Chapitre 4

Trigonométrie

I. Radian et cercle trigonométrique

1) Le radian

Définition:

On appelle **radian** (symbole : rad) la mesure d'un angle qui intercepte un arc dont la longueur est égale à son rayon R.

Remarque:

Cette définition ne dépend pas du rayon R de l'arc.

Le rapport de la longueur de l'arc par le rayon correspondant est

constant:
$$\frac{L_1}{R_1} = \frac{L_2}{R_2}$$

Propriétés:

- La longueur l d'un arc de cercle intercepté par un angle α , exprimé en radians, est donné par : $l=R\alpha$
- La mesure en radians d'un angle plein (tour complet) est de 2π radians.

Démonstrations :

L'angle de mesure α radians intercepte l'arc de longueur l.
 L'angle de mesure 1 radian intercepte l'arc de longueur R.
 Donc par proportionnalité, on obtient :

$$\frac{\alpha}{1}$$

Donc: $l = R \alpha$

• Ainsi pour $l=2\pi R$, on a $\alpha=2\pi$

2) Cercle trigonométrique

Définition:

Le plan est dit **orienté** lorsque l'on a choisi un sens positif de rotation.

Remarque:

Dans le plan, par convention, on définit le sens positif comme l'inverse de celui des aiguille d'une montre. Il est appelé **sens trigonométrique**.

Définition:

Dans le plan muni d'un repère $(O; \vec{i}, \vec{j})$ et orienté, le **cercle trigonométrique** est le cercle de centre O et de rayon 1.

3) Repérage sur le cercle trigonométrique

Dans le plan muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$, on considère le cercle trigonométrique \mathscr{C} .

Soit A le point tel que $\overrightarrow{OA} = \overrightarrow{i}$ et d la droite orientée, perpendiculaire à l'axe perpendiculaire à l'axe des abscisses, qui passe par A, munie du repère $(A; \overrightarrow{j})$.

En « enroulant » cette droite d autour du cercle $\mathscr C$, on obtient une correspondance entre un point N de la droite d et un unique point M du cercle $\mathscr C$.

Remarque:

Le point A_1 de d d'abscisse 2π das le repère $(A; \vec{j})$ se retrouve ainsi en A.

Exemple:

Sur la figure ci-contre, le point N d'abscisse 3 sur la droite orientée d, se retrouve, après « enroulement » de d sur \mathcal{C} , en M tel que la longueur de l'arc \widehat{AM} est égale à la longueur AN.

Propriété:

Tout point de $\mathscr C$ est l'image d'une infinité de réels. Si t est l'un d'eux, les autres sont réels $t+k\times 2\pi$, où k est un entier relatif $(k\in \mathbb Z)$.

Démonstration:

Comme le cercle trigonométrique est de rayon 1, son périmètre est de longueur 2π . Le point de d d'abscisse $t+2\pi$ se retrouve donc, après enroulement, au même endroit que le point de d d'abscisse t.

Il en est de même si on ajoute à t un multiple de 2π .

II. Mesure d'un angle orienté et mesure principale

1) Angle orienté de vecteurs unitaires

Définition:

Soit \vec{u} un vecteur et deux points A et B tels que $\vec{u} = \overrightarrow{AB}$.

On appelle **norme** de \vec{u} le réel positif ou nul, noté $\|\vec{u}\|$, défini par $\|\vec{u}\| = AB$.

Définition:

Soit \vec{u} et \vec{v} deux vecteurs de norme 1 (vecteurs unitaires).

Dans le plan orienté, muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$, on considère:

- les points M_1 et M_2 tels que $\overrightarrow{OM}_1 = \vec{u}$ et $\overrightarrow{OM}_2 = \vec{v}$,
- le cercle trigonométrique $\mathscr C$
- le point A tel que $\overrightarrow{O}A = \overrightarrow{i}$
- d la droite orientée, perpendiculaire à l'axe des abscisses, qui passe par A, muni du repère $(A; \vec{j})$.

Soit N_1 et N_2 deux points de la droite d qui, par enroulement de cette droite autour du cercle \mathscr{C} , se retrouvent respectivement en M_1 et M_2 .

Dans le repère $(A; \vec{j})$, notons n_1 l'abscisse de N_1 et n_2 l'abscisse de N_2 .

Une mesure de l'angle orienté (\vec{u}, \vec{v}) est la différence $n_2 - n_1$.

Exemple:

Sur la figure ci dessus, on a :

$$(\vec{i},\vec{u}) = \frac{\pi}{6} - 0 = \frac{\pi}{6}$$

$$(\vec{i};\vec{u}) = \frac{\pi}{6} - 0 = \frac{\pi}{6} \qquad ; \qquad (\vec{i};\vec{v}) = \frac{3\pi}{4} - 0 = \frac{3\pi}{4} \; ; \qquad (\vec{u};\vec{v}) = \frac{3\pi}{4} - \frac{\pi}{6} = \frac{7\pi}{12}$$

$$(\vec{u}; \vec{v}) = \frac{3\pi}{4} - \frac{\pi}{6} = \frac{7\pi}{12}$$

Conventions:

- La notation (\vec{u}, \vec{v}) désignera l'angle orienté ou une mesure de l'angle orienté.
- Codage

Propriété:

Si α est une mesure de l'angle orienté $(\vec{u}; \vec{v})$, les autres mesures de $(\vec{u}; \vec{v})$ sont égales à $\alpha + 2k\pi$ avec k un entier relatif quelconque.

Démonstration:

Soit N_1 et N_1' deux points différents de la droite d qui se retrouvent après enroulement en M_1 , et N_2 et N_2' deux points différents de la droite d qui se retrouvent après enroulement en M_2' . n_2-n_1 et $n_2'-n_1'$ sont donc deux mesures de $(\vec{u}\,;\vec{v})$.

On a donc vu que $n_1' = n_1 + 2k_1\pi$ avec k_1 entier relatif et $n_2' = n_2 + 2k_2\pi$ avec k_2 entier relatif. D'où $n_2' - n_1' = n_2 - n_1 + 2(k_2 - k_1)\pi$.

Comme k_2-k_1 est un entier relatif, les mesures $n_2'-n_1'$ et n_2-n_1 diffèrent de $2k\pi$ avec k entier relatif.

Exemple:

Dans l'exemple précédent, on a :

$$(\vec{i}; \vec{u}) = \frac{\pi}{6} - 0 = \frac{\pi}{6}$$
 et donc également $(\vec{i}; \vec{u}) = \frac{\pi}{6} + 2\pi = \frac{7\pi}{6}$ ou encore $(\vec{i}; \vec{u}) = \frac{\pi}{6} - 2\pi = \frac{-5\pi}{6}$

2) Angle orienté de vecteurs quelconques

Définition:

Soit \vec{u}_1 et \vec{v}_1 deux vecteurs non nuls.

Les deux vecteurs $\vec{u} = \frac{1}{\|\vec{u}_1\|} \times \vec{u}_1$ et $\vec{v} = \frac{1}{\|\vec{v}_1\|} \times \vec{v}_1$ sont de norme 1.

Une mesure de l'angle orienté (\vec{u}, \vec{v}) est égale à une mesure de l'angle orienté (\vec{u}, \vec{v}) .

Remarque:

La notion d'angle des deux vecteurs \vec{u} et \vec{v} n'est définie que lorsque ces vecteurs sont non nuls.

3) Mesure principale d'un angle orienté

Définition:

Parmi toutes les mesures d'un angle orienté, celle qui se situe dans l'intervalle $]-\pi;\pi]$ est appelée la mesure principale.

Exemple:

On considère l'angle orienté $(\overrightarrow{OM}; \overrightarrow{ON})$ et une mesure de l'angle est $(\overrightarrow{OM}; \overrightarrow{ON}) = 3\pi$.

On sait que π , $-\pi$, 5π sont également des mesures de $(\overrightarrow{OM}; \overrightarrow{ON})$.

La mesure principale de $(\overrightarrow{OM}; \overrightarrow{ON})$ est π .

4) Relation de Chasles

Propriété (admise):

Soit O, M, N et P quatre points du plan tels que $O \neq M$, $O \neq N$ et $O \neq P$.

On a la relation suivante:

$$(\overrightarrow{OM}; \overrightarrow{OP}) + (\overrightarrow{OP}; \overrightarrow{ON}) = (\overrightarrow{OM}; \overrightarrow{ON}) + 2 k \pi$$

où k est un entier relatif quelconque.

Cette propriété est la relation de Chasles.

Remarques:

- La relation de Chasles permet :
 - o de décomposer un angle de vecteurs.
 - o de simplifier une somme de vecteurs.
- Soit *O*, *M* et *N* trois points deux à deux distincts. La relation de Chasles permet d'écrire :

$$(\overrightarrow{OM}; \overrightarrow{ON}) + (\overrightarrow{ON}; \overrightarrow{OM}) = 2 k \pi$$

D'où, en parlant de mesure principale :

$$(\overrightarrow{OM}, \overrightarrow{ON}) = -(\overrightarrow{ON}, \overrightarrow{OM})$$

Exemple:

Soit *A*, *B* et *C* trois points quelconques distincts deux à deux. Calculer la somme des mesures des trois angles orientés codés sur la figure.

$$(\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{BA}; \overrightarrow{BC}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{BA}; \overrightarrow{AB}) + (\overrightarrow{AB}; \overrightarrow{BC}) + 2k_1\pi + (\overrightarrow{CB}; \overrightarrow{BC}) + (\overrightarrow{BC}; \overrightarrow{CA}) + 2k_2\pi + (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{BA}; \overrightarrow{BC}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{AC}; \overrightarrow{AB}) + \pi + (\overrightarrow{AB}; \overrightarrow{BC}) + \pi + (\overrightarrow{BC}; \overrightarrow{CA}) + 2k_3\pi + (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{BA}; \overrightarrow{BC}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{AB}; \overrightarrow{BC}) + (\overrightarrow{BC}; \overrightarrow{CA}) + 2k_4\pi + (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{BA}; \overrightarrow{BC}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{AC}; \overrightarrow{BC}) + (\overrightarrow{BC}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{BA}; \overrightarrow{BC}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{AC}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{BA}; \overrightarrow{BC}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{AC}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{BA}; \overrightarrow{BC}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{AC}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{AC}; \overrightarrow{AB}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{CB}; \overrightarrow{CA}) = (\overrightarrow{CA}; \overrightarrow{CA}) + 2k\pi + (\overrightarrow{CB}; \overrightarrow{CA}) + (\overrightarrow{C$$

5) Angle orienté et angle géométrique

Un angle de vecteurs $(\overrightarrow{OM}; \overrightarrow{ON})$ correspond à l'angle « géométrique » \widehat{MON} , auquel on ajoute l'information supplémentaire de son orientation par rapport au sens positif défini dans le plan. Si α est la mesure principale de l'angle $(\overrightarrow{OM}; \overrightarrow{ON})$ alors $|\alpha|$ est la mesure de l'angle géométrique \widehat{MON} .

Exemple:

Dans le triangle équilatéral BAC, l'angle géométrique \widehat{BAC} vaut $\frac{\pi}{3}$.

La mesure principale de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$ vaut $\frac{\pi}{3}$.

La mesure principale de l'angle $(\overrightarrow{AC}; \overrightarrow{AB})$ vaut $-\frac{\pi}{3}$.

III. Cosinus et sinus d'un angle

1) Cosinus et sinus d'un angle orienté

Définitions:

Soit M l'image d'un réel α sur le cercle trigonométrique \mathscr{C} .

- Le **cosinus** de α , noté $\cos \alpha$, est l'abscisse de M.
- Le **sinus** de α , noté $\sin \alpha$, est l'ordonnée de M.

Remarque:

Les coordonnées du point M, situé sur le cercle trigonométrique, sont $(\cos \alpha; \sin \alpha)$.

Propriétés:

Pour tout réel α et pour tout entier relatif k:

- $\cos^2 \alpha + \sin^2 \alpha = 1$
- $-1 \leq \cos \alpha \leq 1$
- $-1 \le \sin \alpha \le 1$
- $\cos(\alpha + k \times 2\pi) = \cos\alpha$
- $\sin(\alpha + k \times 2\pi) = \sin \alpha$

Valeurs particulières

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \alpha$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Démonstrations :

- Soit K le projeté orthogonal de M sur l'axe $(O; \vec{j})$. Le théorème de Pythagore donne $OK^2 + KM^2 = OM^2$ soit $\sin^2 \alpha + \cos^2 \alpha = 1$.
- Le cercle trigonométrique est de rayon 1 ; on a donc $-1 \le \cos \alpha \le 1$ et $-1 \le \sin \alpha \le 1$.

Définitions:

Soit \vec{u} et \vec{v} deux vecteurs **non nuls** et α une mesure quelconque de l'angle $(\vec{u}; \vec{v})$.

- Le cosinus de l'angle orienté $(\vec{u}; \vec{v})$ est le cosinus d'une de ses mesures et se note $\cos(\vec{u}; \vec{v})$.
- Le sinus de l'angle orienté (\vec{u}, \vec{v}) est le sinus d'une de ses mesures et se note $\sin(\vec{u}, \vec{v})$.

Remarque:

On notera $\cos \alpha$ pour $\cos(\vec{u}; \vec{v})$ et $\sin \alpha$ pour $\sin(\vec{u}; \vec{v})$ où α est une mesure, en radians, de l'angle orienté $(\vec{u}; \vec{v})$.

Propriétés:

Dans le repère $(O; \vec{i}, \vec{j})$, A est un point distinct de O, tel qu'une mesure, en radians, de l'angle $(\vec{i}, \vec{O}A)$ soit égale à α .

Les coordonnées de A sont $(OA\cos\alpha; OA\sin\alpha)$.

Démonstration:

Soit M le point d'intersection de la demi-droite [OA) et du cercle trigonométrique.

Les coordonnées de M sont $(\cos \alpha; \sin \alpha)$.

Les coordonnées du vecteur \overrightarrow{OM} sont donc $(\cos\alpha;\sin\alpha)$ Or $\overrightarrow{OA} = OA \times \overrightarrow{OM}$ donc les coordonnées du vecteur \overrightarrow{OA} sont $(OA\cos\alpha;OA\sin\alpha)$, qui sont également les coordonnées du point A.

2) Cosinus et sinus d'angles associés

Propriétés:

Pour tout nombre réel α,

$$\cos(-\alpha) = \cos \alpha$$
et
$$\sin(-\alpha) = -\sin \alpha$$

Démonstration :

Les angles de mesure α et - α sont symétriques par rapport à l'axe des abscisses.

Propriétés :

Pour tout nombre réel α,

$$\cos(\alpha + \pi) = -\cos\alpha$$
et
$$\sin(\alpha + \pi) = -\sin\alpha$$

Démonstration:

Les angles de mesure α et $\alpha+\pi$ sont symétriques par rapport à l'origine.

Propriétés:

Pour tout nombre réel α,

$$\cos(\pi - \alpha) = -\cos\alpha$$
et
$$\sin(\pi - \alpha) = \sin\alpha$$

Démonstration :

Les angles de mesure α et π - α sont symétriques par rapport à l'axe des ordonnées.

Propriétés:

Pour tout nombre réel α,

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$
et
$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

Démonstration :

Les angles de mesure α et $\frac{\pi}{2} - \alpha$ sont symétriques par rapport à la première bissectrice.

Propriétés:

Pour tout nombre réel α,

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$
et
$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

Démonstration :

Les angles de mesure $\frac{\pi}{2}$ + α et $\frac{\pi}{2}$ - α sont symétriques par rapport à

l'axe des ordonnées. En effet, on a
$$\frac{\pi}{2} + \alpha = \pi - \left(\frac{\pi}{2} - \alpha\right)$$
.

Donc
$$\cos\left(\frac{\pi}{2} + \alpha\right) = \cos\left(\pi - \left(\frac{\pi}{2} - \alpha\right)\right) = -\cos\left(\frac{\pi}{2} - \alpha\right) = -\sin\alpha$$

et $\sin\left(\frac{\pi}{2} + \alpha\right) = \sin\left(\pi - \left(\frac{\pi}{2} - \alpha\right)\right) = \sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$

IV. Équation trigonométrique

1) <u>Équations</u> cos x = cos a

Propriété:

Soit a un nombre réel et l'équation d'inconnue x, $\cos x = \cos a$.

- Si $\cos a$ est différent de 1 ou de -1, les solutions de l'équation $\cos x = \cos a$ sont les nombres $a + 2k\pi$ et $-a + 2k'\pi$ où k et k' sont des entiers relatifs quelconques.
- Si $\cos a = 1$, l'équation est $\cos x = 1$ et ses solutions sont les nombres $2 k \pi$ où k est un entier relatif quelconque.
- Si $\cos a = -1$, l'équation est $\cos x = -1$ et ses solutions sont les nombres $\pi + 2k\pi$ où k est un entier relatif quelconque.

Démonstration:

• Si $|\cos a| < 1$:

Soit H le point de $\begin{bmatrix} AA' \end{bmatrix}$ d'abscisse $\cos a$. La perpendiculaire en H à la droite AA' coupe le cercle trigonométrique en AB' associés aux réels AB' et AB'

Les solutions sont donc les réels $a + 2k\pi$ et $-a + 2k\pi$ où $k \in \mathbb{Z}$.

• Si $\cos a = 1$, alors H est en A.

Les solutions sont donc les réels $0 + 2k \pi = 2k \pi$ où $k \in \mathbb{Z}$.

• Si $\cos a = -1$, alors H est en A'.

Les solutions sont donc les réels $\pi + 2k\pi$ où $k \in \mathbb{Z}$.

2) <u>Équations</u> $\sin x = \sin a$

Propriété:

Soit a un nombre réel et l'équation d'inconnue x, $\sin x = \sin a$.

- Si $\sin a$ est différent de 1 ou de -1, les solutions de l'équation $\sin x = \sin a$ sont les nombres $a + 2k\pi$ et $\pi a + 2k'\pi$ où k et k' sont des entiers relatifs quelconques.
- Si $\sin a = 1$, l'équation est $\sin x = 1$ et ses solutions sont les nombres $\frac{\pi}{2} + 2k\pi$ où k est un entier relatif quelconque.
- Si $\sin a = -1$, l'équation est $\sin x = -1$ et ses solutions sont les nombres $-\frac{\pi}{2} + 2k\pi$ où k est un entier relatif quelconque.

Démonstration:

• Si $|\sin a| < 1$:

Soit K le point de $\begin{bmatrix} BB' \end{bmatrix}$ d'ordonnée $\sin a$. La perpendiculaire en K à la droite BB' coupe le cercle trigonométrique en BB' associés aux réels BB' et BB'.

Les solutions sont donc les réels $a + 2k\pi$ et $\pi - a + 2k\pi$ où $k \in \mathbb{Z}$.

• Si $\sin a = 1$, alors K est en B.

Les solutions sont donc les réels $\frac{\pi}{2} + 2k\pi$ où $k \in \mathbb{Z}$.

• Si $\sin a = -1$, alors K est en B'. Les solutions sont donc les réels $-\frac{\pi}{2} + 2k\pi$ où $k \in \mathbb{Z}$.

