$12n_{0292} (K12n_{0292})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3.88782 \times 10^{23}u^{13} - 5.12763 \times 10^{24}u^{12} + \dots + 2.64685 \times 10^{25}b + 6.25813 \times 10^{25},$$

$$7.50387 \times 10^{22}u^{13} + 1.45176 \times 10^{23}u^{12} + \dots + 5.29369 \times 10^{25}a + 2.07299 \times 10^{26},$$

$$u^{14} + 13u^{13} + \dots - 32u + 64 \rangle$$

$$I_2^u = \langle u^7 + u^6 - 3u^5 - 2u^4 + 3u^3 + b + 2, \ u^7 + u^6 - 3u^5 - 2u^4 + 3u^3 + a + 2, \ u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 10^5 + 10$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 28 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3.89 \times 10^{23} u^{13} - 5.13 \times 10^{24} u^{12} + \dots + 2.65 \times 10^{25} b + 6.26 \times 10^{25}, \ 7.50 \times 10^{22} u^{13} + 1.45 \times 10^{23} u^{12} + \dots + 5.29 \times 10^{25} a + 2.07 \times 10^{26}, \ u^{14} + 13 u^{13} + \dots - 32 u + 64 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00141751u^{13} - 0.00274243u^{12} + \dots - 2.48245u - 3.91596 \\ 0.0146885u^{13} + 0.193726u^{12} + \dots - 5.56422u - 2.36437 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.00141751u^{13} - 0.00274243u^{12} + \dots - 2.48245u - 3.91596 \\ 0.0101820u^{13} + 0.140392u^{12} + \dots - 4.97157u - 3.36822 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00113062u^{13} - 0.0125080u^{12} + \dots - 2.90912u - 1.42506 \\ 0.0142858u^{13} + 0.186357u^{12} + \dots - 5.61762u - 1.88242 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0210436u^{13} - 0.266521u^{12} + \dots + 3.80828u - 0.914411 \\ -0.0113459u^{13} - 0.139334u^{12} + \dots + 2.52961u - 1.68257 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0181604u^{13} + 0.234062u^{12} + \dots + 2.85095u - 0.317190 \\ -0.00288324u^{13} - 0.0324588u^{12} + \dots + 0.957338u - 1.23160 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00413905u^{13} - 0.0558999u^{12} + \dots + 0.679785u + 1.52829 \\ -0.00466437u^{13} - 0.0566994u^{12} + \dots + 0.968533u - 0.525572 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.00922038u^{13} + 0.124297u^{12} + \dots + 0.666608u - 1.67826 \\ -0.00752145u^{13} - 0.0902797u^{12} + \dots + 1.73607u - 1.64474 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0194805u^{13} - 0.252321u^{12} + \dots + 2.63035u - 1.84661 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $\frac{6397031736972176627304075}{26468471689247551065891424}u^{13} + \frac{85735105186510577411506669}{26468471689247551065891424}u^{12} + \dots - \frac{114004214719555496517015677}{827139740288985970809107}u - \frac{55506637637800758601432107}{827139740288985970809107}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{14} + 9u^{13} + \dots + 16u + 1$
c_2, c_5	$u^{14} + 3u^{13} + \dots + 8u + 1$
<i>c</i> ₃	$u^{14} - 61u^{13} + \dots + 58652u + 7489$
c_4, c_8	$u^{14} + 13u^{13} + \dots - 32u + 64$
c_7, c_{10}	$u^{14} + 41u^{13} + \dots - 640u + 256$
c_9, c_{11}, c_{12}	$u^{14} - 21u^{13} + \dots + 17u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{14} - 13y^{13} + \dots - 32y + 1$
c_2, c_5	$y^{14} - 9y^{13} + \dots - 16y + 1$
<i>c</i> ₃	$y^{14} - 3381y^{13} + \dots - 1276544916y + 56085121$
c_4, c_8	$y^{14} - 339y^{13} + \dots - 62464y + 4096$
c_7, c_{10}	$y^{14} - 1029y^{13} + \dots - 2539520y + 65536$
c_9, c_{11}, c_{12}	$y^{14} - 121y^{13} + \dots - 57y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.615322 + 0.027933I		
a = 0.270955 + 0.334290I	-0.755939 - 0.001558I	-11.59104 + 0.05980I
b = -0.491780 - 0.018263I		
u = -0.615322 - 0.027933I		
a = 0.270955 - 0.334290I	-0.755939 + 0.001558I	-11.59104 - 0.05980I
b = -0.491780 + 0.018263I		
u = 0.009870 + 0.545956I		
a = -0.167508 + 0.354571I	2.39955 + 2.72347I	-2.27719 - 1.42875I
b = -0.343156 + 1.170610I		
u = 0.009870 - 0.545956I		
a = -0.167508 - 0.354571I	2.39955 - 2.72347I	-2.27719 + 1.42875I
b = -0.343156 - 1.170610I		
u = 0.538862		
a = 2.91010	-10.2297	-34.5740
b = 0.103022		
u = -0.527756		
a = 0.348493	-0.765092	-12.2670
b = -0.450251		
u = 0.328130		
a = -2.96230	-2.58775	-102.750
b = -3.66807		
u = 2.36859 + 0.76389I		
a = 0.286166 - 0.684183I	-3.81801 - 4.65772I	-14.3487 + 2.2929I
b = 0.464252 + 0.349923I		
u = 2.36859 - 0.76389I		
a = 0.286166 + 0.684183I	-3.81801 + 4.65772I	-14.3487 - 2.2929I
b = 0.464252 - 0.349923I		
u = -1.88270 + 1.66535I		
a = -0.845008 - 0.271270I	15.9880 + 11.7884I	-14.3165 - 4.7631I
b = -2.08577 - 0.29493I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.88270 - 1.66535I		
a = -0.845008 + 0.271270I	15.9880 - 11.7884I	-14.3165 + 4.7631I
b = -2.08577 + 0.29493I		
u = 2.40458 + 1.69377I		
a = 0.839800 - 0.202162I	17.5291 - 4.7891I	-13.20379 + 0.61326I
b = 2.14114 - 0.18650I		
u = 2.40458 - 1.69377I		
a = 0.839800 + 0.202162I	17.5291 + 4.7891I	-13.20379 - 0.61326I
b = 2.14114 + 0.18650I		
u = -17.9093		
a = -0.565105	6.82503	0
b = -2.35407		

II.
$$I_2^u = \langle u^7 + u^6 - 3u^5 - 2u^4 + 3u^3 + b + 2, \ u^7 + u^6 - 3u^5 - 2u^4 + 3u^3 + a + 2, \ u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} - u^{6} + 3u^{5} + 2u^{4} - 3u^{3} - 2 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} 0 \\ -u^{7} -$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $8u^7 + 8u^6 18u^5 12u^4 + 7u^3 3u^2 + 12u 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
c_2	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_{3}, c_{4}	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
c_5	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
	$u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1$
c_7, c_{10}	u^8
<i>c</i> ₈	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
<i>c</i> ₉	$(u-1)^8$
c_{11}, c_{12}	$(u+1)^8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_2, c_5	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_3, c_4, c_8	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_7, c_{10}	y^8
c_9, c_{11}, c_{12}	$(y-1)^8$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.180120 + 0.268597I		
a = -0.805639 + 0.183365I	-2.68559 - 1.13123I	-13.78185 + 1.82144I
b = -0.805639 + 0.183365I		
u = 1.180120 - 0.268597I		
a = -0.805639 - 0.183365I	-2.68559 + 1.13123I	-13.78185 - 1.82144I
b = -0.805639 - 0.183365I		
u = 0.108090 + 0.747508I		
a = -0.189481 + 1.310380I	0.51448 - 2.57849I	-9.42408 + 5.06085I
b = -0.189481 + 1.310380I		
u = 0.108090 - 0.747508I		
a = -0.189481 - 1.310380I	0.51448 + 2.57849I	-9.42408 - 5.06085I
b = -0.189481 - 1.310380I		
u = -1.37100		
a = 0.729394	-8.14766	-18.0480
b = 0.729394		
u = -1.334530 + 0.318930I		
a = 0.708845 + 0.169402I	-4.02461 + 6.44354I	-15.1664 - 7.9255I
b = 0.708845 + 0.169402I		
u = -1.334530 - 0.318930I		
a = 0.708845 - 0.169402I	-4.02461 - 6.44354I	-15.1664 + 7.9255I
b = 0.708845 - 0.169402I		
u = 0.463640		
a = -2.15684	-2.48997	1.79260
b = -2.15684		

$$I_1^v = \langle a, \ 251v^5 + 1517v^4 + \dots + 413b + 768, \ v^6 + 6v^5 + 11v^4 + 24v^3 + 15v^2 + 3v + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -0.607748v^{5} - 3.67312v^{4} + \dots - 9.28329v - 1.85956 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0290557v^{5} + 0.0242131v^{4} + \dots - 0.687651v - 0.0266344 \\ -0.607748v^{5} - 3.67312v^{4} + \dots - 9.28329v - 1.85956 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0290557v^{5} - 0.0242131v^{4} + \dots + 0.687651v + 0.0266344 \\ -0.392252v^{5} - 2.32688v^{4} + \dots - 5.71671v - 1.14044 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.392252v^{5} - 2.32688v^{4} + \dots - 5.71671v - 1.14044 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.392252v^{5} + 2.32688v^{4} + \dots + 5.71671v + 1.14044 \\ -0.421308v^{5} - 2.35109v^{4} + \dots + 0.0363196v + 1.39225 \\ -0.421308v^{5} - 2.35109v^{4} + \dots - 3.02906v + 0.886199 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.392252v^{5} + 2.32688v^{4} + \dots + 6.71671v + 1.14044 \\ 0.392252v^{5} + 2.32688v^{4} + \dots + 6.71671v + 1.14044 \\ 0.392252v^{5} + 2.32688v^{4} + \dots + 5.71671v + 1.14044 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.569007v^{5} + 3.30751v^{4} + \dots + 6.86683v + 1.56174 \\ -0.0290557v^{5} - 0.0242131v^{4} + \dots + 2.68765v + 1.02663 \end{pmatrix}$$

(ii) Obstruction class = 1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4, c_8	u^6
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
<i>C</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_{7}, c_{9}	$(u^2+u-1)^3$
c_{10}, c_{11}, c_{12}	$(u^2 - u - 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_4, c_8	y^6
$c_7, c_9, c_{10} \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.670304		
a = 0	-2.10041	-18.3450
b = -0.922021		
v = -0.046814 + 0.284512I		
a = 0	2.03717 - 2.82812I	-25.9630 + 6.8067I
b = -0.34801 - 2.11500I		
v = -0.046814 - 0.284512I		
a = 0	2.03717 + 2.82812I	-25.9630 - 6.8067I
b = -0.34801 + 2.11500I		
v = -0.32087 + 1.95007I		
a = 0	-5.85852 - 2.82812I	-18.4326 + 1.8100I
b = 0.132927 + 0.807858I		
v = -0.32087 - 1.95007I		
a = 0	-5.85852 + 2.82812I	-18.4326 - 1.8100I
b = 0.132927 - 0.807858I		
v = -4.59433		
a = 0	-9.99610	0.135730
b = 0.352181		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{3} - u^{2} + 2u - 1)^{2}$ $\cdot (u^{8} - 3u^{7} + 7u^{6} - 10u^{5} + 11u^{4} - 10u^{3} + 6u^{2} - 4u + 1)$ $\cdot (u^{14} + 9u^{13} + \dots + 16u + 1)$
c_2	$(u^{3} + u^{2} - 1)^{2}(u^{8} - u^{7} - u^{6} + 2u^{5} + u^{4} - 2u^{3} + 2u - 1)$ $\cdot (u^{14} + 3u^{13} + \dots + 8u + 1)$
c_3	$(u^{3} - u^{2} + 2u - 1)^{2}(u^{8} + u^{7} - 3u^{6} - 2u^{5} + 3u^{4} + 2u - 1)$ $\cdot (u^{14} - 61u^{13} + \dots + 58652u + 7489)$
c_4	$u^{6}(u^{8} + u^{7} + \dots + 2u - 1)(u^{14} + 13u^{13} + \dots - 32u + 64)$
c_5	
c ₆	$(u^{3} + u^{2} + 2u + 1)^{2}$ $\cdot (u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1)$ $\cdot (u^{14} + 9u^{13} + \dots + 16u + 1)$
c_7	$u^{8}(u^{2}+u-1)^{3}(u^{14}+41u^{13}+\cdots-640u+256)$
c_8	$u^{6}(u^{8} - u^{7} + \dots - 2u - 1)(u^{14} + 13u^{13} + \dots - 32u + 64)$
c_9	$((u-1)^8)(u^2+u-1)^3(u^{14}-21u^{13}+\cdots+17u+1)$
c_{10}	$u^{8}(u^{2}-u-1)^{3}(u^{14}+41u^{13}+\cdots-640u+256)$
c_{11}, c_{12}	$((u+1)^8)(u^2-u-1)^3(u^{14}-21u^{13}+\cdots+17u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^{3} + 3y^{2} + 2y - 1)^{2}$ $\cdot (y^{8} + 5y^{7} + 11y^{6} + 6y^{5} - 17y^{4} - 34y^{3} - 22y^{2} - 4y + 1)$ $\cdot (y^{14} - 13y^{13} + \dots - 32y + 1)$
c_2, c_5	$(y^{3} - y^{2} + 2y - 1)^{2}$ $\cdot (y^{8} - 3y^{7} + 7y^{6} - 10y^{5} + 11y^{4} - 10y^{3} + 6y^{2} - 4y + 1)$ $\cdot (y^{14} - 9y^{13} + \dots - 16y + 1)$
c_3	$(y^{3} + 3y^{2} + 2y - 1)^{2}$ $\cdot (y^{8} - 7y^{7} + 19y^{6} - 22y^{5} + 3y^{4} + 14y^{3} - 6y^{2} - 4y + 1)$ $\cdot (y^{14} - 3381y^{13} + \dots - 1276544916y + 56085121)$
c_4, c_8	$y^{6}(y^{8} - 7y^{7} + 19y^{6} - 22y^{5} + 3y^{4} + 14y^{3} - 6y^{2} - 4y + 1)$ $\cdot (y^{14} - 339y^{13} + \dots - 62464y + 4096)$
c_7, c_{10}	$y^{8}(y^{2} - 3y + 1)^{3}(y^{14} - 1029y^{13} + \dots - 2539520y + 65536)$
c_9, c_{11}, c_{12}	$((y-1)^8)(y^2-3y+1)^3(y^{14}-121y^{13}+\cdots-57y+1)$