Bayesian approaches to mixed effects modeling

Yaqian Huang

yaqian.huang@oeaw.ac.at

September 27, 2023 University of Canterbury | NZILBB

wins!(?)

70% (hypothetical)

0:1

40% (hypothetical)

P(Hypothesis)

P(Hypothesis|Data)

Prior beliefs

Data

Posterior beliefs

Today's posterior is tomorrow's prior. – Lindley (1972:2)

An A and Z demo, not A to Z

- Bayesian concepts
- A hands-on example in R
- Resources for A-Z & more advanced topics

Why Bayesian?

- Intuitive, natural way to think about the world
- Philosophical reasons

Frequentist vs. Bayesian

- Null hypothesis significance testing by a cut-off value
- Estimate uncertain
- Truth fixed

- Quantifies uncertainty around possible parameter values
- Estimate certain
- Truth unknown
- "how unusual to get 5 straight heads if one were flipping a 'fair' coin with probability heads being 0.5?"
- "how likely is this a 'fair' coin if one got 5 straight heads when flipping it?"

Why Bayesian?

- Intuitive, natural way to think about the world
- Philosophical reasons

```
Warning messages:
1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
    Model failed to converge with max|grad| = 0.131568 (tol = 0.001, component 1)
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
    Model is nearly unidentifiable: very large eigenvalue
```

Why Bayesian?

- Intuitive, natural way to think about the world
- Philosophical reasons
- Practical and computational reasons
 - Flexible and consistent (no decision trees)
 - Better accuracy in problematic datasets
 - p-value less relevant
 - Incorporate prior knowledge

Bayesian mixed modeling

What is Bayesian?

Distribution of possible values for the parameters ← Observed data + prior expectation

Prior: initial degree of belief in hypothesis

Likelihood: the probability of the data given the hypothesis

• P(Hypothesis|Data) = $\frac{P(Hypothesis)P(Data|Hypothesis)}{P(Data)}$

Posterior: updated degree of belief in hypothesis, after seeing data

- 1. Start with Prior beliefs.
- 2. Collect Data.
- 3. Combine to Posterior beliefs.

How to do Bayesian in R

```
library(brms) b~r+(m|s)
library(rstan) <- stan code basis
library(bayesplot) <- using ggplot2
library(tidyverse) <- for tidy dataset</pre>
```

Example: voicing in glottal fricatives

Research question: how does **voiceless** glottal fricative [h] differ in voicing intensity from the **voiced** glottal fricative [h]

335 tokens of [h] in 91 languages and 35 tokens of [h] in 15 languages at the word-initial position

```
> head(df)
# A tibble: 6 \times 7
           language, Filename, dur, lartype, family, area [6]
# Groups:
  Filename
                 language dur
                                 lartype family
                                                       area
                                                                     norm.soe
  <chr>
                <chr>
                           <dbl> <chr>
                                         <chr>
                                                       <chr>
                                                                        <dbl>
                A'ingae 168. h
1 20-to go
                                        A'ingae
                                                       South America
                                                                       0.0988
2 55-to go
                A'ingae 135. h
                                        A'ingae
                                                       South America
                                                                       0.172
                Afrikaans 86.4 H
                                         Indo-European Africa
3 014-hang
                                                                       0.329
              Afrikaans 156. H
4 032-hands
                                         Indo-European Africa
                                                                       0.207
5 148-horizontal Afrikaans 55.9 H
                                         Indo-European Africa
                                                                       0.499
6 158-historian Afrikaans 20.6 H
                                         Indo-European Africa
                                                                       0.451
```

lme4

```
mod <- lmer(norm.soe~dur+lartype
+(1|family)+(1|area),
data=df)</pre>
```

running time: 2 s

brms

```
mod <- brm(norm.soe~dur+lartype
+(1|family)+(1|area),
data=df,
family = gaussian(),
prior = c(
prior(normal(0.2, 1), class =
Intercept),
prior(normal(0.2, .5), class = b, coef
= lartypeH),
prior(cauchy(0, 0.1), class = sigma)),
iter = 10000, chains = 4,
warmup = 2000)
# running time: 347s (warm-up +
sampling)</pre>
```

Model output (1)

> summary(mod)

```
Random effects
Group-Level Effects:
                                                  Rhat < 1.05
~area (Number of levels: 6)
              Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                  0.06
                             0.04
                                      0.01
                                               0.16 1.00
sd(Intercept)
                                                              6161
                                                                       7157
~family (Number of levels: 24)
              Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                  0.06
                             0.02
                                      0.03
                                                              8528
sd(Intercept)
                                               0.11 | 1.00
                                                                      11324
```

ESS: Effective sample size for mean & median, and for 5% and 95% quantiles
Minimum: 10% of all the used iterations (3200)

Model output (2)

> summary(mod)

Questions: Are these good Rhats? ESSs?


```
Family Specific Parameters: Residual variance
```

```
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 0.14 0.01 0.13 0.15 1.00 24691 23857
```

Model diagnostics

> plot(mod)

Indices of effect

- Posterior descriptive stats
 - Mean, median, SD, Cl of the posterior distribution
- Effect existence
 - Probability of direction (sign of effect)
- Effect significance
 - Bayes factor
 - Is null or the alternative more likely?
 - Region of practical equivalence (ROPE)
 - the probability of being outside a specific range that can be considered as "practically no effect"

Bayes factor

- The degree by which the mass of the posterior has shifted away from or closer to the null value, relative to the prior distribution
- → the null hypothesis has become less or more likely given the observed data

```
bayes_factor(M1, M2)
```

summary of evidence for M1 against M2 provided by data

Model comparison: Bayes factor

```
> bayes factor(
> mod <- brm(
norm.soe~dur+lartype+(1|family
                                       x1 = mod
+(1|area),
                                       x2 = mod0,
data=df, prior = priors
                                        repetitions = 10)
save pars = save pars(all =
T),...)
                                   Estimated Bayes factor (based on
                                   medians of log marginal
> mod0 <- brm(
                                   likelihood estimates)
norm.soe~dur+(1|family)+(1|are
                                   in favor of mod over mod0:
a),
                                   0.12752
data=df, prior = priors0
                                   Range of estimates: 0.12119 to
save pars = save pars(all =
                                   0.13239
T),...)
                                   Interquartile range: 0.00331
```

TABLE 15.1: The Bayes factor scale as proposed by Jeffreys (1939). This scale should not be regarded as a hard and fast rule.

BF_{12}	Interpretation
> 100	Extreme evidence for $\mathcal{M}_1.$
30 - 100	Very strong evidence for $\mathcal{M}_1.$
10 - 30	Strong evidence for $\mathcal{M}_1.$
3 - 10	Moderate evidence for $\mathcal{M}_1.$
1 - 3	Anecdotal evidence for $\mathcal{M}_1.$
1	No evidence.
$\frac{1}{1} - \frac{1}{3}$	Anecdotal evidence for $\mathcal{M}_2.$
$\frac{1}{3} - \frac{1}{10}$	Moderate evidence for \mathcal{M}_2 .
$\frac{1}{10} - \frac{1}{30}$	Strong evidence for \mathcal{M}_2 .
$\frac{1}{30} - \frac{1}{100}$	Very strong evidence for $\mathcal{M}_2.$
$<\frac{1}{100}$	Extreme evidence for \mathcal{M}_2 .

Reporting: Bayesian analysis methods

Describe the model like any mixed effects models:

"All Bayesian models were created in Stan accessed with *brms* package in R (Bürkner, 2017). To improve convergence and against overfitting, we specified weakly informative priors."

Report fitted values shown in mcmc_plot(): "the **mean** of posterior distribution and **95% Cr**[edible] **I**[nterval]."

If doing null hypothesis testing, you could also report the Bayes factor.

Reporting: results

The posterior distribution of voicing intensity in voiced [h] at the word-initial position has a **mean** of 0.04 with **95% CrI** [-0.01, 0.09].

Optional:

There is moderate evidence for the null model ($\mathbf{BF} = 0.13$), thus in favor of the hypothesis that glottal fricatives do not differ in voicing intensity in word-initial positions.

Wrap-up: what we learned

- Bayesian concepts
- Implementation using brms and other packages
- Inference and reporting

Wrap-up: what to learn next

- What is a prior and why and how should I use one
- Does my model make sense? Posterior distributions, predictions
- More complex models

Resources

- Bürkner, P. C. (2017). Advanced Bayesian multilevel modeling with the R package brms. *arXiv preprint arXiv:1705.11123*.
- Makowski, D., Ben-Shachar, M. S., Chen, S. A., & Lüdecke, D. (2019). Indices of effect existence and significance in the Bayesian framework. *Frontiers in* psychology, 10, 2767.
- Nicenboim, B., Schad, D., & Vasishth, S. (2023). *An introduction to Bayesian data analysis for cognitive science*. Under contract with Chapman and Hall/CRC statistics in the social and behavioral sciences series.
- Vasishth, S., Nicenboim, B., Beckman, M. E., Li, F., & Kong, E. J. (2018).
 Bayesian data analysis in the phonetic sciences: A tutorial introduction. *Journal of phonetics*, 71, 147-161.

Second Edition

Doing Bayesian Data Analysis

A Tutorial with R, JAGS, and Stan

John K. Kruschke

With brms exps: https://bookdown.org/content/4857/

Discussion

- What kinds of data do you encounter in your research?
- What are your 'go-to' models?
- How often do you think you have an intuition about the possibility of your hypothesis for your research question (even if they turn out to be wrong)?

Questions?

All the materials can be accessed:

https://github.com/yaqianhuang/Stats-workshops