FNINI4

王胤雅

SID:201911010205

201911010205@mail.bnu.edu.cn

2023年10月8日

ProblemI. (X, d) is a distance space, $A \subset X$ is a self-sequence compact set. $\forall f \in C(A) := \{f \in \mathbb{R}^A : f \text{ is continuous}\}, f(A) := \{f(x) : x \in A\}.$ Proof: f(A) is bounded and $\max f(A) = \sup f(A), \min f(A) = \inf f(A).$

ProblemII. (X, d) is a distance space, $M \subset X$ is a self-sequence compact set. $\forall f \in C(M) := \{ f \in \mathbb{R}^M : f \text{ is continuous} \}$. Proof: f is continuous uniformly.

ProblemIII. $M \subset C[a,b]$, M is bounded, proof: $S = \{ \int_a^x f(t) dt | f \in M \}$ is a sequence compact.

ProblemIV. $\varphi : \mathbb{R}^n \to \mathbb{R}$, $\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $\varphi(x) = (\sum_{k=1}^n |x_k|^{1/2})^2$. Is (\mathbb{R}^n, φ) a B^* space?

ProblemV. $||\cdot||: \mathbb{C}^{\infty} \to \mathbb{R}, \forall x = (x_1, \cdots, x_n, \cdots), ||x|| = \sum_{n=1}^{\infty} 2^{-n} \min\{1, |x_n|\}$

- 1. Is $||\cdot||$ a norm on \mathbb{C}^{∞} ?
- 2. d: $C^{\infty} \times C^{\infty} \to \mathbb{R}$, $\forall x, y \in C^{\infty}$, d(x, y) = ||x y||. Whether d is the distance on \mathbb{C}^{∞} . If so, explain the meaning of $||x^{(n)} x|| \to 0 (n \to \infty)$.