

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2023-2024(ODD)

Tutorial sheet - 3

Date: 16/10/2023

 $Course\ Code\ \&Title: 18 MAB 302 T-Discrete\ Mathematics\ for\ Engineers$

Year & Sem: III/V

Q. No	Questions	Answer Keys
1	Prove that $B^n = \{(x_{1,x_2,,x_n})/x_i \in B\}$ forms an abelian group with respect to addition modulo 2, where $B = \{0,1\}$.	
2	Define minimum distance of a code and calculate the minimum distance between the codes	Minimum distance between the codes = 1
	x = 11010, y = 10101, z = 10011	
3	Find the weight of the word 110101	4
4	Find the minimum distance between the code words 0000, 0110, 1011, 1100.	2
5	Find the code word generated by the encoding function $e: B^2 \to B^5$ with respect to the parity check matrix $H = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	00000 01011 10011 11000
6	Find the code words generated by the parity check matrix $ \begin{pmatrix} 1 & 1 & 01 & 0 & 0 \\ 1 & 0 & 10 & 1 & 0 \\ 1 & 1 & 10 & 0 & 1 \end{pmatrix}^{T} $ when the encoding function is $e: B^{3} \rightarrow B^{6}.$	000000 001011 010101 100111 011110 101100 110010
7	Find the code words for $w \in B_2$ assume that $G = \begin{pmatrix} 10110 \\ 01011 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8	Find the Hamming distance between $x = 11010$ and $y = 10101$	4
9	Given the generator matrix $\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$ corresponding to the encoding function $e: B^3 \to B^6$, find the corresponding parity check matrix and use it to decode the received words 110101,	Original message: 110, 001

	001111 and hence to find the original message.	
10	How many errors can be corrected in the encoded words 000 and 111?	0 or 1