

In the Specification amend the paragraphs beginning at page 12, line 21, through page 13, line 12 to read as follows:

Operation of the furnace 10 requires a supply of fuel to be burned, such as a coal supply 22. The coal supply 22 supplies coal at a predetermined rate to a pulverizer 24, which grinds the coal to a small size sufficient for burning. The pulverizer 24 receives a 00primary flow of air from a primary air source 26. Only one pulverizer 24 is shown, but many are required for a large boiler, and each pulverizer 24 may supply coal to many burners 20. A stream of primary air and coal is carried out of the pulverizer 24 through line 28. The primary stream of air and coal in line 28 is fed to the burner 20, which burns the fuel/air mixture in a combustion zone 30 in which the temperature exceeds 1700K (2,600° F).

To assist in the burning, the furnace 10 includes a secondary air duct 32 providing a secondary air flow through overfire air ports to the burner 20. Usually about 20% of the air required for optimum burning conditions is supplied by the primary air source 26. The secondary air duct 32 is used to provide the remaining air. The secondary air duct 32 brings the excess air in from the outside ~~via a fan 34~~, and the air is heated with an air preheater 36 prior to providing the air to the burner 20.

Amend the paragraph beginning at page 15, line 17, through page 16, line 5, to read as follows:

Salem Harbor Unit 3 is a pulverized coal, wall-fired boiler manufactured by Babcock & Wilcox which was installed in 1951. Nameplate generating capacity for Unit 3 is 165 MW. Unit 3 is equipped with 16 Riley Stoker low NO_x burners. It is equipped with a selective non-catalytic

reduction system utilizing a urea solution (1 gpm 50% urea to 18 gpm of city water) for post-combustion NO_x reduction. Unit 3 fires low sulfur South American coal. The facility is equipped with a continuous emissions monitoring system (CEMS). The CEMS measures and reports opacity, CO₂, SO₂, NO_x and CO ~~levels~~ levels in the exhaust gas. The CEMS data is also used to control the injection rate of urea. Unit 3 is equipped with an electrostatic precipitator system for the control of particulate emissions. The precipitator was manufactured by Research-Cottrell. The flue gas from Unit 3 flows from the economizer outlet to the precipitator and then to the 445 foot tall exhaust stack.