STA 3180 Statistical Modelling: Markov Chain Monte Carlo

STA 3180 Statistical Modelling - Lecture Notes on Markov Chain Monte Carlo

Introduction

Markov Chain Monte Carlo (MCMC) is a powerful tool for statistical modelling. It is a type of computational algorithm used to sample from a probability distribution. MCMC algorithms are used to simulate complex systems and to estimate parameters in statistical models. MCMC algorithms are based on the Markov Chain, which is a stochastic process that has the property of memorylessness. This means that the future state of the system depends only on its current state, not on the states that preceded it.

Key Concepts

The key concepts of MCMC include:

- Markov Chains: A stochastic process with the property of memorylessness.
- Monte Carlo Simulation: A technique for estimating the value of a function by randomly sampling from its domain.
- Metropolis-Hastings Algorithm: An MCMC algorithm for sampling from a probability distribution.
- Gibbs Sampling: An MCMC algorithm for sampling from a multivariate probability distribution.

Definitions

- **Markov Chain**: A stochastic process in which the future state of the system depends only on its current state, not on the states that preceded it.
- **Monte Carlo Simulation**: A technique for estimating the value of a function by randomly sampling from its domain.
- **Metropolis-Hastings Algorithm**: An MCMC algorithm for sampling from a probability distribution. It works by proposing a new state for the system and accepting or rejecting it based on a

probability.

- **Gibbs Sampling**: An MCMC algorithm for sampling from a multivariate probability distribution. It works by iteratively sampling from the conditional distributions of each variable given the values of the other variables.

Coding Examples

This code implements the Metropolis-Hastings algorithm. The function takes four arguments: `x`, which is the current state of the system; `pdf`, which is the probability density function of the target distribution; `proposal pdf`, which is the probability density function of the proposal distribution; and `num samples`, which is the number of samples to generate. The function returns a list of samples from the target distribution.

Example 2: Gibbs Sampling

This code implements the Gibbs Sampling algorithm. The function takes three arguments: \hat{x} , which is the current state of the system; \hat{p} df, which is the joint probability density function of the target distribution; and \hat{n} num samples, which is the number of samples to generate. The function returns a list of samples from the target distribution.