ДЗ к семинару 17

Задача 1. Рассмотрим моноид $\mathbb{N}^{\mathbb{N}}$ всех отображений $\mathbb{N} \to \mathbb{N}$. Пусть отображения $f,g \in \mathbb{N}$ заданы правилами

$$f(1) = 1$$
, $f(2) = 1$, $f(3) = 2$, $f(4) = 3$, ...

И

$$q(1) = 2$$
, $q(2) = 3$, $q(3) = 4$,

Доказать, что f и g необратимы, но $f \circ g = 1_{\mathbb{N}}$ (то есть у f нет левого обратного, а у g – правого).

 $Y \kappa a s a h u e$. Вспомнить задачи про описание инъективных/сюръективных отображений в терминах наличия левого/правого обратного.

Задача 2. Привести пример группы G и элементов $g,h\in G$ таких, что:

- 1. $\operatorname{ord}(g) = \operatorname{ord}(h) = \infty$, no $\operatorname{ord}(gh) < \infty$;
- 2. $\operatorname{ord}(g) = \infty$, $\operatorname{ord}(h) < \infty$ и $\operatorname{ord}(gh) = \infty$.

Задача 3. Пусть G — циклическая группа конечного порядка n, порождённая элементом $g \in G$. Найти порядок элемента g^k , где 0 < k < n.

Задача 4. Доказать, что группа S_3 порождается двумя элементами (явно их предъявив), но не порождается одним.

Задача 5. Чему равен порядок группы $\mathrm{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_2)$? Какой группе изоморфна эта группа?