# 第一章 有机化合物分子结构基础

#### 习题 1-1

#### 习题 1-2

(4) 
$$H - \overset{H}{\overset{}_{C} = 0} - H$$
 (5)  $H - \overset{}{\overset{}_{C} = 0} - \overset{}{\overset{}_{N} = \overset{}{\overset{}_{N} = 0}}$ 

O原子应带电荷

(6) H-C=N-H

C原子应带电荷

O原子应带电荷

#### 更改为:

#### 习题 1-3



(2) CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>CHCH<sub>3</sub> OH OCH<sub>3</sub>

(3) 
$$H_3C - \overset{CH_3}{\overset{}{C}} - CH_2CH_2CI$$
  $\overset{C}{\overset{}{\overset{}{C}}} H_3$ 

(4) (CH<sub>3</sub>)<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

(6) (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>CHO

# J. O

#### 习题 1-4

(1) 可以,因为轨道可以有效重叠成键,如下图(a);(2) 不可以,因为轨道间不是同位相相加,故不能有效重叠成键,如下图(b)和(c)。



#### 习题 1-5\*

- (1) 因为反键分子轨道上有一个电子, 具有相对稳定性:
- (2) 因为成键与反键分子轨道都全部充满电子,体系能量没有有效降低,所以不能稳定存在;
- (3) 两个氮原子的 2p 轨道各有 3 个单电子,它们相互结合形成三个成键轨道和三个反键轨道,而 6 个电子将在成对地填充在三个成键轨道上,所以  $N_2$  分子可以稳定存在;
- (4)  $O_2$ 可以看成是 1 个氧原子 (O, 4 个 2p 电子)与 1 个氧负离子 (O, 5 个 2p 电子)结合而成,各自的 3 个 2p 轨道组成 3 个成键和 3 个反键轨道,9 个电子在成对充满 3 个成键轨道后,还有 3 个电子在反键轨道,因此,该负离子具有相对稳定性。

注意:  $N_2$ 分子和  $O_2$ 分子属于同核双分子,其分子轨道的形成以及电子填充请详见结构化学中的讨论。以上只是十分粗略地从成键轨道和反键轨道进行间要说明。

- **习题 1-6** 答: CH<sub>2</sub>Cl<sub>2</sub> 只有一种结构,不存在异构体;如碳不是四面体构型,而是平面正方形,则 CH<sub>2</sub>Cl<sub>2</sub> 有两个异构体(构型)。
- **习题 1-7** NH<sub>3</sub> 中 N 和 H<sub>2</sub>O 中 O 均以  $sp^3$  杂化轨道成键,N 有一对孤对电子,分子呈角锥状,O 有二对孤对电子,分子呈 V 型;由于孤对电子的排斥作用,H—N—H 和 H—O—H 键角小于  $109.5^\circ$  。

**习题 1-10**  $CO_2$  为线型分子,其中 C 以 sp 杂化轨道分别与两个氧原子形成两个  $\sigma$ 键,而以两个相互

垂直的 p 轨道分别与两个氧原子的 p 轨道形成  $\pi$ 键, 其轨道成键图如下:

事实上,关于二氧化碳分子成键情况的最准确的解释是分子轨道理论。

**习题 1-10** CH<sub>3</sub>CN 中氰基-C≡N 中 C 和 N 均为 sp 杂化,其轨道成键情况参见乙炔分子。

**习题 1-11** 各种不同杂化状态的碳形成的 C—C  $\sigma$  键强度顺序为:  $C_{sp}$ — $C_{sp}$ >  $C_{sp2}$ — $C_{sp3}$ — $C_{sp3}$ 。因 为 sp 轨道中 s 成分多,离核近,而  $sp^2$  、  $sp^3$ 则逐渐减少。

#### 习题 1-12

$$\begin{array}{ccccc} \mathsf{CH}_3 - \mathsf{CH} - \mathsf{CH} = \mathsf{CH} - \mathsf{C} = \mathsf{CH} \\ & & \mathsf{CH}_3 \\ & & \mathsf{SP}^2 \end{array}$$

**习题 1-13** (1) HCHO 中 C、O 均以  $sp^2$  杂化轨道成  $\sigma$ 键, 而以 p 轨道形成  $\pi$ 键, 分子形状为三角形:

(2) H C=NCH<sub>3</sub> 中 C、N 也以  $sp^2$  杂化轨道形成  $\sigma$ 键。以 p 轨道形成  $\pi$ 键,N 上一对孤对电子占据

一个 
$$sp^2$$
 杂化轨道,分子形状为  $H$   $C=N$ 

## 习题 1-14

- (1)  $CH_3$  -CH  $= CH_2$  (2)  $CH_3CH_2QCH_3$   $sp^3$

- (4)  $CH_3 C = CH$  (5)  $CH_3OCH_2OCH_3$  (6)  $CH_3NHCH_3$   $Sp^3$
- (7)  $CH_3-C=O$  (8)  $CH_3CH_2CH_2OH$  (9)  $N=C-CH_2-C=N$   $Sp^3$





(12) 
$$CH_3$$

**习题 1-15** (略)请参阅教材 38-39 页的表 1-5

#### 习题 1-16

(1) 
$$H_3C-CI$$

(2) 
$$\vec{\mathsf{F}} = \mathsf{B} \mathsf{I}$$

(3) 
$$H_3\overset{\delta^+}{C} - \overset{\delta^-}{N}H_2$$

(4) 
$$\overset{\delta}{\text{HO-Br}}$$

(5) 
$$H_3\overset{\delta^+}{C}-\overset{-}{O}H$$

(6) 
$$H_3C-MgB$$

(7) 
$$H_2N-OH$$

(1) 
$$H_3\overset{\delta^+}{C}-\overset{\bar{\delta}}{C}I$$
 (2)  $\overset{\bar{\delta}^-}{F}-\overset{\delta^+}{Br}$  (3)  $H_3\overset{\delta^+}{C}-\overset{\bar{\delta}^-}{N}H_2$  (4)  $H\overset{\bar{\delta}^-}{O}-\overset{\delta^+}{Br}$  (5)  $H_3\overset{\bar{\delta}^-}{C}-\overset{\bar{\delta}^+}{O}H$  (6)  $H_3\overset{\bar{\delta}^-}{C}-\overset{\bar{\delta}^+}{MgBr}$  (7)  $H_2\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{O}H$  (8)  $H\overset{\bar{\delta}^-}{\delta}-\overset{\bar{\delta}^+}{C}+\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}+\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}+\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}+\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}+\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-}{N}-\overset{\bar{\delta}^-$ 

#### 习题 1-17

















其中: (7) 和(8) 两小题中,蓝色表示键的偶极矩方向,红色表示整个分子的偶极矩方向。

**习题 1-18** (1) 环烯烃 (2) 桥环烯烃 (3) 芳香烃(稠环) (4) 不饱和烃

## 习题 1-19

(3)、(5)、(9) 仅具有共价键;

(1)、(2)、(4)、(6)、(7)、(8)、(10) 同时具有离子键和共价键。

# 习题 1-20

习题 1-21 试写出满足下列要求的只含有碳和氢两种元素原子的有机化合物的 Kekulé 结构式。

























# 习题 1 - 23

- (1) CH<sub>3</sub>CH<sub>2</sub>OH 中的 C-O-H 键的键角约为 109.5°;
- (2) (CH<sub>3</sub>)<sub>2</sub>NH 中的 C-N-C 键的键角略大于 109.5°;
- (3) CH<sub>3</sub>OCH<sub>3</sub>中的 C-O-C 键的键角略大于 109.5°;
- (4) CH<sub>2</sub>=O 中的 H-C-H 键的键角略小于 120°;
- (5) H<sub>3</sub>C-C≡N中的 C-C-N 键的键角为 180°;
- (6) HC≡C-CH<sub>3</sub>中的 C-C-C 键的的键角为 180°;
- (7) CH<sub>2</sub>=C=CH<sub>2</sub>中的 C-C-C 键的键角为 180°;
- (8) HCOOH 中的 O-C-O 键的键角略大于 120°。

#### 习题 1 - 24

## 习题 1 - 25

(1) 
$$CH_3$$
-Br <  $CH_3$ -CI

(2) 
$$CH_3 - OH < CH_3 - CI$$

(3) 
$$CH_3 - OCH_3 > CH_3 - NHCH_3$$

(3) 
$$CH_3 - OCH_3 > CH_3 - NHCH_3$$
 (4)  $CH_3 - OCH_3 > CH_3 - SCH_3$ 

(5) 
$$CH_3-NH-CH_2CH_2-C=N$$
 (6)

习题 1-26 说明:图中序号越大,键长越长,键强越弱。

(1) 
$$CH_3 - CH_2 - CH = CH - CH_2 - C = CH$$
 (2)  $O$ 

(3) 
$$CH_3-NH-CH_2CH_2-C\equiv N$$
 (4)  $H-C\equiv C-CH_2-C-H$   $CH_3$   $CH_3$   $CH_3$ 

习题 1-27 题目修改为:下列分子中用箭头标记的原子是否一定与双键所在平面共平面。

(1) 
$$\begin{array}{ccc} H & C = C & CH_2CH_3 \\ H_3C & H & & \end{array}$$

习题 1-28

(1) CH<sub>3</sub>CH<sub>2</sub>OH + CICH<sub>2</sub>CH<sub>3</sub> → CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub> + HCI 合理

(2) 
$$H_3$$
C $^{\circ}$ C $^{\circ}$ CH $_3$  + HOCH $_3$  — HOCH $_3$  合理

CH<sub>3</sub>CH<sub>2</sub>MgBr + HOCH<sub>3</sub> → CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub> + HMgBr <sub>不合理</sub>

