קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(84 / 2 מועד א 2012 - מועד א 5.7.2012 (סמסטר ב 2012 - מועד א 3 / מאריך הבחינה:

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – **אסורים לשימוש!**

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

כביש מסוים נבדק ונמצא שיש בו ליקויים הדורשים תיקון.

מספר הליקויים שנמצאו בכביש הוא משתנה מקרי פואסוני עם הפרמטר 20.

בחברה, המטפלת באחזקת הכביש, החליטו לערוך תיקונים בליקויים שנמצאו בכביש.

 $\frac{1}{2}$ הוחלט שכל ליקוי (ללא תלות באחרים) יתוקן בהסתברות

- (6 נקי) א. חשב את ההסתברות שהחברה תתקן בדיוק 15 ליקויים בכביש.
 - (7 נקי) ב. אם ידוע שהחברה תיקנה בדיוק 15 ליקויים בכביש, מהי ההסתברות שנמצאו בכביש בדיוק 25 ליקויים!
 - ג. חשב את מקדם המתאם בין מספר הליקויים שנמצאו בכביש (12 נקי) ג. לבין מספר הליקויים שלא יתוקנו בו.

שאלה 2 (25 נקודות)

- (13 נקי) א. יהיו X ו-Y משתנים מקריים גיאומטריים בלתי-תלויים, שלכל אחד מהם הפרמטר p < 1).
- . (2,p) יש הפרמטרים שלמשתנה שלילית עם התפלגות יש התפלגות X+Y יש המקרי
 - .0.6 נקי) ב. נתון מטבע שההסתברות לקבל בו H היא 12) מטילים את המטבע שוב ושוב, עד שמקבלים H מטילים את המטבע שוב ושוב, עד שמקבלים את המטבע העשירית.
 - 1. מהי ההסתברות שהמטבע יוטל בדיוק 20 פעמים!
 - .H ידוע שבהטלה הראשונה ובהטלה הרביעית התקבלמהי ההסתברות שהמטבע הוטל בדיוק 20 פעמים?

שאלה 3 (25 נקודות)

. מבצעים 10 ניסויים בלתי-תלויים עם הסתברות p (0) להצלחה בכל אחד מהניסויים

יים. X המשתנה המקרי המוגדר על-ידי מספר ההצלחות שמתקבלות ב-10 הניסויים.

; את המאורע שהתקבלה הצלחה בניסוי הראשון A -ם נסמן כן, נסמן

וב-B את המאורע שהתקבלה לפחות הצלחה אחת ב-10 הניסויים.

- P(A) < P(B) או P(A) = P(B) , P(A) > P(B) א. האם (6 נקי) א. האם (6 נקי) ממק את בחירתך.
 - $P\{X=1 \mid A\}$ ב. חשב את ב. (6 נקי)
 - $P\{X=1 \mid B\}$ ג. חשב את ג. (6 נקי)
 - E[X|B] ד. חשב את ד. (7 נקי)

שאלה 4 (25 נקודות)

בגדר בעלת 3 קטעים מותקנים 4 גלאי-פריצה בלתי-תלויים, כמתואר באיור שלהלן:

כל אחד מארבעת הגלאים תקין (ופועל) בהסתברות 0.8.

את הגדר אפשר לפרוץ רק בקטעים, הנמצאים בין שני גלאי-פריצה סמוכים ומקולקלים.

(8 נקי) א. פורץ מגיע לגדר, ומנסה לפרוץ אותה. מהי ההסתברות שיצליח?

.(ו- n-1 קטעים). n קטעים). כעת, נניח שנתונה גדר דומה במבנה שלה, אך בעלת n

- ב. יהי X המשתנה המקרי המוגדר על-ידי מספר הקטעים בגדר שאפשר לפרוץ דרכם.
 - E[X] חשב את 1. (8 נקי)
 - . Var(X) חשב את 2 (9 נקי)

שאלה 5 (25 נקודות)

למשקל (בגרמים) של מעטפה מקרית, הנשלחת ממוסד מסוים, יש תוחלת 25 ו**סטיית-תקן** 10. אין תלות בין המשקלים של מעטפות שונות.

ברשותך 30 מעטפות מקריות, שנשלחו ממוסד זה.

- (בגרמים) של 30 המעטפות שברשותך. את המשקל הכולל (בגרמים) או נסמן ב-X
- .1 חשב חסם עליון להסתברות ש-X גדול מ- 1,100 גרם, באמצעות אי-שוויון מרקוב.
- גדול מ- 1,100 גרם, באמצעות אי-שוויון צ'בישב X גדול להסתברות ש- 2. חשב חסם עליון להסתברות ש- X גדול הדו-צדדי.
- (13 נקי) ב. נניח שהתפלגות המשקל של כל מעטפה (בגרמים) היא **נורמלית** עם התוחלת וסטיית-התקן הנתונות בתחילת השאלה.

חשב קירוב להסתברות שלפחות 9 מהמעטפות שברשותך השקולנה בין 23 גרם לבין 31 גרם כל אחת.

הערה: ערוך חישובים <u>מדויקים</u> עד כמה שאפשר!

בהצלחה!

$\Phi(z)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
									1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	<i>ה</i> שונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	пр	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1,, n$	בינומית
$\frac{pe^{t}/(1-(1-p)e^{t})}{t<-\ln(1-p)}$	$(1-p)/p^2$	1/p	$(1-p)^{i-1} \cdot p$, $i = 1, 2,$	גיאומטרית
$\exp\{\lambda(e^t-1)\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$ \frac{\left(pe^t/(1-(1-p)e^t)\right)^r}{t<-\ln(1-p)} $	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0, 1,, m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a)$, $a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

נוסחת הבינום
$$P(A) = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
 נוסחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 הסתברות מותנית
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 מוסחת הכפל
$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cap A_2 \cap \ldots \cap A_{n-1})$$
 נוסחת ההסתברות השלמה
$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i) \quad , \quad S \text{ ווסחת ההסתברות השלמה}$$

$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S \text{ ווסחת בייס } \{B_i\}$$

 $E[X] = \sum_{x} x p_X(x) = \int x f(x) dx$

 $E[g(X)] = \sum_{x} g(x) p_X(x) = \int g(x) f(x) dx$ תוחלת של פונקציה של מ"מ

 $Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$

E[aX+b]=aE[X]+b תוחלת ושונות של פונקציה לינארית

 $Var(aX + b) = a^2 Var(X)$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+t \, \big| \, X>t\}=P\{X>s\}$$
 , $s,t\geq 0$

$$E[X \mid Y = y] = \sum_{x} x p_{X|Y}(x \mid y) = \int x f_{X|Y}(x \mid y) dx$$
 תוחלת מותנית

 $Var(X | Y = y) = E[X^{2} | Y = y] - (E[X | Y = y])^{2}$ שונות מותנית $E[X] = E[E[X \mid Y]] = \sum_{y} E[X \mid Y = y] p_{Y}(y)$ נוסחת התוחלת המותנית (טענה מתרגיל ת26, עמוד 430) $E[X \cdot g(Y)] = E[g(Y)E[X \mid Y]]$ Var(X) = E[Var(X | Y)] + Var(E[X | Y])נוסחת השונות המותנית $E\left|\sum_{i=1}^{n} X_i\right| = \sum_{i=1}^{n} E[X_i]$ תוחלת של סכום משתנים מקריים Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]שונות משותפת $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$ $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$ שונות של סכום משתנים מקריים $\rho(X,Y) = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$ מקדם המתאם הלינארי $M_X(t) = E[e^{tX}]$; $M_{aX+b}(t) = e^{bt}M_X(at)$ פונקציה יוצרת מומנטים $M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\cdot\ldots\cdot M_{X_n}(t)$: כאשר מיימ ביית מתקיים מיימ מיימ מחקיים $E \left| \sum_{i=1}^{N} X_i \right| = E[N]E[X]$ תוחלת, שונות ופונקציה יוצרת מומנטים של סכום מקרי $\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X) + (E[X])^{2}\operatorname{Var}(N)$ (מיימ ביית שייה X_i כאשר $M_Y(t) = E \left| \left(M_X(t) \right)^N \right|$ $P\{X \geq a\} \leq E[X]/a$, a>0 , שלילי Xאי-שוויון מרקוב $P\{\left|X-\mu\right|\geq a\}\leq\sigma^{2}\left/a^{2}\right.\qquad,\qquad a>0\quad,\quad\mu,\sigma^{2}<\infty$

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי P(A)/[P(A)+P(B)] . המאורע A יתרחש לפני המאורע
- סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.
- (p אותו עם אותוים (בינומיים פואסוניים Y- ו-Y מ"מ פואסוניים עם אותו א בהינתן בהינתן X בהינתן אותו ב"ת היא בינומית (היפרגיאומטרית).

$$\begin{split} \sum_{i=0}^{n} i &= \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^{\infty} \frac{x^i}{i!} &= e^x \qquad ; \qquad \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \qquad ; \qquad \sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \qquad , \qquad -1 < x < 1 \\ \int (ax+b)^n dx &= \frac{1}{a(n+1)}(ax+b)^{n+1} \qquad , \qquad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a}\ln(ax+b) \\ \int e^{ax} dx &= \frac{1}{a}e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a\ln b}b^{ax} \qquad ; \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \\ \log_n a &= \log_m a/\log_m n \qquad ; \qquad \log_n(a^b) = b \cdot \log_n a \qquad ; \qquad \log_n(ab) = \log_n a + \log_n b \end{split}$$