Ogniwa elektrochemiczne

Ogniwa elektrochemiczne

BATERIE

PIERWOTE

PRIMARY

NON-RECHARGEABLE

AKUMULATORY

WTÓRNE

SECONDARY

RECHARGEABLE

Schemat budowy baterii

Budowa baterii

Budowa akumulatora

Cylindrical lithium-ion battery

Zasada działania akumulatora

ŁADOWANIE

ROZŁADOWANIE

Interkalacja

Materialy katodowe

Podstawowe pojęcia

Nazwa polska	Nazwa angielska	Opis	Jednostka
pojemność grawimetryczna	gravimetric capacity	ładunek możliwy do zmagazynowania w urządzeniu na jednostkę masy	Ah/kg
pojemność wolumetryczna	volumetric capacity	ładunek możliwy do zmagazynowania w urządzeniu na jednostkę objętości	Ah/I
energia grawimetryczna	gravimetric energy	energia możliwa do zmagazynowania w urządzeniu na jednostkę masy	Wh/kg
energia wolumetryczna	volumetric energy	energia możliwa do zmagazynowania w urządzeniu na jednostkę objętości	Wh/I
moc grawimetryczna	gravimetric power	moc możliwa do uzyskania z urządzenia na jednostkę masy	W/kg
moc wolumetryczna	volumetric power	moc możliwa do uzyskania z urządzenia na jednostkę objętości	W/I

Charakterystyczne jednostki

Amperogodzina (ładunek, jednostka "pojemności") Ładunek, który gromadzi się w wyniku przepływu prądu o natężeniu jednego ampera przez jedną godzinę

$$1 \text{ Ah} = 1 \text{ A} \cdot 1 \text{ h} = 1 \text{ A} \cdot 3600 \text{ s} = 3600 \text{ A} \cdot \text{s} = 3600 \text{ C}$$

C (jednostka natężenia prądu) – prąd "jednogodzinny" Natężenie prądu prowadzące do rozładowania baterii w ciągu jednej godziny

```
Niech Q = 2000 \text{ mAh}

C = 2000 \text{ mA} = 2 \text{ A}

10C = 20 \text{ A}

C/10 = 200 \text{ mA (prad ,,dziesięciogodzinny'')}
```

Teoretyczna pojemność grawimetryczna

Zadanie 1

lle wynosi teoretyczna wartość pojemności dla $\text{Li}_{x}\text{V}_{2}\text{O}_{5}$: a) dla 0 < x < 1

$$M_{\rm V} = 50,9415; \, {\rm g/mol}$$
 $M_{\rm O} = 15,9994 \, {\rm g/mol}$ $M_{\rm V2O5} = 2M_{\rm V} + 5M_{\rm O} = 181,88 \, {\rm g/mol}$

ładunek zgromadzony dla 0 < x < 1: q = 1 F = 96485 C/mol

$$Q = q / M_{V2O5} = 96485 / 181,88 \text{ C/g} = 530,49 \text{ C/g} = 147,4 \text{ mAh/g}$$

b) dla 0<*x*<3

$$Q = 442,1 \text{ mAh/g}$$

Teoretyczna pojemność grawimetryczna

Zadanie 2

lle wynosi teoretyczna wartość pojemności dla Li_xFePO₄ dla 0<*x*<1?

PRACA DOMOWA

Krzywe ładowania-rozładowywania

Krzywe rozładowywania

Związek czy mieszanina?

$$\text{Li}_{x}\text{V}_{2}\text{O}_{5}$$

$$x$$
LiFePO₄ + (1- x)FePO₄

Woltamperometria cykliczna (CV)

Woltamperometria cykliczna (CV)

Gdy nie można wykonać CV...

Materiały i nanostruktury są fantastyczne!!!

