HomeWork 5 Math 271A, Fall 2019.

1. Consider the space \mathbb{R}^d and the usual $\|\cdot\|_2$ metric. Show explicitly that a probability measure \mathbb{P} on the measurable space $(\mathbb{R}^d, \beta(\mathbb{R}^d))$ is uniquely determined by

$$F(x_1, \cdots, x_d) = \mathbb{P}(y : y_1 \le x_1, \cdots, y_d \le x_d).$$

- 2. Show that if a set A of continuous paths on [0,1] is equicontinuous at each point in [0,1] then the set is uniformly equicontinuous.
- 3. Let ζ_i , $i = 1, 2, 3, \cdots$ and consider the random walk $S_n = \sum_{i=1}^n \zeta_i$. By interpolation of this process (as in class $\mapsto Y_t$) and proper rescaling and normalization construct a family of processes that converges in distribution to standard Brownian motion.
- 4. Suppose $\{X_n\}_{n=1}^{\infty}$ is a sequence of random variables taking values in a metric space (S_1, ρ_1) and converging in distribution to X. Suppose (S_2, ρ_2) is another metric space, and $\phi: S_1 \to S_2$ is continuous. Show that $Y_n \equiv \phi(X_n)$ converges in distribution to $Y \equiv \phi(X)$.
- 5. Consider the space C[0,1] of continuous function on [0,1] with the supremum metric $\rho(\omega) = \max_{0 < t < 1} |\omega(t)|$ and associated norm. Show that this metric space is separable and complete. Show that a probability measure on $(C[0,1],\beta(C[0,1]))$ is tight.
- 6. Let $X_t, 0 < t < 2^N$ be a stochastic process. Define the Haar detail coefficients by

$$d_n(j) = \frac{1}{\sqrt{2^n}} \int_{-\infty}^{\infty} \psi(t/2^n - j) X(t) dt, \quad n = 1, 2, \dots, N, \quad j = 1, 2, \dots, 2^{N-n},$$

with the mother wavelet defined by

$$\psi(t) = \begin{cases} -1 & \text{if } -1 \le t < -1/2 \\ 1 & \text{if } -1/2 \le t < 0 \\ 0 & \text{otherwise} \end{cases}.$$

The difference coefficients correspond to probing the process at different scales and locations, with j representing location and n scale.

The scale spectrum of X relative to the Haar wavelet basis is the sequence S_j defined by

$$S_n = \frac{1}{2^{N-j}} \sum_{k=1}^{2^{N-n}} (d_n(j))^2, \quad n = 1, 2, ..., N.$$

Assume that X is centered, continuous, Gaussian process, starting at the origin, with homogeneous increments and covariance function (for the parameter $H \in (0, 1)$:

$$\mathbb{E}[X_t X_s] = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right).$$

 \rightarrow compute $\mathbb{E}[S_i]$.