INE5602 – Introdução à Informática

Modelos abstratos e computabilidade

Aula 3: Máquinas de Turing

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

Sumário

- Revisão
- Máquina de Turing
- Formalização
- Exemplos
- Considerações finais

REVISÃO

Programa

-Conjunto estruturado de instruções

Máquina

 Dá significado aos identificadores das operações e testes

Máquina de estados finitos

- -6-upla (Σ, Γ, S, s₀, δ, ω)
 - Σ: alfabeto de entrada
 - Γ: alfabeto de saída
 - S: conjunto de estados
 - s_0 : estado inicial ($s_0 \in S$)
 - δ: função de transição de estados δ: S x Σ → S
 - ω: função de saída
 - Funções podem ser parciais
 - Pode n\u00e3o possuir alguns itens

- -Turing, Alan
- Modelo elementar que imita o comportamento de um computador
- -Fita com alfabeto finito
- Leitura, escrita, e movimentos laterais
- -Número de estados finitos

Hipótese de Church

- "A capacidade de computação representada pela Máquina de Turing é o limite máximo que pode ser atingido por qualquer dispositivo de computação"
- Qualquer função computável pode ser processada por uma Máquina de Turing
- Ou seja, existe um algoritmo expresso na forma de Máquina de Turing capaz de processar a função

MÁQUINA DE TURING

- -Proposta em 1936 por Alan Turing
- Como uma máquina de estados com memória
 - Fita tão grande quanto necessário
 - Movimentos na fita para direita e esquerda
- -Estado final
- -Máquina universal

Noção intuitiva

- -Ler um símbolo de um quadrado
- Alterar um símbolo em um quadrado
- Mover os olhos para outro quadrado

Noção como máquina

- Fita: usada como dipositivo de entrada, saída e de memória
- Unidade de controle: reflete o estado corrente da máquina; possui uma unidade de leitura e gravação (cabeça da fita); acessa uma célula da fita de cada vez, movimentando-a para esquerda ou para a direita
- Programa ou função de transição: função que define o estado da máquina e comanda as leituras, as gravações e o sentido de movimento da cabeça

- Máquina de Turing como reconhecedor de linguagens
 - -Três comportamentos para um programa
 - Aceitar
 - Máquina alcança o estado final e para
 - Rejeitar
 - Máquina alcança combinação de estado e entrada indefinida e para
 - Loop
 - Máquina fica processando indefinidamente

FORMALIZAÇÃO

- Descrição formal
 - -8-upla (Σ, Q, Π,q₀, F, V, ß, *)
 - Σ: alfabeto de entrada
 - Q: conjunto de estados finito
 - П: programa ou função de transição
 - q_0 : estado inicial ($q_0 \in Q$)
 - F: conjunto de estados finais (F ⊆ Q)
 - V: alfabeto auxiliar
 - ß: símbolo especial *branco*
 - *: símbolo especial de *marcador de início* da fita

- Descrição formal
 - -8-upla (Σ, Q, Π,q₀, F, V, ß, *)
 - Π : $Q \times (\Sigma \cup V \cup \{\emptyset,*\}) \rightarrow Q \times (\Sigma \cup V \cup \{\emptyset,*\}) \times \{E, D\}$
 - Programa: estado e símbolo → estado, símbolo e movimento
 - E: movimento na fita para a esquerda
 - D: movimento na fita para a direita

- Representação em tabela
 - -Estado atual x símbolo lido
 - Células: próximo estado, símbolo escrito, movimento
- Representação gráfica
 - -Transição entre estados: símbolo lido, símbolo escrito, movimento

Representações - grafo

símbolo gravado

Representação da função programa como um grafo

Representação - tabela

П	©	 a _u	 a _v	 β
р		(q, a _v , m)		
q				

Representação da função programa como uma tabela (ilustrada para o caso $\Pi(p, a_u) = (q, a_{v'}, m)$)

Representações - exemplo

 $M = (\{a,b\}, \{q_0, q_1, q_2, q_3, q_4\}, \Pi, q_0, \{q_4\}, \{A,B\}, \beta, *)$

@ • •

EXEMPLOS

- Reconhecedor da sequência aⁿbⁿ
 - (Σ, Q, Π,q₀, F, V, ß, *)
 - Σ: {a, b}
 - Q: $\{e_a, e_b, e_v, e_f, e_{fim}\}$
 - ∏: ...
 - q₀: e_a
 - F: {e_{fim}}
 - V: {A, B}

7	*	Α	аA	В	b	ß
8	*	Α	Α	₽B	b	ß
9	*	Α	Α	В	b В	ß
10	*	Α	Α	₽B	В	ß
11	*	Α	AA	В	В	ß
12	*	Α	Α	₽B	В	ß
13	*	Α	Α	В	₽B	ß
14	*	Α	Α	В	В	22

- Reconhecedor da sequência aⁿbⁿ
 - Outras entradas
 - *abbßß
 - *bbaaßß
 - *aaabbßß

- aⁿ
- (ab)ⁿ
- Reconhece pares de ()
- Troca a por b e vice versa

CONSIDERAÇÕES FINAIS

Considerações finais

- Máquina de Turing
 - -Fita, estados e troca de símbolos
 - Representa tudo que pode ser computado

INE5602 – Introdução à Informática

Modelos abstratos e computabilidade

Aula 3: Máquinas de Turing

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

