Основні завдання практики

У період проходження практики студенти повинні опанувати процес створення блоксхем алгоритмів та програм для розв'язання задач із застосуванням базових алгоритмічних структур. Для цього необхідно:

- ознайомитись з концепціями структурного та процедурного програмування;
- вивчити умови задач згідно індивідуального завдання;
- побудувати математичну модель розв'язання задачі та розробити блок-схему алгоритму;
- написати програму мовою С++ та відлагодити її;
- скласти звіт з практики.

Графік проходження практики

Орієнтовний графік проходження практики наведено у таблиці:

No	Етапи та зміст роботи						
п/п	•						
1	Загальне ознайомлення зі структурою, порядком проведення та завданнями практики. Інструктаж з техніки безпеки.	1					
2	Вивчення умови та розробка математичної моделі задачі, побудова блок-						
2	схеми алгоритму, написання, відлагодження та тестування програми з тем:	з них:					
2.1	• лінійні алгоритми (2 задачі)	1					
2.2	• розгалужені алгоритми (2 задачі)	1					
2.3	• циклічні алгоритми (5 задач)						
2.4	• одновимірні числові масиви (3 задачі)						
2.5	• двовимірні числові масиви (2 задачі)						
2.6	• символьні та рядкові величини (1 задача)						
2.7	 функції (2 задачі) 	1					
2.8	 файли (2 задачі) 	2					
2.9	• структури (1 задача)	1					
3	3 Підготовка звіту з практики.						
4	Формулювання висновків про практику.						
	Разом:	14					

Правила ведення і оформлення щоденника практики

- 1. Щоденник це основний документ студента під час проходження практики, у якому стисло формується зміст роботи, проведеної студентом кожного дня.
- 2. У щоденнику має бути відтворений Календарний графік та підписаний керівником практики.
- 3. Студент щодня повинен у відповідності до календарного графіку проведення практики коротко записувати в щоденник усе, що він зробив за день (з вказівкою дати) для виконання плану проходження практики. Більш докладні записи він веде в робочих зошитах, які ϵ продовженням щоденника, та ϵ базою для подальшої підготовки звіту про практику.
- 4. Не рідше, як раз на тиждень студент зобов'язаний подавати щоденник на перегляд керівнику практики, який дає письмові зауваження, пропозиції, додаткові завдання. Зміст щоденника є основою для подальшої підготовки відгуку та висновків керівником практики.

- 5. Розділ щоденника «Оцінка роботи студента на практиці» призначений для відгуку, в якому керівник повинен оцінити ділові якості, які виявив студент під час практики, об'єм, і якість виконаних ним робіт.
- 6. Оформлений щоденник разом зі звітом студент повинен подати на залік. **Без** заповненого щоденника студент не допускається до заліку.

Правила ведення і оформлення звіту про практику

1. У звіті студент висвітлює всю виконану ним роботу під час проходження практики. При цьому студент має виходити з особливостей конкретної індивідуальної задачі та свого підходу до її розв'язання.

Звіт друкується на аркушах формату А4 з урахуванням вимог діючих стандартів та збирається (скріплюється) у зошит.

- 2. У звіті слід узагальнити дані, отримані під час проходження практики, а також обов'язково навести власні висновки та пропозиції щодо виконаного завдання. В звіті з практики мають бути подані також перелік конкретних літературних джерел, технічних документів і діючих стандартів, які студент використав в період практики, а також посилання на них.
- 3. Зміст звіту викладається за етапами згідно з Графіком та індивідуальним завданням. Проте в окремих випадках можуть застосовуватись й інші форми звіту, погоджені навчальним закладом.
- 4. Обсяг звіту, орієнтовано, включаючи блок-схеми та фрагменти лістингу розроблених програм повинен становити близько 40 сторінок.

Звіт повинен містити для кожної задачі наступні пункти:

- Умову задачі;
- Опис математичної моделі задачі;
- Блок-схему алгоритму;
- Лістинг програми;
- 2-4 скриншоти екрану з результатами виконання;

В кінець звіту додається висновок та список опрацьованої літератури.

4. Звіт складається індивідуально кожним студентом і після завершення практики підписується її керівником та здається на кафедру. Без підготовленого належним чином звіту студент не допускається до заліку і вважається таким, що не склав заліку.

Задача 1 (лінійні алгоритми)

Скласти блок-схему алгоритму та програму розв'язання задачі.

- 1. Визначити координати проекцій кола із центром в точці (x,y) та радіусом r на осі координат.
- 2. Квадрат заданий довжиною сторони. Визначити: 1) довжину вписаного в нього кола; 2) довжину описаного навколо нього кола.
- 3. Дано катети прямокутного трикутника. Знайти його гіпотенузу і площу.
- 4. Дано гіпотенузу і один із катетів прямокутного трикутника. Знайти другий його катет і площу вписаного круга.
- 5. Зростаючу геометричну прогресію задано першим членом a, коефіцієнтом q та загальною кількістю членів n. Знайти: 1) суму членів геометричної прогресії; 2) k—й елемент геометричної прогресії.
- 6. Дано два дійсних числа. Знайти їх середнє арифметичне та середнє геометричне значення.
- 7. Визначити координати проекцій кола із центром в точці (x;y) та радіусом r на осі координат.
- 8. Квадрат заданий довжиною сторони. Визначити: 1) площу вписаного в нього круга; 2) площу описаного навколо нього круга.
- 9. Дано катети прямокутного трикутника. Знайти його гіпотенузу і площу.
- 10. Трикутник задано координатами вершин. Знайти площу трикутника.
- 11. Дано довжину кола. Визначити площу круга, обмеженого цим колом.
- 12. Дано довжину ребра куба. Знайти його об'єм та площу всієї поверхні куба.
- 13. Трикутник задано координатами вершин. Знайти периметр трикутника.
- 14. Зростаючу арифметичну прогресію задано першим членом a, кроком h та загальною кількістю членів n. Знайти: 1) суму членів арифметичної прогресії; 2) k—й елемент арифметичної прогресії.

Задача 2 (лінійні алгоритми)

Скласти блок-схему алгоритму та програму розв'язання задачі: дано змінні x, y, z. Обчислити значення змінних a або b.

Nº	Формула	N₂	Формула
1	$a = \frac{2\cos(x - \pi/6)}{1/2 + \sin^2 y}$	8	$a = \frac{3 + e^{y-1}}{1 + x^2 y + \lg z }$
2	$a = \frac{3 + e^{y-1}}{1 + x^2 y + \lg z }$	9	$a = (1+y)\frac{x+y/(x^2+4)}{e^{-x-2}+1/(x^2+4)}$
3	$a = \frac{\sqrt{ x-1 } - \sqrt{ y }}{1 + \frac{x^2}{2} + \frac{y^2}{4}}$	10	$b=1+ y-x +\frac{(y-x)^2}{2}+\frac{ y-x ^3}{3}$
4	$b = 1 + \frac{z^2}{3 + z^2 / 5}$	11	$a = \frac{\sqrt{ x-1 } - \sqrt{ y }}{1 + \frac{x^2}{2} + \frac{y^2}{4}},$
5	$b = \cos^2(\arctan(1/z))$	12	$b = \frac{1 + \cos(y - 2)}{x^4 / 2 + \sin^2 z}$

6	$b = x(\operatorname{tg} z + e^{-(x+3)})$	13	$a = \frac{1 + \sin^2(x + y)}{2 + \left x - 2x/(1 + x^2 y^2) \right } + x$
7	$a = \frac{1 + \sin^2(x + y)}{2 + \left x - 2x/(1 + x^2y^2) \right } + x$	14	$b = \cos^2(\arctan(1/z))$

Задача 3 (розгалужені алгоритми)

- 1. Дано натуральне число n (n<1000). Визначити: 1) суму першої і останньої цифр; 2) порядок числа.
- 2. Дано трикутник зі сторонами a, b, c. Визначити, який це трикутник: гострокутний, тупокутний чи прямокутний.
- 3. Дано натуральне число n (n<100). Визначити, чи правильно, що n^2 дорівнює кубу суми цифр цього числа.
- 4. Трикутник на площині задано координатами вершин. Визначити: 1) чи належить центр координат цьому трикутнику; 2) чи належить точка (x,y) цьому трикутнику.
- 5. Дано натуральне число n (n<10000). Враховуючи всі чотири цифри числа, визначити, чи правильно, що воно містить: 1) рівно три однакових цифри; 2) всі різні цифри.
- 6. На площині задано дві точки (x_1, y_1) та (x_2, y_2) . Визначити, яка з них знаходиться далі від початку координат.
- 7. Дано натуральне число n (n<10000). Визначити, чи ϵ це число паліндромом, тобто таким числом, яке зліва направо і справа наліво читається однаково (всі чотири цифри враховуються; наприклад, 0110).
- 8. Дано натуральне число n (n<1000). Визначити: 1) найстаршу цифру цього числа; 2) порядок числа.
- 9. Дано натуральне число n (n<100). Визначити, чи правильно, що n² дорівнює кубу суми цифр цього числа.
- 10. Дано натуральне число n (n<10000). Враховуючи всі чотири цифри числа, визначити, чи правильно, що воно містить дві пари цифр, що повторюються.
- 11. Дано цілі числа a, b, s, q (a>0). Визначити, чи буде при діленні націло a на b одержуватись остача s або q.
- 12. На площині задано дві точки $(x_1; y_1)$ та $(x_2; y_2)$. Визначити, яка з них знаходиться далі від початку координат.
- 13. Три точки на площині задано координатами $(x_1;y_1)$, $(x_2;y_2)$, $(x_3;y_3)$. Визначити, чи лежать вони на одній прямій.
- 14. Дано три цілих додатних числа x, y, z. Визначити, чи можна з відрізків з цими довжинами утворити трикутник.

Задача 4 (розгалужені алгоритми)

Скласти блок-схему алгоритму та програму розв'язання задачі: дано дійсні числа x, y. Визначити, чи належить точка з координатами (x;y) зафарбованій частині площини.

No	Рисунок	No	Рисунок	No	Рисунок
1		6	8) y	11	9) y 1
2	5) y	7	7) y -1 0 1 x	12	4) y 1
3	2) y	8	3) y 1 2 x	13	1) y
4	9) y	9	2) y	14	5) y
5	5) y	10			

Задача 5 (циклічні алгоритми)

Скласти блок-схему алгоритму та програму розв'язання задачі: за заданим натуральним значенням змінної n обчислити:

No	Формула	No	Формула
1	$\frac{1}{\cos 1} * \frac{1+2}{\cos (1+2)} * * \frac{1+2++n}{\cos (1+2++n)}$	8	$\frac{\sqrt{2+\sqrt{2++\sqrt{2}}}}{n \ pasib}$
2	$\frac{10\sin 1}{\sqrt{1}} * \frac{10\sin 2}{\sqrt{1} + \sqrt{2}} * * \frac{10\sin n}{\sqrt{1} + \sqrt{2} + + \sqrt{n}}$	9	$\left (\cos 1 + 1)^* \left (\cos 3 + \frac{1}{2})^* \right \left (\cos (2n + 1) + \frac{1}{n} \right \right $

3	$\frac{\left \cos 1 + \left \cos 3 + \left \dots + \left \cos(2n+1)\right \right \right }{n \text{ pasie}}$	10	$\frac{\sqrt{ \sin 1 + \sqrt{ \sin 2 + \dots + \sqrt{ \sin n }}}}{n \ passe}$
4	$\frac{\left (\cos 1 + 1)^* \left (\cos 3 + \frac{1}{2})^* \dots * \left (\cos (2n + 1) + \frac{1}{n}\right \right }{n \text{ pasie}}\right $	11	$(1+\frac{\cos 1}{1^2})(1+\frac{\cos 2}{1^2+2^2})(1+\frac{\cos n}{1^2+2^2++n^2})$
5	$(1+\frac{\cos 1}{1^2})(1+\frac{\cos 2}{1^2+2^2})(1+\frac{\cos n}{1^2+2^2++n^2})$	12	$\frac{1}{\sin n} + \frac{1}{\sin n + \sin(n-1)} + \dots + \frac{1}{\sin n + \dots + \sin 1}$
6	$\underbrace{\sqrt{3+\sqrt{6++\sqrt{3}n}}}_{n \ pasie}$	13	$\frac{\cos n}{\sin 1} + \frac{\cos n * \cos (n-1)}{\sin 1 * \sin 2} + + \frac{\cos n * * \cos 1}{\sin 1 * * \sin n}$
7	$\sqrt{ \sin 1 + \sqrt{ \sin 2 + \dots + \sqrt{ \sin n }}}$ n pasie	14	$\underbrace{\sqrt{3+\sqrt{6++\sqrt{3}n}}}_{n \ pasie}$

Задача 6 (циклічні алгоритми)

Скласти блок-схему алгоритму та програму розв'язання задачі: дано натуральне число n і дійсні числа $a_1, a_2, ..., a_n$. Обчислити:

No	Формула	Nº	Формула
1	$\sqrt{ a_1 a_2 \dots a_n }$	8	$\frac{a_1 + a_2 + \dots + a_n}{a_1 a_2 \dots a_n}$
2	$\left(\frac{a_1}{1} + \frac{a_2}{1+2} + \dots + \frac{a_n}{1+2+\dots+n}\right)^2$	9	$\sqrt{ a_1 } + \sqrt{ a_2 } + \dots + \sqrt{ a_n }$
3	$\sqrt{a_1^2 + 1} + \sqrt{a_2^2 + 2} + + \sqrt{a_n^2 + n} + n^2$	10	$a_1 a_2 \dots a_n$
4	$\frac{a_1 + a_2 + \dots + a_n}{a_1 a_2 \dots a_n}$	11	$a_1 - a_2 + a_3 - \dots (-1)^{n+1} a_n$
5	$\left(\frac{a_1}{1} + \frac{a_2}{1+2} + \dots + \frac{a_n}{1+2+\dots+n}\right)^2$	12	$\frac{a_1}{1!} + \frac{a_2}{2!} + \ldots + \frac{a_n}{n!}$
6	$\frac{a_1}{1!} + \frac{a_2}{2!} + \ldots + \frac{a_n}{n!}$	13	$(a_1 + 1)(a_2 + 2)(a_n + n)$
7	$\sqrt{ a_1 a_2 \dots a_n }$	14	$(\sqrt{ a_1 } - a_1)^2 + (\sqrt{ a_2 } - a_2)^2 + + (\sqrt{ a_n } - a_n)^2$

Задача 7 (циклічні алгоритми)

Скласти блок-схему алгоритму та програму розв'язання задачі: дано натуральні числа n і $a_1, a_2, ..., a_n$. Визначити кількість членів a_k послідовності $a_1, a_2, ..., a_n$, що:

- 1) кратні числу 3 і не кратні числу 7;
- 2) ϵ непарними числами;
- 3) задовольняють умову $a_k < \frac{a_{k-1} + a_{k-2}}{2};$
- 4) задовольняють умову $2^k < a_k < k!$;
- 5) мають порядкові номери кратні 2;
- 6) при діленні на 5 дають остачу 1, 2 або 3;

- 7) мають непарні порядкові номери та є парними числами;
- 8) є подвоєними непарними числами;
- 9) є квадратами непарних чисел.
- 10) мають порядкові номери кратні 3;
- 11) при діленні на 7 дають остачу 1, 2 або 5;
- 12) задовольняють умову $3^{k+1} < a_k < k!$;
- 13) мають парні порядкові номери та є непарними числами;
- 14) є квадратами парних чисел;

Задача 8 (циклічні алгоритми)

Скласти блок-схему алгоритму та програму розв'язання задачі: дано натуральне число n та дійсні числа $a_1, a_2, ..., a_n$ ($a_1 \neq 0$). Відомо, що члени послідовності що розташовані до першого нульового члена, визначити:

- 1) суму квадратів членів;
- 2) кількість додатних членів.
- 3) середнє арифметичне членів;
- 4) який член розташований пізніше найбільший чи найменший;
- 5) найбільший член;
- 6) порядковий номер найменшого члена;
- 7) добуток найбільшого та найменшого членів;
- 8) суму квадратів членів;
- 9) який член розташований раніше найбільший чи найменший;
- 10) порядковий номер найбільшого члена;
- 11) яких членів більше;
- 12) суму найбільшого та найменшого членів;
- 13) добуток членів з непарними порядковими номерами;
- 14) суму від'ємних членів;

Задача 9 (вкладені циклічні алгоритми)

Скласти блок-схему алгоритму та програму обчислення:

No	Формула	No	Формула	№	Формула
1	$\sum_{i=1}^{10} (\frac{1}{i} + \prod_{j=1}^{i} (i+j))$	6	$\sum_{k=1}^{n} (2k)!$	11	$\prod_{i=1}^{50} (i_2 + \sum_{j=1}^{20} j^2)$
2	$\sum_{k=1}^{n} (2k)!$	7	$\prod_{i=1}^{50} (i_2 + \sum_{j=1}^{20} j^2)$	12	$\sum_{k=1}^{n} k^{k}$
3	$\sum_{i=1}^{10} i \sum_{j=1}^{20} (i+j)^2$	8	$\sum_{i=1}^{20} \sum_{j=i}^{30} \frac{i}{j}$	13	$\sum_{i=10}^{100} \sum_{j=5}^{50} \cos(i-j)$
4	$\sum_{i=1}^{50} \prod_{j=1}^{20} ij$	9	$\sum_{i=1}^{30} \sum_{j=1}^{i} (1+i^2+j^2)$	14	$\sum_{i=1}^{100} \sum_{j=1}^{50} (i+j)$
5	$\sum_{i=1}^{20} \sum_{j=i}^{30} \frac{i}{j}$	10	$\sum_{j=1}^{10} (\frac{1}{i} + \prod_{j=1}^{i} (i+j))$		

Задача 10 (одновимірні числові масиви)

Скласти блок-схему алгоритму та програму розв'язання задачі: дано натуральне число n та цілі числа $a_1,\ a_2,\ ...,\ a_n$ та $b_1,\ b_2,\ ...,\ b_n$. Визначити значення, $c_1,\ c_2,\ ...,\ c_n$ якщо:

No	Формула	No	Формула
1	$c_i = \frac{a_i}{b_i}, (b_i \neq 0)$	8	$c_i = a_i + b_i$
2	$c_i = \sum_{j=1}^i a_j + \prod_{j=1}^i b_j$	9	$c_{i} = \frac{a_{1} + a_{2} + \dots + a_{i}}{i} + \frac{b_{i+1} + b_{i+2} + \dots + b_{n}}{n - i + 1}$
3	$c_i = \sin a_i + \cos b_i$	10	$c_i = 2^i a_i + i! b_i$
4	$c_i = i!(a_i + b_i)$	11	$c_i = a_i + b_i$
5	$c_i = \sum_{j=1}^i (a_j + b_j)$	12	$c_i = \frac{a_1 + a_2 + \dots + a_i}{i} + \frac{b_{i+1} + b_{i+2} + \dots + b_n}{n - i + 1}$
6	$c_i = \frac{\sum_{j=1}^{i} a_j}{i} + \sqrt{\prod_{j=1}^{i} b_j}$	13	$c_i = \frac{a_1 + a_2 + \dots + a_i}{b_{i+1} + b_{i+2} + \dots + b_n}$
7	$c_i = \sum_{j=1}^i (a_j + b_j)$	14	$c_i = \sin a_i + \cos b_i$

Задача 11 (одновимірні числові масиви)

Скласти блок-схему алгоритму та програму розв'язання задачі: дано дійсні числа a_1 , a_2 , ..., a_{30} та b_1 , b_2 , ..., b_{30} . Обчислити:

No	Формула	No	Формула
1	$(a_1 + b_{30})(a_2 + b_{29})(a_{30} + b_1)$	8	$\frac{a_1b_{30} + a_2b_{29} + \dots + a_{30}b_1}{b_1b_2 \dots b_{30}}$
2	$a_1b_1^2 + a_2b_2^2 + \dots + a_{30}b_{30}^2$	9	$(a_1 + b_{30})(a_2 + b_{29})(a_{30} + b_1)$
3	$a_1 a_{30} + a_2 a_{29} + + a_{30} a_1$	10	$\frac{a_1b_{30} + a_2b_{29} + \dots + a_{30}b_1}{(a_1 + a_3 + \dots + a_{29})}$
4	$\frac{a_1b_1 + a_2b_2 + \dots + a_{30}b_{30}}{a_1 + a_2 + \dots + a_{30}}$	11	$(a_1b_{30}) + (a_2b_{29}) + \dots + (a_{30}b_1)$
5	$\frac{a_1^2 + a_2^2 + \dots + a_{30}^2}{\sqrt{ b_1 + \sqrt{ b_3 } + \dots + \sqrt{ b_{29} }}}$	12	$a_1 a_{30} + a_2 a_{29} + + a_{30} a_1$
6	$\frac{\sqrt{ a_1 }}{b_{30}} + \frac{\sqrt{ a_2 }}{b_{29}} + \dots + \frac{\sqrt{ a_{30} }}{b_1}$	13	$\frac{a_1b_1 + a_2b_2 + \dots + a_{30}b_{30}}{a_1 + a_2 + \dots + a_{30}}$
7	$(a_1b_{30}) + (a_2b_{29}) + \dots + (a_{30}b_1)$	14	$\frac{a_1b_1 + a_3b_3 + \dots + a_{29}b_{29}}{a_2b_2 + a_4b_4 + \dots + a_{30}b_{30}}$

Задача 12 (одновимірні числові масиви)

Скласти блок-схему алгоритму та програму розв'язання задачі:

- 1. Дано одновимірний масив завдовжки n. Розділити його на два нових масиви таким чином, щоб у першому опинились додатні елементи, а в другому від'ємні.
- 2. Дано два одновимірних масиви. Об'єднати ці два масиви у третій масив, в який спочатку ввійдуть елементи першого масиву, а потім другого, зберігаючи свою первісну послідовність.
- 3. Дано два одновимірних масиви. Утворити новий масив, у якому спочатку будуть розташовані всі додатні елементи першого масиву, потім додатні елементи другого, далі всі від'ємні елементи першого масиву, потім від'ємні елементи другого.
- 4. Нехай дано натуральне число n та послідовність попарно різних дійсних чисел $a_1, a_2, ..., a_n$. У даній послідовності поміняти місцями найбільший і найменший члени.
- 5. Дано два одновимірних масиви. Утворити новий масив, у якому спочатку будуть розташовані всі елементи першого масиву в їх первісній послідовності, а потім елементи другого масиву в зворотній послідовності.
- 6. Нехай дано натуральне число n та послідовність попарно різних дійсних чисел $a_1, a_2, ..., a_n$. У даній послідовності поміняти місцями найбільший член з першим по порядку (якщо їх індекси співпадають повідомити про це).
- 7. Дано два одновимірних масиви. Утворити новий масив, у якому спочатку будуть розташовані всі парні елементи першого масиву, потім парні елементи другого, далі непарні елементи першого масиву і непарі елементи другого масиву.
- 8. Нехай дано натуральне число n та послідовність попарно різних дійсних чисел $a_1, a_2, ..., a_n$. У даній послідовності поміняти місцями найменший член з останнім по порядку (якщо їх індекси співпадають повідомити про це).
- 9. Дано два однакові за довжиною одновимірні масиви. Об'єднати їх у третій масив, чергуючи елементи першого та другого масивів.
- 10. Дано одновимірний масив завдовжки n. Розділити його на два нових масиви таким чином, щоб у першому опинились додатні елементи, а в другому від'ємні.
- 11. Нехай дано натуральне число n та послідовність попарно різних дійсних чисел $a_1, a_2, ..., a_n$. У даній послідовності поміняти місцями найменший член з членом, що стоїть на k-му місці.
- 12. Дано одновимірний масив завдовжки n. «Стиснути» його, вилучивши з нього всі від'ємні елементи.
- 13. Нехай дано натуральне число n та послідовність попарно різних дійсних чисел $a_1, a_2, ..., a_n$. У даній послідовності поміняти місцями найменший член з останнім по порядку (якщо їх індекси співпадають повідомити про це).
- 14. Нехай дано натуральне число n та послідовність попарно різних дійсних чисел $a_1, a_2, ..., a_n$. У даній послідовності поміняти місцями найбільший член з першим по порядку (якщо їх індекси співпадають повідомити про це).

Задача 13 (двовимірні числові масиви)

Скласти блок-схему алгоритму та програму розв'язання задачі:

1. Дано натуральні числа n, m. Обчислити значення елементів матриці $C_{i,j}$ (i=1, 2, ..., n; j=1, 2, ..., m), якщо:

$$C_{ij} = \begin{cases} i+j, & \text{якщо } i < j; \\ i^2 - j^2, & \text{в решті випадків;} \end{cases}$$

2. Дано натуральні числа n, m та матриці дійсних чисел $A_{i,j}, B_{i,j},$ де i=1, 2, ..., n; j=1, 2, ..., m.

Обчислити значення елементів матриці $C_{i,j}$, якщо:

$$C_{ij} = egin{cases} i^2 + j^2 + 2, & \text{якщо} & i < j; \ & & \ \frac{1}{(i+j)^3}, & \text{якщо} & i = j; \ & \sin^2(A_{ij}) + \sin^2(B_{ij}), & \text{в решті випадків.} \end{cases}$$

- 3. Дано натуральне число n. Обчислити елементи квадратної матриці a_{ij} , де i,j=1,2,...,n за такою формулою: $a_{ij}=i^3+\sin j-5$
- 4. Дано натуральні числа n, m. Обчислити значення елементів матриці $C_{i,j}$ (i=1, 2, ..., n; j=1, 2, ..., m), якщо:

$$C_{ij} = \begin{cases} i^2 + j^2, & \text{якщо } i < j; \\ \frac{1}{(i-j)^3}, & \text{якщо } i = j; \\ \sin i + \cos j, & \text{в решті випадках} \end{cases}$$

5. Дано натуральні числа n, m. Обчислити значення елементів матриці $C_{i,j}$ (i=1, 2, ..., n; j=1, 2, ..., m), якщо:

6. Дано натуральні числа n, m та матриці дійсних чисел $A_{i,j}, B_{i,j},$ де i=1, 2, ..., n; j=1, 2, ..., m. Обчислити значення елементів матриці $C_{i,j},$ якщо:

$$C_{ij} = \begin{cases} A_{ij}, & \text{якщо } i \leq j; \\ B_{ij}, & \text{якщо } i > j; \end{cases}$$

- 7. Дано натуральне число n. Обчислити елементи квадратної матриці a_{ij} , де i, j=1, 2, ..., n за такою формулою: $a_{ij}=i^3+\sin j-5$
- 8. Дано натуральні числа n, m. Обчислити значення елементів матриці $C_{i,j}$ (i=1, 2, ..., n; j=1, 2, ..., m), якщо:

$$C_{ij} = \begin{cases} i+j, & \text{якщо } i < j; \\ i^2 - j^2, & \text{в решті випадків;} \end{cases}$$

9. Дано натуральні числа n, m та матриці дійсних чисел $A_{i,j}$, $B_{i,j}$, де i=1,2,...,n; j=1,2,...,m. Обчислити значення елементів матриці $C_{i,j}$, якщо:

$$C_{ij} = \begin{cases} \sin(A_{ij} + B_{ij}), & \text{якщо } A_{ij} \times B_{ij} \leq 0 \text{ та } A_{ij} \neq B_{ij} \text{;} \\ 1, & \text{якщо } A_{ij} = B_{ij} \text{;} \\ \arccos\frac{A_{ij} + B_{ij}}{2i + 3j}, & \text{якщо } A_{ij} \times B_{ij} > 0 \text{ та } A_{ij} \neq B_{ij} \text{.} \end{cases}$$

10. Дано дійсні числа $a_1, a_2, ..., a_{10}$ та $b_1, b_2, ..., b_{20}$. Обчислити матрицю $c_{i,j}$, де i=1,2,...,10,j=1

$$c_{ij} = \frac{a_i + 1}{\left|b_j\right| + 1}$$
 1, 2, ..., 20 за формулою:

11. Дано натуральні числа n, m. Обчислити значення елементів матриці $C_{i,j}$ (i = 1, 2, ..., n; j = 1, 2, ..., m), якщо:

$$C_{ij} = \begin{cases} i^2 + j^2, & \text{якщо } i < j; \\ \frac{1}{(i-j)^3}, & \text{якщо } i = j; \\ \sin i + \cos j, & \text{в решті випадках} \end{cases}$$

12. Дано натуральні числа n, m та матриці дійсних чисел $A_{i,j}$, $B_{i,j}$, де $i=1,\ 2,\ ...,\ n;\ j=1,\ 2,\ ...,\ m$. Обчислити значення елементів матриці $C_{i,j}$, якщо:

$$C_{ij} = \begin{cases} \sin(A_{ij} + B_{ij}), & \text{якщо } A_{ij} \times B_{ij} \leq 0 \text{ та } A_{ij} \neq B_{ij} \text{;} \\ 1, & \text{якщо } A_{ij} = B_{ij} \text{;} \\ \arccos\frac{A_{ij} + B_{ij}}{2i + 3j}, & \text{якщо } A_{ij} \times B_{ij} > 0 \text{ та } A_{ij} \neq B_{ij} \text{.} \end{cases}$$

13. Дано натуральні числа n, m та матриці дійсних чисел $A_{i,j}$, $B_{i,j}$, де $i=1,\ 2,\ ...,\ n;\ j=1,\ 2,\ ...,\ m$. Обчислити значення елементів матриці $C_{i,j}$, якщо:

$$C_{ij} = \sin A_{ij} + \cos B_{ij}$$

14. Дано натуральні числа n, m та матриці дійсних чисел $A_{i,j}$, $B_{i,j}$, де $i=1,\ 2,\ ...,\ n;\ j=1,\ 2,\ ...,\ m$. Обчислити значення елементів матриці $C_{i,j}$, якщо:

$$C_{ij} = A_{ij}(i+j) - B_{ij}(i^2+j^2)$$

Задача 14 (двовимірні числові масиви)

- 1. Дано прямокутну цілочисельну матрицю порядку $10 \times n$. Визначити середнє арифметичне максимального та мінімального її значень.
- 2. Дано цілочисельну прямокутну матрицю порядку $n \times m$. Усі елементи матриці, менші за середнє арифметичне її значень, замінити на -1, а більші на 1.
- 3. Елементи цілочисельної прямокутної матриці розміром $n \times m$ задано випадковим чином. Надрукувати пари індексів: 1) першого максимального елемента; 2) останнього мінімального елемента; 3) всіх максимальних елементів.
- 4. Дано матрицю A[i,j], де i=1,2,...,n; j=1,2,...,m. У цій матриці поміняти місцями елементи: 1) k-го та l-го рядків; 2) k-го рядка та l-го стовичика.
- 5. Дано матрицю B[i,j], де i, j = 1, 2, ..., n. За допомогою матриці знайти елементи масиву $C_j, j = 1, 2, ..., n$, значення яких дорівнюють: 1) сумі елементів відповідних рядків матриці; 2) сумі максимального та мінімального значень відповідних стовпчиків матриці.
- 6. Дано квадратну дійсну матрицю порядку n. Усі максимальні елементи матриці замінити нулями.
- 7. Дано прямокутну цілочисельну матрицю порядку $10 \times n$. Визначити середнє геометричне максимального та мінімального серед додатних її значень.
- 8. Дано матрицю $B_{i,j}$, де i=1, 2, ..., n; j=1, 2, ..., m. Надрукувати: 1) суму елементів кожного стовпчика; 2) середнє арифметичне кожного стовпчика.
- 9. Дано матрицю B[i,j], де i, j = 1, 2, ..., n. За допомогою матриці знайти елементи масиву $C_j, j = 1, 2, ..., n$, значення яких дорівнюють: 1) сумі елементів відповідних рядків матриці; 2) сумі максимального та мінімального значень відповідних стовпчиків матриці.

- 10. Знайти різницю між найменшим та найбільшим значеннями елементів головної діагоналі квадратної матриці розмірністю n.
- 11. Дано квадратну дійсну матрицю розмірності. Обчислити кількість входжень заданого елемента.
- 12. Дано матрицю B[i,j], де i, j = 1, 2, ..., n. За допомогою матриці знайти елементи масиву C_j , j = 1, 2, ..., n, значення яких дорівнюють: 1) сумі елементів відповідних стовпчиків матриці; 2) сумі першого і останнього елементів відповідних рядків матриці.
- 13. Дано квадратну дійсну матрицю порядку n. Усі мінімальні елементи матриці замінити нулями.
- 14. Дано квадратну дійсну матрицю розмірності. Обчислити кількість: 1) максимальних елементів; 2) мінімальних елементів.

Задача 15 (символьні та рядкові величини)

- 1. Нехай дано текст S та значення символьної змінної y. У тексті повторити двічі всі символи, що збігаються з y.
- 2. Нехай дано деякий текст. Обчислити, скільки разів повторюється наперед заданий символ a.
- 3. Дано текст S, у якому ϵ хоча б одна крапка. Роздрукувати ту частину тексту, що розташована:
- 1) до першої крапки; 2) після другої крапки; 3) між першою та другою крапками (якщо друга крапка відсутня, то до кінця тексту).
- 4. У даному тексті замінити всі символи «і» на символи 'і 'відповідно.
- 5. У даній формулі порахувати кількість входжень символів «+» та кількість символів «-».
- 6. Нехай дано текст S та значення символьної змінної x. Із тексту вилучити всі символи, що збігаються з x.
- 7. Нехай дано текст S та значення символьної змінної y. У тексті повторити тричі всі символи, що збігаються з y.
- 8. Нехай дано текст S та значення символьної змінної x. Із тексту вилучити всі символи, що збігаються з x.
- 9. У даному тексті замінити всі символи «:» на символи «-» і навпаки.
- 10. Дано деякий текст, у якому ε хоча б одна кома. Визначити порядковий номер першої коми в тексті.
- 11. Дано текст. Визначити, які символи зустрічаються у тексті частіше: «а» чи «о». Якщоякийсь із символів відсутній повідомити про це.
- 12. У даному тексті замінити всі символи «.» на послідовність символів «...». Якщо у тексті зустрічаються підряд три крапки, то залишити їх без змін.
- 13. Дано деякий текст, у якому ε хоча б одна кома. Визначити порядковий номер: останньої коми в тексті.
- 14. Перевірити, чи ϵ дані два слова оберненими одне до одного, тобто перше читається зліва направо так само, як друге справа наліво.

Задача 16 (функції)

Скласти блок-схему алгоритму та програму розв'язання задачі:

1. Дано дійсні числа х, у. Обчислити:

$$f(y,-2x,x+y-1.17) + f(2.2,y,x^2-y^2),$$

$$g(a,b,c) = \frac{2a-b-\sin c}{5+|c|}.$$

2. Дано ціле число а. Визначити:

12.5
$$f(a/2) + 3.1 f(a^2 + a + 1)$$
, $f(x) = \sum_{i=1}^{10} \frac{x^i}{i!}$

3. Дано натуральне число n та дійсне число y. Обчислити:

$$\frac{1.7 t (0.25, 5) + 2 t (1 + y, 2)}{6 - t (y^2 - 1, n)}, \quad \text{pe} \quad t(x, m) = \frac{\sum_{k=0}^{m} \frac{x^{2k+1}}{(2k+1)!}}{\sum_{k=0}^{m} \frac{x^{2k}}{(2k)!}}.$$

4. Дано дійсні числа *и* та *v*. Визначити значення:

$$z = f(u,v) + f(u+v,uv) + f(u^2,v^2) + f(0.1,0.1),$$

Ae
$$f(x,y) = \frac{x+y}{x^2+xy+y^2} + \frac{x}{1+y^2} + \frac{y}{1+x^2}$$
.

5. Дано дійсні значення *а* та *b*. Отримати:

$$u = f(1.7,a) + f(b,a) + f(a+b,b-a),$$

$$\text{ge } f(x,y) = \frac{x^2 + xy - y^2}{1 + x^2 + y^2}.$$

6. Дано натуральне число п. Обчислити:

$$\frac{f(n)^2 + 5.2f(n^2)}{f(n+5)}$$
, $ge f(k) = \sum_{i=1}^k \frac{2^i}{i!}$.

7. За даними дійсними числами *a*, *b* обчислити:

$$u = f(0.5, a) + f(a + b, a - b),$$

$$\pi e \quad f(x,y) = \frac{x^2 + xy - y^2}{1 + x + y} + \frac{x - y}{x^2 + y^2 + 2}$$

8. Дано дійсні числа *a, b, c, d*. Обчислити:

$$y = (p(a) + p(b) + p(c) + p(d))/4,$$

 $p(x) = 4x^4 + 3x^3 + 2x^2 + x + 0.5.$

9. Дано дійсні числа х, у. Обчислити:

$$g(1.2,x) + g(y,x) - g(2x-1,xy),$$

де
$$g(a,b) = \frac{a^2 + b^2}{a^2 + 2ab + 3b^2 + 4}$$
.

10. Дано натуральне число n та дійсне число y. Обчислити:

$$\frac{1.7 t (0.25, 5) + 2 t (1 + y, 2)}{6 - t (y^2 - 1, n)}, \quad \text{pe} \quad t(x, m) = \frac{\sum_{k=0}^{m} \frac{x^{2k+1}}{(2k+1)!}}{\sum_{k=0}^{m} \frac{x^{2k}}{(2k)!}}.$$

11. Дано дійсні числа х, у. Обчислити:

$$f(f(1,2),x) + f(y,f(x+y,f(2x,3y))),$$

$$f(n,m) = \frac{n^2 - m^2}{n^2 + 2nm + 3m^2 + n + m}.$$

12. За даними дійсними числами а, b обчислити

$$u = f(0.5, a) + f(a+b, a-b),$$

$$\pi e \quad f(x,y) = \frac{x^2 + xy - y^2}{1 + x + y} + \frac{x - y}{x^2 + y^2 + 2}$$

13. Дано дійсні значення а та b. Отримати:

$$u = f(1.7,a) + f(b,a) + f(a+b,b-a),$$

$$\text{de } f(x,y) = \frac{x^2 + xy - y^2}{1 + x^2 + y^2}.$$

14. Дано дійсні числа х, у. Обчислити:

$$g(1.2,x) + g(y,x) - g(2x-1,xy),$$

де
$$g(a,b) = \frac{a^2 + b^2}{a^2 + 2ab + 3b^2 + 4}$$
.

Задача 17 (функції)

- 1. Дано координати вершин двох трикутників. Визначити, який з них має більшу площу. Для цього створити функцію, що обчислює довжину відрізка та функцію для визначення площі трикутника.
- 2. Дано дійсні числа x_1 , y_1 , ... x_i , y_i , пари яких визначають координати вершин многокутника (координати многокутника задаються в порядку обходу за годинниковою стрілкою). Визначити периметр: 1) десятикутника; 2) n–кутника (n ціле, n > 2).
- 3. Дано сторони п'ятикутника *a, b, c, d, е* та довжини двох діагоналей *x, y*, що з'єднують одну з вершин з двома іншими. Визначити площу п'ятикутника, написавши підпрограму обчислення площі трикутника за його сторонами.
- 4. Створити підпрограму, яка б за радіусом R визначала довжину кола і площу круга. В програмі організувати виклик цієї підпрограми.
- 5. Дано дві пари дійсних чисел (x_1, y_1) та (x_2, y_2) , що є координатами відповідно лівого верхнього та правого нижнього кутів прямокутника, сторони якого паралельні осям координат. Створити підпрограму, що визначатиме довжини сторін цього прямокутника.
- 6. Створити підпрограму, яка б за даними дійсними координатами двох точок $(x_1;y_1)$, та $(x_2;y_2)$ визначала довжину відповідного відрізка та довжину його проєкції на вісь OX. У програмі

організувати виклик цієї підпрограми.

- 7. Створити підпрограму, яка б за стороною a визначала периметр квадрата та його діагональ. У програмі організувати виклик цієї підпрограми.
- 8. Дано дві пари дійсних чисел (x_1, y_1) та (x_2, y_2) , що є координатами відповідно лівого верхнього та правого нижнього кутів прямокутника, сторони якого паралельні осям координат. Створити підпрограму, що визначатиме довжини сторін цього прямокутника.
- 9. Дано координати вершин двох трикутників. Визначити, який з них має меншу площу. Для цього створити функцію, що обчислює довжину відрізка та функцію для визначення площі трикутника.
- 10. Створити підпрограму, яка б за радіусом R визначала довжину кола і площу круга. В програмі організувати виклик цієї підпрограми.
- 11. Дано натуральне число n та послідовність пар дійсних чисел $(x_1; y_1)$, $(x_2; y_2)$,..., $(x_n; y_n)$. Створити підпрограму, яка за даними двома дійсними числами визначає їх суму та добуток. Визначити ту пару чисел, для якої модуль різниці між сумою та добутком є найменшим.
- 12. Дано дійсні координати чотирьох точок на площині. Визначити, які трійки з них утворюють трикутники і обчислити площу більшого трикутника, створивши для цього функції обчислення довжини відрізка та площі трикутника.
- 13. Дано дійсні числа x_1 , y_1 , x_2 , y_2 , x_3 , y_3 які визначають координати вершин трикутника. Визначити периметр та площу трикутника, створивши функцію, що обчислює довжину відрізка та функцію для визначення площі трикутника.
- 14. Створити підпрограму, яка б за стороною a визначала периметр квадрата та його діагональ. У програмі організувати виклик цієї підпрограми.

Задача 18 (файли)

Скласти блок-схему алгоритму та програму розв'язання задачі: дано файл, який містить цілі числа. Визначити:

- 1. яких елементів більше від'ємних чи додатних.
- 2. найменший елемент серед елементів з парними номерами.
- 3. кількість парних елементів.
- 4. кількість парних елементів, які мають парні номери.
- 5. яких елементів більше парних чи непарних.
- 6. суму квадратів елементів.
- 7. різницю між останнім та найменшим елементом.
- 8. найменший елемент серед елементів з непарними номерами.
- 9. середнє арифметичне найменшого та найбільшого елементів.
- 10. суму модулів елементів з непарними номерами.
- 11. кількість елементів, значення яких збігаються з їх номерами.
- 12. різницю між першим та найбільшим елементом.
- 13. добуток модулів елементів з парними номерами.
- 14. суму додатних елементів.

Задача 19 (файли)

Скласти блок-схему алгоритму та програму розв'язання задачі:

1. Дано файл f, що складається з дійсних елементів. Створити файл g, що містить елементи файлу f без повторних входжень.

- 2. Дано файл f, що складається з дійсних елементів. Переписати їх у файл g у зворотному порядку.
- 3. Дано два файли f та g що містить цілі елементи. Створити файл h, переписавши в нього спочатку всі елементи файлу f, а потім файлу g.
- 4. Дано файл f, який містить лише дійсні, відмінні від 0, числа. Переписати у файл g лише додатні числа, а у файл h від'ємні числа із файлу f, зберігаючи при цьому їх порядок у файлі f.
- 5. Дано файл f з цілих елементів. Переписати парні числа у файл g, а непарні у файл h, зберігаючи при цьому їх порядок.
- 6. Дано файл f, який складається з цілочисельних елементів. Змінити в ньому послідовність елементів, переписавши останній елемент на перше місце, передостанній на друге і т.д., не використовуючи для цього додаткового файлу.
- 7. Дано файл f, що складається з дійсних елементів. Створити файл g, що містить тільки ті елементи файлу f які повторюються.
- 8. Дано файл f, який містить лише цілі, відмінні від 0, числа. Відомо, що числа у цьому файлі чергуються: десять додатних, десять від'ємних і т.д. Переписати числа із файлу f у файл g, змінивши чергування чисел: п'ять додатних, п'ять від'ємних і т.д.
- 9. Дано два символьні файли f та g. Записати вміст цих файлів у файл h, розташувавши спочатку інформацію з файлу f, а потім з файлу g.
- 10. Дано файл f, який містить цілі числа. Кількість елементів файлу кратна натуральному n. Для кожної групи з n чисел із файлу f, зберігаючи їх порядок, записати у файл g мінімальні значення.
- 11. Дано файл f, що складається з дійсних елементів. Переписати їх у файл g у зворотному порядку.
- 12. Дано файл f, який складається з цілочисельних елементів. Змінити в ньому послідовність елементів, переписавши останній елемент на перше місце, передостанній на друге і т.д., не використовуючи для цього додаткового файлу.
- 13. Дано файл f, який містить цілі числа. Кількість елементів файлу кратна натуральному n. Для кожної групи з n чисел із файлу f, зберігаючи їх порядок, записати у файл g максимальні значення
- 14. Дано два файли f та g що містить цілі елементи. Створити файл h, записавши в нього елементи чергуючи поелементно файли f та g.

Задача 20 (структури)

- 1. Роздрукувати список учнів, прізвища яких починаються на букву «В», і вказати дати їх народження.
- 2. Обчислити середній бал успішності учнів класу, якщо відомі оцінки кожного з них з математики, української мови та фізики. Роздрукувати список учнів, які мають середній бал вище середнього балу в класі.
- 3. З наявного списку спортсменів роздрукувати дані про тих з них, хто займається плаванням. Вказати вік і скільки років вони займаються спортом.
- 4. Роздрукувати прізвища учнів школи, які не отримали жодної «трійки» за останню чверть. Визначити, в яких класах навчаються ці учні і який середній бал їх успішності.
- 5. Знайти прізвища працівників даного підприємства, чия заробітна плата за місяць нижче середньої по цьому підприємству, а також роздрукувати список співробітників пропрацювали

тут більше 10 років із зазначенням їх прізвищ і зарплати.

- 6. Роздрукувати прізвища учнів класу, які є хорошистами і відмінниками за підсумками року. Вказати, на скільки їх середній бал відрізняється від середнього балу класу.
- 7. Роздрукувати список вчителів школи, які викладають математику і інформатику з зазначенням стажу їх роботи і тижневого навантаження.
- 8. Роздрукувати прізвища робітників бригади, що починаються з літер «А» і «С», із зазначенням їх місячної зарплати.
- 9. Роздрукувати список учнів, прізвища яких починаються на букву «В», і вказати дати їх народження.
- 10. Обчислити середній бал успішності учнів класу, якщо відомі оцінки кожного з них з математики, української мови та фізики. Роздрукувати список учнів, які мають середній бал нижче середнього балу в класі.
- 11. Роздрукувати список учнів музичної школи, які навчаються грати на скрипці. Вказати, скільки років вони займаються музикою і чи брали участь в конкурсах.
- 12. Роздрукувати прізвища робітників бригади, що починаються з літер «А» і «С», із зазначенням їх місячної зарплати.
- 13. Роздрукувати список вчителів школи, які викладають математику і інформатику з зазначенням стажу їх роботи і тижневого навантаження.
- 14. Роздрукувати прізвища дітей дитячого садка, які народилися в заданому місяці із зазначенням їх віку та групи.