WHAT IS CLAIMED IS:

1	1. A trench field effect transistor formed on a silicon substrate,
2	the trench transistor comprising:
3	a trench extending into the substrate;
4	a dielectric layer formed on walls and bottom of the trench; and
5	a gate conductive material substantially filling the trench,
6	wherein, the dielectric layer comprises a gate oxide layer grown at a
7	temperature above about 1,100 °C to result in the gate oxide layer having a
8	thickness that is substantially uniform, the gate oxide layer having substantially
9	uniform stress.
	The trench transistor of claim 1 wherein the dielectric layer
1	further comprises:
2	•
3	a silicon nitride layer disposed on the gate oxide layer; and
4	a second oxide layer disposed between the silicon nitride layer and
5	the gate conductive material.
1	3. The trench transistor of claim 2 wherein the gate oxide layer
2	has a first thickness of at least about 300 Å, the silicon nitride layer has a second
3	thickness of about 120Å, and the second oxide layer has a third thickness of about
4	50 Å.
1	4. A trench field effect transistor formed on a silicon substrate,
2	the trench transistor comprising:
3	a trench extending into the substrate;
4	a first oxide layer thermally grown on walls and bottom of the
5	trench;

6	a silicon nitride layer disposed on the first oxide layer;
7	a second oxide layer disposed on the silicon nitride layer; and
8	a gate conductive material substantially filling the trench.
1	 The trench transistor of claim 4 wherein the first oxide layer is
2	grown at a temperature of at least about 1,100°C.
1	6. The trench transistor of claim 5 wherein the first oxide has a
1	thickness of about 300Å.
2	tmckness of about 500A.
1	7. The trench transistor of claim 6 wherein the silicon nitride
2	layer has a thickness of about 120Å.
	•
1	8. The trench transistor of claim 7 wherein the second oxide
2	layer has a thickness of about 50Å.
1	9. A method of forming a gate dielectric layer of a trench field-
2	effect transistor, the method comprising the steps of:
3	(a) forming a trench in silicon on a substrate; and
4	(b) heating the substrate to at least about 1,100 °C to form a layer
5	of silicon oxide at least about 100 Å thick inside the trench.
1	10. The method of claim 9 further comprising the steps of:
2	(c) forming a layer of silicon nitride on the layer of silicon oxide
3	and
4	(d) forming a second layer of oxide on the layer of silicon nitride

of silicon nitride.

10

11. The method of claim 10 wherein the layer of silicon nitride is 1 about 120Å thick. 12. The method of claim 10 wherein a low-pressure chemical-1 vapor deposition process is used to form a conformal layer of silicon nitride. 2 The method of claim 11 wherein the second layer of oxide is 13. 1 about 50Å thick. 2 14. A method of forming a gate dielectric layer of a trench field-1 effect transistor, the method comprising: 2 forming a trench in silicon on a substrate; 3 (a) 4 (b) heating the substrate to at least about 1,100 °C to form a layer 5 of silicon oxide at least about 100Å thick; 6 forming a conformal layer of silicon nitride about 120Å thick (c) on the layer of silicon oxide by a low-pressure chemical-vapor deposition process; 7 8 and growing a second layer of oxide about 50Å thick on the layer 9 (d)