Package 'BIKER'

January 14, 2022

Title Bayesian Inference of the K600 Evasion Rat

Version 1.0.0

Description Uses Bayesian inference + SWOT river measurements to estimate the normalized gas exchange velocity from rivers, no in situ info needed beyond a prior estimate on streamflow. Algorithm inputs are river width, water surface slope, the change in water surface area, and a prior estiate of average streamflow conditions. The algorithm returns the posterior mean (and 95% CIs) for the normalized river gas exchange velocity for the river reach over time. Note that prior hyperparameters are determined using just the SWOT observations, so all we need to provide BIKER are the SWOT observations and a mean flow estimate.

License file LICENSE
Encoding UTF-8
LazyData true
Biarch true
Depends R $(\xi = 3.4.0)$
Imports methods, Rcpp (ξ = 0.12.0), rstan (ξ = 2.18.1), rstantools (ξ = 2.0.0), dplyr, reshape2, rlang, settings
LinkingTo BH (ξ = 1.66.0), Rcpp (ξ = 0.12.0), RcppEigen (ξ = 0.3.3.3.0), rstan (ξ = 2.18.1), StanHeaders (ξ = 2.18.0)
SystemRequirements GNU make
RoxygenNote 7.1.2
URL https://github.com/craigbrinkerhoff/BIKER
$egin{align*} \mathbf{BugReports} \ \mathtt{https://github.com/craigbrinkerhoff/BIKER/issues} \end{aligned}$
NeedsCompilation yes
Author Craig Brinkerhoff [aut, cre] (jhttps://orcid.org/0000-0001-6701-4835¿)
Maintainer Craig Brinkerhoff < cbrinkerhoff@umass.edu>
Archs i386, x64
R topics documented:
BIKER-package

2

2 biker_check_args

biker_data	
biker_estimate	
biker_extract	
biker_priors	
classify_func	
compose_biker_inputs	
m cv2sigma	
estimate_A0SD	
estimate_logA0	
estimate_logk	
estimate_logksd	
estimate_logn	
estimate_lognSD	
estimate_lowerboundA0	
estimate_upperboundA0	
prior_settings	
sample_xs	

BIKER-package

The 'BIKER' package.

Description

Uses Bayesian Inference + SWOT observations to estimate normalized gas transfer velocity from large rivers

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.19.3. https://mc-stan.org

biker_check_args

Performs the following checks: - types: - everything else matrix - dimensions: - all matrices have same dimensions

Description

Performs the following checks: - types: - everything else matrix - dimensions: - all matrices have same dimensions

Usage

biker_check_args(datalist)

Arguments

datalist

A list of biker data inputs

biker_check_nas 3

k_nas Add missing-data inputs to data list
--

${\bf Description}$

Binary matrices indicating where data are/aren't missing are added to the data list. This is required in order to run ragged-array data structures in the stanfile.

Usage

```
biker_check_nas(datalist)
```

Arguments

datalist a list of BIKER inputs

biker_data	Preprocess data for BIKER estimation

Description

Produces a bikerdata object that can be passed to biker_estimate function

Usage

```
biker_data(w, s, dA, priorQ, max_xs = 30L, seed = NULL)
```

Arguments

w	Matrix of widths: time as columns, space as rows
s	Matrix of slopes: time as columns, space as rows
dA	Matrix of area above base area: time as columns, space as rows
priorQ	Mean annual flow prior for Q as a matrix
max_xs	Maximum number of cross-sections to allow in data. Used to reduce sampling time. Defaults to 30 .
seed	RNG seed to use for sampling cross-sections, if nx $\stackrel{.}{\iota}$ max_xs.

4 biker_estimate

biker_estimate

Estimate BIKER

Description

Fits a BIKER model of one of several variants using Hamiltonian Monte Carlo.

Usage

```
biker_estimate(
  bikerdata,
  bikerpriors,
  cores = getOption("mc.cores", default = parallel::detectCores()),
  meas_error = FALSE,
  chains = 3L,
  iter = 1000L,
  pars = NULL,
  include = FALSE,
  ...
)
```

Arguments

bikerpriors A bikerpriors object.

cores Number of processing cores for running chains in parallel. See ?rstan::sampling.

Defaults to parallel::detectCores().

meas_error Should we run with latent variables accounting for uncertainity in SWOT

measurements. LEAVE THIS OFF, IT IS IN ACTIVE DEVELOPMENT

chains A positive integer specifying the number of Markov chains. The default

is 3.

iter Number of iterations per chain (including warmup). Defaults to 1000.

pars (passed to rstan::sampling()) A vector of character strings specifying

parameters of interest to be returned in the stanfit object. If not specified,

a default parameter set is returned.

include (passed to rstan::sampling()) Defaults to FALSE, which excludes pa-

rameters specified in pars from the returned model.

... Other arguments passed to rstan::sampling() for customizing the Monte

Carlo sampler

biker_extract 5

Description

Extracts posterior parameters from fit stan model

Usage

```
biker_extract(fitmodel, CI = 0.95, chainExtract = "all")
```

Arguments

fitmodel A fitted BIKER stanmodel

CI A postive integer between 0 and 1 indicating the confidence interval to

return with the estimate. Default is 0.95.

chainExtract Either an integer specifying which chain(s) to extract statistics from, or

"all" (the default), in which case they are extracted from all chains.

biker_priors	$Establish\ prior\ hyperparameters\ for\ BIKER\ estimation$	
--------------	---	--

Description

Produces a bikerpriors object that can be passed to biker_estimate function

${\bf Usage}$

```
biker_priors(bikerdata, ...)
```

Arguments

An object of class bikerdata, as returned by biker_data

Optional manually set parameters. Unquoted expressions are allowed, e.g. logk_sd = cv2sigma(0.8). Additionally, any variables present in bikerdata may be referenced, e.g. lowerbound_logk = log(mean(Wobs)) + log(5)

6 cv2sigma

classify_func

Geomorphic river classification

Description

Classify river for expert framework

Usage

```
classify_func(Wobs)
```

Arguments

Wobs

observed widths matrix

 ${\tt compose_biker_inputs} \quad \textit{Prepare biker object for stan model}$

Description

"Decomposes" the structure of the bikerdata pbject into a form more easily read by the stan sampling functions (i.e. a big ole list)

Usage

```
compose_biker_inputs(bikerdata, priors = biker_priors(bikerdata))
```

Arguments

bikerdata bikerdata object bikerpriors object priors

cv2sigma

 $CV\ to\ sigma$

Description

Convert coefficient of variation to sigma parameter of lognormal distribution

Usage

```
cv2sigma(cv)
```

Arguments

cv

Coefficient of variation

 $estimate_AOSD$ 7

 $estimate_AOSD$

 $logA0_sd\ prior\ estimation$

Description

Estimate median cross-sectional area SD prior hyperparameter using swot data

Usage

```
estimate_AOSD(Wobs)
```

Arguments

Wobs

Observed W, as a space-down, time-across matrix.

estimate_logA0

 $logA0_hat\ prior\ estimation$

Description

Estimate median cross-sectional area prior hyperparameter using swot data

Usage

```
estimate_logAO(Wobs)
```

Arguments

Wobs

Observed W, as a space-down, time-across matrix

estimate_logk

 $logk_hat\ prior\ estimation$

Description

Estimate k_hat prior hyperparameter using swot data

Usage

```
estimate_logk(Sobs, priorQ)
```

Arguments

Sobs Observed S,as a space-down, time-across matrix

priorQ mean annual flow estimate, single number

8 estimate_lognSD

estimate_logksd

 $logk_sd\ prior\ estimation$

Description

Estimate k sd prior hyperparameter using swot data

Usage

```
estimate_logksd(Sobs)
```

Arguments

Sobs

Observed S,as a space-down, time-across matrix

 $estimate_logn$

 $logn_hat\ prior\ estimation$

Description

Estimate manning's n prior hyperparameter using swot data

Usage

```
estimate_logn(Wobs, Sobs)
```

Arguments

Wobs Observed W, as a space-down, time-across matrix

Sobs Observed s, as a space-down, time-across matrix

 ${\tt estimate_lognSD}$

 $logn_sd\ prior\ estimation$

Description

Estimate manning's n SD prior hyperparameter using swot data

Usage

```
estimate_lognSD(Wobs)
```

Arguments

Wobs

Observed W, as a space-down, time-across matrix.

 $estimate_lowerboundA0$ 9

```
estimate_lowerboundA0
```

 $lowerbound_A0\ prior\ estimation$

Description

Estimate median cross-sectional area lowerbound prior hyperparameter using swot data

Usage

```
estimate_lowerboundA0(Wobs)
```

Arguments

Wobs

Observed W, as a space-down, time-across matrix.

```
{\tt estimate\_upperboundA0}
```

 $Upperbound_A0\ prior\ estimation$

Description

Estimate median cross-sectional area upperbound prior hyperparameter using swot data

Usage

```
estimate_upperboundA0(Wobs)
```

Arguments

Wobs

Observed W, as a space-down, time-across matrix.

prior_settings

Options manager for BIKER default prior settings for k600 model

Description

Options manager for BIKER default prior settings for k600 model

Usage

```
prior_settings(..., .__defaults = FALSE, .__reset = FALSE)
```

Arguments

```
... (Optional) named settings to query or set.
```

.__defaults See ?settings::option_manager
.__reset See ?settings::option_manager

10 sample_xs

 $sample_xs$

Take a random sample of a bikerdata object's cross-sections.

Description

Take a random sample of a bikerdata object's cross-sections.

Usage

```
sample_xs(bikerdata, n, seed = NULL)
```

Arguments

bikerdata object, as returned by biker_data()

n Number of cross-sections to

seed option RNG seed, for reproducibility.