The Stability of Positively Charged Solutes in Water: A Transition From Hydrophobic to Hydrophilic

Tod A Pascal †‡ , Shiang-Tai Lin $^{\zeta}$, William Goddard III †‡* and Yousung Jung †*

Tables

Table S1: Description of system parameters used in MD simulations and average volumes from the last 5ns of 10ns NPT (1atm) MD for neutral and charged cavities.

5118 OF TOTAL TY (Tautif) WID TOT flectural and charged cavities.										
r _{HC} (Å)	# water molecules	Initial cell length (Å)	Equilibrated <volume> (Å³)</volume>							
			$q_c = 0e$	$q_c = 0.1e$	$q_{c} = 0.5e$	$q_c = 1.0e$				
0.0001	216	18.77	6876.4	6536.4	6534.3	6565.5				
1	340	22.00	11067.2	10348	10344.9	10386.7				
2	442	24.00	14807.5	13585.3	13557.9	13614.3				
3	526	26.00	18231.7	16382.9	16317.0	16384.0				
4	683	28.00	24112.3	21517.2	21405.2	21483.2				
5	805	30.00	29262.8	25776.2	25589.4	25670.1				
6	952	32.00	35441.7	30964.2	30675.7	30767.1				
7	1163	34.00	43968.5	38315.9	37919.6	38007.0				
8	1398	36.00	53625.7	46634	46090.1	46184.5				
9	1583	38.00	62058.4	53698.3	52997.8	53088.5				
10	1818	40.00	72455.6	62593.8	61710.0	61779.8				
12	2329	42.00	95816.7	82598.8	81274.4	81334.2				
15	3305	44.00	141283.1	121799.4	119589.9	119612				

[†] Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, Daejeon, Korea

[‡] Materials and Simulation Process Center, California Institute of Technology, Pasadena, CA 91125 USA

⁵ Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan Supplementary Materials

Table S2: Comparison of the calculated free energy of solvation for Helium and 3 alkali metals using the 2PT method and our local Yukawa potential for electrostatics, compared to previous computational results and experiments. The solvation free energy is obtained as: $\Delta G^0 = A_{water}^{solute} - A_{water}^{bulk} - A_{vacuum}^{solute} + \Delta A_{water}^{solute} \left(0 - > 1e^-\right) - PV \text{ where the } 1^{\text{st}} \text{ term of the right hand side is the energy of the neutral species, the } 2^{\text{nd}} \text{ term is the bulk water energies that are obtained from 5 independent simulations of the free water box, the <math>3^{\text{rd}}$ term is the vacuum energy of the neutral species as obtained from the CODATA thermodynamic tables¹, and the 4^{th} term is the energy required to charge from 0 to +1e- ionic state. All energies are in kJ/mol.

solute	^a LJ12-6		vacuum -> solution		0 → +1e ⁻			$^{\mathrm{b}}\!\Delta\mathrm{G}_{\mathrm{2PT}}$	^c ∆G _{TI}	$^{ m d}\Delta G_{ m exp}$	
	3	σ	ΔA	ΔΕ	$T\Delta S$	ΔΑ	ΔΕ	$T\Delta S$			
	(kj/mol)	(Å)									
He	0.180	2.90	22.59	-9.92	-32.51				25.08		29.41 ^e
Li	0.047	2.91	13.70	-0.95	-14.65	-317.03	-364.41	-47.38	-442.22	-525 ^f	-475
Na	0.109	3.18	17.51	-5.51	-23.02	-296.88	-322.64	-25.76	-399.60	-398	-365
K	0.356	3.30	44.34	-7.04	-51.38	-230.26	-313.62	-83.36	-306.18	-271	-295

$$^{a}E_{LJ12-6}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$
, from Reference² for Helium and Reference³ for ions

^bThis work. We include a finite size correction of -122.75 kJ/mol as suggested in Reference⁴ and a correction of PV = RT = 2.49 kJ/mol according to the Gibbs – Helmholtz relation: G = A + PV

^cThermodynamic Integration results from Reference ⁴

^dExperimental results from Marcus in Reference ⁵

^eExperimental results from Abraham in Reference ⁶

^fFrom Reference ⁷

References

- (1) Cox, J. D.; Wagman, D. D.; Medvedev, V. A. *Codata Key Values for Thermodynamics*; Hemisphere Pub. Corp.: New York, 1989.
- (2) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. *Molecular Theory of Gases and Liquids*; New York: Wiley, 1954.
- (3) Hunenberger, P. H.; Reif, M. M. Computation of Methodology-Independent Single-Ion Solvation Properties from Molecular Simulations. Iv. Optimized Lennard-Jones Interaction Parameter Sets for the Alkali and Halide Ions in Water. *J. Chem. Phys.* **2011**, *134*.
- (4) Hummer, G.; Pratt, L. R.; Garcia, A. E. Free Energy of Ionic Hydration. *J. Phys. Chem.* **1996**, *100*, 1206-1215.
- (5) Marcus, Y. Thermodynamics of Solvation of Ions .5. Gibbs Free-Energy of Hydration at 298.15-K. *Journal of the Chemical Society-Faraday Transactions* **1991**, 87, 2995-2999.
- (6) Abraham, M. H. Free-Energies, Enthalpies, and Entropies of Solution of Gaseous Non-Polar Non-Electrolytes in Water and Non-Aqueous Solvents the Hydrophobic Effect. *Journal of the American Chemical Society* **1982**, *104*, 2085-2094.
- (7) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The Missing Term in Effective Pair Potentials. *J. Phys. Chem.* **1987**, *91*, 6269-6271.