Contents

1		Random Variables, Probability Density Functions
	1.1	Introduction
	1.2	Random Phenomena
	1.3	Probability Measure
	1.4	Random variables, Probability density functions (pdfs)
	1.5	Some common pdfs, Moments of a pdf
2		Estimation, Hypotheses Testing
	2.1	Sample statistics
	2.2	Estimation
	2.3	Hypothesis testing

RANDOM PHENOMENA AND PROBABILITY

Random Phenomena

- Deterministic phenomenon: Phenomenon whose outcome can be predicted with a very high degree of confidence
 - Example: Age of a person (using date of birth stated in Aadhaar card)
- Stochastic phenomenon: Phenomenon which can have many possible outcomes for same experimental conditions. Outcome can be predicted with limited confidence
 - Example: Outcome of a coin toss

Data Analytics

Characterizing random phenomena

- Sources of error in observed outcomes
 - Lack of knowledge of generating process (model error)
 - Errors in sensors used for observing outcomes (measurement error)
- Types of random phenomena
 - Discrete: Outcomes are finite
 - Coin toss : {H, T}
 - Throw of a dice : {1, 2, 3, 4, 5, 6}
 - Continuous: Infinite number of outcomes
 - Body temperature measurement in deg F

Sample space, events (discrete phenomena)

- Sample space
 - Set of all possible outcomes of a random phenomenon
 - Coin Toss : $S = \{H, T\}$
 - Two coin tosses: S = {HH, HT, TH, TT}
- Event
 - Subset of the sample space
 - Occurrence of a head in first toss of a two coin toss experiment A = {HH, HT}
 - Outcomes of a sample space are elementary events

Probability Measure

- Probability measure is a function that assigns a real value to every outcome of a random phenomena which satisfies following axioms
 - $0 \le P(A) \le 1$ (Probabilities are non-negative and less than 1 for any event A)
 - P(S) = 1 (one of the outcomes should occur)
 - For two mutually exclusive events A and B
 - $P(A \cup B) = P(A) + P(B)$
- Interpretation of probability as a frequency:
 - Conduct an experiment (coin toss) N times. If N_A is number of times outcome A occurs then $P(A) = N_A/N$

Exclusive and Independent Events

Independent events

- Two events are independent if occurrence of one has no influence on occurrence of other
 - Formally A and B are independent events if and only if $P(A \cap B) = P(A) \times P(B)$
 - In a two coin toss experiment, the occurrence of head in second toss can be assumed to be independent of occurrence of head or tail in first toss, then $P(HH) = P(H \text{ in first toss}) \times P(H \text{ in second toss}) = 0.5 \times 0.5 = 0.25$

Mutually exclusive events

- Two events are mutually exclusive if occurrence of one implies other event does not occur
 - In a two coin toss experiment, events {HH} and {HT} are mutually exclusive \Rightarrow P(HH and HT) = P(HH) + P(HT) = 0.25 + 0.25 = 0.5

Some rules of probability

 Following important probability rules can be proved using Venn diagrams

$$S = \square$$
 $A = \bigcirc$ $B = \bigcirc$ All outcomes are equally likely

If A^c is the complement of event A^c , $P(A^c) = P(S) - P(A) = 1 - P(A) = 0.5$

If B
$$\subseteq$$
 A, P(B) \leq P(A); 0.25 $<$ 0.5

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.5 + 0.5 - 0.5*0.5 = 0.75

Conditional Probability

- If two events A and B are not independent, then information available about the outcome of event A can influence the predictability of event B
- Conditional probability
 - $P(B \mid A) = P(A \cap B)/P(A)$ if P(A) > 0
 - $P(A \mid B)P(B) = P(B \mid A)P(A)$ Bayes formula
 - $P(A) = P(A \mid B)P(B) + P(A \mid B^c)P(B^c)$
- Example: two (fair) coin toss experiment
 - Event A: First toss is head = {HT, HH}
 - Event B : Two successive heads ={HH}
 - Pr(B) = 0.25 (no information)
 - Given event A has occurred $Pr(B|A) = 0.5 = 0.25/0.5 = P(A \cap B)/P(A)$

Example

In a manufacturing process 1000 parts are produced of which 50 are defective. We randomly take a part from the day's production

- Outcomes: {A=Defective part B = Non-defective part}
- P(A) = 50/1000, P(B) = 950/1000
- Suppose we draw a second part without replacing the first part
 - Outcomes: {C = Defective part D = Non-defective part}
 - Pr(C) = 50/1000 (no information about outcome of first draw)
 - $P(C \mid A) = 49/999$ (given information that first draw is defective)
 - $Pr(C \mid B) = 50/999$ (given information that first draw is non-defective)
 - P(C) = 49/999*50/1000 + 50/999*950/1000 = 50/1000
 - $P(A \mid C) = P(A \cap C)/P(C) = P(C \mid A)P(A)/P(C) = 49/999$