Little r: An under-rated epidemiological parameter

- Epidemics V
- Clearwater FL, December 2015

- Jonathan Dushoff
- McMaster University

Outline

Introduction

Strength of intervention

Speed of intervention

Comparison

How do we measure invading epidemics?

- Strength
- Speed
- Danger

How do we assess proposed control measures?

- Strength
- Speed
- Effectiveness

Strength: R – the reproductive number

- Expected number of new cases per cases
- $\triangleright \mathcal{R} = \beta DS/N$
 - ▶ Disease increases iff R > 1

Speed: r – the growth rate

- $i(t) \approx i(0) \exp(rt)$
- $T_c = 1/r$
- ► $T_2 = \ln(2)/r$

Generation intervals provide the link

- ► Estimate the generation interval $G(\tau)$
- ► Calculate $\mathcal{R} = \exp(r\hat{G})$,
 - Ĝ is the effective generation interval

Approximate generation intervals

Faster generations mean lower ${\mathcal R}$

Faster generations mean lower ${\mathcal R}$

Ebola example

Standard approach

- ▶ Estimate R
- \blacktriangleright Evaluate proposed control measures by comparing their "strength" to $\mathcal R$

Alternative approach

- Estimate r
- Evaluate proposed control measures by comparing their "speed" to r

Renewal equation

Many disease models behave on average like:

$$i(t) = \int k(\tau)i(t-\tau)\,d\tau$$

- ▶ *i*(*t*) is the incidence of infection at time *t*
- k(τ) describes the mean infectiousness of a person who has been infected for τ time units

$\ensuremath{\mathcal{R}}$ and the generation interval

$$i(t) = \int k(\tau)i(t-\tau)\,d\tau$$

- $ightharpoonup \mathcal{R} = \int k(\tau) d\tau$
- ▶ Define the intrinsic generation interval distribution: $k(\tau) = \mathcal{R}g(\tau)$

${\cal R}$ and the generation interval

${\cal R}$ and the generation interval

r and the (other) generation interval

$$i(t) = \int k(\tau)i(t-\tau)\,d\tau$$

- if i(t) grows like $\exp(rt)$, then
- ▶ 1 = $\int k(\tau) \exp(-r\tau) d\tau$
- ▶ $b_0(\tau) = k(\tau) \exp(-r\tau)$ is the initial *backwards* generation interval

r and the (other) generation interval

Ebola

Outline

Introduction

Strength of intervention

Speed of intervention

Comparison

Strength of intervention

- Imagine we have an intervention that reduces transmission
 - $k(\tau) \rightarrow k(\tau)/L(\tau)$
 - ▶ Define *strength* $\theta = \mathcal{R}/\hat{\mathcal{R}}$ the proportional amount by which the intervention reduces transmission.
- We then have:
 - $\bullet \ \theta = 1/\langle 1/L(\tau)\rangle_{g(\tau)}$
 - θ is the harmonic mean of L, weighted by the generation distribution g.
- ▶ Outbreak can be controlled if $\theta > \mathcal{R}$

Low early transmission

High early transmission

Outline

Introduction

Strength of intervention

Speed of intervention

Comparison

Speed of intervention

▶ Define the *speed* of an intervention be $\phi = r - \hat{r}$ – the amount by which the intervention slows down spread.

$$1 = \left\langle \frac{\exp(\phi \tau)}{L(\tau)} \right\rangle_{b(\tau)}$$

- \blacktriangleright ϕ is sort of a mean of the *hazard* associated with *L*
 - Averaged over the initial backwards generation interval
- ▶ Outbreak can be controlled if $\phi > r$.

Low early transmission

Low early transmission

High early transmission

Outline

Introduction

Strength of intervention

Speed of intervention

Comparison

Proportional intervention

Proportional intervention

Similarities

- "Factor" $k(\tau)$ into a risk and a generation interval
- Measure the effect of an intervention
- Compare effect to a threshold
- Two ways of looking at the same picture
 - Why does it matter?

Differences

- ► r vs. R
- hazard-like vs. proportional-like interventions
- intrinsic vs. initial backwards generation intervals
- Long-term implications

Conclusion

Thanks

- Organizers
- Audience
- Collaborators
- ► Funders: NSERC, CIHR

Filtered mean slides