Note percolation Stage été 2025

Julien Racette

11 mai 2025

Table des matières

	0.1 Notation et quelques définitions	2
1	Bernoulli Bond Percolation	2
	1.1 Point critique	2

0.1 Notation et quelques définitions

J'utilise une notation similaire à celle de [1] et [2]. On dit que $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ est un réseau de dimension d où \mathbb{Z}^d est l'ensemble des sommets et \mathbb{E}^d est l'ensemble des arêtes entre les points. On note $x \sim y$ si x et y sont voisins, c'est-à-dire qu'il existe une arête entre eux. On appelle $\omega = (\omega_e : e \in \mathbb{E}^d) \in \Omega$ la configuration de \mathbb{L}^d . On dit que $\omega^1 \leq \omega^2$ si $\omega_e^1 \leq \omega_e^2$, $\forall e \in \mathbb{E}^d$. On dit que $\omega_e = 1$ est ouvert et $\omega_e = 0$ est fermé. On appelle cluster une composante connexe.

1 Bernoulli Bond Percolation

1.1 Point critique

- $\theta(p) := \mathbb{P}_p[||C|| = \infty]$
- $\psi(p) := \mathbb{P}_p[$ "Il existe un *cluster* infini"]

Proposition 1.1. (Existence d'un point critique)

Il existe $p_c \in [0,1]$ tel que

i)
$$\psi(p) = 0$$
 si $p < p_c(d)$

$$ii) \ \psi(p) = 1 \ si \ p > p_c(d)$$

Démonstration. Soit $X_e \sim \mathcal{U}(0,1)$ et $p \in [0,1]$. On peut facilement voir que

$$\mathbb{P}_{p}[\mathbb{1}_{X_{e} < p} = 1] = \mathbb{P}_{p}[x_{e} < p] = \int_{0}^{p} dx = p$$

$$\mathbb{P}_{p}[\mathbb{1}_{X_{e} < p} = 0] = \mathbb{P}_{p}[x_{e} \ge p] = \int_{p}^{1} dx = 1 - p$$

On a donc que $\mathbb{1}_{X_e < p} \sim \mathcal{B}ern(p)$. On prend $p_1, p_2 \in [0, 1]$ avec $p_1 < p_2$. Si $\mathbb{1}_{X_e < p_1} = 1$ alors $\mathbb{1}_{X_e < p_2} = 1$. Cela implique que $\mathbb{1}_{X_e < p}$ est croissant sur p et donc que ω est croissant sur p. Si ω^{p_1} réalise un cluster infini, alors ω^{p_2} le réalise aussi. On peut en déduire que ψ est croissant sur p. Il est évident que $\psi(0) = 0$ et $\psi(1) = 1$. Cela implique qu'il existe un unique $p_c \in [0, 1]$ tel que $\psi(p) = 1$ si $p > p_c(d)$ et $\psi(p) = 0$ si $p < p_c(d)$.

Théorème 1.2.

$$p_c(d) \in (0,1) \ pour \ d \ge 2$$

Démonstration. On va d'abord montrer que si $\psi(p)=0$ alors $p_c(d)>0$. Pour cela, on va encore utiliser l'argument de la monotonie. Soit $p_1,p_2\in(0,1]$, tel que $p_1\leq p_2$. On a déjà montré 1.1 que ψ est croissante sur p. Donc si $\psi(p_1)=0$ alors $\psi(p_2)=0$. Cela implique que $\psi(\hat{p})=0$ $\forall \hat{p}\in[0,p]$ et donc $p_c>0$.

Si
$$\psi(p) > 0$$
 alors $\exists x \in \mathbb{Z}^d$ tel que $\theta(p) > 0$.

Références

- [1] Hugo Duminil-Copin. Introduction to Bernoulli Percolation. https://www.unige.ch/~duminil/publi/2017percolation.pdf. Lecture notes, November 2, 2022. 2022.
- $[2] \quad \text{Geoffrey Grimmett. } \textit{Percolation. } 2\text{nd. Berlin}: Springer, \, 1999.$