University of California, Los Angeles Department of Statistics

Statistics C183/C283

Instructor: Nicolas Christou

Exam 2 10 May 2006

Name: Soutcons

Problem 1 (20 points)

Answer the following questions:

a. Suppose the single index model holds. Show that the cut-off point C^* can be written as:

$$C' = (\bar{R}_{p} - R_{f})\beta_{p} \frac{\sigma_{m}^{2}}{\sigma_{p}^{2}}.$$

$$C' = \sigma_{m}^{2} \sum_{j} Z_{j} S_{j} = \sigma_{m}^{2} \sum_{j} A \times i S_{j}.$$

$$= \sigma_{m}^{2} \sum_{j} \frac{\bar{R}_{p} - \bar{R}_{f}}{\sigma_{p}^{2}} \times i S_{j} = \sigma_{m}^{2} \frac{\bar{R}_{p} - \bar{R}_{f}}{\sigma_{p}^{2}} S_{p}$$

$$= \left(\bar{R}_{p} - \bar{R}_{f}\right) S_{p} \frac{\bar{R}_{p} - \bar{R}_{f}}{\sigma_{p}^{2}} S_{p}$$

$$= \left(\bar{R}_{p} - \bar{R}_{f}\right) S_{p} \frac{\bar{R}_{p} - \bar{R}_{f}}{\sigma_{p}^{2}} S_{p}$$

$$= \left(\bar{R}_{p} - \bar{R}_{f}\right) S_{p} \frac{\bar{R}_{p} - \bar{R}_{f}}{\sigma_{p}^{2}} S_{p} \frac{\bar{R}_{p} - \bar{R}_{f}}{\sigma_{$$

b. Assume the constant correlation model holds and that short sales are allowed. Under what condition the cut-off point C^* is equal to:

$$C' = \frac{1}{N} \sum_{i=i}^{N} \frac{\bar{R}_{i} - R_{f}}{\sigma_{i}}$$

Problem 2 (25 points)
You are given the following data:

Stock i	\bar{R}_i	σ_i
1	0.29	0.03
2	0.19	0.02
3	0.08	0.15

a. Assume short sales are allowed, $R_f = 0.05$, and $\bar{\rho} = 0.5$. Rank the stocks based on the excess return to standard deviation ratio, find the cut-off point C^* , and find the optimum portfolio.

to standard deviation ratio, find the cu	it-off point C^* , and find the	e optimum portfolio.	
Ri-RE 1-PHIP	2 Ri-RE	J C 0	
0-29-0.5 - 8 1-0.5 +0.5 = 0.5	8	4	
$\frac{0.07}{0.07} = 7 \qquad \frac{0.5}{1-0.5+2(0.5)} = \frac{1}{3}$	15	5	
0.08-0.05 = 0-2 1-05+7(01) = 1	15-2	7.8	
$\frac{2}{(1-0.5)0.03}$ $\left(8-3.8\right)$	= 280	7 -	
(1-0.5)0.03	= 320	(2,	=552
2n = (1-0.5)0.02(7-3.8)			
[12-3.8]	= -48)	
73 = (1-15)0.15 [1-2-3.8)	9	7.0	
: Y = 260 = 0.50	17, X==	= 0.586	
χ.	$3 = -\frac{48}{502} =$	= -0.087.	

b. The above solution could have been found using the techniques that discussed earlier in class through the following:

$$Z = \Sigma^{-1}R = \left(\begin{array}{ccc} 0.00090 & 0.00030 & 0.00225 \\ 0.00030 & 0.00040 & 0.00150 \\ 0.00225 & 0.00150 & 0.02250 \end{array} \right)^{-1} \left(\begin{array}{c} 0.29 - 0.05 \\ 0.19 - 0.05 \\ 0.08 - 0.05 \end{array} \right) = \left(\begin{array}{c} 280.00 \\ 320.00 \\ -48.00 \end{array} \right).$$

Explain what you see here and verify that the solution is the same as with part (a) (there may be some rounding differences).

$$27 = 552$$
, $27 = 280/52 = 0.507$
 $27 = 320/52 = 0.507$
 $27 = -48/52 = -0.087$

Problem 3 (30 points)

Suppose the single index model holds. Also short sales are allowed and there is a risk free rate $R_f = 0.002$. For 3 stocks the following were obtained based on monthly returns for a period of 5 years:

Stock i	α	β	σ_{ϵ}^2
1	0.01	1.08	0.003
2	0.04	0.80	0.006
3	0.08	1.22	0.001

The expected return and variance of the market are $\bar{R}_m = 0.10$ and $\sigma_m^2 = 0.002$ for the same period.

a. Suppose that the optimum portfolio consists of 30% of stock 1, 50% of stock 2, and 20% of stock 3. What is the β of this portfolio.

$$dp = 2 \text{ K-br} = 0.30 \text{ (1.02)} + 0.5 \text{ (0.14)} + 6.20 \text{ (1.02)} \rightarrow dp = 0.968$$

$$dp = 2 \text{ to be} = 0.3(0.01) + 0.5(0.04) + 0.2(0.08) = 0.039$$

$$\vec{R}_1 = 0.01 + 1.02 \text{ (0.10)} = 0.118$$

$$\vec{R}_2 = 0.08 + 1.22 \text{ (0.10)} = 0.762$$

$$\vec{R}_2 = 0.04 + 0.80 \text{ (0.10)} = 0.12$$

$$\vec{R}_3 = 0.08 + 1.22 \text{ (0.10)} = 0.762$$

$$\vec{R}_4 = 0.04 + 0.80 \text{ (0.10)} = 0.12$$

$$\vec{R}_5 = 0.1358$$

$$\vec{R}_7 = 0.0762 \text{ (0.10)} = 0.762$$

$$\vec{R}_7 = 0.1358$$
b. Suppose that you are a portfolio manager and you have \$5000000 to invest in this optimum portfolio on behalf of a client. In addition this client wants to invest another \$300000 by boxes in this optimum portfolio on behalf of a client. In addition this client wants to invest another \$300000 by boxes in this optimum portfolio on behalf of a client.

b. Suppose that you are a portfolio manager and you have \$500000 to invest in this optimum portfolio on behalf of a client. In addition this client wants to invest another \$300000 by borrowing this amount at the risk free rate $R_f = 0.002$. What is the expected return and standard deviation of this portfolio. Show it on the expected return standard deviation space.

 $R_{c} = (1-x)R_{f} + x R_{f} = -0.6(0.002) + 1.6(0.30(0.118) + 0.50(0.12) + 0.20(0.202)$ $R_{c} = 0.968(0.002) = 0.00/87 + 0.00181 = 6.003684 \Rightarrow R_{c} = 0.21608$ $R_{c} = 0.$

Cov [0.30 R1+0.50 R2+0.20 R3, Rm] =
$$0.30 \text{ Cev}(R_1, R_2) + 0.50 \text{ Cev}(R_2, R_3) + 0.20 \text{ Cev}(R_3, R_4)$$

$$= 0.30 \left[1.08 \times 0.002\right] + \left[0.80 \times 0.002\right] + \left[0.80$$

d. If the client wants to allocate 60% of his initial funds in the optimum portfolio and the remaining 40% in the risk free asset, what would be the expected return and standard deviation of this position?

$$R_c = 0.4 (0.002) + 0.6 (0.1356) \Rightarrow 0.08228$$
.

 $C = 0.6 \text{ Gp} = 0.6 (0.003) \Rightarrow C = 0.03642$

e. What is the covariance between stock 1 and the market?

$$(R_1, R_1) = Cov (x+8R_1+E, R_1)$$

= $80\bar{n} = 1.08 (0.00) = Cov (R_1, R_1) = 0.002/6$

Problem 4 (25 points)

Assume that $\sigma_m^2 = 10$, $R_f = 0.05$. You are also given $\beta_1 = 1$, $\beta_2 = 1.5$, $\beta_3 = 1$, $\beta_4 = 2$, $\beta_5 = 1$, $\beta_6 = 1.5$, $\beta_7 = 1.5$ $2, \beta_8 = 0.8, \beta_9 = 1, \beta_{10} = 0.6$. The table below shoes the procedure for finding the cut-off point C^* .

	-					
Stock i	$\frac{\bar{R}_i - R_f}{\beta_i}$	$\frac{(R_i - R_f)\beta_i}{\sigma_s^2}$	$\sum_{j=1}^{i} \frac{(\bar{R}_j - R_f)\beta_j}{\sigma_{ij}^2}$	$\frac{\beta_i^2}{\sigma_{e_i}^2}$	$\sum_{j=1}^{i} \frac{\beta_j^2}{\sigma^2}$	C_i
1	10.0	0.20	7718:20	0.02000	0.02000	1.67
2	8.0	0.45	0.65	0.05625	0.07625	3.69
3	7.0	0.35	1.00	0.05000	0.12625	4.42
4	6.0	2.40	A-3240	0.40000	0.52625	5.43
5	6.0	0.15	3.55	0.02500	0.55125	???~
6	4.0	0.30	3.85	0.07500	0.62625	5.30
7	3.0	0.30	4.15	0.10000	ß ???	5.02
8	2.5	0.10	4.25	0.04000	0.76625	4.91
9	2.0	0.10	4.35	0.05000	0.81625	4.75
10	1.0	0.06	4.41	0.06000	0.87625	4.52

a. Find the three missing values.

 •	١.	. •	•		
B	:	0.	72	625	

$$C_{3} = \frac{\sigma_{n}^{2} \sum_{i=1}^{n} \frac{1}{4\sigma_{i}} \sum_{i=1}^{n} \frac{1}{4\sigma_{i}}$$

b. If short sales are not allowed find the cut-off point C^* and the composition of the eptimum-portfolio.

b. If short sales are not allowed find the cut-off point
$$C^*$$
 and the composition of the optimum portfolion $C^* = \frac{1}{5} \cdot \frac{1}{5} \cdot$

c. If short sales are allowed find the cut-off point C^* and the composition of the optimum portfolio.

$$\frac{C^* = 4.5^2}{2_1 = 50 \left[10 - 4.5^2\right]} \Rightarrow 2_1 = 0.1096$$

d. Find the correlation coefficient between stock 1 and the market.

Incient between stock I and the
$$1 \times 10$$

