COMPUTAÇÃO CONCORRENTE (MAB-117) 2019.2 Prof. Silvana Rossetto

PRIMEIRO TRABALHO DE IMPLEMENTAÇÃO

PROBLEMA DE QUADRATURA PARA INTEGRAÇÃO NUMÉRICA

Nome: Letícia Freire Carvalho de Sousa

DRE: 118025324

Sumário

Projeto das Soluções	(Funções em comum entre as versões)	3
Estruturas de Dados	1	3
intervalo		3
no		4
Funções		4
pilha_vazia		4
push		4
pop		5
init		5
construtor_inter	valo	5
destrutor_interv	alo	5
define_area_reta	ingulo	5
define_intervalo		6
a		6
b		6
c		7
d		7
e		7
f		7

g		7
igual		8
boba		8
subproblema_res	solvido	8
Projeto das Soluções	(Função específica da versão sequencial)	10
integral		10
Projeto das Soluções	(Função específica da versão concorrente)	11
integral		11
Testes Realizad	<mark>os</mark>	13
Formato da en	t <mark>rada</mark>	13
Resultados		14
Implementação		17

Projeto das Soluções

(Funções em comum entre as versões)

Estruturas de Dados

```
intervalo
Descrição: estrutura que armazena um (sub)intervalo de
integração
Atributos: a (ponto flutuante) : início do intervalo de
integração
           b (ponto flutuante) : fim do intervalo de
integração
            e (ponto flutuante) : erro máximo aceitável
            possivel retornar (inteiro) : 2 se o
subproblema desse intervalo
            já foi resolvido, 0 ou 1 caso contrário
            area retangulo (ponto flutuante): área do
retângulo limitado por
          pelos limites do intervalo, o gráfico da função
e o eixo x
            pai (ponteiro de intervalo): indica a partir da
chamada de
            qual intervalo a estrutura foi criada, nulo
caso seja o
            intervalo de integração completo
            func (ponteiro de função): indica qual função
está sendo
            integrada no intervalo
```

Funções

```
pilha_vazia
Descrição: função que indica se a pilha de intervalos está
vazia
Parâmetros: não possui
Retorno: 0 caso a pilha esteja vazia, outro número
inteiro caso contrário
```

```
push

Descrição: função que insere um intervalo no topo da pilha

Parâmetros: inter (ponteiro de intervalo)

Retorno: não possui
```

pop

Descrição: função que retira um intervalo do topo da pilha

Parâmetros: não possui

Retorno: ponteiro de intervalo

init

Descrição: função que inicializa a pilha, esvaziando-a e,

em seguida,

inserindo o primeiro intervalo em seu topo

Parâmetros: inter (ponteiro de intervalo)

Retorno: não possui

construtor intervalo

Descrição: função que aloca memória para um intervalo e

retorna seu ponteiro

Parâmetros: não possui

Retorno: ponteiro de intervalo

destrutor_intervalo

Descrição: função que desaloca memória de um intervalo

Parâmetros: inter (ponteiro de intervalo)

Retorno: não possui

define_area_retangulo

Descrição: função que calcula a área do retângulo limitado

pelo início e

fim de um intervalo, a função a ser integrada e

o eixo x e

atribui essa área ao atributo area_retangulo do

intervalo

Parâmetros: inter (ponteiro de intervalo)

Retorno: não possui

define_intervalo

Descrição: função que inicializa os atributos de um

ponteiro de intervalo e

chama a função boba a fim de aumentar o tempo

de processamento

Parâmetros: inter (ponteiro de intervalo)

a (ponto flutuante)
b (ponto flutuante)

e (ponto flutuante)

func (ponteiro de função)

pai (ponteiro de intervalo)

Retorno: não possui

a

Descrição: função que retorna 1+x

Parâmetros: x (ponto flutuante)

Retorno: ponto flutuante

b

Descrição: função que retorna $\sqrt{1-x^2}$

Parâmetros: x (ponto flutuante)

Retorno: ponto flutuante

C

Descrição: função que retorna $\sqrt{1+x^4}$

Parâmetros: x (ponto flutuante)

Retorno: ponto flutuante

d

Descrição: função que retorna $seno(x^2)$

Parâmetros: x (ponto flutuante)

Retorno: ponto flutuante

e

Descrição: função que retorna $cosseno(e^{-x})$

Parâmetros: x (ponto flutuante)

Retorno: ponto flutuante

f

Descrição: função que retorna $cosseno(e^{-x}) \cdot x$

Parâmetros: x (ponto flutuante)

Retorno: ponto flutuante

g

Descrição: função que retorna $cosseno(e^{-x}) \cdot (0.005 \cdot x^3 + 1)$

Parâmetros: x (ponto flutuante)

Retorno: ponto flutuante

igual

Descrição: função que retorna se dois números a e b são

iguais a menos de

um erro e

Parâmetros: a (ponto flutuante)

b (ponto flutuante)
e (ponto flutuante)

Retorno: 0 se os números forem considerados diferentes,

outro valor

inteiro

se os números forem considerados iguais

boba

Descrição: função que realiza operações inúteis com o

objetivo de aumentar

o tempo de processamento

Parâmetros: não possui Retorno: não possui

subproblema_resolvido

Descrição: função que recebe atribui o valor de retorno do subproblema a

resposta caso o subproblema seja o intervalo de integração

completo e incrementa o valor de retorno do intervalo "pai" do

subproblema resolvido com a resposta computada

Parâmetros: inter (t de intervalo)

Retorno: não possui

Projeto das Soluções

(Função específica da versão sequencial)

```
integral
```

Descrição: função que enquanto houverem subproblemas a serem resolvidos,

retira o subproblema t que está no topo da pilha. Se ele já

tiver sido resolvido, chama a função subproblema resolvido para

t, senão cria dois subproblemas cada um com uma metade contínua

do intervalo t.

Caso a área t seja igual a soma das áreas dos subintervalos a

menos de um erro, chamo a função subproblema_resolvido para t,

caso contrário empilho os dois subintervalos

Parâmetros: não possui Retorno: não possui

Projeto das Soluções

(Função específica da versão concorrente)

```
integral
Descrição: função a ser passada como parâmetro na criação
das threads que
            possui um loop. Nele ela testa (com exclusão
mútua) se ainda há
            subproblemas a serem resolvidos e se eles estão
esperando na
            pilha. Se ainda há subproblemas a serem
resolvidos, mas nenhum
           deles está esperando na pilha a função entra no
modo "wait" com
            a variável de condição cond. Quando a função é
acordada caso não
            tenham mais subproblemas a serem resolvidos ela
sai do loop,
           caso o contrário e exista algum subproblema na
pilha, ela retira
            o subproblema t que está no seu topo. Se ele já
tiver sido
           resolvido, chama a função subproblema resolvido
(com exclusão
            mútua) para t e chamo broadcast para cond,
senão cria dois
            subproblemas cada um com uma metade contínua do
intervalo t.
            Caso a área t seja igual a soma das áreas dos
subintervalos a
```

menos de um erro, chamo a função

subproblema_resolvido (também

com exclusão mútua) para t e chamo broadcast

para cond, caso

contrário empilho os dois subintervalos(com

exclusão mútua) e

chamo broadcast para cond.

Parâmetros: não possui Retorno: não possui

Testes Realizados

Formato da entrada

Versão sequencial: 7 linhas, uma para cada função, cada uma contendo 3 números reais (a, b, e) representando respectivamente o início do intervalo de integração, o final do intervalo de integração e o erro máximo aceitável.

Versão concorrente: 7 linhas, uma para cada função, cada uma contendo 3 números reais (a, b, e) representando respectivamente o início do intervalo de integração, o final do intervalo de integração e o erro máximo aceitável e um número inteiro t representando o número de threads a serem criadas.

Os arquivos com as entradas utilizadas e saídas obtidas estão na pasta *testes* de cada versão.

Resultados

Sequencial — média de 3 execuções

função	a	b	e	integral	inicialização	processament o	total
a	1.235	20.36789	<mark>1e-7</mark>	225.79574902 60	0.000234683	0,000003894	0,000003 894
b	0.273	0.986	<mark>1e-9</mark>	0.5142699701	0.000007391	0,002751191	0,002751 191
c	10.273	37 <mark>.</mark> 9867	<mark>1e-5</mark>	17910.111524 2010	0,000010173	0,000850121	0,000850 121
d	-2.37	<mark>0.</mark> 978	<mark>1e-6</mark>	0 <mark>.766668252</mark> 9	0,000019391	0,000406345	0,000406 345
e	-2.37	<mark>0.</mark> 978	<mark>1e-7</mark>	0.3504551127	0,000004292	0,001022657	0,001022 657
f	-2.37	<mark>0.</mark> 978	<mark>1e-8</mark>	0.9818998396	0,000001907	0,002597332	0,002597 332
g	-2.37	100.978	<mark>1e-9</mark>	130062.52602 01833	0,000003338	0,06471928	0,064719 28

2 threads — média de 3 execuções

função	a	b	e	integral	inicialização	processament o	total
a	1.235	20.36789	1e-7	225.79574902 60	0,000120443	0,000421556	0,000421 556
b	0.273	0.986	<mark>1e-9</mark>	0.5142699701	0,000010844	0,003248395	0,003248 395
c	10.273	37.9867	1e-5	17910.111524 2010	0,000010284	0,002774901	0,002774 901
d	-2.37	0.978	1e-6	0.7666682529	0,000032936	0,000878972	0,000878 972

e	-2.37	0.978	1e-7	0.3504551127	0,000011666	0,001826816	0,001826 816
f	<mark>-2.37</mark>	0.978	<mark>1e-8</mark>	0.9818998396	0,000005951	0,002685742	0,002685 742
g	-2.37	100.978	<mark>1e-9</mark>	130062.52602 01833	0,000003557	0,094279112	0,094279 112

4 threads — média de 3 execuções

função	a	b	e	integral	inicializaçã o	processamento	total
a	1.235	20.36789	1e-7	225.795749026 0	0,000125097	0,000533694	0,0005336 94
b	0.273	0.986	<mark>1e-9</mark>	0.5142699701	0,000009724	0,002889357	0,0028893 57
c	10.273	37.9867	<mark>1e-5</mark>	17910.1115242 010	0,000011435	0,002368961	0,0023689 61
d	-2.37	<mark>0.978</mark>	<mark>1e-6</mark>	0.7666682529	0,000039447	0,000975045	0,0009750 45
e	-2.37	<mark>0.978</mark>	<mark>1e-7</mark>	0.3504551127	0,000009847	0,001170793	0,0011707 93
f	-2.37	<mark>0.978</mark>	<mark>1e-8</mark>	0.9818998396	0,000003521	0,001914588	0,0019145 88
g	-2.37	100.978	1e-9	130062.526020 1833	0,000003515	0,065747312	0,0657473 12

Corretude — média de 3 execuções

funçã o	a	b	e	Wolfram Alpha	Sequencial	2 threads	4 threads
a	1.235	20.36789	<mark>1e-7</mark>	225.796	225.79574902	225.795749	225.795749

1	 				60	0260	0260
b	0.273	0.986	1e-9	0.51427	0.5142699701	0.51426997 01	0.51426997 01
c	10.273	37.9867	1e-5	17910.1	17910.111524 2010	17910.1115 242010	17910.1115 242010
d	-2.37	0.978	<mark>1e-6</mark>	0.766684	0.7666682529	0.76666825 29	0.76666825 29
e	-2.37	0.978	<mark>1e-7</mark>	0.350456	0.3504551127	0.35045511 27	0.35045511 27
f	-2.37	0.978	1e-8	0.981901	0.9818998396	0.98189983 96	0.98189983 96
g	-2.37	100.978	1e-9	130063	130062.52602 01833	130062.526 0201833	130062.526 0201833

Lei de Amdahl — média de 3 execuções

função	a	b	e	ganho sequencial	ganho 2 threads	ganho 4 threads
a	1.235	20.36789	1e-7	1	0,009237207	0,007296316
b	0.273	0.986	<mark>1e-9</mark>	1	<mark>0,846938565</mark>	0,952181056
c	10.273	<mark>37.9867</mark>	1e-5	1	<mark>0,30636084</mark>	0,358858166
d	- <mark>2.37</mark>	<mark>0.978</mark>	<mark>1e-6</mark>	1	0,462295727	0,416744868
e	<mark>-2.37</mark>	<mark>0.978</mark>	<mark>1e-7</mark>	1	0,559802958	0,873473791
f	<mark>-2.37</mark>	<mark>0.978</mark>	<mark>1e-8</mark>	1	0,967081723	1,356601002
g	<mark>-2.37</mark>	100.978	<mark>1e-9</mark>	1	0,686464675	0,984363893

Implementação

https://github.com/LeticiaFCS/IntNumericaRetangular