Week 5

5.1 Measure Theory

- 7/21: Metric space: A space X with a metric d satisfying
 - 1. For all $x \in X$, d(x, x) = 0.
 - 2. If d(x, y) = 0, then x = y.
 - 3. d(x,y) = d(y,x).
 - 4. $d(x,z) \le d(x,y) + d(y,z)$.
 - For example, on \mathbb{R} , the metric d is defined by d(x,y) = |x-y| for all $x,y \in \mathbb{R}$. One can check that d satisfies the four properties under this definition.
 - There is a topology induced by a metric.
 - Let $B_r(x) = \{ y \in X : d(x, y) < r \}.$
 - Cauchy sequence: A sequence (x_i) such that for all $\epsilon > 0$, there exists an N such that $d(x_n, x_m) < \epsilon$ for all $n, m \ge N$.
 - If (x_i) is Cauchy, then there exists y such that $\lim_{i\to\infty} d(x_i,y)=0$.
 - Complete (metric space): A metric space X such that all Cauchy sequences converge to some $x \in X$.
 - Informally, a complete metric space is a metric space X such that all convergent sequences of elements of X converge to an element of X.
 - For example, (0,1) under d(x,y) = |x-y| has contains convergent sequences that converge to 1, so it is not complete.
 - Completeness and compactness are not identical, but they are quite analogous.
 - Baire Category Theorem (informal): Open subsets of a complete metric space are big.
 - Big: Not made out of countably many small things.
 - Fact: If X_1, X_2, \ldots are all measure 0, then $\bigcup_{i \in \mathbb{N}} X_i$ is measure 0.
 - $-\overline{\mathbb{Q}}=\mathbb{R}.$
 - First category (of small sets): A countable union of nowhere dense sets.
 - Second category: Not a first category.
 - Prove the theorem by showing that open subsets of the metric space are second category.