1 Криптография

1.1

Постановка задачи. Простейшие криптосистемы. Сдвиг и афинное преобразование. Частотный анализ. Биграммы.

1.2

1.3

Необходимые сведения из теории чисел. Обратимость вычета по данному модулю. Алгоритм нахождения обратного элемента. Малая теорема Ферма. функция Эйлера и теорема Эйлера. Китайская теорема об остатках. Возведение в степень методом повторного возведения в квадрат.

Вычет а называется обратимым по модулю N, если сущетсвует вычет x такой, что

$$ax \equiv 1 \pmod{N}$$

Вычет является обратимым тогда и только тогда, когда он взаимно прост с модулем (HOД(a, N) = 1).

Теорема Ферма утверждает, что если p - простое число и a - целое число, не делящееся на p, то

$$a^{p-1} \equiv 1 \pmod{p}$$
;

Функция Эйлера $\varphi(n)$ — мультипликативная арифметическая функция, равная количеству натуральных чисел, меньших n n и взаимно простых с ним. При этом полагают по определению, что число 1 взаимно просто со всеми натуральными числами, и $\varphi(1)=1$. Пример: $\varphi(24)=8$: 1,5,7,11,13,17,19,23.

Теорема Эйлера гласит, что если a и m взаимно просты, то $a^{\varphi(m)} \equiv 1 \pmod{m}$. Малая теорема Ферма является следствием теореми Эйлера.

Китайская теорема об остатках. Пусть $n_1, n_2, ..., n_k$ - некоторые попарно взаимно простые числа, а $r_1, r_2, ..., r_k$ - некоторые целые числа. Тогда существует такое целое число M, что оно будет решением системы уравнений:

$$\begin{cases} M \equiv r_1 \pmod{n_1} \\ M \equiv r_2 \pmod{n_2} \\ + \dots \\ M \equiv r_k \pmod{n_k} \end{cases}$$

Причём это решение единственно по модулю $n_1 \cdot n_2 \cdot \ldots \cdot n_k$

Метод повторного возведения в квадрат. Дальше идут мои личные объяснения. Пусть нам нужно возвести чилсло a в степень n. Представим n как сумму степеней двойки. Пример: 51=32+16+2+1. Мы будем вычислять a^n циклом из n итераций. На итерации $i=\overline{0,n-1}$ будет вычисляться a^{2^i} . Причём это будет сделано с помощью уже полученного на предыдущей итерации результата ($a^{2^i}=(a^{2^{i-1}})^2$). Переменная результата будет инициализирована единицей и будет домножаться на a^{2^i} каждый раз, когда i слева бит числа n не равен нулю. Таким образом, мы возведём число в степень n примерно за $\log_2 n$ операций.

1.4

 Γ руппа — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный.

Конечная группа - группа с ограниченным числом элементов. Пример конечной группы - вычеты по модулю n.

Пусть G - конечная группа, m=|G| (порядок группы, количество элементов). Теорема: $\forall g \in G: g^m=e.$

Порядок элемента g (записывают, как ord(g)) - наименьшее натуральное s такое, что $g^s = e$. Считают, что $ord(g) = \infty$, если такого s не существует.

Группа G называется циклической, если $\exists g \in G : G = \{g^k, k \in \mathbb{Z}\}$. Пример циклической группы - вычеты по модулю n с операцией сложения.

1.5

Задача дискретного логарифмирования и система Диффи-Хеллмана обмена ключами.

Задача дискретного логарфмирования. Пусть G - конечная группа и $g \in G$. Задача: для $h \in \{g^s, s \in \mathbb{Z}\}$ найти натуральное k такое, что $h = g^k$. k - дискретный логарифм элемента h по основанию g. Замечание: такое k - не единственное, так как $g^m = e \implies g^k = g^{m+k} = g^{2m+k} = \ldots = g^{nm+k}, n \in \mathbb{N}$. Основная фишечка: возведение в степень быстрое, а нахождение логарифма - долгое.

Система Диффи-Хеллмана (1976). Все знаю конечную группу G и элемент g достаточно большого порядка. $G=(\mathbb{Z}_p\backslash\{0\},\times)$. Важно, что $|G|=p-1,\ p$ - большое простое. Эта группа циклическая. Что происходит? Алиса фиксирует своё некоторое натуральное число а, держит его в секрете, но вычисляет и выкладывает значение g^a . После этого любые 2 участника сформируют у себя общее число $g^{ab}=(g^a)^b=(g^b)^a$.

- 1.6
- 1.7
- 1.8
- 1.9

1.10

Проверка числа на простоту и проблема факторизации. Решето Эратосфена. Псевдопростые числа и числа Кармайкла. Метод Поклингтона. (p-1) метод Покларда.

Псевдопростые числа и числа Кармайкла. Если p - простое, то $\forall a (малая теорема Ферма). Метод Кармайкла позволяет точно сказать, является ли число непростым, но не позволяет утверждать обратного. Если <math>\exists a < p$ такое, что $a^{p-1} \not\equiv 1 \pmod{p}$, то число p - не простое. Если для данного p $\forall a , но при этом само число не являетя простым, то его называют числом Кармайкла (пример: 561).$

Метод Поклингтона проверки числа на простоту. Предположим, что у числа n-1 есть простой делитель $p>\sqrt{n}-1$. Если $\exists a$ (целое) такое, что выполены 2 условия:

- 1. $a^{n-1} \equiv 1 \pmod{n}$
- 2. $\left(a^{\frac{n-1}{p}} 1, n\right) = 1$

То число n - простое.

(p-1)-метод Полларда разложения числа на множители. Выберем число m, которое делится на все натуральные числа $\leq c$ (Пример: c!). Возьмём q такое, что $2 \leq q \leq n-2$. Вычислим $q^m \pmod{n}$. Если $q^m \neq 1 \pmod{n}$, продолжаем. Вычисляем $d = \text{HOД}(q^m-1,n)$. Если $d \neq 1$, то $n = d \cdot \frac{n}{d}$.