Lista de Exercícios IPE #1

As referências a seções, equações, figuras, exemplos e exercícios são do livro *Intuitive Probability* and Random Processes using MATLAB de Stephen M. Kay, Springer, 2006.

Exercício I:

Em uma família de quatro adultos a probabilidade de uma pessoa estar fora de casa é de 60%. Determine a probabilidade de quaisquer duas pessoas da família estarem em casa simultaneamente. Resolva esse problema de duas maneiras: a) adotando um modelo probabilístico; b) por simulação. Dica: ver Seção 1.3. Critique o modelo probabilístico escolhido.

Exercício 2:

A probabilidade de uma variável aleatória T é descrita por uma distribuícão gaussiana com média 7 e desvio padrão unitário (ver Eq. 1.2). determine numericamente a probabilidade do evento 5 ≤ T ≤ 6. Dica: ver Exercício 1.14.

Exercício 3:

Seja U_i o resultado da seleção aleatória de um número entre 0 e 1, ou seja, $u_i \in [0 \ 1]$. Seja a variável aleatória $X = U_1 + U_2$. Qual é a probabilidade dos eventos a) $0 \le X < 0$, 5; b) 0, $5 \le X < 1$; c) $1 \le X < 1$, 5; d) 1, $5 \le X \le 2$ e e) 2 < X? Dica: veja Seção 2.3.

Exercício 4:

Usando a mesma definição de U_i do item anterior, seja $Y = \sum_{i=1}^{10} U_i$. Determine a probabilidade de Y estar nos intervalos [0 0.5), [0.5 1) ... [9.5 10].

Exercício 5:

Suponha que Ω contenha N elementos. Mostre que o número de $Bell, B_N$, de diferentes decomposições de Ω é dada pela fórmula:

$$B_N = e^{-1} \sum_{k=0}^{\infty} \frac{k^N}{k!},$$

Dica: Mostre que $B_N = \sum_{k=0}^{N-1} C_{N-1}^k B_k$, onde C_a^b é a fórmula usual de combinação e $B_0 = 1$. Use isso para verificar que a série acima satisfaz a mesma relação de recorrência. Considerando o resultado anterior e que $\Omega = \{1, 2, 3, 4\}$, calcule o número de decomposições.

Exercício 6:

Três jogadores A, B e C disputam um torneio de tênis. Inicialmente, A joga com B e o vencedor joga com C; e assim por diante. O torneiro termina quando um jogador ganha duas vezes em seguida ou quando são distribuidos, ao todo, quatro partidas. Considere que todos os jogadores têm a mesma probabilidade de ganhar um jogo. Usando simulação, determine as probabilidades de cada um dos eventos possíveis.

Exercício 7:

Fazer todos os exercícios do Capítulo 2 marcados com c.