

Data Mining

Chapter 6: Recommender Systems

Yunming Ye, Baoquan Zhang
School of Computer Science
Harbin Institute of Technology, Shenzhen

Agenda

- Basic Concepts of Recommender Systems
- Collaborative Filtering
 - Neighborhood-based Collaborative Filtering
 - Model-based Collaborative Filtering
- Recommendation with Association Rules

9.1 Basic Concepts of Recommender Systems

Example of Recommender Systems

• 根据浏览记录推荐商品

Example of Recommender Systems

• 根据听歌历史推荐歌单

Example of Recommender Systems

• 根据浏览历史推荐新闻

今日头条 推荐 阳光宽频 热点 图片 科技 娱乐 游戏 体育 国际 🤽 人民网·25评论·刚刚 汽车 财经 习近平在南非媒体发表署名文章 搞笑 际 🎡 新华网·1评论·刚刚 更多

A recommender system is a subclass of information filtering system that seeks to predict the "rating" or "preference" a user would give to an item. —*Wiki*

Definition

Recommendation systems (RS) help to match users with items

»(Xiao & Benbasat 2007¹)

- Ease information overload
- Sales assistance (guidance, advisory, persuasion,...)

RS are software agents that elicit the interests and preferences of individual consumers [...] and make recommendations accordingly. They have the potential to support and improve the quality of the decisions consumers make while searching for and selecting products online.

- Based on availability of exploitable data
- Implicit and explicit user feedback
- Domain characteristics

Purpose and success criteria

Different perspectives/aspects

- Depends on domain and purpose
- No holistic evaluation scenario exists

Retrieval perspective

- Reduce search costs
- Provide "correct" proposals
- Users know in advance what they want

Recommendation perspective

- Serendipity identify items from the Long Tail
- Users did not know about existence

When does a RS do its job well?

- "Recommend widely unknown items that users might actually like!"
- 20% of items accumulate 74% of all positive ratings
- Items rated > 3 inMovieLens 100K dataset

Recommender systems reduce information overload by estimating relevance

Development of recommender systems

Recommendation Models

9.2 Neighborhood-based Collaborative Filtering

Recap: Collaborative Filtering(CF)

- Given database of user preferences, predict preference of new user
- Example: predict what new movies you will like based on
 - your past preferences
 - > others with similar past preferences
 - their preferences for the new movies
- Example: predict what books/CDs a person may want to buy
 - (and suggest it, or give discounts to tempt customer)

	Book1	Book2	Book3	Book4	Book5	Book6	
User1							
User2							
User3							
User4							
User5							
User6	?	?		?	?	?	?

Neighborhood-based Collaborative Filtering

The most prominent approach to generate recommendations

- Used by large, commercial e-commerce sites
- Well-understood, various algorithms and variations exist
- Applicable in many domains (book, movies, DVDs, ..)

Approach

Use the "wisdom of the crowd" to recommend items

Basic assumption and idea

- Users give ratings to catalog items (implicitly or explicitly)
- Customers who had similar tastes in the past, will have similar tastes in the future

Neighborhood-based Collaborative Filtering

- Also referred to as memory-based algorithms
- Based on the fact that similar users display similar patterns of rating behavior and similar items receive similar ratings
 - User-based collaborative filtering
 - Item-based collaborative filtering

Rating matrix

- An incomplete $m \times n$ matrix $R = [r_{uj}]$ containing m users and n items
- Only a small subset of the ratings matrix is specified or observed

User	Item	Rating	
1	1	5	
1	4	4	
u	j	r	
	•••		

u, j: index for u_{th} user and j_{th} item

 r_{uj} : u_{th} user gives a rating r_{uj} to j_{th} item

User-based Collaborative Filtering

The basic technique

- Given an "active user" (Alice) and an item i not yet seen by Alice
 - find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have rated item i
 - use, e.g. the average of their ratings to predict if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated

Basic assumption and idea

- If users had similar tastes in the past they will have similar tastes in the future
- User preferences remain stable and consistent over time

User-based Collaborative Filtering

Example

A database of ratings of the current user, Alice, and some other users is given:

			JERRY		S.E
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

 Determine whether Alice will like or dislike Cartoon5, which Alice has not yet rated or seen

User-based Collaborative Filtering

Some questions:

- How do we measure similarity?
- How many neighbors should we consider?
- How do we generate a prediction from the neighbors' ratings?

			TOM JERRY		
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Measuring user similarity

A popular similarity measure in user-based CF: Pearson correlation

u, v: users

 r_{uk} : rating of user u for item k

 I_u : denote the set of item indices for which ratings have been specified by user u

 μ_u : the mean rating for each user u using her specified ratings

- The first step is to compute the mean rating μ_n

$$\mu_u = \frac{\sum_{k \in I_u} r_{uk}}{|I_u|} \quad \forall u \in \{1 \dots m\}$$

- Then, the Pearson correlation coefficient between the u and v is defined

$$Sim(u, v) = Pearson(u, v) = \frac{\sum_{k \in I_u \cap I_v} (r_{uk} - \mu_u) \cdot (r_{vk} - \mu_v)}{\sqrt{\sum_{k \in I_u \cap I_v} (r_{uk} - \mu_u)^2} \cdot \sqrt{\sum_{k \in I_u \cap I_v} (r_{vk} - \mu_v)^2}}$$

Measuring user similarity

A popular similarity measure in user-based CF: Pearson correlation

u, v: users

 r_{uk} : rating of user u for item k

 I_u : denote the set of item indices for which ratings have been specified by user u

 μ_u : the mean rating for each user u using her specified ratings

			Jerry			
Alice	5	3	4	4	?	
User1	3	1	2	3	3	sir
User2	4	3	4	3	5	sir
User3	3	3	1	5	4	sir
User4	1	5	5	2	1	sir

= 0.85

= 0.00

= 0.70

= -0.79

Pearson correlation

Takes differences in rating behavior into account

- Works well in usual domains, compared with alternative measures
 - such as cosine similarity

Making predictions

- Use the set of k users with the highest Pearson coefficient to define the peer group of the target user
- Different users may provide ratings on different scales
- The rating need to be mean-centered in row-wise fashion, the mean-centered rating s_{uj} of a user u for item j is defined

$$s_{uj} = r_{uj} - \mu_u \quad \forall u \in \{1 \dots m\}$$

- Let $P_u(j)$ be the set of k closest users to target user u w.r.t item j
- Then, the overall neighborhood-based prediction function is as follows

$$\hat{r}_{uj} = \mu_u + \frac{\sum_{v \in P_u(j)} \text{Sim}(u, v) \cdot s_{vj}}{\sum_{v \in P_u(j)} |\text{Sim}(u, v)|} = \mu_u + \frac{\sum_{v \in P_u(j)} \text{Sim}(u, v) \cdot (r_{vj} - \mu_v)}{\sum_{v \in P_u(j)} |\text{Sim}(u, v)|}$$

Making predictions

Then, the overall neighborhood-based prediction function is as follows

$$\hat{r}_{uj} = \mu_u + \frac{\sum_{v \in P_u(j)} \text{Sim}(u, v) \cdot s_{vj}}{\sum_{v \in P_u(j)} |\text{Sim}(u, v)|} = \mu_u + \frac{\sum_{v \in P_u(j)} \text{Sim}(u, v) \cdot (r_{vj} - \mu_v)}{\sum_{v \in P_u(j)} |\text{Sim}(u, v)|}$$

$$pred(Alice, Cartoon5) = 4 + \frac{0.85*(3-2.4) + 0.7*(4-3.2) + (-0.79)*(1-2.8)}{0.85 + 0.7 - 0.79} = 3.28$$

Item-based collaborative filtering

Basic idea:

Use the similarity between items (and not users) to make predictions

Example:

- Look for items that are similar to Cartoon5
- Take Alice's ratings for these items to predict the rating for Cartoon5

	19 S		JOM JERRY		
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

The cosine similarity measure

- As in the case of user-based ratings, the average rating of each item in the ratings matrix is subtracted from each rating to create a mean-centered matrix
- **The adjusted cosine similarity between the items** i and j
 - U_i : indices of the set of users who have specified ratings for item i

AdjustedCosine
$$(i, j) = \frac{\sum_{u \in U_i \cap U_j} s_{ui} \cdot s_{uj}}{\sqrt{\sum_{u \in U_i \cap U_j} s_{ui}^2} \cdot \sqrt{\sum_{u \in U_i \cap U_j} s_{uj}^2}}$$

Making predictions

- The first step is to determine the top-k most similar items to item t based on the adjusted cosine similarity
- Let $Q_t(u)$ be the top-k matching items to item t, for which the user u has specified ratings
- $lue{}$ Therefore, the predicted rating \hat{r}_{ut} of user u for target item t is as follows

$$\hat{r}_{ut} = \frac{\sum_{j \in Q_t(u)} \text{AdjustedCosine}(j, t) \cdot r_{uj}}{\sum_{j \in Q_t(u)} |\text{AdjustedCosine}(j, t)|}$$

Comparing User-Based and Item-Based

Item-based

- More relevant recommendations, better accuracy
- Might sometimes recommend obvious items, or items which are not novel
- Item similarities are supposed to be more stable

User-based

- Diversity, may discover surprising and interesting items
- Addition of a few ratings can change the similarity values drastically

Strengths and Weaknesses of Neighborhood-Based

Advantages

- Simplicity and intuitive, easy to implement and debug
- Easy to justify why a specific item is recommended, and good interpretability
- Stable with the addition of new items and users

Disadvantage

- Offline phase can sometimes be impractical in large-scale settings
- Limited coverage because of sparsity. For example, if none of John's nearest neighbors have rated
 Doraemon, it is not possible to provide a rating prediction of Doraemon for John.

Data sparsity problems

Cold start problem

- How to recommend new items? What to recommend to new users?

Straightforward approaches

- Ask/force users to rate a set of items
- Use another method (e.g., content-based or simply non-personalized) in the initial phase

9.3 Model-based Collaborative Filtering

Introduction

Latent factor models

- try to explain the ratings by characterizing both items and users on latent factors.
- for example, user-movie rating matrix.
- for movies, latent factors might measure obvious dimensions such as comedy, drama, action; less well-defined dimensions such as "quirkiness"; or completely uninterpretable dimensions.
- for users, each factor measures how much the user likes movies that score high on the corresponding movie factor.

• Matrix Factorization [2] is an effective method for recommender systems (e.g., Netflix Prize and KDD Cup 2011).

- k: number of latent dimensions
- $ightharpoonup r_{u,v} = p_u^T q_v$
- $> ?_{2,2} = p_2^T q_2$

There are some common factors behind users and Cartoons.

$$r^A \cdot r^1 \approx 5$$

$$r^B \cdot r^1 \approx 4$$

$$r^{\mathcal{C}} \cdot r^1 \approx 1$$

Minimizing

$$L = \sum_{(i,j)} (r^i \cdot r^j - n_{ij})^2$$

Only considering the defined value

Find r^i and r^j by gradient descent

Assume the dimensions of r are all 2 (there are two factors)

А	2.38	0.40
В	2.04	0.41
С	0.32	2.19
D	0.27	1.72
E	0.62	1.78

1	1.99	0.21
2	1.31	0.20
3	1.96	2.08
4	0.03	2.27

Learning algorithms

> A non-convex optimization problem:

$$\min_{P,Q} \sum_{(u,v)\in R} \left((r_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})^{2} + \lambda_{P} \|\mathbf{p}_{u}\|_{F}^{2} + \lambda_{Q} \|\mathbf{q}_{v}\|_{F}^{2} \right)$$

- \triangleright λ_P and λ_O are regularization parameters.
- SVD is a natural approach that approximates the original rating matrix R by the product of two rank-k matrices $R = P^T \times Q$. However, as there are many missing elements in the rating matrix R, standard SVD algorithms cannot find P and Q.

✓ SVD:

$$M_{m \times n} = U_{m \times k} \Sigma_{k \times k} V_{k \times n}^T$$

Learning algorithms

$$\min_{P,Q} \sum_{(u,v)\in R} \left((r_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})^{2} + \lambda_{P} \|\mathbf{p}_{u}\|_{F}^{2} + \lambda_{Q} \|\mathbf{q}_{v}\|_{F}^{2} \right)$$

- Stochastic gradient descent
- For each given training case, the system predicts r_{ui} and computes the associated prediction error: $e_{ui} = r_{ui} q_i^T p_u$

Update the parameters by a magnitude proportional to γ in the opposite direction of the gradient:

$$q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot p_u - \lambda \cdot q_i)$$
$$p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u)$$

Learning algorithms: Alternating least squares

$$\min_{P,Q} \sum_{(u,v)\in R} \left((r_{u,v} - \mathbf{p}_{u}^{T} \mathbf{q}_{v})^{2} + \lambda_{P} \|\mathbf{p}_{u}\|_{F}^{2} + \lambda_{Q} \|\mathbf{q}_{v}\|_{F}^{2} \right)$$

- Step 1: Initialize matrix M by assigning the average rating for that movie as the first row, and small random numbers for the remaining entries
- Step 2: Fix M, solve U by minimizing the objective function (the sum of squared errors)
- Step 3: Fix U, solve M by minimizing the objective function similarly
- Step 4: Repeat Steps 2 and 3 until convergence

Challenges

- Matrix Factorization model is poor interpretability. The latent features are hard to be explained, it can not explain the result of recommendation very well
- Implicit ratings are not considered

Extended MF (Adding Biases)

Biases

- Much of the variation in ratings is due to effects associated with either users or items,
 independently of their interactions
 - i.e., some users tend to give higher ratings than others
 - i.e., some items tend to receive higher ratings than others
- A prediction for an unknown rating r_{ui} is denoted by b_{ui}

$$b_{ui} = \mu + b_i + b_u$$

- μ : the overall average rating over all items
- b_u and b_i : the observed deviations of user u and item i

Extended MF (Adding Biases)

Suppose that the average rating over all movies, μ , is 3.9 stars

□ Joe tends to rate 0.2 stars lower than the average

□ Cartoon1 tends to be rated 0.5 stars above the average

□ Cartoon1's predicted rating by Joe:

$$b_{ui} = \mu + b_i + b_u = 3.9 - 0.2 + 0.5 = 4.2$$

Extended MF (Adding Biases)

Adding biases

- A rating is created by adding biases

$$\hat{r}_{ui} = b_{ui} + p_u^T q_i$$

Objective Function

- In order to learn parameters $(b_i, b_u, q_i \text{ and } p_u)$ we minimize the regularized squared error

$$\begin{aligned} \min_{b,q,p} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - (\mu + b_i + b_u + q_i^T p_u))^2 + \lambda (b_i^2 + b_u^2 \\ + \|q_i\|^2 + \|p_u\|^2) \end{aligned}$$

 Minimization is typically performed by either stochastic gradient descent or alternating least squares

Extended MF (Incorporating Implicit Feedback)

- Explicit feedback: user rating
- Implicit feedback: user behaviors
 - indirectly reflect opinion through observing user behavior
 - e.g. purchase history, browsing history, search patterns, or even mouse movements
- Prediction accuracy can be improved by considering both explicit feedback and implicit feedback
- Most famous model: SVD++

Implicit feedback matrix

Derive implicit feedback matrix from explicit rating(optional)

$$\underbrace{\begin{pmatrix} 1 & -1 & 1 & ? & 1 & 2 \\ ? & ? & -2 & ? & -1 & ? \\ 0 & ? & ? & ? & ? & ? \\ -1 & 2 & -2 & ? & ? & ? \end{pmatrix}}_{R} \Rightarrow \underbrace{\begin{pmatrix} 1/\sqrt{5} & 1/\sqrt{5} & 1/\sqrt{5} & 0 & 1/\sqrt{5} & 1/\sqrt{5} \\ 0 & 0 & 1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 \\ 1/\sqrt{1} & 0 & 0 & 0 & 0 & 0 \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} & 0 & 0 & 0 \end{pmatrix}}_{F}$$

Construct implicit feedback matrix from user behaviors

SVD++

- SVD++: Factorization Meets the Neighborhood: a Multifaceted
 Collaborative Filtering Model.
 - Neighborhood (Item-based CF):
 - Estimate unknown ratings by using known ratings made by user for similar movies
 - ✓ Good at capturing localized information
 - ✓ Intuitive and simple to implement
 - Latent Factor (MF):
 - Estimate unknown ratings by uncover latent features that explain known ratings
 - Efficient at capturing global information

- > Integrate
 - capture both global and localized information
 - consideration of implicit feedback
- SVD++ is proposed to incorporate implicit feedback and capture all information:

$$\hat{r}_{ui} = b_{ui} + q_i^T \left(p_u + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j \right)$$

> a user u is modeled as $p_u + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j$, N(u) contains all items for which u provided an implicit preference.

- **Remember:** N(u) denotes the set of items for which user u expressed an implicit preference
- y_j is a vector, denotes the implicit preference(factor) mined from the behavior that users u browse item j
 - \triangleright Similar to p_u , which denotes explicit preference with regard to item-factor
- So, a user can be characterized by normalizing the sum of factor vectors according to implicit information:

$$|N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j$$

■ SVD++ is proposed to incorporate implicit feedback:

$$\hat{r}_{ui} = b_{ui} + q_i^T \left(p_u + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j \right)$$

a user u is modeled as $p_u + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j$, N(u) contains all items for which u provided an implicit preference

SVD++

□ Another perspective of SVD++:

 $\hat{r}_{ui} = b_{ui} + q_i^T \left(p_u + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j \right)$

- $F(m \times n)$ Implicit Matrix
- $(n \times k)$ the item-factor matrix of F
- $lue{U}$ the user-factor of explicit rating matrix R
- □ V the item-factor of explicit rating matrix R
- □ For explicit rating: $R \approx UV^T$
- Consider SVD++ as the approximation(explicit+implicit):

$$R \approx (U+FY)V^T$$

9.4 Recommendation with Association Rules (Optional)

什么是关联规则(Association Rule)?

牛奶 → 面包

尿布 → 啤酒

{牛奶, 面包} → {啤酒, 尿布}

 $X \rightarrow Y$

TID (事务ID)	商品列表	
T001	牛奶、啤酒、尿布	
T002	鸡蛋、牛奶、面包、啤酒、尿布	
T003	鸡蛋、牛奶、面包	
T004	面包、啤酒	
T005	牛奶、面包、啤酒、尿布	

age("25-35") ∧ buy("华为手机") → buy("格力空调")

关联规则有什么用?

• 零售行业: 优化货架

• 电商行业: 商品推荐

• 库存优化

•

关联规则的形式化定义

- 基本概念
 - > 事务(transaction)
 - > 项 (item)
 - > 项集(item set)
 - ✓ k-项集
 - > 关联规则:
 - \checkmark 形如 $X \rightarrow Y$ 的**蕴涵表达式**
 - *X* 和 *Y* 为非空集合
 - *X* 和 *Y* 是**不相交**的两个项集

TID (事务ID)	商品列表	
T001	牛奶、啤酒、尿布	
T002	鸡蛋、牛奶、面包、啤酒、尿布	
T003	鸡蛋、牛奶、面包	
T004	面包、啤酒	
T005	牛奶、面包、啤酒、尿布	

TID (事务ID)	商品列表
T001	尿布、牛奶、啤酒
T002	尿布、鸡蛋、牛奶、面包、啤酒
T003	鸡蛋、牛奶、面包
T004	面包、啤酒
T005	尿布、牛奶、面包、啤酒

TID (事务ID)	商品ID列表	
T001	{I1, I3, I5}	
T002	{I1, I2, I3, I4, I5}	
T003	{I2, I3, I4}	
T004	{I4, I5}	
T005	{I1, I3, I4, I5}	

$X \rightarrow Y$ 很多!

如何衡量关联规则的"质量"?

项集的支持度计数:

$$X \rightarrow Y$$

- ✓ 在数据库中包含项集 // 的事务个数
- $\sigma(\mathbf{W}) = |\{t_i | \mathbf{W} \sqsubseteq t_i, t_i \in \mathbf{T}\}|$
- > 支持度 (support)
 - ✓ 给定数据集中X和Y的共现频度
 - $\checkmark \diamondsuit W = X \cup Y$

$$\checkmark s(X \to Y) = \frac{\sigma(W)}{|T|}$$

TID (事务ID)	商品ID列表	
T001	{I1, I3, I5}	
T002	{I1, I2, I3, I4, I5}	
T003	{I2, I3, I4}	
T004	{I4, I5}	
T005	{I1, I3, I4, I5}	

 $R_1: \mathbf{I5} \to \mathbf{I1}$

✓ 在包含X的事务子集中Y出现的频繁程度

$$\checkmark c(X \to Y) = \frac{\sigma(W)}{\sigma(X)}$$

$$s(R_1) = \frac{\sigma(\{I5, I1\})}{|I|} = \frac{3}{5} = 0.6$$

$$c(R_1) = \frac{\sigma(\{I5, I1\})}{\sigma(\{I5\})} = \frac{3}{4} = 0.75$$

强关联规则(strong association rule)

- 定义
 - ▶ 最小支持度阈值: min-sup, 最小置信度阈值: min-conf
 - ▶ 关联规则R 是强关联规则,当且仅当:

(1).
$$s(R) \ge min - sup$$
 (2). $c(R) \ge min - conf$

• 关联规则挖掘任务:找到所有强关联规则!

关联规则挖掘任务

• 输入:

- 事务数据库、
- > 阈值参数: min-sup, min-conf

• 输出:

- ▶ 所有满足*min-sup*、*min-conf*的强关联规则
- > 包括每条强关联规则的支持度和置信度取值

TID (事务ID)	商品ID列表	
T001	{I1, I3, I5}	
T002	{I1, I2, I3, I4, I5}	
T003	{I2, I3, I4}	
T004	{I4, I5}	
T005	{I1, I3, I4, I5}	

最简单的关联规则挖掘算法——枚举法

• 假设: *min-sup* = 0.6, *min-conf* = 0.8

• 枚举法:

- > Step 1: 列出全部可能的关联规则
- > Step 2: 计算每条关联规则的支持度和置信度
- > Step 3: 筛选出满足min-sup和min-conf条件的规则

TID (事务ID)	商品ID列表	
T001	{I1, I3, I5}	
T002	{I1, I2, I3, I4, I5}	
T003	{I2, I3, I4}	
T004	{I4, I5}	
T005	{I1, I3, I4, I5}	

TID	商品ID列表
T001	{I1, I3, I5}
T002	{I1, I2, I3, I4, I5}
T003	{I2, I3, I4}
T004	{I4, I5}
T005	{I1, I3, I4, I5}

关联规则	支持度	置信度
{I1}→{I2}	0.2	0.33
{I2}→{I1}	0.2	0.5
{I1} → {I3}	0.6	1.0
{I3} → {I1}	0.6	0.75
{I1, I2}→{I3}	0.2	1.0
{I3}→{I1, I2}	0.2	0.25
{I1, I2, I3}→{I4}	0.2	1.0
{I4}→{I1, I2, I3}	0.2	0.25
{I1, I2, I3, I4}→{I5}	0.2	1.0
{I5}→{I1, I2, I3, I4}	0.2	0.25

min-sup=0.6

min-conf=0.8

关联规则	支持度	置信度
{I1} → {I3}	0.6	1.0
{I1} → {I5}	0.6	1.0
{I5} → {I3}	0.6	1.0
{I1}→{I3, I5}	0.6	1.0
{I3, I5}→{I1}	0.6	1.0
{I1, I5}→{I3}	0.6	1.0
{I1, I3}→{I5}	0.6	1.0

枚举法的特点分析

• 优点: 实现简单, 容易理解

• 缺点: 待计算的关联规则数量随数据集增大呈指数增长

▶ 包含n个项的数据集可提取的关联规则总数M为: $M = 3^n - 2^{n+1} + 1$

TID	商品ID列表
T001	{I1, I3, I5}
T002	{I1, I2, I3, I4, I5}
T003	{I2, I3, I4}
T004	{I4, I5}
T005	{I1, I3, I4, I5}

n=5, 可产生180条关联规则!

• 改进思路: 从单步筛选变为"两阶段"筛选

商品ID列表

TID

关联规则挖掘的两阶段算法框架

频繁项集	支持度 计数
{I1}	3
{I3}	4
{I4}	4
{I5}	4
{I1, I3}	3
{I1, I5}	3
{I3, I4}	3
{I3, I5}	3
{I4, I5}	3
{I1, I3, I5}	3

阶段1: 发现频繁项集

min-sup = 0.6

商品ID列表

{I1, I3, I5}

{I1, I2, I3,

I4, I5}

TID

T001

T002

{I1, I2, I3, I4, I5}:0

TID	商品ID列表
T001	{I1, I3, I5}
T002	{11, 12, 13, 14, 15}
T003	{I2, I3, I4}
T004	{I4, I5}
T005	{I1, I3, I4, I5}

阶段2: 发现强关联规则

min-conf = 0.8

频繁项集	支持度 计数
{I1}	3
{I3}	4
{I4}	4
{I5}	4
{I1, I3}	3
{I1, I5}	3
{I3, I4}	3
{I3, I5}	3
{I4, I5}	3
{I1, I3, I5}	3

	频繁项集	支持度 计数
	{I1, I3}	3
	{I1, I5}	3
•	{I3, I4}	3
	{I3, I5}	3
	{I4, I5}	3
	{I1, I3, I5}	3

两阶段算法与单步枚举法的计算量比较

TID	商品ID列 表
T001	{I1, I3, I5}
T002	{I1, I2, I3, I4, I5}
T003	{I2, I3, I4}
T004	{I4, I5}
T005	{I1, I3, I4, I5}

频繁项集	支持度 计数	
{I1}	3	
{I3}	4	
{I4}	4	
{I5}	4	
{I1, I3}	3	
{I1, I5}	3	
{I3, I4}	3	
{I3, I5}	3	
{I4, I5}	3	
{I1, I3, I5}	3	

关联规则	置信 度
{I1}→{I3}	1.0
{I1}→{I5}	1.0
{I5}→{I3}	1.0
{I1}→{I3, I5}	1.0
{I3, I5} → {I1}	1.0
{I1, I5} → {I3}	1.0
{I1, I3} → {I5}	1.0

- 阶段一: 频繁项集发现
 - 计算31个项集的支持度
 - 筛选得到12个频繁项集
- 阶段二:关联规则生成
 - 计算12条候选关联规则的置信度
 - 筛选得到7条强关联规则
- 单步枚举法需要计算180个关联 规则的支持度和置信度
- 计算量对比: 360 → 43

9.5 频繁项集发现: Apriori算法与FP-Growth

用枚举法发现频繁项集的问题

{I1, I2, I3, I4, I5}:0

.....

Aprior算法的基本思想

{A, B, C, D, E}

- 减少候选项集的数量!
- 剪枝!

Aprior算法的基本思想

• 先验原理

▶ 频繁项集的子集一定也是频繁的!

• 反单调性

- 一个项集的支持度不超过它的子集的支持度
- 如果对于项集Y的每个真子集X(即X□Y), 有f(Y)≤f(X),那么称度量f具有反单调性。

Aprior算法的基本思想

{A, B, C, D, E}

- 基本思想:
 - > 逐层搜索迭代
 - ▶ 用上一轮迭代得到的k项集来探索 下一轮迭代的 (k+1) 项集

Aprior算法的主要步骤

(1). 扫描数据库,得到所有频繁1项集

min-sup = 0.6

- (2). 用k-频繁项集生成(k+1)-候选项集
- (3). 扫描数据库计算每个(k+1)-候选项集的支持 度,如果超过*min-sup*则为(k+1)-频繁项集
- (4). 重复(2)、(3)直到无法生成新的候选项集

TID	商品ID列表
T001	{I1, I3, I5}
T002	{I1, I2, I3, I4, I5}
T003	{I2, I3, I4}
T004	{I4, I5}
T005	{I1, I3, I4, I5}

Aprior算法的特点分析

- 优点
 - 原理简单,易于实现
 - > 适合于稀疏数据集中的频繁模式挖掘
- 缺点
 - 候选项集数量可能很大
 - ✓ 假设 L_1 有 10^4 项,则 C_2 将包含 10^7 项
 - ✓ 假设要挖掘 L_{100} ,需要产生 $2^{100} \approx 10^{30}$ 个候选项
 - 重复扫描数据库
 - ✓ 每轮迭代对候选项集进行支持度计数时,都需要扫描一遍数据库,从而产生不可忽视的 I/O开销

FP-tree: 不需要生成候选项集的算法

- 裴健等人于2000年提出另一种算法——频繁模式生长(Frequent-Pattern Growth),也称为FP-tree算法
- 基本思想
 - ▶ 假设 "abc" 是频繁项集
 - ▶ 找到数据集中包含"abc"的记录:
 - DB|abc ——条件数据库
 - ▶ "d"是DB|abc中的频繁项
 - → "abcd" 也是频繁项集

FP-tree算法的基本框架

- 使用一种紧凑的数据结构——FP树(FP-tree)来组织数据,并从中发现频繁项集
- 主要步骤:
 - ▶ 构建FP-tree
 - ▶ 从FP-tree中发现(生成)频繁项集
- 特点:
 - > 只需要扫描两次原始数据库
 - ▶ 在数据库较大、记录较长时,可比Apriori算法快多个数量级

FP-tree的构建

- (1) 扫描数据库找到频繁1-项集
- (2) 将频繁1-项集按降序排序
- (3) 再次扫描数据库,构建FP-tree

	支持度						
项集	计数		项集	支持度		项集	支持度 计数
{I5}	3			计数			レレダ人
{I1}	4		{I5}	3		{I1}	4
	1	-	{I1}	4		{I3}	4
{I2}	1		{I3}	4		{I4}	3
{I3}	4			T			
{I6}	3		{I4}	3		{I5}	3
	3		{I6}	3		{I6}	3
{I4})			l	J		!
{I7}	2						

最小支持度计数设为3

TID (事务ID)	商品ID列表
T001	{I5, I1, I2, I3, I6}
T002	{I4, I5, I1, I3}
T003	{I1, I4, I7}
T004	{I5, I1, I3, I6, I7}
T005	{I4, I3, I6}

(3) 再次扫描数据库,构建FP-tree

项集	支持 度计 数	节点 链
{I1}	4	
{13}	4	
{14}	3	
{15}	3	
{16}	3	

项集	支持度 计数
{I1}	4
{I3}	4
{I4}	3
{I5}	3
{I6}	3

原事务数据库

商品ID列表
{I5, I1, I2, I3, I6}
{I4, I5, I1, I3}
{I1, I4, I7}
{I5, I1, I3, I6, I7}
{I4, I3, I6}

剔除非频繁项、并排序!

TID	商品ID列表
T001	
T002	
T003	
T004	
T005	

(3) 再次扫描数据库,构建FP-tree

项集	支持 度计 数	节点 链
{I1 }	4	
{13}	4	
{14}	3	
{15}	3	
{16}	3	

原事务数据库

TID	商品ID列表
T001	{I5, I1, I2, I3, I6}
T002	{I4, I5, I1, I3}
T003	{I1, I4, I7}
T004	{I5, I1, I3, I6, I7}
T005	{I4, I3, I6}

TID	商品ID列表
T001	{I1, I3, I5, I6}
T002	{I1, I3, I4, I5}
T003	{I1, I4}
T004	{I1, I3, I5, I6}
T005	{I3, I4, I6}

(3) 再次扫描数据库,构建FP-tree

项集	支持 度计 数	节点 链
{I1}	4	
{13}	4	
{14}	3	
{15}	3	
{16}	3	

TID (事务ID)	商品ID列表
T001	{I1, I3, I5, I6}
T002	{I1, I3, I4, I5}
T003	{I1, I4}
T004	{I1, I3, I5, I6}
T005	{I3, I4, I6}

TID (事务ID)	商品ID列表
T001	{11, 13, 15, 16}
T002	{I1, I3, I4, I5}
T003	{I1, I4}
T004	{I1, I3, I5, I6}
T005	{I3, I4, I6}

TID (事务ID)	商品ID列表
T001	{I1, I3, I5, I6}
T002	{11, 13, 14, 15}
T003	{I1, I4}
T004	{I1, I3, I5, I6}
T005	{I3, I4, I6}

TID (事务ID)	商品ID列表
T001	{I1, I3, I5, I6}
T002	{11, 13, 14, 15}
T003	{I1, I4}
T004	{I1, I3, I5, I6}
T005	{I3, I4, I6}

TID (事务ID)	商品ID列表
T001	{I1, I3, I5, I6}
T002	{I1, I3, I4, I5}
Т003	{11, 14}
T003 T004	{I1, I4} {I1, I3, I5, I6}

TID (事务ID)	商品ID列表
T001	{I1, I3, I5, I6}
T002	{I1, I3, I4, I5}
T003	{I1, I4}
T003 T004	{I1, I4} {I1, I3, I5, I6}

TID (事务ID)	商品ID列表
T001	{I1, I3, I5, I6}
T002	{I1, I3, I4, I5}
T003	{I1, I4}
T004	{11, 13, 15, 16}

TID (事务ID)	商品ID列表
T001	{I1, I3, I5, I6}
T002	{I1, I3, I4, I5}
T003	{I1, I4}
T004	{11, 13, 15, 16}
T005	{I3, I4, I6}

FP-tree的特性

- 完整性 (Completeness) : 对于频繁模式发现来说
- 紧凑性 (Compactness)
 - 能有效压缩事务数据库
 - ▶ 压缩比可超100倍

如何从FP-tree中发现频繁项集?

TID	商品ID列表	
T001	{I5, I1, I2, I3, I6}	
T002	{I4, I5, I1, I3}	
T003	{I1, I4, I7}	
T004	{I5, I1, I3, I6, I7}	
T005	{I4, I3, I6}	

> 结点链的作用: 找到条件数据库!

从FP-tree中生成频繁项集的算法

- 分治法: 将挖掘全体频繁项集的问题分为多个子问题
 - --挖掘以I6结尾的频繁项集
 - --挖掘以I4结尾的频繁项集
 - --挖掘以I1结尾的频繁项集
- 递归法: 求解每个子问题

- --挖掘以I5结尾的频繁项集
- --挖掘以I3结尾的频繁项集

- if *Tree* 只包含单个分支 *P* then
 - \triangleright for each θ (节点组合) in C_{θ} (P中节点的全部组合)
 - ✓ 生成新的频繁项集: $\beta = \theta \cup \alpha$
- else for each entry e_i in head table (头部表)
 - \triangleright 生成新的频繁项集: $\beta = e_i \cup \alpha$
 - ▶ 构建β的条件数据库: D_β
 - > 基于D_β构建β 的条件FP-tree: Tree_β
 - ► If $Tree_{β} \neq ∅$ then
 - ✓ 递归调用 **FP_growth(***Tree*_β, β**)**
- > 递归的停止条件:
 - if Tree 只包含单个分支 P
 - $o if Tree_{\beta} = \emptyset$

- if Tree 只包含单个分支 P then
 - \triangleright for each θ (节点组合) in C_{θ} (P中节点的全部组合)
 - ✓ 生成新的频繁项集: $\beta = \theta \cup \alpha$
- else for each entry e_i in head table (头部表)
 - \triangleright 生成新的频繁项集: $\beta = e_i \cup \alpha$
 - ▶ 构建β的条件数据库: D_β
 - ightharpoonup 基于 $D_{β}$ 构建 β 的条件FP-tree: $Tree_{β}$
 - ► If $Tree_{\beta} \neq \emptyset$ then
 - ✓ 递归调用 **FP_growth(***Tree*_β, β**)**

$$e_i = \{\text{I6}\} \qquad \beta = e_i \cup \alpha = \{\text{I6}\}$$

» 第1个子问题:挖掘以I6结尾的频繁项集

 $Tree_{\beta}$:

	支持度	节点链	I3:3
{I3}	3	<u></u>	

Root

- if Tree 只包含单个分支 P then
 - \triangleright for each θ (节点组合) in C_{θ} (P中节点的全部组合)
 - ✓ 生成新的频繁项集: $\beta = \theta \cup \alpha$
- else for each entry e_i in head table (头部表)
 - \triangleright 生成新的频繁项集: $\beta = e_i \cup \alpha$
 - \triangleright 构建 β 的条件数据库: D_{β}
 - > 基于D_β构建β 的条件FP-tree: Tree_β
 - ► If $Tree_β \neq \emptyset$ then
 - ✓ 递归调用 **FP_growth(***Tree*_β, β**)**

递归调用,参数Tree如下, $\alpha = \{I6\}$

生成新的频繁项集:

$$\theta \cup \alpha = \{I3\} \cup \{I6\} = \{I3, I6\}$$

» 解决第1个子问题:挖掘以I6结尾的频繁项集

- if Tree 只包含单个分支 P then
 - \triangleright for each θ (节点组合) in C_{θ} (P中节点的全部组合)
 - ✓ 生成新的频繁项集: $\beta = \theta \cup \alpha$
- else for each entry e_i in head table (头部表)
 - \triangleright 生成新的频繁项集: $\beta = e_i \cup \alpha$
 - ▶ 构建β的条件数据库: D_β
 - > 基于D_β构建β 的条件FP-tree: Tree_β
 - ► If $Tree_{\beta} \neq \emptyset$ then
 - ✓ 递归调用 FP_growth(*Tree_β*, β)

$$e_i = \{I5\}$$
 $\beta = e_i \cup \alpha = \{I5\}$

» 第2个子问题:挖掘以I5结尾的频繁项集

- if Tree 只包含单个分支 P then
 - \triangleright for each θ (节点组合) in C_{θ} (P中节点的全部组合)
 - ✓ 生成新的频繁项集: $\beta = \theta \cup \alpha$
- else for each entry *e_i* in head table (头部表)
 - \triangleright 生成新的频繁项集: $\beta = e_i \cup \alpha$
 - 构建β的条件数据库: D_β
 - > 基于D_β构建β 的条件FP-tree: Tree_β
 - ► If $Tree_β \neq \emptyset$ then
 - ✓ 递归调用 **FP_growth(***Tree*_β, β**)**

► 解决第2个子问题:挖掘以I5结尾的频繁项集

生成新的频繁项集:

$$\theta \cup \alpha = \{I3\} \cup \{I5\} = \{I3, I5\}$$

$$\theta \cup \alpha = \{I1\} \cup \{I5\} = \{I1, I5\}$$

$$\theta \cup \alpha = \{I1, I3\} \cup \{I5\} = \{I1, I3, I5\}$$

• 接着依次求解以I4、I3、I1结尾的频繁项集集合,得到最终结果

后缀项	条件数据库	挖掘到的频繁项集
{I6}	{I1, I3, I5}:2, {I3, I4}:1	{I3, I6}
{I5}	{I1, I3}:2, {I1, I3, I4}:1	{I1, I5}, {I3, I5}, {I1, I3, I5}
{I4}	{I1}:1, {I3}:1, {I1, I3}:1	\
{I3}	{I1}:3	{I1, I3}
{I1} \		\

L1	{I1}, {I3}, {I4}, {I5}, {I6}	
L2	{I1, I3}, {I1, I5}, {I3, I5}, {I3, I6}	
L3	{I1, I3, I5}	

FP-tree算法的特点分析

• 优点

》使用一个高度压缩的数据结构存储了事务数据库的信息,整个过程只需扫描两次数据集,相关研究表明,在挖掘某些事务数据集时,FP-tree算法比Apriori算法快多个数量级。

缺点

▶ 由于FP-tree算法在执行过程中需要递归生成条件数据库和条件FP-tree,所以内存开销较大,且当生成的FP-tree十分茂盛时,如满前缀树,算法产生的子问题数量会剧增,导致性能显著下降。

Acknowledgements

- Some text, figures and formulations are from WWW. Thanks for their sharing. If you have copyright claim please contact with me at yym@hit.edu.cn.
- This lecture is distributed for nonprofit purpose.

Thank You for Your Attention

Contact me at: yym@hit.edu.cn

Tel: 26033008, 13760196623

Address: Rm.1402, H# Building