Национальный исследовательский ядерный университет «МИФИ»

Институт интеллектуальных кибернетических систем КАФЕДРА КИБЕРНЕТИКИ

БДЗ

по курсу "Математическая статистика" студента группы <u>Б20-514</u> <u>Моисеенко Олеси Игоревны</u>

Вариант № 15

Оценка:	
Толпись:	

ОТЧЕТ № 1

по теме «Проверка статистических гипотез»

Вариант № <u>15</u>

ФИО студента Моисеенко Олеся Игоревна группа Б20-514

Оценка:	1	Подпись:
-		

Результаты статистических тестов:

№ задания	Проверяемая гипотеза H_0	Критерий	Статистическое решение $(\alpha = 0.1)$	Вывод
4.1	$H_0: F(x) \square N$	Хи-квадрат	Н ₀ отклоняется	распределение С7 не является нормальным
4.2	$H_0: F(x) \square N$	Харке-Бера	Н ₀ отклоняется	распределение С7 не является нормальным
5.1	$H_0: F_X(\xi) = F_Y(\xi)$	знаков	H_0 отклоняется	С13 и С14 имеют различные распределения
5.2	$H_0: F_X(\xi) = F_Y(\xi)$	Хи-квадрат	Н ₀ отклоняется	С13 и С14 имеют различные распределения

Выводы:

В результате проведённого в п.4 статистического анализа обнаружено, что количество граммов жира, потребляемых в день пациентами, не является нормально распределённой случайной величиной.

В результате проведённого в п.5 статистического анализа обнаружено, что концентрации(ng/ml) в плазме бета-каротина и ретинола не являются случайными величинами, имеющими одинаковый закон распределения.

ОТЧЕТ № 2

по теме «Анализ статистических взаимосвязей»

Вариант №15

ФИО студента Моисеенко Олеся Игоревна группа Б20-514

Оценка:	Подпись:	

Результаты статистических тестов:

№ задания	Проверяемая гипотеза H_0	Критери й	Статистическо е решение $(\alpha = 0.1)$	Вывод
6	H_0 : $F_Y(y X = x_1) = = F_Y(y X = x_n) = F_Y(y)$ H' : $\neg H_0$	Хи- квадрат	H ₀ принимается	Статистическая связь отсутствует
7	$H_0: F_{X_1}(x) = \dots = F_{X_K}(x) = F_X(x)$ $(H_0: m_1 = \dots = m_K)$ $H': \neg H_0$	ANOVA	Н ₀ отклоняется	Статистическая связь присутствует

Выводы:

В результате проведённого в п.6 статистического анализа обнаружено, что пол пациентов не влияет на их отношение к курению.

В результате проведённого в п.7 статистического анализа обнаружено, что частота потребления витаминов пациентами оказывает слабое влияние на концентрацию бета-каротина(ng/ml) в плазме их крови.

по теме «Основы регрессионного анализа»

Вариант №<u>15</u>

ФИО студента	Моисеенко Олеся Игоревна	группа <u>Б20-514</u>	
Опенка:		Полпись:	

Сводная таблица свойств различных регрессионных моделей:

Свойство	Простейшая линейная модель	Линейная модель с квадратичным членом	Множественная линейная модель
Точность	2.2 %	6.4 %	23.8 %
Значимость	нет	нет	нет
Адекватность	-	-	-
Степень тесноты связи	Отсутствует	Отсутствует	Слабая

Выводы:

В результате проведённого в п.8 статистического анализа обнаружено, что между концентрациями(ng/ml) бета-каротина и ретинола в плазме крови нет зависимости. А также, что статистическая связь между потребляемыми пациентами количеством жира(grams per day), алкогольных напитков(number per week) и количеством диетического ретинола(mcg per day) отсутствует. Однако, из пункта б) видно, что между количеством жира(grams per day) и количеством диетического ретинола(mcg per day), потребляемых пациентами, зависимость есть, в то время как между потребляемыми количествами жира(grams per day) и алкогольных напитков(number per week), алкогольных напитков(number per week) и диетического ретинола(mcg per day) связь отсутствует.

В результате проведённого в п.9 статистического анализа обнаружено, что количество калорий, потребляемых пациентами в день, не влияет на концентрацию бета-каротина(ng/ml) в плазме их крови. Однако количество потребляемых бета-каротина с пищей(mcg per day) и калорий в день оказывает слабое воздействие на концентрацию бета-каротина(ng/ml).

1. Описательные статистики

1.1. Выборочные характеристики

Анализируемый признак 1 – С7

Анализируемый признак 2 – С9

Анализируемый признак 3 – С12

а) Привести формулы расчёта выборочных характеристик

Выборочная хар-ка	Формула расчета
Объём выборки	n
Среднее	$\frac{1}{n}\sum_{i=1}^{n}x_{i}=\overline{x}$
Выборочная дисперсия	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2$
Выборочное среднеквадратическое отклонение	$\sigma_X^* = \sqrt{d_X^*}$
Выборочный коэффициент асимметрии	$\gamma_X^* = \frac{\mu_3^*}{\left(\sigma_X^*\right)^3}$
Выборочный эксцесс	$\varepsilon_X^* = \frac{\mu_4^*}{\left(\sigma_X^*\right)^4} - 3$

б) Рассчитать выборочные характеристики

Выборочная хар-ка	Признак 1	Признак 2	Признак 3
Среднее	77.0333333333333	3.2793650793650793	832.7142857142857
Выборочная	1144.431210191083	151.8533626529168	347261.5614194723
дисперсия			
Выборочное	33.82944294828224	12.32287964125743	589.2890304591392
среднеквадратическое			
отклонение			
Выборочный	1.0989962157492976	13.757134658078	4.452504551684713
коэффициент			
асимметрии			
Выборочный эксцесс	1.9647991849352238	217.81506388614636	37.44713035757864

1.2. Группировка и гистограммы частот

Анализируемый признак – С7

Объём выборки – 315

а) Выбрать число групп

Число групп	Обоснование выбора числа групп	Ширина интервалов
9	По формуле Стерджесса: k=[1+log2n]	24

б) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Относит.	Накопл.	Относит.
интервала	граница	граница		частота	частота	накопл.
						частота
1	14.4	39.01111111	33	0.1047619	33	0.1047619
2	39.01111111	63.62222222	100	0.31746032	133	0.42222222
3	63.62222222	88.23333333	84	0.26666667	217	0.68888889
4	88.23333333	112.84444444	54	0.17142857	271	0.86031746
5	112.8444444	137.4555556	29	0.09206349	300	0.95238095
6	137.4555556	162.06666667	6	0.01904762	306	0.97142857
7	162.06666667	186.67777778	6	0.01904762	312	0.99047619
8	186.67777778	211.28888889	2	0.00634921	314	0.9968254
9	211.28888889	235.9	1	0.0031746	315	1

в) Построить гистограммы частот и полигоны частот

г) Построить график эмпирической функции распределения

2. Интервальные оценки

2.1. Доверительные интервалы для мат. ожидания

Анализируемый признак – С7

Объём выборки – 315

Оцениваемый параметр – математическое ожидание

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$\bar{X} - \frac{S}{\sqrt{n}} t_{1-\alpha/2}(n-1)$
Верхняя граница	$\bar{X} + \frac{S}{\sqrt{n}} t_{1-\alpha/2}(n-1)$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	72.09359774349191	73.28304344314049	73.8888447091652
Верхняя граница	81.97306892317475	80.78362322352618	80.17782195750146

2.2. Доверительные интервалы для дисперсии

Анализируемый признак – С7

Объём выборки – 315

Оцениваемый параметр – дисперсия

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}$
Верхняя граница	$\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}$

б) Рассчитать доверительные интервалы

Граница	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
доверительного			
интервала			
Нижняя граница	939.972084131803	984.571373041788	1008.4926769611158
Верхняя граница	1419.1945094555533	1346.872632211083	1311.7502714531515

2.3. Доверительные интервалы для разности мат. ожиданий

Анализируемый признак 1 – С13

Анализируемый признак 2 – С14

Объёмы выборок – 315

Оцениваемый параметр – разность математических ожиданий (m_1-m_2)

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$(\bar{X}_1 - \bar{X}_2) - t_{1-\alpha/2}(n_1 + n_2 - 2)S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$
Верхняя граница	$S = \frac{n_1 + n_2 - 2}{(\bar{X}_1 - \bar{X}_2) + t_{1-\alpha/2}(n_1 + n_2 - 2)S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	-453.3267319085694	-443.6263036888957	-438.6743954295366
Верхняя граница	-372.470093488256	-382.1705217079297	-387.1224299672888

2.4. Доверительные интервалы для отношения дисперсий

Анализируемый признак 1 – С13

Анализируемый признак 2 – С14

Объёмы выборок – 315

Оцениваемый параметр – отношение дисперсий σ_1^2/σ_2^2

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$\frac{S_1^2}{S_2^2} f_{\alpha/2}(n_2 - 1, n_1 - 1)$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$
D	2
Верхняя граница	$\frac{S_1^2}{S_2^2} f_{1-\alpha/2}(n_2 - 1, n_1 - 1)$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

б) Рассчитать доверительные интервалы

Граница	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
доверительного			
интервала			
Нижняя граница	0.5734087875377081	0.6148952188376793	0.637234697462504
Верхняя граница	1.0271444406441992	0.9578439224965994	0.9242648755336237

3. Проверка статистических гипотез о математических ожиданиях и дисперсиях

3.1. Проверка статистических гипотез о математических ожиданиях

Анализируемый признак – С7

Объём выборки – 315

Статистическая гипотеза —
$$\dfrac{H_0: m=m_0}{H: m
eq m_0}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$Z = rac{\overline{X} - m_0}{S/\sqrt{n}}$ $S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$
Закон распределения статистики критерия при условии истинности основной гипотезы	$Z _{H_0} \sim T(n-1)$
Формулы расчета критических точек	$\pm t_{1-\alpha/2}(n-1)$
Формула расчета <i>p-value</i>	$2\min(F_{Z}(z H_{0}),1-F_{Z}(z H_{0}))$

б) Выбрать произвольные значения то и проверить статистические гипотезы

m_0	Уровень	Выборочное значение	p-value	Статистичес	Вывод
	значимости	статистики критерия		кое решение	
77	0.1	0.01748796098163266	0.9860584437550	H_0	m = 77
			612	принимается	
250	0.1	-90.74502953369704	2.3505091322739	H_0	m ≠250
			03e-227	отклоняется	
860	0.1	-410.774715497593	0.0	H_0	m ≠860
				отклоняется	

3.2. Проверка статистических гипотез о дисперсиях

Анализируемый признак – С7

Объём выборки – 315

Статистическая гипотеза –
$$H_0: \sigma = \sigma_0$$

 $H': \sigma \neq \sigma_0$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$Z = \frac{(n-1)S^2}{\sigma_0^2}$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$
	i=1
Закон распределения статистики	$Z _{H_0} \sim \chi^2(n-1)$
критерия при условии истинности	$Z H_0 \longrightarrow \chi (W - 1)$
основной гипотезы	
Формулы расчета критических точек	$\chi^2_{\alpha/2}(n-1), \chi^2_{1-\alpha/2}(n-1)$
Формула расчета <i>p-value</i>	$2\min(F_{Z}(z H_{0}),1-F_{Z}(z H_{0}))$

б) Выбрать произвольные значения σ_0 и проверить статистические гипотезы

σ ₀	Уровень	Выборочное	p-value	Статистическ	Вывод
	значимости	значение		ое решение	
		статистики			
		критерия			
34	0.1	310.85761245674	0.9209902160950361	H_0	$\sigma = 34$
		746		принимается	
340	0.1	3.1085761245674	4.2802552281498377	H_0	σ ≠340
		75	e-249	отклоняется	
760	0.1	0.6221457756232	0.0	H_0	σ ≠ 760
		689		отклоняется	

3.3. Проверка статистических гипотез о равенстве математических ожиданий

Анализируемый признак 1 – С13

Анализируемый признак 2 – С14

Объёмы выборок – 315

Статистическая гипотеза — $\frac{H_0: m_1 = m_2}{H': m_1 \neq m_2}$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	Для более точной проверки поставленной в этой задаче статистической гипотезы необходимо сначала проверить гипотезу пункта 3.4: 1)Если $\sigma_1 = \sigma_2$: $Z = \frac{\overline{X}_1 - \overline{X}_2}{S/\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$
	2) Если $\sigma_1 \neq \sigma_2$: $Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$
Закон распределения статистики критерия при условии истинности основной гипотезы	1) $Z _{H_0} \sim T(n_1 + n_2 - 2)$ 2) $Z _{H_0} \sim T([1 / k])$
<i>*</i>	$k = \frac{\left(\frac{S_1^2/n_1}{S_1^2/n_1 + S_2^2/n_2}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2/n_2}{S_1^2/n_1 + S_2^2/n_2}\right)^2}{n_2 - 1}$
Формулы расчета критических точек	1) $\pm t_{1-\alpha}(n_1+n_2-2)$ 2) $\pm t_{1-\alpha}([1/k])$
Формула расчета <i>p-value</i>	$2\min(F_Z(z H_0), 1-F_Z(z H_0))$

б) Проверить статистические гипотезы

Уровень	Выборочное значение	p-value	Статистическ	Вывод
значимости	статистики критерия		ое решение	
0.01	-26.387385396640326	2.7044815438723324	H_0	$m_1 \neq m_2$
		e-103	отклоняется	
0.05			H_0	$m_1 \neq m_2$
			отклоняется	
0.1			H_0	$m_1 \neq m_2$
			отклоняется	

3.4. Проверка статистических гипотез о равенстве дисперсий

Анализируемый признак 1 – С13

Анализируемый признак 2 – С14

Объёмы выборок – 315

Статистическая гипотеза —
$$\frac{H_0:\sigma_1=\sigma_2}{H'\!:\sigma_1\neq\sigma_2}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$ $Z = \frac{S_{1}^{2}}{S_{2}^{2}}$
Закон распределения статистики критерия при условии истинности основной гипотезы	$Z _{H_0} \sim F(n_1 - 1, n_2 - 1)$
Формулы расчета критических точек	$f_{\alpha/2}(n_1-1, n_2-1); f_{1-\alpha/2}(n_1-1, n_2-1)$
Формула расчета <i>p-value</i>	$2\min(F_Z(z H_0), 1-F_Z(z H_0))$

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическ	Вывод
значимости	значение статистики		ое решение	
	критерия			
0.01	0.7674461859543552	0.019290884530	H ₀	$\sigma_1 = \sigma_2$ (но при
		87414	принимается	малых значениях а
				более вероятна
				ошибка 2-го рода)
0.05			H_0	$\sigma_1 \neq \sigma_2$
			отклоняется	
0.1			H_0	$\sigma_1 \neq \sigma_2$
			отклоняется	

4. Критерии согласия

Анализируемый признак – С7

Объём выборки – 315

4.1. Критерий хи-квадрат

Теоретическое распределение – нормальное

Статистическая гипотеза $-H_0$: $F(x) \square N$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета		k – число интервалов;
статистики критерия	$\sum_{i=1}^{k} (\tilde{p}_i - p_i)^2 - \sum_{i=1}^{k} (n_i - np_i)^2$	n_i — число элементов в
	$Z = n \sum_{i=1}^{k} \frac{(\tilde{p}_i - p_i)^2}{p_i} = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}$	і-м интервале;
	i=1 F1 i=1 'F1	р _і — вероятности
Закон распределения статистики критерия при условии истинности основной гипотезы Формула расчета критической точки	$\chi^{2}(k-r-1)$ $\chi^{2}_{1-\alpha}(k-r-1)$	попадания в і-й интервал при условии истинности H_0 ; n — объём выборки; r — число неизвестных параметров распределения.
Формула расчета <i>p-value</i>	$p\text{-value} = 1 - F_Z(z \mid H_0).$	

б) Выбрать число групп

Число групп	Обоснование выбора числа групп	Ширина интервалов
9	По формуле Стерджесса k=[1+log2n]	24

в) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Относит.	Вероятность попадания
интервала	граница	граница		частота	в интервал при условии
					истинности основной
					гипотезы
1	14.4	39.01111111	33	0.1047619	0.09846668101283465
2	39.01111111	63.62222222	100	0.31746032	0.2153732710742174
3	63.62222222	88.23333333	84	0.26666667	0.2838123839037856
4	88.23333333	112.8444444	54	0.17142857	0.22539888430188793

5	112.84444444	137.4555556	29	0.09206349	0.10785311768451489
6	137.4555556	162.06666667	6	0.01904762	0.031067367978185212
7	162.06666667	186.67777778	6	0.01904762	0.00538011500744251
8	186.67777778	211.28888889	2	0.00634921	0.0005592091710248104
9	211.28888889	235.9	1	0.0031746	3.482209569194428e-05

г) Построить гистограмму относительных частот и функцию плотности теоретического распределения на одном графике

д) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистичес	Вывод
значимости	значение статистики		кое решение	
	критерия			
0.01	136.11572105304234	6.612017938543149e-27	H_0	Распределение
			отклоняется	не является
				нормальным
0.05			H_0	Распределение
			отклоняется	не является
				нормальным
0.1			H_0	Распределение
			отклоняется	не является
				нормальным

4.2. Проверка гипотезы о нормальности на основе коэффициента асимметрии и эксцесса (критерий Харке-Бера)

Статистическая гипотеза – H_0 : $F(x) \square N$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	$Z = \left(\gamma_{\rm cr}^*\right)^2 + \left(\varepsilon_{\rm cr}^*\right)^2 = \frac{n}{6}\left((\gamma^*)^2 + \frac{\left(\varepsilon^*\right)^2}{4}\right).$	$n - \text{объем выборки};$ $\gamma = \mu 3 / \sigma^3 - \frac{1}{2} + 1$
Закон распределения	$\chi^{2}(2)$	коэффициент асимметрии;
статистики критерия	λ (2)	асимметрии,
при условии		$\varepsilon = \mu 4 / \sigma^4 - 3 -$
истинности основной		· ·
гипотезы		коэффициент эксцесса;
Формула расчета критической точки	$\chi^2_{1-\alpha}(2)$	$\mu_i=i$ -и центральный
Формула расчета <i>p</i> - <i>value</i>	p -value = $1 - F_Z(z \mid H_0)$.	момент;
		σ – среднеквадратичное отклонение (корень из второго центрального момента).

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	114.07733617936984	0.0	Н ₀ отклоняется	Распределение не
				является нормальным
0.05			Н ₀ отклоняется	Распределение не
				является нормальным
0.1			Н ₀ отклоняется	Распределение не
				является нормальным

Вывод (в терминах предметной области)

В результате проведённого в п.4 статистического анализа обнаружено, что количество граммов жира, потребляемых в день пациентами, не является нормально распределённой случайной величиной.

5. Проверка однородности выборок

Анализируемый признак 1 – С13

Анализируемый признак 2 – С14

Объёмы выборок – 315

5.1 Критерий знаков

Статистическая гипотеза — H_0 : $F_X(\xi) = F_Y(\xi)$

H':
$$F_X(\xi) \neq F_Y(\xi)$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных обозначений
Формула расчета статистики критерия	$Z = \frac{H - 1/2}{\sqrt{\frac{1}{4n}}} = 2\sqrt{n}(H - 1/2)$	H = K/n – частота успеха; K – число знаков «+» в последовательности знаков
Закон распределения статистики критерия при условии истинности основной гипотезы	$f_Z(z \mid H_0) \sim N(0,1)$	разностей X_i - Y_i ; $n-$ объём выборок.
Формула расчета критической точки	$\pm N_{1-\alpha/2}(0,1)$	
Формула расчета <i>p-value</i>	$2\min(F_Z(z H_0), 1-F_Z(z H_0))$	

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение		решение	
	статистики			
	критерия			
0.01	-146.5	1.9772043529779528e-75	Н ₀ отклоняется	$F_X(\xi) \neq F_Y(\xi)$
0.05			Н ₀ отклоняется	$F_X(\xi) \neq F_Y(\xi)$
0.1			Н ₀ отклоняется	$F_X(\xi) \neq F_Y(\xi)$

5.2. Критерий хи-квадрат

Статистическая гипотеза — H_0 : $F_X(\xi) = F_Y(\xi)$

H': $F_X(\xi) \neq F_Y(\xi)$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	$Z_{n_X,n_Y} = n_X n_Y \sum_{i=1}^k \frac{1}{m_i^{(X)} + m_i^{(Y)}} \left(\frac{m_i^{(X)}}{n_X} - \frac{m_i^{(Y)}}{n_Y} \right)^2$	k – число интервалов;
		n _X , n _Y – число
		элементов в выборках;
Закон распределения статистики критерия	$Z _{H_0} \sim \chi^2(k-1)$	$m_{i}^{(X)}$, $m_{i}^{(Y)}$ – частота 1 и
при условии		2 выборок в і-й группе.
истинности		
основной гипотезы		
Формула расчета критической точки	$\chi^2_{1-\alpha}(k-1)$	
Формула расчета р-	$p\text{-value} = 1 - F_Z(z \mid H_0).$	
value		

б) Выбрать число групп

Число групп	Обоснование выбора числа групп	Ширина интервалов
9	По формуле Стерджесса k=[1+log ₂ n]	157

в) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Частота	Относит.	Относит.
интервала	граница	граница	признака	признака	частота	частота
			1	2	признака 1	признака 2
1	0.	191.88888889	215	2	0.68253968	0.00634921
2	191.88888889	383.7777778	73	28	0.23174603	0.08888889
3	383.7777778	575.66666667	17	134	0.05396825	0.42539683
4	575.66666667	767.5555556	2	92	0.00634921	0.29206349
5	767.5555556	959.4444444	3	45	0.00952381	0.14285714
6	959.4444444	1151.33333333	2	8	0.00634921	0.02539683
7	1151.33333333	1343.22222222	1	3	0.0031746	0.00952381
8	1343.2222222	1535.11111111	2	2	0.00634921	0.00634921

9	1535.11111111	1727.	0	1	0.	0.0031746

г) Построить гистограммы относительных частот на одном графике

д) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистичес	Вывод
значимости	значение статистики		кое решение	
	критерия			
0.01	72.99382525899497	9.928006143298864e-	H_0	$F_X(\xi) \neq F_Y(\xi)$
		14	отклоняется	
0.05			H_0	$F_X(\xi) \neq F_Y(\xi)$
			отклоняется	
0.1			H_0	$F_X(\xi) \neq F_Y(\xi)$
			отклоняется	

Вывод (в терминах предметной области)

В результате проведённого в п.5 статистического анализа обнаружено, что концентрации(ng/ml) в плазме бета-каротина и ретинола не являются случайными величинами, имеющими одинаковый закон распределения.

6. Таблицы сопряжённости

Факторный признак x - C2

Результативный признак у – СЗ

Объёмы выборок – 315

Статистическая гипотеза –
$$H_0$$
: $F_Y(y|X=x_1)=\ldots=F_Y(y|X=x_n)=F_Y(y)$

 $H': \neg H_0$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение использованных обозначений
Формула расчета статистики критерия	$Z = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(n_{ij} - m_{ij})^{2}}{m_{ij}}$	n_{ij} — наблюдаемые (эмпирические) частоты, m_{ij} — теоретические частоты,
Закон распределения статистики критерия при условии истинности основной гипотезы	$\chi^2((k-1)(l-1))$	k — число вариантов факторного признака, l — число вариантов результативного признака.
Формула расчета критической точки	$\chi^2_{1-\alpha}((k-1)(l-1))$	
Формула расчета <i>p-value</i>	p -value = 1 - $F_z(z H_0)$	

б) Построить эмпирическую таблицу сопряжённости

x y	Current Smoker	Former	Never	Σ
Female	36	93	144	273
Male	7	22	13	42
Σ	43	115	157	315

в) Построить теоретическую таблицу сопряжённости

x	Current Smoker	Former	Never	Σ
Female	37.26666667	99.66666667	136.06666667	273
Male	5.73333333	15.33333333	20.93333333	42
Σ	43	115	157	315

г) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистичес	Вывод
значимости	значение		кое решение	
	статистики			
	критерия			
0.01	7.136512415601504	0.30840701536046683	H_0	Статистическая
			принимается	связь отсутствует
0.05			H_0	Статистическая
			принимается	связь отсутствует
0.1			H_0	Статистическая
			принимается	связь отсутствует

Вывод (в терминах предметной области)

В результате проведённого в п.6 статистического анализа обнаружено, что пол
пациентов не влияет на их отношение к курению.

7. Дисперсионный анализ

Факторный признак x - C5

Результативный признак у – С13

Число вариантов факторного признака – 3

Объёмы выборок – 315

Статистическая гипотеза –
$$H_0$$
: $F_{X_1}(x) = ... = F_{X_K}(x) = F_X(x)$

эквивалентная гипотеза —
$$H_0$$
: $m_1 = \ldots = m_K$

$$H': \neg H_0$$

а) Рассчитать групповые выборочные характеристики

No	Вариант	Объём	Групповые средние	Групповые
Π/Π	факторного	выборки		дисперсии
	признака			
1	No	111	136.8918918918919	8493.660933660934
2	Not often	82	185.65853658536585	20775.388136103582
3	Often	122	240.95901639344262	60058.70078580138

б) Привести формулы расчёта показателей вариации, используемых в дисперсионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный признак	$D_b^* = \frac{1}{n} \sum_{k=1}^K n_k (\bar{x}_k - \bar{x})^2$	K - 1	$\frac{n}{K-1}D_b^*$
Остаточные признаки	$D_w^* = \frac{1}{n} \sum_{k=1}^K n_k \tilde{\sigma}_k^2$	n - K	$\frac{n}{n-K}D_w^*$
Все признаки	$D_X^* = \frac{1}{n} \sum_{k=1}^K \sum_{i=1}^{n_k} (x_i^{(k)} - \bar{x})^2$	n - 1	$\frac{n}{n-1}D_X^*$

в) Рассчитать показатели вариации, используемые в дисперсионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный	2004.5282328560947	2	315713.19667483494
признак			
Остаточные	31662.030751316273	312	31966.473354694313
признаки			
Все признаки	33382.978825900725	314	33489.2940450915
_			

г) Проверить правило сложения дисперсий

Показатель	$D_{\mathit{межгp}}$	$D_{\mathit{внутригр}}$	$D_{o eta u_{\!\!\!\! 4}}$	$D_{\mathit{межгp}} + D_{\mathit{внутригp}}$
Значение	2004.5282328560947	31662.030751316273	33382.978825900725	33666.55898417237

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Эмпирический коэффициент	D_b^*	0.060046415968752584
детерминации	$\eta^{\perp} = \frac{1}{D_X^*}$	
Эмпирическое корреляционное		0.24504370216096677
отношение	$\eta = \left \frac{D_b}{D^*} \right $	
	$\sqrt{D_X}$	

е) Охарактеризовать тип связи между факторным и результативным признаками

По шкале Чеддока значение эмпирического коэффициента корреляции попадает в диапазон 0,1–0,3, характеризующий слабую степень тесноты статистической связи между факторным и результативным признаками.

ж) Указать формулы расчёта показателей, используемых при проверке статистической гипотезы дисперсионного анализа

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	$D_h^*/(K-1)$	К – количество
	$F = \frac{D_b^*/(K-1)}{D_w^*/(n-K)}$	вариантов
		номинального
2	E/IZ 1 IZ)	группировочного(факт
Закон распределения статистики	F(K-1, n-K)	орного)признака,
критерия при условии истинности		n – объем выборки,
основной гипотезы		D_h^* - межгрупповая
Формула расчета критической точки	$\int_{1-\alpha}(K-1,n-K)$	дисперсия,
		D_w^* - внутригрупповая
Формула расчета <i>p-value</i>	$p-value = 1 - F_z(z H_0)$	дисперсия.

з) Проверить статистическую гипотезу дисперсионного анализа

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение		решение	
	статистики			
	критерия			
0.01	9.96564197452329	6.376754182611269	Н ₀ отклоняется	Статистическая
		e-05		связь присутствует

0.05	Ho	\mathbf{I}_0 отклоняется	Статистическая
			связь присутствует
0.1	H	\mathbf{I}_0 отклоняется	Статистическая
			связь присутствует

Вывод (в терминах предметной области)

В результате проведённого в п.7 статистического анализа обнаружено, что частота
потребления витаминов пациентами оказывает слабое влияние на концентрацию бета-
каротина(ng/ml) в плазме их крови.

8. Корреляционный анализ

8.1. Расчёт парных коэффициентов корреляции

Анализируемый признак 1 – С13

Анализируемый признак 2 – С14

Объёмы выборок – 315

а) Рассчитать точечные оценки коэффициентов корреляции

	Формула расчета	Значение
Линейный коэффициент корреляции	$\rho_{XY}^* = \frac{k_{XY}^*}{\sigma_X^* \sigma_Y^*}$	0.07157724015217476
	$k_{XY}^* = \frac{1}{n} \sum_i (x_i - \bar{x})(y_i - \bar{y})$	0.100.401000.10000.740
Ранговый коэффициент корреляции по Спирмену	$\tilde{\rho}_{XY}^{(sp)} = \frac{\sum_{i=1}^{n} (r_i - \bar{r})(s_i - \bar{s})}{\sqrt{\sum_{i=1}^{n} (r_i - \bar{r})^2 \sum_{i=1}^{n} (s_i - \bar{s})^2}} = \frac{\mu_{RS}^*}{\sigma_S^* \sigma_R^*}.$	0.13062133340920742
	$\bar{r} = \bar{s} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}$	
Ранговый коэффициент корреляции по Кендаллу	$\tilde{\tau}_{XY} = \frac{4Q}{n(n-1)} - 1,$	0.0857942303995992
	$Q = \sum_{i=1}^{n-1} Q_i$	
	$Q_i = \sum_{j=i+1}^n \left[s_j > s_i \right]$	

б) Привести формулы расчёта доверительного интервала для линейного коэффициента корреляции

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$\rho_{XY}^* + \frac{\rho_{XY}^* \left(1 - (\rho_{XY}^*)^2\right)}{2n} - u_{1-\alpha/2} \frac{1 - (\rho_{XY}^*)^2}{\sqrt{n}}$
Верхняя граница	$\rho_{XY}^* + \frac{\rho_{XY}^* \left(1 - (\rho_{XY}^*)^2\right)}{2n} + u_{1-\alpha/2} \frac{1 - (\rho_{XY}^*)^2}{\sqrt{n}}$

в) Рассчитать доверительные интервалы для линейного коэффициента корреляции

Граница	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
доверительного			
интервала			
Нижняя граница	-2.621884255204232	-1.9660189361953855	-1.6009085786068036
Верхняя граница	2.6418842552042316	2.0660189361953853	1.8009085786068038

г) Указать формулы расчёта показателей, используемых при проверке значимости коэффициентов корреляции

Статистическая	Формула расчета статистики	Закон распределения статистики
гипотеза	критерия	критерия при условии
		истинности основной гипотезы
$H_0: \rho = 0$	$Z = -\frac{\rho_{XY}^*}{2}$	$f_Z(z H_0) \sim T(n-2)$
$H': \rho \neq 0$	$Z = \frac{\rho_{XY}}{\sqrt{1 - (\rho_{XY}^*)^2}} \sqrt{n - 2}$	72(10)
$H_0: r^{(cn)} = 0$	$Z = \tilde{\rho}_{XY}^{(sp)} - \sqrt{n-2}$	$f_Z(z H_0) \sim T(n-2)$
$H': r^{(cn)} \neq 0$	$Z = \frac{\bar{\rho}_{XY}^{(sp)}}{\sqrt{1 - \bar{\rho}_{XY}^{(sp)2}}} \sqrt{n - 2}$	
$H_0: r^{(\kappa e \mu)} = 0$	$Z = \tilde{\tau}_{XY} \sqrt{\frac{9n(n+1)}{2(2n+5)}}$	$f_Z(z H_0) \sim N(0, 1)$
$H': r^{(\kappa e n)} \neq 0$	- XY V 2(2n+5)	

д) Проверить значимость коэффициентов корреляции

Статистическая	Уровень	Выборочное	p-value	Статистическое	Вывод
гипотеза	значимости	значение		решение	
		статистики			
		критерия			
$H_0: \rho = 0$	0.1	1.269587062498	0.20517488	Н ₀ принимается	Статистическая
$H': \rho \neq 0$		1909	254189867		СВЯЗЬ
					отсутствует
$H_0: r^{(cn)} = 0$	0.1	2.330897651015	0.20517488	Но принимается	Статистическая
$H': r^{(cn)} \neq 0$		813	254189867		СВЯЗЬ
11 11 7 0					отсутствует
$H_0: r^{(\kappa e_H)} = 0$	0.1	2.278643034859	0.02343985	Н ₀ отклоняется	Статистическая
$H': r^{(\kappa e H)} \neq 0$		4875	266111217		СВЯЗЬ
Π .r ≠ 0					присутствует

8.2. Расчёт множественных коэффициентов корреляции

Анализируемый признак 1 – С7

Анализируемый признак 2 – С9

Анализируемый признак 3 – С12

Объёмы выборок – 315

а) Рассчитать матрицу ранговых коэффициентов корреляции по Кендаллу

Признак	C7	C9	C12
Признак			
C7	1.000000	0.040055	0.351902
C9	0.040055	1.000000	-0.029812
C12	0.351902	-0.029812	1.000000

б) Рассчитать матрицу значений p-value для ранговых коэффициентов корреляции по Кендаллу (статистическая гипотеза $H_0: r^{(\kappa e \mu)} = 0, \ H': r^{(\kappa e \mu)} \neq 0$)

Признак	C7	C9	C12
Признак			
C7	_	0.313979	1.295163e-20
C9	0.313979	_	0.453599
C12	1.295163e-20	0.453599	_

в) Рассчитать точечную оценку коэффициента конкордации

	Формула расчета	Значение
Коэффициент конкордации	$W=rac{12}{k^2(n^3-n)}\sum_{i=1}^n(\sum_{j=1}^kR_{ij}-rac{k(n+1)}{2})^2$, где $R_{ij}\in\{1,\cdots,n\}$ - ранг i -го элемента в X_j выборке.	0.44417366595468666

г) Указать формулы расчёта показателей, используемых при проверке значимости коэффициента конкордации

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	Z = n(k-1)W	n – размер выборки,
		W – коэффициент
		конкордации,
Закон распределения статистики	χ^2 (n-1)	k – число выборок.
критерия при условии истинности		
основной гипотезы		
Формула расчета критической точки	$\chi^2_{\alpha}(n-1)$	
Формула расчета <i>p-value</i>	1 - $\chi^2(Z, n-1)$	

д) Проверить значимость коэффициента конкордации

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	279.8294095514526	0.9176686807978349	Н ₀ принимается	Статистическая
				СВЯЗЬ
				отсутствует
0.05			Н ₀ принимается	Статистическая
				СВЯЗЬ
				отсутствует
0.1			Но принимается	Статистическая
				связь
				отсутствует

Вывод (в терминах предметной области)

В результате проведённого в п.8 статистического анализа обнаружено, что между концентрациями(ng/ml) бета-каротина и ретинола в плазме крови нет зависимости. А также, что статистическая связь между потребляемыми пациентами количеством жира(grams per day), алкогольных напитков(number per week) и количеством диетического ретинола(mcg per day) отсутствует. Однако, из пункта б) видно, что между количеством жира(grams per day) и количеством диетического ретинола(mcg per day), потребляемых пациентами, зависимость есть, в то время как между потребляемыми количествами жира(grams per day) и алкогольных напитков(number per week), алкогольных напитков(number per week) и диетического ретинола(mcg per day) связь отсутствует.

9. Регрессионный анализ

9.1 Простейшая линейная регрессионная модель

Факторный признак x - C6

Результативный признак у – С13

Уравнение регрессии – $f(x) = \beta_0 + \beta_1 x$

9.1.1. Точечные оценки линейной регрессионной модели

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр	Формула расчета	Значение
βο	$\tilde{\beta}_0 = \bar{y} - \rho_{XY}^* \frac{\sigma_Y^*}{\sigma_X^*} \bar{x},$	200.6239454749055
β_1	$\tilde{\beta}_1 = \rho_{XY}^* \frac{\sigma_Y^*}{\sigma_X^*}$	-0.005973258278958724

б) Записать точечную оценку уравнения регрессии

$$f(x) = 200.6239454749055 - 0.005973258278958724 * x$$

в) Привести формулы расчёта показателей вариации, используемых в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная
вариации		степеней	оценка
		свободы	
Факторный признак	$D_{\text{perp }Y X}^* = \frac{1}{n} \sum_{i=1}^n (f(x_i, \beta_0,, \beta_{k-1}) - \bar{y})^2$	k – 1	$\frac{n}{k-1}D_{\operatorname{perp}Y X}^*$
Остаточные признаки	$D_{\text{oct } Y}^* = \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i, \beta_0,, \beta_{k-1}))^2$	n-k	$\frac{n}{n-k}D_{\text{oct }Y}^*$
Все признаки	$D_Y^* = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$	n – 1	$\frac{n}{n-1}D_Y^*$

г) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный	16.462780398473043	1	5185.775825519008
признак			
Остаточные	33366.516045502256	313	33579.720620872875
признаки			
Все признаки	33382.97882590072	314	33489.29404509148

д) Проверить правило сложения дисперсий

Показатель	D_{pezp}	D_{ocm}	$D_{oби m i}$	$D_{perp} + D_{ocm}$
Значение	16.462780398473043	33366.516045502256	33382.97882590072	33382.978825900725

е) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Коэффициент	$D_{\text{perp }Y X}^* = D_{\text{oct }Y}^*$	0.000493148933303104
детерминации	$R_{Y X} \equiv {D_Y^*} \equiv 1 - {D_Y^*}$	
Корреляционное	D*	0.022206956867232033
отношение	$R_{Y X}^* = \frac{D_{\text{perp }Y X}}{D_V^*} = 1 - \frac{D_{\text{oct }Y}}{D_V^*}$	
	$\bigvee D_{Y} \bigvee D_{Y}$	

ж) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Связь между факторным и результативным признаками отсутствует.

9.1.2. Интервальные оценки линейной регрессионной модели

а) Привести формулы расчёта доверительных интервалов для параметров линейной регрессионной модели

Параметр	Границы	Формула расчета
	доверительного	
	интервала	
β_0	Нижняя граница	$\tilde{\beta}_0 - t_{1-\alpha/2}(n-2)\sqrt{\tilde{D}_{resY}}\sqrt{\frac{\sum\limits_{i=1}^n x_i^2}{n^2 D_X^*}}$
	Верхняя граница	$\tilde{\beta}_0 + t_{1-\alpha/2} (n-2) \sqrt{\tilde{D}_{resY}} \sqrt{\frac{\sum\limits_{i=1}^n x_i^2}{n^2 D_X^*}}$
β1	Нижняя граница	$\tilde{\beta}_1 - t_{1-\alpha/2}(n-2)\sqrt{\tilde{D}_{resY}}\sqrt{\frac{1}{nD_X^*}};$
	Верхняя граница	$\tilde{\beta}_1 + t_{1-\alpha/2} (n-2) \sqrt{\tilde{D}_{resY}} \sqrt{\frac{1}{n D_X^*}}$

б) Рассчитать доверительные интервалы для параметров линейной регрессионной модели

Параметр	Границы	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
	доверительного			
	интервала			
β_0	Нижняя	125.31992251590073	143.4528909519943	152.68812898968702
	граница			
	Верхняя	275.9279684339103	257.7949999978167	248.55976196012398
	граница			
β_1	Нижняя	-0.045178308606084266	-0.03573785758922106	-0.03092977486238141
	граница			
	Верхняя	0.033231792048166814	0.02379134103130361	0.018983258304463964
	граница			

в) Привести формулы расчёта доверительного интервала для значений регрессии f(x)

Границы доверительного	Формула расчета
интервала	
Нижняя граница $f_{low}(x)$	$\tilde{f}(x) - t_{1-\alpha/2}(n-2)\sqrt{\tilde{D}_{resY}}\sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{nD_X^*}}$
Верхняя граница $f_{high}(x)$	$\tilde{f}(x) + t_{1-\alpha/2}(n-2)\sqrt{\tilde{D}_{resY}}\sqrt{\frac{1}{n} + \frac{(x-\tilde{x})^2}{nD_X^*}}$

г) Построить диаграмму рассеяния признаков x и y. Нанести на диаграмму функцию регрессии f(x), а также нижние и верхние границы линии регрессии $f_{low}(x)$ и $f_{high}(x)$ на уровне значимости $\alpha=0.1$

д) Построить график остатков $\varepsilon(x) = y - f(x)$

9.1.3. Проверка значимости линейной регрессионной модели

Статистическая гипотеза —
$$\dfrac{H_0: eta_1 = 0}{H': eta_1
eq 0}$$

а) Указать формулы расчёта показателей, используемых при проверке значимости линейной регрессионной модели

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	$Z = \frac{R_{Y X}^{2*}}{\left(1 - R_{Y X}^{2*}\right)/(n-2)}$	$R_{Y X}^{2^*} = rac{D_{ ext{perp }Y X}^*}{D_Y^*}; onumber 1 n - объем выборки.$
Закон распределения статистики	$f_Z(z H_0) \sim F(1, n-2)$	
критерия при условии истинности		
основной гипотезы		
Формула расчета критической точки	$f_{1-\alpha}(1, n-2)$	
Формула расчета <i>p-value</i>	1 - F(Z, 1, n - 2)	

б) Проверить значимость линейной регрессионной модели

Уровень	Выборочное значение	p-value	Статистическ	Вывод
значимости	статистики критерия		ое решение	
0.01	0.15443177398848207	0.694603179135282	H_0	$\beta_1 = 0$
			принимается	
0.05			H_0	$\beta_1 = 0$
			принимается	
0.1			H_0	$\beta_1 = 0$
			принимается	

9.2 Линейная регрессионная модель общего вида

Факторный признак x - C6

Результативный признак у – С13

Уравнение регрессии – квадратичное по x: $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$

9.2.1. Точечные оценки линейной регрессионной модели

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр	Формула расчета	Значение
β_0	$\tilde{\beta} = (F^T F)^{-1} F^T y$	156.531322
β_1	,	0.0370710218
β_2	$y = (y_1, \dots, y_n)^T,$	-9.01050102e-06
	$\beta = (\beta_0, \beta_1, \beta_2)^T;$	
	$F = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \dots & \dots & \dots \\ 1 & x_n & x_n^2 \end{pmatrix}$	

б) Записать точечную оценку уравнения регрессии

$$f(x) = 156.531322 + 0.0370710218 * x - 9.01050102e-06 * x^2$$

в) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный	136.46102080306048	2	21492.610776482026
признак			
Остаточные	33246.517805097676	312	33566.19586091593
признаки			
Все признаки	33382.97882590072	314	33489.29404509148
_			

г) Проверить правило сложения дисперсий

Показатель	D_{pezp}	D_{ocm}	$D_{ m oби}$	$D_{perp} + D_{ocm}$
Значение	136.46102080306048	33246.517805097676	33382.97882590072	33382.97882590073

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Коэффициент	$R_{Y X}^{2^*} = \frac{D_{\text{perp }Y X}^*}{D_{X}^*} = 1 - \frac{D_{\text{oct }Y}^*}{D_{X}^*}$	0.004087742484417988
детерминации	D_Y^* D_Y^* D_Y^*	
Корреляционное	D^* viv D^*	0.06393545561281305
отношение	$R_{\text{viv}}^* = \frac{ P_{\text{perp } Y} X}{ P_{\text{oct } Y} } = 1 - \frac{ P_{\text{oct } Y} X}{ P_{\text{oct } Y} }$	
	D_Y^* D_Y^* D_Y^*	

е) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Связь между факторным и результативным признаками отсутствует.

9.2.2. Интервальные оценки линейной регрессионной модели

а) Привести формулы расчёта доверительного интервала для значений регрессии f(x)

Границы	Формула расчета
доверительного	
интервала	
Нижняя	$\tilde{f}(x) - t_{1-\alpha/2}(n-k)\sqrt{\tilde{D}_{resY}}\sqrt{\varphi^T(x)(F^TF)^{-1}\varphi(x)}$
граница $f_{low}(x)$	$\int (\omega)^{-\alpha/2} (\omega - \omega) \sqrt{2 \operatorname{res} Y} \sqrt{\varphi} (\omega) (1 - 1) - \varphi(\omega)$
Верхняя	$\tilde{f}(x) + t_{1-\alpha/2}(n-k)\sqrt{\tilde{D}_{resY}}\sqrt{\varphi^T(x)(F^TF)^{-1}\varphi(x)}$
граница $f_{high}(x)$	$\int (x) + \epsilon_{1-\alpha/2}(n - \kappa) \sqrt{D_{resY}} \sqrt{\varphi_{s}(x)(1 - 1)} - \varphi(x)$

б) Построить диаграмму рассеяния признаков x и y. Нанести на диаграмму функцию регрессии f(x), а также нижние и верхние границы линии регрессии $f_{low}(x)$ и $f_{high}(x)$ на уровне значимости $\alpha=0.1$

в) Построить график остатков $\varepsilon(x) = y - f(x)$

9.2.3. Проверка значимости линейной регрессионной модели

Статистическая гипотеза — $\frac{H_{0}:\beta_{1}=\beta_{2}=0}{H':\textit{He}\;H_{0}}$

а) Указать формулы расчёта показателей, используемых при проверке значимости линейной регрессионной модели

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	$Z = \frac{R_{Y X}^{2*}/(k-1)}{\left(1 - R_{Y X}^{2*}\right)/(n-k)}$	$R_{Y X}^{2^*} = \frac{D_{perp\ Y X}^*}{D_Y^*};$ n – объём выборки;
Закон распределения статистики	F(k-1, n-k)	k = 3.
критерия при условии истинности		
основной гипотезы		
Формула расчета критической точки	$f_{1-\alpha}(k-1, n-k)$	
Формула расчета p-value	1 - F(Z, k-1, n-k)	

б) Проверить значимость линейной регрессионной модели

Уровень	Выборочное значение	p-value	Статистическ	Вывод
значимости	статистики критерия		ое решение	
0.01	0.6403052304627638	0.5278227554063295	H_0	$\beta_1 = \beta_2 = 0$
			принимается	
0.05			H_0	$\beta_1 = \beta_2 = 0$
			принимается	
0.1			H_0	$\beta_1 = \beta_2 = 0$
			принимается	

9.3 Множественная линейная регрессионная модель

Факторный признак 1 x_1 – C6

Факторный признак 2 x_2 – C11

Результативный признак у – С13

Уравнение регрессии – $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр	Формула расчета	Значение
β_0	$\tilde{\beta} = (F^T F)^{-1} F^T y$	163.004105
β_1	, ,	-0.0219907501
β_2	$y = (y_1, \dots, y_n)^T$	0.0303795958
	$\beta = (\beta_0, \beta_1, \beta_2)^T;$	
	$F = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \dots & \dots & \dots \\ 1 & x_n & x_n^2 \end{pmatrix}$	

б) Записать точечную оценку уравнения регрессии

$$f(x) = 163.004105 - 0.0219907501 * x1 + 0.0303795958 * x2$$

в) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник вариации	Показатель вариации	Число степеней свободы	Несмещенная оценка
Факторный признак	1896.6175210691147	2	298717.25956838555
Остаточные признаки	31486.361304831622	312	31789.114778916544
Все признаки	33382.97882590073	314	33489.2940450915

г) Проверить правило сложения дисперсий

Показатель	$D_{ m perp}$	D_{ocm}	Dоби	$D_{perp} + D_{ocm}$
Значение	1896.6175210691147	31486.361304831622	33382.97882590073	33382.97882590074

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Множественный	$R_{Y X_1X_2}^{2^*} = \frac{D_{\text{perp }Y X_1 X_2}^*}{D^*} = 1 - \frac{D_{\text{oct }Y}^*}{D^*}$	0.05681390899716813
коэффициент детерминации	D_Y^* D_Y^* D_Y^*	
Множественное	$D_{\text{perp }Y X_1 X_2}^*$ $D_{\text{oct }Y}^*$	0.23835668439791682
корреляционное отношение	$R_{Y X_1X_2}^* = \sqrt{\frac{D_{\text{perp }Y X_1 X_2}}{D_Y^*}} = \sqrt{1 - \frac{D_{\text{oct }Y}}{D_Y^*}}$	

е) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Между факторным и результативным признаками присутствует слабая связь.

9.4. Выводы

а) Сводная таблица показателей вариации для различных регрессионных моделей

Источник	Простейшая	Линейная модель	Множественная
вариации	линейная	с квадратичным	линейная модель
	модель	членом	
Факторный	16.4627803984	136.461020803060	1896.61752106911
признак	73043	48	47
Остаточные	33366.5160455	33246.5178050976	31486.3613048316
признаки	02256	76	22
Все признаки	33382.9788259	33382.9788259007	33382.9788259007
•	0072	2	3

б) Сводная таблица свойств различных регрессионных моделей

Свойство	Простейшая	Линейная модель	Множественная
	линейная модель	с квадратичным	линейная модель
		членом	
Точность	2.2 %	6.4 %	23.8 %
Значимость	нет	нет	нет
Адекватность	-	-	-
Степень тесноты связи	Отсутствует	Отсутствует	Слабая

Вывод (в терминах предметной области)

В результате проведённого в п.9 статистического анализа обнаружено, что количество калорий, потребляемых пациентами в день, не влияет на концентрацию бета-каротина(ng/ml) в плазме их крови. Однако количество потребляемых бета-каротина с пищей(mcg per day) и калорий в день оказывает слабое воздействие на концентрацию бета-каротина(ng/ml).