

SEQUENCE LISTING

<110> Bayer AG

<120> ATP binding cassette genes and proteins for diagnosis
and treatment of lipid disorders and inflammatory
diseases

<130> ATP binding cassette genes and protein

<140>

<141>

<150> 101706

<151> 1998-09-25

<160> 54

<170> PatentIn Ver. 2.0

<210> 1

<211> 6880

<212> DNA

<213> Human

<220>

<223> cDNA of ABCA1 (ABC1)

<400> 1

caaacatgtc agctgttact ggaagtggcc tggcctctat ttatcttcct gatcctgatc 60
tctgttcggc tgagctaccc acccttatgaa caacatgaat gccattttcc aaataaaagcc 120
atgccctctg caggaacact tccttgggtt caggggatta tctgtaatgc caacaacccc 180
tgtttccgtt acccgactcc tggggaggct cccggagttt ttggaaactt taacaaaatcc 240
attgtggctc gcctgttctc agatgctcg aggcttcttt tatacagcca gaaagacacc 300
agcatgaagg acatgcgcaa agttctgaga acattacagc agatcaagaaa atccagctca 360
aacttgaagc ttcaagattt cctgggtggac aatgaaacct tctctgggtt cctgtatcac 420
aacctctctc tcccaaagtc tactgtggac aagatgctga gggctgtatgt cattctccac 480
aaggtagttt tgcaaggcta ccagttacat ttgacaagtc tgtcaatgg atcaaaaatca 540
gaagagatga ttcaacttgg tgaccaagaa gtttctgagc tttgtggcct accaaggggag 600
aaactggctg cagcagagcg agtacttcgt tccaacatgg acatcctgaa gccaatcctg 660
agaacactaa actctacatc tcccttccccg agcaaggagc tggccgaagc cacaaaaaca 720
ttgctgcata gtcttgggac tctggcccaag gagctgttca gcatgagaag ctggagtgac 780
atgcgacagg aggtgatgtt tctgaccaat gtgaacagct ccagctcctc cacccaaatc 840
taccaggctg tgtctcgat tgcgtcgaaa catccccagg gagggggggct gaagatcaag 900
tctctcaact ggtatgagga caacaaactac aaaggccctt ttggaggccaa tggcaactgag 960
gaagatgctg aaaccttcta tgacaaactct acaactcctt actgcaatga tttgatgaag 1020
aatttggagt cttagccctt ttccccgcatt atctggaaag ctctgaagcc gctgctcggtt 1080
ggaaagatcc tgtatacacc tgacactcca gccacaaaggc aggtcatggc tgaggtaac 1140
aagaccttcc aggaactggc tgcgttccat gatctggaaag gcatgtggga ggaactcagc 1200
cccaagatct ggaccttcat ggagaacagc caagaaatgg accttgcgg gatgctgttg 1260
gacagcaggc acaatgacca cttttggaa cagcagttgg atggctttaga ttggacagcc 1320
caagacatcg tggcggtttt ggccaaagcc ccagaggatg tccagtcgg taatggttct 1380
gtgtacacct ggagagaagc ttcaacgcg actaaccagg caatccggac catatctcg 1440
ttcatggagt gtgtcaacct gaacaagcta gaaccatag caacagaagt ctggctcatc 1500
aacaagtcca tggagctgct ggatgagagg aagttctggg ctggattgtt gttcaactgga 1560
attactccag gcagcattga gctgccccat catgtcaagt acaagatccg aatggacatt 1620
gacaatgtgg agaggacaaa taaaatcaag gatgggtact gggaccctgg tcctcgagct 1680

gaccctttg aggacatgcg gtacgtctgg gggggcttcg cctacttgca ggatgtggtg 1740
gagcaggcaa tcatacggtt gctgacgggc accgagaaga aaactggtgt ctatatgcaa 1800
cagatgccct atccctgtta cggtatgac atcttctgc ggggtatgag ccggatcatg 1860
ccccttca tgacgctggc ctggattac tcagtggctg tgatcatcaa gggcatctg 1920
tatgagaagg aggcacggct gaaagagacc atgcggatca tgggcctgga caacagcatc 1980
ctctggttt gctgggtcat tagtagcctc attcctcttc ttgtgagcgc tggcctgcta 2040
gtggcatcc tgaagttagg aaacctgtc ccctacagtg atcccagcgt ggtgtttgtc 2100
ttcctgtccg tggttgcgt ggtgacaatc ctgcagtgtc tcctgattag cacactcttc 2160
tccagagcca acctggcagc agcctgtggg ggcacatct acttcacgct gtacctgccc 2220
tacgtctgt gtgtggcatg gcaggactac gtgggcttca cactcaagat ctgccttagc 2280
ctgctgtctc ctgtggctt tgggttggc tggactact ttgcctttt tgaggagcag 2340
ggcattggag tgcagtggga caacctgtt gagagtctg tggaggaaga tggcttaat 2400
ctcaccactt cggctccat gatgctgtt gacaccccttca tctatgggtt gatgacctgg 2460
tacattgagg ctgtcttcc aggccagttac ggaatttcca ggcacccctgg tttcccttgc 2520
accaagtctt actgggttgg cgaggaaagt gatgagaaga gccacccctgg ttccaaccag 2580
aagagaatat cagaatctg catggaggag gaacccaccc acttgaagct gggcgtgtcc 2640
attcagaacc tggtaaaagt ctaccgagat gggatgaaagg tggctgtca tggcctggca 2700
ctgaattttt atgagggcca gatcacctcc ttctgggca acaatggagc gggaaagacg 2760
accaccatgt caatcctgac cgggttgttccccgaccc cgggcacccgc ctacatctg 2820
ggaaaagaca ttgcgtctga gatgagcacc atccggcaga acctgggggt ctgtccccag 2880
cataacgtgc tggttgcacat gctgactgtc gaagaacaca tctggttcta tgcccgctt 2940
aaaggcgtct ctgagaagca cgtgaaggcg gagatggagc agatggccct ggtgtttgt 3000
ttgccatcaa gcaagctgaa aagcaaaaca agccagctgt caggtgaaat gcagagaaag 3060
ctatctgtgg cttggcctt tgcggggga tctaagggtt tcattctgga tgaacccaca 3120
gctgggttgg acccttactc cgcaggggga atatggagc tgctgtcaat ataccgacaa 3180
ggccgcacca ttattcttc tacacaccac atggatgaaag cggacgtctt gggggacagg 3240
attgccatca tctccatgg gaagctgtc tgcgtggctt cttccctgtt tctgaagaac 3300
cagctggaa caggctacta cctgaccccttgcgtcaagaaatgatggaaatc ctccctcagt 3360
tcctgcagaa acagtagtag cactgtgtca tacctgaaaa aggaggacag tggttctcag 3420
agcagttctg atgctggcct gggcagcgc acatgactgac catcgatgtc 3480
tctgctatct ccaacccat caggaagcat gatgctgttgc cccggctgtt ggaagacata 3540
ggcatgagc tgacctatgt gctgcataat gaagctgtca aggaggagc ctttggaa 3600
ctcttcatg agattgtatc cccgctctca gacctggca ttcttagtta tggcatctca 3660
gagacgaccc tggaaagaaat ttcctcaag gtcggcgaag agatgggggt ggtgtgtgag 3720
acctcagatg gtaccttgcc agcaagacga aacaggcggg cttcggggga caagcagagc 3780
tgtctcgcc cgttcaactgaaatgatgtc gctgatccaa atgattctgaaatcatacacc 3840
gaatccagag agacagactt gctcagtggg atggatggca aagggttcaatccagggtgaaa 3900
ggctggaaac ttacacagca acagttgtt gcccctttgtt ggaagagact gctaattgcc 3960
agacggagtc gggaaaggatt ttttgcctgat attgtcttgc cagctgtgtt tgcgtcatt 4020
gcccttgcgt tcaagccatc cgtgccaccc ttggcaagt accccagcctt ggaacttcag 4080
ccctggatgt acaacgaaca gtacacattt gtcagcaatg atgcctctgaaatcatacacc 4140
accctggaaac tcttaaacgc cctcaccaaa gaccctggct tcgggacccg ctgtatggaa 4200
ggaaacccaa tcccagacac gccctgcccag gcaggggagg aagagtggac cactgcccc 4260
gttcccaaga ccatcatgga cctcttccag aatggaaact ggacaatgca gaacccttca 4320
cctgcatttcc agtgttagcag cgacaaaatc aagaagatgc tgcctgtgt tccccccagg 4380
gcaggggggc tgcccttcc aaaaagaaaaaaa caaaacactg cagatatcct tcaggaccc 4440
acaggaagaa acatccgga ttatctgggt aagacgtatg tgcagatcat agccaaaagc 4500
ttaaaaaca agatctgggtt gaaatggatgtt aggtatggcg gttttccctt ggggtgtcagt 4560
aatactcaag cacttcctcc gaggtaagaa gttaatgtatg ccaccaaaaca aatgaagaaaa 4620
cacctaaagc tggccaagga cagttctgca gatcgatttcaacatgctt gggaaagattt 4680
atgacaggac tggacaccatc aaaaatgtc aaggtgtgtt tcaataacaa gggctggcat 4740
gcaatcgatc ttttcctgaa tgcgtatcaac aatgcatttcc gtcggccaa cctgcggaa 4800
ggagagaacc ctagccatta tggaaattact gtttcaatc atcccctgaaatcatacacc 4860
cagcagctt cagagggtggc tccgatgacc acatcgtgg atgtccttgc tgcgtcattt 4920
gtcatcttgc caatgtccctt cgtcccagcc agctttgtcg tattcctgtatcatacacc 4980
gtcagcaag caaaacaccc gcaatgtatc agtggaggtga agcctgtcat ctactggctc 5040
tctaattttt tctggatgtt gtcattttt gttgtccctg ccacactgtt cattatcatc 5100

ttcatctgct tccagcagaa gtcctatgtg tcctccacca atctgcctgt gctagccctt 5160
ctactttgc tgtatgggtg gtcaatcaca cctctcatgt acccagcctc ctttgttgc 5220
aagatccccca gcacagccta tgtgggtc accagcgtga acctcttcat tggcattaat 5280
ggcagcgtgg ccaccttgc gctggagctg ttcaccgaca ataagctgaa taatatcaat 5340
gatatcctga agtccgtgtt cttgatcttc ccacatttt gcctgggacg agggctcatc 5400
gacatggtga aaaaccaggc aatggctgat gccctggaaa ggtttgggaa gaatcgctt 5460
gtgtcaccat tatcttgga ctgggtgggaa ccaaacctct tcgccatggc cgtggaaagg 5520
gtggtgttct tcctcattac tggctgtatc cagtacagat tcttcattcaag gcccagac 5580
gtaaatgcaa agtatctcc tctgaatgat gaagatgaag atgtgaggcg ggaaagacag 5640
agaattctt atgggtggagg ccagaatgac atcttagaaa tcaaggagtt gacgaagata 5700
tatagaagga agcggaaagcc tgctgttgc aggatttgcg tggcattcc tcctggtgag 5760
tgctttggc tcctgggagt taatgggct ggaaaatcat caacttcaa gatgttaaca 5820
ggagatacca ctgttaccag aggagatgtt ttccttaaca gaaatagtat cttatcaa 5880
atccatgaag tacatcagaa catgggctac tgccctcagt ttgatgccat cacagagctg 5940
ttgactgggaa gagaacacgt ggagttctt gccctttga gaggagtccc agagaaaagaa 6000
gttggcaagg ttggtgagt ggcgattcgg aaactggcc tcgtgaagta tggagaaaaa 6060
tatgctggta actatagtgg aggcaacaaa cgcaagctct ctacagccat ggctttgatc 6120
ggcgccctc ctgtgggtt tctggatgaa cccaccacag gcatggatcc caaagcccg 6180
cggttctgt ggaattgtgc cctaagtgtt gtcaaggagg ggagatcagt agtgcttaca 6240
tctcatagta tggagaatg tgaagctt tgcactagga tggcaatcat ggtcaatgg 6300
agttcaggt gccttggcag tgtccagcat ctaaaaaata ggtttggaga tggttataca 6360
atagttgtac gaatagcagg gtccaaccccg gacctaaggc ctgtccaggaa tttctttgg 6420
cttgcatttc ctggaagtgt tccaaaagag aaacaccgga acatgctaca ataccagctt 6480
ccatcttcat tatcttctt ggcaggata ttcagcatcc tctcccgag caaaaagcga 6540
ctccacatag aagactactc tggcttcag acaacactt accaagtatt tgtgaactt 6600
gccaaggacc aaagtgtatga tgaccactta aaagacctct cattacacaa aaaccagaca 6660
gtatggacg ttgcagttct cacatcttt ctacaggatg agaaaagtgaa agaaaagctat 6720
gtatgaagaa tcctgttcat acgggggtggc tggaaagtaaa gagggacttag actttcctt 6780
gcaccatgtg aagtgttgcg gggaaaagag ccagaagttt atgtggaaag aagtaaaactg 6840
gatactgtac tgatactatt caatgcaatg caattcaatg 6880

<210> 2

<211> 2201

<212> PRT

<213> Human

<220>

<223> Peptide sequence of ABCA1 (ABC1)

<400> 2

Met Pro Ser Ala Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn
1 5 10 15

Ala Asn Asn Pro Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly
20 25 30

Val Val Gly Asn Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp
35 40 45

Ala Arg Arg Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp
50 55 60

Met Arg Lys Val Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Ser
65 70 75 80

Asn Leu Lys Leu Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly
85 90 95

Phe Leu Tyr His Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met
100 105 110

Leu Arg Ala Asp Val Ile Leu His Lys Val Phe Leu Gln Gly Tyr Gln
115 120 125

Leu His Leu Thr Ser Leu Cys Asn Gly Ser Lys Ser Glu Glu Met Ile
130 135 140

Gln Leu Gly Asp Gln Glu Val Ser Glu Leu Cys Gly Leu Pro Arg Glu
145 150 155 160

Lys Leu Ala Ala Ala Glu Arg Val Leu Arg Ser Asn Met Asp Ile Leu
165 170 175

Lys Pro Ile Leu Arg Thr Leu Asn Ser Thr Ser Pro Phe Pro Ser Lys
180 185 190

Glu Leu Ala Glu Ala Thr Lys Thr Leu Leu His Ser Leu Gly Thr Leu
195 200 205

Ala Gln Glu Leu Phe Ser Met Arg Ser Trp Ser Asp Met Arg Gln Glu
210 215 220

Val Met Phe Leu Thr Asn Val Asn Ser Ser Ser Ser Thr Gln Ile
225 230 235 240

Tyr Gln Ala Val Ser Arg Ile Val Cys Gly His Pro Glu Gly Gly
245 250 255

Leu Lys Ile Lys Ser Leu Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala
260 265 270

Leu Phe Gly Gly Asn Gly Thr Glu Glu Asp Ala Glu Thr Phe Tyr Asp
275 280 285

Asn Ser Thr Thr Pro Tyr Cys Asn Asp Leu Met Lys Asn Leu Glu Ser
290 295 300

Ser Pro Leu Ser Arg Ile Ile Trp Lys Ala Leu Lys Pro Leu Leu Val
305 310 315 320

Gly Lys Ile Leu Tyr Thr Pro Asp Thr Pro Ala Thr Arg Gln Val Met
325 330 335

Ala Glu Val Asn Lys Thr Phe Gln Glu Leu Ala Val Phe His Asp Leu
340 345 350

Glu Gly Met Trp Glu Glu Leu Ser Pro Lys Ile Trp Thr Phe Met Glu
355 360 365

Asn Ser Gln Glu Met Asp Leu Val Arg Met Leu Leu Asp Ser Arg Asp
370 375 380

Asn Asp His Phe Trp Glu Gln Gln Leu Asp Gly Leu Asp Trp Thr Ala
385 390 395 400

Gln Asp Ile Val Ala Phe Leu Ala Lys His Pro Glu Asp Val Gln Ser
405 410 415

Ser Asn Gly Ser Val Tyr Thr Trp Arg Glu Ala Phe Asn Glu Thr Asn
420 425 430

Gln Ala Ile Arg Thr Ile Ser Arg Phe Met Glu Cys Val Asn Leu Asn
435 440 445

Lys Leu Glu Pro Ile Ala Thr Glu Val Trp Leu Ile Asn Lys Ser Met
450 455 460

Glu Leu Leu Asp Glu Arg Lys Phe Trp Ala Gly Ile Val Phe Thr Gly
465 470 475 480

Ile Thr Pro Gly Ser Ile Glu Leu Pro His His Val Lys Tyr Lys Ile
485 490 495

Arg Met Asp Ile Asp Asn Val Glu Arg Thr Asn Lys Ile Lys Asp Gly
500 505 510

Tyr Trp Asp Pro Gly Pro Arg Ala Asp Pro Phe Glu Asp Met Arg Tyr
515 520 525

Val Trp Gly Gly Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile
530 535 540

Ile Arg Val Leu Thr Gly Thr Glu Lys Lys Thr Gly Val Tyr Met Gln
545 550 555 560

Gln Met Pro Tyr Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met
565 570 575

Ser Arg Ser Met Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val
580 585 590

Ala Val Ile Ile Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys
595 600 605

Glu Thr Met Arg Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser
610 615 620

Trp Phe Ile Ser Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu
625 630 635 640

Val Val Ile Leu Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser
645 650 655

Val Val Phe Val Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln
660 665 670

Cys Phe Leu Ile Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala
675 680 685

Cys Gly Gly Ile Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys
690 695 700

Val Ala Trp Gln Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser
705 710 715 720

Leu Leu Ser Pro Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu
725 730 735

Phe Glu Glu Gln Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser
740 745 750

Pro Val Glu Glu Asp Gly Phe Asn Leu Thr Thr Ser Val Ser Met Met
755 760 765

Leu Phe Asp Thr Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala
770 775 780

Val Phe Pro Gly Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys
785 790 795 800

Thr Lys Ser Tyr Trp Phe Gly Glu Ser Asp Glu Lys Ser His Pro
805 810 815

Gly Ser Asn Gln Lys Arg Ile Ser Glu Ile Cys Met Glu Glu Glu Pro
820 825 830

Thr His Leu Lys Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr
835 840 845

Arg Asp Gly Met Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr
850 855 860

Glu Gly Gln Ile Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr
865 870 875 880

Thr Thr Met Ser Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr
885 890 895

Ala Tyr Ile Leu Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg
900 905 910

Gln Asn Leu Gly Val Cys Pro Gln His Asn Val Leu Phe Asp Met Leu
915 920 925

Thr Val Glu Glu His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser
930 935 940

Glu Lys His Val Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly
945 950 955 960

Leu Pro Ser Ser Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly
965 970 975

Met Gln Arg Lys Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys
980 985 990

Val Val Ile Leu Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg
995 1000 1005

Arg Gly Ile Trp Glu Leu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile
1010 1015 1020

Ile Leu Ser Thr His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg
1025 1030 1035 1040

Ile Ala Ile Ile Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu
1045 1050 1055

Phe Leu Lys Asn Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys
1060 1065 1070

Lys Asp Val Glu Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr
1075 1080 1085

Val Ser Tyr Leu Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp
1090 1095 1100

Ala Gly Leu Gly Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val
1105 1110 1115 1120

Ser Ala Ile Ser Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu
1125 1130 1135

Val Glu Asp Ile Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala
1140 1145 1150

Ala Lys Glu Gly Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg
1155 1160 1165

Leu Ser Asp Leu Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu
1170 1175 1180

Glu Glu Ile Phe Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu
1185 1190 1195 1200

Thr Ser Asp Gly Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly
1205 1210 1215

Asp Lys Gln Ser Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp
1220 1225 1230

Pro Asn Asp Ser Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu
1235 1240 1245

Ser Gly Met Asp Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu
1250 1255 1260

Thr Gln Gln Gln Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala
1265 1270 1275 1280

Arg Arg Ser Arg Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val
1285 1290 1295

Phe Val Cys Ile Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly
1300 1305 1310

Lys Tyr Pro Ser Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr
1315 1320 1325

Thr Phe Val Ser Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu
1330 1335 1340

Leu Asn Ala Leu Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu
1345 1350 1355 1360

Gly Asn Pro Ile Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Trp
1365 1370 1375

Thr Thr Ala Pro Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly
1380 1385 1390

Asn Trp Thr Met Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp
1395 1400 1405

Lys Ile Lys Lys Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu
1410 1415 1420

Pro Pro Pro Gln Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu
1425 1430 1435 1440

Thr Gly Arg Asn Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile
1445 1450 1455

Ile Ala Lys Ser Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr
1460 1465 1470

Gly Gly Phe Ser Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser
1475 1480 1485

Gln Glu Val Asn Asp Ala Thr Lys Gln Met Lys Lys His Leu Lys Leu
1490 1495 1500

Ala Lys Asp Ser Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe
1505 1510 1515 1520

Met Thr Gly Leu Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn
1525 1530 1535

Lys Gly Trp His Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala
1540 1545 1550

Ile Leu Arg Ala Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly
1555 1560 1565

Ile Thr Ala Phe Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser
1570 1575 1580

Glu Val Ala Pro Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys
1585 1590 1595 1600

Val Ile Phe Ala Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu
1605 1610 1615

Ile Gln Glu Arg Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly
1620 1625 1630

Val Lys Pro Val Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys
1635 1640 1645

Asn Tyr Val Val Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe
1650 1655 1660

Gln Gln Lys Ser Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu
1665 1670 1675 1680

Leu Leu Leu Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala
1685 1690 1695

Ser Phe Val Phe Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser
1700 1705 1710

Val Asn Leu Phe Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu
1715 1720 1725

Glu Leu Phe Thr Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys
1730 1735 1740

Ser Val Phe Leu Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile
1745 1750 1755 1760

Asp Met Val Lys Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly
1765 1770 1775

Glu Asn Arg Phe Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn
1780 1785 1790

Leu Phe Ala Met Ala Val Glu Gly Val Val Phe Leu Ile Thr Val
1795 1800 1805

Leu Ile Gln Tyr Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys
1810 1815 1820

Leu Ser Pro Leu Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln
1825 1830 1835 1840

Arg Ile Leu Asp Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu
1845 1850 1855

Leu Thr Lys Ile Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile
1860 1865 1870

Cys Val Gly Ile Pro Pro Gly Glu Cys Phe Gly Leu Leu Gly Val Asn
1875 1880 1885

Gly Ala Gly Lys Ser Ser Thr Phe Lys Met Leu Thr Gly Asp Thr Thr
1890 1895 1900

Val Thr Arg Gly Asp Ala Phe Leu Asn Arg Asn Ser Ile Leu Ser Asn
1905 1910 1915 1920

Ile His Glu Val His Gln Asn Met Gly Tyr Cys Pro Gln Phe Asp Ala
1925 1930 1935

Ile Thr Glu Leu Leu Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu
1940 1945 1950

Leu Arg Gly Val Pro Glu Lys Glu Val Gly Lys Val Gly Glu Trp Ala
1955 1960 1965

Ile Arg Lys Leu Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn
1970 1975 1980

Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile
1985 1990 1995 2000

Gly Gly Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp
2005 2010 2015

Pro Lys Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys
2020 2025 2030

Glu Gly Arg Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu
2035 2040 2045

Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys
2050 2055 2060

Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr
2065 2070 2075 2080

Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln
2085 2090 2095

Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Pro Lys Glu Lys His
2100 2105 2110

Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala
2115 2120 2125

Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu
2130 2135 2140

Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe Val Asn Phe
2145 2150 2155 2160

Ala Lys Asp Gln Ser Asp Asp His Leu Lys Asp Leu Ser Leu His
2165 2170 2175

Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln
2180 2185 2190

Asp Glu Lys Val Lys Glu Ser Tyr Val
2195 2200

<211> 1130

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB9

<400> 3

gccaatgnca cggttcatc atggaactcc aggacggcta cagcacagag acaggggaga 60
agggcgccca gctgtcaggt ggccagaagc agcgggtggc catggccng gctctgggc 120
ggaaccccccc agtcctcata ctggatgaag ccaccagcgc tttggatgcc gagagcgagt 180
atctgatcca gcaggccatc catggcaacc tgtcagaagc acacggtaact catcatcgcg 240
caccggctga gcaccgtgga gcacgcgcac ctcattgtgg tgctggacaa gggccgcgta 300
gtgcagcagg gcacccacca gcagcttgct tgcccaggg cgggctttt cggcaagctn 360
gttgcagcgg cagatgtggg gttcaaggc cgcaagactc acagctggcc acaacgagcc 420
tgttagccaac gggtcacaag gcctgatggg gggccctcc ttgcggcggg ggcagaggac 480
ccggtgcctg cctggcagat gtgcccacgg aggttccag ctgcccattacc gagcccaggc 540
ctgcagcaact gaaagacgac ctgcattgtc ccatgatcac cgcttntgca atcttgcctt 600
tggccctgc cccatttcca gggcaactt accccnnct ggggatgtc caagagcata 660
gtcctctccc cataccctc cagagaaggg gcttccctgt ccggagggag acacgggaa 720
cgggattttc cgtctctccc tcttgcacgc tctgtgagtc tggccagggc gggtagggag 780
cgtggaggc atctgtctgc caattgcccctg ctcacatct aagccagttt cactgtgacc 840
acacgaaacc tcaactgggg gagtgaggag ctggccaggt ctggaggggc ctcaggtgcc 900
cccagcccg caccctgtt tcgcccctcg tcaatcaacc ctcggctggc agccgcctc 960
cccacacccg cccctgtctg ctcacatctt gaggccacgt ggaccttcat gagatgcatt 1020
ctcttctgtc tttggtgan gggatggtgc aaagcccagg atctggctt gccagaggtt 1080
gcaacatgtt gagagaaccc ggtcaataaa gtgtactacc tcttaccctc 1130

<210> 4

<211> 1304

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA6

<400> 4

tcttagatga gaaacctgtt ataattgcca gctgtctaca caaagaatat gcaggccaga 60
agaaaagttt ctttcaaag aggaagaaga aaatagcagc aagaatatac tctttctgtg 120
ttcaagaagg tgaaattttg ggattgctag gaccaatgg tgctggaaaa agttcatcta 180
tttagaatgt atctggatc acaaagccaa ctgctggaga ggtggaaactg aaaggctgca 240
gttcagttt gggccacctg gggtaactgcc ctcaagagaa cgtgctgtgg cccatgtca 300
cggtgaggga acacctggag gtgtatgtc cctgtcaaggc gctcaggaaa gcggacgcga 360
ggctcgccat cgcaagatta gtgagtgtt tcaaactgca tgagcagctg aatgttccctg 420
tgcagaaattt aacagcagga atcacgagaa agttgtgtt tgcgtgagc ctcctggaa 480
actcacctgt ctgtctcctg gatgaaccat ctacggccat aacccacag ggcagcagca 540
aatgttggca ggcaatccag gcagtgcgtt aaaacacaga gagaggtgtc ctcctgacca 600
cccataaccc ggctgaggcg gaagccttgc ttgcaccgtgt ggcacatcatg gtgtctggaa 660
ggcttagatg cattggctcc atccaacacc tggaaaaacaa acttggcaag gattacattc 720
tagagctaaa agtgaaggaa acgtctcaag tgactttgtt ccacactgag attctgaagc 780
ttttcccaca ggctgcaggc caggaaaggat attccctttt gttaaacctat aagctgcccc 840
gtggcagacg ttacccttct atcacagacc ttgcacaaat tagaagcagt gaaagcataa 900
ctttaacctg gaagaataca gccttctcc agtgcacact gganaaggtn tccttanaac 960
cttccctaaan aacaggaagt taggaaattt tgaatgaaaa nnnaccnccc cccctcattc 1020
aggtggaaacc ttaaaaacctc aaaccttagta atttttgtt gatctccttat aaaacttatg 1080
tttatgtaa taattaatag tatgtttaat tttaaagatc atttaaaattt aacatcaggt 1140
atattttgtt aatttagtta acaaatacat aaattttaaa attattcttc ctctcaaaaca 1200

taggggtgat agcaaacctg tgataaaggc aataaaaaat attagtaaag tcacccaaag 1260
agtcaaggcac tggattgt ggaaataaaa ctatataaac tttaa 1304

<210> 5
<211> 65
<212> PRT
<213> Human

<220>
<223> Partial peptide sequence of ABCG1 (ABC8)

<400> 5
Val Ser Phe Asp Thr Ile Pro Thr Tyr Leu Gln Trp Met Ser Tyr Ile
1 5 10 15

Ser Tyr Val Arg Tyr Gly Phe Glu Gly Val Ile Leu Ser Ile Tyr Gly
20 25 30

Leu Asp Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe
35 40 45

Gln Lys Ser Glu Ala Ile Leu Arg Glu Leu Asp Val Glu Asn Ala Lys
50 55 60

Leu
65

<210> 6
<211> 4864
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC2 (MRP2)

<400> 6
atagaagagt cttcggttcca gacgcagtcc aggaatcatg ctggagaagt tctgcaactc 60
tactttttgg aattcctcat tcctggacag tccggaggca gacctgccac tttgtttga 120
gcaaaactgtt ctggtgttgg ttcccttggg ctccttatgg ctcctggccc cctggcagct 180
tctccacgtg tataaatcca ggaccaagag atcctctacc accaaactct atcttgctaa 240
gcaggtattc gttggtttc ttcttattct agcagccata gagctggccc ttgtactcac 300
agaagactct ggacaagcca cagtcctgc tgttcgatat accaatccaa gcctctacct 360
aggcacatgg ctccctggtt tgctgatcca atacagcaga caatggtgt tacagaaaaa 420
ctcctggttc ctgtccctat tctggattct ctcgataactc tgtggcactt tccaatttca 480
gactctgatc cggacactct tacagggtga caattcta at ctagcctact cctgcctgtt 540
cttcatctcc tacggattcc agatcctgat cctgatctt tcagcatttt cagaaaataa 600
tgagtcatca aataatccat catccatagc ttcattcctg agtagcatta cctacagctg 660
gtatgacagc atcattctga aaggctacaa gcgtccctg acactcgagg atgtctggga 720
agttgatgaa gagatgaaaa ccaagacatt agtgagcaag ttgaaacgc acatgaagag 780
agagctgcag aaagccaggc gggcactcca gagacggcag gagaagagct cccagcagaa 840
ctctggagcc aggctgcctg gttgaacaa gaatcagagt caaagccaag atgccttgt 900
cctggaagat gttgaaaaaga aaaaaaagaa gtctggacc aaaaaagatg ttccaaaatc 960
ctggttgtat aaggctctgt tcaaaaacttt ctacatggtg ctccctgaaat cattcctact 1020
gaagcttagt aatgacatct tcacgttgt gagtccctcag ctgctgaaat tgctgatctc 1080
ctttgcaagt gaccgtgaca catattgtg gattggatat ctctgtgcaa tcctcttatt 1140
cactgcggct ctcattcagt cttctgcct tcagtgttat ttccaaactgt gcttcaagct 1200

gggtgtaaaa gtacggacag ctatcatggc ttctgtatat aagaaggcat tgaccctatc 1260
caacttggcc aggaaggagt acaccgttgg agaaacagtg aacctgtatc ctgtggatgc 1320
ccagaagctc atggatgtga ccaacttcat gcacatgctg tggtaagtg ttctacagat 1380
tgtcttatct atcttcttcc tatggagaga gttgggaccc tcagtccttag caggtgttgg 1440
ggtcatggtg cttgtaatcc caattaatgc gatactgtcc accaagagta agaccattca 1500
ggtaaaaaat atgaagaata aagacaaacg tttaaagatc atgaatgaga ttcttagtgg 1560
aatcaagatc ctgaaatatt ttgcctggga accttcattc agagaccaag tacaaaacct 1620
ccgaaagaaa gagctcaaga acctgttggc ctttagtcaa ctacagtgtg tagtaatatt 1680
cgcttccag ttaactccag tcctgttac tggtaacaca ttttctgtt atgtccttgt 1740
ggatagcaac aatattttgg atgcacaaaa ggccttcacc tccattaccc tcttcaatat 1800
cctgcgttt cccctgagca tgcttccat gatgatctcc tccatgtcc aggccagtgt 1860
ttcacagag cggttagaga agtacttggg agggatgac ttggacacat ctgccattcg 1920
acatagctgc aattttgc aagccatgca gtttctgag gcctccttta cctggaaaca 1980
tgattcggaa gccacagtcc gagatgtgaa cctggacatt atggcaggcc aacttgtggc 2040
tgtataggc cctgtcggtc ctggaaatc ctccttgata tcagccatgc tggagaaaat 2100
ggaaaatgtc cacgggacaca tcaccatcaa gggcaccact gcctatgtcc cacagcagtc 2160
ctggattcag aatggcacca taaaggacaa catcctttt ggaacagagt ttaatgaaaa 2220
gaggtaaccag caagtactgg aggctgtgc tctcctccca gacttggaaa tgctgcctgg 2280
aggagattt gctgagattt gagagaaggg tataaatctt agtgggggtc agaagcagcg 2340
gatcagcctg gccagagcta cctaccaaaa ttttagacatc tatcttcttag atgaccctt 2400
gtctgcagtg gatgctcatg tagggaaaaca tatttttaat aaggcttgg gccccaaatgg 2460
cctgtgaaa ggcaagactc gacttgggt tacacatagc atgcactttc ttcctcaagt 2520
ggatgagatt gtagttctgg ggaatggAAC aattgttagag aaaggatcct acagtgcct 2580
cctggccaaa aaaggagagt ttgctaagaa tctgaagaca tttctaagac atacaggccc 2640
tgaagaggaa gccacagtcc atgatggcag tgaagaagaa gcagatgact atggctgat 2700
atccagtgtg gaagagatcc cgaagatgc agcctccata accatgagaa gagagaacag 2760
cttcgtcga acacttagcc gcagttcttag gtccaatggc aggcatctga agtcccttag 2820
aaactccttgc aaaaactcgaa atgtaatag cctgaaggaa gacgaagaac tagtggaaagg 2880
acaaaaaacta attaagaagg aattcataga aactggaaag gtgaagttct ccacatcacct 2940
ggagtaccta caagcaatag gattgtttc gatattcttc atcatccttgc gttttgtat 3000
gaattctgtg gcttttattt gatccaacct ctggctcagt gcttggacca gtgactctaa 3060
aatcttcaat agcaccgact atccagcatc tcagaggac atgagatgtt gagtctacgg 3120
agctctggga ttagcccaag gtatatttg tttcatagca catttctggat gtgcctttgg 3180
tttcgtccat gcatcaaata tcttgaccaa gcaactgctg aacaatatcc ttgcagcacc 3240
tatagattttt tttgacaccaa caccacacgg ccggattgtt aacaggtttt ccggcqatat 3300
ttccacagtg gatgacacccc tgcctcagtc cttgcgcacg tggattacat gtttcttggg 3360
gataatcagc acccttgtca tgatctgtat ggccactcct gtcttcacca tcatctgtat 3420
tcctcttggc attattttatg tatctgttca gatgtttt gtttcttaccc cccggccagct 3480
gaggcgtctg gactctgtca ccaggtcccc aatctactct cacttcagcg agaccgtatc 3540
aggtttgcca gttatccgtg cctttgagca ccagcagcgat tttctggaaac acaatgaggt 3600
gaggattgac accaaccaga aatgtgttcc ttccctggatc acctccaaca ggtggcttgc 3660
aattcgcctg gagctgggtt ggaacctgac tgtcttctt tcagccttgc tgatggat 3720
ttatagagat accctaaatgtt gggacactgt tggctttgtt ctgtccaaatg cactcaat 3780
cacacaaacc ctgaactggc tggtagggat gacatcagaa atagagacca acattgtggc 3840
tgttgagcga ataactgagt acacaaaatgtt gggaaatggat gcacccttggc tgactgataa 3900
gaggcctccg ccagattggc ccagcaaaagg caagatccat tttacaactt accaagtgcg 3960
gtaccgaccc gagctggatc tggcttcagc agggatcact tggatcatc gtgcacatgg 4020
gaagattgggt gttttggca ggacaggagc tggaaagtca tccctcacca actgccttcc 4080
cagaatcttgc gaggctggcc gttgtcagat ttttattgtt gggatgatc ttgttccat 4140
tggctccac gaccccttgc agaagctgac catcatcccc caggacccca tcctgttctc 4200
tggaaaggctg agatgaatc tggatccatc caacaactac tcaatgttggg agatttgaa 4260
ggccttggag ctggcttccatc tcaatgttccatc tggccatc ctgcacatcc gtttaccc 4320
cgaaggatc gaggctggat gcaacctgac cataggccat aggccatgtc tggcttggg 4380
caggcgtctg ctggaaat ccaagatcc tggcttggat gaggccactg ctgggggtgg 4440
tcttagagaca gacaacccatc ttccagacgac catccaaaac gagttcgccc actgcacatc 4500
gatcaccatc gcccacacggc tgcacaccat catggacatc gacaaggtaa tggcttccat 4560
caacggaaat attatagatc gggcagcccc tgaagaactc ctacaaatcc ctggaccctt 4620

ttactttatg gctaaggaag ctggcattga gaatgtgaac agcacaaaat tctagcagaa 4680
ggccccatgg gttagaaaaag gactataaga ataatttctt atttaatttt atttttata 4740
aaatacagaa tacatacaaa agtgtgtata aaatgtacgt tttaaaaaag gataagtcaa 4800
caccatgaa cctactaccc aggttaagaa aataaatgtc accaggtact tgaaaaaaaaa 4860
aaaaa 4864

<210> 7
<211> 4646
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB1 (MDR1)

<400> 7
cctactctat tcagatattc tccagattcc taaagattag agatcatttc tcatttcct 60
aggagtactc acttcaggaa gcaaccagat aaaagagagg tgcaacggaa gccagaacat 120
tcctcctgga aattcaacct gttcgcagt ttctcgagga atcagcattc agtcaatccg 180
ggccgggagc agtcatctgt ggtgaggctg attggctggg caccaacagc gcccggcgt 240
gggtctgagca cagcgcttcg ctctcttgc cacaggaaagc ctgagctcat tcgagtagcg 300
gctcttccaa gctcaaagaa gcagaggccg ctgttcgtt cctttaggtc tttccactaa 360
agtcggagta tcttcttcca agatttcacg tcttggtggc cgttccaagg agcgcgaggt 420
cgggatggat cttgaagggg accgcaatgg aggagcaaag aagaagaact tttttaact 480
gaacaataaaa agtggaaaaag ataagaagga aaagaaacca actgtcagtg tattttcaat 540
gtttcgctat tcaaattggc ttgacaagtt gtatatggg gtgggaactt tggctgccat 600
catccatggg gctggacttc ctctcatgtat gctgggttt ggagaaatga cagatatctt 660
tgcaaatgca gggaaatttag aagatctgtat gtcaaacatc actaatagaa gtgatataa 720
tgatcacaggg ttcttcatga atctggagga agacatgacc aggtatgcctt attttacag 780
tggaaattggt gctgggggtgc tgggtgctgc ttacatttcg gtttcattttt ggtgcctggc 840
agctggaaaga caaatacaca aaatttagaaa acagttttt catgtataa tgcgacagga 900
gataggctgg ttgtatgtgc acgatgttgg ggagcttaac acccgactt cagatgtat 960
ctctaagatt aatgaagttt ttggtgacaa aattggaaatg ttcttcagt caatggcaac 1020
attttcact gggtttatag taggatttac acgtgggtgg aagctaaacc ttgtatTTT 1080
ggccatcagt cctgttcttgc gactgtcagc tgctgtctgg gcaaagatac tattttcatt 1140
tactgataaaa gaactcttag cgtatgcaaa agctggagca gttagctgaag aggtcttggc 1200
agcaattaga actgtgattt cattggagg acaaaagaaa gaacttgaaa ggtacaacaa 1260
aaatttagaa gaagctaaaa gaattggat aaagaaagctt attacagcca atatttctat 1320
aggtgctgtt ttcctgtga tctatgcattt ttatgtctg gccttctgg atgggaccac 1380
cttggtcctc tcaggggaaat attctattgg acaagatctc actgtattttt tttctgtatt 1440
aattggggct ttagtggc gacaggcatc tccaagcattt gaagcatttg caaatgcaag 1500
aggagcagct tatgaaatct tcaagataat tgataataag ccaagtattt acagttttc 1560
gaagagtggg cacaaaccag ataatattaa gggaaatttgg gaattcagaa atgttcaattt 1620
cagttaccca tctcgaaaaag aagttaaagat cttgaaggc ctgaacctga aggtgcagag 1680
tgggcagacg gtggccctgg ttggaaacag tggctgtggg aagagcacaa cagtcagct 1740
gatgcagagg ctctatgacc ccacagaggg gatggctagt gttgatggac aggatattag 1800
gaccataaaat gtaagggttc tacgggaaat cattgggtgt gtgagtcagg aacctgtatt 1860
gtttgccacc acgatagctg aaaacattcg ctatggccgt gaaaatgtca ccatggatga 1920
gattgagaaa gctgtcaagg aagccaatgc ctatgactttt atcatgaaac tgcctcataa 1980
atttgacacc ctgggtggag agagagggc ccagttgagt ggtggcaga agcagaggat 2040
cgccattgca cgtgccctgg ttcgcaccc caagatcctc ctgctggatg aggcacacgtc 2100
agccttggac acagaaaagcg aagcagtggt tcaggtggct ctggataagg ccagaaaaagg 2160
tcggaccacc attgtgatag ctcatcgat gttcgttgc gtaatgctg acgtcatcg 2220
tggttcgtat gatggagtca ttgtggagaa aggaaatcat gatgaactca tgaaagagaa 2280
aggcatttac ttcaaacttg tcacaatgca gacagcagga aatgaagttt aatttagaaaa 2340
tgcagctgtat gaatccaaaa gtgaaattga tgccttggaa atgtcttcaa atgattcaag 2400
atccagtcta ataagaaaaa gatcaactcg taggagtgtc cgtggatcac aagcccaaga 2460
cagaaaagctt agtaccaaaag aggctctggaa tgaaagttt cctttggat 2520

gattatgaag ctaaatttaa ctgaatggcc ttatttgtt gttggtgtat tttgtgccat 2580
tataaatgga ggcctgcaac cagcattgc aataatattt tcaaagatta tagggggttt 2640
tacaagaatt gatgatcctg aaacaaaacg acagaatagt aacttggttt cactattgtt 2700
tctagccctt ggaatttattt cttttattac attttcctt cagggttca catttggcaa 2760
agctggagag atcctcacca agcggctccg atacatgggt ttccgatcca tgctcagaca 2820
ggatgtgagt tgggttgatg accctaaaaa caccactgga gcattgacta ccaggctcgc 2880
caatgatgct gctcaagttt aaggggctat aggttccagg cttgctgtaa ttacccagaa 2940
tatagcaaat cttgggacag gaataattat atccttcatc tatgggtggc aactaacact 3000
gttactctt gcaattgtac ccatcattgc aatagcagga gttgtgaaa tgaaaatgtt 3060
gtctggacaa gcactgaaag ataagaaaaga actagaaggt gctggaaaga tcgctactga 3120
agcaatagaa aacttccgaa ccgttggttc tttgactcag gagcagaagt ttgaacatat 3180
gtatgctcag agtttgcagg taccatacag aaacttggt aggaaagcac acatcttgg 3240
aattacattt tccttcaccc aggcaatgtat gtattttcc tatgctggat gttccgggtt 3300
tggagcctac ttgggtggcac ataaaactcat gagctttag gatgttctgt tagtattttc 3360
agctgttgc tttgggtgcca tggccgtggg gcaagtcagt tcatttgctc ctgactatgc 3420
caaagccaaa atatcagcag cccacatcat catgatcatt gaaaaaaaccc ctttgattga 3480
cagctacagc acggaaggcc taatgcccga cacattggaa ggaaatgtca catttggtga 3540
agttgttattc aactatccca cccgaccggc catcccagtgc cttcagggac tgagcctgga 3600
ggtaagaaggg ggcacacgc tggtctgggt gggcagcagt ggctgtggg agagcacagt 3660
ggtcacgctc ctggagcgggt tctacgaccc cttggcaggg aaagtgcgtc ttgatggcaa 3720
agaaaataaag cgactgaatg ttcaatggctt ccgagcacac ctgggcacatcg tgcgtccagga 3780
gccatcctg tttgactgca gcattgctga gaacattgccc tatggagaca acagccgggt 3840
gggtgcacag gaagagatcg tgagggcagc aaaggaggcc aacatacatg ctttcacatcg 3900
gtcaactgcct aataaaatata gcactaaagt aggagacaaa ggaactcagc tctctgggtt 3960
ccagaaacaa cgcattgcca tagctcgatc ctttttgc cttttttttt ctttcata ttttgcctttt 4020
ggatgaagcc acgtcagctc tgatcataca aagtggaaat gttgtccaaag aagccctgga 4080
caaagccaga gaaggccgca cttgcattgt gattgctcac cgcctgtcca ccatccagaa 4140
tgcagactta atagtgggtt ttcaatggc cagactcaag gagcatggca cgcacatcg 4200
gctgctggca cagaaaggca tctatccccat aatggtcagt gtccaggctg gaacaaagcg 4260
ccagtgaact ctgactgtat gagatgttta atacttttta atatttgcattt agatatgaca 4320
tttattcaaa gttaaaagca aacacttaca gaattatgaa gaggtatctg ttacatctt 4380
cctcagtcgaa gttcagatgc ttcaatggc tcgtatccaa aggaacacagag tgagagacat 4440
catcaatgtgg agagaaatca tagtttacatc tgcattataa attttataac agaattaaag 4500
tagattttaa aagataaaat gtatcattt gttatattt tcccatggg actgtactg 4560
actgcctgc taaaagatcataa tagaagttagc aaaaagtatt gaaatgtttt cataaagtgt 4620
ctataataaa actaaactttt catgtg 4646

<210> 8
<211> 864
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCD2 (ALDR)

<400> 8
aaatggacca gatccgggtgc tgtaaaggagg gctgcctgccc tgggtggctgc ggcataatgct 60
ctggaaaaccc tctatccccat cattggcaag cgtttaaagc aatctggccca cgggaagaaaa 120
aaagcagcag cttaccctgc tgcaagaaac acagaaataac tgcattgcac cgagaccatt 180
tggaaaaac cttcgccctgg agtgaatgca gatttttca aacagctact agaacttcgg 240
aaaattttgtt tcccaaaact tggaccact gaaacagggt ggctctgcct gcactcagtg 300
gctctaatttca caagaacctt tcttttctatc tatgtggctg gtctggatgg aaaaatcgtg 360
aaaagcatttgc tggaaaagaa gcctcggact ttcatcatca aattaatcaa gtggctttag 420
atggccatcc ctgttacatcc cgtcaacagt gcaataaggt acctggatg cttttggct 480
ttggccctca gaactcgcctt agtagaccac gcctatgaaa cttatccatc aaatcagact 540
tattataaaatg tggatcaat tggatgggagg ctggccaaacc ctgaccatc tcttacggag 600
gatattatgatgatcaat tggatgggagg ctggccaaacc ctgaccatc tcttacggag 660

ttagatgtaa tgctgaccc tcatacactc attcaaactg ctacatccag aggaggcaagc 720
ccaattgggc ccaccctact agcaggactt gtgggtatg ccactgctaa agtgttaaaa 780
gcctgttctc ccaaattttgg caaactggtg gcagaggaag cacatagaaa aggctatttgc 840
cggtatgtgc actcgagaat tata 864

<210> 9
<211> 2750
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCD1 (ALDP)

<400> 9
gcggacggac gcgcctggtg ccccgggag gggccacc gggggaggag gaggaggaga 60
agggtggagag gaagagacgc cccctctgcc cgagacctct caaggccctg acctcagggg 120
ccagggcact gacaggacag gagagccaag ttccctccact tgggctgcc gaagaggccg 180
cgacccttgg gggccctgag cccaccgcac cagggggcccc agcaccaccc cggggcccta 240
aagcgacagt ctcaggggcc atcgcaggt ttccctgtgc cttagacaaca ggcccagggt 300
cagagcaaca atcctccag ccacctgcct caactgtgc cccaggcacc agccccagtc 360
cctacgcggc agccagccca ggtgacatgc cggtgtctc caggccccgg ccctggcg 420
ggaacacgct gaagcgcacg gccgtgtcc tggccctcgc ggcctatgga gcccacaaag 480
tctaccctt ggtgcgccc tgcctggccc cggccagggg tcttcaggcg cccgcccggg 540
agcccacgca ggaggccccc ggggtcgccg cggccaaagc tggcatgaac cgggtattcc 600
tgcagcggct cctgtggctc ctgcggctgc tggcccccgg ggtcctgtgc cgggagacgg 660
ggctgctggc cctgcactcg gccccttgg tgagccgcac cttcctgtcg gtgtatgtgg 720
cccgccttgg cggaaaggctg gcccgtgca tgcctggcaa ggaccgcgg gctttggct 780
ggcagctgtc gcagtggctc ctcatcgccc tccctgtctc cttcgtaaac agtgcacatcc 840
gttaccttgg gggccaaactg gcccgttgtc tccgcagccg tctgggtggcc cacgcctacc 900
gcctctactt ctcccagcag acctactacc gggtcagcaa catggacggg cggcttcgca 960
accctgacca gtctctgtac gaggacgtgg tggcccttgc ggcctctgtg gcccacctct 1020
actccaaacct gaccaagcca ctccctggacg tggctgtgac ttccctacacc ctgtttcg 1080
cggcccgctc ccgtggagcc ggcacagccct ggcctcgcc catcgccggc ctcgtgggt 1140
tcctcacggc caacgtgtc cggcccttgc cggccaaagtt cggggagctg gtggcagagg 1200
aggcgccggc gaagggggag ctgcgtaca tgcactcgcg tgggtggcc aactcgagg 1260
agatcgccct ctatggggc catgaggtgg agctggccct gtcacagcgc tcctaccagg 1320
acctggccctc gcagatcaac ctcatccttc tggAACGCTC gtggatgtt atgctggagc 1380
agttcctcat gaagtatgtg tggagcgcct cggccctgtc catggtggct gtccccatca 1440
tcactgccac tggctactca gagtcatgtc cagaggccgt gaagaaggca gccttggaaa 1500
agaaggagga ggagctggtg agcgagcgc cagaagccct cactattgcc cgcaacctcc 1560
tgacagcggc tgcaatgtcc attgagcggc tcatgtcgcc gtacaaggag gtgacggagc 1620
tggctggcta cacagcccg gtgcacgaga tggccctaggat atttgaatgt gttcagcgct 1680
gtcaactcaa gaggcccagg gagctagagg acgctcaggc ggggtctggg accataggcc 1740
ggctgggtgt ccgtgtggag gggcccttgc agatccgagg ccaggtggc gatgtggaaac 1800
aggggatcat ctgcgagaac atccccatcg tcacgcctc aggagagggt gtggtggcca 1860
gcctcaacat cagggtggag gaaggcatgc atctgtcat cacaggcccc aatggctgcg 1920
gcaagagctc cctgtccgg atccctgggtg ggctctggcc cacgtacggt ggtgtgtct 1980
acaagcccccc accccagcgc atgttctaca tcccgacag ggcctacatg tctgtggct 2040
ccctgcgtga ccaggtgtac taccggact cagtggagga catgcaaagg aagggtact 2100
cgagcggcggc cctggaaagcc atccctggacg tcgtgcaccc gcaccacatc ctgcagcg 2160
agggagggttgg gggctatgt tggactggc aggacgtctt gtcgggtggc gagaaggcaga 2220
gaatcgccat gggcccgatg ttctaccaca gggccaaatgt cggccctctg gatgaatgca 2280
ccagcggcgt gacatcgac gtggaaaggca agatcttcca ggcggccaaag gacgcgggca 2340
ttggccctgtc ctccatcacc caccggccct ccctgtggaa ataccacaca cacttgcac 2400
agttcgatgg ggagggccggc tggaaagttcg agaagctggc ctcagctgccc cgcctgagcc 2460
tgacggagga gaagcagcgg ctggagcgcg acgtggccgg cattcccaag atgcagcg 2520
gcctccagga gtcgtcccgcc atccctggccg aggccgtggc cccagcgcat gtgcccggc 2580

ctagccccca aggcctcggt ggcctccagg gtgcctccac ctgacacaac cgtccccggc 2640
ccctcccccg cccccaagct cggatcacat gaaggagaca gcagcacca cccatgcacg 2700
caccggcccc ctgcatgcct ggcccctcct cctagaaaac ccttcccgcc 2750

<210> 10
<211> 5011
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC1 (MRP1)

<400> 10
ccaggccggcg ttgcggccccc ggccccggct ccctgcgccc cgcgcgcgc cgccgcccggc 60
gccgcgcgcg cgcgcgcgcag cgctagcgcc agcagccggg cccgatcacc cgccgccccgg 120
tgccccggcc cgcgcgcgcgcc agcaaccggg cccgatcacc cgccgccccgg tgccccggcc 180
cgccccggcc accggcatgg cgctccgggg ctctgcagc ggcgatggct cgcgaccggct 240
ctgggactgg aatgtcacgt ggaataccag caacccgac ttcaccaagt gctttcagaa 300
cacggtcctc gtgtgggtgc ctgtttta cctctggcc tgtttccct tctacttcct 360
ctatcttcctc cgacatgacc gaggctacat tcagatgaca cctctcaaca aaaccaaaaac 420
tgccttggga ttttgcgtgt ggatcgctg ctgggcagac ctcttctact ctttctggga 480
aagaagtcgg ggcataattcc tggcccccagt gtttctggc agcccaactc tcttggcat 540
caccacgctg ctgctcacct ttttaattca gctggagagg aggaaggag ttcagtcttc 600
aggatcatg ctcaacttct ggctggtagc cctagtggt gcccctagcca tcctgagatc 660
caaaattatg acagccttaa aagaggatgc ccaggtggac ctgttcgtg acatcacttt 720
ctacgtctac tttccctct tactcattca gctcgcttg tcctgtttct cagatcgctc 780
accctgttc tcggaaacca tccacgaccc taatccctgc ccagagtcca ggcgttcctt 840
cctgtcgagg atcaccttct gggtggatcac agggttgatt gtccggggct accggccagcc 900
cctggagggc agtgacccctt ggtccttaaa caaggaggac acgtcggaac aagtctgccc 960
tgttttggta aagaacttgg aagaaggaatg cgccaagact aggaaggcagc cggtaaggt 1020
tgtgtactcc tccaaggatc ctgcccagcc gaaagagagt tccaagggtgg atgcaaatga 1080
ggaggtggag gcttgcgtcg tcaagtccttcc acagaaggag tggaaacccct ctctgtttaa 1140
ggtgttatac aagacctttg ggcctactt cctcatgagc ttcttcttca aggccatcca 1200
cgacctgatg atgtttccg gggcgagat cttaaagttt ctcataatgc tgcgtgaatga 1260
cacgaaggcc ccagactggc agggtactt ctacaccgtg ctgcgttttgc tcactgcctg 1320
cctgcagacc ctcgtgcgtc accagtactt ccacatctgc ttgcgtcagtg gcatgaggat 1380
caagaccgct gtcattgggg ctgtctatcg gaaggccctg gtgatcacca attcagccag 1440
aaaatctcc acggtcgggg agattgtcaa cctcatgtct gtggacgctc agaggttcat 1500
ggacttggcc acgtacatta acatgatctg gtcagccccctt ctgcgaagtc tccctgtct 1560
ctacctctg tggctgaatc tggcccttc cgtcctggct ggagtggccg tggatggctt 1620
catggtgccc gtcaatgtcg tcatggcgat gaagaccaag acgtatcagg tggccacat 1680
gaagagcaaa gacaatcgga tcaagctgtat gaacgaaaatt ctcaatggga tcaaagtgt 1740
aaagctttat gcctgggagc tggcattcaa ggacaagggt ctggccatca ggcaggagga 1800
gctgaaggtg ctgaagaagt ctgcctaccc gtcagccgtg ggcaccccttca cctgggtctg 1860
caccccttt ctggtggcct tggcgcatt tggcgtctac gtgaccattt acgagaacaa 1920
catcctggat gcccagacag cttcgtgtc tttggccttgc ttcaacatccc tccggttcc 1980
cctgaacatt ctccccatgg tcatcagcag catcggtcg ggcggatgtct ccctcaaacg 2040
cctgaggatc ttctctccc atgaggagct ggaacctgac agcatcgagc gacggcctgt 2100
caaagacggc gggggcacga acagcatcac cgtgaggaat gccacattca cctggggccag 2160
gagcgaccct cccacactga atggcatcac cttctccatc cccgaagggtg ctggatggc 2220
cgtggggcc caggtgggt gggaaagtc gtcctgtc tgcggatgtct tggctgagat 2280
ggacaaagtg gaggggcacg tggctatcaa gggctccgtg gcctatgtgc cacagcaggc 2340
ctggattcag aatgattctc tccgagaaaa catcctttt gatgtcagc tggaggaacc 2400
atattacagg tccgtgatac aggctgtgc cttcccttca gacctggaaa tccctggccag 2460
tggggatcg acagagattt gcgagaaggg cgtgaacctg tctggggcc agaagcagcg 2520
cgtgagcctg gcccggcccg tggactccaa cgtgcacatt taccttcctg atgatcccct 2580
ctcagcgtg gatgccccatg tggaaaaca catcttgc aatgtgatgg gccccaaagg 2640

gatgctgaag aacaagacgc ggatcttggc cacgcacagc atgagctact tgccgcagg 2700
ggacgtcatc atcgcatca gtcggcggca gatctctgag atgggctcaccaggagct 2760
gctggctcgaa gacggcgccct tcgctgagtt cctgcgtacc tatgccagca cagagcagga 2820
gcaggatgca gaggagaacg gggtcacggg cgtagcggc ccagggaaagg aagcaaagca 2880
aatggagaat ggcatgtgg tgacggacag tgcaggaaag caactgcaga gacagctcag 2940
cagctcctcc tcctatagtg gggacatcag caggcaccac aacagcaccc cagaactgca 3000
gaaagctgag gccaagaagg aggagacctg gaagctgatg gaggctgaca aggccagac 3060
agggcaggta aagcttccg tgactggaa ctacatgaag gccatcgac tcttcattc 3120
cttcctcage atcttcctt tcatgtgtaa ccatgtgtcc ggcgtggcctt ccaactattg 3180
gctcgcctc tggactgatg acccccattgt caacggact caggagcaca cgaaagtccg 3240
gctgagcgtc tatggagccc tggcatttc acaaggatc gccgtgtttt gctactccat 3300
ggcgtgtcc atcggggggaa tcttgccttc cgcgtgtcg cacgtggacc tgctgcacag 3360
catcctgcgg tcacccatga gcttcttga gcggaccccc agtggaaacc tggtaaccg 3420
cttctccaag gagctggaca cagtggactc catgatccc gaggtcatca agatgttcat 3480
gggctccctg ttcaacgtca ttggcgcctg catcgatccctt ctgctggcca cgcccatcgc 3540
cgccatcatc atcccgcccc ttggcctcat ctacttcttgc gtccagaggt tctacgtggc 3600
ttcccccgg cagctgaagc gcctcgagtc ggtcagccgc tccccggctt attcccat 3660
caacgagacc ttgctggggg tcagcgtcat tcgagccttc gaggagcagg agcgttcat 3720
ccaccagagt gacctaagg tggacgagaa ccagaaggcc tattacccca gcatcgtggc 3780
caacaggtgg ctggccgtgc ggctggagtg tggggcaac tgcatcgatc tggtgc 3840
cctgttgcg gtgatctcca ggcacagcct cagtgcggc ttggggccct tctcagtgtc 3900
ttactcattt caggtcacca cgtacttgaa ctggctgggtt cggatgtcat ctgaaatgg 3960
aaccaacatc gtggccgtgg agaggctaa ggagtattca gagactgaga aggaggcgcc 4020
ctggcaaatc caggagacag ctccgccccag cagctggccc caggtggggc gagtggaatt 4080
ccggaactac tgcctgcgtc accgagagga cctggacttc gttctcaggc acatcaatgt 4140
cacatcaatc gggggagaaa aggtcggtat cgtggggcgg acgggagctg ggaagtcgtc 4200
cctgaccctg ggcttatttc ggtcaacga gtctggccaa ggagagatca tcatcgatgg 4260
catcaacatc gccaagatcg gcctgcacga cctccgcctt aagatcacca tcatccccca 4320
ggaccctgtt ttgtttcgg gttccctccg aatgaacctg gaccattca gccagtaactc 4380
ggatgaagaa gtctggacgt ccctggagct ggcccacctg aaggacttcg tgcagccct 4440
tcctgacaag ctagaccatg aatgtgcaga aggccccggg aacctcagtg tcggcagcg 4500
ccagcttgtg tgcctagccc gggccctgct gaggaagacg aagatcctt tggatgtc 4560
ggccacggca gccgtggacc tggaaacggc cgcacccatc cagtcacca tccggacaca 4620
gttcgaggac tgcaccgtcc tcaccatcgc ccacccgtcc aacaccatca tggactacac 4680
aagggtgatc gtcttgacaa aaggagaaat ccaggagttc ggccggccat cggacccct 4740
gcagcagaga ggtctttctt acagcatggc caaagacgc ggcttgggtt gagccccaga 4800
gctggcatat ctggtcagaa ctgcaggggcc tatatgccat cggccaggaa ggagtcatgt 4860
cccctggtaa accaaggctc ccacactgaa accaaaaatc aaaaacccaa cccagacaac 4920
caaaacatcat tcaaagcagc agccaccgc atccggtccc ctgcctggaa ctggctgtga 4980
agacccagga gagacagaga tgcgaaccac c 5011

<210> 11
<211> 3924
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB4 (MDR3)

<400> 11
cctgccagac acgcgcgagg ttgcaggctg agatggatct tgaggcggca aagaacggaa 60
cagcctggcg cccacgcgc gcccggggcg actttgaaact gggcatcagc agcaaaacaaa 120
aaaggaaaaaa aacgaagaca gtaaaaatga ttggagtatt aacattgttt cgataactccg 180
atggcagga taaattgttt atgtcgctgg gtaccatcat ggcctatgtt caccgtatc 240
gtctccccctt catgtatgtat gtatggag agatgactga caaatttggt gataactgcag 300
gaaacttctc ctttccactgt aactttccct tgcgtgtctt aaatccaggc aaaattctgg 360
aagaagaaat gacttagatc actcaggatt gggctgtggaa gttcttgg 420

ctgcctatat acaagttca tttggactt tggcagctgg tcgacagatc agaaaaatta 480
ggcagaagtt tttcatgct attctacgac aggaaatagg atggtttgc atcaatgaca 540
ccactgaact caatacgcgg ctaacagatg acatctccaa aatcagtcaa ggaattgggt 600
acaaggttgg aatgttcttt caagcagtag ccacgtttt tgcaggattc atagtggtat 660
tcatcagagg atggaagctc acccttgtga taatggccat cagccctatt ctaggactct 720
ctgcagccgt ttggcaaaag atactctcg catttagtga caaagaacta gctgcttatg 780
caaaaagcagg cgccgtggca gaagaggctc tggggccat caggactgtg atagcttcg 840
ggggccagaa caaagagctg gaaaggtatc agaaacattt agaaaatgcc aaagagattg 900
gaattaaaaa agctatttca gcaaacattt ccatgggtat tgccttcctg ttaatataatg 960
catcatatgc actggccctc tggtatggat ccactctagt catabaaaaa gaatatacta 1020
ttggaaatgc aatgacagtt ttttttcaa tcctaattgg agctttcagt gttggccagg 1080
ctgccccatg tattgatgct tttgccaatg caagaggagc agcatatgtg atctttgata 1140
ttattgataa taatcctaaa attgacagtt tttcagagag aggacacaaa ccagacagca 1200
tcaaaggaa ttggaggttc aatgatgttc acttttctt cccttctcg gctaacgtca 1260
agatcttcaa gggcctcaac ctgaaggtgc agagtggca gacggtggcc ctgggtggaa 1320
gtagtggctg tgggaagagc acaacggtcc agctgataca gaggctctat gaccctgtat 1380
agggcacaat taacattgtat gggcaggata ttaggaactt taatgtaaac tatctgaggg 1440
aaatcattgg tgggtgagt caggagccgg tgctgtttc caccacaatt gctgaaaata 1500
tttggatgg ccgtggaaat gtaaccatgg atgagataaa gaaagctgtc aaagaggcca 1560
acgcctatga gtttatcatg aaattaccac agaaatttga caccctgggt ggagagagag 1620
ggggccagct gagttgggg cagaagcaga ggatcgccat tgcacgtgcc ctgggtcgca 1680
accccaagat cttctgctg gatgaggcca cgtcagcatt ggacacagaa agtgaagctg 1740
aggtacagggc agctctggat aaggccagag aaggccggac caccattgtg atagcacacc 1800
gactgtctac ggtccgaaaat gcagatgtca tgcgtgggt tgaggatgga gtaattgtgg 1860
agcaaggaag ccacagcgaa ctgatgaaga aggaagggt gtacttcaa cttgtcaaca 1920
tgcagacatc aggaagccag atccagtcg aagaatttga actaaatgtat gaaaaggctg 1980
ccactagaat ggccccaaat ggctggaaat ctcgcctatt taggcattt actcagaaaa 2040
acctaaaaa ttcacaaatg tgcagaaga gccttgatgt ggaaaccgtat ggacttgaag 2100
caaatgtgcc accagtgtcc tttctgaagg tcctgaaact gaataaaaaca gaatggccct 2160
actttgtcgt gggAACAGTA tgcgcattt ccaatgggg gcttcagccg gcattttcag 2220
tcatattctc agagatcata gcatgtttt gaccaggcga tgatgcagtg aagcagcaga 2280
agtcaacat attctctttt atttcttat ttctggaaat tatttctttt tttactttct 2340
tccttcaggg tttcacgttt gggAAAGCTG gcgagatcct caccagaaga ctgcggtaa 2400
tggttttaa agcaatgtca agacaggaca tgagctgggt tgatgaccat aaaaacagta 2460
ctggtgcaact ttctacaaga ctgcacacag atgctgccc agtccaaggaa gccacaggaa 2520
ccaggttggc tttaattgca cagaatatacg ctaaccttgg aactggatt atcatatcat 2580
ttatctacgg ttggcagttt accctattgc tattagcagt tggttcaattt attgctgtgt 2640
caggaattgt tgaaatgaaa ttgtggctg gaaatgcca aagagataaa aaagaactgg 2700
aagctgtgg aaagattgca acagaggca tagaaaaat taggacagtt gtgttttga 2760
cccaggaaag aaaatttggaa tcaatgtatg ttgaaaaattt gtatggaccc tacaggaatt 2820
ctgtgcagaa ggcacacatc tatggattt cttttagtat ctcacaagca tttatgtatt 2880
tttcctatgc cggttggttt cgatttgggt catatctcat tgcataatggc catatgcgt 2940
tcagagatgt tattctgggt tttctgcaat ttgttattgg tgcagtggct ctaggacatg 3000
ccagttcatt tgctccagac tatgctaaag ctaagctgtc tgcagccac ttattcatgc 3060
tggttgaaag acaacctctg attgacagct acagtgaaga ggggctgaag cctgataaat 3120
ttgaaggaaa tataacattt aatgaagtcg tgcataacta tcccacccga gcaaacgtgc 3180
cagtgcttca ggggctgagc ctggagggtga agaaaggcca gacactagcc ctgggtggca 3240
gcagtggtcg tgggaagagc acgggtggcc agtcctcgat ggcgggttctac gacccttgg 3300
cggggacagt gcttctcgat ggtcaagaag caaagaaaact caatgtccag tggctcagag 3360
ctcaactcgat aatcgatgtct caggagccta tccttatttgc ctgcagcatt gcccggaaata 3420
ttgcctatgg agacaacagc cgggttgtat cacaggatga aattgtgagt gcagccaaag 3480
ctgccaacat acatcccttc atcgagacgt tacccacaa atatgaaaca agagtggag 3540
ataaggggac tcagctctca ggaggtcaaa aacagaggat tgcttattggc cgaccctca 3600
tcagacaacc tcaaattctc ctgttggat aagctacatc agctctggat actgaaaagtg 3660
aaaaggttgtt ccaagaagcc ctggacaaag ccagagaagg ccgcacctgc attgtgattg 3720
ctcaccgcct gtccaccatc cagaatgcag acttaatagt ggttgcctg aatgggagag 3780
tcaaggagca tggcacgcat cagcagctgc tggcacagaa aggcatctat tttcaatgg 3840

tcagtgtcca ggctgggaca cagaacttat gaactttgc tacagtatat tttaaaaata 3900
aattcaaatt attctaccca tttt 3924

<210> 12
<211> 1725
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB6

<400> 12
ccttcctgtg gatccgggtg cagcagttca cgtctcgcg ggtggagctg ctcatcttct 60
cccacctgca cgagctctca ctgcgctggc acctggggcg ccgcacagg gagggtgctgc 120
ggatcgccga tcggggcaca tccagtgtca cagggctgct cagctacctg gtgttcaatg 180
tcatccccac gctggccgac atcatcattg gcatcatcta cttcagcatg ttcttcaacg 240
cctggtttg cctcattgtg ttccgtgca tgagtctta ctcaccctg accattgtgg 300
tcactgagt gagaaccaag ttcgtcgtg ctatgaacac acaggagaac gctacccggg 360
cacgagcagt ggactctctg ctaaaacttcg agacgggtgaa gtattacaac gccgagagtt 420
acgaagtgga acgctatcga gaggccatca tcaaataatca gggtttggag tggaaagtctg 480
gcgcttact ggttttacta aatcagaccc agaacctggt gattgggctc gggctcctcg 540
ccggctccct gcttgcgcga tactttgtca ctgagcagaa gctacaggtt ggggactatg 600
tgctctttgg cacctacatt atccagctgt acatcccct caattggttt ggcacctact 660
acaggatgtt ccagaccaac ttcatgtaca tggagaacat gtttgacttg ctgaaagagg 720
agacagaagt gaaggacattt cctggagcag ggccccctcg ctttcagaag ggcgttattg 780
agtttgagaa cgtgcacttc agctatgccc atggggggaa gactctgcag gacgtgtctt 840
tcactgtgt gcttggacag acacttgcctc tgggtggccc atctggggca gggaaagagca 900
caattttcgcc cctgctgttt cgcttctacg acatcagctc tggctgcate cgaatagatg 960
ggcaggacat ttcacaggtg acccaggcct ctctccggc tcacatttggaa gttgtgcccc 1020
aagacactgt cctctttaat gacaccatcg ccgacaatat ccgttacggc cgtgtcacag 1080
ctggaaatgaa tgaggtggag gctgctgtc aggctgcagg catccatgtat gccattatgg 1140
ctttccctga agggtacagg acacagggtgg gcgagcgggg actgaagctg agcggcgggg 1200
agaagcagcg cgtcgccatt gcccgcacca tcctcaaggc tccgggcattt attctgtctgg 1260
atgaggcaac gtcagcgctg gatacatcta atgagagggc catccaggct tctctggcca 1320
aagtctgtgc caaccgcacc accatcgtag tggcacacag gctctcaact gtggtaatg 1380
ctgaccagat cctcgcatc aaggatggct gcatcggtt gaggggacga caccggctc 1440
tgttgtcccg aggtgggtt tatgtgtaca tgtggcagct gcagcaggaa caggaagaaa 1500
cctctgaaga cactaaggcct cagaccatgg aacgggtgaca aaagtttggc cacttccctc 1560
tcaaagacta acccagaagg gaataagatg tgtctccttt ccctggctta tttcatcctg 1620
gtcttgggtt atgggtgttagt ctatggtaag gggaaaggac ctttccgaaa aacatctttt 1680
ggggaaataa aaatgtggac tgtaaaaaaa aaaaaaaaaa aaaaa 1725

<210> 13
<211> 4776
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCB11

<400> 13
gaatgatgaa aaccgagggtt gggaaagggtt gtggaaacctt ttaactctcc acagtggagt 60
ccattatttc ctctggcttc ctcaaaattca tattcacagg gtcgttggt gtgggttgc 120
attaccatgt ctgactcagt aattcttcga agtataaaga aatttgaga ggagaatgtat 180
ggttttgagt cagataaaatc atataataat gataagaaat caaggttaca agatgagaag 240
aaaggtgatg gcgttagagt tggcttctt caattgttcc ggtttcttc atcaactgac 300
atttggctga tggttgtggg aagtttgtgtt gcatttctcc atggaatagc ccagccaggc 360

gtgctactca ttttggcac aatgacagat gtttttattg actacgacgt tgagttaca 420
gaactccaga ttccaggaaa agcatgtgt aataacacca ttgttatggac taacagtcc 480
ctcaaccaga acatgacaaa tggAACACGT tggGGGTTGc tgaacatcg gaggcAAATG 540
atcaaatttgc ccaGTTACTA tgctgaaatt gctgtcgAG tacttatCAC aggatATATT 600
caaataTGCT ttgggtcat tgccGAGCT cgTCAGATAc agAAAATGAG aaaattttac 660
tttaggagaa taatgagaat ggAAATAGGG tggTTGACT gcaattcAGT gggggAGCTG 720
aatacaagat tctctgtatga tattaataaa atcaatgtatcg ccatacgCTGA ccaaAtggCC 780
cttttcattc agcgcatgac ctgcaccatC tggGGTTTCC tggGGGATT ttccagggt 840
tggAAActGA ccttggttat tatttctgtc agccctctca ttggGATTGG agcAGCCACC 900
atggTCTGA gtgtgtccaa gtttacggac tatgagCTGA aggctatGC caaAGCAGGG 960
gtggTggCTG atgaagtcat ttcatcaatG agaacAGTGG ctgctttgg tggTgagaaa 1020
agagaggTTG aaaggTatGA gaaaaatCtt gtgttCGCCC agcgttgggg aattagaaaa 1080
ggaatagtGA tggattCtt tactgattC gtgtgggtGc tcatctttt gtgttatGCA 1140
gtggcTTCT ggtacggCTC cacacttGTC ctggatGAAG gagaatatac accaggaacc 1200
cttgcCAGA ttttctcaG tgTCATAGTA ggAGCTTAA atctggCAA tgcctCTCT 1260
tggTTggAAg ccttgcAAC tggacgtGCA gcagccacca gcattttGA gacaataGAC 1320
aggAAACCCa tcattgactG catgtcAGAA gatggTTACA agttggatCG aatcaaggGT 1380
gaaattGAat tccataatgt gaccttccat tattcTTCCA gaccagAGGT gaagattcta 1440
aatgacctca acatggTCat taaaccaggG gaaatgacAG ctctggtagG acccagtGGA 1500
gctggaaaaa gtacagcact gcaactcatt cagcgatttC atgacccCTG tgaaggaatG 1560
gtgaccGTgg atggccatGA cattcGCTCt ctaacatTC agtggcttag agatcagatt 1620
gggatagtGG agcaagAGCC agttctgttC tctaccacca ttgcagaaaa tattcGCTat 1680
ggcagagaag atgcaacaat ggaagacata gtccaAGCTG ccaaggagGC caatgcctac 1740
aacttcatca tgacactGCC acagcaattt gacaccCTG ttggagaAGG aggaggCCAG 1800
atgagtggTg gccagaaaaca aagggtAGCT atcGCCAGAG ccctcatCCG aaatcccAAG 1860
attctgCTT tgacatGGC cacctcAGCT ctggacaatG agatgtaAGC catggTgCAA 1920
gaagtGCTGA gtaagattCA gcatggcAC acaatcatt cagttGCTA tgcctgtct 1980
acggTCAGAG ctgcAGATAc catcattGGT tttgaACATG gcactGcAGT gggaaAGAGGG 2040
accatGAAG aattactGGA aaggAAAGGT gtttacttCA ctctAGTgAC tttgcaAAAGC 2100
cagggAAATC aagctcttaa tgaagaggAC ataaaggATG caactGAAG tgacatGCT 2160
gcgaggacCT ttacGAGAGG gagctaccAG gatagtTTA gggCTTCCat cccggcaACGc 2220
tccaagtCTC agctttCTta cctggTgcAC gaaccCTCAT tagctgttGT agatcataAG 2280
tctacctatG aagaagataG aaaggacaAG gacattCCTG tgcAGGAAG agttaGACCT 2340
gccccAGTta ggaggattCT gaaattcAGT gctccAGAAT gcccTACAT gctggtaggg 2400
tctgtgggtG cagctgtgaa cgggacAGTC acaccCTGT atgcctttt attcagccAG 2460
attctggGA ctTTTCAAT tcctgataAA gaggAACAAA ggtcacAGAT caatggTGT 2520
tgccTacttt ttGtagcaat gggctgtGTA tctctttCA cccaaTTCT acagggatAT 2580
gccttGCTA aatctggGA gtcctaACA aaaaggCTAC gtaaatttGG ttcaAGGGCA 2640
atgctggGC aagatattGc ctggTTGAT gacctcAGAA atagccCTGG agcattGACA 2700
acaagactTG ctacAGATGc ttcccAAGTT caagggGCTG cccggctCTCA gatcgggATG 2760
atagtcatt cttcactaa cgtcactGtG gccatgatCA ttgccttCtC ctttagctGG 2820
aagctgagCC tggTCatCTT tgcttCTC cccttCTTGG ctttatCAGG agccacacAG 2880
accaggatGT tgacaggatt tgccTCTCGA gataAGCAGG ccctggAGAT ggtggacAG 2940
attacaaatG aagccCTCAG taacatCCGc actgttGCTG gaattggAAA ggagaggCGG 3000
ttcattGAAG cacttgagAC tgagctggAG aagccCTTCa agacAGCCAT tcagaaAGCC 3060
aatatttacG gattctgtCT tgccttGcc cagtgcATCA tggTTattGc gaattctGCT 3120
tccTACAGAT atggaggtta cttaatCTCC aatgaggGGGc tccatttCAG ctatgttGTC 3180
agggtGatCT ctgcAGTGT actgagtgca acagctCTG gaagagCCTT ctttacacc 3240
ccaaGTTATG caaaAGCTAA aatATCAGCT gcacGCTTT ttcaactGCT ggaccgacAA 3300
cccccaatCA gtgtatacaa tactgcAGGT gaaaaatGGG acaacttcca ggggaAGATT 3360
gattttGTTG attgtAAatt tacatatCCT tctcgacCTG actcgcaAGT tctgaatGgt 3420
ctctcAGTGT cgattAGTCC agggcAGACA ctggcGTTG ttggGAGCAG tggatgtGGC 3480
aaaAGCACTA gcattcAGCT gttggAACGT ttctatGATC ctgatcaAGG gaaggtGATG 3540
atagatGGTC atgacAGCAGAA aaaAGTAAT gtccAGTTCC tccGCTCAA cattggAAatt 3600
gtttcccAGG aaccAGTGTt gtttgcCTGT agcataatGG acaatataAA gtatggAGAC 3660
aacaccaAAAG aaattcccAT ggAAAGAGTC atagcAGCTG caaaACAGGC tcagctGcat 3720
gattttGTCA tgcactccc agagaaatAT gaaactaACG ttggGTCCTA ggggtctcaa 3780

ctctctagag gggagaaaaca acgcattgct attgctcggtt ccattgtacg agatcctaaa 3840
atcttgcac tagatgaagc cacttctgcc tttagacacag aaagtaaaaa gacgggtcag 3900
gttgctctag acaaaggccag agagggtcgg acctgcattt tcattgccc tcgcttgc 3960
accatccaga acgcggatat cattgctgtc atggcacagg gggtggtat tgaaaaaggaa 4020
accatgtaa aactgtatggc ccaaaaaggaa gcctactaca aactagtac cactggatcc 4080
cccatcagtt gacccaatgc aagaatctca gacacacatg acgcaccagt tacagggtt 4140
gtttttaaag aaaaaaaca tcccagcacg agggattgct gggattgtt tttttttaaa 4200
gaagaatntn nntattttac ttttacnnnc ntttcctac atcgaatcc aanctaattt 4260
ctaattggcct tccataataa ttctgcttta gatgttata cagaaaaatga aagaaaactag 4320
ggtcacatgtg agggaaaaacc caatgtcaag tggcagctca gccaccactc agtgccttc 4380
tgtcaggag ccagtccctga ttaatatgtg ggaatttagt agacatcagg gagtaagtga 4440
cacttgaac tcctcaagga cagagaactg tcttcattt ttgaaccctc ggtgtacaca 4500
gaggcgggtc tgtaacagggc aatcaacaaa cgtttcttga gctagaccaa ggtcagattt 4560
gaaaaagaaca gaaggactga agaccagctg tgtttcttaa ctaaattttgt ctttcaagtg 4620
aaaccagctt ccttcatttc taaggctaag gatagggaaa gggtggtatg ctctcangct 4680
gagggaggca naaaggggaaa gtattancat gagcttcca nttagggctg ttgatttatg 4740
ctttaacttc anantgagtg tagggtggtg anncta 4776

<210> 14
<211> 5838
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC5 (MRP5)

<400> 14
ccgggcagggt ggctcatgct cgggagcgtg gttgagcggc tggcgcgggtt gtcctggagc 60
aggggcccggcag gaattctgtat gtgaaactaa cagtctgtga gcccctggaaac ctccgcctc 120
agaagatgaa ggatatcgac atagggaaaag agtataatcat cccccagtcctt gggtagatgaa 180
gtgtgaggaa gagaaccaggc acttctggaa cgcacagaga ccgtgaagat tccaagttca 240
ggagaactcg accgttggaa tgccaaatgt ccttggaaac agcagccgc gcccggggcc 300
tctcttgc tgcctccatg cattctcagc tcagaatcctt ggatgaggag catcccaagg 360
gaaagtacca tcatggcttg agtgcctgtc agcccatccg gactacttcc aaacaccaggc 420
accagggtggaa caatgttggg ctttttcctt gtatgacttt ttcgtggctt tcttctctgg 480
cccggtggc ccacaagaag ggggagctct caatggaaaga cgtgtggctt ctgtccaaagc 540
acgagtcttc tgacgtgaac tgccaaagac tagagagact gtggcaagaa gagctgaatg 600
aagggtggcc agacgctgct tccctgcgaa gggttgtgtg gatcttctgc cgcaccaggc 660
tcatcctgtc catcggtgc ctgatgatca cgcagctggc tggcttcagt ggaccaggct 720
tcatggtaa acacctctt gagtataaccc aggcaacaga gtctaacctg cagtagact 780
tgttgttagt gctgggcctc ctccctgacgg aaatcggtcg gtcttggctg cttgcactga 840
cttggcattt gaattaccga accgggtgtcc gcttgcgggg ggcacatccta accatggcat 900
ttaagaagat ccttaagttt aagaacatta aagagaaaatc cctgggttagt ctcatcaaca 960
tttgctccaa cgatgggcag agaatgtttt aggcagcagc cggtggcagc ctgctggctg 1020
gaggaccctgt tggccatc ttaggcattttt aattattctg aatttttctg ggaccaacag 1080
gcttcctggg atcagctgtt tttatcctct tttaccaggc aatgatgttt gcatcacggc 1140
tcacagcata tttcaggaga aaatcggtgg ccggccacggc tgaacgtgtc cagaagatga 1200
atgaagttct tacttacatt aaattttatca aaatgtatgc ctgggtcaaa gcattttctc 1260
agagtgttca aaaaatccgc gaggaggagc gtcggatatt gaaaaaaatggcc gggtaacttcc 1320
agggtatcac tgggggtgtg gctcccattt tggtgggtat tgccagcgtg gtgaccttct 1380
ctgttcatat gaccctgggc ttgcatttgc cagcagcaca ggcttcaca gtgggtacag 1440
tcttcatttccatc catgactttt gcttggaaatg taacaccgtt ttcatggaaatg tccctctc 1500
aaggctcagt ggctgttgc agatgttgc gtttgggtt aatggaaagag gttcacatga 1560
taaagaacaa accagccagt cctcacatca agatagagat gaaaaatggcc accttggcat 1620
gggactccctc ccactccaggat atccagaact cggccaaatgc gaccccaaaa atgaaaaaag 1680
acaagaggc ttccaggggc aagaaagaga aggtgaggca gctgcagcgc actgagcatc 1740
aggcggtctt ggcagagcag aaaaaaaaaaaaaatggcc accttggcat 1800

ccgaaggagga agaaggcaag cacatccacc tggccaccc ggcgttacag aggacactgc 1860
acagcatcg a tctggagatc caagagggtt aactggttgg aatctgcggc a g t g t g g g a a 1920
gtggaaaaac ctctctcatt tcagccattt taggcccattt gacgcttcta gagggcagca 1980
ttgcaatcg tggAACCTTC gcttatgtgg cccagcaggc ctggatcctc aatgtactc 2040
tgagagacaa catcctgttt gggaaaggaaat atgatgaaga aagataacaac tctgtgctga 2100
acagctgctg cctgaggcct gacctggcca ttcttccag cagcgcaccc acggagattg 2160
gagagcggg agccaaacctg agcggtggc agcgccagag gatcagcctt gcccgggcct 2220
tgtatagtga caggagcatc tacatcctgg acgacccctt cagtcctta gatgccatg 2280
tggcaacca catcttcattt agtgcattcc ggaaacatct caagtccaaag acagttctgt 2340
ttgttacccca ccagttacag tacctgggtt actgtgatga agtgcatttc atgaaagagg 2400
gctgtattac ggaaagaggc acccatgagg aactgtgaa tttaaatggt gactatgcta 2460
ccatTTTAA taacctgttgc tggggagaga caccggcagg ttagatcaat tcaaaaaagg 2520
aaaccagtgg ttcacagaag aagtccaaag acaagggtcc taaaacagga tcagtaaaga 2580
agaaaaaaggc agtaaaagcca gggaaaggc agcttgcgc gctggaaagag aaaggcagg 2640
gttcagtgcctt ctggtcagta tatgggtgtt acatccaggc tgctgggggc cccttggcat 2700
tcctggttat tatggccctt ttcatgctga atgtaggcag caccgcctt cagcacctgg 2760
ggttgagttt ctggatcaag caaggaagcg ggaacaccac tgcgtactcg gggaaacgaga 2820
cctcggtgag tgacagcatg aaggacaatc ctcatatgcg gtactatgcc agcatctacg 2880
ccctctccat ggcagtcatg ctgatcctga aagccattcg aggagggtgc tttgtcaagg 2940
gcacgctgcg agcttcctcc cgctgcatg acgagcttt cccggatc cttcgaaagcc 3000
ctatgaagtttttgcacgg acccccacag ggaggattctt caacagggtt tccaaagaca 3060
tggatgaagt tgacgtgcgg ctggcggtcc agggccagat gttcatccag aacgttatcc 3120
tgggttctt ctgtgtgggaa atgatgcag gagtcttccc gtgggttccctt gtggcagtgg 3180
ggccccctgtt catcctctt tcagtcctgc acattgtctc cagggtcctt attcgggagc 3240
tgaagcgtctt ggacaatatc acgcagtcac ctttcctctc ccacatcactc tccagcatac 3300
aggcccttgc caccatccac gcctacaata aagggcagga gtttctgcac agataccagg 3360
agctgctgga tgacaaccaa gctcctttt ttttgcattt acgtgcgtt cgggtggctgg 3420
ctgtgcggctt ggaccttcattt acatcgccc tcatcaccac cacggggctg atgatcggtt 3480
ttatgcacgg gcagatttttcc ccaaggctatg cgggtctcgcatcttcatat gctgtccagt 3540
taacggggctt gttccagttt acggtcagac tggcatctga gacagaagct cgattcacct 3600
cggtggagag gatcaatcac tacattaaga ctctgtcctt ggaaggaccc tccagaatta 3660
agaacaaggc tccctccctt gactggcccc aggaggagga ggtgacctt gagaacgcag 3720
agatgaggtt ccggaaaaac ctcccttcttgc tcctaaagaa agtacccatc acgatcaaac 3780
ctaaagagaa gattggcattt gttggggcgggaa caggatcagg gaagtcctcg ctggggatgg 3840
ccctcttccg tctgggtggag ttatctggag gctgcatttca gattgtatgg gtaatca 3900
gtgatattgg ctttgcggac ctccgaagca aactctctat cattcctcaa gagccggcgc 3960
tgttcagtgg cactgtcaga tcaaattttgg acccccttcaa ccagatactt gaaagaccaga 4020
tttggatgc cctggagagg acacacatga aagaatgtat tgctcagctt cctctgaaac 4080
ttgaatctga agtgcattttgg aatggggata acttctcattt gggggaaacgg cagctttgt 4140
gcatacgatccatggcc cccactgttgc agatttcattt gtttagatggaa gccacagctg 4200
ccatggacac agagacagac ttattgattt aagagaccat ccggaaagca tttgcagact 4260
gtaccatgtt gaccatttgc catcgcccttgc acacggtttccat aggctccat aggattatgg 4320
tgctggccca gggacaggtt gttggagtttgc acacccatc ggtccttctg tccaaacgaca 4380
gttcccgattt ctatgcctatg ttttgcatttgc cagagaacaa ggtcgttgc aagggtgc 4440
tcctccctgtt tgacgaagtc tctttcttgc agagcatttgc cattccctgc ctggggcggg 4500
ccctctatcg cgtccttcatttgc ccggaaacccat tcccttgcatttgc tccgcacagca 4560
gttccggattt ggcttgcatttgc ttttgcatttgc agggagagtc atatttgtat tattgtatgg 4620
attccatattt catgtaaaca aaatttgtt ttttgcatttgc attgcactt aaaaggttca 4680
gggaaaccgtt attataatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc 4740
tctatataatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc 4800
tattaaaata agcactgtgc taataacagt gcatatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc 4860
ttgctgtactt agagatctgg ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc 4920
ctctagctgg tgggttccatggc gtggcagggtt ttctgggtgtt cccaaaggaaac acgtgtggca 4980
atagtggccctt ccggcggccatggc cccctctgcgc gcttcccccac agccgttccca ggggtggctg 5040
gagacgggtt ggcggcttgc gaccatgttgc agcgccgttgc gtttgcatttgc tcccttgcatttgc ttttgcatttgc 5100
ctgtccctgtt gtcacttactt gtttgcatttgc gggggatggc gggggatggc ccaggccctt 5160
tttgcatttgc tccatcaaga atggggatggc cggggatggc gggggatggc ccaggccctt 5220

tttccctgcct tcttcctttt gctgttgttt ctaaacaaga atcagtctat ccacagagag 5280
tcccactgccc tcaggttcct atggctggcc actgcacaga gctctccagc tc当地agacct 5340
gttggttcca agccctggag ccaactgctg ctttttgagg tggactt tc当地ttgcct 5400
attccccacac ctccacagtt cagtggcagg gctcaggatt tc当地gggtct gttttccctt 5460
ctcaccccgag tcgtcgaca gtctctctct ctctctcccc tcaaagtctg caactttaag 5520
cagcttgc taatcagtgt ctacacactgg cgtagaaagtt ttgtactgt aaagagacct 5580
acctcaggtt gctggttgct gtgtggttt gttgttccc gcaaaccccc ttgtgtctgt 5640
ggggctggta gctcagggtgg gctcagggtac tgctgtcatc agttgaatgg tc当地gttgc 5700
atgtcgtgac caactagaca ttctgtcgcc ttagcatgtt tgctgaacac cttgttggaa 5760
caaaaatctg aaaatgtgaa taaaattatt ttggattttt taaaaaaaaaaaaaaa 5820
aaaaaaaaaaa aaaaaaaaaa 5838

<210> 15
<211> 7323
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA5

<400> 15
gccagaggcg ctcttaacgg cggttatgtc ctttgctgtc tgaggggcct cagctctgac 60
caatctggtc ttctgtgtt cattagcatg ggcttcgtga gacagataca gctttgctc 120
tggaaaact ggaccctgctg gaaaaggca aagattcgct ttgtgggtt gactcggtgg 180
cctttatctt tatttctgtt ctgtatctgg ttaaggaaatg ccaaccgcgt ctacagccat 240
catgaatgcc atttcccaa caaggcgatg ccctcagcag gaatgctgcc gtggctccag 300
gggatcttct gcaatgtgaa caatccctgt tttcaagcc ccaccccccagg agaatcttct 360
ggaattgtgt caaactataa caactccatc ttggcaaggg tatatcgaga ttttcaagaa 420
ctcctcatga atgcaccaga gagccagcac ctggccgtt ttggacaga gctacacatc 480
ttgtcccaat tcatggacac cctccggact cacccggaga gaatttgcagg aagaggaata 540
cgaataaggg atatcttggaa agatgaagaa acactgacac tatttctcat taaaaacatc 600
ggcctgtctg actcagtgtt ctacctctg atcaactctc aagtccgtcc agagcagttc 660
gctcatggag tcccgacact ggcgtgaag gacatgcgt gcagcggagg cctcctggag 720
cgcttcatca tcttcagcca gagacgcggg gcaaagacgg tgctgtatgc cttgtgtcc 780
ctctcccagg gcaccctaca gtggatagaa gacactctgt atgccaacgt ggacttctc 840
aagcttcc gtgtgtttcc cacactccta gacagccgtt ctcaaggatca atactgaga 900
tcttggggag gaatattatc tgatatgtca ccaagaattt aagagttt cc当地ggccg 960
agtatgcagg acttgctgtg ggtgaccagg cccctcatgc agaatgtgg tccagagacc 1020
tttacaaagg tgatggcat cctgtctgac ctctgtgtg gctacccca gggaggtggc 1080
tctcgggtgc tctccttcaa ctggatgaa gacaataact ataaggcctt tcttgggatt 1140
gactccacaa ggaaggatcc tatctattct tatgacagaa gaacaacatc cttttgtaat 1200
gcattgatcc agagcctgga gtcaaatcct ttaacaaaaa tc当地tggag ggcggcaaag 1260
cctttgtca tggaaaaat cctgtacact cctgattcac ctgcagcag aaggatactg 1320
aagaatgcca actcaactt tgaagaactg gaacacgtt ggaagttgtt caaaggcctgg 1380
gaagaagtag ggcccccagat ctggacttcc ttgacaaca gcacacagat gaacatgatc 1440
agagataccc tggggAACCC aacagtaaaa gacttttga ataggcagtt tggtgaagaa 1500
ggtattactg ctgaaggccat cctaaacttc ctctacaagg gcccctggga aagccaggct 1560
gacgacatgg ccaacttcga ctggagggac atatttaaca tc当地tgcgtc caccctccgc 1620
ctggtaatc aatacctgga gtgttggtc ctggataagt ttgaaagctt caatgtatgaa 1680
actcagctca cccaaacgtgc ctctctctca ctggaggaaa acatgttctg ggccggagtg 1740
gtattccctg acatgtatcc ctggaccagg ctcttaccac cccacgtgaa gtataagatc 1800
cgaatggaca tagacgtgtt ggagaaaacc aataagatta aagacaggtt ttggattct 1860
ggtcccagag ctgatccctg ggaagatttc cggtaatctt gggcgggtt tgccttatctg 1920
caggacatgg ttgaacaggg gatcacaagg agccaggtgc aggccggaggc tccagttgg 1980
atctacctcc agcagatgcc ctacccctgc ttctgtggacg atttcttcat gatcatcctc 2040
aaccgctgtt tccctatctt catggatctg gcatggatct actctgtctc catgactgtg 2100
aagagcatcg tcttggagaa ggagttgcga ctgaaggaga ctttggaaaaa tc当地gggtgtc 2160

tccaatgcag tgatttggtg tacctgggtc ctggacagct tctccatcat gtcgatgagc 2220
atcttcctcc tgacgatatt catcatgcat gtaagaatcc tacattacag cgaccattc 2280
atcccttcc tggttcttgc actgccacca tcattgtgt ctttctgctc 2340
agcacctct tctccaaggc cagtctggca gcagccgtt gtgggtcat ctatttcacc 2400
ctctacctgc cacacatcct gtgcttcgccc tggcaggacc gcatgaccgc tgagctgaag 2460
aaggctgtga gcttactgtc tccgggtggca tttggatttgc gacttgagta cctgggtcg 2520
tttgaagagc aaggcctggg gctgcagtgg agcaacatcg ggaacagtcc cacggaaagg 2580
gacgaattca gcttcctgtc gtccatgcat atgatgtcc ttgatgtgc tgcgttatggc 2640
ttactcgctt ggtaccttga tcaggtgttt ccaggagact atggaacccc acttccttgg 2700
tactttcttc tacaagagtc gtattggctt ggcgggtgaag ggttcaac cagagaagaa 2760
agagccctgg aaaagaccga gcccctaaca gaggaaacgg aggatccaga gcacccagaa 2820
ggaatacacg actccttctt tgaacgttag catccagggt gggttctgg ggtatgcgtg 2880
aagaatctgg taaagattt tgagccctcc ggccggccag ctgtggaccg tctgaacatc 2940
accttctacg agaaccagat caccgcattc ctggggccaca atggagctgg gaaaaccacc 3000
accttgcacca tcctgacggg tctgttgcac ccaacctctg ggactgtgtc cgttggggg 3060
agggacattg aaaccagcct ggtatgcgtc cggcagagcc ttggcatgtg tccacagcac 3120
aacatcctgt tccaccaccc cacgggtggct gggccatgc tttctatgc ccagctgaaa 3180
ggaaagtccc aggaggaggc ccagctggag atggaagcca tttggaggg cacaggcctc 3240
caccacaagc ggaatgaaga ggctcaggac ctatcagggt gcatgcagag aaagctgtcg 3300
gttgcatttgc ctttgcatttgc agatgccaag gtgggtatttgc tggacgaaacc cacctctggg 3360
gtggaccctt actcgagacg ctcaatctgg gatctgtcc tgaagtatcg ctcaggcaga 3420
accatcatca tgcacttca ccacatggac gaggccgacc tccttggggg ccgcattgcc 3480
atcattgccc agggaaaggct ctactgtca ggcacccccc tcttcctgaa gaactgctt 3540
ggcacaggct tgcacttaac cttgggtgcgc aagataaaa acatccagag ccaaaggaaa 3600
ggcagtgagg ggacctgcag ctgctgtct aagggtttctt ccaccacgtg tccagccac 3660
gtcgatgacc taactccaga acaagtccctg gatggggatg taaatgagct gatggatgt 3720
gttctccacc atgttccaga ggcaaaagctg gtggagtgtca ttggcaaga acttatcttc 3780
cttcttccaa ataagaactt caagcacaga gcatatgcca gccttttcag agagctggag 3840
gagacgctgg ctgaccttgg tctcagcagt tttggattt ctgacactcc cctggaaagag 3900
attttctga aggtcacggc ggattctgtat tcaggacccctc tttttgcggg tggcgtcag 3960
cagaaaaagag aaaacgtcaa cccccgacac ccctgcttgc gtcccagaga gaaggctgga 4020
cagacacccca aggactccaa tgcactgtcc ccaggggcgc cggctgtca cccagaggc 4080
cagccctcccc cagagccaga gtgcccaggc ccgcagctca acacggggac acagctggc 4140
ctccagcatg tgcaggcgct gctggcaag agattccaaac acaccatccg cagccacaag 4200
gacttctgg cgcagatcgt gctccggct acctttgtgt tttggcttct gatgtttct 4260
atgttatcc ctcccttgg cgaataacccc gcttgcaccc ttccacccctg gatatatggg 4320
cagcagtaca cttcttcag catggatgaa ccaggcagtg agcagttcac ggtacttgca 4380
gacgtctcc tgaataagcc aggcttggc aaccgtgtcc tgaaggaagg gtggcttccg 4440
gagttccctt gttggcaactc aacaccctgg aagactcctt ctgtgtcccc aaacatcacc 4500
cagctgttcc agaaggcagaa atggacacag gtcaaccctt caccatccgt caggtgcagc 4560
accagggaga agctcaccat gtcggccagag tgcccccggg gtggccgggg cctcccgccc 4620
ccccagagaa cacagcgcag cacggaaatt ctacaagacc tgacggacag gaacatctcc 4680
gacttctgg taaaacgtt tccgtctt ataagaagca gcttaaaggag caaattctgg 4740
gtcaatgaac agaggtatgg aggaatttcc attggaggaa agctccagt cgtccccatc 4800
acggggaaag cacttgggg tttttaagc gaccttggcc ggatcatgaa tgcgtgggg 4860
ggcccttatca ctagagaggc ctctaaagaa atacctgatt tccttaaaca tctagaaact 4920
gaagacaaca ttaaggtgtg gtttaataac aaaggctggc atgcccgtt cagcttctc 4980
aatgtggccc acaacccat cttacggggcc agcctgccta aggacaggag ccccgaggag 5040
tatggaatca cgcgtttag ccaacccctg aacctgtacca aggagcagct ctcagagatt 5100
acagtgtga ccacttcagt ggatgtgtg gttgcacccctt gtgtgatattt ctccatgtcc 5160
ttcgcccttgc ccagctttgt ctttatttgc atccaggagc gggtaaccaa atccaagcac 5220
ctccagtttgc tcaatgtggatg gagccccacc acctactggg tgaccaactt cctctggac 5280
atcgtaattt atccgtgtg tgcgtggctt gtgggtggca tttcatgg gtttcaagaa 5340
aaagcctaca cttctccaga aaaccccttgc gcccttgcactgtcc gctgtatgg 5400
tggccgtca ttcccatgtat gtacccagca tccttcctgt ttgatgtccc cagcacagcc 5460
tatgtggctt tatcttgc taaatctgttca atcggcatca acagcagtc tattaccttc 5520
atcttggaaat tatttggagaa taaccggacg ctgctcagggt tcaacccgt gctgaggaag 5580

ctgctcattt tttccccca ctttcgcctg ggccggggcc tcattgacct tgcactgagc 5640
caggctgtga cagatgtcta tgcccggtt ggtgaggagc actctgc当地 tccgttccac 5700
tgggacctga ttggaaagaa cctgttgcc atgggtgtgg aagggtgtt gtacttc当地 5760
ctgaccctgc tggccagcg ccacttctt ctctccaaat ggattgccga gccc当地 taag 5820
gagccattt tgatgaaga tcatgtgtg gctgaagaaa gacaaagaat tattactgt 5880
ggaaataaaa ctgacatctt aaggctacat gaactaaccg agatttatcc gggcacctcc 5940
agcccagcg tggacaggct gtgtgtcgga gttccctg gagagtgtt tggccctctg 6000
ggagtgaatg gtgc当地 gaaaccaca ttcaagatgc tcaactgggg caacacagtg 6060
acccagggg atgccaccgt agcaggcaag agtattttaa ccaatatttc tgaagtccat 6120
caaaaatgg gctactgtcc tcagtttgc gcaatcgatg agctgctcac aggacgagaa 6180
catcttacc tttatgccc gtttcgaggt gtaccagcg aagaatcga aaagggttgc 6240
aactggagta ttaagagcct gggcctgact gtctacgccc actgc当地 tggcacgtac 6300
agtggggca acaagcggaa actctccaca gccatcgac tcattggctg cccaccgctg 6360
gtgctgctgg atgagccac cacaggatg gaccccccagg cacgccc当地 gctgtggaa 6420
gtcatcgta gcatcatcg agaagggagg gctgtggcc tcacatccca cagcatggaa 6480
aatgtgagg cactgtgtac ccggctggcc atcatggta agggcgc当地 tcgatgtatg 6540
ggcaccattt agcatctcaa gtccaaattt ggagatggct atatcgatc aatgaagatc 6600
aaatccccga aggacgaccc gttccctgac ctgaaaccctg tggagcagg tttccagggg 6660
aacttcccg gcatgtgtca gagggagagg cactacaaca tgctccagg ccaggcttcc 6720
tcctccccc tggcgaggat ctccagctc ctccctccccc acaaggacag cctgctcatc 6780
gaggagact cagtcacaca gaccacactg gaccagggtt ttgttaaattt tgctaaacag 6840
cagactgaaa gtcatgaccc ctccctgac cctcgagctg ctggagccag tgcacaagcc 6900
caggactgat ct当地 cacacc gttcgccct gcagccagaa aggaactctg ggcagctgga 6960
ggcgcaggag cctgtgccc tatggtcata caaatggact ggccagc当地 aatgacccca 7020
ctgc当地 caga aaacaaac acgaggagca tgc当地 gcaat tcaagaaagag gtcttcaga 7080
aggaaaccga aactgactt ctc当地 ctggaa acacctgatg gtgaaaccaa acaaatacaa 7140
aatccctctc cagaccccaag aactagaaac cccggccat cccactagca gcttggcc 7200
ccatattgt ctc当地 tcaa gcagatctgc tttctgcat gtttgc当地 gtgtctgc 7260
tgtgtgtat tttcatggaa aaataaaatg caaatgc当地 catcacaaaaaaa aaaaaaaaaa 7320
aaa 7323

<210> 16
<211> 2930
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCG1 (ABC8)

<400> 16
gaattccggt ttcttcctaa aaaatgtctg atggccgctt tctcggtcgg caccgccatg 60
aatgccagca gttactctgc agagatgacg gagcccaagt cggtgtgtt ctcgggtggat 120
gagggtgtt ccagcaacat ggaggccact gagacggacc tgctgaatgg acatctgaaa 180
aaagtagata ataacccac ggaagccc当地 cgcttccct cttccctcg gagggcagct 240
gtgaacattt aattcaggaa ctttccat tgggtccctg aaggaccctg gtggaggaag 300
aaaggataca agaccctcct gaaaggaatt tccggaaagt tcaatagtgg tgagttgg 360
gccattatgg tccctccgg ggc当地 ggaag tccacgctga tgaacatcc ggctggatac 420
agggagacgg gcatgaaggg ggc当地 ctc atcaacggcc tgccccggga cctgc当地 ctgc 480
ttccggaaagg tgc当地 ctgc当地 catcatgc当地 gatgacatgc tgctgccc当地 tctcaactgt 540
caggaggcca tgatgggtc ggc当地 atctg aagcttc当地 agaaggatga aggc当地 aagg 600
gaaatggta agagatact gacagcgctg ggcttgc当地 cttgc当地 cccaa cacgc当地 ggacc 660
gggagcctgt cagggtgtca ggc当地 agcgctg ctggccatcg cgctggagct ggtgaaacaac 720
cctccagtc当地 tggcttc当地 tgagccacc agcggccctg acagcgccctc ctgcttccag 780
gtggctc当地 tgatgaaagg gctcgctca gggggctgct ccatcattt caccatccac 840
cagcccaagcg ccaaactt ctagctgttcc gaccagctt acgtccctgag tcaaggacaa 900
tgtgtgtacc gggaaaaatg ctgcaatctt gtgc当地 att tgagggattt gggctgaaac 960
tgcccaaccc accacaaccc agcagattt gtc当地 tggagg ttgc当地 catccgg cgagtaacgg 1020

<210> 17
<211> 400
<212> DNA
<213> Human

<220>
<223> human cDNA

```
<400> 17
gagatcctga ggctttcccc ccaggctgct cagcaggaaa ggttctccctc cctgatggtc 60
tataaggttgc ctgttgagga tttgcacact ttatcacagg ctttcttcaa attagagata 120
gttaaacaga gtttcgacct ggaggagttac agcctctcac agtctaccct ggagcagggtt 180
ttccctggagc tctccaagga gcaggagctg ggtatcttg aagaggactt tgatccctcg 240
gtgaagtggaa aactcctccct gcaggaagag ccttaaagct ccaaataccc tatatcttc 300
tttaatccttg tgactctttt aaagataata ttttatagcc ttaatatgcc ttatatcaga 360
ggtgttacaa aatgcatttg aaactcatgc aataattatc 400
```

<210> 18
<211> 235
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 18
tttcagtt catgtataac caagaaatcg aattgtttc cggttcttat gggaaattgtt 60
agcaatgccccc ttatttggaat tttaacttc acagagctt ttcaaatttggaa gagcaccc 120
tttttcgtg atgacatagt gctggatctt ggttttagat atgggtccat atttttgtt 180
ttgatcacaa actgcatttc tccttatatt ggcataagca gcatcagtga ttatt 235

<210> 19
<211> 636
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCC4 (MRP4)

<400> 19
atggataagt ttataactagt gttggcacat ggcggcatgt atagatatac taggaggacc 60
tagttgtatt ccttgtatga aaaagcgtcc ctggtaactac aataagtctt tcgtgaaagg 120
agttaatcc taacaacaac tcaggaaagt attttggaaaa gaataactggta taaggaaaaaa 180
cctgcagcta ctccctgtat ttcaagacat tgcctacaag tgggtgggtt ggtctctgtg 240
gctgtggcccg tgattccctt gatcgcaata cccttgggtt cccttggaaat cattttcatt 300
tttcttcggc gatattttt ggaaacgtca agagatgtga agcgccctggaa atctacaagt 360
gagatggaa actcgggttg gtatagacat gctagctgtt ttccatttat gccataaaatt 420
acagagaccc cctgaaaattt ggcagactct gtcttccaga atttctctaa cattaggtaa 480
ttgaacgtat tggccatttat gaatcattgt gtcccttaga gcatgtggaa ttgatagcct 540
gcaacgtgtat actttgcatt tggataaagg aaggagtgaa ggcataatgg ggagtaatat 600
tctacaggaa tgtcagcact gtgaagacag ggactc 636

<210> 20
<211> 2911
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA8 (ABC-new)

<400> 20
cggngagca cgtctggttc tatgggcggc tgaagggtct gagtgccgt gtagtggcc 60
ccgagcagga ccgtctgtc caggatgtgg ggctggctc caagcagagt gtgcagactc 120
gccaccttc tgggtggatg caacggaaac tggccgtggc cattgcctt gtggccggct 180
cccaagttgt tattcctggac gaggctacgg ctggcgtggta tcctgcttcc cgccgcggta 240
tttgggagct gctgctaaa taccgagaag gtcgcacgt gatcctctcc acccaccacc 300
tggatgaggc agagctgtc ggagaccgtg tggctgtggt ggcaggtggc cgcttgtgct 360
gctgtggctc cccactcttc ctgcgcgtc acctgggtc cggctactac ctgacgctgg 420
tgaaggcccg cctgccccctg accaccaatg agaaggctga cactgacatg gagggcagtg 480
tggacaccag gcaggaaaag aagaatggca gccaggccag cagactcggc actcctcagc 540
tgctggccct ggtacagcac tgggtgcccgg gggcacggct ggtggaggag ctgccacacg 600
agctgggtct ggtgctgccc tacacgggtg cccatgacgg cagcttcggcc acactcttcc 660
gagagctaga cacgcggctg gcccggctga ggctcaactgg ctacggatc tccgacacca 720
gcctcgagga gatcttctg aagggtggtgg aggagtgtgc tgccgacaca gatatggagg 780
atggcagctg cgggcagcac ctatgcacag gcattgtgg cctagacgtt accctgcggc 840
tcaagatgcc gccacaggag acagcgctgg agaacggggaa accagctggg tcagccccag 900
agactgacca gggctctggg ccagacgccc tggccgggtt acagggctgg gcaactgaccc 960
gccagcagct ccaggccctg ctctcaagc gctttctgtt tgcccgccgc agccgcggcg 1020
gcctgttcgc ccagatcgtg ctgcctgccc tctttgtggg cttggccctc gtgttcagcc 1080
tcatcgtgcc tcctttcggg cactaccgg ctctgcggct cagttccacc atgtacgggt 1140
ctcaggtgtc ctcttcagttt gaggacgccc caggggaccc tggacgtgcc cggctgtcg 1200

aggcgctgct gcaggaggca ggactggagg agccccagt gcagcatagc tcccacaggt 1260
tctcggcacc agaagttcct gctgaagtgg ccaaggatctt ggccagtgcc aactggaccc 1320
cagagtctcc atccccagcc tgccagtgtt gcccagccgg tgcccgccgc ctgctgccc 1380
actgcccggc tgcagcttgtt ggtccccctc cgccccaggc agtgcacccggc tctgggaaag 1440
tggttcagaa cctgacagggc cggAACCTGT ctgacttcctt ggtcaagacc taccggcgcc 1500
tggtgccca gggcctgaag actaagaagt gggtaatga ggtcaggtac ggaggcttct 1560
cgctgggggg ccgagaccca ggcctgcctt cgggccaaga gttggggccgc tcagtggagg 1620
agttgtggc gctgctgagt ccctgcctt gccccggccct cgaccgtgtc ctgaaaaacc 1680
tcacagcctg ggctcacagc ctggacgctc aggacagtct caagatctgg ttcaacaaca 1740
aaggctggca ctccatggt gctttgtca accgagccag caacgcaatc ctccgtgctc 1800
acctgcccccc agggcgggccc cggcacgccc acagcatcac cacactcaac cacccttga 1860
acctcaccaa ggagcagctg tttgaggctg cattgatggc ctccctcggt gacgtcctcg 1920
tctccatctg tgggtctttt gccatgtctt ttgtccccggc cagcttcaactt cttgtcctca 1980
ttgaggagcg agtcacccga gccaaggacc tgcagctcat gggggggccctg tccccccaccc 2040
tctactggct tggcaacttt ctctggaca tgtgttaacta cttggtgcca gcatgcatacg 2100
tggtgctcat ctttctggcc ttccagcaga gggcatatgt ggccccctgcc aacctgcctg 2160
ctctcctgct gttgtacta ctgtatggct ggtcgtatcac accgctcatg taccctggcct 2220
ccttcttctt ctccgtgccc agcacagcct atgtgggtctt cacctgcata aacctctta 2280
ttggcatcaa tggaaagcatg gccacctttg tgcttggact cttctctgtat cagaagctgc 2340
aggaggttag ccggatcttggaaacaggctt tccttatctt cccccacttc tgcttggcc 2400
gggggcttat tgacatgggtt cggaaaccagg ccatggctga tgcctttgag cgcttggag 2460
acaggcagtt ccagtacccc ctgcgtggg aggtggtcgg caagaacccctt ttggccatgg 2520
tgatacaggg gccccctttc cttctttca cactactgtc gcagcaccga agccaactcc 2580
tgccacagcc cagggtgagg tctctgcccac tcctggaga ggaggacgag gatgtagccc 2640
gtgaacggga gcgggtggtc caaggagcca cccaggggga tgtgtgggtt ctgaggaact 2700
tgaccaaggt ataccgtggg cagaggatgc cagctgttga ccgttgcgtc ctggggattt 2760
cccctggtga agtgttttgg gctgctgggt gtgaacggag cagggaaagac gtccacgttt 2820
cgcatggtga cgggggacac attggccagc agggggcgagg ctgtgctggc aggccacagc 2880
ggggccggga acccagtgtt cgcacctcna g 2911

<210> 21
<211> 100
<212> DNA
<213> Human

<220>
<223> human Intron-Sequence of ABCA8 (ABC-new)

<400> 21
ctcctgccac agtttagtgag gtctatggag aggggtggcag gggccaagga cctactttaa 60
gcccacagat attctgtccc caggcccagg gtgaggtctc 100

<210> 22
<211> 15
<212> DNA
<213> Human

<400> 22
tgccgaccga gaaag 15

<210> 23
<211> 372
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 23
atcgccgata tctccccttc gggctgcggc aagagcacct tcctgaaagt gctgccggg 60
ttctatgccc tggacaccgg gcgcgttcagg atcaacggcc aggcgatgcg gcatttcggt 120
ttgcgctcgta accgccagag cgtggcctat gtcacggccc acgacgagat catgccggg 180
acggtgatcg agaacatcct gatggacagc gacccgctgg acggcacggg tttgcagagc 240
tgtgtcgagc aggccgggtt gctggaaagc atcctgaaac tgagcaatgg cttcaataacc 300
ttgctcgac ccatggcggt gcaattgtcc tcggccaga agcaacgcct gttgatcgcc 360
cggggtcgac gc 372

<210> 24
<211> 281
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 24
aaaaccaaag attctcctgg agttttctct aaactgggtg ttctccttag gagagttgac 60
aagaaaacttg gtgagaaaata agctggcagt gattacgcgt ctccctcaga atctgatcat 120
gggttggttc ctccctttct tcgttctgcg ggtccgaagc aatgtctaa aggggtctat 180
ccaggaccgc gtaggtctcc tttaccagtt tggggcgcc accccgtaca caggcatgct 240
gaacgctgtg aatctgtttc ccgtgctgcg agctgtcagc a 281

<210> 25
<211> 2258
<212> DNA
<213> Human

<220>
<223> human cDNA of Huwhite2

<400> 25
atggccgtga cgctggagga cggggcggaa cccccctgtgc tgaccacgca cctgaagaag 60
gtggagaacc acatcactga agcccgacgc ttctcccacc tgcccaagcg ctcagccgtg 120
gacatcgagt tcgtggagct gtccttattcc gtgcgggagg ggccctgctg ggcggaaaagg 180
ggttataaga cccttctcaa gtgcctctca ggtaaattct gccgcgggaa gctgattggc 240
atcatggcc cctcaggggc tggcaagtct acattcatga acatcttggc aggatacagg 300
gagtctggaa tgaaggggca gatcctgggtt aatggaaaggc cacggagct gaggaccttc 360
cgcaagatgt cctgctacat catgcaagat gacatgctgc tgccgcacct cacgggtgtt 420
gaagccatga tggctctgc taacctgaat cttactgaga atcccgatgt gaaaaacgt 480
ctcgtgacag agatcctgac ggcactgggc ctgatgtcgt gctcccacac gaggacagcc 540
ctgctctctg gcgggcagag gaagcgtctg gccatgccc tggagctggt caacaacccg 600
cctgtcatgt tctttgatga gcccaccagt ggtctggata ggcgcctctt tttccaagtg 660
gtgtccctca tgaagtccct ggacacgggg ggcacgtacca tcatctgcac catccaccag 720
cccagtgcac agcttttga gatgtttgac aagcttaca tcctgagcca gggtcagtgc 780
atcttcaaaag gcgtggtcac caacctgatc ccctatctaa agggactcgg cttgcattgc 840
cccacctacc acaacccggc tgaattcagt gagtgggggt ctgttgcctc tggcgagtt 900
ggacacctga accccatgtt gttcagggtt gtgcagaatg ggctgtgcgc tatggctgag 960
aagaagagca gcccgtgagaa gaacgaggc cctgccccat gcccctcttgc tcctccggaa 1020
gtggatccca ttgaaagcca caccttgcc accagcaccc tcacacagtt ctgcattcctc 1080
ttcaagagga cttccctgtc catcctcagg gacacggtcc tgacccaccc acgggtcatg 1140
tcccacgtgg ttattggcgt gtcatcgcc ctccttacc tgcataattgg cgacgatgcc 1200
agcaaggtct tcaacaacac cggctgcctc ttcttctcca tgctgttccat catgttcgccc 1260
gccctcatgc caactgtgct cacctcccc tttagagatgg cggcttccat gaggagcac 1320
ctcaactact ggtacagcct caaaagcgtat tacctggcca agaccatggc tgacgtgccc 1380

tttcaggtgg tgcgtccggc ggtctactgc agcattgtgt actggatgaa cggccagccc 1440
gctgagacca gccgcttcct gctttctca gccctggcca cggccaccgc cttggtgcc 1500
caatcttgg ggctgctgat cgagactgct tccaactccc tacaggtggc cactttgtg 1560
ggcccagttt ccgcacatccc tgcctcttgc ttctccggct tctttgtcag cttcaagacc 1620
atccccactt acctgcaatg gagctccat ctctccatg tcaggtatgg ctttgagggt 1680
gtgatcctga cgatctatgg catggagcga ggagacctga catgtttaga ggaacgctgc 1740
ccgttccggg agccacagag catcctccga ggcgtggatg tggaggatgc caagctctac 1800
atggacttcc tggatcttggg catcttcttc ctagccctgc ggctgctggc ctaccttgc 1860
ctgcgttacc gggtaagtc agagagatag aggcttgcggc cagcctgtac cccagccct 1920
gcagcaggaa gccccccatgc ccagccctt gggactgtt tanctctata cacttggca 1980
ctggttcctg gcggggctat cctctcctcc cttggctctt ccacaggctg gctgtcgac 2040
tgcgtccca gcctgggctc tggagtgaaa ggctccaacc ctccccacta tgcccaggag 2100
tcttcccaag ttgatgcggg tttagtcttgc ctccttactc tctccaacac ctgcatgcaa 2160
agactactgg gaggctgctg ctccttgcctt gcccattggca ccctcctctg ctgtctgcct 2220
gggagcccta ggctctctat gcccccaactt acaactga 2258

<210> 26
<211> 820
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 26
tttaaggatt tcagccttgc cattccgtca ggatctgtca cggcactggc tggcccaagt 60
ggttctggca aatcaacagt gctttcactc ctgctgaggt tgcgtggaccc tgcttctgga 120
actatttagtc ttgatggcca tgacaatccg tcagctaaac ccagtgtgt gctgagatcc 180
aaaattggga cagtcagtca ggaacccatt ttgtttctt gctctattgc tgagaacatt 240
gcttatgggt ctgatgaccc ttccctgtg accgctgagg aaatccagag agtggctgaa 300
gtggccaatg cagtggttcc tccggaattt ccccaaggt tcaacactgt ggttggagaa 360
aagggtgttc tcctctcagg tggcagaaaa cagcggattt cgattgccc tgctctgcta 420
aagaatccca aaattcttct cctagatgaa gcaaccatgt cgctggatgc cgaaaatgag 480
tacttgttc aagaagctt agatcgctg atggatggaa gaacgggttt agttattgcc 540
catagcctgt ccaccattaa gaatgctaattt atggatgtc ttcttgacca agaaaaattt 600
actgaatatg gaaaacatga agagctgtt tcaaaaacca atggatata cagaaaacta 660
atgaacaaac aaagttttat tttagtcttgc ggaagcaatt actggtaaac aatatgagac 720
tttaatgcaa aacagtgttgc cggaaaaaaa ctcagagact atgaaataca taaaccatat 780
atcaagttat ttgaaaaata cctattttt ccaaagtgtg 820

<210> 27
<211> 575
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 27
gctctccaca cagagatttt gaagcttttc ccacaggctg cttggcagga aagatattcc 60
tcttaatgg cgtataagtt acctgtggag gatgtccacc ctctatctcg ggccttttc 120
aagtttagagg cgatgaaaca gaccttcaac ctggaggaat acagcctctc tcaggctacc 180
ttggagcagg tattcttgcactctgtaaa gagcaggagc tggaaaatgt tgatgataaa 240
attgatacaa cagttgaatg gaaacttctc ccacaggaag acccttaaaa tgaagaacct 300
cctaacatcc aatttttaggt cctactacat tgtagtttc cataattcta caagaatgtt 360
tcctttact tcagttaca aaagaaaaca ttaataaac attcaataat gattacagtt 420
ttcattttta aaaatttagg atgaaggaaa caagggaaaata tagggaaaag tagtagacaa 480

aattaacaaa atcagacatg ttattcatcc ccaacatggg tctattttgt gctaaaaat 540
aatttaaaaa tcataacaata ttaggttggt tatcg 575

<210> 28
<211> 300
<212> DNA
<213> Human

<220>
<223> human cDNA

<400> 28
gtggaagatg tgcaacctt agcccaagct ttcttcaaatt tagagaaggtaaaacagagc 60
tttgaccttag aggagtacag cctctcacag tctaccctgg agcagggttt cctggagctc 120
tccaaggagc aggagctggg tgatttttag gaggatttg atccctcagt gaagtggaaag 180
ctcctccccc aggaagagcc taaaaacccc aaattctgtt ttcctgttta aaccctgttgt 240
tttttttaaa tacatttattttatagcag caatgttcta ttttagaaaa ctatattata 300

<210> 29
<211> 2719
<212> DNA
<213> Human

<220>

<220>
<223> human cDNA of ABCG2

<400> 29
tttaggaacg caccgtgcac atgcttggtg gtctttaa gtggaaactg ctgctttaga 60
gtttgtttgg aaggccggg tgactcatcc caacatttac atccttaattt gttaaagcgc 120
tgcctccgag cgacgcac tctgagatcct gagccttgg ttaagaccga gctctattaa 180
gctgaaaaga taaaaactct ccagatgtct tccagtaatg tcgaagttt tatcccagt 240
tcacaaggaa acaccaatgg cttcccccgcg acagttcca atgacctgaa ggcatttact 300
gaaggagctg tgtaaagttt tcataacatc tgctatcgag taaaactgaa gagtggctt 360
ctaccttgc gaaaaccagt tgagaaagaa atattatcga atatcaatgg gatcatgaaa 420
cctggctca acgccatcct gggacccaca ggtggaggca aatctcgat attagatgtc 480
ttagctgcaa ggaaagatcc aagtggatta tctggagatg ttctgataaaa tggagcaccg 540
cgacctgcca atttcaaatg taattcaggat tacgtggatc aagatgtatgt tgcgtatggc 600
actctgacgg tgagagaaaaa cttacagttc tcagcagctc ttccggcttgc aacaactatg 660
acgaatcatg aaaaaaacga acggattaac agggtcattt aagagtttagg tctggataaaa 720
gtggcagact ccaagggtgg aactcagttt atccgtggtg tgcgtggagg agaaagaaaa 780
aggacttaga taggaatgga gcttatcact gatccttcca tcttgcctt ggatgagcct 840
acaactggct tagactcaag cacagcaaattt gctgtccctt tgctcctgaa aaggatgtct 900
aagcagggac gaacaatcat cttctccatt catcagcctc gatattccat tttcaagttg 960
tttgatagcc tcaccttattt ggccctcagga agacttatgt tccacggggc tgctcaggag 1020
gccttggat acttgaatc agctggttat cactgtgagg cctataataa ccctgcagac 1080
ttcttcttgg acatcattaa tggagattcc actgctgtgg cattaaacag agaagaagac 1140
tttaaagcca cagagatcat agagccttcc aagcaggata agccactcat agaaaaattt 1200
gcggagattt atgtcaactc ctccctctac aaagagacaa aagctgaattt acatcaactt 1260
tccgggggtg agaagaagaa gaagatcaca gtcttcaagg agatcagcta caccacctcc 1320
ttctgtcatc aactcagatg ggttccaag cgttcattca aaaacttgcg ggttaatccc 1380
caggcctcta tagctcagat cattgtcaca gtcgtactgg gactgggtt aggtgccatt 1440
tactttggc taaaaatga ttctactggatccagaaca gagctgggtt tctttcttc 1500
ctgacgacca accagtgtttt cagcagtgtt tcagccgtgg aactctttgtt ggttagagaag 1560
aagcttca tacatgaata catcagcggat tactacagag tgcgtatctt tttccttgg 1620
aaactgttat ctgatttattt acccatgagg atgttaccaa gtattatattt tacctgtata 1680

gtgtacttca tgtaggatt gaagccaaag gcagatgcct tcttcgttat gatgtttacc 1740
cttatgatgg tggcttattc agccagtcc atggcactgg ccatagcagc aggtcagagt 1800
gtggttctg tagcaacact tctcatgacc atctgttttgc tgtttatgt gatTTTCA 1860
ggctgttgg tcaatctcac aaccattgca tcttgctgt catggcttca gtacttcagc 1920
attccacgat atggatttac ggcttgcag cataatgaat tttgggaca aaacctctgc 1980
ccaggactca atgcaacagg aaacaatcct tgtaactatg caacatgtac tggcgaagaa 2040
tatttggtaa agcagggcat cgatctctca ccctggggct tggaaagaa tcacgtggcc 2100
ttggcttgc tggattttat ttccctcaca attgcctacc tggaaattgtt atttctaaa 2160
aaatattctt aaattcccc ttaattcagt atgatttac ctcacataaa aaagaagcac 2220
tttgattgaa gtattcaatc aagttttt gttgttttgc gttcccttgc catcacactg 2280
ttgcacagca gcaattgttt taaagagata cattttaga aatcacaaca aactgaatta 2340
aacatgaaag aacccaagac atcatgtatc gcatattatg taatctcctc agacagtaac 2400
catggggaaag aaatctggc taatttata atctaaaaaa ggagaattga attctggaaa 2460
ctcctgacaa gttattactg tctctggcat ttgtttcctc atctttaaaaa tgaataggtt 2520
ggtagtagc cttcagtc taatacttta tggatgtatg gtttgcatt atttaatata 2580
tgacaaatgt attaatgcta tactggaaat gtaaaattga aaatatgtt gaaaaaagat 2640
tctgtcttat aggtaaaaaa aagccaccgg tggatgaaaaaaaatcttt tgataagcac 2700
attaaagtta atagaactt 2719

<210> 30
<211> 6491
<212> DNA
<213> Human

<220>
<223> human cDNA of ABCA3 (ABC3)

<400> 30
ccggcccgcc gcccaggctc ggtgctggag agtcatgcct gtgagccctg ggcacccct 60
gatgtcctgc gaggtcacgg tggtccaaa cctcagggtt gcccgtcccc actccagagg 120
ctctcaggcc ccaccccgga gccctctgtg cggagccgcc tcctcctggc cagttcccc 180
gtagtcctga agggagacct gctgtgttgc gcctcttcgggatggcccttgc atgagtgtgg 240
agctgagcaa ctgaacctga aactcttca ctgtgagtca aggaggctt tccgcacatg 300
aaggacgctg agcgggaagg actcctctct gcctgcagtt gtgcgcgtt gaccgcacc 360
aggggctctc tagactgccc ctccctccatc gcctccctg cctctccagg acagagcagc 420
cacgtctgca cacctcgccc tctttacact cagtttcag agcacgttcc tcctatttcc 480
tgcgggttgc agcgctact tgaacttact cagaccacct acttctctag cagcaactggg 540
cgccctttc agcaagacga tggctgttgc caggcagctg ggcctccccc tctggaaagaa 600
ctacaccctg cagaagcggaa aggtcctggt gacggccttgc gaaacttcc tgcattgtt 660
gtttcctggg atcctcatct ggctccgtt gaagatttgc tggaaaatg tgcccaacgc 720
caccatctac cccggccagt ccatccagga gctgcctctg ttcttcaccc tccctccggcc 780
aggagacacc tggagacttgc cctacatccc ttcttcacact gacgctgcacca agaccgtcac 840
tgagacagtgc cgcaggccac ttgtatcaa catgcgactg cgcggcttcc cctccgagaa 900
ggacttttag gactacatta ggtacgacaa ctgctcttcc agcgtgttgc cgcggcttgc 960
cttcgagcac cccttcaacc acagcaagga gcccgtcccg ctggcgttgc aatatcacct 1020
acggttcagt tacacacggaa gaaattacat gtggacccaa acaggcttcc ttccctgaa 1080
agagacagaa ggctggcaca ctactccct ttccctgtt ttcccaaaacc caggaccaag 1140
ggaactaaca tccctgtatg gggagaacc tgggtacatc cgggaaggcttcc tccctggccgt 1200
gcagcatgtt gttggacccggg ccatcatggaa gtaccatgcc gatgcgcacca caccgcagct 1260
gttccagaga ctgacgggttgc ccatcaagag gttccctgttgc cccgcgttca tcgcagaccc 1320
cttcctcggtt gccatccagt accagcttgc cctgctgttgc ctgctcgttgc tcaccatcac 1380
cgccgttccacc attggccgttgc ctgtcgttgc ggagaaggaa aggaggcttgc aggagtacat 1440
gcccgttccacc gggctcgttgc gttggcttgc ctggagtttgc tgggttccctt tgggttccct 1500
cttcctccctt atcggccgttgc cttcatgttgc cctgttccctt tgggttccctt tgggttccct 1560
tgttagccgttgc ctgtcccgca gggaccccttcc cctgggttgc gcttcccttgc tgggttccct 1620
catctctacc atctcccttca gttcatgttgc cggccaccccttcc ttcagcaag ccaacatggc 1680
agcaggcccttcc ttttttttttcc cccatcatatc ccctacttcc tcgtggcccc 1740

tcggtacaac tggatgactc tgagccagaa gctctgctcc tgccctcgt ctaatgtcgc 1800
catggcaatg ggagcccagc tcattggaa atttgaggcg aaaggcatgg gcatccagt 1860
gcgagacctc ctgagtcctc tcaacgtgga cgacgacttc tgcttcgggc aggtgctggg 1920
gatgctgctg ctggactctg tgctctatgg cctggtgacc tggtacatgg aggccgtctt 1980
cccaggcag ttcggcgtgc ctcagccctg gtacttcttc atcatgccct cctattggg 2040
tgggaagcca agggcggtt cagggaaagga ggaagaagac agtaccccg agaaagcact 2100
cagaaaacgag tactttgaag ccgagccaga ggacctggg gcggggatca agatcaagca 2160
cctgtccaag gtgttcaggg tggaaataa ggacagggcg gccgtcagag acctaaccct 2220
caacctgtac gagggacaga tcaccgtcct gctggccac aacggtgccg ggaagaccac 2280
caccctctcc atgctcacag gtctttcc ccccaccagt ggacgggcat acatcagcgg 2340
gtatgaaatt tcccaggaca tggttcagat ccgaaagagc ctgggcctgt gcccgcagca 2400
cgacatcctg tttgacaact tgacagtcgc agagcacctt tatttctacg cccagctgaa 2460
gggcctgtca cgtcagaagt gcccgtgaa agtcaagcag atgctgcaca tcattggcct 2520
ggaggacaag tggaaactcac ggagccgtt cctgagcggg ggcattgaggc gcaagctctc 2580
catcggcattc gcccctcatcg caggctccaa ggtgctgata ctggacgagc ccacccctggg 2640
catggacgcc atctccagga gggccatctg gnatcttctt cagcggcaga aaagtgaccg 2700
caccatcggt ctgaccaccc acttcatgga cgaggctgac ctgctgggag accgcacatcgc 2760
catcatggcc aagggggagc tgactgtctg cgggtcctcg ctgttctca agcagaataa 2820
cggtgccggc tatcacatga cgctggtcaa ggagccgcac tgcaacccgg aagacatctc 2880
ccagctggc caccaccacg tgcccaacgc cacgctggag agcagcgctg gggccgagct 2940
gtcttcatc cttcccagag agagcacgca caggttggaa ggtcttttgc taaaactgga 3000
gaagaagcag aaagagctgg gcattgccag ctttggggca tccatcacca ccatggagga 3060
agtcttcctt cgggtcggtt agctggtggaa cagcagtatg gacatccagg ccatccagct 3120
ccctgcccgt cagtagccacg acgagaggcg cgccagcgc tggctgtgg acagcaacct 3180
ctgtggggcc atggaccctt ccgacggcat tggagccctc atcgaggagg agcgcacccgc 3240
tgtcaagctc aacactgggc tgcctgtca ctgcccacaa ttctggggca tttttctgaa 3300
gaaggccgca tacagctggc gcgagtgaa aatggtgccg gcacaggccc tggctcctt 3360
gacctgcgtc accctggccc tcctggccat caactactcc tcggagctt tcgacgaccc 3420
catgctgagg ctgaccccttgg gcgagttacgg cagaaccgtc gtgccttctt cagttccgg 3480
gacctcccgat ctgggtcagc agctgtcaga gcatctgaaa gacgcactgc aggctgaggg 3540
acaggagccc cgcgagggtgc tgggtgaccc ggaggagttc ttgatcttca gggcttctt 3600
ggagggggggc ggcttaatg agcggtgcct tggcagcg tccttcagag atgtgggaga 3660
gcmcacggcgtc gtcaacgcct tttcaacaa ccaggcgtac cactctccag ccactgcct 3720
ggccgtcggt gacaaccctt tttcaagct gctgtcggtt ctcacgcct ccattgtgg 3780
ctccaacttc ccccaaaaaa ggagccccc gcaggctgcc aaggaccgt ttaacqaggg 3840
ccggaaggga ttgcacattt ccctcaaccc gcttcgtcc atggcatttt tggccacgc 3900
gttctccatc ctggcggtca gcgagaggcc cgtgcaggcc aagcatgtgc agtttgtag 3960
tggagtccac gtggccagtt tctggctctc tgctctgtt tggacactca ttccttcct 4020
cateccccagt ctgctgtgc tgggtgttt taaggcttc gacgtgcgtg cttcacgc 4080
ggacggccac atggctgaca ccctgtgtt gtcctgtcc tacggctggg ccacatccc 4140
cctcatgtac ctgtatgaaact ttttttttggggcc actgcctaca cgaggctgac 4200
catcttcaac atccgtcag gcatgcaccc ctccctgtatg gtcaccatca tgccatccc 4260
agctgtaaaa ctggaaagaaac ttccaaaac cctggatcac gtgttccttg tgctgccc 4320
ccactgtctg gggatggcag tcagcgtttt ctacgagaac tacgagacgc ggaggtaact 4380
caccctctcc gaggtcgcccg cccactactg caagaaatat aacatccagt accaggagaa 4440
cttctatgcc tggagccccc cgggggtcgg ccgggttgcg gcctccatgg ccgcctcagg 4500
gtgcgcctac ctcatccgtc tttccatcg ctagaccaac ctgcttcaga gactcagggg 4560
catcctctgc gcccctccga ggaggccggac actgacagaa ttatacaccc ggtgcctgt 4620
gcttccttag gaccaagatg tagcgacga gaggaccgc atccctggccc ccagccgg 4680
ctccctgtctc cacacaccc tggatccaa ggagctctt aagggttacg agcagcgggt 4740
gccctccctg gccgtggaca ggctccctt cgcggcgtc aaaggggagt gcttcggcct 4800
gtggcgcttc aatggagccg ggaagaccac gactttcaaa atgctgaccg gggaggagag 4860
cctacttctt gggatgcct ttgtcggtt tcacagaatc agctctgtatg tcggaaaggt 4920
gcggcagcgg atcggctact gcccgcgtt tgatgccttgc tgacaggccg 4980
ggagatgctg gtcatgtacg ctggcgtccg gggccatccct gacgcacca tcggggcctg 5040
cgtggagaac actctgcggg gcccgtgtt ggagccacat gccaacaagc tggtcaggac 5100
gtacagtggt ggtacaacaac ggaagctgag caccggcattt gcccgtatcc gggccctgc 5160

tgtcatcttc ctggacgagc cgtccactgg catggacccc gtggcccgcc gcctgctttg 5220
ggacaccgtg gcacgagccc gagagtctgg caaggccatc atcatcacct cccacagcat 5280
ggaggagtgt gaggccctgt gcacccggct ggccatcatg gtgcaggggc agttcaagtg 5340
cctgggcagc cccccagcacc tcaagagcaa gttcggcagc ggctactccc tgccggccaa 5400
ggtgcagagt gaagggcaac aggaggcgct ggaggagttc aaggcctcg tggacctgac 5460
cttccaggc agcgtctgg aagatgagca ccaaggcatg gtccattacc acctgccggg 5520
ccgtgaccc agctggcga aggtttcgg tattctggag aaagccaagg aaaagtacgg 5580
cgtggacgc tactccgtga gccagatctc gcttgaacag gtcttctgtc gcttcgccc 5640
cctgcagccg cccaccgcag aggagggcgc atgaggggtg gccgcgtgtc cgccatcagg 5700
cagggacagg acgggcaagc agggccatc ttacatcctc tctctccaag tttatctcat 5760
cctttatccc taatcacctt tttctatgtat ggatatgaaa aattcaaggc agtatgcaca 5820
aatggacga gtgcagccca gcctcatgc ccaggatcatc catgcgcata tccatgtctg 5880
catactctgg agttcacctt cccagagctg gggcaggccg ggcagtctgc gggcaagctc 5940
cggggctctc ggggtggagag ctgaccaggc aagggtctgc gctgagctgg gggttgaatt 6000
tctccaggca ctccctggag agaggaccca gtgacttgc caagtttaca cacgacacta 6060
atctcccctg gggaggaagc gggagccag ccaggttgaa ctgtagcgag gccccccaggc 6120
cgccaggaat ggaccatgca gatcaactgtc agtggaggga agtgcgtac tgtgattagg 6180
tgctgggtc ttagcgatcca gcgcagcccg ggggcattct ggaggctctg ctcccttagg 6240
gcatggtagt caccgcgaag cccggcaccgc tcccacagca tctccttagaa gcagccggca 6300
caggagggaa ggtggccagg ctgcgaagcag tctctgtttc cagcactgca ccctcaggaa 6360
gtcgcccgcc ccaggacacgc cagggaccac cctaagggtc ggggtggctgt ctcaaggaca 6420
cattgaatac gttgtgacca tccagaaaaat aaatgctgag gggacacaaaa aaaaaaaaaa 6480
aaaaaaaaaa a 6491

<210> 31
<211> 2923
<212> DNA
<213> Human

<220>
<223> human genomic DNA of 5'-UTR of ABCG1

<400> 31
ttgcctgggt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgccagt ctttctgcag ggtccattt gggtaacct tctcatttca tcccatgtga 120
accaggccag gcccattcagg gttggcaac cccctgatgc agtgggtgt gccaggtgac 180
aggagcaagc ctgcagctgc tggggggcca tgcagagaca gcctgcccaga ggggagacca 240
cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
aggtctttgg tccccatgtt cctgaaacca ctgcacttccg aacctttctg tacttagctt 360
aaggcagttt gaggttctgt cctttacaac caagagcctt gataggaatg gggtcctgtg 420
ctacgctact gttggcttct tttccatgc ggcgctggag gggAACACAG cagtgactac 480
agtgggatgc ttactcggtg ctggccatgc tagaaagtgc ttgcctatgcc ttatttccca 540
cgtgggtgggg attttgcacc cacctgtaca gacagataag tgaggaccct tttcacctta 600
tcctgcaaca gaaaatccag cagccaaagc caacaaggcc ccagcatagc atcttccctc 660
tctgacttca tcctcacgtt ccacacacca tccccctggc cattttccatgc agcccagtaa 720
gcactgcctc acacttccag tttccggacca gccaggatgg ccaggctgga tggggccat 780
ccaccggctg aagccattt cctattctcg agtgcaggat gaatcaatcc cgcataaaatc 840
ttcgggcaga gaactngggt ggggggtaga agagggggaa tgccttagaa gaaattctgg 900
ggcacattcc tggaaatgtt gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcacttgc cttggccaca tggacagttc ctccccggct gtgttccgng cctccctctg 1020
tgctccaggc cctgtctgtt cctggagcga gatgggtccc agggctggc accagttcccc 1080
atctcccgcc atcaggcact ttccctctgt tggtttggcg taaaacacntc ccttaggtttg 1140
tggatctgaa tcctcttccc aacacactca agctttgtc ggcctccctg cagtgtatgt 1200
ttaaggcacc acacagccctc caaggcctgg caccggggca gtggccaccc ggtaaacaca 1260
gcagtcagat ttccctcattt cagccaaatgt taaaatcaag gtaatggatc tacnctttt 1320
tttttntttt ttttccaggc ggnntntttt tttttgagac ggagtctcac tctgtcancc 1380
ccggcgttgc gtcagtgcc tcaatctcg tccanctggc aagctccgccc tcccaagggttc 1440

atgccattct cctgcctcag cctacatagt agctggact acaggtgccc gccaccacac 1500
ctagctaatt ttttgttattt ttagtagaga cggggtttca tcatacggtc caggatggtc 1560
tcgatctccct gacctcccaa agtgggtggg ttacaggtgt gagccactgc gccccggctgg 1620
atgactcttg agacaacacc attcagacaa aggcaaggcc tcccacttaa actcataacc 1680
gtgtctcctt tctctccttc gatttgagcg gctgaatttg gttacagtca tctgacctgt 1740
gggtgtgaag tccacctgcc tggcataaaaa agctgtgcct cctttcttagg tgaggagaaa 1800
gagagagacc tggctcatct gaggtgtggg tgggaggggg gaccagggtg tgctggaaat 1860
gaaaagaaaat gcattccctgt tttcgtccc aacatgcaaa caactgaaca aaagcattag 1920
ggcctgagac tgggagtaaa gaattccttgc tcaccatgga taccaggaaa tggcccccact 1980
tatataaat aagggcttta gagatgctgg accatctgat attccagcct gggggccacat 2040
gggagtgtgc cctgggttta ttcccttatac agttccatga acatggctct ggaaacacact 2100
ctgtctgcag aaaatgaggc ttttctttt ttgttcgggg gtgaacagag ggcagaggcc 2160
tgggcattt cactcagcac ccctttgtaa cccagcactt agcaccatgg ctggcgcaca 2220
gcaatgtcac atgtgtgagt gcacacgatg cctcaactgcc aggggtcacc ccacacccgt 2280
gctgttgggg gcgttggagt gtttatctct tcttttagtcc tcaagctcct acctggcaga 2340
gagctgcccac acaccgtcgg ggtgggggtgg gcgggaaggg aagaagcagc agcaagaaag 2400
aagccccctg gccctcaactc tccctccctg gacgccccctt cttcgacccc atcacacagc 2460
cgcttggcc ttggagnacag tggatttccg agcctggaa ccccccggcgt ctgtcccggt 2520
gtcccccgca gcctcaccnn cgtgctggcc cagccccccgc gagttcggga cccgggggttt 2580
ccgggggtggc aggggggttcc catggccgcct gcgaggcctc ggctcggggc gtcggggaa 2640
cctgcacttc aggggtcctg gtccgcgc cccagcagga gcaaaacaag agcacgcgca 2700
cctgcccggcc cgcccccccc cttgggtggcc gccaatcgcg cgctcggggc ggggtcgggc 2760
gcgttggaaac cagagccgga gccggatccc agccggagcc caagcgcagc ccgcaccccg 2820
cgcagcggct gagccgggag ccagcgcagc ctcggggcc cagctcaagc ctcgtccccg 2880
ccggccggcgc cgacacccgc cgccggccgc cccggggcat ggc 2923

<210> 32

<211> 13

<212> DNA

<213> Human

<220>

<223> human DNA of 5'-end of ABCG1 cDNA

<400> 32

ccggggcatg gcc

13

<210> 33

<211> 24

<212> DNA

<213> Human

<220>

<223> Primer

<400> 33

cgtcagcact ctgatgatgg cctg

24

<210> 34

<211> 21

<212> DNA

<213> Human

<220>

<223> Primer

<400> 34

tctctgctat ctccaacctc a

21

<210> 35

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 35

caaacatgtc agctgttact gga

23

<210> 36

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 36

tagccttgca aaaatacctt ctg

23

<210> 37

<211> 25

<212> DNA

<213> Human

<220>

<223> Primer

<400> 37

gttggaaaga ttctctatac acctg

25

<210> 38

<211> 24

<212> DNA

<213> Human

<220>

<223> Primer

<400> 38

cgtcagcaact ctgatgatgg cctg

24

<210> 39

<211> 21

<212> DNA

<213> Human

<220>

<223> Primer

<400> 39

tctctgctat ctccaacctc a

21

<210> 40
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 40
acgtcttcac caggtaatct gaa

23

<210> 41
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 41
ctatctgtgt catctttgcg atg

23

<210> 42
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 42
cgcttcctcc tatacatctt ggt

23

<210> 43
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 43
aagagagcat gtggaggatct ttg

23

<210> 44
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 44
ccctgtatc gaatttgttt ctc

23

<210> 45
<211> 22

<212> DNA
<213> Human

<220>
<223> Primer

<400> 45
aaccttctct gggttcctgt at

22

<210> 46
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 46
agttcctgga aggtcttggtt cac

23

<210> 47
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 47
gctgaccctt ttgaggacat gcg

23

<210> 48
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 48
ataggtcagc tcatgcccta tgt

23

<210> 49
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 49
gctgcctcct ccacaaagaa aac

23

<210> 50
<211> 24
<212> DNA
<213> Human

<220>
<223> Primer

<400> 50
gctttgctga cccgctcctg gatc 24

<210> 51
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 51
gaggccagaa tgacatctta gaa 23

<210> 52
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 52
cttgacaaca cttagggcac aat 23

<210> 53
<211> 15
<212> PRT
<213> Human

<220>
<223> amino acid residues 613-628 of ABCG1

<400> 53
Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe Gln
1 5 10 15

<210> 54
<211> 2923
<212> DNA
<213> Human

<220>
<223> human genomic DNA of 5'-UTR of ABCG1

<400> 54
ttgcctgggtt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgcccagt ctttctgcag ggtcccattg gggtaacct ttcatttca tcccatgtga 120
accaggccag gccccatcagg gtttggcaac cccctgatgc agtgggtgct gccaggtgac 180
aggagcaagc ctgcagctgc tggggggcca tgcagagaca gcctgccaga ggggagacca 240
cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
aggctttgg tcccaagtgt cctgaaacca ctgcactccg aaccttctg tacttagtt 360

aagccagttg gagtttctgt cctttacaac caagagcctt gataggaatg gggtcctgtg 420
ctacgctact gttggcttct ttcccgcatcg ggcgctggag gggAACACAG cagtgactac 480
agtggatgc ttactcggtg ctgggcatgc tagaaagtgc ttgcgcattc ttatttccca 540
cgtgggtggg attttgaccc cacctgtaca gacagataag tgaggaccct tttcacctta 600
tcctgcaaca gaaaatccag cagccaaagc caacaaggc ccagcatagc atcttccctc 660
tctgacttca tcctcacfcc acacacacca tccccctggc cattcccagc agcccagtaa 720
gcactgcctc acacttccag ttccggacca gccaggatgg ccaggctggta tggggccat 780
ccaccggctg aagccaattt cctattctcg agctgaaggt gaatcaatcc cgccataaatc 840
ttcggcaga gaactngggt ggggggtttaga agagggggaa tgtctagaag gaaattctgg 900
ggcacattcc tggaaagttag gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcaattgc cctggccaca tggacagttc ctccccggct gtgttccng cctccctcg 1020
tgctccaggg cctgtctgtt cctggagcga gatgggtccc agggctggc accagtcccc 1080
atctccagcc atcaggcact ttccctctcg tggttggcg taaacacntc cctaggtttg 1140
tggatctgaa tcctcttccc aacacactca agctttgctg ggcctccctg cagtgtatgt 1200
ttaaggcacc acacagcctc caaggcctgg cacccggca gtggccaccc ggtaaacaca 1260
gcagtcagat ttccctcattt cagccaaagtg taaaatcaag gtaatggatc tacnctttt 1320
tttttntttt ttttccaggg ggntnnnttt tttttgagac ggagtctcac tctgtcancc 1380
ccggctctgga gtgcagtggc tcaatctcg ctcancgttgc aagctccggc tcccaagggttc 1440
atgccattct cctgcctcag cctacatagt agctggact acaggtgccc gccaccacac 1500
ctagctaatt ttttgttattt tttagtagaga cgggggttca tcatgttagc caggatggtc 1560
tcgatctccct gacccccaa agtgggtgggaa ttacaggtgt gagccactgc gcccggctgg 1620
atgactcttgc agacaacacc attcagacaa aggcaaggcc tcccacttaa actcataacc 1680
gtgtctcctt tctctccctc gatttgagcg gctgaatttgc gttacagtca tctgacctgt 1740
gggtgtgaag tccacctgccc tggcataaaaa agctgtgcct ctttcttagg tgaggagaaa 1800
gagagagacc tggctcatct gaggtgtggg tgggaggggg gacccaggtg tgctggaaat 1860
gaaaagaaat gcattcctgt ttttcgtccc aacatgcaaa caactgaaca aaagcattag 1920
ggcctgagac tgggagtaaa gaattcccttgc tcaccatggta taccaggaaa tggcccccact 1980
tatataataat aagggcttta gagatgtcg accatctgtat attccagctt gggccacat 2040
gggagtgtgc cctgggttta ttcccttatac agttccatga acatggctct ggaaacacct 2100
ctgtctgcag aaaatgaggc ttttctttt ttgttcgggg gtgaacacagag ggcagaggcc 2160
tggcatctt cactcagcac cccttgcataa cccagactt agcaccatgg ctggcgcaca 2220
gcaatgtcac atgtgtgagt gcacacgcgt cctcaactgc aggggtcacc ccacaccgg 2280
gctgtgggg gcggtggagt ggttatctct tcttttagtcc tcaagctctt acctggcaga 2340
gagctgccc acaccgtcg ggtgggggtgg gcgggaaaggaa aagaagcagc agcaagaaag 2400
aagccccctg gcccctcaactc tccctccctg gacgccccctt cttcgaccctt atcacacagc 2460
cgcttgcggcc ttggagnac tggatttccg agcctggaa ccccccgggt ctgtcccggt 2520
gtccccccgca gcctcaccctn cgtgctggcc cagccccccgc gagttcgggaa cccgggggtt 2580
ccgggggtggc aggggggttcc catgcccgcct gcgaggcctc ggctcgggcc gctcccgaa 2640
cctgcacttc aggggttctg tcccgccgc cccagcaggaa gcaaaacaag agcacgcgc 2700
cctgcccggcc cggccggccccc cttgggtggcc gccaatcgcg cgctcgggcc ggggtcgccc 2760
gcgcgtggaaac cagagccgga gccggatccc agccggagcc caagcgccagc ccgcaccccg 2820
cgccagcggct gaggccggag ccagcgcagc ctcggccccc cagctcaagc ctcgtccccg 2880
ccggccggccgc cgacgcggcc cggccggccccc ggc 2923