一、选择题			
1.1~500 之间能被 3 或者 5 整除的数有多少个? (C)			
A. 231;	B. 232;	C. 233;	D. 234
2. 在自然数集 N 上,下列哪种运算满足结合律的? (B)			
A. a*b=a- b	B. a*b=max{a,b}	C. a*b=a+2b	D. a*b= a-b
3 . 在群 G 中方程 ax=b,ya=b,对于 a, b∈ G 都有解,这个解对于这种乘法来			
说是(B)			
A. 不是唯一		B. 唯一的	
C. 不一定唯一的		D. 相同的(两方程解一样)	
4. 当 G 为有限群,子群 H 所含元的个数与任一左陪集 aH 所含元的个数(C)			
A.不相等	B. 0	C. 相等	D. 不一定相等。
5 . 欧拉函数φ(n)是指小于 n 且与 n 互素的数的个数,则φ(60)= (A)			
A. 16;	B. 17;	C. 19;	D. 20
6 . 6 阶群的任何子群一定不是(C)。			
A. 2 阶	B.3 阶	C.4 阶	D.6 阶
7. 下列关于整环的说法错误的是(D)			
A. 乘法适合交换律; B.		没有零因子;	
C. 有单位元;		D. 每个不等于	0 的元素存在逆元。
8. 下列关于除环	的说法错误的是(B)		
A. 至少包括一个不等于 0 的元;		B. 没有零因子;	
C. 有单位元;		D. 每个不等于 0 的元素存在逆元。	
9 . 设 R 为一个环,f: R→S 满同态,下列关于环同态的说法错误的是(B/D)			
A. 若 R 是交换环	下,则 S 是交换环;	B. 若 R 是无零因子,则 S 无零因子;	
C. 若 R 有单位元,则 S 有单位元; D. 以上说法都正确。			
10 . 用 2 种颜色的珠子做成有 5 颗珠子项链,问可做出(D)种不同的项链。			

二、填空题

A. 5;

1. 全体不等于 0 的有理数对于普通乘法来说作成一个群,则这个群元 a 的逆元 是 $\frac{1}{a}$ 。

C. 7;

D. 8

B. 6;

2. 设群 G 中元素 a 的阶为 m,如果 $a^n = e$,那么 m 与 n 存在整除关系为_

m|n o

3. 环 Z₈ 的零因子有 2, 4, 6。

4.一个除环 R 只有 平凡/零与本身/2 个/非真 理想。

5. 设 Z,Q 分别表示整数集合与有理数集合。令 G = (Q,+),H = (Z,+),则商群 G/H 中元素 $H + \frac{q}{p}$ 的阶是____。

三、计算题

1. 设 G 是所有二阶可逆矩阵构成的群,令 A = $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, B = $\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$.

求矩阵 A, B, AB 的阶各是多少?

解:分别计算,

$$A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
, $A^3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $A^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 。故 A 的阶是 4。(4 分) $B^2 = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$, $B^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 。故 B 的阶是 3。(4 分) $AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$,计算可知 $(AB)^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ 。故 AB 的阶是无限。(4 分)

2. 计算循环群 $C_{12} = \{e,g, ,g^{11}\}$ 关于 $H = \{e,g^4,g^8\}$ 的所有右陪集。(满分 12 分)

解: G 的阶为 12, H 的阶为 3,则根据拉格朗日定理, H 在 G 的指数#(G,H) = 4,从而

He =
$$\{e,g^4,g^8\}$$
 = Hg^4 = Hg^8 ; 求出每个结果给 3'
 $Hg = \{g,g^5,g^9\}$ = Hg^5 = Hg^9 ;
 $Hg^2 = \{g^2,g^6,g^{10}\}$ = Hg^6 = Hg^{10} ;
 $Hg^3 = \{g^3,g^7,g^{11}\}$ = Hg^7 = Hg^{11} ;

3、设 $Z_6 = \{[0], [1], [2], [3], [4], [5]\}$ 是模 6 的剩余类环,且 f(x), $g(x) \in Z_6[x]$ 。如果 $f(x) = [3]x^3 + [5]x + [2]$, $g(x) = [4]x^2 + [5]x + [3]$,计算 f(x) + g(x)、f(x) - g(x)和 f(x)g(x)以及它们的次数。

解: (求出每个结果 2',其中系数写法要统一,[0]需要去掉,否则扣 1')

$$f(x) + g(x) = [3]x^{3} + [5]x + [2] + [4]x^{2} + [5]x + [3]$$

$$= [3]x^{3} + [4]x^{2} + [10]x + [5]$$

$$= [3]x^{3} + [4]x^{2} + [4]x + [5]$$

f(x) + g(x)次数为 3 次。

$$f(x) - g(x) = [3]x^3 + [5]x + [2] - ([4]x^2 + [5]x + [3])$$

= $[3]x^3 - [4]x^2 + [-1]$

=
$$[3]x^3 - [4]x^2 + [5]or[3]x^3 + [2]x^2 + [5]$$

f(x) - g(x)次数为 3 次。

$$f(x)g(x) = ([3]x^3 + [5]x + [2]) * ([4]x^2 + [5]x + [3])$$

$$= [12]x^5 + [15]x^4 + [9]x^3 + [20]x^3 + [25]x^2 + [15]x + [8]x^2 + [10]x + [6]$$

$$= [0]x^5 + [3]x^4 + [5]x^3 + [3]x^2 + [1]x + [0]$$

$$= [3]x^4 + [5]x^3 + [3]x^2 + [1]x$$

f(x)g(x)次数为 4 次。

四、证明题

1. 设 G = {0, 1,2,3,4,5,6},G 中的运算为

$$i^{\circ}j = \begin{cases} i+j & i+j \le 6, \\ i+j-7 & i+j > 6 \end{cases}$$

证明: (G,°)是一个交换群。

证明:

(1)画出算法表;

(2)直接证明

对于 $\forall x, y \in G, x^{\circ}y \in \{0, 1, 2, 3, 4, 5, 6\} = G, 则满足封闭性;(2分)$

对于 $\forall x, y, z \in G$, $(x^{\circ}y)^{\circ}z = x^{\circ}(y^{\circ}z)$,结合律成立; (2分)

对于 $\forall x \in G$ 有,取 y = 0,x + y = x ∈ G,则 y = 0 为单位元; (2 分)

另外, $0^{\circ}0 = 0$; $1^{\circ}6 = 0$; $2^{\circ}5 = 0$; $3^{\circ}4 = 0$; $4^{\circ}3 = 0$; $5^{\circ}2 = 0$; $6^{\circ}1 = 0$; 则每个元素均存在逆元;(2 分)

 $\forall x, y \in G, x^{\circ}y = y^{\circ}x, (1 \ \beta)$

则 G 是交换群。

2.设

$$R \ = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a,b,c,d \in Z \right\}, \qquad I = \left\{ \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} \middle| a,c \in Z \right\},$$

已知 R 关于矩阵的加法和乘法作成一个环。证明: I 是 R 的一个子环,但不是理想。

证明:

对于任意 x, yel, reR,设 x =
$$\begin{bmatrix} x_1 & 0 \\ x_2 & 0 \end{bmatrix}$$
, y = $\begin{bmatrix} y_1 & 0 \\ y_2 & 0 \end{bmatrix}$, r = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, 这里 $x_i, y_i \in Z$ 对于

i = 1,2, a,b,c,deZ,则

$$(1) x - y = \begin{bmatrix} x_1 - y_1 & 0 \\ x_2 - y_2 & 0 \end{bmatrix}, \exists x_i - y_i \in Z, 则 x - y \in I; (2 分)$$

$$xy = \begin{bmatrix} x_1 y_1 & 0 \\ x_2 y_2 & 0 \end{bmatrix}, \exists x_i y_i \in Z, 则 xy \in I; (2 分)$$

从而可知,I 是 R 的子环。(1 分)

当x_.b ≠ 0 时, xr ∉ I, (2分)

从而可知,I 不是 R 的理想。(1分)

- (2)还可以举反例证明
- 3. 设 R=2Z,则 I=4Z 为 R 的理想,问
- (1) I 是 R 的极大理想吗? (2分)
- (2) I 是 R 的素理想吗? (2分)
- (3) 证明或者举反例支撑上述结论。(11分)

解:

- (1) I 是 R 的极大理想; (2分)
- (2) I 不是 R 的素理想; (2分)
- (3) 首先证明 I 是 R 的极大理想。

设 $I \subset N \subset R$.但 $I \neq N$, N 为 R 的理想。(1分)

则任意 $a = 2z \in N$,但 $a \notin I$. 故这里 z 为奇数。(2分)

令 z = 1 + 2b,则 2z = 2 + 4b,而 2z, $4b \in N$.所以 $2 = 2z - 4b \in N$,(2分)

从而 2Z = R □ N, 即 R = N. (2分)

所以I为R的极大理想。

再来说明 I 不是 R 的素理想。

由于 $2 \cdot 2 = 4 \in I$,(2分)

但 2 ∉ I.所以 I 不是 R 的素理想。(2 分)