

- 1. Heat transport
  - Heat diffusion with Dirichlet BC (Ex2.1)
  - Heat diffusion with Neumann BC (Ex2.2)
- 2. Heat transport + Groundwater flow
  - Heat advection in single fracture (Ex2.3)
  - Thermohaline flow (Ex2.4)



# Session 1 – Heat Transport Processes

#### **Heat Transport**

- by conduction only
- by convection and conduction

For this session, you will need the following software:

#### **OpenGeoSys**

ogs.exe v.5.3.0 from ../software/ogs

#### **Paraview**

for result visualization

http://www.paraview.org/paraview/resources/software.php

#### A text Editor

e.g. Notepad++

http://notepad-plus-plus.org/download/v6.1.4.html

#### A Spreadsheet software

e.g. LibreOffice

http://www.libreoffice.org/download/



# Session 1 – Heat Transport Processes

#### **Heat Transport Exercise 1**



| property                     | Copper Cu | Tin Sn |
|------------------------------|-----------|--------|
| Thermal conductivity [W/m/K] | 400       | 67     |

- Conduction of heat through a heterogeneous solid
- Thin stripes of two metals, soldered together
- Insulated at exposed edges
- Faces maintained at constant temp. T1 and T2

## 1) Process definition - \*.pcs file

```
#PROCESS Subkeyword defines the process

HEAT_TRANSPORT Optional; to check which nodes are assigned to boundary conditions

#STOP ends the reading process. Everything beyond this keyword will be ignored
```



1) Process definition - \*.pcs file

```
Processes currently available (selection)
```

HEAT TRANSPORT T

LIQUID\_FLOW H

**DEFORMATION** M

MASS TRANSPORT C

MULTIPHASE FLOW Hn

X\_GLOBAL

**GROUNDWATER\_FLOW** 

RICHARDS\_FLOW

AIR\_FLOW

... and others



### 2) Numerical characteristics - \*.num file

```
#NUMERICS each process can have a different setup

$PCS_TYPE  
HEAT_TRANSPORT  
$LINEAR_SOLVER  

; mthd - er_mthd - er_tol - max_it - theta - precond - stor
2    1    1.e-012    1000    0.5    100    4

#STOP
```



3) Spatial discretization - \*.msh file

```
#FEM_MSH
number of mesh nodes

$NODES
751

0 0.127950587672957 .05 0.0 node_ID|X|Y|Z

...
$ELEMENTS number of mesh elements
1396

0 0 tri 0 1 21 element_ID | mat_group | element_type | node[i]

...
#STOP
```



3) Spatial discretization - \*.msh file

Element types are:

1D Lines line

2D Triangles tri

2D Rectangles quad

3D Tetrahedra tet

3D Hexahedra hex



### 4) Geometry - \*.gli file

```
#POINTS
 0 0 0
1 0.07 0 0
2 0.13 0.05 0
3 0 0.05 0
#POLYLINE
 $NAME
  copper
 $POINTS
  0
  1
  0
#SURFACE
 $NAME
  copper
 $POLYLINES
  copper
 $TYPE
  0
```

Points, polylines and surfaces are assigned to the mesh to apply initial and boundary conditions

Polylines are defined by points

Surfaces are defined by polylines



#### 5) Initial conditions - \*.ic file

```
#INITIAL_CONDITION
$PCS_TYPE

HEAT_TRANSPORT
$PRIMARY_VARIABLE

TEMPERATURE1

$GEO_TYPE

DOMAIN

$DIS_TYPE

CONSTANT 300

#STOP
```

Initial conditions have to be defined for each process by its primary variable

GEO\_TYPE refers to the model geometry

DIS\_TYPE refers to distribution; an initial value can be defined as constant, linear gradient, or can be read from a datafile



### 6) Boundary conditions - \*.bc file

```
#BOUNDARY CONDITION
 $PCS TYPE
  HEAT TRANSPORT
 $PRIMARY VARIABLE
  TEMPERATURE1
 $GEO TYPE
  POLYLINE left
 $DIS TYPE
  CONSTANT 320
#BOUNDARY_CONDITION
 $PCS TYPE
  HEAT TRANSPORT
 SPRIMARY VARIABLE
  TEMPERATURE1
 $GEO TYPE
  POLYLINE right
 $DIS TYPE
  CONSTANT 280
#STOP
```

Boundary conditions refer only to *Dirichlet*-boundary conditions. Similar to IC, they can defined for each process by its primary variable

Boundary conditions at different geometries are defined by additional blocks



7) Source terms - \*.st file

#STOP

Source terms refer to *Neumann*-boundary conditions.

In this example, we don't have such boundary conditions.



### 8) Solid material definition - \*.msp file

#SOLID\_PROPERTIES \$DENSITY

1 8920.0

**CAPACITY** 

1 385

CONDUCTIVITY

1 400.0

#STOP

a "'SOLID\_PROPERTIES" – block have to be defined for every material (refers to mesh-file)

for (heat) CAPACITY and (thermal)

CONDUCTIVITY, don't begin a "\$"

(this is the exception from the rule)

| property                     | Copper Cu | Tin Sn |
|------------------------------|-----------|--------|
| Density [kg/m³]              | 8920      | 7265   |
| Heat capacity [J/kg/K]       | 385       | 227    |
| Thermal conductivity [W/m/K] | 400       | 67     |

RESEARCH - UFZ

### 9) Fluid material definition - \*.mfp file

```
#FLUID PROPERTIES
 $FLUID TYPE
 LIQUID
 $DENSITY
  1 0.0
 $VISCOSITY
 1 0.0
 $SPECIFIC HEAT CAPACITY
  1 0.0
 $HEAT CONDUCTIVITY
  1 0.0
#STOP
```

In this particular problem, we do not have any fluids. Anyway, since OGS was written for porous media transport pcs, a fluid have to be defined.

In multi-phase simulations, a #FLUID\_PROPERTIES block has to be given for each fluid

If any fluid property is not defined in this file, OGS will use a default value (which refers to water at standard conditions in most cases.



# 10) Medium definition - \*.mmp file



Similar to \*.msp, the medium for each material group have to be defined here

\$GEOMETRY\_DIMENSION refers to the spatial degree of freedom of the problem (1D,2D, or 3D)

\$GEOMETRY\_AREA defines the thickness (2D) or the Area (1D) of a mesh node. in 3D, this subkeyword has no effect.



#### 11) Temporal discretisation - \*.tim file

```
#TIME_STEPPING

$PCS_TYPE

HEAT_TRANSPORT

$TIME_STEPS

100 1

$TIME_START

0.0

$TIME_END

1e99

#STOP
```

Each process can have its own temporal discretization

Number of Timesteps | Duration of a Timestep

Begin and Ending of the simulation has to be defined additionally. END can be just a very large value.



#### 12) Output selection - \*. out file

```
#OUTPUT
$NOD_VALUES
TEMPERATURE1
$GEO_TYPE
DOMAIN
$DAT_TYPE
PVD
$TIM_TYPE
STEPS 1
#STOP
```

The desired output value can be indicated by its variable name.

\$GEO\_TYPE refers to the geometry, for wich the output shall be written:

DOMAIN - whole domain

POLYLINE - a profile

POINT - a breakthrough curve

\$DAT\_TYPE defines the output file format

\$TIM\_TYPE defines the output frequency STEPS X - data output each X timesteps



12) Output selection - \*. out file

available data types (selection)

**TECPLOT** 

VTK

**VTU** 

**PVD** 

**MATLAB** 



# **Running the Simulation**

The OGS executable is already in your model folder

- 1. double-click on ogs.exe
- 2. Type the common filename (without extension)
- 3. Press ENTER



# Output temperature at a observation point

You can make OGS output results at a particular point.

Let's change \*.out file to check temperature change during the entire simulation

```
#OUTPUT
$NOD_VALUES
TEMPERATURE1
$GEO_TYPE
DOMAIN
$DAT_TYPE
PVD
$TIM_TYPE
STEPS 1
#STOP
```



# Output temperature at a observation point

You can make OGS output results at a particular point.

Add the following into \*.out file to see temperature change at the middle point during the entire simulation

Check whether the model is reaching a steady state or not

```
#OUTPUT
$NOD_VALUES
TEMPERATURE1
$GEO_TYPE
POINT POINT_MIDDLE
$DAT_TYPE
TECPLOT
$TIM_TYPE
STEPS 1
```



# Try with different materials

#### T=300K

| property                     | Granite | Limestone | Soil | Water | Air    |
|------------------------------|---------|-----------|------|-------|--------|
| Density [kg/m³]              | 2630    | 2320      | 2050 | 1000  | 1.1614 |
| Heat capacity [J/kg/K]       | 775     | 810       | 1840 | 4179  | 1007   |
| Thermal conductivity [W/m/K] | 2.79    | 2.15      | 0.52 | 0.613 | 0.0263 |



# Session 1 – Heat Transport Processes

**Heat Transport Example 2** 



Steady heat conduction in a composite material with heat flux



7) Source terms - \*.st file

```
#SOURCE_TERM
                     Source terms refer to Neumann-boundary
 $PCS_TYPE
                     conditions.
  HEAT_TRANSPORT
 $PRIMARY_VARIABLE
  TEMPERATURE1
 $GEO_TYPE
  POINT POINT4
 $DIS_TYPE
  CONSTANT_NEUMANN .065
#STOP
```

HELMHOLTZ

| CENTRE FOR
| ENVIRONMENTAL
| RESEARCH - UFZ

- complete the Input-files
- run the simulation
- check the simulation results using Paraview or using a spreadsheet software
- Modify some model parameters to learn how they influence the simulation results



# Session 1 – Heat Transport Processes

### **Heat Transport Example 3**



- Ogata-Banks Problem
- Heat transport by convection and conduction along a fracture
- Analytical solution:

$$T(x,t) = \frac{T_0}{2} \left( \operatorname{erfc} \frac{x - v_x \cdot t}{\sqrt{4\alpha t}} + e^{\frac{v_x \cdot x}{\alpha}} \operatorname{erfc} \frac{x + v_x \cdot t}{\sqrt{4\alpha t}} \right) \stackrel{\square}{\leftarrow} 0.4$$

where  $\alpha$  is heat diffusivity

$$\alpha = \lambda/c\rho$$



# Session 1 – Heat Transport Processes

#### **Heat Transport Example 3**

- complete the Input-files
- run the simulation
- check the simulation results using Paraview or using a spreadsheet software
- Modify some model parameters to learn how they influence the simulation results



### 1) Process definition - \*.pcs file

```
#PROCESS

$PCS_TYPE

LIQUID_FLOW

#PROCESS

$PCS_TYPE

HEAT_TRANSPORT

#STOP
```

We need LIQUID\_FLOW process to have groundwater flow



7) Source terms - \*.st file

```
#SOURCE_TERM

$PCS_TYPE
LIQUID_FLOW

$PRIMARY_VARIABLE
PRESSURE1

$GEO_TYPE
POINT POINTO Inflow velocity q [m/s]

$DIS_TYPE
CONSTANT_NEUMANN 1E-6
```



- complete the Input-files
- run the simulation
- check the simulation results using Paraview or using a spreadsheet software
- Modify some model parameters to learn how they influence the simulation results



# Session 1 – Heat Transport Processes

#### Heat Transport Example 4

- Thermohaline flow
- Fluid density
  - Rho\_f(T) = 1000\*(1-0.2\*T)



L=300m

## **Geometry layout**



## Geometry pane -> Edit Points





# Geometry pane -> Edit Polylines



CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

### Geometry pane -> Edit Surface



CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

# Meshing menu -> Create Elements from Geometry



CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

## Meshing menu -> Refine 2D Elements



ENVIRONMENTAL RESEARCH - UFZ

### Save the mesh into a file "Elder\_HT.msh"





### Fluid material definition - \*.mfp file

```
#FLUID PROPERTIES
 $FLUID TYPE
 LIQUID
 $DENSITY
  4 1000 0 -0.2
 $VISCOSITY
  1 0.001
 $SPECIFIC HEAT CAPACITY
  1 4200.0
 SHEAT CONDUCTIVITY
  1 0.65
#STOP
```

#### Fluid density model 4

- Rho = rho0 \* (1+beta\_T \* (T-T0))
- Parameters
  - rho0: Reference density
  - T0: Reference temperature
  - beta\_T: volumetric thermal expansion coefficient



#### Numerical characteristics - \*.num file

```
$OVERALL COUPLING
;min iter - max iter
            25
#NUMERICS
$PCS TYPE
 LIQUID FLOW
                                     If fluid density depends on
                                     temperature, nonlinear solver is
#NUMERICS
                                     required
$PCS TYPE
 HEAT TRANSPORT
$LINEAR SOLVER
; mthd - er_mthd - er_tol - max_it - theta - precond - stor
                           1/000
                1.e-012
                                    0.5
                                            100
 $NON LINEAR ITERATIONS
  PICARD LMAX 25 0.0 1e-3
#STOP
```



#### Numerical characteristics - \*.num file

```
$OVERALL COUPLING
                                    Coupling between groundwater
;min_iter - max_iter
                                    flow and heat transport is
            25
#NUMERICS
                                    necessary.
 $PCS TYPE
  LIQUID FLOW
 $COUPLING CONTROL
 LMAX 10
                                    Coupling converged if changes in
#NUMERICS
                                    new solutions are smaller than
 $PCS TYPE
                                    these values
 HEAT TRANSPORT
$COUPLING CONTROL
 LMAX 1e-3
#STOP
```



- complete the Input-files
- run the simulation
- check the simulation results using Paraview
- Modify some model parameters to learn how they influence the simulation results
- Density dependent flow is largely affected by mesh resolution.
- Try with refined meshes

