Week 6– Logistic Regression

Classification

Pedram Jahangiry

Credit Card Default

Can we use linear probability model (LPM)?

Suppose for the **Default** classification task that we code

$$Y = \begin{cases} 0 & \text{if No} \\ 1 & \text{if Yes.} \end{cases}$$

Can we simply perform a linear regression of Y on X and classify as Yes if $\hat{Y} > 0.5$?

- Since in the population $E(Y|X=x) = \Pr(Y=1|X=x)$, we might think that regression is perfect for this task.
- However, *linear* regression might produce probabilities less than zero or bigger than one. *Logistic regression* is more appropriate.

Linear versus Logistic Regression

The orange marks indicate the response Y, either 0 or 1. Linear regression does not estimate $\Pr(Y=1|X)$ well. Logistic regression seems well suited to the task.

Sigmoid Function

The Sigmoid (aka Logistic) function has a range of [0,1]

Logistic Regression

Let's write p(X) = Pr(Y = 1|X) for short and consider using balance to predict default. Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

 $(e \approx 2.71828 \text{ is a mathematical constant [Euler's number.]})$ It is easy to see that no matter what values β_0 , β_1 or X take, p(X) will have values between 0 and 1.

Logistic Regression (cont'd)

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

A bit of rearrangement gives

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

This monotone transformation is called the $log \ odds$ or logit transformation of p(X). (by log we mean $natural \ log: ln.)$

Logistic regression ensures that our estimate for p(X) lies between 0 and 1.

Logistic regression is very popular for classification, especially when K = 2

Maximum Likelihood

We use maximum likelihood to estimate the parameters.

$$\ell(\beta_0, \beta) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i)).$$

This *likelihood* gives the probability of the observed zeros and ones in the data. We pick β_0 and β_1 to maximize the likelihood of the observed data.

Most statistical packages can fit linear logistic regression models by maximum likelihood. In R we use the glm function.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Predictions

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

With a balance of \$2000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

Other measures

Tru		True con	dition			
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True posit	uracy (ACC) = tive + Σ True negative tal population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, $Power = \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score = 2 · Precision · Recall
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	= LR+ LR-	2 · Precision · Recall Precision + Recall

Types of errors

