Laboratório de Redes com Arduino Camada Enlace

Redes de Computadores

Profa. Kalinka Regina Lucas Jaquie Castelo Branco

Maio 2022

Sistemas Embarcados

Sistemas Embarcados:

- Poucos recursos
- Construídos para um propósito único
- Funcionam com pouca ou nenhuma interação humana

Arduino:

- Plataforma fácil de ser programada
- Placa UNO:
 - 14 pinos E/S digitais
 - 6 entradas analógicas

Sistemas Embarcados

Sistemas Embarcados:

- Poucos recursos
- Construídos para um propósito único
- Funcionam com pouca ou nenhuma interação humana

Arduino:

- Plataforma fácil de ser programada
- Placa UNO:
 - 14 pinos E/S digitais
 - 6 entradas analógicas
 - ABSURDOS 32Kb de memória flash
 - ABSURDOS 2Kb de memória SRAM

Arduino Uno

Atividade Prática

Objetivo

Fazer dois dispositivos Arduino conversarem por um protocolo serial assíncrono baseado no protocolo RS-232-C

Protocolo RS-232

O protocolo RS-232 é um protocolo assíncrono muito utilizado para a transmissão de caracteres (ex, teclado).

- Serial informação em um único fio
- Assíncrono não há informação de início ou fim do bit
- As transmissões são feitas sob demanda
- 1 bit de início (start bit), bits de dados, bit de paridade (opcional, par ou ímpar) e bit de parada (stop bit — 1, 1.5 ou 2 bits)

Protocolo RS-232 — Paridade

A paridade se refere a quantidade de bits '1' transmitidos naquele dado:

- Se a paridade é **par**, deve haver um número par de '1's na transmissão
- Se a paridade é ímpar, deve haver um número ímpar de '1's na transmissão

O bit de paridade seve para alcançar a paridade desejada.

Protocolo RS-232 — Exemplo

Exemplo de transmissão: string "oi" com 8 bits de dados, paridade ímpar e 1 bit de término.

- 1° caractere: 'o' (0x6F ou 0110 1111b)
- 2º caractere: 'i' (0x69 ou 0110 1001b)

```
SB 0 1 1 0 1 1 1 PB EB SB 0 1 1 0 1 0 1 PB EB
```

Faremos um protocolo baseado no RS-232C para envio de caracteres no formato ASCII¹.

//upload.wikimedia.org/wikipedia/commons/d/dd/ASCII-Table.svg

¹https:

Para fazer o baud rate correto, iremos usar o TIMER1.

- Um temporizador ou *timer* é uma estrutura no μ C que permite a contagem de tempo a partir de um *clock* interno ou externo.
- Quando o tempo programado no temporizador é atingido, ele gera uma interrupção no μC.
- O μC então interrompe a execução do programa e executa a rotina de interrupção associada àquele evento.

Uso do temporizador:

- Incluir arquivo Temporizador.h no programa
- Métodos disponíveis:
 - void configuraTemporizador(int baud_rate)
 - void iniciaTemporizador()
 - void paraTemporizador()

Rotina de interrupção: ISR(TIMER1_COMPA_vect){}

Cada grupo receberá dois parâmetros:

- emissor ou receptor
- paridade par ou paridade ímpar
- Os pinos TX do emissor e RX do receptor deverão ser o pino 13 (LED!)
- Baud rate inicial = 1Hz

Algumas questões:

- Quando o temporizador deve ser iniciado/parado?
- Como o receptor vai saber que a transmissão começou?
- Quando o receptor deve ler o valor do bit?
- Qual o intervalo de envio entre caracteres?

Funções úteis²

Porta serial (Serial monitor):

Serial.print(''Text'')
Serial.println(''Text'')

Serial.peek()
Serial.read()

Serial.write()

I/O Digital:

pinMode(pin,[INPUT,OUTPUT])
digitalRead(pin)
digitalWrite(pin, value)

Tempo:

delay(ms)

Variáveis:

Modificador volatile

Operações de bit:

bitClear(x,n)
bitRead(x,n)
bitSet(x,n)
bitWrite(x,n,b)

²Referência em https://www.arduino.cc/reference/en/

Esqueleto do Código

```
#include "Temporizador.h"
// Calcula bit de paridade - Par ou impar
bool bitParidade(char dado){
 //>>>> Codigo Aqui <<<<
ISR(TIMER1_COMPA_vect){
 //>>>> Codigo Aqui <<<<
void setup(){
 //>>>> Codigo Aqui <<<<
void loop ( ) {
 //>>>> Codigo Aqui <<<<
```

Desafio — Handshake

O handshake é útil para controlar o fluxo de dados e não sobrecarregar o receptor, que pode não estar disponível para a comunicação.

Vamos lá!

Sorteio!