NMB - Oefenzitting 8: Geometrische Modellering

Hendrik Speleers

Overzicht

Begrippen

Interpolerende veeltermcurven

Bézier curven

Splinecurven

Rationale curven

Toepassingen

Nota's			
Nota's			
Vota's			
Nota's			
	Nota's		

Nota's

Begrippen

- ► Parametervoorstelling van een curve
- ► Segmentatie : curve/oppervlak opdelen in meerdere stukken door het parameterdomein op te splitsen
 - ▶ knooppunten $a = u_0 < u_1 < \ldots < u_n = b$ \Rightarrow segment $\overrightarrow{\times}(u)$ met $u \in [u_{i-1}, u_i]$
 - ▶ lokale parameter $t \in [0, 1]$
- ► Affiene combinatie :
 - ▶ $\overrightarrow{x} = \sum_{i=1}^{m} \alpha_i \overrightarrow{p}_i$ met $\sum_{i=1}^{m} \alpha_i = 1$ ▶ invariant onder affiene transformatie
- ► Convexe combinatie :
 - ▶ affien met positieve gewichten
 - convex omhullende

Interpolerende veeltermcurven

$$\vec{x}(u) = \sum_{i=0}^{n} \vec{p}_i L_i^n(u)$$

- ▶ Affiene combinatie van punten \vec{p}_i
- ► Gewichten zijn Lagrange-veeltermen
- ► Eigenschappen :
 - ▶ interpolatie in \vec{p}_i
 - ▶ doorgaans sterk oscillerende curven (zeker bij toenemende graad)
 - kleine wijziging van \vec{p}_i leidt vaak tot grote veranderingen
- ▶ Beperk gebruik tot veeltermen van lage graad

Nota's		

Nota's

Bézier curven

$$ec{ec{x}(t) = \sum_{i=0}^n ec{b}_i B_i^n(t)}$$
 met $t \in [0,1]$

- ightharpoonup Controlepunten $\vec{b}_i \Rightarrow$ controleveelhoek
- ▶ Bernstein-veeltermen $B_i^n(t) = \binom{n}{i}(1-t)^{n-i}t^i$
- ► Eigenschappen Bernstein-veeltermen :
 - ▶ sommatie-tot-1 : $\sum_{i=0}^{n} B_i^n(t) = 1$ ▶ positiviteit : $B_i^n(t) \ge 0$
- ⇒ affiene combinatie

Nota's

⇒ convexe combinatie

- symmetrie-eigenschap
- recursiebetrekking

Bézier curven

- ► Eigenschappen Béziercurven :
 - ightharpoonup Bézier curve = veeltermcurve van graad n
 - zachtverlopend karakter
 - interpoleert in eindpunten $\vec{x}(0) = \vec{b}_0$ en $\vec{x}(n) = \vec{b}_n$
 - evaluatie met het de Casteljau-algoritme
 - graadverhoging : controleveelhoek convergeert naar curve $\vec{x}(t)$
 - subdivisie : samengestelde controleveelhoeken convergeren naar $\vec{x}(t)$

-		
-		
Nota's		
NOLA S		

Splinecurven

$$ec{s}(u) = \sum_{i=-k}^{n-1} ec{d}_i N_{i,k+1}(u)$$
 met $u \in [u_0, u_n]$

- ▶ Knooppunten $u_0 \le ... \le u_n$
- ▶ de Boor-punten (controlepunten) \vec{d}_i
- ▶ Genormaliseerde B-spline van graad k $N_{i,k+1}(u)$
- ► Enkele eigenschappen genormaliseerde B-splines :
 - ▶ lokaliteit : $N_{i,k+1} = 0$ als $u \notin (u_i, u_{i+k+1})$
 - ⇒ lokale afhankelijkheid splinecurven

 sommatie-tot-1: $\sum_{i=-k}^{n-1} N_{i,k+1}(u) = 1$ ⇒ affiene combinatie
 - ▶ positiviteit : $N_{i,k+1} \ge 0$
 - ⇒ elk splinepunt binnen convex omhullende van k + 1 de Boor-punten

Splinecurven

- ► Eigenschappen spline-curven :
 - splinecurve van lage graad dicht bij controleveelhoek
 - evaluatie met het de Boor-algoritme
 - ▶ als k de Boor-punten $\vec{d}_{j-k+1}, \ldots, \vec{d}_j$ samenvallen, dan interpolatie in dat punt $\vec{s}(u_{i+1}) = \vec{d}_i$
 - interpolatie in begin- en eindpunt : samenvallende knooppunten $u_{-k} = \ldots = u_0$
 - verminderde continuïteit bij samenvallende knooppunten
 - toevoegen van knooppunten : controleveelhoek convergeert naar curve $\vec{s}(u)$

Nota's			
Nota's			

Nota's

Rationale curven

- ► Exacte voorstelling van kegelsneden
- ► Rationale Béziercurven
- ► Rationale splinecurven

► NURBS = Niet-Uniforme Rationale B-Splines

►
$$\vec{x}(u) = \frac{\sum_{i=-k}^{n-1} \vec{d}_i w_i N_{i,k+1}(u)}{\sum_{i=-k}^{n-1} w_i N_{i,k+1}(u)}$$

• $\vec{x}(u)$ convexe en lokale combinatie van controlepunten \vec{d}_i

Toepassingen

lota's			
ota's			
lota's			