Devoir surveillé n°12

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 1.a Notons $f_n : A \in \mathcal{M}_d(\mathbb{C}) \mapsto A^n$. Les coefficients de A^n sont polynomiaux en les coefficients de A donc f_n est continue sur $\mathcal{M}_d(\mathbb{C})$.

1.b Récurrence évidente en utilisant la sous-multiplicativité de la norme subordonnée.

1.c Soit $r \in [0, \mathbb{R}[$. On note \mathbb{B}_r la boule fermée de centre 0 et de rayon r pour la norme $\|\cdot\|$. Alors

$$\forall A \in B_r, \|f_n(A)\| = |a_n| \|A^n\| \le |a_n| \|A\|^n \le |a_n| r^n$$

Or la série entière $\sum a_n z^n$ converge absolument sur son disque ouvert de convergence donc $\sum |a_n| r^n$ converge. On en déduit que la série de fonctions $\sum f_n$ converge normalement et donc uniformément sur B_r pour tout $r \in [0, R[$. Or les f_n sont continues sur $\mathcal{M}_d(\mathbb{C})$ donc φ est continue (et a fortiori définie) sur \mathcal{B} .

2 2.a Il suffit de remarquer que $\mathbb{C}[A]$ est un sous-espace vectoriel de dimension finie de $\mathcal{M}_d(\mathbb{C})$.

2.b $\varphi(A) \in \mathbb{C}[A]$ comme limite de la suite de terme général $\sum_{k=0}^{n} a_k A^k$, qui est à valeurs dans le fermé $\mathbb{C}[A]$.

On sait par ailleurs que $(A^k)_{0 \le k \le r-1}$ est une base de $\mathbb{C}[A]$ donc il existe un unique polynôme $P \in \mathbb{C}_{r-1}[X]$ tel que $\varphi(A) = P(A)$.

2.c On vérifie que $A^2 = A$ et donc $A^n = A$ pour tout $n \in \mathbb{N}^*$. On en déduit que

$$\varphi(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!} = I_d + \left(\sum_{n=1}^{+\infty} \frac{1}{n!}\right) A = I_d + (e-1)A$$

De plus, on a bien r=2, puisque la famille (I_d,A) est libre tandis que la famille (I_d,A,A^2) est liée. On en déduit que P=1+(e-1)X.

3 Supposons qu'il existe $P \in \mathbb{C}[X]$ tel que

$$\forall A \in \mathcal{M}_d(\mathbb{C}), \ \varphi(A) = P(A)$$

Notamment, pour tout $\lambda \in \mathbb{C}$,

$$\varphi(\lambda I_d) = P(\lambda I_d)$$

et donc

$$\sum_{n=0}^{+\infty} a_n \lambda^n = P(\lambda)$$

Par unicité du développement en série entière, la suite (a_n) est la suite des coefficients de P : elle est donc nulle à partir d'un certain rang.

Réciproquement, si (a_n) est nulle à partir d'un certain rang, on a bien

$$\forall A \in \mathcal{M}_d(\mathbb{C}), \ \varphi(A) = P(A)$$

en posant
$$P = \sum_{n=0}^{+\infty} a_n X^n$$
.

Remarquons que $\exp(iA) = \cos(A) + i\sin(A)$ et que $\exp(-iA) = \cos(A) - i\sin(A)$. Comme iA et -iA commutent,

$$I_d = \exp(iA - iA) = \exp(iA) \exp(-iA) = (\cos(A) + i\sin(A))(\cos(A) - i\sin(A)) = \cos(A)^2 + \sin(A)^2 + i(\sin(A)\cos(A) - \cos(A)\sin(A)) = \cos(A)^2 + \sin(A)^2 + i(\sin(A)\cos(A) - \cos(A)\sin(A) = \cos(A)^2 + \sin(A)^2 + i(\sin(A)\cos(A) - \cos(A)^2 + \sin(A)^2 + i(\sin(A)\cos(A)^2 + i(\sin(A)^2 + i(i(a)^2 + i(i(a)^2 + i(i(a)^2 + i(i(a)^2 + i(a)^2 + i(a$$

Mais d'après la question 2.b, les matrices $\cos(A)$ et $\sin(A)$ appartiennent à l'algèbre commutative $\mathbb{C}[A]$ donc $\sin(A)\cos(A)$ cos(A) sin(A). On en déduit que

$$\cos(A)^2 + \sin(A)^2 = I_d$$

5 | 5.a D'après la question 1.b,

$$\forall n \in \mathbb{N}, \ \| (\mathbf{R}e^{i\theta})^{-n}) \mathbf{A}^n \| = \| (\mathbf{R}^{-1}e^{-i\theta}\mathbf{A})^n \| \le \| \mathbf{R}^{-1}e^{-i\theta}\mathbf{A} \|^n = \left(\frac{\|\mathbf{A}\|}{\mathbf{R}} \right)^n$$

Comme $\|A\| < R$, la série numérique $\sum \left(\frac{\|A\|}{R}\right)^n$ converge donc la série $\sum (Re^{i\theta})^{-n} A^n$ converge absolument. Comme $\mathcal{M}_d(\mathbb{R})$ est de dimension finie, $\sum (\mathbb{R}e^{i\theta})^{-n} A^n$ converge. Pour tout $M \in \mathcal{M}_d(\mathbb{C})$, l'application $X \in \mathcal{M}_d(\mathbb{C}) \mapsto MX$ est linéaire donc continue puisque $\mathcal{M}_d(\mathbb{C})$ est de dimension finie.

On en déduit que

$$(\mathrm{R}e^{i\theta}\mathrm{I}_d - \mathrm{A})(\mathrm{R}e^{i\theta})^{-1} \sum_{n=0}^{+\infty} (\mathrm{R}e^{i\theta})^{-n}) \mathrm{A}^n = \sum_{n=0}^{+\infty} (\mathrm{R}e^{i\theta}\mathrm{I}_d - \mathrm{A})(\mathrm{R}e^{i\theta})^{-1} (\mathrm{R}e^{i\theta})^{-n}) \mathrm{A}^n = \sum_{n=0}^{+\infty} (\mathrm{R}e^{i\theta})^{-n} \mathrm{A}^n - (\mathrm{R}e^{i\theta})^{-(n+1)} \mathrm{A}^{n+1}$$

On a vu que la série $\sum (Re^{i\theta})^{-n} A^n$ convergeait. On en déduit notamment que la suite $((Re^{i\theta})^{-n})A^n$ converge vers la matrice nulle. Par lien suite/série télescopique,

$$\sum_{n=0}^{+\infty} (Re^{i\theta})^{-n} A^n - (Re^{i\theta})^{-(n+1)} A^{n+1} = I_d$$

Ceci signifie donc bien que $Re^{i\theta}I_d - A$ est inversible et que

$$(Re^{i\theta}I_d - A)^{-1} = (Re^{i\theta})^{-1} \sum_{n=0}^{+\infty} (Re^{i\theta})^{-n} A^n$$

5.b On choisit à nouveau R > ||A||. Soit $n \in \mathbb{N}^*$. Par continuité de la multiplication matricielle à droite

$$\forall \theta \in [0, 2\pi], \ (\mathbf{R}e^{i\theta})^n (\mathbf{R}e^{i\theta}\mathbf{I}_d - \mathbf{A})^{-1} = (\mathbf{R}e^{i\theta})^n (\mathbf{R}e^{i\theta})^{-1} \sum_{k=0}^{+\infty} (\mathbf{R}e^{i\theta})^{-k} \mathbf{A}^k = \sum_{k=0}^{+\infty} (\mathbf{R}e^{i\theta})^{n-k-1} \mathbf{A}^k$$

Posons ψ_k : $\theta \in [0, 2\pi] \mapsto (Re^{i\theta})^{n-k-1}A^k$. Alors,

$$\forall \theta \in \mathbb{R}, \ \|\psi_n(\theta)\| \le R^{n-k+1} \|A\|^k = R^{n-1} \left(\frac{\|A\|}{R}\right)^k$$

Comme $\frac{\|A\|}{R} < 1$, la série $\sum_{k \in \mathbb{N}} R^{n-1} \left(\frac{\|A\|}{R}\right)^k$ converge donc la série $\sum_{k \in \mathbb{N}} \psi_k$ converge normalement sur $[0, 2\pi]$. On peut donc procéder à une interversion série/intégrale

$$\frac{1}{2\pi} \int_0^{2\pi} (\mathbf{R} e^{i\theta})^n (\mathbf{R} e^{i\theta} \mathbf{I}_d - \mathbf{A})^{-1} \ \mathrm{d}\theta = \frac{1}{2\pi} \sum_{k=0}^{+\infty} \mathbf{R}^{n-k-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \sum_{k=0}^{+\infty} \mathbf{R}^{n-1-k} \delta_{n-1,k} \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \right) \mathbf{A}^k = \mathbf{A}^{n-1} \left(\int_0^{2\pi} e^{i(n-k-1)\theta} \left(\int_0^{2\pi} e^$$

5.c Par linéarité de l'intégrale, la question précédente montre que pour tout $P \in \mathbb{C}[X]$,

$$\frac{1}{2\pi} \int_0^{2\pi} \mathbf{R} e^{i\theta} \mathbf{P}(\mathbf{R} e^{i\theta}) (\mathbf{R} e^{i\theta} \mathbf{I}_d - \mathbf{A})^{-1} d\theta = \mathbf{P}(\mathbf{A})$$

En choisissant $P = \chi_A$ on a donc

$$\chi_{\mathbf{A}}(\mathbf{A}) = \frac{1}{2\pi} \int_{0}^{2\pi} \mathbf{R} e^{i\theta} \chi_{\mathbf{A}}(\mathbf{R} e^{i\theta}) (\mathbf{R} e^{i\theta} \mathbf{I}_{d} - \mathbf{A})^{-1} d\theta$$

5.d D'après la formule de la comatrice

$$\operatorname{com}(\operatorname{R}\!e^{i\theta}\operatorname{I}_d-\operatorname{A})^{\mathsf{T}}(\operatorname{R}\!e^{i\theta}\operatorname{I}_d-\operatorname{A})=\operatorname{det}(\operatorname{R}\!e^{i\theta}\operatorname{I}_d-\operatorname{A})\operatorname{I}_d=\chi_{\operatorname{A}}(\operatorname{R}\!e^{i\theta})\operatorname{I}_d$$

ou encore

$$\chi_{\mathbf{A}}(\mathbf{R}e^{i\theta})(\mathbf{R}e^{i\theta}\mathbf{I}_d - \mathbf{A})^{-1} = \mathbf{com}(\mathbf{R}e^{i\theta}\mathbf{I}_d - \mathbf{A})^{\mathsf{T}} = (\mathbf{P}_{k,l}(\mathbf{R}e^{i\theta}))_{1 \le k,l \le d}$$

où les $P_{k,l}$ sont des polynômes. D'après la question précédente,

$$\forall (k,l) \in [1,d]^2, \ \chi_{\mathbf{A}}(\mathbf{A})_{k,l} = \frac{1}{2\pi} \int_0^{2\pi} (\mathbf{X} \mathbf{P}_{k,l}) (\mathbf{R} e^{i\theta}) \ d\theta$$

Comme le coefficient constant de $XP_{k,l}$ est nul, ces intégrales sont nulles et $\chi_A(A) = 0$.

6 Soit
$$(x, y) \in \left[-\infty, \frac{M}{2} \right]^2$$
 tel que $y \neq \alpha$.

$$\forall t \in [\alpha, y], \ 2f(x+t) = f(2x) + f(2t)$$

donc

$$2\int_{\alpha}^{y} f(x+t) dt = \int_{\alpha}^{y} f(2x) dt + \int_{\alpha}^{y} f(2t) dt$$

Via les changements de variables u = x + t et u = 2t, on obtient

$$2\int_{x+\alpha}^{x+y} f(u) \, du = (y-\alpha)f(2x) + \frac{1}{2} \int_{2\alpha}^{2y} f(u) \, du$$

Comme F est une primitive de f,

$$2F(x + y) - 2F(x + \alpha) = (y - \alpha)f(2x) + \frac{1}{2}F(2y) - \frac{1}{2}F(2\alpha)$$

ou encore

$$f(2x) = 2\frac{F(x+y) - F(x+\alpha) - \frac{1}{4}F(2y) + \frac{1}{4}F(2\alpha)}{y - \alpha}$$

Tout d'abord, f est de classe \mathcal{C}^0 sur $]-\infty$, M[. Supposons qu'il existe $n \in \mathbb{N}$ tel que f est de classe \mathcal{C}^n sur $]-\infty$, M[. Alors F est de classe \mathcal{C}^{n+1} sur $]-\infty$, M[. La question précédente montre que $x\mapsto f(2x)$ est de classe \mathcal{C}^{n+1} sur $]-\infty$, M[. Par récurrence, f est de classe \mathcal{C}^n sur $]-\infty$, M[pour tout $n\in\mathbb{N}$ i.e. f est de classe \mathcal{C}^∞ sur $]-\infty$, M[.

8 En dérivant l'équation fonctionnelle (\star) par rapport à x, on obtient

$$\forall (x,y) \in \left] -\infty, \frac{M}{2} \right[^2, \ f'(x+y) = f'(2x)$$

En dérivant maintenant cette relation par rapport à y, on obtient

$$\forall (x,y) \in \left[-\infty, \frac{M}{2} \right]^2, \ f''(x+y) = 0$$

Comme $\left\{x+y,\ (x,y)\in\left]-\infty,\frac{M}{2}\right[^2\right\}=]-\infty,M[,f'']$ est nulle sur $]-\infty,M[]$. On en déduit que f est une fonction affine. Réciproquement, toute fonction affine f est bien continue et vérifie (\star) . L'ensemble des solutions de (\star) est donc le \mathbb{R} -espace vectoriel des fonctions affines. Une base en est $(x\mapsto 1,x\mapsto x)$.

On peut identifier $\mathcal{M}_1(\mathbb{R})$ à \mathbb{R} . On cherche alors les fonction ξ continues telles que $\forall x \in \mathbb{R}^*, \xi(x) \in \mathbb{R}^*$. Ce sont donc les fonctions continues qui ne s'annulent pas sur \mathbb{R}^* .

10 Soit $(a, b, c, d) \in \mathbb{R}^4$. Notons A la matrice suggérée par l'énoncé. Cette matrice est triangulaire par blocs donc $\det(A) = ad - bc$. De plus

$$\det(f_{\xi}(A)) = \begin{vmatrix} \xi(a) & \xi(b) & \xi(0) & \cdots & \xi(0) \\ \xi(c) & \xi(d) & \xi(0) & \cdots & \xi(0) \\ \xi(c) & \xi(d) & & & \\ \vdots & \vdots & & M \\ \xi(c) & \xi(d) & & & \end{vmatrix}$$

où $M \in \mathcal{M}_{d-2}(\mathbb{R})$. En effectuant les opérations sur les lignes $L_i \leftarrow L_i - L_2$ pour $i \in [3, d]$, on obtient

$$\det(f_{\xi}(\mathbf{A})) = \begin{vmatrix} \xi(a) & \xi(b) & \xi(0) & \cdots & \xi(0) \\ \xi(c) & \xi(d) & \xi(0) & \cdots & \xi(0) \\ 0 & 0 & & & \\ \vdots & \vdots & & \mathbf{N} \\ 0 & 0 & & & \end{vmatrix} = (\xi(a)\xi(d) - \xi(b)\xi(c))\det(\mathbf{N})$$

Ainsi la condition (\blacktriangle) se traduit bien par $ad \neq bc \implies \xi(a)\xi(d) \neq \xi(b)\xi(c)$.

Soit $(x, y) \in \mathbb{R}^2$ tel que $x \neq y$. Alors $\xi(x)\xi(1) \neq \xi(y)\xi(1)$ en prenant (a, b, c, d) = (x, y, 1, 1) dans la question précédente car $x \times 1 \neq y \times 1$. Par ailleurs, en prenant (a, b, c, d) = (1, 1, 0, 1), on obtient $\xi(1)^2 \neq \xi(1)\xi(0)$ car $1 \times 1 \neq 1 \times 0$. Notamment, $\xi(1) \neq 0$. On en déduit que $\xi(x) \neq \xi(y)$. La fonction ξ est donc injective. Puisqu'elle est continue sur \mathbb{R} , elle est strictement monotone sur \mathbb{R} .

Soit $x \in \mathbb{R}^*$. En prenant cette fois (a, b, c, d) = (x, x, 0, 1), on obtient $\xi(x)\xi(1) \neq \xi(x)\xi(0)$ car $x \times 1 \neq x \times 0$. On en déduit que $\xi(x) \neq 0$.

13. Supposons $\xi(0) \neq 0$. Posons $f: x \in \mathbb{R} \mapsto \xi(1)\xi(x) - \xi(0)\xi(2)$. La fonction f est bien continue sur \mathbb{R} car ξ l'est. De plus, $f(0) = (\xi(1) - \xi(2))\xi(0)$ et $f(2) = (\xi(1) - \xi(0))\xi(2)$ donc

$$f(0)f(2) = (\xi(1) - \xi(2))(\xi(1) - \xi(0))\xi(0)\xi(2)$$

Comme ξ est strictement monotone, $(\xi(1) - \xi(2))(\xi(1) - \xi(0)) < 0$. De plus, ξ est continue et ne s'annule pas sur \mathbb{R}_+^* donc elle reste de même signe sur \mathbb{R}_+ . On a donc $\xi(0)\xi(2) > 0$. On en déduit que f(0)f(2) < 0. D'après le théorème des valeurs intermédiaires, il existe $\alpha \in]0,2[$ tel que $f(\alpha)=0$ i.e. $\xi(0)\xi(2)=\xi(1)\xi(\alpha)$.

13.b D'après la condition (\blacktriangle) et la question précédente, on a $0 \times 2 = 1 \times \alpha$ i.e. $\alpha = 0$, ce qui contredit $\alpha > 0$. On en déduit que $\xi(0) = 0$.

14 La question 10 nous dit que

$$\forall (a, b, c, d) \in \mathbb{R}^4, \ \xi(a)\xi(d) = \xi(b)\xi(c) \implies ad = bc$$

Notamment,

$$\forall (a, b, d) \in \mathbb{R}^2, \ \xi(a)\xi(d) = \xi(b)^2 \implies ad = b^2$$

Soit $(x, y) \in \mathbb{R}^2$ tel que $(xy, x^2, y^2) \in I^3$. Alors

$$\xi(\eta(x^2))\xi(\eta(v^2)) = x^2v^2 = (xv)^2 = \xi(\eta(xv))^2$$

On en déduit donc que

$$\eta(x^2)\eta(y^2) = \eta(xy)^2$$

15 | 15.a On pose $M = \ln(\sup I)$ $(M = +\infty \operatorname{si sup} I = +\infty)$.

Tout d'abord, exp est continue sur $]-\infty, M[$ et $\exp(]-\infty, M[)=]0$, $\sup I[$. Mais $\xi(0)=0$ donc $0 \in I$. Comme I est un intervalle,]0, $\sup I[=I \cap \mathbb{R}^*_+$.

Ensuite, η est continue sur $I \cap \mathbb{R}_+^*$ comme bijection réciproque d'une fonction continue et $\eta(I \cap \mathbb{R}_+^*) \subset \mathbb{R}_+^*$ par hypothèse. Enfin, ln est continue sur \mathbb{R}_+^* . Par composition, f est donc bien continue sur $] - \infty$, M[.

Soit $(x, y) \in \left[-\infty, \frac{M}{2} \right]$. Alors, en utilisant la question précédente,

$$2f(x+y) = 2\ln(\eta(e^{x+y})) = \ln(\eta(e^x e^y)^2) = \ln(\eta((e^x)^2)\eta((e^y)^2)) = \ln(\eta(e^{2x})) + \ln(\eta(e^{2y})) = f(2x) + f(2y)$$

15.b D'après la question **8**, f est une fonction affine. Il existe donc $(a, b) \in \mathbb{R}^2$ tel que

$$\forall t \in]-\infty, M[, f(t) = \ln(\eta(e^t)) = at + b = a\ln(e^t) + b$$

Mais on a vu que $\exp(]-\infty, M[) = I \cap \mathbb{R}^*_{\perp}$ donc

$$\forall x \in I \cap \mathbb{R}_+^*, \ \ln(\eta(x)) = a \ln(x) + b$$

puis

$$\forall x \in I \cap \mathbb{R}_+^*, \ \eta(x) = e^b x^a$$

De plus, η est continue en 0 de sorte que $\lim_{x\to 0^+} \eta(x) = \eta(0) = 0$ donc a > 0. On a donc le résultat escompté en posant $K_1 = e^b$ et $\alpha_1 = a$.

15.c Comme à la question **14**, on montre que pour $(x, y) \in \mathbb{R}^2$ tel que $(-xy, -x^2, -y^2) \in \mathbb{I}^3$

$$\eta(-xy)^2 = \eta(-x^2)\eta(-y^2)$$

Posons alors, $\theta(x) = -\eta(-x)$ pour $x \in (-I) \cap \mathbb{R}_+^*$. η est strictement monotone comme bijection réciproque d'une fonction strictement monotone. De plus, $\eta(0) = 0$ et η est strictement positive sur $I \cap \mathbb{R}_+^*$ donc η est strictement croissante. On en déduit que η est strictement négative sur $I \cap \mathbb{R}_-^*$ et donc que θ est strictement positive sur $(-I) \cap \mathbb{R}_+^*$. On prouve de même que $g = \ln \circ \theta$ exp est solution de (\star) sur $]-\infty, M'[$ où $\exp(]-\infty, M'[) = (-I) \cap \mathbb{R}_+^*$. Il existe donc des constantes $K_2 < 0$ et $\alpha_2 > 0$ telles que

$$\forall x \in (-I) \cap \mathbb{R}_+^*, \ \theta(x) = -K_2 x^{\alpha_2}$$

c'est-à-dire

$$\forall x \in I \cap \mathbb{R}_{-}^{*}, \ \eta(x) = K_{2}(-x)^{\alpha_{2}}$$

15.d η est strictement croissante et c'est la bijection réciproque de $\xi \colon \mathbb{R} \to I$. On en déduit que $\lim_{\sup I)^-} \eta = +\infty$ et $\lim_{\inf I)^+} \eta = -\infty$. Les expressions de η sur \mathbb{R}_+^* et \mathbb{R}_-^* trouvées aux questions précédentes imposent alors que sup $I = +\infty$ et $\inf I = -\infty$. Ainsi $I = \mathbb{R}$ car I est un intervalle.

Soit $x \in \mathbb{R}$. D'après la question 14,

$$\xi(x \times 1)^2 = \xi(x^2)\xi(1^2)$$
 et $\xi(x \times (-1))^2 = \xi(x^2)\xi((-1)^2)$

On en déduit que $\xi(x)^2 = \xi(-x)^2$. Mais comme ξ est strictement positive sur \mathbb{R}_+^* et strictement négative sur \mathbb{R}_-^* , $\xi(x) = -\xi(-x)$. ξ est bien impaire.

Comme ξ est strictement monotone et nulle en 0, ξ est soit strictement positive sur \mathbb{R}_+^* , soit strictement négative sur \mathbb{R}_+^* .

Le premier cas a déjà été traité. Il existe K>0 et $\alpha>0$ telles que

$$\forall y \in \mathbb{R}_+^*, \ \eta(y) = Ky^{\alpha}$$

On en déduit que

$$\forall x \in \mathbb{R}^*_+, \ \xi(x) = Cx^{\beta}$$

avec
$$C = \frac{1}{K^{1/\alpha}} \neq 0$$
 et $\beta = \frac{1}{\alpha} > 0$.

Dans le second cas, $-\xi \colon \mathbb{R} \to J$ est strictement positive sur \mathbb{R}_+^* et vérifie la condition (\blacktriangle). Sa bijection réciproque θ est alors strictement positive sur $J \cap \mathbb{R}_+^*$. On montre à nouveau que $J = \mathbb{R}$ et que $-\xi$ est impaire de sorte que ξ est également impaire. De plus, il existe K > 0 et $\alpha > 0$ telles que

$$\forall y \in \mathbb{R}_+^*, \ \theta(y) = Ky^{\alpha}$$

On en déduit que

$$\forall x \in \mathbb{R}_+^*, \ \xi(x) = Cx^{\beta}$$

avec
$$C = -\frac{1}{K^{1/\alpha}} \neq 0$$
 et $\beta = \frac{1}{\alpha} > 0$.

La matrice A_{λ} est symétrique réelle donc diagonalisable. La matrice $A_{\lambda} - (\lambda - 1)I_d$ ne comporte que des 1 donc elle est de rang 1. Ainsi $\lambda - 1$ est une valeur propre de A_{λ} de multiplicité d - 1. Puisque $\operatorname{tr}(A_{\lambda}) = d\lambda$, la seconde valeur prore de A_{λ} est $d\lambda - (d-1)(\lambda-1) = \lambda + d-1$ et elle est de multiplicité 1. Ainsi $\det(A_{\lambda}) = (\lambda-1)^{d-1}(\lambda+d-1)$.

18 On montre comme à la question précédente que

$$\det(f_{\xi}(A_{\lambda})) = (\xi(\lambda) - \xi(1))^{d-1}(\xi(\lambda) + (d-1)\xi(1))$$

 ξ est impaire $\forall x \in \mathbb{R}_+^*$, $\xi(x) = Cx^{\beta}$ avec $C \neq 0$ et $\beta > 0$. Ainsi en prenant $\lambda = -(d-1)^{1/\beta}$, $\det(f_{\xi}(A_{\lambda})) = 0$. On en déduit que $\det(A_{\lambda}) = 0$ donc $\lambda = 1$ ou $\lambda = -(d-1)$. Puisque $\lambda < 0$, on a nécessairement $-(d-1)^{1/\beta} = -(d-1)$. Notamment si $d \geq 3$, $\beta = 1$ puis $\xi(x) = Cx$ pour tout $x \in \mathbb{R}$. Réciproquement, les fonctions $\xi : x \mapsto Cx$ avec $C \neq 0$ vérifient bien la condition (Δ) .

Dans le cas d=2, on vérifie que toutes les fonctions ξ impaires, continues et telles que $\forall x \in \mathbb{R}_+^*, \xi(x) = Cx^{\beta}$ avec $C \neq 0$ et $\beta > 0$ conviennent. Remarquons alors que $\xi(xy) = \xi(x)\xi(y)$ pour tout $(x,y) \in \mathbb{R}^2$ (distinguer suivant les signes de x et

y). Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec $(a, b, c, d) \in \mathbb{R}^4$. Si $\det(f_{\xi}(A)) = 0$, alors $\xi(a)\xi(d) = \xi(b)\xi(c)$ donc $\xi(ad) = \xi(bc)$ puis ad = bc par injectivité de ξ . Ainsi $\det(A) = 0$.