

ECOLE NATIONALE SUPERIEURE D'ELECTRICITE ET DE MECANIQUE

MATHEMATIQUES FONDAMENTALES

--00000--

CALCUL TENSORIEL

Exercices

Par Hélène DUCAUQUIS

Année Universitaire 1990/1991 Licence de Mécanique E. N. S. E. M.

UNIVERSITE NANCY I

- Module M : MATHEMATIQUES FONDAMENTALES -

exercices sur le calcul tensoriel.

de 1 à 4 : Techniques de calcul. 4 non fait en TD

de 5 à 9 : Directions principales - valeurs propres - invariants-de tenseur.

de 10 à 13 : Analyse tensorielle - relations de comptabilité - calcul d'un champ

de vecteur à partir de la partie paire de son tenseur gradient.

14 : Isotropie. pos faitanto

- EXERCICES SUP LE CALCUL TENSORIEL -

1) Calcul vectoriel.

Calculer en utilisant le tenseur (ϵ_{ijk}) :

$$(\vec{A} \wedge \vec{B}) \cdot (\vec{C} \wedge D)$$

en fonction des produits scalaires deux à deux des vecteurs A,B,C,D.

2) Identités classiques.

Soient \vec{A} et \vec{B} deux champs de vecteurs et $\vec{\Psi}$ une fonction scalaire tous trois définis sur un domaine de \mathbb{R}^3 . Rappelons que;

grad
$$\Psi = \Psi_{,i} \overset{\cdot}{k}_{i}$$
div $\overset{\cdot}{A} = A_{i,i}$

$$\Delta \Psi = \Psi_{,ii}$$

$$\Delta \overset{\cdot}{A} = A_{i,j} \overset{\cdot}{k}_{i}$$
grad $A = A_{i,j} \overset{\cdot}{k}_{i} \otimes \overset{\cdot}{k}_{j}$

les k. étant les vecteurs unitaires de base, du repère de travail.

En supposant que \overrightarrow{A} , \overrightarrow{R} et Ψ sont deux fois continuement dérivables, retrouver, en utilisant les propriétés du tenseur alterné fondamental; les identités intrinsèques classiques permettant de développer les expressions suivantes :

- a) div (ÅΨ)
- b) rot (ÂΨ)
- c) div $(\vec{A} \land \vec{B})$
- d) div (rot A)
- e) rot (grad φ)
- f) div (grad ψ)
- g) rot rot A
- h) rot (AA B)
- i) grad (A.B)

3) Relation utile en mécanique.

Montrer que le vecteur de composantes γ_i u dans un repère donné n'est autre que le vecteur

$$\frac{1}{Y} = \frac{\overline{u^2}}{\overline{grad}} + \frac{\overline{u^2}}{\overline{rot}} + \frac{1}{\overline{v}} = \frac{1}{\overline{v}}$$

4) Propriétés du mouvement d'un solide parfait.

On considère un solide parfait de rotation instantanée $\mathring{\Omega}(t)$ par rapport à un repère fixe donné. Soient $\mathring{V}(M)$ et $\mathring{\gamma}(M)$ les champs respectifs des vitesses et accélérations associés à ce solide.

Appliquer dans un repère lié au solide d'origine 0, les opérateurs différentiels div et \overrightarrow{rot} respectivement aux champs \overrightarrow{v} et $\overrightarrow{\gamma}$.

Directions principales et valeurs propres d'un tenseur.

Donner les directions principales et les valeurs propres d'un tenseur $\overline{\Sigma}$ dont les composantes dans un certain repère orthonormé sont définis par

$$\sigma_{ij} = \lambda a_i a_j + \mu \delta_{ij}$$

λ et μ étant des constantes et a. les composantes d'un vecteur à donné.

Soient \vec{U} et \vec{V} deux champs de vecteurs unitaires quelconques. En un point donné, le tenseur $\overline{\vec{\Sigma}}$ est défini par ses composantes

$$\sigma_{ij} = \lambda(u_i v_j + u_j v_i) \qquad (\lambda \supset 0)$$

Déterminer ses directions principales, ses valeurs propres, sa partie sphérique et son déviateur.

(7) Invariants élémentaires d'un tenseur du second ordre.

Montrer que les invariants élémentaires d'un tenseur $\overline{\Pi}$ s'expriment en fonction des traces de $\overline{\Pi}$, $\overline{\Pi}^2$ et $\overline{\Pi}^3$. Qu'en est-il dans le cas particulier d'un déviateur $\overline{\mathbb{D}}$?

Propriétés de quelques tenseurs des contraintes particuliers.

(les tenseurs des contraintes considérés ci-dessous sont toujours symétriques).

(de traction simple ou compression simple) dans la direction des x si, au point considéré, toutes les composantes σ_{ij} sont nulles à l'exception du terme σ_{kk} de la diagonale.

Donner une condition nécessaire et suffisante relative aux invariants d'un tenseur des contraintes $\overline{\Sigma}$ pour qu'il soit uniaxial dans une direction quelconque de \mathbb{R}^3 .

9) Un tenseur des contraintes est dit de <u>cisaillement simple</u> dans les directions orthogonales ox_k , ox_1 si tous les $\sigma_{i,j}$ sont nuls à l'exception de $\sigma_{k1} = \sigma_{1k}$.

Donner une condition nécessaire et suffisante relative aux invariants d'un tenseur des contraintes $\overline{\Sigma}$ pour qu'il soit de cisaillement simple dans deux directions orthogonales quelconques de l'espace.

10) Champ de gradient.

Soit $U = \Psi(\theta)$ grad θ un champ de vecteurs de E^3 défini sur un domaine Ω de ε^3 ; $\theta \in C^2(\Omega)$ et φ est une application différentiable de $C^2(\Omega)$ dans $C^1(\Omega)$.

Montrer que il est un champ de gradient.

Relation de comptabilité et calcul de champs de déplacements.

(Les calculs qui suivant sont classiques en mécanique des milieux continus pour calculer un champ de déplacement D à partir du tenseur des déformations linéarisés obtenus pour écriture des équations d'équilibres).

0n définit l'application 4 de 8 dans R par

$$\overline{\varepsilon}(\underline{x}) = \varphi(\underline{x}) \overline{1}$$

Détant le tenseur unité. Quelle est la forme la plus générale de φ telle que c soit la partie paire (ou symétrique) d'un tenseur grad V?

Donner alors l'expression générale de U.

12) Considérons la fonction :

$$\varphi: (x_1, x_2) \in \mathcal{E}^2 \longrightarrow \varphi(x_1, x_2) \in \mathcal{R}$$

et le champ de tenseur E de composantes

$$\varepsilon_{ij} = \varphi_{,i} \varphi_{,j}$$

- a) Donner les directions principales et valeurs propres de E.
- b) A quelle équation aux dérivées partielles doit satisfaire la fonction pour que É soit la partie symétrique d'un champ de tenseur gradient de U (U champ vectoriel sur &3).
- c) Y a -t-il des solutions harmoniques $\varphi(\Delta \varphi = 0)$?

 Donner une expression générale de U dans ce dernier cas.
- 13) On obtient pour une poutre en flexion le champ de déformation linéarisé de composantes

$$\epsilon_{11} = -\frac{M \times_2}{EI}$$

$$\varepsilon_{22} = \frac{\sigma^{\text{M}} \times_2}{\varepsilon_{\text{I}}} = \S_3$$

$$\varepsilon_{12} = \varepsilon_{23} = \varepsilon_{32} = 0$$

Sachant que le tenseur des déformations $\overline{\overline{E}}$ de composantes ϵ_{ij} est relié au champ de déplacements $\overline{\overline{U}}$ par les relations

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$$

Montrer que le champ ε_{ij} ci-dessus est effectivement intégrable et calculer le champ des déplacements associés sachant que les conditions d'encastrement se traduisent à l'origine $\underline{x} = 0$ par

$$\overrightarrow{U} = \overrightarrow{\text{rot } \overrightarrow{U}} = 0$$

14) Relation entre le tenseur des contraintes et le tenseur des déformations en élasticité classique.

Soit τ l'espace vectoriel des tenseurs d'ordre 2 sur \mathbb{R}^3 et \mathcal{H} le sous espace vectoriel des tenseurs symétriques de τ .

- a) Combien faut-il de coefficients pour décrire un opérateur linéaire $\mathcal L$ sur $\mathcal T$.
- b) A combien tombe ce nombre pour un opérateur $\mathcal L$ sur $\mathcal G$.
- c) Supposons enfin que ℓ soit linéaire et isotrope sur $\mathcal G$, montrer alors que deux coefficients sont suffisants pour décrire ℓ .