Algebra Booleana

Corso di Architettura degli elaboratori e laboratorio

Modulo Laboratorio

Gabriella Verga

Mappe di Karnaugh

Mappe di Karnaugh

Le Mappe di Karnaugh sono un metodo di tipo geometrico che permettono di ricavare rapidamente l'espressione logica di **costo minimo** della funzione. L'essenza del metodo è di rappresentare la tabella di verità in forma differente.

Vantaggioso per funzioni con poche variabili (3 o 4).

X ₁	X ₂	X ₃	f_1	
0	0	0	1	x ₁ x ₂
0	0	1	1	x ₃ \ 00 01 11 10
0	1	0	0	
0	1	1	1	0 1 0 0 0
1	0	0	0	1 1 1 1 0
1	0	1	0	
1	1	0	0	
1	1	1	1	

Mappe di Karnaugh

Sono ordinate in modo che caselle adiacenti abbiano solo una variabile dal valore differente.

Il principio delle mappe di Karnaugh e che : due quadrati adiacenti differiscono nel valore di una sola variabile.

Se accade che due caselle contengono il valore 1 e sono adiacenti nel senso geometrico (hanno un lato in comune) c'è la possibilità di effettuare un passo di semplificazione della funzione.

Come si usano

- 1. Raggruppare le caselle di valore 1 adiacenti orizzontalmente o verticalmente. Ogni gruppo deve presentare un numero di caselle contenenti un 1 pari a potenza di 2 (1,2,4,8).
- Ogni gruppo rappresenta il prodotto delle sue variabili con lo stesso valore (forma diretta se 1 e negata se 0). Identificare quali variabili non contribuiscono ed eliminarle nella forma analitica.
- Somma dei gruppi creati.

Box blu: x_3 non contribuisce $\rightarrow \overline{x_1} \overline{x_2}$ Box blu: x_3 non contribuisce $\rightarrow x_2 x_3$ $f_1 = \overline{x_1} \overline{x_2} + x_2 x_3$

Altri esempi

x_3x_4	00	01	11	10
00	0	0	1	1
0 1	0	0	0	0
11	1	0	0	1
10	0	0	1	1

x_3x_4	00	01	11	10
00	1	0	1	1
0 1	0	1	1	1
11	0	0	0	0
10	1	0	0	1

Soluzioni

Condizione di indifferenza

Condizione di indifferenza

- Spesso capita che una funzione logica non sia definita su tutte le combinazioni di valori delle sue variabili
- Le variabili non usate si dice siano in condizione di indifferenza (don't care condition)
- Nella tabella di verità vengono indicate con il simbolo "X"
- Il loro valore (0 o 1) si può scegliere in modo arbitrario. Naturalmente conviene fare scelte che conducano alla semplificazione più spinta, ovvero a costo minimo.

Come si usa

Cifra	Codifica binaria					
decimale	#	b_3	b_2	b_1	b_0	f
0	0	0	0	0	0	0
1	1	0	0	0	1	0
2	2	0	0	1	0	0
3	3	0	0	1	1	1
4	4	0	1	0	0	0
5	5	0	1	0	1	0
6	6	0	1	1	0	1
7	7	0	1	1	1	0
8	8	1	0	0	0	0
9	9	1	0	0	1	1
1	10	1	0	1	0	х
100	11	1	0	1	1.	х
Non	12	1	1	0	0	х
usate	13	1	1	0	1	х
	14	1	1	1	0	х
	15	1	1	1	1	х

Come si usa

Circuiti Logici

Circuiti Logici

• Le operazioni logiche (AND, OR, NOT, XOR) possono essere realizzate da semplici circuiti elettronici. Questi circuiti base vengono chiamati PORTE.

Collegando entrate e uscite delle porte si possono rappresentare le reti combinatorie, creando una rete di porte logiche collegate tra loro. Una rete combinatoria ha n ingressi binari ed m uscite binarie con $n \in \mathbb{N} \geq 1$.

Porte a più ingressi

- Grazie alla **proprietà associativa** AND e OR possono essere estese a più di 2 ingressi, ovvero mettere in due livelli a cascata o ad albero porte AND o OR a due ingressi.
- ESEMPIO:

$$f = x_1 \cdot x_2 \cdot x_3 \cdot x_4$$
 porta AND con 4 ingressi

Reti combinatorie

- E' possibile rappresentare un'espressione logica come rete combinatoria con:
- una porta per ogni operatore logico
- collegando le porte tra loro ad albero seguendo i livelli di priorità nell'espressione

Le espressioni SOP e POS corrispondono a reti a due livelli.

NAND e NOR

- Sono equivalenti alle funzioni AND e OR seguite da porta NOT (rispettivamente).
- Si denota tramite gli operatori a due argomenti "↑" o "↓" rispettivamente.
- NAND e NOR sono porte UNIVERSALI, ovvero si può realizzare una qualsiasi funzione combinatoria con reti logiche di soli NAND o soli NOR.

X ₁	X ₂	$\overline{x_1+x_2}$	$\overline{\mathbf{x_1}\mathbf{x_2}}$
0	0	1	1
0	1	0	1
1	0	0	1
1	1	0	0

Proprietà

- NAND e NOR
- Godono della proprietà commutativa
- NON godono della proprietà associativa

Proprietà associativa

• Dato che NAND e NOR **NON** godono della proprietà associativa NON è possibile scomporlo come albero o cascata di porte.

Trasformazione di un'espressione (SOP)

 Grazie alle leggi di De Morgan e alla legge di involuzione possiamo passare da una SOP ad una rete di NAND:

$$(x_1 \uparrow x_2) \uparrow (x_3 \uparrow x_4) = \overline{(\overline{x_1 \cdot x_2}) \cdot (\overline{x_3 \cdot x_4})} = (De\ Morgan)$$

$$= \overline{\overline{x_1 x_2}} + \overline{\overline{x_3 x_4}} = (Involuzione)$$

$$= x_1 x_2 + x_3 x_4 \quad (Sum\ of\ Products)$$