

EBU4202: Digital Circuit Design Autonomous Sequential Circuit Design

Dr. Md Hasanuzzaman Sagor (Hasan)
Dr. Chao Shu (Chao)
Dr. Farha Lakhani (Farha)

School of Electronic Engineering and Computer Science,

Queen Mary University of London,

London, United Kingdom.

Overview: Autonomous Sequential Circuit Design

- * Introduction
- * Bistable Elements
- * Latches & Flip-Flops
- * Analysis Procedure
- * Design Procedure

Chapter 7 – "Digital Design: Principles and Practices" book

Introduction

- Autonomous circuits do not have primary inputs, they have only secondaries (plus a clock signal).
- Secondaries, form input circuits, and consist of combinational logic that feeds back from flip-flop outputs to flip-flop inputs.
- There may also be output logic.

Introduction

Method

- Draw-up a table of present and next states.**Need to take account of the characteristic equation of the flip-flop
- 2. Draw a Karnaugh map for each next state output in terms of the present state.
- Minimise the logic using Karnaugh map simplification techniques.
- 4. Draw-up the corresponding circuit diagram for the FSM.

- Design an autonomous sequential circuit using D-type flip-flops to generate the following sequence of states: 001, 100, 010, 101, 110, 111, 011.
- Step 1 Complete a table of present and next states.
- To complete this task we need to consider the functional operation (i.e. the characteristic equation) of the flip-flop used.
- D-type flip-flops have been used. So, input to A flip-flop, i.e. D_A , is equal to next state of A flip-flop Q_A^* i.e.: $D_A = Q_A^*$

The table of present and next states is given below.

Р	Present State		Next State D inputs			Next State D inputs			
Q_A	\mathbf{Q}_B	$Q_{\rm C}$	${\sf Q_A}^*$	\mathbf{Q}_{B^*}	\mathbf{Q}_{C}^{*}	D_{A}	D_{B}	D_{C}	
0	0	1	1	0	0	1	0	0	
1	0	0	0	1	0	0	1	0	
0	1	0	1	0	1	1	0	1	
1	0	1	1	1	0	1	1	0	
1	1	0	1	1	1	1	1	1	
1	1	1	0	1	1	0	1	1	
0	1	1	0	0	1	0	0	1	

 Step 2 – Draw a Karnaugh map for each next output state in terms of the present state.

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	-	1	1	0		
	1	1	0	0	1		

•
$$Q_A^* = D_A = Q_B Q_C' + Q_B' Q_C = Q_B \oplus Q_C$$

Characteristic equation

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	-	0	1	1		
	1	0	0	1	1		

•
$$Q_B^* = D_B = Q_A$$

 Q_B^*

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	-	1	1	0		
	1	0	1	1	0		

• $Q_C^* = D_C = Q_B$

Step 4 – We can now draw the circuit diagram for the FSM.

$$Q_A^* = D_A = Q_B Q_C^{\prime} + Q_B^{\prime} Q_C = Q_B \oplus Q_C$$

 $Q_B^* = D_B = Q_A$
 $Q_C^* = D_C = Q_B$

- Design a 3 bit binary counter using JK flip-flops.
- We need 3 flip-flops, one for each bit.
- Let's recap. the steps in the method

Method

- 1.Draw-up a table of present and next states. Need to take account of the characteristic equation of the flip-flop
- 2.Draw a Karnaugh map for each next state output in terms of the present state.
- 3. Minimise the logic using Karnaugh map simplification techniques.
- 4.Draw-up the corresponding circuit diagram for the FSM.

- Step 1 Complete the table of present and next states.
- Use the JK transition table to complete entries in the table corresponding to the inputs to J and K.

J	K	CLK	Q	QN
x	x	0	last Q	last QN
X	X	1	last Q	last QN
0	0	_•	last Q	last QN
0	1	_•	0	1
1	0	_•	1	0
1	1	_•	last QN	last Q

Prev → Next	J	К
$0 \rightarrow 0$	0	Χ
$0 \rightarrow 1$	1	Х
$1 \rightarrow 0$	Х	1
1 → 1	Χ	0

The table of present and next states is given below.

P	Present State Next State JK inputs			Next State				
Q_A	Q_B	Q_{C}	$\mathbf{Q_A}^*$	$\mathbf{Q_B}^*$	$\mathbf{Q}_{\mathtt{C}}^{^{*}}$	J_AK_A	J_BK_B	J_cK_c
0	0	0	0	0	1	0x	0x	1x
0	0	1	0	1	0	0x	1x	x1
0	1	0	0	1	1	0x	х0	1x
0	1	1	1	0	0	1x	x1	x1
1	0	0	1	0	1	х0	0x	1x
1	0	1	1	1	0	х0	1x	x1
1	1	0	1	1	1	х0	х0	1x
1	1	1	0	0	0	x1	x1	x1

 Steps 2 & 3 – Now draw 6 Karnaugh maps, one for each of the J and K inputs, in terms of the present states Prev → Next J K

<u>,</u>	Queen	_
<u> </u>	QUEEN University of Lo	_

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	0	0	х	х		
	1	0	1	х	x		

• $J_A = Q_B \cdot Q_C$

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	х	х	0	0		
	1	х	х	1	0		

• $K_A = Q_{B.}Q_C$

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	0	х	х	0		
	1	1	х	х	1		
	•	•		•			

• $J_B=Q_C$

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	х	0	0	х		
	1	х	1	1	х		

• $K_B=Q_C$

 K_B

Input Logic K-Map			$Q_{A}Q_{B}$				
		00	01	11	10		
Qc	0	1	1	1	1		
	1	х	х	х	х		
	•	•			.ار		

• $J_C=1$

Input Log	Input Logic K-Map		Q	Q_B	
	00 01 11				10
Qc	0	X	х	х	Х
	1	1	1	1	1
		•			Kc

• K_C=1

Step 4 – We can now draw the circuit diagram for the FSM.

- Design a 6-state counter using the first six binary numbers.
 Use JK flip-flops.
- What is the result if either of the cannot happen input states (marked – in the maps) does happen?
- Step 1 Complete the table of present and next states.
- Use the JK transition table to complete the table for the inputs to J and K.

The table of present and next states is given below

F	Present State			Next State			JK inputs		
Q_A	Q_B	\mathbf{Q}_{C}	$\mathbf{Q_A}^*$	$\mathbf{Q_B}^*$	$\mathbf{Q}_{C}^{^*}$	J_AK_A	J_BK_B	J_cK_c	
0	0	0	0	0	1	0x	0x	1x	
0	0	1	0	1	0	0x	1x	x1	
0	1	0	0	1	1	0x	х0	1x	
0	1	1	1	0	0	1x	x1	x1	
1	0	0	1	0	1	х0	0x	1x	
1	0	1	0	0	0	x1	0x	x1	
-	-	-	-	-	-	-	-	-	
_	-	_	-	-	_	_	_	_	

 Steps 2 & 3 – Now draw the 6 Kmaps for the J and K inputs.

$Prev \rightarrow Next$	J	K
$0 \rightarrow 0$	0	Χ
$0 \rightarrow 1$	1	Χ
$1 \rightarrow 0$	Χ	1
$1 \rightarrow 1$	Χ	0

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	0	0	-	х		
	1	0	1	-	х		

• $J_A = Q_B \cdot Q_C$

Input Logic K-Map		$\mathrm{Q}_\mathtt{A}\mathrm{Q}_\mathtt{B}$					
		00 01 11					
Qc	0	х	х	-	0		
	1	x x		-	1		

K_A=Q_C

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	0	х	-	0		
	1	1	1 x -				

• $J_B=Q_A'.Q_C$

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	00 01 11 x 0 -				
Qc	0	х	0	-	х		
	1	Х	1	-	Х		
	1	1	1	1	K _B		

K_B=Q_C

Input Logic K-Map			Q _A	Q_B	
		00	01	11	10
Qc	0	1	1	-	i
	1	х	х	-	X
					Jc

• J_C=1

Input Log	Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10			
Qc	0	X	х	-	Х			
	1	1	1	-	1			
					Kc			

K_C=1

• Step 4 – Then we can draw the circuit diagram.......

- To think about the "cannot happen" input states......
 Because we have minimised the logic circuits by grouping "1s" with "cannot happens" and "don't cares", we are forcing the next states of a cannot happen.
- We can look at our K-maps and make the following table:

Present State			JK inputs			Next State		
Q_A	Q_B	\mathbf{Q}_{C}	J_AK_A J_BK_B J_CK_C			${\bf Q_A}^*$	$\mathbf{Q_B}^*$	$\mathbf{Q_{c}}^{*}$
1	1	0	00	00	11	1	1	1
1	1	1	11	01	11	0	0	0

$$Q^* = JQ' + K'Q$$

• So, if state 6 is entered the next state is state 7, and if state 7 is entered the next state is state 0.

• So the state diagram is:

- Repeat example 3 this time using T-flip-flops (i.e. 6 state counter using the first 6 binary numbers).
- Step 1 Complete the present state and next state table, adding the toggle input (T) of each flip-flop. Put a 1 for the T input if the bit needs to change state.

The table of present and next states is given below

F	Present State			Next State			T input		
Q_A	Q_B	Q_{C}	$\mathbf{Q_A}^*$	Q_B^*	Q _c *	T _A	T _B	T _C	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	0	0	0	1	0	1	
-	-	-	-	-	-	-	-	-	
_	-	_	_	_	-	-	_	-	

 Steps 2 & 3 – Now draw the 3 K-maps, one for each flip-flop input.

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Q _C	0	0	0	-	0		
	1	0	1	·)	1		
		•	•	•	т.		

• $T_A = Q_A \cdot Q_C + Q_{B.}Q_C$

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	0	0	-	0		
	1	1	1	-	0		
					T _B		

• $T_B=Q_A'.Q_C$

Input Logic K-Map		Q_AQ_B				
		00	01	11	10	
Qc	0	i	1	-	1	
	1	1	1	-	1	
	•	•		•	To	

• $T_C=1$

• Step 4 – Now we can draw the circuit diagram......

Circuit Diagram:

$$T_A = Q_A.Q_C + Q_B.Q_C = Q_C.(Q_A + Q_B)$$

 $T_B = Q_A'.Q_C$ $T_C = 1$

 For the two cannot happen states based on our groupings for the T inputs a "1" in the T input means "change state"

Present State		T Input			Next State			
Q_A	Q_B	Q_{C}	T _A	T _B	T _C	$\mathbf{Q_A}^*$	$\mathbf{Q_B}^*$	$\mathbf{Q_{c}}^{*}$
1	1	0	0	0	1	1	1	1
1	1	1	1	0	1	0	1	0

$$Q^* = E_N Q' + E_N' Q$$

 So, if state 6 is entered the next state is state7. If state 7 is entered the next state is state 2.

