

人工智能

沙瀛

信息学院 2020.3

如何用博弈论来预判他人行为?

https://weibo.com/tv/v/ly\$IK0hVq?fid=10
34:4482186494017557

博弈树的启发式搜索

- 博弈树
- 极大极小分析法
- α-β剪枝技术

博弈树概念

- "二人零和、全信息、非偶然"博弈的特点
 - 博弈A、B双方轮流行动,博弈结果只有A胜、 A负、平局三种情况。

博弈树概念

- 博弈双方都了解当前和格局及过去的历史。
- 任何一方在采取行动前都要根据当前的实际情况进行得失分析,选取自己最有利而对对方最不利的对策,不存在"碰运气"的偶然因素。

博弈树

· 在博弈过程中,己方的各种攻击方案为 "或"关系,而对方的应看方案为"与" 关系。描述博弈过程的"与\或"树称为博 弈树。

注: "与\或"树始终是站在某一方的立场上得出来的。

博弈树特点

- 博弈树中的初始节点为博弈的开始格局
- · 在博弈树中, "或"节点和"与"节点逐 层交替出现。自己一方扩展的节点为"或" 节点,对方扩展的节点为"与"节点。
- 所有能使自己一方获胜的终局都是本原问题,相应的节点是可解节点;所有使对方获胜的终局都是不可解节点。

- · 根据所求解问题的特殊信息设计合适的估价函数, 计算当前博弈树中所有端节点的得分, 该分数称为静态估价值。
- 根据端节点的估值推算出其父节点的分数:

- 若父节点为"或"节点,则其分数等于其所有子节点分数的最大值
- 若父节点为"与"节点,则其分数等于其所有子节点分数的最小值。
- 计算出的父节点的分数值称为倒推值。
- · 如果一个方案能获得较大的倒推值,则它就是当前最好的行动方案。

• 例、倒推值计算

例、九宫棋游戏:由A,B二人轮流在九宫格中放置棋子,谁先使自己的三个棋子构成一条直线谁就获胜。

解:设A方的棋子用X表示,B方的棋子用O表示,假设每次考虑两步,A为开局方,定义估价函数(设估价函数f(n)为启发函数h(n))如下:

设:

若某条直线上只有某方(称x方)的棋子或无任何棋子,则称该直线为x方的一条赢线, win(x)表示x方的所有赢线数。如下图, win(A)=4, win(B)=2。

•例子

- · 若N为非终局节点,则
- h(n) = win(A) win(B)
- · 若n为和局,则h(n)=0,如下图所示。

\bigcirc	X	
	X	0
X	0	X

· 若n为A取胜的终局节点,则h(n)=+∞,如 下图所示。

• 若n为A失败的终局节点,则h(n)=-∞,如 下图所示。

求解过程

• 则第1步棋的搜索树如下:

注意:对称棋局认为是相同棋局

博弈树搜索方法

α-β剪枝技术

- · 一个"与"节点取当前子节点的最小值作 为其倒推值的上界, 称该值为β值。
- · 一个"或"节点取当前子节点的最大值作 为其倒推值的下界,称该值为α值。

α-β剪枝算法

- 如果"或"节点x的α值不能降低其父 节点的β值,即:

$$\alpha \geqslant \beta$$

则应停止搜索节点X的其余子节点,并使X的倒推值为α。这种技术称为β剪枝。

α-β剪枝算法

· 如果"与"节点X的β值不能升高其父节点的α值,即:

$$\beta \leq \alpha$$

则应停止搜索节点X的其余子节点,并使X的倒推值为β。这种技术称为α剪枝。

· 例、对于下面的博弈树a进行剪枝

• 例、对于下面的博弈树进行剪枝

课堂练习

· 请根据端节点的估值计算下述博弈树的各 节点的倒推值,并利用α-β剪枝技术剪去 不必要的分枝。

蒙特卡洛树搜索

- 蒙特卡洛树搜索就是一种随机搜索算法
- 蒙特卡洛树搜索 (MCTS) 是所有现代围棋程序的核心组件。在此之上可以加入各种小技巧(如UCT, RAVE/AMAF, Progressive Bias, Virtual win & lose, Progressive Widening, LGR, Criticality 等等)和大改进(如 AlphaGo 的策略网络和价值网络)

蒙特卡洛树搜索

· MCTS四步法

1. Selection

- 从根节点开始,检查人根节点开始有可能人有可能人下所有人下</li
- 节点中的信息为胜利 次数/总的访问次数

2. Expansion

- Expansion即从找到未被 expansion的动作的那个 节点处创建一个新的孩 子节点表示执行该动作 后的状态
- · 注意每次只会在 expansion阶段创建出新 的节点

3. Simulation

- Simulation就是做推演模拟,即转入到新创建的状态节点,按照某种策略选择动作,如随机选择可行的动作或按照某种指导原则选择可行动作,直到状态结束,即胜利或失败
- 然后update新节点中的相关状态, 若此次simulation的结果为胜利则 设胜利次数为1,若为失败则设为, 设该节点的访问次数为1。

4. Backpropagation

• 最后把新的simulation 的结果反向传播回根节 点, 即从改叶节点原路 返回至根节点, 在返回 路径上的每个节点访问 次数和胜利次数加上新 的叶节点的访问次数和 胜利次数。

上限置信区间

- · 上面selection中提到用一种策略选择一种动作,那么这个策略的到底是什么呢?
- 常用的上限置信区间策略 (Upper Confidence Bound)

$$score = x_{child} + C \cdot \sqrt{\frac{\log(N_{parent})}{N_{child}}}$$

上限置信区间

• 其中×是节点的当前胜率估计(注意,要考虑当前是黑棋走还是白棋走), N是节点的访问次数。C是一个常数。C越大就越偏向于广度搜索, C越小就越偏向于深度搜索。

上限置信区间的例子

UCB计算过程

• 那么我们首先需要在7/10、5/8、0/3 之间选择:

1. 其中 7/10 对应的分数为
$$7/10 + C \cdot \sqrt{\frac{\log(21)}{10}} \approx 0.7 + 0.55C$$
。

2. 其中 5/8 对应的分数为
$$5/8 + C \cdot \sqrt{\frac{\log(21)}{8}} \approx 0.625 + 0.62C$$
。

3. 其中 0/3 对应的分数为
$$0/3 + C \cdot \sqrt{\frac{\log(21)}{3}} \approx 0 + 1.00C$$
。

4. 可以注意到, C越大, 就会越照顾访问次数相对较少的子节点。

UCB计算过程

· 如果 C 比较小, 我们将会选择 7/10, 接着就要在 2/4 和 5/6 间选择。注意, 由于现在是白棋走, 需要把胜率估计倒过来:

1. 其中 2/4 对应的分数为
$$(1-2/4)+C\cdot\sqrt{\frac{\log(10)}{4}}\approx 0.5+0.76C$$
。

2. 其中 5/6 对应的分数为
$$(1-5/6)+C\cdot\sqrt{\frac{\log(10)}{6}}\approx 0.17+0.62C$$
。

AlphaGo 的蒙特卡洛树搜索

· AlphaGo 的策略网络,可以用于改进上述的分数公式,让我们更准确地选择需扩展的节点。而 AlphaGo 的价值网络,可以与快速走子策略的模拟结果相结合,得到更准确的局面评估结果

本节结束!