MEMS 1029 Mechanical Design 2

Project 2

What's If – Charger?

March 18 2022

Recording Link Formal PDF Link

Group 12
Puhang Cai, Ziang Cao, Yuming Gu, Mingze Cai, Yoosup Shin

Contribution

Table 1. Work distribution

Task	Time (hrs)	Member
/// Overall Managements ///		
Project Orgnization	5	ZIC
Project PDf Wrtiting	7	ZIC
Professionalism Check	2	MIC, PUC
/// Presentation ///		
Pre Slide	4	PUC, YOS, MIC, ZIC
CAD animation	1	YUG, YOS
Video editing	2	MIC, YUG
Video Recording All Part	2	YOS

/// Design Anlysis ///		
Normal Spring Anlysis	4	ZIC, YOS
Torsion Spring Analysis	3	PUC
Rotor Spring Analysis	10	PUC, YOS
Gear Train Design	3	MIC, ZIC
/// CAD modeling ///		
Hand Crank CAD PickUP	1	ZIC
Spring + Gear CAD PickUP	3	YUG, PUC
SolideWorks Assembly	15	YUG
/// Post-design ///		
Bill of Material	2	PUC, MIC
/// Formal Calculations ///		
Free Body Diagram + sketch	2	ZIC
Spring Calculations	3	PUC
Gear Train Calculations	2	MIC

Overview

Figure 1. The overview of the product. There are shells at the outside of each spring and each shaft has 1 spring on it. There are 4 bearings at the end of the shaft.

Objectives

We try to design a phone charger that can support manual energy input and mechanical energy storage in this project. The requirements and constraints are shown below:

- Device must be capable of storing 10 Watt-hours of energy.
- Energy storage must be done using springs.
- Input power must come from a human-powered hand-crank.
- Device must have a gearbox and gear train.
- The product needs to be as small as possible

Normal Spring Analysis

We start from the round wire spring. As making a real world-product, instead of solving a textbook question: we simplify the design by applying "Over-a-rod" scenario -- which to get rid of the buckling, we add sticks inside of the wire.

However, even with a rob, the round wire spring would requires 5000 N/mm (a 100 times larger K than most commercial one), or 7m of delta_x (Height of 3 floor) to store the enough energy. The following figure shows the key scenarios.

Normal Spring Analysis

Detail for calculation:

https://github.com/ice-bear-git /_MEMS1029_DesignII_onGith ub/blob/main/Project/Project2 /Submission/FormalAnalysis/Sc reenshot/Layout-v1.PNG

Torsion Spring Analysis

Figure 2. Free Body Diagram for Torsion Spring. [1]

Torsion Spring Analysis

We choose music wire for torsion spring. The tensile strengths for the wire can be determined by using followed equation.

$$S_{ut} = \frac{A}{d^m}$$

For music wire, d is wire diameter. $A = 201 kpsi \cdot in^m$ and m = 0.145. $S_y = 0.78 S_{ut}$

The spring index $C = \frac{D}{d}$. Where D is the mean coil diameter.

The bending stress-correction
$$K_i = \frac{4C^2 - C - 1}{4C(C - 1)}$$

Then we can find the maximum torque $M_{max} = (Fr)_{max} = \frac{\pi d^3 S_y}{32K_i}$

The spring rate is
$$k' = \frac{d^4E}{64DN_a}$$

Where Na is the active number of turns.

Torsion Spring Analysis

The equation for θ is

$$\theta = \frac{64MDN_a}{d^4E}$$

The maximum energy can be stored in torsion,

$$U = \frac{1}{2}k'\theta^2$$

We can find the number of springs needed by dividing the energy required by the maximum energy one spring can store.

Torsion Spring Analysis

We take 360° Deflection Angle spring from Mcmaster as an example.

0.0	For Shaft	432 536			Spring Lg. @		2022 1955	Pkg.		DI
OD	Dia.	Dia.	Lg.	of Coils	Max. Torque	inlbs.	Material	Qty.		Pkg.
360° Defl	ection Angl	le	12000		100			223		500
Left-Hai	nd Wound									
1.755"	1.188"	0.135"	4"	12.5	2.025"	42.86	Music-Wire Steel	1	9271K136	\$6.89

Maximum energy of a spring can store:

$$U = \frac{1}{2}k'\theta^2 = \frac{1}{2}\frac{d^4E}{64DN_a} \times \left(\frac{64MDN_a}{d^4E}\right)^2 = \frac{1}{2}\frac{64DN_aM^2}{d^4E} = 161lbf \cdot in = 18.2N \cdot m$$

Therefore, we need about 200 of torsion springs to store 10 Watt-hours of energy. The product would become expensive and complex if using this kind of spring.

Figure 3. Torsion spring from Mcmaster

Flat Spiral Spring Analysis

The right endpoint of (a) is a fixed point and the center endpoint is where shaft applies force

Figure 4. Free Body Diagrams for Rotor Spring [2]

Flat Spiral Spring Analysis

Table 2. Symbols and units used in calculations

Symbol	Meaning of Symbol	Unit	
Ε	Longitudinal elastic modulus	N/mm ²	
b	Material width	mm	
t	Plate thickness	mm	
1	Total length	mm	
М	Moment	N•mm	
k	Spring constant	N•mm/rad	
σ	Stress	N/mm ²	

Flat Spiral Spring Analysis

The basic formula for calculating the spring constant when winding is given by the following formula.

$$k = \frac{Ebt^3}{12l}$$

The torque delivered (M) per turn (360°) is expressed by the following formula, where 360° is represented as 2π .

$$M=2\pi k$$

The turned angle can be expressed as:

$$\theta = \frac{Ml}{EI} = \frac{12Ml}{Ebt^3}$$

The energy stored in the spring for 1 turn is

$$U = \frac{1}{2}M\theta = \frac{1}{2}\frac{M^2l}{EI} = \frac{6M^2l}{Ebt^3}$$

Flat Spiral Spring Analysis

Table 3. Results by using the spring from Amico (link in the Cost Page) and assume the spring turn 10 turns.

Meaning of Symbol	Unit	Flat Spiral Spring	
Longitudinal elastic modulus	N/mm^2	E	206000
Material width	mm	b	10
Plate thickness	mm	t	1.6
Total length	mm	I	1540
Spring constant	N-mm/rad	k	456.5887
Torque	N•mm	M	28688.32
Stress	N/mm^2	sigma	6723.824
	rad	theta	62.83185
	N•mm	energy	901270.1
Number of spring required		Quantity	3.994363

Spring Arrangement

Parallel Arrangement (Overall)

- 1. Four Gear 1 is connected to the center of each spring to transport the energy from the input to the springs
- 2. Each spring is evenly distributed to the four corners. (for bending moment cancelation, and size minimization.)

Outer Box Restriction (Individuals)

1. Use the outer box to restrict the position of the spring. That is essential for the energy storage part.

[As it's not the key point for the analysis, we didn't draw it in SolidWorks. However, we implements the bearing in CAD that holds the position of the shafts.]

Gear Train Analysis

Torque needs

$$8.3\frac{in\cdot lb}{sping}\times 100spring\times 1.356\frac{N\cdot m}{feet\cdot lb}\times \frac{1}{12}\frac{feet}{in} = 93.79N\cdot m$$

A man can provide a force

$$F_{max} = 500N$$

Torque applied to the first gear Gear 1 is

$$T_1 = F \times d = 50 N \cdot m$$

Figure 5. FBD of the gears

Gear 2 is connected to the bigger spring gear through a stick, so they have a same torque

$$F_{21} = \frac{T_1}{R_1}$$
 $T_2 = F_{12} \times R_2 = F_{21} \times R_2 = 50 \times \frac{R_2}{R_1} = 100N \cdot m > 93.79N \cdot m$

Overview

Video 1. The assembly video and motion video for the product. Note that in realistic the hand-crank rotate along with the gear and there are several rotor springs shells and bearings not shown in the video.

Explosion View

Figure 6. Explosion View for the product

Gear Box

Gear Shaft 1 (Designed)

Figure 7. The Engineering Drawing for the gear shaft

Gear Box

Gear 1 (KHK 2-15) https://www.khkgears.us/catalog/product/MSGA2-15

Figure 8. This is the engineering drawing for the small gear connected to the spring

Gear Box

Gear 2 (KHK 2-40) https://www.khkgears.us/catalog/product/MSGA2-40

Figure 9. The engineering drawing for the gear connected to gear 1.

Gear Box

Gear 3 (KHK 1-20) https://www.khkgears.us/catalog/product/MSGA1-20

Figure 10. The engineering drawing for the gear connect to gear 4 and gear 3.

Gear Box

Gear 4 (KHK 1-40) https://www.khkgears.us/catalog/product/MSGA1-40

Figure 11. The engineering drawing for the gear connect to the hand-crank

Hand-crank

Handlebar & Handle shaft (Designed)

Handlebar

Handle shaft

Figure 12. The engineering drawing for the hand-crank

Energy Storage Setup

Bearing Block (ASKUBAL)

https://b2b.partcommunity.com/3d-cad-models/sso/ucfl-ucfl-200-ask-kugellagerfabrik-artur-seyfert?info=askubal%2Fbearing_units%2Fsquare_flange_units%2Fcast_iron_version%2Fucfl_200_asmtab.prj

Figure 13(b). The bearing used in the CAD model

Energy Storage Setup

Rotor Spring (1842N11) https://www.mcmaster.com/rotary-springs/rotor-springs/

Expand Length: 1540mm/60.6inch

Figure 14(a). The spring used in the real product

Figure 14(b). The spring used in the CAD model

Cost

Name	Part Numbers	Vendors	Quantity	Cost
Rotor Spring	UXCELL Drill Press Spring Drill Press Quill Feed Return Coil Spring Assembly Spring Steel Chemical Blackening Finish 1PCS Size 3	Amico	4	\$38.12
Shaft	2900A367	McMaster-Carr	4	\$35.24
Hand-crank	90480	Compass Health	1	\$37.46
Gear 1	KHK MSGA1-20, Module 1, 20 Tooth, Ground Alloy Steel Spur Gears	КНК	1	\$55.17
Gear 2	KHK MSGA1-40, Module 1, 40 Tooth, Ground Alloy Steel Spur Gears	кнк	1	\$82.60
Gear 3	KHK MSGA2-40, Module 2, 40 Tooth, Ground Alloy Steel Spur Gears	KHK	1	\$118.64
Gear 4	KHK MSGA2-15, Module 2, 15 Tooth, Ground Alloy Steel Spur Gears	КНК	4	\$228.16
Bearing	UCFL206-20 Pillow Block Flange Mounted Bearing 1-1/4" Inch Bore	PGN Bearing	4	\$35.8
Total				\$631.19

Feasibility

What steps did we take to make the device as realizable as possible?

- 1. Significantly reduce the spring required for the design.
- 2. We designed our what if-charger product to maximize stability while reducing the size as much as possible.
- 3. The Key design is that we introduce a moveable gear between the small gear on top of the main shaft and the large gear right behind the hand-crank structure.

Feasibility

Feasibility

State whether the client's idea is feasible and provide reasons as to why or why not?

- 1. The size of the box contain gears and springs is 120*120*35mm and the box for hand-crank is 75*50*20mm. The overall size is about 200*200*170mm, which is a little large.
- 2. The weight of the product is about
- 3. The product is a little bit expensive. We can use cheaper gears to lower the cost.
- 4. The force applied on the hand-crank need to be larger than 500N. It's more efficient to do the input with human feet, probably this product can be installed on a foot fitness machine.

Reference

- [1]. Coldadler. "Torsion Spring Reaction Force." *Physics Forums* | *Science Articles, Homework Help, Discussion*, Physics Forums, 1 Mar. 2020, https://www.physicsforums.com/threads/torsion-spring-reaction-force.984929/.
- [2]. Chen, Jen-San, and I-Shein Chen. "Deformation and Vibration of a Spiral Spring." *International Journal of Solids and Structures*, Pergamon, 11 Apr. 2015, https://www.sciencedirect.com/science/article/pii/S0020768315001377.