## Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

## Listing of Claims:



period of time such that the tag is available when receiving from the destination memory the 5 reverse message corresponding to the forward message; and 6 7 sending the tag to the source with the reverse message, whereby the source 8 associates the reverse message with the forward message. 1 (Original) The method of claim 1, further comprising: 3. associating a priority with each forward message; and 2 sending a forward message to a destination when that forward message has a 3 4 higher priority than other forward messages addressed to that destination. 4. (Original) The method of claim 3, wherein the priority of each forward 1 message represents an age of that forward message. 2 (Previously presented) The method of claim 1, further comprising: 1 5. 2 associated a priority with each reverse message; and sending a reverse message to the source when that reverse message has a higher 3 4 priority than other reverse messages. (Original) The method of claim 5, wherein the priority of each reverse 1 6. message represents an age of that reverse message. 2 1 7. (Original) The method of claim 1, wherein each destination is a memory bank, each forward message is a memory transaction, and each reverse message is the result of 2 3 one of the memory transaction. (Currently amended) An apparatus comprising: 1 2 means for serially receiving, from a source, a plurality of forward messages each addressed to a corresponding destination among a plurality of destinations; 3 means for storing each forward message before attempting to send the forward 4 message to its corresponding destination; 5 -

| 6  | means for receiving an plurality of availability signals, for each stored forward                   |
|----|-----------------------------------------------------------------------------------------------------|
| 7  | message each availability signal indicating that one of the whether its corresponding destinations  |
| 8  | is available to accept the stored forward message before attempting to send the stored forward      |
| 9  | message to its corresponding destinationits corresponding forward message;                          |
| 10 | means for simultaneously sending first stored forward messages to their                             |
| 11 | corresponding first destinations, wherein a stored forward message is sent only to its              |
| 12 | corresponding destination and not until after receiving an availability signal indicating that the  |
| 13 | destination is available wherein the first destinations are determined to be available based on the |
| 14 | availability signals;                                                                               |
| 15 | means for simultaneously receiving, after a predetermined period of time, a                         |
| 16 | plurality of reverse messages from the first destinations, each reverse message corresponding to    |
| 17 | one of the first stored forward messages; and                                                       |
| 18 | means for serially sending the reverse messages to the source.                                      |
| 1  | 9. (Currently amended) The apparatus of claim 8, wherein the source                                 |
| 2  | identifies each of the forward messages by a different tag, further comprising:                     |
| 3  | means for placing a tag in a delay buffer when sending to a destination the                         |
| 4  | forward message identified by that tag, where the delay buffer implements a delay equal to the      |
| 5  | predetermined period of time such that the tag is available when receiving from memory the          |
| 6  | destination the reverse message corresponding to the forward message; and                           |
| 7  | means for sending the tag to the source with the reverse message, whereby the                       |
| 8  | source associates the reverse message with the forward message.                                     |
|    |                                                                                                     |
| 1  | 10. (Original) The apparatus of claim 8, further comprising:                                        |
| 2  | means for associating a priority with each forward message; and                                     |
| 3  | means for sending a forward message to a destination when that forward message                      |
| 4  | has a higher priority than other forward messages addressed to that destination.                    |

| 1   | 11. (Original) The apparatus of claim to, wherein the priority of each forward                        |
|-----|-------------------------------------------------------------------------------------------------------|
| 2   | message represents an age of that forward message.                                                    |
| 1   | 12. (Previously presented) The apparatus of claim 8, further comprising:                              |
| 2 . | means for associated a priority with each reverse message; and                                        |
| 3   | means for sending a reverse message to the source when that reverse message has                       |
| 4   | a higher priority than other reverse messages.                                                        |
| 1   | 13. (Original) The apparatus of claim 12, wherein the priority of each reverse                        |
| 2   | message represents an age of that reverse message.                                                    |
| 1   | 14. (Original) The apparatus of claim 8, wherein each destination is a                                |
| 2   | memory bank, each forward message is a memory transaction, and each reverse message is the            |
| 3   | result of one of the memory transactions.                                                             |
| 1   | 15. (Currently amended) A computer program product, tangibly stored on a                              |
| 2   | computer-readable medium, comprising instructions operable to cause a programmable processor          |
| 3   | to:                                                                                                   |
| 4   | serially receive, from a source, a plurality of forward messages each addressed to                    |
| 5   | a corresponding destination among a plurality of destinations;                                        |
| 6   | store each forward message before attempting to send the forward message to its                       |
| 7   | corresponding destination;                                                                            |
| 8   | receive an plurality of availability signals for each stored forward message, each                    |
| 9   | availability signal indicating that one of the whether its corresponding destinations is available to |
| 10  | accept its corresponding the stored forward message before attempting to send the stored forward      |
| 11  | message to its corresponding destination;                                                             |
| 12  | for first stored forward messages whose corresponding first destinations are                          |
| 13  | available, simultaneously send the first stored forward messages to their corresponding first         |
|     |                                                                                                       |

| 14 | destinations, wherein a stored forward message is sent only to its corresponding destination and |
|----|--------------------------------------------------------------------------------------------------|
| 15 | not until after receiving an availability signal indicating that the destination is available;   |
| 16 | simultaneously receive, after a predetermined period of time, a plurality of reverse             |
| 17 | messages from the first destinations, each reverse message corresponding to one of the first     |
| 18 | stored forward messages; and                                                                     |
| 19 | serially send the reverse messages to the source.                                                |
| 1  | 16. (Currently amended) The computer program product of claim 15, wherein                        |
| 2  | the source identifies each of the forward messages by a different tag, further comprising        |
| 3  | instructions operable to cause a programmable processor to:                                      |
| 4  | place a tag in a delay buffer when sending to a destination the forward message                  |
| 5  | identified by that tag, wherein the delay buffer implements a delay equal to the predetermined   |
| 6  | period of time such that the tag is available when receiving from memory the destination the     |
| 7  | reverse message corresponding to the forward message; and                                        |
| 8  | send the tag to the source with the reverse message, whereby the source associates               |
| 9  | the reverse message with the forward message.                                                    |
| 1  | 17. (Original) The computer program product of claim 15, further comprising                      |
| 2  | instructions operable to cause a programmable processor to:                                      |
| 3  | associate a priority with each forward message; and                                              |
| 4  | send a forward message to a destination when that forward message has a higher                   |
| 5  | priority than other forward messages addressed to that destination.                              |
| 1  | 18. (Original) The computer program product of claim 17, wherein the                             |
| 2  | priority of each forward message represents an age of that forward message.                      |
| 1  | 19. (Previously presented) The computer program product of claim 15,                             |
| 2  | further comprising instructions operable to cause a programmable processor to:                   |
| 3  | associate a priority with each reverse message; and                                              |

<u>PATENT</u>

- send a reverse message to the source when that reverse message has a higher priority than other reverse messages.
- 6 20. (Original) The computer program product of claim 19, wherein the 7 priority of each reverse message represents an age of that reverse message.
- 8 21. (Original) The computer program product of claim 15, wherein each destination is a memory bank, each forward message is a memory transaction, and each reverse message is the result of one of the memory transactions.