This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of claims:

1. (Currently Amended): A process for producing a compound of formula I <u>and a compound of formula VII</u>:

wherein

 $R_1 \ is \ C_{1\text{--}12} \ alkyl, \ C_{2\text{--}12} \ alkenyl, \ C_{2\text{--}12} \ alkynyl, \ C_{6\text{--}12} \ aryl, \ C_{3\text{--}10} \ heterocycle, \ C_{6\text{--}12} \ aralkyl \ or \ C_{3\text{--}10} \ heteroaralkyl, \ and$

 $R_2 \ is \ CO-C_{1\text{--}6} \ alkyl, \ CO-C_{6\text{--}12} \ aryl, \ CO-C_{1\text{--}6} \ alkoxy, \ CO-C_{6\text{--}12} \ aryloxy, \ or \ CO-C_{6\text{--}12} \ arylalkyl;$

said process comprising:

a) subjecting a compound of formula II:

to an enzymatic diastereomeric resolution in the presence of a suitable amount of Pig Liver Esterase enzyme or Porcine Pancreatic Lipase enzyme;

- b) recovering said a compound of formula I and a compound of formula VII.
- 2. (Original): The process according to claim 1, wherein R_1 is C_{1-12} alkyl.
- 3. (Previously Presented): The process according to claim 1 wherein R_2 is CO-C₁₋₆ alkyl.
- 4. (Previously Presented): The process according to claim 1, wherein R_2 is CO-C₆₋₁₂ aryl.
- 5. (Previously Presented): The process according to claim 1, wherein the enzyme is Pig Liver Esterase.
- 6. (Previously Presented): The process according to claim 1, wherein the enzyme is Porcine Pancreatic Lipase.
 - 7. (Previously Presented): The process according to claim 1, further comprising:
- a) replacing the functional group at position C4 of the compound of formula I to produce a compound of formula V:

wherein B is purine or pyrimidine base or an analogue thereof;

- b) removing the group R_2 of said compound of formula V; and
- c) recovering a compound of formula VI:

or a pharmaceutically acceptable salt thereof.

8. (Previously Presented): The process according to claim 7, wherein

B is:

 R_3 is H, C_{1-6} alkyl, C_{1-6} acyl, or CO- R_9 ;

R₉ is H or C₁₋₆ alkyl;

 R_4 and R_5 are each independently H, C_{1-6} alkyl, bromide, chloride, fluoride, iodide or CF_3 ; and R_6 , R_7 and R_8 are each independently H, bromide, chloride, fluoride, iodide, amino, hydroxyl, or C_{3-6} cycloalkylamino.

- 9. (Cancelled):
- 10. (Original): A process according to claim 1, wherein R_1 is C_{1-12} alkyl and R_2 is $CO-C_{6-12}$ aryl.
- 11. (Original): A process according to claim 1, wherein R_1 is methyl and R_2 is benzoyl.
 - 12. (Currently Amended): A process for producing a compound of formula III and a

compound of formula X:

wherein

 $R_{11} \ is \ C_{1\text{--}12} \ alkyl, \ C_{2\text{--}12} \ alkenyl, \ C_{2\text{--}12} \ alkynyl, \ C_{6\text{--}12} \ aryl, \ C_{3\text{--}10} \ heterocycle, \ C_{6\text{--}12} \ aralkyl \ or \\ C_{3\text{--}10} \ heteroaralkyl; \ and$

 R_{12} is CO-C $_{1-6}$ alkyl, CO-C $_{6-12}$ aryl, CO-C $_{1-6}$ alkoxy, CO-C $_{6-12}$ aryloxy, or CO-C $_{6-12}$ arylalkyl,

said process comprising:

a) subjecting a compound of formula IV:

to an enzymatic diastereomeric resolution in the presence of a suitable amount of an enzyme, wherein said enzyme is Candida Antarctica "A" lipase, Candida Antarctica "B" lipase, Candida Lypolitica Lipase, or Rhizomucor Miehei Lipase; and

- b) recovering a said compound of formula III and a compound of formula X.
- 13. (Original): The process according to claim 12, wherein R_{11} is C_{1-12} alkyl.
- 14. (Previously Presented): The process according to claim 12, wherein R_{12} is CO- C_{1-} 6 alkyl.

- 15. (Original): The process according to claim 12, wherein R_{12} is CO- C_{6-12} aryl.
- 16. (Original): The process according to claim 12, wherein the enzyme is Candida Antarctica "A" lipase.
- 17. (Original): The process according to claim 12, wherein the enzyme is Candida Antarctica "B" lipase.
- 18. (Original): The process according to claim 12, wherein the enzyme is Candida Lypolitica Lipase.
- 19. (Original): The process according to claim 12, wherein the enzyme is Rhizomucor Miehei Lipase.
 - 20. (Previously Presented): The process according to claim 12, further comprising:
- a) replacing the functional group at position C4 of the compound of formula III to produce a compound of formula VIII:

wherein B is purine or pyrimidine base or an analogue thereof;

- b) removing group R_{12} of said compound of formula VIII;
- c) recovering a compound of formula IX:

or a pharmaceutically acceptable salt thereof.

21. (Previously Presented): The process according to claim 20, wherein B is

D

 R_3 is H, C_{1-6} alkyl, C_{1-6} acyl and CO- R_9 ;

R₉ is H or C₁₋₆ alkyl;

 R_4 and R_5 are each independently H, C_{1-6} alkyl, bromide, chloride, fluoride, iodide or CF_3 ; and R_6 , R_7 and R_8 are each independently H, bromide, chloride, fluoride, iodide, amino, hydroxyl or C_{3-6} cycloalkylamino.

- 22. (Cancelled):
- 23. (Original): A process according to claim 12, wherein R_{11} is C_{1-12} alkyl and R_{12} is $CO-C_{6-12}$ aryl.
- 24. (Original): A process according to claim 12, wherein R_{11} is methyl and R_{12} is benzoyl.
- 25. (Previously Presented): A process according to claim 1, wherein said process is carried out at a pH of 6 to 8, at a temperature in the range of 5 to 50°C, and in the presence of a

solvent, and the concentration of enzyme with respect to the solvent is 1 mg/ml to 100 mg/ml.

- 26. (Previously Presented): A process according to claim 1, wherein said process is carried out at a pH of 6 to 8, at a temperature in the range of 5 to 50°C, and in the presence of a solvent, and the concentration of enzyme with respect to the solvent is 1 mg/ml to 100 mg/ml.
- 27. (Previously Presented): A process according to claim 1, wherein the weight ratio of the amount of enzyme to the amount of the compound of formula II is 1% to 25%.
- 28. (Previously Presented): A process according to claim 1, wherein the weight ratio of the amount of enzyme to the amount of the compound of formula II is 5% to 10%.
- 29. (Previously Presented): A process according to claim 12, wherein the weight ratio of the amount of enzyme to the amount of the compound of formula IV is 1% to 25%.
- 30. (Previously Presented): A process according to claim 12, wherein the weight ratio of the amount of enzyme to the amount of the compound of formula IV is 5% to 10%.