CMPUT 229 (A2) - Quiz # 5 - Fall 2013

Name: Solution

The following is a format for the binary representation of a floating-point number:

10	9	5	4		0
\mathbf{S}		exponent		fraction	

The exponent is expressed in excess-8 format (also known as a bias representation). Given the binary representation above, the decimal value of the number represented can be computed by the following expression:

$$N = \begin{cases} 0.0 & \text{if } exponent = 0 \text{ and } fraction = 0 \\ (-1)^S \times 0.fraction \times 2^{-14} & \text{if } exponent = 0 \text{ and } fraction \neq 0 \\ (-1)^S \times 1.fraction \times 2^{exponent-15} & \text{if } 0 < exponent < 30 \\ (-1)^S \times \infty & \text{if } exponent = 31 \text{ and } fraction = 0 \\ NaN & \text{if } exponent = 31 \text{ and } fraction \neq 0 \end{cases}$$

1. (30 points) Let $X = 128_{10}$. Give the normalized binary representation for X and the bit pattern for the representation of X in this notation.

$$128_{10} = 2^7 = 1.0 \times 2^7 \Rightarrow exponent - 15 = 7 \Rightarrow exponent = 22$$

10	9	5	4	0
0		10110	00000	

2. (30 points) Let $Y = 12.5_{10}$. Give the normalized binary representation for Y and the bit pattern for the representation of Y in this notation.

$$12.5_{10} = 2^3 + 2^2 + 2^{-1} = 1100.1 = 1.1001 \times 2^3 \Rightarrow exponent - 15 = 3 \Rightarrow exponent = 18$$

10	9		5	4 0	
0		10010		10010	

3. (40 points) If this machine has an adder with a round bit, a guard bit, and a *sticky* bit, what is the value of X + Y computed by this machine? Give both the normalized binary notation and the decimal value.

	Mantissa	Guard R	ound	Sticky	exponent
Х =	1.00000	0	0	0	7
Υ =	0.00011	0	0	1	7
X+Y =	1.00011	0	0	1	7

With teh guard/round bits equal 00 we must round down:

$$X + Y = 1.00011 \times 2^{7}$$

 $X + Y = 10001100 = 2^{7} + 2^{3} + 2^{2} = 128 + 8 + 4 = 140$