Unsupervised domain adaptation with application to urban scene analysis

Patrick Pérez

valeo.ai

Imaging and Machine Learning
4 April 2019

Joint work with Tuan-Hung Vu, Himalaya Jain, Maxime Bucher and Matthieu Cord

Annotation hell

SoA visual deep learning is fully supervised

- Data collection is difficult
- Labelling is hell (if possible)

• Doomed insufficient for in-the-wild, life-long visual understanding

Annotation hell

Other types of learning to the rescue

- Weakly supervised
- Semi-supervised learning
- Transfer learning
- Domain adaptation
- Learning from synthetic data
- Unsupervised and self-supervised learning
- Active learning
- Incremental learning
- Online learning
- Zero-shot and few-shot learning

Transfer and adaptation

- Learn one task, conduct another one
- Learn on one distribution, run on another one = Domain Adaption

Street light effect (a.k.a. drunkard's search)?

Not quite....

Domain adaptation in vision

1	Advances in Computer Vision and Pattern Recognition A C P
	Domain Adaptation in Computer
	Vision Applications Pringer

1	A Co	omprehensive Survey on Domain Adaptation for Visual								
			1							
	Gabr	iela Csurka								
	1.1	.1 Introduction								
	1.2		4							
	1.3	Shallow domain adaptation methods								
		1.3.1 Homogeneous domain adaptation methods								
		1.3.2 Multi-source domain adaptation								
		1.3.3 Heterogeneous domain adaptation								
	1.4	Deep domain adaptation methods	9							
		1.4.1 DeepDA architectures	1							
	1.5	Beyond image classification	5							
		1.5.1 Object detection								
	1.6	Beyond domain adaptation: unifying perspectives								
		1.6.1 DA within transfer learning	9							
		1.6.2 Connection between DA and traditional ML methods 3								
		1.6.3 HDA related to multi-view/multi-modal learning 33	3							
	1.7	Conclusion	3							
2	A De	eper Look at Dataset Bias	5							
		na Tommasi, Novi Patricia, Barbara Caputo, Tinne Tuytelaars								
	2.1	Introduction	5							
	2.2 A Large Scale Cross-Dataset Tesbed									
		2.2.1 Merging Challenges								
		2.2.2 Data Setups and Feature Descriptor								
	2.3	Studying the Sparse Set	4							
	2.4	Studying the Dense Set								
	2.5 Conclusion									

Different, though related input data distributions

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

Different, though related input data distributions

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

Different, though related input data distributions

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

Different, though related input data distributions

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

Different, though related input data distributions

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

Different, though related input data distributions

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

Unsupervised Domain Adaptation (UDA)

Labelled source domain data

Unlabelled target domain data

Deep learning for UDA

Distribution alignment

• Appearance, deep features, outputs

Some alignment tools

- Distribution discrepancy loss
- Optimal transport
- Discriminative adversarial loss
- Generative adversarial models

Self-training

- Curriculum learning
- Pseudo-label from confident prediction on target data

Dual Channel-wise Alignment Net (DCAN)

[Wu 2018]

Adversarial gradient reversal

[Ganin 2015]

Adversarial feature alignment

[Hofmann 2016]

Cycle-Consistent Adversarial Domain Adaptation

CyCADA [Hoffman 2018]

Adversarial feature alignment

[Chen 2017]

Adversarial output alignment

[Tsai 2018]

Scrutinizing output space

TRAIN TEST

Source labelled data

Source

Target

Entropy-based alignments

Observations

- Entropy way higher/noisier on target vs. source inputs
- Entropy is class-agnostic and requires no label to be computed

Proposed approach [Vu 2019]

- Pixel-wise minimization of predictive entropy on target (MinEnt)
- Image-wise adversarial discrimination of information maps (AdvEnt)

Aim

- Increase prediction confidence
- Reduce domain gap

Scrutinizing output space

TRAIN TEST

Source labelled data

Source

Target

Proposed method

Proposed method

MinEnt

$$\min_{\theta_F} \frac{1}{|\mathcal{X}_s|} \sum_{\boldsymbol{x}_s} \mathcal{L}_{seg}(\boldsymbol{x}_s, \boldsymbol{y}_s) + \frac{\lambda_{ent}}{|\mathcal{X}_t|} \sum_{\boldsymbol{x}_t} \mathcal{L}_{ent}(\boldsymbol{x}_t)$$

Proposed method

$$\mathcal{L}_{seg}(m{x}_{s}, m{y}_{s}) = -\sum_{h=1}^{H} \sum_{w=1}^{W} \sum_{c=1}^{C} m{y}_{s}^{(h, w, c)} \log m{P}_{m{x}_{s}}^{(h, w, c)}$$

AdvEnt

$$\min_{\theta_D} \frac{1}{|\mathcal{X}_s|} \sum_{\boldsymbol{x}_s} \mathcal{L}_D(\boldsymbol{I}_{\boldsymbol{x}_s}, 1) + \frac{1}{|\mathcal{X}_t|} \sum_{\boldsymbol{x}_t} \mathcal{L}_D(\boldsymbol{I}_{\boldsymbol{x}_t}, 0)
\min_{\theta_F} \frac{1}{|\mathcal{X}_s|} \sum_{\boldsymbol{x}_s} \mathcal{L}_{seg}(\boldsymbol{x}_s, \boldsymbol{y}_s) + \frac{\lambda_{adv}}{|\mathcal{X}_t|} \sum_{\boldsymbol{x}_t} \mathcal{L}_D(\boldsymbol{I}_{\boldsymbol{x}_t}, 1)$$

Experiments

Ingredients

- Segmentor: DeepLab2 (with VGG-16 or ResNet-101)
- Discriminator: as in DCGAN (4 conv-layers, leaky ReLU)
- Metric: mean Intersection over Union (mloU %)

Synthetic-to-Real setups

- GTA5→Cityscapes: 25k/3k images, 19 common classes
- Synthia→Cityscapes: 10k/3k images, 16 common classes

Qualitative results

road	sidewalk	building	wall	fence
pole	light	sign	vegetation	terrain
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

Qualitative results

input image

without adaptation

road	sidewalk	building	wall	fence
pole	light	sign	vegetation	terrain
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

Quantitative results

$GTA5 \rightarrow Cityscapes$

Method	UDA Model	Oracle	mIoU Gap (%)		
FCNs [Hoffman'16]	27.1	64.6	-37.5		
CyCADA [Hoffman'18]	28.9	60.3	-31.4		
Adapt-SegNet [Tsai'18]	35.0	61.8	-25.2		
Ours (single model)	35.6	61.8	-24.6		
Adapt-SegNet [Tsai'18]	42.4	65.1	-22.7		
Ours (single model)	43.8	65.1	-21.3		
Ours (two models)	45.5	65.1	-19.6		

SYNTHIA \rightarrow Cityscapes

Method	UDA Model	Oracle	mIoU Gap (%)
FCNs [Hoffman'16]	22.9	73.8	-50.9
Adapt-SegNet [Tsai'18]	37.6	68.4	-30.8
Ours (single model)	36.6	68.4	-31.8
Adapt-SegNet [Tsai'18]	46.7	71.7	-25.0
Ours (single model)	47.6	71.7	-24.1
Ours (two models)	48	71.7	-23.7

Extension to object detection

Cityscapes → Cityscapes Foggy

Models	person	rider	car	truck	snq	train	mcycle	bicycle	mAP
SSD-300	15.0	17.4	27.2	5.7	15.1	9.1	11.0	16.7	14.7
Ours (MinEnt)	15.8	22.0	28.3	5.0	15.2	15.0	13.0	20.6	16.9
Ours (AdvEnt)	17.6	25.0	39.6	20.0	37.1	25.9	21.3	23.1	26.2

Outlook

Important problem, big improvement margin

Hybridization with

- Multi-sensor, multi-task
- Other orthogonal methods ("conservative loss", class prior)
- Privileged information learning on source domain
- Semi-supervised/few-shot learning
- Learning w/o forgetting (toward "domain extension")

References

[Wu 2018] Z. Wu, X. Han, Y.-L. Lin, M. Gokhan Uzunbas, T. Goldstein, S. Nam Lim and L. S. Davis. DCAN: Dual channel-wise alignment networks for unsupervised scene adaptation. ECCV 2018

[Hoffman 2018] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros and T. Darrell. *CyCADA: Cycle-consistent adversarial domain adaptation*. ICML 2018

[Ganin 2015] Y. Ganin and V. Lempitsky.

Unsupervised domain adaptation by backpropagation. ICML 2015.

[Hoffman 2016] J. Hoffman, D. Wang, F. Yu, and T. Darrell. FCNs in the wild: Pixel-level adversarial and constraint-based adaptation. arXiv 2016

[Tzeng 2017] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. *Adversarial discriminative domain adaptation*. CVPR 2017.

[Chen 2017] Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. F. Wang, and M. Sun. No more discrimination: Cross city adaptation of road scene segmenters. ICCV 2017

[Tsai 2018] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang and M. Chandraker. Learning to adapt structured output space for semantic segmentation. CVPR 2018

[Lee 2019] K.-H. Lee, G. Ros, J. Li, and A. Gaidon. SPIGAN: Privileged adversarial learning from simulation. ICLR 2019

[Vu 2019] T.-H. Vu, H. Jain, M. Bucher, M. Cord an P. Pérez.

AdvEnt: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR 2019