

NETFLIX MOVIES AND TV SHOWS CLUSTERING

PROBLEM STATEMENT

This dataset consists of **tv shows** and **movies** available on **Netflix** as of **2019**. The dataset is collected from Flixable which is a third-party Netflix search engine.

In 2018, they released an interesting **report** which shows that the **number of TV shows** on Netflix has nearly **tripled since 2010**. The streaming service's **number of movies** has **decreased** by more than **2,000 titles** since **2010**, while its number of TV shows has nearly tripled. It will be interesting to explore what all other insights can be obtained from the same dataset.

In this project, required to do:

- Exploratory Data Analysis.
- Understanding what type content is available in different countries.
- Is **Netflix** has increasingly **focusing** on **TV** rather than movies in **recent years**.
- Clustering **similar content** by matching **text-based features**.

DATA DESCRIPTION

The dataset contains movies and tv shows information like title, cast, director, release year, rating, duration etc.

The features of the dataset are:

- show_id: Unique Id number for all the listed rows
- type: denotes type of show namely TV Show or Movie
- **title**: title of the movie
- **director**: Name of director/directors
- cast: lists the cast of the movie
- **country**: country of the production house
- date_added: the date the show was added
- release_year: year of the release of the show
- rating: show ratings
- **duration**: duration of the show
- listed_in: the genre of the show
- **description**: summary/ description of the movie

DATA PREPARATION & CLEANING

To make the data analysis ready i have done the following:

- Filled missing values of **cast** with **Not available**.
- Filled missing values of **country** with **Not Known**.
- Dropped rows of **date_added** missing values.
- Dropped rows of **ratings** missing values.
- Dropped the entire column of **director** as it had much number of missing values.

EDA (COMPANY) MOVIE VS TV SHOW SHARE

Types of shows available in **netflix** is not even with high count for **TV shows**.

69.14% of the data belongs to **movies** and **30.86%** of the data for **TV shows**.

EDA

Little Kids	Older Kids	Teens	Mature
G, TV-Y, TV-G	PG, TV-Y7, TV-Y7-FV, TV-PG	PG-13, TV-14	R, NC-17, TV-MA

- TV-MA tops the charts, indicating that mature content is more popular on Netflix.
- This popularity is followed by TV-14 and TV-PG, which are Shows focused on Teens and Older kids.
- Very few titles with a rating **NC-17** exist. It can be understood since this type of content is purely for the audience **above 17**.

Each Rati	ng Counts	for Different	Types	of	Shows:
rating	type				
G	Movie	39			
NC-17	Movie	3			
NR	Movie	79			
	TV Show	4			
PG	Movie	247			
PG-13	Movie	386			
R	Movie	663			
	TV Show	2			
TV-14	Movie	1272			
	TV Show	656			
TV-G	Movie	111			
	TV Show	83			
TV-MA	Movie	1845			
	TV Show	1016			
TV-PG	Movie	505			
	TV Show	299			
TV-Y	Movie	117			
	TV Show	162			
TV-Y7	Movie	95			
	TV Show	175			
TV-Y7-FV	Movie	5			
	TV Show	1			
UR	Movie	5			
dtype: in	t64				

TOP 10 COUNTRIES WITH MOST CONTENT

- The **United States** is a **leading producer** of both types of shows (**Movies** and **TV Shows**), this makes sense since **Netflix is a US company**.
- The **influence** of **Bollywood** in **India** explains the type of content available, and perhaps the **main focus** of this industry is **Movies** and **not TV Shows**.
- **TV Shows** are **more frequent** in **South Korea**, which explains the **KDrama** culture nowadays.

Number	of Shows Produced	by Top	10	Countries:
type	country			
Movie	United States	1847		
	India	852		
	United Kingdom	193		
	Canada	118		
	Egypt	89		
	Spain	89		
	Turkey	73		
	Philippines	70		
	France	69		
	Japan	69		
TV Show	United States	699		
	United Kingdom	203		
	Japan	155		
	South Korea	147		
	India	71		
	Taiwan	68		
	Canada	59		
	France	46		
	Spain	45		
	Australia	44		
Name: c	ountry, dtype: in	t64		

CONTENT RELEASED OVER THE YEARS

- Growth in the number of movies on Netflix is much higher than tv shows.
- Most of the content available was released between 2010 and 2020.
- Highest number of movies got released in 2017 & 2018 and tv shows got released in 2019 & 2020.
- Very few movies, and tv shows got released before the year **2010** and in **2021**. It is due to very little data collected from the year **2021**.

	of Shows Rel		Each	Year:	
	release_ye	ar			
Movie	2017	74	12		
	2018	73	34		
	2016	64	12		
	2019	58	32		
	2020	41	1		
	2015	38	80		
	2014	24	14		
	2013	26	92		
	2012	15	8		
	2010	13	15		
TV Show	u 2020	45	7		
	2019	41	4		
	2018	38	36		
	2017	26	8		
	2016	23	19		
	2015	19	6		
	2014	9	90		
	2013	6	i3		
	2012	6	60		
	2011		19		
Name:	release_year,	dtype:	int64		

EDA 🔛

CONTENT ADDED OVER THE MONTHS

- October, November, December, and January are months in which many tv shows and movies get **uploaded** to the platform.
- It might be due to the winter, as in these months people may stay at home and watch tv shows and movies in their free time.

NETFLIX MOVIES DURATION

- Most number of movies on the Netflix platform are last for 90 to 120 minutes.
- Very **few movies** are of **length** more than **200 minutes**.

EDA 📢

MOST USED WORDS IN SHOWS TITLE

- Most repeated words in title include Christmas, Love, World, Man, and Story.
- We saw that most of the movies and tv shows **got added** during the **winters**, which tells why **Christmas** appeared many times in the titles.

TOP 10 GENRES

• In terms of genres, **international movies** takes the cake surprisingly followed by **dramas** and **comedies**.

Even though the **United States** has the **most content** available, it looks like **Netflix** has decided to **release** a ton of

international movies.

EDA 💺

TOP 10 DIRECTORS

- Jan Suter, Raúl Campos, Marcus Raboy, Jay Karas, Cathy Garcia-Molina are the top 5 directors which highest number of movies and tv shows are available in netflix.
- As we stated previously regarding the top genres, it's no surprise that the **most popular directors** on **Netflix** with the most titles are **mainly international** as well.

TOP 10 ACTORS

- The actors in the top ten list of most numbers tv shows and movies are from India.
- Anupam Kher and Shah Rukh Khan have 30 above content alone in netflix.

CORRELATION HEATMAP & PAIR PLOT

Since there is **only one value** in **dataframe** of **integer type**, we are unable to visualize the **correlation matrix heatmap** and **pair plot** as well.

HYPOTHESIS TESTING 情場

AVERAGE NUMBER OF MOVIES ON NETFLIX IN UNITED STATES IS HIGHER THAN THE MOVIES ON NETFLIX IN INDIA

- I selected the two-sample t-test for this analysis as it is suitable for comparing the means of two independent samples.
- By applying this test, I was able to calculate the **p value** and **determine** if there is a **significant difference** in the number of movies **between** the **two countries**.

Null hypothesis: $H_o: \mu_{united states} = \mu_{india}$

Alternate hypothesis: $H_1: \mu_{united states}
eq \mu_{india}$

Test Type: Two-sample t-test

Since p-value (0.007901561023488638) is less than 0.05, we reject null hypothesis.

Hence, There is a significant difference in average number of movies produced by the 'United States' and 'India'.

HYPOTHESIS TESTING 📮

NUMBER OF MOVIES AVAILABLE ON NETFLIX IS GREATER THAN THE NUMBER OF TV SHOWS AVAILABLE ON NETFLIX

- The two sample z-test is used to determine if there is a significant difference between two categorical variables.
- In this case, I wanted to test if there was a **significant difference** between the number of **movies** and **tv shows** available on **Netflix**.

Null hypothesis: $H_o: \mu_{movie} = \mu_{tvshow}$

Alternate hypothesis: $H_1: \mu_{movie}
eq \mu_{tvshow}$

Test Type: Two sample z-test

Since p-value (0.0) is less than 0.05, we reject null hypothesis. Hence, There is a significant difference in number of 'movies' and 'TV shows' available on Netflix.

TEXTUAL DATA PREPROCESSING 🔀

WORK PROCESS

STEMMING

Reducing **words** to their base form (**root form**)

TOKENIZATION

Replacing **sensitive data** with unique identification **symbols**

TEXT REMOVAL

Removing **punctuation**, **numbers**, **stopwords** etc.

LEMMATIZATION

Grouping together words with their root form

POS TAGGING

Process of **finding** the sequence of **tags**

DIMENSIONALITY REDUCTION

- Principal Component Analysis (PCA) was used to reduce the dimensionality of data.
- Captured more than **80%** of the **variance** by **reducing** the **components** to **2500**.

K-MEANS CLUSTERING

- **K-means** is a **centroid-based** clustering algorithm, where we **calculate** the **distance** between **each data point** and a **centroid** to assign it to a cluster.
- Here **optimal number** of **clusters** is **6** by using the **elbow method**.

MODEL IMPLEMENTATION

HIERARCHICAL CLUSTERING

- From dendrogram we get the optimal number of clusters is 6.
- Used agglomerative clustering here, which is a type of hierarchical clustering algorithm. It
 helps us to divides the population into several clusters.

SILHOUETTE SCORE FOR CLUSTERING

- **Silhouette score** is **highest** for the **cluster 5**, so the **optimal number** of **clusters** will be **5**.
- **Silhouette score** is a metric used to calculate the goodness of a clustering technique. Its value ranges from -1 to 1.

```
For n_clusters = 2, silhouette score is 0.0083
For n_clusters = 3, silhouette score is 0.0107
For n_clusters = 4, silhouette score is 0.0117
For n_clusters = 5, silhouette score is 0.0131
For n_clusters = 6, silhouette score is 0.0105
For n_clusters = 7, silhouette score is 0.0091
For n_clusters = 8, silhouette score is 0.0101
For n_clusters = 9, silhouette score is 0.0102
For n_clusters = 10, silhouette score is 0.0121
For n_clusters = 11, silhouette score is 0.0100
For n_clusters = 12, silhouette score is 0.0116
For n_clusters = 13, silhouette score is 0.0112
For n_clusters = 14, silhouette score is 0.0125
```


FINAL PREDICTION MODEL

- Selected **K-Mean Clustering model** as the **best model** for our data.
- The clusters are **well divided** in this model and through this cluster we can **know** what **type of data** is in **which cluster**.

- Used **topic modeling** instead of feature importance and model explainability.
- We can get topic wise feature importance.
 Assume that the clusters are topics.
- Used CountVectorizer process for Vectorization of data and Latent Dirichlet Allocation for building a topic.

Most **important features**, which we are get from each **topics**:

Topic 0:
tv united states tyma shows

Topic 1:
movies dramas international united states

Topic 2:
movies international japan anime dramas

Topic 3:
united states movies dramas tv

Topic 4:
tv shows international tyma united

Topic 5:
movies international india dramas comedies

疊

WORDCLOUD FOR OTHER TOPICS


```
kim mexico documentaries
crime S OVS
spanishlanguage S OVS
whose available dramas
kingdom
skingdom
skingdom
skingdom
series south
reality united
british
spain
```


TOP 10 RECOMMENDED MOVIES/TV SHOWS

Content-based recommender system on the basis of **cosine similarity score**.

Testing Recommender System on a Indian Movie
recommend('Zindagi Na Milegi Dobara')

Since you liked 'Zindagi Na Milegi Dobara', you may also like:

Dev.D
Zero
Katha
Shanghai
Waiting
Saath Saath
Cycle
Raajneeti
Luck by Chance
Jagga Jasoos

Testing Recommender System on a International Movie recommend('Avengers: Infinity War')

Since you liked 'Avengers: Infinity War', you may also like:
Thor: Ragnarok
Mark Gatiss: A Study in Sherlock
Her
Marco Polo: One Hundred Eyes
Penguins of Madagascar: The Movie
Walk with Me
War Horse
Chef
Legion
Hail, Caesar!

Testing Recommender System on a Korean TV Show recommend('What in the World Happened?')

Since you liked 'What in the World Happened?', you may also like:

Hymn of Death
Dear My Friends
Hi Bye, Mama!
Secret Affair
Rookie Historian Goo Hae-Ryung
My Mister
Magic Phone
Mr. Sunshine
Man to Man
Love Alarm

Testing Recommender System on a Content, Which is Not Listed in Netflix Dataset
recommend('Avenger')

Didn't find any matches for 'Avenger'. Browse other popular TV shows and movies.

CONCLUSION

- Analysis revealed that Netflix has a greater number of movies than TV shows.
- Clustering TV shows and movies
 based on their similarities and
 differences, created a content-based
 recommender system that
 recommends top 10 shows to users
 based on their viewing history.

THANK YOU!