Reinforcement Learning David Silver - Lecture 8 Notes: Integrating Learning and Planning

Name: Eli Andrew

• Advantages of Model-based RL

- Can efficiently learn model by supervised learning methods
- Model is like the teacher that provides the supervised learning
- Example:
 - * Domain where learning policy or value function is hard (i.e. chess)
 - * Many different states
 - * Has sharp value function (single move of a piece can change from won position to lost position)
 - * Hard to learn this type of value function directly
 - * Model is straight forward essentially just rules of the game
 - * If you can use model to "look ahead" you can estimate the value function by planning (by tree search)
 - * This is easy compared to learning the value function because you are just learning that you have 0 reward for all positions except check mates and draws
 - * As compared to learning the value function where you are evaluating how likely you are to win from all the many configurations of the pieces
- Model can be a more useful (and compact) representation of the information than a value function
- Can reason about model uncertainty
 - * Helps you see what you know and don't know about the world
 - * This way you can strengthen your true understanding of the world and not just your current understanding
- Disadvantage: learn model and then construct value function (2 sources of error)

• What is a model

- Model M is a representation of an MDP $\langle S, A, P, R \rangle$ parameterized by η
- Assume state space and action space are known
- Model $M = \langle P_{\eta}, R_{\eta} \rangle$ represents state transitions $P_{\eta} \approx P$ and rewards $R_{\eta} \approx R$

$$S_{t+1} \sim P_{\eta}(S_{t+1}|S_t, A_t)$$

 $R_{t+1} = R_{\eta}(R_{t+1}|S_t, A_t)$

• Model learning

- Goal: estimate model M_{η} from experience $\{S_1, A_1, R_2, \dots, S_T\}$
- Supervised learning problem

$$S_1, A_1 \rightarrow R_2, S_2$$

 $S_2, A_2 \rightarrow R_3, S_3$
 \dots
 $S_{T-1}, A_{T-1} \rightarrow R_T, S_T$

- Learning $s, a \to r$ is a regression problem
- Learning $s, a \to s'$ is a density estimation problem (since it is likely stochastic we are learning the distribution)
- Pick loss function (MSE, KL divergence, ...)
- Find parameters η that minimize empirical loss

• Examples of Models

- Table lookup model
- Linear expectation model
- Linear Gaussian model
- Gaussian process model
- Deep belief network model

— . . .

• Sample-based Planning

- Use the model only to generate samples
- Unlike DP where you look at probabilities of transitions and integrate over the probabilities
- You sample experience from the model (rather than knowing all the transition probabilities)

$$S_{t+1} \sim P_{\eta}(S_{t+1}|S_t, A_t)$$

 $R_{t+1} = R_{\eta}(R_{t+1}|S_t, A_t)$

- Apply model-free RL to samples: Monte-Carlo control, Sarsa, Q-learning, etc.
- Sample based planning methods are often more efficient
- Planning is essentially done by solving for the simulated experience drawn from the agents imagined world (its model)
- Sampling is more efficient, even in the case when you know the entire model, because you are essentially focusing on the things that are most likely to happen

• Dyna-Q

- Use a Q(s, a) and a Model(s, a) to make your decisions
- Get your current $S_t = s$
- Choose $A_t = a$ using your $\max_{a} Q(s, a)$
- Observe your next state $S_{t+1} = s'$ and reward $R_{t+1} = r$
- Update Q(s, a) with standard Q-learning update rule:

$$Q(s, a) \leftarrow Q(s, a) + \alpha (R_{t+1} + \gamma \max_{a} Q(s', a) - Q(s, a))$$

- Add this example to your Model(s, a) (assuming deterministic environment)

$$Model(s, a) \leftarrow s', r$$

- -Model(s, a) is updated using supervised learning
- Then use your Model(s, a) for n iterations:

s = random state you've seen before a = random action you've taken from s before s', r = Model(s, a)

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{a} Q(s',a) - Q(s,a))$$

• Foward Search

- Select best action by lookahead
- Build search tree with current state s_t at root
- Use **model** of MDP to look ahead
- No need to solve for whole MDP, just sub-MDP starting from now

• Simulation-based search

- Forward search paradigm using sample-based planning
- Simulate episodes of experience from **now** with the model
- Apply **model-free** RL to simulated episodes
 - * Monte-Carlo control on simulated episodes is called Monte-Carlo Search
 - * Sarsa control on simulated episodes is called **TD Search**

• Simple Monte-Carlo Search

- Given a model M_v and a simulation policy π

- For each action $a \in A$:
 - * Simulate K episodes from current (real) state s_t

$$\{s_t, a, R_{t+1}^k, S_{t+1}^k, A_{t+1}^k, \dots, S_T^k\}_{k=1}^K \sim M_{v,\pi}$$

* Evaluate actions by mean return (Monte-Carlo evaluation)

$$Q(s_t, a) = \frac{1}{K} \sum_{k=1}^{K} G_t \to q_{\pi}(s_t, a)$$

- Select current (real) action with maximum value

$$a_t = \arg\max_{a \in A} Q(s_t, a)$$

- In other words, look at the what you can do from current state (actions you can take)
- Then for each thing you can do from where you are imagine what happens next (sample trajectories)
- Say that the average reward you get on all trajectories following what you do now
 is your estimate for how valuable it is to do that thing now
- Pick the action for what to actually do now by selecting the action that had the highest average return

• Monte-Carlo Tree Search (Evaluation)

- Given a model M_v
- Simulate K episodes from current state s_t using current simulation policy π

$$\{s_t, A_t^k, R_{t+1}^k, S_{t+1}^k, \dots, S_T^k\}_{k=1}^K \sim M_{v,\pi}$$

- Build a search tree containing visited states and actions
- Evaluate states Q(s, a) by mean return of episodes s, a

$$Q(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{u=t}^{T} \mathbf{1}(S_u, A_u = s, a) G_u$$

 After search is finished, select current (real) action with maximum value in search tree

$$a_t = \arg\max_{a \in A} Q(s_t, a)$$

 Leaves you with a rich tree history that can be used later (as compared to Simple Monte-Carlo search)

• Monte-Carlo Tree Search (Simulation)

- In Monte-Carlo Tree Search, the simulation policy π improves
- Each simulation consists of two-phases (in-tree, out-of-tree)
 - * Tree Policy (improves): pick actions to maximize Q(S, A)
 - * **Default Policy** (fixed): pick actions randomly
- Repeat (each simulation):
 - * Evaluate states Q(S, A) by Monte-Carlo evaluation
 - * Improve tree policy, e.g. by ϵ -greedy(Q)
- Monte-Carlo control applied to simulated experience
- Converges on the optimal search tree, $Q(S,A) \rightarrow q_*(S,A)$
- The tree policy is always sending you in the current best (ϵ -greedy) trajectory, according to your current estimates. Those estimates are updated on each trajectory that runs through the state-action pair

• Advantages of Monte-Carlo Tree Search

- Highly selective best-first search
 - * Searches the current best path first rather than trying to search all paths
- Evaluates states dynamically (unlike in DP)
 - * Dynamic programming evaluates whole state-space
 - * Here we are focusing on where we are right now
- Uses sampling to break curse of dimensionality
- Works for "black-box" models (only requires samples)
- Computationally efficient, anytime, parallelisible

• Temporal-Difference Search

- Simulation based search
- Using TD instead of MC (bootstrapping)
- MC tree search applies MC control to sub-MDP from now
- TD search applies SARSA to sub-MDP from now
- Can be very effective in search spaces that are cyclic
- Process
 - * Simulate episodes from the current (real) state s_t
 - * Estimate action-value function Q(s,a)

* For each step of simulation, update action-values by SARSA

$$\Delta Q(S, A) = \alpha(R + \gamma Q(S', A') - Q(S, A))$$

- * Select actions based on action values Q(S,A) $(\epsilon\text{-greedy})$
- * Can also use function-approximation for Q

• Dyna-2

- Agent stores two sets of feature weights
 - * Long-term memory
 - * Short-term (working) memory
- Long-term memory is updated from **real experience** using TD learning
 - * General domain knowledge that applies to any episode
- Short-term memory is updated from **simulated experience** using TD search
 - * Specific local knowledge about the current situation
- Overall value function is sum of long and short-term memories