李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习

Auto-encoder 生成式对抗网络

学习率 自注意力机

卷积神经网络 GAN

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]

When gradient is small ...

Hung-yi Lee 李宏毅

Optimization Fails because

Warning of Math

Tayler Series Approximation

 $L(\boldsymbol{\theta})$ around $\boldsymbol{\theta} = \boldsymbol{\theta}'$ can be approximated below

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \left[(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{g} \right] + \left[\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta'}) \right]$$

Gradient *g* is a *vector*

$$\mathbf{g} = \nabla L(\mathbf{\theta'}) \qquad \mathbf{g}_i = \frac{\partial L(\mathbf{\theta'})}{\partial \mathbf{\theta}_i}$$

Hessian *H* is a *matrix*

$$H_{ij} = \frac{\partial^2}{\partial \boldsymbol{\theta}_i \partial \boldsymbol{\theta}_j} L(\boldsymbol{\theta'})$$

Hessian

 $L(\boldsymbol{\theta})$ around $\boldsymbol{\theta} = \boldsymbol{\theta}'$ can be approximated below

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta}') + (\boldsymbol{\theta} - \boldsymbol{\theta}')^T \boldsymbol{g} + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}')^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}')$$
At critical point

telling the properties of critical points

At critical point:

 $\boldsymbol{v}^T \boldsymbol{H} \boldsymbol{v}$

Hessian

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \left[\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta'})\right]$$

For all $oldsymbol{v}$

$$v^T H v > 0$$
 Around θ' : $L(\theta) > L(\theta')$ Local minima

= H is positive definite = All eigen values are positive.

For all $oldsymbol{v}$

$$v^T H v < 0$$
 Around θ' : $L(\theta) < L(\theta')$ Local maxima

= H is negative definite = All eigen values are negative.

Sometimes $v^T H v > 0$, sometimes $v^T H v < 0$ \longrightarrow Saddle point Some eigen values are positive, and some are negative.

Example

$$y = w_1 w_2 x$$

Error Surface

$$x \xrightarrow{w_1} \qquad \xrightarrow{w_2} \qquad y \iff \hat{y}$$

$$= 1$$

$$L = (\hat{y} - w_1 w_2 x)^2 = (1 - w_1 w_2)^2$$

$$\frac{\partial L}{\partial w_1} = 2(1 - w_1 w_2)(-w_2)$$

$$= 0$$

$$\frac{\partial L}{\partial w_2} = 2(1 - w_1 w_2)(-w_1)$$

$$= 0$$

Critical point:
$$w_1 = 0, w_2 = 0$$

$$H = \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix} \lambda_1 = 2, \lambda_2 = -2$$

Saddle point

$$\frac{\partial^2 L}{\partial w_1^2} = 2(-w_2)(-w_2) \qquad \frac{\partial^2 L}{\partial w_1 \partial w_2} = -2 + 4w_1 w_2
= 0 \qquad = -2$$

$$\frac{\partial^2 L}{\partial w_2 \partial w_4} = -2 + 4w_1 w_2 \qquad \frac{\partial^2 L}{\partial w_2^2} = 2(-w_1)(-w_1)$$

$$\frac{\partial w_1^2}{\partial w_2 \partial w_1} = -2 + 4w_1 w_2 = -2$$

$$\frac{\partial^2 L}{\partial w_2 \partial w_1} = -2 + 4w_1 w_2 = -2$$

$$= -2$$

Don't afraid of saddle point?

 $\boldsymbol{v}^T \boldsymbol{H} \boldsymbol{v}$

At critical point:
$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta'}) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta'})^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta'})$$

Sometimes $v^T H v > 0$, sometimes $v^T H v < 0$ \Longrightarrow Saddle point H may tell us parameter update direction!

$$m{u}$$
 is an eigen vector of $m{H}$ λ is the eigen value of $m{u}$ $\lambda < 0$

$$\mathbf{u}^T \mathbf{H} \mathbf{u} = \mathbf{u}^T (\lambda \mathbf{u}) = \lambda ||\mathbf{u}||^2$$

$$< 0$$

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta}') + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}')^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta}') \implies L(\boldsymbol{\theta}) < L(\boldsymbol{\theta}')$$

$$\boldsymbol{\theta} - \boldsymbol{\theta}' = \boldsymbol{u} \qquad \boldsymbol{\theta} = \boldsymbol{\theta}' + \boldsymbol{u} \qquad \text{Decrease } L$$

$$\lambda_2 = -2$$
 Has eigenvector $\boldsymbol{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Update the parameter along the direction of $oldsymbol{u}$

You can escape the saddle point and decrease the loss.

(this method is seldom used in practice)

Saddle point

End of Warning

Saddle Point v.s. Local Minima

• A.D. 1543

Saddle Point v.s. Local Minima

• The Magician Diorena (魔法師狄奥倫娜)

From 3 dimensional space, it is sealed.

It is not in higher dimensions.

Source of image: https://read01.com/mz2DBPE.html#.YECz22gzbIU

Saddle Point v.s. Local Minima

When you have lots of parameters, perhaps local minima is rare?

Small Gradient ...

The value of a network parameter w

Tips for training: Batch and Momentum

Batch

Review: Optimization with Batch

1 **epoch** = see all the batches once → **Shuffle** after each epoch

Consider 20 examples (N=20)

Batch size = N (Full batch)

Update after seeing all the 20 examples

Batch size = 1

Update for each example Update 20 times in an epoch

oldest slides: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20(v4).pdf old slides: http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/Keras.pdf

Small Batch v.s. Large Batch

 Larger batch size does not require longer time to compute gradient (unless batch size is too large)

 Smaller batch requires longer time for one epoch (longer time for seeing all data once)

Time for one **update**

Time for one **epoch**

60000 updates in one epoch

Consider 20 examples (N=20)

Batch size = N (Full Batch)

Update after seeing all the 20 examples

Batch size = 1

Update for each example Update 20 times in an epoch

- > Smaller batch size has better performance
- What's wrong with large batch size? Optimization Fails

- Smaller batch size has better performance
- "Noisy" update is better for training

Small batch is better on testing data?

	Name	Network Type	Data set
CD 2FC	F_1	Fully Connected	MNIST (LeCun et al., 1998a)
SB = 256	F_2	Fully Connected	TIMIT (Garofolo et al., 1993)
1 D	C_1	(Shallow) Convolutional	CIFAR-10 (Krizhevsky & Hinton, 2009)
LB =	C_2	(Deep) Convolutional	CIFAR-10
0.1 x data set	C_3	(Shallow) Convolutional	CIFAR-100 (Krizhevsky & Hinton, 2009)
U.I X Uata Set	C_4	(Deep) Convolutional	CIFAR-100

- 1	Training Accuracy			Testing Accuracy	
Name	SB	LB		SB	LB
F_1	$99.66\% \pm 0.05\%$	$99.92\% \pm 0.01\%$	Т	$98.03\% \pm 0.07\%$	$97.81\% \pm 0.07\%$
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$		$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$		$80.04\% \pm 0.12\%$	$77.26\% \pm 0.42\%$
C_2	$99.99\% \pm 0.04\%$	$99.99\% \pm 0.01\%$		$89.24\% \pm 0.12\%$	$87.26\% \pm 0.07\%$
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$		$49.58\% \pm 0.39\%$	$46.45\% \pm 0.43\%$
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$		$63.08\% \pm 0.5\%$	$57.81\% \pm 0.17\%$

	Small	Large
Speed for one update (no parallel)	Faster	Slower
Speed for one update (with parallel)	Same	Same (not too large)
Time for one epoch	Slower	Faster
Gradient	Noisy	Stable
Optimization	Better ***	Worse
Generalization	Better	Worse

Batch size is a hyperparameter you have to decide.

Have both fish and bear's paws?

- Large Batch Optimization for Deep Learning: Training BERT in 76 minutes (https://arxiv.org/abs/1904.00962)
- Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes (https://arxiv.org/abs/1711.04325)
- Stochastic Weight Averaging in Parallel: Large-Batch Training That Generalizes Well (https://arxiv.org/abs/2001.02312)
- Large Batch Training of Convolutional Networks (https://arxiv.org/abs/1708.03888)
- Accurate, large minibatch sgd: Training imagenet in 1 hour (https://arxiv.org/abs/1706.02677)

Momentum

Small Gradient ...

(Vanilla) Gradient Descent

Gradient Descent + Momentum

Movement: **movement of last step** minus **gradient** at present

Starting at $heta^0$

Movement $m^0 = 0$

Compute gradient q^0

Movement $m^1 = \lambda m^0 - \eta g^0$

Move to $\theta^1 = \theta^0 + m^1$

Compute gradient g^1

Movement $m^2 = \lambda m^1 - \eta g^1$

Move to $\theta^2 = \theta^1 + m^2$

Movement not just based on gradient, but previous movement.

Gradient Descent + Momentum

Movement: movement of last step minus gradient at present

 m^i is the weighted sum of all the previous gradient: g^0 , g^1 , ..., g^{i-1}

$$m^0 = 0$$

$$m^1 = -\eta g^0$$

$$m^2 = -\lambda \eta g^0 - \eta g^1$$

Starting at $heta^0$

Movement $m^0 = 0$

Compute gradient g^0

Movement $m^1 = \lambda m^0 - \eta g^0$

Move to $\theta^1 = \theta^0 + m^1$

Compute gradient g^1

Movement $m^2 = \lambda m^1 - \eta g^1$

Move to $\theta^2 = \theta^1 + m^2$

Movement not just based on gradient, but previous movement.

Gradient Descent + Momentum

Concluding Remarks

- Critical points have zero gradients.
- Critical points can be either saddle points or local minima.
 - Can be determined by the Hessian matrix.
 - It is possible to escape saddle points along the direction of eigenvectors of the Hessian matrix.
 - Local minima may be rare.
- Smaller batch size and momentum help escape critical points.

Acknowledgement

• 感謝作業二助教團隊(陳宣叡、施貽仁、孟妍李威緒)幫忙跑實驗以及蒐集資料

李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)·课程资料包 @ShowMeAl

视频 中英双语字幕 课件

笔记

代码

英双语字幕 一键打包下载

官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1fM4v137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 Auto-encoder 生成式对抗网络 学 深度学习 _{卷积神经网络} GAN 自监督

批次标准化 神经网络压缩 强化学习 元学习 Transformer

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复 [添砖加页]