

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Original): A compound of formula I

in free or salt or solvate form, where

-C~Y- denotes -CH₂-CH₂-, -CH=CH- or -CH₂-O-;

one of R¹ and R² is hydroxy and the other is hydrogen;

G is a group having the formula Ia, Ib, Ic, Id or Ie

Ia

Ib

Ic

Id

Ie

n¹ is an integer from 0 to 4;

when n¹ is 0, R^a is -CR²⁶R²⁷-, -CH₂-CH₂-, -CH₂-CH₂-CH₂-, -CH₂-O-, -CH₂-O-CH₂-, -CH₂-S-, -CH₂-CH₂-S-, -CH₂-SO-, -CH₂-SO₂- or a bond, and R^b is -CR²⁸R²⁹-, -CH₂-CH₂-CH₂-, -CH₂-O-, -CH₂-O-CH₂-, -CH₂-S-, -CH₂-CH₂-S-, -CH₂-SO-, -CH₂-SO₂- or a bond, otherwise when n¹ is 1, 2, 3 or 4, R^a and R^b are independently -CR²⁶R²⁷-, -CH₂-CH₂-, -CH₂-CH₂-CH₂-, -O-, -CH₂-O-, -CH₂-O-CH₂-, -S-, -SO-, -SO₂-, -CH₂-S-, -CH₂-CH₂-S-, -CH₂-SO-, -CH₂-SO₂- or a bond;

R^c is hydrogen or C₁-C₁₀-alkyl optionally substituted by a C₅-C₁₅-carbocyclic group or by C₁-C₁₀-alkoxy,

or when R^b is -CR²⁶R²⁷- or -CR²⁸R²⁹-, R^c and R^b form a C₅-C₁₅-carbocyclic group;

R³, R⁴, R⁵ and R⁶ are independently hydrogen, halo, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy, or a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, or any two of R³, R⁴, R⁵ and R⁶ that are attached to adjacent carbon atoms on the phenylene ring together form a phenylene ring, C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkenyl or 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;

R²⁶, R²⁷ and R²⁸ are independently hydrogen, C₁-C₁₀-alkyl or C₁-C₁₀-alkoxy, either of which being optionally substituted by a C₅-C₁₅-carbocyclic group;

R²⁹ is C₁-C₁₀-alkyl or C₁-C₁₀-alkoxy, either of which being optionally substituted by a C₅-C₁₅-carbocyclic group;

n² is an integer from 0 to 4;

C-C denotes C=C or CH-CH;

R⁷ is hydrogen or C₁-C₁₀-alkyl optionally substituted by a C₃-C₁₅-carbocyclic group or by C₁-C₁₀-alkoxy;

R⁸ is hydrogen, hydroxy, C₁-C₁₀-alkyl or C₁-C₁₀-alkoxy;

R⁹ and R¹⁰ are independently hydrogen, halo, a C₃-C₁₅-carbocyclic group, a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, C₁-C₁₀-alkyl optionally substituted by a C₃-C₁₅-carbocyclic group, or C₁-C₁₀-alkoxy optionally substituted by a C₃-C₁₅-carbocyclic group,

or R⁹ and R¹⁰ together form a C₃-C₁₀-cycloalkyl or C₃-C₁₀-cycloalkenyl in either case optionally substituted by C₁-C₁₀-alkyl or C₁-C₁₀-alkoxy;

R¹¹ is hydrogen, hydroxy, a C₃-C₁₅-carbocyclic group, C₁-C₁₀-alkyl optionally substituted by a C₃-C₁₅-carbocyclic group, or C₁-C₁₀-alkoxy optionally substituted by a C₃-C₁₅-carbocyclic group;

n³ is an integer from 0 to 4;

R¹² is C₁-C₁₀-alkyl substituted by C₁-C₁₀-alkoxy, C₇-C₁₅-aralkyloxy, a C₅-C₁₅-carbocyclic group or by a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;

R¹³, R¹⁴, R¹⁵ and R¹⁶ are independently hydrogen, halo, cyano, carboxy, nitro, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₁-C₁₀-alkoxy, C₇-C₁₅-aralkyloxy, tri-C₁-C₁₀-alkylsilyl, aminocarbonyl, amino, C₁-C₁₀-alkylamino, di(C₁-C₁₀-alkyl)amino, a C₅-C₁₅-carbocyclic group or a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, or any two of R¹³, R¹⁴, R¹⁵ and R¹⁶ that are attached to adjacent carbon atoms on the benzene ring together with the carbon atoms to which they are attached form a C₃-C₁₀-cycloaliphatic ring, a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen

or sulphur, or a benzene ring optionally substituted by halo, cyano, hydroxy, carboxy, aminocarbonyl, nitro, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy or C₃-C₁₀-cycloalkyl;

n⁴ is an integer from 0 to 4;

R¹⁷ and R¹⁸ are independently -CR³⁰R³¹-, -CH₂-CH₂-, -CH₂-CH₂-CH₂-, -O-, -CH₂-O-, -CH₂-O-CH₂-, -S-, -SO-, -SO₂-, -CH₂-S-, -CH₂-CH₂-S-, -CH₂-SO-, -CH₂-SO₂- or a bond;

R¹⁹ is hydrogen or C₁-C₁₀-alkyl optionally substituted by C₁-C₁₀-alkoxy, C₇-C₁₅-aralkyloxy, a C₅-C₁₅-carbocyclic group or by a 5- or 6-membered heterocyclic group wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;

or when R¹⁸ is -CR³⁰R³¹-, R¹⁹ and R¹⁸ form a C₅-C₁₅-carbocyclic group;

R²⁰ and R²¹ form a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally substituted by halo, oxo, cyano, hydroxy, carboxy, aminocarbonyl, nitro, a C₅-C₁₅-carbocyclic group, C₇-C₁₅-aralkyl, C₁-C₁₀-alkyl optionally substituted by C₃-C₁₀-cycloalkyl, or C₁-C₁₀-alkoxy optionally substituted by C₃-C₁₀-cycloalkyl;

R³⁰ and R³¹ are independently hydrogen, C₁-C₁₀-alkyl or C₁-C₁₀-alkoxy, either of which being optionally substituted by a C₅-C₁₅-carbocyclic group;

n⁵ is an integer from 0 to 4; and

at least one of R²², R²³, R²⁴ and R²⁵ is a 5- to 12-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally and independently substituted by halo, cyano, hydroxy, carboxy, aminocarbonyl, nitro, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy or C₃-C₁₀-cycloalkyl,

the other or others of R²², R²³, R²⁴ and R²⁵ being independently hydrogen, halo, cyano, hydroxy, carboxy, aminocarbonyl, nitro, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy or C₃-C₁₀-cycloalkyl.

Claim 2. (Original): A compound according to claim 1, where

-C~Y- is -CH=CH-;

R¹ is hydroxy and R² is hydrogen;

G is a group having the formula Ia, Ib, Ic, Id or Ie;

n¹ is 0 or 1;

when n¹ is 0, R^a is -CR²⁶R²⁷-, -CH₂-CH₂-, -CH₂-CH₂-CH₂-, -CH₂-O-CH₂- or -CH₂-CH₂-S-,

and R^b is -CR²⁸R²⁹-, -CH₂-O- or a bond,

otherwise when n¹ is 1, R^a and R^b are both -CR²⁶R²⁷-;

R^c is hydrogen or C₁-C₁₀-alkyl optionally substituted by a C₅-C₁₅-carbocyclic group or by C₁-C₁₀-alkoxy,

or when R^b is -CR²⁶R²⁷- or -CR²⁸R²⁹-, R^c and R^b form a C₅-C₁₅-carbocyclic group;

R³, R⁴, R⁵ and R⁶ are independently hydrogen, C₁-C₁₀-alkyl or C₁-C₁₀-alkoxy;

R²⁶, R²⁷ and R²⁸ are independently hydrogen, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy or a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;

R^{29} is C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy;

n^2 is 0;

$C \sim C$ denotes $C=C$ or $CH-CH$;

R^7 and R^8 are both hydrogen;

R^9 and R^{10} are independently hydrogen or C_1 - C_{10} -alkyl,

or R^9 and R^{10} together form a C_3 - C_{10} -cycloalkyl or C_3 - C_{10} -cycloalkenyl in either case optionally substituted by C_1 - C_{10} -alkyl;

R^{11} is hydrogen, hydroxy, a C_3 - C_{15} -carbocyclic group or C_1 - C_{10} -alkyl optionally substituted by a C_3 - C_{15} -carbocyclic group;

n^3 is 0;

R^{12} is C_1 - C_{10} -alkyl substituted by C_1 - C_{10} -alkoxy, C_7 - C_{15} -aralkyloxy or by a C_5 - C_{15} -carbocyclic group;

R^{13} , R^{14} , R^{15} and R^{16} are independently hydrogen or C_1 - C_{10} -alkyl;

n^4 is 0 or 1;

R^{17} and R^{18} are both methylene;

R^{19} is hydrogen;

R^{20} and R^{21} form a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally substituted by oxo, C_7 - C_{15} -aralkyl or C_1 - C_{10} -alkyl optionally substituted by C_3 - C_{10} -cycloalkyl;

n^5 is 0; and

at least one of R^{22} , R^{23} , R^{24} and R^{25} is a 5- to 12-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally and independently substituted by halo or C_1 - C_{10} -alkyl,

the other or others of R^{22} , R^{23} , R^{24} and R^{25} being hydrogen.

Claim 3. (Original): A compound according to claim 2, where

$-C \sim Y-$ is $-CH=CH-$;

R^1 is hydroxy and R^2 is hydrogen;

n^1 is 0 or 1;

when n^1 is 0, R^a is $-CR^{26}R^{27}-$, $-CH_2-CH_2-$, $-CH_2-CH_2-CH_2-$, $-CH_2-O-CH_2-$ or $-CH_2-CH_2-S-$,

and R^b is $-CR^{28}R^{29}-$, $-CH_2-O-$ or a bond,

otherwise when n^1 is 1, R^a and R^b are both $-CR^{26}R^{27}-$;

R^c is hydrogen or C_1 - C_4 -alkyl optionally substituted by a C_5 - C_{10} -carbocyclic group or by

C_1 - C_4 -alkoxy,

or when R^b is $-CR^{26}R^{27}-$ or $-CR^{28}R^{29}-$, R^c and R^b form a C_5 - C_{10} -carbocyclic group;

R^3 , R^4 , R^5 and R^6 are independently hydrogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;

R^{26} , R^{27} and R^{28} are independently hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy or a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur;
 R^{29} is C₁-C₄-alkyl or C₁-C₄-alkoxy;

n^2 is 0;

C~C denotes C=C or CH-CH;

R^7 and R^8 are both hydrogen;

R^9 and R^{10} are independently hydrogen or C₁-C₄-alkyl,

or R^5 and R^6 together form a C₃-C₆-cycloalkyl or C₃-C₆-cycloalkenyl in either case optionally substituted by C₁-C₄-alkyl;

R^{11} is hydrogen, hydroxy, a C₃-C₁₀-carbocyclic preferably C₃-C₆-cycloalkyl, or C₁-C₁₀-alkyl optionally substituted by a C₃-C₁₀-carbocyclic group preferably an unsaturated C₅-C₈-carbocyclic group;

n^3 is 0;

R^{12} is C₁-C₁₄-alkyl substituted by C₁-C₆-alkoxy, C₇-C₁₀-aralkyloxy or by a C₅-C₁₀-carbocyclic group;

R^{13} and R^{16} are both hydrogen;

R^{14} and R^{15} are independently hydrogen or C₁-C₄-alkyl.

n^4 is 0 or 1;

R^{17} and R^{18} are both methylene;

R^{19} is hydrogen;

R^{20} and R^{21} form a 5- or 6-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally substituted by oxo, C₇-C₁₀-aralkyl or C₁-C₄-alkyl optionally substituted by C₃-C₆-cycloalkyl.

n^5 is 0; and

at least one of R^{22} , R^{23} , R^{24} and R^{25} is a 5- to 9-membered heterocyclic ring wherein at least one of the ring atoms is nitrogen, oxygen or sulphur, that ring being optionally and independently substituted by halo or C₁-C₄-alkyl,

the other or others of R^{22} , R^{23} , R^{24} and R^{25} being hydrogen.

Claims 4-9. (Cancelled)

Claim 10. (Currently amended): A process for the preparation of a compound of formula I in free or salt or solvate form comprising:

(i) (A) reacting a compound of formula II

or a protected form thereof wherein -C-Y-, R¹ and R² are as hereinbefore defined in claim 1, with a compound of formula III

where G is a group of formula Ia, Ib, Ic, Id or Ie

Ia

Ib

Ic

Id

Ie

or a protected form thereof wherein n¹, n², n³, n⁴, n⁵, R^a, R^b, R^c and R³ through R²⁵ are as hereinbefore defined in claim 1; or

(B) reducing a compound of formula IV

or a protected form thereof wherein -C-Y-, R¹, R² and G are as hereinbefore defined in claim 1, to convert the indicated keto group into -CH(OH); or

(C) for the preparation of compounds of formula I where G is a group of formula 1a, R^c is hydrogen and n¹ is 0, reacting a compound of formula V

or a protected form thereof wherein -C~Y-, R¹ and R² are as hereinbefore defined in claim 1, with a compound of formula VI

or a protected form thereof wherein R^a, R^b, R³, R⁴, R⁵ and R⁶ are as hereinbefore defined in claim 1; or

(D) for the preparation of compounds of formula I where G is a group of formula 1d, R¹⁹ is hydrogen and n⁴ is 0, reacting a compound of formula V or a protected form thereof wherein -C~Y-, R¹ and R² are as hereinbefore defined in claim 1, with a compound of formula VII

or a protected form thereof wherein R¹⁷, R¹⁸, R²⁰ and R²¹ are as hereinbefore defined in claim 1; and

(ii) recovering the resultant compound of formula I in free or salt or solvate form.

Claim 11. (Original): A compound of formula IV

in free or salt or solvate form, where
-C~Y-, R¹, R² and G are as defined in claim 1.

Claim 12. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R¹, R² and T are as shown in the following table:

R ¹	R ²	T
-OH	-H	

-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	

-OH	-H	
-OH	-H	
-OH	-H	

Claim 13. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R¹, R² and T are as shown in the following table:

R ¹	R ²	T
-OH	-H	
-OH	-H	

-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-OH	-H	
-OH	-H	
-OH	-H	

-OH	-H	
-OH	-H	
-OH	-H	
-H	-OH	

Claim 14. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R¹, R² and T are as shown in the following table:

R ¹	R ²	T
-OH	-H	
-OH	-H	

-OH	-H	
-OH	-H	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	

-H	-OH	
-H	-OH	
-H	-OH	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	

Claim 15. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R¹, R² and T are as shown in the following table:

R ¹	R ²	T
-OH	-H	

-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	
-OH	-H	

-OH	-H	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	

-H	-OH	

-H	-OH	

Claim 16. (New): A compound according to claim 1 that is also a compound of formula XXXV

wherein R¹, R² and T are as shown in the following table:

R ¹	R ²	T
-OH	-H	

-OH	-H	
-OH	-H	
-OH	-H	
-H	-OH	
-H	-OH	
-H	-OH	

-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	
-H	-OH	

Claim 17. (New): A pharmaceutical composition comprising as active ingredient a compound of formula I as defined in claim 1.

Claim 18. (New): A pharmaceutical composition comprising a compound of formula I as defined in claim 1 in combination with another drug substance which is an anti-inflammatory, a bronchodilator, an antihistamine or an immunosuppressive or anti-tussive drug substance.

Claim 19. (New): A method of treating a condition that is prevented or alleviated by activation of the β_2 -adrenoreceptor in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 20. (New): A method of treating an obstructive or inflammatory airways disease in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.