The Forty-Eighth Annual William Lowell Putnam Competition Saturday, December 5, 1987

A-1 Curves A, B, C and D are defined in the plane as follows:

$$A = \left\{ (x,y) : x^2 - y^2 = \frac{x}{x^2 + y^2} \right\},$$

$$B = \left\{ (x,y) : 2xy + \frac{y}{x^2 + y^2} = 3 \right\},$$

$$C = \left\{ (x,y) : x^3 - 3xy^2 + 3y = 1 \right\},$$

$$D = \left\{ (x,y) : 3x^2y - 3x - y^3 = 0 \right\}.$$

Prove that $A \cap B = C \cap D$.

A-2 The sequence of digits

123456789101112131415161718192021...

is obtained by writing the positive integers in order. If the 10^n -th digit in this sequence occurs in the part of the sequence in which the m-digit numbers are placed, define f(n) to be m. For example, f(2) = 2 because the 100th digit enters the sequence in the placement of the two-digit integer 55. Find, with proof, f(1987).

A-3 For all real x, the real-valued function y = f(x) satisfies

$$y'' - 2y' + y = 2e^x.$$

- (a) If f(x) > 0 for all real x, must f'(x) > 0 for all real x? Explain.
- (b) If f'(x) > 0 for all real x, must f(x) > 0 for all real x? Explain.
- A-4 Let *P* be a polynomial, with real coefficients, in three variables and *F* be a function of two variables such that

 $P(ux, uy, uz) = u^2 F(y-x, z-x)$ for all real x, y, z, u, and such that P(1,0,0) = 4, P(0,1,0) = 5, and P(0,0,1) = 6. Also let A, B, C be complex numbers with P(A,B,C) = 0 and |B-A| = 10. Find |C-A|.

A-5 Let

$$\vec{G}(x,y) = \left(\frac{-y}{x^2 + 4y^2}, \frac{x}{x^2 + 4y^2}, 0\right).$$

Prove or disprove that there is a vector-valued function

$$\vec{F}(x, y, z) = (M(x, y, z), N(x, y, z), P(x, y, z))$$

with the following properties:

- (i) M, N, P have continuous partial derivatives for all $(x, y, z) \neq (0, 0, 0)$;
- (ii) Curl $\vec{F} = \vec{0}$ for all $(x, y, z) \neq (0, 0, 0)$;
- (iii) $\vec{F}(x, y, 0) = \vec{G}(x, y)$.

A-6 For each positive integer n, let a(n) be the number of zeroes in the base 3 representation of n. For which positive real numbers x does the series

$$\sum_{n=1}^{\infty} \frac{x^{a(n)}}{n^3}$$

converge?

B-1 Evaluate

$$\int_2^4 \frac{\sqrt{\ln(9-x)}\,dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}.$$

B-2 Let r, s and t be integers with $0 \le r, 0 \le s$ and $r+s \le t$. Prove that

$$\frac{\binom{s}{0}}{\binom{t}{r}} + \frac{\binom{s}{1}}{\binom{t}{r+1}} + \dots + \frac{\binom{s}{s}}{\binom{t}{r+s}} = \frac{t+1}{(t+1-s)\binom{t-s}{r}}.$$

B-3 Let F be a field in which $1+1 \neq 0$. Show that the set of solutions to the equation $x^2 + y^2 = 1$ with x and y in F is given by (x,y) = (1,0) and

$$(x,y) = \left(\frac{r^2 - 1}{r^2 + 1}, \frac{2r}{r^2 + 1}\right)$$

where r runs through the elements of F such that $r^2 \neq -1$.

- B-4 Let $(x_1, y_1) = (0.8, 0.6)$ and let $x_{n+1} = x_n \cos y_n y_n \sin y_n$ and $y_{n+1} = x_n \sin y_n + y_n \cos y_n$ for $n = 1, 2, 3, \ldots$ For each of $\lim_{n \to \infty} x_n$ and $\lim_{n \to \infty} y_n$, prove that the limit exists and find it or prove that the limit does not exist.
- B-5 Let O_n be the n-dimensional vector $(0,0,\cdots,0)$. Let M be a $2n\times n$ matrix of complex numbers such that whenever $(z_1,z_2,\ldots,z_{2n})M=O_n$, with complex z_i , not all zero, then at least one of the z_i is not real. Prove that for arbitrary real numbers r_1,r_2,\ldots,r_{2n} , there are complex numbers w_1,w_2,\ldots,w_n such that

$$\operatorname{re}\left[M\left(\begin{array}{c}w_1\\\vdots\\w_n\end{array}\right)\right] = \left(\begin{array}{c}r_1\\\vdots\\r_n\end{array}\right).$$

(Note: if C is a matrix of complex numbers, re(C) is the matrix whose entries are the real parts of the entries of C.)

B–6 Let F be the field of p^2 elements, where p is an odd prime. Suppose S is a set of $(p^2-1)/2$ distinct nonzero elements of F with the property that for each $a \neq 0$ in F, exactly one of a and -a is in S. Let N be the number of elements in the intersection $S \cap \{2a : a \in S\}$. Prove that N is even.