Linear arithmetic theories: (integer) linear programming

Christoph Haase Alessio Mansutti

Today's lecture: Linear programming (LP) and Integer Linear programming (ILP)

- Introduction to LP and ILP (geometry, basic properties)
- Algorithms for LP: Simplex algorithm, ellipsoid method
- Algorithm for ILP: Branch-and-bound
- Good solutions for ILP: Randomized rounding
- The computational complexity of linear and integer programming
- Tool demo along the way: SAGE and 4TI2

Introduction	to (Integer)	Linear	Programming	

Linear programming

Given:

lacksquare Polyhedron in \mathbb{R}^d defined by conjunction of linear constraints:

$$A \cdot x \geq c$$

lacksquare Linear objective function $oldsymbol{b}^\intercal \cdot oldsymbol{x}$

Linear programming

Given:

lacksquare Polyhedron in \mathbb{R}^d defined by conjunction of linear constraints:

$$A \cdot x \geq c$$

lacksquare Linear objective function $oldsymbol{b}^\intercal \cdot oldsymbol{x}$

Goal:

■ Maximize objective function while respecting all constraints

Linear programming

Given:

Polyhedron in \mathbb{R}^d defined by conjunction of linear constraints:

$$A \cdot x \geq c$$

■ Linear objective function $b^\intercal \cdot x$

Goal:

■ Maximize objective function while respecting all constraints

Important aspects:

- Decide feasibility
- Decide boundedness of objective function
- Understand where to find optima

Integer Linear programming

Given:

Polyhedron in \mathbb{Z}^d defined by conjunction of linear constraints:

$$A \cdot x \geq c$$

■ Linear objective function $b^\intercal \cdot x$

Goal:

■ Maximize objective function while respecting all constraints

Important aspects:

- Decide feasibility
- Decide boundedness of objective function
- Understand where to find optima

Yesterday we saw...

Understand where to find optima

objective: $\max b^\intercal \cdot x$

Maximum can be unbounded. Then, optimization is not possible

Understand where to find optima

objective: $\max \boldsymbol{b}^{\intercal} \cdot \boldsymbol{x}$

Maximum can be bounded. Then, all optima lie in a face

Faces of polyhedra (again)

Let P be a polyhedron.

 $F \subseteq P$ is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane of F.

Theorem

Let $P = \{x \in \mathbb{R}^d : A \cdot x \geq b\}$ and $F \subseteq \mathbb{R}^d$. The following statements are equivalent:

- 1. F is a face of P.
- 2. $F = P \cap \{x : A' \cdot x = b'\}$ where $A' \cdot x \ge b'$ is a subsystem of $A \cdot x \ge b$.
- 3. $F = \{x \in P : b^{\mathsf{T}} \cdot x \text{ maximum achievable with points in } P\}$, for some $b \in \mathbb{R}^d$.

Vectors v_1, \ldots, v_k are linearly independent whenever, for every $(a_1, \ldots, a_k) \in \mathbb{R}^k$, if $a_1 \cdot v_1 + \cdots + a_k \cdot v_k = \mathbf{0}$ then $(a_1, \ldots, a_k) = \mathbf{0}$.

Vectors v_1, \ldots, v_k are linearly independent whenever, for every $(a_1, \ldots, a_k) \in \mathbb{R}^k$, if $a_1 \cdot v_1 + \cdots + a_k \cdot v_k = \mathbf{0}$ then $(a_1, \ldots, a_k) = \mathbf{0}$.

A linear (sub)space $S \subseteq \mathbb{R}^d$ has dimension $\dim(S) = k$ whenever

$$S = \boldsymbol{v}_1 \cdot \mathbb{R} + \dots + \boldsymbol{v}_k \cdot \mathbb{R}$$

for some linearly independent non-zero vectors $oldsymbol{v}_1,\dots,oldsymbol{v}_k.$

Vectors v_1, \ldots, v_k are linearly independent whenever, for every $(a_1, \ldots, a_k) \in \mathbb{R}^k$, if $a_1 \cdot v_1 + \cdots + a_k \cdot v_k = \mathbf{0}$ then $(a_1, \ldots, a_k) = \mathbf{0}$.

A linear (sub)space $S \subseteq \mathbb{R}^d$ has dimension $\dim(S) = k$ whenever

$$S = \boldsymbol{v}_1 \cdot \mathbb{R} + \dots + \boldsymbol{v}_k \cdot \mathbb{R}$$

for some linearly independent non-zero vectors $oldsymbol{v}_1,\ldots,oldsymbol{v}_k.$

- \blacksquare \mathbb{R}^3 has dimension 3: $\mathbb{R}^3=(1,0,0)\cdot\mathbb{R}+(0,1,0)\cdot\mathbb{R}+(0,0,1)\cdot\mathbb{R}$
- \blacksquare $\{\mathbf{0}\} \subseteq \mathbb{R}^d$ has dimension 0
- Hyperplanes in \mathbb{R}^d have dimension d-1.

A set $S\subseteq \mathbb{R}^d$ is affine whenever $S=\boldsymbol{v}+L$, where $L\subseteq \mathbb{R}^d$ is a linear subspace and $\boldsymbol{v}\in \mathbb{R}^d$.

In this case, $\dim(S) = \dim(L)$.

A set $S\subseteq\mathbb{R}^d$ is affine whenever $S=\pmb{v}+L$, where $L\subseteq\mathbb{R}^d$ is a linear subspace and $\pmb{v}\in\mathbb{R}^d$.

In this case, $\dim(S) = \dim(L)$.

- \blacksquare $\{\mathbf{0}\}\subseteq\mathbb{R}^d$ has dimension 0
- Hyperplanes in \mathbb{R}^d have dimension d-1

A set $S\subseteq\mathbb{R}^d$ is affine whenever $S=\boldsymbol{v}+L$, where $L\subseteq\mathbb{R}^d$ is a linear subspace and $\boldsymbol{v}\in\mathbb{R}^d$.

In this case, $\dim(S) = \dim(L)$.

- **points** in \mathbb{R}^d have dimension 0
- Hyperplanes in \mathbb{R}^d have dimension d-1

A set $S\subseteq\mathbb{R}^d$ is affine whenever $S=\boldsymbol{v}+L$, where $L\subseteq\mathbb{R}^d$ is a linear subspace and $\boldsymbol{v}\in\mathbb{R}^d$.

In this case, $\dim(S) = \dim(L)$.

- **points** in \mathbb{R}^d have dimension 0
- lacksquare affine hyperplanes in \mathbb{R}^d have dimension d-1

A set $S\subseteq\mathbb{R}^d$ is affine whenever $S=\boldsymbol{v}+L$, where $L\subseteq\mathbb{R}^d$ is a linear subspace and $\boldsymbol{v}\in\mathbb{R}^d$.

In this case, $\dim(S) = \dim(L)$.

- **points** in \mathbb{R}^d have dimension 0
- lacksquare affine hyperplanes in \mathbb{R}^d have dimension d-1
- \blacksquare lines in \mathbb{R}^d have dimension 1

Relation between dimension and number of equations

Every affine subspace S can be characterised as $\{x\in\mathbb{R}^d:A\cdot x=c\}$. Then, $\dim(S)+(\text{number of independent rows in }A)=d$

- **points** in \mathbb{R}^d have dimension 0
- lacksquare affine hyperplanes in \mathbb{R}^d have dimension d-1
- \blacksquare lines in \mathbb{R}^d have dimension 1

Relation between dimension and number of equations

Every affine subspace S can be characterised as $\{x\in\mathbb{R}^d:A\cdot x=c\}$. Then, $\dim(S)+(\text{number of independent rows in }A)=d$

Examples:

points in \mathbb{R}^d have dimension 0

 $\rightarrow d$ equations

lacksquare affine hyperplanes in \mathbb{R}^d have dimension d-1

 \rightarrow 1 equation

 \blacksquare lines in \mathbb{R}^d have dimension 1

 $\rightarrow d-1$ equations

Dimension of polyhedra

Given $S \subseteq \mathbb{R}^d$, the affine hull $\operatorname{aff}(S)$ is the smallest affine subspace containing S. Equivalently, it is the set of all affine combinations of elements in S, i.e.,

aff(S) =
$$\left\{ \sum_{i=1}^{k} a_i \cdot v_i : k > 0, v_i \in S, a_i \in \mathbb{R}, \sum_{i=1}^{k} a_i = 1 \right\}$$

Dimension of polyhedra

Given $S \subseteq \mathbb{R}^d$, the affine hull $\mathrm{aff}(S)$ is the smallest affine subspace containing S. Equivalently, it is the set of all affine combinations of elements in S, i.e.,

aff(S) =
$$\left\{ \sum_{i=1}^{k} a_i \cdot v_i : k > 0, v_i \in S, a_i \in \mathbb{R}, \sum_{i=1}^{k} a_i = 1 \right\}$$

Dimension of polyhedra

Given $S \subseteq \mathbb{R}^d$, the affine hull $\operatorname{aff}(S)$ is the smallest affine subspace containing S. Equivalently, it is the set of all affine combinations of elements in S, i.e.,

aff(S) =
$$\left\{ \sum_{i=1}^{k} a_i \cdot v_i : k > 0, v_i \in S, a_i \in \mathbb{R}, \sum_{i=1}^{k} a_i = 1 \right\}$$

$$\operatorname{aff}\{u,v\} = egin{array}{c} v \ \end{array}$$

Let $P \subseteq \mathbb{R}^d$ be a polyhedron. The dimension of P is the dimension of $\operatorname{aff}(P)$.

Towards algorithms: representations of numbers, vectors, and matrices

Integer
$$n = \pm (a_k \cdot 2^k + ... + a_1 \cdot 2^1 + a_0) \in \mathbb{Z}$$
 with all $a_i \in \{0, 1\}$:

size (bit length)
$$\langle n \rangle = 2 + \lceil \log_2(|n|+1) \rceil$$

Towards algorithms: representations of numbers, vectors, and matrices

Integer $n = \pm (a_k \cdot 2^k + \ldots + a_1 \cdot 2^1 + a_0) \in \mathbb{Z}$ with all $a_i \in \{0, 1\}$:

size (bit length)
$$\langle n \rangle = 2 + \lceil \log_2(|n|+1) \rceil$$

Rational $r = \frac{n}{d} \in \mathbb{Q}$ with $n \in \mathbb{Z}$, $d \in \mathbb{Z}_{>0}$, $\gcd(n, d) = 1$:

$$\langle r \rangle = \langle n \rangle + \langle d \rangle$$

Vector $v \in \mathbb{Q}^m$:

$$\langle oldsymbol{v}
angle = \sum_{i=1}^m \langle v_i
angle$$

Matrix $M = (m_{ij}) \in \mathbb{Q}^{k \times \ell}$:

$$\langle M \rangle = \sum_{i=1}^{k} \sum_{j=1}^{\ell} \langle m_{ij} \rangle$$

Theorem (Minkowski-Weyl; 1897, 1935)

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

(H)
$$S = \{ m{x} \in \mathbb{R}^d : A \cdot m{x} \geq m{b} \}$$
 for some matrix $A \in \mathbb{Q}^{n imes d}$ and vector $m{b} \in \mathbb{Q}^d$

(V)
$$S = \operatorname{conv}(V) + \operatorname{cone}(W)$$
 for some finite sets $V, W \subseteq \mathbb{Q}^d$.

Theorem (Minkowski-Weyl; 1897, 1935)

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

(H)
$$S = \{ \boldsymbol{x} \in \mathbb{R}^d : A \cdot \boldsymbol{x} \geq \boldsymbol{b} \}$$
 for some matrix $A \in \mathbb{Q}^{n \times d}$ and vector $\boldsymbol{b} \in \mathbb{Q}^d$

(V)
$$S = \operatorname{conv}(V) + \operatorname{cone}(W)$$
 for some finite sets $V, W \subseteq \mathbb{Q}^d$.

Cost of switching, for both directions:

Bit length of numbers:

$$\langle \mathtt{output} \rangle \leq \mathsf{poly}(d) \cdot \langle \mathtt{input} \rangle$$

Amount of numbers (with repetitions):

$$\#(\mathtt{output}) \leq \#(\mathtt{input})^{\mathrm{poly}(d)}$$

Theorem (Minkowski-Weyl; 1897, 1935)

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

(H)
$$S = \{ m{x} \in \mathbb{R}^d : A \cdot m{x} \geq m{b} \}$$
 for some matrix $A \in \mathbb{Q}^{n imes d}$ and vector $m{b} \in \mathbb{Q}^d$

(V)
$$S = \operatorname{conv}(V) + \operatorname{cone}(W)$$
 for some finite sets $V, W \subseteq \mathbb{Q}^d$.

Cost of switching, $(V) \rightarrow (H)$:

Bit length of numbers:

$$\langle A \rangle, \langle \boldsymbol{b} \rangle \leq \mathsf{poly}(d) \cdot \max(\langle V \rangle, \langle W \rangle)$$

Amount of numbers (with repetitions):

$$\#[A \mid \boldsymbol{b}] \le (\#V + \#W)^{\operatorname{poly}(d)}$$

Theorem (Minkowski-Weyl; 1897, 1935)

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

(H)
$$S = \{ m{x} \in \mathbb{R}^d : A \cdot m{x} \geq m{b} \}$$
 for some matrix $A \in \mathbb{Q}^{n imes d}$ and vector $m{b} \in \mathbb{Q}^d$

(V)
$$S = \operatorname{conv}(V) + \operatorname{cone}(W)$$
 for some finite sets $V, W \subseteq \mathbb{Q}^d$.

Cost of switching, for both directions:

Bit length of numbers:

$$\langle \mathtt{output} \rangle \leq \mathtt{poly}(d) \cdot \langle \mathtt{input} \rangle \leftarrow \mathsf{deciding} \ \mathsf{the} \ \mathsf{non\text{-}emptiness} \ \mathsf{of} \ S$$
 is a \mathbf{NP} problem!

Amount of numbers (with repetitions):

$$\#(\mathtt{output}) \leq \#(\mathtt{input})^{\mathrm{poly}(d)}$$

PTIME: problems with efficient algorithms

$$\begin{aligned} \mathrm{DTIME}(n^k) &= \text{ solution computable in } O(n^k) \text{ on a deterministic Turing machine} \\ \mathbf{PTIME} &= \bigcup_{k \geq 1} \mathrm{DTIME}(n^k) \end{aligned}$$

Cobham-Edmonds Thesis (1965)

Efficiently computable in a reasonable computational model

=

Computable in polynomial time on a deterministic Turing machine

NP: problems with efficiently verifiable solutions

Decision problem: problem with a yes/no answer.

The complexity class NP contains all decision problems where, for each input x:

- if the answer is "yes", there exists a **certificate** y of small size: $\langle y \rangle \leq \operatorname{poly}(\langle x \rangle)$; whether the certificate is valid can be checked in time $\operatorname{poly}(\langle x \rangle, \langle y \rangle)$; and
- if the answer is "no", there is no such witness.

Standard form of linear programs

Standard form of linear programs

Transformation:

- 1. Substitute the every row $a^{\mathsf{T}} \cdot x \geq b$ with $a^{\mathsf{T}} \cdot x s = b$ (where s is a new variable).
- 2. Substitute each x with $y^+ y^-$ (where y^+ and y^- are new variables).
- 3. For every new variable z introduced above, add the constraint $z \geq 0$.
- 4. Rewrite every row $a^{\mathsf{T}} \cdot x = b$ with b negative to $-a^{\mathsf{T}} \cdot x = -b$.

Solving linear programs

Simplex algorithm on a high level:

- Start at some initial vertex of **polytope**
- Move to neighbor vertex improving objective function if it exists
- Otherwise return current vertex

Solving linear programs

Simplex algorithm on a high level:

- Start at some initial vertex of **polytope**
- Move to neighbor vertex improving objective function if it exists
- Otherwise return current vertex

Historical remarks:

- Developed by George Dantzig in 1947
- One of the ten most important algorithms of the 20th century

Simplex in detail

Vertices:

- Point $v \in \mathbb{R}^d$ is vertex of polytope only if it satisfies d defining inequality constraints with equality
- Point w is neighbor of v if v and w share d-1 defining inequalities

Simplex is simple when starting at origin:

- If objective function is non-positive we are done
- Otherwise increase some variable with positive coefficient until a constraint becomes tight (pivot rule)

$$\begin{array}{l} \text{maximize} \ x_1+6x_2 \\ \text{s.t.} \ x_1 \leq 2 \\ x_2 \leq 3 \\ x_1+x_2 \leq 4 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{array}$$

$$\begin{array}{l} \text{maximize} \ x_1+6x_2 \\ \text{s.t.} \ x_1 \leq 2 \\ x_2 \leq 3 \\ x_1+x_2 \leq 4 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{array}$$

$$\begin{array}{l} \text{maximize} \ x_1+6x_2 \\ \text{s.t.} \ x_1 \leq 2 \\ x_2 \leq 3 \\ x_1+x_2 \leq 4 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{array}$$

Increasing x_2 from 0 to 3:

- Increases objective function to 18
- \blacksquare Leads to new neighbor vertex ${\boldsymbol w}=(0,3)$

$$\begin{aligned} \text{maximize } x_1 + 6x_2 \\ \text{s.t. } x_1 &\leq 2 \\ x_2 &\leq 3 \\ x_1 + x_2 &\leq 4 \\ x_1 &\geq 0 \\ x_2 &\geq 0 \end{aligned}$$

Increasing x_2 from 0 to 3:

- Increases objective function to 18
- lacktriangle Leads to new neighbor vertex $oldsymbol{w}=(0,3)$

Translating new vertex to origin

Turn new vertex into new origin:

Any point inside polytope uniquely definable in terms of distances from defining hyperplanes

- Slack (distance) of point in polytope to i-th hyperplane $a_i \cdot x \leq b_i$ given by $y_i = b_i a_i \cdot x$ and $y_i \geq 0$
- \blacksquare Yields d equations in d unknowns
- **E**xpress every x_i in terms of y_1, \ldots, y_d and substitute

```
\begin{aligned} \text{maximize } x_1 + 6x_2 \\ \text{s.t. } x_1 &\leq 2 \\ x_2 &\leq 3 \\ x_1 + x_2 &\leq 4 \\ x_1 &\geq 0 \\ x_2 &\geq 0 \end{aligned}
```

$$\begin{array}{l} \text{maximize} \ x_1+6x_2 \\ \text{s.t.} \ x_1 \leq 2 \\ x_2 \leq 3 \\ x_1+x_2 \leq 4 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{array}$$

$$y_1 = x_1$$
 \rightsquigarrow $x_1 = y_1$ $y_2 = 3 - x_2$ \rightsquigarrow $x_2 = 3 - y_2$

$$y_1 = x_1$$
 \Rightarrow $x_1 = y_1$ $y_2 = 3 - x_2$ \Rightarrow $x_2 = 3 - y_2$

Finding a vertex to start from

Simplex can be used to find initial vertex. Given

$$egin{aligned} & \max & \max_{oldsymbol{x} \in \mathbb{R}^d} & ext{s.t. } A \cdot oldsymbol{x} = oldsymbol{b} \ & oldsymbol{x} \geq oldsymbol{0} \end{aligned}$$

Finding a vertex to start from

Simplex can be used to find initial vertex. Given

$$egin{aligned} & \max_{oldsymbol{x} \in \mathbb{R}^d} & ext{s.t. } A \cdot oldsymbol{x} = oldsymbol{b} \ & oldsymbol{x} \geq oldsymbol{0} \end{aligned}$$

To find initial vertex:

- Augment *i*-th row of system with fresh variable z_i , $z_i \geq 0$
- Change objective function to $-(z_1 + \cdots + z_m)$
- New system has initial vertex $z_i := b_i$, $x_j := 0$
- Run simplex, two possible outcomes
 - ► Solution with objective 0 ~> gives vertex of original system
 - Otherwise original system infeasible

1. Reduce optimality to feasibility

2. Find a feasible solution if one exists

1. Reduce optimality to feasibility

2. Find a feasible solution if one exists

Insight: Polyhedra live in a discrete world!

1. Reduce optimality to feasibility

2. Find a feasible solution if one exists

Insight: Polyhedra live in a discrete world!

How to find a feasible solution?

- 1. Choose a $\rho > 0$ s.t. all vertices of P are in $E = \{x^2 \le \rho^2\}$.
- 2. while(true):

Let z be the center of E. If z is feasible, stop. Otherwise find a violated constraint (use separation oracle).

 $E' \leftarrow$ smallest ellipsoid containing $E \cap \{x : a_i \cdot x \geq c_i\}$, where $a_i \cdot x \geq c_i$ is the violated constraint. $E \leftarrow E'$.

If $vol(E') \leq magic number$, stop with "infeasible".

Is this efficient?

Theorem

The number of iterations of the ellipsoid method is polynomial in n and s, the maximum size of numbers in the system $A \cdot x \geq c$.

Is this efficient?

Theorem

The number of iterations of the ellipsoid method is polynomial in n and s, the maximum size of numbers in the system $A \cdot x \geq c$.

Lemma 1:
$$\operatorname{vol}(E') \leq \operatorname{vol}(E) \cdot \left(1 - \frac{1}{\operatorname{poly}(n,s)}\right)$$
.

- Lemma 2: If P is full-dimensional, then $vol(P) \ge 2^{-poly(n,s)}$.
- Lemma 3: ρ can be chosen as $2^{\text{poly}(n,s)}$.
- Lemma 4: "Magic number" can be chosen as $2^{-\text{poly}(n,s)}$.

Caveats

- 1. We assumed that vol(P) > 0 if $P \neq \emptyset$.
- 2. We assumed unit-cost arithmetic.

Caveats

- 1. We assumed that vol(P) > 0 if $P \neq \emptyset$.
- 2. We assumed unit-cost arithmetic.

Neither assumption is necessary.

Conclusion

Linear programming is in PTIME.

Integer programming

Optimization:

Input: matrix $A \in \mathbb{Z}^{m \times d}$, vectors $c \in \mathbb{Z}^m$ and $b \in \mathbb{Z}^d$ Output: a vector $x \in \mathbb{Z}^d$ that maximizes $b \cdot x$ and

satisfies $A \cdot x \geq c$

Feasibility:

Input: matrix $A \in \mathbb{Z}^{m \times d}$, vector $c \in \mathbb{Z}^m$

Output: does there exist an $x \in \mathbb{Z}^d$ that satisfies $A \cdot x \geq c$?

Integer programming

$$\begin{aligned} \text{maximize } \boldsymbol{b}^{\intercal} \cdot \boldsymbol{x} \\ \text{s.t } A \cdot \boldsymbol{x} &\geq \boldsymbol{c}, \\ \boldsymbol{x} &\in \mathbb{Z}^d \end{aligned}$$

Very powerful formalism for encoding combinatorial questions.

 \mathbb{N}^d : Linear, hybrid linear, and semi-linear sets

 $\left.\begin{array}{l} \text{Vectors } \boldsymbol{b} \text{ in } B\text{: base vectors} \\ \text{Vectors } \boldsymbol{p}_i \text{ in } P\text{: period vectors} \end{array}\right\} \text{ generators}$

Linear set:

$$L(\boldsymbol{b}, P) = \{ \boldsymbol{b} + \lambda_1 \boldsymbol{p}_1 + \dots \lambda_s \boldsymbol{p}_s : \\ \boldsymbol{p}_1, \dots, \boldsymbol{p}_s \in P, \ \lambda_1, \dots, \lambda_s \in \mathbb{N}, \ s \ge 0 \}$$

Hybrid linear set:

$$L(B,P) = \bigcup_{\boldsymbol{b} \in B} L(\boldsymbol{b},P)$$

Semi-linear set:

$$M = \bigcup_{i \in I} L(B_i, P_i)$$

Linear < Hybrid linear < Semi-linear

 ${\color{red}\mathsf{Linear}} \quad < \quad \mathsf{Hybrid\ linear} \quad < \quad \mathsf{Semi-linear}$

 \mathbb{N}^d : Linear, hybrid linear, and semi-linear sets

 \mathbb{N}^d : Linear, hybrid linear, and semi-linear sets

[Parikh (1961)]

$$\left\{ \sum \lambda_i \boldsymbol{b}_i + \sum \mu_j \boldsymbol{p}_j : \sum \lambda_i = 1, \ \lambda_i \geq 0, \ \mu_j \geq 0 \right\}$$

$$\left\{ \sum \lambda_i \boldsymbol{b}_i + \sum \mu_j \boldsymbol{p}_j : \sum \lambda_i = 1, \ \lambda_i \ge 0, \ \mu_j \ge 0 \right\}$$

- $\lambda_i, \mu_j \in \mathbb{R}$: (rational) convex polyhedron convB + coneP
- $\lambda_i, \mu_j \in \mathbb{Z}$: hybrid linear set L(B, P)

Hybrid linear sets are "discrete convex polyhedra"!

$$\left\{ \sum \lambda_i \boldsymbol{b}_i + \sum \mu_j \boldsymbol{p}_j : \sum \lambda_i = 1, \ \lambda_i \geq 0, \ \mu_j \geq 0 \right\}$$

- $\lambda_i, \mu_j \in \mathbb{R}$: (rational) convex polyhedron convB + coneP
- $\lambda_i, \mu_j \in \mathbb{Z}$: hybrid linear set L(B, P)

The geometry of a system of inequalities over the **integers**

Theorem (von zur Gathen & Sieveking, '78)

Consider $S \subseteq \mathbb{Z}^d$. Then, below (H) implies (V), but not vice versa:

(H)
$$S=\{x\in\mathbb{Z}^d:A\cdot x\leq c\}$$
 for some $A\in\mathbb{Z}^{n imes d}$ and $c\in\mathbb{Z}^m$

(V)
$$S = L(B, P)$$
 for some finite sets $B, P \subseteq \mathbb{Z}^d$.

The geometry of a system of inequalities over the **integers**

Theorem (von zur Gathen & Sieveking, '78)

Consider $S \subseteq \mathbb{Z}^d$. Then, below (H) implies (V), but not vice versa:

(H)
$$S=\{x\in\mathbb{Z}^d:A\cdot x\leq c\}$$
 for some $A\in\mathbb{Z}^{n\times d}$ and $c\in\mathbb{Z}^m$

(V)
$$S = L(B, P)$$
 for some finite sets $B, P \subseteq \mathbb{Z}^d$.

- The blowup in size can be exponential.
- The size of all numbers stays polynomial.

Corollary: Small solutions

Corollary

If a system of inequalities $A \cdot x \geq c$ has a solution in \mathbb{Z}^d , then it has one where numbers have size at most $\operatorname{poly}(\langle A \rangle, \langle c \rangle)$ (that is, $x_i \leq 2^{\operatorname{poly}(\langle A \rangle, \langle c \rangle)}$).

Computational complexity of integer programming

Let IP denote the decision problem for integer programming.

Theorem

 ${
m IP}$ is ${
m NP}$ -complete.

Computational complexity of integer programming

Let IP denote the decision problem for integer programming.

Theorem

IP is **NP**-complete.

Proof:

- **NP**-hardness: by reduction from SAT.
- Membership in **NP**: from existence of small solutions.

Branch and bound for integer programming

[Dakin (1965), Land and Doig (1960)]

Assume that $P = \{ \boldsymbol{x} \in \mathbb{R}^d \colon A \cdot \boldsymbol{x} \geq \boldsymbol{c} \}$ is bounded.

Start with $\Pi = \{P\}$. while(true):

1. Given $\Pi = \{P_1, \dots, P_k\}$, determine

$$\mu_j = \max_{\boldsymbol{x} \in P_j} \boldsymbol{b} \cdot \boldsymbol{x}.$$

(If all $\mu_j = -\infty$, return "not feasible".) Pick P_j that has the largest μ_j ; let x^* be the optimal solution in P_i ($b \cdot x^* = \mu_i$).

- 2. If x^* is integral, it is optimal for P.
- 3. Otherwise, let x_i be a non-integral component, say $x_i = \zeta$. Replace P_j in Π with $P_j' = P_j \cap \{ \boldsymbol{x} \in \mathbb{R}^d \colon x_i \leq \lfloor \zeta \rfloor \}$ and $P_j'' = P_j \cap \{ \boldsymbol{x} \in \mathbb{R}^d \colon x_i \geq \lceil \zeta \rceil \}$.

Branch and bound for integer programming

Proposition

If P is bounded, the branch and bound method terminates in at most exponentially many steps with a correct answer.

Branch and bound for integer programming

Proposition

If P is bounded, the branch and bound method terminates in at most exponentially many steps with a correct answer.

If P is unbounded:

1. Apply the method to

$$P' := P \cap \{ \boldsymbol{x} \in \mathbb{R}^d \colon x_i \le 2^{\text{poly}(\langle A \rangle, \langle \boldsymbol{c} \rangle)} \text{ for all } i \}.$$

- 2. If there is no solution in P', there is none in P either.
- 3. Otherwise check if $\max\{\boldsymbol{b}\cdot\boldsymbol{x}\colon\boldsymbol{x}\in P\}=+\infty$.
 - ▶ If yes, then the maximum over integers is also $+\infty$.
 - ▶ If no, then the maximum over integers is attained inside P'.

Randomized rounding

Randomized rounding is a technique for solving combinatorial problems that have nice encodings as integer programs.

Set cover problem

Input: finite sets U and $S_1,\ldots,S_m\subseteq U$ Output: set $I\subseteq\{1,\ldots,m\}$ of minimum cardinality such that $\bigcup_{i\in I}S_i=U$

Claim

The set cover problem is \mathbf{NP} -complete.

Integer program for set cover

$$\begin{array}{ll} \text{minimize } \sum_{i=1}^m x_i \\ \\ \text{subject to } \sum_{j\colon i\in S_j} x_j \geq 1, & i=1,\dots,n, \\ \\ x_i \geq 0, & i=1,\dots,m, \\ \\ x_i \in \mathbb{Z}, & i=1,\dots,m \end{array}$$

LP relaxation of the integer program

$$\begin{array}{ll} \text{minimize } \sum_{i=1}^m x_i \\ \\ \text{subject to } \sum_{j\colon i\in S_j} x_j \geq 1, & i=1,\dots,n, \\ \\ x_i \geq 0, & i=1,\dots,m, \\ \\ x_i \in \mathbb{R}, & i=1,\dots,m \end{array}$$

Randomized rounding for set cover

Suppose |U| = n. Let x^* be the optimal fractional cover.

- $C \leftarrow \emptyset$.
- For all $i=1,\ldots,n$: repeat $c\ln n$ times: flip a coin with success probability x_i^* ; if at least one success, add i to C.
- Return C if it is a cover.

Randomized rounding for set cover

Suppose |U| = n. Let x^* be the optimal fractional cover.

- $C \leftarrow \varnothing$.
- For all $i=1,\ldots,n$: repeat $c\ln n$ times: flip a coin with success probability x_i^* ; if at least one success, add i to C.
- \blacksquare Return C if it is a cover.

Theorem

If $c \geq 2$, this algorithm produces a cover with probability at least 1 - 1/poly(n). The expected size of C, conditioned on C being a cover, is at most $O(\log n)$ times the size of a smallest cover.

Summary of today's lecture

We have seen two algorithms for Linear programming:

- Simplex algorithm
- Ellipsoid method

We saw two algorithms for Integer Linear programming:

- Branch-and-bound
- Randomized rounding

We also saw a Minkowski-Weyl analogue for integer polytopes:

Linear sets, hybrid linear sets, and semi-linear sets

Agenda

Starting from tomorrow, we move to first-order arithmetic theories!

Tomorrow Quantifier elimination procedures

Thursday Automata-based procedures

Friday Geometric procedures