北京航空学院学报

Journal of Beijing Institute of Aeronautics and Astronautics

一九八二年 第二期 Nº2 1982

飞机起落架收放及转轮复杂空间机

构的位置综合和碰撞检测

北京航空学院 79級研究生 凌曉琳

北京航空学院 (导师)教授 張启先

【摘 要】

本文主要应用方向余弦矩阵配以拆杆拆付法,对飞机起落架收放及转轮复杂空 间机构进行位置综合。着重推导了起落架机构的设计计算公式,并讨论了机构运动 中杆件的碰撞检测问题。

引 士

由于高速飞机的机翼很薄,因此高速飞机上往往采用机身起落架结构。交[5]曾用矢量 解析法来确定不带转轮的机身起落架的空间转轴。但是,在某些情况下,不仅要求起落架在

收上位置时所占的收藏空间 最小,在放下位置时使飞机 具有足够的稳定性,同时还 要求起落架机轮收到理想的 位置和方向。这时,仅用空 间转轴进行收放的起落架机 构就往往难 以 实 现 这些目 的。为了解决这一问题,必 须在起落架收放过程中,同 时使机轮相对于支柱旋转一 个角度。这就是带有收放及 转轮空间机构的起落架,如图1、

2 所示。这是一种八字腿型、搖臂式带转轮的机身起落架(以左侧起落架为例)。两个串联的机轮11通过转动付K连接在搖臂 4 上。搖臂用后十字接头 5 通过转动付E、F 与滅震器 6 相连,又用前十字接头 3、小连杆 9 通过转动付W、A 及球面付G 分别与支柱 2 、侧撑杆10 相连。侧撑杆用球面付P 与机身 1 相连。减震器通过球面付 Q 和支柱相连。支柱通过转动付Q 10 2 连在机身 1 上,并通过球面付 10 与作动简 10 3、8 相连。作动筒用球面付 10 连在机身加强框 10 4上,并通过球面付 10 5 与作动简 10 8、相连。作动筒用球面付 10 6、起落架绕空间转轴 10 6、这种转的收放动作是利用一个带作动筒的空间四杆 机 构 10 7 一 8 一 1 完成的。二个并联的空间五杆机构 10 2 一 3 一 9 一 10 一 10 7 和 2 一 3 一 4 一 5 一 6 一 2 使得机轮 10 1 同时相对支柱 2 旋转一个角度,使在放下位置时平行于翼展 10 6 的 机轮轴线收到机身上后,旋转到垂直于翼展方向。机构 10 7 一 10 7 一 10 7 一 10 7 不 10 8 可 10 7 和 10 9 可 10 9 可 10 7 和 10 7 可 10 9 可 10 7 和 10 7 可 10 9 可 10 7 和 10 7 可 10 9 可 10

上述复杂的空间运动使得这种带转轮的起落架收放空间机构的分析综合比一般的起落架机构更为复杂困难。目前,关于这种起落架空间机构尚未见有公开的研究资料发表。国内某研究所应用一般空间解析几何的方法曾对这种起落架进行了某些设计。本文的目的是从空间机构学的角度,采用方向余弦矩阵配以拆杆拆付法[1,2],对该种起落架进行位置综合,使机构的设计工作得到不少简化和提高。对于不带转轮的一般起落架空间机构,本文则作为一种简化特例来进行综合。空间机构运动中杆件的碰撞检测是重要而又困难的问题,本文也用比较简捷的方法进行了初步探讨。

文中进行坐标变换时所用的方向条弦矩阵[c,,]为:

$$[c_{1,1}] = \begin{bmatrix} c\theta_{f} & -c\alpha_{1,s}\theta_{1} & s\alpha_{1,s}\theta_{1} \\ s\theta_{f} & c\alpha_{1,s}c\theta_{1} & -s\alpha_{1,s}c\theta_{1} \\ 0 & s\alpha_{1,s} & c\alpha_{1,s} \end{bmatrix}$$

这里,[c,,]既可用于表示右手直角坐标系 OX,Y,Z, 变换到坐标系OX,Y,Z. (这里轴X,也垂直于轴Z.)的坐标变换矩阵,也可用于表示由坐标系OX,Y,Z, 转动至OX,Y,Z, 的转动矩阵。这里角度 θ ,为X,轴绕Z.轴逆时针方向转至X,的角度,角度 α .,为Z.轴绕X,

轴逆时针力向旋转至Z,轴的角度(参见图 3)。矩阵元素中c表示 \cos ,s表示 \sin 。显然,

$$[c_{ij}] = [c_{ji}]^{-1} = [c_{ji}]^T$$

参考坐标系原点选在支柱轉軸上的机构綜合

在一般起落架设计中,往往给出机轮轴线 \overline{Z}_K 在起落架放下和牧 上 时 的 方向余弦(图 2), $\overline{Z}_K(m_1,m_2,m_3)$, $\overline{Z}_K(m_1',m_2',m_3')$ (上标""用于表示牧 上 位置,以下类同),并部分给定机轮轴线上一点K在起落架放下和牧上位置时的坐 标 $K(x_K,y_K,z_K)$ 和 $K'(x_K,y_K,z_K)$ 。设 计员根据结构特点再给以不同的预定条件,就可以构成这种起落架的不同设计方案。由于摇臂与机轮及其它构件之间都有直接联系,因此,在考虑可以自由预定的条件时,宜首先考虑摇臂的条件。在通常的设计中,摇臂垂直于机轮轴线,即,

$$\overrightarrow{WK} \perp \overrightarrow{Z}_K, \overrightarrow{W'K'} \perp \overrightarrow{Z}_{K'}$$

于是有:

$$m_1(x_K - x_W) + m_2(y_K - y_W) + m_3(z_K - z_W) = 0$$

$$m'_1(x_K' - x_W') + m'_2(y_K' - y_W') + m'_3(z_K' - z_{W'}) = 0$$
(1)

考虑到! kw 为定长,有

$$l_{KW}^{2} = (x_{K} - x_{W})^{2} + (y_{K} - y_{W})^{2} + (z_{K} - z_{W})^{2}$$

$$= (x_{K}' - x_{W}')^{2} + (y_{K} - y_{W}')^{2} + (z_{K}' - z_{W}')^{2}$$

$$= l_{K}^{2}'_{W}'$$
(2)

所以,在W和W'点的 6 个坐标中,可以预定三个,而用上述 关系求出另外三个。其次,可预定复合**数链**似的轴线 \overline{Z}_s (小连杆 9 的方向)与 机轮轴线 \overline{Z}_s 平行,即 \overline{Z}_s = (m_1, m_2, m_3) , \overline{Z}_s' = (m_1, m_2', m_3') 。这样就可 沿 复合**数**链 \overline{W} 把闭合环 1-2-3-9-10-1与闭合环 2-3-4-5-6-2 拆开逐个进行综合。

按固定参考坐标系 X_0 — Y_0 — Z_0 坐 标 系原点选取的不同,可分两 种 情 况 进行综合。本图节主要研究参考坐标系原点 O 选在起落架支柱轴线 Z_1 上 的情况。至于原点 O 不在支柱轴线 Z_1 上的情况,将在下节作适当讨论。

(一)第一个闭合环──空间五杆机构(R—R—R— S—S的综合)

如图 4 所示,在第一个闭合环,即空间五杆机构 R-R -R-S-S中(R 表示转动付,S 表示球 面 付),取固定参考坐标系为 X_0 — Y_0 — Z_0 ,分别 与构件 1、2、3 相连的坐标系为 X_1 — Y_1 — Z_1 (1=1、2、3)。这里参考坐标系的 X_0 方向系沿飞机的顺航向方向,取向上的方向为 Y_0

方向, \overrightarrow{Z}_0 方向则由右手法则确定。又轴线 \overrightarrow{X}_1 垂直于 \overrightarrow{Z}_0 与 \overrightarrow{Z}_1 , \overrightarrow{X}_2 垂直于 \overrightarrow{Z}_1 与 \overrightarrow{Z}_2 , \overrightarrow{X}_3 垂直于 \overrightarrow{Z}_2 与 \overrightarrow{Z}_3 。

对图4所示第一个闭合环按已知起落架放下和收上状态W点的二个位置和 Z_s 的二个方向来进行综合时,应进一步完全预定构件 3 的两个姿态。通常的设计都取构件 3 为十字接头,即

$$\overrightarrow{Z}_3 \perp \overrightarrow{Z}_2 \left(\alpha_{23} = \frac{\pi}{2} \right),$$

 \overrightarrow{A} \overrightarrow{A}

$$\overrightarrow{Y}_{3} / \overrightarrow{Z}_{2}, \overrightarrow{Z}_{1} \perp \overrightarrow{OW}, \overrightarrow{Z}_{2} \perp \overrightarrow{Z}_{3}$$

这样, \overrightarrow{Y}_3 或 \overrightarrow{Z}_2 对参考坐标系 $X_0-Y_0-Z_0$ 的方向余弦(u_1 , u_2 , u_3)可如下求出:由

$$\overrightarrow{Y}_{8} /\!\!/ \overrightarrow{Z}_{2} = \overrightarrow{Z}_{3} \times \overrightarrow{OW} / \parallel \overrightarrow{Z}_{3} \times \overrightarrow{OW} \parallel \partial_{1}$$

$$\overrightarrow{Y}_{3} = (u_{1}, u_{2}, u_{3}) = \frac{(m_{2}z_{W} - m_{3}y_{W}, m_{3}x_{W} - m_{1}z_{W}, m_{1}y_{W} - m_{2}x_{W})}{\sqrt{(m_{2}z_{W} - m_{3}y_{W})^{2} + (m_{3}x_{W} - m_{1}z_{W})^{2} + (m_{1}y_{W} - m_{2}x_{W})^{2}}}$$
(3)

又:

$$\overrightarrow{X}_{3} = \overrightarrow{Y}_{3} \times \overrightarrow{Z}_{3} = (u_{2}m_{3} - u_{8}m_{2}, u_{8}m_{1} - u_{1}m_{3}, u_{1}m_{2} - u_{2}m_{1})
= (V_{1}, V_{2}, V_{3})$$
(4)

由此可得构件 3 对参考坐标系 $X_0 - Y_0 - Z_0$ 的方向余弦矩阵:

$$\begin{bmatrix} c_{08} \end{bmatrix} = \begin{bmatrix} V_1 & u_1 & m_1 \\ V_2 & u_2 & m_2 \\ V_3 & u_3 & m_3 \end{bmatrix}$$

$$\begin{bmatrix} c_{08}' \end{bmatrix} = \begin{bmatrix} V'_1 & u'_1 & m'_1 \\ V'_2 & u'_2 & m'_2 \\ V'_3 & u'_3 & m'_6 \end{bmatrix}$$
(5)

于是,图 4 所示空间五杆机构的综合问题可归结为已知构件 3 在放下和收上状态的两个位置、姿态,W、W'、 $[c_{0,s}]$, $[c_{0,s}']$ 及夹 角 $\alpha_{2,s}$ (= $\frac{\sigma}{2}$) 时的 机 构综合问题。

将图 4 所示 R-R-R-S-S 闭式机构沿运动付 W 拆开,就可进一步按两个开式链 R-R 及 S-S 来进行综合。

由图 5 知,开式链R-R中,已知

图 5

$$a_{23}=\frac{\pi}{2}$$
,

尚有七个待求结构参数: α_{11} 、 α_{12} 、 θ_{11} 、 s_{11} 、 s_{22} 、 h_{23} 、 h_{34} 。下面求解这些结构参数。

① 写出 ○ A 为定长的关系式。

由于

$$\begin{pmatrix}
x_A \\
y_A \\
z_A
\end{pmatrix} = \begin{pmatrix}
x_W \\
y_W \\
z_W
\end{pmatrix} - h_3 \begin{bmatrix} c_{03} \end{bmatrix} \begin{pmatrix} 1 \\
0 \\
0 \end{pmatrix} = \begin{pmatrix}
x_W - h_3 v_1 \\
y_W - h_3 v_2 \\
z_W - h_3 v_3
\end{pmatrix}$$
(6)

所以

$$\begin{split} l_{OA}^2 &= x_A^2 + y_A^2 + z_A^2 = (x_W - h_3 v_1)^2 + (y_W - h_3 v_2)^2 + (z_W - h_3 v_3)^2 \\ &= (x_W' - h_3 v_1')^2 + (y_W' - h_3 v_2')^2 + (z_W' - h_3 v_3')^2 \end{split}$$

即:

$$h_{3} = \frac{x_{W}^{2} + y_{W}^{2} + z_{W}^{2} - x_{W}^{2}' - y_{W}^{2}' - z_{W}^{2}'}{2(x_{W}v_{1} + y_{W}v_{2} + z_{W}v_{3} - x_{W}'v_{1}' - y_{W}v_{2}' - z_{W}'v_{3}')}$$
(7)

由此按W、W' 点的坐标及 \overrightarrow{X}_s 、 \overrightarrow{X}_s 的方向余弦,可求出 A、A' 两 点 的 坐 标 和结构参数 h_s 。

② 将假想的向量封闭形O-A-a-b-O向 Z_1 轴投影,有关系式:

$$x_{A}\cos(Z_{1}, X_{0}) + y_{A}\cos(Z_{1}, Y_{0}) + Z_{A}\cos(Z_{1}, Z_{0}) + S_{2}\cos(Z_{2}, Z_{1}) + S_{1} = 0$$

由于

$$\overrightarrow{Z}_{1} = \begin{pmatrix} n_{1} \\ n_{2} \\ n_{3} \end{pmatrix} = \begin{pmatrix} \cos(Z_{1}, X_{0}) \\ \cos(Z_{1}, Y_{0}) \\ \cos(Z_{1}, Z_{0}) \end{pmatrix} = \begin{bmatrix} c_{01} \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} s\alpha_{01}s\theta_{1} \\ -s\alpha_{01}c\theta_{1} \\ c\alpha_{01} \end{pmatrix}$$

可得:

$$x_{A}s\alpha_{01}s\theta_{1} - y_{A}s\alpha_{01}c\theta_{1} + z_{A}c\alpha_{01} + s_{2}c\alpha_{12} + s_{1} = 0$$
(8)

将A、A'点的坐标代入上式,并将所得两式相减,得I

$$\Delta x_A s \alpha_{01} s \theta_1 - \Delta y_A s \alpha_{01} c \theta_1 + \Delta z_A c \alpha_{01} = 0$$
 (8')

其中:

$$\Delta x_A = x_A' - x_A,$$

$$\Delta y_A = y_A' - y_A,$$

$$\Delta z_A = z_A - Z_A'$$

按轴线 Z_1 和 Z_2 的夹角写出不包含中间变量 θ_2 、 θ_3 的纯角度关系式:

$$c \alpha_{12} = \cos(Z_1, Z_2) = (0, 0, 1)[c_{23}][c_{33}][c_{01}] \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= u_1 \cdot c \alpha_{12} \cdot c \beta_{12} \cdot c \alpha_{13} \cdot c \beta_{13} + u_2 \cdot c \alpha_{13} \cdot c \beta_{13} + u_3 \cdot c \alpha_{13} \cdot c \beta_{13} + u_3 \cdot c \alpha_{13} \cdot c \beta_{13} + u_3 \cdot c \alpha_{13} \cdot c \beta_{13} \cdot c$$

$$=u_{1}s\alpha_{01}s\theta_{1}-u_{2}s\alpha_{01}c\theta_{1}+u_{3}c\alpha_{01}$$
 (9)

将式(5) 代入上式幷相减,得:

$$\Delta u_1 s \alpha_{01} s \theta_1 - \Delta u_2 s \alpha_{01} c \theta_1 + \Delta u_3 c \alpha_{01} = 0$$

$$\tag{9'}$$

其中:

$$\Delta u_i = u_i' - u_i$$
 ($j = 1, 2, 3$)

按要求, $\Delta u_{s} \rightleftharpoons 0$, $\Delta z_{d} \rightleftharpoons 0$,所以 $s\alpha_{s,1} \rightleftharpoons 0$ 。于是式(8')、(9')可改写为,

$$\Delta x_{A}s\theta_{1} - \Delta y_{A}c\theta_{1} + \Delta z_{A}ctg\alpha_{0} = 0$$

$$\Delta u_1 s \theta_1 - \Delta u_2 c \theta_1 + \Delta u_3 c t g \alpha_{01} = 0$$

解上二式,得:

$$tg\theta_{1} = \frac{\left(-\Delta u_{2} \Delta z_{A} + \Delta y_{A} \Delta u_{3}\right)}{\left(\Delta u_{3} \Delta z_{A} - \Delta z_{A} \Delta u_{1}\right)} = B_{1}$$
(10)

$$tg\alpha_{01} = \frac{\Delta u_3}{(-\Delta u_1 s\theta_1 + \Delta u_2 c\theta_1)} = B_2$$
 (11)

于是有 \vec{Z}_1 轴的方向众弦。

$$\overrightarrow{Z}_{1} = (n_{1}, n_{2}, n_{3})^{T} = (s\alpha_{01}s\theta_{1}, -s\alpha_{01}c\theta_{1}, c\alpha_{01})^{T}$$

对于一组 $tg\theta_1$ 、 $tg\alpha_0$, 值, \vec{Z}_1 轴线可唯一地确定,仅可能有两种相反的指向,并不发生实 质性影响。例如:当 $tg\theta_1 > 0$,可取 $\theta_1 = \pi + arctgB_1$,当 $tg\alpha_{01} < 0$ 时,可取 $\alpha_{01} = \pi$ $arctgB_2$ 。于是, \overrightarrow{Z}_1 的指向为 $(n_1<0, n_2>0, n_3<0)$ 。将 $\alpha_{0,1}$ 、 θ_1 代入 (9) 式即可 **得到α12。**

写出假想的向量封闭形O-W-A-a-b-O在 \overrightarrow{J} 。轴上的投影关系式、

$$x_{A}\cos(X_{0}, X_{2}) + y_{A}\cos(Y_{0}, X_{2}) + Z_{A}\cos(Z_{0}, X_{2}) - h_{2} = 0$$

其中

$$\overrightarrow{X}_{2} = \frac{\overrightarrow{Z}_{1} \times \overrightarrow{Z}_{2}}{s \, \alpha_{12}} = \frac{1}{s \, \alpha_{12}} \begin{pmatrix} n_{2}u_{3} - n_{3}u_{2} \\ n_{3}u_{1} - n_{1}u_{3} \\ n_{1}u_{2} - n_{2}u_{1} \end{pmatrix} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} \tag{12}$$

于是有:

$$h_2 = \frac{1}{s\alpha_{12}} \left[x_A(n_2u_3 - n_3u_2) + y_A(n_3u_1 - n_1u_3) + z_A(n_1u_2 - n_2u_1) \right]$$
 (13)

2. 开式链S-S的综合(参见图4中PGW部分)

对于开式链S-S只能按PG为定长列出关系式,

$$I_{PG}^{2} = (x_{G} - x_{P})^{2} + (y_{G} - y_{P})^{2} + (z_{G} - z_{P})^{2}$$
(14)

由于

$$\begin{pmatrix}
x_G \\
y_G \\
z_G
\end{pmatrix} = y_W \\
+ \begin{bmatrix} c_{03} \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ s_3 \end{pmatrix} = \begin{pmatrix} x_W + s_3 m_1 \\ y_W + s_3 m_2 \\ z_W + s_3 m_3 \end{pmatrix} (15)$$

所以对放下和收上位置可写出:

$$l_{PG}^{2} = (x_{W} + s_{3}m_{1} - x_{P})^{2} + (y_{W} + s_{3}m_{2} - y_{P})^{2} + (z_{W} + s_{3}m_{3} - z_{P})^{2}$$

$$= (x_{W}' + s_{3}m'_{1} - x_{P})^{2} + (y_{W}' + s_{3}m'_{2} - y_{P})^{2} + (z_{W}' + s_{3}m'_{3} - z_{P})^{2}$$
(16)

显然,由此仅能求解两个结构参数。一般,根据飞机机身上加强框的位置,可预定侧撑杆10的固定点 $P(x_P, y_P, z_P)$ 而求解参数 I_{P0} 和 s_8 。由(16)式可得:

$$s_{3} = \frac{\Delta x_{W}^{2} r_{P} + \Delta y_{W}^{2} r_{P} + \Delta z_{W}^{2} r_{P} - \Delta x_{WP}^{2} - \Delta y_{WP}^{2} - \Delta z_{WP}}{2(\Delta x_{WP} m_{1} + \Delta y_{WP} m_{2} + \Delta z_{WP} m_{3} - \Delta x_{WP} m_{1}^{\prime} - \Delta y_{W}^{\prime} r_{P} m_{2}^{\prime} - \Delta z_{W}^{\prime} r_{P} m_{3}^{\prime}}$$
(17)

其中: $\Delta x_W'_P = x_W' - x_P$, $\Delta x_{WP} = x_W - x_P$,其余依次类推。将 s_s 代入式(15)得G、G'点坐标,再由式(16)可求出 l_{PG} 。

3. 起落架收放角φ和机轮转角ψ的确定

如图 6 所示,所谓起落架收放角 φ 即为支柱 2 与轴线 \overline{Z}_1 所在平面绕 \overline{Z}_1 轴的转角,亦即 \overline{X}_2 与 \overline{X}_2 的夹角。由式 (12) 求得 \overline{X}_2 与 \overline{X}_2 的方向余弦后,可按下式算出收放角 φ :

$$cos\varphi = cos(X_2, X_1) = a_1a_1' + a_2a_2' + a_3 + a_3a_3'$$
(18)

所谓机轮转角 ψ 即机轮平面相对于支柱 OA 与轴线 Z_2 所 在平面的转角,这可根据 Z_3 与AO 的 夹 角算出 如下:

图 6

$$\psi = \arccos(\overrightarrow{X}_3', \overrightarrow{OA}) - \arccos(\overrightarrow{X}_3, \overrightarrow{OA}) = \psi_1' - \psi_1$$
 (19)

这里
$$\cos(\overrightarrow{X}_3, \overrightarrow{OA}) = \frac{(v_1 x_A + v_2 y_A + v_3 z_A)}{l_{OA}}$$

$$sin(\overrightarrow{X}_8, \overrightarrow{OA}) = cos(\overrightarrow{Z}_8, \overrightarrow{OA}) = \frac{(m_1x_A + m_2y_A + m_3z_A)}{I_{OA}}$$

将 $A(x_A, y_A, z_A)$, $A'(x_A', y_A'z_A)$ 及 $[c_{ns}]$, $[c_{ns}']$ 代入上式即可得 ψ_1, ψ_1' 及 ψ_2

(二) 第二个闭合环——空间五杆机构 (S-R-R-R-R) 的综合

对第一个闭合环进行综合后,第二个闭合环中(参见图7)摇臂 4 上线段 $\overline{W}K$ 的两个位置及构件 2 、 3 的结构参数和运动参数均为已知。若再预定摇臂中 $\overline{W}E$ 的夹角 β ,则摇臂的两个姿态也完全确定。因此,第二个闭合环的综合问题就是按摇臂的两个位置、姿态来综合开式链 S-R-R 的问题。由于对开式链 S-R-R 尺能建立 Q 、 F 或 Q 、 E 两点的距离关系式,所以只能求解两个结构参数。为了简化设计,首先预定支柱 2 上的 Q 点,再按通常的设计作法,取构件 5 为十字接头,并令 \overline{X} 6 上 \overline{Z} 6 ,则 α 6 。 这样,开式链 S-R-R 中 待 设计的结构参数为 h_4 、 h_6 、 h_6 三个。进一步再预定其中一个,如 h_4 ,

图 7

即可确定 h_s 及 h_e 两个参数。在计算 h_s 、 h_e 前,须先确定出点E、E'及运动参数 θ_s 、 θ_s' 。

① 确定点 $E \setminus E'$: 由于已知 \overline{X}_s 和 \overline{WK} 的方向余弦分别为 (v_1, v_2, v_s) 及 $\frac{1}{I_{WK}}(x_W - x_K, y_W - y_K, z_W - z_K)$,故按图可得:

$$\theta_4 = \beta + \underline{/}X_3WK = \beta + \cos^{-1}[(v_1 \Delta x_{WK} + v_2 \Delta y_{WK} + v_3 \Delta z_{WK})/I_{WK}]$$
 (20)
于是E点坐标为

$$\begin{pmatrix} x_{E} \\ y_{E} \\ z_{R} \end{pmatrix} = \begin{pmatrix} x_{W} \\ y_{W} \\ z_{W} \end{pmatrix} + \begin{bmatrix} c_{03} \end{bmatrix} \begin{bmatrix} c_{34} \end{bmatrix} \begin{pmatrix} h_{4} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} x_{W} + h_{4} [v_{1}c\theta_{4} + u_{1}s\theta_{4}) \\ y_{W} + h_{4} (v_{2}c\theta_{4} + u_{2}s\theta_{4}) \\ z_{W} + h_{4} (v_{3}c\theta_{4} + u_{3}s\theta_{4}) \end{pmatrix}$$
(21)

 θ' 及E'点坐标求法相同。

② 运动参数 θ 。、 θ 。的确定:将向量封闭多边形W-E-F-Q-W在Z。轴 上 取 投影,有关系式:

$$h_4 s \theta_4 + \Delta x_{WQ} \cos(\overrightarrow{X}_0, \overrightarrow{Z}_5) + \Delta y_{WQ} \cos(\overrightarrow{Y}_0, \overrightarrow{Z}_5) + \Delta Z_{WQ} \cos(\overrightarrow{Z}_0, \overrightarrow{Z}_5) = 0$$

$$(22)$$

叉:
$$\overrightarrow{Z}_{5} = [c_{03}][c_{34}][c_{45}] \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} v_{1}(s\theta_{4}c\theta_{5} + c\theta_{4}s\theta_{5}) + u_{1}(s\theta_{4}s\theta_{5} - c\theta_{4}c\theta_{5}) \\ v_{2}(s\theta_{4}c\theta_{5} + c\theta_{4}s\theta_{5}) + u_{2}(s\theta_{4}s\theta_{5} - c\theta_{4}c\theta_{5}) \\ v_{3}(s\theta_{4}c\theta_{5} + c\theta_{4}s\theta_{5}) + u_{3}(s\theta_{4}s\theta_{5} - c\theta_{4}c\theta_{5}) \end{bmatrix}$$

于是投影关系式 (22) 又可写为:

$$(A_3 s \theta_4 - B_3 c \theta_4) c \theta_5 + (A_3 c \theta_4 + B_3 s \theta_4 + h_4) s \theta_5 = 0$$
 (22')

其中:

$$A_{3} = \Delta x_{WQ}v_{1} + \Delta y_{WQ}v_{2} + \Delta z_{WQ}v_{3}$$

$$B_{3} = \Delta x_{WQ}u_{1} + \Delta y_{WQ}u_{2} + \Delta z_{WQ}u_{3}$$

又因 \vec{Z}_{5} $\perp \vec{X}_{6}$, \vec{Z}_{6} $\perp \vec{X}_{6}$, \vec{X}_{5} 与 \vec{X}_{6} 相交,所以 \vec{Z}_{5} $\perp \overrightarrow{EQ}$, 并有下列关系式。

$$\vec{Z}_{s} = \frac{\overrightarrow{EQ} \times \vec{Z}_{s}}{\| \overrightarrow{EQ} \times \vec{Z}_{s} \|}$$

$$= \frac{(m_s \Delta y_{QE} - m_2 \Delta z_{QE}, m_1 \Delta z_{QE} - m_s \Delta x_{QE}, m_2 \Delta x_{QE} - m_1 \Delta y_{QE})}{\sqrt{(m_s \Delta y_{QE} - m_2 \Delta z_{QE})^2 + (m_1 \Delta z_{QE} - m_s \Delta x_{QE})^2 + (m_2 \Delta x_{QE} - m_1 \Delta y_{QE})^2}}$$

$$= (d_1, d_2, d_3)$$

将该式代入式(22)可得:

$$\overset{\text{iii}}{\Delta} x \overset{\text{ii}}{w} Q \overset{\text{d}}{d}_1 + \Delta y w Q \overset{\text{d}}{d}_2 + \Delta z w Q \overset{\text{d}}{d}_3 + \overset{\text{i}}{h} \overset{\text{j}}{4} s \theta_5 = 0$$

令

$$D_3 = \Delta x_{WQ} d_1 + \Delta y_{WQ} d_2 + \Delta z_{WQ} d_3$$

有:

$$s\theta_{5} = -\frac{D_{8}}{h_{4}} \tag{23}$$

将式 (23) 代人式(221), 得:

$$c\theta_{5} = \frac{D_{3}(A_{5}c\theta_{4} + B_{3}s\theta_{4} + h_{4})}{[h_{4}(A_{5}s\theta_{4} - B_{5}c\theta_{4})]}$$
(23')

将W、Q、E点的坐标和 $[c_{68}]$ 代入式(23)、(23')可求得 θ_{5} 。 θ_{5} 的求法同 θ_{5} ,只要用W、Q'、E' 代替W、Q 、E ,求出与之对应的 A'_{5} 、 B'_{5} 、 D'_{5} 等即可。

③ 、结构素数片。、 h。的确定: ___

按整整架数据过程中Q、F两点间保持定长有。

$$h_0^2 = (x_Q - x_F)^2 + (y_Q - y_F)^2 + (z_Q - z_F)^2$$

$$= (x_Q' - x_F')^2 + (y_Q' - y_F')^2 + (z_Q' - z_F')^2$$
(24)

其中

$$\begin{pmatrix} x_{F} \\ y_{F} \\ z_{F} \end{pmatrix} = \begin{pmatrix} x_{e} \\ y_{e} \\ z_{e} \end{pmatrix} + [C_{03}][C_{34}][C_{45}] \begin{pmatrix} h_{5} \\ 0 \\ 0 \end{pmatrix} \\
= \begin{pmatrix} x_{E} \\ y_{F} \\ z_{E} \end{pmatrix} + h_{5} \begin{pmatrix} s\theta_{5}(-v_{1}s\theta_{4} + u_{1}c\theta_{4}) + c\theta_{5}(v_{1}c\theta_{4} + u_{1}s\theta_{4}) \\ s\theta_{5}(-v_{2}s\theta_{4} + u_{2}c\theta_{4}) + c\theta_{5}(v_{2}c\theta_{4} + u_{2}s\theta_{4}) \\ s\theta_{5}(-v_{3}s\theta_{4} + u_{3}c\theta_{4}) + c\theta_{5}(v_{3}c\theta_{4} + u_{3}s\theta_{4}) \end{pmatrix} (25)$$

利用式 (23) 、 (23') 、 (25) 、 (21) 及 (24) ,最后可得求解结构参数 $h_{\rm s}$ 、 $h_{\rm s}$ 的关系式为:

$$h_{6}^{2} = \frac{A \times_{QE}^{2} + A y_{QE}^{2} + A z_{QE}^{2} + h_{5}^{2} + 2h_{5}h_{4}(A_{3}s\theta_{4} - B_{3}c\theta_{4})}{D_{3}} - \frac{A \times_{Q\times_{E}}^{2} + A y_{Q\times_{E}}^{2} + A z_{Q\times_{E}}^{2} + h_{5}^{2} + 2h_{5}h_{4}(A_{3}'s\theta_{4}^{2} - B_{3}'c\theta_{4}')}{D_{3}}$$

吅

$$h_{s} = -\frac{\Delta x_{Q'E'}^{2} + \Delta y_{Q'E'}^{2} + \Delta z_{Q'E'}^{2} - \Delta x_{QE}^{2} - \Delta y_{QE}^{2} - \Delta z_{QE}^{2}}{2h_{4} [(A_{3}s\theta_{4} - B_{3}c\theta_{4})/D_{3} - (A_{3}'s\theta_{4}' - B_{3}'c\theta_{4}')/D_{3}']}$$
(26)

将 h_8 代入式 (25) 得F、F', 再代入式 (24) 不难求出 h_8 。

至于带收放作动筒的空间四杆机构1-2-7-8-1,由于运动综合比较简单,这里从略。

参考坐标系原点不在支柱轉軸上的机构綜合

在上述综合中,固定参考坐标系原点取在空间转轴 Z_1 上的 R_1 点。此时,转轴中心 R_1 在

机身上的位置是预先给定的。但有时, R_1 点需要根据起落架的运动要求来确定,不能事先给定。这时,固定参考坐标系 $X_0-Y_0-Z_0$ 的原点是取在飞机上某已知点,例如飞机重心处(图 8),这就是支柱转轴 Z_1 不过原点的情况。这时,除采用前述设计情况的预定条件外,还需根据另外预定的三个参数(例如前十字接头3的AW长度 h_0 及 X_0 在 起落架放下和收上位置时与 X_0 夹角的余弦 v_1 、 v_1)来确定 R_1 点在固定参考坐标系中的参数 s_0 、 h_1 、 s_0 1 R_1 0

利用式(5) ,按预定的 $Z_s(m_1, m_2, m_3)$, $Z_s'(m_1, m_2', m_3')$,及 $cos(X_s, X_0) = v_1$, $cos(X_s', X_0 = v_1')$,可先算出构件在放下位置和收上位置的方向余弦矩阵 $[c_0]$ 及 $[c_0]$ 也如 $[c_0]$ 也如 $[c_0]$ 是一个 $[c_0]$ 是一个 [

图 8

并设 \vec{X}_a 在放下位置时的指向向下而令 v_a <0, 于是可得:

$$\begin{cases} v_2 = \left[-m_1 m_2 v_1 - m_3 \frac{\sqrt{1 - m_1^2 - v_1^2}}{(1 - m_1^2)} \right] \\ v_3 = \sqrt{1 - v_1^2 - v_2^2} \end{cases}$$
 (27)

进一步由坐标轴的垂直关系:

$$\vec{Z}_{2} = \vec{Z}_{3} \times \vec{X}_{3} = \vec{Y}_{3}$$

可得:

$$\overrightarrow{Z}_{2} = \overrightarrow{Y}_{8} = (u_{1}, u_{2}, u_{8})
= (m_{2}v_{8} - m_{3}v_{2}, m_{3}v_{1} - m_{1}v_{3}, m_{1}v_{2} - m_{2}v_{1})$$
(28)

又由于预定了h_s,所以按W点的坐标进一步利用下武

$$\begin{pmatrix}
x_A \\
y_A \\
z_A
\end{pmatrix} = \begin{pmatrix}
x_W \\
y_W \\
z_W
\end{pmatrix} - h_3 \begin{pmatrix}
v_1 \\
v_2 \\
v_3
\end{pmatrix} (29)$$

可求得A点的挫标。

用同样的方法可算出[cas/]和 A/点。

因此,参考些标系原点不在支柱转轴上的机构综合问题归结为:按点 $A(x_A, y_A, z_A)$ 、 $A'(x_{A\prime}, y_{A\prime}, z_{A\prime})$ 和轴线 $Z_2(u_1, u_2, u_3)$ 、 $Z_2'(u_1', u_2', u_3')$ 及 $Z_2 \perp R_1 A$ 、 $Z_2' \perp R_1 A$ 1 来求解机构的结构参数: θ_1 、 α_{01} 、 α_{12} 、 h_2 、 s_3 、 s_4 、 h_1 、 s_0 Q S_{O1R10}

前面导出的设计关系式(8′)、(9′)仍可用于这种情况下的角度参数 θ_1 、 α_{01} , α_{12} 、 \overline{Z}_1 (n_1) , n_2 , n_3)的计算。为了计算长度参数,按照 $OA=OI_1+I_1I_2+I_1A$ 种利用参考坐标系 $X_0-Y_0-Z_0$ 中 \overline{X}_2 和 \overline{Z}_2 的方余弦 (a_1,a_2,a_3) 及 (u_1,u_2,u_3) ,可 写出 下 列关系式:

$$\begin{pmatrix} x_{A} \\ y_{A} \\ z_{A} \end{pmatrix} = -s_{0} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{bmatrix} c_{0} & 1 \end{bmatrix} + \begin{bmatrix} c_{0} & 2 \end{bmatrix} \begin{pmatrix} h_{2} \\ 0 \\ -s_{2} \end{pmatrix}$$

$$= -s_{0} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - h_{1} \quad s\theta_{1} \quad -s_{1} \end{pmatrix} - s\alpha_{0} \cdot s\theta_{1}$$

$$= -s_{0} \begin{pmatrix} \alpha_{1} \\ 1 \end{pmatrix} - s_{2} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \end{pmatrix} - s_{3} \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}$$

$$\Rightarrow h_{2} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} - s_{3} \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}$$

$$(30)$$

式中 (a_1, a_2, a_3) 可用式(12) 求出。该关系式 也 同 样 适 用 于起落架收上状态的 A', \overrightarrow{X} (B \overrightarrow{Z})。

由于图 8 中的 I_1 为定点,所以由点A及A'有关系:

$$\begin{cases} \Delta x_A = \Delta a_1 h_2 - \Delta u_1 s_2 \\ \Delta y_A = \Delta a_2 h_2 - \Delta u_1 s_2 \\ \Delta z_A = \Delta a_3 h_2 - \Delta u_3 s_2 \end{cases}$$

其中:

$$\Delta a_i = a'_i - a_j$$

($j = 1, 2, 3$)

由此可求出:

$$\begin{cases} h_2 = -\frac{\left(\Delta u_1 \Delta y_A - \Delta u_2 \Delta x_A\right)}{\left(\Delta a_2 \Delta u_1 - \Delta a_1 \Delta u_2\right)} \\ s_2 = -\frac{\left(\Delta a_1 h_2 - \Delta x_A\right)}{\Delta u_1} \end{cases}$$
(31)

将h₂、s₂代入式(30)可得:

$$\begin{cases} s_{1} = [-x_{A}s\theta_{1} + y_{A}c\theta_{1} + h_{2}(a_{1}s\theta_{1} - a_{2}c\theta_{1}) - s_{2}(u_{1}s\theta_{1} - u_{2}c\theta_{1})]/s\alpha_{0} \\ h_{1} = -x_{A}c\theta_{1} - y_{A}s\theta_{1} + h_{2}(a_{1}c\theta_{1} + a_{2}s\theta_{1}) - s_{2}(u_{2}s\theta_{1} + u_{1}c\theta_{1}) \\ s_{0} = -z_{A} - s_{1}c\alpha_{2} + h_{2}\alpha_{3} - s_{2}u_{3} \end{cases}$$
(32)

为了求长度参数 s_{01R1} , 可利用 $\overrightarrow{Z}_2 \perp \overrightarrow{R_1 A}$ 的关系式

$$u_1(x_A - x_{R1}) + u_2(y_A - y_{R1}) + u_3(z_A - z_{R1}) = 0$$
 (33)

及

$$\begin{pmatrix}
x_{R_1} \\
y_{R_1} \\
z_{R_1}
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
-s_0
\end{pmatrix} + \begin{bmatrix}c_{01}\end{bmatrix} \begin{pmatrix}
-h_1 \\
0 \\
-s_{01R_1}
\end{pmatrix} = \begin{pmatrix}
-h_1c\theta_1 - s_{01R_1}s\alpha_{01}s\theta_1 \\
-h_1s\theta_1 + s_{01R_1}s\alpha_{01}c\theta_1 \\
-s_0 - s_{01R_1}c\alpha_{01}
\end{pmatrix} (34)$$

将式(34)代入(33)可得:

$$s_{O1R1} = \frac{u_1(x_A + h_1c\theta_1) + u_2(y_A + h_1s\theta_1) + u_3(z_A + s_0)}{-(u_1s\alpha_{21}s\theta_1 - u_2s\alpha_{01}c\theta_1 + u_3c\alpha_{01})}$$
(35)

于是由式 (34) 可算出点 R_1 的坐标。

点 R_1 相当于前一种设计情况中参考坐标系 X_3 一 Y_3 一 Z_3 的原点 O 。因此, R_1 点求出后,只要将其余各点的坐标减去 R_1 点的坐标,即可引用前一情况导出的全部计算公式。

值得指出,以上计算公式也适用于较简单的特殊起落架,例如不带转轮、只绕空间转轴

旋转的起落架(参见图 9)。现用《文导出的公式》 " 机构进行计算。为了便于对比,这里的原始数"同文 [5]。

已知: A(66, 0, 0), A'(0, 42, 52), \overrightarrow{L} , (-1,0, 0), $\vec{Z}_{2}'(-0.2080, 0, 0.9781)$, $\vec{\perp}\vec{Z}_{2} \perp \vec{R_{1}A}$

待求结构参数为: θ_1 , α_{11} , α_{12} h_2 , s_2 , h_1 , s1, se, solpi以及转轴Z1的方向余弦。

$$\begin{cases} 0.7920\alpha_{01}s\theta_{1} + 0.9781c\alpha_{01} \approx 0 \\ -66s\alpha_{01}s\theta_{1} - 42s\alpha_{01}c\theta_{1} + 52c\alpha_{01} = 0 \end{cases}$$

可解得:

图

$$tg\,\theta\, = -0.3885$$
,

取
$$\theta_1 = 158.769^{\circ}$$

$$tga_0 = -3.410$$
,

$$tga_{0.1} = -3.410$$
, $Rac{\alpha_{0.1}} = 106.344^{\circ}$

即

$$\overrightarrow{Z}_1 = (0.3475, 0.8945, -0.2814)$$

由式(9) 得 a12 = 249.666°。由式 (12) 、 (31) 、 (32) 得

$$h_2 = 69.9816$$
, $s_2 = 0.8888$, $s_3 = -79.4103$,

$$s_1 = -449.971$$
, $h_1 = 53.0865$

这些计算结果与文[5]相同。给定 Z_2 上 R_1A 后,利用本文式(35)还可进一步求得 s_{01R_1} = -47.5288,再从式(34)可得 $R_1(\dot{x}_{R2},\ y_{R1},\ z_{R1})=(66.23.2878,\ 66.0368)$ 。计算结果中 的负号表示与图 8 所示方向相反。图 9 所示为本例实际结果位置。

杆件运动碰撞檢測

在机构运动过程中,构件之间有无碰撞是设计者十分关心的问题,也 是 比 较 困难的问 題。文[6]通过杆中心线在运动中是否相交的判断,对一些 特 殊 空 间杆系进行了检查。但 是,实际杆件是有直径大小的,在杆件中心线相交以前就可能发生碰撞,而且该文中求运动 杆件中心线相交点的方程是非线性方程组,求解也往往很困难。本文试用比较简捷明了的方 法,以起落架支柱OA与城震器 QF 为例进行碰撞检查。这对于其它杆件之间的检测也不失

支柱OA 与滅震器 QF 基本上都是圆柱形。其直径分别 为 d_{OA} 、 d_{OF} 。首先,检查二杆中 心线间的最短距离ab是否大于 $(d_{OA}+d_{OF})/2$,如果大于,则不会发生碰撞。否则应进一步检 查此最短距离发生在何处。如果发生在两杆实际杆长范围内,则出现碰撞,否则应再根据一 杆端点至另一杆中心线的距离或至另一杆端面的距离,来判断是否会发生碰撞。

1. 按两杆中心线在运动中的最短距离进行检查:

设 \overrightarrow{OA} \overrightarrow{IFQ} 的公垂线为 \overrightarrow{Aan} (图10)。由于 \overrightarrow{FQ} 方向为 \overrightarrow{X} 。方向, $\overrightarrow{X}_{8} = (x_{08}', y_{08}', z_{08}') = \frac{1}{I_{QF}} (\Delta x_{QF}, \Delta y_{QF}, \Delta z_{QF})$,故对应收放过 程中每个收放角 φ ., 有:

$$(\overrightarrow{an})_{1} = \begin{bmatrix} \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{3} \end{bmatrix},$$

$$=\frac{1}{\|\overrightarrow{X}_{6}\times\overrightarrow{OA}\|}\begin{pmatrix} z_{A}y_{06}^{\prime}-y_{A}z_{06}^{\prime}\\ x_{A}z_{06}^{\prime}-z_{A}x_{06}^{\prime}\\ y_{A}x_{06}^{\prime}-x_{A}y_{06}^{\prime} \end{pmatrix}_{i}$$
(36)

因此, \overrightarrow{OA} 与 \overrightarrow{QF} 的最短距离d,为:

$$d_{i} = |x_{Q}, \xi_{1}, +y_{Q}, \xi_{2}, +z_{Q}, \xi_{3},|$$
(37)

如果

$$d_1 > (d_{QA} + d_{QF})/2$$

则无碰撞。

如果

$$d = \left(d_{OA} + d_{OF}\right)/2$$

应进行下一步检查。

2. 计算公垂线与两杆中心线交点的位置 设在 与OA、FQ的交点分别为 $a(x_a, y_a, z_a)$ 及 $b(x_b, y_b, z_b)$ (见图10)。为了求 交点 b,可过OA和an作一过原点的平面,其法线为 $ae(\epsilon_1, \epsilon_2, \epsilon_3)$,

$$(\overrightarrow{a\varepsilon})_{1} = \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix}_{1} = \frac{\overrightarrow{OA}_{1} \times (\overrightarrow{an})_{1}}{\|\overrightarrow{OA} \times \overrightarrow{an}\|} = \begin{bmatrix} y_{A}\xi_{8} - z_{A}\xi_{2} \\ z_{A}\xi_{1} - x_{A}\xi_{3} \\ x_{A}\xi_{2} - y_{A}\xi_{1} \end{bmatrix} / \|\overrightarrow{OA} \times \overrightarrow{an}\|$$

$$(38)$$

因此,该平面的方程为:

$$\varepsilon_1 x + \varepsilon_2 y + \varepsilon_3 z = 0 \tag{39}$$

又直线FQ的方程为。

$$\frac{x - x_0}{x'_{0b}} = \frac{y - y_0}{y'_{0b}} = \frac{z - z_0}{z'_{0b}}$$
 (40)

由 (39) 、 (40) 式,可解得交点 b 的坐标为:

$$\begin{pmatrix} x_{b} \\ y_{b} \\ z_{b} \end{pmatrix} = \begin{pmatrix} [\varepsilon_{z}(y'_{0b}x_{Q} - x'_{0b}y_{Q}) + \varepsilon_{3}(z'_{0b}x_{Q} - x'_{0b}z_{Q})]/(x'_{0b}\varepsilon_{1} + y'_{0b}\varepsilon_{2} + z'_{0b}\varepsilon_{3}) \\ y_{Q} + y'_{0b}(x_{b} - x_{Q})/x'_{0b} \\ z_{Q} + z'_{0b}(x_{b} - x_{Q})/x'_{0b} \end{pmatrix} (41)$$

至于交点 a 的坐标可利用上面求出的公垂线方向 $(an)_i$,最短距离 d_i 及 交 点 b 直接求出如下。

$$\begin{pmatrix}
x_a \\
y_a \\
z_b
\end{pmatrix} = \begin{pmatrix}
x_b \\
y_b \\
z_b
\end{pmatrix} = d_i; \quad \xi_2 \\
\xi_3$$
(42)

令

$$\frac{(x_{b:} - x_{Q_1})}{(x_{F_1} - x_{Q_1})} = t_2, \tag{43}$$

根据 t_1 , t_2 , 的数值,可确定交点是否在杆的实际长度范围内,以判断是否会发生杆体之间的碰撞。

① 如果 $0 \le t_1$, ≤ 1 , 且 $0 \le t_2$, ≤ 1 . 则公垂线与两杆的交点a、b均在两杆的实际长度范围内。由于它们之间的最短距离

$$d_{\Lambda} \leqslant \frac{1}{2} \cdot (d_{OA} + d_{QF})$$

此时两杆杆体之间将发生碰撞。

② 如果 t_1 、 t_2 ;中有一个不在0与1之间,例如 $0 \le t_1$ 。 ≤ 1 , t_2 。< 0,则公垂线与FQ的交点b在Q点外的延长线上。这时,可计算Q到OA中心线的最短距离 c_{2Q} ,以判断FQ的杆端Q是否碰撞OA的杆体(参见图11)。如果

$$c_{2Q} = \sqrt{I_{OA}^2 I_{OQ}^2 - (x_A x_Q + y_A y_Q + z_A z_Q)^2 / I_{OA}}$$

$$\geqslant \sqrt{[(d_{OA} + d_{QF} c\alpha)/2]^2 + d_1^2}$$
(44)

则不发生碰撞。

这里: α 为两杆中心线的夹角,

图 11

$$\alpha = \cos^{-1} - \frac{|x_A \Delta x_{QF} + y_A \Delta y_{QF} + z_A \Delta z_{QF}|}{l_{QA}l_{QF}}, \tag{45}$$

如果条件(44)不滿足,则应按下面第 3 项检查杆段FQ是否在OA的两端面 π_0 、 π_4 之间,以作进一步判断。

- ③ 如果 t_1 ,、 t_2 ,均不在 0 与 1 之间,例如 t_1 , > 1, t_2 , < 0, 这时公垂线与杆OA的 交点 a 在杆A 端外的延长线上,与杆FQ 的交点 b 在杆Q 端外的延长线上。这时,须仿上同时计算Q 到OA 中心线的距离 c_{2Q} 和A 到FQ 中心线的距离 c_{2A} 。只要其中一个满足(44)式,就不碰撞。否则须要进一步按下面 3 进行检查。
 - 3. 检查杆段 FQ是否在OA两端面 π_0 、 π_4 之间过端点O、A的两端面方程分别为:

$$\begin{cases} x_A x + y_A y + z_A = 0 \\ x_A (x - x_A) + y_A (y - y_A) + z_A (z - z_A) = 0 \end{cases}$$
 (46)

将FQ的两端点F、Q的坐标代入式(46)左端,有

$$\begin{cases}
f_{OQ} = x_A x_Q + y_A y_Q + z_A z_Q \\
f_{OF} = x_A x_F + y_A y_F + z_A z_F
\end{cases}$$

$$\begin{cases}
f_{AQ} = x_A (x_Q - x_A) + y_A (y_Q - y_A) + z_A (z_Q - z_A) \\
f_{AF} = x_A (x_F - x_A) + y_A (y_F - y_A) + z_A (z_F - z_A)
\end{cases}$$
(47)

如果式(47)中四个函数值的符号不完全相同,则表明杆段 \overline{FQ} 至少有一部分在平面 π_0 与 π_A 之间,这时就发生碰撞。如果式(47)中四个式子的符号全部相同,则表明杆段 \overline{FQ} 位于杆段 \overline{OA} 的一侧。由于实际杆体直径的影响(见图11),还需检查可能碰撞端到另一杆的最近端面的距离 e 。例如,当 \overline{Q} 8 π_A 平面最近时,

$$e = |x_A(x_Q - x_A) + y_A(y_Q - y_A) + z_A(z_Q - z_A)|/l_{OA}$$

若 $e > \frac{d_{QF}}{2} sina$ (48)

两杆不发生碰撞,否则要发生碰撞。(注)

結 東 語

带收放及转轮空间机构的飞机起落架是目前飞机起落架中较复杂的一种。本文用方向余弦矩阵配以拆杆拆付法对这种起落架进行了机构综合,给出了各种情况的综合设计公式,最后还讨论了机构运动中杆件的碰撞检测问题。本文导出的公式和结论不仅适用于各种类型的起落架机构,而且对于研究其它机械中的复杂空间机构也有一定的参考价值。

参考文献

- [1] 张启先: "空间机构分析与综合"华南工学院印 1980.
- [2] 张启先:"双动杆和三动杆开式机构的综合"上海海运学院印 1981.
- [3] 天津大学主编:"机械原理"人民教育出版社 1979.
- [4] C.H.Sun and C.W. Radeliffe, "Kinematic and Mechanisms Design"
- [5] K. E. Bisshoopp, "Finite Rotations of a Rigid Body and the Air-plane Landing-Gear Problem", J. of Mechanisms Vol. 3 1968, P203~208.
- [6] И.И. Артоболевского: "Теория Машин и Механизмов Издельство" НАУКА Москва 1976.

注:有时条件(44)、(49)虽不滿足,两杆之間仍可能有一些間隙。但这些可能的間 隙很小,可以忽略。因此,这里的判斷是安全可靠的。

KINEMATIC SYNTHESIS AND COLLISION DETECTION OF A COMPLEX SPATIAL MECHANISM OF AN AIRPLANE LANDING GEAR WITH ROTABLE WHEEL ORIENTATION

Ling Xiaolin

Zhang Qixian

ABSTRACT

Using conventional matrix of direction cosines and the method of imaginary removal of links and pairs, the synthesis of a complex spatial mechanism of a landing gear with rotable wheel orientation is discussed in the present paper. The formulae for the kinematic synthesis of the above landing gear are given in detail, and the collision detection of its certain links is also briefly discussed.