PMH2: Commutative Algebra

University of Sydney, 2018

Assignment 1

Let R denote an associative, commutative, and unital ring.

Exercise 1. (4 points) Let S be a ring, $f: R \longrightarrow S$ a map of rings and I < R respectively J < S ideals. We denote by $I^e = (f(I)) < S$ the extension of I (along f) and by $J^c = f^{-1}(J) < R$ the contraction of J (along f). Show the following statements for extensions and contractions of ideals along the map f.

- (a) $I \subset (I^e)^c$ and $(J^c)^e \subset J$.
- (b) $I^{e} = ((I^{e})^{c})^{e}$ and $J^{c} = ((J^{c})^{e})^{c}$.
- (c) Denote by \mathcal{C} the set of ideals in R obtained as contractions of ideals in S and by \mathcal{E} the set of ideals in S obtained as extensions of ideals in R. Then it holds

$$\mathcal{C} = \{I < R \mid I = (I^{e})^{c}\} \text{ and } \mathcal{E} = \{J < S \mid J = (J^{c})^{e}\}$$

and

$$\begin{array}{cccc} \mathcal{C} & \longleftrightarrow & \mathcal{E} \\ I & \longmapsto & I^{\mathrm{e}} \\ J^{\mathrm{c}} & \longleftrightarrow & J \end{array}$$

is a one-to-one correspondence.

Exercise 2. (4 points) Denote by R[x] the polynomial ring in one indeterminant and coefficients in R. Let $f = r_0 + r_1 x + r_2 x^2 + \ldots + r_n x^n \in R[x]$. Show that

- (a) f is a unit in R[x] if and only if r_0 is a unit in R and r_1, \ldots, r_n are nilpotent in R.
- (b) f is nilpotent in R[x] if and only if r_0, \ldots, r_n are nilpotent in R.
- (c) f is a zero-divisor in R[x] if and only if there exists $r \in R \setminus \{0\}$ such that rf = 0.

Exercise 3. (4 points) Let R be an associative and unital ring, but not necessarily commutative, such that $x^2 = x$ for every $x \in R$.

- (a) Show that x + x = 0 for all $x \in R$.
- (b) Show that R is commutative.
- (c) Show that any finitely generated ideal in R is a principal ideal.
- (d) Show that any prime ideal of R is a maximal ideal.

Exercise 4. (4 points) Let $f: R \to S$ be a surjective map of rings and

$$\left\{ \text{ ideals of } S \right. \right\} \stackrel{\Phi}{\underset{\Psi}{\longleftarrow}} \left. \left\{ \begin{array}{c} \text{ ideals of } R \\ \text{containing } \ker(f) \end{array} \right\}.$$

, where $\Phi(I) = f^{-1}(I)$ and $\Psi(J) = f(J)$.

- (a) Show that Φ and Ψ define inclusion preserving bijections that are mutually inverse to each other.
- (b) Show that this can be restricted to prime ideals in S on the left hand side and prime ideals containing ker(f) in R on the right hand side.

Exercise 5. (4 points)

(a) Let $\{M_i\}_{i\in I}$ and $\{N_i\}_{i\in I}$ be families of R-modules and $\{f_i:M_i\to N_i\}$ a family of R-module maps. Show that this naturally determines maps

$$f_{\oplus}: \bigoplus_{i \in I} M_i \to \bigoplus_{i \in I} N_i \quad \text{and} \quad f_{\Pi}: \prod_{i \in I} M_i \to \prod_{i \in I} N_i.$$

(b) Let $\{M_i\}_{i\in I}$ be a family of R-modules and N an R-module. Show that

$$\operatorname{Hom}_{R}\left(\bigoplus_{i\in I}M_{i},N\right)\cong\prod_{i\in I}\operatorname{Hom}_{R}\left(M_{i},N\right)$$
 and
$$\operatorname{Hom}_{R}\left(N,\prod_{i\in I}M_{i}\right)\cong\prod_{i\in I}\operatorname{Hom}_{R}\left(N,M_{i}\right)$$

Hint: Use the universal properties of direct sum and direct product to show the existence of maps in a suitable direction as well as their injectivity and surjectivity.