List 1

Samir Salmen (NUSP: 11298636) samir.salmen@usp.br

February 18, 2021

Exercise 1

We want to find an $a^* = \arg\min_a \mathbb{E}(a-y)^2$, where y is a random variable. We know that because y is randomly distributed, by definition its expected value is $\mathbb{E}[y]$. This means that if $a^* = \mathbb{E}[y]$, then on average a^* minimizes l(a,y).

Theorem. *if* $l(a,y) = (a-y)^2$, then the Bayes argument that minimizes the loss function is $a^* = \mathbb{E}y$. *Proof.*

$$a^* = \arg\min_{a} \mathbb{E}(a - y)^2$$

$$a^* = \arg\min_{a} [\mathbb{E}[y^2] + a^2 - 2a\mathbb{E}[y]]$$

Deriving this expression with respect to *a*.

$$0 = 2a^* - 2\mathbb{E}[y]$$
$$a^* = \mathbb{E}[y]$$

Exercise 2

- (a) Based on exercise 1, we know that $f^*(x) = \mathbb{E}[y|x]$.
- (b)

IMPA