Guía de ejercicios 4 CC2

Sebastián Acevedo

Octubre 2019

1

Considere el siguiente IVP no lineal:

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2y_1y_2 \\ y_1y_2 - y_1 \end{bmatrix}$$
$$\begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Nuestro objetivo será encontrar $y_1(1)$ y $y_2(1)$.

- a) Encuentre el Jacobiano del sistema evaluado en las condiciones iniciales.
- b) Encuentre los valores propios del sistema encontrado en la sección a)
- c) Una aproximación para resolver un problema no lineal es resolver el sistema linealizado, es decir el siguiente sistema:

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = J(y_1(0), y_2(0)) \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
$$\begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Con esta aproximación no es necesario encontrar Δt en cada paso. Encuentre el intervalo en el cual Δt asegura estabilidad con el método de Euler. Para esto, use los valores propios de $J(y_1(0),y_2(0))$ como λ .

 $\mathbf{2}$

Considere el siguiente IVP:

$$u'(t) = (1 - \mu)u(t)$$
$$u(0) = 0$$

Usted desea probar un método de resolución de IVP que ha diseñado, el cual viene dado por:

$$k_1 = hf(t_n, u_n)$$

$$k_2 = hf(t_n + h, u_n + k_1)$$

$$u_{n+1} = u_n + \alpha k_1 + (1 - \alpha)k_2$$

- a) Determine la región de estabilidad para este método en función de α considerando $\mu>1.$
 - b) Comente sobre la región de estabilidad con $\alpha = 1$.
 - c) Comente sobre la región de estabilidad con $\alpha=0.5$

3

Se tiene el siguiente IVP:

$$\dot{y} = f(t, y)$$
$$y(0) = y_0$$

El cual se puede resolver integrando a ambos lados:

$$y_{n+1} = y_n + \int_n^{n+1} f(s, y(s)) ds$$
 (1)

el cual usted ha aprendido a resolver aproximando la integral con el método de Euler y Backward Euler.

- a) Use el método del trapecio para aproximar la integral.
- b) Determine la región de estabilidad para el método del trapecio.
- c) Use el método del trapecio para resolver el siguiente problema:

$$\dot{y}_1 = a_{11}y_1 + a_{12}y_2$$
$$\dot{y}_2 = a_{21}y_1 + a_{22}y_2$$
$$y_1 = y_2 = 0$$

Desarrollo

1

a)
$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} f_1(y_1, y_2) \\ f_2(y_1, y_2) \end{bmatrix} = \begin{bmatrix} 2y_1 y_2 \\ y_1 y_2 - y_1 \end{bmatrix}$$

$$J = \begin{bmatrix} \frac{\delta f_1}{\delta y_1} & \frac{\delta f_1}{\delta y_2} \\ \frac{\delta f_2}{\delta y_1} & \frac{\delta f_2}{\delta y_2} \end{bmatrix} = \begin{bmatrix} 2y_2 & 2y_1 \\ y_2 - 1 & y_1 \end{bmatrix}$$

Evaluando en las condiciones iniciales:

$$J(y_1(0), y_2(0)) = \begin{bmatrix} 2y_2(0) & 2y_1(0) \\ y_2(0) - 1 & y_1(0) \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ -3 & 1 \end{bmatrix}$$

b)
$$det(\begin{bmatrix} -4-\lambda & 2\\ -3 & 1-\lambda \end{bmatrix}) = (-4-\lambda)*(1-\lambda)+2*3=0$$

$$\lambda_1 = -2$$

$$\lambda_2 = -1$$

c) El intervalo de estabilidad del método de Euler es $\sqrt{1+h\lambda} < 1$. Evaluando con ambos valores propios se tiene que:

$$|1 - 2h| < 1 \rightarrow -1 < 1 - 2h < 1 \rightarrow 1 > h > 0$$

 $|1 - h| < 1 \rightarrow -1 < 1 - h < 1 \rightarrow 2 > h > 0$

Nos quedamos entonces con la intersección de los intervalos, por lo tanto $h \in (0,1)$.

2

Definimos $1 - \mu = \lambda$. Luego tenemos:

$$k_1 = h\lambda u_n$$

$$k_2 = h\lambda(u_n + k_1) = h\lambda(u_n + h\lambda u_n)$$

$$u_{n+1} = u_n + \alpha k_1 + (1 - \alpha)k_2 = u_n + \alpha h\lambda u_n + (1 - \alpha)h\lambda(1 + h\lambda)u_n$$

$$u_{n+1} = u_n(1 + h\lambda + (1 - \alpha)h^2\lambda^2)$$

Luego se tiene que $|1 + h\lambda + (1 - \alpha)h^2\lambda^2| < 1$.

- b) Considerando $\alpha=1$ se tiene $|1+h\lambda|<1$, la cual es la región de estabilidad del método de Euler.
- c) Considerando $\alpha=0.5$ se tiene $|1+h\lambda+h^2\lambda^2/2|<1$, la cual es la región de estabilidad del método de Runge Kutta.

3

a)

$$y_{n+1} = y_n + \int_n^{n+1} f(s, y(s)) ds$$
$$y_{n+1} = y_n + h \frac{f(t_n, y_n) + f(t_{n+1}, y_{n+1})}{2}$$

El cual se puede resolver de una forma similar a como se resuelve el método de Euler Implícito, haciendo una busqueda de ceros en cada paso.

b) Sea la ecuación diferencial $y'=\lambda y,$ usando el metodo del trapecio se tiene que:

$$y_{n+1} = y_n + h \frac{\lambda y_n) + \lambda y_{n+1}}{2}$$

$$y_{n+1} - \frac{h\lambda}{2} y_{n+1} = y_n + \frac{h\lambda}{2} y_n$$

$$(1 - \frac{h\lambda}{2}) y_{n+1} = (1 + \frac{h\lambda}{2}) y_n$$

$$y_{n+1} = \frac{1 + h\lambda/2}{1 - h\lambda/2} y_n$$

Por lo tanto la región de estabilidad viene dada por:

$$\left|\frac{1+h\lambda/2}{1-h\lambda/2}\right| < 1$$

c) El sistema se puede escribir de la forma:

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
$$\dot{\mathbf{y}} = A\mathbf{y}$$

Usando el método del trapecio, tenemos entonces:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h \frac{A\mathbf{y}_n + A\mathbf{y}_{n+1}}{2}$$

Usando el mismo despeje que en la sección anterior tendremos:

$$\mathbf{y}_{n+1} = (I - \frac{h}{2}A)^{-1}(I + \frac{h}{2}A)\mathbf{y}_n$$

Donde en lugar de calcular la inversa, se debe resolver un sistema de ecuaciones lineales