(b)
$$f_x(x,y) = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$
, $f_x(x,y) = \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2}$

(e) Não, uma vez que f_{xy} e f_{yx} não são contínuas

Exercícios 14.4

1.
$$z = -8x - 2y$$
 3. $x - 2y + z = 4$ 5. $z = y$

11.
$$2x + \frac{1}{4}y - 1$$
 13. $x + 1$ **15.** $\frac{1}{2}x + y + \frac{1}{4}\pi - \frac{1}{2}$

17.
$$-\frac{2}{3}x - \frac{7}{3}y + \frac{20}{3}$$
; 2,846 **19.** $\frac{3}{7}x + \frac{2}{7}y + \frac{6}{7}z$; 6,9914

21.
$$4T + H - 329$$
; 129 °F

23.
$$dz = 3x^2 \ln(y^2) dx + (2x^3/y) dy$$

25.
$$du = e^t \operatorname{sen} \theta dt + e^t \cos \theta d\theta$$

27.
$$dw = (x^2 + y^2 + z^2)^{-1}(x dx + y dy + z dz)$$

29.
$$\Delta z = 0.9225$$
, $dz = 0.9$ **31.** 5.4 cm^2 **33.** 16 cm^3

35. 150 **37.**
$$\frac{1}{17} \approx 0.059 \Omega$$
 39. $\varepsilon_1 = \Delta x, \varepsilon_2 = \Delta y$

Exercícios 14.5

1.
$$4(2xy + y^2)t^3 - 3(x^2 + 2xy)t^2$$

3.
$$\pi \cos x \cos y - (\sin x \sin y)/(2\sqrt{t})$$

5.
$$e^{y/z}[2t - (x/z) - (2xy/z^2)]$$

7.
$$\partial z/\partial s = 2x + y + xt + 2yt$$
, $\partial z/\partial t = 2x + y + xs + 2ys$

9.
$$\frac{\partial z}{\partial s} = \frac{4st + \ln t}{1 + (2x + y)^2}, \frac{\partial z}{\partial t} = \frac{2s^2 + s/t}{1 + (2x + y)^2}$$

11.
$$\frac{\partial z}{\partial s} = e^r \left(t \cos \theta - \frac{s}{\sqrt{s^2 + t^2}} \sin \theta \right)$$

$$\frac{\partial \mathbf{z}}{\partial t} = e^r \left(s \cos \theta - \frac{t}{\sqrt{s^2 + t^2}} \sin \theta \right)$$

17.
$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}, \frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t}$$

19.
$$\frac{\partial v}{\partial x} = \frac{\partial v}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial v}{\partial q} \frac{\partial q}{\partial x} + \frac{\partial v}{\partial r} \frac{\partial r}{\partial x}$$

$$\begin{split} \frac{\partial v}{\partial y} &= \frac{\partial v}{\partial p} \frac{\partial p}{\partial y} + \frac{\partial v}{\partial q} \frac{\partial q}{\partial y} + \frac{\partial v}{\partial r} \frac{\partial r}{\partial y}, \\ \frac{\partial v}{\partial z} &= \frac{\partial v}{\partial p} \frac{\partial p}{\partial z} + \frac{\partial v}{\partial q} \frac{\partial q}{\partial z} + \frac{\partial v}{\partial r} \frac{\partial r}{\partial z} \\ \mathbf{21.} \ 85, 178, 54 & \mathbf{23.} \ \frac{9}{7}, \frac{9}{7} & \mathbf{25.} \ 36, 24, 30 \end{split}$$

21. 85, 178, 54 **23.**
$$\frac{9}{7}$$
, $\frac{9}{7}$ **25.** 36, 24, 30

27.
$$\frac{4(xy)^{3/2} - y}{x - 2x^2\sqrt{xy}}$$
 29. $\frac{\sin(x - y) + e^x}{\sin(x - y) - xe^y}$

31.
$$\frac{3yz-2x}{2z-3xy}$$
, $\frac{3xz-2y}{2z-3xy}$

33.
$$\frac{1+y^2z^2}{1+y+y^2z^2}, \frac{z}{1+y+y^2z^2}$$

37. ≈ -0.33 m/s por minuto

39. (a)
$$6 \text{ m}^3/\text{s}$$
 (b) $10 \text{ m}^2/\text{s}$ (c) 0 m/s **41.** -0.27 L/s

43. (a)
$$\partial z/\partial r = (\partial z/\partial x)\cos\theta + (\partial z/\partial y)\sin\theta$$
, $\partial z/\partial\theta = -(\partial z/\partial x)r\sin\theta + (\partial z/\partial y)r\cos\theta$

49.
$$4rs \frac{\partial^2 z}{\partial x^2} + (4r^2 + 4s^2)\frac{\partial^2 z}{\partial x} \frac{\partial y}{\partial y} + 4rs \frac{\partial^2 z}{\partial y}^2 + 2 \frac{\partial z}{\partial y}$$

Exercícios 14.6

1.
$$\approx -0.1 \text{ milibar/mi}$$
 3. ≈ 0.778 5. $\frac{5}{16}\sqrt{3} + \frac{1}{4}$

7. (a)
$$\nabla f(x, y) = \langle 5y^2 - 12x^2y, 10xy - 4x^3 \rangle$$

(b)
$$\langle -4, 16 \rangle$$
 (c) 172/13

9. (a)
$$\langle e^{2yz}, 2xze^{2yz}, 2xye^{2yz} \rangle$$
 (b) $\langle 1, 12, 0 \rangle$ (c) $-\frac{22}{3}$

11. 23/10 **13.**
$$4\sqrt{2}$$
 15. 4/9

17.
$$9/(2\sqrt{5})$$
 19. $2/5$ 21. $4\sqrt{2}$, $\langle -1, 1 \rangle$ 23. $1, \langle 0, 1 \rangle$

25.
$$\sqrt{3}$$
, $\langle 1, -1, -1 \rangle$ **27.** (b) $\langle -12, 92 \rangle$

29. Todos os pontos da reta
$$y = x + 1$$
 31. (a) $-40/(3\sqrt{3})$

33. (a)
$$32/\sqrt{3}$$
 (b) $\langle 38, 6, 12 \rangle$ (c) $2\sqrt{406}$ **35.** $\frac{327}{13}$

39. (a)
$$4x - 2y + 3z = 21$$
 (b) $\frac{x-4}{8} = \frac{y+1}{-4} = \frac{z-1}{6}$

41. (a)
$$4x - 5y - z = 4$$
 (b) $\frac{x-2}{4} = \frac{y-1}{-5} = \frac{z+1}{-1}$

43. (a)
$$x + y - z = 1$$
 (b) $x - 1 = y = -z$
45. (4, 8), $x + z = 1$

53.
$$(\pm\sqrt{6}/3, \mp2\sqrt{6}/3, \pm\sqrt{6}/2)$$

59.
$$x = -1 - 10t$$
, $y = 1 - 16t$, $z = 2 - 12t$

63. Se
$$\mathbf{u} = \langle a, b \rangle$$
 e $\mathbf{v} = \langle c, d \rangle$, então $af_x + bf_y$ e $cf_x + df_y$ são conhecidas; logo, vamos resolver as equações lineares para f_x e f_y .