Viagem

Prova Fase 2 - OBI2022

Você está viajando pelo arquipélago de Kiri, que é composto por um grande número de ilhas. Não há pontes entre as ilhas, de modo que a única maneira de viajar entre as ilhas é por navio.

Há várias rotas de navios disponíveis. Cada rota conecta duas ilhas distintas A e B e pode ser usada nas duas direções (de A para B ou de B para A). Cada rota tem um certo tempo de percurso (o mesmo nas duas direções) e um custo (o mesmo nas duas direções).

No momento você quer ir da ilha X para outra ilha Y, mas quer gastar no máximo um certo valor com a viagem. Você também está com pressa e gostaria de chegar o mais rapidamente possível ao seu destino.

Dados a lista das rotas disponíveis, com seus custos e tempos de percurso, escreva um programa para determinar se é possível chegar ao destino gastando no máximo o valor previsto para a viagem, e nesse caso qual o menor tempo para chegar ao destino. Note que pode não ser possível chegar ao destino, seja porque não há rota disponível ou porque o valor alocado para a viagem não é suficiente.

Por exemplo, considere o caso mostrado na figura abaixo, em que você está na ilha 1 e quer ir para a ilha 4:

- 1. Se o valor previsto é 10, a resposta é 5 e o caminho ótimo é $1 \to 2 \to 4$. Note que este caminho custa 4+6=10 e demora tempo 4+1=5.
- 2. Se o valor previsto é 7, a resposta é 7 e o caminho ótimo é $1 \to 2 \to 3 \to 4$, que custa 4+2+1=7 e demora tempo 4+2+1=7.
- 3. Se o valor previsto é 3, a resposta é 8 e o caminho ótimo é 1->3->4, usando a aresta entre 1 e 3 que demora tempo 7 e tem custo 2. Note que este caminho custa 2+1=3 e demora tempo 7+1=8.
- 4. Se o valor previsto é 2, a resposta é 9 e o caminho ótimo é 1->3->4, usando a aresta entre 1 e 3 que demora tempo 8 e tem custo 1, note que este caminho custa 1+1=2 e demora tempo 8+1=9.
- 5. Se o valor previsto é 1, não existe caminho que satisfaça as restrições, por isso a resposta é −1.

Entrada

A primeira linha da entrada contém três inteiros V, N e M, respectivamente o valor disponível para a viagem, o número de ilhas e o número de rotas. As ilhas são identificadas por inteiros de 1 a N. Cada uma das M linhas seguintes descreve uma rota e contém quatro inteiros A_i , B_i , T_i e P_i , onde A_i e B_i representam ilhas, T_i o tempo de percurso e P_i o custo de uma passagem para essa rota. A última linha da entrada contém dois inteiros X e Y, o início e o destino da sua viagem.

Saída

Seu programa deve produzir uma única linha na saída, que deve conter um único inteiro, o menor tempo necessário para chegar ao destino, ou o valor -1 caso não seja possível chegar ao destino.

Restrições

- $2 \le N \le 10~000$
- $1 \le M \le 2000$
- $1 \le V \le 200$
- $1 \le A_i, B_i \le N, A_i \ne B_i$, para $1 \le i \le M$.
- Pode haver mais de uma rota entre o mesmo par de ilhas.
- $1 \le T_i \le 100$ 000, para $1 \le i \le M$.
- $0 \le P_i \le 200$, para $1 \le i \le M$.
- $1 \le X, Y \le N$

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 20 pontos, $N \leq 200$ e $P_i = 0$ para $1 \leq i \leq M$.
- Para um conjunto de casos de testes valendo outros 10 pontos, $N \leq 10~000$ e $P_i = 0$ para $1 \leq i \leq M$.
- Para um conjunto de casos de testes valendo outros 30 pontos, $N \leq 100$ e $V \leq 10$.
- Para um conjunto de casos de testes valendo outros 40 pontos, nenhuma restrição adicional.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
10 4 7	5
1 2 4 4	
1 3 7 2	
3 1 8 1	
3 2 2 2	
4 2 1 6	
3 4 1 1	
1 4 6 12	
1 4	

Exemplo de entrada 2	Exemplo de saída 2
3 3 3	-1
1 2 5 2	
3 2 8 2	
1 3 1 4	
1 3	