Introductory Topics in Complex Analysis

Huan Q. Bui

Colby College

PHYSICS & MATHEMATICS Statistics

Class of 2021

December 9, 2019

Contents

1	de Moivre's Formula	4
2	Roots & Things	4
3	Regions of the Complex Plane	4
4	Limits	5
5	Limits obtained via an admissible path	6
6	Existence of Limits	6
7	Connect to multi-variable calculus	6
8	Limit facts	6
9	ϵ -neighborhood of ∞	7
10	Limit facts involving ∞	8
11	Continuity & 3 Theorems	8
12	Differentiability	9
13	Differentiability Facts	9
14	The Chain Rule	10
15	The Cauchy-Riemann Equations	11
16	Analytic Functions: Differentiable on a Ball	11
17	Analytic Functions: Familiar, but Weird	12
18	Cauchy-Riemann Theorem for Analytic Functions	12
19	Analytic Function Facts	13
2 0	Harmonic Functions	13
2 1	Harmonic Conjugates	14
22	The Exponential Function	14
23	The Complex Logarithm	14
24	Branches	14

25 Contours	15
26 Contour Integrals	15
27 Lemma on Modulus & Contours	15
28 Bound on Modulus of Contour Integrals	16
29 TFAE	17
30 Cauchy-Goursat Theorem	20
31 Simply-connected domain	20
32 Multiply-connected domain	20
33 Cauchy-Goursat Theorem for simply-connected domain	20
34 Corollary to Cauchy-Goursat for simply-connected domain	21
35 Cauchy-Goursat Theorem for multiply-connected regions	21
36 Principle of Path Deformation (Corollary to Cauchy-Goursa	nt) 22
37 Cauchy's Integral Formula	22
38 Cauchy's Integral Formula for First-Order Derivative	23
39 Cauchy's Integral Formula for Higher-Order Derivatives	25
40 Analyticity of Derivatives	25
41 Analyticity of Derivatives on a Domain	25
42 Infinite Differentiability	25
43 Hörmander's Theorem	25
44 Morera's Theorem	26
45 Cauchy's Inequality	26
46 Liouville's Theorem	26
47 The Fundamental Theorem of Algebra	27
48 Corollary to The Fundamental Theorem of Algebra	27
49 The Maximum Modulus Principle 1	28

50	The Maximum Modulus Principle 2	2 8
51	Convergence of Sequences	29
52	Real and Imaginary parts of a convergent sequence	29
53	Cauchy sequences	2 9
54	Cauchy and Convergence	29
55	Series	30
56	Convergence of Series	30
57	Taylor's Theorem	31
58	Laurent's Theorem	33
59	More results about series	36
60	Residues	37
61	The Residue Theorem	37
62	Classification of Singularities	38
63	Residues with Φ theorem	39
64	Residues with p-q theorem	40
65	What happens near singularities?	41
66	Removable singularity - Boundedness - Analyticity (RBA)	41
67	The converse of RBA	41
68	Casarati-Weierstrass Theorem	41

1 de Moivre's Formula

$$(\cos \theta + \sin \theta)^n = \cos n\theta + i \sin n\theta. \tag{1}$$

2 Roots & Things

All roots of $z = r_0 e^{i\theta}$ are of the form

$$z_r = r_0^{1/n} \exp\left(\frac{\theta_0}{n} + \frac{2k\pi}{n}\right) \tag{2}$$

where k = 0, 1, 2, ...

3 Regions of the Complex Plane

 \spadesuit The ϵ -neighborhood of z_0 is the set of points

$$\mathcal{B}_{\epsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \epsilon \}. \tag{3}$$

 \spadesuit The deleted ϵ -neighborhood (nbh) of z_0 is the set

$$\mathcal{B}_{\epsilon}(z_0) \setminus \{z_0\} = \{z \in \mathbb{C} : 0 < |z - z_0| < \epsilon\}. \tag{4}$$

 \spadesuit z_0 is an interior point of $S \subset \mathbb{C}$ if some ϵ -nbh is completely contained in S, i.e.,

$$\exists \mathcal{B}_{\epsilon}(z_0) \text{ s.t. } \mathcal{B}_{\epsilon}(z_0) \subset S.$$
 (5)

- \spadesuit z_0 is an exterior point of S if $\exists \mathcal{B}_{\epsilon}(z_0)$ which does not intersect S.
- \spadesuit If z_0 is neither an interior nor an exterior point of S then it is called a boundary point of S. The set of boundary points of S is called the boundary of S.
- \spadesuit A set \mathcal{O} is called open if it contains none of its boundary points.
- \spadesuit A set C is called closed if it contains all of its boundary points.
- \spadesuit The closure of a set S is the set $\operatorname{cl}(S) = S \cup \partial S$.
- \spadesuit Let $\mathcal{O} \subset \mathbb{C}$. \mathcal{O} is open $\iff \forall z \in \mathcal{O}, \exists \epsilon > 0, \mathcal{B}_{\epsilon}(z) \subset \mathcal{O}$.
- \blacktriangle A set S is called path connected if $\forall z_1, z_2 \in S$, there exists a continuous function $\gamma: [0,1] \to \mathbb{C}$ such that $\gamma(0) = z_1, \gamma(1) = z_2$ and $\gamma(t) \in S \forall t \in [0,1]$.

- \blacktriangle A set S is bounded if $\exists R > 0$ such that $S \subset \mathcal{B}_R(0)$.
- \spadesuit A point z_0 is called an accumulation point of a set S if $\forall \epsilon > 0$,

$$\mathcal{B}_{\epsilon}(z_0) \setminus \{z_0\} \cap S \neq \emptyset, \tag{6}$$

i.e. every deleted nbh of z_0 contains at least an element of S.

♠ A set is closed if and only if it contains all of its accumulation points.

4 Limits

 \spadesuit Let f be a function defined on some punctured nbh of z_0 . We say that the limit of f is w_0 as z approaches z_0 and write

$$\lim_{z \to z_0} f(z) = w_0 \tag{7}$$

if $\forall \epsilon > 0, \exists \delta > 0$ such that

$$|f(z) - w_0| < \epsilon \text{ whenever } 0 < |z - z_0| < \delta$$
 (8)

for $z \in dom(f)$.

♠ **Proposition:** Limits are unique.

Proof. Assume that

$$\lim_{z \to z_0} f(z) = w_0$$

$$\lim_{z \to z_0} f(z) = w_1.$$
(9)

Given $\epsilon > 0$, choose $\delta_0, \delta_1 > 0$ such that

$$|f(z) - w_0| < \epsilon \text{ whenever } 0 < |z - z_0| < \delta_0$$

$$|f(z) - w_1| < \epsilon \text{ whenever } 0 < |z - z_0| < \delta_1.$$
(10)

Consider $\delta = \min\{\delta_0, \delta_1\}$. Then, we have for some z such that $0 < |z - z_0| < \delta$,

$$|f(z) - w_0| < \epsilon \text{ and } |f(z) - w_1| < \epsilon. \tag{11}$$

For this particular z,

$$|w_{0} - w_{1}| = |f(z) - w_{0} - f(z) + w_{1}|$$

$$\leq |f(z) - w_{0}| + |f(z) - w_{1}|$$

$$< \epsilon + \epsilon$$

$$= 2\epsilon.$$
(12)

So, for any $\epsilon > 0$, $|w_1 - w_0| < 2\epsilon$. This means $w_0 = w_1$.

5 Limits obtained via an admissible path

If $\lim_{z\to z_0} f(z) = w_0$, then given any continuous function γ satisfying

- 1. $\gamma:[0,1]\to\mathbb{R}^2\equiv\mathbb{C}$ is continuous
- 2. $\gamma(t) \neq z_0 \forall t > 0, \ \gamma(t) \in \text{dom}(f) \forall t > 0$
- 3. $\gamma(0) = z_0$

then $\lim_{t\to 0^+} f(\gamma(t)) = w_0$. Any path satisfying the three conditions above is said to be admissible for f near z_0 , or simply admissible.

6 Existence of Limits

If given any two admissible paths γ_0, γ_1 we have

$$\lim_{t \to 0^+} f(\gamma_0(t)) \neq \lim_{t \to 0^+} f(\gamma_1(t)) \tag{13}$$

then $\lim_{z\to z_0} f(z)$ does not exist.

7 Connect to multi-variable calculus

Suppose that f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$. Then

$$\lim_{z \to z_0} f(z) = w_0 = a_0 + ib_0 \iff \begin{cases} \lim_{(x,y) \to (x_0, y_0)} u(x, y) = a_0 \\ \lim_{(x,y) \to (x_0, y_0)} v(x, y) = b_0 \end{cases}$$
(14)

8 Limit facts

Suppose that $\lim_{z\to z_0} f(z) = w_0$ and $\lim_{z\to z_0} F(z) = W_0$, then

- 1. $\lim_{z\to z_0} f(z) + F(z) = w_0 + W_0$.
- 2. $\lim_{z\to z_0} f(z)F(z) = w_0W_0$.
- 3. If $W_0 \neq 0$ then $\lim_{z \to z_0} f(z)/F(z) = w_0/W_0$.

Proof. We will prove the second statement. Let $z_0 = x_0 + iy_0$ and f(z) = u + iv and F(z) = U + iV. Then

$$f(z)F(z) = (uU - vV) + i(uV + vU).$$
 (15)

Since the limits of f, F at z_0 are given, we have

$$\lim_{(x,y)\to(x_0,y_0)} u = u_0$$

$$\lim_{(x,y)\to(x_0,y_0)} v = U_0$$

$$\lim_{(x,y)\to(x_0,y_0)} U = v_0$$

$$\lim_{(x,y)\to(x_0,y_0)} V = V_0.$$
(16)

Applying to the algebra of limits for $\mathbb{R}^2 \to \mathbb{R}$, we have

$$\lim_{(x,y)\to(x_0,y_0)} (uU - vV) = u_0 U_0 - v_0 V_0 = \text{Re}(w_0 W_0).$$
(17)

Similarly,

$$\lim_{(x,y)\to(x_0,y_0)} (uV + vU) = u_0V_0 + v_0U_0 = \operatorname{Im}(w_0W_0).$$
(18)

So, by the previous theorem, $\lim_{z\to z_0} f(z)F(z) = w_0W_0$.

9 ϵ -neighborhood of ∞

- \spadesuit Given $\epsilon > 0$, we call the set $\mathcal{B}_{\epsilon}(\infty) = \{z \in \mathbb{C} : |z| > 1\epsilon\}$ the ϵ -nbh of ∞ .
- \spadesuit Given $z_0 \in \mathbb{C}$ and f defined on a nbh of z_0 , we say that the limit of f as $z \to z_0$ is ∞ and write

$$\lim_{z \to z_0} f = \infty \tag{19}$$

if $\forall \epsilon > 0, \delta > 0$ s.t. $f(z) \in \mathcal{B}_{\epsilon}(\infty)$ whenever $z \in \text{dom}(f)$ and $z \in \delta$ -nbh of z_0 , i.e., $\forall \epsilon > 0, \exists \delta > 0$ s.t. $|f(z)| > 1/\epsilon$ whenever $0 < |z - z_0| < \delta$.

- \spadesuit Additionally, we say $\lim_{z\to\infty} f(z) = w_0$ for $w_0 \in \mathbb{C}$ if $\forall \epsilon > 0, \exists \delta > 0$ s.t. f(z) lines in the ϵ -nbh of w_0 whenever $z \in$ the δ -nbh of ∞ , i.e., $\forall \epsilon > 0, \exists \delta > 0$ s.t. $|f(z) w_0| < \epsilon$ whenever $|z| > 1/\delta$.
- Further, we say that the limit of f as $z \to \infty$ is ∞ if $\forall \epsilon > 0, \exists \mathcal{B}_{\delta}(\infty)$ s.t. $f(z) \in \mathcal{B}_{\epsilon}(\infty)$ whenever $z \in \mathcal{B}_{\delta}(\infty)$.

10 Limit facts involving ∞

Let $z_0, w_0 \in \mathbb{C}$, then

$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0.$$

$$\lim_{z \to \infty} f(z) = w_0 \iff \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0.$$

$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0.$$
(20)

Proof. We will prove (3). Suppose that $\lim_{z\to\infty} f(z) = \infty$. Let $\epsilon > 0$ be given. Then $\exists \delta > 0$ s.t. $|f(z)| > 1/\epsilon$ whenever $|z| > 1/\delta$. Then $1/|f(z)| < \epsilon$ whenever $|z| > 1/\delta \iff |w| = 1/|z| < \delta$. Thus, for any $0 < |w| < \delta$, we have that

$$\left| \frac{1}{f(1/w)} \right| = \frac{1}{|f(z)|} < \epsilon \tag{21}$$

as long as w=1/z, i.e., $\forall \epsilon > 0, \exists \delta > 0$ s.t. $|1/f(1/z)| < \epsilon$ whenever $|z| < \delta$. The converse is gotten by reversing the steps.

11 Continuity & 3 Theorems

- \spadesuit Let f be defined on a full nbh of z_0 . We say that f is continuous at z_0 if the following hold:
 - 1. $\lim_{z\to z_0} f(z)$ exists.
 - 2. $f(z_0)$ exists.
 - 3. $\lim_{z\to z_0} f(z) = f(z_0)$.
- \spadesuit Compositions of continuous functions: Suppose that f is continuous at z_0 and g is continuous at $f(z_0) = w_0$ then $g \circ f(z_0)$ is continuous at z_0 .

Proof. Let $\epsilon > 0$ be given, then $\exists \gamma > 0$ s.t. $|g(w) - g(w_0)| < \epsilon$ whenever $|w - w_0| < \gamma$. Given this $\gamma, \exists \delta > 0$ s.t. $|f(z) - f(z_0)| < \gamma$ whenever $|z - z_0| < \delta$. So, whenever $|z - z_0| < \delta$, $|f(z) - f(z_0)| < \gamma$ and so $|g(w) - g(w_0)| < \epsilon$.

 \spadesuit If a continuous function is nonzero at a point then it is nonzero near that point: Suppose that f is continuous at z_0 and $|f(z_0)| \neq 0, \exists \delta > 0$ such that $f(z) \neq 0 \forall z \in \mathcal{B}_{\delta}(z_0)$.

Proof. Choose $\epsilon = |f(z_0)/2| > 0$. Then $\exists \delta > 0$ such that $|f(z) - f(z_0)| < \epsilon = |f(z_0)/2| \forall |z - z_0| < \delta$. Then, for all such z, we have that

$$|f(z_0)| = |f(z_0) + f(z) - f(z)|$$

$$\leq |f(z_0) - f(z)| + |f(z)|$$

$$\leq \frac{|f(z_0)|}{2} + |f(z)|. \tag{22}$$

So, $\forall z \in \mathcal{B}_{\delta}(z_0)$, we have $|f(z_0)|/2 \leq |f(z)|$.

 \spadesuit Continuous functions on a closed and bounded set is bounded: Let R be a closed and bounded subset of the complex plane. Let f be continuous on R. Then $\exists M \geq 0$ such that

$$|f(z)| \le M \forall z \in R \tag{23}$$

and $\exists z_0 \in R$ at which $|f(z_0)| = M$.

12 Differentiability

 \spadesuit Let f be defined in a nbh of z_0 . The derivative of f at z_0 is the limit

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
(24)

and it is defined whenever this limit exists. When this limit exists, we say f is differentiable at z_0 .

 \spadesuit If f is differentiable at z_0 , it is continuous at z_0 .

Proof. Since the limit of the difference quotient exists,

$$\lim_{z \to z_0} f(z) - f(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0)$$

$$= f'(z_0) \cdot 0$$

$$= 0. \tag{25}$$

Thus, $\lim_{z\to z_0} f(z) = f(z_0)$, and so f is continuous at z_0 .

13 Differentiability Facts

Let f, g be differentiable at z_0 then

$$\begin{cases} D_z(f+g)(z_0) = f'(z_0) + g'(z_0) \\ D_z c f(z_0) = c f'(z_0) \\ D_z f(z_0) g(z_0) = f'(z_0) g(z_0) + f(z_0) g'(z_0). \end{cases}$$

If, additionally, $g(z_0) \neq 0$, then f/g is differentiable at z_0 and

$$D_z \frac{f}{g}(z_0) = \frac{f'(z_0)g(z_0) - f(z_0)g'(z_0)}{g^2(z_0)}.$$
 (26)

Proof. We shall prove the product rule:

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z)g(z_0 + \Delta z) - f(z_0)g(z_0)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left[(f(z_0 + \Delta z) - f(z_0))g(z_0 + \Delta z) + f(z_0)g(z_0 + \Delta z) - f(z_0)g(z_0) \right]$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left[\Delta f g(z_0 + \Delta z) + f(z_0)\Delta g \right]$$

$$= g(z_0)f'(z_0) + g'(z_0)f(z_0), \tag{27}$$

where $g(z_0 + \Delta z)$ exists by continuity.

14 The Chain Rule

Let f be differentiable at z_0 and g be differentiable at $w_0 = f(z_0)$. Then $F(z) = g \circ f(z) = g(f(z))$ is differentiable at z_0 and $F'(z_0) \equiv D_z g \circ f(z_0) = g'(f(z_0))f'(z_0)$.

Proof. On a nbh of w_0 , define $\phi: N \to \mathbb{C}$ by

$$\phi(w) = \begin{cases} \frac{g(w) - g(w_0)}{w - w_0} - g'(w_0) & w \neq w_0 \\ 0 & w = w_0 \end{cases}$$
 (28)

Observe that because g is differentiable, $\lim_{w\to w_0} \phi(w) = 0$. It follows that ϕ is continuous on its domain. Also, for $w \in N$,

$$(w - w_0)\phi(w) = (g(w) - g(w_0)) - g'(w_0)(w - w_0). \tag{29}$$

Given the continuity of f at z_0 , we can choose $\delta > 0$ such that for $z \in \mathcal{B}_{\delta}(z_0)$ we have $f(z) = w \in N = \mathcal{B}_{\epsilon}(w_0)$ because

$$|f(z) - f(z_0)| = |w - w_0| < \epsilon$$
 (30)

whenever $|z - z_0| < \delta$. So, $\forall z \in \mathcal{B}_{\delta}(z_0)$, we have that $\phi(f(z))$ makes sense. Also, for these values of $z \neq z_0$,

$$\frac{F(z) - F(z_0)}{z - z_0} = \frac{g(f(z)) - g(f(z_0))}{z - z_0}
= \frac{g(w) - g(w_0)}{z - z_0}
= \frac{(w - w_0)\phi(w) + g'(w_0)(w - w_0)}{z - z_0}
= \frac{(f(z) - f(z_0))\phi(f(z)) + g'(f(z_0))(f(z) - f(z_0))}{z - z_0}.$$
(31)

Because $\phi(f(z))$ is continuous, $g'(z_0)$ is simply a constant, and f is differentiable at z_0 , we can easily see that

$$\lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0} = f'(z_0)\phi(f(z_0)) + g'(f(z_0))f'(z_0). \tag{32}$$

But $\phi(f(z_0)) = \phi(w_0) = 0$ by definition, so we have

$$F'(z_0) = g'(f(z_0))f'(z_0). (33)$$

15 The Cauchy-Riemann Equations

Let f(z) = u(x, y) + iv(x, y) be defined on a nbh of $z_0 = x_0 + iy_0$. Suppose that

- 1. u, v have partial derivative on a nbh of z_0 .
- 2. All first order partial derivative are continuous on this nbh of z_0 and the C-R equations:

$$u_x(x_0, y_0) = v_y(x_0, y_0); \quad u_y(x_0, y_0) = -v_x(x_0, y_0)$$
 (34)

are satisfied.

Then f is differentiable at z_0 and

$$f'(z_0) = u_x(x_0, y_0) + iv(x_0, y_0).$$
(35)

Proof. The proof is not that bad, but it is quite technical. So I won't try to reproduce it here. \Box

16 Analytic Functions: Differentiable on a Ball

- \spadesuit A function f is analytic at a point $z \in \mathbb{C}$ if it is differentiable on same nbh f z_0 , i.e., at every point in $\mathcal{B}_{\delta}(z_0)$ for some $\delta > 0$.
- \spadesuit f is said to be analytic on an open set \mathcal{O} if it is analytic at each $z \in \mathcal{O}$.
- \spadesuit If f is analytic on a set S, we say it is analytic on an open set $\mathcal{O} \subset S$.
- \spadesuit Vocabulary: Analytic \equiv Holomorphic.
- \spadesuit A function f is said to be entire if it is analytic on \mathbb{C} .
- ♠ If $z_0 \in \mathbb{C}$ is such that f is analytic at every point in a nbh centered at z_0 but not at z_0 (i.e., analytic on $\mathcal{B}_{\delta}(z_0) \setminus \{z_0\}$) we say z_0 is a singular point for f.

- ♠ Suppose f, g are analytic on an open set \mathcal{O} then $f \pm g, fg$ are also analytic on \mathcal{O} . If $g(z) \neq 0 \forall z \in \mathcal{O}$ then f/g is also analytic on \mathcal{O} .
- \spadesuit The set of analytic functions on an open set \mathcal{O} form a commutative ring, denoted $\operatorname{Hol}(\mathcal{O})$.

17 Analytic Functions: Familiar, but Weird

Suppose \mathcal{D} is a domain (open, nonempty, path connected) and f is analytic on \mathcal{D} . If $f'(z) = 0 \forall z \in \mathcal{D}$ then f is constant on \mathcal{D} .

Proof. Given $z_0, z_1 \in \mathcal{D}$, \exists a path $\gamma(t) : [0,1] \to \mathcal{D}$ such that $\gamma(0) = z_0, \gamma(1) = z_1$, and γ is a continuous. Next, consider $h(t) = \text{Re}(f \circ \gamma(t)) = u(\gamma(t))$, where f = u + iv. By C-R, we have that f = u + iv with u, v both differentiable. And so h(t) is differentiable on [0,1], and by the mulvar chain rule

$$h'(t) = u_x(\gamma(t))\gamma_1'(t) + u_y(\gamma(t))\gamma_2'(t)$$
(36)

with $\gamma(t) = (\gamma_1(t), \gamma_2(t)) \forall t \in [0, 1]$. By MVT, $\exists c \in (0, 1)$ s.t.

$$h(1) - h(0) = h'(c)(1 - 0)$$

$$= h'(c)$$

$$= u_x(\gamma(c))\gamma'_1(c) + u_y(\gamma(c))\gamma'_2(c)$$

$$= u_x(\gamma(c))\gamma'_1(c) - v_x(\gamma(c))\gamma'_2(c)$$
(37)

where the last equality follows from C-R. But we also know that $f' = u_x + iv_x = 0 \iff u_x = v_x = 0$. So $\exists c \in (0,1)$ such that $h(1) - h(0) = 0 \iff h(1) = h(0)$. With this,

$$\operatorname{Re}(f(z_0)) = \operatorname{Re}(f(\gamma(0))) = h(0) = h(1) = \operatorname{Re}(f(\gamma(1))) = \operatorname{Re}(f(z_1)).$$
 (38)

Similarly we can show $\text{Im}(f(z_0)) = \text{Im}(f(z_1))$. Therefore, $f(z_0) = f(z_1) \forall z_0, z_1 \in \mathcal{D}$. And so f is constant on \mathcal{D} .

18 Cauchy-Riemann Theorem for Analytic Functions

Let f be a function defined on an open set $\mathcal{O} \subset \mathbb{C}$ m then f is analytic on \mathcal{O} if and only if for f = u + iv

- 1. u, v have first-order partial derivatives on all of \mathcal{O} .
- 2. u_x, u_y, v_x, v_y are continuous on all of \mathcal{O} .
- 3. C-R equations are satisfied, i.e., $u_x = v_y$, $u_y = -v_x$ on all of \mathcal{O} .

19 Analytic Function Facts

 \spadesuit Suppose f, \bar{f} are both analytic on \mathcal{D} then f is constant.

Proof. Using the C-R theorem. Suppose that f = u + iv and $\bar{f} = U + iV$ where u = U, v = -V. Because f, \bar{f} are both analytic we have

$$u_x = v_y; u_y = -v_x$$

$$U_x = V_y; U_y = -V_x$$
(39)

on all of \mathcal{D} . So $u_x = U_x = V_y = -v_y = -u_x \iff u_x = 0$ on all of \mathcal{D} . Similarly, $v_x = 0$ on all of \mathcal{D} . It follows that $f' = u_x + iv_x = 0$ on all of \mathcal{D} . By the previous theorem, we have that f must be constant.

 \spadesuit If $|f(z)| = C \forall z \in \mathcal{D}$ where \mathcal{D} is a domain and f is analytic on \mathcal{D} , then f is constant on \mathcal{D} .

Proof. If C=0 then the statement is true. If $C\neq 0$, then

$$\bar{f(z)}f(z) = |f(z)|^2 = C^2 > 0.$$
 (40)

Because $f(z) \neq 0 \forall z \in \mathcal{D}$ and is analytic on all of \mathcal{D} ,

$$\bar{f(z)} = \frac{C^2}{f(z)} \tag{41}$$

is also analytic. This says that both \bar{f}, f are analytic on $\mathcal{D}.$ Therefore, f must be constant. \Box

20 Harmonic Functions

 \spadesuit A function U is said to be harmonic on a set \mathcal{O} if

$$\Delta u = u_{xx} + u_{yy} \equiv 0 \tag{42}$$

on \mathcal{O} . This equation is called Laplace's equation.

 \spadesuit If f = u + iv is analytic in D and u, v are twice differentiable with continuous partials in \mathcal{D} then u, v are harmonic in \mathcal{D} .

Proof. By C-R,
$$u_x = v_y$$
; $u_y = -v_x$. So, $u_{xx} = v_{yx} = v_{yx} = u_{yy}$. So $\Delta u = 0$. Similarly, $\Delta v = 0$.

 \spadesuit If f = u + iv is analytic on a domain \mathcal{D} then u, v are harmonic in \mathcal{D} .

21 Harmonic Conjugates

Given a harmonic function u on \mathcal{D} and another harmonic function v on \mathcal{D} . If u, v satisfy the C-R equations, then we say v is a harmonic conjugate of u. Note that this relation is not symmetric.

 \spadesuit A function f = u + iv on a domain \mathcal{D} is analytic if and only if v is a harmonic conjugate of u.

Proof. If f is analytic, then u, v satisfying the C-R equation by C-R theorem. So v is a harmonic conjugate of u. Conversely, if v is a harmonic conjugate of u then C-R hold everywhere in D. By C-R theorem, f is analytic on \mathcal{D} .

22 The Exponential Function

This function is so nice there's nothing to say about it.

23 The Complex Logarithm

 \spadesuit In general, for $z = re^{i\theta} \neq 0$.

$$\log(z) = \ln(|z|) + i(\theta + 2\pi n) \tag{43}$$

where $\theta = \arg(z)$.

♠ The principal value of log is given by

$$Log(z) = \ln(|z|) + i\theta_{-\pi} \tag{44}$$

where $\theta_{-\pi} = \operatorname{Arg}(z) \in (-\pi, \pi]$.

- ♠ Some properties for complex log don't work the way we expect: e.g. sum of logs is not the same as the log of powers. Tip: double-check everything and use only the "safe" properties.

24 Branches

 \spadesuit Given $\alpha \in \mathbb{R}$, define the α -branch of log by

$$\log_{\alpha}(z) = \ln|z| + i\theta_{\alpha} \tag{45}$$

where θ_{α} is the argument of $z \neq 0$ which lives between α and $\alpha + 2\pi$.

- \spadesuit The \log_{α} function is not continuous. However, if we cut away the α -branch of log then \log_{α} is not only continuous but also analytic on this restricted domain.

25 Contours

A contour C is a path/curve with parameterization $z \in C^0([a,b],\mathbb{C})$ where z is differentiable at all but a finite number of points in [a,b]. Everywhere else it is continuously differentiable and non-degenerate. In other words, a contour is smooth arcs pieced together.

26 Contour Integrals

Suppose C is a contour with parameterization $z \in C^0([a,b],\mathbb{C})$ and $f: \mathcal{O} \subset \mathbb{C} \to \mathbb{C}$. We define the contour integral of f along \mathbb{C} (direction matters) as

$$\int_{C} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt.$$
 (46)

This makes sense because z' exists everywhere except a finite number of points which don't contribute to the integral. In addition, the contour integral is independent of parameterization up to direction of integration.

27 Lemma on Modulus & Contours

Let $w \in C^0([a,b],\mathbb{C})$ then

$$\left| \int_{a}^{b} w(t) dt \right| \le \int_{a}^{b} |w(t)| dt. \tag{47}$$

Proof. This is essentially the triangle inequality. Let

$$r_0 = \left| \int_a^b w \, dt \right|. \tag{48}$$

If $r_0 = 0$ then the statement is obvious. Now suppose $r_0 > 0$. In this case,

 $\exists \theta_0 \in \mathbb{R} \text{ such that }$

$$\int_{a}^{b} w \, dt = r_{0}e^{i\theta_{0}} \implies r_{0} = e^{-i\theta_{0}} \int_{a}^{b} w \, dt$$

$$= \int_{a}^{b} w e^{-i\theta_{0}} \, dt \in \mathbb{R}$$

$$= \operatorname{Re} \left(\int_{a}^{b} w e^{-i\theta_{0}} \, dt \right)$$

$$= \int_{a}^{b} \operatorname{Re} \left(w e^{-i\theta_{0}} \right) \, dt. \tag{49}$$

But

$$\operatorname{Re}\left(we^{-i\theta_0}\right) \le \left|\operatorname{Re}\left(we^{-i\theta_0}\right)\right| \le \left|e^{-i\theta_0}w\right| = |w| \forall t \in [a, b].$$
 (50)

And so

$$\left| \int_{a}^{b} w \, dt \right| = r_0 \le \int_{a}^{b} |w| \, dt. \tag{51}$$

28 Bound on Modulus of Contour Integrals

Let C be a contour and let $f: \mathrm{Dom}(f) \to \mathbb{C}$ be piecewise continuous on C. If $|f(z)| \leq M \forall z \in \mathbb{C}$, then

$$\left| \int_{C} f(z) \, dz \right| \le M \mathcal{L}(C) \tag{52}$$

where $\mathcal{L}(C)$ is the arclength of C.

Proof. This result follows from the previous lemma. Let $z(t):[a,b]\to\mathbb{C}$ be a parameterization, then

$$\left| \int_{C} f \, dz \right| = \left| \int_{a}^{b} f(z(t))z'(t) \, dt \right|$$

$$\leq \int_{a}^{b} |f(z(t))z'(t)| \, dt$$

$$\leq \int_{a}^{b} |f(z(t))||z'(t)| \, dt$$

$$\leq M \int_{a}^{b} |z'(t)| \, dt$$

$$= M \mathcal{L}(C). \tag{53}$$

29 TFAE

Let f be continuous on \mathcal{D} . The following are equivalent (TFAE):

- 1. f(z) has an antiderivative F(z) throughout \mathcal{D} .
- 2. Given any $z_1, z_2 \in \mathcal{D}$ and contours $C_1, C_2 \subset \mathcal{D}$ both going from z_1 to z_2 ,

$$\oint_{C_1} f(z) \, dz = \oint_{C_2} f(z) \, dz. \tag{54}$$

In other words, the integral is independent of contour.

3. Given any close contour $C \subset \mathcal{D}$,

$$\int_C f(z) dz = 0. (55)$$

In the case that one (and hence every) condition is satisfied, we have that for any $z_1, z_2 \in \mathcal{D}$ and contour C from $z_1 \to z_2 \subset \mathcal{D}$,

$$\int_{C} f(z) dz = F(z_2) - F(z_1)$$
 (56)

where F's existence is guaranteed by (1).

Proof. (2 \iff 3) Suppose (2) is valid and let C be a closed contour in \mathcal{D} . Then C contains 2 points z_1, z_2 and we can divide C into 2 pieces $C_1 + C_2$ where $C_1 : z_1 \to z_2$ and $C_2 : z_2 \to z_1$.

Note that by reversing the direction of C_2 , we ave both C_1 and $-C_2$ go from z_1 to z_2 and stay inside of \mathcal{D} . Thus,

$$\oint_C f \, dz = \int_{C_1} f \, dz - \int_{-C_2} f \, dz. \tag{57}$$

By (2), we have that

$$\int_{C_1} f \, dz = \int_{C_2} f \, dz. \tag{58}$$

This means

$$\oint_C f(z) dz = 0. \tag{59}$$

So $(2) \implies (3)$.

Now, assume (3) is true and let $z_0, z_1 \in \mathcal{D}$. Let $C_1, C_2 \subset \mathcal{D}$ be contours going from z_0 to z_1 . We observe that $C := C_1 - C_2$ is a s.c.c. in \mathcal{D} . So by (3),

$$0 = \oint_C f \, dz = \int_{C_1 - C_2} f \, dz = \int_{C_1} f \, dz - \int_{C_2} f \, dz. \tag{60}$$

 $(1 \iff 2)$ Assume (1) is true. Let $z_0, z_1 \in \mathcal{D}$ and let C be a contour from $z_0 \to z_1$, i.e., $C: z(t) \in C([a,b],\mathbb{C})$ piecewise differentiable, $z(a) = z_0$ and $z(b) = z_1$. As F is an antiderivative of f, for all $t \in [a,b]$ for which z'(t) exists the chain rule gives

$$\frac{d}{dt}F(z(t)) = F'(z(t))z'(t) = f(z(t))z'(t). \tag{61}$$

So,

$$\oint_C f \, dz = \sum_{k=1}^n \int_{a_k}^{b_k} f(z(t))z'(t) \, dt = \sum_{k=1}^n \int_{a_k}^{b_k} \frac{d}{dt} F(z(t)) \, dt \tag{62}$$

where a_k, b_k are points at which z fails to be differentiable, $a_1 = a, b_n = b$. By the fundamental theorem of calculus,

$$\oint_C f \, dz = \sum_{k=1}^n \int_{a_k}^{b_k} \frac{d}{dt} F(z(t)) \, dt$$

$$= \sum_{k=1}^n F(z(b_k)) - F(z(a_k))$$

$$= F(b) - F(a) = F(z_1) - F(z_0). \tag{63}$$

So, given any 2 contours $C_1, C_2 \in \subset \mathcal{D}$ from $z_0 \to z_1$, we have

$$\int_{C_1} f \, dz = F(z_1) - F(z_0) = \int_{C_2} f \, dz. \tag{64}$$

Now, assume (2) is true. We need to construct an antiderivative F. Let $z_0 \in \mathcal{D}$ and define $F : \mathcal{D} \to \mathbb{C}$ by

$$F(z) = \int_{C_z} f(w) dw \tag{65}$$

where C_z is a contour from $z_0 \to z_1$. Since \mathcal{D} is a domain, it is a path connected, and so for each z, a path C_z exists. By (2) this is not dependent on the choice of contour C_z . So F is well-defined. We wish to show that F(z) is differentiable and its derivative is f.

Let $z\in\subset\mathcal{D}$ and choose $\epsilon>0.$ Given th continuity of f, let δ be chosen so that

1.

$$|f(w) - f(z)| < \frac{\epsilon}{2} \forall |w - z| < \delta \tag{66}$$

2. $\mathcal{B}_{\delta}(z) \subset \mathcal{D}$ (or \mathcal{D} is open.)

Given a $\Delta z \in \mathbb{C}$ such that $\Delta z < \delta$, we consider a path $C_{z,\Delta z}$ defined by $w(t) = z + t\Delta z$, $t \in [0,1]$. We have that $C_z + C_{z,\Delta z}$ is a contour in \mathcal{D} from $z_0 \to z + \Delta z$. Then,

$$\frac{1}{\Delta z} \left(F(z + \Delta z) - F(z) \right) = \frac{1}{\Delta z} \left(\int_{C_z + C_{z, \Delta z}} f(w) \, dw - \int_{C_z} f(w) \, dw \right)$$

$$= \frac{1}{\Delta z} \int_{C_{z, \Delta z}} f(w) \, dw$$

$$= \frac{1}{\Delta z} \int_0^1 f(z + t\Delta z)(z + t\Delta z)' \, dt$$

$$= \int_0^1 f(z + t\Delta z) \, dt. \tag{67}$$

So, for $|\Delta z| < \delta$,

$$\left| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right| = \left| \int_0^1 f(z + t\Delta z) \, dt - f(z) \right|$$

$$= \left| \int_0^1 \left[f(z + t\Delta z) - f(z) \right] \, dt \right|$$

$$\leq \int_0^1 \left| f(z + t\Delta z) - f(z) \right| \, dt$$

$$\leq \int_0^1 \frac{\epsilon}{2} \, dt$$

$$\leq \frac{\epsilon}{2}$$

$$< \epsilon \tag{68}$$

by choice of δ . So, we have shown that given $z \in \mathcal{D}$ and $\epsilon > 0$, there exists $\delta > 0$ such that

$$\left| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right| < \epsilon \tag{69}$$

whenever $|\Delta z| < \delta$. So, F is differentiable at z and F'(z) = f(z).

30 Cauchy-Goursat Theorem

Suppose that C is a simple closed contour and f is analytic on the interior of C and all points of C then

$$\oint_C f(z) dz = 0. \tag{70}$$

Proof. The proof involves slicing the interior of C into squares and partial squares. I won't try to reproduce it here.

31 Simply-connected domain

A domain \mathcal{D} is called simply-connected if every simple closed contour $C \subset \mathcal{D}$ contains only points of \mathcal{D} and its interior, i.e., every simple closed contour is contractible to a point.

32 Multiply-connected domain

A multiply-connected domain \mathcal{D} is a dmain which is not simply-connected. (very imaginative)

33 Cauchy-Goursat Theorem for simply-connected domain

Let \mathcal{D} be a simply connected domain. f is analytic in \mathcal{D} . For all closed contour $C \subset \mathcal{D}$,

$$\oint_C f(z) dz = 0. \tag{71}$$

Proof. Notice that we C need not be simple. Consider the figure

Let C be a closed contour in \mathcal{D} with a finite number of self-intersections. Given that C only has n interactions, we can split C into a finite number m of simple closed contour C_j . Also, given \mathcal{D} is simply connected, the interior of each C_j lives in \mathcal{D} . By the previous theorem, we have

$$\oint_{C_j} f(z) dz = 0 \forall j = 1, 2, 3, \dots \implies \oint_C f(z) dz = \oint_{\sum C_j} f(z) dz = 0.$$
 (72)

34 Corollary to Cauchy-Goursat for simply-connected domain

If f is analytic on a simply connected domain in \mathcal{D} then f has an antiderivative F everywhere in \mathcal{D} .

Proof. TFAE. \Box

35 Cauchy-Goursat Theorem for multiply-connected regions

Suppose that

- 1. C is a s.c.c.(+).
- 2. C_j , j = 1, 2, ..., n are s.c.c.(-), all disjoint and all live in the interior of C.

If f is analytic on $C, C_j \forall j$ and the region between C, C_j (enclosed by C but outside of C_j) then

$$\oint_C f(z) dz + \sum_{j=1}^n \oint_{C_j} f(z) dz = 0.$$
 (73)

Proof. The proof follows from the this figure

36 Principle of Path Deformation (Corollary to Cauchy-Goursat)

Let C_1 and C_2 be simple closed curves and C_2 encloses C_1 . Both are (+) oriented. Then if f is analytic on the region between C_1, C_2 then

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz.$$
 (74)

Proof. Consider the following suggestive figure:

37 Cauchy's Integral Formula

Let C be a s.c.c.(+) and let f be analytic on C and its interior. If z_0 lives interior to C then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz. \tag{75}$$

Proof. Let $\delta < 1$ be small enough such that $|z - z_0| < \delta$ so that C encloses z. Since the quotient $f(z)/(z - z_0)$ is analytic in the region exterior to $\mathcal{B}_{\delta}(z_0)$ and interior to C, we have that

$$\oint_{C} \frac{f(z)}{z - z_{0}} dz = \oint_{C_{o}} \frac{f(z)}{z - z_{0}} dz \tag{76}$$

where $\rho < \delta$ and C_{ρ} is a (+) circle centered at z_0 of radius ρ . The equality is guaranteed by the principle of deformation of path.

Now, consider

$$\mathcal{E} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z - z_{0}} - f(z_{0})$$

$$= \frac{1}{2\pi i} \oint_{C_{\rho}} \frac{f(z)}{z - z_{0}} - \frac{f(z_{0})}{2\pi i} \oint_{C_{\rho}} \frac{1}{z - z_{0}} dz$$

$$= \frac{1}{2\pi i} \left(\oint_{C_{\rho}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right). \tag{77}$$

Given that f(z) is continuous at z_0 , $\forall \epsilon > 0, \exists \rho > 0$ s.t. $|f(z) - f(z_0)| < \epsilon$ whenever $|z - z_0| < 2\rho < \delta$. Since $|z - z_0| = \rho < 2\rho$ on C_ρ , we have

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| = \frac{1}{\rho} |f(z) - f(z_0)| < \frac{\epsilon}{\rho} \text{ on } C_{\rho}.$$
 (78)

So,

$$|\mathcal{E}| \le \frac{1}{2\pi} \frac{\epsilon}{\rho} \mathcal{L}(C_{\rho}) = \epsilon.$$
 (79)

So, given any $\epsilon > 0$, $|\mathcal{E}| \leq \epsilon$. This says that

$$\frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = f(z_0). \tag{80}$$

38 Cauchy's Integral Formula for First-Order Derivative

Let C s.c.c.(+) and let f be analytic on the interior of C and on C. Then if $z_0 \in \text{int}(C)$ then

$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz.$$
 (81)

Proof. Let $M = \max |f(z)|$ where $z \in C$. Given $z_0 \in \operatorname{int}(C)$, let $d = \min |z - z_0| > 0$ where $z \in C$. Let $h = \Delta z$ is such that $|h| = |\Delta z| < d$. Using Cauchy's integral formula,

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.$$
 (82)

Because |h| < d, $z_0 + h \in int(C)$. So,

$$f(z_0 + h) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - (z_0 + h)} dz.$$
 (83)

Now, observe that

$$\mathcal{E} = \frac{f(z_0 + h) - f(z_0)}{h} - \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

$$= \frac{1}{h} \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - (z_0 + h)} dz - \frac{1}{h} \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

$$= \dots$$

$$= \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} \frac{h}{z - (z_0 + h)} dz$$
(84)

for all $z \in \text{int}(C)$, $d \leq |z - z_0|$. So,

$$\frac{1}{|z - z_0|^2} \le \frac{1}{d^2}. (85)$$

Also, $0 \le d - |h| \le |z - (z_0 + h)| \forall |h| < d$. So for all $z \in C$, whenever |h| < d,

$$\left| \frac{f(z)}{(z-z_0)^2} \frac{h}{z - (z_0 + h)} \right| \le \frac{M|h|}{d^2(d-|h|)}. \tag{86}$$

So, whenever |h| < d, we have

$$|\mathcal{E}| \le \frac{1}{2\pi} \frac{M|h|}{d^2(d-|h|)} \mathcal{L}(C) = \frac{M|h|}{2\pi d^2(d-|h|)} \mathcal{L}(C).$$
 (87)

Let $\epsilon > 0$ be given and choose

$$\delta = \min\left[\frac{d}{2}, \frac{\pi d^3}{M\mathcal{L}(C)}\right] \tag{88}$$

then whenever $|h| < \delta \le \frac{d}{2} < d$,

$$\frac{1}{d-|h|} \le \frac{1}{d/2}.\tag{89}$$

With this,

$$\mathcal{E} \le \frac{M|h|}{2\pi d^3/2} \mathcal{L}(C) < \frac{M\mathcal{L}(C)}{\pi d^3} \frac{\pi d^3 \epsilon}{M\mathcal{L}(C)} = \epsilon. \tag{90}$$

So,

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz.$$
 (91)

39 Cauchy's Integral Formula for Higher-Order Derivatives

Let C be s.c.c.(+) and f analytic on C and its interior. Then $\forall z_0 \in \text{int}(C)$, and $n \in \mathbb{N}$, f is n-times differentiable at z_0 and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz.$$
 (92)

40 Analyticity of Derivatives

If f is analytic at z_0 then f has derivatives of all orders which are also analytic at z_0 .

Proof. We simply applying the preceding theorem. \Box

41 Analyticity of Derivatives on a Domain

If \mathcal{D} is a domain and f is analytic on \mathcal{D} then f has derivatives of all orders and each derivative is analytic on \mathcal{D} . This means f is infinitely differentiable on \mathcal{D} .

42 Infinite Differentiability

Let f(z) = u(x, y) + iv(x, y) be analytic at $z_0 = (x_0, y_0)$. Then u, v have continuous partial derivatives of all orders at z_0 . Further, if f = u + iv is analytic on \mathcal{D} , then u, v are infinitely differentiable in \mathcal{D} , i.e., $u, v \in C^{\infty}(\mathcal{D})$.

Proof. The proof follows from Cauchy-Riemann theorem and equations. \Box

43 Hörmander's Theorem

If u is harmonic in a domain \mathcal{D} then u is smooth $\iff u \in C^{\infty}(\mathcal{D})$.

Proof. If u is harmonic then u has a harmonic conjugate v. Then f = u + iv is analytic, etc.

44 Morera's Theorem

Let f be continuous on \mathcal{D} . If for all closed $C \subset \mathcal{D}$,

$$\oint_C f(z) dz = 0,$$
(93)

then f is analytic on \mathcal{D} .

Proof. The proof follows from TFAE. By TFAE, f has an antiderivative F throughout \mathcal{D} . But F is analytic because f' = F. This means F's derivatives are analytic throughout \mathcal{D} as well. So, f is analytic throughout \mathcal{D} .

45 Cauchy's Inequality

Let f be analytic on and inside a (+) circle C with center z_0 and radius R. Let $M_R = \max[|f(z)|], z \in C_R$. Then $\forall n \in \mathbb{N}$,

$$\left| f^{(n)}(z_0) \right| \le \frac{n! M_R}{R^n}. \tag{94}$$

Proof. This follows from Cauchy's integral formula and the triangle inequality:

$$\left| f^{(n)}(z_0) \right| = \left| \frac{n!}{2\pi i} \oint_{C_R} \frac{f(z)}{(z - z_0)^{n+1}} dz \right|
\leq \frac{n!}{2\pi} \frac{M_R}{R^{n+1}} (2\pi R)
= \frac{n! M_R}{R^n}.$$
(95)

46 Liouville's Theorem

If f is bounded and entire and f is constant.

Proof. Let $M \ge 0$ for which $|f(z)| \le M \forall z \in \mathbb{C}$. Given any $z_0 \in \mathbb{C}$, f is analytic on every neighborhood of z_0 and so $\forall R > 0$,

$$|f'(z_0)| \le \frac{1!M_R}{R} \tag{96}$$

where $M_R = \max |f(z)| \le M$ where $z \in C_R(z_0)$. So, for any $z_0 \in \mathbb{C}$, R > 0,

$$|f'(z_0)| \le \frac{M}{R}.\tag{97}$$

This shows $f'(z_0) = 0 \forall z_0 \in \mathbb{C}$. So, f is constant because \mathbb{C} is a domain. \square

47 The Fundamental Theorem of Algebra

If P(z) is a non constant polynomial, i.e.,

$$P(z) = a_0 + a_1 z^1 + \dots + a_n z^n \tag{98}$$

where $a_n \neq 0, n = \deg(P)$, then $\exists z_0 \in \mathbb{C}$ at which $P(z_0) = 0$.

Proof. Let

$$w = \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + \frac{a_{n-1}}{z}$$
 (99)

and note that

$$P(z) = (w + a_n)z^n. (100)$$

We observe that z^k from $k \in \{1, 2, 3, ...\}$ has $1/z^k \to 0$ has $z \to \infty$. So, given $\epsilon = |a_n|/2$, there exists R > 0 for which

$$|w| \le \frac{|a_n|}{2} \forall |z| > R. \tag{101}$$

So, for |z| > R,

$$|w + a_n| \ge ||w| - |a_n|| = |a_n| - |w| \ge \frac{|a_n|}{2}.$$
 (102)

So,

$$\left| \frac{1}{P(z)} \right| = \frac{1}{|w + a_n||z^n|} \le \frac{2}{|a_n|} \frac{1}{|z^n|} \le \frac{2}{|a_n|} \frac{1}{R^n}$$
 (103)

where |z| > R. Now, suppose that $P(z) \neq 0 \forall z \in \mathbb{C}$ to get a contradiction. Since P(z) is never vanishes, f(z) = 1/P(z) is entire. Since, in particular, f(z) is continuous, it is bounded on all closed bounded set. So, $\exists M > 0$ such that $|f(z)| \leq M \forall z, |z| \leq R$. So, by what we've just shown

$$\left| \frac{1}{P(z)} \right| \le \max \left[M, \frac{2}{|a_n| R^n} \right]. \tag{104}$$

So, we have f(z) is bounded and entire. By Liouville's theorem, 1/P(z) must be constant. This is a contradiction.

48 Corollary to The Fundamental Theorem of Algebra

If P(z) has degree n, then there exists $c \in \mathbb{C}$ and $z_1, z_2, \ldots, z_n \in \mathbb{C}$ such that

$$P(z) = c(z - z_1) \dots (z - z_n). \tag{105}$$

49 The Maximum Modulus Principle 1

Suppose that an analytic function f has |f(z)| maximized at z_0 in some nbh $\mathcal{B}_{\epsilon}(z_0)$ for some $\epsilon > 0$. Then f(z) is constant on $\mathcal{B}_{\epsilon}(z_0)$.

Proof. Take $0 < \rho < \epsilon$ and by invoking Cauchy's integral formula, we have

$$f(z_0) = \frac{1}{2\pi i} \oint_{C_\rho} \frac{f(z)}{z - z_0} dz$$

$$= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + \rho e^{it})}{z_0 + \rho e^{it} - z_0} i\rho e^{it} dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt.$$
(106)

So

$$|f(z_0)| = \frac{1}{2\pi} \left| \int_0^{2\pi} f(z_0 + \rho e^{it}) dt \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \underbrace{\left| f(z_0 + \rho e^{it}) \right|}_{\leq |f(z_0)|} dt$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0)| dt = |f(z_0)|. \tag{107}$$

This says

$$|f(z_0)| = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{it})| dt$$
 (108)

so

$$\frac{1}{2\pi} \int_0^{2\pi} \underbrace{|f(z_0)| - |f(z_0 + \rho e^{it})|}_{>0} dt.$$
 (109)

This says $\forall t \in [0, 2\pi]$ and $\forall \rho < \epsilon$

$$|f(z_0)| = |f(z_0 + \rho e^{it})|.$$
 (110)

This is true for all $\rho < \epsilon$, so $|f(z)| = |f(z_0)|$ for all $z \in \mathcal{B}_{\epsilon}(z_0)$.

50 The Maximum Modulus Principle 2

Let f be analytic and non-constant on a domain \mathcal{D} (open and connected), then |f(z)| cannot be maximized in \mathcal{D} .

Proof. Assume to reach a contradiction that f is maximized at $z_0 \in \mathcal{D}$. Let $z_1 \in \mathcal{D}$ be arbitrary. Then by the following figure

we get a contradiction, using the maximum modulus principle 1, as desired.

51 Convergence of Sequences

Consider a sequence $\{z_n\} = (z_0, z_1, \dots)$ of complex numbers. Write $\{z_n\} \in \mathbb{C}$. We say that the sequence converges if $\exists z \in \mathbb{C}$ for which the following holds: $\forall \epsilon > 0, \exists N = N_{\epsilon} \in \mathbb{N} \text{ s.t.}$

$$|z - z_n| < \epsilon \,\forall n \ge N. \tag{111}$$

In this sense, we also say that $\{z_n\}$ converges to z and call z the limit of the sequence:

$$z = \lim_{n \to \infty} z_n. \tag{112}$$

52 Real and Imaginary parts of a convergent sequence

Let $z_n = x_n + iy_n$ be a sequence, then $z_n \to z = x + iy$ if and only if $x_n \to x$ and $y_n \to y$ in the sense of real numbers.

53 Cauchy sequences

A sequence $\{z_n\}$ is called a Cauchy sequence if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that

$$|z_n - z_m| < \epsilon \,\forall n, m \ge N. \tag{113}$$

54 Cauchy and Convergence

A sequence is convergent if and only if it is Cauchy.

55 Series

Consider a sequence $\{z_n\}_{n=0}^{\infty}$ and the series formed with the sequential elements as its terms:

$$\sum_{n=0}^{\infty} z_k = z_0 + z_1 + z_2 + \dots \tag{114}$$

where, a priori, we don't assume they add to anything. This series convergences if $\{S_N\}$ where

$$S_N = \sum_{n=0}^{N} z_k \tag{115}$$

is a convergent sequence, i.e.,

$$S = \lim_{N \to \infty} S_N \tag{116}$$

exists.

56 Convergence of Series

 \spadesuit Given $z_n = x_n + iy_n$ then $\sum z_n$ converges to $x + iy \iff \sum x_n \to x$ and $\sum y_n \to y$.

 \spadesuit If $\sum z_n$ converges then $\lim_{n\to\infty} z_n = 0$. The converse also holds.

Proof. Let $\epsilon > 0$ be given. Then that $\sum z_n$ converges, $\{S_N\}$ also converges. So, $\{S_N\}$ is Cauchy, so $\exists M \in \mathcal{N}$ such that

$$|S_n - S_m| < \epsilon \tag{117}$$

whenever $n, m \geq M$. Setting n = m + 1 we have

$$|z_n| = |S_{n+1} - S_n| < \epsilon. \tag{118}$$

 \spadesuit A series $\sum z_n$ is said to be absolutely convergent if $\sum |z_n|$ is convergent as a series of real, non-negative numbers.

 \spadesuit If $\sum z_n$ is absolute convergent than $\sum z_n$ is convergent.

Proof. Here is a sketch of the proof:

$$|S_N - S_M| = \left| \sum_{k=N+1}^M z_k \right| \le \sum_{k=N+1}^M |z_k|$$
 (119)

due to the triangle inequality. With this inequality, the Cauchyness of $\sum |z_k|$ implies the Cauchyness of $\sum z_k$.

- ♠ The series $\sum_{n=0}^{\infty} z_n$ converges to $S \iff \lim_{N\to\infty} \rho_N = 0$ where $\rho_N = S S_N = S \sum_{n=0}^N z_n$ and S is some number that is to be the sum of the series.
- ♠ "Geometric series":

$$S_N = \frac{1 - z^{N+1}}{1 - z} = \sum_{n=0}^{N} z^n.$$
 (120)

 \spadesuit For any $z \in \mathbb{C}$ such that |z| < 1, $\sum_{n=0}^{\infty}$ converges and its sum is 1/(1-z).

Proof. For each $N \in \mathcal{N}$,

$$\rho_N = \frac{1}{1-z} - \sum_{n=0}^{N} z^n = \frac{1}{1-z} - \frac{1-z^{N+1}}{1-z} = \frac{z^{N+1}}{1-z}.$$
 (121)

Since |z| < 1, $\lim_{N \to \infty} z^{N+1} = 0$. So, $\lim_{N \to \infty} \rho_N = 0$. So, by one of the previous theorems, we have

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.$$
 (122)

57 Taylor's Theorem

Let f(z) be analytic on a disk $\mathcal{B}_{R_0}(z_0)$, then for any $z \in \mathcal{B}_{R_0}(z_0)$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$
 (123)

Romarks

- 1. In particular, the series $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ converges.
- 2. The sum is f.
- 3. For real functions $h : \mathbb{R} \to \mathbb{R}$. If h is differentiable on an open set containing x_0 , it might not be twice differentiable.
- 4. For infinitely differentiable functions, now the series makes sense, but we might have h being representable by a Taylor series that is infinitely differentiable, but not equal to its Maclaurin series. For example:

$$h(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 (124)

Proof. Without loss of generality, assume that $z_0 = 0$ and consider $\mathcal{B}_{R_0}(z_0)$ on which f is analytic. Let $z \in \mathcal{B}_{R_0}(z_0)$. Let $|z_0| < |z| < R_0$, and define a s.c.c.(+) C centered at $z_0 = 0$ of radius R_0 . Since z lives in the interior of C, Cauchy integral formula says

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w - z} dw. \tag{125}$$

Since $w \neq 0$, we write

$$\frac{1}{w-z} = \frac{1}{w} \frac{1}{1-z/w} = \sum_{n=0}^{N} \frac{z^n}{w^{n+1}} + \frac{1}{w-z} \left(\frac{z}{w}\right)^{N+1},\tag{126}$$

which is made possible by the fact that

$$\frac{1}{1-a} = \frac{1-a^{N+1}}{1-a} + \frac{a^{N+1}}{1-a} = \sum_{n=0}^{N} a^n + \frac{a^{N+1}}{1-a}.$$
 (127)

Next, by Cauchy's derivative formula,

$$f^{(n)}(0) = \frac{n!}{2\pi i} \oint_C \frac{f(w)}{(w-0)^{n+1}} dw.$$
 (128)

So we have

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \oint_C \frac{f(w)}{(w-0)^{n+1}} dw.$$
 (129)

Next, let the error be

$$\rho_{N} = f(z) - \sum_{n=0}^{N} a_{n} z^{n}
= \frac{1}{2\pi i} \oint_{C} \frac{f(w)}{w - z} dw - \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \oint_{C} \frac{f(w)}{(w - 0)^{n+1}} z^{n} dw
= \frac{1}{2\pi i} \oint_{C} f(w) \left[\frac{1}{w - z} - \sum_{n=0}^{N} \frac{z^{n}}{w^{n+1}} \right] dw
= \frac{1}{2\pi i} \oint_{C} f(w) \frac{(z/w)^{N+1}}{w - z} dw.$$
(130)

Set

$$d = \min|w - z| \quad z \in C \tag{131}$$

and

$$M = \max |f(z)| \quad z \in \mathcal{B}_{R_0}(z_0 = 0)$$
 (132)

then

$$|\rho_N| = \frac{1}{2\pi} \left| \oint_C f(w) \frac{(z/w)^{N+1}}{w-z} dw \right|$$

$$\leq \frac{1}{2\pi} \frac{|z/w|^{N+1}}{d} M \mathcal{L}(C)$$

$$= \frac{M|z/w|^{N+1}}{d} r_0$$
(133)

So, we have shown that given $z \in \mathcal{B}_{R_0}(0)$, $\exists |z| < r_0 < R_0$ for which

$$|\rho_N| \le M \frac{|z|^{N+1}}{d \cdot r_0^N} = \left(\frac{M|z|}{d}\right) \left(\frac{|z|}{r_0}\right)^N \forall N \in \mathbb{N}.$$
 (134)

Since we've chosen $|z| < r_0 < R_0, \, |z|/r_0 < 1$. Given $\epsilon > 0, \, \exists N_0 \in \mathbb{N}$ for which $\forall N \geq N_0,$

$$\left(\frac{|z|}{r_0}\right)^N < \frac{\epsilon d}{M|z|}.$$
(135)

So, for all $N \geq N_0$,

$$|\rho_N| \le \frac{M|z|}{d} \left(\frac{|z|}{r_0}\right)^N < \epsilon.$$
 (136)

Thus,

$$f(z) = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{n=0}^{N} a_n z^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n.$$
 (137)

58 Laurent's Theorem

Let f be analytic on a region \mathcal{D} defined by $R_1 < |z - z_0| < R_2$, and let a simple closed contour C endowed with a positive orientation in this annulus be given. Then, for each $z \in \mathcal{D}$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^{-n+1}}$$
 (138)

where

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz \quad b_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{-n+1}} dz.$$
 (139)

Proof. Without loss of generality, assume $z_0 = 0$. Let C_1, C_2 , s.c.c.(+) be given such that C_2 encloses C_1, z, C ; C encloses C_1 , and the exterior of C_1 contains z, C. Also, let γ be a s.c.c.(+) around z, exterior to C_1 but interior to C_2 . An appeal to Cauchy-Goursat for multiply-connected domain shows that

$$\oint_{C_2} \frac{f(s)}{s-z} \, ds - \oint_{C_1} \frac{f(s)}{s-z} \, ds - \oint_{C_2} \frac{f(s)}{s-z} \, ds = 0. \tag{140}$$

Next, by Cauchy integral formula,

$$f(z) = \frac{1}{2\pi i} \oint_{C_{\gamma}} \frac{f(s)}{s - z} ds$$

$$= \oint_{C_{2}} \frac{f(s)}{s - z} ds - \oint_{C_{1}} \frac{f(s)}{s - z} ds$$

$$= \oint_{C_{2}} \frac{f(s)}{s - z} ds + \oint_{C_{1}} \frac{f(s)}{z - s} ds. \tag{141}$$

For the first integral, we can make the following replacement

$$\frac{1}{s-z} = \frac{1}{s} \left(\frac{1}{1-z/s} \right)$$

$$= \sum_{n=0}^{N-1} \frac{z^n}{s^{n+1}} + \frac{1}{s-z} \left(\frac{z}{s} \right)^N.$$
(142)

For the second integral, we can make the following replacement (interchanging

the role of s and z)

$$\frac{1}{z-s} = \frac{1}{z} \left(\frac{1}{1-s/z} \right)$$

$$= \sum_{n=0}^{N-1} \frac{s^n}{z^{n+1}} + \frac{1}{z-s} \left(\frac{s}{z} \right)^N$$

$$= \sum_{n=1}^{N} \frac{s^{n-1}}{z^n} + \frac{1}{z-s} \left(\frac{s}{z} \right)^N$$

$$= \sum_{n=1}^{N} \frac{z^{-n}}{s^{-n+1}} + \frac{1}{z-s} \left(\frac{s}{z} \right)^N.$$
(143)

And so we have

$$f(z) = \frac{1}{2\pi i} \oint_{C_2} f(s) \left[\sum_{n=0}^{N-1} \frac{z^n}{s^{n+1}} + \frac{1}{s-z} \left(\frac{z}{s} \right)^N \right] z^n dz$$

$$+ \frac{1}{2\pi i} \oint_{C_1} f(s) \left[\sum_{n=1}^N \frac{z^{-n}}{s^{-n+1}} + \frac{1}{z-s} \left(\frac{s}{z} \right)^N \right] z^{-n} dz$$

$$= \sum_{n=0}^{N-1} \underbrace{\left[\frac{1}{2\pi i} \oint_{C_2} \frac{f(s)}{s^{n+1}} ds \right]}_{\alpha_n} z^n + \sum_{n=1}^N \underbrace{\left[\frac{1}{2\pi i} \oint_{C_1} \frac{f(s)}{s^{-n+1}} ds \right]}_{\beta_n} z^{-n} + \rho_N + \sigma_N$$
(144)

where

$$\rho_N = \frac{1}{2\pi i} \oint_{C_0} \frac{f(s)}{s - z} \left(\frac{z}{s}\right)^N ds \tag{145}$$

$$\sigma_N = \frac{1}{2\pi i} \oint_{C_L} \frac{f(s)}{z - s} \left(\frac{s}{z}\right)^N ds. \tag{146}$$

Now, on C_2 ,

$$\frac{1}{|s-z|} \le \frac{1}{R_2 - R},\tag{147}$$

and on C_1 ,

$$\frac{1}{|z-s|} \le \frac{1}{R - R_1},\tag{148}$$

where R = |z|, $R_1 < R < R_2$. Setting $M = \max |f(s)|$ where $s \in C_1 \cap C_2$, by triangle inequality, we have that

$$|\rho_N| = \frac{1}{2\pi} \left| \oint_{C_2} \frac{f(s)}{s - z} \left(\frac{z}{s} \right)^N ds \right| \le \frac{1}{2\pi} \frac{M}{R_2 - R} \left(\frac{R}{R_2} \right)^N 2\pi R_2 = \frac{M}{1 - R/R_2} \left(\frac{R}{R_2} \right)^N. \tag{149}$$

Similarly,

$$|\sigma_N| \le \frac{M}{1 - R_1/R} \left(\frac{R_1}{R}\right)^N. \tag{150}$$

We see that $\rho_N \to 0$, $\sigma \to 0$ as $N \to \infty$. It follows (with ϵ 's and N's similar to those in the proof of Taylor's theorem) that

$$f(z) = \sum_{n=0}^{\infty} \alpha_n z^n + \sum_{n=1}^{\infty} \beta_n z^{-n}.$$
 (151)

And by corollary to Cauchy-Goursat for multiply-connected regions,

$$\alpha_n = \frac{1}{2\pi i} \int_C (\) \, ds = a_n$$

$$\beta_n = \frac{1}{2\pi i} \int_C (\) \, ds = b_n \tag{152}$$

for all n.

59 More results about series

Consider a power series

$$S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$
 (153)

- 1. If S(z) converges at some $z_1 \neq z_0$ the S(z) converges on $\mathcal{B}_R(z_0)$ where $|z_0 z_1| \leq R$.
- 2. The series converges uniformly and absolutely on every ball \mathcal{B} properly contained in $\mathcal{B}_R(z_0)$.
- 3. On $\mathcal{B}_R(z_0)$, S(z) is analytic, $S'(z) = \sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$.
- 4. If C is a s.c.c.(+) and g is continuous on C and $C \subset \mathcal{B}_R(z_0)$ then

$$\oint_C fg \, dz = \sum_{n=0}^{\infty} \oint_C a_n g(z) (z - z_0)^n \, dz \tag{154}$$

5. Uniqueness of Laurent series: If $S(z) = \sum_{n \in \mathbb{Z}} c_n (z - z_0)^n$ converges on an annulus $R_1 \leq |z - z_0| \leq R_2$ then this is precisely the Laurent series of S at z_0 .

60 Residues

For C a s.c.c.(+), let f have singularities at z_1, z_2, \ldots, z_n enclosed by C. Then all the z_k 's are isolated singularities, and there exist punctured disks $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_n$ inside C which are on-overlapping whose centers contains z_k 's, respectively.

Next, suppose that f has an isolated singularity at z_0 . Then f has a Laurent series expansion on an annulus $0 < |z - z_0| < R$ with

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}.$$
 (155)

Further, for any s.c.c.(+) C_k ,

$$b_n = \frac{1}{2\pi i} \oint_{C_n} \frac{f(z)}{(z - z_0)^{-n+1}} dz \forall n = 1, 2, 3, \dots$$
 (156)

In particular,

$$b_1 = \frac{1}{2\pi i} \oint_{C_k} f(z) \, dz. \tag{157}$$

We shall call this coefficient of $1/(z-z_0)$ in the Laurent series expansion the residue of f at z_0 , denoted

$$b_1 := \operatorname{Res}_{z=z_0} f(z). \tag{158}$$

This gives us a way to compute integrals by finding Laurent series expansions.

61 The Residue Theorem

Let C be a s.c.c.(+) and suppose that f is analytic on C and the interior to C except at a finite number of points z_1, z_2, \ldots, z_n , all enclosed by C. Then

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z).$$
(159)

Proof. Take C_1, C_2, \ldots, C_n to be non-intersecting s.c.c.(+) inside C where each enclosed only the singular point z_k , respectively. Then f is analytic on $Int(C) \setminus \cup^n IntC_k$. By Cauchy-Goursat for multiply-connected region,

$$\oint_{C} f(z) dz = \sum_{k=1}^{n} \oint_{C_{k}} f(z) dz.$$
 (160)

But for each k, we also have

$$\oint_{C_k} f(z) dz = 2\pi i \operatorname{Res}_{z=z_k} f(z).$$
(161)

So,

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z).$$
(162)

62 Classification of Singularities

If the principal part of the Laurent series expansion of f is identically zero then z_0 is said to be a removable singularity.

If z_0 is an isolated removable singularity for f for $z \neq z_0$ but $0 < |z - z_0| < R$, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + 0.$$
 (163)

At $z = z_0$, the left-hand side is a_0 . So if we define

$$f_{ext}(z) = \begin{cases} f(z) & 0 < |z - z_0| < R \\ a_0 & z = z_0 \end{cases}$$
 (164)

then

$$f_{ext}(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (165)

for all z such that $|z - z_0| < R$. This is called an extension of f. We note that $f_{ext}(z)$ is analytic on $\mathcal{B}_R(z_0)$. We have just removed the removable singularity.

When the principal part of f is nonzero and contains a finite number of summands

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} = \frac{b_1}{(z-z_0)} + \dots + \frac{b_m}{(z-z_0)^m}$$
 (166)

and $b_k \neq 0 \forall k \geq m+1$ then z_0 is a pole of order m for f. When $m=1, z_0$ is called a simple pole.

If the principal part of f is identically zero, then z_0 is a removable singularity for f, because f can be extended via its valid Taylor-Laurent series expansion to an analytic function on $\mathcal{B}_R(z_0)$.

 z_0 is said to be an essential singularity of f it it is not removable or a pole, i.e., the principle part of the Laurent series of f contains an infinite number of non-zero terms.

63 Residues with Φ theorem

Let z_0 be an isolated singularity of f. Then z_0 is a pole or order m if and only if \exists a function $\phi(z)$ which is non zero at z_0 , analytic at z_0 and for which

$$f(z) = \frac{\phi(z)}{(z - z_0)^m} \tag{167}$$

for $z \in a$ nbh of z_0 . In this case,

$$\operatorname{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}.$$
 (168)

Proof. (\rightarrow) Suppose that

$$f(z) = \frac{\phi(z)}{(z - z_0)^m}$$
 (169)

where $\phi(z)$ is analytic at z_0 and $\phi(z_0) \neq 0$. Then we have that $\phi(z)$ has a valid Taylor series expansion in $\mathcal{B}_R(z_0)$:

$$\phi(z) = \sum_{n=0}^{\infty} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^n.$$
 (170)

With this, we can write f(z) as

$$f(z) = \frac{1}{(z - z_0)^m} \sum_{n=0}^{\infty} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^{n-m}$$

$$= \sum_{n=0}^{m-1} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^{n-m} + (\text{Taylor})$$

$$= \sum_{n=0}^{\infty} \frac{\phi^{(n-k)}(z_0)}{(m-k)!} (z - z_0)^k + (\text{Taylor}), \quad (k = m - n).$$
(171)

And so z_0 is a pole of order m, since $\phi^{(0)}(z_0) \neq 0$. And of course, we get for free

$$\operatorname{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}.$$
 (172)

 (\leftarrow) Conversely, assume that f has a pole at z_0 or order m. Then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} + 0 \dots$$

$$= \frac{1}{(z - z_0)^m} \left[\sum_{n=0}^{\infty} a_n (z - z_0)^{n+m} + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^{n-m}} \right]$$

$$:= \frac{\phi(z)}{(z - z_0)^m}$$
(173)

where $\phi(z)$ is defined to be the expression in the square brackets. With this, we see that $\phi(z)$ is analytic at z_0 and $\phi(z_0) = 0 + b_m \neq 0$ by hypothesis.

64 Residues with p-q theorem

Let p,q be analytic at z_0 . If $p(z_0) \neq 0, q'(z_0) \neq 0$, and $p'(z_0) = 0$ then

$$f(z) = \frac{p(z)}{q(z)} \tag{174}$$

has a simple pole of z_0 and

$$\operatorname{Res}_{z=z_0} f(z) = \operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}.$$
 (175)

Proof. Since $q'(z_0) \neq 0$, q has a simple zero at z_0 . So 1/q has a simple pole at z_0 and

$$\operatorname{Res}_{z=z_0} \frac{1}{q} = \frac{1}{q'(z_0)}. (176)$$

Since $p(z_0) \neq 0$, we know that

$$\operatorname{Res}_{z=z_0} \frac{p}{q} = p(z_0) \operatorname{Res}_{z=z_0} \frac{1}{q} = \frac{p(z_0)}{q'(z_0)}.$$
 (177)

Proof. This proof should be more elaborate than the previous proof: \Box

65 What happens near singularities?

If z_0 is a pole of order m for f, then

$$\lim_{z \to z_0} f(z) = \infty. \tag{178}$$

66 Removable singularity - Boundedness - Analyticity (RBA)

If z_0 is a removable singularity for f then f is bounded and analytic on a punctured nbh of z_0 .

67 The converse of RBA

Let f be analytic on $0 < |z - z_0| < \delta$ for some $\delta > 0$. If f is also bounded on $0 < |z - z_0| < \delta$, then if z_0 is a singularity for f, it must be removable.

Proof. By assumption, f has a Laurent series representation of the form

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$
 (179)

where b_n in particular is given by

$$b_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{-n+1}} dz \tag{180}$$

where C is a s.c.c.(+) in the annulus of the analyticity. In particular, if $0 < \rho < \delta$, and $C_{\rho} := \{z, |z - z_0| = \rho\}$, (+) then

$$|b_n| = \left| \frac{1}{2\pi i} \oint_{C_\rho} \frac{f(z)}{(z - z_0)^{-n+1}} dz \right|$$
 (181)

and if M is such that $f(z) \leq M \forall 0 < |z - z_0| < \delta$ then

$$|b_n| \le \frac{1}{2\pi} \frac{M}{\rho^{-n+1}} 2\pi \rho = M\rho^n.$$
 (182)

Since this is valid $\forall \rho < \delta$, we must have that $b_n = 0 \forall n$.

68 Casorati-Weierstrass Theorem

Let f have an essential singularity at z_0 . Then $\forall w_0 \in \mathbb{C}$ and $\epsilon > 0$,

$$|f(z) - w_0| < \epsilon \tag{183}$$

for some $z \in \mathcal{B}_{\delta}(z_0) \forall \delta 0$.

 \iff f is arbitrarily close to every complex number on every nbh of z_0 .

 $\iff \forall \delta > 0, f(\mathcal{B}_{\delta}(z_0) \setminus \{z_0\}) \text{ is dense on } \mathbb{C}.$

 \iff f gets close to every single point in a ball for any ball.

 \iff If z_0 is an essential singularity for f then f attains, except for at most one value, every complex number an infinite number of time on every nbh of z_0 .

Proof. Assume to reach a contradiction that $\exists w_0 \in \mathbb{C}, \epsilon, \delta > 0$ s.t.

$$|f(z) - w_0| \ge \epsilon \forall 0 < |z - z_0| < \delta, \tag{184}$$

i.e., f does not get close to some value w_0 in some nbh of z_0 of radius δ . Then, consider

$$g(z) = \frac{1}{f(z) - w_0} \tag{185}$$

which is bounded and analytic on the punctured disk $0 < |z - z_0| < \delta$. At worst, z_0 is a removable singularity for g. Also note that g(z) is not identically zero since f is not constant (as f has a singularity). With this,

$$g(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k,$$
(186)

which allows us to extend g to z_0 . Let $m = \min(k = 0, 1, 2, ...)$ such that $a_k \neq 0$, which exists because $g \neq 0$. Then

$$g(z) = (z - z_0)^m \sum_{k=0}^{\infty} a_k (z - z_0)^{k-m} = (z - z_0)^m \sum_{k=0}^{\infty} a_{k+m} (z - z_0)^k.$$
 (187)

Call the sum h(z), which $h(z_0) = a_m \neq 0$. So, in $\mathcal{B}_{\delta}(z_0) \setminus \{z_0\}$, we have

$$f(z) = w_0 + \frac{1}{g(z)}. (188)$$

If $g(z_0) \neq 0 \iff m = 0$, then this formula allows s to extend f to z_0 , which is then analytic, which makes z_0 a removable singularity. This is a contradiction. If $g(z_0) = 0$, then because $m \geq 1$ (by definition) and

$$f(z) = w_0 + \frac{1}{g(z)} = \frac{w_0 g(z) + 1}{(z - z_0)^m h(z)} := \frac{\phi(z)}{(z - z_0)^m}.$$
 (189)

We see that $\phi(z_0) \neq 0$, and $\phi(z)$ is analytic. So, z_0 is a pole of order m of f. This is also a contradiction.