Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2017

Concours Mathématiques et Physique Correction de l'Epreuve de Mathématiques II

Partie I - Quotient de Rayleigh: Cas général

- 1. Les applications $\varphi_1: \Omega \times \Omega \to \mathbb{R}, (X,Y) \mapsto \langle AX,Y \rangle$ et $\varphi_2: \Omega \to \Omega \times \Omega, X \mapsto (X,X)$ sont bilinéaire et linéaire respectivement. En dimension finie, elles sont donc continues. Ainsi $\varphi_1 \circ \varphi_2: X \mapsto \langle AX, X \rangle$ est continue sur Ω . De plus, $\psi: X \mapsto \|X\|$ est 1-lipschitzienne d'ou $X \mapsto \|X\|^2$ est continue. Finalement, R_A est quotient des fonctions continues sur Ω donc elle est continue.
- 2. (a) ψ étant continue et $S_n = \psi^{-1}(\{1\})$: image réciproque du fermé $\{1\}$ de \mathbb{R} donc S_n est un fermé de $\mathcal{M}_{n,1}(\mathbb{R})$. De plus, S_n est bornée donc S_n est un fermé borné en dimension finie donc c'est un compact.
 - (b) $\frac{X}{\|X\|}$ est un vecteur unitaire et $R_A\left(\frac{X}{\|X\|}\right) = \left\langle A\frac{X}{\|X\|}, \frac{X}{\|X\|} \right\rangle = R_A(X)$. Puisque $S_n \subset \Omega$ donc $R_A(S_n) \subset R_A(\Omega)$. Réciproquement, si $X \in \Omega$ alors $\frac{X}{\|X\|} \in S_n$ et on a $R_A(X) = R_A\left(\frac{X}{\|X\|}\right) \in R_A(S_n)$. D'où la deuxième inclusion et par suite l'égalité.
 - (c) $R_A(\Omega) = R_A(S_n)$ est l'image d'un compact de $\mathcal{M}_{n,1}(\mathbb{R})$ par une application continue donc c'est un compact de \mathbb{R} et par suite R_A est bornée et atteint ses bornes.
- 3. (a) $\forall t \in [0, 1], (1-t)X + tY \neq 0$; car sinon, il existe $\alpha = 1 t, \beta = t, (\alpha, \beta) \neq (0, 0)$ tels que $\alpha X + \beta Y = 0$ et donc (X, Y) est liée ce qui est absurde.
 - (b) $X \neq 0$, la famille (X) est donc libre dans $\mathcal{M}_{n,1}(\mathbb{R})$ et $n \geq 2$ donc il existe $Z \neq 0$ tel que (X, Z) est libre. La famille (Y, Z) est aussi libre. Sinon, comme $Z \neq 0$ il existe $\alpha \in \mathbb{R}$ tel que $Y = \alpha Z$. De même (X, Y) est liée et $Y \neq 0$ donc il existe $\beta \in \mathbb{R}$ tel que $X = \beta Y$ et par suite $X = \alpha \beta Z$ ce qui est absurde car (X, Z) est libre.
 - (c) Si (X, Y) est une famille libre, alors on considère $\gamma(t) = (1-t)X + tY$, $t \in [0, 1]$. Sinon, $\gamma : [0, 1] \to \Omega$ est défini par

$$\gamma(t) = \begin{cases} (1-2t)X + 2tZ & \text{si } t \in \left[0, \frac{1}{2}\right] \\ (-2t+2)Z + (2t-1)Y & \text{si } t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Dans les deux cas, et pour $X \neq Y$, γ est un chemin continu d'extrémités X et Y contenu dans Ω . Par suite Ω est une partie connexe par arcs dans $\mathcal{M}_{n,1}(\mathbb{R})$.

- 4. $R_A(\Omega)$ est l'image d'une partie connexe par arcs par une application continue, alors c'est une partie connexe par arcs de \mathbb{R} et donc un intervalle (fermé borné d'après 2.c.) et donc $R_A(\Omega) = [m, M]$.
- 5. (a) Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $A = \frac{1}{2}(A + {}^tA) + \frac{1}{2}(A {}^tA) \in \mathcal{S}_n(\mathbb{R}) + \mathcal{M}_n(\mathbb{R})$. De plus, si $A \in \mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R})$ alors ${}^tA = A = -A$ et donc A = 0. Ainsi $\mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R}) = \{0\}$. On en déduit que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$.
 - (b) Si $A \in \mathcal{A}_n(\mathbb{R})$ alors : $\forall X \in \Omega$,

$$R_A(X) = \frac{{}^{t}(AX)X}{\|X\|^2} = -\frac{{}^{t}XAX}{\|X\|^2} = -R_A(X)$$

d'où $R_A(X) = 0$.

(c) En décomposant la matrice $A = \frac{1}{2}(A + {}^{t}A) + \frac{1}{2}(A - {}^{t}A)$ et en utilisant la question précédente on trouve l'égalité demandée.

Partie II - Quotient de Rayleigh : Cas d'une matrice symétrique

- 6. A est symétrique réelle, d'après le théorème spectrale, il existe une base orthonormale (V_1, \ldots, V_n) de $\mathcal{M}_{n,1}(\mathbb{R})$ formée par des vecteurs propres de A associés à $\lambda_1, \ldots, \lambda_n$ respectivement, c'est-à-dire $\forall i \in [\![1,n]\!] : AV_i = \lambda_i V_i$.
- 7. (a) $\forall i \in [1, n]$: $MV_i = \sum_{j=1}^n \lambda_j V_j ({}^tV_j V_i) = \sum_{j=1}^n \lambda_j V_j \delta_{i,j} = \lambda_i V_i$, d'où M et A coïncident sur une base de $\mathcal{M}_{n,1}(\mathbb{R})$ et donc M = A.
 - (b) Pour tout $X = \sum_{i=1}^{n} x_i V_i \in \Omega$, on a $||X||^2 = \sum_{i=1}^{n} x_i^2$ et $\langle AX, X \rangle = \sum_{i=1}^{n} \lambda_i x_i^2$ d'où l'expression de $R_A(X)$.
- 8. $R_A(V_i) = \frac{\lambda_i ||V_i||^2}{||V_i||^2} = \lambda_i, \forall i \in [1, n].$
- 9. (a) On a $\lambda_1 \sum_{i=1}^n x_i^2 \leq \sum_{i=1}^n \lambda_i x_i^2 \leq \lambda_n \sum_{i=1}^n x_i^2$ d'où $R_A(V_1) = \lambda_1 \leq R_A(X) \leq \lambda_n = R_A(V_n)$ pour tout $X \in \Omega$. D'après I.4., $R_A(\Omega) = [\lambda_1, \lambda_n]$.
 - (b) Soit $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. A est nilpotente et donc $\operatorname{Sp}(A) = \{0\}$ c'est-à-dire $\lambda_1 = \lambda_2 = 0$. De plus, pour $X = \begin{pmatrix} x \\ y \end{pmatrix} \in \Omega$: $R_A(X) = \frac{xy}{x^2 + y^2}$ et pour $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $R_A(X) = \frac{1}{2}$ et donc $\max_{X \in \Omega} R_A(X) \neq 0 = \lambda_2$ et pour $X = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $R_A(X) = -\frac{1}{2}$ et donc $\min_{X \in \Omega} R_A(X) \neq 0 = \lambda_1$.
- 10. En notant (E_1, \ldots, E_n) la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, on a :

$$\lambda_1 \le a_{i,i} = \langle AE_i, E_i \rangle = R_A(E_i) \le \lambda_n$$

11. (a) Notons d'abord que Ω est un ouvert de $\mathcal{M}_{n,1}(\mathbb{R})$ et donc pour tout $X \in \Omega$ et $H \in \Omega$ tel que $X + H \in \Omega$ on a :

$$R_A(X+H) = \frac{\langle AX, X \rangle + 2\langle AX, H \rangle + \langle AH, H \rangle}{\|X\|^2 + 2\langle X, H \rangle + \|H\|^2}$$

Sachant que

$$\left(\|X\|^2 + 2\langle X, H \rangle + \|H\|^2\right)^{-1} = \|X\|^{-2} \left(1 - \frac{2}{\|X\|^2} \langle X, H \rangle + o(\|H\|)\right), \ \|H\| \to 0$$

d'où

$$R_A(X + H) = R_A(X) + \frac{2}{\|X\|^2} \langle AX - R_A(X)X, H \rangle + o(\|H\|)$$

Ainsi, R_A est différentiable sur Ω et $\nabla R_A(X) = \frac{2}{\|X\|^2} (AX - R_A(X)X)$.

- (b) Si $X \in \Omega$ est un point critique de R_A , c'est-à-dire $\nabla R_A(X) = 0$, alors $AX R_A(X)X = 0$ et donc $AX = R_A(X)X$. Comme $X \neq 0$, alors il est un vecteur propre de A associé à la valeur propre $R_A(X)$.
- 12. (a) A est une matrice symétrique réelle de valeurs propres λ_1, λ_2 . On a $\lambda_1\lambda_2 = \det(A) > 0$ et donc λ_1 et λ_2 sont de même signe. De plus $\det(A) = ac b^2 > 0$ et a > 0 donc c > 0 et par suite $\lambda_1 + \lambda_2 = a + c > 0$. Ainsi λ_1 et λ_2 sont strictement positives.
 - (b) Pour $(x,y) \in \mathbb{R}^2$ tel que $\|(x,y)\| = 1$, on a : $q(x,y) = R_A(X)$. Ainsi $\inf_{\|(x,y)\|=1} q(x,y) = \min_{X \in S_2} R_A(X) = \lambda_1 > 0$. Donc pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, on a $q\left(\frac{x}{\sqrt{x^2+y^2}}, \frac{y}{\sqrt{x^2+y^2}}\right) \geq \lambda_1$, d'où il suffit de prendre $\alpha = \lambda_1$ et on a $q(x,y) \geq \alpha(x^2+y^2)$ qui reste vraie pour $(x,y) \neq (0,0)$. La CNS pour avoir une égalité est que $\lambda_1 = \lambda_2 = \lambda$, c'est à dire que $A = \lambda I_2$.

Partie III - Théorème de min-max et application

- 13. (a) On a dim $(F \cap U_k)$ = dim F + dim (U_k) dim $(F + U_k) \ge k + n k + 1 n = 1$. D'où $F \cap U_k \ne \{0\}$ et par suite il existe $X \ne 0, X \in F \cap U_k$.
 - (b) Pour $X \neq 0, X \in F \cap U_k$ on $a: X = \sum_{i=k}^n x_i V_i$ et donc $R_A(X) = \frac{\sum_{i=k}^n x_i^2 \lambda_i}{\sum_{i=k}^n x_i^2} \geq \lambda_k$.
 - (c) $\forall X \in G \setminus \{0\} : R_A(X) = \frac{\sum\limits_{i=1}^k x_i^2 \lambda_i}{\sum\limits_{i=1}^k x_i^2} \le \lambda_k.$
 - (d) Pour tout $F \in \mathcal{V}_k$: $\max_{X \in F \setminus \{0\}} R_A(X) \ge \lambda_k$ et par suite $\min_{F \in \mathcal{V}_k} \max_{X \in F \setminus \{0\}} R_A(X) \ge \lambda_k$. De plus, d'après (c), et comme $R_A(V_k) = \lambda_k$ on a : $\max_{X \in G \setminus \{0\}} R_A(X) = \lambda_k$ et donc $\min_{F \in \mathcal{V}_k} \max_{X \in F \setminus \{0\}} R_A(X) \le \lambda_k$ et par suite on a l'égalité.

14. Application.

(a) On a

$${}^{t}M = \begin{pmatrix} {}^{t}B & {}^{t}({}^{t}C) \\ {}^{t}C & 0 \end{pmatrix} = \begin{pmatrix} B & C \\ {}^{t}C & 0 \end{pmatrix} = M$$

ainsi M est symétrique. De plus

$$M\begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} = \begin{pmatrix} C & B \\ 0 & {}^tC \end{pmatrix}$$

Le déterminant de ce produit est non nul puisque $\det^2(C) \neq 0$. Ainsi $\det(M) \neq 0$ et donc M est inversible.

- (b) i. Pour $X=\begin{pmatrix}0\\X_1\end{pmatrix}\in W:\langle MX,X\rangle=0$ et donc $R_A(X)=0$. D'où $\max_{X\in W\setminus\{0\}}R_A(X)=0.$ Ainsi, par le théorème min-max : $\lambda_n\leq 0$ et comme $\lambda_n\neq 0$ alors on a $\lambda_n<0$.
 - ii. En considérant la matrice -M et puisque ses valeurs propres sont les opposées de celles de M, alors en notant λ_i' ces valeurs propres on a :

$$\lambda_1' \le \dots \le \lambda_n' = -\lambda_{n+1} < 0$$

d'où on obtient $\lambda_{n+1} > 0$ et on obtient le résultat.

15. (a) tCC est une matrice symétrique réelle donc ses valeurs propres sont réelles. De plus, si λ est une valeur propre et $X \in \mathcal{M}_{n,1}(\mathbb{R}), X \neq 0$ un vecteur propre associé :

$$\lambda ||X||^2 = \langle {}^tCCX, X \rangle = {}^t(CX)(CX) = ||CX||^2$$

d'où $\lambda \geq 0$. Or C est inversible donc $\lambda \neq 0$ et par suite $\lambda > 0$.

(b) i. Le produit matriciel par blocs donne

$$\begin{pmatrix} \lambda I_n & C \\ 0 & I_n \end{pmatrix} \begin{pmatrix} \lambda I_n & -C \\ -^t C & \lambda I_n \end{pmatrix} = \begin{pmatrix} \lambda^2 I_n - C^t C & 0 \\ -^t C & \lambda I_n \end{pmatrix}.$$

Et on obtient

$$\lambda^n \chi_M(\lambda) = \lambda^n \det(\lambda^2 I_n - C^t C),$$

d'où $\chi_M(\lambda) = \chi_{C^*C}(\lambda^2), \forall \lambda \neq 0$. Cette égalité se prolonge pour $\lambda = 0$.

ii. De même,

$$\begin{pmatrix} \lambda I_n & -C \\ -^t C & \lambda I_n \end{pmatrix} \begin{pmatrix} I_n & C \\ 0 & \lambda I_n \end{pmatrix} = \begin{pmatrix} \lambda I_n & 0 \\ -^t C & -^t CC + \lambda^2 I_n \end{pmatrix}.$$

Et on a $\chi_M(\lambda) = \chi_{{}^t\!CC}(\lambda^2)$.

iii. Si $\lambda \in \operatorname{Sp}(M)$ alors $0 = \chi_M(\lambda) = \chi_{{}^tCC}(\lambda^2)$ et donc $\lambda^2 \in \operatorname{Sp}({}^tCC)$. Réciproquement, si $\mu \in \operatorname{Sp}({}^tCC)$, $\mu > 0$ et on a : $0 = \chi_{{}^tCC}((\pm \sqrt{\mu})^2) = \chi_M(\sqrt{\mu}) = \chi_M(-\sqrt{\mu})$, d'où $\pm \sqrt{\mu} \in \operatorname{Sp}(M)$. D'où

$$\operatorname{Sp}(M) = \left\{ \pm \sqrt{\mu} \mid \mu \in \operatorname{Sp}({}^{t}CC) \right\}.$$

Même résultat pour C^tC . Ainsi $\mathrm{Sp}({}^tCC)=\mathrm{Sp}(C^tC)$.

- (c) i. Soit $\lambda \in \operatorname{Sp}(M)$ et $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \in E_{\lambda}(M)$. On a $MX = \lambda X \iff$ $\begin{cases} CX_2 &= \lambda X_1 \\ {}^tCX_1 &= \lambda X_2 \end{cases}$ d'où en combinant les égalités on obtient : $X_1 \in E_{\lambda^2}(C^tC)$ et $X_2 \in E_{\lambda^2}({}^tCC)$. Ainsi $E_{\lambda}(M) \subset H_{\lambda^2}$.
 - ii. M est symétrique réelle donc diagonalisable. Notant $\lambda_1 < \lambda_2 < \cdots < \lambda_{2p}$ les valeurs propres distinctes de M, on a :

$$\mathfrak{M}_{2n,1}(\mathbb{R}) = \bigoplus_{i=1}^{2p} E_{\lambda_i}(M)$$

De même pour tCC et C^tC

$$\mathcal{M}_{n,1}(\mathbb{R}) = \bigoplus_{i=1}^{p} E_{\lambda_i^2}({}^tCC) = \bigoplus_{i=1}^{p} E_{\lambda_i^2}(C^tC)$$

D'après la question précédente :

$$\dim E_{-\lambda_i}(M) + \dim E_{\lambda_i}(M) \le \dim E_{\lambda_i^2}(C^tC) + \dim E_{\lambda_i^2}(^tCC), \ \forall i \in [1, p]$$

Si pour un certain i, l'inégalité précédente est stricte, alors en sommant de 1 à p on obtient 2n < 2n ce qui est absurde. Ainsi les inégalités sont des égalités et $\dim(E_{-\lambda}(M) \oplus E_{\lambda}(M)) = \dim(H_{\lambda^2})$, d'où avec l'inclusion de la question précédente on a l'égalité demandée.