機械学習ガイダンス

管理工学科 篠沢佳久

資料の内容

■機械学習とは

- ■講義内容
 - □ 講義計画, 講義の進め方

機械学習とは

講義の目的:「予測」する手法を学ぶ

最近の話題

- リクナビ
 - □「内定辞退率」の予測データ
- セブン銀行
 - □ ATMを出金型,入金型,バランス型に分類
 - □ ATMが稼働停止しないよう資金予測
- Google
 - □「深層学習」により肺がん画像を識別

講義の目的

- 「予測」する手法、アルゴリズムを学ぶ
- 何を「予測」するのか
 - □「未来」の値を予測したい
 - □「未知」のものを予測したい
 - □「似ている」ものがどれかを予測したい
- どのように「予測」するのか
 - □ 手法として機械学習を用いて予測
 - □ 道具としてscikit-learn(Python)を利用

何を「予測」するのか(1)

■ 未来の値を予測したい(回帰問題)

何を「予測」するのか②

■「未知」のものを予測したい(分類問題)

これらは何でしょうか

何を「予測」するのか③

○は何でしょうか?

天は○の上に○を造らず、○の下に○を造らずといへり

何を「予測」するのか4

「似ている」ものがどれかを予測したい(クラスタリング)

似ているものはどれでしょう

どのように「予測」するのか(1)

■ 未来の値を予測したい

「過去のデータ」から「規則」を見つける

○○が起きた時, 値は上がる □□が起きた時, 値は下がる

どのように「予測」するのか②

■ 「未知」のものを予測したい

どのように「予測」するのか③

○は何でしょうか?

学問のするめ

天は〇の上に〇を造らず、 〇の下に〇を造らずといへり

知らない場合、正解は分からないただし、予測はできる

「学問のす」め」を知らないと 分からない

あらかじめいろいろなことを記憶 しておき、「尤もらしい語」で穴埋め

どのように「予測」するのか4

「似ている」ものがどれかを予測したい

大きさを基準(特徴)とした場合

小さい

大きい

「予測」に必要なもの

- 答えそのもの、過去のデータ、経験、根拠、規則、・・・
- 規則を導出, 獲得する方法
- ■「予言」との違い
 - 」ノストラダムス
 - □占星術
 - □ 地球と他の天体の関係から未来を予測*

人間はどのように「予測」できるようになるのか?

■ 人間の場合

① 過去のデータから多くの規則を獲得

③ 過去のデータを記憶

② 規則を獲得する手法を考案

学習

計算機に「予測」させるためには?

■計算機の場合

① 過去のデータから多くの規則を獲得ただし、規則を獲得する方法は与える

② 過去のデータを記憶

大量データから規則を獲得し、予測を行なう手法、アルゴリズム

機械学習

機械学習(Machine Learning)

- Arthur Samuel (1959)
 - □ 明示的にプログラムされなくとも,自分で学習する 能力

- □ チェッカープログラム
 - Samuel Checkers-playing Program
 - デモ
 - https://www.gamesforthebrain.com/japanese/checkers/

機械学習とは①

- Thomas Mitchellの定義(1997)
 - □構成要素
 - 経験E
 - タスクT
 - 評価尺度P
 - □ あるタスクTについて、評価尺度Pで測られたタスクの実行能力が経験Eを通じて向上
 - □ 経験Eより学習

機械学習とは②

機械学習の目的① 画像 カテゴリデータ 数値データ 動画 文章 ホームページ 機械学習 モデルの学習 分類 予測 規則

機械学習の目的(2)

未知のデータ

機械学習の種類

- 教師あり学習(supervised learning)
 - 出力すべき正解値(正解ラベル)を提示しながら行なう学習方式
 - □ (例)線形回帰
- 教師なし学習(unsupervised Learning)
 - □ 出力すべき正解値を提示しない学習方式
 - □ (例)主成分分析
- 半教師あり学習(semi-supervised learning)
 - □ 正解値のついたデータが少ない場合,未知データに正解値をつけながら行なう学習方式

人工知能(Artificial Intelligence)ブーム

機械学習と人工知能

- John MaCarthy
 - □ ダートマス会議(1956)
 - □ 第一次(?)AIブーム

- 計算機に人間の知能を持たせようとする試み
- 機械学習は「人工知能」の分野とも関連が深い

- 近年は第三次(?)AIブーム
 - □ 深層学習(deep learning)

機械学習と統計学

- 統計学
 - データの母集団の分布が分かれば、未知のデータも予測できる

- □ データの母集団の分布が知りたい
- □ ただし、利用できるデータは限られている

□母集団の分布を推定し、予測

統計的機械学習

機械学習と数理モデル

- ■最適化
 - □ 入力データが正しく予測された場合,間違って予測された合,それらを評価する指標(評価基準)を決める

□ 評価基準を最大(もしくは最小)にするという「最適 化問題」に帰着できる

機械学習をとりまく分野

機械学習をとりまく環境

機械学習を行なうためには?

- 大量のデータが必要
 - □ さらに, 正解値(正解ラベル)が必要
 - □(例)顔画像からの性別判定
 - 顔画像ごとに、男性か、女性かの正解ラベルをつけなければならない
- 大量のデータを学習するには?
 - □高性能な計算機が必要

講義の目的

- 機械学習を学ぶことによって、
 - □「未来」の値を予測する
 - □「未知」のものを予測する
 - □「似ている」ものがどれかを予測する

- 現実的なデータを対象として、
 - scikit-learn (Python) によるプログラミング

講義で扱う手法

- ロジスティック回帰
- 最近傍法, k近傍法
- 決定木
- ベイズ決定則
- 識別関数法
 - □ デルタルール, パーセプトロン, サポートベクターマシン
- アンサンブル学習
 - バギング、ブースティング
- ニューラルネットワーク(深層学習)
 - □ 誤差逆伝播則. 畳み込みニューラルネットワーク
- クラスタリング

講義内容

講義計画 講義の進め方, 講義資料

講義計画①

第一回	9月23日	ガイダンス Pythonについて
第二回	9月30日	機械学習入門① 分類問題と回帰問題
第三回	10月7日	機械学習入門② scikit-learnによる機械学習
第四回	10月21日	最近傍法, k近傍法
第五回	10月28日	決定木
第六回	11月4日	生成モデル① 統計的機械学習の基礎
第七回	11月11日	生成モデル② ベイズ決定則

講義計画②

第八回	11月18日	識別モデル デルタルール, パーセプトロン
第九回	12月2日	サポートベクターマシン
第十回	12月9日	アンサンブル学習 バギング, ブースティング
第十一回	12月16日	ニューラルネットワーク① 階層型ニューラルネットワークの学習
第十二回	12月23日	ニューラルネットワーク② 畳み込みニューラルネットワーク
第十三回	1月6日	クラスタリング k-平均法
第十四回	1月20日	講義のまとめ

講義に必要な知識

講義資料

- ■教科書
 - □ なし
 - □参考書は適宜示す
- ■資料
 - http://lecture.comp.ae.keio.ac.jp/ML2019/
 - □ 講義に関する連絡は上記のURL上に掲載する

講義の進め方

- ■講義+実習
 - □ 最後の20分~30分程度は実習時間
 - □ (行なわない回もあります)
- 実習内容
 - Python(scikit-learn)
 - □ 表計算ソフト(MS-Excel)
 - □計算問題

評価方法

- 講義中の演習問題
- レポート
 - □ 二回を予定(三田祭前, 冬休み前)

■ 最終回にまとめの演習問題

講義に関しての質問

- ■講義に関する情報
 - http://lecture.comp.ae.keio.ac.jp/ML2019/

- ■質問
 - □ 電子メール: shino@ ae.keio.ac.jp
 - □ 篠沢の居室: 23-624

Pythonの補習

- 補習日
 - □ 9/28(土) 3時限目, 4時限目
 - □ 教室:12-109
- ■内容
 - □本年度の第一回COM実験
- 補習を受ける場合、9/27(金)13時までに shino@ae.keio.ac.jp 宛にメールを送って下さい