

TRABALLO FIN DE GRAO GRAO EN ENXEÑARÍA INFORMÁTICA MENCIÓN EN TECNOLOXÍAS DA INFORMACIÓN

Práctica 1: DiffServ en INET

Estudante 1: Óscar Olveira Miniño

Estudante 2: Alejandro Javier Herrero Arango

A Coruña, octubre de 2024.

Índice general

1	IPv4	Ļ																			
	1.1	Ejercicio 1.1		 			 														

Índice de figuras

1 1	Tráfico DHCP entre host[0] v los servidore	ac 1
1.1	Tranco DHCP entre nostiul v los servidore	es

1.1 Ejercicio 1.1

1.1.1 Muestra una captura del tráfico de paquetes DHCP intercambiados entre el nodo host[0] y los servidores DHCP durante el proceso de obtención de su IP, obtenida en Wireshark (Nota: para que los tiempos mostrados en Wireshark coincidan con los tiempos de simulación, activa Visualización → Formato de visualización de fecha → Segundos desde 1970-01-01). Explica lo que ocurre y para qué sirve cada paquete. Para facilitar la captura, configura el startTime del cliente DHCP para que se inicie antes en host[0] que el resto de equipos

No. Time - Source	e Destination	Protocol Le	ength Info
1 0.000002 0.0.0	255.255.255.255	DHCP	305 DHCP Discover - Transaction ID 0xc7f0aac
2 0.000010 192.1	68.0.10 255.255.255.255	DHCP	332 DHCP Offer - Transaction ID 0xc7f0aac
3 0.000013 0.0.0	255.255.255.255	DHCP	317 DHCP Request - Transaction ID 0x17c4aa2f
4 0.000013 192.1	68.0.1 255.255.255.255	DHCP	332 DHCP Offer - Transaction ID 0xc7f0aac
5 0.000021 192.1	68.0.10 255.255.255.255	DHCP	332 DHCP ACK - Transaction ID 0x17c4aa2f
6 4.000005 0.0.0	255.255.255.255	DHCP	305 DHCP Discover - Transaction ID 0x3716a675
7 4.000007 0.0.0	255.255.255.255	DHCP	305 DHCP Discover - Transaction ID 0x5821ccc0
8 4.000010 192.1	68.0.10 255.255.255.255	DHCP	332 DHCP Offer - Transaction ID 0x3716a675
9 4.000013 192.1	68.0.1 255.255.255.255	DHCP	332 DHCP Offer - Transaction ID 0x3716a675
10 4.000016 192.1	68.0.10 255.255.255.255	DHCP	332 DHCP Offer - Transaction ID 0x5821ccc0
11 4.000019 192.1	68.0.1 255.255.255.255	DHCP	332 DHCP Offer - Transaction ID 0x5821ccc0
12 4.000021 0.0.0	255.255.255.255	DHCP	317 DHCP Request - Transaction ID 0x1a4eb343
13 4.000024 192.1	68.0.10 255.255.255.255	DHCP	332 DHCP ACK - Transaction ID 0x1a4eb343
14 4.000027 0.0.0	255.255.255.255	DHCP	317 DHCP Request - Transaction ID 0x5ba252fb
15 4.000030 192.1	.68.0.10 255.255.255.255	DHCP	332 DHCP ACK - Transaction ID 0x5ba252fb
16 6.000000 0a:aa	::00:00:00:02 Broadcast	ARP	64 Who has 192.168.0.10? Tell 192.168.0.11
17 6.000002 0a:aa	:00:00:00:05	02 ARP	64 192.168.0.10 is at 0a:aa:00:00:00:05
18 6.000003 192.1		TCP	64 1025 → 80 [SYN] Seq=0 Win=7504 Len=0 MSS=536
19 6.000005 192.1		TCP	64 80 → 1025 [SYN, ACK] Seq=0 Ack=1 Win=7504 Len=0 MSS=536
20 6.000005 192.1	168.0.11 192.168.0.10	TCP	64 1025 → 80 [ACK] Seq=1 Ack=1 Win=7504 Len=0
21 6.000007 192.1		TCP	258 1025 → 80 [ACK] Seq=1 Ack=1 Win=7504 Len=200
22 6.000011 192.1		TCP	64 80 → 1025 [ACK] Seq=1 Ack=201 Win=7504 Len=0
23 6.000020 192.1		TCP	594 80 → 1025 [ACK] Seq=1 Ack=201 Win=7504 Len=536
24 6.000021 192.1		TCP	64 1025 → 80 [ACK] Seq=201 Ack=537 Win=7504 Len=0
25 6.000021 192.1		TCP	64 1025 → 80 [FIN, ACK] Seq=201 Ack=537 Win=7504 Len=0
26 6.000030 192.1		TCP	522 80 → 1025 [ACK] Seq=537 Ack=201 Win=7504 Len=464
27 6.000030 192.1		TCP	64 1025 → 80 [ACK] Seq=202 Ack=1001 Win=7504 Len=0
28 6.000030 192.1		TCP	64 80 → 1025 [ACK] Seq=1001 Ack=202 Win=7504 Len=0
29 6.000031 192.1		TCP	64 80 → 1025 [FIN, ACK] Seq=1001 Ack=202 Win=7504 Len=0
30 6.000032 192.1		TCP	64 1025 → 80 [ACK] Seq=202 Ack=1002 Win=7504 Len=0
31 10.000032 192.1		TCP	64 1026 → 80 [SYN] Seq=0 Win=7504 Len=0 MSS=536
32 10.000034 192.1		TCP	64 80 → 1026 [SYN, ACK] Seq=0 Ack=1 Win=7504 Len=0 MSS=536
33 10.000034 192.1		TCP	64 1026 → 80 [ACK] Seq=1 Ack=1 Win=7504 Len=0
34 10.000036 192.1		TCP	258 1026 → 80 [ACK] Seq=1 Ack=1 Win=7504 Len=200
35 10.000040 192.1		TCP	64 80 → 1026 [ACK] Seq=1 Ack=201 Win=7504 Len=0
36 10.000049 192.1	68.0.10 192.168.0.11	TCP	594 80 → 1026 [ACK] Seq=1 Ack=201 Win=7504 Len=536

Figura 1.1: Tráfico DHCP entre host[0] y los servidores

CAPÍTULO 1. IPV4 1.1. Ejercicio 1.1

Como podemos observar, el host[0] empieza haciendo un DHCP Discover para descubrir un servidor DHCP disponible. A continuación, el servidor local es el primero en responder la solicitud con un paquete DHCP Offer con una dirección IP disponible. El cliente (host[0]), responde a su solicitud para confirmar la asignación ofrecida por el servidor local. El router también envía el paquete DHCP Offer, pero al enviarlo más tarde, el cliente lo ignora. Finalmente, el servidor local contesta con un ACK (estos procesos se repiten para todos los cliente, host[1] y host[2]).

Posteriormente, el cliente host[0] intenta hacer la conexión con el servidor local, para lo cual manda primero un broadcast ARP, para asi saber cual es la MAC de la máquina, con la IP que establece en la cabecera ARP. Después, el servidor contesta al broadcast ARP que mandó el cliente identificandose su mac, ya que la cabecera ARP incluye su IP.

Finalmente, la conexión sigue adelante con los mensajes de la Trasporte restableciendose cada 4 segundos, con