Computer Networks

Routing Algorithms

Jianping Pan Fall 2020

Please take a poll on routing algorithms:

* have you watched the pre-recorded lecture video?

* have you learned bellman-ford algorithm in csc225/226?

* have you learned dijkstra algorithm in csc225/226?

We will use breakout room today, so no video recording

results

about 50%

90%

90%

some no mic

Review

- IP
 - addressing and routing
 - address classes, classless, NAT
 - fragmentation and reassembly
 - identification
 - total length, IP header length, fragment offset
- ICMP
 - also used in ping and traceroute

Forwarding and routing

- Internet
 - store-and-forward packet switching
- Forwarding
 - table lookup
 - e.g., destination, next-hop
 - to determine outgoing interface
- Routing
 - to build the table
 - static and dynamic routing

11/13/20

CSc 361

Routing

- Routing algorithms
 - flooding
 - receive from one interface and send to other ifs
 - "flooding storm"
 - to reduce duplicate packets
 - TTL
 - if received before, drop
 - shortest reverse path
 - distance vector
 - link state

link

CSc 361

Distance vector routing

- Neighbor discovery
 - "hello-hello" between directly connected nodes
- Route exchange
 - A: "I can reach X at cost Path (A,X)."
 - B: "I can reach X at cost Path (B,X)."
 - A: "I am Link (A,B) away from B."
- Shortest-path calculation

 $A = A: \min_{B} \{Path (A,X), Link (A,B) + Path (B,X)\}$

5

B

Bellman-Ford algorithm

```
algorithm
  Initialization:
   for all adjacent nodes v:
     D (*,v) = infinity /* the * operator means "for all rows" */
     D (v,v) = c(X,v) /* direct neighbors */
   for all destinations, y
     send min D (y,w) to each neighbor /* w over all X's neighbors */
6
  loop
   wait (until I receive update from neighbor V)
10
   if (update received from V wrt destination Y)
     /* shortest path from V to some Y has changed */
12
   /* V has sent a new value for its min DV(Y,w) */
13
   /* call this received new value is "newval" */
14
15
     for the single destination y: D (Y,V) = c(X,V) + newval
16
    if we have a new min D (Y,w) for any destination Y
      send new value of min D (Y,w) to all neighbors
18
11/93/20
                                    CSc 361
```

20 forever

Bellman-Ford algorithm: example

Count-to-infinity problems

8

Deal with CTI problems

- Choose a small "infinity"
- Split horizon
- Poisoned reverse
 - A: I can reach X through B for cost T
 - but A tells B
 - I can reach X for infinity cost, since I reach X through you!
- When "poisoned reverse" fails

Link state routing

- Neighbor discovery
 - "hello-hello" between directly connected nodes

10

- Link-state broadcast
 - link state: cost, delay, or other metrics
- Topology generation
 - node/link graph
- Shortest-path calculation
 - from one node to all other nodes

11/13/20 CSc 361

Dijkstra algorithm

```
Initialization:
   N' = \{u\}
    for all nodes v
     if v adjacent to u
5
        then D(\mathbf{v}) = c(\mathbf{u}, \mathbf{v})
     else D(v) = \infty
6
8
   Loop
    find w not in N' such that D(w) is a minimum
10
    add w to N'
     update D(v) for all v adjacent to w and not in N':
       D(v) = \min(D(v), D(w) + c(w,v))
12
13 /* new cost to v is either old cost to v or known
      shortest path cost to w plus cost from w to v */
14
15 until all nodes in N'
```

Dijkstra's algorithm: example

11/13/20 CSc 361

DV vs LS routing

- Information exchange
 - DV: just between neighbors
 - LS: among all nodes
- Shortest-path calculation
 - DV: distributed Bellman-Ford
 - LS: Dijkstra
- Pros and cons
 - discussion...

Hierarchical routing

- Why hierarchical
 - scalability
- Internet
 - autonomous system (AS)
 - Inter-domain routing
 - distance vector
 - Intra-domain routing
 - distance vector or link state

Hierarchical routing: example

Dest.	Line	Hops
1A	s.—.s	ı
1B	1B	1
1C	1C	1
2A	1B	2
2B	1B	3
2C	1B	3
2D	1B	4
ЗА	1C	3
3B	1C	2
4A	1C	3
4B	1C	4
4C	1C	4
5A	1C	4
5B	1C	5
5C	1B	5
5D	1C	6
5E	1C	5
4. \		

Full table for 1A

Dest.	Line	Hops
1A	-	_
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4 5	1C	3
5	1C	4

15

Hierarchical table for 1A

11/13/20 (a) CSc 361 (b) (c)

This lecture

- Routing algorithms
 - Bellman-Ford algorithm
 - Dijkstra algorithm
- Explore further
 - /bin/netstat -r
 - More on routing
 - multicast (CSc461), mobile & ad hoc (CSc463),
 peer-to-peer (CSc466), etc

Next lecture

- Internet addressing and routing
 - where theory meets practice