The group G is isomorphic to the group labelled by [72, 39] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3)$: C8:

	1a	8a	2a	8b	8c	4a	4b	8d	3a
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	-1	1	1	-1	1
χ_3	1	-E(4)	1	E(4)	-E(4)	-1	-1	E(4)	1
χ_4	1	E(4)	1	-E(4)	E(4)	-1	-1	-E(4)	1
χ_5	1	-E(8)	-1	$E(8)^{3}$	E(8)	-E(4)	E(4)	$-E(8)^3$	1
χ_6	1	$-E(8)^3$	-1	E(8)	$E(8)^{3}$	E(4)	-E(4)	-E(8)	1
χ_7	1	$E(8)^{3}$	-1	-E(8)	$-E(8)^3$	E(4)	-E(4)	E(8)	1
χ_8	1	E(8)	-1	$-E(8)^{3}$	-E(8)	-E(4)	E(4)	$E(8)^{3}$	1
χ_9	8	0	0	0	0	0	0	0	-1
χ_9	8	0	0	0	0	0	0	0	_

Trivial source character table of $G \cong (C3 \times C3)$: C8 at p = 2:

N_1		N_2	N_3	N_4
P_1		P_2	P_3	P_4
1a	3a	1a	1a	1a
8	8	0	0	0
8	-1	0	0	0
4	4	4	0	0
2	2	2	2	0
1	1	1	1	1
	1a 8 8 4	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$P_1 = Group([()]) \cong 1$$

$$P_2 = Group([(2,4)(3,6)(5,9)(7,8)]) \cong C2$$

$$P_2 = Group([(2,4)(3,6)(5,9)(7,8)]) \cong C2$$

$$P_3 = Group([(2,4)(3,6)(5,9)(7,8),(2,8,4,7)(3,9,6,5)]) \cong C4$$

$$P_4 = Group([(2,4)(3,6)(5,9)(7,8),(2,8,4,7)(3,9,6,5),(2,3,8,9,4,6,7,5)]) \cong C8$$

$$N_1 = Group([(2,3,8,9,4,6,7,5),(2,8,4,7)(3,9,6,5),(2,4)(3,6)(5,9)(7,8),(1,2,4)(3,5,7)(6,8,9),(1,3,6)(2,5,8)(4,7,9)]) \cong (C3 \times C3) : C8$$

$$N_2 = Group([(2,4)(3,6)(5,9)(7,8),(2,3,8,9,4,6,7,5),(2,8,4,7)(3,9,6,5)]) \cong C8$$

$$N_2 = Group([(2, 4)(3, 6)(5, 9)(7, 8), (2, 3, 8, 9, 4, 6, 7, 5), (2, 8, 4, 7)(3, 9, 6, 5)]) = C8$$

 $N_3 = Group([(2, 8, 4, 7)(3, 9, 6, 5), (2, 4)(3, 6)(5, 9)(7, 8), (2, 3, 8, 9, 4, 6, 7, 5)]) \cong C8$

$$N_3 = Group([(2,3,8,7)(3,9,6,5),(2,4)(3,0)(3,9)(7,8),(2,3,8,9,4,6,7,5)]) = C8$$

 $N_4 = Group([(2,3,8,9,4,6,7,5),(2,8,4,7)(3,9,6,5),(2,4)(3,6)(5,9)(7,8)]) \cong C8$