GEOMETRÍA BÁSICA. 2014

NO SE PERMITE NINGÚN TIPO DE MATERIAL ESCRITO. Todas las respuestas deben estar justificadas razonadamente.

Ejercicio 1. (3 puntos) Demostrar que las tres medianas de un triángulo se cortan en un punto.

Ejercicio 2. (3 puntos) Una cometa es un cuadrilátero convexo $\mathcal{Q} = (A, B, C, D)$ de modo que AB = BC y CD = DA.

- 1. Probar que un cuadrilátero es una cometa si y solo si r_{BD} es la mediatriz de [A, C].
 - 2. Probar que en una cometa \mathcal{Q} , se tiene que $\angle_{\mathcal{Q}}A = \angle_{\mathcal{Q}}C$.

Ejercicio 3. (4 puntos)

- 1. Enunciar la fórmula que relaciona los números de vértices, caras y aristas de un poliedro convexo.
- 2. ¿La fórmula anterior es válida para todos los poliedros no convexos? Justificar la respuesta.
- 3. Probar, a partir de la fórmula pedida en el apartado 1, que no existe un poliedro regular con 30 caras.

Soluciones

Ejercicio 1. Teorema 7.21, páginas 121-122.

Ejercicio 2.

Apartado 1:

- \Rightarrow Supongamos que (A, B, C, D) es una cometa, es decir AB = BC y CD = DA. Como la mediatriz de [A, C] es el conjunto $m_{AC} = \{X \in \mathbf{P} : XA = XC\}$, que es una recta y se tiene que $B \in m_{AC}$ y $D \in m_{AC}$. Entonces la recta m_{AC} pasa por A y por C, luego por el axioma P2, $r_{BD} = m_{AC}$.
- \Leftarrow Por supuesto hay que suponer que el cuadrilátero es convexo. Si no fuera convexo hay cuadriláteros donde se verifica la condición $r_{BD} = m_{AC}$ y no son cometas, muchos alumnos se dieron cuenta de este hecho y fueron premiados con una calificación mayor en este problema. Suponiendo que el cuadrilátero es convexo hemos de probar que si $r_{BD} = m_{AC}$ entonces AB = BC y CD = DA. Ahora bien como $r_{BD} = m_{AC} = \{X \in \mathbf{P} : XA = XC\}$, entonces en particular haciendo X = B: AB = BC y tomando X = D: AD = DC.

Apartado 2: Daremos tres métodos:

Método 1: Como $r_{BD} = m_{AC}$ entonces la reflexión σ con eje m_{AC} verifica $\sigma(A) = C$, $\sigma(B) = B$ y $\sigma(D) = D$, de donde se tiene que $\sigma(\angle_{\mathcal{Q}}A) = \angle_{\mathcal{Q}}C$ y por tanto $\angle_{\mathcal{Q}}A$ y $\angle_{\mathcal{Q}}C$ son congruentes.

Método 2. Los triángulos $\mathcal{T}_1 = \Delta\{A, B, D\}$ y $\mathcal{T}_2 = \Delta\{C, B, D\}$ tienen los tres lados congruentes: AB = BC, AD = CD y BD = BD, luego \mathcal{T}_1 y \mathcal{T}_2 son triángulos congruentes (criterio LLL), por tanto $\angle_{\mathcal{Q}}A = \angle_{\mathcal{T}_1}A = \angle_{\mathcal{T}_2}C = \angle_{\mathcal{Q}}C$.

Método 3. Se consideran los triángulos isósceles $\mathcal{T}_1 = \Delta\{A, C, B\}$ y $\mathcal{T}_2 = \Delta\{A, D, C\}$, por ser isósceles $\angle_{\mathcal{T}_1}A = \angle_{\mathcal{T}_1}C$ y $\angle_{\mathcal{T}_2}A = \angle_{\mathcal{T}_2}C$ y como $\angle_{\mathcal{Q}}A = \angle_{\mathcal{T}_1}A + \angle_{\mathcal{T}_2}A$ y $\angle_{\mathcal{Q}}C = \angle_{\mathcal{T}_1}C + \angle_{\mathcal{T}_2}C$, tenemos que $\angle_{\mathcal{Q}}A = \angle_{\mathcal{Q}}C$.

Ejercicio 3.

Apartado 1. Fórmula de Descartes-Euler: Teorema 13.9 de la página 218.

Apartado 2. No, por ejemplo el poliedro de la figura 13-9.

Apartado 3. De la fórmula del apartado 1 se deduce el teorema 13.13 donde ninguno de los poliedros regulares posibles tiene 30 caras.