NB-IoT 和 eMTC 覆盖能力浅析

中国移动通信研究院 李秋香、崔航、徐芙蓉、李新、杨光 {liqiuxiang, cuihang, xufurong, lixin, yangguangyj} @chinamobile.com

摘要

NB-IoT和eMTC是面向低速率、低时延、超低终端成本、低功耗、海量终端连接的窄带蜂窝物联网技术,其中:覆盖增强是该技术的重要设计目标,NB-IoT要求在GSM基础上增强20dB,MCL达164dB,eMTC要求在FDDLTE基础上增强15dB,MCL达155.7dB。因此,本文在介绍NB-IoT和eMTC的物理信道后,重点对两者的上下行信道的覆盖能力进行分析和比较,给出NB-IoT和eMTC的链路预算结果,并与GSM及LTE进行比较。本文还对NB-IoT独立部署(Standalone)、保护带部署(Guard band)、带内部署(In band)三种不同部署方式的覆盖能力差异进行分析。

关键词:

NB-IoT, eMTC, 覆盖

1. 概述

NB-IoT(Narrowband Internet of Things) 和 eMTC(Enhanced Machine-Type Communications) 是 3GPP 针对低功耗广覆盖(LPWA,Low Power Wide Area)类业务而定义的新一代蜂窝物联网接入技术,主要面向低速率、低时延、超低成本、低功耗、广深覆盖、大连接需求的物联网业务。NB-IoT 和 eMTC 采用的技术手段有共性地方:例如覆盖增强和低功耗技术。也有差异的地方:NB-IoT 在物理层发送方式、网络结构、信令流程等方面做了简化,而 eMTC 是 LTE 的增强功能,主要在物理层发送方式上作了简化和增强。

覆盖增强是 NB-IoT 和 eMTC 的重要特性,NB-IoT 提出了在 GSM 基础上增强 20dB 的 覆盖目标,即 MCL(Maximum Coupling Loss,最大耦合路损)要达到 164dB。主要通过提高功率谱密度、重复发送、低阶调制编制等方式实现;eMTC 的 MCL 目标是 155.7dB,即在 LTE FDD 基础上增强 15dB,在 TD-LTE 上增强 9dB 左右,由于 LTE 不同信道的覆盖能力有 所差别,不同信道的增强量有所差别。

本文首先分析 NB-IoT、eMTC 各物理信道的原理及特征,研究 NB-IoT、eMTC 覆盖增强 方式,给出不同信道链路仿真结果及链路预算结果。

2. NB-IoT 和 eMTC 物理信道简介

2.1 NB-IoT 物理信道

NB-IoT 目前只在 FDD 有定义,终端为半双工方式。NB-IoT 上下行有效带宽 180KHz,下行采用 OFDM,子载波带宽与 LTE 相同,为 15KHz;上行有两种传输方式:单载波传输(Single tone)、多载波传输(Multi-tone),其中 Single tone 的子载波带宽包括 3.75KHz 和 15KHz 两种,Multi-tone 子载波间隔 15KHz,支持 3、6、12 个子载波的传输。

NB-IoT 支持 3 种不同的部署方式:独立部署(Stand alone)、保护带部署(Guard band)、带内部署(In band)。

图 2-1: NB-IoT 部署方式

Standalone 部署在LTE 带宽之外,Guard band 部署在LTE 的保护带内,In-band 占LTE 的 1 个 PRB 资源,需保证与LTE PRBs 的正交性。Standalone 可独立设置发射功率,例如 20W,Guard band、In-band 的功率与LTE 功率有关系,通过设置 NB-loT NRS(Narrowband Reference Signal,窄带参考信号)与LTE CRS(Common Reference Signal,公共参考信号)的功率差,设定 NB-loT 的功率,目前协议定义可设置 NRS 比 CRS 最大高 9dB,实际 Power boosting 的大小需根据设备的发射能力而定。

NB-IoT 子帧结构与 LTE FDD 相同,引入了新的参考信号 NRS 和新的主辅同步信号 (NPSS/NSSS: Narrowband Primary Synchronization Signal/ Narrowband Secondary Synchronization Signal),支持单端口和双端口两种发射模式。NB-IoT 定义的物理信道如下表所示。

方向	物理信号 / 物理信道名称	作用		
	NPBCH(Narrowband Physical Broadcast Channel,窄带物理 广播信道)	广播系统消息		
下行	NPDCCH (Narrowband Physical Downlink Control Channel, 窄带物理下行控制信道)	上下行调度信息		
	NPDSCH (Narrowband Physical Downlink Shared Channel, 窄带物理下行共享信道)	下行数据发送,寻呼,随机接入响应等		
L./-	NPRACH(Narrowband Physical Random Access Channel,窄带物理随机接入信道)	随机接入		
上行	NPUSCH (Narrowband Physical Uplink Shared Channel, 窄带物理上行共享信道)	上行数据发送,上行控制信息发送		

表 2-1: NB-IoT 物理信道

与 LTE 相比,NB-IoT 取消了 PCFICH、PHICH 和 PUCCH 信道,不支持 CSI 的上报,NB-IoT 下行未引入控制域的概念,NPDCCH 占用资源方式与 NPDSCH 类似,NPUSCH 的 ACK/NACK 反馈信息在 NPDCCH 中指示,NPDSCH 的 ACK/NACK 反馈信息在 NPUSCH format2 中反馈。

NB-IoT 以上行业务为主,需要重点关注 NPUSCH 信道的承载能力和覆盖能力。

2.1.1 下行物理信道

1. NPBCH 信道

NPBCH 信道与 LTE 的 PBCH 不同,广播周期 640ms,重复 8 次发送,如下图所示,终端接收若干个子帧信号进行解调。

图 2-2: NPBCH 发送方式

2. NPDCCH 信道

LTE 的 PDCCH 固定使用子帧前几个符号,NPDCCH 与 PDCCH 差别较大,使用的 NCCE(Narrowband Control Channel Element,窄带控制信道资源)频域上占 6 个子载波。 Stand alone 和 Guard band 模式下,可使用所有 OFDM 符号,In-Band 模式下,错开 LTE 的控制符号位置。NPDCCH 有 2 种 format:

- NPDCCH format 0 的聚合等级为 1, 占用 NCCE0 或 NCCE1
- NPDCCH format 1 的聚合等级为 2, 占用 NCCE0 和 NCCE1。

图 2-3: NPUCCH 资源格式

NPDCCH 最大重复次数可配,取值范围 {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}。

3. NPDSCH 信道

NPDSCH 频域资源占 12 个子载波,Standalone 和 Guard band 模式下,使用全部 OFDM 符号。In-band 模式时需错开 LTE 控制域的符号,由于 SIB1-NB 中指示控制域符号数,因此如果是 SIB1-NB 使用的 NPDSCH 子帧时,固定错开前 3 个符号。

Standalone/Guard band

In-band

图 2-4: NPDSCH 资源格式

NPDSCH 调制方式为 QPSK, MCS 只有 0~12。重复次数 {1, 2, 4, 8, 16,32, 64, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048}。

2.1.2 上行物理信道

1. NPRACH

NPRACH 子载波间隔 3.75kHz,占用 1 个子载波,有 Preamble format0 和 fomrat1 两种格式,对应 66.7us 和 266.7us 两种 CP 长度,对应不同的小区半径。1 个 Symbol group 包括 1 个 CP 和 5 个符号,4 个 Symbol Group 组成 1 个 NPRACH 信道,如下图所示。

图 2-5: NPRACH 信道图示

NPRACH 信道通过重复获得覆盖增强,重复次数可以是 {1, 2, 4, 8, 16, 32, 64, 128}。

2. NPUSCH

NPUSCH 上行子载波间隔有 3.75KHz 和 15KHz 两种,上行有两种传输方式:单载波传输(Single tone)、多载波传输(Multi-tone),其中 Single tone 的子载波带宽包括 3.75KHz 和 15KHz 两种,Multi-tone 子载波间隔 15KHz,支持 3、6、12 个子载波的传输。

上行传输资源是以 RU(Resource Unit)为单位进行分配的,Single tone 和 Mulit-tone 的 RU 单位定义如下,调度 RU 数可以为 {1,2,3,4,5,6,8,10},在 NPDCCH N0 中指示。

NPUSCH format	子载波间隔	子载波间隔	子载波数	时长
	Cinalo tono	3.75KHz	1	32 ms
	Single tone	15KHz	1	8 ms
1	Multi-tone		3	4 ms
		15KHz	6	2 ms
			12	1 ms
2	Cinalo tono	3.75Khz	1	8 ms
	Single tone	15KHz	1	2 ms

表 2-2: NPUSCH的 RU (Resource Unit)定义

NPUSCH 采用低阶调制编码方式 MCS 0`11, 重复次数为 {1,2,4,8,16,32,64,128}。

2.2 eMTC 物理信道

eMTC 是 LTE 的演进功能,在 TDD 及 FDD LTE 1.4M~20MHz 系统带宽上都有定义,但无论在哪种带宽下工作,业务信道的调度资源限制在 6PRB 以内,eMTC 窄带划分方式如下图所示。

图 2-6:eMTC 窄带定义方式

eMTC 的子帧结构与LTE 相同,与LTE 相比,eMTC 下行 PSS/SSS 及 CRS 与LTE 一致,同时取消了 PCFICH、PHICH 信道,兼容 LTE PBCH,增加重复发送以增强覆盖,MPDCCH基于 LTE 的 EPDCCH 设计,支持重复发送,PDSCH 采用跨子帧调度。上行 PRACH、PUSCH、PUCCH 与现有 LTE 结构类似,增加重复发送以增强覆盖。

eMTC 最多可定义 4 个覆盖等级,每个覆盖等级 PRACH 可配置不同的重复次数。eMTC 根据重复次数的不同,分为 Mode A 及 Mode B,Mode A 无重复或重复次数较少,Mode B 重复次数较多。

2.2.1 下行物理信道

1. PBCH

eMTC PBCH 完全兼容 LTE 系统,周期为 40ms,支持 eMTC 的小区有字段指示。采用重复发送增强覆盖,每次最多传输重复 5 次发送。

图 2-7:eMTC PBCH 发送方式

当 LTE 系统带宽为 1.4MHz 时,PBCH 不支持重复发送,即无覆盖增强功能。

2. MPDCCH

MPDCCH(MTC Physical Downlink Control Channel)用于发送调度信息,基于 LTE R11 的 EPDCCH 设计,终端基于 DMRS 来接收控制信息,支持控制信息预编码和波束赋形等功能,一个 EPDCCH 传输一个或多个 ECCE(Enhanced Control Channel Element,增强控制信道资源),聚合等级为 {1,2,4,8,16,32},每个 ECCE 由多个 EREG(Enhanced Resource Element Group)组成。

图 2-8: MPDCCH 资源格式

MPDCCH 最大重复次数 Rmax 可配,取值范围 {1, 2, 4, 8, 16, 32, 64, 128, 256}。

3. PDSCH

eMTC PDSCH 与 LTE PDSCH 信道基本相同,但增加了重复和窄带间跳频,用于提高 PDSCH 信道覆盖能力和干扰平均化。eMTC 终端可工作在 ModeA 和 ModeB 两种模式:

- 在 Mode A 模式下,上行和下行 HARQ 进程数最大为 8,在该模式下,PDSCH 重复次数为 {1,4,16,32}
- 在 Mode B 模式下,上行和下行 HARQ 进程数最大为 2,在该模式下,PDSCH 重复次数为 {4,16,64,128,256,512,1024,2048}

2.2.2 上行物理信道

1. PRACH

eMTC 的 PRACH 的时频域资源配置沿用 LTE 的设计,支持 format 0, 1, 2, 3。频率 占用 6 个 PRB 资源,不同重复次数之间的发送支持窄带间跳频。每个覆盖等级可以配置不同的 PRACH 参数。

PRACH 信道通过重复获得覆盖增强, 重复次数可以是 {1, 2, 4, 8, 16, 32, 64, 128, 256}。

2. PUCCH

PUCCH 频域资源格式与 LTE 相同,支持跳频和重复发送。

Mode A 支持 PUCCH 上发送 HARQ-ACK/NACK、SR、CSI, 即支持 PUCCH format 1/1a/2/2a, 支持的重复次数为 {1, 2, 4, 8}; Mode B 不支持 CSI 反馈,即仅支持 PUCCH format 1/1a, 支持的重复次数为 {4, 8, 16, 32}。

3. PUSCH

PUSCH 与 LTE 一样,但可调度的最大 RB 数限制为 6 个。支持 Mode A 和 Mode B 两种模式,Mode A 重复次数可以是 {8, 16, 32}, 支持最多 8 个进程,速率较高;Mode B 覆盖距离更远,重复次数可以是 {192, 256, 384, 512, 768, 1024, 1536, 2048}, 最多支持上行 2 个 HARQ 进程。

3. NB-IoT 和 eMTC 覆盖能力分析

3.1 概述

NB-IoT 的覆盖目标是 MCL 164dB,比 GSM 覆盖增强 20dB。NB-IoT 的覆盖增强,主要是通过提升上行功率谱密度,重复发送实现。NB-IoT 三种工作模式都可以达到该覆盖目标。下行方向上,Standalone 独立部署的功率可独立配置,In-band 带内部署及 Guard band 的功率受限于 LTE 的功率,因此 In-band 及 Guard ban 需更多重复次数才能达到与 Standalone 同等覆盖水平,在相同覆盖水平下,Standalone 的下行速率性能优于另两者;上行方向上,三种工作模式基本没有区别。

eMTC 的覆盖目标是 MCL 155.7dB,在 FDD LTE 基础上增强 15dB,比 NB-loT 的覆盖目标低 8dB 左右。eMTC 是 LTE 的增强功能,与 LTE 共享发射功率和系统带宽,但 eMTC 的业务信道带宽最大为 6 个 PRB。eMTC 功率谱密度与 LTE 相同,覆盖增强主要是通过重复发送、跳频实现。

3.2 功率谱密度对覆盖能力的影响分析

NB-IoT 独立部署,下行发射功率可独立配置,例如 20W,此时 NB-IoT 功率谱密度与 GSM 相同,但比 LTE FDD 功率谱密度高 14dB 左右。In-band 带内部署及 Guard band 保护带内部署时,可以配置 NB-IoT 与 LTE 的功率差,例如 NB-IoT 比 LTE 功率高 6dB,此时 NB-IoT 下行功率仍比 GSM 功率低 8dB。eMTC 在功率谱密度上并未必 LTE 有所提升,比 GSM 功率谱密度低 14dB,因此 eMTC 功率谱密度比 NB-IoT 低 6~14dB。

表 3-1: GSM、LTE FDD 与 NB-IoT、eMTC 下行功率谱密度比较

		LTE FDD	NE	3-loT		
下行方向	GSM	-10MHz	独立部署	带内及保护带 内部署	eMTC(FDD -10MHz)	
下行发射功率 (dBm)	43	46	43	35 ^[1]	36.8 ^[2]	
占用带宽(KHz)	180	9000	180	180	1080 ^[2]	
下行功率谱密度 (dBm/ KHz)	20.44	6.46	20.44	12.46	6.46	

注[1]: 假设 NRS 功率配置比 CRS 功率高 6dB;

注^[2]: LTE FDD 10M 发射功率 46dBm, eMTC 占用 1080KHz 的总功率为 36.8dBm。

NB-IoT 上行终端最大发射功率比 GSM 低 10dB,但由于 NB-IoT 最小调度带宽为 3.75K 或 15K,因此 NB-IoT 上行功率谱密度比 GSM 高 0.8~6.9dB。eMTC 终端最大发射功率 23dBm,最小调度带宽为 1 个 RB 180KHz,其上行功率谱密度与 LTE 相同,但比 GSM 低 10dB,因此 eMTC 上行功率谱密度比 NB-IoT 低 11~17dB。

表 3-2: GSM、LTE FDD 与 NB-IoT、eMTC 功率谱密度比较

方向		GSM	LTE FDD -10MHz	NB-loT(独立部署、带内 部署、保护带内部署)		eMTC(FDD -10MHz)
	上行最大发射功 率 (dBm)	33	23	2	23	23
上行	最小占用带宽 (KHz)	180	180	15	3.75	180
	上行最大功率谱 密度 (dBm/KHz)	10.4	0.4	11.2	17.3	0.4

除了功率谱密度上有所变化外,覆盖增强还通过重复发送及跳频实现。eMTC 在功率谱密度上无增强,主要通过重复、调频实现覆盖增强。

3.3 重复次数对覆盖能力的影响分析

3.3.1 NB-IoT 仿真结果

3.3.1.1 下行仿真结果

1. NPBCH 解调门限

NPBCH 2T1R 仿真得到的解调门限如下表所示。下表是基站 2 天线发送的仿真结果,存在约 3dB 的发送分集增益,如果基站采用 1 天线发送(1T1R),要达到与 2 天线同等覆盖能力,需要更多重复次数。

- (1) Standalone MCL 达到 144dB、154dB、164dB 的重复次数分别为 1、2、16。
- (2) In-band/Guard band MCL 达到 144dB、154dB 的重复次数分别为 1、8。重复次数达到最大 64 次时,MCL 仍无法满足 164dB 的覆盖目标。在 MCL 164dB 解调 PBCH 时,BLER 会高于 10%。

表 3-3: NPBCH 解调门限 (来源: R1-160259)

		MCL(dB)		
手与 物	10%BLER 解调	Standalone(发射	In-band/Guard	
重复次数	门限 (dB) ^[1]	功率 43dBm)	band(发射功率	
		功学 43UDIII)	35dBm)	
64次(8个Block, 640ms)	-11.8	171.2	160.2 ^[2]	
32次(4个Block, 320ms)	-8.3	167.7	156.7	
16次(2个Block, 160ms)	-4.6	164	153	
8次(1个Block, 80ms)	-1	160.4	149.4	
4次 (1/2个 Block, 40ms)	2	157.4	146.4	
2次 (1/4 个 Block, 20ms)	5	154.4	143.4	
1次 (1/8个 Block, 10ms)	8	151.4	140.4	

注^[1]:控制信道一般也考虑 1% BLER 的解调门限要求。

注^[2]: : PBCH 重复周期为 640ms, 最多重复 64 次, MCL 未到达 164dB 的覆盖目标。

2. NPDCCH 解调门限

NPDCCH 信息最大 39bit,基于 48bit 仿真的解调门限如下表所示。从仿真结果可以看到, 重复 32 次可满足 Standalone MCL164dB 的覆盖要求。Guard band、In-band 的发射功率比 Standalone 低 8dB 时,重复 193、230 次才满足 Guard band、In-band MCL 164dB。

表 3-4: NPDCCH 解调门限(来源: R1-157339、R1-157537、R1-157538)

配置	10%BLER 解调	MOL (dD)	
NB-IoT 部署方式	重复次数	门限 (dB)	MCL (dB)
Standalone(1T1R, 发射功率 43dBm)	32	-4.6	164
Guard band(2T1R, 发射功率 35dBm)	193	-12.6	164
In-band(2T1R, 发射功率 35dBm)	230	-12.6	164

3. NPDSCH 解调门限

重复次数与 TBS 大小有关,TBS=680 时重复 32 次可满足 Standalone MCL164dB 的覆盖要求。In-band、Guard band 的发射功率比 Standalone 低 8dB 时,重复次数需达到 128 次才满足 MCL 164dB 的覆盖要求。

同等覆盖距离下,Standalone 的下行速率比其他两种部署方式要高。

表 3-5: NPDSCH 解调门限仿真结果

	配置		10%BLER 解调	下行瞬时速率	MCL	
部署方式	TBS	N_SF	重复次数	门限 (dB)	(kbps)	(dB)
Standalone(1T1R, 发射 功率 43dBm)	680	5 (6ms)	32	-4.6	2.41	164
In-band(2T1R, 发射功率 35dBm)	680	6(8ms)	128	-12.9	0.45	164.3
Guard band(2T1R, 发射 功率 35dBm)	680	5(6ms)	128	-12.9	0.598	164.3

注^[1]:下行速率为单子帧瞬时速率,未考虑调度时延、HARQ 反馈等开销。

3.3.1.2 上行仿真结果

Standalone 和 Guard band、In-band 上行可用资源相同,上行信道的性能接近。

1. NPRACH 仿真结果

NPRACH 重复次数 {1, 2, 4, 8, 16, 32, 64, 128}, 从仿真结果可以看出,重复次数达到 32 次时,可满足 MCL164dB 的覆盖需求。

表 3-6: NPRACH 虚警概率及漏检率(来源: R1-160317)

NPRACH 虚警概率及漏检率							
format	format MCL (dB) 重复次数 持续时长 (ms) 虚警概率 漏检率						
Preamble format 2	144	2	12.8	0.05%	0.5%		
	154	6	38.4	0.1%	0.6%		
	164	30	192	0.1%	0.8%		

注 1. 标准上, 重复次数为 2 的幂次方, 上述重复次数不完全满足标准定义, 实际使用时略有差异。

2. NPUSCH 仿真结果

NPUSCH 的仿真结果如下表所示,采用 QPSK 调制,发送接收天线为 1T2R。

表 3-7: NPUSCH 解调门限(来源: R1-160272)

			配置		10%BLER 解	上行瞬			
覆盖目标	TBS	多载波方式	子载波 数	RU 个数	重复 次数	发送时长 (ms)	调门限(dB)	时速率 (kbps)	MCL(dB)
		MT	3	6	1	24	3.2	29.3	144.3
覆盖等级 1	776	15K ST	1	5	1	40	7.9	17.6	144.3
		3.75K ST	1	5	1	160	8.1	4.4	150.2
覆盖等级 2	776	15K ST	1	12	2	192	-1.8	3.67	154.0
復亜守纵 乙	770	3.75K ST	1	8	1	256	3.7	2.76	154.6
亜羊体44.0	776	15K ST	1	25	7	1400	-12.8	0.50	165.0
覆盖等级3	770	3.75K ST	1	22	2	1408	-6.2	0.50	164.5

注 1:标准上,RU 个数的取值范围为 {1,2,3,4,5,6,8,10},重复次数取值范围为 {1,2,4,8,16,32,64,128},上表部分取值与标准定义不完全匹配。

注 2: 上行速率为单子帧瞬时速率,未考虑调度时延、HARQ 反馈等开销。

3.3.1 eMTC 仿真结果

3.3.1.1 下行仿真结果

下行信道,由于Legacy-LTE 各信道的覆盖能力不同,为了满足 MCL 155.7dB 的覆盖目标,各信道需要提升不同程度的覆盖能力,6.7~9.6dB。

表 3-8: eMTC 下行信道覆盖增强需求 (来源: TR36.888)

物理信道	PDSCH	PBCH	PDCCH
(1) MCL (FDD LTE)	145.4	149	146.1
需增强的覆盖 =155.7-(1)	10.3	6.7	9.6

eMTC 各信道都可通过重复发送达到 MCL 155.7dB 的覆盖目标:

- PBCH 在 Legacy-LTE PBCH 单次发送的基础上可重复 20 次,理论上可获得 13dB 左右的覆盖增益。
- MPDCCH 定义最多可重复 256 次,当 MCCE 聚合等级为 8 时,重复 $100\sim200$ 次覆盖可增强 20dB 左右,MPDCCH 还定义了 16 及 32 聚合等级,其重复次数将进一步降低。
- MPDSCH 定义最多可重复 2048 次, 当重复 147 次 (多厂家平均值), 覆盖可增强 20dB 左右。

3.3.1.2 上行仿真结果

上行信道,由于Legacy-LTE 各信道的覆盖能力不同,为了满足 MCL 155.7dB 的覆盖目标,各信道需要提升不同程度的覆盖能力,8.5~15dB。

物理信道	PUCCH	PRACH	PUSCH
(1) MCL (FDD)	147.2	141.7	140.7
需增强的覆盖 =155.7-(1)	8.5	14	15

表 3-9: eMTC 上行信道仿真结果 (来源: TR36.888)

上行各信道通过重复发送可达到 MCL 157.7 的覆盖目标。各信道需要重复的次数如下表所示,低于 3GPP 定义的最大重复次数。

物理信道	3GPP 定义的最大重复次数	重复次数	仿真结果说明
PUSCH	2048	90	4 厂家平均值
PRACH	256	25	3 厂家平均值
PUCCH	32	9	3 厂家平均值

表 3-10:eMTC 上行信道仿真结果(来源:R1-165993)

3.4 链路预算结果

本章节以密集城区 Hata 模型为例计算各信道覆盖距离,并与 GSM、FDD LTE 作对比。在同等环境下,GSM/LTE 覆盖半径约 $0.6\sim0.7$ km,NB-loT 覆盖半径约 2.65km,是 GSM/LTE 的 4 倍左右,eMTC 覆盖半径约 2km,是 GSM/LTE 的 3 倍左右。NB-loT 覆盖半径比 eMTC 覆盖半径高约 30%。实际覆盖性能有待测试验证。

实际在做网络规划时,需综合考虑上行速率目标、干扰余量、穿透损耗、覆盖率、物联网终端功耗等因素规划覆盖半径。eMTC 和 NB-IoT 覆盖增强可用于提升网络覆盖能力、提升覆盖率或降低站址密度以降低网络建设成本。

表 3-11:上行链路预算结果

	GSM FDD LTE		NB-loT Stand	eMTC ^[2]	
	上行	PUSCH	NPUSCH(15KHz)	NPRACH	PUSCH
(1)数据速率 (kbps)	12.2	20.0	0.5	N/A	N/A
(2)天线数	1T2R	1T2R	1T2R	1T2R	1T2R
(3) 发送功率 (dBm)	33.0	23.0	23.0	23.0	23.0
(4)子载波带宽(KHz)	180.0	180.0	15.0	3.8	180.0
(5)子载波数	1.0	2.0	1.0	1.0	1.0
(6)占用带宽 (KHZ)	180.0	360.0	15.0	3.75	180.0
(7)馈线损耗(dB)	3.0	0.5	0.5	0.5	0.5
(8)天线增益 (dBi)	15.0	15.0	15.0	15.0	15.0
(9) 噪声功率谱密度 (kT) (dBm/Hz)	-174.0	-174.0	-174.0	-174.0	-174.0
(10)噪声系数 (dB)	3.0	3.0 ^[1]	3.0	3.0	3.0 [1]
(11)噪声功率 (dB)	-118.4	-115.4	-129.2	-135.3	-118.4
(12) SNR or C/I (dB)	6.0	-4.3	-12.8	-5.8	-16.3
(13)接收灵敏度(dBm) =(11)+(12)	-112.4	-119.7	-142.0	-141.1	-134.7
(14)最大耦合损耗(dB) =(3)-(13)	145.4	142.7 ^[1]	165.0	164.1	157.7 ^[1]
(15)快衰落余量 (dB)	3.0	0.0	0.0	0.0	0.0
(16) 阴影衰落余量 (dB)	11.6	11.6	11.6	11.6	11.6
(17)干扰余量 (dB)	1.0	2.0	2.0	2.0	2.0
(18)穿透损耗 (dB)	11.0	11.0	11.0	11.0	11.0
(19) OTA(dB)	6.0	6.0	6.0	6.0	6.0
人体损耗 (dB) (注²)	3.0	3.0	0.0	0.0	0.0
(20)总体余量 (dB)	35.6	33.6	30.6	30.6	30.6
室内最大允许路损 (dB)=(3)-(7)+(8)-(13)-(20)	121.8	123.6	148.9	148.0	141.6
室内覆盖半径(km)	0.61	0.68	3.57	3.37	2.22

注 $^{[1]}$: 前述 eMTC MCL 155.7dB 都是在噪声系数 5dB 情况下计算的结果,此处噪声系数统一为 3dB,因此实际 MCL 及室内最大允许路损比 155.7dB 高 2dB。

注 $^{[2]}$: NB-loT 解调门限参考第 3.3 中仿真结果计算室内最大允许路损,eMTC 根据 MCL157.7dB(155.9+2)计算室内最大允许路损。

表 3-12: 下行链路预算结果

	GSM	FDD LTE	NB-IoT Standalone ^[2]		eMTC ^[2]	
	下行	PDCCH	NPBCH	NPDCCH	NPDSCH	PDSCH
(1)数据速率(kbps)	12.2	N/A	N/A	N/A	3	_
(2)天线数	1T1R	2T2R	1T1R	1T1R	1T1R	1T2R
(3) 发送功率 (dBm)	43	46	43	43	43	36.8
(4)子载波带宽(KHz)	180.0	180.0	15.0	15.0	15.0	180.0
(5)子载波数	1.0	50.0	12.0	12.0	12.0	6.0
(6)占用带宽 (KHZ)	180.0	9000.0	180.0	180.0	180.0	1080.0
(7) 馈线损耗 (dB)	3.0	0.5	0.5	0.5	0.5	0.5
(8) 天线增益 (dBi)	15.0	15.0	15.0	15.0	15.0	15.0
(9) 噪声功率谱密度 (kT) (dBm/Hz)	-174.0	-174.0	-174.0	-174.0	-174.0	-174.0
(10)噪声系数 (dB)	5.0	5.0 ^[1]	5.0	5.0	5.0	5.0 ^[1]
(11)噪声功率 (dB)	-116.4	-99.5	-116.4	-116.4	-116.4	-108.7
(12) SNR or C/I (dB)	11.0	-4.7	-8.8	-4.6	-4.8	-14.2
(13)接收灵敏度(dBm)=(11)+(12)	-105.4	-104.2	-125.2	-121.0	-121.2	-122.9
(14)最大耦合损耗(dB)=(3)-(13)	148.4	150.2 ^[1]	168.2	164.0	164.2	159.7 ^[1]
(15)快衰落余量 (dB)	3.0	0.0	0.0	0.0	0.0	0.0
(16)阴影衰落余量 (dB)	11.6	11.6	11.6	11.6	11.6	11.6
(17)干扰余量 (dB)	1.0	5.0	5.0	5.0	5.0	5.0
(18)穿透损耗 (dB)	11.0	11.0	11.0	11.0	11.0	11.0
(19) OTA(dB)	6.0	6.0	6.0	6.0	6.0	6.0
人体损耗 (dB) (注²)	3.0	3.0	0.0	0.0	0.0	0.0
(20) 总体余量(dB)	35.6	36.6	33.6	33.6	33.6	33.6
室内最大允许路损(dB)=(3)-(7)+(8)- (13)-(20)	124.8	128.1 ^[1]	149.1	144.9	145.1	140.6 ^[1]
室内覆盖半径(km)	0.71	0.88	3.49	2.65	2.69	2.00

注 $^{[1]}$: 前述 eMTC MCL 155.7dB 都是在噪声系数 9dB 情况下计算的结果,此处噪声系数统一为 5dB,因此实际 MCL 及室内最大允许路损高 4dB。

注 $^{[2]}$: NB-loT 解调门限参考第 3.3 中仿真结果计算室内最大允许路损,eMTC 根据 MCL159.7dB(155.9+4)计算室内最大允许路损。

4. 总结

本文总结了 NB-IoT 及 eMTC 各物理信道的原理及特征,分析两者的覆盖能力及差异。仿真结果表明两者都可通过重复发送、跳频等技术达到系统设计的覆盖目标,但实际各信道的覆盖能力有待测试和验证。链路预算结果表明,NB-IoT 覆盖半径约是 GSM/LTE 的 4 倍,eMTC 覆盖半径约是 GSM/LTE 的 3 倍,NB-IoT 覆盖半径比 eMTC 大 30%。NB-IoT 及 eMTC 覆盖增强可用于提高物联网终端的深度覆盖能力,也可用于提高网络的覆盖率,或者减少站址密度以降低网络成本等。

本文还对 NB-IoT Standalone、Guard band 及 In-band 部署方式的覆盖能力作了分析,三种部署方式通过不同的重复次数,都可以满足 MCL 164dB 的覆盖目标,但由于 Guard band 及 In-band 功率受限于 LTE FDD 系统功率,其功率比 Standalone 低 5dB 或 8dB,因此为了达到同等下行覆盖能力,需更多重复次数,此时下行速率比 Standalone 低;上行方向三者差别不大。NB-IoT 系统带宽 180KHz,Standalone 不依赖于 FDD LTE 网络,可独立部署。

参考文献

- [1] 3GPP TR 45.820, "Technical Specification Group GSM/EDGE Radio Access Network; Cellular System; Support for Ultra Low Complexity and Low Throughput Internet of Things; (Release 13)"
- [2] R1-157741, "Summary of NB-IoT evaluation results", Source: Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #83
- [3] R1-160354, "NB-PDCCH design", Source CATT, 3GPP RAN1#84 meeting, Malta, February 2016.
- [4] R1-160317, "NB-PRACH evaluation", Source Huawei, HiSilicon, Neul, RAN1#84 meeting, Malta, February 2016.
- [5] R1-160316, "NB-PRACH design", Huawei, HiSilicon, Neul, RAN1#84 meeting, Malta, February 2016.
- [6] R1-160276, "NB-IoT NB-PRACH evaluations," source Ericsson, 3GPPRAN1#84, Feb. 2016, Malta.
- $\cite{MB-IoT}$ NB-PUSCH design," source Ericsson, 3GPPRAN1-NB-IOT, Jan. 2016, Budapest, Hungary.
- [8] R1-160272, "NB-IoT Link performance of NB-PUSCH", source Ericsson, 3GPP TSG-RAN1#84 15-19 February 2016, St Julian's, Malta
- [9] R1-160325, "NB-PUSCH Design", Huawei, HiSilicon, 3GPP RAN1#84, St Julian's, Malta, February 2016.
- [10] 3GPP TR 36.888, "Technical Specification Group Radio Access Network; Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE (Release 12)"
- [11] R1-161546," RAN1 agreements for Rel-13 eMTC sorted and edited by topic", source WI rapporteur (Ericsson), 3GPP TSG RAN WG1 Meeting #84 , St Julian's, Malta, 15th 19th February 2016
- [12] R1-151688," Discussion and performance evaluation on PUCCH for MTC UEs", source Panasonic, 3GPP TSG RAN WG1 Meeting #80bis, Belgrade, Serbia, 20th 24th April 2015