pavo: Perceptual Analysis, Visualization and Organization of Color Data in R

Rafael Maia, Paul-Pierre Bitton, Chad Eliason

November 28, 2012

Introduction

Although pavo deals largely with spectral reflectance data from bird feathers, it is meant to be applicable for a range of taxa. It provides flexible ways to input spectral data from a variety of equipment manufacturers, process these data and...

This is a random edit by Rafael.

pavo was written with the following workflow in mind:

- 1. Organize spectral data by inputting files, processing spectra (e.g., to remove noise, negative values, smooth curves, etc.)
- 2. Analyze the resulting files, either using typical tristimulus color variables (hue, saturation, brightness) or using visual models based on perceptual data from the taxon of interest.
- 3. Visualize the output

1 Organizing and Processing Spectral Data

blah blah blah

2 Analyzing Spectral Data

2.1 Overview

add description here

2.2 Variables calculated

Color		
$\mathbf{Variable}$	Equation	Description
B1	$\sum_{\lambda=300}^{700} R_{\lambda}$	Total brightness, total reflectance
B2	$\overline{B}_1/n_{ m wl}$	Mean brightness.
В3	R_{\max}	Intensity.
S1		Chroma, spectral purity.
S2	$R_{\rm max}/R_{\rm min}$	Spectral saturation
S3		
S4		
S5		
S6		
S7		
S8		
S9		
S10		
H1	$\lambda_{ m Rmax}$	Hue: wavelength of peak reflectance
H2		
Н3		
H4		
Н5		

Table 1: The complete set of tristimulus variables calculated by summary in pavo

Color variables described in Table 1.

blah blah blah¹ and also this.

3 Visualizing Spectral Data

```
> data(sicalis)
> plot(sicalis, type='o', col=spec2rgb(sicalis))
> #plot(sicalis, type='s', col=spec2rgb(sicalis))
```

Colors can be mapped to spectra using spec2rgb as shown in Figure 2.

Examples

> hist(rnorm(50))

 $^{^{1}}$ some footnote text here

Figure 1: Sample plot.

Figure 2: Overlay plot with colors calculated from human color matching functions

More examples

Some more examples: