# Projeto da Disciplina de Data Mining

Prof. Manoela prof.manoela@ica.ele.puc-rio.br

# **Componentes do Projeto:**

André Luis Mendes Teixeira Gabriela de Camargo Santa Rosa Mariana Fernandes Coy

# Histórico de Versões

| Data       | Versão | Descrição                                                                                     | Autor                                      | Aprovado por                                          |
|------------|--------|-----------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| 30/12/2021 | 1.0    | Documento de<br>elaboração do projeto de DM<br>sobre modelo de algoritmos de<br>classificação | André Teixeira                             | Gabriela C. Santa<br>Rosa<br>Mariana<br>Fernandes Coy |
| 02/01/2022 | 2.0    | Revisão da versão 1.0 com os resultados de pré-processamento e SVM                            | Gabriela C. Santa<br>Rosa                  | André Teixeira<br>Mariana<br>Fernandes Coy            |
| 06/01/2022 | 3.0    | Revisão da versão 2.0, após<br>correções de pré-processamentos                                | Gabriela C. Santa<br>Rosa                  | André Teixeira<br>Mariana<br>Fernandes Coy            |
| 07/01/2022 | 4.0    | Revisão Final                                                                                 | André Teixeira<br>Mariana<br>Fernandes Coy | Gabriela C. Santa<br>Rosa                             |

# Sumário

| Proposta de trabalho                                                      | 3  |
|---------------------------------------------------------------------------|----|
| Análise Exploratória                                                      | 3  |
| Pré-processamento                                                         | 4  |
| Valores Nulos (Missing Values)                                            | 4  |
| Transformação dos atributos categóricos                                   | 7  |
| Normalização                                                              | 9  |
| Balanceamento                                                             | 10 |
| Treinamento do modelo e inferências usando os algoritmos de classificação | 13 |
| SVM (Support Vector Machine)                                              | 13 |
| Árvore de Decisão                                                         | 16 |
| Random Forest                                                             | 19 |
| KNN                                                                       | 22 |
| Conclusão                                                                 | 24 |
| Anevos                                                                    | 26 |

## Proposta de trabalho

Este trabalho tem como proposta o desenvolvimento de um modelo de predição, dada uma determinada base, para a aplicação dos conceitos aprendidos na disciplina de Data Mining.

Para isto, foi utilizado a base de dados sugerida em aula para o desenvolvimento deste trabalho, onde foi proposto um problema de classificação de uma base de dados contendo 27 atributos numéricos e categóricos que descrevem o estado de saúde de cavalos, e três classes de saída que indicam o que aconteceu com o animal: morreu, viveu ou em estado de eutanásia. A ideia é prever se um cavalo pode sobreviver ou morrer baseado nas condições médicas passadas.

Para este trabalho temos já previamente separadas as bases de treino e teste, passadas como "horse.csv" (base de treino) e "horseTest.csv" (base de teste). A base de treino contém 299 registros, e a de teste, 89.

Por se tratar de um problema de classificação, foi feito o desenvolvimento dos modelos através dos seguintes algoritmos:

- Support Vector Machine (SVM)
- Árvores de Decisão
- Random Forest
- K nearest neighbors (KNN)

Foi utilizada a linguagem de programação Python usando a estrutura do Google Colaboratory para realização de treinos e inferências dos modelos.

## Análise Exploratória

A análise exploratória dos dados nos ajuda a prever que dados são considerados relevantes ou irrelevantes para o modelo, para que possamos desconsiderá-los com o intuito de melhorar o desempenho de predição do modelo.

Algumas observações foram feitas através do documento de dicionário de dados e ao analisar os dados oriundos da base de treino:

- Removidos os campos hospital\_number (irrelevante para o resultado do estado do animal), respiratory\_rate (indicado no dicionário de dados como de uso duvidoso devido à grandes flutuações) e cp\_data (indicado como não significantes, conforme o dicionário de dados).

- Exclusão das colunas lesion\_2 e lesion\_3 uma vez que a maioria dos valores são "zero" e, de acordo com o gráfico de dispersão em relação à classe, se torna irrelevante para o modelo.



Figura 1 – Gráfico de dispersão dos atributos comparados com atributos lesion\_2 e lesion\_3 (utilizado seaborn.pairplot)

## Pré-processamento

Para a etapa de pré-processamento foram considerados o tratamento de Missing Values, transformação dos atributos categóricos, normalização dos atributos numéricos e balanceamento das classes.

Inicialmente foi feita a separação das bases de treino e teste para entradas e saídas.

```
#Separar inputs e outputs para as bases de treino e teste
X_treinodf = treinodf.loc[:,treinodf.columns != 'outcome'] #Entrada
Y_treinodf = treinodf.outcome  # Saída
X_testedf = testedf.loc[:,testedf.columns != 'outcome'] #Entrada
Y_testedf = testedf.outcome  # Saída

print(X_treinodf.shape)
print(X_treinodf.shape)
print(Y_treinodf.shape)
print(Y_treinodf.shape)
print(Y_testedf.shape)

(299, 19)
(89, 19)
(299,)
(89,)
```

Figura 2 – Programação para separação das bases de treino e teste em entradas e saídas

## Valores Nulos (Missing Values)



Figura 3 – Matriz para verificação de valores nulos nos atributos utilizando a biblioteca missingno

Após verificação da matriz de valores nulos, foram feitas as exclusões dos atributos nasogastric\_reflux\_ph, abdomo\_appearance e abdomo\_protein por excesso de nulos.

Assim, os valores nulos se configuraram desta forma:



Figura 4 – Matriz para verificação de valores nulos após a exclusão de atributos Foi verificado a quantidade de valores nulos por atributo, conforme abaixo:

| <pre>treinodf.isnull().sum()</pre> |     |
|------------------------------------|-----|
| surgery                            | 0   |
| age                                | 0   |
| rectal_temp                        | 60  |
| pulse                              | 24  |
| temp_of_extremities                | 56  |
| peripheral_pulse                   | 69  |
| mucous_membrane                    | 47  |
| capillary_refill_time              | 32  |
| pain                               | 55  |
| peristalsis                        | 44  |
| abdominal_distention               | 56  |
| nasogastric_tube                   | 104 |
| nasogastric_reflux                 | 106 |
| rectal_exam_feces                  | 102 |
| abdomen                            | 118 |
| packed_cell_volume                 | 29  |
| total_protein                      | 33  |
| outcome                            | 0   |
| surgical_lesion                    | 0   |
| lesion 1                           | 0   |

Figura 5 – Verificação da quantidade de valores nulos por atributo

Após esta verificação, foi feito o tratamento para os missing values, considerando para os atributos categóricos a utilização da moda para preenchimento dos valores nulos, e para os atributos numéricos foi atribuído o valor da média dos registros para cada respectivo atributo.

Para fazer o tratamento de missing values, foi considerado a separação das bases em dataframes auxiliares, sendo um considerando os atributos categóricos e outro considerando os atributos numéricos.

O primeiro passo foi verificar quais seriam os atributos numéricos e categóricos da base, utilizando a classe make\_column\_selector e atribuindo às variáveis auxiliares numerical\_columns e categorical\_columns.

```
from sklearn.compose import make_column_selector as selector
numerical_columns_selector = selector(dtype_exclude = object)
categorical_columns_selector = selector(dtype_include = object)
numerical_columns = numerical_columns_selector(X_treinodf)
categorical_columns = categorical_columns_selector(X_treinodf)
```

Figura 6 – Programação para verificar os atributos numéricos e categóricos das bases

Para o tratamento dos missing values foi utilizada a classe SimpleImputer. Para fazer a transformação das bases, foi utilizado a classe ColumnTransformer, uma vez que a base tem atributos mistos (categóricos e numéricos).

```
from sklearn.impute import SimpleImputer
imp_cat = SimpleImputer(strategy="most_frequent")
imp_num = SimpleImputer(strategy="mean")

from sklearn.compose import ColumnTransformer

preprocessor = ColumnTransformer([
    ('simple-imp-cat', imp_cat, categorical_columns),
    ('simple-imp-num', imp_num, numerical_columns)])

#Tratando os missing values nas bases de treino e teste preprocessor.fit(X_treinodf)
X_treinodf = preprocessor.transform(X_treinodf)
X_testedf = preprocessor.transform(X_testedf)
```

Figura 7 – Programação para o tratamento dos missing values nas bases de treino e teste

Após o tratamento, como resultado as bases foram transformadas em arrays. Uma vez que outros tratamentos são necessários, as bases foram transformadas novamente em dataframes.

```
#Transfomando as bases novamente em dataframes após o tratamento de missing values
X_treinodf = pd. DataFrame(X_treinodf, columns=colunas)
X_testedf = pd. DataFrame(X_testedf, columns=colunas)
```

Figura 8 – Programação para a transformação das bases de treino e teste novamente em dataframes

Foi feita novamente a verificação na base de treino após o tratamento de missing values.



Figura 9 – Matriz para verificação de valores nulos após o tratamento de missing values na base de treino

As mesmas considerações acima foram replicadas na base de teste.

# Transformação dos atributos categóricos

Após, foi feito o tratamento para conversão dos atributos categóricos em numéricos. Foi verificado que, após o tratamento de missing values descrito acima, todos os atributos das bases de treino e teste estavam sendo considerados como categóricos.

| X_treinodf.dtypes                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| surgery age temp_of_extremities peripheral_pulse mucous_membrane capillary_refill_time pain peristalsis abdominal_distention nasogastric_tube nasogastric_tube nasogastric_reflux rectal_exam_feces abdomen surgical_lesion rectal_temp pulse packed_cell_volume total_protein lesion_l dtype: object | object |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                            |

Figura 10 – Tipo dos atributos na base de treino

Portanto foi necessário fazer a conversão dos atributos numéricos das bases para o tipo numérico.

```
#Reconfigurando os tipos de dados (atributos numéricos para float)
X_treinodf[numerical_columns] = X_treinodf[numerical_columns].astype('float64')
X_testedf[numerical_columns] = X_testedf[numerical_columns].astype('float64')
```

Figura 11 – programação para reconfiguração dos atributos numéricos nas bases

| X_treinodf.dtypes                                                                                                                                                                                                                                                                   |                                                                                                             | X_testedf.dtypes                                                                                                                                                                                                                                                  |                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| X_treinodf.dtypes  surgery age temp_of_extremities peripheral_pulse mucous_membrane capillary_refill_time pain peristalsis abdominal_distention nasogastric_tube nasogastric_tube nasogastric_reflux rectal_exam_feces abdomen surgical_lesion rectal_temp pulse packed_cell_volume | object float64 float64 float64 | X_testedf.dtypes  surgery age temp_of_extremities peripheral_pulse mucous_membrane capillary_refill_time pain peristalsis abdominal_distention nasogastric_tube nasogastric_reflux rectal_exam_feces abdomen surgical_lesion rectal_temp pulse packed_cell_volume | object float64 float64 float64 |
|                                                                                                                                                                                                                                                                                     | float64                                                                                                     | total_protein                                                                                                                                                                                                                                                     | float64                                                                                                            |
| total_protein                                                                                                                                                                                                                                                                       |                                                                                                             | <del>_</del> :                                                                                                                                                                                                                                                    |                                                                                                                    |
| lesion_1<br>dtype: object                                                                                                                                                                                                                                                           | float64                                                                                                     | lesion_1<br>dtype: object                                                                                                                                                                                                                                         | float64                                                                                                            |

Figura 12 – Verificação dos tipos de atributos das bases, após reconfiguração

Após esta reconfiguração, foi utilizada a classe OneHotEncoder da biblioteca de pré-processamento do Scikit-learn. Não foi utilizado o LabelEncoder pois neste tipo de transformação cada rótulo do atributo iria ser transformado em um número inteiro e isso poderia gerar problema, pois o modelo poderia entender como rótulos de pesos diferentes. Anteriormente já havia sido verificado quais são os atributos categóricos da base. Será necessário utilizar esta informação novamente para esta transformação.

```
#Importando o OneHotEncoder para transformar atributos categóricos em numéricos
#Importando StandardScaler para normalizar atributos numéricos
#Fonte: https://inria.github.io/scikit-learn-mooc/python_scripts/03_categorical_pipeline_column_transformer.html
from sklearn.preprocessing import OneHotEncoder, StandardScaler

categorical_preprocessor = OneHotEncoder(handle_unknown="ignore")
#categorical_preprocessor = OneHotEncoder(drop='first')
numerical_preprocessor = StandardScaler()
```

Figura 13 – Importação das classes OneHotEncoder e StandardScaler para a transformação dos atributos categóricos em numéricos e normalização

Figura 14 – Utilização da classe ColumnTransformer para a transformação das bases

Para verificar os resultados sem normalizar os atributos numéricos, foi optado por utilizar dataframes auxiliares, para não modificar as bases. Após, foi feito o fit na base de treino e a transformação dos atributos categóricos utilizando a classe OneHotEncoder nas bases auxiliares de treino e teste.

```
#Dataframes auxiliares para verificar resultado sem normalização
X_treinodf_sem_norm = X_treinodf
X_testedf_sem_norm = X_testedf

#Transformação atributos categóricos utilzando OneHotEncoder
preprocessor.fit(X_treinodf_sem_norm)
X_treinodf_sem_norm = preprocessor.transform(X_treinodf_sem_norm)
X_testedf_sem_norm = preprocessor.transform(X_testedf_sem_norm)
```

Figura 15 – Transformação dos atributos categóricos nas bases auxiliares de treino e teste

## Normalização

Na primeira inferência do modelo SVM, sem a normalização dos dados, foi verificado um resultado de desempenho ruim do modelo, conforme imagem abaixo:



Figura 16 – Resultado da Matriz de Confusão do modelo utilizando SVM, sem a normalização dos dados

Para tanto, foi feito a normalização das bases de treino e teste, utilizando a classe StandardScaler do Scikit-learn, onde foi possível verificar a melhora no desempenho do modelo. Como a transformação anterior dos atributos categóricos foram feitas em bases auxiliares apenas como verificação, pois era previsível que fosse necessária a normalização dos dados, a transformação a seguir foi feita considerando as próprias bases de treino e teste, que não haviam sofridas as transformações para os atributos categóricos. Portanto neste momento foram feitas simultaneamente nas bases de treino e teste as transformações para os atributos categóricos (utilizando a classe OneHotEcoder) e a normalização para os atributos numéricos (utilizando a classe StandarScaler).

```
from sklearn.compose import ColumnTransformer

preprocessor = ColumnTransformer([
          ('one-hot-encoder', categorical_preprocessor, categorical_columns),
          ('standard_scaler', numerical_preprocessor, numerical_columns)])

#Transformando atributos categóricos e normalizando atributos numéricos na base de treino e teste
preprocessor.fit(X_treinodf)
X_treinodf = preprocessor.transform(X_treinodf)
X_testedf = preprocessor.transform(X_testedf)
```

Figura 17 – Transformação dos atributos categóricos nas bases de treino e teste



Figura 18 – Resultado da Matriz de Confusão do modelo utilizando SVM, com a normalização dos dados

#### Balanceamento

Após a normalização dos dados, foi verificado que o modelo previu uma quantidade relativa de animais eutanasiados como vivos ou mortos (conforme última imagem). Verificando o balanceamento da base de treino, de fato há um desbalanceamento entre as classes, conforme imagem abaixo:



Figura 19 – Gráfico representando o Balanceamento das Classes da base de treino

Para melhorar o balanceamento entre as classes, foi feito um over-sampling na base de treino da classe minoritária (euthanized), duplicando os registros já existentes.

Balanceando base de treino fazendo over-sampling da classe Euthanized

Figura 20 – Programação para Balanceamento da classe minoritária

```
#Duplicando o número de euthanized
euthanized = np.concatenate((euthanized, euthanized))
print(euthanized.shape)
(88, 57)
train_data = np.concatenate((lived, died, euthanized))
np.random.shuffle(train_data)
train_data.shape
(343, 57)
# Separar input e output
X_treinodf = train_data[:,0:56]
Y_treinodf = train_data[:,56]
pd.DataFrame(Y_treinodf).value_counts()
lived
              178
euthanized
               88
died
               77
```

Figura 21 – Programação para Balanceamento da classe minoritária e resultado do balanceamento

Após a base de treino balanceada, podemos verificar um desempenho melhor do modelo:



Figura 22 – Resultado da Matriz de Confusão do modelo utilizando SVM, após o balanceamento da classe minoritária

# Treinamento do modelo e inferências usando os algoritmos de classificação

Após o pré-processamento das bases detalhado anteriormente, foi feita o desenvolvimento dos modelos, utilizando os diversos algoritmos, conforme a seguir.

## SVM (Support Vector Machine)

O SVM foi o primeiro modelo considerado para o desenvolvimento deste trabalho. Foi utilizado a mesma programação do exercício de crédito bancário, dado em aula, para exemplificação deste modelo.

## Treinamento do Modelo

```
[35] # treinar modelo
    from sklearn.svm import SVC

def functreino(X_treinodf, Y_treinodf, seed):
    model = SVC(random_state=seed) # crio o modelo
    model.fit(X_treinodf, Y_treinodf) # treino o modelo
    return model
```

Figura 23 – Programação de treinamento do modelo utilizando SVM

Como a etapa de pré-processamento foi feita utilizando este modelo para verificação dos resultados, foi possível verificar as diferenças de resultados, conforme a aplicação do pré-processamento.

|     | Modelo                           | Acurácia | Карра    |          | F1       |          |
|-----|----------------------------------|----------|----------|----------|----------|----------|
|     | SEM normalização                 | 0,62921  | 0,10838  | 0,23077  | 0,00000  | 0,76259  |
| SVM | COM normalização                 | 0,87640  | 0,76261  | 0,85106  | 0,55556  | 0,93805  |
|     | Balanceamento classe minoritária | 0,93258  | 0,877635 | 0,930233 | 0,888889 | 0,944444 |

Tabela 1 – Evolução do desempenho do modelo SVM

Na tentativa de melhorar ainda mais o desempenho do modelo, foi utilizado o Grid Search.

## Grid Search

Figura 24 – Programação do modelo SVM utilizando o Grid Search

A primeira tentativa de utilização dos hiperparâmetros acabou resultando em um desempenho pior, conforme mostrado abaixo:



Figura 25 – Resultado da Matriz de Confusão do modelo utilizando SVM, após a aplicação do Grid Search, e resultado dos melhores parâmetros

Na tentativa de melhorar o desempenho, foi executado uma nova rodada do modelo, considerando o aumento do parâmetro C para 10000, onde obteve um desempenho consideravelmente melhor, conforme abaixo:

Figura 26 – Resultado da Matriz de Confusão do modelo utilizando SVM, após a aplicação do Grid Search com C = 10000, e resultado dos melhores parâmetros

Foi feita mais uma rodada de verificação, agora considerando C = 10000 e gamma = 0,01, onde o modelo obteve o desempenho de 100% nas métricas utilizadas.

Acurácia: 1.0

Kappa: 1.0

F1: [1. 1. 1.]

Matriz de Confusão

-50
-40
-30
-20

Died Euthanized Previsto

Euthanized Previsto

Lived

F2: 10000, 'gamma': 0.01, 'kernel': 'rbf'}

Figura 27 – Resultado da Matriz de Confusão do modelo SVM, após a aplicação do Grid Search com C = 10000, e resultado dos melhores parâmetros

|          | Modelo                               | Acurácia | Карра    |          | F1       |          |
|----------|--------------------------------------|----------|----------|----------|----------|----------|
|          | SEM normalização                     | 0,62921  | 0,10838  | 0,23077  | 0,00000  | 0,76259  |
|          | COM normalização                     | 0,87640  | 0,76261  | 0,85106  | 0,55556  | 0,93805  |
| C) //\ 4 | Balanceamento classe minoritária     | 0,93258  | 0,877635 | 0,930233 | 0,888889 | 0,944444 |
| SVM      | Grid Search - C: 1000, gamma: 0,001  | 0,82022  | 0,666823 | 0,772727 | 0,666667 | 0,872727 |
|          | Grid Search - C: 10000, gamma: 0,001 | 0,98876  | 0,98002  | 1,00000  | 0,96296  | 0,99048  |
|          | Grid Search C: 10000, gamma: 0,01    | 1        | 1        | 1        | 1        | 1        |

Tabela 2 – Evolução do desempenho do modelo SVM, após Grid Search

## Árvore de Decisão

Para o treinamento do modelo utilizando o algoritmo de Árvore de Decisão, em vez de utilizar o OneHotEncoder para transformação dos atributos categóricos, foi utilizado o OrdinalEncoder (mesma função do LabelEncoder, para mais de um atributo) para manter o número de colunas para que posteriormente fosse possível verificar nos nós os atributos a que se referem.

```
#Importando o OrdinalEncoder para transformar atributos categóricos em numéricos
#Importando StandardScaler para normalizar atributos numéricos
#Fonte: https://inria.github.io/scikit-learn-mooc/python_scripts/03_categorical_pipeline_column_transformer.html
from sklearn.preprocessing import OrdinalEncoder, StandardScaler

categorical_preprocessor = OrdinalEncoder() #handle_unknown="ignore"
#categorical_preprocessor = OneHotEncoder(drop='first')
numerical_preprocessor = StandardScaler()
```

Figura 28 – Importação da classe OrdinalEncoder para transformação dos atributos categóricos no modelo de Árvore de Decisão

```
preprocessor = ColumnTransformer([
          ('ordinal-encoder', categorical_preprocessor, categorical_columns),
          ('standard_scaler', numerical_preprocessor, numerical_columns)])

#Transformando atributos categóricos e normalizando atributos numéricos na base de treino e teste
preprocessor.fit(X_treinodf)
X_treinodf = preprocessor.transform(X_treinodf)
X_testedf = preprocessor.transform(X_testedf)
```

Figura 29 – Transformação e normalização dos atributos categóricos e numéricos nas bases de treino e teste

Figura 30 – Programações para o treinamento do modelo de Árvore de Decisão e visualização gráfica do modelo



Figura 31 - Visualização gráfica do modelo, gerando como nó raiz o atributo packed\_cell\_volume

Os resultados apresentados do modelo com os atributos numéricos sem e com normalização foram os mesmos.



Figura 32 – Resultado da Matriz de Confusão do modelo utilizando Árvore de Decisão para base com os atributos numéricos sem normalizar e normalizados

Após o balanceamento da classe minoritária, o modelo apresentou um melhor desempenho, considerando o kappa e F1.



Figura 33 – Resultado da Matriz de Confusão do modelo de Árvore de Decisão, após o balanceamento da classe minoritária

Após a utilização do Grid Search, o modelo apresentou melhora no desempenho, considerado satisfatório.

Figura 34 – Programação do modelo de Árvore de Decisão utilizando o Grid Search



Figura 35 – Resultado da Matriz de Confusão do modelo de Árvore de Decisão, após a aplicação do Grid Search, e resultado dos melhores parâmetros



Figura 36 - Visualização gráfica do modelo, gerando como nó raiz o atributo lesion\_1

|                         | Modelo                                                                     | Acurácia | Карра    |          | F1       |          |
|-------------------------|----------------------------------------------------------------------------|----------|----------|----------|----------|----------|
|                         | SEM normalização                                                           | 0,820225 | 0,670675 | 0,744186 | 0,692308 | 0,880734 |
| Árvore<br>de<br>Decisão | COM normalização                                                           | 0,820225 | 0,670675 | 0,744186 | 0,692308 | 0,880734 |
|                         | Balanceamento classe minoritária                                           | 0,820225 | 0,70358  | 0,823529 | 0,75     | 0,842105 |
|                         | Grid Search - criterion:<br>entropy, max_depth: 10,<br>min_samples_leaf: 1 | 0,977528 | 0,959674 | 0,956522 | 1        | 0,981132 |

Tabela 3 – Evolução do desempenho do modelo, utilizando Árvore de Decisão

## Random Forest

O próximo modelo treinado foi utilizando o Random Forest. As mesmas premissas de pré-processamento do modelo de SVM foram consideradas para este modelo.

```
# treinar modelo
from sklearn.ensemble import RandomForestClassifier

def functreino(X_treinodf, Y_treinodf, seed):
   model = RandomForestClassifier(min_samples_leaf=5, random_state=seed)
   model.fit(X_treinodf, Y_treinodf)
   return model
```

Figura 37 – Programações para o treinamento do modelo Random Forest

Os resultados das métricas com os atributos numéricos da base sem normalizar e normalizando apresentaram o mesmo resultado.

Resultados de Teste

Acurácia: 0.8314606741573034 Kappa: 0.6665834165834166 [0.74418605 0.55555556 0.90598291] Matriz de Confusão - 50 Died 16 0 40 Euthanized - 30 5 - 20 10 0 53 Died Lived Euthanized Previsto

Figura 38 – Resultado da Matriz de Confusão do modelo utilizando Random Forest para base com os atributos numéricos sem normalizar e normalizados

Após o balanceamento da classe minoritária, houve uma evolução nas métricas e o resultado foi conforme abaixo:

Resultados de Teste

Acurácia: 0.8876404494382022 Kappa: 0.7897968823807274

F1: [0.85 0.84615385 0.91071429]



Figura 39 – Resultado da Matriz de Confusão do modelo Random Forest para base com os atributos numéricos normalizados e balanceamento da classe minoritária

Na tentativa de melhorar o desempenho do modelo, foi utilizado o Grid Search.

Figura 40 – Programação do modelo Random Forest utilizando o Grid Search

Já na primeira tentativa de utilização dos hiperparâmetros, após 20 minutos de execução, as métricas do modelo apresentaram 100% de desempenho.



Figura 41 – Resultado da Matriz de Confusão do modelo Random Forest, após a aplicação do Grid Search, e resultado dos melhores parâmetros

|                  | Modelo                                                                  | Acurácia | Карра    |          | F1       |          |
|------------------|-------------------------------------------------------------------------|----------|----------|----------|----------|----------|
| Random<br>Forest | SEM normalização                                                        | 0,831461 | 0,666583 | 0,744186 | 0,555556 | 0,905983 |
|                  | COM normalização                                                        | 0,831461 | 0,666583 | 0,744186 | 0,555556 | 0,905983 |
|                  | Balanceamento classe minoritária                                        | 0,88764  | 0,789797 | 0,85     | 0,846154 | 0,910714 |
|                  | Grid Search - max_features: 0.3, min_samples_leaf: 1, n_estimators: 400 | 1        | 1        | 1        | 1        | 1        |

Tabela 4 – Evolução do desempenho do modelo, utilizando Random Forest

## **KNN**

O último modelo treinado foi utilizando o KNN.

# Treinamento do Modelo

```
[42] # treinar modelo
    from sklearn.neighbors import KNeighborsClassifier

def functreino(X_treinodf, Y_treinodf, n_neighbors=5):
    model = KNeighborsClassifier(n_neighbors=n_neighbors)
    model.fit(X_treinodf, Y_treinodf);

return model
```

Figura 42 – Programação de treinamento do modelo utilizando KNN

As mesmas premissas de pré-processamento do modelo de SVM foram consideradas para o modelo utilizando o KNN. As métricas apresentaram 100% de desempenho já na primeira verificação (bases sem normalização e classes desbalanceadas). Embora seja muito importante que os registros estejam normalizados para a utilização deste modelo, para esta base não se mostrou considerável (talvez pelo fato da maioria dos atributos serem categóricos). Após a normalização e balanceamento, o desempenho se manteve em 100%.



Figura 43 – Resultado da Matriz de Confusão do modelo utilizando KNN, para bases sem normalização, base normalizada e após balanceamento da classe minoritária

Após aplicar o Grid Search neste modelo, considerando a verificação de hiperparâmetros para n\_neighbors, o modelo encontrou como melhor parâmetro n\_neighbors = 2 e as métricas apresentaram uma queda no desempenho, conforme mostrado na figura abaixo:

```
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

# Parâmetros a serem testados
tuned_parameters = [{'n_neighbors': [2, 3, 4, 5, 6, 7, 8, 9, 10]}]

# Executar o grid search
model = GridSearchCV(KNeighborsClassifier(), tuned_parameters, scoring='f1_weighted')
model.fit(X_treinodf, Y_treinodf)
```

Figura 44 – Programação do modelo utilizando o Grid Search no KNN

Acurácia: 0.9101123595505618 Kappa: 0.8476679503637141 F1: 0.9111354135431181



Figura 45 – Resultado da Matriz de Confusão do modelo utilizando KNN, e resultado do melhor parâmetro

|        | Modelo                           | Acurácia | Карра    | F1          |
|--------|----------------------------------|----------|----------|-------------|
|        | SEM normalização                 | 1        | 1        | 1           |
| IZNINI | COM normalização                 | 1        | 1        | 1           |
| KNN    | Balanceamento classe minoritária | 1        | 1        | 1           |
|        | Grid Search - n_neighbors: 2     | 0,910112 | 0,847668 | 0,911135414 |

Tabela 5 – Evolução do desempenho do modelo, utilizando KNN

## Conclusão

Com este trabalho foi possível verificar que utilizando os diversos modelos de predições para as mesmas bases, podemos encontrar resultado diferentes.

|                         | Modelo                                                                     | Acurácia | Карра    |          | F1       |          |
|-------------------------|----------------------------------------------------------------------------|----------|----------|----------|----------|----------|
|                         | SEM normalização                                                           | 0,62921  | 0,10838  | 0,23077  | 0,00000  | 0,76259  |
|                         | COM normalização                                                           | 0,87640  | 0,76261  | 0,85106  | 0,55556  | 0,93805  |
|                         | Balanceamento classe minoritária                                           | 0,93258  | 0,877635 | 0,930233 | 0,888889 | 0,944444 |
| SVM                     | Grid Search - C: 1000, gamma: 0,001                                        | 0,82022  | 0,666823 | 0,772727 | 0,666667 | 0,872727 |
|                         | Grid Search - C: 10000, gamma: 0,001                                       | 0,98876  | 0,98002  | 1,00000  | 0,96296  | 0,99048  |
|                         | Grid Search C: 10000, gamma: 0,01                                          | 1        | 1        | 1        | 1        | 1        |
|                         | SEM normalização                                                           | 0,820225 | 0,670675 | 0,744186 | 0,692308 | 0,880734 |
|                         | COM normalização                                                           | 0,820225 | 0,670675 | 0,744186 | 0,692308 | 0,880734 |
| Árvore<br>de<br>Decisão | Balanceamento classe minoritária                                           | 0,820225 | 0,70358  | 0,823529 | 0,75     | 0,842105 |
|                         | Grid Search - criterion: entropy,<br>max_depth: 10,<br>min_samples_leaf: 1 | 0,977528 | 0,959674 | 0,956522 | 1        | 0,981132 |
|                         | SEM normalização                                                           | 0,831461 | 0,666583 | 0,744186 | 0,555556 | 0,905983 |

|                  | COM normalização                                                              | 0,831461 | 0,666583 | 0,744186 | 0,555556    | 0,905983 |
|------------------|-------------------------------------------------------------------------------|----------|----------|----------|-------------|----------|
| Random<br>Forest | Balanceamento classe minoritária                                              | 0,88764  | 0,789797 | 0,85     | 0,846154    | 0,910714 |
|                  | Grid Search - max_features: 0.3,<br>min_samples_leaf: 1,<br>n_estimators: 400 | 1        | 1        | 1        | 1           | 1        |
|                  | SEM normalização                                                              | 1        | 1        |          | 1           |          |
|                  | COM normalização                                                              | 1        | 1        |          | 1           |          |
| KNN              | Balanceamento classe minoritária                                              | 1        | 1        |          | 1           |          |
|                  | Grid Search - n_neighbors: 2                                                  | 0,910112 | 0,847668 |          | 0,911135414 |          |

Tabela 6 – Evolução do desempenho dos modelos

Para todos os modelos foi possível chegar em resultados satisfatório de desempenho, considerando as métricas de acurácia, kappa e F1, especialmente após a utilização de hiperparâmetros. No entanto para o caso deste trabalho, podemos considerar como melhor resultado encontrado utilizando o modelo KNN, uma vez que, apenas com pré-processamento dos atributos (categóricos e normalização dos numéricos) já foi possível atingir um desempenho de 100%, além de se tratar de um modelo fácil de implementação.

## Anexos

Em anexo a este relatório, segue os arquivos utilizados para a realização deste trabalho:

Base de treino: horse.csv

Base de teste: horseTest.csv

**Modelo SVM:** ProjetoHorse\_SVM.ipynb

Modelo Árvore de Decisão: ProjetoHorse\_AD.ipynb

<u>Modelo Random Forest:</u> ProjetoHorse\_RF.ipynb

Modelo KNN: ProjetoHorse\_KNN.ipynb

Visualização gráfica da Árvore de Decisão: tree\_high\_dpi-300.png

<u>Visualização gráfica AD – após Grid Search:</u> tree\_high\_dpi-300-Grid-Search.png