SSerxhs 的 ICPC 板子

2022 年 7 月 24 日

ver:3.0.8

1	数据	结构 5
_	1.1	· 哈希表
	1.2	珂朵莉树 5
	1.3	带删堆
	1.4	可持久化数组
	1.5	左偏树/可并堆 7
	1.6	树状数组区间修改区间求和
	1.7	二维树状数组矩形修改矩形求和 9
	1.7	带修莫队(功能:区间数有多少种不同的数字) 11
	1.0	
	_	
	1.10	回滚莫队
	1.11	1/211
		李超树(动态开点)
		splay
		区间线性基
		splay 重构
		第 k 大线性基
		fhq-treap
		笛卡尔树 28
		扫描线
		Segmenttree Beats!
	1.21	k-d 树(二进制分组) 32
2	数学	36
	2.1	单情况矩阵 (+)
	2.2	矩阵求逆 (要求质数)
	2.3	任意模数矩阵求逆(未验) 37
	2.4	矩阵的特征多项式
	2.5	最短递推式 (BM 算法) 40
	2.6	在线 $O(1)$ 逆元
	2.7	Strassen 矩阵乘法
	2.8	扩展欧拉定理
	2.9	exgcd
		exCRT
		exCit1

	2.12	exLucas	48
	2.13	杜教筛	50
	2.14	线性规划	51
	2.15	斐波那契数列	53
	2.16	线性插值 (k 次幂和)	54
	2.17	单原根(仅手动验证质数)	55
			56
	2.19	筛全部原根	57
	2.20	圆上整点	58
			59
			59
			60
			61
			62
		HASIN ELLY 4 A 4	64
			65
			66
		· · · · · · · · · · · · · · · · · · ·	67
		00000111000	68
		(大利)	
		FWT/FST	
		NTT	
		FFT	
		约数个数和	
		万能欧几里得	
	2.30	刀配跃几主府	02
3			02
3	字符	串 10	03
3	字符 3.1		03 03
3	字符 3.1	串 10 AC 自动机	03 03 03
3	字符 3.1 3.2 3.3	申 10 AC 自动机 hash KMP	03 03 03 04
3	字符 3.1 3.2 3.3 3.4	串 10 AC 自动机 10 hash 10 KMP 10 manacher 10	03 03 03 04 05
3	字符 3.1 3.2 3.3 3.4 3.5	申 10 AC 自动机 10 hash 10 KMP 10 manacher 11 SA 10	03 03 03 04 05 05
3	字符 3.1 3.2 3.3 3.4 3.5 3.6	申 10 AC 自动机 10 hash 10 KMP 10 manacher 10 SA 10 SAM 10	03 03 03 04 05 05
3	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7	申 10 AC 自动机 16 hash 16 KMP 16 manacher 16 SA 16 SAM 16 SqAM 16 SqAM 16	03 03 04 05 05 07
3	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	申 10 AC 自动机 10 hash 10 KMP 10 manacher 10 SA 10 SAM 10 SqAM 10 ukkonen 后缀树 10	03 03 03 04 05 05 07 08
3	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	申 10 AC 自动机 16 hash 16 KMP 16 manacher 16 SA 16 SAM 16 SqAM 16 ukkonen 后缀树 16	03 03 04 05 07 08 08 09
3	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	申 10 AC 自动机 10 hash 10 KMP 10 manacher 10 SA 10 SAM 10 SqAM 10 ukkonen 后缀树 10 ukkonen 后缀树 11 Z 函数 1	03 03 04 05 05 07 08 08 09
3	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	申 10 AC 自动机 16 hash 16 KMP 16 manacher 16 SA 16 SAM 16 SqAM 16 ukkonen 后缀树 16	03 03 04 05 05 07 08 08 09
3	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	申 10 AC 自动机 16 hash 16 KMP 16 manacher 16 SA 16 SAM 16 SqAM 16 SqAM 16 ukkonen 后缀树 16 ukkonen 后缀树 16 Z 函数 1 最小表示法 1	03 03 04 05 05 07 08 08 09
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	申 10 AC 自动机 16 hash 16 KMP 16 manacher 16 SA 16 SAM 16 SqAM 16 SqAM 16 ukkonen 后缀树 16 ukkonen 后缀树 16 Z 函数 1 最小表示法 1	03 03 04 05 05 07 08 08 12 12
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	申 10 AC 自动机 16 hash 16 KMP 16 manacher 16 SA 16 SAM 16 SqAM 16 ukkonen 后缀树 16 ukkonen 后缀树 (重构) 16 Z 函数 1 最小表示法 1	03 03 04 05 05 07 08 09 12 12
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 图论 4.1 4.2	申 10 AC 自动机 16 hash 16 KMP 16 manacher 16 SA 16 SAM 16 SqAM 16 ukkonen 后缀树 16 ukkonen 后缀树 16 ukkonen 后缀树 16 基小表示法 1 最小密度环 1	03 03 04 05 05 07 08 09 12 12 14
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 图论 4.1 4.2	申 10 AC 自动机 16 hash 16 KMP 16 manacher 16 SA 16 SAM 16 SqAM 16 ukkonen 后缀树 16 ukkonen 后缀树 (重构) 16 Z 函数 1 最小表示法 1 最小密度环 1 全源最短路与判负环 1	03 03 04 05 05 07 08 09 12 14 14 14
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 图论 4.1 4.2 4.3	申10AC 自动机10hash11KMP10manacher10SA11SAM10SqAM11ukkonen 后缀树12ukkonen 后缀树(重构)12Z 函数1最小表示法1最小密度环1全源最短路与判负环1三元环计数1	03 03 04 05 05 07 08 09 12 12 14 14 15 15
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 图论 4.1 4.2 4.3 4.4	申 10 AC 自动机 1e hash 1e KMP 1e manacher 1e SA 1e SAM 1e SqAM 1e ukkonen 后缀树 1e ukkonen 后缀树 (重构) 1e Z 函数 1e 最小表示法 1e 最小密度环 1e 全源最短路与判负环 1e 三元环计数 1e Johnson 全源带负权最短路 1e	03 03 04 05 05 07 08 09 12 14 14 15 15
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 图论 4.1 4.2 4.3 4.4	事10AC 自动机10hash10KMP11manacher10SA10SAM10SqAM10ukkonen 后缀树10ukkonen 后缀树(重构)10Z 函数1最小表示法1最小需度环1全源最短路与判负环1三元环计数1Johnson 全源带负权最短路1弦图1	03 03 04 05 05 07 08 09 12 12 14 14 15 15 15
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 图论 4.1 4.2 4.3 4.4 4.5	申 10 AC 自动机 10 hash 10 KMP 11 manacher 10 SA 10 SAM 10 SqAM 10 ukkonen 后缀树 10 ukkonen 后缀树 (重构) 11 Z 函数 1 最小表示法 1 最小家度环 1 全源最短路与判负环 1 三元环计数 1 Johnson 全源带负权最短路 1 弦图 1 4.5.1 代码 1	03 03 04 05 05 07 08 09 12 14 14 15 15 15 16 18
	字符 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 图论 4.1 4.2 4.3 4.4 4.5	申 10 AC 自动机 10 hash 10 KMP 10 manacher 10 SA 10 SAM 10 SqAM 10 ukkonen 后缀树 10 ukkonen 后缀树 11 Z 函数 1 最小表示法 1 最小密度环 1 全源最短路与判负环 1 三元环计数 1 Johnson 全源带负权最短路 1 弦图 1 4.5.1 代码 1 二分图与网络流建图 1	03 03 04 05 05 07 08 09 12 12 14 14 15 15 15 16 18

	4.0.4	一八四月1八冊子					440
		二分图最小边覆盖					
		有向无环图最小不相交链覆盖					
		有向无环图最大互不可达集					
		最大权闭合子图					
4.7		匹配(时间戳写法)					
4.8		最大权匹配					
	,	最大匹配					
4.10	一般图:	最大权匹配			 •		123
4.11		代码					
4.12	费用流	(SPFA)					132
4.13	费用流	(Dijkstra)					132
4.14	假花树						134
4.15	Stoer-V	Vagner 全局最小割					134
4.16	点双 .						135
4.17	边双 .						137
4.18	输出负.	环					138
		点最长路					
	/ //•)树哈希					
		最小环					
		夫距离最小生成树					
	_	ラ州町 <u>ユガロヤド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</u>					
		л					
		· · · · · · · · · · · · · · · · · · ·					
		•					
	,	剖分					
		剖					
		发式合并,DSU on tree					
		分 (k 级祖先)					
		分(dp 合并)					
4.33	-	o(全局平衡二叉树)					
		衡二叉树(修改版)					
		列优化树上背包					
4.36		包					
4.37	,,						
4.38	圆方树				 •		166
4.39	广义圆	方树					168
4.40	支配树	(DAG 版)					169
4.41	支配树	(一般图)					170
4.42	最小树	形图(朱刘算法,无方案)					171
4.43	最小乘	积生成树					172
4.44	最小斯	坦纳树					173
4.45	2-sat.						174
4.46	Kosara	ju 强连通分量(bitset 优化)					175
	-	强连通分量 · · · · · · · · · · · · · · · · · · ·					
		~~~~~ 径(字典序最小) · · · · · · · · · · · · · · · · · · ·					
		路构造					
		欧拉回路计数 (BEST 定理)					
1.01	W/V []		•	 •	 •	•	100

	4.52	最大独立集
5	计算	几何 183
	5.1	自适应 simpson 法
	5.2	板子
6	公式	与杂项 190
	6.1	枚举大小为 r 的集合
	6.2	整体二分(区间 k-th)190
	6.3	cdq 分治 (三维偏序)191
	6.4	$k$ 阶差分 $([L,R]$ 加 $\binom{j-L+k}{k})$
	6.5	高精度
	6.6	分散层叠算法(Fractional Cascading)196
	6.7	模意义真分数还原196
	6.8	IO 优化
		6.8.1 WDOI
		6.8.2 自用
	6.9	手动开栈198
	6.10	质数, $\omega(n)$ 与 $d(n)$
	6.11	NTT 质数
	6.12	公式
7	stl (	使用指南 203
	7.1	bitset
	7.2	pb_ds
8	其他	板子 (补充) 205
8	<b>其他</b> 8.1	<b>板子 (补充) 205</b> MTT+exp
8		MTT+exp
8	8.1	MTT+exp
8	8.1 8.2	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212
8	8.1 8.2 8.3	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213
8	8.1 8.2 8.3 8.4 8.5 8.6	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213l1ll5 trac214
8	8.1 8.2 8.3 8.4 8.5	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213l1ll5 trac214多项式复合 (yurzhang)214
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213l1ll5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213Illl5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳21311ll5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树222
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213l1ll5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题222
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213Illl5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段222
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213Illl5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段2228.10.3 排列与连续段222
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213l1ll5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段2228.10.3 排列与连续段2228.10.4 连续段的运算223
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213Illl5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段2228.10.3 排列与连续段2228.10.4 连续段的运算2238.10.5 连续段的性质223
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213Illl5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段2228.10.3 排列与连续段2228.10.4 连续段的运算2238.10.5 连续段的性质2238.10.6 析合树2238.10.6 析合树223
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213Illl5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段2228.10.3 排列与连续段2228.10.4 连续段的运算2238.10.5 连续段的性质2238.10.6 析合树2238.10.7 本原段223
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213Illl5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段2228.10.3 排列与连续段2228.10.4 连续段的运算2238.10.5 连续段的性质2238.10.6 析合树2238.10.7 本原段2238.10.8 析点与合点223
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳21311ll5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段2228.10.3 排列与连续段2228.10.4 连续段的运算2238.10.5 连续段的性质2238.10.6 析合树2238.10.7 本原段2238.10.8 析点与合点2238.10.9 析点与合点的性质2238.10.9 析点与合点的性质223
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10	MTT+exp205多项式207Miller Rabin/Pollard Rho210半平面交212旋转卡壳213Illl5 trac214多项式复合 (yurzhang)214下降幂多项式乘法218平面欧几里得距离最小生成树219析合树2228.10.1 关于段的问题2228.10.2 连续段2228.10.3 排列与连续段2228.10.4 连续段的运算2238.10.5 连续段的性质2238.10.6 析合树2238.10.7 本原段2238.10.8 析点与合点223

## 1 数据结构

#### 1.1 哈希表

```
template<int N, typename T, typename TT> struct ht//个数, 定义域, 值域
   const static int p=1e6+7,M=p+2;
   TT a[N];
   T v[N];
   int fir[p+2],nxt[N],st[p+2];//和模数相适应
   int tp,ds;//自定义模数
   ht(){memset(fir,0,sizeof fir);tp=ds=0;}
   void mdf(T x,TT z)//位置, 值
   {
      int y=x%p;
      if (y<0) y+=p;</pre>
      for (int i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i]=z,void();//若不可
          能重复不需要 for
      v[++ds]=x;a[ds]=z;
      if (!fir[y]) st[++tp]=y;
      nxt[ds]=fir[y];fir[y]=ds;
   }
   TT find(T x)
      int y=x%p;
      if (y<0) y+=p;</pre>
      int i;
      for (i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i];
      return 0;//返回值和是否判断依据要求决定
   void clear()
   {
      ++tp;
      while (--tp) fir[st[tp]]=0;
      ds=0;
};
```

## 1.2 珂朵莉树

```
#define all(x) (x).begin(),(x).end()
multiset<int> ss;
namespace chtholly_tree
{
    typedef int TT;
    struct Q
    {
        int 1;
        mutable int r;
        mutable TT v;
        int len() const {return r-l+1;}
        bool operator<(const Q &x) const {return l<x.l;}
};
    void add(const Q &a) {ss.insert(a.len());}
    void del(const Q &a) {ss.erase(ss.find(a.len()));}
    class odt: public set<Q>
    {
```

```
public:
       typedef odt::iterator iter;
       iter split(int x)
          iter it=lower_bound({x});
          if (it!=end()&&it->l==x) return it;
          Q t=*--it,a=\{t.l,x-1,t.v\},b=\{x,t.r,t.v\};
          del(*it);add(a);add(b);
          erase(it);insert(a);
          return insert(b).first;
       void modify(int l,int r,TT v)//[l,r]
          iter lt,rt,it;
          rt=split(r+1);lt=split(l);//[lt,rt)
          while (lt!=begin()&&(it=prev(lt))->v==v) l=(lt=it)->l;
          while (rt!=end()\&\&rt->v==v) r=(rt++)->r;
          for (it=lt;it!=rt;it++) del(*it);
          add(\{1,r,v\});
          erase(lt,rt);insert({l,r,v});
       }
   };
using chtholly_tree::Q,chtholly_tree::odt;
typedef odt::iterator iter;
```

#### 1.3 带删堆

```
template<typename T> struct heap//大根堆
   priority_queue<T> p,q;
   void push(const T &x)
       if (!q.empty()&&q.top()==x)
          q.pop();
          while (!q.empty()&&q.top()==p.top()) p.pop(),q.pop();
       } else p.push(x);
   void pop()
   {
      p.pop();
      while (!q.empty()&&p.top()==q.top()) p.pop(),q.pop();
   void pop(const T &x)
       if (p.top()==x)
          p.pop();
          while (!q.empty()&&p.top()==q.top()) p.pop(),q.pop();
       } else q.push(x);
   T top() {return p.top();}
   bool empty() {return p.empty();}
};
```

#### 1.4 可持久化数组

```
O((n+q)\log(n)), O((n+q)\log(n)).
```

```
struct arr
   int c[M][2],rt[0],s[M],b[N];
   int ds,n,ver,v,p,i;
   void build(int &x,int l,int r)
       x=++ds;
       if (l==r) {s[x]=b[1];return;}
       build(c[x][0],1,1+r>>1);
       build(c[x][1],(1+r>>1)+1,r);
   void rebuild(int &x,int pre)
       x=++ds;int l=1,r=n,mid,now=x;
       while (l<r)</pre>
          mid=l+r>>1;
          if (mid>=p){c[now][1]=c[pre][1];now=c[now][0]=++ds;r=mid;pre=c[pre
              ][0];} else {c[now][0]=c[pre][0];now=c[now][1]=++ds;l=mid+1;pre=c
              [pre][1];}
       s[now]=v;
   void init(int *a,int nn)
       n=nn;
       for (i=1;i<=n;i++) b[i]=a[i];</pre>
       build(rt[0],1,n);
   int mdf(int pv,int pos,int val)
       p=pos,v=val;
       rebuild(rt[++ver],rt[pv]);
       return ver;
   int ask(int ve,int pos)
       int l=1,r=n,x=rt[ve],mid;
       rt[++ver]=rt[ve];
       while (1<r)
          mid=l+r>>1;
          if (mid>=pos) \{x=c[x][0];r=mid;\} else \{x=c[x][1];l=mid+1;\}
       return s[x];
   }
};
```

### 1.5 左偏树/可并堆

```
O((n+q)\log n), O(n).
```

```
struct left_tree//小根堆, 大根堆需要改的地方注释了
{
   int jl[N],v[N],f[N],c[N][2],tf[N],n;//tf只有删非堆顶才用
   bool ed[N]:
```

```
void init(const int nn,const int *a)
       jl[0]=-1;n=nn;
      memset(jl+1,0,n<<2);
       memset(tf+1,0,n<<2);//同上
       memset(c+1,0,n<<3);
      memset(ed+1,0,n);
      for (int i=1;i<=n;i++) v[f[i]=i]=a[i];</pre>
   }
   int mg(int x,int y)
       if (!(x&&y)) return x|y;
       if (v[x]>v[y]||v[x]==v[y]&&x>y) swap(x,y);//改
       tf[c[x][1]=mg(c[x][1],y)]=x;//同上
       if (jl[c[x][0]]<jl[c[x][1]]) swap(c[x][0],c[x][1]);</pre>
       jl[x]=jl[c[x][1]]+1;
      return x;
   }
   int getf(int x)
      if (f[x]==x) return x;
      return f[x]=getf(f[x]);
   }
   int merge(int x,int y)
       if (ed[x]||ed[y]||(x=getf(x))==(y=getf(y))) return x;
       int z=mg(x,y);return f[x]=f[y]=z;
   int getv(int x)//需要自行判断是否存在
   {
      return v[getf(x)];
   }
   int del(int x)//删除堆内最值
      tf[c[x][0]]=tf[c[x][1]]=0;
       f[c[x][0]]=f[c[x][1]]=f[x]=mg(c[x][0],c[x][1]);
       ed[x]=1;c[x][0]=c[x][1]=tf[x]=0;return f[x];
   }
   int del_all(int x)//删除堆内非最值(没验证过)
      int fa=tf[x];
       if (f[c[x][0]]==x) f[c[x][0]]=getf(tf[x]);
       if (f[c[x][1]]==x) f[c[x][1]]=f[tf[x]];
       tf[x]=tf[c[x][0]]=tf[c[x][1]]=0;
       tf[c[fa][c[fa][1]==x]=mg(c[x][0],c[x][1])]=fa;
       c[x][0]=c[x][1]=0;
       while (jl[c[fa][0]]<jl[c[fa][1]])</pre>
          swap(c[fa][0],c[fa][1]);
          jl[fa]=jl[c[fa][1]]+1;
          fa=tf[fa];
       }
   }
   void out(int n)
       for (int i=1;i<=n;i++) printf("%d: c%d&%d f%d v%d\n",i,c[i][0],c[i][1],f</pre>
           [i],v[i]);
   }
};
```

#### 1.6 树状数组区间修改区间求和

 $O(n) \sim O(q \log n), O(n)$ .

```
struct bit
   ll a[N],b[N],s[N];//有初始值
   int n;
   void init(int nn,int *a)//初始值
       n=nn;s[0]=0;
       for (int i=1;i<=n;i++) s[i]=s[i-1]+a[i];</pre>
   void mdf(int 1,int r,ll dt)
       int i;++r;
       ll j=dt*l;
       a[1] += dt; b[1] += j;
       while ((1+=1\&-1)<=n)
          a[1]+=dt;
          b[1]+=j;
       }
       if (r<=n)
          j=dt*r;
          a[r]-=dt;b[r]-=j;
          while ((r+=r\&-r)<=n)
              a[r]-=dt;
              b[r]-=j;
          }
       }
   11 presum(int x)
       11 r=a[x],rr=b[x];
       while (x^=x\&-x)
          r+=a[x];
          rr+=b[x];
       return r*(x+1)-rr+s[x];
   11 sum(int 1,int r)
       return presum(r)-presum(1-1);
};
```

## 1.7 二维树状数组矩形修改矩形求和

```
O(n^2) \sim O(q \log^2 n), \ O(n^2)
```

```
struct bit2
{
    11 a[2050][2050],b[2050][2050],c[2050][2050],d[2050][2050];
    int n,m;
    private:
    void cha(11 a[][2050].int x.int v.int z)
```

```
{
   int i,j;
   for (i=x;i\leq n;i+=(i\&(-i))) for (j=y;j\leq m;j+=(j\&(-j))) a[i][j]+=z;
11 he(int x,int y)
   if ((x<=0)||(y<=0)) return 0;</pre>
   int i,j;
   11 z=0, w=0;
   for (i=x;i;i-=(i&(-i))) for (j=y;j;j-=(j&(-j))) z+=a[i][j];
   z*=(x+1)*(y+1);
   w=0;
   for (i=x;i;i-=(i\&(-i))) for (j=y;j;j-=(j\&(-j))) w+=b[i][j];
   z=w*(y+1);
   w=0;
   for (i=x;i;i==(i\&(-i))) for (j=y;j;j==(j\&(-j))) w+=c[i][j];
   z-=w*(x+1);
   for (i=x;i;i=(i\&(-i))) for (j=y;j;j=(j\&(-j))) z+=d[i][j];
   return z;
}
public:
void init(int x,int y)
{
   n=x; m=y;
void add(int u,int v,int x,int y,int z)//(x1,y1,x2,y2,dt)
{
   cha(a,u,v,z);
   cha(b,u,v,u*z);//小心乘爆
   cha(c,u,v,v*z);
   cha(d,u,v,u*v*z);
   ++x;++y;
   if (x<=n)
   {
       cha(a,x,v,-z);
       cha(b,x,v,-z*x);
       cha(c,x,v,-z*v);
       cha(d,x,v,-z*x*v);
   }
   if (y<=m)
   {
       cha(a,u,y,-z);
       cha(b,u,y,-z*u);
       cha(c,u,y,-z*y);
       cha(d,u,y,-z*u*y);
       if (x<=n)
       {
           cha(a,x,y,z);
           cha(b,x,y,z*x);
           cha(c,x,y,z*y);
           cha(d,x,y,z*x*y);
       }
   }
ll sum(int u,int v,int x,int y)//(x1,y1,x2,y2)
{
   return (he(x,y)+he(u,v)-he(u,y)-he(x,v));
}
```

**}**;

#### 1.8 带修莫队(功能:区间数有多少种不同的数字)

 $O(n^{\frac{5}{3}}), O(n)_{\circ}$ 

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
#define all(x) (x).begin(),(x).end()
const int N=1.4e5,M=1e6+2;
int a[N],ans[N],bel[N],cnt[M],sum,z,y,cur;
struct P
{
   int p,v;
};
struct Q
{
   int l,r,t,p;
   bool operator<(const Q &o) const</pre>
       if (bel[1]!=bel[0.1]) return bel[1] < bel[0.1];</pre>
       if (bel[r]!=bel[o.r]) return (bel[l]&1)^bel[r]<bel[o.r];</pre>
       return (bel[r]&1)?t<o.t:t>o.t;
   }
};
Q b[N];
P d[N];
inline void add(const int &x) {sum+=!(cnt[a[x]]++);}
inline void del(const int &x) {sum-=!(--cnt[a[x]]);}
inline void mdf(const int &x)
   auto &[p,v]=d[x];
   if (z\leq p\&\&p\leq y) del(p);
   swap(a[p],v);
   if (z<=p&&p<=y) add(p);</pre>
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   int n,m,q1=0,q2=0,i,ksiz;
   cin>>n>>m;
   for (i=1;i<=n;i++) cin>>a[i];
   for (i=1;i<=m;i++)</pre>
   {
       char c;
       int l,r;
       cin>>c>>l>>r;
       if (c=='Q') ++q1,b[q1]={1,r,q2,q1};
       else d[++q2]=\{1,r\};
   ksiz=max(1.0,round(cbrt((ll)n*n)));
   for (i=1;i<=n;i++) bel[i]=i/ksiz;</pre>
   sort(b+1,b+q1+1);
   z=b[1].1;y=z-1;cur=0;
   for (i=1;i<=q1;i++)</pre>
   {
       auto [1,r,t,p]=b[i];
       while (z>1) add(--z):
```

```
while (y<r) add(++y);
while (z<l) del(z++);
while (y>r) del(y--);
while (cur<t) mdf(++cur);
while (cur>t) mdf(cur--);
ans[p]=sum;
}
for (i=1;i<=q1;i++) cout<<ans[i]<<'\n';
}</pre>
```

#### 1.9 二次离线莫队

 $O(n\sqrt{n}), O(n)$ 

珂朵莉给了你一个序列 a,每次查询给一个区间 [l,r],查询  $l \le i < j \le r$ ,且  $a_i \oplus a_j$  的二进制表示下有 k 个 1 的二元组 (i,j) 的个数。 $\oplus$  是指按位异或。

二次离线莫队,通过扫描线,再次将更新答案的过程离线处理,降低时间复杂度。假设更新答案的复杂度为 O(k),它将莫队的复杂度从  $O(nk\sqrt{n})$  降到了  $O(nk+n\sqrt{n})$ ,大大简化了计算。设 x 对区间 [l,r] 的贡献为 f(x,[l,r]),我们考虑区间端点变化对答案的影响:以 [l..r] 变成 [l..(r+k)] 为例, $\forall x \in [r+1,r+k]$  求 f(x,[l,x-1])。我们可以进行差分:f(x,[l,x-1])=f(x,[1,x-1])-f(x,[1,l-1]),这样转化为了一个数对一个前缀的贡献。保存下来所有这样的询问,从左到右扫描数组计算就可以了。但是这样做,空间是  $O(n\sqrt{n})$  的,不太优秀,而且时间常数巨大。。这样的贡献分为两类:

1. 减号左边的贡献永远是一个前缀和它后面一个数的贡献。这可以预处理出来。2. 减号右边的贡献对于一次移动中所有的 x 来说,都是不变的。我们打标记的时候,可以只标记左右端点。

这样, 减小时间常数的同时, 空间降为了 O(n) 级别。是一个很优秀的算法了。 处理前缀询问的时候, 我们利用异或运算的交换律, 即 a xor  $b=c \iff a$  xor c=b开一个桶 t, t[i] 表示当前前缀中与 i 异或有 k 个数位为 1 的数有多少个。则每 加入一个数 a[i],对于所有 popcount(x) = k 的 x, t[a[i] xor  $x] \leftarrow t[a[i]$  xor x] + 1即可。

```
typedef long long 11;
const int N=1e5+2,M=1<<14;</pre>
11 f[N],ans[N],ta[N];
int a[N],cnt[M],bel[N],pc[M],st[N];
int n,m,ksiz;
struct Q
   int z,y,wz;
   bool operator<(const Q& x) const {return (bel[z]<bel[x.z])||(bel[z]==bel[x.z])</pre>
       ])&&((y<x.y)&&(bel[z]&1)||(y>x.y)&&(1^bel[z]&1));}
Q mq(const int x,const int y,const int z)
   Qa;
   a.z=x;a.y=y;a.wz=z;
   return a;
Q q[N];
vector<Q> b[N];
void read(int &x)
   int c=getchar();
   while ((c<48)||(c>57)) c=getchar();
```

```
x=c^48;c=getchar();
   while ((c>=48)\&\&(c<=57))
       x=x*10+(c^48);
       c=getchar();
   }
}
int main()
   int i,j,k,l=1,r=0,tp=0,x,na;
   read(n);read(m);read(k);ksiz=sqrt(n);
   for (i=1;i<=n;i++) {read(a[i]);bel[i]=(i-1)/ksiz+1;}</pre>
   if (k==0) st[++tp]=0;
   for (i=1;i<16384;i++)</pre>
       if (i&1) pc[i]=pc[i>>1]+1; else pc[i]=pc[i>>1];
       if (pc[i]==k) st[++tp]=i;
   }
   for (i=1;i<=n;i++)</pre>
       j=tp+1;f[i]=f[i-1];
       while (--j) f[i]+=cnt[st[j]^a[i]];
       ++cnt[a[i]];
   }
   for (i=1;i<=m;i++) {read(q[i].z);read(q[q[i].wz=i].y);}</pre>
   sort(q+1,q+m+1);
   for (i=1;i<=m;i++)</pre>
       ans[i]=f[q[i].y]-f[r]+f[q[i].z-1]-f[1-1];
       if (k==0) ans[i]+=q[i].z-l;
       if (r<q[i].y)</pre>
          b[l-1].push_back(mq(r+1,q[i].y,-i));
          r=q[i].y;
       }
       if (1>q[i].z)
           b[r].push_back(mq(q[i].z,l-1,i));
           l=q[i].z;
       if (r>q[i].y)
           b[l-1].push_back(mq(q[i].y+1,r,i));
          r=q[i].y;
       }
       if (l<q[i].z)</pre>
           b[r].push_back(mq(l,q[i].z-1,-i));
           l=q[i].z;
   memset(cnt,0,sizeof(cnt));
   for (i=1;i<=n;i++)</pre>
   {
       j=tp+1;x=a[i];
       while (--j) ++cnt[x^st[j]];
       for (j=0;j<b[i].size();j++)</pre>
       {
          na=0;l=b[i][j].z;r=b[i][j].y;
```

```
for (k=1;k<=r;k++) na+=cnt[a[k]];
    if (b[i][j].wz>0) ans[b[i][j].wz]+=na; else ans[-b[i][j].wz]-=na;
}

for (i=2;i<=m;i++) ans[i]+=ans[i-1];
for (i=1;i<=m;i++) ta[q[i].wz]=ans[i];
for (i=1;i<=m;i++) printf("%lld\n",ta[i]);
}</pre>
```

#### 1.10 回滚莫队

 $O(n\sqrt{n}), O(n)$ .

```
#include <bits/stdc++.h>
using namespace std;
const int N=2e5+2;
int a[N],z[N],y[N],wz[N],b[N],d[N],bel[N],ans[N],st[N][2],pos[N][2];
int n,m,i,j,x,c,ksiz,gs,l=1,r,tp,na,ca;
void read(int &x)
{
   c=getchar();
   while ((c<48)||(c>57)) c=getchar();
   x=c^48;c=getchar();
   while ((c>=48)\&\&(c<=57))
       x=x*10+(c^48);
       c=getchar();
   }
void qs(int 1,int r)
   int i=1,j=r,m=bel[z[l+r>>1]],mm=y[l+r>>1];
   while (i<=j)</pre>
       while ((bel[z[i]] < m) | | (bel[z[i]] == m) && (y[i] < mm)) ++i;
       while ((bel[z[j]]>m)||(bel[z[j]]==m)\&\&(y[j]>mm)) --j;
       if (i<=j)</pre>
       {
           swap(wz[i],wz[j]);
           swap(z[i],z[j]);
           swap(y[i++],y[j--]);
       }
   if (i<r) qs(i,r);</pre>
   if (l<j) qs(l,j);</pre>
int main()
   read(n);ksiz=sqrt(n);
   for (i=1;i<=n;i++) {read(a[i]);b[i]=a[i];bel[i]=(i-1)/ksiz+1;}</pre>
   sort(b+1,b+n+1);
   d[gs=1]=b[1];
   for (i=2;i<=n;i++) if (b[i]!=b[i-1]) d[++gs]=b[i];</pre>
   for (i=1;i<=n;i++) a[i]=lower_bound(d+1,d+gs+1,a[i])-d;</pre>
   read(m);assert(int(n/sqrt(m)));
   for (i=1;i<=m;i++) {read(z[i]);read(y[wz[i]=i]);}</pre>
   qs(1,m);
   for (i=1;i<=m;i++)</pre>
```

```
if (bel[z[i]]>bel[z[i-1]])
       while (l<=r) {pos[a[1]][0]=pos[a[1]][1]=0;++1;}na=0;</pre>
       if (bel[z[i]] == bel[y[i]])
           for (j=z[i];j<=y[i];j++) if (pos[a[j]][0]) na=max(na,j-pos[a[j</pre>
               ]][0]); else pos[a[j]][0]=j;
           ans[wz[i]] = na; \\ for (j=z[i];j <= y[i];j ++) pos[a[j]][0] = 0; \\ na=0; \\ 1=ksiz
               *bel[z[i]];r=l-1;
           continue;
       l=ksiz*bel[z[i]];r=l-1;na=0;
   }
   if (bel[z[i]]==bel[y[i]])
       while (l<=r) {pos[a[1]][0]=pos[a[1]][1]=0;++1;}na=0;</pre>
       for (j=z[i];j<=y[i];j++) if (pos[a[j]][0]) na=max(na,j-pos[a[j]][0]);</pre>
            else pos[a[j]][0]=j;
       ans[wz[i]]=na; for (j=z[i];j\leq y[i];j++) pos[a[j]][0]=0;
       l=ksiz*bel[z[i]];r=l-1;na=0;
       continue;
   while (r<y[i])</pre>
       x=a[++r];pos[x][1]=r;
       if (!pos[x][0]) pos[x][0]=r; else na=max(na,r-pos[x][0]);
   }c=na;
   while (1>z[i])
       x=a[--1];st[++tp][0]=x;st[tp][1]=pos[x][0];
       pos[x][0]=1;
       if (!pos[x][1])
           st[++tp][0]=x+n;st[tp][1]=0;
           pos[x][1]=1;
       } else na=max(na,pos[x][1]-1);
    ans[wz[i]]=na;na=c;++tp;l=ksiz*bel[z[i]];
    while (--tp) if (st[tp][0]<=n) pos[st[tp][0]][0]=st[tp][1]; else pos[st[
        tp][0]-n][1]=st[tp][1];
}
for (i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
```

#### 1.11 李超树

题意:插入线段,查询某个 x 的最大 y (输出最小编号) 算法核心: seg 每个点维护在中点取值最大的线段,显然只会向一边递归

```
struct Q {
    int x0,y0,dx,dy,id;
    Q():x0(0),y0(-1),dx(1),dy(0),id(-1){}//y>=0
    Q(int a,int b,int c,int d,int e):x0(a),y0(b),dx(c),dy(d),id(e){}
    bool contains(const int &x) const {return x0<=x&&x<=x0+dx;}
};
bool cmp(const Q &a,const Q &b,int x)//小心数值爆炸
{
```

```
11 A = ((11)a.y0*a.dx+(11)(x-a.x0)*a.dy)*b.dx, B = ((11)b.y0*b.dx+(11)(x-b.x0)*b.
       dy)*a.dx;
   if (A!=B) return A<B;</pre>
   return a.id>b.id;
bool cmp2(const Q &a,const Q &b)
   if (a.y0+a.dy!=b.y0+b.dy) return a.y0+a.dy<b.y0+b.dy;</pre>
   return a.id>b.id;
const int inf=1e9;
int ans;
namespace seg
{
   const int N=4e4+2,M=N*4;
   Q s[M], X[N];
   int n,z,y;
   void init(int nn) {n=nn;for (int i=1;i<=n*4;i++) s[i]=Q();}</pre>
   void insert(int x,int l,int r,Q dt)
       int c=x*2,m=1+r>>1;
       if (z<=l&&r<=y)</pre>
       {
           if (cmp(s[x],dt,m)) swap(s[x],dt);
           if (l==r) return;
           if (cmp(s[x],dt,l)) insert(c,l,m,dt);
           else if (cmp(s[x],dt,r)) insert(c+1,m+1,r,dt);
           return;
       }
       if (z<=m) insert(c,1,m,dt);</pre>
       if (y>m) insert(c+1,m+1,r,dt);
   }
   void insert(const Q &o)
       z=o.x0; y=z+o.dx;
       assert(1 \le z\&\&z \le y\&\&y \le n);
       if (z==y)
           if (cmp2(X[z],o)) X[z]=o;
           return;
       insert(1,1,n,o);
   }
   Q askmax(int p)
       Q ans=s[1].contains(p)?s[1]:Q();
       int x=1,l=1,r=n,c,m;
       while (1<r)
       {
           c=x*2, m=1+r>>1;
           if (p<=m) x=c,r=m; else x=c+1,l=m+1;</pre>
           if (s[x].contains(p)&&cmp(ans,s[x],p)) ans=s[x];
       Q o(X[p].x0,X[p].y0+X[p].dy,1,0,0);
       return cmp(ans,o,p)?X[p]:ans;
   }
int main()
{
```

```
ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int n=4e4,m,i;
   seg::init(n);
   cin>>m;
   while (m--)
       int op;
       cin>>op;
       if (op)
       {
          int x[2],y[2];
          cin>>x[0]>>y[0]>>x[1]>>y[1];
          for (int &v:x) v=(v+ans-1)%39989+1;
          for (int &v:y) v=(v+ans-1)%inf+1;
          if (x[0]>x[1]||x[0]==x[1]&&y[0]>y[1]) swap(x[0],x[1]),swap(y[0],y[1])
              ;
          static int id;
          seg::insert(\{x[0],y[0],x[1]-x[0],y[1]-y[0],++id\});
       }
       else
          int x;
          cin>>x;
          x=(x+ans-1)%39989+1;
          cout << (ans=max(0,seg::askmax(x).id)) << '\n';
       }
   }
}
```

#### 1.12 李超树(动态开点)

```
struct Q
{
   int k;
   11 b;
   11 y(const int &x) const {return (11)k*x+b;}
};
const int inf=1e9;
const ll INF=1e18;
struct seg//可以析构,不能并行
   const static int N=4e5+2,M=N*8*8+(1<<23);</pre>
   const static ll npos=9e18;
   static Q s[M];
   static int c[M][2],id;
   int z,y,L,R;
   seg(int 1,int r)
       L=1;R=r;id=1;
       s[1]={0,npos};
       assert(L \le R\&\&(11)R-L < 111 < < 32);
   }
private:
   void insert(int &x,int 1,int r,Q o)
       if (!x)
       {
```

```
x=++id;
           assert(id<M);</pre>
           s[x]={0,npos};
       int m=l+(r-l>>1);
       if (z<=l&&r<=y)</pre>
           if (s[x].y(m)>o.y(m)) swap(s[x],o);
           if (s[x].y(1)>o.y(1)) insert(c[x][0],1,m,o);
           else if (s[x].y(r)>o.y(r)) insert(c[x][1],m+1,r,o);
           return;
       }
       if (z<=m) insert(c[x][0],1,m,o);</pre>
       if (y>m) insert(c[x][1],m+1,r,o);
   }
public:
   void insert(const Q &x,const int &l,const int &r)//[1,r]
   {
       z=1;y=r;int tmp=1;
       insert(tmp,L,R,x);
       assert(tmp==1);
   11 askmin(const int &p)
       11 res=s[1].y(p);
       int l=L,r=R,m,x=1;
       while (l<r)</pre>
           m=1+(r-1>>1);
           if (p<=m) x=c[x][0],r=m; else x=c[x][1],l=m+1;</pre>
           if (!x) return res;
           res=min(res,s[x].y(p));
       return res;
   }
   ~seg()
   {
       ++id;
       while (--id) c[id][0]=c[id][1]=0;
};
Q seg::s[seg::M];
int seg::c[seg::M][2],seg::id;
```

#### 1.13 splay

$$O(n)$$
,  $O((n+q)\log n)$ .

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const int N=1e6+20,p=998244353;
void inc(int &x,const int y){if ((x+=y)>=p) x-=p;}
void dec(int &x,const int y){if ((x-=y)<0) x+=p;}
void mul(int &x,const int y){x=(ll)x*y%p;}
template<int N> struct _splay
{
   int c[N][2].plz[N].clz[N].siz[N].siz[N].y[N].f[N];
```

```
bool fg[N],flz[N];
int tp,rt;
void allout(int x)
   if (!x) return;
   pushdown(x);
   allout(c[x][0]);
   if (x>2) printf("%d ",v[x]);
   allout(c[x][1]);
void out(int x)
   printf("%d: c %d & %d f %d s %d v %d siz %d\n",x,c[x][0],c[x][1],f[x],s[
       x],v[x],siz[x]);
   if (c[x][0]) out(c[x][0]);
   if (c[x][1]) out(c[x][1]);
   if (x==rt) puts("----");
}
void iinit()
   for (int i=1;i<N;i++) st[N-i]=i;</pre>
   tp=N-1;
}
void init()
{
   tp=N-3;
   c[1][0]=c[1][1]=flz[1]=plz[1]=fg[1]=v[1]=f[1]=s[1]=0;clz[1]=1;
   c[2][0]=c[2][1]=flz[2]=plz[2]=fg[2]=v[2]=f[2]=s[2]=0;clz[2]=1;
   c[1][1]=2;f[2]=1;rt=1;siz[2]=1;siz[1]=2;
}
void pushup(int x)
   s[x]=((ui)s[c[x][0]]+s[c[x][1]]+v[x])%p;
   siz[x]=siz[c[x][0]]+siz[c[x][1]]+1;
}
void pushdown(int x)
   int lc=c[x][0],rc=c[x][1];
   if (flz[x])
       if (lc) flz[lc]^=1,swap(c[lc][0],c[lc][1]);
       if (rc) flz[rc]^=1,swap(c[rc][0],c[rc][1]);
      flz[x]=0;
   }
   if (fg[x])
   {
       clz[x]=1;plz[x]=0;
       if (lc) fg[lc]=1,v[lc]=v[x],s[lc]=(ll)v[x]*siz[lc]%p;
       if (rc) fg[rc]=1,v[rc]=v[x],s[rc]=(ll)v[x]*siz[rc]%p;
      fg[x]=0;
   }
   else
   {
       if (clz[x]!=1)
          if (lc) mul(clz[lc],clz[x]),mul(s[lc],clz[x]),mul(plz[lc],clz[x])
              ,mul(v[lc],clz[x]);
          if (rc) mul(clz[rc],clz[x]),mul(s[rc],clz[x]),mul(plz[rc],clz[x])
              ,mul(v[rc],clz[x]);
```

```
clz[x]=1;
       }
       if (plz[x])
          if (lc) inc(plz[lc],plz[x]),inc(v[lc],plz[x]),s[lc]=(s[lc]+(ll))
              siz[lc]*plz[x])%p;
          if (rc) inc(plz[rc],plz[x]),inc(v[rc],plz[x]),s[rc]=(s[rc]+(11)
              siz[rc]*plz[x])%p;
          plz[x]=0;
       }
   }
}
void zigzag(int x)
   int y=f[x],z=f[y],typ=(c[y][0]==x);
   if (z) c[z][c[z][1]==y]=x;
   f[x]=z;f[y]=x;c[y][typ^1]=c[x][typ];
   if (c[x][typ]) f[c[x][typ]]=y;
   c[x][typ]=y;
   pushup(y);
void allpd(int x)
   static int st[N],tp;
   st[tp=1]=x;
   while (x=f[x]) st[++tp]=x;
   while (tp) pushdown(st[tp--]);
void splay(int x,int tar)
{
   if (!tar) rt=x;
   int y;
   while ((y=f[x])!=tar)
       if (f[y]!=tar) zigzag(c[f[y]][0]==y^c[y][0]==x?x:y);
       zigzag(x);
   pushup(x);
void find(int kth,int tar)
   int x=rt;
   while (siz[c[x][0]]+1!=kth)
       pushdown(x);
       if (siz[c[x][0]]>=kth) x=c[x][0]; else
       {
          kth-=siz[c[x][0]]+1;
          x=c[x][1];
       }
   pushdown(x);
   splay(x,tar);
}
int rk(int x)
{
   allpd(x);
   splay(x,0);
   return siz[c[x][0]];
```

```
void split(int x,int y)
   find(x,0); find(y+2,rt);
int npt()
{
   int x=st[tp--];
   c[x][0]=c[x][1]=plz[x]=siz[x]=s[x]=v[x]=fg[x]=flz[x]=0;
   clz[x]=1;
   return x;
}
int build(int *a,int 1,int r)
   if (l>r) return 0;
   int m=1+r>>1,x;
   v[x=npt()]=a[m];
   //printf("build %d %d %d\n",1,r,x);
   if (l==r)
   {
       siz[x]=1;
       s[x]=v[x];
       return x;
   c[x][0]=build(a,1,m-1);
   c[x][1]=build(a,m+1,r);
   if (c[x][0]) f[c[x][0]]=x;
   if (c[x][1]) f[c[x][1]]=x;
   pushup(x);
   return x;
void ins(int pos,int *a,int n)//在pos后插入
   if (!n) return;
   split(pos+1,pos);
   // out(rt);
   int x=c[rt][1];
   c[x][0]=build(a,1,n);
   // printf("%d %d\n",x,c[x][0]);
   f[c[x][0]]=x;
   pushup(x);pushup(rt);
void del(int l,int r)//删除[l,r]
   split(l,r);
   c[c[rt][1]][0]=0;
   pushup(c[rt][1]);
   pushup(rt);
}
void rev(int l,int r)
   split(1,r);
   int x=c[c[rt][1]][0];
   swap(c[x][0],c[x][1]);
   flz[x]^=1;
void add(int l,int r,int val)
   split(l,r);
```

```
int x=c[c[rt][1]][0];
       inc(v[x],val);inc(plz[x],val);
       s[x]=(s[x]+(ll)val*siz[x])%p;
      pushup(f[x]);pushup(rt);
   void multi(int l,int r,int val)
       split(l,r);
       int x=c[c[rt][1]][0];
      mul(v[x],val);mul(plz[x],val);
      mul(s[x],val);mul(clz[x],val);
      pushup(f[x]);pushup(rt);
   void mov(int l1,int r1,int l2)//都是原下标
       if (12>11) 12-=r1-l1+1;
       split(l1,r1);int x=c[c[rt][1]][0];
       allpd(x);c[f[x]][0]=0;
       pushup(f[x]);pushup(rt);
       split(12+1,12);
       allpd(c[rt][1]);
       c[c[rt][1]][0]=x;f[x]=c[rt][1];
       pushup(f[x]);pushup(rt);
   }
   int sum(int 1,int r)
       split(l,r);//puts("spe ");out(rt);
       return s[c[c[rt][1]][0]];
   }
};
_splay<N> s;
int a[N];
int n,q,i,x,y,z;
void read(int &x)
   int c=getchar();
   while (c<48||c>57) c=getchar();
   x=c^48;c=getchar();
   while (c>=48\&\&c<=57) x=x*10+(c^48),c=getchar();
int main()
   read(n);read(q);s.iinit();
   for (i=1;i<=n;i++) a[i]=i;</pre>
   s.init();s.ins(0,a,n);//s.out(s.rt);
   while (q--)
   {
       read(x); read(y); s.rev(x,y);
   s.allout(s.rt);
```

### 1.14 区间线性基

```
O((n+q)\log a), O(n\log a).
```

```
int v[N][M][2];//N是序列总长, M是位数
void ins(int x,int p)//在p插入x
{
```

#### 1.15 splay 重构

```
O(n), O((n+q)\log n).
```

```
const ui p=998244353;
template<typename inf,typename tag> struct splay
   #define _rev
   struct node
       node *c[2],*f;
       int siz;
       inf s,v;
       tag t;
       node():c\{\},f(0),siz(1),s(),v(),t()\{\}
       node(inf x):c\{\},f(0),siz(1),s(x),v(x),t()\{\}
       void operator+=(const tag &o)
       {
          s+=o;v+=o;t+=o;
       #ifdef _rev
          if (o.rev) swap(c[0],c[1]);
       #endif
       }
       void pushup()
          if (c[0]) s=c[0]->s+v,siz=c[0]->siz+1; else s=v,siz=1;
          if (c[1]) s=s+c[1]->s,siz+=c[1]->siz;
       void pushdown()
          for (auto x:c) if (x) *x+=t;
          t={};
       void zigzag()
       {
          node *y=f,*z=y->f;
          int typ=y->c[0]==this;
          if (z) z - c[z - c[1] = y] = this;
          f=z; y->f=this;
          y->c[typ^1]=c[typ];
          if (c[tvp]) c[tvp]->f=v:
```

```
c[typ]=y;
      y->pushup();
   void splay(node *tar)//不要在 find 以外调用
      for (node *y=f;y!=tar;zigzag(),y=f) if (node *z=y->f;z!=tar) (z->c
          [1]==y^y->c[1]==this?this:y)->zigzag();
      pushup();
   void clear()
      for (node *x:c) if (x) x->clear();
      delete this;
};
node *rt;
void debug()
{
   map<node*,int> id;
   id[0]=0;id[rt]=1;
   int cnt=1;
   function<void(node*)> out=[&](node *x)
      if (!x) return;
      for (auto y:x->c) if (!id.count(y)) id[y]=++cnt;
      x->siz<<'\n';
      for (auto y:x->c) out(y);
   };
   out(rt);
node *build(inf *a,int n)
   if (n==0) return 0;
   int m=n-1>>1;
   node *x=new node(a[m]);
   x->c[0]=build(a,m);
   x - c[1] = build(a+m+1, n-1-m);
   for (node *y:x->c) if (y) y->f=x;
   x->pushup();
   return x;
}
splay()
   rt=new node;
   rt->c[1]=new node;
   rt->c[1]->f=rt;
   rt->siz=2;
}
splay(inf *a, int n)//[1,n]
   rt=new node;
   rt->c[1]=new node;
   rt->c[1]->f=rt;
   rt->c[1]->c[0]=build(a+1,n);
   rt->c[1]->c[0]->f=rt->c[1];
   rt->c[1]->pushup();
   rt->pushup();
}
```

```
void findnth(int k,node *tar)
   node *x=rt;
   while (1)
       x->pushdown();
       int v=x-c[0]?x-c[0]-siz:0;
       if (v+1==k) {x->splay(tar);if (!tar) rt=x;return;}
       if (v>=k) x=x->c[0]; else x=x->c[1], k-=v+1;
   }
}
void split(int l,int r)
   assert(1<=l&&r<=rt->siz-2&&l-1<=r);
   findnth(1,0);
   findnth(r+2,rt);
}
void insert(int pos,inf x)//insert before pos
   assert(1<=pos&&pos<=rt->siz-1);
   split(pos,pos-1);
   rt->c[1]->c[0]=new node(x);
   rt->c[1]->c[0]->f=rt->c[1];
   rt->c[1]->pushup();
   rt->pushup();
}
void insert(int pos,inf *a,int n)//insert before pos, [1,n]
   assert(1<=pos&&pos<=rt->siz-1);
   split(pos,pos-1);
   rt->c[1]->c[0]=build(a,n);
   rt->c[1]->c[0]->f=rt->c[1];
   rt->c[1]->pushup();
   rt->pushup();
}
void erase(int pos)
   assert(1<=pos&&pos<=rt->siz-2);
   split(pos,pos);
   delete rt->c[1]->c[0];
   rt->c[1]->c[0]=0;
   rt->c[1]->pushup();
   rt->pushup();
}
void erase(int 1,int r)
   assert(1<=1&&1<=r&&r<=rt->siz-2);
   split(l,r);
   rt->c[1]->c[0]->clear();
   rt->c[1]->c[0]=0;
   rt->c[1]->pushup();
   rt->pushup();
}
void modify(int pos,inf x)//not checked
   assert(1<=pos&&pos<=rt->siz-2);
   findnth(pos+1,0);
   rt->v=x;rt->pushup();
}
```

```
void modify(int l,int r,tag w)
       split(l,r);
       node *x=rt->c[1]->c[0];
       *x+=w;
       rt->c[1]->pushup();
       rt->pushup();
   }
   inf ask(int 1,int r)
       split(1,r);
       return rt->c[1]->c[0]->s;
   ~splay(){rt->clear();}
   #undef _rev
struct Q
{
   ll pl,ti;
   bool rev;
   Q():pl(0),ti(1),rev(0){}
   Q(11 a,11 b,bool c):pl(a),ti(b),rev(c){}
   void operator+=(const Q &o)
   {
       pl=(pl*o.ti+o.pl)%p;
       ti=ti*o.ti%p;
      rev^=o.rev;
};
struct P
   ll s,len;
   void operator+=(const Q &o)
       s=(s*o.ti+o.pl*len)%p;
   P operator+(const P &o) {return {s+o.s>=p?s+o.s-p:s+o.s,len+o.len};}
};
```

### 1.16 第 k 大线性基

 $O((n+q)\log a), O(\log a)$ .

```
void ins(11 x)
{
    if (x==0) return con=1,void();//con=1:有0
    int i;
    for (i=50;x;i--) if (x>>i&1)
    {
        if (!ji[i]) {ji[i]=x;i=-1;break;}x^=ji[i];
    }
    if (!x) con=1;
}
ll kmax(11 x)//若有初始值改 r 即可
{
    ll r=0;
    int m=0,i;
    for (i=50;~i;i--) if (ji[i]) a[++m]=i;
    if (111<<m<=x-con) return -1://个数少于k</pre>
```

```
x=(1ll<<m)-x;
for (i=1;i<=m;i++) if ((x>>m-i^r>>a[i])&1) r^=ji[a[i]];
return r;
}
ll kmin(ll x)//若有初始值改 r 即可
{
    ll r=0;
    int m=0,i;
    for (i=50;~i;i--) if (ji[i]) a[++m]=i;
    x-=con;
    if (1ll<<m<=x) return -1;//个数少于k
    for (i=1;i<=m;i++) if ((x>>m-i^r>>a[i])&1) r^=ji[a[i]];
    return r;
}
```

#### 1.17 fhq-treap

```
O((n+q)\log n), O(n).
```

```
const int N=1.1e6+2:
int c[N][2],v[N],w[N],s[N];
int n,i,x,y,ds,val,kth,p,q,z,rt,la,m,ans;
void pushup(const int x)
   s[x]=s[c[x][0]]+s[c[x][1]]+1;
}
void split_val(int now,int &x,int &y)//调用外部val,相等归入y
   if (!now) return x=y=0,void();
   if (val<=v[now]) split_val(c[y=now][0],x,c[now][0]);</pre>
   else split_val(c[x=now][1],c[now][1],y);
   pushup(now);
void split_kth(int now,int &x,int &y)//调用外部kth
   if (!now) return x=y=0,void();
   if (kth<=s[c[now][0]]) split_kth(c[y=now][0],x,c[now][0]);</pre>
   else kth-=s[c[now][0]]+1,split_kth(c[x=now][1],c[now][1],y);
   pushup(now);
int merge(int x,int y)//小根ver.
   if (!(x&&y)) return x|y;
   if (w[x]<w[y]) {c[x][1]=merge(c[x][1],y);pushup(x);return x;}</pre>
   else {c[y][0]=merge(x,c[y][0]);pushup(y);return y;}
int main()
   read(n);read(m);srand(998244353);
   for (i=1;i<=n;i++)</pre>
       read(x); val=v[++ds]=x; w[ds]=rand(); s[ds]=1; split_val(rt,p,q); rt=merge(
           merge(p,ds),q);
   }
   while (m--)
       read(y);read(x);x^=la;
       if (y==4)
```

```
kth=x;split_kth(rt,p,q);x=p;
          while (c[x][1]) x=c[x][1];
          ans^=(la=v[x]);rt=merge(p,q);
          continue;
       }
       val=x;
       if (y==1)
          v[++ds]=x;w[ds]=rand();s[ds]=1;
          split_val(rt,p,q);rt=merge(merge(p,ds),q);
          continue;
       }
       if (y==2)
       {
          split_val(rt,p,q);kth=1;split_kth(q,i,z);
          rt=merge(p,z);continue;
       if (y==3)
          split_val(rt,p,q);ans^=(la=s[p]+1);
          rt=merge(p,q);continue;
       if (y==5)
       {
          split_val(rt,p,q);x=p;
          while (c[x][1]) x=c[x][1];ans^=(la=v[x]);
          rt=merge(p,q);continue;
       ++val;split_val(rt,p,q);x=q;
       while (c[x][0]) x=c[x][0];
       ans^=(la=v[x]);rt=merge(p,q);
   }printf("%d",ans);
}
```

#### 1.18 笛卡尔树

O(n), O(n).

```
int c[N][2],p[N],st[N];
int main()
{
    int i,n,tp=0;
    ll la=0,ra=0;
    read(n);
    for (i=1;i<=n;i++)
    {
        read(p[i]);st[tp+1]=0;
        while ((tp)&&(p[st[tp]]>p[i])) --tp;
        c[c[st[tp]][1]=i][0]=st[tp+1];st[++tp]=i;
    }
    for (i=1;i<=n;i++) la^=(ll)i*(c[i][0]+1);
    for (i=1;i<=n;i++) ra^=(ll)i*(c[i][1]+1);
    printf("%lld %lld",la,ra);
}</pre>
```

#### 1.19 扫描线

 $O((n+q)\log n)$ . O(n+q)

```
const int N=2e5+2,M=8e5+2;//2倍N
struct Q
{
   int l,r,h,typ;
   Q(int a=0,int b=0,int c=0,int d=0):1(a),r(b),h(c),typ(d){}
   bool operator<(const Q &o) const {return h<o.h;}</pre>
};
ll ans;
Q q[N];
int 1[M],r[M],s[M][2],lz[M];
int xx[N>>1][2],yy[N>>1][2],a[N];
int n,i,j,x,y,z,dt,m,len;
void pushup(int x)
   int c=x<<1;</pre>
   if (s[c][0]==s[c|1][0]) s[x][0]=s[c][0],s[x][1]=s[c][1]+s[c|1][1];
   else
   {
       if (s[c][0]>s[c|1][0]) c|=1;
       s[x][0]=s[c][0];s[x][1]=s[c][1];
   }
void pushdown(int x)
{
   if (lz[x])
   {
       int c=x<<1;</pre>
       lz[c]+=lz[x];s[c][0]+=lz[x];c|=1;
       lz[c]+=lz[x];s[c][0]+=lz[x];lz[x]=0;
   }
void build(int x)
   if (l[x]==r[x]) return s[x][1]=a[l[x]+1]-a[l[x]],void();
   int c=x<<1;</pre>
   l[c]=l[x];r[c]=l[x]+r[x]>>1;
   l[c|1]=r[c]+1;r[c|1]=r[x];
   build(c);build(c|1);
   pushup(x);
void mdf(int x)
   if (z<=l[x]&&r[x]<=y)</pre>
       lz[x]+=dt;s[x][0]+=dt;return;
   pushdown(x);
   int c=x<<1;</pre>
   if (z<=r[c]) mdf(c);</pre>
   if (y>r[c]) mdf(c|1);
   pushup(x);
int main()
   read(n);
   for (i=1;i<=n;i++)</pre>
       read(xx[i][0]);read(yy[i][0]);
```

read(xx[i][1]);read(yv[i][1]);

#### 1.20 Segmenttree Beats!

```
O((n+q)\log n) \sim O(n+q\log^2 n), O(n).
```

- 1 l r k: 对于所有的  $i \in [l,r]$ , 将  $A_i$  加上 k (k 可以为负数)。
- 2 1 r v: 对于所有的  $i \in [l,r]$ , 将  $A_i$  变成  $\min(A_i,v)$ 。
- 3 1 r:  $\Re \sum_{i=1}^{r} A_i$ .
- 4 l r: 对于所有的  $i \in [l, r]$ , 求  $A_i$  的最大值。
- 5 1 r: 对于所有的  $i \in [l, r]$ , 求  $B_i$  的最大值。

```
typedef long long 11;d
struct Q
   11 mxp,mx,vp,v;
   Q(11 a=0,11 b=0,11 c=0,11 d=0):mxp(a),mx(b),vp(c),v(d){}
const int N=5e5+2,M=2e6+2;
const ll inf=-1e18;
Q lz[M];
11 mx[M],cnt[M],se[M],pmx[M],s[M],ans;
int 1[M],r[M],cd[M],a[N];
int n,m,i,x,y,z,typ,dt;
void pushup(int x)
   int lc=x<<1,rc=lc|1;</pre>
   s[x]=s[lc]+s[rc];
   pmx[x]=max(pmx[lc],pmx[rc]);
   if (mx[lc]==mx[rc])
   {
       mx[x]=mx[lc];cnt[x]=cnt[lc]+cnt[rc];
       se[x]=max(se[lc],se[rc]);
   else if (mx[lc]<mx[rc]) mx[x]=mx[rc],cnt[x]=cnt[rc],se[x]=max(mx[lc],se[rc])</pre>
   else mx[x]=mx[]c].cnt[x]=cnt[]c].se[x]=max(mx[rc].se[]c]):
```

```
void build(int x)
          cd[x]=r[x]-l[x]+1;
          if (1[x]==r[x]) return s[x]=mx[x]=pmx[x]=a[1[x]],se[x]=inf,cnt[x]=1,void();
          l[c]=l[x];r[c]=l[x]+r[x]>>1;
          l[c|1]=r[c]+1;r[c|1]=r[x];
          build(c);build(c|1);
          pushup(x);
void upd(int x,Q o)
          lz[x]=Q(max(lz[x].mxp,lz[x].mx+o.mxp),lz[x].mx+o.mx,max(lz[x].vp,lz[x].v+o.
                      vp),lz[x].v+o.v);
          s[x]+=o.mx*cnt[x]+o.v*(cd[x]-cnt[x]);se[x]+=o.v;
          pmx[x]=max(pmx[x],mx[x]+o.mxp);mx[x]+=o.mx;
void pushdown(int x)
{
          int c=x<<1;</pre>
          11 mxx=max(mx[c],mx[c|1]);
           \label{eq:condition}  \mbox{if } (\mbox{mx[c]==mxx}) \mbox{ upd(c,lz[x]); else upd(c,Q(lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[x].vp,lz[
                      ));
          c|=1;
          if (mx[c]==mxx) upd(c,lz[x]); else upd(c,Q(lz[x].vp,lz[x].v,lz[x].vp,lz[x].v
                      ));
          lz[x]=Q();
void mdf1(int x)
          if (z<=l[x]&&r[x]<=y)</pre>
                    upd(x,Q(max(dt,0),dt,max(dt,0),dt));
                    return;
          }
         pushdown(x);
          int c=x<<1;</pre>
          if (z<=r[c]) mdf1(c);</pre>
          if (y>r[c]) mdf1(c|1);
         pushup(x);
void mdf2(int x)
          if (dt>=mx[x]) return;
          if (z<=l[x]&&r[x]<=y)</pre>
          {
                     if (dt<=se[x])</pre>
                     {
                               pushdown(x);
                               mdf2(x<<1); mdf2(x<<1|1);
                               pushup(x);
                     }
                     else
                     {
                                upd(x,Q(0,dt-mx[x],0,0));
                     return;
          }
```

```
pushdown(x);
   int c=x<<1;</pre>
   if (z<=r[c]) mdf2(c);</pre>
   if (y>r[c]) mdf2(c|1);
   pushup(x);
void sol3(int x)
   if (z<=l[x]&&r[x]<=y) return ans+=s[x],void();</pre>
   pushdown(x);
   int c=x<<1;</pre>
   if (z<=r[c]) sol3(c);</pre>
   if (y>r[c]) sol3(c|1);
void sol4(int x)
   if (z<=l[x]&&r[x]<=y) return ans=max(ans,mx[x]),void();</pre>
   pushdown(x);
   int c=x<<1;</pre>
   if (z<=r[c]) sol4(c);</pre>
   if (y>r[c]) sol4(c|1);
void sol5(int x)
   if (z<=l[x]&&r[x]<=y) return ans=max(ans,pmx[x]),void();</pre>
   pushdown(x);
   int c=x<<1;</pre>
   if (z<=r[c]) sol5(c);</pre>
   if (y>r[c]) sol5(c|1);
}
int main()
{
   read(n);read(m);
   for (i=1;i<=n;i++) read(a[i]);</pre>
   r[1[1]=1]=n;build(1);
   while (m--)
       read(typ);read(z);read(y);
       if (typ>=3)
           ans=(typ==3)?0:inf;
           if (typ==3) sol3(1); else if (typ==4) sol4(1); else sol5(1);
           printf("%lld\n",ans);
       }
       else
       {
           read(dt);
           if (typ==1) mdf1(1); else mdf2(1);
       }
   }
}
```

# 1.21 k-d 树 (二进制分组)

均摊  $O(\log^2 n)$  插入,  $O(\sqrt{n})$  矩形查询。

```
#include <bits/stdc++.h>
using namespace std;
typedef long long l1:
```

```
struct P
   int x,y,v;
   P(){}
   P(int a,int b,int c):x(a),y(b),v(c){}
};
template<typename T> struct Q
{
   int x[2],y[2],t;
   Ts;
   Q(){}
   Q(P &a)
   {
       x[0]=x[1]=a.x;
       y[0]=y[1]=a.y;
       s=a.v;
   }
};
bool cmp0(const P &a,const P &b)
{
   return a.x<b.x;</pre>
bool cmp1(const P &a,const P &b)
   return a.y<b.y;</pre>
}
template<typename T> struct kdt
   vector<P> c;
   vector<Q<T>> a;
   int m,u,d,l,r;
   T ans;
   void build(int x,P *b,int n)
       if (x==1)
       {
          a.resize(m=n<<1);
          a[x].t=0;
          c.resize(n);
          for (int i=0;i<n;i++) c[i]=b[i];</pre>
       }
       if (n==1)
       {
          a[x]=Q<T>(b[0]);
          return;
       int mid=n>>1,c=x<<1;</pre>
       nth_element(b,b+mid,b+n,a[x].t?cmp1:cmp0);
       a[c].t=a[c|1].t=a[x].t^1;
       build(c,b,mid);
       build(c|1,b+mid,n-mid);
       a[x].s=a[c].s+a[c|1].s;
       a[x].x[0]=min(a[c].x[0],a[c|1].x[0]);
       a[x].x[1]=max(a[c].x[1],a[c|1].x[1]);
       a[x].y[0]=min(a[c].y[0],a[c|1].y[0]);
       a[x].y[1]=max(a[c].y[1],a[c|1].y[1]);
   void find(int x)
   {
```

```
if (x>=m||a[x].x[1]<u||a[x].x[0]>d||a[x].y[1]<1||a[x].y[0]>r) return;
       if (u \le a[x].x[0] \&\&a[x].x[1] \le d\&\&1 \le a[x].y[0] \&\&a[x].y[1] \le r) {ans+=a[x].s
           ;return;}
       find(x<<1);find(x<<1|1);
   T find(int x1,int y1,int x2,int y2)
       ans=0;
       u=x1;d=x2;
       l=y1;r=y2;
       find(1);
       return ans;
   }
};
const int N=2e5+2,M=18;
template<typename T> struct KDT
{
   kdt<T> s[M];
   P a[N];
   int n,m,i;
   KDT(){n=0;}
   KDT(int N, int *x, int *y, int *w)//[0,n)
   {
       n=N;
       int i,j;
       for (i=0;i<n;i++) a[i]=P(x[i],y[i],w[i]);</pre>
       for (i=j=0;n>>i;i++) if (n>>i&1) s[i].build(1,a+j,1<<i),j+=1<<i;</pre>
   void ins(int x,int y,int w)
   {
       a[0]=P(x,y,w);m=1;
       for (i=0;n&1<<i;i++) for (auto u:s[i].c) a[m++]=u;</pre>
       s[i].build(1,a,m);
       ++n;
   }
   T ask(int x,int y,int xx,int yy)
       T ans=0;
       for (i=0;1<<i<=n;i++) if (1<<i&n) ans+=s[i].find(x,y,xx,yy);</pre>
       return ans;
   }
};
int x[N],y[N],w[N];
int main()
   ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
   int n,q,i;
   cin>>n>>q;
   for (i=0;i<n;i++) cin>>x[i]>>y[i]>>w[i];
   KDT<11> s(n,x,y,w);
   while (q--)
   {
       int op,x,y,w;
       cin>>op>>x>>y>>w;
       if (op==0) s.ins(x,y,w); else
       {
           cout << s.ask(x,y,w-1,op-1) << ' n';
```

| } |} 2 数学 36

# 2 数学

## 2.1 单情况矩阵 (+)

```
template<typename T,int n> struct matrix
   #define all(x) (x).begin(),(x).end()
   array<pair<int,T>,n> a;
   matrix(char c='E')
       int i;
       if (c=='E') for (i=0;i<n;i++) a[i]={i,0};</pre>
       else assert(0);
   }
   matrix(char c,int x)
   matrix operator+(const matrix &o) const
       matrix r;
       int i,j,k;
       for (i=0;i<n;i++)</pre>
           auto [x,y]=a[i];
           r.a[i]={o.a[x].first,o.a[x].second+y};
       return r;
};
```

## 2.2 矩阵求逆 (要求质数)

```
O(n^3), O(n^2).
```

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=402,p=1e9+7;
void inv(int &x)
   int y=p-2,r=1;
   while (y)
       if (y&1) r=(ll)r*x%p;
      x=(11)x*x%p;
      y>>=1;
   }
   x=r;
int a[N][N],ih[N],jh[N];
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int i,j,k,n;
   cin>>n;
   for (i=1;i<=n;i++) for (j=1;j<=n;j++) cin>>a[i][j];
```

```
for (k=1;k<=n;k++)</pre>
   {//ih,jh要清空
       for (i=k;i<=n;i++) if (!ih[k]) for (j=k;j<=n;j++) if (a[i][j])</pre>
           ih[k]=i;jh[k]=j;break;
       if (!ih[k]) return cout<<"No Solution"<<endl,0;</pre>
       for (j=1;j<=n;j++) swap(a[k][j],a[ih[k]][j]);</pre>
       for (i=1;i<=n;i++) swap(a[i][k],a[i][jh[k]]);</pre>
       if (!a[k][k]) return cout<<"No Solution"<<endl,0;inv(a[k][k]);</pre>
       for (i=1;i<=n;i++) if (i!=k) a[k][i]=(ll)a[k][i]*a[k][k]%p;</pre>
       for (i=1;i<=n;i++) if (i!=k) for (j=1;j<=n;j++) if (j!=k) a[i][j]=(a[i][
           j]+(ll)(p-a[i][k])*a[k][j])%p;
       for (i=1;i<=n;i++) if (i!=k) a[i][k]=(ll)(p-a[i][k])*a[k][k]%p;</pre>
   for (k=n;k;k--)
       for (j=1;j<=n;j++) swap(a[k][j],a[jh[k]][j]);</pre>
       for (i=1;i<=n;i++) swap(a[i][k],a[i][ih[k]]);</pre>
   }
   for (i=1;i<=n;i++)</pre>
       for (j=1; j \le n; j++) cout \le a[i][j] \le n''[j==n];
   }
}
/*
输入
1 2 8
2 5 6
5 1 2
输出
718750005 718750005 968750007
171875001 671875005 296875002
117187501 867187506 429687503
```

# 2.3 任意模数矩阵求逆 (未验)

 $O(n^3)\,,\ O(n^2)\,.$ 

```
int ksm(int x,int y)
{
    int r=1;
    while (y)
    {
        if (y&1) r=(ll)r*x%p;
        y>>=1;x=(ll)x*x%p;
    }
    return r;
}
int phi(int n)
{
    int r=n;
    for (int i=2;i*i<=n;i++) if (n%i==0)
    {
        r=r/i*(i-1);n/=i;
        while (n%i==0) n/=i;
}</pre>
```

```
if (n>1) r=r/n*(n-1);
   return r;
}
void cal(int a[][N],int b[][N],int n)
{
   int i,j,k,r,ph=phi(p);
   for (i=1;i<=n;i++) memset(b+1,0,n<<2);</pre>
   for (i=1;i<=n;i++) b[i][i]=1;</pre>
   for (i=1;i<=n;i++)</pre>
   {
       k=i;
       for (j=i+1;j<=n;j++) if (a[j][i]&&a[j][i]<a[k][i]) k=j;</pre>
       if (!a[k][i]) {puts("No Solution");exit(0);}
       swap(a[i],a[k]);swap(b[i],b[k]);
       for (j=i+1; j<=n; j++) if (a[j][i])</pre>
           r=p-a[j][i]/a[i][i];
           for (k=i;k<=n;k++) a[j][k]=(a[j][k]+(ll)r*a[i][k])%p;</pre>
           for (k=1;k<=n;k++) b[j][k]=(b[j][k]+(l1)r*b[i][k])%p;</pre>
           while (a[j][i])
               swap(a[i],a[j]);swap(b[i],b[j]);
               r=p-a[j][i]/a[i][i];
               for (k=i;k<=n;k++) a[j][k]=(a[j][k]+(ll)r*a[i][k])%p;</pre>
               for (k=1;k<=n;k++) b[j][k]=(b[j][k]+(l1)r*b[i][k])%p;</pre>
           }
       }
       if (__gcd(a[i][i],p)!=1) {puts("No Solution");exit(0);}
       r=ksm(a[i][i],ph-1);
       for (j=i;j<=n;j++) a[i][j]=(ll)a[i][j]*r%p;</pre>
       for (j=1;j<=n;j++) b[i][j]=(11)b[i][j]*r%p;</pre>
       assert(a[i][i]==1);
       for (j=1;j<i;j++)</pre>
       {
           r=p-a[j][i];
           for (k=i;k<=n;k++) a[j][k]=(a[j][k]+(ll)r*a[i][k])%p;</pre>
           for (k=1;k\leq n;k++) b[j][k]=(b[j][k]+(ll)r*b[i][k])%p;
       }
   }
```

### 2.4 矩阵的特征多项式

 $O(n^3)$ ,  $O(n^2)$ .

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=502,p=998244353;
int a[N][N],f[N];
int n,i,j,k,x,y,r;
void inc(int &x,const int y)
{
    if ((x+=y)>=p) x-=p;
}
void dec(int &x,const int y)
{
    if ((x-=y)<0) x+=p;
}</pre>
```

```
int ksm(int x,int y)
   int r=1;
   while (y)
       if (y&1) r=(ll)r*x%p;
       x=(11)x*x%p;y>>=1;
   return r;
void calmatrix(int a[N][N],int n)
   int i,j,k,r;
   for (i=2;i<=n;i++)</pre>
       for (j=i;j<=n&&!a[j][i-1];j++);</pre>
       if (j>n) continue;
       if (j>i)
           swap(a[i],a[j]);
           for (k=1;k<=n;k++) swap(a[k][j],a[k][i]);</pre>
       r=a[i][i-1];
       for (j=1;j<=n;j++) a[j][i]=(ll)a[j][i]*r%p;</pre>
       r=ksm(r,p-2);
       for (j=i-1;j<=n;j++) a[i][j]=(ll)a[i][j]*r%p;</pre>
       for (j=i+1;j<=n;j++)</pre>
           r=a[j][i-1];
           for (k=1;k<=n;k++) a[k][i]=(a[k][i]+(ll)a[k][j]*r)%p;</pre>
           r=p-r;
           for (k=i-1;k<=n;k++) a[j][k]=(a[j][k]+(ll)a[i][k]*r)%p;</pre>
       }
   }
void calpoly(int a[N][N],int n,int *f)
{
   static int g[N][N];
   memset(g,0,sizeof(g));
   g[0][0]=1;
   int i,j,k,r,rr;
   for (i=1;i<=n;i++)</pre>
       r=p-1;
       for (j=i;j;j--)//第 j 行选第 n 列
           rr=(ll)r*a[j][i]%p;
           for (k=0;k<j;k++) g[i][k]=(g[i][k]+(ll)rr*g[j-1][k])%p;</pre>
          r=(ll)r*a[j][j-1]%p;
       for (k=1;k<=i;k++) inc(g[i][k],g[i-1][k-1]);</pre>
   memcpy(f,g[n],n+1<<2);
   //if (n&1) for (i=0;i<=n;i++) if (f[i]) f[i]=p-f[i];//若注释掉则为 |kE-A|
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>n;
```

```
for (i=1;i<=n;i++) for (j=1;j<=n;j++) cin>>a[i][j];
calmatrix(a,n);calpoly(a,n,f);
for (i=0;i<=n;i++) cout<<f[i]<<"x^"<<i<"+\n"[i==n];
}
/*
3
1 2 3
4 5 6
7 8 9
輸出: 0x^0+998244335x^1+998244338x^2+1x^3
*/
```

### 2.5 最短递推式 (BM 算法)

```
\sum_{j=0}^{m-1} a_{i-j-1} r_j = a_i \,.
```

```
vector<ui> bm(const vector<ui> &a)
   vector<ui> r,lst;
   int n=a.size(),m=0,q=0,i,j,k=-1;
   ui D=0;
   for (i=0;i<n;i++)</pre>
   {
       ui cur=0;
       for (j=0;j<m;j++) cur=(cur+(ll)a[i-j-1]*r[j])%p;</pre>
       cur=(a[i]+p-cur)%p;
       if (!cur) continue;
       if (k==-1)
           k=i;
           D=cur;
           r.resize(m=i+1);
           continue;
       }
       auto v=r;
       ui x=(11) cur*ksm(D,p-2)%p;
       if (m<q+i-k) r.resize(m=q+i-k);</pre>
       (r[i-k-1]+=x)\%=p;
       ui *b=r.data()+i-k;
       x=(p-x)%p;
       for (j=0;j<q;j++) b[j]=(b[j]+(ll)x*lst[j])%p;</pre>
       if (v.size()+k<lst.size()+i)</pre>
       {
           lst=v;
           q=v.size();
           k=i;
           D=cur;
       }
   return r;
}
```

## 2.6 在线 O(1) 逆元

```
namespace online_inv
{
   typedef unsigned int ui;
```

```
typedef unsigned long long 11;
   const ui p=1e9+7;
   const ui n=1010,m=n*n,N=m+2;
   int 1[N],r[N];
   ui y[N];
   bool s[N];
   ui _inv[N*2],i,j,k;
   void init_inv()
       assert(n*n*n>p);
       _inv[1]=1;
       for (i=2;i<m*2;i++)</pre>
           j=p/i;
           _inv[i]=(ll)(p-j)*_inv[p-i*j]%p;
       s[0]=y[0]=1;
       for (i=1;i<n;i++) for (j=i;j<n;j++) if (!s[k=i*m/j])</pre>
          y[k]=j;
           s[k]=1;
       }
       1[0]=1;
       for (i=1;i<=m;i++) 1[i]=s[i]?y[i]:1[i-1];</pre>
       r[m]=1;
       for (i=m-1;~i;i--) r[i]=s[i]?y[i]:r[i+1];
       for (i=0;i<=m;i++) y[i]=min(l[i],r[i]);</pre>
   inline ui inv(const ui &x)
   {
       assert(x&&x<p);</pre>
       if (x<m*2) return _inv[x];</pre>
       k=(11)x*m/p;
       j=(11)y[k]*x%p;
       return (j<m*2?_inv[j]:p-_inv[p-j])*(11)y[k]%p;</pre>
   }
using online_inv::init_inv,online_inv::inv,online_inv::p;
```

### 2.7 Strassen 矩阵乘法

```
O(n^{\log_2 7}).
```

```
#include <bits/stdc++.h>
using namespace std;
typedef unsigned int ui;
typedef unsigned long long ull;
const ui p=998244353;
const ull fh=1ull<<31;
struct Q
{
    ui **a;
    int n;
    Q(){n=0;}
    void clear()
    {
        for (int i=0;i<n;i++) delete a[i];
        if (n) delete a;n=0;
}</pre>
```

```
Q(int nn)//不能传入不是 2 的幂的数!
   n=nn;
   assert(n==(n\&-n));
   a=new ui*[n];
   for (int i=0;i<n;i++) a[i]=new ui[n],memset(a[i],0,n*sizeof a[0][0]);
}
const Q & operator=(const Q& b)
   clear();n=b.n;
   a=new ui*[n];
   for (int i=0;i<n;i++) a[i]=new ui[n],memcpy(a[i],b.a[i],n*sizeof a</pre>
       [0][0];
   return *this;
~Q(){clear();}
Q operator+(const Q &b)
{
   Qc(n);
   ][j])>=p) c.a[i][j]-=p;
   return c;
}
Q operator-(const Q &b)
   Qc(n);
   for (int i=0;i<n;i++) for (int j=0;j<n;j++) if ((c.a[i][j]=a[i][j]-b.a[i</pre>
       ][j])&fh) c.a[i][j]+=p;
   return c;
}
Q operator*(Q &b)
{
   Q c(n);
   if (n<=128)</pre>
   {
      for (int i=0; i<n; i++) for (int k=0; k<n; k++) for (int j=0; j<n; j++) c.a
          [i][j]=(c.a[i][j]+(ull)a[i][k]*b.a[k][j])%p;
      return c;
   }
   Q A[2][2],B[2][2],s[10],p[5];
   n >> = 1;
   int i,j,k,l;
   for (i=0;i<2;i++) for (j=0;j<2;j++)</pre>
      A[i][j]=Q(n);
      for (k=0;k<n;k++) memcpy(A[i][j].a[k],a[k+i*n]+j*n,n*sizeof a[0][0]);</pre>
      B[i][j]=Q(n);
      for (k=0;k<n;k++) memcpy(B[i][j].a[k],b.a[k+i*n]+j*n,n*sizeof a</pre>
          [0][0]);
   }
   s[0]=B[0][1]-B[1][1];
   s[1]=A[0][0]+A[0][1];
   s[2]=A[1][0]+A[1][1];
   s[3]=B[1][0]-B[0][0];
   s[4]=A[0][0]+A[1][1];
   s[5]=B[0][0]+B[1][1];
   s[6]=A[0][1]-A[1][1];
   s[7]=B[1][0]+B[1][1];
   s[8]=A[0][0]-A[1][0];
```

```
s[9]=B[0][0]+B[0][1];
      p[0]=A[0][0]*s[0];
      p[1]=s[1]*B[1][1];
      p[2]=s[2]*B[0][0];
      p[3]=A[1][1]*s[3];
      p[4]=s[4]*s[5];
      A[0][0]=p[4]+p[3]-p[1]+s[6]*s[7];
      A[0][1]=p[0]+p[1];
      A[1][0]=p[2]+p[3];
      A[1][1]=p[4]+p[0]-p[2]-s[8]*s[9];
      for (i=0;i<2;i++) for (j=0;j<2;j++) for (k=0;k<n;k++) memcpy(c.a[k+i*n]+
          j*n,A[i][j].a[k],n*sizeof a[0][0]);
      n << =1;
      return c;
  }
int main()
   int i,j,n,m,k;
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>n>>m>>k;
   int N=1<<32-min({__builtin_clz(n-1),__builtin_clz(m-1),__builtin_clz(k-1)});</pre>
   Q a(N),b(N);
   for (i=0;i<n;i++) for (j=0;j<m;j++) cin>>a.a[i][j];
   for (i=0;i<m;i++) for (j=0;j<k;j++) cin>>b.a[i][j];
```

### 2.8 扩展欧拉定理

 $a \uparrow \uparrow b \mod c$ 

```
namespace Prime
{
   typedef unsigned int ui;
   typedef unsigned long long 11;
   const int N=1e6+2;
   const ll M=(ll)(N-1)*(N-1);
   ui pr[N],mn[N],phi[N],cnt;
   int mu[N];
   void init_prime()
   {
       ui i,j,k;
       phi[1]=mu[1]=1;
       for (i=2;i<N;i++)</pre>
           if (!mn[i])
              pr[cnt++]=i;
              phi[i]=i-1;mu[i]=-1;
              mn[i]=i;
           for (j=0;(k=i*pr[j])<N;j++)</pre>
           {
              mn[k]=pr[j];
              if (i%pr[j]==0)
              {
                  phi[k]=phi[i]*pr[i]:
```

```
break;
              }
              phi[k]=phi[i]*(pr[j]-1);
              mu[k]=-mu[i];
          }
      //for (i=2;i<N;i++) if (mu[i]<0) mu[i]+=p;
   template<typename T> T getphi(T x)
      assert(M>=x);
      T r=x;
      for (ui i=0;i<cnt&&(T)pr[i]*pr[i]<=x&&x>=N;i++) if (x%pr[i]==0)
          ui y=pr[i],tmp;
          x/=y;
          while (x==(tmp=x/y)*y) x=tmp;
          r=r/y*(y-1);
      }
       if (x>=N) return r/x*(x-1);
      while (x>1)
          ui y=mn[x],tmp;
          x/=y;
          while (x==(tmp=x/y)*y) x=tmp;
          r=r/y*(y-1);
      return r;
   }
   template<typename T> vector<pair<T,ui>> getw(T x)
      assert(M>=x);
      vector<pair<T,ui>> r;
       for (ui i=0;i<cnt&&(T)pr[i]*pr[i]<=x&&x>=N;i++) if (x%pr[i]==0)
          ui y=pr[i],z=1,tmp;
          x/=y;
          while (x==(tmp=x/y)*y) x=tmp,++z;
          r.push_back({y,z});
      if (x>=N)
          r.push_back({x,1});
          return r;
      while (x>1)
          ui y=mn[x],z=1,tmp;
          x/=y;
          while (x==(tmp=x/y)*y) x=tmp,++z;
          r.push_back({y,z});
      return r;
   }
using Prime::pr,Prime::phi,Prime::getw,Prime::getphi;
using Prime::mu,Prime::init_prime;
ui ksm(ll x,ui y,ui p)
{
```

```
x=x^p+(x>=p)*p;
   ll r=1;
   while (y)
       if (y&1)
       {
          if ((r*=x)>=p) r=r%p+p; else r%=p;
       if ((x*=x)>=p) x=x%p+p; else x%=p;
       y>>=1;
   return r;
}
struct Q
{
   vector<ui> p;
   Q(const ui &P)
   {
       p.push_back(P);
       while (p.back()>1) p.push_back(getphi(p.back()));
   ui operator()(ll a,ll b)
       if (!a) return (1^b&1)%p[0];
       ui r=1;
       int i=min(b,(ll)p.size());
       while ((--i) \ge 0) r=ksm(a,r,p[i]);
       return r%p[0];
   }
};
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int n,i;
   init_prime();
   int T;
   cin>>T;
   while (T--)
       ui a,b,c;
       cin>>a>>b>>c;
       cout << Q(c)(a,b) << ' n';
   }
```

### 2.9 exgcd

 $O(\log p)$ ,  $O(\log p)$ .

```
int exgcd(int a,int b,int c)//ax+by=c,return x
{
   if (a==0) return c/b;
   return (c-(ll)b*exgcd(b%a,a,c))/a%b;
}
```

```
pair<ll,ll> exgcd(ll a,ll b,ll c)//ax+by=c, {-1,-1} 无解, b=0 返回 {c/a,0}, 否则 返回最小非负 x
```

```
assert(a||b);
   if (!b) return {c/a,0};
   if (a<0) a=-a,b=-b,c=-c;</pre>
   11 d=gcd(a,b);
   if (c%d) return {-1,-1};
   11 x=1,x1=0,p=a,q=b,k;
   b=abs(b);
   while (b)
       k=a/b;
       x==k*x1;a==k*b;
       swap(x,x1);
       swap(a,b);
   }
   b=abs(q/d);
   x=x*(c/d)\%b;
   if (x<0) x+=b;
   return \{x,(c-p*x)/q\};
ll fun(ll a,ll b,ll p)//ax=b(mod p)
{
   return exgcd(-p,a,b).second%p;
}
```

#### 2.10 exCRT

```
namespace CRT
   typedef long long 11;
   pair<ll,ll> exgcd(ll a,ll b,ll c)
       assert(a||b);
       if (!b) return {c/a,0};
       11 d=gcd(a,b);
       if (c%d) return {-1,-1};
       11 x=1,x1=0,p=a,q=b,k;
       b=abs(b);
       while (b)
       {
          k=a/b;
          x==k*x1;a==k*b;
          swap(x,x1);
          swap(a,b);
       }
       b=abs(q/d);
       x=x*(c/d)\%b;
       if (x<0) x+=b;
       return \{x,(c-p*x)/q\};
   }
   struct Q
   {
       11 p,r;//0<=r<p
       Q operator+(const Q &o) const
          if (p==0||o.p==0) return {0,0};
          auto [x,y]=exgcd(p,-o.p,r-o.r);
          if (x==-1&&y==-1) return {0,0};
          11 q=lcm(p,o.p);
```

```
return {q,((r-x*p)%q+q)%q};
}
};
}
using CRT::Q;
```

#### 2.11 exBSGS

 $O(\sqrt{n})$ .

```
namespace BSGS
{
   typedef unsigned int ui;
   typedef unsigned long long 11;
   template<int N, typename T, typename TT> struct ht//个数, 定义域, 值域
      const static int p=1e6+7,M=p+2;
      TT a[N];
      T v[N];
      int fir[p+2],nxt[N],st[p+2];//和模数相适应
      int tp,ds;//自定义模数
      ht(){memset(fir,0,sizeof fir);tp=ds=0;}
      void mdf(T x,TT z)//位置, 值
      {
          ui y=x%p;
          for (int i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i]=z,void();//若
              不可能重复不需要 for
          v[++ds]=x;a[ds]=z;
          if (!fir[y]) st[++tp]=y;
         nxt[ds]=fir[y];fir[y]=ds;
      }
      TT find(T x)
          ui y=x%p;
          int i;
          for (i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i];
          return 0;//返回值和是否判断依据要求决定
      }
      void clear()
          ++tp;
          while (--tp) fir[st[tp]]=0;
          ds=0;
      }
   };
   const int N=5e4;
   ht<N,ui,ui> s;
   int exgcd(int a,int b)
      if (a==1) return 1;
      return (1-(long long)b*exgcd(b%a,a))/a;//not 11
   int bsgs(ui a,ui b,ui p)
      s.clear();
      a%=p;b%=p;
      if (!a) return 1-min((int)b,2);//含 -1
      ui i,j,k,x,y;
      x=sart(p)+2:
```

```
for (i=0,j=1;i<x;i++,j=(11)j*a%p)</pre>
           if (j==b) return i;
           s.mdf((ll)j*b%p,i+1);
       for (i=1;i<=x;i++,j=(ll)j*k%p) if (y=s.find(j)) return (ll)i*x-y+1;</pre>
       return -1;
   }
   bool isprime(ui p)
       if (p<=1) return 0;</pre>
       for (ui i=2;i*i<=p;i++) if (p%i==0) return 0;</pre>
       return 1;
   int exbsgs(ui a,ui b,ui p)//a^x=b(mod p)
       //if (isprime(p)) return bsgs(a,b,p);
       a%=p;b%=p;
       ui i,j,k,x,y=_{-}lg(p),cnt=0;
       for (i=0, j=1\%p; i \le y; i++, j=(l1) j*a\%p) if (j==b) return i;
       y=1;
       while (1)
       {
           if ((x=gcd(a,p))==1) break;
           if (b%x) return -1;//no sol
          ++cnt;
          p/=x;b/=x;
          y=(11)y*(a/x)%p;
       }
       a%=p;
       b=(11)b*(p+exgcd(y,p))%p;
       int r=bsgs(a,b,p);
       return r==-1?-1:r+cnt;
   }
}
using BSGS::bsgs,BSGS::exbsgs;
```

#### 2.12 exLucas

```
namespace exlucas
{
   typedef long long ll;
   typedef pair<int,int> pa;
   int P,p,q,i;
   vector<pa> a;
   vector<vector<int> > b;
   vector<int> ph;
   vector<int> xs;
   int ksm(unsigned int x,ll y,const unsigned int p)
   {
      unsigned int r=1;
      while (y)
      {
        if (y&1) r=(unsigned long long)r*x%p;
        x=(unsigned long long)x*x%p;
      y>>=1;
   }
}
```

```
return r;
void init(int x)//分解质因数,如有必要可以使用更快的方法
   a.clear();b.clear();
   int i,y,z;
   vector<int> v;
   for (i=2;i*i<=x;i++) if (x%i==0)</pre>
       z=i;x/=i;
       while (1)
          y=x/i;
          if (i*y==x) x=y; else break;
          z*=i;
       a.push_back(pa(i,z));
       b.push_back(v);
   }
   if (x>1) a.push_back(pa(x,x)),b.push_back(v);
   ph.resize(a.size());
   xs.resize(a.size());
   for (int k=0;k<a.size();k++)</pre>
       tie(q,p)=a[k];
       ph[k]=p/q*(q-1);
       xs[k]=(11)ksm(P/p,ph[k]-1,p)*(P/p)%P;
}
void spinit(int x)//0(p) space
   for (int k=0;k<a.size();k++)</pre>
       int q,p;
       tie(q,p)=a[k];
       b[k].resize(p);
       b[k][0]=1;
       for (int i=1,j=q;i<p;i++) if (i==j) j+=q,b[k][i]=b[k][i-1]; else b[k</pre>
           ][i]=(11)b[k][i-1]*i%p;
   }
}
11 g(11 n)
   ll r=0,s;
   while (n>=q)
      n/=q;
       r+=n;
   return r;
// int f(ll n)
// {
// if (n==0) return 1;
// int r=1;//若 p>1e9 j 要 unsigned
    for (int i=1, j=q; i < p; i++) if (i==j) j+=q; else r=(l1)r*i%p;
// r=(11)ksm(r,n/p,p)*f(n/q)%p;
// n%=p;
// for (int i=1,j=q;i<=n;i++) if (i==j) j+=q; else r=(ll)r*i%p;
```

```
// return r;
   // }//O(T\sum p) time,O(1) space ver.
   int f(ll n)
   {
       int r=1;
       11 cs=0;
       while (n)
           r=(ll)r*b[i][n%p]%p;
           cs+=n/p;
           n/=q;
       }
       return (ll)ksm(b[i][p-1],cs%ph[i],p)*r%p;
   }//O(\sum p) time,O(p) space ver.
   int C(ll n,ll m,int M)
       if (n<m) return 0;</pre>
       int r=0,w;
       if (P!=M) init(P=M), spinit(P); //sp for O(p) space
       for (i=0;i<a.size();i++)</pre>
           tie(q,p)=a[i];
            w = (11) ksm(q, g(n) - g(m) - g(n-m), p) *f(n) %p*ksm((11)f(m)*f(n-m) %p, ph[i] -1, \\
               p)%p;
           r=(r+(11)xs[i]*w)%M;
       }
       return r;
   }
#define C(x,y,z) exlucas::C(x,y,z)
```

#### 2.13 杜教筛

```
namespace du_seive
{
   typedef unsigned int ui;
   typedef unsigned long long 11;
   unordered_map<11,ui> mp;
   const int N=1e7+2;
   const ui p=998244353;
   ui pr[N],phi[N];
   ui cnt;
   void init()
       cnt=0;phi[1]=1;
       int i,j;
       for (i=2;i<N;i++)</pre>
           if (!phi[i])
              pr[cnt++]=i;
              phi[i]=i-1;
          for (j=0;i*pr[j]<N;j++)</pre>
              if (i%pr[j]==0)
              {
                  phi[i*pr[j]]=phi[i]*pr[j];
```

```
break;
              }
              phi[i*pr[j]]=phi[i]*(pr[j]-1);
           if ((phi[i]+=phi[i-1])>=p) phi[i]-=p;
       }
   }
   ui get_phi_sum(ll n)
       if (n<N) return phi[n];</pre>
       if (mp.count(n)) return mp[n];
       ui sum=0;
       for (11 i=2,j,k;i<=n;i=j+1)</pre>
           j=n/(k=n/i);
           sum=(sum+(ll)get_phi_sum(k)*(j-i+1))%p;
       ui nn=n%p;
       sum = (nn*(nn+111)/2+p-sum)%p;
       mp[n]=sum;
       return sum;
   }
using du_seive::init,du_seive::get_phi_sum;
```

### 2.14 线性规划

```
typedef long double db;//_float128
struct linear
   static const int N=45;//n+m
   db r[N][N];
   int col[N],row[N];
   const db eps=1e-10,inf=1e9;//1e-17
   template<typename T> linear(const vector<T> &a)//target: \sum a(i-1)xi
   {
       memset(r,0,sizeof r);
       memset(col,0,sizeof col);
       memset(row,0,sizeof row);
       n=a.size(); m=0;
       for (int i=1;i<=n;i++) r[0][i]=-a[i-1];</pre>
   template<typename T> void add(const vector<T> &a,db b)//limit: \sum a(i-1)xi
       <=b
   {
       for (int i=1;i<=n;i++) r[m][i]=-a[i-1];</pre>
       r[m][0]=b;
   }
   void pivot(int k, int t)
       swap(row[k+n],row[t]);
       db rkt=-r[k][t];
       int i,j;
       for (i=0;i<=n;i++) r[k][i]/=rkt;</pre>
       r[k][t]=-1/rkt;
       for (i=0;i<=m;i++) if (i!=k)</pre>
```

```
{
       db rit=r[i][t];
       if (rit>=-eps&&rit<=eps) continue;</pre>
       for (j=0;j<=n;j++) if (j!=t) r[i][j]+=rit*r[k][j];</pre>
       r[i][t]=r[k][t]*rit;
   }
}
bool init()
   int i;
   for (i=1;i<=n+m;i++) row[i]=i;</pre>
   while(1)
       int q=1;
       auto b_min=r[1][0];
       for (i=2;i<=m;i++) if (r[i][0]<b_min) b_min=r[i][0],q=i;</pre>
       if (b_min+eps>=0) return 1;
       int p=0;
       for (i=1;i<=n;i++) if (r[q][i]>eps&&(!p||row[i]>row[p])) p=i;
       if (!p) break;
       pivot(q,p);
   return 0;
}
bool simplex()
   while (1)
       int t=1,k=0,i;
       for (i=2;i<=n;i++) if (r[0][i]<r[0][t]) t=i;</pre>
       if (r[0][t]>=-eps) return 1;
       db ratio_min=inf;
       for (i=1;i<=m;i++) if (r[i][t]<-eps)</pre>
           db ratio=-r[i][0]/r[i][t];
           if (!k||ratio<ratio_min||ratio<=ratio_min+eps&&row[i]>row[k])
           {
               ratio_min=ratio;
               k=i;
           }
       }
       if (!k) break;
       pivot(k,t);
   return 0;
}
void solve(int type)
   if (!init())
       cout<<"Infeasible\n";</pre>
       return;
   if (!simplex())
       cout<<"Unbounded\n";</pre>
       return;
   cout<<(long double)(-r[0][0])<<'\n';</pre>
```

## 2.15 斐波那契数列

```
const int NN=3e7+2,M=4e5,N=1e6+10;
char c[NN];
11 n;
11 y,mo,x,z;
int p,i,j,k;
struct Q
   int a[2][2];
   Q(int b=0,int c=0,int d=0,int e=0){a[0][0]=b,a[0][1]=c,a[1][0]=d,a[1][1]=e;}
   Q operator*(const Q &o)
   {
      return Q(((11)a[0][0]*o.a[0][0]+(11)a[0][1]*o.a[1][0])%p,
             ((11)a[0][0]*o.a[0][1]+(11)a[0][1]*o.a[1][1])%p,
             ((11)a[1][0]*o.a[0][0]+(11)a[1][1]*o.a[1][0])%p,
             ((11)a[1][0]*o.a[0][1]+(11)a[1][1]*o.a[1][1])%p);
   }
};
struct ht
{
   11 v[N],a[N];
   int fir[N], nxt[N], st[N]; //和模数相适应
   int tp,p,ds;//自定义模数
   ht()\{tp=0,p=1e6+7,ds=0;\}
   void mdf(const ll x,const ll z)//位置, 值
      const int y=x%p;
      for (int i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i]=z,void();//若不可
          能重复不需要这一步if, 但需要for?
      v[++ds]=x;a[ds]=z;if (!fir[y]) st[++tp]=y;
      nxt[ds]=fir[y];fir[y]=ds;
   }
   11 find(const 11 x)
      const int y=x%p;int i;
      for (i=fir[y];i;i=nxt[i]) if (v[i]==x) break;
      if (!i) return 0;//返回值和是否判断依据要求决定
      return a[i];
   }
   void clear()
   {
      ++tp;
      while (--tp) fir[st[tp]]=0;ds=0;
   }
};
ht mp;
```

```
Q f[M],g[M],ji;
int fib(ll n)
   Q x=f[n\%k]*g[n/k];
   return x.a[0][1];
ll spefib(ll n)
{
   Q x=f[n\%k]*g[n/k];
   return (11)x.a[0][1]*p+x.a[1][1];
11 sj()
   11 x=rand();
   x=x<<15^rand();
   x=x<<15^rand();
   x=x<<15^rand();
   return x>0?x:-x;
11 ab(11 x)
{
   return x>0?x:-x;
}
int main()
   srand(383778817);
   scanf("%s\n%d",c+1,&p);
   k=sqrt((11)20*p)+1; ji=Q(0,1,1,1);
   f[0]=Q(1,0,0,1);for (i=1;i<=k;i++) f[i]=f[i-1]*ji;
   g[0]=Q(1,0,0,1);for (i=1;i<=k;i++) g[i]=g[i-1]*f[k];
   while (1)
   {
       x=sj()%(2011*p)+1;y=spefib(x);
       if (z=mp.find(y))
       {
          if (z!=x)
              mo=ab(x-z);
              break;
       } else mp.mdf(y,x);
   }
   for (i=1;c[i]>=48&&c[i]<=57;i++) n=(n*10+(c[i]^48))%mo;</pre>
   printf("%d",fib(n));
}
```

## 2.16 线性插值 (k 次幂和)

 $O(m), O(m)_{\circ}$ 

```
int f(int *a,int n,int m)//这种写法不包含0处取值, n是值, m-1是次数 {
    if (n<=m) return a[n];
    static int inv[N],1[N],r[N],ifac[N];
    int i;
    ifac[0]=inv[1]=1;
    for (i=2;i<=m;i++) inv[i]=p-(ll)p/i*inv[p%i]%p;
    for (i=1:i<=m:i++) ifac[i]=(ll)ifac[i-1]*inv[i]%p://以上可以预跑
```

```
int ans=0,rr=0;
    1[0]=1;r[m+1]=1;
    for (i=1;i<m;i++) 1[i]=(l1)1[i-1]*(n-i)%p;
    for (i=m;i;i--) r[i]=(l1)r[i+1]*(n-i)%p;
    for (i=1;i<=m;i++)
    {
        if ((m^i)&1) rr=p-a[i]; else rr=a[i];
        ans=(ans+(l1)rr*ifac[i-1]%p*ifac[m-i]%p*l[i-1]%p*r[i+1])%p;
    }
    return ans;
}</pre>
```

## 2.17 单原根(仅手动验证质数)

```
namespace get_root
   typedef unsigned int ui;
   typedef unsigned long long 11;
   ui ksm(ui x,ui y,ui p)
   {
       ui r=1;
       while (y)
           if (y&1) r=(ll)r*x%p;
          x=(11)x*x%p;y>>=1;
       }
       return r;
   vector<ui> getw(ui n)
       vector<ui> w;
       for (ui i=2;i*i<=n;i++) if (n%i==0)</pre>
           w.push_back(i);
           n/=i;
          for (ui j=n/i;n==i*j;j=n/i) n/=i;
       if (n>1) w.push_back(n);
       return w;
   int getrt(ui n)
       if (n<=2) return n-1;</pre>
       auto w=getw(n);
       ui ph=n;
       for (ui x:w) ph=ph/x*(x-1);
       w=getw(ph);
       for (ui &x:w) x=ph/x;
       for (ui i=2;i<n;i++) if (gcd(i,n)==1)</pre>
           for (ui x:w) if (ksm(i,x,n)==1) goto no;
           return i;
          no:;
       return -1;
   }
using get_root::getrt;
```

# 2.18 稍快单原根(仅验证质数)

```
namespace get_root
   typedef unsigned int ui;
   typedef unsigned long long 11;
   bool ied=0;
   const int N=1e5+5;
   vector<ui> pr;
   bool ed[N];
   void init()
   {
       pr.reserve(N);
       for (ui i=2;i<N;i++)</pre>
           if (!ed[i]) pr.push_back(i);
           for (ui x:pr)
           {
              if (i*x>=N) break;
              ed[i*x]=1;
              if (i\%x==0) break;
           }
       }
   }
   ui ksm(ui x,ui y,ui p)
       ui r=1;
       while (y)
           if (y&1) r=(11)r*x%p;
          x=(11)x*x%p;y>>=1;
       }
       return r;
   }
   vector<ui> getw(ui n)
       vector<ui> w;
       for (ui x:pr)
           if (x*x>n) break;
          if (n\%x==0)
              w.push_back(x);
              n/=x;
              for (ui i=n/x;n==x*i;i=n/x) n/=x;
           }
       if (n>1) w.push_back(n);
       return w;
   int getrt(ui n)
   {
       if (n<=2) return n-1;</pre>
       if (!ed[4]) init();
       auto w=getw(n);
       ui ph=n;
       for (ui x:w) ph=ph/x*(x-1);
       w=getw(ph);
       for (ui &x:w) x=ph/x;
```

```
for (ui i=2;i<n;i++) if (gcd(i,n)==1)
{
     for (ui x:w) if (ksm(i,x,n)==1) goto no;
     return i;
     no:;
     }
     return -1;
}
using get_root::getrt;</pre>
```

## 2.19 筛全部原根

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=1e6+2;
int ss[N],mn[N],fmn[N],phi[N];
int t,n,gs,i,d;
bool ed[N],av[N],yg[N],hv[N];
double inv[N];
void getfac(int x,int *a,int &n)
{
   int y=x,z;
   if (1^x&1)
       a[n=1]=2;x>>=1;while (1^x&1) x>>=1;
   while (x>1)
       x=1e-9+(x*inv[a[++n]=z=mn[x]]);
       while (x\%z==0) x=1e-9+x*inv[z];
   for (i=1;i<=n;i++) av[a[i]]=0,a[i]=1e-9+(y*inv[a[i]]);</pre>
int ksm(int x,int y,int p)
   int r=1;
   while (y)
       if (y&1) r=(ll)r*x%p;
       x=(11)x*x%p;y>>=1;
   }
   return r;
bool ck(int x,int *a,int n,int p)
   for (int i=1;i<=n;i++) if (ksm(x,a[i],p)==1) return 0;</pre>
   return 1;
}
void getrt(int x,int d)
   if (!hv[x]) return puts("0\n"),void();
   static int a[30];
   int n=0,y,i,g=0,c=d;y=phi[x];
   fill(av+1,av+y+1,1);
   getfac(y,a,n);
   for (i=1;i<x;i++) if (__gcd(i,x)==1&&ck(i,a,n,x)) break;</pre>
```

```
yg[g=i]=1;//g就是最小原根
   int j=(11)g*g%x;
   for (i=2;i<y;i++,j=(ll)j*g%x) yg[j]=av[i]=av[mn[i]]&av[fmn[i]];</pre>
   printf("%d\n",phi[y]);
   for (i=1;i<x;i++) if (yg[i])</pre>
       yg[i]=0;
       if (--c==0) printf("%d ",i),c=d;
   }puts("");
void init()
   int i,j,k,n=N-1;
   mn[1]=phi[1]=1;
   for (i=1;i<=n;i++) inv[i]=1.0/i;</pre>
   for (i=2;i<=n;i++)</pre>
   {
       if (!ed[i]) phi[mn[i]=ss[++gs]=i]=i-1,hv[i]=1;
       for (j=1; j \le gs \& (k=ss[j]*i) \le n; j++)
           ed[k]=1;mn[k]=ss[j];
           if (i%ss[j]==0) {phi[k]=phi[i]*ss[j];hv[k]=hv[i];break;}
          phi[k]=phi[i]*(ss[j]-1);
       }
   }
   for (i=n;i;i--) fmn[i]=1e-9+(i*inv[mn[i]]),hv[i]|=(1^i&1)&&hv[i>>1];
   for (i=8;i<=n;i<<=1) hv[i]=0;</pre>
int main()
{
   init();
   scanf("%d",&t);
   while (t--)
       scanf("%d%d",&n,&d);
       getrt(n,d);
   }
}
```

#### 2.20 圆上整点

```
if ((n>1)&&(n%4==1)) ans*=3;
printf("%d",ans<<2);</pre>
```

### 2.21 高斯消元 (通解)

```
tuple<int,vector<ui>,vector<ui>>> gauss(vector<vector<ui>>> a)//sum = a[i
   [m], rank of base, one sol, base
   int n=a.size(),m=a[0].size()-1,i,j,k,R=m;
   vector<int> fix(m,-1);
   for (i=k=0;i<m;i++)</pre>
   {
       for (j=k;j<n;j++) if (a[j][i]) break;</pre>
       if (j==n) continue;
       fix[i]=k;--R;
       swap(a[k],a[j]);
       ui *u=a[k].data();
       ui x=ksm(u[i],p-2);
       for (j=i;j<=m;j++) u[j]=(11)u[j]*x%p;</pre>
       for (auto &v:a) if (v.data()!=a[k].data())
          x=p-v[i];
          for (j=i;j<=m;j++) v[j]=(v[j]+(l1)x*u[j])%p;</pre>
       ++k;
   for (i=k;i<n;i++) if (a[i][m]) return {-1,{},{}};</pre>
   vector<ui> r(m);
   vector<vector<ui>>> c;
   for (i=0;i<m;i++) if (fix[i]!=-1) r[i]=a[fix[i]][m];</pre>
   for (i=0;i<m;i++) if (fix[i]==-1)</pre>
       vector<ui> r(m);
       r[i]=1;
       for (j=0;j<m;j++) if (fix[j]!=-1) r[j]=(p-a[fix[j]][i])%p;</pre>
       c.push_back(r);
   }
   return {R,r,c};
}
```

## 2.22 高斯消元 (列主元)

```
O(n^3), O(n^2).
```

```
k=i;
           for (j=i+1;j<n;j++) if (fabs(a[j][1])>fabs(a[k][1])) k=j;
           if (fabs(a[k][1]) < eps) {--i; continue;}</pre>
           if (i!=k) for (j=1;j<=m;j++) swap(a[i][j],a[k][j]);</pre>
           b=1/a[i][l];++r;a[i][l]=1;
           for (j=l+1;j<=m;j++) a[i][j]*=b;</pre>
           for (j=0;j<n;j++) if (i!=j)</pre>
               b=a[j][1];a[j][1]=0;
               for (k=l+1;k<=m;k++) a[j][k]-=b*a[i][k];</pre>
       }
       vector<db> X(m);
       for (j=0;j<1;j++) for (k=0;k<i;k++) if (a[k][j]==1)</pre>
           X[j]=-a[k][m];
           break;
       for (j=i;j<n&&~fg;j++)</pre>
           b=a[j][m];
           for (k=0;k<m;k++) b+=X[k]*a[j][k];</pre>
           if (fabs(b)>eps) fg=-1;
       return {X,r*fg};
   }
}
```

# 2.23 行列式求值(任意模数)

 $O(n^3), O(n^2)_{\circ}$ 

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=502,p=998244353;
int cal(int a[][N],int n)
{
   int i,j,k,r=1,fh=0,1;
   for (i=1;i<=n;i++)</pre>
   {
       for (j=i+1;j<=n;j++) if (a[j][i]) {k=j;break;}</pre>
       if (a[k][i]==0) return 0;
       if (i!=k) {swap(a[k],a[i]);fh^=1;}
       for (j=i+1;j<=n;j++)</pre>
           if (a[j][i]>a[i][i]) swap(a[j],a[i]),fh^=1;
           while (a[j][i])
              l=a[i][i]/a[j][i];
              for (k=i;k\leq n;k++) a[i][k]=(a[i][k]+(ll)(p-l)*a[j][k])%p;
              swap(a[j],a[i]);fh^=1;
           }
       r=(ll)r*a[i][i]%p;
   if (fh) return (p-r)%p;
```

```
int main()
{
    ios::sync_with_stdio(0);cin.tie(0);
    int n,i,j;
    static int a[N][N];
    cin>>n;
    for (i=1;i<=n;i++) for (j=1;j<=n;j++) cin>>a[i][j];
    cout<<cal(a,n)<<endl;
}
</pre>
```

# 2.24 行列式求值 (质数模数)

```
O(n^3), O(n^2)_{\circ}
```

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=502,p=998244353;
int ksm(int x,int y)
{
   int r=1;
   while (y)
       if (y&1) r=(11)r*x%p;
       y>>=1;x=(11)x*x%p;
   return r;
int cal(int a[][N],int n)
   int i,j,k,r=1,fh=0,1;
   for (i=1;i<=n;i++)</pre>
       for (j=i;j<=n;j++) if (a[j][i]) break;</pre>
       if (j>n) return 0;
       if (i!=j) swap(a[j],a[i]),fh^=1;
       r=(ll)r*a[i][i]%p;
       k=ksm(a[i][i],p-2);
       for (j=i;j<=n;j++) a[i][j]=(ll)a[i][j]*k%p;</pre>
       for (j=i+1;j<=n;j++)</pre>
           a[j][i]=p-a[j][i];
           for (k=i+1;k<=n;k++) a[j][k]=(a[j][k]+(ll)a[j][i]*a[i][k])%p;</pre>
          a[j][i]=0;
   }
   if (fh) return (p-r)%p;
   return r;
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int n,i,j;
   static int a[N][N];
   for (i=1;i<=n;i++) for (j=1;j<=n;j++) cin>>a[i][j];
   cout<<cal(a,n)<<endl;</pre>
```

```
/*
3
3 1 4
1 5 9
2 6 5
998244263
*/
```

### 2.25 稀疏矩阵系列

```
vector<ui> bm(const vector<ui> &a)
{
   vector<ui> r,lst;
   int n=a.size(),m=0,q=0,i,j,k=-1;
   ui D=0;
   for (i=0;i<n;i++)</pre>
       ui cur=0;
       for (j=0;j<m;j++) cur=(cur+(ll)a[i-j-1]*r[j])%p;</pre>
       cur=(a[i]+p-cur)%p;
       if (!cur) continue;
       if (k==-1)
          k=i;
          D=cur;
          r.resize(m=i+1);
           continue;
       }
       auto v=r;
       ui x=(11) cur*ksm(D,p-2)%p;
       if (m<q+i-k) r.resize(m=q+i-k);</pre>
       (r[i-k-1]+=x)\%=p;
       ui *b=r.data()+i-k;
       x=(p-x)%p;
       for (j=0;j<q;j++) b[j]=(b[j]+(l1)x*lst[j])%p;</pre>
       if (v.size()+k<lst.size()+i)</pre>
       {
           lst=v;
           q=v.size();
          k=i;
          D=cur;
       }
   }
   return r;
#define safe
struct Q
{
   int x,y;
   ui w;
};
mt19937_64 rnd(9980);
vector<ui> minpoly(int n,const vector<Q> &a)//[0,n),max:1
{
   for (auto [x,y,w]:a) assert(min(x,y)>=0&&max(x,y)<n);
   vector\langle u(n), v(n), b(n*2+1), tmp(n);
   int i;
   for (ui &x:u) x=rnd()%p;
```

```
for (ui &x:v) x=rnd()%p;
   assert(*min_element(all(u))&&*min_element(all(v)));
   for (ui &r:b)
       for (i=0;i<n;i++) r=(r+(ll)u[i]*v[i])%p;</pre>
       fill(all(tmp),0);
       for (auto [x,y,w]:a) tmp[x]=(tmp[x]+(ll)w*v[y])%p;
       swap(v,tmp);
   }
   auto r=bm(b);
   #ifdef safe
       for (ui &x:u) x=rnd()%p;
       for (ui &x:v) x=rnd()%p;
       for (ui &r:b)
          for (i=0;i<n;i++) r=(r+(ll)u[i]*v[i])%p;</pre>
          fill(all(tmp),0);
          for (auto [x,y,w]:a) tmp[x]=(tmp[x]+(11)w*v[y])%p;
          swap(v,tmp);
       }
       auto rr=bm(b);
       assert(r==rr);
   #endif
   reverse(all(r));
   for (ui &x:r) if (x) x=p-x;
   r.push_back(1);
   return r;
ui det(int n,vector<Q> a)//[0,m)
   vector<ui> b(n);
   for (ui &x:b) x=rnd()%p;
   assert(*min_element(all(b)));
   for (auto &[x,y,w]:a) w=(11)w*b[x]%p;
   ui r=minpoly(n,a)[0],tmp=1;
   for (ui x:b) tmp=(ll)tmp*x%p;
   r=(11)r*ksm(tmp,p-2)%p;
   #ifdef safe
       for (ui &x:b) x=rnd()%p;
       assert(*min_element(all(b)));
       for (auto &[x,y,w]:a) w=(11)w*b[x]%p;
       ui rr=minpoly(n,a)[0],tmpp=1;
       for (ui x:b) tmpp=(ll)tmpp*x%p;
       rr=(11)rr*ksm(tmpp,p-2)%p*ksm(tmp,p-2)%p;
       assert(r==rr);
   #endif
   return n&1?(p-r)%p:r;
vector<ui> gauss(const vector<Q> &a,vector<ui> v)
   int n=v.size(),i,j;
   for (auto [x,y,w]:a) assert(0<=x&&x<n&&0<=y&&y<n);</pre>
   vector\langle u(n),b(2*n+1),tmp(n),tv=v;
   for (ui &x:u) x=rnd()%p;
   assert(*min_element(all(u)));
   for (ui &r:b)
       for (i=0;i<n;i++) r=(r+(ll)u[i]*v[i])%p;</pre>
       fill(all(tmp),0);
```

```
for (auto [x,y,w]:a) tmp[x]=(tmp[x]+(11)w*v[y])%p;
   swap(v,tmp);
}
auto f=bm(b);
f.insert(f.begin(),p-1);
int m=(int)f.size()-2;
v=tv;fill(all(u),0);
ui x;
for (i=0;i<=m;i++)</pre>
   x=f[m-i];
   for (j=0;j<n;j++) u[j]=(u[j]+(11)v[j]*x)%p;</pre>
   fill(all(tmp),0);
   for (auto [x,y,w]:a) tmp[x]=(tmp[x]+(l1)w*v[y])%p;
   swap(v,tmp);
x=ksm((p-f.back())%p,p-2);
for (ui &y:u) y=(11)y*x%p;
#ifdef safe
   for (auto [x,y,w]:a) tv[x]=(tv[x]+(11)(p-w)*u[y])%p;
   assert(!*min_element(all(tv)));
#endif
return u;
```

#### 2.26 Min_25 筛

$$f(p^k) = p^k(p^k - 1), \ \ \ \ \ \ \sum_{i=1}^n f(i).$$

```
const int N=1e5+2,p=1e9+7,i6=166666668;
11 fs[N<<1],m;</pre>
int ss[N],ys[N<<1],s[N],f[N<<1],g[N<<1],ls[N<<1],cs[N<<1];</pre>
int gs,n,i,j,k,cnt,ct,ans,sq;
bool ed[N];
int S(11 n,int x)
{
   int r,i,j,l;
   11 k;
   if (ss[x]>=n) return 0;
   if (n>sq) r=g[ys[m/n]]; else r=g[n];
   if ((r=r-s[x])<0) r+=p;</pre>
   for (i=x+1;(ll)ss[i]*ss[i]<=n;i++) for (j=1,k=ss[i];k<=n;j++,k*=ss[i])</pre>
       l=(k-1)%p;
       r=(r+(l1)l*(l+1)%p*((j!=1)+S(n/k,i)))%p;
   return r;
int main()
   n=1e5;
   for (i=2;i<=n;i++)</pre>
       if (!ed[i]) ss[++gs]=i;
       for (j=1;(j<=gs)&&(i*ss[j]<=n);j++)</pre>
       {
           ed[i*ss[j]]=1;
           if (i%ss[j]==0) break;
```

```
}
   }ss[gs+1]=1e6;
   s[1]=ss[1]*ss[1];
   for (i=2;i<=gs;i++) s[i]=(s[i-1]+(11)ss[i]*ss[i])%p;//s 是多项式在素数位置的
       前缀和
   memcpy(cs,s,sizeof(s));
   11 i,j,k,x,z; scanf("%11d",&m);
   sq=n=sqrt(m); while ((ll)(n+1)*(n+1)<=m) ++n;
   for (i=n;i<=m;i=j+1) {j=m/(m/i);++cnt;}ct=cnt++;</pre>
   for (i=1;i<=m;i=j+1)</pre>
   {
       j=m/(k=m/i);
       if (k<=n) g[fs[k]=k]=(k*(k+1)*(k<<1|1)/6-1)%p;//这里是多项式前缀和(不含1
       else
       {
          z=k%p;//一样
          g[ys[j]=-cnt]=(z*(z+1)%p*(z<<1|1)%p+p-6)*i6%p;fs[cnt]=k;
       }
   }
   cnt=ct;
   for (j=1;(j\leq gs)\&\&(z=(l1)ss[j]*ss[j]);j++) for (i=cnt;z\leq fs[i];i--)
       x=fs[i]/ss[j];if (x>n) x=ys[m/x];
       g[i]=(g[i]+(ll)(p-ss[j])*ss[j]%p*(g[x]-s[j-1]+p))%p;//另一处需要修改的
   memcpy(ls,g,sizeof(g));
   s[1]=ss[1];
   for (i=2;i<=gs;i++) s[i]=s[i-1]+ss[i];</pre>
   cnt=n-1;
   for (i=n;i<=m;i=j+1) {j=m/(m/i);++cnt;}ct=cnt++;</pre>
   for (i=1;i<=m;i=j+1)</pre>
   {
       j=m/(k=m/i);
       if (k \le n) g[fs[k] = k] = ((k*(k+1) >> 1) - 1)%p;
       else
          z=k\%p;
          g[ys[j]=-cnt]=(z*(z+1)-2>>1)%p;fs[cnt]=k;
   }
   cnt=ct;
   for (j=1;(j<=gs)&&(z=(11)ss[j]*ss[j]);j++) for (i=cnt;z<=fs[i];i--)
       x=fs[i]/ss[j];if (x>n) x=ys[m/x];
       g[i]=(g[i]+(11)(p-ss[j])*(g[x]-s[j-1]+p))%p;
   for (i=1;i<=cnt;i++) if ((g[i]=ls[i]-g[i])<0) g[i]+=p;</pre>
   for (i=1;i<=gs;i++) if ((s[i]=cs[i]-s[i])<0) s[i]+=p;</pre>
   ans=S(m,0)+1;if (ans==p) ans=0;printf("%d",ans);
}
```

### 2.27 Min 25 筛 (卡常,素数个数,注意评测机 double 性能)

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
```

```
const int N=3.2e5+2;
ll s[N];
int ss[N],ys[N],gs=0;
bool ed[N];
11 cal(11 m)
   static ll g[N<<1],fs[N<<1];</pre>
   ll i,j,k,x;
   int n;
   int p,q,cnt;
   n=round(sqrt(m));
   q=lower_bound(ss+1,ss+gs+1,n)-ss;
   memset(g,0,sizeof(g));memset(ys,0,sizeof(ys));cnt=n-1;
   for (i=n;i<=m;i=j+1) {j=m/(m/i);++cnt;}int ct=cnt++;</pre>
   for (i=1;i<=m;i=j+1)</pre>
       j=m/(k=m/i);
       if (k<=n) g[fs[k]=k]=k-1; else {g[ys[j]=--cnt]=k-1;fs[cnt]=k;}</pre>
   }cnt=ct;
   for (j=1;j<=q;j++) for (i=cnt;(ll)ss[j]*ss[j]<=fs[i];i--)</pre>
       x=fs[i]/ss[j];if (x>n) x=ys[m/x];
       g[i] -= g[x] - j + 1;
   return g[cnt];//这里 g[cnt-i+1] 表示的是 [1,m/i] 的答案
int main()
   int n,i,j,t;
   n=3.2e5;
   for (i=2;i<=n;i++)</pre>
       if (!ed[i]) ss[++gs]=i;
       for (j=1;(j<=gs)&&(i*ss[j]<=n);j++)</pre>
           ed[i*ss[j]]=1;
           if (i%ss[j]==0) break;
       }
   s[1]=ss[1];
   for (i=2;i<=gs;i++) s[i]=s[i-1]+ss[i];</pre>
   t=1;
   11 m;
   while (t--) cin>>m, cout<<cal(m)<<'\n';
}
```

## 2.28 扩展 min-max 容斥 (重返现世)

```
k-th \max\{S\} = \sum_{T \subseteq S} (-1)^{|T|-k} {|T|-1 \choose k-1} \min\{T\}
```

```
scanf("%d%d%d",&n,&q,&m);inv[1]=1;q=n+1-q;
for (i=2;i<=m;i++) inv[i]=p-(ll)p/i*inv[p%i]%p;
for (i=1;i<=n;i++) scanf("%d",a+i);f[0][0]=1;
for (j=1;j<=n;j++) for (i=q;i;i--) for (k=m;k>=a[j];k--) if ((f[i][k]=f[i][k]+f[i-1][k-a[j]]-f[i][k-a[j]])>=p) f[i][k]-=p; else if (f[i][k]<0) f[i][k]+=p;
for (i=1;i<=m;i++) ans=(ans+(ll)f[q][i]*inv[i])%p;
ans=(ll)ans*m%p;printf("%d",ans);</pre>
```

### 2.29 模数为偶数 FWT & 光速乘

 $O(n2^n)$ ,  $O(2^n)$ .

```
const int N=1<<20,M=21;</pre>
int x[M];
11 p,f[N],g[N];
int n,m,c;
11 mul(11 x,11 y)
   x=x*y-(11)((1db)x/p*y+1e-8)*p;
   if (x<0) return x+p;return x;</pre>
}
void read(int &x)
   c=getchar();
   while ((c<48)||(c>57)) c=getchar();
   x=c^48;c=getchar();
   while ((c>=48)\&\&(c<=57))
       x=x*10+(c^48);
       c=getchar();
   }
void dft(ll *a)
{
   int i,j,k,l;
   11 b;
   for (i=1;i<n;i=1)</pre>
       l=i<<1;
       for (j=0; j< n; j+=1) for (k=0; k< i; k++)
           b=a[j|k|i];
           a[j|k|i]=(a[j|k]-b+p)%p;
          a[j|k]=(a[j|k]+b)%p;
       }
   }
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   11 t;int i;
   cin>>m>>t>>p;p*=(n=1<<m);
   for (i=0;i<n;i++) cin>>f[i];
   dft(f);
   for (i=0;i<=m;i++) cin>>x[i];
   for (i=1;i<n;i++) g[i]=g[i>>1]+(i&1);
   for (i=0;i<n;i++) g[i]=x[g[i]];dft(g);</pre>
   while (t)
       if (t&1) for (i=0;i<n;i++) f[i]=mul(f[i],g[i]);</pre>
       for (i=0;i<n;i++) g[i]=mul(g[i],g[i]);t>>=1;
   }
   dft(f);
   for (i=0;i<n;i++) cout<<(f[i]>>m)<<'\n';</pre>
```

### 2.30 二次剩余

```
namespace cipolla
   typedef unsigned int ui;
   typedef unsigned long long 11;
   ui p,w;
   struct Q
   {
       11 x,y;
       Q operator*(const Q &o) const {return {(x*o.x+y*o.y%p*w)%p,(x*o.y+y*o.x)
   };
   ui ksm(ll x,int y)
   {
       ll r=1;
       while (y)
          if (y&1) r=r*x%p;
          x=x*x%p;y>>=1;
       return r;
   }
   Q ksm(Q x,int y)
   {
       Q r=\{1,0\};
       while (y)
          if (y&1) r=r*x;
          x=x*x;y>>=1;
       return r;
   int mosqrt(ui x,ui P)//0<=x<P</pre>
   {
       if (x==0||P==2) return x;
       p=P;
       if (ksm(x,p-1>>1)!=1) return -1;
       mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
       do y=rnd()%p,w=((ll)y*y+p-x)%p; while (ksm(w,p-1>>1)<=1);//not for p=2
       y=ksm({y,1},p+1>>1).x;
       if (y*2>p) y=p-y;//两解取小
       return y;
using cipolla::mosqrt;
```

### 2.31 k 次剩余

```
namespace get_root
{
    typedef unsigned int ui;
    typedef unsigned long long ll;
    bool ied=0;
    const int N=1e5+5;
    vector<ui> pr;
    bool ed[N];
```

```
void init()
       pr.reserve(N);
       for (ui i=2;i<N;i++)</pre>
           if (!ed[i]) pr.push_back(i);
           for (ui x:pr)
              if (i*x>=N) break;
              ed[i*x]=1;
              if (i%x==0) break;
           }
       }
   }
   ui ksm(ui x,ui y,ui p)
       ui r=1;
       while (y)
           if (y&1) r=(ll)r*x%p;
          x=(11)x*x%p;y>>=1;
       return r;
   }
   vector<ui> getw(ui n)
       vector<ui> w;
       for (ui x:pr)
           if (x*x>n) break;
           if (n\%x==0)
              w.push_back(x);
              n/=x;
              for (ui i=n/x;n==x*i;i=n/x) n/=x;
           }
       if (n>1) w.push_back(n);
       return w;
   int getrt(ui n)
       if (n<=2) return n-1;</pre>
       if (!ed[4]) init();
       auto w=getw(n);
       ui ph=n;
       for (ui x:w) ph=ph/x*(x-1);
       w=getw(ph);
       for (ui &x:w) x=ph/x;
       for (ui i=2;i<n;i++) if (gcd(i,n)==1)</pre>
           for (ui x:w) if (ksm(i,x,n)==1) goto no;
          return i;
          no:;
       return -1;
   }
}
namespace BSGS
```

```
{
   typedef unsigned int ui;
   typedef unsigned long long 11;
   template<int N, typename T, typename TT> struct ht//个数, 定义域, 值域
      const static int p=1e6+7,M=p+2;
      TT a[N];
      T v[N];
      int fir[p+2],nxt[N],st[p+2];//和模数相适应
      int tp,ds;//自定义模数
      ht(){memset(fir,0,sizeof fir);tp=ds=0;}
      void mdf(T x,TT z)//位置, 值
      {
          ui y=x%p;
          for (int i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i]=z,void();//若
              不可能重复不需要 for
          v[++ds]=x;a[ds]=z;
          if (!fir[y]) st[++tp]=y;
          nxt[ds]=fir[y];fir[y]=ds;
      }
      TT find(T x)
          ui y=x%p;
          int i;
          for (i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i];
          return 0;//返回值和是否判断依据要求决定
      }
      void clear()
      {
          ++tp;
          while (--tp) fir[st[tp]]=0;
          ds=0;
      }
   };
   const int N=5e4;
   ht<N,ui,ui> s;
   int exgcd(int a,int b)
      if (a==1) return 1;
      return (1-(long long)b*exgcd(b%a,a))/a;//not 11
   }
   int bsgs(ui a,ui b,ui p)
      s.clear();
      a%=p;b%=p;
      if (!a) return 1-min((int)b,2);//含 -1
      ui i,j,k,x,y;
      x=sqrt(p)+2;
      for (i=0,j=1;i<x;i++,j=(l1)j*a%p)</pre>
          if (j==b) return i;
          s.mdf((ll)j*b%p,i+1);
      }
      for (i=1;i<=x;i++,j=(ll)j*k%p) if (y=s.find(j)) return (ll)i*x-y+1;</pre>
      return -1;
   bool isprime(ui p)
   {
```

```
if (p<=1) return 0;</pre>
       for (ui i=2;i*i<=p;i++) if (p%i==0) return 0;</pre>
       return 1;
   }
   int exbsgs(ui a,ui b,ui p)//a^x=b(mod p)
       //if (isprime(p)) return bsgs(a,b,p);
       a%=p;b%=p;
       ui i,j,k,x,y=_lg(p),cnt=0;
       for (i=0,j=1%p;i<=y;i++,j=(l1)j*a%p) if (j==b) return i;</pre>
       y=1;
       while (1)
          if ((x=gcd(a,p))==1) break;
          if (b%x) return -1;//no sol
          ++cnt;
          p/=x;b/=x;
          y=(11)y*(a/x)%p;
       }
       a%=p;
       b=(11)b*(p+exgcd(y,p))%p;
       int r=bsgs(a,b,p);
       return r==-1?-1:r+cnt;
   }
pair<ll,ll> exgcd(ll a,ll b,ll c)//ax+by=c, {-1,-1} 无解, b=0 返回 {c/a,0}, 否则
    返回最小非负 x
   assert(a||b);
   if (!b) return {c/a,0};
   if (a<0) a=-a,b=-b,c=-c;</pre>
   11 d=gcd(a,b);
   if (c%d) return {-1,-1};
   11 x=1,x1=0,p=a,q=b,k;
   b=abs(b);
   while (b)
       k=a/b;
       x==k*x1;a==k*b;
       swap(x,x1);
       swap(a,b);
   b=abs(q/d);
   x=x*(c/d)\%b;
   if (x<0) x+=b;
   return \{x,(c-p*x)/q\};
ll fun(ll a,ll b,ll p)//ax=b(mod p)
{
   return exgcd(-p,a,b).second%p;
using get_root::getrt;
using BSGS::bsgs,BSGS::exbsgs;
int nth_root(ui k,ui y,ui p)//x^k=y(mod p)
   if (k==0) return y==1?0:-1;
   if (y==0) return 0;
   ui g=getrt(p);
   ui z=bsgs(g,y,p);
```

```
ll x=fun(k,z,p-1);
  if (x==-1) return -1;
  return get_root::ksm(g,x,p);
}
```

#### 网上的超快版本

```
#define popcount __builtin_popcount
using namespace std;
typedef long long int 11;
//using ll=__int128_t;
typedef pair<ll, int> P;
11 gcd(ll a, ll b){
   if (b==0) return a;
   return gcd(b, a%b);
}
ll powmod(ll a, ll k, ll mod){
   11 ap=a, ans=1;
   while(k){
       if (k&1){
          ans*=ap;
           ans%=mod;
       ap=ap*ap;
       ap%=mod;
       k>>=1;
   }
   return ans;
ll inv(ll a, ll m){
   ll b=m, x=1, y=0;
   while(b>0){
       11 t=a/b;
       swap(a-=t*b, b);
       swap(x-=t*y, y);
   return (x%m+m)%m;
vector<P> fac(ll x){
   vector<P> ret;
   for(11 i=2; i*i<=x; i++){</pre>
       if (x\%i==0){
           int e=0;
           while (x\%i==0) {
              x/=i;
              e++;
          ret.push_back({i, e});
   }
   if (x>1) ret.push_back({x, 1});
   return ret;
//mt19937_64 mt(334);
mt19937 mt(334);
ll solve1(ll p, ll q, int e, ll a){
   int s=0;
   ll r=p-1, qs=1, qp=1;
   while (r\%q==0) {
       r/=q;
```

```
qs*=q;
       s++;
   }
   for(int i=0; i<e; i++) qp*=q;</pre>
   11 d=qp-inv(r%qp, qp);
   11 t=(d*r+1)/qp;
   ll at=powmod(a, t, p), inva=inv(a, p);
   if (e>=s){
       if (powmod(at, qp, p)!=a) return -1;
       else return at;
   //uniform_int_distribution<long long> rnd(1, p-1);
   uniform_int_distribution<> rnd(1, p-1);
   ll rv;
   while(1){
       rv=powmod(rnd(mt), r, p);
       if (powmod(rv, qs/q, p)!=1) break;
   }
   int i=0;
   ll qi=1, sq=1;
   while(sq*sq<q) sq++;</pre>
   while(i<s-e){</pre>
       11 qq=qs/qp/qi/q;
       vector<P> v(sq);
       ll rvi=powmod(rv, qp*qq*(p-2)%(p-1), p), rvp=powmod(rv, sq*qp*qq, p);
       ll x=powmod(powmod(at, qp, p)*invap, qq*(p-2)(p-1), p), y=1;
       for(int j=0; j<sq; j++){</pre>
           v[j]=P(x, j);
           (x*=rvi)%=p;
       }
       sort(v.begin(), v.end());
       11 z=-1;
       for(int j=0; j<sq; j++){</pre>
           int l=lower_bound(v.begin(), v.end(), P(y, 0))-v.begin();
           if (v[1].first==y){
              z=v[1].second+j*sq;
              break;
           }
           (y*=rvp)%=p;
       if (z==-1) return -1;
       (at*=powmod(rv, z, p))%=p;
       i++;
       qi*=q;
       rv=powmod(rv, q, p);
   return at;
11 solve0(11 p, 11 q, 11 r, 11 a){
   ll d=q-inv(r\%q, q);
   11 t=(d*r+1)/q;
   ll at=powmod(a, t, p), inva=inv(a, p);
   if (powmod(at, q, p)!=a) return -1;
   else return at;
ll solve(ll p, ll k, ll a)//p k y
   if (k==0)
   {
```

```
if (a==1) return 1;
       return -1;
   }
   if (a==0) return 0;
   if (p==2 || a==1) return 1;
   ll a1=a;
   11 g=gcd(p-1, k);
   ll c=inv(k/g\%((p-1)/g), (p-1)/g);
   a=powmod(a, c, p);
   if (g==1){
       if (powmod(a, k, p)==a1) return a;
       else return -1;
   ll g1=gcd(g, (p-1)/g), g2=g;
   vector<P> f1=fac(g1), f;
   for(auto r:f1){
       ll q=r.first;
       int e=0;
       while (g2\%q==0) {
          g2/=q;
          e++;
       f.push_back({q, e});
   }
   11 ret=1, gp=1;
   if (g2>1){
       ll x=solve0(p, g2, (p-1)/g2, a);
       if (x==-1) return -1;
       ret=x, gp*=g2;
   }
   for(auto r:f){
       11 qp=1;
       for(int i=0; i<r.second; i++) qp*=r.first;</pre>
       ll x=solve1(p, r.first, r.second, a);
       if (x==-1) return -1;
       if (gp==1){
          ret=x, gp*=qp;
          continue;
       }
       ll s=inv(gp%qp, qp), t=(1-gp*s)/qp;
       if (t>=0) ret=powmod(ret, t, p);
       else ret=powmod(ret, p-1+t%(p-1), p);
       if (s>=0) x=powmod(x, s, p);
       else x=powmod(x, p-1+s\%(p-1), p);
       (ret*=x)\%=p;
       gp*=qp;
   if (powmod(ret, k, p)!=a1) return -1;
   return ret;
}
```

# 2.32 FWT/FST

 $O(n2^n), O(2^n)_{\circ}$ 

```
void fwt_and(vector<ui> &A)//本质: 母集和
{
    ui n=A.size(),*a=A.data(),i,j,k,l,*f,*g;
    for (i=1:i<n:i=1)</pre>
```

```
{
       1=i*2;
       for (j=0;j<n;j+=1)</pre>
           f=a+j;g=a+j+i;
           for (k=0;k<i;k++) if ((f[k]+=g[k])>=p) f[k]-=p;
       }
   }
void ifwt_and(vector<ui> &A)
   ui n=A.size(),*a=A.data(),i,j,k,l,*f,*g;
   for (i=1;i<n;i=1)</pre>
       1=i*2;
       for (j=0;j<n;j+=1)</pre>
           f=a+j;g=a+j+i;
           for (k=0;k<i;k++) if ((f[k]-=g[k])>=p) f[k]+=p;//unsigned
       }
   }
void fwt_or(vector<ui> &A)//本质: 子集和
   ui n=A.size(),*a=A.data(),i,j,k,l,*f,*g;
   for (i=1;i<n;i=1)</pre>
   {
       1=i*2;
       for (j=0;j<n;j+=1)</pre>
           f=a+j;g=a+j+i;
           for (k=0;k<i;k++) if ((g[k]+=f[k])>=p) g[k]-=p;
       }
   }
void ifwt_or(vector<ui> &A)
   ui n=A.size(),*a=A.data(),i,j,k,l,*f,*g;
   for (i=1;i<n;i=1)</pre>
       l=i*2;
       for (j=0;j<n;j+=1)</pre>
           f=a+j;g=a+j+i;
           for (k=0; k<i; k++) if ((g[k]-=f[k])>=p) g[k]+=p;//unsigned
       }
   }
void fwt_xor(vector<ui> &A)
   ui n=A.size(),*a=A.data(),i,j,k,l,*f,*g;
   for (i=1;i<n;i=1)</pre>
   {
       1=i*2;
       for (j=0;j<n;j+=1)</pre>
           f=a+j;g=a+j+i;
           for (k=0;k<i;k++)</pre>
           {
```

```
if ((f[k]+=g[k])>=p) f[k]-=p;
              g[k]=(f[k]+2*(p-g[k]))%p;
           }
       }
   }
void ifwt_xor(vector<ui> &A)
   ui n=A.size(),*a=A.data(),i,j,k,l,*f,*g,x=p+1>>1,y=1;
   for (i=1;i<n;i=1)</pre>
       1=i*2;
       for (j=0;j<n;j+=1)</pre>
           f=a+j;g=a+j+i;
           for (k=0;k<i;k++)</pre>
           {
               if ((f[k]+=g[k])>=p) f[k]-=p;
               g[k]=(f[k]+2*(p-g[k]))%p;
           }
       y=(11)y*x%p;
   for (i=0;i<n;i++) a[i]=(ll)a[i]*y%p;</pre>
vector<ui> fst(const vector<ui> &s,const vector<ui> &t)
{
   int n=s.size(),m=__builtin_ctz(n),i,j,k;
   vector<ui> a[m+1],b[m+1],c[m+1],r(n);
   for (i=0;i<=m;i++) a[i].resize(n),b[i].resize(n),c[i].resize(n);</pre>
   for (i=0;i<n;i++)</pre>
       k=__builtin_popcount(i);
       a[k][i]=s[i];
       b[k][i]=t[i];
   }
   for (i=0;i<m;i++) fwt_or(a[i]),fwt_or(b[i]);</pre>
   for (i=0;i \le m;i++) for (j=0;j \le i;j++) for (k=0;k \le n;k++) c[i][k]=(c[i][k]+(11)
        )a[j][k]*b[i-j][k])%p;
   for (i=1;i<=m;i++) ifwt_or(c[i]);</pre>
   for (i=0;i<n;i++) r[i]=c[_builtin_popcount(i)][i];</pre>
   return r;
```

#### 2.33 NTT

```
typedef unsigned int ui;

typedef unsigned long long ll;

#define all(x) (x).begin(),(x).end()

namespace NTT//禁止混用三模与普通 NTT

{

    mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

    #define all(x) (x).begin(),(x).end()

    const int N=1<<22;//务必修改

    //#define MTT

    //#define CRT

    typedef unsigned int ui;

    typedef unsigned long long ll;
```

```
const ui g=3,f=1u<<31,I=86'583'718;//g^{(p-1)/4}
#ifndef MTT
   const ui p=998244353;
   ui w[N];
#else
   const ui p=1e9+7;
   const ui p1=469'762'049,p2=998'244'353,p3=1004'535'809;//三模,原根都是 3,非
   const ui inv_p1=554'580'198,inv_p12=395'249'030;//三模, 1 关于 2 逆, 1*2 关于
        3 逆, 1*2 mod 3
#endif
   ui r[N];
   ui inv[N],fac[N],ifac[N],W;//W for mosqrt
   ui ksm(ui x,ui y)
      ui r=1;
      while (y)
       {
          if (y&1) r=(11)r*x%p;
          x=(11)x*x%p;
          y>>=1;
      return r;
   }
   vector<ui> getinvs(vector<ui> a)
       static ui l[N],r[N];
       int n=a.size(),i;
      if (n<=2)
          for (i=0;i<n;i++) a[i]=ksm(a[i],p-2);</pre>
          return a;
      1[0]=a[0];r[n-1]=a[n-1];
      for (i=1;i<n;i++) l[i]=(l1)l[i-1]*a[i]%p;</pre>
      for (i=n-2;i;i--) r[i]=(ll)r[i+1]*a[i]%p;
      ui x=ksm(l[n-1],p-2);
       a[0]=(11)x*r[1]%p;a[n-1]=(11)x*l[n-2]%p;
      for (i=1;i<n-1;i++) a[i]=(l1)x*l[i-1]%p*r[i+1]%p;</pre>
      return a;
   }
//以下为开方
   struct P
   {
      ui x,y;
      P(ui a=0,ui b=0):x(a),y(b){}
      P operator*(P &a)
          return P(((11)x*a.x+(11)y*a.y%p*W)%p,((11)x*a.y+(11)y*a.x)%p);
      }
   };
   ui ksm(P x,ui y)
   {
      P r(1,0);
      while (y)
          if (y&1) r=r*x;
          x=x*x;y>>=1;
```

```
return r.x;
   int mosqrt(ui x)
       if (x==0) return 0;
       if (ksm(x,p-1>>1)!=1) {cerr<<"No mosqrt"<<endl;exit(0);}</pre>
       ui y;
       do y=rnd()%p; while (ksm(W=((ll)y*y%p+p-x)%p,p-1>>1)<=1);//not for p=2
       y=ksm(P(y,1),p+1>>1);
       return y*2<p?y:p-y;</pre>
//以上为开方
#ifdef MTT
   #ifdef CRT
       void init(ui);
       template<const ui p> struct M
       {
          ui w[N];
           ui ksm(ui x,ui y)
              ui r=1;
              while (y)
                  if (y&1) r=(ll)r*x%p;
                  x=(11)x*x%p;
                  y>>=1;
               }
              return r;
           }
           void init(ui n)
               static ui pre=0;
              ui i,j,k,l,wn;
              for (j=k=1;j<n;j=1,k++)</pre>
                  l=j<<1;
                  wn=ksm(g,p-1>>k);
                  w[j]=1;
                  for (i=j+1;i<1;i++) w[i]=(l1)w[i-1]*wn%p;</pre>
               }
           }
           void dft(vector<ui> &a,int o=0)
              ui n=a.size(),i,j,k,x,y,*f,*g,*wn,*A=a.data();
              NTT::init(n);
              for (i=1;i<n;i++) if (i<r[i]) swap(A[i],A[r[i]]);</pre>
              for (k=1; k<n; k<<=1)</pre>
                  wn=w+k;
                  for (i=0;i<n;i+=k<<1)</pre>
                      f=A+i;g=A+i+k;
                      for (j=0;j<k;j++)</pre>
                          x=f[j];y=(ll)g[j]*wn[j]%p;
                          if (x+y>=p) f[j]=x+y-p; else f[j]=x+y;
                          if (x<y) g[j]=x-y+p; else g[j]=x-y;</pre>
                      }
                  }
```

```
}
               if (o)
               {
                  x=ksm(n,p-2);
                  for (i=0;i<n;i++) A[i]=(11)A[i]*x%p;</pre>
                  reverse(A+1,A+n);
               }
           }
       };
       M<p1> s1;
       M<p2> s2;
       M<p3> s3;
       void init(ui n)
           static int pre=0;
           if (pre==n) return;
           ui b=__builtin_ctz(n)-1,i;
           for (i=1;i<n;i++) r[i]=r[i>>1]>>1|(i&1)<<b;++b;</pre>
           if (pre<n)</pre>
               s1.init(n);
               s2.init(n);
               s3.init(n);
           }
           pre=n;
       }
   #endif
#else
   void init(ui n)
   {
       static int pr=0,pw=0;
       if (pr==n) return;
       ui b=__builtin_ctz(n)-1,i,j,k,l,wn;
       for (i=1;i<n;i++) r[i]=r[i>>1]>>1|(i&1)<<b;</pre>
       if (pw<n)</pre>
       {
           for (j=k=1;j<n;j=1,k++)</pre>
               l=j<<1;
               wn=ksm(g,p-1>>k);
               w[j]=1;
               for (i=j+1;i<l;i++) w[i]=(ll)w[i-1]*wn%p;</pre>
           }
           pw=n;
       }
       pr=n;
   }
#endif
   ui cal(ui x) {return 1u<<__lg(max(x,1u)*2-1);}
   void getinv(int n)
   {
       static int pre=0;
       if (!pre) pre=inv[1]=1;
       if (n<=pre) return;</pre>
       for (ui i=pre+1,j;i<=n;i++)</pre>
       {
           j=p/i;
           inv[i]=(11)(p-j)*inv[p-i*j]%p;
```

```
pre=n;
void getfac(int n)
   static int pre=-1;
   if (pre==-1) pre=0,ifac[0]=fac[0]=1;
   if (n<=pre) return;</pre>
   getinv(n);
   for (ui i=pre+1,j;i<=n;i++) fac[i]=(ll)fac[i-1]*i%p,ifac[i]=(ll)ifac[i</pre>
       -1]*inv[i]%p;
   pre=n;
}
struct Q
{
   vector<ui> a;
   ui* pt(){return a.data();}
   Q(ui x=1):a(cal(x)){}//小心: {}会调用这条而非下一条
   Q(const vector<ui> &o):a(cal(o.size())){copy(all(o),a.begin());}
   ui fx(ui x)
   {
       ui r=0;
       int i;
       for (i=a.size()-1;i>=0&&!a[i];i--);
       for (;i>=0;i--) r=((ll)r*x+a[i])%p;
       return r;
   }
#ifndef MTT
   void dft(int o=0)
   {
       ui n=a.size(),i,j,k,x,y,*f,*g,*wn,*A=pt();
       init(n);
       for (i=1;i<n;i++) if (i<r[i]) swap(A[i],A[r[i]]);</pre>
       for (k=1;k<n;k<<=1)
       {
           wn=w+k;
           for (i=0;i<n;i+=k<<1)</pre>
              f=A+i;g=A+i+k;
              for (j=0;j<k;j++)</pre>
                  x=f[j];y=(ll)g[j]*wn[j]%p;
                  if (x+y>=p) f[j]=x+y-p; else f[j]=x+y;
                  if (x<y) g[j]=x-y+p; else g[j]=x-y;</pre>
              }
           }
       }
       if (o)
           getinv(n);x=inv[n];
           for (i=0;i<n;i++) A[i]=(11)A[i]*x%p;</pre>
           reverse(A+1,A+n);
       }
   }
   void hf_dft(int o=0)
       ui n=a.size()>>1,i,j,k,x,y,*f,*g,*wn,*A=pt();
       for (i=1;i<n;i++) if (i<r[i]) swap(A[i],A[r[i]]);</pre>
       for (k=1;k<n;k<<=1)</pre>
```

```
{
          wn=w+k;
          for (i=0;i<n;i+=k<<1)</pre>
              f=A+i;g=A+i+k;
              for (j=0;j<k;j++)</pre>
                  x=f[j];y=(ll)g[j]*wn[j]%p;
                  if (x+y>=p) f[j]=x+y-p; else f[j]=x+y;
                  if (x<y) g[j]=x-y+p; else g[j]=x-y;</pre>
              }
          }
       }
       if (o)
       {
          getinv(n);x=inv[n];
          for (i=0;i<n;i++) A[i]=(11)A[i]*x%p;</pre>
          reverse(A+1,A+n);
       }
   }
#endif
   Q dao()
   {
       ui n=a.size();
       Q r(n);
       for (ui i=1;i<n;i++) r.a[i-1]=(l1)a[i]*i%p;</pre>
       return r;
   }
   Q ji()
       ui n=a.size();
       getinv(n-1);
       Qr(n);
       for (ui i=1;i<n;i++) r.a[i]=(ll)a[i-1]*inv[i]%p;</pre>
       return r;
   }
   Q operator-() const {Q r=*this;for (ui &x:r.a) if (x) x=p-x;return r;}
   Q operator+(ui x) const {Q r=*this;r+=x;return r;}
   Q & operator+=(ui x) {if ((a[0]+=x)>=p) a[0]-=p;return *this;}
   Q operator-(ui x) const {Q r=*this;r-=x;return r;}
   Q & operator==(ui x) {if (a[0] < x) a[0]=a[0]+p-x; else a[0]-=x; return *
       this;}
   Q operator*(ui k) const {Q r=*this;r*=k;return r;}
   Q & operator*=(ui k) {for (ui &x:a) x=(ll)x*k%p;return *this;}
   Q operator+(Q f) const {f+=*this;return f;}
   Q & operator+=(const Q &f) {ui n=f.a.size(); if (a.size()<n) a.resize(n);
       for (ui i=0;i<n;i++) if ((a[i]+=f.a[i])>=p) a[i]-=p;return *this;}
   Q operator-(Q f) const {Q r=*this;r-=f;return r;}
   Q & operator-=(const Q &f) {ui n=f.a.size();if (a.size()<n) a.resize(n);
       for (ui i=0;i<n;i++) if (a[i]<f.a[i]) a[i]+=p-f.a[i]; else a[i]-=f.a[
       i];return *this;}
   Q operator*(Q f) const {f*=*this;return f;}
#ifdef MTT
   #ifdef CRT
       template<const ui p> void fun(M &s,Q &g)
       {
          Q f=*this;
          ui n=g.a.size(),i;
          s.dft(f.a);s.dft(g.a);
```

```
for (i=0;i<n;i++) g.a[i]=(ll)g.a[i]*f.a[i]%p;</pre>
       s.dft(g.a,1);
   }
   void operator*=(Q g3)
       assert(a.size()==g3.a.size());
       ui n=a.size()<<1,i;
       11 x;
       a.resize(n);g3.a.resize(n);
       Q g1=g3,g2=g3;
       fun(s1,g1);
       fun(s2,g2);
       fun(s3,g3);
       a.resize(n>>=1);
       ui _p12=(ll)p1*p2%p;
       for (i=0;i<n;i++)</pre>
       {
          x=(ll)(g2.a[i]+p2-g1.a[i])*inv_p1%p2*p1+g1.a[i];
          a[i]=((x+p3-g3.a[i])%p3*(p3-inv_p12)%p3*_p12+x)%p;
       }
   }//三模, 板子 OJ 5e5 0.9s
#else
   void operator*=(const Q &g)
       ui n=a.size(), m=(1<<15)-1, i;
       assert(n==g.a.size());
       n << =1;
       foly a0(n),a1(n),b0(n),b1(n),u(n),v(n);
       n >> = 1;
       for (i=0;i<n;i++) a0.a[i].x=a[i]>>15,a1.a[i].x=a[i]&m;
       for (i=0;i<n;i++) b0.a[i].x=g.a[i]>>15,b1.a[i].x=g.a[i]&m;
       ddt(a0,a1);ddt(b0,b1);
       n << =1;
       for (i=0;i<n;i++)</pre>
          u.a[i]=a0.a[i]*b0.a[i]+FFT::I*a1.a[i]*b0.a[i];
          v.a[i]=a0.a[i]*b1.a[i]+FFT::I*a1.a[i]*b1.a[i];
       }
       u.dft(1); v.dft(1);
       n>>=1;a.resize(n);
       for (i=0;i<n;i++) a[i]=((((11)dtol(u.a[i].x)<<15)%p+dtol(u.a[i].y)</pre>
           )+dtol(v.a[i].x)<<15)+dtol(v.a[i].y))%p;
   }//4 次拆系数
   void operator |= (const Q &g) // 直接卷积
       ui n=cal(a.size()+g.a.size()-1),m=(1<<15)-1,i;
       foly a0(n), a1(n), b0(n), b1(n), u(n), v(n);
       for (i=0;i<a.size();i++) a0.a[i].x=a[i]>>15,a1.a[i].x=a[i]&m;
       for (i=0;i<g.a.size();i++) b0.a[i].x=g.a[i]>>15,b1.a[i].x=g.a[i]&
       ddt(a0,a1);ddt(b0,b1);
       for (i=0;i<n;i++)</pre>
       {
          u.a[i]=a0.a[i]*b0.a[i]+FFT::I*a1.a[i]*b0.a[i];
          v.a[i]=a0.a[i]*b1.a[i]+FFT::I*a1.a[i]*b1.a[i];
       }
       u.dft(1); v.dft(1);
       a.resize(n);
       for (i=0;i<n;i++) a[i]=((((l1)dtol(u.a[i].x)<<15)%p+dtol(u.a[i].y)</pre>
```

```
)+dtol(v.a[i].x)<<15)+dtol(v.a[i].y))%p;
       }//4 次拆系数, 板子 OJ 5e5 1.4s 精度也爆, 待修复
   #endif
#else
   Q & operator|=(Q f)//直接卷积, 不 shift
       ui n=cal(a.size()+f.a.size()-1);
       a.resize(n);f.a.resize(n);
       dft();f.dft();
       for (ui i=0;i<n;i++) a[i]=(ll)a[i]*f.a[i]%p;</pre>
       dft(1);
      return *this;
   }
   Q operator|(Q f) const {f|=*this;return f;}
   Q & operator*=(Q f)//群内卷积
       assert(a.size()==f.a.size());
      ui n=a.size()<<1;
       a.resize(n);f.a.resize(n);
       dft();f.dft();
       for (ui i=0;i<n;i++) a[i]=(ll)a[i]*f.a[i]%p;</pre>
       dft(1);a.resize(n>>1);
       return *this;
   }
   Q & operator&=(const Q &f)//卷积并 shift
       *this|=f;
       int n=a.size(),i;
       for (i=n-1;i>=2;i--) if (a[i]) break;
       a.resize(cal(i+1));
       return *this;
   }
   Q operator&(Q f) const {f&=*this;return f;}
   Q & operator^=(Q f)//差卷积
       assert(a.size()==f.a.size());
       ui n=a.size();
       reverse(all(f.a));
       *this|=f;
       copy(a.data()+n-1,a.data()+n*2-1,a.data());
       a.resize(n);
       return *this;
   }
   Q operator^(const Q &f) const {Q g=*this;g^=f;return g;}
#endif
#ifdef MTT
   Q operator~()
       Q q=(*this),r(1);
       ui n=a.size()<<1,i,j,k;a.resize(n);
       r.a[0]=ksm(a[0],p-2);
       for (j=2;j<=n;j<<=1)</pre>
       {
          k=j>>1;
          r.a.resize(j);
          q.a.resize(j);
          copy_n(pt(),k,q.pt());
          r=-(q*r-2)*r;
          r.a.resize(k);
```

```
}
          n>>=1;
           a.resize(n);
          return r;
       }//trivial
   #else
       Q operator~()
       {
           Q = (*this), r(1), g(1);
          ui n=a.size(),i,j,k;
          r.a[0]=ksm(a[0],p-2);
           for (j=2;j<=n;j<<=1)</pre>
              k=j>>1;
              r.a.resize(j);
              g=r;
              q.a.resize(j);
              copy_n(pt(),j,q.pt());
              r.dft();q.dft();
              for (i=0;i<j;i++) q.a[i]=(ll)q.a[i]*r.a[i]%p;</pre>
              q.dft(1);
              fill_n(q.pt(),k,0);
              q.dft();
              for (i=0;i<j;i++) r.a[i]=(ll)q.a[i]*r.a[i]%p;</pre>
              r.dft(1);
              copy_n(g.pt(),k,r.pt());
              for (i=k;i<j;i++) if (r.a[i]) r.a[i]=p-r.a[i];</pre>
          return r;
       }//inv(1 6 3 4 9)=(1 998244347 33 998244169 1020)
   #endif
       Q operator/(Q f) const {return (*this)*~f;}
       void operator/=(Q f) {f=~f;(*this)*=f;}
   };
#ifndef MTT
   Q sqr(Q b)
       ui n=b.a.size()<<1,i;
       b.a.resize(n);
       b.dft();
       for (i=0;i<n;i++) b.a[i]=(l1)b.a[i]*b.a[i]%p;</pre>
       b.dft(1);
       b.a.resize(n>>1);
       return b;
   vector<Q> cd;
   void cdq(Q &f,Q &g,ui l,ui r)//g_0=1,i*g_i=g_{i-j}*f_j,use for exp_cdq
       ui i,m=l+r>>1,n=r-l,nn=n>>1;
       if (l==0&&r==f.a.size())
          getinv(n-1);
          g.a.resize(n);
           for (i=0;i<n;i++) g.a[i]=0;</pre>
           cd.clear();cd.reserve(__builtin_ctz(n));
           Q a(1);
           for (i=2;i<=n;i<<=1)</pre>
              a.a.resize(i);
```

```
for (ui j=0;j<i;j++) a.a[j]=f.a[j];</pre>
              a.dft();cd.push_back(a);
           }
       }
       if (l+1==r)
           if (l==0) g.a[l]=1; else g.a[l]=(ll)g.a[l]*inv[l]%p;
           return;
       }
       cdq(f,g,1,m);
       Q a=cd[__builtin_ctz(n)-1],b(n);
       for (i=0;i<nn;i++) b.a[i]=g.a[l+i];</pre>
       b.dft();
       for (i=0;i<n;i++) a.a[i]=(ll)a.a[i]*b.a[i]%p;</pre>
       a.dft(1);
       for (i=m;i<r;i++) if ((g.a[i]+=a.a[i-1])>=p) g.a[i]-=p;
       cdq(f,g,m,r);
   }
   Q exp_cdq(Q f)
       Q g(1);ui n=f.a.size();
       for (ui i=1;i<n;i++) f.a[i]=(ll)f.a[i]*i%p;</pre>
       cdq(f,g,0,n);
       return g;
   }
   Q sqrt(Q b)
       Q q(1),f(1),r(1);
       ui n=b.a.size();
       int i,j=n,1;
       for (i=0;i<n;i++) if (b.a[i]) {j=i;break;}</pre>
       if (j==n) return b;
       if (j&1) {puts("-1");exit(0);}l=j>>1;
       for (i=0;i<n-j;i++) b.a[i]=b.a[i+j];</pre>
       for (i=n-j;i<n;i++) b.a[i]=0;</pre>
       r.a[0]=i=mosqrt(b.a[0]);
       assert(i!=-1);
       for (j=2;j<=n;j<<=1)</pre>
       {
          r.a.resize(j);
           q=r;f.a.resize(j<<1);
           for (i=0;i<j;i++) f.a[i]=b.a[i];</pre>
           q.a.resize(j<<1);r.a.resize(j<<1);</pre>
           q.dft();r.dft();f.dft();
           for (i=0;i<j<<1;i++) if ((r.a[i]=(ll)q.a[i]*((ll)r.a[i]*r.a[i]%p+f.a[</pre>
               i])%p)&1) r.a[i]=r.a[i]+p>>1; else r.a[i]>>=1;
          r.dft(1);
           for (i=j;i<j<<1;i++) r.a[i]=0;</pre>
       }
       r.a.resize(n);
       for (i=n-1;i>=1;i--) r.a[i]=r.a[i-1];
       for (i=0;i<1;i++) r.a[i]=0;</pre>
       return r;
   }//sqrt(1 8596489 489489 4894 1564 489 35789489)=(1 503420421 924499237
       13354513 217017417 707895465 411020414)
#endif
   Q ln(Q b) {return (b.dao()/b).ji();}//ln(1 927384623 878326372 3882
       273455637 998233543)=(0 927384623 817976920 427326948 149643566
       610586717)
```

```
#ifdef MTT
   Q exp(Q f)
       Q q(1), r(1);
       ui n=f.a.size()<<1,i,j,k;
       r.a[0]=1;
       for (j=2;j<=n;j<<=1)</pre>
          k=j>>1;
          r.a.resize(j);
          q.a.resize(j);
          for (i=0;i<k;i++) q.a[i]=f.a[i];</pre>
          r=r*(q-ln(r)+1);
          r.a.resize(k);
       return r;
   }
#else
   Q exp(Q b)
   {
       Q q(1),r(1);
       ui n=b.a.size(),i,j;
       r.a[0]=1;
       for (j=2;j<=n;j<<=1)</pre>
          r.a.resize(j);
          q=ln(r);
          for (i=0;i<j;i++) if ((q.a[i]=b.a[i]+p-q.a[i])>=p) q.a[i]-=p;
           (++q.a[0])%=p;
          r.a.resize(j << 1); q.a.resize(j << 1);
          r.dft();q.dft();
          for (i=0;i<j<<1;i++) r.a[i]=(l1)r.a[i]*q.a[i]%p;</pre>
          r.dft(1);
          r.a.resize(j);
       }
       return r;
   }//exp(0 927384623 817976920 427326948 149643566 610586717)=(1 927384623
       878326372 3882 273455637 998233543)
   void mul(Q &a,Q &b)
   {
       ui n=a.a.size();
       assert(n==b.a.size());
       a.dft();b.dft();
       for (ui i=0;i<n;i++) a.a[i]=(ll)a.a[i]*b.a[i]%p;</pre>
       a.dft(1);
   }
   Q exp_new(Q b)
       Q h(1),f(1),r(1),u(1),v(1);
       ui n=b.a.size(),i,j,k;
       r.a[0]=1;h.a[0]=1;
       for (j=2;j<=n;j<<=1)</pre>
           f.a.resize(j);
          for (i=0;i<j;i++) f.a[i]=b.a[i];</pre>
          f=f.dao();
          k=j>>1;
           for (i=0;i<k-1;i++) {if ((f.a[i+k]+=f.a[i])>=p) f.a[i+k]-=p;f.a[i
               ]=0;}
```

```
for (i=k-1;i<j;i++) if (f.a[i]) f.a[i]=p-f.a[i];</pre>
       u.a.resize(k); v.a.resize(k);
       copy_n(r.pt(),k,u.pt());
       copy_n(h.pt(),k,v.pt());
       u=u.dao();
       mul(u,v);
       for (i=0;i<k-1;i++) if ((f.a[i+k]+=u.a[i])>=p) f.a[i+k]-=p;
       if ((f.a[k-1]+=u.a[k-1])>=p) f.a[k-1]-=p;
       copy_n(r.pt(),k,u.pt());
       u.dft();
       for (i=0;i<k;i++) u.a[i]=(l1)u.a[i]*v.a[i]%p;</pre>
       u.dft(1);
       (u.a[0]+=p-1)\%=p;
       u.a.resize(j);v.a.resize(j);
       copy_n(b.pt(),k,v.pt());
       v=v.dao();
       mul(u,v);
       for (i=0;i< k;i++) if (f.a[i+k]< u.a[i]) f.a[i+k]+=p-u.a[i]; else f.a[i]
           +k]-=u.a[i];
       f=f.ji();
       copy_n(r.pt(),k,u.pt());
       fill_n(u.pt()+k,k,0);
       mul(u,f);
       r.a.resize(j);
       for (i=k;i<j;i++) if (u.a[i]) r.a[i]=p-u.a[i]; else r.a[i]=0;</pre>
       if (j!=n) h=~r;
   }
   return r;
}
Q sqrt_new(Q b)
   Q q(1),r(1),h(1);
   ui n=b.a.size();
   int i,j=n,k,l;
   for (i=0;i<n;i++) if (b.a[i]) {j=i;break;}</pre>
   if (j==n) return b;
   if (j&1) {puts("-1");exit(0);}l=j>>1;
   for (i=0;i<n-j;i++) b.a[i]=b.a[i+j];</pre>
   for (i=n-j;i<n;i++) b.a[i]=0;</pre>
   r.a[0] = mosqrt(b.a[0]); h.a[0] = ksm(r.a[0],p-2);
   r.a.resize(1);ui i2=ksm(2,p-2);
   for (j=2;j<=n;j<<=1)</pre>
       k=j>>1;
       q=r;
       q.dft();
       for (i=0;i<k;i++) q.a[i]=(ll)q.a[i]*q.a[i]%p;</pre>
       q.dft(1);
       q.a.resize(j);
       for (i=k;i<j;i++) q.a[i]=(ll)(q.a[i-k]+p*2u-b.a[i]-b.a[i-k])*i2%p;</pre>
       for (i=0;i<k;i++) q.a[i]=0;</pre>
       h.a.resize(j);
       mul(q,h);
       r.a.resize(j);
       for (i=k;i<j;i++) if (q.a[i]) r.a[i]=p-q.a[i];</pre>
       if (j!=n) h=~r;
   r.a.resize(n);
   for (i=n-1;i>=1;i--) r.a[i]=r.a[i-1];
```

```
for (i=0;i<1;i++) r.a[i]=0;</pre>
   return r;
}
Q pow(Q b,ui m)
   ui n=b.a.size();
   int i,j=n,k;
   for (i=0;i<n;i++) if (b.a[i]) {j=i;break;}</pre>
   if (j==n) return b;
   if ((11) j*m>=n)
       fill_n(b.pt(),n,0);
       return b;
   }
   for (i=0;i<n-j;i++) b.a[i]=b.a[i+j];</pre>
   for (i=n-j;i<n;i++) b.a[i]=0;</pre>
   k=b.a[0];assert(k);
   b = \exp_{new}(\ln(b*ksm(k,p-2))*m)*ksm(k,m);
   j*=m;
   for (i=n-1;i>=j;i--) b.a[i]=b.a[i-j];
   for (i=0;i<j;i++) b.a[i]=0;</pre>
   return b;
}
Q pow(Q b, string s)
   ui n=b.a.size();
   int i,j=n,k;
   for (i=0;i<n;i++) if (b.a[i]) {j=i;break;}</pre>
   if (j==n) return b;
   if (j)
   {
       if (s.size()>8||j*stoll(s)>=n)
           fill_n(b.pt(),n,0);
           return b;
       }
   }
   ui m0=0, m1=0;
   for (auto c:s) m0=(m0*1011+c-'0')%p, m1=(m1*1011+c-'0')%(p-1);
   for (i=0;i<n-j;i++) b.a[i]=b.a[i+j];</pre>
   for (i=n-j;i<n;i++) b.a[i]=0;</pre>
   k=b.a[0];assert(k);
   b=exp(ln(b*ksm(k,p-2))*m0)*ksm(k,m1);
   j*=m0;
   for (i=n-1;i>=j;i--) b.a[i]=b.a[i-j];
   for (i=0;i<j;i++) b.a[i]=0;</pre>
   return b;
}
Q pow2(Q b,ui m)
   Q r(b.a.size());r.a[0]=1;
   while (m)
       if (m&1) r=r*b;
       if (m>>=1) b=b*b;
   }
   return r;
}
pair<Q,Q> div(Q a,Q b)
```

```
{
   int n=0,m=0,1,i,nn=a.a.size();
   for (i=a.a.size()-1;i>=0;i--) if (a.a[i]) {n=i+1;break;}
   for (i=b.a.size()-1;i>=0;i--) if (b.a[i]) {m=i+1;break;}
   assert(m);
   if (n<m) return make_pair(Q(1),a);</pre>
   l=cal(n+m-1);
   Q c(n),d(m);
   reverse copy(a.a.data(),a.a.data()+n,c.a.data());
   reverse_copy(b.a.data(),b.a.data()+m,d.a.data());
   c.a.resize(cal(n-m+1));d.a.resize(c.a.size());
   for (i=n-m+1;i<c.a.size();i++) c.a[i]=d.a[i]=0;</pre>
   c*=d;
   for (i=n-m+1;i<c.a.size();i++) c.a[i]=0;</pre>
   reverse(c.a.data(),c.a.data()+n-m+1);
   n=a.a.size();b.a.resize(n);c.a.resize(n);
   d=a-c*b;
   //for (i=0;i<d.a.size();i++) cerr<<d.a[i]<<" \n"[i==d.a.size()-1];
   for (i=m;i<d.a.size();i++) assert(d.a[i]==0);</pre>
   c.a.resize(cal(n-m+1));d.a.resize(cal(m));
   return make_pair(c,d);
Q \sin(Q \& f) \{return (exp(f*I)-exp(f*(p-I)))*ksm(2*I%p,p-2);\}
Q \cos(Q \& f) \{ return (\exp(f*I) + \exp(f*(p-I))) * ksm(2,p-2); \} 
Q tan(Q &f) {return sin(f)/cos(f);}
Q asin(Q \&f) \{return (f.dao()/sqrt((f*f-1)*(p-1))).ji();\}
Q acos(Q \&f) \{return ((f.dao()/sqrt((f*f-1)*(p-1)))*(p-1)).ji();\}
Q atan(Q &f) {return (f.dao()/(f*f+1)).ji();}
Q cdq_inv(Q &f) {return (~(f-1))*(p-1);}//g_0=1,g_i=g_{i-j}*f_j
Q operator%(Q f,Q g) {return div(f,g).second;}
void operator%=(Q &f,const Q &g) {f=f%g;}
ui dt(const vector<ui>& f,const vector<ui> &a,ll m)//常系数齐次线性递推, find
     a_m, a_n = a_{n-i} * f_i, f_1 ... k, a_0 ... k-1
{
   if (m<a.size()) return a[m];</pre>
   assert(f.size()==a.size()+1);
   int k=a.size();
   ui n=cal(k+1<<1),i,ans=0,1;
   Q h(n);
   for (i=1;i<=k;i++) if (f[i]) h.a[k-i]=p-f[i];</pre>
   h.a[k]=1;
   Q g,r;g.a[1]=1;r.a[0]=1;
   while (m)
       if (m&1) r=(r&g)%h;
       l=g.a.size()<<1;g.a.resize(1);</pre>
       g.dft();
       for (i=0;i<1;i++) g.a[i]=(l1)g.a[i]*g.a[i]%p;</pre>
       g.dft(1);g%=h;m>>=1;
   }
   k=min(k,(int)r.a.size());
   for (i=0;i<k;i++) ans=(ans+(ll)a[i]*r.a[i])%p;</pre>
   return ans;
}//板子 OJ 1e5/1e18 8246ms, Luogu 32000/1e9 710ms
ui new_dt(const vector<ui>& f,const vector<ui> &a,ll m)//常系数齐次线性递推,
    find a_m, a_n=a_{n-i}*f_i, f_1...k, a_0...k-1
   if (m<a.size()) return a[m];</pre>
```

```
assert(f.size()==a.size()+1);
   ui k=a.size(),n=cal(k+1),lim=n*2,x;
   int i;
   Q g(n),h(n);
   for (i=1;i<=k;i++) if (f[i]) h.a[i]=p-f[i];</pre>
   h.a[0]=1;
   for (i=0;i<k;i++) g.a[i]=a[i];</pre>
   g*=h;fill(g.a.data()+k,g.a.data()+n,0);
   ++k;g.a.resize(lim);h.a.resize(lim);
   vector<ui> res(k);
   while (m)
   {
       if (m&1)
       {
          x=p-g.a[0];
           for (i=1;i<k;i+=2) res[i>>1]=(l1)x*h.a[i]%p;
           copy(g.a.data()+1,g.a.data()+k,g.a.data());
          g.a[k-1]=0;
       }
       g.dft();h.dft();
       ui *a=g.a.data(),*b=h.a.data(),*c=a+n,*d=b+n;
       for (i=0;i<n;i++) g.a[i]=((l1)a[i]*d[i]+(l1)b[i]*c[i]+(l1)((a[i]&d[i]</pre>
           ])^(b[i]&c[i]))*p>>1)%p;
       for (i=0;i<n;i++) h.a[i]=(l1)h.a[i]*h.a[i^n]%p;</pre>
       g.hf_dft(1);h.hf_dft(1);
       fill(g.a.data()+k,g.a.data()+lim,0);
       if (m&1) for (i=0;i<k;i++) if ((g.a[i]+=res[i])>=p) g.a[i]-=p;
       fill(h.a.data()+k,h.a.data()+lim,0);
       m>>=1;
   }
   return g.a[0];
}//板子 OJ 1e5/1e18 1310ms, Luogu 32000/1e9 160ms
Q mult(Q *a,int n)
{
   if (n==1) return a[0];
   int m=n>>1;
   return mult(a,m)&mult(a+m,n-m);
}
vector<Q> pro;
ui *X;
vector<ui> Y;
void build(int x,int l,int r)
   if (l==r)
       pro[x].a.resize(1);pro[x].a[0]=(p-X[1])%p;
       pro[x].a[1]=1;
       return;
   }
   int mid=l+r>>1,c=x<<1;</pre>
   build(c,1,mid);build(c|1,mid+1,r);
   pro[x]=pro[c]&pro[c|1];
void sgt_dfs(int x,int 1,int r,Q f,int d)
   if (d>=r-l+1)
       f%=pro[x];
       d=r-1;
```

```
while (d>0&&!f.a[d]) --d;
       f.a.resize(cal(d+1));
   }
   if (r-1+1<=255)
       for (ui i=1;i<=r;i++) Y[i]=f.fx(X[i]);</pre>
   }
   int mid=l+r>>1,c=x<<1;</pre>
    sgt_dfs(c,1,mid,f,d);
   sgt_dfs(c|1,mid+1,r,f,d);
vector<ui> get_fx(Q &f,vector<ui> &x)
   int m=x.size(),i,j;
   int n=f.a.size()-1;
   pro.resize(m*4+8);
   while (n>1&&!f.a[n]) --n;
   X=x.data();Y.resize(m);
   build(1,0,m-1);
   sgt_dfs(1,0,m-1,f,n);
   return Y;
}
void new_build(int x,int n)
{
   if (n==1)
       pro[x].a.resize(1);pro[x].a[0]=1;
       pro[x].a[1]=(p-*(X++))%p;
       return;
    int mid=n+1>>1,c=x<<1;</pre>
   new_build(c,mid);new_build(c|1,n-mid);
   pro[x]=pro[c]&pro[c|1];
}
const int get_fx_lim2=30;
void new_sgt_dfs(int x,int l,int r,Q f)
   if (r-l+1<=get_fx_lim2)</pre>
       int m=r-l+1,m1,m2,mid=l+r>>1,i,j,k;
       static ui g[get_fx_lim2+2],g1[get_fx_lim2+2],g2[get_fx_lim2+2];
       m1=m2=r-1;
       memcpy(g1,f.a.data(),m*sizeof g1[0]);
       memcpy(g2,f.a.data(),m*sizeof g2[0]);
       for (i=mid+1;i\leq r;i++) {for (k=0;k\leq m1;k++) g1[k]=(g1[k]+(l1)g1[k+1]*(
           p-X[i]))%p;--m1;}
       for (i=1;i \le mid;i++) {for (k=0;k \le m2;k++) g_2[k] = (g_2[k]+(11)g_2[k+1]*(p-1)g_2[k+1]
           X[i]))%p;--m2;}
       for (i=1;i<=mid;i++)</pre>
       {
           memcpy(g,g1,(m1+1)*sizeof g[0]);
           for (j=1;j<=mid;j++) if (i!=j)</pre>
              for (k=0; k< m; k++) g[k]=(g[k]+(ll)g[k+1]*(p-X[j]))%p;
               --m;
           }
           Y[i]=g[0];
```

```
}
       for (i=mid+1;i<=r;i++)</pre>
          m=m2;
          memcpy(g,g2,(m2+1)*sizeof g[0]);
          for (j=mid+1;j<=r;j++) if (i!=j)</pre>
              for (k=0;k\le m;k++) g[k]=(g[k]+(ll)g[k+1]*(p-X[j]))%p;
           }
           Y[i]=g[0];
       }
       return;
   }
   int mid=l+r>>1,c=x<<1,n=f.a.size();</pre>
   pro[c].a.resize(n);
   pro[c|1].a.resize(n);
   f.dft();reverse(all(pro[c].a));
   pro[c].dft();
   for (int i=0;i<n;i++) pro[c].a[i]=(l1)pro[c].a[i]*f.a[i]%p;</pre>
   pro[c].dft(1);rotate(all(pro[c].a)-1,pro[c].a.end());
   pro[c].a.resize(cal(r-mid));fill(pro[c].a.begin()+r-mid,pro[c].a.end()
        ,0);
   c^=1:
   reverse(all(pro[c].a));
   pro[c].dft();
   for (int i=0;i<n;i++) pro[c].a[i]=(ll)pro[c].a[i]*f.a[i]%p;</pre>
   pro[c].dft(1);rotate(all(pro[c].a)-1,pro[c].a.end());
   pro[c].a.resize(cal(mid-l+1));fill(pro[c].a.begin()+mid-l+1,pro[c].a.end
       (),0);
   c^=1;
   new_sgt_dfs(c,1,mid,pro[c|1]);
   new_sgt_dfs(c|1,mid+1,r,pro[c]);
vector<ui> new_get_fx(Q f, vector<ui> &x)//多项式多点求值
   if (x.size()==0) return x;
   int m=x.size(),i,j;
   if (x.size()<=10)</pre>
       Y.resize(m);
       for (i=0;i<m;i++) Y[i]=f.fx(x[i]);</pre>
       return Y;
   }
   int n=f.a.size();
   while (n>1&&!f.a[n-1]) --n;
   if (cal(n)!=f.a.size()) f.a.resize(cal(n));
   X=x.data();Y.resize(m);
   pro.resize(m*4+8);
   new_build(1,m);X=x.data();
   pro[1].a.resize(f.a.size());
   f^=~pro[1];
   f.a.resize(cal(m));
   fill(f.a.begin()+min(m,n),f.a.end(),0);
   new_sgt_dfs(1,0,m-1,f);
   return Y;
}//板子 OJ 2~17 550ms
vector<Q> sum;
void get_poly_build(int x,int n)
```

```
{
   if (n==1)
   {
       sum[x].a.resize(1);
       sum[x].a[1]=1;
       sum[x].a[0]=(p-*(X++))%p;
       return;
   }
   int mid=n+1>>1,c=x<<1;</pre>
   get_poly_build(c,mid);get_poly_build(c|1,n-mid);
   sum[x]=sum[c]&sum[c|1];
}
void get_poly_dfs(int x,int l,int r)
   if (l==r)
   {
       pro[x].a.resize(1);
       pro[x].a[0]=Y[1];
       pro[x].a[1]=0;
       return;
   }
   int c=x<<1,mid=l+r>>1;
   get_poly_dfs(c,1,mid);get_poly_dfs(c|1,mid+1,r);
   pro[x]=(pro[c]&sum[c|1])+(pro[c|1]&sum[c]);
Q get_poly(vector<ui> &x,vector<ui> &y)//多项式快速插值
   assert(x.size()==y.size());
   int n=x.size(),i,j;
   if (n==0) return Q(1);
   if (n==1)
       Q f(1);
       f.a[0]=y[0];
      return f;
   }
   if (1)
   {
       auto vv=x;sort(all(vv));
       assert(unique(all(vv))-vv.begin()==n);
   sum.resize(4*n+8);X=x.data();
   get_poly_build(1,n);
   sum[1]=sum[1].dao();
   auto v=new_get_fx(sum[1],x);
   pro.resize(4*n+8);
   assert(v.size()==n);
   Y=getinvs(v);
   for (i=0;i<n;i++) Y[i]=(11)Y[i]*y[i]%p;</pre>
   get_poly_dfs(1,0,n-1);
   pro[1].a.resize(cal(n));
   return pro[1];
}//板子 OJ 2~17 1.3s
Q comp(const Q &f,Q g)//多项式复合 f(g(x))=[x^i]f(x)g(x)^i
   int n=f.a.size(),l=ceil(::sqrt(n)),i,j;
   assert(n>=g.a.size());//返回 n-1 次多项式
   vector<Q> a(1+1),b(1);
   a[0].a.resize(n);a[0].a[0]=1;a[1]=g;
```

```
g.a.resize(n*2);
   Q w=g,u,v(n);
   w.dft();u=w;
   for (i=2;i<=1;i++)</pre>
       if (i>2) u.dft();
       for (j=0;j<n*2;j++) u.a[j]=(l1)u.a[j]*w.a[j]%p;</pre>
       u.dft(1);
       fill(u.a.data()+n,u.a.data()+n*2,0);
       a[i]=u;
   }
   w=a[1];
   w.dft();u=w;
   for (i=2;i<=1;i++) a[i].a.resize(n);</pre>
   for (i=2;i<1;i++)</pre>
       if (i>2) u.dft();
       b[i-1]=u;
       for (j=0;j<n*2;j++) u.a[j]=(ll)u.a[j]*w.a[j]%p;</pre>
       u.dft(1);
       fill(u.a.data()+n,u.a.data()+n*2,0);
   if (1>2) u.dft();b[1-1]=u;
   for (i=0;i<1;i++)</pre>
       fill(all(v.a),0);
       for (j=0;j<1;j++) if (i*1+j<n) v+=a[j]*f.a[i*1+j];</pre>
       if (i==0) u=v; else
       {
           v.a.resize(n*2);v.dft();
           for (j=0;j<n*2;j++) v.a[j]=(l1)v.a[j]*b[i].a[j]%p;</pre>
          v.dft(1);v.a.resize(n);u+=v;
       }
   }
   return u;
}//n^2+n\sqrt n\log n, 8000 板子 OJ 300ms, 20000 luogu 3.5s
Q comp_inv(Q f)//多项式复合逆 g(f(x))=x, 求 g, [x^n]g=([x^{n-1}](x/f)^n)/n,
    要求常数 0 一次非 0
{
   assert(!f.a[0]&&f.a[1]);
   int n=f.a.size(),l=ceil(::sqrt(n)),i,j,k,m;//1>=2
   for (i=1;i<n;i++) f.a[i-1]=f.a[i];f.a[n-1]=0;</pre>
   f=~f;
   getinv(n*2);
   vector<Q> a(l+1),b(l);
   Qu,v;
   u=a[1]=f;
   u.a.resize(n*2);u.dft();v=u;
   for (i=2;i<=1;i++)</pre>
       if (i>2) u.dft();
       for (j=0;j<n*2;j++) u.a[j]=(l1)u.a[j]*v.a[j]%p;</pre>
       u.dft(1);fill(u.a.data()+n,u.a.data()+n*2,0);
       a[i]=u;
   }
   b[0].a.resize(n);b[0].a[0]=1;b[1]=a[1];u.dft();v=u;
   for (i=2;i<1;i++)</pre>
   {
       if (i>2) u.dft();
```

```
for (j=0;j<n*2;j++) u.a[j]=(ll)u.a[j]*v.a[j]%p;</pre>
       u.dft(1);fill(u.a.data()+n,u.a.data()+n*2,0);
       b[i]=u;
   }
   u.a.resize(n);u.a[0]=0;
   for (i=0;i<1;i++) for (j=1;j<=1;j++) if (i*1+j<n)</pre>
       m=i*l+j-1;
       ui r=0,*f=b[i].a.data(),*g=a[j].a.data();
       for (k=0;k<=m;k++) r=(r+(ll)f[k]*g[m-k])%p;</pre>
       u.a[m+1]=(ll)r*inv[m+1]%p;
   }
   return u;
}
Q shift(Q f,ui c)//get f(x+c)
   int n=f.a.size(),i,j;
   Q g(n);
   getfac(n);
   for (i=0;i<n;i++) f.a[i]=(ll)f.a[i]*fac[i]%p;</pre>
   g.a[0]=1;
   for (i=1;i<n;i++) g.a[i]=(l1)g.a[i-1]*c%p;</pre>
   for (i=0;i<n;i++) g.a[i]=(l1)g.a[i]*ifac[i]%p;</pre>
   f^=g;
   for (i=0;i<n;i++) f.a[i]=(ll)f.a[i]*ifac[i]%p;</pre>
   return f;
}
vector<ui> point_shift(vector<ui> y,ui c,ui m)//[0,n) 点值 -> [c,c+m) 点值
{
   assert(y.size());
   if (y.size()==1) return vector<ui>(m,y[0]);
   vector<ui> r,res;
   r.reserve(m);
   int n=y.size(),i,j,mm=m;
   while (c<n\&\&m) r.push_back(y[c++]),--m;
   if (c+m>p)
    {
       res=point_shift(y,0,c+m-p);
       m=p-c;
   if (!m) {r.insert(r.end(),all(res));return r;}
   int len=cal(m+n-1), l=m+n-1;
   for (i=n&1;i<n;i+=2) if (y[i]) y[i]=p-y[i];</pre>
   getfac(n);
   for (i=0;i<n;i++) y[i]=(11)y[i]*ifac[i]%p*ifac[n-1-i]%p;</pre>
   y.resize(len);
   Q f,g;
   vector<ui> v(m+n-1);
   c-=n-1;
   for (i=0;i<1;i++) v[i]=(c+i)%p;</pre>
   f.a=y;g.a=getinvs(v);g.a.resize(len);
   f |=g;
   vector<ui> u(m);
   for (i=n-1;i<l;i++) u[i-(n-1)]=f.a[i];</pre>
   v.resize(m);
   for (i=0;i<m;i++) v[i]=c+i;</pre>
   v=getinvs(v);c+=n;
   ui tmp=1;
   for (i=c-n;i<c;i++) tmp=(11)tmp*i%p;</pre>
```

```
for (i=0;i<m;i++) u[i]=(l1)u[i]*tmp%p,tmp=(l1)tmp*(c+i)%p*v[i]%p;</pre>
   r.insert(r.end(),all(u));
   r.insert(r.end(),all(res));
   assert(r.size()==mm);
   return r;
}//板子 OJ 20w 370ms, luogu 16w 150ms
const ui B=1e5;
ui a[B+2],b[B+2];
ui mic(ui x) {return (ll)a[x%B]*b[x/B]%p;}
vector<ui> Z_trans(Q f,ui c,ui m)//求 f(c^[0,m))。核心 ij=C(i+j,2)-C(i,2)-C(
    j,2)
{
   ui i,j,n=f.a.size();
   if ((11)n*m<B*5)</pre>
       vector<ui> r(m);
       for (i=0,j=1;i<m;i++) r[i]=f.fx(j),j=(l1)j*c%p;</pre>
       return r;
   }
   ui l=cal(m+=n-1);
   Q g(1);
   assert((ll)B*B>p);
   a[0]=b[0]=g.a[0]=g.a[1]=1;
   for (i=1;i<=B;i++) a[i]=(l1)a[i-1]*c%p;</pre>
   c=a[B];
   for (i=1;i<=B;i++) b[i]=(l1)b[i-1]*c%p;</pre>
   for (i=2;i<n;i++) f.a[i]=(ll)f.a[i]*mic((ll)(p*2-2-i)*(i-1)/2%(p-1))%p;
   reverse(all(f.a));f.a.resize(1);
   for (i=2;i<m;i++) g.a[i]=mic((11)i*(i-1)/2%(p-1));</pre>
   f.dft();g.dft();
   for (i=0;i<1;i++) f.a[i]=(l1)f.a[i]*g.a[i]%p;</pre>
   f.dft(1);
   vector<ui> r(f.a.data()+n-1,f.a.data()+m);m-=n-1;
   for (i=2;i < m;i++) r[i]=(11)r[i]*mic((11)(p*2-2-i)*(i-1)/2%(p-1))%p;
   return r;
}//luogu 1e6 400ms
vector<ui> get_Bell(int n)//B(0...n)
   ++n;
   getfac(n-1);
   Q f(n);
   int i;
   for (i=1;i<n;i++) f.a[i]=ifac[i];</pre>
   f=exp(f);
   for (i=2;i<n;i++) f.a[i]=(l1)f.a[i]*fac[i]%p;</pre>
   return vector<ui>(f.a.data(),f.a.data()+n);
vector<ui> get_S1_row(int n,int m)//S1(n,0...m),O(nlogn),unsigned
{
   int cm=cal(++m);
   if (n==0)
       vector<ui> r(m);
       r[0]=1;
       return r;
   }
   auto dfs=[&](auto self,int n)
       if (n==1)
```

```
{
           Q f(1);
           f.a[1]=1;
           return f;
       Q f=self(self,n>>1);
       f|=shift(f,n>>1);
       if (n&1)
           f.a.resize(cal(n+1));
           copy_n(f.a.data(),n,f.a.data()+1);
           --n;
           for (ui i=0;i<=n;i++) f.a[i]=(f.a[i]+(ll)f.a[i+1]*n)%p;</pre>
       }
       if (f.a.size()>cm) f.a.resize(cm);
       return f;
   };
   Q f=dfs(dfs,n);
   return vector<ui>(f.a.data(),f.a.data()+m);
}
vector<ui> get_S1_column(int n,int m)//S1(0...n,m),O(nlogn)
   if (m==0)
   {
       vector<ui> r(n+1);
       r[0]=1;
       return r;
   Q f(n+1);
   getfac(max(n,m));
   int i;
   for (i=1;i<=n;i++) f.a[i]=inv[i];</pre>
   f=pow(f,m);
   for (i=m;i<=n;i++) f.a[i]=(ll)f.a[i]*fac[i]%p*ifac[m]%p;</pre>
   return vector<ui>(f.a.data(),f.a.data()+n+1);
}
vector<ui> get_S2_row(int n,int m)//S2(n,0...m),O(mlogm)
   int tm=++m;
   if (n==0)
   {
       vector<ui> r(m);
       r[0]=1;
       return r;
   m=min(m,n+1);
   ui pr[m],pw[m],cnt=0;
   int i,j;
   fill_n(pw,m,0);
   pw[1]=1;
   for (i=2;i<m;i++)</pre>
       if (!pw[i]) pr[cnt++]=i,pw[i]=ksm(i,n);
       for (j=0;i*pr[j]<m;j++)</pre>
           pw[i*pr[j]]=(11)pw[i]*pw[pr[j]]%p;
           if (i%pr[j]==0) break;
       }
   }
```

```
getfac(m-1);
       Q f(m),g(m);
       for (i=0;i<m;i+=2) f.a[i]=ifac[i];</pre>
       for (i=1;i<m;i+=2) f.a[i]=p-ifac[i];</pre>
       for (i=1;i<m;i++) g.a[i]=(ll)pw[i]*ifac[i]%p;</pre>
       vector<ui> r(f.a.data(),f.a.data()+m);
       r.resize(tm);
       return r;
   vector<ui> get_S2_column(int n,int m)//S2(0...n,m),0(nlogn)
       if (m==0)
       {
          vector<ui> r(n+1);
          r[0]=1;
          return r;
       Q f(n+1);
       getfac(max(n,m));
       int i;
       for (i=1;i<=n;i++) f.a[i]=ifac[i];</pre>
       f=pow(f,m);
       for (i=m;i<=n;i++) f.a[i]=(ll)f.a[i]*fac[i]%p*ifac[m]%p;</pre>
       return vector<ui>(f.a.data(),f.a.data()+n+1);
   }
   vector<ui> get_signed_S1_row(int n,int m)
       auto v=get_S1_row(n,m);
       for (ui i=1^n&1;i<=m;i+=2) if (v[i]) v[i]=p-v[i];</pre>
       return v;
   }
   vector<ui> get_Bernoulli(int n)//B(0...n)
       getfac(++n);
       int i;
       Q f(n);
       for (i=0;i<n;i++) f.a[i]=ifac[i+1];</pre>
       f=~f;
       for (i=0;i<n;i++) f.a[i]=(ll)f.a[i]*fac[i]%p;</pre>
       return vector<ui>(f.a.data(),f.a.data()+n);
   vector<ui> get_partition(int n)//P(0...n), 分拆数
       Q f(++n);
       int i,1=0,r=0;
       while (--1) if (3*1*1-1>=n*2) break;
       while (++r) if (3*r*r-r>=n*2) break;
       ++1;
       for (i=1+abs(1)%2;i<r;i+=2) f.a[3*i*i-i>>1]=1;
       for (i=l+abs(l+1)%2;i<r;i+=2) f.a[3*i*i-i>>1]=p-1;
       return vector<ui>(f.a.data(),f.a.data()+n);
   }
#endif
using NTT::ui;using NTT::p;
#define poly NTT::Q
```

#### 2.34 FFT

```
namespace FFT
{
   #define all(x) (x).begin(),(x).end()
   typedef double db;
   const int N=1<<21;</pre>
   const db pi=3.14159265358979323846;
   struct comp
   {
       db x,y;
       comp operator+(const comp &o) const {return {x+o.x,y+o.y};}
       comp operator-(const comp &o) const {return {x-o.x,y-o.y};}
       comp operator*(const comp &o) const {return {x*o.x-y*o.y,o.x*y+x*o.y};}
       comp operator*(const db &o) const {return {x*o,y*o};}
       void operator*=(const comp &o) {*this={x*o.x-y*o.y,o.x*y+x*o.y};}
       void operator*=(const db &o) {x*=0;y*=0;}
       void operator/=(const db &o) {x/=o;y/=o;}
       comp operator/(const comp &o) const
          db z=1/(o.x*o.x+o.y*o.y);
          return {z*(x*o.x+y*o.y),z*(o.x*y-x*o.y)};
       }//not necessary, no check
   };
   long long dtol(const double &x) {return fabs(round(x));}
   const comp I{0,-1};
   ostream & operator<<(ostream &cout,const comp &o) {cout<<o.x;if (o.y>=0)
       cout<<'+';return cout<<o.y<<'i';}</pre>
   int r[N];
   char c;
   comp Wn[N];
   void init(int n)
       static int preone=-1;
       if (n==preone) return;
       preone=n;
       int b,i;
       b=_builtin_ctz(n)-1;
       for (i=1;i<n;i++) r[i]=r[i>>1]>>1|(i&1)<<b;</pre>
       for (i=0;i<n;i++) Wn[i]={cos(pi*i/n),sin(pi*i/n)};</pre>
   }
   int cal(int x) {return 1u<<32-_builtin_clz(max(x,2)-1);}</pre>
   struct Q
   {
       vector<comp> a;
       int deg;
       comp* pt() {return a.data();}
       Q(int n=0)
       {
          deg=n;
          a.resize(cal(n));
       void dft(int xs=0)//1,0
       {
          int i,j,k,l,n=a.size(),d;
          comp w,wn,b,c,*f=pt(),*g,*a=f;
          init(n);
          if (xs) reverse(a+1,a+n);//spe
          for (i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);</pre>
```

```
for (i=1,d=0;i<n;i=1,d++)</pre>
           //wn={cos(pi/i),(xs?-1:1)*sin(pi/i)};
           l=i<<1;
           for (j=0;j<n;j+=1)</pre>
           {
               //w={1,0};
               f=a+j;g=f+i;
               for (k=0;k<i;k++)</pre>
                  w=Wn[k*(n>>d)];
                  b=f[k];c=g[k]*w;
                  f[k]=b+c;
                  g[k]=b-c;
                  //w*=wn;
               }
           }
       if (xs) for (i=0;i<n;i++) a[i]/=n;</pre>
   void operator|=(Q o)
       int n=deg+o.deg-1,m=cal(n),i;
       a.resize(m);o.a.resize(m);
       dft();o.dft();
       for (i=0;i<m;i++) a[i]*=o.a[i];</pre>
       dft(1);
       for (i=n;i<m;i++) a[i]={};</pre>
       deg=n;
   Q operator|(Q o) const {o|=*this;return o;}
};
Q mul(Q a, const Q &b)//三次变两次, 仅实数, 注意精度
   int n=a.deg+b.deg-1,m=cal(n),i;
   a.a.resize(m);
   for (i=0;i<b.deg;i++) a.a[i]={a.a[i].x,b.a[i].x};</pre>
   a.dft();
   for (i=0;i<m;i++) a.a[i]*=a.a[i];</pre>
   a.dft(1);
   for (i=0;i<n;i++) a.a[i]={a.a[i].y*.5};</pre>
   for (i=n;i<m;i++) a.a[i]={};</pre>
   a.deg=n;
   return a;
void ddt(Q &a,Q &b)//double dft, 仅实数, 注意精度
{
   comp x,y;
   int n=a.a.size(),i;
   assert(n==b.a.size());
   for (i=0;i<n;i++) a.a[i]={a.a[i].x,b.a[i].x};</pre>
   for (i=0;i<n;i++) b.a[i]={a.a[i].x,-a.a[i].y};</pre>
   reverse(b.pt()+1,b.pt()+n);
   for (i=0;i<n;i++)</pre>
   {
       x=a.a[i];y=b.a[i];
       a.a[i]=(x+y)*.5;
       b.a[i]=(y-x)*.5*I;
```

```
}

}
using FFT::dtol;
```

## 2.35 约数个数和

 $O(\sqrt[3]{n}\log n)$ .

```
#include<bits/stdc++.h>
#define 11 long long
#define 111 __int128
using namespace std;
void myw(lll x){
   if(!x) return;
   myw(x/10);printf("%d",(int)(x%10));
}
struct vec{
   11 x,y;
   vec (11 x0=0,11 y0=0){x=x0,y=y0;}
   vec operator +(const vec b){return vec(x+b.x,y+b.y);}
};
11 N;
vec stk[1000005];int len;
vec P;
vec L,R;
bool ninR(vec a){return N<(lll)a.x*a.y;}</pre>
bool steep(ll x,vec a){return (lll)N*a.x<=(lll)x*x*a.y;}</pre>
111 Solve(){
   len=0;
   11 cbr=cbrt(N),sqr=sqrt(N);
   P.x=N/sqr,P.y=sqr+1;
   lll ans=0;
   stk[++len]=vec(1,0);stk[++len]=vec(1,1);
   while(1){
       L=stk[len--];
       while(ninR(vec(P.x+L.x,P.y-L.y)))
           ans+=(111)P.x*L.y+(111)(L.y+1)*(L.x-1)/2,
           P.x+=L.x,P.y-=L.y;
       if(P.y<=cbr) break;</pre>
       R=stk[len];
       while(!ninR(vec(P.x+R.x,P.y-R.y))) L=R,R=stk[--len];
       while(1){
           vec mid=L+R;
           if(ninR(vec(P.x+mid.x,P.y-mid.y))) R=stk[++len]=mid;
           else if(steep(P.x+mid.x,R)) break;
           else L=mid;
       }
   }
   for(int i=1;i<P.y;i++) ans+=N/i;</pre>
   return ans*2-sqr*sqr;
int T:
```

```
int main(){
    scanf("%d",&T);
    while(T--){
        scanf("%lld",&N);
        myw(Solve());printf("\n");
    }
}
```

### 2.36 万能欧几里得

```
题意: \sum\limits_{i=0}^{n-1} \lfloor \frac{ai+b}{m} \rfloor (0 \le a,b) 注意若 b \ge m 需要增加先往上走一步
```

```
struct nd
{
   11 x,y,sy;
   nd operator+(const nd &o) const
       return {x+o.x,y+o.y,sy+o.sy+y*o.x};
   }
};
nd ksm (nd a, int k)
   nd res{};
   while (k)
       if (k&1) res=res+a;
       a=a+a;k>>=1;
   return res;
nd sol (int p,int q,int r,int l,nd a,nd b)//(0,1],(pi+r)/q
   if (!1) return {};
   if (p>=q) return sol(p\%q,q,r,l,a,ksm(a,p/q)+b);
   int m=((11)1*p+r)/q;
   if (!m) return ksm(b,1);
   int cnt=l-((l1)q*m-r-1)/p;
   return ksm(b,(q-r-1)/p)+a+sol(q,p,(q-r-1)%p,m-1,b,a)+ksm(b,cnt);
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int T; cin>>T;
   while (T--)
       int n,m,a,b;
       cin>>n>>m>>a>>b;
       nd nx=\{1,0,0\}, ny=\{0,1,0\};
       nd ans=sol(a,m,b,n-1,ny,nx);
       cout<<ans.sy<<'\n';</pre>
   }
}
```

# 3 字符串

## 3.1 AC 自动机

```
scanf("%d",&n);
   for (i=1;i<=n;i++)</pre>
       x=0;cc=getchar();
       while ((cc<'a')||(cc>'z')) cc=getchar();
       while ((cc>='a')&&(cc<='z'))</pre>
           cc-='a';
           if (c[x][cc]==0) c[x][cc]=++ds;
          x=c[x][cc];
           cc=getchar();
       ys[i]=x;
   }tou=1;wei=0;
   for (i=0;i<=25;i++) if (c[0][i]) dl[++wei]=c[0][i];</pre>
   while (tou<=wei)</pre>
       x=dl[tou++];
       for (i=0;i<=25;i++) if (c[x][i]) f[dl[++wei]=c[x][i]]=c[f[x]][i]; else c</pre>
           [x][i]=c[f[x]][i];
   }
   x=0;cc=getchar();
   while ((cc<'a')||(cc>'z')) cc=getchar();
   while ((cc>='a')&&(cc<='z'))</pre>
       ++cs[x=c[x][cc-'a']];cc=getchar();
   }++wei;
   while (--wei) cs[f[dl[wei]]]+=cs[dl[wei]];
   for (i=1;i<=n;i++) printf("%d\n",cs[ys[i]]);</pre>
```

#### 3.2 hash

O(n), O(n).

```
typedef unsigned int ui;
typedef unsigned long long ull;
typedef pair<ui,ui> pa;
namespace sh
{
   const int N=1e6+2;
   const ull b1=137,b2=149,i1=1'603'801'661,i2=1'024'053'074;
   const ui p1=2'034'452'107,p2=2'013'074'419;
   ull m1[N],m2[N],r1,r2;
   int i;
   void init()
       m1[0]=m2[0]=1;
       for (i=1;i<N;i++)</pre>
          m1[i]=m1[i-1]*b1%p1;
          m2[i]=m2[i-1]*b2%p2;
       }
   }
   struct str
```

```
{
      vector<pa> a;
      str(int *s,int n)
         a.resize(n+1);
         r1=r2=0;
         a[0]={0,0};
         for (i=1;i<=n;i++)</pre>
            r1=(r1+s[i]*m1[i])%p1;
            r2=(r2+s[i]*m2[i])%p2;
            a[i]={r1,r2};
         }
      }
      str(const string &s)
         int n=s.size();
         a.resize(n+1);
         r1=r2=0;
         a[0]={0,0};
         for (i=1;i<=n;i++)</pre>
            r1=(r1+s[i-1]*m1[i])%p1;
            r2=(r2+s[i-1]*m2[i])%p2;
            a[i]={r1,r2};
         }
      pa getv(int 1,int r)
         -1].second)*m2[N-1]%p2};
      }
   };
   ull ptou(const pa &a)
      return (ull)a.first<<32|a.second;</pre>
   }
using sh::init,sh::ptou,sh::p1,sh::p2,sh::str,sh::m1,sh::m2;
```

#### 3.3 KMP

O(n), O(n).

```
}
   vector<int> match(int *t,int m)//find s(str) in t (start pos)
       vector<int> r;
       int i,j=0;
       for (i=1;i<=m;i++)</pre>
           while (j&&t[i]!=s[j+1]) j=nxt[j];
           if ((j+=t[i]==s[j+1])==n) j=nxt[j],r.push_back({i-n+1});
       return r;
   }
};
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   string s,t;
   cin>>s>>t;
   int n=s.size(),m=t.size(),i;
   vector<int> a(n+1),b(m+1);
   for (i=1;i<=n;i++) a[i]=s[i-1];</pre>
   for (i=1;i<=m;i++) b[i]=t[i-1];</pre>
   str q(b.data(),m);
   auto r=q.match(a.data(),n);
   for (int x:r) cout<<x<<'\n';</pre>
   for (i=1;i<=m;i++) cout<<q.nxt[i]<<" \n"[i==m];</pre>
```

#### 3.4 manacher

O(n), O(n).

```
vector<int> manacher(const string &t)//ex[i](total length) centered at i/2
{
   string S="$#";
   int n=t.size(),i,r=1,m=0;
   for (i=0;i<n;i++) S+=t[i],S+='#';</pre>
   S+='#';
   char *s=S.data()+2;
   n=n*2-1;
   vector<int> ex(n);
   ex[0]=2;
   for (i=1;i<n;i++)</pre>
       ex[i]=i<r?min(ex[m*2-i],r-i+1):1;
       while (s[i+ex[i]]==s[i-ex[i]]) ++ex[i];
       if (i+ex[i]-1>r) r=i+ex[m=i]-1;
   for (i=0;i<n;i++) --ex[i];</pre>
   return ex;
```

### 3.5 SA

```
O((n+\sum)\log n), O(n+\sum).
```

namespace SA

```
{
   const int N=1e6+2;
   int x[N],y[N],s[N],lg[N];
   int m,i,j,k,cnt;
   bool ied=0;
   void SA_init()
   {
       for (int i=2;i<N;i++) lg[i]=lg[i>>1]+1;
   }
   struct Q
   {
       vector<vector<int>> st;
       vector<int> _sa,rk,h;
       int *sa;
       int lcp(int x,int y)
           assert(x^y);
           x=rk[x];y=rk[y];
           if (x>y) swap(x,y);
           ++x;
           int z=lg[y-x+1];
           return min(st[z][x],st[z][y-(1<<z)+1]);</pre>
       Q(int *a, int n)/[1,n]
           if (!ied) ied=1,SA_init();
           _sa.resize(n+1);rk.resize(n+1);h.resize(n+1);sa=_sa.data();
           m=*min_element(a+1,a+n+1);--m;
           for (i=1;i<=n;i++) a[i]-=m;</pre>
           m=*max_element(a+1,a+n+1);
           assert(n<N);assert(m<N);</pre>
           memset(s+1,0,m*sizeof s[0]);
           for (i=1;i<=n;i++) ++s[x[i]=a[i]];</pre>
           for (i=2;i<=m;i++) s[i]+=s[i-1];</pre>
           for (i=n;i;i--) sa[s[x[i]]--]=i;
           memset(s+1,0,m*sizeof s[0]);
           for (j=1;j<=n;j<<=1)</pre>
               cnt=0;
               for (i=n-j+1;i<=n;i++) y[++cnt]=i;</pre>
               for (i=1;i<=n;i++) if (sa[i]>j) y[++cnt]=sa[i]-j;
               for (i=1;i<=n;i++) ++s[x[i]];</pre>
               for (i=2;i<=m;i++) s[i]+=s[i-1];</pre>
               for (i=n;i;i--) sa[s[x[y[i]]]--]=y[i];
               y[sa[1]]=cnt=1;
               memset(s+1,0,m*sizeof s[0]);
               for (i=2;i<=n;i++) if (x[sa[i]]==x[sa[i-1]]&&sa[i]<=n-j&&sa[i</pre>
                   -1]<=n-j\&\&x[sa[i]+j]==x[sa[i-1]+j]) y[sa[i]]=cnt; else y[sa[i]
                   ]]=++cnt;
               memcpy(x,y,sizeof(y));
               if ((m=cnt)==n) break;
           for (i=1;i<=n;i++) rk[sa[i]]=i;</pre>
           for (i=1;i<=n;i++) if (x[i]>1)
           {
               cnt=sa[x[i]-1];
               while (i+j\leq n\&\&cnt+j\leq n\&\&a[i+j]==a[cnt+j]) ++j;
               h[x[i]]=j;
```

#### 3.6 SAM

 $O(n\sum), O(2n\sum).$ 

```
template<int N> struct sam
   int p,q,np,nq,c[N*2][26],ds,cd,len[N*2],fa[N*2];
   sam(){np=ds=1;}
   void ins(int zf)
      p=np;len[np=++ds]=++cd;
      while (!c[p][zf]&&p)
          c[p][zf]=np;
          p=fa[p];
      if (!p)
          fa[np]=1;
          return;
      q=c[p][zf];
       if (len[q] == len[p] + 1)
          fa[np]=q;
          return;
      len[nq=++ds]=len[p]+1;
       memcpy(c[nq],c[q],sizeof(c[q]));
      fa[nq]=fa[q];
      fa[np]=fa[q]=nq;
       c[p][zf]=nq;
       while (c[p=fa[p]][zf]==q) c[p][zf]=nq;
   void out()
   {
       for (i=1;i<=ds;i++) for (j=0;j<=25;j++) if (c[i][j]) printf("%d->%d %c\n
          ",i,c[i][j],j+'a');
   vector<int> match(string s)//返回每个前缀最长匹配长度
      vector<int> r;
      r.reserve(s.size());
      p=1;
       int nl=0;
       for (auto ch:s)
```

```
ch-='a';
    if (c[p][ch]) ++nl,p=c[p][ch];
    else
    {
        while (p&&c[p][ch]==0) p=fa[p];
        if (p==0) p=1,nl=0; else nl=len[p]+1,p=c[p][ch];
    }
    r.push_back(nl);
    }
    return r;
}
```

## 3.7 SqAM

```
O(n\sum), O(n\sum).
```

# 3.8 ukkonen 后缀树

```
O(n), O(2n\sum).
```

```
void dfs(int x,int lf)
{
    if (!fir[x])
    {
        siz[x][1]=1;
        return;
    }
    int i,j;
    for (i=fir[x];i;i=nxt[i])
    {
        j=c[x][lj[i]];
        if ((f[j]<=m)&&(t[j]>=m)) ++siz[x][0];
        dfs(zd[j],t[j]-f[j]+1);
        siz[x][0]+=siz[zd[j]][0];
        siz[x][1]+=siz[zd[j]][1];
        if ((t[j]==n)&&(f[j]<=m)) --siz[x][1];
    }
    ans+=(ll)siz[x][0]*siz[x][1]*lf;
}
void add(int a,int b,int cc,int d)</pre>
```

```
{
   zd[++bbs]=b;
   t[bbs]=d;
   c[a][s[f[bbs]=cc]]=bbs;
void add(int x,int y)
   lj[++bs]=y;
   nxt[bs]=fir[x];
   fir[x]=bs;
}
   s[++m]=26;
   fa[1]=point=ds=1;
   for (i=1;i<=m;i++)</pre>
       ad=0;++remain;
       while (remain)
          if (r==0) edge=i;
          if ((j=c[point][s[edge]])==0)
              fa[++ds]=1;
              fa[ad]=point;
              add(ad=point,ds,edge,m);
              add(point,s[edge]);
          }
          else
              if ((t[j]!=m)&&(t[j]-f[j]+1<=r))</pre>
                  r-=t[j]-f[j]+1;
                  edge+=t[j]-f[j]+1;
                  point=zd[j];
                  continue;
              }
              if (s[f[j]+r]==s[i]) {++r;fa[ad]=point;break;}
              fa[fa[ad]=++ds]=1;
              add(ad=ds,zd[j],f[j]+r,t[j]);
              add(ds,s[i]);add(ds,s[f[j]+r]);fa[++ds]=1;
              add(ds-1,ds,i,m);
              zd[j]=ds-1;t[j]=f[j]+r-1;
          }
          --remain;
          if ((r)&&(point==1))
              --r;edge=i-remain+1;
          } else point=fa[point];
       }
   for (i=1;i<=ds;i++) for (j=fir[i];j;j=nxt[j]) {len[j]=t[c[i][lj[j]]]-f[c[i][</pre>
       lj[j]]]+1;lj[j]=zd[c[i][lj[j]]];}
```

# 3.9 ukkonen 后缀树 (重构)

```
struct suffixtree
{
   const static int M=27;
   struct P
```

```
{
   int v,w;
};
struct Q
   int f,t,v;//t=0: n
};
vector<Q> edges;
vector<vector<P>> e;
vector<array<int,M>> c;
vector<int> s,fa,dep,siz;
int n,point,ds,remain,r,edge;
bool bd;
suffixtree():c(2),fa({0,1}),edges(1),e(2)
   n=remain=r=edge=bd=0;
   point=ds=1;
suffixtree(const string &s):c(2),fa({0,1}),edges(1),e(2)
   n=remain=r=edge=bd=0;
   point=ds=1;
   reserve(s.size());
   for (auto c:s) insert(c-'a');
   insert(26);
}
void reserve(int len)
   ++len;
   s.reserve(len);
   len=len*2+2;
   c.reserve(len);
   fa.reserve(len);
   e.reserve(len);
}
inline void add(int a,int b,int cc,int d)
{
   assert(edges.size());
   c[a][s[cc]]=edges.size();
   edges.push_back({cc,d,b});
}
void insert(int ch)//[0,|S|)
   assert(ds=fa.size()-1\&\&ds=e.size()-1\&\&n==s.size()\&\&ds==e.size()-1);
   assert(ch>=0&&ch<M);</pre>
   s.push_back(ch);
   int ad=0;
   ++remain;
   while (remain)
       if (!r) edge=n;
       if (int m=c[point][s[edge]];!m)
       {
          assert(!m);
          fa.push_back(1);c.push_back({});e.push_back({});
          fa[ad]=point;
          add(ad=point,++ds,edge,-1);
          e[point].push_back({s[edge]});
          //add(point,s[edge]);
```

```
}
       else
       {
           assert(m);
           auto [f,t,v]=edges[m];
           if (t>=0&&t-f+1<=r)</pre>
              assert(t!=n);
              r-=t-f+1;
              edge+=t-f+1;
              point=v;
              continue;
           }
           assert(f+r<=n);</pre>
           if (s[f+r]==s[n])
              ++r;
              fa[ad]=point;
              break;
           }
           fa.push_back(1);c.push_back({});e.push_back({});
           fa.push_back(1);c.push_back({});e.push_back({});
           fa[ad]=++ds;
           add(ad=ds,v,f+r,t);
           e[ds].push_back({s[n]});
           e[ds].push_back({s[f+r]});
           //add(ds,s[n]);add(ds,s[f+r]);
           ++ds;add(ds-1,ds,n,-1);
           edges[m]=\{f,f+r-1,ds-1\};
       }
       --remain;
       if (r&&point==1)
           --r;
           edge=n-remain+1;
       } else point=fa[point];
   }
   ++n;
void build_edge()
{
   bd=1;
   //其余信息
   dep.resize(ds+1);
   siz.resize(ds+1);
   int i,j;
   for (i=1;i<=ds;i++) for (auto &[v,w]:e[i])</pre>
       j=c[i][v];
       v=edges[j].v;
       w=(edges[j].t>=0?edges[j].t:n-1)-edges[j].f+1;
   }
}
void out()
   int i;
   for (i=1;i<=ds;i++) for (int j:c[i]) if (j)</pre>
```

```
auto [f,t,v]=edges[j];
           if (t==-1) t=n-1;
           cerr<<i<' ' '<<v<' ';
           //cerr<<i<" -> "<<v<": ";
           for (int k=f;k<=t;k++) cerr<<char('a'+s[k]);</pre>
           cerr<<endl;
       }
   }
   ll ans;
   void dfs(int u)
       assert(bd);
       ++ans;
       for (auto [v,w]:e[u])
           //dep[v]=dep[u]+w;
          dfs(v);
          ans+=w-1;
       }
   11 fun()
       ans=0;
       build_edge();
       dfs(1);
       return ans-n;
};
```

# 3.10 Z 函数

表示每个后缀和母串的 lcp。

```
struct str
{
    vector<int> z;
    int n;
    str(int *s,int _n)//[1,n]
    {
        n=_n;
        z=vector<int>(n+1,0);
        int i,l,r;
        z[1]=n;
        for (i=2,l=r=0;i<=n;i++)
        {
            if (i<=r) z[i]=min(z[i-l+1],r-i+1);
            while (i+z[i]<=n&&s[i+z[i]]==s[1+z[i]]) ++z[i];
            if (i+z[i]-1>r) l=i,r=i+z[i]-1;
        }
    }
};
```

# 3.11 最小表示法

O(n), O(1).

```
{
   int i,j,k;
   T x,y;
   i=k=0;j=1;
   while (i<n&&j<n&&k<n)</pre>
      x=a[(i+k)%n];y=a[(j+k)%n];
       if (x==y) ++k; else
          if (x>y) i+=k+1; else j+=k+1;
          if (i==j) ++j;
          k=0;
       }
   }
   if (j>i) j=i;
   //[j,n)+[0,j)
   rotate(a,a+j,a+n);
}
```

# 4 图论

#### 4.1 最小密度环

O(nm).

```
#include <bits/stdc++.h>
using namespace std;
const int N=3e3+5,M=1e4+5;
const double inf=1e18;
int u[M],v[M];
double f[N][N],w[M];
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(8);</pre>
   int n,m,i,j;
   cin>>n>>m;
   for (i=1;i<=m;i++) cin>>u[i]>>v[i]>>w[i];
   ++n;
   for (i=1;i<=n;i++)</pre>
       fill_n(f[i]+1,n,inf);
       for (j=1;j<=m;j++) f[i][v[j]]=min(f[i][v[j]],f[i-1][u[j]]+w[j]);</pre>
   double ans=inf;
   for (i=1;i<n;i++) if (f[n][i]!=inf)</pre>
       double r=-inf;
       for (j=1; j<n; j++) r=max(r,(f[n][i]-f[j][i])/(n-j));</pre>
       ans=min(ans,r);
   }
   cout<<ans<<endl;</pre>
}
```

# 4.2 全源最短路与判负环

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pa;
typedef tuple<int,int,int> tp;
const int N=152;
const 11 inf=5e8;
11 dis[N][N],d[N][N];
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   while (1)
   {
       int n,m,q,i,j,k;
       cin>>n>>m>>q;
       if (tp(n,m,q)==tp(0,0,0)) return 0;
       for (i=0;i<n;i++) fill_n(dis[i],n,inf*inf);</pre>
       for (i=0;i<n;i++) dis[i][i]=0;</pre>
       while (m--)
           int u,v,w;
```

```
cin>>u>>v>>w;
    dis[u][v]=min(dis[u][v],(ll)w);
}
for (k=0;k<n;k++) for (i=0;i<n;i++) for (j=0;j<n;j++) dis[i][j]=max(min(
        dis[i][j],dis[i][k]+dis[k][j]),-inf*2);
for (i=0;i<n;i++) copy_n(dis[i],n,d[i]);
for (k=0;k<n;k++) for (i=0;i<n;i++) for (j=0;j<n;j++) dis[i][j]=max(min(
        dis[i][j],dis[i][k]+dis[k][j]),-inf*2);
while (q--)
{
    int u,v;
    cin>>u>>v;
    if (d[u][v]>inf) cout<<"Impossible\n"; else if (dis[u][v]!=d[u][v]||d
        [u][v]<-inf) cout<<"-Infinity\n"; else cout<<d[u][v]<<'\n';
}
cout<<'\n';
}
}</pre>
```

#### 4.3 三元环计数

 $O(m\sqrt{m}), O(n+m)$ .

```
typedef pair<int,int> pa;
typedef tuple<int,int,int> tu;
vector<tu> get_triangles(int n,vector<pa> eg)//[0,n]
   ++n;
   vector<tu> r;
   vector<int> e[n];
   int d[n],ed[n];
   fill_n(d,n,0);fill_n(ed,n,0);
   for (auto [x,y]:eg) ++d[y];
   for (auto [x,y]:eg)
   {
       if (pa{d[y],y}<pa{d[x],x}) swap(x,y);</pre>
       e[x].push_back(y);
   }
   for (int u=0;u<n;u++)</pre>
       for (int v:e[u]) ed[v]=1;
      for (int v:e[u]) for (int w:e[v]) if (ed[w]) r.push_back({u,v,w});
      for (int v:e[u]) ed[v]=0;
   }
   return r;
```

# 4.4 Johnson 全源带负权最短路

```
O(nm\log m), O(n+m).
```

```
for (int u=1;u<=n;u++) for (auto &[v,w]:e[u]) w+=dis[u]-dis[v];
```

#### 4.5 弦图

单纯点: v 和 v 邻点构成团。

完美消除序列:  $v_i$  在  $\{v_i, v_{i+1}, \cdots, v_n\}$  为单纯点。

 $N(v_i) = \{v_j | j > i \land (v_i, v_j) \in E\}, next(v_i) \ni N(v_i)$  最靠前的点。

极大团一定是  $\{v\} \cup N(v)$ 。

最大团大小等于色数。

弦图判定: 等价于是否存在完美消除序列。首先求出一个完美消除序列, 然 后判定是否合法。

判定方法: 设  $v_{i+1}, \dots, v_n$  中与  $v_i$  相邻的依次为  $v_1', \dots, v_m'$ 。只需判断是否  $v_1'$  与  $v_2', \dots, v_m'$  相邻。

LexBFS 算法(我不会写)

每个点有一个字符串 label, 初始为 0。从 i = n 到 i = 1 确定, 选 label 字 典序最大的 u, 再把 u 邻点的 label 后面接一个 i。

最大势算法: 从  $v_n$  求到  $v_1$ ,设  $label_i$  表示 i 与多少个已选点相邻,每次选  $label_i$  最大的点。

弦图极大团:  $\{v|\forall next(w)=v, |N(v)|\geq |N(w)|\}$ 。选出的集合为基本点,按上述极大团构造。

弦图染色: 从  $v_n$  到  $v_1$  依次选最小可染的色。

最大独立集:  $\bigcup v_1$  到  $v_n$  能选就选。

最小团覆盖:设最大独立集为  $\{p_m\}$ ,最小团覆盖为  $\{\{p_i\} \cup N(p_i)\}$ 。

区间图: 两个区间有边当且仅当交集非空。

区间图是弦图。

#### 4.5.1 代码

```
namespace chordal_graph//下标从 1 开始
   const int N=1e5+2;//点数
   bool ed[N];
   vector<int> e[N];
   void init(const vector<pair<int,int>> &edges)
   {
      for (auto [u,v]:edges) n=max({n,u,v});
      for (int i=1;i<=n;i++) e[i].clear();</pre>
      for (auto [u,v]:edges) e[u].push_back(v),e[v].push_back(u);
   vector<int> perfect_seq(const vector<pair<int,int>> &edges)//MCS
       init(edges);
       static int d[N];
       static vector<int> buc[N];
       int i,mx=0;
      memset(d+1,0,n*sizeof d[0]);
      memset(ed+1,0,n*sizeof ed[0]);
       for (i=1;i<=n;i++) buc[i].clear();</pre>
      buc[0].resize(n);
       iota(all(buc[0]),1);
       vector<int> r(n);
       for (i=n-1;i>=0;i--)
       {
          int u=0;
          while (!u)
              while (buc[mx].size()) if (ed[buc[mx].back()]) buc[mx].pop_back()
```

```
else
              ed[u=buc[mx].back()]=1;
             buc[mx].pop_back();
             goto yes;
          }
          --mx;
       }
      yes:;
      r[i]=u;
       for (int v:e[u]) if (!ed[v]) buc[++d[v]].push_back(v),mx=max(mx,d[v])
   }
   return r;
bool check_perfect_seq(vector<int> a)
   static bool ee[N];
   memset(ed+1,0,n*sizeof ed[0]);
   memset(ee+1,0,n*sizeof ee[0]);
   reverse(all(a));
   for (int u:a)
   {
       ed[u]=1;
       int w=0;
      for (int v:e[u]) if (ed[v]) {w=v;break;}
       if (!w) continue;
       ee[w]=1;
       for (int v:e[w]) ee[v]=1;
       for (int v:e[u]) if (ed[v]&&!ee[v]) return 0;
       ee[w]=0;
      for (int v:e[w]) ee[v]=0;
   }
   return 1;
}
bool check_chordal(const vector<pair<int,int>> &edges) {return
    check_perfect_seq(perfect_seq(edges));}
vector<int> color(int _n,const vector<pair<int,int>> &edges)//返回长度为 _n
   +1。其中 0 无意义
   auto a=perfect_seq(edges);
   reverse(all(a));
   memset(ed+1,0,n*sizeof ed[0]);
   vector<int> r( n+1);
   for (int u:a)
       for (int v:e[u]) ed[r[v]]=1;
       int x=1;
      while (ed[x]) ++x;
      r[u]=x;
       for (int v:e[u]) ed[r[v]]=0;
   for (int i=n+1;i<=_n;i++) r[i]=1;</pre>
   return r;
}
vector<int> max_independent(int _n,const vector<pair<int,int>> &edges)//注意
    有孤立点这种奇怪东西
{
   auto a=perfect_seq(edges);
```

```
memset(ed+1,0,n*sizeof ed[0]);
    vector<int> r;
    for (int u:a) if (!ed[u])
    {
        r.push_back(u);
        for (int v:e[u]) ed[v]=1;
    }
    for (int i=n+1;i<=_n;i++) r.push_back(i);
    return r;
    }
}
using chordal_graph::check_chordal,chordal_graph::color,chordal_graph::
    max_independent;</pre>
```

#### 4.6 二分图与网络流建图

以下约定,若为二分图则 n, m 表示两侧点数,否则仅 n 表示全图点数。

#### 4.6.1 二分图边染色

留坑待填。

结论:  $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$ ,二分图时  $\chi'(G) = \Delta(G)$ 。  $\Delta(G)$  为图的最大度。

#### 4.6.2 二分图最小点集覆盖

ans = maxmatch, 方案如下。

```
#include <bits/stdc++.h>
using namespace std;
const int N=5e3+2;
vector<int> e[N];
int ed[N],lk[N],kl[N],flg[N],now;
bool dfs(int u)
   for (int v:e[u]) if (ed[v]!=now)
   {
       ed[v]=now;
       if (!lk[v]||dfs(lk[v])) return lk[v]=u;
   return 0;
void dfs2(int u)
{
   for (int v:e[u]) if (!flg[v]) flg[v]=1,dfs2(lk[v]);
}
int main()
   int n,m,i,r=0;
   cin>>n>>m;
   while (m--)
       int u,v;
       cin>>u>>v;
       e[u].push_back(v);
   for (i=1;i<=n;i++) dfs(now=i);</pre>
   for (i=1:i<=n:i++) kl[lk[i]]=i:</pre>
```

```
for (i=1;i<=n;i++) if (!kl[i]) dfs2(i);
  vector<int> A[2];
  for (i=1;i<=n;i++) if (lk[i])
  {
     if (flg[i]) A[1].push_back(i); else A[0].push_back(lk[i]);
  }
  for (int j=0;j<2;j++)
  {
     cout<<A[j].size();
     for (int x:A[j]) cout<<' '<x;cout<<'\n';
  }
}</pre>
```

#### 4.6.3 二分图最大独立集

ans = n + m - maxmatch, 方案是最小点集覆盖的补集。

#### 4.6.4 二分图最小边覆盖

ans = n + m - maxmatch,方案是最大匹配加随便一些边。无解当且仅当有孤立点,算法会视为单选孤立点(无边)。

#### 4.6.5 有向无环图最小不相交链覆盖

ans = n - maxmatch,其中二分图建图方法是拆入点和出点(实现时直接跑一次二分图就行,不用额外处理),注意 ** 不 ** 需要传递闭包。方案如下。

```
#include <bits/stdc++.h>
using namespace std;
const int N=152;
vector<int> e[N];
int lk[N],kl[N],ed[N],now;
bool dfs(int u)
{
   for (int v:e[u]) if (ed[v]!=now)
       ed[v]=now;
       if (!lk[v]||dfs(lk[v])) return lk[v]=u;
   }
   return 0;
int main()
   int n,m,i;
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>n>>m;
   while (m--)
   {
       int u,v;
       cin>>u>>v;
       e[u].push_back(v);
   }
   int r=0;
   for (i=1;i<=n;i++) r+=dfs(now=i);</pre>
   for (i=1;i<=n;i++) kl[lk[i]]=i;</pre>
   for (i=1;i<=n;i++) if (ed[i]!=-1)</pre>
       vector<int> ans;
```

```
int u=i;
    while (u)
    {
        ed[u]=-1;
            ans.push_back(u);
            u=kl[u];
        }
        for (int j=0;j<ans.size();j++) cout<<ans[j]<<" \n"[j+1==ans.size()];
    }
    cout<<n-r<<endl;
}</pre>
```

#### 4.6.6 有向无环图最大互不可达集

ans = n - maxmatch,其中二分图建图方法是拆入点和出点(实现时直接跑一次二分图就行,不用额外处理),注意 ** 需要 ** 传递闭包。方案?

#### 4.6.7 最大权闭合子图

### 4.7 二分图匹配(时间戳写法)

```
bool dfs(int u)
{
    for (int v:e[u]) if (ed[v]!=now)
    {
        ed[v]=now;
        if (!lk[v]||dfs(lk[v])) return lk[v]=u;
    }
    return 0;
}
```

### 4.8 二分图最大权匹配

```
namespace KM
{
   const int N=405;//点数
   typedef long long ll;//答案范围
   const ll inf=1e16;
   int lk[N],kl[N],pre[N],q[N],n,h,t;
   ll sl[N],e[N][N],lx[N],ly[N];
   bool edx[N],edy[N];
   bool ck(int v)
      if (edy[v]=1,kl[v]) return edx[q[++t]=kl[v]]=1;
      while (v) swap(v,lk[kl[v]=pre[v]]);
      return 0;
   }
   void bfs(int u)
      fill_n(sl+1,n,inf);
      memset(edx+1,0,n*sizeof edx[0]);
      memset(edy+1,0,n*sizeof edy[0]);
```

```
q[h=t=1]=u;edx[u]=1;
       while (1)
           while (h<=t)</pre>
              int u=q[h++],v;
              11 d;
              for (v=1; v \le n; v++) if (!edy[v] \&\&sl[v] >= (d=lx[u]+ly[v]-e[u][v]))
                  if (pre[v]=u,d) sl[v]=d; else if (!ck(v)) return;
           }
           int i;
           11 m=inf;
           for (i=1;i<=n;i++) if (!edy[i]) m=min(m,sl[i]);</pre>
           for (i=1;i<=n;i++)</pre>
              if (edx[i]) lx[i]-=m;
              if (edy[i]) ly[i]+=m; else sl[i]-=m;
           for (i=1;i<=n;i++) if (!edy[i]&&!sl[i]&&!ck(i)) return;</pre>
       }
   template<typename TT> 11 max_weighted_match(int N,const vector<tuple<int,int</pre>
       ,TT>> &edges)//lk[[1,n]]->[1,n]
   {
       int i;n=N;
       memset(lk+1,0,n*sizeof lk[0]);
       memset(kl+1,0,n*sizeof kl[0]);
       memset(ly+1,0,n*sizeof ly[0]);
       for (i=1;i<=n;i++) fill_n(e[i]+1,n,0);//若不需保证匹配边最多,置 0 即可,
           否则 -inf/N
       for (auto [u,v,w]:edges) e[u][v]=max(e[u][v],(ll)w);
       for (i=1;i<=n;i++) lx[i]=*max_element(e[i]+1,e[i]+n+1);</pre>
       for (i=1;i<=n;i++) bfs(i);</pre>
       ll r=0;
       for (i=1;i<=n;i++) r+=e[i][lk[i]];</pre>
       return r;
   }
using KM::max_weighted_match,KM::lk,KM::kl,KM::e;
```

### 4.9 一般图最大匹配

```
swap(u,v);
   }
}
void blm(int u,int v,int a)
   while (rt[u]!=a)
       f[u]=v;
       v=lk[u];
       if (typ[v]==1) typ[q[++t]=v]=0;
       rt[u]=rt[v]=a;
       u=f[v];
   }
}
void aug(int u)
   while (u)
   {
       int v=lk[f[u]];
       lk[lk[u]=f[u]]=u;
       u=v;
   }
}
void bfs(int root)
   memset(typ+1,-1,n*sizeof typ[0]);
   iota(rt+1,rt+n+1,1);
   typ[q[h=t=1]=root]=0;
   while (h<=t)</pre>
   {
       int u=q[h++];
       for (int v:e[u])
          if (typ[v]==-1)
          {
              typ[v]=1;f[v]=u;
              if (!lk[v]) return aug(v);
              typ[q[++t]=lk[v]]=0;
          } else if (!typ[v]&&rt[u]!=rt[v])
          {
              int a=lca(rt[u],rt[v]);
              blm(v,u,a);blm(u,v,a);
          }
       }
   }
}
int max_general_match(int N,vector<pair<int,int>> edges)//[1,n]
   n=N;id=0;
   memset(f+1,0,n*sizeof f[0]);
   memset(dfn+1,0,n*sizeof dfn[0]);
   memset(lk+1,0,n*sizeof lk[0]);
   int i;
   for (i=1;i<=n;i++) e[i].clear();</pre>
   mt19937 rnd(114);
   shuffle(all(edges),rnd);
   for (auto [u,v]:edges)
   {
       e[u].push_back(v),e[v].push_back(u);
```

```
if (!(lk[u]||lk[v])) lk[u]=v,lk[v]=u;
}
int r=0;
for (i=1;i<=n;i++) if (!lk[i]) bfs(i);
for (i=1;i<=n;i++) r+=!!lk[i];
  return r/2;
}
using blossom_tree::max_general_match,blossom_tree::lk;</pre>
```

### 4.10 一般图最大权匹配

n = 400: UOJ 600ms, Luogu 135ms

```
#include<bits/stdc++.h>
using namespace std;
#define all(x) (x).begin(),(x).end()
namespace weighted_blossom_tree
   #define d(x) (lab[x.u]+lab[x.v]-e[x.u][x.v].w*2)
   const int N=403*2;//两倍点数
   typedef long long 11;//总和大小
   typedef int T;//权值大小
   //均不允许无符号
   const T inf=numeric_limits<int>::max()>>1;
   struct Q
       int u,v;
      T w;
   } e[N][N];
   T lab[N];
   int n,m=0,id,h,t,lk[N],sl[N],st[N],f[N],b[N][N],s[N],ed[N],q[N];
   vector<int> p[N];
   void upd(int u,int v) {if (!sl[v]||d(e[u][v])<d(e[sl[v]][v])) sl[v]=u;}</pre>
   void ss(int v)
   {
      sl[v]=0;
      for (int u=1;u<=n;u++) if (e[u][v].w>0&&st[u]!=v&&!s[st[u]]) upd(u,v);
   void ins(int u) {if (u<=n) q[++t]=u; else for (int v:p[u]) ins(v);}</pre>
   void mdf(int u,int w)
   {
       st[u]=w;
      if (u>n) for (int v:p[u]) mdf(v,w);
   int gr(int u,int v)
   {
      if ((v=find(all(p[u]),v)-p[u].begin())&1)
          reverse(1+all(p[u]));
          return (int)p[u].size()-v;
      return v;
   }
   void stm(int u,int v)
      lk[u]=e[u][v].v;
       if (u<=n) return;</pre>
       Q = e[ii][v]:
```

```
int x=b[u][w.u],y=gr(u,x),i;
   for (i=0;i<y;i++) stm(p[u][i],p[u][i^1]);</pre>
   stm(x,v);
   rotate(p[u].begin(),y+all(p[u]));
void aug(int u,int v)
   int w=st[lk[u]];
   stm(u,v);
   if (!w) return;
   stm(w,st[f[w]]);
   aug(st[f[w]],w);
}
int lca(int u,int v)
   for (++id;u|v;swap(u,v))
   {
       if (!u) continue;
       if (ed[u]==id) return u;
       ed[u]=id;//????????v?? 这是原作者的注释, 我也不知道是啥
       if (u=st[lk[u]]) u=st[f[u]];
   return 0;
}
void add(int u,int a,int v)
   int x=n+1,i,j;
   while (x<=m&&st[x]) ++x;</pre>
   if (x>m) ++m;
   lab[x]=s[x]=st[x]=0; lk[x]=lk[a];
   p[x].clear();p[x].push_back(a);
   for (i=u;i!=a;i=st[f[j]]) p[x].push_back(i),p[x].push_back(j=st[lk[i]]),
       ins(j);//复制, 改一处
   reverse(1+all(p[x]));
   for (i=v;i!=a;i=st[f[j]]) p[x].push_back(i),p[x].push_back(j=st[lk[i]]),
       ins(j);
   mdf(x,x);
   for (i=1;i<=m;i++) e[x][i].w=e[i][x].w=0;</pre>
   memset(b[x]+1,0,n*sizeof b[0][0]);
   for (int u:p[x])
   {
       for (v=1;v\le m;v++) if (!e[x][v].w||d(e[u][v])\le d(e[x][v])) e[x][v]=e[u]
           ][v],e[v][x]=e[v][u];
       for (v=1;v<=n;v++) if (b[u][v]) b[x][v]=u;</pre>
   }
   ss(x);
void ex(int u) // s[u] == 1
{
   for (int x:p[u]) mdf(x,x);
   int a=b[u][e[u][f[u]].u],r=gr(u,a),i;
   for (i=0;i<r;i+=2)</pre>
   {
       int x=p[u][i],y=p[u][i+1];
       f[x]=e[y][x].u;
       s[x]=1;s[y]=0;
       sl[x]=0;ss(y);
       ins(y);
   }
```

```
s[a]=1;f[a]=f[u];
   for (i=r+1;i<p[u].size();i++) s[p[u][i]]=-1,ss(p[u][i]);</pre>
   st[u]=0;
}
bool on(const Q &e)
   int u=st[e.u],v=st[e.v],a;
   if(s[v]==-1)
       f[v]=e.u;s[v]=1;
       a=st[lk[v]];
       sl[v]=sl[a]=s[a]=0;
       ins(a);
   }
   else if(!s[v])
       a=lca(u,v);
       if (!a) return aug(u,v),aug(v,u),1;
       else add(u,a,v);
   return 0;
bool bfs()
{
   memset(s+1,-1,m*sizeof s[0]);
   memset(sl+1,0,m*sizeof sl[0]);
   h=1;t=0;
   int i,j;
   for (i=1;i<=m;i++) if (st[i]==i&&!lk[i]) f[i]=s[i]=0,ins(i);</pre>
   if (h>t) return 0;
   while (1)
       while (h<=t)</pre>
           int u=q[h++],v;
           if (s[st[u]]!=1) for (v=1; v<=n;v++) if (e[u][v].w>0&&st[u]!=st[v
               ])
           {
              if (d(e[u][v])) upd(u,st[v]); else if (on(e[u][v])) return 1;
           }
       }
       T x=inf;
       for (i=n+1;i<=m;i++) if (st[i]==i&&s[i]==1) x=min(x,lab[i]>>1);
       for (i=1;i\leq m;i++) if (st[i]==i\&\&sl[i]\&\&s[i]!=1) x=min(x,d(e[sl[i]][i])
           ])>>s[i]+1);
       for (i=1;i<=n;i++) if (~s[st[i]]) if ((lab[i]+=(s[st[i]]*2-1)*x)<=0)</pre>
       for (i=n+1;i<=m;i++) if (st[i]==i&&~s[st[i]]) lab[i]+=(2-s[st[i]]*4)*</pre>
           x;
       h=1; t=0;
       for (i=1;i<=m;i++) if (st[i]==i&&sl[i]&&st[sl[i]]!=i&&!d(e[sl[i]][i])</pre>
           &&on(e[sl[i]][i])) return 1;
       for (i=n+1;i<=m;i++) if (st[i]==i&&s[i]==1&&!lab[i]) ex(i);</pre>
   }
   return 0;
template<typename TT> 11 max_weighted_general_match(int N,const vector<tuple</pre>
    <int,int,TT>> &edges)//[1,n], 返回权值
{
```

```
memset(ed+1,0,m*sizeof ed[0]);
       memset(lk+1,0,m*sizeof lk[0]);
       n=m=N;id=0;
       iota(st+1,st+n+1,1);
       int i,j;
       T wm=0;
       11 r=0;
       for (i=1;i<=n;i++) for (j=1;j<=n;j++) e[i][j]={i,j,0};</pre>
       for (auto [u,v,w]:edges) wm=max(wm,e[v][u].w=e[u][v].w=max(e[u][v].w,(T)
           w));
       for (i=1;i<=n;i++) p[i].clear();</pre>
       for (i=1;i<=n;i++) for (j=1;j<=n;j++) b[i][j]=i*(i==j);</pre>
       fill_n(lab+1,n,wm);
       while (bfs());
       for (i=1;i<=n;i++) if (lk[i]) r+=e[i][lk[i]].w;</pre>
       return r/2;
   }
   #undef d
{\tt using weighted\_blossom\_tree::max\_weighted\_general\_match, weighted\_blossom\_tree::}
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   int n,m;
   cin>>n>>m;
   vector<tuple<int,int,long long>> edges(m);
   for (auto &[u,v,w]:edges) cin>>u>>v>>w;
   cout<<max_weighted_general_match(n,edges)<<'\n';</pre>
   for (int i=1;i<=n;i++) cout<<lk[i]<<" \n"[i==n];</pre>
```

## 4.11 网络流代码

```
namespace network_flow
{
   const int N=2e5+50;//number of points
   {\tt namespace} \ {\tt flow}
       typedef ll wT;//single flow
       typedef ll cT;//total flow
       const cT inf=numeric_limits<cT>::max();//maximum
       struct Q
       {
           int v;
           wT w;
           int id;
       };
       vector<Q> e[N];
       int fc[N],q[N];
       int n,s,t;
       int bfs()
       {
           fill_n(fc,n,0);
           int p1=0,p2=0,u;
           fc[s]=1;q[0]=s;
           while (p1 \le p2)
```

```
int u=q[p1++];
          for (auto [v,w,id]:e[u]) if (w&&!fc[v]) fc[q[++p2]=v]=fc[u]+1;
       }
       return fc[t];
   cT dfs(int u,cT maxf)
       if (u==t) return maxf;
       cT j=0,k;
       for (auto &[v,w,id]:e[u]) if (w&&fc[v]==fc[u]+1&&(k=dfs(v,min(maxf-j
           ,(cT)w)))
       {
           j+=k;
           w-=k;
           e[v][id].w+=k;
           if (j==maxf) return j;
       fc[u]=0;
       return j;
   }
   cT maxflow(const vector<tuple<int,int,wT>> &edges,int S,int T)//[0,n]
       s=S;t=T;n=max(s,t);
       for (auto [u,v,w]:edges) n=\max(\{n,u,v\});
       ++n;
       assert(n<N);
       for (int i=0;i<n;i++) e[i].clear();</pre>
       for (auto [u,v,w]:edges) if (u!=v)
       {
           e[u].push_back({v,w,(int)e[v].size()});
           e[v].push_back({u,0,(int)e[u].size()-1});
       }
       cT r=0;
       while (bfs()) r+=dfs(s,inf);
       return r;
   }
using flow::maxflow,flow::fc;
namespace match
   int lk[N];
   int maxmatch(int n,int m,const vector<pair<int,int>> &edges)//lk[[0,n
       ]]->[0,m]
       ++n;++m;
       assert(max(n,m)<N);</pre>
       int s=n+m,t=n+m+1,i;
       vector<tuple<int,int,ll>> eg;
       eg.reserve(n+m+edges.size());
       for (i=0;i<n;i++) eg.push_back({s,i,1});</pre>
       for (i=0;i<m;i++) eg.push_back({i+n,t,1});</pre>
       for (auto [u,v]:edges) eg.push_back({u,v+n,1});
       int r=maxflow(eg,s,t);
       fill_n(lk,n,-1);
       for (i=0;i< n;i++) for (auto [v,w,id]:flow::e[i]) if (v<s\&\&!w) \{lk[i]=
           v-n; break;}
       return r;
   }
}
```

```
using match::maxmatch,match::lk;
namespace costflow
   typedef ll wT;
   typedef ll cT;
   const cT inf=numeric_limits<cT>::max();
   struct Q
       int v;
       wT w;
       cT c;
       int id;
   };
   vector<Q> e[N];
   cT dis[N];
   int pre[N],pid[N],ipd[N];
   bool ed[N];
   int n,s,t;
   pair<wT,cT> spfa()
       queue<int> q;
       fill_n(dis,n,inf);
       memset(ed,0,n*sizeof ed[0]);
       q.push(s);dis[s]=0;
       while (q.size())
          int u=q.front();q.pop();ed[u]=0;
          for (auto [v,w,c,id]:e[u]) if (w&&dis[v]>dis[u]+c)
          {
              dis[v]=dis[u]+c;
              pre[v]=u;
              pid[v]=e[v][id].id;
              ipd[v]=id;
              if (!ed[v]) q.push(v),ed[v]=1;
          }
       }
       if (dis[t]==inf) return {0,0};
       wT mw=numeric_limits<wT>::max();
       for (int i=t;i!=s;i=pre[i]) mw=min(mw,e[pre[i]][pid[i]].w);
       for (int i=t;i!=s;i=pre[i]) e[pre[i]][pid[i]].w-=mw,e[i][ipd[i]].w+=
       return {mw,(cT)mw*dis[t]};
   pair<wT,cT> mcmf_spfa(const vector<tuple<int,int,wT,cT>> &edges,int S,
       int T)//[0,n]
       s=S;t=T;n=max(s,t);
       for (auto [u,v,w,c]:edges) n=\max(\{n,u,v\});
       ++n;
       assert(n<N);</pre>
       for (int i=0;i<n;i++) e[i].clear();</pre>
       for (auto [u,v,w,c]:edges) if (u!=v)
          e[u].push_back({v,w,c,(int)e[v].size()});
          e[v].push_back({u,0,-c,(int)e[u].size()-1});
       }
       pair<wT,cT> r{0,0},rr;
       while ((rr=spfa()).first) r={r.first+rr.first,r.second+rr.second};
       return r;
```

```
pair<wT,cT> mcmf_dijk(const vector<tuple<int,int,wT,cT>> &edges,int S,
    int T)//[0,n]
   s=S; t=T; n=max(s,t);
   for (auto [u,v,w,c]:edges) n=\max(\{n,u,v\});
   ++n;
   assert(n<N);</pre>
   for (int i=0;i<n;i++) e[i].clear();</pre>
   for (auto [u,v,w,c]:edges) if (u!=v)
       e[u].push_back({v,w,c,(int)e[v].size()});
       e[v].push_back({u,0,-c,(int)e[u].size()-1});
   }
   static cT h[N];
   auto get_h=[&]()
   {
       fill_n(h,n,inf);
       memset(ed,0,n*sizeof ed[0]);
       queue<int> q;
       q.push(s);h[s]=0;
       while (q.size())
       {
          int u=q.front();q.pop();ed[u]=0;
          for (auto [v,w,c,id]:e[u]) if (w&&h[v]>h[u]+c)
              h[v]=h[u]+c;
              if (!ed[v]) q.push(v),ed[v]=1;
          }
       }
       return;
   };
   auto dijkstra=[&]() -> pair<wT,cT>
       static int fl[N],zl[N];
       int i;
       memset(ed,0,n*sizeof ed[0]);
       fill_n(dis,n,inf);
       typedef pair<cT,int> pa;
       priority_queue<pa,vector<pa>,greater<pa>> q;
       dis[s]=0;q.push({0,s});
       while (q.size())
          int u=q.top().second;
          q.pop();ed[u]=1;
          i=0;
          for (auto [v,w,c,id]:e[u])
              if (w&&dis[v]>dis[u]+c) fl[v]=id,zl[v]=i,q.push({dis[v]=dis
                  [pre[v]=u]+c,v});
              ++i;
          while (q.size()&&ed[q.top().second]) q.pop();
       }
       if (dis[t]==inf) return {0,0};
       wT tf=numeric_limits<wT>::max();
       for (i=t;i!=s;i=pre[i]) tf=min(tf,e[pre[i]][zl[i]].w);
       for (i=t;i!=s;i=pre[i]) e[pre[i]][zl[i]].w-=tf,e[i][fl[i]].w+=tf;
       for (int u=0;u<n;u++) for (auto &[v,w,c,id]:e[u]) c+=dis[u]-dis[v]
```

```
return {tf,tf*(h[t]+=dis[t])};
       };
       get_h();
       for (int u=0;u<n;u++) for (auto &[v,w,c,id]:e[u]) c+=h[u]-h[v];</pre>
       pair<wT,cT> r{0,0},rr;
       while ((rr=dijkstra()).first) r={r.first+rr.first,r.second+rr.second
           };
       return r;
   }
}
using costflow::mcmf_spfa,costflow::mcmf_dijk;
namespace bounded_flow
   typedef ll wT;//single flow
   typedef ll cT;//total flow
   bool valid_flow(const vector<tuple<int,int,wT,wT>> &edges)//方案需加上 1
       if (!edges.size()) return 1;
       int n=0,i;
       cT tot=0;
       for (auto [u,v,l,r]:edges)
          n=max({n,u,v});
          if (l>r) return 0;
       }
       ++n;
       static cT cd[N];
       memset(cd,0,n*sizeof cd[0]);
       for (auto [u,v,l,r]:edges) cd[u]+=1,cd[v]-=1;
       vector<tuple<int,int,wT>> eg;
       eg.reserve(n+edges.size());
       for (i=0;i<n;i++) if (cd[i]>0) eg.push_back({i,n+1,cd[i]}),tot+=cd[i
           ];
       else if (cd[i]<0) eg.push_back({n,i,-cd[i]});</pre>
       for (auto [u,v,1,r]:edges) eg.push_back({u,v,r-1});
       return tot==flow::maxflow(eg,n,n+1);
   }
   cT valid_flow_st(vector<tuple<int,int,wT,wT>> edges,int s,int t)//-1
       invalid, wT=cT
       int n=max(s,t);
       cT tot=0;
       for (auto [u,v,l,r]:edges) n=\max(\{n,u,v\}), tot+=(u==s)*r;
       edges.push_back({t,s,0,tot});
       if (!valid_flow(edges)) return -1;
       assert(flow::e[s].back().v==t);
       assert(flow::e[t].back().v==s);
       return tot-flow::e[t].back().w;
   cT valid_maxflow(const vector<tuple<int,int,wT,wT>> &edges,int s,int t)
       //-1 invalid, wT=cT
       cT r=valid_flow_st(edges,s,t);
       if (r<0) return r;</pre>
       flow::s=s;flow::t=t;
       flow::e[s].pop_back();flow::e[t].pop_back();
       while (flow::bfs()) r+=flow::dfs(s,flow::inf);
```

```
return r;
   }
   cT valid_minflow(const vector<tuple<int,int,wT,wT>> &edges,int s,int t)
       //-1 invalid, wT=cT
       cT r=valid_flow_st(edges,s,t);
       if (r<0) return r;</pre>
       flow::s=t;flow::t=s;
       flow::e[s].pop_back();flow::e[t].pop_back();
       while (flow::bfs()) r-=flow::dfs(t,flow::inf);
       return r;
   }//not check
}
using bounded_flow::valid_flow,bounded_flow::valid_flow_st,bounded_flow::
    valid_maxflow,bounded_flow::valid_minflow;
namespace bounded_cost_flow
{
   pair<11,11> valid_mcf(const vector<tuple<int,int,ll,ll,ll>>> &edges,int s
       ,int t)//[u,v,l,r,c],mincost flow
       int n=max(s,t);
       for (auto [u,v,1,r,c]:edges) n=max({n,u,v});
       ++n;
       int ss=n,tt=n+1;
       static ll cd[N];
       memset(cd,0,n*sizeof cd[0]);
       for (auto [u,v,1,r,c]:edges) cd[u]+=1,cd[v]-=1;
       vector<tuple<int,int,ll,ll>> e;
       11 t1=0,t2=0;
       for (int i=0;i<n;i++) if (cd[i]>0) e.push_back({i,tt,cd[i],0}),t2+=cd
       else if (cd[i]<0) e.push_back({ss,i,-cd[i],0});</pre>
       for (auto [u,v,1,r,c]:edges) e.push_back({u,v,r-1,c});
       for (auto [u,v,w,c]:e) t1+=(u==s)*w;
       e.push_back({t,s,t1,0});
       auto res=mcmf_spfa(e,ss,tt);//checked dijk
       if (res.first!=t2) return {-1,-1};
       res.first=costflow::e[s].back().w;
       for (auto [u,v,l,r,c]:edges) res.second+=l*c;
       return res;
   }
   pair<11,11> valid_mcmf(const vector<tuple<int,int,11,11,11>>> &edges,int
       s,int t)//[u,v,l,r,c],mincost maxflow
       auto r=valid_mcf(edges,s,t);
       if (r.first<0) return {-1,-1};</pre>
       costflow::e[s].pop_back();
       costflow::e[t].pop_back();
       costflow::s=s;costflow::t=t;
       pair<ll,ll> rr;
       while ((rr=costflow::spfa()).first) r={r.first+rr.first,r.second+rr.
           second};//spfa ver. not checked dijk
       return r;
   }
}
using bounded_cost_flow::valid_mcf,bounded_cost_flow::valid_mcmf;
namespace ne_costflow
{
   pair<11,11> ne_mcmf(const vector<tuple<int,int,ll,ll>> &edges,int s,int
```

```
t)
{
    vector<tuple<int,int,ll,ll,ll>> e;
    for (auto [u,v,w,c]:edges) if (c>=0) e.push_back({u,v,0,w,c}); else
    {
        e.push_back({u,v,w,w,c});
        e.push_back({v,u,0,w,-c});
    }
    return valid_mcmf(e,s,t);
}
using ne_costflow::ne_mcmf;
}
```

#### 4.12 费用流 (SPFA)

```
bool dfs()
   memset(j1,-0x3f,sizeof(j1));
   jl[dl[tou=wei=1]=0]=0;
   while (tou<=wei)</pre>
       ed[x=d1[tou++]]=0;
       for (i=fir[x];i;i=nxt[i]) if ((lj[i][1])&&(j1[lj[i][0]]<j1[x]+lj[i][2]))</pre>
          jl[lj[i][0]]=jl[x]+lj[i][2];
          qq[lj[i][0]]=x;
          dy[lj[i][0]]=i;
          if (!ed[lj[i][0]]) ed[dl[++wei]=lj[i][0]]=1;
       }
   }
   zg=m;
   if (jl[t]==jl[t+1]) return 0;
   for (i=t;i;i=qq[i]) zg=min(zg,lj[dy[i]][1]);
   for (i=t;i;i=qq[i])
   {
       lj[dy[i]][1]-=zg;
       ans+=zg*lj[dy[i]][2];
       if (dy[i]&1) lj[dy[i]+1][1]+=zg; else lj[dy[i]-1][1]+=zg;
   return 1;
while (dfs());
```

# 4.13 费用流 (Dijkstra)

```
priority_queue<pa,vector<pa>,greater<pa> > heap;
const int N=5e3+2,M=1e5+2;
pa ans;
int lj[M][3],nxt[M],fir[N],dis[N],h[N],pre[N],fl[N];
int n,m,s,t,bs,x,y,z,w,ans1,ans2;
bool ed[N];
void add(const int u,const int v,const int x,const int y)
{
    lj[++bs][0]=v;
    lj[bs][1]=x;
```

```
lj[bs][2]=y;
   nxt[bs]=fir[u];
   fir[u]=bs;
   lj[++bs][0]=u;
   lj[bs][1]=0;
   lj[bs][2]=-y;
   nxt[bs]=fir[v];
   fir[v]=bs;
void spfa()//本题中用dijkstra代替
   int x,i,j;
   memset(h,0x3f,sizeof(h));h[s]=0;
   heap.push(make_pair(0,s));
   while (!heap.empty())
       ed[x=heap.top().second]=1;heap.pop();
       for (i=fir[x];i;i=nxt[i]) if ((lj[i][1])&&(h[lj[i][0]]>h[x]+lj[i][2]))
          heap.push(make_pair(h[lj[i][0]]=h[x]+lj[i][2],lj[i][0]));
       while ((!heap.empty())&&(ed[heap.top().second])) heap.pop();
   for (i=1;i<=n;i++) for (j=fir[i];j;j=nxt[j]) lj[j][2]+=h[i]-h[lj[j][0]];
   memset(ed,0,sizeof(ed));
pa dijkstra()
   int i,j,x,tf=1e9;
   memset(dis,0x3f,sizeof(dis));memset(pre,0,sizeof(pre));dis[s]=0;heap.push(
       make_pair(0,s));
   while (!heap.empty())
       ed[x=heap.top().second]=1;heap.pop();
      for (i=fir[x];i;i=nxt[i]) if ((lj[i][1])&&(dis[lj[i][0]]>dis[x]+lj[i
          ][2]))
          heap.push(make_pair(dis[1j[i][0]]=dis[pre[1j[i][0]]=x]+1j[i][2],1j[i
              ][0])),fl[lj[i][0]]=i;
       while ((!heap.empty())&&(ed[heap.top().second])) heap.pop();
   }
   if (dis[t]==dis[t+1]) return make_pair(0,0);
   for (i=t;i!=s;i=pre[i]) tf=min(tf,lj[fl[i]][1]);
   for (i=t;i!=s;i=pre[i]) lj[fl[i]][1]-=tf,lj[fl[i]^1][1]+=tf;
   for (i=1;i<=n;i++) for (j=fir[i];j;j=nxt[j]) lj[j][2]+=dis[i]-dis[lj[j][0]];</pre>
   h[t]+=dis[t];memset(ed,0,sizeof(ed));
   return make_pair(tf,tf*h[t]);
signed main()
   while (!heap.empty()) heap.pop();
   read(n);read(m);read(s);read(t);bs=1;
   while (m--)
      read(x);read(y);read(z);read(w);
      add(x,y,z,w);
   }
   spfa();
   while ((ans=dijkstra()).first) ans1+=ans.first,ans2+=ans.second;
   printf("%d %d",ans1,ans2);
```

### 4.14 假花树

```
vector<int> lj[N];
int lk[N],ed[N];
int n,m,cnt,i,t,x,y,ans,la;
bool dfs(int x)
   ed[x]=cnt;int v;
   random_shuffle(lj[x].begin(),lj[x].end());
   for (auto u:lj[x]) if (ed[v=lk[u]]!=cnt)
       1k[v]=0,1k[u]=x,1k[x]=u;
       if (!v||dfs(v)) return 1;
       lk[v]=u, lk[u]=v, lk[x]=0;
   return 0;
int main()
   srand(time(0));la=-1;
   read(n);read(m);
   while (m--) read(x),read(y),lj[x].push_back(y),lj[y].push_back(x);
   while (la!=ans)
   {
       memset(ed+1,0,n<<2);la=ans;
       for (i=1;i<=n;i++) if (!lk[i]) ans+=dfs(cnt=i);</pre>
   printf("%d\n",ans);
   for (i=1;i<=n;i++) printf("%d ",lk[i]);</pre>
}
```

# 4.15 Stoer-Wagner 全局最小割

 $O(n^3)$ 。可优化到  $O(nm \log n)$ 。

```
namespace StoerWagner
   const int N=602;//点数
   typedef int T;//边权和
   T \in [N][N], w[N];
   int ed[N],p[N],f[N];//f 仅输出方案用
   int getf(int u){return f[u]==u?u:f[u]=getf(f[u]);}
   template<typename TT> pair<T,vector<int>> mincut(int n,const vector<tuple</pre>
       int, int, TT>> & edges) // [1, n], 返回某一半点集
   {
       vector<int> ans;ans.reserve(n);
       int i,j,m;
       Tr;
       r=numeric_limits<T>::max();
       for (i=1;i<=n;i++) memset(e[i]+1,0,n*sizeof e[0][0]);</pre>
       for (auto [u,v,w]:edges) e[u][v]+=w,e[v][u]+=w;
       fill_n(ed+1,n,0);
       iota(f+1,f+n+1,1);
       for (m=n;m>1;m--)
       {
          fill_n(w+1,n,0);
          for (i=1;i<=n;i++) ed[i]&=2;</pre>
          for (i=1;i<=m;i++)</pre>
```

```
int x=0;
    for (j=1;j<=n;j++) if (!ed[j]) break;x=j;
    for (j++;j<=n;j++) if (!ed[j]*w[j]>w[x]) x=j;
    ed[p[i]=x]=1;
    for (j=1;j<=n;j++) w[j]+=!ed[j]*e[x][j];
}
int s=p[m-1],t=p[m];
if (r>w[t])
{
        r=w[t];ans.clear();
        for (i=1;i<=n;i++) if (getf(i)==getf(t)) ans.push_back(i);
}
    for (i=1;i<=n;i++) e[i][s]=e[s][i]+=e[t][i];
    ed[t]=2;
    f[getf(s)]=getf(t);
}
return {r,ans};
}</pre>
```

#### 4.16 点双

O(n+m), O(n+m)。 ans 存放每个点双包含的边。ct 为 1 表示是割点。没有自环。

```
struct Q
{
   int v,w;
};
vector<vector<int>> ans;
vector<int> cur;
vector<Q> e[N];
int dfn[N],low[N],ct[N],st[N];
bool ed[N],eed[N];
int id,tp;
void dfs(int u,bool rt)
   dfn[u]=low[u]=++id;
   int cnt=0;
   for (auto [v,w]:e[u]) if (!ed[w])
       st[tp++]=w;ed[w]=1;
       if (dfn[v]) low[u]=min(low[u],dfn[v]);
       else
       {
          dfs(v,0);
          ++cnt;
           low[u]=min(low[u],low[v]);
           if (dfn[u] <= low[v])</pre>
           {
              ct[u]=cnt>rt;
              cur.clear();
              do cur.push_back(st[--tp]); while (st[tp]!=w);
              ans.push_back(cur);
           }
       }
   }
}
int main()
```

```
{
    ios::sync_with_stdio(0);cin.tie(0);
    int n,m,i;
    cin>n>>m;
    for (i=0;i<m;i++)
    {
        int u,v;
        cin>>u>>v;
        e[u].push_back({v,i});
        e[v].push_back({u,i});
    }
    for (i=0;i<n;i++) if (!dfn[i]) dfs(i,1);
    cout<<ans.size()<<'\n';
    for (auto &v:ans) cout<<v.size()<<''\n';
}</pre>
```

### ans 存放每个点双包含的点。可以自环。

```
const int N=5e5+5;
struct Q
{
   int v,w;
};
vector<vector<int>> ans;
vector<int> cur;
vector<int> e[N];
int dfn[N],low[N],st[N];
int id,tp;
void dfs(int u)
   dfn[u]=low[u]=++id;
   st[++tp]=u;
   for (int v:e[u]) if (dfn[v]) low[u]=min(low[u],dfn[v]); else
   {
       dfs(v);
       low[u]=min(low[u],low[v]);
       if (dfn[u] <= low[v])</pre>
       {
           vector cur={u};
           do
              cur.push_back(st[tp]);
           } while (st[tp--]!=v);
           ans.push_back(cur);
   }
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int n,m,i;
   cin>>n>>m;
   for (i=0;i<m;i++)</pre>
       int u,v;
       cin>>u>>v;
       e[u].push_back(v);
       e[v].push_back(u);
   }
```

```
for (i=0;i<n;i++) if (!dfn[i]) dfs(i);
  for (i=0;i<n;i++) if (count(all(e[i]),i)==e[i].size()) ans.push_back({i});
  cout<<ans.size()<<'\n';
  for (auto &v:ans) cout<<v.size()<<'\n';
}</pre>
```

### 4.17 边双

O(n+m), O(n+m)。 ans 存放每个边双包含的点。ct 为 1 表示是割边。

```
struct Q
{
   int v,w;
};
vector<vector<int>> ans;
vector<int> cur;
vector<Q> e[N];
int dfn[N],low[N],ed[N];
bool ct[N];
int id;
void dfs(int u,int fw)
{
   dfn[u] = low[u] = ++id;
   for (auto [v,w]:e[u]) if (w!=fw)
       if (!dfn[v])
           dfs(v,w);
           low[u]=min(low[u],low[v]);
           ct[w]=dfn[u]<low[v];
       } else low[u]=min(low[u],dfn[v]);
   }
void dfs(int u)
   cur.push_back(u);ed[u]=1;
   for (auto [v,w]:e[u]) if (!ct[w]&&!ed[v]) dfs(v);
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int n,m,i;
   cin>>n>>m;
   for (i=0;i<m;i++)</pre>
       int u,v;
       cin>>u>>v;
       e[u].push_back({v,i});
       e[v].push_back({u,i});
   for (i=0;i<n;i++) if (!dfn[i]) dfs(i,-1);</pre>
   for (i=0;i<n;i++) if (!ed[i])</pre>
       cur.clear();
       dfs(i);
       ans.push_back(cur);
   }
   cout<<ans.size()<<'\n':
```

```
for (auto &v:ans) cout<<v.size()<<' ''<<v<<'\n';
}</pre>
```

## 4.18 输出负环

```
#include <bits/stdc++.h>
using namespace std;
const int N=34;
struct Q
{
   int v,w,c;
   Q()\{\}
   Q(int x, int y, int z): v(x), w(y), c(z){}
};
vector<Q> lj[N];
int dis[N],cnt[N],pt[N],S;
Q pre[N],st[N];
int n,m,ans,tp;
bool ed[N];
int main()
{
   freopen("arbitrage.in","r",stdin);
   freopen("arbitrage.out", "w", stdout);
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>n>>m;
   while (m--)
       int x,y,z,w;
       cin>>x>>y>>z>>w;
       lj[x].emplace_back(y,w,z);
       lj[y].emplace_back(x,0,-z);
   for (int i=1;i<=n;i++) lj[0].emplace_back(i,1,0);</pre>
   while (1)
   {
       memset(dis,-0x3f,sizeof dis);dis[0]=0;
       for (int i=0;i<=n;i++) ed[i]=cnt[i]=0;S=-1;</pre>
       queue<int> q;q.push(0);
       while (!q.empty())
          int u=q.front();q.pop();ed[u]=0;
          for (auto &[v,w,c]:lj[u]) if (w&&dis[v]<dis[u]+c)</pre>
              dis[v]=dis[u]+c;pre[v]=Q(u,w,c);
              if (!ed[v])
                  if (++cnt[v]>n+1) {S=v;goto aa;}
                  ed[v]=1;q.push(v);
              }
          }
       }
       aa:;
       if (S==-1) break;
       {
          static bool ed[N];
          memset(ed,0,sizeof ed);
          while (!ed[S]) ed[S]=1,S=pre[S].v;
```

```
st[tp=1]=pre[S];pt[1]=S;
       int x=pre[S].v;
       while (x!=S)
           st[++tp]=pre[x];pt[tp]=x;
           x=pre[x].v;
           assert(tp<=n+5);</pre>
       }
       int fl=1e9;
       for (int j=1;j<=tp;j++) fl=min(fl,st[j].w);</pre>
       assert(fl);
       for (int j=1;j<=tp;j++)</pre>
           ans+=fl*st[j].c;
           int nn=0;
           for (auto &[v,w,c]:lj[st[j].v]) if (v==pt[j]&&st[j].c==c&&st[j].w==w)
                {++nn;w-=fl;break;}
           for (auto &[v,w,c]:lj[pt[j]]) if (v==st[j].v&&st[j].c+c==0) {++nn;w+=
               f1;break;}assert(nn==2);
       }
   cout<<ans<<endl;</pre>
}
```

### 4.19 DAG 删点最长路

```
O((n+m)\log n), O(n+m).
```

```
priority_queue<int> hp1,hp2,del1,del2;
int lj[M],nxt[M],fir[N],flj[M],fnxt[M],ffir[N],dl[N],rd[N],cd[N],dis1[N],dis2[N
    ];
int dtp;
char c[M*15+1];
int main()
{
   int n,m,i,j,x,y,tou,wei,zd=0,ans=M,cur,pos=0;
   scanf("%d%d",&n,&m);
   fread(c+1,1,m*15,stdin);
   for (i=1;i<=m;i++)</pre>
       read(x); read(y); ++cd[x];
       lj[i]=y;nxt[i]=fir[x];fir[x]=i;++rd[y];
       flj[i]=x;fnxt[i]=ffir[y];ffir[y]=i;
   }
   tou=1;wei=0;
   for (i=1;i<=n;i++) if (!cd[i]) dl[++wei]=i;</pre>
   while (tou<=wei) for (i=ffir[x=dl[tou++]];i;i=fnxt[i])</pre>
   {
       dis2[flj[i]]=max(dis2[flj[i]],dis2[x]+1);
       if (--cd[flj[i]]==0) dl[++wei]=flj[i];
   }
   tou=1;wei=0;
   for (i=1;i<=n;i++) if (!rd[i]) dl[++wei]=i;</pre>
   while (tou<=wei) for (i=fir[x=dl[tou++]];i;i=nxt[i])</pre>
   {
       dis1[lj[i]]=max(dis1[lj[i]],dis1[x]+1);
       if (--rd[lj[i]]==0) dl[++wei]=lj[i];
   for (i=1:i\leq n:i++) hp1.push(dis2[i]):hp1.push(0):hp2.push(0):
```

```
for (j=1;j<=wei;j++)</pre>
   x=dl[j];
   if (dis2[x]==hp1.top())
       hp1.pop();
       while ((!del1.empty())&&(del1.top()==hp1.top())) {hp1.pop();del1.pop
           ();}
   } else del1.push(dis2[x]);
   for (i=ffir[x];i;i=fnxt[i]) del2.push(dis1[flj[i]]+dis2[x]+1);
   while ((!del2.empty())&&(del2.top()==hp2.top())) {hp2.pop();del2.pop();}
   cur=max(zd,max(hp1.top(),hp2.top()));
   if (cur<ans)</pre>
   {
       pos=dl[j];ans=cur;
   zd=max(zd,dis1[x]);
   for (i=fir[x];i;i=nxt[i]) hp2.push(dis1[x]+dis2[lj[i]]+1);
   if (ans<=zd) break;</pre>
printf("%d %d",pos,ans);
```

## 4.20 (基环) 树哈希

```
#include <bits/stdc++.h>
using namespace std;
namespace tree_hash
{
   typedef unsigned int ui;
   typedef unsigned long long 11;
   const int N=1e6+2;
   const ui p1=2034452107,p2=2013074419,B=(111<<32)-1;</pre>
   mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
   ui bas1[N],bas2[N],lst;
   ui uni1,uni2;
   vector<int> e[N];
   vector<ll> rt;
   ll g[N];
   int siz[N],h[N],f[N],num[N*2];
   int n,m;
   void init()
       uni1=rnd()(p1/2)+p1/2;uni2=rnd()(p2/2)+p2/2;
       lst=0;
   void dfs1(int u)
       siz[u]=1;
       int mx=0;
       for (auto &v:e[u]) if (v!=f[u])
          f[v]=u;dfs1(v);siz[u]+=siz[v];
          mx=max(mx,siz[v]);
       mx=max(mx,n-siz[u]);
       if (mx*2<=n) rt.push_back(u);</pre>
```

```
void dfs2(int u)
       for (auto &v:e[u]) if (v!=f[u]) f[v]=u,dfs2(v),h[u]=max(h[u],h[v]);
       ++h[u];
       int n=0;
       static ll a[N];
       for (auto &v:e[u]) if (v!=f[u]) a[n++]=g[v];
       sort(a,a+n);
       11 r1=0, r2=0;
       a[n++]=111<<32|1;
       for (int i=0;i<n;i++) r1=(r1*bas1[h[u]]+(a[i]>>32))%p1,r2=(r2*bas2[h[u
           ]]+(a[i]&B))%p2;
       g[u]=r1<<32|r2;
   }
   void get_e(vector<pair<int,int>> &E)
       int i;
       n=E.size()+1;m=0;
       for (auto &[u,v]:E) num[m++]=u,num[m++]=v;
       sort(num,num+m); m=unique(num,num+m)-num;
       for (i=0;i<m;i++) e[num[i]].clear();</pre>
       for (auto &[u,v]:E) e[u].push_back(v),e[v].push_back(u);
       while (lst<n) bas1[++lst]=rnd()%(p1/2)+p1/2,bas2[lst]=rnd()%(p2/2)+p2/2;
   }
   ll rooted_tree_hash(int u)
       if (n==1) return 111<<32|1;</pre>
       for (int i=0;i<m;i++) f[num[i]]=0,h[num[i]]=0;</pre>
       dfs2(u);
       return g[u];
   }
   11 t_h(vector<pair<int,int>> &E)
       int i;
       get_e(E);
       for (i=0;i<m;i++) f[num[i]]=0;</pre>
       rt.clear();dfs1(1);
       ll r1=0,r2=0;
       for (auto &u:rt) u=rooted_tree_hash(u);
       sort(rt.begin(),rt.end());
       for (auto &u:rt) r1=(r1*uni1+(u>>32))%p1,r2=(r2*uni2+(u&B))%p2;
       return r1<<32|r2;</pre>
   }
using tree_hash::get_e;
using tree_hash::rooted_tree_hash;
using tree_hash::t_h;
typedef pair<int,int> pa;
typedef unsigned int ui;
typedef unsigned long long ull;
const ui mod1=2034452107,mod2=2013074419,B=(111<<32)-1;</pre>
ui b1,b2;
const int N=1e6+2;
vector<int> e[N];
int f[N];
vector<int> lp;
int getf(int u) {return f[u] == u?u:f[u] =getf(f[u]);}
void dfs1(int u)
{
```

```
for (auto &v:e[u]) if (v!=f[u]) f[v]=u,dfs1(v);
}
bool ed[N];
void dfs2(int u,vector<pa> &E)
{
   for (auto &v:e[u]) if (!ed[v]) ed[v]=1,E.emplace_back(u,v),dfs2(v,E);
}
void min_order(ull *a,int n)
   int i,j,k;
   ull x,y;
   i=k=0;j=1;
   while ((i< n) \&\& (j< n) \&\& (k< n))
       x=a[(i+k)%n];y=a[(j+k)%n];
       if (x==y) ++k; else
           if (x>y) i+=k+1; else j+=k+1;
           if (i==j) ++j;
          k=0;
       }
   if (j>i) j=i;
   //[j,n)+[0,j)
   rotate(a,a+j,a+n);
}
int cal()
   int n,m,p1,p2;
   cin>>m;
   vector<pair<ull,ull>> a(m);
   for (auto &V:a)
       int i;
       cin>>n;
       for (i=1;i<=n;i++) e[i].clear();</pre>
       iota(f+1,f+n+1,1);
       for (i=1;i<=n;i++)</pre>
       {
           int u,v;
           cin>>u>>v;
           if (getf(u)==getf(v)) {p1=u;p2=v;continue;}
           e[u].push_back(v);
           e[v].push_back(u);
           f[f[u]]=f[v];
       memset(f+1,0,n*sizeof f[0]);
       dfs1(p1);
       static int st[N];
       memset(ed+1,0,n*sizeof ed[0]);
       int tp=1;st[1]=p2;
       while (p2!=p1) st[++tp]=p2=f[p2];
       for (i=1;i<=tp;i++) ed[st[i]]=1;</pre>
       vector<pa> E;
       static ull ans[N];
       E.reserve(n);
       for (i=1;i<=tp;i++)</pre>
       {
           dfs2(st[i],E);
```

```
get_e(E);
          ans[i]=rooted_tree_hash(st[i]);
          E.clear();
      min_order(ans+1,tp);
      ull r1=0,r2=0,r,rr;
      for (int i=1;i<=tp;i++) r1=(r1*b1+(ans[i]>>32))%mod1,r2=(r2*b2+(ans[i]&B
          ))%mod2;
      r=r1<<32|r2;
       reverse(ans+1,ans+tp+1);
      min_order(ans+1,tp);r1=r2=0;
      for (int i=1;i<=tp;i++) r1=(r1*b1+(ans[i]>>32))%mod1,r2=(r2*b2+(ans[i]&B
          ))%mod2;
      rr=r1<<32|r2;
       if (r>rr) swap(r,rr);
       V=make_pair(r,rr);
   }
   sort(a.begin(),a.end());
   return unique(a.begin(),a.end())-a.begin();
}
int main()
   b1=tree_hash::rnd()%(mod1/2)+mod1/2;
   b2=tree_hash::rnd()%(mod2/2)+mod2/2;
   tree_hash::init();
   ios::sync_with_stdio(0);cin.tie(0);
   int n,T;
   cin>>T;
   while (T--) cout<<cal()<<'\n';
}
```

# 4.21 无向图最小环

 $O(n^3), O(n^2)_{\circ}$ 

```
int f[N][N],jl[N][N];
int n,m,c,ans=inf,i,j,k,x,y,z;
int main()
   read(n); read(m);
   memset(f,0x3f,sizeof(f));
   memset(j1,0x3f,sizeof(j1));
   while (m--)
       read(x);read(y);read(z);
       jl[x][y]=jl[y][x]=f[x][y]=f[y][x]=min(f[y][x],z);
   }
   for (k=1;k<=n;k++)</pre>
       for (i=1;i<k;i++) if (jl[k][i]!=jl[0][0]) for (j=1;j<i;j++)</pre>
          if (j1[k][j]!=j1[0][0]) ans=min(ans,j1[k][i]+j1[k][j]+f[i][j]);
       for (i=1;i<=n;i++) if (i!=k) for (j=1;j<=n;j++)</pre>
          if ((j!=i)&&(j!=k)) f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
   }
   if (ans==inf) puts("No solution."); else printf("%d",ans);
```

### 4.22 切比雪夫距离最小生成树

 $O(n \log n), O(n)$ .

```
const int N=3e5+2,M=N<<2;</pre>
struct P
   int u,v,w;
   P(int a=0,int b=0,int c=0):u(a),v(b),w(c){}
   bool operator<(const P &o) const {return w<o.w;}</pre>
};
struct Q
{
   int x,y,id;
   Q(int a=0, int b=0, int c=0):x(a),y(b),id(c){}
   bool operator<(const Q &o) const {return x!=o.x?x>o.x:y>o.y;}
};
ll ans;
P lb[M];
Q a[N],b[N];
int f[N],c[N];
int n,m,i,x,y;
struct bit
   int a[N],pos[N],n;
   void init(int &nn)
       memset(a+1,0x7f,(n=nn)*sizeof a[0]);
       memset(pos+1,0,n*sizeof pos[0]);
   void mdf(int x,const int y,const int z)
       if (a[x]>y) a[x]=y,pos[x]=z;
       while (x-=x\&-x) if (a[x]>y) a[x]=y,pos[x]=z;
   }
   int sum(int x)
       int r=a[x],rr=pos[x];
       while ((x+=x\&-x)<=n) if (a[x]<r) r=a[x],rr=pos[x];
       return rr;
   }
};
bit s;
void cal()
{
   int i,x,y;
   s.init(n);
   memcpy(b+1,a+1,sizeof(Q)*n);
   sort(a+1,a+n+1);
   for (i=1;i<=n;i++) c[i]=a[i].y-a[i].x;</pre>
   sort(c+1,c+n+1);
   for (i=1;i<=n;i++)</pre>
   {
       if (x=s.sum(y=lower_bound(c+1,c+n+1,a[i].y-a[i].x)-c))
           lb[++m]=P(a[x].id,a[i].id,a[x].x+a[x].y-a[i].x-a[i].y);//谨防 int 爆
       s.mdf(y,a[i].y+a[i].x,i);
   }
   memcpy(a+1,b+1,sizeof(Q)*n);
int getf(int x) {return f[x] == x?x:f[x] = getf(f[x]);}
```

```
int main()
{
    read(n);
    for (i=1;i<=n;i++) {read(a[f[i]=a[i].id=i].x);read(a[i].y);
        swap(a[i].x,a[i].y);a[i]=Q(a[i].x+a[i].y,a[i].x-a[i].y,i);}
    cal();for (i=1;i<=n;i++) swap(a[i].x,a[i].y);
    cal();for (i=1;i<=n;i++) a[i].y=-a[i].y;
    cal();for (i=1;i<=n;i++) swap(a[i].x,a[i].y);
    cal();sort(lb+1,lb+m+1);
    for (i=1;i<=m;i++) if ((x=getf(lb[i].u))!=(y=getf(lb[i].v))) f[x]=y,ans+=lb[i].w;
    printf("%lld\n",ans>>1);
}
```

#### 4.23 点分治

 $O(n \log n), O(n)$ .

```
int siz[N],dep[N];
   int n,ksiz,md,rt,mn;
   bool ed[N];
   void find(int u)
   {
      ed[u]=1;siz[u]=1;
       int mx=0;
      for (int v:e[u]) if (!ed[v])
          find(v);
          siz[u]+=siz[v];
          mx=max(mx,siz[v]);
      mx=max(mx,ksiz-siz[u]);
       if (mn>mx) mn=mx,rt=u;
       ed[u]=0;
   }
   void cal(int u)
      md=max(md,dep[u]);
       ed[u]=1;++cnt[dep[u]];
       for (int v:e[u]) if (!ed[v])
          dep[v]=dep[u]+1;
          cal(v);
       ed[u]=0;
   void solve(int u)
   {
      mn=1e9;
      find(u);
       ed[rt]=1;
       vector<int> c;
       for (int v:e[rt]) if (!ed[v])
          c.push_back(v);
          if (siz[v]>=siz[rt]) siz[v]=siz[u]-siz[rt];
       sort(all(c),[&](const int &a,const int &b){return siz[a]<siz[b];});</pre>
       NTT::Q a(vector<ui>{1}):
```

```
NT::Q b(vector<ui>{1});
   for (int v:c)
       md=0;dep[v]=1;
       cal(v);++md;
       vector<ui> d(cnt,cnt+md);
       NTT::Q e(d);
       NT::Q f(d);
       auto g=e&a;
       auto h=f&b;
       for (int i=0;i<g.a.size();i++) r1[i]=(r1[i]+g.a[i])%NTT::p;</pre>
       for (int i=0;i<h.a.size();i++) r2[i]=(r2[i]+h.a[i])%NT::p;</pre>
       a+=e;b+=f;
       fill_n(cnt,md,0);
   for (int v:c)
       ksiz=siz[v];
       solve(v);
   }
}
```

### 4.24 prufer 与树的互相转化

 $O(n), O(n)_{\circ}$ 

```
vector<int> edges_to_prufer(const vector<pair<int,int>> &eg)//[1,n], 定根为 n
   int n=eg.size()+1,i,j,k;
   int fir[n+1],nxt[n*2+1],e[n*2+1];
   int rd[n+1],cnt=0;
   memset(rd,0,sizeof rd);memset(nxt,0,sizeof nxt);memset(fir,0,sizeof fir);
   for (auto [u,v]:eg)
       e[++cnt]=v;nxt[cnt]=fir[u];fir[u]=cnt;++rd[v];
       e[++cnt]=u;nxt[cnt]=fir[v];fir[v]=cnt;++rd[u];
   for (i=1;i<=n;i++) if (rd[i]==1) break;</pre>
   int u=i;
   vector<int> r;r.reserve(n-2);
   for (j=1;j<n-1;j++)</pre>
       for (k=fir[u],u=rd[u]=0;k;k=nxt[k]) if (rd[e[k]])
          r.push_back(e[k]);
          if ((--rd[e[k]]==1)&&(e[k]<i)) u=e[k];</pre>
       if (!u) { while (rd[i]!=1) ++i;u=i;}
   return r;
vector<pair<int,int>> prufer_to_edges(const vector<int> &p)//[1,n], 定根为 n
   int n=p.size(),i,j,k;
   int m=n+3;
   int cs[m];memset(cs,0,sizeof cs);
   for (i=0;i<n;i++) ++cs[p[i]];</pre>
   i=0;
   while (cs[++i]):
```

```
int u=i,v;
  vector<pair<int,int>> r;
  r.reserve(n-2);
  for (j=0;j<n;j++)
   {
     cs[u]=1e9;
     r.push_back({u,v=p[j]});
     if ((--cs[v]==0)&&(v<i)) u=v;
        if (v!=u) {while (cs[i]) ++i;u=i;}
    }
    r.push_back({u,n+2});
    return r;
}</pre>
```

#### 4.25 树链剖分

```
namespace HLD
{
   const int N=5e5+2;
   vector<int> e[N];
   int dfn[N],dep[N],f[N],siz[N],hc[N],top[N];
   int id;
   void dfs1(int u)
   {
       siz[u]=1;
       for (int v:e[u]) if (v!=f[u])
          dep[v]=dep[f[v]=u]+1;
          dfs1(v);
          siz[u]+=siz[v];
          if (siz[v]>siz[hc[u]]) hc[u]=v;
       }
   }
   void dfs2(int u)
       dfn[u]=++id;
       if (hc[u])
          top[hc[u]]=top[u];
          dfs2(hc[u]);
          for (int v:e[u]) if (v!=hc[u]&&v!=f[u]) dfs2(top[v]=v);
   }
   int lca(int u,int v)
       while (top[u]!=top[v])
          if (dep[top[u]] < dep[top[v]]) swap(u,v);</pre>
          u=f[top[u]];
       if (dep[u]>dep[v]) swap(u,v);
       return u;
   }
   int dis(int u,int v)
       return dep[u]+dep[v]-(dep[lca(u,v)]<<1);</pre>
   }
   void init(int n)
```

```
{
      for (int i=1;i<=n;i++)</pre>
       {
          e[i].clear();
          f[i]=hc[i]=0;
       id=0;
   }
   void fun(int root)
       dep[root]=1;dfs1(root);dfs2(top[root]=root);
   vector<pair<int,int>> get_path(int u,int v)//u->v, 注意可能出现 [r>1] (表示反
       过来走)
       //cerr<<"path from "<<u<<" to "<<v<<": ";
       vector<pair<int,int>> v1,v2;
       while (top[u]!=top[v])
          if (dep[top[u]]>dep[top[v]]) v1.push_back({dfn[u],dfn[top[u]]}),u=f[
          else v2.push_back({dfn[top[v]],dfn[v]}),v=f[top[v]];
      v1.reserve(v1.size()+v2.size()+1);
      v1.push_back({dfn[u],dfn[v]});
      reverse(v2.begin(),v2.end());
       for (auto v:v2) v1.push_back(v);
       //for (auto [x,y]:v1) cerr<<"["<<x<<','<<y<<"] ";cerr<<endl;
      return v1;
   }
using HLD::e, HLD::lca, HLD::dis, HLD::dfn, HLD::dep, HLD::f, HLD::siz, HLD::get_path;
using HLD::fun;//5e5
```

#### 4.26 LCT

 $O(n \log n), O(n)$ .

makeroot 会变根, split 会把 y 变根, findroot 会把根变根, link 会把 x,y 变根 (y 是新的), cut 会把 x,y 变根 (x 是新的), 注意 swap 子节点可能要 pushup。

```
template<int N, typename Q> struct LCT
   int f[N],c[N][2],siz[N],st[N];
   Q s[N], v[N];
   #ifdef Rev
   Q rs[N];
   #endif
   //heap g[N]; //虚子树
   bool lz[N];
   void init(int n)
   {
      ++n;
      for (int i=0;i<n;i++)</pre>
          f[i]=c[i][0]=c[i][1]=lz[i]=0;
          s[i]=v[i]=Q();
          #ifdef Rev
          rs[i]=Q();
```

```
#endif
       siz[i]=!!i;
   }
void modify(int x,const Q &o)
   makeroot(x);
   v[x]=o;
   pushup(x);
bool nroot(int x) const
   return c[f[x]][0]==x||c[f[x]][1]==x;
}
void pushup(int x)
   int lc=c[x][0],rc=c[x][1];
   s[x]=v[x];siz[x]=1;
   #ifdef Rev
   rs[x]=v[x];
   #endif
   if (lc)
   {
       s[x]=s[1c]+s[x];
       siz[x]+=siz[lc];
       #ifdef Rev
       rs[x]=rs[x]+rs[lc];
       #endif
   }
   if (rc)
       s[x]=s[x]+s[rc];
       siz[x]+=siz[rc];
       #ifdef Rev
       rs[x]=rs[rc]+rs[x];
       #endif
   }
void swp(int x)
   swap(c[x][0],c[x][1]);
   #ifdef Rev
   swap(s[x],rs[x]);
   #endif
   lz[x]^=1;
void pushdown(int x)
   int lc=c[x][0],rc=c[x][1];
   if (lz[x])
       if (lc) swp(lc);
       if (rc) swp(rc);
       lz[x]=0;
   }
void zigzag(int x)
{
```

```
int y=f[x],z=f[y],typ=(c[y][0]==x);
   if (nroot(y)) c[z][c[z][1]==y]=x;
   f[x]=z;f[y]=x;
   if (c[x][typ]) f[c[x][typ]]=y;
   c[y][typ^1]=c[x][typ];c[x][typ]=y;
   pushup(y);
}
void splay(int x)
   int y,tp=0;
   st[tp=1]=y=x;
   while (nroot(y)) st[++tp]=y=f[y];
   while (tp) pushdown(st[tp--]);
   for (;nroot(x);zigzag(x)) if (!nroot(f[x])) continue; else zigzag((c[f[x
       ]][0]==x)^(c[f[f[x]]][0]==f[x]) ? x:f[x]);
   pushup(x);
}
void access(int x)
   for (int y=0;x;x=f[y=x])
      splay(x);
      //g[x].ins(s[c[x][1]]);g[x].del(s[y]);虚子树变化
      c[x][1]=y;pushup(x);
   }
}
int findroot(int x)
   access(x); splay(x); pushdown(x);
   while (c[x][0]) pushdown(x=c[x][0]);
   splay(x);
   return x;
void split(int x,int y)//x 为树新根, y 为 splay 新根
   makeroot(x);
   access(y);
   splay(y);
void makeroot(int x)
   access(x); splay(x);
   swp(x);
void link(int x,int y)//y 为新根
   makeroot(x);
   if (x!=findroot(y))//可能已经连通
   {
      makeroot(y);f[x]=y;//虚子树变化
void cut(int x,int y)
   makeroot(x);
   if (x==findroot(y))//可能本不连通
      pushdown(x);
      if (c[x][1]==y&&!c[y][0]&&!c[y][1])//可能连通但无边
```

#### 4.27 **带子树的 LCT**

 $O(n \log n), O(n)$ .

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
template<int N> struct LCT
   ll s[N],v[N],sg[N];
   int f[N],c[N][2],siz[N],st[N];
   //heap g[N]; //虚子树
   bool lz[N];
   void init(int n)
   {
      memset(f,0,n+1<<2);
      memset(c,0,n+1<<3);
      memset(s,0,n+1<<3);
      memset(v,0,n+1<<3);
      memset(lz,0,n+1);
   }
   bool nroot(int x)
      return c[f[x]][0]==x||c[f[x]][1]==x;
   void pushup(int x)
       s[x]=s[c[x][0]]+s[c[x][1]]+v[x]+sg[x];
       siz[x]=siz[c[x][0]]+siz[c[x][1]]+1;
   }
   void pushdown(int x)
       if (lz[x])
       {
          swap(c[c[x][0]][0],c[c[x][0]][1]);
          swap(c[c[x][1]][0],c[c[x][1]][1]);
          lz[c[x][0]]^=1;
          lz[c[x][1]]^=1;
          lz[x]=0;
       }
   void zigzag(int x)
       int y=f[x],z=f[y],typ=(c[y][0]==x);
       if (nroot(y)) c[z][c[z][1]==y]=x;
       f[x]=z;f[y]=x;
       if (c[x][typ]) f[c[x][typ]]=y;
       c[y][typ^1]=c[x][typ];c[x][typ]=y;
      pushup(y);
   }
   void splav(int x)
```

```
{
       int y,tp=0;
       st[tp=1]=y=x;
       while (nroot(y)) st[++tp]=y=f[y];
       while (tp) pushdown(st[tp--]);
       for (;nroot(x);zigzag(x)) if (!nroot(f[x])) continue; else zigzag((c[f[x
           ]][0]==x)^(c[f[f[x]]][0]==f[x]) ? x:f[x]);
       pushup(x);
   }
   void access(int x)
       for (int y=0;x;x=f[y=x])
          splay(x); sg[x] -= s[y]; s[x] -= s[y];
          sg[x]+=s[c[x][1]];s[x]+=s[c[x][1]];
          //g[x].ins(s[c[x][1]]);g[x].del(s[y]);虚子树变化
          c[x][1]=y;pushup(x);
       }
   }
   int findroot(int x)
       access(x); splay(x); pushdown(x);
       while (c[x][0]) pushdown(x=c[x][0]);
       splay(x);
       return x;
   }
   void split(int x,int y)
       makeroot(x);
       access(y);
       splay(y);
   }
   void makeroot(int x)
       access(x); splay(x); lz[x]^=1; swap(c[x][0], c[x][1]); pushup(x);
   }
   void link(int x,int y)
       makeroot(x);
       if (x!=findroot(y))//可能已经连通
          makeroot(y);f[x]=y;//虚子树变化
          sg[y] += s[x]; s[y] += s[x];
       }
   void cut(int x,int y)
   {
       makeroot(x);
       if (x==findroot(y))//可能本不连通
          pushdown(x);
          if (c[x][1]==y&&!c[y][0]&&!c[y][1])//可能连通但无边
              c[x][1]=f[y]=0;//可能需要修改
              pushup(x);
          }
       }
   }
};
```

```
const int N=2e5+2;
LCT<N> s;
int n,q,i,x,y,z,w;
void read(int &x)
{
   int c=getchar();
   while (c<48||c>57) c=getchar();
   x=c^48;c=getchar();
   while (c>=48\&\&c<=57) x=x*10+(c^48),c=getchar();
int main()
{
   read(n);read(q);s.init(n);
   for (i=1;i<=n;i++) read(x),s.s[i]=s.v[i]=x;</pre>
   for (i=1;i<n;i++)</pre>
       read(x);read(y);++x;++y;
       s.link(x,y);
   }
   while (q--)
       read(x);read(y);read(z);++y;
       if (x==0)
       {
          read(x);read(w);
          ++z;++x;++w;
          s.cut(y,z);s.link(x,w);
          continue;
       }
       if (x==1)
          s.split(y,y);
          s.s[y]=(s.v[y]+=z);
       else
       {
          ++z;
          s.split(y,z);
          printf("%lld\n",s.s[y]);
   }
}
```

## 4.28 轻重链剖分

```
namespace HLD
{
    const int N=5e5+2;
    vector<int> e[N];
    int dfn[N],dep[N],f[N],siz[N],hc[N],top[N];
    int id;
    void dfs1(int u)
    {
        siz[u]=1;
        for (int v:e[u]) if (v!=f[u])
        {
            dep[v]=dep[f[v]=u]+1;
        }
}
```

```
dfs1(v);
       siz[u]+=siz[v];
       if (siz[v]>siz[hc[u]]) hc[u]=v;
   }
void dfs2(int u)
   dfn[u]=++id;
   if (hc[u])
       top[hc[u]]=top[u];
       dfs2(hc[u]);
       for (int v:e[u]) if (v!=hc[u]&&v!=f[u]) dfs2(top[v]=v);
   }
int lca(int u,int v)
   while (top[u]!=top[v])
       if (dep[top[u]] < dep[top[v]]) swap(u,v);</pre>
       u=f[top[u]];
   if (dep[u]>dep[v]) swap(u,v);
   return u;
}
int dis(int u,int v)
   return dep[u]+dep[v]-(dep[lca(u,v)]<<1);</pre>
}
void init(int n)
   for (int i=1;i<=n;i++)</pre>
       e[i].clear();
       f[i]=hc[i]=0;
   }
   id=0;
}
void fun(int root)
   dep[root]=1;dfs1(root);dfs2(top[root]=root);
vector<pair<int,int>> get_path(int u,int v)//u->v, 注意可能出现 [r>l] (表示反
    过来走)
   //cerr<<"path from "<<u<<" to "<<v<<": ";
   vector<pair<int,int>> v1,v2;
   while (top[u]!=top[v])
   {
       if (dep[top[u]]>dep[top[v]]) v1.push_back({dfn[u],dfn[top[u]]}),u=f[
           top[u]];
       else v2.push_back({dfn[top[v]],dfn[v]}),v=f[top[v]];
   v1.reserve(v1.size()+v2.size()+1);
   v1.push_back({dfn[u],dfn[v]});
   reverse(v2.begin(), v2.end());
   for (auto v:v2) v1.push_back(v);
   //for (auto [x,y]:v1) cerr<<"["<<x<<','<<y<<"] ";cerr<<endl;
   return v1;
```

```
}
using HLD::e,HLD::lca,HLD::dis,HLD::dfn,HLD::dep,HLD::f,HLD::siz,HLD::get_path;
using HLD::fun;//5e5
```

#### 4.29 换根树剖

```
O(n+q\log n), O(n).
```

```
void dfs1(int x)
   int i;
   siz[x]=1;
   for (i=fir[x];i;i=nxt[i]) if (lj[i]!=f[x])
       dep[lj[i]] = dep[f[lj[i]] = x] + 1;
       dfs1(lj[i]);
       siz[x]+=siz[lj[i]];
       if (siz[hc[x]]<siz[lj[i]]) hc[x]=lj[i];</pre>
   }
void dfs2(int x)
   nfd[dfn[x]=++bs]=x;
   if (hc[x])
       int i;
       top[hc[x]]=top[x];
       dfs2(hc[x]);
       for (i=fir[x];i;i=nxt[i]) if ((lj[i]!=f[x])&&(lj[i]!=hc[x])) dfs2(top[lj
           [i]]=lj[i]);
   }
void mdf(int xx,int yy)
   while (top[xx]!=top[yy])
       if (dep[top[xx]] < dep[top[yy]]) swap(xx,yy);</pre>
       z=dfn[top[xx]];y=dfn[xx];xdsmdf(1);
       xx=f[top[xx]];
   if (dep[xx]>dep[yy]) swap(xx,yy);
   z=dfn[xx];y=dfn[yy];
   xdsmdf(1);
int find(int x,int y)
   while ((top[x]!=top[y])&&(f[top[x]]!=y)) x=f[top[x]];
   if (top[x]==top[y]) return hc[y];
   return top[x];
int main()
   read(n);read(m);
   for (i=2;i<=n;i++)</pre>
       read(x);read(y);
       add();
   }bs=0:
```

```
for (i=1;i<=n;i++) read(v[i]);</pre>
   dfs1(dep[1]=1);dfs2(top[1]=1);
   read(rt);r[1[1]=1]=n;build(1);
   while (m--)
   {
       read(x);read(y);
       if (x==1) {rt=y;continue;}
       if (x==2)
          read(x);read(dt);
          mdf(x,y);continue;
       x=y;dt=inf;
       if (x==rt)
          z=1;y=n;sum(1);
       else if ((dfn[x]<dfn[rt])&&(dfn[x]+siz[x]>dfn[rt]))
          c=find(rt,x);
          z=1;y=dfn[c]-1;if (z<=y) sum(1);
          z=dfn[c]+siz[c];y=n;if(z<=y)sum(1);
       }
       else
          z=dfn[x];y=z+siz[x]-1;sum(1);
       printf("%d\n",dt);
   }
}
```

### 4.30 树上启发式合并, DSU on tree

```
void dfs1(int x)
{
   siz[x]=zdep[x]=1;
  for (i=fir[x];i;i=nxt[i]) if (lj[i]!=f[x])
      dep[lj[i]]=dep[f[lj[i]]=x]+1;
      dfs1(lj[i]);
      siz[x]+=siz[lj[i]];
      if (siz[hc[x]]<siz[lj[i]]) hc[x]=lj[i];</pre>
      zdep[x]=max(zdep[x],zdep[lj[i]]+1);
  }
void cal(int x)
  int i;
  dl[tou=wei=1]=x;
  while (tou<=wei)</pre>
      ++dp[dep[x=dl[tou++]]];
      for (i=fir[x];i;i=nxt[i]) if (lj[i]!=f[x]) dl[++wei]=lj[i];
  }
void dfs2(int x)
```

```
if (!hc[x])
{
    if (++dp[dep[x]]>dp[zd]) zd=dep[x];
    return;
}
int i;
for (i=fir[x];i;i=nxt[i]) if ((lj[i]!=f[x])&&(lj[i]!=hc[x]))
{
    dfs2(lj[i]);
    memset(dp+dep[lj[i]],0,zdep[lj[i]]<<2);
}
dfs2(hc[x]);
dp[dep[x]]=1;
if (dp[zd]<=1) zd=dep[x];
for (i=fir[x];i;i=nxt[i]) if ((lj[i]!=f[x])&&(lj[i]!=hc[x])) cal(lj[i]);
ans[x]=zd-dep[x];
}</pre>
```

### 4.31 长链剖分(k级祖先)

```
O(n+q), O(n).
```

```
void dfs1(int x)
           int i;
           for (i=1;i<=er[dep[x]-1];i++) f[x][i]=f[f[x][i-1]][i-1];md[x]=dep[x];
            for (i=fir[x];i;i=nxt[i]) {dep[lj[i]]=dep[x]+1;dfs1(lj[i]);if (md[lj[i]]>md[
                         dc[x]]) dc[x]=lj[i];}
           if (dc[x]) md[x]=md[dc[x]];
void dfs2(int x)
{
            int i;
           if (dc[x])
            {
                       top[dc[x]]=top[x];
                        dfs2(dc[x]);
                       for (i=fir[x];i;i=nxt[i]) if (lj[i]!=dc[x]) dfs2(top[lj[i]]=lj[i]);
           if (x==top[x])
           {
                        c=md[x]-dep[x];y=x;up[x].push_back(x);down[x].push_back(x);
                        for (i=1;(i<=c)&&(y=f[y][0]);i++) up[x].push_back(y);y=x;</pre>
                        for (i=1;i<=c;i++) down[x].push_back(y=dc[y]);</pre>
}
int main()
           int n,q,ans=0,x,y,c,i;
           ll ta=0;
           read(n);read(q);read(s);
           for (i=1;i<=n;i++) {read(f[i][0]);if (f[i][0]==0) rt=i; else add(f[i][0],i)</pre>
           for (i=2;i<=n;i++) er[i]=er[i>>1]+1;dep[rt]=1;
           dfs1(rt);dfs2(top[rt]=rt);
            for (i=1;i<=q;i++)</pre>
            {
                       x=(get(s)^ans)^n+1: y=(get(s)^ans)^n+1: y=(g
```

```
if (y==0) {ans=x;ta^=(ll)i*ans;continue;}
    c=dep[x]-y;x=top[f[x][er[y]]];
    if (dep[x]>c) ans=up[x][dep[x]-c]; else ans=down[x][c-dep[x]];
    ta^=(ll)i*ans;
}
printf("%lld",ta);
}
```

## 4.32 长链剖分 (dp 合并)

 $O(n), O(n)_{\circ}$ 

```
void dfs1(int x)
   top[x]=1;
   for (int i=fir[x];i;i=nxt[i]) if (!top[lj[i]])
       dfs1(lj[i]);
       if (len[lj[i]]>len[hc[x]]) hc[x]=lj[i];
   len[x]=len[hc[x]]+1;top[hc[x]]=0;
void dfs2(int x)
   f[x]=1;gs[x]=1;
   if (!hc[x]) return;
   ed[x]=1;f[hc[x]]=f[x]+1;
   for (int i=fir[x];i;i=nxt[i]) if (!ed[lj[i]]) dfs2(lj[i]);
   ans [x] = ans [hc[x]] + 1; gs[x] = gs[hc[x]];
   if (gs[x]==1) ans[x]=0;
   for (int i=fir[x];i;i=nxt[i]) if ((!ed[lj[i]])&&(lj[i]!=hc[x]))
       int v=lj[i],*p;
       for (int j=0;j<len[v];j++)</pre>
          *(p=f[x]+j+1)+=*(f[v]+j);
          if (j+1==ans[x]) {gs[x]=*p;continue;}
          if ((*p>gs[x])||(*p=gs[x])\&\&(j+1<ans[x])) \{gs[x]=*p;ans[x]=j+1;\}
   gs[x]=*(f[x]+ans[x]);
   ed[x]=0;
```

# 4.33 动态 dp (全局平衡二叉树)

 $O((n+q)\log n), O(n)$ .

```
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <fstream>
using namespace std;
const int N=1e6+2,M=6e7+2,INF=-1e9;
struct matrix
{
   int a[2][2];
};
```

```
matrix s[N],js;
matrix operator *(matrix x,matrix y)
   js.a[0][0]=max(x.a[0][0]+y.a[0][0],x.a[0][1]+y.a[1][0]);
   js.a[0][1]=max(x.a[0][0]+y.a[0][1],x.a[0][1]+y.a[1][1]);
   js.a[1][0]=max(x.a[1][0]+y.a[0][0],x.a[1][1]+y.a[1][0]);
   js.a[1][1]=max(x.a[1][0]+y.a[0][1],x.a[1][1]+y.a[1][1]);
   return js;
int st[N],c[N][2],hc[N],lj[N<<1],nxt[N<<1],fir[N],siz[N],v[N],g[N][2],fa[N],f[N</pre>
    ], val[N];
int n,m,i,j,x,y,z,dtp,stp,tp,fh,bs,rt,aaa,la;
char dr[M+5],sc[M];
void pushup(int x)
{
   s[x].a[0][0]=s[x].a[0][1]=g[x][0];
   s[x].a[1][0]=g[x][1];s[x].a[1][1]=INF;
   if (c[x][0]) s[x]=s[c[x][0]]*s[x];
   if (c[x][1]) s[x]=s[x]*s[c[x][1]];
void read(int &x)
   ++dtp;fh=0;
   while ((dr[dtp]<48)||(dr[dtp]>57))
       if (dr[dtp++]=='-')
       {
          fh=1;
          break;
       }
   x=dr[dtp++]^48;
   while ((dr[dtp]>=48)\&\&(dr[dtp]<=57)) x=x*10+(dr[dtp++]^48);
   if (fh) x=-x;
void add(int x,int y)
{
   lj[++bs]=y;
   nxt[bs]=fir[x];
   fir[x]=bs;
   lj[++bs]=x;
   nxt[bs]=fir[y];
   fir[y]=bs;
bool nroot(int x)
   return ((c[f[x]][0]==x)||(c[f[x]][1]==x));
}
void dfs1(int x)
   siz[x]=1;
   for (i=fir[x];i;i=nxt[i]) if (lj[i]!=fa[x])
       fa[lj[i]]=x;
       dfs1(lj[i]);
       siz[x]+=siz[lj[i]];
       if (siz[hc[x]]<siz[lj[i]]) hc[x]=lj[i];</pre>
   }
```

```
}
int build(int 1,int r)
{
   if (l>r) return 0;
   int i,tot=0,upn=0;
   for (i=1;i<=r;i++) tot+=val[i];tot>>=1;
   for (i=1;i<=r;i++)</pre>
      upn+=val[i];
      if (upn>=tot)
          f[c[st[i]][0]=build(1,i-1)]=st[i];
          f[c[st[i]][1]=build(i+1,r)]=st[i];
          pushup(st[i]);
          ++aaa;
          return st[i];
      }
   }
int dfs2(int x)
   int i,j;
   f[y=dfs2(lj[j])]=i;
      g[i][0] += max(s[y].a[0][0],s[y].a[1][0]);
      g[i][1] += s[y].a[0][0];
   }
   tp=0;
   for (i=x;i;i=hc[i]) st[++tp]=i;
   for (i=1;i<tp;i++) val[i]=siz[st[i]]-siz[st[i+1]];</pre>
   val[tp]=siz[st[tp]];
   return build(1,tp);
void change(int x,int y)
   g[x][1] += y-v[x]; v[x]=y;
   while (f[x])
      if (nroot(x)) pushup(x);
      else
      {
          g[f[x]][0] = max(s[x].a[0][0],s[x].a[1][0]);
          g[f[x]][1] -= s[x].a[0][0];
         pushup(x);
         g[f[x]][0] += max(s[x].a[0][0],s[x].a[1][0]);
         g[f[x]][1] += s[x].a[0][0];
      x=f[x];
   pushup(x);
int main()
   scanf("%d%d",&n,&m);
   fread(dr+1,1,min(M,n*20+m*20),stdin);
   for (i=1;i<=n;i++)</pre>
   {
```

```
read(g[i][1]);
   v[i]=g[i][1];
}
for (i=1;i<n;i++)</pre>
   read(x);read(y);
   add(x,y);
}
dfs1(1);
rt=dfs2(1);tp=0;
while (m--)
   read(x);read(y);
   change(x^la,y);
   x=la=max(s[rt].a[0][0],s[rt].a[1][0]);
   while (x)
   {
       st[++tp]=x%10;
       x/=10;
   while (tp) sc[++stp]=st[tp--]|48;
   sc[++stp]=10;
fwrite(sc+1,1,stp,stdout);
```

# 4.34 全局平衡二叉树(修改版)

 $O((n+q)\log n), O(n)$ .

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pa;
const int N=1e6+2,M=1e6+2;
ll ans;
pa w[N];
int c[N][2],f[N],fa[N],v[N],s[N],lz[N],lj[M],nxt[M],siz[N],hc[N],fir[N],st[N];
int a[N],top[N];
int n,i,x,y,z,bs,tp,rt;
void read(int &x)
   int c=getchar();
   while (c<48||c>57) c=getchar();
   x=c^48;c=getchar();
   while (c>=48\&\&c<=57) x=x*10+(c^48),c=getchar();
void add()
{
   lj[++bs]=y;nxt[bs]=fir[x];fir[x]=bs;
   lj[++bs]=x;nxt[bs]=fir[y];fir[y]=bs;
void pushup(int &x)
   s[x]=min(v[x],min(s[c[x][0]],s[c[x][1]]));
void pushdown(int &x)
{
   if (1z[x]<0)
```

```
{
       int cc=c[x][0];
       if (cc)
           lz[cc]+=lz[x];s[cc]+=lz[x];v[cc]+=lz[x];
       cc=c[x][1];
       if (cc)
           v[cc]+=lz[x];lz[cc]+=lz[x];s[cc]+=lz[x];
       1z[x]=0;
       return;
   }
}
bool nroot(int &x) {return c[f[x]][0]==x||c[f[x]][1]==x;}
bool cmp(pa &o,pa &p) {return o>p;}
void dfs1(int x)
   siz[x]=1;
   for (int i=fir[x];i;i=nxt[i]) if (lj[i]!=fa[x])
       fa[lj[i]]=x;dfs1(lj[i]);siz[x]+=siz[lj[i]];
       if (siz[hc[x]]<siz[lj[i]]) hc[x]=lj[i];</pre>
   }
int build(int 1,int r)
{
   if (1>r) return 0;
   if (l==r)
       l=st[l];s[l]=v[l]=siz[l]>>1;
       return 1;
   int x=lower_bound(a+1,a+r+1,a[l]+a[r]>>1)-a,y=st[x];
   c[y][0]=build(1,x-1);
   c[y][1]=build(x+1,r);
   v[y]=siz[y]>>1;
   if (c[y][0]) f[c[y][0]]=y;
   if (c[y][1]) f[c[y][1]]=y;
   pushup(y);
   return y;
void dfs2(int x)
   if (!hc[x]) return;
   int i;
   top[hc[x]]=top[x];
   if (top[x] == x)
   {
       st[tp=1]=x;
       for (i=hc[x];i;i=hc[i]) st[++tp]=i;
       for (i=1;i<=tp;i++) a[i]=siz[st[i]]-siz[hc[st[i]]]+a[i-1];</pre>
       f[build(1,tp)]=fa[x];
   }
   dfs2(hc[x]);
   for (i=fir[x];i;i=nxt[i]) if (lj[i]!=fa[x]&&lj[i]!=hc[x]) dfs2(top[lj[i]]=lj
        [i]);
void mdf(int x)
```

```
{
   int y=x;
   st[tp=1]=x;
   while (y=f[y]) st[++tp]=y;y=x;
   while (tp) pushdown(st[tp--]);
   while (x)
   {
       --v[x]; --1z[c[x][0]]; --v[c[x][0]]; --s[c[x][0]];
       while (c[f[x]][0]==x) x=f[x];x=f[x];
   pushup(y);
   while (y=f[y]) pushup(y);
int ask(int x)
{
   int y=x;
   st[tp=1]=x;
   while (y=f[y]) st[++tp]=y;
   while (tp) pushdown(st[tp--]);
   int r=v[x];
   while (x)
       r=min(r,min(v[x],s[c[x][0]]));
       while (c[f[x]][0]==x) x=f[x];x=f[x];
   return r;
signed main()
   read(n);s[0]=1e9;
   for (i=1;i<=n;i++) read(w[w[i].second=i].first);</pre>
   for (i=1;i<n;i++) read(x),read(y),add();</pre>
   sort(w+1,w+n+1,cmp);dfs1(1);dfs2(top[1]=1);rt=1;while (f[rt]) rt=f[rt];
   for (i=1;i<=n&&v[rt];i++) if (ask(w[i].second)) mdf(w[i].second),ans+=w[i].</pre>
       first;
   printf("%lld",ans);
```

### 4.35 单调队列优化树上背包

```
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N=502,M=4002,inf=-1e9;
int lj[N<<1],nxt[N<<1],fir[N],siz[N],v[N],p[N],l[N],f[N][M],num[M],dl[M];
int n,m,i,j,x,y,c,bs,t,ksiz,rt,zx,ans,tou,wei;
bool ed[N];
void add()
   lj[++bs]=y;
   nxt[bs]=fir[x];
   fir[x]=bs;
   lj[++bs]=x;
   nxt[bs]=fir[y];
   fir[y]=bs;
void read(int &x)
```

```
{
   c=getchar();
   while ((c<48)||(c>57)) c=getchar();
   x=c^48;c=getchar();
   while ((c>=48)\&\&(c<=57))
       x=x*10+(c^48);
       c=getchar();
   }
void dfs2(int x)
   ed[x]=siz[x]=1;
   int i,zd=0;
   for (i=fir[x];i;i=nxt[i]) if (!ed[lj[i]])
       dfs2(lj[i]);
       siz[x]+=siz[lj[i]];
       zd=max(zd,siz[lj[i]]);
   zd=max(zd,ksiz-siz[x]);
   if (zd<zx)</pre>
       zx=zd;
       rt=x;
   }
   ed[x]=0;
   for (i=1;i<=m;i++) f[x][i]=inf;</pre>
void dfs3(int x)
   if (p[x]>m) return;
   ed[x]=1;
   f[x][0]=max(f[x][0],0);
   int i;
   if (!1[x])
       for (i=fir[x];i;i=nxt[i]) if (!ed[lj[i]])
           for (j=0;j<=m;j++) f[lj[i]][j]=f[x][j];</pre>
           dfs3(lj[i]);
           for (j=m-p[x];~j;j--) f[x][j]=max(f[x][j],f[lj[i]][j]);
       for (i=m;i>=p[x];i--) f[x][i]=f[x][i-p[x]]+v[x];
       for (i=0;i<p[x];i++) f[x][i]=inf;</pre>
       ed[x]=0;
       return;
   }
   for (i=0;i<p[x];i++)</pre>
       y=(m-i)/p[x];
       num[dl[tou=wei=1]=0]=f[x][i];
       for (j=1;j<=y;j++)</pre>
           while ((tou<wei)&&(j-dl[tou]>l[x])) ++tou;
           f[x][i+j*p[x]]=max(num[j]=f[x][i+j*p[x]],num[dl[tou]]+(j-dl[tou])*v[x]
           while ((tou \le wei) \&\& (num[dl[wei]] + (j-dl[wei]) * v[x] \le num[j])) --wei;
           dl[++wei]=j;
```

```
}
   for (i=fir[x];i;i=nxt[i]) if (!ed[lj[i]])
       for (j=0;j<=m;j++) f[lj[i]][j]=f[x][j];</pre>
       dfs3(lj[i]);
       for (j=m-p[x];~j;j--) f[x][j]=max(f[x][j],f[lj[i]][j]);
   for (i=m;i>=p[x];i--) f[x][i]=f[x][i-p[x]]+v[x];
   for (i=0;i<p[x];i++) f[x][i]=inf;</pre>
   ed[x]=0;
void dfs1(int x)
   int i,j=ksiz;
   rt=x;zx=n;
   dfs2(x);
   dfs3(x=rt);
   for (i=p[x];i<=m;i++) ans=max(ans,f[x][i]);</pre>
   ed[x]=1;
   for (i=fir[x];i;i=nxt[i]) if (!ed[lj[i]])
       if (j>siz[lj[i]]) ksiz=siz[lj[i]]; else ksiz=j-siz[x];
       dfs1(lj[i]);
   }
}
int main()
   read(t);
   while (t--)
       ans=0;
       read(n);read(m);
       for (i=1;i<=n;i++) read(v[i]);</pre>
       for (i=1;i<=n;i++) read(p[i]);</pre>
       for (i=1;i<=n;i++) read(l[i]);</pre>
       for (i=1;i<=n;i++) --l[i];</pre>
       memset(f,0,sizeof(f));
       ksiz=n;
       for (i=1;i<n;i++)</pre>
           read(x);read(y);add();
       }
       dfs1(1);
       printf("%d\n",ans);
       memset(fir,0,sizeof(fir));bs=0;
       memset(ed,0,sizeof(ed));
   }
}
```

#### 4.36 树上背包

```
void dfs(int x)
{
    int i;
    for (i=fir[x];i;i=nxt[i])
    {
       for (j=1;j<=m;j++) f[lj[i]][j]=f[x][j-1]+v[lj[i]];
}</pre>
```

```
dfs(lj[i]);
    for (j=0;j<=m;j++) f[x][j]=max(f[x][j],f[lj[i]][j]);
}
}</pre>
```

#### 4.37 虚树

```
O(n + \sum k \log n), O(n).
```

```
void ins(int x)
{
   if (tp==0)
       st[tp=1]=x;
       return;
   ance=lca(st[tp],x);
   while (tp>1&&dep[ance]<dep[st[tp-1]])</pre>
       add(st[tp-1],st[tp]);
       --tp;
   if (dep[ance] < dep[st[tp]]) add(ance, st[tp--]);</pre>
   if (!tp||st[tp]!=ance) st[++tp]=ance;
   st[++tp]=x;
}
   sort(a+1,a+m+1,cmp);
   if (a[1]!=1) st[tp=1]=1;//先行添加根节点
   for (i=1;i<=m;i++) ins(a[i]);</pre>
   if (tp) while (--tp) add(st[tp],st[tp+1]);//回溯
```

## 4.38 圆方树

$$O(n+m)$$
,  $O(n+m)$ .

```
#include <bits/stdc++.h>
using namespace std;
#if !defined(ONLINE_JUDGE)&&defined(LOCAL)
#include "my_header\debug.h"
#else
#define dbg(...); 1;
#endif
typedef unsigned int ui;
typedef long long 11;
#define all(x) (x).begin(),(x).end()
const int N=3e4+2, M=3e4+2; //M 包括方点
struct P
{
   int v,w,id;
   P(int a,int b,int c):v(a),w(b),id(c){}
};
struct Q
{
   int v,w;
   Q(int a,int b):v(a),w(b){}
vector<P> e[N];
vector<Q> fe[M];
```

```
int dfn[M],low[N],st[N],len[M],top[M],siz[M],hc[M],dep[M],f[M],rb[N];
bool ed[M];//ed,dfn,loop,sum,fe,hc,tp,id,cnt,dep[1] 需初始化 (注意倍率), ed 大
    小为边数
int tp,id,cnt,n;
void dfs1(int u)
   dfn[u]=low[u]=++id;
   st[++tp]=u;
   for (auto [v,w,id]:e[u]) if (!ed[id])
       if (dfn[v]) low[u]=min(low[u],dfn[v]),rb[v]=w; else
          ed[id]=1;
          dfs1(v);
          if (dfn[u]>low[v]) low[u]=min(low[u],low[v]),rb[v]=w; else
              int ntp=tp;
              while (st[ntp]!=v) --ntp;
              if (ntp==tp)//圆圆边
                 --tp;
                 fe[u].emplace_back(v,w);
                 f[v]=u;
                 continue;
              }
              ++cnt;f[cnt]=u;
              for (int i=ntp;i<=tp;i++) f[st[i]]=cnt;</pre>
              len[st[ntp]]=w;
              for (int i=ntp+1;i<=tp;i++) len[st[i]]=len[st[i-1]]+rb[st[i]];</pre>
              len[cnt] = len[st[tp]] + rb[u];
              fe[u].emplace_back(cnt,0);
              for (int i=ntp;i<=tp;i++) fe[cnt].emplace_back(st[i],min(len[st[i</pre>
                  ]],len[cnt]-len[st[i]]));
              tp=ntp-1;
          }
       }
   }
void dfs2(int u)
   siz[u]=1;
   for (auto [v,w]:fe[u])
       dep[v]=dep[u]+w;
       dfs2(v);
       siz[u]+=siz[v];
       if (siz[v]>siz[hc[u]]) hc[u]=v;
   }
void dfs3(int u)
   dfn[u]=++id;
   if (hc[u])
       top[hc[u]]=top[u];
       dfs3(hc[u]);
       for (auto [v,w]:fe[u]) if (v!=hc[u]) dfs3(top[v]=v);
   }
}
```

```
int lca(int u,int v)
   while (top[u]!=top[v]) if (dfn[top[u]]>dfn[top[v]]) u=f[top[u]]; else v=f[
       top[v]];//注意不能用 dep
   return dfn[u] < dfn[v]?u:v;</pre>
int find(int u,int v)//u 是根
{
   if (dfn[hc[u]]+siz[hc[u]]>dfn[v]) return hc[u];
   while (f[top[v]]!=u) v=f[top[v]];
   return top[v];
int dis(int u,int v)
   int o=lca(u,v),r=dep[u]+dep[v];
   if (o<=n) return r-(dep[o]<<1);</pre>
   u=find(o,u);v=find(o,v);
   if (len[u]>len[v]) swap(u,v);
   return r+min(len[v]-len[u],len[o]-(len[v]-len[u]))-dep[u]-dep[v];
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int m,q,i;
   cin>>n>>m>>q;cnt=n;
   for (i=1;i<=m;i++)</pre>
       int u,v,w;
       cin>>u>>v>>w;
       e[u].emplace_back(v,w,i);
       e[v].emplace_back(u,w,i);
   }
   mt19937 rnd(time(0));
   for (i=1;i<=n;i++) shuffle(all(e[i]),rnd);</pre>
   dfs1(1);id=0;
   dfs2(1);
   dfs3(top[1]=1);
   while (q--)
   {
       int u,v;
       cin>>u>>v;
       cout << dis(u,v) << ' n';
   }
}
```

# 4.39 广义圆方树

```
O(n+m), O(n+m).
```

# 4.40 支配树 (DAG 版)

 $O(m \log n), O(n \log n)$ .

```
int lca(int x,int y)
{
   int i;
   if (dep[x] < dep[y]) swap(x,y);</pre>
   if (x==y) return x;
   for (i=lm[x];f[x][0]!=f[y][0];i--) if (f[x][i]!=f[y][i])
      x=f[x][i];y=f[y][i];
   return f[x][0];
}
void dfs(int x)
   s[x]=1;
   int i;
   for (i=sfir[x];i;i=snxt[i])
      dfs(slj[i]);
      s[x] += s[slj[i]];
   }
int main()
{
   dep[0]=-1;
   read(n);
   for (i=1;i<=n;i++)</pre>
      read(x);
      while (x)
         add(x,i);
         read(x);
      }
   dl[tou=wei=1]=++n;
   for (i=1;i<n;i++) if (!rd[i]) add(n,i);</pre>
   while (tou<=wei)</pre>
      for (i=fir[x=dl[tou++]];i;i=nxt[i]) if (--rd[lj[i]]==0) dl[++wei]=lj[i];
      if (i=ffir[x])
         y=flj[i];
         while (i=fnxt[i]) y=lca(y,flj[i]);
         f[x][0]=v:
```

```
} else y=0;
sadd(y,x);
f[x][0]=y;
for (i=1;i<=16;i++) if (0==(f[x][i]=f[f[x][i-1]][i-1]))
{
    lm[x]=i;
    break;
}
dep[x]=dep[y]+1;
}
dfs(n);
for (i=1;i<n;i++) printf("%d\n",s[i]-1);
}</pre>
```

#### 4.41 支配树 (一般图)

```
#include <bits/stdc++.h>
using namespace std;
const int N=2e5+2;
vector<int> lj[N],llj[N],fl[N],tl[N],buc[N],c[N];
int f[N],mn[N],siz[N],sdom[N],idom[N],dfn[N],nfd[N],pv[N];
int n,m,cnt,i,j,x,y,na;
bool reach[N];
void dfs1(int x)
   nfd[dfn[x]=++cnt]=x;
   for (auto v:lj[x]) if (!dfn[v]) dfs1(v),c[x].push_back(v);
int getf(int x)
   if (f[x]==x) return x;
   int u=getf(f[x]);
   mn[x]=dfn[sdom[mn[x]]] < dfn[sdom[mn[f[x]]]]?mn[x]:mn[f[x]];
   return f[x]=u;
void dfs0(int u)
   reach[u]=1;
   for (auto &v:lj[u]) if (!reach[v]) dfs0(v);
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int S;
   cin>>n>>m>>S;++S;
   while (m--) cin>>x>>y,++x,++y,lj[x].push_back(y);
   for (i=1;i<=n;i++) mn[i]=f[i]=i;</pre>
   dfs0(S);
   for (i=1;i<=n;i++) if (reach[i]) for (auto &v:lj[i]) if (reach[v]) llj[i].</pre>
       push_back(v),fl[v].push_back(i);
   for (i=1;i<=n;i++) lj[i]=llj[i];</pre>
   dfs1(S);dfn[0]=1e9;
   for (i=cnt;i;i--)
   {
       x=nfd[i];na=0;
       for (auto v:fl[x])
          sdom[x]=dfn[sdom[x]]<dfn[v]?sdom[x]:v;</pre>
```

# 4.42 最小树形图 (朱刘算法, 无方案)

O(nm), O(n+m).

```
int main()
{
                read(n);read(m);read(rt);
                 for (i=1;i<=m;i++)</pre>
                                 read(lj[i][1]);read(lj[i][2]);read(lj[i][0]);
                while (1)
                 {
                                 memset(infl,0x3f,sizeof(infl));
                                 memset(ed,0,sizeof(ed));
                                 memset(fa,0,sizeof(fa));
                                   for \ (i=1;i <= m;i++) \ if \ ((lj[i][1]!=lj[i][2]) \&\& (lj[i][2]!=rt) \&\& (infl[lj[i][2]!=rt)) \&\& (i
                                                     ][2]]>1j[i][0]))
                                                   infl[lj[i][2]]=lj[i][0];
                                                   pre[lj[i][2]]=lj[i][1];
                                 for (i=1;i<=n;i++) if (i!=rt)</pre>
                                                   if (infl[i]==infl[0])
                                                                   puts("-1");return 0;
                                                   }
                                                   ans+=infl[i];
                                                   for (j=i;(ed[j]!=i)&&(fa[j]==0)&&(j!=rt);j=pre[j]) ed[j]=i;
                                                   if (ed[j]==i)
                                                                    ++cnt;
                                                                    while (fa[j]==0)
                                                                                     fa[j]=cnt;
                                                                                      j=pre[j];
                                                                    }
                                                   }
                                  if (!cnt)
```

#### 4.43 最小乘积生成树

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=202,M=10002;
template<typename typC> void read(typC &x)
{
   int c=getchar(),fh=1;
   while ((c<48)||(c>57))
       if (c=='-') {c=getchar();fh=-1;break;}
       c=getchar();
   x=c^48;c=getchar();
   while ((c>=48)\&\&(c<=57))
       x=x*10+(c^48);
       c=getchar();
   }
   x*=fh;
}
struct P
   int x,y;
   P(int a=0, int b=0):x(a),y(b){}
   bool operator<(const P &o) const {return (ll)x*y<(ll)o.x*o.y||(ll)x*y==(ll)o</pre>
       .x*o.y&&x<o.x;}
};
struct Q
{
   int u,v,x,y,val;
   bool operator<(const Q &o) const {return val<o.val;}</pre>
};
P ans=P(1e9,1e9),1,r;
Q a[M];
int f[N];
int n,m,i;
int getf(int x)
{
   if (f[x]==x) return x;
   return f[x]=getf(f[x]);
}
P sol1()
```

```
P r=P(0,0);
   for (i=1;i<=n;i++) f[i]=i;</pre>
   sort(a+1,a+m+1);
   for (i=1;i<=m;i++) if (getf(a[i].u)!=getf(a[i].v))</pre>
       f[f[a[i].u]]=f[a[i].v];
       r.x+=a[i].x,r.y+=a[i].y;
   return r;
void sol2(P 1,P r)
   for (i=1;i<=m;i++) a[i].val=(r.x-l.x)*a[i].y+(l.y-r.y)*a[i].x;</pre>
   P np=sol1();
   ans=min(ans,np);
   if ((11)(r.x-1.x)*(np.y-1.y)-(11)(r.y-1.y)*(np.x-1.x)>=0) return;
   sol2(1,np);sol2(np,r);
int main()
{
   read(n);read(m);
   for (i=1;i<=m;i++) read(a[i].u),read(a[i].v),read(a[i].x),read(a[i].y),++a[i</pre>
       ].u,++a[i].v;
   for (i=1;i<=m;i++) a[i].val=a[i].x;l=sol1();</pre>
   for (i=1;i<=m;i++) a[i].val=a[i].y;r=sol1();</pre>
   ans=min(ans,min(l,r)); sol2(l,r);
   printf("%d %d",ans.x,ans.y);
```

## 4.44 最小斯坦纳树

 $O(3^k n + 2^k m \log m)$ .

```
const int N=102,M=1002,K=1024;
typedef long long 11;
typedef pair<ll,int> pa;
priority_queue<pa,vector<pa>,greater<pa> > heap;
pa cr;
11 f[K][N],inf;
int lj[M],len[M],nxt[M],fir[N];
int n,m,q,i,j,k,x,y,z,bs,c;
void add()
   lj[++bs]=y;
   len[bs]=z;
   nxt[bs]=fir[x];
   fir[x]=bs;
   lj[++bs]=x;
   len[bs]=z;
   nxt[bs]=fir[y];
   fir[y]=bs;
void read(int &x)
{
   c=getchar();
   while ((c<48)||(c>57)) c=getchar();
   x=c^48;c=getchar();
   while ((c>=48) \&\& (c<=57))
```

```
{
       x=x*10+(c^48);
       c=getchar();
   }
void dijk(int s)
   int i;
   while (!heap.empty())
       x=heap.top().second;heap.pop();
       for (i=fir[x];i;i=nxt[i]) if (f[s][lj[i]]>f[s][x]+len[i])
           cr.first=f[s][cr.second=lj[i]]=f[s][x]+len[i];
          heap.push(cr);
       while ((!heap.empty())&&(heap.top().first!=f[s][heap.top().second]))
           heap.pop();
   }
}
int main()
   memset(f,0x3f,sizeof(f));inf=f[0][0];
   read(n);read(m);read(q);
   while (m--)
       read(x);read(y);read(z);
       add();
   }
   for (i=1;i<=q;i++)</pre>
       read(x);
       f[1 << i-1][x]=0;
   q=(1<<q)-1;
   for (i=1;i<=q;i++)</pre>
       for (k=1;k<=n;k++)</pre>
           for (j=i\&(i-1);j;j=i\&(j-1)) f[i][k]=min(f[i][k],f[j][k]+f[i^j][k]);
           if (f[i][k]<inf) heap.push(pa(f[i][k],k));</pre>
       }
       dijk(i);
   for (i=1;i<=n;i++) inf=min(inf,f[q][i]);</pre>
   printf("%lld",inf);
}
```

#### 4.45 2-sat

```
O(n+m), O(n+m).
```

```
void dfs(int u)
       dfn[u]=low[u]=id++;
       ed[u]=1;st[++tp]=u;
       for (int v:e[u]) if (dfn[v]!=-1)
          if (ed[v]) low[u]=min(low[u],dfn[v]);
       } else dfs(v),low[u]=min(low[u],low[v]);
       if (dfn[u]==low[u])
          do
          {
              f[st[tp]]=fs;
              ed[st[tp]]=0;
          } while (st[tp--]!=u);
          ++fs;
       }
   }
   void add(int u,bool x,int v,bool y)//d:dif
       assert(u>=0\&\&u<n\&\&v>=0\&\&v<n);
       e[u+x*n].push_back(v+y*n);
       e[v+(y^1)*n].push_back(u+(x^1)*n);
   }
   void set(int u,bool x)
       assert(u>=0\&u<n);
       e[u+(x^1)*n].push_back(u+x*n);
   vector<int> getans()
       int i;
       for (i=0;i<n*2;i++) if (dfn[i]==-1) dfs(i);</pre>
       vector<int> r(n);
       for (i=0;i<n;i++)</pre>
          if (f[i]==f[i+n]) return {};
          r[i]=f[i]>f[i+n];
       }
       return r;
   }
};
```

# 4.46 Kosaraju 强连通分量 (bitset 优化)

```
O(\frac{n^2}{w}), O(\frac{n^2}{w})_{\circ}
```

```
void dfs1(int x)
{
    int i;ed[x]=0;
    for (i=(lj[x]&ed)._Find_first();i<=n;i=(lj[x]&ed)._Find_next(i)) dfs1(i);
    sx[--tp]=x;
}
void dfs2(int x)
{
    int i;ed[x]=0;tv[f[x]=f[0]]+=v[x];
    for (i=(fj[x]&ed)._Find_first();i<=n;i=(fj[x]&ed)._Find_next(i)) dfs2(i);
}
int main()</pre>
```

```
read(n);read(m);tp=n+1;
for (i=1;i<=n;i++) {ed[i]=1;read(v[i]);}</pre>
for (i=1;i<=m;i++)</pre>
   read(x);read(y);lj[x][y]=1;fj[y][x]=1;lb[i][0]=x;lb[i][1]=y;
for (i=1;i<=n;i++) if (ed[i]) dfs1(i);</pre>
ed.set();
for (i=1;i<=n;i++) if (ed[sx[i]]) {++f[0];dfs2(sx[i]);}</pre>
for (i=1;i<=m;i++) if (f[lb[i][0]]!=f[lb[i][1]])</pre>
   flj[f[lb[i][0]]].push_back(f[lb[i][1]]);++rd[f[lb[i][1]]];
}
for (i=1;i<=f[0];i++) if (!rd[i]) dl[++wei]=i;</pre>
while (tou<=wei)</pre>
   x=dl[tou++];g[x]+=tv[x];
   for (i=0;i<flj[x].size();i++)</pre>
       g[flj[x][i]]=max(g[flj[x][i]],g[x]);
       if (--rd[flj[x][i]]==0) dl[++wei]=flj[x][i];
}
for (i=1;i<=f[0];i++) ans=max(ans,g[i]);printf("%d",ans);</pre>
```

### 4.47 Tarjan 强连通分量

```
O(n+m), O(n+m).
```

```
int dfn[N],low[N],st[N],f[N],fs,tp,id;
bool ed[N];
void tarjan(int u)
{
   dfn[u]=low[u]=++id;
   ed[u]=1;st[++tp]=u;
   for (int v:e[u]) if (dfn[v])
       if (ed[v]) low[u]=min(low[u],dfn[v]);
   } else tarjan(v),low[u]=min(low[u],low[v]);
   if (dfn[u] == low[u])
   {
       ++fs;
       do
          f[st[tp]]=fs;
          ed[st[tp]]=0;
       } while (st[tp--]!=u);
   }
```

## 4.48 欧拉路径(字典序最小)

```
#include <bits/stdc++.h>
using namespace std;
#if !defined(ONLINE_JUDGE)&&defined(LOCAL)
```

```
#include "my_header\debug.h"
#else
#define dbg(...); 1;
#endif
typedef unsigned int ui;
typedef long long 11;
#define all(x) (x).begin(),(x).end()
const int N=1e5+2;
vector<int> e[N];
int rd[N],cd[N];
vector<int> ans;
void dfs(int u)
   while (e[u].size())
       int v=e[u].back();
       e[u].pop_back();
       dfs(v);
       ans.push_back(v);
   }
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   int n,m,i,x=0;
   cin>>n>>m;ans.reserve(m);
   while (m--)
       int u,v;
       cin>>u>>v;
       e[u].push_back(v);
       ++cd[u];++rd[v];
   for (i=1;i<=n;i++) if (cd[i]!=rd[i])</pre>
       if (abs(cd[i]-rd[i])>1) goto no;
       ++x;
   }
   if (x>2) goto no;x=1;
   for (i=1;i<=n;i++) if (cd[i]>rd[i]) {x=i;break;}
   for (i=1;i<=n;i++) sort(all(e[i])),reverse(all(e[i]));</pre>
   dfs(x);ans.push_back(x);reverse(all(ans));
   for (i=0;i<ans.size();i++) cout<<ans[i]<<" \n"[i+1==ans.size()];</pre>
   return 0;
   no:cout<<"No"<<endl;</pre>
}
```

### 4.49 欧拉回路构造

```
O(n+m), O(n+m).
```

```
vector<int> rd(n+1),ed(edges.size()+1),r;
   vector<vector<Q>> e(n+1);
   for (auto [u,v]:edges)
       ++rd[u],++rd[v];
       e[u].push_back({v,++i});
       e[v].push_back({u,-i});
   for (i=1;i<=n;i++) if (rd[i]&1) return {{},0};</pre>
   auto dfs=[&](auto dfs,int u) -> void
       while (e[u].size())
          auto [v,w]=e[u].back();
          e[u].pop_back();
          if (ed[abs(w)]) continue;
          ed[abs(w)]=1;
          dfs(dfs,v);
          r.push_back(w);
       }
   };
   for (i=1;i<=n;i++) if (rd[i]) {dfs(dfs,i);break;}</pre>
   reverse(all(r));
   if (r.size()!=edges.size()) return {{},0};
   return {r,1};
pair<vector<int>,int> directed_euler_cycle(int n,const vector<pair<int,int>> &
   edges)//[1,n]/[1,m]
{
   int i=0;
   vector<int> rd(n+1),cd(n+1),r;
   vector<vector<Q>> e(n+1);
   for (auto [u,v]:edges)
       ++cd[u],++rd[v];
       e[u].push_back({v,++i});
   for (i=1;i<=n;i++) if (rd[i]!=cd[i]) return {{},0};</pre>
   auto dfs=[&](auto dfs,int u) -> void
       while (e[u].size())
          auto [v,w]=e[u].back();
          e[u].pop_back();
          dfs(dfs,v);
          r.push_back(w);
       }
   };
   for (i=1;i<=n;i++) if (cd[i]) {dfs(dfs,i);break;}</pre>
   reverse(all(r));
   if (r.size()!=edges.size()) return {{},0};
   return {r,1};
```

## 4.50 有向图欧拉回路计数 (BEST 定理)

```
O(n^3), O(n^2).
```

以 u 为起点的欧拉回路个数  $sum = T(u) \times \prod_{v=1}^{n} (out(v)-1)!$ , 其中 T(u) 是以 u 为根的外向树个数, out(v) 是 v 的出度。若允许循环同构 (如  $1 \to 2 \to 1 \to 3 \to 1$  与  $1 \to 3 \to 1 \to 2 \to 1$ ),还需多乘 out(u)。

```
//https://blog.csdn.net/Jaihk662/article/details/79338437
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=102,M=4e5+2,p=1e6+3;
int a[N][N],fac[M],cd[N],st[N],rd[N],f[N],b[N][N];
int n,i,j,x,c,ans,t,tp;
void read(int &x)
{
   c=getchar();
   while ((c<48)||(c>57)) c=getchar();
   x=c^48;c=getchar();
   while ((c>=48)\&\&(c<=57))
   {
       x=x*10+(c^48);
       c=getchar();
   }
int ksm(int x,int y)
   int r=1;
   while (y)
       if (y&1) r=(ll)r*x%p;
       x=(11)x*x%p;
       y>>=1;
   return r;
}
int GS()
   int i,j,k,r=1,xs;
   int fh=0;
   for (i=1;i<=n;i++)</pre>
       k=0;
       for (j=i; j<=n; j++) if (a[j][i])</pre>
          k=j;break;
       assert(k);
       if (k==0) return 0;
       if (j!=k) fh^=1;
       for (j=i;j<=n;j++) swap(a[i][j],a[k][j]);</pre>
       xs=ksm(a[i][i],p-2);
       for (j=i+1;j<=n;j++) a[i][j]=(ll)a[i][j]*xs%p;</pre>
       r=(ll)r*a[i][i]%p;
       for (j=i+1; j<=n; j++)</pre>
          xs=p-a[j][i];
           for (k=i+1;k<=n;k++) a[j][k]=(a[j][k]+(ll)(p-a[j][i])*a[i][k])%p;</pre>
       }
   if (fh) return p-r; return r;
```

```
int getf(int x){if (f[x]==x) return x;return f[x]=getf(f[x]);}
int main()
{
   fac[0]=1;
   for (i=1;i<M;i++) fac[i]=(l1)fac[i-1]*i%p;</pre>
   read(t);
   while (t--)
   {
       read(n);
       memset(cd,0,sizeof(cd));
       memset(rd,0,sizeof(rd));
       memset(b,0,sizeof(b));
       for (i=1;i<=n;i++) f[i]=i;</pre>
       for (i=1;i<=n;i++)</pre>
           read(cd[i]);
           for (j=1;j<=cd[i];j++)</pre>
               read(x); --b[x][i]; ++b[i][i]; ++rd[x];
               f[getf(x)]=getf(i);
       for (i=1;i<=n;i++) if (rd[i]!=cd[i]) {puts("0");break;}</pre>
       if (i<=n) continue;</pre>
       tp=0;
       for (i=2;i<=n;i++) if (rd[i])</pre>
           if (getf(i)!=getf(1)) {puts("0");break;}
           st[++tp]=i;
       }
       if (i<=n) continue;</pre>
       ans=1; if (cd[1]>1) ans=(ll)ans*cd[1]%p;
       for (i=1;i<=n;i++) if (cd[i]>2) ans=(ll)ans*fac[cd[i]-1]%p;
       //if (!cd[1]) {puts("1");continue;}
       for (i=1;i<=tp;i++) for (j=1;j<=tp;j++) a[i][j]=b[st[i]][st[j]];
       n=tp;
       for (i=1;i<=n;i++) for (j=1;j<=n;j++) if (a[i][j]<0) a[i][j]+=p;</pre>
       ans=(11)ans*GS()%p;
       //if (1^n&1) ans=p-ans;
       printf("%d\n",ans%p);
   }
}
```

#### 4.51 点染色

结论:  $\chi(G) \leq \Delta(G) + 1$ , 其中  $\Delta(G)$  是图的最大度。只有奇圈和完全图取等。

```
vector<int> chromatic_number(int n,const vector<pair<int,int>> &edges)//[0,n)
{
    vector r(n,-1),cur(n,-1);
    vector<vector<int>> e(n);
    int ans=0,i;
    for (auto [u,v]:edges) e[u].push_back(v),e[v].push_back(u);
    for (i=0;i<n;i++) ans=max(ans,(int)e[i].size());
    ans+=2;
    vector p(n,vector(ans,0));
    function<void(int)> dfs=[&](int u)
    {
```

4 图论 181

```
int col=u?*max_element(cur.begin(),cur.begin()+u)+1:0;
       if (col>=ans) return;
       if (u==n)
          r=cur;
          ans=col;
          return;
       }
       int i;
       for (int i=0;i<=col;i++) if (!p[u][i])</pre>
           cur[u]=i;
           for (int v:e[u]) ++p[v][i];
          dfs(u+1);
          for (int v:e[u]) --p[v][i];
   };
   dfs(0);
   return r;
}
```

### 4.52 最大独立集

```
vector<int> indep_set(int n,const vector<pair<int,int>> &edges)//[0,n)
   vector<vector<int>> e(n);
   mt19937 rnd(998);
   vector<int> p(n),q(n),ed(n);
   iota(all(p),0);
   shuffle(all(p),rnd);
   for (int i=0;i<n;i++) q[p[i]]=i;</pre>
   for (auto [u,v]:edges)
       e[p[u]].push_back(p[v]);
       e[p[v]].push_back(p[u]);
   }
   vector<int> r,cur;
   function<void(int)> dfs=[&](int u)
       if (cur.size()+n-u<=r.size()) return;</pre>
       if (u==n)
       {
          r=cur;
          return;
       if (!ed[u])
          cur.push_back(u);
          for (int v:e[u]) ++ed[v];
          dfs(u+1);
          for (int v:e[u]) --ed[v];
          cur.pop_back();
       if (ed[u]||e[u].size()) dfs(u+1);
   };dfs(0);
   for (int &x:r) x=q[x];
   sort(all(r));
   return r;
```

4 图论 182

}

# 5 计算几何

## 5.1 自适应 simpson 法

```
const db eps=1e-7;
db sl,sr,sm,a;
db f(db x)
{
   return pow(x,a/x-x);
}
db g(db 1,db r)
   db mid=(1+r)*0.5;
   return (f(1)+f(r)+f(mid)*4)/6*(r-1);
db ab(db x)
   if (x>0) return x;
   return -x;
db sim(db l,db r)
   db mid=(1+r)*0.5;
   sl=g(1,mid); sr=g(mid,r); sm=g(1,r);
   if (ab(sl+sr-sm)<eps) return sl+sr;</pre>
   return sim(l,mid)+sim(mid,r);
```

# 5.2 板子

```
namespace geometry//不要用 int!
   #define tmpl template<typename T>
   typedef long long 11;
   typedef long double db;
   const db eps=1e-6;
   #define all(x) (x).begin(),(x).end()
   inline int sgn(const ll &x)
      if (x<0) return -1;
      return x>0;
   inline int sgn(const db &x)
      if (fabs(x)<eps) return 0;</pre>
      return x>0?1:-1;
   tmpl struct point//* 为叉乘, & 为点乘, 只允许使用 double 和 11
      T x, y;
      point(){}
      point(T a,T b):x(a),y(b){}
      operator point<ll>() const {return point<ll>(x,y);}
       operator point<db>() const {return point<db>(x,y);}
      point<T> operator+(const point<T> &o) const {return point(x+o.x,y+o.y);}
      point<T> operator-(const point<T> &o) const {return point(x-o.x,y-o.y);}
       point<T> operator*(const T &k) const {return point(x*k,y*k);}
```

```
point<T> operator/(const T &k) const {return point(x/k,y/k);}
   T operator*(const point<T> &o) const {return x*o.y-y*o.x;}
   T operator&(const point<T> &o) const {return x*o.x+y*o.y;}
   void operator+=(const point<T> &o) {x+=o.x;y+=o.y;}
   void operator==(const point<T> &o) {x+=o.x;y+=o.y;}
   void operator*=(const T &k) {x*=k;y*=k;}
   void operator/=(const T &k) {x/=k;y/=k;}
   bool operator==(const point<T> &o) const {return x==o.x&&y==o.y;}
   bool operator!=(const point<T> &o) const {return x!=o.x||y!=o.y;}
   db len() const {return sqrt(len2());}//模长
   T len2() const {return x*x+y*y;}
};
const point<db> npos=point<db>(514e194,9810e191),apos=point<db>(145e174,999
    e180);
const int DS[4] = \{1, 2, 4, 3\};
tmpl int quad(const point<T> &o)//坐标轴归右上象限,返回值 [1,4]
{
   return DS[(sgn(o.y)<0)*2+(sgn(o.x)<0)];</pre>
}
tmpl bool angle_cmp(const point<T> &a,const point<T> &b)
   int c=quad(a),d=quad(b);
   if (c!=d) return c<d;</pre>
   return a*b>0:
tmpl db dis(const point<T> &a,const point<T> &b) {return (a-b).len();}
tmpl T dis2(const point<T> &a,const point<T> &b) {return (a-b).len2();}
tmpl point<T> operator*(const T &k,const point<T> &o) {return point<T>(k*o.x
    ,k*o.y);}
tmpl bool operator<(const point<T> &a,const point<T> &b)
   int s=sgn(a*b);
   return s>0||s==0&&sgn(a.len2()-b.len2())<0;</pre>
tmpl istream & operator>>(istream &cin,point<T> &o) {return cin>>o.x>>o.y;}
tmpl ostream & operator<<(ostream &cout,const point<T> &o)
   if ((point<db>)o==apos) return cout<<"all position";</pre>
   if ((point<db>)o==npos) return cout<<"no position";</pre>
   return cout<<'('<<o.x<<','<<o.y<<')';</pre>
}
tmpl struct line
   point<T> o,d;
   line(){}
   line(const point<T> &a,const point<T> &b,int twopoint);
   bool operator!=(const line<T> &m) {return !(*this==m);}
template<> line<1l>::line(const point<1l> &a,const point<1l> &b,int twopoint
{
   o=a;
   d=twopoint?b-a:b;
   11 tmp=gcd(d.x,d.y);
   assert(tmp);
   if (d.x<0||d.x==0&&d.y<0) tmp=-tmp;</pre>
   d.x/=tmp;d.y/=tmp;
}
template<> line<db>::line(const point<db> &a,const point<db> &b,int twopoint
```

```
)
{
   o=a;
   d=twopoint?b-a:b;
   int s=sgn(d.x);
   if (s<0||!s&&d.y<0) d.x=-d.x,d.y=-d.y;</pre>
tmpl line<T> rotate_90(const line<T> &m) {return line(m.o,point(m.d.y,-m.d.x
tmpl line<db> rotate(const line<T> &m,db angle)
   return {(point<db>)m.o,{m.d.x*cos(angle)-m.d.y*sin(angle),m.d.x*sin(
       angle)+m.d.y*cos(angle)},0};
}
tmpl db get_angle(const line<T> &m,const line<T> &n) {return asin((m.d*n.d)
    /(m.d.len()*n.d.len()));}
tmpl bool operator<(const line<T> &m,const line<T> &n)
{
   int s=sgn(m.d*n.d);
   return s?s>0:m.d*m.o<n.d*n.o;</pre>
bool operator==(const line<11> &m,const line<11> &n) {return m.d==n.d&&(m.o-
   n.o)*m.d==0;}
bool operator==(const line<db> &m,const line<db> &n) {return fabs(m.d*n.d)<
    eps\&\&fabs((n.o-m.o)*m.d)<eps;}
tmpl ostream & operator<<(ostream &cout,const line<T> &o) {return cout<<'('</pre>
    <<o.d.x<<" k + "<<o.o.x<<" , "<<o.d.y<<" k + "<<o.o.y<<")";}
tmpl point<db> intersect(const line<T> &m,const line<T> &n)
{
   if (!sgn(m.d*n.d))
       if (!sgn(m.d*(n.o-m.o))) return apos;
       return npos;
   return (point<db>)m.o+(n.o-m.o)*n.d/(db)(m.d*n.d)*(point<db>)m.d;
tmpl db dis(const line<T> &m,const point<T> &o) {return m.d*(o-m.o)/m.d.len
tmpl db dis(const point<T> &o,const line<T> &m) {return m.d*(o-m.o)/m.d.len
    ();
struct circle
   point<db> o;
   db r;
   circle(){}
   circle(const point<db> &0,const db &R=0):o(point<db>((db)0.x,(db)0.y)),r
       (R){}//圆心半径构造
   circle(const point db> &a, const point db> &b)//直径构造
   {
       o=(a+b)*0.5;
       r=dis(b,o);
   circle(const point<db> &a,const point<db> &b,const point<db> &c)//三点构
       造外接圆(非最小圆)
       auto A=(b+c)*0.5, B=(a+c)*0.5;
       o=intersect(rotate_90(line(A,c,1)),rotate_90(line(B,c,1)));
       r=dis(o,c);
```

```
circle(vector<point<db>> a)
       int n=a.size(),i,j,k;
       mt19937 rnd(75643);
       shuffle(all(a),rnd);
       *this=circle(a[0]);
       for (i=1;i<n;i++) if (!cover(a[i]))</pre>
           *this=circle(a[i]);
           for (j=0;j<i;j++) if (!cover(a[j]))</pre>
              *this=circle(a[i],a[j]);
              for (k=0;k<j;k++) if (!cover(a[k])) *this=circle(a[i],a[j],a[k</pre>
           }
       }
   circle(const vector<point<ll>> &b)
       vector<point<db>> a(b.size());
       int n=a.size(),i,j,k;
       for (i=0;i<a.size();i++) a[i]=(point<db>)b[i];
       *this=circle(a);
   tmpl bool cover(const point<T> &a) {return sgn(dis((point<db>)a,o)-r)
       <=0;}
};
tmpl struct segment
{
   point<T> a,b;
   segment(){}
   segment(point<T> o,point<T> p)
       int s=sgn(o.x-p.x);
       if (s>0||!s&&o.y>p.y) swap(o,p);
       a=o;b=p;
   }
};
tmpl bool intersect(const segment<T> &m,const segment<T> &n)
   auto a=n.b-n.a,b=m.b-m.a;
   auto d=n.a-m.a;
   if (sgn(n.b.x-m.a.x)<0||sgn(m.b.x-n.a.x)<0) return 0;</pre>
   if (sgn(max(n.a.y,n.b.y)-min(m.a.y,m.b.y))<0||sgn(max(m.a.y,m.b.y)-min(n
        .a.y,n.b.y))<0) return 0;
   return sgn(b*d)*sgn((n.b-m.a)*b)>=0&&sgn(a*d)*sgn((m.b-n.a)*a)<=0;</pre>
}
tmpl struct convex
{
   vector<point<T>> p;
   convex(vector<point<T>> a);
   db peri()//周长
   {
       int i,n=p.size();
       db C=(p[n-1]-p[0]).len();
       for (i=1;i<n;i++) C+=(p[i-1]-p[i]).len();</pre>
       return C;
   db area(){return area2()*0.5;}//面积
```

```
T area2()//两倍面积
   int i,n=p.size();
   T S=p[n-1]*p[0];
   for (i=1;i<n;i++) S+=p[i-1]*p[i];</pre>
   return abs(S);
}
db diam() {return sqrt(diam2());}
T diam2()//直径平方
   T r=0;
   int n=p.size(),i,j;
   if (n<=2)
       for (i=0;i<n;i++) for (j=i+1;j<n;j++) r=max(r,dis2(p[i],p[j]));</pre>
       return r;
   }
   p.push_back(p[0]);
   for (i=0,j=1;i<n;i++)</pre>
       while ((p[i+1]-p[i])*(p[j]-p[i]) \le (p[i+1]-p[i])*(p[j+1]-p[i])) if
            (++j==n) j=0;
       r=max({r,dis2(p[i],p[j]),dis2(p[i+1],p[j])});
   }
   p.pop_back();
   return r;
bool cover(const point<T> &o) const//点是否在凸包内
   if (o.x<p[0].x||o.x==p[0].x&&o.y<p[0].y) return 0;</pre>
   if (o==p[0]) return 1;
   if (p.size()==1) return 0;
   11 tmp=(o-p[0])*(p.back()-p[0]);
   if (tmp==0) return dis2(o,p[0])<=dis2(p.back(),p[0]);</pre>
   if (tmp<0||p.size()==2) return 0;</pre>
   int x=upper_bound(1+all(p),o,[&](const point<T> &a,const point<T> &b)
       {return (a-p[0])*(b-p[0])>0;})-p.begin()-1;
   return (o-p[x])*(p[x+1]-p[x])<=0;</pre>
}
convex<T> operator+(const convex<T> &A) const
   int n=p.size(),m=A.p.size(),i,j;
   vector<point<T>> c;
   if (\min(n,m) \le 2)
       c.reserve(n*m);
       for (i=0;i<n;i++) for (j=0;j<m;j++) c.push_back(p[i]+A.p[j]);</pre>
       return convex<T>(c);
   }
   point<T> a[n],b[m];
   for (i=0;i+1<n;i++) a[i]=p[i+1]-p[i];</pre>
   a[n-1]=p[0]-p[n-1];
   for (i=0;i+1<m;i++) b[i]=A.p[i+1]-A.p[i];</pre>
   b[m-1]=A.p[0]-A.p[m-1];
   c.reserve(n+m);
   c.push_back(p[0]+A.p[0]);
   for (i=j=0;i<n\&\&j<m;) c.push_back(c.back()+(a[i]*b[j]>0?a[i++]:b[j
       ++]));
   while (i<n-1) c.push_back(c.back()+a[i++]);</pre>
```

```
while (j<m-1) c.push_back(c.back()+b[j++]);</pre>
       return convex<T>(c);
   void operator+=(const convex &a) {*this=*this+a;}
};
tmpl convex<T>::convex(vector<point<T>> a)
   int n=a.size(),i;
   if (!n) return;
   p=a;
   for (i=1;i<n;i++) if (p[i].x<p[0].x||p[i].x==p[0].x&&p[i].y<p[0].y) swap</pre>
        (p[0],p[i]);
   a.resize(0);a.reserve(n);
   for (i=1;i<n;i++) if (p[i]!=p[0]) a.push_back(p[i]-p[0]);</pre>
   sort(all(a));
   for (i=0;i<n;i++) a[i]+=p[0];</pre>
   point<T>* st=p.data()-1;
   int tp=1;
   for (auto &v:a)
       while (tp>1&&sgn((st[tp]-st[tp-1])*(v-st[tp-1]))<=0) --tp;</pre>
       st[++tp]=v;
   p.resize(tp);
template<> bool convex<db>::cover(const point<db> &o) const//点是否在凸包内
   if (o.x<p[0].x||o.x==p[0].x&&o.y<p[0].y) return 0;</pre>
   if (o==p[0]) return 1;
   if (p.size()==1) return 0;
   11 tmp=(o-p[0])*(p.back()-p[0]);
   if (tmp==0) return dis2(o,p[0])<=dis2(p.back(),p[0]);</pre>
   if (tmp<0||p.size()==2) return 0;</pre>
   int x=upper_bound(1+all(p),o,[&](const point<db> &a,const point<db> &b){
       return (a-p[0])*(b-p[0])>eps;})-p.begin()-1;
   return (o-p[x])*(p[x+1]-p[x])<=0;
tmpl struct half_plane//默认左侧
{
   point<T> o,d;
   operator half_plane<1l>() const {return {(point<1l>)o,(point<1l>)d,0};}
   operator half_plane<db>() const {return {(point<db>)o,(point<db>)d,0};}
   half_plane(){}
   half_plane(const point<T> &a,const point<T> &b,bool twopoint)
       o=a;
       d=twopoint?b-a:b;
   bool operator<(const half_plane<T> &a) const
       int p=quad(d),q=quad(a.d);
       if (p!=q) return p<q;</pre>
       p=sgn(d*a.d);
       if (p) return p>0;
       return sgn(d*(a.o-o))>0;
   }
tmpl ostream & operator<<(ostream &cout,half_plane<T> &m) {return cout<<m.o</pre>
    <<" | "<<m.d:}
```

```
tmpl point<db> intersect(const half_plane<T> &m,const half_plane<T> &n)
       if (!sgn(m.d*n.d))
          if (!sgn(m.d*(n.o-m.o))) return apos;
          return npos;
       }
       return (point<db>)m.o+(n.o-m.o)*n.d/(db)(m.d*n.d)*(point<db>)m.d;
   }
   const db inf=1e9;
   tmpl convex<db> intersect(vector<half_plane<T>> a)
   {
       T I=inf;
       a.push_back(\{\{-I,-I\},\{I,-I\},1\});
       a.push_back(\{\{I,-I\},\{I,I\},1\});
       a.push_back({{I,I},{-I,I},1});
       a.push_back(\{\{-I,I\},\{-I,-I\},1\});
       sort(all(a));
       int n=a.size(),i,h=0,t=-1;
       half_plane<db> q[n];
       point<db> p[n];
       vector<point<db>> r;
       for (i=0;i<n;i++) if (i==n-1||sgn(a[i].d*a[i+1].d))</pre>
          auto x=(half_plane<db>)a[i];
          while (h<t\&\&sgn((p[t-1]-x.o)*x.d)>=0) --t;
          while (h<t\&\&sgn((p[h]-x.o)*x.d)>=0) ++h;
          q[++t]=x;
          if (h<t) p[t-1]=intersect(q[t-1],q[t]);</pre>
       while (h<t\&\&sgn((p[t-1]-q[h].o)*q[h].d)>=0) --t;
       if (h==t) return convex<db>(vector<point<db>>(0));
       p[t]=intersect(q[h],q[t]);
       return convex<db>(vector<point<db>>(p+h,p+t+1));
   }
   #undef tmpl
using geometry::point,geometry::line,geometry::circle,geometry::convex,geometry
    ::half_plane;
using geometry::db,geometry::sgn,geometry::eps,geometry::ll,geometry::segment;
using geometry::intersect,geometry::dis;
```

# 6 公式与杂项

### 6.1 枚举大小为 r 的集合

思路:通过进位创造 1,再把一串 1 移到最后

```
for (int s=(1<<r)-1;s<1<<n;)
{
   int t=s+(s&-s);
   s=(s&~t)>>__lg(s&-s)+1|t;
}
```

## 6.2 整体二分(区间 k-th)

```
O((n+q)\log a), O(n+q).
```

```
struct cz
{
   int x,y,kth,pos,typ;
};
cz q[M],st1[M],st2[M];
int a[N],b[N],d[N],ans[N],s[N];
int n,m,t1,t2,i,j,c,gs;
int lb(int x)
{
   return x&(-x);
}
void add(int x,int y)
   for (;x<=n;x+=lb(x)) s[x]+=y;</pre>
}
int sum(int x)
{
   int ans=0;
   for (;x;x-=lb(x)) ans+=s[x];
   return ans;
void ztef(int ql,int qr,int l,int r)
   if (ql>qr) return;
   int mid=l+r>>1,i,midd;
   t1=t2=0;
   if (l==r)
       for (i=ql;i<=qr;i++) if (q[i].typ) ans[q[i].pos]=d[l];</pre>
       return;
   for (i=ql;i<=qr;i++) if (q[i].typ)</pre>
       midd=sum(q[i].y)-sum(q[i].x-1);
       if (midd>=q[i].kth) st1[++t1]=q[i]; else
           st2[++t2]=q[i];
           st2[t2].kth-=midd;
   else if (q[i].pos<=mid)</pre>
       add(q[i].x,1);
```

```
st1[++t1]=q[i];
   else st2[++t2]=q[i];
   for (i=1;i<=t1;i++) if (!st1[i].typ) add(st1[i].x,-1);</pre>
   for (i=1;i<=t1;i++) q[i+ql-1]=st1[i];</pre>
   midd=ql+t1-1;
   for (i=1;i<=t2;i++) q[i+midd]=st2[i];</pre>
   ztef(q1,midd,1,mid);ztef(midd+1,qr,mid+1,r);
int main()
   read(n); read(m);
   for (i=1;i<=n;i++)</pre>
       read(a[i]);b[i]=a[i];
   sort(b+1,b+n+1);
   d[gs=1]=b[1];
   for (i=2;i<=n;i++) if (b[i]!=b[i-1]) d[++gs]=b[i];</pre>
   for (i=1;i<=n;i++) a[i]=lower_bound(d+1,d+gs+1,a[i])-d;</pre>
   for (i=1;i<=n;i++)</pre>
       q[i].x=i;q[i].pos=a[i];q[i].typ=0;
   for (i=1;i<=m;i++)</pre>
       read(q[i+n].x); read(q[i+n].y); read(q[i+n].kth); q[i+n].pos=i; q[i+n].typ
   ztef(1,n+m,1,gs);
   for (i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
}
```

# 6.3 cdq 分治 (三维偏序)

 $O(n\log^2 n), O(n)$ .

```
int lb(int x)
{
    return x&(-x);
}

void add(int x,int y)
{
    for (;x<=mx;x+=lb(x)) a[x]+=y;
}
int sum(int x)
{
    int ans=0;
    for (;x;x^=lb(x)) ans+=a[x];
    return ans;
}

void gb(int l,int r)
{
    int i=l,m=l+r>>1,j=m+1,p=l;
    if (i<m) gb(i,m);
    if (j<r) gb(j,r);
    while ((i<=m)||(j<=r)) if ((j>r)||(i<=m)&&(q[i].x<=q[j].x))
    {
        if (!g[i].tvp) add(g[i].v.1);
    }
}</pre>
```

```
qq[p++]=q[i++];
   else
       if (q[j].typ) ans[q[j].pos]+=q[j].typ*sum(q[j].y);
       qq[p++]=q[j++];
   for (i=1;i<=m;i++) if (!q[i].typ) add(q[i].y,-1);</pre>
   for (i=1;i<=r;i++) q[i]=qq[i];</pre>
int main()
   read(n);read(m);
   for (i=1;i<=n;i++)</pre>
       read(q[i].x);read(q[i].y);++q[i].y;
       yc[i]=q[i].y;
       if (q[i].y>mx) mx=q[i].y;
   }
   qs=ys=n;
   for (i=1;i<=m;i++)</pre>
       read(x);read(y);read(z);read(j);
       q[++qs].x=x-1;q[qs].y=y;q[qs].pos=i;q[qs].typ=1;
       q[++qs].x=z;q[qs].y=y;q[qs].pos=i;q[qs].typ=-1;
       q[++qs].x=x-1;q[qs].y=j+1;q[qs].pos=i;q[qs].typ=-1;
       q[++qs].x=z;q[qs].y=j+1;q[qs].pos=i;q[qs].typ=1;
       if (j+1>mx) mx=j+1;
   }
   gb(1,qs);
   for (i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
}
```

# **6.4** k 阶差分([L,R] 加 $\binom{j-L+k}{k}$ ))

O((n+q)k), O(nk).

```
int main()
   read(n); read(m);
   for (i=1;i<=n;i++) read(b[i]);</pre>
   C[0][0]=1;
   for (i=1;i<=n+100;i++)</pre>
       C[i][0]=1;
       for (j=1;j<=min(i,100);j++)</pre>
           C[i][j]=C[i-1][j-1]+C[i-1][j];
           if (C[i][j]>=p) C[i][j]-=p;
       }
   while (m--)
       read(x);read(y);read(z);
       ++a[x][z];
       for (i=0;i<=z;i++)</pre>
           a[y+1][z-i]-=C[y-x+i][i];
           if (a[v+1][z-i]<0) a[v+1][z-i]+=p:
```

```
}
}
for (i=100;i>=0;i--) for (j=1;j<=n;j++)
{
    a[j][i]+=a[j-1][i];
    if (a[j][i]>=p) a[j][i]-=p;
    a[j][i]+=a[j][i+1];
    if (a[j][i]>=p) a[j][i]-=p;
}
for (i=1;i<=n;i++) printf("%d ",(b[i]+a[i][0])%p);
}</pre>
```

### 6.5 高精度

```
#include <bits/stdc++.h>
using namespace std;
namespace unsigned_bigint
   const int p=10000,ws=4;
   struct Q
       vector<int> a;
       Q(){a.clear();}
       void operator=(const int &nn)
       {
           int n=nn;
           while (n) a.push_back(n%p),n/=p;
       Q operator+(const Q &o) const
           \label{eq:continuous} \mbox{$\mathbb{Q}$ $r$; $r$.a.resize()a.size(), o.a.size()); $if$ (!r.a.size()) $return $r$;//$ $
               resize&size?
           int len=r.a.size()-1,lenn=min(a.size(),o.a.size());
           for (int i=0;i<lenn;i++) r.a[i]=a[i]+o.a[i];</pre>
           if (a.size()>o.a.size()) for (int i=lenn;i<=len;i++) r.a[i]=a[i];</pre>
               else for (int i=lenn;i<=len;i++) r.a[i]=o.a[i];</pre>
           for (int i=0;i<len;i++) if (r.a[i]>=p) r.a[i]-=p,++r.a[i+1];
           if (r.a[len]>=p) r.a.push_back(r.a[len]/p),r.a[len]%=p;
           return r;
       Q operator-(const Q &o) const
           Q r;r.a.resize(a.size());
           int len=o.a.size();
           for (int i=0;i<len;i++) r.a[i]=a[i]-o.a[i];</pre>
           memcpy(&r.a[o.a.size()],&a[o.a.size()],a.size()-o.a.size()<<2);</pre>
           len=a.size();
           for (int i=0;i<len;i++) if (r.a[i]<0) r.a[i]+=p,--r.a[i+1];</pre>
           while (r.a.size()&&!r.a[r.a.size()-1]) r.a.pop_back();
           return r;
       }
       Q operator*(const Q &o) const
           Q r;r.a.resize(a.size()+o.a.size());
           if (!r.a.size()) return r;
           int n=a.size(),m=o.a.size();
           for (int i=0; i < n; i++) for (int j=0; j < m; j++) r.a[i+j]+=a[i]*o.a[j];
           n=r.a.size()-1;
```

```
for (int i=0;i<n;i++) r.a[i+1]+=r.a[i]/p,r.a[i]%=p;</pre>
   if (!r.a[n]) r.a.pop_back();
   return r;
Q operator+(const int &o) const {Q r;r=o; return (*this)+r;}
Q operator-(const int &o) const {Q r;r=o;return (*this)-r;}
Q operator*(const int &o) const {Q r;r=o;return (*this)*r;}
template<typename C> void operator+=(C &o)
   Qr;
   r=(*this)+o;
   (*this)=r;
template<typename C> void operator-=(C &o)
   Qr;
   r=(*this)-o;
   (*this)=r;
}
template<typename C> void operator*=(C &o)
   Qr;
   r=(*this)*o;
   (*this)=r;
bool operator<(const Q &o)</pre>
   if (a.size()^o.a.size()||!a.size()) return a.size()<o.a.size();</pre>
   for (int i=a.size()-1;~i;i--) if (a[i]^o.a[i]) return a[i]<o.a[i];</pre>
   return 0;
bool operator!=(const Q &o)
   if (a.size()^o.a.size()) return 1;int n=a.size();
   for (int i=0;i<n;i++) if (a[i]^o.a[i]) return 1;</pre>
   return 0;
bool operator!=(const int &o)
   Q r;r=o;
   return (*this)!=r;
bool operator==(const Q &o)
   return !((*this)!=o);
bool operator==(const int &o)
   Q r;r=o;
   return (*this)==r;
bool operator>(const Q &o)
   if (a.size()^o.a.size()||!a.size()) return a.size()>o.a.size();
   for (int i=a.size()-1;~i;i--) if (a[i]^o.a[i]) return a[i]>o.a[i];
   return 0;
Q operator/(const int &o)
{
```

```
Q r=(*this);
       if (!a.size()) return r;
       for (int i=a.size()-1;i;i--) r.a[i-1]+=r.a[i]%o*p,r.a[i]/=o;
       r.a[0]/=o;
       while (r.a.size()&&!r.a[r.a.size()-1]) r.a.pop_back();
       return r;
   }
   void operator/=(const int &o)
       if (!a.size()) return;
       for (int i=a.size()-1;i;i--) a[i-1]+=a[i]%o*p,a[i]/=o;
       a[0]/=o;
       while (a.size()&&!a[a.size()-1]) a.pop_back();
   }
   int operator%(const int &o)
       if (!a.size()) return 0;
       if (p%o==0) return a[0]%o;
       int r=0;
       for (int i=a.size()-1;~i;i--) r=(r*p+a[i])%o;
       return r;
   }
};
istream & operator>>(istream &cin,Q &o)
   o.a.clear();
   int cnt=0,n=0,r;
   string s;
   cin>>s;
   reverse(s.begin(),s.end());
   for (char c:s)
       if (cnt==0) o.a.push_back(0),r=1;
       o.a[o.a.size()-1]+=(c^{'0'})*r;r*=10;
       if (++cnt==ws) cnt=0;//这里也要改, 是压位的位数
   }//printf("%d\n",(int)o.a.size());
   return cin;
}
ostream & operator << (ostream & cout, const Q & o)
   if (!o.a.size()) return cout<<0;</pre>
   cout<<o.a.back();</pre>
   if (o.a.size()==1) return;
   for (int i=o.a.size()-2;~i;i--) cout<<setfill('0')<<setw(ws)<<o.a[i];//</pre>
       注意这里也要改
   return cout;
}
Q gcd(Q a,Q b)
{
   Q r;r=1;
   while (a\%2==0\&\&b\%2==0) a/=2,b/=2,r=r*2;
   while (a\%2==0) a/=2;
   while (b\%2==0) b/=2;
   if (b<a) swap(a,b);</pre>
   while (a.a.size())
    {
       b=(b-a)/2;
       while (b.a.size()&&b%2==0) b/=2;
       if (b<a) swap(a,b);</pre>
```

```
}
   return r*b;
}
```

## 6.6 分散层叠算法 (Fractional Cascading)

```
O(n + q(k + \log n)), O(n).
```

给出 k 个长度为 n 的有序数组。

现在有 q 个查询: 给出数 x,分别求出每个数组中大于等于 x 的最小的数 (非严格后继)。

若后继不存在,则定义为0。你需要在线地回答这些询问。

```
int a[M][N],b[M][N<<1],c[M][N<<1][2],len[M],ans[M];</pre>
int n,m,qs,p,q,d,i,j,x,y,la;
int main()
{
   read(n);read(m);read(qs);read(d);
   for (j=1;j<=m;j++) for (i=0;i<n;i++) read(a[j][i]);</pre>
   for (j=1;j<=m;j++) a[j][n]=inf+j;++n;</pre>
   for (i=0;i<n;i++) b[m][i]=a[m][i],c[m][i][0]=i;</pre>
   len[m]=n;
   for (j=m-1;j;j--)
   {
       p=0,q=1;
       while (p<n&&q<len[j+1])</pre>
if (a[j][p]<b[j+1][q]) b[j][len[j]]=a[j][p],c[j][len[j]][0]=p++,c[j][len[j</pre>
    ]++][1]=q;
       else b[j][len[j]]=b[j+1][q],c[j][len[j]][0]=p,c[j][len[j]++][1]=q,q+=2;
       while (p<n) b[j][len[j]]=a[j][p],c[j][len[j]][0]=p++,c[j][len[j]++][1]=q
       while (q<len[j+1]) b[j][len[j]]=b[j+1][q],c[j][len[j]][0]=p,c[j][len[j</pre>
           ]++][1]=q,q+=2;
   }
   for (int ii=1;ii<=qs;ii++)</pre>
       read(x);x^=la;
       y=lower_bound(b[1],b[1]+len[1],x)-b[1];
       ans[1]=a[1][c[1][y][0]];y=c[1][y][1];//下标是c[1][y][0]
       for (j=2; j<=m; j++)</pre>
       {
           if (y&&b[j][y-1]>=x) --y;
           ans[j]=a[j][c[j][y][0]];//下标是c[j][y][0]
          y=c[j][y][1];
       }
       la=0;
       for (i=1;i<=m;i++) la^=ans[i]>inf?0:ans[i];
       if (ii%d==0) printf("%d\n",la);
   }
}
```

## 6.7 模意义真分数还原

```
q \equiv \frac{x}{a} \pmod{p}, |a| \leq A.
```

```
pair<int, int> approx(int p,int q,int A)
{
```

```
int x=q,y=p,a=1,b=0;
while (x>A)
{
    swap(x,y);swap(a,b);
    a-=x/y*b;x%=y;
}
    return make_pair(x,a);
}
```

### 6.8 IO 优化

#### 6.8.1 WDOI

```
class fast_iostream{
private:
   const int MAXBF = 1 << 20; FILE *inf, *ouf;</pre>
   char *inbuf, *inst, *ined;
   char *oubuf, *oust, *oued;
   inline void _flush(){fwrite(oubuf, 1, oued - oust, ouf);}
   inline char _getchar(){
       if(inst == ined) inst = inbuf, ined = inbuf + fread(inbuf, 1, MAXBF, inf
       return inst == ined ? EOF : *inst++;
   inline void _putchar(char c){
       if(oued == oust + MAXBF) _flush(), oued = oubuf;
       *oued++ = c;
   }
public:
    fast_iostream(FILE *_inf = stdin, FILE * _ouf = stdout)
   :inbuf(new char[MAXBF]), inf(_inf), inst(inbuf), ined(inbuf),
    oubuf(new char[MAXBF]), ouf(_ouf), oust(oubuf), oued(oubuf){}
   ~fast_iostream(){_flush(); delete inbuf; delete oubuf;}
   template <typename Int>
   fast_iostream& operator >> (Int &n){
       static char c;
       while((c = _{getchar}()) < '0' || c > '9');n = c - '0';
       while((c = _{getchar}()) >= '0' && c <= '9') n = n * 10 + c - '0';
       return *this;
   template <typename Int>
   fast_iostream& operator << (Int n){</pre>
       if(n < 0) _putchar('-'), n = -n; static char S[20]; int t = 0;
       do{S[t++] = '0' + n \% 10, n /= 10;} while(n);
       for(int i = 0;i < t;++i) _putchar(S[t - i - 1]);</pre>
       return *this;
   fast_iostream& operator << (char c){_putchar(c); return *this;}</pre>
   fast_iostream& operator << (const char *s){</pre>
       for(int i = 0;s[i];++i) _putchar(s[i]); return *this;
}fio;//unsigned
```

#### 6.8.2 自用

```
c[fread(c+1,1,N,stdin)+1]=0;char *cc=c;
void read(int &x)
```

```
char *c=cc;
   while ((*c<48)||(*c>57)) ++c;
   x=*(c++)^48;
   while ((*c>=48)\&\&(*c<=57)) x=x*10+(*(c++)^48); cc=c;
void read(int &x)
{
   char *c=cc;fh=1;
   while ((*c<48)||(*c>57)){if (*c=='-') {++c;fh=-1;break;}++c;}
   x=*(c++)^48;
   while ((*c>=48)\&\&(*c<=57)) x=x*10+(*(c++)^48);
   x*=fh;cc=c;
}
void write(const int x)
   while (x)
   {
      st[++tp]=x%10;
      x/=10;
   char *c=nc;
   while (tp) *(++c)=st[tp--]|48;
   *(++c)=10;nc=c;
}
   char *nc=sc;
   fwrite(sc+1,1,stp,stdout);
```

## 6.9 手动开栈

# 6.10 质数, $\omega(n)$ 与 d(n)

n	n 前第一个质数	n 后第一个质数	$\max\{\omega(n)\}$	$\max\{d(n)\}$
$10^{1}$	$10^1 - 3$	$10^1 + 1$	2	4
$10^{2}$	$10^2 - 3$	$10^2 + 1$	3	12
$10^{3}$	$10^3 - 3$	$10^3 + 13$	4	32
$10^{4}$	$10^4 - 27$	$10^4 + 7$	5	64
$10^{5}$	$10^5 - 9$	$10^5 + 3$	6	128
$10^{6}$	$10^6 - 17$	$10^6 + 3$	7	240
$10^{7}$	$10^7 - 9$	$10^7 + 19$	8	448
$10^{8}$	$10^8 - 11$	$10^8 + 7$	8	768
$10^{9}$	$10^9 - 63$	$10^9 + 7$	9	1344
$10^{10}$	$10^{10} - 33$	$10^{10} + 19$	10	2304
$10^{11}$	$10^{11} - 23$	$10^{11} + 3$	10	4032
$10^{12}$	$10^{12} - 11$	$10^{12} + 39$	11	6720
$10^{13}$	$10^{13} - 29$	$10^{13} + 37$	12	10752
$10^{14}$	$10^{14} - 27$	$10^{14} + 31$	12	17280
$10^{15}$	$10^{15} - 11$	$10^{15} + 37$	13	26880
$10^{16}$	$10^{16} - 63$	$10^{16} + 61$	13	41472
$10^{17}$	$10^{17} - 3$	$10^{17} + 3$	14	64512
$10^{18}$	$10^{18} - 11$	$10^{18} + 3$	15	103680
$10^{19}$	$10^{19} - 39$	$10^{19} + 51$	16	161280

# 6.11 NTT 质数

/3 <b>\</b> 29 <b>\</b>			
$p = r \times 2^k + 1$	r	k	g (最小原根)
17	1	4	3
97	3	5	5
193	3	6	5
257	1	8	3
7681	15	9	17
12289	3	12	11
40961	5	13	3
65537	1	16	3
786433	3	18	10
5767169	11	19	3
7340033	7	20	3
23068673	11	21	3
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
998244353	119	23	3
1004535809	479	21	3
2013265921	15	27	31
2281701377	17	27	3
3221225473	3	30	5
75161927681	35	31	3
77309411329	9	33	7
206158430209	3	36	22
2061584302081	15	37	7
2748779069441	5	39	3
6597069766657	3	41	5
39582418599937	9	42	5
79164837199873	9	43	5
263882790666241	15	44	7
1231453023109121	35	45	3
1337006139375617	19	46	3
3799912185593857	27	47	5
4222124650659841	15	48	19
7881299347898369	7	50	6
31525197391593473	7	52	3
180143985094819841	5	55	6
1945555039024054273	27	56	5
4179340454199820289	29	57	3

# 6.12 公式

向上取整整除分块 
$$[i, \lfloor \frac{n-1}{\lceil \frac{n}{i} \rceil - 1} \rfloor]$$

向上取整整除分块 
$$[i, \lfloor \frac{n-1}{\lceil \frac{n}{i} \rceil - 1} \rfloor]$$
 $n$  个点  $k$  个连通块的生成树方案  $n^{k-2} \prod_{i=1}^k siz_i$ 
杜教筛  $g(1)S(n) = \sum_{i=1}^n (f*g)(i) - \sum_{j=2}^n g(j)S(\lfloor \frac{n}{j} \rfloor)$ 

(x,y) 曼哈顿距离  $\to$  (x+y,x-y) 切比雪夫距离 (x,y) 切比雪夫距离  $\to$  $(\frac{x+y}{2}, \frac{x-y}{2})$  曼哈顿距离

错排数 =  $[0.5 + \frac{n!}{e}]$ 

Kummer's Theorem:  $\binom{n+m}{n}$  含 p  $(p \in \text{prime})$  的次数是 n+m 在 p 进制下的 进位数

$$\ln(1 - x^V) = -\sum_{i \ge 1} \frac{x^{Vi}}{i}$$

$$x^{\bar{n}} = \sum_{i} S_1(n, i) x^i$$

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \dots \\ x \equiv a_n \pmod{m_n} \end{cases}$$

 $m_i$  为不同的质数。设  $M=\prod\limits_{i=1}^n m_i,\; t_i imes rac{M}{m_i}\equiv 1\pmod{m_i},\; 则\; x\equiv \sum\limits_{i=1}^n a_it_irac{M}{m_i}$ 。  $V-E+F=2,\; S=n+rac{s}{2}-1$ 。(n 为内部,s 为边上)

用途: 对于相邻的不相等的值, 在中间画一条线(最外也画), 连通块个数 = 1 + E - V +

注意全都是不含矩形边界上的。

 $\pi^{-1}$  最小时  $\pi$  最小,  $\pi$  最大等价于  $\pi^{-1}$  最大?

五边形数 GF:  $\frac{x(2x+1)}{(1-x)^3}$ 

五边形数:  $\frac{3n^2-n}{2}$ , 广义含非正, 逆为分拆数 GF (注意系数正负和 n 取值奇 偶性相同)

贝尔数(划分集合方案数)EGF:  $\exp(e^x-1)$ ,  $B_n = \sum_{i=0}^n S_2(n,i)$ , 伯努利数 EGF:  $\frac{x}{e^x-1}$ 

$$S_1(i,m) \text{ EGF}$$
: 
$$\frac{(\sum\limits_{i\geq 0}\frac{x^i}{i})^m}{m!}, S_2(i,m) \text{ EGF}$$
: 
$$\frac{(e^x-1)^m}{m!}$$

多项式牛顿迭代:如果已知  $G(F(x)) \equiv 0 \pmod{x^{2n}}, G(F_*(x)) \equiv 0 \pmod{x^n},$ 则有  $F(x) \equiv F_*(x) - \frac{G(F_*(x))}{G'(F_*(x))} \pmod{x^{2n}}$ 。求导时孤立的多项式视为常数。  $\int_0^1 t^a (1-t)^b \mathrm{d}t = \frac{a!b!}{(a+b+1)!}, \quad \sum_{i=0}^{n-1} i^{\underline{k}} = \frac{n^{\underline{k}+1}}{k+1}$ 

$$\int_0^1 t^a (1-t)^b dt = \frac{a!b!}{(a+b+1)!}, \quad \sum_{i=0}^{n-1} i^{\underline{k}} = \frac{n^{\underline{k+1}}}{k+1}$$

Burnside 引理: 等价类数量为  $\sum_{g \in G} \frac{X^g}{|G|}$ ,  $X^g$  表示 g 变换下不动点的数量。

Polya 定理: 染色方案数为  $\sum_{g \in G} \frac{m^{c(g)}}{|G|}$ , 其中 c(g) 表示 g 变换下环的数量。

假设已经只保留了一个牛人酋长,其名字为  $A = a_1 a_2 \cdots a_l$ 。

假设王国旁边开了一座赌场,每单位时间(就称为"秒"吧)会有一个赌徒 带着 1 铜币进入赌场。

赌场规则很简单:支付x铜币赌下一秒会唱出y,如果猜对了就返还nx铜 币,否则钱就没了。

每个赌徒会如下行动:支付 1 铜币赌下一秒会唱出  $a_1$ ,如果赌对了就支付 得到的 n 铜币赌下一秒会唱出  $a_2$ ,如果还对了就支付得到的  $n^2$  铜币赌下一秒会 唱出  $a_3$ , 等等, 以此类推, 最后支付  $n^{l-1}$  铜币赌下一秒会唱出  $a_l$ 。

一旦连续唱出了  $a_1a_2\cdots a_l$ , 赌场老板就会认为自己亏大了而关门, 并驱散 所有赌徒。

那么关门前发生了什么呢? 以  $A = \{1, 4, 1, 5, 1, 1, 4, 1\}, n = 5$  为例:

- 最后一位赌徒拿着 5 铜币离开; - 倒数第三位赌徒拿着  $5^3$  铜币离开; - 倒数第八位赌徒拿着  $5^8$  铜币离开; - 其他所有赌徒空手而归。

我们可以发现 1,3 恰好是原序列的所有 border 的长度,而且对于其他的名字也有这样的规律。

这时候最神奇的一步来了:由于这个赌博游戏是公平的,因此赌场应该期望下不赚不赔,因此关门时期望来了  $5+5^3+5^8$  个赌徒,因此期望需要  $5+5^3+5^8$  单位时间唱出这个名字。

同理,即可知道对于一般的 A,答案为:

$$\sum_{a_1 a_2 \cdots a_c = a_{l-c+1} a_{l-c+2} \cdots a_l} n^c$$

7 STL 使用指南 203

# 7 stl 使用指南

#### 7.1 bitset

```
#include <bits/stdc++.h>
using namespace std;
bitset<10> f(12);
char s2[]="100101";
bitset<10> g(s2);
string s="100101";//reverse 7
bitset<10> h(s);
int main()
{
   for (int i=0;i<=9;i++) if (f[i]) printf("1"); else printf("0");puts("");</pre>
   for (int i=0;i<=9;i++) if (g[i]) printf("1"); else printf("0");puts("");</pre>
   for (int i=0;i<=9;i++) if (h[i]) printf("1"); else printf("0");puts("");</pre>
   cout<<h<<endl;</pre>
   foo.count();//1的个数
   foo.flip();//全部翻转
   foo.set();//变1
   foo.reset();//变0
   foo.to_string();
   foo.to_ulong();
   foo.to_ullong();
   foo._Find_first();
   foo._Find_next();
   //位运算: << 变大, >> 变小
   __builtin_clz();//前导 0
   __builtin_ctz();//后面的 0
}
```

#### 输出:

### 7.2 pb_ds

```
#pragma GCC optimize("Ofast")
#pragma GCC target("popcnt")
#pragma GCC target("sse3","sse2","sse")
#pragma GCC target("avx","sse4","sse4.1","sse4.2","ssse3")
#pragma GCC target("f16c")
#pragma GCC target("fma","avx2")
#pragma GCC target("xop","fma4")
#pragma GCC optimize("inline","fast-math","unroll-loops","no-stack-protector")
#pragma GCC diagnostic error "-fwhole-program"
#pragma GCC diagnostic error "-fcse-skip-blocks"
#pragma GCC diagnostic error "-funsafe-loop-optimizations"
#pragma GCC diagnostic error "-std=c++14"
#include "bits/stdc++.h"
#include "ext/pb_ds/assoc_container.hpp"
#include "ext/pb_ds/tree_policy.hpp" //balanced tree
#include "ext/pb_ds/hash_policy.hpp" //hash table
#include "ext/pb_ds/priority_queue.hpp" //priority_queue
```

7 STL 使用指南 204

```
using namespace __gnu_pbds;
using namespace std;
inline char gc()
   static char buf[1048576], *p1, *p2;
  return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1048576, stdin),
  p1 == p2) ? EOF : *p1++;
}
inline int read()
{
   char ch = gc(); int r = 0, w = 1;
   for (; ch < '0' || ch > '9'; ch = gc()) if (ch == '-') w = -1;
   for (; '0' <= ch && ch <= '9'; ch = gc()) r = r * 10 + (ch - '0');
   return r * w;
typedef tree<int,null_type,less<int>,rb_tree_tag,
   tree_order_statistics_node_update> rbtree;
cc_hash_table<string,int>mp1;//拉链法
gp_hash_table<string,int>mp2;//查探法
rbtree s1,s2;//注意是不可重的
//null_type无映射(低版本g++为null_mapped_type)
//less<int>从小到大排序
//插入t.insert();
//删除t.erase():
//求有多少个数比 k 小:t.order_of_key(k);
//求树中第 k+1 小:t.find_by_order(k);
//a.join(b) b并入a, 前提是两棵树的 key 的取值范围不相交, b 会清空但迭代器没事, 如
   不满足会抛出异常。我听说复杂度是线性???
//a.split(v,b) key 小于等于 v 的元素属于 a, 其余的属于 b
//T.lower_bound(x) >=x 的 min 的迭代器
//T.upper_bound(x) >x 的 min 的迭代器
__gnu_pbds::priority_queue<int,greater<int>,pairing_heap_tag> pq;
//join(priority_queue &other) //合并两个堆,other会被清空
//split(Pred prd, priority_queue &other) //分离出两个堆
//modify(point_iterator it,const key) //修改一个节点的值
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   rbtree::iterator it;
   uniform_real_distribution<> a(1,2);
  numeric_limits<int>::max();
  for (int i=1;i<=10;i++) s1.insert(i*2);</pre>
   //it=s2.lower_bound(35);
  for (auto u:s1) printf("%d\n",u);puts("");
  printf("%d\n",*s1.find_by_order(10));
   //printf("%d\n",*it);
}
```

# 8 其他板子(补充)

### 8.1 MTT+exp

```
#include<bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef double db;
int read(){
   int res=0;
   char c=getchar(),f=1;
   while (c<48||c>57) {if (c=='-')f=0; c=getchar();}
   while(c>=48&&c<=57)res=(res<<3)+(res<<1)+(c&15),c=getchar();</pre>
   return f?res:-res;
}
const int L=1<<19,mod=1e9+7;</pre>
const db pi2=3.141592653589793*2;
int inc(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int dec(int x,int y){return x-y<0?x-y+mod:x-y;}</pre>
int mul(int x,int y){return (ll)x*y%mod;}
int qpow(int x,int y){
   int res=1;
   for(;y;y>>=1)res=y&1?mul(res,x):res,x=mul(x,x);
int inv(int x){return qpow(x,mod-2);}
struct cp{
   db x,y;
   cp(){}
   cp(db a,db b){x=a,y=b;}
   cp operator+(const cp& p)const{return cp(x+p.x,y+p.y);}
   cp operator-(const cp& p)const{return cp(x-p.x,y-p.y);}
   cp operator*(const cp& p)const{return cp(x*p.x-y*p.y,x*p.y+y*p.x);}
   cp conj(){return cp(x,-y);}
}w[L];
int re[L];
int getre(int n){
   int len=1,bit=0;
   while(len<n)++bit,len<<=1;</pre>
   for(int i=1;i<len;++i)re[i]=(re[i>>1]>>1)|((i&1)<<(bit-1));</pre>
   return len;
void getw(){
   for(int i=0;i<L;++i)w[i]=cp(cos(pi2/L*i),sin(pi2/L*i));</pre>
void fft(cp* a,int len,int m){
   for(int i=1;i<len;++i)if(i<re[i])swap(a[i],a[re[i]]);</pre>
   for(int k=1,r=L>>1;k<len;k<<=1,r>>=1)
       for(int i=0;i<len;i+=k<<1)</pre>
           for(int j=0;j<k;++j){</pre>
              cp &L=a[i+j],&R=a[i+j+k],t=w[r*j]*R;
              R=L-t, L=L+t;
           }
   if(!~m){
       reverse(a+1,a+len);
       cp tmp=cp(1.0/len,0);
       for(int i=0;i<len;++i)a[i]=a[i]*tmp;</pre>
```

```
}
}
void mul(int* a,int* b,int* c,int n1,int n2,int n){
   static cp f1[L],f2[L],f3[L],f4[L];
   int len=getre(n1+n2-1);
   for(int i=0;i<len;++i){</pre>
       f1[i]=i<n1?cp(a[i]>>15,a[i]&32767):cp(0,0);
       f2[i]=i<n2?cp(b[i]>>15,b[i]&32767):cp(0,0);
   fft(f1,len,1),fft(f2,len,1);
   cp t1=cp(0.5,0),t2=cp(0,-0.5),r=cp(0,1);
   cp x1, x2, x3, x4;
   for(int i=0;i<len;++i){</pre>
       int j=(len-i)&(len-1);
       x1=(f1[i]+f1[j].conj())*t1;
       x2=(f1[i]-f1[j].conj())*t2;
       x3=(f2[i]+f2[j].conj())*t1;
       x4=(f2[i]-f2[j].conj())*t2;
       f3[i]=x1*(x3+x4*r);
       f4[i]=x2*(x3+x4*r);
   fft(f3,len,-1),fft(f4,len,-1);
   11 c1,c2,c3,c4;
   for(int i=0;i<n;++i){</pre>
       c1=(11)(f3[i].x+0.5) \mod, c2=(11)(f3[i].y+0.5) \mod;
       c3=(11)(f4[i].x+0.5)\mbox{mod}, c4=(11)(f4[i].y+0.5)\mbox{mod};
       c[i]=((((c1<<15)+c2+c3)<<15)+c4)\mod;
}
void inv(int* a,int* b,int n){
   if(n==1){b[0]=1;return;}
   static int c[L];
   int l=(n+1)>>1;
   inv(a,b,1);
   mul(a,b,c,n,l,n);
   for(int i=0;i<n;++i)c[i]=mod-c[i];</pre>
   c[0] += 2;
   mul(b,c,b,n,n,n);
void der(int* a,int n){
   for(int i=1;i<n;++i)a[i-1]=mul(a[i],i);</pre>
   a[n-1]=0;
}
void its(int* a,int n){
   for(int i=n-1;i;--i)a[i]=mul(a[i-1],inv(i));
   a[0]=0;
void ln(int* a,int* b,int n){
   static int c[L];
   for(int i=0;i<n;++i)c[i]=a[i];</pre>
   der(c,n);
   inv(a,b,n);
   mul(b,c,b,n,n,n);
   its(b,n);
void exp(int* a,int* b,int n){
   if (n==1) {b[0]=1; return;}
   static int c[L];
   int l=(n+1)>>1;
```

```
exp(a,b,1);
   ln(b,c,n);
   for(int i=0;i<n;++i)c[i]=dec(a[i],c[i]);</pre>
   ++c[0];
   mul(b,c,b,l,n,n);
   for(int i=0;i<n;++i)c[i]=0;</pre>
}
int n,k,a[L],f[L],g[L];
int main(){
   getw();
   n=read(),k=read();
   for(int i=1;i<=k;++i)a[i]=inv(i);</pre>
   for(int i=2;i<=n;++i)</pre>
       for(int j=1;i*j<=k;++j)</pre>
           f[i*j]=inc(f[i*j],a[j]);
   for(int i=1;i<=k;++i)f[i]=mod-f[i];</pre>
   for(int i=1;i<=k;++i)f[i]=inc(f[i],mul(n-1,a[i]));</pre>
   \exp(f,g,k+1);
   printf("%d\n",g[k]);
```

### 8.2 多项式

```
#include<bits/stdc++.h>
using namespace std;
typedef long long 11;
int read(){
   int res=0;
   char c=getchar(),f=1;
   while(c<48||c>57){if(c=='-')f=0;c=getchar();}
   while(c>=48&&c<=57)res=(res<<3)+(res<<1)+(c&15),c=getchar();</pre>
   return f?res:-res;
void write(int x){
   char c[21];
   int len=0;
   if(!x)return putchar('0'),void();
   if(x<0)x=-x,putchar('-');</pre>
   while (x) c [++len] = x\%10, x/=10;
   while(len)putchar(c[len--]+48);
#define space(x) write(x),putchar(' ')
#define enter(x) write(x),putchar('\n')
const int mod=998244353;
struct M{
   int x;
   M(int a=0):x(a){}
   M operator+(const M& p)const{return x+p.x>=mod?x+p.x-mod:x+p.x;}
   M operator-()const{return x?mod-x:0;}
   M operator-(const M& p)const{return x-p.x<0?x-p.x+mod:x-p.x;}</pre>
   M operator*(const M& p)const{return (ll)x*p.x%mod;}
   bool operator==(const int& p)const{return x==p;}
   void operator+=(const M& p){*this=*this+p;}
   void operator==(const M& p){*this=*this-p;}
   void operator*=(const M& p){*this=*this*p;}
```

```
void write(const M& x){write(x.x);}
M qpow(M x,int y){
   M res(1);
   for(;y;y>>=1)res=y&1?res*x:res,x=x*x;
   return res;
M inv(M x){return qpow(x,mod-2);}
const int N=1<<21|7;</pre>
namespace NTT{
int re[N];
M w[2][N];
int getre(int n){
   int len=1,bit=0;
   while(len<n)len<<=1,++bit;</pre>
   for(int i=1;i<len;++i)re[i]=(re[i>>1]>>1)|((i&1)<<(bit-1));</pre>
   w[0][0]=w[1][0]=1, w[0][1]=qpow(3, (mod-1)/len), w[1][1]=inv(w[0][1]);
   for(int o=0;o<2;++o)for(int i=2;i<=len;++i)</pre>
       w[o][i]=w[o][i-1]*w[o][1];
   return len;
void NTT(M* a,int n,int o=0){
   for(int i=1;i<n;++i)if(i<re[i])swap(a[i],a[re[i]]);</pre>
   M L,R;
   for(int k=1;k<n;k<<=1)</pre>
       for(int i=0,st=n/(k<<1);i<n;i+=k<<1)</pre>
           for(int j=0,nw=0; j<k;++j,nw+=st){</pre>
              L=a[i+j], R=a[i+j+k]*w[o][nw];
              a[i+j]=L+R,a[i+j+k]=L-R;
           }
   if(o){
       L=inv(n);
       for(int i=0;i<n;++i)a[i]=a[i]*L;</pre>
   }
}
M t0[N],t1[N],t2[N];
void mul(const M* a,const M* b,M* c,int n,int m){
   int len=getre(n+m+1);
   memset(t0,0,sizeof(int)*len),memcpy(t0,a,sizeof(int)*(n+1));
   memset(t1,0,sizeof(int)*len),memcpy(t1,b,sizeof(int)*(m+1));
   NTT(t0,len),NTT(t1,len);
   for(int i=0;i<len;++i)t0[i]=t0[i]*t1[i];</pre>
   NTT(t0,len,1);
   memcpy(c,t0,sizeof(int)*(n+m+1));
void inv(const M* a,M* b,int n){
   int len=1;
   while(len<=n)len<<=1;</pre>
   memset(t0,0,sizeof(int)*len),memcpy(t0,a,sizeof(int)*(n+1));
   memset(t1,0,sizeof(int)*(len<<1));</pre>
   memset(t2,0,sizeof(int)*(len<<1));</pre>
   t2[0]=inv(t0[0]);
   for(int k=1;k<=len;k<<=1){</pre>
       memcpy(t1,t0,sizeof(int)*k);
       getre(k<<1);
       NTT(t1,k<<1),NTT(t2,k<<1);
       for(int i=0;i<(k<<1);++i)t2[i]*=(-t1[i]*t2[i]+2);</pre>
```

```
NTT(t2,k<<1,1);
       for(int i=k;i<(k<<1);++i)t2[i]=0;</pre>
   }
   memcpy(b,t2,sizeof(int)*(n+1));
} //namespace NTT
struct poly:public vector<M>{
   int time()const{return size()-1;}
   poly(int tim=0,int c=0){
       resize(tim+1);
       if(tim>=0)at(0)=c;
   poly operator%(const int& n)const{
       poly r(*this);
       r.resize(n);
       return r;
   poly operator%=(const int& n){
       resize(n);
       return *this;
   poly operator+(const poly& p)const{
       int n=time(),m=p.time();
       poly r(*this);
       if(n<m)r.resize(m+1);</pre>
       for(int i=0;i<=m;++i)r[i]+=p[i];</pre>
       return r;
   }
   poly operator-(const poly& p)const{
       int n=time(),m=p.time();
       poly r(*this);
       if(n<m)r.resize(m+1);</pre>
       for(int i=0;i<=m;++i)r[i]-=p[i];</pre>
       return r;
   }
   poly operator*(const poly& p)const{
       poly r(time()+p.time());
       NTT::mul(&((*this)[0]),&p[0],&r[0],time(),p.time());
       return r;
   }
};
poly inv(const poly& a){
   poly r(a.time());
   NTT::inv(&a[0],&r[0],a.time());
   return r;
}
poly der(const poly& a){
   int n=a.time();
   poly r(n-1);
   for(int i=1;i<=n;++i)r[i-1]=a[i]*i;</pre>
   return r;
M _[N];
poly itr(const poly& a){
   int n=a.time();
   poly r(n+1);
```

```
_[1]=1;
   for(int i=2;i<=n+1;++i)_[i]=_[mod%i]*(mod-mod/i);</pre>
   for(int i=0;i<=n;++i)r[i+1]=a[i]*_[i+1];</pre>
   return r;
poly ln(const poly& a){
   return itr(der(a)*inv(a)%a.time());
}
poly exp(const poly& a){
   poly r(0,1);
   int n=a.time(),k=1;
   while(r.time()<n)</pre>
       r%=k,r=r*(a%k-ln(r)+poly(0,1))%k,k<<=1;
   return r%(n+1);
}
void read(poly& a,int n=-1){
   if(!~n)n=a.time();
   else a.resize(n+1);
   for(int i=0;i<=n;++i)a[i]=read();</pre>
void write(const poly& a,int n=-1){
   if(!~n)n=a.time();
   else n=min(n,a.time());
   for(int i=0;i<n;++i)space(a[i]);</pre>
   enter(a[n]);
}
```

# 8.3 Miller Rabin/Pollard Rho

1s: 200 组 10¹⁸。

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef __int128 111;
typedef pair<ll,int> pa;
11 ksm(ll x,ll y,const ll p)
   ll r=1;
   while (y)
       if (y&1) r=(lll)r*x%p;
       x=(111)x*x%p;y>>=1;
   return r;
namespace miller
   const int p[7]={2,3,5,7,11,61,24251};
   11 s,t;
   bool test(ll n,int p)
       if (p>=n) return 1;
       ll r=ksm(p,t,n),w;
       for (int j=0;j<s&&r!=1;j++)</pre>
       {
          w=(111)r*r%n:
```

```
if (w==1&&r!=n-1) return 0;
          r=w;
       }
       return r==1;
   bool prime(ll n)
       if (n<2||n==46'856'248'255'98111) return 0;</pre>
       for (int i=0;i<7;++i) if (n%p[i]==0) return n==p[i];</pre>
       s=__builtin_ctz(n-1);t=n-1>>s;
       for (int i=0;i<7;++i) if (!test(n,p[i])) return 0;</pre>
       return 1;
   }
}
using miller::prime;
mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());
namespace rho
   void nxt(ll &x,ll &y,ll &p) {x=((lll)x*x+y)%p;}
   ll find(ll n,ll C)
       ll l,r,d,p=1;
       l=rnd()\%(n-2)+2,r=1;
       nxt(r,C,n);
       int cnt=0;
       while (l^r)
          p=(111)p*llabs(l-r)%n;
          if(!p) return gcd(n,llabs(l-r));
          ++cnt;
          if (cnt==127)
              cnt=0;
              d=gcd(llabs(l-r),n);
              if(d>1) return d;
          }
          nxt(1,C,n);nxt(r,C,n);nxt(r,C,n);
       }
       return gcd(n,p);
   vector<pa> w;
   vector<ll> d;
   void dfs(ll n,int cnt)
       if (n==1) return;
       if (prime(n)) return w.emplace_back(n,cnt),void();
       ll p=n,C=rnd()%(n-1)+1;
       while (p==1||p==n) p=find(n,C++);
       int r=1;n/=p;
       while (n\%p==0) n/=p,++r;
       dfs(p,r*cnt);dfs(n,cnt);
   }
   vector<pa> getw(ll n)
   {
       w=vector<pa>(0);dfs(n,1);
       if (n==1) return w;
       sort(w.begin(),w.end());
       int i,j;
       for (i=1,j=0;i<w.size();i++) if (w[i].first==w[j].first) w[j].second+=w[</pre>
```

```
i].second; else w[++j]=w[i];
       w.resize(j+1);
       return w;
   void dfss(int x,ll n)
       if (x==w.size()) return d.push_back(n),void();
       dfss(x+1,n);
       for (int i=1;i<=w[x].second;i++) dfss(x+1,n*=w[x].first);</pre>
   vector<ll> getd(ll n)
   {
       getw(n);d=vector<11>(0);dfss(0,1);
       sort(d.begin(),d.end());
       return d;
   }
}
int main()
   ios::sync_with_stdio(0);
   int t;
   cin>>t;
   while (t--)
       11 x; cin>>x;
       auto v=rho::getw(x);
       int ans=0;
       for (auto &[u,v]:v) ans+=v;
       cout << ans;
       for (auto &[u,v]:v) for (int i=1;i<=v;i++) cout<<' '<<u;cout<<'\n';
   }
}
```

## 8.4 半平面交

```
const int N=305;
const db inf=1e15,eps=1e-10;
int sign(db x){
   if(fabs(x)<eps)return 0;</pre>
   return x>0?1:-1;
}
struct vec{
   db x,y;
   vec(){}
   vec(db a,db b){x=a,y=b;}
   vec operator+(const vec& p)const{
       return vec(x+p.x,y+p.y);
   vec operator-(const vec& p)const{
       return vec(x-p.x,y-p.y);
   db operator*(const vec& p)const{
       return x*p.y-y*p.x;
   vec operator*(const db& p)const{
       return vec(x*p,y*p);
```

```
}p1[N],p2[N];
struct line{
   vec s,t;
   line(){}
   line(vec a, vec b){s=a,t=b;}
}a[N],q[N];
db ang(vec v){
   return atan2(v.y,v.x);
db ang(line 1){
   return ang(1.t-1.s);
bool cmp(line x,line y){
   int s=sign(ang(x)-ang(y));
   return s?s<0:sign((x.t-x.s)*(y.t-x.s))>0;
}
vec inter(line x,line y){
   vec a=y.s-x.s,b=x.t-x.s,c=y.t-y.s;
   return y.s+c*((a*b)/(b*c));
bool out(line 1,vec p){
   return sign((1.t-1.s)*(p-1.s))<0;</pre>
}
int n,tot=0;
db ans=inf;
int main(){
   scanf("%d",&n);
   for(int i=1;i<=n;++i)scanf("%lf",&p1[i].x);</pre>
   for(int i=1;i<=n;++i)scanf("%lf",&p1[i].y);</pre>
   for(int i=1;i<n;++i)a[i]=line(p1[i],p1[i+1]);</pre>
   a[n]=line(vec(p1[1].x,inf),vec(p1[1].x,p1[1].y));
   a[n+1]=line(vec(p1[n].x,p1[n].y),vec(p1[n].x,inf));
   sort(a+1,a+n+2,cmp);
   for(int i=1;i<=n;++i){</pre>
       if(!sign(ang(a[i])-ang(a[i+1])))continue;
       a[++tot]=a[i];
   }a[++tot]=a[n+1];
   int l=1,r=0;
   q[++r]=a[1],q[++r]=a[2];
   for(int i=3;i<=tot;++i){</pre>
       while(l<r&&out(a[i],inter(q[r],q[r-1])))--r;</pre>
       while(l<r&&out(a[i],inter(q[l],q[l+1])))++1;</pre>
       q[++r]=a[i];
   while(l<r&&out(q[l],inter(q[r],q[r-1])))--r;</pre>
   while(l<r&&out(q[r],inter(q[l],q[l+1])))++l;</pre>
//.....
}
```

# 8.5 旋转卡壳

```
if(top==3)return !printf("%d\n",dis(a[sta[1]],a[sta[2]]));
for(int i=1,j=2;i<top;++i){</pre>
```

while(area(a[sta[i]],a[sta[i+1]],a[sta[j]])>=area(a[sta[i]],a[sta[i+1]],a[sta[j]%top+1]]))j=j%top+1;
 ans=max(ans,max(dis(a[sta[i]],a[sta[j]]),dis(a[sta[i+1]],a[sta[j]])));
}printf("%d\n",ans);

#### 8.6 l1ll5 trac

题意:

给一个 n 个点的完全图,边有颜色。将其扩展到 (m+1) 阶完全图,并且 m 染色,判断是否可行并输出方案。

题解:

Lemma 1: 考虑最终所有 m(m+1)/2 条边,按照颜色分组,仅当每组都有 (m+1)/2 条边且 m 为偶数时有解

Proof: 考虑边数最多的一组,令其有 x 条边,则其覆盖了 2x 个点, min(x) = (m+1)/2, 当 m 为偶数时, 2x=m,否则组内有重复点。

现在考虑 n 个点的情况,同样考虑最终的 m 组,将每组的 (m+1)/2 条边分为三类:

2-set: 两个端点均已经在目前的图中出现

1-set: 仅有一个端点在目前的图中出现(某点 x 的目前所有边中没有这个颜色,则在最终的图中必然有这种颜色的一条边)

0-set:以上两种情况之外的边,即完全没有出现。

Lemma 2: 对于给出的情况, 若没有某一组的 1-set 边数加 2-set 边数超过 (m+1)/2, 则有解。否则无解。

Proof: 无解显然,为了证明有解,只需证明一个满足如上性质的图一定可以加一个点。(归纳,加一个点的影响是将边从 1-set 变成 2-set (加某个颜色的边)或者从 0-set 变成 1-set (不加某个颜色的边),不影响组内边数)

考虑用网络流解决该问题:对于每种颜色,将其和对应的 1-set (n 个点)或 0-set (1 个点)连边。其中 0-set 到 T 连一条 m-n,其余都是 1

显然源点总共发出 m 的流量, 汇点最多收到 m 的流量。

不妨令每个颜色的点发出去的所有流量均相等,此时发现该网络满流。(不 会证)

则最大流为满流,任取一整数最大流则对应一个方案。依次扩展到 m+1 个 点即可。

感觉非常的玄妙。

因为 11115 博客炸了,平时补的一些题就放在这里了。

CF 717 E

长度为 n 的排列, swap k 次, 能得到的不同排列数。

一个思路是考虑这个的逆过程,对所有 swap j 次能得到一个 1-n 的排列的排列计数,只需要考虑最后一个元素是否为错排即可

 $dp_{i,j} = dp_{i-1,j} + (i-1)dp_{i-1,j-1}$ 

 $ans_i = dp_{i,k} + dp_{i-2,k} + \dots$  这里考虑到浪费操作数就是交换相同对

但是复杂度是与n有关的,不妨考虑枚举做了k次 swap,影响到了 i 个元素,答案乘一个C(n,i)即可

显然有重复,怎么避免呢,考虑只要枚举的 i 个元素都是错排即可不重不漏,容斥这个过程即可。

## 8.7 多项式复合 (yurzhang)

 $O(n \log n \sqrt{n \log n})$ , 奇慢无比, 慎用

```
#pragma GCC optimize("Ofast,inline")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,popcnt,abm,mmx,avx,
    avx2, tune=native")
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MOD 998244353
#define G 332748118
#define N 262210
#define re register
#define gc pa==pb&&(pb=(pa=buf)+fread(buf,1,100000,stdin),pa==pb)?E0F:*pa++
typedef long long 11;
static char buf[100000],*pa(buf),*pb(buf);
static char pbuf[3000000],*pp(pbuf),st[15];
int read() {
   re int x(0); re char c(gc);
   while(c<'0'||c>'9')c=gc;
   while(c>='0'&&c<='9')</pre>
       x=x*10+c-48,c=gc;
   return x;
void write(re int v) {
   if(v==0)
       *pp++=48;
   else {
      re int tp(0);
       while(v)
          st[++tp]=v\%10+48,v/=10;
       while(tp)
          *pp++=st[tp--];
   *pp++=32;
}
int pow(re int a,re int b) {
   re int ans(1);
   while(b)
       ans=b&1?(ll)ans*aMOD:ans,a=(ll)a*aMOD,b>>=1;
   return ans;
}
int inv[N],ifac[N];
void pre(re int n) {
   inv[1]=ifac[0]=1;
   for(re int i(2);i<=n;++i)</pre>
       inv[i]=(11)(MOD-MOD/i)*inv[MOD%i]%MOD;
   for(re int i(1);i<=n;++i)</pre>
       ifac[i]=(11)ifac[i-1]*inv[i]%MOD;
}
int getLen(re int t) {
   return 1<<(32-__builtin_clz(t));</pre>
}
int lmt(1),r[N],w[N];
void init(re int n) {
   re int 1(0);
```

```
while(lmt<=n)</pre>
       lmt<<=1,++1;
   for(re int i(1);i<lmt;++i)</pre>
       r[i]=(r[i>>1]>>1)|((i&1)<<(1-1));
   re int wn(pow(3,(MOD-1)/lmt));
   w[lmt>>1]=1;
   for(re int i((lmt>>1)+1);i<lmt;++i)</pre>
       w[i]=(11)w[i-1]*wn%MOD;
   for(re int i((lmt>>1)-1);i;--i)
       w[i] = w[i << 1];
}
void DFT(int*a,re int 1) {
   static unsigned long long tmp[N];
   re int u(__builtin_ctz(lmt)-__builtin_ctz(l)),t;
   for(re int i(0);i<1;++i)</pre>
       tmp[i]=(a[r[i]>>u])%MOD;
   for(re int i(1);i<1;i<<=1)</pre>
       for(re int j(0),step(i<<1);j<1;j+=step)</pre>
           for(re int k(0);k<i;++k)</pre>
               t=(11)w[i+k]*tmp[i+j+k]%MOD,
               tmp[i+j+k] = tmp[j+k] + MOD-t,
               tmp[j+k]+=t;
   for(re int i(0);i<1;++i)</pre>
       a[i]=tmp[i]%MOD;
}
void IDFT(int*a,re int 1) {
   std::reverse(a+1,a+1);DFT(a,1);
   re int bk(MOD-(MOD-1)/1);
   for(re int i(0);i<1;++i)</pre>
       a[i]=(11)a[i]*bk%MOD;
}
int n,m;
int a[N],b[N],c[N];
void getInv(int*a,int*b,int deg) {
    if (deg==1)
       b[0] = pow(a[0], MOD-2);
   else {
       static int tmp[N];
       getInv(a,b,(deg+1)>>1);
       re int l(getLen(deg<<1));</pre>
       for(re int i(0);i<1;++i)</pre>
           tmp[i]=i<deg?a[i]:0;</pre>
       DFT(tmp,1),DFT(b,1);
       for(re int i(0);i<1;++i)</pre>
           b[i]=(211-(11)tmp[i]*b[i]%MOD+MOD)%MOD*b[i]%MOD;
       IDFT(b,1);
       for(re int i(deg);i<1;++i)</pre>
           b[i]=0;
   }
}
void getDer(int*a,int*b,int deg) {
   for(re int i(0);i+1<deg;++i)</pre>
       b[i]=(ll)a[i+1]*(i+1)%MOD;
   b[deg-1]=0;
```

```
}
void getComp(int*a,int*b,int k,int m,int&n,int*c,int*d) {
    if(k==1) {
       for(re int i(0);i<m;++i)</pre>
           c[i]=0,d[i]=b[i];
       n=m,c[0]=a[0];
   } else {
       static int t1[N],t2[N];
       int nl(n),nr(n),*cl,*cr,*dl,*dr;
       getComp(a,b,k>>1,m,nl,cl=c,dl=d);
       getComp(a+(k>>1),b,(k+1)>>1,m,nr,cr=c+nl,dr=d+nl);
       n=std::min(n,nl+nr-1);
       re int _l(getLen(nl+nr));
       for(re int i(0);i<_1;++i)</pre>
           t1[i]=i<nl?dl[i]:0;
       for(re int i(0);i<_1;++i)</pre>
           t2[i]=i<nr?cr[i]:0;
       DFT(t1,_1),DFT(t2,_1);
       for(re int i(0);i<_1;++i)</pre>
           t2[i]=(l1)t1[i]*t2[i]%MOD;
       IDFT(t2,_1);
       for(re int i(0);i<n;++i)</pre>
           c[i]=((i<n1?c1[i]:0)+t2[i])%MOD;
       for(re int i(0);i<_1;++i)</pre>
           t2[i]=i<nr?dr[i]:0;
       DFT(t2,_1);
       for(re int i(0);i<_1;++i)</pre>
           t2[i]=(l1)t1[i]*t2[i]%MOD;
       IDFT(t2,_1);
       for(re int i(0);i<n;++i)</pre>
           d[i]=t2[i];
   }
}
void getComp(int*a,int*b,int*c,int deg) {
    static int ts[N],ps[N],c0[N],_t1[N],idM[N];
    int M(std::max((int)ceil(sqrt(deg/log2(deg))*2.5),2)),_n(deg+deg/M);
   getComp(a,b,deg,M,_n,c0,_t1);
   re int _l(getLen(_n+deg));
   for(re int i(_n);i<_l;++i)</pre>
       c0[i]=0;
   for(re int i(0);i<_l;++i)</pre>
       ps[i]=i==0;
   for(re int i(0);i<_1;++i)</pre>
       ts[i]=M<=i&&i<deg?b[i]:0;
   getDer(b,_t1,M);
   for(re int i(M-1);i<deg;++i)</pre>
       _t1[i]=0; /// Important!!!
   getInv(_t1,idM,deg);
    for(int i=deg;i<_l;++i)</pre>
       idM[i]=0;
   DFT(ts,_1),DFT(idM,_1);
   for(re int t(0);t*M<deg;++t) {</pre>
       for(re int i(0);i<_l;++i)</pre>
           _t1[i]=i<deg?c0[i]:0;
       DFT(ps,_1),DFT(_t1,_1);
       for(re int i(0);i<_1;++i)</pre>
           _t1[i]=(ll)_t1[i]*ps[i]%MOD,
```

```
ps[i]=(11)ps[i]*ts[i]%MOD;
       IDFT(ps,_1),IDFT(_t1,_1);
       for(re int i(deg);i<_l;++i)</pre>
           ps[i]=0;
       for(re int i(0);i<deg;++i)</pre>
           c[i]=((11)_t1[i]*ifac[t]+c[i])%MOD;
       getDer(c0,c0,_n);
       for(re int i(_n-1);i<_1;++i)</pre>
           c0[i]=0;
       DFT(c0,_1);
       for(re int i(0);i<_1;++i)</pre>
           c0[i]=(11)c0[i]*idM[i]%MOD;
       IDFT(c0,_1);
       for(re int i(_n-1);i<_1;++i)</pre>
           c0[i]=0;
   }
}
int main() {
   n=read(),m=read();
   for(re int i(0);i<=n;++i)</pre>
       a[i]=read();
   for(re int i(0);i<=m;++i)</pre>
       b[i]=read();
   m=(n>m?n:m)+1;
   pre(m);init(m*5);
   getComp(a,b,c,m);
   for(re int i(0);i<=n;++i)</pre>
       write(c[i]);
   fwrite(pbuf,1,pp-pbuf,stdout);
   return 0;
}
```

# 8.8 下降幂多项式乘法

 $O(n \log n)$ .

```
#include<cstdio>
#include<algorithm>
const int N=524288,md=998244353,g3=(md+1)/3;
typedef long long LL;
int n,m,A[N],B[N],fac[N],iv[N],rev[N],C[N],g[20][N],lim,M;
int pow(int a,int b){
   int ret=1;
   for(;b;b>>=1,a=(LL)a*a%md)if(b&1)ret=(LL)ret*a%md;
   return ret;
void upd(int&a){a+=a>>31&md;}
void init(int n){
   int l=-1;
   for(lim=1;lim<n;lim<<=1)++1;M=1+1;</pre>
   for(int i=1;i<lim;++i)</pre>
   rev[i]=((rev[i>>1])>>1)|((i&1)<<1);
void NTT(int*a,int f){
   for(int i=1;i<lim;++i)if(i<rev[i])std::swap(a[i],a[rev[i]]);</pre>
   for(int i=0:i<M:++i){
```

```
const int*G=g[i],c=1<<i;</pre>
       for(int j=0;j<lim;j+=c<<1)</pre>
       for(int k=0;k<c;++k){</pre>
           const int x=a[j+k],y=a[j+k+c]*(LL)G[k]%md;
           upd(a[j+k]+=y-md), upd(a[j+k+c]=x-y);
       }
   }
   if(!f){
       const int iv=pow(lim,md-2);
       for(int i=0;i<lim;++i)a[i]=(LL)a[i]*iv%md;</pre>
       std::reverse(a+1,a+lim);
   }
}
int main(){
   scanf("%d%d",&n,&m);++n,++m;
    for(int i=0;i<20;++i){</pre>
       int*G=g[i];
       G[0]=1;
       const int gi=G[1]=pow(3,(md-1)/(1<<i+1));</pre>
       for(int j=2;j<1<<i;++j)G[j]=(LL)G[j-1]*gi\( md; \)</pre>
   for(int i=0;i<n;++i)scanf("%d",A+i);</pre>
   for(int i=0;i<m;++i)scanf("%d",B+i);</pre>
   for(int i=*fac=1;i<N;++i)</pre>
   fac[i]=fac[i-1]*(LL)i%md;
   iv[N-1] = pow(fac[N-1], md-2);
   for(int i=N-2;~i;--i)iv[i]=(i+1LL)*iv[i+1]%md;
   init(n+m<<1);
   for(int i=0;i<n+m-1;++i)C[i]=iv[i];</pre>
   NTT(A,1),NTT(B,1),NTT(C,1);
   for(int i=0;i<lim;++i)A[i]=(LL)A[i]*C[i]%md,B[i]=(LL)B[i]*C[i]%md;</pre>
   NTT(A,0),NTT(B,0);
   for(int i=0;i<lim;++i)C[i]=0;</pre>
   for(int i=0;i<n+m-1;++i)</pre>
   C[i]=(i&1)?md-iv[i]:iv[i];
   for(int i=0;i<lim;++i)A[i]=(LL)A[i]*B[i]%md*fac[i]%md;</pre>
   for(int i=n+m-1;i<lim;++i)A[i]=0;</pre>
   NTT(A,1),NTT(C,1);
   for(int i=0;i<lim;++i)A[i]=(LL)A[i]*C[i]%md;</pre>
   NTT(A,0);
   for(int i=0;i<n+m-1;++i)printf("%d%c",A[i]," \n"[i==n+m-2]);</pre>
   return 0;
```

# 8.9 平面欧几里得距离最小生成树

```
10<sup>5</sup>, 400ms.
By Claris.
```

```
#include<cstdio>
#include<cmath>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=100010;
const ll inf=20000000000000001LL;
const double eps=1e-9;
inline int sgn(double x){
   if(x>eps)return 1:
```

```
if(x<-eps)return -1;</pre>
 return 0;
}
struct P{
 double x,y;
 P(){}
 P(double _x,double _y) {x=_x,y=_y;}
 bool operator<(const P&a)const{return sgn(x-a.x)<0||sgn(x-a.x)==0&&sgn(y-a.y)
 P operator-(const P&a)const{return P(x-a.x,y-a.y);}
 double operator&(const P&a)const{return x*a.y-y*a.x;}
 double operator|(const P&a)const{return x*a.x+y*a.y;}
}p[N];
struct PI{
 11 x, y;
 PI(){}
 PI(11 _x,11 _y){x=_x,y=_y;}
}loc[N],pool[N];
inline double check(const P&a,const P&b,const P&c){return (b-a)&(c-a);}
inline double dis2(const P&a){return a.x*a.x+a.y*a.y;}
inline bool cross(int a,int b,int c,int d){
 return sgn(check(p[a],p[d])*check(p[b],p[d]))<0&&sgn(check(p[c],p[a
     ],p[b])*check(p[d],p[a],p[b]))<0;
}
inline ll dis(const PI&a,const PI&b){return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-
   b.y);}
inline bool cmpx(const PI&a,const PI&b){return a.x<b.x;}</pre>
inline bool cmpy(int a,int b){return pool[a].y<pool[b].y;}</pre>
struct P3{
 double x,y,z;
 P3(){}
 P3(double _x,double _y,double _z){x=_x,y=_y,z=_z;}
 bool operator<(const P3&a)const{return sgn(x-a.x)<0||sgn(x-a.x)==0&&sgn(y-a.y)
     )<0;}
 P3 operator-(const P3&a)const{return P3(x-a.x,y-a.y,z-a.z);}
 double operator|(const P3&a)const{return x*a.x+y*a.y+z*a.z;}
 P3 operator&(const P3&a)const{return P3(y*a.z-z*a.y,z*a.x-x*a.z,x*a.y-y*a.x)
     ;}
}ori[N];
inline P3 check(const P3&a,const P3&b,const P3&c){return (b-a)&(c-a);}
inline P3 gp3(const P&a){return P3(a.x,a.y,a.x*a.x+a.y*a.y);}
inline int cal(double x){
 int y=x;
 for(int i=y-2;i<=y+2;i++)if(!sgn(x-i))return i;</pre>
bool incir(int a,int b,int c,int d){
 P3 aa=gp3(p[a]),bb=gp3(p[b]),cc=gp3(p[c]),dd=gp3(p[d]);
 if(sgn(check(p[a],p[b],p[c]))<0)swap(bb,cc);</pre>
 return sgn(check(aa,bb,cc)|(dd-aa))<0;</pre>
int n,i,j,et,la[N],tot,l,r,q[N<<2];</pre>
struct E{
 int to,1,r;
 E(){}
 E(int _to,int _l,int _r=0){to=_to,l=_l,r=_r;}
}e[N<<5];
inline void add(int x,int y){
 e[++et]=E(y,la[x]),e[la[x]].r=et,la[x]=et;
 e[++et]=E(x,la[y]),e[la[y]].r=et,la[y]=et;
```

```
inline void del(int x){
 e[e[x].r].l=e[x].1;
 e[e[x].1].r=e[x].r;
 la[e[x^1].to] == x?la[e[x^1].to] = e[x].l:1;
void delaunay(int l,int r){
 if(r-1<=2){</pre>
   for(int i=1;i<r;i++)for(int j=i+1;j<=r;j++)add(i,j);</pre>
   return;
 int i,j,mid=(l+r)>>1,ld=0,rd=0,id,op;
 delaunay(1,mid),delaunay(mid+1,r);
 for(tot=0,i=1;i<=r;q[++tot]=i++)</pre>
   while(tot>1&&sgn(check(p[q[tot-1]],p[q[tot]],p[i]))<0)tot--;</pre>
 for(i=1;i<tot&&!ld;i++)if(q[i]<=mid&&mid<q[i+1])ld=q[i],rd=q[i+1];</pre>
 for(;add(ld,rd),1;){
   id=op=0;
   for(i=la[ld];i;i=e[i].1)
     if(sgn(check(p[ld],p[rd],p[e[i].to]))>0)
       if(!id||incir(ld,rd,id,e[i].to))op=-1,id=e[i].to;
   for(i=la[rd];i;i=e[i].1)
     if(sgn(check(p[rd],p[ld],p[e[i].to]))<0)</pre>
       if(!id||incir(ld,rd,id,e[i].to))op=1,id=e[i].to;
   if(op==0)break;
   if(op==-1){
     for(i=la[ld];i;i=e[i].1)
     if(cross(rd,id,ld,e[i].to))del(i),del(i^1),i=e[i].r;
     ld=id;
   }else{
     for(i=la[rd];i;i=e[i].1)
     if(cross(ld,id,rd,e[i].to))del(i),del(i^1),i=e[i].r;
     rd=id;
 }
}
namespace DS{
int m,tot,a[N],f[N],g[N],v[N<<1],nxt[N<<1],ed,col[N];ll w[N<<1];</pre>
double ans;
struct E{int x,y;11 w;E(){}E(int _x,int _y,11 _w){x=_x,y=_y,w=_w;}}e[N<<3];</pre>
inline bool cmp(const E&a,const E&b){return a.w<b.w;}</pre>
inline void newedge(int x,int y,ll z){e[++tot]=E(x,y,z);}
int F(int x){return f[x]==x?x:f[x]=F(f[x]);}
inline void merge(int x,int y,ll z){
 if(F(x)==F(y))return;
 f[f[x]]=f[y];
 v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;
 v[++ed]=x;w[ed]=z;nxt[ed]=g[y];g[y]=ed;
 ans+=sqrt(z);
inline void work(){
 sort(e+1,e+tot+1,cmp);
 for(ed=0,i=1;i<=n;i++)f[i]=i,g[i]=0;</pre>
 for(i=1;i<=tot;i++)merge(e[i].x,e[i].y,e[i].w);</pre>
 printf("%.15f\n",ans);
}
int main(){
 while(~scanf("%d",&n)){
```

```
for(i=0;i<=n+1;i++)la[i]=0;</pre>
   et=1;
   DS::tot=0;
   for(i=1;i<=n;i++){</pre>
     11 x,y;
     scanf("%11d%11d",&x,&y);
     p[i]=P(x,y);
     loc[i]=PI(x,y);
     ori[i]=P3(x,y,i);
   sort(p+1,p+n+1);
   sort(ori+1,ori+n+1);
   delaunay(1,n);
   for(i=1;i<=n;i++)for(j=la[i];j;j=e[j].1){</pre>
     int x=cal(ori[i].z),y=cal(ori[e[j].to].z);
     DS::newedge(x,y,dis(loc[x],loc[y]));
   }
   DS::work();
 }
}
```

# 8.10 析合树

解释一下本文可能用到的符号: / 逻辑与, / 逻辑或。

### 8.10.1 关于段的问题

我们由一个小清新的问题引入:

> 对于一个 1-n 的排列,我们称一个值域连续的区间为段。问一个排列的段的个数。比如, $\{5,3,4,1,2\}$  的段有:[1,1], [2,2], [3,3], [4,4], [5,5], [2,3], [4,5], [1,3], [2,5], [1,5] 。

看到这个东西,感觉要维护区间的值域集合,复杂度好像挺不友好的。线段树可以查询某个区间是否为段,但不太能统计段的个数。

这里我们引入这个神奇的数据结构——析合树!

#### 8.10.2 连续段

在介绍析合树之前,我们先做一些前提条件的限定。鉴于 LCA 的课件中给出的定义不易理解,为方便读者理解,这里给出一些不太严谨(但更容易理解)的定义。

#### 8.10.3 排列与连续段

** 排列 **: 定义一个 n 阶排列 P 是一个大小为 n 的序列, 使得  $P_i$  取遍  $1, 2, \cdots, n$ 。说得形式化一点, n 阶排列 P 是一个有序集合满足:

- 1. |P| = n.
- 2.  $\forall i, P_i \in [1, n]$ .
- 3.  $\nexists i, j \in [1, n], P_i = P_i$ .
- ** 连续段 **: 对于排列 P,定义连续段 (P,[l,r]) 表示一个区间 [l,r],要求  $P_{l\sim r}$  值域是连续的。说得更形式化一点,对于排列 P,连续段表示一个区间 [l,r] 满足:

$$(\nexists x, z \in [l, r], y \notin [l, r], P_x < P_y < P_z)$$

特别地, 当 l > r 时, 我们认为这是一个空的连续段, 记作  $(P, \emptyset)$ 。

我们称排列 P 的所有连续段的集合为  $I_P$ , 并且我们认为  $(P,\emptyset) \in I_P$ 。

### 8.10.4 连续段的运算

连续段是依赖区间和值域定义的,于是我们可以定义连续段的交并差的运算。

定义  $A = (P, [a, b]), B = (P, [x, y]), 且 A, B \in I_P$ 。于是连续段的关系和运算可以表示为:

1.  $A \subseteq B \iff x \le a \land b \le y$ . 2.  $A = B \iff a = x \land b = y$ . 3.  $A \cap B = (P, [\max(a, x), \min(b, y)])$ . 4.  $A \cup B = (P, [\min(a, x), \max(b, y)])$ . 5.  $A \setminus B = (P, \{i | i \in [a, b] \land i \notin [x, y]\})$ .

其实这些运算就是普通的集合交并差放在区间上而已。

### 8.10.5 连续段的性质

连续段的一些显而易见的性质。我们定义  $A, B \in I_P, A \cap B \neq \emptyset, A \notin B, B \notin A$ ,那么有  $A \cup B, A \cap B, A \setminus B, B \setminus A \in I_P$ 。

证明?证明的本质就是集合的交并差的运算。

#### 8.10.6 析合树

好的,现在讲到重点了。你可能已经猜到了,析合树正是由连续段组成的一棵树。但是要知道一个排列可能有多达  $O(n^2)$  个连续段,因此我们就要抽出其中更基本的连续段组成析合树。

#### 8.10.7 本原段

其实这个定义全称叫作 ** 本原连续段 **。但笔者认为本原段更为简洁。

对于排列 P,我们认为一个本原段 M 表示在集合  $I_P$  中,不存在与之相交且不包含的连续段。形式化地定义,我们认为  $X \in I_P$  且满足  $\forall A \in I_P$ , $X \cap A = (P, \emptyset) \lor X \subseteq A \lor A \subseteq X$ 。

所有本原段的集合为  $M_P$ . 显而易见,  $(P,\emptyset) \in M_P$ 。

显然,本原段之间只有相离或者包含关系。并且你发现 ** 一个连续段可以由几个互不相交的本原段构成 **。最大的本原段就是整个排列本身,它包含了其他所有本原段,因此我们认为本原段可以构成一个树形结构,我们称这个结构为 ** 析合树 **。更严格地说,排列 P 的析合树由排列 P 的 ** 所有本原段 ** 组成。

前面干讲这么多的定义,不来点图怎么行。考虑排列  $P = \{9, 1, 10, 3, 2, 5, 7, 6, 8, 4\}$ . 它的本原段构成的析合树如下:

![p1](./images/div-com1.png)

在图中我们没有标明本原段。而图中**每个结点都代表一个本原段**。我们只标明了每个本原段的值域。举个例子,结点 [5,8] 代表的本原段就是 (P,[6,9]) =  $\{5,7,6,8\}$ 。于是这里就有一个问题: ** 什么是析点合点? **

### 8.10.8 析点与合点

这里我们直接给出定义,稍候再来讨论它的正确性。

1. ** 值域区间 **: 对于一个结点 u, 用  $[u_l, u_r]$  表示该结点的值域区间。2. ** 儿子序列 **: 对于析合树上的一个结点 u, 假设它的儿子结点是一个 ** 有序 ** 序列,该序列是以值域区间为元素的(单个的数 x 可以理解为 [x,x] 的区间)。我们把这个序列称为儿子序列。记作  $S_u$ 。3. ** 儿子排列 **: 对于一个儿子序列  $S_u$ ,把它的元素离散化成正整数后形成的排列称为儿子排列。举个例子,对于结

点 [5,8],它的儿子序列为  $\{[5,5],[6,7],[8,8]\}$ ,那么把区间排序标个号,则它的儿子排列就为  $\{1,2,3\}$ ;类似的,结点 [4,8] 的儿子排列为  $\{2,1\}$ 。结点 u 的儿子排列记为  $P_u$ 。4. ** 合点 **: 我们认为,儿子排列为顺序或者逆序的点为合点。形式化地说,满足  $P_u = \{1,2,\cdots,|S_u|\}$  或者  $P_u = \{|S_u|,|S_u-1|,\cdots,1\}$  的点称为合点。** 叶子结点没有儿子排列,我们也认为它是合点 **。5. ** 析点 **: 不是合点的就是析点。

从图中可以看到,只有[1,10]不是合点。因为[1,10]的儿子排列是{3,1,4,2}。

### 8.10.9 析点与合点的性质

析点与合点的命名来源于他们的性质。首先我们有一个非常显然的性质:对于析合树中任何的结点 u,其儿子序列区间的并集就是结点 u 的值域区间。即  $\bigcup_{i=1}^{|S_u|} S_u[i] = [u_l, u_r]$ 。

对于一个合点 u: 其儿子序列的任意 ** 子区间 ** 都构成一个 ** 连续段 **。 形式化地说, $\forall S_u[l \sim r]$ ,有  $\bigcup_{i=l}^r S_u[i] \in I_P$ 。

对于一个析点 u: 其儿子序列的任意 ** 长度大于 1 (这里的长度是指儿子序列中的元素数,不是下标区间的长度) ** 的子区间都 ** 不 ** 构成一个 ** 连续段 **。形式化地说, $\forall S_u[l\sim r], l< r$ ,有  $\bigcup_{i=l}^r S_u[i] \notin I_P$ 。

合点的性质不难证明。因为合点的儿子排列要么是顺序,要么是倒序,而值域区间也是首位相接,因此只要是连续的一段子序列(区间)都是一个连续段。

对于析点的性质可能很多读者就不太能理解了: 为什么 ** 任意 ** 长度大于 1 的子区间都不构成连续段?

使用反证法。假设对于一个点 u,它的儿子序列中有一个 ** 最长的 ** 区间  $S_u[l \sim r]$  构成了连续段。那么这个  $A = \bigcup_{i=l}^r S_u[i] \in I_P$ ,也就意味着 A 是一个本原段!(因为 A 是儿子序列中最长的,因此找不到一个与它相交又不包含的连续段)于是你就没有使用所有的本原段构成这个析合树。矛盾。

#### 8.10.10 析合树的构造

前面讲了这么多零零散散的东西,现在就来具体地讲如何构造析合树。LCA大佬的线性构造算法我是没看懂的,今天就讲一下比较好懂的  $O(n\log n)$  的算法。

我们考虑增量法。用一个栈维护前 i-1 个元素构成的析合森林。在这里我需要 ** 着重强调 **,析合森林的意思是,在任何时侯,栈中结点要么是析点要么是合点。现在考虑当前结点  $P_i$ 。

1. 我们先判断它能否成为栈顶结点的儿子,如果能就变成栈顶的儿子,然后把栈顶取出,作为当前结点。重复上述过程直到栈空或者不能成为栈顶结点的儿子。2. 如果不能成为栈顶的儿子,就看能不能把栈顶的若干个连续的结点都合并成一个结点(判断能否合并的方法在后面),把合并后的点,作为当前结点。3. 重复上述过程直到不能进行为止。然后结束此次增量,直接把当前结点压栈。

接下来我们仔细解释一下。

我们认为,如果当前点能够成为栈顶结点的儿子,那么栈顶结点是一个合点。如果是析点,那么你合并后这个析点就存在一个子连续段,不满足析点的性质。因此一定是合点。

如果无法成为栈顶结点的儿子,那么我们就看栈顶连续的若干个点能否与当前点一起合并。设l为当前点所在区间的左端点。我们计算 $L_i$ 表示右端点下标为i的连续段中,左端点< l的最大值。当前结点为 $P_i$ ,栈顶结点记为t。

1. 如果  $L_i$  不存在,那么显然当前结点无法合并;2. 如果  $t_i = L_i$ ,那么这就是两个结点合并,合并后就是一个 ** 合点 **;3. 否则在栈中一定存在一个点 t' 的左端点  $t'_i = L_i$ ,那么一定可以从当前结点合并到 t' 形成一个 ** 析点 **;

最后,我们考虑如何处理  $L_i$ 。事实上,一个连续段 (P,[l,r]) 等价于区间极 差与区间长度 -1 相等。即

$$\max_{1 \le i \le r} P_i - \min_{1 \le i \le r} P_i = r - l$$

而且由于 P 是一个排列,因此对于任意的区间 [l,r] 都有

$$\max_{l \le i \le r} P_i - \min_{l \le i \le r} P_i \ge r - l$$

于是我们就维护  $\max_{l \leq i \leq r} P_i - \min_{l \leq i \leq r} P_i - (r - l)$ ,那么要找到一个连续段相当于查询一个最小值!

有了上述思路,不难想到这样的算法。对于增量过程中的当前的 i,我们维护一个数组 Q 表示区间 [j,i] 的极差减长度。即

$$Q_j = \max_{j \le k \le i} P_k - \min_{j \le k \le i} P_k - (i - j), \quad 0 < j < i$$

现在我们想知道在  $1 \sim i - 1$  中是否存在一个最小的 j 使得  $Q_j = 0$ 。这等价于求  $Q_{1\sim i-1}$  的最小值。求得最小的 j 就是  $L_i$ 。如果没有,那么  $L_i = i$ 。

但是当第 i 次增量结束时,我们需要快速把 Q 数组更新到 i+1 的情况。原本的区间从 [j,i] 变成 [j,i+1],如果  $P_{i+1}>\max$  或者  $P_{i+1}<\min$  都会造成  $Q_j$  发生变化。如何变化?如果  $P_{i+1}>\max$ ,相当于我们把  $Q_j$  先减掉  $\max$  再加上  $P_{i+1}$  就完成了  $Q_j$  的更新;  $P_{i+1}<\min$  同理,相当于  $Q_j=Q_j+\min-P_{i+1}$ .

那么如果对于一个区间 [x,y],满足  $P_{x\sim i}$ ,  $P_{x+1\sim i}$ ,  $P_{x+2\sim i}$ ,  $\cdots$ ,  $P_{y\sim i}$  的区间 max 都相同呢? 你已经发现了,那么相当于我们在做一个区间加的操作;同理,当  $P_{x\sim i}$ ,  $P_{x+1\sim i}$ ,  $\cdots$ ,  $P_{y\sim i}$  的区间 min 都想同时也是一个区间加的操作。同时,max 和 min 的更新是相互独立的,因此可以各自更新。

因此我们对 Q 的维护可以这样描述:

1. 找到最大的 j 使得  $P_j > P_{i+1}$ ,那么显然, $P_{j+1\sim i}$  这一段数全部小于  $P_{i+1}$ ,于是就需要更新  $Q_{j+1\sim i}$  的最大值。由于  $P_i$ , $\max(P_i, P_{i-1})$ , $\max(P_i, P_{i-1}, P_{i-2})$ , $\cdots$ , $\max(P_i, P_{i-1}, \cdots)$  是(非严格)单调递增的,因此可以每一段相同的  $\max$  做相同的更新,即区间加操作。2. 更新  $\min$  同理。3. 把每一个  $Q_j$  都减 1。因为区间长度加 1。4. 查询  $L_i$ : 即查询 Q 的最小值的所在的 ** 下标 **。

没错,我们可以使用线段树维护 Q! 现在还有一个问题: 怎么找到相同的一段使得他们的  $\max/\min$  都相同? 使用单调栈维护! 维护两个单调栈分别表示  $\max/\min$ 。那么显然,栈中以相邻两个元素为端点的区间的  $\max/\min$  是相同的,于是在维护单调栈的时侯顺便更新线段树即可。

具体的维护方法见代码。

讲这么多干巴巴的想必小伙伴也听得云里雾里的,那么我们就先上图吧。长图警告!

```
#include <bits/stdc++.h>
#define rg register
using namespace std;
const int N = 200010;

int n, m, a[N], st1[N], st2[N], tp1, tp2, rt;
int L[N], R[N], M[N], id[N], cnt, typ[N], bin[20], st[N], tp;

// 本篇代码原题应为 CERC2017 Intrinsic Interval
// a 数组即为原题中对应的排列
// st1 和 st2 分别两个单调栈, tp1、tp2 为对应的栈顶, rt 为析合树的根
// L、R 数组表示该析合树节点的左右端点, M 数组的作用在析合树构造时有提到
// id 存储的是排列中某一位置对应的节点编号, typ 用于标记析点还是合点
```

```
// st 为存储析合树节点编号的栈, tp为其栈顶
struct RMQ { // 预处理 RMQ (Max & Min)
 int lg[N], mn[N][17], mx[N][17];
 void chkmn(int& x, int y) {
   if (x > y) x = y;
 }
 void chkmx(int& x, int y) {
   if (x < y) x = y;
 void build() {
   for (int i = bin[0] = 1; i < 20; ++i) bin[i] = bin[i - 1] << 1;</pre>
   for (int i = 2; i \le n; ++i) lg[i] = lg[i >> 1] + 1;
   for (int i = 1; i <= n; ++i) mn[i][0] = mx[i][0] = a[i];</pre>
  for (int i = 1; i < 17; ++i)
     for (int j = 1; j + bin[i] - 1 <= n; ++j)
      mn[j][i] = min(mn[j][i-1], mn[j+bin[i-1]][i-1]),
      mx[j][i] = max(mx[j][i - 1], mx[j + bin[i - 1]][i - 1]);
 }
 int ask_mn(int 1, int r) {
  int t = lg[r - l + 1];
   return min(mn[l][t], mn[r - bin[t] + 1][t]);
 }
 int ask_mx(int 1, int r) {
  int t = \lg[r - 1 + 1];
  return max(mx[1][t], mx[r - bin[t] + 1][t]);
 }
} D;
// 维护 L_i
struct SEG { // 线段树
#define ls (k << 1)</pre>
#define rs (k << 1 | 1)
 int mn[N << 1], ly[N << 1]; // 区间加; 区间最小值
 void pushup(int k) { mn[k] = min(mn[ls], mn[rs]); }
 void mfy(int k, int v) { mn[k] += v, ly[k] += v; }
 void pushdown(int k) {
   if (ly[k]) mfy(ls, ly[k]), mfy(rs, ly[k]), ly[k] = 0;
 void update(int k, int l, int r, int x, int y, int v) {
   if (1 == x && r == y) {
     mfy(k, v);
    return;
   pushdown(k);
   int mid = (1 + r) >> 1;
   if (y <= mid)</pre>
     update(ls, l, mid, x, y, v);
   else if (x > mid)
     update(rs, mid + 1, r, x, y, v);
```

```
update(ls, l, mid, x, mid, v), update(rs, mid + 1, r, mid + 1, y, v);
   pushup(k);
 }
 int query(int k, int l, int r) { // 询问 0 的位置
   if (1 == r) return 1;
   pushdown(k);
   int mid = (1 + r) >> 1;
   if (!mn[ls])
    return query(ls, 1, mid);
   else
     return query(rs, mid + 1, r);
   // 如果不存在 O 的位置就会自动返回当前你查询的位置
 }
} T;
int o = 1, hd[N], dep[N], fa[N][18];
struct Edge {
 int v, nt;
E[N << 1];
void add(int u, int v) { // 树结构加边
 E[o] = (Edge)\{v, hd[u]\};
 hd[u] = o++;
}
void dfs(int u) {
 for (int i = 1; bin[i] <= dep[u]; ++i) fa[u][i] = fa[fa[u][i - 1]][i - 1];</pre>
 for (int i = hd[u]; i; i = E[i].nt) {
   int v = E[i].v;
   dep[v] = dep[u] + 1;
   fa[v][0] = u;
   dfs(v);
 }
}
int go(int u, int d) {
 for (int i = 0; i < 18 && d; ++i)</pre>
   if (bin[i] & d) d ^= bin[i], u = fa[u][i];
 return u;
}
int lca(int u, int v) {
 if (dep[u] < dep[v]) swap(u, v);</pre>
 u = go(u, dep[u] - dep[v]);
 if (u == v) return u;
 for (int i = 17; ~i; --i)
   if (fa[u][i] != fa[v][i]) u = fa[u][i], v = fa[v][i];
 return fa[u][0];
}
// 判断当前区间是否为连续段
bool judge(int 1, int r) { return D.ask_mx(1, r) - D.ask_mn(1, r) == r - 1; }
// 建树
void build() {
 for (int i = 1; i <= n; ++i) {
```

```
// 单调栈
  // 在区间 [st1[tp1-1]+1,st1[tp1]] 的最小值就是 a[st1[tp1]]
  // 现在把它出栈, 意味着要把多减掉的 Min 加回来。
  // 线段树的叶结点位置 j 维护的是从 j 到当前的 i 的
  // Max{j,i}-Min{j,i}-(i-j)
  // 区间加只是一个 Tag。
  // 维护单调栈的目的是辅助线段树从 i-1 更新到 i。
  // 更新到 i 后,只需要查询全局最小值即可知道是否有解
  while (tp1 && a[i] <= a[st1[tp1]]) // 单调递增的栈, 维护 Min
    T.update(1, 1, n, st1[tp1 - 1] + 1, st1[tp1], a[st1[tp1]]), tp1--;
  while (tp2 && a[i] >= a[st2[tp2]])
    T.update(1, 1, n, st2[tp2 - 1] + 1, st2[tp2], -a[st2[tp2]]), tp2--;
  T.update(1, 1, n, st1[tp1] + 1, i, -a[i]);
  st1[++tp1] = i;
  T.update(1, 1, n, st2[tp2] + 1, i, a[i]);
  st2[++tp2] = i;
  id[i] = ++cnt;
  L[cnt] = R[cnt] = i; // 这里的 L,R 是指节点所对应区间的左右端点
  int le = T.query(1, 1, n), now = cnt;
  while (tp && L[st[tp]] >= le) {
    if (typ[st[tp]] && judge(M[st[tp]], i)) {
     // 判断是否能成为儿子,如果能就做
     R[st[tp]] = i, M[st[tp]] = L[now], add(st[tp], now), now = st[tp--];
    } else if (judge(L[st[tp]], i)) {
     typ[++cnt] = 1; // 合点一定是被这样建出来的
     L[cnt] = L[st[tp]], R[cnt] = i, M[cnt] = L[now];
     // 这里M数组是记录节点最右面的儿子的左端点,用于上方能否成为儿子的判断
     add(cnt, st[tp--]), add(cnt, now);
     now = cnt;
    } else {
     add(++cnt, now); // 新建一个结点, 把 now 添加为儿子
     // 如果从当前结点开始不能构成连续段,就合并。
     // 直到找到一个结点能构成连续段。而且我们一定能找到这样
     // 一个结点。
     do add(cnt, st[tp--]);
     while (tp && !judge(L[st[tp]], i));
     L[cnt] = L[st[tp]], R[cnt] = i, add(cnt, st[tp--]);
     now = cnt;
    }
  st[++tp] = now; // 增量结束, 把当前点压栈
  T.update(1, 1, n, 1, i, -1); // 因为区间右端点向后移动一格, 因此整体 -1
 rt = st[1]; // 栈中最后剩下的点是根结点
void query(int 1, int r) {
 int x = id[1], y = id[r];
 int z = lca(x, y);
 if (typ[z] & 1)
  1 = L[go(x, dep[x] - dep[z] - 1)], r = R[go(y, dep[y] - dep[z] - 1)];
 // 合点这里特判的原因是因为这个合点不一定是最小的包含1, r的连续段.
 // 因为合点所代表的区间的子区间也都是连续段,而我们只需要其中的一段就够了。
 else
```

```
1 = L[z], r = R[z];
 printf("%d %d\n", 1, r);
} // 分 1ca 为析或和, 这里把叶子看成析的
int main() {
 scanf("%d", &n);
 for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);</pre>
 D.build();
 build();
 dfs(rt);
 scanf("%d", &m);
 for (int i = 1; i <= m; ++i) {</pre>
   int x, y;
   scanf("%d%d", &x, &y);
   query(x, y);
 }
 return 0;
// 20190612
// 析合树
```

# 8.11 弦图找错

```
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
using lint = long long;
using pi = pair<int, int>;
// the algorithm may be wrong. if you have any ideas for proving / disproving
   this, please contact me.
vector<int> gph[MAXN];
int n, m, cnt[MAXN], idx[MAXN];
int mark[MAXN], vis[MAXN], par[MAXN];
void report(int x, int y){
   gph[x].erase(find(gph[x].begin(), gph[x].end(), y));
   gph[y].erase(find(gph[y].begin(), gph[y].end(), x));
   for(int i=1; i<=n; i++){</pre>
       if(binary_search(gph[i].begin(), gph[i].end(), x) &&
          binary_search(gph[i].begin(), gph[i].end(), y)){
          mark[i] = 1;
       }
   queue<int> que;
   vis[x] = 1;
   que.push(x);
   while(!que.empty()){
       int x = que.front(); que.pop();
       for(auto &i : gph[x]){
          if(!mark[i] && !vis[i]){
              par[i] = x;
              vis[i] = 1;
              que.push(i);
          }
```

```
assert(vis[y]);
   vector<int> v;
   while(y){
       v.push_back(y);
       y = par[y];
   }
   printf("NO\n\%d\n", v.size());
   for(auto &i : v) printf("%d ", i-1);
}
int main(){
   scanf("%d %d",&n,&m);
   for(int i=0; i<m; i++){</pre>
       int s, e; scanf("%d %d",&s,&e);
       s++, e++;
       gph[s].push_back(e);
       gph[e].push_back(s);
   }
   for(int i=1; i<=n; i++) sort(gph[i].begin(), gph[i].end());</pre>
   priority_queue<pi> pq;
   for(int i=1; i<=n; i++) pq.emplace(cnt[i], i);</pre>
   vector<int> ord;
   while(!pq.empty()){
       int x = pq.top().second, y = pq.top().first;
       pq.pop();
       if(cnt[x] != y || idx[x]) continue;
       ord.push_back(x);
       idx[x] = n + 1 - ord.size();
       for(auto &i : gph[x]){
          if(!idx[i]){
              cnt[i]++;
              pq.emplace(cnt[i], i);
       }
   }
   reverse(ord.begin(), ord.end());
   for(auto &i : ord){
       int minBef = 1e9;
       for(auto &j : gph[i]){
          if(idx[j] > idx[i]) minBef = min(minBef, idx[j]);
       }
       minBef--;
       if(minBef < n){</pre>
          minBef = ord[minBef];
          for(auto &j : gph[i]){
              if(idx[j] > idx[minBef] && !binary_search(gph[minBef].begin(),
                  gph[minBef].end(), j)){
                 report(minBef, i);
                 return 0;
              }
          }
       }
   }
   puts("YES");
   for(auto &i : ord) printf("%d ", i-1);
}
```