Tópicos Avançados em Inteligência Computacional 2 - 2024-1

Ricardo Prudêncio

Responsible Al

- Sistemas de Al são largamente usados
- Vários desses sistemas podem impactar humanos de diferentes formas (e.g., saúde, segurança, financeira, jurídica, política, marketing)
- Os sistemas são complexos
- Questões éticas e de segurança

Responsible Al

Privacy

Explainability

Reliability

Fairness

Trust

Accountability

Disciplina

- Tópicos: ver cronograma
 - Aprendizagem de Máquina (Preditiva)
 - Responsible Al
 - Explicabilidade
 - Confiabilidade
 - Equidade

Disciplina

- Avaliação
 - Participação individual (peso 2) e listas de exercício individual (peso 4) e um projeto final (peso 4)

Ferramentas e linguagens livres

Material de Estudo - nos slides e notebooks

Aprendizagem de Máquina

 Sub-área de IA que desenvolve sistemas que melhoram seu desempenho com a experiência

Abordagens:

- Data-driven: algoritmos encontram regularidades em dados
- Classificação, reconhecimento, agrupamento, regressão,...

Aprendizagem de Máquina - Abordagem Data-Driven

- Modelos descritivos
 - Descrevem ou sumarizam dados
- Modelos preditivos
 - Realizam previsões sobre os dados

- Modelos generativos
 - Geram novos dados (e.g., textos, imagens)

Modelos Preditivos - Classificação

Classificação

- Associar objetos a uma categoria ou classe
 - E.g., diagnóstico de pacientes, classificação risco de um cliente, classificação de documentos,...
- Classificação é feita com base nos atributos dos objetos
 - E.g., diagnóstico de um paciente é feito com base nos sintomas observados e exames realizados
- Para que: alguma tomada de decisão

- Diagnóstico médico
 - Dado um paciente, qual o diagnóstico de uma determinada doença?
 - Qual a criticidade, qual a evolução?
 - Qual a chance de reincidência?

Classificação de imagens

Biometrica (faces, digitais, assinaturas)

Detecção de anomalias

– Que transações de crédito são fraudes?

– Quais equipamentos vão falhar?

 Categorização de usuários em redes sociais

 Que usuários do Instagram se interessam por roupas? Ou automóveis?

– Qual o viés político de um usuário no Twitter?

Análise de sentimentos

Esse tweet expressa raiva, alegria, angústia?

– Essa pessoa está feliz?

Funções de score

– Quem será um bom pagador?

– Qual o risco de sonegação?

– Quem contratar?

Classificação com AM

 Algoritmo de aprendizagem supervisionada adquire conhecimento a partir de um conjunto de exemplos

Conjunto de Dados - Diabetes

1: preg	2: plas	3: pres	4: mass	5: age	6: cla
Numeric	Numeric	Numeric	Numeric	Numeric	Nomir
6.0	148.0	72.0	33.6	50.0	tested_positive
1.0	85.0	66.0	26.6	31.0	tested_negative
8.0	183.0	64.0	23.3	32.0	tested_positive
1.0	89.0	66.0	28.1	21.0	tested_negative
0.0	137.0	40.0	43.1	33.0	tested_positive
5.0	116.0	74.0	25.6	30.0	tested_negative
3.0	78.0	50.0	31.0	26.0	tested_positive
10.0	115.0	0.0	35.3	29.0	tested_negative
2.0	197.0	70.0	30.5	53.0	tested_positive
8.0	125.0	96.0	0.0	54.0	tested_positive
4.0	110.0	92.0	37.6	30.0	tested_negative
10.0	168.0	74.0	38.0	34.0	tested_positive
10.0	139.0	80.0	27.1	57.0	tested_negative
1.0	189.0	60.0	30.1	59.0	tested_positive
5.0	166.0	72.0	25.8	51.0	tested_positive
7.0	100.0	0.0	30.0	32.0	tested_positive
0.0	118.0	84.0	45.8	31.0	tested_positive
7.0	107.0	74.0	29.6	31.0	tested_positive
1.0	103.0	30.0	43.3	33.0	tested_negative
1.0	115.0	70.0	34.6	32.0	tested_positive
3.0	126.0	88.0	39.3	27.0	tested_negative
8.0	99.0	84.0	35.4	50.0	tested_negative
7.0	196.0	90.0	39.8	41.0	tested_positive
9.0	119.0	80.0	29.0	29.0	tested_positive
11.0	143.0	94.0	36.6	51.0	tested_positive
10.0	125.0	70.0	31.1	41.0	tested_positive
7.0	147.0	76.0	39.4	43.0	tested_positive
1.0	97.0	66.0	23.2	22.0	tested_negative
13.0	145.0	820	22.2	57.0	tested negative

Exemplo - Modelo de Árvore de Decisão

Exemplo - Modelo de Regressão Logística

$$P(Y = 1 \mid x_1, ..., x_p) = \frac{1}{1 + \exp(-(\beta + \alpha_1 x_1 + ... + \alpha_p x_p))}$$

Classificação - Definições

- Exemplo (ou instância)
 - Tupla com atributos que descrevem um objeto de interesse + classe do exemplo
 - E.g., dados de um paciente + doença
 - E.g., medidas de complexidade de software + {bug ou não bug}
- Atributos Preditores
 - Característica de um exemplo usada para classificação
- Atributo Alvo
 - Problemas de classificação binários ou multi-class

Classificação - Definições

- Conjunto de Treinamento
 - Coletado da base de dados e etiquetado (rolutado) geralmente por um humano
 - Usado para construir um classificador
- Conjunto de Teste
 - Conjunto usado para avaliar a qualidade do classificador gerado
- Classificador (Modelo)
 - Resultado retornado pelo indutor (aproxima a função real de classificação)

Quais os desafios?

Dados

 Dados enviesados, subrepresentados, com mudanças de distribuição ao longo do tempo, classes desbalanceadas, qualidade das variáveis

Modelos complexos

 Dificuldades de interpretação, auditoria, manutenção, adaptação, etc

Referências

Kaur D. et al. (2022) Trustworthy Artificial Intelligence: A Review. ACM Computing Surveys.

Flach P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data