ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI KẾT THÚC HỌC KÌ II NĂM HỌC 2022-2023

---oOo----

Môn thi: Phương trình đạo hàm riêng

Mã môn học: **MAT3365**

Số tín chỉ: 3

Đề số:

Dành cho sinh viên khoá: K66

Ngành học: Toán tin

Thời gian làm bài **90 phút** (không kể thời gian phát đề)

Câu 1. (4,5 điểm) Xét bài toán biên Neumann trong hình vuông cho phương trình Poisson

$$\Delta u(x,y) = 1 \text{ trong } D = \{(x,y) \in \mathbb{R}^2 : |x| < 1, 0 < y < 2\},$$

với điều kiện biên Neumann $\partial_{\nu}u(x,y)=0$ khi |x|=1 và

$$\partial_{\nu}u(x,y) = \begin{cases} 2x+1 & \text{khi } y=0, \\ C & \text{khi } y=2, \end{cases}$$

trong đó ν là pháp tuyến ngoài đơn vị, C là hằng số.

- (a) Tìm C để bài toán có nghiệm.
- (b) Bằng cách sử dụng tích phân năng lượng $I = \int \int_D [u_x^2(x,y) + u_y^2(x,y)] dx dy$ hãy chỉ ra rằng khi bài toán có nghiệm nó có vô số nghiệm, các nghiệm sai khác nhau hằng số.
- (c) Với C tìm được ở câu (a) giải bài toán biên đã cho. (Gợi ý: xét v(x,y) = u(x-1,y).)

Câu 2. (2.5 điểm) Sử dụng công thức Poisson tính nghiệm tường minh bài toán Cauchy

$$u_t(x,y,t) = 4\Delta u(x,y,t), (x,y) \in \mathbb{R}^2, t > 0,$$

$$u(x,y,0) = e^{-x^2 + x} (\chi_{[-1,0]}(y) - \chi_{[0,1]}(y)).$$

Câu 3. (5 điểm) Xét bài toán Cauchy cho phương trình truyền sóng

$$u_{tt}(x,y,z,t) = 4\Delta u(x,y,z,t) + f(x,y,z,t), (x,y,z) \in \mathbb{R}^3, t > 0,$$

với điều kiện ban đầu

$$u(x, y, z, 0) = 0 \text{ và } u_t(x, y, z, 0) = 0,$$

trong đó
$$f(x,y,z,t) = \begin{cases} 1 & \text{khi } \sqrt{x^2 + y^2 + z^2} \le 1 - 2t, \\ 0 & \text{còn lại.} \end{cases}$$

(a) Với mỗi $\tau > 0$ xét bài toán:

$$w_{tt}(x, y, z, t, \tau) = 4\Delta w(x, y, z, t, \tau), (x, y, z) \in \mathbb{R}^3, t > 0,$$

với điều kiên ban đầu

$$w(x, y, z, 0, \tau) = 0 \text{ và } w_t(x, y, z, 0, \tau) = f(x, y, z, \tau).$$

Tính $w(100, 0, 0, t, \tau)$ khi t > 0.

(b) Dùng nguyên lý Duhamel tính u(100, 0, 0, t).

Chú ý: Sinh viên được sử dụng tài liệu.

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI KẾT THÚC HỌC KÌ II, NĂM HỌC 2022-2023 Môn thi: Phương trình đạo hàm riêng

Mã môn học: **MAT3365** Số tín chỉ: **3** Đề số: **1** Dành cho sinh viên khoá: **K66** Ngành học: **Toán tin**

Lời giải 1. [4,5 điểm]

(a) Để bài toán có nghiệm ta cần	0.5
$\int_{-1}^{1} [\partial_{\nu} u(x,0) + \partial_{\nu} u(x,2)] dx = \iint_{\substack{ x \le 1 \\ 0 \le y \le 2}} \Delta u(x,y) dx dy = 4$	
nên $C=1$.	
(b) Nếu u là nghiệm của bài toán đang xét dễ thấy $u + Const$ cũng là nghiệm. Ngược lại giả sử u_1, u_2 là hai nghiệm. Khi đó hiệu $u = u_1 - u_2$ là nghiệm của phương trình Laplace trong hình vuông với điều kiện biên Neumann $\partial_v u = 0$ trên bốn cạnh.	0.5
Ta có, dùng tích phân từng phần,	0.5
$\int_0^2 \left(\int_{-1}^1 u_x^2(x, y) dx \right) dy = \int_0^2 \left(u u_x \Big _{x=-1}^{x=1} - \int_{-1}^1 u u_{xx} dx \right) dy$	
mà $\partial_{\nu}u(x,y)=\pm u_{x}(\pm 1,y)=0$ trên hai cạnh $x=\pm 1$ nên, sử dụng Fubini,	
$\iint_{\substack{ x \leq 1\\0\leq y\leq 2}} u_x^2 dx dy = -\iint_{\substack{ x \leq 1\\0\leq y\leq 2}} u u_{xx} dx dy.$	
Tương tự, với chú ý $\partial_{\nu}u(x,y)=\pm u_{y}(x,y)=0$ trên hai cạnh $y=0$ và $y=2$ nên	0.5
$\iint_{\substack{ x \leq 1\\0\leq y\leq 2}} u_y^2 dx dy = -\iint_{\substack{ x \leq 1\\0\leq y\leq 2}} u u_{yy} dx dy.$	
Do đó, với chú ý $u_{xx} + u_{yy} = 0$, ta có	
I = 0	
Khi đó $u_x = u_y = 0$ hay $u = u_1 - u_2$ là hằng trong $(-1,1) \times (0,2)$.	0.5
(c) Hàm $v(x,y) = u(x-1,y)$ thỏa mãn bài toán	0.5
$\Delta v = 1 \text{ trong } (0,2) \times (0,2)$	
với điều kiện biên $\partial_{\nu}v(x,y)=0$ khi $x=0$ hay $x=2$ và	
$\partial_{\nu}v(x,y) = egin{cases} 2x-1 & ext{khi } y=0, \ C & ext{khi } y=2, \end{cases}$	

Ta có chuỗi nghiệm	0.5
$v(x,y) = Y_0(y) + \sum_{n=1}^{\infty} Y_n(y) \cos(n\pi x/2)$	
hay	
$u(x,y) = Y_0(y) + \sum_{n=1}^{\infty} Y_n(y) \cos(n\pi(x+1)/2).$	
Thay vào phương trình và phân tích phổ ta có	0.5
$Y_0''(y) = 1, Y_n''(y) - (n\pi/2)^2 Y_n(y) = 0, n \ge 1$, khi $0 < y < 2$.	
Khi đó	
$Y_0(y) = y^2/2 + a_0 + b_0 y, Y_n(y) = a_n \cosh(n\pi y/2) + b_n \cosh(n\pi (2-y)/2), n \ge 1.$	
Thay vào điều kiện biên trên hai cạnh $x = 0$, $x = 2$ và phân tích phổ ta có	0.5
$Y'_0(0) = -1, Y'_0(2) = 1, Y'_n(0) = 8(1 - (-1)^n)/(n\pi)^2, Y'_n(2) = 0, n \ge 1.$	
Do đó a_0 tùy ý và	
$b_0 = -1, a_n = 0, b_n = \frac{16((-1)^n - 1)}{(n\pi)^3 \sinh(n\pi)}, n \ge 1.$	
Vậy nghiệm của bài toán	
$u(x,y) = a_0 - y + \frac{y^2}{2} + \sum_{n=1}^{\infty} \frac{16((-1)^n - 1)}{(n\pi)^3 \sinh(n\pi)} \cosh(n\pi(2-y)/2) \cos(n\pi(x+1)/2).$	
$b_0=-1, a_n=0, b_n=rac{16((-1)^n-1)}{(n\pi)^3\sinh(n\pi)}, n\geq 1.$ Vậy nghiệm của bài toán	

Lời giải 2. [2.5 điểm]

$$\begin{split} \text{Sử dụng công thức Poisson} & u(x,y,t) = \frac{1}{16\pi t} \int_{-\infty}^{\infty} e^{-X^2 + X} e^{-\frac{(x-X)^2}{16t}} dX \int_{-\infty}^{\infty} (\chi_{[-1,0]}(Y) - \chi_{[0,1]}(Y)) e^{-\frac{(y-Y)^2}{16t}} dY. \\ & \text{Biến đổi } 16tX^2 - 16tX + (x-X)^2 = (16t+1)(X-(8t+x)/(16t+1))^2 + (16tx^2 - 16tx + 64t^2)/(16t+1) \, \text{nên} \\ & \int_{-\infty}^{\infty} e^{-X^2 + X} e^{-\frac{(x-X)^2}{16t}} dX = \frac{\sqrt{16\pi t}}{\sqrt{16t+1}} e^{-\frac{x^2 - x - 4t}{16t+1}}. \\ & \text{Đổi biến } w = (Y-y)/(4\sqrt{t}) \, \text{và chú ý hàm lỗi } erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^2} ds \, \text{ta c\'o} \\ & \int_{-\infty}^{\infty} \chi_{[a,b]}(Y) e^{-\frac{(y-Y)^2}{16t}} dZ = 4\sqrt{t} \int_{\frac{a-y}{4\sqrt{t}}}^{\frac{b-z}{4\sqrt{t}}} e^{-w^2} dw = 2\sqrt{\pi t} \left(erf(\frac{b-z}{4\sqrt{t}}) - erf(\frac{a-z}{4\sqrt{t}}) \right). \end{split}$$

Vậy nghiệm của bài toán
$$u(x,y,t)=\frac{e^{-\frac{x^2-x-4t}{16t+1}}}{\sqrt{16t+1}}\times\frac{\left(erf(\frac{y+1}{4\sqrt{t}})+erf(\frac{y-1}{4\sqrt{t}})-2erf(\frac{y}{4\sqrt{t}})\right)}{2}.$$

Lời giải 3. [5 điểm]

(a) Sử dụng công thức Kirchhoff:	0.5
$w(100,0,0,t,\tau) = \frac{1}{16\pi t} \iint_{\partial B_{2t}(100,0,0)} f(X,Y,Z,\tau) dS.$	
Với $\tau > 1/2$ ta có $f(X, Y, Z, \tau) = 0$. Do đó $w(100, 0, 0, t, \tau) = 0$.	0.5
Với $0 < \tau < 1/2$ ta có	0.5
$w(100,0,0,t,\tau) = \frac{ \partial B_{2t}(100,0,0) \cap B_{1-2\tau}(0) }{16\pi t}.$	
$= \begin{cases} 0 & \text{khi } 0 < t < 99/2 + \tau \text{ hay } t > 101/2 - \tau, \\ \frac{(1 - 2\tau)^2 - (2t - 100)^2}{900} & \text{khi } 99/2 + \tau < t < 101/2 - \tau. \end{cases}$	1
800	
(b) Sử dụng nguyên lý Duhamel ta có	0.5
$u(100,0,0,t) = \int_0^t w(100,0,0,t-\tau,\tau)d\tau.$	
Khi $0 < t < 99/2$ hay $t > 101/2$ ta có $u(100, 0, 0, t) = 0$.	1
Khi $99/2 < t < 101/2$ ta có	1
$u(100,0,0,t) = \int_0^{\frac{2t-99}{4}} w(100,0,0,t-\tau,\tau)d\tau$	
$= \int_0^{\frac{2t-99}{4}} \frac{(1-2\tau)^2 - (2t-2\tau-100)^2}{800} d\tau = \frac{(2t-99)^2(101-2t)}{6400}.$	

Hà Nội, ngày 16 tháng 05 năm 2023 NGƯỜI LÀM ĐÁP ÁN (ký và ghi rõ họ tên)

TS. Đặng Anh Tuấn