

Inline Path Characteristic Estimation to Improve TCP Performance in High Bandwidth-Delay Networks

Cesar Marcondes Anders Persson Medy Sanadidi Mario Gerla

HIDEyuki Shimonishi Takayuki Hama Tutomu Murase

Outline

- Inferring Path Characteristics
 - Bandwidth Estimation
 - Buffer Estimation
 - Description of Testbed
- Improving TCP Performance using Inline Path Estimations
 - TCP Westwood BBE (Buffer and Bandwidth Estimation)
- Conclusions and Future Work

Motivation

- Inferring Path Characteristics -

Design novel protocols that make wise usage of estimations

Internet Measurement Testbed Topology (Transpacific Link)

Capacity Estimation

- Pathrate Active (Infocom 2001)
 - dispersion of packet pairs and packet trains, uncover possible capacity modes, apply statistic analysis to choose
- Capprobe Active
 (Sigcomm 2004)
 Packet pair measurement with filtering out delayed samples

TCP Inline Measurements

- •TCP-Westwood (Global Internet 2005)
- Packet pair like capacity estimation using TCP ACK packets
- •TCPProbe (Global Internet 2005)
- TCP inline version of CapProbe, it flips packets to obtain packet pairs in a delayed ACK scenario 5 (304) 2 1

Measurement results (1) Off-line Measurement

Measurement results (2) TCP Inline Measurement

Buffer Estimation

- Idea: Correlate the loss of a packet with the RTT observed just before the loss
 - Buffer size estimation (RTT value a packet loss likely to happen)
 - Congestion estimation, loss discrimination (position of current RTT)

Measurement results (1) Off-line measurement for buffer capacity

• <u>Traceroute + Heavy Cross-Traffic Measurements</u>

track down the location of bottleneck and observed an increase of **15msec** on the average ICMP delay

•RTT histogram of TCP flows

Measurement results (2) Off-line measurement for random losses

•Simulation Results

- •135msec RTT + 15msec buffer
- •80Mbps bottleneck like
- •4.9 * 10⁻⁵ uniform dist. random loss

•Low Rate UDP Measurement

- 1-3Mbps UDP CBR traffic
- \rightarrow Loss rate = 0.001%

0.001-0.005% should be a good number for random loss rate

TCP Westwood BBE

- Optimize tradeoff between efficiency and friendliness to TCP-Reno
 - Robustness to buffer capacity variations and RTT variations
- Optimize window reduction upon a packet loss, using
 - In line bandwidth estimation
 - In line buffer estimation

TCPW-BBE Buffer Estimation

- RTT dynamic range
 - RTT_{min}: minimum RTT (= propagation delay)
 - RTT_{cong}: RTT value when packet losses likely to happen
- Congestion = position of current RTT in the range

RTT_{cong} is an exponential average of RTT right before losses

Congestion level
$$c = \frac{RTT - RTT_{min}}{RTT_{cong} - RTT_{min}}$$

Congestion Window Reduction

Measurement Result (1) Buffer estimation and loss discrimination

200 **CWIN** 180 160 0.8 140 0.6 120 100 BO 0.2 60 520 470 490 500 510 Time (sec)

• Buffer Estimation

- Inline estimating of buffer around 15 msec
- * consistent with previous results

Inline Loss Discrimination

- Window reduction
 depending on the
 congestion level estimated
- * more robust to noncongestion errors

Measurement Result (2) Efficiency and Friendliness

Average Throughput of Multiple Trials

Pathload Estimation: 61-74Mbps Avail. Conjectured Non-Congestion Error: 10⁻⁵

Cumulative Throughput during 2000 Secs

Pathload Estimation: 30Mbps Avail.

More Congestion losses

Conclusions and Future Work

- Path Characteristic Estimations as presented in this paper are reliable/fast/non-intrusive and present a major advantage for future Intelligent Network Stacks
- In our measurement study, we presented, in addition to extensive Internet results, cross-validation based on more than one source and we observed that the inline capacity and buffer estimations are reliable.
- In the specific scenario tested, TCP BBE was able to improve the performance when comparing to NewReno on a non-congested scenario
- In the future, a combination of BE (Bandwidth Estimation from TCP Westwood) and TCPProbe can lead to faster capacity estimation. Additionally, new methods of using such estimates to improve start-up, cross-traffic identification, changes in route characteristics and ameliorate burstiness issues using buffer-awareness ought to be studied