4,5-ДИАРИЛ-3-ГИДРОКСИ-2,2'-БИПИРИДИН-6-КАРБОНИТРИЛЫ: СИНТЕЗ И ФОТОФИЗИЧЕСКИЕ СВОЙСТВА

Маркина А.С.⁽¹⁾, Ладин Е.Д.^(1,2), Штайц Я.К.⁽¹⁾, Копчук Д.С.^(1,2), Зырянов Г.В.^(1,2)
⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19
⁽²⁾ Институт органического синтеза УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 22

Производные 3-гидрокси-2,2'-бипиридинов представляют интерес благодаря их фотофизическим свойствам, а также возможностью их использования в качестве флуоресцентных сенсоров на катионы Zn²⁺ и Cu²⁺. Реакция *аза*-Дильса-Альдера в ряду 1,2,4-триазинов с 2-амино-4-арилоксазолами является одним из перспективных методов получения производных 3-гидрокси-2,2'-бипиридинов. Целью настоящей работы является синтез 4,5-диарил-3-гидрокси-2,2'-бипиридин-6-карбонитрилов, а также изучение их фотофизических свойств.

Ar
$$N_{NC}$$
 + R_{O} N_{NC} N_{C} N_{C}

i: 150 °C, без растворителя, 8 часов, аргон; Ar = 4-MeC₆H₄ (**3a**), Ph (3**b,e-g,i**), 4-MeOC₆H₄ (**3c,d,h**);

 $R = 4-CIC_6H_4 (3a,b), Ph (3c,g), 4-MeOC_6H_4 (3d,e), 3,4-(MeO)_2C_6H_3 (3f,h), 3-thienyl (3i).$

Целевые 4,5-диарил-3-гидрокси-2,2'-бипиридин-6-карбонитрилы **3а-і** были синтезированы путем взаимодействия 6-арил-1,2,4-триазин-5-карбонитрилов 1а-с с 4-арил-2-аминооксазолами **2а-е** в условиях нагревания без растворителя. Выход продуктов **3а-і** 31-55%. Структура полученных соединений подтверждена данными ¹H и ¹³C ЯМР-спектроскопии, масс-спектрометрии и элементного анализа. Обнаружено, что продукты обладают интенсивной флуоресценцией в твердом виде (квантовый выход от 6.1 до 92.9 %). В ацетонитрильных растворах данные соединения обладают большими значениями Стоксова сдвига (до 241 нм), а также низкими квантовыми выходами флуоресценции (0.1-4.7 %).