Beyond Summary

Two major ways

- Hypothesis testing
 - Is there an effect or not?
- Parameter estimation
 - How large is the effect, if it's there?

Together or separate

Hypothesis testing

- Is there an effect or not?
- Oddly, we test if there is NO difference between two groups
 - $-H_0$ = null hypothesis (no difference)
 - If our statistic has a $p \ge \alpha$, we fail to reject
 - If our statistic has a $p < \alpha$, we reject
 - $-H_A$ = alternative hypothesis (difference)
 - Mutually exclusive to the null
- We don't ACCEPT the null, just fail to reject it

Zs and ts

$$z = \frac{M - \mu}{\sigma_{SE}}$$

$$\sigma_{SE} = \frac{\sigma}{\sqrt{n}}$$

$$t = \frac{M - \mu}{s_{SE}}$$

$$S_{SE} = \frac{S}{\sqrt{n}}$$

$$df = (n_1 - 1)$$

$$SS_{Total} = SS_{Model} + SS_{Residual}$$

$$MS_{Model} = rac{SS_{Model}}{df_{Model}}$$

$$MS_{\text{Residual}} = rac{SS_{\text{Residual}}}{df_{\text{Residual}}}$$

$$F = \frac{MS_{Model}}{MS_{Residual}}$$

$$df_{Model} = k - 1$$

$$df_{\text{Re}sidual} = n - k$$

Omnibus F ANOVA

$$SS_{Total} = SS_{Model} + SS_{Residual}$$

$$MS_{Model} = rac{SS_{Model}}{df_{Model}}$$

$$MS_{\text{Residual}} = \frac{SS_{\text{Residual}}}{df_{\text{Residual}}}$$

$$F = \frac{MS_{Model}}{MS_{Residual}}$$

$$df_{Model} = k$$

$$df_{\text{Re}sidual} = n - k - 1$$

Omnibus F Regression

Parameter estimation

- How large is the effect, if it's there?
- Types
 - Distance
 - Association
 - Variance Explained

Cohen's d

$$d = \frac{M_1 - M_2}{S_p} \qquad S_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Correlation coefficient

Correlation

- Pearson's correlation (r)
 - Variables: Interval and Interval
 - Describes: Linearity
- Spearman's rank order (rho)
 - Variables: Ordinal and Ordinal
 - Describes: Monotonicity
- Point-biserial correlation (r_{pb})
 - Variables: Interval and Dichotomous
 - **Describes**: Discriminability
- Phi coefficient
 - Variables: Dichotomous and Dichotomous
 - Describes: association

$$r = \frac{\sum z_X z_Y}{n - 1}$$

$$r = \frac{\sum [(X - M_X)(Y - M_Y)]}{\sum_{S_X S_Y}} = \frac{\frac{\sum [(X - M_X)(Y - M_Y)]}{n - 1}}{\sqrt{\frac{\sum (X - M_X)^2}{n - 1}} \frac{\sum (Y - M_Y)^2}{n - 1}}$$

Regression Coefficients

- (Partial) Regression Coefficients: slope values for the individual predictors
- Called b-weights if they are unstandardized

$$\hat{y} = a + b_1 x_1 + b_2 x_2 + b_3 x_3 \dots$$

 Called Beta (β) – weights if they are standardized

$$E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \dots$$

Re gressioncase

$$R^{2} = \frac{SS_{M}}{SS_{T}} = \frac{\sum (\hat{Y} - M_{Y})^{2}}{\sum (Y - M_{Y})^{2}}$$

ANOVA.case

$$\eta^{2} = \frac{SS_{M}}{SS_{T}} = \frac{\sum n_{k} (M_{k} - M_{G})^{2}}{\sum (X - M_{G})^{2}} = \frac{\sum n_{k} (M_{k} - M_{G})^{2}}{S_{grand}^{2} (n - 1)}$$

or

$$\frac{s_{grand}^{2}(n-1) - \sum s_{k}^{2}(n_{k}-1)}{s_{grand}^{2}(n-1)}$$

SUMMARY OUTPUT	
Regression Statistics	
Multiple R	0.666568159
R Square	0.444313111
Adjusted R Square	0.415570686
Standard Error	10.70587104
Observations	62