多変量解析

第3回 データの集約

萩原•篠田 情報理工学部

代表值•散布度

データ												
1	1	2	2	2	2	2	2	2	2			
3	3	3	3	3	3	3	3	3	4			
4	4	4	4	5	5	5	5	6	6			
7	7	8										

代表值(中心的傾向)

平均值(mean) : 3.606

中央値(median) : 3

最頻値(mode) : 3

: 3.12

: 7 (= 8 - 1)

散布度(分布、散らばり具合)

分散(偏差の2乗の平均)

標準偏差(分散の平方根) : 1.77(= √3.12)

範囲(最大-最小値)

四分位範囲(上位-下位四分位数):3(=5-2)

代表值•散布度

	データ												
1	1	2	2	2	2	2	2	2	2				
3	3	3	3	3	3	3	3	3	4				
4	4	4	4	5	5	**	5	6	6				
7	7	8											

代表値(中心的傾向)

平均値(mean) : 3.606

中央値(median) : 3

最頻値(mode) : 3

散布度(分布、散らばり具合)

分散(偏差の2乗の平均)

標準偏差(分散の平方根)

範囲(最大-最小値)

四分位範囲(上位-下位四分位数):3(=5-2)

: 3.12

 $: 1.77 (= \sqrt{3.12})$

: 7 (= 8 - 1)

代表值•散布度

				デー	ータ				
1	1	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	4
4	4	4	4	5	5	5	5	6	6
7	7	8							

平均值?中央值?

代表值(中心的傾向)

平均值(mean)

: 3.606

中央値(median)

最頻値(mode)

: 3

散布度(分布、散らばり具合)

分散(偏差の2乗の平均)

標準偏差(分散の平方根)

範囲(最大-最小値)

四分位範囲(上位-下位四分位数):3(=5-2)

: 3.12

 $: 1.77 (= \sqrt{3.12})$

: 7 (= 8 - 1)

平均值 mean, average

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{N} (x_1 + x_2 + x_3 + \dots + x_N)$$

分散 variance

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$

標準偏差 standard deviation, SD

 σ

標本抽出 sampling

測定 measurement

平均值 mean, average

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = E\{\overline{x}\}$$

期待值

不偏推定值

平均值

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

分散 variance

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} > E\{s_{n}^{2}\} \quad - \quad - \quad s_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

過小評価

標準偏差 standard deviation, SD

$$\sigma > E\{s_n\}$$

標準偏差

標本抽出 sampling

測定 measurement

平均值 mean, average

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = E\{\overline{x}\}$$

期待值

不偏推定值

平均值

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

分散 variance

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} = E\{s^{2}\} \quad - \quad - \quad s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

不偏推定值

標準偏差 standard deviation, SD

$$\sigma = E\{s\}$$

標準偏差

なぜ分散の不偏推定値は

$$s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$
 ではなく, $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ なのか?

母集団の分散

$$\sigma^{2} = E\left\{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\mu)^{2}\right\}$$

$$= E\left\{\sum_{i=1}^{n}\frac{[(x_{i}-\bar{x})-(\mu-\bar{x})]^{2}}{n}\right\}$$

$$= E\left\{\sum_{i=1}^{n}\frac{(x_{i}-\bar{x})^{2}-2(x_{i}-\bar{x})(\mu-\bar{x})+(\mu-\bar{x})^{2}}{n}\right\}$$

$$= E\left\{\sum_{i=1}^{n}\frac{(x_{i}-\bar{x})^{2}}{n}-2(\mu-\bar{x})\sum_{i=1}^{n}\frac{(x_{i}-\bar{x})}{n}+\frac{n(\mu-\bar{x})^{2}}{n}\right\}$$

$$= E\left\{\sum_{i=1}^{n}\frac{(x_{i}-\bar{x})^{2}}{n}-2(\mu-\bar{x})\sum_{i=1}^{n}\frac{(x_{i}-\bar{x})}{n}+\frac{n(\mu-\bar{x})^{2}}{n}\right\}$$

$$= E\left\{\sum_{i=1}^{n}\frac{(x_{i}-\bar{x})^{2}}{n}\right\}+E\left\{(\mu-\bar{x})^{2}\right\}$$

$$= E\left\{x_{i}-\bar{x}\right\}$$

標本分布(標本の平均値 \bar{x} の分布)の分散

(参考) 標本分布の標準偏差 = 標準誤差(SE、SEM)

$$\sigma^{2} = \frac{n}{n-1} E\left\{s_{n}^{2}\right\}$$

$$= E\left\{\sum_{i=1}^{n} \frac{n}{n-1} \cdot \frac{\left(x_{i} - \overline{x}\right)^{2}}{n}\right\}$$

$$= E\left\{\sum_{i=1}^{n} \frac{\left(x_{i} - \overline{x}\right)^{2}}{n-1}\right\}$$

$$= E\left\{s^{2}\right\}$$

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \quad n \text{ 個が独立}$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$\bar{x} = \sum_{i=1}^{n} \frac{x_{i}}{n}$$

$$\bar{x} \text{ の関係式があるため}$$

(n-1)個の偏差が決まれば

つまり自由度は*n*でなく*n*-1

残り1個の偏差が決まる

標本分布(標本の平均値 \bar{x} の分布)と標準誤差(標本分布の標準偏差)

独立変数の結合分布

期待值(平均值)

$$E\{X \pm Y\} = E\{X\} \pm E\{Y\}$$

$$E\{aX\} = aE\{X\}$$

分散(の期待値)

$$Var\{X \pm Y\} = E\Big[\Big\{(X \pm Y) - (\overline{X} \pm \overline{Y})\Big\}^2\Big]$$

$$= E\Big[\Big\{(X - \overline{X}) \pm (Y - \overline{Y})\Big\}^2\Big]$$

$$= E\Big[(X - \overline{X})^2 \pm 2(X - \overline{X})(Y - \overline{Y}) + (Y - \overline{Y})^2\Big]$$

$$= E\Big\{(X - \overline{X})^2\Big\} \pm 2E\Big\{(X - \overline{X})(Y - \overline{Y})\Big\} + E\Big\{(Y - \overline{Y})^2\Big\}$$

$$= E\Big\{(X - \overline{X})^2\Big\} + E\Big\{(Y - \overline{Y})^2\Big\}$$

$$= Var\{X\} + Var\{Y\}$$

$$\sharp \circlearrowleft$$

分散

$$Var\{aX\} = E\{(aX - a\overline{X})^2\}$$

$$= E\{a^2(X - \overline{X})^2\}$$

$$= a^2E\{(X - \overline{X})^2\}$$

$$= a^2Var\{X\}$$

$$E\{(X - \overline{X})(Y - \overline{Y})\} = E\{XY - \overline{X}Y - X\overline{Y} + \overline{X}\overline{Y}\}$$

$$= E\{XY\} - \overline{X}E\{Y\} - E\{X\}\overline{Y} + \overline{X}\overline{Y}$$

$$= E\{XY\} - \overline{X}\overline{Y}$$

$$= 0 \quad (when X, Y are independent)$$

正規分布(normal distribution) $N(\mu, \sigma^2)$ ガウス分布(Gaussian distribution)

• 確率密度関数 f(x) (probability density function, p.d.f.)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

• 累積分布関数 F(x) (cumulative distribution function, c.d.f.)

$$P(x < x_1) = P(x \le x_1) = F(x_1)$$

標準正規分布(standard normal distribution) N(0,1)

•確率密度関数(p.d.f.) $N(\mu, \sigma^2)$ $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} \qquad \Rightarrow \qquad f(z) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{z^2}{2}\right\}$ $f(z)^{\frac{6}{6}}$ $P(x < x_1) = P(z < z_1)$ where $z = \frac{x - \mu}{}$ F(z)0.0 • 累積分布関数 (c.d.f.) $F(z) = \int_{-\sqrt{2\pi}}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$

$$P(x < x_1) = F(x_1) = \int_{-\infty}^{x_1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx = \int_{-\infty}^{z_1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{z^2}{2}\right) \sigma dz = \int_{-\infty}^{z_1} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz$$

$$= F(z_1) = P(z < z_1)$$

表: F(z)標準正規分布N(0,1)のc.d.f.

$$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt^{-\frac{1}{2}}$$

例: $N(\mu, \sigma^2)$ で μ - σ < x < μ + σ となる確率は? \downarrow N(0,1)で -1 < z < 1となる 確率に等しい

P(-1 < z < 1)=2(F(1)- F(0)) =2*(0.8413-0.5) =0.6826

問: $N(\mu, \sigma^2)$ で μ - $2\sigma < x < \mu$ + 2σ となる確率は?

	数:1 (4) 赤十 正 がり 1 11 (() , 1) 0) 0 . は. i .											
	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
t^{-}	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
ı	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
ì	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
ı	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
ı	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	

- 1. 母集団が正規分布の場合
 - → 標本分布は正規分布にしたがう
- 2. 母集団が正規分布でない場合
 - → *n*が大きくなれば標本分布は正規分布に近づく 通常*n*≥30に対して,標本分布を正規分布とみなす

正規分布 $N(\mu, \frac{\sigma^2}{n})$

標本分布(標本の平均値 \bar{x} の分布)

中心極限定理 central limit theorem

- 1. 母集団が正規分布の場合
 - → 標本分布は正規分布にしたがう
- 2. 母集団が正規分布でない場合
 - → *n*が大きくなれば標本分布は正規分布に近づく 通常*n*≥30に対して、標本分布を正規分布とみなす

次週以降の検定においては、 標本分布が正規分布である(とみなせる) ことが大切(必要)

標本分布(標本の平均値 \bar{x} の分布)

表: F(z)標準正規分布N(0,1)のc.d.f.

$$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt^{-\frac{1}{2}}$$

例: $N(\mu, \sigma^2)$ で μ - σ < x < μ + σ となる確率は? \downarrow N(0,1)で -1 < z < 1となる 確率に等しい

P(-1 < z < 1)=2(F(1)- F(0)) =2*(0.8413-0.5) =0.6826

問: $N(\mu, \sigma^2)$ で μ - $2\sigma < x < \mu$ + 2σ となる確率は?

	数:1 (4) 赤十 正 がり 1 11 (() , 1) 0) 0 . は. i .											
	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
t^{-}	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
ı	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
ì	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
ı	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
ı	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	

(問題1)英国人女性の母集団の体重の分布は平均60kg,標準偏差5kgの正規分布にしたがう.この母集団から選んだ一人の女性の体重が70kg以上である確率を求めよ.

(問題2)ある機械は袋に詰める砂糖の重さが平均1000g, 標準偏差5gの正規分布に従うように調整されている. 袋を9個ずつ取り出して砂糖の重さの平均値を求め, これを繰り返すとき, 平均値の分布はどうなるか.

(問題3)問題2の機械が詰めた袋を無作為に9個取り出して砂糖の重さの 平均値を量るとき、その値が1003gより重くなる確率を求めよ.