## Theory of Statistical Learning Part II

Damien Garreau

Université Côte d'Azur

2022

#### Outline

# 1. Linear predictors Linear classification Linear regression

Ridge regression
Polynomial regression
Logistic regression

## 2. Tree-based classifiers Partition rules Random forests

- 3. Boosting Adaboost XGBoost
- 4. Nearest neighbors

### 1. Linear predictors

1.1. Linear classification

#### Linear functions

- $ightharpoonup \mathcal{X} = \mathbb{R}^d$ ,  $\mathcal{Y} = \mathbb{R}$
- ► thus  $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})^{\top}$
- we consider no bias term (otherwise affine):

$$\{h: x \mapsto w^{\top}x, w \in \mathbb{R}^d\}.$$

▶ **Reminder:** given two vectors  $u, v \in \mathbb{R}^d$ ,

$$\langle u, v \rangle = u^{\top} v = \sum_{j=1}^{d} u_i v_i.$$

- **b** binary classification: 0-1 loss,  $\mathcal{Y} = \{-1, +1\}$
- ▶ **Important:** compose h with  $\phi : \mathbb{R} \to \mathcal{Y}$  (typically the sign)

#### The sign function



Figure: the sign function

#### Halfspaces

thus our function class is

$$\mathcal{H} = \{ x \mapsto \operatorname{sign}(w^{\top} x), w \in \mathbb{R}^d \}.$$

 $\triangleright$  gives label +1 to vector pointing in the same direction as w



#### VC dimension of halfspaces

**Proposition:** the VC dimension of halfspaces in dimension d is exactly d+1.

**Consequence:**  $\mathcal{H}$  is PAC learnable with sample complexity

$$\Omega\left(rac{d+\log(1/\delta)}{arepsilon}
ight)$$
 .

#### Linearly separable data

- ▶ Important assumption: data is linearly separable
- ▶ that is, there is a  $w^* \in \mathbb{R}^d$  such that

$$y_i = \operatorname{sign}(\langle w^*, x_i \rangle) \quad \forall 1 \leq i \leq n.$$



#### Linear programming

► Empirical risk minimization: recall that we are looking for w such that

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i \neq \operatorname{sign}(w^{\top} x_i)}$$

is minimal

- Question: how to solve this?
- we want  $y_i = \operatorname{sign}\left(w^\top x_i\right)$  for all  $1 \le i \le n$
- equivalent formulation:  $y_i \langle w, x_i \rangle > 0$
- $\triangleright$  we know that there is a vector that satisfies this condition  $(w^*)$
- let us set  $\gamma = \min_i \{ y_i \langle w^*, x_i \rangle \}$  and  $\overline{w} = w^* / \gamma$
- we have shown that there is a vector such that  $y_i\langle \overline{w}, x_i \rangle \geq 1$  for any  $1 \leq i \leq n$  (and it is an ERM)

#### Linear programming, ctd.

▶ define the matrix  $A \in \mathbb{R}^{n \times d}$  such that

$$A_{i,j} = y_i x_{i,j}$$
.

- ► **Intuition:** observations × labels
- ightharpoonup remember that we have the  $\pm 1$  label convention
- ightharpoonup define  $v = (1, ..., 1)^{\top} \in \mathbb{R}^n$
- ▶ then we can rewrite the above problem as

maximize 
$$\langle u, w \rangle$$
 subject to  $Aw \leq v$ .

- we call this sort of problems linear programs<sup>1</sup>
- solvers readily available, e.g., scipy.optimize.linprog if you use Python

<sup>&</sup>lt;sup>1</sup>Boyd, Vandenberghe, *Convex optimization*, Cambridge University Press, 2004

#### The perceptron

- ► another possibility: the *perceptron*<sup>2</sup>
- ▶ **Idea:** iterative algorithm that constructs  $w^{(1)}, w^{(2)}, \dots, w^{(T)}$
- update rule: at each step, find i that is misclassified and set

$$w^{(t+1)} = w^{(t)} + y_i x_i$$
.

- **Question:** why does it work?
- pushes w in the right direction:

$$y_i\langle w^{(t+1)}, x_i\rangle = y_i\langle w^{(t)} + y_ix_i, x_i\rangle = y_i\langle w^{(t)}, x_i\rangle + \|x_i\|^2$$

remember, we want  $y_i \langle w, x_i \rangle > 0$  for all i

<sup>&</sup>lt;sup>2</sup>Rosenblatt, *The perceptron, a perceiving and recognizing automaton*, tech report, 1957

### 1.2. Linear regression

#### Least squares

▶ regression ⇒ squared-loss function

$$\ell(y,y')=(y-y')^2.$$

still looking at linear functions:

$$\mathcal{H} = \{ h : x \mapsto \langle w, x \rangle \text{ s.t. } w \in \mathbb{R}^d \}.$$

empirical risk in this context:

$$\hat{\mathcal{R}}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_{i} - y_{i})^{2} = F(w).$$

- also called mean squared error
- ▶ empirical risk minimization: we want to minimize  $w \mapsto F(w)$  with respect to  $w \in \mathbb{R}^d$
- F is a convex, smooth function

#### Least squares, ctd.

let us compute the gradient of *F*:

$$\begin{split} \frac{\partial F}{\partial w_j}(w) &= \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_j} (w^\top x_i - y_i)^2 \\ &= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (w^\top x_i - y_i) \cdot (w^\top x_i - y_i) \\ &= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (\cdots + w_j x_{i,j} + \cdots - y_i) \cdot (w^\top x_i - y_i) \\ \frac{\partial F}{\partial w_j}(w) &= \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i) \,. \end{split}$$

#### Least squares, ctd.

- ▶ it is more convenient to write  $\nabla F(w) = 0$  in matrix notation
- ▶ define  $X \in \mathbb{R}^{n \times d}$  the matrix such that line i of X is observation  $x_i$
- ▶ one can check that, for any  $1 \le j, k \le d$ ,

$$(X^{\top}X)_{j,k} = \sum_{i=1}^n x_{i,j}x_{i,k}.$$

thus

$$(X^{T}Xw)_{j} = \sum_{k=1}^{d} (X^{T}X)_{j,k} w_{k}$$
$$= \sum_{k=1}^{d} \sum_{i=1}^{n} x_{i,j} x_{i,k} w_{k}$$
$$= \sum_{i=1}^{n} x_{i,j} w^{T} x_{i}.$$

#### Least squares, ctd.

thus, if we define

$$A = X^{\top}X = \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{d \times d}$$
 and  $b = X^{\top}y = \sum_{i=1}^{n} y_i x_i \in \mathbb{R}^d$ ,

solving  $\nabla F(w) = 0$  is equivalent to solving

$$Aw = b$$
.

▶ if *A* is invertible, straightforward:

$$\hat{w} = A^{-1}b$$

- ightharpoonup computational cost:  $\mathcal{O}\left(d^3\right)$  (inversion is actually a bit less)
- what happens when A is not invertible?

#### Singular value decomposition

▶ since *A* is symmetric, it has an eigendecomposition

$$A = VDV^{\top}$$
,

with  $D \in \mathbb{R}^d$  diagonal and V orthonormal

▶ define *D*<sup>+</sup> such that

$$D_{i,i}^+=0$$
 if  $D_{i,i}=0$  and  $D_{i,i}^+=\frac{1}{D_{i,i}}$  otherwise.

- ightharpoonup define  $A^+ = VD^+V^\top$
- ▶ then we set

$$\hat{w} = A^+ b$$
.

#### Singular value decomposition, ctd.

- why did we do that?
- $\triangleright$  let  $v_i$  denote the *i*th column of V, then

$$A\hat{w} = AA^+b$$
 (definition of  $\hat{w}$ )
$$= VDV^\top VD^+V^\top b$$
 (definition of  $A^+$ )
$$= VDD^+V^\top b$$
 ( $V$  is orthonormal)
$$A\hat{w} = \sum_{i:D_{i,i}\neq 0} v_i v_i^\top b.$$

- ▶ in definitive,  $A\hat{w}$  is the projection of b onto the span of  $v_i$  such that  $D_{i,i} \neq 0$
- ▶ since the span of these  $v_i$  is the span of the  $x_i$  and b is in the linear span of the  $x_i$ , we have  $A\hat{w} = b$
- ▶ cost of SVD:  $\mathcal{O}(dn^2)$  if d > n (SVD of X)

#### Exercise

Exercise: Of course, one does not have to use the squared loss. Instead, we may prefer to use

$$\ell(y,y') = |y-y'| .$$

1. show that, for any  $c \in \mathbb{R}$ ,

$$|c| = \min_{a \ge 0} a$$
 subject to  $a \ge c$  and  $a \ge -c$ .

- 2. use the previous question to show that ERM with the absolute value loss function is equivalent to minimizing the linear function  $\sum_{i=1}^{n} s_i$ , where the  $s_i$  satisfy linear constraints
- 3. write it in matrix form, that is, find  $A \in \mathbb{R}^{2n \times (n+d)}$ ,  $v \in \mathbb{R}^{d+n}$ , and  $b \in \mathbb{R}^{2n}$  such that the LP can be written

minimize 
$$c^{\top}v$$
 subject to  $Av \leq b$ .