Computadores paralelos y Arquitecturas SMP

Integrantes: - Nicole Reyes

Daniel Gomez

Fecha: 27 de Agosto

Profesor: Nestor Gonzalez

Tabla de Contenidos

- INTRODUCCIÓN
- COMPUTADORES PARALELOS
- ARQUITECTURA SMP
- CONCLUSIÓN

1. INTRODUCCIÓN

- A nivel de datos
- A nivel de tareas
- > A nivel de instrucción

Clasificación Computadoras

Michael J. Flynn

Taxonomía de Flynn

Una instrucción, un dato

SIMD:
Operaciones que
pueden ser
paralelizadas.

SISD: Computador secuencial.

Una instrucción, múltiples datos

Taxonomía de Flynn

Un dato, múltiples instrucciones

MIMD:

Paralelismo. Memoria
Distribuida

Memoria Compartida
(Sistema SMP)

MISD:

Arquitecturas segmentadas

Múltiples datos, múltiples instrucciones

2. COMPUTADORES PARALELOS

Características

- Procesamiento paralelo
- Multiples procesadores

Historia

- Primeros intentos y primeras en construir.
- Procesamiento paralelo en los 50.
- > Illiac IV en los 60.

ILLIAC IV

Primera computadora grande que usó memoria de estado sólido.

Clasificación

De acuerdo con el nivel en el que el hardware soporta el paralelismo.

Computación multinúcleo

Computación en cluster

Multiprocesamiento Simétrico SMP Procesamiento Paralelo masivo

3. ARQUITECTURAS SMP

Características

- 1. Dos o más procesadores idénticos conectados a una memoria principal compartida.
- 2. Acceso a dispositivos E/S.
- 3. Se puede caer en inconsistencias provocando deadlock.

Clasificación

De acuerdo al tipo de conexión de los procesadores con la memoria compartida.

SMP basado en bus

Arquitectura simple

Agregar Cache

Cache + Memoria Privada

SMP basado en red de barras cruzadas

- Configuración de matriz.
- → N procesadores y M módulos de memoria, entonces son NxM interruptores.
- → No es red de bloqueo.

SMP basado en red de interconexión multietapa

- Mejora del anterior.
- n procesadores y n memorias se necesitan log2(n) etapas con n/2 interruptores por cada etapa.

Historia

Implementaciones de SMP

Burroughs D825 (1962)

Laboratorio de Investigación de la Marina EEUU.

UNIVIAC 1108 II (1965)

Compatible con sistema SMP.

Procesadores DECSystem 1077 dual KI10 (1972)

Sistema más antiguo que ejecutaba SMP.

Sequent Computer Systems Balance 8000 (1984) y Balance 21000 (1986)

Procesadores de 10 MHz.

4. CONCLUSIÓN

Computador Paralelo Ventajas

Mayor velocidad de ejecución. Diseño.

Aplicaciones biomédicas

La aplicación sobre la que trabajamos consiste en el procesamiento de computador de imágenes capturadas mediante resonancia magnética del cerebro (García, 2015).

Arquitectura SMP Ventajas

Mayor eficiencia al realizar procesos en el sistema operativo.

Menos riesgo de perder información.

Referencias

[1] https://www.agenciasinc.es/Noticias/La-UE-impulsa-la-computacion-paralela-para-Aplicaciones-biomedicas

A. Arruabarrena, J. Muguerza (2012). Computadores Paralelos. Computación de Alta Velocidad [Archivo pdf]. Recuperado de http://www.sc.ehu.es/acwarfra/arpar/AP/AP.fitxategiak/AP-apunteak/ComPar.1.pdfhttp://w

http://www.sc.ehu.es/acwarfra/arpar/AP/AP.fitxategiak/AP-apunteak/ComPar.1.pdfhttp://www.sc.ehu.es/acwarfra/arpar/AP/AP.fitxategiak/AP-apunteak/ComPar.1.pdf

Andrew S. Tanenbaum (2001). Modern Operating Systems, Chapter 8. Second Edition. [Archivo pdf]. Recuperado de https://www.cs.vu.nl/~ast/books/mos2/sample-8.pdf

Gracias!

Preguntas?