Comparison Tables: BBOB 2015 Testbed in 10-D (Expensive Setting)

The BBOBies
July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015 with a focus on benchmarking black-box algorithms for small function evaluation budgets ("expensive setting"), see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT $_{\rm best}$ is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbod

testbed algorithm short name	paper	reference
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

10 101601 011	1, WIUII .	Domici om (JOIT COULDIN Dy	one manner	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f1	4.0e+1:8.0	2.5e+1:16	1.0e-8:23	1.0e-8:23	1.0e-8:23	15/15
BSifeg	3.2 (1.0)	2.0 (0.2)	2.4 (0.3)	2.4 (0.3)	2.4 (0.2)	15/15
BSif	3.2 (0.9)	2.0 (0.2)	2.4 (0.2)	2.4 (0.2)	2.4 (0.2)	15/15
BSqi	3.2 (0.8)	2.0 (0.2)	2.4 (0.2)	2.4 (0.3)	2.4 (0.2)	15/15
BSrr	3.2(0.7)	2.0 (0.1)	2.4 (0.2)	2.4 (0.2)	2.4 (0.2)	15/15
CMA-CSA	5.2(4)	3.7(1)	63(5)	63(7)	63(5)	15/15
CMA-MSR	4.4(2)	5.2(2)	87(5)	87(10)	87(5)	15/15
CMA-TPA	7.5(6)	5.5(3)	51(5)	51(4)	51(6)	15/15
GP1-CMAES	3.6(3)	2.6 (0.7)	43(7)	43(8)	43(8)	15/15
GP5-CMAES	3.0(2)	1.9(1.0)	404(275)	404(741)	404(248)	4/15
IPOPCMAv3p	5.0(4)	3.9(2)	65(4)	65(3)	65(2)	15/15
LHD-10xDef	9.4(9)	12(5)	∞	∞	$\infty 500$	0/15
LHD-2xDefa	5.0(2)	2.9 (1)	∞	∞	$\infty 500$	0/15
RAND-2xDef	4.2(2)	2.9 (1.0)	∞	∞	$\infty 500$	0/15
RF1-CMAES	4.3(2)	3.2(2)	522(508)	522(673)	522(761)	3/15
RF5-CMAES	3.9(2)	2.7 (1)	∞	∞	∞ 2514	0/15
Sifeg	3.2 (1)	2.0(0.2)	12(2)	12(2)	12(1)	15/15
Sif	3.2 (1)	2.0 (0.2)	11(2)	11(2)	11(2)	15/15
Srr	3.2(0.9)	2.0(0.5)	11(2)	11(2)	11(2)	15/15

Table 3: 10-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

10 101601 011	<u>.</u> , **1011 1	Joint City C	office of the state of the stat	one manner	or minutaneon.	
#FEs/D	0.5	1.2	3	10	50	#succ
f2	2.5e+6:5.6	1.0e+6:17	1.0e + 5:33	2.5e+3:118	1.0e-8:196	15/15
BSifeg	5.4(4)	2.4 (0.9)	1.5(0.3)	0.54 (0.2)	1.2(0.2)	15/15
BSif	5.4(2)	2.4 (1)	1.5(0.1)	0.56 (0.1)	1.2(0.3)	15/15
BSqi	5.4(4)	2.4 (0.9)	1.5(0.3)	0.51 (0.1)	1.2(0.2)	15/15
BSrr	5.4(4)	2.4 (1)	1.5(0.2)	0.54 (0.2)	1.2(0.2)	15/15
CMA-CSA	2.3 (2)	2.1 (3)	7.4(3)	8.5(4)	23(1.0)	15/15
CMA-MSR	3.2(2)	3.0 (2)	7.3(2)	8.7(4)	26(2)	15/15
CMA-TPA	1.8(2)	1.8 (1)	5.8(3)	7.4(2)	23(1)	15/15
GP1-CMAES	1.4 (1)	1.1(0.6)	4.8(3)	7.5(2)	∞ 2502	0/15
GP5-CMAES	2.8 (3)	1.9(2)	3.5(1)	3.2(0.8)	∞ 2502	0/15
IPOPCMAv3p	2.5 (3)	2.0 (3)	6.0(3)	10(3)	∞ 2502	0/15
LHD-10xDef	1.5(0.8)	1.2(0.8)	9.0(3)	∞	$\infty 500$	0/15
LHD-2xDefa	1.5(2)	1.5 (1)	5.5(2)	∞	$\infty 500$	0/15
RAND-2xDef	1.8(2)	1.8 (1)	5.1(4)	∞	$\infty 500$	0/15
RF1-CMAES	2.3 (2)	2.4 (2)	7.7(7)	58(30)	∞ 2502	0/15
RF5-CMAES	2.4 (3)	2.3 (1)	34(35)	317(661)	∞ 2504	0/15
Sifeg	5.5(4)	2.6 (0.5)	1.8(0.3)	0.69 (0.1)	1.7(0.2)	15/15
Sif	5.5(4)	2.6 (0.9)	1.8(0.3)	0.73 (0.1)	1.7(0.2)	15/15
Srr	5.5(4)	2.6 (0.9)	1.8(0.2)	0.68(0.0)	1.7(0.2)	15/15

Table 4: 10-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

is larger than 1, with Domerton correction by the number of instances.								
#FEs/D	0.5	1.2	3	10	50	#succ		
f3	4.0e + 2:8.2	1.6e + 2:37	1.0e + 2:69	6.3e+1:147	2.5e+1:1129	15/15		
BSifeg	2.9 (0.5)	1.1(0.1)	0.69(0.1)	0.41(0.1)	0.11 (0.0)	15/15		
BSif	2.9 (0.9)	1.1(0.1)	0.69(0.1)	0.43(0.2)	0.12 (0.0)	15/15		
BSqi	2.9 (0.9)	1.1(0.1)	0.69(0.1)	0.41(0.1)	0.10 (0.0)	15/15		
BSrr	2.9 (0.8)	1.1(0.0)	0.69(0.1)	0.42(0.1)	0.09 (0.0)	15/15		
CMA-CSA	2.6 (2)	2.8 (2)	3.1(1)	2.8 (0.7)	1.4 (1)	15/15		
CMA-MSR	2.3(2)	3.3(1)	3.1(1)	2.8 (0.6)	1.4(2)	15/15		
CMA-TPA	3.2(4)	3.3(2)	2.8 (0.7)	2.4(1)	1.1(1)	15/15		
GP1-CMAES	1.8(2)	2.2(0.8)	2.2 (0.7)	2.5 (1)	1.8(3)	11/15		
GP5-CMAES	1.9(2)	1.7(0.6)	1.6(0.6)	6.6(7)	32(68)	1/15		
IPOPCMAv3p	2.8 (3)	2.7 (1)	3.1(2)	3.4(1)	1.3(0.3)	13/15		
LHD-10xDef	2.3 (3)	5.7(0.1)	3.7(0.4)	2.4(0.2)	2.1(2)	3/15		
LHD-2xDefa	1.8(2)	2.2 (1)	2.5 (1)	3.4(4)	$\infty 500$	0/15		
RAND-2xDef	1.1(0.7)	1.8(0.4)	1.7(0.3)	1.8(0.7)	2.0(2)	3/15		
RF1-CMAES	1.7(2)	1.9 ₍₁₎	2.1(0.7)	2.1(0.7)	1.6(2)	10/15		
RF5-CMAES	2.5 (1)	4.6(0.7)	5.4(6)	8.5(8)	31(34)	1/15		
Sifeg	2.9 (0.9)	1.1(0.1)	$0.74_{(0.1)}$	0.46(0.1)	0.14 (0.0)	15/15		
Sif	2.9 (0.5)	1.1(0.1)	0.74 (0.1)	0.48(0.1)	0.14 (0.0)	15/15		
Srr	2.9 (0.6)	1.1(0.1)	$0.74_{(0.1)}$	0.46 (0.1)	0.14(0.0)	15/15		

i is larger one	I, WIUII I	John Crioni CC	niccolon by	one number o	i mstances.	
#FEs/D	0.5	1.2	3	10	50	#succ
f4	2.5e+2:21	1.6e + 2:59	1.6e + 2:59	6.3e+1:139	4.0e+1:854	15/15
BSifeg	1.6 (1)	0.86 (0.4)	0.86 (0.4)	0.89 (0.3)	0.20(0.1)	15/15
BSif	1.6 (1)	0.86(0.2)	0.86(0.2)	0.97 (0.2)	0.20 (0.0)	15/15
BSqi	1.6(0.9)	0.86 (0.3)	0.86(0.1)	0.92 (0.5)	0.23 (0.1)	15/15
BSrr	1.6(0.6)	0.86 (0.4)	0.86(0.5)	0.85 (0.2)	0.20 (0.1)	15/15
CMA-CSA	4.6(2)	2.9 (1)	2.9 (1)	4.3(2)	1.3 (3)	15/15
CMA-MSR	5.3(3)	3.4(1)	3.4(0.9)	5.2(0.4)	2.2 (1)	15/15
CMA-TPA	5.3(4)	3.0 (1)	3.0 (0.9)	5.4(0.7)	2.3 (2)	15/15
GP1-CMAES	4.3(2)	3.5(1)	3.5(1)	11(6)	4.2(4)	8/15
GP5-CMAES	3.8(3)	3.1(3)	3.1(3)	∞	∞ 2516	0/15
IPOPCMAv3p	4.4(4)	3.2(1)	3.2(1)	5.2(3)	1.6(0.3)	13/15
LHD-10xDef	12(4)	8.2(7)	8.2(6)	∞	$\infty 500$	0/15
LHD-2xDefa	4.4(3)	3.8(2)	3.8(1)	53(72)	$\infty 500$	0/15
RAND-2xDef	4.2(2)	3.2(2)	3.2(1)	12(29)	8.7(11)	1/15
RF1-CMAES	4.8(2)	3.2(2)	3.2(2)	13(14)	42(111)	1/15
RF5-CMAES	17(46)	24(17)	24(19)	267(238)	∞ 2504	0/15
Sifeg	1.7(0.8)	0.94 (0.3)	0.94 (0.3)	0.82 (0.2)	0.17(0.0)	15/15
Sif	1.7 ₍₁₎	0.94 (0.2)	0.94 (0.4)	0.82 (0.3)	0.16 (0.0)	15/15
Srr	1.7(0.4)	0.95 (0.2)	0.95 (0.2)	0.79(0.1)	0.16(0.0)	15/15

i is larger one	an 1, with	Domerrom (JOIT COULDIN Dy	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f5	1.0e+2:16	6.3e+1:19	1.0e-8:20	1.0e-8:20	1.0e-8:20	15/15
BSifeg	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSif	1.5(0.2)	1.4(0.2)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSqi	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSrr	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
CMA-CSA	1.8(2)	2.4 (1)	6.1(1)	6.1(2)	6.1(1)	15/15
CMA-MSR	1.6 (1)	2.0 (1)	5.4(2)	5.4(1)	5.4(2)	15/15
CMA-TPA	1.3(0.8)	2.1(1)	5.0(2)	5.0(2)	5.0(1)	15/15
GP1-CMAES	1.4(0.8)	1.9(0.3)	42(26)	42(39)	42(30)	15/15
GP5-CMAES	1.3(0.9)	1.6(0.5)	5.4(4)	5.4(3)	5.4(2)	15/15
IPOPCMAv3p	1.6 (1)	2.8 (0.6)	29(11)	29(9)	29(6)	15/15
LHD-10xDef	4.5(6)	11(1.0)	12(0.3)	12(0.4)	12(0.2)	15/15
LHD-2xDefa	2.4 (0.8)	2.3 (0.3)	3.0(0.1)	3.0 (0.2)	3.0 (0.2)	15/15
RAND-2xDef	2.6 (0.2)	2.4 (0.1)	3.1(0.3)	3.1(0.2)	3.1(0.2)	15/15
RF1-CMAES	1.7(0.9)	2.4 (1)	35(28)	35(19)	35(17)	15/15
RF5-CMAES	1.4 (1)	2.2 (0.9)	120(198)	120(86)	120(81)	10/15
Sifeg	1.5(0.3)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Sif	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Srr	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15

 \neg 1

-	15 101 501 0110	<i></i> +, ********	Joint City C	orrection by	one manner	or mountous.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f6	1.6e + 5:7.0	6.3e+4:16	4.0e+2:36	1.0e+2:102	4.0e+0:504	15/15
	BSifeg	1.6(2)	1.4 (1)	1.2(0.8)	38(23)	1260(1610)	2/15
	BSif	1.6(2)	1.4(1.0)	1.4(0.4)	64(103)	862(1268)	3/15
	BSqi	1.6 (1)	1.4(0.6)	1.2(0.8)	30(86)	255(280)	7/15
	BSrr	1.6 (1)	1.4(0.9)	1.2(0.9)	42(24)	694(177)	3/15
	CMA-CSA	1.6 (1)	1.5 (1)	1.8(2)	3.6(1)	1.8(0.3)	15/15
	CMA-MSR	2.7 (4)	1.8 (3)	2.2 (1)	2.8 (0.7)	1.6(0.4)	15/15
	CMA-TPA	2.4 (3)	2.2 (1)	4.8(3)	3.8(1)	1.8(0.3)	15/15
	GP1-CMAES	2.6 (2)	1.8 (1)	2.2 (1)	2.1(0.5)	4.8(4)	11/15
	GP5-CMAES	2.4 (3)	1.5(1)	1.3(0.3)	5.7(8)	∞ 2516	0/15
	IPOPCMAv3p	2.7 (2)	1.9 (4)	2.8 (3)	3.0(2)	1.7(0.6)	15/15
	LHD-10xDef	1.9 ₍₃₎	4.1(2)	5.8(0.3)	7.2(8)	$\infty 500$	0/15
	LHD-2xDefa	2.1(2)	1.8 (1)	1.5(0.6)	6.3(9)	$\infty 500$	0/15
	RAND-2xDef	2.0 (3)	1.8 (1)	1.5(0.2)	6.2(5)	$\infty 500$	0/15
	RF1-CMAES	1.7(2)	1.4 (1)	1.9(0.9)	2.7 (2)	71(106)	1/15
	RF5-CMAES	2.4(2)	1.7(3)	5.9(3)	39(47)	∞ 2518	0/15
	Sifeg	1.6(2)	1.4 (1)	1.4(0.3)	5.9(7)	118(49)	11/15
	Sif	1.6(2)	1.4(0.9)	1.4(0.2)	8.6(11)	300(388)	7/15
	Srr	1.6 (1)	1.4 (1)	1.3(0.3)	8.1(5)	110(53)	11/15

-	15 101 501 0110	i , , , , , , , , , , , , , , , , ,	Domestom	COII COULDII D	j die maniber	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f7	2.5e+2:9.2	1.6e + 2:18	1.0e + 2:33	1.0e + 1:172	4.0e+0.678	15/15
	BSifeg	2.2 (2)	1.5(0.9)	14(32)	1100(1642)	2095(2465)	1/15
	BSif	2.2(2)	1.5(0.9)	14(16)	882(1047)	2193(1494)	1/15
	BSqi	2.2(2)	1.5(1)	14(16)	931(1437)	1037(898)	2/15
	BSrr	2.2(2)	1.5(0.8)	14(31)	894(1247)	$\infty~1e5$	0/15
	CMA-CSA	4.2(5)	3.3(2)	2.9 (1)	2.3 (0.8)	1.1(0.8)	15/15
	CMA-MSR	3.5(2)	3.1(2)	3.2(1)	1.9(0.5)	0.83(0.9)	15/15
	CMA-TPA	2.8 (2)	2.8 (2)	2.7 (2)	1.7(0.6)	1.2(1.0)	15/15
	GP1-CMAES	3.2(2)	2.3 (1)	2.1 (0.9)	1.6(0.7)	1.1(1)	15/15
	GP5-CMAES	2.3 (2)	1.7 ₍₁₎	1.4(0.6)	1.0(0.3)*	0.79 (0.4)	15/15
	IPOPCMAv3p	2.8 (3)	3.0 (3)	2.5 (1)	2.6 (3)	0.85(1)	15/15
	LHD-10xDef	2.4 (3)	4.5(4)	5.4(3)	10(5)	∞ 500	0/15
	LHD-2xDefa	2.3 (3)	2.4 (2)	2.3 (0.3)	43(20)	∞ 500	0/15
	RAND-2xDef	3.2(3)	3.0(1)	2.6 (1)	13(9)	∞ 500	0/15
	RF1-CMAES	4.2(3)	3.6(3)	3.0(2)	13(26)	12(12)	4/15
	RF5-CMAES	3.3(2)	2.9 (2)	3.2(5)	31(47)	28(21)	2/15
	Sifeg	2.2 (2)	1.6(0.9)	5.5(0.3)	281(354)	363(508)	5/15
	Sif	2.2(2)	1.6(0.9)	5.5(17)	166(150)	444(486)	4/15
	Srr	2.2 (2)	1.6 (1)	5.5(0.7)	217(540)	220(211)	7/15

T	is larger the	an 1, with i	omerrom co	лтесион бу	the number	or mistances.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f8	1.6e+4:15	1.0e+4:22	1.6e + 3:34	2.5e+2:103	4.0e+0:727	15/15
	BSifeg	1.9(0.1)	1.5(0.1)	1.2(0.1)	1.3(0.4)	51(29)	13/15
	BSif	1.9 (0.9)	1.5(0.9)	1.2(0.1)	$0.93_{(0.1)}$	123(268)	10/15
	BSqi	1.9 (0.9)	1.5(0.5)	1.2(0.1)	0.99 (2)	30(40)	15/15
	BSrr	1.9 (1)	1.5(0.4)	1.2(0.1)	0.68(0.4)	35(44)	13/15
	CMA-CSA	4.2(5)	3.6(4)	5.0(3)	3.6(2)	4.9 (4)	15/15
	CMA-MSR	4.4(3)	3.9(3)	6.0(2)	3.3(1)	5.3 (12)	15/15
	CMA-TPA	3.8(4)	3.3(2)	4.0(1)	2.2 (0.8)	5.4(5)	15/15
	GP1-CMAES	2.9 (2)	2.5 (1)	3.1(0.4)	2.3 (1)	12(16)	4/15
	GP5-CMAES	2.3 (0.9)	1.7(0.7)	2.2 (0.7)	1.8(0.5)	∞ 2516	0/15
	IPOPCMAv3p	3.2(3)	3.0 (3)	4.4(2)	2.5 (0.6)	4.1 (2)	11/15
	LHD-10xDef	8.1(7)	7.1(4)	6.8(0.4)	3.2(0.5)	∞ 500	0/15
	LHD-2xDefa	3.3(0.3)	2.3 (0.4)	2.5 (0.4)	2.5 (0.6)	∞ 500	0/15
	RAND-2xDef	3.3(0.2)	2.5 (0.5)	2.6 (0.9)	2.4 (0.6)	∞ 500	0/15
	RF1-CMAES	4.1(2)	3.4(1)	4.3(2)	3.3(5)	∞ 2502	0/15
	RF5-CMAES	2.9 (2)	2.4 (1)	10(1)	15(18)	∞ 2514	0/15
	Sifeg	1.9 (1)	1.5(0.1)	1.3(0.1)	0.66 (0.2)	26(43)	15/15
	Sif	1.9 (1)	1.5(0.5)	1.3(0.1)	0.68(0.3)	31(66)	14/15
	Srr	1.9(1)	1.5(0.4)	1.3(0.1)	0.65(0.1)	39(125)	13/15

i is larger una	is larger than 1, with Domerton correction by the number of histances.								
#FEs/D	0.5	1.2	3	10	50	#succ			
f9	4.0e+1:125	2.5e+1:148	1.6e+1:180	1.0e + 1:200	1.6e + 0.563	15/15			
BSifeg	59(140)	53(131)	46(17)	47(169)	1100(1053)	2/15			
BSif	239(371)	267(723)	239(393)	247(362)	2383(4152)	1/15			
BSqi	47(120)	43(24)	38(81)	37(140)	1041(1197)	2/15			
BSrr	47(38)	43(10)	37(24)	37(19)	1006(1142)	2/15			
CMA-CSA	3.5 (2)	3.4 (2)	3.1(0.4)	3.3 (0.5)	5.2 (1)	15/15			
CMA-MSR	4.5(2)	4.2(1.0)	3.8(1)	4.0(0.5)	5.8 (4)	15/15			
CMA-TPA	4.6(7)	4.1 (4)	3.6 (8)	3.7 (2)	5.0 (3)	15/15			
GP1-CMAES	4.3 (4)	4.2(0.6)	3.9(2)	4.3(1.0)	66(29)	1/15			
GP5-CMAES	28(11)	71(76)	93(137)	84(139)	∞ 2526	0/15			
IPOPCMAv3p	3.8(2)	3.5 (2)	3.2(0.4)	3.5 (2)	33(101)	2/15			
LHD-10xDef	19(16)	50(54)	42(31)	∞	$\infty 500$	0/15			
LHD-2xDefa	11(9)	12(7)	∞	∞	$\infty 500$	0/15			
RAND-2xDef	14(15)	25(54)	∞	∞	$\infty 500$	0/15			
RF1-CMAES	14(13)	15(19)	13(14)	16(16)	∞ 2502	0/15			
RF5-CMAES	∞	∞	∞	∞	∞ 2504	0/15			
Sifeg	69(179)	59(151)	49(126)	46(114)	2334(2673)	1/15			
Sif	52(180)	45(151)	38(125)	37(3)	1159(1546)	2/15			
Srr	33(53)	28(55)	24(47)	22(4)	2211(2228)	1/15			

ig uic suai is	iaigei man	i i, with Do	merrom con	ection by the	number of n	
#FEs/D	0.5	1.2	3	10	50	#succ
f10	2.5e+6:6.0	1.0e+6:21	4.0e+5:38	2.5e+4:104	6.3e+2:512	15/15
BSifeg	1.9 (3)	1.2(1)	7.7(50)	481(363)	∞ 7e4	0/15
BSif	1.9(2)	1.2(0.9)	7.5(25)	413(1203)	∞ 7e4	0/15
BSqi	1.9(2)	1.2(1)	4.5(26)	438(558)	∞ 8e4	0/15
BSrr	1.9(2)	1.2(1.0)	3.6(0.7)	334(281)	∞ 5e4	0/15
CMA-CSA	2.4 (2)	1.1(0.7)	2.5 (3)	5.0(1)	2.8 (0.6)	15/15
CMA-MSR	2.8 (2)	1.6 (1)	2.2 (1)	3.5(0.9)	2.7 (0.3)	15/15
CMA-TPA	1.2(2)	1.4 (1)	1.9 (1)	3.5 (1.0)	2.4(0.7)	15/15
GP1-CMAES	2.0(2)	1.2(2)	1.2(0.9)	2.9 (2)	2.2 (0.6)	15/15
GP5-CMAES	3.2(3)	1.5(0.9)	1.2(0.9)	1.8(1)	1.0(0.5)	15/15
IPOPCMAv3p	1.9 (1)	1.2(2)	2.3(2)	4.1(2)	3.1(0.7)	15/15
LHD-10xDef	2.4 (4)	1.6 (2)	3.7(2)	11(7)	∞ 500	0/15
LHD-2xDefa	2.1(2)	1.5(1)	1.9(0.9)	6.6(7)	∞ 500	0/15
RAND-2xDef	1.5(1)	1.1 (1)	1.4 (1)	12(22)	∞ 500	0/15
RF1-CMAES	1.4 (0.9)	1.3 (1)	1.7(2)	7.6(8)	∞ 2502	0/15
RF5-CMAES	2.2 (2)	1.2(0.6)	2.3 (2)	61(79)	∞ 2504	0/15
Sifeg	1.9 (1)	1.1(0.9)	1.1(0.4)	117(244)	∞ 4e4	0/15
Sif	1.9 (3)	1.1(0.8)	1.1(0.4)	139(186)	∞ 4e4	0/15
Srr	1.9(3)	1.1(0.6)	1.1(0.4)	50(13)	∞ 3e4	0/15

18 0110 5001 11	, 1011 GC1 0110	11 1, WIUII L	omenium con	iccolon by one	mannoci or n	indutice
#FEs/D	0.5	1.2	3	10	50	#succ
f11	4.0e+4:6.4	2.5e+3:15	6.3e+1:217	4.0e+1:244	2.5e+0:675	15/15
BSifeg	2.4 (1)	2.2 (0.9)	1105(1450)	∞	∞ 7e4	0/15
BSif	2.4(2)	2.2 (1)	339(361)	2153(1833)	∞ 8e4	0/15
BSqi	2.4 (1)	2.2 (1)	363(529)	1107(417)	∞ 8e4	0/15
BSrr	2.4 (1)	2.2 (0.9)	503(409)	1283(718)	∞ 4e4	0/15
CMA-CSA	1.5(1.0)	4.0(3)	7.1(1)	6.6(0.6)	2.9 (0.2)	15/15
CMA-MSR	3.8(4)	4.2(5)	6.5(0.9)	6.3 (1)	3.3 (0.2)	15/15
CMA-TPA	2.1(2)	3.1(2)	5.8 (2)	5.9 (1)	3.0 (0.4)	15/15
GP1-CMAES	3.1(3)	3.3(2)	6.4 (3)	7.8(1)	55(65)	1/15
GP5-CMAES	2.9 (2)	2.9 (2)	3.5 (2)	5.1 (1)	4.3(1)	11/15
IPOPCMAv3 _I	3.6(6)	4.1(3)	11(13)	18(10)	∞ 2502	0/15
LHD-10xDef	5.3(7)	5.3(4)	∞	∞	$\infty 500$	0/15
LHD-2xDefa	4.3(3)	3.7(3)	16(13)	∞	$\infty 500$	0/15
RAND-2xDef	3.6(4)	3.9(3)	33(49)	∞	$\infty 500$	0/15
RF1-CMAES	3.2(4)	4.3(3)	19(12)	153(192)	∞ 2502	0/15
RF5-CMAES	2.4 (3)	3.2(2)	55(32)	154(201)	∞ 2514	0/15
Sifeg	2.4 (2)	2.3 (1)	225(495)	1601(2467)	∞ 6e4	0/15
Sif	2.4 (2)	2.3 (2)	244(228)	3570(4531)	∞ 6e4	0/15
Srr	2.4(1)	2.3 (1)	208(235)	577(785)	∞ 3e4	0/15

ng unc suar is	marger ma	u i, with Do	increom con	.ccoon by on	c number or .	
#FEs/D	0.5	1.2	3	10	50	#succ
f12	4.0e + 7:15	2.5e + 7:24	1.6e + 7:34	1.0e+6:103	1.0e+1:515	15/15
BSifeg	2.2 (0.7)	1.6(0.3)	1.3(0.2)	3.0 (11)	262(255)	5/15
BSif	2.2 (0.1)	1.6(0.3)	1.3(0.3)	3.3(7)	353(240)	4/15
BSqi	2.2 (0.6)	1.6(0.3)	1.3(0.1)	6.1(0.2)	42(61)	14/15
BSrr	2.2 (0.3)	1.6(0.3)	1.3(0.3)	2.8 (0.4)	62(108)	11/15
CMA-CSA	3.4(3)	3.3(2)	2.7 (1)	2.9 (1)	4.2(5)	15/15
CMA-MSR	3.9(3)	3.8(2)	3.7(1)	3.3(0.6)	4.9(4)	15/15
CMA-TPA	3.7(4)	4.2(3)	3.6(2)	2.5 (0.5)	3.6 (3)	15/15
GP1-CMAES	2.3(2)	2.6 (1)	3.0 (2)	2.9 (3)	2.9 (3)	13/15
GP5-CMAES	6.8(4)	13(9)	17(8)	28(34)	21(13)	3/15
IPOPCMAv3p	3.0 (2)	3.2(2)	3.3(2)	2.8 (0.7)	2.8 (4)	13/15
LHD-10xDef	6.7(4)	8.6(2)	6.9(1)	6.2(8)	∞ 500	0/15
LHD-2xDefa	3.6(2)	2.8 (0.6)	2.4 (0.8)	2.6 (1)	∞ 500	0/15
RAND-2xDef	2.4(2)	2.3 (0.7)	2.1 (1)	2.2 (1)	∞ 500	0/15
RF1-CMAES	4.4(4)	3.9(2)	3.1(1)	2.5 (1)	4.2(3)	11/15
RF5-CMAES	3.5(4)	3.1(2)	3.2(3)	21(19)	∞ 2504	0/15
Sifeg	2.2 (0.4)	1.6(0.1)	1.2(0.2)	7.3(17)	74(104)	5/15
Sif	2.2 (0.3)	1.6(0.2)	1.2(0.2)	4.1(6)	99(113)	4/15
Srr	2.2(0.8)	1.6(0.3)	1.2(0.0)	3.6(4)	20(33)	10/15

ig uic suai is	ranger unar	ii, widii De	microm cor	rection by the	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f13	1.0e + 3:12	6.3e + 2:32	4.0e+2:40	6.3e+1:154	2.5e+0:521	15/15
BSifeg	2.9 (0.8)	1.4(0.4)	3.4(0.1)	45(68)	163(104)	11/15
BSif	2.9 (0.5)	1.4(0.2)	1.6(0.2)	88(7)	∞ 9e4	0/15
BSqi	2.9 (0.7)	1.4(0.3)	1.6(0.2)	34(96)	207(193)	8/15
BSrr	2.9 (1.0)	1.4(0.1)	1.5(0.2)	35(52)	208(202)	8/15
CMA-CSA	4.5(2)	3.6(0.5)	4.6(2)	3.0 (0.3)	3.3 (2)	15/15
CMA-MSR	5.7(3)	4.3(2)	5.9(1)	3.4(0.8)	2.7 (0.4)	15/15
CMA-TPA	6.5(3)	4.0(1)	4.7(0.9)	2.7 (0.5)	3.6(2)	15/15
GP1-CMAES	3.7(1)	2.5 (0.6)	3.1(0.5)	1.9(0.5)	5.9(4)	8/15
GP5-CMAES	2.6 (1)	1.6(0.3)	1.7(0.4)	0.91 (0.1)	3.9(3)	10/15
IPOPCMAv3p	4.5(3)	3.5(3)	5.0(1)	3.2(0.6)	5.3(4)	9/15
LHD-10xDef	14(7)	7.0(0.2)	5.8(0.2)	2.2 (0.2)	∞ 500	0/15
LHD-2xDefa	3.7(1)	2.2 (0.7)	2.5 (0.8)	1.6(0.4)	3.4 (3)	4/15
RAND-2xDef	3.6(2)	2.1(0.5)	2.2 (0.6)	1.6(0.4)	7.2(13)	2/15
RF1-CMAES	3.4(1.0)	3.0(1)	3.5(0.9)	3.1(1)	16(20)	4/15
RF5-CMAES	3.8(2)	3.4(2)	11(16)	245(241)	∞ 2514	0/15
Sifeg	2.9 (0.5)	1.4(0.2)	1.4(0.3)	16(56)	75(153)	13/15
Sif	2.9 (1)	1.4(0.2)	1.4(0.1)	17(56)	97(132)	11/15
Srr	2.9 (1)	1.4(0.2)	1.4(0.1)	21(0.6)	76(103)	13/15

ig the star is	iaigei illali	. 1, with D O	merrom corr	ection by the	number of h	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f14	4.0e+1:7.7	1.6e + 1:27	1.0e + 1:37	6.3e-1:107	1.0e-4:505	15/15
BSifeg	1.3 (1)	1.2(0.2)	1.4 (1)	10(12)	$\infty~1e5$	0/15
BSif	1.3 (1)	1.2(0.4)	1.4(0.2)	33(91)	$\infty~1e5$	0/15
BSqi	1.3 (1)	1.2(0.4)	1.3(0.9)	5.9(3)	$\infty~1e5$	0/15
BSrr	1.3(2)	1.2(0.4)	1.3(0.2)	9.0(9)	$\infty~1e5$	0/15
CMA-CSA	2.6 (1)	2.3 (1)	2.7 (1)	3.3(0.6)	3.6 (0.3)	15/15
CMA-MSR	2.1(2)	2.1 (2)	3.1(1)	3.6(0.8)	3.6 (0.4)	15/15
CMA-TPA	2.2(2)	2.4 (2)	3.0(1)	3.1(0.7)	3.5 (0.2)	15/15
GP1-CMAES	1.9(2)	1.6 (1.0)	2.0 (1)	2.3 (0.6)	25(36)	3/15
GP5-CMAES	1.7 (1)	1.5(0.4)	1.6(0.4)	1.7(0.3)	∞ 2526	0/15
IPOPCMAv3p	1.2(0.8)	2.2 (1.0)	2.4 (3)	3.2(1)	7.1(4)	10/15
LHD-10xDef	1.8(2)	3.8(4)	5.8(0.8)	4.0(0.5)	$\infty 500$	0/15
LHD-2xDefa	1.0(0.5)	1.8(0.8)	2.1 (1.0)	6.4(12)	$\infty 500$	0/15
RAND-2xDef	1.4(2)	1.8(0.5)	1.8(0.4)	4.1(4)	$\infty 500$	0/15
RF1-CMAES	1.6 (1)	1.7(2)	2.2 (1)	3.6(2)	∞ 2502	0/15
RF5-CMAES	1.5(1)	1.6 (1)	5.8(4)	42(41)	∞ 2504	0/15
Sifeg	1.3(2)	1.2(0.5)	1.3(0.2)	1.7(0.7)	$\infty~1e5$	0/15
Sif	1.3(2)	1.2(0.6)	1.3(0.3)	2.1 (3)	$\infty~1e5$	0/15
Srr	1.3(1)	1.2(0.7)	1.2(0.5)	1.5(0.6)	$\infty~1e5$	0/15

ig uic suai is	rarger mar	ii, widii De	microm cor.	rection by th	ic number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f15	2.5e+2:9.0	1.6e + 2.72	1.0e+2:186	6.3e+1:450	4.0e+1:872	15/15
BSifeg	3.5(1)	88(161)	78(251)	267(366)	1489(1436)	1/15
BSif	3.5 (3)	72(0.8)	49(112)	198(356)	722(809)	2/15
BSqi	3.5(0.8)	83(300)	68(179)	277(480)	702(460)	2/15
BSrr	3.5(2)	46(12)	94(122)	163(100)	236(176)	5/15
CMA-CSA	4.9(2)	1.4(0.7)	0.95 (0.5)	1.1(0.5)	1.2(0.4)	15/15
CMA-MSR	5.6(2)	1.5(0.7)	1.2(0.2)	0.81(0.2)	0.57 (0.1)	15/15
CMA-TPA	6.9(4)	1.8(0.6)	1.1(0.3)	0.94 (0.3)	1.2(0.7)	15/15
GP1-CMAES	4.3(5)	1.1(0.2)	0.78 (0.3)	0.79 (0.5)	2.2(2)	11/15
GP5-CMAES	3.4 (2)	0.75 (0.3)	0.70 (0.4)	3.0 (3)	41(65)	1/15
IPOPCMAv3p	3.9(3)	1.3(0.8)	0.94 (0.4)	0.92 (0.5)	1.3(2)	14/15
LHD-10xDef	10(10)	3.1(0.2)	1.5(0.2)	0.83 (0.2)	0.98 (0.6)	8/15
LHD-2xDefa	4.0(3)	0.97 (0.4)	0.71 (0.2)	0.75 (1)	0.97 (1)	7/15
RAND-2xDef	4.7(2)	0.98 (0.4)	0.71 (0.3)	0.91 (1)	1.9(3)	4/15
RF1-CMAES	3.2 (2)	1.0(0.5)	0.83 (0.1)	0.89 (0.4)	0.99 (0.3)	14/15
RF5-CMAES	5.6(4)	3.3(0.5)	3.2(6)	4.4(5)	20(22)	2/15
Sifeg	3.8(2)	61(233)	56(43)	51(37)	138(134)	8/15
Sif	3.8(1)	61(114)	59(92)	76(154)	195(181)	6/15
Srr	3.7(3)	59(221)	65(130)	102(134)	153(115)	7/15

15 0110 5001 15	iaisci uia	1, WIUII DC	JIIICI I OIII COI	iccololi by oli	c mamber of i	11D COLLC
#FEs/D	0.5	1.2	3	10	50	#succ
f16	4.0e+1:12	2.5e+1:47	1.6e+1:88	1.0e + 1:425	4.0e+0:989	15/15
BSifeg	1.9(2)	1.0(0.4)	13(33)	36(39)	105(92)	9/15
BSif	1.9(2)	1.1(0.7)	17(32)	38(45)	90(126)	9/15
BSqi	1.9(2)	1.1(0.6)	42(60)	60(96)	122(95)	8/15
BSrr	1.9(2)	1.1(0.6)	23(77)	18(27)	109(80)	8/15
CMA-CSA	1.8(1)	4.6(3)	6.9(4)	1.8(0.6)	1.5 (3)	15/15
CMA-MSR	2.5 (3)	2.7 (2)	6.3(14)	1.5(0.4)	2.5 (5)	15/15
CMA-TPA	4.5(5)	4.8(5)	10(8)	3.1(2)	2.6 (3)	15/15
GP1-CMAES	1.1(0.8)	2.4 (2)	3.2(3)	1.1(0.3)	1.5(2)	12/15
GP5-CMAES	1.4(2)	1.6 (1.0)	1.4(0.4)	0.39 (0.1)	0.89(1)	13/15
IPOPCMAv3p	1.1 (1)	3.3(3)	7.7(3)	2.4 (0.9)	1.6 (1)	14/15
LHD-10xDef	1.7(2)	3.6(2)	3.7(3)	1.6 (1)	$\infty 500$	0/15
LHD-2xDefa	1.4 (1)	1.8(0.7)	6.9(7)	5.4(4)	$\infty 500$	0/15
RAND-2xDef	1.3(0.9)	2.6 (3)	3.6(4)	1.8(2)	7.3(6)	1/15
RF1-CMAES	1.6 (1)	3.1(2)	4.5(3)	1.3(0.8)	4.4(3)	6/15
RF5-CMAES	1.5(2)	2.0(2)	2.4 (1)	3.6(6)	17(21)	2/15
Sifeg	2.0 (3)	1.5(0.8)	1.4(0.8)	5.9(18)	28(12)	15/15
Sif	2.0(2)	1.5 (1)	8.9(30)	4.2(4)	39(29)	14/15
Srr	2.0(3)	1.5(0.9)	12(54)	4.5(6)	21(27)	15/15

ng unc suar i	s raiger und	an i, with D	omerom cor	rection by th	ic number or	mount
#FEs/D	0.5	1.2	3	10	50	#succ
f17	1.0e+1:26	6.3e + 0.85	4.0e+0:155	2.5e+0:238	6.3e-1:585	15/15
BSifeg	1.4(1)	301(1177)	982(1814)	2734(4204)	$\infty~1e5$	0/15
BSif	1.4(0.9)	237(464)	965(1440)	1182(1806)	$\infty~1e5$	0/15
BSqi	1.4(0.6)	205(661)	740(647)	1684(1788)	$\infty~1e5$	0/15
BSrr	1.4(0.7)	296(592)	761(1122)	1812(1492)	$\infty~1e5$	0/15
CMA-CSA	3.4(2)	2.1(1.0)	1.7(0.7)	1.6(0.7)	1.7 (3)	15/15
CMA-MSR	2.0 (0.9)	1.4(0.6)	1.2(0.7)	1.1(0.3)	2.8 (2)	15/15
CMA-TPA	2.4(2)	1.4(0.3)	1.1(0.3)	1.0(0.4)	1.2(0.2)	15/15
GP1-CMAES	1.7 (0.8)	1.0(0.6)	0.88 (0.3)	0.80 (0.3)	1.0(0.2)	14/15
GP5-CMAES	1.7 (1)	1.1(0.5)	0.99 (0.8)	2.4 (6)	18(26)	3/15
IPOPCMAv3	p 2.4 (2)	1.4 (1)	1.4(0.4)	1.3(0.6)	1.0(0.2)	15/15
LHD-10xDef	3.5(4)	2.7 (0.4)	2.1 (0.6)	4.4(6)	$\infty 500$	0/15
LHD-2xDefa	1.6(0.8)	0.99 (0.6)	2.4 (2)	6.9(7)	$\infty 500$	0/15
RAND-2xDet	1.8 (0.7)	1.2(0.8)	1.7(0.7)	3.7(3)	$\infty 500$	0/15
RF1-CMAES	1.7(2)	1.3(0.6)	1.2(0.4)	3.0 (0.7)	13(17)	4/15
RF5-CMAES	1.6 (0.2)	2.6 (0.2)	5.0(6)	10(10)	64(29)	1/15
Sifeg	1.3(0.7)	208(202)	402(557)	440(736)	1223(2308)	2/15
Sif	1.3(0.8)	194(337)	490(1441)	834(1353)	$\infty~1e5$	0/15
Srr	1.3(0.4)	182(4)	429(1444)	487(629)	$\infty~1e5$	0/15

ig uic suai is	raiger urai.	i i, with Do	increom corr	ccolon by on	c number of i	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f18	4.0e+1:11	2.5e+1:56	1.6e + 1:172	1.6e + 1:172	2.5e+0:561	15/15
BSifeg	3.2(5)	382(511)	354(420)	354(544)	2408(1070)	1/15
BSif	3.5(7)	362(748)	317(415)	317(529)	$\infty~1e5$	0/15
BSqi	81(589)	223(397)	281(731)	281(287)	2341(1144)	1/15
BSrr	3.0 (2)	305(691)	528(814)	528(532)	∞ 9e4	0/15
CMA-CSA	6.7(6)	2.5 (0.5)	1.2(0.7)	1.2(0.4)	1.0(0.2)	15/15
CMA-MSR	4.9(4)	1.8(0.3)	0.99 (0.4)	0.99 (0.3)	1.9(4)	15/15
CMA-TPA	5.1(4)	2.1 (0.9)	1.1(0.3)	1.1(0.2)	1.5(0.3)	15/15
GP1-CMAES	4.4(5)	1.7(0.8)	0.85 (0.5)	0.85 (0.5)	1.6 (1)	13/15
GP5-CMAES	3.7(6)	1.3(0.5)	0.71 (0.2)	0.71 (0.4)	6.0(10)	7/15
IPOPCMAv3p	4.7(3)	2.1(1)	1.2(0.6)	1.2(0.4)	1.5(0.3)	14/15
LHD-10xDef	8.2(9)	4.0(0.2)	2.0(2)	2.0 (0.4)	∞ 500	0/15
LHD-2xDefa	4.2(3)	1.8 (1)	1.8(2)	1.8(2)	$\infty 500$	0/15
RAND-2xDef	3.0(2)	1.5(0.6)	1.6 (2)	1.6 (3)	∞ 500	0/15
RF1-CMAES	2.8(2)	1.4(0.8)	0.95 (0.4)	0.95 (0.5)	3.2(2)	10/15
RF5-CMAES	4.0(2)	4.5(22)	3.8(10)	3.8(10)	66(54)	1/15
Sifeg	8.3(2)	83(7)	171(286)	171(236)	1179(1377)	2/15
Sif	320(3)	194(671)	223(324)	223(553)	$\infty~1e5$	0/15
Srr	6.7(2)	137(290)	184(432)	184(327)	∞ 9e4	0/15

ig the star is	larger man	1, with Don	terrom corre	cuon by the	number of it	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:618	1.0e-1:10609	6.3e-2:10623	4.0e-2:10625	2.5e-2:10644	15/15
BSifeg	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	∞	∞	∞	∞	∞ 1e5	0/15
BSqi	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	171 (101)	12 (5)	19 (12)	23 (10)	26 (25)	15/15
CMA-MSR	237 (437)	21 (31)	35 (55)	62 (128)	290 (257)	4/15
CMA-TPA	156 (83)	12 (5)	18 (11)	24 (13)	34 (18)	15/15
GP1-CMAES	∞	∞	∞	∞	∞ 2504	0/15
GP5-CMAES	∞	∞	∞	∞	∞ 2528	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞ 2504	0/15
LHD-10xDef	∞	∞	∞	∞	∞ 500	0/15
LHD-2xDefa	∞	∞	∞	∞	∞ 500	0/15
RAND-2xDef	∞	∞	∞	∞	∞ 500	0/15
RF1-CMAES	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞ 2516	0/15
Sifeg	∞	∞	∞	∞	∞ 1e5	0/15
Sif	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	∞	∞	∞	∞	$\infty~1e5$	0/15

ig une star is	larger man	i i, with Doi	merrom corre	ection by the	number of it.	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f20	1.0e+4:17	6.3e + 3:21	6.3e+1:30	2.5e+0:122	1.0e+0:15426	13/15
BSifeg	1.9(0.6)	1.9(0.1)	1.7(0.8)	1.9(2)	3.2(4)	12/15
BSif	1.9(0.1)	1.9(0.1)	1.8 (1)	1.8(2)	3.5(3)	12/15
BSqi	1.9(0.1)	1.9(0.1)	1.7(0.5)	1.1(1)	3.4(7)	12/15
BSrr	1.9 (1)	1.9(0.1)	1.7(0.4)	1.4(0.3)	2.8 (3)	13/15
CMA-CSA	2.3 (1)	2.4 (2)	5.2(1)	5.5(2)	1.8(0.9)	15/15
CMA-MSR	3.1(3)	3.5(2)	5.7(2)	23(2)	$\infty~1e6$	0/15
CMA-TPA	3.1(2)	3.2(2)	5.1(0.9)	3.0(1)	18(0.3)	14/15
GP1-CMAES	1.9(2)	2.0 (1)	3.8(1.0)	8.3(9)	∞ 2502	0/15
GP5-CMAES	2.1 (1.0)	1.9(0.8)	2.4 (0.6)	25(23)	∞ 2526	0/15
IPOPCMAv3p	3.2(3)	3.3(2)	5.4(2)	5.1(3)	2.3 (5)	1/15
LHD-10xDef	3.6(6)	6.0(5)	7.7(0.3)	14(14)	$\infty 500$	0/15
LHD-2xDefa	2.9 (0.7)	2.9 (0.6)	2.9 (0.7)	6.2(5)	∞ 500	0/15
RAND-2xDef	1.8(2)	2.2 (0.5)	2.9 (2)	4.9(3)	$\infty 500$	0/15
RF1-CMAES	2.6 (1)	3.0(2)	5.4(2)	4.4(2)	∞ 2502	0/15
RF5-CMAES	2.4 (2)	2.5 (2)	21(32)	35(65)	∞ 2514	0/15
Sifeg	1.9 (1)	1.9(0.2)	2.0 (0.6)	0.72 (0.4)	1.4(2)	15/15
Sif	1.9(0.7)	1.9(0.1)	1.9(0.7)	0.76 (0.4)	0.87 (1)	15/15
Srr	1.9(0.7)	1.9(0.2)	1.9(0.4)	0.76 (0.2)	1.9(3)	14/15

ig uic suai is	iaigei illa	m i, with De	microm con	cenon by the	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f21	4.0e+1:30	2.5e+1:46	1.6e + 1:56	1.0e+1:130	6.3e+0.639	15/15
BSifeg	2.3 (0.5)	263(547)	374(0.5)	171(317)	116(123)	10/15
BSif	5.7(0.7)	354(54)	520(656)	331(768)	226(279)	7/15
BSqi	2.5 (8)	217(557)	333(33)	151(29)	92(121)	11/15
BSrr	4.1(0.7)	222(762)	338(25)	159(282)	95(147)	11/15
CMA-CSA	4.7(3)	7.6(16)	11(25)	7.7(11)	5.0(10)	15/15
CMA-MSR	3.5(2)	3.7(3)	15(30)	10(13)	8.4(3)	15/15
CMA-TPA	3.3(1)	3.0(0.8)	8.4(12)	4.8(5)	1.4(2)	15/15
GP1-CMAES	2.1 (1)	2.1 (0.9)	2.0 (0.6)	2.4 (10)	1.2(3)	12/15
GP5-CMAES	1.8(0.5)	2.6 (4)	7.1(8)	3.7(13)	1.3(2)	13/15
IPOPCMAv3p	3.5(3)	8.1(15)	17(37)	10(10)	3.2(5)	9/15
LHD-10xDef	6.5(3)	4.7(0.2)	4.6(0.3)	2.7 (2)	1.0(2)	9/15
LHD-2xDefa	2.1(2)	1.8(0.3)	2.1 (0.8)	1.3 (1)	0.52 (0.2)	11/15
RAND-2xDef	2.0 (0.3)	1.7(0.4)	2.2 (0.3)	1.2(0.2)	0.39 (0.3)	12/15
RF1-CMAES	9.1(2)	7.5(15)	11(2)	9.1(11)	4.0(9)	8/15
RF5-CMAES	2.9 (2)	6.2(0.8)	6.9(12)	13(20)	12(14)	4/15
Sifeg	1.6 (0.9)	216(1297)	177(612)	79(385)	88(100)	11/15
Sif	1.6 (0.6)	256(1092)	210(284)	110(384)	109(150)	10/15
Srr	1.6(0.7)	197(0.8)	162(4)	78(78)	65(59)	12/15

ig uiic suai is	larger mai	i i, with Doi	nerrom corre	cuon by the	number of h	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f22	6.3e+1:18	4.0e+1:30	4.0e+1:30	6.3e+0:155	4.0e+0.631	14/15
BSifeg	404(1)	737(829)	737(1656)	530(487)	135(475)	9/15
BSif	404(1405)	1042(2485)	1042(2927)	813(798)	251(673)	6/15
BSqi	404(2810)	713(1339)	713(828)	434(647)	109(119)	10/15
BSrr	404(0.8)	802(3787)	802(1302)	469(416)	116(116)	10/15
CMA-CSA	3.3(4)	3.9(1)	3.9(1)	303(900)	183(249)	13/15
CMA-MSR	5.1(3)	11(25)	11(2)	428(2713)	349(1667)	12/15
CMA-TPA	4.7(3)	4.1(3)	4.1(3)	604(1968)	148(2)	13/15
GP1-CMAES	3.2(2)	3.1 (2)	3.1 (0.7)	3.9 (13)	1.3(2)	12/15
GP5-CMAES	2.9 (1)	4.0(1)	4.0(12)	12(14)	3.4(8)	9/15
IPOPCMAv3p	4.5(3)	4.7(2)	4.7(5)	17(21)	5.6(3)	7/15
LHD-10xDef	6.2(6)	7.7(0.1)	7.7(0.3)	5.7(4)	1.4(2)	7/15
LHD-2xDefa	3.4(1.0)	3.1 (2)	3.1 (2)	4.4 (6)	1.3(1)	7/15
RAND-2xDef	3.4(2)	2.8 (2)	2.8 (0.7)	4.6 (3)	1.4 (4)	7/15
RF1-CMAES	3.2 (3)	10(23)	10(65)	16(24)	8.3(8)	5/15
RF5-CMAES	3.9(3)	4.4(2)	4.4(2)	36(52)	9.0(12)	5/15
Sifeg	8.0(22)	442(1261)	442(699)	280(380)	83(125)	11/15
Sif	404(0.5)	772(1364)	772(1968)	611(835)	151(88)	8/15
Srr	404(1406)	672(1655)	672(1655)	389(317)	109(195)	10/15

ig uiic suai is	iaigei mai	i i, with Do	merrom corr	ccolon by one	number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f23	6.3e+0:10	4.0e+0.62	2.5e+0:162	2.5e+0:162	1.0e+0.915	15/15
BSifeg	2.9 (4)	1.5(0.7)	1.7(2)	1.7(2)	13(11)	15/15
BSif	2.9 ₍₂₎	1.2(0.9)	1.6(2)	1.6(2)	12(24)	15/15
BSqi	2.9 (4)	1.2(0.5)	1.1(2)	1.1(1)	13(10)	15/15
BSrr	2.9 (4)	1.2(1)	1.5(2)	1.5(2)	11(16)	15/15
CMA-CSA	6.3(5)	6.0(6)	18(14)	18(14)	23(16)	15/15
CMA-MSR	4.8(3)	3.2(3)	2.8 (2)	2.8 (0.8)	2.9 (4)	15/15
CMA-TPA	3.4(4)	3.9(2)	16(23)	16(19)	12(5)	15/15
GP1-CMAES	2.0 (3)	1.7(1)	5.3(4)	5.3(4)	2.7 (2)	10/15
GP5-CMAES	3.6(4)	1.7(2)	1.6 (0.3)	1.6 (4)	0.92 (0.4)	13/15
IPOPCMAv3p	2.3 (0.8)	2.8 (2)	4.4(3)	4.4(2)	∞ 2514	0/15
LHD-10xDef	2.1(2)	2.3(2)	5.9(4)	5.9(2)	$\infty 500$	0/15
LHD-2xDefa	2.0 (1)	1.6 (2)	8.3(11)	8.3(17)	∞ 500	0/15
RAND-2xDef	2.0(2)	3.8(9)	10(13)	10(5)	$\infty 500$	0/15
RF1-CMAES	1.7 ₍₁₎	3.5(4)	7.1(5)	7.1(10)	∞ 2506	0/15
RF5-CMAES	1.6 (3)	3.1(3)	10(8)	10(7)	∞ 2548	0/15
Sifeg	2.5 (3)	1.9(2)	3.5(3)	3.5(4)	4.6(9)	15/15
Sif	2.5 (3)	1.9(2)	3.7(4)	3.7(4)	6.4(11)	15/15
Srr	2.5 (3)	1.9(2)	3.7(2)	3.7(2)	5.7(4)	15/15

18 0110 5001 15	Tai Sci tiiai	1 1, WIUII DOI	dictionic cont	oction by the	number of it	mount
#FEs/D	0.5	1.2	3	10	50	#succ
f24	1.0e+2:66	6.3e+1:596	4.0e+1:3181	2.5e+1:7668	1.6e+1:14353	15/15
BSifeg	22(16)	50(73)	34(31)	87(130)	∞ 9e4	0/15
BSif	37(13)	37(13)	72(62)	∞	∞ 9e4	0/15
BSqi	18(10)	71(104)	55(63)	174(352)	∞ 9e4	0/15
BSrr	19(18)	39(56)	41(40)	162(215)	∞ 8e4	0/15
CMA-CSA	2.6 (0.9)	1.1 (1)	1.2(1)	0.62 (0.5)	1.2(0.9)	15/15
CMA-MSR	2.6 (1)	0.84(0.3)	0.45(0.6)	0.50 (0.4)	0.83 (0.6)	15/15
CMA-TPA	2.6 (1)	1.0(0.5)	0.67 (0.2)	0.70 (0.8)	0.94 (0.6)	15/15
GP1-CMAES	1.7(0.8)	0.90 (0.5)	2.6 (3)	1.1(0.9)	∞ 2514	0/15
GP5-CMAES	1.2(0.3)	0.81(0.9)	∞	∞	∞ 2528	0/15
IPOPCMAv3p	2.7 (1)	1.4(0.9)	2.7 (1)	4.8(4)	∞ 2504	0/15
LHD-10xDef	4.8(1)	2.9 (3)	2.4 (2)	∞	$\infty 500$	0/15
LHD-2xDefa	8.3(8)	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	4.8(2)	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	2.2 (0.9)	1.1(0.9)	1.2(2)	2.3 (2)	∞ 2502	0/15
RF5-CMAES	2.4 (1)	3.4(3)	∞	∞	∞ 2514	0/15
Sifeg	3.0(3)	5.9(13)	9.0(7)	26(33)	∞ 9e4	0/15
Sif	3.0(2)	10(16)	13(19)	35(33)	44(21)	2/15
Srr	2.8(2)	1.5(2)	8.8(5)	22(27)	46(55)	2/15

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.