

Институт информационных технологий, математики и механики Кафедра математического обеспечения и суперкомпьютерных технологий

Направление подготовки: «Прикладная математика и информатика» Профиль подготовки: «Вычислительные методы и суперкомпьютерные технологии»

Выпускная квалификационная работа Тема проекта:

«Технологии VR/AR для 3D-реконструкции помещений: алгоритмы сканирования, обработки изображений и восстановления поверхностей на основе фотографических данных»

	студент группы 3823М1ПМвм Розанов Д.И
Научный руководитель:	
lоцент кафедры математического обеспечения	
і суперкомпьютерных технологий	
	Борисов Н.А.

Постановка задачи. Цель работы.

Цель:

■ Реализация ПО для реконструкции комнаты с использованием фотографических данных

Области применения:

- Реконструкция комнаты в VR
 - **✓** Криминалистика:

Воссоздание трехмерной среды, сильно приближенной к реальной для исследования ее с разных углов и перспектив

Возможность более детально изучить место преступления без физического присутствия на месте происшествия

- ✓ Обучение
- ✓ Архитектура
- Применение в робототехнике

Понимание окружения, необходимое для навигации, планирования маршрута и взаимодействия с объектами

Для достижения поставленной цели было выполнено:

- Проведен обзор научной литературы:
 - ✓ Технологии AR для реконструкции помещений: PlaneTracking
 - ✓ Методы распознавания объектов: плотный поток Фарнебака и стереоректификация с использованием stereoBM
 - ✓ Алгоритмы кластеризации и классификации объектов из облака точек
- Выполнена программная реализация изученных методов:
 - ✓ Реконструкция помещения и обработка данных с использованием серии фотографии из центра комнаты в 3DUnity: стены, пол и потолок
 - ✓ PlaneTracking
 - ✓ Плотный поток Фарнебака и стереоректификация с использованием stereoBM
 - **✓** Метод кластеризации DBSCAN
 - ✓ Метод классификации, основанный на анализе геометрических характеристик и применении операции свертки
 - ✓ Алгоритм классификации с использованием глубокой сверточной нейронной сети

PlaneTracking

Постановка задачи:

- ■Выполнить программную реализацию для поиска вертикальных и горизонтальных поверхностей в AR
- ■При нажатии на горизонтальную плоскость добавлять на сцену сферу; при нажатии на вертикальную плоскость добавлять куб

PlaneTracking (результаты)

Постановка задачи:

- ■Выполнить программную реализацию для поиска вертикальных и горизонтальных поверхностей в AR
- ■При нажатии на горизонтальную плоскость добавлять на сцену сферу; при нажатии на вертикальную плоскость - добавлять куб
 - [/] Программная реализация работает корректно

Правильно распознает вертикальные и горизонтальные плоскости, используя технологии дополненной реальности AR.

Метод плотного потока

Постановка задачи:

- Выполнить программную реализацию для сканирования объектов с фотографии
 - Применить метод оптического потока

Вход:

■ Две фотография с некоторым шагом

Оптический поток методом Фарнебека: calcOpticalFlowFarneback

Выход:

оптический поток между двумя изображениями: v_x, v_y горизонтальная, вертикальная компонента скорости

√(*u*, *v*) описывает смещение пикселя из img1 в img2

Преобразование векторов v_x, v_y в полярные координаты

Выход:

- **■** Модуль вектора (длина): $\sqrt{u^2 + v^2}$
- lacktriangle Угол вектора в полярных координатах: $arctanrac{v}{u} \in [0;2\pi)$

Метод Canny для обнаружения границ не изображении

Метод триангуляции: поиск координат пикселей в пространстве

В – шаг между двумя стереоизображениями

$$w = w_1 = w_2$$
 – ширина изображения

$$h = h_1 = h_2$$
 – высота изображения

f – фокусное расстояние

Х, У - координаты объекта

Z – расстояние до объекта (глубина)

$$Z = \frac{B \cdot f}{\Delta x}$$

$$X = \frac{Z(x - \frac{W}{2})}{f}$$

$$Y = \frac{Z(y - \frac{h}{2})}{f}$$

- **✓** *x, y* пиксель
- ✓ Δx изменение положения пикселя на фотографии после шага В
- **✓** Если Z подставить в формулу для X и Y, то они не зависят от f

Метод плотного потока (вычисление 3D-точек сцены)

Постановка задачи:

- Выполнить программную реализацию для сканирования объектов с фотографии
 - Применить метод оптического потока

Вход:

■ Две фотография с некоторым шагом

- O положение камеры 1 (начало системы координат для 1-ой камеры)
- O` положение камеры 2 (начало системы координат для 2-ой камеры)
- А точка 3D пространства на пересечении лучей из камеры О и О`

- √ Координаты т.А (X,Y,Z) в системе координат левой камеры
- √ Координаты т.А (X',Y',Z') в системе координат правой камеры.

- $\blacksquare \widetilde{X} \bowtie \widetilde{X}$ проекция т. А на изображение камеры O и камеры O`соответственно
- $\blacksquare \Delta x$ диспаратность разница между координатами проекции точки \tilde{X} и \tilde{X} ` на изображение левой и правой камеры

$$\Delta \mathbf{x} = x - x$$
` $\Delta \mathbf{x} = \sqrt{x^2 + y^2}$ смещение пикселя между двумя кадрами

$$Z = rac{B \cdot f}{\Delta x}$$
, $X = rac{Z\left(x - rac{W}{2}
ight)}{f}$, $Y = rac{Z\left(y - rac{h}{2}
ight)}{f}$

Метод основанный на стереоректификации и stereoBM

Постановка задачи:

- Выполнить программную реализацию для сканирования объектов с фотографии
 - Применить метод , основанный на стереоректификации и stereoBM

Вход:

■ Две фотография с некоторым шагом

Чтение изображений в оттенках серого

Стереоректификация

- **✓**Поиск ключевых точек на изображениях: Oriented FAST and Rotated BRIEF
- **✔** Сопоставление ключевых точек: BFMatcher
- **✓** Выбираем координаты соответствующих ключевых точек
- ✔ Поиск фундаментальной матрицы $x_1^T F x_2 = 0$: findFundamentalMat
- _, <матрица преобразований>_{1,2} = cv2.stereoRectifyUncalibrated(<ключ. точки img1>, <ключ. точки img2, <фундаментальная матрица>, img_size)
- 2. stereoRectify_img1 = cv2.warpPerspective(img1, <матрица преобразований>₁, img_size)

Построение карты глубины

Метод StereoBM

Выход:

карта диспаратности

- √ Карта диспарантности содержит информацию о различиях между точками на двух изображениях
- ✔ Можем определить меру сдвига между пикселями
- **✓** Имеем представление о глубине объектов в сцене
- ✓ Чем больше значение диспаратности для пикселя, тем дальше находится соответствующий объект от камеры

Метод плотного потока; Метод стереоректификация + StereoBM

(результаты)

Метод "плотного потока" отработал корректно и правильно выделил смещенные объекты на всех сериях стереоизображений

Требуется предварительная правильная обработка изображения перед поиском карты глубины, т.к. в методе не учитываются характеристики камеры при стереоректификации

✓ В дальнейшем будем применять метод "плотного потока"

Результаты работы метода плотного потока

Левый кадр

рис.1: Пример1: результат сканирования комнаты

Метод плотного потока; Метод стереоректификация + StereoBM (результаты)

Результаты работы метода плотного потока

Левый кадр

Правый кадр

рис.2: Пример2: две фотографии с некоторым шагом

рис.3: Пример2: результат сканирования

Метод кластеризации DBSCAN

✓ Для дальнейшей реконструкции помещения необходимо определить отсканированные объекты

Постановка задачи:

■ Выполнить программную реализацию для кластеризации облака точек

Вход:

- $\mathbf{\epsilon}$: радиус ε -окрестности
- lacktriangledown: минимальное количество точек кластера
- $\rho(x, y)$: симметричная функция расстояния
- Р: облако точек, полученные после применения метода плотного потока для сканирования объектов
- **У** Выполнив кластеризацию, разбиение облака точек на однородные подобласти, мы упростим процесс классификации распознанных объектов

Метод кластеризации DBSCAN (результаты)

рис.4: результат применения метода плотного потока

рис.5: результат кластеризации

Метод кластеризации DBSCAN (результаты)

рис.6: результат кластеризации

Классификация на основе геометрических характеристик

Постановка задачи:

- Для классификации необходимо применить метод, основанный на анализе пространственных характеристик
- Применить операции свертки для извлечения характеристик
- ✓ Анализ расстояния точек до центра объекта позволяет определить его углы.
 - Построение графика расстояний позволяет выявить углы, как точки с наибольшим удалением от центра, в отличие от точек на ребрах, имеющих меньшие расстояния.
 - Построив график расстояния от номера точки i, мы можем выделить количество точек, подозрительных на угловые
 - Более это заметно на графике расстояния от угла относительно центра: угловым точкам, соответствуют на графике значения локальных экстремумов

Вычисление центра многоугольника

$$\overline{x} = \frac{x_1 + \dots + x_n}{n}$$

$$\overline{y} = \frac{y_1 + \dots + y_n}{n}$$

Вычисление вектора расстояний до центра

Координаты точек облака: $(x_i; y_i)$ i = 1, ..., k

$$\mathbf{d_i} = (x_i - \overline{x})^2 + (y_i - \overline{y})^2$$

График (i, d_i)

Нормировка d_i к диапазону от 0 до 1

Вычисление вектора полярных углов

$$\Delta \mathbf{x} = \overline{\mathbf{x}} - \mathbf{x_i}$$

$$\Delta \mathbf{y} = \overline{\mathbf{y}} - \mathbf{y_i}$$

$$\alpha_i = \text{np.arctan2}(\Delta x, \Delta y)$$

График (α_i , d_i)

Применение свертки

$$\widetilde{d_i} = \sqrt{\left(\left(1-\widetilde{\alpha_i}^2\right)^2+1\right)-1}$$

$$\widetilde{\alpha_i}$$
 отмасштабированный угол к диапазону от 0 до 1024

$$\checkmark$$
 Строим график $(\widetilde{\alpha_i};\widetilde{d_i})$

Классификация (результаты)

Постановка задачи:

- Для классификации необходимо применить метод, основанный на анализе пространственных характеристик
- Применить операции свертки для извлечения характеристик

рис.7: Пример «сгенерированный квадрат»

рис.8: График 1 (i, d_i)

рис.10: График 3 $(\widetilde{\alpha_i}, \widetilde{d_i})$

Классификация (результаты)

Постановка задачи:

- Для классификации необходимо применить метод, основанный на анализе пространственных характеристик
- Применить операции свертки для извлечения характеристик

рис.11: Пример «сгенерированный пятиугольник»

рис.12: График 1 (i, d_i)

рис.13: График 2 (α_i , d_i)

рис.14: График 3 $(\widetilde{\alpha_i}, \widetilde{d_i})$

Классификация (результаты)

Постановка задачи:

- Для классификации необходимо применить метод, основанный на анализе пространственных характеристик
- Применить операции свертки для извлечения характеристик

рис.15: Пример «сгенерированная окружность»

рис.16: График 1 (i, d_i)

рис.17: График 2 (α_i , d_i)

*_____*__15

рис.18: График 3 $(\widetilde{\alpha_i}, \widetilde{d_i})$

Классификация (результаты)

Постановка задачи:

- Для классификации необходимо применить метод, основанный на анализе пространственных характеристик
- Применить операции свертки для извлечения характеристик

рис.19: Пример «квадрат из облака точек»

рис.20: График 1 (i, d_i)

рис.21: График 2 (α_i , d_i)

рис.22: График 3 $(\widetilde{\alpha_i}, \widetilde{d_i})$

Классификация (результаты)

Постановка задачи:

- Для классификации необходимо применить метод, основанный на анализе пространственных характеристик
- Применить операции свертки для извлечения характеристик

рис.23: Пример «квадрат из облака точек после предобработки»

Зависимость расстояния до центра от угла (радианы)

1.0
0.9
0.8
0.7
0.6
0.4
0.4
0.7
Угол (радианы)

рис.24: График 1 (i, d_i)

рис.25: График 2 (α_i, d_i)

рис.26: График 3 $(\widetilde{\alpha_i}, \widetilde{d_i})$

Классификация (результаты)

Постановка задачи:

- Для классификации необходимо применить метод, основанный на анализе пространственных характеристик
- Применить операции свертки для извлечения характеристик

рис.27: Пример «окружность из облака точек после предобработки»

рис.28: График 1 (i, d_i)

рис.29: График 2 (α_i , d_i)

рис.30: График 3 $(\widetilde{\alpha_i}, \widetilde{d_i})$

Практическое применение (реконструкция помещения)

Применение ранее разработанных программных решений позволяет выполнить реконструкцию помещений, а именно получить ее трёхмерную модель повышенной детализации

Постановка задачи:

■ Выполнить программную реализацию реконструкции сцены с фотографии, либо отдельных ее элементов

Вход:

■ Одно изображение помещения

Выход:

- ■3D облако точек
- ■3D модель, состоящая из полигонов

Оценка карты глубины D

- \blacksquare Для получения $D=(D_{x,y})$ используем модель глубокого обучения GLPN (CNN)
- Модель GLPN предобучена на «NYU Depth V2»
 - «NYU Depth V2» включает в себя сцены различных помещений
 - 1449 пар изображений RGB-глубина 640 × 480 пкс.
- lacksquare Выход: $D=(D_{x,y})\in R^{w imes h}$

3D - облако точек / 3D - облако граничных точек

■ На основе RGBD-изображения I_z :

$$\mathbf{z}_{x^*,y^*} = \mathbf{D}_{x^*,y^*}$$

$$z_{x^*,y^*} = D_{x^*,y^*}$$
 $x = \frac{(x^* - c_{x^*}) \cdot z_{x^*,y^*}}{f}$

$$y = \frac{\left(y^* - c_{y^*}\right) \cdot \mathbf{z}_{x^*,y^*}}{f}$$

- Выход: $P = \{p_i\} = \{(x_i, y_i, z_i): i = \overline{0, n-1}\}$
 - В мн-ве $P = \{p_i\}$ можем оставить только точки, принадлежащие границам объектов

Нормали к полигонам mesh-сетки:

- lacktriangle estimate_normals(): для каждой точки $oldsymbol{p}^*$
 - Находит её к ближайших соседей
 - \blacksquare Вычисляется точка \widetilde{p}
 - Вычисляется матрица ковариации $C = (C_{i,j}) \in R^{3\times 3}$ Вычисление с.ч. и с.в. матрицы $C: \lambda_1, \lambda_2, \lambda_3; v_1, v_2, v_3$

Итог:
$$n^* = v_1$$

$$\widetilde{p} = \frac{1}{k} \sum_{i=0}^{k} p_i$$

 $C = \sum_{i=1}^{k} (p_i - \widetilde{p}) (p_j - \widetilde{p})^T$

Технологии VR/AR для 3D-реконструкции помещений: алгоритмы сканирования, обработки изображений и восстановления поверхностей на основе фотографических данных

Практическое применение

(реконструкция помещения)

Применение ранее разработанных программных решений позволяет выполнить реконструкцию помещений, а именно получить ее трёхмерную модель повышенной детализации

Постановка задачи:

■ Выполнить программную реализацию реконструкции сцены с фотографии, либо отдельных ее элементов

Вход:

■ Одно изображение помещения

Выход:

- ■3D облако точек
- ■3D модель, состоящая из полигонов

Алгоритм Пуассона (Reconstruct surface)

- Вход:
 - $lue{lue{p}}$ Предобработанное облако точек: $\widetilde{P}\subseteq P=\{m{p}_i=(x_i,y_i,z_i)\colon\ m{i}=\overline{0,n-1}\}$
 - **—** Множество векторов нормалей к полигону меш сетки в каждой точке $p_i \in \widetilde{P}$:

$$N = \{n_i : i = \overline{0, n-1}\}$$

- Решение:
- ✔ Векторное поле нормалей \vec{V} ✔ Индикаторная функция $\chi(p)$: $\chi(p_i) = \begin{cases} 1, p_i \in intM \\ 0, p_i \notin R^3 \setminus M \end{cases}$
- ✓ Лемма:

Пусть дано тело M с границей ∂M , χ_M — индикаторная функция M. $\overrightarrow{N_{\partial M}}(p)$ — нормаль к поверхности, направленная внутрь, в точке $p \in \partial M$. Сглаживающий фильтр $ilde{F}_{p}(q) = F(q-p)$, переводящий в точку р. Тогда градиент сглаженной индикаторной функции равен векторному полю, полученному сглаживанием поля нормалей поверхности:

$$\nabla (\chi \tilde{F})|_{q_0} = \int_{\partial M} \tilde{F}(q_0 - p) \overrightarrow{N_{\partial M}}(p) dp$$

$$\mathbf{\nabla} \chi = \overrightarrow{V}$$
 $\nabla \nabla \chi = \Delta \chi = \nabla \overrightarrow{V}$

✓ Уравнение Пуассона с неизвестной функцией $\chi(p)$:

$$\Delta \chi = \nabla \overrightarrow{V}$$

Реконструкция помещения (результаты)

Реконструкция помещения (результаты)

Заключение

В ходе выполнения данной работы были успешно реализованы и исследованы следующие методы и алгоритмы:

✓ PlaneTracking:

- выполнена программная реализация для технологии отслеживания плоскостей в дополненной реальности (AR)
- ✓ Метод оптического потока.
 Метод стереоректификация + stereoBM:
- используются для отслеживания объектов и реконструкции помещения
- среди рассмотренных подходов метод оптического потока оказался наиболее эффективным
- **✓** DBSCAN. Классификация на основе геометрических характеристик:
- метод кластеризации используются для дальнейшего упрощения классификации отсканированных объектов

- **✓** Метод реконструкции поверхности Пуассона:
- применён для восстановления трёхмерных моделей, сохраненных в файл.
- модель реконструированной помещения в дальнейшем можно загрузить в любой 3D-движок

СПАСИБО ЗА ВНИМАНИЕ!

3823М1ПМвм Розанов Д.И.