

Decision Tree Classification on Outsourced Data

Chris Clifton clifton@cs.purdue.edu

Motivation

Data Outsourcing ->Popular approach recently, many data storage services:

- Amazon Cloud Services
- Google Cloud Storage
- Dropbox

What about individuals' privacy in outsourced data records?

- Many privacy standards (I-diversity, k-anonymity, differential privacy)
- Many privacy ensuring data outsourcing/publishing methods (suppression/generalization, anatomization ...)
- Somehow solved

Can we extract useful information from outsourced data records? (Outsourcing occurs according to anatomization in this question)

- Data querying solved
- Data Analytics unsolved?

Our Contribution

Learn decision tree from outsourced data that is in anatomization form

- Low memory and execution time overhead for data publisher
- Most learning effort on cloud server

Anonymization

k-anonymity → Each group has at least 2 tuples e.g., k = 2 here I-diversity \rightarrow P(Disease of A = X) < 1/I e.g., I = 2 here

t-closeness -> Sensitive values in each group should reflect the original distribution of sensitive values

Anatomy Model

Separate table into two tables, quasi-identifier (QIT) and sensitive table (ST) instead of generalizing records in the same group.

Age	Address	GID
20	Dayton	1
22	Richmond	1
		2

GID Disease Cold Fever

Quasi-identifier table (QIT)

Sensitive table (ST)

Related Work

SQL Queries over a cloud database based on anatomy model (Nergiz et al.).

Patient (P)	Age (A)	Address (AD)	GID (G)	SEQ (S)
Ike	41	Dayton	1	1
Eric	22	Richmond	1	2
Olga	30	Lafayette	2	3
Kelly	35	Lafayette	2	4
Faye	24	Richmond	3	5
Mike	47	Richmond	3	6
Jason	45	Lafayette	4	7
Max	31	Lafayette	4	8

Disease H(SEQ) GID (G) (D) $H_{k2}(1)$ Cold $H_{k2}(2)$ Fever Flu $H_{k2}(3)$ $H_{k2}(4)$ Cough $H_{k2}(5)$ Flu 3 $H_{k2}(6)$ 3 Fever $H_{k2}(7)$ Cough $H_{k2}(8)$ Flu

Patient_{OIT} = Quasi-identifier table

Patient_{SNT} = Sensitive table

Selection (group by as well), insertion, deletion, update operations

Collaborative Decision Tree Learning

Proposal: Cloud Database Server builds the base decision tree from quasiidentifier table. Data publisher makes sub trees on each leaf using sensitive table and quasi-identifier table. A collaborative decision tree learning (cdtl) from data publisher and data storing party:

- Sub trees are made on-the-fly.
- Small number of instances in base decision tree leaves: Memory Size Requirement Reduction, Execution Time Reduction
- Base tree complexity and quasi-identifier tables predictor power is an

Experiments and Results

- Four datasets from the UCI collection: adult, vote, autos and Australian credit
- Metrics: Accuracy, Execution Time Savings (ets) and Memory Savings (ms)

- Client Naïve Learning (cnl): Client retrieves the QIT and ST tables, rebuilds the original data and learns a decision tree. This decision tree is then encrypted and stored in Cloud Database Server.
- Cloud Database Server Learning (cdbsl): Cloud database server learns a base decision tree from quasi-identifying table. Client never makes a modification to this model.

