Laboratorium 8 - Rozwiązywanie równań nieliniowych

Mateusz Podmokły - II rok Informatyka WI

25 kwiecień 2024

1 Treść zadania

Zadanie 1. Dla poniższych funkcji i punktów początkowych metoda Newtona zawodzi. Wyjaśnij dlaczego. Następnie znajdź pierwiastki, modyfikując wywołanie funkcji scipy.optimize.newton lub używając innej metody.

$$f_1(x) = x^3 - 5x, x_0 = 1$$

$$f_2(x) = x^3 - 3x + 1, x_0 = 1$$

$$f_3(x) = 2 - x^5, x_0 = 0.01$$

$$f_4(x) = x^4 - 4.29x^2 - 5.29, x_0 = 0.8$$

Zadanie 2. Dane jest równanie:

$$f(x) = x^2 - 3x + 2 = 0$$

Każda z następujących funkcji definiuje równoważny schemat iteracyjny:

$$g_1(x) = \frac{x^2 + 2}{3},$$

$$g_2(x) = \sqrt{3x - 2},$$

$$g_3(x) = 3 - \frac{2}{x},$$

$$g_4(x) = \frac{x^2 - 2}{2x - 3}$$

Prze
analizuj zbieżność oraz rząd zbieżności schematów iteracyjnych odpowiadających funkcjom $g_i(x)$ dla pierwiastka x=2 badając wartość $|g_i'(2)|$.

Potwierdź analizę teoretyczną implementując powyższe schematy iteracyjne weryfikując

ich zbieżność (lub brak). Każdy schemat iteracyjny wykonaj przez 10 iteracji. Wyznacz eksprymentalnie rząd zbieżności każdej metody iteracyjnej ze wzoru

$$r = \frac{ln\frac{\epsilon_k}{\epsilon_{k+1}}}{ln\frac{\epsilon_{k-1}}{\epsilon_k}}$$

gdzie błąd bezwzględny ϵ_k definiujemy jako $\epsilon_k = |x_k - x_*|$, x_k jest przybliżeniem pierwiastka w k-tej iteracji, a x_* dokładnym położeniem pierwiastka równania.

Na wspólnym rysynku przedstaw wykresy błędu względnego każdej metody w zależności od numeru iteracji. Użyj skali logarytmicznej na osi y (pomocna będzie funkcja semilogy). Stwórz drugi rysunek, przedstawiający wykresy błędu względnego tylko dla metod zbieżnych.

Zadanie 3. Napisz schemat iteracji wg metody Newtona dla każdego z następujących równań nieliniowych:

$$f_1(x) = x^3 - 2x - 5 = 0$$

 $f_2(x) = e^{-x} - x = 0$
 $f_3(x) = x\sin(x) - 1 = 0$

Jeśli x_0 jest przybliżeniem pierwiastka z dokładnością 4 bitów, ile iteracji należy wykonać aby osiągnąć:

- 24-bitową dokładność
- 53-bitową dokładność?

Zadanie 4. Napisz schemat iteracji wg metody Newtona dla następującego układu równań nieliniowych:

$$x_1^2 + x_2^2 = 1$$
$$x_1^2 - x_2 = 0$$

Korzystając z faktu, że dokładne rozwiązanie powyższego układu równań to:

$$x_1 = \pm \sqrt{\frac{\sqrt{5}}{2} - \frac{1}{2}}$$
$$x_2 = \frac{\sqrt{5}}{2} - \frac{1}{2}$$

oblicz błąd względny rozwiązania znalezionego metodą Newtona.

2 Specyfikacja użytego środowiska

Specyfikacja:

• Środowisko: Visual Studio Code,

• Język programowania: Python,

• System operacyjny: Microsoft Windows 11,

• Architektura systemu: x64.

3 Rozwiązanie problemu

3.1 Biblioteki

W realizacji rozwiązania wykorzystane zostały następujące biblioteki:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import newton
```

3.2 Zadanie 1.

W celu poprawy działania metody Newtona dla funkcji f_1, f_2, f_3, f_4 zmodyfikowałem początkowe oszacowania x_0 . Wykorzystana została do tego funkcja z biblioteki SciPy

Przyjąłem następujące wartości x_0 :

$$f_1: \quad x_0 \in \{-2, 0, 2\}$$

$$f_2: \quad x_0 \in \{-2, 0, 2\}$$

$$f_3: \quad x_0 = 1$$

$$f_4: \quad x_0 \in \{-2, 2\}$$

Zaproponowane w zadaniu oszacowania x_0 nie były odpowiednie prawdopodobnie dlatego, że znajdowały się zbyt blisko ekstremum lokalnego funkcji.

3.3 Zadanie 2.

Badanie zbieżności za pomocą wzoru teoretycznego:

$$\begin{aligned} |g_1'(2)| &= 1.33 > 1 \\ |g_2'(2)| &= 0.75 < 1 \\ |g_3'(2)| &= 0.5 < 1 \\ |g_4'(2)| &= 0 \end{aligned}$$

Następnie zaimplementowałem te schematy iteracyjne i obliczyłem zbieżność ze wzoru

$$r = \frac{ln\frac{\epsilon_k}{\epsilon_{k+1}}}{ln\frac{\epsilon_{k-1}}{\epsilon_k}}$$

Wartość r dla funkcji g_1 jest nieprzewidywalna i przyjmuje dodatnie oraz ujemne wartości, więc potwierdzony został brak zbieżności.

Schemat iteracyjny funkcji $\sqrt{3x-2}$ nie jest zbieżny, ponieważ każda styczna do jej wykresu przecina oś OX poza dziedziną funkcji.

W przypadku funkcji g_3 punkty przecięcia stycznych z osią OX po każdej iteracji oddalają się od środka układu współrzędnych i od pierwiastka, więc schemat iteracyjny tej funkcji nie jest zbieżny.

Dla ostatniej funkcji, w przypadku użycia metody Newtona, wartość r zbiega do 0, co jest potwierdzeniem wcześniejszych obliczeń teoretycznych.

3.4 Zadanie 3.

Metoda Newtona została zaimplementowana zgodnie ze wzorem:

$$x_{k+1} = x_k - \frac{f(x)}{f'(x)}$$

gdzie k to numer iteracji.

Przeliczyłem dokładność w bitach na dokładność w cyfrach dziesiętnych - 24-bitową na 6 cyfr dziesiętnych, a 53-bitową na 14 cyfr. Iteracje metody Newtona były powtarzane do momentu uzyskania wymaganej dokładności. Liczba cyfr została obliczona według wzoru:

$$d = -log_{10} \left| \frac{x_k - x_*}{x_*} \right|$$

3.5 Zadanie 4.

Możemy przekształcić równoważnie poczatkowy układ równań

$$\begin{cases} x_1^2 + x_2^2 = 1\\ x_1^2 - x_2 = 0 \Rightarrow x_2 = x_1^2 \end{cases}$$

$$\begin{cases} x_1^4 + x_1^2 - 1 = 0 \\ x_2 = x_1^2 \end{cases}$$

Następnie do wzoru na metodę Newtona

$$x_{k+1} = x_k - \frac{f(x)}{f'(x)}$$

przyjąłem początkowe oszacowanie pierwiastka $x_0 = 1$ oraz liczbę iteracji k = 4.

4 Przedstawienie wyników

4.1 Zadanie 1.

Po uwzględnieniu nowych początkowych oszacowań x_0 otrzymałem następujące miejsca zerowe funkcji:

$$f_1(x) = 0 \Leftrightarrow x_0 \in \{-2.24, 0, 2.24\}$$

$$f_2(x) = 0 \Leftrightarrow x_0 \in \{-1.88, 0.35, 1.53\}$$

$$f_3(x) = 0 \Leftrightarrow x_0 = 1.15$$

$$f_4(x) = 0 \Leftrightarrow x_0 \in \{-2.3, 2.3\}$$

4.2 Zadanie 2.

Rysunek 1: Wartość błędu względnego w zależności od numeru iteracji.

Rysunek 2: Wartość błędu względnego dla metody zbieżnej.

4.3 Zadanie 3.

Funkcja	Dokładność 24-bitowa	Dokładność 53-bitowa
f_1	k = 3	k = 4
f_2	k = 3	k = 4
f_3	k = 2	k = 3

Tabela 1: Liczba iteracji potrzebna do uzyskania wymaganej dokładności dla każdej funkcji.

4.4 Zadanie 4.

Dla początkowego oszacowania $x_0=1$ oraz wykonując k=4 iteracji udało się uzyskać błąd względny rozwiązania $\epsilon\approx 1.87\cdot 10^{-10}$. Dla k=5 iteracji błąd względny osiągał już wartość 0, czyli błąd numeryczny przekraczał wartość błędu metody.

5 Wnioski

Metoda Newtona jest bardzo skutecznym narzędziem do znajdowania miejsc zerowych funkcji. Cechuje ją duża szybkość działania, ponieważ metoda posiada kwadratowy rząd

zbieżności. Należy jednak uważać przy wyborze początkowego oszacowania x_0 , ponieważ w pobliżu ekstremów lokalnych funkcji, metoda może się zachowywać w sposób nieprzewidywalny i zwracać błędne wyniki. W niektórych przypadkach warto rozważyć użycie innej, wolniejszej metody, ale bardziej skutecznej.

6 Bibliografia

https://pl.wikipedia.org/wiki/Metoda_Newtona

https://en.wikipedia.org/wiki/Rate_of_convergence

https://pl.wikipedia.org/wiki/Liczba_zmiennoprzecinkowa