MATH 502 Notes

Jiantong Liu

September 14, 2023

References:

- · Atiyah and MacDonald, Commutative Algebra.
- J.P. Serre, Local Algebra.
- Zariski and Samuel, Commutative Algebra Volume 1 and 2.
- Matsumura, Commutative Algebra.
- · Bourbaki, Commutative Algebra.

We always assume a ring R has a multiplicative identity and is commutative.

0 Noetherian, Artinian, and Localization

Proposition 0.1. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:

(i) Given an infinite increasing chain of submodules of M

$$M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n \subseteq M_{n+1} \subseteq \cdots$$

then there exists some $N \in \mathbb{N}$ such that $M_N = M_{N+1} = \cdots$, i.e., for all $n \ge N$, $M_n = M_{n+1}$.

- (ii) Every non-empty family of submodules has a maximal element.
- (iii) Every submodule of M is finitely-generated.

Proof. $(i) \Rightarrow (ii)$: This is a direct result of Zorn's lemma.

- $(ii) \Rightarrow (i)$: Obvious.
- $(i), (ii) \Rightarrow (iii)$: Take any submodule N of M and take $x_1 \in N$. If $(x_1) \neq N$, then there exists $x_2 \in N \setminus (x_1)$, so $(x_1, x_2) \subseteq N$, now we proceed inductively, but by the given property we know this stops in finite number of steps, hence we have $N = (x_1, \ldots, x_n)$ for some $n \in \mathbb{N}$, thus N is finitely-generated.
- $(iii) \Rightarrow (i)$: Note that the property implies M is finitely-generated, but that means the chain of submodules must be finite. \Box

Definition 0.2 (Noetherian Module). If any of the conditions in Proposition 0.1 holds, then M is said to be a Noetherian module. Alternatively, we say M satisfies the ascending chain condition.

Proposition 0.3. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:

(i) Given an infinite decreasing chain of submodules of M

$$M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq M_{n+1} \supseteq \cdots$$

then there exists some $N \in \mathbb{N}$ such that $M_N = M_{N+1} = \cdots$, i.e., for all $n \ge N$, $M_n = M_{n+1}$.

(ii) Every non-empty family of submodules has a minimal element.

Proof. Again, Zorn's lemma.

Definition 0.4 (Artinian Module). If any of the conditions in Proposition 0.3 holds, then M is said to be a Artinian module. Alternatively, we say M satisfies the descending chain condition.

Example 0.5. • \mathbb{Z} is Noetherian.

- \mathbb{Q}/\mathbb{Z} is not Noetherian.
- Let p be a prime. Let $\mathbb{Z}(p^{\infty})$ be the union of chains (as direct limits)

$$\left\langle \frac{\bar{1}}{p} \right\rangle \subseteq \left\langle \frac{\bar{1}}{p^2} \right\rangle \subseteq \dots \subseteq \left\langle \frac{\bar{1}}{p^n} \right\rangle \subseteq \dots$$

then there is an embedding $\mathbb{Z}(p^{\infty}) \subseteq \mathbb{Q}/\mathbb{Z}$, where \bar{a} is the image of a in \mathbb{Q}/\mathbb{Z} . With this construction, $\mathbb{Z}(p^{\infty})$ is Artinian.

Exercise 0.6. Show that $\mathbb{Q}/\mathbb{Z} \cong \bigoplus_{p} \mathbb{Z}(p^{\infty})$ where p traverses through all the primes.

Proposition 0.7. Let N be a submodule of M. Suppose M satisfies ascending (respectively, descending) chain condition, then N and M/N also satisfy ascending (respectively, descending) chain condition. If, for some submodule N of M, we know N and M/N satisfy ascending (respectively, descending) chain condition, then M also satisfies ascending (respectively, descending) chain condition.

Proof. Suppose M satisfies ascending (respectively, descending) chain condition, and let N be a submodule of M. Let $\{N_i\}$ be an increasing (respectively, decreasing) sequence of submodules of N, then they can be regarded as submodules of M, therefore by the Noetherian (respectively, Artinian) condition, we know N satisfies ascending (respectively, descending) chain condition. Now let $\bar{M} = M/N$, and take $\{\bar{M}_i\}$ be an increasing (respectively, decreasing) sequence of submodules of \bar{M} . Let $\pi: M \to M/N$ be the quotient map, then the preimages give an increasing (respectively, decreasing) sequence $\{M_i\}$ of submodules of M, where $M_i = \pi^{-1}(\bar{M}_i)$, but by the Notherian (respectively, Artinian) condition, we know the sequence stops in finite steps, therefore the original sequence stops in finite steps as well, hence \bar{M} satisfies the ascending (respectively, descending) chain condition.

Suppose a submodule N of M is such that N and M/N both satisfy ascending chain condition. Take a submodule T of M, then we have a short exact sequence

$$0 \longrightarrow T \cap N \longrightarrow T \longrightarrow T/(T \cap N) \longrightarrow 0$$

Now $T \cap N$ is finitely-generated as N is finitely-generated, therefore we have an embedding $T/T \cap N \hookrightarrow M/N$, thus $T/T \cap N$ is finitely-generated, therefore T is also finitely-generated by a vector space argument.

Suppose we have a decreasing sequence $\{M_n\}$ of M, then we have a decreasing sequence $\{N\cap M_n\}$. Let M=M/N, then $\bar{M}_n:=(M_n+N)/N$ defines a decreasing sequence of submodules in \bar{M} , but N satisfies the descending chain condition, so the sequence $\{N\cap M_n\}$ stops in finite number of steps, say n_0 . Moreover, the sequence of \bar{M}_n 's also stops in finite number of steps, so by definition the sequence of $(M_n+N)/N$ stops in finite number of steps, say m_0 , but by the isomorphism theorem this shows that the sequence of $M_n/(N\cap M_n)$ stops in m_0 steps. Therefore, whenever $n\geqslant m_0,n_0$, then $N\cap M_n=N\cap M_{n+1}$, hence $M_n=M_{n+1}=\cdots$ for such n.

Remark 0.8. The final argument should also work in the Noetherian case.

Definition 0.9 (Simple Module). An A-module M is simple if the submodules of M are either 0 or M.

Exercise 0.10. Let A be a commutative ring, and M is an A-module, then M is simple if and only if $M \cong A/\mathfrak{m}$ for some maximal ideal \mathfrak{m} of A.

Definition 0.11 (Jordan-Hölder Chain). Let A be a commutative ring and M be an A-module. We say M has a Jordan-Hölder chain if there exists a decreasing chain of submodules $\{M_i\}$ such that

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{n-1} \supseteq M_n = 0$$

such that M_i/M_{i+1} is simple. In such a situation, we know n is the length of the Jordan-Hölder chain, and such n is unique. We say M is a module of finite length, and the length is $\ell_A(M) = n$.

Exercise 0.12. Let A be a commutative ring, and let M be an A-module, then M is of finite length if and only if M is both Noetherian and Artinian.

Theorem 0.13. Let A be a commutative ring, then A is Artinian if and only if A is Noetherian and every prime ideal of A is maximal.

Proof. (\Leftarrow) :

Lemma 0.14. Let A be Noetherian, then every ideal of A contains a product of prime ideals.

Subproof. Suppose, towards contradiction, that there exists some ideal I of A that does not contain a product of prime ideals. Let $\mathcal J$ be the set of such ideals of A, then $\mathcal J \neq \varnothing$, and we can take a maximal element of $\mathcal J$, namely $J^{,1}$ By definition, J is not prime, therefore there exists $a,b\in A$ such that $a\notin J$ and $b\notin J$, but $ab\in J$. Now $J\subsetneq J+Aa$ and $J\subsetneq J+Ab$, therefore J+Aa, $J+Ab\notin J$, therefore J+Aa and J+Ab both contain product of prime ideals. But now (J+Aa)(J+Ab) should also contain products of prime ideals, but by distribution this is just $J^2+Ja+Jb+Aab$, which is contained in J because every term is contained in J, so J contains a product of prime ideals as well, contradiction.

In particular, (0) contains a product of prime ideals, in particular (0) equals to this product, but every prime ideal is maximal, therefore (0) = $\mathfrak{m}_1 \cdots \mathfrak{m}_n$ becomes the product of maximal ideals (which may not necessarily be distinct), hence we have a descending chain of ideals

$$A \supseteq \mathfrak{m}_1 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \cdots \supseteq \mathfrak{m}_1 \cdots \mathfrak{m}_n = (0),$$

and in particular $(\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1})/(\mathfrak{m}_1 \cdots \mathfrak{m}_i)$ is a finite-dimensional since A is Noetherian, and it has a natural structure as a A/\mathfrak{m}_i -vector space. From the short exact sequence

$$0 \longrightarrow \mathfrak{m}_1 \cdots \mathfrak{m}_i \longrightarrow \mathfrak{m}_1 \cdots \mathfrak{m}_{i-1} \longrightarrow (\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1})/(\mathfrak{m}_1 \cdots \mathfrak{m}_i) \longrightarrow 0$$

we know the two sides of the sequence are Artinian, hence the central term is Artinian. Proceeding inductively, we know that \mathbf{m}_1 is Artinian, and R/\mathbf{m}_1 would also be Artinian, hence A is Artinian.

 (\Rightarrow) : Now suppose A is Artinian, and we want to show that every prime ideal is maximal, and (0) is a product of maximal ideals. The result then follows from the argument above.

Lemma 0.15. Every Artinian domain is a field.

Subproof. Let $0 \neq a \in A$, then consider the chain

$$(a) \supseteq (a^2) \supseteq \cdots \supseteq (a^n) \supseteq \cdots$$

and by the Artinian property, for some large enough n the descending chain stops. Hence, we have $a^n = \lambda a^{n+1}$ for some large enough n and some $\lambda \in A$. Hence, $a^n(1-\lambda a)=0$, by the cancellation property of a domain, since $a\neq 0$, we must have $\lambda a=1$, therefore a is a unit, as desired.

Corollary 0.16. Let A be Artinian, then every prime ideal of A is maximal.

Finally, it suffices to show that $(0) = \mathfrak{m}_1 \cdots \mathfrak{m}_n$. Let \mathfrak{J} be the set of finite products of maximal ideals, then \mathfrak{J} has a minimal element, and it suffices to show that this element is (0). Suppose not, let $I \neq (0)$ be a minimal element of R. For any two ideals α , β of A, let $(\alpha : \beta) = \{a \in A \mid a\beta \subseteq \alpha\}$. Note that this has a natural structure as an ideal of A. Let J = ((0) : I), and suppose J = A, then I = 0, contradiction, so $J \neq A$ is a proper ideal of A, now consider A/J which is Artinian, then let \mathfrak{G} be the set of all non-zero ideals of A/J, so \mathfrak{G} has a minimal element as well, call it \overline{H} . Let $H = \pi^{-1}(\overline{H})$ where $\pi : A \to A/J$, so we have $J \subsetneq H$, thus let P = (J : H).

Claim 0.17. P is a prime ideal.

Subproof. Given $c, d \notin P$, we want to show that $cd \notin P$. Indeed, consider $J \subsetneq J + cH \subseteq H$, then since H is minimal, then J + cH = H, and similarly we have that J + dH = H. Therefore, we have that J + cdH = J + c(dH + J) = J + cH = H, hence we know $cd \notin P$, as desired.

¹The existence of this maximal element is the result of Zorn's lemma and ACC condition.

Now P = (J : H) and J = (0 : I), the by definition we have PHI = (0). Since P is a prime ideal, then P is maximal, and now

$$(0:PI)\supseteq H\supsetneq J=(0:I)$$

Therefore $PI \subseteq I$, where I is a minimal element, contradiction, hence (0) is a product of maximal ideals.

Definition 0.18 (Short Exact Sequence). Consider the sequence

$$0 \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} T \longrightarrow 0$$

This is called a short exact sequence if $\ker(f) = 0$, $\operatorname{im}(g) = T$, and $\ker(g) = \operatorname{im}(f)$. In particular, one slot of the sequence is said to be exact if the kernel of the previous map equals to the image of the subsequent map.

Definition 0.19 (Flat Module). Let M be an A-module, then we say M is a flat A-module if for every short exact sequence

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0$$

the tensored sequence

$$0 \longrightarrow M \otimes_A N_1 \longrightarrow M \otimes_A N_2 \longrightarrow M \otimes_A N_3 \longrightarrow 0$$

remains exact.

Remark 0.20. Recall that the properties of modules have the following implications: free \Rightarrow projective \Rightarrow flat \Rightarrow torsion-free, and in the case of finitely-generated modules, torsion-free \Rightarrow free.

Remark 0.21. We already know that the tensor functor is right exact, namely given the short exact sequence above, then

$$M \otimes_A N_1 \longrightarrow M \otimes_A N_2 \longrightarrow M \otimes_A N_3 \longrightarrow 0$$

is exact.

Exercise 0.22. Let M be an A-module, and if there exists a short exact sequence of A-modules

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0$$

where N_1 and N_2 are finitely-generated as A-modules, and such that tensoring M preserves the short exact sequence, then M is flat.

Definition 0.23 (Multiplicatively Closed Subset). Let A be a commutative ring and M be an A-module. Let $S \subseteq A$ be a subset. We say S is a multiplicatively closed subset of A if $1 \in S$, $0 \notin S$, and whenever $s_1, s_2 \in S$, then $s_1s_2 \in S$.

Definition 0.24 (Localization). Let $S \subseteq A$ be a multiplicatively closed subset, and let M be an A-module, then $S^{-1}M = (M \times S)/\sim$, where \sim is an equivalence relation defined by the following: $(m_1, s_1) \sim (m_2, s_2)$ if and only if there exists $t \in S$ such that $t(m_1s_2 - m_2s_1) = 0$. $S^{-1}M$ is said to be the localization of M at S.

Given $(m,s) \in M \times S$, we write $\overline{(m,s)}$ to be the equivalence class in $S^{-1}M$ represented by (m,s).

Exercise 0.25. Similarly, one can define the localization $S^{-1}A$ of A at S. In fact, $S^{-1}A$ inherits a ring structure from A, namely

- $\bullet \ \frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2},$
- $\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2}$,
- $\frac{1}{s} \cdot \frac{s}{1} = \frac{1}{1} = 1$.

Remark 0.26. Note that a ring structure does not guarantee every element to have a multiplicative inverse. The localization of A at S ensures that every element of S now becomes invertible in the new ring $S^{-1}A$. In particular, this induces a ring homomorphism

$$f: A \to S^{-1}A$$
$$a \mapsto \frac{a}{1}$$

This homomorphism is injective if *A* is a domain.

Remark 0.27. Let I be an ideal of A.

- Consider the ring homomorphism $f:A\to S^{-1}A$ above, then

$$S^{-1}I = IS^{-1}A = f(I)S^{-1}A.$$

In particular, $f^{-1}(IS^{-1}A) \supseteq I$.

- If $I \cap S \neq \emptyset$, then $IS^{-1}A = S^{-1}A$.
- If P is a prime ideal of A such that $P \cap S = \emptyset$, then $f^{-1}(PS^{-1}A) = P$.
- Let M be an A-module, then if $N \subseteq M$ is a submodule, then $S^{-1}N \subseteq S^{-1}M$. That is, given an exact sequence

$$0 \longrightarrow N \longrightarrow M$$

then we obtain an exact sequence

$$0 \longrightarrow S^{-1}N \longrightarrow S^{-1}M$$

Indeed, given $0 \to N \xrightarrow{f} M$, say we have it sending $\frac{n}{1} \mapsto \frac{f(n)}{1} = 0$, then there exists $s \in S$ such that sf(n) = 0, so f(sn) = 0, therefore sn = 0 by injection, hence $\frac{n}{1} = 0$ in $S^{-1}N$ as well.

Exercise 0.28. The localization functor is exact.

Lemma 0.29. Let A be a commutative ring and S be a multiplicatively closed subset of A, then $S^{-1}A \otimes_A M \cong S^{-1}M$. Proof. We define

$$\varphi: S^{-1}A \otimes_A M \to S^{-1}M$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}.$$

For any $\frac{m}{s} \in S^{-1}M$, we have $\varphi\left(\frac{1}{s} \otimes m\right) = \frac{m}{s}$, so the map is onto. Now suppose $\varphi\left(\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i\right) = 0$ (since this is a

finite sum), then
$$\varphi\left(\sum_{i=1}^n \frac{a_i}{s_i} \otimes m_i\right) = \sum_{i=1}^n \frac{a_i m_i}{s_i} = 0$$
. We make $s = s_1 \cdots s_n$, so

$$\frac{a_i}{s_i} \otimes m_i = \frac{a_i s_1 \cdots s_{i-1} s_{i+1} \cdots s_n}{s} \otimes m_i =: \frac{b_i}{s} \otimes m_i,$$

then $\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i = \sum_{i=1}^{n} \frac{b_i}{s} \otimes m_i$, therefore

$$\varphi\left(\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i\right) = \varphi\left(\sum_{i=1}^{n} \frac{b_i}{s} \otimes m_i\right) = \frac{\sum_{i=1}^{n} b_i m_i}{s} = 0,$$

so there exists $t \in S$ such that $t \sum_{i=1}^{n} b_i m_i = 0$, now

$$\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i = \sum_{i=1}^{n} \frac{b_i}{s} \otimes m_i$$

$$= \sum_{i=1}^{n} \frac{1}{s} \otimes b_i m_i$$

$$= \frac{1}{s} \otimes \sum_{i=1}^{n} b_i m_i$$

$$= \frac{t}{ts} \otimes \sum_{i=1}^{n} b_i m_i$$

$$= \frac{1}{ts} \otimes t \sum_{i=1}^{n} b_i m_i$$

$$= \frac{1}{ts} \otimes 0$$

$$= 0.$$

Proposition 0.30. The map $A \to S^{-1}A$ is A-flat, i.e., $S^{-1}A$ is a flat A-module.

Proof. Consider

$$0 \longrightarrow N \longrightarrow M \longrightarrow T \longrightarrow 0$$

By Lemma 0.29 (since the isomorphism is functorial), it suffices to show the exactness of

$$0 \longrightarrow S^{-1}N \longrightarrow S^{-1}M \longrightarrow S^{-1}T \longrightarrow 0$$

and this follows from Exercise 0.28.

Definition 0.31 (Quasi-local, Local). Let A be a commutative ring. We say A is quasi-local if A has exactly one maximal ideal. In particular, if A is also Noetherian, then we say A is a local ring.

Definition 0.32 (Localization). Let A be a commutative ring and \mathfrak{p} be a prime ideal of A. Note that $S = A \setminus \mathfrak{p}$ is a multiplicatively closed subset, then we write $S^{-1}A = A_{\mathfrak{p}}$ (in general, we have $S^{-1}M = M_{\mathfrak{p}}$, where $M \otimes_A A_{\mathfrak{p}} \cong M_{\mathfrak{p}}$) to denote the localization of A away from the prime ideal \mathfrak{p} .

Exercise 0.33. $A_{\mathfrak{p}}$ is quasi-local with unique maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.

Remark 0.34. Take $x \in M$, then the following are equivalent:

- x = 0;
- $\frac{x}{1} = 0$ in $M_{\mathfrak{m}}$ for any maximal ideal \mathfrak{m} of A;
- $\frac{x}{1} = 0$ in $M_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} of A.

Proof. We will prove the first two are equivalent. The (\Rightarrow) direction is obvious. Conversely, let $I=\{a\in A\mid ax=0\}$ to be the annihilator of x in A. Suppose, towards contradiction, that $I\neq A$, then I is contained in some maximal ideal \mathfrak{m} of A, then consider $M_{\mathfrak{m}}$. Since $\frac{x}{1}=0$ in \mathfrak{m} , then there exists $t\in A\backslash \mathfrak{m}$ such that tx=0, but $I\subseteq \mathfrak{m}$ and $t\notin \mathfrak{m}$, then we reach a contradiction, hence I=A, and obviously we are done.

Exercise 0.35. 1. Given the sequence

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} T \longrightarrow 0$$

the following are equivalent:

- the sequence is exact;
- the sequence

$$0 \longrightarrow M_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}} N_{\mathfrak{m}} \xrightarrow{g_{\mathfrak{m}}} T_{\mathfrak{m}} \longrightarrow 0$$

is exact for all maximal ideals \mathfrak{m} of A;

• the sequence

$$0 \longrightarrow M_{\mathfrak{p}} \xrightarrow{f_{\mathfrak{p}}} N_{\mathfrak{p}} \xrightarrow{g_{\mathfrak{p}}} T_{\mathfrak{p}} \longrightarrow 0$$

is exact for all prime ideals \mathfrak{p} of A.

To see this, apply Remark 0.34.

- 2. Let A be a commutative ring and M be an A-module, then the following are equivalent:
 - *M* is *A*-flat;
 - $M_{\mathfrak{m}}$ is $A_{\mathfrak{m}}$ -flat for all maximal ideals \mathfrak{m} of A;
 - $M_{\mathfrak{p}}$ is $A_{\mathfrak{p}}$ -flat for all prime ideals \mathfrak{p} of A;

Hence, exactness is a local property.

Exercise 0.36. Let A be a commutative ring, then A is Artinian if and only if A as an A-module is of finite length, i.e., $\ell_A(A) < \infty$. Indeed, note that $(0) = \mathfrak{m}_1 \cdots \mathfrak{m}_n$, and write down the Jordan-Hölder series.

1 Primary Decomposition Theorem

Throughout Section 1, the commutative ring A is always Noetherian. In Section 1.1, M is a finitely-generated A-module; in Section 1.2, we drop this assumption.

1.1 FINITELY-GENERATED CASE

Definition 1.1 (Coprimary). We say M is a coprimary module if for all $a \in A$, the left multiplication $m_a : M \to M$ is either injective or nilpotent (i.e., there exists n > 0 such that $a^n M = 0$).

Remark 1.2. (i) If M is coprimary, then N is coprimary for all $N \subseteq M$.

(ii) If M is coprimary, let $P = \{a \in A \mid a : M \to M \text{ is nilpotent}\}\$, then P is a prime ideal of A.

Proof. For $a, b \notin P$, $a, b : M \to M$ are injective maps, so $ab : M \to M$ is injective, hence $ab \notin P$.

Hence, we usually say M is P-coprimary.

(iii) Let M be P-coprimary, then there exists an injection (as M-linear map) $A/P \hookrightarrow M$.

Proof. Take any $x \neq 0$ in M, then consider

$$a_x: A \to M$$

 $1 \mapsto x$

Let $I = \ker(a_x)$, then we have

$$A/I \hookrightarrow M$$
$$\bar{1} \mapsto x$$

Now $I \subseteq P$ since I already kills x. Since A is Noetherian, P is finitely-generated, thus consider $P = (a_1, \ldots, a_r)$, then $a_i^{t_i} \cdot x = 0$ for all i and some t_i 's. Let $t = t_1 + \cdots + t_r$, then $P^t \cdot x = 0$ by binomial theorem, so $P^t \subseteq I \subseteq P$, hence there exists j such that $P^j \subseteq I \subseteq P^{j-1}$. Take $y \in P^{j-1} \setminus I$, so $\bar{y} \neq 0$ in A/P, taking the injection into M, then $\operatorname{Ann}_A(\bar{y}) = P$. We now have the composition

$$A/P \hookrightarrow A/I \hookrightarrow M$$
$$\bar{1} \mapsto \bar{y}$$

to be injective.

(iv) Suppose M is P-coprimary, and Q is a prime ideal such that $A/Q \hookrightarrow M$, then P=Q.

Proof. By definition of $P,Q\subseteq P$ is obvious: Q kills elements in M, therefore the mapping becomes nilpotent. The other direction is also easy.

Definition 1.3 (Primary). Let $N \subseteq M$ be a submodule. We say N is a primary submodule of M if M/N is coprimary. If M/N is P-coprimary, we say N is P-primary.

Remark 1.4. Let \mathfrak{p} be a prime ideal of A. We claim that \mathfrak{p}^t is P-primary. Consider

$$m_x: A/\mathfrak{p}^t \to A/\mathfrak{p}^t$$

then $x^t = 0$ on A/\mathfrak{p}^t .

Example 1.5. Let $A = k[X, Y, Z]/(Z^2 - XY)$, let $\mathfrak{p} = (x, z)$ where $x = \operatorname{im}(X)$ and $z = \operatorname{im}(Z)$. Now $A/\mathfrak{p} = k[Y]$. \mathfrak{p}^2 is not P-primary. Indeed, note that $A/\mathfrak{p}^2 = k[X, Y, Z]/(z^2 - xy, x^2, z^2) \cong k[X, Y, Z]/(X^2, XY, Z^2, XZ)$. Now the mapping given by multiplication by y on this map is injective, so \mathfrak{p}^2 is not P-primary.

In particular, the represented surface is not smooth, since the origin (0,0,0) is a singularity.

Theorem 1.6 (Primary Decomposition Theorem). By assumption, A is Noetherian and M is finitely-generated. Let $N \subseteq M$ be a submodule, then there exists a decomposition

$$N = \bigcap_{i=1}^{r} N_i$$

where each N_i is P_i -primary, and such that

- 1. all P_i 's are distinct, and
- 2. this decomposition is irredundant, i.e., minimal. In particular, this means removing any of the N_i 's gives a different intersection, i.e., $\bigcap_{j\neq i} N_j \not \subseteq N_i$.

This is called a primary decomposition of N. Moreover, the primary decomposition is unique up to permutation of modules, that is, if there exists another primary decomposition, i.e., $N = \bigcap_{i=1}^{s} N'_i$ where N'_i 's are P'_i -primary, then r = s and $\{N_1, \ldots, N_r\} = \{N'_1, \ldots, N'_s\}$.

Proof.

Definition 1.7 (Irreducible). A submodule $T \subsetneq M$ is called irreducible if $T \neq T_1 \cap T_2$, where T_1, T_2 are distinct proper submodules of M.

Claim 1.8. Every submodule T of M can be expressed by $T = T_1 \cap \cdots \cap T_l$ where each T_i is irreducible.

Subproof. Suppose, towards contradiction, that there exists some T for which the claim fails, then the set of all such submodules T is a non-empty set \mathcal{T} . Since M is Noetherian, then \mathcal{T} has a maximal element W, therefore W is not irreducible. By definition, $W = W_1 \cap W_2$ where W_1, W_2 are distinct proper submodules of M, so $W_1 \notin \mathcal{T}$ and $W_2 \notin \mathcal{T}$, therefore $W_1 = T_1 \cap \cdots \cap T_r$ for irreducible T_i 's, and $W_2 = T_1' \cap \cdots \cap T_s'$ where T_i' are irreducible. Therefore, W becomes an intersection of irreducible submodules, a contradiction.

Claim 1.9. Suppose T is irreducible in M, then T is a primary submodule of M. That is, we need to show $\bar{M} := M/T$ is coprimary.

Subproof. It suffices to show the following: for all $a \neq 0$ in A, the multiplication map $a: \bar{M} \to \bar{M}$ is either nilpotent or injective. Note that (0) in \bar{M} is irreducible. To see this, we take the ascending chain

$$\ker(a) \subseteq \ker(a^2) \subseteq \ker(a^3) \subseteq \cdots$$

and since A is Noetherian we know $\ker(a^n) = \ker(a^{n+1}) = \cdots$ for some large enough n, therefore for $g = a^n$ we know $\ker(g) = \ker(g^2)$.

Claim 1.10. $\ker(g) \cap \operatorname{im}(g) = (0)$ in \overline{M} .

Subproof of Subclaim. Let $x \in \ker(g) \cap \operatorname{im}(g)$, then g(x) = 0, and there exists $y \in \overline{M}$ such that x = g(y), so $0 = g(x) = g^2(y)$, but that means $y \in \ker(g^2) = \ker(g)$, so x = 0.

Therefore, (0) is irreducible in \bar{M} , so either $\ker(g) = (0)$ or $\ker(g) = \bar{M}$. If $\ker(g) = (0)$, we have g to be injective, hence multiplication by a is injective; if $\ker(g) = \bar{M}$, we have $a^n \bar{M} = 0$, so a becomes nilpotent.

Claim 1.11. If N_1 and N_2 are both P-primary as submodules, then $N_1 \cap N_2$ is also P-primary.

Subproof. By definition, M/N_1 and M/N_2 are both P-coprimary, then it is easy to see that $M/N_1 \oplus M/N_2$ is also P-coprimary. We know there is an obvious inclusion

$$M/(N_1 \cap N_2) \hookrightarrow M/N_1 \oplus M/N_2$$

 $\bar{x} \mapsto (\bar{x}, \bar{x})$

so $M/(N_1 \cap N_2)$ is also coprimary by the inclusion, therefore $N_1 \cap N_2$ is P-primary.

Now by Claim 1.8 we have an irreducible decomposition $N=N_1\cap\cdots\cap N_r$ and without loss of generality let it be of the smallest length, that is, the N_i 's are irreducible modules that are irredundant. By Claim 1.9, we know each of the N_i 's is primary with respect to some prime ideal. Now for any two P-primary modules N_i and N_j , we know the intersection is still P-primary according to Claim 1.11, therefore we obtain an irredundant intersection $N=N_1'\cap\cdots N_s'$ where each N_i' is P_i -primary (where P_i 's are now distinct!), and this proves the existence.

For the uniqueness, suppose we have $N=N_1\cap\cdots\cap N_r$ where N_i is P_i -primary, where P_i 's are distinct, and suppose we have $N=N_1'\cap\cdots\cap N_s'$ where N_i' is P_i' -primary, where all P_i' are distinct as well. It is enough to show the following:

Claim 1.12. For any prime ideal p of $A, p \in \{P_1, \dots, P_r\}$ if and only if there exists an injection $A/p \hookrightarrow M/N$.

Subproof. Let $p \in \{P_1, \dots, P_r\}$, without loss of generality denote $p = P_1$, then we have an injection $A/p \hookrightarrow M/N_1$ by Remark 1.2. In $\bar{M} = M/N$, we have $(0) = N_1/N \cap \cdots \cap N_r/N =: \bar{N}_1 \cap \cdots \cap \bar{N}_r$, therefore $\bar{N}_2 \cap \cdots \cap \bar{N}_r \hookrightarrow \bar{M}/\bar{N}_1 = M/N_1$. But $M/N_1 = \bar{M}/\bar{N}_1$, so this gives an injection $\bar{N}_2 \cap \cdots \cap \bar{N}_r \hookrightarrow M/N_1$, but M/N_1 is P_1 -coprimary, so $\bar{N}_2 \cap \cdots \cap \bar{N}_r$ is also P_1 -coprimary, therefore $A/P_1 \hookrightarrow \bar{N}_2 \cap \cdots \cap \bar{N}_r \hookrightarrow \bar{M} = M/N$ by Remark 1.2.

so $\bar{N}_2 \cap \cdots \cap \bar{N}_r$ is also P_1 -coprimary, therefore $A/P_1 \hookrightarrow \bar{N}_2 \cap \cdots \cap \bar{N}_r \hookrightarrow \bar{M} = M/N$ by Remark 1.2. Now suppose $A/p \hookrightarrow M/N$, to show $p \in \{P_1, \dots, P_r\}$, it suffices to show $A/p \hookrightarrow M/N_i$ is injective for some $1 \le i \le r$. We have

$$A/p \xrightarrow{\varphi_i} M/N = \bar{M} \xrightarrow{\eta_i} \bar{M}/\bar{N}_i = M/N_i$$

and we want to show there exists some injective φ_i . Suppose not, then $\ker(\varphi_i) \neq 0$ in A/p for all $1 \leq i \leq r$. But A/p is an integral domain, therefore $\bigcap_{i=1}^r \ker(\varphi_i) \neq 0$. Therefore, we have

$$A/p \stackrel{\varphi}{\longleftrightarrow} M/N \stackrel{(\eta_1, \dots, \eta_r)}{\longleftrightarrow} \stackrel{r}{\underset{i=1}{\longleftrightarrow}} M/N_i$$

Thus, the defined composition above is the injection $(\varphi_1,\ldots,\varphi_r)$. This implies $\bigcap_{i=1}^r \ker(\varphi_r) = \ker(\varphi_1,\ldots,\varphi_r) = 0$, a contradiction. Thus, there exists some injective φ_i , and therefore $p \in \{P_1,\ldots,P_r\}$.

Definition 1.13 (Zero-divisor). Let A be Noetherian and M be a finitely-generated A-module. We say $0 \neq a \in A$ is a zero-divisor on M if there exists $0 \neq x \in M$ such that ax = 0. Otherwise, we say a is a non-zero-divisor on M.

Definition 1.14 (Essential prime ideal, Associated prime ideal). Given a primary decomposition $N = \bigcap_{i=1}^{r} N_i$, the corresponding prime ideals $\{P_1, \dots, P_r\}$ are called the essential prime ideals of N. In particular, if N = (0), we say these are the associated prime ideals of M, denoted by $\operatorname{Ass}_A(M) = \{P_1, \dots, P_r\}$.

Corollary 1.15. Let A be Noetherian and M be a finitely-generated A-module, and let $\mathrm{Ass}_A(M) = \{P_1, \dots, P_r\}$, then $\bigcup_{i=1}^r P_i$ is the set of all zero-divisors on M.

Proof. If $p \in \mathrm{Ass}_A(M)$, then there exists an injection $A/p \hookrightarrow M$ mapping $\bar{1} \mapsto x$ by Claim 1.12. Therefore, px = 0, so elements of p are zero-divisors of M. Let a be a zero-divisor on M, i.e., let $0 \neq x \in M$ be such that ax = 0. Take the primary decomposition $(0) = N_1 \cap \cdots \cap N_r$ in M, where N_i is P_i -primary, then there exists i such that $x \notin N_i$. Since $\bar{x} \neq 0$ in M/N_i , then $a: M/N_i \to M/N_i$ is such that $a\bar{x} = 0$, so a is nilpotent on M/N_i . Therefore, M/N_i is P_i -coprimary, and by definition $a \in P_i$.

Exercise 1.16. Let $\operatorname{Ass}_A(M) = \{P_1, \dots, P_r\}$, then the set of all nilpotent elements of M is $\bigcap_{i=1}^r P_i$.

Corollary 1.17. Suppose $N \subseteq M$ is a submodule, then

$$\operatorname{Ass}_A(N) \subseteq \operatorname{Ass}_A(M) \subseteq \operatorname{Ass}_A(N) \cup \operatorname{Ass}_A(M/N).$$

Proof. The first inclusion is obvious by $A/p \hookrightarrow N \hookrightarrow M$. We now show the second inclusion. Let $p \in \mathrm{Ass}_A(M)$, and suppose $p \notin \mathrm{Ass}_A(N)$, and we have an inclusion $i : A/p \to M$.

Claim 1.18. $i(A/p) \cap N = (0)$.

Subproof. Suppose not, then let $0 \neq x \in i(A/p) \cap N$, then $x \in N$ and $x \in i(A/p)$, but A/p is an integral domain and is p-coprimary, so $i(A/p) \cap N$ is p-coprimary. Therefore, we have

$$A/p \hookrightarrow i(A/p) \cap N \hookrightarrow N$$

and so $p \in \mathrm{Ass}_A(N)$, a contradiction.

Therefore, we have the composition $A/p \to M \to M/N$ to be injection, thus $p \in \mathrm{Ass}_A(M/N)$.

Corollary 1.19. Let M be finitely-generated, and let $I = \operatorname{Ann}_A(M)$, then the essential prime ideals of I is contained in I.

Proof. Note that the essential prime ideals of I are just $\mathrm{Ass}_A(A/I)$, so if we write $I=I_1\cap\cdots\cap I_r$ where I_i is a P_i -primary. Therefore, we have $A/I=\bar{I}_1\cap\cdots\cap\bar{I}_r$, where $\bar{I}_i=I_i/I$, and \bar{I}_i is P_i -primary.

Now let $M = \langle \alpha_1, \dots, \alpha_n \rangle$ be given by a set of generators, so $M = \{ \sum_i a_i \alpha_i \mid a_i \in A \}$, now we look at the map

$$\varphi: A \to \bigoplus_{i=1}^{n} M$$
$$1 \mapsto (\alpha_1, \dots, \alpha_n)$$

then the kernel $\ker(\varphi) = I$, so $\bar{\varphi} : A/I \hookrightarrow \bigoplus_{i=1}^n M$ is an injection. By Corollary 1.17, $\operatorname{Ass}_A(M_1 \oplus M_2) = \operatorname{Ass}_A(M_1) \cup \operatorname{Ass}_A(M_2)$, hence we know

$$\operatorname{Ass}(A/I) \subseteq \bigcup_{i=1}^{n} \operatorname{Ass}_{A}(M) = \operatorname{Ass}_{A}(M).$$

Definition 1.20 (Support). The support of M over A, denoted $\operatorname{Supp}_A(M)$, is the set $\{P \mid P \subseteq \text{ prime ideal such that } P \supseteq I = \operatorname{Ann}_A(M)\}$.

Theorem 1.21 (Prime Filtration). Let M be finitely-generated, then we have a descending chain

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{n-1} \supseteq M_n = (0)$$

of prime ideals such that $M_i/M_{i+1}\cong A/P_{i+1}, 0\leqslant i\leqslant n-1$, where P_i 's are prime ideals of A, and $\mathrm{Ass}_A(M)\subseteq\{P_1,\ldots,P_n\}$.

Proof. Note that $P \in \mathrm{Ass}_A(M)$ if and only if $i:A/P \hookrightarrow M$, therefore i(A/P) satisfies the condition stated in the theorem. Therefore, take $\mathcal{A} = \{N \subseteq M \mid N \text{ satisfies the condition of the theorem}\}$. Since A is Noetherian, we take a maximal element T of \mathcal{A} .

Claim 1.22. T = M.

Subproof. Suppose, towards contradiction, that $T \neq M$, then we have a short exact sequence

$$0 \longrightarrow T \longrightarrow M \longrightarrow M/T \longrightarrow 0$$

such that $M/T \neq (0)$.

Exercise 1.23. Let L be a finitely-generated A-module, then L=0 if and only if $\mathrm{Ass}_A(L)=\varnothing$.

Let $q \in \mathrm{Ass}_A(M/T)$, then we have

$$0 \longrightarrow T \longrightarrow M \xrightarrow{\eta} M/T \longrightarrow 0$$

and take $W = \eta^{-1}(j(A/q))$, so we have a new short exact sequence

$$0 \longrightarrow T \longrightarrow W \longrightarrow j(A/q) \cong A/q \longrightarrow 0$$

Thus, $W \supseteq T$ satisfies the condition in the theorem. By the maximality of T, we have a contradiction.

Remark 1.24. Let A be Noetherian and $\mathfrak{m} \subseteq A$ be a maximal ideal, then for any ideal $I \subseteq A$ such that there exists n with $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$, then I is \mathfrak{m} -primary.

Proof. Consider the map

$$A/I \xrightarrow{\cdot x^n} A/I$$

for $x \in \mathfrak{m}$, then this is the zero map. Therefore, multiplication by x is nilpotent. Now suppose $x \notin \mathfrak{m}$, then we want to show that $A/I \xrightarrow{\cdot x} A/I$ is injective. Indeed, since $x \notin \mathfrak{m}$, then $\mathfrak{m} + Ax = A$, hence we have that y + ax = 1 for some $y \in \mathfrak{m}$ and $a \in A$, so $(y + ax)^n = 1$, $y^n + \mu x = 1$, but that means the map $A/I \to A/I$ is given by multiplication by μx , so $\bar{\mu}\bar{x} = \bar{1}$ since y vanishes. That is, \bar{x} is invertible over A/I, hence multiplication by x is an isomorphism.

Exercise 1.25. Let A be a ring and S be a multiplicatively closed subset of A, and let M be an A-module, then $S^{-1}M$ is an $S^{-1}A$ -module. Let $T \subseteq S^{-1}M$ be an $S^{-1}A$ -submodule, then there exists $N \subseteq M$ such that $T = S^{-1}N$.

Remark 1.26. Localization functor is fully faithful.

Remark 1.27. Let A be Noetherian and S be a multiplicatively closed subset of A.

- 1. Let M be P-coprimary, then
 - if $S \cap P = \emptyset$, then $S^{-1}M$ is $S^{-1}P$ -coprimary;
 - if $S \cap P \neq \emptyset$, then $S^{-1}M = 0$.

Proof. Indeed, suppose $S \cap P \neq \emptyset$, let $a: M \to M$ be the multiplication map by a, so $a \in P$ gives $a^n M = 0$ for some n, and if $a \notin P$, then this is injective. Let $\frac{a}{s}: S^{-1}M \to S^{-1}M$ be the multiplication map, but $\frac{a}{s}$ is a unit, so multiplication by s or $\frac{1}{s}$ is an isomorphism, hence we can take this to be $\frac{a}{1}$ with s=1. If $s \in P$, then $s^n: M \to M$ is the zero map, therefore $s^n: S^{-1}M \to S^{-1}M$ is also the zero map, so s is a unit. This only happens if $S^{-1}M = 0$.

- 2. Let N be P-primary, then
 - if $S \cap P = \emptyset$, then $S^{-1}N$ is $S^{-1}P$ -primary in $S^{-1}M$;
 - if $S \cap P \neq \emptyset$, then $S^{-1}N = S^{-1}M$.

Remark 1.28. Consider the localization $S^{-1}M$. Take a submodule T of $S^{-1}M$, then by Exercise 1.25, $T = S^{-1}N$ for some $N \subseteq M$. There is now a primary decomposition on N given by $N = N_1 \cap \cdots \cap N_t$ where N_i is P_i -primary.

Exercise 1.29. Let $W_1, W_2 \subseteq M$, then $S^{-1}(W_1 \cap W_2) = S^{-1}(W_1) \cap S^{-1}(W_2)$ in $S^{-1}M$.

Remark 1.30. This is true whenever we have a flat ring extension.

Therefore, we have

$$T = S^{-1}N$$

$$= S^{-1}N_1 \cap \dots \cap S^{-1}N_t$$

$$= S^{-1}N_{i_1} \cap \dots \cap S^{-1}N_{i_r}$$

where $S^{-1}N_{i_j}$ is $S^{-1}P_{i_j}$ -primary, and P_{i_1},\ldots,P_{i_r} are prime ideals for which $S\cap P_j=\emptyset$, where $P_j\in\{P_1,\ldots,P_t\}$.

Exercise 1.31. Let N be P-primary in M.

- if $S \cap P = \emptyset$, then $i_M : M \to S^{-1}M$ and $i_N : N \to S^{-1}N$ gives $i_M^{-1}(S^{-1}N) = N$;
- if $S \cap P \neq \emptyset$, then $i_M^{-1}(S^{-1}N) = i_M^{-1}(S^{-1}M) = M$.

Corollary 1.32. Consider a primary decomposition $N=N_1\cap\cdots\cap N_t$ where N_i is P_i -primary. Suppose we have a different primary decomposition $N=N_1'\cap\cdots\cap N_t'$ where N_i' is also P_i -primary. Suppose P_1 is a minimal element in $\{P_1,\ldots,P_t\}$, then $N_1=N_1'$.

Proof. Let
$$S = A \setminus P_1$$
, then $S^{-1}N = S^{-1}N_1 = S^{-1}N_1'$. Now consider $i_M : M \to S^{-1}M$, this descends to $N_1 \to S^{-1}N_1 = S^{-1}N_1'$ and $N_1' \to S^{-1}N_1'$, so $i_M^{-1}(S^{-1}N_1 = S^{-1}N_1') = N_1 = N_1'$. □

Consider flat ring maps (as a ring extension) like $A \to A[x]$ and $A \to A[x_1, \dots, x_n]$ since as A-modules they are free, since we have a basis $\{x_1^{i_1}, \dots, x_n^{i_n}\}$.

Lemma 1.33. Let $A \to B$ be a flat map, and let M be an A-module. Let N_1 and N_2 be A-submodules of M, then $(N_1 \otimes_A B) \cap (N_2 \otimes_A B) = (N_1 \cap N_2) \otimes_A B$.

Proof. Consider the chain complex

with exact rows and columns. We tensor this complex by $-\otimes_A B$, then since B is flat we obtain a new chain complex

$$0 \longrightarrow (N_1 \cap N_2) \otimes_A B \longrightarrow N_1 \otimes_A B \longrightarrow (N/(N_1 \cap N_2)) \otimes_A B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow N_2 \otimes_A B \longrightarrow M \otimes_A B \longrightarrow M/N_2 \otimes_A B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow N_2/(N_1 \cap N_2) \otimes_A B \longrightarrow M/N_1 \otimes_A B \longrightarrow (M/(N_1 + N_2)) \otimes_A B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \qquad \qquad 0 \qquad \qquad \downarrow$$

Via diagram chasing, if $x \in (N_1 \otimes_A B) \cap (N_2 \otimes_A B)$, then $x \in (N_1 \cap N_2) \otimes_A B$.

Corollary 1.34. Suppose we have a primary decomposition $N = N_1 \cap \cdots \cap N_t$ in M, let $A \to A[x]$, then $N[x] = N_1[x] \cap \cdots \cap N_t[x]$ in M[x] where $N_i[x] = N_i \otimes_A A[x]$.

Proof. We want to show that if N_i is P_i -primary, then $N_i[x]$ is $P_i[x]$ -primary. Take a short exact sequence

$$0 \longrightarrow P \longrightarrow A \longrightarrow A/p \longrightarrow 0$$

then we tensor it by $- \bigotimes_A A[x]$, then we obtain a new short exact sequence

$$0 \longrightarrow P \otimes_A A[x] \longrightarrow A[x] \longrightarrow A/p \otimes_A A[x] \longrightarrow 0$$

(Note that we are working over the commutative case, so the left tensor and the right tensor are canonically isomorphic.) We have $B \otimes_A A[x] = B[x]$, now we have $A[x] \otimes_A A/P = A[x]/PA[x] = (A/P)[x]$ which is a domain, so PA[x] is a prime ideal. It now suffices to show that if M is P-coprimary, then M[x] is P[x]-coprimary. This simplifies to showing that:

- if $f(x) \in P[x]$, then the multiplication map $M[x] \xrightarrow{f(x)} M[x]$ is nilpotent;
- if $f(x) \notin P[x], M[x] \xrightarrow{f(x)} M[x]$ is an injection.

Note that $M[x] = \sum_{i \geqslant 0} m_i x^i$ for some m_i 's. Since P[x] is a prime ideal, then $A[x]/P[x] \cong A/p[x]$. If $f(x) \in P[x]$, we have $f(X) = p_0 + p_1 x + \dots + p_t x^t$ for p_i 's in P. Consider the multiplication map via $[f(x)]^p : M[x] \to M[x]$, where $n = n_0 + n_1 + \dots + n_t$ such that $p_i^{n_i} M = 0$ by the binomial theorem. Now suppose $f(x) \notin P[x]$, then let us write $f(x) = a_0 + a_1 x + \dots + a_t x^t$, and we have two cases:

- if no a_i 's are in P, then for all i, multiplication by a_i on M is an injection. If we multiply f(x) by $m_0 + m_1 sx + \cdots$, then the constant term would be $a_0 m_0$, and for each term to be zero, we must have f(x) equivalent to zero, hence that means multiplication by f(x) on M[x] would be injective as well.
- Now suppose there exists some a_i that is contained in P. We can write down f(x) = u + v where u has coefficients in P and v does not have any coefficients in P. If possible, let $f(\alpha) = 0$ for $\alpha \in M[x]$, then we have $u\alpha = -v\alpha$, and so $u^2\alpha = v^2\alpha$ since $u^2\alpha = u(-v\alpha) = v(-u\alpha) = v^2\alpha$, and by induction we have $u^n\alpha = (-1)^n v^n\alpha$. Therefore, for large enough n such that $u^n\alpha = 0$, we know $v^n\alpha = 0$, and therefore we have a contradiction since v does not contain any coefficients in P.

Remark 1.35. Remark 1.24 would fail if P is not a maximal ideal: P^2 may not be P-primary in this case.

Let R be a Noetherian ring, we let $i_P: R \to R_P$ be the localization away from P, from R to the local ring with maximal ideal PR_P , then we have $(PR_P)^n = P^nR_P$ to be PR_P -primary. Therefore, this gives a mapping from P^n to $P^nR_P = (PR_P)^n$. We now denote $P^{(n)} := i_P^{-1}(P_nR_P)$ to be the nth symbolic power of P, then $P^{(n)}$ is P-primary. (Indeed, we note that P is disjoint from $R \setminus P$, so given $M \to S^{-1}M$ pulling $S^{-1}P$ -primary module $S^{-1}N$ back to M gives a P-primary module.) In particular, $P^{(n)} \supseteq P^n$.

- **Exercise 1.36.** 1. Let R be Noetherian and M be finitely-generated. Show that $\ell_R(M) < \infty$ if and only if $\mathrm{Ass}_R(M)$ consists of maximal ideals only.
 - If $\ell_A(M) < \infty$, then M is a direct sum of coprimary submodules of M.
 - 2. Now let R be a Noetherian ring and P be a prime ideal. Prove that the following are equivalent:
 - (i) P is an essential prime ideal of some submodule N of M.
 - (ii) $M_P \neq 0$.
 - (iii) $P \supseteq \operatorname{Ann}_R(M)$.
 - (iv) P contains some $Q \in \mathrm{Ass}(M)$.
 - 3. Let R = k[x, y, z] for some field k, and let $P = (xz y^2, x^3 yz, z^2 x^2y)$.
 - Prove that P is a prime ideal of R.
 - Is P^2 P-primary?

Hint: consider

$$\varphi: k[x, y, z] \to k[t]$$

$$x \mapsto t^{3}$$

$$y \mapsto t^{4}$$

$$z \mapsto t^{5}$$

and show that $ker(\varphi) = P$.

1.2 Infinitely-generated Case

Now let R be a Noetherian ring, and M is not finitely-generated.

Definition 1.37 (Coprimary). M is called coprimary if for any $a \in R$, we have multiplication map $a: M \to M$ to be either injective, or locally nilpotent, i.e., for all $x \in M$, there exists n_x such that $a^{n_x}x = 0$.

Therefore, any submodule of M is coprimary. Now we define the associated primes to be $\mathrm{Ass}_R(M)$ to be the set of prime ideals in R such that there exists an injection $A/p \hookrightarrow M$, i.e., R/p is a cyclic submodule of M.

Theorem 1.38. Let R and M be as above. For any $P \in \mathrm{Ass}_R(M)$, there exists a P-primary submodule N(P) of M such that $(0) = \bigcap_{P \in \mathrm{Ass}_R(M)} N(P)$, which may be infinite.

Example 1.39. Let A and B be Noetherian rings and M be a finitely-generated A-module, and we say have a ring homomorphism $\varphi: B \to A$. Via the pullback over φ , we make M into a B-module, but M may not be finitely-generated as a B-module. For instance, take $A = \mathbb{Z}$ and $B = \mathbb{Z}[x]$.

Exercise 1.40. Let $\varphi: B \to A$ be a homomorphism of Noetherian rings. If M is a finitely-generated A-module, then via the pullback of φ , M is a B-module. We write it as $_{\varphi}M$. Prove that $\mathrm{Ass}_{A}(_{\varphi}M) = \varphi^{-1}(\mathrm{Ass}_{A}(M))$.

2 FILTERED RINGS AND MODULES, COMPLETIONS

Definition 2.1 (Topological Ring). Let R be a ring with addition φ and multiplication ψ . Suppose R has a topology such that φ and ψ are continuous, then we say R is a topological ring with respect to the given topology. That is, the topology respects the algebraic structure.

Similarly, we can define a topological group with respect to multiplication and inverse, and a topological module with respect to addition and scalar multiplication.

Remark 2.2. A topological ring R (respectively, topological group G, topological module M) is Hausdorff if and only if (0) is closed in R (respectively, (e) is closed in G, (0) is closed in M).

Let M be a topological module, consider

$$\varphi: M \times M \to M$$
$$(x, y) \mapsto x - y$$

then the diagonal is given by $\varphi^{-1}(0) = \{(x,x) \mid x \in M\} = \Delta_M$. Now suppose (0) is closed, which gives Δ_M to be closed, hence M is Hausdorff.

Definition 2.3 (Pseudo-metric Space). We say (X,d) is a pseudo-metric space if we have a function $d: X \times X \to \mathbb{R}^{\geqslant 0}$ such that

- 1. $d(x,y) + d(y,z) \ge d(x,z)$,
- 2. d(x,y) = d(y,x),
- 3. d(x,x) = 0.

This becomes a metric space if d(x, y) = 0 if and only if x = y.

Remark 2.4. A pseudo-metric space is a Hausdorff if and only if it is a metric space.

Definition 2.5 (Completion). Let (X, d) be a (pseudo-)metric space, then the completion (\hat{X}, \hat{d}) of (X, d) is a complete (all Cauchy sequences converge) metric space \hat{X} with a metric \hat{d} with a map $\varphi: X \to \hat{X}$ such that

- 1. φ respects both d and \hat{d} ,
- 2. $\varphi(X)$ is dense in \hat{X} , and
- 3. We have

that is, given any complete metric space Y and a continuous map $\psi: X \to Y$, there exists a unique map $\theta: \hat{X} \to Y$ such that the diagram commutes.

Remark 2.6. If $W \subseteq X$, then $\hat{W} \cong \overline{\varphi(W)}$.

Definition 2.7 (Directed Set). Let (I, \leq) be a poset, then I is called a directed set if for all pairs of $\alpha, \beta \in I$, there exists $\gamma \in I$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

Definition 2.8 (Inverse Limit). We say $\{X_{\alpha}\}_{{\alpha}\in I}$ is an inverse family indexed by I if for all $\alpha \leqslant \beta$, there exists maps $\varphi_{\alpha,\beta}: X_{\beta} \to X_{\alpha}$ such that for all $\alpha \leqslant \beta \leqslant \gamma$, we have a commutative diagram

An inverse limit of $\{X_{\alpha}\}_{{\alpha}\in I}$ is an object X with maps $\varphi_{\alpha}:X\to X_{\alpha}$ for all $\alpha\in I$ such that the diagram

$$X \xrightarrow{\varphi_{\alpha}} X_{\alpha}$$

$$X_{\beta}$$

$$X_{\beta}$$

commutes for all $\alpha, \beta \in I$, and for all Y such that the diagram

commutes for all $\alpha, \beta \in I$, then there exists $f: Y \to X$ such that

commutes for all α .

Remark 2.9. To construct such inverse limits, we take $\tilde{X} = \prod_{\alpha \in I} X_{\alpha}$, then we have an embedding $X \hookrightarrow \tilde{X}$ where

$$X = \left\{ \prod_{\alpha \in I} X_{\alpha} \mid \forall \alpha \leqslant \beta, \varphi(X_{\beta}) = X_{\alpha} \right\}.$$

We denote the inverse limit to be $X = \lim_{\alpha \to \infty} X_{\alpha}$.

Exercise 2.10. Consider $X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots$, then the inverse limit $\varprojlim X_n = \bigcap_{n \ge 0} X_n$.

Exercise 2.11. Let A be a commutative ring, and consider A[x] or $A[x_1, \ldots, x_n]$. Let I=(x), or respectively the maximal ideal (x_1, \ldots, x_n) . Then we have a map $\cdots \to A[x]/I^{n+1} \to A[x]/I^n \to A[x]/I^{n-1} \to \cdots \to A[x]/I$, so $\lim_{x \to \infty} A[x]/I^n \cong A[x]/I^n \cong A[x]/I^n$.

Remark 2.12. By Hilbert's theorem, we know if A is Noetherian, then so is A[x]; similarly, if A is Noetherian, then so is A[x].

Definition 2.13 (Graded Ring). We say a commutative ring A is graded if A contains a sequence of $\{A_n\}_{n\geqslant 1}$ of subgroups such that

- $A_i \cdot A_j \subseteq A_{i+j}$,
- $A = \bigoplus_{i \geqslant 0} A_i$.

By definition, this implies A_0 is a subring of A, and $A_+ = \bigoplus_{i \ge 1} A_i$ is an ideal, usually called the irrelevant ideal.

Exercise 2.14. 1. $1 \in A_0$,

2. A is Noetherian if and only if A_0 is Noetherian and A_+ is a finitely-generated ideal of A.

2.1 FILTRATIONS OF RINGS AND MODULES

Let A be a commutative ring, not necessarily Noetherian, and let M be an A-module.

Definition 2.15 (Filtered Ring). A is called a filtered ring if it admits a filtration $\{A_n\}_{n\geq 0}$ where A_i 's form a descending sequence of subgroups of A.

Since the descending chain satisfies $A_i \cdot A_j \subseteq A_{i+j}$, then each A_i for i > 0 is an ideal of A. We now write $A \sim \{A_n\}_{n \ge 0}$, associating A with its filtration.

Definition 2.16 (Filtered Module). M is called a filtered A-module if there exists a descending chain of subgroups $M_0 \supseteq M_1 \supseteq \cdots$ of M such that $A_i \cdot M_j \subseteq M_{i+j}$.

This implies each M_j is an A-submodule.

Example 2.17. Let I be an ideal of A, and let $A_n = I^n$. Let M be an A-module, with $M_n = I^n M$. The associated filtrations are called the I-adic filtration of A and of M.

Definition 2.18 (Induced Filtration, Image Filtration). Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$. Let $N \subseteq M$ be a submodule. The induced filtration on N is given by $N_n = N \cap M_n$ for all n.

Let $f: M \to T$ be a surjective A-linear map of modules, then the filtration defined by $T_n = f(M_n)$ is the image filtration of T.

Definition 2.19 (Filtered Map, Strict Morphism). Let $M \sim \{M_n\}$ and $N \sim \{N_n\}$ be filtrations. A map $f: M \to N$ is called a filtered map if for all $n, f(M_n) \subseteq N_n$.

If $f: M \to N$ is a filtered map, suppose f(M) has an induced filtration with $f(M)_n = f(M) \cap N_n$, as well as an image filtration of $\{f(M_n)\}$. We say f is a strict morphism if for any n, $f(M_n) = f(M) \cap N_n = f(M)_n$. Note that by definition we have $f(M_n) \subseteq f(M) \cap N_n$.

2.2 Topology and metric on Filtered Rings and Modules

Definition 2.20 (Fundamental System). Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$. We declare $\{A_n\}$ (respectively, $\{M_n\}$) as a fundamental system of open neighborhoods of (0) in A (respectively, M). For any $x \in A$ (respectively, $x \in M$), $x + A_n$ (respectively, $x + M_n$) form a fundamental system of neighborhoods of x. This presumption defines a topology on A corresponding to $\{A_n\}$ (respectively, M corresponding to $\{M_n\}$).

Remark 2.21. A is a topological ring and M is a topological A-module with respect to this filtration.

Lemma 2.22. Let $M \sim \{M_n\}$ with $N \subseteq M$, and let \bar{N} be the closure of N in M, then this is just $\bigcap_{n \ge 0} N + M_n$.

Proof. Let $x \in \overline{N}$, then there exists n such that $(x+M_n) \cap N \neq \emptyset$. Therefore, there exists $y_n \in M_n$ and $z \in N$ such that $x+y_n=z$, therefore $x=z-y_n \in N+M_n$ for all n. Conversely, let $x \in \bigcap_{n\geqslant 0} N+M_n$. When $x \in N+M_n$, then

we can write $x = z + y_n$ for $z \in N$ and $y_n \in M_n$. Therefore, $x - y_n = z$, so $(x + M_n) \cap N \neq \emptyset$.

Corollary 2.23. $\overline{(0)} = \bigcap_{n \ge 0} M_n = \bigcap_{n \ge 0} A_n$. Therefore, A (respectively, M) is Hausdorff if and only if $\bigcap_{n \ge 0} A_n = 0$ (respectively, $\bigcap_{n \ge 0} M_n = 0$).

Exercise 2.24. Let $f: M \to N$ be a filtered map, then f is continuous.

Let 0 < c < 1.

If we assume A (or M) is Hausdorff, i.e., $\bigcap_{n\geqslant 0}A_n=0$ ($\bigcap_{n\geqslant 0}M_n=0$). Denote $d(x,y)=c^n$, where n is the largest integer such that $x-y\in M_n$.

If we assume A (or M) is not Hausdorff, i.e., $\bigcap_{n\geqslant 0}A_n\neq 0$ ($\bigcap_{n\geqslant 0}M_n\neq 0$). We can still define the notion of distance as above, but in addition we need: if $x-y\in\bigcap_{n\geqslant 0}M_n$, then d(x,y)=0.

Recall that a sequence $\{x_n\}$ is Cauchy if for any $\varepsilon > 0$, there exists N such that $d(x_n, x_m) < \varepsilon$ for all $n, m \ge N$. Therefore, given by M_n , there exists N such that for all $s, r \ge N$, then $x_r - x_s \in M_n$. Note that it suffices to have $x_{N+1} - x_N \in M_n$, since by telescoping we get what we want over the additive structure of the module. Hence, $\{x_n\}$ is Cauchy if and only if $\{x_n - x_{n-1}\} \to 0$ as $n \to \infty$.

Exercise 2.25. Let M be a complete metric space with respect to $\{M_n\}$, then $\{x_n\} \in M$ has a convergent sum $\sum_{n \geqslant 0} x_n$ if and only if $x_n \to 0$.

Theorem 2.26. Let $M \sim \{M_n\}$ be filtered and Hausdorff. Suppose M is complete with respect to $\{M_n\}$. Let N be a closed submodule of M, then $\bar{M} = M/N$ with respect to the image filtration $\{\bar{M}_n\}$ is also complete (Hausdorff).

Proof. \bar{M} is Hausdorff since $N=\bar{N}=\bigcap_{n\geqslant 0}(N+M_n)$. Consider $\eta:M\to \bar{M}$, then this is Hausdorff and we want to show this is complete. Let $\{\bar{x}_n\}$ be a Cauchy sequence in \bar{M} , then $\bar{x}_{n+1}-\bar{x}_n\in\bar{M}_{i(n)}$ for all $n\geqslant N$, for some i(n) corresponding to n. In particular, $i(n)\to\infty$ as $n\to\infty$. Let x_i be the lift of \bar{x}_i in M, then we have $x_{n+1}-x_n=y_n+z_n$ for some $y_n\in M_{i(n)}$ and $z_n\in N$. By telescoping, we have $x_n-x_1=\sum_{i=1}^{n-1}y_i+\tilde{z}$ for some $\tilde{z}\in N$. But for $n\to\infty$, we have large enough $i(n)\gg 0$, therefore the sequence $\{y_n\}$ satisfies $y_n\in M_{i(n)}$, therefore $y_n\to 0$ for $n\to\infty$, thus the sequence $\sum_{n=1}^\infty y_n$ converges. Hence, as $n\to\infty$, we have $\lim_{n\to\infty} \bar{x}_n=\bar{x}_1+\sum_{n=1}^\infty \bar{y}_n+\tilde{z}=\bar{x}_1+\bar{y}$.

Definition 2.27 (Null Sequence, Completion). A Cauchy sequence $\{x_n\}$ with $x_n \to 0$ is called a null sequence.

Let $M \sim \{M_n\}$ not necessarily be Hausdorff, then we obtain the completion \hat{M} of M with respect to $\{M_n\}$ (or the metric defined on $\{M_n\}$) by defining \hat{M} as the set of equivalence classes of all Cauchy sequences in M, over the submodules generated by null sequences.

Remark 2.28. Recall that we define the completion \hat{X} of a space X as the equivalence class of sets of all Cauchy sequences over the relation $x=(x_n)\sim y=(y_n)$ if and only if $d(x_n,y_n)\to 0$ as $n\to\infty$. In our case, we have $\{x_n-y_n\}$ forming a null sequence.

Similarly, we can define the completion \hat{A} of a ring A to be the equivalence class of the sets of all Cauchy sequences over the ideal generated by the null sequences.

Remark 2.29. \hat{M} is a topological \hat{A} -module. In particular, if $\{a_n\}$'s define a Cauchy sequence in A and $\{m_n\}$'s define a Cauchy sequence in M, then $\{a_nm_n\}$'s define a Cauchy sequence in M.

The corresponding mapping is given by

$$i: M \to \hat{M}$$

 $x \mapsto \{x\},$

that is, the image is the constant sequence defined by $x_n = x$ for all n. Note that this is not necessarily injective. However, i(M) is dense in \hat{M} .

Remark 2.30. The completion \tilde{M} of M satisfies the following property: given any complete space T, there is $g: M \to T$ and $f: \hat{M} \to T$ such that g = fi is a commutative diagram. In particular, if $\{x_n\}$ is Cauchy in M, then the image $g(x_n)$ is Cauchy in T. If we define $f(x = (x_n)) = y$, then $g(x_n) \to y$ in T.

Note that given any M_n in M, we have $\overline{i(M_n)} = \hat{M}_n$.

Definition 2.31 (Hausdorffication). The quotient $M/\ker(i)$ is called the Hausdorffication of M.

Remark 2.32. By Theorem 2.26, \hat{M}/\hat{M}_n is complete, then there is an induced mapping $\bar{i}_n: M/M_n \to \hat{M}/\hat{M}_n$. Now $\operatorname{im}(\bar{i}_n)$ is dense in \hat{M}/\hat{M}_n , then $\widehat{M/M}_n = \hat{M}/\hat{M}_n$. Recall that M_n is defined to be open in M via the fundamental system, now cosets of M_n are of the form $x+M_n\cong M_n$ with respect to a homeomorphism, hence $M\backslash M_n$ is open, so M_n is also closed in M. Therefore, M/M_n is discrete, so $\overline{(0)}$ is clopen, therefore M/M_n is complete, therefore $M/M_n\cong \hat{M}/\hat{M}_n$, i.e., isomorphic to the completion. In particular, $i^{-1}(\hat{M}_n)=M_n$ (with $M\cap\hat{M}_n=M_n$).

Remark 2.33. $\bigcap \hat{M}_n = (0)$ and $\{\hat{M}_n\}$ constitutes a fundamental system of open neighborhoods in \hat{M} .

Definition 2.34. Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$, with $\bar{A} \sim \{\bar{A}_n\}$ and $\bar{M} \sim \{\bar{M}_n\}$. We define $E_0(A) = A/A_1 \oplus A_1/A_2 \oplus \cdots \oplus A_n/A_{n+1} \oplus \cdots$ as a graded ring, and similarly we can define $E_0(M)$. This is called the graded ring (respectively, module) associated to the filtration.

Remark 2.35. In particular, $E_0(M)$ is a graded $E_0(A)$ -module. We have

$$A_i/A_{i+1} \times A_i/A_{j+1} \to A_{i+j}/A_{i+j+1}$$

 $(\bar{\lambda}, \bar{\mu}) \mapsto \overline{\lambda \mu}$

and

$$A_i/A_{i+1} \times M_i/M_{j+1} \to M_{i+j}/M_{i+j+1}$$

 $(\bar{\lambda}, \bar{x}) \mapsto \overline{\lambda x}$

We have $E_0(A) \cong E_0(\hat{A})$ and $E_0(M) \cong E_0(M)$ since $A_i/A_{i+1} \cong \hat{A}_i/\hat{A}_{i+1}$ and $M_i/M_{i+1} \cong \hat{M}_i/\hat{M}_{i+1}$.

Remark 2.36. Note that k[x] has transcendental degree 1 over k and k[[x]] has infinite transcendental degree over k, but by Remark 2.35 we know

$$\bigoplus \frac{x^n \cdot k[x]}{x^{n+1} \cdot k[x]} \cong \bigoplus \frac{x^n \cdot k\left[[x]\right]}{x^{n+1} \cdot k\left[[x]\right]}.$$

Definition 2.37 (Inverse Limit). Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$, then we can construct the completion of A (and similarly of M) via inverse limit. We denote $M^* = \varinjlim M/M_n = \{\prod \bar{x}_n : (\bar{x}_n) \in \prod M/M_n, \eta_{n+1}(\bar{x}_{n+1}) = \bar{x}_n \ \forall n \}$ associated with the directed system

$$\cdots \longrightarrow M/M_{n+1} \xrightarrow{\eta_{n+1}} M/M_n \xrightarrow{\eta_n} M/M_{n-1} \longrightarrow \cdots$$

$$\bar{x}_{n+1} \longrightarrow \bar{x}_n$$

Therefore this is true if and only if $x_{n+1} - x_n \in M_n$ for any n, so we obtain a Cauchy sequence as mentioned previously. Now M/M_n is discrete hence complete, therefore the associated topology $\prod M/M_n$ of countable products is complete in the product topology. Therefore, since each M/M_n is a metric space, then the countable product is still a metric space $\prod M/M_n$.

Exercise 2.38. Show that M^* is a closed submodule of $\prod M/M_n$. In particular, since $\prod M/M_n$ is complete, then M^* is also complete.

Remark 2.39. The associated map is

$$i: M \to M^*$$

 $x \mapsto (\bar{x}, \bar{x}, \bar{x}, \ldots)$

and i(M) is dense in M^* . For any M_n , the image $i(M_n)=(\bar 0,\ldots,\bar 0,\bar x,\bar x,\ldots)$ for some $x\in M_n$ with the first n coordinates as 0. In general, we have the mapping

$$M^* \stackrel{j}{\smile} \prod M/M_n \stackrel{\pi_n}{\longrightarrow} M/M_n$$

and $\overline{i(M_n)}=(\pi_n j)^{-1}(\bar 0)=j^{-1}\pi_n^{-1}(\bar 0).$ For any $Z_n\in M/M_n$, the preimage

$$\pi_n^{-1}(Z_n) = M/M_1 \times M/M_{n-1} \times Z_n \times M/M_{n+1} \times \cdots,$$

so

$$j^{-1}(\pi_n^{-1}(0)) = j^{-1}(M/M_1 \times M/M_{n-1} \times \bar{0} \times M/M_{n+1} \times \cdots) = \overline{j(M_n)} = M_n^*.$$

It now follows that $\bigcap M_n^* = (0)$.

Remark 2.40. We now have the following universal property: for any $M \to M^*$ and mapping $f: M \to N$ for some complete Hausdorff space N, then there exists a unique $g: M^* \to N$ such that the diagram commutes.

$$M \xrightarrow{f} M^*$$

$$N$$

Indeed, M^* is the set of elements (\bar{x}_n) with $\eta_{n+1}(\bar{x}_{n+1}) = \bar{x}_n$, therefore this is the set of elements (x_n) with $x_{n+1} - x_n \in M_n$ for all n, therefore $\{x_n\}$ is a Cauchy sequence, so for $y = \varinjlim f(x_n)$, therefore $g((\bar{x}_n)) = y$. Now if $\{x'_n\}$ is another lift of $(\bar{x}_n) \in M^*$, then we can check that $\{x_n - x'_n\} \to 0$ for $n \to \infty$, hence $\varinjlim f(x_n) = \varinjlim f(x'_n)$, so $M^* = \bar{M}$, $M_n^* = \hat{M}_n$ and so on.

Lemma 2.41. Let $R = A[x_1, ..., x_n]$, $I = (x_1, ..., x_n)$, then the I-adic completion is equivalent to the completion with respect to I-adic filtration corresponding to the topology. i.e., the completion of $A[x_1, ..., x_n]$ is $A[[x_1, ..., x_n]]$.

Lemma 2.42. Say $A \sim \{A_n\}$, and suppose A is Hausdorff, i.e., $\bigcap A_n = (0)$, then if $E_0(A)$ is a domain, then A is also a domain.

Proof. Suppose not, then we can pick $x \neq 0$ and $y \neq 0$ such that xy = 0, then $x \in A_n \backslash A_{n+1}$ and $y \in A_m \backslash A_{m+1}$ for some n, m, then considering the decomposition of $E_0(A)$ we have $\bar{x} \neq 0$ in A_n/A_{n+1} and $\bar{y} \neq 0$ in A_m/A_{m+1} , so $\bar{y}\bar{x} = \bar{y}\bar{x} = 0$, this is a contradiction to the fact that $E_0(A)$ is a domain, therefore A is a domain.

Definition 2.43. Let A and M be filtered and Hausdorff, say $x \in M$ be such that $x \in M_n \backslash M_{n+1}$ with largest such n, then we say n is the filtered degree of x.

Theorem 2.44. Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$ and $N \sim \{N_n\}$, and $f: M \to N$ be a filtered map. Suppose that M is complete, N is Hausdorff, and $E_0(f): E_0(M) \to E_0(N)$ is onto, so we can write $E_0(M) = M/M_1 \oplus M_1/M_2 \oplus \cdots \oplus M_m/M_{m+1}$ and $E_0(N) = N/N_1 \oplus N_1/N_2 \oplus \cdots \oplus M_m/M_{m+1}$, then we have corresponding maps

$$E_0(f)_n: M_n/M_{n+1} \to N_n/N_{n+1}$$

 $(\bar{x}) \mapsto \overline{f(x)},$

then f is onto, N is complete, and f is a strict.

Proof. Since $E_0(f)$ is onto, take $x \in N$ and since N is Hausdorff, then $x \in N_n \backslash N_{n+1}$ for some n. Therefore, the induced mapping $E_0(f)_n: M_n/M_{n+1} \to N_n/N_{n+1}$ is onto. Therefore, for $\bar{x} \in N_n/N_{n+1}$, we can pick $y_n \in M_n$ such that $x - f(y_n) \in N_{n+1}$. Therefore, on the level of $E_0(f)_{n+1}$, we know $x - f(y_n) \in N_{n+1}/N_{n+2}$, therefore we can pick $y_{n+1} \in M_{n+1}$ such that $x - f(y_n) - f(y_{n+1}) \in N_{n+2}$. Proceeding inductively, we have a sequence of elements with $y_{n+t} \in M_{n+t}$ such that $x - \sum_{k=0}^t f(y_{n+k}) \in N_{n+t+1}$. Hence, we have a Cauchy sequence in M, and so this is a Cauchy sequence in M_n , so $y_{n+t} \to 0$ as $t \to \infty$, then $\sum_t y_{n+t}$ converges, thus the sum $y \in M_n$. One can check that $f(y) = \bar{x}$, so f is onto. But that means $f(M_n) = N_n$, so f is strict. We also note that $f^{-1}(0)$ is a closed submodule of M since N is Hausdorff, therefore by Theorem 2.26 we know N is complete.

Corollary 2.45. Let A be complete with respect to the filtration, let M be Hausdorff. Suppose $E_0(M)$ is a finitely-generated graded module over $E_0(A)$, that is, there exists x_1, \ldots, x_t , where the degree of \bar{x}_i is r_i , such that $E_0(M)$ is a graded module over $E_0(A)$ generated by $\bar{x}_1, \ldots, \bar{x}_t$. If this is the case, then M is generated by x_1, \ldots, x_t over A.

Proof. Denote $F = \bigoplus_{i=1}^t Ae_i$, then this induces a mapping

$$\varphi: F \to M$$
$$e_i \mapsto x_i$$

defined on the generators. Since this is a finite sum over complete ring A, then F is complete. Let r_i be the degree of x_i , then this imposes a filtration on Ae_i as follows:

$$(Ae_i)_j = \begin{cases} 0, & j \le r_i \\ A_{j-r_i}e_i, & j > r_i \end{cases}$$

We implement this on all i's, then the filtered degree of e_i is just r_i . Using this filtration, we induce a filtration on F, then we have a commutative diagram

$$E_0(F) \xrightarrow{E_0(\varphi)} E_0(M)$$

$$\parallel \qquad \qquad \parallel$$

$$E_0(\bigoplus_{i=1}^t Ae_i) \xrightarrow{\varphi'} E_0(M)$$

with induced map φ' , where φ' sends $\bar{\varphi}_i \mapsto \bar{x}_i$ for all $1 \leqslant i \leqslant t$. Therefore, φ is onto as a $E_0(A)$ -module map. By Theorem 2.44 we are done.

- 3 Dimension Theory
- 4 Integral Extensions
- 5 Noether's Normalization Lemma
 - 6 HOMOLOGICAL ALGEBRA