Лекция 2

Определение 1. Подмножество I кольца R называется udeanom, если оно является подгруппой по сложению и $ra \in I$, $ar \in I$ для любых $a \in I$, $r \in R$.

Определение 2. Идеал I называется *главным*, если существует такой элемент $a \in R$, что I = (a).

Теорема 3 (Теорема о гомоморфизме). Пусть $\varphi: R \to R'$ - гомоморфизм колец. Тогда имеет место изоморфизм

$$R/\ker\varphi\cong\operatorname{Im}\varphi$$

Определение 4. Кольцо R - нетерово, если любой идеал в R конечно порожден

Теорема 5. Кольцо R - нетерово тогда и только тогда, когда любая возрастающая цепочка идеалов в R стабилизируется.

Теорема 6. Пусть кольцо R - нетерово и $\varphi: R \to R$ - сюръекция. Тогда φ - изоморфизм.

Теорема 7 (Гильберта о базисе). Пусть кольцо R - нетерово. Тогда кольцо R[x] - тоже нетерово.

Теорема 8. Пусть кольцо R - нетерово. Тогда R/I - тоже нетерово.

Определение 9. Необратимый элемент $a \in R$ неприводим, если не существует разложения $a = b \cdot c$, где b, c - необратимы.

Определение 10. Необратимый элемент $a \in R$ называется npocmыm, если для любого элемента bc, который делится на a, верно, что либо a|b, либо a|c.

Теорема 11. Пусть кольцо R - нетерово. Тогда для любого необратимого $a \in R$ существует разложение $a = a_1 \cdot \ldots a_n$, где a_i - необратимы.

Определение 12. Идеал I - неприводим, если для любого разложения $I = J_1 \cap J_2$ или $J_1 \in I$, или $J_2 \in I$.

Определение 13. Идеал I - npocmoй, если для любых $a,b \in R$ из $a \cdot b \in I$ следует, что либо $a \in I$, либо $b \in I$.

Определение 14. Аффинное пространство $\mathbb{A}^n = \{(a_1, \dots, a_n), a_i \in \mathbb{K}\}.$

Определение 15. $X \subset \mathbb{A}^n$ - называется алгебраическим множеством, если $X = \{p = 0 \mid p \in \mathcal{P}\}.$

Определение 16. Пусть I - идеал, тогда множеством нулей этого идеала называется множество

$$\mathbb{V}(I) = \{ x \mid \forall f \in If(x) = 0 \}$$

Определение 17. Возьмем $X \subset \mathbb{A}^n$, тогда аннулирующим идеалом этого множества называется идеал

$$\mathbb{I}(X) = \{ f \mid f|_X \equiv 0 \}$$

Определение 18. Идеал I называется paduкальным, если

$$\forall f \in R \ \exists n \ f^n \in I \Rightarrow f \in I$$

Определение 19. Радикалом идеала І называется такой идеал

$$\sqrt{I} = \{ f \mid \exists n \ f^n \in I \}$$

Теорема 20 (Гильберта о нулях).

$$\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}$$

Определение 21. Для кольца R областью целостности называется кольцо без делителей нуля.

Лекция 3

Теорема 22 (Слабая теорема Гильберта о нулях).

$$I \subset \mathbb{K}[x_1 \dots x_n] \Rightarrow \mathbb{V}(I) \neq \emptyset$$

Определение 23. Топология Зарисского в \mathbb{A}^n . Замкнутые множества - алгебраические. Пусть X_i - замкнуто, тогда $\bigcap_{i\in I} X_i$ - замкнуто. Пусть X_i - открыто, тогда $\bigcup_{i=1}^n X_i$ - открыто.

Определение 24. Для подмножества $Z \in \mathbb{A}^n$ его замыканием называется

$$\overline{Z} = \bigcap_{X \supset Z, X - \text{замкнуто}} X$$

Определение 25. Подмножество $Y \subset X$, где X - алгебраическое, называется плотным в X, если $\overline{Y} = X$.

Определение 26. Регулярной функцией на алгебраическом множестве $X \subset \mathbb{A}^n$ называется ограничение многочлена на X.

Определение 27. Алгеброй регулярных функций на X называется $\mathbb{K}[X] = \mathbb{K}[x_1 \dots x_n]/\mathbb{I}(X)$

Определение 28. Замкнутое множество X называется nenpusodumыm, если не существует $X_1, X_2 \subsetneq X$ замкнутых таких, что $X_1 \cup X_2 = X$.

Теорема 29. Любое замкнутое $X \subset \mathbb{A}^n$ раскладывается единственным образом в объединение неприводимых.

$$X = X_1 \cup \cdots \cup X_n$$

Теорема 30. X - неприводимо тогда и только тогда, когда в $\mathbb{K}[X] = \mathbb{K}[x_1 \dots x_n]/\mathbb{I}(X)$ нет делителей нуля.

Лекция 4

Определение 31. Квазиаффинное множество - открытое подмножество в алгебраическом множестве.

Определение 32. Множество X - локально замкнуто, если $X = U \cap V$, где U - открытое, V - замкнутое. Это эквивалентно тому, что X - открыто в замкнутом.

Определение 33. Если X - неприводимо, то определим $\mathrm{Frac}\mathbb{K}[X]=\{rac{f}{g}\mid f,g\in\mathbb{K}[X],g
eq0\}/rac{f'}{g}\simrac{f'}{g'}$

Определение 34. Функция f - рациональная, если $f \in \text{Frac}\mathbb{K}[X] = \mathbb{K}(X)$.

Определение 35. Рациональная функция f регулярна в точке $x \in X$, если $f \sim \frac{g}{h}, h(x) \neq 0$.

Определение 36. Область определения функции f - $\{x \mid f$ - регулярна в $x\}$. Это множество открыто и не пусто.

Теорема 37. Рациональная функция $f \in \mathbb{K}(X)$ регулярна в $x \ \forall x \in X$, тогда $f \in \mathbb{K}[X]$.

Определение 38. Пусть $X \subset Y$ - квазиаффинное, тогда

$$\mathbb{K}[X] = \{ f \in \mathbb{K}(Y) \mid f - \text{регулярна в } x \ \forall x \in X \}$$

Определение 39. Пусть R - область целостности (R = K[X]), $S \subset R$ - мультипликативное подмножество

$$S^{-1}R = \left\{ \frac{r}{s} \mid r \in R, s \in S \right\} / \left\{ \frac{r}{s} \sim \frac{r'}{s'} \mid rs' - r's = 0 \right\}$$

Определение 40. Регулярное отображение (морфизм) $\varphi: X \to Y, X \subset \mathbb{A}^n, Y \subset \mathbb{A}^m$ - алгебраические подмножества или квазиафинные многообразия.

$$\varphi = (\varphi_1 ... \varphi_m), \quad \varphi_i \in k[X], \quad \varphi(X) \subset Y$$

Определение 41. $\varphi * : k[Y] \to k[X]$ - двойственный (обратный) гомоморфизм.

$$f \in k[Y], \quad x \in X, \quad (\varphi * f)(x) = f(\varphi(x))$$

Теорема 42.

$$\{\varphi:X\to Y-\mathit{perynярнa}\}\Longleftrightarrow \{\varphi*:k[Y]\to k[X]-\mathit{гомоморфизм}\}$$

Определение 43. $\varphi: X \to Y$ - гомоморфизм, если $\exists \psi: Y \to X$, такой что $\psi \circ \varphi = \mathrm{id}_X$ и $\varphi \circ \psi = \mathrm{id}_Y$

Определение 44. Квазиаффинное многообразие X называется аффинным, если $\exists Y \subset \mathbb{A}^n$ - замкнутое и X,Y - изоморфны.

Определение 45. Отображение $\varphi: X \to Y$ - доминантное, если $\overline{\mathrm{Im} \varphi} = Y$

Теорема 46. φ - доминантно, тогда $\varphi*:k[Y]\to k[X]$ - инъективен.

Определение 47. Рациональное отображение $\varphi: X \dashrightarrow Y, X \in \mathbb{A}^n, Y \in \mathbb{A}^m$ - замкнутые неприводимые.

$$\varphi = (\varphi_1, ..., \varphi_m), \quad \varphi_i \in k(X), \quad \varphi(X) \subset Y$$

Если мы возьмем $U\subset X,\,V\subset Y$ - открытые, то $\varphi:U\to V$ - регулярное отобрражение

Теорема 48. $U \subset X$ - открыто, то k(U) = k(V).

Теорема 49. Рациональное отображение φ - доминантно, тогда $\varphi * : k(Y) \to k(X)$ - инъективен.

Определение 50. Рациональное отображение $\varphi: X \dashrightarrow Y$ - бирационально, если $\exists \psi: Y \dashrightarrow X$, такой что $\varphi \circ \psi = \mathrm{id}_Y$, $\psi \circ \varphi = \mathrm{id}_X$ - на области определения.

Теорема 51. Если рациональные функции совпадают на открытом подмножестве, то они равны.

Теорема 52. Если рациональные отображения совпадают на открытом подмножестве, то они равны.

Теорема 53. φ - бирационально тогда и только тогда, когда $\varphi*$ - изоморфизм k(Y) и k(X).

Определение 54. Алгебраический тор - $(\mathbb{A}\setminus\{0\})^n$.

$$(t_1,...,t_n)\cdot(t'_1,...,t'_n)=(t_1\cdot t'_1,...,t_n\cdot t'_n)$$

Определение 55. G - алгебраическая группа, если G - аффинное многообразие и группа. И если mul : $G \times G \to G$, $inv: G \times G \to G$ - регулярные отображения.

Определение 56. $G \cap X$ - действие алгебраической группы, если это действие и регулярное отображение на аффинных многообразиях.

Определение 57. Торическое многообразие $X \supset T$ - открытое, $T \curvearrowright X$ - продолжение действия тора на себе.

Лекция 5

Лекция 6

Тут базисы Гребнера, мне лент их техать.

Определение 58. $f: X \dashrightarrow Y$ - бирационально тогда и только тогда, когда $\exists U \subset X, V \subset Y, f$ - изоморфизм U, V.

Определение 59. X, Y - бирационально эквивалентны, если $\exists f: X \dashrightarrow Y$ - бирациональное.

Теорема 60. Любое многообразие бирационально эквиалентно какой-то гиперповерхности $\{f=0\}\subset \mathbb{A}^n$

Теорема 61. $L \supset K$ - конечное расширение полей, тогда $\exists x, L = K(x)$.

Теорема 62. Пусть $T_1 \subset X_1, T_2 \subset X_2$. И $\varphi : T_1 \to T_2$ - гомоморфизм

 $\varphi: X_1 \dashrightarrow X_2$ — бирациональное $\Longleftrightarrow \varphi: T_1 \to T_2$ — изоморфизм $\Longleftrightarrow \varphi*: M_2 \to M_1$ — изоморфизм

Определение 63. X - торическое, тогда X - бирационально эквивалентно \mathbb{A}^n .

Определение 64. X - неприводимо, то размерность $\dim X =$ степень трансцедентности trdegK(X). Если приводимо $X = \cup X_i$, то $\dim X = max$ размерностей его компонент.

Теорема 65.

$$\dim X = 0 \Longleftrightarrow |X| < \infty$$

Теорема 66.

$$\dim X \times Y = \dim X + \dim Y$$

Теорема 67. 1. $X \subset Y$, $mor \partial a \dim X \leq \dim Y$

2.
$$X\subset Y,\,Y$$
 - неприводим, $\dim X=\dim Y,\,mor\partial a\,X=Y$

3.
$$Y = \{f = 0\} \subset \mathbb{A}^n \iff Y = \bigcup Y_i, \dim Y_i = n - 1, \ \operatorname{codim}_{\mathbb{A}^n} Y = \dim \mathbb{A}^n - \dim Y$$