3. TÉMA

ELEKTRONIKA

Dióda alkalmazások

Feladatok

1. Adott az alábbi diódás kapcsolás. Rajzolja le a kimenet u_{ki} feszültség időfüggvényét, ha a bemenetekre adott jelek: $u_1 = 5\sin\omega t$ és $u_2 = 5\sin(\omega t + \pi)!$ A diódák ideálisak!

2. Határozza meg az *1. ábrán* látható soros diódás egyenirányító kimeneti feszültségének U_{kip} csúcsértékét, valamint a dióda áramának I_{Dp} csúcsértékét, ha a dióda nyitóirányú feszültsége: $U_D = 0,65$ V!

Rajzolja be a 2. ábrába az uki kimeneti feszültség léptékhelyes időfüggvényét!

1. ábra.

$$R_t = 100 \Omega$$

 $f = 50 \text{ Hz}$
 $u_{be} = 8 \text{sin}\omega t \text{ [V]}$

 $U_{kip} = ?$ $I_{Dp} = ?$

3. Rajzolja le léptékhelyesen az ábrán látható soros diódás csúcsegyenirányító kimeneti feszültségének $u_{ki}(t)$ időfüggvényét, ha a bemeneti feszültség: $u_{be}(\omega t) = 10 \sin \omega t$ [V]!

Határozza meg a kapcsolás $U_{e\ddot{u}}$ üresjárási feszültségét!

Az üresjárási feszültség ismeretében határozza meg az U_e kimeneti egyenfeszültség középértékét, ha a terhelőellenállás értéke $R_t = 1$ k Ω !

Adatok:

a kondenzátor kapacitása: $C=1000~\mu F$ a terhelő ellenállás: $R_t=1~k\Omega$ a generátor belső ellenállása: $R_b=10~\Omega$ a dióda nyitóirányú feszültsége: $U_D=0.6~V$

A csúcsegyenirányító üresjárási feszültsége: $U_{e\ddot{u}}$ = ?

A kimeneti feszültség középértéke: $U_e = ?$

4. Határozza meg az ábrán látható kapcsolás u_{ki} kimeneti feszültségének U_{kimax} csúcsértékét, ha a bemeneti feszültség $u_{be} = \mathbf{5} \cdot \sin \alpha t \left[V \right]!$

A diódák egyformák, küszöbfeszültségük: $U_{\theta} = 0.6 \text{ V}$.

Rajzolja be a koordináta-rendszerbe léptékhelyesen az u_{ki} kimeneti feszültség időfüggvényét!

A kimeneti feszültség csúcsértéke: $U_{kimax} = ?$

5. Rajzolja le egy soros diódás csúcsegyenirányító kapcsolási rajzát R_t terhelő ellenállással, valamint az u_{ki} kimeneti feszültség léptékhelyes jelalakját! A bemeneti feszültség: $u_{be} = 8sin \omega t$, a dióda ideális.

6. Rajzoljon egy feszültséghatároló (limiter) kapcsolást! Olyan félvezető alkatrészt válasszon, amellyel a kimeneti feszültség + 4,7 V és – 0,6 V közé határolható! Rajzolja meg léptékhelyesen az u_{be} bemeneti és az u_{ki} kimeneti feszültség időfüggvényét!

A bemeneti feszültség: $u_{be} = 6\sin \omega t$ [V].

7. Adott az alábbi Zener diódás határoló kapcsolás.

A bemeneti feszültség: $u_{be} = 9sin\omega t$ [V]

a Zener dióda nyitóirányú feszültsége: $U_0 = 0,6 \text{ V}$

a letörési feszültsége: $U_z = 4.7 \text{ V}$

a) Rajzolja le az u_{ki} kimeneti feszültség időfüggvényét!

b) Rajzolja le a kapcsolás transzfer karakterisztikáját! (Alkalmazhatja a karakterisztika törtvonalas közelítésének módszerét is!)

 \boldsymbol{c}) Mekkora az R_E előtétellenállás minimális értéke, ha

a bemeneti feszültség:

 $U_{be} = 9 \text{ V}$

a Zener dióda feszültsége:

 $U_Z = 4.7 \text{ V}$

a Zener dióda megengedett disszipált teljesítménye:

 $P_Z = 100 \text{ mW}$

Az előtétellenállás minimális értéke: $R_E = ?$

8. Rajzolja fel léptékhelyesen az ábrán látható Zener diódás szinteltoló áramkör kimeneti feszültségének u_{ki} időfüggvényét! Határozza meg a kimeneti feszültség U_{kimax} legnagyobb és U_{kimin} legkisebb értékét!

A bemenetre kapcsolt feszültség: $u_{be} = 12\sin\omega t \text{ [V]}$

a Zener dióda feszültsége: $U_Z = 8,2 \text{ V}$ a Zener dióda nyitóirányú feszültsége: $U_0 = 0,6 \text{ V}$.

A kimeneti feszültség legnagyobb értéke: $U_{kimax} = ?$

A kimeneti feszültség legkisebb értéke: $U_{kimin} = ?$

9. Rajzolja fel léptékhelyesen az ábrán látható Zener diódás szinteltoló áramkör kimeneti feszültségének u_{ki} időfüggvényét! Határozza meg a kimeneti feszültség U_{kimax} legnagyobb és U_{kimin} legkisebb értékét!

A bemenetre kapcsolt feszültség: $u_{be} = 12\sin\omega t$ [V]

a Zener dióda feszültsége: $U_Z = 6.3 \text{ V}$

a Zener dióda nyitóirányú feszültsége: $U_0 = 0.6 \text{ V}$

A kimeneti feszültség legnagyobb értéke: $U_{kimax} = ?$

A kimeneti feszültség legkisebb értéke: $U_{kimin} = ?$

10. Adott az alábbi Zener diódás határoló kapcsolás.

A bemeneti feszültség: $u_{be} = 20 \sin \omega t$ [V]

a Zener dióda nyitóirányú feszültsége: $U_0 = 0,6 \text{ V}$

a letörési feszültsége: $U_z = 15 \text{ V}.$

a) Rajzolja le a kimeneti feszültség időfüggvényét!

 \boldsymbol{b}) Határozza meg az R_E előtétellenállás értékét, ha

a bemeneti feszültség: $U_{be} = 20 \text{ V}$

a Zener diódán átfolyó áram: $I_Z = 10 \text{ mA!}$

Az előtétellenállás értéke: $R_E =$?