代数学1,第2回の内容の理解度チェックの解答

2024/10/3 担当:那須

 $\boxed{1}$ 3次対称群 S_3 の元を全て書け.

解答) 3次対称群の元は1,2,3の順列に対応するので,列挙すると

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

の合計6つとなる(列挙する順番は任意で構わない).

 $\boxed{2}$ 4 次対称群 S_4 の元 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$ と $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$ に対し、以下を計算せよ.

(1) 積 $\sigma\tau$

解答)
$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

(2) 積 τσ

解答)
$$au\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

(3) 逆置換 τ^{-1}

解答)
$$au^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 3 & 4 & 2 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$$

(4) 積 σ^2

解答)
$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

(5) 値 $\sigma^{-1}(2)$

解答)
$$\sigma$$
 によって 2 にうつる数は 4 なので, $\sigma^{-1}(2) = 4$.

③ 3 次対称群 S_3 の元 $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ と $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ に対し、以下を計算せよ.

(1) 積 σ^3

解答)
$$\sigma$$
 は $1,2,3$ を 1 2 の順にうつすので, $\sigma^3=e=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}$.

(2) 積 τ^2

解答)
$$\tau$$
 は 2 と 3 を入れ替える互換なので、2 回合成すると恒等置換に等しい. したがって $\tau^2 = e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$.

(3) 積 $\tau \sigma \tau$

解答)
$$au\sigma\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} (= \sigma^{-1})$$

(4) 逆置換 σ^{-1}

解答)
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

 $\lfloor 4 \rfloor 5$ 次対称群 S_5 の元 σ でもって, $\sigma(1) = 2$, $\sigma^{-1}(4) = 5$, $\sigma^{-1}(5) = 3$ を満たすものを全て書け.

解答) 条件を満たす置換 σ は、

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & & 5 & & 4 \end{pmatrix}$$

となる. したがって $(\sigma(2), \sigma(4)) = (1,3)$ または $(\sigma(2), \sigma(4)) = (3,1)$ が成り立つ. 求める置換 σ は

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix}$$