integer, which we might as well call n. Then, to prove the implication, we explicitly assume the hypothesis $(P(1) \land P(2) \land \cdots \land P(n-1))$ and then prove the conclusion P(n) for that particular value of n. The proof almost always breaks down into two or more cases, each of which may or may not actually use the inductive hypothesis.

Here is the boilerplate for *every* induction proof. Read it. Learn it. Use it.

A *proof by induction* for the proposition "P(n) for every positive integer n" is nothing but a direct proof of the more complex proposition " $(P(1) \land P(2) \land \cdots \land P(n-1)) \rightarrow P(n)$ for every positive integer n". Because it's a direct proof, it *must* start by considering an arbitrary positive