

Epreuve d'optique géométrique Durée : 1h 30min

Exercice (6 points)

On considère un miroir sphérique convexe Σ de sommet S, de centre C et de rayon de courbure $R = \overline{SC}$ et on place un objet AB de hauteur 5cm à une distance $p = \overline{SA} = -15cm$ du sommet S.

- **1-** Déterminer par rapport à S et en fonction de R, les positions des foyers objet et image F et F' du miroir.
- **2-** Avec $R = \overline{SC} = 5cm$ et dans les conditions de l'approximation de Gauss.
 - **a-** Calculer la position $p' = \overline{SA'}$ de l'image A'B' par rapport au sommet S.
 - **b-** Calculer le grandissement linéaire γ ainsi que la hauteur de l'image A'B'. Conclusion.
 - c- On fait déplacer le long de l'axe optique l'objet AB d'une distance infinitésimale dp, ce qui entraine un déplacement de dp de l'image A'B'. Exprimer alors le grandissement axial g en fonction de γ . De combien elle est déplacée alors l'image et dans quel sens ?
- **3-** On fait maintenant tendre le rayon de courbure R du miroir Σ vers l'infini.
 - a- Quel est le système optique simple ainsi obtenu et que peut-t-on dire de son stigmatisme
 - **b-** Quelles sont alors les nouvelles positions des foyers F et F'. Qu'appelle-t-on alors ce type de système optique.
 - **c-** Déterminer la nouvelle position de l'image *A'B'*. Conclusion.

Problème (14 points)

- A)- Une lentille mince convergente L_I , baignée par l'air d'indice 1, donne d'un objet AB réel de hauteur 1cm, une image $A'_1B'_1$ réelle, renversée et trois fois plus grande que l'objet, située à la distance $d = \overline{AA'_1} = 32cm$ de ce dernier.
- 1- Représenter graphiquement à l'échelle 1cm sur le papier pour 2 cm horizontalement et 1cm sur le papier pour 1 cm verticalement, l'objet AB et l'image $A'_1B'_1$ à la distance considérée.
- a- En traçant des rayons particuliers, chercher les positions du centre optique O_I de la lentille et de ses foyers objet et image F_1 et F'_1 et les placer.
- **b-** Que valent alors les positions de l'objet et de l'image $\overline{O_1A}$ et $\overline{O_1A'_1}$ et les distances focales objet et image $f_1 = \overline{O_1F_1}$ et $f'_1 = \overline{O_1F'_1}$ de cette lentille?
- **2-** On se propose maintenant de retrouver par calcul les résultats de la question *1)-b* tout en s'appuyant sur les données initiales.
 - **a-** Rappeler la définition du grandissement noté γ_1 . Dans quelles conditions avons-nous $\gamma_1 < 0$ et $|\gamma_1| > 1$?
 - **b-** Calculer le grandissement, puis déduisez que $\overline{O_1 A}$ a pour expression : $\overline{O_1 A} = \frac{A A_1'}{(\gamma_1 1)}$. Une

démonstration claire est attendue. Calculer ensuite $\overline{O_1A}$.

- **c-** En déduire la valeur de la distance lentille-image $O_1A'_1$.
- **d-** Rappeler la relation de conjugaison d'une lentille mince convergente. Que valent alors par calcul les distances focales objet et image f_1 et f'_1 de cette lentille ?
- **e-** En déduire sa vergence V_1 .
- **3-**Comparer les résultats obtenus graphiquement et par calcul pour $\overline{O_1A}$, $\overline{O_1A'_1}$, f_1 et f'_1 . Dans le cas où vous avez obtenu des écarts, expliquez leurs origines (sources d'erreurs).

- B)- On associe à la lentille L_1 une deuxième lentille mince convergente L_2 de foyers objet et image F_2 et F'_2 , de distances focales objet et image f_2 et f'_2 et de centre optique O_2 telle que la distance $\overline{O_1O_2} = e$. L'ensemble du doublet ainsi formé est baigné par l'air d'indice1 et on désignera par $\Delta = \overline{F'_1F_2}$ l'intervalle optique du doublet. Ce doublet est donc équivalent à un système centré de foyers principaux objet et image F et F', de points principaux objet et image F et F', de points principaux objet et image F et F' et de distances focales objet et image F et $F' = \overline{F'_1F'_2}$.
- $\mathscr{N}\mathscr{D}$: Dans tout le problème on exprimera f_1 en fonction de f'_1 et f_2 en fonction de f'_2 .
 - **1-** Exprimer Δ en fonction de e, f'_1 et f'_2 .
 - 2- Déterminer en fonction de Δ et f'_1 la position $\overline{F_1F}$ du foyer principal objet F du système centré équivalent au doublet par rapport à F_1 . En déduire l'expression de $\overline{O_1F}$ en fonction de Δ et f'_1
 - 3- Déterminer en fonction de Δ et f'_2 la position $\overline{F'_2F'}$ du foyer principal image F' du système centré équivalent au doublet par rapport à F'_2 . En déduire l'expression de $\overline{O_2F'}$ en fonction de Δ et f'_2 .
 - **4-** Donner les distances focales principales objet et image f et f' du système centré équivalent au doublet en fonction de f'_1 , f'_2 et Δ . Conclusion
 - 5- Déterminer en fonction de f'_1 , f'_2 et Δ , la distance $\overline{F_1H}$ donnant la position du point principal objet H du système centré équivalent au doublet par rapport à F_1 . En déduire l'expression de $\overline{O_1H}$ en fonction de f'_1 , f'_2 et Δ .
 - **6-** Déterminer en fonction de f'_1 , f'_2 et Δ , la distance $\overline{F_2H'}$ donnant la position du point principal image H' du système centré équivalent au doublet par rapport à F'_2 . En déduire l'expression $\overline{O_2H'}$ en fonction de f'_1 , f'_2 et Δ .
 - 7- En déduire en fonction de f'_1 , f'_2 et Δ , les distances $\overline{O_1N}$ et $\overline{O_2N'}$ donnant les positions des points nodaux objet N et image N' du système centré équivalent au doublet, respectivement par rapport à O_1 et O_2 .
 - **8-** Applications numériques : On considère que le doublet ainsi formé est de symbole (3, 2, 3) et on donne $f'_2 = 6cm$.
 - **a-** Calculer en cm les valeurs de Δ , $\overline{O_1F}$, $\overline{O_2F}$, $\overline{O_1H}$ et $\overline{O_2H}$.
 - **b-** Quelles sont la hauteur et la position par rapport O_2 , de l'image définitive $A'_2 B'_2$ de l'objet AB, ainsi obtenue par le doublet.
 - 9- Tracer le rayon émergent correspondant à un rayon incident parallèle à l'axe optique et retrouver graphiquement, à l'échelle unité (1cm \rightarrow 1cm), les positions du foyer principal image F' et du plan principal image (H') du système centré équivalent au doublet.
 - 10-Tracer le rayon incident correspondant à un rayon émergent parallèle à l'axe optique et retrouver graphiquement, à l'échelle unité (1cm \rightarrow 1cm), les positions du foyer principal objet F et du plan principal objet (H) du système centré équivalent au doublet.

 $\underline{\mathscr{N}\mathscr{B}}$: On peut répondre aux questions de B)- indépendamment de celles du A)-

Corrigé de l'épreuve de l'optique géométrique

Exercice I (6 points)

$$\overline{\mathbf{1-1,00}} \quad \overline{SF} = \frac{R}{2} \quad \overline{\mathbf{0,50}} \quad \overline{SF'} = \frac{R}{2} \quad \overline{\mathbf{0,50}}$$

2--
$$\boxed{1,00}$$
 $a - \frac{1}{p} + \frac{1}{p'} = \frac{2}{R} \Rightarrow p' = \frac{R \times p}{2p - R}$. $\boxed{0,50}$ $p' = \frac{15}{7} = 2,14cm \boxed{0,50}$

1,50 c-
$$g = \frac{dp'}{dp}$$
. En différentiant la relation de conjugaison on a $g = \frac{dp'}{dp} = -\frac{p'^2}{p^2} = -\gamma^2$ **0,50**

 \Rightarrow g < 0; Donc l'image se déplace toujours dans le sens contraire de l'objet 0.50 et d'une distance $dp' = -\gamma^2 \times dp$ 0,50

a- miroir plan 0,25 qui présente un stigmatise rigoureux 0,25
b- Les foyers objet et image Fet F 'sont rejetés à l'infini 0,25, le miroir plan est donc un système afocal 0,25

0.5 c- $\frac{1}{p} + \frac{1}{p'} = 0 \Rightarrow p' = -p = 15cm$ **0.25**. L'image et l'objet sont symétriques par rapport au

miroir plan_{0,25}

Problème(14 points)

A)-

1- 0,50 a-

1,00 b-On lit:
$$\overline{O_1 A} = -8cm \boxed{0,25} \overline{O_1 A'} = 24cm \boxed{0,25}$$
; $f_1 = \overline{O_1 F_1} = -6cm \boxed{0,25}$; $f'_1 = \overline{O_1 F'_1} = 6cm \boxed{0,25}$

a- Le grandissement noté
$$\gamma_I$$
 est $\gamma_1 = \frac{\overline{A'_1 B'_1}}{\overline{AB}} = \frac{\overline{O_1 A'_1}}{\overline{O_1 A}}$ 0,25

- Si $\gamma_1 < 0$: l'image est renversée par rapport à l'objet. 0,25 - Si $|\gamma_1 > 1$: l'image est plus grande que 1'objet 0,25.

1.5 b- Le grandissement vaut $\gamma_1 = -3$

$$\gamma_{1} = \frac{\overline{O_{1}A'_{1}}}{\overline{O_{1}A}} \Leftrightarrow \frac{\overline{O_{1}A} + \overline{AA'_{1}}}{\overline{O_{1}A}} \Leftrightarrow \gamma_{1} \times \overline{O_{1}A} = \overline{O_{1}A} + \overline{AA'_{1}} \Rightarrow (\gamma_{1} - 1)\overline{O_{1}A} = \overline{AA'_{1}} \Rightarrow \overline{O_{1}A} = \frac{\overline{AA'_{1}}}{(\gamma_{1} - 1)} \boxed{1,00}$$

 $O_1A = -8cm$ **0,50**

$$\boxed{\mathbf{0.75}} \quad \mathbf{c-} \quad \overline{AA'_1} = \overline{AO_1} + \overline{O_1A'_1} = \overline{O_1A'_1} - \overline{O_1A} \Rightarrow \overline{O_1A'_1} = \overline{AA'_1} + \overline{O_1A} \boxed{\mathbf{0.50}} \quad \Rightarrow \overline{O_1A'_1} = 24cm \boxed{\mathbf{0.50}}$$

0.75 d-
$$\frac{1}{O.A'} - \frac{1}{O.A} = \frac{1}{f'} \Rightarrow f'_1 = \frac{\overline{O_1 A} \times \overline{O_1 A'_1}}{O.A - O.A'} = \frac{-8 \times 24}{-8 - 24} = 6cm$$
 0.50

Les indices des milieux extrêmes sont égaux ce qu implique $f_1 = -f'_1 = -6cm$ 0,25

0,75 e- La vergence de la lentille
$$L_I$$
 est $V_1 = \frac{1}{f_1'}$ **0,50** $V_1 = \frac{1}{6.10^{-2}} = 16,7\delta$ **0,25**

0,5 3- les résultats obtenus par les deux méthodes doivent être égaux ; Si jamais il y a des écarts, les sources d'erreur sont : arrondis de calcul, précision des tracés, épaisseur des traits de crayon

0,50 1-
$$\Delta = \overline{F'_1 F_2} = \overline{F'_1 O_1} + \overline{O_1 O_2} + \overline{O_2 F_2} = -f'_1 + e + f_2 = -f'_1 + e - f'_2$$

1,002- Pour construire le point focal objet F du doublet, nous considérons le schéma synoptique suivant :

$$F \xrightarrow{L_1} F_2 \xrightarrow{L_2} image à l'infini$$

F est l'objet qui donne, à travers la première lentille, une image au point focal objet F_2 de la seconde lentille. En utilisant la relation de conjugaison de Newton pour les points F_2 et F_3 conjugués par F_4 :

$$\overline{F_1F} \times \overline{F'_1F_2} = f_1f'_1 = -f'_1^2 \qquad \Rightarrow \overline{F_1F} = \frac{f_1 \times f'_1}{\overline{\Delta}} = \frac{-f'_1^2}{\Delta}$$

$$\overline{F_1F} = \overline{F_1O_1} + \overline{O_1F} = \frac{-f'_1^2}{\Delta} \Rightarrow \overline{O_1F} = -\left(f'_1 + \frac{f'_1^2}{\Delta}\right) \boxed{0,50}$$

1,00 3- Pour le point focal image F' du doublet, nous considérons le schéma synoptique suivant :

F' est l'image à travers la seconde lentille du point focal image F'_{1} de la première lentille. En appliquant la relation de conjugaison de Newton aux points F'_{1} et F', conjugués par L_{2} :

$$\overline{F_{2}F'_{1}} \times \overline{F'_{2}F'} = f_{2} \times f'_{2} = -f'_{2}^{2} \qquad \Rightarrow \overline{F'_{2}F'} = -\frac{f_{2} \times f'_{2}}{\Delta} = \frac{f'_{2}^{2}}{\Delta} \boxed{0,50}$$

$$\overline{F'_{2}F'} = \overline{F'_{2}O_{2}} + \overline{O_{2}F'} = \frac{f'_{2}^{2}}{\Delta} \Rightarrow \overline{O_{2}F'} = f'_{2} + \frac{f'_{2}^{2}}{\Delta} \boxed{0,50}$$

$$\boxed{1,50} \quad 4 - f = \frac{f_{1}f_{2}}{\Delta} = \frac{f'_{1}f'_{2}}{\Delta} \boxed{0,50} \quad \text{et} \quad f' = -\frac{f'_{1}f'_{2}}{\Delta} \boxed{0,50} \quad \text{Conclusion} \quad f' = -f \boxed{0,50}$$

$$\boxed{1,00} \quad 5 - \overline{F_{1}H} = \overline{F_{1}F} + \overline{FH} = \overline{F_{1}F} - \overline{HF} = \frac{-f'_{1}}{\Delta} - \frac{f'_{1}f'_{2}}{\Delta} = -\frac{f'_{1}}{\Delta} (f'_{1} + f'_{2}) \boxed{0,50}$$

$$\overline{F_{1}H} = \overline{F_{1}O_{1}} + \overline{O_{1}H} \qquad \Rightarrow \overline{O_{1}H} = \overline{F_{1}H} - F_{1}O_{1} = -\frac{f'_{1}}{\Delta} (f'_{1} + f'_{2}) + f_{1} = -\frac{f'_{1}}{\Delta} (f'_{1} + f'_{2}) - f'_{1} \boxed{0,50}$$

1,00 7- Les indices des milieux extrêmes sont identiques $N = H \Rightarrow \overline{O_1 N} = \overline{O_1 H} = -\frac{f'_1}{\Delta} (f'_1 + f'_2) + f'_1 = 0.50$

Les indices des milieux extrêmes sont identiques $N' \equiv H' \Rightarrow \overline{O_2 N'} = \overline{O_2 H'} = \frac{f'_2}{\Delta} (f'_1 + f'_2) + f'_2 0,50$

1,50 8- a-
$$\Delta = -f'_1 + e + f_2 = -f'_1 + e - f'_2 = -6 + 4 - 6 = -8cm$$
 0,25
$$\overline{O_1 F} = -\left(f'_1 + \frac{f'_1^2}{\Delta}\right) = -\left(6 + \frac{36}{-8}\right) = -1,5cm$$
 0,25

$$\overline{O_2 F'} = f'_2 + \frac{f'_2^2}{\Delta} = 6 + \frac{36}{-8} = 1,5cm \quad 0,25$$

$$\overline{O_1 H} = -\frac{f'_1}{\Delta} (f'_1 + f'_2) - f'_1 = \frac{6}{8} \times 12 - 6 = 3cm \quad 0,25$$

$$\overline{O_2 H'} = \frac{f'_2}{\Delta} (f'_1 + f'_2) + f'_2 = -\frac{6}{8} \times 12 + 6 = -3cm \quad 0,25$$

1,00 b-

$$AB \xrightarrow{\quad L_1 \quad} A_1B_1 \xrightarrow{\quad L_2 \quad} A_2B_2$$

Nous avons donc calculé:

$$\overline{O_1 A} = -8cm$$
 et $\overline{O_1 A'_1} = 24cm$

Avec $\overline{O_2A'_1} = \overline{O_2O_1} + \overline{O_1A'_1} = -4 + 24 = 20cm$, il vient pour les points A'_1 , A'_2 conjugués à travers L_2 :

$$\frac{1}{O_2 A'_2} - \frac{1}{O_2 A'_1} = \frac{1}{f'_2}$$

Soit:
$$\overline{O_2 A'_2} = \frac{f_2' \times \overline{O_2 A'_1}}{f_2' + \overline{O_2 A'_1}} = \frac{6 \times 20}{6 + 20} = 4,615 cm$$
 0,50

$$\gamma = \frac{\overline{A'_2 B'_2}}{\overline{AB}} = \frac{\overline{O_1 A'_1}}{\overline{O_1 A}} \times \frac{\overline{O_2 A'_2}}{\overline{O_2 A'_1}} = \frac{24 \times 4,615}{(-8) \times 20} = 0,692 \text{ ce qui implique}$$

$$\overline{A'_2 B'_2} = 0,692 \times \overline{AB} = 0,692cm \quad \boxed{0,50}$$

0,50 9-

0,50 10-

