Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа Р3220	К работе допущен
Студент Касьяненко В. М.	Работа выполнена
Преподаватель Хвастунов Н. Н.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.11

Вынужденные электромагнитные колебания в последовательном колебательном контуре

1. Цель работы.

- Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре.
 - Построение резонансной кривой и определение резонансной частоты
 - Определение активного сопротивления и добротности колебательного контура.

2. Объект исследования.

Вынужденные электромагнитные колебания.

3. Метод экспериментального исследования.

Измерение амплитуды выходного напряжения, а также значений резонансных частот при различных значениях магазина ёмкостей.

4. Рабочие формулы и исходные данные.

(1)
$$L = 100 \text{ M}\text{TH}$$

(2)
$$R = 75 \text{ Om}$$

$$\Delta f = 500 \Gamma$$
ц

$$(4) f_{\text{pac4}} = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$$

(5)
$$f_{\min} = f_{\text{pacy}} - \Delta f$$

(6)
$$f_{\text{max}} = f_{\text{pacy}} + \Delta f$$

$$(7) \quad \beta = \frac{R}{2L}$$

(8)
$$q_0(\Omega) = \frac{\varepsilon_0}{\sqrt{(QR)^2 + \left(\Omega^2 L - \frac{1}{C}\right)^2}}$$

(9)
$$\Omega_{R_{res}} = \Omega_0 = \frac{1}{\sqrt{LC}}$$

(10)
$$\Omega_{Cres} = \Omega_0 \sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}$$

(11)
$$\Omega_{\rm L_{res}} = \frac{\Omega_0}{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}$$

(12)
$$U_{Cres} = \frac{q_0}{C} = \frac{I_0}{\Omega_0 C} = \frac{\varepsilon_0}{\Omega_0 RC}$$

(13) $\frac{U_{C_{res}}}{\varepsilon_0} = \frac{\sqrt{LC}}{RC} = \frac{1}{R} \sqrt{\frac{L}{C}} = Q$

$$(14) Q = \frac{\Omega_0}{\Delta\Omega}$$

(15)
$$\Omega_{res}^2 = \frac{1}{LC} - \frac{R^2}{4L^2}$$

5. Измерительные приборы.

• Осциллограф

6. Схема установки.

Рисунок 1 – Общая схема лабораторной установки

Рисунок 2 — Общий вид лабораторной установки (генератор (1), блок $\Phi\Pi$ Э-11 (2), осциллограф (3), блок "Магазин емкостей"(4))

7. Результаты прямых и косвенных измерений, их обработка.

f, Гц	U _R , <i>мВ</i>
1000	344
1050	424
1100	536
1150	696
1200	824
1250	848
1300	824
1350	760
1400	704
1450	648
1500	600
1550	536
1600	488
1650	456
1700	424
1750	392
1800	360
1850	336
1900	304
1950	296
2000	280

С, нФ	f, Γų
1	12370
3	7160
10	3850
30	2490
100	1320
300	690

Таблица 2 – Результаты прямых измерений

Таблица 1 – Результаты прямых измерений

Косвенные измерения: $\Delta\Omega=2386,4$ рад/с; $\Omega_{\text{рез теор}}=7762,2$ рад/с; $\Omega_{\text{рез экс}}=7850,0$ рад/с; $\Omega_{\text{теор}}=3,12;$ $\Omega_{\text{экс}}=3,28;$ $\Sigma=0,16$ $\Sigma=$

8. Погрешности измерений.

$$\Omega_{\text{рез теор}} = (7762,2\pm171,9) \ \text{рад/c}, \ \epsilon = 2,21\%, \ \alpha = 0,95.$$
 $Q_{\text{теор}} = (3,12\pm0,147), \ \epsilon = 4,7\%, \ \alpha = 0,95.$ $L = (0,16\pm0,011) \ \Gamma_{\text{H}}, \ \epsilon = 6,8\%, \ \alpha = 0,95.$ $R = (995,8\pm13,2) \ \text{Ом}, \ \epsilon = 1,3\%, \ \alpha = 0,95.$

9. Графики.

Рисунок 1 – График зависимости $U_R(f)$

Рисунок 2 — График зависимости $\Omega^2(1/C)$

10. Окончательные результаты.

$$\Omega_{\text{рез теор}} = (7762,2\pm171,9) \text{ рад/с}$$
 $Q_{\text{теор}} = (3,12\pm0,147)$
 $L = (0,16\pm0,011) \, \Gamma_{\text{H}}$
 $R = (995,8\pm13,2) \, \text{Ом}$

11. Выводы и анализ результатов работы.

В результате данной работы были изучены вынужденные колебания в последовательном колебательном контуре и явления резонанса напряжений в нём. Были вычислены значения $L = (0.16\pm0.011)~\Gamma$ н и $R = (995.8\pm13.2)~\mathrm{Om}$; значение L сходится с истинным $-(0.18\pm0.01)~\Gamma$ н. Также были вычислены теоретические и экспериментальные значения следующих величин:

- Резонансная частота 7762,2 рад/с и 7850,0 рад/с;
- Добротность колебательного контура -3,12 и 3,28.

Судя по рассчитанным отклонениям и погрешностям, эксперимент получился достаточно точным.