제 3 장 블록암호 와 DES

□ 목 차

- ❖ 단순 DES
- ❖블록 암호 기법
- **DES**
- ❖블록 암호의 설계 원리
- ❖블록 암호의 운용 모드

암호학(cryptology)

암호시스템 3가지 영역

❖평문을 암호화하기 위한 연산자의 유형

- ▶ 전치(轉置, Transposition) : 평문의 각 원소를 재배열
- ▶ 치환(置換, Substitution) : 평문의 각 원소를 다른 원소로 사상

❖사용된 키의 수

- 관용키(conventional key) : single-key, symmetric, secret-key;송수신자가 같은 키를 사용
- 공개키(public key): two-key, asymmetric, public-key; 송수
 신자가 다른 키를 사용

❖평문 처리 방법

- ▶ 블록 암호화 (Block cipher) : 연산을 블록 단위로 처리
- ▶ 스트림 암호화 (Stream cipher) : 입력을 연속적으로 처리

블록 암호 기법

◆ 스트림 암호와 블록 암호 기법

❖스트림 암호

- ▶ 한번에 1비트 혹은 1 바이트
- ▶ Vigenere 암호, Vernam 암호

❖블록 암호

- ▶ 평문 블록 전체(64비트 전형적)
- 다양한 작동모드 사용
- 스트림 방식에 비해 응용 범위 넓음
- 대부분 네트워크 기반 관용 암호 방식에 사용

- □ 관용 암호 방식 (conventional key cryptosystem)
 - > 송수신자가 같은 키를 사용
 - single-key, symmetric-key, secret-key

Feistel 암호

□ 두 개 이상의 기본 암호 연속적 수행(치환, 순열(전치) 번갈

아 수행)

Feistel 암호

□ Horst Feistel (January 30, 1915–November 14, 1990) was a cryptographer who worked on the design of ciphers at IBM, initiating research that would culminate in the development of the Data Encryption Standard (DES) in the 1970s.

Feistel 암호

- □ 확산과 혼돈
- □ 매우 이상적인 암호는 암호문에 대한 모든 통계적 정보가 사용된 키와 독립적이어야 한다.
 - ❖ Claude Shannon 소개
 - ❖ 통계적 분석에 기초한 암호 해독 방지
- □ 확산(diffusion)
 - ❖ 평문의 통계적 구조가 암호문에 광범위하게 분산(평문과 암호문 관계 복잡)
 - ❖ 각 평문 숫자가 다수의 암호문 숫자 값에 영향
- □ 혼돈(confusion)
 - ❖ 암호문의 통계적 구조와 암호 키 값 사이의 관계 복잡
 - ❖ 주키를 이용한 암호문 생성 방법 복잡(주키 추론 어려움)

- □ n비트 블록처리: n비트 평문을 입력으로 n비트 암호문 출력
 - ❖역으로 n 비트 암호문 입력에 대해 n비트 평문 출력(역의 성립: reversible, 비특이형: nonsingular)
 - ❖2ⁿ 가지의 서로 다른 블록 존재 가능
- □ 일반적인 n 비트-n 비트 블록치환(n=4 인 경우)
 - ❖4비트 입력으로 16개 값 중 하나 선택하고, 내부 치환에 의하여 16개 출력 값 중 하나 대응하여 4비트 출력

□ 처리구조

- ❖ 길이 2w 비트인 평문 블록(L₀, R₀)분할 처리
- ❖ K로부터 유도된 n개의 키(K_i) 사용
- ❖ n회의 동일한 반복 구조 실행
- □ 하나의 반복 구조
 - ❖ 오른 쪽 반 R0에 반복 함수 F 적용
 - ❖ 왼쪽 반 L0와 XOR(치환 작용)
 - ❖ 좌우 양쪽 결과를 교환 (순열, 전치 작용)

□ 암호 알고리즘의 n번의 과정:

$$LE_1 = RE_0$$

$$RE_1 = LE_0 \oplus F(RE_0, K_1)$$

$$LE_2 = RE_1$$

$$RE_2 = LE_1 \oplus F(RE_1, K_2)$$

$$\star$$
 LE_i = RE_{i-1}

$$RE_i = LE_{i-1} \oplus F(RE_{i-1}, K_i)$$

- □ n번의 반복과정
- ᄀ 암호화 마지막 반복과정

$$\star$$
 LE₁₆ = RE₁₅

$$RE_{16} = LE_{15} \oplus F(RE_{15}, K_{16})$$

□ 암호 알고리즘의 i 번째 반복 과정은

- \star LE_i = RE_{i-1}
- $RE_{i} = LE_{i-1} \oplus F(RE_{i-1}, Ki)$

□ 역으로 정리하면

- $RE_{i-1} = LE_i$
- → 복호화는 (i-1) 번째 복호 결과를 위하여 (i)번째 입력 형식을 취함
- $RE_1 = LE_2$
- $LE_1 = RE_2 \oplus F(RE_1, K_2)$

- □ 암호화 마지막 반복
 - \star LE₁₆ = RE₁₅
 - $RE_{16} = LE_{15} \oplus F(RE_{15}, K_{16})$
- ◆ 복호화 과정
- □ 암호화과정의 역 순서 처리
- □ 첫 반복
 - $LD_1 = RD_0 = LE_{16} = RE_{15}$
 - $RD_1 = LD_0 \oplus F(RD_0, K_{16})$
 - $= LD_0 \oplus F(LE_{16}, K_{16})$
 - $= RE_{16} \oplus F(RE_{15}, K_{16})$
 - $= [LE_{15} \oplus F(RE_{15}, K_{16})] \oplus F(RE_{15}, K_{16})$

대칭 블록 암호 구현

- ❖ 블록크기(Block size): 블록 길이가 크다는 것은 더 강한 보안을 의미하지만(다른 조건이 같다는 가정 하에) 길이가 길면 암·복호화 속도는 떨어진다
- ❖ 키 길이(Key size): 키 길이가 길다는 것은 더 강한 보안을 의미하지만 암·복호화 속도는 떨어진다.
- ❖ 라운드 수(Number of rounds): 단일 과정으로는 보안이 부족하지만 라운드 수를 증가시켜 여러 번 수행하면 보안을 강화할 수 있다는 것 이 Feistel 암호의 핵심이다.
- ❖ 서브키 생성 알고리즘 : 이 알고리즘이 복잡하면 복잡할수록 암호해 독이 어려워진다.
- ❖ 반복 함수 : 이 함수 역시 복잡하면 복잡할수록 암호해독이 어려워진다.

DES (Data Encryption Standard)

- □ 전용 암호시스템의 필요성 대두
 - ❖ 타 그룹간의 통신에 불리 : 데이터 암호화 표준이 필요
- □ 미연방 정부에 의해 공개 암호 표준화 작업 진행
- □ 1977년 미 상무성의 국립 표준국(National Bureau of Standards)에서 연방 정보처리 표준 채택 46(FIPS PUB46)
- □ 64비트 평문, 56비트 키를 사용
- □ 치환과 전치 혼합방법, 블럭 암호방식, 관용암호방식

단순 DES[Simplified Data Encryption Standard]

□ 알고리즘

- 8비트 평문, 10비트 키
- 8비트 암호문 생성
- ❖ 초기순열(IP)
- ❖ 순열, 치환 이용 f_k
- ❖ 순열 함수 SW
- ❖ 역 순열(IP-1)
- □ 암호문
 - ❖ IP-1(f_{k2}(SW(f_{k1}(IP(평문)))))
- □ 복호문
 - ❖ IP-1(f_{k1}(SW(f_{k2}(IP(암호문)))))

S-DES를 위한 키 생성

- \square K₁ = P8(Shift(P10(key)))
- \square K₂ = P8(Shift(Shift(P10(key)))

S-DES 키의 생성(1/4)

- \square $K_1 = P8(Shift(\underline{P10(key)}))$
- \square P10 = (k₃, k₅, k₂, k₇, k₄, k₁₀, k₁, k₉, k₈, k₆)

1 2 3 4 5 6 7 8 9 10

P10
3 5 2 7 4 10 1 9 8 6

- ❖예)
- ◆10 □ ≡ key = (10100 00010)
- P10(key) = (10000 0 1100)

(2/4)

- $\square K_1 = P8(\underline{Shift(P10(key))})$
- □ (<u>Shift(P10(key))</u>): LS-1[키의1st 5비트] & LS-1[키의 2nd 5비트]
 - ❖ 첫 번째 다섯 비트와 두 번째 다섯 비트 좌로 순환 이동
 - ❖ 1비트 좌측 순환이동
- □ Shift = $(k_5, k_2, k_7, k_4, k_3, k_1, k_9, k_8, k_6, k_{10})$

(3/4)

```
예제)
             12345 67890
        = (10000001100)
   ❖P10
  LS-1 = (0000111000)
\square K_1 = P8(Shift(P10(key))) = P8(LS-1)
\square P8(LS-1) = P8(0 0 0 0 1 1 1 0 0 0)
   ❖10 비트에서 8비트 선택 치환
                P8
```

7 4 8

5 10

(4/4)

- $\square K_2 = \underline{P8(Shift(Shift(P10(key))))} = \underline{P8(Shift(LS-1))} = P8(LS-2)$
- - ❖ LS-1의 결과에 2비트 좌측 순환 이동
 - * LS-1: (0 0 0 0 1 1 1 0 0 0)
- $\square K_2 = P8(LS-2)$ = $P8(0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1)$

P8
6 3 7 4 8 5 10 9

$$\Box K_2 = (0 \ 0 \ 0 \ 0 \ 1 \ 1)$$

Quiz 1

□ 키의 값이 1100101010103우 S-DES에서의 2개의 세션키(K1, K2) 값은 얼마인가??

```
P10

3 5 2 7 4 10 1 9 8 6
```


P8

6 3 7 4 8 5 10 9

Quiz 2

□ 키의 값이 1 0 1 0 1 0 1 1 0 1 인 경우 S-DES에서의 2개의 세션 키(K₁, K₂) 값은 얼마인가??

S-DES 암호 알고리즘

함수 f_k(1/5)

- □ 순열, 치환 함수 조합
- ☐ L(Left)
 - ❖ 왼쪽 4비트
- □ R(Right)
 - ❖ 오른쪽 4비트
- □ F 함수(확장 순열)

E/P 4 1 2 3 2 3 4 1

(2/5)

□ 확장 순열(E/P); 4비트→ 8비트

E/P 4 1 2 3 2 3 4 1

- R = (0 1 1 0)
- ❖ 결과 = (001111100)

■ XOR

- ❖ 서브키 K₁(8bit)⊕ 확장 순열 결과(8bit)
- $\star K_1 = (k_{11}, k_{12}, k_{13}, k_{14}, k_{15}, k_{16}, k_{17}, k_{18})$
- \Rightarrow 결과 = $(o_1, o_2, o_3, o_4, o_5, o_6, o_7, o_8)$

(3/5)

S-Box

- **❖** XOR결과 = $(o_1, o_2, o_3, o_4, o_5, o_6, o_7, o_8)$
- ❖ 4비트 입력, 2비트 출력

$$\diamond$$
 입력 = $(o_1, o_2, o_3, o_4, o_5, o_6, o_7, o_8)$

- ❖ S0: 1,4 요소 → 행, 2,3 요소 → 열
- ❖ S1: 5,8 요소 → 행, 6,7 요소 → 열

(4/5)

□ 예제)

- ❖ P = (0100 0111) 이라면
- ❖ S0: 1,4 요소 → 행, 2,3 요소 → 열
 - ✓ 행 00(0), 열 10(2)
- ❖ S1: 5,8 요소 → 행, 6,7 요소 → 열
 - ✓ 행 01(1), 열 11 (3)

$$0 \quad 1 \quad 2 \quad 3$$

$$0 \quad -1 \quad 0 \quad 3 \quad 2$$

$$0 \quad 2 \quad 1 \quad 0$$

$$2 \quad 0 \quad 2 \quad 1 \quad 3$$

$$3 \quad 1 \quad 3 \quad 2$$

(5/5)

□ P4 순열

- □ P4출력은 함수 F의 출력이 된다.
- □ F의 출력(4비트) ⊕ L(4비트)
- □ 스위치 함수(SW)
 - ❖ f_k는 왼쪽 4비트만 변경
 - ❖ SW이용 왼쪽, 오른쪽 교환
- \Box 두 번째 f_k 에서는 K_2 만 다름

Quiz

- □ S-DES에서의
 - ❖ SK1 키의 값이 1 0 1 0 1 0 1 1 이고
 - ❖ 평문의 값이 1 0 1 0 1 1 0 0 인 경우
- □ 첫번째 라운딩 후의 결과 값은 얼마인가??

■ S-DES에서의

- ❖ SK1 키의 값이 1 0 1 0 1 0 1 1 이고
- ❖ 평문의 값이 10101100인 경우

첫번째 라운딩 후의 결과 값은 얼마인가??

```
IP

2 6 3 1 4 8 5 7

❖ X = (

❖ IP(X) = (
```


***** (S0 = S1 = 2 1

, 열

- ❖ So 박스 : 행
- ❖ S1 박스 : 행 , 열
- ❖ P4 이전 :
- ❖ P4 이후 :
- ❖ E/P 이후 :
- ❖ P4 출력() ⊕ L() =

레포트

- □ S-DES(2 라운드)에서의
 - ❖키의 값이 1 1 1 0 0 0 1 0 0 1 이고
 - ❖ 평문의 값이 0 1 1 1 0 1 1 0 인 경우
- □ 2라운드 후의 암호문의 값은 얼마인가??

S-DES의 분석

- □ Brute-force 공격 가능
- □ 10비트 키 2¹⁰= 1024
- □ 기지 평문/암호문 쌍
 - ❖ 평문: (p₁, p₂, p₃, p₄, p₅, p₆, p₇, p₈)
 - ❖ 출력 암호문: (c₁, c₂, c₃, c₄, c₅, c₆, c₇, c₈)
- □ 기지 평문 공격: 각 ci는 pj와 kj의 다항식 함수gi
- □ 암호 알고리즘은 10개의 미지수를 갖는 8개의 비선형 방정식
- □ 알고리즘에서 각각의 순열과 합 연산은 선형 사상
- □ S박스를 통하여 비선형성을 도출
 - ❖ 선형 사상을 비선형 사상으로 변경함으로써 암호해독을 난해하게 하는 효과

레포트

- □ S-DES(2 라운드)에서의
 - ❖키의 값이 1 0 1 0 1 0 1 1 0 1 이고
 - ❖ 평문의 값이 1 1 1 1 0 0 1 0 인 경우
- □ 암호문의 값은 얼마인가??