Fisica 3 Corso del prof. Sozzi Marco

Francesco Sorce

Università di Pisa Dipartimento di Matematica A.A. 2023/24

Indice

.1 I .2 I .3 I .4 (.5 I .1 I	Prime Definiz 1.2.1 Relazio Gas ide Esemp 1.5.1 Cerime Modali 2.1.1	de: ion Done eal i p Co ent ità	iniz e d efini tra i . rinc omp	ioni i ten zione para ipali ressi i cal	nper e di ame di one	ratu ter etri pro e e I	ara mpe ind	eratı liper si qı	ura nder nasis	tra nti e	mit ed (e g esp	gas	sic	ni	po	er :	l'e	ne	erg	ia				
.2 I .3 I .4 (.5 I .7 Prasf	Definiz 1.2.1 Relazio Gas ide Esemp 1.5.1 'erime Modali	zion De one eal i p Ce ent ità	ne definitration traction trac	i tem zione para ipali ressi	npen e di ame di one	ratu ter etri pro e e I	ara mpe ind	eratı liper si qı	ura nder nasis	tra nti e	mit ed (e g esp	gas	sic	ni	po	er :	l'e	ne	erg	ia				
.3 I .4 (.5 I .1 Prasf	1.2.1 Relazio Gas ide Esemp 1.5.1 'erime Modali	De eal i p Ce ent	efini tra i . rinc omp	zione para ipali ressi i cal	e di ame di one	ter etri pro e e I	mpe ind	eratı liper si qu	ura nder nasis	tra nti e stat	mit ed (e g esp	gas ores	sio	ni	ре	er :	l'e	ne	erg	ia				
.3 I .4 (.5 I .1 P	Relazio Gas ido Esemp 1.5.1 'erime Modali	one eal i p Co e nt ità	tra i . rinc omp	para ipali ressi i ca l	di one	etri pro e e I	ind	liper si qu	nder nasis	nti e stat	ed (esp	res	sic	oni	pe	er :	l'e:	ne	rg	ia ·				
.4 (.5 I .1 .1 I	Gas ide Esemp 1.5.1 'erime Modali	eal i p Co e nt ità	i . rinc omp o d	ipali ressi i ca l	di one	pro e e I	cess	si qu	ıasi	stat	ici														
.4 (.5 I .1 .1 I	Gas ide Esemp 1.5.1 'erime Modali	eal i p Co e nt ità	i . rinc omp o d	ipali ressi i ca l	di one	pro e e I	cess	si qu	ıasi	stat	ici														
.5 I Trasf .1 I	Esemp 1.5.1 'erime Modali	i p Co e nt ità	rinc omp o d	ipali ressi i ca l	di one	pro e e I	cess	si qu	ıasi	stat	ici														
rasf	1.5.1 'erime Modali	Co e nt ità	omp o d	ressi i cal	one ore	e e I		_																	
.1 1	Modali	ità				e																			
			di t	noafe																					
2	2.1.1	C		rasie	rim	nent	to d	i ca	lore																
		\mathbf{C}	ndı	ızior	e.																				
2	2.1.2	C_0	nve	zion	е.																				
2	2.1.3	Ir	agg	iame	$_{ m entc}$)																			
.2 I	Primo	pr	nci	oio d	ella	ı ter	rmo	dina	ami	ca															
.4 I	Energi																								
2	2.4.2																								
9	2.4.3																								
5	2.4.4																								
	2] 3 (4] 4] 2 [2] 4 [2] 2 [3]	3 Capaci 2.3.1 4 Energi 2.4.1 2.4.2 2.4.3 2.4.4 Cichiami r	2 Primo pri 3 Capacità 2.3.1 Ca 4 Energia ir 2.4.1 Iso 2.4.2 Iso 2.4.3 Iso 2.4.4 Ao Cichiami material	2 Primo princip 3 Capacità terr 2.3.1 Capac 4 Energia in fu 2.4.1 Isobar 2.4.2 Isocor 2.4.3 Isoter 2.4.4 Adiab	2 Primo principio d 3 Capacità termica 2.3.1 Capacità t 4 Energia in funzion 2.4.1 Isobara 2.4.2 Isocora 2.4.3 Isoterma 2.4.4 Adiabatica cichiami matematic	2 Primo principio della 3 Capacità termica	2 Primo principio della ter 3 Capacità termica	2 Primo principio della termo 3 Capacità termica	2 Primo principio della termodina 3 Capacità termica	2 Primo principio della termodinami 3 Capacità termica	2 Primo principio della termodinamica 3 Capacità termica	2 Primo principio della termodinamica 3 Capacità termica	2 Primo principio della termodinamica 3 Capacità termica	Primo principio della termodinamica Capacità termica 2.3.1 Capacità termica per gas ideali Energia in funzione delle trasformazioni per gas ideali 2.4.1 Isobara 2.4.2 Isocora 2.4.3 Isoterma 2.4.4 Adiabatica	Primo principio della termodinamica Capacità termica 2.3.1 Capacità termica per gas ideali Energia in funzione delle trasformazioni per gas ideali 2.4.1 Isobara 2.4.2 Isocora 2.4.3 Isoterma 2.4.4 Adiabatica										

$\begin{array}{c} \text{Parte I} \\ \\ \text{Termodinamica} \end{array}$

Capitolo 1

Temperatura e calore

La termodinamica è lo studio di sistemi dal punto di vista macroscopico. Le massime fondamentali della termodinamica sono

- L'energia dell'universo è costante
- L'entropia dell'universo tende ad aumentare.

1.1 Prime definizioni

Definizione 1.1 (Sistema termodinamico).

Un **sistema termodinamico** è un sistema omogeneo composto da "molti" elementi. Lo **stato** di un sistema termodinamico è univocamente determinato da un numero contenuto di parametri¹ detti **funzioni di stato**.

Il numero di funzioni di stato necessarie per specificare lo stato è detto **numero di** gradi di libertà.

Osservazione 1.2.

Le funzioni di stato di un sistema non dipendono da come esso è venuto ad esistere; se due procedimenti portano da un particolare stato ad un altro, le differenze nelle funzioni di stato dipendono univocamente dallo stato iniziale e quello finale.

Osservazione 1.3 (Sistema ambiente).

Spesso torna comodo considerare una coppia di sistemi, uno detto semplicemente sistema e l'altro **ambiente**.

Definizione 1.4 (Variabili estensive e intensive).

Dato un sistema termodinamico, delle variabili ad esso inerenti si dicono **estensive** se sono proporzionali alla quantità di materia contenuta nel sistema e **intensive** altrimenti.

Esempio 1.5.

Il volume e l'energia sono grandezze estensive mentre la pressione e la temperatura sono intensive.

Definizione 1.6 (Sistemi isolati, chiusi e aperti).

Un sistema termodinamico si dice

• isolato se non ammette scambio con l'ambiente,

¹Per esempio temperatura, pressione o volume.

- chiuso se non ammette scambio di materia con l'ambiente,
- aperto se ammette scambi con l'ambiente.

Per considerare più sistemi termodinamici dobbiamo considerarli come separati da una parete.

Definizione 1.7 (Tipi di parete).

Una parete tra due sistemi è

- adiabatica se non permette scambi,
- diatermica se non ammette scambi di materia,
- semipermeabile se fa passare alcuni tipi di materia.
- permeabile² se permette ogni tipo di scambio.

Definizione 1.8 (Equilibrio).

Un sistema è in **equilibrio** se le sue funzioni di stato restano "costanti" (per molto tempo rispetto alla scala temporale rilevante).

Un sistema è in **equilibrio termico** se non ci sono differenze di temperatura³.

Un sistema è in **equilibrio termodinamico** se è in equilibrio meccanico, termico e chimico.

Osservazione 1.9.

I sistemi tendono spontaneamente ed irreversibilmente all'equilibrio termodinamico.

Definizione 1.10 (Equazione di stato).

Se quando un sistema è in equilibrio vale una equazione tra le funzioni di stato, queste si dicono **equazioni di stato**.

Definizione 1.11 (Tipi di trasferimenti di energia).

Considerato un sistema termodinamico e l'ambiete definiamo le seguenti tipologie di scambi di energia:

- uno scambio di energia meccanica è detto lavoro,
- uno scambio di energia termica è detto calore,
- uno scambio di energia chimica è definito da

$$\Delta E = \int \mu dn,$$

dove n è il numero di particelle coinvolte e μ è il **potenziale chimico**.

Affermiamo per convenzione che uno scambio di energia ha segno *positivo* se il sistema acquista energia dall'ambiente.

$Osservazione \ 1.12.$

Il lavoro meccanico è dato da $W=\int \vec{F}\cdot d\vec{\ell}$. È un fatto generale che il lavoro ha la forma

$$\int$$
 (intensiva) d (estensiva).

 $^{^2}$ una parete permeabile è come se non ci fosse

³definiremo la temperatura in seguito.

⁴questa quantità ha senso solo per sistemi aperti.

Definizione 1.13 (Processi quasistatici).

Un sistema è **quasi in equilibrio** se è così vicino all'equilibrio che le equazioni di stato si possono considerare valide. Un **processo quasistatico** è descrivibile da una successione di variazioni infinitesime tra stati vicini all'equilibrio.

Se non sono presenti "attriti", un processo quasistatico è detto reversibile.

Un processo è detto **totalmente reversibile** se è reversibile e la sua interazione con l'ambiente è reversibile.

1.2 Definizione di temperatura

Fatto 1.14 (0-esimo principio della termodinamica).

Due sistemi in equilibrio termico con un terzo sono in equilibrio tra loro.

Proposizione 1.15 (Temperatura empirica).

Ogni sistema termodinamico ammette una funzione che è costante in stato di equilibrio. La costante è detta **temperatura empirica**.

Dimostrazione.

Consideriamo tre sistemi, con funzioni di stato (x_1, y_1) , (x_2, y_2) e (x_3, y_3) in equilibrio tra loro. Esistono dunque equazioni di stato della forma

$$\begin{cases} x_3 = f(x_1, y_1, y_3) \\ x_3 = g(x_2, y_2, y_3) \end{cases}$$

poiché i sistemi 1 e 2 sono in equilibrio, se eguagliamo le due equazioni sappiamo che ciò che otteniamo non dipende da y_3 , quindi

$$\begin{cases} f(x_1, y_1, y_3) = \phi_1(x_1, y_1)\zeta(y_3) + \eta(y_3) \\ g(x_2, y_2, y_3) = \phi_2(x_2, y_2)\zeta(y_3) + \eta(y_3) \end{cases}$$

dunque se 1 e 2 sono in equilibrio si ha che

$$\phi_1(x_1, y_1) = \phi_2(x_2, y_2),$$

ma i due membri dipendono da insiemi di variabili disgiunti, quindi esiste θ_0 tale che entrambe queste espressioni eguagliano θ_0 se sono in equilibrio. Il valore θ_0 è detto la temperatura empirica dei sistemi, i quali sono in equilibrio solo se hanno la stessa temperatura empirica.

Definizione 1.16 (Isoterme).

Dato un sistema termodinamico e un valore θ_0 di temperatura empirica, chiamiamo **isoterma a livello** θ_0 l'insieme degli stati del sistema la cui temperatura è θ_0 .

Fatto 1.17 (Punto triplo).

Considerando come sistema termodinamico dell'acqua esiste una precisa combinazione di temperatura e pressione tale per cui essa risulta in trasizione tra gli stati solido liquido e gassoso simultaneamente.

Questo stato si chiama **punto triplo** e i valori in questione sono una temperatura di 0.01°C e una pressione di 0.006 atm.

1.2.1 Definizione di temperatura tramite gas

A bassa pressione i gas si comportano tutti allo stesso modo⁵.

Se fissiamo il volume e la quantità di materia del gas possiamo definire θ in modo tale che $p = p_0(1 + \alpha\theta)$, cioè poniamo

$$\theta = \frac{1}{\alpha} \frac{p - p_0}{p_0}.$$

Se imponiamo che l'acqua congeli per $\theta=0$ e bollisca per $\theta=100$ allora si ricaviamo $1/\alpha=273.15$. Notiamo inoltre⁶

$$\frac{p_2}{p_1} = \frac{\alpha^{-1} + \theta_2}{\alpha^{-1} + \theta_1} = \frac{\theta_2'}{\theta_1'}.$$

Possiamo dunque definire la temperatura (in Kelvin) come

$$T = \lim_{p^{(PT)} \to 0} 273.16 \frac{p}{p^{(PT)}}$$

dove $p^{(PT)}$ è la pressione del gas nel termometro quando questo sistema è in equilibrio con il sistema di punto triplo con l'acqua. Il limite corrisponde a prendere gas sempre più rarefatti, cioè a lavorare nel limite dei gas perfetti dove vale la proporzionalità sopra.

Sfruttando questa definizione possiamo costruire un termometro a gas come in figura [FIGURA TERMOMETRO A GAS]

Quando il gas è alla temperatura che vogliamo misurare misuriamo la differenza di altezza tra il livello a contatto con il gas e il livello di controllo posto a pressione atmosferica. Questa differenza è proporzionale alla differenza di pressione e questo ci permette di ricavare la temperatura se la fissiamo per quando è nel punto critico.

1.3 Relazione tra parametri indipendenti ed espressioni per l'energia

Fatto 1.18 (Relazione tra parametri indipendenti e espressioni per l'energia). Il numero di parametri di un sistema indipendenti è pari al numero di coppie di variabili che compaiono nelle espressioni per l'energia.

Esempio 1.19 (Filo).

Un filo ha come funzioni di stato la lunghezza, la tensione e la temperatura, che indichiamo L, τ e T rispettivamente.

Le formule per l'energia contengono τ ed L per il lavoro ($\delta W = \tau dL$) e L e T per il calore⁷. Segue che il sistema filo ha due parametri indipendenti, dunque deve esistere una equazione che lega i parametri citati. In questo caso è la legge di Hooke ($\tau = -k(L - L_0)$).

Esempio 1.20 (Fluidi).

Ragioniamo in modo simile a prima, stavolta i parametri sono volume, pressione e temperatura.

 $[\]overline{}^{5}$ rispettano l'equazione di stato $pV = f(\theta)$

 $^{^6}$ l'addizione di α^{-1} corrisponde alla traslazione che trasforma gradi Celsius in gradi Kelvin.

⁷L appare implicitamente in quanto unica grandezza estensiva.

1.4 Gas ideali

Definizione 1.21 (Mole).

Una mole di una sostanza corrisponde a $6.02 \cdot 10^{23}$ particelle di quella sostanza. La costante è detta numero di Avogadro e la indichiamo con N_a .

Definizione 1.22 (Densità).

Definiamo la denstità come

$$\rho = \frac{m}{V}.$$

 $Osservazione \ 1.23.$

Il differenziale della densità è

$$d\rho = -\frac{m}{V^2}dV.$$

Definizione 1.24 (Condizioni standard).

Un gas è in **condizioni standard** (STP) se è alla temperatura di 0° C e alla pressione di 1 atm = 101.3245 kPa.

Per i gas ideali valgono le seguenti leggi:

Fatto 1.25 (Legge di Boyle).

 $Se\ T\ \grave{e}\ costante$

$$V \propto \frac{1}{p}$$

Fatto 1.26 (Legge di Charles).

Se p è costante

$$V \propto (1 + \alpha T)$$

Fatto 1.27 (Legge di Gay-Lussac).

Se V è costante

$$p \propto T$$

Fatto 1.28 (Legge di Avogadro).

Se p e T sono fissate, tutti i gas occupano lo stesso volume se consistono della stessa quantità di materia, in particolare

$$V \propto n$$
.

Una mole di gas in condizioni standard occupa un volume di 22.4 ℓ (litri).

Combinando le leggi appena citate arriviamo alla legge dei Gas perfetti

$$pV = nRT$$

dove p è la pressione, V è il volume, n è il numero di moli, T è la temperatura e R è la **costante fondamentale dei gas** e vale $8.314 \frac{\text{J}}{\text{K mol}}$.

Definizione 1.29 (Costante di Boltzmann).

Definiamo la costante di Boltzmann k_b in modo tale che

$$R = N_a k_b$$
.

1.5 Esempi principali di processi quasistatici

Definizione 1.30 (Tipi rilevanti di processi). Un processo si dice

- **isotermo** se T resta costante,
- **isobaro** se p resta costante,
- \bullet isocore se V resta costante o
- adiabatico se non avviene scambio di calore⁸.

Definizione 1.31 (Coefficiente di espansione volumetrica). Definiamo il **coefficiente di espansione volumetrica** come

$$\alpha = \frac{1}{V} \left. \frac{\partial V}{\partial T} \right|_p = -\frac{m}{V} \frac{1}{\rho^2} \left. \frac{\partial \rho}{\partial T} \right|_p = -\frac{1}{\rho} \left. \frac{\partial \rho}{\partial T} \right|_p.$$

L'unità di misura è $[\alpha] = K^{-1}$.

Definizione 1.32 (Compressibilità isoterma). Definiamo la **compressibilità isoterma** come

$$\beta_T = -\frac{1}{V} \left. \frac{\partial V}{\partial p} \right|_T.$$

L'unità di misura è $[\beta_T] = Pa^{-1}$.

L'inversa $k_T = 1/\beta_T$ è detta modulo di compressibilità isoterma.

Riportiamo alcuni valori di α e β_T per dare una intuizione sui valori tipici⁹

Materiale	$\alpha [\mathrm{K}^{-1}]$	$\beta_T [\mathrm{Pa}^{-1}]$
Acqua	$0.2 \cdot 10^{-3}$	$4.6 \cdot 10^{-10}$
Diamante	$3 \cdot 10^{-6}$?
Sitall	$\leq 10^{-7}$?
Sabbia	?	$\sim 10^{-8}$
Mercurio	$1.8 \cdot 10^{-4}$	$4 \cdot 10^{-11}$
Rame	?	$7.2 \cdot 10^{-12}$

 $Osservazione\ 1.33.$

Non è necessario battezzare $\left.\frac{\partial p}{\partial T}\right|_V$ in quanto per la proprietà ciclica (A.1)

$$\left. \frac{\partial p}{\partial T} \right|_V = -\left. \frac{\partial p}{\partial V} \right|_T \frac{\partial V}{\partial T} \right|_p = \frac{\alpha}{\beta_T}.$$

Osservazione 1.34 (Relazione differenziale tra α e β_T).

Per il teorema di Schwarz si ha che

$$\frac{\partial^2 V}{\partial p \partial T} = \left. \frac{\partial \alpha}{\partial p} \right|_T = - \left. \frac{\partial \beta_T}{\partial T} \right|_p.$$

⁸ definiremo il calore successivamente. Intuitivamente è lo scambio di energia che deriva da una variazione di temperatura.

 $^{^9\}mathrm{il}$ Sitall è materiale fatto apposta per avere coefficiente di espansione volumetrica piccolo

Proposizione 1.35 (α e β_T per gas ideali).

Se il sistema in esame è un gas ideale valgono le seguenti identità:

$$\alpha = \frac{1}{T}, \qquad \beta_T = \frac{1}{p}.$$

Dimostrazione.

Segue calcolando:

$$\begin{split} \alpha = & \frac{1}{V} \left. \frac{\partial (nRT/p)}{\partial T} \right|_p = \frac{nR}{pV} = \frac{1}{T}, \\ \beta_T = & -\frac{1}{V} \left. \frac{\partial (nRT/p)}{\partial p} \right|_T = \frac{1}{V} nRT \frac{1}{p^2} = \frac{1}{p}. \end{split}$$

Proposizione 1.36 (Differenziale della pressione).

Si ha che

$$dp = \frac{\alpha}{\beta_T} dT - \frac{1}{\beta_T V} dV.$$

Dimostrazione.

Osserviamo che

$$\left.\frac{\partial p}{\partial T}\right|_{V}\stackrel{\text{(A.1)}}{=}-\frac{\partial p}{\partial V}\right|_{T}\frac{\partial V}{\partial T}\right|_{p}=\frac{\alpha}{\beta_{T}},$$

dunque ricaviamo

$$dp = \frac{\partial p}{\partial T} \bigg|_{V} dT + \frac{\partial p}{\partial V} \bigg|_{T} = \frac{\alpha}{\beta_T} dT - \frac{1}{\beta_T V} dV.$$

Corollario 1.37.

In una trasformazione isocora $\Delta p = \frac{\alpha}{\beta_T} \Delta T$.

Osservazione 1.38 (Differenziale logaritmico nel volume). Spesso tornerà comodo ricordare il seguente sviluppo differenziale

$$d\log V = \frac{1}{V}dV = \alpha dT - \beta_T dp$$

Dimostrazione.

Segue calcolando:

$$\frac{1}{V}dV = \frac{1}{V} \left(\frac{\partial V}{\partial T} \Big|_{p} dT + \left. \frac{\partial V}{\partial p} \right|_{T} dp \right) = \alpha dT - \beta_{T} dp$$

1.5.1 Compressione e Lavoro

Immagino di comprimere un sistema come in figura [FIGURA]

Se spingiamo molto lentamente possiamo con buona approssimazione supporre che il processo sia quasistatico, dunque F=pS. Segue che

$$\delta W = Fdx = pSdx$$

Se il sistema in questione è un gas ideale allora

$$\delta W = p(-dV) = -pdV$$

Il lavoro totale per passare da uno stato A ad uno stato B diventa

$$W = -\int_{A}^{B} p(V, T)dV,$$

ma p come cambia al variare di V? Dipende dal tipo di processo. [QUALCHE GRAFICO]

Questo mostra in particolare che il lavoro non è una funzione di stato.

Capitolo 2

Trasferimento di calore

2.1 Modalità di trasferimento di calore

Il trasperimento di calore, cioè di energia derivante da una differenza di temperatura, avviene in tre modi: conduzione, covezione ed irraggiamento.

2.1.1 Conduzione

Parliamo di **conduzione** quando il tresferimento di calore avviene per contatto ma senza scambio di materia (attraverso una parete diatermica).

Empiricamente riscontriamo

Fatto 2.1 (Legge di Fourier).

 $Vale\ la\ relazione$

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = -\kappa \frac{\Delta T}{\Delta X},$$

dove T è la temperatura, X è la distanza tra i punti tra cui stiamo calcolando la differenza di temperatura, A è l'area ortogonale alla direzione lungo la quale si propaga il calore e κ è una costante detta **conducibilità termica**.

L'unità di misura della conducibilità termica è

$$[\kappa] = \frac{W}{mK} \approx \begin{cases} 10^2 & \text{metalli} \\ 0.1 & \text{gas} \end{cases}.$$

Possiamo precisare la legge di Fourier introducendo la corrente di calore \vec{J}_Q . La legge assume la forma

$$\vec{J}_Q = -k\vec{\nabla}T.$$

Concentrandosi su uno dei sistemi possiamo scrivere

$$\delta Q = cm\delta T$$

dove m è la massa e c è il calore specifico.

Possiamo calcolare il calore totale che entra dentro una superficie per unità di tempo come

$$\int_V c \frac{\partial T}{\partial t} \rho dV = \frac{1}{\Delta t} \int_{\partial V} \delta Q = - \int_{\partial V} \vec{J}_Q \cdot \vec{d\Sigma} = - \int_V \nabla \cdot \vec{J}_Q dV = \int_V k \nabla^2 T dV.$$

Ricaviamo dunque

$$\frac{\partial T}{\partial t} = \frac{\kappa}{\rho c} \nabla^2 T$$

Questa è la famosa equazione del calore.

2.1.2 Convezione

Parliamo di **convezione** quando il trasferimento di calore avviene tramite lo spostamento di materia.

La formula rilevante in questo caso è

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = h\Delta T,$$

dove $h
ilde{e} il$ coefficiente convettivo.

2.1.3 Irraggiamento

Parliamo di **irraggiamento** quando un corpo semplicemente emette energia come radiazione.

La formula rilevante in questo caso è

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = \varepsilon \sigma (T^4 - T_0^4),$$

dove T_0 è la temperatura dell'ambiente, σ è una costante uguale per tutti i materiali e ε dipende dai materiali.

2.2 Primo principio della termodinamica

Fatto 2.2 (Primo principio della termodinamica).

L'energia interna di un sistema di conserva. Esplicitamente

$$\boxed{\Delta U = Q + W}$$

Osservazione 2.3.

Il calore e il lavoro non sono funzioni di stato, ma la loro somma sì.

Osservazione 2.4 (Primo principio in forma differenziale).

Scrivendo il primo principio in termini di infinitesimi restituisce

$$dU = \delta Q + \delta W,$$

in particolare per i gas ideali troviamo

$$dU = \delta Q - pdV.$$

Definizione 2.5 (Caloria).

Una **caloria** è la quantità di calore necessaria per far variare la temperatura di un grammo di acqua da 14.5° C a 15.5° C.

In Joule si ha che

$$1 \text{ cal} = 4.186 \text{ J}$$

Osservazione 2.6.

In una trasformazione adiabatica, il lavoro è dato dalla differenza di energia interna.

Esempio 2.7 (Coppia di sistemi dentro un contenitore adiabatico).

Consideriamo due sistemi A e B dentro un contenitore adiabatico. Per il primo principio

$$0 = \Delta U = \Delta U_A + \Delta U_B = Q_A + Q_B + \underbrace{W_A + W_B}_{-W}.$$

I trasferimenti di calore possono avvenire solo tra A e B, quindi $Q_A + Q_B = 0$ e W = 0. Quanto scritto è una "legge di conservazione del calore" in questo tipo di sistema.

2.3 Capacità termica

Definizione 2.8 (Capacità termica). Definiamo la capacità termica come¹

$$C = \lim_{\delta T \to 0} \frac{\delta Q}{\delta T}.$$

L'unità di misura è [C] = J/K.

La capacità termica molare è data da c = C/n.

Il calore specifico è dato da C/m.

Definizione 2.9 (Termometro e Termostato).

Un termostato è un oggetto ideale con capacità termica infinita².

Un **termometro** è un oggetto ideale con capacità termica nulla³.

Osservazione 2.10.

Possiamo scrivere la capacità termica in termini di U, V, $p \in T$ come segue:

$$C = \frac{\delta Q}{\delta T} = \left. \frac{\partial U}{\partial T} \right|_{V} + \left(\left. \frac{\partial U}{\partial V} \right|_{T} + p \right) \frac{dV}{dT}$$

Dimostrazione.

Sviluppando dU troviamo

$$dU = \frac{\partial U}{\partial T} \bigg|_{V} dT + \frac{\partial U}{\partial V} \bigg|_{T} dV,$$

da cui

$$\delta Q = dU + p dV = \left. \frac{\partial U}{\partial T} \right|_V dT + \left(\left. \frac{\partial U}{\partial V} \right|_T + p \right) dV.$$

Ora possiamo "dividere" per dT e trovare la tesi.

Definizione 2.11 (Capacità termica a volume/pressione costante).

Definiamo la capacità termica a volume (risp. pressione) costante come le due

 $^{^1{\}rm Nota}$ che NON è una derivata in quanto Qnon è una funzione di stato, quindi in particolare non è una funzione di T

²intuitivamente è un sistema grande a sufficienza in modo che anche se viene aggiunto calore, la temperatura non cambia.

³intuitivamente è un sistema piccolo a sufficienza in modo da poter trascurare gli scambi di calore.

seguenti quantità

$$\begin{split} C_{V} &= \frac{\delta Q}{\delta T} \bigg|_{V} = \left. \frac{\partial U}{\partial T} \right|_{V} \\ C_{p} &= \left. \frac{\delta Q}{\delta T} \right|_{p} = \left. \frac{\partial U}{\partial T} \right|_{V} + \left(\left. \frac{\partial U}{\partial V} \right|_{T} + p \right) \left. \frac{\partial V}{\partial T} \right|_{p} = \left. \frac{\partial U}{\partial T} \right|_{V} + \left(\left. \frac{\partial U}{\partial V} \right|_{T} + p \right) V \alpha \end{split}$$

Osservazione 2.12 (Disuguaglianza tra capacità termiche). Vale sempre $C_p > C_V$.

Osservazione 2.13. In un gas generale

$$\left| \frac{\partial U}{\partial V} \right|_T = \frac{C_p - C_V}{V\alpha} - p$$

2.3.1 Capacità termica per gas ideali

Definizione 2.14 (Coefficiente di Joule). Definiamo il **coefficiente di Joule** come

$$\mu_J = \left. \frac{\partial T}{\partial V} \right|_U$$

Fatto 2.15 (In gas ideale l'energia interna dipende solo dalla temperatura). In un gas ideale U dipende solo da T.

Esperimento: Espansione libera adiabatica di Joule.

Consideriamo un contenitore adiabatico separato internamente da una parete adiabatia. In uno dei due volumi si trova un gas ideale, il secondo è vuoto.

[DISEGNO]

Improvvisamente eliminiamo la parete interna e lasciamo che il gas si espanda⁴.

Chiaramente Q=W=0 in quanto il vuoto non subisce/effettua lavoro e non scambia calore, dunque $\Delta U=0$.

Segue che $\mu_J=\frac{\partial T}{\partial V}\big|_U=\frac{dT}{dV}$ e Joule ha misurato che in queste circostanze la seconda è nulla, dunque

$$0 = \left. \frac{\partial T}{\partial V} \right|_{U} \stackrel{\text{(A.1)}}{=} - \left(\left. \frac{\partial V}{\partial U} \right|_{T} \right)^{-1} \left(\left. \frac{\partial U}{\partial T} \right|_{V} \right)^{-1} = - \left. \frac{\partial U}{\partial V} \right|_{T} \frac{1}{C_{V}},$$

in particolare $\left. \frac{\partial U}{\partial V} \right|_T = 0.$

Poiché in un gas ideale p è determinata da V e T, U = U(V,T). Per quanto appena detto U non dipende da V, quindi dipende solo da T.

Corollario 2.16.

In un gas ideale

$$dU = nc_V dT.$$

 $^{^4}$ notiamo che questo NON è una processo quasistatico.

Dimostrazione.

Ricordiamo che

$$C_V = \left. \frac{\partial U}{\partial T} \right|_V,$$

ma poiché U non dipende da V possiamo scrivere

$$C_V = \frac{dU}{dT},$$

che è la tesi.

Proposizione 2.17 (Relazione di Mayer).

Per gas ideali si ha che $c_p - c_V = R$, o equivalentemente $C_p - C_V = nR$.

Dimostrazione

Ricordiamo (1.35) che per gas ideali $\alpha = T^{-1}$. Poiché U dipende solo da T si ha che

$$0 = \frac{\partial U}{\partial V} \bigg|_{T} \stackrel{\text{(2.13)}}{=} \frac{C_p - C_V}{V\alpha} - p,$$

da cui

$$C_p - C_V = pV\alpha = \frac{nRT}{T} = nR.$$

Fatto 2.18 (Calore specifico a volume costante in funzione dei gradi di libertà). In un gas ideale

$$C_V = \frac{\nu}{2} nR$$

dove ν è il numero di gradi di libertà.

Osservazione 2.19.

Per un gas ideale monoatomico $\nu=3,$ mentre per un gas biatomico $\nu=5.$ Segue che

$$c_V^{mono} = \frac{3}{2}R \approx 12.47 \frac{\mathrm{J}}{\mathrm{K~mol}}, \qquad c_V^{bi} = \frac{3}{2}R \approx 20.74 \frac{\mathrm{J}}{\mathrm{K~mol}}.$$

Osservazione 2.20 (L'aria è un gas ideale biatomico).

L'aria è composta principalmente da particelle biatomiche $(O_2 \in N_2)$.

Proposizione 2.21 (Calore infinitesimale con capacità).

Per gas ideali valgono le seguenti equazioni

1.
$$\delta Q = C_V dT + p dV$$

2.
$$\delta Q = C_p dT - V dp$$
.

Dimostrazione.

Mostriamo i due punti:

1 Ricordiamo la relazione

$$\delta Q = \underbrace{\frac{\partial U}{\partial T}\Big|_{V}}_{=C_{V}} dT + \left(\frac{\partial U}{\partial V}\Big|_{T} + p\right) dV,$$

da cui, usando il fatto che $\left.\frac{\partial V}{\partial U}\right|_T=0,$ troviamo che $\delta Q=C_VdT+pdV.$

 $\boxed{2}$ Osserviamo che il differenziale di pV=nRT è

$$nRdT = pdV + Vdp,$$

da cui sfruttando la relazione precedente

$$\delta Q = C_V dT + p dV = (C_V + nR)dT - V dp \stackrel{\text{(2.17)}}{=} C_p dT - V dp.$$

Osservazione 2.22.

Osservando la prima equazione ricaviamo nuovamente che δQ non è un differenziale, infatti se lo fosse avremmo il seguente assurdo:

$$0 = \left. \frac{\partial C_V}{\partial V} \right|_T = \left. \frac{\partial p}{\partial T} \right|_V = \frac{nR}{V} \neq 0.$$

2.4 Energia in funzione delle trasformazioni per gas ideali

In questa sezione calcoliamo lavoro, calore e variazione di energia interna per i tipi principali di processi quasistatici.

Notiamo che $\Delta U = nc_V \Delta T$ in ogni circostanza in quanto U non dipende da V.

2.4.1 Isobara

Proposizione 2.23 (Energie per isobara).

Per una trasformazione isobara valgono le seguenti identità:

$$W = -nR\Delta T$$
, $Q = nc_p\Delta T$, $\Delta U = nc_V\Delta T$.

Dimostrazione.

Calcoliamo:

$$W = -\int_{V_i}^{V_f} p dV \stackrel{\text{isobara}}{=} -p\Delta V \stackrel{\text{gas ideale}}{=} -nR\Delta T$$

$$Q \stackrel{\text{isobara}}{=} \int_{T_i}^{T_f} nc_p dT = nc_p\Delta T$$

$$\Delta U = Q + W = n(c_p - R)\Delta T = nc_V\Delta T.$$

2.4.2 Isocora

Proposizione 2.24 (Energie per isocora).

Per una trasformazione isocora valgono le seguenti identità:

$$W = 0$$
, $Q = nc_v \Delta T$, $\Delta U = nc_V \Delta T$.

Dimostrazione.

Calcoliamo:

$$\begin{split} W &= -\int_{V_i}^{V_f} p dV \overset{V_i = V_f}{=} 0 \\ Q \overset{\text{isocora}}{=} \int_{T_i}^{T_f} n c_V dT = n c_V \Delta T \\ \Delta U &= Q + W = n c_V \Delta T. \end{split}$$

2.4.3 Isoterma

Proposizione 2.25 (Energie per isoterma).

Per una trasformazione isoterma valgono le seguenti identità:

$$W = -nRT \log \left(\frac{V_f}{V_i}\right), \quad Q = nRT \log \left(\frac{V_f}{V_i}\right), \quad \Delta U = 0.$$

Dimostrazione.

Poiché stiamo considerando un gas ideale

$$\Delta U = nc_V \Delta T \stackrel{\text{isoterma}}{=} 0.$$

Per il primo principio si ha Q=-W, quindi per concludere basta calcolare il lavoro.

$$W = -\int_{V_i}^{V_f} p dV \stackrel{\text{gas ideale}}{=} -nRT \int_{V_i}^{V_f} \frac{1}{V} dV = -nRT \log \left(\frac{V_f}{V_i}\right).$$

2.4.4 Adiabatica

Proposizione 2.26 (Equazione di stato per adiabatica).

Poniamo $\gamma = c_p/c_V$. Si ha che pV^{γ} è costante seguendo un processo adiabatico.

Dimostrazione.

Poiché il sistema in esame è un gas ideale valgono le seguenti uguaglianze

$$0 \stackrel{\text{adiabatica}}{=} \delta Q = dU - \delta W \stackrel{\text{gas ideale}}{=} nc_V dT + pdV = \frac{nc_V}{nR} d(pV) + pdV.$$

Segue che

$$-\frac{c_V V}{\cancel{R}} dp = \left(\frac{pc_V + pR}{\cancel{R}}\right) dV \stackrel{\text{(2.17)}}{=} \frac{pc_p}{\cancel{R}} dV,$$

da cui

$$-\frac{dp}{p} = \gamma \frac{dV}{V}.$$

Integrando troviamo

$$-\log p + Const. = \gamma \log V \iff \log pV^{\gamma} = Const. \iff pV^{\gamma} = e^{Const.}$$

che è quello che volevamo mostrare.

Osservazione 2.27.

Si ha che

$$c_v = \frac{R}{\gamma - 1}.$$

Dimostrazione.

Per definizione di γ

$$c_v = \frac{c_p}{\gamma} \stackrel{\text{(2.17)}}{=} \frac{R + c_v}{\gamma},$$

dunque

$$\gamma c_v = c_v + R$$

e la tesi segue.

Proposizione 2.28 (Energie per adiabatica).

Per una trasformazione adiabatica valgono le seguenti identità:

$$W = \frac{p_f V_f - p_i V_i}{\gamma - 1}, \quad Q = 0, \quad \Delta U = \frac{p_f V_f - p_i V_i}{\gamma - 1}.$$

Dimostrazione.

Poiché il processo è adiabatico, Q=0. Segue per il primo principio che $\Delta Q=W.$ Dato che stiamo considerando un gas ideale

$$\Delta U = nc_V \Delta T = n \frac{R}{\gamma - 1} \Delta T = n \frac{R}{\gamma - 1} \Delta (pV) = \frac{p_f V_f - p_i V_i}{\gamma - 1}.$$

 $Osservazione\ 2.29.$

Potevamo ricavare energia e lavoro anche sfruttando la relazione

$$pV^{\gamma} = p_i V_i^{\gamma} = p_f V_f^{\gamma},$$

ma avendola ricavata come sopra sappiamo che l'espressione è valida anche per processi adiabatici NON quasistatici.

Appendice A

Richiami matematici

A.1 Derivate parziali e Jacobiane

Da una relazione f(x,y,z)=0 possiamo ricavare x=x(y,z) e y=y(x,z). Possiamo dunque sviluppare i differenziali

$$dx = \frac{\partial x}{\partial y} \Big|_{z} dy + \frac{\partial x}{\partial z} \Big|_{y} dz$$
$$dy = \frac{\partial y}{\partial x} \Big|_{z} dx + \frac{\partial y}{\partial z} \Big|_{x} dz.$$

Proposizione A.1 (Proprietà delle derivate parziali).

Valgono le seguenti proprietà, dette dell'inversa e ciclicità rispettivamente:

$$\left. \frac{\partial x}{\partial y} \right|_z = \left(\frac{\partial y}{\partial x} \right|_z \right)^{-1}, \qquad \left. \frac{\partial x}{\partial y} \right|_z \left. \frac{\partial y}{\partial z} \right|_x \left. \frac{\partial z}{\partial x} \right|_y = -1.$$

Dimostrazione.

Considerando le espressioni date sopra e sostituiendo dy dentro lo sviluppo di dx ricaviamo l'equazione

$$\left(1-\left.\frac{\partial x}{\partial y}\right|_z\frac{\partial y}{\partial x}\right|_z\right)dx=\left(\left.\frac{\partial x}{\partial y}\right|_z\frac{\partial y}{\partial z}\right|_x+\left.\frac{\partial x}{\partial z}\right|_y\right)dz.$$

Se fissiamo z il membro di sinistra non cambia, mentre quello di destra risulta nullo (dz = 0). Poiché questo è vero anche per $dx \neq 0$ necessariamente ricaviamo

$$1 = \left. \frac{\partial x}{\partial y} \right|_{z} \left. \frac{\partial y}{\partial x} \right|_{z}$$

che è la proprietà dell'inversa.

Avendo mostrato questo ricaviamo che il membro di sinistra è sempre nullo, anche per $dz \neq 0$, quindi segue l'equazione

$$\frac{\partial x}{\partial y}\Big|_{z}\frac{\partial y}{\partial z}\Big|_{x} + \frac{\partial x}{\partial z}\Big|_{y} = 0,$$

la quale corrisponde alla proprietà di ciclicità.

Consideriamo le seguenti relazioni

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases} .$$

Poniamo

$$\frac{\partial(x,y)}{\partial(u,v)} = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}.$$

Osservazione A.2 (Jacobiane notevoli).

Si ha che

$$\frac{\partial(x,y)}{\partial(x,y)}=1,\quad \frac{\partial(x,x)}{\partial(u,v)}=0,\quad \frac{\partial(x,y)}{\partial(u,v)}=-\frac{\partial(y,x)}{\partial(u,v)}=\frac{\partial(-x,y)}{\partial(u,v)}.$$

Inoltre

$$\frac{\partial(x,y)}{\partial(u,y)} = \left.\frac{\partial x}{\partial u}\right|_y, \quad \frac{\partial(x,u)}{\partial(u,v)} = \frac{\partial(x,u)}{\partial(r,s)}\frac{\partial(r,s)}{\partial(u,v)}, \quad \frac{\partial(x,y)}{\partial(u,v)} = \left(\frac{\partial(u,v)}{\partial(x,y)}\right)^{-1}.$$