

Version 1.0.0

Developer: Azadeh Moradinezhad Dizgah

Generated by Doxygen 1.9.2

1 Summary	1
1.0.1 Dependencies	 2
1.0.2 Compilation and Usage	 2
1.0.3 Attribution	 2
1.0.4 License	 2
2 Data Structure Index	3
2.1 Data Structures	 3
3 File Index	3
3.1 File List	 3
4 Data Structure Documentation	4
4.1 Class_Cosmology_Struct Struct Reference	 4
4.1.1 Detailed Description	 4
4.1.2 Field Documentation	 4
4.2 Cosmology Struct Reference	 6
4.2.1 Detailed Description	 6
4.2.2 Field Documentation	 6
4.3 globals Struct Reference	 7
4.3.1 Detailed Description	 8
4.3.2 Field Documentation	 8
4.4 integrand_parameters Struct Reference	 11
4.4.1 Detailed Description	 11
4.4.2 Field Documentation	 12
4.5 integrand_parameters2 Struct Reference	 13
4.5.1 Detailed Description	 14
4.5.2 Field Documentation	 14
4.6 Line Struct Reference	 16
4.6.1 Detailed Description	 16
4.6.2 Field Documentation	 16
5 File Documentation	18
5.1 README.md File Reference	 18
5.2 Global_Structs.h File Reference	 18
5.3 Global_Structs.h	 18
5.4 header.h File Reference	 20
5.4.1 Macro Definition Documentation	 22
5.4.2 Function Documentation	 26
5.5 header.h	 28
5.6 cosmology.c File Reference	 30
5.6.1 Detailed Description	 31
5.6.2 Function Documentation	 32
5.6.3 Variable Documentation	 58

1 Summary 1

5.7 IR_res.c File Reference	 	59
5.7.1 Detailed Description	 	59
5.7.2 Function Documentation	 	60
5.8 line_ingredients.c File Reference	 	73
5.8.1 Detailed Description	 	74
5.8.2 Function Documentation	 	75
5.8.3 Variable Documentation	 	105
5.9 main.c File Reference	 	105
5.9.1 Detailed Description	 	105
5.9.2 Function Documentation	 	105
5.9.3 Variable Documentation	 	108
5.10 ps_halo_1loop.c File Reference	 	108
5.10.1 Detailed Description	 	109
5.10.2 Function Documentation	 	110
5.10.3 Variable Documentation	 	123
5.11 ps_line_hm.c File Reference	 	123
5.11.1 Detailed Description	 	124
5.11.2 Function Documentation	 	124
5.11.3 Variable Documentation	 	140
5.12 ps_line_pt.c File Reference	 	140
5.12.1 Detailed Description	 	141
5.12.2 Function Documentation	 	141
5.12.3 Variable Documentation	 	147
5.13 survey_specs.c File Reference	 	147
5.13.1 Detailed Description	 	148
5.13.2 Function Documentation	 	148
5.13.3 Variable Documentation	 	152
5.14 utilities.c File Reference	 	153
5.14.1 Detailed Description	 	153
5.14.2 Function Documentation	 	154
5.15 wnw_split.c File Reference	 	159
5.15.1 Detailed Description	 	160
5.15.2 Function Documentation	 	160

1 Summary

Author: Azadeh Moradinezhad Dizgah

Welcom to limHaloPT, a numerical package for computing the clustering and shot-noise contributions to the power spectrum of line intensity/temprature fluctuations within halo-model framework. The current version of the code, is limited to real-space, and redshift-space distortions will be included in the next release.

The extended halo model of line intensity power spectrum implemented in limHaloPT, combines the predictions of EFTofLSS for halo power spectrum with the standard halo model to account for the nonlinear evolution of matter

fluctuations and the nonlinear biasing relation between line intensity fluctuations and the underlying dark matter distribution in 2-halo term. Furthermore, the model includes the effect of large bulk velocities (Infrared Resummation) in the 2-halo term. The deviations from Poisson shot noise on large scales are also computed within the halo model.

This package is released together with the following publication, arxiv:2111.XXXXX, where the prediction of the model are tested against new suite of simulated intensity (brightness temprature) maps of CO and [CII] lines. The mesheded fileds from MithraLIMSims will be publically avilable on MithraLIMSims. The code to analyse the simulated maps is an extension of the toolskit used in analysin Hidden-Valley simulations, and is publically avialble on LIM Analysis. As discussed in the manuscript above, the packages to compute the theory predictions and creating the simulated intensity maps can be straightforwardly extended to compute the power spectrum signal of other emission lines (emitted from star-froming galaxies), beside CO and [CII].

The source code of this package is publically availabel on GitHub at limHaloPT.

1.0.1 Dependencies

The limHaloPT package calls various functions from CLASS Boltzman solver, including the matter power spectrum and transfer functions, growth factor etc. Therefore, you need to first download and compile CLASS code, and place the "libclass.a" file in the "CLASS/lib/" folder. Furtehrmore, the loop calculations are performed with direct numerical integration, using routines of CUBA library. Furthermore, the code heavily uses functions of GSL scientific library. Therfore, make sure that the two libraries are correctly linked to limHaloPT by making necassary modifications to the makefile (placed in Source directory) of limHaloPT package.

1.0.2 Compilation and Usage

· To compile, type: make

• To run, type: ./limHaloPT

If you modified the code, you need to first do "make clean" before doing "make". Depending on what quantities you want to calculate, you can modify the main() function in main.c module (as marked in the code). As examples, I have included the calls to two functions to compute the clustering and shot noise contributions.

1.0.3 Attribution

You can use this package freely, provided that in your publication you cite the following paper: Moradinezhad & Nikakhtar & Keating & Castorina: arXiv:2111.XXX. Furthermore, since limHaloPT relies on CLASS Boltzman code, you should also cite at least this paper as required by CLASS developers.

1.0.4 License

Copyright 2021 Azadeh Moradinezhad Dizgah. limHaloPT is free software made available under the MIT License. For details see the LICENSE file.

2 Data Structure Index

2 Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

Class_Cosmology_Struct Structure to store cosmology structure from CLASS code	4
-	•
Cosmology Structure that holds varioud quantities that need to be evaluated for a given choice of cosmological paramteres	6
globals	
A global structure including the values of cosmological parmaeters, 2d interpolator of SFR, and names of various files	7
integrand_parameters A structure passed to the integrators to hold the parameters fixed in the integration	11
integrand_parameters2 Another structure passed to the integrators to hold the parameters fixed in the integration	13
Line	
Structure that holds the Line-related quantities, including the interpolators for first and second moments of the line luminosity and the linear and quadratic luminosity-weighted line biases	16
File Index	

3

3.1 File List

Here is a list of all files with brief descriptions:

Global_Structs.h	18
header.h	20
cosmology.c Documented cosmology module	30
IR_res.c Documented IR_res module	59
line_ingredients.c Documented line_ingredients module	73
main.c Documented main module, including functions to initilize and cleanup the cosmology structure and examples of calls to functions in other modules to compute the line clustering and shot power spectrum	
ps_halo_1loop.c Documented real-space, direct integration computation of 1loop contributions of the halo/galaxy power spectrum See arXiv:2010.14523 for explicit expressions	108

ps_line_hm.c Documented halo-model computation of line power spectrum, including clustering and stochastic contributions beyond Poisson limit	123
ps_line_pt.c	
Documented computation of Poisson shot noise and tree-level line power spectrum in real and redshift-space	140
survey_specs.c	
Documented computation of some survey-related functions	147
utilities.c	
Documented basic utility functions used by other modules of the code	153
wnw_split.c	
Documented wiggle-nowiggle split based on 3d Gaussian filter in linear k, and using the Eisentein-Hu wiggle-no wiggle template 159	

4 Data Structure Documentation

4.1 Class_Cosmology_Struct Struct Reference

Structure to store cosmology structure from CLASS code.

```
#include <Global_Structs.h>
```

Data Fields

- · struct precision pr
- struct background ba
- struct thermo th
- struct perturbs pt
- struct transfers tr
- struct primordial pm
- struct spectra sp
- struct nonlinear nl
- struct lensing le
- struct output op
- ErrorMsg errmsg

4.1.1 Detailed Description

Structure to store cosmology structure from CLASS code.

4.1.2 Field Documentation

- 4.1.2.1 ba struct background ba
- **4.1.2.2 errmsg** ErrorMsg errmsg
- **4.1.2.3 le** struct lensing le
- 4.1.2.4 nl struct nonlinear nl
- **4.1.2.5 op** struct output op
- $\textbf{4.1.2.6} \quad \textbf{pm} \quad \text{struct primordial pm}$
- **4.1.2.7 pr** struct precision pr
- 4.1.2.8 pt struct perturbs pt
- **4.1.2.9 sp** struct spectra sp
- **4.1.2.10 th** struct thermo th
- 4.1.2.11 tr struct transfers tr

4.2 Cosmology Struct Reference

Structure that holds varioud quantities that need to be evaluated for a given choice of cosmological paramteres.

```
#include <Global_Structs.h>
```

Collaboration diagram for Cosmology:

Data Fields

- struct Class Cosmology Struct ccs
- struct Line ** Lines
- · int NLines
- long mode_nu
- double cosmo_pars [6]

4.2.1 Detailed Description

Structure that holds varioud quantities that need to be evaluated for a given choice of cosmological paramteres.

This includes, the Class_Cosmology_Struct (initialized in cosmology.c), and Line Structure (initialized in line_ingredients.c).

4.2.2 Field Documentation

4.2.2.1 CCS struct Class_Cosmology_Struct ccs

4.2.2.2 cosmo_pars double cosmo_pars[6]

```
4.2.2.3 Lines struct Line** Lines
```

```
4.2.2.4 mode_nu long mode_nu
```

4.2.2.5 NLines int NLines

4.3 globals Struct Reference

A global structure including the values of cosmological parmaeters, 2d interpolator of SFR, and names of various files

```
#include <Global_Structs.h>
```

Data Fields

- double H0
- double c
- · double As
- double logAs
- double ns
- double h
- double Omega_cdm
- · double Omega_b
- double Omega_r
- double Omega_lambda
- double Omega_g
- double Omega_nu
- double b1
- double sigFOG0
- long Npars
- double z i
- · double rho
- double mass
- double kp
- double ng
- double volume
- double kf
- double h_m
- double M min
- double M_max
- double z_max
- char project_home [FILENAME_MAX]
- char output_dir [FILENAME_MAX]
- char data_dir [FILENAME_MAX]
- char data_priors [FILENAME_MAX]
- double PS_kmin
- double PS_kmax
- char SFR_filename [FILENAME_MAX]
- char Planck_Fisher_filename [FILENAME_MAX]
- gsl_interp_accel * logM_accel_ptr
- gsl_interp_accel * z_accel_ptr
- gsl_spline2d * logSFR_spline2d_ptr

4.3.1 Detailed Description

A global structure including the values of cosmological parmaeters, 2d interpolator of SFR, and names of various files.

4.3.2 Field Documentation

- **4.3.2.1 As** double As
- **4.3.2.2 b1** double b1
- **4.3.2.3 C** double c
- **4.3.2.4 data_dir** char data_dir[FILENAME_MAX]
- 4.3.2.5 data_priors char data_priors[FILENAME_MAX]
- **4.3.2.6 h** double h
- **4.3.2.7 HO** double HO
- $\textbf{4.3.2.8} \quad \textbf{h_m} \quad \texttt{double h_m}$
- **4.3.2.9 kf** double kf

- **4.3.2.10 kp** double kp
- 4.3.2.11 logAs double logAs
- **4.3.2.12** logM_accel_ptr gsl_interp_accel* logM_accel_ptr
- $\textbf{4.3.2.13} \quad \textbf{logSFR_spline2d_ptr} \quad \texttt{gsl_spline2d*} \ \texttt{logSFR_spline2d_ptr}$
- $\textbf{4.3.2.14} \quad \textbf{M_max} \quad \texttt{double} \ \texttt{M_max}$
- $\textbf{4.3.2.15} \quad \textbf{M_min} \quad \texttt{double} \ \texttt{M_min}$
- 4.3.2.16 mass double mass
- **4.3.2.17 ng** double ng
- 4.3.2.18 Npars long Npars
- **4.3.2.19 ns** double ns
- 4.3.2.20 Omega_b double Omega_b

4.3.2.21	Omega_cdm double Omega_cdm
4.3.2.22	Omega_g double Omega_g
4.3.2.23	Omega_lambda double Omega_lambda
4.3.2.24	Omega_nu double Omega_nu
4.3.2.25	Omega_r double Omega_r
4.3.2.26	<pre>output_dir char output_dir[FILENAME_MAX]</pre>
4.3.2.27	Planck_Fisher_filename char Planck_Fisher_filename[FILENAME_MAX]
4.3.2.28	<pre>project_home char project_home[FILENAME_MAX]</pre>
4.3.2.29	PS_kmax double PS_kmax
4.3.2.30	PS_kmin double PS_kmin
4.3.2.31	<pre>rho double rho</pre>

```
4.3.2.32 SFR_filename char SFR_filename[FILENAME_MAX]
```

```
4.3.2.33 sigFOG0 double sigFOG0
```

```
4.3.2.34 volume double volume
```

```
\textbf{4.3.2.35} \quad \textbf{z\_accel\_ptr} \quad \texttt{gsl\_interp\_accel*} \ \texttt{z\_accel\_ptr}
```

```
\textbf{4.3.2.36} \quad \textbf{z\_i} \quad \texttt{double z\_i}
```

```
4.3.2.37 z_max double z_max
```

4.4 integrand_parameters Struct Reference

A structure passed to the integrators to hold the parameters fixed in the integration.

```
#include <header.h>
```

Data Fields

- double p1
- double p2
- double p3
- double p4
- double p5
- double p6
- double p7
- double p8
- double p9
- double p10
- double p11long p12
- long p13

4.4.1 Detailed Description

A structure passed to the integrators to hold the parameters fixed in the integration.

4.4.2 Field Documentation

4.4.2.1 p1 double p1

4.4.2.2 p10 double p10

4.4.2.3 p11 double p11

4.4.2.4 p12 long p12

4.4.2.5 p13 long p13

4.4.2.6 p2 double p2

4.4.2.7 p3 double p3

4.4.2.8 p4 double p4

4.4.2.9 p5 double p5

4.4.2.10 p6 double p6

```
4.4.2.11 p7 double p7
```

4.4.2.13 p9 double p9

4.5 integrand_parameters2 Struct Reference

Another structure passed to the integrators to hold the parameters fixed in the integration.

```
#include <header.h>
```

Collaboration diagram for integrand_parameters2:

Data Fields

- struct Cosmology * p1
- struct Cosmology * p2
- struct Cosmology * p3
- double p4
- double p5
- double p6
- double p7
- double p8
- double p9

- double p10
- double p11
- double p12
- long p13
- long p14
- long p15
- long p16
- long p17
- long p18
- int p19
- double * p20
- size_t p22

4.5.1 Detailed Description

Another structure passed to the integrators to hold the parameters fixed in the integration.

4.5.2 Field Documentation

```
4.5.2.1 p1 struct Cosmology* p1
```

4.5.2.2 p10 double p10

4.5.2.3 p11 double p11

4.5.2.4 p12 double p12

4.5.2.5 p13 long p13

4.5.2.6 p14 long p14

4.5.2.7 p15 long p15

4.5.2.8 p16 long p16

4.5.2.9 p17 long p17

4.5.2.10 p18 long p18

4.5.2.11 p19 int p19

4.5.2.12 p2 struct Cosmology* p2

4.5.2.13 p20 double* p20

4.5.2.14 p22 size_t p22

4.5.2.15 p3 struct Cosmology* p3

4.5.2.16 p4 double p4

4.5.2.17 p5 double p5

```
4.5.2.18 p6 double p6
4.5.2.19 p7 double p7
4.5.2.20 p8 double p8
4.5.2.21 p9 double p9
```

4.6 Line Struct Reference

Structure that holds the Line-related quantities, including the interpolators for first and second moments of the line luminosity and the linear and quadratic luminosity-weighted line biases.

```
#include <Global_Structs.h>
```

Data Fields

- long LineType
- · int initialized
- size_t npointsInterp
- double line_freq
- gsl_interp_accel * mom1_accel_ptr
- gsl_spline * mom1_spline_ptr
- gsl_interp_accel * mom2_accel_ptr
- gsl_spline * mom2_spline_ptr
- gsl_interp_accel * b1_LW_accel_ptr
- gsl_spline * b1_LW_spline_ptr
- gsl_interp_accel * b2_LW_accel_ptr
- gsl_spline * b2_LW_spline_ptr

4.6.1 Detailed Description

Structure that holds the Line-related quantities, including the interpolators for first and second moments of the line luminosity and the linear and quadratic luminosity-weighted line biases.

4.6.2 Field Documentation

4.6 Line Struct Reference 17

```
4.6.2.1 b1_LW_accel_ptr gsl_interp_accel* b1_LW_accel_ptr
```

```
4.6.2.2 b1_LW_spline_ptr gsl_spline* b1_LW_spline_ptr
```

```
4.6.2.4 b2_LW_spline_ptr gsl_spline* b2_LW_spline_ptr
```

4.6.2.5 initialized int initialized

4.6.2.6 line_freq double line_freq

4.6.2.7 LineType long LineType

 $\textbf{4.6.2.8} \quad \textbf{mom1_accel_ptr} \quad \texttt{gsl_interp_accel*} \; \texttt{mom1_accel_ptr}$

4.6.2.9 mom1_spline_ptr gsl_spline* mom1_spline_ptr

4.6.2.10 mom2_accel_ptr gsl_interp_accel* mom2_accel_ptr

 $\textbf{4.6.2.11} \quad \textbf{mom2_spline_ptr} \quad \texttt{gsl_spline*} \ \texttt{mom2_spline_ptr}$

$\textbf{4.6.2.12} \quad \textbf{npointsInterp} \quad \texttt{size_t npointsInterp}$

5 File Documentation

5.1 README.md File Reference

5.2 Global_Structs.h File Reference

This graph shows which files directly or indirectly include this file:

Data Structures

• struct Class_Cosmology_Struct

Structure to store cosmology structure from CLASS code.

struct Cosmology

Structure that holds varioud quantities that need to be evaluated for a given choice of cosmological paramteres.

struct Line

Structure that holds the Line-related quantities, including the interpolators for first and second moments of the line luminosity and the linear and quadratic luminosity-weighted line biases.

· struct globals

A global structure including the values of cosmological parmaeters, 2d interpolator of SFR, and names of various files.

5.3 Global_Structs.h

Go to the documentation of this file.

```
#ifndef GLOBALSTRUCTS_H_
6 #define GLOBALSTRUCTS_H_
12 struct Class_Cosmology_Struct{
       struct precision
                                                              /\star for precision parameters \star/
14
                                             pr:
15
                                                              /* for cosmological background */
       struct background
                                             ba:
                                                              /* for thermodynamics */
16
       struct thermo
                                             th;
17
       struct perturbs
                                                              /* for source functions */
                                             pt;
18
       struct transfers
                                                              /\star for transfer functions \star/
19
       struct\ primordial
                                             pm;
                                                              /* for primordial spectra */
                                                              /* for output spectra */
20
       struct spectra
                                             sp;
       struct nonlinear
                                                              /* for non-linear spectra */
21
                                             nl:
       struct lensing
22
                                                              /* for lensed spectra */
                                             le:
23
                                                              /* for output files */
       struct output
       ErrorMsg errmsg;
                                             /* for error messages */
25 };
26
27
33 struct Cosmology
34 {
35
36
        struct Class_Cosmology_Struct
37
        struct Line
                                           **Lines;
38
        int
                                           NLines;
39
        long
                                           mode_nu;
```

5.3 Global Structs.h

```
42
        double cosmo_pars[6];
43 };
44
4.5
46
51 struct Line
52
53
         long
                                   LineType;
54
         int
                                   initialized;
55
         size_t
                                   npointsInterp;
56
         double
                                   line_freq;
58
59
         gsl_interp_accel
                                    *mom1_accel_ptr;
60
         gsl_spline
                                    *mom1_spline_ptr;
61
         gsl_interp_accel
                                    *mom2_accel_ptr;
                                    *mom2_spline_ptr;
         gsl_spline
62
63
64
         gsl_interp_accel
                                   *b1_LW_accel_ptr;
65
         gsl_spline
                                    *b1_LW_spline_ptr;
66
         gsl_interp_accel
                                    *b2_LW_accel_ptr;
67
         gsl_spline
                                   *b2_LW_spline_ptr;
68
69 };
70
71
75 struct globals
76
77
       double HO:
78
       double c:
79
80
       double As;
81
       double logAs;
82
       double ns;
83
       double h;
84
       double Omega_cdm;
       double Omega_b;
85
86
       double Omega_r;
87
       double Omega_lambda;
88
       double Omega_g;
       double Omega_nu;
89
90
91
       double b1;
       double sigFOG0;
92
93
94
       long Npars;
9.5
       double z_i;
96
       double rho;
97
       double mass:
98
       double kp;
99
       double ng;
100
        double volume;
101
        double kf;
102
103
        double h m;
104
105
        double M_min;
106
        double M_max;
107
        double z_max;
108
        char project_home[FILENAME_MAX];
char output_dir[FILENAME_MAX];
109
110
111
        char data_dir[FILENAME_MAX];
112
        char data_priors[FILENAME_MAX];
113
114
        // Min and max values
115
116
                             PS_kmin;
        double
117
        double
                              PS_kmax;
118
        // File names
119
120
        char
                         SFR_filename[FILENAME_MAX];
                         Planck_Fisher_filename[FILENAME_MAX];
121
        char
122
123
                              *logM_accel_ptr;
        gsl_interp_accel
124
        gsl_interp_accel
                              *z_accel_ptr;
125
        gsl_spline2d
                              *logSFR_spline2d_ptr;
126 };
127
128 #endif
129
130
131
132
133
134
```

5.4 header.h File Reference

```
#include <time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <string.h>
#include <omp.h>
#include <mpi.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <qsl/qsl_interp2d.h>
#include <gsl/gsl_spline2d.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_sf_legendre.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_monte.h>
#include <gsl/gsl_monte_vegas.h>
#include <gsl/gsl_odeiv2.h>
#include <gsl/gsl_roots.h>
#include <gsl/gsl_sf_expint.h>
#include <ctype.h>
#include "../Class/include/class.h"
#include "cuba.h"
#include "Global_Structs.h"
#include "cosmology.h"
#include "utilities.h"
#include "survey_specs.h"
#include "primordial.h"
#include "line_ingredients.h"
#include "wnw_split.h"
#include "IR res.h"
#include "ps_halo_1loop.h"
#include "ps_line_pt.h"
#include "ps_line_hm.h"
#include "cubature.h"
Include dependency graph for header.h:
```

This graph shows which files directly or indirectly include this file:

Data Structures

· struct integrand_parameters

A structure passed to the integrators to hold the parameters fixed in the integration.

• struct integrand_parameters2

Another structure passed to the integrators to hold the parameters fixed in the integration.

Macros

- #define _GNU_SOURCE
- #define PSC 101L

For solving ODER.

- #define ST 102L
- #define TR 103L
- #define GROWTH 104L
- #define DERGROWTH 105L
- #define NONLINEAR 106L
- #define LINEAR 107L
- #define GAUSSIAN 114L
- #define NONGAUSSIAN 115L
- #define INIT 116L
- #define LOCAL 117L
- #define EQUILATERAL 118L
- #define ORTHOGONAL 119L
- #define QSF 120L
- #define HS 121L
- #define NGLOOP 122L
- #define derNGLOOP 123L
- #define QUADRATIC 124L
- #define TIDE 125L
- #define GAMMA 126L
- #define LPOWER 127L
- #define NLPOWER 128L
- #define TRANS 129L
- #define DER 130L
- #define CO10 131L
- #define CO21 132L
- #define CO32 133L
- #define CO43 134L
- #define CO54 135L
- #define CO65 136L
- #define CII 137L
- #define MATTER 138L
- #define LINEMATTER 139L

- #define LINE 140L
- #define DST 141L
- #define GFILTER 142L
- #define BSPLINE 143L
- #define TREE 144L#define LOOP 145L
- #define WIR 146L
- #define NOIR 147L
- #define HALO 148L
- #define PS_KMIN 1.0e-7
- #define PS KMAX 1.0e4
- #define CLEANUP 1
- #define DO_NOT_EVALUATE -1.0
- #define MAXL 2000

Functions

- void initialize ()
 - List of limHaloPT header files.
- void cleanup ()

5.4.1 Macro Definition Documentation

- **5.4.1.1 _GNU_SOURCE** #define _GNU_SOURCE
- **5.4.1.2 BSPLINE** #define BSPLINE 143L
- **5.4.1.3 CII** #define CII 137L
- **5.4.1.4 CLEANUP** #define CLEANUP 1
- **5.4.1.5 CO10** #define CO10 131L
- **5.4.1.6 CO21** #define CO21 132L

- **5.4.1.7 CO32** #define CO32 133L
- **5.4.1.8 CO43** #define CO43 134L
- **5.4.1.9 CO54** #define CO54 135L
- **5.4.1.10 CO65** #define CO65 136L
- **5.4.1.11 DER** #define DER 130L
- **5.4.1.12 DERGROWTH** #define DERGROWTH 105L
- **5.4.1.13 derNGLOOP** #define derNGLOOP 123L
- **5.4.1.14 DO_NOT_EVALUATE** #define DO_NOT_EVALUATE -1.0
- **5.4.1.15 DST** #define DST 141L
- **5.4.1.16 EQUILATERAL** #define EQUILATERAL 118L
- **5.4.1.17 GAMMA** #define GAMMA 126L

5.4.1.28 LOOP #define LOOP 145L

5.4.1.18	GAUSSIAN #define GAUSSIAN 114L
5.4.1.19	GFILTER #define GFILTER 142L
5.4.1.20	GROWTH #define GROWTH 104L
5.4.1.21	HALO #define HALO 148L
5.4.1.22	HS #define HS 121L
5.4.1.23	<pre>INIT #define INIT 116L</pre>
5.4.1.24	LINE #define LINE 140L
5.4.1.25	LINEAR #define LINEAR 107L
5.4.1.26	LINEMATTER #define LINEMATTER 139L
5.4.1.27	LOCAL #define LOCAL 1171

- **5.4.1.29 LPOWER** #define LPOWER 127L
- **5.4.1.30 MATTER** #define MATTER 138L
- **5.4.1.31 MAXL** #define MAXL 2000
- **5.4.1.32 NGLOOP** #define NGLOOP 122L
- 5.4.1.33 NLPOWER #define NLPOWER 128L
- **5.4.1.34 NOIR** #define NOIR 147L
- 5.4.1.35 NONGAUSSIAN #define NONGAUSSIAN 115L
- **5.4.1.36 NONLINEAR** #define NONLINEAR 106L
- **5.4.1.37 ORTHOGONAL** #define ORTHOGONAL 119L
- **5.4.1.38 PS_KMAX** #define PS_KMAX 1.0e4
- **5.4.1.39 PS_KMIN** #define PS_KMIN 1.0e-7

```
5.4.1.40 PSC #define PSC 101L
For solving ODER.
5.4.1.41 QSF #define QSF 120L
5.4.1.42 QUADRATIC #define QUADRATIC 124L
5.4.1.43 ST #define ST 102L
5.4.1.44 TIDE #define TIDE 125L
5.4.1.45 TR #define TR 103L
5.4.1.46 TRANS #define TRANS 129L
5.4.1.47 TREE #define TREE 144L
5.4.1.48 WIR #define WIR 146L
5.4.2 Function Documentation
5.4.2.1 cleanup() void cleanup ( )
```

5.4.2.2 initialize() void initialize ()

List of limHaloPT header files.

Function declarations of main.c module

List of limHaloPT header files.

The global structure "gb" have several elements to hold the paths to project source directory, input, and output folders, and values of cosmological parmaeters.

Returns

void

Change the path to the parent directory

In units of km/s

omega_b = Omega_b h^2 ;

3.0665Here is the call graph for this function:

Here is the caller graph for this function:

5.5 header.h

Go to the documentation of this file.

```
6 #ifndef HEADER_H_
7 #define HEADER H
9 #define GNU SOURCE
10
11 #include <time.h>
12 #include <unistd.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <math.h>
16 #include <float.h>
17 #include <string.h>
18 #include <omp.h>
19 #include <mpi.h>
20 #include <gsl/gsl_errno.h>
21 #include <gsl/gsl_spline.h>
22 #include <gsl/gsl_interp2d.h>
23 #include <gsl/gsl_spline2d.h>
24 #include <gsl/gsl_sf_bessel.h>
25 #include <gsl/gsl_sf_legendre.h>
26 #include <gsl/gsl_integration.h>
27 #include <gsl/gsl_matrix.h>
28 #include <gsl/gsl linalg.h>
29 #include <gsl/gsl_blas.h>
30 #include <gsl/gsl_monte.h>
31 #include <gsl/gsl_monte_vegas.h>
32 #include <gsl/gsl_odeiv2.h>
                                 \ensuremath{//} For finding the root of algebraic equation
33 #include <gsl/gsl_roots.h>
34 #include <gsl/gsl_sf_expint.h>
35 #include <ctype.h>
36 #include "../Class/include/class.h"
37 #include "cuba.h"
38
39
40 #define PSC
41 #define ST
42 #define TR
44 #define GROWTH
                       104L
                       105L
45 #define DERGROWTH
46
47 #define NONLINEAR
48 #define LINEAR
49
50 #define GAUSSIAN
                           114L
51 #define NONGAUSSIAN 115L
52
53 #define INIT
54 #define LOCAL
55 #define EQUILATERAL 118L
56 #define ORTHOGONAL 119L
57 #define OSF
58 #define HS
59 #define NGLOOP
60 #define derNGLOOP
                       124L
125L
62 #define QUADRATIC
63 #define TIDE
64 #define GAMMA
                       126L
65
66 #define LPOWER
67 #define NLPOWER
68 #define TRANS
                       129L
69 #define DER
70
71 #define CO10
                       131L
72 #define CO21
                       132L
73 #define CO32
                       133L
74 #define CO43
75 #define CO54
                       135L
76 #define CO65
                       136T
77 #define CII
                       137L
78
79 #define MATTER
80 #define LINEMATTER 139L
81 #define LINE
                       140L
82
83 #define DST
                       141T
84 #define GFILTER
                       142L
85 #define BSPLINE
                       143L
```

5.5 header.h 29

```
88 #define TREE
89 #define LOOP
                            145L
90 #define WIR
                            146L
91 #define NOIR
                           147L
92
93 #define HALO
94
95
96 #define PS_KMIN
                             1.0e-7
97 #define PS_KMAX
                               1.0e4
98
99 #define CLEANUP
100
101 #define DO_NOT_EVALUATE -1.0
102
103 #define MAXL 2000
104
108 #include "Global_Structs.h"
109 #include "cosmology.h"
110 #include "utilities.h"
111 #include "survey_specs.h"
111 #include Survey_cp:11.
112 #include "primordial.h"
113 #include "line_ingredients.h"
114 #include "wnw_split.h"
115 #include "IR_res.h"
116 #include "ps_halo_lloop.h"
117 #include "ps_line_pt.h"
118 #include "ps_line_hm.h"
119 #include "cubature.h"
120
121
125 void initialize();
126 void cleanup();
127
128
132 struct integrand_parameters
133 {
134
         double p1;
135
         double p2;
136
         double p3;
137
         double p4;
         double p5;
138
139
         double p6;
140
         double p7;
141
         double p8;
142
         double p9;
143
         double p10;
         double p11;
144
145
         long p12;
long p13;
146
147 };
148
152 \ \text{struct integrand\_parameters2}
153 {
154
155
         struct Cosmology *pl;
156
         struct Cosmology *p2;
157
         struct Cosmology *p3;
158
         double p4;
159
160
         double p5;
161
         double p6;
162
         double p7;
163
         double p8;
164
         double p9;
165
         double p10;
166
         double p11;
167
         double p12;
168
169
         long p13;
170
         long p14;
171
         long p15;
172
         long p16;
173
         long p17;
174
         long p18;
175
176
         int p19;
177
178
         double *p20;
179
         size_t p22;
180 };
181
182
183 #endif
184
185
```

5.6 cosmology.c File Reference

Documented cosmology module.

#include "header.h"
Include dependency graph for cosmology.c:

Functions

• int Cosmology_init (struct Cosmology *Cx, double pk_kmax, double pk_zmax, int nlines, int *line_types, size t npoints interp, double M min, long mode mf)

Allocate memory and initialize the cosmology structure, which includes the CLASS cosmology structure and line structure.

int Cosmology_free (struct Cosmology *Cx)

Free the memory allocated to cosmology structure.

int CL_Cosmology_initilize (struct Cosmology *Cx, double pk_kmax, double pk_zmax)

Allocate memory and initialize the CLASS cosmology structure.

int CL_Cosmology_free (struct Cosmology *Cx)

Free the memory allocated to CLASS cosmology structure.

double Pk dlnPk (struct Cosmology *Cx, double k, double z, int mode)

Compute the matter power spectra (in unit of $(Mpc)^3$) as a function of k (in unit of 1/Mpc) and z, Setting the switch "mode", to LINEAR or NONLINEAR, we can compute the linear or nonlinear spectrum respectively.

double Pk_dlnPk_HV (struct Cosmology *Cx, double k, double z, int mode)

Read in the linear power spectrum, used to set the initial conditions of Hidden-Valley sims.

double Mk_dlnMk (struct Cosmology *Cx, double k, double z, int mode)

Compute the transfer function for different species depending on the switch "mode", which can be set to cdm, baryons or total matter transfer function.

• double sig_sq_integrand (double x, void *par)

The integrand function passed to qags integrator to compute the variance of the matter density.

double sig_sq (struct Cosmology *Cx, double z, double R)

Compute variance of smoothed matter density fluctuations.

double der Insig sq (struct Cosmology *Cx, double z, double R)

Compute the logarithmic derivative of the variance of smoothed matter density fluctuations w.r.t.

double sigma0_sq_integrand (double x, void *par)

The integrand function passed to gags integrator to compute the variance of the unsmoothed matter density.

double sigma0_sq (struct Cosmology *Cx, double z, double kmax)

Compute variance of unsmoothed matter density fluctuations.

• double growth_D (struct Cosmology *Cx, double z)

Compute the growth factor D(k,z) which is scale-indep if mode_nu = NUM, and scale-dep if mode_nu = MASS The scale-dep growth is calculated by taking the ratio of the transfer function at redshift z and zero.

double growth f (struct Cosmology *Cx, double z)

Compute the scale-dependant linear growth rate f(k,z) (i.e the velocity growth factor) by taking numerical derivative of the scale_dep_growth_D() function $f(k,a) = d \ln D(k,a)/d \ln a$.

• double Hubble (struct Cosmology *Cx, double z)

Compute the the hubble rate (exactly the quantity defined by CLASS as index_bg_H in the background module).

double angular distance (struct Cosmology *Cx, double z)

Compute the angular diameter distance (exactly the quantity defined by CLASS as ba.index_bg_ang_distance in the background module).

double comoving_radial_distance (struct Cosmology *Cx, double z)

Compute the comoving radial distance

double rhoc (struct Cosmology *Cx, double z)

Compute the critical density in unit of M_sun/Mpc^3 .

double R_scale (struct Cosmology *Cx, double M)

Compute the Lagrangian radius of halos in unit of $1/Mpc^3$, fixing z=0.

double R vir (struct Cosmology *Cx, double M)

Compute the comoving virial radius of halos in unit of $1/\text{Mpc}^3$, which is defined as the radius at which the average density within this radius is Delta X rho_c.

• double concentration_cdm (double M, double z)

Compute the cold dark matter concentration-mass relation.

• double nfw_profile (struct Cosmology *Cx, double k, double M, double z)

Compute the NFW halo profile in Fourier space, given by Eq.

• double window_rth (double k, double R)

The following functions compute several window functions and their derivatives with respect to the smoothing scale.

- double derR_window_rth (double k, double R)
- double window kth (double k, double R)
- double window_g (double k, double R)
- double derR_logwindow_g (double k, double R)

Variables

· struct globals gb

5.6.1 Detailed Description

Documented cosmology module.

Azadeh Moradinezhad Dizgah, November 4th 2021

The first routine of this module initalizes the Cosmology structure, which is the main building block of this entire code. This structure includes two sub-structures: the CLASS cosmology structure and line structure. Once the CLASS cosmology is initialized, various useful functions can be directly called from CLASS, example to compute matter power spectrum and transfer function, angular and comoving radii, growth factor and growth rate, variance of matter fluctuations and its derivative. Lastly, the module also includes various window functions and their derivatives.

In summary, the following functions can be called from other modules:

- 1. Cosmology_init() allocates memory to and initializes cosmology structure
- 2. Cosmology_free() frees the memory allocated to cosmology structure
- 3. CL Cosmology initilize() initializes the class cosmology structure
- 4. CL_Cosmology_free() frees the class cosmology structure
- 5. PS() computes matter power spectrum calling class function

- 6. Transfer() computes matter transfer function calling class function
- 7. growth D() computes the scale-dep growth factor
- 8. growth f() computes the scale-dep growth rate dlnD(k,a)/dlna
- 9. scale indep growth D() computes the scale-indep growth factor using directly CLASS functions
- 10. scale_indep_growth_f() computes the scale-indep growth rate dlnD(k,a)/dlna using directly CLASS functions
- 11. Hubble() computes hubbble parameter using directly CLASS functions
- 12. angular_distance() computes angular diamtere distance using directly CLASS functions
- 13. comoving_radial_distance() computes radial distance using directly CLASS functions
- 14. sig sq() computes variance of smoothed matter fluctuations
- 15. der_sig_sq() computes derivative of the variance of smoothed matter fluctuations w.r.t. smoothing scale
- 16. sigma0_sq() computes variance of unsmoothed matter fluctuations
- 17. rhoc() computes the critical density of the universe
- 18. R_scale() computes the size of a spherical halo corresponding to a given mass at z=0
- 19. R_scale_wrong() computes the size of a spherical halo corresponding to a given mass at a given redshift
- 20. window rth() computes top-hat filter in real space
- 21. window_g() computes Gaussian window
- 22. window_kth() computes top-hat filter in Fourier space
- 23. derR window rth() computes derivative of top-hat filter in real space w.r.t. smoothing scale
- 24. derR_logwindow_g() computes derivative of top-hat filter in Fourier space w.r.t. smoothing scale

5.6.2 Function Documentation

```
5.6.2.1 angular_distance() double angular_distance ( struct Cosmology * Cx, double z)
```

Compute the angular diameter distance (exactly the quantity defined by CLASS as ba.index_bg_ang_distance in the background module).

luminosity distance $d_L = (1+z) d_M$ angular diameter distance $d_A = d_M/(1+z)$ where d_M is the transverse comoving distance, which is equal to comoving distance for flat cosmology and has a dependance on curvature for non-flat cosmologies, as described in lines 849 - 851

Parameters

Parameters

Z	Input←
	: red-
	shift to
	com-
	pute
	the
	spec-
	trum

Returns

D_A

junkHere is the caller graph for this function:

5.6.2.2 CL_Cosmology_free() int CL_Cosmology_free ($struct\ Cosmology\ *\ Cx\)$

Free the memory allocated to CLASS cosmology structure.

Parameters

Returns

the error status

Here is the caller graph for this function:


```
5.6.2.3 CL_Cosmology_initilize() int CL_Cosmology_initilize ( struct Cosmology * Cx, double pk\_kmax, double pk\_zmax)
```

Allocate memory and initialize the CLASS cosmology structure.

Parameters

Cx	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
pk_kmax	Input←
	: kmax
	for
	com-
	puta-
	tion of
	matter
	power
	spec-
	trum
	by
	CLASS
pk_zmax	Input←
	: zmax
	for
	com-
	puta-
	tion of
	matter
	power
	spec-
	trum
	by
	CLASS

the error status

h

Omega_b

Omega_b

pivot scale in unit of 1/MpcHere is the caller graph for this function:


```
5.6.2.4 comoving_radial_distance() double comoving_radial_distance ( struct Cosmology * Cx, double z )
```

Compute the comoving radial distance

Parameters

Returns

the double value D_c

junk

For a flat cosmology, comoving distance is equal to conformal distance. This pieace of code is how the comving distance for flat and nonflat cases are computed. Chnage the expression of D_A below According to this if considering non-flat cosmology.

Here is the caller graph for this function:


```
5.6.2.5 concentration_cdm() double concentration_cdm ( double \it M, double \it z )
```

Compute the cold dark matter concentration-mass relation.

Parameters

М	Input←
	: halo
	mass
	in unit
	of
	solar
	mass
Z	Input←
	: red-
	shift of
	inter-
	est

Returns

the cdm concentration


```
5.6.2.6 Cosmology_free() int Cosmology_free ( struct Cosmology * Cx )
```

Free the memory allocated to cosmology structure.

Parameters

Returns

the error status

Here is the call graph for this function:

Allocate memory and initialize the cosmology structure, which includes the CLASS cosmology structure and line strucrure.

Parameters	
Cx	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
pk_kmax	Input←
	: kmax
	for
	com-
	puta-
	tion of
	matter
	power
	spec-
	trum
	by
	CLASS
pk_zmax	Input←
. –	: zmax
	for
	com-
	puta-
	tion of
	matter
	power
	spec-
	trum
	by
	CLASS
nlines	Input←
	: num-
	ber of
	lines
	whose
	prop-
	erties
	we
	want
	to
	com-
	pute

line_type Inpute← : name of the line to com- pute. It can be set to CII, CO10, CO21,
of the line to compute. It can be set to CII, CO10,
line to compute. It can be set to CII, CO10,
compute. It can be set to CII, CO10,
pute. It can be set to CII, CO10,
It can be set to CII, CO10,
be set to CII, CO10,
to CII, CO10,
CO10,
CON
0021,
CO32,
CO43,
CO54,
CO65
npoints_interp Input←
: num-
ber of
points
in red-
shift
for in-
terpo-
lation
of line
prop-
erties
<i>M_min</i> Input←
: min-
imum
halo
maaa
mass
for
for

mode_mf	Inpute←
	: theo-
	retical
	model
	of halo
	mass
	func-
	tion to
	use. It
	can be
	set to
	sheth-
	\leftarrow
	Tormen
	(ST),
	Tinker
	(TR) or
	Press-
	\leftarrow
	Schecter
	(PSC)

Returns

an integer if succeeded

Here is the call graph for this function:


```
5.6.2.8 der_Insig_sq() double der_Insig_sq ( struct \  \, Cosmology * \mathit{Cx}, \\ double \  \, z, \\ double \  \, R \ )
```

Compute the logarithmic derivative of the variance of smoothed matter density fluctuations w.r.t.

smoothing scale

Parameters

		ı
Cx	Input←	
	:	
	pointer	
	to	
	Cosmolo	gy
	struc-	
	ture	
Z	Input←	
	: red-	
	shift to	
	com-	
	pute	
	the	
	spec-	
	trum	
R	Input←	
	:	
	smooth-	
	ing	
	scale	
	in unit	
	of Mpc	

Returns

the log-derivative of variance


```
5.6.2.9 derR\_logwindow\_g() double derR\_logwindow\_g ( double k, double R)
```

```
5.6.2.10 derR_window_rth() double derR_window_rth ( double k, double R)
```

```
5.6.2.11 growth_D() double growth_D (  struct \  \, Cosmology * \mathit{Cx}, \\  double \ \mathit{z} \ )
```

Compute the growth factor D(k,z) which is scale-indep if mode_nu = NUM, and scale-dep if mode_nu = MASS The scale-dep growth is calculated by taking the ratio of the transfer function at redshift z and zero.

The scale-indep growth is computed by CLASS directly The switch "mode" can be set to CDM, BA, TOT to return the growth factor of cdm, baryon and total matter.

Parameters

Cx	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
k	Input←
	:
	wavenumb-
	ber in
	unit of
	1/Mpc
Z	Input←
	: red-
	shift to
	com-
	pute
	the
	spec-
	trum

Returns

the growth factor, can be k-dep (ex. with nonzero neutrino mass)

Compute the scale-dependant linear growth rate f(k,z) (i.e the velocity growth factor) by taking numerical derivative of the scale_dep_growth_D() function $f(k,a) = d \ln D(k,a)/d \ln a$.

The switch "mode" can be set to CDM, BA, TOT to return the growth factor of the corresponding matter component.

This is a useful function when constraining physics that induces scale-dependant growth such as massive neutrinos.

Parameters

raiaiii	CICIS
Cx	Input⇔
	:
	pointer
	to
	Cosmology
	struc-
	ture
k	Input←
	:
	wavenumb-
	ber in
	unit of
	1/Mpc
Z	Input←
	: red-
	shift to
	com-
	pute
	the
	spec-
	trum

Returns

the growth rate, can be k-dep (ex. with nonzero neutrino mass)


```
5.6.2.13 Hubble() double Hubble (  \text{struct Cosmology * } \mathit{Cx}, \\ \text{double } \mathit{z} \ )
```

Compute the the hubble rate (exactly the quantity defined by CLASS as index_bg_H in the background module).

This function is to a good approximation equal to Hubble(a,Cx) = gb.h*sqrt(Eofa(a,Cx))

Parameters

Cx	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
Z	Input←
	: red-
	shift to
	com-
	pute
	the
	spec-
	trum

Returns

the hubble parameter


```
5.6.2.14 Mk_dlnMk() double Mk_dlnMk ( struct Cosmology * Cx, double k, double z, int mode)
```

Compute the transfer function for different species depending on the switch "mode", which can be set to cdm, baryons or total matter transfer function.

CLASS function spectra_tk_at_k_and_z() routine evaluates the matter transfer functions at a given value of k and z by interpolating in a table of all $T_i(k,z)$'s computed at this z by spectra_tk_at_z() (when kmin <= k <= kmax). Returns an error when k<kmin or k > kmax.

Parameter	'S
Сх	Input↔ :
	-
	pointer
	to
	Cosmology
	struc-
1.	ture
k	Input←
	:
	wavenumb-
	ber in
	unit of
	1/Mpc
Z	Input←
	: red-
	shift to
	com-
	pute
	the
	spec-
	trum
mode	Input←
	:
	switch
	to de- cide
	for
	which
	species
	we
	want to get
	the
	trans-
	fer
	func-
	tion
	11011

the transfer function

Here is the caller graph for this function:


```
5.6.2.15 nfw_profile() double nfw_profile ( struct Cosmology * Cx, double k, double M, double z)
```

Compute the NFW halo profile in Fourier space, given by Eq.

3.7 of 2004.09515 The profile is normalized to unity at k->0, (see fig 3 of 1003.4740)

the nfw profile

rho_s is computed by enforcing int dr r^2 u(r) = 1Here is the call graph for this function:

Compute the matter power spectra (in unit of $(Mpc)^3$) as a function of k (in unit of 1/Mpc) and z, Setting the switch "mode", to LINEAR or NONLINEAR, we can compute the linear or nonlinear spectrum respectively.

The CLASS spectra_pk_at_k_and_z() and spectra_pk_nl_at_k_and_z, evaluate the matter power spectrum at a given value of k and z by interpolating in a table of all P(k)'s computed at this z by spectra_pk_at_z() (when kmin <= k <= kmax), or eventually by using directly the primordial spectrum (when 0 <= k < kmin): the latter case is an approximation, valid when kmin << comoving Hubble scale today. Returns zero when k=0. Returns an error when k<0 or k > kmax.

Cx	Input↩
	:
	pointer
	to
	Cosmology
	struc-
	ture
k	Input←
	:
	wavenumb-
	ber in
	unit of
	1/Mpc
Z	Input←
	: red-
	shift to
	com-
	pute
	the
	spec-
	trum

modes	Input←
modoo	·
	switch
	to de-
	cide
	whether
	to
	com-
	pute
	linear
	or non-
	linear
	spec-
	trum It
	can be
	set to
	sheth-
	\leftarrow
	Tormen
	(ST),
	Tinker
	(TR) or
	Press-
	→
	Schecter
	(PSC)

Returns

the double value of matter power spectrum

Read in the linear power spectrum, used to set the initial conditions of Hidden-Valley sims.

Input k is in unit of 1/Mpc. First convert it to h/Mpc, and also convert the final matter power spectrum in unit of $(Mpc/h)^3$

Parameters

- aramotor	
Cx	Input↩
	:
	pointer
	to
	Cosmology
	struc-
	ture
k	Input←
	:
	wavenumb-
	ber in
	unit of
	1/Mpc
Z	Input←
	: red-
	shift to
	com-
	pute
	the
	spec-
	Spec-
	trum
mode	
mode	trum Input← :
mode	trum Input←
mode	trum Input : switch to de-
mode	trum Input← : switch to de- cide
mode	trum Input← : switch to de- cide whether
mode	trum Input← : switch to de- cide whether to eval-
mode	trum Input← : switch to de- cide whether to eval- uate
mode	trum Input← : switch to de- cide whether to eval- uate the
mode	trum Input← : switch to de- cide whether to eval- uate the inter-
mode	trum Input← : switch to de- cide whether to eval- uate the inter- polator
mode	trum Input : switch to de- cide whether to eval- uate the inter- polator of the
mode	trum Input : switch to de- cide whether to eval- uate the inter- polator of the power
mode	trum Input← : switch to de- cide whether to eval- uate the inter- polator of the power spec-
mode	trum Input : switch to de- cide whether to eval- uate the inter- polator of the power spec- trum
mode	trum Input← : switch to de- cide whether to eval- uate the inter- polator of the power spec- trum or free
mode	trum Input← : switch to de- cide whether to eval- uate the inter- polator of the power spec- trum or free the
mode	trum Input← : switch to de- cide whether to eval- uate the inter- polator of the power spec- trum or free

Returns

the HV linear matter power spectrum

Here is the call graph for this function:


```
5.6.2.18 R_scale() double R_scale ( struct Cosmology * Cx, double M )
```

Compute the Lagrangian radius of halos in unit of $1/Mpc^{\wedge}3$, fixing z=0.

Cx	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
h_mass	Input←
	: halo
	mass
	in unit
	of
	solar
1	1

R_s

Here is the call graph for this function:

Here is the caller graph for this function:


```
5.6.2.19 R_{vir}() double R_{vir}() struct Cosmology * Cx, double M)
```

Compute the comoving virial radius of halos in unit of $1/Mpc^3$, which is defined as the radius at which the average density within this radius is Delta X rho_c.

Cx	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
М	Input←
	: halo
	mass
	in unit
	of
	solar
	mass

 R_vir

Here is the call graph for this function:

Here is the caller graph for this function:

Compute the critical density in unit of M_sun/Mpc $^{\wedge}$ 3.

the double value of rho_c

$$E (a) = H(a)^2/H0^2$$

G is in unit of m 3 kg $^-$ 1 s $^-$ 2, conversion factor from m to Mpc

To convert to solar massHere is the call graph for this function:

Here is the caller graph for this function:

Compute variance of smoothed matter density fluctuations.

The function sig_sq_integrand() defines the integrand and sig_sq() computes the k-integral

Cx	Input↩	
	:	
	pointer	
	to	
	Cosmolo	g:
	struc-	
	ture	
Z	Input←	
	: red-	
	shift to	
	com-	
	pute	
	the	
	spec-	
	trum	
R	Input←	
	:	
	smooth-	
	ing	
	scale	
	in unit	
	of Mpc	

Returns

the variance

Here is the call graph for this function:

5.6.2.22
$$sig_sq_integrand()$$
 double $sig_sq_integrand()$ double x , $void * par()$

The integrand function passed to qags integrator to compute the variance of the matter density.

Parameters

Х	Input↩
	: inte-
	gration
	vari-
	able
par	Input←
	: inte-
	gration
	par-
	maeters

Returns

value of the integrand

Here is the call graph for this function:


```
5.6.2.23 sigma0_sq() double sigma0_sq() struct Cosmology * Cx, double z, double kmax()
```

Compute variance of unsmoothed matter density fluctuations.

The function sigma0_integrand() defines the integrand and sigma0_sq() computes the k-integral

Parameters

Returns

the unsmoothed variance kmax is in unit of 1/Mpc

Here is the call graph for this function:


```
5.6.2.24 sigma0_sq_integrand() double sigma0_sq_integrand ( double x, void * par )
```

The integrand function passed to qags integrator to compute the variance of the unsmoothed matter density.

Parameters

Х	Input←
	: inte-
	gration
	vari-
	able
par	Input←
	: inte-
	gration
	par-
	maeters

Returns

value of the integrand

Here is the call graph for this function:


```
5.6.2.25 window_g() double window_g ( double k, double R)
```

```
5.6.2.26 window_kth() double window_kth ( double k, double R)
```

```
5.6.2.27 window_rth() double window_rth ( double k, double R)
```

The following functions compute several window functions and their derivatives with respect to the smoothing scale.

Parameters

k	Input←
	:
	wavenum-
	ber in
	unit of
	1/Mpc
R	Input←
	:
	smooth-
	ing
	scale
	in unit
	of Mpc

Returns

the window functions or their derivatives

Here is the caller graph for this function:

5.6.3 Variable Documentation

5.6.3.1 gb struct globals gb

5.7 IR_res.c File Reference

Documented IR_res module.

#include "header.h"
Include dependency graph for IR res.c:

Functions

- double pm_IR_LO (struct Cosmology *Cx, double k, double z, long SPLIT)
 - Compute the leading-order IR-resummed matter power spectrum, ala Ivanovic et al.
- double pm_IR_NLO (struct Cosmology *Cx, double k, double z, long SPLIT)
 - Compute the next-to-leading-order IR-resummed matter power spectrum, ala Ivanovic et al.
- double IR_Sigma2_integrand (double x, void *par)
 - Integrand to compute the suppression factor IR_sigma2.
- double IR_Sigma2 (struct Cosmology *Cx, double z, double kf0, long SPLIT)
 - Compute the suppression factor IR_sigma2.
- double pm_nowiggle (struct Cosmology *Cx, double k, double z, double kf0, int cleanup, long SPLIT)
 - Compute the no-wiggle component of the matter power spectrum.
- double pm_nowiggle_bspline (struct Cosmology *Cx, double k, double z, int cleanup)
 - Compute the no-wiggle component of the matter power spectrum, reading in and interpolating the output of apython code which computed the broadband by fitting families of Bsplines (see Vlah et al 2015)
- double pm_nowiggle_gfilter (struct Cosmology *Cx, double k, double z, int cleanup)
 - Compute the no-wiggle componenet of the matter power spectrum, using Gaussian filter (see Vlah et al 2015)
- double pm_nowiggle_dst (struct Cosmology *Cx, double k, double z, int cleanup)
 - Compute the no-wiggle component of the matter power spectrum, reading in and interpolating the output of apython code which computed the broadband by discrete sin-transform, See Hamann et al 2010.

5.7.1 Detailed Description

Documented IR_res module.

Azadeh Moradinezhad Dizgah, November 4th 2021

This module is computes the leading and next-to-leading IR-resummed matter power spectrum The wiggle-nowiggle seperation is performed in wnw split.c module.

In summary, the following functions can be called from other modules:

- 1. pm_IR_LO()
- 2. pm_IR_NLO()
- 3. IR_Sigma2()
- 4. pm_nowiggle()
- pm_nowiggle_gfilter()
- pm_nowiggle_bspline()
- 7. pm_nowiggle_dst()

5.7.2 Function Documentation

Compute the suppression factor IR $_$ sigma2.

Parameters

Cx	Input←
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
Z	Input←
	: red-
	shift
kf0	Input←
	: first
	ele-
	ment
	of
	the k-
	array,
	used
	in nor-
	mal-
	ization
	of EH
	no-
	wiggle
	spec-
	trum
SPLIT	Input←
	:
	switch
	to
	set the
	method
	of
	wiggle-
	nowiggle
	split
	-1- •

Returns

value of IR resummation suppression factor

Here is the call graph for this function:

Here is the caller graph for this function:

5.7.2.2 IR_Sigma2_integrand() double IR_Sigma2_integrand (double
$$x$$
, void * par)

Integrand to compute the suppression factor IR_sigma2.

Х	Input←
	: inte-
	gration
	vari-
	able,
	k-
	values
par	Input←
	: inte-
	gration
	param-
	eters

integrand to be used in IR_sigma2() function

BAO_scale = 110. Mpc/h.Here is the call graph for this function:

Here is the caller graph for this function:

Compute the leading-order IR-resummed matter power spectrum, ala Ivanovic et al.

Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture

k	Input← :
	wavenum-
	ber in
	unit of
	1/Mpc.
Z	Input←
	: red-
	shift
SPLIT	Input←
	:
	switch
	to
	set the
	method
	of
	wiggle-
	nowiggle
	split

Returns

value of leading IR-ressumed power spectrum

Here is the caller graph for this function:

Compute the next-to-leading-order IR-resummed matter power spectrum, ala Ivanovic et al.

Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
k	Input←
	:
	wavenum-
	ber in
	unit of
	1/Mpc.
Z	Input←
	: red-
	shift

SPLIT	Input←
	:
	switch
	to
	set the
	method
	of
	wiggle-
	nowiggle
	split

Returns

value of NL IR-ressumed power spectrum

Here is the call graph for this function:

Compute the no-wiggle componenet of the matter power spectrum.

raiailleteis	
Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
k	Input←
	:
	wavenum
	ber in
	unit of
	h/Mpc.
Z	Input←
	: red-
	shift
kf0	Input←
	: first
	ele-
	ment
	of
	the k-
	array,
	used
	in nor-
	mal-
	ization
	of EH
	no-
	wiggle
	spec-
	trum

cleanup	Input←
	:
	switch
	to set
	whether
	to free
	the
	mem-
	ory
	allo-
	cated
	to no-
	wiggle
	inter-
	pola-
	tors
SPLIT	Input←
	:
	switch
	to
	set the
	method
	of
	wiggle-
	nowiggle
	split
	-1

Returns

double value of no-wiggle power spectrum

Here is the caller graph for this function:


```
5.7.2.6 pm_nowiggle_bspline() double pm_nowiggle_bspline ( struct Cosmology * Cx, double k, double z, int cleanup)
```

Compute the no-wiggle component of the matter power spectrum, reading in and interpolating the output of apython code which computed the broadband by fitting families of Bsplines (see Vlah et al 2015)

Сх	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
k	Input←
	:
	wavenum-
	ber in
	unit of
	h/Mpc.
Z	Input←
	: red-
	shift

cleanup	Input←
	:
	switch
	to set
	whether
	to free
	the
	mem-
	ory
	allo-
	cated
	to no-
	wiggle
	inter-
	pola-
	tors

Returns

double value of no-wiggle power spectrum

Here is the call graph for this function:


```
5.7.2.7 pm_nowiggle_dst() double pm_nowiggle_dst() struct Cosmology * Cx, double k, double z, int cleanup)
```

Compute the no-wiggle component of the matter power spectrum, reading in and interpolating the output of apython code which computed the broadband by discrete sin-transform, See Hamann et al 2010.

raiailieteis	
Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
k	Input←
	:
	wavenum
	ber in
	unit of
	h/Mpc.
Z	Input←
	: red-
	shift
cleanup	Input←
	:
	switch
	to set
	whether
	to free
	the
	mem-
	ory
	allo-
	cated
	to no-
	wiggle
	inter-
	pola-
	tors

Returns

double value of no-wiggle power spectrum

Here is the call graph for this function:

Here is the caller graph for this function:

Compute the no-wiggle componenet of the matter power spectrum, using Gaussian filter (see Vlah et al 2015)

Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture

k	Input↔
	wavenum
	ber in
	unit of
	h/Mpc.
Z	Input←
	: red-
	shift
cleanup	Input←
	:
	switch
	to set
	whether
	to free
	the
	mem-
	ory
	allo-
	cated
	to no-
	wiggle
	inter-
	pola-
	'
	tors

Returns

double value of no-wiggle power spectrum

Here is the call graph for this function:

Here is the caller graph for this function:

5.8 line_ingredients.c File Reference

Documented line_ingredients module.

#include "header.h"
Include dependency graph for line_ingredients.c:

Functions

 struct Line * Line_alloc_init (struct Cosmology *Cx, long line_type, size_t npoints_interp, double M_min, long mode_mf)

Allocate the memory and initialize the the line structure.

• int Line free (struct Line *Lx)

Free the line structure.

• int Line_evaluate (struct Line *Lx, double *zz, double *res)

Allocate the memory and initialize the the line structure.

double mult_func (double sigma, long mode_mf)

Compute the multiplicity function needed to compute the halo mass function Three models are implemented: Press-Schechter, Sheth-Tormen and Tinker see Pillepich et al arxiv: 0811.4176 for the expressions.

• double mass_func (struct Cosmology *Cx, double M, double z, long mode_mf)

Compute the halo mass function for Press-Schechter, Sheth-Tormen and Tinker models see Pillepich et al arxiv: 0811.4176 for the expressions.

• double mass_func_sims (struct Cosmology *Cx, double M, double z, long mode_mf)

Read in the measured mass function of Hidden-valey sims and build an interpolator for HMF(M) for a fixed redshift.

• void halo_bias (struct Cosmology *Cx, double M, double z, long mode_mf, double *bias_arr)

computes the halo biases for three mass functions, press-schecter, Sheth-Tormen, and Tinker mass functions

void logSFR_Behroozi_read (double *z_arr, double *logM_arr, double *log10SFR)

Read in the file for the star formation rate byy Behroozi et al 2013.

int logSFR_alloc_init ()

Allocate memory and initialize the 2d interpolator for the star formation rate of Behroozi et al 2013 as a function of halo mass and redshift.

• int SFR_Behroozi_free ()

Free the memory allocated to the interpolators of star formation rate by Behroozi et al 2013.

double logSFR_Behroozi (double logM, double z)

Evaluate the SFR interpolator object for a given value of mass and redshift.

double luminosity (double M, double z, long mode_lum)

Compute the line specific luminosity in unit of solar luminosity For CO ladder, I am using the fits in Table 4 of ??? et al arXiv:1508.05102, while for CII we use Silva et al arXiv:

- int mass moment1 integ (unsigned nd, const double *x, void *p, unsigned fdim, double *fvalue)
 - Compute the first luminosityy-weighted mass moment.
- double mass_moment1 (struct Cosmology *Cx, double z, double M_min, long mode_mf, long mode_lum)
 in unit of M sun/Mpc^3
- int mass_moment2_integ (unsigned nd, const double *x, void *p, unsigned fdim, double *fvalue)

Compute the second luminosityy-weighted mass moment.

- double mass_moment2 (struct Cosmology *Cx, double z, double M_min, long mode_mf, long mode_lum)
 in unit of M_sun/Mpc^3
- int bias_lum_weighted_integ (unsigned nd, const double *x, void *p, unsigned fdim, double *fvalue)

 Compute the luminosityy-weighted linear and quadratic line biases.
- void bias_lum_weighted (struct Cosmology *Cx, double z, double M_min, long mode_mf, long mode_lum, double *result)
- double p_sig_shot_integrand (double x, void *par)

Model from Keating et al 2016 to account for the observed variation in halo activity, i.e.

- double p_sig_shot (double scatter)
- double p_sig_Tbar_integrand (double x, void *par)

Model from Keating et al 2016 to account for the observed variation in halo activity, i.e.

- double p_sig_Tbar (double scatter)
- void line_bias (struct Line *Lx, double z, double *result)

Compute the linear and quadratic line biases, accounting ffor the normalization w.r.t.

- double mean intens (struct Cosmology *Cx, size t line id, double z)
 - Compute the line mean intensity in unit of erg $Mpc^{\wedge}-2 Sr^{\wedge}-1$.
- double Tbar_line (struct Cosmology *Cx, size_t line_id, double z)

Compute the mean brightness temprature of CO in unit of microK, compared with Pullen et al and Lidz et al 2011.

Variables

struct globals gb

5.8.1 Detailed Description

Documented line_ingredients module.

This module includes functions that are needed for computing the line clustering and shot contributions.

Azadeh Moradinezhad Dizgah, November 4th 2021

In summary, the following functions can be called from other modules:

- 1. Line_alloc_init() allocate memory and initizlized the line structure which contains 4 interpolators for first and second mass moments and linear and quadratic line biases.
- 2. Line_free() frees the memory allocated to line structure
- 3. Line_evaluate() evaluates the interpolators initialized in Line_alloc_init()
- 4. mult_func() computes the multiplicity function needed for computing the halo mass function

- 5. mass_func() computes the halo mass finction. Three options are available, Press-Schecter, Sheth-Tormen, Tinker
- 6. mass_func_sims() reads in the measured mass function on Hidden-Valley simulations by Farnik, and convert it to compare with the theoretical predictions
- 7. halo_bias() computes the halo biases assuming the above theoretical predictions of the halo mass function
- 8. logSFR_Behroozi_read() reeds in the data file of Behroozi 2013 for SFR(M,z)
- 9. logSFR_alloc_init() allocates memory for 2d interpolator of logSFR(M,z)
- 10. SFR_behroozi_free() frees the memory allocated to logSFR interpolator
- 11. logSFR_Behroozi() evaluates the logSFR_Behroozi interpolator
- 12. luminosity() computes the line luminosity
- 13. mass moment1() computes the first mass moment
- 14. mass moment2() computes the first mass moment
- 15. bias_lum_weighted() computes the luminosity-weighetd line bias
- 16. p_sig_shot() computes the coefficient accounting for the scatter in L(M) in shot noise
- 17. p_sig_Tbar() computes the coefficient accounting for the scatter in L(M) in mean brightness temprature
- 18. mean_intens() compues the mean intensity of the line
- 19. Tbar_line() compues the mean brightness temprature of the line

5.8.2 Function Documentation

In units of solar mass;

In units of solar massHere is the call graph for this function:

Here is the caller graph for this function:

Compute the luminosityy-weighted linear and quadratic line biases.

The normalization of first mass moment is not included yet. The function bias_lum_weighted_integ() is the integrand and bias_lum_weighted() computes the bias

Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
Z	Input↩
	: red-
	shift
M_min	Input↩
	: min-
	imum
	halo
	mass
mode_mf	Input↩
	:
	model
	of halo
	mass
	func-
	tion to
	con-
	sider,
	PSC,
	ST, TR

mode_lum	Inpute←
	: which
	lumi-
	nosity
	model,
	basi-
	cally
	which
	line
	con-
	sid-
	ered

Returns

un-normalized line bias

Here is the call graph for this function:

Here is the caller graph for this function:

computes the halo biases for three mass functions, press-schecter, Sheth-Tormen, and Tinker mass functions

Parameters	
Cx	Input←
	Cosmology
	struc-
	ture
М	Input←
	: halo
	mass
Z	Input←
	: red-
	shift
mada mf	
mode_mf	Input←
	:
	switch
	for
	setting
	the
	model
	of
	mass
	func-
	tion,
	can be
	set to
	PSC,
	ST, TR
bias_arr	Output↔
	: the
	output
	array
	con-
	tain-
	ning
	linear
	and
	quadratic
	local-
	in-
	matter
	halo
	biases.
	'
	and
	quadratic
	and
	cubic
	tidal
	biases

Returns

void

Note that for PSC and ST mass functions, same form of the biases can be assumed, with different coefficents. See astro-ph/0006319

Assuming spherical collapseHere is the call graph for this function:

Here is the caller graph for this function:

Allocate the memory and initialize the the line structure.

This structure contains interpolators for computing the luminosity-weighted mass moments and line biases For a given line defined with "line_type" variable, this function first computes the above four quantities for a wide range of redshifts. Next it initialized 4 interpolators for these quantities, and store them in line structure.

raiailieleis	
line_type	Inpute←
	: name
	of the
	line to
	com-
	pute.
	It can
	be set
	to CII,
	CO10,
	CO21,
	CO32,
	CO32,
	CO54,
	CO65
npoints_interp	Input←
	: num-
	ber of
	inter-
	pola-
	tion
	points
M min	Input←
	: min-
	imum
	halo
	mass
	for
	mass
	inte-
	grals
	-
mode_mf	Inpute←
	: theo-
	retical
	model
	of halo
	mass
	func-
	tion to
	use. It
	can be
	set to
	sheth-
	\leftarrow
	Tormen
	(ST),
	Tinker
	(TR) or
	Press-
	← ←
	Schecter
	(PSC)

Returns

the total clustering line power spectrum, including the 1- and 2-halo term

CIIHere is the call graph for this function:

Here is the caller graph for this function:

Compute the linear and quadratic line biases, accounting ffor the normalization w.r.t.

the first mass moment

Lx	Input←
	:
	Pointer
	to line
	struc-
	ture
Z	Input←
	: Red-
	shift

result	Input↩
	: a
	pointer
	to an
	array
	con-
	taining
	the re-
	sults of
	b1 ←
	_line
	and
	b2_ <i>←</i>
	line

Returns

void

Here is the call graph for this function:

Here is the caller graph for this function:

Allocate the memory and initialize the the line structure.

This structure contains interpolators for computing the luminosity-weighted mass moments and line biases For a given line defined with "line_type" variable, this function first computes the above four quantities for a wide range of redshifts. Next it initialized 4 interpolators for these quantities, and store them in line structure.

Lx	Input←
	:
	Pointer
	to the
	line
	struc-
	ture

ements

```
Parameters
```

```
ZZ
       Input \mathord{\hookleftarrow}
       : this
       is an
       array
       with
       4 ele-
       ments
       to
       deter-
       mine
       which
       of the
       4
           in-
       terpo-
       lators
       should
       be
       evalu-
       ated.
              lf
              any
              of
              the
              el-
              e-
              ments
              are
              set
              to
              ДФ←
              NФТ⊷
              EVALUATE,
              the
              quan-
              ti-
              tiy
              cor-
              re
              spond-
              ing
              to
              that
              in-
              dex
              is
              not
              com-
              puted.
              0
              lf
              any
              of
Generated by Doxythen
              el-
```

res	Output↔
	: an
	array
	con-
	taining
	the re-
	sults.
	The
	num-
	ber of
	ele-
	ments
	of this
	array
	de-
	pends
	on
	how
	the zz
	array
	is set.

Returns

the error status

Here is the caller graph for this function:

5.8.2.7 Line_free() int Line_free (struct Line *
$$Lx$$
)

Free the line structure.

Lx	Input←
	:
	Pointer
	to line
	struc-
	ture

Returns

the error status

Here is the caller graph for this function:

$\textbf{5.8.2.8} \quad \textbf{logSFR_alloc_init()} \quad \texttt{int logSFR_alloc_init ()}$

Allocate memory and initialize the 2d interpolator for the star formation rate of Behroozi et al 2013 as a function of halo mass and redshift.

Returns

the error status

Here is the call graph for this function:

Here is the caller graph for this function:


```
5.8.2.9 logSFR_Behroozi() double logSFR_Behroozi ( double logM, double z )
```

Evaluate the SFR interpolator object for a given value of mass and redshift.

Parameters

1	Lance and
logM	Input←
	: log10
	of halo
	mass
Z	Input←
	: red-
	shift

Returns

log10SFR

Here is the caller graph for this function:

Read in the file for the star formation rate byy Behroozi et al 2013.

<u> </u>
Output↔
:
pointer
to an
array
of red-
shifts
read
from
the file
Output↔
:
pointer
to an
array
of halo
masses
read
from
the file
Output↔
:
pointer
to an
array
of SFR
read
from

Returns

void

Here is the call graph for this function:

Here is the caller graph for this function:


```
5.8.2.11 luminosity() double luminosity ( double M, double z, long mode\_lum)
```

Compute the line specific luminosity in unit of solar luminosity For CO ladder, I am using the fits in Table 4 of ??? et al arXiv:1508.05102, while for CII we use Silva et al arXiv:

Parameters

М	Input←
	: halo
	mass
Z	Input←
	: red-
	shift
mode_lum	Inpute←
	: which
	lumi-
	nosity
	model,
	basi-
	cally
	which
	line
	con-
	sid-
	ered

Returns

line luminosity

a = 1.37 Charilli

b = -1.74

in unit of K km/s $pc^{\wedge}2$

in unit of L_sunHere is the call graph for this function:

Here is the caller graph for this function:

Compute the halo mass function for Press-Schechter, Sheth-Tormen and Tinker models see Pillepich et al arxiv: 0811.4176 for the expressions.

Сх	Input←
	:
	Cosmology
	struc-
	ture
М	Input←
	: Halo
	mass
	func-
	tion
Z	Input←
	: red-
	shift

mode_mf	Input←
	:
	switch
	for
	setting
	the
	model
	of
	mass
	func-
	tion,
	can be
	set to
	PSC,
	ST, TR

Returns

the halo mass function in unit of halos per Mpc 3 per solar mass, compared at z=0 with Murray etal https \leftarrow ://arxiv.org/abs/1306.5140

Here is the call graph for this function:

Here is the caller graph for this function:

Read in the measured mass function of Hidden-valey sims and build an interpolator for HMF(M) for a fixed redshift.

Parameters

i arameters	
Cx	Input←
	:
	Cosmology
	struc-
	ture
М	Input←
	: halo
	mass
Z	Input↩
	: red-
	shift
mode_mf	Input←
	•
	switch
	for
	setting
	the
	model
	of
	mass
	func-
	tion,
	can be
	set to
	PSC,
	ST, TR

Returns

the interpolated measured halo mass function M in unit of M_sun and HMF in unit of #-of-halos/Mpc^3/M_sun

Here is the call graph for this function:

in unit of M_sun/Mpc^3

In units of solar mass;

In units of solar massHere is the call graph for this function:

Here is the caller graph for this function:

Compute the first luminosityy-weighted mass moment.

The function mass_moment1_integ() is the integrand and mass_moment1() compute the moment

- aramotoro	
Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
Z	Input←
	: red-
	shift
M_min	Input←
	: min-
	imum
	halo
	mass
mode_mf	Input←
	:
	model
	of halo
	mass
	func-
	tion to
	con-
	sider,
	PSC,
	ST, TR
mode lum	Inpute←
_	: which
	lumi-
	nosity
	model,
	basi-
	cally
	which
	line
	con-
	sid-
	ered
	ereu

Returns

the first mass moment

Here is the call graph for this function:

Here is the caller graph for this function:

in unit of M_sun/Mpc^3

In units of solar mass;

In units of solar massHere is the call graph for this function:

Here is the caller graph for this function:

Compute the second luminosityy-weighted mass moment.

The function mass_moment2_integ() is the integrand and mass_moment2() compute the moment

Сх	Input : pointer to cos- mol- ogy struc- ture
Z	Input←
	: red- shift
M_min	Input←
	: min-
	imum
	halo
	mass
mode_mf	Input←
	:
	model
	of halo
	mass
	func-
	tion to
	con- sider,
	PSC,
	ST, TR
	J .,

mode_lum	Inpute←
	: which
	lumi-
	nosity
	model,
	basi-
	cally
	which
	line
	con-
	sid-
	ered

Returns

the second mass moment

Here is the call graph for this function:

Here is the caller graph for this function:

Compute the line mean intensity in unit of erg Mpc^-2 Sr^-1.

Сх	Input←
	:
	Pointer
	to cos-
	mol-
	ogy
	struc-
	ture
line_id	Inpute←
	: id of
	line of
	inter-
	est, an
	integer
	value
Z	Input←
	: Red-
	shift

Returns

the line mean intensity

Note: nu_J is the rest-frame emission frequency related to the observed frequency as $nu_obs = nu_J/(1+z_J)$ For a CO transition from J-> J-1, the rest-frame frequency is $nu_J = J nu_CO$ where $nu_Co = 115$ GHz.

in unit of erg/sHere is the call graph for this function:

Here is the caller graph for this function:


```
5.8.2.19 mult_func() double mult_func ( double sigma, long mode_mf )
```

Compute the multiplicity function needed to compute the halo mass function Three models are implemented: Press-Schechter, Sheth-Tormen and Tinker see Pillepich et al arxiv: 0811.4176 for the expressions.

Parameters

oiama	Input
sigma	Input←
	: vari-
	ance
	of
	matter
	fluctu-
	ations
mode_mf	Input←
	:
	switch
	for
	setting
	the
	model
	of
	mass
	func-
	tion,
	can be
	set to
	PSC,
	ST, TR

Returns

the multiplicity function

In Barkana & Loeb Rev a = 0.75Here is the caller graph for this function:

Here is the call graph for this function:

Here is the caller graph for this function:

5.8.2.21 p_sig_shot_integrand() double p_sig_shot_integrand (double
$$x$$
, void * par)

Model from Keating et al 2016 to account for the observed variation in halo activity, i.e.

scatter in the L(M) relation p_sig_shot replaces the f_duty in the shot-noise used in some LIM paper (ex. Lidz et al 2011). p_sig_shot_integrand() is the integrand, and p_sig_shot() computes the scatter factor for the shot noise.

Parameters

scatter	Input←
	: vari-
	ance
	of the
	log-
	scatter

Returns

the scatter coeff of the shot noise

Here is the caller graph for this function:

Here is the call graph for this function:

Here is the caller graph for this function:


```
5.8.2.23 p_sig_Tbar_integrand() double p_sig_Tbar_integrand ( double x, void * par )
```

Model from Keating et al 2016 to account for the observed variation in halo activity, i.e.

scatter in the L(M) relation p_sig_Tbar replace the f_duty in the average brightness temprature used in some LIM paper (ex. Lidz et al 2011). p_sig_Tbar_integrand() is the integrand, and p_sig_Tbar() computes the scatter factor for the mean brightness temprature.

scatter	Input←
	: vari-
	ance
	of the
	log-
	scatter

Returns

the scatter coeff of Tbar

Here is the caller graph for this function:

5.8.2.24 SFR_Behroozi_free() int SFR_Behroozi_free ()

Free the memory allocated to the interpolators of star formation rate by Behroozi et al 2013.

Returns

the error status

Here is the caller graph for this function:

Compute the mean brightness temprature of CO in unit of microK, compared with Pullen et al and Lidz et al 2011.

Cx	Input←
O A	
	· .
	Pointer
	to cos-
	mol-
	ogy
	struc-
	ture
line_id	Inpute←
	: id of
	line of
	inter-
	est, an
	integer
	value
Z	Input←
	: Red-
	shift

Returns

the line mean temprature assuming Rayleigh-Jeans limit

Boltzmann constant in unit of erg K^-1

factor of $10^{\circ}6$ is the conversion factor from K to microKHere is the call graph for this function:

Here is the caller graph for this function:

5.9 main.c File Reference 105

5.8.3 Variable Documentation

```
\textbf{5.8.3.1} \quad \textbf{gb} \quad \text{struct globals gb}
```

5.9 main.c File Reference

Documented main module, including functions to initilize and cleanup the cosmology structure and examples of calls to functions in other modules to compute the line clustering and shot power spectrum.

```
#include "header.h"
Include dependency graph for main.c:
```


Functions

- int main (int argc, char *argv[])
- · void initialize ()

Initizlize the path to the required directories, set the values of cosmological parmaeters, and initialize the interpolator of the SFR(M,z) from tabulated data provided in gb.SFR_filename.

void cleanup (struct Cosmology *Cx)

Free the memory allocated to cosmology structure and SFR interpolator.

Variables

· struct globals gb

5.9.1 Detailed Description

Documented main module, including functions to initilize and cleanup the cosmology structure and examples of calls to functions in other modules to compute the line clustering and shot power spectrum.

Azadeh Moradinezhad Dizgah, November 4th 2021

In order to call any function from the package, the function calls should be placed in the marked section of main() function.

5.9.2 Function Documentation

```
5.9.2.1 cleanup() void cleanup ( struct Cosmology * Cx)
```

Free the memory allocated to cosmology structure and SFR interpolator.

Returns

void

Here is the call graph for this function:

Here is the caller graph for this function:

5.9.2.2 initialize() void initialize ()

Initizlize the path to the required directories, set the values of cosmological parmaeters, and initialize the interpolator of the SFR(M,z) from tabulated data provided in gb.SFR_filename.

List of limHaloPT header files.

The global structure "gb" have several elements to hold the paths to project source directory, input, and output folders, and values of cosmological parmaeters.

5.9 main.c File Reference 107

Returns

void

Change the path to the parent directory

In units of km/s

omega_b = Omega_b h^2 ;

3.0665Here is the call graph for this function:

5.9.3 Variable Documentation

$\textbf{5.9.3.1} \quad \textbf{gb} \quad \text{struct globals gb}$

5.10 ps_halo_1loop.c File Reference

Documented real-space, direct integration computation of 1loop contributions of the halo/galaxy power spectrum See arXiv:2010.14523 for explicit expressions.

#include "header.h"
Include dependency graph for ps_halo_1loop.c:

Functions

 double PS_hh_G (struct Cosmology *Cx, double k, double z, double M, long mode_pt, long IR_switch, long SPLIT, long mode_mf)

Compute the contributions up to 1loop to halo power spectrum for Gaussian initial conditions.

double PS_hh_PNG (struct Cosmology *Cx, double k, double z, double M, long mode_pt, long IR_switch, long SPLIT, long mode mf)

Compute contributions up to 1loop to halo power spectrum arising from non-Gaussian initial conditions of local shape.

 void Compute_G_loops (struct Cosmology *Cx, double k, double z, long IR_switch, long hm_switch, long SPLIT, double *result)

Compute the loop contributions dure to nonlinear evolution of matter fluctuations and nonlinear halo bias, present for Gaussian initial conditions The function G_loop_integrands() defines the integrand and Compute_G_loops() computes the integrals.

- static int G_loop_integrands (const int *ndim, const cubareal x[], const int *ncomp, cubareal ff[], void *p)
- void Compute_PNG_loops (struct Cosmology *Cx, double k, double z, long IR_switch, long SPLIT, double *result)

Compute the loop contributions dure to nonlinear evolution of matter fluctuations and nonlinear halo bias, rising from non-Gaussian initial conditions of local shape The function PNG_loop_integrands() defines the integrand and Compute_PNG_loops() computes the integrals.

- static int PNG_loop_integrands (const int *ndim, const cubareal x[], const int *ncomp, cubareal ff[], void *p)
- double F2 s (double k1, double k2, double mu)
- double S2_s (double k1, double k2, double mu)
- double F3 s (double k, double q, double mu)
- double S2 (double mu)
- double F2 (double k1, double k2, double mu)

Variables

· struct globals gb

5.10.1 Detailed Description

Documented real-space, direct integration computation of 1loop contributions of the halo/galaxy power spectrum See arXiv:2010.14523 for explicit expressions.

Azadeh Moradinezhad Dizgah, November 4th 2021

This module computes the 1loop halo/galaxy power sprtcurm in real-space via direct numerical integration. IR-resummation and EFT counter terms are included. In addition to loops due to gravitational loops, terms arising only in the presence of local PNG are also included. The explicit expressions of all the loops are given in 2010.14523.

In summary, the following functions can be called from other modules:

- 1. PS_hh_G()
- 2. PS hh PNG()
- 3. Compute_Gloops()
- 4. Compute_PNGloops()
- 5. F2_s()
- 6. F3_s()
- 7. S2 s()
- 8. F2()
- 9. S2()

5.10.2 Function Documentation

Compute the loop contributions dure to nonlinear evolution of matter fluctuations and nonlinear halo bias, present for Gaussian initial conditions The function G_loop_integrands() defines the integrand and Compute_G_loops() computes the integrals.

Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
k	Input←
	:
	wavenum
	ber
Z	Input←
	: red-
	shift of
	inter-
	est
М	Input←
	: halo
	mass,
	used
	in
	com-
	puting
	the
	halo
	bias
IR_switch	Input←
	:
	switch
	to de-
	cide
	whether
	to per-
	form
	IR
	1
	resum-
	mation

hm_switch Input switch to de- cide whether to com- pute the 1loop terms due to matter or bias SPLIT Input switch to set the method to per- form the wiggle- nowiggle split of
to decide whether to compute the 1loop terms due to matter or bias SPLIT Input : switch to set the method to perform the wigglenowiggle
compute the 1loop terms due to matter or bias SPLIT Input←: switch to set the method to perform the wigglenowiggle
1loop terms due to matter or bias SPLIT Input : switch to set the method to per- form the wiggle- nowiggle
matter or bias SPLIT Input : switch to set the method to per- form the wiggle- nowiggle
SPLIT Input : switch to set the method to per- form the wiggle- nowiggle
to set the method to per- form the wiggle- nowiggle
the wiggle- nowiggle
split of
matter power
spec- trum
result Output← : an
output array con-
taining the
results of the
1loop terms, has 2
ele- ments
for hm_←
switch=MATTEI
ele- ments for
hm_← switch=HALO

Returns

void

Here is the call graph for this function:

Here is the caller graph for this function:

Compute the loop contributions dure to nonlinear evolution of matter fluctuations and nonlinear halo bias, rising from non-Gaussian initial conditions of local shape The function PNG_loop_integrands() defines the integrand and Compute_PNG_loops() computes the integrals.

Сх	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
k	Input←
	:
	wavenun
	ber
Z	Input←
	: red-
	shift of
	inter-
	est
IR_switch	Input←
	:
	switch
	to de-
	cide
	whether
	to per-
	form
	IR
	resum-
	mation
	or no
SPLIT	Input←
	:
	switch
	to
	set the
	method
	to per-
	form
	the
	wiggle-
	nowiggle
	split of
	matter
	power
	spec-

result	Output←
	: an
	output
	array
	con-
	taining
	the
	results
	of the
	1loop
	terms,
	has 8
	ele-
	ments
	for
	hm_←
	switch=HALO

Returns

void

Here is the call graph for this function:


```
5.10.2.3 F2() double F2 ( double k1, double k2, double mu)
```

Here is the caller graph for this function:


```
5.10.2.4 F2_s() double F2_s ( double k1, double k2, double mu)
```

Here is the caller graph for this function:


```
5.10.2.5 F3_s() double F3_s ( double k, double q, double mu )
```


Model used in 1907.06666, the integrals are given in the appendix, Eq. A1, note that my S2_s = sigma 2 (q,k-1) and F2_s = F2(q,k-q) in their notation. Factor of 2. * (logqmax - logqmin) is due to change of variable from 0 to logarithmic k, and a factor of 2*PI is due to integration over azimuthal angle. Note that to compare the theoretical predictions against Emiliano's measurement, since he is using a different notation for Fourier transform, I need to devide each 0 power spectrum by a factor of 1/pow(2*M_PI,3.), which I do in my pk_lin() function. If using another notation for Fourier transform (the one that I usually use, which has a factor of 1/pow(2*M_PI,3) in the definition), you need to multiply these integrands by a factor of 1/pow(2*M_PI,3).

The integrands below correspond to the follwing bias combinaions: Here is the call graph for this function:


```
5.10.2.7 PNG_loop_integrands() static int PNG_loop_integrands ( const int * ndim, const cubareal x[], const int * ncomp, cubareal ff[], void * p) [static]
```

Factor of 2. * (logqmax - logqmin) is due to change of variable from 0 to logarithmic k, and a factor of 2*PI is due to integration over azimuthal angle. Note that to compare the theoretical predictions against Emiliano's measurement, since he is using a different notation for Fourier transform, I need to devide each 0 power spectrum by a factor of

 $1/pow(2.*M_PI,3.)$, which I do in my pk_lin() function. If using another notation for Fourier transform (the one that I usually use, which has a factor of $1/pow(2*M_PI,3)$ in the definition), you need to multiply these integrands by a factor of $1/pow(2*M_PI,3)$.

The integrands below correspond to the follwing bias combinaions: Here is the call graph for this function:

Here is the caller graph for this function:

Compute the contributions up to 1loop to halo power spectrum for Gaussian initial conditions.

Parameters

Cx	Input←
	:
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
k	Input←
	:
	wavenum
	ber

Generated by Doxygen

Z	Input←
	: red-
	shift of
	inter-
	est
М	Input←
	: halo
	mass,
	used
	in
	com-
	puting
	the
	halo
	bias
mode pt	Input←
	:
	switch
	to de-
	cide
	whether
	to
	com-
	pute
	tree-
	level
	halo
	power
	spec-
	trum
	or the
	1loop
IR switch	Input <i>←</i>
_	:
	switch
	to de-
	cide
	whether
	to per-
	form
	IR
	resum-
	mation
	or no

i arameters	
SPLIT	Input←
	:
	switch
	to
	set the
	method
	to per-
	form
	the
	wiggle-
	nowiggle
	split of
	matter
	power
	spec-
	trum
mode_mf	Input←
	:
	switch
	to set
	the
	theo-
	retical
	model
	of the
	mass
	func-
	tion
	used
	to
	com-
	pute
	the
	halo
	biases

Returns

G loop contributions of P_h

Compute contributions up to 1loop to halo power spectrum arising from non-Gaussian initial conditions of local shape.

. aramotoro	
Сх	Input←
	pointer
	to cos-
	mol-
	ogy
	struc-
	ture
k	Input←
	:
	wavenum-
	ber
Z	Input←
	: red-
	shift of
	inter-
	est
М	Input←
	: halo
	mass,
	used
	in
	com-
	puting
	the
	halo
	bias
	1

- arametere	
mode_pt	Input↩
	:
	switch
	to de-
	cide
	whether
	to
	com-
	pute
	tree-
	level
	halo
	power
	spec-
	trum
	or the
	1loop
IR switch	Input←
" i_ownor	:
	switch
	to de-
	cide
	whether
	to per-
	form
	IR
	resum-
	mation
	or no
SPLIT	Input←
	:
	switch
	to
	set the
	method
	to per-
	form
	the
	wiggle-
	nowiggle
	split of
	matter
	power
	spec-
	trum

mode_mf	Input←
	:
	switch
	to set
	the
	theo-
	retical
	model
	of the
	mass
	func-
	tion
	used
	to
	com-
	pute
	the
	halo
	biases

Returns

PNG loop contributions of P_h

$$5.10.2.10$$
 S2() double S2 (double mu)

```
5.10.2.11 S2_s() double S2_s ( double k1, double k2, double mu )
```

Here is the caller graph for this function:

5.10.3 Variable Documentation

```
5.10.3.1 gb struct globals gb
```

5.11 ps_line_hm.c File Reference

Documented halo-model computation of line power spectrum, including clustering and stochastic contributions beyond Poisson limit.

```
#include "header.h"
Include dependency graph for ps_line_hm.c:
```


Functions

• double PS_line_HM (struct Cosmology *Cx, double k, double z, double M_min, long mode_mf, long line_type, int line_id)

Compute the clustering contribution to the line power spectrum using halo-model.

double PS_shot_HM (struct Cosmology *Cx, double k, double z, double M_min, double *input, long mode
 —mf, long line_type)

Compute the shot noise contributions, including corrections beyond poisson limit (see 1706.08738 for more details) If nfw=1, the dependance of the power spectrum on the halo profile is neglected.

- static int mhmc_integ (const int *ndim, const cubareal x[], const int *ncomp, cubareal ff[], void *p)
 - Compute the corrections to mass integration of HM matter power spectrum.
- void mhmc (struct Cosmology *Cx, double z, long mode mf, double *result)
- static int HM_1h2h_integ (const int *ndim, const cubareal x[], const int *ncomp, cubareal ff[], void *p)
 Compute the mass integrals to compute the 1- and 1-halo line, line-matter and matter power spectrum If nfw=1, the
- dependance of the power spectrum on the halo profile is neglected.
 void HM_1h2h (struct Cosmology *Cx, double k, double z, double M_min, long mode_mf, long line_type, long mode_hm, double *result)

in unit of M sun/Mpc $^{\wedge}$ 3

- static int b22_ls_integrand (const int *ndim, const cubareal x[], const int *ncomp, cubareal ff[], void *p)

 Compute the large-scale limit of P_b2b2 loop.
- double b22_ls (struct Cosmology *Cx, double z)

Variables

· struct globals gb

5.11.1 Detailed Description

Documented halo-model computation of line power spectrum, including clustering and stochastic contributions beyond Poisson limit.

Azadeh Moradinezhad Dizgah, November 4th 2021

This module has two main functions:

- PS_line_HM() to compute clustering (1- and 2-halo terms). The 2-halo term, includes nonlinear corrections to halo power spectrum arising from nonlinearities of matter fluctuations and halo biases.
- PS_shot_HM() to compute the stochastic contributions beyond Poisson shot noise (see arXiv:1706.08738)

The other functions in these modules are utilities for computing the above two main functions.

In summary, the following functions can be called from other modules:

- 1. PS_line_HM()
- 2. PS_shot_HM()
- 3. mhmc() computes th corrections to mass integration of halo-model matter power spectrum
- 4. HM_1h2h() performs the mass integraks for computing 1- and 2-halo terms of line-line, line-matter and mattermatter power spectra.
- 5. b22_ls() computes the large-scale limit of P_b2b2 loop which behaves like a constant and so contributes to the shot noise.

5.11.2 Function Documentation

```
5.11.2.1 b22_ls() double b22_ls ( struct Cosmology * Cx, double z )
```


Here is the caller graph for this function:

Compute the large-scale limit of P_b2b2 loop.

Parameters

Сх	Input←	
	:	
	Cosmology	
	struc-	
	ture	
Z	Input←	
	: red-	
	shift	

Returns

b22_ls

Here is the caller graph for this function:

in unit of M_sun/Mpc^3

Here is the call graph for this function:

Compute the mass integrals to compute the 1- and 1-halo line, line-matter and matter power spectrum If nfw=1, the dependance of the power spectrum on the halo profile is neglected.

Otherwise, NFW halo profile is assumed

Parameters	
Cx	Input← :
	Cosmology
	struc-
,	ture
k	Input← :
	wavenum-
	ber in
	unit of
	1/Mpc.
Z	Input←
	: red-
	shift
M_min	Input←
	: min-
	imum
	halo
	mass
	for
	mass
	inte-
	grals
mode_mf	Input←
	: theo-
	retical
	model
	of halo
	mass
	func-
	tion to
	use. It
	can be
	set to
	sheth-
	\leftarrow
	Tormen
	(ST),
	Tinker
	(TR) or
	Press-
	\leftarrow
	Schecter
	(PSC)

line_type	Input←
	: name
	of the
	line to
	com-
	pute.
	It can
	be set
	to CII,
	CO10,
	CO21,
	CO32,
	CO43,
	CO54,
	CO65

```
mode_hm
             Input \mathord{\hookleftarrow}
              switch
             to de-
              cide
              whetehr
              to
              com-
              pute
              gthe
              mass
              inte-
              gra-
              tions.
              It can
              be set
              to:
                    LINE
                    for
                    line
                    power
                    spec-
                    trum,
                    LINEMATTER
                    for
                    line-
                    matter
                    cross
                    spec-
                    trum
                    MATTER
                    for
                    mat-
                    ter
                    power
spec-
                    trum
```

```
results
           Output←
           : anar-
           ray of
           the
           inte-
           gration
           re-
           sults.
           Num-
           ber of
           ele-
           ments
           varies
           de-
           pend-
           ing on
           \mathsf{mode} \mathord{\hookleftarrow}
           _hm
           switch←
                  3
                  el-
                  e-
                  ments
                  if
                  mode←
                  hm
                  LINE,
                  1
                  el-
                  e-
                  ment
                  if
                  mode←
                  hm
                  LINE-
                  MAT-
                  TER
                  2
                  el-
                  e-
                  ment
                  if
                  mode←
                  hm
                  MAT-
                  TER
                  esults[0]←
                                                                                                Generated by Doxygen
                  cor
                  rec-
                  tion
```

Returns

void

we assume the profile of both matter and line are NFW

integrand of line 1halo term

integrand of 2halo term proportional to b1, the linear local-in-matter halo bias

integrand of 1halo term of line-matter cross-spectrumHere is the call graph for this function:


```
PS_line_HM

HM_1h2h HM_1h2h_integ

PS_shot_HM
```

Here is the call graph for this function:

Here is the caller graph for this function:

Compute the corrections to mass integration of HM matter power spectrum.

The function mhmc_integ() defines the integrand to be used by Cuhre integration routine of CUBA library. mhmc()) returns the corrections to 1- and 2-halo terms performing the integration

When computing the matter power spectrum using halo-model, the mass integrations for 1- and 2-loop terms get contributions from halos of all masses. For numerical computation, we need to impose a lower and upper integration limit. While the result of the integration are not sensitive to the upper bound (due to the fact that the mass function drops rapidly at high M_h) the choice of the lower bound affects the results. We can compute the leading order corrections to the integral that are accurate up to (k R_s) $^{\wedge}$ 2. (see App. A of arXiv:1511.02231 for more details.)

Input←
: red-
shift
Inpute←
: theo-
retical
model
of halo
mass
func-
tion to
use. It
can be
set to
Press-
\leftarrow
Schecter
(PSC),
sheth-
\leftarrow
Tormen
(ST),
Tinker
(TR)

Returns

void

Here is the caller graph for this function:

Compute the clustering contribution to the line power spectrum using halo-model.

If nfw=1, the dependance of the power spectrum on the halo profile is neglected. Otherwise, NFW halo profile is assumed

Input←
:
pointer
to
Cosmology
struc-
ture
Input←
:
wavenum-
ber in
unit of
1/Mpc.
Input←
: red-
shift
Input←
: min-
imum
halo
mass
for
mass
inte-
grals

mode_mf	Inpute ← : theo- retical model of halo mass func- tion to use. It can be set to sheth- ← Tormen (ST), Tinker (TR) or Press- ← Schecter (PSC)
line_type	Inpute ←: name of the line to compute. It can be set to CII, CO10, CO21, CO32, CO43, CO54, CO65
line_id	Inpute ∴ id of the line to be con- sid- ered.

Returns

P_clust(k)

Boltzmann constant in unit of erg K^{\wedge} -1

in unit of erg/s

CII

to plot the power spectrum in units of micro K^2 Mpc^3

in unit of M_sun/Mpc $^{\wedge}$ 3Here is the call graph for this function:

Here is the caller graph for this function:

Compute the shot noise contributions, including corrections beyond poisson limit (see 1706.08738 for more details) If nfw=1, the dependance of the power spectrum on the halo profile is neglected.

Otherwise, NFW halo profile is assumed

raiailleteis	
Cx	Input←
	:
	Cosmology
	struc-
	ture
k	Input←
	:
	wavenum-
	ber in
	unit of
	1/Mpc.
Z	Input←
	: red-
	shift
M_min	Input←
	: min-
	imum
	halo
	mass
	for
	mass
	inte-
	grals
input	inpute←
	: an
	array
	of
	input
	values
	with 4
	values,
	Tave
	_line,
	b1 ←
	_line,
	pb22←
	_ls, line←
	shot,
	rhom←
	bar

Parameters	
mode_mf	Inpute : theo- retical model of halo mass func- tion to use. It can be set to sheth- Tormen (ST), Tinker (TR) or Press- Schecter
line_type	(PSC) Inpute : name of the line to compute. It can be set to CII, CO10, CO21, CO32, CO43, CO54, CO65

Returns

P_stoch(k)

Boltzmann constant in unit of erg K^-1

in unit of erg/s

CII

Since the following quantities do not depend on k, I am computing them once and pass them as input to this function to plot the power spectrum in units of micro $K^2 Mpc^3$

in unit of M_sun/Mpc^3

in unit of M_sun/Mpc^3

in unit of M_sun/Mpc $^{\wedge}$ 3Here is the call graph for this function:

Here is the caller graph for this function:

5.11.3 Variable Documentation

5.11.3.1 gb struct globals gb

5.12 ps_line_pt.c File Reference

Documented computation of Poisson shot noise and tree-level line power spectrum in real and redshift-space.

#include "header.h"
Include dependency graph for ps_line_pt.c:

Functions

- double PS_line (struct Cosmology *Cx, double k, double z, size_t line_id)
 Compute the real-space 3D power spectrum of emission lines in unit of micro K^2 Mpc^3.
- double PS_line_RSD (struct Cosmology *Cx, struct Cosmology *Cx_ref, double k, double mu, double z, size t line id)
 - Compute the redshift-space 3D power spectrum of emission lines in unit of micro K^2 Mpc³ as a function of wavenumber and angle w.r.t.
- int ps_line_multipoles_integrand (unsigned ndim, const double *x, void *p, unsigned fdim, double *fvalue)

 Compute the multipole moments of redshift-space power spectrum of emission lines in unit of micro K^2 Mpc^3, integrating over the angle w.r.t LOS, weighted by.
- double ps_line_multipoles (struct Cosmology *Cx, struct Cosmology *Cx_ref, double k, double z, size_←
 t line id, int ell)
- double PS_shot (struct Cosmology *Cx, double z, size_t line_id)

 Compute the Poisson shot noise in unit of micro K^2 Mpc^3.

Variables

· struct globals gb

5.12.1 Detailed Description

Documented computation of Poisson shot noise and tree-level line power spectrum in real and redshift-space.

Azadeh Moradinezhad Dizgah, November 4th 2021

NOTE TODO: Add the 1loop redshift-space power spectrum of the line. This requires implementing FFTLog, still in progress For the moment we stick to the tree-level expression of line power spectrum in redshift-space.

In summary, the following functions can be called from other modules:

- 1. PS_line() computes tree-level line power spectrum in real-space
- 2. PS_line_RSD() computes the tree-level line power spectrum in redshift-space, as a function of wavenumber and angle w.r.t LOS
- 3. ps_line_multipoles() computes the redshift-space multipoles of the line power spectrum
- 4. PS_shot() computes the poisson shot noise

5.12.2 Function Documentation

Compute the real-space 3D power spectrum of emission lines in unit of micro K² Mpc³.

Cx	Input←
	:
	Cosmology
	struc-
	ture
k	Input←
	:
	wavenum-
	ber in
	unit of
	1/Mpc.
Z	Input←
	: red-
	shift
line_id	Inpute←
	: id of
	the
	line
	to be
	con-
	sid-
	ered.

Returns

tree-level P_clust(k)

Here is the call graph for this function:

Compute the multipole moments of redshift-space power spectrum of emission lines in unit of micro $K^2 \text{ Mpc}^3$, integrating over the angle w.r.t LOS, weighted by.

Cx Input← : Cosmology struc- ture Cx_ref Input← : Ref- erence cos- mol- ogy struc- ture, needed for AP effect k Input← : wavenum- ber in unit of 1/Mpc. z Input← : red- shift		
structure Cx_ref Input : Reference cosmology structure, needed for AP effect k Input : wavenumber in unit of 1/Mpc. z Input ture tire, needed for AP effect i wavenumber in unit of 1/Mpc. z Input : red-	Cx	Input←
structure Cx_ref Input : Reference cosmology structure, needed for AP effect k Input : wavenumber in unit of 1/Mpc. z Input ture tire, needed for AP effect i wavenumber in unit of 1/Mpc. z Input : red-		:
ture Cx_ref Input : Ref- erence cos- mol- ogy struc- ture, needed for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-		Cosmology
Cx_ref Input : Ref- erence cos- mol- ogy struc- ture, needed for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-		struc-
: Reference cos- mology structure, needed for AP effect k Input : wavenumber in unit of 1/Mpc. z Input : red-		ture
erence cos- mol- ogy struc- ture, needed for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-	Cx_ref	Input←
cos- mol- ogy struc- ture, needed for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-		: Ref-
mology structure, needed for AP effect k Input : wavenumber in unit of 1/Mpc. z Input : red-		erence
ogy struc- ture, needed for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-		cos-
struc- ture, needed for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-		mol-
ture, needed for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-		ogy
needed for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-		struc-
for AP effect k Input : wavenum- ber in unit of 1/Mpc. z Input : red-		ture,
effect k Input : wavenumber in unit of 1/Mpc. z Input : red-		
k Input : wavenumber in unit of 1/Mpc. z Input : red-		
wavenumber in unit of 1/Mpc. z Input : red-		
ber in unit of 1/Mpc. z Input← : red-	k	Input←
ber in unit of 1/Mpc. z Input← : red-		:
unit of 1/Mpc. z Input← : red-		
1/Mpc. z Input← : red-		
z Input↔ : red-		
: red-		1/Mpc.
	Z	Input←
shift		
		shift

Parameters

line_id	Inpute← : id of the
	line
	to be
	con-
	sid-
	ered.
ell	Inpute←
	: the
	multi-
	pole

Returns

P_ell(k)

Here is the call graph for this function:

Here is the caller graph for this function:


```
5.12.2.4 PS_line_RSD() double PS_line_RSD (
    struct Cosmology * Cx,
    struct Cosmology * Cx_ref,
    double k,
    double mu,
    double z,
    size_t line_id )
```

Compute the redshift-space 3D power spectrum of emission lines in unit of micro K^2 Mpc 3 as a function of wavenumber and angle w.r.t.

LOS

Parameters

Сх	Input←
	: Caamala
	Cosmology
	struc-
	ture
Cx_ref	Input←
	: Ref-
	erence
	COS-
	mol-
	ogy
	struc-
	ture,
	needed for AP
	effect
k	
K	Input←
	·
	wavenum- ber in
	unit of
	1/Mpc.
m.,	-
mu	Inpute← : angle
	w.r.t
	LOS
Z	Input←
۷	: red-
	shift
line id	Inpute←
mic_ia	: id of
	the
	line
	to be
	con-
	sid-
	ered.

Returns

tree-level P_clust(k,mu)

to plot the power spectrum in units of micro $K^2 \, \text{Mpc}^3 \text{Here}$ is the call graph for this function:

Here is the caller graph for this function:

Compute the Poisson shot noise in unit of micro $K^2 Mpc^3$.

Cx	Input←
	:
	Cosmology
	struc-
	ture
Z	Input←
	: red-
	shift
line_id	Inpute←
	: id of
	the
	line
	to be
	con-
	sid-
	ered.

P_poisson in unit of micro K^2 Mpc^3

Boltzmann constant in unit of erg K^-1

in unit of erg/sHere is the call graph for this function:

Here is the caller graph for this function:

5.12.3 Variable Documentation

 $\textbf{5.12.3.1} \quad \textbf{gb} \quad \texttt{struct globals gb}$

5.13 survey_specs.c File Reference

Documented computation of some survey-related functions.

#include "header.h"
Include dependency graph for survey_specs.c:

Functions

- double shell_volume (struct Cosmology *Cx, double z, double fsky)
 - Compute the comoving volume of a survey covering redshift up to z.
- double kmin_val (struct Cosmology *Cx, double zmin, double zmax, double fsky)
 - Compute the size of fundumental mode corresponding to the comoving volume enclosed in a redshift bin [zmin,zmax].
- double kmax_Brent (double kmax, void *params)
 - Compute the maximum k-value used in Fisher forecast at each redshift bin.
- double kmax_Brent_solver (struct Cosmology *Cx, double z)

Variables

· struct globals gb

5.13.1 Detailed Description

Documented computation of some survey-related functions.

Azadeh Moradinezhad Dizgah, November 4th 2021

In summary, the following functions can be called from other modules:

- 1. shell_volume() computes the comoving volume of a survey covering redshift up to z
- 2. kmin val() computes the fundumental k-mode of a given redshift shell
- 3. kmax_Brent_solver() computes the kmax value such that kmax(z=0) = 0.15 h/Mpc

5.13.2 Function Documentation

Compute the maximum k-value used in Fisher forecast at each redshift bin.

We follow Giannantonio et al. to for determining kmax, and use gsl Brent solver to solve for kmax in each redshift bin. The goal is to compute the kmax such that at z=0, the variance of the matter fluctations has a fixed value, for instance 0,36. This can be achieved by solving Eq. 40 of Giannantonio: sigma^2(z) = int_kmin^kmax(z) dk k^2/(2pi^2) P_m(k,z) = 0.36. Instead of fixing sigma^2 to 0.36, I chose the variance such that kmax(z=0) = 0.15 h/Mpc. This corresponds to the variance of $\sim\!0.33$ at z=0 . In the forecast, I additionally always impose kmax<0.3 h/Mpc cut.

Parameters

Returns

kmax

Here is the call graph for this function:

Here is the caller graph for this function:


```
5.13.2.2 kmax_Brent_solver() double kmax_Brent_solver ( struct Cosmology * Cx, double z )
```

in short paper we used, 3.631872e-01; Here is the call graph for this function:

Compute the size of fundumental mode corresponding to the comoving volume enclosed in a redshift bin [zmin,zmax].

Parameters

Cx	Input↩
	:
	Cosmology
	struc-
	ture
zmin	Input←
	: min-
	imum
	red-
	shift
zmin	Input↩
	: max-
	imum
	red-
	shift
fsky	Input←
	: sky-
	coverage
	of teh
	survey

Returns

kmin

Here is the call graph for this function:


```
 \begin{array}{lll} \textbf{5.13.2.4} & \textbf{shell\_volume()} & \textbf{double shell\_volume (} \\ & & \textbf{struct Cosmology * } \textit{Cx,} \\ & & \textbf{double } \textit{z,} \\ & & & \textbf{double } \textit{fsky )} \end{array}
```

Compute the comoving volume of a survey covering redshift up to z.

Parameters

Сх	Input←
	:
	Cosmology
	struc-
	ture
Z	Input←
	: red-
	shift
fsky	Input↩
	: sky-
	coverage
	of teh
	survey

Returns

the comoving z-shell volume

Here is the call graph for this function:

Here is the caller graph for this function:

5.13.3 Variable Documentation

5.13.3.1 gb struct globals gb

5.14 utilities.c File Reference

Documented basic utility functions used by other modules of the code.

#include "header.h"
Include dependency graph for utilities.c:

Functions

double * make 1Darray (long size)

Allocate memory to a 1d array of type double and length size.

int * make_1D_int_array (long size)

Allocate memory to a 1d array of type integer and length size.

double ** make_2Darray (long nrows, long ncolumns)

Allocate memory to a 2d array of type double.

void free_2Darray (double **m)

Free the memory allocated to a 2d array.

double * init_1Darray (long n, double xmin, double xmax)

initialize a 1d array, with values in the range of [xmin,xmax] and evenely-space on linear scale

double * loginit 1Darray (long n, double xmin, double xmax)

initialize a 1d array, with values in the range of [xmin,xmax] and evenely-space on natural-log scale

double * log10init_1Darray (long n, double inc, double xmin)

initialize a 1d array, with values in the range of [xmin,xmax] and evenely-space on log10 scale

long count_lines_in_file (char *fname)

Count the number of lines of a file.

long count_cols_in_file (char *fname)

Count the number of columns of a file.

5.14.1 Detailed Description

Documented basic utility functions used by other modules of the code.

Azadeh Moradinezhad Dizgah, November 4th 2021

In summary, the following functions can be called from other modules:

- 1. make_1Darray() dynamically allocates memory to a 1d array
- 2. make 2Darray() dynamically allocates memory to a 2d array
- 3. free_2Darray() free the memory allocated to a 2d array
- 4. init_1Darray() initialize a 1d array with linear spacing
- 5. loginit_1Darray() initialize a 1d array with natural-log spacing
- 6. log10init_1Darray() initialize a 1d array with log10 spacing
- 7. count_lines_in_file() count the number of lines of a file
- 8. count_cols_in_file() count number of columns of a file
- 9. return_arr()

5.14.2 Function Documentation

Count the number of columns of a file.

Parameters

fname	Input←
	: file-
	name

Returns

long integer value of ncols

Count the number of lines of a file.

Parameters

fname	Input←
	: file-
	name

Returns

long integer value of nlines

Here is the caller graph for this function:


```
5.14.2.3 free_2Darray() void free_2Darray ( double ** m )
```

Free the memory allocated to a 2d array.

Parameters

m	Input↩
	: dou-
	ble
	pointer
	to the
	ele-
	ments
	of 2d
	array

Returns

void

initialize a 1d array, with values in the range of [xmin,xmax] and evenely-space on linear scale

· aramotor	
n	Input←
	: num-
	ber of
	ele-
	ments
xmin	Input←
	: start
	point
xmiax	Input←
	: end
	point

a pointer to a double type 1d array, with values initialized

Here is the call graph for this function:

Here is the caller graph for this function:

initialize a 1d array, with values in the range of [xmin,xmax] and evenely-space on log10 scale

Parameters

n	Input←
	: num-
	ber of
	ele-
	ments
xmin	Input←
	: start
	point
xmiax	Input←
	: end
	point

Returns

a pointer to a double type 1d array, with values initialized

Here is the call graph for this function:


```
5.14.2.6 loginit_1Darray() double * loginit_1Darray ( long n, double xmin, double xmax )
```

initialize a 1d array, with values in the range of [xmin,xmax] and evenely-space on natural-log scale

Parameters

n	Input←
	: num-
	ber of
	ele-
	ments
xmin	Input←
	: start
	point
xmiax	Input←
	: end
	point

Returns

a pointer to a double type 1d array, with values initialized

Here is the call graph for this function:

Here is the caller graph for this function:

Allocate memory to a 1d array of type integer and length size.

Parameters

size	Input←
	:
	length
	of the
	arrat

Returns

a pointer to an integer type 1d array

5.14.2.8 make_1Darray() double * make_1Darray (long
$$size$$
)

Allocate memory to a 1d array of type double and length size.

Parameters

i didiliotoro	
size	Input←
	:
	length
	of the
	array

Returns

a pointer to a 1d array

Here is the caller graph for this function:

Allocate memory to a 2d array of type double.

Parameters

nrows	Input←
	: num-
	ber of
	rows
	of the
	output
	array
ncols	Input←
	: num-
	ber of
	columns
	of the
	output
I	
	array

Returns

a double pointer to a double type 2d array

5.15 wnw_split.c File Reference

Documented wiggle-nowiggle split based on 3d Gaussian filter in linear k, and using the Eisentein-Hu wiggle-no wiggle template

```
#include "header.h"
Include dependency graph for wnw_split.c:
```


Functions

double pk_Gfilter_nw (struct Cosmology *Cx, double k, double k0)

Compute the nowiggle component of linear matter power spectrum using 3d Gaussian filter Computing the nowiggle component involves calculating an integral (Eq.

double pk_nw_integrand (double x, void *par)

Integrand to compute the nowiggle matter power spectrum.

double EH_PS_w (struct Cosmology *Cx, double k, double k0, double pk0)

Compute the Eisentein-Hu approximate wiggle component of linear matter power spectrum.

• double EH_PS_nw (struct Cosmology *Cx, double k, double k0, double pk0)

Compute the Eisentein-Hu approximate nowiggle component of linear matter power spectrum.

double T0 (struct Cosmology *Cx, double k)

Compute ????? AM:EDIT.

• double T (struct Cosmology *Cx, double k)

Compute the total baryon+CDM transfer function.

double Tt0 (struct Cosmology *Cx, double k, double x1, double x2)

Compute ????? AM:EDIT.

5.15.1 Detailed Description

Documented wiggle-nowiggle split based on 3d Gaussian filter in linear k, and using the Eisentein-Hu wiggle-no wiggle template

Azadeh Moradinezhad Dizgah, June 16th 2021

The algorithm closely follows Ref. arXiv:1509.02120 by Vlah et al. (described in Appendix A)

The following function will be called from other modules:

```
1. pk Gfilter nw()
```

5.15.2 Function Documentation

```
5.15.2.1 EH_PS_nw() double EH_PS_nw (
    struct Cosmology * Cx,
    double k,
    double k0,
    double pk0)
```

Compute the Eisentein-Hu approximate nowiggle component of linear matter power spectrum.

Parameters

i didilictors	
Cx	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
k	Input↩
	:
	wavenum-
	ber in
	unit of
	1/Mpc
k0	Input←
	:
	small-
	est
	value
	of k,
	i.e. the
	largest
	scale
pk0	Input←
	: value
	of the
	power
	spec-
	trum
	at the
	largest
	scale

Returns

P_nw(k) in unit of (Mpc)^{^3}

Here is the call graph for this function:

Here is the caller graph for this function:


```
5.15.2.2 EH_PS_w() double EH_PS_w ( struct Cosmology * Cx, double k, double k0, double pk0)
```

Compute the Eisentein-Hu approximate wiggle component of linear matter power spectrum.

Сх	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
k	Input←
	:
	wavenum-
	ber in
	unit of
	1/Mpc
k0	Input←
	:
	small-
	est
	value
	of k,
	i.e. the
	largest
	scale
pk0	Input←
	: value
	of the
	power
	spec-
	trum
	at the
	largest
	scale

```
P_w(k) in unit of (Mpc)<sup>3</sup>
```

Here is the call graph for this function:

Compute the nowiggle component of linear matter power spectrum using 3d Gaussian filter Computing the nowiggle component involves calculating an integral (Eq.

A3 of Vlah et al) Below, pk_nw_integrand()is the corresponding integrand and pk_Gfilter_nw() is the integrator

Cx	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
k	Input↩
	:
	wavenum-
	ber in
	unit of
	1/Mpc
k0	Input←
	:
	small-
	est
	value
	of k,
	i.e. the
	largest
	scale

broadband component in unit of (Mpc)^3

Here is the call graph for this function:

Here is the caller graph for this function:

5.15.2.4
$$pk_nw_integrand()$$
 double $pk_nw_integrand()$ double x , $void * par()$

Integrand to compute the nowiggle matter power spectrum.

X	Input←
	: inte-
	gration
	vari-
	able,
	k-
	values
par	values Input←
par	
par	Input←
par	Input← : inte-

```
integrand to be used in pk\_Gfilter\_nw() function integration variable x = logq
```

Here is the call graph for this function:

Here is the caller graph for this function:

Compute the total baryon+CDM transfer function.

Parameters

Returns

value of baryon+cdm transfer function

H0 value devided by the speed of light

approximate sound speed given in Eq. (26) of EHHere is the call graph for this function:

Here is the caller graph for this function:

Compute ????? AM:EDIT.

value of ???

approximate sound speed given in Eq. (26) of EHHere is the caller graph for this function:


```
5.15.2.7 Tt0() double Tt0 ( struct Cosmology * Cx, double k, double x1, double x2)
```

Compute ????? AM:EDIT.

Сх	Input←
	:
	pointer
	to
	Cosmology
	struc-
	ture
k	Input←
	:
	wavenum-
	ber in
	unit of
	1/Mpc.
x1	Input←
	: betac
	AM↩
	:WHAT
	WAS
	THIS
	VARI-
	ABLE???
x2	Input←
	: betac
	AM←
	:WHAT
	WAS
	THIS
	VARI-
	ABLE???

value of ???? x1 = alphac, x2 = betac

Here is the caller graph for this function:

