MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF FHYSICS

CAMBRIDGE, MASSACHUSETTS 02139

1 December 1978

Dear John,

Enclosed is a final report for the Phase-A Cobe Study. It includes studies of the following:

Diffraction patterns of the apodizing Horn,

Calculations of the trade off between noise and spectral resolution for the FIRAS,

A preliminary study on flexural transports,

An optical study of the Martin-Pupplet polarizing interferometer,

A study of radiation absorption of thin Bismuth films.

The interim Phase-A study report is also part of the output of this contract.

Sincerely yours,

Rainer Weiss

Professor of Physics

(NASA-TM-84037) PHASE-A COBE STUDY Final Report (Massachusetts Inst. of Tech.) 57 pHC A04/MF A01 CSCL 20N

N82-10288

MULTI-MODE HORN TESTS

A scaled version of a conical apodizing horn similar to the design to be used in COBE as the antenna for the FIRAS was constructed at MIT and tested at JPL.

The cylindrical horn was constructed of brass tubing and sheet stock. The cone shown in Figure 1 is comprised of a straight conical section 110 cm long with a total cone angle of 7° beginning at the small end with a diameter of 0.711 cm and ending in a diameter of 14.1 cm. The large diameter is mated to a toroidal spinning with cylindrical radius of 15.2 cm flaring from 14.1 cm to 44.1 cm at the output. The toroid is cut so that the tangent at the open end of the flare is 90° to the cone axis. The toroidal piece was provided by David Woody at Berkeley.

The small end of the cone was attached to a rectangular wave guide RG 96/U. The transition from the cylindrical ${\rm TE}_{11}$ to the rectangular ${\rm TE}_{01}$ modes was abrupt which results in a mismatch roughly proportional to the

ratio of the overlapping areas of the two wavoguides to the area of the rectangular guide - 2 db.

The horn tests and results are described in the attached report by S. Bednarczyk of JPL.

The angular width of the contral maximum of the antenna pattern as given by geometric optics is the total cone angle for a horn of this length. The observed width at the 1/2 power points is 6° FWHM independent of the polarization of the incoming wave which is in substantial agreement with the 7° FWHM prediction. The antenna pattern follows the Airy function of an open hole of diameter 14 cm which is the diameter at the transition between the straight cone and the toroidal section. The crawling waves of the Keller Theory dominate at angles larger than 15°.

The Airy function describes the diffraction by a circular hole:

$$\frac{I(0)}{I(0)} = \left[\frac{2J_1(x)}{x}\right]^2$$

where $x = \frac{2\pi a}{\lambda} \sin \theta$.

For x > 10:

$$\frac{I(0)}{I(0)} \approx \frac{8}{\pi x^3} \cos^2(x - \frac{3\pi}{4})$$

For the test horn:

$$\lambda = .97 \text{ cm}$$
 $a = 7.05 \text{ cm}$ $x = 45.6 \text{ sin } 0$

The zeroes in the Airy function occur at:

<u> x</u>	<u>@(dog)</u>
3.83	4.81
7.016	8.84
10.173	12.88
13.324	16.97
16.49	21.17
19.63	25.46
22.77	29.91
25.92	34.59
29.06	39.52
32.20	44.84
35.34	50.74
38.48	57.4
41.63	65.7
44.77	78.6

The extended Airy pattern is best seen in the E_{\perp} plots.

The Keller Theory applied to the horn is taken from Keller (J. Appl. Phys., Vol. 30, p. 1452, 1959); and the attachment coefficients, from the MIT senior thesis of J. Anderson and A. Szymkoviak (MIT Physics Dept., 1976).

The ratio of the intensity diffracted into an angle Θ to the intensity of the undiffracted wave going into $\Theta = 0$ is given by:

$$\frac{I(\Theta)}{I} = {\binom{22}{64}} \frac{2\Theta_{\text{BEAM}}^{\lambda}}{\pi^2 \omega} \left(\frac{b}{\lambda}\right)^{2/3} e - {\binom{5.93}{2.58}} \left(\frac{b}{\lambda}\right)^{1/3} \Theta$$

where w is the diameter at the transition between straight cone and toroidal section, b is the cylindrical radius of the torus. The coefficients in the parentheses are taken from Keller and have been experimentally verified to 25% by Anderson and Szymkoviak. The upper coefficient is for E₁₁ and the lower for E₁.

Both the Airy function and the Keller calculation have been drawn on the data in antenna patterns 4 and 14. For the important case, E., the theory overestimates the diffraction at large angles by 3 to 5db.

Off-Axis Rejection Required

The main beam covers a solid angle Ω_s , the side lobes of the antenna looking into a hot source cover a solid angle Ω_b (close to π). The point source response function of the antenna, $G(\Theta)$, is normalized: G(O) = 1. The ratio of the power entering the system from the side lobe source at temperature T_B (hv << KT_B) and emissivity ε , to that from the universe at T_G is:

$$R = \frac{P_B}{P_V} = \frac{\varepsilon_B B(v, T_B) \int_{0.0}^{\pi} 2\pi \sin \theta G(\theta) d\theta}{B(v, T_U) \Omega_S}$$

$$G(\Theta > \Theta_{\circ}) = \frac{B(\vee, T_{\vee})\Omega_{s}}{\varepsilon_{B}B(\vee, T_{B})\Omega_{B}} R$$

$$G(\Theta > \Theta_{\bullet}) \simeq \frac{1.44 \text{ V}}{\epsilon_{\text{B}} T_{\text{B}}} \left(\frac{1}{e^{1.44 \text{ V}} / T_{\text{V}} - 1} \right) \frac{\Omega_{\text{S}}}{\Omega_{\text{B}}} R$$

Assume
$$\epsilon_B = 1$$
, $T_B = 250^{\circ} K$, $\Theta_{BEAM} = 7^{\circ} FWIM$
 $\Omega_B = \pi$ $T_U = 2.7^{\circ} K$ $\Theta_0 = 85^{\circ}$

$$\Omega_{\rm s}/\Omega_{\rm B} = 3.7 \times 10^{-3}$$

The absolute precision of the measurement requires $R < 10^{-3}$.

Figure 2 shows the antenna point source response in db required for all angles larger than 85°. Plotted as well is the relative antenna gain, $G(0 > 85^\circ)$, for the test horn extrapolated to other frequencies.

Figure 2

JET PROPULSION LABORATORY

INTEROFFICE MEMORANDUM 334-77-SMB

July 7, 1977

TO:

M. Janssen

FROM:

S. Bednarczyk

SUBJECT:

Antenna Test

Antenna patterns of the Exponential Microwave Horn submitted by Dr. R. Weiss of M.I.T. were performed on June 24-27, 1977. These patterns consisted of measuring the relative power detected by the horn/detector (receiver) as a function of its angle to the wave front illuminating the horn. Patterns were taken in which the receiver cut the "E" as well as "H" planes of the transmitter wave. Cross-polarized and 45° plane cuts were also performed to give a better view of any asymmetry or misalignment in the horn. A set of patterns was also taken to confirm system linearity to within the specified tolerance of ±0.5db.

Antenna Range Configuration:

The JPL Mesa, south range at Building 212 was used. The range comprised of a test transmitter and the receiver, each mounted on individual antenna positioners approximately 20 feet above ground level (see Figure 2). These positioners were separated by *54 feet, a distance which was determined experimentally to give acceptable receiver sensitivity (noise level) as well as uniform illumination, within limitations of the range geomytry.

In a typical run, the receiver antenna would be rolled about its symmetrical axis to align it with the arriving wave front from the transmitter according to the type of pattern desired (E, H, Cross, or 45° plane cut). The receiver is then rotated in azimuth 2180° ($\pm 90^{\circ}$ from the maximum power point).

Test Transmitter:

The test transmitter consists of a solid-state Gunn Oscillator with an output of ~10mw at a measured frequency of 31.32GHZ into a standard 8° rectangular horn. The horn is also rotable through 90° with respect to the horizontal plane so as to provide both "E" and "H" plane cuts. Calibrated attenuators were also included in order to check system linearity (see photo #1).

Test Receiver:

The receiver consisted of the M.I.T. Exponential horn with a crystal detector (HP-11517 with Ka Band rectangular waveguide adaptor). A rigid mount consisting of aluminum plate and rods was constructed to provide a stable platform. Adjustment scresw near the base of the antenna were included to help boresight the antenna (see photos #2 and #3). The mount was wrapped with microwave absorber to minimize unwanted reflections and leakage entering the detector through any direction other than the antenna face.

M. Janssen - 2 - 334-77-SMB

Measurement System:

The Scientific-Atlanta series 1750 phase-locked receiver, crystal bolometer, and rectangular recorder were used to obtain the patterns.

The receiver locks to the transmitter signal by means of a harmonic generation system through use of an S-Band (=3.9 GHZ) local oscillator and provides an IF output signal relative to the received signal strength.

Each of the patterns submitted contains information which describe the type of measurement its relation to others in the set, and are self-explanatory.

Steve M. Bednarczyk

SMB: tab

Attachments:

cc: H. Marlin

N. Yamane

R. Weiss

ORIGINAL PAGE IS
OF POOR QUALITY

TEST GEOMETRY SCHEMATIC

FIGURE 2

			O				, + -							c · = = = + ;	+ ₁		 .		 	
1		GC. NO. 3		-		1 : 1			\bigwedge	۰	REF	PENCE	FOR A	L PAT	TERNS			1	-	, ,
		ECT WER.			1]				-	1		2 THE	[<u> </u>	<u></u> -₅	} - -	1
	ENGR	5. 5.m·B	1 / 1 -						- {-								!	 -:0	· •	
- 1	HEAD.	nns 54 j	fact house.	;	.							Hili				i is		· :		İ
	•		* .		. į				-		1 1							15		
	H-C	ent.	^ .	1 1 1				-	-	1					11 11.		<u> </u> 	-20	<u>!</u>	:
111	40:	84MH-	<u>,</u> 					lli									,	25		<u> </u>
	-	(qp)			OR OF												<u>-</u>			•
-		WAY-: -U	30		POO!			/	- -							1 1 1	VV	i ·		
1111	-	ONE	35		VA T												ONE	1-35		
		POWER ONE	40		POUR GUAL E			<u>*</u> 	-							: :	POWER	-40		
			45		<u> </u>			<u> </u>	-							-::		45	<u> </u>	<u>.</u>
	-	RELATIVE	50						_		· 	1					E.A.T	45 -50	<u> </u>	- ;
		: iz		·		ŀ					; : ₩:					-	~	55		·
	Ī					:				+		$\left\{ \left\{ \cdot \right\} \right\}$				- : :		60	-	:
	_					4		-1 - 2		:		A	*****	•						**
			55	1									14					65		
			70				, , , , , , , , , , , , , , , , , , ,	∳ ÷ 1		. ;			Haji					: 7 0		•
ī			75			-									1	2		Į	i i 1	i
	<u> </u>		72	halia.	.1.13-11	-	10	, A		<u> </u>	12	 	4,		7111			<u>გე</u>	95-F-6 . E.	

1	ing to the second secon	to Water shows you Warrach december of the same			 *			<u> </u>	, , _ ,	ا المسالة المائية المساورة الم
	PATTERN NO. 4	EATE 6-27					1+++	1 4 4	+	
	ENGRS S.M.B.	- -پ _ا						ZEROES	FUNCTION	
-	REF: 340°	中中								1.5
										20
										25
5	6. 20									-30
	WAY						A	RY FUNCT	1	
-				;					S O S	
	POWER ONE					•	7		34:02	
	RELATIVE			\int	1			1	RELATIVE	30
-	37.50								3	55
	53	KEFLECTION ADJACE → T	NS FROM T BUILDING	5			KEL	F THEOR	Y	50
	60		**				W			65
	70		1 612210						-	70
	75	111111111111111111111111111111111111111				0: 1 1 1		1	2	75
	ica.						36	1	2	90-15
		nafferedermetent bej erendertet t dit fråg abelle:	Ar & L.4: [5]- , o	H -		NGLE	,	* 15-2		CHAHT N2: 121 .

20
MAX A
ONE ONE
POWE 3
T. C. T.
α 30
70
12 103 103 103 103 103 103 103 103 103 103

-1	PATTE	an no	. 6	DATE	6-27	<u> </u>		ļ ·	.]			- GAIN	Re reeen	CEP TO		<u>. </u>			<u> </u>	-0	
	PROJE								11 !		; ·	PATT	EEN "3 (6-27-77)	1	<u> </u>				<u> </u>	
	ENGRS	5.M.	· B ·		·							***									
	REMAI HEAD REF: CRO.	250° 7	T af	K				1 - 1						1 41			:::	i			
		ss - Po	LARIZ	ZED.				-				$\sum_{i=1}^{n} \frac{1}{i}$. !		20	
,	: •] : [· 'i	11,11	111111								* * * * * * * * * * * * * * * * * * * *							:	-25	
			1 1 1 1 1 1 1 1 1																	30	
			ONE WAY-(db)				: :		·										WAY		
			ONE					:											R ONE	ž.	
	: : - :	, i	40								-								POWER	-45	
	1		45						:	_ (ELATIVE	-50	
			31 1						· .	<u> </u>							1		7 i 2 E	55	
-			60								-					:			•	60	
	+01 01					NGS T	ķ	1	14		***						; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			65	
-	1		-70-				_,H													70	
	1-1-1-1	•.			2												: 	2	-	75	3
	- 1	· :	- 20-	•	72	and the said		15	,		ANG		* 1 1 1 1	, ; 3	6	4		2 		RO	S 123 123 123 123 123 123 123 123 123 123

						* * • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
PATTERN NO 7 DATE 6-27-7			The GAN RE				
PROJECT WEISS							
REMARKS A							-
CROSS POLARIZATION						10	
IMAGE OF #6 HEAD REF: 70°						20	
						25	
						-1 2 30	
WAY (db) 11						> V N 35	
						O VE	
93-40 15-45							
LATIV						13 -50 -50	
3 50 · · · · · · · · · · · · · · · · · ·						ш 50 	
						60	
60 But	PINES RE			VIA			
						70	:
75			o		2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	75	
	.))) (a)			12 72'	20 105	
	\$44 a 18, 121.60	-	ANGLE	Hit was		CHART NO 1	71.43

		· : <u>· · · · · · · · · · · · · · · · · ·</u>			-		<u>.</u> .	
-	PATTERN NO. 8 PROJECT WEISS	DATE 6-27						
	ENGRS S.M.B.						5	
	REMARKS T	\$ 45° R cut					:0	
	Ref: 250						15	
							20	
1 1	25						25	
	(db.: VAV.: 20)						→ V _N 0 35	: <u></u>
	O NE						ONE	:
	E 40						POWER 40	
	ATIVE	OF POOR Q	3				LATIVE	
	₩ 50	QUAL					m 50	
1 1 1							55	
	60						1	
1	65	, 1111					70	
	70	2				<u>, </u>		3
1	3:	77.11			3	(i) . (j°	20 11	ļa Ģs`
	4	referencement gray to r	A haroll	ANGLE	R			44RT NO. 17567

<u>i.</u> ; <u>L</u>	PATTERN NO. 9	DATE 6-27-2			db -	G#II	Per				
	PROJECT WEISS ENGRS. S.M.B.										-:
	REMARKS 4	(R) 45°									10
	IMAGE OF #8	, • · · · · · · · · · · · · · · · · · ·									-15
		╅ ╏╏╏╏╏┇┇┇							1 1 1 1 1 1 1 1 1 1		25
	25 -									(e	-30
	W AY.										
	R-CNE									R ONE	40
	-POWE										-15
	RELATIVE-POWER-CNE			M			V			ELÄTIVE	1::
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u> </u>							-55
											- 60
	65										δ5
	70										70
:	70				0			17.77	2		75
	108		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ANGLI	1	3		12		30 109

["		·												
	PATTERN NO. 10 DATE 6-27													
+	PROJECT WEISS ENGRS. S.M.B.					· · · · · · · · · · · · · · · · · · ·								
1						10								
	REMARKS # 45°					15								
· . <u>!</u>	HEAD REF: 2980													
	25 					3								
	P: -\AVA)													
		9,0				ON 10								
11	POWER TOTAL					I'OWE								
	RELATIVE FOWER ONE	22				LATIVI								
	ac. 50	76				. es								
						50								
	65				. ;	63-								
	3. 3.	100				7-								
	18	2		30		80 - 27 - 17								
÷ •	ANGLE ANGLE													

Bridge of gray and an appropriate the second	ing the property of					المُست في الريب عالم المالية عالم
PATTERY 10. 11 DATE 6-27-						
PROJECT WEISS ENGRS. S.M.B.						
						10
REMARKS (T) (R)						[5
Her: 340°						20
			[]			25
9-30						
νΑΥ						X
SS ONVER ONE				<u> </u>		0 H 40
POWE			M = M			WO 49
-45 -45 -50 -50						M 43
(A)						55
Builde	IGS ON THIS	MA			A CONTRACTOR	= = = = = = = = = = = = = = = = = = = =
						ē5
					plk i	70
37	A Park In the Park					2 75
13		1 3 1 1			36	80
1 73 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHART	140, 121-90	ANGLE	•	المؤنسة المسالة	SU CHEST NO

						The second secon
PATTERN NO. 12 DATE 6-27-	7>		lii	PEF		
ENCRS. S.M.B.						
REMARKS (T) (R) IMAGE OF # //						10-
IMAGE OF # // HEAD REF: 160						15
						20
						25
WAY-(db)-30						F) -50
35 35 NO		6				35 NO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						POWER 60
LATIVE	100 AG				Noise From	3 45 1 V
50 cz	36				EVENT MARKER	1 50 50 E
55		MAN				55
50						-6C-
						C5
70				0,		76
75 183 1 1 1 1 1 1 1 1 1	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	6,			36.	
10 11 1	CHART	3, 121-90		IGLE		E0
						•

7 4		a ya da wa ka		,	1	· · · · · · · · · · · · · · · · · · ·			0	
	PATTERN NO. /3	E (TE 6-2) 2)			GAIN REF.					:
	PROJECT WE:SS ENGRS. S.M.R.								 	<u> </u>
1 1	REMARKS E-CUT	1.11							10	
	HEAD REF : 76	b							15-	
+ + +	HEAD REF: 76). 							20-	
1-1-1-1									25	
	42								Ē-30	
1:	MAXY-								S5	
+-	& ONE								# O S O O O O O O O O O O	
	Power		$ \mathcal{M} $						HO AS	
1	LATIVE		/						250	
	R 8		///						Ž	-
								•		
									70	
								12 11	- ->5	
	t: 3	72, 5	36, 30		10	301 35 42			103	
	4 - 445 4 144 - 14	- te chau.	un. 121 60	ANO	GLE ,		•		-	* NO. 4* #4

PATTERN NO. 14 DATE 6-2	27	0db =	1 ST ST I I I I I I	1111	
ENGRS. S.M.B.			ZEC	RY FUNCTION	
REMARKS	+				10
### ### ### ### ######################					
USAD: 250°					13
H -1.06E OF #/3					20
			A A		
2'					25
7 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3			The state of the s	AIRY FUNCTION	7 × × × × × × × × × × × × × × × × × × ×
3 % G					a o
0 O				***	
25 A5 A1					LATIVE 1
50				KELLER THEORY	X 30
55				ετ	553
				N. T.	
				1,11	
			0		
103:-	1961	D	3,5	12 1 72	
ANGLE And Addition Construction ANGLE					

NOISE-RESOLUTION TRADE OFF

We take the basic equation:

$$\frac{S}{N} = \varepsilon B_{\nu}(T) \Delta \nu \Lambda \Omega \sqrt{T_{int}} / NEP$$

with: $A\Omega = 0.5 \text{ cm}^2 - \text{sr}$ $\epsilon = 0.1$ $NEP = 3 \times 10^{-14} \text{ w/}\sqrt{\text{Hz}}$

 $T_{int} = 3 \times 10^4 \text{ seconds} \quad (1 \text{ yr over } 10^3 \text{ beams})$

and obtain:

$$N = (\frac{1}{\Delta v}) 3.4 \times 10^{-15} \text{ w/cm}^2/\text{cm}^{-1}/\text{sr}$$

This is greater than 10^{-3} of the peak BB flux for $\Delta v \leq \frac{1}{4}$.

For $\Delta v > \frac{1}{4}$, we are limited by the calibration uncertainty of 1 part per thousand, while for $\Delta v < \frac{1}{4}$, we are limited by detector noise. I have computed some model fits to assumed data, using the above noise or 10^{-3} of the peak flux, whichever is greater. These results apply to five parameter fits of the form:

$$I_{\nu}(obs) = K_{\nu}(T_{c}, y) + \tau_{o}(\frac{\nu}{\nu_{o}}) B_{\nu}(T_{d})$$

where $K_{_{\!\!\!\!V}}$ is the solution to the Kompaneets equation and the second term represents galactic dust. Using only the 0-20 cm $^{-1}$ data, I find substantial

correlation among the parameters (ρ_{yT_c} ~ 0.9), but fits are still possible. The following figure shows 95% confidence intervals on y and T_c as a function of resolution.

The following points should be made:

- 1) Better detectors (or higher ε) shift the optimum Δv to smaller values.
- 2) Better calibration shifts Δv_{opt} to higher values.
- 3) Correlated calibration errors produce a broad, flat optimum.

E. Wright

Figure: 95% Confidence Intervals on $T_{\rm c}$ and y vs. Resolution

PRELIMINARY FINDINGS ON FLEXURE HINGES

A Bendix Flexpivot, model #5016-800; was acquired and hysteresis losses and off-axis displacement were measured.

The off-axis displacement was checked using a laser beam reflected from a mirror positioned over the axis of rotation. We found for an angle of rotation of 15° there was an off-axis displacement of 10' of arc. This test was performed at 300°K.

The hysteresis losses were checked using an auto-collinator and a mirror mounted over the rotation axis.

At 300°K, the following results were obtained:

Angle of Rotation	. Hysteresis Angle
0	"0"
<u>+</u> 10°	1,51
<u>+</u> 15°	3.751
<u>+</u> 20°	91

These results were consistent with the manufacturer's specifications, although slightly above average.

At 77°k, though, the following hysteresis angles occurred:

Angle of Rotation	<u>Hysteresis Angle</u>
0	11011
<u>+</u> 10°	81-101
+15°	23†
+20°	>301

At 77°K, the pivot had taken a different rest position than at 300°K by =301.

The power that is dissipated for a given hysteresis angle can be found by using the formula:

$$P = \frac{2(\Delta \theta)^2 K \times 10^{-7}}{t}$$
 Watts

where $\Delta\,\theta$ is the hysteresis angle in radians, K is the torsional spring rate in dyne-cm/rad and t is the period.

Two attempts were made to construct a linear transport mount using torsional springs.

The first one was made using springs machined from .005" Be-Cu stock (see Fig. 1). The two springs were soldered to the ends of a brass tube and a rod suspended between them. Several problems emerged from this attempt:

- (1) The springs themselves were not initially flat.
- (2) The plane of the hinges was not parallel.
- (3) The rod was not centered.

All three problems gave large off-axis displacements of anywhere from 30' to 1° or 2°.

A second approach was tried using individual arcs as springs (400). Fig. 2). The problems associated with this design are the following:

- (1) The plane of the springs has to be the same.
- (2) The arc length of each side of the spring has to be equal between the clamps.
- (3) The centering of the rod.

A line-up jig was devised to ensure as far as possible the minimization of the above problems.

A loudspeaker movement was used to drive the mount and a capacitive bridge to determine the position.

The off-axis displacement was checked first and for the maximum travel end to end (= 1 cm) amounted to 2' of arc. This was a very strong

function of the assembly procedure---the first attempts having large deflections (= 20° of arc). After some practice, it was reduced to the 2° of arc.

The spring characteristics were checked by driving the loudspeaker coil (DC) and reading the capacitance bridge for the position.

Figure 3 is a plot of the position as a function of voltage. On the "+" voltage side, there is a "dip" in the curve. This appears to be caused by one spring not being aligned in a flat plane and buckling occurs when this position is reached.

Figure 4 is a calibration of the capacitance bridge using a micrometer to position the mount.

Richard Benford

ORIGINAL PAGE IS OF POOR QUALITY

OF POOR QUALITY

FIGURE

4

1----

Plat of Colaction difference 0 . | 5 : 1.1 . .02 PAGE IS

BIMONTHLY REPORT

INTERFEROMETER DESIGN AND CONSTRUCTION

FIRAS Mock-Up Design

We have chosen the symmetrized Martin-Puplett optical path, using mirrors that are available from Special Optics. The basic path is:

 M_1 is a parabola, used 43° off axis, with FL = 14 cm and diameter = 13 cm, while M_2 is also a parabola, used 29° off axis, with FL = 40 cm and size 23 x 20 cm.

Ideally, $\rm M_1$ should have a longer focal length but Special Optics couldn't make it, and other sources would cost \sim \$10K more.

In Figure 2, a top view of the device, the inputs and outputs are located over the M_1 's which collimate the light and redirect it horizontally to M_2 which produces an image of the input-output pair on the dihedral. At the dihedral, the input beam is switched from low to high and returned through M_2 and M_1 becoming the output.

The input-output polarizer, IP-OP, and the beamsplitter, BS, are both wire grid polarizers, but are oriented as follows: the IP-OP is vertical, while the BS is cocked at 45° to vertical, so the polarizations are mixed, leading to interference.

Other Designs Considered

Before settling on the symmetrized MP interferometer, we also considered the symmetrical Mach-Zender system (the Block Engineering concept) and the assymetric MP in the COBE Phase A study.

Because the MZ uses skew beams in the interferometer, the f# must be high, which requires a large retroflector. In effect, the retroreflector must be as wide as the dihedral in the symmetrized MP system is high. This leads to a larger system without any compensating advantages.

The ordinary MP interferometer is quite compact and the input and outputs are well separated. It wastes one polarization, however, and it is polarization sensitive, and it doesn't treat the sky horn and the internal calibrator exactly alike. Once the symmetrized MP seemed feasible, we abandoned the assymetric MP.

Transport

The mirror motion needed to vary the path difference is obtained by moving both dihedrals parallel to the M_2-M_2 line. Moving both dihedrals by X cm changes the relative delay by $4(\cos\theta)$ X where θ is 29° , the off-axis angle at M_2 . In order to obtain 5 cm delay (for .1 cm⁻¹ unapodized resolution), the total stroke is X = 1.43 cm. During this motion the beams move by $X\sin\theta = .70$ cm on the dihedral, so the mirrors must be this much oversized.

The solid angle of the beam at the transport must be $\Omega \leq \frac{2\pi\Delta\nu}{\nu}$. We have designed to $(\nu/\Delta\nu) \leq 200$, so $\Omega < \frac{\pi}{100}$, corresponding to an f/5 beam. For a throughput of 0.5 cm²-sr, the area of the beam gives a diameter of 4.5 cm, so the extra 0.7 cm is a small penalty.

Diffraction

Consider a focused beam with intensity given by:

$$I \sim \left[\frac{2J_1(X)}{X}\right]^2, \quad X = \frac{\pi r}{\lambda (f \theta)}$$

The second dark ring of this pattern occurs at X = 7, giving $r = 2.23 \lambda$ (f#). We have chosen X = 7 at λ = 1 mm as our design limit, and tried to size the mirrors to allow a skirt of width 0.223 (f#) cm around the geometric spot. But the diameter of the geometric spot is determined by the throughput $\Delta\Omega$ and the f#, giving r_{geo} = .45 (f#). Thus our design criterion translates into allowing a 50% margin on the mirrors. At the dihedral, where the geometric spot is 4.5 cm, we allow 6.75 cm.

At $\rm M_2$ where the beams are not focussed, the situation is slightly more complicated. We take 40/4.5 = 8.9 as the f#, so the required margin is 2 cm. The geometric spot size is 4.5 + 40/5 = 12.5 cm, so the required diameter is 16.5 cm. Due to the tilt of $\rm M_2$, the true width is 18.9 cm, and due to the separation of input and output on $\rm M_2$, the height is 23.25 cm.

At M_1 , we need a mirror 13.66 cm in diameter, or 13.7 x 19.3 because of the tilt, in order to include our diffraction criterion. However, we do not want diffracted rays reflected from the Winston cones at the input and output to form cavity resonances. Thus we will probably place an absorbing stop at M_1 just beyond the geometric beam.

Ray Tracing

We have developed a ray-tracing program for our PDP11 that is designed for off-axis systems, rather than axial ones. This program can handle flats, dihedrals, trihedrals, spheres, ellipsoids, paraboloids and toroids.

With the focus of M₁ between the input and the output, and the focus of M₂ in the center of the dihedral, the system is perfect on axis, but off-axis aberrations are large but tolerable. Following a suggestion by John Mather, we found that the off-axis aberrations were improved by placing the focus of M₂ in the center of M₁. Even better performance can be achieved by allowing arbitrary shapes for M₁ and M₂, but the use of parabolasis adequate. Figure 4 shows some spot diagrams with the focus of M₂ either in the center of M, or the center of the dihedral. Two cases are given for two different off-axis angles at M₁. We see that reducing the angle at M₁ does not make a dramatic improvement, probably because the plane defined by input-M₁-M₂ is perpendicular to M₁-M₂-DH plane, so some aberrations cancel.

Input-Output Optics

The current design gives an input diameter of (14/40) x the diameter at the retroflector, or 1.6 cm, with an f# of 1.75. The output is identical. We will use Winston cones to concentrate the output to a diameter of 4.5 mm.

As can be seen in Figure 3, the output beam is very convergent, making it difficult to insert a dichroic filter before the focal plane. Figure 3 shows a possible solution, with the dichroic filter at the focal plane, and refocussing optics behind it. However, the indicated scheme has intolerable aberrations when we ray trace it. Crossed off-axis paraboloids can be used, but the final design is not set. Changing the focal length of M₁ to 20 cm increases the

available space to the point where the dichroic can be placed before the focal plane.

Progress in Orders

We have ordered the mirrors M_1 and M_2 from Special Optics and Winston cones from A. J. Tuck and Co. These parts should arrive in late July. We are designing mirror mounts so we can assemble the system on a lab bench for alignment, diffraction and resolution tests.

Figure 4: Each diagram shows inputs in the lower left and outputs in the upper right.

- A) M_1 at 30°. Focus of M_2 at M_1 .
- B) M_1 at 30°. Focus of M_2 at DH.
- C) M_1 at 42.59°. Focus of M_2 at DH.
- D) M_1 at 42.59°. Focus of M_2 at M_1 .

ORIGINAL PAGE IS
OF POOR QUALITY

Radiation Absorption by Thin Bismuth Films

Introduction

Recently, several varieties of bolometers have been made for use in the detection of submillimeter radiation which employ thin metal films as absorptive elements^{1,2}. These films, deposited onto a dielectric substrate, can have a negligible heat capacity and still absorb one half or more of the radiation in a single pass. An idealized thin metal film is completely described by its impedance but an actual vacuum deposited film might be somewhat more complicated. Thinly connected clumps of metal would act as a non-absorptive beam splitter, while a resistive film with stray conductive paths through it would absorb more radiation than its DC impedance would indicate. Therefore, measurements were made of the reflection and transmission of millimeter wavelength radiation by various resistive Bismuth films on Sapphire and Silicon substrates to deduce the absorption of radiation by these films as a function of DC impedance.

Theory

In the standard waveguide analogy, one can calculate the admittance at the front surface of a dielectric wafer which has a resistive coating on its back surface as 3

$$Y = n \left\{ \frac{\cos \theta}{\sec \theta} \right\} \left[\frac{\left(\frac{Y_0 \left\{ \cos \theta \right\}}{\sec \theta} \right) + \frac{1}{R_f} \right) \cos \beta d + \inf \left\{ \frac{\cos \theta}{\sec \theta} \right\} \sin \beta d}{n \left\{ \frac{\cos \theta}{\sec \theta} \right\} \cos \beta d + i \left(\frac{Y_0 \left\{ \cos \theta \right\}}{\sec \theta} \right) + \frac{1}{R_f} \right) \sin \beta d} \right]$$

$$\left\{ \frac{for E_1}{for E_0} \right\}$$

where η is the index of refraction of the dielectric, θ is the angle of incidence and θ , the angle formed by the light to the normal inside the wafer, ν is the frequency in wave numbers (cm-1), R_f is the film impedance,

d is the thickness of the wafer and Y =1/377 $\frac{\Omega}{}$ is the admittance of free space. The propogation constant inside the dielectric is

$$\beta = 2\pi\eta vd \cos\theta^{\dagger}$$

From the admittance we can obtain the reflectivity:

$$\rho = \frac{\gamma_0 \left\{ \begin{array}{c} \cos \theta \right\} - \gamma}{\gamma_0 \left\{ \begin{array}{c} \cos \theta \right\} + \gamma} & \left\{ \begin{array}{c} \text{for } E_{\perp} \\ \text{for } E_{\parallel} \end{array} \right\} \end{array}$$

and the reflection, absorption and transmission coefficients are given by

$$R = \rho \rho^*$$
, $A = \frac{(1-R)}{(1 + \frac{R_f}{377 \Omega/D})}$, $T = 1-R-A$

These expressions all exhibit a channel spectrum due to the frequency dependance of Y. This dependance vanishes when the load admittance matches the intrinsic admittance of the substrate. Thus one could make a spectrally flat absorber by choosing a film impedance such that

$$R_f = 377/(n-1)$$
.

To obtain theoretical predictions for the amounts of reflection from and transmission through each of our samples, the expressions given above were evaluated for an incident angle of 45° and averaged over the spectral response of our InSb "hot electron bolometers". There was a possible polarization of the incident radiation of as much as 3%, and there was some uncertainty as to the thickness of each sample and both of these showed up as uncertainties in the theoretical predictions for

.

specific samples. Figure 1 is a graph of reflection transmission and absorption calculated for films deposited on the back of a 15 micron thick piece of Silicon with an incident thermal spectrum $[I(v) \propto v^2]$ low pass filtered at 14 cm⁻¹ plotted versus film impedance.

If the resistive coating is deposited onto the incident instead of the back surface there could be no impedance matching and thus there will always be a channel spectrum. Further, the frequency averaged absorption is very much reduced, as was verified in measurements of the Sapphire samples.

Measurements

Resistive layers of Bismuth were vacuum deposited onto thin wafers of either Sapphire or Silicon. The film empedances were measured at DC and the coated samples were cooled to 4.20K and exposed to Submillimeter thermal radiation. The light reflected by them was measured by one InSb hot electron bolometer and that transmitted through them by another. These detectors had a pass band extending from 1/2 wave number to either 14 or 35 wave numbers, depending on whether or not low pass interference filters were used. Bismuth was chosen for the resistive layer because its high resistivity allows one to deposit a layer which is simultaneously thick enough to be spatially uniform and resistive enough to absorb radiation.

The Sapphire wafers used were between 30 and 50 microns thick, polished on both sides. The extraordinary optical axis lay nearly in the plane of each wafer. The Silicon samples were polished on one side and then etched on the other side to a thickness between 10 and 25 microns. The Bismuth was deposited on the etched surface. In separate depositions for the different cystals, wafers were held in a vacuum chamber at various distances from a Bismuth source to give a range of film impedances among the prepared samples. Glass slides with electrical leads attached were put

next to each sample to monitor the DC impedance during and after the deposition. To check the sensitivity of film impedance to the structure of the surface it is deposited onto, large wafers of Silicon with the same surface treatment as the smaller samples were included in the evaporation onto Silicon along with the glass slides as additional DC monitors.

Evaporations took place in a background pressure of less than $2x10^{-6}$ torr.

It was found that the Bismuth films changed in impedance due to hydrolization in the atmosphere, especially as water condensed on them when they were removed from cryogenic liquids. To inhibit this a thin layer of SiO was deposited on the samples during the same evaporation as the Bismuth. With this protective coating the film impedances have not changed noticeably in over one year of exposure to the atmosphere and numerous cyclings to liquid Helium temperatures.

Judging from the weight of Bismuth evaporated, the films have a resistivity of roughly 4×10^{-4} ohm-cm at room temperature, or four times the bulk value. The film impedances increase by a factor of roughly 1.6 as they are cooled to 4.2° K and are then constant down to 1.2° K, the lowest temperature at which they were measured. At liquid Helium temperatures the films deposited onto Silicon substrates have impedances which are higher than the impedances of the corresponding glass slides (+9%, [-4%) and the DC impedances measured on Silicon agree to within error with the best fit of measurements to calculation for the impedances seen by the radiation field at a frequency of several hundred gigaherz.

The prepared samples were mounted, coated surfaces down, at 45° to the incident radiation and immersed in liquid Helium along with the two detectors. Reflection and transmission were measured for each of eight coated samples, a blank wafer of each kind of crystal, a gold mirror and

the brass holder when emptied of samples. After subtraction of the background reflection due to the holder, the reflection from each sample was normalized to the reflection from the gold mirror. The transmission through each sample was normalized to the transmission through the empty holder.

Results

When the highest frequency in the input spectrum was limited to 14cm. -1, the measured reflection and transmission coefficients for the coated and the blank samples agreed with the theoretical predictions to within about 2%. However, when the pass band was allowed to extend to the 35cm. -1 cuttoff of cold fluorogold the data for reflection lie systematically below the expected values by about 5% of the full intensity of the incident light, while the transmission data are again in fairly good agreement with theory. It is striking that the deficit in reflection at high frequencies seems to be a constant, independant of the amount of reflection, the film impedance, the choice of substrate material and perhaps even the presence or absence of any coating at all on the sample.

See Figure 2 and 3.

This slight deficit in the high frequency reflection is most likely due to systematic measurement errors. The reflection measurements were much more sensitive to the geometry of the apparatus and it is not likely that the uncoated samples would show the same discrepancy due only to random errors. It was therefore deemed not worthwhile to fit the data to more complicated models of non-uniform resistive films.

In conclusion, the impedances of the films which we deposited are the same at the radiation frequencies of several hundred gigaherz as they are at DC, and for the purpose of making absorptive films for submillimeter bolometers the absorption of radiation by these films is adequately described

by the standard theory, characterizing them by their impedance only. Good films can be made easily and are quite durable and stable if they are given a thin protective coating of SiO.

Figure 1.

12= 14-1

Measured Reflection and Transmission by Bismuth Films on Sapphire Substrates

DC Film	Substrate Thickness (µ)	Input Spectrum				
Impedance (Ω/\Box)		1/2 to 35 cm ⁻¹		1/2 to 14 cm -1		
		R	T	R	T	
30	37±7	.320±.005	.050±.006	.575±.013	.049±.005	
66	40±4	.187±.005	.124±.006	.34±.01	.105±.005	
177	33±3	.215±.006	.230±.007	.26±.01	.223±.005	
600	42±4	.398±.007	.400±.007	.37±.01	.445±.005	
∞ (no B	i) 30±2	.503±.003	.490±.005	.40±.005	.600±.007	

Measured Reflection and Transmission by Bismuth films on Silicon Substrates

DC Film	Substrate Thickness	Input Sectrum				
Impedance		1/2 to	35 cma ^{−1}	1/2 to 14 cm -1		
(n/n)	(μ)	R	T	R	T	
40.3	25±5	.320±.007	.072±.003	.555±.007	.050±.005	
108	13±3	.300±.005	.182±.003	.345±.005	.170±.007	
165	14±2	.245±.007	.235±.003	.255±.007	.237±.007	
308	13±.5	.200±.005	.335±.002	.185±.005	.355±.007	
∞ (no Bi)) 13±1	.306±.005	.668±.003	.160±.007	.820±.008	

References:

- 1. N. S. Nishioka, P. L. Richards, and D. P. Woody Applied Optics Vol. 17 No. 10 15 May 1978
- 2. P. M. Downey, Private Communication
- 3. S. Ramo and J. R. Whinnery. Fields and Waves in Modern Radio J. Whiley & Sons, New York, 1953
- 4. Y. S. Toulovkian and E. H. Buyco, Eds. Thermophysical Properties & Matter IFI/Plennum, New York, 1970.