Demand Forecasting Project

- 1. Download electricityLoadData.csv from the shared box and upload to your own google drive
- 2. Instructions for coding (What you need to code):
 - Load data and preprocess data using the predefined functions.
 - $\circ~$ Go to build_model section and define your own network.
 - o Choose your parameters to set up the training routine.
 - Plot your result by using the Analyze Result section.
 - o Print your notebook by clicking File > Save > PDF to upload your work.

Import necessary libraries

```
import numpy as np
import pandas as pd
import plotly.graph_objs as go
from sklearn import preprocessing
from sklearn.metrics import mean_absolute_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
```

Set up Plotly credentials

```
import plotly.io as pio
pio.renderers.default = "notebook_connected"
```

→ Define constants

```
FILE_PATH = "/content/electricityLoadData - Q3.csv"
WINDOW = 48
```

Load and preprocess data

```
def load_data(file_path):
   df = pd.read_csv(file_path, header=1, error_bad_lines=False)
   df.drop(df.columns[[2]], axis=1, inplace=True)
   return df
def normalize_data(dataset):
   values = dataset.values
   minima_demand = np.amin(values[:, -1])
   maxima_demand = np.amax(values[:, -1])
   scaling_parameter_demand = maxima_demand - minima_demand
   for i in range(values.shape[1]):
       values[:, i] = (values[:, i]-np.amin(values[:, i]))/(np.amax(values[:, i])-np.amin(values[:, i]))
   return minima_demand, maxima_demand, scaling_parameter_demand, pd.DataFrame(values)
def prepare_data(dataset, window_size):
   amount_of_features = len(dataset.columns)
   data = dataset.values
   sequence_length = window_size + 1
   result = []
   for index in range(len(data) - sequence_length):
       result.append(data[index: index + sequence_length])
   windowed_mat = np.array(result)
   train_split = int(round(0.8 * windowed_mat.shape[0]))
   x_train = windowed_mat[:train_split, :-1]
```

Define and train model

```
model = Sequential()
model.add(LSTM(256, activation='relu', input_shape=(48,5)))
model.add(Dense(128))
model.add(Dense(64))
model.add(Dense(32))
model.add(Dense(32))
model.add(Dense(1))

WARNING:tensorflow:Layer lstm_1 will not use cuDNN kernels since it doesn't meet the criteria. It will use a generic GPU kernel as fall

model.compile(optimizer='adam', loss='mse')

model.summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
lstm_1 (LSTM)	(None, 256)	268288
dense_4 (Dense)	(None, 128)	32896
dense_5 (Dense)	(None, 64)	8256
dense_6 (Dense)	(None, 32)	2080
dense_7 (Dense)	(None, 1)	33

Total params: 311,553 Trainable params: 311,553 Non-trainable params: 0

```
model.fit(
   x_train,
   y_train,
   batch_size=128,
   epochs=15,
   validation_split=0.2,
   verbose=2)
    351/351 - 31s - loss: 0.0027 - val loss: 0.0011 - 31s/epoch - 89ms/step
    Epoch 2/15
    351/351 - 28s - loss: 3.5377e-04 - val_loss: 2.8489e-04 - 28s/epoch - 79ms/step
    Epoch 3/15
    Epoch 4/15
    351/351 - 26s - loss: 1.6798e-04 - val_loss: 1.7832e-04 - 26s/epoch - 75ms/step
    Epoch 5/15
    351/351 - 27s - loss: 1.5642e-04 - val_loss: 1.4995e-04 - 27s/epoch - 78ms/step
    Epoch 6/15
    351/351 - 28s - loss: 1.3955e-04 - val_loss: 3.9076e-04 - 28s/epoch - 79ms/step
    Epoch 7/15
```

```
351/351 - 26s - loss: 1.2729e-04 - val_loss: 2.3933e-04 - 26s/epoch - 74ms/step
Epoch 8/15
351/351 - 28s - loss: 1.2534e-04 - val_loss: 1.0341e-04 - 28s/epoch - 79ms/step
Epoch 9/15
351/351 - 26s - loss: 1.2767e-04 - val_loss: 1.2603e-04 - 26s/epoch - 75ms/step
Epoch 10/15
351/351 - 26s - loss: 9.9502e-05 - val_loss: 1.6090e-04 - 26s/epoch - 75ms/step
Epoch 11/15
351/351 - 28s - loss: 1.0736e-04 - val_loss: 1.0997e-04 - 28s/epoch - 79ms/step
Epoch 12/15
351/351 - 26s - loss: 1.0032e-04 - val_loss: 1.1996e-04 - 26s/epoch - 74ms/step
Epoch 13/15
351/351 - 28s - loss: 9.3174e-05 - val_loss: 8.8033e-05 - 28s/epoch - 81ms/step
Epoch 14/15
351/351 - 26s - loss: 8.5377e-05 - val_loss: 1.0445e-04 - 26s/epoch - 75ms/step
351/351 - 26s - loss: 8.7348e-05 - val_loss: 1.1130e-04 - 26s/epoch - 74ms/step
<keras.callbacks.History at 0x7f8168335340>
```

Get the predicted and actual data

Calculate and print the mean absolute percentage error and mean absolute error

▼ Plot the forecast using Plotly