Hieu Pham

Assignment PracticeT2-3 due 04/26/2014 at 06:35pm MST

Problem 1. 1. (1 pt) Suppose that $f(x) = 17e^x - ex^e$. Find f'(3).

$$f'(3) =$$

Answer(s) submitted:

• (17(e^x) - ((e^2)(x^(e-1))))

(incorrect)

Problem 2. 2. (1 pt) Find an equation for the line tangent to the graph of

$$f(x) = \frac{\sqrt{x}}{2x + 6}$$

at the point (1, f(1)).

Answer(s) submitted:

 \bullet (x/32) + (3/32)

(correct)

Problem 3. 3. (1 pt) Use implicit differentiation to find the slope of the tangent line to the curve

$$2xy^3 + 3xy = 10$$

at the point (2,1).

 $m = _{-}$

Answer(s) submitted:

 \bullet -(5/18)

(correct)

Problem 4. 4. (1 pt) Let $f(x) = 4x^2 \cos(4x)$.

Then f'(x) is ____ and f'(3) is _____ f''(x) is _ and f''(3) is ___

Answer(s) submitted:

- $8x(\cos(4x) 2x\sin(4x))$
- 24(cos(12) 6sin(12))
- $-8((8x^2 1)(\cos(4x)) + 8x(\sin(4x)))$
- \bullet -8(24sin(12) + 71cos(12))

(correct)

Problem 5. 5. (1 pt) Suppose xy = 1 and $\frac{dy}{dt} = -1$. Find $\frac{dx}{dt}$

when x = -3.

Answer(s) submitted:

• 9

(correct)

Problem 6. 6. (1 pt) Find the absolute maximum and absolute minimum values of the function

$$f(x) = x^3 + 12x^2 - 27x + 8$$

over each of the indicated intervals.

- (a) Interval = [-10, 0].
- 1. Absolute maximum =
- 2. Absolute minimum = .
- (b) Interval = [-7, 2].
 - 1. Absolute maximum =
 - Absolute minimum = _____
- (c) Interval = [-10, 2].
 - 1. Absolute maximum = _____
 - 2. Absolute minimum = _

Answer(s) submitted:

- 494
- 8
- 442
- -6
- 494
- -6

(correct)

Problem 7. 7. (1 pt) Find the most general antiderivative for the function $\left(8x^4 - \frac{5}{x^3} - 3\right)$.

Note: Don't enter the +C . It's included for you.

Antiderivative = \bot + C.

Answer(s) submitted:

• $((8x^5)/5) + (5/(2x^2)) - (3x)$

(correct)

Problem 8. 8. (1 pt) Find $\frac{dy}{dx}$ for the function $y = x^{\cos(x)}$.

Answer(s) submitted:

• $(x^{(\cos(x) - 1)})(\cos(x) - x(\ln(x))\sin(x))$

(correct)

Problem 9. 9. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x \to 1} \frac{x^6 - 1}{x^{14} - 1}$$

Answer: _____

Answer(s) submitted:

(6/14)

(correct)

Problem 10. 10. (1 pt) Find two positive numbers whose product is 81 and whose sum is a minimum.

Answer: _____, ____

Answer(s) submitted:

- 9
- 9

(correct)

Problem 11. 11. (1 pt) Let $y = 5x^2 + 8x + 2$.

Find the differential dy when x = 5 and dx = 0.1 _____ Find the differential dy when x = 5 and dx = 0.2 _____

Answer(s) submitted:

- 5.8
- 11.6

(correct)

Problem 12. 12. (1 pt) Use linear approximation, i.e. the tangent line, to approximate $\frac{1}{0.501}$ as follows: Let $f(x) = \frac{1}{x}$ and find the equation of the tangent line to f(x) at a "nice" point near 0.501. Then use this to approximate $\frac{1}{0.501}$.

Answer(s) submitted:

−6.004

(incorrect)

Problem 13. 13. (1 pt) Consider the function

$$f(x) = 2x^3 - 2x^2 + x - 2$$

Find the average slope of this function on the interval (4,12).

By the Mean Value Theorem, we know there exists a c in the open interval (4,12) such that f'(c) is equal to this mean slope. Find the value of c in the interval which works _____

Answer(s) submitted:

- 96
- (1/6) (2+sqrt (574))

(incorrect)

Problem 14. 14. (1 pt) Suppose that

$$f(x) = 8x^2 - x^3 + 1.$$

(A) Find all critical numbers of f. If there are no critical numbers, enter 'NONE'.

Critical numbers = _____

(B) Use interval notation to indicate where f(x) is increasing.

Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol.

Increasing:

(C) Use interval notation to indicate where f(x) is decreasing.

Decreasing: _____

(D) List the x-coordinates of all local maxima of f. If there are no local maxima, enter 'NONE'.

x values of local maxima = _____

(E) List the x-coordinates of all local minima of f. If there are no local minima, enter 'NONE'.

x values of local minima = _____

(F) Use interval notation to indicate where f(x) is concave up.

Concave up: _____

(G) Use interval notation to indicate where f(x) is concave down.

Concave down:

(H)List the x values of all inflection points of f. If there are no inflection points, enter 'NONE'.

x values of inflection points = _____

(I) Use all of the preceding information to sketch a graph of *f*. When you're finished, enter a "1" in the box below.

Graph Complete: _____

Answer(s) submitted:

- \bullet 0, (16/3)
- (0, (16/3))
- (-INF, 0) U ((16/3), INF)
- ((16/3))
- (
- (-INF, (16/6))
- ((16/6), INF)
- (16/6)
- 1

(correct)

Problem 15. 15. (1 pt) Find the *x*-coordinate of the absolute minimum for the function

$$f(x) = 3x \ln(x) - 7x, \qquad x > 0.$$

x-coordinate of absolute minimum = _____

Answer(s) submitted:

• $(e^{(4/3)})$

(correct)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America