

DMA: Relationer

Søren Eilers Institut for Matematiske Fag

- Produktmængder
- 2 Relationer
- Repræsentation af relationer Matricer Orienterede grafer
- Stier i orienterede grafer Afledte relationer
- 6 Funktioner

R-relativ mængde Funktioner som relationer Forskrifter, grafer, egenskaber

Ordnede par og produktmængder

Et ordnet par er en liste med to elementer: (a, b)

Produktmængden af to mængder A og B er:

$$A \times B = \{(a,b) \mid a \in A \text{ og } b \in B\}$$

Eksempel: For
$$A = \{x, y\}$$
 og $B = \{1, 2, 3\}$ er

$$A \times B = \{(x,1), (x,2), (x,3), (y,1), (y,2), (y,3)\}$$

Ordnede par: $(1, x) \notin A \times B$.

Sætning

$$|A \times B| = |A||B|$$

Produktmængder af flere mængder

For mængder $A_1, ..., A_n$ defineres produktmængden som:

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}$$

Sætning

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| |A_2| \cdots |A_n|$$

Eksempel: Vektorer

Lad \mathbb{R} være mængden af reelle tal.

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$: Vektorer i to dimensioner.

 $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$: Vektorer i tre dimensioner.

Eksempel: Databaser er produktmængder.

- Produktmængder
- 2 Relationer
- Repræsentation af relationer Matricer
 Orienterede grafer
- Stier i orienterede grafer Afledte relationer
- 6 Funktioner

R-relativ mængde Funktioner som relationer Forskrifter, grafer, egenskaber

Eksempler på relationer

Mål: Matematiske beskrivelser af relationer mellem elementerne af to mængder A og B.

Eksempler:

- A = {kvinder}, B = {alle mennesker}
 Relation: a er mor til b.
- A = B = {personer i aud. 2}
 Relation: a sidder til venstre for b.
- $A = B = \mathbb{Z}^+$ Relation: $a \le b$.

For nogle $a \in A$ og $b \in B$ er a relateret til b.

Relationer

Lad A og B være mængder.

En relation fra A til B er en delmængde $R \subseteq A \times B$.

Hvis $(a,b) \in R$, så er a relateret til b. Notation: aRb.

Eksempler:

- A = {kvinder}, B = {alle mennesker}
 Relation: a er mor til b.
 R₁ = {..., (Margrethe, Frederik),...}
- $A = B = \{1,2,3\}$ Relation: a er lig med b. $R_2 = \{(1,1),(2,2),(3,3)\}$
- $A = \{2,3\}, B = \{1,2,3,4,5,6\}$ Relation: a går op i b $R_3 = \{(2,2),(2,4),(2,6),(3,3),(3,6)\}$

Domæne og billede

Lad *R* være en relation fra *A* til *B*, dvs. $R \subseteq A \times B$.

Domænet af R er Dom $(R) = \{a \in A \mid \exists b \in B : aRb\}$ Billedet af R er Ran $(R) = \{b \in B \mid \exists a \in A : aRb\}$

Det er de a (hhv. b) hvor der findes b (hhv. a) så $(a,b) \in R$.

Eksempel: For
$$A = \{2,3\}$$
, $B = \{1,2,3,4,5,6\}$ og

$$R = \{(2,2), (2,4), (2,6), (3,3), (3,6)\}$$

er
$$Dom(R) = \{2,3\}$$
 og $Ran(R) = \{2,3,4,6\}$.

- Produktmængder
- 2 Relationer
- Repræsentation af relationer Matricer Orienterede grafer
- Stier i orienterede grafer Afledte relationer
- 6 Funktioner

R-relativ mængde Funktioner som relationer Forskrifter, grafer, egenskaber

Matrix-repræsentation

Lad $A = \{a_1, \dots, a_m\}$ og $B = \{b_1, \dots, b_n\}$, og lad R være en relation fra A til B (dvs. $R \subseteq A \times B$).

Matricen for R er $m \times n$ -matricen $\mathbf{M}_R = [m_{ij}]$ defineret ved

$$m_{ij} = \left\{ egin{array}{ll} 1 & , & ext{hvis } (a_i,b_j) \in R \ 0 & , & ext{hvis } (a_i,b_j)
otin R \end{array}
ight.$$

Eksempel 3.5.17: Lad $A = \{1, 2, 3\}, B = \{r, s\}$ og

$$R = \{(1,r), (2,s), (3,r)\}.$$

Matricen for R er en 3×2 -matrix:

$$\begin{array}{c|cccc}
 & r & s \\
1 & ?1 & ?0 \\
2 & ?0 & ?1 \\
3 & ?1 & ?0
\end{array}$$

Orienterede grafer

 $A = \{a_1, \dots, a_n\}$ og $R \subseteq A \times A$ er en relation på A. Den orienterede graf for R er en figur, hvor der er:

- En knude repræsenteret ved en cirkel for hvert $a_i \in A$.
- En kant repræsenteret ved en pil fra cirklen hørende til a_i til cirklen hørende til a_j for hvert par (a_i, a_j) ∈ R.

Den orienterede graf giver en nyttig visuel repæsentation.

Eksempel:

Lad $A = \{a_1, a_2\}$ og $R = \{(a_1, a_1), (a_1, a_2), (a_2, a_1)\}$. Den orienterede graf for R:

Grafer og matricer

Grafen giver en god intuition om relationen. Matricen gør det let at lave beregninger.

Tæt forbindelse mellem matricen og den orienterede graf:

Eksempel:

Lad
$$A = \{a_1, a_2\}$$
 og $R = \{(a_1, a_1), (a_1, a_2), (a_2, a_1)\}.$

Matricen for R:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Den orienterede graf for *R*:

Ind- og udgrader

Lad R være en relation på A og lad $b \in A$.

Ind-graden af b er:

- Antallet af $a \in A$ så $(a,b) \in R$.
- Antallet af kanter i den orienterede graf for R der ender ved knuden svarende til b.
- Antallet af ettaller i søjlen svarende til b i M_R

Ud-graden af $a \in A$ defineres tilsvarende (ender \rightarrow begynder, søjle \rightarrow række).

Eksempel:
$$A = \{a, b, c, d\}$$
 og $R = \{(a, a), (a, b), (a, d), (b, c), (c, a), (c, d), (d, a)\}.$ Tayle!

- Produktmængder
- 2 Relationer
- Repræsentation af relationer Matricer
 Orienterede grafer
- Stier i orienterede grafer Afledte relationer
- Funktioner
 R-relativ mængde
 Funktioner som relationer
 Forskrifter, grafer, egenskaber

Stier

Lad R være en relation på A og lad $a, b \in A$.

En sti af længde n i R fra a til b er en liste

$$a, x_1, x_2, \ldots, x_{n-1}, b$$

 $\text{med } x_i \in A$, så

$$aRx_1, x_1Rx_2, ..., x_{n-1}Rb$$

Repræsentation i den orienterede graf:

Stier og afledte relationer

Lad R være en relation på A og lad $n \in \mathbb{Z}^+$. Definer en ny relation, R^n , på A ved:

aRⁿb: Der er en sti af længde n fra a til b.

Eksempel: Six degrees of separation

 $A = \{\text{mennesker i verden}\}$

Relation: aRb hvis a kender b.

Påstand: aR^6b for alle $a, b \in A$.

Definer en anden ny relation, R^{∞} , på A ved

 $aR^{\infty}b$: Der findes et $n \in \mathbb{Z}^+$ så aR^nb .

Boolesk produkt

Lad A være en $m \times p$ Boolesk matrix og lad B være en $p \times n$ Boolesk matrix. Det Booleske matrixprodukt er $A \odot B = [c_{ij}]$, hvor

$$c_{ij} = \begin{cases} 1 & \text{hvis } a_{ik} = 1 \text{ og } b_{kj} = 1 \text{ for mindst et } k \\ 0 & \text{ellers} \end{cases}$$

Almindeligt matrixprodukt:

$$AB = [a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj}].$$

Boolesk produkt:

$$A \odot B = [(a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{ip} \wedge b_{pj})].$$

Matrixberegninger

Sætning

Lad R være en relation på A. Da er $\mathbf{M}_{R^2} = \mathbf{M}_R \odot \mathbf{M}_R$.

Bevis.

Tayle!

Sætning

Lad R være en relation på A. For $n \ge 2$ er

$$\mathbf{M}_{R^n} = \overbrace{\mathbf{M}_R \odot \cdots \odot \mathbf{M}_R}^n.$$

Bevis.

Tavle!

- Produktmængder
- 2 Relationer
- Repræsentation af relationer Matricer
 Orienterede grafer
- Stier i orienterede grafer
 Afledte relationer
- 5 Funktioner

R-relativ mængde Funktioner som relationer Forskrifter, grafer, egenskaber

R-relativ mængde

Lad R være en relation fra A til B.

Definition: For $a \in A$ er $R(a) = \{b \in B \mid aRb\}$

Eksempel: Lad $A = \{1,2,3\}$ og $B = \{-2,-1,0,1,2\}$. Lad R være relationen $\geq (aRb$ hvis og kun hvis $a \geq b$).

$$R(1) = \{-2, -1, 0, 1\}$$

 $R(2) = \{-2, -1, 0, 1, 2\}$
 $R(3) = \{-2, -1, 0, 1, 2\}$

For $A_1 \subseteq A$ defineres:

$$R(A_1) = \{b \in B \mid \exists a \in A : aRb\}$$
$$= \bigcup_{a \in A_1} R(a)$$

Hvad er en funktion?

Matematik i gymnasiet:

$$f(x) = x^2$$
 , $f(x) = x^2$

Funktioner som relationer

Lad A og B være mængder.

En funktion f fra A til B er en relation, som opfylder:

• For hvert $a \in Dom(f)$ findes præcis et $b \in B$, så $(a,b) \in f$.

Den relative mængde for a er altså $f(a) = \{b\}$.

Notation:

- $f: A \rightarrow B$ betyder, at f er en funktion fra A til B.
- Vi skriver f(a) = b i stedet for $f(a) = \{b\}$.

Til hvert $a \in Dom(f) \subseteq A$ knytter f et unikt element $f(a) \in B$.

Eksempler

• Lad $A = \{a, b, c\}$ og $B = \{1, 2, 3\}$ og lad

$$f = \{(a,1),(c,2)\} \subseteq A \times B$$

Relationen f er en funktion. Dom $(f) = \{a, c\}$.

• Lad $A = \{a, b, c\}$ og $B = \{1, 2, 3\}$ og lad

$$g = \{(a,1), (b,2), (c,2), (c,3)\} \subseteq A \times B$$

Relationen g er ikke en funktion. Dom(g) = A

• Lad $A = B = \mathbb{R}$ og lad

$$h = \{(x, x^2) \mid x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}$$

Relationen h er en funktion. Dom $(h) = \mathbb{R}$.

Forskrifter

En funktion er karakteriseret ved fire ting:

- En mængde A
- En mængde *B*.
- Domænet $Dom(f) \subseteq A$.
- Værdien f(a) for hvert $a \in Dom(f)$.

En funktion $f: A \rightarrow B$ kan repræsenteres ved:

 Mængden Dom(f) og værdien f(a) for a∈ Dom(f), f.eks. vha. en forskrift som angiver værdien f(a) for hvert a∈ Dom(f).

Eksempel: Definer $f: \mathbb{R} \to \mathbb{R}$ ved

$$Dom(f) = \mathbb{R} \text{ og } f(x) = x^2.$$

Grafer

 $f: A \to B$ kan betragtes som en delmængde af $A \times B$.

Det kaldes grafen for *f*, og den skal opfylde:

• For hvert $a \in Dom(f)$: Præcis et par $(a, b) \in f \subseteq A \times B$. Per definition skal der gælde b = f(a).

Dvs. at grafen har formen:

$$\{(a, f(a)) \mid a \in A\} \subseteq A \times B.$$

Eksempel: $f: \mathbb{R} \to \mathbb{R}$ defineret ved $f(x) = x^2$ giver

$$\{(x,x^2)\mid x\in\mathbb{R}\}\subseteq\mathbb{R}\times\mathbb{R}$$
 dvs.

- Produktmængder
- 2 Relationer
- Repræsentation af relationer Matricer
 Orienterede grafer
- Stier i orienterede grafer
 Afledte relationer
- 6 Funktioner

R-relativ mængde Funktioner som relationer Forskrifter, grafer, egenskaber

Egenskaber

En funktion $f: A \rightarrow B$ siges at være:

- overalt defineret, hvis Dom(f) = A
- surjektiv, hvis Ran(f) = B
- injektiv, hvis $f(x_1) \neq f(x_2)$ når $x_1 \neq x_2$.

Eksempel: Lad
$$A = \{a, b, c\}, B = \{1, 2, 3\}$$
 og lad

$$f = \{(a,1),(c,2)\} \subseteq A \times B$$

Egenskaber:

- $Dom(f) = \{a, c\}$. Ikke overalt defineret.
- $Ran(f) = \{1,2\}$. Ikke surjektiv.
- Injektiv.

