Lista Exercícios 3a

Resolver os exercícios 4.1 e 4.2 do livro-texto, páginas 121 a 125 (2ª edição,2007).

- **4.1** A study used logistic regression to determine characteristics associated with Y = whether a cancer patient achieved remission (1 = yes). The most important explanatory variable was a labeling index (LI) that measures proliferative activity of cells after a patient receives an injection of tritiated thymidine. It represents the percentage of cells that are "labeled." Table 4.8 shows the grouped data. Software reports Table 4.9 for a logistic regression model using LI to predict $\pi = P(Y = 1)$.
 - **a.** Show how software obtained $\hat{\pi} = 0.068$ when LI = 8.
 - **b.** Show that $\hat{\pi} = 0.50$ when LI = 26.0.
 - **c.** Show that the rate of change in $\hat{\pi}$ is 0.009 when LI = 8 and is 0.036 when LI = 26.
 - **d.** The lower quartile and upper quartile for LI are 14 and 28. Show that $\hat{\pi}$ increases by 0.42, from 0.15 to 0.57, between those values.
 - **e.** When *LI* increases by 1, show the estimated odds of remission multiply by 1.16.

Table 4.8. Data for Exercise 4.1 on Cancer Remission

LI	Number of Cases	Number of Remissions		Number of Cases	Number of Remissions		Number of Cases	Number of Remissions
8	2	0	18	1	1	28	1	1
10	2	0	20	3	2	32	1	0
12	3	0	22	2	1	34	1	1
14	3	0	24	1	0	38	3	2
16	3	0	26	1	1			

Source: Reprinted with permission from E. T. Lee, Computer Prog. Biomed., 4: 80-92, 1974.

Table 4.9. Computer Output for Problem 4.1

Paramete	er E	Estimate		andard rror	Likelihood Ratio 95% Conf. Limits		Chi-Square
Intercep li	ot –	-3.7771 0.1449		.3786 .0593	-6.9946 0.0425	-1.4097 0.2846	7.51 5.96
	Sc li	ource	DF 1	Chi-	catistic -Square 3.30	Pr > ChiSq 0.0040	
Obs	li	remis	s	n	pi_hat	lower	upper
1 2	8 10	0 0		2 2	0.06797 0.08879	0.01121 0.01809	0.31925 0.34010
• • • •							

- **4.2** Refer to the previous exercise. Using information from Table 4.9:
 - **a.** Conduct a Wald test for the LI effect. Interpret.
 - **b.** Construct a Wald confidence interval for the odds ratio corresponding to a 1-unit increase in *L1*. Interpret.
 - ${f c.}$ Conduct a likelihood-ratio test for the LI effect. Interpret.
 - **d.** Construct the likelihood-ratio confidence interval for the odds ratio. Interpret.

BOM ESTUDO!!!