## Graphenalgorithmen Blatt 9

Markus Vieth

Christian Stricker

25. Januar 2017

- 1 Aufgabe 1: Separator im Graphen G (10 Punkte)
- 2 Aufgabe 2: Cops and Robber (10 Punkte)
- 3 Aufgabe 3: Baumzerlegung berechnen (20 Punkte)

## 3.1 a



(b) Tree decomposition T

Abbildung 1: Ausgangssituation



Markus Vieth, Christian Stricker







(b) Tree decomposition T

 $(a, \tilde{c}) X_2$ 

 $\bigcirc$   $X_1$ 

 $(c,f) X_3$ 

 $X_4$ 



(b) Tree decomposition T

Markus Vieth, Christian Stricker



(b) Tree decomposition T



(b) Tree decomposition T



(b) Tree decomposition T

 $Markus\ Vieth,\ Christian\ Stricker$ 

| $\operatorname{step}$ | 0 | 1       | 2                 | 3             | 4                | 5                   | 6                      | 7                         | Result         |
|-----------------------|---|---------|-------------------|---------------|------------------|---------------------|------------------------|---------------------------|----------------|
| $\overline{U}$        | Ø | $\{c\}$ | $\{a,c\}$         | $\{a, c, f\}$ | $\{a, c, f, g\}$ | $\{a, c, f, g, h\}$ | $\{a, c, e, f, g, h\}$ | $\{a, c, d, e, f, g, h\}$ | $\overline{V}$ |
| C                     | V | $\{a\}$ | $\{b,d,e,f,g,h\}$ | $\{g\}$       | $\{b,d,e,h\}$    | $\{b,d,e\}$         | $\{b,d\}$              | $\{b\}$                   | Ø              |
| $C \ni n_C$           | c | a       | f                 | g             | h                | e                   | d                      | b                         | /              |
| X                     | Ø | $\{c\}$ | $\{c\}$           | $\{f\}$       | $\{c,f\}$        | $\{c,h\}$           | $\{c,e\}$              | $\{d\}$                   | Ø              |
| t                     | / | 1       | 1                 | 3             | 3                | 5                   | 6                      | 7                         | /              |



Abbildung 9: Result

## 3.2 b



 $X=\{5,6,7,8,9,10\}$ ist nicht w+1=3verbunden, da $Y=\{7,9,10\}$ und  $Z=\{5,6,8\}$ durch  $S=\{8,3\}$ separierbar ist. Weiter gilt:

 $S' = S \cap (Y \cup Z \cup C) = \{3, 8\}$  und somit  $X_7 = X \cup S' = \{3, 5, 6, 7, 8, 9, 10\}$ 



## Markus Vieth, Christian Stricker



(a) 
$$U = \{3, 5, 6, 7, 8, 9, 10\}, X = \{3, 7, 9\}$$





(a) 
$$U = \{3, 4, 5, 6, 7, 8, 9, 10\}, X = \{3, 5, 6\}$$



 $Markus\ Vieth,\ Christian\ Stricker$ 







| $\operatorname{step}$ |  | 7                       | 8                  | 9                    | 10                               |
|-----------------------|--|-------------------------|--------------------|----------------------|----------------------------------|
| $\overline{U}$        |  | $\{5, 6, 7, 8, 9, 10\}$ | ${3,5,6,7,8,9,10}$ | ${3,4,5,6,7,8,9,10}$ | $\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$ |
| C                     |  | $\{1, 2, 3, 4\}$        | $\{4\}$            | $\{1, 2\}$           | {1}                              |
| $C \ni n_C$           |  | /                       | 4                  | 2                    | 1                                |
| X                     |  | $\{5, 6, 7, 8, 9, 10\}$ | ${3,7,9}$          | $\{3, 5, 6\}$        | $\{2, 5\}$                       |
| t                     |  | 6                       | 7                  | 7                    | 9                                |
| Y                     |  | $\{7, 9, 10\}$          | /                  | /                    | /                                |
| Z                     |  | $\{5, 6, 8\}$           | /                  | /                    | /                                |
| S                     |  | ${\{3,8\}}$             | /                  | /                    | /                                |