Stammfunktion und unbestimmtes Integral

Grundintegrale

e / ln	sin / cos / tan	allgemein
$\int e^x \cdot dx = e^x + c$	$\int \sin^2(x) \cdot dx = \frac{x}{2} - \frac{1}{2} \cdot \sin(x) \cdot \cos(x)$	$\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + c, n = 7$
$\int e^{-2x} = \frac{e^{-2x}}{-2}$	$\int \cos^2(x) \cdot dx = \frac{1}{2}(x + \sin(x) \cdot \cos(x))$	$\int \frac{1}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{ a }$
$\int \frac{1}{e} = \frac{x}{e}$	$\int tan^2(x) = tan(x) - x + c$	$\int a^x \cdot dx = \int e^{\ln(a) \cdot x} \cdot dx$
$\int be^{ax} \cdot dx = \frac{b}{a}e^x + c$	$\int \frac{1}{\sin(x)} = \ln(\sin(\frac{x}{2})) - \ln(\cos(\frac{x}{2})) + c$	$\int \frac{1}{\sqrt{x}} = 2\sqrt{x} + c$
$\int e^{-2x+1} = \frac{e^{-2x+1}}{-2}$	$\int \frac{1}{\cos(x)} = \ln(\sin(\frac{x}{2}) + \cos(\frac{x}{2})) - \ln(\cos(\frac{x}{2}) - \sin(\frac{x}{2})) + c$	$\int \frac{1}{x^2} = -\frac{1}{x} + c$
$\int \frac{1}{x} \cdot dx = \ln x + c$	$\int \frac{1}{\tan(x)} = \ln(\sin(x)) + c$	$\int \frac{1}{x} \cdot dx = \ln x + c$
$\int \frac{1}{x-5} \cdot dx = \ln x-5 + c$	$\int \frac{1}{\sin^2(x)} = -\cot(x) + c$	$\int \frac{1}{x^2 + a^2} \cdot dx = \frac{1}{a} \cdot arctar$
$\int \frac{1}{2x-5} \cdot dx = \ln x-5 + c$	$\int \frac{1}{\cos^2(x)} = \tan(x) + c$	$\int \frac{1}{1+x^2} \cdot dx = tan^{-1}(x) - \frac{1}{1+x^2} \cdot dx$
$\int \frac{1}{e^x} = -e^{-x}$	$\int \frac{1}{\tan^2(x)} = -x - \cot(x) + c$	
$\int \ln(x)dx = x\ln(x) - x + c = x(\ln(x) - 1) + c$		
$\int x \cdot \ln(x) dx = \frac{1}{4}x^2 (2 \cdot \ln(x) - 1)$	$\int 2x \cdot \sin(x) \cdot dx = 2\sin(x) - 2x \cdot \cos(x) + c$	Tipps
	$\int x \cdot \cos(x) \cdot dx = x \cdot \sin(x) + \cos(x) + c$	$tan = \frac{sin}{cos}$
	$\int 2x \cdot \cos(x) \cdot dx = 2x \cdot \sin(x) + 2\cos(x) + c$	$e^{ln(x)} = x$
	$\int \frac{\sin(x)}{\cos(x)} = \int \tan(x) = -\ln(\cos(x)) + c$	$ln(e^x) = x$
	$\int \sin(ax) \cdot dx = \frac{1}{a} \left(\frac{ax}{2} - \frac{1}{2} \cdot \sin(ax) \cdot \cos(ax) \right)$	$u^{\frac{3}{2}} = (u^{\frac{1}{2}}) = \sqrt{u}^3$
	$\int \sin(x) \cdot \cos(x) \cdot dx = -\frac{1}{2}\cos^2(x) + c$	$ln(x)' = \frac{1}{x}$
	$\int tan(x) \cdot cos(x) \cdot dx = \int sin(x) \cdot dx = -cos(x)$	$(e^x)' = e^x$

Elementare Rechenregeln

Regel vom konstanten Faktor

$$\int k \cdot f(x) \cdot dx = k \cdot F(x) + c$$

$$\bullet \int -13x^3 \cdot dx = -13 \cdot \frac{x^4}{4} + c$$

Skalierungsregel

$$\int f(k \cdot x) \cdot dx = \frac{F(k \cdot x)}{k} + c$$

$$\bullet \int e^{\frac{3}{2}x} \cdot dx = \frac{e^{\frac{3}{2}x}}{\frac{3}{2}} + c = \frac{2}{3} \cdot e^{\frac{3}{2}x}$$

Translationsregel

$$\int f(x+k) \cdot dx = F(x+k) + c$$

$$\bullet \int \frac{1}{x-6} \cdot dx = \ln|x-6| + c$$

Summenregel

$$\int f(x) \pm g(x) \cdot dx = F(x) \pm G(x) + c$$

•
$$\int (8x^3 - 4x + 2) \cdot dx = 8 \cdot \frac{x^4}{4} - 4 \cdot \frac{x^2}{2} + 2x + c = 2x^4 - 2x^2 + 2x + c$$

Produkteregel / Partielle Integration

$$\int f(x) \cdot g(x) \cdot dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x) \cdot dx$$

Bemerkung: Hier wurde x^2 jeweils abgeleitet und e^x integriert.

•
$$\int x \cdot \cos(x) \cdot dx = \sin(x) \cdot x - \int 1 \cdot \sin(x) \cdot dx = \sin(x) \cdot x + \cos(x) + c$$

Bemerkung: Hier wurde x abgeleitet und cos(x) integriert.

Integration und Substitution

- $\int f(u(x)) \cdot u' \cdot dx = \int f(u) \cdot du$
- $\int \frac{u'(x)}{u(x)} dx = \int \frac{du}{u} = \ln|u| + c$
- $\frac{dx}{du} = u'(x)$

Trick: Zähler eines Bruches so korrigieren, das es der Ableitung der Funktion entspricht. Anschliessend kann $u' \cdot dx$ durch du ersetzt werden.

$$\bullet \int \frac{1}{(4x+5)^3} \cdot dx = \frac{1}{4} \cdot \int \frac{4}{(4x+5)^3} \cdot dx = \frac{1}{4} \cdot \int \frac{u'}{u^3} \cdot dx = \frac{1}{4} \cdot \int \frac{du}{u^3} = \frac{1}{4} \cdot \frac{u^{-2}}{-2} + c = -\frac{1}{8u^2} + c = -\frac{1}{8} \cdot \frac{1}{(4x+e)^2} + c \text{ wobei } dx = \frac{du}{u} = \frac{1}{4} \cdot \frac{1}{(4x+e)^2} + \frac{1}{4} \cdot \frac{1}$$

$$\bullet \int \frac{x}{\sqrt{a^2 - x^2}} \cdot dx = \int \frac{x}{\sqrt{u}} \cdot dx = \int \frac{x}{\sqrt{u}} \cdot \frac{du}{u'} = \int \frac{x \cdot du}{-2x \cdot \sqrt{u}} = -\int \frac{du}{2 \cdot \sqrt{u}} = -\frac{1}{2} \cdot u^{\frac{1}{2}} \cdot 2 + c = -\sqrt{u} + c = -\sqrt{a^2 - x^2} + c$$

Spezialfall:

•
$$\int \frac{u'(x) \cdot dx}{u(x)} = \int \frac{du}{u} = \ln |u| + c = \ln |u(x)| + c$$

•
$$\int \frac{x}{4+x^2} \cdot dx = \frac{1}{2} \cdot \int \frac{2x}{4+x^2} \cdot dx = \frac{1}{2} \cdot \int \frac{du}{u} = \frac{1}{2} \cdot \ln|u| + c = \frac{1}{2} \cdot \ln|4+x^2| + c$$

Partialbruchzerlegung

Wird gebraucht um gebrochenrationale Funktionen zu integrieren:

$$\int \frac{p(x)}{q(x)} \cdot dx$$

Man unterscheidet:

- Grad Zähler≥Grad Nenner = unechtgebrochen
- Grad Zähler < Grad Nenner = echtgebrochen

Unechtgebrochen

Mit Hilfe der Polynomdivision lassen sich solche Quotienten zerlegen in ein Polynom und in einen echtgebrochenen Quotienten

Echtgebrochen

Grundsätzlich muss man das Polynom in Faktoren zerlegen die höchstens quadratisch sind.

1. Fall q(x) zerfällt in verschiedene lineare Faktoren (hat m einfache Nullstellen):

•
$$q(x) = x^2 - 4x + 3 = (x - 1)(x - 3)$$

Ansatz:

•
$$\int \frac{p(x)}{q(x)} = \int \frac{A_1}{(x-x_1)} \cdot dx + \int \frac{A_2}{(x-x_2)} \cdot dx + \dots + \int \frac{A_m}{(x-x_m)} \cdot dx$$

•
$$\int \frac{3x-5}{x^2+2x-8} \cdot dx = \int \frac{A}{(x-2)} \cdot dx + \int \frac{B}{(x+4)} \cdot dx$$

•
$$\frac{3x-5}{x^2+2x-8} = \frac{A}{(x-2)} + \frac{B}{(x+4)} \mid \cdot (x-2) \cdot (x+4)$$

•
$$3x - 5 = A(x + 4) + B(x - 2)$$
 |x einsetzen und A, B ausrechnen (z.B. x=-4, x=2)

•
$$A = \frac{1}{6}; B = \frac{17}{6}$$

$$\bullet \ \int \tfrac{3x-5}{x^2+2x-8} \cdot dx = \tfrac{1}{6} \cdot \int \tfrac{1}{(x-2)} \cdot dx + \tfrac{17}{6} \cdot \int \tfrac{1}{(x+4)} \cdot dx = \tfrac{1}{6} \cdot \ln \mid x-2 \mid + \tfrac{17}{6} \cdot \ln \mid x+4 \mid + C$$

2. Fall q(x) zerfällt in lineare Faktoren, es gibt mindestens einen Faktor, der mehrfach vorkommt:

•
$$q(x) = x^3 - 3x^2 - 9x - 5 = (x+1)^2 \cdot (x-5)$$

Ansatz:

$$\bullet \int \frac{p(x)}{q(x)} = \int \frac{A_1}{(x-x_i)^k} \cdot dx + \int \frac{A_2}{(x-x_i)^2} \cdot dx + \dots + \int \frac{A_k}{(x-x_i)^k} \cdot dx$$

•
$$\int \frac{x^2 + 15x + 8}{x^3 - 3x^2 - 9x - 5} \cdot dx = \int \frac{A}{(x+1)} \cdot dx + \int \frac{B}{(x+1)^2} \cdot dx + \int \frac{C}{(x-5)} \cdot dx$$

•
$$\frac{x^2+15x+8}{x^3-3x^2-9x-5} = \frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x-5)} \mid (x+1)^2 \cdot (x-5)$$

•
$$x^2 + 15x + 8 = A(x+1)(x-5) + B(x-5) + C(x-5)(x+1)^2$$
 |x einsetzen und A, B, C ausrechnen (z.B. x=-1, x=5)

•
$$A = -2$$
: $B = 1$: $C = 3$

$$\bullet \ \int \frac{x^2 + 15x + 8}{x^3 - 3x^2 - 9x - 5} \cdot dx = -2 \int \frac{1}{(x+1)} \cdot dx + 1 \int \frac{1}{(x+1)^2} \cdot dx + 3 \int \frac{1}{(x-5)} \cdot dx = -2 \cdot \ln|x+1| + \frac{(x+1)^{-1}}{-1} + 3 \cdot \ln|x-5| + C \int \frac{1}{(x+1)^{-1}} \cdot dx + \frac{1}{(x+1)^{-1}} \cdot dx$$

3. Fall Der Nenner enthalte quadr. Faktoren die sich nicht zerlegen lassen:

•
$$q(x) = x^3 - 6x^2 + 10x = x \cdot (x^2 - 6x + 10)$$

Ansatz:

•
$$\int \frac{p(x)}{q(x)} = \int \frac{B_1 x + C_1}{Q(x)^1} \cdot dx + \int \frac{B_2 x + C_2}{Q(x)^2} \cdot dx + \dots + \int \frac{B_k x + C_k}{Q(x)^k} \cdot dx$$

$$\bullet \int \frac{7x^2 - 19x + 30}{x^3 - 6x^2 + 10x} \cdot dx = \int \frac{A}{x} \cdot dx + \int \frac{Bx + C}{x^2 - 6x + 10} \cdot dx$$

•
$$\frac{7x^2-19x+30}{x^3-6x^2+10x} = \frac{A}{x} + \frac{Bx+C}{x^2-6x+10} \mid x \cdot (x^2-6x+10)$$

•
$$7x^2 - 19x + 30 = A(x^2 - 6x + 10) + x \cdot (Bx + C)$$
 |x einsetzen und A, B, C ausrechnen (z.B. x=0,x=1, x=-1)

•
$$A = 3; B = 4; C = -1$$

•
$$\int \frac{7x^2 - 19x + 30}{x^3 - 6x^2 + 10x} \cdot dx = 3 \cdot \int \frac{1}{x} \cdot dx + \int \frac{4x - 1}{x^2 - 6x + 10} \cdot dx = 3 \cdot \ln|x| + (*)$$

- $(x^2 - 6x + 10)' = 2x - 6 \Rightarrow 4x - 1 = 2 \cdot (2x - 6) + 11$

$$\bullet \ \ (*) = \int \frac{2(2x-6)+11}{x^2-6x+10} \cdot dx = 2 \cdot \int \frac{2x-6}{x^2-6x+10} \cdot dx + \int \frac{11}{x^2-6x+10} \cdot dx$$

$$- \ \ (1) = 2 \cdot \int \frac{2x-6}{x^2-6x+10} \cdot dx = 2 \cdot \int \frac{du}{u} \cdot dx = 2 \cdot \ln \mid u \mid = 2 \cdot \ln \mid x^2 - 6x + 10 \mid$$

$$- \ \ (2) = 11 \cdot \int \frac{1}{x^2-6x+10} \cdot dx = 11 \cdot \int \frac{1}{(x-3)^2+1} \cdot dx \text{ ist von der Form } k \cdot \int \frac{1}{(x-C)^2+a^2} \cdot dx$$

$$- = k \cdot \frac{1}{a} \cdot \arctan(\frac{x-C}{a}) + C = 11 \cdot \frac{1}{1} \cdot \arctan(\frac{x-3}{1}) + C$$

•
$$\int f(x) \cdot dx = 3 \cdot \ln|x| + 2 \cdot \ln|x^2 - 6x + 10| + 11 \cdot arctan(x - 3) + C$$

Das bestimmte Integral

Das Flächenproblem

$$\int_{a}^{b} f(x) \cdot dx = A$$

- 1. Zwischenwerte $x_0, x_1, ..., x_n$ setzen und somit Intervall [a,b] in Teilintervalle zerlegen.
- 2. Wähle in jedem Teilintervall eine Zwischenstelle ξ_i

(a)
$$A_1 = \Delta x \cdot f(\xi_1)$$

(b)
$$A_k = \Delta x \cdot f(\xi_k)$$

3.
$$S_n = A_1 + \dots + A_n = \sum_{k=1}^n A_k = \sum_{k=1}^n \Delta x \cdot f(\xi_k)$$

4. Grenzübergang:
$$\lim_{n\to\infty} S_n = A \Rightarrow (\Delta x \to 0)$$

Riemannsche Summen $\int_a^b f(x) dx := \lim_{n \to \infty(\triangle x \to 0)} \sum_{i=1}^n f(\xi_i) \times \Delta x_i$

Exakt mit Grenzübergang

$$f(x) = x^2$$

Teile Intervall [0,2] in n gleiche Teile:

Intervall	Breite		Höhe	Fläche
$I_1 = \left[0 \cdot \frac{2}{n}, 1 \cdot \frac{2}{n}\right]$	$\Delta x_1 = \frac{2}{n}$	$\xi_1 = 1 \cdot \frac{2}{n}$	$f(\xi_1) = (1 \cdot \frac{2}{n})^2$	$A_1 = \frac{2}{n} \cdot 1^2 \cdot \frac{4}{n^2}$
$I_2 = \left[1 \cdot \frac{2}{n}, 2 \cdot \frac{2}{n}\right]$	$\Delta x_2 = \frac{2}{n}$	$\xi_2 = 2 \cdot \frac{2}{n}$	$f(\xi_2) = (2 \cdot \frac{2}{n})^2$	$A_2 = \frac{2}{n} \cdot 2^2 \cdot \frac{4}{n^2}$
$I_k = [(k-1) \cdot \frac{2}{n}, k \cdot \frac{2}{n}]$	$\Delta x_k = \frac{2}{n}$	$\xi_k = k \cdot \frac{2}{n}$	$f(\xi_k) = (k \cdot \frac{2}{n})^2$	$A_n = \frac{2}{n} \cdot n^2 \cdot \frac{4}{n^2}$
$I_n = [(n-1) \cdot \frac{2}{n}, n \cdot \frac{2}{n}]$	$\Delta x_n = \frac{2}{n}$	$\xi_n = n \cdot \frac{2}{n}$	$f(\xi_n) = (n \cdot \frac{2}{n})^2$	$A_k = \frac{2}{n} \cdot k^2 \cdot \frac{4}{n^2}$

- Vorgehen
 allgemeines Intervall
 Auswertungsstelle] Wert an AS
 Flächenformel
 ∑ bilden

$$S_n = \frac{2}{n} \cdot \frac{4}{n^2} \cdot \sum_{k=1}^n k^2 = \frac{8}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{16}{6} = \frac{8}{3}$$

Angewandte Integrale

Fläche zwischen Funktionen

f oberhalb g	g und f schneiden sich, x_i Schnittpunkte	Mantelfläche
$A = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$	$A = \left \int_{a}^{x_1} (f - g)(x) dx \right + \left \int_{x_1}^{x_2} (f - g)(x) dx \right + \dots$	$M_x = 2\pi \times \int_a^b f(x) \times \sqrt{1 + (f'(x))^2}$
Rotation um die X-Achse (Volumen)	Volumen bei Querfläche	Bogenlänge
$V_x = \pi \int_a^b f(x)^2 dx$	$V = \int_{a}^{b} Q(x)dx$	$S = \int_a^b \sqrt{1 + (f'(x))^2} dx$
Schwerpunkt einer Fläche	Schw. e. Fl. zwischen $g(x)$ und $f(x)$, $g(x) \le f(x)$ in I	Schwerpunkt eines Rotationskörper
$S_x = \frac{\int_a^b x \times f(x) dx}{A}$	$S_x = \frac{\int_a^b x \times (f(x) - g(x)) dx}{F}$	$S_x = \frac{\pi \int_a^b x \times f^2(x) dx}{V}$
$S_y = \frac{\frac{1}{2} \int_a^b f(x)^{2dx}}{A}$	$S_y = \frac{\frac{1}{2} \int_a^b (f^2(x) - g^2(x)) dx}{F}$	$S_y = 0, S_z = 0$
$A = \int_{a}^{b} f(x)dx$	$F = \int_{a}^{b} (f(x) - g(x))dx$	$V = \pi \int_{a}^{b} f^{2}(x) dx$

Differentialgleichungen

1.Ordnung

$$y'=f(x,y)=\frac{dy}{dx}$$

$$n'(t)=-\lambda\times n(t), \text{ allgemein löst } n(t)=C\times e^{-\lambda t} \text{ die DG}$$

Trennen der Variablen

 $y' = f(x) \times g(y) = \frac{dy}{dx}$ jede Variable auf eine Seite, dann getrennt Integrieren: $\int \frac{1}{g(y)} dy = \int f(x) dx + c$

Kurvenschaar-Problem

Idee

- 1. Kurvenschaar y = f(x, c), nach Konstante auflösen, dann in DG einsetzen um C zu eliminieren
- 2. Zugehörige DG y' = g(x, y)
- 3. Zugehörige DG der orth. KS $y' = \frac{-1}{g(x,y)}$
- 4. Kurvenschaar bestimmen y = f(x, c)

Beispiel

Bestimmen Sie alle Kurven, die die Geraden durch den Nullpunkt rechtwinklig schneiden.

- 1. Kurvenschar: $y = k \cdot x \Rightarrow k = \frac{y}{x}$
- 2. DG: $y' = k \Rightarrow y' = \frac{y}{x}$
- 3. Orth. Kurvenschar: $y' = -\frac{x}{y}$
- 4. Umformen: $\frac{dy}{dx} = -\frac{x}{y} \Rightarrow \int y \cdot dy = \int -x \cdot dx$
- 5. Integral Lösen und nach y auflösen

Integration durch Substitution

1. Fall

- $\bullet \ y' = f(ax + by + c)$
- u = ax + by(x) + c => y' = f(u), u' = a + by'(x)
- in u' für y' die ursprüngliche Gleichung y' = f(u) einsetzen

Beispiel

- $\bullet \ y' = x + y$
- $\bullet \ u = x + y$
- u' = 1 + y' = 1 + u
- $\frac{du}{dx} = 1 + u$
- $\int \frac{1}{1+u} \cdot du = \int dx \Rightarrow \ln(1+u) = x + c \Rightarrow 1 + u = k \cdot e^x$

•
$$1 + x + y = k \cdot e^x \Rightarrow y = k \cdot e^x - x - 1$$

2. Fall

•
$$y' = f(\frac{y}{x}) \Longrightarrow y' = f(u)$$

•
$$u = \frac{y}{x}$$
, $u(x) \times x = y => u'(x) \times x + u(x) = y'$

•
$$y' = u'x + u$$
 in $y' = f(u)$ eingesetzt und aufgelöst ergibt: $u' = \frac{1}{x}(f(u) - u)$ (anschliessend trennen der Variablen)

Beispiel:

• DG:
$$y' = \frac{3y^2 + xy}{x^2} = 3(\frac{y}{x})^2 + \frac{y}{x}$$

•
$$u = \frac{y}{x} \Rightarrow f(u) = 3u^2 + u$$

•
$$u' = \frac{1}{x} \cdot (f(u) - u) = \frac{1}{x} \cdot (3u^2 + u - u) = \frac{1}{x} \cdot u^2$$

•
$$\frac{du}{dx} = \frac{1}{x} \cdot u^2$$

$$\bullet \int \frac{1}{u^2} = \int \frac{1}{x}$$

• Integral lösen, nach u auflösen und u einsetzen, danach nach y auflösen

2.Ordnung

$$x''(t) = -g$$

$$\bullet \ x'(t) = -gt + v_0$$

•
$$x(t) = -gt^2 \frac{1}{2} + v_0 t + s_0 =$$
 allgemeine Lösung

•
$$v(0) = 0, s(0) = 0 = x(t) = -gt^{2}\frac{1}{2}$$

Linerare DG (1.0)

Normalformen

•
$$y' + f(x) \times y = g(x)$$
 -> inhomohene DG 1.0

•
$$y' + f(x) \times y = 0$$
 -> homogene DG 1.0

Allgemeine lösung mit freiem Parameter einer Homogenen DG (durch trennen der Variabeln)

•
$$y_h(x) = K \times e^{-\int f(x)dx}$$

Lösung einder Inhomogenen DG

1. LDG als homogene lösen ->
$$y_h$$

2.
$$y_p = K(x) \times e^{-\int f(x)dx}$$

(a)
$$K'(x) = \frac{g(x)}{y_h(x)_{K=1}}$$
 bestimmen, danach Integrieren

3. Allgemeine Lösung:
$$y_a(x) = y_h(x) + y_p(x)$$

4. Falls Anfangsbedingungen vorhanden, einsetzen und partikuläre Lösung bestimmen

Potenz und Taylor Reihen

[Taylor Koeffizient	lor Koeffizient Taylor Reihe Konvergenzradius	
	$a_k = \frac{f^{(k)}(x_0)}{k!}, k = 0, 1, \dots$	$t_f(x) = \sum_{k=0}^{\inf} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$	$\rho = \lim_{k \to inf} \left \frac{a_k}{a_{k+1}} \right = \lim_{k \to inf} \frac{1}{\sqrt[k]{ a_k }}$

- Innerhalb des Konvergenzradius darf:
 - gliedweise abgeleitet werden
 - gliedweise integriert werden
 - gliedweise addiert, subtrahiert und multipliziert werden
- Fehlerabschätzung
 - alternierender Fall: $Fehler \leq |1. weggelassenes Glied|$
 - normaler Fall: $TaylorReihe(k\,Stelle) + Fehler \geq effektiver\,Wert$

Beispiele Taylorreihen

arcsin(x), x < 1	$= \sum_{k=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2 \cdot 4 \cdot 6 \cdots (2k)} \frac{x^{2k+1}}{2k+1} = x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \cdots$	$cos(x), x \in R$	$ = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \cdots $
$tan(x), x < \frac{\pi}{2}$	$ = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{2^{2k} (2^{2k} - 1)}{(2k)!} B_{2k} x^{2k-1} = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots $	$ln(1+x), -1 < x \le 1$	$ = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \pm \cdots $
$(1+x)^a, x < 1$	$=\sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \cdots$	$e^x, x \in R$	$= \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
$sin(x), x \in R$	$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \pm \cdots$	arctan(x), x < 1	$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \pm \cdots$
arccos(x), x < 1	$ = \frac{\pi}{2} - \sum_{k=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2 \cdot 4 \cdot 6 \cdots (2k)} \frac{x^{2k+1}}{2k+1} = \frac{\pi}{2} - \left(x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112}\right) $	+…)	

Beispiel Herleitung Taylorreihe

 $f(x) = ln(x) bei x_0 = 1$

Ableitung	Koeffizient	Glied
f = ln(x)	$a_0 = 0$	0
$f' = \frac{1}{x}$	$a_1 = 1$	1(x-1)
$f'' = \frac{-1}{x^2}$	$a_2 = \frac{-1}{2}$	$\frac{-1}{2}(x-1)^2$
$f''' = \frac{2}{x^3}$	$a_3 = \frac{1}{3}$	$\frac{1}{3}(x-1)^3$
$f'''' = -\frac{6}{x^4}$	$a_4 = \frac{-1}{4}$	$\frac{-1}{4}(x-1)^4$

$$(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \frac{1}{5}(x-1)^4 + \frac{1}{5}(x-1)^$$