ELECTROMAGNETIC FIELDS GITT+GICME+GIT.

Lab 3: GUIDED WAVES

PART I: BRILLOUIN DIAGRAM AND MODE IMPEDANCE

An ideal rectangular air-filled waveguide has dimensions a = 2cm and b = 1.5cm so:

\mathbf{m}	n	$f_c(\mathrm{GHz})$
1	0	7.5
0	1	10
1	1	12.5
2	0	15

By means of the expressions:

$$\gamma = \alpha + j\beta = \sqrt{-\omega^2 \mu \epsilon_c + \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2};$$
 $Z_{TE_{mn}} = \frac{j\omega\mu}{\gamma_{mn}}$

and assuming a frequency range from 0.1 to 20 GHz, in MATLABTM:

1) Represent the Brillouin diagram for the fundamental mode.

 \bigcirc 2) Represent the variation of the mode impedance with frequency ($\mu_0 = 4\pi 10^{-7} H/m$). Limit the range of the impedance representation by using the following comand: axis([0 max(f) 0 2000])

 \bigcirc 3) Repeat the previous two cases for a dielectric with tan $\delta = 0.01$. How are the losses affecting the propagation constant and the mode impedance?

Part II: Analysis of TE_{mn} modes (ideal case)

Suppose an operating frequency of f = 10 GHz and the domain discretization:

x=0:0.02*a:a; y=0:0.02*b:b;

Calculate all the EM field components according to (set the incident long, magnetic field amplitude to $H_{mn}^i = j$ to avoid complex numbers in the representations of E_y in propagating modes):

$$\begin{split} H_{mn}^{i} &= j \\ H_{z} &= H_{mn}^{i} \cos \left(\frac{m\pi x}{a}\right) \cos \left(\frac{n\pi y}{b}\right) \\ H_{x} &= \frac{\gamma_{mn} m\pi}{k_{c}^{2} a} H_{mn}^{i} \sin \left(\frac{m\pi x}{a}\right) \cos \left(\frac{n\pi y}{b}\right) \\ H_{y} &= \frac{\gamma_{mn} n\pi}{k_{c}^{2} b} H_{mn}^{i} \cos \left(\frac{m\pi x}{a}\right) \sin \left(\frac{n\pi y}{b}\right) \\ E_{x} &= \frac{j\omega \mu n\pi}{k_{c}^{2} b} H_{mn}^{i} \cos \left(\frac{m\pi x}{a}\right) \sin \left(\frac{n\pi y}{b}\right) \\ E_{y} &= \frac{-j\omega \mu m\pi}{k_{c}^{2} a} H_{mn}^{i} \sin \left(\frac{m\pi x}{a}\right) \cos \left(\frac{n\pi y}{b}\right) \end{split}$$

where:

$$k_c = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}; \qquad \gamma_{mn} = \sqrt{-\omega^2 \mu \epsilon + k_c^2}$$

```
Hmn=j;
                   % Hz Amplitude (excitation)
for ii=1:length(x);
for jj=1:length(y);
    Hz(ii,jj)=Hmn*cos(m*pi*x(ii)/a)*cos(n*pi*y(jj)/b);
    Hx(ii,jj)=(gamma*m*pi)/(kc^2*a)*Hmn*sin(m*pi*x(ii)/a)*cos(n*pi*y(jj)/b);
    Hy(ii,jj) = (gamma*n*pi)/(kc^2*b)*Hmn*cos(m*pi*x(ii)/a)*sin(n*pi*y(jj)/b);
     Ex(ii,jj) = (j*w*mu*n*pi)/(kc^2*b)*Hmn*cos(m*pi*x(ii)/a)*sin(n*pi*y(jj)/b); 
    Ey(ii,jj)=(-j*w*mu*m*pi)/(kc^2*a)*Hmn*sin(m*pi*x(ii)/a)*cos(n*pi*y(jj)/b);
end;
end;
For the TE_{10} mode, represent:
4) The magnitude of E_y vs. x for y = b/2.
figure
plot(x,abs(Ey(:,25)))
xlabel('x(m)');ylabel('|Ey|');title('Ey')
\textcircled{5} The transverse E field:
figure
quiver(x,y,real(Ex)',real(Ey)')
xlabel('x(m)'); ylabel('y(m)'); axis('equal'); title('E_t (V/m)')
\textcircled{5} 6) The transverse H field:
figure
quiver(x,y,real(Hx)',real(Hy)')
xlabel('x(m)'); ylabel('y(m)'); axis('equal'); title('H_t (A/m)')
7) Poynting vector:
contourf(x,y,real((abs(Ey).^2+abs(Ex).^2)/(2*zmode))',10)
xlabel('x(m)'); ylabel('y(m)'); axis('equal'); title('S (W/m^2)')
colorbar
For the TE_{11} mode:
```

- 8 8) H_y vs. x in the center of the waveguide.
- \bigcirc 9) Transverse H field in the cross section. How is the magnetic field over the contour?
- \mathfrak{D} 10) Poynting vector in the cross section. Calculate again the Poynting vector if the frequency changes to $f=20~\mathrm{GHz}$.

PART III: TIME DOMAIN FULL WAVE SIMULATIONS WITH CST-MICROWAVE STUDIO

- a) Create a waveguide in CST Microwave $Studio^{\top M}$ with the aforementioned dimensions and a length d=5cm, using a brick made of air and PEC lateral boundary conditions for the six sides of the simulation domain (Aula Global File: lab3.cst).
- b) Excite an electromagnetic field at $f_0 = 9$ GHz using CST Waveguide Ports and analyse the following cases, visualizing the indicated instantaneous field components:
- 11 For a TE_{10} mode:
- The variation of E_t in the cross section (Folder '2D/3D Results: Port Modes') and along the z axis.
- The variation of H_t in the cross section (Folder 'Port Modes') and along the z axis.
- The Average Poynting vector in the cross section.
- 12 For a TE_{11} mode:
- The variation of E_t in the cross section (Folder 'Port Modes') and along the z axis.
- The Average Poynting vector in the cross section.
- 13 For a TE_{20} mode:
- The variation of E_t in the cross section (Folder 'Port Modes') and along the z axis.
- The variation of E_t along the z axis for a new operating frequency of $f_0 = 20$ GHz.