Colles - Semaine 4

Exercice 1

Soient F et G deux sous-ensembles de \mathbb{R}^3 définis par :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\} \text{ et } G = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y + z = 0\}$$

- 1. Montrer que F et G sont deux espaces vectoriels.
- 2. Déterminer une base de F et une base de G.
- 3. Déterminer $F \cap G$.
- 4. Soit un vecteur $(a, b, c) \in \mathbb{R}^3$.
 - a) Montrer qu'il existe u dans F et v dans G tels que (a, b, c) = u + v.
 - b) Les vecteurs u et v sont-ils uniques?

Exercice 2

Soit
$$F = \{(x, y, z) \in \mathbb{R}^3 / x = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 / x + y - 3z = 0\}$.

- 1. Montrer que F et G sont deux espaces vectoriels réels.
- 2. Déterminer une base de F et une base de G.
- 3. La famille obtenue en réunissant les vecteurs de la base de F et ceux de la base de G obtenues à la question précédente est-elle une famille libre?
- 4. Déterminer l'espace vectoriel $F \cap G$.

Exercice 3

On considère les sous-ensembles $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$.

- 1. Montrer que F et G sont deux sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Déterminer la dimension de F et celle de G.
- 3. Déterminer $F \cap G$.
- 4. Montrer que tout vecteur de \mathbb{R}^3 peut s'écrire de manière unique comme somme d'un vecteur de F et d'un vecteur de G.
- 5. Que peut-on en déduire de F+G? En déduire une base de \mathbb{R}^3 différente de la base canonique.