Justin Bahr

NUID: 001592707

High Performance Computing Homework 3 - Question 4

a. Compared to my dense implementation from question 3, the OpenBLAS implementation is about 68 times faster. This is a massive speedup obtained from using level 3 BLAS. Like my dense implementation, OpenBLAS uses multithreading and cache optimizations such as loop tiling. However, the OpenBLAS library has been highly optimized to recognize and exploit the intricacies of a specific CPU architecture. This is done by tuning advantageous assembly instructions that can minimize runtime.

Dense	Runtime (ms)	OpenBLAS	Runtime (us)
1	56.267505	1	753.713
2	56.255503	2	728.797
3	56.241767	3	786.633
4	56.213329	4	744.22
5	56.286368	5	1105.755
Average	56.2528944	Average	823.8236
Fastest	56.213329	Fastest	728.797

Figure 1. Dense and OpenBLAS Runtimes

b. First I ran my program on the Explorer Cluster with a CPU node (Intel ® Xeon ® CPU E5-2680 v4 @ 2.40GHz, 14 cores per socket, 2 sockets with 527730564 KB of memory, and Linux 15.4.0). Second I ran my program on the Explorer Cluster with an AVX512 node (--constraint=cascadelake) (Intel ® Xeon ® Platinum 8276 CPU @ 2.20GHz, 28 cores per socket, 2 sockets, with 196090404 KB of memory, and Linux 5.14.0).

Xeon E5-2680	Runtime (us)	Platinum 8276 (AVX512)	Runtime (us)
1	753.713	1	1734.075
2	728.797	2	1987.034
3	786.633	3	1500.652
4	744.22	4	2278.455
5	1105.755	5	1355.663
Average	823.8236	Average	1771.1758
Fastest	728.797	Fastest	1355.663

Figure 2. Run on Explorer CPUs with and without AVX Support

The OpenBLAS program ran about twice as fast on the Xeon E5-2680 compared to the Xeon Platinum 8276. While I was hoping to see a performance increase while combining OpenBLAS and AVX512, this did not occur. I checked the assembly file for Q4_avx, and I did see vector instructions, but it is possible that there is a more fitting OpenBLAS function call to better utilize AVX512 support. I believe that the performance of the E5-2680 could be due to a combination of the faster clock and a smaller L2 data cache (faster cache latency). However, the Platinum 8276 has twice as many cores and AVX512 support, but this did not translate to a speedup.