0 v β β 衰变研究

孙汉城 **2013/08/19**

中微子物理面临大发展

- 中微子振荡已确定,中微子必有质量,已
 beyond the standard model。
- 高能所大亚湾2期实验要研究中微子质量序列与CP不守恒。
- NH Normal Hierarchy m_{3>>}m_{2>>}m₁
- Inverted Hierarchy m2∽m1 >> m3

中微子有效质量与电子中微子质量的关系 Branco, Leptonic CP Violation Rev.Mod.Phy.84.2(2012)536

0 ν β β 衰变

$$A \rightarrow B + 2e - + 2 \text{ V}$$

 $\rightarrow B + 2e -$

如果发现**0** ν β β ,则打破轻子数守恒律 并可定出中微子有效质量〈**m** ν〉

$$[T_{\frac{1}{2}}^{0}]^{v}(0^{+}\rightarrow 0^{+})]^{-1} = G^{0}[(E_{0},Z)]^{v}M^{0}[(E_{0},Z)]^{v}$$

G: 相空间积分,正比于 Q^5 M: 核矩阵元, $\langle m_v \rangle$: 中微子有效质量 $\langle m_v \rangle$ 由中微子质量与混合系数决定。

粒子与反粒子

有些粒子=反粒子 光子

π 介子 (u**d+u**d)

中微子与反中微子不同,但可能相通,有混合 **0** v β β

大统一理论: 质子衰变,轻子数不守恒。

1) β β Decay Candidate

Nuclei density Abundance % Q,MeV Nuclei density Abundance Q $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ 6.24 34.49 ⁴⁶Ca→⁴⁶Ti 1.55 0.0033 0.987 2.533 ⁴⁸Ca→⁴⁸Ti **4.271** 134Xe→134Ba 1.55 0.185 10.44 0.847 ⁷⁰Zn→⁷⁰Ge 7.133 0.62 ¹³⁶Xe→¹³⁶Ba 1.001 8.87 2.479 ⁷⁶Ge→⁷⁶Se 5.123 7.67 2.0396 $^{142}\text{Ce} \rightarrow ^{142}\text{Nd} 6.657 11.114$ 1.4167 ¹⁴⁶Nd→¹⁴⁶Sm 7.007 17.18 ⁸⁰Se→⁸⁰Kr 4.79 49.82 0.130 0.056 $82\text{Se} \rightarrow 82\text{Kr} \quad 4.79$ ¹⁴⁸Nd→¹⁴⁸Sm 7.007 5.72 9.19 2.995 1.9283 86Kr→86Sr ¹⁵⁰Nd→¹⁵⁰Sm 7.007 5.6 17.37 1.256 3.3671 ⁹⁴Zr→⁹⁴Mo 6.506 $^{154}\text{Sm} \rightarrow ^{154}\text{Gd}$ 7.52 25.53 17.4 1.145 1.2519 ⁹⁶Zr→⁹⁶Mo 6.506 2.8 3.350 $^{160}\text{Gd} \rightarrow ^{160}\text{Dv}$ 7.9 21.9 1.7295 ⁹⁸Mo→⁹⁸Ru 10.22 23.75 170 Er \rightarrow 170 Yb 9.066 14.9 0.112 0.6539 100 Mo \rightarrow 100 Ru 10.22 $^{176}\text{Yb} \rightarrow ^{176}\text{Hf}$ 6.965 12.73 9.62 3.034 1.0788 ¹⁸⁶W→¹⁸⁶Os 19.3 28.4 $^{104}\text{Ru} \rightarrow ^{104}\text{Pd}$ 12.43 18.3 1.299 0.4903 ¹¹⁰Pd→¹¹⁰Cd 12.02 ¹⁹²Os→¹⁹²Pt 22.57 41 13.5 2.013 0.417 ¹¹⁴Cd→¹¹⁴Sn 8.65 ¹⁹⁸Pt→¹⁹⁸Hg 21.45 7.2 38.73 0.534 1.048 ¹¹⁶Cd→¹¹⁶Sn 8.65 $^{204}\text{Hg} \rightarrow ^{204}\text{Pb}$ 13.6 6.85 7.58 2.802 0.4165 ¹²²Sn→¹²²Te 7.31 0.364 ²³²Th→²³²U 11.7 4.71 0.8582 100 124 Sn→ 124 Te 7.31 ²³⁸U→²³⁸Pu 19 5.98 2.2881 99.3 1.1458 $^{128}\text{Te} \rightarrow ^{128}\text{Xe}$ 6.24 31.79 0.868

相空间因子 K.Zuber,J.Phys.G:Nucl.Part.Phys.39(2012)124009。

核矩阵元W.Rodejohann,J.Phys.G:39(2012)124008

已测到的2 v β β 衰变

Nucleus	T½,y	$M_{GT}^{2\ v}$,MeV ⁻¹
⁴⁸ Ca	$(4.2 \pm 1.2) \times 10^{19}$	0.05
⁷⁶ Ge	$(1.3\pm0.1)\times10^{21}$	0.15
⁸² Se	$(0.92 \pm 0.05) \times 10^{20}$	0.10
⁹⁶ Zr	$(1.4+3.5 -0.5) \times 10^{19}$	0.12
¹⁰⁰ Mo	$(0.8 \pm 0.06) \times 10^{20}$	0.22
¹¹⁶ Cd	$(3.2 \pm 0.3) \times 10^{19}$	0.12
¹²⁸ Te	$(0.72 \pm 0.03) \times 10^{25}$	0.025
¹³⁰ Te	$(2.7\pm0.1)\times10^{21}$	0.017
¹³⁶ Xe	$\rangle 0.81 \times 10^{21} (90\% \text{ CL})$	⟨ 0.03
¹⁵⁰ Nd	$(0.7+1.18 - 0.03) \times 10^{19}$	0.07
²³⁸ U	$(2.0\pm0.6)\times10^{21}$	0.05

测量方法

地球化学方法 计数方法 技术关键

极低本底,大量源物质(大多要浓缩同位素),长时间测量,大立体角, 高能量分辨,高空间分辨

0 ν β β 衰变的特点是: 两个电子同时以相反方向飞出,而其能量之和等于衰变能**Q**。与**2** ν β β 的能量和的分布如图所示。

图 ββ衰变电子能量和的分布

2 v β β 尾部対0 v β β 的干扰(大图2 v /0 v =100,右 上图2 v /0 v =1000000,能量分辨=5%) S.R.Elliot,Ann.Rev.Nucl.Part.Sci.52(2002)

建议与众不同的两个方案

1)核乳胶方案 有最佳空间分辨(µm)相反方向发射 有良好的能量分辨(1%) 将¹³⁰Te,(或¹⁰⁰Mo)这些有双β衰变的核做成100纳米大小的微粒混在乳胶中,放在地下实验室中积累事件,3年后显影。先观察挑出从纳米颗粒中向180⁰相反方向发出两个电子的事件。再测这两个电子的能量。为了提高能量分辨率,用磁场将电子径迹偏转来测其动量。乳胶叠是多层薄片,两片之间隔2cm空气,电子从上一片乳胶中穿出后,在空气中穿过时受磁场作用而弯曲(磁场强度1000高斯,由永磁体产生)进入下一片乳胶,由此定出动量。如图。

径迹

乳胶

空气 (永磁体偏转磁场

在20微米厚的塑料底衬两面各涂有一层25μm厚的乳胶膜,乳胶中载有20%的Te粉,乳胶片尺寸为15×15cm²。当Te粉为700kg时,乳胶用3.5吨,比重3.71,则乳胶体积为9.45×105cm³,面积为1.89×106cm²,即189m²,即8400片,每100片为1组,共84组。每组装在一个密封并充干燥氮气的铅罐中。

能量分辨率的估计

以Te-130 估计,两个电子的能量和为2.533 MeV。最大几率事件为两个电子能量相等,即,各为1.26 MeV。在乳胶中射程为2.03 mm。

在20 μ m厚的乳胶中,设双贝塔衰变核在乳胶层中部,电子射出乳胶前在乳胶中射程平均约15 μ m,其能量损耗 Δ E约27keV,只占1.26MeV的2%。即使误差为20%,对E+ Δ E总供献为0.4%.

再看E的误差。

电子在磁场中偏转 Bρ=3.334[1.022E+E²]½

其中B为磁场强度(高斯),ρ为电子偏转曲率半径,E为电子动能(MeV)

当B=1000高斯, 计算得:

E, MeV 0.25 0.5 1 1.26 1.5 2 ρ , cm 1.33 3.02 4.74 5.77 6.47 8.2 d, cm 1.25 2.85 3.85 4.35 4.65 5.35

其中, d 为当两片乳胶间空气层为2cm时,能量为E的电子进出乳胶面两个交叉点的水平投影。交叉点的坐标测量误差由乳胶片固定架的加工精度,磁场均匀度与稳定度,显微镜测量精度等因素决定,估计不会大于12 μ m。对于1.26MeV电子,此定位误差相当于1.2keV,即0.1%的能量误差。

- 2) CZT室温半导体方案
- 低温装置带来的本底与费用
- CdZnTe碲锌镉(李陇遐,Yinnel Tech)

4X4 pixel array on 11X11X11 mm³ CZT crystal, Yinnel Tech

*120*3-20 mm

CZT Ge

Z 49.1 32

目前测量结果(T下限)W.Rodejohann,J.Phys.G:39(2012)124008

Isotope	$T_{1/2}^{0v}$ (yr)	Experiment	$G(10^{-14} \text{ yr}^{-1})$	$\langle m_{ee} \rangle_{\min}^{\lim} (eV)$	$\langle m_{ee} \rangle_{\rm max}^{\rm lim} \ ({\rm eV})$
⁴⁸ Ca	5.8×10^{22}	CANDLES [68]	6.35	3.55	9.91
⁷⁶ Ge	1.9×10^{25}	HDM [9]	0.623	0.21	0.53
	1.6×10^{25}	IGEX [69]		0.25	0.63
82 Se	3.2×10^{23}	NEMO-3 [70]	2.70	0.85	2.08
⁹⁶ Zr	9.2×10^{21}	NEMO-3 [71]	5.63	3.97	14.39
¹⁰⁰ Mo	1.0×10^{24}	NEMO-3 [70]	4.36	0.31	0.79
116Cd	1.7×10^{23}	SOLOTVINO [72]	4.62	1.22	2.30
¹³⁰ Te	2.8×10^{24}	CUORICINO [73]	4.09	0.27	0.57
¹³⁶ Xe	1.6×10^{25}	EXO-200 [10]	. 4.31.	0.15	0.36
	5.7×10^{24}	KamLAND-Zen [74]		0.25	0.60
¹⁵⁰ Nd	1.8×10^{22}	NEMO-3 [75]	19.2	2.35	5.08

2020年前计划(ibid)

Experiment	Isotope	Mass (kg)	Sensitivity $T_{1/2}^{0\nu}$ (yr)	Status	Start of data-taking	Sensitivity $\langle m_{\nu} \rangle$ (eV)
GERDA	⁷⁶ Ge	18	3×10^{25}	Running	~ 2011	0.17-0.42
		40	2×10^{26}	Construction	~ 2012	0.06-0.16
		1000	6×10^{27}	R&D	~ 2015	0.012-0.030
Cuore	¹³⁰ Te	200	$6.5 \times 10^{26*}$	Construction	~ 2013	0.018-0.037
			$2.1 \times 10^{26**}$			0.03 - 0.066
Majorana	⁷⁶ Ge	3060	$(1-2) \times 10^{26}$	Construction	~ 2013	0.06 - 0.16
		1000	6×10^{27}	R&D	~ 2015	0.012-0.030
Exo	¹³⁶ Xe	200	6.4×10^{25}	Running	~ 2011	0.073-0.18
		1000	8×10^{26}	R&D	~ 2015	0.02 - 0.05
Super-NEMO	⁸² Se	100-200	$(1-2) \times 10^{26}$	R&D	$\sim 2013-15$	0.04-0.096
KamLAND-Zen	¹³⁶ Xe	400	4×10^{26}	Running	~ 2011	0.03 - 0.07
		1000	10^{27}	R&D	$\sim 2013-15$	0.02 - 0.046
SNO+	¹⁵⁰ Nd	56	4.5×10^{24}	Construction	~ 2012	0.15 - 0.32
		500	3×10^{25}	R&D	~ 2015	0.06 - 0.12

世界最好的地下实验室(世界第4极)

走廊

大量核乳胶

日本明年4月照射2.5吨乳胶,研究1000个 双超核事例。用日本富士核乳胶。保定乐凯 公司正开发试用。

显微镜自动测量

日本崎阜大学

21所

• 谢谢!