

现代密码学

林喜军

linxj77@163.com

第5章

现代密码学的 理论基础

现代密码学用到的主要理论知识

本章内容

- 5.1 数论基础
- 5.2 抽象代数
- 5.3 计算复杂性理论

5.1 数论基础

数论

研究整数的性质 现代密码学中主要利用整数的性质

素数

- 一个大于1, 且只能被1和它本身整除的正整数, 称为素数; 否则称为合数.
- 由此可知,正整数集合可分为三部分:
 - 素数、合数和1
- 一些性质
 - 素数的个数是无穷的
 - 除2以外的素数一定是奇数,也称为奇素数
 - 任意两个相邻的正整数n和n + l(n > 3)中必有一个不是素数
 - 相邻整数均为素数的只有2和3

素因子:

若b|a,且b是素数,称b是a的素因子

例:

12=3×4, 3是12的素因子, 2也是12的素因子, 而4不是

上 整数分解的唯一性定理

定理:

任意一个正整数 a>1 总可以分解为一系列素数乘积的形式,而且分解形式是唯一的

$$a = p_1^{a1} \times p_2^{a2} \times p_3^{a3} \times \dots \times p_n^{an}$$

例:

$$36 = 2^2 \times 3^2$$

$$3600 = 2^4 \times 3^2 \times 5^2$$

如何生成素数

现代密码学,特别是公钥密码学,常用随机的大素数习惯上,常用符号 p 或 q 表示素数

Q: 如何生成一个随机的大素数?

先生成一个随机数,然后将之分解得到其素因子,从而得到素数, 这种方法是否可行?

不行!

就目前而言,对某些大整数进行素因子分解是计算上不可行的

生成素数的正确方法 —— 素性检测

随机产生一个大奇数,然后检测它是否是素数

在诸多素性检测算法中,Miller-Rabin算法 是容易实现且 广泛使用的算法

随机素数的生成过程

- ① 随机产生一个n比特的随机数p (如通过伪随机序列发生器)。
- ② 将p的最高位和最低位设置为1 (最高位设置为1的目的是确保素数达到最大有效长度,最低位设置为1的目的是确保该数是奇数)。
- ③ 检查p不能被所有小于2000的素数整除 (有方法可使这一步做得很快)。
- ④ 随机选择a, 且a < p。
- ⑤ 用a对p进行素性测试(如用Miller-Rabin算法)。若p没有通过测试,抛弃p,转到 ① (或将p加2作为新的p,然后转到③)。
- ⑥ 如果通过测试,转到④。如果p通过足够次数的测试(如5次),认为p是素数。

・基于的原理

- 在整数n附近,约每In(n)个整数中就有一个素数
- 事实上, 在长度为512比特的整数中, 约有10151个素数
- 素数的密度相当可观,因此这种概率检测法是很实用的
- 在实际执行算法时,生成素数是很快的

(上述过程通常可在几分钟,甚至几秒钟内生成一个素数)

素性检测算法是概率算法,会有一定的错误概率

- 它永远不会把素数误判为合数,却可能把合数误判为素数,但概率很低
- 对一个随机数重复进行多次素性测试,误判的概率会比你中六合彩还低
- 因此,误判这个问题我们根本不必担心

数论基础 公约数

公约数(公因子)

设 $a_1,a_2,...,a_n$ 和d都是正整数($n \ge 2$). 若 $d|a_i$ ($1 \le i \le n$), 则称d是 $a_1,a_2,...,a_n$ 的公约数(公因子).

最大公约数

最大公约数

公约数中最大的那个称为 $a_1,a_2,...,a_n$ 的最大公约数,记为 $gcd(a_1,a_2,...,a_n)$.

互素

苦gcd(a₁,a₂,...,a_n)=1, 称a₁,a₂,...,a_n是互素的.

如果a和b互素,我们通常记为gcd(a,b)=1

例:

$$gcd(11,77) = 11$$

$$gcd(24,36) = 12$$

最大公约数的性质

- •在互素的正整数中,不一定有素数.
 - 例:gcd(25,36)=1, 但25和36都不是素数.
- •在个数不少于3个的互素正整数中,不一定两两互素.
 - 例: gcd(6,10,15)= 1,
 但 gcd(6,10)=2,
 gcd(6,15)=3,
 gcd(10,15)=5.

计算GCD的算法——欧几里得算法

- •又称辗转相除法
- •记于公元前300年欧几里得所著名为 Elements的书中
- 历史学家们相信,该算法并非欧几里得发明,早在此前200年该算法就已经出现。
- •它是幸存到现在的最古老的非凡算法,至今它仍是完好的。

Euclid

• 基于的原理

例:

a=38, b=26, 则gcd(a,b)=2

欧几里得算法计算过程:

- ① 38=26*1+12
- 2 26=12*2+2
- ③ 12=2*6

最后一个非零余数(最后一步的除数)就是所求的gcd

• 重要定理

设两个正整数a、b, 最大公约数设为gcd(a,b),则必存在两个整数 x 和 y,使得

$$ax + by = gcd(a,b)$$

推论

当a和b互素时,必存在两个整数 x 和 y,使得

$$ax + by = 1$$

- 该推论在后面介绍公钥密码学时很有用

• 如何计算该定理中的x和y?

- 利用欧几里得算法计算a和b的最大公约数时,一些中间结果可以用于计算x和y
- 因此,将欧几里得算法改版一下便可。所得新算法称为"扩展的欧几里得算法"

• 六十年一甲子

Q: 如何计算a和b的最小公倍数?

lcm(a,b) = ab/gcd(a,b)

存在的问题:计算大量乘法和除法,效率仍然不够高

Q: 如何只用加法计算最小公倍数?

lcm(6,15)=30

30

24

18

12 30

6 15

方法:

两者取最小

反复加自己

相等时停止

数论基础 模运算

- 模运算,即为求余数的运算
- 模运算的运算符记为 mod

 $a \mod n = r$

表示 a 除以 n 所得的余数为 r。

• 上式中的 n 通常称为 模数

例:

 $17 \mod 11 = 6$

 $8 \mod 7 = 1$

数论基础 同余

・定义

若 a mod n = b mod n = r , 则记 a = b (mod n)

称a和b在模n下是同余的 (a和b在模n下有相同的余数)

例:

 $13 \equiv 20 \pmod{7}$

 $20 \equiv 7 \pmod{13}$

数论基础 模运算的性质

模运算的性质

- \bullet (a + b) mod n = (a mod n + b mod n) mod n
- \bullet (a b) mod n = (a mod n b mod n) mod n
- \bullet (a×b) mod n = (a mod n×b mod n) mod n
- •其他性质
 - 交換律
 - 结合律
 - 分配律

数论基础 乘法链算法

如何计算am mod n?

不要直接计算 (a×a×...×a) mod n 会导致因中间结果巨大而计算溢出

解决的思路

利用模运算的性质简化中间结果 但即使这样,仍然有技巧

如果直接计算 a×(a×...×(a mod n) mod n) mod n 需要计算m次模运算,仍然不够优化

正确思路

将m看成2的幂次方之和,再利用模运算的性质

计算a²⁵ mod n (m=25是11001)

数论基础 乘法链算法

• 计算a²⁵ mod n的过程: m=25是11001

u=m	s=1	t=a
u=1100 <mark>1</mark>	s=(st) % n	t=t ² % n
	=a % n	=a ² % n
u=110 <mark>0</mark> 1		t=t2 % n
		=a ⁴ % n
u=11 <mark>0</mark> 01		t=t ² % n
		=a ⁸ % n
u=1 <mark>1</mark> 001	s=(st) % n	t=t2 % n
	$= a^9 \% n$	=a ¹⁶ % n
u= <mark>1</mark> 1001	s=(st) % n	
	$= a^{25} \% n$	

数论基础 乘法链算法

unsigned long qe2 (unsigned long a, unsigned long m, unsigned long n)

```
unsigned long s=1,t=a,u=m;
while(u)
   if(u & 1) s = (s * t) % n;
   u >> = 1;
   t = (t * t) % n;
return s;
```

时间复杂度:O(logm)

数论基础 欧拉函数 $\phi(n)$

• 其计算结果是

小于等于n且与n互素的正整数的个数。

例:

小于等于8且与8互素的正整数有1,3,5,7.

所以 $\phi(8)=4$

Euler 1707—1783

欧拉函数的性质

•性质: 若p、q都是素数,则

$$- \phi(p) = p - 1$$

$$- \phi(p \times q) = \phi(p) \phi(q) = (p - 1)(q - 1)$$

例:

n =
$$15 = 3 \times 5 = p \times q$$

则 $\phi(15) = (3 - 1) \times (5 - 1) = 8$
即 1、2、4、7、8、11、13、14

• 定理: 若p为素数, k为正整数,则

$$\phi(p^k) = p^{k-1}(p-1)$$

例:

$$\phi$$
 (8) = ϕ (2³) = 2² ϕ (2) = 4

推论:

若gcd(a,b) = 1,则
$$\phi$$
(ab) = ϕ (a) ϕ (b)

例:

$$\phi(12) = \phi(3) \phi(4)$$

而
$$\phi(3) = 2$$
 , $\phi(4) = 2$

所以
$$\phi(12) = 4$$

(小于等于12且与12互素的正整数有1、5、7、11总共4个)

欧拉定理

同理有

$$a^{\phi(n)+1} \equiv a \pmod{n}$$

例:

$$n = 15 = 3 \times 5$$
 , 有 $\phi(n) = (3-1)(5-1) = 8$ 则 4^8 、 7^8 、 $11^8 \equiv 1 \pmod{15}$

数论基础 欧拉定理的应用

- 求 13²⁰⁰¹ mod 60
- 解: 因为gcd(13,60) = 1,则可用欧拉定理计算,故而有
 13 ^{φ(60)} ≡ 1 (mod 60)

容易求得
$$\phi$$
(60) = 16

数论基础 费马小定理

• 费马小定理:

若p是素数, 且gcd(a,p)=1,则

$$a^{p-1} \equiv 1 \pmod{p}$$

同理有

 $a^p \equiv a \pmod{p}$

例:

 $2^{5-1} \equiv 1 \pmod{5}$

 $4^{11-1} \equiv 1 \pmod{11}$

Fermat 1601—1665

数论基础 费马小定理的应用

- 求310¹⁹⁸ mod 199。
- 解:

因为199是素数, 且gcd(310,199)=1, 根据费马小定理, 有 310¹⁹⁹⁻¹ ≡ 1 (mod 199)

所以, 310¹⁹⁸ ≡ 1 (mod 199)

数论基础 二次剩余

· 定义:

设a是小于n(n>1)的正整数,且gcd(a,n)=1。如果存在x,使 $x^2 \equiv a \pmod{n}$

成立,那么称a是模n下的二次剩余。

不是所有的a都满足这一特性

QR _n	模n下二次剩余的集合		
QNR _n	模n下二次非剩余的集合		

数论基础 二次剩余举例

• 例:

$$2^2 \equiv 4 \pmod{7}$$

$$3^2 \equiv 2 \pmod{7}$$

$$4^2 \equiv 2 \pmod{7}$$

$$5^2 \equiv 4 \pmod{7}$$

$$6^2 \equiv 1 \pmod{7}$$

• 所以, QR₇={1,2,4}; QNR₇={3,5,6}

数论基础 二次剩余的一些特性

• 性质1: 二次剩余的判定标准

如果 $a^{(p-1)/2} \equiv 1 \pmod{p}$, 其中p>2是素数 , $1 \le a < p$ 则 $a \in QR_p$

- 性质2:当模数是素数时,设为p>2
 - 模p下的二次剩余恰有(p-1)/2个,与其二次非剩余的数目相同(各占一半)
 - 如果a=x²(mod p)是二次剩余,那么a恰好有两个平方根。一个是x,另一个是p-x。

数论基础 中国剩余定理

韩信点兵问题:

3人一列余2人

5人一列余3人

7人一列余2人

问共多少人?

孙子歌诀

三人同行七十稀,

五树梅花廿一枝。

七子团圆正半月,

除百零五便得知。

70*2+21*3+15*2=233=2*105+23

数论基础 中国剩余定理

• 中国剩余定理(孙子定理)

设 $n_1,n_2,...,n_k$ 是两两互素的正整数,对于任意整数 $b_1,b_2,...,b_k$,下列同余方程组

$$\begin{cases} x \equiv b_1 \pmod{n_1} \\ x \equiv b_2 \pmod{n_2} \\ \dots \\ x \equiv b_k \pmod{n_k} \end{cases}$$

扩展阅读

5.2 抽象代数

代数系统

- 代数系统由两部分组成:非空集合、作用在集合上的运算。
- 一般写为(G,*),其中G是一个非空集合,*是作用在G上的运算。
- 也有具有多个运算的代数系统,最常用的是具有两个运算的。

Niels Henrik Abel (阿贝尔) (1802 — 1829) 19世纪挪威最伟大的数学家 (埃尔米特曾说:阿贝尔留下的思 想可供数学家们工作150年)

Evariste Galois (伽罗瓦) (1811 – 1832) 19世纪法国天才少年数学家 (伽罗瓦理论创始人)

• 群的定义

设代数系统(G,*),对于任意G中的元素a、b、c,满足以下条件,则它是一个群:

- (1) 封闭性: a * b∈G
- (2) 结合性: a * (b * c)= (a * b) * c
- (3) 单位元: 存在e∈G 使得 a * e = e * a = a
- (4) 逆元: 存在 d∈G 使得 a * d = d * a = e ,通常把a的逆元记为a⁻¹。
- 为简便起见,常直接称G为群

群

- 判定一个非空集合是不是群,一般用群的定义去衡量
- 例1: G=(Z, +)是一个群。
 Z是所有整数的集合,+是普通的整数加法。

原因:

- (1)封闭性:对任意两个整数,相加后仍为整数
- (2)结合性:整数加法满足结合律
- (3)单位元:对任意整数a,都有 a + 0 = 0 + a = a 所以,0是G的单位元
- (4)逆元:对任意整数a,都有 a+(-a)=(-a)+a=0 所以,a⁻¹=-a

故而,G是一个群

• 例2:

G=(N,×)不是群。

N是自然数集合,×是普通的整数乘法。

原因:

N={1,2,...},在乘法运算下满足封闭性和结合性,且有单位元1。但除1以外,所有元素都没有逆元。

• 群的阶

群中元素的个数,通常记为|G|。

• 元素的阶

设群(G,*), 若a∈G, 有

且n是满足这一公式的最小正整数,称n为a的阶。

有限(无限)群

群的阶是有限(无限)的

- 1. 单位元是唯一的
- 2. 元素的逆元也是唯一的
- 3. 群中没有零元

• 交换群的定义

群(G,*), 对于任意a,b∈G,若有 a*b = b*a (运算满足交换律) 则称该群为交换群(阿贝尔群)。

• 循环群定义

设群(G,*), 若存在a \in G,使得对于任意元素b \in G,都存在一个整数m,有 $a^m = b$

则称该群为循环群。称a为生成元。

· 含义

群中存在一个元素(生成元),其他元素都可以由该元素生成。

• 循环群中的元素都可以表示为 am 的形式,其中m是整数。

因此,循环群中的元素为 $a^0 = e, a^1, a^2, ..., a^m, ...$

- 任何循环群必是交换群
- 设有限循环群的阶为n , 则
 - ① 生成元的阶也是n,其他元素的阶必是n的因子
 - ② 生成元的个数为 ϕ (n)
 - 例:循环群中有15个元素,那么生成元的个数为 ϕ (15)= ϕ (3) ϕ (5)=2*4=8
 - ③ 阶为m的元素的个数共有 ϕ (m)个

洋 密码学中常用的群

- Z_p 表示小于素数p的非负整数集合 {0,1,2,...,p-1}
- Z_p*表示小于素数p且与p互素的正整数集合 {1,2,...,p-1}

- Z_p* 在模p乘法运算下是一个循环群
- 相关性质:
 - 单位元是1
 - 群的阶是p-1,生成元的个数是 ϕ (p-1)
 - 例: Z_7 *是一个循环群,生成元共有 ϕ (6)=2个,分别是3和5。

群

密码学中常用的群

- Z_n 表示小于n的非负整数集合(n是合数) {0,1,...,n-1}
- Z_n* 表示小于n且与n互素的正整数集合
 例如: Z₈*={1,3,5,7}
- Z_n^* 在模n乘法运算下是一个群,阶是 $\phi(n)$ 因为只有与n互素才有乘法逆元

例:

 Z_{15}^* 是一个模15下的乘法群 Z_{15}^* 中的元素是 $\{1,2,4,7,8,11,13,14\}$ 阶是 $\phi(15)=8$

域

- 域的概念最初被阿贝尔和伽罗瓦用于他们对方程可解性的工作上。
- 现如今,域是密码学,特别是公钥秘密学中最重要的数学基础。

域

定义:

域(F, +, *)必须满足以下条件

- F关于 + 构成交换群。单位元记为0。称为加法群
- F中非0元素对 * 构成交换群。单位元记为1。称为乘法群
- * 对 + 满足分配律:

$$a*(b+c) = a*b + a*c$$

$$(b+c)*a = b*a + c*a$$

则称F为一个域

域 有限域

• 若域F是有限的,称F为有限域,又称伽罗瓦域

• 定理1

- 有限域的元素个数必为 p^n 的形式(p为素数),记为 F_{p^n}

• 定理2

- 有限域的乘法群是循环群

• 定理3

- 同阶(元素数目相同)的有限域都是同构的
- 密码学中,我们关注 $F_p(又称素数域)$ 和 F_{2^n}

扩展阅读

5.3 计算复杂性理论

计算复杂性

- 计算复杂性理论在现代密码学中占有重要地位
- 它为现代密码学提供理论基础,并可以对密码算法的安全性进行评估和比较

• 信息论告诉我们

- 除一次一密以外,任何密码都是可以破解的。

• 计算复杂性理论告诉我们

在宇宙爆炸前,它们是否可以被破解。而破解它们所花费的时间和空间是否已超出你所能承受的底线。

现代密码学将安全性构建在计算复杂性理论之上

- 公钥密码学以目前的计算方法不能有效解决的问题为构造基础,这些问题被称为"困难问题"。
- 密码体制的安全性就在于困难问题的困难性

- 目前出现了一种更强大的计算模型
 - 量子计算
- 该模型下,指数级计算可以并行的完成,致使很多有用的困难问题不再困难。
- 不过,量子计算离实际应用还有很长一段路要走,我们不必为此过分担忧。
- 因此,下面我们将介绍"不够强"的传统计算模型和现代密码学的计算复杂性理论基础。

计算复杂性 算法复杂度

- 一个算法的复杂度即运行所需的计算能力,常用两个量来度量
 - 时间复杂度
 - 空间复杂度
- 推导算法的精确运行时间是非常困难的。
- 因此,描述算法的运行时间时,就利用渐进表示方法,以研究算法运行时间如何随着输入长度变化的。
- 这样,描述运行时间就不依赖于具体的计算机系统。

计算复杂性 多项式时间算法

• 多项式

函数p(n)是整数上关于n的多项式,则它有如下形式:

$$p(n) = c_k n^k + c_{k-1} n^{k-1} + ... + c_1 n + c_0$$

其中k和ci是常整数。

如果算法复杂度不依赖于n,那么它是常数的,记为O(1)。

如果是O(n),那么是线性的

如果多项式的次数是常数k>1,复杂度常表示为O(nk)

计算复杂性 多项式时间算法

- 最坏运行时间复杂度是O(n^k)的算法,称为**多项式时间**(polynomial-time)算法。
- 有些算法的计算时间慢于多项式时间,但快于指数时间,故称为超多项式时间的,或亚指数时间的。
- 在计算复杂性理论中,我们主要关注多项式时间算法

不同算法族的运行时间差异巨大

族	复杂度	操作次数	时间
常数的	O(1)	1	1微秒
线性的	O(n)	106	1秒
二次方的	O(n ²)	1012	11.6天
三次方的	O(n³)	1018	32,000年
指数的	O(2 ⁿ)	10 ³⁰¹⁰³⁰	宇宙年龄的 10 ³⁰¹⁰⁰⁶ 倍

假设 n=10⁶,计算机的时间单位是微秒

计算复杂性 图灵机

- 1912年6月23日生于英国伦敦
- 24岁提出图灵机理论
- 31岁参与破译Enigma
- 33岁设想仿真系统
- 35岁提出自动程序设计概念

Alan Turing 1912 –1954

图灵机

- 刻画解决某问题所花费的时间和空间的工具
- 是一个精确的通用计算模型
- 用于精确定义算法这一概念的
- 它能做实际计算机能做的所有事情
 - 当然也有它不能解决的问题,但这已超出计算的理论极限。
- 在计算复杂性理论中,认为一个问题已经解决,是指该问题的所有实例 都可以用同一个图灵机(同一个算法)求解,只有如此才认为该算法是充 分通用的

图灵机的组成

- ①一条(多条)纸带。具有无限个单元(小格子),纸带的右端可以无限伸展。
- ②一个读写头。可以在纸带上读、写或移动。
- ③控制器。根据内部状态和读写头所指单元上字符,确定读写头下一步动作。

状态的数目是有限的,且有两个特殊状态:接受状态和拒绝状态。

图灵机只是一个理想的设备(计算模型)

- 虽然它的每一部分都是有限的,但有一个无限长的纸带。

计算复杂性 图灵机的工作方式

- ① 开始时,图灵机处于初始状态,纸带上从最左端向右依次填写输入字符串,后面的单元格都是"空白",一望无际。
- ② 图灵机可以左右移动读写头。
- ③ 也可在读写头所指单元上的读取字符
- ④ 或在读写头所指的单元上输出字符
- ⑤ 图灵机不停地计算,可根据需要改变状态,直到产生输出为止(进入接受或拒绝状态)
- ⑥ 如果不进入接受或拒绝状态,图灵机将一直执行下去,永不停止。

• 例:

给定一个比特串,设计一个方法,让图灵机动起来,并让它识别该串表示的整数是否是偶数。

- 是的话,就进入接受状态。
- 不是的话,就将之改成偶数,并进入拒绝状态。
- 面对一个长长的比特串,你所能做的只是在串上来回移动,但允许你做标记。你该怎么做?

- 思路
 - 将读写头移动到最后一个比特上,判断它是1还是0
- 需解决的问题
 - ① 如何判断哪个比特是最后一个比特?
 - 最后一个比特的右边位置必然存放的是"空白"
 - ② 图灵机并没有判断功能,如何让它有判断能力?
 - 利用内部状态和当前单元格上的字符,使图灵机进入新状态, 从而实现判断的功能

状态转换图

	0	1	空白
q_0	(q ₀ ,0,R)	(q ₀ ,1,R)	(q ₁ ,空白,L)
q_1	(q _T ,0,-)	(q _R ,0,-)	-

- L、R:分别表示读写头向左移动一格,或向右移动一格
- q_T和q_R分别表示接受和拒绝状态

・ 实例

	0	1	空白
q_0	(q ₀ ,0,R)	(q ₀ ,1,R)	(q ₁ ,空白,L)
q_1	(q _T ,0,-)	(q _R ,0,-)	-

10010101010101 010101010101010111

- ① 初始时,读写头指向比特串开头,内部状态为q₀
- ② 向右移动读写头,直到遇到第一个"空白"为止

	0	1	空白
q_0	(q ₀ ,0,R)	(q ₀ ,1,R)	(q ₁ ,空白,L)
q_1	(q _T ,0,-)	(q _R ,0,-)	_

③ 左移一格,将读写头指向串的最后一个比特,并改变内部状态为q₁

	0	1	空白
q_0	(q ₀ ,0,R)	(q ₀ ,1,R)	(q ₁ ,空白,L)
q_1	(q _T ,0,-)	(q _R ,0,-)	_

④ 读写头已指向串的最后一个比特

此时,遇到0便进入接受状态 q_T 遇到1便改写为0,并进入拒绝状态 q_R

计算复杂性 问题复杂性分类

- 问题本身有着内在固有的复杂性,这与解决问题的算法的复杂度是不同的。
- 计算复杂性理论研究的主要内容:对问题的复杂性进行分类。
- 所用的工具便是图灵机

计算复杂性 确定性和非确定性图灵机

• 确定性图灵机

- 其输出结果完全取决于输入和初始状态。
- 在每个状态,遇到某一字符时,下一步的动作是确定的(固定的)。
- 也就是说,不论图灵机运行多少次,对于同样的输入和初始状态, 其输出是相同的。

	0	1	空白
q_0	(q ₀ ,0,R)	(q ₀ ,1,R)	(q ₁ ,空白,L)
q_1	(q _T ,0,-)	(q _R ,0,-)	-

计算复杂性 确定性和非确定性图灵机

• 非确定性图灵机

- 进行下一步动作时,可以有有限个选择。
- 它任意选择一个继续执行,直到最后停机为止。
- 可以这样想象:非确定性图灵机解决问题时要进行一系列猜测。

	0	1	空白
q ₀	(q ₀ ,0,R) (q ₁ ,#,L)	(q ₀ ,1,R) (q ₀ ,0,R) (q ₁ ,1,R)	(q ₁ ,空白,L) (q _T ,0,-)
q_1	(q _T ,0,-)	(q _R ,0,-) (q _T ,0,-)	-

计算复杂性 确定性和非确定性图灵机

- 非确定性图灵机的工作分为两个阶段
 - ① 猜测阶段
 - 通过一系列猜测步骤,输出一个结果
 - ② 验证阶段
 - 检查猜测的结果是否是问题所求的答案

计算复杂性 P问题

P问题

- 存在一个确定性图灵机,可以在多项式时间内解决的问题
- 通常认为,多项式时间算法是有效算法,多项式时间内可解决的问题是容易问题(P问题是容易问题)
 - 但这种想法是不精确的。当k很大时,例如 k=200,即使n很小,例如 n=2,3,O(n²⁰⁰)也非常大
 - 但多项式时间算法毕竟比指数和超多项式时间算法快得多,因此这种说法是可以接受的

计算复杂性 NP问题

- 有些问题很难,到目前为止,也没发现解决这些问题的多项式时间算法。
- 也即,确定性图灵机上,还没发现解决这些问题的多项式时间算法。
- 当然,解决的算法是有的,只是效率很低。(因为不是多项式时间的)

• 如果我们改用 非确定性图灵机,则可以找到解决这些问题的多项式时间算法。

计算复杂性 NP问题

· NP问题

- 存在一个非确定性图灵机,可以在多项式时间内解决的问题。
- 也就是说, NP问题用非确定性图灵机很容易解决。

因为在确定性图灵机上未发现多项式时间的算法,通常认为NP问题 是难以解决的,俗称 困难问题

计算复杂性 NP问题

• P问题也属于NP问题的范畴

- 因为确定性图灵机上在多项式时间内可以解决的问题,在非确定性图灵机上用多项式时间也可以解决。(把猜测阶段省略掉即可)
- 但我们一般所说的困难问题或NP问题, 通常不包括P问题。

▮ **计算复杂性** NPC问题

- NP中有一些特殊问题,如果找到一个确定的多项式时间算法可以解决这些问题中的一个,解NP中的任何问题都能找到多项式时间算法。
- 这类问题被称作NP完全问题,记为NPC.

• 由前述可知

$$\mathsf{P} \subseteq \mathsf{NP}$$

任何在确定性图灵机上在多项式时间内可以解决的问题,在非确定性图灵机上在多项式时间内同样可以解决

Q: 是否存在 NP ⊆ P?

 如果NP⊆P,也即所有NP问题都可以用确定性图灵机在多项式时间 内解决,那么必有P=NP。

• 但P≠NP 或 P=NP 至今没被证明,不过人们猜想它俩不相等。

"P是否等于NP"是计算复杂性理论未解决的中心问题

两种关系,二者必有其一

本章小结

- 1. 掌握素数、最大公约数和模运算的基本性质
- 2. 掌握欧拉函数、欧拉定理、费马小定理的运算
- 3. 掌握群、循环群、域的概念和相关性质定理
- 4. 掌握Z*p和Z*n
- 5. 理解P问题、NP问题、NPC问题的含义
- 6. 了解二次剩余的含义
- 7. 了解图灵机的工作方式

练习题

1. 求解欧拉函数 ϕ (2000)

解:
$$\phi(2000) = \phi(2^45^3)$$

= $2^3 \phi(2) 5^2 \phi(5)$
= $8 \times 25 \times 4$
= 800

2. 利用费马小定理计算3¹⁰¹ mod 13

解:因为 gcd(3,13)=1,所以可以利用费马小定理计算

所以
$$3^{101} \equiv 3^{8 \times 12 + 5} \equiv 3^5 \equiv 243 \equiv 9 \pmod{13}$$

▮ 练习题

3. 如果在干支纪年法中,天干有36个,地支有15个,请问"六十年一甲子"的说法应该改成多少年一甲子,请列出公式并计算。

解:利用最小公倍数计算得:

lcm(36,15) = 180

所以,应该改成"一百八十年一甲子"