This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

19日本国特許庁

①特許出顧公告

特 許 報

昭53-30688

1 Int.Cl.2 C 07 C 57/04 C 07 C 51/26 C 07 C 51/32 識別記号 **100日本分類**

金公告 庁内整理番号

昭和53年(1978) 8 月29 日

16 B 631,11

6742-43

発明の数』

(全8頁)

1

匈アクリル酸の製法

②特 願 昭46-92013

23出 顧 昭46(1971)11月18日

公 昭47-10614

43昭47(1972)5月27日

優先権主張 301970年11月18日33西ド イツ国(DE) 3P2056614.7

②発 明 者 リヒアルト・クラペツツ

ハイム・ウンテレル・ワルトウエ

ーク8

同 カールーハインツ・ウイレルジン

ドイツ連邦共和国6700ルード

ル・フロシユラツへ3

ハインツ・エルゲルパツハ

> ドイツ連邦共和国6703リムプ ルゲルホーフ・クロプス・プルク

シユトラーセ23

同 ヘルマン・ウイスツーバ

ドイツ連邦共和国6800マンハ

イム・アルトハイメル・シュトラ

一七4

同 ウルリツヒ・レーベルト

ドイツ連邦共和国6700ルード

ウイツヒスハーフエン・ポルジツ

ヒシユトラーセク

田 ワルテル・フレイ

イム・アム・アウプツケル24

⑦出 願 人 バーデイツシユ・アニリン・ウン

ト・ソーダ・フアプリク・アクチ

エンゲゼルシヤフト

ウイツヒスハーフエン・カールー

ポツシユーストラーセ38

2

砂代 理 人 弁理士 小林正雄

切特許請求の範囲

直列の二つの反応段階において触媒の活性を、 5 それが反応管の入口から出口まで反応ガスの流れ の方向に連続的に又は段階的に100%まで増大 するように変化させ、そして第2反応段階の出口 において得られる凝縮可能なガスを大部分除去し た反応ガスを、不活性希状ガスとしての水蒸気の ドイツ連邦共和国6719キルヒ 10 一部又は全部の代わりに第1反応段階に再供給す ることを特徴とする、元素状酸素及び水蒸気含有 不活性希釈ガスを含有する混合ガスを用い、触媒 を装入した反応管中でプロピレンを本質的にアク ロレインに酸化する第1段階及びアクロレインを ウイツヒスハーフエン・アン・デ 15 さらに酸化してアクリル酸とする第2段階におい てプロピレンを酸化し、この際プロピレンの初期 濃度が出発混合ガスに対し2モル%を越え、そし て両段階における空間負荷を各段階ごとに触媒1 ℓにつき毎時プロピレン60ℓより大きくするこ 20 とによる、アクリル酸の製法。

発明の詳細な説明

本発明は、酸化触媒を用いてプロピレンを、中 間段階としてのアクロレインを経て二段階で酸化 することによる、アクリル酸の製法に関する。

プロピレンを気相において酸素含有ガス及び水 蒸気の存在下に、高められた温度において固体触 媒上で2段階で酸化してアクリル酸とすることは 公知である。この際プロピレンは第1段階におい て主としてアクロレインに酸化され、そして生成 ドイツ連邦共和国6800マンハ 30 した混合ガスはアクロレインを分離することなく、 第2段階における第2の触媒上でアクリル酸に酸 化される。

この際第1段階のためには、周期律表第Na~ Ⅵa族、第Ⅷ族ならびに第Ⅳb~Ⅶb族の元素を ドイツ連邦共和国6700ルード 35 含有する触媒系が提案された。これらの触媒系の 中でテルルを含有する触媒(2酸化テルルもしく はテルル酸を含有する触媒又はこの種の触媒であ

つてピスマス又はアンチモン、場合により燐を含 有するもの)が、この反応に普通に用いられる硝 石浴反応器の比較的低い浴温度において、アクロ レイン生成の特に高い選択性により優れている。 この際モリプデン、タングステン及びテルルの酸 5 化物又はコバルト、モリプデン及びテルルの酸化 物を含有する触媒が用いられる。提案された他の 触媒はたとえば鉄、錫、アンチモン及びバナジン、 あるいはニツケル、コバルト、鉄、ピスマス、燐 り酸化サマリウム及び酸化タンタルが添加されて いる。プロピレンをアクロレインに酸化するため の前記触媒系の製造及び使用についてはたとえば ベルギー特許第705498号明細書に記載され ている。

第2段階のためには同様に前記の群から選ばれ る酸化触媒が好ましいが、アクロレインをさらに 酸化してできるだけ完全にアクリル酸に変えるた め、一般に周期律表第Va族及び第Va族の元素 か又はきわめて少量しか用いてはならないという 点で制限を有する。公知の触媒はたとえばコパル ト及びモリプデン又はモリプデン、タングステン 及びパナジン、又は錫、アンチモン及びモリプデ ンを酸素のほかに含有する。

有利には酸素のほかにモリプデン、タングステ ンならびに鉄及び(又は)ニツケル及び(又は) マンガン及び(又は)銅及び場合によりパナジン を含有する触媒が用いられる。この触媒の製造及 びアクロレインをアクリル酸に酸化するための使 30 反応段階に再供給することを特徴とする、元素状 用については特許第666996号明細書及び特 公昭48-19296号公報に記載されている。

前記文献の教えるところはすべて、最後に使用 プロピレンに対する絶対収率ができるだけ高いア この方法を行なうために同様に重要な他の問題点 は、充分な程度に考慮されてはいない。

最重要な問題点は空時収量及び得られる凝縮物 中のアクリル酸の濃度である。工業的装置におい ては実験に際して高い空時収量及び高い濃度を得 40 より、前記目的が達成されることを見出した。 るために著しい困難を生じた。気相酸化によるア クリル酸合成の工業的1段法又は多段法によれば、 1回の導通における高い変化率のために必要な局 部的に生成する反応熱の迅速な除去は、きわめて

不経済な対策によりこの問題に立ち向う場合にの み可能となる。たとえば狭い管断面を選ぶか又は 低い温度、従つて低い触媒負荷及び管負荷(ガス の線速度)において操作し、さらに酸化すべきガ スを多量(40容量%まで)の水蒸気を用いて希 釈することにより、触媒上の爆発的燃焼又は少な くとも望ましくない副生物を生ずる過度の酸化か ら保護しなければならない。用いられたプロピレ ンに対し理論値の50%以上となる、比較的良好 及びモリプデンを酸素のほかに含有し、場合によ 10 なアクリル酸の絶対収率を得ることができる。し かしこの収率に達するためには、低い空間負荷 (高い滞留時間)で操作することを要し、かつ生 成したアクリル酸はきわめて希薄な水溶液として 得られるにすぎないので、不経済な高いエネルギ 15 一費及び投資額を必要とする。

技術的な改良は、これまで努力して得られた1 回の導通において高い絶対収率を可能にする指針 により、方法が全体として経済的となるように空 時収量を高める方向に進んだ。本発明の目的は、 を用いず、特にセレン又はテルルは全く用いない 20 前記のような過度の酸化を最低限度まで減少させ、 かつ爆発的燃焼過程を確実に防止することのでき る安全な酸化法を開発することであった。

本発明者らは、直列の二つの反応段階において 触媒の活性を、それが反応管の入口から出口まで 25 反応ガスの流れの方向に連続的に又は段階的に 100%まで増大するように変化させ、そして第 2反応段階の出口において得られる凝縮可能なガ スを大部分除去した反応廃ガスを、不活性希釈ガ スとしての水蒸気の一部又は全部の代わりに第1 酸素及び水蒸気含有不活性希釈ガスを含有する混 合ガスを用い、触媒を装入した反応管中でプロピ レンを本質的にアクロレインに酸化する第1段階 及びアクロレインをさらに酸化してアクリル酸と クリル酸に到達することを目ざしている。しかし 35 する第2段階においてプロピレンを酸化し、この 際プロピレンの初期濃度が出発混合ガスに対し2 モル%を越え、そして両段階における空間負荷を 各段階ごとに触媒1ℓにつき毎時プロピレン60 ℓより大きくすることによるアクリル酸の製法に

> この方法によれば、生成するアクリル酸があま りに多量の水で希釈されて得られることを防止す ることができ、従つて純アクリル酸を得るための 仕上処理にはきわめてわずかな時間及びエネルギ

ーの消費を必要とするにすぎない。 もちろんこの 種の方法に対しては、技術上の先入見に従う限り、 活性触媒物質の希釈により絶対収率が著しく低下 すると考えられた。しかし予想外にもそうはなら ない。本発明方法によればこの種の系の本質的に 5 好ましくは700℃の温度まで熱安定性であり、 高い空間負荷が可能となり、すなわち導通量を危 険なく著しく高めることができ、この際本発明方 法においては従来と同じく用いられたプロピレン に対し約50%の絶対収率が得られる。

用蒸気を公知のように水蒸気に比して著しく小さ い熱容量を有する返送反応ガスに置き換えること により、過度の酸化及び局部的過熱の危険を防止 しうることである。これにより本発明方法の経済 性は従来法に比して著しく改善された。なぜなら 15 希釈は好ましくは触媒成形物と、同一又はほと ばこの第2の手段によりアクリル酸は凝縮物中に 50重量%の濃度で得られるからである。

本発明方法は具体的には次ぎのように行なわれ る。まず出発混合物に対し2モル%を越えるプロ を越える空間負荷において、特殊な触媒系とは無 関係に80~85モル%を越えるプロピレンもし くはアクロレインの変化率のために必要な浴温を 選ぶ。

を不活性材料を用いて希釈し、触媒の活性が低下 するようにする。この際希釈は、活性が反応管の 入口から出口まで絶えず又は階段的に100%ま で増加するように行なう。しかし反応管の末端よ 好ましい。この際好ましくは触媒物質の全量に対 し5~50重量%の触媒物質が本発明の手段によ り希釈される。この場合特に工業上興味あるもの は活性触媒物質の10~30重量%の希釈である。 言い換えれば、反応管の半分以下の長さからのち 35 比が 0.0 3 ~ 4 0 : 1、好ましくは 0.2 ~ 2 5 : に、触媒活性はすべに100%に達することが好 ましい。希釈すべき部分における希釈の増加の程 度はガスの線速度に依存する。ガスの線速度が高 いほど、調節不可能な局部的温度上昇の発生を避 著しく低下させなければならない。本発明によれ ば空の反応管につき60cm/秒を越えるガスの線 速度において、希釈すべき層中の活性もしくは活 性物質の割合が0から100%まで上昇すること

が好ましい。好ましくは活性物質の25~15% の希釈からはじめ、活性物質の割合を100%ま で増大させる。希釈剤としては本反応において不 活性であることを必要とし、少なくとも600℃、 できるだけ非多孔質の材料であつて、さらに反応 条件下に触媒成分と化合物を形成しないものが用 いられる。好適なものはたとえば髙温度で処理さ れたアルミニウム、ジルコニウム、チタン、マグ 触媒を希釈することのさらに他の利点は、合成 10 ネシウム又は珪素の酸化物、そのほか高温度で溶 融する珪酸塩及びアルモシリケート、電極黒鉛、 セメント物質、髙温度で溶融する焼結材料、好ま しくはステアタイト、α-アルミナ又は炭化珪素 である。

- んど同一寸法の不活性材料からの成形物との混合 によるか、又は微粉末とした触媒材料及び不活性 材料を混合し続いて成形することにより行なわれ
- ピレン濃度を選び、そして毎時プロピレン60ℓ 20 第2反応段階の終りにおいて得られる、冷却に よりアクリル酸、水蒸気及び他の凝縮可能な生成 物を除去された反応ガスは、第1反応段階に入る 大部分がプロピレン、空気及び場合により水蒸気 から成る出発混合ガスに添加混合され、混合の手 この混合ガスを反応させるため、活性触媒物質 25 段もしくは量は返送される廃ガス中の未反応のプ ロピレン及び酸素を考慮して、第1触媒層への入 口の前のプロピレン濃度が全混合ガスに対し2モ ル%以上、好ましくは4~8モル%となり、そし てプロピレン:酸素:水のモル比が1:1.5~4: り前ですでに100%に達するようにすることが300~3、好ましくは1:2~3:0~2となるよ うに定められる。

BEST AVAILABLE COP

本発明方法において好ましくは、第1段階にお いてモリプデン、タングステン及びテルルを酸素 のほか含有し、モリプデン:タングステンの原子 1であり、そしてテルル含量が0.2~2重量%、 好ましくは 0.5~ 1.8 重量%である触媒が用いら れ、第2段階においてはモリプデン、タングステ ン及び鉄及び(又は)ニツケル及び(又は)マン けるため、反応管のはじめの部分において活性を 40 ガン及び(又は)銅を酸素のほか含有し、かつ場 合によりパナジンを含有し、モリプデン:タング ステン:鉄〔ニツケル、マンガン及び(又は)銅〕 の原子比が1~20:0.01~10:1、好まし くは2~10:0.1~2:1、そしてモリプデン:

パナジンの比が6:6~0.2、好ましくは6: 0.5~4である触媒が用いられる。本方法の第1 及び第2段階のためさらに好適なものは、プロピ レンのアクロレインへの酸化もしくはアクロレイ。 ンのアクリル酸への酸化のための他の普通の触媒、5 中のアクリル酸濃度を2倍に高める。 たとえばドイツ特許第1924496号及び第 200425号各公開公報、ペルギー特許第 689720号、第746202号及び第738250 号各明細書、公開されたオランダ特許出願第 に記載のものである。

本発明方法によれば各段階ごとに毎時触媒1 ℓ 当りプロピレン60ℓ以上、好ましくは100ℓ 以上(ℓはいずれも漂準状態)の高い管負荷及び 空の反応管につき60cm/秒以上、好ましくは 100cm/秒以上のガスの線速度において、80 %以上特に85%以上の変化率ならびに用いられ たプロピレンに対し45~50モル%のアクリル 酸収率に相当する浴温度が可能となる。 例 1~9

下記例は、本発明方法により最初は著しく希釈 された形で用いられ、次いで絶えず又は階段的に 増加する濃度で用いられる触媒上に反応ガスを通 す場合に、空時収量が希釈されない触媒を用いる

例2と6は比較例である。この方法における煙道 ガスもしくはその一部分の再供給(例9)及びこ れに結びつく水蒸気の置換はもはや空時収量を高 めることはないが、これに反して得られる水溶液

実験は詳細には次ぎのように行なわれた。プロ ピレン(98%)、空気、水蒸気及び場合により 1酸化炭素 1.8 容量%を含有する窒素からの混合 物を、2個の直列に連結された長さ4m及び直径 7011603号及び特公昭45―22525号公報 *10*25mmの管から成る2段式装置に通す。管は電気 的に加熱しうる、攪拌される塩浴中にある。管に 入るガスはそれぞれの場合に熱交換器を経てほと んと塩浴の温度に予熱もしくは冷却される。第2 段階の200~300℃の熱い反応ガスは2段式 15 急冷系中で、得られる凝縮物を用いて冷却される。 第1段階にはモリプデン―タングステン―テルル 触媒、第2段階にはモリプデン―タングステン― バナジン一鉄触媒が3×3mmの錠剤の形で装入さ れている。この装入物は入口層において直径3 舞 20 のステアタイト球を用いて希釈されている。

触媒量、希釈比、ガス量浴温及び第1段階に入 るプロピレン(98%)の量に対して得られる変 化率、アクリル酸収率、第2段階後の残留アクロ レン収率、空時収量ならびに得られるアナリル酸 場合よりも約2~3倍だけ高いことを示すもので、25の凝縮物中の濃度を、第1表に詳細に示す。

BFST AVAILABLE COPY

空時収量 管当り1日 (72)/2強(g)

 $18 \sim 20$

22

43.6

10

203

	1.6	4	1:1	1:1	60 1.5		1.3	1.4	1.5
以びる	55	45	8	26	09	30/40	53	ထ	53
C, H。 效化格	94	6	95	92	94	88	68	95	92
浴鼠(C)	260	250	270	271	255	250	256	272	272
海 4	325	340	330	325	3 4 2	340	330	340	335
(6/年)	- L	ı	1	ı	1 .	-	1	1	824
ガス量(1/年)ロルカン	336	196	336	504	099	336	390	820	147
天 元章 日	720	420	720	1080	044	720	1440	1440	1440
₹ ¤	09	36	09	06	1 20	09	1 20	1 20	1 20
株量 (mg) 第 o	和9	300("100 ")	400(" 25 ") 400(" 100")	400(" 25 ") 500(" 100")	400(" 25 ") 700(" 100")	500(" 100")	,	120(" 25 ") 210(" 33 ") 140(" 50 ") 630(" 100")	*
各館の観	400(活性物質 25容量%) 900("100")	600(" 100")	400("25") 900("100")	400("25 ") 1100("100 ")	200(" 25 ") 150(" 33 ") 100(" 50 ") 1050("100 ")	1000("100 ")	"	120(" 25 ") 210(" 33 ") 140(" 50 ") 1030("100 ")	

表 紙

BEST AVAILABLE COPY

œ

6

\$

実施例 10~17

公知の処方により製造された触媒の使用下に、 毎時合計でプロピレン100容量部、酸素252 容量部、水蒸気50容量部及び不活性ガス(少量 部から成る、新しいプロピレン、新しい空気及び 循環ガスからの混合物を、直列に配置された2個 の反応管中で、第2表に示す温度において2段階 に酸化する。触媒の組成は第2表に示す。第1段 の触媒は混合ガスの流れの方向に25%活性の 0.091容量部、50%活性の0.12容量部及び

12

100%活性の0.91容量部から構成され、第2 段の触媒は50%活性の0.091容量部及び100 %活性の 0.7 3 容量部から構成される。触媒の活 性は不活性物質(直径3 22のステアタイト球)を の1酸化炭素のほか本質的に窒素)1728容量 5 用いて希釈することにより所望の値に減少させる。 触媒自体は3×3×2の錠剤として用いられる。循 環ガスは第2段階の廃ガスから凝縮可能な反応生 成物を実際上完全に洗浄除去したものである。

> 凝縮物中のアクリル酸の割合、アクリル酸収率、 10 プロピレンの変化率及びアクリル酸の空時収量を 第2表に示す。

			13					14			
	? 空時収量 第28.5.1.0	(アクリル	4.0	3.0	4.1	თ რ	ન ન	2.9	4. 2	4.0 *	·
	アクリル酸	W I	5.2	6 c	ဇ	2 0	4	ထ က	ۍ 4	6	
	C C He		1 6	2.0	9 4	7 9	6 2	6 2	4	0 6	
	破締む中の	重量%)	2.5	9.0 E	5 -	2 0	2 2	4 7	သ	5 1	
	(%) 動	2段(260	420	260	260	260	270	250	410	
	沒	1段	362	390	360	390	390	400	365	365	
第 2 表		第 2 段	Mo' ₆ W ₁ V ₁ Feよ (ベルギー特許 第746202号)	A1ペレット上 Mo ₁₂ V ₃₈ Sb ₁ (DOS 2038763 実施図1)	MooW, V, Fel.5 (ベルギー特許 第746202号)	M 0'g W, V, Fe 13 (ベルギー特許 第746202号)	Mo ₆ W ₁ V ₁ Fe ₁ 3 (ベルギー特許 第746202号)	Mo ₆ W ₁ V ₁ Fe L5 (ベルギー特許 第746202号)	Mo ₆ W ₁ V _{1.5} Fe _{1.5} (ベルギー特許 第746202号)	A 1 ペレント上 Mo ₁₂ V3.8Sb1 (DOS 2038763 実施例1)	Line Con
	数	第 1 段	3 0 重量%のSiO2上 Mol ₁₀ Ni 75 Cr. 1 Fe ₀₃₃ Bi 083 S nas (DOS 2000425、実施列1)	e de la companya de l	30 <u>盾量%のSiO2上</u> Mo10Niz5Cr1FeassBio.83Ge1 (DOS 2000425、実施例6)	3 3 %の珪酸アルミニウム上 Mo ₁₀ Ni ₁₀ Co _{0.3} F e ₁ P ₁ Bi ₁ + 1 % Sm ₂ O ₃ (ベルギー特計第 7 3 8 2 5 0 号、実施例 1)	30%のSiO2上 Mo ₁₂ Ni ₁ Co ₃ Fe ₂ Bi ₁ P ₂ K _{0.2} (DÖS 2020791、実施例1)	Mo, Nio, Cr, Te o.35	Mo 4 W ₈ Te _{0.25} (英国特許第1243794号)		
	実施例		1 0	11	1 2	1 3	1 4	1 5	1 6	17	

BEST AVAILABLE COPY

実施例11に対する比較実験

| 実施例1.0~1.7と同じ装置で操作し、ただし 第1段にはドイツ特許第2000425号公開公 報決施例1に記載の100%活性触媒1.12容量 部を用い、第2段階にはドイツ特許第20387635 量部の空時収量及び用いられたプロピレンに対し 号公開公報実施例1に記載の100%活性触媒 0.91容量部を用いた。2個の直列に配置された 反応管に、毎時プロピレン100容量部、空気

16

1200容量部及び水蒸気780容量部からの混 合物を通す。管1のための浴温は362℃、管2 のための浴温は410℃である。92モル%のブ ロピレン変化率。管当り1日にアクリル酸1.9重 25モル%のアクリル酸収率が得られる。アクリ ル酸は凝縮物中に14重量%の濃度で得られるに すぎない。