Modelos de Redes Neurais e Deep learning

Machine Learning

- → Quando falamos de deep learning
 - Múltiplas camadas escondidas

- → Quando falamos de deep learning
 - Múltiplas camadas escondidas
 - ◆ As camadas formam uma hierarquia representativa para cada feature de entrada

State of the art object recognition using CNNs

→ CPU (Central Process Unit ou Unidade Central de Processamento)

→ GPU (Graphics Processing Unit ou Unidade de Processamento Gráfico)

→ TPU (Tensor Processing Unit ou Unidade Processamento de Tensor)

- → O que é um tensor?
 - Tensores são entidades geométricas introduzidas na matemática e na física para generalizar a noção de escalares, vetores e matrizes.

 https://pt.wikipedia.org/wiki/Tensor

tensor

't'	
'e'	
'n'	
's'	
'o'	
'r'	

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3
2	3	8	4
6	2	6	4

Rede Neural

Cross Entropy

Multi-Class Classification with NN and SoftMax Function

Back Propagation

Back Propagation

Back Propagation

Rede Neural

→ Redes Neurais Convolucionais

- → Redes Neurais Convolucionais
 - ♦ É uma rede *feed-forward*;

- → Redes Neurais Convolucionais
 - ♦ É uma rede *feed-forward*;
 - Boa aplicabilidade para problemas que envolvem análise de imagens.

→ Redes Neurais Convolucionais

→ Redes Neurais Convolucionais

→ Convolução?

→ Convolução?

						_
0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	P
0	101	98	104	102	100	
0	99	101	106	104	99	I
0	104	104	104	100	98	
8						

$$0*0+0*-1+0*0$$

+0*-1+105*5+102*-1
+0*0+103*-1+99*0 = 320

Output Matrix

Convolution with horizontal and vertical strides = 1

→ Exemplo de filtro (Sobel)

Matematicamente este operador utiliza duas matrizes 3×3 que são convoluídas com a imagem original para calcular aproximações das derivadas - uma para as variações horizontais e uma para as verticais. Sendo $\bf A$ a imagem inicial então, $\bf G_x$ e $\bf G_y$ serão duas imagens que em cada ponto contêm uma aproximação às derivadas horizontal e vertical de $\bf A$.

$$\mathbf{G_x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * \mathbf{A} \quad \mathbf{e} \quad \mathbf{G_y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

Portanto a magnitude, **G**, e a direcção, **Θ**, do gradiente são dados por:

$$\mathbf{G} = \sqrt{\mathbf{G_x}^2 + \mathbf{G_y}^2}$$
 $\mathbf{\Theta} = \arctan\left(\frac{\mathbf{G_y}}{\mathbf{G_x}}\right)$

https://pt.wikipedia.org/wiki/Filtro_Sobel

→ Exemplo de filtro (Sobel)

- a) Imagem original
- b) Sobel (Gx)
- c) Sobel (Gy)
- d) Sobel (Magnitude G)

→ Pooling?

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

→ Redes Neurais Convolucionais Gráficas inversas Profundas

→ Redes Neurais Convolucionais Gráficas inversas Profundas

→ Convolution e Deconvolution?

→ Convolution e Deconvolution?

