Name:

Show all work clearly and in order. 10 minutes.

1. A relation **R** is defined on $\mathbb{R} \times \mathbb{R}$ as follows:

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R} \times \mathbb{R}, \qquad (x_1, y_1)\mathbf{R}(x_2, y_2) \iff x_1 = x_2.$$

(a) Show R is reflexive.

Let
$$(x_1,y_1) \in \mathbb{R} \times \mathbb{R}$$

Notice that $x_1 = x_1$
Therefore, $(x_1,y_1) \in \mathbb{R} \times \mathbb{R}$
Hence, \mathbb{R} is reflexive.

(b) Show R is symmetric.

Let
$$(x_1,y_1)$$
, $(x_2,y_2) \in \mathbb{R} \times \mathbb{R}$
Suppose $(x_1,y_1)\mathbb{R}$ (x_2,y_2)
Hence, $x_1 = x_2$
Thus, $x_2 = x_1$
Therefore, $(x_2,y_2)\mathbb{R}$ (x_1,y_1) and \mathbb{R} is Symmetric.

(c) Show **R** is transitive.

Let
$$(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R} \times \mathbb{R}$$

Suppose $(x_1, y_1) R (x_2, y_2)$ and $(x_2, y_2) R (x_3, y_3)$
So $X_1 = X_2$ and $X_2 = X_3$
Since $X_1 = X_2 = X_3$ we have $X_1 = X_3$
Therefore $(x_1, y_1) R (x_3, y_3)$ and R is transitive.