☐ Bookmark this page

Partial Derivatives

1 point possible (graded, results hidden)

(SADT) If $f(x_1,x_2,\ldots,x_n)=\sum\limits_{1\leq i< j\leq n}x_ix$ then $rac{\partial f}{\partial x_n}=$

n!

 $\bigcirc \textstyle\sum\limits_{j=1}^{n-1} x_j$

igcirc $\sum\limits_{j=1}^n x_j$

 $igcap_{1 \leq i < j < n} \sum_{x_i x_j} x_i x_j$

Supmit

Multiple Choice

1 point possible (graded, results hidden)

(MJM) For the function $f\left(x,y
ight)=e^{2x+y^2}$ find the value of the partial derivative $f_{xyy}\left(0,0
ight)$.

 $\bigcirc 1$

 $\bigcirc 4$

 $\bigcirc \, 4e$

 $\bigcirc 2e^2$

Submit

Partial Derivatives

1 point possible (graded, results hidden)

(MMRU) $f\left(x,y
ight)=x^3+y^2$ +and $x=t^2+t^3$ and $y=t^4+t^5$ find $\frac{df}{dt}$ at t=1

\bigcirc 101
\bigcirc -101
\bigcirc 0
Submit
Multiple Choice 1 point possible (graded, results hidden)
(MJM) Let $g\left(y,z ight)=rctan\left(rac{y}{\dot{z}} ight)$ ind the value of $g_{z}\left(1,2 ight)$
○-1
$\bigcirc -1/5$
\bigcirc 1/3
\bigcirc 1
Multiple Choice 1 point possible (graded, results hidden) (MJM) If all the third-order partial derivatives of a function $g\left(x,y\right)$ are continuous, what is the largest
number of them that can be distinct?
\bigcirc 3
$\bigcirc 4$
<u></u>
<u>○</u> 8
Submit
Critical Points and Their Natures $_1$ point possible (graded, results hidden) (MMRU) Let $f(x,y)=x^3+y^3-3$ for y all real x and y . Then there exists distinct points P and Q such that f has a:
Such that f has a: $igcirc$ local maximum at P and at Q
\bigcirc saddle point at P and at Q
O saddle point at 1 and at 4

\bigcirc local maximum at P and a sac	Idle point at ${\it Q}$
\bigcap local minimum at P and a sad	dle point at O
\bigcirc saddle point at P and at Q	
\bigcirc local maximum at P and a sac	Idle point at ${\it Q}$
\bigcirc local minimum at P and a sad	dle point at ${\it Q}$
Submit	
Functions of Two Variable	
1 point possible (graded, results hidden)	ar ar
$\bigcirc x^2 + xy + y^2 + c$	
$\bigcirc x^2 - xy + y^2 + c$	
$\bigcirc x^2 - xy - y^2 + c$	
$x^2 + 2xy - y^2 + c$	
Submit Partial Derivatives	
Partial Derivatives	
1 point possible (graded, results hidden)	
(MMRU) Given $F\left(a,b ight)$	$=2a-a^3+3ab^2$ Which of the following is true?
$\bigcirc F_a + F_b = F_{ab}$	
$\bigcirc F_{aa} + F_{bb} = 0$	
$\bigcirc F_{ab} + F_{aa} = 0$	
$\bigcirc F_{ab} + F_{bb} = 0$	
Submit	
Multiple Choice	
1 point possible (graded, results hidden)	
(FAB) For the function u	$y=x^{u}y^{v}z^{c}$ find u_{xyz} .
$\bigcirc x^{a-1}y^{b-1}z^{c-1}$	
$\bigcirc ab^2cx^{a-1}v^{b-1}z^{c-1}$	

○ 1 2 a=1 b=1 a=1
Submit
Multiple Choice 1 point possible (graded, results hidden)
(FAB) For the function $u=x^ay^bz^c$ find u_{xyz} .
· ·
$\bigcap x^{a-1}y^{b-1}z^{c-1}$
$\bigcirc ab^2cx^{a-1}y^{b-1}z^{c-1}$
$\bigcirc abc^2x^{a-1}y^{b-1}z^{c-1}$
$igcirc$ $abcx^{a-1}y^{b-1}z^{c-1}$
Submit
Multiple Choice
1 point possible (graded, results hidden)
(FAB) How many critical points are there for the function: $f\left(x,y ight)=e^{x}\sin y$
Three critical points
No critical points
One critical point
Two critical points
Submit
Multiple Choice
1 point possible (graded, results hidden)
(AQD) Locate the relative extrema (if any) for $f\left(x,y ight)=xy+rac{2}{x}+rac{4}{y}$
Relative maximum at (2,1)
Relative minimum at (1,2)
Relative maximum at (2,-1)
No conclusions
Submit

Multiple Choice

1 point possible (graded, results hidden)

(SKN) Consider the sphere $x^2+y^2+z^2=$	= .1Find $\dfrac{\partial z}{\partial y}$ at $(x,y,z)=(2/3,1/3,2/3)$
--	--

\bigcirc undefined			
$\bigcirc 1/2$			
$\bigcirc -1/2$			
$\bigcirc -2/3$			
Submit			

Multiple Choice

1 point possible (graded, results hidden)

(AQD) If $f\left(x,y
ight)=\sin\left(y^2-4xt
ight)$ en evaluate f_{xy} .

 $\bigcirc -16y \sin(y^2 - 4x)$ $\bigcirc 16 \cos(y^2 - 4x)$ $\bigcirc -8y \sin(y^2 - 4x)$ $\bigcirc 8y \sin(y^2 - 4x)$

Submit

Critical Value

1 point possible (graded, results hidden)

(MMRU) Find the critical point of the multivariable function $f\left(x,y
ight)=5e^{\left(x^{2}+y^{2}-2y
ight)}$

 $\bigcirc (0,-2)$ $\bigcirc (-2,0)$ $\bigcirc (0,1)$ $\bigcirc (-1,0)$

Submit

✓ Previous Next >