# A Discrete Hard EM Approach for Weakly Supervised Question Answering

## **EMNLP 2019**

Sewon Min<sup>1</sup>, Danqi Chen<sup>2,3</sup>, Hannaneh Hajishirzi<sup>1,4</sup>, Luke Zettlemoyer<sup>1,3</sup>

¹University of Washington, ²Princeton University, ³Facebook AI Research, ⁴Allen Institute of AI





facebook research



Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Task formulation



A unified weak supervision scenario with a small set of possible solutions

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Task formulation



A unified weak supervision scenario with a small set of possible solutions

Learning method



A hard EM learning scheme

Method

Result

Multi-mention Reading Comprehension

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Robert Schumann was a German composer and influential music critics of the Romantic era. (...) Robert Schumann himself refers to it as "an affliction of the whole hand" (...) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the composer Robert Schumann. (...) Brahms met Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction to Robert Schumann.

Method

Result

Multi-mention Reading Comprehension

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Robert Schumann was a German composer and influential music critics of the Romantic era. (...) Robert Schumann himself refers to it as "an affliction of the whole hand" (...) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the composer Robert Schumann. (...) Brahms met Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction to Robert Schumann.

#### **Problem**

Intro

Related Work

Method

Result

Multi-mention Reading Comprehension

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Given

Robert Schumann was a German composer and influential music critics of the Romantic era. (...) Robert Schumann himself refers to it as "an affliction of the whole hand" (...) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the composer Robert Schumann. Not Given Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction to Robert Schumann.

## **Problem**

Intro

Related Work

Method

Result

Multi-mention Reading Comprehension

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Given

Robert Schumann was a German composer and influential music critics of the Romantic er z2.) Robert Schumann himself refers to it as "an affliction of the whole hand z3.) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the comp z4 Robert Schumann. (...) Brahms met Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction z5 Robert Schumann.

Related Work

Method

Result

Multi-mention Reading Comprehension

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Given

Robert Schumann was a German composer and influential music critics of the Romantic er z2.) Robert Schumann himself refers to it as "an affliction of the whole hand z3.) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the comp z4 Robert Schumann. (...) Brahms met Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction z5 Robert Schumann.

Input: Q, Document

**Solution z** (span in this case)

Output: A (text)

Related Work

Method

Result

Multi-mention Reading Comprehension

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Given

Robert Schumann was a German composer and influential music critics of the Romantic er z2.) Robert Schumann himself refers to it as "an affliction of the whole hand z3.) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the comp z4 Robert Schumann. (...) Brahms met Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction at the comp service of the Robert Schumann.

Input: Q, Document

**Solution z** (span in this case)

Output: A (text)

Related Work

Method

Result

Multi-mention Reading Comprehension

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Given

Robert Schumann was a German composer and influential music critics of the Romantic er z2.) Robert Schumann himself refers to it as "an affliction of the whole hand z3.) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the comp z4 Robert Schumann. (...) Brahms met Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction z5 Robert Schumann.

Input: Q, Document

**Solution z** (span in this case)

Output: A (text)

We can find a solution set **Z** 

$$Z = \{z1, z2, z3, z4, z5\}$$

Discrete Reasoning Task

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal?

**A:** 4

$$40 - 36 = 4$$

Discrete Reasoning Task

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal?

**A:** 4

$$40 - 36 = 4$$

Related Work

Method

Result

Discrete Reasoning Task

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal?

**A:** 4

$$40 - 36 = 4$$

Discrete Reasoning Task

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal?

**A:** 4

$$40 - 36 = 4$$

Related Work

Method

Result

Discrete Reasoning Task

Q: How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal?

**A:** 4

Given

Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... In the third quarter Tennessee would draw close as Bironas kicked a 37 yard field goal. ... John Carney getting a 36 yard field goal. ... Young and Williams hooking up with each other on a 41 yard td pass. ... Bironas nailing a 40 yard and a 25 yard field goal.

40 - 36 = 4

**Not Given** 

Related Work

Method

Result

Discrete Reasoning Task

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal?

**A:** 4

Given

Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... In the third quarter Tennessee would draw close as Bironas kicked a 37 yard field goal. ... John Carney getting a 36 yard field goal. ... Young and Williams hooking up with each other on a 41 yard td pass. ... Bironas nailing a 40 yard and a 25 yard field goal.

Input: Q, Document

**Solution z** (equation in this case)

Output: A (text)

Method

Result

Discrete Reasoning Task

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal?

**A:** 4

Given

Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... In the third quarter Tennessee would draw close as Bironas kicked a 37 yard field goal. ... John Carney getting a 36 yard field goal. ... Young and Williams hooking up with each other on a 41 yard td pass. ... Bironas nailing a 40 yard and a 25 yard field goal.

Input: Q, Document

**Solution z** (equation in this case)

Output: A (text)

We can find a solution set **Z Z** = { "41-37", "41-37", "40-36" }

From DROP (Dua et al 2019)

Reading Comprehension

- 1. Heuristics --- first span, random span
- Very competitive baseline (partially because of dataset bias)
- 2. Maximum Marginal Likelihood (MML)
- A latent variable learning method which maximizes  $\sum_{z \in Z} P(z|Q,D)$

# - Reading Comprehension

- 1. Heuristics --- first span, random span
- Very competitive baseline (partially because of dataset bias)
- 2. Maximum Marginal Likelihood (MML)
- A latent variable learning method which maximizes  $\sum_{z \in Z} P(z|Q,D)$

We will show: First only & MML are similar; Our hard EM method outperforms them significantly

#### - Semantic Parsing

(Zettlemoyer & Collins 2005, Liang et al 2013, Berant et al 2013, Artzi & Zettlemoyer 2013, ...)



- x: There is a small yellow item not touching any wall
- y:True
- z:Exist(Filter(ALL\_ITEMS,  $\lambda x$ .And(And(IsYellow(x), IsSmall(x)), Not(IsTouchingWall(x, Side.Any))))))

Related Work

Method

Result

#### Semantic Parsing

(Zettlemoyer & Collins 2005, Liang et al 2013, Berant et al 2013, Artzi & Zettlemoyer 2013, ...)



```
x:There is a small yellow item not touching any wall
y:True
```

```
z:Exist(Filter(ALL_ITEMS, \lambda x.And(And(IsYellow(x), IsSmall(x)), Not(IsTouchingWall(x, Side.Any))))))
```

Related Work

Method

Result

## - Semantic Parsing

(Zettlemoyer & Collins 2005, Liang et al 2013, Berant et al 2013, Artzi & Zettlemoyer 2013, ...)



```
x: There is a small yellow item not touching any wall y: True $$z: Exist(Filter(ALL_ITEMS, $\lambda x.And(And(IsYellow(x), IsSmall(x)), Not(IsTouchingWall(x, Side.Any))))))
```

Very large or infinite search space -> reward-based methods are used with no precomputed set of logical forms

## - Semantic Parsing

(Zettlemoyer & Collins 2005, Liang et al 2013, Berant et al 2013, Artzi & Zettlemoyer 2013, ...)



```
x: There is a small yellow item not touching any wall y: True $$z: Exist(Filter(ALL_ITEMS, $\lambda x.And(And(IsYellow(x), IsSmall(x)), Not(IsTouchingWall(x, Side.Any))))))
```

Very large or infinite search space -> reward-based methods are used with no precomputed set of logical forms

This paper: only focus on problems where a solution set can be precomputed

Related Work

Method

Result

#### Semantic Parsing

(Zettlemoyer & Collins 2005, Liang et al 2013, Berant et al 2013, Artzi & Zettlemoyer 2013, ...)



```
x: There is a small yellow item not touching any wall y: True $$z: Exist(Filter(ALL_ITEMS, $\lambda x. And(And(IsYellow(x), IsSmall(x)), Not(IsTouchingWall(x, Side.Any))))))$$
```

Very large or infinite search space -> reward-based methods are used with no precomputed set of logical forms

This paper: only focus on problems where a solution set can be precomputed → Precomputing a solution set and using hard EM update is better than reward-based methods.

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Task formulation



A unified weak supervision scenario with a small set of possible solutions

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Robert Schumann was a German composer and influential music critics of the Romantic era. (...) Robert Schumann himself refers to it as "an affliction of the whole hand" (...) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the composer Robert Schumann . (...) Brahms met Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction to Robert Schumann .

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: Which composer did pianist Clara Wieck marry in 1840?

A: Robert Schumann

Average: 1.8 - 6.7

Median: 1 - 5

Robert Schumann was a German composer and influential music critics of the Romantic era. (...) Robert Schumann himself refers to it as "an affliction of the whole hand" (...) Robert Schumann is mentioned in a 1991 episode of Seinfeld "The Jacket" (...) Clara Schumann was a German musician and composer. Her husband was the composer Robert Schumann . (...) Brahms met Joachim in Hanover, made a very favorable impression on him, and got from him a letter of introduction to Robert Schumann .

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal? A: 4

# **Task Formulation**

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal? A: 4

Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... In the third quarter Tennessee would draw close as Bironas kicked a 37 yard field goal. ... John Carney getting a 36 yard field goal. ... Young and Williams hooking up with each other on a 41 yard td pass. ... Bironas nailing a 40 yard and a 25 yard field goal.

37+37 37-37 37+36 37-36 37+41 37-41 36+41 36-41 ...

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal? A: 4

Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... In the third quarter Tennessee would draw close as Bironas kicked a 37 yard field goal. ... John Carney getting a 36 yard field goal. ... Young and Williams hooking up with each other on a 41 yard td pass. ... Bironas nailing a 40 yard and a 25 yard field goal.

37+37 37-37 37+36 37-36 37+41 37-41 36+41 36-41 ...



41-37 41-37 40-36 10-6 ...

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: How many yards longer was Rob Bironas' longest field goal Carney's only field goal? A: 4

Average: 8.2

Median: 3

Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... In the third quarter Tennessee would draw close as Bironas kicked a 37 yard field goal. ... John Carney getting a 36 yard field goal. ... Young and Williams hooking up with each other on a 41 yard td pass. ... Bironas nailing a 40 yard and a 25 yard field goal.

37+37 37-37 37+36 37-36 37+41 37-41 36+41 36-41 ...



41-37 41-37 40-36 10-6 ...

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: Which player played guard for Toronto in 1996-1997? A: John Long

| Player       | No. | Position | Year in Toronto |
|--------------|-----|----------|-----------------|
| Kyle Lowry   | 3   | Guard    | 2012-Present    |
| John Long    | 25  | Guard    | 1996-1997       |
| Popeye Jones | 54  | Forward  | 1996-1998       |

All non-compositional SQL queries with up to 3 conditions

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: Which player played guard for Toronto in 1996-1997? A: John Long

| Player       | No. | Position | Year in Toronto |
|--------------|-----|----------|-----------------|
| Kyle Lowry   | 3   | Guard    | 2012-Present    |
| John Long    | 25  | Guard    | 1996-1997       |
| Popeye Jones | 54  | Forward  | 1996-1998       |

Select player where No.="1996"

Select max(player) where No.="1996"

Select min(player) where No.="1996"

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: Which player played guard for Toronto in 1996-1997? A: John Long

| Player       | No. | Position | Year in Toronto |
|--------------|-----|----------|-----------------|
| Kyle Lowry   | 3   | Guard    | 2012-Present    |
| John Long    | 25  | Guard    | 1996-1997       |
| Popeye Jones | 54  | Forward  | 1996-1998       |

Select player where No.="1996" Select max(player) where No.="1996" Select min(player) where No.="1996" Select player where No.="1997"
Select max(player) where No.="1997"
Select min(player) where No.="1997"

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Q: Which player played guard for Toronto in 1996-1997? A: John Long

| Player       | No. | Position | Year in Toronto |
|--------------|-----|----------|-----------------|
| Kyle Lowry   | 3   | Guard    | 2012-Present    |
| John Long    | 25  | Guard    | 1996-1997       |
| Popeye Jones | 54  | Forward  | 1996-1998       |

Select player where No.="1996"

Select player where No.="1997"

Select max(player) where No.="1996"

Select max(player) where No.="1997"

Select min(player) where No.="1997"

Select min(player) where No.="1997"



Select player where position="guard" and Year in Toronto="1996-1997" Select max(player) where position="guard" and Year in Toronto="1996-1997" Select min(player) where position="guard" and Year in Toronto="1996-1997" Select min(player) where position="guard" Select min(player) where Year in Toronto="1996-1997"

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Average: 346.1

| Player       | No. | Position | Year       | Median: 5 |
|--------------|-----|----------|------------|-----------|
| Kyle Lowry   | 3   | Guard    | 2012-Prese | ent       |
| John Long    | 25  | Guard    | 1996-1997  |           |
| Popeye Jones | 54  | Forward  | 1996-1998  |           |

| Select player where No.="1996"      | Select player where No.="1997"      |     |
|-------------------------------------|-------------------------------------|-----|
| Select max(player) where No.="1996" | Select max(player) where No.="1997" | ••• |
| Select min(player) where No.="1996" | Select min(player) where No.="1997" |     |



Select player where position="guard" and Year in Toronto="1996-1997" Select max(player) where position="guard" and Year in Toronto="1996-1997" Select min(player) where position="guard" and Year in Toronto="1996-1997" Select min(player) where position="guard" Select min(player) where Year in Toronto="1996-1997"

Intro

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Task formulation



A unified weak supervision scenario with a small set of possible solutions

Intro

Related Work

Method

Result

Reading comprehension

Discrete reasoning task

Semantic parsing

Task formulation



A unified weak supervision scenario with a small set of possible solutions

Learning method





Intro

Related Work

Method

Result

Goal: train P(z|Q,D)

Question Model P(z|Q,D)

Document (Table header if semantic parsing)

## Learning

Goal: train P(z|Q,D)

Groundtruth solution:  $\bar{z}$ 



Supervised model (given  $\bar{z}$ )  $P(\bar{z}|Q,D)$ 

# Learning

Goal: train P(z|Q,D)

Groundtruth solution:  $\bar{z}$   $\{z_1, z_2, ..., z_n\}$  is a solution set executing the correct answer



Supervised model (given  $\bar{z}$ )  $P(\bar{z}|Q,D)$ 

# Learning

Goal: train P(z|Q,D)

Groundtruth solution:  $\bar{z}$   $\{z_1, z_2, ..., z_n\}$  is a solution set executing the correct answer

Supervised model (given  $\bar{z}$ )  $P(\bar{z}|Q,D)$ 

### Learning - MML

Goal: train P(z|Q,D)

Groundtruth solution:  $\bar{z}$   $\{z_1, z_2, ..., z_n\}$  is a solution set executing the correct answer

MML: Marginalize over z1,..., zn

At each parameter update

Model P(z|Q,D)



Supervised model (given  $\bar{z}$ ) MML

$$P(\bar{z}|Q,D)$$

$$\sum_{z \in Z} P(z|Q,D)$$

### Learning - Ours

Goal: train P(z|Q,D)

Groundtruth solution:  $\bar{z}$   $\{z_1, z_2, ..., z_n\}$  is a solution set executing the correct answer

Ours: Encourage the most likely solution

At each parameter update



Supervised model (given  $\bar{z}$ ) MML Ours

$$P(\bar{z}|Q,D)$$

$$\sum_{z \in Z} P(z|Q,D)$$

$$\max_{z \in Z} P(z|Q,D)$$

### **Learning - Ours**

Goal: train P(z|Q,D)

Groundtruth solution:  $\bar{z}$   $\{z_1, z_2, ..., z_n\}$  is a solution set executing the correct answer



#### **Datasets**

Intro Related Work Method Result

| 1. Multi-mention Reading Comprehension |                                        |  |  |
|----------------------------------------|----------------------------------------|--|--|
| TriviaQA                               | Distantly-supervised RC                |  |  |
| NarrativeQA                            | Generative RC                          |  |  |
| TriviaQA-open                          | Open-domain QA                         |  |  |
| Natural Questions-open                 | Open-domain QA                         |  |  |
| 2. Discrete Reasoning Task             |                                        |  |  |
| DROP-num                               | Numeric reasoning                      |  |  |
| 3. Semantic Parsing                    |                                        |  |  |
| WikiSQL                                | Non-compositional SQL query generation |  |  |

Datasets are from: Joshi et al 2017; Kocisky et al 2018; Joshi et al 2017; Kwiatkowski et al 2019; Dua et al 2019; Zhong et al 2017. Note that TriviaQA-open & Natural Questions-open are open-domain versions of TriviaQA & Natural Questions, respectively.

#### **Datasets**

Intro

Related Work

Method

Result

| 1. Multi-mention Reading Comprehension |                                        |  |  |
|----------------------------------------|----------------------------------------|--|--|
| TriviaQA                               | Distantly-supervised RC                |  |  |
| NarrativeQA                            | Generative RC                          |  |  |
| TriviaQA-open                          | Open-domain QA                         |  |  |
| Natural Questions-open                 | Open-domain QA                         |  |  |
| 2. Discrete Reasoning Task             |                                        |  |  |
| DROP-num                               | Numeric reasoning                      |  |  |
| 3. Semantic Parsing                    |                                        |  |  |
| WikiSQL                                | Non-compositional SQL query generation |  |  |

#### **Base Model**

Multi-paragraph
BERT-QA
(Devlin et al 2019 & others)

Augmented BERT (Dua et al 2019)

SQLova (Hwang et al 2019)

Datasets are from: Joshi et al 2017; Kocisky et al 2018; Joshi et al 2017; Kwiatkowski et al 2019; Dua et al 2019; Zhong et al 2017. Note that TriviaQA-open & Natural Questions-open are open-domain versions of TriviaQA & Natural Questions, respectively.



Intro Related Work Method Result



1) First-only and MML are similar.



Intro Related Work Method Result



1) First-only and MML are similar.

2) Our Hard-EM method outperforms First-only & MML consistently.

Intro Related Work

Method

Result



1) First-only and MML are similar.

2) Our Hard-EM method outperforms First-only & MML consistently.3) SOTA on five datasets.

#### Results - wikisqL

Intro Related Work Method Result



We outperform a wide range of previous semantic parsing methods.

#### Results - wikisqL

Intro Related Work Method Result



We outperform a wide range of previous semantic parsing methods.

#### Results - wikisqL

Intro Related Work Method Result



We outperform a wide range of previous semantic parsing methods.

#### Discrete Reasoning Task as example

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal? (**Answer:** 4)

**P:** ... The Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... Tennessee would draw close as Bironas kicked a 37 yard field goal. The Chiefs answered with kicker John Carney getting a 36 yard field goal. The Titans would retake the lead with Young and Williams hooking up with each other again on a 41 yard td pass. ... Tennessee clinched the victory with Bironas nailing a 40 yard and a 25 yard field goal.

**Desired equation:** "40-36"

#### Discrete Reasoning Task as example

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal? (**Answer:** 4)

**P:** ... The Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... Tennessee would draw close as Bironas kicked a 37 yard field goal. The Chiefs answered with kicker John Carney getting a 36 yard field goal. The Titans would retake the lead with Young and Williams hooking up with each other again on a 41 yard td pass. ... Tennessee clinched the victory with Bironas nailing a 40 yard and a 25 yard field goal.

#### **Desired equation:**

**"**40-36"

#### **Solution set:**

```
{"41-37", "41-37", "40-36", "10-6", ...}
```

Discrete Reasoning Task as example

Training step

Top 1 prediction

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal? (**Answer:** 4)

**P:** ... The Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... Tennessee would draw close as Bironas kicked a 37 yard field goal. The Chiefs answered with kicker John Carney getting a 36 yard field goal. The Titans would retake the lead with Young and Williams hooking up with each other again on a 41 yard td pass. ... Tennessee clinched the victory with Bironas nailing a 40 yard and a 25 yard field goal.

| t               | Pred  | $Z$ (ordered by $\mathbb{P}(z x; \theta_t)$ ) |                    |                    | $; 	heta_t))$      |
|-----------------|-------|-----------------------------------------------|--------------------|--------------------|--------------------|
| $\overline{1k}$ | 10-9  | 10-6                                          | 41-37              | 40-36              | 41-37 <sup>‡</sup> |
| 2k              | 37-36 | 40-36                                         | 41-37              | 41-37‡             | 10-6               |
| 4k              | 40-36 | 40-36                                         | 41-37 <sup>‡</sup> | 41-37              | 10-6               |
| 8 <b>k</b>      | 40-36 | 40-36                                         | 41-37 <sup>‡</sup> | 41-37              | 10-6               |
| 16k             | 37-36 | 40-36                                         | 41-37              | 41-37 <sup>‡</sup> | 10-6               |
| 32k             | 40-36 | 40-36                                         | 41-37              | 41-37 <sup>‡</sup> | 10-6               |
|                 |       |                                               |                    |                    |                    |

Solution set (ordered by likelihood)

Discrete Reasoning Task as example

Training step

Top 1 prediction

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal? (**Answer:** 4)

**P:** ... The Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... Tennessee would draw close as Bironas kicked a 37 yard field goal. The Chiefs answered with kicker John Carney getting a 36 yard field goal. The Titans would retake the lead with Young and Williams hooking up with each other again on a 41 yard td pass. ... Tennessee clinched the victory with Bironas nailing a 40 yard and a 25 yard field goal.

| Pred  | $Z$ (ordered by $\mathbb{P}(z x;	heta_t)$ ) |                                                                       |                    |                                                                                                                                                                                                                                                                                 |
|-------|---------------------------------------------|-----------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-9  | 10-6                                        | 41-37                                                                 | 40-36              | 41-37 <sup>‡</sup>                                                                                                                                                                                                                                                              |
| 37-36 | 40-36                                       | 41-37                                                                 | 41-37‡             | 10-6                                                                                                                                                                                                                                                                            |
| 40-36 | 40-36                                       | 41-37 <sup>‡</sup>                                                    | 41-37              | 10-6                                                                                                                                                                                                                                                                            |
| 40-36 | 40-36                                       | 41-37 <sup>‡</sup>                                                    | 41-37              | 10-6                                                                                                                                                                                                                                                                            |
| 37-36 | 40-36                                       | 41-37                                                                 | 41-37 <sup>‡</sup> | 10-6                                                                                                                                                                                                                                                                            |
| 40-36 | 40-36                                       | 41-37                                                                 | 41-37 <sup>‡</sup> | 10-6                                                                                                                                                                                                                                                                            |
|       | 10-9<br>37-36<br>40-36<br>40-36<br>37-36    | 10-9 10-6<br>37-36 40-36<br>40-36 40-36<br>40-36 40-36<br>37-36 40-36 |                    | 10-9       10-6       41-37       40-36         37-36       40-36       41-37       41-37 <sup>‡</sup> 40-36       40-36       41-37 <sup>‡</sup> 41-37         40-36       40-36       41-37 <sup>‡</sup> 41-37         37-36       40-36       41-37       41-37 <sup>‡</sup> |

Solution set (ordered by likelihood)

Correct equation is ranked first since the early stage of training.

Discrete Reasoning Task as example

Training step

Top 1 prediction

**Q:** How many yards longer was Rob Bironas' longest field goal compared to John Carney's only field goal? (**Answer:** 4)

**P:** ... The Titans responded with Kicker Rob Bironas managing to get a 37 yard field goal. ... Tennessee would draw close as Bironas kicked a 37 yard field goal. The Chiefs answered with kicker John Carney getting a 36 yard field goal. The Titans would retake the lead with Young and Williams hooking up with each other again on a 41 yard td pass. ... Tennessee clinched the victory with Bironas nailing a 40 yard and a 25 yard field goal.

| Pred  | $Z$ (ordered by $\mathbb{P}(z x;	heta_t)$ ) |                                                                       |                    |                                                                                                                                                                                                                                                                                 |
|-------|---------------------------------------------|-----------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-9  | 10-6                                        | 41-37                                                                 | 40-36              | 41-37 <sup>‡</sup>                                                                                                                                                                                                                                                              |
| 37-36 | 40-36                                       | 41-37                                                                 | 41-37‡             | 10-6                                                                                                                                                                                                                                                                            |
| 40-36 | 40-36                                       | 41-37 <sup>‡</sup>                                                    | 41-37              | 10-6                                                                                                                                                                                                                                                                            |
| 40-36 | 40-36                                       | 41-37 <sup>‡</sup>                                                    | 41-37              | 10-6                                                                                                                                                                                                                                                                            |
| 37-36 | 40-36                                       | 41-37                                                                 | 41-37 <sup>‡</sup> | 10-6                                                                                                                                                                                                                                                                            |
| 40-36 | 40-36                                       | 41-37                                                                 | 41-37 <sup>‡</sup> | 10-6                                                                                                                                                                                                                                                                            |
|       | 10-9<br>37-36<br>40-36<br>40-36<br>37-36    | 10-9 10-6<br>37-36 40-36<br>40-36 40-36<br>40-36 40-36<br>37-36 40-36 |                    | 10-9       10-6       41-37       40-36         37-36       40-36       41-37       41-37 <sup>‡</sup> 40-36       40-36       41-37 <sup>‡</sup> 41-37         40-36       40-36       41-37 <sup>‡</sup> 41-37         37-36       40-36       41-37       41-37 <sup>‡</sup> |

Solution set (ordered by likelihood)

Correct equation is ranked first since the early stage of training.

"Pushing hard towards the most likely solution is helpful"

#### Effect of solution set size



Figure 2: Varying the size of solution set (|Z|) at test time. We compare the model trained on MML objective (blue) and our training strategy (orange). Our approach consistently outperforms MML on DROP<sub>num</sub> and WIKISQL, especially when |Z| is large.

More performance gains when the size of solution set is large!

#### Effect of solution set size



Figure 2: Varying Size of solution set (|Z|) at test time. We compare the model trained on MML objective (blue) and our training strategy (orange). Our approach consistently outperforms MML on DROP<sub>num</sub> and WIKISQL, especially when |Z| is large.

More performance gains when the size of solution set is large!

### Summary

We formulate various QA problems into a weak supervision problem where a **solution** is not given, but **a small set of potential solutions** can be precomputed.

We develop a hard EM learning scheme that computes gradients relative to the most likely solution at each parameter update.

Our method outperforms baselines significantly across 6 datasets, and set new SOTA on 5 datasets by only modifying the objective.

### Use cases already!

A larger solution set with more extensive search, and further improved hard EM which encourages one or zero solution using thresholding.

|                    | EM    | F1    |  |
|--------------------|-------|-------|--|
| Hard EM            | 80.58 | 83.42 |  |
| with thresholding  | 00.50 | 03.42 |  |
| Hard EM            | 73.72 | 77.46 |  |
| Maximum Likelihood | 63.96 | 67.98 |  |

Table 7: Results of different training algorithms on DROP development set.

Anonymous. "Neural Symbolic Reader: Scalable Integration of Distributed And Symbolic Representations for Reading Comprehension". Submitted to ICLR 2020.

(Disclaimer: we do not know who the authors are )



# Thank you for listening

**Code** https://github.com/shmsw25/qa-hard-em

Paper https://arxiv.org/abs/1909.04849

**Contact** sewon@cs.washington.edu