슈퍼컴퓨팅과 고성능컴퓨팅(HPC)

넥스트폼

이 보 성 bs.lee@nextfoam.co.kr

슈퍼컴퓨팅(Supercomputing)의 정의

- 슈퍼컴퓨팅(Supercomputing)
 - 병렬로 작동하는 다중 컴퓨터 시스템(예: "슈퍼컴퓨터")의 집중된 컴퓨팅 리소스를 사용하여 매우 복잡한 문제나 데이터 집약적인 문제를 처리하는 것
- 슈퍼컴퓨터(Supercomputer)
 - 슈퍼컴퓨터는 과학기술연산을 비롯한 다양한 분야에 사용되는 고속/거대 용량 컴퓨터
 - 일반적 목적의 컴퓨터에 비해 당대 최상급 처리 능력 (특히 연산 속도)을 보유한 고성능 컴퓨터로, 절대적 기준이 아닌 상대적인 개념
- 고성능컴퓨팅(High Performance Computing, HPC)
 - 복잡한 연산 문제를 풀기 위하여 슈퍼컴퓨터 및 컴퓨터 클러스터를 사용하는 것 (위키백과)

전 세계의 대표적인 슈퍼컴퓨터

- Top500 (<u>https://top500.org/</u>) 순위
 - 매년 6월, 11월에 발표하는 전세계 슈퍼컴퓨터의 성능 순위
 - HPCG(High-Performance Conjugate Gradient)와 에너지 효율성 순위인 Green500 순위도 발표

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016

https://www.ornl.gov/news/ornl-celebrates-launch-frontier-worlds-fastest-supercomputer

2023. 6월 Top500 1 ~ 3 위 슈퍼컴퓨터 (https://top500.org/lists/top500/2023/06/)

한국 대표 슈퍼컴퓨터

• 국가슈퍼컴퓨팅센터 (한국과학기술정보연구원, http://ksc.re.kr)

1호기: Cray-2S, 1988 CPU 4개, 1GB 메모리

2호기: Cray C90, 1993 CPU 16개, 4GB 메모리

3호기: IBM p690 (CPU 672개) NEC SX-5, 6, 2001~2002

4호기: Sun Linux Cluster (AMD), 2010

5호기: Cray Linux Cluster (Intel), 2018 2019년 11월 기준 세계 14위

KISTI

슈퍼컴퓨팅(고성능 컴퓨팅) 활용 분야

- 장시간, 고성능, 대용량의 컴퓨팅 자원이 필요한 시뮬레이션 (Big Problem)
 - 일기 예보, 기상 연구, 단백질 입체 구조 예측, 양자 역학, 분자 동역학, 소재 개발
 - 항공기, 자동차의 공력 및 충돌 해석, 핵폭발 및 핵융합의 연구, 우주 연구, 풍공학
- 확률 및 통계 연산, 경기 예측, AI, ChatGPT

클라우드 컴퓨팅과 고성능 컴퓨팅

- 클라우드 컴퓨팅의 정의
 - 하드웨어, 소프트웨어, 데이터 등 IT 자원을 네트워크를 통해 표준화된 서비스(IaaS, SaaS, PaaS) 형태로 제공하는 컴퓨팅 모델
- HPC 클라우드
 - HPC 자원을 클라우드 컴퓨팅에서 제공 (HPCaaS)
 - o 2023.6 Top500의 11위에 MS Azure HPC가 등재

HPC 슈퍼컴퓨터 구성 요소

- Infrastructure stack
 - Processor / Cache / Memory
 - CPU Intensive / Memory Intensive / GPU
 - Interconnect network
 - Ethernet / RDMA (Infiniband or RoCE) / EFA(Elastic Fabric Adapter)
 - Storage
 - Local block storage / NFS / Parallel file system / Object storage
- Management stack
 - Job management / Resource management / Monitoring / Security
- Applications stack
 - Commercial applications
 - Open source applications
 - Custom / In-house applications & containers

일반적인 HPC 클러스터 구성

- 1. User / Management Servers
 - Login nodes
 - User login / Job submission
 - Scheduler nodes
 - o LSF / PBS / Slurm
 - Visualization nodes
 - NiceDCV / VNC / RD
 - License nodes
 - Authentication nodes
 - LDAP / AD / NIS
- 2. Compute Nodes
- 3. Management Network
 - Connects all nodes in the cluster
 - Management / monitoring
- 4. Compute Network
 - MPI communication & File I/O
- 5. Mountable Storage System
 - Storage Nodes
 - NFS / Lustre / BeeGFS
 - Storage Area Network
 - Storage system internal network
 - Storage Disk
 - HDD / SSD / FC Disk
- 6. Backup Storage

슈퍼컴퓨터 급 HPC 클러스터 – KISTI Nurion

1.Intel OPA (Omni-Path Architecture)

- Compute network
- File I/O network

2. Parallel File System

- /home01, /apps
- /scratch

3. Burst Buffer Storage

- NVMe based IO cache between compute nodes and parallel file system
- improve the performance of small or random I/O in the Lustre
- DDN IME240

4. Testbed system

- Code test, development
- Interactive run

Lift-and-Shift HPC Cloud

• On-Premise HPC를 클라우드 환경으로 그대로 들어서 옮긴 HPC 클라우드

HPC 클러스터의 성능 요인 – Processor 와 캐시메모리

• CPU의 성능 뿐만 아니라 CPU와 메모리 간의 Bandwidth, 캐쉬 메모리 등이 성능에 영향

Processor	Base Clock (GHz)	캐시 메모리 (MB)	Cores / Node	Analysis	Duration (s)	GFlops
AMD EPYC 7742 (Rome)	2.45	256	60 / 128	StarCCM+ 17.02.008	345	1564.9
AMD EPYC 7V3X (Milan-X)	2.2	768	64 / 128	StarCCM+ 17.02.009	246	1951

Processor	캐시 메모리 (MB)	STREAM (Gb/s)	Memory Copy (Gb/s)	Dumb MBW (Gb/s)	Memory Block (Gb/s)	B_eff (Gb/s)
AMD EPYC 7742 (Rome)	256	272	15.2	14.7	9.2	59.2
AMD EPYC 7V3X (Milan-X)	768	278.1	21.3	21	14.9	65

HPC 클러스터의 성능 요인 – 인터커넥트 네트워크

- 인터커넥트 네트워크
 - HPC 클러스터의 컴퓨팅 노드간 네트워크로 Bandwidth보다 Latency가 더 큰 영향을 끼침

- Catseye: Emerald Same processor / 100 Gbps EFA vs 25 Gbps non-EFA
- Carbon: Ferrite Same processor / 10 Gbps Ethernet vs 100 Gbps Infiniband
- Yttrium : Catseye Similar processor / Bearmetal vs Virtuallized

HPC 클러스터의 성능 요인 - 스토리지

- 시뮬레이션 워크로드에 따라 I/O 패턴이 다양
 - I/O occurs in the head node only
 - Almost CFD/FEA simulations
 - Parallel I/O in all compute nodes
 - WRF, MPI-IO code, Fluent Parallel I/O etc
 - EDA application exchange data using the storage
- 다양한 스토리지 요구사항이 존재
 - All compute nodes can access the shared storage without I/O bottleneck for the scratch
 - All user data should be stored in the persistent shared storage

슈퍼컴을 위한 스토리지 구성

- 다양한 요구사항을 충족하기 위한 스토리지 구성 필수
 - High performance parallel I/O for the fast scratch disk
 - Persistent shared large sized storage for user data
 - Long time archived storage

KISTI Nurion conceptual architecture

고성능 슈퍼컴퓨터 설계 방안

General purpose HPC cluster

- Dedicated homogeneous instances
- RDMA enabled interconnect for MPI applications
- Parallel file system with low latency storage network for the scratch and user directory
- Job scheduler and module based application management
- Auto-scaling for the bursting situation

Design for the major applications

- CPU Intensive / memory intensive / GPU applications
- Interconnect network is dependent on the application characteristics
- For non-MPI applications but distributed computing, standard Ethernet maybe sufficient
- Non parallel file system but shared storage system for user directory
- Job scheduler may not be needed FIFO