CENG 424

Logic For Computer Science

Spring 2022-2023

Assignment 3

Name Surname: Andaç Berkay Seval Student ID: 2235521

Answer for Q1

- 1. $G((a U b) \Rightarrow \neg c)$
- 2. $G\neg(c \land Xc)$
- 3. $G(a \Rightarrow (Xb \Rightarrow (c U (a \land b))))$

Answer for Q2

- 1. Consider a transition system consists of two states s1 and s2 such that just a holds in s1 and just b holds in s2. s1 has a transition to s2 and s2 has a transition to s1 (s1 \rightarrow s2 and s2 \rightarrow s1). If we take a path s1 \rightarrow s2 \rightarrow s1 \rightarrow s2 \rightarrow ... we can see that G(a \vee b) holds. However, Ga does not hold since a does not hold in every state, just in s1. Also, Gb does not hold since b does not hold in every state, just in s2. Thus, Ga \vee Gb does not hold. Hence, equivalence does not hold.
- 2. We can write the right hand side of the equivalence as $\neg Ga \land \neg Gb \equiv F \neg a \land F \neg b$. Also, we know that F does not distribute over \land . Consider a transition system consists of two states s1 and s2. Let atomic propositions of the transition system be x and y such that $x \equiv \neg a$ and $y \equiv \neg b$. Just x holds in s1 and just y holds in s2. s1 has a transition to s2 and s2 has a transition to s1 (s1 \rightarrow s2 and s2 \rightarrow s1). If we take a path s1 \rightarrow s2 \rightarrow s1 \rightarrow s2 \rightarrow ... we can see that the path satisfies $Fx \land Fy \equiv F \neg a \land F \neg b$ but not $F(x \land y) \equiv F(\neg a \land \neg b)$. Hence, equivalence does not hold.
- 3. Let $\mathcal{M}=(S,\to,L)$ be a model. Ga means that for all $i\geq 1, \pi^i\models a$ for all paths π in the model \mathcal{M} . XFa means that $\pi^2\models Fa$ for all paths π in the model \mathcal{M} , which means there is some $i\geq 2$ such that $\pi^i\models a$ for all paths π in the model \mathcal{M} . Since Ga covers XFa, Ga \wedge XFa \equiv Ga.

4. Let $\mathcal{M} = (S, \to, L)$ be a model. Ga means that for all $i \geq 1$, $\pi^i \models a$ for all paths π in the model \mathcal{M} . Fb means that there is some $j \geq 1$ such that $\pi^j \models b$ for all paths π in the model \mathcal{M} . a U ($\neg a \lor b$) means that there is some $k \geq 1$ such that $\pi^k \models (\neg a \lor b)$ and for all l = 1, ..., k-1 $\pi^l \models a$. If we look at the left hand side of the equivalence, if a holds in every state, then b will hold eventually. In the right hand side, in some state in the future, $\neg a \lor b$ will hold and a holds until that state. For the left hand side, since b will hold eventually, $\neg a \lor b$ will hold too even $\neg a$ is false since Ga holds. Also, until $\neg a \lor b$ will hold, a holds until that state. Hence $Ga \Rightarrow Fb \equiv a U$ ($\neg a \lor b$).

Answer for Q3

- 1. It does not hold. Consider the path $s1 \rightarrow s4 \rightarrow s2 \rightarrow s4 \rightarrow s2 \rightarrow ...$ According to this path, c will not eventually hold in all states (a \rightarrow b \rightarrow c \rightarrow b \rightarrow c \rightarrow ...)
- 2. It holds. Since for all paths c holds infinitely often. After the starting state s1 there is just one state where c does not hold which is s4. Also, s4 does not have a transition to itself. Thus, it has to go to other states continually which include c. Hence GFc holds.
- 3. It does not hold since a does not hold in every state. Consider the path $s1 \rightarrow s3 \rightarrow s4 \rightarrow s3 \rightarrow s4 \rightarrow ...$ According to this path, a holds just in the first state s1.
- 4. It holds. In order to $X\neg c$ be true, s4 is the only state where s1 has a transition to since c holds in s3 but not in s4. c holds in all the next states of s4 (s2, s3, s5). Thus, XXc also true. Hence, $X\neg c \Rightarrow XXc$ holds. (I assume s1 is the only initial state)
- 5. It holds. The formula states that there is some $i \ge 1$ such that $\pi^i \models G(b \lor c)$ and j = 1, ..., i-1 $\pi^j \models a$. After the initial state s1, b or c hold in every state (b and c hold in s3, b holds in s4). c holds in s2, b and c hold in s5 which are reachable from s4. We can say that after the initial state s1, b \lor c becomes true in all states of all paths and a holds in s1. Hence, a U $G(b \lor c)$ holds. (I assume s1 is the only initial state)

Answer for Q4

- 1. $\forall G \forall F(a \land b)$
- 2. $\forall G \neg (a \land b)$
- 3. $\forall G(b \Rightarrow \exists Fa)$

Answer for Q5

1. $\operatorname{Sat}(\phi_1) = \{\text{s0, s1, s2, s3, s4}\}$. $\forall G \forall F \text{b}$ states that for all paths globally, eventually b will hold for all paths, so b holds infinitely often in any path along the path. If we look at TS', we can see that for every individual state (we choose them to be initial state), ϕ_1 holds. Hence, TS' $\models \phi_1$ holds since s0 (initial state) is in $\operatorname{Sat}(\phi_1)$.

- 2. $\operatorname{Sat}(\phi_2) = \{\}$. $\forall G \exists Fa$ states that for all paths globally, eventually a will hold for some path, so a holds infinitely often in some path along all paths. If we look at TS', we can see that none of the states holds ϕ_2 . After reaching states s3 or s4, TS' continues without changing its state and in these states just b holds. Thus, TS' $\models \phi_2$ does not hold.
- 3. $\operatorname{Sat}(\phi_3) = \{s1, s2\}$. $\forall (a \ U \ b)$ states that for all paths, a holds until b holds. If we look at the TS', we can see that for the states s1 and s2, a holds in both. s1 has just one transition which is to s2 and b holds in s2. s2 has just one transition which is to s3 and b holds in s3. However, TS' $\models \phi_3$ does not hold since s0 (initial state) is not in $\operatorname{Sat}(\phi_3)$.
- 4. $\operatorname{Sat}(\phi_4) = \{\text{s0, s1, s2, s3, s4}\}$. $\exists X(\forall Gb)$ states that there is some path in the next state, b globally hold for all paths along the path. If we look at the TS', we can see that for all states as initial states, ϕ_4 holds. Therefore, TS' $\models \phi_4$ holds since s0 (initial state) is in $\operatorname{Sat}(\phi_4)$.
- 5. Sat(ϕ_5) = {s1, s2}. $\forall G \forall (a \ U \ b)$ states that for all paths globally, a holds until b holds for all paths along the path. We can see that for states s1 and s2 as initial states, a holds in both. s1 has just one transition which is to s2 and b holds in s2 and s2 has just one transition which is to s3 and b holds in s3 and s3 has just one transition to itself so b holds continuously in s3. However, TS' $\models \phi_5$ does not hold since s0 (initial state) is not in Sat(ϕ_5).