Tai Duc Nguyen - ECEC487 - HW1 - 09/29/2019

Contents

- Computer Exercises (CX)
 - HW CX 2.7
 - HW CX 2.8
 - Using the data generation procedures from textbook CX 2.3 Page 80 with slight modifications
 - Using the Bayes classifier algorithm from textbook CX 2.5 Page 81 with slight modifications
 - Using the Euclidean classifier algorithm from textbook CX 2.6 Page 82 with slight modifications
 - Calculate the probability density value (using equation from page 30, class's slides ac_1_classifier_bayes_1.ppt)
 - Using the Euclidean classifier algorithm from textbook CX 2.8 Page 82-83 with modifications
 - Conclusion and remarks
- Written Homework
 - Question
 - Answer
 - For Gaussian distributions*:
 - For Poisson distributions*:
 - For Exponential distributions*:

Computer Exercises (CX)

```
seed = 0
randn('seed',seed);
seed =
0
```

HW CX 2.7

```
clear; close all;

% Prepare the variables:
N = 10000;

m1 = [1;1];
m2 = [4;4];
m3 = [8;1];
m = [m1 m2 m3];
```

```
S1 = eye(2)*2;
 S2 = S1;
 S3 = S1;
 S(:,:,1) = S1; S(:,:,2) = S2; S(:,:,3) = S3;
 P x5 = [1/3;1/3;1/3];
 P_x5 = [0.8; 0.1; 0.1];
 % Generate data set X5 and X5 and class assignments y5 and y5
  [X5, y5] = generate gauss classes(m, S, P x5, N);
  [X5_, y5_] = generate_gauss_classes(m, S, P_x5_, N);
 % Classify data set
 z5 bayes = bayes classifier(m,S,P x5,X5);
 z5_bayes_ = bayes_classifier(m,S,P_x5_,X5_);
 z5_eu = euclid_classifier(m,X5);
 z5 eu = euclid classifier(m,X5 );
 % Calculate error for the bayes classifiers
  error x5 bayes = z5 bayes-y5;
  error x5 bayes(error x5 bayes > 0) = 1; error x5 bayes(error x5 bayes < 0) = 1;
 error_x5_bayes = sum(error_x5_bayes)/length(z5_bayes)
 error_x5_bayes_ = z5_bayes_-y5_;
 error_x5_bayes_(error_x5_bayes_ > 0) = 1; error_x5_bayes_(error_x5_bayes_ < 0) = 1;</pre>
 error x5 bayes = sum(error x5 bayes )/length(z5 bayes )
 % Calculate error for the euclidean classifiers
 error x5 eu = z5 eu-y5;
 error x5 eu(error x5 eu > 0) = 1; error x5 eu(error x5 eu < 0) = 1;
 error_x5_eu = sum(error_x5_eu)/length(z5_eu)
 error_x5_eu_ = z5_eu_-y5_;
 error x5 eu (error x5 eu > 0) = 1; error x5 eu (error x5 eu < 0) = 1;
  error_x5_eu_ = sum(error_x5_eu_)/length(z5_eu_)
error_x5_bayes =
 0.0711
error_x5_bayes_ =
 0.0436
error_x5_eu =
```

```
error_x5_eu_ =
```

HW CX 2.8

0.0708

```
clear; close all;
 % Prepare the variables:
 N = 1000;
 m1 = [1;1];
 m2 = [8;6];
 m3 = [13;1];
 m = [m1 m2 m3];
 S1 = eye(2)*6;
  S2 = S1;
 S3 = S1;
 S(:,:,1) = S1; S(:,:,2) = S2; S(:,:,3) = S3;
  P = [1/3;1/3;1/3];
 \% Generate data set X, Z and class assignments y_x, y_z
  [X, y_x] = generate_gauss_classes(m, S, P, N);
  [Z, y_z] = generate_gauss_classes(m, S, P, N);
 % Run KNN classifier with k=1 and k=11
  z_knn_1 = k_nn_classifier(Z,y_z,1,X);
  z knn 11 = k nn classifier(Z,y z,11,X);
 % Calculate error for the KNN classifiers
  error_knn_1 = z_knn_1-y_x;
  error_knn_1(error_knn_1 > 0) = 1; error_knn_1(error_knn_1 < 0) = 1;</pre>
  error_knn_1 = sum(error_knn_1)/length(z_knn_1)
  error_knn_11 = z_knn_11-y_x;
  error_knn_11(error_knn_11 > 0) = 1; error_knn_11(error_knn_11 < 0) = 1;</pre>
  error_knn_11 = sum(error_knn_11)/length(z_knn_11)
error_knn_1 =
  0.1051
error_knn_11 =
```

Using the data generation procedures from textbook CX 2.3 Page 80 with slight modifications

```
function [X,y] = generate_gauss_classes(m,S,P,N)
[~,c]=size(m);
X=[];
y=[];
   for j=1:c
        % Generating the [p(j)*N)] vectors from each distribution
        t=mvnrnd(m(:,j),S(:,:,j),fix(P(j)*N));
        % The total number of points may be slightly less than N
        % due to the fix operator
        X=[X; t];
        y=[y ones(1,fix(P(j)*N))*j];
    end
end
```

Using the Bayes classifier algorithm from textbook CX 2.5 Page 81 with slight modifications

Using the Euclidean classifier algorithm from textbook CX 2.6 Page 82 with slight modifications

```
end
% Determining the maximum quantity Pi*p(x|wi)
[~,z(i)]=min(t);
end
end
```

Calculate the probability density value (using equation from page 30, class's slides ac_1_classifier_bayes_1.ppt)

```
function res = prob_density_value(X,m,S)
    [b,~]=size(m);
    res = 1/((2*pi)^(b/2)*det(S)^(1/2))*exp(-1/2*(X-m)*inv(S)*(X-m)');
end
```

Using the Euclidean classifier algorithm from textbook CX 2.8 Page 82-83 with modifications

```
function z=k_nn_classifier(Z,v,k,X)
    [~,N1]=size(Z);
    [N,~]=size(X);
    c=max(v); % The number of classes
    % Computation of the (squared) Euclidean distance
    % of a point from each reference vector
    z=zeros(1,N);
    for i=1:N
        dist=sum(((repmat(X(i,:),N,1)-Z).^ 2),2);
        %Sorting the above distances in ascending order
        [~,n]=sort(dist);
        % Counting the class occurrences among the k-closest
        % reference vectors Z(:,i)
        refe=zeros(1,c); %Counting the reference vectors per class
        for q=1:k
            class=v(n(q));
            refe(class)=refe(class)+1;
        end
        [\sim,z(i)]=\max(refe);
    end
end
```

Conclusion and remarks

```
error_x5_bayes =
0.0711
```

```
error_x5_bayes_ =
    0.0436

error_x5_eu =
    0.0711

error_x5_eu_ =
    0.0708

error_knn_1 =
    0.1051

error_knn_11 =
    0.0701
```

From the results of the experiment 1 (CX 2.7), it is observed that Bayes(B) and Euclidean(E) classifier get the same error when the classes' a priori probabilities are equal. However, when the a prior probabilities are heavily skewed to one class, the B classifier performs better. The results of experiment 2 (CX 2.8) show that increasing k from 1 to 11 does increase the performance of the classifier, however, it it not a positively linear relationship between k and performance. The error rate goes even higher than k=1 with k=999 (error=0.6667)

Written Homework

Question

What is a sufficient statistic for the Gaussian, Poisson, and exponential distributions? Express the mean and variance for these distributions in terms of the sufficient statistic

Answer

In the Reading "On the Mathematical Foundations of Theoretical Statistics" by R. A. Fisher (1922), page 316-317, the author introduces the **Criterion of Sufficiency**, stating:

If heta be the parameter to be estimated, $heta_1$, a statistic which contains the whole of the information as to the value of heta, which the sample supplies, and $heta_2$ any other statistic, then the surface of distribution of pairs of values $heta_1$ and $heta_2$, for a given value of heta, is such that for a given value of $heta_1$, the distribution of $heta_2$ does

Hence, we can use Fisher-Neyman factorization theorem to check if a statistic is sufficient. The theorem is stating:

Let X_1, X_2, \cdots, X_n be a random sample with joint density $f(x_1, x_2, \cdots, x_n | heta)$. A statistic T =

$$f(x_1,x_2,\cdots,x_n| heta)=u(x_1,x_2,\cdots,x_n)v(r(x_1,x_2,\cdots,x_n), heta)(2)$$

 $r(X_1,X_2,\cdots,X_n)$ is sufficient if and only if the joint density can be factored as follows: $f(x_1,x_2,\cdots,x_n|\theta)=u(x_1,x_2,\cdots,x_n)v(r(x_1,x_2,\cdots,x_n),\theta)$ where u and v are non-negative functions. The function u can depend on the full random sample x_1,\cdots,x_n , but not on the unknown parameter θ . The function v can depend on θ , but can depend on the random sample x_1,\cdots,x_n , but not on the unknown parameter θ . The function v can depend on θ , but can depend on the random sample x_1,\cdots,x_n . the random sample only through the value of $r(x_1, \dots, x_n)$.

For Gaussian distributions*:

If the **mean** is a sufficient statistic, then $f(x_1,x_2,\cdots,x_n|\theta)=f_{\theta}(x)$ can be described as:

$$\Pi_{i=1}^n rac{1}{\sqrt{2\pi\sigma^2}} exp(-rac{(x_i- heta)^2}{2\sigma^2})$$

which can be fractorized into

$$f_{ heta}(x)=(2\pi\sigma^2)^{-n/2} imes exp(-rac{1}{2\sigma^2}\sum_{i=1}^n(x_i-ar{x})^2) imes exp(-rac{n}{2\sigma^2}(heta-ar{x})^2)$$

Let $u(x)=(2\pi\sigma^2)^{-n/2}exp(-rac{1}{2\sigma^2}\sum_{i=1}^n(x_i-ar x)^2)$ and $v_ heta(x)=exp(-rac{n}{2\sigma^2}(heta-ar x)^2$ then: u(x) does not depend on heta and $v_{ heta}(x)$ only depends on r(x) through the function $r(x)=ar{x}$ -- which is the **mean**

If the **variance** is a sufficient statistic, then $f(x_1,x_2,\cdots,x_n| heta)=f_{ heta}(x)$ can be described as:

$$\Pi_{i=1}^n rac{1}{\sqrt{2\pi\sigma^2}} exp(-rac{(x_i- heta)^2}{2\sigma^2})$$

which can be fractorized into

$$f_{ heta}(x) = (2\pi\sigma^2)^{-n/2} imes exp(-rac{\sum_{i=1}^n(x_i- heta)^2}{2\sigma^2})$$

Let $u(x)=(2\pi\sigma^2)^{-n/2}$ and $v_{\theta}(x)=exp(-\frac{\sum_{i=1}^n(x_i-\theta)^2}{2\sigma^2})$ then: u(x) does not depend on θ and $v_{\theta}(x)$ only depends on r(x) through the function $r(x)=\sum_{i=1}^n(x_i-\theta)^2$ -- which is the **variance** when take $\frac{r(x)}{n-1}$

For Poisson distributions*:

If the λ is a sufficient statistic, then $f(x_1,x_2,\cdots,x_n| heta)=f_{ heta}(x)$ can be described as:

$$e^{-n imes heta} heta^{(x_1+...+x_n)} imes rac{1}{x_1!...x_n!}$$

Let $u(x)=rac{1}{x_1!...x_n!}$ and $v_{ heta}(x)=e^{-n imes heta} heta^{(x_1+...+x_n)}$ then: u(x) does not depend on heta and $v_{ heta}(x)$ only depends on r(x) through the function $r(x)=\sum_{i=1}^n x_i$ -- which is the λ when take $rac{1}{r(x)}$

For Exponential distributions*:

If the λ is a sufficient statistic, then $f(x_1,x_2,\cdots,x_n| heta)=f_{ heta}(x)$ can be described as:

$$\Pi_{i=1}^n rac{1}{ heta} exp(-rac{1}{ heta} x_i)$$

which can be fractorized into

$$f_{ heta}(x) = heta^{-n} e^{-rac{1}{ heta} \sum_{i=1}^n x_i}$$

Let u(x)=1 and $v_{\theta}(x)=\theta^{-n}e^{-\frac{1}{\theta}\sum_{i=1}^n x_i}$ then: u(x) does not depend on θ and $v_{\theta}(x)$ only depends on r(x) through the function $r(x)=\sum_{i=1}^n x_i$ -- which is the λ when take $\frac{1}{r(x)}$

/

^{*} All the factorizations are done with reference to https://en.wikipedia.org/wiki/Sufficient_statistic