Standardized Test Prep

Properties of Real Numbers

Multiple Choice

For Exercises 1-5, choose the correct letter.

1. Which of the following statements is *not* always true?

A.
$$a + (-b) = -b + a$$

C.
$$(a + b) + (-c) = a + \lceil b + (-c) \rceil$$

B.
$$a - (-b) = (-b) - a$$

D.
$$-(-a) = a$$

2. Which pair of expressions are equivalent?

F.
$$18m \cdot 0 \text{ and } 1$$

H.
$$(12 - 5) + \pi$$
 and 7π

G.
$$6 + r + 11$$
 and $6 \cdot r \cdot 11$

I.
$$x(3 - 3)$$
 and 0

3. What property is illustrated by the equation (8 + 2) + 7 = (2 + 8) + 7?

A. Commutative Property of Addition

B. Associative Property of Addition

C. Distributive Property

D. Identity Property of Addition

4. Which expression is equivalent to $-a \cdot b$?

F.
$$a \cdot (-b)$$
 G. $b - a$

G.
$$b-a$$

H.
$$(-a)(-b)$$
 I. $-a + b$

1.
$$-a + b$$

5. Which is an example of an identity property?

$$\mathbf{A} \cdot a \cdot 0 = 0$$

$$\mathbf{R} \cdot \mathbf{r} \cdot \mathbf{1} = \mathbf{r}$$

C.
$$(-1)x = -x$$

A.
$$a \cdot 0 = 0$$
 B. $x \cdot 1 = x$ **C.** $(-1)x = -x$ **D.** $a + b = b + a$

Short Response

6. The fact that changing the grouping of addends does not change the sum is the basis of what property of real numbers?