```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read csv("student score.csv")
print(df.head())
   Unnamed: 0 Gender EthnicGroup
                                            ParentEduc
                                                           LunchType
TestPrep
               female
                              NaN
                                    bachelor's degree
                                                            standard
none
            1 female
                          group C
                                         some college
                                                            standard
1
NaN
               female
                                      master's degree
                                                            standard
2
                          group B
none
                          group A associate's degree free/reduced
3
            3
                 male
none
                                         some college
                 male
                          group C
4
none
  ParentMaritalStatus PracticeSport IsFirstChild NrSiblings
TransportMeans
              married
                          regularly
                                                          3.0
                                              yes
school bus
                          sometimes
                                                          0.0
1
              married
                                              yes
NaN
               single
                          sometimes
                                                          4.0
                                              yes
school bus
3
              married
                                                          1.0
                              never
                                               no
NaN
              married
                          sometimes
                                                          0.0
                                              yes
school bus
  WklyStudyHours
                  MathScore
                             ReadingScore
                                           WritingScore
0
             < 5
                         71
                                       71
                                                      74
1
          5 - 10
                         69
                                       90
                                                      88
2
                                       93
             < 5
                         87
                                                      91
3
          5 - 10
                         45
                                       56
                                                      42
          5 - 10
                                                      75
                         76
                                       78
df.describe()
         Unnamed: 0
                       NrSiblings
                                      MathScore ReadingScore
WritingScore
count 30641.000000 29069.000000 30641.000000
                                                 30641.000000
30641.000000
mean
         499.556607
                         2.145894
                                      66.558402
                                                     69.377533
68.418622
std
         288.747894
                         1.458242
                                      15.361616
                                                     14.758952
```

```
15.443525
           0.000000
                          0.000000
                                         0.000000
                                                       10.000000
min
4.000000
25%
         249.000000
                          1.000000
                                        56.000000
                                                       59.000000
58.000000
50%
         500.000000
                          2,000000
                                        67.000000
                                                       70,000000
69.000000
75%
         750.000000
                          3.000000
                                        78.000000
                                                       80,000000
79,000000
max
         999.000000
                          7.000000
                                       100.000000
                                                      100.000000
100.000000
df.isnull().sum()
Unnamed: 0
                           0
Gender
EthnicGroup
                        1840
ParentEduc
                        1845
LunchType
                           0
TestPrep
                        1830
ParentMaritalStatus
                        1190
PracticeSport
                         631
IsFirstChild
                         904
NrSiblings
                        1572
TransportMeans
                        3134
WklyStudyHours
                         955
MathScore
                           0
                           0
ReadingScore
WritingScore
                           0
dtype: int64
# DROP unnamed column
df = df.drop("Unnamed: 0", axis = 1)
df.head()
   Gender EthnicGroup
                                                 LunchType TestPrep \
                                 ParentEduc
0
   female
                   NaN
                         bachelor's degree
                                                  standard
                                                               none
1
   female
              group C
                              some college
                                                  standard
                                                                NaN
2
   female
              group B
                           master's degree
                                                 standard
                                                               none
3
     male
                        associate's degree
                                             free/reduced
              group A
                                                               none
4
                              some college
     male
              group C
                                                  standard
                                                               none
  ParentMaritalStatus PracticeSport IsFirstChild
                                                    NrSiblings
TransportMeans
              married
                           regularly
                                                            3.0
                                               yes
school bus
1
              married
                           sometimes
                                               yes
                                                            0.0
NaN
                                                            4.0
                single
                           sometimes
                                               yes
school bus
```

3	married		never	no	1.0
NaN					0.0
4 school_bus	married	50	metimes	yes	0.0
schoot_bus					
2 3 5	< 5 - 10 < 5 - 10 - 10	71 69 87 45 76	ReadingScore 71 90 93 56 78		ore 74 88 91 42 75
Gender EthnicGroup ParentEduc LunchType TestPrep ParentMarita PracticeSport IsFirstChild NrSiblings TransportMea WklyStudyHou MathScore ReadingScore WritingScore dtype: int64	rt d ans urs e	0 0 1845 0 1830 1190 631 904 1572 3134 955 0 0			

Gender Distribution

```
plt.figure(figsize=(4, 4))
ax = sns.countplot(data=df, x="Gender")
ax.bar_label(ax.containers[0])
plt.title("Gender distribution")
plt.show()
```

From the above chart we coclude that females are more in numbers

```
gb =
df.groupby("ParentEduc").agg({"MathScore":"mean","ReadingScore":"mean"
, "WritingScore":"mean"})
print(gb)
```

	MathScore	ReadingScore	WritingScore
ParentEduc			
associate's degree	68.365586	71.124324	70.299099
bachelor's degree	70.466627	73.062020	73.331069
high school	64.435731	67.213997	65.421136
master's degree	72.336134	75.832921	76.356896
some college	66.390472	69.179708	68.501432
some high school	62.584013	65.510785	63.632409
<pre>plt.figure(figsize= sns.heatmap(gb, ann plt.title("Relation plt.show()</pre>	ot = True,		

Relation between Student Performance and Parent education

from the above chart we can conclude that education of parent contribute significantly in the performance of students

```
gb1 =
df.groupby("ParentMaritalStatus").agg({"MathScore":"mean", "ReadingScor
e":"mean", "WritingScore":"mean"})
plt.figure(figsize=(6, 6))
sns.heatmap(gb1, annot = True, fmt=".1f", cmap="YlGnBu")
plt.title("Relation between Student Performance and Parent Marital
status")
plt.xticks(rotation=45)
plt.show()
```

Relation between Student Performance and Parent Marital status

From the above chart we can conclude that there was no or neglible impact on Parents marital status and student performance

The below charts are to check outliers

```
sns.boxplot(data = df, x= "MathScore")
plt.show()
```



```
sns.boxplot(data = df, x= "ReadingScore")
plt.show()
```



```
sns.boxplot(data = df, x= "WritingScore")
plt.show()
```



```
print(df["EthnicGroup"].unique())
[nan 'group C' 'group B' 'group A' 'group D' 'group E']
```

Distribution of Ethnic Group

```
groupA = df.loc[(df["EthnicGroup"] == "group A")].count()
groupB = df.loc[(df["EthnicGroup"] == "group B")].count()
groupC = df.loc[(df["EthnicGroup"] == "group C")].count()
groupD = df.loc[(df["EthnicGroup"] == "group D")].count()
groupE = df.loc[(df["EthnicGroup"] == "group E")].count()

l = ["group A", "group B", "group C", "group D", "group E"]
mlist =
[groupA["EthnicGroup"], groupB["EthnicGroup"], groupC["EthnicGroup"], groupD["EthnicGroup"], groupE["EthnicGroup"]]

plt.figure(figsize=(5,5))
plt.pie(mlist, labels=l, autopct="%1.2f%%",
colors=plt.cm.viridis(np.linspace(0, 1, len(l)))) # Using viridis
colormap
plt.title("Distribution of Ethnic Groups")
plt.show()
```

Distribution of Ethnic Groups


```
ax = sns.countplot(data = df, x = "EthnicGroup", hue="EthnicGroup",
palette=["#FF6347", "#4682B4", "#32CD32", "#FFD700", "#9370DB"])
ax.bar_label(ax.containers[0])
```

[Text(0, 0, '9212')]

Impact of Lunch Type (Standard vs. Free/Reduced) on Performance

```
# Group by LunchType and calculate the mean scores
lunch performance = df.groupby('LunchType').agg({'MathScore':
'mean', 'ReadingScore': 'mean', 'WritingScore': 'mean'}).reset index()
print("Average Scores by Lunch Type:")
print(lunch performance)
Average Scores by Lunch Type:
      LunchType MathScore ReadingScore WritingScore
                 58.862332
                               64.189735
   free/reduced
                                             62.650522
       standard 70.709370
                               72.175634
                                             71.529716
plt.figure(figsize=(8, 5))
sns.barplot(x='LunchType', y='MathScore', data=lunch performance,
label='Math Score', color='skyblue')
sns.barplot(x='LunchType', y='ReadingScore', data=lunch performance,
label='Reading Score', color='lightgreen')
sns.barplot(x='LunchType', y='WritingScore', data=lunch_performance,
```

```
label='Writing Score', color='salmon')

plt.title("Average Test Scores by Lunch Type")
plt.xlabel("Lunch Type")
plt.ylabel("Average Score")
plt.legend(labels=['Math', 'Reading', 'Writing'], loc='upper left',
bbox_to_anchor=(1.02, 1))
plt.show()
```


Effect of practice sport frequency on academic performance.

```
# Group by PracticeSport and calculate mean scores
sport performance = df.groupby('PracticeSport').agg({'MathScore':
'mean','ReadingScore': 'mean','WritingScore': 'mean'}).reset index()
# Display the results
print("Average Scores by Practice Sport Frequency:")
print(sport performance)
Average Scores by Practice Sport Frequency:
  PracticeSport MathScore ReadingScore WritingScore
0
          never
                64.171079
                               68.337662
                                             66.522727
1
      regularly 67.839155
                               69.943019
                                             69,604003
2
      sometimes 66.274831
                               69.241307
                                             68.072438
sport melted = sport performance.melt(id vars='PracticeSport',
                                      value vars=['MathScore',
'ReadingScore', 'WritingScore'],
```

```
var name='Subject',
                                      value name='AverageScore')
# Plotting
plt.figure(figsize=(12, 6))
# Single barplot with hue
sns.barplot(x='PracticeSport', y='AverageScore', hue='Subject',
data=sport melted, palette=['skyblue', 'lightgreen', 'salmon'])
# Adding labels
plt.title('Average Test Scores by Sport Practice Frequency')
plt.xlabel('Practice Sport Frequency')
plt.ylabel('Average Score')
# Move legend outside the plot
plt.legend(title='Subject', loc='upper left', bbox_to_anchor=(1.02,
1), borderaxespad=0)
plt.tight layout()
plt.show()
```


how transport mode affects student performance.

```
'WritingScore': 'mean'
}).reset index()
print("Average Scores by Transport Mode:")
print(transport performance)
Average Scores by Transport Mode:
  TransportMeans MathScore ReadingScore WritingScore
                                69.472364
         private 66.511354
                                              68.509593
      school bus 66.674636
1
                             69.446206
                                              68.492351
transport melted =
transport_performance.melt(id_vars='TransportMeans',
                                              value vars=['MathScore',
'ReadingScore', 'WritingScore'],
                                              var name='Subject',
value name='AverageScore')
# Plotting
plt.figure(figsize=(12, 6))
# Bar plot with hue
sns.barplot(x='TransportMeans', y='AverageScore', hue='Subject',
data=transport melted, palette=['skyblue', 'lightgreen', 'salmon'])
# Adding labels
plt.title('Average Test Scores by Transport Mode')
plt.xlabel('Transport Mode')
plt.ylabel('Average Score')
# Move legend outside the plot
plt.legend(title='Subject', loc='upper left', bbox to anchor=(1.02,
1), borderaxespad=0)
plt.xticks(rotation=45) # Rotate x-ticks for better readability
plt.tight layout()
plt.show()
```


Score Distribution by Test Prep Status

```
# Plotting
plt.figure(figsize=(15, 5))
# Math Score by Test Prep
plt.subplot(1, 3, 1)
sns.boxplot(x='TestPrep', y='MathScore', data=df, palette='pastel')
plt.title('Math Score Distribution by Test Prep Status')
# Reading Score by Test Prep
plt.subplot(1, 3, 2)
sns.boxplot(x='TestPrep', y='ReadingScore', data=df, palette='muted')
plt.title('Reading Score Distribution by Test Prep Status')
# Writing Score by Test Prep
plt.subplot(1, 3, 3)
sns.boxplot(x='TestPrep', y='WritingScore', data=df, palette='bright')
plt.title('Writing Score Distribution by Test Prep Status')
plt.tight layout()
plt.show()
C:\Users\Abhishek upadhyay\AppData\Local\Temp\
ipykernel 11396\2289196061.py:6: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `x` variable to `hue` and set
`legend=False` for the same effect.
```

```
sns.boxplot(x='TestPrep', y='MathScore', data=df, palette='pastel')
C:\Users\Abhishek upadhyay\AppData\Local\Temp\
ipykernel_11396\2289196061.py:11: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x='TestPrep', y='ReadingScore', data=df, palette='muted')
C:\Users\Abhishek upadhyay\AppData\Local\Temp\
ipykernel_11396\2289196061.py:16: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x='TestPrep', y='WritingScore', data=df, palette='bright')
```


Correlation Matrix for Scores

```
correlation matrix = df[['MathScore', 'ReadingScore',
'WritingScore']].corr()
print("Correlation Matrix:")
print(correlation matrix)
Correlation Matrix:
              MathScore
                         ReadingScore
                                       WritingScore
MathScore
               1.000000
                             0.817825
                                            0.807118
                                            0.952584
ReadingScore
               0.817825
                             1.000000
WritingScore
               0.807118
                             0.952584
                                            1.000000
```

```
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, fmt=".2f",
cmap='coolwarm', linewidths=1, linecolor='black')
plt.title('Correlation Matrix of Scores')
plt.show()
```


Score by Parental Education Level

```
education_performance = df.groupby('ParentEduc').agg({
   'MathScore': 'mean',
   'ReadingScore': 'mean',
   'WritingScore': 'mean'
}).reset_index()
```

```
print("Average Scores by Parental Education Level:")
print(education performance)
Average Scores by Parental Education Level:
           ParentEduc MathScore ReadingScore WritingScore
   associate's degree 68.365586
                                     71.124324
                                                    70.299099
    bachelor's degree 70.466627
                                                    73.331069
1
                                     73.062020
          high school 64.435731
2
                                     67.213997
                                                    65.421136
      master's degree 72.336134
some college 66.390472
3
                                     75.832921
                                                    76.356896
4
                                     69.179708
                                                    68.501432
5
     some high school 62.584013 65.510785
                                                    63.632409
education melted = education_performance.melt(id_vars='ParentEduc',
                                              value vars=['MathScore',
'ReadingScore', 'WritingScore'],
                                              var name='Subject',
value name='AverageScore')
plt.figure(figsize=(12, 6))
sns.barplot(x='ParentEduc', y='AverageScore', hue='Subject',
data=education_melted, palette=['skyblue', 'lightgreen', 'salmon'])
plt.title('Average Test Scores by Parental Education Level')
plt.xlabel('Parental Education Level')
plt.ylabel('Average Score')
plt.legend(title='Subject', loc='upper left', bbox to anchor=(1.02,
1), borderaxespad=0)
plt.xticks(rotation=45)
plt.tight layout()
plt.show()
```


Score Distributions by Gender and Ethnic Group

```
g = sns.FacetGrid(df, col="EthnicGroup", row="Gender",
margin_titles=True, height=3, aspect=1.5)

g.map_dataframe(sns.histplot, x='MathScore', color='skyblue',
kde=True)

g.set_axis_labels("Math Score", "Frequency")
g.set_titles(col_template="{col_name}", row_template="{row_name}")
g.tight_layout()

plt.show()
```

