Name: Huize Shi - A92122910

Discussion: A04 Homework: 9

- 1. (a) Prove that $x^3 x + 1$ is irreducible in $\mathbb{Z}_3[x]$.
 - (b) Prove that $\mathbb{Z}_3[x]/\langle x^3-x+1\rangle$ is a field.
 - (c) Prove that there is a field F that has 27 elements, and it has a zero α of $x^3 x + 1$.
- 2. Suppose $f(x) = x^5 6x^4 + 30x + 12$.
 - (a) Prove that f(x) is irreducible in $\mathbb{Q}[x]$.
 - (b) Suppose $\alpha \in \mathbb{C}$ is a zero of f. Prove that $\{a_0 + a_1\alpha + \cdots + a_4\alpha^4 \mid a_0, \dots, a_4 \in \mathbb{Q}\}$ is a field.
 - (c) Prove that $1, \alpha, \ldots, \alpha^4$ are linearly independent over \mathbb{Q} ; That means: if $a_0 + a_1 \alpha + \cdots + a_4 \alpha^4 = 0$ for some $a_i \in \mathbb{Q}$, then $a_0 = a_1 = \cdots = a_4 = 0$.
- 3. Suppose p is an odd prime. Prove that $x^{p-1} x^{p-2} + \cdots + x^2 x + 1$ is irreducible in $\mathbb{Q}[x]$. (Consider f(-x))
- 4. Let $\alpha = \sqrt{1+\sqrt{3}}$
 - (a) Prove that $x^4 2x^2 2$ is a minimal polynomial of α over \mathbb{Q} .
 - (b) $\{a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 \mid a_0, a_1, a_2, a_3 \in \mathbb{Q}\}$ is a field.
- 5. Show that there is a finite field of order 25.