Attacks on AOP (Arithmetization-Oriented Primitives)

When cryptanalysis becomes lucrative!

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

École d'hiver, Autrans, France January 22nd, 2025

AOP: "Appellation d'origine protégée"

Bleu du Vercors-Sassenage

Sudoku

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Sudoku

 4
 2
 6
 5
 7
 1
 3
 9
 8

 8
 5
 7
 2
 9
 3
 1
 4
 6

 1
 3
 9
 4
 6
 8
 2
 7
 5

 9
 7
 1
 3
 8
 5
 6
 2
 4

 5
 4
 3
 7
 2
 6
 8
 1
 9

 6
 8
 2
 1
 4
 9
 7
 5
 3

 7
 9
 4
 6
 3
 2
 5
 8
 1

 2
 6
 5
 8
 1
 4
 9
 3
 7

 3
 1
 8
 9
 5
 7
 4
 6
 2

Unsolved Sudoku

Solved Sudoku

Sudoku

Unsolved Sudoku

Grid cutting

Sudoku

Unsolved Sudoku

Rows checking

Sudoku

Unsolved Sudoku

Columns checking

Sudoku

Unsolved Sudoku

Squares checking

Ali-Baba cave

Ali-Baba cave

Ali-Baba cave

A need for new primitives

A need for new primitives

Protocols requiring new primitives:

- * FHE: Fully Homomorphic Encryption
- ⋆ MPC: Multiparty Computation
- ★ ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

Primitives

A need for new primitives

Protocols requiring new primitives:

- * FHE: Fully Homomorphic Encryption
- ⋆ MPC: Multiparty Computation
- ★ ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

And analyse their security!

* Symmetric cryptography and cryptanalysis tools

* Introduction of AOP

* Attacks against AOP

Block ciphers

★ input: *n*-bit block

$$x \in \mathbb{F}_2^n$$

★ parameter: k-bit key

$$\kappa \in \mathbb{F}_2^k$$

★ output: *n*-bit block

$$y = E_{\kappa}(x) \in \mathbb{F}_2^n$$

 \star symmetry: E and E^{-1} use the same κ

(a) Block cipher

(b) Random permutation

Block ciphers

★ input: *n*-bit block

$$x \in \mathbb{F}_2^n$$

★ parameter: k-bit key

$$\kappa \in \mathbb{F}_2^k$$

★ output: *n*-bit block

$$y = E_{\kappa}(x) \in \mathbb{F}_2^n$$

 \star symmetry: E and E^{-1} use the same κ

A block cipher is a family of 2^k permutations of \mathbb{F}_2^n .

Iterated constructions

How to build an efficient block cipher?

By iterating a round function.

Performance constraints! The primitive must be fast.

SPN construction

SPN = Substitution Permutation Networks

SPN construction

SPN = Substitution Permutation Networks

Hash functions

Definition

Hash function: $H: \mathbb{F}_q^{\ell} \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

Hash functions

Definition

Hash function: $H: \mathbb{F}_q^\ell \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

- * Preimage resistance: Given y it must be infeasible to find x s.t. H(x) = y.
- * Collision resistance: It must be *infeasible* to find $x \neq x'$ s.t. H(x) = H(x').

Sponge construction

Sponge construction

Parameters:

- * rate r > 0
- \star capacity c > 0
- \star permutation of \mathbb{F}_q^n (n=r+c)

Sponge construction

Sponge construction

Parameters:

- * rate r > 0
- \star capacity c > 0
- \star permutation of \mathbb{F}_q^n (n=r+c)

P is an iterated construction

Primitives

Building blocks of security

Building blocks of security

Cycle primitive

Primitive life cycle

Conception

- ★ Specification of the algorithm
- ⋆ Justification of design choices
- ★ First security analysis

Publication

Analysis

★ Trying to break algorithms

· · · Standardization

Deployment

* Implementation of algorithms

CICO: Constrained Input Constrained Output

Definition

Let $P: \mathbb{F}_q^{r+c} \to \mathbb{F}_q^{r+c}$. The **CICO** problem is:

Finding $X, Y \in \mathbb{F}_q^r$ s.t.

$$P(X, 0^c) = (Y, 0^c)$$

Content

Introduction of AOP

A new environment

Traditional case

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4,8$

Example

Field of AES

$$\mathbb{F}_2^n$$
, where $n = 8$

(1, 1, 1, 1, 1, 1, 1, 1)

Traditional case

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4,8$

Example

Field of AES

$$\mathbb{F}_2^n$$
, where $n = 8$

$$\begin{array}{c} (0,0,0,0,0,0,0,0,0),\\ (0,0,0,0,0,0,0,1),\\ & \dots\\ (1,1,1,1,1,1,1,1) \end{array}$$

Arithmetization-Oriented

Operations based on large finite-field arithmetic.

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 32$

Example

Scalar Field of Curve BLS12-381

 \mathbb{F}_p , where

 $p = 0 \times 73 = 0 \times 73$

$$0, 1, 2, ..., p - 1$$

New operations

Traditional case

Use of logical gates and CPU instructions.

New operations

Traditional case

Use of logical gates and CPU instructions.

Arithmetization-Oriented Use of Arithmetic circuit.

Traditional case

Minimize time and memory.

$$y \leftarrow E(x)$$

Traditional case

Minimize time and memory.

$$y \leftarrow E(x)$$

Arithmetization-Oriented

Minimize the number of multiplications.

$$y \leftarrow E(x)$$
 and $y == E(x)$

Traditional case

Minimize time and memory.

$$y \leftarrow E(x)$$

Arithmetization-Oriented

Minimize the number of multiplications.

$$y \leftarrow E(x)$$
 and $y == E(x)$

Example

Let $E : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^3$. We have $E^{-1} : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^7$.

Evaluation: Given x = 5, compute y = E(x).

y = 4 (applying E)

Traditional case

Minimize time and memory.

$$y \leftarrow E(x)$$

Arithmetization-Oriented

Minimize the number of multiplications.

$$y \leftarrow E(x)$$
 and $y == E(x)$

Example

Let $E : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^3$. We have $E^{-1} : \mathbb{F}_{11} \to \mathbb{F}_{11}, x \mapsto x^7$.

Verification: Given x = 5 and y = 4, check if y = E(x).

$$5^3 = 4$$
 (applying E) or $4^7 = 5$ (applying E^{-1})

Take-away

Traditional case

★ Alphabet:

$$\mathbb{F}_2^n$$
, with $n \simeq 4,8$

- ⋆ Operations: Logical gates/CPU instructions
- Metric: minimize time and memory for the evaluation
- ⋆ Decades of Cryptanalysis

Arithmetization-Oriented

* Alphabet:

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 32$

- ⋆ Operations:Large finite-field arithmetic
- Metric: minimize the number of multiplications for the verification
- $\star \leq 8$ years of Cryptanalysis

Primitives overview

Example of Type I: Poseidon

Low degree primitive

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, 2021

★ S-box:

$$x \mapsto x^3$$

* Nb rounds:

$$R = 2 \times Rf + RP$$
$$= 8 + (from 56 to 84)$$

Example of Type II: Rescue

Primitive based on equivalence

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, 2020

⋆ S-box:

$$x \mapsto x^3$$
 and $x \mapsto x^{1/3}$

* Nb rounds:

$$R = \text{from 8 to 26}$$
 (2 S-boxes per round)

Example of Type III: Reinforced Concrete

Primitive using Look-up-Tables

L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger and R. Walch, 2022

⋆ S-box:

* Nb rounds:

$$R = 7$$

Take-away

	Туре І	Type II	Type III
	Low-degree primitives	Equivalence relation	Look-up tables
Alphabet	\mathbb{F}_q^m for various q and m	\mathbb{F}_q^m for various q and m	specific fields
Nb of rounds	many	few	fewer
Plain performance	fast	slow	faster
Nb of constraints	often more	fewer	it depends on the proof system

QUIZ!!

To which type of primitives (I, II, or III) belong AES?

QUIZ!!

Could we use AES for advanced protocols?

Content

Attacks against AOP

CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t.

The CICO problem is:

Finding
$$X, Y \in \mathbb{F}_q^{t-u}$$
 s.t. $P(X, 0^u) = (Y, 0^u)$.

when
$$t = 3$$
, $u = 1$.

Need to solve polynomial systems

Solving polynomial systems

 \star Univariate solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

$$\begin{cases} \mathcal{P}_0(X) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X) &= 0 \end{cases}$$

Solving polynomial systems

 \star **Univariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

$$\begin{cases} \mathcal{P}_0(X) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X) &= 0 \end{cases}$$

* **Multivariate** solving: find the roots of $\mathcal{P}_i \in \mathbb{F}_q[X_0, \dots, X_{n-1}]$

$$\begin{cases} \mathcal{P}_0(X_0, \dots, X_{n-1}) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X_0, \dots, X_{n-1}) &= 0 \end{cases}$$

* Integers

$$a = q \times b + r, \ 0 \le r < b$$

Example: division of 2025 by 100

$$2025 = 20 \times 100 + 25$$

* Integers

$$a = q \times b + r, \ 0 \le r < b$$

Example: division of 2025 by 100

$$2025 = 20 \times 100 + 25$$

* Univariate polynomials

$$A = Q \times B + R, \ 0 \le \deg(R) < \deg(B)$$

Example: division of $X^5 + 2X^3 + 3X$ by X^2

$$X^5 + 2X^3 + 3X = (X^3 + 2X) \times X^2 + 3X$$

* Integers

$$a = q \times b + r, \ 0 \le r < b$$

Example: division of 2025 by 100

$$2025 = 20 \times 100 + 25$$

* Univariate polynomials

$$A = Q \times B + R$$
, $0 \le \deg(R) < \deg(B)$

Example: division of $X^5 + 2X^3 + 3X$ by X^2

$$X^5 + 2X^3 + 3X = (X^3 + 2X) \times X^2 + 3X$$

* Multivariate polynomials

* Integers

$$a = q \times b + r, \ 0 \le r < b$$

Example: division of 2025 by 100

$$2025 = 20 \times 100 + 25$$

* Univariate polynomials

$$A = Q \times B + R$$
, $0 \le \deg(R) < \deg(B)$

Example: division of $X^5 + 2X^3 + 3X$ by X^2

$$X^5 + 2X^3 + 3X = (X^3 + 2X) \times X^2 + 3X$$

* Multivariate polynomials

Need monomial ordering

What about the multivariate case?

Lexicographical ordering

Monomial ordering

Some orderings in $\mathbb{F}_q[x_1, x_2, x_3]$.

Lexicographical order (lex)

First, compare degrees of highest variable, then second variable, ...

$$x_1 > x_2 > x_3,$$
 $x_1 > x_2^2,$ $x_1^2 x_2 > x_1^2 x_3$

Some orderings in $\mathbb{F}_q[\underline{x_1},\underline{x_2},\underline{x_3}]$.

Lexicographical order (lex)

First, compare degrees of highest variable, then second variable, ...

$$x_1 > x_2 > x_3,$$
 $x_1 > x_2^2,$ $x_1^2 x_2 > x_1^2 x_3$

Graded lex. order (grlex)

First, compare total degree, then lex. order if equality.

$$x_1 > x_2 > x_3,$$
 $x_1 < x_2^2,$
 $x_1^2 x_2 > x_1^2 x_3$

Some orderings in $\mathbb{F}_a[x_1, x_2, x_3]$.

Some orderings in $\mathbb{F}_q[x_1, x_2, x_3]$

Lexicographical order (lex)

First, compare degrees of highest variable, then second variable, ...

$$x_1 > x_2 > x_3,$$
 $x_1 > x_2^2,$ $x_1^2 x_2 > x_1^2 x_3$

Graded reverse lex. order (grevlex)

First, compare total degree, then inverse lex. order if equality.

$$x_1 < x_2 < x_3,$$
 $x_1 < x_2^2,$
 $x_1^2 x_2 < x_1^2 x_3$

Graded lex. order (grlex)

First, compare total degree, then lex. order if equality.

$$x_1 > x_2 > x_3,$$
 $x_1 < x_2^2,$ $x_1^2 x_2 > x_1^2 x_3$

Some orderings in $\mathbb{F}_q[x_1, x_2, x_3]$.

Lexicographical order (lex)

First, compare degrees of highest variable, then second variable, ...

$$x_1 > x_2 > x_3,$$
 $x_1 > x_2^2,$ $x_1^2 x_2 > x_1^2 x_3$

Graded reverse lex. order (grevlex)

First, compare total degree, then inverse lex. order if equality.

$$x_1 < x_2 < x_3,$$
 $x_1 < x_2^2,$ $x_1^2 x_2 < x_1^2 x_3$

Graded lex. order (grlex)

First, compare total degree, then lex. order if equality.

$$x_1 > x_2 > x_3,$$
 $x_1 < x_2^2,$ $x_1^2 x_2 > x_1^2 x_3$

Weighted graded lex. order

First, compare weighted sum of degrees, then graded lex. order.

If
$$\operatorname{wt}(x_1) = 3$$
, $\operatorname{wt}(x_2) = 1$ and $\operatorname{wt}(x_3) = 4$, then
$$\frac{x_1}{2} < \frac{x_2}{3} = \frac{2}{3}$$

Solving polynomial systems

 \star **Univariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

$$\begin{cases} \mathcal{P}_0(X) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X) &= 0 \end{cases}$$

 \star **Multivariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X_0, \dots, X_{n-1}]$

$$\begin{cases} \mathcal{P}_{0}(X_{0},\ldots,X_{n-1}) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X_{0},\ldots,X_{n-1}) &= 0 \end{cases}.$$

- * Compute a grevlex order GB (**F5** algorithm)
- * Convert it into lex order GB (FGLM algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

Strategies

How to efficiency solve polynomial systems to build algebraic attacks?

Strategies

How to efficiency solve polynomial systems to build algebraic attacks?

- * by bypassing some rounds of iterated constructions
- ⋆ by changing the modeling
- ★ by changing the ordering

Strategies

How to efficiency solve polynomial systems to build algebraic attacks?

- * by bypassing some rounds of iterated constructions
- ⋆ by changing the modeling
- ⋆ by changing the ordering
- * by doing nothing??

Ethereum Foundation Challenges

https://www.zkhashbounties.info/
(November 2021)

- * Feistel-MiMC [Albrecht et al., 2016]
- ★ Poseidon [Grassi et al., 2021]
- ★ Rescue-Prime [Aly et al., 2020]
- * Reinforced Concrete [Grassi et al., 2022]

Ethereum Challenges: solving CICO problem for AO primitives with $q \sim 2^{64}$ prime

A. Bariant, C. Bouvier, G. Leurent, L. Perrin, 2022

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty
Easy	r = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 14	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	r = 22	34	\$26,000

(a) Feistel-MiMC

Category	Parameters	Security level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4,000
Medium	RP = 13	24	\$6,000
Hard	RP = 19	32	\$12,000
Hard	RP = 24	40	\$26,000

(c) Poseidon

Category	Parameters	Security level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N = 6, m = 2	25	\$4,000
Medium	N = 7, m = 2	29	\$6,000
Hard	N = 5, m = 3	30	\$12,000
Hard	N = 8, m = 2	33	\$26,000

(b) Rescue-Prime

Category	Parameters	Security level	Bounty
Easy	p = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

Feistel-MiMC

$$\begin{cases} \mathcal{P}_0(X) &= X \\ \mathcal{Q}_0(X) &= 0 \end{cases}$$

Feistel-MiMC

$$\begin{cases} \mathcal{P}_0(X) &= X \\ \mathcal{Q}_0(X) &= 0 \\ \mathcal{P}_1(X) &= (X + c_0)^3 \\ \mathcal{Q}_1(X) &= X \end{cases}$$

Feistel-MiMC

$$\begin{cases} \mathcal{P}_{0}(X) &= X \\ \mathcal{Q}_{0}(X) &= 0 \\ \mathcal{P}_{1}(X) &= (X + c_{0})^{3} \\ \mathcal{Q}_{1}(X) &= X \\ \dots \\ \mathcal{P}_{i}(X) &= \mathcal{Q}_{i-1}(X) + (\mathcal{P}_{i-1}(X) + c_{i-1})^{3} \\ \mathcal{Q}_{i}(X) &= \mathcal{P}_{i-1}(X) \end{cases}$$

Feistel-MiMC

$$\begin{cases} \mathcal{P}_{0}(X) &= X \\ \mathcal{Q}_{0}(X) &= 0 \\ \mathcal{P}_{1}(X) &= (X + c_{0})^{3} \\ \mathcal{Q}_{1}(X) &= X \\ \dots \\ \mathcal{P}_{i}(X) &= \mathcal{Q}_{i-1}(X) + (\mathcal{P}_{i-1}(X) + c_{i-1})^{3} \\ \mathcal{Q}_{i}(X) &= \mathcal{P}_{i-1}(X) \\ \dots \\ \mathcal{Q}_{r}(X) &= 0 \end{cases}$$

1 variable +(2r+1) equations

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty
Easy	r = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 14	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	r = 22	34	\$26,000

Category	Parameters	Security level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N = 6, m = 2	25	\$4,000
Medium	N = 7, m = 2	29	\$6,000
d	N = 5, m = 3	30	\$12,000
1	N = 8, m = 2	33	\$26,000

(a) Feistel-MiMC

(b) Rescue-Prime

Category	Parameters	Security level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4,000
Medium	RP = 13	24	\$6,000
Hard	RP = 19	32	\$12,000
Hard	RP = 24	40	\$26,000

(c) Poseidon

Category	Parameters	Security level	Bounty
Easy	p = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

Let $P = P_0 \circ P_1$ be a permutation of \mathbb{F}_p^3 and suppose

$$\exists V, G \in \mathbb{F}_p^3$$
, s.t. $\forall \mathbf{X} \in \mathbb{F}_p$, $P_0^{-1}(\mathbf{X}V + G) = (*, *, 0)$.

(a) R-round system.

(b) (R-2)-round system.

Poseidon

★ S-box:

$$x \mapsto x^3$$

* Nb rounds:

$$R = 2 \times Rf + RP$$
$$= 8 + (from 3 to 24)$$

Trick for Poseidon

(a) First two rounds.

(b) Overview.

Rescue-Prime

AddC

★ S-box:

$$x \mapsto x^3$$
 and $x \mapsto x^{1/3}$

★ Nb rounds:

$$R = \text{from 4 to 8}$$

(2 S-boxes per round)

Trick for Rescue-Prime

(a) First round.

(b) Overview.

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty
Easy	r = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 14	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	r = 22	34	\$26,000

Category	Parameters	Security level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N = 6, m = 2	25	\$4,000
Medium	N = 7, m = 2	29	\$6,000
d	N = 5, m = 3	30	\$12,000
	N = 8, m = 2	33	\$26,000

(a) Feistel-MiMC

\$26,000 (b) Rescue-Prime

Category	Parameters	Security level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4,000
Medium	RP = 13	24	\$6,000
Hard	RP = 19	32	\$12,000
Hard	RP = 24	40	\$26,000

(c) Poseidon

Category	Parameters	Security level	Bounty
Easy	p = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

Modeling of Anemoi

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

d; $x^{1/d}$ X_{i+1} Y_{i+1}

Model 1.

Model 2.

Importance of modeling

FreeLunch attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

- * Define the system
- * Compute a grevlex order GB (F5 algorithm)
- * Convert it into lex order GB (FGLM algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

FreeLunch attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

- * Define the system
- ★ Compute a grevlex order GB (F5 algorithm)
 → can be skipped
- * Convert it into lex order GB (FGLM algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

New Challenges

https://www.poseidon-initiative.info/
(November 2024)

New winners

\$30,000

A. Bak,A. Bariant,A. Boeuf,M. Hostettler,

G. Jazeron

and others...

- Poseidon-256:
- 24 bit estimated security: RF=6, RP=8. \$4000 claimed 9 Dec 2024
- 28 bit estimated security: RF=6, RP=9. \$6000 claimed 2 Jan 2025
- 32-bit estimated security: RF=6, RP=11. \$10000
- · 40-bit estimated security: RF=6, RP=16. \$15000
- Poseidon-64:
- 24-bit estimated security: RF=6, RP=7 \$4000
- 28-bit estimated security: RF=6, RP=8. \$6000
- 32-bit estimated security: RF=6, RP=10. \$10000
- 40-bit estimated security: RF=6, RP=13. \$15000
- Poseidon-31:
- 24-bit estimated security: RF=4, RP=0 (M31) claimed 29 Nov 2025 and RP=1 (KoalaBear). \$4000
 -claimed 30 Nov 2025
- 28-bit estimated security: RF=4, RP=1 (M31) and RP=3 (KoalaBear). \$6000 claimed 29 Nov 2025
- 32-bit estimated security: RF=6, RP=1 (M31) claimed 2 Dec 2025 and RP=4 (KoalaBear).
 \$10000 claimed 5 Dec 2025
- 40-bit estimated security: RF=6, RP=4 (M31 only). \$15000

QUIZ!!

Could we use our trick for SPN on Reinforced Concrete?

QUIZ!!

Could we use the FreeLunch attack on Feistel–MiMC?

Conclusions and Perspectives

Conclusions

- * try as many modeling as possible
- * prefer univariate instead of multivariate system
- * be careful of tricks to bypass rounds

AOP: a new lucrative business?

Conclusions and Perspectives

Conclusions

- * try as many modeling as possible
- * prefer univariate instead of multivariate system
- ⋆ be careful of tricks to bypass rounds

AOP: a new lucrative business?

Perspectives

- ⋆ study of other attacks
- * study the security of Type III
- * ...

Website

STAP Zoo 51AP primitive types 51AP use-cases All STAP primitives

STAP

Symmetric Techniques for Advanced Protocols

The term \$7AP (Symmetric Techniques for Advanced Protocols) was first introduced in \$184223, an alliande worshoop of terrocrypt23. It generally refers to algorithms in symmetric cryptography specifically designed to be afficient in new advanced cryptography in the control. These contents include zero-involvedge [210] proofs, secure multiparty competation [1407] and fully humanomphic encryption Firld swintoments. homomorphic encryption-firedly stream ciphers.

STAP Zoo

We present a collection of proposed symmetric primitives fitting the STAP description and keep track of recent advances regarding their security and consequent updates. These may be filtered according to their features two categorize them into different groups regarding primitive-type (block clober, stream.clober, hash function or PEP) and use-4-sec. FILE, MPC and TAP.

For each STAP-primitive, we provide a brief overview of its main cryptographic characteristics, including:

- Basic general information: designers, year, conference/journal where it was first introduced and reference.
- Basic cryptographic properties such as description of the primitive (and relevant diagrams when applicable), use-case and proposed parameter sets.
- · Relevant known attacks/weaknesses.

Properties of its best hardware implementation.

When applicable, we also mention connections and relations between different designs.

See more at

stap-zoo.com

Website

STAP Zoo STAP primitive types STAP use-cases ATISTAP primitives

STAP

Symmetric Techniques for Advanced Protocols

The term STAP (Symmetric Techniques for Advanced Protocols) was first introduced in STAP2 23, an affiliated vorsishop of terrocrypt 23. It generally refers to algorithms in symmetric cryptography operficiently designed to be efficient in new advanced cryptography for protocols. These contents include zero-involvage (20) proofs, secure methods are considered to the content of the bommorphic encryption friendly stream ciphers.

STAP Zoo

We present a collection of proposed symmetric primitives fitting the STAP description and keep track of recent advances regarding their security and consequent updates. These may be filtered according to their features, we categorize them into different groups regarding primitive-type (block cloher, stream cloher, hash function or PBB) and use-scare (FHL, MPC, and C).

For each STAP-primitive, we provide a brief overview of its main cryptographic characteristics, including:

- Basic general information: designers, year, conference/journal where it was first introduced and reference.
- Basic cryptographic properties such as description of the primitive (and relevant diagrams when applicable), use-case and proposed parameter sets.
- Relevant known attacks/weaknesses.

Properties of its best hardware implementation.

When applicable, we also mention connections and relations between different designs.

See more at

stap-zoo.com

