CLIPPEDIMAGE= JP02000267128A

PAT-NO: JP02000267128A

JP 2000267128 A DOCUMENT-IDENTIFIER:

SEMICONDUCTOR DEVICE TITLE:

PUBN-DATE: September 29, 2000

INVENTOR-INFORMATION:

COUNTRY NAME N/A

OTANI, HISASHI

NAKAZAWA, MISAKO N/A

ASSIGNEE-INFORMATION:

COUNTRY NAME N/A SEMICONDUCTOR ENERGY LAB CO LTD

JP11071914 APPL-NO:

APPL-DATE: March 17, 1999

INT-CL (IPC): G02F001/136

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain capacitors of a large capacitance decreasing the opening rate by forming a transparent conductive film as the electrode of holding capacitors in an active matrix type liquid crystal display device, and to prevent short circuits between the electrodes of the holding capacitors and the pixel electrodes with great certainly.

SOLUTION: A transparent conductive film 113 is formed by a CVD method on a BCB flattering film which covers pixel TFTs 20, and contact holes are formed in the Then an insulating film 114 of silicon conductive film 113. oxide is formed by a CVD method on the transparent conductive film 113, and contact holes are formed in the insulating film 114 and the flattering film 112 to reach a drain electrodes 108, on which pixel electrodes 115 are formed. holding capacitors 22 with the transparent conducive film 113 and the pixel electrodes 115 as its electrodes and with the insulating film 114 as the

dielectric material are formed. Since the insulating film 11' is formed by the CVD method, a short circuit between the transparent conductive film 113 and the pixel electrodes can be prevented in the contact hole.

COPYRIGHT: (C) 2000, JPO

(19)日本国特許庁 (JP)

G02F 1/136

(12) 公開特許公報(A)

(11)特許出額公開番号 特開2000-267128 (P2000-267128A)

(43)公開日 平成12年9月29日(2000.9.29)

(51) Int.Cl.⁷

線別記号 500 FI G02F 1/136 テーマコード(参考)

500 2H092

審査請求 未請求 請求項の数15 OL (全 20 頁)

(21)出願番号

特顯平11-71914

(22)出題日

平成11年3月17日(1999.3.17)

(71)出版人 000153878

株式会社半導体エネルギー研究所 神奈川県厚木市長谷398番地

(72)発明者 大谷 久

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(72) 発明者 仲沢 美佐子

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】 半導体装置

(57)【要約】

【課題】 アクティブマトリクス型液晶表示装置において、保持容量の電極を透明導電膜で形成して、開口率を下げずに大容量のコンデンサーとする。かつ保持容量の電極と画素電極のショートを確実に防止する。

【解決手段】画素TFT20を覆うBCBでなる平坦化膜上に、CVD法でI透明導電膜113を形成し、導電膜113にコンタクトホールを形成する。透明導電膜113上にCVD法で酸化シリコンでなる絶縁膜114を成膜し、絶縁膜114と平坦化膜112にドレイン電極108に達するコンタクトホールを形成し、画素電極115を形成する。透明導電膜113と画素電極115を電極に、絶縁膜114を誘電体とする保持容量22が形成される。CVD法で絶縁膜114を成膜したため、コンタクトホールにおいて、透明導電膜113と画素電極がショートすることを防止できる。

第マトリクス四角の新面面 (図2のA-A 新頭)

		٠
		. (
		-

1

【特許請求の範囲】

【請求項1】 薄膜トランジスタに接続された画素電極 と、

前記薄膜トランジスタを覆う樹脂膜と、

前記樹脂膜上の透明導電膜、該透明導電膜に接する絶縁 膜と、該絶縁膜に接する前記画素電極とを有する保持容 量と、

前記画素電極と前記薄膜トランジスタを接続するための 前記透明導電膜に形成されたコンタクトホールと、を有

前記絶縁膜は前記透明導電膜のコンタクトホールの側部 を覆い、かつ前記樹脂膜に接していることを特徴とする 半導体装置。

【請求項2】 請求項1において、前記絶縁膜は化学気 相法で成膜された膜であることを特徴とする半導体装

【請求項3】 請求項1又2において、前記樹脂膜はべ ンゾシクロブテンであることを特徴とする半導体装置。

【請求項4】 薄膜トランジスタに接続された画素電極 と、

前記薄膜トランジスタを覆う第1の樹脂膜と、

前記第1の樹脂膜上の透明導電膜と、該透明導電膜に接 する絶縁膜と、該絶縁膜に接する前記画素電極とを有す る保持容量と、

前記画素電極と前記薄膜トランジスタを接続するための 前記透明導電膜、前記絶縁膜、前記第1の樹脂膜それぞ れに形成されたコンタクトホールと、

前記絶縁膜、前記第1の樹脂膜のコンタクトホールの側 面を覆う第2の樹脂膜と、を有し、

を覆い、かつ前記第1の樹脂膜に接していることを特徴 とする半導体装置。

【請求項5】 請求項4において、前記絶縁膜は化学気 相法で成膜された膜であることを特徴とする半導体装 置.

【請求項6】 請求項4又5において、前記第1の樹脂 膜はベンゾシクロブテンであることを特徴とする半導体 装置.

【請求項7】 請求項4~6のいずれか1項において、 前記第2の樹脂膜はベンゾシクロブテン、アクリル又は 40 アクティブマトリクス型液晶表示装置が注目されてい ポリイミドであることを特徴とする半導体装置。

【請求項8】 薄膜トランジスタに接続された画素電極 と、

前記薄膜トランジスタを覆う樹脂膜と、

前記樹脂膜上の透明導電膜と、該透明導電膜に接する第 1の絶縁膜と、前記第1の絶縁膜に接する前記画素電極 とを有する保持容量と、

前記画素電極と前記薄膜トランジスタを接続するための 前記透明導電膜に形成されたコンタクトホールと、

前記樹脂膜及び前記第1の絶縁膜に接する第2の絶縁膜 と、を有することを特徴とする半導体装置。

【請求項9】 請求項8において、前記第1の絶縁膜は 化学気相法で成膜された膜であることを特徴とする半導 体装置。

【請求項10】 請求項8又は9において、前記第2の 絶縁膜は化学気相法で成膜された膜であることを特徴と する半導体装置。

【請求項11】 請求項8~10のいずれか1項におい 10 て、前記樹脂膜はベンゾシクロブテンで形成されている ことを特徴とする半導体装置.

【請求項12】 請求項1~11のいずれか1項におい て、前記薄膜トランジスタの半導体層と交差する遮光膜 を有することを特徴とする半導体装置。

【請求項13】 請求項1~12のいずれか1項に記載 の半導体装置は、アクティブマトリクス型液晶表示装置 のアクティブマトリクス基板である.

【請求項14】 請求項1~12のいずれか1項に記載 の半導体装置は、アクティブマトリクス型液晶表示装置 20 である。

【請求項15】 請求項1~12のいずれか1項に記載 の半導体装置は、ビデオカメラ、デジタルカメラ、プロ ジェクタ、ゴーグル型表示装置、カーナビゲーションシ ステム、パーソナルコンピュータ又は携帯型情報端末で ある、

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は薄膜トラシジスタを スイッチング素子に用いたアクティブマトリクス型の液 前記絶縁膜は前記透明導電膜のコンタクトホールの側部 30 晶表示装置に関するものである。液晶表示装置の画素電 極の電位を制御するための薄膜トランジスタでマトリク ス回路を有する半導体装置に関する。本発明の半導体装 置は半導体の特性を利用した回路を有する装置であり、 アクティブマトリクス型の液晶表示装置だけでなく、液 晶表示装置を部品として搭載した電子機器もその範疇に 含む、

[0002]

【従来の技術】近年、多結晶シリコン膜を利用した薄膜 トランジスタ (以下、TFTと呼ぶ) で回路を構成した る。これはマトリクス状に配置された複数の画素電極に よって液晶にかかる電界を制御し、高精細な画像表示を 実現した。

【0003】アクティブマトリクス型液晶表示装置で は、各画素毎に形成された画素電極と液晶を介して対向 側に形成された対向電極とで容量(コンデンサ)を形成 しているが、これだけでは容量が小さいため、通常はそ れとは別に保持容量を形成して補っている。

【0004】保持容量の構造(保持容量構造)は様々で 前記透明導電膜のコンタクトホールの側部を覆い、かつ 50 あるが、透過型液晶表示装置における開口率を考慮して

二層の透明導電膜で絶縁膜を挟み込んだ構造が開示されている(特開平8-43854号公報、特開平8-306926号公報)。

【0005】上記公報に記載された保持容量構造は、二 組の電極を両方ともITOなどの透明導電膜とすること で、開口率を損ねることなく大きな容量を確保すること を可能にした。図30に従来の画素マトリクス回路の断 面図を示す。

【0006】図30に示すように、画業TFTの層間絶 緑膜上には透明導電膜で容量電極1が形成されている。 容量用電極1と画業電極3により絶縁膜2を挟んで保持 容量が構成されている。

[0007]

【発明が解決しようとする課題】しかしながら、図30 に示す保持容量では、容量電極1の端部(点線で囲まれた領域)4において絶縁膜2のカバレッジ不良が問題となっている。

【0008】絶縁膜2は薄いほど容量を稼げるが、薄くなると、端部4において容量用電極1と画素電極3がショートすることが懸念され、マトリクス回路の信頼性を 20損ねたり、不良の発生の原因となる。そのため、絶縁膜2は保持容量の誘電体として機能すると共に、層間絶縁膜としての機能を果たすために、ある程度の膜厚を要求されるといったトレードオフの関係にある。

【0009】透明導電膜1はITO等の金属酸化物であるため、アルミニウムや金属膜よりも高抵抗となる。は電位分布を考慮すると、透明導電膜1の膜厚は100~200m程度が必要となる。そのため、容量用電極1を完全に被覆するには、絶縁膜2の膜厚は少なくとも200m以上とする必要がある。しかしながら、容量の大き30さは誘電体の膜厚に反比例するため、膜厚を厚くすることは大容量を確保する上で望ましいものではない。

【0010】上述したように、二組の透明導電膜を絶縁膜で挟みこむことで、開口率を損ねることなく保持容量を形成することが可能になるが、未だマトリクス回路の信頼性や製造に多くの問題点が残っている。

【0011】本発明は上記問題点を解決し、アクティブマトリクス型液晶表示および液晶表示装置のアクティブマトリクス基板において、信頼性が高く、かつ歩留まり良く製造可能な保持容量の構成、及びその作製方法を提 40供することを課題とする。

[0012]

【課題を解決するための手段】上述の課題を解決するために、本発明は、画素ごとに画素電極と、画素電極に接続された薄膜トランジスタが形成されたマトリクス回路を備えた半導体装置であって、保持容量は透明導電膜、絶縁膜、画素電極の順に積層された構成となっている。即ち、画素電極と透明導電膜を対向する電極対に、絶縁膜を誘電体としてコンデンサーが形成されている。保持容量の一方の電極を透明導電膜で形成することにより、

開口率を縮小することなく、大きな容量の保持容量(コ ンデンサー)を形成することが可能になる。

【0013】本発明では、薄膜トランジスタを樹脂膜でなる平坦化膜を形成する。樹脂膜により、ゲート配線等による凹凸が平坦化されるため、画素電極の表面も平坦化することができる。

【0014】平坦化膜はスピンコート法で成膜できる樹脂膜が好ましく、BCBの他、アクリル(ポリメチルメタクリレート)膜、ポリイミド膜を形成することもできる。本実施形態では、保持容量の誘電体をCVD法で成膜するため、成膜温度に耐えうるBCB膜を形成する。【0015】薄膜トランジスタと画素電極を接続するには、画素電極よりも下層の透明導電膜及び絶縁膜を共に黄通するコンタクトホールが形成されている。

【0016】絶縁膜に形成されるコンタクトホールは透明導電膜に形成されたコンタクトホールの内側に形成されている。即ち、絶縁膜のコンタクトホールは透明導電膜のコンタクトホールよりも小さくして、絶縁膜によって透明導電膜のコンタクトホールを覆って、透明導電膜と画素電極がショートすることを防止する。

【0017】上記構成を得るには、透明導電膜のコンタクトホールを形成した後に、絶縁膜を成膜し透明導電膜のコンタクトホールの側部を絶縁膜で被覆する。しかる後、透明導電膜のコンタクトホールに重なるように、かつこのコンタクトホールよりも小さなコンタクトホールを絶縁膜に形成する。

【0018】本発明では、透明導電膜のコンタクトホール側部における絶縁膜の段差被覆性(ステップカバレッジ)を改善するため、絶縁膜はスパッタ法に代表される物理気相法(PCV)よりも、化学気相法(CVD)で成膜することが望ましい。

【0019】保持容量の絶縁膜をCVD法で成膜することで、スパッタ法よりもステップカバレッジが非常に良好になるため、半導体装置の信頼性、歩留まりを向上させることが可能になる。また、膜厚を薄くすることが可能になるため、保持容量の容量を増加されるため、 画素電極の微細化に伴う保持容量の減少を補償することが可能になる。

【0020】また上述したように、本発明では、絶縁膜は透明導電膜にコンタクトホールを形成した後に成膜するため、絶縁膜を成膜する際には、下地の樹脂膜が露出されている。よって、絶縁膜の成膜手段としてCVD法を採用するためには、樹脂膜には、絶縁膜の成膜プロセスにおいて変質しない材料、少なくとも300~200℃の加熱によって変質しない材料を選択する必要がある。さらに、CVDの成膜時の雰囲気である減圧雰囲気にて、脱ガスが少ないことや、応力が小さいことも必要になる。

【0021】このため、本発明では、透明導電膜の下地 50 となる樹脂膜をベンゾンクロブテン(BCB: Benzocyc lobuten) で形成する。BCBはスピンコート法により 成膜することが可能なため、薄膜トランジスタの表面を 平坦化することができると共に、ガラス転移温度が35 O℃以下にはなく、真空中での脱ガスも少ないため、C VD法で成膜される膜の下地膜として用いることが可能 である。

[0022]

【発明の実施の形態】以下、図1~図29を用いて、本 発明の実施の形態を説明する.

明の実施形態を説明する。本実施形態は発明をアクティ ブマトリクス型の液晶表示装置に応用した例である。

【0024】図7は、アクティブマトリクス型液晶表示 装置の概略の構成図である。液晶表示装置は、アクティ ブマトリクス基板と対向基板との間に液晶が挟まれた構 造を有している。アクティブマトリクス基板は、ガラス 基板等の透光性基板10上に画素マトリクス回路11、 画素マトリクス回路11を駆動するためのゲートドライ バ回路12及びソースドライバ回路13が形成されてい ース配線によって画素マトリクス回路11に接続されて いる.

【0025】更に、透光性基板10上には、ドライバ回 路12、13へ電力や制御信号を入力するための外部端 子が形成され、この外部端子にFPC14が接続されて

【0026】対向基板は、ガラス基板等の透光性基板1 5表面にITO膜等の透明導電膜が形成されている。更 に、対向基板側の透光性基板20表面には必要であれば 配向膜や、カラーフィルタが形成されている。透明導電 30 膜は画案マトリクス回路11の画案電極に対する対向電 極であり、画素電極、対向電極間に形成された電界によ って液晶材料が駆動される。

【0027】図6は液晶表示装置の1画素の等価回路で ある。図2は液晶表示装置のアクティブマトリクス基板 の1画素ぶんの上面図である。また、図1は画素マトリ クス回路のの断面図であり、図2の鎖線A-A'に沿っ た断面図に対応する.

【0028】図6に示すように、画素マトリクス回路1 1においてゲート配線105が行ごとに形成され、ソー ス配線107が列ごとに形成されている。ゲート配線1 ○5、ソース配線107の交差部近傍には、画素TFT 20が形成されている。画素TFT20のソース領域に はソース配線107が接続され、ドレイン領域には液晶 セル21、保持容量22が接続されている。

【0029】液晶セル21は画素電極115と対向基板 側の透明電極を対向する電極対に、液晶を誘電体とする コンデンサー構造を有し、画素電極115によって画素 TFT20に電気的に接続されている。

トリクス回路11全面に形成された透明導電膜とを対向 する電極対とし、透明導電膜上に形成される絶縁膜を誘 電体とするコンデンサー構造を有する。透明導電膜は画 素マトリクス回路11で一体的に形成されるため、保持 容量の電極として機能すると共に、電極の電位を固定す るための共通配線23としても機能する。

【0031】図1に示すように、画素TFTは下地膜1 01が形成されたガラス基板100上に作製される。画 素TFTは半導体層103、ゲート絶縁膜104、ゲー 【0023】 [実施形態1] 図 $1\sim$ 図7を用いて、本発 10 ト配線105が順次に積層された、トップゲート型TF丁である.

【0032】半導体層103には、ソース領域のコンタ クト部Co1においてソース配線107が接続され、ドレ イン領域のコンタクト部Co2 においてドレイン電極10 8が接続されている。

【0033】画素TFT20を覆って、窒化シリコンで なる保護膜111、BCBでなる平坦化膜112が形成 されている。平坦化膜112上には、明導電膜113 と、誘電体となる絶縁膜114、画素電極115がこの る。ドライバ回路12、13はそれぞれゲート配線、ソ 20 順序で積層されて、保持容量(コンデンサー)を形成し ている.

【0034】保護膜111、平坦化膜112、透明導電 膜113、絶縁膜114を貫通してドレイン電極108 とのコンタクト部Co3 にコンタクトホールが形成され、 ドレイン電極108と画素電極115が接続されてい る.

【0035】表示領域のほとんどにおいて、画素電極1 15と透明導電膜113によって、絶縁膜114を挟む 構造となっているので、大面積の保持容量が形成され る。透明導電膜113は全ての画素に一体化されてお

り、その電位が一定に保たれている。 【0036】以下、図3~図5を用いて、画素マトリク ス基板の作製方法を説明する。なお、ここでは、画業マ トリクス回路の1画素に注目して説明をしているが、他 の画案も同様である。また、説明は省略するが画案マト リクス回路と同時に、ゲートドライバ回路、ソースドラ イバ回路も作製される。

【0037】まず、可視光域の光に対して透光性を有す る基板を用意する。ここでは、ガラス基板100を用い る。基板100としてガラス基板の以外に、石英基板、 PETなどの樹脂基板を用いることができる。

【0038】ここではコーニングス社製1737ガラス 基板を用いる。ガラス基板100表面に接して下地膜1 01を形成する。プラズマCVD法で、TEOSガスを 原料に厚さ200nmの酸化シリコン膜を下地膜101と して成膜する。そして、400℃、4時間、下地膜10 1を加熱する。

【0039】次に、下地膜101上に画素TFT20を 作製する。本発明はTFT構造によらないため、公知の 【0030】保持容量22は、画素電極115と画素マ 50 手段を用いてTFTを作製することができる。ここで

7

は、トップゲート型TFTを作製する。もちろんボトム ゲート構造とすることもできる。

【0040】下地膜101上にPECVD法によりHz ガスで希釈したSiHiを用いて、厚さ500nmの非晶 質シリコン膜を成膜する。PECVD法の代わりに減圧 CVD法を用いることもできる。非晶質シリコン膜23 0を450℃、1時間加熱して水素出し処理をする。非 晶質シリコン膜内の水素原子は5原子%以下、好ましく は1%以下とする。水素出し処理後の非晶質シリコン膜 にエキシマレーザ光を照射して多結晶(結晶性)シリコ ン膜130を形成する。レーザ結晶化の条件は、レーザ 光源としてXeCl工キシマレーザを用い、光学系によ りレーザ光を線状に整形し、パルス周波数を30Hz、 オーバーラップ率を96%、レーザエネルギー密度を3 59mJ/cm²とする。(図3(A))

【0041】非晶質シリコン膜の成膜方法はPECVD法の他に、LPCVD法やスパッタ法を用いることができる。また、非晶質シリコンを結晶化させるレーザにはエキシマレーザのようなパルス発振型の他、Arレーザのような連続発振型のレーザを用いても良い。また、レの一ず結晶化の代わりにハロゲンランプや水銀ランプを用いるランプアニール工程、あるいは600℃以上の加熱処理工程を用いることもできる。

【0042】多結晶シリコン膜130を島状にパターニングして、半導体層103を形成する。半導体層103を覆って、ゲート絶縁膜104となる窒化酸化シリコン膜131はPECVD法で、原料ガスにSiH,とNO2を用い、厚さ120mmに成膜する。窒化シリコン膜131上に、導電膜を成膜し、パターニングしてゲート配線105を形成30する。ゲート配線105を構成する導電膜はモリブデンータングステン合金(Mo-W)膜とした。(図3(B))

【0043】レジストマスクを形成し、このマスクを用いて窒化酸化シリコン膜131をパターニングして、ゲート絶縁膜104を形成する。ゲート配線105、ゲート絶縁膜104をドーピングマスクにして、イオンドーピング法により半導体層103にリンを添加する。半導体層103には、チャネル形成領域132、n・型のソース領域134、n・型のドレイン領域135、n・型 40の低濃度不純物領域が自己整合的に形成される。(図3(C))

【0044】次に、層間絶縁膜106を約1μmの厚さに形成する。まず25nm厚の窒化シリコン膜を形成し、その上に900nm厚の酸化シリコン膜を形成する。窒化シリコン膜、酸化シリコン膜はPECVD法で成膜する。

【0045】層間絶縁膜106に対してコンタクトホー の酸化シリコン限をPECVD法で放展する。原料が ルを形成し、チタン/アルミニウム/チタンの3層構造 はH₂ ガスで希釈したSiH₁ とO₂ を用い、基板温 でなる金属層を形成し、パターニングしてソース配線1 50 を200~300℃、ここでは300℃で成膜する。

8 07、ドレイン電極108を形成する。こうして図3 (D)に示すように画案TFT20が完成する。説明を 省略したが、公知のCMOS工程を用いて、ドライバ回 路12、13にはn型、p型のTFTが作製される。

【0046】画素TFT20を覆って、基板100全面に窒化シリコンでなる保護膜111を成膜する。窒化シリコンはPECVD法により成膜し、その厚さは200mm~400mmとすればよく、ここでは330mmとした。

【0047】そして、窒化シリコンでなる保護膜111 に、ドライエッチングによりコンタクトホール111a を形成する。エッチングガスにはCF₄、O₂、He₂ の混合ガスを用いる。(図4(A))

【0048】次に、ガラス基板100全面に、画素TFT20を覆って平坦化膜(樹脂膜)112を形成する。本実施例では、BCB膜を形成する。スピンコータによりBCBの溶液をスピンコーティングし、引き続きコータを回転させて溶媒を蒸発させる。加熱炉において、280℃、窒素雰囲気で1時間焼成して、BCB膜112を形成する。BCB膜の厚さは、ドレイン電極108上で1.2μ■とする。

【0049】BCBでなる平坦化膜112を成膜することにより、画素TFTによる凹部が埋められて、平坦な表面を得ることができる。平坦な平坦化膜112表面に接して、透明導電膜113を厚さ100~200mmに成膜する。(図4(B))

【0050】平坦化膜112としては、スピンコート法で成膜できる樹脂材料が好ましく、BCBの他、アクリル(ポリメチルメタクリレート)膜、ポリイミド膜を形成することもできる。本実施形態では、保持容量の誘電体をCVD法で成膜するため、成膜温度に耐えうるBCB膜を形成する。

【0051】透明導電膜113としては、金属酸化物を用いることができ、ITO、酸化インジウム、酸化スズ等を成膜すればよい。ここでは、スパッタ法によってITO(酸化インジウムスズ)膜を100m厚さに成膜する。ターゲット材料にITOを用い、スパッタガスにアルゴンと酸素との混合ガスを用い、成膜時の圧力を3×10-3torに、成膜時の基板温度は室温とする。また、成膜は1.5AのDC電流制御で行う。

【0052】透明導電膜113にコンタクト部Co3 に対するコンタクトホール113aを形成する。コンタクトホール113aは保護膜111のコンタクトホール111aと同じ位置に、ほぼ同じ大きさで形成する。

【0053】保持容量の誘電体となる絶縁膜114を成膜する。絶縁膜114としては、酸化シリコン、窒化シリコン、窒化酸化シリコンを成膜すればよく、膜厚は100~250mとすればよい。ここでは、厚さ150mの酸化シリコン膜をPECVD法で成膜する。原料ガスはH2ガスで希釈したSiH4とO2を用い、基板温度を200~300℃、ここでは300℃で成膜する。

【0054】絶縁膜114の成膜時には、透明導電膜1 13のコンタクトホール113aの底部で、樹脂でなる 平坦化膜111が露出されているが、平坦化膜111を BCB膜で成膜したため、絶縁膜114の成膜時に平坦 化膜が変質することはない。 絶縁膜114をCVD法で 成膜することで、透明導電膜113のコンタクトホール 113aの側部113bにおける絶縁膜114の被覆性 は良好であった。(図5(A))

【0055】もちろん、絶縁膜114はスパッタ法で成 膜することが可能であるが、段差被覆性及びスループッ 10 は、絶縁膜114をできるだけ薄くするのが望ましい トの点で、CVD法のほうが格段に優れている。絶縁膜 114をスパッタ法で成膜した場合には、コンタクトホ ール113aの底部において、平坦化膜114がスパッ タガスに用いたO2 によりスパッタされ、若干えぐれが 確認される。

【0056】次に、酸化シリコンでなる絶縁膜114及 びBCBでなる平坦化膜112にコンタクト部Co3に対 するコンタクトホール114a、112aを形成する。 コンタクトホール114a、112aの開口には同じフ ォトレジストマスクを用いた。(図5(B))

【005子】まず、酸化シリコンでなる絶縁膜114を フッ酸によりウェットエッチングし、コンタクトホール 114 aを形成する。コンタクトホール114 aは透明 導電膜113のコンタクトホール113aよりも内側に 開口される.

【0058】次に、同じフォトレジストマスクを用い て、C F 4と O2 の混合ガスにより B C Bでなる平坦化 膜112にコンタクトホール112aを形成する.こう して図5(B)に示すように、ドレイン電極108が露 出される。なお、平坦化膜112は14mと厚いので、 エッチングの制御が比較的難しいので、コンタクトホー ル112aの形成と、コンタクトホール114aの形成 では異なるフォトレジストマスクを用いてもよい。

【0059】コンタクトホール112a、114aを形 成するためのフォトレジストマスクを除去した後、画素 電極を形成する透明導電膜を成膜する。この画案電極 1 15も透明導電膜と同様ITO、酸化スズ、酸化インジ ウム等で形成すればよい。ここでは、透明導電膜114 と同じ成膜条件でITO膜を形成する。ITO膜の厚さ は115mmした。このITO膜をパターニングして、図 40 1に示すように画素電極115を形成する。

【0060】以上でアクティブマトリクス基板が完成す る。そして、公知のセル組工程(配向膜形成、液晶注入 工程など)により、アクティブマトリクス基板と対向基 板をセル組みし、液晶パネルを製造する。

【0061】本実施形態では画案電極115が絶縁膜1 14と接する部分では、1対の透明導電膜(画案電極1 15と透明導電膜113)を対向する電極に、絶縁膜1 14を誘電体とする保持容量が形成される。本実施形態 の画素構造では、保持容量となる領域が画素内のほぼ全 50 て、コンタクトホール112aを形成する。なお、実施

域を占め、実質的に画像表示領域と同一の面積を確保す ることができる.

【0062】また、絶縁膜114をCVD法で成膜する ことにより、コンタクトホール113aの側部におい て、絶縁膜114のみで透明導電膜113と画案電極1 15とを絶縁分離することが可能になる。この結果、信 頼性、歩留まりを向上させることができる。

【0063】[実施形態2] 実施形態1において、保 持容量22の容量の大きさをできるだけ大きくするに が、絶縁膜114を薄くすることで、コンタクトホール 113 á側部での絶縁膜114のステップカバレッジが 低下してしまう.

【0064】本実施形態は実施形態1の変形例であり、 絶縁膜114のステップカバレッジを補って、画素電極 115と透明導電膜113とがショートすることをより 確実に防止する構成を説明する。

【0065】以下、図8~図11を用いて本実施形態を 説明する。なお、図8~図11において、図1~図7と 20 同じ符号は同じ構成要素を示す。

【0066】図8は画素マトリクス回路の1画素の断面 図であり、図9は画素マトリクス回路の1画素の上面図 である。図8は、図9の鎖線B-B′による断面図であ る。図8に示すように、画素電極202とドレイン電極 108とを接続するためのコンタクトホール201aに おいて、透明導電膜113の端部は絶縁膜201及び絶 緑膜114によって覆われている。

【0067】図9に示すように、絶縁膜201は画素ご とに分離して形成されている。絶縁膜201は、1μm 30 以上に達するコンタクトホールの側部を全て覆うことが できるように、スピンコート法により成膜できる樹脂材 料で形成される。例えば、BCB、アクリル(ポリメチ ルメタクリレート)、ポリイミドなどを用いることがで きる.

【0068】2層の絶縁膜201と114により、透明 導電膜113と画素電極201とが絶縁されるため、よ り確実にショートを防止できる。以下、図10、図11 を用いて、本実施形態の画素マトリクス回路の作製工程 を説明する.

【0069】ます、実施形態1で説明した工程に従っ て、図5((A))に示すプロセスを行う。図10 (A)が図5 (A)に対応する。

【0070】次に、フォトレジストマスクを形成し、フ ッ酸により酸化シリコンでなる絶縁膜114をエッチン グして、コンタクトホール114aを形成する。(図1 0 (B))

【0071】新たに、フォトレジストマスクを形成す る。このマスクを用いて、CF+、O2、He2の混合 ガスによりBCBでなる平坦化膜をドライエッチングし

形態1と同様に、コンタクトホール114a、112a を形成するためのフォトレジストマスクは同じにするこ とができる。(図10(C))

【0072】基板100全面に樹脂膜205を形成す る。ここでは、アクリルをスピンコート法で形成する。 アクリルの厚さは絶縁膜114上において、0.5μm となるようにする。(図11(A))

【0073】次に、フォトレジストマスクを形成し、C Fi、Oz、Hezの混合ガスにより、アクリルでなる 樹脂膜205をドライエッチングし、ほぼドレイン電極 10 108上以外の樹脂膜205を除去し、画素ごとに分断 された絶縁膜201を形成する。このとき同時に、絶縁 膜201にはコンタクトホール201aが形成される。 コンタクトホール201aは平坦化膜112のコンタク トホール112aの内側に形成されるため、コンタクト 部003 に形成された平坦化膜112、絶縁膜114のコ ンタクトホールの側部を全て絶縁膜201で覆うことが できる。(図11(B))

【0074】最後に、フォトレジストマスクを除去した 後、ITO膜を厚さ120nmの厚さにスパッタ法で成膜 20 し、パターニングして、画素電極202を形成する。以 上により、画素マトリクス回路が完成する。(図8) 【0075】本実施形態では、保持容量の誘電体(絶縁 膜114)とは別の絶縁膜201によって、画素電極2 ○2と透明導電膜113とを絶縁することができる。こ の構成のため、絶縁膜114の膜厚は任意に設定するこ とが可能になり、透過率、保持容量の容量だけを考慮し て設定することもできる。絶縁膜114の膜厚は10~ 200㎜の間で任意に設計することができる。膜厚の下 限は絶縁膜114をCVDで均一に成膜可能な厚さであ 30 り、また絶縁破壊を考慮すると、現状は10nm程度であ

【0076】特に、透過率を向上させるために、絶縁膜 114と透明導電膜113の界面、絶縁膜114と画素 電極との界面で光が反射されないように、絶縁膜114 の膜厚を決定すればよい。絶縁膜114の厚さをd、屈 折率をn、光の波長をλとすると、この条件はnd=λ /4で与えられる。

【0077】[実施形態3] 本実施形態も実施形態2 と同様実施形態1の変形例であり、保持容量の誘電体と なる絶縁膜のステップカバレッジを補うための構成に関 する。図12、図13を用いて本実施形態を説明する。 なお、図12、図13において、図1~図7と同じ符号 は同じ構成要素を示す。

【0078】本実施形態では、BCBでなる平坦化膜1 12上に透明導電膜113、絶縁膜232、画素電極2 33が順次に積層されて形成されており、保持容量は透 明導電膜113、画素電極233を対向する電極対に、 絶縁膜232を誘電体とする。

量の誘電体となる絶縁膜114が透明導電膜113のコ ンタクトホール113aの側部に接しているが、本実施 形態では、図12に示すように、保持容量の誘電体とな る絶縁膜232は透明導電膜113の側部に直接接して なく、この側部に接する絶縁膜231を別途形成する。 【0080】この構成により、画素電極233とドレイ ン電極108とを接続するためのコンタクトホールにお いて、画素電極233と透明導電膜113とを絶縁膜2 31と絶縁膜232とで絶縁できるため、ショートをよ り確実に防止することができる。

【0081】以下、図13、図14を用いて、本実施形 態の画素マトリクス回路の作製方法を説明する。

【0082】まず、実施形態1の作製工程に従って、図 4 (C) に示す工程までを行う。図13 (A) は図4 (C)の断面図に対応する.

【0083】次に、基板100全体を覆って、PECV D法で、酸化シリコン膜235を成膜する。酸化シリコ ン膜235の厚さは10~300mm、ここでは100nm の厚さに成膜する。CVD法で酸化シリコン膜235を 成膜したため、透明導電膜113のコンタクトホールの 側部113 bは段差被覆性は良好になる。(図13 (B))

【0084】酸化シリコン膜235をパターニングし て、ドレイン電極108上を覆う絶縁膜231を形成す る。絶縁膜231のパターンは実施形態2の絶縁膜20 1と同様であり、画素電極233ごとに分断されてい .る。(図13(C))

【0085】絶縁膜231、透明導電膜113を覆っ て、基板100全面に絶縁膜232を成膜する。ここで は、厚さ150nmの酸化シリコン膜をPECVD法で成 膜する。絶縁膜232は保持容量の誘電体として機能す る。(図14(A))

【0086】次に画素電極233とドレイン電極108 を接続するために、絶縁膜231及び232、平坦化膜 112にコンタクトホール231a、232a、121 aを形成し、ドレイン電極108表面を露出させる。 (図14(B))

【0087】まず、フォトレジストマスクを形成し、フ ッ酸を用いて絶縁膜231と232をエッチングして、 コンタクトホール231a、232aを形成する。次 に、同じフォトレジストマスクを用いて、CF+、 Oz 、Hez の混合ガスにより平坦化膜112をエッチ ングして、コンタクトホール112aを形成する。 【0088】最後に、ITO膜を厚さ120mmの厚さに スパッタ法で成膜し、パターニングして、画素電極20 2を形成する。以上により、画素マトリクス回路が完成 する。(図12)

【0089】本実施形態も実施形態2と同様に、保持容 量の誘電体(絶縁膜232)とは別の絶縁膜231によ 【0079】図1に示すように実施形態1では、保持容 50 って、画素電極233と透明導電膜113を絶縁するこ

とができるため、絶縁膜232の膜厚を10~200nm の間で任意に設定することが可能になる。

【0090】[実施形態4]本実施形態は実施形態1の 変形例であり、薄膜トランジスタの半導体層を遮蔽する 遮光膜を形成した例である.

【0091】図15に本実施形態の画素マトリクス回路 (1画素分)の断面図を示す。図15において図1と同 じ符号は同じ構成要素を示す。また、図15において、 絶縁膜302が絶縁膜114に、画素電極303が画素 電極202に対応し、同じパターンで形成されている。 【0092】 遮光膜301はチタンや、クロム等の金属 膜で形成し、可視光域の光を全反射させる。遮光膜30 1は薄膜トランジスタの半導体層103と交差するよう に、透明導電膜113に接して形成されている。この構 成により、隣り合う画素電極303と303 の間から 侵入する光を反射して、薄膜トランジスタの光劣化を防 止している。

【0093】以下、図16を用いて本実施形態の画業マ トリクス回路の作製工程を説明する。まず、実施形態1 の作製工程に従って、図4 (B) に示す工程までを行 う.次に_:透明導電膜113上に厚さ100~300mm のチタン膜をスパッタ法で成膜し、パターニングして遮 光膜301を形成する。ここではチタン膜の厚さは20 Onmとする。(図16(A))

【0094】次に、保持容量の誘電体となる絶縁膜30 2を成膜する。ここでは、原料ガスはH2 ガスで希釈し たSiH╸とNOzを用い、PECVD法により厚さ1 50nmの窒化酸化シリコン膜を成膜する。絶縁膜302 をCVD法で成膜することにより、絶縁膜302によ り、透明導電膜113のコンタクトホール113a及 び、遮光膜301をカバレッジ良く覆うことができる。 (図16(C))

【0095】次に、絶縁膜302、平坦化膜112にコ ンタクト部Co3に対するコンタクトホール113aを形 成し、ドレイン電極108の表面を露出する。そして、 スパッタ法で150nmのITO膜を成膜し、パターニン グして画素電極303を形成する。(図15)

【0096】[実施形態5] 本実施形態は実施形態2 の変形例である。本実施形態も実施形態4と同様、薄膜

【0097】図17に本実施形態の画素マトリクス回路 の断面図を示す。図17において図9と同じ符号は同じ 構成要素を示す。また、図17において、絶縁膜312 が絶縁膜114に、絶縁膜313が絶縁膜201に、画 素電極314が画素電極202に対応し、同じパターン で形成されている。

【0098】以下、図18を用いて、本実施形態の画素 マトリクス回路の作製工程を示す。

4 (C) の構成を得る。そして、スパッタ法で厚さ20 Onmのチタン膜を成膜し、パターニングして、遮光膜3 11を形成する.

【0100】次に、保持容量の誘電体となる絶縁膜31 2を成膜する。ここでは、PECVD法で原料ガスにH 2 ガスで希釈したSiH, とNO2 を用いて、厚さ15 Onmの酸化窒化シリコン膜を成膜する. 絶縁膜312を CVD法で成膜することにより、絶縁膜312により、 透明導電膜113のコンタクトホール113a及び、遮 10 光膜311による段差(点線で囲む部分)をカバレッジ 良く覆うことができる。(図18(C))

【0101】次に、実施形態2と同様に(図10参 照)、フッ酸により絶縁膜312をエッチングして、コ ンタクトホール114aを形成し、更に平坦化膜112 をエッチングしてコンタクトホール112aを形成し、 ドレイン電極108表面を露出させる。

【0102】実施形態2と同様に(図11参照)、基板 100全面に、アクリル膜をスピンコート法で形成し、 パターニングして、コンタクトホール313aを有する 20 絶縁膜313を形成する。

【0103】最後に、ITO膜を厚さ120mmの厚さに スパッタ法で成膜し、パターニングして図17に示すよ うに画素電極314を形成する。以上により、画素マト リクス回路が完成する。

【0104】[実施形態6] 本実施形態も実施形態2 の変形例であり、薄膜トランジスタの半導体層を遮蔽す る遮光膜を形成した例を示す。

【0105】図19に本実施形態の画素マトリクス回路 の断面図を示す。図19において図9と同じ符号は同じ 30 構成要素を示す。

【0106】実施形態4、5では保持容量の電極となる 透明導電膜上に形成したが、本実施形態では、遮光膜3 21を透明導電膜と薄膜トランジスタの間に形成する。 ここでは平坦化膜の間に形成する。

【0107】平坦化膜322、平坦化323はBCBで 成膜されている。平坦化膜322を成膜した後、遮光膜 321を形成し、この表面を覆って基板全面に平坦化膜 323を形成する.

【0108】実施形態5、6では遮光膜を反映した凹凸 トランジスタの半導体層を覆う遮光膜を形成する例を示 40 が画素電極の表面に生ずるが、本実施形態では、遮光膜 321の凹凸は平坦化膜323により埋め流ことがで き、ディスクリネーションを抑えることができる。

【0109】なお、本実施形態の構成を、実施形態2の 以外の実施形態1、3にも適用することができるのは言 うまでもない.

【0110】[実施形態7] 本実施形態は実施形態1 の変形例である。保持容量の透明導電膜を成膜する前 に、平坦化膜表面にCVD法やスパッタ法で絶縁膜を成 膜したものである。図20、図21を用いて、本実施形 【0099】まず、実施形態1の作製工程に従って、図 - 50 態を説明する。なお、図 20、図 21において、 $図 1 \sim$ 図7と同じ符号は同じ構成要素を示す。

【0111】図20に示すように、BCBでなる平坦化膜114上には、CVD法で成膜された酸化シリコンでなる絶縁膜331が形成され、絶縁膜331上に透明導電膜113と、誘電体となる絶縁膜114、画素電極115とでなる保持容量が形成される。

【0112】無機材料でなる絶縁膜331を形成することで、透明薄電膜113のパターンに用いられる薬液によって、樹脂膜が膨潤などの変質、変形を防止できる。また、絶縁膜114をスパッタ法で成膜した場合、樹脂でなる平坦化膜112がスパッタガスに含まれる酸素によってスパッタエッチングされることが防止できる。【0113】誘電体となる絶縁膜114と透明導電膜113の下地となる331はほぼ同じ組成の酸化シリコン膜で形成されている。同じ組成となるようにすることで、絶縁膜114と331にドレイン電極108に達するコンタクトホールを形成する際に、同じエッチング液または同じエッチングガスに対して、エッチングレートが等しくなるため、工程の制御が容易になる。以下、図21を用いて、本実施形態の画素マトリクス回路の作製20

工程を説明する。 【0114】ます、実施形態1で説明した工程に従って、BCBでなる平坦化膜112を形成する。(図4

(B)参照。)そして、平坦化膜112表面に接して、酸化シリコン膜でなる絶縁膜331をPECVD法で成膜する。絶縁膜膜331の厚さは10~300mm、ここでは100mmの厚さに成膜する。絶縁膜331上に実施形態1と同様に、透明導電膜113、酸化シリコンでなる絶縁膜113を成膜する。(図20(A))

【0115】ここでは、絶縁膜331と絶縁膜114を 30 同じ成膜条件で成膜して、フッ酸に対するエッチングレートが同じになるようにする。原料ガスはH2 ガスで希釈したSiH4 とO2 を用いる。また、酸化シリコンの代わりに、原料ガスに、原料ガスはH2 ガスで希釈したSiH4 とNO2 を用いて、窒化酸化シリコン膜、窒化シリコン膜を成膜しても良い。

【0116】次に画素電極233とドレイン電極108を接続するために、絶縁膜114、331にコンタクトホール114a、331aを形成する。フォトレジストマスクを形成し、フッ酸を用いて絶縁膜114と331をエッチングして、コンタクトホール114a、331aを形成する。(図20(B))

【0117】次に、コンタクトホール114a、331 aの形成に用いたフォトレジストマスクを用いて、CF 、Oz、Hezの混合ガスにより平坦化膜112をエッチングして、コンタクトホール112aを形成する。 (図20(C))

16

り、画素マトリクス回路が完成する。(図20) 【0119】本実施形態は実施形態1以外の実施形態2 ~6にも適用できるのはいうまでもなく、保持容量の電 極となる透明導電膜を成膜する前に平坦化膜表面に保持 容量となる誘電体と同じ絶縁膜を成膜すればよい。

【0120】[実施形態8] 本実施形態は実施形態5 の変形例であり、積層構造は実施形態5と同様であるが、上面パターンを変形した例である。

【0121】図22は、本実施形態の画素マトリクス回路の上面図を示す。また、図23は図22の鎖線ZーZ'に沿った断面図である。図24~図26は作製工程を示す上面図である。図22では図面が煩雑になるのを避けるために、保護膜など一部構成要素を省略し、積層状態と各部材のパターンが同時に分かるようにした。

【0122】作製工程は実施形態2や5と同様である。ここでは、ガラス基板の代わりに、石英基板を使用した。薄膜トランジスタを特顯平9-55633号、特顯平9-165216号、特顯平9-212428号に記載の方法で作製する。即ち半導体層401を本出顯人がCGS (Continuous Grain Silicon)と呼ぶ(月刊FPDI ntelligence1998年7月号 98-102頁参照)、粒界にほとんど不対結合がない、優れた結晶粒の連続性を有する結晶性シリコンで形成した。

【0123】図24に示すように、半導体層401は図示しないゲート絶縁膜を介してゲート配線402と交差している。ここでは、ゲート絶縁膜は半導体層401の熟酸化膜と、CVD法で成膜された窒化酸化シリコンの2層構造となっている。ゲート配線402は陽極酸化物で被覆されたアルミニウムでなる。

【0124】半導体層401を屈曲させることにより、 トリアルゲート構造の薄膜トランジスタを形成する。ゲート配線402を分岐させてマルチゲート構造とすることも可能であるが、本実施形態のようにゲート配線402を直線状に、半導体層403を屈曲させるすることにより、マスク合わせのアライメントが容易であり、また開口率を高くすることができる。

【0125】次に、ゲート配線402を覆って、酸化シリコンでなる層間絶縁膜403を形成する。コンタクト部Co4、Co5 において半導体層401に達するコンタクトホールを層間絶縁膜403に形成し、ソース配線404、ドレイン電極405を形成する。(図24)

【0126】次に、石英基板全面を覆って、PECVD 法で厚さ330nmの窒化シリコン膜を成膜し、パターニングして保護膜406を形成する。このパターニングでは、図25に示すように、窒化シリコン膜はドレイン電極405上のコンタクト部Co6だけでなく、画素電極413と重なる部分をできるだけ除去した。即ち、透過率を向上させるために、薄膜トランジスタを覆っている部分を除いて、表示部に存在する窒化膜をできるだけ除去50した。

04/26/2001, EAST Version: 1.02.0008

17

【0127】この保護膜406の構造を実施形態1~6 に適用することは容易である。

【0128】次に、図26に示すように、石英基板全面 にBCBでなる平坦化膜407を形成する。平坦化膜4 07上に厚さ200nmのチタン膜を成膜し、パターニン グして遮光膜408を形成する。遮光膜408は薄膜ト ランジスタごと(画素ごと)に分断されて形成されて、 ソース配線402とドレイン電極405の隙間に重なっ て形成した.この隙間で露出している半導体層402と 遮光膜408が交差するため、半導体層402に光が照 10 射されることが防止できる。

【0129】次に、遮光膜408を覆って、基板全面に BCB膜でなる平坦化膜409を形成する。平坦化膜4 09に接して、厚さ115nmのITO膜を透明導電膜4 09として基板全面にスパッタ法で成膜した。そして、 図27に示すように、透明導電膜410に平坦化膜40 9に違するコンタクトホール410aを形成する。この コンタクトホール410aは、保護膜406に形成され たコンタクトホール406aと同じ位置、同じ大きさに 形成されるようにした。

【0130】基板全面に、PECVD法で保持容量の誘 電体となる絶縁膜411を形成する。ここでは絶縁膜4 11として厚さ150nmの酸化シリコン膜を形成する。 (図23参照)

【0131】同じフォトレジストマスクを用いて、絶縁 膜411及び平坦化膜407、409にコンタクトホー ルを形成し、コンタクト部Co6においてドレイン電極4 05を露出させる。

【0132】次に、基板全面にアクリル膜をスピンコー ト法で成膜し、図22に示すようにパターニングして絶 30 縁膜412を形成する。絶縁膜412には、コンタクト 部Co6において、ドレイン電極405に達するコンタク トホールが形成されていおり、またトランジスタごとに 分離されており、ほぼドレイン電極405を覆ってい

【0133】最後に、スパッタ法でITO膜を厚さ11 Onmに成膜し、パターニングして画素電極413を形成 する。 画素電極413はコンタクト部Co6においてドレ イン電極405に接続されている。以上で画素マトリク ス回路が完成する。

【0134】上述したように、本出願人がCGSと呼ぶ 結晶性シリコンで半導体層401を形成したため、同じ 石英基板上に画素マトリクス回路と同時に作製されるゲ ートドライバ回路、及びソースドライバ回路も高性能に することができ、高周波数のクロック信号を処理するこ とが可能であり、さらにプリチャージ回路も薄膜トラン ジスタで同じ石英基板上に作製することができた。

【0135】本実施形態の画素構造は、実施形態5だけ でなく、他の実施形態に適用できることは明らかであ る。例えば、実施形態1に適用すると場合には絶縁膜4 50 06で構成される。本発明を表示装置2102に適用す

1 2を省略した構成になり、実施形態3に適用する場合 には、絶縁膜231のパターン形状は絶縁膜412と同 様とすればよい。また、実施形態4、5に対応する場合 には、遮光膜408と透明導電膜410との積層順序を 変更することで、容易に行える。

【0136】[実施形態9] 本実施形態は実施形態8 の変形例であり、絶縁膜412のパターンを変形した。 【0137】図22、図23に示すように、実施形態8 では隣接する画案電極413の間には、アクリルでなる 絶縁膜412と、酸化シリコンでなる絶縁膜413が露 出する。

【0138】これは画素電極を形成するために除去され る部分のITO膜の下地が、アクリルと酸化シリコンと いう材料の異なる膜になっていることを示している。こ のため、アクリル上と酸化シリコン上とで、ITO膜の エッチングレートが大きく異なるという問題点が発生す ることがあった.

【0139】本実施形態はこの問題点を解消するため、 アクリルでなる絶縁膜412のパターンを変形し、図2 20 8に示すように、エッチングされる部分のITO膜の下 地をアクリルでなる絶縁膜501に統一した。なお、図 28において、図22と同じ符号は同じ構成要素を示

【0140】このため、絶縁膜421はドレイン電極4 05だけでなく、ゲート配線402、ソース配線404 をも覆って形成され、画素マトリクス回路で一体にな

【0141】また実施形態1、3では、除去される部分 のITO膜の下地は保持容量の誘電体となる絶縁膜11 3、232だけであるので、上記の問題点は解消されて いる。

【0142】[実施形態10]本実施形態は、本発明を 電子機器に応用した例である。本実施形態の電子機器 は、実施形態1~9において説明したアクティブマトリ クス基板を用いた液晶表示装置を搭載している。この様 な電子機器としては、ビデオカメラ、スチルカメラ、プ ロジェクター、プロジェクションTV、ヘッドマウント ディスプレイ、カーナビゲーションシステム、パーソナ ルコンピュータ、携帯情報端末(モバイルコンピュー タ、携帯電話、電子書籍等) などが挙げられる。それら

の一例を図29に示す。 【0143】図29 (A) は携帯電話であり、本体20 01、音声出力部2002、音声入力部2003、表示 装置2004、操作スイッチ2005、アンテナ200 6で構成される。本発明を表示装置2004に適用する ことができる.

【0144】図29 (B) はビデオカメラであり、本体 2101、表示装置2102、音声入力部2103、操 作スイッチ2104、バッテリー2105、受像部21

40

ることができる。

【0145】図29(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示装置2205で構成される。本発明は表示装置2205等に適用できる。

【0146】図29(D)はゴーグル型ディスプレイであり、本体2301、表示装置2302、アーム部2303で構成される。本発明は表示装置2302に適用することができる。

【0147】図29(E)はリア型プロジェクターであり、本体2401、光源2402、表示装置2403、偏光ビームスプリッタ2404、リフレクター2405、2406、スクリーン2407で構成される。本発明は表示装置2403に適用することができる。

【0148】図29(F)は携帯書籍(電子書籍)であり、本体2501、表示装置2502、2503、記憶媒体2504、操作スイッチ2505で構成される。本発明は表示装置2502、2503に適用することができる。

【0149】以上の様に、本発明の適用範囲は極めて広く、液晶表示装置を画面に用いたあらゆる分野の電子機器(半導体装置)に適用することが可能である。

[0150]

【発明の効果】本発明によって、従来の画素電極と透明 導電膜を電極対に用いた保持容量において、画素電極と 透明導電膜がショートすることを防止できるため、歩留 まりが向上され、また信頼性の高い半導体装置を作製す ることが可能になった。

【図面の簡単な説明】

【図1】 画素マトリクス回路の断面図。(実施形態1)

【図2】 画素マトリクス回路の上面図。(実施形態1)

【図3】 画素マトリクス回路の作製工程を説明するための断面図。(実施形態1)

【図4】 画素マトリクス回路の作製工程を説明するための断面図。(実施形態1)

【図5】 画素マトリクス回路の作製工程を説明するための断面図。(実施形態1)

【図6】液晶表示装置の1画素の等価回路。(実施形態1)

【図7】アクティブマトリクス型液晶表示装置の概略の 構成図。(実施形態1) 20 【図8】 画素マトリクス回路の断面図。(実施形態 2)

【図9】 画素マトリクス回路の上面図。(実施形態2)

【図10】 画素マトリクス回路の作製工程を説明する ための断面図。(実施形態2)

【図11】 画素マトリクス回路の作製工程を説明する ための断面図。(実施形態2)

【図12】 画素マトリクス回路の断面図。(実施形 10 態3)

【図13】 画素マトリクス回路の作製工程を説明する ための断面図。(実施形態3)

【図14】 画素マトリクス回路の続く作製工程を説明 するための断面図。(実施形態3)

【図15】 画素マトリクス回路の断面図。(実施形態4)

【図16】 画素マトリクス回路の作製工程を説明する ための断面図。(実施形態4)

【図17】 画素マトリクス回路の断面図。(実施形 20 態5)

【図18】 画素マトリクス回路の作製工程を説明する ための断面図。(実施形態5)

【図19】 画素マトリクス回路の断面図。(実施形態6)

【図20】 画素マトリクス回路の断面図。 (実施形態7)

【図21】 画素マトリクス回路の作製工程を説明する ための断面図。(実施形態7)

【図22】画素マトリクス回路の上面図。(実施形態 30 8)

【図23】 図22の鎖線Z-Z^{*} に沿った断面図。 (実施形態8)

【図24】画素マトリクス回路の作製工程を説明するための断面図。(実施形態8)

【図25】画素マトリクス回路の作製工程を説明するための断面図、(実施形態8)

【図26】画素マトリクス回路の作製工程を説明するための断面図。(実施形態8)

【図27】画素マトリクス回路の作製工程を説明するた 40 めの断面図。(実施形態8)

【図28】 画素マトリクス回路の上面図。(実施形態9)

【図29】 電子機器の一例を示す図。

【図30】 従来の画素マトリクス回路の断面図。

Y-14299105

【図22】

[図24]

【図28】

フロントページの続き

Fターム(参考) 2H092 JA26 JA29 JA38 JA42 JA44 JB13 JB23 JB32 JB33 JB38 JB51 JB57 JB58 JB63 JB69 KA04 KA07 KA16 KA18 KB22 KB24 MA07 MA08 MA14 MA15 MA16 MA18 MA19 MA20 MA23 MA29 MA30 MA33 MA35 MA37 MA41 NA16 NA22 NA25 NA27 PA06 QA07

	_		1		
			1		
		•			
				,	