On a theorem of Beauville-Laszlo

Attilio Castano

Abstract

We discuss a theorem of Beauville-Laszlo which roughly states that given a scheme X/S and an effective Cartier divisor $Z \hookrightarrow X$, we can "factor" X as $X_{\hat{Z}}$ and $X \setminus Z$. As an application we provide an explicit construction of the line bundle associated with the effective Cartier divisor Z.

Line bundles on a curve

Let $X/\operatorname{Spec} k$ be a smooth curve over a field k. A line bundle $\mathcal{L} \in \operatorname{Pic}(X)$ is a quasicoherent sheaf such that there exists a Zariski open cover $\{i: U_i \to X\}$ where

$$i^*\mathcal{L} \cong \mathcal{O}_{U_i}$$
 (1)

i.e. \mathcal{L} is locally trivial in the Zariski topology. On the other hand, we can construct a line bundle $\mathcal{L} \in \operatorname{Pic}(X)$ by gluing local data. Explicitly, this means that given a Zariski open cover $\{U_i \to X\}$, and line bundles $\mathcal{L}_i \in \operatorname{Pic}(U_i)$ together with transition maps

$$\varphi_{ij}: \mathcal{L}_i|_{U_i \cap U_j} \to \mathcal{L}_j|_{U_i \cap U_j} \tag{2}$$

which satisfy the cocycle condition, that is, we have the following equality

$$\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij} \tag{3}$$

Then there is a unique line bundle $\mathcal{L} \in \operatorname{Pic}(X)$ such that restriction along $U_i \to X$ gives us $\mathcal{L}|_{U_i} \cong \mathcal{L}_i$, together with the extra compatibility. Succinctly this means that

Proposition 1. Pic forms a stack on the Zariski topology of X

However, this approach as am important downside, open sets $U \subset X$ are huge, they cover everything but a finite set of points. This can become cumbersome if we are trying to construct an explicit line bundle, like

$$\mathcal{O}_X(-v) := \{ \text{rational functions of } X \text{ with at least a zero of order one at } v \in X \}$$
 (4)

$$\mathcal{O}_X(v) := \{ \text{rational functions of } X \text{ with at most a pole of order one at } v \in X \}$$
 (5)

and it is not exactly clear how one can give decent datum in a Zariski cover of X to construct $\mathcal{O}_X(-v)$. The theorem of Beauville-Laszlo will provide us with a more efficient procedure to construct this line bundles.

For future reference we record the following result

Proposition 2. Every line bundle of our curve X can be realized as

$$\mathcal{O}_X\Big(\sum \eta_v v\Big) \tag{6}$$

for some finite sum $\sum \eta_v v$.

Beauville-Laszlo Theorem

Before providing a precise statement of the theorem of Beauville-Laszlo let me first give an example how one can use it to construct $\mathcal{O}_X(-v)$ using the theorem.

Let $D_v := X_v^{\hat{}}$ be the completion of X at v. Non-canonically we have the identification $D_v \cong \operatorname{Spec} k[[\pi]]$. Then we have the following cartesian square

$$\operatorname{Spec} k((\pi)) \xrightarrow{\cong} D_v^{\circ} \longrightarrow X \setminus v$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} k[[\pi]] \xrightarrow{\cong} D_v \longrightarrow X$$

$$(7)$$

the statement of Beauville Laszlo is saying that to construct a line bundle on X, it suffices to give line bundles $\mathcal{L}_v \in \operatorname{Pic}(D_v)$ and $\mathcal{L}_{X \setminus v} \in \operatorname{Pic}(X \setminus v)$ together with an isomorphism

$$\mathcal{L}_v|_{D_o^\circ} \cong \mathcal{L}_{X \setminus v}|_{D_o^\circ} \tag{8}$$

that is, the maps $D_v \to X$ and $X \setminus v \to X$ behave like a cover of X, for the purpose of constructing line bundles on X.

Example 3. We will now use Beauville-Laszlo to construct our line bundle $\mathcal{O}_X(-v)$. For this we begin with the data of the trivial line bundle \mathcal{O}_X , then by passing to the cover $D_v \to X$ and $X \setminus v \to X$, the trivial line bundles gives us the data of the trivial line bundle \mathcal{O}_{D_v} on D_v and the trivial line bundle $\mathcal{O}_{X\setminus v}$ on $X \setminus v$, together with the identity morphism

$$\operatorname{Id}: \mathcal{O}_{D_v}|_{D_v^{\circ}} \to \mathcal{O}_{X \setminus v}|_{D_v^{\circ}} \tag{9}$$

We can now construct $\mathcal{O}_X(-v)$ from \mathcal{O}_X simply by twisting the isomorphism on D_v° of the trivial line bundle as follows

$$\mathcal{O}_{D_{v}}|_{D_{v}^{\circ}} \longrightarrow \mathcal{O}_{D_{v}}|_{D_{v}^{\circ}} \xrightarrow{\mathrm{Id}} \mathcal{O}_{X\setminus v}|_{D_{v}^{\circ}}
\downarrow \cong \qquad \qquad \downarrow \cong
k((\pi)) \xrightarrow{\times \pi} k((\pi))$$
(10)

We are making the lattice of $k[[\pi]] \subset k((\pi))$ smaller.

Now we are finally ready to state the theorem of Beauville-Laszlo.

Theorem 4. Let X/S be a qcqs scheme, and let $Z \hookrightarrow X$ be an effective cartier divisor, that is, a closed subscheme locally cut out by a nonzero divisor. Then

(1) The following cartesian square

$$\begin{array}{ccc}
\pi^{-1}(U) & \longrightarrow X_{\hat{Z}} \\
\downarrow & & \downarrow \\
U & \longrightarrow X
\end{array} \tag{11}$$

is also a pushout square in the category of schemes. Where $U = X \setminus Z$.

(2) We can then apply the functor

$$\operatorname{QCoh}^*:\operatorname{Sch}_{/S}^{\operatorname{op}}\longrightarrow\operatorname{Categories}$$
 (12)

which maps $f: X \to Y$ to $f^*: \operatorname{QCoh}(Y) \to \operatorname{QCoh}(X)$. Then the induced diagram

$$\begin{array}{ccc}
\operatorname{QCoh}(X) & \longrightarrow & \operatorname{QCoh}(X_{\widehat{Z}}) \\
\downarrow & & \downarrow & & \downarrow \\
\operatorname{QCoh}(U) & \longrightarrow & \operatorname{QCoh}(\pi^{-1}(U))
\end{array} \tag{13}$$

is a pullback square.

Remark 5. The factorization of QCoh(X) into QCoh(U) and $QCoh(X_{\hat{Z}})$ could be interpreted as a motivic property of $QCoh^*$.

Effective Cartier divisors

Let X/S be a qcqs scheme, to any effective Cartier divisor $Z \subset X$ we can associate a line bundle, which we denote by $\mathcal{O}_X(-Z)$, which has a global section whose vanishing locus is exactly Z. As an application of the theorem of Beauville-Laszlo we will provide an explicit construction of $\mathcal{O}_X(-Z)$ together with its corresponding global section.

For simplicity, assume that $X = \operatorname{Spec} A$ and $Z = \operatorname{Spec} A/f$ where f is a non-zero divisor on A. Consider the following cartesian square

$$\begin{array}{ccc}
\pi^{-1}(U) & \longrightarrow X_{\hat{Z}} \\
\downarrow & & \downarrow \\
U & \longrightarrow X
\end{array} \tag{14}$$

We can then obtain $\mathcal{O}_X(-Z)$ from the trivial line bundle by twisting the isomorphism of the trivial line bundle on $\pi^{-1}(U)$ as follows

$$\mathcal{O}_{X_{\hat{Z}}}|_{\pi^{-1}(U)} \longrightarrow \mathcal{O}_{X_{\hat{Z}}}|_{\pi^{-1}(U)} \xrightarrow{\operatorname{Id}} \mathcal{O}_{U}|_{\pi^{-1}(U)}$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$A_{\hat{f}}[f^{-1}] \xrightarrow{\times f^{-1}} A_{\hat{f}}[f^{-1}]$$

$$(15)$$

This construction yields a line bundle on X, which we denote by $\mathcal{O}_X(-Z)$. We now need to show that it contains a global section with the desired vanishing locus. Consider $1 \in \mathcal{O}_U$, by the construction above, we notice that it extends to a global section of $\mathcal{O}_X(-Z)$, with the desired vanishing locus.

The general case can be bootstrapped from the simplified case described in the previous paragraph, by first passing to a fine enough Zariski cover of X, in which the effective Cartier divisor Z is cut by a global section.

References

- 1. Beauville, Laszlo Un lemme de descente
- 2. Bhatt Algebraization and Tannaka duality
- 3. Katz, Mazur Arithmetic Moduli of Elliptic Curves