Math 131A - Homework 1

Zooey Nguyen zooeyn@ucla.edu June 30, 2021

Question 1.

By Corollary 2.3 we know that any rational solution of this equation must be an integer that divides the bias c_0 . Since $c_0 = -1$ we have only the options ± 1 , so let's check both.

$$P_1: (1)^4 - 2(1)^3 + 3(1)^2 + 5(1) - 1$$

$$= 1 - 2 + 3 + 5 - 1$$

$$\neq 0$$

$$P_{-1}: (-1)^4 - 2(-1)^3 + 3(-1)^2 + 5(-1) - 1$$

$$= 1 + 2 + 3 - 5 - 1$$

$$= 0$$

Thus the only rational solution to this is -1.

Question 2.

Proof of the properties of a field.

1. $a+c=b+c \Rightarrow a=b$. Assume a+c=b+c.

$$a = a + 0$$

$$a = a + (c + (-c))$$

$$a = (a + c) + (-c)$$

$$a = (b + c) + (-c)$$

$$a = b + (c + (-c))$$

$$a = b + 0$$

$$a = b$$

2. $a \cdot 0 = 0$.

$$a \cdot 0 = a(0+0)$$

$$a \cdot 0 = a \cdot 0 + a \cdot 0$$

$$a \cdot 0 - a \cdot 0 = a \cdot 0 + (a \cdot 0 - a \cdot 0)$$

$$0 = a \cdot 0 + 0$$

$$0 = a \cdot 0$$

Math 131A Homework 1

3.
$$(-a)b = -(ab)$$

$$(-a)b = (-a)b + 0$$

$$(-a)b = (-a)b + (ab + -(ab))$$

$$(-a)b = (-a)b + ab + -(ab)$$

$$(-a)b = (-a + a)b + -(ab)$$

$$(-a)b = (0)b + -(ab)$$

$$(-a)b = 0 + -(ab)$$

$$(-a)b = -(ab)$$

4.
$$(-a)(-b) = ab$$

$$(-a)(-b) = (-a)(-b) + ab + -(ab)$$

$$(-a)(-b) = (-a)(-b) + ab + (-a)b$$

$$(-a)(-b) = (-a)(-b + b) + ab$$

$$(-a)(-b) = (-a)(0) + ab$$

$$(-a)(-b) = 0 + ab$$

$$(-a)(-b) = ab$$

5. $ac = bc \land c \neq 0 \Rightarrow a = b$. Let ac = bc and $c \neq 0$.

$$ac = bc$$

$$ac - bc = 0$$

$$(a - b)c = 0$$

$$a - b = 0$$

$$a = b$$

6. $ab = 0 \Rightarrow a = 0 \lor b = 0$. Go over all possible values of a. First assume a = 0, then $a = 0 \lor b = 0$ is true. Second assume $a \neq 0$. Then it has inverse a^{-1} .

$$ab = 0$$

$$ab(a^{-1}) = 0(a^{-1})$$

$$(a \cdot a^{-1})b = 0$$

$$1b = 0$$

$$b = 0$$

So that $a = 0 \lor b = 0$ is true since b must be 0.

Math 131A Homework 1

Question 3.

$$\frac{a^2 + b^2}{2} = \frac{a^2 + b^2 - 2ab + 2ab}{2}$$
$$\frac{a^2 + b^2}{2} = \frac{(a - b)^2 + 2ab}{2}$$
$$\frac{a^2 + b^2}{2} = \frac{(a - b)^2}{2} + ab$$
$$(a - b)^2 \ge 0$$
$$\frac{a^2 + b^2}{2} \ge ab$$

Question 4.

Use triangle inequality that $|a-c| \le |a-b| + |b-c|$.

$$a = a + 0$$

$$a = a + ((-b) + b)$$

$$a = (a - b) + b$$

$$|a| = |(a - b) + b|$$

$$|(a - b) + b| \le |a - b| + |b|$$

$$|a| \le |a - b| + |b|$$

$$|a| - |b| \le |a - b|$$

$$||a| - |b|| \le |a - b|$$

Question 5.

Let the set [a,b) = S, and $S \subset R$.

 $\inf[a,b) = a$ because

- a is a lower bound of S since $a \in \mathbb{R}$ and for all $x \in S, x \geq a$.
- Suppose we have a different lower bound m of S, then for all $x \in S, x \geq m$. Since $a \in S, a \geq m$.

 $\sup[a,b) = b$ because

- b is an upper bound of S since $b \in \mathbb{R}$ and for all $x \in S, x \leq b \Rightarrow x \leq b$.
- Suppose we have a different minimal upper bound M < b of S, then for all $x \in S, x \leq M$ and $M \in S$. But $b \notin S$, so we can choose $c \in S : M < c < b$. Thus M is not an upper bound, let alone the minimal upper bound.

Math 131A Homework 1

Question 6.

If T is bounded above that means that it has some upper bound M such that $\forall t \in T : t \leq M$. Since $S \subseteq T$ by definition of subset $\forall s \in S : s \in T$. Therefore $\forall s \in S : s \leq M$ so M is an upper bound of S and S is bounded above.

Let $\sup T = m$. Then $\forall t \in T : t \leq m$ and any other upper bound M of T has to be either outside T or equal to m, that is, $m \leq M$. Let $\sup S = n$. Note from before $\forall s \in S : s \leq M$ for an upper bound M of T. Then we have $\forall s \in S : s \leq m$. Since $n \in S$ we have $n \leq m$, or $\sup S \leq \sup T$.

Question 7.

Note that since $a \le \sup A$ and $b \le \sup B$ then $a + b \le \sup A + \sup B$. Since this is the case for all a + b then $\sup(A + B) \le \sup A + \sup B$.

Next note that we can choose some $\epsilon > 0$ so that we can represent an a, b as $\sup A - \epsilon$, $\sup B - \epsilon$. Then $a + b = \sup A + \sup B - 2\epsilon$ so $a + b \ge \sup A + \sup B$. We also have $\sup(A + B) \ge a + b$ so $\sup(A + B) \ge \sup A + \sup B$.

Since we have the two inequalities $\sup(A+B) \le \sup A + \sup B$ and $\sup(A+B) \ge \sup A + \sup B$, it must be the case that $\sup(A+B) = \sup A + \sup B$.

Question 8.

Define the set S to be $r \in \mathbb{Q} : r < a$ for some $a \in \mathbb{R}$. First, a is an upper bound of S since $\forall r \in S : r < a$ by definition of S. Suppose we have a different minimal upper bound M of S where M < a, then $\forall r \in S : r \leq M$ and $M \in S$. But $a \notin S$. The question is, can we choose a $c \in S : M < c < a$? Note that M and C are rational numbers, while C may be rational or irrational. However, because C is dense in C, this means that between C two real numbers there will always be a rational number. Thus, there would be a rational C is C and C and C and C are which means that C cannot be the minimal upper bound of C. Thus C is the minimal upper bound and therefore C is C and C and C are C are C and C are C are C and C are C