On the relationships between QoS and software adaptability at the architectural level

Daniel Schmidt

17.02.2015

passungsfähigkeit Metriken Adapt und Adapt Analyse des Ansatzes Beschränkungen Literatur

Inhalt

- 1 Einleitung
- 2 Anpassungsfähigkeit
- 3 Metriken
 - AAS und RAS
 - MAAS und MRAS
 - LSA
- 4 Adapt und Adapt +
- 5 Analyse des Ansatzes
- 6 Beschränkungen

On the relationships between QoS and software adaptability at the architectural level

Einleitung Anpassungsfähigkeit Metriken Adapt und Adapt Analyse des Ansatzes Beschränkungen Literatur

Einleitung

Abbildung: Zusammenhang zwischen Anpassungsfähigkeit und QoS

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

—Einleitung

- Es geht immer um garantierte Anpassungsfähigkeit
- Garantierte Anpassungsfähigkeit von Software kann andere Qualitätsattribute wie Geschwindigkeit, Verlässlichkeit und Wartbarkeit beeinflussen.
- Ansatz ist bei einem wechselnden Kontext nützlich, er wird benutzt um zu testen ob die ausgewählten Komponenten die Voraussetzungen des Systems erfüllen.

Anpassungsfähigkeit

Anpassungsfähigkeit

Definition (Anpassungsfähiges Software System)

Ein anpassungsfähiges Software System kann Änderungen in der Umwelt ohne einen externen Eingriff vertragen.

Lawrence Chung Nary Subramanian, Metrics for Software Adaptability, URL: https://www.utdallas.edu/~chung/ftp/sqm.pdf

• Quantifizierung des Grads der Anpassungsfähigkeit wichtig

-Anpassungsfähigkeit

- Über heuristische Verfahren kann eine automatische Anpassung der Architektur erfolgen, hin zu einer Architektur, welche die Qualitätsmerkmale erfüllt oder nah dran ist
- Die Ziele des Papers sind:
 - Eine erweiterte Menge von architekturellen Metriken die zur Evaluierung der Anpassungsfähigkeit des Systems verwendet werden können
 - Der Ansatz benutzt diese Metriken um die Beziehung zwischen Anpassungsfähigkeit und Qualitätswerten zu definieren, damit hilft dieser Ansatz bei der Begründung des Designs
 - Fin Hilfsmittel bereitstellen um den Ansatz zu benutzen

Anpassungsfähigkeit Metriken Adapt und Adapt Analyse des Ansatzes Beschränkungen Literatur

Beispiel

Abbildung: Beispiel Component-and-Connector Ansicht

On the relationships between QoS and software adaptability at the architectural level __Anpassungsfähigkeit

-Beispiel

2015-02

- Der Ansatz basiert auf einer Component-and-Connector Ansicht, da sie allgemein verwendet wird um über die Qualitätswerte zur Laufzeit zu reden.
- Sockets für benötigte und angebotene Dienste
- Gemeinsame Linien zeigen an dass mehrere Komponenten den gleichen Dienst anbieten oder benötigen.

Einleitung Anpassungsfähigkeit Metriken Adapt und Adapt Analyse des Ansatzes Beschränkungen Literatur

Metriken

Definition (UC_i)

Komponenten, die den Dienst i bereitstellen

Definition (C_i)

Komponenten, die den Dienst i bereitstellen können

On the relationships between QoS and software adaptability at the architectural level

Metriken

└─ Metriken

Metriken

Abbildung: Beispielarchitektur

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software 2015-02-03 adaptability at the architectural level Metriken └─ Metriken

assungsfähigkeit **Metriken** Adapt und Adapt Hanalyse des Ansatzes Beschränkungen Literat

Metriken

- AAS und RAS
- MAAS und MRAS
- LSA

On the relationships between QoS and software
adaptability at the architectural level

Metriken

Metriken

Metriken

AAS

Definition (Absolute adaptability of a service)

Metriken

$$AAS_i = |UC_i|$$

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level 2015-02-Metriken -AAS und RAS

- AAS misst die Anzahl der benutzten Komponenten, welche gewisse Dienste bereitstellen.
- Lösung: [1,1,2]

L-AAS

RAS

Definition (Relative adaptability of a service)

$$RAS_i = \frac{|UC_i|}{|C_i|}$$

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level 2015-02 Metriken -AAS und RAS ∟RAS

- RAS misst die Anzahl der verwendeten Komponenten, welche einen gegebenen Service bereitstellen in hinsicht auf die Anzahl der Komponenten, die tatsächlich solchen Service anbieten.
- Lösung: [1,0.5, 0.6]

MAAS

Definition (Mean of absolute adaptability of service)

$$MAAS = \frac{\sum_{i=1}^{n} AAS_i}{n}$$

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level 2015-02 Metriken -MAAS und MRAS └─MAAS

- MAAS misst die durchnittliche Anzahl der genutzten Komponenten pro Dienstleistung. Komponenten, die tatsächlich solchen Service anbieten.
- Lösung: 4/3 = 1.3

MRAS

Definition (Mean of relative adaptability of service)

$$MAAS = \frac{\sum_{i=1}^{n} RAS_i}{n}$$

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level 2015-02 Metriken -MAAS und MRAS

- MRAS misst den Durchschnitt des RAS (Relative Adaptability of a service).
- Lösung: (1 + 0.5 + 0.6) / 3 = 0.7

└─MRAS

LSA

Definition (Level of system adaptability)

$$LSA = \frac{\sum_{i=1}^{n} AAS_{i}}{\sum_{i=1}^{n} |C|}$$

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level 2015-02 Metriken LSA LSA

- LSA bezeichnet das Verhältnis zwischen der Anzahl an Komponenten aus denen ein System besteht und der Anzahl die das Anpassungsfähigste nutzen würde.
- Lösung: 4/(1+2+3)=0.66666

assungsfähigkeit Metriken **Adapt und Adapt** Analyse des Ansatzes Beschränkungen Literatur

Adapt - und Adapt +

Definition (Adapt⁻)

Das niedrigste A_i für welches man eine Architektur finden kann, welche die Anforderungen erfüllt.

On the relationships between QoS and software adaptability at the architectural level Adapt - und Adapt +

—Adapt ⁻ und Adapt ⁺

- Anforderungen werden durch Architekten gewählt und beziehen sich auf QoS des Systems.
- *A_i* sind zunehmende Werte für die gewählte Metrik der Anpassungsfähigkeit.

ssungsfähigkeit Metriken **Adapt und Adapt** Analyse des Ansatzes Beschränkungen Literatur

Adapt - und Adapt +

Definition (Adapt⁺)

Das niedrigste A_i für dessen Grenzen Q_{A_iU} und Q_{A_iL} die Anforderungen erfüllen.

On the relationships between QoS and software adaptability at the architectural level

Adapt - und Adapt +

Adapt - und Adapt +

5-02

- Q_{A_iU} ist der höchste Qualitätswert den eine Architektur für ein Anpassungsfähigkeitsniveau erreichen kann.
- Q_{A_iU} ist entsprechend der niedrigste.

Anpassungsfähigkeit Metriken **Adapt ⁻ und Adapt ⁺** Analyse des Ansatzes Beschränkungen

On the relationships between QoS and software adaptability at the architectural level —Adapt - und Adapt +

Adapt - und Adapt +

-Adapt - und Adapt +

- In (a) und (d) ist Adapt- das niedrigestes A_i für welches man eine Architektur finden kann, welche die Anforderungen erfüllt. Adapt+ ist das niedrigste A_i , dessen Grenzen Q_{A_iU} und Q_{A_iL} die Anforderungen erfüllt.
- Die Werte zeigen, dass die Erfüllung der Anforderungen eine Anpassungsfähigkeit von Adapt- voraussetzen und, dass jede Architektur die mindestens Adapt+ hat die Anforderungen auch erfüllt. Für Anpassungsfähigkeit dazwischen gibt es Architekturen, die die Anforderungen erfüllen und solche die es nicht tun.

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

Adapt - und Adapt +

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level —Adapt - und Adapt +

-Adapt - und Adapt +

- In (a) und (d) ist Adapt- das niedrigestes A_i für welches man eine Architektur finden kann, welche die Anforderungen erfüllt. Adapt+ ist das niedrigste A_i , dessen Grenzen Q_{A_iU} und Q_{A_iL} die Anforderungen erfüllt.
- Die Werte zeigen, dass die Erfüllung der Anforderungen eine Anpassungsfähigkeit von Adapt- voraussetzen und, dass jede Architektur die mindestens Adapt+ hat die Anforderungen auch erfüllt. Für Anpassungsfähigkeit dazwischen gibt es Architekturen, die die Anforderungen erfüllen und solche die es nicht tun.

npassungsfähigkeit Metriken **Adapt [–] und Adapt ⁺ A**nalyse des Ansatzes Beschränkungen Literatu 00 00

Adapt - und Adapt +

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level —Adapt - und Adapt +

-Adapt - und Adapt +

- In (a) und (d) ist Adapt- das niedrigestes A_i für welches man eine Architektur finden kann, welche die Anforderungen erfüllt. Adapt+ ist das niedrigste A_i , dessen Grenzen Q_{A_iU} und Q_{A_iL} die Anforderungen erfüllt.
- Die Werte zeigen, dass die Erfüllung der Anforderungen eine Anpassungsfähigkeit von Adapt- voraussetzen und, dass jede Architektur die mindestens Adapt+ hat die Anforderungen auch erfüllt. Für Anpassungsfähigkeit dazwischen gibt es Architekturen, die die Anforderungen erfüllen und solche die es nicht tun.

npassungsfähigkeit Metriken **Adapt ^{*} und Adapt [†]** Analyse des Ansatzes Beschränkungen Literatur

Adapt - und Adapt +

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level —Adapt - und Adapt +

-Adapt - und Adapt +

- In (a) und (d) ist Adapt- das niedrigestes A_i für welches man eine Architektur finden kann, welche die Anforderungen erfüllt. Adapt+ ist das niedrigste A_i , dessen Grenzen Q_{A_iU} und Q_{A_iL} die Anforderungen erfüllt.
- Die Werte zeigen, dass die Erfüllung der Anforderungen eine Anpassungsfähigkeit von Adapt- voraussetzen und, dass jede Architektur die mindestens Adapt+ hat die Anforderungen auch erfüllt. Für Anpassungsfähigkeit dazwischen gibt es Architekturen, die die Anforderungen erfüllen und solche die es nicht tun.

ung Anpassungsfähigkeit Metriken **Adapt ⁻ und Adapt ⁺** Analyse des Ansatzes Beschränkungen

Beispiel

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level —Adapt - und Adapt +

└─Beispiel

 Es lassen sich bei Nutzung der gleichen Metrik zwei QoS in einen Graphen einzeichnen. Hierbei wird eine Fläche eingezeichnet, die die Werte bei allen möglichen Architekturen anzeigt. Es lassen sich Adapt+ und Adapt- für beide Qualitätsattribute einzeichnen, so entstehen (vielleicht) Bereiche in denen beide Anforderungen erfüllt sind, nur einer erfüllt ist oder keiner erfüllt ist. passungsfähigkeit Metriken Adapt * und Adapt * **Analyse des Ansatzes** Beschränkungen Literatur

Definition des Ansatzes

Abbildung: Beziehungen der QoS zur Anpassungsfähigkeit

Daniel Schmidt

On the relationships between QoS and software adaptability at the architectural level

On the relationships between QoS and software adaptability at the architectural level —Analyse des Ansatzes

Definition des Ansatzes

—Definition des Ansatzes

- Für jedes System gelten unterschiedliche Beziehungen zwischen QoS und Anpassungsfähigkeit
- Wissen über die Beziehungen ermöglicht es den besten Kompromiss zu finden zwischen Anpassungsfähigkeit und Zielanforderung
- Ziel der Analyse ist es zu zeigen, dass es eine Reihe von Möglichkeiten gibt ein System durch die Anwendung des Ansatzes zu entwerfen, welches die Anforderungen erfüllt und manchmal auch die gesamte Qualität und / oder Anpassbarkeit verbessert
- SOLAR (SOftware qualities and Adaptability Relationships) ist ein Programm, welches den Ansatz umsetzt. Es hat jedoch performance probleme (bei 30 komponenten bis zu 20 minuten)

ssungsfähigkeit Metriken Adapt ⁻ und Adapt ⁺ **Analyse des Ansatzes** Beschränkungen Literatur

Analyse des Ansatzes

- **Ziel:** Zu zeigen, dass es eine Reihe von Möglichkeiten gibt mithilfe des Ansatzes ein System zu entwerfen, welches die Anforderungen erfüllt und manchmal auch die gesamte QoS und / oder Anpassbarkeit zu verbessern.
- Ansatz dauert länger als bisherige, aber das Resultat ist auch bei Änderungen weiterhin nutzbar.

On the relationships between QoS and software adaptability at the architectural level—Analyse des Ansatzes

Analyse des Ansatzes

- Ziel: Zu zeigen, dass es eine Reihe von Möglichkeiten gibt mithilfe des Ansatzes ein System zu entwerfen, welches die Anforderungen erfüllt und manchmal auch die gesamte QoS und / oder Anpassbarkeit zu verbessern.
- Ansatz dauert länger als bisherige, aber das Resultat ist auch bei Änderungen weiterhin nutzbar.

└─Analyse des Ansatzes

- dauert länger als andere Ansätze, aber Erkenntnisse aus den anderen Ansätzen nutzlos sobald sich die Anforderungen ändern, hier nicht.
- Es muss lediglich die Asymptote der Anforderungen neu gezeichnet werden und die neuen Komponenten entsprechend ausgewählt werden.
 - neue Komponente: Ja, da es neue Möglichkeiten gibt
 - Komponente zerstört: Ja, wenn in Architektur
 - Komponente ändert QoS: Wenn es in der Architektur ist bei Verschlechterung Ja, ansonsten nein. Falls es nicht in der Architektur ist sollte er angewendet werden.
 - Die Anforderungen ändern sich: Wenn die Anforderungen strikter werden und die Anforderungen nicht mehr eingehalten muss der Ansatz genutzt werden, ansonsten nicht.

assungsfähigkeit Metriken Adapt ^{*} und Adapt [†] Analyse des Ansatzes **Beschränkungen** Literatur

Beschränkungen

- Weicher Erfüllungsgrad kann mit dem aktuellen Ansatz nicht vereint werden, da Adapt+ und Adapt− in einem durchgehenden Erfüllbarkeitsschema nicht existieren würden
- Keine Gewichtung von Komponenten & Services
- Fehlendes Wissen über die tatsächliche Umgebung und die Schwierigkeit bei der Definition architektureller Parameter

On the relationships between QoS and software adaptability at the architectural level Beschränkungen

Beschränkungen

- Weicher Erfallungsgrad kann mit dem aktuellen Ansatz nich vereint werden, da Adapet und Adapt in einem durchgehenden Erfallbarkeitsschema nicht existieren wurden ■ Keine Gewichtung von Komponenten & Services
- Fehlendes Wissen über die tatsachliche Umgebung und die Schwierigkeit bei der Definition architektureller Parameter

- Beschränkungen
- Es wird für den Ansatz generell nur eine binäre Erfüllung der Anforderungen genutzt (erfüllt, nicht erfüllt). Eine weichere Form kann mit dem aktuellen Ansatz nicht vereint werden, da Adapt+ und Adapt- in einem durchgehenderen Erfüllbarkeitsschema nicht existieren würden
- Bisher gibt es keine Gewichtung in der einige Komponenten, bzw Services wichtiger sein können als andere (WIP).
- Normale Probleme (lack of knowledge about the real world execution environment and consequently the difficulty in defining architecture parameters)

passungsfähigkeit Metriken Adapt und Adapt + Analyse des Ansatzes Beschränkungen Literatur

Literatur

Lawrence Chung Nary Subramanian. *Metrics for Software Adaptability*. URL:

https://www.utdallas.edu/~chung/ftp/sqm.pdf.

On the relationships between QoS and software adaptability at the architectural level Beschränkungen

-Literatur

Literatur

José Merseguer Diego Perez-Palacin Raffaela Mirandola. "On the relationships between QoS and software adpatability at the architectural level". In: The Journal of Systems and Software (2013).

Lawrence Chung Nary Subramanian. Metrics for Softwan Adaptability. URL: https://www.utdallas.edu/~chung/ftp/sqn.pdf.