import pandas as pd import matplotlib.pyplot as plt from matplotlib import rcParams import seaborn as sns import numpy as np from sklearn.preprocessing import LabelEncoder

df=pd.read_csv('penguins_size.csv')
df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE	th
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE	
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE	
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE	

#Univariate analysis
sns.histplot(df['species'])

sns.histplot(df['island'])

sns.histplot(df['culmen_length_mm'])

sns.boxplot(df['culmen_depth_mm'])

cAxes: xlabel='culmen_depth_mm', ylabel='Count'>
50
40
20
10
16
18
20
culmen_depth_mm

sns.boxplot(df['culmen_length_mm'])

#bivariate analysis
sns.scatterplot(x='species',y='culmen_length_mm',data=df)

sns.scatterplot(x='species',y='culmen_depth_mm',data=df)

sns.scatterplot(x='species',y='flipper_length_mm',data=df)

#Multivariate analysis
sns.heatmap(df.corr(),annot=True)

<ipython-input-40-488cf15a4e58>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versio
sns.heatmap(df.corr(),annot=True)
<Axes: >

- 1.0 culmen_length_mm -0.66 - 0.6 culmen_depth mm -0.47 -0.24 1 -0.58 0.4 0.2 flipper_length_mm - 0.0 body_mass_g -0.4 body_mass_g culmen_length_mm culmen_depth flipper_length 4

df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	\blacksquare
count	342.000000	342.000000	342.000000	342.000000	ıl.
mean	43.921930	17.151170	200.915205	4201.754386	
std	5.459584	1.974793	14.061714	801.954536	
min	32.100000	13.100000	172.000000	2700.000000	
25%	39.225000	15.600000	190.000000	3550.000000	
50%	44.450000	17.300000	197.000000	4050.000000	
75%	48.500000	18.700000	213.000000	4750.000000	
max	59.600000	21.500000	231.000000	6300.000000	

df.isnull().any()

```
species
island
culmen_length_mm
culmen_depth_mm
flipper_length_mm
body_mass_g
sex
                                                                           False
False
True
True
True
True
True
  dtype: bool
```

df['culmen_length_mm']=df['culmen_length_mm'].fillna(df['culmen_length_mm'].median())
df['culmen_depth_mm']=df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median())
df['flipper_length_mm']=df['flipper_length_mm'].fillna(df['flipper_length_mm'].median())
df['body_mass_g']=df['body_mass_g'].fillna(df['body_mass_g'].median())
df['sex']=df['sex'].fillna(df['sex'].mode())

df.isnull().any()

species	False
island	False
culmen_length_mm	False
culmen_depth_mm	False
flipper_length_mm	False
body_mass_g	False
sex	False
dtune: beel	

Colab paid products - Cancel contracts here

✓ 0s completed at 11:09 PM