Lem = $F : C \rightarrow D$ strong mondidal function. (F_0, F_2, F) .
Pairing $w: X \otimes Y \to 1$ its inverse $\Omega: 1 \to Y \otimes X$ in C .
Then we have.
Paring ω^{F} , $F(X) \otimes F(Y) \xrightarrow{F_{2}(X,Y)} F(X \otimes Y) \xrightarrow{F(w)} F(1) \xrightarrow{F_{0}^{+}} 1$. He inverse Ω^{F} : $1 \xrightarrow{F_{0}} F(1) \xrightarrow{F(X)} F(Y \otimes X) \xrightarrow{F(X)} F(Y \otimes F(X))$
the inverse Ω^{F} : 1 For FILL FILL FILL FILL FILL FILL FILL FIL
Pf = Show that.
$\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$ $= \frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$ $= \frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$ $= \frac{1}{1}\frac{1}\frac$
we that. We that.
$iq^{\times} = \times \longrightarrow \times \otimes T \xrightarrow{iq^{\times} \otimes U} \times \otimes (\lambda \otimes x) \longrightarrow (\lambda \otimes \lambda) \otimes x \xrightarrow{m \otimes iq^{\times}} T \otimes x \to X$
abla

```
19 EM =
            F(x) \leftarrow \frac{Y^{+}}{F(x)} F(x) \otimes 1
     FIVX) I HAFIX) & F.
        FIXOL) FIXX PIXX OF(1)
 \begin{array}{c} |\mathcal{A}_{FX} \otimes F(\Omega)| \\ |\mathcal
                F(1 \otimes X) \xrightarrow{F_{2}(1,X)^{7}} F(1) \otimes F(X)
                         F(X) = \frac{\int_{F(X)}^{F} \otimes i d_{F(X)}}{\int_{F(X)}^{F}} 2 \otimes F(X)
Left dual of XEOblE) is XEOblE) and.
Pairing ev_X: X \otimes X \to 1 its inverse coev_X: 1 \to X \otimes X
 Right dual of X Cubit) is X cobit and.
Pairing EVX = X & X > 1 Hs inverse (veVX = 1 -> X & X
 Def: Monoidal cute- C is left (right) rigid, if
 YX Eub(E) has left (right) dual
  is vigid, it YX EOb(E) has left und right dual.
```

Category, Def e^{vP} . $ob(e^{vP}) = ob(e)$, Homeor(x, Y) = Home(Y, X)Cononvidal category, Def e^{vev} $(e, 1, \otimes, a, l, v) = (e^{vP}, \otimes^{oP}, 1, a^{vev}, v^{vev})$ where $e^{vP} = e^{vP}$, $e^$

E left rigid category, def left dual functur.

 $(1) \times \epsilon_0 b(\epsilon_{ab}) \longrightarrow X$.

 $(2) f_{=} X \rightarrow Y \text{ in } C.$

 $\frac{ev_{Y}}{f} = \frac{1}{\sqrt{\sqrt{ev_{X}}}} \times \frac{1}{\sqrt{\sqrt{ev_{X}}}} \times \frac{1}{\sqrt{\sqrt{ev_{X}}}} \times \frac{1}{\sqrt{\sqrt{ev_{X}}}} \times \frac{1}{\sqrt{ev_{X}}} \times \frac$

V3 is strong mondidal functor.

 $(V?)_{\circ} = (00V_{1}: 1 \rightarrow 1)$ $1 \stackrel{(00V_{1}: 1)}{\longrightarrow} 1 \otimes 1 \rightarrow 1$

$$\forall x, Y \in \mathcal{A} | C^{\text{rev}} \rangle$$

? is strong monoidal functor.
$(3^{\vee})_{\circ} = \widetilde{(veV_1)}, \underline{1} \rightarrow \underline{1}^{\vee}$
$\frac{1}{2}(X,Y)$: $X \otimes Y \longrightarrow (Y \otimes X)^{\vee}$
(YOX) TOEVERY X TOEV
(veryo) X
Det: A pivotal category C is vigid category and ? = ? as. wonvidal functor.
VXEOBLE), X* = X = X is called dual of X.
$eV_{X}: \underline{X}^{*} \otimes X \longrightarrow \underline{1} (oeV_{X}: \underline{1} \longrightarrow X \otimes X^{*})$
$\text{Ev}_{x}: X \otimes X^{*} \rightarrow 1$ $\text{Toev}_{x}: 1 \rightarrow X^{*} \otimes X$.
Penrose diagram in pivotal category.
$\forall x = \sqrt{x}$ $\forall x = \sqrt{x} = \sqrt{x}$
$eV_{x}: X $ $eV_{x}: X $ $eV_{x}: X $

$$(0ev_1 = \overbrace{0ev_1} : 1 \rightarrow 1^* \Rightarrow ev_1 = \overbrace{ev_1} : 1^* \rightarrow 1$$

$$\times^* \otimes \Upsilon^* \longrightarrow (\Upsilon \otimes X)^*, \quad X, Y \in OD(C)$$

$$(Y \otimes X)^* \longrightarrow X^* \otimes Y^*, X, Y \in ob(\mathcal{C})$$

dual morphism identities

 $f: X \rightarrow Y$, $f^*: Y^* \rightarrow X^*$.

Y/ X = Y/ X

C privatal (ategory

Double dual. $\forall X \in Ob(E)$, set $X^{**} = (X^{*})^{*}$, define.

$$\psi_{\times} = \bigvee_{\times} \chi_{\times} \times \chi_{\times} \chi_{\times} \times$$

Lam. YXEODIE), Yx is invertible set.

Then
$$\psi_{x} = \phi_{x}$$
, $\psi_{x}^{7} = \theta_{x} = \nu_{x}$.

$$\forall f : \quad \underbrace{\theta_{x} + \psi_{x}} = \underbrace{\delta d_{x}} = \underbrace{\nu_{x} + \psi_{x}}, \quad \underbrace{\psi_{x} + \theta_{x}} = \underbrace{\delta d_{x}} = \underbrace{$$

$$\Rightarrow$$
 $\psi_{x}^{+} = \theta_{x}$, $\psi_{x}^{+} = \nu_{x}$, Need to show that $\theta_{x} = \nu_{x}$.

Lemma. Y X & ob(E).

