Notes

September 22, 2014

cont'd example from last time

 $a_{n+1} = 1 + \frac{1}{a_n}$ and is fibanocci sequence. terms are back and forth but converging. it is clear that $a_n > 1 \forall n$.

$$|a_{n+1} - a_n| = \left| 1 + \frac{1}{a_n} - \left(1 + \frac{1}{a_{n-1}} \right) \right|$$

$$= \left| \frac{1}{a_n} - \frac{1}{a_{n-1}} \right|$$

$$= \frac{|a_n - a_{n-1}|}{a_n \cdot a_{n-1}} \text{ with } a_n > 1 \text{ so}$$

$$|a_{n+1} - a_n| < |a_n - a_{n-1}|$$

does this mean we have a limit? contractive sequence has the property $|a_{n+1} - a_n| < r|a_n - a_{n-1}|$ wher $r \in (0,1)$

no, it is possible in principle that $\lim |a_{n+1}-a_n|=b>0$ and that would mean that $\{a_n\}$ is not convergent

$$a_n a_{n+1} = a_n \left(1 + \frac{1}{a_n} = a_n + 1 > 2\right)$$
$$|a_{n+1} - a_n| < \frac{1}{2} |a_n - a_{n-1}|$$

so it is convergent because $\frac{1}{2} \in (0,1)$

2.8.D

pick a sequence of ε , $\varepsilon_n = \{\frac{1}{2^n}\}$. given $\varepsilon_1 = \frac{1}{2}$ there exists $N+1 \in \mathbb{N}$ such that $|a_m-a_n < \varepsilon_1$ if $m,n \geq N_1$, $\varepsilon_2 = \frac{1}{4}, \exists N_2$ st $|a_m-a_n| < \varepsilon_2$ and so on. so $|a_{\mathbb{N}_{n+1}}-a_{N_n}| < \frac{1}{2^n}$ and so the sum is less than 1 and we win.

convergent series

given (a_n) we consider the series $\sum_{n=1}^{\infty} a_n$ let $s_n = \sum_{k=1}^{n} a_k$ be the *n*th partial sum of the series. if $\lim s_n$ exists, we say that the series $\sum_{k=1}^{\infty} a_k$ is convergent the following are equivalent

• $\sum a_n$ is convergent

•
$$\forall \varepsilon > 0 \exists N \text{ st if } n \geq N, \left| \sum_{k=n+1}^{\infty} a_k \right| < \varepsilon$$

•
$$\forall \varepsilon > 0 \exists N \text{ st if } m, n \geq N, \left| \sum_{k=n+1}^{m} a_k \right| < \varepsilon$$

proofs are in the book

note

if $\sum a_k < \infty$ then $\lim a_k = 0$ but the converse is false, as shown by the harmonic series. telescoping and geometric series are basically the only ones where we know how to find the sums

3.1.c

if $\sum t_k$ is a convergent series of positive terms and p>1 show that $\sum t_k^p$ is convergent the necessary condition is that $\lim t_k=0$. by the necessary condition $\exists N$ st $0\leq t_k\leq 1 \forall k\geq N$. Therefore $\sum\limits_{k=N}^{\infty}t_k^p\leq \sum\limits_{k=N}^{\infty}t_k<\infty$

3.1.d

if $\lim |a_n| = 0$ then there exists $\sum a_{n_k} < \infty$ example argument: harmonic series