HW1: Filters & Photometry

Tess Kleanthous

September 30, 2025

Problem 1: Effective Wavelengths of Filters

Approach.

- Read each filter file.
- Infer wavelength units from scale (treat as μm or nm when appropriate) and convert to Å.
- Clean non-finite/negative rows, sort by wavelength, normalize transmission to unit peak.
- Compute λ_{eff} with logarithmic weighting.

Key formula. (Throughput $s(\lambda)$; log-weighted mean)

$$\lambda_{\mathrm{eff}} = \exp\left(rac{\int s(\lambda)\,\ln\lambda\,d\ln\lambda}{\int s(\lambda)\,d\ln\lambda}
ight), \qquad d\ln\lambda \equiv rac{d\lambda}{\lambda}.$$

Output.

• CSV: Problem1/effectivewavelengths.csv (filter, file, λ_{eff} in Å and μ m, detected units/format).

Problem 2: Vega AB Corrections

Approach.

- Reuse the Problem 1 filter parser (units \rightarrow Å, clean, sort).
- Load Vega, convert to (ν, f_{ν}) if needed.
- Interpolate f_{ν} onto each filter's ν -grid; compute $\langle f_{\nu} \rangle$ (log- ν weighting), then $m_{\rm AB}({\rm Vega})$.
- Merge Vega→AB offsets with the Problem 1 table by band stem (e.g., V_Maiz→V).

Key formulas.

$$\nu = \frac{c}{\lambda}, \qquad f_{\nu} = f_{\lambda} \frac{\lambda^{2}}{c} \quad (c = 2.997\,924\,58e10\,\mathrm{cm\,s^{-1}}, \ \lambda \ \mathrm{in \ cm}),$$
$$\langle f_{\nu} \rangle = \frac{\int S(\nu) \, f_{\nu}(\nu) \, d\ln \nu}{\int S(\nu) \, d\ln \nu}, \qquad m_{\mathrm{AB}}(\mathrm{Vega}) = -2.5 \log_{10}(\langle f_{\nu} \rangle) - 48.60.$$

Output.

• CSV: Problem2/EffectiveWavelengths_VegaABMag.csv (adds $m_{AB}(Vega)$ per filter).

Problem 3: AB Absolute Magnitudes (U,B,V) & Colors

Approach.

- With Pickles (1998) templates, compute m_{AB} in U, B, V via photon-counting weights; form U-B and B-V.
- Filters normalized to unit peak; also produce a quick U/B/V sanity plot.
- Absolute magnitudes assume spectra are absolute SEDs at 10 pc; otherwise, colors remain robust.

Key formulas.

$$f_{\nu}(\lambda) = f_{\lambda}(\lambda) \frac{\lambda^{2}}{c}, \qquad \langle f_{\nu} \rangle = \frac{\int f_{\nu}(\lambda) S(\lambda) \lambda d \ln \lambda}{\int S(\lambda) \lambda d \ln \lambda},$$

$$m_{\text{AB,X}} = -2.5 \log_{10} \left(\frac{\langle f_{\nu} \rangle}{f_{\nu,0}} \right), \quad f_{\nu,0} = 3.631 \text{e} - 20 \, \text{erg s}^{-1} \, \text{cm}^{-2} \, \text{Hz}^{-1},$$

$$(U-B) = m_{\text{AB,U}} - m_{\text{AB,B}}, \qquad (B-V) = m_{\text{AB,B}} - m_{\text{AB,V}}.$$

(If a spectrum is at distance $d_{\rm pc}$, rescale flux by $(d_{\rm pc}/10)^2$ before evaluating $m_{\rm AB}$.)

Outputs.

- Tables: templates/pickles_stars/Table_with_AB_UBV.dat (tab) and Problem3/Table_with_AB_UBV.csv (CSV) with $M_U, M_B, M_V, U-B, B-V$.
- Figure: Problem3/filters_UBV.png (normalized U/B/V passbands).

Problem 4: H–R Diagrams (Pickles 1998) + Sun

Approach.

- Load templates/pickles_stars/Table_with_AB_UBV.dat; coerce Teff, M_V , B-V to numeric; compute $\log_{10} T_{\rm eff}$.
- Normalize luminosity classes to I, II, III, IV, V, D.
- Panel A: M_V vs. $\log_{10} T_{\text{eff}}$ (invert y: bright at top; invert x: hot on left); add spectral-type ticks $(O \rightarrow M)$.
- Panel B: M_V vs. B-V (invert y: bright at top).
- Style points by luminosity class; overplot the Sun (G5 V if present, else fallback $T_{\odot}=5772\,\mathrm{K},$ $M_{V,\odot}=4.83,\,B-V\approx0.65$).

Key formulas.

$$\log_{10} T_{\rm eff} = \log_{10} \left({\rm Teff/K} \right), \qquad (B-V) = m_B - m_V \quad {\rm (AB)}.$$

$$M_V = \begin{cases} m_V, & \text{if spectra are absolute at } 10 \, {\rm pc}, \\ m_V - 5 \log_{10} \left(d/10 \, {\rm pc} \right), & \text{otherwise}. \end{cases}$$

Output.

• Figures: Problem4/HR1_Mv_vs_logTeff.png, Problem4/HR2_Mv_vs_BminusV.png.

Problem 5: Color-Color (U-B vs. B-V) + Blackbody Locus

Approach.

- Load templates/pickles_stars/Table_with_AB_UBV.dat; coerce Teff, U-B, B-V to numeric and compute $\log_{10} T_{\text{eff}}$.
- Read U/B/V passbands (auto-detect units, convert to Å, clean, sort, normalize to unit peak).
- For each spectrum, compute m_{AB} in U, B, V via a photon-weighted band average of f_{ν} ; form colors U-B and B-V.
- Build a blackbody locus by evaluating $B_{\lambda}(T)$ on a dense λ -grid across many T, then computing (U-B, B-V).
- Plot (B-V, U-B) with points styled by luminosity class and colored by $\log_{10} T_{\text{eff}}$; overlay the blackbody curve.

Key formulas.

$$f_{\nu}(\lambda) = f_{\lambda}(\lambda) \frac{\lambda^{2}}{c}, \qquad d \ln \lambda \equiv \frac{d\lambda}{\lambda}.$$

$$\langle f_{\nu} \rangle = \frac{\int f_{\nu}(\lambda) S(\lambda) \lambda d \ln \lambda}{\int S(\lambda) \lambda d \ln \lambda}, \qquad m_{\text{AB,X}} = -2.5 \log_{10} \left(\frac{\langle f_{\nu} \rangle}{f_{\nu,0}}\right).$$

$$(U-B) = m_{U} - m_{B}, \qquad (B-V) = m_{B} - m_{V}.$$

$$B_{\lambda}(T) = \frac{2hc^{2}}{\lambda^{5}} \frac{1}{\exp(\frac{hc}{\lambda k_{B}T}) - 1}.$$

Output.

• Figure: Problem5/ColorColor_UBvsBV_custom.png.

Discussion (Problem 5). The u-b vs. b-v map shows the classic stellar track: hot, early-type stars (yellow) sit up/left and slide down/right toward cooler (purple) types. There's a sharp knee near $b-v \approx 0$ (around A0) where the Balmer jump makes u-b change quickly. Different luminosity classes follow similar paths but are offset vertically: lower gravity (giants/supergiants) tends to enhance the Balmer jump and other wavelength-dependent opacity, so at the same b-v they appear redder in u-b than dwarfs; white dwarfs cluster at the extreme blue end. The blackbody locus runs bluer in u-b than real stars at cooler $T_{\rm eff}$ because real stellar atmospheres introduce extra, wavelength-dependent absorption in the near-UV/blue, which depresses the U-band more than B and shifts colors redward relative to a smooth blackbody. In general, the motion along the sequence mostly tracks $T_{\rm eff}$, with the horizontal spread set mainly by intrinsic color/temperature (broadened by interstellar reddening) and the vertical spread reflecting surface gravity and overall composition.

Problem 6: Bolometric Corrections (U, V, K, AB system)

Approach.

- Load U/V/K filter curves (auto-units \rightarrow Å, clean, sort, normalize).
- Read Pickles spectra (λ, f_{λ}) ; clean, sort.
- For each star, compute m_{AB} in U, V, K using an energy-weighted band average in $\ln \lambda$.
- Compute the AB bolometric magnitude by integrating f_{ν} over $\ln \lambda$.
- Form $BC_X \equiv m_X m_{\text{bol}}$; plot BC_X vs. $\log_{10} T_{\text{eff}}$ with class styling.

Key formulas.

$$f_{\nu}(\lambda) = f_{\lambda}(\lambda) \frac{\lambda^2}{c}, \qquad \langle f_{\nu} \rangle = \frac{\int f_{\nu}(\lambda) S(\lambda) d \ln \lambda}{\int S(\lambda) d \ln \lambda},$$

$$m_{\rm AB,X} = -2.5 \log_{10} \left(\langle f_{\nu} \rangle \right) - 48.60, \qquad m_{\rm bol} = -2.5 \log_{10} \left(\int f_{\nu} d \ln \lambda \right) - 48.60, \qquad BC_X \equiv m_X - m_{\rm bol}.$$

Outputs.

- Table: Problem6/Table_with_BCs.dat $(m_U, m_V, m_K, m_{\text{bol}}, BC_U, BC_V, BC_K)$.
- Figure: Problem6/BC_three_panel.png (scatter by luminosity class; BC_U, BC_V, BC_K vs. $\log_{10} T_{\text{eff}}$).

Discussion (Problem 6). We use $BC_X \equiv m_X - m_{\text{bol}}$ in the AB system, so a larger (more **positive) BC** means the band is **fainter** than the bolometric magnitude and captures a smaller fraction of the total flux.

- U band: $BC_{AB}(U)$ is small for hot stars and rises steeply toward cooler types.
- V band: $BC_{AB}(V)$ shows a shallow U-shape with a minimum near solar-like T_{eff} ($\log_{10} T_{eff} \approx 3.76$); it increases toward both hot and cool ends.
- **K band:** $BC_{AB}(K)$ is largest for hot stars and declines toward zero (sometimes slightly negative) for cool stars, where the IR carries a larger share of the luminosity.
- Class trends: Class-to-class differences are modest compared to the temperature trend; gravity/composition introduce some scatter.

Problem 7: Distance Modulus — Naked-Eye Visibility of the Sun

Approach. Use the distance–modulus relation in the V band (no extinction): $m - M = 5 \log_{10}(d/10 \,\mathrm{pc})$.

Key formula.

$$d_{\rm pc} = 10 \times 10^{\frac{m_{\rm limit} - M_{V,\odot}}{5}}, \qquad d_{\rm ly} = 3.26156 \, d_{\rm pc}.$$

Output. With $M_{V,\odot} = 4.83$ and $m_{\text{limit}} = 6.0$,

$$d_{\rm pc} \approx 10 \times 10^{(6.0-4.83)/5} \approx 17.14 \text{ pc} \quad (\approx 55.90 \text{ ly}).$$