### COMP498G/691G COMPUTER VISION

LECTURE 17
PHOTOMETRIC STEREO



### Administrative

- Assignment #3 due
- Project assigned
  - Hard deadline: 11 April 2017
  - Demo in class/tutorial
- Tonight's tutorial
  - Quiz #1 demo



# Today's Lecture

- Photometric Stereo
  - Project
- Slides acknowledgment: Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce
- Questions



### Photometric Stereo



Merle Norman Cosmetics, Los Angeles

#### Readings

- Optional: Woodham's original photometric stereo paper
  - http://www.cs.ubc.ca/~woodham/papers/Woodham80c.pdf

#### Diffuse reflection





$$R_e = k_d \mathbf{N} \cdot \mathbf{L} R_i$$
 image intensity of P  $\longrightarrow$   $I = k_d \mathbf{N} \cdot \mathbf{L}$ 

#### Simplifying assumptions

- I = R<sub>e</sub>: camera response function f is the identity function:
- can always achieve this in practice by solving for f and applying f<sup>-1</sup> to each pixel in the image
- R<sub>i</sub> = 1: light source intensity is 1
- can achieve this by dividing each pixel in the image by R<sub>i</sub>

# Shape from shading



Suppose 
$$k_d = 1$$

$$I = k_d \mathbf{N} \cdot \mathbf{L}$$

$$= \mathbf{N} \cdot \mathbf{L}$$

$$= \cos \theta_i$$



You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example
- assume a few of the normals are known (e.g., along silhouette)
- constraints on neighboring normals—"integrability"
- smoothness
- Hard to get it to work well in practice
- plus, how many real objects have constant albedo?

#### Photometric stereo



Can write this as a matrix equation:

# Solving the equations

$$\begin{bmatrix} I_1 & \dots & I_n \end{bmatrix} = k_d \mathbf{N}^T \begin{bmatrix} \mathbf{L}_1 & \dots & \mathbf{L}_n \end{bmatrix}$$

$$\begin{matrix} \mathbf{G} \\ \mathbf{G}_{1 \times 3} & \mathcal{L}_{3 \times 3} \end{matrix}$$

$$\mathbf{G} = \mathbf{I} \mathbf{L}^{-1}$$

$$k_d = ||\mathbf{G}||$$

$$\mathbf{N} = \frac{1}{k_d} \mathbf{G}$$

### More than three lights

Get better results by using more lights

$$\left[\begin{array}{cccc}I_1 & \dots & I_n\end{array}\right] = k_d \mathbf{N}^T \left[\begin{array}{cccc}\mathbf{L_1} & \dots & \mathbf{L_n}\end{array}\right]$$

Least squares solution:

$$I = GL$$

$$IL^{T} = GLL^{T}$$

$$G = (IL^{T})(LL^{T})^{-1}$$

Solve for N, k<sub>d</sub> as before

What's the size of  $LL^{T}$ ?

### Color images

#### The case of RGB images

get three sets of equations, one per color channel:

$$\mathbf{I}_R = k_{dR} \mathbf{N}^T \mathcal{L}$$
 call this J  $\mathbf{I}_G = k_{dG} \mathbf{N}^T \mathcal{L}$   $\mathbf{I}_B = k_{dB} \mathbf{N}^T \mathcal{L}$ 

- Simple solution: first solve for N using one channel
- Then substitute known N into above equations to get k<sup>d</sup> s:

$$\mathbf{I}_R = k_{dR}\mathbf{J}$$
 $\mathbf{J} \cdot \mathbf{I}_R = k_{dR}\mathbf{J} \cdot \mathbf{J}$ 
 $k_{dR} = \frac{\mathbf{J} \cdot \mathbf{I}_R}{\mathbf{J} \cdot \mathbf{J}}$ 

# Computing light source directions

Trick: place a chrome sphere in the scene



the location of the highlight tells you where the light source is

For a perfect mirror, light is reflected about N



$$R_e = \begin{cases} R_i & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

We see a highlight when V = R

$$L = 2(N \cdot R)N - R$$

For a perfect mirror, light is reflected about N



$$R_e = \begin{cases} R_i & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

We see a highlight when V = R

$$L = 2(N \cdot R)N - R$$

For a perfect mirror, light is reflected about N



$$R_e = \begin{cases} R_i & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

We see a highlight when V = R

$$L = 2(N \cdot R)N - R$$

For a perfect mirror, light is reflected about N



$$R_e = \begin{cases} R_i & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

We see a highlight when V = R

$$L = 2(N \cdot R)N - R$$

# Computing the light source direction

Chrome sphere that has a highlight at position h in the image



Can compute θ (and hence N) from this figure Now just reflect V about N to obtain L

# Computing the light source direction

Chrome sphere that has a highlight at position h in the image



#### Can compute N by studying this figure

- Hints:
  - use this equation:  $\|H-C\|=r$
  - can measure c, h, and r in the image
  - can choose cz = 0

# Depth from normals



Get a similar equation for V<sub>2</sub>

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

### Results...







Normals



Normals



Shaded rendering

Textured rendering

### Results...





from Athos Georghiades

http://cvc.yale.edu/people/Athos.html

#### Limitations

#### Big problems

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections

#### Smaller problems

- camera and lights have to be distant
- calibration requirements
  - measure light source directions, intensities
  - camera response function

### Trick for handling shadows

Weight each equation by the pixel brightness:

$$I_i(I_i) = I_i[k_d \mathbf{N} \cdot \mathbf{L_i}]$$

Gives weighted least-squares matrix equation:

$$\begin{bmatrix} I_1^2 & \dots & I_n^2 \end{bmatrix} = k_d \mathbf{N}^T \begin{bmatrix} I_1 \mathbf{L_1} & \dots & I_n \mathbf{L_n} \end{bmatrix}$$

Solve for N, k<sub>d</sub> as before

#### CONCORDIA.CA

#### Copyright © Charalambos Poullis

### Diffuse Reflection

- Diffuse reflector scatters light equally to all directions
- .Called Lambertian surface
- Diffuse reflection coefficient  $k_d$ ,  $0 \le k_d \le 1$

- -What happens if the lighting direction is changed?
- -What happens if the viewer's direction is changed?





#### Diffuse Reflection

- Diffuse reflector scatters light equally to all directions
- -Called Lambertian surface
- Diffuse reflection coefficient  $k_d$ , 0 ≤  $k_d$  ≤ 1
- Only the angle of incoming light is important
  - -What happens if the lighting direction is changed?
  - -What happens if the viewer's direction is changed?





### Lambert's Law

Intensity depends on angle of incoming light







# Diffuse Light Intensity Depends on Angle of Incoming Light Recall

I = unit vector to light n = unit surface normal  $\theta$  = angle to normal

- $\cos \theta = | \cdot n|$
- $\cdot I_d = k_d L_d (I \cdot n)$
- With attenuation:

$$\mathbf{I}_d = \frac{k_d L_d}{a + bq + cq^2} (l \cdot n)$$
 q = distance to light 
$$\mathbf{L}_d = \text{diffuse component of light}$$

