

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования

ОТЧЕТ к лабораторной работе № 3

по дисциплине «Математическое и компьютерное моделирование (Mathematical and Computer Modeling)»

Направление подготовки **01.03.02** «Прикладная математика и информатика»

Выполнила студентка группы Б9119-01.03.02

Пахомова Д.Е. $(\Phi HO) \qquad \qquad (nodnuc_b)$

Проверил д.ф.-м.н.

Пермяков М.С. (ΦMO) $(no\partial nucb)$

«<u>17</u>» _ января _ 20<u>22</u> г.

Содержание

Введение	3
Задание 1: Математический маятник без учета трения	3
1.1 Формулировка задачи	3
1.3 Постановка физической модели	3
1.2 Постановка математической модели процесса	3
Задание 2: Математический маятник с учетом трения	6
2.1 Формулировка задачи	6
2.2 Постановка физической модели	6
2.3 Постановка математической модели процесса	7
Заключение	11
ПРИЛОЖЕНИЕ	12

Введение

В данной лабораторной работе требуется рассмотреть математическую модель маятника.

Задание 1: Математический маятник без учета трения

1.1 Формулировка задачи

Имеется математический маятник - шар, подвешенный на нити. Размерами шара, растяжением и массой нити пренебречь. Трением пренебречь.

1.3 Постановка физической модели

Для решения задачи используем следующие параметры:

Момент силы: $M[\mathbf{H} \cdot \mathbf{m}];$

Момент инерции тела: $I[M^2 \cdot K\Gamma]$;

Угол отклонения от положения равновесия: α [градусы];

Длина нити: l[M];

Время: t[c];

 ${
m Macca}$ маятника: $m[{
m kr}];$

Гравитационная постоянная: $g \approx 9, 8 \left\lceil \frac{\text{H} \cdot \text{M}^2}{\text{K} \Gamma^2} \right\rceil$;

Круговая частота: $\omega \left[\frac{\text{рад}}{c} \right]$.

1.2 Постановка математической модели процесса

Для построения математической модели рассмотрим:

1. Формулу момента силы:

$$M = -mgl \cdot \sin \alpha;$$

2. Формулу момента инерции:

$$I = ml^2$$
;

3. Формулу колебаний маятника:

$$\alpha''(t) = \frac{M}{I} \to \alpha''(t) = \frac{-g \cdot \sin \alpha}{l};$$

4. Формулу круговой частоты:

$$\omega = \sqrt{\frac{g}{l}};$$

Запишем уравнение (3) через формулу круговой частоты:

$$\alpha''(t) + \omega^2 \sin \alpha = 0;$$

Учтем, что при малых колебаниях $\sin \alpha \approx \alpha$:

$$\alpha''(t) + \omega^2 \alpha = 0; (5)$$

Тогда математическая модель будет представлять собой задачу Коши для уравнения (5) с начальными условиями:

$$\begin{cases} \alpha(0) = \alpha_0, \\ \alpha'(0) = \alpha'_0. \end{cases}$$

;

Приведем к системе ОДУ:

$$\begin{cases} \alpha''(t) = -\omega^2 \alpha, \\ \alpha(0) = \alpha_0, \\ \alpha'(0) = \alpha'_0. \end{cases}$$

.

С помощью библиотеки matplotlib языка Python построим графики угла отклонения и траекторию хода для маятника. Решение системы ОДУ производим при помощи метода odeint из библиотеки scipy.integrate языка Python. Метод вычислений, используемый в методе odeint - LSODA, разновидность алгоритма Адамса-Бешфорта.

Рис. 1: Задание 1.

Рис. 2: Задание 1.

Видно, что если не учитывать трение маятника о воздух, угол отклонения будет постоянным, а траектория, описываемая шаром, является эллипсом.

Задание 2: Математический маятник с учетом трения

2.1 Формулировка задачи

Имеется математический маятник - шар, подвешенный на нити. Размерами шара, растяжением и массой нити пренебречь.

2.2 Постановка физической модели

Для решения задачи используем следующие параметры:

Момент силы: $M[\mathbf{H} \cdot \mathbf{m}];$ Момент инерции тела: $I[\mathbf{m}^2 \cdot \mathbf{kr}];$

Угол отклонения от положения равновесия: α [градусы];

Длина нити: 1 [м];

Время: t [c];

Масса маятника: т [кг];

Гравитационная постоянная: $g \approx 9.8 \left[\frac{\text{H} \cdot \text{M}^2}{\text{кг}^2} \right]$;

Коэффициент трения: k = 0, 4;

Круговая частота: $\omega \left[\frac{\text{рад}}{c} \right]$.

2.3 Постановка математической модели процесса

1. Формулу момента силы:

$$M = -mgl \cdot \sin \alpha;$$

2. Формулу момента инерции:

$$I = ml^2$$
;

3. Формулу колебаний маятника:

$$\alpha''(t) = \frac{M}{I};$$

4. Формулу круговой частоты:

$$\omega = \sqrt{\frac{g}{l}};$$

Запишем уравнение (3) через формулу круговой частоты, добавив множитель трения:

$$\alpha''(t) + k \cdot \alpha'(t) + \omega^2 \sin \alpha = 0;$$

Учтем, что при малых колебаниях $\sin \alpha \approx \alpha$:

$$\alpha''(t) + k \cdot \alpha'(t) + \omega^2 \alpha = 0; \quad (5)$$

Тогда математическая модель будет представлять собой задачу Коши для уравнения (5) с начальными условиями:

$$\begin{cases} \alpha(0) = \alpha_0, \\ \alpha'(0) = \alpha'_0. \end{cases}$$

;

Перейдем к системе ОДУ:

$$\begin{cases} \alpha''(t) = -k \cdot \alpha'(t) - \omega^2 \alpha, \\ \alpha(0) = \alpha_0, \\ \alpha'(0) = \alpha'_0. \end{cases}$$

.

Решение системы ОДУ произведем с помощью метода odeint из библиотеки scipy.integrate языка Python. Метод вычислений, используемый в методе odeint - LSODA, разновидность алгоритма Адамса-Бешфорта. С помощью библиотеки matplotlib языка Python построим графики угла отклонения и фазовой траектории для математического маятника.

Рис. 3: Задание 2.

Рис. 4: Задание 2.

Видно, что если учитывать трение маятника о воздух, угол отклонения будет уменьшаться, а траектория движения окажется спиралью.

Заключение

В данной лабораторной работе мною были решены и оформлены в среде компьютерной верстки «Т_ЕХ» поставленные задачи: построены математическая и компьютерная модели математического маятника с учетом трения о воздух и без него, проанализированы процессы и сам объект.

ПРИЛОЖЕНИЕ

1. Код для решения дифференциального уравнения и построения графиков к задаче 1:

```
import matplotlib.pyplot as plt
import numpy as np
import math
from scipy.integrate import odeint

g = 9.8
k = 0.4
L = 1
omega = g / L
initial = [math.pi / 2, 0]
t = np.linspace(0, 20, 400)
f2 = lambda x, t: [x[1], - omega * np.sin(x[0])]
[y21, y22] = odeint(f2, initial, t).T

plt.plot(t, y21)
plt.show()

plt.plot(y21, y22)
plt.show()
```

2. Код для решения дифференциального уравнения и построения графиков к задаче 2:

```
import matplotlib.pyplot as plt
import numpy as np
import math
from scipy.integrate import odeint

g = 9.8
k = 0.4
L = 1
omega = g / L
initial = [math.pi / 2, 0]
t = np.linspace(0, 20, 400)
f1 = lambda x, t: [x[1], -k * x[1] - omega * np.sin(x[0])]
[y11, y12] = odeint(f1, initial, t).T

plt.grid(True)
plt.plot(t, y11)
plt.show()

plt.plot(y11, y12)
plt.show()
```