Задания для самостоятельной работы к модулю

«Теория функций комплексной переменной»

Задание 1

- 1. Письменно ответить на вопросы:
 - а) какая функция f(z) называется аналитической в области D?
- б) запишите условия Коши Римана, как называются функции U(x,y)и V(x, y)?
- 2. Проверить с помощью условий Коши-Римана, является ли функция анапитической?

1.
$$f(z) = x^2 - y^2 + 2xyi$$
. 2. $f(z) = x^2 + y^2 - 2xyi$

2.
$$f(z) = x^2 + y^2 - 2xyi$$

3.
$$w = z^2 \cdot e^{-z}$$
.

4.
$$f(z) = e^{x} \cos y + i \sin y$$
.

5.
$$f(z) = y^2 + 2xi$$
. 6. $w = \bar{z} \cdot \sin z$.

6.
$$w = \overline{z} \cdot \sin z$$

7.
$$w = z \cdot e^z$$

7.
$$w = z \cdot e^{z}$$
. 8. $w = z \cdot |z|$.

9.
$$w = \bar{z} \cdot |z|$$
. 10. $w = e^{z^2}$.

10.
$$w = e^{z^2}$$

11.
$$f(z) = e^x(\cos y - i\sin y)$$
. 12. $w = \sin 3z - i$.

12.
$$w = \sin 3z - i$$

13.
$$w = \overline{z} \cdot \text{Re } z$$
.

14.
$$f(z) = x^2 y + i \cdot x \cdot y^2$$
.

15.
$$w = \overline{z} \cdot \operatorname{Im} z$$
.

16.
$$w = |z| \cdot \operatorname{Im} z$$
.

17.
$$w = z \cdot \sin z$$
.

18.
$$w = z \cdot \cos z$$
.

19.
$$w = (iz)^3$$
.

20.
$$w = i(1-z^2) - 2z$$
.

21.
$$w = z^3 - 2z + i$$
.

22.
$$w = e^{1+2z}$$
.

23.
$$w = z^2 \cdot \text{Im } z$$
.

24.
$$w = e^{2iz}$$
.

25.
$$f(z) = y^2 - 3xi$$
. 26. $w = |z| \cdot \text{Re } z$.

$$26. \quad w = |z| \cdot \operatorname{Re} z$$

27.
$$f(z) = \sin x \cdot \cos y + i \cos x \cdot \sin y$$
.

28.
$$f(z) = (x^2 + x^2y^2) + i(xy^2 - y^2)$$
.

29.
$$f(z) = (x^3 - 3xy^2) + i(3x^2y - y^2)$$
.

30.
$$f(z) = \sin x \cdot \cosh y + i \cos x \cdot \sinh y$$
.

Задание 2

- 1. Письменно ответить на вопросы:
- а) запишите комплексную переменную и её дифференциал в алгебраической и показательной формах.
- б) что называется интегралом от функции комплексной переменной по кривой С?
- в) запишите формулу вычисления интеграла от ФКП через сумму криволинейных интегралов.

2. Вычислить интеграл

1.
$$\int_C z \operatorname{Im} z^2 dz$$
, где $C: |z| = 1$, $(-\pi \le \arg z \le 0)$.

2.
$$\int_{C} e^{|z|^2} \operatorname{Re} z dz$$
, где С – прямая, соединяющая точки $z_1 = 0$, $z_2 = 1 + i$.

3.
$$\int\limits_{C} \ln z dz$$
, где C: $\left|z\right|=1$, обход против часовой стрелки.

4.
$$\int\limits_C z\,\mathrm{Re}\,zdz$$
 , где C: $\left|z\right|=1$, обход против часовой стрелки.

5.
$$\int\limits_C \overline{z}^2 dz$$
 , где С: луч $\phi = \frac{\pi}{3}$, $0 \le \rho \le 2$.

6.
$$\int_C z \cdot \overline{z} dz$$
, где C: $|z| = 1$, $\left(0 \le \arg z \le \frac{\pi}{2}\right)$.

7.
$$\int_C \text{Re } z dz$$
, где C: $z = (2+i)t$, $(0 \le t \le 1)$.

8.
$$\int_C z \operatorname{Im} z dz$$
, где $C: |z| = 1$, $(-\pi \le \arg z \le 0)$.

9.
$$\int_{C} e^{|z|^2} \operatorname{Im} z dz$$
, где С – прямая, соединяющая точки $z_1 = 0$, $z_2 = -1 - i$.

10.
$$\int\limits_{C} \ln z dz$$
, где С: $\left|z\right|=2$, обход против часовой стрелки.

- 11. $\int_C z \operatorname{Re} z dz$, где С: |z| = 2, $(0 \le \arg z \le \pi)$.
- 12. $\int\limits_C \overline{z}^3 dz$, где С: луч $\phi = -\frac{\pi}{3}$, $0 \le \rho \le 1$.
- 13. $\int\limits_{C} {{\mathop{\rm Im}} \, z \cdot {\mathop{
 m sin}} \, z dz}$, где C: отрезок прямой, соединяющий точки
- $z_1 = i$, $z_2 = \frac{\pi}{2} + i$.
- 14. $\int_C z \cdot \overline{z} dz$, где C: |z| = 2, $\left(0 \le \arg z \le \frac{3\pi}{2}\right)$.
- 15. $\int_C \operatorname{Re} z dz$, где C: z = (-1+i)t, $(0 \le t \le 1)$.
- 16. $\int_C z \operatorname{Im} z^2 dz$, где C: |z| = 1, $(0 \le \arg z \le \pi)$.
- 17. $\int e^{\left|z\right|^2} \operatorname{Re} z dz$, где С прямая, соединяющая точки
- $z_1 = 0$, $z_2 = 1 i$.
- 18. $\int_C \ln z dz$, где С: |z| = 1, обход по часовой стрелке.
- 19. $\int\limits_C \overline{z} \, \mathrm{Re} \, z dz$, где C: отрезок от точки $\, z_1 = 1 + i \,$ до точки $\, z_2 = 0 \, .$
- 20. $\int\limits_C \overline{z}^2 \, \mathrm{Im} \, z dz$, где C: отрезок прямой от точки $\, z_1 = 0 \,$ до точки
- $z_2 = 1 i.$
- 21. $\int\limits_C {{\mathop{\rm Re}} \; zdz}$, где C: отрезок прямой $\; z = (1+i)t, \;\;\; (0 \le t \le 1)$.
- 22. $\int_C z \operatorname{Im} z dz$, где C: |z| = 1, $(0 \le \arg z \le \pi/2)$.

- 23. $\int\limits_C e^{\left|z\right|^2}\,\mathrm{Im}\,zdz$, где С отрезок прямой, соединяющей точки
- $z_1 = 0$, $z_2 = -1 + i$.
- 24. $\int_C \ln z dz$, где С: |z| = 2, обход по часовой стрелке.
- 25. $\int\limits_C z\,\mathrm{Re}\,zdz$, где C: $\left|z\right|=2$, обход по часовой стрелке.
- 26. $\int\limits_C z \cdot \overline{z} dz$, где C: |z|=5 , обход по часовой стрелке.
- 27. $\int_C \text{Re } z dz$, где C: z = (2+i)t, $(0 \le t \le 2)$.
- 28. $\int\limits_C {{\mathop{\rm Im}} \, z \cdot \mathop{\rm Re} \, z dz}$, где C: $C:\left| z \right| = 1$, $\quad (0 \le \mathop{\rm arg} \, z \le \pi/2)$.
- 29. $\int_C \operatorname{Im}(z^2) \cdot \operatorname{Re} z dz$ где С: |z| = 1, обход против часовой стрелки.
- 30. $\int_C z \operatorname{Re} z dz$, где C: |z| = 1 , обход по часовой стрелке.

Ответы в вариантах задания 2.

- 1. $-\frac{\pi}{2}$. 2. $\frac{1}{4}(e^2-1)(1+i)$. 3. $2\pi i$. 4. 0. 5. $\frac{4}{3}-i\frac{4\sqrt{3}}{3}$. 6. -1+i. 7. 2+i. 8. $\frac{2}{3}i$.
- 9. $\frac{1}{4}(e^2-1)(1+i)$. 10. $4\pi i$. 11. $-\frac{32}{3}$. 12. $-\frac{1}{8}+i\frac{\sqrt{3}}{8}$. 13. $\cosh 1+i \sinh 1$. 14. -8-8i . 15. $\frac{1}{2}(1-i)$.
- 16. $-\frac{\pi}{2}$. 17. $\frac{1}{4}(e^2-1)(1-i)$. 18. $-2\pi i$. 19. $-\frac{2}{3}$. 20. $\frac{-1-i}{2}$. 21. $\frac{1+i}{2}$. 22. $-\frac{2}{3}-i\frac{1}{3}$.
- 23. $\frac{1}{4}(e^2-1)(-1+i)$. 24. $-4\pi i$. 25. 0. 26. 0. 27. 8+4i. 28. $\frac{13}{12}(1+i)$. 29. $-\frac{\pi}{2}$. 30. 0.

Задание 3

- 1. Письменно ответить на вопросы:
- а) сформулируйте теоремы Коши для односвязной и многосвязной области:
- б) напишите интегральную формулу Коши и обобщенную интегральную формулу Коши в той форме, которая применяется для вычисления интегралов.

2. Используя интегральные формулы Коши, вычислить интеграл по двум замкнутым контурам: 1) |z| = 0.5; 2) |z| = 2

$$1. \int_{C} \frac{\sin iz}{(z-1)(z+3)^3} dz.$$

2.
$$\int_{C} \frac{\sinh z}{(z+1)(z-3)^2} dz$$
.

$$3. \int_{C} \frac{\cos i2z}{(z-i)(z+3)^2} dz.$$

4.
$$\int_{C} \frac{z^2 - 3z + 1}{(z+1)^2 (z-3i)} dz.$$

$$5. \int_{C} \frac{e^{iz}}{(z+i)(z-3)^2} dz.$$

$$6. \int_C \frac{\text{chi}2z}{(z+1)(z-3i)^2} dz.$$

7.
$$\int_{C} \frac{e^{2z}}{(z-1)(z+3i)^2} dz$$
.

8.
$$\int_{C} \frac{z^2 + z + 2}{(z + i)(z - 3)^2} dz.$$

9.
$$\int_C \frac{\sin 2z}{(z-i)(z-3)^2} dz.$$

$$10. \int_C \frac{\cos 2z}{(z+i)(z+3)^2} dz.$$

$$11. \int_C \frac{\sinh 2z}{(z-1)(z+5i)} dz.$$

$$12. \int_{C} \frac{\cosh 2z}{(z+1)(z-5i)} dz.$$

13.
$$\int_{C} \frac{z+1}{(z-1)(z+3i)^3} dz$$
.

$$14. \int_{C} \frac{\sin iz}{(z-1)^3 (z+3)} dz.$$

$$15. \int_C \frac{\sinh z}{(z+1)^2(z-3)} dz.$$

$$16. \int_{C} \frac{\cos(i2z)}{(z-i)^2(z+3)} dz.$$

17.
$$\int_C \frac{e^{iz}}{(z+i)^2(z-3)} dz.$$

18.
$$\int_{C} \frac{\operatorname{ch}(iz)}{(z+1)^2 (z-3i)} dz.$$

19.
$$\int_{C} \frac{z^3 + 2z - 1}{(z - i)^2 (z + 3)} dz.$$

$$20. \int_{C} \frac{e^z}{(z-1)^3 (z+3i)} dz.$$

$$21. \int_{C} \frac{\sin z}{(z-i)^3 (z-3)} dz.$$

$$22. \int_{C} \frac{\cos z}{(z+1)(z+7i)^2} dz.$$

$$23. \int_{C} \frac{\sinh z}{(z-1)^2(z+5i)} dz.$$

$$24. \int_{C} \frac{\cosh 2z}{(z+1)^2(z-5i)} dz.$$

25.
$$\int_{C} \frac{z^2 + 1}{(z+1)^2 (z-3i)} dz.$$

$$26. \int_{C} \frac{\sin z}{(z-i)(z+3)^2} dz.$$

$$27. \int_{C} \frac{\cos z}{\left(z-3\right)\left(z+i\right)^2} dz.$$

28.
$$\int_{C} \frac{z^2 + 3z - 1}{(z - 5i)(z + i)^2} dz.$$

$$29. \int_{C} \frac{e^z}{(z-i)^2 (z+6i)} dz$$

29.
$$\int_{C} \frac{e^{z}}{(z-i)^{2}(z+6i)} dz$$
. 30. $\int_{C} \frac{\sinh z}{(z+1)^{2}(z+3i)} dz$.

Ответы в вариантах задания 3 (интеграл по контуру |z| = 2).

1.
$$-\frac{1}{32}\pi \sinh 1$$
. 2. $\frac{1}{8}\pi \sin 1$. 3. $\left(\frac{3}{25} + \frac{4}{25}i\right)\pi \cos 2$. 4. $\left(\frac{12}{5} + \frac{9}{5}i\right)\pi$. 5. $\left(\frac{3}{25} + \frac{4}{25}i\right)\pi \cdot e$.

6.
$$\left(\frac{3}{25} - \frac{4}{25}i\right)\pi\cos 2 \cdot 7 \cdot \left(\frac{3}{25} - \frac{4}{25}i\right)\pi \cdot e^2 \cdot 8 \cdot \left(\frac{7}{25} + \frac{1}{25}i\right)\pi \cdot 9 \cdot \left(\frac{-4}{25} - \frac{3}{25}i\right)\pi\sinh 2 \cdot 9 \cdot \left(\frac{3}{25} - \frac{3}{25}i\right)\pi\sinh 2 \cdot 9 \cdot \left(\frac{3}{25}$$

10.
$$\left(\frac{-3}{25} + \frac{4}{25}i\right)\pi\cosh 2$$
. 11. $\left(\frac{5}{13} + \frac{1}{13}i\right)\pi\sinh 2$. 12. $\left(\frac{-5}{13} - \frac{1}{13}i\right)\pi\cosh 2$. 13. $\left(\frac{-9}{125} - \frac{13}{125}i\right)\pi$.

14.
$$\pi\left(\frac{1}{8}\cosh 1 - \frac{9}{32}\sinh 1\right)$$
. 15. $\pi\left(\frac{1}{2}\cosh 1 - \frac{1}{8}\sin 1\right)$. 16. $\pi\left(\left(-\frac{6}{5} + \frac{2}{5}i\right)\sin 2 + \left(-\frac{3}{25} - \frac{4}{25}i\right)\cos 2\right)$.

17.
$$\left(\frac{12}{25} - \frac{9}{25}i\right)\pi \cdot e$$
. 18. $\pi\left(\left(-\frac{3}{5} - \frac{1}{5}i\right)\sin 1 + \left(-\frac{3}{25} + \frac{4}{25}i\right)\cos 1\right)$. 19. $\left(\frac{2}{25} - \frac{14}{25}i\right)\pi$.

$$20. \left(\frac{18}{125} + \frac{26}{125}i\right)\pi \cdot e \cdot 21. \ \pi \left(\left(-\frac{33}{125} - \frac{6}{125}i\right)\sinh 1 + \left(\frac{3}{25} - \frac{4}{25}i\right)\cosh 1\right) \cdot 22. \left(\frac{-7}{625} - \frac{24}{625}i\right)\pi \cos 1.$$

23.
$$\pi \left(\left(-\frac{5}{169} - \frac{12}{169}i \right) \sinh 1 + \left(\frac{5}{13} - \frac{1}{13}i \right) \cosh 1 \right)$$
. 24. $\pi \left(\left(\frac{10}{13} + \frac{2}{13}i \right) \sinh 2 + \left(-\frac{5}{169} + \frac{12}{169}i \right) \cosh 2 \right)$.

25.
$$\left(\frac{24}{25} + \frac{18}{25}i\right)\pi$$
. 26. $\left(\frac{-4}{25} + \frac{3}{25}i\right)\pi \sinh 1$. 27. $\pi \left(\left(\frac{3}{5} - \frac{1}{5}i\right)\sinh 1 + \left(-\frac{3}{25} - \frac{4}{25}i\right)\cosh 1\right)$.

28.
$$\left(\frac{-5}{6} + \frac{5}{9}i\right)\pi$$
. 29. $\left(\frac{2}{7} + \frac{2}{49}i\right)\pi \cdot e^i$. 30. $\pi\left(\left(\frac{3}{5} - \frac{1}{5}i\right)\cosh 1 + \left(-\frac{3}{25} - \frac{4}{25}i\right)\sinh 1\right)$.

Примечание – в пакете MathCAD синус и косинус гиперболические обозначаются sinh(z) u cosh(z).

Задание 4

1. Письменно ответьте на вопросы:

а) что называется рядом Лорана для ФКП, какая часть ряда Лорана называется правильной, какая главной;

б) как по ряду Лорана в окрестности особой точки определить её

2. Разложить функцию в ряд Лорана по степеням z . Определить тип особых точек z=0 и $z=\infty$.

$$1. \ f(z) = z^3 \cdot \sin \frac{1}{z}.$$

$$2. \quad f(z) = z^2 \cdot \cos \frac{1}{z}.$$

$$3. \ f(z) = \frac{1}{z^5} \cdot \sin z.$$

4.
$$f(z) = \frac{1}{z^6} \cdot \cos z$$
.

5.
$$f(z) = \frac{1}{z^6} \cdot e^z$$
.

$$6. \ f(z) = z^3 \cdot \sinh \frac{1}{z}.$$

7.
$$f(z) = z^2 \cdot \operatorname{ch} \frac{1}{z}.$$

8.
$$f(z) = \frac{1}{z^5} \cdot \text{sh}z$$
.

9.
$$f(z) = \frac{1}{z^6} \cdot \operatorname{ch} z.$$

10.
$$f(z) = z^3 \cdot e^{\frac{1}{z}}$$
.

11.
$$f(z) = z^3 + \sin \frac{1}{z}$$
.

12.
$$f(z) = z^2 + z - 3\cos\frac{1}{z}$$
.

13.
$$f(z) = \frac{1}{z^5} + \frac{2}{z} - \sin z$$
.

14.
$$f(z) = z^5 \cdot \sin \frac{1}{z^2}$$
.

15.
$$f(z) = \frac{1}{z^6} + \frac{3}{z^2} + \cos z$$
.

16.
$$f(z) = \frac{1}{z^6} - \frac{5}{z^2} + e^z$$
.

17.
$$f(z) = \frac{1}{z^5} \cdot \sin z^2$$
.

18.
$$f(z) = z^3 - z + \sinh \frac{1}{z}$$
.

19.
$$f(z) = z^6 \cdot \cos \frac{1}{z^2}$$
.

20.
$$f(z) = z^2 - z + 6 + \operatorname{ch} \frac{1}{z}$$
.

21.
$$f(z) = z^3 \cdot e^{\frac{1}{z^2}}$$
.

22.
$$f(z) = \frac{1}{z^5} - \frac{2}{z^2} + \frac{1}{z} + \sinh z$$
.

23.
$$f(z) = \frac{1}{z^6} + \frac{3}{z^5} + \frac{1}{z^4} - \text{ch}z$$
. 24. $f(z) = z^3 + 5z^2 - z + e^{\frac{1}{z}}$.

24.
$$f(z) = z^3 + 5z^2 - z + e^{\frac{1}{z}}$$

25.
$$f(z) = \frac{1}{z^5} \cdot \sinh z^2$$
. 26. $f(z) = z^4 \cdot \sin \frac{1}{z}$.

26.
$$f(z) = z^4 \cdot \sin \frac{1}{z}$$
.

27.
$$f(z) = z^3 \cdot \cos \frac{1}{z}$$
. 28. $f(z) = z^5 \cdot e^{\frac{1}{z}}$

28.
$$f(z) = z^5 \cdot e^{\frac{1}{z}}$$

29.
$$f(z) = 4 - z - 6z^3 + \sinh \frac{1}{z^2}$$
. 30. $f(z) = \frac{1}{z^6} \cdot \cosh z$.

30.
$$f(z) = \frac{1}{z^6} \cdot \text{ch} z$$

Задание 5

- 1. Письменно ответить на вопросы:
 - а) что называется вычетом ФКП в изолированной особой точке;
- б) записать формулы вычисления вычетов в простых полюсах и в полюсе порядка m .
- 2. Вычислить вычеты в каждой из особых точек данной функции.

1.
$$f(z) = \frac{z^2 + z + 1}{z^2 \cdot (z - 1)(z + i)}$$
 2. $f(z) = \frac{z^2 + 2z + 7}{z \cdot (z + 1)^2 (z + i)}$

2.
$$f(z) = \frac{z^2 + 2z + 7}{z \cdot (z+1)^2 (z+i)}$$
.

3.
$$f(z) = \frac{z^2 + z - 1}{z \cdot (z - 2)(z + i)^2}$$
.

3.
$$f(z) = \frac{z^2 + z - 1}{z \cdot (z - 2)(z + i)^2}$$
 4. $f(z) = \frac{z + 3}{z^3 \cdot (z - 2)(z + i)}$

5.
$$f(z) = \frac{z^2 + i}{z^2 \cdot (z - 2i)(z + 3)}$$
. 6. $f(z) = \frac{z^2 + 2z + 1}{z \cdot (z - 3)^2 (z + 3i)}$

6.
$$f(z) = \frac{z^2 + 2z + 1}{z \cdot (z - 3)^2 (z + 3i)}$$

7.
$$f(z) = \frac{z^2 + 1}{z^2 \cdot (z - 1 - i)(z + 2)}$$
 8. $f(z) = \frac{z + 1}{z \cdot (z - 1)^3 (z + i)}$

8.
$$f(z) = \frac{z+1}{z \cdot (z-1)^3 (z+i)}$$
.

9.
$$f(z) = \frac{z+2}{z^3 \cdot (z-1)(z+i)}$$
.

9.
$$f(z) = \frac{z+2}{z^3 \cdot (z-1)(z+i)}$$
. 10. $f(z) = \frac{z-1}{z \cdot (z+2i)(z-3i)^2}$

11.
$$f(z) = \frac{z^2 + 1}{z^2 \cdot (z - 2)(z + 2i)}$$
. 12. $f(z) = \frac{z^2 + 3z + 1}{z \cdot (z - 2)^2 (z + i)}$.

12.
$$f(z) = \frac{z^2 + 3z + 1}{z \cdot (z - 2)^2 (z + i)}$$
.

13.
$$f(z) = \frac{z^2 - 1}{z \cdot (z - 2)(z - i)^2}$$
.

13.
$$f(z) = \frac{z^2 - 1}{z \cdot (z - 2)(z - i)^2}$$
. 14. $f(z) = \frac{z - 3}{z^3 \cdot (z + 2i)(z + 1)}$.

15.
$$f(z) = \frac{z^2 - 8}{z^2 \cdot (z + 2i)(z + 3)}$$
. 16. $f(z) = \frac{2z + 1}{z \cdot (z - 1)^2 (z - 3i)}$.

16.
$$f(z) = \frac{2z+1}{z \cdot (z-1)^2 (z-3i)}$$
.

17.
$$f(z) = \frac{z^2 + 9}{z^2 \cdot (z - 1 - i)(z + 1)}$$
. 18. $f(z) = \frac{z + i}{z \cdot (z - 1)^3 (z + 2i)}$.

18.
$$f(z) = \frac{z+i}{z \cdot (z-1)^3 (z+2i)}$$
.

19.
$$f(z) = \frac{z+1}{z^3 \cdot (z-1)(z+3i)}$$
. 20. $f(z) = \frac{z-5}{z \cdot (z+i)(z-3)^2}$.

20.
$$f(z) = \frac{z-5}{z \cdot (z+i)(z-3)^2}$$
.

21.
$$f(z) = \frac{3z+1}{z^2 \cdot (z-1)(z+i)}$$
.

21.
$$f(z) = \frac{3z+1}{z^2 \cdot (z-1)(z+i)}$$
. 22. $f(z) = \frac{3z-1}{z \cdot (z+2i)^2 (z-3i)}$.

12

23.
$$f(z) = \frac{z^2 + 2i}{z^2 \cdot (z - 5)(z + 2)}$$

23.
$$f(z) = \frac{z^2 + 2i}{z^2 \cdot (z - 5)(z + 2)}$$
. 24. $f(z) = \frac{z^2 + z + 7}{z \cdot (z - 2)^2 (z - 1 + i)}$.

25.
$$f(z) = \frac{z^2 + 6}{z \cdot (z - 2)(z - i)^2}$$

25.
$$f(z) = \frac{z^2 + 6}{z \cdot (z - 2)(z - i)^2}$$
. 26. $f(z) = \frac{z^2 + z + 7}{z \cdot (z + 1)^2 (z - i)}$.

27.
$$f(z) = \frac{z-3}{z^3 \cdot (z+2)(z+i)}$$
.

27.
$$f(z) = \frac{z-3}{z^3 \cdot (z+2)(z+i)}$$
. 28. $f(z) = \frac{z^2+z+1}{z \cdot (z-3)^2(z+2i)}$.

29.
$$f(z) = \frac{z^2 + 1}{z^2 \cdot (z - 2 + i)(z + 1)}$$
. 30. $f(z) = \frac{z - 3}{z \cdot (z + 1)(z - 3i)^2}$.

30.
$$f(z) = \frac{z-3}{z \cdot (z+1)(z-3i)^2}$$

Ответы в вариантах задания 5 (первым записан вычет в кратном полюсе).

1.
$$\left(-1+2i\right)$$
, $\left(\frac{3}{2}-\frac{3}{2}i\right)$, $\left(\frac{-1}{2}-\frac{1}{2}i\right)$. 2. $\left(3+6i\right)$, $\left(-7i\right)$, $\left(-3+i\right)$.

3.
$$\left(\frac{1}{5} + \frac{2}{5}i\right)$$
, $\left(\frac{-1}{2}\right)$, $\left(\frac{3}{10} - \frac{2}{5}i\right)$. 4. $\left(\frac{-5}{4} - \frac{7}{8}i\right)$, $(1+i)$, $\left(\frac{1}{4} - \frac{1}{8}i\right)$.

$$5. \left(\frac{1}{18} + \frac{1}{12}i\right), \quad \left(\frac{5}{26} - \frac{11}{52}i\right), \quad \left(\frac{-29}{117} + \frac{5}{39}i\right). \quad 6. \quad \left(\frac{4}{27} + \frac{4}{27}i\right), \quad \left(\frac{-1}{27}i\right), \quad \left(\frac{-4}{27} - \frac{1}{9}i\right).$$

$$7. \left(\frac{1}{8} + \frac{1}{8}i\right), \quad \left(\frac{1}{4} - \frac{1}{4}i\right), \quad \left(\frac{-3}{8} + \frac{1}{8}i\right). \quad 8. \quad \left(\frac{-3}{2}i\right) \quad (i), \quad \left(\frac{1}{2}i\right). \quad 9. \quad \left(-3 + i\right), \quad \left(\frac{3}{2} - \frac{3}{2}i\right), \quad \left(\frac{3}{2} + \frac{1}{2}i\right).$$

10.
$$\left(\frac{1}{25} + \frac{8}{225}i\right)$$
, $\left(\frac{-1}{18}i\right)$, $\left(\frac{-1}{25} + \frac{1}{50}i\right)$. 11. $\left(\frac{-1}{8} + \frac{1}{8}i\right)$, $\left(\frac{5}{16} - \frac{5}{16}i\right)$, $\left(\frac{-3}{16} + \frac{3}{16}i\right)$.

12.
$$\left(\frac{-9}{25} + \frac{73}{100}i\right)$$
, $\left(\frac{-1}{4}i\right)$, $\left(\frac{9}{25} - \frac{12}{25}i\right)$. 13. $\left(\frac{8}{25} - \frac{6}{25}i\right)$, $\left(\frac{-1}{2}\right)$, $\left(\frac{9}{50} + \frac{6}{25}i\right)$.

14.
$$\left(1+\frac{13}{8}i\right)$$
, $\left(\frac{-1}{5}-\frac{1}{40}i\right)$, $\left(\frac{-4}{5}-\frac{8}{5}i\right)$. 15. $\left(\frac{-2}{3}-\frac{4}{9}i\right)$, $\left(\frac{9}{13}+\frac{6}{13}i\right)$, $\left(\frac{-1}{39}-\frac{2}{117}i\right)$.

16.
$$\left(\frac{7}{50} - \frac{12}{25}i\right)$$
, $\left(\frac{1}{3}i\right)$, $\left(\frac{-7}{50} + \frac{11}{75}i\right)$. **17.** $\left(\frac{9}{2}\right)$, $\left(\frac{-1}{2} - 2i\right)$, $\left(-4 + 2i\right)$.

18.
$$\left(\frac{57}{125} + \frac{1}{125}i\right)$$
, $\left(\frac{-1}{2}\right)$, $\left(\frac{11}{250} - \frac{1}{125}i\right)$. 19. $\left(\frac{-2}{9} + \frac{17}{27}i\right)$, $\left(\frac{1}{5} - \frac{3}{5}i\right)$, $\left(\frac{1}{45} - \frac{4}{135}i\right)$.

20.
$$\left(\frac{11}{50} - \frac{43}{450}i\right)$$
, $\left(\frac{5}{9}i\right)$, $\left(\frac{-11}{50} - \frac{23}{50}i\right)$. 21. $(-1+4i)$, $(2-2i)$, $(-1-2i)$.

22.
$$\left(\frac{3}{25} - \frac{7}{100}i\right)$$
, $\left(\frac{1}{12}i\right)$, $\left(\frac{-3}{25} - \frac{1}{75}i\right)$. 23. $\left(\frac{3}{50}i\right)$, $\left(\frac{1}{7} + \frac{2}{175}i\right)$, $\left(\frac{-1}{7} - \frac{1}{14}i\right)$.

24.
$$\left(\frac{-3}{8} + \frac{29}{8}i\right)$$
, $\left(\frac{-7}{8} - \frac{7}{8}i\right)$, $\left(\frac{5}{4} - \frac{11}{4}i\right)$. 25. $\left(\frac{-18}{5} - \frac{4}{5}i\right)$, (3), $\left(\frac{3}{5} + \frac{4}{5}i\right)$.

26.
$$\left(3 - \frac{13}{2}i\right)$$
, $(7i)$, $\left(-3 - \frac{1}{2}i\right)$. 27. $\left(\frac{5}{4} - \frac{7}{8}i\right)$, $\left(-1 + i\right)$, $\left(\frac{-1}{4} - \frac{1}{8}i\right)$.

28.
$$\left(\frac{1}{13} + \frac{20}{117}i\right)$$
, $\left(\frac{-1}{18}i\right)$, $\left(\frac{-1}{13} - \frac{3}{26}i\right)$. 29. $\left(\frac{7}{25} + \frac{1}{25}i\right)$, $\left(\frac{-3}{5} - \frac{1}{5}i\right)$, $\left(\frac{8}{25} + \frac{4}{25}i\right)$.

30.
$$\left(\frac{-1}{75} + \frac{6}{25}i\right)$$
, $\left(\frac{1}{3}\right)$, $\left(\frac{-8}{25} - \frac{6}{25}i\right)$.

Задание 6

- 1. Письменно ответить на вопрос: сформулировать основную теорему Коши о вычетах.
- 2. Вычислить интегралы с помощью вычетов.

1. a)
$$\int_{|z-\frac{\pi}{2}|=1} \frac{\sinh iz}{(z+1)^2(z-\frac{\pi}{2})} dz; \quad \text{ f) } \int_{|z|=1} z^2 e^{\frac{1}{z}} dz.$$

2. a)
$$\int_{|z+1|=1} \frac{\cos z}{(z-i)^2(z+1)} dz$$
; 6) $\int_{|z|=1} z^2 \sinh \frac{1}{z} dz$.

3. a)
$$\int_{|z+i|=1} \frac{e^{iz}}{(z+i)^2(z-1)} dz$$
; 6) $\int_{|z|=1} z^3 \cos \frac{1}{z} dz$.

$$6) \int\limits_{|z|=1}^{3} z^3 \cos \frac{1}{z} dz.$$

4. a)
$$\int_{|z-i|=1} \frac{\cosh iz}{(z+1)^2(z-i)} dz$$
; 6) $\int_{|z|=1} z^4 \sin \frac{1}{z} dz$.

$$б) \int_{|z|=1}^{\infty} z^4 \sin \frac{1}{z} dz.$$

5. a)
$$\int_{|z+2|=1} \frac{z^2 + 2z - 1}{(z-i)(z+2)^2} dz;$$
 6)
$$\int_{|z|=1} z \cosh \frac{1}{z} dz.$$

$$6) \int_{|z|=1} z \cosh \frac{1}{z} dz.$$

6. a)
$$\int_{|z-1|=1} \frac{e^z}{(z-1)^3(z+2)} dz$$

6. a)
$$\int_{|z-1|=1} \frac{e^z}{(z-1)^3(z+2)} dz;$$
 6)
$$\int_{|z-1|=1} (z-1)^2 \sin \frac{1}{z-1} dz.$$

7. a)
$$\int_{|z-i|=1} \frac{\sin z}{(z-i)^3 (z+1)} dz$$

7. a)
$$\int_{|z-i|=1} \frac{\sin z}{(z-i)^3(z+1)} dz;$$
 6)
$$\int_{|z+i|=1} (z+i)^5 \cos \frac{1}{z+i} dz.$$

8. a)
$$\int_{|z+1|=1} \frac{\cos z}{(z+i)^3 (z+1)} dz;$$

8. a)
$$\int_{|z+1|=1} \frac{\cos z}{(z+i)^3(z+1)} dz;$$
 6)
$$\int_{|z+1|=1} (z+1)^4 \sinh \frac{1}{z+1} dz.$$

9. a)
$$\int_{|z+i|=1} \frac{\sinh z}{(z-1)^2 (z+i)} dz$$

9. a)
$$\int_{|z+i|=1} \frac{\sinh z}{(z-1)^2(z+i)} dz;$$
 6)
$$\int_{|z-i|=1} (z-i)^3 \cosh \frac{1}{z-i} dz.$$

10. a)
$$\int_{|z+1|=1} \frac{\cosh z}{(z+1)^2(z-1)} dz$$
; 6)
$$\int_{|z+2|=1} (z+2)e^{\frac{1}{z+2}} dz$$
.

11. a)
$$\int_{|z|=4} \frac{z^2+1}{(z+1)(z-3)^2} dz$$
; 6) $\int_{|z|=1} z^2 \sin \frac{1}{zi} dz$.

12. a)
$$\int_{|z-\pi|=1} \frac{\sin z}{(z-1)(z-\pi)^3} dz$$
; 6) $\int_{|z|=1} z \cos \frac{1}{iz} dz$.

13. a)
$$\int_{|z-2|=1} \frac{\sinh z}{(z+1)(z-2)^2} dz$$
; 6) $\int_{|z|=1} z^5 \cosh \frac{1}{iz} dz$

14. a)
$$\int_{|z|=1} \frac{\cos iz}{(z-2i)\cdot z^3} dz$$
; 6) $\int_{|z|=1} z^4 \sinh \frac{1}{iz} dz$

15. a)
$$\int_{|z|=4} \frac{z^2 - 3z + 1}{(z+1)(z-i)^2} dz;$$
 6)
$$\int_{|z|=1} z^3 e^{\frac{1}{iz}} dz.$$

16. a)
$$\int_{|z-1|=1} \frac{e^{iz}}{(z+i)(z-1)^2} dz$$
; 6) $\int_{|z|=1} z^4 \sin \frac{2}{z} dz$.

17. a)
$$\int_{|z-2|=1} \frac{\cosh z}{(z+1)(z-2)^2} dz$$
; 6) $\int_{|z|=1} z^2 \sinh \frac{2}{z} dz$.

18. a)
$$\int_{|z-1|=1} \frac{e^z}{(z-1)(z+i)^2} dz$$
; 6) $\int_{|z|=1} z^3 \cos \frac{3}{z} dz$.

19. a)
$$\int_{|z-3|=5} \frac{z^2+z+2}{(z+i)(z-4)^2} dz$$
; 6) $\int_{|z|=1} z \cosh \frac{3}{z} dz$.

20. a)
$$\int_{|z-1|=1} \frac{\sin z}{(z-i)(z-1)^3} dz$$
; 6) $\int_{|z|=1} z^2 e^{\frac{3}{z}} dz$.

21. a)
$$\int_{|z|=1} \frac{\cos z}{(z+i)\cdot z^3} dz$$
;

21. a)
$$\int_{|z|=1} \frac{\cos z}{(z+i)\cdot z^3} dz$$
; 6) $\int_{|z+1|=1} (z+1)^2 \sin \frac{1}{z+1} dz$.

22. a)
$$\int_{|z-i|=1} \frac{\sinh(iz)}{(z-1)(z-i)^2} dz$$
; 6)
$$\int_{|z-i|=1} (z-i)^5 \cos \frac{1}{z-i} dz$$
.

23. a)
$$\int_{|z-i|=1} \frac{\cosh(iz)}{(z+1)(z-i)^2} dz$$
; б)
$$\int_{|z-2|=1} (z-2)^4 \sinh \frac{1}{z-2} dz$$
.

24. a)
$$\int_{|z+3|=5} \frac{z+1}{(z-1)(z+3)^3} dz$$
; 6)
$$\int_{|z+i|=1} (z+i)^3 \cosh \frac{1}{z+i} dz$$
.

25. a)
$$\int_{|z-1|=1} \frac{\sin iz}{(z-1)^2(z+2)} dz$$
; 6)
$$\int_{|z-3|=1} (z-3)e^{\frac{1}{z-3}} dz$$
.

26. a)
$$\int_{|z+1|=1} \frac{\sinh z}{(z-1)(z+1)^2} dz$$
; 6) $\int_{|z|=1} z^2 \sin \frac{i}{z} dz$.

27. a)
$$\int_{|z+i|=0,5} \frac{\cos(iz)}{(z+i)\cdot z^3} dz$$
; 6) $\int_{|z|=1} z^4 \sinh \frac{i}{z} dz$.

28. a)
$$\int_{|z-i|=1} \frac{\sin iz}{(z+i)^2(z-i)} dz$$
; 6) $\int_{|z|=1} z \cos \frac{i}{z} dz$.

29. a)
$$\int_{|z+i|=1} \frac{\cosh(iz)}{(z-1)(z+i)^2} dz; \ 6) \int_{|z|=1} z^3 e^{\frac{i}{z}} dz.$$

30. a)
$$\int_{|z+1|=1} \frac{z^2 - z + 5}{(z-i)(z+1)^2} dz$$
; 6) $\int_{|z|=1} z^5 \cosh \frac{i}{z} dz$.

Ответы в вариантах задания 6.

1. a)
$$\frac{-8\pi}{(\pi+2)^2}$$
; 6) $\frac{\pi i}{3}$. 2. a) $\pi \cdot \cos 1$; 6) $\frac{\pi i}{3}$. 3. a) $-i \cdot \pi \cdot e^1$; 6) $\frac{\pi i}{12}$. 4. a) $\pi \cdot \cosh 1$; 6) $\frac{\pi i}{60}$.

5. a)
$$\left(\frac{28}{25} + \frac{46}{25} \cdot i\right) \cdot \pi$$
; 6) π . 6. a) $\frac{5 \cdot i \cdot \pi}{27} \cdot e$; 6) $-\frac{\pi i}{3}$. 7. a) $\pi \cdot (\sinh 1 - \cosh 1)$; 6) $-\frac{\pi i}{360}$.

8. a)
$$\frac{\pi}{2} \cos 1 \cdot (1+i)$$
; 6) $\frac{\pi i}{60}$. 9. a) $-i \cdot \pi \cdot \sin 1$; 6) $\frac{\pi i}{12}$. 10. a) $\frac{1}{4} i \pi (e - 3e^{-1})$; 6) πi .

11. a)
$$2i\pi$$
; 6) $\frac{\pi i}{3}$. 12. a) $\frac{2i\pi}{(\pi-1)^2}$; 6) πi . 13. a) $\frac{2}{9}i\cdot\pi(e^2+2e^{-2})$; 6) $-\frac{\pi i}{360}$. 14. a) $\frac{-\pi}{4}$;

6)
$$\frac{\pi}{60}$$
. 15. a) $2i\pi$; 6) $\frac{\pi i}{12}$. 16. a) $\pi \cdot e^{i}(-2+i)$; 6) $\frac{8\pi i}{15}$. 17. a) $\frac{2}{9}i\pi(e^{2}-2e^{-2})$; 6) $\frac{8\pi i}{3}$.

18. a)
$$\pi \cdot e$$
; 6) $\frac{27\pi i}{4}$. 19. a) $2i\pi$; 6) $9\pi i$. 20. a) $\pi \cdot e^{-i}$; 6) $9\pi i$. 21. a) -3π ; 6) $-\frac{\pi i}{3}$.

22. a)
$$\pi(\cosh 1-\sinh 1+i\cdot\cosh 1)$$
; 6) $-\frac{\pi i}{360}$. 23. a) $\pi(\sinh 1-\cosh 1-i\cdot\sinh 1)$; 6) $\frac{\pi i}{60}$. 24. a) 0;

6)
$$\frac{\pi i}{12}$$
. 25. a) $\frac{2}{9}\pi(-e-2e^{-1})$; 6) πi . 26. a) $\frac{1}{4}i\pi(-3e^{-1}-e)$; 6) $-\frac{\pi i}{3}$. 27. a) $2\pi\cos i$; 6) $-\frac{\pi}{60}$.

28. a)
$$\frac{1}{2}i \cdot \pi \cdot \sin 1$$
; 6) $\pi i \cdot 29$. a) $\pi (\sinh 1 - \cosh 1 - i \cdot \sinh 1)$; 6) $\frac{\pi i}{12}$. 30. a) $\pi (-4+3i)$; 6) $-\frac{\pi i}{360}$.

Задачи модуля «ТФКП»

Задание 1. Проверить с помощью условий Коши-Римана, является ли функция $w = \bar{z} \cdot \cos z$ аналитической?

Решение. Представим функцию в алгебраической форме, учитывая, что z = x + iy, $\bar{z} = x - iy$.

$$w = \overline{z} \cdot \cos z = (x - iy) \cdot \cos(x + iy) = (x - iy)(\cos x \cdot \cos iy - iy)$$

 $-\sin x \cdot \sin iy$). С учетом зависимостей $\cos iy = \cosh y$ и $\sin iy = i \sinh y$ получим: w = u(x,y) + iv(x,y), где

$$u(x, y) = \text{Re } w = x \cos x \cosh y - y \sin x \sinh y$$
,

$$v(x, y) = \text{Im } w = -x \sin x \text{shy} - y \cos x \text{chy}$$
.

Ответ: условия Коши-Римана не выполняются. Функция $w = \bar{z} \cdot \cos z$ не аналитическая.

Задание 2. Вычислить интеграл $\int_C z^2 \operatorname{Re} z dz$,

а) если C:
$$z = (-1+2i)t$$
, $(0 \le t \le 2)$;

б) если
$$C:|z|=1$$
, $(0 \le \arg z \le \pi/3)$.

Решение а) Уравнение пути интегрирования задано через параметр t: $x=-t, \quad y=2t$. Избавляясь от параметра, получим y=-2x, откуда dy=-2dx. Представим подынтегральную функцию в алгебраической форме: $z^2\operatorname{Re} z=(x+iy)^2x=x^3-xy^2+i2x^2y$. Дифференциал dz=dx+idy=(1-2i)dx.

$$\int_{C} z^{2} \operatorname{Re} z dz = \int_{C} (x^{3} - xy^{2} + i2x^{2}y)(1 - 2i) dx = |y = -2x| =$$

$$= (1-2i) \int_{0}^{-2} \left(x^3 - 4x^3 - i4x^3\right) dx.$$

б) Так как C:|z|=1, $(0 \le \arg z \le \pi/2)$ - часть дуги окружности с центром в начале координат, то вычисления удобно производить в полярной системе координат, при этом переменную интегрирования

представим в показательной форме, с учетом, что $\rho=|z|=1$, $\arg z=\varphi$. $z=\rho\cdot e^{i\varphi}=e^{i\varphi}$, $dz=ie^{i\varphi}d\varphi$; $z^2=e^{i2\varphi}$; $\mathrm{Re}\,z=\rho\cos\varphi=\cos\varphi$. В свою очередь, по формуле Эйлера $\cos\varphi=\frac{1}{2}\Big(e^{i\varphi}+e^{-i\varphi}\Big)$. Тогда

$$\int_C z^2 \operatorname{Re} z dz = \int_0^{\pi/2} e^{i2\varphi} \frac{1}{2} \left(e^{i\varphi} + e^{-i\varphi} \right) e^{i\varphi} d\varphi = \frac{i}{2} \int_0^{\pi/2} \left(e^{i4\varphi} + e^{i2\varphi} \right) d\varphi.$$

Ответ: a) -44+8i; б) -1/2.

Задание 3. Используя интегральные формулы Коши, вычислить интеграл $\int_{C} \frac{\sinh 4z}{(z+1)^2(z-3i)} dz$ по двум замкнутым контурам:

1)
$$|z| = 0.5$$
; 2) $|z| = 2$.

Решение. Рисуем на комплексной плоскости заданные контуры интегрирования и отмечаем особые точки подынтегральной функции: $z_1 = -1$, $z_2 = 3i$.

$$\int_{|z|=0,5} \frac{\sinh 4z}{(z+1)^2(z-3i)} dz = 0$$
 согласно

теореме Коши для односвязной области (подынтегральная функция аналитическая во

всех точках замкнутой области).

2) Внутри контура |z| = 2 имеется одна особая точка z = -1.

$$\int_{|z|=2} \frac{\sinh 4z}{(z+1)^2 (z-3i)} dz = 2\pi i \cdot \left(\frac{\sinh 4z}{z-3i}\right)'_{z=-1}.$$

Ответ: -195,611-82,35i.

Задание 4. Разложить функцию $f(z) = \frac{1}{z^8} \cdot \text{ch} 2z$ в ряд Лорана по

степеням z . Определить тип особых точек z=0 и $z=\infty$.

Решение. Воспользуемся определением гиперболического косинуса

[1, §2.5]: chz =
$$1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + \frac{z^{2n}}{(2n)!} + \dots$$
 Подставим в ряд вместо z

выражение 2z и умножим ряд почленно на $\frac{1}{z^8}$:

$$f(z) = \frac{1}{z^8} \cdot \text{ch} 2z = \frac{1}{z^8} \left(1 + \frac{2^2 z^2}{2!} + \frac{2^4 z^4}{4!} + \dots \right) =$$

$$= \frac{1}{z^8} + \frac{2}{z^6} + \frac{2^4}{z^4 \cdot 4!} + \frac{2^6}{z^2 \cdot 6!} + \frac{2^8}{8!} + \frac{2^{10} z^2}{10!} + \frac{2^{12} z^4}{12!} + \dots$$

На комплексной плоскости заданная функция имеет только одну особую точку z=0. Область $0<\left|z\right|<\infty$ - окрестность точки z=0 и бесконечно удаленной изолированной особой точки $z=\infty$. Поэтому ряд Лорана по степеням z позволяет судить о типе этих точек.

Ответ: z=0 - полюс 8-го порядка (ряд содержит конечное число членов главной части со старшим членом z^{-8}); $z=\infty$ - существенно особая бесконечно удаленная точка (ряд содержит бесконечное число членов с положительными степенями z).

Задание 5. Вычислить вычеты в каждой из особых точек данной

функции
$$f(z) = \frac{z^2 + z + 9}{z^3 \cdot (z - 2 + i)^2 (z + 1)}.$$

Решение. Значения z, превращающие в ноль знаменатель функции, являются полюсами. Функция имеет три полюса: простой полюс a=-1, полюс второго порядка a=2-i, полюс третьего порядка.

29

$$i := \sqrt{-1}$$
 $f(z) := \frac{z^2 + z + 9}{z^3 \cdot (z - 2 + i)^2 \cdot (z + 1)}$

$$a := -1$$
 $\lim_{z \to a} (z - a) \cdot f(z) \to \frac{-18}{25} - \frac{27}{50} \cdot i$

$$a := 2 - i$$
 $m := 2$ $\frac{1}{(m-1)!} \cdot \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} (z - a)^m \cdot f(z) \to \frac{124}{625} - \frac{661}{1250} \cdot i$

$$a := 0$$
 $m := 3$ $\frac{1}{(m-1)!} \cdot \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} (z-a)^m \cdot f(z) \to \frac{326}{625} + \frac{668}{625} \cdot i$

Задание 6. Вычислить интегралы с помощью вычетов.

a)
$$\int_{|z+3|=1} \frac{z^2 - 2z + 7}{(z-i)(z+3)^2} dz$$
; 6) $\int_{|z|=1} z^5 \cosh \frac{2i}{z} dz$.

Решение. a) $\int\limits_{|z+3|=1} \frac{z^2-2z+7}{(z-i)(z+3)^2} dz$. Рисуем на комплексной плоскости

контур интегрирования — окружность радиуса 1 с центром в точке z=-3. Внутри окружности расположен один полюс второго порядка. Вычисляем вычет в этом полюсе. $i:=\sqrt{-1} \qquad f(z):=\frac{z^2-2z+7}{\left(z-i\right)\cdot\left(z+3\right)^2}$

$$i := \sqrt{-1}$$
 $f(z) := \frac{z^2 - 2z + 7}{(z - i) \cdot (z + 3)^2}$

$$a := -3$$
 $m := 2$ $\frac{1}{(m-1)!} \cdot \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} (z-a)^m \cdot f(z) \to \frac{16}{25} + \frac{13}{25} \cdot i$

По теореме Коши о вычетах

$$\int_{|z+3|=1} \frac{z^2 - 2z + 7}{(z-i)(z+3)^2} dz = 2\pi i \left(\frac{16}{25} + \frac{13}{25}i\right) = \pi \left(-\frac{26}{25} + \frac{32}{25}i\right).$$

OTBET:
$$\pi \left(-\frac{26}{25} + \frac{32}{25}i \right)$$
.