Robot Autonomy

Lecture 2: Control

Oliver Kroemer

Motivation

Assume robot is given a desired trajectory or pose

- Need to get robot to move to pose or follow trajectory
 - Robust to perturbations during execution
 - Control interaction forces when in contact

Feedback Basics

Feedback Controller

- Need a controller to control the robot's movements
 - adapt control signal based on error between desired and actual

Feedback allows robot to compensate for errors/perturbations

Shower Example (Celsius)

Shower Example

$$x_{t+1} = Ax_t + Bu_t$$

Linear System

Linear system with linear control

$$x_{t+1} = Ax_t + Bu_t \qquad u_t = Kx_t$$

Assume desired state is 0 without loss of generality

$$x_{t+1} = Ax_t + B(Kx_t)$$
$$x_{t+1} = (A + BK)x_t$$
$$x_{t+n} = (A + BK)^n x_t$$

- We want state to tend to zero as n tends to infinity
- Absolute eigenvalues need to be less than one

$$|\operatorname{eig}(A + BK)| < 1$$

$$x_{t+1} = Ax_t + Bu_t$$

$$A = 1, B = 1, K = -1 \rightarrow A + BK = 0$$

$$A = 1, B = 1, K = -1 \to A + BK = 0$$

Ideal plant and no noise:

$$A = 1, B = 1, K = -1 \to A + BK = 0$$

With measurement noise:

$$A = 1, B = 1, K = -0.15 \rightarrow A + BK = 0.85$$

With measurement noise:

$$A = 1, B = 1, K = -2.15 \rightarrow A + BK = -1.15$$

Unstable (overcompensates)

$$A = 1, B = 1, K = 0.5 \rightarrow A + BK = 1.5$$

Unstable (positive feedback)

Continuous Time Systems

Continuous time linear systems:

$$\dot{x} = Ax + Bu = Ax + BKx$$

$$\dot{x} = (A + BK)x$$

$$x(t) = \exp^{(A+BK)t} x(0)$$

- We want state to tend to zero as n tends to infinity
- · Real part of eigenvalues need to be negative

$$\operatorname{Real}(\operatorname{eig}(A + BK)) < 0$$

PID Control

Linear Feedback Control in Robotics

Linear Feedback Control in Robotics

Proportional Feedback

Compute torque based on position error

$$u = K_p(q_d - q)$$

Stable, but very underdamped leading to poor tracking

Derivative Feedback

Compute torque based on position and velocity errors

$$u = K_p(q_d - q) + K_d(\dot{q}_d - \dot{q})$$

- Stable, but a bit underdamped
- Increase d gain to remove overshoot (overdamp)

Physical Interpretation

Controller simulates virtual spring and damper

- Known as simple joint-space impedance control
- Passive elements- spring and damper do not create energy
- Passive systems are inherently stable Lyapunov stability criterion:
 - Energy in system is minimum at desired pose
 - Energy is constantly decreasing over time

Improving Performance

What about the offset at the end?

How can we reduce this error?

Integral Feedback

Could include an integral term to create PID controller

$$u = K_p(q_d - q) + K_d(\dot{q}_d - \dot{q}) + K_i \int_{-\infty}^{t} (q_d - q) d\tau$$

Integral term ensures error will be removed over time

Why may an integral term be undesirable?

Integral Feedback

Could include an integral term to create PID controller

$$u = K_p(q_d - q) + K_d(\dot{q}_d - \dot{q}) + K_i \int_{-\infty}^{t} (q_d - q) d\tau$$

Integral term ensures error will be removed over time

- Integral is useful for constant desired joint angle
 - Usually use PD for tracking dynamic movements
 - Integral adds memory and wind-up
 - Consider moving arm to straight down afterwards: arm will initially have an additional offset due to integral

High Gains

- Error can be reduced by increasing the (P) gains
 - Stiffer springs result in smaller offsets

- Require large torques for executing dynamic motions
- Unsafe for humans and unstructured environments
 - Want robot to give way to perturbations from humans

Error

What is causing the offset in the first place?

Gravity- weight of the robot's arm

Can directly compensate for gravity given robot model

Gravity Compensation

Offset is caused by the weight of the robot arm

$$u = K_p(q_d - q) + K_d(\dot{q}_d - \dot{q}) + g(q)$$

$$\mathbf{q}_d = \begin{bmatrix} 0 \\ 0.9 \\ 0 \\ 0.9 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\dot{\mathbf{q}}_d = 0$$

- Stable and good tracking (given large jump in desired)
- What about other dynamic effects than just gravity?

Model-Based Control

Model-based Control

Why not compensate for full dynamics?

Need to compensate for model errors and perturbations

Coriolis and Centripetal Forces

- Consider a horizontal robot with:
 - ightharpoonup rotational joint angle heta
 - ightharpoonup prismatic joint extension r
 - point mass at P

Example Dynamics

Note: J are the links' moments of inertia, not Jacobians

Model-Based Feedback Control

For errors, adapt only our reference trajectory

$$\ddot{\mathbf{q}}_{\text{ref}} = \ddot{\mathbf{q}}_{\mathbf{d}} + \mathbf{K}_D(\dot{\mathbf{q}}_{\text{des}} - \dot{\mathbf{q}}) + \mathbf{K}_P(\mathbf{q}_{\text{des}} - \mathbf{q})$$

Insert ref acceleration into inverse dynamics model

$$\mathbf{u} = \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}}_{ref} + \mathbf{c}(\dot{\mathbf{q}}, \mathbf{q}) + \mathbf{g}(\mathbf{q})$$

Good error compensation given good inverse dynamics

Model-Based Feedforward Control

Compute feedforward term based only on desired trajectory

$$u_{ff} = M(q_d)\ddot{q}_d + c(\dot{q}_d, q_d) + g(q_d)$$

Add feedback on top of feedforward term

- Assumes robot is near desired trajectory
- Allows feedback to compensate more for model errors

Model Learning

What to do if the model is inaccurate? Learn a model

Model Learning

Interaction Control

Interaction Control

- Mainly looked at following a trajectory so far
- What about when the robot is in contact with objects?

- Need to control interaction forces with environment
- If objects/environment act as masses (admittence),
 why not control with spring and damper (impedance)?

Impedance Control

Joint space impedance control

Task space impedance control

Simple Task-Space Impedance Control

Simple task-space impedance controller

$$u=J(q)^T(K_p(x_d-x)+K_d(\dot{x}_d-\dot{x}))$$
 Jacobian maps
$$f(q)$$
 EE forces and torques
$$f(q)$$
 to joint torques

- Well-defined throughout workspace
- Does not compensate for the robot's own dynamics
 - Use with low friction and low inertia robots
- Indirect sensing no force torque sensor required
- Interaction force created when desired x is in an object

Direct Force Control

Can directly sense forces using force-torque sensors

- Use Jacobian transpose to map forces to joints
- Use PI(D) to control torques to achieve desired force

Direct Force Control

What about the horizontal direction?

- No object to push against to control force (force constraint)
- Want to use position control for free space motions

Summer School on Impedance Control

Looking for more (binge-watchable) information? http://summerschool.stiff-project.org/keynotes/index.html

Questions?