Яблочкова К.С.

"Фізика з основами геофізики"

ЗБІРНИК ЗАДАЧ ДЛЯ СТУДЕНТІВ ГЕОГРАФІЧНОГО ФАКУЛЬТЕТУ Рекомендовано до друку вченою радою фізичного факультету Київського національного університету імені Тараса Шевченка, протокол \mathcal{N}_2 , від . . .

Рецензенти:

доцент кафедри фізики функціональних матеріалів фізичного факультету Київського національного університету імені Тараса Шевченка, доктор фіз.-мат. наук, **Дмитренко О.П.**

заступник декана географічного факультету з навчальної роботи, Київського національного університету імені Тараса Шевченка, кандидат географічних наук, доцент **Пасько В.Ф.**

Це навчально-методичне видання містить задачі, що використовуються на практичних заняттях в межах курсу «Фізика з основами геофізики» для студентів географічного факультету. Задачник містить вправи з основних розділів фізики, особливу увагу приділено задачам, які представляють інтерес з геофізичної точки зору.

3MICT

1. Вступ. Вимірювання у фізиці	4
2. Механіка	8
3. Молекулярна фізика	15
4. Електрика	19
5. Магнітні явища та електромагнетизм	23
6. Оптика	26
7. Атомна фізика	28
Відповіді	30
Список використаної літератури	34
Деякі корисні константи	35
Таблиця похідних деяких функцій	36
Таблиця первісних деяких функцій	37
Літери грецького алфавіту	38

1. Вступ. Вимірювання у фізиці

- 1.1 Перевести в систему СІ і записати у стандартному вигляді ($n \times 10^m$).
 - а. Маса Землі 5 972 000 000 000 000 000 000 тон.
 - б. Період обертання Землі навколо Сонця 1 рік.
 - в. Маса атома водню $0.00\ 000\ 000\ 000\ 000\ 000\ 000\ 167\ г.$
 - г. Тривалість удару блискавки 30 мкс.
 - д. Середня швидкість Землі при обертанні навколо сонця 107 000 км/год.
 - е. Густина ядра Землі 12 г/см³.
 - є. Молярна маса карбону 12 г/моль.
 - ж. Площа поверхні Землі 510 000 000 км².
 - з. Об'єм краплі води 0.05 мл.
 - і. Потужність сонячного випромінювання 174 000 000 ГВт.
- 1.2 Знайти вертикальну і горизонтальну компоненти векторів, вказаних нижче.

1.3 Додати сили.

1.4 Знайти скалярний добуток двох векторів.

1.5 Знайти векторний добуток двох векторів.

- 1.6 У 1999 році Національне Географічне Товариство США за допомогою системи GPS визначило висоту Евересту як 8 850 м \pm 2 м. У 2005 урядом Китаю була оприлюднена інша оцінка: 8 844,43 \pm 0,21 м.
 - а. Чому дорівнює абсолютна похибка вимірювань в кожному з випадків?
 - б. Чому дорівнює відносна похибка вимірювань в кожному з випадків?

- 1.7 Радіус Землі складає $6368 \pm 16 \, \mathrm{km}$. Вважаючи, що Земля має форму кулі, розрахувати її об'єм, і вказати відносну похибку вимірювання об'єму.
- 1.8 Група студентів вимірювала діаметр і висоту циліндра. Їх результати представлені в таблиці.

Висота, мм	Діаметр, мм
50	23
52	22
52	20
49	21
51	

- а. Знайти абсолютну похибку вимірювання висоти. (Взяти коефіцієнт Стьюдента = 2,6)
- б. Знайти абсолютну похибку вимірювання діаметра. (Взяти коефіцієнт Стьюдента = 3,2)
- в. Знайти відносну похибку вимірювання об'єму циліндра.
- 1.9* Студенти вимірюють ширину річки методом тріангуляції (див. рисунок). Забивши кілки A і B навпроти ялинки F перпендикулярно до берега, кілки C і E на одній прямій з ялинкою, і кілок D так, щоб відрізок CD був перпендикулярний до берега, вони встановили, що $AC = 3,00 \text{ M} \pm 0,01 \text{ M}$, $CD = 0,40 \text{ M} \pm 0,01 \text{ M}$, $DE = 0,65 \text{ M} \pm 0,01 \text{ M}$. Чому дорівнює ширина ріки? Оцінити похибку вимірювання.

1.10* Студенти Каїрського університету повторюють відомий дослід Ератосфена про визначення радіусу Землі. У день літнього сонцестояння вони проводять досліди у Александрії та Асуані. В цей день, рівно опівдні, у Асуані вертикальна лінійка довжиною $1,00~\text{m} \pm 0,01~\text{m}$ не відкидає тіні, а така ж лінійка у Александрії відкидає тінь довжиною $12,4~\text{cm} \pm 0,1~\text{cm}$. За довідником студенти дізнаються, що відстань між Асуаном і Александрією складає $843~\text{km} \pm 10~\text{km}$. Чому дорівнює радіус Землі, базуючись на цих вимірюваннях? Оцінити похибку вимірювання.

2. Механіка

- 2.1 Знайти шлях і переміщення частинки, яка спочатку змістилася на 30 метрів на північ, а потім на 40 метрів на захід.
- 2.2 Перші 30 хвилин частинка рухалася зі швидкістю 36 км/годину, наступні 20 хвилин зі швидкістю 72 км/годину. Знайти середню швидкість руху частинки.
- 2.3 Перші 50 метрів частинка рухалася зі швидкістю 36 км/годину, наступні 150 метрів зі швидкістю 72 км/годину. Знайти середню швидкість руху частинки.
- 2.4 Гальмівний шлях автомобіля, який рухався зі швидкістю 72 км/год, склав 60 м. Як змінився б гальмівний шлях автомобіля, якщо його початкова швидкість була б в два рази більшою?
- 2.5 Знайти шлях, який пройде частинка, що падає з прискоренням 9,8 м/с 2 за 20 секунд, якщо її підкинули вертикально вгору зі швидкістю 5 м/с на висоті в 3 м.
- 2.6 Вулканічна бомба (застигла грудка лави, що викидається з жерла вулкана під час виверження) може підніматися на висоту до 600 м. Прискорення вулканічної бомби направлено вниз і складає 9,81 м/с². Чому дорівнює максимальна швидкість вулканічної бомби у жерлі вулкана? Опором повітря знехтувати.
- 2.7 Ядро запустили зі швидкістю 10 м/с під кутом у 37° до горизонту. Опором повітря знехтувати.
 - а. Знайти відстань до місця падіння ядра.
 - б. Знайти час, проведений ядром у повітрі.
 - в. Знайти максимальну висоту, на яку піднялося ядро.

- г. Знайти швидкість ядра на максимальній висоті.
- д. Знайти швидкість ядра безпосередньо перед падінням.
- е. Намалювати траєкторію руху частинки.
- ж. Побудувати графіки залежності від часу: x- координати тіла, y- координати тіла, модуля швидкості тіла.
- 2.8 Тіло переміщується з точки з координатами (0, 5) м зі сталою швидкістю $(3\mathbf{i} + 4\mathbf{j})$ м/с. Визначити положення тіла через 5 секунд.
- 2.9 Визначити кінематичні параметри обертання планети Земля навколо власної вісі.
 - а. Період обертання Землі у секундах.
 - б. Частота обертання Землі.
 - в. Кутова швидкість Землі.
 - г. Кутове прискорення Землі.
 - д. Лінійна швидкість людини, що стоїть на екваторі.
 - е. Нормальне прискорення людини, що стоїть на екваторі.
- 2.10 Побудувати силові діаграми для кожного з описаних випадків.
 - а. Книга лежить на горизонтальному столі.
 - б. Візок штовхають по горизонтальній поверхні зі сталою швилкістю.
 - в. Маятник, що гойдається.
 - г. Автомобіль припарковано на схилі.
 - д. Літак, що знаходиться в повітрі, прискорюється.
- 2.11 Не дивлячись на свою незграбність на суші, імператорські пінгвіни вправні плавці. Вчені помітили, що на суші імператорські пінгвіни начісують і розпушують пір'я, наповнюючи їх повітрям. Поясніть, як цей факт може впливати на швидкість плавання пінгвінів.

- 2.12. Знайти коефіцієнт тертя ковзання похилої площини, якщо тіло маси 1,0 кг рухається вниз по цій площині рівномірно. Кут нахилу площини складає 37° .
- 2.13 Машина Атвуда пристрій для визначення прискорення вільного падіння. Його будова наступна: через блок, укріплений на деякій висоті над столом, перекинута нитка, до кінців якої прив'язані два тягарця з різними масами. У експерименті встановлено, що коли тягарці мають маси 200 г і 400 г, важчий тягарець проходить висоту в 30,0 см за перші 0,428 с руху.
 - а. Визначити натяг у нитках під час руху машини Атвуда.
 - б. Визначити значення прискорення вільного падіння за цими експериментальними даними.
 - в. Чому машина Атвуда може давати більш точну інформацію про значення *g*, ніж, наприклад, простий метод, коли тілу дозволяють впасти з певної висоти?
- 2.14 На якій висоті над рівнем моря прискорення вільного падіння вдвічі менше, ніж на поверхні Землі?
- 2.15 Вважаючи орбіту планети навколо сонця коловою, визначити зв'язок між радіусом орбіти планети і періодом її обертання. Вважати масу сонця і планети відомими.
- 2.16 Яку силу треба прикласти до гранітного куба зі стороною 1,00 м, щоб зменшити його висоту на 1,00 мм? Модуль Юнга граніту складає 0.49×10^5 МПа.
- 2.17 Гора АСDB, підіймається на 1000 метрів над оточуючим рівнем CD, як показано на малюнку. Форма гори прямий круговий конус. Густина породи, з якої складається гора 2800 кг/м^3 , а густина

оточуючої породи під CD – 3000 кг/м 3 . Вважаючи, що гора ACD і її "корінь" CDB симетричні відносно вісі AB, а також те, що гора з коренем знаходяться в рівновазі (оточуюча порода ані всмоктує, ані виштовхує гору) знайти глибину точки B.

- 2.18 Знайти вагу людини масою 50 кг у ліфті, що
 - а. рухається вгору рівномірно.
 - б. прискорюється, рухаючись вгору з прискоренням 1 м/c^2 .
 - в. гальмує, рухаючись вгору з прискоренням 1 м/c^2 .
 - г. прискорюється, рухаючись вниз з прискоренням 1 м/c^2 .
 - д. гальмує, рухаючись вниз з прискоренням 1 м/c^2 .
- 2.19 Швидкість річки Дніпро біля Києва (50°27′ пн.ш.) складає 0,70 м/с. Вважаючи, що Дніпро біля Києва протікає строго з півночі на південь, розрахувати силу Коріоліса, що діє на 1 кг води ріки. Припускаючи, що середня глибина Дніпра в районі Києва становить 9 метрів, середня ширина 500 м, а протяжність Києва складає 25 км, оцінити порядок величини сили, з якою Дніпро діє на правий берег Києва.

- 2.20 Доросла людина, відкриваючи кришку пляшки діаметром 5.5 см, може прикласти до неї момент сили у 25 Н.м. Чому дорівнює максимальна сила, яку людина може прикладати пальцями рук?
- 2.21 НАСА розробляє план уникнення зіткнення астероїда з Землею. Ракета, що рухається перпендикулярно до траєкторії астероїда, має збити його з курсу на кут α . Маса астероїда складає $10^{12}~{\rm kr}$, його швидкість $10^5~{\rm m/c}$,а маса ракети $10^6~{\rm kr}$, швидкість $10^3~{\rm m/c}$. Знайти кут α .

- 2.22 Людина, масою 50 кг, стоячи на ковзанах, кидає камінь масою 1 кг зі швидкістю 6 м/с під кутом 37° до горизонту. Визначити швидкість, з якою людина почне рухатися по льоду.
- 2.23 Метеоритний кратер на поверхні Землі спричинений метеоритом масою $1,5 \times 10^8$ кг, що мав швидкість 12 км/с. Розрахувати кінетичну енергію, що мав метеорит перед зіткненням.
- 2.24 Брусок ковзає з похилої площини і робить мертву петлю радіусом R. З якої мінімальної висоти треба запустити цей брусок? Тертям знехтувати. Якісно, як би змінилась відповідь, якщо замість

бруска, що ковзає, з похилої площини котилася би куля такої ж маси, як і брусок?

- 2.25 Отримати вираз для потенціальної енергії пружної деформації (сила пружності дорівнює F = -kx).
- 2.26 Отримати вираз для потенціальної енергії гравітаційного поля Земпі
- 2.27 Київська ГЕС працює на перепаді висот у 20 м. Якщо ефективність перетворення механічної енергії становить 90%, а густина води складає $1000~{\rm kr/m^3},$ який об'єм води має пройти крізь турбіни електростанції, щоб виробити $1000~{\rm kBt}$ -годин електроенергії?
- 2.28 Користуючись законами збереження, отримати вираз для другої космічної швидкості (швидкості, що треба надати тілу, щоб воно ніколи не повернулося назад на Землю).
- 2.29 На завершальному етапі своєї еволюції зірка може перетворитися на нейтронну зірку. При цьому її радіус катастрофічно зменшується, а густина збільшується тисячі мільярди разів. Нехай зірка, радіусом 8×10^5 км, мала період обертання у 20 діб. Чому буде дорівнювати її період обертання після того, як вона стане нейтронною зіркою, і її радіус зменшиться до 16 км?
- 2.30* Маса M і момент інерції I товстої оболонки густиною ρ , із внутрішнім радіусом r і зовнішнім радіусом R задаються виразами

$$M = \frac{4}{3}\pi\rho(R^3 - r^3), I = \frac{8}{15}\pi\rho(R^5 - r^5).$$

Внутрішня структура Землі являє собою систему концентричних шарів. Їхні параметри наведені у таблиці нижче.

Шар	Радіус, км	Густина, кг/м ³
	6370	
Зовнішня мантія		3300
	5700	
Внутрішня мантія		5000
	3480	
Зовнішнє ядро		11000
	1220	
Внутрішнє ядро		13000
	0	

Розрахувати

- а. масу Землі,
- б. момент інерції Землі при обертанні навколо власної вісі,
- в. момент імпульсу Землі при обертанні навколо власної вісі,
- в. кінетичну енергію обертального руху Землі навколо власної вісі,
- г момент імпульсу Землі при обертанні навколо сонця,
- д. кінетичну енергію обертального руху Землі навколо сонця.
- 2.31* Космічне тіло здійснює абсолютно непружний удар з поверхнею Землі в районі екватора. Розрахувати масу космічного тіла, якщо в результаті такого зіткнення тривалість доби збільшиться на 10%. Вважати, що розмір космічного тіла малий у порівнянні з розміром Землі.

3. Молекулярна фізика

- 3.1 Ідеальний газ знаходиться за нормальних умов. Знайти сторону куба, який містить кількість молекул, що дорівнює населенню Землі.
- 3.2 Газ ізотермічно стиснули при початковому об'ємі 1 м³ до об'єму 0,2 м³. Тиск при цьому збільшився на 3 \times 10 5 Па. Який був початковий тиск газу?
- 3.3 Об'єм автомобільної шини в холодний день, коли температура повітря в шині рівна -5 °C, складає $0{,}015$ м³. У цих умовах тиск в шині більший за атмосферний на $1{,}70$ атм. Після того, як автомобіль проїхав по дорозі 30 хв, температура повітря в шинах зросла до 20 °C, а об'єм виріс до $0{,}0158$ м³. Чому дорівнює тиск у шині?
- 3.4 Атмосфера Марса, в основному, складається с ${\rm CO_2}$ (молярна маса 44 г/моль) під тиском 650 Па (припустимо він залишається сталим). Температура атмосфери сягає 0 °C у літній період і -100 °C у зимовий період. Розрахувати максимальну і мінімальну густину атмосфери Марсу.
- 3.5 В певному об'ємі газової суміші густина сухого повітря складає 1,205 кг/м³, а густина водяної пари складає 2,333 \times 10⁻¹ кг/м³. Чому дорівнює тиск такої суміші при 20 °C?
- 3.6 Вивести основне рівняння кінетичної теорії газів.
- 3.7 Припускаючи, що температура повітря незмінна на будь-якій висоті, в скільки разів тиск на вершині Евересту (8 850 м \pm 2 м) менший за нормальний атмосферний тиск?
- 3.8 Знайти середньоквадратичну швидкість молекул кисню в аудиторії.

- 3.9 Ізотопи урану 235 U і 238 U у складі газоподібного гексафториду урану UF₆, можна розділяти за допомогою метода газової дифузії.
 - а. В чому різниця дифузії газів 235 UF $_{6}$ і 238 UF $_{6}$?
 - б. Молярна маса молекули 235 UF $_6$ складає 349 г/моль, а молярна маса 238 UF $_6$ 352 г/моль. Якщо гексафторид урану веде себе як ідеальний газ, чому дорівнює відношення середньоквадратичної швидкості молекул 235 UF $_6$ і 238 UF $_6$ при однаковій температурі?
- 3.10 У сонячний день біля поверхні землі утворюються великі "повітряні бульбашки", які поступово збільшуються в об'ємі і піднімаються в атмосфері. Такий процес можна вважати адіабатичним. Чому?
- 3.11. Один моль ідеального газу стискають ізотермічно при T = 300 К так, що його об'єм зменшується вдвічі. Знайти роботу, виконану ідеальним газом.
- 3.12. Розрахувати, на скільки відрізняється теплоємність одноатомного газу, що нагрівається ізобарично, від теплоємності одноатомного газу, що нагрівається ізохорично.
- 3.13. Знайти ККД циклу, що відбувається за наступною схемою. Робочою речовиною є 0,1 моль ідеального газу.

- 3.14. Знайти ККД циклу Отто (цикл, що складається з двох адіабат і двох ізохор), якщо показник адіабати газу γ , а максимальний і мінімальний об'єм газу в циклі складає, відповідно 5V і V.
- 3.15 Вивести вираз для ККД циклу Карно (цикл, що складається з двох адіабат і двох ізохор).
- 3.16 Розрахувати максимальне можливе ККД електростанції, що використовує градієнт температур води у океані. Температура води на поверхні океану складає 27 °C, а на глибині 50 метрів 3 °C.
- 3.17 У сильну спеку жителі пустель одягають ватяний одяг. З якою метою вони це роблять? Відповідь пояснити.
- 3.18 Пояснити, чому температура повітря біля річки менше, ніж на великій відстані від неї.
- 3.19* Один кілограм льоду при 0 °С змішали з одним кілограмом води при температурі 20 °С. Питома теплоємність води 4,2 \times 10³ Дж/кг.К, теплота плавлення льоду 332,4 \times 10³ Дж/кг.

- а. Знайти масу льоду що розтане через контакт з теплою волою.
- б. Знайти зміну ентропію системи через танення цього льоду.
- 3.20 Навесні, коли тане сніг, над полями часто утворюються тумани. Після розсіяння такого туману, кількість снігу значно зменшується. Пояснити цей факт.
- 3.21 Старожили запевняють, що до побудови Київської ГЕС, зими у Києві, при таких же самих температурах повітря, видавалися менш холодними. Пояснити це спостереження.
- 3.22 Після Великого Лондонського Смогу 1952 року уряд Великої Британії запровадив обмеження на спалювання вугілля в межах міста. Цей крок значно зменшив інтенсивність лондонських туманів. Пояснити це спостереження.

4. Електрика

- 4.1. Замалювати лінії напруженості і еквіпотенціальні поверхні для системи, що складається з
 - а. двох протилежно заряджених точкових тіл.
 - б. двох додатньо заряджених точкових тіл.
- 4.2. Знайти силу, що діє з боку чотирьох точкових зарядів 1 мКл, 2 мКл, 3 мКл і 4 мКл, що закріплені на вершинах прямокутника зі сторонами 4 м і 6 м, на точковий заряд в –1 мКл, що розташований посередині між зарядами в 1 мКл і 2 мКл (див діаграму).

4.3. Точкові заряди $q_1 = +5$ нК і $q_2 = -5$ нК розташовані на відстані 0,200 м один від одного. Такі пари точкових зарядів з однаковою величиною і протилежним знаком називаються електричними диполями.

Визначити електричне поле диполя у точках A, B i C, як показано на рисунку.

- 4.4. Користуючись теоремою Гауса, розрахувати поле нескінченної площини, густина заряду на якій дорівнює σ .
- 4.5. Користуючись теоремою Гауса, розрахувати поле діелектричної кулі, радіуса R з зарядом Q. Розглянути випадки поля всередині кулі і зовні неї.
- 4.6. Напруженість поля Землі біля її поверхні складає 1,4 В/см і направлена до центру Землі. Вважаючи Землю рівномірно зарядженою кулею, чому дорівнює її заряд?
- 4.7 Якщо ви опинилися біля обірваного проводу, що знаходиться під напругою, відходити від нього необхідно дуже маленькими кроками. Пояснити цей факт.
- 4.8 Де безпечно ховатися під час грози: у автомобілі, у річці, під деревом чи на вершині пагорбу. Обговорити усі можливі варіанти.
- 4.9 Мідний дріт круглого перерізу діаметром 1,02 мм переносить 30 Кл зарядів за 5 хвилин. Густина вільних електронів в міді дорівнює $8.5 \times 10^{28} \, \mathrm{m}^{-1}$.
 - а. Знайти силу струму у дроті.

- б. Знайти швидкість дрейфу електронів у дроті.
- 4.10 На схемі, зібраній нижче, батарея промаркована V = 3.0 В. Опір лампи 1 дорівнює 10 Ом, опори ламп 2 і 3 дорівнюють по 15 Ом.

- а. Знайти еквівалентний опір контуру.
- б. Знайти струм через лампу 1.
- в. Знайти струм через лампу 2.
- г. Знайти падіння напруги на лампі 1.
- д. Знайти падіння напруги на лампі 2.
- 4.11 Батарея, промаркована V=9,0 В, з незначним внутрішнім опором, і чотири ідентичні лампи розжарювання з'єднані в схемі, показаній нижче. Лампи мають опір R.

а. Замалювати зібрану електричну схему.

- б. Порівняти відносну яскравість ламп розжарювання. Обґрунтувати свою відповідь.
- в. Лампу 4 видалили з гнізда.
 - і. Чи змінилася яскравість лампочки 3? Обгрунтувати свою відповідь.
- іі. Чи змінилася яскравість лампочки 1? Обґрунтувати свою відповідь.
- ііі. Опір кожної з ламп дорівнює R=100 Ом. Розрахувати струм в лампі 1.
- 4.12 Опір провідників зростає з температурою. Пояснити це явище.
- 4.13 Струм, що виникає під час удару блискавки може досягати 25 кА. Його тривалість 40 мкс. Маса людини 75 кг, її опір близько 1 кОм.
 - а. На скільки може піднятися температура 75 кг води, що отримала удар блискавкою.
 - б. Чому температура людини не підвищиться на кількість градусів, визначених у пункті а.?

5. Магнітні явища та електромагнетизм

- 5.1 Заряд +50 нКл влітає зі швидкістю 1 000 м/с у перпендикулярне цій швидкості магнітне поле. Індукція магнітного поля складає 0,1 T_Π
 - а. Знайти силу, що діє на електрон.
 - б. Знайти радіус кола, яке описує частинка масою 2×10^{-10} кг в результаті дії цієї сили.
- 5.2 Електрон влітає в схрещені електронне поле напруженістю **E** і магнітне поле індукцією **B**, так що швидкість електрона перпендикулярна до векторів **E** і **B**. Якщо електрон, пролітаючи крізь поля, не змінює напрямок руху, якою різницею потенціалів його розігнали? Вважати масу і заряд електрона відомими.
- 5.3. За допомогою закону Біо-Савара-Лапласа розрахувати індукцію магнітного поля нескінченно довгого провідника.
- 5.4 Використовуючи результати попередньої задачі, визначити, чому дорівнює магнітне поле, що створює блискавка на відстані 1,0 метра від неї. Вважати, що сила струму блискавки становить 20 кА.
- 5.5 Максимальна сила струму у лініях передач може складати 100 А і вище. Деякі люди переживають, що магнітне поле, що створюють такі лінії передач впливатимуть на їхнє здоров'я. Якщо лінія електропередач розташована на висоті 8,0 м над поверхнею землі, і струм у ній 100 А, яке максимальне магнітне поле виникатиме біля поверхні землі? Порівняти отримане значення з індукцією магнітного поля Землі $(5 \times 10^{-5} \text{ Tл})$. Чи є сенс переживати через існування індукованого магнітного поля?

- 5.6 Знайти максимальний момент сили, що діє на рамку зі струмом в 2.0 А, якщо розміри рамки 10 см \times 10 см, і вміщена вона в магнітне поле з індукцією 0.5 Тл.
- 5.7 Два довгих паралельних провідника несуть струм I у одному напрямку. Вивести вираз для сили, що діє на одиницю довжини цих провідників, якщо вони знаходяться на відстані R один від одного. Куди направлена ця сила?
- 5.8 За допомогою закону Ампера для циркуляції магнітного поля розрахувати магнітне поле всередині нескінченно довгого соленоїда, що містить N витків на довжині l, і струм у якому дорівнює I.
- 5.9 У якій воді гарячій чи холодній постійний магніт може підняти вантаж більшої маси? Пояснити відповідь.
- 5.10 Визначити напрямок струму, який генерується у рамці ABCD на рисунку нижче, якщо до неї наближатимуть магніт, південний полюс якого обернений до рамки.

 $5.11~\rm Y$ соленоїді, що містить $1000~\rm Bитків$, магнітний потік рівномірно зменшується від $10~\rm до~6~\rm MT.M^2$, протягом $20~\rm Mc$. Визначити ЕДС індукції в соленоїді.

- 5.12 Удар блискавки, що відбувся неподалік, може вивести з ладу чутливі електроприлади. Пояснити цей факт.
- 5.13 Після спалахів на сонці, на Землі спостерігаються "магнітні бурі" тимчасові зміни магнітного поля. Пояснити механізм їх виникнення.
- 5.14 Довжина радіохвилі складає 50 м.
 - а. Чому дорівнює її частота?
 - б. Чому дорівнює її період?
- 5.15 Порівняти процес поширення радіохвиль на Землі і на Марсі.

6. Оптика

- 6.1 Яке з затемнень триває довше: повне затемнення сонця чи повне затемнення місяця? Обґрунтувати відповідь.
- 6.2 За допомогою дзеркала можна підпалити суху траву. Яке дзеркало для цього треба взяти: пласке, увігнуте чи опукле? Обгрунтувати відповідь.
- 6.3. Побудувати зображення, що їх створює тонка збірна лінза, для наступних випадків:
 - а. об'єкт знаходиться на відстані, меншій за фокусну.
 - б. об'єкт знаходиться на відстані, більшій за фокусну, але меншій за подвійну фокусну відстань.
 - в. об'єкт знаходиться на відстані, що дорівнює подвійній фокусній відстані.
 - г. об'єкт знаходиться на дуже великій відстані від лінзи.
- 6.4 Побудувати хід світлових променів у телескопі.
- 6.5 Студент дивиться на монету, що знаходиться на дні басейну, заповненого водою (показник заломлення 1,33). Студенту видається, що монета знаходиться на глибині 1,5 м. На якій глибині насправді знаходиться монета?
- 6.6 У яку погоду з морського узбережжя можна побачити об'єкти, які у звичайних умовах сховані за горизонтом?
- 6.7 Під яким кутом А має бути вирізаний діамант (див. рисунок) з показником заломлення 2,4, щоби світло, яке падає на його горизонтальну грань, зазнавало повного внутрішнього відбиття?

- 6.8 Якої товщини може бути плівка з показником заломлення 1,4, що нанесена на скло з показником заломлення 1,5, щоби при нормальному падінні світла, у відбитому випромінюванні було б відсутнє зелене світло (довжина хвилі 550 нм)?
- 6.9 Деякі хмари поблизу сонця забарвлюються в яскраві кольори. Їх називають райдужними хмарами. Для спостереження яскравого і чіткого ефекту необхідно, щоб всі краплі були однакового розміру. Пояснити механізм забарвлення райдужних хмарин.
- 6.10 Якщо не застосовувати сонцезахисний крем при підйомі на Еверест, опіки шкіри можна отримати лише за декілька годин. Поясніть цей факт.
- 6.11 Спостерігаючи за зірками, можна помітити, що вони мають різне забарвлення: деякі з них мають блакитний відтінок, деякі червоний. Поясніти цей факт.
- 6.12 Знайти довжину хвилі де Бройля студента масою $60~\rm kr$, що рухається зі швидкістю $1~\rm m/c$.
- 6.13 Пояснити механізм виникнення полярного сяйва.

7. Атомна фізика

- 7.1. При опроміненні металевої пластинки квантами світла з енергією 3,0 еВ з неї вибиваються електрони, які прискорюються різницею потенціалів U. Робота виходу електронів з металу 2,0 еВ. Визначити різницю потенціалів U, якщо максимальна енергія прискорених електронів E дорівнює подвійній енергії фотонів, які вибивають їх з металу.
- 7.2 Базуючись на властивостях альфа, бета та гама частинок, запропонуйте моделі
 - а. побутового детектора диму;
 - б. пристрою для контролю на виробництві товщини сталевих листів.
- 7.3 Яка частинка: ядро гелію, протон чи електрон, за однакової швидкості руху, залишить найширший слід у бульбашковій камері? Обґрунтувати відповідь.
- 7.4 Доповніть наступні рівняння розпаду.

a.
$${}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{a}\text{Y} + {}^{b}_{c}d$$

$$6. {}_{62}^a \text{Sm} \rightarrow {}_{b}^{143} \text{Nd} + {}_{d}^c He$$

- 7.5 Напишіть ланцюг реакцій розпаду урану-238 до свинцю-214, якщо під час перших двох реакцій ядра випускають бета-частинки, а під час наступних альфа-частинки.
- 7.6 Яка частка радіоактивних ядер кобальту, період напіврозпаду яких 71,3 дня, розпадеться за місяць?

- 7.7 Чи розпадуться за годину усі ядра елементу, період напіврозпаду якого складає 1 секунду?
- 7.8 Аналіз дерев'яного фрагменту давньоєгипетської гробниці виявив наступне: концентрація ізотопу 14 С складає $9,843\times 10^{-15}$ моль/г, концентрація ізотопу 12 С складає $1,202\times 10^{-2}$ моль/г. Вважаючи, що початкове співвідношення концентрації ізотопів 14 С/ 12 С складає $1,20\times 10^{-12}$, розрахувати вік гробниці.
- 7.9 Скільки β -частинок випускає протягом однієї години 1,0 мкг ізотопу ²⁴Na, період напіврозпаду якого дорівнює 15 годин?

Відповіді на кількісні питання

- 1.1. $5,972 \times 10^{24}$ kg, 3×10^{7} c, $1,6 \times 10^{-27}$ kg, $3,0 \times 10^{-5}$ c, $1,2 \times 10^{3}$ kg/m³, $5,1 \times 10^{14}$ m², 5×10^{-8} m³, $1,74 \times 10^{17}$ Bt
- 1.2 $a_x = 5 \text{ M}, a_y = 8.7 \text{ M}, \delta_x = 1.2 \text{ M}, \delta_y = 16 \text{ M}, B_x = 9.9 \text{ M}, B_y = 9.9 \text{ M}$
- 1.3 $F_1 = 5 H, F_2 = 17 H$
- 1.4 25 Н.м, 0 Н.м, –6 Н.м
- 1.5 5 Тл.м/с, 10 Тл.м/с, 0 Тл.м/с
- 1.6 $\Delta h_1 = 2 \text{ M}, \Delta h_2 = 0.21 \text{ M}, \delta h_1 = 0.023\%, \delta h_2 = 0.0024\%$
- 1.7 $\delta V = 0.25\%$
- 1.8 $\Delta h = 1.6 \text{ MM}, \Delta d = 2.8 \text{ MM}, \delta V = 29\%$
- $1.9 \quad AF = 4.9 \pm 0.2 \text{ M}$
- 1.10 R = $(6.91 \pm 0.1) \times 10^3$ KM
- 2.1 50 м
- 2.2 14 m/c
- 2.3 16 m/c
- 2.4 збільшиться у 4 рази
- 2.5 5,6 м
- 2.6 108 m/c
- 2.7 а. 4,8 м, б. 0.6 с, в. 1,8 м, г. 8 м/с, д. 10 м/с, е. парабола $y = -0.16x^2 + 0.75x$
- 2.8. 15i + 25j (M)
- 2.9 а. $8,6 \times 10^4$ с, б. $1,16 \times 10^{-5}$ Гц, в. $7,28 \times 10^{-5}$ рад/с, г. 0 рад/с², д. 440 м/с, е 3 м/с²
- 2.12 0,75
- 2.13 a. 2,7 H, $6.9,84 \text{ m/c}^2$
- 2.14 2698 км

$$2.15 T = 2\pi \sqrt{\frac{R^3}{GM_{\odot}}}$$

- $2.16 4.9 \times 10^7 ext{ H}$
- 2.17 9000 м
- 2.18 а. 500 Н, б. 550 Н, в. 450 Н, г. 450 Н, д. 550 Н

2.19
$$7.9 \times 10^{-5} \text{ H/kg}, 8.7 \times 10^{6} \text{ H}$$

$$2.22 0.1 \text{ M/c}$$

$$2.23$$
 $1,1 \times 10^{16}$ Дж

$$2.25 \qquad U = \frac{kx^2}{2}$$

2.26
$$U = -\frac{Gm_1m_2}{r}$$

2.27 $2 \times 10^4 \,\mathrm{M}^3$

$$2.27 2 \times 10^4 \,\mathrm{m}^3$$

$$2.28 v = \sqrt{\frac{GM_{_3}}{R_{_3}}}$$

$$2.29 \quad 6,92 \times 10^{-4} \text{ c}$$

2.30 а.
$$5,966 \times 10^{24}$$
 кг, б. $8,027 \times 10^{31}$ кг.м 2 в. $5,83 \times 10^{27}$ кг.м 2 /с, г. $1,36 \times 10^{87}$ Дж, д. $2,65 \times 10^{40}$ кг.м 2 /с, е. $2,7 \times 10^{33}$ Дж

$$3.1 6 \times 10^{-6} \text{ M}$$

3.2
$$7.5 \times 10^4 \,\mathrm{Ha}$$

3.2
$$7.5 \times 10^4 \text{ }\Pi a$$

3.3 $2.6 \times 10^5 \text{ }\Pi a$

3.4 від
$$12 \times 10^{-3} \text{ кг/м}^3$$
 до $19 \times 10^{-3} \text{ кг/м}^3$

3.5
$$1.33 \times 10^5 \,\mathrm{Ta}$$

$$3.6 p = \frac{1}{3} n m_0 \left\langle v^2 \right\rangle$$

$$3.9 \qquad {}^{235}v/_{238}v = 1,004 1,004$$

$$3.12 \quad Cp - Cv = R$$

$$1 - 5^{1-\gamma}$$

3.14
$$1-5^{1-\gamma}$$

3.15 $\eta = 1 - \frac{T_x}{T_y}$

4.2
$$2,16 \times 10^3 \text{ H}$$

4.3
$$9.0 \times 10^3 \text{ H/Kл}, 4.0 \times 10^3 \text{ H/Kл}, 2.3 \times 10^3 \text{ H/Kл}$$

4.4
$$E = \frac{\sigma}{2\varepsilon_0}$$

4.5
$$E = \begin{cases} \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}, & r > R \\ \frac{1}{4\pi\varepsilon_0} \frac{qr}{R^3}, & r < R \end{cases}$$

$$4.6$$
 5.6×10^5 Кл

4.9 0,1 Кл,
$$9.36 \times 10^{-6}$$
 м/с

$$4.13$$
 2.5×10^7 Дж, 85 °C

$$5.1 5 \times 10^{-6} \text{ H}, 4 \times 10^{-3} \text{ M}$$

$$5.2 v = \frac{m}{2e} \left(\frac{E}{B}\right)^2$$

$$5.3 B = \frac{\mu_0 I}{2\pi R}$$

$$5.4 4.0 \times 10^{-3} \, \mathrm{Tm}$$

$$5.4$$
 4.0×10^{-3} Тл 5.5 2.5×10^{-6} Тл, тобто у 1000 разів слабше 1×10^{-2} Н.м

$$5.6 1 \times 10^{-2} \, \text{H.m}$$

$$5.7 \qquad \frac{F}{l} = \frac{\mu_0 I^2}{2\pi R}$$

$$5.8 B = \mu \mu_0 \frac{IN}{I}$$

- 5.10 ABCD
- 5.11 200 B
- 5.14 6×10^6 Гц, 1.7×10^{-5} с
- 6.5 1,99 м
- 6.7 65°
- 6.8 98 нм
- 6.12 $1.1 \times 10^{-35} \text{ M}$
- 7.1 5 B
- 7.4 a. ${}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{39}\text{Y} + {}^{0}_{-1}e$, 6. ${}^{147}_{62}\text{Sm} \rightarrow {}^{143}_{60}\text{Nd} + {}^{4}_{2}He$

7.5
$${}^{238}_{92}U \rightarrow {}^{238}_{93}Np \rightarrow {}^{238}_{94}Pu \rightarrow {}^{234}_{90}Th \rightarrow {}^{230}_{88}Ra \rightarrow {}^{226}_{86}Rn \rightarrow {}^{222}_{84}Po \rightarrow {}^{218}_{82}Pb$$

- 7.6 25%
- 7.8 ~3200 років
- 7.9 $1,3 \times 10^{12}$ частинок

Список використаної літератури

- 1. Янг Г., Фрідман Р. (2009) *Фізика для університетів*, Львів, Наутілус
- 2. Lowrie, W. (2007) *Fundamentals of Geophysics*, Cambridge, NY, Cambridge University Press
- 3. Wallace, J.M., Hobbs, P.V. (2006) *Atmospheric science: an introductory survey*, NY, Elsevier Academic Press
- 4. Freedman R. et all (2018) College Physics, NY, Macmillan Learning

Деякі корисні константи

Маса Землі	$5,972 \times 10^{24} \text{kg}$
Маса сонця	$1,989 \times 10^{30} \text{ kg}$
Маса місяця	$7,3477 \times 10^{22}$ кг
Радіус Землі	6 371 км
Відстань між Землею і місяцем	384 400 км
Відстань між Землею і сонцем	$149,6 \times 10^6$ км
Період обертання Землі навколо власної вісі	23 год 56 хв 4,1 с
Період обертання Землі навколо сонця	365 діб 6 год 9 хв
Період обертання місяця навколо власної вісі	708 год
Період обертання місяця навколо Землі	27,321 661 діб
Гравітаційна стала G	$6,676 \times 10^{-11} \ \text{kg}^2 \text{H}^{-1} \text{m}^{-2}$
Число Авогадро	$6,022 \times 10^{23}$
Атомна одиниця маси	$1,66057 \times 10^{-27} \text{kg}$
Універсальна газова стала <i>R</i>	$8,31441$ Дж. K^{-1} .моль $^{-1}$
Стала Больцмана k	$1,380662 \times 10^{-23}$ Дж.К $^{-1}$
Електрична стала ε_0	$8,\!85\times10^{-12}\;\mathrm{K}\pi^2\mathrm{H}^{-1}\mathrm{m}^{-2}$
Магнітна стала μ_0	$4\pi\times10^{-7}~\Gamma\text{H.m}^{-1}$
Заряд електрона	$-1,602 \times 10^{-19}$ Кл
Маса спокою електрона	$9,11 \times 10^{-31} \text{ кг}$
Маса спокою протона	$1,67 \times 10^{-27} \text{kg}$
Швидкість світла у вакуумі c	$2{,}9979\times10^8~\textrm{m/c}$
Стала Планка h	$6,626 \times 10^{-34}$ Дж.с

Таблиця похідних деяких функцій

$$\frac{d}{dx}(a) = 0$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$$

$$\frac{d}{dx}(\log_a(x)) = \frac{1}{x\ln(a)}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\frac{d}{dx}(tg(ax)) = \frac{a}{\cos^2(ax)}$$

$$\frac{d}{dx}(f(x) \cdot g(x)) = f(x)\frac{d}{dx}(g(x)) + g(x)\frac{d}{dx}(f(x))$$

$$\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{g(x)\frac{d}{dx}(f(x)) - f(x)\frac{d}{dx}(g(x))}{(g(x))^2}$$

Таблиця первісних деяких функцій

$$\int adx = ax + Const$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + Const$$

$$\int \frac{1}{x} dx = \ln(x) + Const$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + Const$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + Const$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + Const$$

Літери грецького алфавіту

А α — альфа	В β — бета
Г ү — гамма	Δ δ — дельта
Е ε — епсилон	Ζ ζ — дзета
Η η — ета	Θ θ — тета
I 1 — йота	К к — каппа
Λλ — лямбда	М μ — мю
N v — ню	Ξ ξ — ксі
О о — омікрон	$\Pi \pi$ — пі
O o — омікрон P ρ — po	Π π — π і Σ σ ς — π σ σ σ
-	
Рρ—ро	Σ σ ς — сигма
P ρ — po T τ — тау	Σ σ ς — сигма Y υ — іпсилон