Minimum Robinson-Foulds Distance Supertree

Xilin Yu, Thien Le, Sarah Christensen, Erin Molloy, Tandy Warnow June 4, 2019

Throughout the paper, we consider only unrooted trees. For any tree T, let V(T), E(T), and L(T) denote the vertex set, the edge set, and the leaf set of T, respectively. For any $v \in V(T)$, let $N_T(v)$ A tree is fully resolved if every non-leaf node has degree 3. Let \mathcal{T}_S denote the set of all fully resolved trees on leaf set S. In any tree T, each edge e induces a bipartition $\pi_e := A|B$ of the leaf set, where A and B are the leaves in the two components of T - e, respectively. A bipartition A|B is non-trivial if both sides have size at least 2. For a tree T, $C(T) := \{\pi_e \mid e \in E(T)\}$ denotes the set of all bipartitions of T. For a fully resolved tree with n leaves, C(T) contains 2n-3 bipartitions, exactly n-3 of which are non-trivial. A tree T' is a refinement of T if T can be obtained from T' by contracting a set of edges. Equivalently, T' is a refinement of T if and only if $C(T) \subseteq C(T')$.

Two bipartitions π_1 and π_2 of the same leaf set are *compatible* if and only if there exists a tree T such that $\pi_1, \pi_2 \in C(T)$. The following theorem and corollary give other categorizations of compatibility.

Theorem 1 (Theorem 2.20 of [1]). A pair of bipartitions A|B and A'|B' of the same set is compatible if and only if at least one of the four pairwise intersections $A \cap A'$, $A \cap B'$, $B \cap A'$, $B \cap B'$ is empty.

Corollary 1. A pair of bipartitions A|B and A'|B' of the same set is compatible if and only if one side of A|B is a subset of one side of A'|B'.

A tree T restricted to a subset R of its leaf set, denoted $T|_R$, is the minimal subtree of T spanning R with nodes of degree two suppressed. A bipartition $\pi = A|_B$ restricted to a subset $R \subseteq A \cup B$ is $\pi|_R = A \cap R|_B \cap R$. We have the following intuitive lemma with its proof in the appendix.

Lemma 1. Let T be a tree with leaf set S and let $\pi = A|B \in C(T)$ be a bipartition induced by $e \in E(T)$. Let $R \subseteq S$.

- 1. If $R \cap A = \emptyset$ or $R \cap B = \emptyset$, then $e \notin E(T|_R)$.
- 2. If $R \cap A \neq \emptyset$ and $R \cap B \neq \emptyset$, then for any $\pi' \in C(T|_R)$ induced by $e' \in E(T|_R)$, $\pi|_R = \pi'$ if and only if $e \in P(e')$.

Corollary 2. Let T be a tree with leaf set S and let $\pi = A|B \in C(T)$ be a bipartition induced by $e \in E(T)$. Let $R \subseteq S$ such that $R \cap A \neq \emptyset$ and $R \cap B \neq \emptyset$. Then $\pi|_R \in C(T|_R)$.

Definition 1. For two trees T, T' with the same leaf set, the bipartition support of them is $bisup(T, T') := |C(T) \cap C(T')|$.

Let T_1 and T_2 be two fully resolved trees on leaf sets S_1 and S_2 , respectively, such that $X := S_1 \cap S_2 \neq \emptyset$. Let $S := S_1 \cup S_2$. The maximum bipartition support supertree problem on two input trees, abbreviated MAX-BISUP-SUPERTREE-2, finds a fully resolved supertree T^* on leaf set S that maximizes the sum of the bipartition support of T^* with respect to T_1 and T_2 . That is,

$$T^* = \underset{T \in \mathcal{T}_S}{\operatorname{argmax}} bisup(T|_{S_1}, T_1) + bisup(T|_{S_2}, T_2)$$
$$= \underset{T \in \mathcal{T}_S}{\operatorname{argmax}} |C(T|_{S_1}) \cap C(T_1)| + |C(T|_{S_2}) \cap C(T_2)|.$$

We call $bisup(T|_{S_1}, T_1) + bisup(T|_{S_2}, T_2)$ the support score of T when T_1 and T_2 are clear from context.

The more general maximum bipartition support supertree problem on a set of N input trees, abbreviated Max-Bisup-Supertree-N, takes in a set of input trees T_1, T_2, \ldots, T_N with leaf sets S_1, S_2, \ldots, S_N , respectively. Max-Bisup-Supertree-N finds a fully resolved supertree T^* on leaf set S that maximizes the sum of the bipartition support of T^* with respect to every input tree. That is,

$$T^* = \underset{T \in \mathcal{T}_S}{\operatorname{argmax}} \sum_{i \in [N]} bisup(T|_{S_i}, T_i)$$

We first set up the notations for the algorithm and the analysis. Let T_1, T_2, S_1, S_2 , and X be defined as from the problem statement. Let $T_1|_X$ and $T_2|_X$ be the backbone trees of T_1 and T_2 , respectively. Let Π be the set of bipartitions of X. Let Triv and NonTriv denotes the set of trivial and non-trivial bipartitions in $C(T_1|_X) \cup C(T_2|_X)$. For each $e \in E(T_i|_X)$, $i \in \{1,2\}$, let P(e) denote the path in T_i from which e is obtained by suppressing all degree-two nodes. Let w(e) be the number of edges on P(e).

We define a weight function $w: \Pi \to \mathbb{N}_{\geq 0}$ such that for any bipartition π of X, $w(\pi) = w(e_1) + w(e_2)$, where e_i induces π in $T_i|_X$ for $i \in \{1, 2\}$. If for any $i \in \{1, 2\}$, no e_i exists that induces π in $T_i|_X$, then we use $w(e_i) = 0$.

For each $i \in \{1, 2\}$ and each $e \in E(T_i|_X)$, let In(e) be the set of internal nodes of P(e). For each $v \in In(e)$, let L(v) be the set of leaves in $S_i \setminus X$ whose connecting path to the backbone tree $T_i|_X$ goes through v and let T(v) be the minimal subtree spanning L(v) in T_i . We say T(v) is an extra subtree attached to v.

We let the node u which is the neighbor of v in T(v) be the root of T(v). Let $\mathcal{T}(e) := \{T(v) \mid v \in \text{In}(e)\}$. Then $\mathcal{T}(e)$ is the set of extra subtrees attached to internal nodes of P(e) in T_i . We note that $|\mathcal{T}(e)| = |\text{In}(e)| = w(e) - 1$. For any bipartition $\pi \in C(T_1|_X) \cup C(T_2|_X)$, we denote $\mathcal{T}(\pi) := \mathcal{T}(e_1) \cup \mathcal{T}(e_2)$, where e_i is the edge that induces π in $T_i|_X$ for $i \in \{1,2\}$ if $\pi \in C(T_i|_X)$. Let $\text{Extra}(T_i) := \bigcup_{e \in E(T_i|_X)} \mathcal{T}(e)$. Then $\text{Extra} := \text{Extra}(T_1) \cup \text{Extra}(T_2)$ denotes the set of all extra subtrees in T_1 and T_2 .

Algorithm 1 Max-BiSup Supertree

Input: two fully resolved trees T_1 , T_2 with leaf sets S_1 and S_2 where $S_1 \cap S_2 = X \neq \emptyset$

Output: a fully resolved supertree T on leaf set $S = S_1 \cup S_2$ that maximizes the support score

```
1: compute C(T_1|_X) and C(T_2|_X)
    2: for each \pi \in C(T_1|_X) \cup C(T_2|_X) do
    3:
                                compute \mathcal{T}(\pi) and w(\pi)
    4: construct T by having a star of leaf set X with center vertex \hat{v} and connecting
                 the root of each t \in \text{Extra to } \hat{v}, let T = T
    5: for each \pi \in \text{Triv do}
                                T \leftarrow \text{Refine-Triv}(T_1, T_2, T, \pi, \hat{v}, \mathcal{T})
    7: let \tilde{T} = T
    8: construct the incompatibility graph G = (V_1 \cup V_2, E), where V_1 = C(T_1|_X) -
                C(T_2|_X) and V_2 = C(T_2|_X) - C(T_1|_X), and E = \{(\pi, \pi') \mid \pi \in V_1, \pi' \in V_2, \pi' \in V_2,
                \pi is not compatible with \pi'
    9: compute the maximum weight independent set I in G with weight w
10: let H(\hat{v}) = \text{NonTriv} \cap (C(T_1|_X) \cup C(T_2|_X))
11: for each \pi \in \text{NonTriv} \cap (C(T_1|_X) \cup C(T_2|_X)) do
                                sv(\pi) = \hat{v}
12:
              for each \pi \in \text{NonTriv} \cap (I \cup (C(T_1|_X) \cap C(T_2|_X))) do
                                T \leftarrow \text{Refine}(T_1, T_2, T, \pi, H, sv, \mathcal{T})
15: let T^* = T
16: refine T arbitrarily at polytomies until it is fully resolved
17: return T
```

For the analysis of the algorithm, we differentiate between two kinds of bipartitions in $C(T_1) \cup C(T_2)$. Let $\Pi_Y = \{\pi = A | B \in C(T_1) \cup C(T_2) \mid \text{ either } A \cap X = \emptyset$, or $B \cap X = \emptyset$ }. Let $\Pi_X = \{\pi = A | B \in C(T_1) \cup C(T_2) \mid A \cap X \neq \emptyset \text{ and } B \cap X \neq \emptyset$ }. Intuitively, Π_X is the set of bipartitions in $C(T_1) \cup C(T_2)$ that are induced by edges in the backbone trees $T_1|_X$ and $T_2|_X$ while Π_Y is the set of bipartitions in $C(T_1) \cup C(T_2)$ that are induced by edges inside or connecting extra subtrees of T_1 and T_2 . It follows by definition that Π_X and Π_Y is a disjoint decomposition of $C(T_1) \cup C(T_2)$.

Let $p_X(T)$ and $p_Y(T)$ (we omit the parameters T_1 and T_2 for brevity) be the

contributions to the support score of T from bipartitions of Π_X and Π_Y for any $T \in \mathcal{T}_S$, respectively. Formally, we have

$$p_X(T) = |C(T|_{S_1}) \cap C(T_1) \cap \Pi_X| + |C(T|_{S_2}) \cap C(T_2) \cap \Pi_X|,$$

$$p_Y(T) = |C(T|_{S_1}) \cap C(T_1) \cap \Pi_Y| + |C(T|_{S_2}) \cap C(T_2) \cap \Pi_Y|.$$

By definition of support score, any bipartition can only contribute to the support score if it is in $C(T_1) \cup C(T_2)$. Thus, the support score of T equals $p_X(T) + p_Y(T)$ for any tree T on leaf set S. Therefore, it is enough for us to show that Algorithm 1 finds a tree T that maximizes both $p_X(T)$ and $p_Y(T)$ at the same time.

Claim 1. If Algorithm 1 returns a tree T such that $p_X(T) \geq p_X(T')$ and $p_Y(T) \geq p_Y(T')$ for any tree T' with leaf set S, then Algorithm 1 solves MAX-BISUP-SUPERTREE-2 correctly.

Lemma 2. For any tree T of leaf set S and any refinement T' of T, $p_X(T') \ge p_X(T)$ and $p_Y(T') \ge p_Y(T)$.

Lemma 3. For any tree T of leaf set S, $p_Y(T) \leq |\Pi_Y|$. In particular, let \hat{T} be the tree constructed in Algorithm 1. Then, $p_Y(\hat{T}) = |\Pi_Y|$.

Claim 2. Let \hat{T} be the tree constructed in Algorithm 1, then $p_X(\hat{T}) = 2|X|$.

Lemma 4. Let $\pi = A|B$ be a bipartition of X. Let T be a tree of leaf set S such that $\pi \notin C(T|_X)$ and all bipartitions in $C(T|_X)$ are compatible with π . Let T' be a refinement of T such that for all $\pi' \in C(T'|_{S_i}) \setminus C(T|_{S_i})$ for some $i \in \{1, 2\}$, $\pi'|_X = \pi$. Then, $p_X(T') - p_X(T) \leq w(\pi)$.

Lemma 5. For any compatible set F of bipartitions of X, let T be a tree of leaf set S such that $C(T|_X) = F$. Then $p_X(T) \leq \sum_{\pi \in F} w(\pi)$.

Claim 3. Let \tilde{T} be the tree constructed in Algorithm 1, then $p_X(\tilde{T}) = \sum_{\pi \in \text{Triv}} w(\pi)$.

Lemma 6. Let T be a tree from Algorithm 1 before a refinement step. Let $\pi = A|B \in \text{NonTriv} \cap (I \cup (C(T_1|_X) \cap C(T_2|_X)))$. Let T' be a refinement of T obtained from running Algorithm Refine on T and π , with the auxiliary data structures H, sv, and T. Then, $p_X(T') - p_X(T) = w(\pi)$.

Let G be the incompatibility graph defined in Algorithm 1 and I be the maximum weight independent set in G with weight function w. Let $G' = (V_1' \cup V_2', E')$ be another incompatibility graph such that $V_1' = C(T_1|_X)$ and $V_2' = C(T_2|_X)$, and $E' = \{(\pi, \pi') \mid \pi \in V_1', \pi' \in V_2', \pi \text{ is not compatible with } \pi'\}$. Let $I' := I \cup (C(T_1|_X) \cap C(T_2|_X))$.

Claim 4. I' is a maximum weight independent set in G' with weight function w.

Claim 5. Let T^* be the tree defined in Algorithm 1, $p_X(T^*) \ge p_X(T)$ for any tree T of leafset S.

Theorem 2. Algorithm 1 correctly solves MAX-BISUP-SUPERTREE-2 in $O(n^3)$ (Checking this) time.

Theorem 3. MAX-BISUP-SUPERTREE-3 is NP-hard.

References

[1] Tandy Warnow. Computational phylogenetics: an introduction to designing methods for phylogeny estimation. Cambridge University Press, 2017.