Лабораторная работа 10

Задача об обедающих мудрецах

Оразгелдиев Язгелди

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	14

Список иллюстраций

3.1	Граф сети задачи об обедающих мудрецах	7
3.2	Задание деклараций задачи об обедающих мудрецах	8
3.3	Модель задачи об обедающих мудрецах	9
3.4	Граф пространства состояний	13

Список таблиц

1 Цель работы

Попрактиковаться в работе с и реализовать модель задачи об обедающих мудрецах CPNTools.

2 Задание

Пять мудрецов сидят за круглым столом и могут пребывать в двух состояниях — думать и есть. Между соседями лежит одна палочка для еды. Для приёма пищи необходимы две палочки. Палочки — пересекающийся ресурс. Необходимо синхронизировать процесс еды так, чтобы мудрецы не умерли с голода

Вычислите пространство состояний. Сформируйте отчёт о пространстве состояний и проанализируйте его. Постройте граф пространства состояний.

3 Выполнение лабораторной работы

Рисуем граф сети. Для этого с помощью контекстного меню создаём новую сеть, добавляем позиции, переходы и дуги. Начальные данные: - позиции: мудрец размышляет (philosopher thinks), мудрец ест (philosopher eats), палочки находятся на столе (sticks on the table) - переходы: взять палочки (take sticks), положить палочки (put sticks)

Рис. 3.1: Граф сети задачи об обедающих мудрецах

В меню задаём новые декларации модели: типы фишек, начальные значения позиций, выражения для дуг: – n — число мудрецов и палочек (n = 5); – p — фишки,

обозначающие мудрецов, имеют перечисляемый тип PH от 1 до n; -s — фишки, обозначающие палочки, имеют перечисляемый тип ST от 1 до n; — функция ChangeS(p) ставит в соответствие мудрецам палочки (возвращает номера палочек, используемых мудрецами); по условию задачи мудрецы сидят по кругу и мудрец p(i) может взять i и i + 1 палочки, поэтому функция ChangeS(p) определяется следующим образом

```
fun ChangeS (ph(i))=
1`st(i)++st(if = n then 1 else i+1)
```

```
cpntl10.cpn
   Step: 50
   Time: 0
 Options
 ▶ History
 Declarations
   Standard priorities
   Standard declarations
   ▼ val n = 5:
   colset PH = index ph with 1..n;
   vcolset ST = index st with 1..n;
   var p:PH;
   ▼fun ChangeS (ph(i))=
     1 `st(i)++1 `st(if i = n then 1 else i+1)
 Monitors
   philosopher
```

Рис. 3.2: Задание деклараций задачи об обедающих мудрецах

В результате получаем работающую модель. После запуска модели наблюдаем, что одновременно палочками могут воспользоваться только два из пяти мудрецов.

Рис. 3.3: Модель задачи об обедающих мудрецах

Упражнение. Вычислим пространство состояний. Сформируем отчёт о пространстве состояний и проанализируем его. Для этого мы входим в пространство состояний, затем вычисляем пространство состояний и формируем отчёт (задаём ему какое-нибудь имя). Сохранить отчёт можно с помощью инструмента Save report. Открываем сохраненный отчёт и видим следующее.

- Есть 11 состояний и 30 переходов между ними
- указаны границы значений для каждого элемента: думающие мудрецы (минимум
 - 3, максимум их 5), едящих мудрецов от 0 до 2, палочек на столе (минимум
 - 1, максимум 5, и минимальное значение 2, т.к. к концу симуляции остаются пироги)
- указаны границы в виде мультимножеств
- маркировка home для всех состояний
- маркрировка Dead равна None
- указано что бесконечно часто происходят события положить и взять палочку

CPN Tools state space report for:

/home/onenmode	elica/cpntl10.	cnn		
			2025	
keboir genera	ted: Sat Apr 1	2 14:58:45	2025	
C1 1: 1:				
Statistics				
State Space				
Nodes: 1	11			
Arcs:	30			
Secs:	9			
Status: I	Full			
Scc Graph				
Nodes: 3	1			
Arcs: (9			
Secs: (9			
Boundedness I	Properties			
	' 			
Best Intege:	r Bounds			
		Upper	Lower	
المراجعة الشعام	h o m l m h d 7 l		LOWCI	
pniiosopi	her'philosophe	r_ears I		

philosopher'philosopher_thinks 1

philosopher'stiks_on_the_table 1

5 1

```
Best Upper Multi-set Bounds
     philosopher'philosopher_eats 1
                         1`ph(1)++
1'ph(2)++
1'ph(3)++
1'ph(4)++
1'ph(5)
     philosopher'philosopher_thinks 1
                         1 ph(1)++
1'ph(2)++
1'ph(3)++
1'ph(4)++
1'ph(5)
     philosopher'stiks_on_the_table 1
                         1`st(1)++
1'st(2)++
1'st(3)++
1`st(4)++
1`st(5)
  Best Lower Multi-set Bounds
     philosopher'philosopher_eats 1
                         empty
     philosopher'philosopher_thinks 1
                         empty
     philosopher'stiks_on_the_table 1
                         empty
```

```
Home Properties
 Home Markings
   All
Liveness Properties
-----
 Dead Markings
   None
 Dead Transition Instances
   None
 Live Transition Instances
   All
Fairness Properties
     philosopher'put_stiks 1
                   Impartial
     philosopher'take_stiks 1
                   Impartial
```

Построили граф пространства состояний

Рис. 3.4: Граф пространства состояний

4 Выводы

В процессе выполнения работы реализовали модель задачи об обедающих мудрецах в CPNTools