Types and λ -calculus

Problem Sheet 5

- * 1. Give a type derivation/proof tree for the judgements:
 - (a) $\vdash \lambda x y. yxx : a \rightarrow (a \rightarrow a \rightarrow b) \rightarrow b$
 - (b) $x:(b \to b) \to b \to b$, $y:\forall c.c \to c \vdash \lambda z.x (y(\lambda z'.z'))(yz):b \to b$
 - (c) $\vdash \lambda x yz. y(xz): (a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow a \rightarrow c$

Solution -

(a) With $\Gamma = \{x : a, y : a \rightarrow a \rightarrow b\}$:

$$\frac{\Gamma \vdash y : a \to a \to b}{\Gamma \vdash yx : a \to b} \frac{(\mathsf{TVar})}{\Gamma \vdash x : a} \frac{(\mathsf{TVar})}{(\mathsf{TApp})} \frac{\Gamma \vdash x : a}{\Gamma \vdash x : a} \frac{(\mathsf{TVar})}{(\mathsf{TApp})} \frac{\Gamma \vdash yxx : b}{\frac{x : a \vdash \lambda y. \ yxx : (a \to a \to b) \to b}{\vdash \lambda xy. \ yxx : a \to (a \to a \to b) \to b}} \frac{(\mathsf{TAbs})}{(\mathsf{TAbs})}$$

(b) With $\Gamma' = \{x : (b \to b) \to b \to b, y : \forall c.c \to c, z : b\}$:

$$\frac{D \qquad \qquad \Gamma' \vdash y : b \to b \qquad \Gamma' \vdash z : b}{\Gamma' \vdash x \; (y \; (\lambda z'.z')) \; (y \; z) : b} \\
x : (b \to b) \to b \to b, \; y : \forall c.c \to c \vdash \lambda z.x \; (y \; (\lambda z'.z')) \; (y \; z) : a \to b}$$
 (TAbs)

and *D* is this subderivation:

and
$$D$$
 is this subderivation:
$$\frac{ \frac{ }{\Gamma, z': b \vdash z': b} }{ \frac{\Gamma' \vdash y: (b \to b) \to b \to b}{\Gamma' \vdash y: (\lambda z'. z'): b \to b} }$$

$$\frac{ \Gamma' \vdash x: (b \to b) \to b \to b}{ \Gamma' \vdash x: (y: b) \to b}$$

(c) With $\Gamma = \{x : a \rightarrow b, y : b \rightarrow c, z : a\}$:

$$\frac{\Gamma \vdash y : b \to c}{\Gamma \vdash y : b \to c} \text{(Var)} \quad \frac{\Gamma \vdash x : a \to c}{\Gamma \vdash xz : b} \text{(App)}$$

$$\frac{\Gamma \vdash y(xz) : c}{x : a \to b, \ y : b \to c \vdash \lambda z. \ y(xz) : a \to c} \text{(Abs)}$$

$$\frac{x : a \to b \vdash \lambda yz. \ y(xz) : (b \to c) \to a \to c}{\lambda x. \ y(xz) : (a \to b) \to (b \to c) \to a \to c} \text{(Abs)}$$

$$\frac{Abs}{Abs}$$

- ** 2. Give terms $M \in \Lambda$ that satisfy each of the following (you are *not* required to justify them with a proof tree, but you may wish to so as to check your answer):
 - (a) $\vdash M : (a \rightarrow b) \rightarrow a \rightarrow b$
 - (b) $x:(a \rightarrow a) \rightarrow c \vdash M:c$
 - (c) $x : \forall ab. \ a \rightarrow a \rightarrow b \vdash M : a$

Solution -

- (a) e.g. $\lambda x.x$ or perhaps $\lambda xy.xy$
- (b) e.g. $x(\lambda y. y)$
- (c) e.g. xxx
- ** 3. Prove that $\lambda x y. x y(yx)$ is untypable (not typable).

Solution -

Suppose that $\lambda xy.xy(yx)$ were typable. By definition of typability, there is some *A* such that $\vdash \lambda xy.xy(yx)$: *A* is derivable in the type system. This derivation must have the following shape:

$$\begin{aligned} & (\mathsf{TApp}) \frac{D_2 \quad D_1}{x: B_1, \ y: B_3 \vdash xy(yx): B_4} \\ & (\mathsf{TAbs}) \frac{x: B_1 \vdash \lambda y. xy(yx): B_2}{\vdash \lambda xy. xy(yx): A} \end{aligned}$$

with D_1 the (sub)derivation:

and D_2 the following (sub)derivation:

for some types $B_1 - B_{10}$. We know from the rules of the system that these types have the following relationships:

- $A = B_1 \rightarrow B_2$
- (1) $A = B_1 \rightarrow B_2$ (2) $B_2 = B_3 \rightarrow B_4$ (3) $B_8 = B_5 \rightarrow B_4$ (4) $B_7 = B_6 \rightarrow B_5$ (5) $B_7 = B_3$ (6) $B_6 = B_1$ (7) $B_{10} = B_9 \rightarrow B_8$ (8) $B_{10} = B_1$ (9) $B_9 = B_3$

Now we can just begin working out all the consequences of these equations by substituting equals for equals. In particular, it must also be true that:

$$B_3 = B_6 \rightarrow B_5$$

$$B_1 = B_9 \rightarrow B_8$$

by combining (5) and (4), (7) and (8). Therefore, using (6) in the former and (9) in the latter:

$$B_3 = B_1 \rightarrow B_5$$

 $B_1 = B_3 \rightarrow B_8$

But this means that $B_1 = (B_1 \rightarrow B_5) \rightarrow B_8$. This is impossible! No type B_1 , which is just a string, can be identical to a type $(B_1 \rightarrow B_5) \rightarrow B_8$ that properly contains the same string. Since this contradiction is an inevitable consequence of supposing that $\lambda x y$. y x is typable, it must be that it is not typable.

** 4. **(Optional)** Prove: $\forall A$, if $c \notin \{a_1, \dots, a_n\}$ and $\{a_1, \dots, a_n\} \cap \mathsf{FV}(C) = \emptyset$ then

$$A[B_1/a_1,...,B_n/a_n][C/c] = A[C/c][B_1[C/c]/a_1,...,B_n[C/c]/a_n]$$

You will want to consider several cases depending on how variables coincide.

Solution

The proof is by induction on *A*:

(TyVar) When *A* is a type variable a, we reason as follows. Assume $c \notin \{a_1, \ldots, a_n\}$ and $\{a_1, \ldots, a_n\} \cap \mathsf{FV}(C) = \emptyset$. Then we consider three cases:

• When $a = a_j$ for some $j \in \{1, ..., n\}$:

$$a[B_1/a_1,...,B_n/a_n][C/c]$$

$$= B_j[C/c]$$

$$= a[B_1[C/c]/a_1,...,B_n[C/c]/a_n]$$

$$= a[C/c][B_1[C/c]/a_1,...,B_n[C/c]/a_n]$$

since, in particular, $c \neq a_j$.

• When $a \notin \{a_1, \ldots, a_n\}$ and a = c:

$$a[B_{1}/a_{1},...,B_{n}/a_{n}][C/c]$$

$$= a[C/c]$$

$$= C$$

$$= C[B_{1}[C/c]/a_{1},...,B_{n}[C/c]/a_{n}]$$

$$= a[C/c][B_{1}[C/c]/a_{1},...,B_{n}[C/c]/a_{n}]$$

with the second to last equation holding since no a_i is free in C.

• When $a \notin \{a_1, \ldots, a_n\}$ and $a \neq c$:

$$a[B_1/a_1,...,B_n/a_n][C/c]$$
= $a[C/c]$
= a
= $a[B_1[C/c]/a_1,...,B_n[C/c]/a_n]$
= $a[C/c][B_1[C/c]/a_1,...,B_n[C/c]/a_n]$

(Arrow) When A is an arrow $D \rightarrow E$, assume the induction hypotheses:

(IH1) If
$$c \notin \{a_1, ..., a_n\}$$
 and $\{a_1, ..., a_n\} \cap FV(C) = \emptyset$ then:
$$D[B_1/a_1, ..., B_n/a_n][C/c] = D[C/c][B_1[C/c]/a_1, ..., B_n[C/c]/a_n]$$

(IH2) If
$$c \notin \{a_1, ..., a_n\}$$
 and $\{a_1, ..., a_n\} \cap FV(C) = \emptyset$ then:
$$E[B_1/a_1, ..., B_n/a_n][C/c] = E[C/c][B_1[C/c]/a_1, ..., B_n[C/c]/a_n]$$

Assume $c \notin \{a_1, ..., a_n\}$ and $\{a_1, ..., a_n\} \cap FV(C) = \emptyset$. Then: $(D \to E)[B_1/a_1, ..., B_n/a_n][C/c]$ $= D[B_1/a_1, ..., B_n/a_n][C/c] \to E[B_1/a_1, ..., B_n/a_n][C/c]$

 $= D[C/c][B_1[C/c]/a_1, \dots, B_n[C/c]/a_n] \to E[C/c][B_1[C/c]/a_1, \dots, B_n[C/c]/a_n]$

 $= (D \to E)[C/c][B_1[C/c]/a_1, \dots, B_n[C/c]/a_n]$

where the penultimate line follows from the use of both IH.

The following is the induction principle for the type system, viewed as a set of triples or three-place relation $- \vdash -: -$.

Suppose $\Phi(\Gamma, M, A)$ is a property of triples comprising a type environment, a term and a monotype. Then if the following can all be proven:

- For all type environments Δ , variables x, type schemes $\forall \overline{a}$. C and sequences of monotypes \overline{B} (of the appropriate length), if $x : \forall \overline{a}$. $C \in \Delta$ then $\Phi(\Delta, x, C[\overline{B}/\overline{a}])$.
- For all type environments Δ , terms P and Q and monotypes B and C, if $\Phi(\Delta, P, B \to C)$ and $\Phi(\Delta, Q, B)$ then $\Phi(\Delta, PQ, C)$.
- For all type environments Δ , terms P, variables x and monotypes B and C, if $x \notin \text{dom}(\Gamma)$ and $\Phi(\Delta \cup \{x : B\}, P, C)$ then $\Phi(\Delta, \lambda x. P, B \to C)$.

It follows that $\forall (\Gamma, M, A) \in \vdash \Phi(\Gamma, M, A)$.

** 5. Prove, by induction on $\Gamma \vdash M : A$, that:

If
$$\Gamma \vdash M : A$$
 then $\Gamma[C/c] \vdash M : A[C/c]$.

Note: by the variable convention, you may assume $(\forall \overline{a}. A)[C/c] = \forall \overline{a}. A[C/c]$. Also, you will need to use the result of the previous question.

Solution -

The proof is by induction on $\Gamma \vdash M : A$.

• In case (TVar), M is some variable x and A is of shape $A'[\overline{B}/\overline{a}]$ we can assume $x: \forall \overline{a}. A' \in \Gamma$. Therefore, by definition (and the assumption allowed by the question), $x: \forall \overline{a}. A'[C/c] \in \Gamma[C/c]$. Hence, $\Gamma[C/c] \vdash x: A'[C/c][\overline{B}[C/c]/\overline{a}]$ by (TVar) (i.e. the instance we choose has $B_i[C/c]$ replacing a_i instead of B_i replacing a_i). By the previous question, this is the same as $A'[\overline{B}/\overline{a}][C/c]$, i.e. A[C/c], which was our goal.

- In case (TApp), M is of shape PQ. Assume the induction hypotheses:
 - $\Gamma[C/c] \vdash P : (B \rightarrow A)[C/c]$
 - $\Gamma[C/c] \vdash Q : B[C/c]$

By definition, $(B \to A)[C/c]$ is just $B[C/c] \to A[C/c]$. Hence, by (TApp), $\Gamma[C/c] \vdash PQ : A[C/c]$ as required.

- In case (TAbs), M is of shape $\lambda x. P$ and A is of shape $B_1 \to B_2$. Assume the induction hypothesis: $(\Gamma \cup \{x : B_1\})[C/c] \vdash P : B_2[C/c]$. By definition and set reasoning, $(\Gamma \cup \{x : B_1\})[C/c] = \Gamma[C/c] \cup \{x : B_1[C/c]\}$. Therefore, it follows from (Abs) that $\Gamma[C/c] \vdash \lambda x. P : B_1[C/c] \to B_2[C/c]$. The result follows because $B_1[C/c] \to B_2[C/c] = (B_1 \to B_2)[C/c]$ by definition.
- ** 6. **(Optional)** Prove the Subject Reduction Theorem by induction on $M \to_{\beta} N$:

if
$$M \to_{\beta} N$$
 and $\Gamma \vdash M : A$ then $\Gamma \vdash N : A$.

Three tips:

- You will want to have an induction hypothesis of the form $\forall \Gamma$. $\Phi(M, N)$, which will be useful in the (Abs) case, so set up your goal accordingly.
- You will need to use the substitution lemma from the notes.
- You will need to use the Inversion theorem from the notes.

Solution -

We prove $\forall (M,N) \in \rightarrow_{\beta}$. $\forall \Gamma. \ \Gamma \vdash M : A \Rightarrow \Gamma \vdash N : A$. The proof is by induction on $M \rightarrow_{\beta} N$:

- (Redex) In this case M is $(\lambda x. P)Q$ and N is P[Q/x]. Let Γ be a type environment. It follows from Inversion that there is some type B such that $\Gamma \vdash (\lambda x. P) : B \rightarrow A$ and $\Gamma \vdash Q : B$. Similarly, it follows that $\Gamma \cup \{x : B\} \vdash P : A$. Then by the substitution lemma $\Gamma \vdash P[Q/x] : A$ as required.
- **(AppL)** In this case M is of shape PQ and N is of shape P'Q. We assume the following induction hypothesis: for all Γ' , if $\Gamma \vdash P : C$ then $\Gamma \vdash P' : C$. Let Γ be a type environment and suppose $\Gamma \vdash PQ : A$. It follows from Inversion that there must be some type B such that $\Gamma \vdash P : B \to A$ and $\Gamma \vdash Q : C$. Consequently, by the induction hypothesis, we have $\Gamma \vdash P' : B \to A$. Then $\Gamma \vdash P'Q : A$ follows by (RAppL).

- (AppR) This case is symmetrical to the previous.
- **(Abs)** In this case M is of the form $\lambda x. P$ and N is of the form $\lambda x. Q$. Assume the induction hypothesis: for all Γ' , if $\Gamma' \vdash P : C$ then $\Gamma' \vdash Q : C$. Let Γ be a type environment. By inversion, A is of shape $D \to E$ and $\Gamma \cup \{x : D\} \vdash P : E$. Hence, by the induction hypothesis, with $\Gamma' = \Gamma \cup \{x : D\}$, we obtain $\Gamma \cup \{x : D\} \vdash Q : E$. Hence, the required goal follows immediately from (TAbs).