MTE321 Formulas

Stresses

Deformation Elongation

$$\delta = \frac{FL}{EA}$$
$$\delta = \frac{\sigma L}{E}$$

Torsional Formulas

Stress

R is the radial distance

$$\tau = \frac{Tr}{J}$$

$$Z_p = \frac{J}{c}$$

$$\tau_{max} = \frac{T}{Z_p}$$

Deformation

 θ is the angle of twist across L

For non-circular shafts K is section polar second moment of area and Q the section polar modulus

$$T = \frac{P}{\omega} \quad T_{lb \cdot in} = 63000 \frac{P}{\omega}$$
$$\theta = \frac{TL}{GJ}$$
$$Non-Circular \quad \tau = \frac{T}{Q}$$
$$Non-Circular \quad \theta = \frac{TL}{GK}$$

Thin-Walled Closed Tubes

A = median area boundary, U is length of median boundary

$$K = \frac{4A^2t}{U}$$
$$Q = 2tA$$

Shear Stress

V section shear force, Q is the first moment area, and t is the section thickness

$$\tau_{(y)} = \frac{VQ}{It}$$
 Rectangular Beam $\tau_{max} = \frac{3V}{2A}$ Solid Round Beam $\tau_{max} = \frac{4V}{3A}$ Hollow Round Beam $\tau_{max} = \frac{2V}{A}$

Beam Bending

M is the moment at the section, y is the distance from the neutral axis

$$\sigma_y = -rac{My}{I}$$

Stress Concentrations

Stress Concentration Factor

 $K_{\rm t}$ is material and loading dependent, values greater than 3 are a waste

$$\sigma_{max} = K_t \sigma_{nom}$$

Curved Beam Bending

 $R = \frac{A}{ASF}$

r = distance to required stress location

 $r_c = centroid\ distance$

A = cross-sectional area

$$\sigma_{(r)} = \frac{M(\theta)(R-r)}{Ar(r_c - R)}$$

Thermal Strain

$$\epsilon_x^m = -\alpha \Delta T$$

Principle Stresses

$$tan2\theta_{\sigma} = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}}$$

$$\sigma_{1,2} = \frac{\sigma_{x} + \sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

$$Max \sigma_{norm} = \frac{1}{2}(\sigma_{x} + \sigma_{y}) + \sqrt{\left[\frac{1}{2}\sigma_{x} - \sigma_{y}\right]^{2} + \tau_{xy}^{2}}$$

$$Min \sigma_{norm} = \frac{1}{2}(\sigma_{x} - \sigma_{y}) - \sqrt{\left[\frac{1}{2}\sigma_{x} - \sigma_{y}\right]^{2} + \tau_{xy}^{2}}$$

Design Factors

A_{95} Equivalence

Equivalent Diameter: $D_e = 0.370D$ General: $0.0766D_e^2$

Design: Dynamic Loads

Loading

$$\sigma_m = mean \ stress = rac{\sigma_{max} + \sigma_{min}}{2}$$
 $\sigma_a = stress \ amplitude = rac{\sigma_{max} - \sigma_{min}}{2}$
 $R = stress \ ratio = rac{\sigma_{min}}{\sigma_{max}}$
 $A = stress \ ratio = rac{\sigma_a}{\sigma_m}$
 $Loading \ Cycle: \ preriod \ between \ peaks$

Stress

Periodic

Fluctuating $\sigma_m \neq 0$, R = -1 Pulsating $\sigma_m = 0$, R =1

Endurance Limit

$$\begin{split} s_a = & \text{Stress Amplitude Level} \\ N: number of cycles to failure \\ s_n = & \text{fatigue limit} \\ Assume \ s_n = & 0.5s_u \ \text{if no data} \end{split}$$

$$s_a = s_n N^b$$

$$s_n' = C_m C_{st} C_R C_S s_n$$

 s_n from table appendix 3

 $C_{\rm m}$ material flaws

C_R Reliability Factor

 $C_s = \text{size factor } (5-12,5-4 \text{ circular}), (5-13 \text{ for other})$

4. Apply a material factor, C_m , from the following list.

- 5. Apply a type-of-stress factor: $C_{st} = 1.0$ for bending stress; $C_{st} = 0.80$ for axial tension.
- 6. Apply a reliability factor, C_R, from Table 5–3.
- Apply a size factor, C_s, using Figure 5–12 and Table 5–4 as guides.

Goodman Method Dynamic Loads Ductile

$$(\sigma_m < 0)$$

Von Mises: $N_1 = \frac{\dot{s_n}}{K_t \sigma_a^{'}}$

Tresca: $N_1 = \frac{\dot{s_n}}{K_t \sigma_a^{'}}$

Dynamic Loads Tensile

$$Von\ \textit{Mises:}\ \frac{K_t\sigma_a^{'}}{s^{'}n} + \frac{\sigma_m^{'}}{s_u} = \frac{1}{N_1}$$

$$\textit{Tresca:}\ \frac{2K_t}{s_n^{'}}(\tau_a)_{max} + \frac{4}{3s_u}(\tau_m)_{max} = \frac{1}{N_1}$$

Dynamic Yield Test

$$\label{eq:von mises: for low σ_a high σ_m} Von \; \textit{Mises: } \frac{K_t \sigma_a^{`}}{s_y} + \frac{K_t \sigma_m^{`}}{s_y} = \frac{1}{N_2}$$

$$\textit{Tresca: } \frac{2K_t}{s_{sy}} (\tau_a)_{max} + \frac{2K_t}{S_{sy}} (\tau_m)_{max} = \frac{1}{N_2}$$

Effective safety factor is < of N_1 and N_2

Gears

Table 8-1

Pitch Line Speed

$$V_T = \frac{\pi D \cdot n_p}{12}$$

Gears

Spur Gears

$$Speed\ of\ Gears:\ \frac{n_p}{n_G} = \frac{N_G}{N_P}$$

$$Common\ Speed:\ v_T = R_1\omega_1 = R_2\omega_2$$

$$Tangental\ Acceleration:\ a_T = R_1\alpha_1 = R_2\alpha_2$$

$$Velocity\ Ratio:\ VR = \frac{R_G}{R_P} >= 1$$

$$Circular\ Pitch:\ p = \frac{\pi D}{N}$$

$$Contact\ Ratio:$$

Helical Gears

Circular/Transverse Pitch: $\frac{\pi}{P_d}$ Normal Circular: $p_n = p + \cos \psi$ Axial Pitch: $p_x = \frac{p_t}{\tan \psi}$ Pitch Diameter: $D_G = \frac{N}{P_d}$

Normal Pressure Angle: $\phi_n = \tan^{-1}(\tan \phi_t \cdot \cos \psi)$