16-782 Planning & Decision-making in Robotics

Planning Representations:
Implicit vs. Explicit Graphs;
Skeletonization, cell decomposition, lattices

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

This class

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Interleaving Search and Graph Construction

Graph Search using an **Explicit Graph** (allocated prior to the search itself):

- 1. Create the graph $G = \{V, E\}$ in-memory
- 2. Search the graph

Using Explicit Graphs is typical for low-D (i.e., 2D) problems in Robotics (with the exception of PRMs, covered in a later lecture)

Interleaving Search and Graph Construction

Graph Search using an **Implicit Graph** (allocated as needed by the search):

- 1. Instantiate Start state
- 2. Start searching with the Start state using functions
 - a) Succs = GetSuccessors (State s, Action)
 - b) ComputeEdgeCost (State s, Action a, State s')

and allocating memory for the generated states

Using Implicit Graphs
is critical for most (>2D) problems
in Robotics

2D Planning for Omnidirectional Point Robot

Planning for omnidirectional point robot:

```
What is M^R = \langle x, y \rangle
What is M^W = \langle obstacle/free \ space \rangle
What is s^R_{current} = \langle x_{current}, y_{current} \rangle
What is s^W_{current} = constant
What is C = Euclidean \ Distance
What is G = \langle x_{goal}, y_{goal} \rangle
Any ideas on how to construct a graph for planning?
```


- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps ~

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

Will be covered in later classes

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is $O(n^2)$, where n # of vert.)

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is O(n²), where n # of vert.)

- Visibility Graphs
 - advantages:
 - independent of the size of the environment
 - disadvantages:
 - path is too close to obstacles
 - hard to deal with the cost function that is not distance
 - hard to deal with non-polygonal obstacles
 - hard to maintain the polygonal representation of obstacles
 - can be expensive in spaces higher than 2D

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Voronoi diagram [Rowat '79]
 - set of all points that are equidistant to two nearest obstacles (can be computed O (n log n), where n # of points that represent obstacles)

- Voronoi diagram-based graph
 - Edges: Boundaries in Voronoi diagram
 - Vertices: Intersection of boundaries
 - Add start and goal vertices
 - Add edges that correspond to:
 - shortest path segment from start to the nearest segment on the Voronoi diagram
 - shortest path segment from goal to the nearest segment on the Voronoi diagram

- Voronoi diagram-based graph
 - Edges: Boundaries in Voronoi diagram
 - Vertices: Intersection of boundaries
 - Add start and goal vertices
 - Add edges that correspond to:
- Disadvantages of the Voronoi diagram-based Graphs?
- shortest path segment from start to the nearest segment on the Voronoi diagram
- shortest path segment from goal to the nearest segment on the Voronoi diagram

- Voronoi diagram-based graph
 - advantages:
 - tends to stay away from obstacles
 - independent of the size of the environment
 - can work with any obstacles represented as set of points
 - disadvantages:
 - can result in highly suboptimal paths
 - hard to deal with the cost function that is not distance
 - hard to use/maintain beyond 2D

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Approximate Cell Decomposition:
 - overlay uniform grid (discretize)

- Approximate Cell Decomposition:
 - construct a graph

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it untraversable incomplete (may not find a path that exists)

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it traversable unsound (may return invalid path)

so, what's the solution?

- Approximate Cell Decomposition:
 - solution 1:
 - make the discretization very fine
 - expensive, especially in high-D

- Approximate Cell Decomposition:
 - solution 2:
 - make the discretization adaptive
 - various ways possible

- Graph construction:
 - connect neighbors

8-connected grid

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

Ideas to improve it?

- Graph construction:
 - connect cells to neighbor of neighbors

- path is restricted to 22.5° degrees

16-connected grid

convert into a graph

• Graph construction:

- connect cells to neighbor of neighbors

- path is restricted to 26.6°/63.4° degrees

16-connected grid

convert into a graph

• Graph construction:

- connect cells to neighbor of neighbors

- path is restricted to 26.6°/63.4° degrees

Grid-based Graphs

- Graph construction:
 - connect cells to neighbor of neighbors

- path is restricted to 26.6°/63.4° degrees

Dynamically generated directions (for low-d problems):
Field D* [Ferguson & Stentz, '06],
Theta* [Nash & Koenig, '13]

10-connected grid

convert into a graph

Cell Decomposition-based Graphs

- Grid-based graph
 - advantages:
 - very simple to implement (super popular)
 - can represent any dimensional space
 - works well with obstacles represented as set of points
 - works with any cost function
 - disadvantages:
 - size does depend on the size of the environment
 - can be expensive to compute/store if # of dimensions > 3

Cell Decomposition-based Graphs

- Grid-based graph
 - advantages:
 - very simple to implement (super popular)
 - can represent any dimensional space
 - works well with obstacles represented as set of points
 - works with any cost function
 - disadvantages:
 - size does depend on the size of the environment
 - can be expensive to compute/store if # of dimensions > 3

What can we do to avoid pre-computing/storing the whole N-dimensional grid?

Cell Decomposition-based Graphs

- Grid-based graph
 - advantages:
 - very simple to implement (super popular)
 - can represent any dimensional space
 - works well with obstacles represented as set of points
 - works with any cost function
 - disadvantages:
 - size does depend on the size of the environment
 - can be expensive to compute/store if # of dimensions > 3

What can we do to avoid pre-computing/storing the whole N-dimensional grid?

Use Implicit Graphs

2D Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional point robot:

What is
$$M^R = \langle x, y \rangle$$

What is $M^W = \langle obstacle/free \ space \rangle$
What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$
What is $s^W_{current} = constant$
What is $C = Euclidean \ Distance$
What is $G = \langle x_{goal}, y_{goal} \rangle$

Configuration Space

• Configuration is legal if it does not intersect any obstacles and is valid

Configuration Space is the set of legal configurations

Legal configurations for the base of the robot:

Configuration Space

• Configuration is legal if it does not intersect any obstacles and is valid

• Configuration Space is the set of legal configurations

- Configuration space for a robot base in 2D world is:
 - 2D if robot's base is circular

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

• Configuration space for a robot base in 2D world is:

- 2D if robot's base is circular

C-Space Transform

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

• Configuration space for a robot base in 2D world is:

- 2D if robot's base is circular

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

Configuration space for a robot be O(n) methods exist to compute
 2D if robot's base is circular distance transforms efficiently

How to perform expansion of

 $\frac{C\text{-}Space}{Transform} \qquad \qquad R$

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

2D Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional circular robot:

```
What is M^R = \langle x, y \rangle

What is M^W = \langle obstacle/free \ space \rangle

What is s^R_{current} = \langle x_{current}, y_{current} \rangle

What is s^W_{current} = constant

What is C = Euclidean \ Distance

What is G = \langle x_{goal}, y_{goal} \rangle
```


2D Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional circular robot:

What is
$$M^R = \langle x, y \rangle$$

What is $M^W = \langle obstacle/free \ space \rangle$
What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$
What is $s^W_{current} = constant$
What is $C = Euclidean \ Distance$
What is $G = \langle x_{goal}, y_{goal} \rangle$

We can now construct a graph using previously discussed methods (grids, Voronoi graphs, Visibility graphs)

- Configuration space for a robot base in 2D world is:
 - 3D if robot's base is non-circular

Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional non-circular robot:

What is
$$M^R = \langle x, y, \Theta \rangle$$

What is $M^W = \langle obstacle/free \ space \rangle$
What is $s^R_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle$
What is $s^W_{current} = constant$
What is $C = Euclidean \ Distance$
What is $G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle$

Interleave
Graph Construction and Graph Search steps!

Construct a 3D grid (x,y,Θ) assuming point robot (i.e., a cell (x,y,Θ) is free whenever its (x,y) is free) and compute the **actual** validity of only those cells that get computed by the graph search

Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional non-circular robot:

What is $M^R = \langle x, y, \Theta \rangle$ What is $M^W = \langle obstacle/free \ space \rangle$ What is $s^R_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle$ What is $s^W_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle$

Interleave
Graph Construction and Graph Search steps!

Construct a 3D grid (x,y,Θ) assuming point robot (i.e., a cell (x,y,Θ) is free whenever its (x,y) is free) and compute the **actual** validity of only those cells that get computed by the graph search

How to compute the actual validity of cell (x,y,Θ) ?

Planning for Omnidirectional Non-Circular Non-point Robot

Planning for omnidirectional non-circular robot:

What is $M^R = \langle x, y, \Theta \rangle$ What is $M^W = \langle obstacle/free \ space \rangle$ What is $s^R_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle$ What is $s^W_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle$ What's different when planning for a robot that has a complex 3D body?

Two Classes of Graph Construction Methods

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

Beyond Planning for Omnidirectional Robots

What's wrong with using Grid-based Graphs when planning for non-omnidirectional robots?

Beyond Planning for Omnidirectional Robots

Beyond Planning for Omnidirectional Robots

Kinodynamic planning:

Planning representation includes $\{X, X\}$, where X-configuration and \dot{X} -derivative of X (dynamics of X)

Lattice Graphs [Pivtoraiko & Kelly '05]

- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions

Lattice Graphs [Pivtoraiko & Kelly '05]

- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions

Lattice Graphs [Pivtoraiko & Kelly '05]

- Graph $\{V, E\}$ where
 - -V: centers of the grid-cells
 - E: motion primitives that connect centers of cells via short-term **feasible** motions

What You Should Know...

- Explicit vs. Implicit graphs
- What visibility graphs are
- What Voronoi diagram-based graphs are
- X-connected N-dimensional grids
- Lattice-based graphs