MATH 320: Test 3 Study Guide

Lecture 10 – Discrete Distributions (2.1, 2.3, 2.4, 2.5, 2.6, 2.7)

See distribution table

Summary of four Bernoulli-based experiments

- Distributions: Binomial, Geometric, Negative Binomial, and Hypergeometric
- Throughout all of these, there were three important aspects:
 - (1) Number of successes
- (2) Number of trials
- (3) Probability of success
- Organization of the four distributions based on what we are interested in (the random variable) and what we are given (as parameters).
 - Distributions counting the number of successes: Binomial and Hypergeometric
 - * Interested in: (1)
 - * (2) and (3) are given as parameters.
 - * Only difference is with vs without replacement
 - Distributions counting the number of trials: Geometric and Negative Binomial
 - * Interested in: (2)
 - * (1) and (3) are given as parameters.
 - * Only difference is the number of successes

Poisson distribution

 \bullet The random variable X counts the number of events in a given unit.

Lecture 11 – Continuous Distributions (3.1, 3.2, 3.3)

See distribution table

Survival function

•
$$S(t) = P(T > t) = 1 - F(t)$$
.

Linear transformation of normal random variables

- Theorem: If $X \sim \text{Normal}(\mu, \sigma^2)$ and $Y = aX + b \rightarrow Y \sim \text{Normal}(a\mu + b, a^2\sigma^2)$.
- Standardizing: If $X \sim \text{Normal}(\mu, \sigma^2)$ and $Z = \frac{X \mu}{\sigma} \to Z \sim \text{Normal}(\mu = 0, \sigma^2 = 1)$.
- Can standardize any random variable.

Normal probabilities and percentiles

- Z-table: Gives $F_Z(z) = P(Z \le z)$.
- $P(x_1 \le X \le x_2) = P\left(\frac{x_1 \mu}{\sigma} \le \frac{X \mu}{\sigma} \le \frac{x_2 \mu}{\sigma}\right) = P(z_1 \le Z \le z_2),$ where $z_1 = \frac{x_1 - \mu}{\sigma}$ and $z_2 = \frac{x_2 - \mu}{\sigma}.$
- $F_Z(z_p) = p$ \rightarrow $z_p = \frac{x_p \mu}{\sigma}$ \rightarrow $x_p = \sigma z_p + \mu$.

Sums of independent, identically distribution random variables

• Central Limit Theorem (CLT): If $X_i \stackrel{iid}{\sim} f(x)$ with mean μ and variance σ^2 and $S = \sum_{i=1}^n X_i$ $\to S \stackrel{approx}{\sim} \text{Normal } (n\mu, n\sigma^2) \text{ for large } n.$

Lecture 12 – Moment Generating Functions (2.3, 2.4, 2.6, 2.7, 3.1, 3.2, 3.3)

Moments

- Definition: n^{th} moment of $X = E(X^n)$, $n = 1, 2, 3 \dots$
- n^{th} moment of X about $b = E[(X b)^n], n = 1, 2, 3 \dots$
- Central moments = $E[(X \mu)^n]$, n = 1, 2, 3...

Moment generating functions (mgf)

• Definition:

$$M_X(t) = \frac{\text{In general}}{E(e^{tx})} \rightarrow \sum_{x} \frac{\text{Discrete}}{e^{tx} f(x)} \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

• How to find moments from mgf:

$$M_X'(0) = E(X), \quad M_X''(0) = E(X^2), \quad \dots \quad , \quad M_X^{(n)}(0) = E(X^n)$$
* If X is discrete $\to M_X^{(n)}(t) = \sum x^n e^{tx} f(x)$ and $M_X^{(n)}(0) = \sum x^n f(x) = E(X^n)$

- Mgf of Y = aX + b $M_Y(t) = M_{aX+b}(t) = e^{tb}M_X(at)$
- Mgfs are unique.
- Another variance definition: Using mgfs: $M_X''(0) \left[M_X'(0)\right]^2 = M_X''(t)\big|_{t=0} \left[M_X'(t)\big|_{t=0}\right]^2$

Distributions

Discrete Distributions

Discrete uniform (N_0, N_1)

Pmf
$$P(X = x \mid N_0, N_1) = \frac{1}{N_1 - N_0 + 1}; \quad x = N_0, \dots, N_1; \quad N_0 \le N_1$$

Mean and Variance
$$E(X) = \frac{N_0 + N_1}{2}, \qquad V(X) = \frac{(N_1 - N_0 + 1)^2 - 1}{12}$$

Mgf
$$M_X(t) = \frac{1}{N_1 - N_0 + 1} \sum_{x=N_0}^{N_1} e^{tx}$$

Notes

$\mathbf{Bernoulli}(p)$

Pmf
$$P(X = x \mid p) = p^x (1-p)^{1-x}; \quad x = 0, 1; \quad 0$$

Mean and Variance
$$E(X) = p$$
, $V(X) = p(1-p) = pq$

Mgf
$$M_X(t) = (1-p) + pe^t = q + pe^t$$

Notes Special case of binomial with
$$n = 1$$
.

Binomial (n, p)

Pmf
$$P(X = x \mid n, p) = \binom{n}{x} p^x (1-p)^{n-x}; \quad x = 0, 1, ..., n; \quad 0$$

Mean and Variance
$$E(X) = np$$
, $V(X) = np(1-p) = npq$

Mgf
$$M_X(t) = (q + pe^t)^n$$

Notes Sum of *iid* bernoulli RVs.

Geometric (p)

Pmf
$$P(X = x \mid p) = q^{x-1} p;$$
 $x = 1, 2, ...;$ 0

$$Cdf F_X(x \mid p) = 1 - q^x$$

Mean and Variance
$$E(X) = \frac{1}{p}, \qquad V(X) = \frac{1-p}{p^2} = \frac{q}{p^2}$$

Mgf
$$M_X(t) = \frac{pe^t}{1 - qe^t};$$
 $t < -\ln(q)$

Special case of negative binomial with r = 1.

* See other geometric probabilities.

Alternate form Y = X - 1.

This distribution is memoryless: $P(X > s \mid X > t) = P(X > s - t);$ s > t.

Negative binomial (r, p)

Pmf
$$P(X = x \mid r, p) = P(X = x \mid r, p) = \binom{x-1}{r-1} p^r q^{x-r}; \qquad x = r, r+1, \dots; \qquad 0$$

Mean and Variance
$$E(X) = \frac{r}{p}, \qquad V(X) = \frac{r(1-p)}{p^2} = \frac{rq}{p^2}$$

Mgf
$$M_X(t) = \left[\frac{pe^t}{1-qe^t}\right]^r; \quad t < -\ln(q)$$

Hypergeometric (N, M, K)

Pmf
$$P(X = x \mid r, p) = P(X = x \mid N, M, K) = \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}}; \quad x = 0, 1, ..., \min(M, K)$$

$$\begin{array}{ll} \text{Mean and} & E(X) = K\big(\frac{M}{N}\big), \qquad V(X) = K\big(\frac{M}{N}\big)\big(\frac{N-M}{N}\big)\big(\frac{N-K}{N-1}\big) \end{array}$$

Mgf

Notes If do not require
$$M \ge K$$
, $\mathcal{X} = \{\max(0, K + M - N), \dots, \min(M, K)\}$, mean and variance converge to that of binomial $(n = K, p = M/K)$ when $N \to \infty$.

Poisson (λ)

Pmf
$$P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x = 0, 1, 2, ...; \quad \lambda > 0$$

$$\begin{array}{ll} \text{Mean and} \\ \text{Variance} \end{array} \quad E(X) = \lambda, \qquad V(X) = \lambda$$

Mgf
$$M_X(t) = e^{\lambda(e^t - 1)}$$

Notes If
$$X_i \stackrel{\perp}{\sim} \text{Poisson}(\lambda_i)$$
, then $\sum X_i \sim \text{Poisson}(\lambda = \sum \lambda_i)$.

Other geometric probabilities

• Let $X \sim \text{Geometric}(p)$.

$$P(X < \infty) = 1$$

$$P(X > x) = q^{x}$$

$$P(X \ge x) = q^{x-1}$$

$$P(a < X \le b) = q^{a} - q^{b}$$

$$P(a \le X \le b) = q^{a-1} - q^{b}$$

Continuous Distributions

Continuous uniform (a, b)

Pdf
$$f(x \mid a, b) = \frac{1}{b-a}, \quad a \le x \le b; \quad a, b \in \mathbb{R}, \quad a \le b$$

Cdf
$$F(x) = \frac{x-a}{b-a}$$
 $a \le x \le b$

Survival
$$S(t) = \frac{b-t}{b-a}$$
 $a \le t \le b$ if $T \sim \text{Uniform}(a, b)$

Mean and Variance
$$E(X) = \frac{a+b}{2};$$
 $V(X) = \frac{(b-a)^2}{12}$

Mgf
$$M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$$
 $t \neq 0$

Notes

Exponential (λ)

Pdf
$$f(t \mid \lambda) = \lambda e^{-\lambda t}, \quad t \ge 0; \quad \lambda > 0$$

Cdf
$$F(t) = 1 - e^{-\lambda t}$$
 $t \ge 0$

Survival
$$S(t) = e^{-\lambda t}$$
 $t \ge 0$

Mean and Variance
$$E(X) = \frac{1}{\lambda}; \qquad V(X) = \frac{1}{\lambda^2}$$

Mgf
$$M_X(t) = \frac{\beta}{\beta - t}$$
 $t < \beta;$ if $T \sim \text{Exp}(\beta)$

Special case of gamma with
$$\alpha = 1, \beta$$
.

Notes This distribution is memoryless:
$$P(T > a + b \mid T > a) = P(T > b)$$
; $a, b > 0$.
Rate parameterization is given; alternate parameterization is with scale $\theta = 1/\lambda$.

Gamma (α, β)

Pdf
$$f(x \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x \ge 0; \quad \alpha, \beta > 0$$

Mean and Variance
$$E(X) = \frac{\alpha}{\beta}$$
 $V(X) = \frac{\alpha}{\beta^2}$

Mgf
$$M_X(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha} \quad t < \beta$$
$$\Gamma(\alpha) = \int_0^{\infty} x^{\alpha - 1} e^{-x} dx$$

Notes Sum of *iid* exponential RVs. A special case is exponential
$$(\alpha = 1, \beta)$$
.

Rate parameterization is given; alternate parameterization is with scale $\theta = 1/\beta$.

Normal (μ, σ^2)

Pdf
$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < \infty; \quad -\infty < \mu < \infty, \quad \sigma > 0$$

Mean and Variance
$$E(X) = \mu$$
, $V(X) = \sigma^2$

Mgf
$$M_X(t) = \exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]$$

Notes Special case: Standard normal $Z \sim \text{Normal} (\mu = 0, \sigma^2 = 1)$.

Lognormal (μ, σ^2)

$$\text{Pdf} \hspace{1cm} f(y \mid \mu, \sigma^2) = \frac{1}{y\sqrt{2\pi\sigma^2}} \exp\big[-\frac{(\ln(y) - \mu)^2}{2\sigma^2}\big]; \hspace{1cm} y \geq 0; \hspace{1cm} -\infty < \mu < \infty; \hspace{1cm} \sigma > 0$$

$$\begin{array}{ll} \text{Mean and} & E(Y) = \mathrm{e}^{\mu + \frac{\sigma^2}{2}}, \qquad V(Y) = \mathrm{e}^{2\mu + \sigma^2} (\mathrm{e}^{\sigma^2} - 1) \end{array}$$
 Variance

Mgf

If
$$Y \sim \text{Lognormal} \Longrightarrow \ln(Y) \sim \text{Normal}(\mu, \sigma^2);$$

$$\begin{array}{l} \text{If } Y \sim \operatorname{Lognormal} \Longrightarrow \ln(Y) \sim \operatorname{Normal}(\mu, \sigma^2); \\ \text{Notes} & \text{equivalently, if } X \sim \operatorname{Normal}(\mu, \sigma^2) \text{ and } Y = \operatorname{e}^X \Longrightarrow Y \sim \operatorname{Lognormal}. \\ \mu \text{ and } \sigma^2 \text{ represent the mean and variance of the normal random variable } X \text{ which appears in the exponent.} \\ \end{array}$$

Beta (α, β)

Pdf
$$f(x \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}; \qquad 0 \le x \le 1; \qquad \alpha, \beta > 0$$

$$\begin{array}{ll} \text{Mean and} & E(X) = \frac{\alpha}{\alpha + \beta}, \qquad V(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \end{array}$$
 Variance

Mgf

Notes
$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$