Affine Cipher Example

Encryption

$$E(x) = (ax + b) \text{ MOD } 26$$

is called an affine cipher. Here \mathbf{x} is the numerical equivalent of the given plaintext letter, \mathbf{a} and \mathbf{b} are (appropriately chosen) integers. Recall that the numerical equivalents of the letters are as follows:

	A	В	С	D	Е	F	G	Н	I	J	K	L	М	
ı	0	1	2	3	4	5	6	7	8	9	10	11	12	
-	13	14	15	16	17	18	19	20	21	22	23	24	25	

Example:

Plain Text: Its cool

A=5

B=8

$$E(x) = (5x + 8) \text{ MOD } 26.$$

Solution: Filling in the following table gives

Decryption

$$E^{-1}(y) = a^{-1}(y - b) \text{ MOD } 26.$$

Example:

Cipher Text: HPCCXAQ

Encryption Function:

$$E(x) = (5x + 8) \text{ MOD } 26.$$

So Decryption Function is:

$$E^{-1}(y) = a^{-1}(y - b) \text{ MOD } 26.$$

Multiplication Inverse of a is 21

$$a^{-1} = 21$$

So

$$E^{-1}(y) = 21(y-8) \text{ MOD } 26$$

and so filling in our table gives