ধমনি দ্বারা রক্ত পরিবহণ	সাবক্লেভিয়ালঃ ফুসফুস আন্তঃম্যামারিঃ স্থনগ্রন্থি, বক্ষী সার্ভিকালঃ <mark>অক্সিপুট</mark> পেশি থাইরোসার্ভিকালঃ থাইরয়েড ভার্টিরালঃ মেরুদণ্ড সিলিয়াকঃ পাকস্থলী, যকৃত ফেনিকঃ <mark>ডায়াফ্রাম</mark> মেসেন্টেরিকঃ অন্ত্রের বিভিন্ন জননঃ গোনাড ইলিয়াকঃ <mark>পেলভিস</mark> , উরু, পা	ত গ্রন্থি, ল্যারিংক্স, ঘা অংশ					
রাইবোজোম / রাইবোসোম	সাইটোপ্লাজমে মুক্ত অবস্থায় রাইবোসোম * ১৯৫৫ সালে <mark>প্যালাডে</mark> রাই * এটি প্রাণী ও উদ্ভিদ উভয় ৫ * প্রধান কাজঃ <mark>প্রোটিন সংহে</mark> * এটি প্রোটিনের পলিপেপটা	বোসোম আবিষ্কার ^ন কাষে উপস্থিত থাবে <mark>গ্লষণ করা</mark> ও য়েহ জ	করেন চ <mark>াতীয় পদাং</mark>	র্থর বিপাক সাধ	<mark>ন করা</mark> । এজন	্য রাইবোসোমবে	চ <mark>প্রোটিন ফ্যাক্টরি</mark> বলা হয়
ভাইরাস	ভাইরাস অকোষীয় এর সাইটোপ্লাজম, কোষবি এর নিউক্লিক এসিড হিসের্			-	া, নিউক্লিয়াস	থাকে না	
ব্যাকটেরিয়া	গ্রিক শব্দঃ Bakterion = Little rod আবিষ্কারকঃ অ্যান্টনি ফন লিউয়েন হক (১৬৭৫) -> Father of Bacteriology -> ওলন্দাজ নামকরণঃ এহরেনবার্গ (জার্মানি) ব্যাকটেরিয়া তত্ত্বঃ লুই পান্তুর (ফরাসি) বৈশিষ্ট্যঃ						
আইসোটোপ (তেজস্ক্রিয়তা)	-> শরীরের কোনো স্থানে বে কোবাল্ট-৬০: ক্যান্সার আক্রা আয়োডিন-১৩১: থাইরয়েড ও ফসফরাস-৩২: রক্তের লিউ টেকনেশিয়াম-৯৯: দেহের হ * হাইড্রোজেনের ৭ টি আইরে	ন্ত কোষ ধ্বংস করে গ্রন্থির অস্বাভাবিক বৃ কামিয়া রোগের চিনি াড় বেড়ে যাওয়া কা	দ্ধিজনিত রে কৎসা রণ নিধারণ	রাগের চিকিৎসা করা		মি (হাইড়োজেন নিউট্রন সংখ্যা A - Z 0	া), ডিউটেরিয়াম, টিট্রিয়াম
		টিট্রিয়াম	3 ₁ T	1	3	2	
তেজস্ক্রিয়তা	* ১৮৯৬ সালে ফ্রাসি বিজ্ঞানী হেনরী বেকেরেল আকস্মিকভাবে এ রশ্মি আবিষ্কার করেন। তার নামানুসারে এই রশ্মির নামকরণ করা হয়ঃ বেকেরেল রশ্মি * <u>সংজ্ঞাঃ</u> পরমাণুর নিউক্লিয়াস থেকে স্বতঃস্ফুর্তভাবে রশ্মি বিকিরণের প্রক্রিয়াই তেজক্ষিয়তা * তেজক্ষিয়তা একটি <mark>অপ্রত্যাবর্তী প্রক্রিয়া (One way reaction</mark>) * Radioactive Decay: শক্তির <mark>মুক্তি</mark> ঘটে * Radiative Activation: শক্তির শোষণ ঘটে						
টিকা	* DPT-1, OPV-1: শি * TT: ১০-১৬ বছর * মহিলাদের ধনুষ্টংকারের বি * ভিটামিন-A ক্যাপসুলঃ শি	ঁ [T টিকা দিতে হবে	াঃ ১৫ বছর				

টিকার প্রকারভেদ	১. নিষ্ক্রিয়কৃত জীবাণু — জীবন্ত টিকাঃ -> হাম, মাম্পস, পোলিও, জলাতজ্ঞ, যক্ষ্মা, প্লেগ, টাইফয়েড, গুটি বসন্ত ২. মৃত জীবাণু — নিম্প্রাণ টিকাঃ -> ইনফ্লুয়েঞ্জা, কলেরা ৩. নিষ্ক্রিয় বিষভিত্তিক টিকাঃ -> ডিপথেরিয়া, টিটেনাস (ধনুষ্টংকার) ৪. দেহ তলের রাসায়নিক বস্তুঃ -> হেপাটাইটিস, হিউম্যান প্যাপিলোমা ভাইরাস
AIDS (Acquired Immune Deficiency Syndrome)	* ১৯৮১ সালে USA তে ১ম সনাক্ত হয় * HIV (Human Immuno Dificiency Virus) ভাইরাসের মাধ্যমে এই রোগ হয় * HIV শ্বেত রক্তকণিকার T-লিম্ফোসাইটকে আক্রমণ করে
খনিজ পদার্থ	* সবচেয়ে শক্ত খনিজঃ হীরক * " নরম খনিজঃ ট্যালক
ভিটামিনের অভাবজনিত রোগ	* ক্যালসিয়াম (Ca)-এর অভাবে -> রিকেটস, অস্টিওম্যালেসিয়া (বয়স্ক নারীদের)
বার্ষিক গতি	 ৣ এই গতির ফলে পৃথিবী সূর্যকে ঘড়ির কাটার বিপরীত দিকে প্রদক্ষিণ করছে ৣ এই গতির ফলাফলঃ ৢ ঋতু পরিবর্তন ৢ দিন-রাত্রির হাস-বৃদ্ধি
আহ্নিক গতি	 ৣয়
আকরিক	* আয়রন (Fe)-এর আকরিকঃ ম্যাগনেটাইট, হেমাটাইট, লিমোনাইট, আয়রন পাইরাইটস * সোডিয়াম (Na)-এর আকরিকঃ রকসল্ট, চিলি সল্টপিটার, ন্যাট্রোন, বোরাক্স * ক্যালসিয়াম (Ca)-এর আকরিকঃ চুনাপাথর, জিপসাম, ডলোমাইট * অ্যালুমিনিয়াম (Al)-এর আকরিকঃ বক্সাইট, কোরাভাম, ক্রায়োলাইট
হিগস-বোসন কণা	⇒ এই কণা স্ক্রির কণা (God's Particle) নামে পরিচিত ⇒ এই কণার স্পিন ০ (শূন্য), কিন্তু ভর আছে ⇒ ভরহীন কোনো কণা হিগস-বোসন ক্ষেত্রে প্রবেশ করলে ধীরে ধীরে ভর প্রাপ্ত হয় ⇒ হিগস ক্ষেত্র ভর সৃষ্টি করে না, তা কেবল ভর স্থানান্তরিত করে হিগস-বোসনের মাধ্যমে ⇒ বোসন কণা পাউলির বর্জন নীতি মানে না ⇒ সত্যেন্দ্র নাথ বোস (Satyendra Nath Bose)-এর নামানুসারে বোসন কণার নামকরণ করা হয়েছে
ফোটন কণা	⇒ এটি তাড়িতটোম্বক বল বহন করে ⇒ ফোটন কণার নিশ্চল ভর ০ (শূন্য) ⇒ ১৯২৬ সালে লুইস প্রতিটি কোয়ান্টার নাম দেন – ফোটন ⇒ প্রতিটি ফোটনের শক্তিঃ hf ⇒ ফোটন কণা তড়িৎ নিরপেক্ষ ⇒ শূন্য মাধ্যমে ফোটন কণা <mark>আলোর গতিতে</mark> চলে, এর বেগের কোনো হাস-বৃদ্ধি ঘটে না
ডায়োড	 p-type ও n-type অর্ধপরিবাহী পাশাপাশি জোড়া লাগিয়ে p-n জাংশন ডায়োড তৈরি করা হয় ⇒ ডায়োড রেক্টিফায়ার হিসেবে কাজ করে ⇒ রেক্টিফায়ার AC প্রবাহকে DC প্রবাহে রূপান্তরিত করে

ম্যাব্স প্লাঙ্কের কোয়ান্টাম তত্ত্ব	 ⇒ ১৯০০ সালে ম্যাক্স প্লাজ্ঞ কোয়ান্টাম তত্ত্বের প্রস্তাবনা করেন ➡ ১৯০৫ সালে <mark>আইনস্টাইন</mark> কোয়ান্টাম তত্ত্বের ব্যবহার করে আলোক তড়িৎ ক্রিয়ার ব্যাখ্যা দেন ➡ এই তত্ত্বের সাহায্যে কৃষ্ণবস্তু বিকিরণ ও ফটো-তড়িৎ ক্রিয়া ব্যাখ্যা করা যায়
কৃষ্ণবিবর (Black Hole)	⇔ এটি আবিষ্কার করেনঃ জন হইলার (USA) -> ১৯৬৯ সালে
নিউক্লিয় রিয়েক্টর	
আলো	
রঞ্জন রশ্মি (এক্স-রে – X ray)	□ 1895 সালে বিজ্ঞানী রন্টজেন রঞ্জনরশ্মি আবিষ্কার করেন □ এর জন্য তিনি ১৯০১ সালে নোবেল পুরস্কার পান যা বিজ্ঞান বিষয়ে ১ম নোবেল □ এটি একটি তড়িৎচুম্বকিয় আড় তরজা □ এটি উচ্চ ডেদন ক্ষমতাসম্পন □ এর তরজাদৈর্ঘ্যঃ 10-8 থেকে 10-13 মিটার □ ধর্মঃ □ সরল পথে গমন করে □ অদৃশ্য রশ্মি, চোখের রেটিনায় পড়লে দৃষ্টির অনুভূ □ আলোর বেগে গমন করে — প্রতিফলন, প্রতিসরণ, পোলারণ ঘটে □ আলোর তড়িৎ ক্রিয়া সৃষ্টি করে □ ফটোগ্রাফিক প্লেটে প্রতিক্রিয়া সৃষ্টি করে □ চার্জ নিরপেক্ষ, তাই তড়িৎ বা চুম্বক ক্ষেত্র দ্বারা বিক্ষিপ্ত হয় না □ গ্যাসের মধ্য দিয়ে গমনের সময় গ্যাসকে আয়নিত করে □ জীবন্ত কোম □ প্রতিপ্রভা সৃষ্টি করতে পারে
তর্ জ া	তরজা ২ ধরণেরঃ ১. অনুদৈর্ঘ্য তরজা ২. অনুপ্রস্থ/আড় তরজা ১. <mark>অনুদৈর্ঘ্য</mark> তরজাঃ স্পন্দনের দিকের সাথে <mark>সমান্তরালে অগ্রসর</mark> হয় Ex: <mark>স্প্রিং-এর তরজা, শব্দ</mark> ২. <mark>অনুপ্রস্থ/আড়</mark> তরজাঃ স্পন্দনের দিকের সাথে <mark>সমকোণে বা আড়াআড়ি</mark> অগ্রসর হয়। যেমনঃ আলো, বেতার, পানি-এর তরজা
লেন্স	উত্তল/অভিসারী লেসঃ ■ আতশী কাঁচ হিসেবে ব্যবহৃত হয় ■ এর সাহায্যে আলোকে কেন্দ্রীভূত করে আগুন জ্বালানো হয় ■ চশমা, ক্যামেরা, বিবর্ধক কাঁচ, অণুবীক্ষণ যন্ত্র, দূরবীক্ষণ যন্ত্র ইত্যাদিতে ব্যবহার হয় ■ সিনেমার প্রজেক্টরে ব্যবহার হয় অবতল/অপসারী লেসঃ ■ আলো অপসারিত হয়ে বিভিন্ন দিকে ছড়িয়ে পড়ে ■ গ্যালিলিওর দূরবীক্ষণ যন্ত্রে ব্যবহার হয়
ধাতুর চৌম্বকত্ব	প্যারা-টোম্বকঃ দূর্বল চৌম্বক — চুম্বকের দিকে মুখ করে থাকতে চায় অক্সিজেন, সোডিয়াম, অ্যালুমিনিয়াম, টিন ভায়া-টৌম্বকঃ দূর্বল চৌম্বক — চুম্বকের বিপরীত দিকে ঘুরে থাকে হাইড়োজেন, পানি, সোনা, রূপা, তামা, বিসমাথ ফেরো-টৌম্বকঃ শক্তিশালী চৌম্বক লোহা, কোবাল্ট, নিকেল

গ্যাসের সূত্র	তাপমাত্রা — চার্লসের সূত্রঃ স্থির চাপে নির্দিষ্ট ভরের যেকোনো গ্যাসের <mark>আয়তন তার পরম তাপমাত্রার সমানুপাতিক V C T চাপ — বয়েলের সূত্রঃ স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের <mark>আয়তন ঐ গ্যাসের উপর প্রযুক্ত চাপের ব্যস্তানুপাতিক</mark>; PV = K তাপমাত্রা+চাপ — গে-লুস্যাকের সূত্রঃ স্থির আয়তনে নির্দিষ্ট ভরের কোনো গ্যাসের <mark>চাপ, তার পরম তাপমাত্রার সমানুপাতিক</mark> P α T</mark>
পরম শূন্য তাপমাত্রা	 শুলাঃ যে তাপমাত্রায় চার্লস বা গে-লুস্যাকের সূত্রানুসারে কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয়, তাকে পরম শূন্য তাপমাত্রা বলে। পরম শূন্য তাপমাত্রাঃ -273°C বা 0 কেলভিন (K) বুদ্দান্ডে সবচেয়ে কম তাপমাত্রাঃ 0 কেলভিন (K)
নিষ্ক্রিয় গ্যাস	 নিজ্ঞিয় গ্যাসঃ হিলিয়াম (He), নিয়ন (Ne), আর্গন (Ar), ক্রিপ্টন (Kr), জেনন (Xe), রেডন (Rn), ওগানেসন (Og) নিজ্ঞিয় গ্যাস অন্য কোনো মৌলের সাথে বিক্রিয়া করে না — তাই এদেরকে অভিজাত (Noble) গ্যাস বা মহান গ্যাস বলে একমাত্র হিলিয়াম ছাড়া অন্য সকল নিজ্ঞিয় গ্যাসের যোজ্যতা স্তরে ৮টি করে ইলেক্ট্রন আছে। অক্টেড পূর্ণ থাকায় এরা অন্য মৌলের সাথে বিক্রিয়া করে না। হিলিয়ামের যোজ্যতা স্তরে মাত্র ২টি ইলেক্ট্রন থাকায় হিলিয়াম Octet Rule অনুসরণ করে না নিজ্জিয় গ্যাসের ধর্মঃ * নিজ্জিয় গ্যাসের আয়নিক শক্তি সবচেয়ে বেশি * সাধারণ তাপমাত্রা ও চাপে এক (১) পরমাণুক গ্যাস * বর্ণ, গন্ধ বা স্বাদ নেই * গলনাজ্ঞ্চ ও স্কুটনাজ্ঞ্চ অত্যন্ত কম
রোধের সূত্র	১. দৈর্ঘ্যের সূত্রঃ - তাপমাত্রা ও প্রস্থচ্ছেদের ক্ষেত্রফল (A) অপরিবর্তিত থাকলে পরিবাহীর রোধ এর দৈর্ঘ্যের সমানুপাতিকঃ $R \alpha L$ ২. প্রস্থচ্ছেদের সূত্রঃ - তাপমাত্রা ও দৈর্ঘ্য (L) অপরিবর্তিত থাকলে পরিবাহীর রোধ এর প্রস্থচ্ছেদের ক্ষেত্রফলের ব্যস্তানুপাতিক $R \alpha \frac{1}{A}$ সুতরাং, রোধের সূত্রঃ $R = \frac{\rho L}{A}$; যেখানে, $\rho = \infty$ আপেক্ষিক রোধ
তাপের প্রবাহ	তাপের পরিচলন (Convection): - এই প্রক্রিয়ায় মাধ্যমের কণাগুলো তাপ গ্রহণ করে উত্তপ্ত হয়, এবং এক স্থান থেকে অন্য স্থানে সঞ্চালিত (স্থান পরিবর্তন করা) হয়। - তরল ও বায়বীয় পদার্থে পরিচলন (Convection) প্রক্রিয়ায় তাপ পরিবাহিত হয় তাপের বিকিরণঃ
LSD [Lysergic Acid Diethylamide]	* এটি সুইস বিজ্ঞানী আলবার্ট হফম্যান কর্তৃক আবিষ্কৃত শক্তিশালী সাইকেলেডিক পদার্থ * এটি মানসিক অবস্থায় গভীর পরিবর্তন আনতে সক্ষম এবং সচরাচর হ্যালুসিনেশন তৈরি করে
সংরক্ষণশীল বল	* কোনো বস্তু বা কণার উপর যে বল দ্বারা কৃত মোট কাজের পরিমাণ শূন্য (০), তাই সংরক্ষণশীল বল। * যথাঃ অভিকর্ষজ বল, বৈদ্যুতিক বল, চৌম্বক বল, আদর্শ স্প্রিং-এর বিকৃতি
অসংরক্ষশীল বল	* কোনো বস্তু বা কণার উপর যে বল দ্বারা কৃত মোট কাজের পরিমাণ শূন্য নয় * যথাঃ ঘর্ষণ বল, সান্দ্র বল

টিস্যু	সরল টিস্যুঃ * যে স্থায়ী টিস্যুর প্রতিটি কোষ আকার, আকৃতি ও গঠনের দিক থেকে অভিন্ন, তাকে সরল টিস্যু বলে। * সরল টিস্যু ৩ প্রকারঃ ১. প্যারেনকাইমা ২. কোলেনকাইমা ৩. স্কেলেরেনকাইমা 5. প্যারেনকাইমাঃ * এগুলোতে ক্রোরোপ্লাস্ট থাকলে এর নাম হয়ঃ ক্রোরেনকাইমা * জলজ উদ্ভিদের বড় বড় বায়ুকুঠুরিযুক্ত প্যারেনকাইমাকে বলেঃ অ্যারেনকাইমা (Aerenchyma)
ক্ষার	* ধাতু বা ধাতুর ন্যায় ক্রিয়াশীল যৌগমূলক যেসব হাইড়োক্সাইড পানিতে দ্রবণীয়, তাদেরকে ক্ষার বলে * প্রশমণ বিক্রিয়াঃ অস্ত্র-ক্ষারক বিক্রিয়া * ক্ষার জলীয় দ্রবণে হাইড়োক্সিল আয়ন (OH) দান করে * ক্ষার লাল লিটমাসকে নীল করে [এসিডঃ নীল লিটমাসকে লাল করে] * ক্ষারের জলীয় দ্রবণকে স্পর্শ করলে সাবানের মত পিচ্ছিল মনে হয় * মৃদু ক্ষারঃ NH4OH, Fe(OH)2, Fe(OH)3, Al(OH)3 * তীব্র ক্ষারঃ NaOH, KOH, Ca(OH)2
নিউমোনিয়া	* নিউমোনিয়াঃ ফুসফুসের প্রদাহ * হেপাটাইটিসঃ যকৃতের প্রদাহ * নেফ্রাইটিসঃ কিডনির প্রদাহ * নিউমোকক্কাস নামক ব্যাকটেরিয়া এ রোগের অন্যতম কারণ * ফুসফুসের আবরণকে বলা হয়ঃ প্রুরা
মৌলিক রাশি	* যে সকল রাশি স্বাধীন ও নিরপেক্ষ এবং অন্য রাশির উপর নির্ভর করে না, তাই মৌলিক রাশি * মৌলিক রাশিঃ ৭ টি => দৈর্ঘ্য, ভর, সময়, তাপমাত্রা, তড়িৎ প্রবাহ, দীপন তীব্রতা, পদার্থের পরিমাণ * বিভিন্ন মৌলিক রাশির এককঃ দৈর্ঘ্যঃ মিটার ভরঃ কিলোগ্রাম সময়ঃ সেকেন্ড তাপমাত্রাঃ কেলভিন তড়িৎ প্রবাহঃ অ্যাম্পিয়ার দীপন তীব্রতাঃ ক্যাভেলা পদার্থের পরিমাণঃ মোল
অ্যালকেন	* অসম্পৃক্ত হাইড্রোকার্বনের সাথে হাইড্রোজেন সংযোজন করে অ্যালকেন প্রস্তুত করা হয় * এতে প্রভাবক হিসেবে নিকেল (Ni) ব্যবহৃত হয় * ১ - ৪ কার্বন বিশিষ্ট অ্যালকেনঃ গ্যাসীয় * ৫ - ১৫ কার্বন বিশিষ্ট অ্যালকেনঃ তরল * ১৬ থেকে উচ্চতর অ্যালকেনঃ কঠিন * অ্যালকেন সাধারণত প্যারাফিন নামে পরিচিতি * অ্যালকেন এসিড, ক্ষার, ধাতু ও ক্ষারক কারো সাথে রাসায়নিক ভাবে বিক্রিয়া করে না
পরাগায়ন	স্ব-পরাগায়নঃ ধুতুরা পর-পরাগায়নঃ শিমুল, পেঁপে স্ব+পর পরাগায়নঃ সরিষা, কুমড়া
জীববিজ্ঞানের বিভিন্ন শাখা	Morphology: অজ্ঞাসংস্থানবিদ্যা Physiology: শারীরবিদ্যা Embryology: ভ্রণবিদ্যা Histology: টিস্যুবিদ্যা Cytology: কোষবিদ্যা Genetics: বংশগতিবিদ্যা Ecology: বাস্তুবিদ্যা Evolution: বিবর্তন
pH স্কেল	* বিজ্ঞানী সোরেনসেনঃ pH স্কেল আবিস্কার করেন * কোনো পদার্থ অন্নীয়, ক্ষারীয় নাকি নিরপেক্ষ তা বুঝার জন্য এই স্কেল ব্যবহৃত হয় * pH = -log[H ⁺] => এটি কোনো দ্রবণের হাইড়োজেন আয়নের ঘনমাত্রা প্রকাশ করে * pH স্কেলের মানঃ ০ - ১৪ * ৭ থেকে কমঃ অন্নীয় দ্রবণ * ৭ থেকে বেশিঃ ক্ষারীয় দ্রবণ * ৭ = নিরপেক্ষ দ্রবণ

রাসায়নিক সংকেত রাসায়নিকের পদার্থের অভাবে উদ্ভিদে প্রতিক্রিয়া	Na ₂ CO ₃ . 10H2O : কাপড় কাচার সোডা C ₁₇ H ₃₅ COONa : কাপড় কাচার সাবান (সোডিয়াম ইন্টিয়ারেট) C ₁₇ H ₃₅ COOK : শেভিং ফোম/জেল (পটাশিয়াম ইন্টিয়ারেট) NaHCO ₃ : বেকিং সোডা CuSO ₄ . 5H2O : তুঁতে K ₂ SO ₄ .Al(SO ₄) ₃ . 24H2O : ফিটকিরি ফসফরাস (Fe): উদ্ভিদের পাতা বেগুনি রঙ ধারণ করে ম্যাগনেশিয়াম (Mg): এর অভাবে ক্লোরফিল সংগ্লেষিত হয় না, ফলে পাতার সবুজ রঙ কমে যায় পটাশিয়াম (K): পাতার শীর্ষ ও কিনারা হলুদ হয় ও মৃত অঞ্চল সৃষ্টি হয় নাইট্রোজেন (N): এর অভাবে পাতার ক্লোরোফিল সৃষ্টিতে বিন্ন ঘটে
এসিড	 * সাধারণত জৈব এসিডগুলো দুর্বল এসিড হয় এবং রাসায়নিক এসিডগুলো শক্তিশালী এসিড হয় * তবে, কার্বোনিক এসিড (H₂CO₃) রাসায়নিক এসিড হয়েও দুর্বল এসিড * দুর্বল এসিড এসিটিক এসিড বা ভিনেগার (CH₃COOH), সাইট্রিক এসিড (C₆H₆O₇), অক্সালিক এসিড (HOOC-COOH) * শক্তিশালী এসিডঃ
মৌলিক কণিকা	- যেসব সূক্ষ্ম কণিকা দ্বারা পরমাণু গঠিত, তাদেরকে মৌলিক কণিকা বলে। - পরমাণুর মৌলিক কণিকা ৩ টিঃ ইলেকট্রন, প্রোটন, নিউট্রন। - ভর বর্ণালী বিক্ষেপণ পদ্ধতিতে পরমাণুর ভর পরিমাপ করা যায়। - আাভোগেন্ডোর সংখ্যা ব্যবহার করে কোনো পদার্থের একটি অণুর ভর নির্ণয় করা যায়। ইলেকটোনঃ * বিজ্ঞানী <mark>থ্যসন</mark> এটি আবিষ্কার করেন। * প্রতীকঃ e * আধানঃ - 1.6 x 10 ⁻¹⁹ কুলম্ব (C) * ভরঃ 9.11 x 10 ⁻³¹ kg * এর আধান ঋণাত্মক (-) (প্রাটনঃ * বিজ্ঞানী রাদারফোর্ট এটি আবিষ্কার করেন। * প্রতীকঃ p * আধানঃ + 1.6 x 10 ⁻¹⁹ কুলম্ব (C) (ইলেকট্রোনের প্রায় সমান) * ভরঃ 1.67 x 10 ⁻²⁷ kg (নিউট্রোনের প্রায় সমান) * এর আধান ধনাত্মক (+) নিউট্রোনঃ * বিজ্ঞানী চ্যাডউইক এটি আবিষ্কার করেন। * প্রতীকঃ n * ভরঃ 1.67 x 10 ⁻²⁷ kg
পলিমার	* এর আধান নেই (শূন্য) * অনেকগুলো ছোট অনু (মনোমার) একত্রে হয়ে পলিমার তৈরি করে। * পিভিসি পাইপ (PVC) — ভিনাইল ক্লোরাইড নামক মনোমার থেকে তৈরি হয়। * পলিথিন — ইথিলিন নামক মনোমার থেকে তৈরি হয়। * বৈদ্যুতিক সুইচ তৈরিতে ব্যবহৃত পলিমার ব্যাকেলাইট তৈরি হয়ঃ ফেনল ও ফরমালভিহাইড নামক মনোমার থেকে। * বাসন তৈরির পলিমার মেলামাইন রেজিন তৈরি হয়ঃ মেলামাইন ও ফরমালভিহাইড নামক মনোমার থেকে। প্রাকৃতিক পলিমারঃ - পাট, সিল্ক, সুতি কাপড়, রাবার কৃত্রিম পলিমারঃ - মেলামাইন, রেজিন, ব্যাকেলাইট, পিভিসি, পলিথিন

জারণ-বিজারণ বিক্রিয়া রেডক্স (Redox) বিক্রিয়া	* Redox = Red (Reduction – বিজারণ) + Ox (Oxidation – জারণ) * বিজারণে ইলেকট্রোন গ্রহণ – <mark>অ্যানোডে জারণ, ক্যাথোডে বিজারণ</mark> জারণে ইলকট্রোন গান * বিজারকঃ বিজারক নিজে জারিত হয়ে (ইলেকট্রোন দান – H ₂ , Na, K) অন্যকে বিজারিত করে। তীর বিজারকঃ H ₂ , Li, Na, K, Rb বিজারকঃ H ₂ S, Mg, Ca * জারকঃ জারক নিজে বিজারিত হয়ে (ইলেকট্রোন দান – O ₂ , Cl ₂) অন্যকে <mark>জারিত করে।</mark> জারকঃ HNO ₃ , H ₂ SO ₄ , O ₂ , Cl ₂ , F ₂ * SO ₂ : একই সাথে <mark>জারক ও বিজারক</mark> * H ₂ O ₂ : সাধারণত জারকের মতো কাজ করলেও <mark>অন্নীয় বা ক্ষারীয় দ্রবণে বিজারকের</mark> মতো কাজ করে H ⁺ + Cl ⁻ = HCl
	জারণ বিজারণ * ইলেকট্রোন স্থানান্তরের মাধ্যমে সংঘটিত বিক্রিয়াঃ সংযোজন, বিয়োজন, প্রতিস্থাপন ও দহন বিক্রিয়া * ইলেকট্রোন স্থানান্তর হয় না এরূপ বিক্রিয়াঃ প্রশমন ও অধঃক্ষেপ বিক্রিয়া
তড়িৎ রাসায়নিক কোষ	- যে কোষে রাসায়নিক জারণ-বিজারণ বিক্রিয়ার ফলে রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত হয়, তাকে তড়িৎ রাসায়নিক কোষ বলে। - তড়িৎ রাসায়নিক কোষ ২ প্রকারঃ প্রাইমারি কোষ, সেকেন্ডারি কোষ। প্রাইমারি বা প্রাথমিক কোষঃ * এসব কোষ সরাসরি রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত করে তড়িৎ প্রবাহ বজায় রাখে। * উদাহরণঃ ড্যানিয়েল কোষ, শুদ্ধো কোষ সেকেন্ডারি বা সঞ্চয়ী কোষঃ * এরা তড়িৎ শক্তিকে রাসায়নিক শক্তিতে রূপান্তরিত করে সঞ্চয় করে এবং প্রয়োজনবোধে সেই রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত করতে পারে। * উদাহরণঃ লেড এসিড কোষ, নিকেল অক্সাইড কোষ
উদ্ভিদের অভিস্রবণ	- এই প্রক্রিয়ায় একটি <mark>বৈষম্যভেদ্য ঝিল্লির</mark> মধ্য দিয়ে পানি (দ্রাবক) <mark>হালকা ঘনত্বের দ্রবণ থেকে ঘন দ্রবণের দিকে</mark> প্রবাহিত হয়। - এই প্রক্রিয়া দুই দ্রবণের ঘনত্ব সমান না হওয়া পর্যন্ত চলতে থাকে। - উদাহরণঃ পানিতে <mark>শুকনো কিসমিস</mark> ডুবিয়ে রাখলে তা ফুলে উঠে।
লবণ	- এসিড ও ক্ষারকের বিক্রিয়ায় লবণ ও পানি উৎপন্ন হয়। বিজিন্ন ধরণের লবণঃ * সোডিয়াম ক্লোরাইড (NaCl) — খাবারের লবণ * সোডিয়াম ক্লোরাইড (NaCl) — খাবারের লবণ * সোডিয়াম ক্লোরাইড (C ₁₇ H ₃₅ COONa) — কাপড় কাচা সাবান যা একটি লবণ * সোডিয়াম কিয়ারেট (C ₁₇ H ₃₅ COONb) — কাপড় কাচা সোবান যা একটি লবণ * পেটাশিয়াম কিয়ারেট (C ₁₇ H ₃₅ COOK) — শেভিং ফোম বা জেল যা একটি লবণ * তুঁতে (CuSO4, 5H ₂ O) — একটি লবণ * ফিটকিরি [K ₂ SO ₄ —Al ₂ (SO ₄) ₃ , 24H ₂ O] — একটি লবণ * চুনাপাথর একটি লবণ * মাটির উর্বরতা বৃদ্ধিতে ব্যবহৃত বেশির ভাগই লবণ। উদাহরণঃ অ্যামোনিয়াম নাইট্রেট, অ্যামোনিয়াম ফসফেট, পটাশিয়াম নাইট্রেট কবেশের ব্যবহারঃ => কৃষি জমিতে ব্যাকটেরিয়া ও ভাইরাস প্রভিরোধে এবং শৈবালের উৎপাদন বন্ধে তুঁতে বা কপার সালফেট প্রয়োগ করা হয়। => তুঁতে, মারকিউরিক সালফেট (HgSO ₄), সিলভার সালফেট (AgSO ₄) শিল্পকারখানায় প্রভাবক হিসেবে কাজ করে। => টেক্লটোইল ও বং তৈরির কারখানায় রং ফিক্স করার জন্য লবণ ব্যবহৃত হয়। => বাবার প্রস্থৃতিতে লবণ ব্যবহৃত্ব হয়। => ওমুধ কারখানায় স্যালাইন এবং অন্যান্য ওমুধে লবণ ব্যবহৃত হয়। => ভিটারজেন্টের ফিলার হিসেবে লবণ খূবই প্রয়োজনীয়।
রাবার	 * এটি পানিতে অদ্রবণীয়। * জৈব দ্রাবক — এসিটোন, মিথানলে অদ্রবণীয়। * কিছু জৈব দ্রাবক — টারপেন্টাইন, পেট্রোল, ইথার, বেনজিন এগুলোতে সহজেই দ্রবণীয় * সাধারণত কোনো পদার্থকে তাপ দিলে তার আয়তন বৃদ্ধি পায়, কিন্তু তাপে রাবারের আয়তন হ্রাস পায়। * ওজন গ্যাস রাবারের সঞ্চো বিক্রিয়ে করে এবং রাবারকে ক্ষয় করে।

সংকর ধাতু	- দুই বা ততোধিক ধাতু একত্রে মিশিয়ে সংকর ধাতু তৈরি করা হয়। - প্রধান ধাতুর নামানুসারে সংকর ধাতুর নামকরণ করা হয়। কপারের সংকর ধাতুঃ * পিতল (ব্রাস) = কপার + জিংক (৩৫%) * কাঁসা (ব্রোঞ্জ) = কপার + টিন (১০%) ক্টিল = লোহা + কার্বন (১%)
ভিনেগার	- <mark>ইথানোয়িক এসিড বা অ্যাসিটিক এসিড (CH3-COOH) এর ৬-১০% জলীয় দ্রবণকে</mark> ভিনেগার বা সিরকা বলে। * অধিকাংশ অণুজীবের বংশবিস্তার হয়ঃ pH 6.5-7.5 এর মধ্যে, অর্থাৎ হালকা এসিডিও বা ক্ষারীয় মাধ্যমে। ভিনেগার এসিটিক হওয়ায় এখানে অণুজীব বংশবিস্তার করতে পারে না। তাই ভিনেগার প্রিজারভেটিভ হিসেবে ব্যবহৃত হয়।