Lab: VAE-GAN

Lab Objective:

In this lab, you will combine adversarial loss and VAE to build a more powerful model. Precisely speaking, you will be asked to reproduce the paper "Autoencoding beyond pixels using a learned similarity metric".

Turn in:

Report:

Demo:

Requirements:

- 1. Implement VAE-GAN
- 2. Show reconstruction images and generated samples
- 3. Compare your results of hw3 and hw2 and discuss visual differences

<u>Implementation Details:</u>

- Loading Dataset
 - CelebA_aligned_reduced.h5
 - 2. Using celebA_dataset.py to load data

```
class CelebADataset(Dataset):
       def __init__(self, h5_path, transform=None):
         assert (os.path.isfile(h5_path))
          self.h5_path = h5_path
          self.transform = transform
          # loading the dataset into memory
8
          f = h5py.File(self.h5_path, "r")
9
           key = list(f.keys())
          print ("key list:", key)
          self.dataset = f[key[0]]
          print ("dataset loaded and its shape:", self.dataset.shape)
14
      def __getitem__(self, index):
15
          img = self.dataset[index]
16
           img = np.transpose(img, (1, 2, 0))
           if self.transform is not None:
18
               img = self.transform(img)
19
20
           return img, 0
       def __len__(self):
           return len(self.dataset)
```

The usage of this dataset is the same as MNIST or other datasets we used before

- VAE (beta-VAE)
 - The same concepts as we introduced before
 - Loss function:

$$\mathcal{F}(\theta, \phi, \beta; \mathbf{x}, \mathbf{z}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

- GAN
 - The same concepts as we introduced before
 - The loss function of discriminator:

$$\mathcal{L}_{\mathrm{D}} = -E_{x \sim p_r}[\log D(x)] - E_{x \sim p_g}[\log(1 - D(x))]$$

■ There are two most often used loss function of generator. The first one is:

$$\mathcal{L}_{G} = -\mathcal{L}_{D} = E_{x \sim p_{g}} [\log(1 - D(x))]$$

The second one is:

$$\mathcal{L}_{G} = E_{x \sim p_{g}}[-\log D(x)]$$

In this lab, you can use either of them, but you should tell me which one you used in your report.

VAE-GAN

- 1. Better distance metrics
 - Discriminator should learn better metrics than pixel-wise I2-norm or
 I1-norm metrics
 - Replace pixel-wise distance metrics with feature-wise distance metrics which are learned by the discriminator
 - lacklash Extracts the representations of x and \tilde{x} from the L layer of discriminator
 - ♦ Introduce a Gaussian observation model:

$$p(\operatorname{Dis}_l(\boldsymbol{x})|\boldsymbol{z}) = \mathcal{N}(\operatorname{Dis}_l(\boldsymbol{x})|\operatorname{Dis}_l(\tilde{\boldsymbol{x}}), \mathbf{I})$$

And the original reconstruction loss becomes:

$$\mathcal{L}_{\text{llike}}^{ ext{Dis}_l} = -\mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log p(ext{Dis}_l(\boldsymbol{x})|\boldsymbol{z}) \right]$$

In short, you should compute the I2 norm of the feature-wise difference between x and \tilde{x} , rather than the I2 norm of the pixelwise difference

2. Adversarial loss

- The whole autoencoder can be seen as a large generator, and we can introduce an additional neural network as discriminator. Thus, our entire system becomes a GAN
- To improve the quality of both reconstruction images and sampling images, we take both reconstruction images and sampling images as fake inputs of the discriminator

$$\mathcal{L}_{GAN} = \log(\operatorname{Dis}(\boldsymbol{x})) + \log(1 - \operatorname{Dis}(\operatorname{Dec}(\boldsymbol{z}))) + \log(1 - \operatorname{Dis}(\operatorname{Dec}(\operatorname{Enc}(\boldsymbol{x}))))$$

3. VAE-GAN and its algorithm

Algorithm 1 Training the VAE/GAN model

$$\begin{array}{l} \boldsymbol{\theta}_{\mathrm{Enc}}, \boldsymbol{\theta}_{\mathrm{Dec}}, \boldsymbol{\theta}_{\mathrm{Dis}} \leftarrow \text{initialize network parameters} \\ \textbf{repeat} \\ \boldsymbol{X} \leftarrow \text{random mini-batch from dataset} \\ \boldsymbol{Z} \leftarrow \mathrm{Enc}(\boldsymbol{X}) \\ \boldsymbol{\mathcal{L}}_{\mathrm{prior}} \leftarrow D_{\mathrm{KL}}(q(\boldsymbol{Z}|\boldsymbol{X}) \| p(\boldsymbol{Z})) \\ \tilde{\boldsymbol{X}} \leftarrow \mathrm{Dec}(\boldsymbol{Z}) \\ \boldsymbol{\mathcal{L}}_{\mathrm{llike}}^{\mathrm{Dis}_l} \leftarrow -\mathbb{E}_{q(\boldsymbol{Z}|\boldsymbol{X})} \left[p(\mathrm{Dis}_l(\boldsymbol{X}) | \boldsymbol{Z}) \right] \\ \boldsymbol{Z}_p \leftarrow \text{samples from prior } \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \\ \boldsymbol{X}_p \leftarrow \mathrm{Dec}(\boldsymbol{Z}_p) \\ \boldsymbol{\mathcal{L}}_{\mathrm{GAN}} \leftarrow \mathrm{log}(\mathrm{Dis}(\boldsymbol{X})) + \mathrm{log}(1 - \mathrm{Dis}(\tilde{\boldsymbol{X}})) \\ + \mathrm{log}(1 - \mathrm{Dis}(\boldsymbol{X}_p)) \\ \text{// Update parameters according to gradients} \\ \boldsymbol{\theta}_{\mathrm{Enc}} \leftarrow -\nabla_{\boldsymbol{\theta}_{\mathrm{Enc}}}(\boldsymbol{\mathcal{L}}_{\mathrm{prior}} + \boldsymbol{\mathcal{L}}_{\mathrm{llike}}^{\mathrm{Dis}_l}) \\ \boldsymbol{\theta}_{\mathrm{Dec}} \leftarrow + \nabla_{\boldsymbol{\theta}_{\mathrm{Dec}}}(\boldsymbol{\gamma} \boldsymbol{\mathcal{L}}_{\mathrm{llike}}^{\mathrm{Dis}_l} - \boldsymbol{\mathcal{L}}_{\mathrm{GAN}}) \\ \boldsymbol{\theta}_{\mathrm{Dis}} \leftarrow -\nabla_{\boldsymbol{\theta}_{\mathrm{Dis}}} \mathcal{L}_{\mathrm{GAN}} \\ \textbf{until deadline} \end{array}$$

4. We modify the loss function of encoder a little bit:

Loss function for the encoder:
$$\beta * L_{prior} + L_{llike}^{Dis_l}$$

Model Architecture

■ Size of input images: (batch size, 3, 64, 64)

■ Size of Latent codes (Gaussian noise): (batch size, 2048)

■ Encoder

Name	Туре	Input	Kernel	Stride	Padding	Output shape
			size			
Conv1	Conv	Input	5	2	2	(batch size, 64,
		images				32, 32)
Conv2	Conv	Conv1	5	2	2	(batch size,
						128, 16, 16)
Conv3	Conv	Conv2	5	2	2	(batch size,
						256 , 8, 8)
Flatten	Flatten	Conv3				(batch size,
						256*8*8)
Fc1	FC	Flatten				(batch size,
						2048)
BN1	BN	Fc1				(batch, 2048)
ReLU1	ReLU	BN1				(batch, 2048)
Mean	FC	ReLU1				(batch, 2048)
Fc2	FC	Conv3	0			(batch size,
						2048)
BN2	BN	Fc2				(batch, 2048)

ReLU2	ReLU	BN2		(batch, 2048)
Log Var	FC	ReLU2		(batch, 2048)

Decoder

Name	Туре	Input	Kernel	Stride	Padding	Output
			size			shape
Fc1	FC	Latent				(batch
		codes				size,
						8*8*256)
BN1	BN	Fc1				(batch
						size,
						8*8*256)
ReLU1	ReLU	BN1				(batch
						size,
						8*8*256)
Reshape	Reshape	ReLU1				(batch
						size, 256,
						8, 8)
Deconv1	Deconv	Reshape	5	2	2	(batch
						size, 256 ,
						16, 16)
Deconv2	Deconv	Deconv1	5	2	2	(batch
						size, 128,
						32, 32)
Deconv3	Deconv	Deconv2	5	2	2	(batch
						size, <mark>32</mark> ,
						64, 64)
Deconv4	Deconv	Deconv3	5	1	2	(batch
						size, 3,
						64, 64)
Tanh()	Tanh	Deconv4				(batch
						size, 3,
						64, 64)

```
output = self.deconv1(preprocessed_codes, output_size=(bs, 256, 16, 16))
output = self.deconv2(output, output_size=(bs, 128, 32, 32))
output = self.deconv3(output, output_size=(bs, 32, 64, 64))
output = self.deconv4(output, output_size=(bs, 3, 64, 64))
```

Discriminator

Name	Туре	Input	Kernel	Stride	Padding	Output
			size			shape
Conv1	Conv	Real/fake	5	1	2	(batch
		images				size, <mark>32</mark> ,
						64, 64)
Conv2	Conv	Conv1	5	2	2	(batch
						size, 128,
						32, 32)
Conv3	Conv	Conv2	5	2	2	(batch
						size, <mark>256</mark> ,
						16, 16)
Conv4	Conv	Conv3	5	2	2	(batch
						size, <mark>256</mark> ,
						8, 8)
Reshape	Reshape	Conv4				(batch
						size,
						256*8*8)
Fc1	FC	Reshape				(batch
						size,
						1024)
ELU1	ELU	Fc1				(batch
						size,
						1024)
Fc2	FC	ELU1				(batch
						size, 1)
Sigmoid	Sigmoid	Fc2				(batch
						size, 1)

Hyper-parameters

1. Max epochs: 50

2. Learning rate for the encoder and the decoder: 3e-4

3. Learning rate for the discriminator: 3e-5

4. Batch size: 64

- 5. Hidden code size: 2048
- 6. Gamma: 5 (enhance the reconstruction loss for the decoder)
- 7. Beta: 15 (enhance the reconstruction loss for the encoder)
- Rule of Thumb
 - You may need 3~5 hours to implement this homework
 - Total training time will cost you around 10 hours

Reference:

 Larsen, Anders Boesen Lindbo, et al. "Autoencoding beyond pixels using a learned similarity metric." arXiv preprint arXiv:1512.09300 (2015). https://arxiv.org/pdf/1512.09300.pdf

Report Spec [black: Demo, Gray: No Demo]:

- 1. Introduction (15%, 15%)
- 2. Experiment setups:
 - A. How you implement VAE-GAN (10%, 10%)
 - B. Which loss function of generator you used (10%, 10%)
- 3. Results:
 - A. Show reconstruction images and generated samples (20%, 30%)
- 4. Discussion
 - A. Compare your results of hw3 and hw2 and discuss visual differences (25%, 35%)
- 5. Demo (20%)