

Phase 2 - Lecture 2 CTE

 $dS = \mu S dt + \sigma S dX.$

Wall Street Club

Figure 4.1 Future scenarios.

Modelling returns

$$\frac{S_{i+1}-S_i}{S_i}=R_i.$$

Returns

$$\overline{R} = \frac{1}{M} \sum_{i=1}^{M} R_i$$

Returns' mean

$$\sqrt{\frac{1}{M-1}\sum_{i=1}^{M}(R_i-\overline{R})^2},$$

Returns' standard deviation

Figure 4.4 Daily returns of Perez Companc.

Figure 4.5 Normalized frequency distribution of Perez Companc and the standardized Normal distribution.

$$R_i = \frac{S_{i+1} - S_i}{S_i} = \text{mean} + \text{standard deviation} \times \phi.$$

Modelling using timescales

mean =
$$\mu \delta t$$
, $\frac{S_{i+1} - S_i}{S_i} = \mu \delta t$.

$$S_M = S_0 (1 + \mu \delta t)^M = S_0 e^{M \log(1 + \mu \delta t)} \approx S_0 e^{\mu M \delta t} = S_0 e^{\mu T}.$$

Standard deviation

$$\sqrt{\frac{1}{M-1}\sum_{i=1}^{M}(R_i-\overline{R})^2},$$

In order for the standard deviation to remain finite as we let δt tend to zero, the individual terms in the expression must each be of $O(\delta t)$. Since each term is a square of a return, the standard deviation of the asset return over a time step δt must be $O(\delta t 1/2)$:

standard deviation = $\sigma \delta t^{1/2}$,

Final discretized equation that I get

$$S_{i+1} - S_i = \mu S_i \, \delta t + \sigma S_i \phi \, \delta t^{1/2}.$$