Claims:

1. (Previously presented) A process for preparing a functionalized anionic polymerization initiator, the process comprising:

combining a functionalized styryl compound and an organolithium compound, where the functionalized styryl compound is defined by the formula X

$$(X) \qquad R^{1} \xrightarrow{R^{1}} C \xrightarrow{R^{3}} C \xrightarrow{R^{4}} R^{6} - A$$

where each R^1 is independently hydrogen or a hydrocarbyl group, R^2 is hydrogen or a hydrocarbyl group, R^3 is hydrogen or a hydrocarbyl group, each R^4 is independently hydrogen or a monovalent organic group, R^6 is a covalent bond or a hydrocarbylene group, and A is a functional group.

2. (Previously amended) An anionic polymerization initiator defined according to the formula I:

(I)
$$R^1 \longrightarrow \begin{bmatrix} R^1 & R^1 & R^3 & R^4 \\ & & & \\ & & C & C & C \\ & & & C & R^6 - A \end{bmatrix}$$

where each R¹ is independently hydrogen or a hydrocarbyl group, R² is hydrogen or a hydrocarbyl group, R³ is hydrogen or a hydrocarbyl group, each R⁴ is independently hydrogen or a monovalent organic group, R⁵ is a hydrogen atom or a hydrocarbyl group, where at least one of R³ or R⁵ is hydrocarbyl, R⁶ is a covalent bond or a hydrocarbylene group, and A is a functional group selected from the group consisting of amine groups, phosphines groups, ether groups, thio ether groups, seleno groups, silyl groups, alkyl tin groups, and short-chain thermoplastic polymer segments.

3. (Previously presented) A polymer prepared by a process of comprising the steps of: polymerizing monomer with an initiator that is prepared by combining a functionalized styryl compound and an organolithium compound, where the functionalized styryl compound is defined by the formula X

(X)
$$R^{1}$$
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{6}
 R^{6}
 R^{1}
 R^{1}
 R^{1}
 R^{1}

where each R^1 is independently hydrogen or a hydrocarbyl group, R^2 is hydrogen or a hydrocarbyl group, R^3 is hydrogen or a hydrocarbyl group, each R^4 is independently hydrogen or a monovalent organic group, R^6 is a covalent bond or a hydrocarbylene group, and A is a functional group.

4. (cancelled)

5. (Previously presented) The process of claim 1, where the functionalized styryl compound is N-(cinnamyl): -pyrrolidine, -3-methylpyrrolidine, -3,4-dimethylpyrrolidine,

-piperidine, -4- methylpiperidine, -3-methylpiperidine, -morpholine, -4-methylpiperazine, -4-ethyl-piperazine, -4-propylpiperazine, -hexamethyleneimine, -trimethylperhydroazepine, -azacyclotridecane, -azacyclohexadecane, -azacyclohexadecene, -trimethylazabicycloöctane, -perhydroisoquinoline, or -perhydroindole.

- 6. (Previously presented) The process of claim 1, where said step of combining combines about 0.8 mmol of the functionalized styryl compound with about 1.0 mmol of the organolithium compound.
- 7. (Previously presented) The process of claim 1, where step of combining occurs in the presence of about 1 to about 20 mmol of monomer in order to chain extend the initiator.
- 8. (Previously presented) The process of claim 1, where the functional group A is defined by the formula III

where each R^9 is independently hydrogen or a monovalent organic group and a is an integer from 4 to about 18.

- 9. (Previously presented) The process of claim 1, where the functionalized styryl compound is prepared by combining a reactive styryl compound and a functionalized nucleophile.
- 10. (Previously presented) The process of claim 1, where the functionalized styryl compound is prepared by combining a reactive styryl compound and a functionalized electrophile.

11. (Cancelled)

- 12. (Previously presented) The polymer of claim 3, where the functionalized styryl compound is N-(cinnamyl): -pyrrolidine, -3-methylpyrrolidine, -3,4-dimethylpyrrolidine, -3,3-dimethylpyrrolidine, -piperidine, -4-methylpiperidine, -3-methylpiperidine, -morpholine, -4-methylpiperazine, -4-ethyl-piperazine, -4-propylpiperazine, -hexamethyleneimine, trimethylperhydroazepine, -azacyclotridecane, -azacyclohexadecane, -azacycloheptadecene, -trimethylazabicycloöctane, -perhydroisoquinoline, or -perhydroindole.
- 13. (Previously presented) The polymer of claim 3, where said step of combining combines about 0.8 mmol of the functionalized styryl compound with about 1.0 mmol of the organolithium compound.
- 14. (Previously presented) The polymer of claim 3, where step of combining occurs in the presence of about 1 to about 20 mmol of monomer in order to chain extend the initiator.
- 15. (Previously presented) The polymer of claim 3, where the functional group A is defined by the formula III

where each R⁹ is independently hydrogen or a monovalent organic group and a is an integer from 4 to about 18.

- 16. (Previously presented) The polymer of claim 3, where the functionalized styryl compound is prepared by combining a reactive styryl compound and a functionalized nucleophile.
- 17. (Previously presented) The polymer of claim 3, where the functionalized styryl compound is prepared by combining a reactive styryl compound and a functionalized electrophile.

18-20 cancelled

21. (Previously presented) A process for preparing a functionalized anionic polymerization initiator, the process comprising:

combining a functionalized styryl compound and an organolithium compound, where the functionalized styryl compound is N-(cinnamyl): -pyrrolidine, -3-methylpyrrolidine, -3,4-dimethylpyrrolidiene, -3,3-dimethylpyrrolidine, -piperidine, -4- methylpiperidine, -3-methylpiperidine, -morpholine, -4-methylpiperazine, -4-ethyl-piperazine, -4-propylpiperazine, -hexamethyleneimine, -trimethylperhydroazepine, -azacyclotridecane, -azacyclohexadecane, -azacycloheptadecene, -trimethylazabicycloöctane, -perhydroisoquinoline, or -perhydroindole.

22. (Currently amended) The anionic polymerization initiator of claim 2, where the functional group A includes is an ether group defined by the formula

23. (Currently Amended) The anionic polymerization initiator of claim 2, where functional group A includes is a silyl group defined by the formula IX

$$(IX) \qquad \xrightarrow{\mathbb{R}^{10}} \mathbb{R}^{10}$$

$$\downarrow_{\mathbb{R}^{10}}$$

where each R^{10} is independently selected from the group consisting of a hydrocarbyl group or and an alkoxy group.

- 24. (Currently Amended) The anionic polymerization initiator of claim 23, where the functional group \underline{A} is selected from the group consisting of trimethyl silyl, triethyl silyl, dimethoxy methyl silyl, and dimethyl methoxy silyl.
- 25. (Currently Amended) The anionic polymerization initiator of claim 2, where the functional group A is defined by the formula VII

where R⁷ is a hydrocarbyl group.

26. (Currently Amended) The anionic polymerization initiator of claim 2, where the functional group A is defined by the formula VIII

(VIII)
$$--$$
Se $-$ R⁷

where R⁷ is a hydrocarbyl group.

27. (Currently Amended) The anionic polymerization initiator of claim 2, where the functional group \underline{A} is defined by the formula V

$$(V) \qquad -P <_{R^8}^{R^7}$$

where each ${\rm R}^7$ and ${\rm R}^8$ is independently a hydrocarbyl group.