

Attentive Temporal Pooling for Conformer-based Language Identification

Authors: Quan Wang, Yang Yu, Jason Pelecanos, Yiling Huang, Ignacio Lopez Moreno

Date: 2022/06/30

Agenda

- 01 Introduction
- ⁰² Conformer-based lang-id
- O3 Attentive temporal pooling
- 04 Domain adaptation
- O5 Experiments
- 06 Conclusion

Introduction

Introduction

e Problem:

- Improve language identification accuracy across multiple domains for commercial applications
- Special focus on increasing its robustness on long-form speech

• Approach:

- Conformer-based encoder structure
- Adaptive temporal pooling via a recurrent form
- Discriminatively trained output transform for domain adaptation

Comformer-based lang-id

Conformer-based lang-id

e Conformer*:

- Combining convolutional neural networks (CNN) and transformers.
- Demonstrated performance improvements on ASR and other speech related tasks.
- Drawback: limited context when training with short utterances.

Attentive temporal pooling

Attentive temporal pooling

- A weighted moving average implementation
 - Pooling based on weighted mean and weighted standard deviation
 - For each frame, an attention weight is computed based on the current embedding:

$$w_t = f_{\text{att}}(\mathbf{h}_t) + \epsilon$$

Attentive temporal pooling

- Tracking the following statistics accumulated with time:
 - o Sum of weights:

 $\eta_t = \eta_{t-1} + w_t$

Weighted sum of outputs:

- $\mathbf{A}_t = \mathbf{A}_{t-1} + w_t \mathbf{h}_t$
- \circ Weighted sum of square of outputs: $oldsymbol{Q}_t = oldsymbol{Q}_{t-1} + w_t \mathbf{h}_t^2$
- Weighted mean and weighted standard deviation can be calculated using the sufficient statistics above:

$$oldsymbol{\mu}_t = rac{oldsymbol{A}_t}{\eta_t}$$

Domain adaptation

- One model for all applications
- The domain parameters are used to adjust the output probabilities for each application
- We share two approaches:
 - Prior replacement: application specific prior probability updates
 - based on recording counts (not acoustics)
 - Discriminatively trained output transform
 - needs the recordings themselves

Adaptation to Domain A and B

- Approach 1: Prior replacement
 - Estimate the posterior probabilities of the languages using updated prior probabilities from the new application*
 - First, estimate the language prior probabilities based on the language distribution from samples:

$$P(L_i|D_{new}) = \frac{c_i + R}{\sum_{j=1}^{K} (c_j + R)}$$

Then, calculate the posterior probabilities:

$$P(L_i|X, D_{new}) = \frac{P(L_i|D_{new})P(L_i|X, D_{old})}{\sum_{j=1}^{K} P(L_j|D_{new})P(L_j|X, D_{old})}$$

^{*} Bailer-Jones et al., "Combining probabilities", 2011

- Approach 2: Discriminatively trained output transform
 - Transform predicted probability into a new probability distribution

$$\widetilde{\mathbf{p}} = \operatorname{softmax}(\mathbf{a} \odot \log \mathbf{p} + \mathbf{b})$$

 Minimize a regularized cross entropy between the new distribution with the ground truth language distribution on the dev-set

$$\underset{\mathbf{a}, \mathbf{b}}{\operatorname{arg\,min}} \left(\frac{1}{N} \sum_{i=1}^{N} L_{\operatorname{cent}}(\widetilde{\mathbf{p}}^{(i)}, \mathbf{y}^{(i)}) + w_{\operatorname{reg}}(||\mathbf{a} - \mathbf{1}|| + ||\mathbf{b}||) \right)$$

Experiments

Experiment setup

Datasets:

- Voice queries from Google Assistant:
 - Audio length: 3.3 ± 1.5s (std.)
- Long-form utterances from YouTube:
 - Audio length: 20.7 ± 10.6mins (std.)
- Training: 1M to 20M utterances per language for 65 languages
- Evaluation: 20K utterances per language per domain

Training frontend:

- Log Mel-filterbank energy features
- Data augmentation with multi-style training (MTR) and SpecAugment
- A pre-trained Voice Activity Detector (VAD) to remove the non-speech parts

Experimental results

- Comparison of LSTM, transformer and conformer models
 - Small model: ~ 7M params, Medium model: ~ 30M params, Large model: ~120M params

Experimental results

Comparison of different temporal pooling approaches

Model	Voice query	Long-form	
	avg. accu.	avg. accu.	
Medium-size conformer	88.24%	77.26%	
↓ + Mean pooling	88.18%	77.28%	
↓ + Mean&std pooling	88.32%	77.35%	
+ Weighted mean pooling	88.92%	77.45%	
+ Weighted mean&std pooling	88.74%	77.81%	

Experimental results

Comparison of domain adaptation methods

Method	Domain adapted to	Voice query total accuracy	Long-form total accuracy
		(Perplexity: $PP = 33.8$)	(Perplexity: $PP = 56.2$)
No adaptation		90.85%	77.94%
Prior replacement $(R = 0)$	Voice query	91.76%	54.21%
	Long-form	83.09%	78.18%
Prior replacement $(R = 4)$	Voice query	91.74%	74.67%
	Long-form	90.16%	78.17%
Output transform	Voice query	92.32%	76.18%
	Long-form	76.97%	82.55%

Conclusions

Conclusions

- Presented a language identification system focusing on long-form and multi-domain performance.
- Compared different methods for several key components of lang-id
 - Conformer outperforms LSTM and Transformer as an encoder
 - The attentive temporal pooling helps compared with other pooling methods
 - The discriminative output transform shows better performance than prior replacement

Questions?

Appendix

- Relation between the prior replacement and discriminatively trained output transform
 - Fix the variable a as a vector of 1s:

$$\mathbf{a} \odot log \mathbf{p} + \mathbf{b}$$

$$= \mathbf{1} \odot log \mathbf{p} + log(e^{\mathbf{b}})$$

$$= log(\mathbf{p} \odot e^{\mathbf{b}})$$

Optimizing **b** is the same as optimizing prior probabilities