Getting Started with PETSc for PDEs

configuring and running your first code

Ed Bueler, UAF

19 January 2016

seminar organization

- because you showed up today, you get a free book
 - the first five chapters are done-ish
 - ▶ I will have more chapters for you by March-ish
- you don't have to take this for credit
 - if you do want 1.0 Math 692 credit (pass/fail) then plan to write at least one working example PDE code using PETSc
 - easy because I provide lots of examples
 - any language you want (C, FORTRAN, python, ...), if it has PETSc bindings

book and codes are online

- the LaTeX sources and C example codes from my book are at
 - github.com/bueler/p4pdes
- find a PDF for the book at the book.pdf link on the latest-release page
 - github.com/bueler/p4pdes/releases
- this seminar is a blog:
 - bueler.github.io/p4pdes
- these LaTeX Beamer PDF slides are generated from the blog (markdown page) by

pandoc -t beamer blogpage.md -o slides.pdf

- no .tex file required
- ▶ cool, huh?

one example from the book

in Chapter 5 of the book I look at the nonlinear p-Laplacian PDE

$$-\nabla \cdot \left(|\nabla u|^{p-2} \nabla u \right) = f$$

on a square

$$\Omega = (0,1) \times (0,1)$$

- ▶ the PDE is approximated by a finite element on a grid, which we can distribute in parallel across processors
- the program is in C, about 300 lines, and includes just one C library

#include <petsc.h>

so: an action-filled demo of PETSc

- before helping you install PETSc and run examples, I will show you what it looks like to
 - compile,
 - run in serial,
 - run in parallel,
 - ask for help with,
 - visualize the output of,
 - and evaluate performance of

this PETSc code c/ch5/plap.c

now, and at any time today: PLEASE ask questions at any time!

download PETSc

- PETSc download page
 - www.mcs.anl.gov/petsc/download/index.html
- either use Git to download:
 - \$ git clone https://bitbucket.org/petsc/petsc.git
 - \$ cd petsc/
- or get the "lite" version as tar.gz, and unpack it
 - \$ tar -xzvf petsc-lite-3.6.3.tar.gz
 - \$ cd petsc-3.6.3/

configure PETSc

- try to configure:
 - \$ export PETSC_DIR=`pwd`
 \$ export PETSC_ARCH=linux-c-dbg
 \$./configure --download--mpich \
 --download-triangle --with-debugging=1
- ▶ I'll show this right now
- actually read the error messages if you get them

make and test PETSc

- make and test:
 - \$ make all
 - \$ make test
- success if you see
 - ... /ex19 run successfully with 2 MPI processes
- to use this PETSc installation you'll need to add these lines (or similar) to .bashrc (or similar):

```
export PETSC_DIR=/home/bueler/petsc-3.6.3/
export PETSC_ARCH=linux-c-dbg
```

streams benchmark

- it is a good idea to be skeptical of multi-core architectures as parallel machines
- following the PETSc advice:

make streams

PETSc source code contains examples

look in examples/tutorials/ source (i.e. inside src/) directories:

```
$ cd src/snes/examples/tutorials/
$ gedit ex5.c &
```

- but these examples are
 - often poorly well-documented
 - especially missing links to mathematical ideas, source literature, and algorithmic possibilities
 - often cluttered with whatever the last PETSc dev who touched it was interested in
 - ▶ i.e. they are exactly what the PETSc devs play with

PETSc source code contains better examples

- look in tutorials/ source directories:
 - \$ cd \$PETSC_DIR/tutorials/
 - \$ firefox HandsOnExercise.html
 - these are better-supported examples and I'll come back to them
- my goal for my book is to have examples which
 - are easier to use
 - are smaller and non-evolving
 - have a clearer, and explained/cited, mathematical context
- there is even some support among PETSc devs for such a book!

a first PETSc program

see Chapter 1 in the book

```
$ cd c/ch1/
$ gedit e.c &
$ make e
$ ./e
$ ./e -help | less
$ mpiexec -n 4 ./e
$ mpiexec -n 20 ./e
```

▶ now I am going to talk through the code, which is only 29 lines