

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Podstawy konstrukcji maszyn 2

SPRAWOZDANIE Z ĆWICZENIA PROJEKTOWEGO

Skonstruować przeciążeniowe sprzęgło kłowe

Prowadzący:

dr inż. Dariusz Lepiarczyk

Grupa projektowa nr: 2

Wykonawca:

Paweł Bryzek

Data wykonania projektu:

20.12.2020

Temat i dane do projektu:

Skonstruować przeciążeniowe sprzęgło kłowe według podanego rysunku oraz danych:

- Moc: N = 8 kW

Obroty: n = 900 obr/minWsp. przeciążenia: k = 1,3

Dane	Obliczenia	Wyniki
N=8kW n=900 obr/min	1. Założenia:	
k=1,3 i=4	– moc na wale sprzęgła N=8 [kW]	
	- obroty nominalne wału n=900 [min ⁻¹]	
	- współczynnik przeciążenia k=1,3	
	- materiał czopa C45	
	- tarczę kłową ze stali 20MnCrSS	
	– liczba kłów i = 4	
	2. Moc obliczeniowa:	
	No=N·k	
	No=8·1,3=10,4kW	No=10,4kW

	3. Momenty obciążające sprzęgło: 3.1. Moment znamionowy: $\mathbf{M} = \frac{30N}{\pi n} = 84,88 \ Nm$	M = 84, 88 Nm
	3.2. Moment przeciążeniowy: $Mo = \frac{30No}{\pi n} = 110,35 \ Nm$	Mo= 110, 35 Nm
Rm=580 MPa	4. Obliczanie średnicy czopa wału: Dla stali C45 - Rm=580 MPa Re=305 MPa	
Re=305 MPa	ksj=0,25·Re=76,25MPa	ksj=76,25 MPa
	$d \ge \sqrt[3]{\frac{16Mo}{\pi \cdot ksj}} = 19,46 \ mm$	
	d zwiększam o 15% ze względu na rowek pod wpust. $d \geq 22,379 \; mm$	
	przyjmuje d=30 mm	d=30 mm
	5. Obliczenia wpustu: 5.1. Wpust na wale:	
	frednica pisaty: $D_p = 1, 8 \cdot d = 54 mm$	D _p =60mm
xe=2,5	długość piasty: L= $3 \cdot d = 90 \ mm$	L= 90mm
	Dobieram wpust: b=8mm h=7mm	b=8mm h=7mm
	Naprężenia dopuszczalne: $k_d = 0,65 \cdot \frac{Re}{xe} = 79,3 \text{ MPa}$	k _d =79,3 MPa
	Długość wpustu: $l_0 = \frac{4Mo}{Dp \cdot h \cdot kd} = 14,7 \ mm$ Przyjmuje $l_0 = 15 \ mm$	
	Rzeczywista długość wpustu:	l _o =15 mm
	$l_{rz} = l_0 + b = 23 \text{ mm}$	l _{rz} =23 mm
	Dobrano wpust pryzmatyczny A 8x7x25 PN-70/M-850055.	
	5.1. Wpust na tarczy stałej sprzęgła:	
	Naprężenia dopuszczalne: $k_d = 0,65 \cdot \frac{Re}{xe} = 79,3$ MPa	k _d =79,3 MPa
		•

		ı
	Długość wpustu:	
	$l_0 = \frac{4Mo}{d \cdot h \cdot kd} = 26,5 \ mm$	
	Przyjmuje l _o =27 mm	
	Rzeczywista długość wpustu:	$l_o = 27 \text{ mm}$
	$l_{rz} = l_0 + b = 35 \text{ mm}$	
	Dobrano wpust pryzmatyczny A 16x10x45 PN-70/M-850055.	l_{rz} =35 mm
	6. Obliczenia piasty i kłów:	
	średnica wewnętrzna kłów:	
	$D_{w} = 1, 4 \cdot d = 42 \ mm$	
		D /2
		D _w = 42 mm
	średnica zewnętrzna:	
	$D_z = 1, 6 \cdot \text{Ś} r_w = 54 \text{ mm}$	
	$D_z = 1,0$ $Sr_w = 34$ mm	
	średnica średnia:	D, = 54 mm
	1	ט – אוווווו
	$D_{\$r} = \frac{D_z + D_w}{2} = 48 \ mm$	
		D _{śr} = 48 mm
	Długość kła:	S TO IIIII
	Długość kła:	
	$a = \frac{D_z - D_w}{2} = 6 mm$	
	Przyjmuje: a= 5mm	
	Caralya 66 l.la.	a= 5mm
	Szerokość kła:	
	$b = \frac{\pi \cdot D \pm r}{2 \cdot i} = 18,85 \text{ mm}$	
	Przyjmuje: b = 19 mm	
		b= 19 mm
	Wysokość któw:	
	- Z warunku na docisk powierzchniowy:	
	$h > 2 \cdot M_0 = 1.05 \text{ mm}$	
	$h \ge \frac{2 \cdot Mo}{D \cdot sr \cdot i \cdot a \cdot kd} = 1,05 \ mm$	
	- 7 warunku na zginanio:	$h \ge 1,05 \ mm$
	- Z warunku na zginanie:	
	dla dobranego materiału kg=180 MPa	
	rg=100 MPa pdop = 60 MPa	
	puop	
	Kt = 100 d	
kg=180 MPa	M. CE I	
pdop = 60 MPa	$\sigma_{g} = \frac{M_{g}}{W_{g}} = \frac{6 F_{o} \cdot h}{a \cdot b^{2}}$	
kt= 100 MPa	$W_g a \cdot b^2$	
	$h \le \frac{kg \cdot a \cdot b^2 \cdot D + r}{12 \cdot Mo} = 43,2 \text{ mm}$	
	12740	$h \le 43, 2 \ mm$
	Z obu warunków dobieram h=5 mm	$n \geq 43, 2 mm$
		h=5 mm
		5

Siła obwodowa na jeden kieł: ${\rm F_0} = \frac{2\cdot Mo}{D \pm r \cdot i} = 1kN$

$$F_0 = \frac{2 \cdot Mo}{D \cdot \hat{s}r \cdot i} = 1kN$$

Sprawdzenie nacisków dopuszczalnych:

$$p = \frac{F_0}{a \cdot h} \le pdop$$

$$p = 16,7 \text{ MPa}$$

Warunek spełniony.

Sprawdzenie siły tnącej:

$$\tau_{t} = \frac{F_{0}}{a \cdot b} \le kt$$

$$\tau_{t} = 3,8 \text{ MPa}$$

Warunki wytrzymałościowe spełnione.

7. Obliczenie połączenia kłowego:

7.1. Obliczenie wartości granicznej $\,\alpha\,$

$$tan (\alpha_{gr}) = \mu \cdot (1 + \frac{D_{sr}}{d}) = 0,2825$$

 $\alpha_{gr} = 15,6$ °

Przy kącie $\alpha > \alpha$ gr będzie następowało samo rozłączanie sprzęgła. Przyjęto kąt $\alpha = 20^{\circ}$.

 $\alpha_{\it gr}$ = 15,6 $^{\circ}$ α = 20 $^{\circ}$

 $F_0 = 1kN$

 $\mu = 0,1$

7.2.0bliczenie kata tarcia:

 $\rho = \operatorname{arctg}(\mu) = 5.71^{\circ}$

 $\rho = 5.71^{\circ}$

7.3. Obliczanie sił włączających sprzęgło i rozłączających sprzęgło:

7.3.1. Siła występująca przy rozłączaniu sprzęgła:

$$Q_1 = 2Mo \cdot (\frac{\mu}{d} - \frac{tg(\alpha - \rho)}{D\acute{s}r}) = -291 N$$

 $Q_1 = 291 \text{ N}$

Należy tak dobrać sprężynę, aby przy nacisku wynoszącym 291 Uginała się ona o wartość $\Delta f = 5$ mm powodując rozłączenie sprzęgła.

8. Dobór sprężyny dociskowej:

8.1. Warunki geometryczne:

D-d>42mm

8.2 Warunek wynikający z mechaniki obciążeń:

$$P_n > Q_1$$

 $P_n > Q_1$ $P_n > 291 N$

8.3. Dobór sprężyny:

Dobrano sprężynę śrubową walcową naciskową ogólnego przeznaczenia wg EN 10270-1 SH.

Parametry dobranej sprężyny:

$$P_n = 582,2 \text{ N}$$

$$l_0 = 68 \text{ mm}$$

$$f_n = 26,1 \text{ mm}$$

$$c = 13,91$$

$$z = 3.3$$

D – średnica podziałowa sprężyny nieobciążonej,

d - średnica drutu,

Pn – siła osiowa blokująca sprężynę,

l_n – długość sprężyny nieobciążonej,

fn - ugięcie sprężyny odpowiadające sile Pn,

c - sztywność sprężyny,

z – liczba zwojów czynnych.

d= 4,5mm D = 45 mm $P_n = 582,2 \text{ N}$ $l_0 = 68 \text{ mm}$ $f_n = 26,1 \text{ mm}$ c = 13,91z = 3.3 $G = 0.8 * 10^5 Pa$ $f_{r} = 12 \text{ mm}$

8.4. Obliczenia sprawdzające:

Obliczenia ilości zwojów czynnych:

$$z_c = \frac{G \cdot d^4 \cdot fr}{8 \cdot D^3 \cdot Q_1} = 0,82$$

zc<z

Warunek spełniony.

8.5. Dobór materiału sprężyny:

8.5.1. Wyznaczenie współczynnika K wg wzoru Göhnera:

$$K = 1 + 1,25\left(\frac{1}{w}\right) + 0,875\left(\frac{1}{w}\right)^2 + \left(\frac{1}{w}\right)^3$$

warunek sprężyny: $w=\frac{D}{d}=13,6$ po podstawieniu: K = 1,09

w = 13,6

K = 1.09

$$\tau = \frac{8}{\pi} \cdot \frac{D}{d^3} \cdot Q_1 = 403 MPa$$

 $\tau = 403 \; MPa$

8.5.3. Wyznaczenie naprężeń stycznych w sprężynie z uwzględnieniem współczynnika K:

$$\tau_n = K \cdot \tau = 439,27 \text{ MPa}$$

Dobrano drut sprężynowy 67/5/1 wg EN 10270-1 SH.

9. Obliczenie napięcia wstępnego sprężyny układem napinającym nakrętka-przeciwnakrętka:

 $\tau_n = 439,27 \text{ MPa}$

Gdzie:

Q1 – siła osiowa działająca w momencie przeciążenia układu,

N - napięcie wstępne układu,

W – siła wypadkowa powodująca rozłączenie układu.

9.1.Obliczenie ugięcia sprężyny pod naciskiem Q1:

$$\begin{array}{c}
P_n - f_n \\
Q_1 - \Delta x_0
\end{array}$$

743,01 N - 32,3 mm 291 N - Δx_0

Stad: $\Delta x_0 = 12,65 \text{ mm}$

9.2.Obliczenie wymaganej siły wypadkowej W:

$$Q_1$$
- Δ_{XQ}
 W - f_r

291 N - 12,65 mm W - 12 mm

Stad: W = 276 N

9.3.Obliczenie napięcia wstępnego:

$$W=Q_1-N$$

 $N=Q_1-W = 15 N$

10. Stopniowanie wału:

Przy wyznaczaniu kolejnych średnich należy uwzględnić następujące warunki konstrukcyjne:

- warunek początkowy wynikający z obliczeń wytrzymałościowych: dD20mm,
- warunek konstrukcyjny: d2/d101,2
- warunek normalizacyjny (zgodność z szeregiem Renarda)

Przyjęto następujące wymiary po uwzględnieniu powyższych warunków:

Początkowo przyjęte d=30 mm bez zmian.

d1 = 36 mm

d2 = 28 mm

11. Dobór gwintu metrycznego:

Dobrano M27x1 zgodnie z normą PN-ISO-68-1:2000

 $\Delta x_q = 12,65 \text{ mm}$

W = 276 N

N = 15 N

d1 = 36 mm d2 = 28 mm

Wymiary gwintu:

$$d = 27 mm$$

 $d_2 = 26,350 mm$
 $d_1 = 25,907 mm$
 $p = 1 mm$

12. Dobór nakrętki i przeciwnakrętki: Dobrano nakrętkę M27x1-A PN-86/M-82144.

$$d=27 mm$$

 $S=41 mm$
 $w=23.8 mm$
 $w_1=18 mm$
 $D=45,62 mm$
 $D_1=27 mm$
 $D_2=38.4 mm$

12.1. Sprawdzenie warunku samohamowności: Pozorny kąt tarcia ρ ':

$$\rho' = arctg(\frac{\mu}{cos(\frac{\alpha}{2})}) = 9,83^{\circ}$$

$$\rho' = 9,83^{\circ}$$

12.2.Kąt pochylenia lini śrubowej:

$$\gamma = arctg(\frac{p}{\pi \cdot d}) = 0,68^{\circ}$$

Warunek samohamowności spełniony.

$$\gamma = 0.68^{\circ}$$

12.3.Wyznaczenie ilości obrotów nakrętki potrzebnych do ustalenia napięcia wstępnego w sprężynie:

$$Q_1$$
– Δx_Q

$$N-\Delta x_N$$

15 N -
$$\Delta x_N$$

Stąd:
$$\Delta x_N = 0.65 \text{ mm}$$

$$\Delta x_N = 0.65 \text{ mm}$$

μ=0,15 α=60°

p=1mm d=27mm

Ilość obrotów: $n = \frac{\Delta xN}{p} = 0,65 \ obrotu$	n = 0,65 <i>obrotu</i>
Aby uzyskać wymagane napięcie wstępne nakrętkę należy dokręcić z siłą N= 15 N co jest równoważne dokręceniu jej o 0,65 obrotu.	