Exceptional Instantons from Blow-up

Joonho Kim, a Sung-Soo Kim, b Ki-Hong Lee, c Kimyeong Lee, a and Jaewon Song a

E-mail: joonhokim@kias.re.kr, sungsoo.kim@uestc.edu.cn, khlee11812@gmail.com, klee@kias.re.kr, jsong@kias.re.kr

Abstract:

^aSchool of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea

^bSchool of Physics, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, China

^cDepartment of Physics and Astronomy & Center for Theoretical Physics Seoul National University, Seoul 08826, Korea

Contents

1	Introduction	1
2	Blowup Equation	1
3	Examples 3.1 Ki-Hong's note	2
4	Conclusion	5

1 Introduction

2 Blowup Equation

We consider a 5d $\mathcal{N}=1$ gauge theory with a gauge group G. It has the Coulomb branch moduli space, parametrized by the vacuum expectation value $\alpha_i \equiv \langle \Phi_{ii} \rangle$ of the vector multiplet scalar Φ . The gauge symmetry G is spontaeously broken to its Abelian subgroup $U(1)^{|G|}$ on the Coulomb branch. The low energy Abelian theory is described by the effective prepotential, which can be written as [1]

$$\mathcal{F}_{\text{classical}} = \frac{1}{2g^2} h_{ij} \alpha_i \alpha_j + \frac{\kappa}{6} d_{ijk} \alpha_i \alpha_j \alpha_k$$
 (2.1)

at the classical level. It was found in [2, 3] that the fully quantum corrected prepotential can be obtained from the BPS instanton partition function \mathcal{Z} on Ω -deformed $\mathbf{R}^4 \times S^1$, i.e.,

$$\mathcal{F} = \lim_{\epsilon_{1,2} \to 0} \epsilon_1 \epsilon_2 \log \mathcal{Z} = \mathcal{F}_{\text{classical}} + \mathcal{F}_{\text{quantum}}. \tag{2.2}$$

The BPS partition function \mathcal{Z} is defined with equivariant parameters $\epsilon_1, \epsilon_2, \alpha_1, \cdots, \alpha_{|G|}$ associated to the $U(1)^2 \times U(1)^{|G|}$ action on the k-instanton moduli space $\mathcal{M}_{k,G}$ [2, 3]. Additional equivariant parameters $m_1, \cdots, m_{|F|}$ can be introduced if a given theory has the flavor symmetry F. It takes the form of

$$\mathcal{Z} = \exp\left(F_0\right) \cdot \mathcal{I} \tag{2.3}$$

where \mathcal{I} is the Witten index counting the BPS bound states of fundamental particles and/or non-perturbative instanton solitons. More precisely,

$$\mathcal{I} \equiv \text{Tr}_{\mathcal{H}} \left[(-1)^F e^{-\frac{8\pi^2}{g^2}k} e^{-\epsilon_1(J_1 + \frac{R}{2})} e^{-\epsilon_2(J_2 + \frac{R}{2})} \prod_{i=1}^{|G|} e^{-\alpha_i Q_i} \prod_{l=1}^{|F|} e^{-m_l F_l} \right]$$
(2.4)

where (J_1,J_2) are the angular momenta associated to the two \mathbf{R}^2 planes, R is the Cartan generator of $SU(2)_R$ symmetry, $(Q_1,\cdots,Q_{|G|})$ are the electric charges of $U(1)^{|G|}\subset G$, and $(F_1,\cdots,F_{|F|})$ are the Cartan generators of the flavor symmetry group F. We also frequently use the notation $\epsilon_+\equiv\frac{\epsilon_1+\epsilon_2}{2}$, $\epsilon_-\equiv\frac{\epsilon_1-\epsilon_2}{2}$ and $J_l=\frac{J_1-J_2}{2}$, $J_r=\frac{J_1+J_2}{2}$, generating self-dual and anti-self-dual rotation inside the \mathbf{R}^4 . The fugacity variables used throughout this paper are

$$p_1 = e^{-\epsilon_1}, \ p_2 = e^{-\epsilon_2}, \ \omega_i = e^{-\alpha_i}, \ y_l = e^{-m_l}, \ Q = e^{-8\pi^2/g^2}, \ t = \sqrt{p_1 p_2}, \ u = \sqrt{p_1/p_2}.$$
 (2.5)

Each multiplet

3 Examples

3.1 Ki-Hong's note

Unity Blowup equations The partition functions of generic 5d $\mathcal{N}=1$ gauge theories with hypermultiplets in R-representation in the Coulomb branch consist of classical action term, 1-loop term, and instanton partition functions.

$$Z(\epsilon_1, \epsilon_2, \vec{a}, m_i, m_0) = Z_{\text{class}}(\epsilon_1, \epsilon_2, \vec{a}, m_0) Z_{1-\text{loop}}(\epsilon_1, \epsilon_2, \vec{a}, m_i) Z_{\text{inst}}(\epsilon_1, \epsilon_2, \vec{a}, m_i, m_0)$$
(3.1)

where

$$Z_{\text{class}} = \exp\left[-\frac{1}{\epsilon_{1}\epsilon_{2}}\left(\frac{1}{2}h_{ij}\phi^{i}\phi^{j} + \frac{1}{6}d_{ijk}\phi^{i}\phi^{j}\phi^{k}\right)\right]$$

$$Z_{\text{1-loop}} = \exp\left[-\frac{1}{2\epsilon_{1}\epsilon_{2}}\left(\sum_{\alpha \in \text{roots}}\left(\frac{1}{6}(\vec{a} \cdot \vec{\alpha})^{3} - \frac{1}{4}(\epsilon_{1} + \epsilon_{2})(\vec{a} \cdot \vec{\alpha})^{2} + \frac{1}{12}((\epsilon_{1} + \epsilon_{2})^{2} + \epsilon_{1}\epsilon_{2})(\vec{a} \cdot \vec{\alpha})\right)\right]$$

$$+ \sum_{\omega \in \rho(R)}\left(\frac{1}{6}\left(\vec{a} \cdot \vec{\omega} + m_{i} + \frac{\epsilon_{1} + \epsilon_{2}}{2}\right)^{3} - \frac{\epsilon_{1} + \epsilon_{2}}{4}\left(\vec{a} \cdot \vec{\omega} + m_{i} + \frac{\epsilon_{1} + \epsilon_{2}}{2}\right)^{2}\right)$$

$$- \frac{(\epsilon_{1} + \epsilon_{2})^{2} + \epsilon_{1}\epsilon_{2}}{24}\left(\vec{a} \cdot \vec{\omega} + m_{i} + \frac{\epsilon_{1} + \epsilon_{2}}{2}\right)\right]$$

$$\times \text{PE}\left[\frac{1}{(1 - p_{1})(1 - p_{2})}\left(-\sum_{\alpha \in \text{roots}} e^{\vec{a} \cdot \vec{\alpha}} + p_{1}^{1/2}p_{2}^{1/2}y_{i}\sum_{\omega \in \rho(R)} e^{\vec{a} \cdot \vec{\omega}}\right)\right]. \tag{3.2}$$

Here \vec{a} are Coulomb VEVs and $p_{1,2} = e^{\epsilon_{1,2}}$, $y_i = e^{m_i}$. Note that the normal exponential term saturates the zero-point energy of pletheystic exponential terms.¹

The partition function satisfies so-called "Unity blowup equation"

$$Z(\epsilon_1, \epsilon_2, \vec{a}, m_i, m_0) = \sum_{\vec{k} \in \vec{\alpha}^{\vee}} Z(\epsilon_1, \epsilon_2 - \epsilon_1, \vec{a} + (\vec{k} + \vec{r}_a) \epsilon_1, m_i + r_i \epsilon_1, m_0 + r_0 \epsilon_1)$$

$$\times Z(\epsilon_1 - \epsilon_2, \epsilon_2, \vec{a} + (\vec{k} + \vec{r}_a) \epsilon_2, m_i + r_i \epsilon_2, m_0 + r_0 \epsilon_2)$$
(3.3)

¹Technically, instead of considering this 1-loop prepotential terms, I inserted overall factors to the $l_{\vec{k}} = Z_{1-\text{loop}}^{(1)} Z_{1-\text{loop}}^{(1)} / Z_{1-\text{loop}}$ so that it is written by Sinh terms.

for certain $\vec{r_a}$, r_i , r_0 's. Here $\vec{\alpha}^{\vee}$ is the coroot lattice where the long root is normalized to have norm 2. The r_i 's and r_0 are some numbers specifying the blowup equations.

Technically r_i 's are constrained to be half integers since, for each single letter 1-loop partition functions

$$Z_{i,\vec{\omega}} = \text{PE}\left[\frac{p_1^{1/2}p_2^{1/2}}{(1-p_1)(1-p_2)}y_i e^{\vec{a}\cdot\vec{\omega}}\right],\tag{3.4}$$

the ratio between shifted ones and unshifted one is

$$\begin{split} l_{i,\vec{\omega}}^{\vec{k}} &= Z_{i,\vec{\omega}}^{(1)} Z_{i,\vec{\omega}}^{(2)} / Z_{i,\vec{\omega}} \\ &= \text{PE} \left[\frac{p_1^{r_i} p_2^{1/2} y_i}{(1-p_1)(1-p_2/p_1)} p_1^{\vec{k} \cdot \vec{\omega}} e^{\vec{a} \cdot \vec{\omega}} + \frac{p_1^{1/2} p_2^{r_i} y_i}{(1-p_1/p_2)(1-p_2)} p_2^{\vec{k} \cdot \vec{\omega}} e^{\vec{a} \cdot \vec{\omega}} - \frac{p_1^{1/2} p_2^{1/2} y_i}{(1-p_1)(1-p_2)} e^{\vec{a} \cdot \vec{\omega}} \right] \\ &= \text{PE} \left[\frac{p_1^{1/2} p_2^{1/2} y_i}{(1-p_1)(1-p_2)(p_1-p_2)} e^{\vec{a} \cdot \vec{\omega}} \left((1-p_2) p_1^{\vec{k} \cdot \vec{\omega} + r_i + 1/2} - (1-p_1) p_2^{\vec{k} \cdot \vec{\omega} + r_i + 1/2} \right) - (p_1 - p_2) \right] \end{split}$$

$$(3.5)$$

For the $l_{i,\vec{\omega}}^{\vec{k}}$ to be finite rational function, the plethystic exponent must be finite series. It can be satisfied only when r_i is a half integer.

Instanton partition functions from blowup equations From blowup equations one can compute the partition functions as follows. Rewriting the blowup equation as

$$1 = \sum_{\vec{k} \in \vec{\alpha}^{\vee}} f_{\vec{k}} \, l_{\vec{k}} \frac{Z_{\text{inst}}^{(1)} Z_{\text{inst}}^{(2)}}{Z_{\text{inst}}}$$
(3.6)

where $f_{\vec{k}}=Z_{\rm class}^{(1)}Z_{\rm class}^{(2)}/Z_{\rm class}$ and $l_{\vec{k}}=Z_{\rm 1-loop}^{(1)}Z_{\rm 1-loop}^{(2)}/Z_{\rm 1-loop}$ with abbreviated notation

$$Z^{(1)} = Z(\epsilon_1, \epsilon_2 - \epsilon_1, \vec{a} + \vec{k} \epsilon_1, m_i + r_i \epsilon_1, m_0 + r_0 \epsilon_1)$$

$$Z^{(2)} = Z(\epsilon_1 - \epsilon_2, \epsilon_2, \vec{a} + \vec{k} \epsilon_2, m_i + r_i \epsilon_2, m_0 + r_0 \epsilon_2)$$
(3.7)

Here note that $l_{\vec{k}}$ is independent of $Q = e^{-m_0}$, and $f_{\vec{k}}$ is some overall factor in the order of $Q^{\vec{k}\cdot\vec{k}/2}$. Expanding the equation by instanton fugacity Q, then at each Q^n level the equation is written by

$$\delta_{n,0} = p_1^{r_0} Z_n^{(1)} + p_2^{r_0} Z_n^{(2)} - Z_n + \sum_{\vec{k} \neq 0} f_{\vec{k},r_0} l_{\vec{k}} \left(\frac{Z_{\text{inst}}^{(1)} Z_{\text{inst}}^{(2)}}{Z_{\text{inst}}} \right) \bigg|_{O(Q^{n-\vec{k}\cdot\vec{k}/2})}.$$
 (3.8)

Since each Z_k and $Z_k^{(1,2)}$ are independent of r_0 , one can solve (3.8) with three blowup equations with same r_i 's but different r_0 's.

The blowup equations for instanton partition functions of pure YM theory with generic gauge group were already studied in [4]. They are actually (3.1) with

$$\vec{r}_a = 0, \qquad r_0 = d - h^{\vee}/2$$
 (3.9)

where $d = 0, \dots, h^{\vee}$. We extend these blowup equations to the theories with matters based on pure YM blowup equations. If one restrict the cases to $\vec{r_a} = 0$, as we explained in the previous section, the r_i 's are technically required to be half intergers. Thus we look for the r_0 's that provides the correct instanton partition functions by solving (3.8) while fixing $\vec{r_a} = 0$ and $r_i = 1/2$. Here are the results.

G	matter	r_0	d
$SU(N)_{\kappa}$	$N_f imes N$	$d-N/2-\kappa/2$	$0 \le d \le N - \kappa - 2N_f - 1$ (?)
$SU(6)_3$	1×20	d - 6/2 - 3/2 + 3/2	$1 \le d \le 6$
SO(7)	pure	d - 5/2	$0 \le d \le 5$
SO(7)	1×8	d - 5/2 + 1/2	$0 \le d \le 4$
SO(7)	1×7	$d - 5/2 + 1 \times 1/2$	$0 \le d \le 4$
SO(7)	2×7	$d - 5/2 + 2 \times 1/2$	$0 \le d \le 3$
G_2	pure	d - 4/2	$0 \le d \le 4$
G_2	1×7	d - 4/2 + 1/2	$0 \le d \le 3$
F_4	pure	d - 9/2	$0 \le d \le 9$
F_4	1×26	$d - 9/2 + 1 \times 3/2$	$0 \le d \le 6$
F_4	2×26	$d - 9/2 + 2 \times 3/2$	$0 \le d \le 3$

They were tested by comparing the resulting instanton partition functions with the known results from [5](SO(7)) and $[6](F_4)$ with $N_{26} = 2$). They were compared numerically, putting random numbers on the fugacities. Note that matters shift the r_0 , each by one quarter of their Dynkin indices. It seems to differ from blowup formula for $SU(N)_{\kappa} + N_f$ instantons, where r_0 was affected only by its CS-level κ . However, one can rewrite the r_0 as

$$r_0 = d - N/2 - \left(\kappa + \frac{1}{2}N_f\right)/2 + N_f/4$$

= $d - N/2 - \kappa_{\text{eff}}/2 + N_f \times I_{\text{fund}}.$ (3.10)

Since fundamental matters shifts the effective CS-level, they cancel their index contributions and consequently the r_0 apparently looks independent of matters.

By above observations, we write the unity blowup equation for generic gauge groups and matter representations.

$$Z(\epsilon_1, \epsilon_2, \vec{a}, m_i, m_0) = \sum_{\vec{k} \in \vec{\alpha}^{\vee}} Z(\epsilon_1, \epsilon_2 - \epsilon_1, \vec{a} + \vec{k}\epsilon_1, m_i + \epsilon_1/2, m_0 + r_0\epsilon_1)$$

$$\times Z(\epsilon_1 - \epsilon_2, \vec{a} + \vec{k}\epsilon_2, m_i + \epsilon_2/2, m_0 + r_0\epsilon_2)$$
(3.11)

with

$$r_0 = d - h^{\vee}/2 - \kappa_{\text{eff}}/2 + N_{\mathbf{R}} \times I_{\mathbf{R}}.$$
 (3.12)

Here $I_{\mathbf{R}}$ is the Dynkin index of \mathbf{R} representation.

 $SU(6)_3 + 1 \times 20$ As a non-trivial test, we consider the instanton partition function of the $SU(6)_3 + 20$ whose 5-brane realization was found recently [7]. Its web-diagram is given as figure.

(Written before computing the $SU(6)_3 + 20$ instanton partition function.)

Rather than comparing instanton partition functions directly, we consider an interesting Higgsing procedure. We consider the $SU(3) \times SU(3) \times U(1) \subset SU(6)$ where the SU(6) multiplets are decomposed by

$$A_{i\bar{j}}: \mathbf{35} \longrightarrow (\mathbf{8}, 1)_0 \oplus (1, \mathbf{8})_0 \oplus (\mathbf{3}, \bar{\mathbf{3}})_2 \oplus (\bar{\mathbf{3}}, \mathbf{3})_{-2} \oplus (1, 1)_0,$$

$$\Phi_{ijk}: \mathbf{20} \longrightarrow (\mathbf{3}, \bar{\mathbf{3}})_{-1} \oplus (\bar{\mathbf{3}}, \mathbf{3})_1 \oplus (1, 1)_3 \oplus (1, 1)_{-3}.$$
(3.13)

Here to fit with the web-diagram, we set Φ_{156} and Φ_{234} are $(1,1)_3$ and $(1,1)_{-3}$. Once Φ_{156} and Φ_{234} get non-zero VEVs,

When $a_5 = -a_1 - a_6$, the web-diagram factorizes to two $SU(3)_3$ whose Coulomb VEVs are (a_1, a_5, a_6) and (a_2, a_3, a_4) . In the gauge theory, it can be seen partly from prepotential. The prepotential of $S(6)_3 + 1 \times 20$ is

$$\mathcal{F} = \frac{1}{2}m_0 \sum_{i=1}^{6} a_i^2 + \frac{1}{2} \sum_{i=1}^{6} a_i^3 + \frac{1}{6} \sum_{i < j} (a_i - a_j)^3 - \frac{1}{6} \sum_{1 < i < j} (a_1 + a_j + a_k)^3$$
(3.14)

at the Weyl chamber $a_1 > \cdots > a_6$. As one sets the Coulomb VEV $a_6 = -a_1 - a_5$ and $a_4 = -a_2 - a_3$, one can check

$$\mathcal{F}(m_0, a_1, a_2, a_3, a_4, a_5, a_6) = \mathcal{F}_{SU(3)_3}(m_0, a_1, a_5, a_6) + \mathcal{F}_{SU(3)_3}(m_0, a_2, a_3, a_4)$$
(3.15)

where

$$\mathcal{F}_{SU(3)_3}(m_0, a_1, a_2, a_3) = \frac{1}{2}m_0 \sum_{i=1}^3 a_i^2 + \frac{1}{2} \sum_{i=1}^3 a_i^3 + \frac{1}{6} \sum_{i \le j} (a_i - a_j)^3.$$
 (3.16)

It is Higgsed by

4 Conclusion

Acknowledgments

This work is supported in part by the UESTC Research Grant A03017023801317 (SSK), the National Research Foundation of Korea (NRF) Grants 2017R1D1A1B06034369 (KL, JS), and 2018R1A2B6004914 (KHL)

References

 K. A. Intriligator, D. R. Morrison and N. Seiberg, Five-Dimensional Supersymmetric Gauge Theories and Degenerations of Calabi-Yau Spaces, Nucl. Phys. B497 (1997) 56–100, [hep-th/9702198].

- [2] N. A. Nekrasov, Seiberg-Witten Prepotential from Instanton Counting, Adv. Theor. Math. Phys. 7 (2003) 831–864, [hep-th/0206161].
- [3] N. Nekrasov and A. Okounkov, Seiberg-Witten Theory and Random Partitions, Prog. Math. 244 (2006) 525–596, [hep-th/0306238].
- [4] C. A. Keller and J. Song, Counting Exceptional Instantons, JHEP 07 (2012) 085, [1205.4722].
- [5] H.-C. Kim, J. Kim, S. Kim, K.-H. Lee and J. Park, 6D Strings and Exceptional Instantons, 1801.03579.
- [6] M. Del Zotto and G. Lockhart, Universal Features of BPS Strings in Six-Dimensional SCFTs, JHEP 08 (2018) 173, [1804.09694].
- [7] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Rank-3 Antisymmetric Matter on 5-Brane Webs, 1902.04754.