

KENYATTA UNIVERSITY

SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY SIT 211: INTRODUCTION TO LOGIC PROGRAMMING COURSE OUTLINE

Lecturer: Gordon Agutu,

Office: Engineering Building, Room 217

Email: qagutu@gmail.com Tel: +254 733 712 991 or +254 727 342 682

Class Hours: Wednesday 11h00 – 14h00 (Computer Lab) Consultation Hours: Wednesday 14h00 – 19h00

Aim:

To introduce students to Logic programming and provide students with an understanding of Prolog programming language

Course Learning Outcomes:

After successfully completing this course, the student should be able to:

- Explain the differences between the declarative and procedural programming paradigms
- Describe the syntax and semantics of propositional and predicate logic
- Develop and illustrate the execution of non-trivial Prolog programs
- Discuss the potential applications of Prolog programming language
- Apply Prolog's built-in predicates in obtaining input and producing output
- Identify the strengths and weaknesses of Prolog

Contact Hours: 35

Prerequisite: SIT 102: Introduction to Structured Programming

SIT 108: Introduction to Logic

Indicative Content

Introduction to Logic Programming Environment. A closer look at Prolog: Facts, Facts with arguments, rules, computation. Variables and Unifications: Simple unification Operators and Structures Back Tracking: Fail, Cut, Not Lists and Strings: List manipulation Built-in Predicates: Input, Output, Control, Data Manipulation, Arithmetic Meta-logic and I/O Parsing: Low-level and high-level parsing expressions, Parsing optional structures. Prolog semantics: Computational model, Unification, resolution, queries

Content

Week/Dates	Topic	Intended Learning Outcomes	Activities
Week 1	Introduction Course Outline	Understand what the course entails	■ Introduction
	 Recap - Structured Programming and Introduction to Logic 	 Demonstrate an understanding of concepts covered in the prerequisite courses. 	Recap Questions and Answers
Week 2	 Introduction to Logic Programming Environment 	 Explain the need for logic programming Distinguish between functional programming and logic programming Briefly describe propositional logic 	Class discussionsClass exercises
		Briefly describe propositional logic Briefly describe predicate logic	■ Group discussions
Week 3	A closer look at PrologFacts, Facts with arguments	 Discuss the potential applications of Prolog programming language Identify the strengths and weaknesses of Prolog 	Class discussionsClass exercises
	RulesComputation rules	 Define facts and rules Illustrate application of facts and rules in computations 	■ Lab Exercises
Week 4	Variables and UnificationsSimple unification Operators and Structures	 Describe variables and explain their applications in Prolog Describe the various features of variables 	Class discussionsLab ExercisesGroup Exercises

		Describe operator notation for predicates	
	Back Tracking	■ Demonstrate backtracking	■ Research
Week 5	■ Fail, repeat, and Not	 Employ Prolog's control facilities such as Cut, Not, and repeat 	assignments
	 Cut and Cut with failure 	Identify green and red cuts	Class exercises
	• CAT 1:	Explain the difference between green and red	
		cutsAnalyse the issues associated with negation in	Lab Exercises
		goals	CAT 1
	Lists and Strings	■ Create a list containing all the possible values	S
		that would satisfy a specified goal	■ Lab Exercises
	List manipulation	 Illustrate the execution of predicates that 	
Week 6	- List mampulation	manipulate lists and strings	Class exercises
rreen o		• Analyze the execution of built-in and recursive	
	Built-in Predicates	predicates	■ Tutorials
		Demonstrate how to work through a list element by element	
	■ Input and Output	Describe the built-in predicates for input and	■ Lab Exercises
	■ Control	output operations	Class exercises
Week 7		Use Prolog's built-in predicates for obtaining	
	 Data Manipulation 	input and producing output	■ Tutorials
	 Arithmetic expressions 	■ Explain the execution of predicates that	
	 Meta-logic and I/O Parsing 	manipulate arithmetic expressions and	Lab Exercises
Week 8	Low-level and high-level	structuresDescribe the operators used for evaluating and	■ Group exercises
VVCCKO	_	comparing the values of arithmetic expressions	Group exercises
	parsing expressions	 Define and test a predicates that take various 	 Class discussions
		arguments	
	Parsing optional structures	 Describe semantics of prolog 	Lab Exercises
	Prolog semantics	 Explain how parsing is carried out for optional 	■ Class exercises
Week 9	 Computational model 	structures	
	■ CAT 2	Develop a computational model	Group discussions
			■ CAT 2
	Unification	 Illustrate application of unification in prolog 	CAT 2Lab Exercises
			 Class discussions
Week 10	Resolution	 Demonstrate the use of queries in prolog 	Class exercises
	Queries		■ Group discussions
14/o.c.l. 4.4	- Company and Total	- Decelland annih major saranta sarant	- Tutorial
Week 11	 Summary and Tutorial 	Recall and apply major concepts covered	■ Tutorial
		Attempt questions of various areas of the	Consultations
Week 12	Preparation for final exams	course content	Revision for exams

Course Delivery Methodology

- Lectures: At least 2 hours per week of lectures will be used to introduce material on the formal aspects of the unit
- Tutorials: 1 hour per week
- Laboratory Exercises: At least three sessions per semester each being 3 hours long
- Students will research and present their findings on various topics
- Discussions and working out problems

Academic Assessment

- Examination: 70%
- CATs: 15%, Assignments and lab exercises: 15%
- Computer Laboratory Exercises: Each student is expected to carry out at least seven computer laboratory exercises. These will include lab exercises done using Prolog

Course Reference Materials

- Michael Spivey, An introduction to logic programming through Prolog, c Prentice—Hall International, 2008
- Max Bramer, Logic Programming with Prolog, Springer Science+Business Media, 2005 ISBN-10: 1-85233-938-1, ISBN-13: 978-1852-33938-8
- Ivan Bratko, Prolog-Programming for Artificial Intelligence, 3rd Edition, Addison Wesley, 2001.
- Leon Sterling and Ehud Shapiro, The Art of Prolog, 2nd Edition, MIT Press, 1994.
- W. F. Clocksin, C. S. Mellish, Programming in Prolog: Using the Iso Standard, 5th edition, Springer-Verlag, 2003.

Classes

- Punctuality is fundamental.
- Active participation in class discussions is encouraged

Assignments and/or Course Work

- Plagiarism is a serious offence. If detected in any form in course work and assignments, the following will apply:
 - o In partial or non-serious cases (such as not citing whole word-for-word quotes), half the total possible marks of the assignment are duly struck off.
 - In serious cases (such as whole duplication of a paper), a zero policy will apply i.e., all offending assignments will be awarded a mark of zero.
 - Note: The level of seriousness referred to above is at the discretion of the lecturer. Appeals are certainly
 possible through the relevant channels
- Notwithstanding the above, collaboration in course work is certainly encouraged as this promotes team spirit and group synergy as long provided originality is preserved.

Communication Channels

- E-mail: To make appointments or to inform the lecturer of any absenteeism from class prior to the class. However you may later be required to meet the lecturer to explain the absence
- Class representative