import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython import get_ipython
import warnings
warnings.filterwarnings("ignore")

In [3]:

data = pd.read_csv("churn.csv")

In [4]:

data.head()

Out[4]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance
0	1	15634602	Hargrave	619	France	Female	42	2	0.00
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86
2	3	15619304	Onio	502	France	Female	42	8	159660.80
3	4	15701354	Boni	699	France	Female	39	1	0.00
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82
4									•

In [5]: ▶

data.tail()

Out[5]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	5736
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	7507
9999	10000	15628319	Walker	792	France	Female	28	4	13014
4									>

```
In [6]:
                                                                                M
data.shape
Out[6]:
(10000, 14)
In [7]:
                                                                                H
data.columns
Out[7]:
dtype='object')
In [8]:
                                                                                M
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
 #
    Column
                    Non-Null Count
                                   Dtype
     _ _ _ _ _
 0
    RowNumber
                    10000 non-null int64
 1
    CustomerId
                    10000 non-null int64
 2
    Surname
                    10000 non-null object
 3
    CreditScore
                    10000 non-null int64
 4
    Geography
                    10000 non-null object
 5
    Gender
                    10000 non-null object
 6
    Age
                    10000 non-null int64
 7
    Tenure
                    10000 non-null int64
 8
    Balance
                    10000 non-null float64
 9
    NumOfProducts
                    10000 non-null
                                   int64
 10
    HasCrCard
                    10000 non-null
                                   int64
 11
    IsActiveMember
                    10000 non-null int64
    EstimatedSalary
 12
                    10000 non-null float64
 13
    Exited
                    10000 non-null
                                   int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

In [9]:

data.describe()

Out[9]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000
4						>

In [10]:

data.isnull().sum()

Out[10]:

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

6/7/22, 10:53 PM Churn for Bank Customers - Jupyter Notebook H In [11]: data.nunique() Out[11]: RowNumber 10000 CustomerId 10000 Surname 2932 CreditScore 460 Geography 3 Gender 2 70 Age Tenure 11 Balance 6382 NumOfProducts 4 HasCrCard 2 IsActiveMember 2 EstimatedSalary 9999 Exited 2

dtype: int64

```
In [12]:
                                                                                               H
```

```
data_new = data.drop(['RowNumber', 'CustomerId', 'Surname'], axis = 1)
```

```
In [13]:
                                                                                              H
```

data_new.head()

Out[13]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiv
0	619	France	Female	42	2	0.00	1	1	
1	608	Spain	Female	41	1	83807.86	1	0	
2	502	France	Female	42	8	159660.80	3	1	
3	699	France	Female	39	1	0.00	2	0	
4	850	Spain	Female	43	2	125510.82	1	1	
4									>

```
In [14]:
                                                                                               H
```

```
data_new['Geography'].unique()
```

Out[14]:

```
array(['France', 'Spain', 'Germany'], dtype=object)
```

In [15]: ▶

```
data_new['Geography'].value_counts()
```

Out[15]:

France 5014 Germany 2509 Spain 2477

Name: Geography, dtype: int64

In [16]: ▶

In [17]:

import plotly.express as px

In [18]: ▶

```
fig1 = px.histogram(data_new, x = 'Geography', color = 'Geography')
fig1.show()
```



```
In [19]:
data_new['Gender'].unique()

Out[19]:
array(['Female', 'Male'], dtype=object)

In [20]:

data_new['Gender'].value_counts()
```

Out[20]:

Male 5457 Female 4543

Name: Gender, dtype: int64

In [21]: ▶

H In [22]:

```
fig2 = px.histogram(data_new, x = 'Gender', color = 'Gender')
fig2.show()
```



```
In [23]:
                                                                                        H
data_new['NumOfProducts'].unique()
```

Out[23]:

array([1, 3, 2, 4], dtype=int64)

H In [25]: data_new['NumOfProducts'].value_counts()

Out[25]:

- 1 5084 2 4590 3 266

Name: NumOfProducts, dtype: int64

In [26]: ▶


```
In [27]: ▶
```

```
fig3 = px.histogram(data_new, x = 'NumOfProducts', color = 'NumOfProducts')
fig3.show()
```



```
In [29]:

data_new['HasCrCard'].unique()

Out[29]:
array([1, 0], dtype=int64)

In [30]:

data_new['HasCrCard'].value_counts()
```

Out[30]:

1 7055 0 2945

Name: HasCrCard, dtype: int64

In [31]: ▶


```
In [32]: ▶
```

```
fig4 = px.histogram(data_new, x = 'HasCrCard', color = 'HasCrCard')
fig4.show()
```



```
In [33]:
data_new['IsActiveMember'].unique()

Out[33]:
array([1, 0], dtype=int64)

In [34]:
data_new['IsActiveMember'].value_counts()
```

Out[34]:

5151
 4849

Name: IsActiveMember, dtype: int64

In [35]: ▶


```
In [36]:

fig5 = px.histogram(data_new, x = 'IsActiveMember', color = 'IsActiveMember')
fig5.show()
```


In [39]: ▶

In [40]: ▶

```
fig6 = px.histogram(data_new, x = 'Exited', color = 'Exited')
fig6.show()
```


In [42]: ▶


```
In [47]:
```

```
values = data_new['Exited'].value_counts()
names = ['Retained', 'Exited']
fig7 = px.pie(values = values, names = names)
fig7.show()
```



```
In [48]: ▶
```

data_new.columns

Out[48]:

```
In [49]:
```

```
In [51]:
```

```
for i in data_new_numeric.columns:
   plt.figure(figsize=(15,6))
   sns.boxplot(data_new_numeric[i], data = data_new_numeric)
   plt.xticks(rotation = 90)
   plt.show()
```



```
In [54]: 

N
```

```
for i in data_new_numeric.columns:
   plt.figure(figsize=(15,6))
   sns.distplot(data_new_numeric[i], color='green')
   plt.tight_layout()
```



```
In [55]:
```

```
data_exited = data_new.drop(columns = 'Exited')
```

In [58]:

```
data_exited.columns
```

Out[58]:

```
In [59]: ▶
```

```
data_exited.head()
```

Out[59]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiv
0	619	France	Female	42	2	0.00	1	1	
1	608	Spain	Female	41	1	83807.86	1	0	
2	502	France	Female	42	8	159660.80	3	1	
3	699	France	Female	39	1	0.00	2	0	
4	850	Spain	Female	43	2	125510.82	1	1	
4									•

In [61]:


```
In [64]:
for i in data_exited[['Geography', 'Gender', 'Age', 'Tenure',
        'NumOfProducts', 'HasCrCard', 'IsActiveMember']]:
    plt.figure(figsize=(15,6))
    sns.histplot(data_new_numeric, x = data_exited[i], hue = 'Exited')
    plt.xticks(rotation = 90)
    plt.show()
                                                                                 Exited
                                                                                  0
  4000
                                                                                 ___ 1
  3000
  2500
8 <sub>2000</sub>
  1500
  1000
  500
                                          Geography
      Exited
     ____ 0
____ 1
In [65]:
data_new_numeric.corr()
```

Out[65]:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsAct
CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	
Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	
Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	
Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	
NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	
HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	
IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	
EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	
Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	
4							•

```
In [66]: ▶
```

```
plt.figure(figsize=(15,6))
sns.heatmap(data_new_numeric.corr(), annot = True)
plt.show()
```



```
In [79]:

data_new['age_groups'] = pd.cut(data_new['Age'], bins=6)

In [80]:

data_new_age = data_new.copy()

In [81]:

data_new_age = data_new_age.groupby(['age_groups','Exited']).agg({'Gender' : 'count'}).tdata_new_age.columns = ['age_groups','Exited','user_count']
data_new_age['Exited'] = data_new_age['Exited'].apply(lambda x : 'Exited' if x == 1 else
```

In [82]: ▶

data_new_age

Out[82]:

	age_groups	Exited	user_count
0	(17.926, 30.333]	Retained	1820
1	(17.926, 30.333]	Exited	148
2	(30.333, 42.667]	Retained	4454
3	(30.333, 42.667]	Exited	684
4	(42.667, 55.0]	Retained	1183
5	(42.667, 55.0]	Exited	911
6	(55.0, 67.333]	Retained	337
7	(55.0, 67.333]	Exited	271
8	(67.333, 79.667]	Retained	155
9	(67.333, 79.667]	Exited	22
10	(79.667, 92.0]	Retained	14
11	(79.667, 92.0]	Exited	1

In [87]: ▶


```
In [84]:

data_new_geo = data_new.groupby(['Geography','Exited']).agg({'Gender':'count'}).reset_ir
data_new_geo.columns = ['Geography','Exited','user_count']
data_new_geo
```

Out[84]:

	Geography	Exited	user_count
0	France	0	4204
1	France	1	810
2	Germany	0	1695
3	Germany	1	814
4	Spain	0	2064
5	Spain	1	413

In [86]: ▶


```
In [88]: ▶
```

```
data_new_product = data_new.groupby(['NumOfProducts','Exited']).agg({'Gender' : 'count']
data_new_product.columns = ['NumOfProducts','Exited','user_count']
data_new_product
```

Out[88]:

	NumOfProducts	Exited	user_count
0	1	0	3675
1	1	1	1409
2	2	0	4242
3	2	1	348
4	3	0	46
5	3	1	220
6	4	1	60

```
In [90]: ▶
```



```
In [93]:
```

```
data_new['CreditScoreNew'] = pd.cut(data_new['CreditScore'], bins=6)
```

In [94]: ▶

```
data_new_creditscore = data_new.groupby(['CreditScoreNew','Exited']).agg({'Gender' : 'cd'
data_new_creditscore.columns = ['CreditScoreNew','Exited','user_count']
data_new_creditscore
```

Out[94]:

CreditScoreNew	Exited	user_count
(349.5, 433.333]	0	67
(349.5, 433.333]	1	40
(433.333, 516.667]	0	640
(433.333, 516.667]	1	162
(516.667, 600.0]	0	1694
(516.667, 600.0]	1	463
(600.0, 683.333]	0	2560
(600.0, 683.333]	1	633
(683.333, 766.667]	0	2013
(683.333, 766.667]	1	496
(766.667, 850.0]	0	989
(766.667, 850.0]	1	243
	(349.5, 433.333] (349.5, 433.333] (433.333, 516.667] (433.333, 516.667] (516.667, 600.0] (516.667, 600.0] (600.0, 683.333] (600.0, 683.333] (683.333, 766.667] (683.333, 766.667] (766.667, 850.0]	(349.5, 433.333] 0 (349.5, 433.333] 1 (433.333, 516.667] 0 (433.333, 516.667] 1 (516.667, 600.0] 0 (516.667, 600.0] 1 (600.0, 683.333] 0 (600.0, 683.333] 1 (683.333, 766.667] 0 (683.333, 766.667] 1 (766.667, 850.0] 0

In [95]: ▶

