(1) Do Challenge Problem (14) from HW 2: if (a_n) is a sequence in \mathbb{R} and $\lim (a_{n+1} - a_n) = 0$, must (a_n) converge? Justify your answer. No. Counterexample. an = In So | im (anti - an) = | im ([n+1 - In) = lim (Inti - IN (Inti + In) $=\lim_{n\to\infty}\frac{1}{\sqrt{n+1}+\sqrt{n}}=0$ But lim an = lim In = 0 (2) Let (a_n) be a sequence in \mathbb{R} , and let $S \subseteq \mathbb{R}$ be its set of real subsequential limits. Prove that S is closed. Proof Let c & S be arbitrary [WTS: ces, that is, there exists a subsequence of {an} that commerges to c) Below ne will construct a subsequent (bm) of (an) that converges to c Let meN Since CES', VIC) NS((c) + \$\phi\$

Since $c \in S'$, $V_{2m}(c) \cap S(c) \neq \emptyset$ let $x \in V_{1}(c) \cap S(c)$, then $x \in S$ and $|x \in C| \leq \frac{1}{2m}$ So there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ $s \cdot t \cdot \{a_{n_k}\} \to x$ as $k \to \infty$ $\{a_n\} \in S_k$ is monotonely increasing)

So a KEN st. V k > K, lank - x 1 < zm Construction, if m=1, we choose ank as bm Crecursively) if $m \ge 1$, then $b_{m-1} = a_{n_{k_0}}$ for some $k_0 \in \mathbb{N}$ then we take k = max{k, ko}+1 and choose ank as bm Then $|D_m-C| \leq |D_m-x|+|x-c| \leq \frac{1}{m}$ Note that [bm] is a subsequence of {an} since every term of {bn} is some term of {an} with increasing index Now let E>O => => for some nEN $\frac{\text{lin bm} = C}{\text{of } \{b_m\}, |b_m - c| \leq \frac{1}{m+1} \text{ for all } m \geq N}$ So $\lim_{m\to\infty} b_m = C$ Here ne have proved: c is a subsequential limit of lan} Since c is arbitrary, S'S ⇒ces Therefore S is closed

Then for some $\varepsilon > 0$, $V_{\varepsilon}(c) \cap A \setminus C_{\varepsilon}^{2} = \emptyset$ Let $n \in V_{\underline{\varepsilon}}(c)$ be arbitrary Lue have $|n-c| < \frac{\varepsilon}{\varepsilon}$.) Consider $V_{|x-c|}(x)$, we have $V_{|x-c|}(x) \cap A = \emptyset$. So $x \notin A'$ which implies $x \in (A')^{c}$. Since x is arbitrary $= V_{\underline{\varepsilon}}(c) \in (A')^{c}$. Since C is arbitrary $= (A')^{c}$ is open.

Sike C\(\pi\)A = \(\pi\)

So VEW NA= Ø => x &A'

Let ME VE(C) => x ∈ A and VE(M) ⊆ VE(C)

(3) Given $A \subseteq \mathbb{R}$, write A' for the set of all limit points of A and define the closure of A to be

(c) Prove that cl(A) is the "smallest" closed set containing A, in the sense that $cl(A) \subseteq F$

the set $cl(A) = A \cup A'$.

Proof

(a) Prove that A' is closed.(b) Prove that cl(A) is closed.

(a) Let $c \in (A')^{c}$

(b) let ce(cl(A)) C

for every closed set F containing A.

Therefore A' is closed

We can fix & 20 s.t. V=(c)) A(c) = \$

Soc&A and c&A

So c is not a limit point of A

So
$$x \notin cl(A) \implies x \in (cl(A))^{C}$$

Since x is arbitrary $\implies V_{\frac{x}{2}}(c) \subseteq \xi(A)^{C}$
Since c is arbitrary $\implies (cl(A))^{C}$ is open

Since c is arbitrary => (CI(A)) is open Therefore cl(A) is closed. (C) let F be a closed set s.t. ASF

Let
$$a \in A'$$
 be arbitrary.
Let (an) be a sequence in A that converges to a
Since $A \subseteq F \implies \liminf = a \in F$
Since a is arbitrary $\Rightarrow A' \subseteq F$

So d(A) = A'VA SF Since F is arbitrary, this finishes the proof thet cl(A) is the smallest closed set containing A.

(d) Given $\epsilon > 0$, find the largest $\delta > 0$ such that $|\sqrt{x} - 2| < \epsilon$ whenever $|x - 4| < \delta$.

4) (a) Prove explicitly using the
$$\epsilon/\delta$$
 definition that $\lim_{x\to 2} x^3 = 8$.

(4) (a) Prove explicitly using the ϵ/δ definition that $\lim_{\epsilon \to 0} x^3 = 8$. (b) Given $\epsilon > 0$, find the largest $\delta > 0$ such that $|x^3 - 8| < \epsilon$ whenever $|x - 2| < \delta$.

(c) Prove explicitly using the ϵ/δ definition that $\lim_{x\to 4} \sqrt{x} = 2$.

 $|x^3 - 8| = |x^3 - 2^3| = |x - 2| |x^2 + 2x + 4|$

For
$$|\angle x < 3$$
, $|x^2 + 2x + 4| = |(x + u^2 + 3)| \in [3, 9]$
So consider $\delta = \min\{1, \frac{\varepsilon}{19}\}$
Then for $0 < |x-2| < \delta \Rightarrow$

$$|x^{2}-8|=|x-2||x^{2}+2x+4|| < \delta \cdot |a| < \epsilon$$

Since ϵ is arbitrary, this finishes the proof that $\lim_{n\to 2} \pi^3 = 8$

(b)

For any
$$£70$$
,
We want: $(2-8)^3 > 8-2$, $(2+1)^3 \le 8+2$
 $2-8 > 3/8-2$ $2+8 \le 3/8+2$
 $8 \le 2^{-3}8-2$ and $8 \le 3/8+2-2$

So the largest 8 is $min(2-\frac{3}{18-\epsilon}, \frac{3}{18+\epsilon}-2)$ = $\frac{3}{8+\epsilon}-2$

(c) Phoof

Let
$$\varepsilon > 0$$

$$|\sqrt{\pi} - 2| = |\frac{(\sqrt{\pi} - 2)(\sqrt{\pi} + 2)}{\sqrt{\pi} + 2}| = |\pi - 4|$$

where $|\sqrt{\pi} + 2| \ge 2$

So consider $\delta = \varepsilon$

Then suppose $0 < (\pi - 4) < \delta$

$$|\sqrt{\pi} - 2| = |\pi - 4|$$

(4)

where $|\sqrt{x}+2| \geqslant 2$ So consider $\delta = \xi$

Then suppose $0 < 1\pi - 41 < \delta$

4-8 4 4+8

So & = min{(2+E)2-4, 12-E)2+9}=(2+E)2-4

So the largest & is (2+E)-4

for any €70, we want: 54+6 <2+ε, 54-6 ≥2-€

lim 17 = 2

Since & is arbitrary, this finishes the proof that

=> S < (2+E)-4, S < (2-E)+4

Let
$$270$$

Then $3N \in \mathbb{R}$ st.
 $|g(x)| - L| < 2$ whenever $\times 3N$

(5) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ be a function, suppose that $a \in \mathbb{R}$ is a limit point of $A \cap (a, \infty)$,

that $\lim_{x\to\infty} g(x) = L \in \mathbb{R}$. Prove that $\lim_{x\to a^+} (g \circ f)(x) = L$.

and suppose $\lim_{x \to \infty} f(x) = \infty$. Also let $c \in \mathbb{R}$, let $g:(c,\infty) \to \mathbb{R}$ be a function, and suppose

And
$$\frac{|g(x)| - |C||^2 |C||^2$$

Let
$$a < x < a + 8 \implies$$
 $f(x) \ge N \implies |g(f(x)) - U| \le E$
Since $\pi_1 \ge is$ arbitrary, this finisher the

$$\text{prof that } \lim_{x \to a^+} (g \circ f)(x) = U.$$
 \square (6) Let $f, g : \mathbb{R} \to \mathbb{R}$ be functions, let $a \in \mathbb{R}$, and suppose $\lim_{x \to a} f(x) = b$ and $\lim_{x \to b} g(x) = L$. Show

by example that
$$L$$
 need not be the limit of $g \circ f$ as $x \to a$.

Consider
$$f(x) = \begin{cases} 0, & \text{if } x \neq 1 \\ 1, & \text{if } x = 1 \end{cases}$$

$$So \lim_{x \to 1} f(x) = 0$$

$$S(x) = \begin{cases} 2, & \text{if } x \neq 0 \\ 0, & \text{if } x \neq 0 \end{cases}$$

So
$$l = \lim_{x \to 0} g(x) = 0$$

But $g(f(x)) = \begin{cases} 2, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$
 $\lim_{x \to 1} g(f(x)) = 2 \neq 0$

(7) Prove that for any sequence (a_n) of nonzero real numbers, $\limsup |a_n|^{1/n} \leq \limsup \left|\frac{a_{n+1}}{a_n}\right|$.

Hint: Let $L > \limsup \left|\frac{a_{n+1}}{a_n}\right|$ be arbitrary; then there is N such that $\left|\frac{a_{n+1}}{a_n}\right| < L$ for all $n \geq N$; now use the fact that for any n > N,

$$|a_n| = \left|\frac{a_n}{a_{n-1}}\right| \cdot \left|\frac{a_{n-1}}{a_{n-2}}\right| \cdots \left|\frac{a_{N+1}}{a_N}\right| \cdot |a_N|$$
 as a first step towards showing that $\limsup |a_n|^{1/n} \le L$.

Proof Let L > limsup and be arbitrary

Then
$$\exists N \in \mathbb{N}$$
 s.t. $|\underbrace{Onti}_{an}| < L$ whenever $h \geq N$
Let $n \geq N$ be arbitrary

So
$$|a_n| = \frac{|a_n|}{|a_{n-1}|} \frac{|a_{n-1}|}{|a_{n-2}|} \dots \frac{|a_{n+1}|}{|a_n|} \frac{|a_n|}{|a_n|}$$

$$\leq \frac{|a_n|}{|a_n|} \leq \frac{$$

Note that L-Manl is a constant

Then $\lim_{n\to\infty} \int L^{+}|G_{N}| = \lim_{n\to\infty} L(\int L^{+}|G_{N}|) = \lim_{n\to\infty} L(\int L^{+}|G_{N}|) = L$ Since $\forall n \geqslant N$, $|G_{N}|^{\frac{1}{n}} < L$: $(\int L^{+}|G_{N}|)$, $\Rightarrow \lim_{n\to\infty} |G_{N}|^{\frac{1}{n}} < \lim_{n\to\infty} |C_{N}|^{\frac{1}{n}} = L$ Above shows that for any $L > \lim_{n\to\infty} |G_{N}|^{\frac{1}{n}}$ we have $L > \lim_{n\to\infty} |G_{N}|^{\frac{1}{n}}$ Therefore we can conclude that $\lim_{n\to\infty} |G_{N}|^{\frac{1}{n}} \leq \lim_{n\to\infty} |G_{N}|^{\frac{1}{n}}$ et $A \subseteq \mathbb{R}$, suppose $a \in A \cap A'$, and let $f : A \to \mathbb{R}$ be a function. Prove that if f(a) > 0 and

(8) Let $A \subseteq \mathbb{R}$, suppose $a \in A \cap A'$, and let $f : A \to \mathbb{R}$ be a function. Prove that if f(a) > 0 and f is continuous at a, then there is $\epsilon > 0$ such that f is positive and bounded on $A \cap V_{\epsilon}(a)$.

Proof Since f is continuous at A, there exists $\varepsilon > 0$ s.t. If (a) - f(x) / 2f(a) whenever $|a-x| / 2\varepsilon$ and $x \in A$ So 0 < f(x) < 2f(a) whenever $x \in V_{\varepsilon}(a) \cap A$ (Since $a \in A'$, $V_{\delta}(a) \cap A \cap (a) \neq \emptyset$)

We can conclude that f is positive and bounded on $ANV_{\epsilon}(a)$.

Pnot let a ERIQ be arbitrary let E>D be arbitrary Since f is continuous on IR, 3670 J.t. If(x)-f(a) | < \frac{\xi}{2} whenever x \xi \(\lambda \) (G) By the density of Q in P, there exists 2EQ s.t. $q \in V_s(a)$ So (fa)-fa) <= Similarly we have $|g(q)-g(a)| < \frac{\epsilon}{2}$ Since $q \in Q \implies f(q) = g(q)$ So |fa)-ga/ ≤ |fa)-fa) |+|fa)-ga) |< € Since & is arbitrary, we have fla=gla Since a < IRIQ is arbitrary, ne have fix)=g(x) for x EQU(R) = 1R Therefore f=q.

(9) Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are continuous. Prove that if f(x) = g(x) for all $x \in \mathbb{Q}$, then f = g.

Since M is arbitrary, we have proved that

Therefore for all A CIR

that is not closed, we can find f:A-IR

s.t. f is unbounded and continuous.

(11) Using only the definitions of continuity and open set, prove that for any function $f:\mathbb{R}\to\mathbb{R}$, f is continuous if and only if $f^{-1}[V]$ is open for every open set $V \subseteq \mathbb{R}$. Prot (direction) Suppose f is continuous. Let VSR be an open set, so f'[v] = {x e R | f(x) EV} Let x Ef [[V], so fix EV Since V is open, there is some & >0 s-t. V_c (for)) \le V Since f is continuous, there exists 2 >0 s.t. Ifox - fig) 1< E whenever 17-y1<8 So tye Volx), fay = V= (fix) = V = y ef [[V] Thatfore Vstx) Cf [V] Since or is arbitrary, this shows that f-LVI is open Since V is auditary, it is proved that ftev) is open for every open set $V \in \mathbb{R}$ if f is continuous (direction): Suppose f-[V] is open for every open set VER Let XER be arbitrary Consider the set V={yER | How-y|<E}=V_E(for)

Then $f^{1}[V]$ is open Since $|f(x)-f(x)|=0 < \varepsilon \implies x \in V$ So $\ni (>0 \le t)$. $\bigvee_{s}(x) \subseteq f^{1}[V]$ i.e. for all $\alpha \in \mathbb{R}$ st. $|x-a| < \delta$, we have $|f(\alpha)-f(\alpha)| < \varepsilon$ So f(x) is continuous at a

Since $a \in \mathbb{R}$ is arbitrary $\Longrightarrow f$ is continuous.

Д

(12) Suppose
$$A \subseteq \mathbb{R}$$
 is closed, and let $f: A \to \mathbb{R}$ be a continuous function. Prove that there is a continuous function $g: \mathbb{R} \to \mathbb{R}$ such that $g \upharpoonright A = f$.

(a) Prove that for any subset A ⊆ R, A is open if and only if A can be expressed as a union of countably many open intervals in R.
(b) Is it true that every open set A in R can be expressed as a union of open intervals with rational endnoints? Either give a counterexample if not, or else briefly explain how

(14) Let d(x,y) = |x-y| be the usual metric on \mathbb{R} , and let \mathcal{T} be the metric topology on \mathbb{R}

generated by d, so \mathcal{T} consists of all open subsets of \mathbb{R}^3

rational endpoints? Either give a counterexample if not, or else briefly explain how your proof in (a) could be modified in order to prove this stronger result.