

Energija, okoliš i održivi razvoj

Energijske tehnologije FER 2008.

Gdje smo:

- Organizacija i sadržaj predmeta
- 2. Uvodna razmatranja
- 3. O energiji
- 4. Energetske pretvorbe i procesi u termoelektranama
- 5. Energetske pretvorbe i procesi u hidroelektranama
- 6. Energetske pretvorbe i procesi u nuklearnim el.
- 7. Geotermalna energija
- 8. Potrošnja električne energije
- 9. Prijenos i distribucija električne energije
- 10. Energija Sunca
- 11. Energija vjetra
- 12. Biomasa
- 13. Gorivne ćelije i ostale neposredne pretvorbe
- 14. Skladištenje energije
- 15. Energija, okoliš i održivi razvoj

Sadržaj predavanja

- utjecaji energijskih transformacija i objekata na okoliš
 - zrak
 - voda
 - tlo
- klimatske promjene
- vrednovanje raznorodnih utjecaja na okoliš
 - energijski lanac
 - eksterni trošak
- održivi razvoj

Utjecaji energetskih postrojenja na okoliš

Normalni pogon

- zrak onečišćujuće tvari, otpadna toplina
- voda onečišćujuće tvari, otpadna toplina
- tlo suho/mokro taloženje, odlaganje otpada
- ostali utjecaji
 - buka
 - vizualna degradacija
 - elektromagnetski utjecaji
 - izravan utjecaj na žive organizme (3 ptice/ MW_{VE})

Nesreće (HE, NE...)

Mjesto	Godina	Broj poginulih	Uzrok
Benxihu Colliery, Kina	1942	1549	eksplozija ugljene prašine
Banqiao brana, Kina	1975	26000 +145000	tajfun Nina
Machhu II, Indija	1979	2500	pucanje brane HE
Hirakud, Indija	1980	1000	pucanje brane HE
Cubatao, Brazil	1984	508	nafta - požar
Černobil, Ukraina	1986	56 +tisuće na dugi rok	nuklearna nesreća
Asha-ufa, Siberia	1989	600	curenje i požar UNP-a
Dobrinja, Jugoslavija	1990	178	rudnik ugljena
Durunkha, Egipat	1994	580	spremište nafte i munja
Warri, Nigeria	1998	>500	curenje iz naftovoda i požar

Banqiao brana, China

Broj smrtnih slučajeva po TWh električne energije

Health risks of energy systems

Onečišćenje zraka

- Transport, elektrane i industrija
- Izvor poznat
- Utjecaj složen

Sumporni dioksid (SO₂)

Dušični oksidi (NO_X)

Source: EPA National Air Quality and Emissions Trends Report, 1996.

Source:EPA National Air Quality and Emissions Trends Report, 1996.

Onečišćenje zraka iz elektrana

- 'kiseli' spojevi SO₂ i NO_X s OH⁻ radikalom tvore u zraku sumpornu i dušičnu kiselinu
 - promjena pH vrijednosti (zakiseljavanje) tla i voda
 - negativan utjecaj na biljke i životinje (prvenstveno ribe)
- čestice
- teški metali
- radionuklidi
- poseban problem CO₂

Ponašanje efluenata oslobođenih u atmosferu

Utjecaji onečišćenja zraka

- taloženje kiselih spojeva i radionuklida na tlo i vodu
- utjecaji na zdravlje ljudi
- utjecaji na poljoprivredu
- utjecaji na građevine

Figure 1. Number of Deaths by Cause (1989)

Source: Curtic Moore, "Tyring Needlaschy: Sidenass and Death Due to Thergy-Related Air Pollution", Kanawable thergy Policy Project Issue Sizet #0, February, 1897. Unline at solstice that organized with pr

10

Prostorne i vremenske skale onečišćivača u atmosferi

Zadatak 15.1 Emisija CO₂ iz TE Plomin 2

Snaga TE Plomin II iznosi 210 MW, učinkovitost 35%, a faktor opterećenja 0,68. Ogrjevna moć korištenog ugljena je 25 MJ/kg, (maseni) udio ugljika u ugljenu iznosi 63%, a udio sumpora 1%.

Kolika se masa ugljičnog i sumpornog dioksida godišnje ispusti u okoliš?

Pretpostaviti da je izgaranje potpuno.

```
P = 210 \text{ MW}

m = 0.68

\eta = 0.35

H = 25 \text{ MJ/kg}

\omega(C) = 63\%

\omega(S) = 1\%
```

Zadatak 15.1 - rješenje

$$\begin{split} E_{el} &= 210 \cdot 0,68 \cdot 365 \cdot 24 \cdot 3600 = 4.50 E09 \text{ MWs} \\ E_{t} &= E_{el}/\eta \\ \textbf{m}_{g} &= E_{t}/H = E_{el}/\eta H = 4.50 E09 / 25 \cdot 0,35 = \textbf{514668 t} \\ \textbf{m(C)} &= m_{g} \cdot 0,63 = \textbf{324241 t} \end{split}$$

Pri potpunom izgaranju ugljika vrijedi:

$$1 \text{ kmol C} + 1 \text{ kmol O}_2 = 1 \text{ kmol CO}_2$$

Zamjenom broja kilomola odgovarajućom masom tvari (1 kmol = μ kg), dolazi se do relacije:

12 kg C + 32 kg
$$O_2$$
 = 44 kg CO_2

jer relativna masa **ugljika** iznosi **12**, **kisika** 2.16 = 32, a **ugljik-dioksida** 12 + 2.16 = 44.

Zadatak 15.1 - rješenje

Dijeljenjem izraza s 12 dobivamo količinu CO₂ u kg koja nastaje potpunim izgaranjem 1 kg ugljika:

1 kg C + 2,667 kg
$$O_2$$
 = = 3,667 kg CO_2

Masa je ugljičnog dioksida godišnje ispuštena u okoliš jednaka:

$$m(S) = m_g \cdot 0.01 = 5146.7 t$$

Pri potpunom izgaranju sumpora vrijedi:

$$1 \text{ kg S} + 1 \text{ kg O}_2 = 2 \text{ kg SO}_2$$

Masa je sumpornog dioksida godišnje ispuštena u okoliš jednaka:

$$5146,7\cdot10^3\cdot2 = 10293,4 t$$

Zadatak 15.2 Emisija CO₂ iz elektrane na plin

Snaga elektrane na plin u kombiniranom plinsko-parnom ciklusu iznosi 200 MW, učinkovitost 44%, a faktor opterećenja 0,5. Ogrjevna moć plina je 36 MJ/m³. Pretpostaviti da plin u potpunosti čini metan te da je izgaranje potpuno. Kolika se masa ugljičnog dioksida godišnje ispusti u okoliš?

$$P = 200 \text{ MW}$$

 $m = 0.5$
 $\eta = 0.44$
 $H = 36 \text{ MJ/kg}$
 $\omega(CH_4) = 100\%$

$$\begin{split} E_{el} &= 200 \cdot 0,5 \cdot 365 \cdot 24 \cdot 3600 \text{ MWs} \\ E_t &= E_{el}/\eta \\ V_g &= E_t/H = E_{el}/\eta H = 200 \cdot 0,5 \cdot 365 \cdot 24 \cdot 3600 \ /36 \cdot 0,44 = \\ &= 199,1 \text{ e6 m}^3 = V(CH_4) \\ CH_4 &+ 2O_2 \ -> CO_2 + 2H_2O \end{split}$$

Zadatak 15.2 - rješenje

Kilomol bilo kojeg plina ima uvijek isti volumen (pri jednakom tlaku i jednakoj temperaturi)

$$V_q = V(CH_4) = V(CO_2) = 199,1 \text{ e6 m}^3$$

Vrijedi:
$$\mu_{CO_2} : \nu_{\mu} = m(CO_2) : V(CO_2)$$

Masa je ugljičnog dioksida ispuštena u okoliš u godini dana jednaka:

$$m(CO_2) = \frac{\mu_{CO_2} \cdot V(CO_2)}{v_{\mu}} =$$

$$= \frac{44 \cdot 199,1 \cdot 10^6}{22,4} = 391,1 \cdot 10^6 kg =$$

$$= 391100t$$

2008.

Source: UNEP.

2008.

Onečišćenje vode

- industrija, poljoprivreda i proizvodnja energije
- proizvodnja energije primarno toplinski zagađuje vodu
- hidroelektrane, specifično:

smanjivanje koncentracije kisika

ugrožavanje vodenih ekosustava

Onečišćenje tla

- industrija, energetika, komunalni otpad...
- energetika onečišćuje tlo izravno...
 - pepeo, gips, mulj
- ...i neizravno: taloženjem onečišćujućih tvari iz zraka

Površina potrebna za 100MW elektranu, uz faktor opterećenja = 1 (km²/MW)

Onečišćenje - ostalo

- Biološki direktni utjecaj na vrste (ptice i vjetroelektrane?, hidroelektrane i ribe...)
- Svjetlosno onečišćenje
- Onečišćenje bukom
- Vizualni utjecaj na okoliš
- Elektromagnetsko
 - Nedovoljno dokaza o utjecaju
 - Ograničenja određena na osnovi bioloških procesa (~1 nT)
 - 1 mT u Velikoj Britaniji
 - Dalekovod 400 kV na
 - 10 m: ~3 µT
 - 100 m: ~0,1 µT

Dalekovodi – električno i magnetsko polje

Električno polje

Magnetsko polje

Onečišćenje – ostalo (3)

Radioaktivnost

- Industrija, medicina i korištenje nuklearne energije
- "Poseban" tretman zbog puno razloga
- Primjer pobjede straha i iracionalnog nad činjenicama i znanosti

Sources of Exposure Medical 53 mRem (15%) **Nuclear Fuel Cycle** 0.05 mRem (0.014%) **Consumer Products** Inhaled Radon 10 mRem (3%) 200 mRem (55%) Natural Radio-Nuclides in body 39 mRem (11%) Cosmic 27 mRem (7%) Cosmogenic 1 mRem (0.3%) Terrestial 28 mRem (8%) Total Effective Dose Equivalent = 360 mRem

Učinak staklenika

- učinak staklenika preduvjet razvoja života na Zemlji
- staklenički plinovi izmiješani u cjelokupnom sloju atmosfere čine zračni toplinski omotač oko Zemlje koji sprečava gubitak toplinske energije u svemir
- prirodni staklenički plinovi
 - vodena para (H₂O)
 - ugljični dioksid (CO₂)
 - metan (CH₄)
 - didušik oksid (N₂O)
- bez omotača koji sadrži stakleničke plinove, površina Zemlje bi bila preko 30°C stupnjeva hladnija nego što je danas
 - danas prosjek oko 14°C
 - bez stakleničkih plinova oko -19°C

Klimatske promjene

- promjena klime se odigrava u ciklusima i bez utjecaja čovjeka
- sve više dokaza da utjecaj čovjeka izaziva velike i brze promjene klime
- razumijevanje utjecaja i posljedica slabo, ali moguće posljedice goleme
- nema globalnog konsenzusa o nužnosti i razini djelovanja

Temperatura tijekom posljednjih 100.000 godina

temperatura određena na temelju mjerenja u ledenoj kori na Grenlandu

zanimljivo: tijekom posljednjih 10000 godina (razvoj ljudske civilizacije) temperatura je bila iznimno stabilna!

Source: J.Pr. Fest, J. Journi, et al. Climate and atmospheric holisty of the good 400 Old years from the Yearth loc core in Angeloise. Nature 309 (3,6,8m), pp. 409-406, 1000.

Observed Arctic Temperature, 1900 to Present

Staklenički plinovi obuhvaćeni međunarodnim sporazumima

- ugljični dioksid CO₂,
- metan CH₄,
- didušikov oksid N₂O,
- tetrafluorometan CF₄,
- heksafluoroetan C₂F₆,
- sumporni heksafluorid SF₆,
- hidrofluorougljici HFC (CHF₃, C₂H₂F₄, C₂H₄F₂)

vodena para (H₂O) i troposferski ozon (O₃) nisu obuhvaćeni sporazumima zbog kratkog vremena zadržavanja u atmosferi

Plinovi koji pojačavaju učinak staklenika <u>i</u> oštećuju ozonski omotač

- klorofluorougljici CFC
 (CFCl₃, CF₂Cl2, CClF₃, C₂F₃Cl₃, C₂F₄Cl₂, C₂F₅Cl)
- ugljikov tetraklorid CCl₄
- metilni kloroform CH₃CCl₃
- klorofluorougljikovodici HCFC (C₂H₃FCl₂, C₂H₃F₂Cl)
- haloni CClF₂Br i CF₃Br

Doprinosi snazi zračenja koje dolazi na Zemlju

Najvažniji uzroci pojačanom učinku staklenika

- izgaranje fosilnih goriva
- proizvodnja cementa

ostali doprinosi:

- stočarstvo
- odlaganje otpada
- sječa šuma
- poljoprivredna proizvodnja

Izvori ugljičnog dioksida (CO₂)

Source: EPA National Air Quality and Emissions Trends Report, 1996.

Međunarodna tijela i sporazumi

- IPCC (Intergovernmental Panel on Climate Change međuvladin panel za klimatske promjene
 - nema sumnje da prosječna temperatura raste
 - 95%-tna vjerojatnost da je uzrok antropogen
 - posljednji put kad su polarne kape bile toplije nego sada tijekom duljeg vremena (prije 125.000 godina), došlo je do porasta razine mora za 4 do 6 metara
- međunarodni ugovori
 - UNFCCC (United Nations Framework Convention on Climate
 Change) ograničenje emisija na razini iz 1990.
 - Protokol iz Kyota smanjenje emisija u odnosu na baznu godinu, samo za razvijene i tranzicijske zemlje

Zaključno o klimatskim promjenama

- u dva sljedeća desetljeća, očekuje se zagrijavanje od 0,2°C u desetljeću
- kad bi se ovog časa emisije stakleničkih plinova ograničile na razini iz 2000, zagrijavanje bi se nastavilo s 0,1°C u desetljeću

- i da se koncentracije stakleničkih plinova stabiliziraju, rast prosječne temperature i razine mora nastavio bi se stoljećima
- stabilizacija emisija stakleničkih plinova skupa i mukotrpna
- pitanje političke volje

Kako međusobno uspoređivati utjecaje na okoliš različitih tehnologija i izvora energije?

- temeljita usporedba čitavog 'energijskog lanca'
- energijski lanac svi procesi 'ispred' i 'iza' elektrane
 - proizvodnja opreme
 - izgradnja elektrane i pratećih postrojenja
 - pogon elektrane (pridobivanje energenta, transport, energetske pretvorbe, ostali procesi u elektrani)
 - razgradnja elektrane
- svaki od navedenih dijelova energijskog lanca uzrokuje negativne posljedice po okoliš

Kako međusobno uspoređivati utjecaje na okoliš različitih tehnologija i izvora energije? (2)

- utjecaji na okoliš proizvodnje opreme i izgradnje elektrane slični su kod svih energetskih opcija
 - dominantan je utjecaj emisija uzrokovanih potrošnjom energije
- pogon i razgradnja elektrane jako ovise o korištenom gorivu
 - 'novi' obnovljivi u pogonu praktički nemaju utjecaja na okoliš
 - zbog najvećeg potencijalnog utjecaja, razgradnja najbolje definirana za NE
 - postojeće lokacije nastoje se što dulje koristiti

Emisija CO₂, izgradnja, pogon, priprema goriva (kg/kWh)

Kako međusobno uspoređivati utjecaje na okoliš različitih tehnologija i izvora energije? (3)

- utjecaji na okoliš brojni su i raznorodni
- što je gore onečišćenje zraka spojevima sumpora, vizualna degradacija krajolika, mala vjerojatnost teške nesreće u nuklearnoj elektrani ili porast koncentracije CO₂?
- da bi se različite veličine uspoređivale, treba ih svesti na 'zajednički nazivnik'
- danas je najprihvaćeniji 'nazivnik' novac

Eksternalije

- pojavljuju se u slučajevima kada proizvodnja ili potrošnja nekog dobra nanosi drugima nehotične troškove ili koristi
- posljedica ponašanja jednog privrednog činitelja na dobrobit drugog, pri čemu se taj učinak ne odražava u novčanoj vrijednosti ili tržišnim transakcijama
- mogu biti pozitivne (eksterne uštede) i negativne (eksterni troškovi)

• Eksterni trošak:

- eksterni trošak trošak koji nije uključen u ekonomsku bilancu poduzeća
- trošak pridružen nekoj šteti u okolišu, ukoliko uzročnik te štete nije financijski kažnjen, predstavlja eksterni trošak
- studija ExternE dala je temeljite procjene eksternih troškova svih energetskih opcija

Eksterni trošak (2)

Usporedba eksternih troškova (ExternE, €c/kWh)

ugljen	2-15
mazut	3-11
plin	1-4
NE	0,2-0,7
biomasa	0,2-3
hidro	0,1-1
vjetar	0,05-0,25

Eksterni troškovi u elektroenergetici

- usporedba različitih tehnologija
- usporedba različitih razvojnih strategija
- izbor lokacije za novu elektranu
- analizi kolike bi troškove i dobiti uzrokovali određeni programi smanjenja emisija
- izbor kontrolne tehnologije
- određivanje visine emisijskih pristojbi za pojedine polutante

Održivi razvoj

- 1987 Bruntland report "Our common future" (Svjetska komisija za okoliš i razvoj):
- zadovoljavanje sadašnjih potreba, bez ugrožavanja mogućnosti budućih generacija da zadovolje svoje potrebe
- ključne postavke
 - današnje potrebe ne smiju ugroziti mogućnost budućih generacija za zadovoljenje vlastitih potreba
 - postoji izravna veza između gospodarstva i okoliša
 - potrebno je zadovoljiti potrebe siromašnih, u svim narodima
 - da bi se zaštitio okoliš, ekonomski uvjeti najsiromašnijih moraju se poboljšati
 - u svim aktivnostima potrebno je uzeti u obzir njihov utjecaj na buduće generacije

Održivi razvoj i energetika

Broj stanovnika u svijetu

Broj stanovnika u urbanim centrima

Potrošnja električne energije po stanovniku (kWh/god)

Snaga elektrana u svijetu

Dokazane svjetske rezerve prirodnog plina

Prednosti i nedostaci različitih energetskih opcija

+

مرابع المرابع المرابع		a :a alla a
 prirodni plin 	niže emisije po kWh	opskrba
ugljen	opskrba	okoliš
• NE	okoliš, opskrba	proliferacija stav javnosti
obnovljivi	okoliš, opskrba	gustoća energije nepredvidivost

Stav javnosti prema energetici

NIMBY - Not In My Back Yard

BANANA - Build Absolutely Nothing Anywhere Near Anybody

TANSTAAFL - There Ain't No Such Thing As A Free Lunch

- ozbiljno pitanje
- važno:
 - informiranje,
 - politika,
 - mediji,
 - znanje.

Zaključak

- sve ljudske djelatnosti utječu na okoliš
- elektroenergetski objekti su 'točkasti' pa pružaju dobru mogućnost smanjenja tih utjecaja
- da bi se energetske tehnologije i korišteni energenti mogli međusobno usporediti, potreban je zajednički nazivnik
- koncept eksternog troška je danas široko prihvaćen
- prema kvantitativnim pokazateljima, najpovoljniji po okoliš su VE i NE
- nema idealne energetske opcije