

Overview

What factors have the most influence on Life Expectancy?

Can we predict how long a person will live?

How does obesity/schooling relate to life expectancy?

Who can use this information?

DATA SET!

• FROM KAGGLE

- Life Expectancy (2000 2015) from the World Health Organization
- o Obesity Among Adults by Country (1975-2016) from the World Health Organization
- o Suicide Rates Overview (1985-2016) from UN Development Program, World Bank, and World Health Organization

What can we infer from this color map?

- At first glance, it looks like regions close to each other have similar life expectancies.
- Countries who seem more
 'developed' have higher
 life expectancy
- Countries who have 'free'
 healthcare have higher
 life expectancy

Life Expectancy around the world in 2015

Made with Flotly

Ho: Life $Expectancy_{Developed} = Life\ Expectancy_{Developing}$ Ha: Life $Expectancy_{Developed} \neq Life\ Expectancy_{Developing}$

First Hypothesis: Life Expectancy of Developed vs Developing Countries

- Two Sampled T-Test
- Since our P-Value is lower than our alpha of 0.05 we can reject our null hypothesis testing
- There is a significant difference in the average Life Expectancy of a developed country and a developing country

Baseline OLS!

 Out of all of the selected features, amount of schooling had the biggest impact on Life Expectancy

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	life_expectancy OLS Least Squares Mon, 22 Jun 2020 00:55:46 2382 2374 7 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-station Log-Likelihon AIC: BIC:	: tistic):	0 7	88.1 e+04	nat's goin	ng on here?
		coef	std err	t	P> t	[0.025	0.975]
Intercept schooling_scaled obesity_scaled alcohol_scaled income_composition diphtheria_scaled percentage_expendir status_Developed_scaled		69.1779 3.3777 1.6075 -0.9721 2.4960 1.4642 0.7779 1.2027	0.111 0.220 0.143 0.147 0.186 0.124 0.121 0.153	623.090 15.363 11.208 -6.599 13.417 11.767 6.446 7.844	0.000 0.000 0.000 0.000 0.000 0.000 0.000	68.960 2.947 1.326 -1.261 2.131 1.220 0.541 0.902	69.396 3.809 1.889 -0.683 2.861 1.708 1.014 1.503
Omnibus: Prob(Omnibus): Skew: Kurtosis:	217.959 0.000 -0.419 5.653	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.	-Bera (JB): 768.205 B): 1.54e-167		.205 -167		

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $Ho: Obesity_{Developed} = Obesity_{Developing}$ $Ha: Obesity_{Developed} \neq Obesity_{Developing}$

Status of Country vs Obesity

Average Obesity Percentage of Developed countries vs Developing countries

- P-Value = 4.95 E -18
- We can reject Null hypothesis.
- There is a significant difference in the average obesity percentage of a developed country and a developing country

Number of suicides in Developing countries vs Developed

- P-Value= 0.53
- Fail to reject Null Hypothesis
- There is no significant difference in the average number of suicides in Developed countries and Developing Countries

Modeling to Predict

- Winning model: Baseline with Countries.
- F-test and Recursive
 Feature Elimination gave
 the same results as the
 winning model.
- We can predict the life expectancy of a person

Modelling Type	# of Features	Train RMSE	Test RMSE	R^2
Baseline w/o Country	7	5.44 yrs	5.46 yrs Z: 0.57	0.68
Baseline w/ Country	164	2.09 yrs	2.43 yrs Z: 0.25	0.95
Lasso (alpha=.1)	164	1.81 yrs	2.80 yrs Z: 0.29	0.93

Main Take-Aways and how can we use our data?

- Schooling has an influence on life expectancy –
 policy makers should make school more accessible
 and more prevalent
- Government expenditure on healthcare has a positive correlation, countries with lower life expectancy should increase their healthcare expenditure in order to improve its average lifespan.
- Governments should allocate budget into **physical** and **mental** health to help increase life expectancy

THANK YOU!! ANY QUESTIONS?

