

Introduction to Parallel Programming with NVIDIA CUDA

NVIDIA CUDA

License / Attribution

Materials for the short-course "Digital Signal Processing with GPUs

— Introduction to Parallel Programming" are licensed by us4us Ltd. the IPPT PAN under the Creative Commons Attribution-NonCommercial 4.0 International License.

- Some slides and examples are borrowed from the course "The GPU Teaching Kit" that is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-</u> NonCommercial 4.0 International License.
 - All the borrowed slides are marked with

GPU Architecture

Flynn Taxonomy of parallelism

- Two dimensions
 - Number of <u>instruction streams</u>: single vs. multiple
 - Number of <u>data streams</u>: single vs. multiple
- SISD single-instruction single-data
 - Pipelining and ILP (Instruction Level Parallelism) on a uniprocessor
- SIMD single-instruction multiple-data (aka Vector processor)
 - DLP (Data Level Parallelism) on a vector processor
- MIMD multiple-instruction multiple-data
 - DLP, TLP (Thread Level Parallelism) on a parallel processor
 - SPMD: single-program multiple data

BIOCENTRUM GPU short-course 6/29/2021 4

Architecture CPU vs. GPU

Source: https://docs.nvidia.com/cuda/

NVIDIA Ampere Architecture

BIOCENTRUM GPU short-course 6/29/2021

Just a few numbers ...

Data Center GPU	NVIDIA Tesla P100	NVIDIA Tesla V100	NVIDIA A100
GPU Codename	GP100	GV100	GA100
GPU Architecture	NVIDIA Pascal	NVIDIA Volta	NVIDIA Ampere
GPU Board Form Factor	SXM	SXM2	SXM4
SMs	56	80	108
TPCs	28	40	54
FP32 Cores / SM	64	64	64
FP32 Cores / GPU	3584	5120	6912
FP64 Cores / SM	32	32	32
FP64 Cores / GPU	1792	2560	3456
INT32 Cores / SM	NA	64	64
INT32 Cores / GPU	NA	5120	6912
Tensor Cores / SM	NA	8	4 ²
Tensor Cores / GPU	NA	640	432

Data center GPU	NVIDIA Tesla P100	NVIDIA Tesla V100	NVIDIA A100
GPU Codename	GP100	GV100	GA100
GPU Architecture	NVIDIA Pascal	NVIDIA Volta	NVIDIA Ampere
Compute Capability	6.0	7.0	8.0
Threads / Warp	32	32	32
Max Warps / SM	64	64	64
Max Threads / SM	2048	2048	2048
Max Thread Blocks / SM	32	32	32
Max 32-bit Registers / SM	65536	65536	65536
Max Registers / Block	65536	65536	65536
Max Registers / Thread	255	255	255
Max Thread Block Size	1024	1024	1024
FP32 Cores / SM	64	64	64
Ratio of SM Registers to FP32 Cores	1024	1024	1024
Shared Memory Size / SM	64 KB	Configurable up to 96 KB	Configurable up to 164 KB

Source: https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

More on Scalability

- Performance growth with HW generations
 - Increasing number of compute units (cores)
 - Increasing number of threads
 - Increasing vector length
 - Increasing pipeline depth
 - Increasing DRAM burst size
 - Increasing number of DRAM channels
 - Increasing data movement latency

CUDA Architecture

What is CUDA® (Compute Unified Device Architecture)

- NVIDIA CUDA is a General-Purpose Parallel Computing Platform and Programming Model
- Introduced back in 2006 by NVIDIA® to leverage the parallel compute engine in NVIDIA GPUs.
- CUDA is designed to support various languages and application programming interfaces.

Source: https://docs.nvidia.com/cuda/

A Thread as a Von-Neumann Processor

A thread is a "virtualized" or "abstracted" Von-Neumann Processor

CUDA – Grid of Cooperative Thread Arrays

Source: https://docs.nvidia.com/cuda/

CUDA / GPU Automatic Scalability

Grid of Thread Blocks

Source: https://docs.nvidia.com/cuda/

Arrays of Parallel Threads

- A CUDA kernel is executed by a grid (array) of threads
 - All threads in a grid run the same kernel code (Single Program Multiple Data)
 - Each thread has indexes that it uses to compute memory addresses and make control decisions

blockldx and threadldx

Each thread uses indices to decide what data to work on

blockldx: 1D, 2D, or 3D (CUDA 4.0)

threadIdx: 1D, 2D, or 3D

 Simplifies memory addressing when processing multidimensional data

- Image processing
- Solving PDEs on volumes
- ...

/ Invidia

LILLINOIS

15

Thread Blocks: Scalable Cooperation

- Divide thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks do not interact

O INVIDIA.

I ILLINOIS

BIOCENTRUM GPU short-course 6/29/2021 16

Thread Blocks / Grids

- Each CUDA block is executed by one streaming multiprocessor (SM) and cannot be migrated to other SMs in GPU.
- One SM can run several concurrent CUDA blocks depending on the resources needed by CUDA blocks.
- Each kernel is executed on one device and CUDA supports running multiple kernels on a device at one time.

- CUDA defines built-in 3D variables for threads and blocks
- CUDA architecture limits the numbers of threads per block (1024 threads per block limit).

Source: https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

CUDA Execution Model

- Heterogeneous host (CPU) + device (GPU) application C program
 - Serial parts in host C code
 - Parallel parts in device SPMD kernel code

◎ NVIDIA.

I ILLINOIS

Partial Overview of CUDA Memories

- Device code can:
 - R/W per-thread registers
 - R/W all-shared global memory
- Host code can
 - Transfer data to/from per grid global memory

We will cover more memory types and more sophisticated memory models later.

◎ ⊓VIDIA

Host/Device Memory

CUDA Device Memory Management API functions

- cudaMalloc()
 - Allocates an object in the device global memory
 - Two parameters
 - Address of a pointer to the allocated object
 - Size of allocated object in terms of bytes
- cudaFree()
 - Frees object from device global memory
 - One parameter
 - Pointer to freed object

Host-Device Data Transfer API functions

- cudaMemcpy()
 - memory data transfer
 - Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type/Direction of transfer
 - Transfer to device is synchronous with respect to the host

■ INVIDIA | ILLINOIS 19

Data Parallelism – Vector Addition Example

14 ILLINO INVIDIA ILLINO INVIDIA ILLINO ILLINO

Vector Addition – Traditional C Code

```
// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
   int i;
   for (i = 0; i < n; i++) h_C[i] = h_A[i] + h_B[i];
}
int main()
{
   // Memory allocation for h_A, h_B, and h_C
   // I/O to read h_A and h_B, N elements
   ...
   vecAdd(h_A, h_B, h_C, N);
}</pre>
```

BIOCENTRUM GPU short-course 6/29/2021 21

Vector Addition, Explicit Memory Management

```
... Allocate h A, h B, h C ...
void vecAdd(float *h A, float *h B, float *h C, int n)
  int size = n * sizeof(float); float *d A, *d B, *d C;
  cudaMalloc((void **) &d_A, size);
  cudaMalloc((void **) &d B, size);
  cudaMalloc((void **) &d_C, size);
  cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
  cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
  // Kernel invocation code – to be shown later
   cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
   cudaFree(d A); cudaFree(d B); cudaFree (d C);
... Free h A, h B, h C ...
```


Heterogeneous Computing vecAdd CUDA Host Code

Part 1


```
#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
  int size = n* sizeof(float);
 float *d A, *d B, *d C;
 // Part 1
 // Allocate device memory for A, B, and C
 // copy A and B to device memory
 // Part 2
 // Kernel launch code – the device performs the actual
vector addition
 // Part 3
 // copy C from the device memory
 // Free device vectors
```

◎ NVIDIA

[ILLINOIS

GPU Acceleration

3 Ways to Accelerate Applications

Applications

Libraries

Compiler Directives

Programming Languages

Easy to use Most Performance Easy to use Portable code

Most Performance Most Flexibility

NVIDIA GPU Accelerated Libraries

DEEP LEARNING

LINEAR ALGEBRA

SIGNAL, IMAGE, VIDEO

PARALLEL ALGORITHMS

◎ NVIDIA

Developer Tools - Profilers

https://developer.nvidia.com/performance-analysis-tools

Profiling Tools

See lecture 2-4 for an overview of all tools

◎ ⊓VIDIA

ILLINOIS

6/29/2021 27

Optimization

⊚ ⊓VIDIA

GPU Programming Languages

Numerical analytics MATLAB, Mathematica, LabVIEW Python > PyCUDA, Numba CUDA Fortran, OpenACC Fortran | CUDA C, OpenACC CUDA C++, Thrust C++ | C# | Hybridizer

□ INVIDIA

From Natural Language to Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Why Python!?

Why is Python so Popular?

- 1. Easy to learn and use.
- 2. Mature and supportive Python Community.
- 3. Support from Big-Players (Corporate Sponsors).
- 4. "Batteries Included" hundreds of libraries and frameworks available.
- 5. Versatility, efficiency, reliability, and speed.

- 6. Big data, machine learning and Cloud computing.
- 7. First-choice Language (see the ranking!).
- 8. The flexibility of Python language.
- 9. Use of Python in academics.
- 10. Automation

Language Ranking: IEEE Spectrum		2020				
Rank	Language	Туре				Score
1	Python▼	#		Ģ	@	100.0
2	Java ▼	#		Ç		95.3
3	C₹			Ç	@	94.6
4	C++▼			Ç	@	87.0
5	JavaScript▼	#				79.5
6	R₹			Ģ		78.6
7	Arduino▼				@	73.2
8	Go▼	#		Ç		73.1
9	Swift▼			Ç		70.5
10	Matlab▼			Ç		68.4
source	e: https://spectrum.ieee.org/static/inte	eractive-the	-top-p	rograr	nmina-l	anguages-

2020

There should be one – and preferably only one – obvious way to do it (The Zen of Python)

- There are many solutions for GPU acceleration in Python ...
- Python CUDA programming:
 - NUMBA, pyCUDA, pyOpenCL
- Libraries:
 - Numpy on the GPU: CuPy
 - Numpy on the GPU (again): Jax
 - Pandas on the GPU: RAPIDS cuDF
 - Scikit-Learn on the GPU: RAPIDS cuML
- Also deep learning frameworks like PyTorch, TensorFlow, Caffe, MXNet

NUMBA

- Accelerate Python Functions
- Numba translates Python functions to optimized machine code at runtime using the industry-standard <u>LLVM</u> compiler library. Numba-compiled numerical algorithms in Python can approach the speeds of C or FORTRAN.
- You don't need to replace the Python interpreter, run a separate compilation step, or even have a C/C++ compiler installed. Just apply one of the Numba decorators to your Python function, and Numba does the rest.

Numba makes Python code fast

Numba is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code.

Learn More

Try Numba »

```
from numba import jit
import random

@jit(nopython=True)
def monte_carlo_pi(nsamples):
    acc = 0
    for i in range(nsamples):
        x = random.random()
        y = random.random()
        if (x ** 2 + y ** 2) < 1.0:
        acc += 1
    return 4.0 * acc / nsamples</pre>
```

Compiling A CUDA Program

GOOGLE Colab & Python

- Install Python + CUDA locally.
- Without installation, you can use Python in the CLOUD
 - For GOOGLE COLAB start here: https://colab.research.google.com/notebooks/intro.ipynb

- Other options in the Cloud: https://developer.nvidia.com/how-to-cuda-python
- Many other options and good developers' tools are available.