Feature Engineering

Chapter 3 Part 2 Stephen Kimel

Splitting Data

"The training set is used to develop models and feature sets...The test set is
used only at the conclusion of these activities for estimating a final, unbiased
assessment of the model's performance. It is critical that the test set not be
used prior to this point."

How much should be set aside for testing?

Ola a a museti a sa II	V	V	V		: - - 1 000
n100,000					
n1					
Observation #	X-variable p1	X-variable p2	X-variable p3	X-variable p4	X-variable p5

Observation #	X-variable p1	X-variable p2	X-variable p3	 X-variable p1000
n1				
n100				

Sampling Methods

Determining which observations go into which buckets

- Random
- Stratified
 - "For classification models, this is accomplished by selecting samples at random within each class."
 - "When the outcome is numeric, artificial strata can be constructed based on the quartiles of the data."

Sampling Methods

- Random
- Stratified
 - "For classification models, this is accomplished by selecting samples at random within each class."
 - "When the outcome is numeric, artificial strata can be constructed based on the quartiles of the data."

= test= train

Resampling

V-Fold (or K-Fold) Cross-Validation

Divide data into K roughly equal-sized parts (K = 5 here)

1	2	3	4	5
Assessment1	Analysis	Analysis	Analysis	Analysis
RMSE				
Analysis	Assessment2	Analysis	Analysis	Analysis
	RMSE			
Analysis	Analysis	Assessment3	Analysis	Analysis
		RMSE		
Analysis	Analysis	Analysis	Assessment4	Analysis
			RMSE	
Analysis	Analysis	Analysis	Analysis	Assessment5
				RMSE

Overall Model Performance = mean(Assessment1 RMSE...Assessment5 RMSE)

Cross-Validation

The Bootstrap

A bootstrap resample of the data is defined to be a simple random sample that is the same size as the training set where the data are sampled with replacement

Rolling Forecasting

Forecasting Assessment (Time Series)

Source: https://robjhyndman.com/hyndsight/tscv/

Important concepts

Model Bias and Variance

- **Variance:** How much would f would change if we estimated it with a different training dataset. (Associated with overfitting.)
- Bias: Error introduced by approximating a real-life problem (complicated) by a much simpler model. (Associated with underfitting)

Figure 1.5: A simulated data set and model fits for a 3-point moving average (green) and quadratic regression (purple).

Figure 1.6: Model fits for twenty jittered versions of the data set.

Bias

• "Bias is the ability of a particular resampling scheme to be able to hit the true underlying performance parameter (that we will never truly know). Generally speaking, as the amount of data in the analysis set shrinks, the resampling estimate's bias increases. In other words, the bias in 10-fold cross-validation is smaller than the bias in 5-fold cross-validation."

Variance

Divide data into K roughly equal-sized parts (K = 5 here)

1	2	3	4	5
Assessment1	Analysis	Analysis	Analysis	Analysis
RMSE				
Analysis	Assessment2	Analysis	Analysis	Analysis
	RMSE			
Analysis	Analysis	Assessment3	Analysis	Analysis
		RMSE		
Analysis	Analysis	Analysis	Assessment4	Analysis
			RMSE	
Analysis	Analysis	Analysis	Analysis	Assessment5
				RMSE

Overall Model Performance = mean(Assessment1 RMSE...Assessment5 RMSE)

Variance

Divide data into K roughly equal-sized parts (K = 5 here)

K1	K2	K3	K 4	K5
Ob1 Ob2				
Ob3 Ob4				
Ob5 Ob6				
Ob7 Ob8				
Ob9 Ob10				
Ob11 Ob12				
Ob13 Ob14				
Ob15 Ob16				
Ob17 Ob18				
Ob19 Ob20				

Overall Model Performance = mean(Assessment1 RMSE...Assessment5 RMSE)

OMP1 = 5.5

Variance

Divide data into K roughly equal-sized parts (K = 5 here)

K1	K2	K3	K 4	K5
Ob1 Ob12	Ob1 Ob12	Ob1 Ob12	Ob1 Ob12	Obl Obl2
Ob10 Ob20				
Ob5 Ob9				
Ob11 Ob18				
Ob16 Ob2 Ob3 Ob6	Ob16 Ob2 Ob3 Ob6	Ob16 Ob2 Ob3 Ob6	Ob16 Ob2 Ob3 Ob6	Ob16 Ob2 Ob3 Ob6
Ob13 Ob17				
Ob4 Ob19				
Ob7 Ob8				
Ob14 Ob15				

Overall Model Performance = mean(Assessment1 RMSE...Assessment5 RMSE)

OMP1 = 5.5 OMP2 = 5.9 OMP3 = 4.2 ... OMP100 = 5.0

Preprocessing

- Preprocess the data for each iteration
 - Example: When imputing values for K1 with the median, use the median from the data in the Analysis set of data

Information Leakage

- Can you predict the while observations are in the Analysis and Assessment buckets?
- "Another, more overt path to information leakage, can sometimes be seen in machine learning competitions (Kaggle) where the training and test set data are given at the same time. While the test set data often have the outcome data blinded, it is possible to "train to the test" by only using the training set samples that are most similar to the test set data."

Tuning Parameters (Hyperparameters) and Overfitting

- Hyperparameters are model-specific knobs to turn
 - i.e. number of trees in a random forest or how many variables to consider at each split
- Bias-Variance trade-off
- http://www.r2d3.us/visual-intro-to-machine-learning-part-1/