7. Meromorphic functions and products

In this post, we look at products. Given an open subset U of \mathbb{C} , then a meromorphic function on U is a any holomorphic function $f:U-N_f\to\mathbb{C}$, where N_f is a discrete subset of U where f has poles. F.e., given a non-zero polynomial p(z), then f(z)=1/p(z) is a meromorphic function on \mathbb{C} where N_f is the set of zeros of p(z). N_f in this case is not only discrete but also finite. In fact Gauss proved the fundamental theorem of algebra which says that for every non-zero complex polynomial p(z) we have

$$p(z) = c \prod_{i=1}^{n} (z - \lambda_i)$$

for some complex numbers λ_i, c where $c \neq 0$ and where the unique number $n \geq 0$ is called the *degree* of p(z). Using induction on the degree of p(z), this is equivalent to saying that every complex polynomial of positive degree has a zero. Since for every non-constant polynomial p(z) we have that $p(z) \to \infty$ as $z \to \infty$, we see that the fundamental theorem of algebra is then a consequence of

Theorem 1. (Liouville) Given a holomorphic function f on the complex plane which has no zeros and such that 1/f is bounded, then f must be constant.

Proof. By assumption, there is a real number c > 0 such that $|1/f(z)| \le c$ for all complex numbers z. Given a complex number z_0 , then we have for every circle C_r of radius r and center z_0 that

$$|(1/f)'(z_0)| = \left| \frac{1}{2\pi i} \int_{C_r} \frac{1}{f(z)(z - z_0)^2} dz \right| \le \frac{1}{2\pi} 2\pi r c r^{-2} = \frac{c}{r}$$

for all r > 0. Letting $r \to \infty$, we see that $(1/f)'(z_0) = 0$. And since c was arbitrary, we see that (1/f)'(z) = 0 for all z in the plane, i.e. 1/f and therefore also f must be constant.

Obviously, given two meromorphic functions f_1 , f_2 on an open subset U of the complex plane, then also their sum $f_1 + f_2$ and their (pointweise) product f_1f_2 is meromorphic. Moreover, if f_1 , f_2 are meromorphic with f_2 being non-trivial, i.e. not completely zero, in any region within U, then f_1/f_2 is meromorphic since by analytic continuation f_2 can only have a discrete set of zeros.

We will call a function $D:U\to\mathbb{Z}$ a divisor on U iff the set $\mathrm{supp}(D)$ of points where D is non-zero is discrete. We say that a divisor D is non-negative iff $D(z)\geq 0$ for all z in U. Furthermore, D is called finite iff $\mathrm{supp}(D)$ is a finite set and infinite otherwise. If f is a meromorphic function which is non-trivial in every region of U, then letting D(z):=n if f has a zero of order n at z, D(z):=-n if f has a pole of order n at z and D(z)=0 everywhere else in U,

gives a divisor on U which we will denote D_f . If f is holomorphic, then D_f is non-negative. Also

$$D_{fg} = D_f + D_g$$
 and especially $D_{1/f} = -D_f$. (0.1)

Divisors can be added and subtracted and clearly form an abelian group which will be denoted $\mathrm{Div}(U)$. Sometimes it is convenient to write D as the well defined sum

$$D = \sum_{w \in U} D_w,$$

where D_w is the divisor with $D_w(w) = D(w)$ and $D_w(z) = 0$ for $z \neq w$. Consider the map

$$\left\{\begin{array}{c} f \text{ meromorphic and non-trivial} \\ \text{on every region of } U \end{array}\right\} \to \mathrm{Div}(U), f \mapsto D_f \tag{0.2}$$

A divisor in the image of this map will be called a *principal divisor*. Is every divisor a principal divisor? I.e. given a divisor D on U, is there always a meromorphic function f on U where $D = D_f$? The well known answer to this question is yes! We will see this shortly in the case $U = \mathbb{C}$.

Recall that the infinite product $\prod_{n\geq 0}(1-a_n)$ converges absolutely iff $\sum a_n$ converges absolutely. Moreover, a product $\prod (1-f_n(z))$ converges absolutely and uniformly on a subset U of the complex plane iff $\sum f_n(z)$ does.

Theorem 2. Every divisor in $Div(\mathbb{C})$ is a principal divisor.

Proof. Let $D = \sum_{w \in \mathbb{C}} D_w$ be a divisor on \mathbb{C} . Because of (0.1) and the fact that for every finite divisor D on \mathbb{C} , there is obviously a polynomial p with $D = D_p$, we may assume that D is positive and infinite. Suppose that for every w in $\operatorname{supp}(D)$ we have a holomorphic function $f_w(z)$ on \mathbb{C} such that $D_w = D_{f_w}$ and such that $f(z) = \prod (1 + f_w(z))$ is absolutely and uniformly convergent, then f(z) satisfies $D = D_f$.