

MAS: Betriebssysteme

Einführung in Computersysteme

T. Pospíšek

Impressum

- Dozent: Tomáš Pospíšek <tpo@sourcepole.ch>
- Unterlagen: https://github.com/tpo/betriebssysteme
- Buch zur Vorlesung: "Grundkurs Betriebssysteme" von Peter Mandl
 - für ZHAW Studenten gratis als E-Book im eMedien-Portal verfügbar
- Skript basiert zu grossen Teilen auf jenem von Peter Mandl

Weiterführende Literatur

- Andrew S. Tanenbaum, "Modern Operating Systems", "die Bibel"
- Eduard Glatz, "Betriebssysteme", etwas umfangreicher und detaillierter als Mandl

Inhalt und Ablauf der Vorlesung

- Betriebssystem Theorie
- Betriebssystem Praxis
 - Shell
 - Automatisierung
 - Programmierung in C
 - Linux, Windows
- Praxis, Theorie, Aufgaben
- Gesamtüberblick → Zielsetzung → Stoff

Einschub

- Zentrale Fragen an Studenten:
 - Was ist ein Betriebssystem?
 - Was macht es, was bietet es?
 - Welche Probleme löst es?
 - Fortgeschritten: Sind diese Probleme auch anders lösbar? Wie?
 - Sehr fortgeschritten: Kennen Sie Systeme, wo die anstehenden Probleme anders gelöst wurden? Welche?
- Wir schauen uns insbesodere an wie das Betriebssystem div. Problem löst

Gesamtüberblick

1. Einführung in Computersysteme

- 2. Entwicklung von Betriebssystemen
- 3. Architekturansätze
- 4. Interruptverarbeitung in Betriebssystemen
- 5. Prozesse und Threads
- 6. CPU-Scheduling
- 7. Synchronisation und Kommunikation
- 8. Speicherverwaltung
- 9. Geräte- und Dateiverwaltung
- 10. Betriebssystemvirtualisierung

Zielsetzung

- Aufbau von Computersystemen kennenlernen
- Schnittstelle von Betriebssystemen zur Hardware kennenlernen
- Betriebssystemarten einordnen können
- Aufgaben von Betriebssystemen kennenlernen

1. Überblick über Rechnersysteme

- 2. Fallstudien zu Rechnerarchitekturen
- 3. Betriebssystemarten
- 4. Aufgaben von Betriebssystemen

Gesamtüberblick

Rechnerarchitekturen

- Von-Neumann-Rechner
 - CPU mit Leitwerk (control unit) und Rechenwerk
 - Bussystem (Datenbus, Adressbus und Steuerbus)

Rechnerarchitekturen

Von-Neumann-Rechner

Überblick

- 1. Überblick über Rechnersysteme
- 2. Fallstudien zu Rechnerarchitekturen
- 3. Betriebssystemarten
- 4. Aufgaben von Betriebssystemen

CPU-Register als Schnittstelle für den Betriebssystemprogrammierer: Intel 8086

- Registersatz mit vierzehn 16-Bit-Registern
- 1978, Nachfolger von 8080 (8-Bit, 1974)

Allgemeine Arbeitsregister

AX	AH	AL
ВХ	ВН	BL
CX	СН	CL
DX	DH	DL

Akkumulator	CS
Basisregister	DS
Zählerregister	ES
Datenregister	SS

Segmentregister

Quelle: http://de.wikipedia.org/wiki/X86-Prozessor

Codesegment
Datensegment
Extrasegment
Stacksegment

Adress- und Indexregister

SP	
BP	
DI	
SI	

Stapelzeiger Basiszeiger

Ziellindex Quellindex IP

SR

Befehlszeiger

Statusregister (PSW)

CPU-Register als Schnittstelle für den Betriebssystemprogrammierer: Intel Pentium

Registersatz

- Acht 32-Bit-Register kompatibel zu den Vorgängern EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI
- Segmentregister CS, DS, ... (wie bei 8086)

31

- Acht Gleitkommaregister-Register
- Befehlszeiger EIP (IP), ...

Quelle: http://www.chip.de

O

- 1993

	.0	· ·	
EAX	АН	AL	AX
EBX	ВН	BL	ВХ
ECX	СН	CL	СХ
EDX	DH	DL	DX

15

Registerbezeichnungen:

[E]AX: Akkumulator [E]BX: Basisregister [E]CX: Zählregister [E]DX: Datenregister

CPU-Register als Schnittstelle für den Betriebssystemprogrammierer: AMD64 (x64)

- Registersatz mit sechzehn 64-Bit-Mehrzweckregistern
 - RAX (EAX, AX, AL), RBX, RCX, RDX, RSP, RBP, RDI, RSI
 - R8 R15 (ergänzt)
- Weitere Register
 - Acht 64-Bit-Gleitkommaregister MMX0/FPR0 MMX7/ FPR7
 - Sechzehn 128-Bit-Mediaregister XMM0 XMM
 - 64-Bit-Statusregister RFLAGS
 - 64-Bit-Befehlszeiger RIP (EIP, IP)
 - Alte Segmentregister CS, DS, ... (Kompatibilität)
- 2003

http://www.socket939.co.uk

Einschub: Beispielskizze für Caches im Singleprozessor

 Typischer Einsatz von Caches (Speicherhierarchie) in heutigen Computersystemen

- L1 ist kleiner und schneller als L2
- L2 ist kleiner und schneller als L3
- L1 und L2 meist auf dem Chip
- L3 außerhalb

Einschub: Beispielskizze eines Mehrkern-Chips

 Zwei Prozessorkerne jeweils mit integriertem L1-Cache , L2/L3-Cache auf dem Chip (Die)

Quelle: Böttcher, A.: Rechneraufbau und Rechnerarchitektur, Springer-Verlag, 2006

Vereinfachte Architektur der Hardware eines Computersystems

Beispiel: Skizze des Motherboards der Intel Core-i-Serie

Beispiel: Skizze zum Intel Core i7

	Kern	Kern	Kern	Kern		
Grafik- Prozessor	L1/L2 Cache	L1/L2 Cache	L1/L2 Cache	L1/L2 Cache	Memory Controller	
Gemeinsamer L3 Cache (Shared) Bussysteme						
Ein Die						

- Sandy-Bridge-Architektur (Micro-Architektur)
- Grafik-Prozessor auch auf dem Die
- In jedem Kern: L1 (z.B. 64 KB je Kern) und L2 (z.B. 256 KB je Kern)
- L3 ist z.B. 1 20 MB groß

Überblick

- 1. Überblick über Rechnersysteme
- 2. Fallstudien zu Rechnerarchitekturen
- 3. Betriebssystemarten
- 4. Aufgaben von Betriebssystemen

Arten von Betriebssystemen

Überblick

- 1. Überblick über Rechnersysteme
- 2. Fallstudien zu Rechnerarchitekturen
- 3. Betriebssystemarten
- 4. Aufgaben von Betriebssystemen

Grundfunktionen des Betriebssystems

- Vereinfachung
- Einheitlichkeit
- Schutz
- BS soll Anwender bzw. Anwendungsentwickler von Details der Hardware entlasten
- Modern strukturierte BSe kapseln den Zugriff auf die Betriebsmittel
 - der Zugriff funktioniert also nur über BS (Systemdienste)
 - Virtuelle Maschine über der Hardware
- Wesentliche Aufgabe des BS ist die Betriebsmittelverwaltung

Betriebsmittel (1)

- Hard-/Softwareressourcen eines Computersystems werden als Betriebsmittel bezeichnet
 - Prozesse und Prozessoren
 - Speicher, Arbeitsspeicher (Hauptspeicher)
 - Dateien
 - Periphere Geräte (I/O-Geräte)
- Man unterscheidet reale und virtuelle Betriebsmittel
- Virtuelle Betriebsmittel sind nur scheinbar vorhanden:
 - Virtueller Hauptspeicher
 - Virtuelle Drucker
 - Virtuelle Koprozessoren

Betriebsmittel (2)

Die wichtigsten Betriebsmittel

Betriebsmittelklassifikation

- Betriebsmittel-Klassifikationen:
 - Hardware- oder Software-Betriebsmittel
 - Hardwarebetriebsmittel ist z.B. der Prozessor
 - Softwarebetriebsmittel sind z.B. Nachrichten
 - Entziehbare und nicht entziehbare Betriebsmittel
 - Prozessoren sind entziehbar
 - Drucker sind nicht entziehbar
 - Exklusiv oder "shared" nutzbare Betriebsmittel
 - Prozessor ist nur exklusiv nutzbar
 - Magnetplatte ist "shared", also gemeinsam, nutzbar
- Das Betriebssystem muss dafür Sorge tragen, dass exklusive Betriebsmittel konfliktfrei genutzt werden
 - Die Entscheidung trifft ein Scheduling-Algorithmus

Überblick

- ✓ Einführung in Computersysteme
- 2. Entwicklung von Betriebssystemen
- Architekturansätze
- 4. Interruptverarbeitung in Betriebssystemen
- 5. Prozesse und Threads
- CPU-Scheduling
- 7. Synchronisation und Kommunikation
- Speicherverwaltung
- 9. Geräte- und Dateiverwaltung
- 10. Betriebssystemvirtualisierung