In [25]: # Libraries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

In [26]: from sklearn.model_selection import train_test_split

from sklearn.linear model import LogisticRegression

from sklearn.metrics import accuracy_score

In [27]: # Loading the dataset

data=pd.read_csv("C:/Users/HP/Desktop/project-DiabetesPrediction/1.diabetes_Data.cs
data

Out[27]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	A
0	6	148	72	35	0	33.6	0.627	1
1	1	85	66	29	0	26.6	0.351	;
2	8	183	64	0	0	23.3	0.672	÷
3	1	89	66	23	94	28.1	0.167	;
4	0	137	40	35	168	43.1	2.288	;
763	10	101	76	48	180	32.9	0.171	1
764	2	122	70	27	0	36.8	0.340	
765	5	121	72	23	112	26.2	0.245	÷
766	1	126	60	0	0	30.1	0.349	
767	1	93	70	31	0	30.4	0.315	

768 rows × 9 columns

In [28]: # Checking for missing values

data.isnull().sum()

Out[28]: Pregnancies

Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction 0
Age 0
Outcome 0

0

dtype: int64

In [29]: #Checking for missing values
sns.heatmap(data.isnull())

Out[29]: <Axes: >

In [12]: # Co relation matrix

correlation=data.corr()
print(correlation)

	Pregnanci		Gluco		BloodPressure	SkinThickness	\
Pregnancies	1.000000		0.129459		0.141282	-0.081672	
Glucose	0.129459		1.000000		0.152590	0.057328	
BloodPressure	0.141282		0.152590		1.000000	0.207371	
SkinThickness	-0.0816		0.0573		0.207371	1.000000	
Insulin	-0.0735	35	0.3313	57	0.088933	0.436783	
BMI	0.0176	83	0.2210		0.281805	0.392573	
DiabetesPedigreeFunction	-0.0335	23	0.1373	37	0.041265	0.183928	
Age	0.5443	41	0.2635	14	0.239528	-0.113970	
Outcome	0.2218	98	0.4665	81	0.065068	0.074752	
	Insulin		BMI	Di	abetesPedigreeF	unction \	
Pregnancies	-0.073535	0.	017683		-0	.033523	
Glucose	0.331357	0.	221071		0	.137337	
BloodPressure	0.088933	0.088933 0.281805 0.041265				.041265	
SkinThickness	0.436783	0.	392573		0	.183928	
Insulin	1.000000	0.	197859		0	.185071	
BMI	0.197859	1.	000000		0	.140647	
DiabetesPedigreeFunction	0.185071	0.	140647		1	.000000	
Age	-0.042163	0.	036242		0	.033561	
Outcome	0.130548	130548 0.2			0	173844	
	Age	0	utcome				
Pregnancies	0.544341		221898				
Glucose	0.263514	0.4	466581				
BloodPressure	0.239528	0.	065068				
SkinThickness	-0.113970		074752				
Insulin	-0.042163		130548				
BMI	0.036242		292695				
DiabetesPedigreeFunction	0.033561		173844				
Age	1.000000		238356				
Outcome	0.238356		000000				
	3.23330	-•					

```
In [30]: # Visualising the Co relation
sns.heatmap(data.corr())
```

Out[30]: <Axes: >


```
In [31]: # Train test split
    x=data.drop("Outcome",axis=1)
    y=data["Outcome"]
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=21
```

```
In [32]: # Training the model
        model=LogisticRegression()
        model.fit(x_train,y_train)
        D:\Users\HP\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:460: Co
        nvergenceWarning: lbfgs failed to converge (status=1):
        STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
        Increase the number of iterations (max_iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-le
        arn.org/stable/modules/preprocessing.html)
        Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
        (https://scikit-learn.org/stable/modules/linear model.html#logistic-regression)
          n_iter_i = _check_optimize_result(
Out[32]:
         ▼ LogisticRegression
         LogisticRegression()
In [33]: # Making Prediction
        prediction = model.predict(x test)
        prediction
Out[33]: array([0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
               1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
               0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
               0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
               0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,
               1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
               0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1,
               0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int64)
In [34]: # Accuracy score of the model
        accuracy = accuracy score(prediction,y test)
        accuracy
Out[34]: 0.72727272727273
In [35]: from sklearn.metrics import confusion_matrix,classification_report
In [36]:
        #Confusion matrix
        cm = confusion_matrix(y_test,prediction)
        cm
Out[36]: array([[129, 15],
               [ 48, 39]], dtype=int64)
```

In [37]: # Classification Report
print(classification_report(prediction,y_test))

	precision	recall	f1-score	support
0	0.90	0.73	0.80	177
1	0.45	0.72	0.55	54
accuracy			0.73	231
macro avg weighted avg	0.67 0.79	0.73 0.73	0.68 0.75	231 231

```
In [40]: # Grafhical Presentation of Confusion Matrix
plt.title("Confusion Matrix")
sns.heatmap(cm,annot = True,fmt='d',cmap = 'Blues')
plt.ylabel("Actual Values")
plt.xlabel("Prediction Values")
```

Out[40]: Text(0.5, 23.522222222222, 'Prediction Values')


```
In [ ]:
```