

Early Metallurgical Approach

Electronic Property Crystal Structure Correlation

Consider the number of unpaired s and p electrons

Brewer

Crystal Structure	Elements e/a ratio	Alloys e/a ratio	Electronic Configuration
BCC	1	< 1.5	d ⁿ s
НСР	2	1.7 to 2.1	d ⁿ sp
FCC	3	2.5 to 3.0	d ⁿ sp ²
Diamond	4	>3.5	d ⁿ sp ³

Early Physics Approach

Intro to Wave Mechanics - Mott and Jones - Ziman

Effective Mass

 Electron wave function is modified by localized potentials

$$E = \frac{1}{2}mv^2 + V$$

- Free Electron
 Wave (----)
- + Localized Potential

Ref: Wilkes, 1973

LCAO Model

$$E = \frac{1}{2}mv^2 = \frac{P^2}{2m} = \frac{\hbar^2 k^2}{2m_e} \qquad m_e = \frac{\hbar^2 k^2}{2m_e}$$

Correlation of Phase Diagram to Electronic Filling of Band Structure

QUESTION:

If you can calculate e/a, why can't you measure it?

Electronic Property Measurement Tools

- Thermoelectric Power
 - Contact Technique

- Low Frequency Impedance
 Measurements
 - Non-Contact Technique

Quantum Mechanical Principle of Thermoelectric Power

$$S = \left(\pm \frac{k}{e}\right) (27.1) \left(r + \frac{3}{2}\right) \left(\frac{m_e}{h^2}\right) \left(kTn^{\left(-\frac{2}{3}\right)}\right)$$

$$S = S(n, m_e, r)$$

- S Thermoelectric power
- r Scattering parameter
- h Planck constant
- k Boltzmann's constant
- n Free electron concentration
- m_e Effective mass (m*)

$$m_e = \frac{\hbar^2}{(d^2 E/dk^2)}$$

Electronic Nature of Hydrogen

$$E_F = \frac{\hbar^2 k^2}{2m_e}$$

$$m_e \propto \frac{1}{(d^2E/dk^2)}$$

Hydrogen in BCC Interstitial Sites

	Tetra- hedral	Octa- hedral
BCC-Iron Interstitial Hole Size	0.36 Å	0.19 Å
H-Filled Interstitial Hole Size	0.87 Å	0.66 Å

Thermoelectric Power Surface Probe

Contact diameter of probe tip: 0.015 inches (381 µ)

Thermoelectric Power as a Function of Hydrogen in Monel K-500

Park et. al. International Proceeding of NACE International 2004, Paper No 04265

I hermoelectric Power as a Function of H/LaNi

Thermoelectric Power as a Function of H/AI

Bogdanovic et al., 2000

Eddy Current Analysis

- Eddy current non-destructively measure:
 - Plate and coating thickness
 - Conductivity
 - Differences in composition, microstructure, and properties
 - Cracks, defect, flaws
 - Hardness and physical conditions

Eddy Current Analysis

- Eddy Currents
 - Spread out into the specimen
 - Will naturally be constrained by the specimen boundaries
 - Circulating currents produce their own secondary flux, $\Phi_{\rm S}$
 - This secondary flux is in opposition to Φ_{P}
- The coil now senses an equilibrium flux:

$$\Phi_E = \Phi_P - \Phi_S$$

Eddy Current Theory

Low Frequency Impedance Measurements

Impedance as a Function of Time as Hydrogen Diffuses out of Steel Weld Metal

Thermoelectric Power and Impedance as a Function of Time

Additional Non-Destructive Tools

Electronic

- Conductivity
- TEP
- Hall Effect

Magnetic

Susceptibility

Electromagnetic

- Eddy Current
- EM-Acoustic -> Barkhausen Noise
- Electromagnetic Radiation (X-ray, gamma, and tera)

Elastic

Acoustic Emission – Kaiser Effect

Thermal Analysis

Infrared

Summary

 Both thermoelectric power and low frequency impedance measurements successfully provide real-time, non-destructive, hydrogen content measurements in advanced materials.

Acknowledgements

- DOT-PHMSA
- CSM-Dept. of Physics
- Agilent Technologies
- Holland Consulting
- TMR Exploration
- Blade Energy

Diffusion Coefficient of Hydrogen in Steel

Current Methods for Hydrogen Measurement

- Laser Ablation/Gas Chromatography
- Laser Ablation/Mass Spectrometer
- Electrochemical
- Opto-electronic diffusible hydrogen sensor
- AWS Volumetric Displacement