Produto escalar

 Permite estabelecer as chamadas propriedades métricas, essenciais no estudo dos vectores e da geometria (euclideana): norma (comprimento), ângulo, ortogonalidade e projecção ortogonal.

Definição: Sejam os vectores de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n) \in \vec{b} = (b_1, b_2, b_3, ..., b_n)$$

Chama-se produto escalar de \vec{a} por \vec{b} , designando-se por $\vec{a} \cdot \vec{b}$, ao escalar real dado por

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 + \dots + a_n b_n = \sum_{i=1}^n a_i b_i$$

 A designação de produto escalar para esta operação tem a ver com o facto de ela ter como resultado um escalar (real) e não um vector.

Propriedades: Sejam os vectores \vec{x} , \vec{y} e \vec{z} de \mathbb{R}^n e $\alpha \in \mathbb{R}$

- **a**) Propriedade *comutativa*: $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
- **b**) Propriedade distributiva em relação à adição de vectores:

$$\vec{X} \cdot (\vec{y} + \vec{z}) = \vec{X} \cdot \vec{y} + \vec{X} \cdot \vec{z}$$

- **c**) Propriedade *homogénea*: $\alpha(\vec{x} \cdot \vec{y}) = (\alpha \vec{x}) \cdot \vec{y} = \vec{x} \cdot (\alpha \vec{y})$
- d) Propriedade positiva:

$$\vec{x} \cdot \vec{x} > 0 \iff \vec{x} \neq \vec{0}$$
, em que $\vec{0}$ é o vector nulo

e)
$$\vec{x} \cdot \vec{x} = 0 \iff \vec{x} = \vec{0}$$

$$\mathbf{f}) \ \vec{0} \cdot \vec{x} = \vec{x} \cdot \vec{0} = 0$$

Norma de um vector

• Espaço unidimensional, \mathbb{R} :

$$\|\vec{a}\| = \|(a)\| = |a| = \sqrt{a^2} = (\vec{a} \cdot \vec{a})^{1/2}$$

• Espaço bidimensional, \mathbb{R}^2 (teorema de Pitágoras):

$$\|\vec{a}\| = \|(a_1, a_2)\| = \sqrt{a_1^2 + a_2^2} = (\vec{a} \cdot \vec{a})^{1/2}$$

• Espaço tridimensional, \mathbb{R}^3 (teorema de Pitágoras):

$$\|\vec{a}\| = \|(a_1, a_2, a_3)\| = \sqrt{a_1^2 + a_2^2 + a_3^2} = (\vec{a} \cdot \vec{a})^{1/2}$$

Definição: Norma de um vector

Seja o vector de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n)$$

Define-se *norma* de \vec{a} , designando-se por $\|\vec{a}\|$, o escalar real dado por

$$\|\vec{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2 + \dots + a_n^2} = (\vec{a} \cdot \vec{a})^{1/2}$$

• A *norma* do vector \vec{a} é, por vezes, designada por *módulo* de \vec{a} , designando-se por $|\vec{a}|$.

Propriedades: Seja o vector \vec{x} de \mathbb{R}^n e $\alpha \in \mathbb{R}$

a) Propriedade positiva:

$$\|\vec{x}\| > 0 \iff \vec{x} \neq \vec{0}$$
, em que $\vec{0}$ é o vector nulo

b)
$$\|\vec{x}\| = 0 \iff \vec{x} = \vec{0}$$

$$\mathbf{c}) \ \|\alpha \vec{\mathbf{x}}\| = |\alpha| \|\vec{\mathbf{x}}\|$$

- Chama-se vector unitário a qualquer vector com norma igual a um.
- A qualquer vector não nulo a é possível associar dois vectores unitários, com a mesma direcção de a (paralelos ou colineares) e sentidos opostos, que são designados por versores da direcção definida por a.

Definição: Versor da direcção definida por um vector

Dado o vector não nulo de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n)$$

chama-se *versor* da direcção definida por \vec{a} a qualquer *vector unitário* com a mesma direcção do vector \vec{a} , isto é, aos vectores

$$\vec{u}_{\vec{a}} = \frac{\vec{a}}{\|\vec{a}\|}$$

se tiver o mesmo sentido do vector \vec{a} , e

$$\vec{u}_{-\vec{a}} = -\frac{\vec{a}}{\|\vec{a}\|}$$

no caso de possuir o sentido oposto ao de \vec{a} .

 Na definição anterior, o processo que corresponde à multiplicação do vector a pelo inverso da sua norma chama-se normalização de a, podendo afirmar-se, nesse caso, que a se encontra normalizado.

Ortogonalidade entre vectores

Teorema [2.3]: Os vectores $\vec{a} = (a_1, a_2, a_3)$ e $\vec{b} = (b_1, b_2, b_3)$ de \mathbb{R}^3 são *ortogonais* entre si, se e só se o seu produto escalar for nulo, isto é,

$$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$$

Definição [2.7]: Os vectores de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n) \in \vec{b} = (b_1, b_2, b_3, ..., b_n)$$

dizem-se *ortogonais*, escrevendo-se $\vec{a} \perp \vec{b}$, se o seu produto escalar for nulo, isto é, $\vec{a} \cdot \vec{b} = 0$.

- O vector nulo pode ser considerado ortogonal a qualquer outro vector.
- A lei do anulamento do produto não é válida para o produto escalar.
- É possível aplicar o teorema de Pitágoras aos vectores de \mathbb{R}^n , de que resulta a propriedade seguinte.

Teorema [2.21]: Sendo \vec{x} e \vec{y} vectores ortogonais de \mathbb{R}^n , então

$$\|\vec{x} + \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2$$

Ângulo entre vectores

Teorema [2.4]: **Teorema de Carnot** (*Teorema de Pitágoras generalizado*) Considere o triângulo $\begin{bmatrix} ABC \end{bmatrix}$, tal que $a = \overline{AC}$, $b = \overline{AB}$ e $c = \overline{BC}$, sendo $0 < \theta < \pi$ o seu ângulo interno no vértice A. Então

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$
 (lei dos cossenos)

Teorema [2.5]: Sejam $\vec{a} = (a_1, a_2, a_3)$ e $\vec{b} = (b_1, b_2, b_3)$ vectores não nulos de \mathbb{R}^3 . Designando por $\theta = \measuredangle(\vec{a}, \vec{b})$ o ângulo por eles formado, em que $\theta \in [0, \pi]$, então

$$|\vec{a} \cdot \vec{b}| = ||\vec{a}|| ||\vec{b}|| \cos \theta \iff \theta = \arccos\left(\frac{|\vec{a} \cdot \vec{b}|}{||\vec{a}|| ||\vec{b}||}\right) = \cos^{-1}\left(\frac{|\vec{a} \cdot \vec{b}|}{||\vec{a}|| ||\vec{b}||}\right)$$

- Convém realçar o seguinte:
 - i) Se $\vec{a} \cdot \vec{b} > 0$, então $0 < \cos \theta \le 1$ e $0 \le \theta < \pi / 2$;
 - ii) Se $\vec{a} \cdot \vec{b} < 0$, então $-1 \le \cos \theta < 0$ e $\pi / 2 < \theta \le \pi$;
 - iii) Se $\vec{a} \cdot \vec{b} = 0$, então $\cos \theta = 0$ e $\theta = \pi/2$ (vectores ortogonais);
 - iv) Se $\vec{a} \parallel \vec{b}$ e possuírem o mesmo sentido, então $\cos \theta = 1$, $\theta = 0$ e $\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| > 0$ (valor máximo para o produto escalar);
 - v) Se $\vec{a} \parallel \vec{b}$ e possuírem sentidos opostos, então $\cos \theta = -1$, $\theta = \pi$ e $\vec{a} \cdot \vec{b} = -\|\vec{a}\| \|\vec{b}\| < 0$ (valor mínimo para o produto escalar).

Definição [2.8]: Sejam os vectores não nulos de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n) \in \vec{b} = (b_1, b_2, b_3, ..., b_n)$$

Define-se o *ângulo* formado formado por \vec{a} e \vec{b} como sendo o escalar real $\theta = \measuredangle(\vec{a}, \vec{b}) \in [0, \pi]$, tal que

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} \iff \theta = \arccos\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}\right) = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}\right)$$

Exemplo 1 [2.8]: Sejam os vectores \vec{a} , \vec{b} e \vec{c} de \mathbb{R}^3 , tais que

$$\|\vec{a}\| = \|\vec{c}\| = 5$$
, $\|\vec{b}\| = 1$, $\|\vec{a} - \vec{b} + \vec{c}\| = \|\vec{a} + \vec{b} + \vec{c}\|$ e $\alpha = \angle(\vec{a}, \vec{b}) = \pi / 8$

Determine o valor do ângulo $\theta = \measuredangle(\vec{b}, \vec{c})$.

Solução: $\theta = \angle(\vec{b}, \vec{c}) = 7\pi/8$.

Exemplo 2: Sejam os vectores \vec{a} , \vec{b} , \vec{c} e \vec{d} de \mathbb{R}^n , tais que

$$\|\vec{a}\| = \sqrt{2}$$
, $\|\vec{b}\| = \|\vec{d}\| = 1$, $\vec{a} \parallel \vec{d}$, $\vec{c} = \vec{a} + \vec{b}$ e $\alpha = \measuredangle(\vec{a}, \vec{b}) = \pi/4$

Determine a norma do vector \vec{c} e o valor do ângulo $\theta = \measuredangle(\vec{c}, \vec{d})$.

Solução: $\|\vec{c}\| = \sqrt{5}$;

$$\theta = \measuredangle(\vec{c}, \vec{d}) = \cos^{-1}(3\sqrt{10}/10)$$
 se \vec{a} e \vec{d} tiverem o mesmo sentido; $\theta = \measuredangle(\vec{c}, \vec{d}) = \cos^{-1}(-3\sqrt{10}/10)$ se \vec{a} e \vec{d} tiverem sentidos opostos.

Desigualdade de Cauchy-Schwarz

Teorema [2.12;18]: Sejam \vec{x} e \vec{y} vectores de \mathbb{R}^n . Então

$$(\vec{x} \cdot \vec{y})^2 \le (\vec{x} \cdot \vec{x})(\vec{y} \cdot \vec{y})$$

ou ainda

$$|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$$

O sinal de igualdade apenas se verificará, se e só se os vectores \vec{x} e \vec{y} forem *múltiplos*.

• Designando $\theta = \measuredangle(\vec{x}, \vec{y})$, a designaldade de Cauchy-Schwarz permite estabelecer

$$\frac{\left|\vec{x} \cdot \vec{y}\right|}{\|\vec{x}\| \|\vec{y}\|} \le 1 \iff -1 \le \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|} \le 1 \iff -1 \le \cos \theta \le 1$$

Desigualdade triangular

Teorema [2.13;19]: Sejam \vec{x} e \vec{y} vectores de \mathbb{R}^n . Então

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$

O sinal de igualdade apenas se verificará, se e só se

$$\vec{x} = \vec{0} \lor \vec{y} = \vec{0} \lor \vec{y} = \alpha \vec{x}$$
, $\alpha \in \mathbb{R}^+$

Projecção ortogonal entre vectores

• Sejam \vec{a} e \vec{b} vectores não nulos de \mathbb{R}^3 . É sempre possível decompor o vector \vec{a} em duas parcelas relativamente ao vector \vec{b} :

$$\vec{a} = \vec{a}_{\parallel} + \vec{a}_{\perp} = \overrightarrow{\mathsf{proj}}_{\vec{b}} \ \vec{a} + \vec{a}_{\perp}$$

em que:

- i) $\vec{a}_{\parallel} = \overrightarrow{\text{proj}}_{\vec{b}} \vec{a}$ vector projecção ortogonal de \vec{a} sobre \vec{b} ou componente vectorial de \vec{a} na direcção de \vec{b} ;
- ii) \vec{a}_{\perp} componente vectorial de \vec{a} ortogonal a \vec{b} .

- Convém realçar o seguinte:
 - i) Se $\vec{a} \parallel \vec{b}$, então $\vec{a}_{\parallel} = \overrightarrow{\text{proj}}_{\vec{b}} \ \vec{a} = \vec{a} \ \text{e} \ \vec{a}_{\perp} = \vec{0}$;
 - ii) Se $\vec{a} \perp \vec{b}$, então $\vec{a}_{\parallel} = \overrightarrow{\text{proj}}_{\vec{b}} \ \vec{a} = \vec{0}$ e $\vec{a}_{\perp} = \vec{a}$.

Teorema [2.7;22]: Sejam \vec{a} e $\vec{b} \neq \vec{0}$ vectores de \mathbb{R}^n . Então

$$\vec{a}_{\parallel} = \overrightarrow{\text{proj}}_{\vec{b}} \ \vec{a} = \frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^2} \vec{b}$$

е

$$\vec{a}_{\perp} = \vec{a} - \overrightarrow{\text{proj}}_{\vec{b}} \ \vec{a} = \vec{a} - \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^2} \vec{b}$$

• Sendo \vec{a} e \vec{b} vectores não nulos e não paralelos de \mathbb{R}^n , verifica-se:

i) Se $\vec{a} \cdot \vec{b} > 0$, então $\vec{a}_{\parallel} = \overrightarrow{\text{proj}}_{\vec{b}} \vec{a}$ tem o mesmo sentido de \vec{b} ;

ii) Se $\vec{a} \cdot \vec{b} < 0$, então $\vec{a}_{\parallel} = \overrightarrow{\text{proj}}_{\vec{b}} \vec{a}$ tem o sentido oposto ao de \vec{b} ;

iii) Se $\vec{a} \cdot \vec{b} = 0$, então $\vec{a}_{||} = \overrightarrow{\text{proj}}_{\vec{b}} \ \vec{a} = \vec{0}$;

iv) A norma do vector $\vec{a}_{\parallel} = \overrightarrow{\text{proj}}_{\vec{b}} \vec{a}$ é dada por

$$\|\vec{a}_{\parallel}\| = \|\overrightarrow{\text{proj}}_{\vec{b}} \ \vec{a}\| = \frac{|\vec{a} \cdot \vec{b}|}{\|\vec{b}\|}$$

v) Se \vec{b} é versor, então

$$\vec{a}_{\parallel} = \overrightarrow{\mathsf{proj}}_{\vec{b}} \ \vec{a} = (\vec{a} \cdot \vec{b})\vec{b} \implies \|\vec{a}_{\parallel}\| = \|\overrightarrow{\mathsf{proj}}_{\vec{b}} \ \vec{a}\| = |\vec{a} \cdot \vec{b}|$$

Exemplo 3 [2.11]: Seja a força $\vec{f} = (3,-1)$ aplicada no centro de massa de um corpo rígido inicialmente localizado no ponto P = (3,2). Determine o trabalho realizado pela força, quando se desloca, seguindo uma trajectória rectilínea, de P para o ponto Q = (-5,-4) (unidades no S.I.).

Solução: $W_{\bar{f}} = -18 \text{ J}$ (trabalho *resistente*).

• Relativamente ao vector de \mathbb{R}^2

$$\vec{a} = (a_1, a_2) = a_1(1,0) + a_2(0,1) = a_1\vec{i} + a_2\vec{j}$$

verifica-se

$$\vec{a} = (\vec{a} \cdot \vec{i})\vec{i} + (\vec{a} \cdot \vec{j})\vec{j} = \overrightarrow{\mathsf{proj}}_{\vec{i}} \ \vec{a} + \overrightarrow{\mathsf{proj}}_{\vec{j}} \ \vec{a}$$

Definição: Ângulos directores e cossenos directores de um vector

Designam-se por *ângulos directores* de um vector $\vec{a} \neq \vec{0}$ de \mathbb{R}^2 , os ângulos $\alpha = \measuredangle(\vec{a}, \vec{i})$ e $\beta = \measuredangle(\vec{a}, \vec{j})$.

Os valores definidos por $\cos \alpha$ e $\cos \beta$ chamam-se *cossenos directores* do vector.

Teorema: Seja \vec{a} um vector não nulo de \mathbb{R}^2 . Então

$$\vec{u}_{\vec{a}} = \frac{\vec{a}}{\|\vec{a}\|} = \cos \alpha \vec{i} + \cos \beta \vec{j}$$

Teorema: Os cossenos directores de um vector não nulo de \mathbb{R}^2 satisfazem a relação trigonométrica

$$\cos^2\alpha + \cos^2\beta = 1$$

• Relativamente ao vector de \mathbb{R}^3

$$\vec{a} = (a_1, a_2, a_3) = a_1(1,0,0) + a_2(0,1,0) + a_3(0,0,1) = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$$

verifica-se

$$\vec{a} = (\vec{a} \cdot \vec{i})\vec{i} + (\vec{a} \cdot \vec{j})\vec{j} + (\vec{a} \cdot \vec{k})\vec{k} = \overrightarrow{\mathsf{proj}}_{\vec{i}} \ \vec{a} + \overrightarrow{\mathsf{proj}}_{\vec{j}} \ \vec{a} + \overrightarrow{\mathsf{proj}}_{\vec{k}} \ \vec{a}$$

Definição: Ângulos directores e cossenos directores de um vector

Designam-se por *ângulos directores* de um vector $\vec{a} \neq \vec{0}$ de \mathbb{R}^3 , os ângulos $\alpha = \measuredangle(\vec{a}, \vec{i}), \ \beta = \measuredangle(\vec{a}, \vec{j})$ e $\gamma = \measuredangle(\vec{a}, \vec{k})$.

Os valores definidos por $\cos \alpha$, $\cos \beta$ e $\cos \gamma$ chamam-se *cossenos directores* do vector.

Teorema [2.10]: Seja \vec{a} um vector não nulo de \mathbb{R}^3 . Então

$$\vec{u}_{\vec{a}} = \frac{\vec{a}}{\|\vec{a}\|} = \cos \alpha \vec{i} + \cos \beta \vec{j} + \cos \gamma \vec{k}$$

Teorema: Os cossenos directores de um vector não nulo de \mathbb{R}^3 satisfazem a relação trigonométrica

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

• Relativamente ao vector de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n) = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3 + ... + a_n \vec{e}_n$$

verifica-se

$$\vec{a} = (\vec{a} \cdot \vec{e}_1)\vec{e}_1 + (\vec{a} \cdot \vec{e}_2)\vec{e}_2 + \dots + (\vec{a} \cdot \vec{e}_n)\vec{e}_n = \sum_{k=1}^n (\vec{a} \cdot \vec{e}_k)\vec{e}_k$$

ou

$$\vec{a} = \overrightarrow{\text{proj}}_{\vec{e}_1} \vec{a} + \overrightarrow{\text{proj}}_{\vec{e}_2} \vec{a} + \dots + \overrightarrow{\text{proj}}_{\vec{e}_n} \vec{a} = \sum_{k=1}^n \overrightarrow{\text{proj}}_{\vec{e}_k} \vec{a}$$