

SAMformer

Unlocking the Potential of Trans**former**s in Time Series Forecasting with **S**harpness-**A**ware **M**inimization and Channel-Wise Attention

Transformer-based

时间序列预测

锐度感知最小化(SAM)

解决训练不稳定性

ICML2024

华为巴黎研究中心

SAMformer

Unlocking the Potential of Trans**former**s in Time Series Forecasting with **S**harpness-**A**ware **M**inimization and Channel-Wise Attention

24.6.4

- ▶ 目前的SOTA模型: TSMixer (完全线性模型)
- ➤ 目前的Transformer-based工作主要集中在:
 - Reduce the cost: 降低注意力机制的N²成本
 - Decompose TS:解耦时间序列捕获潜在模式
- ➤ 仍然没有解决Transformer的<mark>训练不稳定性</mark>(倾向于过拟合,泛化能力差)
 - 陷入局部最小值,且很难在随后的迭代中退出
 - **模型收敛到尖锐的局部最小值**

02

*** 背景补充: The Sharpness of the **Loss** Landscape

- > 我们训练神经网络的目的是: 最小化损失函数
- ▶ 损失函数它是一个"高度非凸"的函数
 - 定义域内存在多个局部极小(大)值,而不是仅有一个全局最小(大)值
 - 我们无法简单地沿梯度下降找到全局最小值
- ▶ 这种"非凸"来自于:
 - 网络深度的增加,参数数量的增加(参数复杂性),非线性激活函数(ReLU, tanh)
- ▶ 由"非凸"带来的挑战:
 - 优化算法可能会陷入局部极小值,而不是找到全局最优解
- ▶ 我们目前的哪些方法是在努力克服这个问题:
 - 随机梯度下降SGD, 自适应调整学习率Adam, 正则化dropout

背景补充: The Sharpness of the **Loss** Landscape

➤ 例如: ResNet残差连接

- 产生更容易训练的损失函数,且避免过拟合问题
- 产生更加平坦的损失曲面,提高泛化能力

背景补充: The **Sharpness** of the **Loss** Landscape

▶ 局部最小化解的锐度/平坦度("sharp" vs "flat")与泛化能力之间的关系

[1]马里兰大学NIPS2018: Visualizing the Loss Landscape of Neural Nets(可视化神经网络的损失情况)

背景补充: The **Sharpness** of the **Loss** Landscape

- ➤ 局部最小化解的锐度/平坦度("sharp" vs "flat")与泛化能力之间的关系
 - 平坦的损失曲面表示模型对参数变化不敏感,这通常与更好的泛化性能相关
 - 批量大小(batchsize)和权重衰减(weight decay)对模型训练结果的影响
 - →看测试误差→看损失曲面的形状(sharpness)→模型的泛化能力

加入权重衰减 相对平坦

[1]马里兰大学NIPS2018: Visualizing the Loss Landscape of Neural Nets(可视化神经网络的损失情况)

🔪 背景补充: The **Sharpness** of the **Loss** Landscape

- ▶ 局部最小化解的锐度/平坦度("sharp" vs "flat")与泛化能力之间的关系
 - 平坦的损失曲面表示模型对参数变化不敏感,这通常与更好的泛化性能相关
 - 批量大小(batchsize)和权重衰减(weight decay)对模型训练结果的影响
 - →看测试误差→看损失曲面的形状(sharpness)→模型的泛化能力

小批量 相对平坦

动机举例: A Toy Regression Problem

▶ 定义一个生成模型

• 模拟时序预测: $\mathbf{Y} = \mathbf{X}\mathbf{W}_{\text{toy}} + \boldsymbol{\varepsilon}$.

➤ 简化的transformer编码器

• 注意力机制+残差连接+线性层: $f(\mathbf{X}) = [\mathbf{X} + \mathbf{A}(\mathbf{X})\mathbf{X}\mathbf{W}_V\mathbf{W}_O]\mathbf{W}$,

• 基于通道的注意力矩阵: $\mathbf{A}(\mathbf{X}) = \operatorname{softmax}\left(\frac{\mathbf{X}\mathbf{W}_{Q}\mathbf{W}_{K}^{\top}\mathbf{X}^{\top}}{\sqrt{d_{\mathrm{m}}}}\right) \in \mathbb{R}^{D \times D}$

- · Oracle:利用最小二乘法计算W,得到理论最优解
- Random Transformer: 只有W被优化,attention权 $ilde{\mathbb{I}} ilde{W}_Q W_K W_V W_O$ 固定,使得所考虑的Transformer像一个线性模型。
- Transformer: 通过注意力机制和残差连接来拟合

Transformer's Loss Landscape

> 注意力矩阵

- 优化的 transformer 可能陷入次优局部最小值
- the sharpness of the loss landscape of the transformer

> 损失函数曲线

- 固定注意力的Transformer(Random Transformer)的sharpness比收敛到单位矩阵的 Transformer(Transformer)低几个数量级
- 注意力矩阵的熵随着训练轮次的增加急剧下降(熵崩溃→过拟合、训练不稳定)

05 **SAMformer**

- > A single layer with one attention head
 - RevIN: 可逆实例归一化
 - Channel-Wise Self-Attention
- ➤ 使用SAM来优化模型,以使其收敛到更平坦的局部最小值。

- 1. 具有更好的泛化能力
- 2. 相比于TSMixer提高了14.33%, 同时参数减少了约4倍

▶ 同时最小化损失值和损失曲面的锐度 → 提高模型的泛化能力

"现代深度神经网络的损失函数往往是非凸的,具有多个局部甚至全局极小值,这些极小值可能在训练集上表现相似,但在测试集上的表现差异很大"

- ▶ 从损失函数的几何特性入手,考虑最小值附近的平坦度
 - 当模型进入一个尖锐的最小值时,通常的梯度更新会导致模型在该最小值附近振荡。

- > 从损失函数的几何特性入手,考虑最小值附近的平坦度
 - SAM通过计算梯度后,采取相反的方向移动,这个反向移动由一个因子ρ缩放。

- ▶ 从损失函数的几何特性入手,考虑最小值附近的平坦度
 - 使用在第二个位置计算的梯度来更新原始位置的参数,迫使模型移动到新区域。

05 **SAMformer**

- > A single layer with one attention head
 - RevIN: 可逆实例归一化
 - Channel-Wise Self-Attention
- ➤ 使用SAM来优化模型,以使其收敛到更平坦的局部最小值。
 - 它并不是直接替代传统优化器,而是与它们协同工作,以实现更好的训练效果。

实验1:对比实验

输入长度L = 512, 预测 H∈{96,192,336,720}

Dataset	H	with S.	AM	without SAM							
Dataset	11	SAMformer	TSMixer	Transformer	TSMixer	In*	\mathtt{Auto}^*	FED*	Pyra [†]	LogTrans [†]	
ETTh1	96 192 336 720	$\begin{array}{c} \underline{0.381}_{\pm 0.003} \\ 0.409_{\pm 0.002} \\ 0.423_{\pm 0.001} \\ 0.427_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.388_{\pm 0.001} \\ \underline{0.421}_{\pm 0.002} \\ \underline{0.430}_{\pm 0.002} \\ \underline{0.440}_{\pm 0.005} \end{array}$	$\begin{array}{c} 0.509_{\pm 0.031} \\ 0.535_{\pm 0.043} \\ 0.570_{\pm 0.016} \\ 0.601_{\pm 0.036} \end{array}$	$\begin{array}{c} 0.398_{\pm 0.001} \\ 0.426_{\pm 0.003} \\ 0.435_{\pm 0.003} \\ 0.498_{\pm 0.076} \end{array}$	0.941 1.007 1.038 1.144	0.435 0.456 0.486 0.515	0.376 0.423 0.444 0.469	0.664 0.790 0.891 0.963	0.878 1.037 1.238 1.135	
ETTh2	96 192 336 720	$\begin{array}{c} 0.295_{\pm 0.002} \\ 0.340_{\pm 0.002} \\ 0.350_{\pm 0.000} \\ 0.391_{\pm 0.001} \end{array}$	$\begin{array}{c} \underline{0.305}_{\pm 0.007} \\ \underline{0.350}_{\pm 0.002} \\ \underline{0.360}_{\pm 0.002} \\ \underline{0.402}_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.396_{\pm 0.017} \\ 0.413_{\pm 0.010} \\ 0.414_{\pm 0.002} \\ 0.424_{\pm 0.009} \end{array}$	$\begin{array}{c} 0.308_{\pm 0.003} \\ 0.352_{\pm 0.004} \\ 0.360_{\pm 0.002} \\ 0.409_{\pm 0.006} \end{array}$	1.549 3.792 4.215 3.656	0.332 0.426 0.477 0.453	0.332 0.407 0.400 0.412	0.645 0.788 0.907 0.963	2.116 4.315 1.124 3.188	
ETTm1	96 192 336 720	$\begin{array}{c} 0.329_{\pm 0.001} \\ 0.353_{\pm 0.006} \\ 0.382_{\pm 0.001} \\ 0.429_{\pm 0.000} \end{array}$	$\begin{array}{c} \underline{0.327}_{\pm 0.002} \\ \underline{0.356}_{\pm 0.004} \\ \underline{0.387}_{\pm 0.004} \\ \underline{0.441}_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.384_{\pm 0.022} \\ 0.400_{\pm 0.026} \\ 0.461_{\pm 0.017} \\ 0.463_{\pm 0.046} \end{array}$	$\begin{array}{c} 0.336_{\pm 0.004} \\ 0.362_{\pm 0.006} \\ 0.391_{\pm 0.003} \\ 0.450_{\pm 0.006} \end{array}$	0.626 0.725 1.005 1.133	0.510 0.514 0.510 0.527	0.326 0.365 0.392 0.446	0.543 0.557 0.754 0.908	0.600 0.837 1.124 1.153	
ETTm2	96 192 336 720	$\begin{array}{c} \underline{0.181}_{\pm 0.005} \\ 0.233_{\pm 0.002} \\ 0.285_{\pm 0.001} \\ 0.375_{\pm 0.001} \end{array}$	$\begin{array}{c} 0.190_{\pm 0.003} \\ \underline{0.250}_{\pm 0.002} \\ \underline{0.301}_{\pm 0.003} \\ \underline{0.389}_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.200_{\pm 0.036} \\ 0.273_{\pm 0.013} \\ 0.310_{\pm 0.022} \\ 0.426_{\pm 0.025} \end{array}$	$\begin{array}{c} 0.211_{\pm 0.014} \\ 0.252_{\pm 0.005} \\ 0.303_{\pm 0.004} \\ 0.390_{\pm 0.003} \end{array}$	0.355 0.595 1.270 3.001	0.205 0.278 0.343 0.414	0.180 0.252 0.324 0.410	0.435 0.730 1.201 3.625	0.768 0.989 1.334 3.048	
Electricity	96 192 336 720	$\begin{array}{c} 0.155_{\pm 0.002} \\ 0.168_{\pm 0.001} \\ 0.183_{\pm 0.000} \\ 0.219_{\pm 0.000} \end{array}$	$\begin{array}{c} \underline{0.171}_{\pm 0.001} \\ \underline{0.191}_{\pm 0.010} \\ \underline{0.198}_{\pm 0.006} \\ \underline{0.230}_{\pm 0.005} \end{array}$	$\begin{array}{c} 0.182_{\pm 0.006} \\ 0.202_{\pm 0.041} \\ 0.212_{\pm 0.017} \\ 0.238_{\pm 0.016} \end{array}$	$\begin{array}{c} 0.173_{\pm 0.004} \\ 0.204_{\pm 0.027} \\ 0.217_{\pm 0.018} \\ 0.242_{\pm 0.015} \end{array}$	0.304 0.327 0.333 0.351	0.196 0.211 0.214 0.236	0.186 0.197 0.213 0.233	0.386 0.386 0.378 0.376	0.258 0.266 0.280 0.283	
Exchange	96 192 336 720	$\begin{array}{c} \underline{0.161}_{\pm 0.007} \\ 0.246_{\pm 0.009} \\ 0.368_{\pm 0.006} \\ 1.003_{\pm 0.018} \end{array}$	$\begin{array}{c} 0.233_{\pm 0.016} \\ \underline{0.342}_{\pm 0.031} \\ \underline{0.474}_{\pm 0.014} \\ \underline{1.078}_{\pm 0.179} \end{array}$	$\begin{array}{c} 0.292_{\pm 0.045} \\ 0.372_{\pm 0.035} \\ 0.494_{\pm 0.033} \\ 1.323_{\pm 0.192} \end{array}$	$\begin{array}{c} 0.343_{\pm 0.082} \\ 0.342_{\pm 0.031} \\ 0.484_{\pm 0.062} \\ 1.204_{\pm 0.028} \end{array}$	0.847 1.204 1.672 2.478	0.197 0.300 0.509 1.447	0.139 0.256 0.426 1.090	- - - -	0.968 1.040 1.659 1.941	
Traffic	96 192 336 720	$\begin{array}{c} 0.407_{\pm 0.001} \\ 0.415_{\pm 0.005} \\ 0.421_{\pm 0.001} \\ 0.456_{\pm 0.003} \end{array}$	$\begin{array}{c} \underline{0.409}_{\pm 0.016} \\ \underline{0.433}_{\pm 0.009} \\ \underline{0.424}_{\pm 0.000} \\ \underline{0.488}_{\pm 0.028} \end{array}$	$\begin{array}{c} 0.420_{\pm 0.041} \\ 0.441_{\pm 0.039} \\ 0.501_{\pm 0.154} \\ 0.468_{\pm 0.021} \end{array}$	$\begin{array}{c} 0.409_{\pm 0.016} \\ 0.637_{\pm 0.444} \\ 0.747_{\pm 0.277} \\ 0.688_{\pm 0.287} \end{array}$	0.733 0.777 0.776 0.827	0.597 0.607 0.623 0.639	0.576 0.610 0.608 0.621	2.085 0.867 0.869 0.881	0.684 0.685 0.734 0.717	
Weather	96 192 336 720	$\begin{array}{c} \underline{0.197}_{\pm 0.001} \\ \underline{0.235}_{\pm 0.000} \\ \underline{0.276}_{\pm 0.001} \\ \underline{0.334}_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.189_{\pm 0.003} \\ 0.228_{\pm 0.004} \\ 0.271_{\pm 0.001} \\ 0.331_{\pm 0.001} \end{array}$	$\begin{array}{c} 0.227_{\pm 0.012} \\ 0.256_{\pm 0.018} \\ 0.278_{\pm 0.001} \\ 0.353_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.214_{\pm 0.004} \\ 0.231_{\pm 0.003} \\ 0.279_{\pm 0.007} \\ 0.343_{\pm 0.024} \end{array}$	0.354 0.419 0.583 0.916	0.249 0.325 0.351 0.415	0.238 0.275 0.339 0.389	0.896 0.622 0.739 1.004	0.458 0.658 0.797 0.869	
Overal	l MSE	improvement	5.25 %	$\boldsymbol{16.96\%}$	14.33%	72.20 %	22.65 %	12.36%	61.88%	$\textcolor{red}{\textbf{70.88\%}}$	

更平滑的损失曲面

(b) Performance across runs of SAMformer and Transformer.

对随机初始化更具有鲁棒性

06 🔷 实验3: 计算效率

Dataset	H = 96		H = 192		H =	336	H = 720		Total
2 arasor	SAMformer	TSMixer	SAMformer	TSMixer	SAMformer	TSMixer	SAMformer	TSMixer	20001
ETT	50272	124142	99520	173390	173392	247262	369904	444254	-
Exchange	50272	349344	99520	398592	173392	472464	369904	669456	-
Weather	50272	121908	99520	171156	173392	245028	369904	442020	-
Electricity	50272	280676	99520	329924	173392	403796	369904	600788	-
Traffic	50272	793424	99520	842672	173392	916544	369904	1113536	-
Avg. Ratio	6.64		3.85		2.64		1.77		3.73

- ① 更少的超参数: a single layer with one attention head (仅用了缩放点积)
- ② 超参数具有更强的通用性: 在不同数据集上的应用更加简便
- ③ 更好的注意力机制: SAMformer在特征之间强烈促进自相关

实验4: 消融实验——通道注意和时间注意

Model	Metrics	Н	ETTh1	${ m ETTh2}$	ETTm1	ETTm2	Electricity	Exchange	Traffic	Weather	Overall Improvement
Temporal Attention	MSE	336	$0.510_{\pm 0.014}$ $0.549_{\pm 0.017}$	$0.414_{\pm 0.020} \\ 0.396_{\pm 0.014}$	$\begin{array}{c} 0.542_{\pm 0.063} \\ 0.615_{\pm 0.056} \\ 0.620_{\pm 0.046} \\ 0.694_{\pm 0.055} \end{array}$	$0.394_{\pm 0.033} \\ 0.436_{\pm 0.081}$	$0.294_{\pm 0.024} \\ 0.290_{\pm 0.016}$	$0.434_{\pm 0.063} \\ 0.473_{\pm 0.014}$	$0.647_{\pm 0.131}$	$0.254_{\pm 0.001}$	12.97%
	MAE	336	$0.492_{\pm 0.010} \\ 0.517_{\pm 0.012}$	$0.443_{\pm 0.015} \\ 0.440_{\pm 0.012}$	$\begin{array}{c} 0.525_{\pm 0.040} \\ 0.566_{\pm 0.032} \\ 0.550_{\pm 0.024} \\ 0.584_{\pm 0.027} \end{array}$	$0.421_{\pm 0.019} \\ 0.443_{\pm 0.039}$	$0.385_{\pm 0.014} \\ 0.383_{\pm 0.009}$	$0.498_{\pm 0.033}$ $0.517_{\pm 0.008}$	$0.467_{\pm 0.072}$	$0.294_{\pm 0.001}$	18.09%

实验4: 消融实验——优化器的选择

在处理时间序列预测任务时, 通道注意力结合Adam优化器是一个有效且稳健的选择

(a) SGD and AdamW with wd = 1e-3

(b) AdamW with $wd \in \{1e-5, 1e-4\}$.

Oracle

Validation Loss

Transformer

 σ Reparam

Transformer + SAM

文

实验5: 邻域大小ρ的敏感性

- ① **平滑行为与稳定性**: 当ρ值足够大时,一般在0.7以上,SAMformer能够实现比TSMixer更低的MSE。
- ② 对比TSMixer的波动性:
 TSMixer由于其准线性架构,
 对p的敏感性较低。

谢谢观看

MANY THANKS!

24.6.4

