## PH3104 Problem Set 7

**Q 1)** Using the Ebers-Moll model sketch the input and output charactersitics for a pnp transistor in the CB mode. Use the parameters

$$\alpha_F = 0.97, \alpha_R = 0.78, I_{ES} = 1.0 \times 10^{-15} \text{A}$$

(For an ideal transistor we have a relation  $\alpha_F I_{ES} = \alpha_R I_{CS}$  - this should give you the other parameter). To plot the output characteristics you will have to rewrite the Ebers-Moll equations to express  $I_C$  in terms of  $I_E$  and  $V_{CB}$ .

Be careful to choose the right range (and sign) of voltage and current values while plotting. Your plot should cover both the active and and saturation regions.

**Q 2)** For the transistor above determine the value of  $V_{CE}$  where the collector current vanishes for  $I_B = 10 \,\mu\text{A}$  and  $I_B = 50 \,\mu\text{A}$ , respectively.

**Q 3)** Consider the approximate model for the transistor in the active region. Take  $V_{\gamma} = 0.7 \,\mathrm{V}$  and  $\beta = 100$ . Determine the voltages  $V_{BE}, V_{CE}$  and currents  $I_B, I_C$  for the circuit below



Q 4) Prove that the two approximate ac models of the npn BJT shown below are equivalent



where

$$\beta = \frac{\alpha}{1 - \alpha}$$