Qualificação de Mestrado

Lucas Giraldi Almeida Coimbra

20 de janeiro de 2024

Conteúdo

1	Álgebra Linear 1.1 Espaços Vetoriais e Formas Bilineares	1 1
2	Grupos	4
3	Anéis	4
4	Corpos	4
5	Métricos	4
6	Análise 1	4
7	Análise 2	4
8	Análise Complexa	4
9	Medida	4
10	Funcional	4
11	EDO	4
12	EDP	4
13	Probabilidade	4
14	Topologia	4
15	Topologia Algébrica	4
16	Topologia Diferencial	4
17	Análise em Variedades	4
18	Riemanniana	4

1 Álgebra Linear

1.1 Espaços Vetoriais e Formas Bilineares

Tome $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Um **espaço vetorial** é um conjunto V munido de duas operações

$$+: V \times V \to V \qquad e \qquad : \mathbb{K} \times V \to V$$

$$(x,y) \mapsto x + y \qquad e \qquad (\lambda,x) \mapsto \lambda x$$

$$(1)$$

tais que a operação + (soma) é comutativa, associativa, possui identidade e todos os inversos, e a operação de · (produto por escalar) satisfaz as relações distributivas, 1x = x e $\lambda(\mu x) = (\lambda \mu)x$.

Dizemos que $x_1, \ldots, x_n \in V$ são **linearmente independentes** se para quaisquer $\lambda^1, \ldots, \lambda^n \in \mathbb{K}$ tais que

$$\lambda^i x_i = 0, \tag{2}$$

então $\lambda_i=0$ para todo i. Vetores que não são linearmente independentes são **linearmente dependentes**. Se

$$v = \lambda^i x_i, \tag{3}$$

dizemos que v é uma **combinação linear** de x_1, \ldots, x_n . Fica claro da definição que um conjunto de vetores é linearmente dependente se, e somente se, um dos vetores pode ser escrito como combinação linear dos outros. Além disso, é fácil ver que se uma subcoleção de vetores é linearmente dependente, então a coleção original também é. Mais ainda, qualquer coleção de vetores que contenha o 0 é linearmente dependente.

Um espaço vetorial V é dito n-dimensional se possui um conjunto de n vetores linearmente independentes, e qualquer conjunto de n+1 vetores forem linearmente dependentes. Se existirem conjuntos linearmente independentes de tamanho arbitrariamente grande, dizemos que V possui dimensão infinita. Nessas notas focaremos em espaços de dimensão finita. Se V é n-dimensional, denotamos dim V=n.

Seja V espaço vetorial com dim V=n. Um conjunto de n vetores linearmente independentes é chamado de base de V.

Teorema 1. Fixada uma base para V, todo vetor se escreve unicamente como combinação linear desta base.

Demonstração. Sejam $x \in V$ e $e_1, \ldots, e_n \in V$ uma base. Como x, e_1, \ldots, e_n são n+1 vetores distintos, são necessariamente linearmente dependentes, portanto podemos escrever

$$\lambda x + \lambda^i e_i = 0 \tag{4}$$

para $\lambda \neq 0$ (afinal, se pudessemos tomar $\lambda = 0$, os vetores da base seriam linearmente dependentes, o que é um absurdo). Dessa forma, temos

$$x = -\frac{1}{\lambda}\lambda^i e_i. \tag{5}$$

Para a unicidade, se $\lambda^i e_i$ e $\mu^i e_i$ são duas representações de x na base, então

$$\lambda^{i} e_{i} = \mu^{i} e_{i} \implies (\lambda^{i} - \mu^{i}) e_{i} = 0 \implies \lambda^{i} - \mu^{i} = 0 \implies \lambda^{i} = \mu^{i}, \tag{6}$$

pela independência linear da base.

Se $e = (e_1, \ldots, e_n)$ é uma base de V e $x = \lambda^i e_i$, dizemos que $x[e] = (\lambda^1, \ldots, \lambda^n)$ são as **coordenadas de** x **na base** e_1, \ldots, e_n .

Se V e W são espaços vetoriais, uma **transformação linear** ou um **morfismo** entre V e W é uma função $\varphi \colon V \to W$ tal que $\varphi(x+y) = \varphi(x) + \varphi(y)$ e $\varphi(\lambda x) = \lambda \varphi(x)$. Note que o corpo $\mathbb K$ sobre o qual os espaços V e W são definidos deve ser o mesmo pra que a segunda condição faça sentido. Se φ for uma bijeção, diremos que é um **isomorfismo linear** e, nesse caso, que V e W são **isomorfos**.

Proposição 2. Transformações lineares preservam dependência linear, e transformações lineares injetoras preservam independência linear.

Demonstração. Se $\varphi \colon V \to W$ é linear, sejam $x_1, \ldots, x_n \in V$ linearmente dependentes. Então existem $\lambda^1, \ldots, \lambda^n \in \mathbb{K}$ não todos nulos tais que $\lambda^i x_i = 0$. Porém, como $\varphi(0) = 0$, então

$$\lambda^{i} x_{i} = 0 \implies \lambda^{i} \varphi(x_{i}) = 0, \tag{7}$$

portanto os vetores $\varphi(x_i)$ são linearmente dependentes.

Se φ for injetora, então se $x_1, \ldots, x_n \in V$ são linearmente independentes, considere a combinação linear $\lambda^i \varphi(x_i) = 0$. Isso é o mesmo que dizer que $\varphi(\lambda^i x_i) = 0$ e, como φ é injetora e $\varphi(0) = 0$, então $\lambda^i x_i = 0$, assim $\lambda^i = 0$ para todo i, portanto os vetores $\varphi(x_i)$ são linearmente independentes.

Proposição 3. Isomorfismos preservam dimensão.

Demonstração. Se $\varphi \colon V \to W$ é um isomorfismo, vamos mostrar que $\dim V = \dim W$. Seja $n = \dim V$. Seja x_1, \ldots, x_n uma base em V. Como φ é injetor, então $\varphi(x_1), \ldots, \varphi(x_n)$ são linearmente independentes. Agora, se $y_1, \ldots, y_{n+1} \in W$ são distintos, então $\varphi^{-1}(y_1), \ldots, \varphi^{-1}(y_{n+1})$ são distintos e portanto linearmente dependentes, da onde segue que os vetores y_i também são, visto que $y_i = \varphi(\varphi^{-1}(y_i))$. Assim, $\dim W = n = \dim V$.

Um subespaço vetorial de um espaço vetorial V é um subconjunto $S \subset V$ tal que para todos $x, y \in S$ e $\lambda \in \mathbb{K}$, temos $x + y \in S$ e $\lambda x \in S$. Todo espaço vetorial é um subespaço vetorial de si mesmo, assim como $\{0\}$ é sempre um subespaço vetorial.

Proposição 4. A dimensão de um subespaço vetorial é, no máximo, a dimensão do espaço.

Demonstração. Seja V um espaço vetorial e S um subespaço de V. Se $m = \dim S > \dim V = n$, então existem $x_1, \ldots, x_m \in S$ linearmente independentes em S, porém, a inclusão $S \to V$ é linear e injetora, então x_1, \ldots, x_m também são linearmente independentes em V, o que é um absurdo pois m > n.

Se $S \subset V$ é um subconjunto qualquer, denotamos por $\langle S \rangle$ o **subespaço vetorial gerado por** S, que é o conjunto de todas as combinações lineares de elementos de S (combinações lineares são sempre somas finitas). Se S é linearmente independente, então $\dim \langle S \rangle = |S|$ e S é uma base para $\langle S \rangle$.

Se X é um conjunto, denotamos por S_X o conjunto de todas as bijeções $X \to X$, e se $X = \{1, \ldots, n\}$, denotamos $S_X = S_n$. Uma **transposição** em S_n é uma bijeção da forma $\sigma(i) = i+1$, $\sigma(i+1) = i$ e que fixa todos os outros elementos. Uma bijeção $\sigma \in S_n$ é **par** se é a composição de um número par de transposições, e é **ímpar** se é a composição de um número ímpar de transposições. Definimos o **sinal** de σ por

$$(-1)^{\sigma} = \begin{cases} 1, & \text{se } \sigma \text{ \'e par,} \\ -1, & \text{se } \sigma \text{ \'e impar.} \end{cases}$$
 (8)

Se $A = [a_i^i]_{n \times n}$ é uma matriz, seu **determinante** é o número

$$\det A = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{\sigma(1)}^1 \cdots a_{\sigma(n)}^n. \tag{9}$$

Dadas duas bases $e = (e_1, \dots, e_n)$ e $f = (f_1, \dots, f_n)$ de V, podemos escrever unicamente cada e_j como

$$e_i = a_i^i f_i \tag{10}$$

e fica claro que o determinante da matriz $A=[a^i_j]$ é não nulo, caso contrário os vetores e_j seriam linearmente dependentes. Se $x[e]=(\lambda^1,\ldots,\lambda^n)$ e $x[f]=(\mu^1,\ldots,\mu^n)$, então sabemos que $\lambda^j e_j=\mu^i f_i$ e portanto

$$\mu^i f_i = \lambda^j a_i^i f_i. \tag{11}$$

Como os vetores f_i são linearmente independentes, segue que $\mu^i = a_j^i \lambda^j$. Dessa forma, temos que x[e] = Ax[f], portanto $x[f] = A^{-1}x[e]$, ou seja, a troca de coordenadas de x da base e para base f é dada pela matriz inversa da matriz que troca a base f para a base e (como vimos em 10). Podemos abreviar essa frase dizendo que vetores são quantidades contravariantes, no sentido de que eles mudam de coordenadas de maneira inversa a uma mudança de base. Em particular, é por isso que sempre denotamos os índices de vetores embaixo. Para quantidades covariantes, os índices são denotados em cima (números não obedecem essa regra e seus índices são posicionados de maneira a obedecer a notação de soma de Einstein).

- 2 Grupos
- 3 Anéis
- 4 Corpos
- 5 Métricos
- 6 Análise 1
- 7 Análise 2
- 8 Análise Complexa
- 9 Medida
- 10 Funcional
- 11 EDO
- 12 EDP
- 13 Probabilidade
- 14 Topologia
- 15 Topologia Algébrica
- 16 Topologia Diferencial
- 17 Análise em Variedades
- 18 Riemanniana