EEE201

nMOS & CMOS Logic Families

(materials developed by Prof. C. Z. Zhao)

Special Thanks To:

Prof. V. D. Agrawal & Prof. J. J. Danaher, Auburn University

Prof. Mary Jane Irwin, Pennsylvania State University

Prof. Steve Hall, UoL

outline

- Devices and Gates and Logic Symbols
 - Logic symbols and functions
 - MOSFETs in series/parallel connection
- CMOS Logic Family
- nMOS Logic Family
- Circuit Extraction from Layouts

NAME	SYMBOL	<u>NOTATION</u>	TRUTH TABLE
"NOT"	A—F	F = A	A F 0 1 1 0
"OR"	A D F	F = A+B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
"AND"	A D F	F = A•B	A B F 0 0 0 0 1 0 1 0 0 1 1 1

3

"NOR" $A \longrightarrow F$ $F = \overline{A} + \overline{B}$ $A \xrightarrow{A B F}$ 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

			_ <u>A</u> _	В	<u> </u>
	Δ —		0	0	1
"NAND"	_ >— F	F = A•B	0	1	1
	B - L		1	0	1
			1	1	0

"XOR"
$$A \longrightarrow B \longrightarrow F$$
 $F = A \oplus B$ $0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0$

AOI

AND-OR-inverter such as

$$X = (a \bullet b) + (c \bullet d)$$

OAI

OR-AND-inverter such as

$$Y = \overline{(a+b) \bullet (e+f)}$$

AOI

AND-OR-inverter, such as

$$G = (a \cdot b) + (c \cdot d) + e$$

OR-AND-inverter, such as

$$F = \overline{a \cdot (b + c)}$$

A MOSFET layout & symbols $(W/L)_p$ 1.96/0.18 Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. minimum width of polysilicon minimum minimum width of the active area contact size minimum separation from contact to active edge minimum contact size minimum separation from contact to active edge minimum separation from minimum separation from contact to active edge contact to polysilicon edge minimum length of active area

An n-channel as a resistor

- Without gate bias, MOSFET is off because two diodes are "backto-back". One of them will be reversely biased. To switch on, the interfacial region is inverted by applying a gate bias.
- Above a certain gate-to-source voltage ($threshold\ voltage\ V_T$), a conducting layer of mobile electrons is formed at the Si surface beneath the oxide. These electrons can carry current between the source and drain.

Switch Model of NMOS Transistor

nMOS Transistor Equations

$$I_{D,lin} = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} \left(2 \left(V_{GS} - V_{Tn} \right) V_{DS} - V_{DS}^2 \right). \tag{1}$$

for $V_{GS} \ge V_{Tn}$ and $V_{DS} < V_{DS,sat} (= V_{GS} - V_{Tn})$

$$I_{D,sat} = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} (V_{GS} - V_{Tn})^2$$

$$\text{for } V_{GS} \ge V_{Tn} \text{ and } V_{DS} \ge V_{DS,sat}$$

$$(2)$$

$$\text{Resistive}$$

Switch Model of PMOS Transistor

pMOS Transistor Equations

$$I_{D,lin} = \frac{\mu_p C_{Ox}}{2} \frac{W}{L} \left(2 \left(V_{GS} - V_{Tp} \right) V_{DS} - V_{DS}^2 \right). \tag{1}$$

for $V_{GS} \le V_{Tp}$ and $V_{DS} > V_{DS,sat} (= V_{GS} - V_{Tp})$

or for $|V_{GS}| \ge |V_{Tp}|$ and $|V_{DS}| < |V_{DS,sat}| (= |V_{GS} - V_{Tp}|)$

$$I_{D,sat} = \frac{\mu_p C_{Ox}}{2} \frac{W}{L} (V_{GS} - V_{Tp})^2$$
 (2)

for $V_{GS} \le V_{Tp}$ and $V_{DS} \le V_{DS,sat}$

or for $|V_{GS}| \ge |V_{Tp}|$ and $|V_{DS}| \ge |V_{DS,sat}|$

NMOS Transistors in Series/Parallel Connection

NMOS Transistors in Series/Parallel Connection

16

PMOS Transistors in Series/Parallel Connection

PMOS Transistors in Series/Parallel Connection

PMOS Transistors in Series/Parallel Connection

nMOS logic family

- Inverter
- NAND gate
- NOR gate
- General gate
 - Complicated gate

NMOS Logic Inverter

Vin	Vout
0 (0V)	1 (V _{DD})
1 (V _{DD})	0 (0V)

 $V_{in} = V_{DD}$ causes NMOS transistor to be on (in triode). Low effective resistance of transistor causes voltage divider with V_{out} near 0V.

 $V_{in} = 0$ V causes NMOS transistor to be off (cutoff). High effective resistance of transistor causes voltage divider with V_{out} near V_{DD} .

$$F = \overline{A}$$

NMOS Logic Inverters

NMOS Logic NAND Gate

V ₁	V ₂	V _{out}
0	0	1
0	1	1
1	0	1
1	1	0

 $V_1 = V_2 = 10$ V causes both NMOS transistors to be on (in triode). Low effective resistance of transistors causes voltage divider with V_{out} near 0V.

 $V_1 = 0$ V or $V_2 = 0$ V (or both) cause one or both NMOS transistors to be off (cutoff). High effective resistance of series transistors cause voltage divider with V_{out} near 10V.

 Output is low only if both inputs are high

NMOS Logic NOR Gate

Output is low if either input is high

_	<u> </u>		<u> </u>
	Α	В	F
	0	0	1
	0	1	0
	4	_	_

Truth Table

NMOS NOR gate: example

nMOS Transistors in Series Connection

NMOS Logic (General)

Any combination of inputs $V_1 V_2 ... V_n$ that should result in an output of 0 should produce a low-resistance path from V_{out} to ground in the pull-down network.

Any combination of inputs that does not pull the output V_{out} to ground through the network will result in the output pulled high through the pull-up resistor R_D .

NMOS logic draws current continuously when V_{out} is low.

DC power consumption is high!

NMOS Logic (General)

Revision of answers to nMOS IC design (Integrated Electronics & Design)

Revision of answers to IC design

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.

Truth Table

Α	В	Vout
0	0	0
0	1	1
1	0	1
1	1	1

MOSIS Rules

Rule numb	per Description	λ -Rule
	Active area rules	
R1	Minimum active area width	3λ
R2	Minimum active area spacing	3λ
	Polysilicon rules	
R3	Minimum poly width	2λ
R4	Minimum poly spacing	2λ
R5	Minimum gate extension of poly over active	2λ
R6	Minimum poly-active edge spacing	1λ
	(poly outside active area)	
R7	Minimum poly-active edge spacing	3λ
	(poly inside active area)	
	Metal rules	
R8	Minimum metal width	3λ
R9	Minimum metal spacing	3λ
	Contact rules	
R10	Poly contact size	2λ
R11	Minimum poly contact spacing	2λ
R12	Minimum poly contact to poly edge spacing	1λ
R13	Minimum poly contact to metal edge spacing	1λ
R14	Minimum poly contact to active edge spacing	3λ
R15	Active contact size	2λ
R16	Minimum active contact spacing	2λ
	(on the same active region)	7705
R17	Minimum active contact to active edge spacing	1λ
R18	Minimum active contact to metal edge spacing	1λ
R19	Minimum active contact to poly edge spacing	3λ
R20	Minimum active contact spacing	6λ
	(on different active regions)	

Metal

36

Mask1

Mask2 minimise ←----- Polysilicon gate of load MOSFET with a via to Aluminium and V_{DD} minimise **≥2**λ polysilicon gate as input to circuit minimise Input

Mask4

Mask4

NMOS NOR gate: example

Complicated gate: example

- It consists of an n channel NOR gate feeding an inverter.
- The transistors A and B are the termed driver MOSFETs.

Truth Table

Α	Vout
0	1
1	0

Recall

NMOS Logic (Inverter): example1

Recall

 V_{DD} _

NMOS IC: example

