

Perimeter Security - Firewall

Topics

- ◆ Background of Perimeter Security
- **♦** Firewalls
 - Basic Firewall Concepts
 - Packet filter (stateless)
 - Stateful firewall
 - Application-layer gateway
- ◆ Problems with Firewalls
- ♦ Real Firewalls

Network Security Approaches

- ◆ Secure Networked Computer
- **♦** Secure Network Protocols
- ◆ Perimeter Security

Perimeter Defense

Perimeter Defense Strategy

- ◆ Divide networks into *zones* of varying trust
 - Simplest division: intranet (trusted) and Internet (untrusted)
- Put security measures on boundaries between zones
 - − E.g. connection to ISP

Perimeter Defense Advantages

♦ Scale

- Can configure one computer to be secure, but how about 1,000?

◆ Threat model

Most threats come from less trusted zones

♦ Convenience

- Can use less secure protocols and software inside perimeter
- Don't bother users with security protections unless they talk to the outside

Major Perimeter Defense Technologies

- **♦** Firewalls
- ◆ Intrusion Detection System (IDS)
- ◆ Intrusion Prevention System (IPS)
- ♦ Anti-Virus Gateway
- ♦ Virtual Privation Network

.

Topics

- ◆ Background of Perimeter Security
- **♦** Firewalls
 - Basic Firewall Concepts
 - Packet filter (stateless)
 - Stateful firewall
 - Application-layer gateway
- ◆ Problems with Firewalls
- ♦ Real Firewalls

Firewalls

- ♦ Filter traffic going across perimeter boundary
- ◆ Various levels of sophistication (from IP to App.)

Why firewalls?

- ♦ Need to exchange information
 - Education, business, recreation, social and political
- ♦ Bugs, everywhere, can not be eliminated
 - All programs have bugs, Larger ones have more bugs!
 - Network protocols contain;
 - Design weaknesses (IP, TCP, SSH, CRC)
 - Implementation flaws (SMTP, DNS, SSL, NTP, FTP, ...)
 - Careful (defensive) programming & protocol design is
 hard
- ◆ Defense in depth

Topics

- ◆ Background of Perimeter Security
- **♦** Firewalls
 - Basic Firewall Concepts
 - Packet filter (stateless)
 - Stateful firewall
 - Application-layer gateway
- ◆ Problems with Firewalls
- ♦ Real Firewalls

Packet Filter

- ♦ Filter IP packets based on their headers
- ♦ Fields may include:
 - IP source address, destination address
 - Protocol Header (TCP, UDP, ICMP, etc)
 - TCP or UDP source & destination ports
 - TCP Flags (SYN, ACK, FIN, RST, PSH, etc)
 - ICMP message type
- ◆ Stateless & fast
 - Implementation is based on lookup of header bits/bytes and decisions

Example Rules

allow proto=TCP AND port=80 (HTTP)

deny proto=UDPAND port=1434 (SQL)

allow proto=TCP AND port=21 AND (FTP) sourceIP=adminConsole

Example Rules: FTP Packet Filter

The following filtering rules allow a user to FTP from any IP address to the FTP server at 172.168.10.12

interface Ethernet 0

access-list 100 in ! Apply the first rule to inbound traffic

access-list 101 out ! Apply the second rule to outbound traffic

! Allows packets from any client to the FTP control and data ports

access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 21

access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 20

! Allows the FTP server to send packets back to any IP address with TCP ports > 1023

access-list 101 permit tcp host 172.168.10.12 eq 21 any gt 1023 access-list 101 permit tcp host 172.168.10.12 eq 20 any gt 1023

Example: Address Forgery

Example Policy

Firewall

- ♦ Outbound traffic only
 - allow proto=TCP AND (sourceIP=inside OR ACK=true)

More complicated network

◆ Need to allow services Fifewall within the Intranet

Option I: "punch a hole"

allow port=25 AND destlP=mailserver

◆ Option 2: DMZ

Demilitarized Zone

Restrict access:

from Internet to the DMZ to protect servers

from DMZ to intranet to protect against compromises

Demilitarized Zone: publicly accessible servers and networks

Intranet

Intranet Web

Server

Desktop

Packet Filter Limitation

- ♦ No connection semantics
 - Actions only on individual packets
- ♦ No application semantics
 - IP address/Port Number based only
- ◆ Packet fragmentation
 - IP allows packets to be split into several fragments

Abnormal Fragmentation

IP Heade

TCP Header

Fragmentation

_						
	Data Link Layer Header					
	Ver/IHL	Type of Service	Total Length			
	Identifier		Flags	Fragment Offset		
	Time To Live	Protocol	Header Checksum			
	Source Address					
- ∐	Destination Address					
5	Options + Padding					
שנשאומוי	Source Port		Destination Port			
3	Sequence Number					
₌║	Acknowledgement Number					
I	Offset/Reserved	UAPRSF	Win	dow		
I	Checksum		Urgent Pointer			
║	Options + Padding					
	Data					
4						
ı	D.A. I '1. T. '1					
	Data Link Layer Trailer					

Fragmentation Attack

SYN Flooding attack!

More Fragmentation Attacks

- ♦ Split ICMP message into two fragments, the assembled message is too large
 - Buffer overflow, OS crash
- ♦ Fragment a URL or FTP "put" command
 - Firewall needs to understand applicationspecific commands to catch this

Higher-level analysis

- ♦ Packet filters cannot:
 - Forbid a particular URL
 - Detect email viruses
 - Block (malicious) ActiveX plugins
- ♦ Alternate approaches:
 - Stateful firewall: reconstruct connections
 - Application-level proxy: transform connections

Topics

- ◆ Background of Perimeter Security
- **♦** Firewalls
 - Basic Firewall Concepts
 - Packet filter (stateless)
 - Stateful firewall
 - Application-layer gateway
- ◆ Problems with Firewalls
- ♦ Real Firewalls

Stateful Firewall

Reconstruct connection state

GET

su

/foo.html

root

◆ Make decisions based on *flows*, not on packets

GET

su

/foo.html

root

 ◆ Some application protocol parsing may also be done

flow1

GET /foo.html ...

flow2

su root

Examples: Telnet

Stateful filtering can use this pattern to prevent SYN-Flooding Attack

Examples: FTP

• Client opens command channel to server; tells server second port number

Server acknowledges

Server opens data channel to client's second port

Client acknowledges

Topics

- ◆ Background of Perimeter Security
- **♦** Firewalls
 - Basic Firewall Concepts
 - Packet filter (stateless)
 - Stateful firewall
 - Application-layer gateway
- ◆ Problems with Firewalls
- ♦ Real Firewalls

Application-Level Proxy

◆ Process incoming packets at application layer

Daemon spawns proxy when communication detected

Application-Level Proxy

- Generate transformed message stream
 - Block dangerous messages
 - Normalize protocol semantics

GET /foo.html HTTP/1.0 Evil-option: yes

GET /foo.html HTTP/1.1

Evil-option: **no**

Trade-offs

- ♦ Pro: Higher precision
- ◆ Con: Higher costs
 - Scalability: imaging that it have to keep state for all connections for 1000's of computers!
 - Latency: proxy adds processing delays
 - Flexibility: proxy needs to understand everything you do with a protocol

Application-level proxies

- ◆ Enforce policy for specific protocols
 - E.g., Virus scanning for SMTP
 - Need to understand MIME, encoding, Zip archives
- ♦ Use "bastion host"
 - Computer running protocol stack
 - Will interact/accepts data from the Internet
 - Install/modify services you want
 - Disable all non-required services; keep it simple
 - Run security audit to establish baseline
 - Be prepared for the system to be compromised
 - Several network locations see next slides

Screened Host Architecture

Screened Subnet Using Two Routers

Dual Homed Host Architecture

Comparison

	Security	Performance	Modify Client Applications?
Packet Filter	Low	High	No
Session Filter	Medium	Medium	No
App. GW	Hight	Low	Unless transparent, client application must be proxyaware & configured

Topics

- ◆ Background of Perimeter Security
- **♦** Firewalls
 - Basic Firewall Concepts
 - Packet filter (stateless)
 - Stateful firewall
 - Application-layer gateway
- ◆ Problems with Firewalls
- ♦ Real Firewalls

Problems with Firewalls

- ♦ Performance
 - Firewalls may interfere with network use
- **♦** Limitations
 - They don't solve the real problems
 - Buggy software; Bad protocols
 - Generally cannot prevent Denial of Service
 - Do not prevent insider attacks
- ♦ Administration
 - Many commercial firewalls permit very complex configurations

Topics

- ◆ Background of Perimeter Security
- **♦** Firewalls
 - Basic Firewall Concepts
 - Packet filter (stateless)
 - Stateful firewall
 - Application-layer gateway
- ◆ Problems with Firewalls
- ♦ Real Firewalls

Turtle Firewall

- ♦ A software which allows you to realize a Linux firewall in a simply and fast way.
- ◆ Based on Kernel 2.4.x and Iptables.
- ◆ Policies can be written by a XML file or using the comfortable web interface Webmin.
- ◆ Open Source project written using the perl language and realeased under GPL version 2.0

SmoothWall

- ♦ SmoothWall Express is an open source firewall distribution based on the GNU/Linux operating system.
- ◆ "SmoothWall is configured via a web-based GUI, and requires absolutely no knowledge of Linux to install or use" (scary statement!)
- ◆ It integrates with firewall, DHCP, VPN, IDS, Web proxy, SSH, Dynamic DNS.

Sonicwall Pro 300 Firewall

- ◆ A firewall device with 3 ports: Internet, DMZ, Intranet.
- ♦ You can use one-to-one NAT for systems in Intranet.
- ◆ Support VPN. IPSec VPN, compatible with other IPSec-compliant VPN gateways
- ◆ 3 DES (168-Bit) Performance: 45 Mbps
- ◆ ICSA Certified, Stateful Packet Inspection firewall
- ◆ Concurrent connections: 128,000
- ◆ Firewall performance: 190 Mbps (bi-directional)

