Program na05: Tridiagonal Systems

Overview: Solve tridiagonal systems of equations.

Introduction: Copy the module **LUdecomp3** to solve a tridiagonal system of equations. It should contain subroutines LUdecomp3 and LUSolve3. Do problems 4 and 9 on pages 77 and 78. Write a separate subroutine for each problem, but call all three subroutines from the main program. In addition, write a function **triMultiply(c,d,e,x)** to multiply Ax, where A is the tridiadonal coefficient matrix represented by the vectors \mathbf{c} , \mathbf{d} , e. Use triMultiply to check your work.

Input: Do all input from a file **na05in.txt**. Systems that are read in should consist of three diagonals in the order superdiagonal, main diagonal, subdiagonal, constant vector, i.e. **e**, **d**, **c**, **b**.

Output: Output to the standard output. The output for each problem should be:

```
<Title. E.g. Problem 4, page 77>
e = <pri>print the superdiagonal>
d = <pri>the main diagonal>
c = <print the subdiagonal>
b = < print the constant vector > T
x = <solution vector>T
Check: max(abs(Ax-b)) = < print the value >
```

Extra for experts: Instead of writing vectors c, d, and e, write a subroutine to output the augmented matrix [A|b] using only the vectors c, d, and e. That is, do not actually construct A, but just print the zeros. Make it look nice.

Checklist:

Folder: na05<lastname>

Module files: matIO.py, LUdecomp3.py

Main program file: na05.py

Input file: na05in.txt