

# Hvad er statistik? Statistisk Datannelyse 1, Kurusuuge 1, mandag Dus 3/41

### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Dagens program

# Velkommen

- Hvad er statistik?
- Praktiske oplysninger
- Datatyper
- Genopfriskning af R
- Deskriptiv statistik

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Hvad er statistik?

Statistik handler om, hvordan man drager korrekte konklusioner på baggrund af data.

Hvorfor er statistik et vigtigt fag? Forskellige holdninger  $\dots$ 

If your experiment needs a statistician, you need a better experiment. (Ernest Rutherford, fysiker)

Ressourcer (tid/økonomi/udstyr) vil dog ofte begrænse mængden og kvaliteten af data.

Hvor længe kan vi vente med at tage en behandling i brug, som ser ud til at virke? (Corona vaccine, grøn omstilling, ...)



# Holdninger til statistisk

Vi indtager en mere idealistisk holdning på dette kursus.

Brug af statistik garanterer ikke, at vi drager rigtige beslutninger fra data.

While it is easy to lie with statistics, it is even easier to lie without them.

(maybe Frederick Mosteller, statistician)

Vi bør være bevidste og åbne omkring metoder og antagelser, som vi bruger til at analysere og fortolke data.

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

# Eksempel 2: Ensidet variansanalyse

60 bænkebidere er blevet placeret i et af tre miljøer, og deres fysiske formåen er blevet testet ved at lade dem løbe en distance.

Er der en effekt af lys hhv. fugtighed? Hvor stor er effekten?



Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Eksempel 1: To-kryds-to tabeller

**Situation 1:** Vaccine mod miltbrand hos får. Næppe brug for en statistiker i dette tilfælde...

|        | Vaccineret | Ej vaccineret |  |  |
|--------|------------|---------------|--|--|
| Død    | 0          | 24            |  |  |
| I live | 24         | 0             |  |  |

**Situation 2:** Forekomst af leversvulster hos mus i forskellige miljøer. Konklusionen er knapt så oplagt.

|                | E.coli | Rent miljø |
|----------------|--------|------------|
| Leversvulster  | 8      | 19         |
| Ingen svulster | 5      | 30         |

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Eksempel 3: Alkohol og studiefrafald

Statistik — Du falder fra, hvis du drikker for meget. Men også, hvis du drikker for lidt. Friske tal viser, at studerende, der ikke drikker alkohol i studiestarten, har lige så stor risiko for frafald i løbet af første studieår, som studerende der drikker meget tæt.

Figure: Publiceret online i Universitetsavisen d. 29/8-2019

Bør vi på baggrund af undersøgelsen ordinere (lidt) øl hver fredag til alle nystartede studerende for at mindske frafaldet?



# Hvad er statistik?

Formålet med statistisk er (typisk) at undersøge sammenhænge mellem flere typer målinger udfra indsamlet data.

- Er der en sammenhæng? Hvilken?
- Er der en effekt af behandling? I hvilken retning? Hvor stor?

### Udfordringer:

- Data behæftet med usikkerhed: biologisk variation, målestøj
- Ser kun en **begrænset mængde data**, men ønsker at udtale os om generelle sammenhænge

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Hvad er formålet med dette kursus?

Kursusindhold: Grundlæggende statistiske metoder og beregninger

Kurset giver jer redskaber til at

- forstå og vurdere udsagn givet ved brug af statistik
- lave valide konklusioner udfra egne eksperimenter
- vurdere hvornår det er nødvendigt at søge hjælp hos en statistiker
- arbejde effektivt og struktureret med data





KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

# Praktiske oplysninger

Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 12/41



### Praktisk info

Kurset har en ekstern hjemmeside, hvor du vil kunne finde alle praktiske oplysninger om kurset.

Et stor del af de **Praktiske oplysninger** vil også ligge på kursets Absalonside, hvorfra der også er link til kursushjemmesiden.

En del af undervisningsmaterialet vil kun være tilgængeligt via links på den eksterne hjemmeside.

Skriv til mig, hvis du finder oplagte fejl og mangler på hjemmesiden.

Planen for næste uges øvelser udsendes typisk sent torsdag, og forelæsningsslides lægges ofte først ud lige før forelæsningen.

Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 13/41



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Undervisningen

### Forelæsningerne:

- Jeg gennemgår ikke bogen fra A til Z. Mindre matematik, ofte andre dataeksempler
- Jeg lægger fuldstændige R programmer ud til jer, men kører ikke alt ved forelæsningerne
- Slides kommer som regel på hjemmesiden aftenen før

### Øvelsestimerne:

- Det meste af tiden regner I selv de opgaver der er stillet på ugeplanen, med hjælp fra instruktorerne
- Gennemgang af enkelte ting fra foregående timer
- Flere opgaver end I kan nå i timerne. I skal regne hjemme!
- Arbeid sammen i grupper, spørg om hjælp



KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Undervisningsmateriale og ugestruktur

### Undervisningsmateriale:

- Introduction to Statistical Data Analysis for the Life Sciences af Ekstrøm og Sørensen, 2. udgave
- Slides, opgaver, data, R-programmer mm.
- Quiz'er (dog ikke hver uge)

### Aktiviteter:

- Forelæsninger (2 x 2 timer)
- Øvelsestimer (2 + 3 timer)
- Video med gennemgang af quiz + opsummering efter behov (Ca. 45 minutter)
- Hjemmearbejde (mindst 10 timer per uge!)
- 2-3 afleveringsopgaver. Frivilligt, men et godt tilbud!

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Hjemmearbejde

Du forventes at bruge i alt mindst 20 timer om ugen på kurset!

Hvordan timerne bruges bedst er individuelt, men her er et forslag:

- Forelæsninger/video: 5 timer
- Øvelser: 5 timer
- Læse i bogen, læse slides, køre mine R-programmer: 6 timer
- Regne opgaver hjemme: 4 timer

Der kommer facit/besvarelser til det meste efter timerne, men brug dem med omhu. Du skal selv have fingrene ned i skidtet for at lære det!



Du bør evaluere dit eget udbytte af kurset på om du

- forstod hvorfor faget kan være relevant for dit fagområde
- brugte tid på at lære at tænke over statistiske problemstillinger
- lærte at lave simplere statistiske analyser med R

Jeres udbytte af kurset evalueres desuden ved en eksamen

- 4 timer skriftlig prøve med alle hjælpemidler pånær internet
- I skal selv køre R, data kommer på USB-stik (medmindre andet meldes ud)
- Der kommer quizspørgsmål som dem der bliver stillet til quizzer i løbet af kurset

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# **Øvelsesundervisning**

Finder sted

- mandage fra kl. 15:00-16:45 i kursusugerne 1-8
- onsdag fra kl. 13:00-15:45 i kursusugerne 1-7

I er automatisk blevet inddelt på 7 øvelseshold men

- i praksis afholdes øvelserne i 4 lokaler med totalt 6 hiælpelærere
- I må gerne fordele jer jævnt i lokalerne i ønskede arbejdsgrupper

Forslag: Hjælpelærerne laver 4 grupper i Absalon hørende til hvert lokale. Her kan man tilmelde sig (uforpligtende) på det eller de hold, som man regner med at være mest på.



Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 19/41

### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Om R

- Vi skal bruge R intensivt på kurset
- Installér de nyeste versioner af R og RStudio
- Nogle af HS-opgaverne er genopfriskning af R
- På kursushjemmesiden findes en oversigt over relevant R materiale for kurset

Alle R programmer lægges ud i R markdown-format, da det er kedeligt og ufuldstændigt at vise R koder på forelæsningsslides.

### **Anbefaling**

- Download R Markdown-filen og følg med under forelæsningen. Skriv evt. korte noter.
- Kør selv R koden i R Markdown-filerne efter forelæsningen. Suppler med egne kommentarer.

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

Dias 20/41

### DET NATURVIDENSKABELIGE FAKULTET

# **Datatyper**



# Datatyper

Første skelnen: Kategoriske data vs kvantitative data

Kategoriske data:

- Nominale {mand, kvinde}, {gul, grøn, blå}.
- Ordinale {ingen, lidt, mellem, meget}, indkomstklasser.

Kvantitative data

- Diskrete unger pr. kuld, antal familiemedlemmer.
- Kontinuerte længde, højde, alder, vægtændring, indkomst.

StatDat1: Vi skal mest bruge *nominale kategoriske* og *kontinuerte kvantitative* data. Ofte siger vi bare kategoriske og kontinuerte.

Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 21/41





# Hvorfor er datatypen vigtig?

Fordi datatypen er afgørende for hvordan der er relevant at behandle data:

- Hvilke stikprøvestørrelser (summary measures)?
- Hvilke tegninger?
- Hvilke statistiske analyser?

Statistisk Dataanalyse 1, Kursusuge 1, mandag





- Konsollen, prompten, kommandoer ved prompten
- Skriv kommandoer i R-program (eller Markdown, mere om det på onsdag)
- Vektorer/variable i R
- Datasæt, observationer, variable
- Variable i datasæt vha. \$
- Eksempel: Datasættet cats i MASS-pakken

Se også HS-opgaverne og R-programmet sd1\_forel210906\_Rprog.

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Datasættet cats

Datasættet **cats** ligger i pakken *MASS*. Pakke og datasæt skal *loades* før de kan bruges:

library(MASS)
data(cats)

Data vedr. 144 katte. Tre variable: Køn, kropsvægt i kg, vægt af hjerte i gram.

- > head(cats, n=3)
  Sex Bwt Hwt
- 1 F 2.0 7.0
- 2 F 2.0 7.4
- 3 F 2.0 9.5

Datatyper af de tre variable?



KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Vektorer/variable

Man kan selv definere en vektor/variabel med funktionen c:

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# \$-syntaksen

Vi skal fortælle R at den skal finde variablene i datasættet cats.

Dette kan gøres med \$-syntaks: datasætnavn\$variabelnavn

```
> Bwt # Virker ikke, da R ikke ved hvor variablen er Error: object 'Bwt' not found
```

```
> cats$Bwt
  [1] 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 ...
> mean(cats$Bwt)
[1] 2.723611
```

Advarsel: Det skaber ofte forvirring, hvis man tilfældigvis i R allerede har en variabel ved navn Bwt, der intet har at gøre med indholdet i datasættet cats.



Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 28/41

Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 27/41 Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 29/41



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Kategoriske data

- Frekvens = hyppighed, dvs. antal forekomster
- Hvis *n* er antallet af observationer er

**Relativ frekvens** = 
$$\frac{\text{frekvens}}{n}$$

|             | Group A | Group B | Group C | Group D | Total |
|-------------|---------|---------|---------|---------|-------|
| TD present  | 21      | 7       | 6       | 12      | 46    |
| TD absent   | 9       | 23      | 24      | 18      | 74    |
| Pct present | 70      | 23      | 20      | 40      | 38    |



### DET NATURVIDENSKABELIGE FAKULTET

# Deskriptiv statistik

Grafer og simple stikprøvestørrelser.

### Hvorfor?

- For at give overblik over data
- For at give en umiddelbar kommunikation af data
- Evt. finde fejl i data, fx forkert placering af decimal

### Hvordan?

- **Visualisering:** søjlediagrammer, histogrammer, boxplots, scatter plots
- Simple stikprøvestørrelser: gennemsnit, spredning, range (min og max), fraktiler
- Altsammen i R

Statistisk Dataanalyse 1, Kursusuge 1, mandag



# Kategoriske data

KØBENHAVNS UNIVERSITET

## DET NATURVIDENSKABELIGE FAKULTET

### Group A Group B Group C Group D Total TD present 21 6 12 46 TD absent 9 23 24 18 74 70 23 20 40 38 Pct present



R-kode: Se side 18 i bogen.

Statistisk Dataanalyse 1, Kursusuge 1, mandag

Dias 32/41



# Kattene igen

Data vedr. 144 katte.

Tre variable: Køn, kropsvægt i kg, vægt af hjerte i gram.

Relevante spørgsmål?

- Sammenhæng mellem vægt af krop og hjerte?
- Fordeling af kropsvægt? Fordeling af hjertevægt?
- Kønsforskelle?

I dagens R program sd1\_forel210906\_Rprog beskrives hvordan man kan visualisere kvantitative data ved brug af

- scatterplot
- histogrammer
- boxplot

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Median, kvartiler, IQR

**Sortér** data efter størrelse (min til max).

Range: Intervallet fra mindste til største observation.

Median: Midterste observation i det sorterede datasæt. Hvis lige antal observationer: Gennemsnit af de to midterste observationer.

**Kvartiler** deler sættet op i fire grupper. 25% obs. er  $\leq Q_1$  (første kvartil), og 75% obs. er  $\leq Q_3$  (tredje kvartil).

Altså: De 50% "midterste" data ligger i intervallet fra  $Q_1$  til  $Q_3$ .

Inter quartile range,  $IQR = Q_3 - Q_1$ 



IITET

### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Stikprøvestørrelser (summary statistics)

Grafer er godt, men vi vil også gerne give nogle **tal** der indeholder information om hvordan fordelingerne ser ud.

- Mål for "centrum": Gennemsnit, median
- Mål for variabilitet: spredning, range, inter-quartile range (IQR)

Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 34/41



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Gennemsnit og stikprøvespredning

**Gennemsnit** er defineret ved:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{y_1 + \dots + y_n}{n}$$

**Stikprøvespredning** er defineret ved:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}}.$$

For symmetriske data, typisk: Cirka 95% af data ligger i intervallet

gennemsnit  $\pm\,2\cdot$  spredning

Gennemsnit og spredning har samme enhed som observationerne.

Stikprøvevariansen:  $s^2$ .



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Stikprøvestørrelser for hjertevægt

- > library(MASS)
  > data(cats)
- > summary(cats\$Hwt)

Min. 1st Qu. Median Mean 3rd Qu. Max. 6.30 8.95 10.10 10.63 12.12 20.50

- > mean(cats\$Hwt)
- [1] 10.63056 > sd(cats\$Hwt)
- [1] 2.434636
- [1] 2.434030
- > var(cats\$Hwt)
- [1] 5.927451

Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 37/41



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Boxplot

Et **boxplot** illustrerer en fordeling grafisk vha. median og kvartiler.

Fed streg er median, kassen går fra fra  $Q_1$  til  $Q_3$ . Detaljerne er lidt komplicerede...

Boxplots er gode til sammenligning af fordelinger og et groft men fornuftigt alternativ til histogrammer



Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 39/41

### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Median eller gennemsnit?

- Median og gennemsnit ens for symmetriske fordelinger, forskellige for skæve fordelinger.
- Ikke-symmetriske fordelinger: Median giver bedre mening end gennemsnit
- Gennemsnit er f
  ølsom overfor ekstreme observationer. Median
  er robust overfor ekstreme observationer.
- Gennemsnittet er "pænere" fra et matematisk synspunkt

Statistisk Dataanalyse 1, Kursusuge 1, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# R til øvelserne i dag

I skal selv indtaste data til vektorer. Kommandoer som nedenstående kan være nyttige:

```
### Indtast relevante værdier
x <- c(2.1, 3.5, 5.3, 1, 9.8)

### Diverse summary statistics
mean(x)
sd(x)
var(x)
median(x)
summary(x)

### Et par figurer
boxplot(x)
hist(x)</pre>
```

Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 40/41



### KØBENHAVNS UNIVERSITE

### DET NATURVIDENSKABELIGE FAKULTET

# Opsummering — til eget brug

- Giv eksempler på kategoriske og kvantitative variable. Er de nominale, ordinale, diskrete eller kontinuerte?
- Hvad er medianen,  $Q_1$  og  $Q_3$ ?
- Hvordan beregnes gennemsnit og stikprøvespredning?
- Hvad er et boxplot?
- Hvad sker der med median hhv. gennemsnit hvis der kommer en ny obs. der er ekstremt lille i forhold til de oprindelige?
- Hvordan arbejder man i R?
- Hvordan bruger man en variabel i et datasæt?



Statistisk Dataanalyse 1, Kursusuge 1, mandag Dias 41/41