- 1. En una transmissió per politges, els diàmetres de la politja motriu i de la conduïda són 100 i $350 \, mm$. Si la motriu és accionada directament per un motor d'1,5 kW i gira a $2000 \, min^{-1}$, determineu la velocitat angular i el moment a la politja conduïda.
- 2. En una bicicleta, el pedal té una longitud de $180\,mm$, i suposem que el ciclista és capaç d'aplicar-hi una força constant de $200\,N$ a una velocitat de $80\,min^{-1}$. Si el plat i el pinyó tenen 54 i 14 dents, respectivament, i la roda té $70\,cm$ de diàmetre, calculeu la velocitat de la bicicleta i la potència desenvolupada.
- 3. En una grua, un motor que subministra $4\,CV$ a $1850\,min^{-1}$ acciona un tambor d'enrotllament del cable a través d'un reductor amb una reducció d'1/50 i un rendiment del $85\,\%$. Si el tambor té $400\,mm$ de diàmetre, determina la càrrega màxima que podrà aixecar i la velocitat amb què ho farà.
- 4. Determineu el parell i la velocitat angular de la roda 6 de la transmissió de la figura, si la roda 1 és accionada per un motor de $2\,kW$ de potència que gira a $1500\,min^{-1}$ i la transmissió té un rendiment del $90\,\%$.

5. Calculeu la velocitat angular de l'engranatge 4 del tren de mecanismes de la figura si l'engranatge 1 gira a $750\,min^{-1}$.

6. En a transmissió de la figura, determineu la càrrega màxima Q que es podrà aixecar amb el cable enrotllat al tambor de sortida i la velocitat amb què ho farà, si la primera politja és accionada directament per un motor de $3\,CV$ que gira a $750\,min^{-1}$.

7. En una transmissió per cadena el plat té 54 dents, mentre que el pinyó en té 18. Calculeu la velocitat de gir de la roda del darrere sabent que es pedala a raó de 3 pedalades per segon.

8. Calculeu la relació de transmissió $\tau=\frac{n_4}{n_1}$ en el tren d'engranatges de la figura.

9. Una vagoneta és accionada per un motor que gira a $n_m = 600 \, min^{-1}$ i té una potència $P = 10 \, kW$ a través d'una transmissió de politges. La politja motriu té un diàmetre $D_{mc} = 150 \, mm$ i està acoblada directament al motor. La conduïda, que s'acobla directament a l'arbre de les rodes, té un diàmetre $D_c = 450 \, mm$ i les rodes tenen un diàmetre $D_r = 600 \, mm$.

- (a) Calculeu la velocitat v_v de la vagoneta.
- (b) Calculeu el parell o moment Γ_i a les rodes, si la transmissió té un rendiment $\eta=0,85$
- 10. Un trepant elèctric funciona mitjançant un motor de rendiment $\eta_{mot} = 0,76$ i una transmissió per corretja dentada que té un rendiment $\eta_{trans} = 0,94$ i una relació de transmissió $\tau = \frac{n_2}{n_1} = \frac{5}{7}$, tal com mostra la figura. En règim de funcionament nominal, el motor consumeix una potència elèctrica $P_{elec} = 1100\,W$ i l'eix del motor gira a $n_1 = 1460\,min^{-1}$. Es demana:

- (a) Calculeu la potència P_1 a l'eix del motor.
- (b) Calculeu el parell Γ_2 a l'eix de la broca (eix de sortida del trepant).
- (c) Calculeu la potència total dissipada P_{diss} en el trepant.
- (d) Calculeu el diàmetre d_2 de la politja solidària a l'eix de la broca.

