University of Houston

COSC 3320: Algorithms and Data Structures Spring 2016

Solutions for Homework 2

- 1. (a) Prove that the function $f(n) = na^{\log n}$, where a is a constant greater than 1, is $\Theta(n^c)$ for some constant c.
 - (b) Prove that the function $f(n) = n^{1/\log n}$ is O(1).
 - (c) Prove that for any constant a > 0, $f(n) = \log n$ is $o(n^a)$.
 - (d) Order the following functions by order of growth, that is, find an arrangement f_1, f_2, \ldots, f_{20} of the functions such that $f_1 = O(f_2), f_2 = O(f_3), \ldots, f_{19} = O(f_{20})$. (Here $\log n$ means $\log_2 n$.)

$$n^2 \qquad \frac{1}{\log n} \qquad n^{4/5} \qquad 1.5^n \qquad \frac{2^{\log n}}{2}$$

$$n \log \log n \qquad \sqrt{\log n} \qquad n^{\log_2 3} \qquad 8 \qquad \log \log \log n$$

$$\sqrt{n^5} \qquad \log^{11/6} n \qquad e^{\sqrt{n}} \qquad \log \log n^3 \qquad \log n!$$

$$2^{\sqrt{\log n}} \qquad \frac{n}{\log n} \qquad \log \left(\frac{n}{\log n}\right) \qquad \frac{\log n}{n} \qquad n!$$

Solution:

- (a) Observe that $f(n) = na^{\log n} = n(2^{\log_2 a})^{\log n} = n(2^{\log n})^{\log_2 a} = n^{1 + \log 2 \cdot \log_2 a}$. Hence it suffices to set $c = 1 + \log 2 \cdot \log_2 a$, and $c_1 = c_2 = 1$ and $n_0 = 0$ in the definition of $\Theta(\cdot)$
- (b) Observe that $f(n) = n^{1/\log n} = (2^{\log_2 n})^{1/\log n} = 2^{\frac{\log_2 n}{\log n}} = 2^{\frac{\log n}{\log 2 \log n}} = 2^{\frac{1}{\log 2}}$. Hence it suffices to set $c = 2^{\frac{1}{\log 2}}$ and $n_0 = 0$ in the definition of $O(\cdot)$.
- (c) It's useful to resort to the property seen in class that involves the limit. Since, for any constant a>0, $\lim_{n\to\infty}\frac{\log n}{n^a}=0$, then $f(n)=\log n$ is $o(n^a)$.
- $\begin{array}{ll} \text{(d)} & \frac{\log n}{n}, \frac{1}{\log n}, 8, \log \log \log n, \log \log n^3, \sqrt{\log n}, \log \left(\frac{n}{\log n}\right), \log^{11/6} n, 2^{\sqrt{\log n}}, n^{4/5}, \frac{n}{\log n}, \\ & \frac{2^{\log n}}{2}, n \log \log n, \log n!, n^{\log_2 3}, n^2, \sqrt{n^5}, e^{\sqrt{n}}, 1.5^n, n! \end{array}$
- 2. Design recursive algorithms for the following problems:
 - (a) Compute the n-th Fibonacci number F_n . Recall that the n-th Fibonacci number is defined as follows.

$$F_n = \begin{cases} 1 & \text{if } n = 0, 1, \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

(b) Compute the n-th power of a number x, x^n , with n non-negative integer. The algorithm should be designed in such a way that it is possible to write a recurrence relation for the total number of multiplications executed by the algorithm for which the Master Theorem applies. Write such a recurrence and apply the Master Theorem to obtain an asymptotic bound for it.

Solution:

(a)

Algorithm 1 Rec_Fib(n)

- 1. **if** n = 0 or n = 1 **then**
- 2. return 1
- 3. **return** Rec_Fib(n-1) + Rec_Fib(n-2)
 - (b) We shall use the following simple observation:

$$x^n = \left\{ \begin{array}{ll} x^{n/2} \cdot x^{n/2} & \text{if } n \text{ is even,} \\ x \cdot x^{\lfloor n/2 \rfloor} \cdot x^{\lfloor n/2 \rfloor} & \text{if } n \text{ is odd.} \end{array} \right.$$

The algorithm is as follows.

Algorithm 2 Power(x, n)

- 1. if n = 0 then
- 2. return 1
- 3. if n = 1 then
- 4. return x
- 5. if $n \mod 2 = 0$ then
- 6. **return** Power $(x, n/2) \times Power(x, n/2)$
- 7. else
- 8. **return** $x \times \text{Power}(x, \lfloor n/2 \rfloor) \times \text{Power}(x, \lfloor n/2 \rfloor)$

The complexity of Power(x, n) is described by the following recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 0, 1, \\ 2T(\lfloor n/2 \rfloor) + \Theta(1) & \text{if } n \ge 2. \end{cases}$$

We are in the first case of the Master Theorem, hence the complexity of Power(x, n) is $\Theta(n)$.

3. When possible, apply the Master Theorem to give asymptotic bounds for T(n) for the following recurrences:

(a)
$$T(n) = \begin{cases} 1 & \text{if } n=1,\\ 3T(n/3) + n/2 & \text{if } n>1. \end{cases}$$

(b)
$$T(n) = \begin{cases} 4 & \text{if } n = 1, \\ 4T(n/2) + 16n^{15/7} & \text{if } n > 1. \end{cases}$$

(c)
$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ T(n/2 + 2) + n^2 & \text{if } n > 1. \end{cases}$$

(d)
$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 4T(n/2) + n/\log n & \text{if } n > 1. \end{cases}$$

(e)
$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ \log n \cdot T(n/2) + n^2 & \text{if } n > 1. \end{cases}$$

(f)
$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2T(n/2) + n/\log n & \text{if } n > 1. \end{cases}$$

Solution:

(a)
$$T(n) = \Theta(n \log n)$$
 (case 2).

(b)
$$T(n) = \Theta(n^{15/7})$$
 (case 3).

- (c) Master Theorem does not apply (not in the form T(n/b)).
- (d) $T(n) = \Theta(n^2)$ (case 1).
- (e) Master Theorem does not apply (a term not a constant).
- (f) Master Theorem does not apply (non-polynomial difference between $n/\log n$ and n).