PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶: C08K 7/22, 7/28, C08G 18/79

A1

(11) Internationale Veröffentlichungsnummer: WO 99/03922

(43) Internationales
Veröffentlichungsdatum:

28. Januar 1999 (28.01.99)

(21) Internationales Aktenzeichen:

PCT/EP98/04105

(22) Internationales Anmeldedatum:

3. Juli 1998 (03.07.98)

(30) Prioritätsdaten:

197 30 466.4

16. Juli 1997 (16.07.97)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): GRIMM, Wolfgang [DE/DE]; In Holzhausen 81, D-51381 Leverkusen (DE). POST, Udo [DE/DE]; Eschenbroichstrasse 12, D-51469 Bergisch Gladbach (DE). VON SEGGERN, Elke [DE/DE]; Seidenweber Strasse 120, D-40764 Langenfeld (DE). BOUVIER, Denis [FR/FR]; 30, chemin des Coulores, F-38300 Bougoin-Jallieu (FR).

(74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; D-51368 Leverkusen (DE). (81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: PRESSURE RESISTANT AND HEAT-STABLE INSULATING COATINGS FOR HOLLOW BODIES, AND A METHOD FOR PRODUCING THE SAME
- (54) Bezeichnung: DRUCKFESTE UND THERMOSTABILE ISOLIERBESCHICHTUNGEN FÜR HOHLKÖRPER UND EIN VERFAHREN ZU DEREN HERSTELLUNG

(57) Abstract

The invention relates to a method for producing insulating coatings for hollow bodies. Said insulating coatings have polyurethane and/or polyisocyanurate groups, and are produced by reacting a) one polyisocyanate component with b) at least two compounds with hydrogen atoms which are active towards isocyanates and c) catalysts, optionally in the presence of d) other auxiliary agents and additives. The inventive insulating coatings are characterised in that organic or mineral hollow microspheres with an average particle size of between 5 and 200 μ m and a density of between 0.1 and 0.8 g/cm³ are added to at least one of the components a) to d). The invention also relates to the use of the inventive insulating coatings for pipes used in offshore applications.

(57) Zusammenfassung

Beschrieben wird ein Verfahren zur Herstellung von Polyurethan- und/oder Polyisocyanuratgruppen aufweisenden Isolierbeschichtungen für Hohlkörper durch Umsetzung von a) einer Polyisocyanatkomponente mit b) mindestens zwei gegenüber Isocyanaten aktive Wasserstoffatome aufweisenden Verbindungen und c) Katalysatoren gegebenenfalls in Gegenwart von d) weiteren Hilfs- und Zusatzstoffen, dadurch gekennzeichnet, daß mindestens einer der Komponenten a) bis d) organische oder mineralische Mikrohohlkugeln mit einer mittleren Teilchengröße im Bereich von 5 bis 200 µm und einer Dichte im Bereich von 0,1 bis 0,8 g/cm³ zugesetzt werden. Weiterhin wird die Verwendung dieser Isolierbeschichtungen für im Off-Shore-Bereich eingesetzte Rohre beschrieben.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

	•						
AL	Albanien	ES	Spanien	LS .	Lesotho	SI	Slowenien
AM	Armenien ·	FI	Pinnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Prankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ.	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA .	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tedschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan'
BF	Burkina Faso ,	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR ·	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	ΓT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande ,	VN	Vietnam `
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen .		•
CN	China	KR .	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumanien		•
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	L	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		* •

Druckfeste und thermostabile Isolierbeschichtungen für Hohlkörper und ein Verfahren zu deren Herstellung

Die Erfindung betrifft Polyurethan- und/oder Polyisocyanat-Gruppen aufweisende Isolierbeschichtungen für Hohlkörper, insbesondere Rohre, sowie ein Verfahren zu deren Herstellung.

Bekannter Weise werden u.a. PUR-Schäume und PUR-Elastomere zur Isolierung von Öl- und Gas-pipelines im off-shore-Bereich eingesetzt.

10

5

In der EP-A 636 467 wird beschrieben, wie in einem Arbeitsgang eine dicklagige PUR-Beschichtung von Rotationskörpern, wie Walzen und Rohre, durchgeführt werden kann. U. a. ist auch die Rohrbeschichtung mit syntaktischen PUR-Schlämmen zur Isolierung bekannt.

15

Das Anforderungprofil an solche Isoliermaterialien wird durch das Erschließen neuer Ölfelder in größeren Meerestiefen deutlich erhöht. U. a. muß die Wärmestandfestigkeit dieser Materialien von bisher 120°C auf 160°C und die Druckfestigkeit von bisher 50 bar (500 m Tauchtiefe) auf bis zu 250 bar (2500 m Tauchtiefe) erhöht werden.

20

Oben beschriebene Polyurethanwerkstoffe sind in der Dauertemperaturbeständigkeit jedoch auf ca. 120°C beschränkt.

25

Aufgabe der vorliegenden Erfindung war es daher, Isolierbeschichtungen für Rohre aufzufinden, die eine Wärmestandfestigkeit über 120°C und eine Druckfestigkeit über 50 bar aufweisen.

30

Überraschender Weise wurde gefunden, daß durch die Kombination von Polyisocyanurat-Reaktionsmassen mit temperatur- und druckstabilen Mikrohohlkörpern die
gewünschten Anforderungen erfüllt werden und für gerade und schwach gekrümmte
Rohre das in der EP-A 636 467 genannte wirtschaftliche Rotationsbeschichtungsverfahren angewendet werden kann. Rohrkrümmer und -anschlüsse können mit
gleicher Rohstoffbasis im Formenguß hergestellt werden.

Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Polyurethanund/oder Polyisocyanuratgruppen aufweisenden Isolierbeschichtungen für Hohlkörper durch Umsetzung von

5

- a) einer Polyisocyanatkomponente mit
- b) mindestens zwei gegenüber Isocyanaten aktive Wasserstoffatome aufweisenden Verbindungen und

10

- c) Katalysatoren gegebenenfalls in Gegenwart von
- d) weiteren Hilfs- und Zusatzstoffen,

bei dem mindestens einer der Komponenten a) bis d) organische oder mineralische Mikrohohlkugeln mit einer mittleren Teilchengröße im Bereich von 5 bis 200 μm und einer Dichte im Bereich von 0,1 bis 0,8 g/cm³ zugesetzt werden.

20

Die erfindungsgemäßen Beschichtungen sind geeignet für die Walzen oder Rohre, wie sie in der Stahlindustrie, Förder- und Transportindustrie sowie in der Papierindustrie eingesetzt werden. Außerdem lassen sich danach Rohre mit Außenbeschichtung für den industriellen sowie Rohre mit Innenbeschichtung für die hydraulische Förderung von abrasiven Gütern herstellen. Erforderlichenfalls muß man die zu beschichtenden Flächen vorher mit einem Haftvermittler versehen.

25

Es lassen sich aber auch Rohre oder sonstige Hohlkörper nach dem neuen Verfahren herstellen, indem man einen entfernbaren Kern beschichtet. In diesem Fall muß man auf den Kern ein Trennmittel auftragen oder ihn mit einer Trennfolie umwickeln. Schließlich läßt sich das neue Verfahren auch dazu benutzen, Rohre mit einem Wärmedämmantel aus Polyurethan-Hartschaumstoff zu versehen.

30

Es hat sich gezeigt, daß das neue Verfahren nicht nur für die Innen- und Außenbeschichtung von rotationssymmetrischen Körpern geeignet ist, sondern daß auch

5

10

15

20

25

30

Körper beschichtbar sind, welche über Länge und/oder Querschnitt unterschiedliche Durchmesser aufweisen.

Besonders geeignet ist das erfindungsgemäße Verfahren für die Beschichtung von Rohren für den Off-Shore-Bereich, insbesondere für Rohre für eine Tiefe von mehr als 500 m, die einer Druckbelastung von größer 50 bar und einer Temperatur von größer 120°C ausgesetzt sind.

Bei den Reaktionskomponenten handelt es sich um flüssige Reaktionsgemische, die zu massiven oder geschäumten, gegebenenfalls Isocyanuratgruppen aufweisenden, vorzugsweise harten Polyurethankunststoffen ausreagierten. Es handelt sich um Gemische von organischen, vorzugsweise aromatischen Polyisocyanaten mit mindestens zwei gegenüber Isocyanaten aktive Wasserstoffatome aufweisenden Verbindungen, insbesondere organischen Polyhydroxylverbindungen, wobei die Polyisocyanate zur Herstellung von reinen Polyurethanen, bezogen auf die Hydroxylgruppen, in etwa äquivalenten Mengen und zur Herstellung von Isocyanuratmodifizierten Polyurethanen in überschüssigen Mengen zum Einsatz gelangen. Dies bedeutet, daß die Isocyanatkennzahl im allgemeinen innerhalb des Bereiches von 90 bis 2000, vorzugsweise 100 bis 1800 liegt. Unter "Isocyanatkennzahl" ist hierbei die Anzahl der Isocyanatgruppen der Polyisocyanatkomponent pro 100 Hydroxylgruppen der Poly-hydroxylkomponente zu verstehen.

Geeignete, zu Polyurethanen ausreagierte Systeme sind beispielsweise in DE-PS 16 94 138 beschrieben, während als Gießmassen, die zu Isocyanurat-modifizierten Polyurethanen ausreagieren, Systeme gemäß DE-PS 25 34 247 eingesetzt werden können.

Den Gießmassen können die üblichen Hilfs- und Zusatzmittel, d. h. Katalysatoren für die Isocyanat-Additionsreaktion wie Dimethylbenzylamin, Dibutylzinndilaurat oder per-methyliertes Diethylentriamin, Katalysatoren für die Trimerisierung von Isocyanatgruppen der in DE-PS 25 34 247 beschriebenen Art, oder Füllstoffe wie beispielsweise Glasfasern, Aluminiumhydroxid, Talkum, Kreide, Dolomit, Glimmer, Schwerspat oder Wollastonit (CaSiO₃) zugesetzt werden.

Erfindungswesentlich ist jedoch, daß in den Reaktionskomponenten mineralische und oder druckfeste, temperaturbeständige Kunststoffe mit Mikrohohlstruktur von 0,5 % bis zu einer maximalen Füllung, ohne Erzeugung von zusätzlichen Hohlräumen, bezogen auf das Gesamtgewicht der Reaktionskomponenten vorliegen.

Die maximale Füllung errechnet sich wie folgt:

ρ_{Hohlkörper} = Dichte des Mikrohohlkörpers

10

ρ_{Schūtt} = Mittlere Schüttdichte der Mikrohohlkörper

 ρ_{PUR} = Dichte der Polyurethan-Matrix

15 Freiraum = verbleibender Raum zwischen aufgeschütteten, maximal verdichteten Hohlkörpern

Freiraum = $\rho_{\text{Hohlkorper}} - \rho_{\text{Sehütt}}$

Um ein Fließen der Matrix bei der Reaktion zu erreichen, muß mindestens 1 Gew.-% Matrix-Überschuß gegenüber dem Freiraum vorhanden sein. Somit ergibt sich als maximale Füllung folgende Formel:

Minimale PUR-Menge je 100 g Hohlkörper

25

Minimale-Matrixmenge = $\rho_{PUR} * (1/\rho_{Schütt} - 1/\rho_{Hohlkörper}) * 1,01*100$

Die nach obiger Formel errechnete minimale PUR-Matrix hat eine bevorzugte Kennzahl zwischen 1000 und 1600.

30

Bevorzugt werden mineralische Mikrohohlkugeln eingesetzt. Besonders bevorzugt sind dabei mineralische Mikrohohlkugeln des Dichtebereichs 0,1 bis 0,8 g/cm³ und

einer mittleren Teilchengröße von 5 bis 200 μm, und einer Druckfestigkeit größer 50 bar. Derartige Hohlkörper sind beispielsweise unter der Bezeichnung Q-CEL[®] (Fa. Omya GmbH) und Scotchlite[®] Glas Bubbles (3M Deutschland GmbH) im Handel erhältlich.

5

Die erfindungswesentlichen Zusatzmittel können bei der Herstellung der Gießmassen sowohl der Polyisocyanatkomponente als auch der Polyhydroxylkomponente oder beiden vorab als auch direkt vor der Reaktion zugesetzt werden.

10

Die Herstellung der Isolierschicht vorzugsweise auf Rohren erfolgt entweder nach dem in der EP-A-636 467 beschriebenen Rotations-Beschichtungsverfahren oder nach dem herkömmlichen Gießen in Formen mit den entsprechenden Rohrteilen als Einlegeteil.

15

20

Die erfindungsgemäß hergestellten Isolierbeschichtungen weisen üblicherweise eine Dichte kleiner 0,9 g/cm³, bevorzugt eine Dichte zwischen 0,5 und 0,8g/cm³ auf. In vorteilhafter Weise ist die Wärmeleitzahl für die erfindungsgemäß hergestellten Isolierbeschichtungen kleiner 0,180 W/m K. Ferner weisen die erfindungsgemäßen Isolierbeschichtungen eine sehr gute Druckbeständigkeit größer 50 bar und eine hohe Thermostabilität von größer 120°C auf.

5

15

20

25

Beispiele

In den nachfolgenden Beispielen werden sowohl Rohrbeschichtungen nach dem Rotationsbeschichtungsverfahren als auch nach dem klassischen Gießverfahren beschrieben.

Allgemeine Herstellungshinweise

Die in den Beispielen aufgeführten Komponenten A und B wurden durch schonendes

Abmischen der einzelnen Bestandteile und anschließendes Evakuieren zwecks

Entgasung vor der Dosierung einzeln hergestellt. Die Dosierung erfolgte über spezielle, füllstoffähige pulsationsarme Dosierpumpen und Nadelventile in einen speziellen Niederdruckmischkopf.

Je nach Verfahren wurde entweder über eine Filmdüse (Rotationsbeschichtung) oder eine Runddüse (klassisches Gießen) teilweise mit aufgesetztem Schlauch, das reaktive Gemisch auf das Rohr aufgetragen. Die Verarbeitungstemperaturen der einzelnen Komponenten wurden je nach Viskosität bei Raumtemperatur bis zu 70°C eingestellt. Die Rohre hatten immer Raumtemperatur, waren Gesandstrahlt und teilweise mit einem marktgängigen Haftvermittler vorbehandelt. Die Formen wurden sowohl unbeheizt als auch auf 80°C temperiert, eingesetzt, um das Aushärten des reaktiven Polyurethangemisches zu beschleunigen. Nach dem Entformen und bzw nur nach dem Abkühlen auf ca. 35°C konnten die Rohre schon auf der Beschichtung in einem entsprechenden Weichbett (Holzbalkenprisma plus 40 mm dicke Weichschaumstreifen) abgelegt werden. Erste physikalische Prüfungen erfolgten frühestens 24 Stunden nach dem Gießprozeß.

- 1) Rohrisolierbeschichtung nach dem Rotationsbeschichtungsverfahren
- Hierbei wird über eine in Richtung Längachse über das Rohr geführte Filmdüse das reaktive Polyurethangemisch auf das sich drehende Rohr aufgegossen. Der Vorschub der Düse wird so eingetellt, daß bei konstantem Ausstoß die gewünschte Beschichtungsdicke erreicht wird.

Stahlrohr mit einem Außendurchmesser von 230 mm

Filmdüse mit 200 mm Breite

Ausstoß von 12 l/min = 8,4 kg/min

Beschichtungsdicke von 45 mm

5 Beschichtungsgeschwindigkeit von 308 mm/min

Dichte der Isolierschicht 0,7 g/cm³

Gießzeit 8-15 Sekunden

Wärmeleitzahl 0,14 W/m*K

Rohrdrehzahl 28 U/min

10

Bei den nachfolgenden Beispielen wurden sowohl die eingesetzten Polyether, die Isocyanate als auch die Kennzahl variiert.

15 Beispiel 1

Komponente	Α	* 1
100	Gew.Tle	Polyether, OH-Zahl 36, Polyaddition von 83 % Propylen-
		oxid und 17 % Ethylenoxid an Trimethylpropan
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
1,5	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
40 ·	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Komponente	· B	
150	Gew.Tle	Polyisocyanat mit 31,5 % NCO
3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
45	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
17	- ^	•

Kennzahl 1250

Die Prüfung auf Druckfestigkeit (Prüfkörper: Würfel von 100 mm Kantenlänge) bei 20 200 bar in Wasser bei Raumtemperatur ergab nach 24 Stunden Prüfzeit eine Wasseraufnahme von kleiner 3 g für den gesamten Prüfkörper. Die Prüfung auf

Thermostabilität (Prüfplatten 200 x 100 x 10 mm) ergab bei Lagerung von 4 Monaten bei 200°C keine sichtbaren Veränderungen und keinen Eigenschaftsverlust.

Beispiel 2

5	Komponente	Α	
	100	Gew.Tle	Polyether, OH-Zahl 56, Polyaddition von 100 %
	- ,		Propylenoxid und an Glycerin
	2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
	3,5	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
	35	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
	Komponente	В	
	150	Gew.Tle	Polyisocyanat mit 31,5 % NCO
	3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
	··· 45	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
	Kennzahl 125	50	

Beispiel 3

10

Komponente	Α .		
100	Gew.Tle	Polyether, OH-Zahl 36, Polyaddition von 83 9	%
		Propylenoxid und 17 % Ethylenoxid an Trime	thylpropan
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl	
1,8	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethy	lenglykol
40	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/	cm³
Komponente	В		
Prepolymer			
aus 150	Gew.Tle	Polyisocyanat und	
12	GewTle.	Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %	6 .
3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl	
45	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g	/cm³
Kennzahl 115	io ·		

Beispiel 4

Komponente .	A [·]	
100	Gew.Tle	Polyether, OH-Zahl 36, Polyaddition von 83 %
		Propylenoxid und
		17 % Ethylenoxid an Trimethylpropan
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
1,8	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
40	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Komponente	В	
Prepolymer	•	
aus 162	Gew.Tle	Polyisocyanat und
13	GewTle.	Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %
3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
50	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Kennzahl 1250) ·	

5 Beispiel 5

Komponente	A	
100	Gew.Tle	Polyether, OH-Zahl 56, Polyaddition von 100 %
		Propylenoxid und an Glycerin.
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
3,5	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
35	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Komponente	В	
Prepolymer		
aus 150	Gew.Tle	Polyisocyanat und
12	GewTle.	Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %
3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
45	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Kennzahl 115	0	

Beispiel 6

Komponente	Α		
100	Gew.Tle	Polyether, OH-Zahl 56, Polyaddition von 100 %	
		Propylenoxid und an Glycerin.	
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl	
3,5	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol	
35	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³	
		••	
Komponente	В		
Prepolymer			
aus 162	Gew.Tle	Polyisocyanat und	
13	GewTle.	Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %	
3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl	
50	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³	
Kennzahl 1250			

5

2. Rohrbeschichtung nach dem Formenguß

Hierbei wird ein vorbehandelter Rohrabschnitt in eine mit Trennmittel behandelte, auf 80°C temperierte Form eingelegt, die Form geschlossen, 10° geneigt und an der tiefsten Stelle über einen Schlauch steigend gefüllt, bis das reagierende Polyurethangemisch an der höchsten Stelle, einem Steiger aus der Form austritt. Durch Abklemmen des Schlauches und Lösen vom Mischkopf wird die Form am Anguß verschlossen und der Mischkopf kann mit Komponente A gespült werden.

15

20

Stahlrohr mit einem Außendurchmesser von 230 mm
Beschichtungslänge 56 cm
Runddüse mit 22 mm Durchmesser
Ausstoß von 10 l/min = 7 kg/min
Beschichtungsdicke von 45 mm
Dichte der Isolierschicht 0,7 g/cm³

Gießzeit 140-200 Sekunden

Wärmeleitzahl 0,14 W/m*K Füllzeit 135 Sekunden

Bei den nachfolgenden Beispielen wurden sowohl die eingesetzten Polyether, die Isocyanate als auch die Kennzahl variiert.

Beispiel 7

Komponente A		
100	Gew.Tle	Polyether, OH-Zahl 36, Polyaddition von 83 %
		Propylenoxid und 17 % Ethylenoxid an Trimethylpropan
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
0,6	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
40	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Komponente	В	
150	Gew.Tle	Polyisocyanat mit 31,5 % NCO
3,0 :	Gew.Tle	Zeolith 50 % ig in Rizinusöl
45	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Kennzahl 125	0	•

10

Beispiel 8

Komponente	Α	
100	Gew.Tle	Polyether, OH-Zahl 56, Polyaddition von 100 %
·		Propylenoxid und an Glycerin
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
0,9	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
35	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Komponente	В	
150 -	Gew.Tle	Polyisocyanat mit 31,5 % NCO
3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
45	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Kennzahl 125	in	

1 3	C.1.3	piel	7

Komponente	Α	
100 .	Gew.Tle	Polyether, OH-Zahl 36, Polyaddition von 83 %
		Propylenoxid und 17 % Ethylenoxid an Trimethylpropan
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
0,6	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
40	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
Komponente	В	
Komponente Prepolymer	В	
· ·	B Gew.Tle	Polyisocyanat und
Prepolymer	Gew.Tle	Polyisocyanat und Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %.
Prepolymer aus 150	Gew.Tle	
Prepolymer aus 150 12	Gew.Tle	Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %.

5 Beispiel 10

Komponente A			
100	Gew.Tle	Polyether, OH-Zahl 36, Polyaddition von 83 %	
		Propylenoxid und 17 % Ethylenoxid an Trimethylpropan	
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl	
0,6	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol	
40	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³	
Komponente	В		
Prepolymer			
aus 162	Gew.Tle	Polyisocyanat und	
13	GewTle.	Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %.	
3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl	
50	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³	
Kennzahl 1250			

-	•			-	-
-	~	-	- ^		1
1)	<u>eis</u>	11	ıcı		

K	omponente	Α	···
1	00	Gew.Tle	Polyether, OH-Zahl 56, Polyaddition von 100 %
			Propylenoxid und an Glycerin.
2	,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
0	,9	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
3	5 .	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
•			
ŀ	Componente	В	• • .
F	repolymer	•	*
a	us 150	Gew.Tle	Polyisocyanat und
]	2	GewTle.	Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %
3	. 0,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
4	15 .	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
1	Kennzahl 115	0	
			· · · · · · · · · · · · · · · · · · ·

5 Beispiel 12

Kennzahl 1250

		0.8 0
Komponente	A	
100	Gew.Tle	Polyether, OH-Zahl 56, Polyaddition von 100 %
		Propylenoxid und an Glycerin.
2,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
0,9	Gew.Tle	Aktivator, Lösung von Alkaliacetat in Diethylenglykol
35	Gew.Tle	Mikrohohlglaskugeln, mittlere Dichte 0,32 g/cm³
••		
Komponente	В	
Prepolymer		
aus 162	Gew.Tle	Polyisocyanat und
.13	GewTle.	Rizinusöl, Brasil-Nr. 1, NCO berechnet 29 %
3,0	Gew.Tle	Zeolith 50 % ig in Rizinusöl
50	Gew Tle	Mikrohohlolaskugeln mittlere Dichte 0 32 g/cm³

5

10

25

Patentansprüche

- 1 Verfahren zur Herstellung von Polyurethan- und/oder Polyisocyanuratgruppen aufweisenden Isolierbeschichtungen für Hohlkörper durch Umsetzung von
 - a) einer Polyisocyanatkomponente mit
 - b) mindestens zwei gegenüber Isocyanaten aktive Wasserstoffatome aufweisenden Verbindungen und
 - c) Katalysatoren gegebenenfalls in Gegenwart von
 - d) weiteren Hilfs- und Zusatzstoffen,
- dadurch gekennzeichnet, daß mindestens einer der Komponenten a) bis d) organische oder mineralische Mikrohohlkugeln mit einer mittleren Teilchengröße im Bereich von 5 bis 200 μm und einer Dichte im Bereich von 0,1 bis 0,8 g/cm³ zugesetzt werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mineralische Mikrohohlkugeln zugesetzt werden.
 - Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß
 Mikrohohlkugeln mit einer Druckfestigkeit über 10 bar zugesetzt werden.
 - 4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Hohlkörper Rohre sind.
- Polyurethan- und/oder Polyisocyanurat-Gruppen aufweisende Isolierbeschich tungen für Hohlkörper aus der Umsetzung
 - a) einer Polyisocyanatkomponente mit

PCT/EP98/04105

5

10

- b) mindestens zwei gegenüber Isocyanaten aktive Wasserstoffatome aufweisenden Verbindungen und
- c) Katalysatoren, gegebenenfalls in Gegenwart von

d) weiteren Hilfs- und Zusatzstoffen,

dadurch gekennzeichnet, daß die Isolierbeschichtung Mikrohohlkugeln mit einer mittleren Teilchengröße im Bereich von 5 bis 200 μ m und einer Dichte im Bereich von 0,1 bis 0,8 g/cm³ enthält.

6. Verwendung einer Isolierbeschichtung gemäß Anspruch 5 für die Beschichtung von Rohren für den Off-Shore-Bereich.

INTERNATIONAL SEARCH REPORT

Inte Ional Application No PCT/EP 98/04105

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C08K7/22 C08K7/28 C08G18/7	9	
According to	nternational Patent Classification(IPC) or to both national classification	ion and IPC	
	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classification COSK COSG	n symbols)	
Documentat	tion searched other than minimum documentation to the extent that su	ch documents are included in the fields sea	arched
·		·	
Electronic d	ata base consulted during the international search (name of data bas	e and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category '	Citation of document, with indication, where appropriate. of the rele	vant passages	Relevant to claim No.
Y	DE 36 22 780 A (FA. AUGUST HOHNHO 21 January 1988 see claims 1,3,4	LZ)	1-3,5
Y .	DE 36 09 696 C (MANKIEWICZ GEBR. 30 July 1987 see page 7, line 45 — line 46; ex	•	1-3,5
	. *		·
		- 3 ·	,
		· · · · · · · · · · · · · · · · · · ·	
		· · ·	
Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
* Special ca	ategories of cited documents :	T later document published after the inte or priority date and not in conflict with	rnational filing date
"E" earlier filing of "L" docume which citatio "O" docum other "P" docum	ent which may throw doubts on priority claim(s) or is cited to establish the publicationdate of another in or other special reason (as specified) sent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but	cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious the art.	claimed invention It be considered to current is taken alone claimed invention iventive step when the ore other such docu- ius to a person skilled
	actual completion of theinternational search	"&" document member of the same patent Date of mailing of the international sea	
2	1 November 1998	17/11/1998	
Name and	mailing address of the ISA Europeen Patent Office, P.B. 5818 Patentiean 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer Angiolini, D	

INTERNATIONAL SEARCH REPORT

information on patent family members

PCT/EP 98/04105

Patent document cited in search report	t .	Publication date		atent family nember(s)	Publication date
DE 3622780	Α	21-01-1988	NONE	. •	
DE 3609696	С	.30-07-1987	EP US	0237890 A 4724250 A	

INTERNATIONALER RECHERCHENBERICHT

PCT/EP 98/04105

		101721 307	0,100		
	RUNG DES ANMELDUNGSGEGENSTANDES 08K7/22 C08K7/28 C08G18/7	9			
Nach der Internation	onalen Patentklassifikation (IPK) oder nach der nationalen Klass	sifikation und derIPK			
B. RECHERCHIE					
	ndestprüfstoff (Klassifikationssystem und Klassifikationssymbol D8K CO8G	e }			
Recherchierte abe	er nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sow	veit diese unter die recherchierten Gebiete	atlen .		
Während der inter	nationalen Recherche konsuttierte elektronische Datenbank (Na	rme der Datenbank und evit. verwendete S	suchbegriffe)		
C. ALS WESENT	LICH ANGESEHENE UNTERLAGEN				
Kategorie Beze	eichnung der Verötfentlichung, soweit erforderlich unter Angabe	der in Betracht kommenden Teile	Betr, Anspruch Nr.		
	DE 36 22 780 A (FA. AUGUST HOHNHO 21. Januar 1988 siehe Ansprüche 1,3,4	LZ)	1-3,5		
	DE 36 09 696 C (MANKIEWICZ GEBR. 30. Juli 1987 siehe Seite 7, Zeile 45 - Zeile 4 Beispiel 4	**	1-3,5		
			.·		
Weitere Ve	eröffentlichungen sind der Fortsetzung von Feld C zu	X Siehe Anhang Patentfamilie			
*Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den aligemeinen Stand der Technik deliniert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist hungen die der nach dem internationalen Anmeldedatum veröffentlicht worden ist hungen die scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum der mehr der mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung verformentlichtung					
	November 1998	17/11/1998			
E N	Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentiamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Bevollmächtigter Bediensteter Bevollmächtigter Bediensteter				

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inter nales Aktenzeichen
PCT/EP 98/04105

Im Recherchenberich angeführtes Patentdokun		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	. Datum der Veröffentlichung
DE 3622780	Α	21-01-1988	KEINE .	
DE 3609696	C	30-07-1987	EP 0237890 A US 4724250 A	23-09-1987 09-02-1988