

Rob J Hyndman

Forecasting using

2. The forecaster's toolbox

OTexts.com/fpp/2/

Forecasting using R

Outline

1 Some simple forecasting methods

2 Forecast residuals

3 Evaluating forecast accuracy

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m =seasonal period and k = |(h-1)/m|+1

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and $k = \lfloor (h-1)/m \rfloor + 1$.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k = |(h-1)/m|+1.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

Equivalent to extrapolating a line drawn between first and last observations.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

Equivalent to extrapolating a line drawn between first and last observations.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$

$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

■ Equivalent to extrapolating a line drawn between first and last observations.

- \blacksquare Mean: meanf(x, h=20)
- Naive: naive(x, h=20) or rwf(x, h=20)
- Seasonal naive: snaive(x, h=20)
- Drift: rwf(x, drift=TRUE, h=20)

- Mean: meanf(x, h=20)
- Naive: naive(x, h=20) or rwf(x, h=20)
- Seasonal naive: snaive(x, h=20)
- Drift: rwf(x, drift=TRUE, h=20)

- Mean: meanf(x, h=20)
- Naive: naive(x, h=20) or rwf(x, h=20)
- Seasonal naive: snaive(x, h=20)
- Drift: rwf(x, drift=TRUE, h=20)

- \blacksquare Mean: meanf(x, h=20)
- Naive: naive(x, h=20) or rwf(x, h=20)
- Seasonal naive: snaive(x, h=20)
- Drift: rwf(x, drift=TRUE, h=20)

Homework 1

Any questions?

Outline

1 Some simple forecasting methods

2 Forecast residuals

3 Evaluating forecast accuracy

Forecasting residuals

Residuals in forecasting: difference between observed value and its forecast based on all previous observations: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed.

Forecasting residuals

Residuals in forecasting: difference between observed value and its forecast based on all previous observations: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed.

Forecasting residuals

Residuals in forecasting: difference between observed value and its forecast based on all previous observations: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed.

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: et are one-step-forecast residuals

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: e_t are one-step-forecast residuals

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: e_t are one-step-forecast residuals

Outline

1 Some simple forecasting methods

2 Forecast residuals

3 Evaluating forecast accuracy

Let y_t denote the tth observation and $\hat{y}_{t|t-1}$ denote its forecast based on all previous data, where $t=1,\ldots,T$. Then the following measures are useful.

$$\begin{aligned} \mathsf{MAE} &= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| \\ \mathsf{MSE} &= T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 \quad \mathsf{RMSE} \quad = \sqrt{T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2} \\ \mathsf{MAPE} &= 100 T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| / |y_t| \end{aligned}$$

- MAE. MSE. RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and v has a natural zero.

Let y_t denote the tth observation and $\hat{y}_{t|t-1}$ denote its forecast based on all previous data, where $t=1,\ldots,T$. Then the following measures are useful.

$$\begin{aligned} \text{MAE} &= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| \\ \text{MSE} &= T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 \quad \text{RMSE} \quad = \sqrt{T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2} \\ \text{MAPE} &= 100 T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| / |y_t| \end{aligned}$$

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.

Let y_t denote the tth observation and $\hat{y}_{t|t-1}$ denote its forecast based on all previous data, where $t=1,\ldots,T$. Then the following measures are useful.

$$\begin{aligned} \mathsf{MAE} &= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| \\ \mathsf{MSE} &= T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 \quad \mathsf{RMSE} \ = \sqrt{T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2} \\ \mathsf{MAPE} &= 100 T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| / |y_t| \end{aligned}$$

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.

Mean Absolute Scaled Error

MASE
$$= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Mean Absolute Scaled Error

MASE
$$= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006)

Mean Absolute Scaled Error

MASE
$$= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

For non-seasonal time series,

$$Q = (T-1)^{-1} \sum_{t=2}^{T} |y_t - y_{t-1}|$$

works well. Then MASE is equivalent to MAE relative to a naive method.

Mean Absolute Scaled Error

MASE
$$= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

For seasonal time series,

$$Q = (T - m)^{-1} \sum_{t=m+1}^{T} |y_t - y_{t-m}|$$

works well. Then MASE is equivalent to MAE relative to a seasonal naive method.

Mean method

```
RMSE MAE MAPE MASE 38.0145 33.7776 8.1700 2.2990
```

Naïve method

RMSE	MAE	MAPE	MASE
70.9065	63.9091	15.8765	4.3498

Seasonal naïve method

RMSE	MAE	MAPE	MASE
12.9685	11.2727	2.7298	0.7673

Mean method

RMSE MAE MAPE MASE 148.2357 142.4185 3.6630 8.6981

Naïve method

RMSE MAE MAPE MASE 62.0285 54.4405 1.3979 3.3249

Drift model

RMSE MAE MAPE MASE 53.6977 45.7274 1.1758 2.7928

Available data

Training set (e.g., 80%)

Test set (e.g., 20%)

- The test set must not be used for *any* aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set

Available data

Training set (e.g., 80%)

Test set (e.g., 20%)

- The test set must not be used for *any* aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set.

```
beer3 <- window(ausbeer, start=1992, end=2005.99)</pre>
beer4 <- window(ausbeer.start=2006)
fit1 <- meanf(beer3.h=20)
fit2 <- rwf(beer3.h=20)
accuracy(fit1,beer4)
accuracy(fit2,beer4)
```

```
beer3 <- window(ausbeer, start=1992, end=2005.99)</pre>
beer4 <- window(ausbeer.start=2006)
fit1 <- meanf(beer3.h=20)
fit2 <- rwf(beer3.h=20)
accuracy(fit1,beer4)
accuracy(fit2,beer4)
In-sample accuracy (one-step forecasts)
accuracy(fit1)
accuracy(fit2)
```

- A model which fits the data well does not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters. (Compare R^2)
- Over-fitting a model to data is as bad as failing to identify the systematic pattern in the data.
- Problems can be overcome by measuring true out-of-sample forecast accuracy. That is, total data divided into "training" set and "test" set. Training set used to estimate parameters. Forecasts are made for test set.
- Accuracy measures computed for errors in test set only.

- A model which fits the data well does not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters. (Compare R^2)
- Over-fitting a model to data is as bad as failing to identify the systematic pattern in the data.
- Problems can be overcome by measuring true out-of-sample forecast accuracy. That is, total data divided into "training" set and "test" set. Training set used to estimate parameters. Forecasts are made for test set.
- Accuracy measures computed for errors in test set only.

- A model which fits the data well does not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters. (Compare R^2)
- Over-fitting a model to data is as bad as failing to identify the systematic pattern in the data.
- Problems can be overcome by measuring true out-of-sample forecast accuracy. That is, total data divided into "training" set and "test" set. Training set used to estimate parameters. Forecasts are made for test set.
- Accuracy measures computed for errors in test set only.

- A model which fits the data well does not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters. (Compare R^2)
- Over-fitting a model to data is as bad as failing to identify the systematic pattern in the data.
- Problems can be overcome by measuring true out-of-sample forecast accuracy. That is, total data divided into "training" set and "test" set. Training set used to estimate parameters. Forecasts are made for test set.
- Accuracy measures computed for errors in test set only.

- A model which fits the data well does not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters. (Compare R^2)
- Over-fitting a model to data is as bad as failing to identify the systematic pattern in the data.
- Problems can be overcome by measuring true out-of-sample forecast accuracy. That is, total data divided into "training" set and "test" set. Training set used to estimate parameters. Forecasts are made for test set.
- Accuracy measures computed for errors in test set only.

Poll: true or false?

- Good forecast methods should have normally distributed residuals.
- A model with small residuals will give good forecasts.
- **The best measure of forecast accuracy is MAPE.**
- If your model doesn't forecast well, you should make it more complicated.
- 5 Always choose the model with the best forecast accuracy as measured on the test set.