Model answers to Week 03 review worksheet — exercises for §3

Part A. Exercises for interactive discussion

E3.1 (Sweedler notation) Let C be a coalgebra with coproduct Δ and counit ϵ . Let $x \in C$. Review the Sweedler notation, $\Delta x = \sum x_{(1)} \otimes x_{(2)}$, for the coproduct; we will write it without the \sum symbol.

Which of the following are necessarily the same as x?

(Exclude the options where the Sweedler notation is used incorrectly or which are ill-defined.)

$$\begin{split} A &= \epsilon(x_{(1)}) x_{(2)} & D &= \epsilon(x_{(1)}) \epsilon(x_{(2)}) \\ B &= x_{(1)} \epsilon(x_{(2)}) & E &= \frac{1}{2} (x_{(1)} + x_{(2)}) \\ C &= x_{(2)} & F &= \epsilon(x_{(1)}) \epsilon(x_{(2)}) x_{(2)} \\ \end{split}$$

Answer to E3.1. A, B, F are equal to x. D is well-defined but is equal to $\epsilon(x)$.

A = x by the counit law.

B might be better written as $\epsilon(x_{(2)})x_{(1)}$ scalars precede elements of C, but is still equal to x by the counit law (and is still commonly written in the form $x_{(1)}\epsilon(x_{(2)})$ which refers to the canonical isomorphism $C\otimes \mathbb{C}\cong C$).

C is not well-defined: an expression cannot involve the second leg of Δx without the first leg. For example, if $\Delta x = x \otimes x$, then Δx can also be written as $2x \otimes \frac{1}{2}x$, so what is $x_{(2)}$: x or $\frac{1}{2}x$?

D is clearly a scalar (an element of the field $\mathbb C$) so it cannot be equal to x. D is well-defined because it is an expression bilinear in $x_{(1)}$ and $x_{(2)}$. We can simplify D as follows: $\epsilon(x_{(1)})\epsilon(x_{(2)}) = \epsilon\left(x_{(1)}\epsilon(x_{(2)})\right)$ because ϵ is linear; but $x_{(1)}\epsilon(x_{(2)}) = x$ by the counit law, hence $D = \epsilon(x)$.

E is not well-defined since it is not bilinear in $x_{(1)}$ and $x_{(2)}$: try substituting $x \otimes x = 2x \otimes \frac{1}{2}x$ for $x_{(1)} \otimes x_{(2)}$.

F is well-defined and can be simplified: $\epsilon(x_{(1)})\epsilon(x_{(2)})x_{(2)}=\epsilon(x_{(1)})x_{(2)}=x$ where we apply the counit law twice.

E3.2 (grouplike elements) Let (C, Δ, ϵ) be a coalgebra. Review the definition of a grouplike element of C.

- (a) Prove that any $g \in C$ such that $g \neq 0$ and $\Delta g = g \otimes g$, is grouplike.
- (b) Let G(C) denote the set of all grouplike element of C. Prove that G(C) is a linearly independent set. (*Hint:* use the algebra-coalgebra duality and an exercise from last week!)
- (c) What are the grouplikes in A^* where A is a finite-dimensional algebra?
- (d) What are the possible 1-dimensional coalgebras?

Answer to E3.2. (a) Applying the counit to the left leg of Δg gives $\epsilon(g)g$, but by the counit law this must equal g. So, $(\epsilon(g)-1)g=0$. Since g is, by assumption, a non-zero vector in C, we must have $\epsilon(g)=1$. Thus, g verifies the definition of grouplike.

(b) Recall that the space C^* is an algebra with product map $m_{C^*} = \Delta^*$ and unit map $\eta_{C^*} = \epsilon^*$. This means that the product $\phi\psi$ of $\phi, \psi \in C^*$ and the unit 1_{C^*} are defined by their evaluation against arbitrary $x \in C$, as follows:

$$\langle x, \phi \psi \rangle \, \stackrel{\mathrm{def}}{=} \, \langle x_{(1)}, \phi \rangle \langle x_{(2)}, \psi \rangle, \qquad \langle x, 1_{C^*} \rangle = \epsilon(x).$$

We now turn this around and consider C as a space of linear functionals on C^* , thus embedding C injectively in $\text{Lin}(C^*,\mathbb{C})$:

$$x \in C$$
 is viewed as $x \colon C^* \to \mathbb{C}$, $x(\phi) = \langle x, \phi \rangle$.

Then by definition of grouplike, "g is grouplike" means that, for all $\phi, \psi \in C^*$,

$$g(\phi\psi)=g(\phi)g(\psi), \qquad g(1_{C^*})=1.$$

Thus, $g \in C$ is grouplike iff the linear functional $g \colon C^* \to \mathbb{C}$ is an algebra homomorphism, i.e., a **character** of C^* .

Recall from E2.2 that characters of an algebra are linearly independent. It follows that grouplikes in C are linearly independent.

- (c) Similarly to (b), we can see that the grouplikes in the coalgebra A^* are exactly the algebra characters of A. That is, $G(A^*) = \text{Alg}(A, \mathbb{C})$.
- (d) Let C be a 1-dimensional coalgebra with a single-element basis $\{v\}$. Then by Proposition 1.30, $C \otimes C$ has basis $\{v \otimes v\}$, and $\Delta v = \lambda v \otimes v$ for some λ in the ground field. Note that $\lambda \neq 0$, because Δ must always be injective as, by the counit law, $(\epsilon \otimes \mathrm{id})\Delta = \mathrm{id}$. Hence the element λv also forms a basis of C. Note that $\Delta(\lambda v) = \lambda \Delta v = \lambda(\lambda v \otimes v) = \lambda v \otimes \lambda v$ and so, by part (a), λv is grouplike.

To conclude: every one-dimensional coalgebra is spanned by a grouplike element.

E3.3 Let G be a finite monoid (e.g., a finite group), so that $\mathbb{C}G$ is a finite-dimensional algebra. The coalgebra $(\mathbb{C}G)^*$ has a basis $\{\delta_g\}_{g\in G}$ dual to the basis $\{g\}_{g\in G}$ of $\mathbb{C}G$. Give formulae for $\Delta\delta_g$ and $\epsilon(\delta_g)$.

Answer to E3.3. We would like to expand $\Delta \delta_g$ in terms of the basis $\{\delta_h \otimes \delta_k \mid h, k \in G\}$, given by Proposition 1.30. Since this basis of $(\mathbb{C}G)^* \otimes (\mathbb{C}G)^*$ is dual to the basis $\{h \otimes k\}$ of $\mathbb{C}G \otimes \mathbb{C}G$, the coefficient of $\delta_h \otimes \delta_k$ must be

$$\langle \Delta \delta_a, h \otimes k \rangle$$
.

Yet by definition of Δ on $(\mathbb{C}G)^*$ we have $\Delta = m^*$, where $m \colon \mathbb{C}G \otimes \mathbb{C}G \to \mathbb{C}G$ is the product map. This means that

$$\langle \Delta \delta_g, h \otimes k \rangle = \langle \delta_g, m(h \otimes k) \rangle = \langle \delta_g, hk \rangle = \begin{cases} 1, & hk = g, \\ 0, & hk \neq g. \end{cases}$$

Hence we arrive at the expansion

$$\Delta \delta_g = \sum_{h,k \in G, \ hk = g} \delta_h \otimes \delta_k.$$

To calculate $\epsilon(\delta_g)$, we recall that, by definition, the counit ϵ on $(\mathbb{C}G)^*$ is η^* where $\eta\colon\mathbb{C}\to\mathbb{C}G$ is the unit map. We have $\eta(1)=e$ where e is the identity element of G. Thus,

$$\epsilon(\delta_g) = \langle \delta_g, e \rangle = \begin{cases} 1, & g = e, \\ 0, & g \neq e. \end{cases}$$

- **E3.4** (a) Assume that a coalgebra C has basis $\{\chi_0, \chi_1, \chi_2\}$ of grouplikes. Let $A = C^*$ be the dual algebra. Describe the multiplication on the dual basis $\{e_0, e_1, e_2\}$ of A.
- (b) In the case when $A = \mathbb{C}\Gamma$ is the group algebra of the cyclic group $\Gamma = \{e, g, g^2\}$, and $C = (\mathbb{C}\Gamma)^*$, take χ_k to be the character of Γ which sends g to ω^k with $\omega = e^{2\pi i/3} \in \mathbb{C}$. Calculate the basis $\{e_0, e_1, e_2\}$ of $\mathbb{C}\Gamma$. Check directly that the multiplication on this basis is as you expect from (a).

Answer to E3.4. (a) Since $\{\chi_0, \chi_1, \chi_2\}$ is the dual basis to the basis $\{e_0, e_1, e_2\}$ of A, every element $a \in A$ can be expanded as $\chi_0(a)e_0 + \chi_1(a)e_1 + \chi_2(a)e_2$.

First, let us calculate $e_0^2 \in C^*$. For each i = 0, 1, 2, we have

$$\chi_i(e_0^2) = \chi_i(e_0)^2$$

because by E3.2 χ_i is an algebra character of A. We therefore have $\chi_0(e_0) = 1$ and $\chi_i(e_0) = 0$ for $i \neq 0$ (by dual basis), giving

$$e_0^2 = e_0$$
.

In the same way, $e_1^2 = e_1$ and $e_2^2 = e_2$, so that e_0, e_1, e_2 are **idempotents** in A. Recall that an idempotent is an element of an algebra which squares to itself.

To calculate e_0e_1 , we again evaluate this element against χ_i for i=0,1,2:

$$\chi_i(e_0e_1) = \chi_i(e_0)\chi_i(e_1) = 0$$
 for all $i \Rightarrow e_0e_1 = 0$.

In the same way, $e_i e_j = 0$ whenever $i \neq j$. We conclude that the dual basis to a basis of grouplikes consists of pairwise orthogonal idempotents.

E3.5 (the trigonometric coalgebra) Let C be a two-dimensional space over \mathbb{R} with basis $\{c, s\}$. Define $\Delta \colon C \to C \otimes C$ by

$$\Delta c = c \otimes c - s \otimes s, \quad \Delta s = s \otimes c + c \otimes s.$$

- (a) Define a counit $\epsilon \colon C \to \mathbb{R}$ so that (C, Δ, ϵ) becomes a coalgebra.
- (b) Does C contain any grouplikes? Does C have proper subcoalgebras?
- (c) How does the answer to (b) change if the field \mathbb{R} is replaced by \mathbb{C} ?

Answer to E3.5. (a) If $\epsilon \colon C \to \mathbb{R}$ is a counit, we must have

$$c = (\epsilon \otimes id)\Delta c = \epsilon(c)c - \epsilon(s)s,$$

and, since $\{c,s\}$ is a basis, $\epsilon(c)=1$ and $\epsilon(s)=0$. This completely determines ϵ , and we should also check that the counit law is satisfied in all other cases, i.e., $(\epsilon \otimes \mathrm{id})\Delta s=s$, $(\mathrm{id} \otimes \epsilon)\Delta c=c$ and $(\mathrm{id} \otimes \epsilon)\Delta s=s$. This is a straightforward calculation.

(b) Assume that $g = \alpha c + \beta s$ is grouplike, then $\epsilon(g) = 1$ which says that $\alpha = 1$.

Moreover, $\Delta g = g \otimes g$ which is equivalent to

$$(c\otimes c - s\otimes s) + \beta(s\otimes c + c\otimes s) = (c+\beta s)\otimes (c+\beta s).$$

Equating the coefficients of $c \otimes c$, $c \otimes s$, $s \otimes c$ and $s \otimes s$ on both sides, we come to the equation

$$\beta^2 = -1.$$

This tells us that over \mathbb{R} , the trigonometric coalgebra does not contain grouplikes.

- (c) If we extend the scalars to \mathbb{C} , then the resulting 2-dimensional coalgebra over \mathbb{C} is spanned by two grouplikes, e = c + is and $\bar{e} = c is$.
- E3.6 Review the definition of an action of an associative unital algebra A on a vector space V.

True or false: every algebra can act on a 1-dimensional space?

Answer to E3.6. False. Suppose that an algebra A acts on a 1-dimensional space V with a one-element basis $\{v\}$. This means that every $a \in A$ must act by $a \rhd v = \lambda(a)v$ with $\lambda(a) \in \mathbb{C}$. By definition of action, λ must be linear in a, $\lambda(ab) = \lambda(a)\lambda(b)$ for all $a, b \in A$, and $\lambda(1_A) = 1$. That is, $\lambda \in \text{Alg}(A, \mathbb{C})$ must be an algebra character.

Yet some associative unital algebras have no characters: for example, the algebra $M_{2\times 2}(\mathbb{C})$ of complex 2×2 matrices, or the Weyl algebra with presentation $\mathbb{C}\langle x,y\mid yx-xy=1\rangle$ (exercise or a topic for further discussion).

Part B. Extra exercises

E3.7 (left regular module and left regular comodule) Let A be an algebra. Prove that the map $\triangleright_{\text{reg}} : A \otimes A \to A$ given by $a \triangleright_{\text{reg}} v = av$ (product in A) is an action of the algebra A on the vector space A. (This action of A on A is called the *left regular action*.)

Develop the parallel notion of left regular coaction for coalgebras.

Answer to E3.7. We show that the regular action verifies the definition of an action. First of all, $a \otimes v \mapsto av$ is bilinear in a and v, by definition of product map in the algebra A. Furthermore,

- $\bullet \ \ a \rhd_{\mathrm{reg}} (b \rhd_{\mathrm{reg}} v) = a \rhd_{\mathrm{reg}} (bv) = a(bv) = (ab)v = (ab) \rhd_{\mathrm{reg}} v \text{ by associativity of multiplication in } A;$
- $1_A \rhd_{\text{reg}} v = 1_A v = v$ by the identity law in A.

Thus, all axioms of action are satisfied.

The left regular coaction of a coalgebra (C, Δ, ϵ) on the vector space C is

$$\delta_{\mathrm{reg}} = \Delta \colon C \to C \otimes C, \quad \delta_{\mathrm{reg}}(x) = x_{(1)} \otimes x_{(2)},$$

where we consider the left leg as being in C the coalgebra, and the right leg as being in C the vector space (the comodule). The axioms of coaction follow from the coassociative law and the counit law for Δ and ϵ .