Planche 1.

Question de cours. Est ce que si u_n est croissante et v_n est décroissante et que les suites sont telles qe $u_n \le v_n$ alors u_n et v_n converge vers la même limite?

Exercice 1. Soit une suite réelle telle que u_{2n} , u_{2n+1} et u_{3n} convergent. Montrer que u_n converge.

Exercice 2. Soit $a \in \mathbb{C}$ tel que 0 < |a| < 1 et (u_n) la suite définie par $u_0 = a$ et

$$u_{n+1} = \frac{u_n}{2 - u_n}$$

Montrer que u_n est bien définie et que $|u_n| < 1$. Etudier la limite de u_n .

Planche 2.

Question de cours. Est ce que \mathbb{Q} est compact ?

Exercice 1. Soit $u_0, v_0 > 0$. On pose $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \sqrt{v_n u_n}$. Montrer que ces suites convergent et ont même limite.

Exercice 2. Soit a > 0 et la suite u_n définie par $u_0 > 0$ et

$$u_{n+1} = \frac{1}{2}(u_n + \frac{a}{u_n})$$

Etudier la convergence de la suite u_n .

On pose $v_n = \frac{u_n - \sqrt{a}}{u_n + \sqrt{a}}$ Calculer v_{n+1} en fonction de v_n puis v_n en fonction de v_0 et n.

Montrer que si $u_0 > \sqrt{a}$ on a :

$$|u_n - \sqrt{a}| \le 2u_0 v_0^{2^n}$$

Planche 3.

Question de cours. Soit u_n la suite définie par $u_0 = 0$, $u_1 = 1$ et $u_{n+2} = u_{n+1} + u_n$. Déterminer une expression de u_n .

Exercice 1. Soit u_n la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = e^{u_n} - 1$. Etudier la suite.

Exercice 2. Montrer que pour tout n entier naturel, $xe^x = n$ possède une unique solution notée x_n dans \mathbb{R}^+ . Etudier la suite x_n .

Solutions - Planche 1.

Question de cours. Non, il suffit de prendre $u_n = 1$ et $v_n = 2$. u_n est bien croissante, v_n décroit, on a $u_n \le v_n$ pour tout n. Mais les deux suites non pas la même limite.

Bon ok c'est trop facile, du coup on peut prendre $u_n = 1 - 1/n$ et $v_n = 2 + 1/n$ c'est pareil.

La définition ressemble à celle des suites adjacentes mais il manque $u_n - v_n \to 0$.

Exercice 1. Faire un dessin, juste les indices des suites. Bien se représenter que les sous-suites u_{2n} et u_{2n+1} sont "disjointes" et que u_{3n} fait le lien entre les deux.

On note l_1 la limite de u_{2n} , l_2 la limite de u_{2n+1} et l_3 la limite de u_{3n} . On va d'abord montrer que $l_1 = l_3$ et que $l_2 = l_3$ pour conclure.

Trouvons une sous-suite commune à u_{2n} et u_{3n} : c'est facile avec un dessin on peut prendre u_{6n} qui est bien une sous-suite extraite de u_{2n} en prenant l'extractrice $\varphi(n) = 3n$ (cela donne $2\varphi(n) = 6n$). De plus u_{6n} est aussi une sous-suite extraite de u_{3n} en prenant l'extractrice $\varphi(n) = 2n$ (cela donne $3\varphi(n) = 6n$). Or si une suite converge alors toute sous-suite extraite converge vers la même limite donc u_{6n} converge vers l_1 et l_3 . Or si une suite converge, alors il y a unicité de la limite donc $l_1 = l_3$.

On fait pareil entre u_{2n+1} et u_{3n} . Montrons que u_{6n+3} est une sous-suite extraite des deux suites. En effet on prend l'extractrice $\varphi(n)=3n+1$ dans la première (on a bien $2\varphi(n)+1=6n+2+1=6n+3$). On prend l'extractrice $\varphi(n)=2n+1$ dans la deuxième suite (on a bien $3\varphi(n)=6n+3$). Donc par les mêmes arguments que précédemment, $l_2=l_3$.

D'où on conclut que $l_1 = l_2 = l_3 = l$. Montrons que u_n converge vers cette limite.

Soit $\epsilon > 0$, il existe un rang N_1 tel que $|u_{2n} - l| \le \epsilon$ pour tout $n \ge N_1$. De même il existe un rang N_2 tel que $|u_{2n+1} - l| \le \epsilon$ pour tout $n \ge N_2$. On pose donc $N = \max(2N_1, 2N_2 + 1)$. Soit $n \ge N$. Alors si n = 2k, on a $2k \ge 2N_1$ donc $k \ge N_1$ et $|u_n - l| = |u_{2k} - l| \le \epsilon$. Sinon n = 2k + 1, on a $2k + 1 \ge 2N_2 + 1$ donc $k \ge N_2$ et $|u_n - l| = |u_{2k+1} - l| \le \epsilon$.

D'où u_n converge vers l

Exercice 2. On a ici une suite **complexe** définie par récurrence du type $u_{n+1} = f(u_n)$ où

$$f: \quad \mathbb{C} - 2 \quad \longrightarrow \quad \mathbb{C}$$

$$x \quad \longmapsto \quad \frac{x}{2-x}$$

Même si c'est une suite complexe on peut quand même étudier la stabilité de la suite. De plus si u_n converge, alors elle converge vers un point fixe de f (c'est vrai pour les fonctions à valeurs réelles dans le cours mais c'est aussi vrai pour une fonction complexe mais on en pas besoin pour résoudre l'exercice).

Vérifions que $D_{0,1} = \{z \in \mathbb{C} : |z| < 1\}$ est stable par f. Soit $z \in D_{0,1}$ c'est-à-dire que |z| < 1. On veut montre que $f(z) \in D_{0,1}$ donc que |f(z)| < 1. Or :

$$|f(z)| = \frac{|z|}{|2-z|} < \frac{1}{|2-z|}$$

Or par l'inégalité triangulaire inversée on a : $|2-z| \ge 2 - |z| > 1$ Donc |f(z)| < 1. Donc u_n est bien définie et reste dans $D_{0,1}$. Donc $|u_n| < 1$ pour tout n.

Vers quoi peut converger u_n sachant que u_n reste dans le disque unité? Bah le plus simple à essayer c'est 0. Remarquons qu'on ne peut pas utiliser les méthodes d'étude usuelle des suites. Genre on ne peut pas regarder si f est croissante pour savoir si u_n est monotone parce qu'on est en complexe!

Pour montrer que $u_n \to 0$ on essaye de montrer que $|u_n - 0| = |u_n| \to 0$. Pour cela montrons que la suite $|u_n|$ (qui est réelle) décroît. Pour ce faire on utilise l'inégalité précédente en ne majorant que en bas :

$$|u_{n+1}| = \frac{|u_n|}{|2 - u_n|} \le |u_n|$$

Donc $|u_n|$ décroît. Donc $|u_n| \le a < 1$ pour tout n. C'est la l'hypothèse qui fait marcher la convergence. Du coup, on peut **affiner** l'inégalité précédente :

$$|u_{n+1}| \le \frac{|u_n|}{2 - |a|}$$

Donc par récurrence immédiate : $|u_n| \leq \frac{|u_0|}{(2-|a|)^n}$. Or (2-|a|) > 1 d'où $\lceil |u_n| \to 0 \rceil$

Solutions - Planche 2.

Question de cours. Soit la suite de \mathbb{Q} définie par $u_n = n$. Pour toute extractrice, $u_{\varphi_n} = \varphi_n \to \infty$ donc aucune sous-suite extraite ne peut converger donc \mathbb{Q} n'est pas compact.

Exercice 1. Les suites sont bien définies. Si on veut montrer que u_n décroit on regarde la quantité : $u_{n+1} - u_n = \frac{v_n - u_n}{2}$. Donc il suffit de montrer que $v_n \le u_n$ pour montrer que u_n décroît.

Montrons que $v_n \leq u_n$ directement :

$$v_{n+1} - u_{n+1} = \sqrt{u_n v_n} - \frac{u_n + v_n}{2} = -\frac{u_n - \sqrt{u_n v_n} + v_n}{2} = -\frac{(\sqrt{u_n} - \sqrt{v_n})^2}{2}$$

Donc $v_n \le u_n$ pour tout $n \ge 1$. On peut donc supposer que $v_0 \le u_0$ parce que c'est vraie à partir du rang 1. Donc u_n décroît. De même on a :

$$v_{n+1} = \sqrt{u_n v_n} \ge \sqrt{v_n v_n} = v_n$$

Donc v_n est croissante. Donc u_n est décroissante et minorée par v_0 donc converge. On note l la limite. De même v_n est croissante et majorée par u_0 donc converge. On note l' la limite. Alors par passage à la limite dans la relation de récurrence de u_n on a :

$$l = \frac{l + l'}{2}$$

Donc l = l'. Donc les suites sont adjacentes.

Exercice 2. Il s'agit d'une suite récurrente du type $u_{n+1} = f(u_n)$ avec

$$\begin{array}{cccc} f: &]0,+\infty[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{1}{2}(x+\frac{a}{x}) \end{array}$$

Montrons que la suite est bien définie. Montrons que l'intervalle $]0,+\infty[$ est stable. Soit x>0, alors $x+\frac{a}{x}>0$ car a>0. Donc f(x)>0 et la suite est bien définie.

Cherchons les points fixes de f. Soit x > 0 tel que f(x) = x. Alors $x = \frac{1}{2}(x + \frac{a}{x})$ et $x^2 = a$. On en déduit que $x = \sqrt{a}$. Ainsi si (u_n) converge alors u_n converge vers \sqrt{a} .

Etudions maintenant les varations de f. $f'(x) = \frac{1}{2}(1 - \frac{a}{x^2})$. Donc f est décroissante sur $]0, \sqrt{a}[$ et est croissante sur $]\sqrt{a}, +\infty[$. Or comme f est croissante sur $]\sqrt{a}, +\infty[$ et que $f(\sqrt{a}) = \sqrt{a}$, alors $]\sqrt{a}, +\infty[$ est stable par f.

 \rightarrow si $u_0 > \sqrt{a}$ alors (u_n) est monotone et le signe de monotonie est donnée par $u_1 - u_0 = f(u_0) - u_0$. On pose donc g(x) = f(x) - x. Alors si x > 0:

$$g'(x) = f'(x) - 1 = \frac{-1}{2}(1 + \frac{a}{u_0^2}) \le 0$$

Or $g(\sqrt{a}) = 0$ donc g est négative sur $]\sqrt{a}, +\infty[$ donc $u_1 - u_0 < 0$ et (u_n) décroît. Or $u_n \ge \sqrt{a}$ pour tout n. Donc u_n converge (car décroissante et minorée). Donc elle converge vers \sqrt{a} .

 \to si $u_0 < \sqrt{a}$, alors $u_1 > \sqrt{a}$ (d'après ses variations). Donc si on commence la suite en u_1 alors on peut utiliser l'étude précédente et montrer que $u_n \to \sqrt{a}$.

 \rightarrow si $u_0 = \sqrt{a}$ alors u_n est stationnaire en \sqrt{a} .

Finalement u_n converge vers \sqrt{a}

Une autre méthode qui marche : c'est de montrer **directement**, sans faire l'étude de la fonction, que $|u_n - \sqrt{a}| \to 0$. Pour ce faire on va trouver une majoration par récurrence :

$$|u_{n+1} - \sqrt{a}| = |\frac{1}{2}(u_n + \frac{a}{u_n}) - \sqrt{a}| = \frac{1}{2u_n}|u_n^2 + a - 2\sqrt{a}u_n| = \frac{1}{2u_n}|u_n - \sqrt{a}|^2$$

Et là on cherche à majorer. On ne peut pas minorer le u_n en bas tout seul il faut s'aider de ce qu'il y a au dessus : $\frac{|u_n - \sqrt{a}|}{u_n} \le 1$. Du coup :

$$|u_{n+1} - \sqrt{a}| \le \frac{|u_n - \sqrt{a}|}{2}$$

On déduit par récurrence que $|u_n-\sqrt{a}|\leq \frac{|u_1-u_0|}{2^n}$ and we did it !

2ème partie de l'exercice : On pose $v_n = \frac{u_n - \sqrt{a}}{u_n + \sqrt{a}}$. Alors :

$$v_{n+1} = \frac{u_{n+1} - \sqrt{a}}{u_{n+1} + \sqrt{a}} = \frac{u_n + \frac{a}{u_n} - 2\sqrt{a}}{u_n + \frac{a}{u_n} + 2\sqrt{a}} = \frac{(u_n - \sqrt{a})^2}{(u_n + \sqrt{a})^2} = v_n^2$$

Donc par récurrence, pour tout n on a :

$$v_n = v_0^{2^n}$$

On en déduit que :

$$|u_n - \sqrt{a}| = v_n|u_n + \sqrt{a}| \le v_0^{2^n} 2u_0$$

Solutions - Planche 3.

Question de cours. On pose le polynôme caractéristique $x^2 - x - 1$. Son discrimant est 1 + 4 = 5. Donc les racines sont :

$$x_1 = \frac{1+\sqrt{5}}{2}, x_2 = \frac{1-\sqrt{5}}{2}$$

Donc d'après le cours, on a une expression de u_n :

$$u_n = ax_1^n + bx_2^n$$

Où a, b sont deux réels. Or $u_0 = 0 = a + b$ et $u_1 = 1 = ax_1 + bx_2$. Donc b = -a et $1 = a(x_1 - x_2) = -a\sqrt{5}$. Donc $a = -\frac{1}{\sqrt{5}}$.

D'où:

$$u_n = \frac{x_2^n - x_1^n}{\sqrt{5}}$$

Exercice 1. On pose $f(x) = e^x - 1$. \mathbb{R} est stable par f, donc u_n est bien définie.

 $f'(x) = e^x > 0$ donc f est croissante. Donc la suite est monotone.

On étudie le signe de g(x) = f(x) - x pour obtenir le sens de variation de la suite. $g'(x) = e^x - 1$ est négative sur $]-\infty,0]$ et est positive sur $[0,+\infty[$. Donc g est décroissante puis croissante. Or g(0)=0 donc $g>\geq 0$ et u_n est toujours croissante.

Cherchons les points fixes de f. Soit $x \in \mathbb{R}$ tel que f(x) = x. Alors d'après la fonction g, 0 est le seul point fixe.

Si $u_0 \le 0$, alors comme $]-\infty,0]$ est stable par f alors $u_n \le 0$ pour tout n. Or une suite croissante majorée converge. De plus elle converge vers un point fixe de f donc vers 0.

Si $u_0 > 0$, alors la suite diverge. En effet sinon elle serait majorée et donc elle convergerait vers 0. Or $u_0 > 0$ donc $u_n \ge u_0 > 0$ pour tout n. Donc par passage à la limite, $0 \ge u_0 > 0$. Ce n'est pas possible donc u_n diverge.

Résumons l'étude : si $u_0 \le 0$, alors $u_n \to 0$, sinon $u_n \to +\infty$.

Exercice 2. Il ne s'agit pas d'un type de suite qu'on connaît.

On pose la fonction $f(x) = xe^x$ définie sur \mathbb{R} . $f'(x) = e^x(1+x) > 0$ pour tout $x \in \mathbb{R}^+$. Donc f est croissante strictement sur \mathbb{R}^+ . Donc il s'agit d'une bijection entre $[0, +\infty[$ et lui même. Donc il existe un unique x_n tel que $f(x_n) = n$. Ou sinon on peut utiliser le théorème des valeurs intermédiaires. f(0) = 0 et $f(n) = ne^n \ge n$. Donc il existe un unique (par stric croissance) $x_n \in [0, n]$ tel que $f(x_n) = n$.

Montrons maintenant que x_n est croissante. Soit un entier naturel n. Alors si on avait $x_{n+1} \le x_n$, alors par croissance de f on aurait $f(x_{n+1}) = n + 1 \le n = f(x_n)$ ce qui est faux. Donc (x_n) est croissante.

Du coup (x_n) converge ou diverge vers $+\infty$. Si x_n converge disons vers l, alors par continuité de f, $f(x_n) \to f(l)$. Or $f(x_n) = n$, donc on aurait $n \to f(l)$ ce qui est impossible. Donc $x_n \to +\infty$.

1 Appendice méthodologique :

Un résumé du cours (non exhaustif donc).

Types de suite qu'on gère :

- les suites arithmétiques $u_n = a + u_{n-1}$, les suites géométriques $u_n = au_{n-1}$, les suites arithmético-géométrique $u_n = a + bu_{n-1}$
- les suites récurrentes linéaires doubles : $u_n = au_{n-1} + bu_{n-2}$.
- suites définies par une relation de récurrence d'ordre 1

Méthode pour une relation de récurrence d'ordre 1 :

- On pose f tel que $u_{n+1} = f(u_n)$.
- On montre que la suite est bien définie en trouvant un intervalle stable.
- On regarde les variations de f pour en déduire si u_n est **monotone** (sur un intervalle stable !!!).
- On regarde g(x) = f(x) x et son signe pour connaître le sens de monotonie.
- On cherche les points fixes de f (ou les zéros de g) car ce sont les **limites potentiels** de la suite.

Comment montrer qu'une suite converge:

- maitriser la définition avec les ϵ (genre $u_n \to l, v_n \to l'$ alors $u_n + 2v_n \to l + 2l'$)
- se ramener à étudier $|u_n l|$
- croissante et majorée alors converge
- minorations, majorations, théorème des gendarmes
- passage à la limite dans une fonction continue (si $v_n \to l$ alors $f(v_n) \to f(l)$).

Comment montre qu'une suite ne converge pas :

- par l'absurde et faire un passage à la limite
- montrer qu'elle diverge en $+\infty$ en la minorant
- trouver deux sous-suites qui ne converge pas vers la même limite