Fertilizers Recommendation System for Disease Prediction

PROJECT REPORT

Submitted by

Team ID: PNT2022TMID36162

B. ISHAARRTHY (110519104005)

M. KARTHIGA (110519104012)

S. SNEGHA (110519104025)

K. PREETHI (110519104018)

In partial fulfilment for the award of the degree of

BACHELOR OF ENGINEERING

In

COMPUTER SCIENCE AND ENGINEERING

GOJAN SCHOOL OF BUSINESS AND TECHNOLOGY NOV-2022

INDEX

S.NO	TITLE
1	Introduction
1.1	Project Overview
1.2	Purpose
2	LITERATURE SURVEY
2.1	Existing problem
2.2	References
2.3	Problem Statement Definition
3	IDEATION & PROPOSED SOLUTION
3.1	Empathy Map Canvas
3.2	Ideation & Brainstorming
3.3	Proposed Solution
3.4	Problem Solution fit
4	REQUIREMENT ANALYSIS
4.1	Functional requirement
4.2	Non-Functional requirements
5	PROJECT DESIGN
5.1	Data Flow Diagrams
5.2	Solution & Technical Architecture
5.3	User Stories
6	PROJECT PLANNING & SCHEDULING
6.1	Sprint Planning & Estimation
6.2	Sprint Delivery Schedule
6.3	Reports from JIRA
7	CODING & SOLUTIONING (Explain the features added in the project along with code)
7.1	Feature 1
7.2	Feature 2
7.3	Database Schema
8	TESTING
8.1	Test Cases
8.2	User Acceptance Testing
9	RESULTS
9.1	Performance Metrics
10	ADVANTAGES & DISADVANTAGES
11	CONCLUSION
12	FUTURE SCOPE
13	APPENDIX
13.1	Source Code
13.2	GitHub & Project Demo Link

1. INTRODUCTION:

1.1 Project overview:

Agriculture is the most important sector in today's life. Most plants are affected by a wide variety of bacterial and fungal diseases. Diseases on plants placed a major constraint on the production and a major threat to food security. Hence, early and accurate identification of plant diseases is essential to ensure high quantity and best quality. In recent years, the number of diseases on plants and the degree of harm caused has increased due to the variation in pathogen varieties, changes in cultivation methods, and inadequate plant protection techniques.

An automated system is introduced to identify different diseases on plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases.

1.2 Purpose:

- 1. Preprocess the images.
- 2. Applying the CNN algorithm to the dataset.
- 3. How deep neural networks detect the disease.
- 4. You will be able to know how to find the accuracy of the model.
- 5. You will be able to build web applications using the Flask framework.

2. LITERATURE SURVEY:

2.1 Existing problem:

A digital camera or similar devices are used to take images of different types, and then those are used to identify the affected area in leaves. Then different types of image-processing techniques are applied to them, the process those images, to get different and useful features needed for the purpose of analyzing later-Plant leaf disease identification is especially needed to predict both the quality and quantity of the First segmentation step primarily based on a mild polygonal leaf model is first achieved and later used to guide the evolution of an energetic contour. Combining global shape descriptors given by the polygonal model with local curvature-based features, the leaves are then classified over leaf datasets.

2.2 References:

- [1] Reyes Angie .K, Juan C. Caicedo, and Jorge E. Camargo, "Fine-tuning Deep Convolutional Networks for Plant Recognition", In CLEF (Working Notes), 2015
 - [2] Hamrouni .L, Aiadi .O, Khaldi .B and Kherfi .M.L, "Plants Species Identification using Computer Vision Techniques", Revue des Bioressources 7, no. 1, 2018.
- [3] Dimitrovski, Ivica, GjorgjiMadjarov, DragiKocev, and PetreLameski, "Maestra at LifeCLEF 2014 Plant Task: Plant Identification using Visual Data", In CLEF (Working Notes), pp. 705
- [4] Naresh, Y. G., and H. S. Nagendraswamy, "Classification of medicinal plants: an approach using modified LBP with symbolic representation", Neurocomputing 173, pp. 1789-1797, 2016.
- [5] Sue Han, CheeSeng Chan, Paul Wilkin, and Paolo Remagnino, "Deep-plant: Plant identification with convolutional neural networks", In Image Processing.

2.3 Problem statement definition:

Customer problem statement template:

Create a problem statement to understand your customer's point of view. The Customer Problem Statement template helps you focus on what matters to create experiences people will love. A well-articulated customer problem statement allows you and your team to find the ideal solution for the challenges your customers face. Throughout the process, you'll also be able to empathize with your customers, which helps you better understand how they perceive your product or service.

3. IDEATION & PROPOSED SOLUTION:

3.1 Empathy Map Canvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviors and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 Ideation & Brainstorming:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions. Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 Proposed Solution:

Diseases on plants placed a major constraint on the production and a mathreat to food security. To find what diseases that the plat is having by its let a utomated system is introduced to identify different diseases on plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognitit to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a	S. No	Parameter	Description
Diseases on plants placed a major constraint on the production and a mathreat to food security. To find what diseases that the plat is having by its let a leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases. Novelty / Uniqueness Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognition to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant. Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whiresults in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly	1	Problem Statement (Problem tobe	Most plants are affected by a wide
constraint on the production and a mathreat to food security. To find what diseases that the plat is having by its let. Idea / Solution description An automated system is introduced to identify different diseases on plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases. Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognition to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whit results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly		solved)	variety of bacterial and fungal diseases.
threat to food security. To find what diseases that the plat is having by its let. Idea / Solution description Idea / Solution description An automated system is introduced to identify different diseases on plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases. Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognitit to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whit results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			Diseases on plants placed a major
diseases that the plat is having by its let Idea / Solution description An automated system is introduced to identify different diseases on plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognitite to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			constraint on the production and a major
An automated system is introduced to identify different diseases on plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognitit to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whit results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			threat to food security. To find what
identify different diseases on plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases. Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whim makes computer vision on image processing easier and pattern recognition to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whim results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			diseases that the plat is having by its leaf
checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognition to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whim results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly	2	Idea / Solution description	An automated system is introduced to
leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognition to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whit results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			identify different diseases on plants by
techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognities to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant. Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			checking the symptoms shown on the
diseases and suggest the precautions that can be taken for those diseases Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognition to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whimakes in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			leaves of the plant. Deep learning
that can be taken for those diseases It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognition to understand which disease is affected to the plant. Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			techniques are used to identify the
3 Novelty / Uniqueness It has UI (user interface) which makes communication between human and machine easy & DL (deep learning) whimakes computer vision on image processing easier and pattern recognition to understand which disease is affected to the plant. 4 Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large 5 Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			diseases and suggest the precautions
communication between human and machine easy & DL (deep learning) whi makes computer vision on image processing easier and pattern recogniti to understand which disease is affected to the plant. 4 Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large 5 Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whi results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			that can be taken for those diseases
machine easy & DL (deep learning) white makes computer vision on image processing easier and pattern recogniting to understand which disease is affected to the plant. 4 Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant. Makes the food productivity large The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly	3	Novelty / Uniqueness	It has UI (user interface) which makes
makes computer vision on image processing easier and pattern recognitive to understand which disease is affected to the plant. 4 Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large 5 Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			communication between human and
processing easier and pattern recognition to understand which disease is affected to the plant. 4 Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large 5 Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6 of sustainable b) increased supply of environmentally-friendly			machine easy & DL (deep learning) which
to understand which disease is affected to the plant. 4 Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plant Makes the food productivity large 5 Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			makes computer vision on image
to the plant. 4 Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plan Makes the food productivity large 5 Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whi results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			processing easier and pattern recognition
Social Impact / Customer Satisfaction It help the customer to know what fertilizer has to be given in the fields as soon the disease is affected to the plan Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whi results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			to understand which disease is affected
fertilizer has to be given in the fields as soon the disease is affected to the plan Makes the food productivity large 5 Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whi results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			to the plant.
soon the disease is affected to the plant Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach white results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly	4	Social Impact / Customer Satisfaction	It help the customer to know what
Makes the food productivity large Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whi results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			fertilizer has to be given in the fields as
Business Model (Revenue Model) The business model is hinged on a multiple revenue stream approach whi results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			soon the disease is affected to the plants.
multiple revenue stream approach whi results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly			Makes the food productivity large
results in three value propositions: a) provision 6of sustainable b) increased supply of environmentally-friendly	5	Business Model (Revenue Model)	The business model is hinged on a
provision 6of sustainable b) increased supply of environmentally-friendly			multiple revenue stream approach which
supply of environmentally-friendly			results in three value propositions: a)
			provision 6of sustainable b) increased
fertilizer c) provision of recyclables.			supply of environmentally-friendly
l			fertilizer c) provision of recyclables.
Strategies to be considered a)			Strategies to be considered a)
partnership; b) market segmentation; o			partnership; b) market segmentation; c)
production innovation.			production innovation.
6 Scalability of the Solution The solution given increases the food	6	Scalability of the Solution	The solution given increases the food
			productivity that is increases in quantity
and decrease the food scarcity			and decrease the food scarcity

3.4 Problem solution fit:

4. REQUIREMENT ANALYSIS:

4.1 Functional requirement:

Following are the functional requirements of the proposed solution.

FR no.	Functional Requirement	Sub Requirement (Story
	(Epic)	/ Sub-Task)
FR-1	User Registration	Registration through
		Form
		Registration through
		Gmail
		Registration through
		LinkedIn
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Website comparison	Model compares the
		fertilizer using blacklist
		and whitelist approach
FR-4	Prediction	Model predicts the URL
		using Deep learning
		algorithm
		Such CNN,
FR-5	Classifier	Model send all output to
		classifier and produces
		final results.
FR-6	Events	This model needs the
		capability of retrieving
		and displaying accurate
		result of the fertilizer.

4.2 Non-Functional requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	The customer has full
		access on the system
		and on the data and
		images through image
		processing.
NFR-2	Security	The images used in the
		images processing as a
		dataset is backed up.
NFR-3	Reliability	The system should be
		user friendly to the
		customer while using
		the system.
NFR-4	Performance	The accuracy of the
		prediction must be high.
NFR-5	Availability	The resources should be
		always available for the
		system when then user
		in need.
NFR-6	Scalability	It must be able to
		handle larger data
		without any
		interruption or damage
		to the system.

5. PROJECT DESIGN:

5.1 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enter and leaves the system, what changes the information, and where data is stored.

level0 dfd diagram

5.2 Solution & Technical architecture:

- Deep learning techniques are used to identity diseases, through image processing.
- The customers gives in the image, the user interface accepts the image and goes inside the DL algorithm
- First its train the data and test the image data and then gives the output

5.3 USER STORIES:

Use the below template to list all the user stories for the product.

User Type	Functional	User	User Story /	Acceptance	Priority	Release
	Requirement	Story	Task	criteria		
	(Epic)	Number				
Customer	Registration	USN-1	As a user, I	I can access	High	Sprint-1
(Mobile user)			can register	my account /		
			for the	dashboard		
			application			
			by entering			
			my email,			
			password,			
			and			
			confirming			
			my			
			password.			
		USN-2	As a user, I	I can receive	High	Sprint-1
			will receive	confirmation		
			confirmation	email &		
			email once I	click		
			have	confirm		
			registered for			
			the			
			application			
		USN-3	As a user, I	I can register	Low	Sprint-2
			can register	& access the		
			for the	dashboard		
			application	with		
			through	Facebook		
			Facebook	Login		
		USN-4	As a user, I		Medium	Sprint-1
			can register			
			for the			
			application			
			through			
			Gmail			

	Login	USN-5	As a user, I can log into the application by entering email & password As a user u can see the	High Medium	Sprint-1 Sprint-2
			improvement		
			as a graph		
Customer	User input		The input is	Medium	Sprint-1
(Web user)			given as a		
			image or a		
			dataset		
Customer	Feature		The process	High	Sprint-1
Care	extraction		of		
Executive			transforming		
			raw data into		
			numerical		
			features that		
			can be		
			processed		
			while		
			preserving		
			the		
			information		
			in the		
			original data		
			set.		

Administrat	prediction	Leaves are	Low	Sprint-2
or		affected by		
		bacteria,		
		fungi, virus,		
		and other		
		insects.		
		Support		
		Vector		
		Machine		
		(SVM)		
		algorithm		
		classifies the		
		leaf		
		image as		
		normal or		
		affected		
	classifier	Artificial	Medium	Sprint-1
		neural		
		network is		
		used to		
		assign a class		
		label to data		
		input		

6. PROJECT PLANING &PLANNING:

6.1 Sprint Planning & Estimation:

SPRINT	Functional	User	User Story /	Story	Priority	Team
	Requirement (Epic)	Story Number	Task	Points		Members
Sprint1	Registration	USN-1	As a user, I	2	High	Ishaarrthy.B
	(Customer)		can register		3	,
	,		for the			
			application			
			by entering			
			my email,			
			password,			
			and			
			confirming			
			my			
			password.			
Sprint1	Login	USN-2	As a user, I	1	High	Karthiga M
			will receive			
			confirmation			
			email once I			
			have			
			registered			
			for the			
		11011.4	application			
Sprint1	Dashboard	USN-4	I am a new	2	High	Snegha S
			user, ready			Preethi K
			to explore the site via			
			dashboard			
Sprint1	Registration	USN-1	I am in seek	2	High	Snegha S
Spriitt	(Administrator)	0311-1	of my profile	2	riigii	Preethi K
	(Administrator)		details and			1 recuire
			my exploring			
			stuffs			
Sprint2	Login	USN-3	As an	1	Low	Ishaarrthy.B
'	0		existing user,			
			I can access			
			the website			
			with login			
			credentials			
			that are			
			specific to			
			myself.			

Sprint2	Dashboard	USN-5	I am an 1 High existing user, pick from where I left		Karthiga M Snegha S	
Sprint3	Image Uploading	USN-1	I am in need of suggestions of fertilizer for the crops in my field. So I am uploading the images for the same.	1	High	Perrthi K
Sprint3	Image Uploading	USN-2	I am in need of suggestions of my land (soil) but I don't have a clear picture of it. So I am specifying through text format.	2	High	Ishaarrthy B karthigaM
Sprint-4	View of recommends	USN-1	I am just an explorer, view of recommends are adequate	2	Low	Ishaarrthy B karthigaM
Sprint-4	Feedback Providing	USN-1	I finished of my journey on the website, time to provide feedback.	1	Low	Snegha S Ishaarrthy B
Sprint -4	Feedback Collection	USN-2	I need to see all other peer members' review about this site.	2	Low	Karthiga M Snegha S

6.2 Sprint Delivery Schedule:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	7 Days	24 Oct 2022	30 Oct 2022	20	30 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA:

7. CODING & SOLUTIONING (Explain the features added in the project along with code):

7.1 Feature 1:

7.1 FEATURE2:

Database Schema:

8. TESTING:

8.1 Test Cases:

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	1	3	7
Client Application	51	3	2	51
Security	2	4	1	2
Outsource Shipping	3	1	1	3
Exception Reporting	9	3	2	9
Final ReportOutput	4	2	3	4
Version Control	2	1	1	2

8.2 User Acceptance Testing:

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	1	0	5
Fixed	9	2	4	20	37
Not Reproduced	2	0	1	0	1
Skipped	3	1	0	1	3
Won't Fix	0	0	2	1	5
Totals	27	10	13	26	75

9. RESULTS:

9.1 Performance Metrics:

VEGETABLE

Model: "sequential_2"

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 126, 126, 32)	896
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 63, 63, 32)	0
flatten_1 (Flatten)	(None, 127008)	0
dense_7 (Dense)	(None, 300)	38102700
dense_8 (Dense)	(None, 150)	45150
dense_9 (Dense)	(None, 75)	11325
dense_10 (Dense)	(None, 9)	684

Total params: 38,160,755 Trainable params: 38,160,755

Non-trainable params: 0

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	1	0	5
Fixed	9	2	4	20	37
Not Reproduced	2	0	1	0	1
Skipped	3	1	0	1	3
Won't Fix	0	0	2	1	5
Totals	27	10	13	26	75

10. ADVANTAGES&DISADVANTAGES:

Advantages:

- They are quick in providing plant nutrients and restoring soil fertility. They are portable and easy to transport. Plants easily absorb fertilizers. Fertilizers improve and increase the productivity of many crops such as wheat, maize, and rice.
- Without fertilizers, nature struggles to replenish the nutrients in the soil. When crops are harvested, important nutrients are removed from the soil, because they follow the crop and end up at the dinner table. If the soil is not replenished with nutrients through fertilizing, crop yields will deteriorate over time.
- When the fertilizer is placed, there is minimum contact between the soil and the fertilizer, and thus fixation of nutrients is greatly reduced
- The weeds all over the field cannot make use of the fertilizers

Disadvantages:

- If fertilizer is used more or less in the field the soil may lose it fertility and crop may not give the expected yield. So, fertilizer also becomes the major factor in it. They get washed away by water easily and cause pollution.
- They harm the microbes present in soil. They reduce soil fertility.
- They are expensive. They provide only short term benefits.
- They change the nature of soil, making it either too acidic or too alkaline.
- Synthetic fertilizers typically only supply nitrogen, phosphorous, and potassium, but do not supply other nutrients to the soil. Consequently, the soil that is used for growing crops given synthetic fertilizers is depleted over time, and the food crops themselves become nutritionally deficient.

11. CONCLUSION:

The proposed method uses SVM to classify tree leaves, identify the disease and suggest the fertilizer. The proposed method is compared with the existing CNN based leaf disease prediction. The proposed SVM technique gives a better result when compared to existing CNN. For the same set of images, F-Measure for CNN is 0.7 and 0.8 for SVM, the accuracy of identification of leaf disease of CNN is 0.6 and SVM is 0.8.

12. FUTURE SCOPE:

This further research is implementing the proposed algorithm with the existing public datasets. Also, various segmentation algorithms can be implemented to improve accuracy. The proposed algorithm can be modified further to identify the disease that affects the various plant organs such as stems and fruits

13. APPENDIX:

13.1. Source code:

INDEX

```
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Home</title>
    <style>
        span{
            background-color:ivory;
            color: black;
            text-decoration-line: none;
        #label{
            height: 40px;
            width: 100%;
            border: 2px solid;
            border-radius: 10px;
            background-color: rgb(227, 234, 235);
        }
```

```
padding-top: .2cm;
            /*padding-right: ;*/ padding-bottom: .5cm;
            padding-left: 1000px;
            font-size: .7cm;
        }
        span{
            padding-right: 1cm;
            background-color: transparent;
        }
        body {
            background-color: black;
        }
        a {
            text-decoration: none;
        }
        p {
            color: white;
        }
        h1 {
            color: aliceblue; font-size: 1cm;
            padding-top: 1cm; font-size: .7cm;
            text-align: center; color: white;
            font-style: italic;
        #body{
            text-align: center;
            width: 50%;
            float: left;
        }
        #body2{
            width: 40%;
            float: right;
        }
   </style>
</head>
<body>
    <div id="label"> <div id="label2"><span><a
href="/">Home</a></span><span><a href="/prediction">Predict</a>
</span></div></div>
    <div id="body" >
```

#label2{

```
<h1>Detect if your plant is infected!!</h1>
    Agriculture is one of the major sectors world wide over the<br>>
        years it has developed and the use of new technologies and
equipment replaced almost all the traditional <br/> <br/> 
    methods of farming. The plant diseases effect the
production. Identification of diseases <br>
 and taking necessary precautions is all done through naked eye, which
requires labour and laboratries. <br>
This application helps farmers in detecting the diseases by observing the
sports on the leaves, <br>
which in turn saves effort and labor costs</style></div>
<div id="body2">
    <img src="{{url_for('static', filename='plant.jpg')}}" alt="">
</div>
</body>
</html>
```

PREDICT

```
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>prediction</title>
    <style>
        span{
            background-color:ivory;
            color: black;
            text-decoration-line: none;
        }
        h2 {
            color: red;
            font-size: 1cm;
        #label{
            height: 40px;
            width: 100%;
            border: 2px solid;
            border-radius: 10px;
            background-color: rgb(227, 234, 235);
```

```
#label2{
    padding-top: .2cm;
    /*padding-right: ;*/ padding-bottom: .5cm;
    padding-left: 1000px;
    font-size: .7cm;
span{
    padding-right: 1cm;
    background-color: transparent;
}
a {
    text-decoration: none;
}
p{
    color: white;
}
h1 {
    color: aliceblue;
    font-size: 1cm;
    padding-top: 1cm;
    font-size: .7cm;
    text-align: center;
     color: white;
    font-style: italic;
#body1{
    background-color: white;
    width: auto;
    height: auto;
    float: left;
#body2{
    height: 100%;
    background-color: white;
    width: 40%;
    height: auto;
    float: right;
    text-align: center;
}
#12, #img{
    border-radius: 20%;
```

```
padding: 1%;
            margin-top: 2cm;
            background-color: greenyellow;
            color: black;
            font-size: .6cm;
        #select{
            margin-top: 2cm;
            margin-bottom: 2cm;
        }
        form{
            padding: auto;
        #11{
            margin-top: 12cm;
            color: black;
            font-size: .8cm;
        input{
            margin-top: 10%;
    </style>
</head>
<body>
    <div id="label"> <div id="label2"><span><a
href="/">Home</a></span><span><a href="/prediction">Predict</a>
</span></div></div>
    <div id="body1"><img src="{{url_for('static',</pre>
filename='prediction.png')}}" alt=""></div>
    <div id="body2" >
        <form action="/predict" method="post" enctype="multipart/form-</pre>
data">
            <label id="11">Drop in the image to get the
Prediction</label><br>
            <select name="select" id="select" aria-</pre>
placeholder="select"><br>
                <option value="veg">Vegetable</option>
                <option value="frt">Fruit</option>
            </select><br>
```

APP.PY

```
from keras.models import load_model
from flask import Flask, render_template, request
import os
from werkzeug.utils import secure_filename
import tensorflow as tf
from keras.utils import load_img,img_to_array
import pandas as pd
import numpy as np
import base64
app = Flask(__name___)
m = load_model('Fruits.h5')
def show(img):
    img = img
    data = base64.b64encode(img.getbuffer()).decode()
    return data
@app.route('/')
def home():
    return render_template('index.html')
@app.route('/prediction')
def prediction():
    h = 'hidden'
```

```
return render_template('predict.html', h=h)
@app.route('/predict', methods = ['GET', 'POST'])
def predict():
    if request.method == 'POST':
        f = request.files['file']
        pic = show(f)
        basepath=os.path.dirname(__file__)
file_path=os.path.join(basepath, 'uploads', secure_filename(f.filename))
        f.save(file_path)
        print(f)
        img=load_img(file_path, target_size=(128, 128))
        x=img_to_array(img)
        x=np.expand_dims(x,axis=0)
        plant=request.form['select']
        print(plant)
        if(plant=="veg"):
            preds=(model.predict(x) > 0.5).astype("int32")
            print(preds)
            preds = preds[0]
            preds = np.where(preds == 1)
            df=pd.read_excel('precautions-veg.xlsx')
            data = df.iloc[preds]
            print(data)
            return render_template('predict.html',data = data,show = pic)
        else:
            preds=(m.predict(x) > 0.5).astype("int32")
            preds = preds[0]
            preds = np.where(preds == 1)
            df=pd.read_excel('precautions-fruits.xlsx')
            data = df.iloc[preds]
            print(data)
            return render_template('predict.html', data = data, show = pic)
if __name__=='__main__':
    app.run()
```

13.2 GitHub & Project Demo Link

https://github.com/IBM-EPBL/IBM-Project-39784-1660535525/blob/main/Final%20Deliverables/Project%20Demo.mp4