CLAIMS

TT 77 .		-		4	
What	18	C	laım	ed	18

1	1.	A method of integrated circuit design, said method comprising the steps of:
2		a) identifying critical paths in an integrated circuit design;
3		b) weighting edges in identified said critical paths
4		c) assigning net criticality to each weighted edge responsive to edge
5	weig	ht; and
6		d) re-placing and wiring nets according to edge criticality.
1	2.	A method as in claim 1, further comprising before the step (a) of identifying
2	critic	al paths, the step of:
3		a1) placing and wiring said integrated circuit design.
1	3.	A method as in claim 2 wherein the step (a) of identifying critical paths
2	furth	er comprises removing non-critical paths from consideration.
1	4.	A method as in claim 3 wherein step (b) of identifying critical paths
2	comp	orises forming a slack graph indicating path slack and edges within said critical
3	paths	s, non-critical paths being deleted from said slack graph.
1	5.	A method as in claim 4 wherein step (c) of weighting edges comprises the
2	steps	of:
3		i) traversing said critical paths from front to back, an input path weight
4	being	g assigned to each edge encountered in said traversal;
5		ii) traversing each critical path from back to front, an output path weight
6	being	g assigned to each encountered edge in said reverse traversal; and
7		iii) summing said assigned input path weight and said assigned output
8	path	weight for each edge.
1	6.	A method as in claim 5 wherein assigning net criticality value comprises:
2		sorting nets according to edge weight;

3		rouping sorted nets; and	
4		ssigning a criticality value to each group.	
1	7.	method as in claim 6 wherein the step (c) of re-placing and wiring nets	
2	compi	s:	
3		selecting an edge having a highest criticality value;	
4) adjusting cell placement and net wiring for said selected edge; and	d
5		i) checking for remaining critical edges and repeating steps i-ii until	no
6	critica	dges are found.	
1	8.	method as in claim 7 further including prior to the step (iii) of checking	g for
2	remai	g critical edges the step of:	
3		iA) checking to determine if exit criteria are met and ending if said ex	cit
4		criteria are met.	
1	9.	a computer-readable medium having stored thereon a plurality of	
2	instru	ons, the plurality of instructions including instructions which, when	
3	execu	by a processor, cause the processor to:	
4) identify critical paths in an integrated circuit design;	
5		weight edges in identified said critical path;	
6		assign net criticality to each weighted edge responsive to edge	
7	weigh	and	
8		re-place and wire nets according to edge criticality.	
1	10.	A computer readable medium as in claim 9, identifying critical paths of s	step
2	(a) ca	ing the processor to:	
3		place and wire said integrated circuit design.	
1	11.	A computer readable medium as in claim 10 wherein the step (a) of	•
2	ident	ing critical paths removes non-critical paths from consideration.	

1	12.	A computer readable medium as in claim 11 wherein identifying critical				
2	paths	paths comprises forming a slack graph indicating path slack and edges within said				
3	critica	al paths, non-critical paths being deleted from said slack graph.				
1	13.	A computer medium as in claim 12 wherein step (c) of weighting edges				
		-				
2	cause	s the processor to:				
3		i) traverse said critical paths from front to back and assign an input path				
4	weigh	at to each edge encountered in said traversal;				
5		ii) traverse each critical path from back to front and assign an output				
6	path v	weight to each encountered edge in said reverse traversal; and				
7		iii) sum said assigned input path weight and said assigned output path				
8	weigh	at for each edge.				
1	14.	A computer readable medium as in claim 13 wherein assigning criticality				
2	cause	s the processor to:				
3		sort nets according to edge weight;				
4		group sorted nets; and				
5		assign a criticality value to each group.				
1	15.	A computer readable medium as in claim 14 wherein re-placing and wiring				
2	nets c	eauses the processor to:				
3		i) select an edge having a highest criticality value;				
4		ii) adjust cell placement and net wiring for said selected edge; and				
5		iii) check for remaining critical edges and repeat i-ii until no critical				
6	edges	are found.				
	_					
1	16.	A computer medium as in claim 15 wherein if exit criteria are met, said				
2	proce	ssor is caused to end prior to selecting and adjusting all critical edges.				