

Rafael Delgado Buscalioni

Outline

- M20. Molecular dynamics simulations QCM for streptavidin under GHz flow.
- M30. QCM analysis of liposome-DNA complex
- Suspended dissipative particles
- Methods
- Comparison with experiments
- Analysis: ways to dissipate
 - Liposome
 - DNA
 - Coverage
- Conclusions and futher work

Ring down QCM

Adsorbed analytes.

 Δf related to deposited mass and ΔD related to viscoelasticity.

Suspended analytes

How Δf and ΔD relate to "mass" and "dissipation" when then analyte is **NOT** adsorbed?...

#bp	L _{DNA}	ΔD/ΔF (10-6 Hz-1)	ΔD/ΔF (10-6 Hz-1)	D ₂ Δ D/ΔF (10-6 Hz-1)	ΔD/ΔF (10-6 Hz-1)
157	53,4	0.0317	0.061	0.088	0.143
50	17,0	0.0181	0.044	0.062	0.113
21	7.1	0.0137	0.038	0.051	0.111

<u>ITable 1</u>: Δ D/ΔF data for the specific binding of biotin-DNA of various lengths (L_{DM}) to neutravidin (red), followed by <u>liposomes</u> ($D_{1,3}$ = 50, 100, 200 nm) occurring through cholesterol-DNA (cholesterol placed at the opposite site o biotin). Ratios are averages of over 10 exp.; signal variation 10-15% Device: OCM-D, 35 MHz. ΔD/ΔF data refer to low surface coverages.

Basic definitions

Ring-down

$$x(t) = \Delta x e^{-2\pi\Gamma t} \cos(\omega t + \phi)$$

$$\omega = 2\pi f$$

$$D = \frac{2\Gamma}{f}$$

Phasor

$$x(t) = x_R \cos(\omega t) + x_I \sin(\omega t)$$

$$x(t) = \Re[\hat{x} \exp[-\mathrm{i}\omega t]]$$

$$\hat{x} \equiv x_B + ix_I$$

Impedance

$$Z = \frac{\text{wall stress}}{\text{wall velocity}}$$

$$Z = -\frac{\overline{\sigma}}{v_{wall}}$$

$$[Z] = \frac{\text{Mass}}{\text{Area} \times \text{time}}$$

Immersed boundary method in FLUAM

FLUAM: Fluid And Matter. GPU CODE https://github.com/fbusabiaga/fluam

Excess-mass: $m_e = m - \rho \mathbb{V}$ (Archimedes)

Liposome-DNA complex

Unit-mapping with experiments

Unit	length	simulation:	$\ell =$	$7.917\mathrm{nm}$
------	--------	-------------	----------	--------------------

Magnitude	Simulation	International Units
· · · · · · · · · · · · · · · · · · ·	1	7.917nm
Resolution	h 	$\ell/2 = 3.95 \mathrm{nm}$
Kin. viscosity	0.226	$10^{-6} {\rm m}^2/{\rm s}$
fluid density	1	$10^3 \mathrm{kg/m^3}$
sound velocity	2.68	$1.5\times10^3\mathrm{m/s}$
QCM frequency	0.0005	$35 \mathrm{MHz}$
k_BT	6.6×10^{-5}	$4 \times 10^{-21} \mathrm{J}$

Comparison with experiments: Acoustic Ratio.

- Experiments: POPC lipids with dsDNA at $T=24^{o}C$.
- Simulations: impedance-velocity, $k_{lipo} = 100$, h = 0.5.

AR= [35MHz] x DC from SIMULATIONS					
Liposome Radius [nm]	DNA length= 50 nm	$L_{DNA} = 17 \text{ nm}$	$L_{DNA} = 7.1 \text{ nm}$		
25	1.5 ± 0.5	1.3 ± 0.1	0.95 ± 0.01		
50	3.0 ± 0.5	2.54 ± 0.05	1.68 ± 0.01		
100	7 ± 1	5.6 ± 0.4	3.27 ± 0.07		
AR= [35MHz] x DC from EXPERIMENTS					
25	2.2 ± 0.4	1.54 ± 0.05	1.33±0.05		
50	3.2 ± 0.5	2.5 ± 0.2	1.78±0.05		
100	6.0 ± 0.5	3.95± 0.05	3.85±0.05		

Comparison with experiments: Acoustic Ratio.

- Experiments: POPC lipids with dsDNA at $T=24^{o}C$.
- Simulations: impedance-velocity, $k_{lipo} = 100$, h = 0.5.

Impedances due different dissipation mechanisms

	element	Impedance	$kg/(m^2s)$	
Wall-stress	Fluid	η/δ	$10^{[4-5]}$	Oldos one stress is on its or is o
Wall-Force	DNA	$\frac{50k_BTx_0}{(L_{DNA}^2L^2)}$	4	No rices
Inertia	Liposome	$m_e\omega/L^2$	[0 - 100]	inertial forces ~ excess mass
Surface Stress	Liposome	$\frac{\eta R^3}{\delta^2 L^2}$	$[5-100]^{\text{torqu}}$	surface flow (membrane fluidity)
Surface flow	Liposome	-	F / `	lubrication
Lubrication	Liposome	$\frac{1}{d}$	> 100	

Liposome's perturbative flow

Liposome's perturbative flow

Liposome stresslet: Impedance due to oscillatory stresslet

• Unsteady stresslet bounded flow: work against deformation

$$S_{xy}(y) = \frac{20\pi\eta R^3}{3} \left[B + iA \right] \exp[-i\alpha y]$$

Impedance

$$Z^{(free)}(y) = Z_S [A + iB] \exp[-2i\alpha y]$$

$$Z_S = \frac{20\pi \eta R^3}{3\delta^2 L^2} = \frac{m_f}{\tau_{\nu}}$$
 $A \approx 1.40 \frac{R^2}{\delta^2}$
 $B \approx 1.45 - 0.01 \exp[3.0R/\delta]$

Free liposomes (without DNA)

$$Z^{(free)} = \frac{20\pi\eta R^3}{3\delta^2 L^2} \left[(A + iB)\exp[-2\alpha y] + \frac{C\delta}{(y - R)} \right]$$

Lubrication

June 26, 2019

Free liposomes (without DNA)

$$Z^{(free)} = Z_S \left[(A + iB) \exp[-2\alpha y] + \frac{C\delta}{(y-R)} \right]$$

Free liposomes (without DNA)

$$Z^{(free)} = Z_S \left[(A + iB) \exp[-2\alpha y] + \frac{C\delta}{(y-R)} \right]$$

Bending rigidity of the liposome

- ullet Liposome elastic network: spring between neighbour beads $\kappa_{
 m LIPO}$
- ullet The liposome deforms more easily as $\downarrow \kappa_{
 m LIPO}$

$$\downarrow \kappa_{\text{LIPO}} \implies \downarrow \text{impedance}(Z)$$

.

• But freq. shift Im[Z] decreases more than dissipation -Re[Z].

Thus,
$$\downarrow \kappa_{\rm LIPO} \implies \uparrow AR$$

• Theory and experiments in qualitative agreement

DNA effects

- DNA contribution to impedance: $Z^{(lipo-DNA)} Z^{(free-lipo)}$
- Neck: DNA-liposome-cholesterol linker, DNA-tilt angle
- Linker: DNA-wall (protein); tilt angle

DNA contribution to impedance

- $\delta Z^{(DNA)} \equiv Z^{(Lipo-DNA)} Z^{(free-Lipo)}$
- $\delta Z^{(DNA)} \sim RL_{dna}$
- $Z^{(A)}(y; R, L_{DNA}) = Z^{(free)}(y; R) + \delta Z^{(DNA)}(R, L_{DNA})$

Coverage: Many liposome-DNA complexes

Many liposome-DNA's

$$\rho_L = \frac{N}{L^2}$$

$$\phi \equiv \frac{N\pi R^2}{L^2}$$

- ullet Δf and ΔD versus ϕ

Impedance against coverage

Conclusions

- Hydrodynamics controls the dissipation and frequency shift of suspended particles
- Acoustic ratio is a complex quantity, not always indicating larger dissipation
- \bullet Dissipation ΔD is better suited for Limit of Detection (LOD) analyses
- \bullet Surface stress is the dominant hydrodynamic QCM-sensing effect of liposomes: increases like R^3
- Larger dissipation for shorter DNA strands (closer to surface)