CK0031: Avaliação parcial 0 (05 de dezembro de 2016)

Questão 0-00. You are given the following two functions $g(\mathbf{x}) = (1 - x_1)^2$ and $h(\mathbf{x}) = 100(x_2 - x_1^2)^2$ of two variables. Let $f(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x})$, then:

- 1. Obtain expressions for all first and second derivatives of $f(\mathbf{x})$;
- 2. Use the expressions of the derivatives to compose the gradient vector $\nabla f(\mathbf{x})$ and the Hessian matrix $\mathbf{H}(f(\mathbf{x}))$ for the function;
- 3. Evaluate $f(\mathbf{x})$, $\nabla f(\mathbf{x})$ and $\mathbf{H}(f(\mathbf{x}))$ at point $\mathbf{x}^{(0)} = (0,0)$.

For all scalars, vectors and matrices that appear in the expressions you must indicate their meaning, type and size (e.g., $\mathbf{x}^{(0)} \in \mathbb{R}^2$, $\nabla f(\mathbf{x}) \in \dots$).

Dadas duas funções $g(\mathbf{x}) = (1 - x_1)^2$ e $h(\mathbf{x}) = 100(x_2 - x_1^2)^2$, com duas variáveis cada uma, defina a função $f(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x})$ e, em seguida:

- 1. Obtenha as expressões para todas as derivadas primeiras e segundas de $f(\mathbf{x})$;
- 2. Use as expressões das derivadas para compor o vetor gradiente $\nabla f(\mathbf{x})$ e a matriz Hessiana $\mathbf{H}(f(\mathbf{x}))$ da funcao;
- 3. Calcule $f(\mathbf{x})$, $\nabla f(\mathbf{x})$ e $\mathbf{H}(f(\mathbf{x}))$ no ponto $\mathbf{x}^{(0)} = (0,0)$.

Para todos os escalares, vetores e matrizes que aparecem nas expressões, você deve indicar o tipo e o tamanho (ex., $\mathbf{x}^{(0)} \in \mathbb{R}^2$, $\nabla f(\mathbf{x}) \in \dots$).

Questão 0-01. For some function $f(\mathbf{x})$, with gradient $\nabla(f(\mathbf{x}))$ and with Hessian $\mathbf{H}(f(\mathbf{x}))$, let $\mathbf{x}^{(0)} \in \mathbb{R}^d$ be an initial approximation of a minimiser of $f(\mathbf{x})$, then

- 1. Write the general algorithm for line-search (descent) minimisation;
- 2. Give conditions for valid descent directions, explain their meaning;
- 3. Characterise the general algorithm as conjugate-gradient method

Again, for all terms in the expressions you must indicate meaning, type and size.

Para uma função $f(\mathbf{x})$, com gradiente $\nabla(f(\mathbf{x}))$ e Hessiana $\mathbf{H}(f(\mathbf{x}))$, seja $\mathbf{x}^{(0)} \in \mathbb{R}^d$ uma aproximação inicial de um minimizador de $f(\mathbf{x})$. Faça o que se pede a seguir:

- 1. Escreva o algoritmo geral de minimização line-search (método de descida);
- 2. Forneça as condições de validade para as direções descendentes, e explique o significado delas;
- 3. Especifique a algoritmo geral de forma que ele represente o método do gradiente conjugado

Mais uma vez, para todos os termos nas expressões, você deve indicar, o significado, o tipo e o tamanho.