Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 5 Inklusive formelark og Laplacetabell

Faglig kontakt under eksamen:

Finn Knudsen tlf. 73 59 35 23 Anne Kværnø tlf. 73 59 35 42 Sigmund Selberg tlf. 73 55 02 84

EKSAMEN I TMA4135 MATEMATIKK 4D

Bokmål Onsdag 30. november 2005 kl. 9–13

Hjelpemidler (kode C): Enkel kalkulator (HP 30S)

Rottmann: Matematisk formelsamling

Sensurdato: 21. desember 2005.

Alle svar skal begrunnes, og det skal være med så mye mellomregning at fremgangsmåten fremgår tydelig av besvarelsen.

Oppgave 1 Bruk Laplacetransformasjonen til å løse initialverdiproblemet

$$y' + y + \int_0^t y(\tau)e^{t-\tau}d\tau = u(t-1)$$
 for $t > 0$, $y(0) = 1$.

Oppgave 2 La f være den 2π -periodiske funksjonen gitt ved $f(x) = x^4$ for $-\pi < x \le \pi$. Det oppgis at f har Fourierrekke

$$\frac{\pi^4}{5} + \sum_{n=1}^{\infty} \frac{8(-1)^n (\pi^2 n^2 - 6)}{n^4} \cos nx$$

Bruk dette til å finne summen av rekkene

$$\sum_{n=1}^{\infty} \frac{\pi^2 n^2 - 6}{n^4} \qquad \text{og} \qquad \sum_{n=1}^{\infty} \frac{\pi^4 n^4 - 12\pi^2 n^2 + 36}{n^8}$$

Oppgave 3

a) Finn alle løsninger på formen u(x,t) = F(x)G(t) av differensialligningen

$$(1) u_{tt} + u_t = u_{xx} for 0 \le x \le \pi, t \ge 0,$$

med randbetingelser

(2)
$$u(0,t) = u(\pi,t) = 0, \quad t \ge 0.$$

b) Finn u(x,t) som oppfyller (1) og (2) samt initialbetingelsene

$$u(x,0) = 0$$
 og $u_t(x,0) = \sin 4x$.

Oppgave 4 Finn den Fouriertransformerte $\widehat{f}(w)$ av funksjonen

$$f(x) = e^{-|x|}$$
 for $-\infty < x < \infty$.

Bruk resultatet til å vise at

$$\int_0^\infty \frac{\cos w}{1+w^2} \, dw = \frac{\pi}{2e}.$$

Oppgave 5

Gitt Poisson-ligningen

$$u_{xx} + u_{yy} = -1$$

i et område R, gitt ved

$$R = \{(x, y) \mid 0 < x < 1, 0 < y < 1 - x\},\$$

og med u(x,y) = 1 på randen av R, se figuren til høyre.

La $u_{ij} \approx u(x_i, y_j)$, med $x_i = ih$ og $y_j = jh$.

Bruk skrittlengde h=0.25 i både x- og y-retning og sett opp differanseligningene for u_{ij} i hvert av de indre punktene.

Finn u_{11} , u_{12} og u_{21} .

Oppgave 6 Gitt ligningssystemet

$$4x_1 - 16x_2 + 4x_3 = 2$$

$$- x_2 + 4x_3 = 4$$

$$4x_1 - x_2 = 2.$$

Kan dette systemet løses ved bruk av Jacobi-iterasjoner? Begrunn svaret.

Hvis ja: Utfør én Jacobi-iterasjon, med startverdiene $x_1^{(0)}=x_2^{(0)}=x_3^{(0)}=1.$

Hvis nei: Skriv om systemet slik at Jacobi-iterasjonene kan utføres. Utfør deretter én iterasjon, med startverdiene $x_1^{(0)}=x_2^{(0)}=x_3^{(0)}=1$.

Oppgave 7

Denne oppgaven tar for seg en mekanisk svingekrets, der fjær-koeffisienten k avhenger av hvor mye fjæren strekkes eller klemmes sammen.

Med $m=1,\,c=0.5$ og $k(y)=2+y^2$ vil bevegelsen av kula i svingekretsen til høyre beskrives av ligningen

$$y'' + 0.5y' + 2y + y^3 = 0.$$

Skriv ligningen om til et system av første ordens ordinære differensialligninger.

La y(0) = 1, y'(0) = 0 og bruk Heuns metode med skrittlengde h = 0.1 til å finne tilnærmelser til y(0.1) og y(0.2).

Oppgave 8 La f være funksjonen gitt ved $f(x, y, z) = 2xyz(e^x + e^y - e^z)$, og la \mathbf{v} være en vektor som står vinkelrett både på $\mathbf{a} = \mathbf{i} + \mathbf{k}$ og $\mathbf{b} = \mathbf{j} - \mathbf{k}$ og som har negativ \mathbf{k} -komponent. Finn den retningsderiverte av f i punktet P: (1, -1, -1) i retningen til vektoren \mathbf{v} .

Formler i numerikk

• La p(x) være et polynom av grad $\leq n$ som interpolerer f(x) i punktene $x_i, i = 0, 1, \ldots, n$. Forutsatt at x og alle nodene ligger i intervallet [a, b], så gjelder

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

Hvis nodene er jevnt fordelt (inkludert endepunktene), og $|f^{(n+1)}(x)| \leq M$, da gjelder

$$|f(x) - p(x)| \le \frac{1}{4(n+1)} M \left(\frac{b-a}{n}\right)^{n+1}$$

• Numerisk derivasjon:

$$f'(x) = \frac{1}{h}(f(x+h) - f(x)) - \frac{1}{2}hf''(\xi)$$

$$f'(x) = \frac{1}{h}(f(x) - f(x-h)) + \frac{1}{2}hf''(\xi)$$

$$f''(x) = \frac{1}{h^2}(f(x+h) - 2f(x) + f(x-h)) - \frac{1}{12}h^2f^{(4)}(\xi)$$

• Newtons metode for ligningssystemet f(x) = 0 er gitt ved

$$\mathbf{J}^{(k)} \cdot \Delta \mathbf{x}^{(k)} = -\mathbf{f}(\mathbf{x}^{(k)})$$
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}$$

• Iterative teknikker for løsning av et lineært ligningssystem

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \qquad i = 1, 2, \dots, n$$

$$\text{Jacobi:} \qquad x_{i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)} \right)$$

$$\text{Gauss-Seidel:} \qquad x_{i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)} \right)$$

• Heuns metode for løsning av $\mathbf{y}' = \mathbf{f}(x, \mathbf{y})$:

$$\mathbf{K}_1 = h \mathbf{f}(x_n, \mathbf{y}_n)$$

$$\mathbf{K}_2 = h \mathbf{f}(x_n + h, \mathbf{y}_n + \mathbf{K}_1)$$

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{2} (\mathbf{K}_1 + \mathbf{K}_2)$$

${\bf Tabell\ over\ Laplace transformerte}$

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2 + \omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$