SKILL UPGRADE - INTERNSHIF

NAME. : ASHOKK

Email ID: ashokk2712004@gmail.com@gmail.com

TASK-1:

PROGRAM:

import random import nltk from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score, classification_report from nltk.corpus import movie_reviews

Download NLTK data nltk.download('movie_reviews')

Prepare data

train_docs, test_docs = train_test_split(documents, test_size=0.25, random_state=42) train_texts = [' '.join(doc) for doc, _ in train_docs] train_labels = [label for _, label in train_docs] test_texts = [' '.join(doc) for doc, _ in test_docs] test_labels = [label for _, label in test_docs]

Feature extraction and model training vectorizer = CountVectorizer() X_train = vectorizer.fit_transform(train_texts) X_test = vectorizer.transform(test_texts) classifier = MultinomialNB().fit(X_train, train_labels) # Predictions and evaluation
predictions = classifier.predict(X_test)
print(f'Accuracy: {accuracy_score(test_labels, predictions)}')
print('Classification Report:')
print(classification_report(test_labels, predictions))

EXPECTED OUTPUT:

Using built-in dataset as an alternative

Overall Sentiment Distribution:

Accuracy: 0.782

Classification Report:

	± .			
	precision	n recall	f1-score	support
n∈	eg 0.76	0.80	0.78	241
pc	os 0.80	0.76	0.78	259
accurac	СУ		0.78	500
macro av	7g 0.78	0.78	0.78	500
weighted av	7g 0.78	0.78	0.78	
