Санкт - Петербургский государственный технологический институт (технический университет)

Кафедра системного анализа

Факультет: 4

Kypc: 2

Группа: 4ХХ

Учебная дисциплина: ДИСКРЕТНАЯ МАТЕМАТИКА

ЛАБОРАТОРНАЯ РАБОТА

АНАЛИЗ СТРУКТУР СЛОЖНЫХ СИСТЕМ ГРАФОВЫМИ МЕТОДАМИ

Вариант \mathcal{N}_{2} XX

Работа выполнена:

Ф.И.О.

Руководители:

Халимон В.И.

Проститенко О.В.

Содержание

1. Цель работы	3
2. Практическая часть	4
2.1 Задание 1	4
2.2. Задание 2	5
2.3. Задание 3	6
2.4. Задание 4	7
2.5. Задание 5	8
2.6. Задание 6	9
2.7. Задание 7	1(
2.8. Задание 8	1:
2.9. Залание 9	13

1. Цель работы

Изучение основ теории графов, базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения; освоение компьютерных способов представления графов и алгоритмов машинной обработки графов.

Освоение компьютерных технологий обработки графов; изучение специализированных программных продуктов для ввода, редактирования и анализа графов на ЭВМ.

2. Практическая часть

Практическая часть работы была реализована с помощью программы GRAPH TOOLBOX с использованием материалов методического пособия «Анализ структур сложных систем графовыми методами».

2.1. Задание 1

Построить граф, состоящий из 3 изолированных компонент мощностью 4, 5, 6 и 1 изолированных вершины. Во всём графе должно быть 2 истока, 2 стока, 1 висячие вершины, 3 регулярных вершин, три из которых имеют степени 1, 2, 3. Максимальная степень кратности дуг графа должна быть 3. В графе должно быть не меньше, чем 2 пар противоположных дуг.

В отчете представить построенный граф с выделением всех построенных элементов. Надписать полустепени исхода и захода для каждой вершины (1 картинка).

Вершины изолированных компонент:

2, 3, 4, 5 (мощность 4);

6, 7, 8, 9, 10 (мощность 5);

11, 12, 13, 14, 15, 16 (мощность 6).

Изолированные вершины:

1.

Вершины-истоки:

4, 6.

Вершины-стоки:

5, 16.

Висячие вершины:

16.

Регулярные вершины:

Пары противоположных дуг:

9-11, 12-13, 18-19, 20-23, 16-24.

Полустепени исхода и захода вершин:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
p+	0	1	1	0	3	0	2	2	2	2	3	1	3	1	2	1
p-	0	1	2	2	0	3	1	2	1	1	3	2	2	3	1	0

2.2. Задание 2

Построить ориентированный граф из 7 вершин и 14 дуг, содержащий один исток, один сток, одну изолированную вершину, одну регулярную вершину, одну петлю, пару одинаково направленных дуг, пару противоположно направленных дуг. С истоком и со стоком должно быть связано более двух дуг.

Построить и проанализировать следующие способы представления графов: матрица смежности, матрица инцидентности, матрицы окрестностей вершин по входам и по выходам, список дуг. В отчете представить построенный граф и матричные представления графа с описанием. (1 граф и 5 матриц)

Матрица инцидентности:

	1	2	3	4	5	6	7		1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	1	1	1	1	1	0	1	1-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0
2	0	0	2	1	0	0	0	2	1	0	0	0	0	-1	-1	-1	0	0	0	0	0	0
3	0	0	0	1	0	1	0	3	0	1	0	0	0	0	1	1	-1	-1	0	0	1	0
4	0	0	1	1	0	1	0	4	0	0	1	0	0	1	0	0	1	0	1	-1	-1	0
5	0	0	0	0	0	1	0	5	0	0	0	1	0	0	0	0	0	0	0	0	0	-1
6	0	0	0	0	0	0	0	6	0	0	0	0	1	0	0	0	0	1	0	1	0	1
7	0	0	0	0	0	0	0	7	70	0	0	0	0	0	0	0	0	0	0	0	0	0

Мат	ри	ца	окт	рест	HOC	стей	й В¢	ерш	ин	по	BX	ода	M:	
	1	2	3	4	5	6	7	8	9	10	111	12	13	14
FI	1	1	4	2	2	1	4	3	2	1	1	5	4	3
KAO	1	1	2	6	10	11	15	15						
Мат	ри	ца	окр	рест	нос	стей	й ве	ерш	ин	по	вы	ход	ам	
	1	2	3	4	5	6	7	8	9	10	111	12	13	14
FO	2	3	4	5	6	4	3	3	4	6	4	6	3	6
KAO	1	6	9	11	14	15	15	15						
Спи	co	к д	уг:											
IU	1	1	1	1	1	2	2	2	3	3	4	4	4	5
OU	2	3	4	5	6	4	3	3	4	6	4	6	3	6

Из матрицы смежности:

Единица в четвертой строке на главной диагонали говорит о том, что четвертая вершина имеет дугу-петлю. Вершины 4 и 3 имеют противоположно направленные дуги, т. к. соответствующие элементы матрицы, симметричные главной диагонали, заполнены. Т.к. число во второй строке третьего столбца - 2, то в графе имеются две кратные дуги, направленные от 2-ой к 3-ей вершине. Строки матрицы соответствуют выходным окрестностям вершин, а столбцы - входным окрестностям. Сумма элементов по строке равна полустепени исхода соответствующей вершины, а сумма элементов по столбцу - полустепени захода. Вершине-истоку 1 соответствует нулевой столбец 1 и ненулевая строка 1, а вершине-стоку 6 соответствует нулевая строка 6 и ненулевой столбец 6. Изолированной вершине 7 соответствует нулевая строка 7 и нулевой столбец 7.

Из матрицы инцидентности:

Дуге-петле 11 в матрице инцидентности соответствует единственная единица в 11-ом столбце, расположенная в строке с номером вершины, которой она принадлежит. Столбцы 7 и 8 одинаковы, следовательно, соответствующие дуги являются кратными. Столбцы 13 и 9 станут одинаковыми, если в них поменять местами -1 и 1, следовательно, соответствующие им дуги противоположно направлены. Количество -1 в любой строке равно полустепени исхода соответствующей вершины, а количество 1 равно полустепени захода. Изолированной вершине 7 соответствует нулевая 7-ая строка. Вершине-истоку 1 соответствует 1-ая строка, в которой имеются -1 и нет 1. Вершине-стоку 6 соответствует 6-ая строка, в которой имеются 1 но нет -1.

Из списка дуг:

Дуге-петле 11 графа соответствует столбец матрицы списка дуг, в котором элементы равны между собой и равны номеру вершины, которой эта дуга принадлежит. Т.к. дуги 7 и 8 кратны, им соответствуют одинаковые столбцы 7 и 8 матрицы. Противоположно направленным дугам 9 и 13 соответствуют 9 и 13 столбцы матрицы, которые оказываются одинаковыми, если в одном из них переставить местами элементы. Полустепень исхода

любой вершины - количество повторений ее номера в первой строке матрицы, а полустепень захода - количество повторений ее номера во второй строке матрицы. Изолированная вершина 7 имеет номер, который не встречается ни в первой, ни во второй строке. Вершина-исток 1 имеет номер, который встречается в первой и не встречается во второй строке, а вершина-сток 6 имеет номер, который встречается во второй и не встречается в первой строке.

Из матриц окрестностей вершин:

Если в графе имеются кратные дуги, то в і-ой окрестности массива FO (FI) имеются повторяющиеся номера вершин. Противоположные дуги между вершинами і и ј находятся как номер ј встречается в окрестности і-ой вершины и одновременно номер і есть в окрестности ј-ой вершины.

2.3. Задание 3

Построить связанный граф из 10 вершин, содержащий 2 точек сочленения, и не содержащий висячих и изолированных вершин. Рассчитать ранги вершин этого графа.

В отчете представить построенный граф с выделенными точками сочленения и подписанными рангами каждой вершины. (1 картинка)

Матрица достижимости графа А и ранги вершин графа:

Ранги элементов вычисляются по следующей формуле: R = A + AA, где A - матрица достижимости графа.

Γ		0	1	2	3	4	5	6	7	8	9	Rang := $A + A \cdot A$		1
1	0	2	3	4	5	3	4	5	6	4	3	754	0	
H	1	0	2	3	3	0	0	0	0	0	0	i := 0 9	1	Γ
1	2	0	0	2	2	0	0	0	0	0	0	P :- Y Pane	2	T
-	3	0	0	0	0	0	0	0	0	0	0	$R_i := \sum_{j} Rang_{i,j}$	3	T
H	4	0	0	0	2	2	0	0	0	0	0	j = 0	4	T
	5	0	0	0	0	0	2	3	3	0	0	$Res := \sum_{i} R_{i}$	5	
	6	0	0	0	0	0	0	2	2	0	0	i	6	T
-	7	0	0	0	0	0	0	0	0	0	0	Res = 88	7	T
1	8	0	0	0	0	0	0	0	2	2	0	R,	8	T
-	9	0	0	0	0	0	3	4	5	3	2	$r_i := \frac{r_i}{Res}$	9	T

Т.к. ранг вершины графа равен отношению суммы элементов соответствующей строки к сумме элементов всей матрицы, то ранги вершин графа будут равны:

	0
0	0.443
1	0.091
2	0.045
3	0
r = 4	0.045
5	0.091
6	0.045
7	0
8	0.045
9	0.193

Вершины 4 и 8 не имеют путей к остальным вершинам графа и они являются выходами системы. У данных элементов отсутствует влияние на остальные элементы, поэтому ранги равны нулю. Элементы 2 и 6; 3, 5, 7 и 9 имеют одинаковые ранги, что свидетельствует о их одинаковой значимости в системе. Выход из строя любого из элементов 2 и 6; 3, 5, 7 и 9 будет иметь примерно одинаковые последствия - система лишится одной из своих функций, но будет продолжать функционировать.

2.4. Задание 4

Построить связанный ориентированный граф, содержащий 5 сильных компонент связанности мощностью 3,4, 5, 6, 6. Свернуть граф по найденным компонентам.

В отчете представить граф, раскрашенный по компонентам и граф-свертку. (2 картинки).

Сильные компоненты:

Свертка графа:

2.5. Задание 5

Построить связанный ориентированный ациклический непоследовательный граф, состоящий из 5 порядковых уровней мощностью 2, 1,3, 3, 2. Граф содержит 2 истоков и 2 стока. Свернуть граф по найденным уровням. В отчете представить граф, упорядоченный по уровням слева направо и граф-свертку. (2 картинки)

2.6. Задание 6

Построить связанный граф из 5 вершин и 7 дуг. Используя метод, описанный в учебном пособии, перечислить все маршруты этого графа длиной 1, 2, 3. В отчете привести граф и выкладки по вычислению матриц. (1 граф и 3 матрицы)

Матрина маршрутов длины 2. $Mc^2 = Mc^1 Mc^1$.

	Vl	V2	V3	V4	V5
V1		vlulv3u3v2			v1u1v3u4v5
V2			v2u2v1u1v3		
V3	v3u3v2u2v1			v3u4v5u7v4	
V4		v4u6v3u3v2		v4u5v5u7v4	v4u6v3u4v5
V5			v5u7v4u6v3		v5u7v4u5v5

Матрица маршрутов длины 2, $Mc^3 = Mc^2Mc^1$:

V1	vlulv3u3v2u2v1			v1u1v3u4v5u7v4	
V2		v2u2v1u1v3u3v2	1		v2u2v1u1v3u4v5
V3			v3u3v2u2v1u1v3 v3u4v5u7v4u6v3		v3u4v5u7v4u5v5
V4	v4u6v3u3v2u2v1		v4u5v5u7v4u6v3	v4u6v3u4v5u7v4	
V5		v5u7v4u6v3u3v2			v5u7v4u6v3u4v5

2.7. Задание 7

Построить связанный ориентированный граф из 22 вершин, содержащий один исток и один сток, не содержащий петель. Задать веса на дугах графа и пронумеровать все вершины. Между истоком и стоком построить P>6 путей через остальные вершины, длиной больше 5 дуг.

Изменяя веса на дугах модифицировать граф так, чтобы кратчайшие пути по сумме весов и по количеству дуг между истоком и стоком не имели ни одной общей дуги (не совпадали). В отчете представить граф с выделенными путями, указать длину путей по весам и по количеству дуг. (1 картинка)

На этом же графе построить исходящее дерево кратчайших путей с корнем в истоке и заходящее дерево кратчайших путей с корнем в стоке. (2 картинки)

Кратчайший путь от вершины 1 до вершины 22 :

Вершина-исток - 1, вершина сток - 22. Между истоком и стоком существует более 6-ти путей, длиной более 5-и дуг. Кратчайший путь по количеству дуг (6 дуг, вес 25) и кратчайший путь по весам дуг (7 дуг, вес 17) не имеют ни одной общей дуги.

Исходящее дерево кратчайших путей в корнем в вершине-истоке (1): по количеству дуг:

Заходящее дерево кратчайших путей в корнем в вершине-стоке (22):

2.8. Задание 8

Построить связанный ориентированный граф, имеющий как минимум две центральные вершины, как минимум две периферийные вершины, как минимум две обычные вершины так, чтобы его радиус был не равен нулю и не равен диаметру. Начать построение с 6 вершин, добиться результата добавлением и удалением дуг и вершин. Построить максимальное покрывающее дерево кратчайших путей.

В отчете представить построенный граф с выделенным деревом, центром и периферией, над вершинами надписать их эксцентриситеты, указать значения радиуса и диаметра графа (1 картинка).

Эксцентриситеты вершин:

exc(1)=4; exc(2)=3; exc(3)=3; exc(4)=3; exc(5)=4; exc(6)=4; exc(7)=5; exc(8)=5.

Центральные вершины:

2, 3, 4 (exc=3).

Периферийные вершины:

7, 8 (exc=5).

Обычные вершины:

1, 5, 6 (exc=4).

Радиус графа:

 $R=exc(2)=exc(3)=exc(4)=3\neq0.$

Диаметр графа:

 $D=exc(7)=exc(8)=5\neq R$.

2.9. Задание 9

Придумать 6 свойств некой системы из 12 элементов. Построить ориентированный граф системы, задать в качестве вспомогательного веса вершин текстовые идентификаторы, а в качестве основного веса — бинарные цепочки (ширина равна количеству свойств). Проставить на вершинах основные веса в виде цепочки нулей и единиц в зависимости от того обладает вершина соответствующим свойством (1) или нет (0).

Используя метод «свертка по кодам» выполнить три свертки построенного графа при различных сочетаниях нулей и единиц в маске макро-свойств. В отчете представить описание свойств, описание элементов системы, исходный граф системы с бинарными весами, три графа свертки по трем маскам макросвойств (1 граф и 3 свертки).

Свойства системы

- 1. Станция депо
- 4. Строящаяся станция
- 2. Станция с отделкой
- 5. Привокзальная станция
- 3. Станция пересадки
- 6. Конечная станция

Свертка по свойству № 2 (маска: х1хххх)

Свертка по свойству № 2 и 3 (маска: х11ххх)

