Assignment 2: CS 215

Mahant Sakhare - 24B0956, Hitansh Baria - 24B1075, Harshal Walke - 24B0954

1. (a) Solution Images

The code for the 3rd part is in the provided folder named as Q1a.m .

(b)

b-i) Probability a healthy subject participates in a negative pool

Consider a healthy subject and a pool they join. The pool tests negative if no diseased subject joins it.

Each other subject joins the pool with probability π and is diseased with probability p, so the probability a diseased subject joins is $p\pi$. Across n-1 other subjects, the probability that no diseased subject joins is approximately:

$$P_{\text{negative}} \approx (1 - p\pi)^{n-1} \approx e^{-np\pi}$$
 (for large n and small $p\pi$)

.

b-ii) Optimal π

Let $K \sim \text{Binomial}(T_1, \pi)$ be the number of pools a healthy subject joins. Let $q = P_{\text{negative}} \approx e^{-np\pi}$. The probability that the healthy subject participates in at least one negative pool is:

$$P_{\text{at least one negative}} \approx 1 - \exp(-\lambda q) = 1 - \exp(-T_1 \pi e^{-np\pi})$$

To maximize this probability with respect to π , define

$$f(\pi) = \pi e^{-np\pi}.$$

Derivative set to zero gives the optimal participation probability:

$$\pi^* = \frac{1}{np}$$

b-iii) Probability all pools a healthy subject participates in are positive

The complement of having at least one negative pool:

$$P_{\rm all\ positive} \approx \exp(-T_1 \pi e^{-np\pi})$$

At $\pi = \pi^*$:

$$P_{\rm all\ positive}(\pi^*) \approx \exp\left(-\frac{T_1}{enp}\right)$$

b-iv) Expected total number of tests

- Round 1: T_1 tests
- Round 2:
 - Positive subjects: np tests (all positives are tested)
 - "Unlucky" healthy subjects: $n(1-p) \cdot \exp(-T_1/(enp))$

Hence, the expected total number of tests:

$$E[T_{\text{total}}] = T_1 + np + n(1-p) \exp\left(-\frac{T_1}{enp}\right)$$

3

b-v) Optimal T_1 and minimal expected tests

Goal: minimize

$$g(T_1) = T_1 + np + n(1-p) \exp\left(-\frac{T_1}{enp}\right)$$

Derivative:

$$g'(T_1) = 1 - \frac{n(1-p)}{enp} \exp\left(-\frac{T_1}{enp}\right) = 0$$

Solve for T_1^* :

$$T_1^* = enp \cdot \ln \frac{n(1-p)}{ep}$$

Expected total tests at optimum:

$$E[T_{\text{total,opt}}] = T_1^* + np + n(1-p) \cdot \frac{ep}{n(1-p)} = T_1^* + np + ep$$

- (c) We now compare the expected number of tests for:
 - Method (a): Simple pooling (non-overlapping pools)

$$T_a(p) = \min_{s} \left[\frac{n}{s} + n \left(1 - (1-p)^s \right) \right]$$

Approximation for small $p: T_a \approx 2n\sqrt{p}, s^* \approx 1/\sqrt{p}.$

• Method (b): Overlapping pools

$$T_b(p) \approx enp \ln \frac{n(1-p)}{ep} + np + ep$$

with
$$\pi^* = 1/(np)$$
 and $T_1^* = enp \ln \frac{n(1-p)}{ep}$.

The code for the plot is provided in the folder named as Q1c.

Figure 1: Expected number of tests vs disease prevalence p for methods (a) and (b). Method (b) generally reduces tests at moderate p compared to naive pooling.

MATLAB

We generate expected tests for n = 1000 and $p \in \{1\text{e-}4, 5\text{e-}4, 0.001, 0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2\}.$ Include the generated plot as an image:

Interpretation

- For very small p, both methods significantly reduce tests relative to n.
- Method (b) may be slightly better for moderate p due to overlapping pool optimization.
- For large p (e.g., p > 0.1), pooling becomes less beneficial as almost all pools are positive.
- 2. Given two independent random variables X and Y with PDFs $f_X(.)$ and $f_Y(.)$ respectively, and define Z = XY. We derive the PDF of Z using its CDF.

$$F_Z(z) = P(Z \le z) = P(XY \le z).$$

Depending on the sign of X, we have two cases.

Case1: X > 0.

If X = x > 0, then the event $XY \le z$ is equivalent to $Y \le z/x$. Hence

$$F_Z(z) = \int_0^\infty \int_{-\infty}^{z/x} f_{X,Y}(x,y) \, dy \, dx.$$

Since X and Y are independent, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$, so

$$F_Z(z) = \int_0^\infty \int_{-\infty}^{z/x} f_X(x) f_Y(y) dy dx.$$

Differentiating with respect to z (By Leibniz's rule), we obtain

$$f_Z(z) = \frac{\partial}{\partial z} F_Z(z)$$

$$= \int_0^\infty \frac{\partial}{\partial z} \left[\int_{-\infty}^{\frac{z}{x}} f_X(x) \cdot f_Y(y) dy \right] dx$$

$$= \int_0^\infty f_X(x) \cdot f_Y\left(\frac{z}{x}\right) \cdot \frac{1}{x} dx$$

$$= \int_0^\infty f_X(x) \cdot f_Y\left(\frac{z}{x}\right) \cdot \frac{1}{|x|} dx$$

Case2: X < 0.

If X = x < 0, then the event $XY \le z$ is equivalent to $Y \ge z/x$. Hence

$$F_Z(z) = \int_{-\infty}^0 \int_{z/x}^{\infty} f_{X,Y}(x,y) \, dy \, dx = \int_{-\infty}^0 \int_{z/x}^{\infty} f_X(x) \, f_Y(y) \, dy \, dx.$$

Differentiating with respect to z gives

$$f_Z(z) = \frac{\partial}{\partial z} F_Z(z)$$

$$= \int_{-\infty}^0 \frac{\partial}{\partial z} \left[\int_{\frac{z}{x}}^\infty f_X(x) f_Y(y) dy \right] dx$$

$$= \int_{-\infty}^0 f_X(x) \cdot \left[0 - f_Y\left(\frac{z}{x}\right) \right] \cdot \frac{1}{x} dx$$

$$= \int_{-\infty}^0 f_X(x) \cdot f_Y\left(\frac{z}{x}\right) \cdot \frac{-1}{x} dx$$

$$= \int_{-\infty}^0 f_X(x) \cdot f_Y\left(\frac{z}{x}\right) \cdot \frac{1}{|x|} dx$$

Combining both cases, we get

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) \cdot f_Y\left(\frac{z}{x}\right) \cdot \frac{1}{|x|} dx$$

which is the desired PDF of Z = XY.

3. The correct estimate for E(x) is $\hat{x} = \sum_{i=1}^{n} \frac{x_i}{n}$.

REASON: We know that each x_i is a random variable in itself, since x_i is a sample from the PDF $f_X(.)$. Hence, each x_i will have same PDF as X. Also it is given to us that the x_i 's are independent, which means that they are independent and identically distributed random variables each having mean μ .

$$\therefore E(\hat{x}) = E\left(\sum_{i=1}^{n} \frac{x_i}{n}\right)$$

Since, the expectation of each x_i is same that of X, we have

$$E(X) = E(x_i) = \mu$$

Taking n to be a large number and applying Weak Law of Large Numbers, we get

$$E(\hat{x}) = E\left(\sum_{i=1}^{n} \frac{x_i}{n}\right) = \mu$$

$$\left(: P\{ |\sum_{i=1}^{n} \frac{x_i}{n} - \mu| > \epsilon \} \to 0 \text{ as } n \to \infty \ \forall \ \epsilon > 0 \right)$$

$$\therefore E(\hat{x}) = \mu = E(X)$$

Reason Other Option is incorrect:

Let $\{y_i\}_{i=1}^n$ be the other set of random variable, where $y_i = x_i f_X(x_i)$.

The y_i s are iids with expectation

$$E(y_i) = E(x_i f_X(x_i))$$

As we know that x_i and X are identically distributed, we have

$$E(y_i) = E(Xf_X(x))$$

$$= \int (xf_X(x))f_X(x)$$

$$= \int xf_X(x)^2 dx$$

By WLLN, we know

$$\hat{x} = \frac{1}{n} \sum_{i=1}^{n} x_i f_X(x_i) = \frac{1}{n} \sum_{i=1}^{n} y_i = E(y_i)$$
$$\therefore E(y_i) = \int x f_X(x)^2 dx$$

This is estimating some other random variable with PDF $f_X(.)^2$. Hence, it is incorrect estimate for E(X) as X has PDF $f_X(.)$.

4. Dependence Measures

(a) Correlation Coefficient (ρ)

$$\rho = \frac{\operatorname{cov}(I_1, I_2)}{\sigma_{I_1} \sigma_{I_2}}, \quad -1 \le \rho \le 1$$

(b) Quadratic Mutual Information (QMI)

QMI =
$$\sum_{i_1} \sum_{i_2} (p_{I_1 I_2}(i_1, i_2) - p_{I_1}(i_1) p_{I_2}(i_2))^2$$

(c) Mutual Information (MI)

$$MI = \sum_{i_1} \sum_{i_2} p_{I_1 I_2}(i_1, i_2) \log \left(\frac{p_{I_1 I_2}(i_1, i_2)}{p_{I_1}(i_1) p_{I_2}(i_2)} \right)$$

The joint histogram $p_{I_1I_2}$ is computed with a bin-width of 10. Marginals p_{I_1}, p_{I_2} are derived by summing over rows/columns of the joint histogram.

Experimental Scenarios

- (a) Original images: $I_1 = T1$, $I_2 = T2$.
- (b) **Negative image:** $I_2 = 255 I_1$.
- (c) Squared image: $I_2 = 255 \times \frac{(I_1)^2}{\max((I_1)^2)} + 1$.

The codes of the following three plots are provided in the folder named as Q4a, Q4b, Q4c for first, second and third plot respectively.

Case 1: Original MR Images

Observations:

- QMI and MI: Both peak sharply at $t_x = 0$, confirming maximum dependence at perfect alignment.
- Correlation (ρ): Shows a minimum at $t_x = 0$, reflecting the fact that T1 and T2 intensities are not linearly related. Still, the extremum indicates correct alignment.

Case 2: Negative Image

Observations:

- Correlation (ρ): At $t_x = 0$, $\rho \approx -1$, as expected from a perfect negative linear relation.
- QMI and MI: Still peak at $t_x = 0$, highlighting robustness to the sign of dependence.

Figure 2: Dependence measures vs. shift (t_x) for original MR images.

Figure 3: Dependence measures vs. shift (t_x) for I_1 and its negative $I_2 = 255 - I_1$.

Case 3: Squared Image

Observations:

• Correlation (ρ): Does not show a clear peak at $t_x = 0$, confirming unreliability under nonlinear intensity transformations.

Figure 4: Dependence measures vs. shift (t_x) for squared image $I_2 = 255 \times \frac{(I_1)^2}{\max((I_1)^2)} + 1$.

• QMI and MI: Both exhibit distinct maxima at $t_x = 0$, successfully capturing nonlinear dependence and providing correct alignment.

5. When t > 0:

$$P(X \ge x) \le P(e^{tX} \ge e^{tx}) \le \frac{\mathbb{E}[e^{tX}]}{e^{tx}}$$
 (By Markov's inequality)

$$P(X \ge x) \le e^{-tx} \varphi_X(t)$$
, when $t > 0$

where $\varphi_X(t) = \mathbb{E}[e^{tX}]$ is the moment generating function (MGF).

When t < 0:

$$P(X \le x) \le P(e^{tX} \ge e^{tx}) \le \frac{\mathbb{E}[e^{tX}]}{e^{tx}}$$
 (By Markov's inequality)

$$P(X \le x) \le e^{-tx} \varphi_X(t)$$
, when $t < 0$

Let

$$X = \sum_{i=1}^{n} X_i, \quad \mathbb{E}[X_i] = p_i, \quad \mathbb{E}[X] = \mu.$$

We know that

$$P(X \ge x) \le \frac{\mathbb{E}[e^{tX}]}{e^{tx}}$$
 for $t > 0$.

Now, let $x = (1 + \delta)\mu$, then

$$P(X \ge (1+\delta)\mu) \le \frac{\mathbb{E}[e^{tX}]}{e^{(1+\delta)\mu t}}.$$

Since the X_i are independent:

$$\mathbb{E}[e^{tX}] = \mathbb{E}\left[e^{t\sum_{i=1}^{n} X_i}\right] = \prod_{i=1}^{n} \mathbb{E}[e^{tX_i}].$$

For a Bernoulli random variable X_i :

$$\mathbb{E}[e^{tX_i}] = (1 - p_i)e^{t \cdot 0} + p_i e^{t \cdot 1} = 1 - p_i + p_i e^t = 1 + p_i(e^t - 1).$$

Using the inequality $1 + x \le e^x$:

$$1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

Therefore:

$$\prod_{i=1}^n \mathbb{E}[e^{tX_i}] \leq \prod_{i=1}^n e^{p_i(e^t-1)} = e^{(e^t-1)\sum_{i=1}^n p_i} = e^{(e^t-1)\mu}.$$

Hence, the tail bound becomes:

$$P(X \ge (1+\delta)\mu) \le \frac{e^{(e^t-1)\mu}}{e^{(1+\delta)\mu t}}.$$

$$\prod_{i=1}^{n} \mathbb{E}[e^{tX_i}] \le e^{(e^t - 1)\mu}$$

Thus,

$$P(X \ge (1+\delta)\mu) \le \frac{e^{(e^t-1)\mu}}{e^{(1+\delta)\mu t}}$$

6. Let P(X=i) be the probability of occurrence of first head at i^{th} trial.

Probability of occurrence of heads is p.

Hence probability of occurrence of tails is (1-p).

$$P(X = i) = (1 - p)^{i-1}p$$

$$E(T) = \sum_{i=1}^{n} i(1-p)^{i-1}p$$

Since p is constant:

$$E(T) = p \sum_{i=1}^{n} i(1-p)^{i-1}$$

Expanding:

$$= p \left[1(1-p)^0 + 2(1-p)^1 + 3(1-p)^2 + \dots + n(1-p)^{n-1} \right]$$

Now, let us simplify the series terms.

$$\sum_{i=1}^{n} (1-p)^{i-1} = \frac{1 - (1-p)^n}{p}$$

$$\sum_{i=2}^{n} (1-p)^{i-1} = \frac{(1-p) - (1-p)^n}{p} = \frac{(1-p) - (1-p)^n}{p}$$

$$\sum_{i=3}^{n} (1-p)^{i-1} = \frac{(1-p)^2 - (1-p)^n}{p}$$

$$\sum_{i=n}^{n} (1-p)^{i-1} = \frac{(1-p)^{n-1} - (1-p)^n}{p}$$

Let P(X=i) be the probability of occurrence of the first head at the i^{th} trial.

The probability of occurrence of a head is p, hence the probability of occurrence of a tail is (1 - p).

$$P(X = i) = (1 - p)^{i - 1}p$$

The expectation is:

$$E(T) = \sum_{i=1}^{n} i(1-p)^{i-1}p$$

Since p is constant:

$$E(T) = p \sum_{i=1}^{n} i(1-p)^{i-1}$$

Expanding:

$$= p \left[1(1-p)^0 + 2(1-p)^1 + 3(1-p)^2 + \dots + n(1-p)^{n-1} \right]$$

Now, recall that

$$\sum_{i=1}^{n} (1-p)^{i-1} = \frac{1 - (1-p)^n}{p}$$

$$\sum_{i=2}^{n} (1-p)^{i-1} = \frac{(1-p) - (1-p)^n}{p}$$

$$\sum_{i=3}^{n} (1-p)^{i-1} = \frac{(1-p)^2 - (1-p)^n}{p}$$

$$\sum_{i=n}^{n} (1-p)^{i-1} = \frac{(1-p)^{n-1} - (1-p)^n}{p}$$

Hence,

$$E(T) = p \left(\frac{(1-p) - (1-p)^n}{p} + \frac{(1-p)^2 - (1-p)^n}{p} + \dots + \frac{(1-p)^{n-1} - (1-p)^n}{p} \right)$$

$$E(T) = \sum_{i=1}^{n} (1-p)^{i} - (n-1)(1-p)^{n}$$

$$E(T) = \frac{(1-p)\left(1-(1-p)^{n-1}\right)}{p} - (n-1)(1-p)^n$$