Série d'exercices 3

Mars 2020

Convexity

Convex sets

Exercice 1 Hyperplans et demi-plans

- Quelle est la distance entre deux hyperplans paralleles $\{ \boldsymbol{x} \in \mathbb{R}^n | \mathbf{a}^T \boldsymbol{x} = b_1 \}$ et $\{\boldsymbol{x} \in \mathbb{R}^n | \mathbf{a}^T \boldsymbol{x} = b_2\}$?
- Montrer que l'ensemble des points qui sont plus proches de a que de b (au sens de la norme euclidienne) est un demi-plan (Description de Voronoi).

Exercice 2 polyèdres

Dites lesquels parmis les ensembles suivants sont des polyèdres. Le cas échéant, exprimer S sous la forme $S = \{x | Ax \leq b, Cx = d\}$.

- $S_1 = \{ y_1 \mathbf{a}_1 + y_2 \mathbf{a}_2 \mid -1 \leqslant y_1, y_2 \leqslant 1 \}, \text{ où } \mathbf{a}_1, \mathbf{a}_2 \in \mathbb{R}^n.$
- $S_2 = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} \succeq 0, \boldsymbol{1}^T x = 1, \ \boldsymbol{a}^T \boldsymbol{x} = b_1, \ \sum_{i=1}^n x_i a_i^2 = b_2 \right\}$, où $\boldsymbol{a} \in \mathbb{R}^n$ et $b_1, b_2 \in \mathbb{R}$.
- $S_3 = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} \succeq 0, \, \boldsymbol{x}^T \mathbf{y} \leqslant 1, \forall \, \mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 = 1 \}.$ $S_4 = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} \succeq 0, \, \boldsymbol{x}^T \mathbf{y} \leqslant 1, \forall \, \mathbf{y} \in \mathbb{R}^n, \|\boldsymbol{y}\|_1 = 1 \}.$

Exercice 3

Examiner la convexité des ensembles suivants.

- $S_1 = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \alpha \leq \mathbf{a}^T \boldsymbol{x} \leq \beta \right\}.$ $S_2 = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \alpha_i \leqslant x_i \leqslant \beta_i, i = 1, \dots, n \right\}$ (Rectangle). $S_3 = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \mathbf{a}_1^T \boldsymbol{x} \leq b_1, \mathbf{a}_2^T \boldsymbol{x} \leq b_2 \right\}.$ $S_4 = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \|\boldsymbol{x} \boldsymbol{x}_0\| \leq \|\boldsymbol{x} \boldsymbol{y}\|, \forall \, \boldsymbol{y} \in S \right\}, \text{ avec } S \subset \mathbb{R}^n.$ $S_5 = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \text{dist } (\boldsymbol{x}, S) \leq \text{dist } (\boldsymbol{x}, T) \right\}, \text{ avec } S, T \subset \mathbb{R}^n.$

Exercice 4

Montrer que que si S_1 et S_2 sont deux ensembles convexes de $\mathbb{R}^{m \times n}$, alors il en est de même pour leurs sommes partielles :

$$S = \left\{ (x, y_1 + y_2) \mid x \in \mathbb{R}^m, y_1, y_2 \in \mathbb{R}^n, (x, y_1) \in S_1, (x, y_2) \in S_2 \right\}.$$

Exercice 5

- On suppose que C et D sont deux parties differentes de \mathbb{R}^n . On considère l'ensemble $A = \{(\mathbf{a}, b) \in \mathbb{R}^{n+1}, \ \mathbf{a}^T x \leq b, \ \forall \ \boldsymbol{x} \in C, \ \text{et } \mathbf{a}^T x \geqslant b, \ \forall \ \boldsymbol{x} \in D\}$. Montrer que A est un cone convexe.
- Donner un exemple de deux ensembles convexes fermés disjoints qui ne peuvent pas etre séparés strictement.
- Exprimer l'ensemble convexe fermé $\{x \in \mathbb{R}^2_+ | x_1 x_2 \ge 1\}$ comme l'intersection de demi-plans.

Exercice 6 Fonction support

La fonction support d'un ensemble $C \subset \mathbb{R}^n$ est définie par

$$S_C(\mathbf{y}) = \sup \left\{ \mathbf{y}^T \mathbf{x} \mid x \in C \right\}.$$

 $(S_C(y)$ peut prendre $+\infty$). On suppose que C et D sont deux convexes fermés de \mathbb{R}^n . Montrer que

$$C = D \iff S_C = S_D.$$

Exercice 7

Soit K^* le cone dual d'un cone convexe K, i.e.,

$$K^* := \left\{ \mathbf{y} \in \mathbb{R}^n \mid \forall \, \boldsymbol{x} \in K : \langle \mathbf{y}, \boldsymbol{x} \rangle \geqslant 0 \right\}.$$

Montrer les relations suivantes.

- K^* est un cone convexe.
- $K_1 \subset K_2 \implies K_2^* \subset K_1^*$.
- K^* est fermé.

Convex functions

Exercice 8 Examples of convex functions

Pour chacune des fonctions suivantes, dites si elle est convexe, concave, quasiconvexe², ou quasiconcave:

$$f_1(x) = e^x - 1$$
 on \mathbb{R} , $f_2(\mathbf{x}) = x_1 x_2$ on \mathbb{R}^2_{++} , $f_3(\mathbf{x}) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} ,

$$f_4(\mathbf{x}) = x_1/x_2 \text{ on } \mathbb{R}^2_{++}, \quad f_5(\mathbf{x}) = x_1^2/x_2 \text{ on } \mathbb{R} \times \mathbb{R}_{++},$$

$$f_6(\boldsymbol{x}) = x_1^{\alpha} x_2^{1-\alpha} \text{ on } \mathbb{R}^2_{++}, 0 \le \alpha \le 1, \quad f_7(\boldsymbol{x}) = \left(\sum_{i=1}^n x_i^p\right)^{1/p}, p > 1, p \ne 0.$$

²l'image inverse de chaque ensemble de la forme $(-\infty, a)$ est convexe, or; $\forall x, y \in Set \lambda \in [0, 1]$: $f(\lambda x + (1 - \lambda)y) \leq \max\{f(x), f(y)\}.$

Exercice 9 Norms and Dual Norms

Show that The negative log-determinant function

$$f(X) = -\log\left(\det(X)\right)$$

is convex on \mathbb{S}^n_{++} .

Exercice 10 Inégalité de Jensen

Soit f(x) une fonction convexe et $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_+$ des poids vérifiants $\sum_{j=1}^k w_j = 1$. Montrer que pour $\mathbf{x}_1, \ldots, \mathbf{x}_k \in \mathbb{R}^n$:

$$f(\lambda_1 \boldsymbol{x}_1 + \ldots + \lambda_k \boldsymbol{x}_k) \ge \lambda_1 f(\boldsymbol{x}_1) + \ldots + \lambda_k f(\boldsymbol{x}_k).$$

Exercice 11

Soit $f : \mathbb{R} \to \mathbb{R}$ est convexe, et $a, b \in \text{dom}(()f)$, avec a < b.

- Montrer que: $\forall x \in [a, b] : f(x) \le \frac{b-x}{b-a} f(a) + \frac{x-a}{b-a} f(b)$.
- Montrer que: $\frac{f(x)-f(a)}{x-a} \le \frac{f(b)-f(a)}{b-a} \le \frac{f(b)-f(x)}{b-x}$.
- ullet Supposons que f est différentiable. Montrer que

$$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$$

• Supposons que f est deux fois différentiable. Montrer que $f''(a) \ge 0$ et $f''(b) \ge 0$.

Exercice 12

Quand est-ce que l'épigraphe d'une fonction f est un demi-plan ? cône convexe ? polyèdre ?

Exercice 13

On suppose que $f: \mathbb{R}^n \to \mathbb{R}$ est convexe avec $dom(f) = \mathbb{R}^n$, et majorée sur \mathbb{R}^n . Montrer que f est constante.

Convex optimization

Exercice 14

Montrer que $\boldsymbol{x}^* = (1, 1/2, -1)$ est optimal pour le problème

minimize
$$f(\boldsymbol{x}) = (1/2) \boldsymbol{x}^T P \boldsymbol{x} + \mathbf{q}^T \boldsymbol{x} + r$$

 $\boldsymbol{x} \in \mathbb{R}^3$
subject to $-1 \le x_i \le 1, i = 1, 2, 3$

οù

$$P = \begin{bmatrix} 13 & 12 - 2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix}, \quad q = \begin{bmatrix} -22 \\ -14.5 \\ 13 \end{bmatrix}, \quad r = 1.$$