

Machine Learning For Breast Cancer Detection

Behjat Saeidian
Python
Professor: Mr. Doozandeh

Breast Cancer And Machine Learning?

Outline

- What is breast cancer?
- What is machine learning?
- Wisconsin dataset
- Evaluate metrics
- K-Nearest Neighbors algorithm
- Random Forest algorithm
- Naive Bayes algorithm
- Support vector Machine algorithm
- Summary
- References

What is Breast Cancer?

Breast Cancer

cells in the breast grow out of control

The most frequently occurring cancer among women

Early detection increase chances of survival

Mammogram is a medical Technique for detection

What is Machine Learning?

Machine Learning

Branch of Artificial Intelligence

Inculcates the ability of learning into system

Supervised learning

Unsupervised learning

Wisconsin Dataset

Wisconsin Dataset

Dataset	No. of	No. of	No. of
	Attributes	Instances	Classes
Wisconsin Diagnosis Breast Cancer(WDBC)	32	569	2

- 357 benign instance
- 212 malignant instance

Evaluation Metrics

Evaluation Metrics

• Accuracy :
$$\frac{TP + TN}{TP + FP + TN + FN}$$

• Recall :
$$\frac{TP}{TP + FN}$$

• Precision :
$$\frac{TP}{TP + FP}$$

• F1 Score :
$$\frac{2*(Precision*Recall)}{Precision + Recall}$$

TP: True positive

TN: True negative

FP: False Positive

FN: False Negative

K-Nearest Neighbors (KNN)

What is KNN?

Supervised machine learning algorithm

• Calculate distance to other data

Euclidean distance, Manhattan distance, Hamming distance, ...

Find K-nearest neighbors

Set label for data

Classification: mode of K labels Regression: mean of K labels

KNN Classification

- Blue circle is test sample
- Green triangle means malignant
- Pink square means benign

- Different k , Different labels
- Run algorithm many times with different k to find optimal k

KNN Results

		Predicted	
		Benign	Malignant
Actual	Benign	107	1
	Malignant	6	57

- Accuracy = 95.9%
- Precision = 98.27%
- Recall = 90.47%
- F1 Score = 94.20%

Random Forest

What is Random Forest?

Supervised machine learning algorithm

Large number of individual Decision Tree

Majority – Voting or averaging on decision trees results

Use for Classification and Regression

Decision Tree

Benign or malignan?

Random Forest

Random Forest Results

		Predicted	
		Benign	Malignant
Actual	Benign	103	5
	Malignant	4	59

- Accuracy = 94.74%
- Precision = 92.18%
- Recall = 93.65%
- F1 Score = 92.90%

Naive Bayes

What is Naive Bayes?

Probabilistic supervised machine learning model

Use for classification

Based on Bayes theorem

$$P(y \mid X) = \frac{P(X \mid y) \cdot P(y)}{P(X)}, X = (x_1, x_2, x_3, x_4, ..., x_n)$$

Types of naive Bayes Classifier
 Multinomial, Bernoulli, Gaussian

Naive Bayes Results

		Predicted	
		Benign	Malignant
Actual	Benign	101	7
	Malignant	9	54

- Accuracy = 94.47%
- Precision = 88.52%
- Recall = 85.71%
- F1 Score = 87.09%

Support Vector Machine (SVM)

What is SVM?

Supervised machine learning algorithm

Use for Classification and regression

Find hyperplane for separate classes

Set label for data

SVM

Optimal Hyperplane has maximum margin

SVM Results

- Accuracy = 97.0%
- Precision = 96.55%
- Recall = 96.85 %
- F1 Score = 96.69%

Summary

- Early detection of breast cancer can save a lot of lifes
- Compare four supervised machine learning algorithm on Wisconsin dataset for Breast Cancer detection
- KNN, Random Forest, Naive Bayes on same condition KNN has best accuracy(95.90), precision(98.27), F1 Score(94.2) Random Forest(93.65) has best recall
- SVM has 97% accuracy, 96.55% precision, 96.85% recall and 96.69% F1 Score

References

- [1] Shubham Sharma, Archit Aggarwal, Tanupriya Choudhury, "Breast Cancer Detection Using Machine Learning Algorithms",2018
- [2] Dana Bazazeh, Raed Shubairm, "Comparative Study of Machine Learning Algorithms for Breast Cancer Detection and Diagnosis",2016
- [3] Wenbin Yue, Zidong Wang, Hongwei Chen, Annette Payne, Xiaohui Liu, "Machine Learning with Applications in Breast Cancer Diagnosis and Prognosis",2018

Thank You ©

Questions?