# **VECTOR ALGEBRA**

#### 10.1 Overview

- **10.1.1** A quantity that has magnitude as well as direction is called a vector.
- **10.1.2** The unit vector in the direction of a is given by  $\frac{a}{|a|}$  and is represented by a.
- **10.1.3** Position vector of a point P (x, y, z) is given as  $OP = x\hat{i} + y\hat{j} + z\hat{k}$  and its magnitude as  $|OP| = \sqrt{x^2 + y^2 + z^2}$ , where O is the origin.
- **10.1.4** The scalar components of a vector are its direction ratios, and represent its projections along the respective axes.
- **10.1.5** The magnitude r, direction ratios (a, b, c) and direction cosines (l, m, n) of any vector are related as:

$$l = \frac{a}{r}, m = \frac{b}{r}, n = \frac{c}{r}$$

- 10.1.6 The sum of the vectors representing the three sides of a triangle taken in order is 0
- **10.1.7** The triangle law of vector addition states that "If two vectors are represented by two sides of a triangle taken in order, then their sum or resultant is given by the third side taken in opposite order".

## 10.1.8 Scalar multiplication

If a is a given vector and  $\lambda$  a scalar, then  $\lambda a$  is a vector whose magnitude is  $|\lambda a| = |\lambda|$  |a|. The direction of  $\lambda a$  is same as that of a if  $\lambda$  is positive and, opposite to that of a if  $\lambda$  is negative.

#### 10.1.9 Vector joining two points

If  $P_1(x_1, y_1, z_1)$  and  $P_2(x_2, y_2, z_2)$  are any two points, then

$$P_1P_2 = (x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j} + (z_2 - z_1) \hat{k}$$

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

#### 10.1.10 Section formula

The position vector of a point R dividing the line segment joining the points P and Q whose position vectors are a and b

- (i) in the ratio m: n internally, is given by  $\frac{na + mb}{m+n}$
- (ii) in the ratio m: n externally, is given by  $\frac{mb na}{m-n}$
- **10.1.11** Projection of a along b is  $\frac{a \cdot b}{|b|}$  and the Projection vector of a along b

$$\operatorname{is}\left(\frac{a\cdot b}{|\overline{b}|}\right)b$$
.

#### 10.1.12 Scalar or dot product

The scalar or dot product of two given vectors a and b having an angle  $\theta$  between them is defined as

$$a \cdot b = |a| |b| \cos \theta$$

#### 10.1.13 Vector or cross product

The cross product of two vectors a and b having angle  $\theta$  between them is given as  $a \times b = |a| |b| \sin \theta \hat{n}$ ,

where  $\hat{n}$  is a unit vector perpendicular to the plane containing a and b and a, b,  $\hat{n}$  form a right handed system.

**10.1.14** If  $a = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$  and  $b = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$  are two vectors and  $\lambda$  is any scalar, then

$$a + b = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$$

$$\lambda \ a = (\lambda \ a_1)\hat{i} + (\lambda \ a_2)\hat{j} + (\lambda \ a_3)\hat{k}$$

$$a \cdot b = a_1 \ b_1 + a_2 \ b_2 + a_3 \ b_3$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \end{vmatrix}$$

$$a \times b = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = (b_1 c_2 - b_2 c_1) \hat{i} + (a_2 c_1 - c_1 c_2) \hat{j} + (a_1 b_b - a_2 b_1) \hat{k}$$

Angle between two vectors a and b is given by

$$\cos \theta = \frac{a \cdot b}{|a| |b|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

# 10.2 Solved Examples

## **Short Answer (S.A.)**

**Example 1** Find the unit vector in the direction of the sum of the vectors  $a = 2\hat{i} - \hat{j} + 2\hat{k}$  and  $b = -\hat{i} + \hat{j} + 3\hat{k}$ .

**Solution** Let c denote the sum of a and b. We have

$$c = (2\hat{i} - \hat{j} + 2\hat{k}) + (-\hat{i} + \hat{j} + 3\hat{k}) = \hat{i} + 5\hat{k}$$

Now 
$$|c| = \sqrt{1^2 + 5^2} = \sqrt{26}$$
.

Thus, the required unit vector is  $c = \frac{c}{|c|} = \frac{1}{\sqrt{26}} (i + 5k) = \frac{1}{\sqrt{26}} i + \frac{5}{\sqrt{26}} k$ .

**Example 2** Find a vector of magnitude 11 in the direction opposite to that of PQ, where P and Q are the points (1, 3, 2) and (-1, 0, 8), respectively.

**Solution** The vector with initial point P (1, 3, 2) and terminal point Q (-1, 0, 8) is given by

$$PQ = (-1 - 1) \hat{i} + (0 - 3) \hat{j} + (8 - 2) \hat{k} = -2 \hat{i} - 3 \hat{j} + 6 \hat{k}$$

Thus  $QP = -PQ = 2\hat{i} + 3\hat{j} - 6\hat{k}$ 

$$\Rightarrow |QP| = \sqrt{2^2 + 3^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7$$

Therefore, unit vector in the direction of QP is given by

$$QP = \frac{QP}{|QP|} = \frac{2\hat{i} + 3\hat{j} - 6\hat{k}}{7}$$

Hence, the required vector of magnitude 11 in direction of QP is

11 QP = 11 
$$\frac{2\hat{i}+3\hat{j}-6\hat{k}}{7} = \frac{22}{7}\hat{i}+\frac{33}{7}\hat{j}-\frac{66}{7}\hat{k}$$
.

**Example 3** Find the position vector of a point R which divides the line joining the two points P and Q with position vectors  $OP = 2 \ a + b$  and  $OQ = a - 2 \ b$ , respectively, in the ratio 1:2, (i) internally and (ii) externally.

**Solution** (i) The position vector of the point R dividing the join of P and Q internally in the ratio 1:2 is given by

$$OR = \frac{2(2a+b)+1(a-2b)}{1+2} = \frac{5a}{3}$$
.

(ii) The position vector of the point R' dividing the join of P and Q in the ratio 1:2 externally is given by

$$OR' = \frac{2(2a + b) - 1(a - 2b)}{2 - 1} = 3a + 4b$$
.

**Example 4** If the points (-1, -1, 2), (2, m, 5) and (3, 11, 6) are collinear, find the value of m.

Solution Let the given points be A (-1, -1, 2), B (2, m, 5) and C (3, 11, 6). Then

AB = 
$$(2+1)\hat{i} + (m+1)\hat{j} + (5-2)\hat{k} = 3\hat{i} + (m+1)\hat{j} + 3\hat{k}$$

and 
$$AC = (3+1)\hat{i} + (11+1)\hat{j} + (6-2)\hat{k} = 4\hat{i} + 12\hat{j} + 4\hat{k}$$
.

Since A, B, C, are collinear, we have  $AB = \lambda AC$ , i.e.,

$$(3\hat{i} + (m+1)\hat{j} + 3\hat{k}) = \lambda(4\hat{i} + 12\hat{j} + 4\hat{k})$$

$$\Rightarrow$$
 3 = 4  $\lambda$  and  $m + 1 = 12 \lambda$ 

m = 8. Therefore

**Example 5** Find a vector r of magnitude  $3\sqrt{2}$  units which makes an angle of  $\frac{\pi}{4}$  and

 $\frac{\pi}{2}$  with y and z - axes, respectively.

Solution Here  $m = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$  and  $n = \cos \frac{\pi}{2} = 0$ .

Therefore,  $l^2 + m^2 + n^2 = 1$  $l^2 + \frac{1}{2} + 0 = 1$ 

$$l^2 + \frac{1}{2} + 0 = 1$$

$$\Rightarrow \qquad l = \pm \frac{1}{\sqrt{2}}$$

Hence, the required vector  $r = 3\sqrt{2} (l\hat{i} + m\hat{j} + n\hat{k})$  is given by

$$r = 3\sqrt{2} \, \left( \pm \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + 0 \hat{k} \right) = r = \pm 3 \hat{i} + 3 \hat{j} \, .$$

**Example 6** If  $a = 2\hat{i} - \hat{j} + \hat{k}$ ,  $b = \hat{i} + \hat{j} - 2\hat{k}$  and  $c = \hat{i} + 3\hat{j} - \hat{k}$ , find  $\lambda$  such that a is perpendicular to  $\lambda b + c$ .

**Solution** We have

$$\lambda b + c = \lambda (\hat{i} + \hat{j} - 2\hat{k}) + (\hat{i} + 3\hat{j} - \hat{k})$$

$$= (\lambda + 1) \hat{i} + (\lambda + 3)\hat{j} - (2\lambda + 1)\hat{k}$$

Since 
$$a \perp (\lambda b + c)$$
,  $a \cdot (\lambda b + c) = 0$   

$$\Rightarrow (2 \hat{i} - \hat{j} + \hat{k}) \cdot [(\lambda + 1) \hat{i} + (\lambda + 3) \hat{j} - (2\lambda + 1) \hat{k}] = 0$$

$$\Rightarrow 2 (\lambda + 1) - (\lambda + 3) - (2\lambda + 1) = 0$$

$$\Rightarrow \lambda = -2.$$

**Example 7** Find all vectors of magnitude  $10\sqrt{3}$  that are perpendicular to the plane of  $\hat{i} + 2\hat{j} + \hat{k}$  and  $-\hat{i} + 3\hat{j} + 4\hat{k}$ .

Solution Let  $a = \hat{i} + 2\hat{j} + \hat{k}$  and  $b = -\hat{i} + 3\hat{j} + 4\hat{k}$ . Then

$$a \times b = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ -1 & 3 & 4 \end{vmatrix} = \hat{i}(8-3) - \hat{j}(4+1) + \hat{k}(3+2) = 5\hat{i} - 5\hat{j} + 5\hat{k}$$

$$\Rightarrow |a \times b| = \sqrt{(5)^2 + (-5)^2 + (5)^2} = \sqrt{3(5)^2} = 5\sqrt{3}.$$

Therefore, unit vector perpendicular to the plane of a and b is given by

$$\frac{a \times b}{|a \times b|} = \frac{5\hat{i} - 5\hat{j} + 5\hat{k}}{5\sqrt{3}}$$

Hence, vectors of magnitude of  $10\sqrt{3}$  that are perpendicular to plane of a and b

are 
$$\pm 10\sqrt{3} \frac{5\hat{i} - 5\hat{j} + 5\hat{k}}{5\sqrt{3}}$$
, i.e.,  $\pm 10(\hat{i} - \hat{j} + \hat{k})$ .

#### Long Answer (L.A.)

**Example 8** Using vectors, prove that cos(A - B) = cosA cosB + sinA sinB.

**Solution** Let OP and OQ be unit vectors making angles A and B, respectively, with positive direction of x-axis. Then  $\angle QOP = A - B$  [Fig. 10.1]

We know OP = OM + MP= $\hat{i}\cos A + \hat{j}\sin A$  and OQ = ON + NQ= $\hat{i}\cos B + \hat{j}\sin B$ .

By definition OP.  $OQ = |OP| |OQ| \cos (A-B)$ 

$$= \cos (A - B) \qquad \dots (1) \quad \left( |OP| = 1 = |OQ| \right)$$

In terms of components, we have

OP. OQ = 
$$(\hat{i}\cos A + \hat{j}\sin A).(\hat{i}\cos B + \hat{j}\sin B)$$

$$= \cos A \cos B + \sin A \sin B \qquad \dots (2)$$

From (1) and (2), we get

cos(A - B) = cosA cosB + sinA sinB.



**Example 9** Prove that in a  $\triangle$  ABC,  $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ , where a, b, c represent the magnitudes of the sides opposite to vertices A, B, C, respectively.

**Solution** Let the three sides of the triangle BC, CA and AB be represented by a,b and c, respectively [Fig. 10.2].

We have 
$$a+b+c=0$$
. i.e.,  $a+b=-c$ 

which pre cross multiplying by a, and

post cross multiplying by b, gives

$$a \times b = c \times a$$

and

$$a \times b = b \times c$$

respectively. Therefore,

$$a \times b = b \times c = c \times a$$



Fig. 10.2

$$\Rightarrow \qquad |a \times b| = |b \times c| = |c \times a|$$

$$\Rightarrow |a|b|\sin(\pi - C) = |b||c|\sin(\pi - A) = |c||a|\sin(\pi - B)$$

$$\Rightarrow$$
  $ab \sin C = bc \sin A = ca \sin B$ 

Dividing by *abc*, we get

$$\frac{\sin C}{c} = \frac{\sin A}{a} = \frac{\sin B}{b}$$
 i.e.  $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ 

# **Objective Type Questions**

Choose the correct answer from the given four options in each of the Examples 10 to 21.

**Example 10** The magnitude of the vector  $6\hat{i} + 2\hat{j} + 3\hat{k}$  is

#### 212 MATHEMATICS

(A) 5 (B) 7 (C) 12 (D) 1

**Solution** (B) is the correct answer.

**Example 11** The position vector of the point which divides the join of points with position vectors a+b and 2a-b in the ratio 1:2 is

(A)  $\frac{3a+2b}{3}$  (B) a (C)  $\frac{5a-b}{3}$  (D)  $\frac{4a+b}{3}$ 

**Solution** (D) is the correct answer. Applying section formula the position vector of the required point is

$$\frac{2(a+b)+1(2a-b)}{2+1} = \frac{4a+b}{3}$$

**Example 12** The vector with initial point P (2, -3, 5) and terminal point Q(3, -4, 7) is

(A)  $\hat{i} - \hat{j} + 2\hat{k}$  (B)  $5\hat{i} - 7\hat{j} + 12\hat{k}$ 

(C)  $-\hat{i} + \hat{j} - 2\hat{k}$  (D) None of these

**Solution** (A) is the correct answer.

**Example 13** The angle between the vectors  $\hat{i} - \hat{j}$  and  $\hat{j} - \hat{k}$  is

(A)  $\frac{\pi}{3}$  (B)  $\frac{2\pi}{3}$  (C)  $\frac{-\pi}{3}$  (D)  $\frac{5\pi}{6}$ 

**Solution** (B) is the correct answer. Apply the formula  $\cos \theta = \frac{a.b}{|a|.|b|}$ .

**Example 14** The value of  $\lambda$  for which the two vectors  $2\hat{i} - \hat{j} + 2\hat{k}$  and  $3\hat{i} + \lambda\hat{j} + \hat{k}$  are perpendicular is

are perpendicular is
(A) 2 (B) 4 (C) 6 (D) 8

**Solution** (D) is the correct answer.

**Example 15** The area of the parallelogram whose adjacent sides are  $\hat{i} + \hat{k}$  and  $2\hat{i} + \hat{j} + \hat{k}$  is

(A)  $\sqrt{2}$  (B)  $\sqrt{3}$  (C) 3 (D) 4

**Solution** (B) is the correct answer. Area of the parallelogram whose adjacent sides are a and b is  $|a \times \hat{b}|$ .

**Example 16** If |a| = 8, |b| = 3 and  $|a \times b| = 12$ , then value of a.b is

(A)  $6\sqrt{3}$  (B)  $8\sqrt{3}$  (C)  $12\sqrt{3}$  (D) None of these

**Solution** (C) is the correct answer. Using the formula  $|a \times b| = |a| \cdot |b| |\sin \theta|$ , we get

$$\theta = \pm \frac{\pi}{6}$$
.

Therefore,  $a.b = |a|.|b|\cos\theta = 8 \times 3 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$ .

**Example 17** The 2 vectors  $\hat{j} + \hat{k}$  and  $3\hat{i} - \hat{j} + 4\hat{k}$  represents the two sides AB and AC, respectively of a  $\triangle$ ABC. The length of the median through A is

(A)  $\frac{\sqrt{34}}{2}$  (B)  $\frac{\sqrt{48}}{2}$  (C)  $\sqrt{18}$  (D) None of these

Solution (A) is the correct answer. Median AD is given by

$$|AD| = \frac{1}{2} |3\hat{i} + \hat{j} + 5\hat{k}| = \frac{\sqrt{34}}{2}$$

**Example 18** The projection of vector  $a=2\hat{i}-\hat{j}+\hat{k}$  along  $b=\hat{i}+2\hat{j}+2\hat{k}$  is

#### 214 MATHEMATICS

(A) 
$$\frac{2}{3}$$

(B) 
$$\frac{1}{3}$$

(D) 
$$\sqrt{6}$$

**Solution** (A) is the correct answer. Projection of a vector a on b is

$$\frac{a.b}{\left|b\right|} = \frac{(2\hat{i} - \hat{j} + \hat{k}).(\hat{i} + 2\hat{j} + 2\hat{k})}{\sqrt{1 + 4 + 4}} = \frac{2}{3}.$$

**Example 19** If a and b are unit vectors, then what is the angle between a and b for  $\sqrt{3}a-b$  to be a unit vector?

$$(B)$$
  $45^{\circ}$ 

**Solution** (A) is the correct answer. We have

$$(\sqrt{3}a-b)^2 = 3a^2 + b^2 - 2\sqrt{3}a.b$$

$$\Rightarrow a.b = \frac{\sqrt{3}}{2} \Rightarrow \cos\theta = \frac{\sqrt{3}}{2} \quad \theta = 30^{\circ}.$$

**Example 20** The unit vector perpendicular to the vectors  $\hat{i} - \hat{j}$  and  $\hat{i} + \hat{j}$  forming a right handed system is

(B) 
$$-ik$$

(C) 
$$\frac{\hat{i} - \hat{j}}{\sqrt{2}}$$

(B) 
$$-\hat{k}$$
 (C)  $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$  (D)  $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$ 

Solution (A) is the correct answer. Required unit vector is  $\frac{\left(\hat{i}-\hat{j}\right)\times\left(\hat{i}+\hat{j}\right)}{\left|\left(\hat{i}-\hat{j}\right)\times\left(\hat{i}+\hat{j}\right)\right|} = \frac{2\hat{k}}{2} = \hat{k}.$ 

**Example 21** If |a|=3 and  $-1 \le k \le 2$ , then |ka| lies in the interval

(B) 
$$[-3, 6]$$

**Solution** (A) is the correct answer. The smallest value of |ka| will exist at numerically smallest value of k, i.e., at k = 0, which gives  $|ka| = |k| |a| = 0 \times 3 = 0$ 

The numerically greatest value of k is 2 at which |ka|=6.

#### 10.3 EXERCISE

#### **Short Answer (S.A.)**

- 1. Find the unit vector in the direction of sum of vectors  $a = 2\hat{i} \hat{j} + \hat{k}$  and  $b = 2\hat{j} + \hat{k}$ .
- 2. If  $a = \hat{i} + \hat{j} + 2\hat{k}$  and  $b = 2\hat{i} + \hat{j} 2\hat{k}$ , find the unit vector in the direction of (i) 6b (ii) 2a - b
- 3. Find a unit vector in the direction of PQ, where P and Q have co-ordinates (5, 0, 8) and (3, 3, 2), respectively.
- 4. If a and b are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.
- 5. Using vectors, find the value of k such that the points (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.
- 6. A vector r is inclined at equal angles to the three axes. If the magnitude of r is  $2\sqrt{3}$  units, find r.
- 7. A vector r has magnitude 14 and direction ratios 2, 3, 6. Find the direction cosines and components of r, given that r makes an acute angle with x-axis.
- 8. Find a vector of magnitude 6, which is perpendicular to both the vectors  $2\hat{i} \hat{j} + 2\hat{k}$  and  $4\hat{i} \hat{j} + 3\hat{k}$ .
- **9.** Find the angle between the vectors  $2\hat{i} \hat{j} + \hat{k}$  and  $3\hat{i} + 4\hat{j} \hat{k}$ .
- 10. If a+b+c=0, show that  $a\times b=b\times c=c\times a$ . Interpret the result geometrically?
- 11. Find the sine of the angle between the vectors  $a = 3\hat{i} + \hat{j} + 2\hat{k}$  and  $b = 2\hat{i} 2\hat{j} + 4\hat{k}$ .

- 12. If A, B, C, D are the points with position vectors  $\hat{i} + \hat{j} \hat{k}$ ,  $2\hat{i} \hat{j} + 3\hat{k}$ ,  $2\hat{i} 3\hat{k}$ ,  $3\hat{i} 2\hat{j} + \hat{k}$ , respectively, find the projection of AB along CD.
- 13. Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).
- **14.** Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

#### Long Answer (L.A.)

- 15. Prove that in any triangle ABC,  $\cos A = \frac{b^2 + c^2 a^2}{2bc}$ , where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.
- 16. If a,b,c determine the vertices of a triangle, show that  $\frac{1}{2}b\times c+c\times a+a\times b$  gives the vector area of the triangle. Hence deduce the condition that the three points a,b,c are collinear. Also find the unit vector normal to the plane of the triangle.
- 17. Show that area of the parallelogram whose diagonals are given by a and b is  $\frac{|a \times b|}{2}$ . Also find the area of the parallelogram whose diagonals are  $2\hat{i} \hat{j} + \hat{k}$  and  $\hat{i} + 3\hat{j} \hat{k}$ .
- **18.** If  $a = \hat{i} + \hat{j} + \hat{k}$  and  $b = \hat{j} \hat{k}$ , find a vector c such that  $a \times c = b$  and  $a \cdot c = 3$ .

#### **Objective Type Questions**

Choose the correct answer from the given four options in each of the Exercises from 19 to 33 (M.C.Q)

19. The vector in the direction of the vector  $\hat{i} - 2\hat{j} + 2\hat{k}$  that has magnitude 9 is

(A) 
$$\hat{i} - 2\hat{j} + 2\hat{k}$$
 (B)  $\frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$ 

(C) 
$$3(\hat{i}-2\hat{j}+2\hat{k})$$
 (D)  $9(\hat{i}-2\hat{j}+2\hat{k})$ 

| 20. | The position vector of the point which divides the join of points $2a-3b$ and $a+$ | b |
|-----|------------------------------------------------------------------------------------|---|
|     | in the ratio 3:1 is                                                                |   |

(A) 
$$\frac{3a-2b}{2}$$
 (B)  $\frac{7a-8b}{4}$  (C)  $\frac{3a}{4}$  (D)  $\frac{5a}{4}$ 

21. The vector having initial and terminal points as (2, 5, 0) and (-3, 7, 4), respectively is

(A) 
$$-\hat{i} + 12\hat{j} + 4\hat{k}$$
 (B)  $5\hat{i} + 2\hat{j} - 4\hat{k}$ 

(C) 
$$-5\hat{i} + 2\hat{j} + 4\hat{k}$$
 (D)  $\hat{i} + \hat{j} + \hat{k}$ 

22. The angle between two vectors a and b with magnitudes  $\sqrt{3}$  and 4, respectively, and  $a.b = 2\sqrt{3}$  is

(A) 
$$\frac{\pi}{6}$$
 (B)  $\frac{\pi}{3}$  (C)  $\frac{\pi}{2}$  (D)  $\frac{5\pi}{2}$ 

23. Find the value of  $\lambda$  such that the vectors  $a = 2\hat{i} + \lambda \hat{j} + \hat{k}$  and  $b = \hat{i} + 2\hat{j} + 3\hat{k}$  are orthogonal

(A) 0 (B) 1 (C) 
$$\frac{3}{2}$$
 (D)  $-\frac{5}{2}$ 

24. The value of  $\lambda$  for which the vectors  $3\hat{i} - 6\hat{j} + \hat{k}$  and  $2\hat{i} - 4\hat{j} + \lambda\hat{k}$  are parallel is

(A) 
$$\frac{2}{3}$$
 (B)  $\frac{3}{2}$  (C)  $\frac{5}{2}$  (D)  $\frac{2}{5}$ 

25. The vectors from origin to the points A and B are  $a = 2\hat{i} - 3\hat{j} + 2\hat{k}$  and  $b = 2\hat{i} + 3\hat{j} + \hat{k}$ , respectively, then the area of triangle OAB is

(A) 340 (B) 
$$\sqrt{25}$$
 (C)  $\sqrt{229}$  (D)  $\frac{1}{2}\sqrt{229}$ 

| 26.        | For any vector $a$ , the value of $(a \times \hat{i})^2 + (a \times \hat{j})^2 + (a \times \hat{k})^2$ is equal to                                    |                                  |           |                   |                  |                   |           |                              |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|-------------------|------------------|-------------------|-----------|------------------------------|--|--|
|            | (A)                                                                                                                                                   | $a^2$                            | (B)       | $3a^2$            | (C)              | $4a^2$            | (D)       | $2a^2$                       |  |  |
| 27.        | If $ a  = 10$ , $ b  = 2$ and $a.b = 12$ , then value of $ a \times b $ is                                                                            |                                  |           |                   |                  |                   |           |                              |  |  |
|            | (A)                                                                                                                                                   | 5                                | (B)       | 10                | (C)              | 14                | (D)       | 16                           |  |  |
| 28.        | The vectors $\lambda \hat{i} + \hat{j} + 2\hat{k}$ , $\hat{i} + \lambda \hat{j} - \hat{k}$ and $2\hat{i} - \hat{j} + \lambda \hat{k}$ are coplanar if |                                  |           |                   |                  |                   |           |                              |  |  |
|            | (A)                                                                                                                                                   | $\lambda = -2$                   | (B)       | $\lambda = 0$     | (C)              | $\lambda = 1$     | (D)       | $\lambda = -1$               |  |  |
| 29.        | If $a,b,c$                                                                                                                                            | are unit vectors so              | uch that  | a+b+c             | =0, then         | the valu          | e of a.b  | + <i>b.c</i> + <i>c.a</i> is |  |  |
|            | (A)                                                                                                                                                   | 1                                | (B)       | 3                 | (C)              | $-\frac{3}{2}$    | (D) No    | one of these                 |  |  |
| 30.        | Projection                                                                                                                                            | n vector of $a$ on               | b is      |                   |                  |                   |           |                              |  |  |
|            | (A)                                                                                                                                                   | $\frac{a.b}{\left b\right ^2}$ b | (B)       | $\frac{a.b}{ b }$ | (C)              | $\frac{a.b}{ a }$ | (D)       | $\frac{a.b}{ a ^2} \hat{b}$  |  |  |
| 31.        | If $a,b,c$                                                                                                                                            | are three vecto                  | rs such   | that $a+$         | b + c = 0        | and $ a $         | =2,  b    | =3,  c =5,                   |  |  |
|            | then value                                                                                                                                            | $e 	ext{ of } a.b+b.c+c.$        | a is      |                   |                  |                   |           |                              |  |  |
|            | (A)                                                                                                                                                   | 0                                | (B)       | 1                 | (C)              | <b>- 19</b>       | (D)       | 38                           |  |  |
| <b>32.</b> | If $ a =4$                                                                                                                                            | and $-3 \le \lambda \le 2$ , the | hen the r | range of          | $ \lambda a $ is |                   |           |                              |  |  |
|            | (A)                                                                                                                                                   | [0, 8]                           | (B)       | [- 12, 8          | 8] (C)           | [0, 12]           | (D)       | [8, 12]                      |  |  |
| 33.        | The numb                                                                                                                                              | per of vectors of u              | unit leng | th perpe          | ndicular         | to the ve         | ectors a  | $=2\hat{i}+\hat{j}+2\hat{k}$ |  |  |
|            | and $b = \hat{j}$                                                                                                                                     | $+\hat{k}$ is                    |           |                   |                  |                   |           |                              |  |  |
|            | (A)                                                                                                                                                   | one                              | (B)       | two               | (C)              | three             | (D)       | infinite                     |  |  |
| Fill i     | n the blank                                                                                                                                           | ks in each of the                | Exercise  | s from 3          | 4 to 40.         |                   |           |                              |  |  |
| 34.        | The vector                                                                                                                                            | or $a + b$ bisect                | s the an  | gle betw          | een the          | non-col           | linear ve | ectors a and                 |  |  |
|            | <i>b</i> if                                                                                                                                           |                                  |           |                   |                  |                   |           |                              |  |  |

- 35. If r.a=0, r.b=0, and r.c=0 for some non-zero vector r, then the value of  $a.(b \times c)$  is \_\_\_\_\_\_
- 36. The vectors  $a=3i-2j+2\hat{k}$  and b=-i-2k are the adjacent sides of a parallelogram. The acute angle between its diagonals is \_\_\_\_\_\_.
- 37. The values of k for which |ka| < |a| and  $ka + \frac{1}{2}a$  is parallel to a holds true are \_\_\_\_\_.
- 38. The value of the expression  $|a \times b|^2 + (a.b)^2$  is \_\_\_\_\_.
- **39.** If  $|a \times b|^2 + |a.b|^2 = 144$  and |a| = 4, then |b| is equal to \_\_\_\_\_.
- **40.** If a is any non-zero vector, then  $(a.\hat{i})\hat{i} + (a.\hat{j})\hat{j} + (a.\hat{k})\hat{k}$  equals \_\_\_\_\_.

State True or False in each of the following Exercises.

- **41.** If |a| = |b|, then necessarily it implies  $a = \pm b$ .
- **42.** Position vector of a point P is a vector whose initial point is origin.
- **43.** If |a+b| = |a-b|, then the vectors a and b are orthogonal.
- 44. The formula  $(a+b)^2 = a^2 + b^2 + 2a \times b$  is valid for non-zero vectors a and b.
- **45.** If a and b are adjacent sides of a rhombus, then  $a \cdot b = 0$ .