A Practical Review on Medical Image Registration: from Rigid to Deep Learning based Approaches

Natan Andrade Fabio Augusto Faria Fábio Augusto Menocci Cappabianco

Group for Innovation Based on Images and Signals Federal University of São Paulo

Summary

- 1.Medical image registration definition and applications (Cappabianco)
- 2. Registration description (Cappabianco)
- 3. Classical methods (Natan)
- 4. Concepts of deep learning (Faria)
- 5.Deep learning applied to medical image registration (Faria)

Introduction

- Definition
- Applications
- Preprocessing
- Main concepts

Medical Image Registration

• **Definition:** process of estimating an optimal transformation between two images.

Wu et al., 2013

Related Applications

- Fusion of Multi-modal images;
 - TC/MRI/PET
- Longitudinal Studies;
 - Desease development
- Populational Studies;
 - Etiology studies
- Functional studies;
 - fMRI

Overview

Medical Image Registration

Medical Imaging Acquisition

Format of Medical Images

- **DICOM** (Digital Imaging Communications in Medicine)
 - American College of Radiology (ACR) and National Electrical Manufacturers Association (NEMA)
 - 1990s several terms for access, usability, diagnoses, protocol communication
 - Header: image acquisition protocol, patient information, other information
 - Data: image description
- Purpose: interoperability issues in medical imaging.
 - Not a framework or architecture for clinical workflow

Format of Medical Images

ANALYZE

- .img file: voxel intensities
- .hdr file: data description
- NIfTI (Neuroimaging Informatics Technology Initiative)
 - National Institute of Mental Health
 - National Institute of Neurological Disorders and Stroke
 - .nii file: data and header together.
 - Progress of neuroinformatics tools
 - Intelectual properties rights.

Preprocessing

- Noise/Artifact correction
- Intensity normalization
- Inhomogeneity correction
- Region of Interest delineation
 - Mask segmentation

Noise/Artifact Correction

High-frequency Noise Filtering

- 1st generation of filters: isotropics
 - e.g. Mean, median, gaussian
- 2nd generation of filters: local anisotropics
 - e.g. diffusion, bilateral [Smith 1997]
- 3rd generation of filters: non-local anisotropics
 - e.g. non-local means [Tristan-Vega 2012], BM3D, PLOW

Intensity Normalization

- Used to standardize intensity range and distribution of a set of images.
- Based on landmarks.
 - Normally, just mean and quartiles are enough.
 - [Zhuge 2006]

Intensity Normalization

- Two steps method
 - 1st training: find landmarks in the histogram of input image.
 - 2nd transformation: find landmarks in target images and map them to the ones of the training image.
- Consequences:
 - Improves inhomogeneity correction.
 - Improve registration. (around 15%)

Inhomogeneity Correction

 Consists of a multiplicative low-frequency noise.

$$-I(s)=\hat{I}(s)*B(s)+\eta(s)$$

- Depends on:
 - Magnetic field or scanner features
 - Scanned subject

Inhomogeneity Correction

- General methods:
 - N3 [Sled 1998], N4 [Tustison 2010]
 - Used over any kind of images.
- Brain specific methods:
 - BFC, FAST (also segments tissues)
 - Used over skull stripped brain images.

Region of Interest

- Improves overall registration quality.
- Focus on more important region.

17

Strutucture of Registration

1. Deformation Model

- I. Computational efficiency vs flexibility
- II. Transformation nature

2. Matching Criteria

- I. Measurement of (dis)similarity
- II. Geometric (landmarks) vs Iconic (pixels)

3. Optimization Method

- I. Continuous vs discrete
- II. Criteria and regularization

Deformation Model

(Avants, 2011)
Affine Registration with ANTS

Figure 4: The anatomy of an ANTs optimization and application of the resulting warping.

Deformation Model

- Deformation model selection:
 - Depends on application
 - Depends on time requirements
 - Depends on image quality

Deformation Model

- Rigid
- Volume/topolgy preservation
- Affine
- Flow/Diffusion
- Elastic
- Viscous
- Free-form

Matching Criteria

- Geometric
 - Feature distance
 - Geometric distance
- Iconic
 - Sum of square distances
 - Unimodal
 - Mutual Information
 - Multi-modal

Examples of Metrics

MEASURE	ACRONYM	ТҮРЕ	USAGE	FORMULA
SUM OF SQUARED DIFFERENCES	SSD	DIST.	SINGLE-MOD	$D_{SSD}(I,J) = \sum_{x \in \Omega} (I(x) - J(x))^{2}$
SUM OF ABSOLUTE DIFFERENCES	SAD	DIST.	SINGLE-MOD	$D_{SAD}(I,J) = \sum_{x \in \Omega} I(x) - J(x)$
CORRELATION COEFFICIENT	СС	SIM.	SINGLE-MOD	$S_{CC}(I,J) = \sum_{x \in \Omega} \frac{(I(x) - E[I(x)])(J(x) - E[J(x)])}{\sigma(I)\sigma(J)}$
MUTUAL INFORMATION	MI	SIM.	MULTI-MOD	$S_{MI}(I,J) = \sum_{i} \sum_{j} \rho_{IJ}(i,j) \log(\frac{\rho_{IJ}(i,j)}{\rho_{I}(i)\rho_{J}(j)})$
CORRELATION RATIO	CR	SIM.	MULTI-MOD	$S_{CR}(I,J) = \frac{\sigma^2(E[J \mid I])}{\sigma^2(I)}$

Optimization Method

Non-exaustive search method

METHOD	CLASSIFICATION			
POWELL [12]	GRADIENT FREE	LOCAL	SERIAL	
SIMPLEX [13]	GRADIENT FREE	LOCAL	PARTIALLY PARALLELIZABLE	
SOBLEX ¹ [14]	GRADIENT FREE	COMBINED	PARTIALLY PARALLELIZABLE	
MDS ^{1,2} [15]	GRADIENT FREE	LOCAL	PARTIALLY PARALLELIZABLE	
GRADIENT DESCENT [12]	GRADIENT BASED	LOCAL	PARTIALLY PARALLELIZABLE	
QUASI-NEWTON [12]	GRADIENT BASED	LOCAL	PARTIALLY PARALLELIZABLE	
LEVENBERG-MARQUARDT [12]	GRADIENT BASED	LOCAL	PARTIALLY PARALLELIZABLE	
SIMULATED ANNEALING [12]	GRADIENT FREE	COMBINED	PARTIALLY PARALLELIZABLE	
DIRECT ³ [16]	GRADIENT FREE	GLOBAL	FULLY PARALLELIZABLE	
GENETIC [17]	GRADIENT FREE	GLOBAL	FULLY PARALLELIZABLE	

¹ A simplex variant, ² multidirectional search, ³ dividing rectangles.

http://users.cecs.anu.edu.au/~ramtin/papers/2010/SPM_2010.pdf

Basic Mathematics of Registration

The images are intensities $I, J: \Omega \subset \mathbb{R}^d \to \mathbb{R}^d$ in which d means dimensionality. If the transformation denoted by $I \circ T$, considering $T: \mathbb{R}^d \to \mathbb{R}^d$ as a spatial mapping.

$$T(x) = x + S(x)$$

In which x is a point that belongs to Ω and S(x) is a vector of d-dimensional deformation.

$$\epsilon = M + R$$

Measurable criterion M to match the images. R is the regularization term. This parameter aims to impose constraints between the registration processes

$$\hat{T} = arg \min_{T} \epsilon(T)$$

The final transformation of the process will be indicated in this case by minimizing the energy

Desirable Features

- Consistent inverse transform
 - Penalize distinct inverse transform
- Symmetry
 - Must produce symmetric transformations
- Topology preservation / Diffeomorphism
 - Internal and external structures

Consistency and Symmetry

Wu et al., 2013 SIBGRAP!'18

Topology Preservation / Diffeomorphicity

InverseWarp pulls A into space of B, but is not dense in A

Algorithm	Deformation	Similarity	Regularization	Optimization	Applications
AIR (1992)	Third Order Polynomial	RIU, SSD, SLS	Increase of order	Continuos (Newton-Raphson with Muti-Resolution)	Brain MRI, PET
SYN (2008)	Diffeomorphic	CC, JHCT, MI, MSD, NCC, PSE	Gaussian filter	Discrete (Euler Lagrange with Muti-Resolution)	MRI, brain image, thorax CT
DARTEL (2007)	Diffeomorphic	Multinomial model	Linear-elasticity;	Continuous (Levenberg-Marquardt strategy with Muti-Resolution)	Brain
DRAMMS (2009)	Cubic B-splines	CC, SSD	Bending energy	Discrete (Gradient Descent with Muti-Resolution)	Prostate, brain MR, Cardiac
DEMONS DF (2009)	Diffeomorphic	SSD	Gaussian filter	Continuos (Gauss-Newton with Muti-Resolution)	Brain MRI
DEMONS MU (2009)	Non-parametric	MI	Gaussian filter	Continuos (Broyden-Fletcher- Goldfarb-Shanno*)	Brain MRI, CT
DROP (2011)	Free form deformation	SAD, SADG, SSD, NCC, NMI, CR, CCGIP, HD, JRD, MI, JE, GRAD	Pott's regularization	Discrete (FastPD)	Thorax CT; brain MRI
FLIRT (2001)	Linear, Rigid Body	NMI, MI, CR, NCC	-	Continuos (Powell based)	Brain
FNIRT (2007)	Cubic B-splines	SSD	Membrane energy	Continuos (Levenberg-Marquardt minimisation)	Brain MRI
S-HAMMER (2014)	Diffeomorphic	GMI	Bending energy	Miscellaenous	Brain MRI

RIU: Ratio Image Uniformity, SSD: Sum of Squared Differences, SLS: Scaled Least-Squared difference image, CC: Cross-Correlation, JHCT: Jensen-Havrda-Charvat-Tsallis divergence, MI: Mutual Information, MSD: Mean Squared Difference, NCC: Normalized Correlation, PSE: Point-Set Expectation, SAD: Sum of Absolute Differences, SADG: Sum of Absolute Differences plus Sum of Gradient Inner Products, NMI: Normalized Mutual Information, CR: Correlation Ratio, CCGIP: Normalized Correlation Coefficient plus Sum of Gradient Inner Products, HD: Hellinger Distance, JRD: Jensen-Renyi Divergence, JE: Joint Entropy, GRAD: Sum of Gradient Inner Products and GMI: Geometric Moment Invariants.

AIR – Woods et al.(1998)

Automated Image Registration

- Automated Image Registration (AIR)
- It is a tool that brought several contributions to the registry area mainly in the field of deformation models using polynomials of various orders.

- Thee Similarity Metrics
 - Sum of Square Difference
 - Ratio Image Uniformity (RIU)
 - Variant RIU

Demons – THIRION et al.(1998)

- The method developed by Thiron is based on the idea of using the Maxwell demon problem.
- Applying this idea, the "demon" will determine to which place the voxel should go and so find their correspondence.
- The similarity metric used corresponds to a difference between the intensities, and this force comes from the calculation of the optical flow that will guide interactively adding the deformation to the total displacement that is initially zero

Demons – THIRION et al.(1998)

Example of the registration process utilizing Demons

- I. Select all elements of the image as Demon
- II. Calculate the force of the demon considering the general restriction by optical flow
- III. Assume a non-parametric deformation model that is regularized by applying a filter to each iteration.
- IV. Use a trilinear interpolation.
- V. Applying the Gaussian filter to each estimated field deformation in an interaction.

Demons Diffeomorphic – Vercauteren et., (2008)

 Several theoretical explanations about Thirion method.

 It used the strain exponentiation field to ensure the diffeomorphic mapping.

 Representation of log-domain transformations enabled forward and backward forces separately.

Fig. 6. Classical Circle to C registration example. With the same set of parameters the additive demons fails to converge and shows foldings in the registration results whereas the diffeomorphic demons converges with a smooth invertible transformation.

FSL – FMRIB Software Library (2001)

 FLIRT: FMRIB's Linear Image Registration Tool

 A global, multi-start and multiresolution optimization strategy specifically for affine image registration problems was proposed.

 FNIRT: FMRIB's Non Linear Image Registration Tool

Dartel – Ashburner et al.,(2007)

Diffeomorphic Anatomical Registration using Exponentiated Lie Algebra

DRAMMS – Ou et al., (2009)

Deformable Registration via Attribute Matching and Mutual-Saliency Weighting

 Similarity Maps

Fig. 2. The components of DRAMMS

DROP – Glocker et al.,(2011)

- DROP is a deformable registry that has a great contribution in the field of numerical optimization.
- The processing time of the registry has dropped considerably
- Minimizing the energy of a discrete Markov Random Field (MRF).

SyN – Avants et al.,(2011)

- Advanced Normalization Tools
- ANTsR, ANTsPy, ANTsRNet.

Transformation Model

Appearance/Similarity Metrics

$$\int_{0}^{1} < Lv(x,t), v(x,t) > dt + w_{1}SSD(I,J) + w_{2}MI(I,J) + w_{3} \sum_{i} LM_{i}(I,J)$$

$$\text{Diffeomorphic Regularization} + \frac{\text{Intensity}}{\text{Difference}} + \frac{\text{Mutual}}{\text{information}} + \frac{\text{Landmark Guidance}}{\text{Guidance}}$$

$$\text{ANTS -t} \left[\text{Syn}[0.5] - \text{m} \, \text{MSQ}(I,J,\text{w1,0}) - \text{m} \, \text{MI}(I,J,\text{w2,\#bins}) - \text{m} \, \text{PSE}(I,J,\text{w3}) \right]$$

Note: the choice of *L* above relates to the -r (regularization) parameter in ANTS, which would be part of the blue above.

SyN – Avants et al.,(2011)

- Advanced Normalization Tools
- ANTsR, ANTsPy, ANTsRNet.

Category	Transformation, φ	Similarity Measures	Brief Description	
Linear	Rigid [†]	MI, MeanSquares, GC	Rigid registration.	
Linear	Similarity [†]	MI, MeanSquares, GC	Rotation + uniform scaling.	
	Affine [†]	MI, MeanSquares, GC	Affine registration.	
Floatio	GaussianDisplacementField	CC, MI, MeanSquares, Demons	Demons-like algorithm.	
Elastic	BSplineDisplacementField	CC, MI, MeanSquares, Demons	FFD variant.	
Diffeo.	Exponential [†]	CC, MI, MeanSquares, Demons	$\min v(\mathbf{x})$	
Diffeo.	SyN^\dagger	CC, MI, MeanSquares, Demons	locally in time min $v(\mathbf{x},t)$	
	BSplineSyN [†]	CC, MI, MeanSquares, Demons	locally in time min $v(\mathbf{x},t)$	
	TimeVaryingVelocityField†	CC, MI, MeanSquares, Demons	min $v(\mathbf{x},t)$ over all time	

S-Hammer – Wu et al.,(2013)

 Hierarchical Attribute-Guided Symmetric Diffeomorphic Registration for MR Brain Image

Evaluate of Registration

Moving Image

Target Image

Overlap Image

L&R post. ventral sup. Temporal sulcus
L&R ventral somatosensory ctx
L&R post. central operculum
L&R dorsal somatosensory ctx
L&R post. middle frontal gyrus
L&R post. middle frontal gyrus

18 26.7 29.0 41.5 46.1 37.9 37.3 46.9 38.9 36.0 30.0 50.3 34.8 31.8 33.8 47.1 54.5 tx 47.2 50.0 53.4 59.2 53.5 51.8 57.3 53.6 53.4 50.1 60.8 52.8 43.7 52.1 58.3 67.5 tx 42.2 43.5 48.0 53.4 48.2 46.3 51.1 48.3 47.3 43.4 53.4 47.2 47.6 47.6 54.7 65.8 tx 42.2 43.5 55.5 57.9 64.0 59.2 49.8 63.1 60.2 59.8 56.5 66.1 57.1 45.5 54.5 65.7 70.5 triffer Arminal Republic R

