STAT 500 Homework 11

Yifan Zhu

December 9, 2016

1. The choice of the final model is

 $SalePrice = \beta_1 BasementArea + \beta_2 LivingArea + \beta_3 TotalRoom + \beta_4 Age + \epsilon$

From the Backward Elimination, we have

Step	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1	Garage	4	0.0000	0.7711	4.1794	0.18	0.6719

From Stepwise Selection, we have

Step	Variable Entered	Variable Removed	Number Vars In	Partial R- Square	Model R- Square	C(p)	F Value	Pr > F
1	LivingArea	ı	1	0.5514	0.5514	951.805	1225.32	< .0001
2	BasementArea		2	0.1522	0.7036	293.249	511.50	< .0001
3	Age		3	0.0621	0.7657	25.8848	263.57	< .0001
4	TotalRoom	1	4	0.0055	0.7711	4.1794	23.72	< .0001

And from all possible models, the final choice have the second largest R-squared value, but have a better C_p than the full model. Thus we still choose this model.

2.

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	32673	6566.47208	39017274499	24.76	< .0001
BasementArea	58.12806	3.38917	4.635775 E11	294.16	< .0001
LivingArea	104.75703	4.45529	8.712679E11	552.86	< .0001
TotalRoom	-6481.53764	1330.68534	37388941590	23.72	< .0001
Age	-746.48764	46.74967	4.018148E11	254.97	< .0001

3.

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	001	5.277833E12 1.566478E12 6.844311E12	1.319458E12 1575933256	837.26	< .0001

4. The R^2 is 0.7711. It means that 77.11% of the variation in SalePrice of training data can be explained by the multiple linear regression model with BasementArea, LivingArea, TotalArea and Age.

5. From the studentized residual we can see there are more than 10 outliers whose studentized residual is greater than 3. And there are some potential outliers whose absolute value of studentized residual is greater than 2 but less than 3.

From the leverage plot, we can see that there are more than 10 points whose leverage is greater than 0.0015.

From the Cook'D plot, we can see there are 3 to 4 potential influential points.

6.

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	31813	4520.11936	7.04	< .0001
BasementArea	1	60.94602	2.46440	24.73	< .0001
LivingArea	1	98.50489	3.31417	29.72	< .0001
TotalRoom	1	-5303.86093	986.41063	-5.38	< .0001
Age	1	-776.22179	31.67872	-24.50	< .0001

7.

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	1010	9.037262E12 2.790858E12 1.182812E13	2.259316E12 1454329388	1553.51	< .0001

- 8. The R^2 is 0.7640. It means that 76.40% of the variation in SalePrice of evaluation data can be explained by the multiple linear regression model with BasementArea, LivingArea, TotalArea and Age.
- 9. $MSE_{evaluation} = 1454329388$ and $MSE_{training} = 1575933256$. Difference of these two is:

$$1575933256 - 1454329388 = 121603868$$

which is less than 10% of either one.