Homework 2: Sets, functions and cardinality (Due Tuesday, Feb. 21st)

1. Let $f: X \to Y$ be a function and let $\{Y_j\}$ be a collection of subsets of Y. Prove that the inverse image behaves well under unions and intersections *i.e.*

$$f^{-1}(\bigcup_{j} Y_{j}) = \bigcup_{j} f^{-1}(Y_{j}); \qquad f^{-1}(\bigcap_{j} Y_{j}) = \bigcap_{j} f^{-1}(Y_{j}).$$

Are the above properties true if $\{Y_j\}$ is replaced by a collection $\{X_j\}$ of subsets of X and f^{-1} is replaced by f? **Hint.** Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Let A = (-1,0) and B = (0,1). What are $f(A \cap B)$ and $f(A) \cap f(B)$?

- **2.** a) Prove that if A and B are finite sets with |A| = |B|, then any injection $f: A \to B$ is also a surjection. Show this is not necessarily true if A and B are not finite.
- b) Prove that if A and B are finite sets with |A| = |B|, then any surjection $f: A \to B$ is also an injection. Show this is not necessarily true if A and B are not finite.
- **3.** Determine whether the following sets are finite, countably infinite or uncountable, justifying in each case.
 - a) $\{1/n: n \in \mathbb{Z} \setminus \{0\}\};$
 - b) The collection of all finite subsets of \mathbb{N} ;
 - c) The set of all functions $f: \mathbb{N} \to \mathbb{N}$;
 - d) The set of all non-decreasing functions $f: \mathbb{N} \to \mathbb{N}$;
 - e) The set of all non-increasing functions $f: \mathbb{N} \to \mathbb{N}$;
- **4.** Use the Cantor-Bernstein-Schröeder theorem to show that the real intervals (0,1) and [0,1) have the same cardinality. **Hint.** It is easy to find linear injections from each of the intervals into the other.
- **5.** In class, we went over the diagonal argument used by Cantor to show that \mathbb{R} (equivalently, (0, 1)) is uncountable. Give an alternative proof using the following facts:
- a) Any real number $x \in (0, 1)$ can be written in binary representation, $0.a_1 a_2 a_3 \dots$ where a_i is either 0 or 1.
- b) Binary expressions like the above can be put in a bijective correspondence with subsets of natural numbers (explain how namely).
 - c) Cantor's theorem (proved in class) stating that $Card(X) < Card(\mathcal{P}(X))$
- **6.** Prove that if B is a countable set then $\operatorname{Card}(\mathbb{R} \cup B) = \operatorname{Card}(\mathbb{R})$.

Hint: For simplicity assume first that $\mathbb{R} \cap B = \emptyset$ and that B is countably infinite, and construct a bijection $f : \mathbb{R} \cup B \to \mathbb{R}$ such that f(x) = x for every $x \in \mathbb{R} \setminus \mathbb{N}$ and that $f(\mathbb{N} \cup B) = \mathbb{N}$.

7. Prove that the set of all circles in \mathbb{R}^2 with center P=(x,y) and radius r, such that $r\geq 0$ is a positive rational number and such that $x,y\in\mathbb{Z}$, is countable.