

H2 Mathematics (9758) Chapter 10 Integration Techniques Extra Practice Solutions

Qn 1	2018/ACJC Prelim/1/6
(i)	Let $u = \sin^{-1} 2x$, $\frac{dv}{dx} = \frac{x}{\sqrt{1 - 4x^2}} = x(1 - 4x^2)^{-\frac{1}{2}}$
	$\frac{du}{dx} = \frac{2}{\sqrt{1 - 4x^2}}, \ v = \int x \left(1 - 4x^2\right)^{-\frac{1}{2}} = -\frac{1}{8} \int -8x \left(1 - 4x^2\right)^{-\frac{1}{2}} dx$
	$= -\frac{1}{4}\sqrt{1 - 4x^2} + C$
	$\int \sin^{-1} 2x \frac{x}{\sqrt{1 - 4x^2}} \mathrm{d}x$
	$= \left[\left(\sin^{-1} 2x \right) \left(-\frac{1}{4} \sqrt{1 - 4x^2} \right) \right] - \int \left(-\frac{1}{4} \sqrt{1 - 4x^2} \right) \left(\frac{2}{\sqrt{1 - 4x^2}} \right) dx$
	$= \left[-\frac{1}{4} \left(\sin^{-1} 2x \right) \sqrt{1 - 4x^2} \right] + \int \frac{1}{2} dx$
	$= \left[-\frac{1}{4} \left(\sin^{-1} 2x \right) \sqrt{1 - 4x^2} \right] + \frac{1}{2} x + C$
(ii)	$\int \frac{x-1}{x^2 + 2x + 6} \mathrm{d}x$
	$= \frac{1}{2} \int \frac{2x+2}{x^2+2x+6} dx - \int \frac{2}{(x+1)^2+5} dx$
	$= \frac{1}{2} \ln \left x^2 + 2x + 6 \right - \frac{2}{\sqrt{5}} \tan^{-1} \left(\frac{x+1}{\sqrt{5}} \right) + C$

Qn 2	2011/CJC Prelim/2/2
	$\frac{2+10x}{(1+3x)(1+3x^2)} = \frac{A}{1+3x} + \frac{Bx+C}{1+3x^2}$
	By cover-up rule, when $x = -\frac{1}{3} \Rightarrow A = -1$
	$2+10x = -1(1+3x^2) + (Bx+C)(1+3x)$
	2+10x $ A$ $Bx+C$
	$\frac{2+10x}{(1+3x)(1+3x^2)} = \frac{A}{(1+3x)} + \frac{Bx+C}{(1+3x^2)}$
	When $x = 0$, $C = 3$
	When $x = 1$, $B = 1$
	$\int_{0}^{1} \frac{2+10x}{(1+3x)(1+3x^{2})} dx = \int_{0}^{1} -\frac{1}{1+3x} + \frac{x+3}{1+3x^{2}} dx$
	$= \left[-\frac{1}{3} \ln 1 + 3x + \frac{1}{6} \ln 1 + 3x^2 + \sqrt{3} \tan^{-1} \left(\sqrt{3}x \right) \right]_0^1$
	$= -\frac{1}{3}\ln 4 + \frac{1}{6}\ln 4 + \sqrt{3}\tan^{-1}\left(\sqrt{3}\right)$
	$=-\frac{1}{6}\ln 4 + \frac{\sqrt{3}\pi}{3}$

(a)
$$\frac{x}{1-2x+x^2} = \frac{x}{(1-x)^2} \\ = \frac{-1}{1-x} + \frac{1}{(1-x)^2}$$
 Express $x = -(1-x)+1$ and split the fraction
$$\int \frac{x}{1-2x+x^2} dx = \int \frac{-1}{1-x} + \frac{1}{(1-x)^2} dx \\ = \ln|1-x| + \frac{1}{(1-x)} + C$$
(b) (i)
$$\int \sin^{-1}x dx = x\sin^{-1}x - \int x \cdot \frac{1}{\sqrt{1-x^2}} dx \\ = x\sin^{-1}x + \frac{1}{2} \int (-2x)(1-x^2)^{-\frac{1}{2}} dx$$
 Let $u = \sin^{-1}x \quad v = 1$
$$\frac{du}{dx} = \frac{1}{\sqrt{1-x^2}} \quad \int v dx = \int 1 dx = x$$

$$= x\sin^{-1}x + \sqrt{1-x^2} + C$$
(b)
$$\int \frac{x^2}{x^2 - 2x + 3} dx \\ = \int 1 + \frac{2x - 3}{x^2 - 2x + 3} dx$$
 Long division for improper fraction
$$= \int 1 + \frac{2x - 2}{x^2 - 2x + 3} - \frac{1}{(x-1)^2 + 2} dx$$

$$= x + \ln|x^2 - 2x + 3| - \frac{1}{\sqrt{2}} \tan^{-1} \frac{x - 1}{\sqrt{2}} + C$$

$\frac{\int \left[\ln(2x)\right]^{2}}{x\left[25 - 2\left[\ln(2x)\right]^{2}\right]} dx$ $= \int \frac{2u^{2}}{e^{u}(25 - 2u^{2})} \left(\frac{1}{2}e^{u}\right) du$ $= \int \frac{u^{2}}{25 - 2u^{2}} du$ $= -\frac{1}{2} \int \frac{-2u^{2} + 25 - 25}{25 - 2u^{2}} du$ $= -\frac{1}{2} \int 1 - \frac{25}{25 - 2u^{2}} du$ $= -\frac{1}{2} \left[u - (25) \left(\frac{1}{\sqrt{2}(2)(5)} \ln \left| \frac{5 + u\sqrt{2}}{5 - u\sqrt{2}} \right| \right)\right] + c$ $= -\frac{1}{2} \left[u - \frac{5}{2\sqrt{2}} \ln \left| \frac{5 + u\sqrt{2}}{5 - u\sqrt{2}} \right| \right] + c$ $= -\frac{1}{2} \left[\ln(2x) - \frac{5}{2\sqrt{2}} \ln \left| \frac{5 + \sqrt{2} \ln(2x)}{5 - \sqrt{2} \ln(2x)} \right| \right] + c$

Qn 5	2015/MI Prelim/1/2	
(i)	$\int \frac{\sin x}{1 + 2\cos x} \mathrm{d}x$	
	J 1 1 2005 W	
	$= -\frac{1}{2} \int \frac{-2\sin x}{1 + 2\cos x} \mathrm{d}x$	
	$= -\frac{1}{2}\ln 1 + 2\cos x + C$	
(ii)	$\int_0^{\frac{\pi}{2}} e^x \cos 2x \ dx$	
	$= \left[e^{x} \cos 2x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} 2e^{x} \sin 2x dx$	
	$= \left[e^{x} \cos 2x + 2e^{x} \sin 2x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} 4e^{x} \cos 2x dx $ Con	mbine $\int_{0}^{\frac{\pi}{2}} 4e^{x} \cos 2x dx$ with
	$\int_0^{\frac{\pi}{2}} e^x \cos 2x dx = -e^{\frac{\pi}{2}} - 1$ LH	S to become $5\int_{0}^{\frac{\pi}{2}} e^{x} \cos 2x dx$
	$\int_0^{\frac{\pi}{2}} e^x \cos 2x dx = -\frac{1}{5} \left(e^{\frac{\pi}{2}} + 1 \right)$	ő
	Alternatively,	
	$\int_0^{\frac{\pi}{2}} e^x \cos 2x dx$	
	$= \left[\frac{1}{2}e^{x}\sin 2x\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}}\frac{1}{2}e^{x}\sin 2x dx$	
	$= \left[\frac{1}{2} e^{x} \sin 2x + \frac{1}{4} e^{x} \cos 2x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \frac{1}{4} e^{x} \cos 2x dx$	
	$\frac{5}{4} \int_0^{\frac{\pi}{2}} e^x \cos 2x dx = -\frac{1}{4} \left(e^{\frac{\pi}{2}} + 1 \right)$	
	$\int_0^{\frac{\pi}{2}} e^x \cos 2x dx = -\frac{1}{5} \left(e^{\frac{\pi}{2}} + 1 \right)$	

Qn 6 2015/ACJC Prelim/1/1

$$u = 3 - x^{2}, \quad x^{2} = 3 - u, \quad \frac{du}{dx} = -2x.$$

$$\int x^{3} \sqrt{3 - x^{2}} \, dx = -\frac{1}{2} \int (3 - u) u^{\frac{1}{2}} \, du$$

$$= -\frac{1}{2} \int 3u^{\frac{1}{2}} - u^{\frac{3}{2}} \, du$$

$$= \frac{1}{5} u^{\frac{5}{2}} - u^{\frac{3}{2}} + c$$

$$= \frac{1}{5} (3 - x^{2})^{\frac{5}{2}} - (3 - x^{2})^{\frac{3}{2}} + c.$$

Qn 7	2015/NJC Prelim/2/1	
(a)	$x = 3 \tan \theta$	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$	
	When $x = 3$, $\tan \theta = 1 \implies \theta = \frac{\pi}{4}$	
	When $x = \sqrt{3}$, $\tan \theta = \frac{\sqrt{3}}{3} \implies \theta = \frac{\pi}{6}$	Change limits to θ
	$\int_{\sqrt{3}}^{3} \frac{1}{x^2 \sqrt{x^2 + 9}} \mathrm{d}x$	
	$= \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{9 \tan^2 \theta \sqrt{9 \tan^2 \theta + 9}} \left(3 \sec^2 \theta \right) d\theta$	
	$= \frac{1}{9} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{\left(\tan^2\theta\right) (3\sec\theta)} \left(3\sec^2\theta\right) d\theta$	
	$= \frac{1}{9} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\cos \theta}{\sin^2 \theta} d\theta$	
	$=\frac{1}{9}\left[\frac{-1}{\sin\theta}\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}$	
	$=\frac{1}{9}\left(\frac{-1}{\sin\frac{\pi}{4}} + \frac{1}{\sin\frac{\pi}{6}}\right)$	
	$=\frac{2-\sqrt{2}}{9}$	
(b)	$\int \ln\left(x^2 + 4\right) dx$	
	$= \int 1 \cdot \ln\left(x^2 + 4\right) dx$	Let $u = \ln(x^2 + 4)$ $v = 1$
	$= x \ln\left(x^2 + 4\right) - \int x \left(\frac{2x}{x^2 + 4}\right) dx$	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2x}{x^2 + 4} \qquad \qquad \int v \mathrm{d}x = x$
	$= x \ln(x^2 + 4) - \int \left(\frac{2(x^2 + 4) - 8}{x^2 + 4}\right) dx$	
	$= x \ln(x^2 + 4) - \int \left(2 - \frac{8}{x^2 + 4}\right) dx$	
	$= x \ln(x^2 + 4) - 2x + 4 \tan^{-1}\left(\frac{x}{2}\right) + c$	

Qn8	2015/PJC Prelim/1/9	
(a)(i)	Consider $\frac{d}{dx} \left(e^{x^2} \right) = 2xe^{x^2}$	
	Therefore, $\int x e^{x^2} dx = \frac{1}{2} e^{x^2} + C$	
(a)(ii)	$\int x^3 e^{x^2} dx$	
	$= \frac{1}{2}x^2 e^{x^2} - \int x e^{x^2} dx$	
	$= \frac{1}{2}x^2e^{x^2} - \frac{1}{2}e^{x^2} + C$	
	$= \frac{1}{2}x^2e^{x^2} - \frac{1}{2}e^{x^2} + C$	
(b)	$\int \sqrt{\frac{1-u}{u}} du$	
	$= \int \sqrt{\frac{1 - \sin^2 x}{\sin^2 x}} \left(2\sin x \cos x\right) dx$	
	$= \int \frac{\cos x}{\sin x} (2\sin x \cos x) dx$ $u = \sin^2 x \Rightarrow \sin x = \sqrt{u}$ $\Rightarrow x = \sin^{-1} \sqrt{u}$	
	$= \int 2\cos^2 x dx$	
	$= \int \cos 2x + 1 dx$ $\sin x = \frac{\sqrt{u}}{1}$ \sqrt{u}	
	$= \frac{\sin 2x}{2} + x + C$ $\cos x = \frac{\sqrt{1-u}}{\sqrt{1-u}}$	
	$= \sin x \cos x + x + C$ $= \sqrt{u} \sqrt{1 - u} + \sin^{-1} \sqrt{u} + C$	
	$= \sqrt{u - u^2} + \sin^{-1} \sqrt{u} + C$	

Qn 9	2017/JJC Prelim/1/2
(a)	$\int \sin(3\theta)\cos(3\theta)d\theta$
	$= \frac{1}{2} \int 2\sin 3\theta \cos 3\theta d\theta$
	$=\frac{1}{2}\int\sin 6\thetad\theta$
	$= -\frac{1}{12}\cos 6\theta + C$
(b)	$\theta = \sqrt{\pi} \Rightarrow \sqrt{x} = \sqrt{\pi} \Rightarrow x = \pi$
	$\theta = \sqrt{\frac{\pi}{2}} \Rightarrow \sqrt{x} = \sqrt{\frac{\pi}{2}} \Rightarrow x = \frac{\pi}{2}$
	$\theta = \sqrt{x} \implies \frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$.
	$\int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{\pi}} heta^3 \cos\!\left(heta^2 ight) \mathrm{d} heta$
	$= \int_{\frac{\pi}{2}}^{\pi} x \sqrt{x} (\cos x) \left(\frac{1}{2\sqrt{x}} \right) dx$
	$=\frac{1}{2}\int_{\frac{\pi}{2}}^{\pi}x\cos x\mathrm{d}x$
	$= \frac{1}{2} \left[\left[x \sin x \right]_{\frac{\pi}{2}}^{\pi} - \int_{\frac{\pi}{2}}^{\pi} 1(\sin x) \mathrm{d}x \right] $ Let $u = x$ $v = \sin x$ $\mathrm{d}u$
	$\frac{1}{1} = 1 \qquad v dx = -\cos x $
	$=\frac{1}{2}\left(0-\frac{\pi}{2}+\left[\cos x\right]_{\frac{\pi}{2}}^{\pi}\right)$
	$=\frac{1}{2}\left[-\frac{\pi}{2}+\left(-1-0\right)\right]$
	$=-\frac{1}{2}-\frac{\pi}{4}$

Qn 10	2017/NYJC Prelim/1/4
(i)	$x-1=3\tan\theta$
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$

Qn 10	2017/NYJC Prelim/1/4
	$\int \frac{1}{\sqrt{x^2 - 2x + 10}} dx = \int \frac{1}{\sqrt{(x - 1)^2 + 3^2}} dx$
	$= \int \frac{1}{\sqrt{(3\tan\theta)^2 + 3^2}} \cdot 3\sec^2\theta d\theta$
	$= \int \frac{1}{3\sec\theta} \cdot 3\sec^2\theta d\theta$
	$=\int \sec\theta \ d\theta$
	$= \ln\left \sec\theta + \tan\theta\right + C$
	$= \ln \left \frac{\sqrt{x^2 - 2x + 10}}{3} + \frac{x - 1}{3} \right + C$
(ii)	$x+3=\frac{1}{2}(2x-2)+4$
	$\int \frac{x+3}{\sqrt{x^2-2x+10}} \mathrm{d}x$
	$= \int \frac{\frac{1}{2}(2x-2)+4}{\sqrt{x^2-2x+10}} dx$
	$= \frac{1}{2} \int \frac{2x-2}{\sqrt{x^2-2x+10}} dx + \int \frac{4}{\sqrt{(x-1)^2+3^2}} dx$
	$= \frac{1}{2} \frac{\sqrt{x^2 - 2x + 10}}{\frac{1}{2}} + 4 \int \frac{1}{\sqrt{(x - 1)^2 + 3^2}} dx$
	$= \sqrt{x^2 - 2x + 10} + 4\ln\left \frac{\sqrt{x^2 - 2x + 10}}{3} + \frac{x - 1}{3}\right + C$