Signals and Systems - known past paper mistakes

Emilie d'Olne

April 7, 2022

2018

Question 3.(b)(ii)

Consider the discrete signals $x_1[n] = 2^n$ and $x_2[n] = 3^n$ for $n \ge 0$. Find their convolution using their z-transforms and properties of convolution.

Mistake: the final ROC was incorrect.

Remember that the z-transform of $x[n] = a^n u[n]$ is given by

$$\begin{split} X(z) &= \sum_{n=0}^{\infty} a^n z^{-n} \\ &= \frac{1}{1-az^{-1}} \text{ if } |az^{-1}| < 1 \\ &= \frac{z}{z-a} \text{ if } |z| > |a| \,. \end{split}$$

Thus the convolution is obtained in the z-domain as

$$\begin{split} X_1(z)X_2(z) &= \frac{z}{z-2} \frac{z}{z-3} \text{ with } |z| > 3 \cap |z| > 2 \\ &= z \Big(\frac{z}{z-3} - \frac{z}{z-2} \Big) = z \Big(\frac{z}{z-3} - x_1(0) + x_1(0) - \frac{z}{z-2} \Big) \\ &= z \Big(\frac{z}{z-3} - x_1(0) - \frac{z}{z-2} + x_2(0) \Big) \text{ since } x_1(0) = x_2(0) \\ &= z \Big(\frac{z}{z-3} - x_1(0) \Big) - z \Big(\frac{z}{z-2} - x_2(0) \Big) \text{ with } |z| > 3 \,. \end{split}$$

Using results from part (i), this gives $3^{n+1}u[n] - 2^{n+1}u[n]$ in the time domain.

Question 3.(c)

Consider a LTI system with input x[n] and output y[n] related by the difference equation

$$2y[n] - 9y[n-1] + 4y[n-2] = -14x[n-2]$$
.

Investigate whether the above system can be both stable and causal. Justify your answer. Determine the impulse response and its z-transform in the following three cases

- \cdot the system is causal
- \cdot the system is stable
- the system is neither causal nor causal.

Use the fact that the z-transform $\frac{z}{z-a}$ corresponds to the function $a^nu[n]$ in discrete time if |z| > |a| and the function $-a^nu[-n-1]$ if |z| < |a|.

Mistake: the input x[n-2] leads to a transfer function that does not contain $\frac{z}{z-a}$ terms. Instead, use x[n] as input.

The system can be written in the z-domain as

$$Y(z)[1-3.5z^{-1}+2z^{-2}] = -7X(z)$$
,

giving the transfer function

$$H(z) = \frac{-7}{(1 - 0.5z^{-1})(1 - 4z^{-1})} = \frac{1}{1 - 0.5z^{-1}} - \frac{8}{1 - 4z^{-1}} = \frac{z}{z - 0.5} - 8\frac{z}{z - 4}.$$

The system is causal

$$h[n] = (0.5)^n u[n] - 8(4)^n u[n], |z| > 4.$$

The system is stable

$$h[n] = (0.5)^n u[n] + 8(4)^n u[-n-1], \ 0.5 < |z| < 4.$$

The system is netiher stable nor causal

$$h[n] = -(0.5)^n u - [n-1] + 8(4)^n u[-n-1], |z| < 0.5.$$

There is no combination that allows the system to be both stable and causal.

2019

Question 1.(g)(ii)

Consider the discrete-time, causal LTI system with input x[n] and output y[n] related with the difference equation

$$y[n] - \frac{5}{6}y[n-1] + \frac{1}{6}y[n-2] = x[n] - \frac{1}{2}x[n-1]$$
.

Find the analytical expression and the ROC of the z-transform of the output if $x[n] = (\frac{1}{2})^n u[n]$.

Mistake: the final ROC was incorrect.

From standard z-transforms we have

$$X(z) = \frac{z}{z - \frac{1}{2}}$$

and from part (i) we have

$$H(z) = \frac{z}{z - \frac{1}{3}} \,.$$

Thus the z-transform of the output is

$$Y(z) = \frac{z^2}{(z - \frac{1}{2})(z - \frac{1}{3})} \text{ ROC: } |z| > \frac{1}{2} \cap |z| > \frac{1}{3} = |z| > \frac{1}{2}.$$

Question 2.(d)(ii)

The output y(t) of an LTI system is related to the input x(t) through the differential equation

$$\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} - 2y(t) = \frac{dx(t)}{dt} + 2x(t).$$

Let X(s) and Y(s) denote the Laplace transforms of x(t) and y(t), respectively, and let H(s) denote the Laplace transform of the system's impulse response h(t).

- Determine H(s) as a ratio of two polynomials.
- Determine h(t) for each of the following cases
 - The system is stable.
 - The system is causal.

Mistake: The answer for a stable system was incorrect.

The system can be described in the Laplace domain as

$$(s^2 + s - 2)Y(s) = (s + 2)X(s)$$

giving H(s) as

$$H(s) = \frac{Y(s)}{X(s)} = \frac{s+2}{s^2+s-2} = \frac{s+2}{(s+2)(s-1)} = \frac{1}{s+1}.$$

The last step occurs through pole-zero cancellation. This is beyond the scope of this course, but the analyticity of H(s) at s=2 is defined by Riemann's theorem on removable singularities. For the system to be stable, the ROC must include the $j\omega$ axis. Thus $h(t) = -e^t u(-t)$ with ROC

For the system to be stable, the ROC must include the $j\omega$ axis. Thus $h(t) = -e^t u(-t)$ with ROC $\Re\{s\} < 1$. For the system to be causal, the ROC must be to the right of the pole, thus $h(t) = e^t u(t)$ with ROC $\Re\{s\} > 1$.

2020 v2

Question 1.(g)(ii)

Consider the discrete-time, causal LTI system with input x[n] and output y[n] related with the difference equation

 $y[n] - \frac{5}{8}y[n-1] + \frac{1}{16}y[n-2] = x[n] - \frac{1}{8}x[n-1]$.

Find the analytical expression and the ROC of the z-transform of the output if $x[n] = (\frac{1}{4})^n u[n]$.

Mistake: the final ROC was incorrect.

From standard z-transforms we have

$$X(z) = \frac{z}{z - \frac{1}{4}}$$

and from part (i) we have

$$H(z) = \frac{z}{z - \frac{1}{2}}.$$

Thus the z-transform of the output is

$$Y(z) = \frac{z^2}{(z - \frac{1}{2})(z - \frac{1}{4})} \text{ ROC: } |z| > \frac{1}{2} \cap |z| > \frac{1}{4} = |z| > \frac{1}{2}.$$

2020 v3

Question 1.(a)(i)

Consider $x(t) = |\sin(2\pi t + \frac{\pi}{3})|$. Specify if the signal is causal/non causal, periodic/non-periodic, odd/even.

Mistake: the answer said this signal is even, when it is neither even or odd.

Non causal, periodic with period T=0.5, neither even or odd.

Question 3.(d)(iii)

Verify the results in part (d)(i) for the sequence u[n+2] - u[-n+2].

Mistake: wrong power of z in the first step.

Taking the z-transform of x[n] = u[n+2] - u[-n+2]

$$X(z) = z^{2} \frac{z}{z-1} - z^{-2} \frac{z^{-1}}{z^{-1} - 1}$$

The expression for $X(z^{-1})$ is

$$X(z^{-1}) = z^{-2} \frac{z^{-1}}{z^{-1} - 1} - z^{2} \frac{z}{z - 1}$$
$$= -\left(z^{2} \frac{z}{z - 1} - z^{-2} \frac{z^{-1}}{z^{-1} - 1}\right)$$
$$= -X(z)$$

Thus proving the results in (d)(i).