# Application of Information Theory, Lecture 1 Basic Definitions and Facts

#### **Handout Mode**

Iftach Haitner

Tel Aviv University.

March 08, 2018

#### The entropy function

X — Discrete random variable (finite number of values) over  $\mathcal{X}$  with probability mass  $p = p_X$ . The entropy of X is defined by:

$$H(X) := -\sum_{x \in \mathcal{X}} \Pr[X = x] \cdot \log \Pr[X = x] = \sum_{x \in \mathcal{X}} \Pr[X = x] \cdot H_X(x)$$

letting  $\log = \log_2$ , and taking  $0 \cdot \log 0 = 0$ .

- When using the natural logarithm, the quantity is called nats ("natural")
- ►  $H_X(x) := -\log \Pr[X = x]$  is the sample entropy of x wrt X
- $H(X) = -\sum_{x} p(x) \cdot H_X(x) = E_{x \leftarrow X} H_X(x)$
- ► H(X) was introduced by Shannon as measure for the uncertainty in X: number of bits it takes to describe X or the information we don't have about X.
- ▶ Entropy is a function of p (sometimes refers to as H(p)).

#### **Examples**

**1.**  $X \sim (\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$ :

(i.e., for some 
$$x_1 \neq x_2 \neq x_3$$
,  $P_X(x_1) = \frac{1}{2}$ ,  $P_X(x_2) = \frac{1}{4}$ ,  $P_X(x_3) = \frac{1}{4}$ )  $H(X) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{4} \log \frac{1}{4} - \frac{1}{4} \log \frac{1}{4} = \frac{1}{2} + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 = 1\frac{1}{2}$ .

- **2.**  $H(X) = H(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}).$
- **3.** X is uniformly distributed over  $\{0, 1\}^n$ :

$$H(X) = -\sum_{i=1}^{2^n} \frac{1}{2^n} \log \frac{1}{2^n} = -\log \frac{1}{2^n} = n.$$

- n bits are needed to describe X
- n bits are needed to sample X
- **4.**  $X = X_1, \dots, X_n$  where  $X_i$  are iid over  $\{0, 1\}$ , with

$$P_{X_i}(1) := Pr[X_i = 1] = \frac{1}{3}. \ H(X) = ?$$

- **5.**  $X \sim (p, q), p + q = 1$ 
  - $H(X) = H(p,q) = -p \log p q \log q$
  - H(1,0)=(0,1)=0
  - ►  $H(\frac{1}{2}, \frac{1}{2}) = 1$
  - h(p) := H(p, 1-p) is continuous



#### Infinite random variables

▶ For infinite (discrete) random variable  $X \sim (p_1, p_2, ...)$ ,

$$H(X) = \sum_{i=1}^{\infty} p_i \log p_i$$

▶ Might be finite:  $p_i = 2^{-i}$ 

Hence, 
$$H(X) = -\sum_{i=1}^{\infty} 2^{-i} \cdot i < \infty$$

► Or infinite,  $X \sim \{p_{i,j}\}_{i \in \mathbb{N}, j \in \{1,...,2^{2^{j-i}}\}}$ , for  $p_{i,j} = 2^{-2^i}$ .

Hence, 
$$H(X) = \sum_{i=1}^{\infty} \sum_{j=1}^{2^{2^{i}-i}} 2^{-2^{i}} \cdot 2^{j} = \sum_{i=1}^{\infty} 2^{-i} \cdot 2^{j} = \infty$$

We will typically restrict our attention to finite random variables.

#### **Applications**

- Data compression
- Error correction codes
- Algorithm Analysis
- Protocols Analysis
- Cryptography
- Counting. Example # of gold coins in a cube
  - ► Projection of Q on xy 6
  - Projection of Q on xz 8
  - Projection of Q on yz 12

Can we bound |Q|?

and more and more...

And all are rather simple to prove

## **Axiomatic derivation of the entropy function**

Any other choices for defining entropy?

Shannon function is the only symmetric function (over probability distributions) satisfying the following three axioms:

- **A1** Continuity: H(p, 1 p) is continuous function of p.
- **A2** Normalization:  $H(\frac{1}{2}, \frac{1}{2}) = 1$
- **A3** Grouping axiom:  $H(p_1, p_2, ..., p_m) = H(p_1 + p_2, p_3, ..., p_m) + (p_1 + p_2)H(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2})$

Why A3?

Not hard to prove that Shannon's entropy function satisfies above axioms, proving this is the only such function is more challenging.

Let  $H^*$  be a function that satisfying the above axioms.

We prove (assuming additional axiom) that  $H^*$  is the Shannon function H.

## Generalization of the grouping axiom

Fix  $p = (p_1, \dots, p_m)$  and let  $S_k = \sum_{i=1}^k p_i$ .

Grouping axiom:  $H^*(p_1,p_2,\ldots,p_m)=H^*(S_2,p_3,\ldots,p_m)+S_2H^*(\frac{p_1}{S_2},\frac{p_2}{S_2}).$ 

## Claim 1 (Generalized grouping axiom)

$$H^*(p_1, p_2, \dots, p_m) = H^*(S_k, p_{k+1}, \dots, p_m) + S_k \cdot H^*(\frac{p_1}{S_k}, \dots, \frac{p_k}{S_k})$$

Proof: Let 
$$h(q) = H^*(q, 1 - q)$$
.  
 $H^*(p_1, p_2, ..., p_m) = H^*(S_2, p_3, ..., p_m) + S_2 h(\frac{p_2}{S_2})$  (1)  
 $= H^*(S_3, p_4, ..., p_m) + S_3 h(\frac{p_3}{S_3}) + S_2 h(\frac{p_2}{S_2})$   
 $\vdots$   
 $= H^*(S_k, p_{k+1}, ..., p_m) + \sum_{i=1}^k S_i h(\frac{p_i}{S_i})$ 

Hence,

$$H^{*}(\frac{p_{1}}{S_{k}}, \dots, \frac{p_{k}}{S_{k}}) = H^{*}(\frac{S_{k-1}}{S_{k}}, \frac{p_{k}}{S_{k}}) + \sum_{i=2}^{k-1} \frac{S_{i}}{S_{k}} h(\frac{p_{i}/S_{k}}{S_{i}/S_{k}}) = \frac{1}{S_{k}} \sum_{i=2}^{k} S_{i} h(\frac{p_{i}}{S_{i}})$$
(2)

Claim follows by combining the above equations.

## Further generalization of the grouping axiom

Let 
$$1 = k_1 < k_2 < \ldots < k_q < m$$
 and let  $C_t = \sum_{i=k_t}^{k_{t+1}-1} p_i$  (letting  $k_{q+1} = m+1$ ).

#### Claim 2 (Generalized<sup>++</sup> grouping axiom)

$$\begin{array}{l} H^*(p_1,p_2,\ldots,p_m) = \\ H^*(C_1,\ldots,C_q) + C_1 \cdot H^*(\frac{p_1}{C_1},\ldots,\frac{p_{k_2-1}}{C_1}) + \ldots + C_q \cdot H^*(\frac{p_{k_q+1}}{C_q},\ldots,\frac{p_m}{C_q}) \end{array}$$

Proof: Follow by the extended group axiom and the symmetry of  $H \square$ 

Implication: Let 
$$f(m) := H^*(\underbrace{\frac{1}{m}, \dots, \frac{1}{m}})$$

- ►  $f(3^2) = 2f(3) = 2H^*(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$  $\implies f(3^n) = nf(3).$
- f(mn) = f(m) + f(n)  $\implies f(m^k) = kf(m)$

$$f(m) = \log m$$

We give a proof under the additional axiom

**A4** 
$$f(m) \le f(m+1)$$

(you can Google for a proof using only A1-A3)

- ▶ For  $n \in \mathbb{N}$ , let  $k = \lfloor \log 3^n = n \log 3 \rfloor$ .
- ► Since,  $2^k \le 3^n \le 2^{k+1}$ , by A4:  $f(2^k) \le f(3^n) \le f(2^{k+1})$ .
- ▶ By grouping + normalization axiom,  $k \le nf(3) \le k + 1$ .

$$\implies \frac{\lfloor n \log 3 \rfloor}{n} \le f(3) \le \frac{\lfloor n \log 3 \rfloor + 1}{n} \text{ for any } n \in \mathbb{N}$$

- $\implies f(3) = \log 3.$ 
  - Proof extends to any integer (not only 3)

$$H^*(p,q) = -p\log p - q\log q$$

- For rational p, q, let  $p = \frac{k}{m}$  and  $q = \frac{m-k}{m}$ , where m is the smallest common multiplier.
- ▶ By grouping axiom,  $f(m) = H^*(p, q) + p \cdot f(k) + q \cdot f(m k)$ .
- ► Hence,

$$H^{*}(p,q) = \log m - p \log k - q \log(m-k)$$

$$= p(\log m - \log k) + q(\log m - \log(m-k))$$

$$= -p \log \frac{m}{k} - q \log \frac{m-k}{m} = -p \log p - q \log q$$

▶ By continuity axiom, holds for every p, q.

$$H^*(p_1, p_2, \dots, p_m) = -\sum_i^m p_i \log p_i$$

We prove for m = 3. Proof for arbitrary m follows the same lines.

- For rational  $p_1, p_2, p_3$ , let  $p_1 = \frac{k_1}{m}, q = \frac{k_2}{m}$  and  $p_3 = \frac{k_3}{m}$ , where  $m = k_1 + k_2 + k_3$  is the smallest common multiplier.
- $f(m) = H^*(p_1, p_2, p_3) + p_1 f(k_1) + p_2 f(k_2) + p_3 f(k_3)$
- ► Hence,

$$H^{*}(p_{1}, p_{2}, p_{3}) = \log m - p_{1} \log k_{1} - p_{2} \log k_{2} - p_{3} \log k_{3}$$

$$= -p_{1} \log \frac{k_{1}}{m} - p_{2} \log \frac{k_{2}}{m} - p_{3} \frac{k_{3}}{m}$$

$$= -p_{1} \log p_{1} - p_{2} \log p_{2} - p_{3} \log p_{3}$$

▶ By continuity axiom, holds for every  $p_1, p_2, p_3$ .

#### Section 1

## **Basic Properties**

$$0 \leq H(p_1, \ldots, p_m) \leq \log m$$

- Tight bounds
  - ►  $H(p_1,...,p_m) = 0$  for  $(p_1,...,p_m) = (1,0,...,0)$ .
  - ►  $H(p_1,...,p_m) = \log m$  for  $(p_1,...,p_m) = (\frac{1}{m},...,\frac{1}{m})$ .
- Non negativity is clear.
- ▶ A function *f* is concave ("keura") if  $\forall t_1, t_2, \lambda \in [0, 1] \le 1$  $\lambda f(t_1) + (1 - \lambda)f(t_2) \le f(\lambda t_1 + (1 - \lambda)t_2)$
- $\implies \text{ (by induction) } \forall t_1, \dots, t_k, \lambda_1, \dots, \lambda_k \in [0, 1] \text{ with } \sum_i \lambda_i = 1$  $\sum_i \lambda_i f(t_i) \le f(\sum_i \lambda_i t_i)$
- $\implies$  (Jensen inequality):  $E f(X) \le f(E X)$  for any random variable X.
  - ▶  $\log(x)$  is (strictly) concave for x > 0, since its second derivative  $\left(-\frac{1}{x^2}\right)$  is always negative.
  - ► Hence,  $H(p_1, ..., p_m) = \sum_i p_i \log \frac{1}{p_i} \le \log \sum_i p_i \frac{1}{p_i} = \log m$
  - Alternatively, for X over  $\{1, ..., m\}$ ,  $H(X) = \mathbb{E}_X \log \frac{1}{\mathbb{P}_X(X)} \le \log \mathbb{E}_X \frac{1}{\mathbb{P}_X(X)} = \log m$
  - ▶ What if  $Supp(X) := \{x : P_X(x) > 0\} \subsetneq [m]$ ?

$$H(g(X)) \leq H(X)$$

Let X be a random variable, and let g be over Supp(X).

►  $H(Y = g(X)) \le H(X)$ . Proof:

$$H(X) = -\sum_{x} P_{X}(x) \log P_{X}(x) = -\sum_{y} \sum_{x: g(x)=y} P_{X}(x) \log P_{X}(x)$$

$$\geq -\sum_{y} P_{Y}(y) \cdot \max_{x: g(x)=y} \log P_{X}(x)$$

$$\geq -\sum_{y} P_{Y}(y) \cdot \log P_{Y}(y) = H(Y)$$

- Or use the group axiom...
- ▶ If *g* is injective, then H(Y) = H(X). Proof:  $p_X(X) = P_Y(Y)$ .
- ▶ If g is non-injective (over Supp(X)), then H(Y) < H(X). Proof: ?
- ►  $H(X) = H(2^X)$ .
- ▶  $H(\sin(X)) < H(X)$ , if  $0, \pi \in \text{Supp}(X)$ .

#### **Historical background**

- Shannon (1948)  $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics
- There, entropy energy that cannot used, statistical disorder
- ► Clausius (1865), who coined the name *entropy*, based on Carnot (1824),  $H = \int_{t} \frac{\delta Q}{T} dt$  (Q is *heat* and T is *temperature*)
- ▶ Boltzmann (1877)  $H = \log S$ , for S being the number of states a system can be in (after measuring the macro parameters: pressure, temperature)
- ▶ log # of states is Shannon entropy of the uniform distribution
- Shannon looked for a name for his measure, von Neumann pointed out the relation to physics and suggested the name entropy.
- ➤ Today it is accepted that Shannon's entropy is the right notion also in statistical mechanic. Measures the uncertainty of a system energy that cannot be used.
- Carnot was also an engineer...

#### **Notation**

- ►  $[n] = \{1, ..., n\}$
- $ightharpoonup P_X(x) = Pr[X = x]$
- ► Supp(X) := { $x : P_X(x) > 0$ }
- For random variable X over  $\mathcal{X}$ , let p(x) be its density function:  $p(x) = P_X(x)$ .

In other words,  $X \sim p(x)$ .

For random variable Y over  $\mathcal{Y}$ , let p(y) be its density function:  $p(y) = P_Y(y)...$