

incremented each time.

pkg: my_best_pkg (get the tutorial nodes to run)

node name python file name executable name

ı

pkg: my_best_pkg (our own nodes)

pkg: my_best2 (parameters)

pkg: my_best3 (custom messages) my_best3_interfaces

t is in sec, t=0 when node starts amplitude is in meters

node name python file name executable name

pkg: my_best4 (add a client/server, request sent one time) my_best4_interfaces

when I send a request, I will send you my name as a string. Please send back to me the distance traveled since t=0.

I will print this to the screen.

I will send the request once, immediately when my node starts.

 $x(t) = A1 * cos(0.2*t + \pi/2)$ y(t) = A2 * sin(0.6*t)z(t) = 0.0

t is in sec, t=0 when node starts amplitude is in meters

calc (r, θ) from (x, y)

node name python file name executable name

pkg: my_best4 (add a client/server, request sent every 2 sec) my_best4_interfaces

When I send a request, I will send you my name as a string. Please send back to me the distance traveled since t=0.

I will print this to the screen.

I will send the request every 2 seconds.

 $x(t) = A1 * cos(0.2*t + \pi/2)$ y(t) = A2 * sin(0.6*t)z(t) = 0.0

t is in sec, t=0 when node starts amplitude is in meters

calc (r, θ) from (x, y)

node name python file name executable name