1996 年计算机数学基础

三、

1. $\mathbb{N}/R_1 = \{\{n\} \mid n \in \mathbb{N}\};$ $\mathbb{N}/R_2 = \{\{2k \mid k \in \mathbb{N}\}, \{2k+1 \mid k \in \mathbb{N}\}\};$ $\mathbb{N}/R_3 = \{\{3k+j \mid k \in \mathbb{N}\} \mid j = 0, 1, 2\};$ $\mathbb{N}/R_4 = \{\{6k+j \mid k \in \mathbb{N}\} \mid j = 0, 1, 2, 3, 4, 5\}.$

2.

3. $f_1(H) = H;$ $f_2(H) = \{0\};$ $f_3(H) = \{0, 1, 2\};$ $f_4(H) = \{0, 2, 4\}.$

五、

1.

- (1) $\ker \varphi_1 = G$ 。由于 $|G| \ge 2$,所以 φ_1 既不是单射也不是满射,当然也不是同构。
- (2) $\ker \varphi_2 = \{0\}$ 。由于 $1 \in \mathbb{Z}$ 但 $1 \notin \varphi_2(\mathbb{Z})$,所以 φ_2 不是满射,从而不是同构。
- (3) $\ker \varphi_3 = \{0\}$ 。由于指数函数是单射,且对任意 $x \in \mathbb{R}^+$,有 $\ln x \in \mathbb{R}$,且 $x = \varphi_3(\ln x)$,所以 φ_3 是满射,从而是同构映射。

2

证明:由于 $e \in A, e \in B$,所以 $e = ee \in AB$,AB非空。

由于 A 是正规子群,所以对任意 $b\in B$,有 Ab=bA。从而 $BA=\{bA\mid b\in B\}=\{Ab\mid b\in B\}=AB$ 。

对任意 $x,y \in AB$,存在 $a_1,a_2 \in A,b_1,b_2 \in B$,使 $x = a_1b_1,y = a_2b_2$,从而 $xy^{-1} = a_1b_1(a_2b_2)^{-1} = a_1b_1b_2^{-1}a_2^{-1}$,而 $a_1b_1b_2^{-1} \in AB = BA$,所以存在 $a_3 \in A,b_3 \in B$,使得 $a_1b_1b_2^{-1} = b_3a_3$ 。于是有 $xy^{-1} = b_3a_3a_2^{-1} \in BA = AB$ 。

由子群判定定理二, AB 是 G 的子群。

六、

1.