Cut the sticks

Problem Statement

You are given **N** sticks, where each stick is of positive integral length. A *cut operation* is performed on the sticks such that all of them are reduced *by* the length of the smallest stick.

Suppose we have 6 sticks of length

544228

then in one *cut operation* we make a cut of length 2 from each of the 6 sticks. For next *cut operation* 4 sticks are left (of non-zero length), whose length are

3 2 2 6

Above step is repeated till no sticks are left.

Given length of **N** sticks, print the number of sticks that are cut in subsequent *cut operations*.

Input Format

The first line contains a single integer N.

The next line contains N integers: a_0 , a_1 ,... a_{N-1} separated by space, where a_i represents the length of i^{th} stick.

Output Format

For each operation, print the number of sticks that are cut in separate line.

Constraints

 $1 \le N \le 1000$

 $1 \le a_i \le 1000$

Sample Input #00

6 5 4 4 2 2 8

Sample Output #00

6 4 2

Sample Input #01

8 12343321

Sample Output #01

8 6 4 1

Explanation

Sample Case #00 :

sticks-length	length	n-of-cut	sticks-cut
5 4 4 2 2 8	2	6	
3 2 2 6	2	4	
1 4	1	2	
3	3	1	

____ DONE DONE

Sample Case #01

