Matemáticas en la formación de escalas musicales.

Estructura de la escala músical

Do	1	Re	1	Mi	$\frac{1}{2}$	Fa	1	Sol	1	La	1	Si	$\frac{1}{2}$	Do
С		D		Е		F		G		Α		В		С

- Guido D'Arezzo, 991?- 1033?), Ut-Re-Mi-Fa-Sol-La-Sa-Ut sobre un himno a San Juan Bautista llamado "Ut queant laxis" (Pablo el Diácono)
- Anselmo de Flandes, Sa→ Si.
- Giovanni Battista Doni, Ut→ Do,

Aspectos físicos de la música.

La ecuación de ondas en una recta.

$$\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,t).$$

Donde x es posición, t tiempo, c velocidad de propagación.

Sonidos puros

$$u(x,t) = A \operatorname{sen}(2\pi\omega t) \operatorname{sen}(\frac{\pi}{\ell}x).$$

- A es la intensidad máxima.
- \bullet ω es la frecuencia.
- \bullet ℓ es la longitud entre dos nodos consecutivos.

$$\omega = \frac{c}{2\ell}$$
.

Sonidos que suenan bien juntos.

- Pitagoras (569 a.C.-475 a.C.)
- Si acortamos la longitud, la frecuencia sube. Si alargamos la longitud la frecuencia baja.
- Si dividimos por 2, la longitud, la frecuencia se multiplica por
 Los sonidos son muy similares. Estamos en la misma nota.
 (Es una relación de equivalencia.)
- Si dividimos por 3, la frecuencia se multiplica por 3 y los sonidos suenan bien juntos. (Es una relación de dependencia, no es transitiva.)
- Si dividimos por 4, hemos dividido dos veces por 2, y estamos en la misma nota.
- Si dividimos por 5, la frecuencia se multiplica por 5 y los sonidos suenan bien juntos (algo peor).
- 6 Etc.

La quinta justa.

- Si multiplicamos por 2 la frecuencia. Es la misma nota tras una escala.
- Si multiplicamos por 3 la frecuencia. Obtenemos una nota entre una escala (x2) y dos escalas (x2x2).
- Una quinta justa se obtiene al multiplicar por $\frac{3}{2}$ su frecuencia. Es bajar una escala la nota obtenida al multiplicar por 3. Una quinta justa es un intervalo que contiene 3 tonos y un semitono.
 - \bigcirc Do \rightarrow Sol,
 - $\mathbf{2}$ Re \rightarrow La,
 - \odot Mi \rightarrow Si,
 - lacktriangledown Fa ightarrow Do,
 - \bullet Sol \rightarrow Re.
 - $\mathbf{0}$ La \rightarrow Mi,

Falta la quinta Si \rightarrow Fa, que no es una quinta Justa. "Quinta diablo".

Escala pentafona.

- Multiplicar por 3 es por tanto un intervalo de 3 + 6 tonos y un semitono.
- Si x es la escala correspondiente, al multiplicar por 3 la frecuencia gueda:

 - Fa^x \rightarrow Do^{x+2},(cambia dos veces la escala).

Partiendo de Re³ de frecuencia $\omega \sim$ 293.665 ciclos/segundo:

Do ³	Re ³	Mi ³	$\frac{1}{2}$	Fa ³	Sol ³	La ³	Si ³	$\frac{1}{2}$	Do ⁴
	ω								
	ω				$\frac{4}{3}\omega$	$\frac{3}{2}\omega$			
$\frac{8}{9}\omega$	ω	$\frac{9}{8}\omega$			$\frac{4}{3}\omega$	$\frac{3}{2}\omega$			$\frac{16}{9}\omega$

Problema.

- Tono=Multiplicar por $\frac{9}{8} = 1.125$,
- Tono+Semitono=Multiplicar por $\frac{32}{27} = 1.185185185$.
- 3 tonos= $(1.125)^3 = 1.423828125$,
- $2(\text{Tono}+\text{Semitono})=(\frac{32}{27})^2=1.404663923.$

Escala diatónica.

- \bullet Fa^x \rightarrow Do^{x+2}.
- $\mathbf{Sol}^{x} \to \mathsf{Re}^{x+1}$.
- 6 La^x \rightarrow Mi^{x+1},

 $(\omega \sim 293.665 \text{ ciclos/segundo, es la afinación de Re}^3))$

Do ³	Re ³	Mi ³	$\frac{1}{2}$	Fa ³	Sol ³	La ³	Si ³	$\frac{1}{2}$	Do ⁴
	ω								
	ω				$\frac{4}{3}\omega$	$\frac{3}{2}\omega$			
$\frac{8}{9}\omega$	ω	$\frac{9}{8}\omega$			$\frac{4}{3}\omega$	$\frac{3}{2}\omega$			$\frac{16}{9}\omega$
$\frac{8}{9}\omega$	ϑ	$\frac{9}{8}\omega$		$\frac{32}{27}\omega$	$\frac{4}{3}\omega$	$\frac{3}{2}\omega$	$\frac{27}{16}\omega$		$\frac{16}{9}\omega$

Problema.

- Tono=Multiplicar por $\frac{9}{8} = 1.125$,
- Semitono=Multiplicar por $\frac{256}{243} = 1.053497942$.
- 2 Semitonos= $(\frac{256}{243})^2 = 1.109857915$.

Coma Pitagórica.

- Semitono diatónico. Es el semitono entre notas de diferente mismo nombre. Ej Mi \to Fa, Do \to Re \flat , Do \sharp \to Re. Tiene el valor $\frac{256}{243}=1.053497942$
- Semitono cromático. Es el semitono entre notas del mismo nombre. Ej Do \to Do \sharp , Re \flat \to Re.

Usando que Un tono= Semitono diatónico + Semitono Cromático, obtenemos que el semitono cromático tiene el valor

$$\frac{\frac{9}{8}}{\frac{256}{243}} = \frac{2187}{2048},$$

y es algo mayor que el diatónico.

Una coma pitagórica es la diferencia entre un semitono cromático y uno diatónico

$$\frac{\frac{2187}{2048}}{\frac{256}{243}} = \frac{531441}{524288}$$

Y aproximadamente 9 comas es un tono.

Escala temperada.

Si tomo α la solución de $\alpha^{12}=2$ se toman todos los semitonos iguales quedando: (tomo ω la afinación de Re³)

Do ³	Re ³	Mi ³	Fa ³	Sol ³	La ³	Si ³	Do ⁴
$\frac{\omega}{\alpha^2}$	ω	$\alpha^2\omega$	$\alpha^3\omega$	$\alpha^{5}\omega$	$\alpha^7\omega$	$\alpha^9\omega$	$\alpha^{10}\omega$

La ecuación $\alpha^{12}=2$, se resolvió con la ayuda de los logarítmos que fueron estudiados por:

John Napier de Merchiston, 1550-1617.

Ejercicios

Esta fijado por convección en música. El valor del La³ es 440 ciclos por segundo, calcula la frecuencia de afinación segun la escala Pitagórica y la escala temperada del Sol².

Escalas referida a Do³

- $\omega \sim 261.626$ ciclos/segundo, afinación de Do³.
- $\alpha = \sqrt[12]{2} \sim 1.059463094$.

Do ³	Re ³	Mi ³	Fa ³	Sol ³	La ³	Si ³	Do ⁴
ω	$\frac{9}{8}\omega$	$\frac{81}{64}\omega$	$\frac{4}{3}\omega$	$\frac{3}{2}\omega$	$\frac{27}{16}\omega$	$\frac{243}{128}\omega$	2ω
ω	$\alpha^2\omega$	$\alpha^4\omega$	$\alpha^{5}\omega$	$\alpha^7 \omega$	$\alpha^9\omega$	$\alpha^{11}\omega$	2ω

Distancias entre notas.

- El valor de afinacion del La³ es por acuerdo 440 ciclos/segundo.
- $\alpha = \sqrt[12]{2} \sim 1.059463094$.
- Todas las notas se obtienen a partir de esta teniendo en cuenta la siguiente distancia entre notas.

Do		Re		Mi		Fa		Sol		La		Si		Do
	98		98		256 243		98		9 8		9 8		256 243	
	α^2		α^2		α		α^2		α^2		α^2		α	

Modificación de la escala pitagórica.

 $\omega \sim$ 261.626 ciclos/segundo afinación de Do³.

		/						
Si ²	Do ³	Re ³	Mi ³	Fa ³	Sol ³	La ³	Si ³	Do ⁴
$\frac{128}{243}\omega$	ω	$\frac{9}{8}\omega$	$\frac{81}{64}\omega$	$\frac{4}{3}\omega$	$\frac{3}{2}\omega$	$\frac{27}{16}\omega$	$\frac{243}{128}\omega$	2ω
$\frac{15}{16}\omega$	ω	$\frac{9}{8}\omega$	$\frac{5}{4}\omega$	$\frac{4}{3}\omega$	$\frac{3}{2}\omega$	$\frac{27}{16}\omega$	$\frac{15}{8}\omega$	2ω

 La segunda escala es una modificación bastante extendida de la escala pitagórica, con una afinación mejor referida a Do³.
 Observar que ahora no todos los tonos son iguales.