

AOP605

Complementary Enhancement Mode Field Effect Transistor

General Description

The AOP605 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$ and low gate charge. The complementary MOSFETs form a high-speed power inverter, suitable for a multitude of applications. Standard Product AOP605 is Pb-free (meets ROHS & Sony 259 specifications). AOP605L is a Green Product ordering option. AOP605 and AOP605L are electrically identical.

Features

n-channel p-channel

 $V_{DS}(V) = 30V$ -30V

 $I_D = 7.5A (V_{GS} = 10V) -6.6A (V_{GS} = -10V)$

 $R_{DS(ON)}$

 $< 28m\Omega \text{ (V}_{GS} = 10\text{V)}$ $< 35m\Omega \text{ (V}_{GS} = -10\text{V)}$

 $< 43 \text{m}\Omega \text{ (V}_{GS} = 4.5 \text{V)}$ $< 58 \text{m}\Omega \text{ (V}_{GS} = -4.5 \text{V)}$

PDIP-8

p-channel

Parameter		Symbol	Max n-channel	Max p-channel	Units
Drain-Source Voltage		V_{DS}	30	-30	V
Gate-Source Voltage		V_{GS}	±20 ±20		V
Continuous Drain	T _A =25°C		7.5	-6.6	
Current ^A T _A =70°C		I_D	6	-5.3	Α
Pulsed Drain Current ^B		I _{DM}	30	-30	
	T _A =25°C	$-P_{D}$	2.5	2.5	w
Power Dissipation	T _A =70°C		1.6	1.6	\ \v
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	-55 to 150	°C

Thermal Characteristics: n-channel

Parameter			Max	Units
Maximum Junction-to-Ambient ^A t ≤ 10s		40	50	°C/W
Steady-State	Г∖θЈА	67	80	°C/W
Steady-State	$R_{\theta JL}$	33	40	°C/W
	Steady-State	Steady-State R _{θJA}	t ≤ 10s $R_{\theta JA}$ 40 67	t ≤ 10s $R_{\theta JA}$ 40 50 Steady-State $R_{\theta JA}$ 67 80

Thermal Characteristics: p-channel

Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	38	50	°C/W
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	66	80	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	30	40	°C/W

n-channel MOSFET Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	μА
טאטי	Zero Gate Voltage Brain Guirent	T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	1	1.8	3	V
$I_{D(ON)}$	On state drain current	V _{GS} =10V, V _{DS} =5V	30			Α
		V _{GS} =10V, I _D =7.5A		22.6	28	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J =125°C				1115.2
		V _{GS} =4.5V, I _D =6.0A		33	43	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =7.5A	12	16		S
V_{SD}	Body Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.76	1	V
I _S	Maximum Body-DiodeContinuous Current				4	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			680	820	pF
C _{oss}	Output Capacitance.	V_{GS} =0V, V_{DS} =15V, f=1MHz		102		pF
C _{rss}	Reverse Transfer Capacitance			77		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		3	3.6	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			13.84	16.6	nC
Q_g	Total Gate Charge	\/ -4.5\/ \/ -15\/ -7.5\		6.74	8.1	nC
Q_{gs}	Gate Source Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =7.5A		1.82		nC
Q_{gd}	Gate Drain Charge			3.2		nC
t _{D(on)}	Turn-On DelayTime			4.6		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =2.0 Ω ,		4.1		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =6 Ω		20.6		ns
t _f	Turn-Off Fall Time]		5.2		ns
t _{rr}	Body Diode Reverse Recovery time	I _F =7.5A, dI/dt=100A/μs		16.5	20	ns
Q _{rr}	Body Diode Reverse Recovery charge	I _F =7.5A, dI/dt=100A/μs		7.8		nC

A: The value of R $_{6JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

Rev 3 : June 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 $\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

Figure 7: Gate-Charge characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

p-channel MOSFET Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Тур	Max	Units	
STATIC PARAMETERS							
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	μА	
.033		T _J =55°C			-5	μιν	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.2	-2	-2.4	V	
$I_{D(ON)}$	On state drain current	V_{GS} =-10V, V_{DS} =-5V	30			Α	
		V _{GS} =-10V, I _D =-6.6A		28	35	mΩ	
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J =125°C		37	45	11122	
		V_{GS} =-4.5V, I_D =-5A		44	58	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-6.6A		13		S	
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.76	-1	V	
I_S	Maximum Body-Diode Continuous Current				-4.2	Α	
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance			920	1100	pF	
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		190		pF	
C _{rss}	Reverse Transfer Capacitance			122		pF	
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		3.6	4.4	Ω	
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge (10V)			18.5	22.2	nC	
Q _g (4.5V)	Total Gate Charge (4.5V)	V _{GS} =-10V, V _{DS} =-15V, I _D =-6.6A		9.6	11.6	nC	
Q_{gs}	Gate Source Charge	V _{GS} 10V, V _{DS} 10V, I _D 0.0A		2.7		nC	
Q_{gd}	Gate Drain Charge			4.5		nC	
$t_{D(on)}$	Turn-On DelayTime			7.7		ns	
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =2.3 Ω ,		5.7		ns	
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		20.2		ns	
t _f	Turn-Off Fall Time			9.5		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =-6.6A, dI/dt=100A/μs		20	24	ns	
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-6.6A, dI/dt=100A/μs		8.8		nC	

A: The value of R $_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25 $^{\circ}$ C.

Rev 3 : June 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance