МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Институт математики, механики и компьютерных наук им. И. И. Воровича Кафедра математического моделирования

Андрей Петрович Мелехов Лекция. Пакет numpy

Ростов-на-Дону

2022

Библиотека Numeric Python (NumPy)

Для быстрой работы с большими данными используются массивы из пакета numpy (см. www.numpy.org).

Используются массивы (array) элементов одинакового типа:

Размер задается при создании, нельзя поменять. Можно менять значения. Можно создавать одномерные (вектора), двумерные (матрицы) и большей размерности массивы. Все элементы массива одного типа (например, все целые или вещественные). Быстрый доступ к элементам. Пакет содержит кроме самих массивов еще и методы для работы с ними. Быстрая обработка данных в массиве, особенно, если использовать методы пакетов numpy, scipy, pandas, и не использовать циклы и методы базового пакета Python!

Функции создания массивов

https://numpy.org/doc/stable/reference/routines.array-creation.html и https://numpy.org/doc/stable/user/basics.creation.html#arrays-creation

Функция	Описание
array(object, dtype=None,)	Создание массива из объекта object
arange([start,]stop, [step,]	Создание массива из диапазона
dtype=None)	
linspace(start, stop, num=50,	Создание массива num чисел, рав-
)	номерно расположенных на отрезке
	[start, stop]
zeros(shape, dtype = float,	Возвращает новый массив заданной
order = 'C')	формы и типа (по умолчанию
	'float64'), заполненный нулями
empty(shape,)	новый массив (не заполнен)
ones(shape,)	новый массив из 1
full(shape, fill_value,	новый массив, заполненный задан-
dtype = None, order = 'C')	ным значением

```
empty_like, full_like, ones_like, zeros_like
```

новый массив (размер и тип по образцу другого массива)

Пример. Создание массивов

```
# Подключаем пакет numpy:
import numpy as np
# Создание массива из списка:
A = np.array([1, 4, 2, 5, 3])
# Создание двумерного массива из списка:
np.array([[i]*3 for i in [2, 4, 6]])
# Результат: array([[2, 2, 2],[4, 4, 4],[6, 6, 6]])
# Создание массивов заполненных нулями:
np.zeros(5) # числа по умолчанию вещественные
# array([ 0., 0., 0., 0., 0.])
np.zeros((5,), dtype = int)
# array([0, 0, 0, 0, 0])
```

```
np.empty((2, 1)) # без заполнения
# array([[ 8.46612366e-83],[-1.84402114e-26]])
np.ones((2, 2)) # заполненного единицами
# array([[ 1., 1.],[ 1., 1.]])
np.arange(0, 10, 2) # диапазон
# array([0, 2, 4, 6, 8])
np.linspace(0, 1, 5) # 5 чисел на отревке [0, 1]
array([0., 0.25, 0.5, 0.75, 1.])
# Массивы случайных чисел:
np.random.random((2, 3)) # вещественные
# array([[0.61646814, 0.57419779, 0.1674393],
#
         [0.92308608, 0.69372043, 0.24111806]])
np.random.randint(0, 10, (3, 3)) # целые
# array([[9, 7, 4], [1, 7, 2], [1, 6, 6]])
```

Случайные выборки (numpy.random)

https://numpy.org/doc/stable/reference/random/#module-numpy.random

Модуль numpy.random генерируют массивы случайных чисел с различными распределениями вероятности. Работает быстрее, чем встроенный модуль Python random.

```
# Задаем начальное значение генератора:
np.random.seed(7)
# Массив целых чисел из промежутка [-100, 101):
x = np.random.randint(-100, 101, 5)
\# x = array([75, 96, -75, -33, 51])
# Генерируем двумерный массив:
A = np.random.randint(-10, 11, size = (3, 3))
# Равномерное распределение из [-5, 5]:
np.random.uniform(-5, 5, size = 3)
# array([-0.40907022, 2.19324123, -0.87008171])
# Нормальное расп., среднее = 0, ст. отклон. = 2:
np.random.normal(0, 2, size = 5)
```

Стандартные типы данных библиотеки NumPy

https://numpy.org/doc/stable/reference/arrays.scalars.html

Тип данных	Описание
bool_	Булев тип (True или False), 1 байт в памяти
int_	Целочисленное значение по умолчанию (аналоги-
	чен типу long языка С; обычно int64 или int32)
intc	Идентичен типу int языка С (обычно int32 или
	int64)
	Целочисленное значение, используемое для ин-
intp	дексов (аналогично типу ssize_t языка C; обычно
	int32 или int64)
int8	Байтовый тип (от –128 до 127)
int16	Целое число (от -32 768 до 32 767)
int32	Целое число (от -2 147 483 648 до 2 147 483 647)
int64	Целое число (от -9 223 372 036 854 775 808 до 9 223
	372 036 854 775 807)
uint8	Беззнаковое целое число (от 0 до 255)

uint16	Беззнаковое целое число (от 0 до 65 535)		
uint32	Беззнаковое целое число (от 0 до 4 294 967 295)		
uint64	Беззнаковое целое число (от 0 до 18 446 744 073 709 551 615)		
float_	Сокращение для названия типа float64		
float16	Число с плавающей точкой с половинной точно- стью: 1 бит знак, 5 бит порядок, 10 бит мантисса		
float32	Число с плавающей точкой с одинарной точно- стью: 1 бит знак, 8 бит порядок, 23 бита мантисса		
float64	Число с плавающей точкой с удвоенной точно- стью: 1 бит знак, 11 бит порядок, 52 бита мантис- са		
complex_	Сокращение для названия типа complex128		
complex64	Комплексное число, представленное двумя 32-битными числами		
complex128	Комплексное число, представленное двумя 64-битными числами		

```
# Создаем массив целых чисел:
b = np.zeros(10, dtype = 'int32')
b.dtype # dtype('int32')
c = np.zeros(10)
c.dtype # По умолчанию тип float64
# dtype('float64')
```

Атрибуты массивов библиотеки NumPy

```
# Создаем двумерный массив:
x2 = np.random.randint(10, size = (3, 4))
x2.ndim # 2 - размерность
x2.shape # (3, 4) - размер каждого измерения
x2.size # 12 - количество элементов
x2.itemsize # 4 - байт на один элемент
x2.nbytes # 48 - байт на весь массив = 12 * 4
```

Индексация массива: срезы

Можно использовать срезы. Одномерные массивы:

```
x1 = np.arange(10)
# array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
x1[0]
x1[1:5] # array([1, 2, 3, 4])
x1[-1] # 9
x1[::-1] # array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
Многомерные массивы:
x2 = np.arange(12)
x2 = x2.reshape((3, 4))
 # array([[0, 1, 2, 3],[4, 5, 6, 7],[8, 9, 10, 11]])
x2[1, 3] # = 7, индексы задаются через x2[i, j]
# B cnuckax He Tak: L[i][j]
x2[:2, ::2] # Строки 0, 1 и столбцы 0, 2:
    array([[0, 2],
            [4, 6]])
```

```
x2[:, 0] # первый столбец массива x2
array([0, 4, 8])
x2[0, :] # первая строка массива x2
array([0, 1, 2, 3])
```

Срезы массивов возвращают <u>представления</u> (views), а не копии (copies) данных массива. Этим срезы массивов библиотеки NumPy отличаются от срезов списков языка Python.

```
x3 = x2[:2, ::2] # извлекаем подмассив из x2

# array([[0, 2], [4, 6]])

x3[:, :] = 55 # заменить все элементы в x3 на 55

x2 # массив x2 тоже поменялся:

# array([[55, 1, 55, 3],

[55, 5, 55, 7],

[8, 9, 10, 11]])
```

Срез x3 продолжает ссылаться на x2 (не создается новый массив). Представление – это работа с теми же данными, но новые индексы.

Создание копий массивов

```
# Если надо создать копию, вызываем метод сору: x2_{copy} = x2[:2, ::2].copy()
```

Изменение формы массивов

```
x = np.arange(1, 10).reshape((3, 3))
# array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Преобразование в столбец:
y = x.reshape((9, 1))
# y = array([[1],[2],[3],[4],[5],[6],[7],[8],[9]])
```

Добавление новой размерности

```
x = np.arange(1, 10)
# array([1, 2, 3, 4, 5, 6, 7, 8, 9])
# Преобразование из строки в столбец:
# Из массива делаем матрицу размера (n, 1):
z = x[:, np.newaxis]
# и старые данные записываются в разные строки:
# z = array([[1],[2],[3],[4],[5],[6],[7],[8],[9]])
```

Это тоже представления, т.е. массивы продолжают ссылаться на одни и те же данные! Изменяя данные в у или z, меняем и x.

Слияние и разбиение массивов

Объединение: concatenate((a1, a2, ...), axis=0, out=None, dtype=None)

```
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])
# Вдоль первой оси (axis = 0):
np.concatenate((a, b), axis = 0)
```

```
array([[1, 2], [3, 4], [5, 6]])
\# Вдоль второй оси (axis = 1):
# b.T - транспонирование (переворот):
np.concatenate((a, b.T), axis = 1)
        array([[1, 2, 5], [3, 4, 6]])
# Если axis = None, массивы преобраз. в одномерные:
np.concatenate((a, b), axis = None)
        array([1, 2, 3, 4, 5, 6])
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
# vstack (вертикальное объединение):
np.vstack((a, b))
        array([[1, 2, 3], [2, 3, 4]])
# hstack (горизонтальное объединение):
np.hstack((a, b))
        array([1, 2, 3, 2, 3, 4])
```

Разбиение массивов выполняется с помощью функций: split, hsplit, vsplit

```
a = np.array([10, 20, 30, 40, 50])
# Разбить по 2-му элементу:
np.split(a, [2]) # - список указывает как разбить
# [array([10, 20]), array([30, 40, 50])]
a = np.arange(16).reshape(4, 4); a
# array([[ 0, 1, 2, 3],
      [ 4, 5, 6, 7],
        [8, 9, 10, 11],
         [12, 13, 14, 15]])
# Можно разбить на несколько массивов и задать ось:
np.split(a, [1, 2], axis = 0)
# [ array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]),
   array([[ 8, 9, 10, 11], [12, 13, 14, 15]])]
# hsplit - pas6uenue горизонтальное (axis = 1)
# число (не список!) задает, на сколько частей разбить:
np.hsplit(a, 2)
# [ array([[ 0, 1], [ 4, 5], [ 8, 9], [12, 13]]),
   array([[ 2, 3], [ 6, 7], [10, 11], [14, 15]])]
```

Выполнение вычислений над массивами библиотеки NumPy: универсальные функции

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs

С массивами пакета питру циклы работают медленно. Лучше использовать векторизованные операции и функции из питру.

Операции: +, -, *, /, //, %, **.

Операция	Функция	Описание
+	np.add	Сложение
_	np.subtract	Вычитание
_	np.negative	Унарная операция изменения знака
*	np.multiply	Умножение
/	np.divide	Деление
//	np.floor_divide	Деление с остатком
**	np.power	Возведение в степень
%	np.mod	Остаток

Примеры.

```
# Определяем два массива:
x = np.array([1, 2, 3])
y = np.array([2, 4, 8])
# Операции (поэлементно с одинаковыми массивами):
# Сумма через операцию или функцию:
                # array([ 3, 6, 11])
x + y
np.add(x, y) # array([3, 6, 11])
              # array([-1, -2, -5])
x - y
             # array([-1, -2, -3])
-x
             # array([ 2, 8, 24])
x * y
x / y
              # array([0.5 , 0.5 , 0.375])
x // y
                # array([0, 0, 0], dtype=int32)
x % y
                # array([1, 2, 3], dtype=int32)
# Операции (поэлементно массив и число):
                # array([6, 7, 8])
x + 5
                # array([1, 4, 9], dtype=int32)
\mathbf{x} ** 2
```

Функции: absolute (или abs), exp, log, sqrt, тригонометрические (sin, cos, tan, arcsin, arcos, arctan) и др.

```
# Определяем массив:

x = np.array([1, 2, 4])

# Вычисляем функции:

np.sqrt(x) # array([1., 1.41421356, 2.])

np.sin(x) # array([ 0.84147098, 0.90929743,

-0.7568025 ])
```

Линейная алгебра

Операции линейной алгебры — умножение и разложение матриц, вычисление определителей и другие — важная часть любой библиотеки для работы с массивами. В отличие от некоторых пакетов, например MATLAB, в NumPy применение оператора * к двум двумерным массивам вычисляет поэлементное, а не матричное произведение. А для перемножения матриц имеется функция dot:

```
x = np.array([[1, 2], [3, 4]])
y = np.array([[5, -6], [-1, 7]])
# Умножение матриц:
z = np.dot(x, y)
# или z = x.dot(y)
z = [[3 8], [11 10]]
z = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 & -6 \\ -1 & 7 \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 11 & 10 \end{pmatrix}.
```

В модуле numpy.linalg имеется стандартный набор алгоритмов, в частности, разложение матриц, нахождение обратной матрицы и вычисление определителя.

```
A = np.array([[1, 2], [3, 0]])

# Обратная матрица к A:

B = np.linalg.inv(A)

# [[ 0. 0.333333333] [ 0.5 -0.16666667]]

# Произведение матриц A * A<sup>-1</sup> = E:

np.dot(A, B) # [[1. 0.] [0. 1.]]
```

Некоторые функции из модуля numpy.linalg

<u>numpy.org/doc/stable/reference/routines.linalg.html?highlight=linalg#module-numpy.linalg</u>

Функция	Описание
trace	Вычисляет след матрицы – сумму диагональных элементов
det	Вычисляет определитель матрицы
eig	Вычисляет собственные значения и собственные векторы
	квадратной матрицы
eigvals	Вычисляет собственные значения квадратной матрицы
inv	Вычисляет обратную матрицу
norm	Вычисляет норму матрицы или вектора
qr	Вычисляет QR-разложение
svd	Вычисляет сингулярное разложение (SVD)
solve	Решает линейную систему Ax = b, где A – квадратная мат- рица
lstsq	Вычисляет решение уравнения у = Xb по методу наимень- ших квадратов

Сводные показатели (reduce, accumulate)

Операция reduce применяет операцию к элементам массива до тех пор, пока не останется только один результат:

Внешнее произведение двух векторов

Агрегирование: минимум, максимум и др.

https://numpy.org/doc/stable/reference/routines.statistics.html#averages-andvariances

Функция	NaN-безопасная версия	Описание
np.sum	np.nansum	Вычисляет сумму элементов
np.prod	np.nanprod	Вычисляет произведение элементов
np.mean	np.nanmean	Вычисляет среднее значение элементов
np.std	np.nanstd	Вычисляет стандартное отклонение
np.var	np.nanvar	Вычисляет дисперсию
np.min	np.nanmin	Вычисляет минимальное значение
np.max	np.nanmax	Вычисляет максимальное значение
np.argmin	np.nanargmin	Индекс минимального значения
np.argmax	np.nanargmax	Индекс максимального значения
np.median	np.nanmedian	Вычисляет медиану элементов
np.percentile	np.nanpercentile	Вычисляет квантили элементов
np.any		Существуют ли значения true
np.all		Все ли элементы имеют значение true

Вычисляет для всего многомерного массива и по отдельным осям

```
a = np.array([[1, 2], [3, 4]])
                       # 1 - во всем массиве
np.min(a)
np.min(a, axis = 0) # array([1, 2])
np.min(a, axis = 1)  # array([1, 3])
np.mean(a) # 2.5
np.std(a) # 1.118033988749895
np.var(a) # 1.25
# Если есть NaN, безопасная версия:
a = np.array([1, np.nan, 3, 4])
np.nansum(a) # 8.0
np.sum(a) # nan
b = np.array([[1, 2], [3, np.nan]])
np.nanmin(b) # 1.0
np.min(b) # nan
```

Транслирование

Транслирование представляет собой набор правил по применению бинарных универсальных функций (сложение, вычитание, умножение и т. д.) к массивам различного размера.

```
a = np.array([0, 1, 2])
b = np.array([5, 5, 5])
# массивы одинакового размера - поэлементно:
a + b # [5 6 7]
# массивы и скаляр - к каждому элементу:
a + 5 # [5 6 7]
# массивы разной размерности:
M = np.ones((3, 3))
# [[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]]
print(a + M) \# (1, 3) \mu (3, 3) \rightarrow (3, 3):
 [[1. 2. 3.] [1. 2. 3.] [1. 2. 3.]]
# массивы разной размерности:
```

```
c = np.array([0, 10, 20]).reshape(3,1) # c = [[ 0] [10] [20]] # вектор-стобец print(a + c) # (1, 3) и (3, 1) \rightarrow (3, 3): # [[ 0 1 2] [10 11 12] [20 21 22]]
```

Сравнения, маски и булева логика

https://numpy.org/doc/stable/reference/routines.logic.html

Оператор	Эквивалентная универсальная функция
==	np.equal
!=	np.not_equal
<	np.less
<=	np.less_equal
>	np.greater
>=	np.greater_equal

Пример

```
np.random.seed(7)
x = np.random.randint(-100, 101, 5)
# x = [ 75 96 -75 -33 51]
x > 0 # [ True True False False True]
x < 0 # [False False True True False]
abs(x) == 75 # [ True False True False False]
abs(x) != 75 # [False True False True True]</pre>
```

Работа с булевыми массивами

Созданные булевы массивы можно использовать.

```
# количество ненулевых элементов (= True):

np.count_nonzero(x > 0)  # 3

# Сумма элементов (True = 1, False = 0):

np.sum(x > 0)  # 3

# Есть ли элементы > 0:

np.any(x > 0)  # True

# Все ли элементы > 0:

np.all(x > 0)  # False
```

Можно объединять несколько условий с помощью битовых и булевых операций.

Оператор	Эквивалентная универсальная функция
Битовые	
&	np.bitwise_and
	np.bitwise_or
٨	np.bitwise_xor

~	np.bitwise_not
Логические	
	logical_and, logical_or, logical_not, logical_xor

Для логических значений (True, False) битовые и логические операции работают одинаково.

```
np.random.seed(7)

x = np.random.randint(-100, 101, 5)

# x = [ 75 96 -75 -33 51]

y = np.random.randint(-100, 101, 5)

# [ 3 -8 85 42 -77]

# Все 3 оператора вернут одинаковый результат:

np.logical_and(x > 0, y > 0)

np.bitwise_and(x > 0, y > 0)

(x > 0) & (y > 0)

# array([ True, False, False, False, False])
```

Также булевы массивы можно использовать как индексы: np.random.seed(0) x = np.random.randint(-10, 11, size = (3, 3)) $\# \mathbf{x} = [[2 5 -10]]$ [-7 -7 -3][-1 9 8]] x > 0# [[True True False] [False False False] [False True True]] # Выбрать только > 0 числа из массива х: x[x > 0]# Возвращается одномерный массив: # [2 5 9 8] # Заменить в массиве все числа из [5 ,10] на 11: x[(x >= 5) & (x <= 10)] = 11# array([[2, 11, -10],

Операции and, or, not не работают с массивами numpy. Для чисел битовые (bitwise) и логические (logical) операции отличаются.

Функция where, выбор по условию

https://numpy.org/doc/stable/reference/routines.sort.html#searching

where (condition[, x, y]) — возвращает элемент массива x или y в зависимости от условия.

```
a = np.arange(10) - 5
\# a = [-5 -4 -3 -2 -1 0 1 2 3 4]
\# B зависимости от условия выбираем -а или а:
b = np.where(a < 0, -a, a)
\# b = [5 4 3 2 1 0 1 2 3 4]
```

nonzero(a) – возвращает индексы ненулевых элементов.

```
x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]])
np.nonzero(x)
# (array([0, 1, 2, 2], dtype = int64),
    array([0, 1, 0, 1], dtype = int64))
```

«Прихотливая» индексация (fancy indexing)

Похожа на уже рассмотренную простую индексацию, но вместо скалярных значений передаются массивы индексов.

```
np.random.seed(0)
x = np.random.randint(0, 50, size = 10)
# x = [44 47 0 3 3 39 9 19 21 36]
ind = [1, 5, 3]
x[ind]
# [47 39 3]
```

Форма результата отражает форму массивов индексов, а не форму индексируемого массива:

```
ind = np.array([[1, 5], [3, 9]])
x[ind]
# [[47 39] [ 3 36]]
```

Работает и в случае многомерных массивов.

Можно смешивать разные индексы между собой.

Теоретико-множественные операции https://numpy.org/doc/stable/reference/routines.set.html

В NumPy имеется основные теоретико-множественные операции для одномерных массивов.

```
# функция unique возвращает отсортированное # множество уникальных значений: v = np.random.randint(1, 4, 10) # array([3, 3, 3, 2, 2, 2, 3, 1, 3, 3]) np.unique(v) # array([1, 2, 3]) intersect1d(x, y) — множество элементов, общих для х и у; union1d(x, y) — объединение элементов; in1d(x, y) — элементы х встречаются в у; setdiff1d(x, y) — разность множеств; setxor1d(x, y) — симметрическая разность множеств.
```

Функция meshgrid для графиков

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html ?highlight=meshgrid#numpy.meshgrid

Используется для создания сетки на плоскости (x, y), для вычисления функции f(x, y) во всех точках сетки и вывода ее графика.

```
nx, ny = (3, 2)
x = np.linspace(0, 1, nx)
y = np.linspace(0, 1, ny)
xv, yv = np.meshgrid(x, y)
XV
# array([[0., 0.5, 1.], [0., 0.5, 1.]])
yv
# array([[0., 0., 0.], [1., 1., 1.]))
# Или разреженные массивы:
xv, yv = np.meshgrid(x, y, sparse = True)
xv # array([[0. , 0.5, 1. ]])
yv # array([[0.], [1.]])
```

```
x = np.linspace(-5, 5, 101)
y = np.linspace(-5, 5, 101)
xx, yy = np.meshgrid(x, y)
zz = np.sqrt(xx**2 + yy**2)
# Вывод графика:
import matplotlib.pyplot as plt
h = plt.contourf(x, y, zz)
plt.axis('scaled')
plt.colorbar()
plt.show()
```


Сортировка массивов

https://numpy.org/doc/stable/reference/routines.sort.html

В пакете есть свои более быстрые методы сортировки массивов.

- 1) Функция возвращает отсортированную копию массива: numpy.sort(a, axis = -1, kind = None, order = None)
- 2) Метод массива сортирует массив на месте: ndarray.sort(axis = -1, kind = None, order = None)

Параметры:

```
axis — выбор оси (по умолчанию последняя);
kind — метод ('quicksort', 'mergesort', 'heapsort', 'stable');
order — можно по нескольким полям.
```

```
x = np.array([2, 1, 4, 3, 5])
y = np.sort(x) # создаем новый массив
# y = [1 2 3 4 5]
x.sort() # или сортируем x на месте
# По разным осям
X = np.random.randint(0, 10, (3, 3))
```

```
# X = [[5 0 3] [3 7 9] [3 5 2]]
print(np.sort(X))
# или print(np.sort(X, axis = 1))
  [[0 3 5]
       [3 7 9]
       [2 3 5]]
print(np.sort(X, axis = 0))
#
  [[<mark>3</mark> 0 2]
       [<mark>3</mark> 5 3]
       [<mark>5</mark> 7 9]]
# Сортирует все элементы в списке:
print(np.sort(X, axis = None))
# [0 2 3 3 3 5 5 7 9]
X[:, 0].sort() # сортируем 0-й столбец
X[::-1, 0].sort() # 0-й столбец в обратном порядке
```

Сохранение массива в файл

https://numpy.org/doc/stable/reference/routines.io.html

<u>Сохранить в файл</u> массив можно с помощью метода <u>save</u>. Создает файл со специальной структурой, в которой хранится размерность массива, тип и сами данные.

```
import numpy as np
arr = np.random.randint(-5, 6, size = (2, 4))
# Сохраняем в файл:
np.save('some_array.npy', arr)
```

Загрузить из файла такой массив обратно в программу можно с помощью метода load:

```
# Загружаем из файла и создаем массив a:

a = np.load('some_array.npy')

print(a)

# [[-3 -2 2 2]

[ 4 -4 1 3]]
```

Сохранение и загрузка текстовых файлов.

```
# Создаем матрицу:
A = np.random.randint(1, 10, (5, 4))
 # Сохраняем ее в текстовый файл:
np.savetxt('savetest.txt', A, delimiter=',')
# Загружаем из текстового файла в В:
B = np.loadtxt('savetest.txt', delimiter=',')
Функций чтения и записи файлов много. Можно также записывать
в файл и непосредственно методами массивов numpy.
 # Например, метод tofile может записывать
 # как текстовые так и двоичные файлы:
A.tofile('savetest2.txt', sep = ' ')
```

Литература

- 1. Плас Дж. Вандер Python для сложных задач: наука о данных и машинное обучение. Серия «Бестселлеры O'Reilly». СПб.: Питер, 2018. 576 с.
- 2. Уэс Маккинли Python и анализ данных. М.: ДМК Пресс, 2015. 482 с.