1.1 Gruppen und Monoide

Definitionen

1.1: Monoid 1.2: Gruppe 1.4: Abelsche Gruppe/Abelsches Monoid 1.8: Ring 1.9: Ordnung einer Gruppe/Ordnung eines Monoids 1.10: Untergruppe/Untermonoid 1. Zentralisator/Zentrum 1.15: Erzeuger 1.17: Ordnung eines Gruppenelements/Zyklische Gruppe 1.25: Gruppenexponent

Sätze

- 1.3: Assoziativität gilt für mehrere Elemente
- 1.5: Neutrales Element und Inverse sind eindeutig in einem
- 1.6: Linkseins und Linksinverse \Rightarrow Gruppe
 - 1. $H \le G \Leftrightarrow \forall a, b \in H : ab^{-1} \in H$
- 1.7: xg = h hat genau eine Lösung in G und r_g, ℓ_g sind bijek-
- 1.8: $(ab)^n = a^n b^n \Leftrightarrow ab = ba$
- 1.12: $H_i \leq G \Rightarrow \bigcap H_i \leq G$
- 1.13: $\forall S \subseteq G \exists$ kleinste Gruppe $\langle S \rangle$, die S enthält
- 1.14: $S \subseteq G$, dann $\langle S \rangle = \{ \text{Worte in } S \cup S^{-1} \cup \{e\} \}$
- 1.16: $\langle g \rangle = \{ g^n \mid n \in \mathbb{Z} \}$
- 1.18: zyklisch \Rightarrow abelsch
- 1.19: $g \in G, n = \operatorname{ord}(g), n' = \sup\{m \in \mathbb{N} \mid \mathbf{Defin}\}$ $g^k \neq g^j \forall k \neq j < n\}$ (a) n' = n **Defin** (b) $n < \infty \Rightarrow \forall m, m' \in \mathbb{Z} : g^m = g^{m'} \Leftrightarrow m \equiv m' \mod n$ 1.48: Ideal und $g^m = e \Leftrightarrow n \mid m$ (c) $\forall s \in \mathbb{Z} : \operatorname{ord}(g^s) = \frac{n}{\operatorname{ggT}(n,s)}$
- 1.20: (a) $\operatorname{ord}(g) = \infty \Leftrightarrow g^n$ paarw. versch $\forall n \in \mathbb{Z}$ (b) G zyklisch $\Rightarrow \forall H \leq G$ zyklisch
- 1.21: Untergruppen von \mathbb{Z} sind $n\mathbb{Z}, n \in \mathbb{N}$
- 1.22: Satz von Lagrange
- 1.23: $F \le H \le G$, dann $[G:F] = [G:H] \cdot [H:F]$
- 1.24: G endlich, dann (a) $\forall g \in G : \operatorname{ord}(g)$ (b) ord(G) = p Primzahl, dann G zyklisch
- endlich, dann (a) $\exp(G)$ (b) $\exp(G) = \text{kgV}(\text{ord}g \mid g \in G)$
- 2. $\operatorname{ord}(gh) = \operatorname{ord}(hg) \forall g \in G$
- 1.27: G endlich, dann (a) gh = hg und ggT(ordg, ordh) = 1 $dann \operatorname{ord}(gh) = \operatorname{ord} g \cdot \operatorname{ord} h \text{ (b) } p^f \mid \exp G \text{ für } p \text{ prim,}$ $f \in \mathbb{N}$, dann $\exists g \in G : \text{ord} g = p^f$ (c) G abelsch, dann $\exists g \in G : \exp(G) = \operatorname{ord}(g)$
- 1.28: G endlich abelsch, dann G zyklisch \Leftrightarrow ord $(G) = \exp(G)$

1.2 Gruppenhomomorphismen

Definitionen

- 1.29: Monoidhomomorphismus/Gruppenhomomorphismus
- 1.38: Konjugation/Innerer Automorphismus

Sätze

- 1.33: $H \leq G, \varphi: G \rightarrow G' \geq H'$, dann $\varphi(H) \leq G', \varphi^{-1}(H') \leq$
- 1.39: G erzeugt von S, dann $\varphi(s) = \psi(s) \forall s \Leftrightarrow \varphi = \psi$

1.3 Normalteiler

Definitionen

- Nebenklasse
- 1.40: Normalteiler
 - Normale Hülle (Körper)

1.44: Faktorgruppe

Sätze

- 1.41: $gN = Ng \Leftrightarrow gNg^{-1} = N \Leftrightarrow gNg^{-1} \subseteq N \Leftrightarrow N \trianglelefteq G$
- 1.42: $\operatorname{Kern}(\varphi) \leq G$
- 1.43: $N' \subseteq G', \varphi : G \to G'$, dann:
 - (a) $\varphi^{-1}(N') \leq G$
 - (b) $[G:H] = 2 \Rightarrow H \trianglelefteq G$
 - (c) G abelsch, $H \leq G \Rightarrow H \leq G$
 - (d) $[G,G] \subseteq G$
- 1.44: Faktorgruppe
 - 1. G abelsch $\Rightarrow G_N$ auch

1.4 Homomorphiesatz für Gruppen

Sätze

- 1.45: Homomorphiesatz für Gruppen
- 1.46: G zyklisch, dann $G \cong \mathbb{Z}_{n\mathbb{Z}}$ oder \mathbb{Z}
- 1.47: G_N abelsch $\Leftrightarrow [G, G] \leq N$

1.5 Einschub: Faktorringe

Definitionen

- 1.49: Faktorring

1.6 Die Isomorphiesätze

Sätze

- ord(G) 1.50: Erster Isomorphiesatz
 - 1.51: Zweiter Isomorphiesatz

1.7 (Semi-)direkte Produkte

Definitionen

1.53: Direktes Produkt von Gruppen 1.57: Semidirektes Produkt

Sätze

- 1.54: $N_1, N_2 \subseteq G$ disjunkt, dann:
 - (a) $n_1 n_2 = n_2 n_1, \forall n_1, n_2$
 - (b) $N_1N_2 \leq G$
 - (c) $N_1 \times N_2 \cong N_1 N_2$, insbesondere $\# N_1 N_2 = \# N_1 \# N_2$
- 1.55: G endlich, $\{N_i\}_{i\leq k} \leq G$ und gelte $\#N_i$ paarw. teilerfremd und $\prod \# N_i = \# G$, dann $\prod N_i \cong G$ via $(n_i) \mapsto$
 - 1. $n = \prod p_i^{f_i}$ für paarw. Primzahlen, dann versch. $\prod \mathbb{Z}_{(p_i^{f_i})} \cong \mathbb{Z}_{(n)}$
- 1.56: Semidirektes Produkt
- 1.58: $N \subseteq G, H \subseteq G$, dann:
 - (a) $\varphi: H \to \operatorname{Aut}(N), h \mapsto c_h$ ist Homomorphismus
 - (b) Gelten NH = G disjunkt, so ist $\psi : N \rtimes_{\varphi} H \rightarrow$ $G,(n,h)\mapsto n\cdot_G h$