Teste de Álgebra Linear e Geometria Analítica I

Licenciatura em Matemática

19/01/2009 Duração: 2h

1. (3,5 valores) Considere os seguintes vectores do espaço vectorial real \mathbb{R}^4 :

$$v_1 = (-1, 1, 0, 1)$$
 $v_2 = (1, 3, -2, 1)$ $v_3 = (2, -1, 3, 1)$

- a) Verifique se os vectores v_1, v_2, v_3 são linearmente independentes.
- b) Verifique se $(1, 2, 2, 3) \in \langle v_1, v_2, v_3 \rangle$.
- c) Determine os valores de $\alpha \in \mathbb{R}$ tais que $(1, 1, \alpha, 1) \in \langle v_1, v_2, v_3 \rangle$.
- 2. (6,5 valores) Considere os seguintes subespaços vectoriais de \mathbb{R}^4 :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = z + t, \ 2x = y - t\}$$
 $G = \langle (2, 1, 0, -1), (1, 3, 3, 1) \rangle$

- a) Determine uma base e a dimensão de F.
- b) Determine uma base e a dimensão de F + G.
- c) Calcule $\dim(F \cap G)$.
- d) Dê exemplo de um subespaço vectorial H, de \mathbb{R}^4 , tal que $G \oplus H = \mathbb{R}^4$. Justifique.
- 3. (5 valores) Considere a aplicação linear $f: \mathbb{R}^4 \to \mathbb{R}^3$, definida por:

$$f(x, y, z, t) = (x + y + z, 2x - y + t, -3y - 2z + t)$$

- a) Determine uma base e a dimensão de Nuc f.
- b) Calcule $\dim(\operatorname{Im} f)$.
- c) Seja $W = \langle (1,0,1,0), (1,0,-2,1), (0,1,-1,0) \rangle$. Determine uma base de f(W).
- 4. (5 valores) Considere as seguintes bases de \mathbb{R}^3 :

$$B = ((1,0,0),(0,1,0),(0,0,1))$$
 $B' = ((1,0,2),(1,-1,1),(0,1,3))$

e a aplicação linear
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, tal que $M_f^{BB'} = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 0 & 1 & -1 \end{pmatrix}$

- a) Calcule f(1, 1, 1).
- b) A aplicação f é injectiva? E sobrejectiva? Justifique.
- c) Determine as matrizes M_f^{BB} e $M_f^{B'B}$.