Data Visualization

```
In [1]:
           import pandas as pd
           import seaborn as sns
           import matplotlib.pyplot as plt
 In [5]:
           x=[1,2,3,4]
           y=[2,4,6,8]
           plt.plot(x)
           plt.plot(y)
           plt.ylabel('current')
           plt.xlabel('voltage')
           plt.show()
             8
             7
             6
          ourrent
4
            3
             2
            1
                0.0
                       0.5
                               1.0
                                       1.5
                                               2.0
                                                      2.5
                                                              3.0
                                     voltage
In [23]:
           fruits='apples','oranges','grapes','strawberry'
           sizes=[10,15,20,30]
           ex=(0,0,0,0.1)
           fig1,ax1=plt.subplots()
           ax1.pie(sizes,explode=ex,labels=fruits,autopct='%1.2f%%',shadow=True,startangle=90)
           ax1.axis('equal')
           plt.show()
                        apples
                             13.33%
                                                    strawberry
                                          40.00%
             oranges
                        20.00%
                               26.67%
```

grapes

```
In [25]: x=[1,3,5,7,9,11,13,33,11]
    y=[10,12,19,25,5,67,45,3,78]
    plt.scatter(x,y)
    plt.show()
```


In [40]: sns.set(color_codes=True)

In [42]:
 data=pd.read_csv('C://Users//harsh//Desktop//minor spec//winequality-red.csv',sep=';',h
 data.head(10)

Out[42]: free total volatile citric residual fixed chlorides sulfur sulfur density pH sulphates alcohol quali acidity acidity acid sugar dioxide dioxide 0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quali
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

		/ -	
#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
1.6	C7 (C4/44) 1 (C4	(4)	

dtypes: float64(11), int64(1)
memory usage: 150.0 KB

In [50]:

Out[50]: (1599, 12)

In [52]:

n [52]:

Out[52]:

		fixed volatile acidity acidity		citric acid residual sugar		free sulfur dioxide		
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	(
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	(

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	(
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	(
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	(
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	(
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1

```
In [54]:
          data['pH'].is unique
Out[54]: False
In [57]:
          data.pH.unique()
Out[57]: array([3.51, 3.2, 3.26, 3.16, 3.3, 3.39, 3.36, 3.35, 3.28, 3.58, 3.17,
                 3.11, 3.38, 3.04, 3.52, 3.43, 3.34, 3.47, 3.46, 3.45, 3.4, 3.42,
                 3.23, 3.5, 3.33, 3.21, 3.48, 3.9, 3.25, 3.32, 3.15, 3.41, 3.44,
                 3.31, 3.54, 3.13, 2.93, 3.14, 3.75, 3.85, 3.29, 3.08, 3.37, 3.19,
                 3.07, 3.49, 3.53, 3.24, 3.63, 3.22, 3.68, 2.74, 3.59, 3. , 3.12,
                3.57, 3.61, 3.06, 3.6, 3.69, 3.1, 3.05, 3.67, 3.27, 3.18, 3.02,
                 3.55, 2.99, 3.01, 3.56, 3.03, 3.62, 2.88, 2.95, 2.98, 3.09, 2.86,
                 3.74, 2.92, 3.72, 2.87, 2.89, 2.94, 3.66, 3.71, 3.78, 3.7, 4.01,
                 2.9 ])
In [58]:
          data.pH.value_counts()
Out[58]: 3.30
                  57
         3.36
                  56
         3.26
                 53
         3.38
                 48
         3.39
                 48
         2.86
                  1
         3.75
                   1
         2.74
                   1
         2.90
         3.74
         Name: pH, Length: 89, dtype: int64
In [59]:
          data.dtypes
Out[59]: fixed acidity
                                  float64
         volatile acidity
                                  float64
         citric acid
                                  float64
         residual sugar
                                  float64
         chlorides
                                  float64
         free sulfur dioxide
                                  float64
         total sulfur dioxide
                                  float64
                                  float64
         density
         рН
                                  float64
         sulphates
                                  float64
```

Out[64]:		fixed acidity			residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quali
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	
	5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	

```
In [65]: new_data.shape
```

Out[65]: (1359, 12)

Graphical Analysis

pH of Red Wine


```
In [80]: sns.boxplot(x=data['quality'])
```

Out[80]: <AxesSubplot:xlabel='quality'>


```
In [85]: sns.barplot(x=data['pH'])
```

Out[85]: <AxesSubplot:xlabel='pH'>

In [93]:

plt.figure(figsize=(20,10))
w=data.corr()
sns.heatmap(w,cmap='BrBG',annot=True)
w

Out[93]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	р
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.68297
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.2349
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.5419(
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.0856!
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.26502
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.07037
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.06649
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.34169
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.00000
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.19664
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.20563
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-0.0577:


```
fig,ax=plt.subplots(figsize=(10,5))
plt.xlim((0.0,1.0))
plt.scatter(data['citric acid'],data['quality'])
plt.xlabel('citric acid')
plt.ylabel('quality')
plt.show()
```



```
plt.plot(data['volatile acidity'][1:6])
   plt.ylabel('value of volatile acidity')
   plt.xlabel('volatile acidity')
   plt.show()
```



```
lab=q.chlorides.unique()
    sizes=q.chlorides.value_counts()
    fig1,ax=plt.subplots()
    ax.pie(sizes,labels=lab,autopct='%1.2f%%',shadow=True,startangle=90)
    plt.show()
```



```
fig,ax2=plt.subplots(figsize=(10,6))
ax2.hist(q['residual sugar'],bins=20)
plt.show()
```



```
In [118...
plt.hist(data['pH'],bins=20,range=[0,5.0])
plt.show()
```


In []: