Europäisches Patentamt European Patent Office Office européen des brevets

EP 1 468 997 A2 (11)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.10.2004 Bulletin 2004/43

(51) Int Cl.7: **C07D 417/12**, A61K 31/427,

A61P 43/00

(21) Application number: 04076138.9

(22) Date of filing: 13.04.2004

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR **Designated Extension States:**

AL HR LT LV MK

(30) Priority: 18.04.2003 IT mi20030820 21.05.2003 US 472756 P

(71) Applicant: CHEMI S.p.A.

20092 Cinisello Balsamo (Milano) (IT)

(72) Inventors:

- Turchetta, Stefano 00139 Roma (IT)
- Massardo, Pietro 00154 Roma (IT)
- Aromatario, Valentina 00177 Roma (IT)
- (74) Representative: Pistolesi, Roberto et al **Dragotti & Associati SRL** Galleria San Babila 4/c 20122 Milano (IT)

Polymorphous forms of rosiglitazone maleate (54)

(57)Three new polymorphous crystalline forms of rosiglitazone maleate, termed respectively form I, II and III and the methods for selectively obtaining each form are described and characterized. Rosiglitazone maleate may be obtained in the form of the single polymorph I by blending an approximately equimolar mixture of rosiglitazone base and maleic acid in a series of solvents and mixtures thereof which comprises isopropanol, acetone, ethyl acetate, isopropyl acetate, THF, followed by cooling of the mixture to ambient temperature; the form II may on the other hand be obtained by means of treatment of the approximately equimolar mixture of rosiglitazone base and maleic acid in water under reflux, followed by cooling of the mixture to ambient temperature; the polymorph III may be obtained by treating a mixture of rosiglitazone base with a double molar quantity of maleic acid in ethanolic solvents.

FIGURE 4

Description

15

20

25

30

35

45

50

55

FIELD OF THE INVENTION

5 [0001] The present invention relates to the synthesis and characterization of three polymorphous forms of rosiglitazone maleate.

STATE OF THE ART

[0002] Rosiglitazone is a molecule of thiazolidinedione structure which forms part of the class of antidiabetics. Its structure formula is given below.

[0003] US 5,002,953 describes for the first time the compound and its use as an antihyperglycaemic. In that patent all its pharmaceutically acceptable salts are also claimed.

[0004] US 5,741,803 instead specifically describes the maleate of rosiglitazone, shown below, stating that among the possible salts, the maleate exhibits particularly favourable characteristics of stability and solubility in water.

[0005] In that patent, two examples of the preparation of the salt in question are given. In the first example the compound is prepared by hot dissolution of the rosiglitazone base mixed with maleic acid, and slow precipitation of the salt derived therefrom. After treatment of the suspension at 0-5°C for several hours, a product is isolated which, when dried under vacuum at 50°C provides a product having a melting point (m.p.) of 120-121°C. The ¹H-NMR of the product is provided in which a wide band between 2 and 5 ppm is found which the applicant attributes to the residual water contained in the solvent (not otherwise specified). In the second example the maleate of rosiglitazone is treated, in ethanol, with an equivalent of maleic acid, while hot, until dissolution of the solid is obtained, the mixture is decoloured with carbon and the product is precipitated by cooling to 0-5°C, then the product is filtered and desiccated, having at the end of the treatments a m.p. of 119-119.5°C.

[0006] US 6,515,132 relates to a method for the synthesis of rosiglitazone maleate, in which the step of formation of the maleate of rosiglitazone is carried out in acetone.

[0007] Polymorphic forms of rosiglitazone maleate are disclosed in WO0064892, WO0064893, WO0064896 and WO0226737 whereas WO9931093 WO9931094 and WO9931095 describe the preparation of hydrates of rosiglitazone maleate.

DESCRIPTION OF THE INVENTION

[0008] It is known in fact that many organic compounds and their salts may exist in the form of a plurality of different crystalline structures, which exhibit different physical properties and may exhibit differences also from the biological point of view.

[0009] In the course of experiments on crystallization of the maleate of rosiglitazone it was surprisingly found that this salt, under specific conditions, crystallizes in three different polymorphic crystalline pure forms, that have not been described before.

[0010] Obtaining pure crystalline forms is extremely useful, both because through these a precise characterization of the chemical-physical properties is possible, and because these characteristics may prove more favourable from a pharmacological point of view.

[0011] The subject of the present patent application are therefore three new polymorphous forms of rosiglitazone maleate, and also the methods necessary for the crystallization of these polymorphic forms.

DETAILED DESCRIPTION OF THE INVENTION

[0012] Tests on the synthesis of rosiglitazone maleate carried out starting from equimolar amounts of rosiglitazone base and maleic acid surprisingly led to the identification and characterization of two polymorphous crystalline forms of the aforesaid salt. Moreover by crystallizing mixtures of rosiglitazone base and double equimolar quantities of maleic acid a third polymorph of rosiglitazone maleate is obtained.

[0013] In particular, it was found that the maleate of rosiglitazone exists in three polymorphous crystalline modifications, which may be easily distinguished both by means of DSC, and IR, and also X-ray diffraction.

[0014] Rosiglitazone maleate exists in a polymorphous form I, which with the DSC exhibits an endothermic peak with maximum at 119°C (Figure 1), in a polymorphous form II, which with the DSC exhibits an endothermic peak with maximum at 121°C (Figure 2), and in a polymorphous form III which with the DSC exhibits an endothermic peak at 124°C (Figure 3) The DSCs were carried out with a Perkin Elmer DSC7 Differential Scanning Calorimeter.

[0015] The three forms have a powder diffraction spectrum to X-rays characterized by the principal absorptions reported in Tables 1, 2 and 3 corresponding to Figures 4, 5 and 6, respectively (Radiation Cu K α , Generator voltage 40 kV, Divergence Slit 1°, Receiving slit 0.2 mm, scan mode step start angle 5,000, End angle 35,000, time per step 2,000 sec):

(Table 1)

25			
30			
35			
40			
45			
50			
55			

Angle (20) d (Å) Rel. Intens. (I/I ₀) 7.570 11.6687 2.4 8.580 10.2972 5.2 9.355 9.4458 8.1 14.005 6.3183 6.4 15.125 5.8529 41.4 16.005 5.5330 100.0 17.160 5.1631 10.0 18.625 4.7601 31.0 20.240 4.3838 6.8 21.000 4.2268 13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9 33.990 2.6353 9.3		FORM I				
8.580 10.2972 5.2 9.355 9.4458 8.1 14.005 6.3183 6.4 15.125 5.8529 41.4 16.005 5.5330 100.0 17.160 5.1631 10.0 18.625 4.7601 31.0 20.240 4.3838 6.8 21.000 4.2268 13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	Angle (20)	d (Å)	Rel. Intens. (I/I ₀)			
9.355 9.4458 8.1 14.005 6.3183 6.4 15.125 5.8529 41.4 16.005 5.5330 100.0 17.160 5.1631 10.0 18.625 4.7601 31.0 20.240 4.3838 6.8 21.000 4.2268 13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	7.570	11.6687	2.4			
14.005 6.3183 6.4 15.125 5.8529 41.4 16.005 5.5330 100.0 17.160 5.1631 10.0 18.625 4.7601 31.0 20.240 4.3838 6.8 21.000 4.2268 13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	8.580	10.2972	5.2			
15.125 5.8529 41.4 16.005 5.5330 100.0 17.160 5.1631 10.0 18.625 4.7601 31.0 20.240 4.3838 6.8 21.000 4.2268 13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	9.355	9.4458	8.1			
16.005 5.5330 100.0 17.160 5.1631 10.0 18.625 4.7601 31.0 20.240 4.3838 6.8 21.000 4.2268 ·13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	14.005	6.3183	6.4			
17.160 5.1631 10.0 18.625 4.7601 31.0 20.240 4.3838 6.8 21.000 4.2268 13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	15.125	5.8529	41.4			
18.625 4.7601 31.0 20.240 4.3838 6.8 21.000 4.2268 13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	16.005	5.5330	100.0			
20.240 4.3838 6.8 21.000 4.2268 ·13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	17.160	5.1631	10.0			
21.000 4.2268 ·13.9 21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	18.625	4.7601	31.0			
21.990 4.0387 32.9 22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	20.240	4.3838	6.8			
22.785 3.8996 12.1 23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	21.000	4.2268	·13.9			
23.585 3.7691 30.0 25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	21.990	4.0387	32.9			
25.055 3.5512 60.4 26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	22.785	3.8996	12.1			
26.480 3.3632 18.0 28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	23.585	3.7691	30.0			
28.425 3.1374 11.9 28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	25.055	3.5512	60.4			
28.905 3.0863 8.6 30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	26.480	3.3632	18.0			
30.430 2.9351 8.1 31.395 2.8470 6.7 32.145 2.7823 8.9	28.425	3.1374	11.9			
31.395 2.8470 6.7 32.145 2.7823 8.9	28.905	3.0863	8.6			
32.145 2.7823 8.9	30.430	2.9351	8.1			
	31.395	2.8470	6.7			
33.990 2.6353 9.3	32.145	2.7823	8.9			
	33.990	2.6353	9.3			

(Table 2)

5			
	,		
10			

	FORM II			
Angle (2θ)	d (Å)	Rel. Intens. (I/I ₀)		
7.615	11.5998	7.4		
8.985	9.8340-	4.8		
9.740	9.0733	9.3		
13.635	6.4889	11.6		
14.015	6.3138	7.1		
15.320	5.7788	100.0		
17.105	5.1796	43.8		
17.910	4.9485	21.8		
19.255	4.6058	16.7		
20.330	4.3646	27.8		
20.765	4.2741	21.7		
22.285	3.9859	37.8		
23.730	3.7464	14.1		
24.610	3.6144	37.7		
25.485	3.4922	27.0		
27.030	3.2960	24.4		
27.440	3.2477	17.0		
28.135	3.1690	8.7		
29.225	3.0533	12.7		
29.905	2.9854	24.1		
31.645	2.8251	11.5		

(Table 3)

	,	,			
	FORM III				
Angle (20)	d (Å)	Rel. Intens. (I/I ₀)			
7.555	11.6918	6.2			
8.895	9.9333	9.0			
9.670	9.1388	12.1			
13.050	6.7785	5.7			
15.030	5.8896	55.2			
15.345	5.7694	100.0			
16.970	5.2205	40.3			
17.300	5.1216	30.3			
17.810	4.9761	34.7			
19.105	4.6416	16.9			
20.060	4.4227	33.0			

(Table 3) (continued)

	FORM III				
Angle (2θ)	d (Å)	Rel. Intens. (I/I ₀)			
20.745	4.2782	27.4			
22.190	4.0028	51.0			
24.400	3.6450	52.1			
25.205	3.5304	36.7			
25.830	3.4464	13.4			
26.675	3.3391	46.0			
27.360	3.2570	26.3			
27.985	3.1857	13.2			
29.795	2.9961	35.5			
30.685	2.9112	11.4			

[0016] The X-ray diffractions were carried out with a Philips PW3710 X-ray Diffractometer.

[0017] Form I exhibits with IR characteristic absorptions at the following wavelengths (Figure 7): 1744; 1618; 1262; 1178; 1083; 1070; 997, 823; 778 cm⁻¹.

[0018] Form II exhibits with IR the following characteristic absorptions (Figure 8): 1757; 1610; 1162; 1062; 1030; 926; 835; 767 cm⁻¹.

[0019] Form III, on the other hand, exhibits with IR the following characteristic absorptions (Figure 9): 1756; 1585; 1010; 921cm⁻¹.

[0020] The IR spectra were carried out with a Perkin Elmer 16 PC FT-IR spectrometer.

[0021] The solid-state ¹³C-NMR spectra of Forms I, II and III, obtained with a Varian 400 Unity Inova, are reported in figures 10, 11, 12 and in the following tables 4, 5 and 6, respectively:

Chemical shifts (ppm):

[0022]

35

40

45

50

5

10

15

20

(Table)

	FORM I						
178.5	168.1	145.4	133.0	51.5			
173.9	158.9	139.1	130.7	41.1			
172.5	157.6	137.1	64.5	37.2			
169.7	151.3	135.1	57.6				

(Table 5)

	FORM II					
177.3	166.6	151.2	133.4	114.5	63.6	51.2
175.7	158.3	147.1	131.0	113.3	57.2	42.0
172.8	157.7	138.0	117.9	109.6	55.3	40.2
169.4	153.2	136.7	115.6	66.7	52.8	37.1

(Table 6)

	FORM III					
177.4	166.4	151.2	130.9	113.3	63.6	51.1
175.8	158.4	146.9	117.9	112.0	57.4	42.0
172.9	157.6	138.0	115.7	109.6	55.2	40.2
169.5	153.3	136.6	114.5	66.3	52.8	36.9

10

20

25

30

5

[0023] Rosiglitazone maleate may be obtained in the form of the single polymorph I by blending an approximately equimolar mixture of rosiglitazone base and maleic acid in a series of solvents and mixtures thereof, which comprises isopropanol, acetone, ethyl acetate, isopropyl acetate, THF, by heating the suspension to reflux temperature of the solvent, followed by cooling of the mixture to ambient temperature. In this way a crystalline suspension of the product is obtained which, when filtered, washed and desiccated under vacuum for 12 hours at 45-50°C provides rosiglitazone maleate form I as the single crystalline form, as confirmed by IR, XRD and DSC analyses.

[0024] Form II of rosiglitazone maleate, however, may be obtained in a pure form by treatment of the approximately equimolar mixture of rosiglitazone base and maleic acid in water under reflux, followed by cooling of the mixture to ambient temperature. The solid suspended in the mixture may be filtered, washed and desiccated under vacuum for about 10 to 14 hours, preferably 12 hours, at 45-50°C and consists exclusively of crystals of Form II of rosiglitazone maleate.

[0025] Alternatively Form II of rosiglitazone maleate may be prepared by mixing approximately equimolar quantities of rosiglitazone base and maleic acid in a water:ethanol mixture from 1.5:1 to 2.5:1 by volume, preferably 2:1, under reflux, followed by cooling of the mixture to ambient temperature. The solid suspended in the mixture may be filtered, washed and desiccated under vacuum for about 10 to 14 hours.

[0026] Form III of rosiglitazone maleate on the other hand may be obtained in a pure form by crystallization of rosiglitazone base and a double molar quantity of maleic acid in absolute ethanol or denatured ethanol. The mixture of the starting materials is brought to reflux, where a solution is obtained and it is then slowly cooled to room temperature; the crystalline solid thus formed is filtered, washed and dried and consists exclusively of crystals of Form III of rosiglitazone maleate.

[0027] The following experimental examples provide further clarification of the invention itself and in no way constitute any limitation thereof.

EXAMPLE 1

*3*5

Synthesis of Rosiglitazone maleate Form I.

[0028] A 250 ml balloon flask equipped with mechanical stirring, coolant and thermometer, is charged with 10 g (28.0 mmoles) of rosiglitazone base, 3.25 g (28.0 mmoles) of maleic acid and 75 ml of isopropanol. The mixture is brought to reflux and maintained for 30' under such conditions. The mixture is then slowly cooled to ambient temperature and the product is filtered on a Buchner filter, washing twice with 10 ml of isopropanol. The filtered product is then desiccated for 12 hours at 45-50°C. 9.7 g of rosiglitazone maleate Form I (yield 73%) are obtained. The content of residual isopropanol in the product is 0.16% by weight.

45 EXAMPLE 2

Synthesis of Rosiglitazone maleate Form II.

[0029] A 500 ml balloon flask is charged with 20 g (56.0 mmoles) of rosiglitazone base and 6.50 g (56.0 mmoles) of maleic acid. To these solids are added 350 ml of water, and the mixture obtained is brought to reflux for 30'. The mixture is then slowly cooled to ambient temperature and the resultant solid is filtered on a Buchner filter, washing twice with 20 ml of water each time. A product is discharged which when desiccated under vacuum at 45-50°C for 12 hours weighs 19.9 g (yield 75%) and consists of rosiglitazone maleate Form II. The water content of the desiccated product is 0.3%.

55

EXAMPLE 3

Synthesis of rosiglitazone Form I.

[0030] Example 1 is repeated, using isopropyl acetate as solvent in place of the isopropanol. After desiccation, 9.5 g of rosiglitazone maleate Form I (yield 72%) are obtained.

EXAMPLE 4

10 Synthesis of Rosiglitazone maleate Form III.

[0031] A 500 ml balloon flask is charged with 15 g (42.0 mmoles) of rosiglitazone base and 9.70 g (84.0 mmoles) of maleic acid. To these solids are added 150 ml of ethanol, and the mixture obtained is brought to reflux for 30'. The mixture is then slowly cooled to ambient temperature and the resultant solid is filtered on a Buchner filter, washing twice with 20 ml of ethanol each time. A product is discharged which when desiccated under vacuum at 45-50°C for 12 hours weighs 14.9 g (yield 75%) and consists of rosiglitazone maleate Form III.

EXAMPLE 5

20 Synthesis of Rosiglitazone maleate Form II.

[0032] A 500 ml balloon flask equipped with reflux condenser and dropping funnel is charged with 20 g (56.0 mmoles) of rosiglitazone base and 330 ml of deionised water. In a becker are charged 6.50 g (56.0 mmoles) of maleic acid and 23 ml of deionised water, whereby a solution is formed. The solution obtained is then charged in the dropping funnel. The suspension of rosiglitazone base in water is heated to reflux and from the dropping funnel the solution of maleic acid is added in approximately 5'. The mixture is then slowly cooled to ambient temperature and the resultant solid is filtered on a Buchner filter, washing twice with 20 ml of water each time. A product is discharged which when desiccated under vacuum at 45-50°C for 12 hours weighs 20.5 g (yield 77%) and consists of rosiglitazone maleate Form II. The water content of the desiccated product is 0.4%.

EXAMPLE 6

30

40

45

Synthesis of Rosiglitazone maleate Form II.

[0033] A 500 ml balloon flask is charged with 20 g (56.0 mmoles) of rosiglitazone base and 6.50 g (56.0 mmoles) of maleic acid. To these solids are added 160 ml of water and 80 ml of absolute ethanol. The mixture obtained is brought to reflux for 30' to obtain a clear solution. The solution is filtered on a panel of celite and allowed to cool to ambient temperature. The resultant solid is filtered on a Buchner filter, washed twice with 20 ml of water each time. A product is discharged which when desiccated under vacuum at 45-50°C for 12 hours weighs 21.0 g (yield 79%) and consists of rosiglitazone maleate Form II. The water content of the desiccated product is 0.3%.

Claims

1. Rosiglitazone maleate crystalline form I having a powder diffraction spectrum to X-rays with the following principal absorptions:

		<u></u>
Angle (2θ)	d (Å)	Rel. Intens. (I/I ₀)
7.570	11.6687	2.4
8.580	10.2972	5.2
9.355	9.4458	8.1
14.005	6.3183	6.4
15.125	5.8529	41.4
16.005	5.5330	100.0

55

(continued)

Angle (20)	d (Å)	Rel. Intens. (I/I ₀)
17.160	5.1631	10.0
18.625	4.7601	31.0
20.240	4.3838	6.8
21.000	4.2268	13.9
21.990	4.0387	32.9
22.785	3.8996	12.1
23.585	3.7691	30.0
25.055	3.5512	60.4
26.480	3.3632	18.0
28.425	3.1374	11.9
28.905	3.0863	8.6
30.430	2.9351	8.1
31.395	2.8470	6.7
32.145	2.7823	8.9
33.990	2.6353	9.3

- 2. Rosiglitazone maleate crystalline form I having a powder diffraction spectrum to X-rays as shown in Figure 4.
- 3. Rosiglitazone maleate crystalline form I having a DSC graph as shown in Figure 1.
- 4. Rosiglitazone maleate crystalline form I having an IR spectrum as shown in Figure 7.
- 5. Rosiglitazone maleate crystalline form II having a powder diffraction spectrum to X-rays with the following principal absorptions:

Angle (20)	d (Å)	Rel. Intens. (I/I ₀)
7.615	11.5998	7.4
8.985	9.8340	4.8
9.740	9.0733	9.3
13.635	6.4889	11.6
14.015	6.3138	7.1
15.320	5.7788	100.0
17.105	5.1796	43.8
17.910	4.9485	21.8
19.255	4.6058	16.7
20.330	4.3646	27.8
20.765	4.2741	21.7
22.285	3.9859	37.8
23.730	3.7464	14.1
24.610	3.6144	37.7
25.485	3.4922	27.0

(continued)

Angle (20)	d (Å)	Rel. Intens. (I/I ₀)
27.030	3.2960	24.4
27.440	3.2477	17.0
28.135	3.1690	8.7
29.225	3.0533	12.7
29.905	2.9854	24.1
31.645	2.8251	11.5

- 6. Rosiglitazone maleate crystalline form II having a powder diffraction spectrum to X-rays as shown in Figure 5.
- 7. Rosiglitazone maleate crystalline form II having a DSC graph as shown in Figure 2.

5

10

15

25

30

35

40

45

50

- 8. Rosiglitazone maleate crystalline form II having an IR spectrum as shown in Figure 8.
- 9. Rosiglitazone maleate crystalline form III having a powder diffraction spectrum to X-rays with the following principal absorptions:

Angle (2θ)	d (Å)	Rel. Intens. (I/I ₀)	
7.555	11.6918	6.2	
8.895	9.9333	9.0	
9.670	9.1388	12.1	
13.050	6.7785	5.7	
15.030	5.8896	55.2	
15.345	5.7694	100.0	
16.970	5.2205	40.3	
17.300	5.1216	30.3	
17.810	4.9761	34.7	
19.105	4.6416	16.9	
20.060	4.4227	33.0	
20.745	4.2782	27.4	
22.190	4.0028	51.0	
24.400	3.6450	52.1	
25.205	3.5304	36.7	
25.830	3.4464	13.4	
26.675	3.3391	46.0	
27.360	3.2570	26.3	
27.985	3.1857	13.2	
29.795	2.9961	35.5	
30.685	2.9112	11.4	

- 10. Rosiglitazone maleate crystalline form III having a powder diffraction spectrum to X-rays as shown in Figure 6.
- 11. Rosiglitazone maleate crystalline form III having a DSC graph as shown in Figure 3.

- 12. Rosiglitazone maleate crystalline form III having an IR spectrum as shown in Figure 9.
- 13. Pharmaceutical compositions containing rosiglitazone maleate crystalline form I according to claim 1 together with pharmaceutically acceptable excipients and/or adjuvants.
- 14. Pharmaceutical compositions containing rosiglitazone maleate crystalline form II according to claim 5 together with pharmaceutically acceptable excipients and/or adjuvants.
- 15. Pharmaceutical compositions containing rosiglitazone maleate crystalline form III according to claim 9 together with pharmaceutically acceptable excipients and/or adjuvants.
 - 16. A process for the crystallization of rosiglitazone maleate form I characterized in that it comprises the following steps:
 - a. heating to reflux an approximately equimolar mixture of rosiglitazone base and maleic acid in a solvent selected from alcohols, esters and/or ethers;
 - b. cooling said mixture to ambient temperature;
 - c. filtration and washing of the product;
 - d. desiccation.

20

5

15

- 17. A process according to claim 16, **characterized in that** said alcohols and/or esters are selected from isopropanol, ethyl acetate, isopropyl acetate and/or THF.
- 18. A process for the crystallization of rosiglitazone maleate form II, characterized in that it comprises the following steps:
 - a. heating to reflux an approximately equimolar mixture of rosiglitazone base and maleic acid in water;
 - b. cooling said mixture to ambient temperature;
 - c. filtration and washing of the product;
- d. desiccation.
 - 19. A process for the crystallization of rosiglitazone maleate form II, characterized in that it comprises the following steps:
 - a. heating to reflux an approximately equimolar mixture of rosiglitazone base and maleic acid in a water:ethanol mixture from 1.5:1 to 2.5:1 by volume;
 - b. cooling said mixture to ambient temperature;
 - c. filtration and washing of the product;
 - d. desiccation.
 - 20. A process for the crystallization of rosiglitazone maleate form III characterized in that it comprises the following steps:
 - a. heating to reflux a mixture approximately containing rosiglitazone base and a double molar quantity of maleic acid in absolute ethanol and/or denatured ethanol;
 - b. cooling said mixture to ambient temperature;
 - c. filtration and washing of the product;
 - d. desiccation.
- 21. A process according to claims 16 to 20, **characterized in that** said mixture is maintained under reflux for a time ranging between about 20 and 40 minutes.

55

35

40

EP 1 468 997 A2

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 468 997 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 03.11.2004 Bulletin 2004/45

(51) Int Cl.⁷: **C07D 417/12**, A61K 31/427, A61P 43/00

(43) Date of publication A2: 20.10.2004 Bulletin 2004/43

(21) Application number: 04076138.9

(22) Date of filing: 13.04.2004

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PL PT RO SE SI SK TR
Designated Extension States:
AL HR LT LV MK

(30) Priority: **18.04.2003 IT mi20030820 21.05.2003 US 472756 P**

(71) Applicant: CHEMI S.p.A. 20092 Cinisello Balsamo (Milano) (IT)

(72) Inventors:

- Turchetta, Stefano 00139 Roma (IT)
- Massardo, Pietro 00154 Roma (IT)
- Aromatario, Valentina 00177 Roma (IT)
- (74) Representative: Pistolesi, Roberto et al Dragotti & Associati SRL Galleria San Babila 4/c 20122 Milano (IT)

(54) Polymorphous forms of rosiglitazone maleate

(57) Three new polymorphous crystalline forms of rosiglitazone maleate, termed respectively form I, II and III and the methods for selectively obtaining each form are described and characterized. Rosiglitazone maleate may be obtained in the form of the single polymorph I by blending an approximately equimolar mixture of rosiglitazone base and maleic acid in a series of solvents and mixtures thereof which comprises isopropanol, ac-

etone, ethyl acetate, isopropyl acetate, THF, followed by cooling of the mixture to ambient temperature; the form II may on the other hand be obtained by means of treatment of the approximately equimolar mixture of rosiglitazone base and maleic acid in water under reflux, followed by cooling of the mixture to ambient temperature; the polymorph III may be obtained by treating a mixture of rosiglitazone base with a double molar quantity of maleic acid in ethanolic solvents.

FIGURE 4

EUROPEAN SEARCH REPORT

Application Number

EP 04 07 6138

	DOCUMENTS CONSIDER	RED TO BE RELEVANT		
Category	Citation of document with indic of relevant passages	cation, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
D,Y		LER PAUL DAVID JAMES ; (GB): SMITHKLINE	1,5,9, 13-15	C07D417/12 A61K31/427 A61P43/00
D,Y	WO 02/26737 A (CHEBI REDDY S RES FOUNDATI RAM) 4 April 2002 (2 * claims *	ON (IN); MAMILLAPALLI	1,5,9, 13-15	
D,Y	WO 00/64892 A (BLACK GILES ROBERT GORDON JO) 2 November 2000 * claims *	LER PAUL DAVID JAMES; (GB); SASSE MICHAEL (2000-11-02)	1,5,9,	
D,Y	WO 00/64893 A (BLACK GILES ROBERT GORDON (G) 2 November 2000 * claims *	LER PAUL DAVID JAMES; (GB); MOORE STEPHEN (2000-11-02)	1,5,9, 13-15	
		- • • • •		TECHNICAL FIELDS SEARCHED (Int.CI.7)
			 	C07D
				A61K A61P
			_	
	The present search report has b	peen drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	The Hague	8 September 200		an Bijlen, H
	CATEGORY OF CITED DOCUMENTS	T : theory or princi E : earlier patent d	ple underlying the	ne invention iblished on, or
X:p	articularly relevant if taken alone articularly relevant if combined with anoti	after the fiting d	late d in the applicati	on .
d d	ocument of the same category echnological background	L : document cited	for other reason	ns
0:r	non-written disclosure	& : member of the document	same patent får	mily, corresponding

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 07 6138

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-09-2004

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0064896	A	02-11-2000	AT	246191 T	15-08-2003
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			AU	765005 B2	04-09-2003
			AU	4130800 A	10-11-2000
			BG	106121 A	31-05-2002
			BR	0009932 A	09-04-2002
			CA	2370280 A1	02-11-2000
			CN	1356999 T	03-07-2002
			CZ	20013800 A3	17-04-2002
			DE	60004196 D1	04-09-2003
			DE	60004196 T2	15-04-2004
			DK	1173435 T3	24-11-2003
			EA	4541 B1	24-06-2004
			EP	1173435 A1	23-01-2002
			EP	1304330 A2	23-04-2003
·			ES	2203453 T3	16-04-2004
				0064896 A1	02-11-2000
			MO	1045153 A1	09-07-2004
			HK	20010772 A1	31-10-2002
			HR		28-08-2002
			HU	0200931 A2	17-12-2002
			JP	2002543077 T	31-12-2001
			MA	25356 A1	17-12-2001
			NO	20015147 A	
			NZ	515168 A	27-02-2004
			PL	351684 A1	02-06-2003
			PT	1173435 T	31-12-2003
			SI	1173435 T1	29-02-2004
			SK	14922001 A3	05-02-2002
			TR	200103062 T2	21-05-2002
			ZA	200108719 A	21-06-2002
WO 0226737	Α	04-04-2002	AU	9123201 A	08-04-2002
WO 0220/3/	,,		BR	0114196 A	22-07-2003
			CA	2426117 A1	04-04-2002
			CZ	20030864 A3	14-01-2004
			EP	1322647 A1	02-07-2003
			ΗŪ	0301161 A2	28-11-2003
			JP	2004509961 T	02-04-2004
			NO	20031356 A	26-05-2003
			WO	0226737 A1	04-04-2002
		02-11-2000	AT	247653 T	15-09-2003
WO 0064892	Α	02-11-2000	AU	765498 B2	18-09-2003
			AU	4130600 A	10-11-2000
				106119 A	31-05-2007
			BG	0009934 A	04-06-200
			BR CA	2370258 A1	02-11-200
			1 17	C3/UC30 M1	☆ デューだんの /

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 07 6138

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-09-2004

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
_			CN	1355801 T	26-06-2002
WO 0064892	Α		CZ	20013799 A3	17-04-2002
				60004658 D1	25-09-2003
			DE		24-06-2004
			DE	0000 1223 -	08-12-2003
			DK	1173434 T3	
			EA	4534 B1	24-06-2004
			EP	1173434 A2	23-01-2002
			EP	1284268 A1	19-02-2003
			ES	2204557 T3	01-05-2004
				0064892 A2	02-11-2000
			MO	1045154 A1	25-06-2004
			HK		31-10-2002
			HR	20010773 A1	28-08-2002
			HU	0200929 A2	17-12-2002
			JP	2002543075 T	
			NO	20015149 A	17-12-2001
			NZ	515163 A	27-02-2004
			PL	351686 A1	02-06-2003
			PT	1173434 T	31-12-2003
			=	1173434 T1	29-02-2004
			SI	14912001 A3	05-02-2002
			SK		21-05-2002
			TR	200103061 T2	13-05-2004
			US	2004092555 A1	11-09-2007
			ZA	200108722 A	****
WO 0064893	Α	02-11-2000	ΑU	4307200 A	10-11-2000
MO GOODOSS	,,		BG	106122 A	31-05-200
			BR	0009935 A	16-04-200
			CA	2370262 A1	02-11-200
			CN	1355800 T	26-06-200
				20013801 A3	17-07-200
			CZ	3031 B1	26-12-200
			EA	1175418 A2	30-01-200
			EP		22-01-200
			EP	1277753 A1	02-11-200
			WO	0064893 A2	
			HR	20010774 A1	31-10-200
			HU	0200937 A2	28-08-200
			JP	2002543076 T	17-12-200
			NO	20015148 A	17-12-200
			NZ	515167 A	27-02-200
				351685 Al	02-06-200
			PL	14932001 A3	05-02-200
			SK		21-05-200
			TR	200103060 T2	03-12-200
			ZA	200108718 A	
		4 = 4 = 4 = 7 = 7			

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82