get_row2()

Data Structures

- wx_output_list
- wx_words_dictionary_new
- info_list_final
- VM_already_visited
- concept_list
- pos_tag
- class_index
- word_info
- root_word
- vector_8th
- final_word already_visited

<u>Description</u>

- Checks postag & process accordingly,
- -Process VM & VAUX tag if
- -Process NNC & POF tag if any
- -Handle other words &append to a new row

get_row1()

Data Structures

- group_list
- parser_output_list

<u>Description</u>

 Read the original sentence and add '#' before it

get_row3()

<u>Data Structures</u>

- concept_list
- index_for_concepts

<u>Description</u>

Indexing the row2

get_row4()

Data Structures

NER_dict

<u>Description</u>

 For row2 if words are in NER dictionary append it's NER value to sem_category_list

get_row5()

Data Structures

- parser_output_list
- prune_output_list
- wx_output_list
 NER_dict
- concept_list
- info_list_final
- TAM_dictionary_list group_list
- index_for_concepts
- sem_category_list gnp_list_temp
- row_5_temp
- root_word_dict_reverse root_word_dict
- suffix_dictionary
- wx_words_dictionary
- parser_output_dict
- wx_words_dictionary_new VM_already_visited
- updated_root_word
- matched_concepts
- class_word_index_dict.

<u>Description</u>

- Check if "+" or "-" or "_" present in the concept and replace it with comma
- Loop through each line in prune_output_list
- Extract gender, number, and person information from the line
- Append "[gender number] person]" format to gnp_list_temp

get_row6()

Data Structures

- row2_iter row2_wx_index_iter
- class_word_index_list class_word_list
- root_word_from_wx
- dependency_col7_list
- correct_index_list
- pos_tag_list
- root_word_dict
- wx_words_dictionary wx_words_dictionary_new
- parser_output_dict

<u>Description</u>

- It performs cleaning operations to extract the root word from each concept and creates several lists to store intermediate data during processing.
- It looks up the correct indexes of dictionaries to get information about words, their POS tags, and their class word indexes.
- It identifies its dependency relationship based on the col7 value from the parser output Depending on the POS tag the code updates the dependency value to a more meaningful representation
- The row_6 list is populated with elements in the format of "index:dependency". If the dependency is "main", it is represented as "0:main".

get_row7()

Data Structures

comma_list

<u>Description</u>

- It creates an empty list called comma_list.
- It appends an empty string ("") to the comma_list for each iteration.
- It returns the comma_list, which will have the same length as row_2, and each element in comma_list will be an empty

get_row10()

Data Structures

- sentence_type
- wx_output_list

<u>Description</u>

- If either of these strings is found in wx_output_list, it means the sentence is negative, so the string "negative" is appended to the sentence_type list.
- If the sentence is not negative, the code checks for other symbols in wx_output_list. It checks for interrogative sentence, affirmative sentence, exclamatory sentence