

CAM-MIPIOV9281 V2 UserManual

Support: support@inno-maker.com wiki.inno-maker.com

目录

CA	M-MIPIOV9281 V2 UserManual	1
	1. General	3
	2. Features	4
	3. Hardware Description	5
	3.1 Overview	5
	3.2 Size	е
	3.3 Connection Of The Hardware	7
	3.4 Pin-Out	8
	4. Using Innomaker Unique Driver	13
	4.1 Load Raspberry Pi image	13
	4.2 Tools/Driver Download	13
	4.3 Tools/Driver Automatic Install	14
	4.4 Tools/Driver Manual Install	15
	4.5 Setting Mode	18
	4.6 Qucik Test By VLC Tool	20
	4.7 Frame Rate(fps) Test	22
	4.8 Preview Function	22
	4.9 Strobe Setting And Register Read/Write	24
	4.10 Raw 10 Change into Raw 8 And Display the image in Windows System	
	4.11 Capture Function	25
	4.12 Raw 10 Change into Raw 8 And Display the image in Windows System	29
	5. Using Build-in Driver On Bullseye	32
	5.1 Load Raspberry Pi image	32
	5.2 Driver Sources Codes	32
	5.3 Dtoverlay	32
	5.4 Frame Rate(fps) Test	34
	5.5 Libcamera	35
	6. Versions Description	36

1. General

CAM-MIPIOV9281 module is a low-cost, monochrome(Black&White) global shutter camera module, designed for whole series Raspberry(P4/Pi3B+/PI3A+/PI3/CM4/CM3+). Plug into the CSI-2 Pi camera interface directly.

CAM-MIPIOV9281 module on board OmniVision's OV9281 is high-speed global shutter image sensors that bring 1-megapixel resolution to a wide range of consumer and industrial computer vision applications, including augmented reality (AR), virtual reality (VR), collision avoidance in drones, bar code scanning and factory automation. Built on OmniVision's OmniPixel®3-GS pixel technology, the OV9281 and OV9282 feature a high-speed global shutter pixel with best-in-class near-infrared (NIR) quantum efficiency (QE) to meet high-resolution and low-latency requirements.

Innomaker unique driver support 12 working mode, Suitable for various applications.

Mode	Resolution Ratio	Data Format	Frame Rate
Mode0	1280x800	Y10	120fps
Mode1	1280x800	Y8	144fps
Mode2	1280x800	Y10	EXT_TRIG
Mode3	1280x800	Y8	EXT_TRIG
Mode4	1280x720	Y10	120fps
Mode5	1280x720	Y8	144fps
Mode6	1280x720	Y10	EXT_TRIG
Mode7	1280x720	Y8	EXT_TRIG
Mode8	640x400	Y10	210fps
Mode9	640x400	Y8	253fps
Mode10	640x400	Y10	EXT_TRIG
Mode11	640x400	Y8	EXT_TRIG

2. Features

- (1) CAM-MIPIOV9281 is an Industrial Camera Module for Raspberry Pi 4/3B+/3B/CM4/CM3+. Fully V4L2 (Video4Linux) compatible device. Support libcamera on Bullseye system.
- (2) On-board OmniVision OV9281 Monochrome(Black&White) global shutter CMOS Sensor, 1M Pixel. Output RAW8/RAW10 choosable. Support from 640x400@253fps to 1280x800@144fps.
- (3) Support for external trigger mode, LED and flash strobe mode and gain programmable. Uses the technique of optical coupling isolation TLP281.
- (4) Match a wide angle fisheye Lens. Fov(D)=148 degrees, Fov(H)=118 degrees. Focal distance is adjustable.
- (5) Comes with user manual, test demo and friendly technology support. We offer custom design service.

3. Hardware Description

3.1 Overview

Sernor Board	
Size	32mm x 32mm
Weight	4g
Still Resolution	1 million pixels
Video Modes	Mode0: 1280x800, Y10, 120fps
	Mode1: 1280x800, Y8, 144fps
	Mode2: 1280x800, Y10, EXT_TRIG
	Mode3: 1280x800, Y8, EXT_TRIG
	Mode4: 1280x720, Y10, 120fps
	Mode5: 1280x720, Y8, 144fps
	Mode6: 1280x720, Y10, EXT_TRIG
	Mode7: 1280x720, Y8, EXT_TRIG
	Mode8: 640x400, Y10, 210fps
	Mode9: 640x400, Y8, 253fps
	Mode10: 640x400, Y10, EXT_TRIG
	Mode11: 640x400, Y8, EXT_TRIG
	Mode12: 320x200 Y8 453fps
Linux integration	V4L2 driver available
Sensor	Monochrome global shutter OV9281
Sensor Resolution	1280*800 pixels
Sensor image area	3896μm x 2453μm
Pixel size	3 μm x 3 μm
Optical size	1/4"
S/N ratio	38 dB
Dynamic range	68 dB
Output interface	2-lane MIPI Interface
Output formats	8/10-bit B&W RAW
Field of view	Fov(D) = 148 degrees , Fov(H) = 118 degrees
Focal Length	2.8 mm
Focal Distance	Adjustable
TV DISTORTION	<-17%
F(N) /Aperture	2.2

Support: support@inno-maker.com
wiki.inno-maker.com
bulk Price: sales@inno-maker.com

3.2 Size

3.2.1 PCB Size

3.2.2 Len Size

3.3 Connection Of The Hardware

3.4 Pin-Out

3.4.1 Signal/Power Connector J1

The J1 pin map is same Raspberry Pi camera.

Design Service, Production Service

PIN	Symbo1	Description
1	GND	Ground Pin
2	CON_CSI_DON	Pixel Data LaneO Negative
3	CON_CSI_DOP	Pixel Data LaneO Positive
4	GND	Ground Pin
5	CON_CSI_D1N	Pixel Data Lanel Negative
6	CON_CSI_D1P	Pixel Data LanelPositive
7	GND	Ground Pin
8	CON_CSI_CLKN	Pixel Clock Output Form Sensor Negative
9	CON_CSI_CLKP	Pixel Clock Output Form Sensor Positive
10	GND	Ground Pin
11	None	None
12	None	None
13	SCL	CLK input, SIO_C of SCCB
14	SDA	DATA input, SIO_D of SCCB
15	3.3V Power	Power Supply

3.4.2 STROB Connector J2

(1)Pin Description

ISO FLASH

J2 PIN	Symbo1
1	STROB+
2	STROB-

 $\textbf{Support:} \ \underline{\textbf{support@inno-maker.com}} \quad \underline{\textbf{wiki.inno-maker.com}}$

(2)Reference Circuit

On-board TLP281 optocoupler isolation, Notice the max collector current is 50mA.

Output Specifications

S21 1 2 C C C C	2022-0-2020-0-202	11 C 10 C		Value	£	
S. No	Parameter	Test Condition	Min	Тур	Max	Unit
1	Driver Voltage (VCC)			12	24	V
2	Drive current (Icc)			10	50	mA
3	Collector Emitter Breakdown Voltage				80	٧
4	Collector Emitter Saturation Voltage	Icc = 1 mA		0.1	0.2	٧
5	Power Dissipation				150	mW

C. II	17		1	0.1	0.2	17	1
Collector-Emitter Saturation Voltage	V CE(sat)	$I_F = 10 \text{mA}, I_C = 1 \text{mA}$		0.1	0.2	V	

So If the current required to drive the Flash LED is no more than 50mA

The value of series resistor: R1 = (VCC- Vf - VCE) / If

VCC: system Voltage

Vf: Forward voltage of Flash LED for current Icc VCE: Collection Emitter voltage, typical:0.1V

If the current required to drive the flash exceeds 50mA, then it is required to drive it with the help of LED driver circuit, and LED driver circuit can be controlled by using the strobe output pin.

(1)Pin Description

Trig In

J3 PIN	Symbol	Description
1	TRIG+	3.3V-5.0V External Trigger Input
2	TRIG-	External GND

(2) Reference Circuit

Support: support@inno-maker.com wiki.inno-maker.com

For example, VCC = 12V, Vf = 1.25V

The calculations done here are based on 12VDC. Please do follow these calculations for other voltages like 24VDC.

Let's take the current through IR LED I_f = 20mA. Voltage drop across the IR LED = 1.25V The value of Resistor R₁ = $(V_{cc}-V_f)/I_f$ = (12-1.25)/0.02 = 537.5 Ω Wattage of resistor R₁ > I_f^2 * R₁ = 0.02^2 *537.5 = 0.215W Wattage of the resistor R₁ selected should be greater than 0.215W.

And there is a resistor on board(R4 = 200 Ω), So the R_add = R1 - R4 = 537.5 - 200 = 337.5 Ω

4. Using Innomaker Unique Driver

4.1 Load Raspberry Pi image

Prepare a capacity of more than 8GB TF card(16Gb Class10 is better) and a card reader. Load the image file on to the SD card, using the instructions provided on the Raspberry Pi website for Linux, Mac or PC:

https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Raspbian Image download:

https://www.raspberrypi.org/downloads/

4.2 Tools/Driver Download

There are two ways to get the tools and drivers into Raspberry Pi.

Step 1: Use Raspberry Pi terminal get from github directly. And check whether is download successful. Make sure your Raspberry Pi is connect to network.

sudo git clone https://github.com/INNO-MAKER/CAM-OV9281RAW-V2.git

```
pi@raspberrypi:~ $ sudo git clone https://github.com/INNO-MAKER/CAM-OV9281RAW-V2.git
Cloning into 'CAM-OV9281RAW-V2'...
remote: Enumerating objects: 40, done.
remote: Counting objects: 100% (40/40), done.
remote: Compressing objects: 100% (19/19), done.
remote: Total 40 (delta 17), reused 40 (delta 17), pack-reused 0
Receiving objects: 100% (40/40), 229.05 KiB | 1.47 MiB/s, done.
Resolving deltas: 100% (17/17), done.
pi@raspberrypi:~ $ |
```

Step 2: Download it into your computer

Download from below link, and copy them to your Raspberry Pi by U disk or telnet. https://github.com/INNO-MAKER/CAM-OV9281RAW-V2.git

Step 3: Packet Instructions

The are contain three parts in the link:

```
pi@raspberrypi:~/CAM-OV9281RAW-V2 $ ls
autoinstall_driver.sh Linux_5.10.92 tools
```

Linux_5.xx.xx	Linux core version of Driver
tools	All test demo and tools
autoinstall driver.sh	auto installation script for driver

Support: support@inno-maker.com wiki.inno-maker.com

4.3 Tools/Driver Automatic Install

We provide a automatic install script for user install the OV9281 driver convenient and fast. It's only for Pi4 and Pi3 now.

```
autoinstall driver.sh Linux 5.10.92 tools
```

Step 1: chmod

Using chmod command set all the read, write, and execute permissions for these file. sudo chmod -R a+rwx *

Step 2: Execute

Execute this script in terminal and input 'y' to reboot.

./autoinstall driver.sh

Step 3: Checkout Device

after reboot, use below command to check the camera is ready.

Is /dev/video0

Successful:

```
pi@raspberrypi:~

File Edit Tabs Help

pi@raspberrypi:~ $ ls /dev/video0
/dev/video0
pi@raspberrypi:~ $
```

Unsuccessful:

Support: support@inno-maker.com wiki.inno-maker.com

4.4 Tools/Driver Manual Install

Step 1: Check Basic Information

Check the basic information of your Raspberry Pi to choose the right driver. We take Raspberry Pi 4 + 5.10.92 - v7l + (Release data 2022-01-28) as an example in this document.

Check the kernel version of your Raspbian.

cat /proc/version

```
pi@raspberrypi:~

pi@raspberrypi:~

File Edit Tabs Help

pi@raspberrypi:~ $ cat /proc/version

Linux version 5.4.51-v7l+ (dom@buildbot) (gcc version 4.9.3 (crosstool-NG crosstool-ng-1.22.0-88-g8460611)) #1333 SMP Mon Aug
10 16:51:40 BST 2020

pi@raspberrypi:~ $ [
```

Check the hardware version of your Raspberry Pi

cat /proc/device-tree/model

```
pi@raspberrypi:~ $ cat /proc/device-tree/model
Raspberry Pi 4 Model B Rev 1.1pi@raspberrypi:~ $ |
```

Step 2: Modify 'config.txt'

sudo nano /boot/config.txt

Open 'config.txt', and then add two line in the bottom, finally save and exit.

dtparam=i2c vc=on

dtoverlay=vc_mipi_ov9281

Support: support@inno-maker.com wiki.inno-maker.com

Step 3: Modify 'cmdline.txt'

sudo vim /boot/cmdline.txt

Allocate memory to GPU, add below line in the end of file, finally save and exit.

cma=128M

Step 5:Restart to enable the configuration sudo reboot

Step 6: Chmod

Using chmod command set all the read, write, and execute permissions for these file.

```
sudo chmod -R a+rwx *
```

Step 7:Choose the right driver to install

Refer to chapter 4.3, we must choose the right driver path to match your Raspberry Pi hardware and system version. In this example, we choose 'Linux version 5.10.92' and 'pi4'

Please double check the hardware version(Pi3 or Pi4) and Linux-Kernel are 100% match the driver version. Otherwise the camera won't work.

Support: <u>support@inno-maker.com</u> <u>wiki.inno-maker.com</u>

pi@raspberrypi:~ \$ ls Bookshelf Desktop Downloads Pictures Templates CAM-OV9281RAW-V2 Documents Music Public Videos pi@raspberrypi:~ \$ cd CAM-OV9281RAW-V2/ pi@raspberrypi:~/CAM-OV9281RAW-V2 \$ ls autoinstall_driver.sh Linux 5.10.92 tools pi@raspberrypi:~/CAM-OV9281RAW-V2 \$ cd Linux_5.10.92/ pi@raspberrypi:~/CAM-OV9281RAW-V2/Linux_5.10.92 \$ ls pi@raspberrypi:~/CAM-OV9281RAW-V2/Linux_5.10.92 \$ cd pi4/ pi@raspberrypi:~/CAM-OV9281RAW-V2/Linux_5.10.92 \$ ls Makefile Valual Data Valual Va

Step 8:Install and reboot

sudo make install

```
pi@raspberrypi:~/CAM-OV9281RAW-V2/Linux_5.10.92/pi4 $ sudo make install sudo install -p -m 644 vc_mipi_ov9281/vc_mipi_ov9281.ko /lib/modules/5.10.92-v7l+/kernel/drivers/media/i2c/sudo install -p -m 644 vc_mipi_ov9281.dtbo /boot/overlays/sudo /sbin/depmod -a 5.10.92-v7l+ sudo /sbin/modprobe vc_mipi_ov9281

ADD 'dtparam=i2c_vc=on' and 'dtoverlay=vc_mipi_ov9281' to your /boot/config.txt
ADD 'disable_touchscreen=1' to your /boot/config.txt if a touchscreen is attached
ADD 'cma=128M' to your /boot/cmdline.txt

pi@raspberrypi:~/CAM-OV9281RAW-V2/Linux_5.10.92/pi4 $
```

Step 9: Check the device:

Use below command to check the camera is ready, after reboot.

Is /dev/video0

Successful:

Unsuccessful:

Support: support@inno-maker.com wiki.inno-maker.com

4.5 Setting Mode

Step 1: Set Mode

CAM-MIPIOV9281 unique driver can support below working modes now. If you need other resolution/frame rate mode. Please contract us by e-mail(<u>support@inno-maker.com</u>).

Mode	Resolution Ratio	Data Format	Frame Rate
Mode0	1280x800	Y10	120fps
Mode1	1280x800	Y8	144fps
Mode2	1280x800	Y10	EXT_TRIG
Mode3	1280x800	Y8	EXT_TRIG
Mode4	1280x720	Y10	120fps
Mode5	1280x720	Y8	144fps
Mode6	1280x720	Y10	EXT_TRIG
Mode7	1280x720	Y8	EXT_TRIG
Mode8	640x400	Y10	210fps
Mode9	640x400	Y8	253fps
Mode10	640x400	Y10	EXT_TRIG
Mode11	640x400	Y8	EXT_TRIG

In the driver folder, use below command to set the working mode, I suggest you keep one terminal separately for easy to change the mode.

sudo make setmode1

Support: <u>support@inno-maker.com</u> <u>wiki.inno-maker.com</u>

Step 2: Change Default Mode

Step 1: Open cmdline.txt sudo vim /boot/cmdline.txt Step 2: Add default mode vc_mipi_ov9281.sensor_mode=3

Step 3: Save and reboot, You will check the default value. cat /sys/module/vc_mipi_ov9281/parameters/sensor_mode

 $\textbf{Support:} \ \underline{\textbf{support@inno-maker.com}} \quad \underline{\textbf{wiki.inno-maker.com}}$

4.6 Qucik Test By VLC Tool

Step 1: Set mode 1

VLC only support the Y8 data format.

Step 2: Open VLC

Step 3: Setting VLC

Click 'Media' → 'OpenCapture Device' → 'Capture_Device', choose 'video0'. And click 'Play' you will see the image that collected by camera.

Support: <u>support@inno-maker.com</u> <u>wiki.inno-maker.com</u>

Media Playback Audio Video Subtitle Tools View Help Open File... Ctrl+O Open Multiple Files... Ctrl+Shift+O Ctrl+F Open Directory... Ctrl+D Open Disc... Open Network Stream... Ctrl+N Open <u>C</u>apture Device... Open Location from clipboard Ctrl+V Open Recent Media Save Playlist to File... Ctrl+Y Convert / Save... Ctrl+R Stream... Ctrl+S Quit at the end of playlist Quit Ctrl+Q 100%

Step 4: Exposure/Gain

If you want to set the exposure and gain, click 'Tools' → 'effects and Filters' → 'V4I2 controls'

Support: support@inno-maker.com wiki.inno-maker.com

Bulk Price: sales@inno-maker.com

4.7 Frame Rate(fps) Test

Use below command, you can see frames-per-second information of your camera. You can set different modes to get different frame rate.

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

4.8 Preview Function

Step 1: Set Mode0 or Mode1 (Mode4, Mode5, Mode8, Mode9)

Refer to the Chapter 4.5

Step 2: Read vcmipidemo tool help

Enter tools folder, .you could see 4 vcmipidemo files. vcmipidemo-pi4 is for Pi4 + 32-bit system vcmipidemo-pi4-arch64 is for Pi4 + 64-bit system vcmipidemo-pi3 is for Pi3 + 32-bit system

vcmipidemo-pi3-arch64 is for Pi3 + 64-bit system

pi@raspberrypi:~/CAM.OV\$2818AM.V2/tools \$ 1s
gpio-sysfs 12c_write raw16pip@praw8 v412_capture_raw10 v412_capture_y10 v412_capture_y12 vcmipidemo-pi3 vcmipidemo-pi4
12c_read raw18p2raw8 tools_com v412_capture_raw12 v412_capture_y10-16-5.4 v412_capture_y8 vcmipidemo-pi3-arch64 vcmipidemo-pi4-arch64

Use below command to read the vcmipidemo tool help

./vcmipidemo-pi4 --help

Usage: ./vcmipidemo [-s sh] [-g gain] [-f] [-a]

-S	Shutter Time. Value is from 8721ns to 8721*885ns, must be integral
	multiple of 8721ns . 8721xN(N =1,2,3,4,5855)

Support: support@inno-maker.com wiki.inno-maker.com

-g	Gain Value (0-254d)	
-b	Buffer Count to use	
-f	Output Capture to framebuffer /dev/fb0	
-0	Output Captures to file in PGM or PPM format (openable by e.g. GIMP)	
-a	Suppress ASCII capture at stdout.	

Step 3: Use vcmipidemo tool.

./vcmipidemo-pi4 -s 4135500 -g 0x88 -f >/dev/null

```
File Edit Tabs Help
pi@raspberrypi:~ $ ls
Bookshelf
                                Downloads Pictures Templates
CAM-OV9281RAW-V2 Documents Music
                                            Public
                                                       Videos
pi@raspberrypi:~ $ cd CAM-0V9281RAW-V2/
pi@raspberrypi:~/CAM-OV9281RAW-V2 $ cd tools/
pi@raspberrypi:~/CAM-OV9281RAW-V2/tools $ ls
gpio-sysfs raw16p10p2raw8
                                    v4l2_capture_y10
                                                                vcmipidemo-pi3
i2c_read
                                    v4l2_capture_y10-16-5.4 vcmipidemo-pi3-arch64
                                                                vcmipidemo-pi4
i2c_write
              v4l2_capture_raw10 v4l2_capture_y12
raw10p2raw8 v4l2_capture_raw12 v4l2_capture_y8 vcmipidemo-pi4-arch64
pi@raspberrypi:~/CAM-0V9281RAW-V2/tools $ ./vcmipidemo-pi4 -s 4135500 -g 0x88 -f
>/dev/null
```

Set shutter time = 4135500ns = 8721ns * 500cnt Set gain = 0x88 db= 136 db

Note: You need to Press 'Ctrl+Alt+F1' to start the preview windows (come back is Ctrl+Alt+F7) after you do follow step3. Otherwise you can't see the preview windows. If you are using Raspberry Pi 3, no need to do that.

4.9 Strobe Setting And Register Read/Write

Strobe function is also turn on by default in all modes. Strobe generates a pulse with a reference starting point at the time when the pixel array starts integration. Following a delay after the reference starting point, which is controlled by:

0x3921	PWM_CTRL_21	0x00	RW	Bit[7]: Shift direction Bit[6:0]: strobe_frame_shift[30:24	
address	register name	default value	R/W	description	
0x3922	PWM_CTRL_22	0x00	RW	Bit[7:0]: strobe_frame_shift[23:16]	
0x3923	PWM_CTRL_23	0x00	RW	Bit[7:0]: strobe_frame_shift[15:8]	
0x3924	PWM_CTRL_24	0x05	RW	Bit[7:0]: strobe_frame_shift[7:0]	
width of s	strobe_frame_span[31	.:0] is genera	ted.	Bit[7:0]: strobe_frame_span[31:24]	
0x3926	PWM_CTRL_26	0x00	RW	Bit[7:0]: strobe_frame_span[23:16]	
0x3927	PWM_CTRL_27	0x00	RW	Bit[7:0]: strobe_frame_span[15:8]	
0x3928	PWM CTRL 28	0x1A	RW	Bit[7:0]: strobe_frame_span[7:0]	

Support: support@inno-maker.com wiki.inno-maker.com

Step 1: Go Into The Tools Folders

Step 2: I2c tool read Register

\$./i2c_read 0 0x60 [start addr of reg] [num of regs]
For example, Read value of register 0x3928
./i2c_read 10 0x60 0x3928 1

Step 3: I2c tool write Register

\$./i2c_write 10 0x60 [reg addr] [reg value] For example, Write 0x32 to register 0x3928. ./i2c write 10 0x60 0x3928 0x32

4.10 Raw 10 Change into Raw 8 And Display the image in Windows System

We provide a tools to help you change RAW10 to RAW8 in many applications.

4.11 Capture Function

You can connect the TRIG- to the GND Pin and connect the TRIG+ to 3.3V Pin of Raspberry Pi to

Support: <u>support@inno-maker.com</u> <u>wiki.inno-maker.com</u>

simulate a trigger signal. This test function will comes with repeated trigger signal sometime.

1: Y8 Date Format Capture Example

Usage: ./v4l2_capture_y8 [-s sh] [-g gain] [-h f] [-v f] [-c cnt]

-S	Shutter Time	e. Value is fr	om 8721ns to 8721*	*885ns, mus	st be integral
	multiple of	8721ns.	8721xN(N =1,2,3,4,5.	855)	
-g	Gain Value	(0-254d)			
-h	horizen flip	1: Enable	0:Disable		
-V	vertical flip	1: Enable	0:Disable		
-C	capture cour	nt			

Step 1: Set Mode3(Y8, EXT_TRIG)

make setmode3

Refer to the chapter 4.5

Step 2: Enter capture setting:

Support: support@inno-maker.com wiki.inno-maker.com

./v4l2_capture_y8 -s 4135500 -g 0x88 -h 1 -v 1 -c 5

Set shutter time = 4135500ns = 8721ns * 500cnt

Set gain = 0x88 db= 136 db

For more detail please use below command

./v4l2_capture_y8 --help

```
pi@raspberrypi:~/cam-mipiov9281/tools $ ./v4l2_capture_y8 -s 4135500 -g 0x88 -h
1 -v 1 -c 5
sensor_set_parameters():    Old Gain Value: 16.
sensor_set_parameters():    New Gain Value: 136.
sensor_set_parameters():    New Gain Value: 5000.
sensor_set_parameters():    Old Exposure Value: 5939001.
sensor_set_parameters():    New Exposure Value: 5000.
sensor_set_parameters():    New Exposure Value: 8721.
sensor_set_parameters():    New Hflip Value:    0.
sensor_set_parameters():    New Vflip Value:    0.
sensor_set_parameters():    New Vflip Value:    0.
sensor_set_parameters():    New Vflip Value:    0.
cam_init:113,    req.count: 3
cam_init:133,    buffer.length: 1024000
cam_init:134,    buffer.m.offset: 0
cam_init:135,    buffer.length: 1024000
cam_init:134,    buffer.m.offset: 1024000
cam_init:134,    buffer.m.offset: 2048000
cam_init:134,    buffer.m.offset: 2048000
cam_init:161,    cam init done.
cam_get_image:188,    dequeue done, index: 0
cam_get_image:190,    copy done.
cam_get_image:191,    enqueue done.
```

Step 3: Give a trigger signal voltage to J3 connector.

```
14 15 15 15 15 14 13 15 15 14 15 14 15 15 16

cam_get_image:188, dequeue done, index: 1

cam_get_image:190, copy done.

cam_get_image:198, enqueue done.

---

18 15 15 15 15 15 15 14 15 17 14 15 14 16 14 14

cam_get_image:188, dequeue done, index: 2

cam_get_image:190, copy done.

cam_get_image:198, enqueue done.
```

Step 4: Check the formed files.

You will see two files named '00000.raw' and '00001.raw'.

```
pi@raspberrypi:~/cam-mipiov9281/tools $ ls
00000.raw 1.png 3.png Capture1.png gpio-sysfs v4l2_capture_raw10 v4l2_capture_y10 v4l2_capture_y8
00001.raw 2.png Capture0.png Capture2.png raw10p2raw8 v4l2_capture_raw12 v4l2_capture_y12 vcmipidemo
pi@raspberrypi:~/cam-mipiov9281/tools $ |
```

2: Y10 Date Format Capture Example

Usage: ./v4l2_capture_y10-16-5.4 [-s sh] [-g gain] [-h f] [-v f] [-c cnt]

-s Shutter Time. Value is from 8721ns to 8721*885ns, must be integral

www.iiiio-iiiakci.coiii					
	multiple of	8721ns.	8721xN(N =1,2,3,4,5855)		
-g	Gain Value	(0-254d)			
-h	horizen flip	1: Enable	0:Disable		
-V	vertical flip	1: Enable	0:Disable		
-с	capture cour	nt			

Step 1: Set Mode2(Y10, EXT TRIG)

make setmode2

Refer to the chapter 4.5

Step 2: Enter capture setting:

```
./v4l2_capture_y10-16-5.4 -s 4135500 -g 0x88 -h 1 -v 1 -c 5
Set shutter time = 4135500ns = 8721ns * 500cnt
Set gain = 0x88 db= 136 db
For more detail please use below command:
./v4l2_capture_y10-16-5.4 --help
```

```
pi@raspberrypi:-/Desktop/tools $ ./v4l2_capture_y10 -s 4135500 -g 0x88 -h 1 -v 1 -c 5

Setting Shutter Value to 4135500.

Setting Gain Value to 136.000000.

Horizen flip the captured image.

Vertical flip the captured image.

Capture 5 frame.

sensor_set_parameters(): Old Gain Value: 137.

sensor_set_parameters(): Requested New Gain Value: 136.

sensor_set_parameters(): New Gain Value: 136.

sensor_set_parameters(): Requested New Exposure Value: 24813.

sensor_set_parameters(): Requested New Exposure Value: 4135500.

sensor_set_parameters(): New Exposure Value: 4135500.

sensor_set_parameters(): Requested New Hflip Value: 1.

sensor_set_parameters(): Requested New Hflip Value: 1.

sensor_set_parameters(): New Hflip Value: 1.

sensor_set_parameters(): Requested New Vflip Value: 1.

sensor_set_parameters(): Requested New Vflip Value: 1.

sensor_set_parameters(): New Vflip Value: 1.

cam_init:131, buffer.length: 1280000

cam_init:132, buffer.m.offset: 0

cam_init:133, buffer.length: 1280000

cam_init:134, buffer.m.offset: 1282048

cam_init:135, cam init done.
```

Step 3: Give a trigger signal voltage to J3 connector

Support: support@inno-maker.com wiki.inno-maker.com


```
cam_get_image:186, dequeue done, index: 0
cam_get_image:188, copy done.
cam_get_image:196, enqueue done.
---

1f 1f 1e 1c a4 1b 17 1e 1d fb 21 1d 1e 20 49 1e
cam_get_image:186, dequeue done, index: 1
cam_get_image:188, copy done.
cam_get_image:196, enqueue done.
---

19 1e 1f 1d 83 1e 17 1c 1d a9 1f 1e 1f 1a ce 1a
cam_get_image:186, dequeue done, index: 2
cam_get_image:188, copy done.
cam_get_image:196, enqueue done.
---
1d 1b 1a 1a b9 1c 15 1c 1c 6b 1e 1b 1c 1c 29 1a
```

Step 4: Check the formed files.

You will see two files named '00000.raw' and '00001.raw'.

4.12 Raw 10 Change into Raw 8 And Display the image in Windows System

We provide a tools to help you change RAW10 to RAW8 in many applications.

Support: support@inno-maker.com wiki.inno-maker.com

Bulk Price: sales@inno-maker.com

Step 1:Using the conversion tools

./raw16p10p2raw8 [raw 10 name] [raw8 name]

```
pi@raspberrypi: ~/ca... | pi@raspberrypi: ~/ca... | pi@raspberrypi: ~/ca... | pi@raspberrypi: ~/ca... | pi@raspberrypi: ~/cam-mipiov9281/tools |

File Edit Tabs Help

pi@raspberrypi: ~ $ cd cam-mipiov9281/tools $ |
pi@raspberrypi: ~/cam-mipiov9281/tools $ |
pi@raspberrypi: ~/cam-mip
```

Step 2:Using the IrfanView 64 tools

Copy the '9281-raw10toraw8-test.raw' to Windows, use the IrfanView 64 set as below to get the image.

If you want to display the RAW10 image directly. Please set as below picture.

Step 3: View the results

We provide the raw10 format named '9281-raw10.raw' and raw8 format named '9281-raw10toraw8-test.raw' (After the conversion) on our wiki for you to test. below is the correct result.

Support: support@inno-maker.com wiki.inno-maker.com

5. Using Build-in Driver On Bullseye

5.1 Load Raspberry Pi image

Prepare a capacity of more than 8GB TF card(16Gb Class10 is better) and a card reader. Load the image file on to the SD card, using the instructions provided on the Raspberry Pi website for Linux, Mac or PC:

https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Raspbian Image download:

https://www.raspberrypi.org/downloads/

5.2 Driver Sources Codes

The open source driver on Raspbian:

https://github.com/raspberrypi/linux/blob/rpi-5.10.y/drivers/media/i2c/ov9281.c

This driver support 1280x800 ,1280x720,640x400 three resolution now and do not support trigger mode.

5.3 Dtoverlay

(1) Open the config.txt on Raspbian:

sudo nano /boot/config.txt

Support: support@inno-maker.com wiki.inno-maker.com

(2) Add the dtoverlay into the config.txt file, dtoverlay=ov9281

```
[cm4]
# Enable host mode on the 2711 built-in XHCI USB controller.
# This line should be removed if the legacy DWC2 controller is required
# (e.g. for USB device mode) or if USB support is not required.
otg_mode=1
[all]

[pi4]
# Run as fast as firmware / board allows
arm_boost=1
[all]
dtoverlay=ov9281
```

(3) And then press ctrl+ x to exit nad press 'y' to save.

(4) Rebooted your Pi

sudo reboot

(5) Use below command to check the camera is ready.

ls /dev/video0

Successful:

```
pi@raspberrypi: ~

File Edit Tabs Help

pi@raspberrypi: ~ $ ls /dev/video0

/dev/video0

pi@raspberrypi: ~ $
```

Unsuccessful:

Support: <u>support@inno-maker.com</u> <u>wiki.inno-maker.com</u>

5.4 Frame Rate(fps) Test

Use below command, you can see frames-per-second information of your camera. v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

30 fps:

```
pi@raspberrypi:~ $ v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --str
eam-to=/dev/null
<<<<<<<<< 30.02 fps
<<<<<<<<< 30.02 fps
<<<<<<<< 30.02 fps
<<<<<<<<< 30.02 fps
<<<<<<<< 30.02 fps
<<<<<<<< 30.02 fps
<<<<<<<<< >30.02 fps
<<<<<<<<< 30.02 fps
<<<<<<<< >30.02 fps
<<<<<<<< 30.02 fps
<<<<<<<<< 30.02 fps
<<<<<<<<<< > 30.02 fps
<<<<<<<<< 30.02 fps
```


5.5 Libcamera

libcamera is an open source Linux community project. More information is available at the libcamera website:

https://libcamera.org/

The libcamera source code can be found and checked out from the official libcamera repository. https://git.linuxtv.org/libcamera.git/

When running a Raspberry Pi OS based on Bullseye, the 5 basic libcamera-apps are already installed. In this case, official Raspberry Pi cameras will also be detected and enabled automatically. Below we only take 'libcamera-hello' for example. For more information, please refer to below link:

https://www.raspberrypi.com/documentation/accessories/camera.html#binary-packages

libcamera-hello

libcamera-hello -t 0

Support: support@inno-maker.com wiki.inno-maker.com

6. Versions Description

Version	Description	Date	E-mail
V1.0		2022.01.02	support@inno-maker.com calvin@inno-maker.com
V1.1	Update Pictures	2022.04.03	support@inno-maker.com calvin@inno-maker.com
V1.2	Update PCB size	2022.05.06	support@inno-maker.com calvin@inno-maker.com

If you have any suggestions, ideas, codes and tools please feel free to email to me. I will update the user manual and record your name and E-mail in list. Look forward to your letter and kindly share.

Support: support@inno-maker.com wiki.inno-maker.com Bulk Price: sales@inno-maker.com