project_EDA

Yu Zhu

10/26/2020

Behavior Data

I. Data Description

1.1 Import data

```
library(readxl)
Behave <- read_excel("~/Desktop/ucsc/courses/stat 204/project/ProjectDataset_behave.xlsx")

1.2 Summarization
summary(Behave)
## ParticipantNum StrengthLevel ResponseTime Accuracy</pre>
```

```
##
   Min. : 1.00
                   Min.
                         : 1.00
                                   Min.
                                          :0.3074
                                                            :0.0000
                                                    Min.
   1st Qu.: 6.00
                   1st Qu.: 4.50
                                    1st Qu.:0.6832
                                                    1st Qu.:1.0000
                                   Median :0.8416
  Median :13.00
                   Median :12.00
                                                    Median :1.0000
         :12.84
                   Mean :15.14
                                         :0.8995
                                                    Mean
                                                           :0.7659
  Mean
                                   Mean
   3rd Qu.:19.00
                   3rd Qu.:25.00
                                   3rd Qu.:1.0666
                                                    3rd Qu.:1.0000
##
##
   Max.
           :25.00
                   Max.
                          :40.00
                                   Max.
                                          :1.9395
                                                    Max.
                                                            :1.0000
##
     Confidence
          :1.000
##
  Min.
  1st Qu.:2.000
##
## Median :3.000
## Mean
          :2.556
## 3rd Qu.:3.000
```

Max. str(Behave)

:4.000

```
## tibble [20,447 x 5] (S3: tbl_df/tbl/data.frame)
## $ ParticipantNum: num [1:20447] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ StrengthLevel : num [1:20447] 8 4.5 4.5 1 4.5 25 4.5 4.5 25 40 ...
## $ ResponseTime : num [1:20447] 0.904 1.049 1.224 0.905 1.279 ...
## $ Accuracy : num [1:20447] 1 1 1 0 1 1 0 0 1 1 ...
## $ Confidence : num [1:20447] 3 1 2 2 1 3 1 1 2 3 ...
```

head(Behave)

```
## # A tibble: 6 x 5
     ParticipantNum StrengthLevel ResponseTime Accuracy Confidence
##
               <dbl>
                             <dbl>
                                           <dbl>
                                                     <dbl>
                                                                 <dbl>
## 1
                                8
                                           0.904
                   1
                                                         1
                                                                     3
## 2
                   1
                                4.5
                                           1.05
                                                                     1
```

```
## 3
                    1
                                 4.5
                                             1.22
                                                            1
                                                                        2
## 4
                                 1
                                             0.905
                                                                        2
                    1
## 5
                    1
                                 4.5
                                             1.28
                                                            1
                                                                        1
## 6
                                25
                                             0.792
                                                                        3
                    1
                                                            1
```

1.3 Check Missing Data

```
which(is.na(Behave))
## integer(0)
No missing data found. Great!
1.4 Factorization
Behave$ParticipantNum = as.factor(Behave$ParticipantNum)
Behave$Confidence = as.factor(Behave$Confidence)
Behave$StrengthLevel = as.factor(Behave$StrengthLevel)
# Show the frequency of the variables
table(Behave$ParticipantNum)
##
##
                                     7
                                                               12
                                                                          14
      1
           2
                3
                           5
                                6
                                           8
                                                9
                                                     10
                                                                    13
                                                                               15
                                                                                    16
                                                          11
    996
         929
              733 1015
                         896
                              582
                                   867
                                         700
                                              883
                                                   903
                                                        621
                                                             766
                                                                   934
                                                                        744
                                                                              745
##
                                               25
##
     17
          18
               19
                     20
                          21
                               22
                                     23
                                          24
   848 789
             716 903
                         775
                              637
                                   728
                                         854 1006
table (Behave $Confidence)
##
##
      1
           2
                 3
                      4
## 3962 5901 5841 4743
table(Behave$StrengthLevel)
##
##
      1 4.5
                8
                    12
                          25
                               40
## 3348 3445 3400 3364 3497 3393
table(Behave$Accuracy)
##
##
       0
```

II. Explotary Data Analysis

4787 15660

2.1 Contingency table of Acc VS Participant Number

table(Behave\$Accuracy, Behave\$ParticipantNum)

```
##
##
                3
                       5
                           6
                               7
                                   8
                                       9 10 11 12 13 14 15 16 17 18 19
##
    0 228 173 163 215 209 144 162 123 184 185 257 223 343 129 163 184 235 148 133
    1 768 756 570 800 687 438 705 577 699 718 364 543 591 615 582 693 613 641 583
##
##
       20 21 22 23 24
##
                          25
```

```
## 0 209 195 174 150 217 241
## 1 694 580 463 578 637 765
```

2.2 Contingency table of Acc VS Confidence

```
tb_Conf_Acc = table(Behave$Confidence, Behave$Accuracy); tb_Conf_Acc
##
## 0 1
## 1 1464 2498
## 2 1606 4295
## 3 1091 4750
## 4 626 4117
plot(tb_Conf_Acc)
```

tb_Conf_Acc

chisq.test(tb_Conf_Acc) ### Perform independence test in detail later

```
##
## Pearson's Chi-squared test
##
## data: tb_Conf_Acc
## X-squared = 801.59, df = 3, p-value < 2.2e-16</pre>
```

Obviously, the larger the confidence, the more accurate the experiment.

2.3 Contingency table of Acc VS Strength Level

```
tb_Stren_Acc = table(Behave$StrengthLevel, Behave$Accuracy); tb_Stren_Acc
```

```
## 25 232 3265
## 40 110 3283
```

plot(tb_Stren_Acc)

tb_Stren_Acc

chisq.test(tb_Stren_Acc) ### Perform independence test in detail later

```
##
## Pearson's Chi-squared test
##
## data: tb_Stren_Acc
## X-squared = 2703.9, df = 5, p-value < 2.2e-16</pre>
```

Obviously, the larger the strength level, the more accurate the experiment.

```
Behave_1 = data.frame(Behave$Confidence,Behave$StrengthLevel, Behave$Accuracy)
ftable(table(Behave_1))
```

##			Behave.Accuracy	0	1
##	${\tt Behave.Confidence}$	${\tt Behave.StrengthLevel}$			
##	1	1		530	554
##		4.5		379	597
##		8		290	528
##		12		191	429
##		25		54	233
##		40		20	157
##	2	1		519	608
##		4.5		433	761
##		8		336	862
##		12		219	851
##		25		71	720
##		40		28	493
##	3	1		335	391
##		4.5		281	526
##		8		226	628
##		12		161	854
##		25		61	1224

```
##
                         40
                                                                        27 1127
## 4
                         1
                                                                      171
                                                                            240
##
                         4.5
                                                                      162
                                                                            306
                         8
##
                                                                      112
                                                                            418
##
                         12
                                                                      100
                                                                            559
##
                         25
                                                                        46 1088
##
                         40
                                                                        35 1506
```

2.4 Boxplot of Reponse time Vs StrengthLevel and Confidence

```
par(mfrow = c(1,2))
boxplot(Behave$ResponseTime~Behave$StrengthLevel)
boxplot(Behave$ResponseTime~Behave$Confidence)
```


From the boxplots, there shows the pattern that the response time decrease along with the increasing of strength level and confidence.

2.5 Accuracy rate

Barplot Here I tried to transfer ACC into accuracy rate, taking means for each participant

```
geom_errorbar(aes(ymax=Accuracy+se, ymin=Accuracy-se), width=.1,size = 0.2, color = 'black')+
  theme_classic() +
  scale_y_continuous(labels = scales::percent) +
  xlab("Participants") +
  ylab("Accuracy Percentage")
gp+coord_flip()
  25 -
  24
  23
  22
  21
  20
  19
  18
  17
  16
  15
  14
  13
  12
  11
  10
   9
   8
   7
   6
   5
   4
   3
   2
                                             40%
        0%
                          20%
                                                                60%
                                                                                   80%
                                       Accuracy Percentage
```

The above barplot shows the mean accuracy rate of different participants.

Interaction plot Here I want to plot interaction plot to show interactions for strength level and confidence.

```
## FOR DIFFERENT Confidence
plot_F_interaction = function(Behave) {
 gp = list()
  # pick first 10 participants
  for (i in 1:10) {
   dataset.par= Behave[which(Behave$ParticipantNum == unique(Behave$ParticipantNum)[i]),]
    ### interaction plots
    agg.stren.conf = aggregate(Accuracy~StrengthLevel + Confidence,
                            data = dataset.par, mean)
   gp[[i]] <- ggplot(agg.stren.conf, aes(x=StrengthLevel, y=Accuracy, colour=Confidence, group=Confidence,
      geom_line(aes(linetype=Confidence), size=.5, color = "black", show.legend = FALSE) +
     geom_point(aes(shape=Confidence), size=2, color = 'black',show.legend = FALSE) +
     # geom_errorbar(aes(ymax=recovery+se, ymin=recovery-se), width=.1,size = 0.2, color = 'black')+
      theme classic() +
      scale_y_continuous(labels = scales::percent) +
      xlab("Strength Level") +
```


There seems to have mild interactions between strength level and confidence. So when we fit model, we could consider to add interaction terms.

III. Models

3.1 GLM Model

Fist we want to fit logistic regression model here with response variable Acc.

```
fit1 = glm(Accuracy~., data = Behave, family = binomial) # additive model
summary(fit1)
```

```
##
## Call:
  glm(formula = Accuracy ~ ., family = binomial, data = Behave)
##
## Deviance Residuals:
                       Median
##
       Min
                  1Q
                                     3Q
                                              Max
   -2.8765
                       0.3790
                                           2.0482
##
             0.1858
                                 0.7812
##
```

```
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
                                          7.742 9.81e-15 ***
## (Intercept)
                    0.903875
                               0.116755
## ParticipantNum2
                    0.004375
                               0.123110
                                          0.036 0.97165
## ParticipantNum3 -0.037437
                               0.125640
                                         -0.298 0.76572
## ParticipantNum4 -0.062213 0.117186
                                        -0.531 0.59549
## ParticipantNum5
                   -0.067083
                               0.118450
                                         -0.566 0.57116
## ParticipantNum6
                   -0.024292
                               0.133895
                                         -0.181 0.85603
## ParticipantNum7
                    0.039192
                               0.125564
                                          0.312 0.75494
## ParticipantNum8 -0.121380
                               0.138962 -0.873 0.38240
## ParticipantNum9
                    0.047108
                               0.121261
                                          0.388 0.69766
## ParticipantNum10 0.048411
                               0.120550
                                          0.402 0.68799
                               0.128216 -11.016 < 2e-16 ***
## ParticipantNum11 -1.412392
## ParticipantNum12 -0.877692
                               0.126110
                                        -6.960 3.41e-12 ***
## ParticipantNum13 -0.828562
                               0.111258
                                         -7.447 9.53e-14 ***
## ParticipantNum14 0.200521
                               0.134345
                                          1.493 0.13555
## ParticipantNum15 -0.348858
                               0.130976
                                        -2.664 0.00773 **
## ParticipantNum16 -0.321219
                               0.126445
                                         -2.540 0.01107 *
                                        -4.537 5.70e-06 ***
## ParticipantNum17 -0.541996
                               0.119452
## ParticipantNum18 0.260032
                               0.127476
                                          2.040 0.04136 *
## ParticipantNum19 0.037916
                               0.132021
                                          0.287 0.77396
## ParticipantNum20 -0.038183
                               0.119182 -0.320 0.74868
## ParticipantNum21 -0.608340
                               0.124527
                                         -4.885 1.03e-06 ***
## ParticipantNum22 -0.607646
                               0.130007
                                        -4.674 2.95e-06 ***
## ParticipantNum23 0.020401
                               0.129916
                                          0.157 0.87522
## ParticipantNum24 -0.354272
                               0.119708
                                         -2.959 0.00308 **
## ParticipantNum25 -0.501030
                                         -4.253 2.10e-05 ***
                               0.117793
## StrengthLevel4.5 0.392838
                               0.050739
                                          7.742 9.76e-15 ***
## StrengthLevel8
                    0.754145
                               0.052833
                                        14.274 < 2e-16 ***
                                                < 2e-16 ***
## StrengthLevel12
                    1.158294
                                         20.319
                               0.057004
## StrengthLevel25
                    2.277537
                               0.078767
                                         28.915
                                                 < 2e-16 ***
## StrengthLevel40
                    2.976192
                               0.105958
                                        28.088 < 2e-16 ***
## ResponseTime
                   -0.784543
                               0.067164 -11.681
                                                < 2e-16 ***
## Confidence2
                    0.198144
                               0.048696
                                          4.069 4.72e-05 ***
## Confidence3
                    0.461658
                               0.057476
                                          8.032 9.58e-16 ***
                                          9.071 < 2e-16 ***
## Confidence4
                    0.672325
                               0.074119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 22255
                                      degrees of freedom
                            on 20446
## Residual deviance: 18561
                            on 20413
                                      degrees of freedom
## AIC: 18629
## Number of Fisher Scoring iterations: 6
We can consider to use AIC criterion to fit the best model.
summary(step(fit1))
## Start: AIC=18629.2
## Accuracy ~ ParticipantNum + StrengthLevel + ResponseTime + Confidence
##
##
                   Df Deviance
                                 AIC
```

```
## <none>
                          18561 18629
## - Confidence
                    3
                          18659 18721
## - ResponseTime
                          18697 18763
## - ParticipantNum 24
                          18979 18999
## - StrengthLevel
                          20582 20640
##
## Call:
## glm(formula = Accuracy ~ ParticipantNum + StrengthLevel + ResponseTime +
       Confidence, family = binomial, data = Behave)
##
## Deviance Residuals:
##
       Min
                 10
                     Median
                                   3Q
                                          Max
## -2.8765
            0.1858
                     0.3790
                                        2.0482
                               0.7812
## Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     0.903875
                               0.116755
                                          7.742 9.81e-15 ***
## ParticipantNum2
                    0.004375
                               0.123110
                                          0.036 0.97165
                               0.125640 -0.298 0.76572
## ParticipantNum3
                   -0.037437
## ParticipantNum4
                   -0.062213
                               0.117186
                                         -0.531 0.59549
## ParticipantNum5 -0.067083
                                         -0.566 0.57116
                               0.118450
## ParticipantNum6 -0.024292
                               0.133895
                                         -0.181 0.85603
## ParticipantNum7
                    0.039192
                               0.125564
                                          0.312 0.75494
## ParticipantNum8 -0.121380
                               0.138962 -0.873 0.38240
## ParticipantNum9
                    0.047108
                               0.121261
                                          0.388 0.69766
## ParticipantNum10 0.048411
                               0.120550
                                          0.402 0.68799
## ParticipantNum11 -1.412392
                                0.128216 -11.016 < 2e-16 ***
## ParticipantNum12 -0.877692
                               0.126110
                                         -6.960 3.41e-12 ***
## ParticipantNum13 -0.828562
                                0.111258
                                         -7.447 9.53e-14 ***
## ParticipantNum14 0.200521
                               0.134345
                                          1.493 0.13555
## ParticipantNum15 -0.348858
                               0.130976
                                         -2.664 0.00773 **
## ParticipantNum16 -0.321219
                               0.126445
                                        -2.540 0.01107 *
## ParticipantNum17 -0.541996
                               0.119452 -4.537 5.70e-06 ***
## ParticipantNum18  0.260032
                               0.127476
                                          2.040 0.04136 *
                                          0.287
## ParticipantNum19 0.037916
                               0.132021
                                                 0.77396
## ParticipantNum20 -0.038183
                               0.119182 -0.320 0.74868
## ParticipantNum21 -0.608340
                               0.124527
                                         -4.885 1.03e-06 ***
## ParticipantNum22 -0.607646
                                         -4.674 2.95e-06 ***
                               0.130007
## ParticipantNum23 0.020401
                               0.129916
                                          0.157 0.87522
## ParticipantNum24 -0.354272
                               0.119708
                                         -2.959 0.00308 **
                               0.117793 -4.253 2.10e-05 ***
## ParticipantNum25 -0.501030
## StrengthLevel4.5
                    0.392838
                                0.050739
                                          7.742 9.76e-15 ***
## StrengthLevel8
                     0.754145
                                0.052833
                                        14.274 < 2e-16 ***
## StrengthLevel12
                     1.158294
                                0.057004
                                         20.319
                                                 < 2e-16 ***
## StrengthLevel25
                     2.277537
                                0.078767
                                         28.915 < 2e-16 ***
                                                < 2e-16 ***
## StrengthLevel40
                    2.976192
                                0.105958
                                         28.088
## ResponseTime
                   -0.784543
                               0.067164 -11.681
                                                < 2e-16 ***
## Confidence2
                                           4.069 4.72e-05 ***
                     0.198144
                                0.048696
## Confidence3
                     0.461658
                                0.057476
                                          8.032 9.58e-16 ***
## Confidence4
                     0.672325
                                0.074119
                                          9.071 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 22255
                             on 20446
                                       degrees of freedom
##
## Residual deviance: 18561
                                       degrees of freedom
                             on 20413
## AIC: 18629
##
## Number of Fisher Scoring iterations: 6
So this additive model has the best AIC.
Response time is significant here, but we can still exclude response time adn fit ANOVA to see what will
happen.
fit2 = glm(Accuracy~ParticipantNum + Confidence + StrengthLevel, data = Behave, family = binomial) # ad
summary(fit2)
##
## Call:
##
  glm(formula = Accuracy ~ ParticipantNum + Confidence + StrengthLevel,
       family = binomial, data = Behave)
##
##
## Deviance Residuals:
##
       Min
                 10
                      Median
                                   3Q
                                           Max
## -2.8316
            0.1862
                      0.3841
                               0.7885
                                         1.8378
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
                                0.089478
                                           0.305 0.76054
## (Intercept)
                     0.027270
## ParticipantNum2
                     0.078437
                                0.122957
                                           0.638 0.52353
## ParticipantNum3
                     0.022078
                                0.125625
                                           0.176 0.86049
## ParticipantNum4
                    -0.025023
                                0.116727
                                          -0.214
                                                   0.83025
## ParticipantNum5
                    -0.122935
                                          -1.040
                                                   0.29848
                                0.118241
## ParticipantNum6
                    -0.231845
                                0.132682
                                          -1.747
                                                   0.08057
## ParticipantNum7
                    -0.003792
                                0.125445
                                          -0.030 0.97589
## ParticipantNum8
                    -0.076354
                                          -0.551 0.58144
                                0.138502
## ParticipantNum9
                     0.009837
                                0.120974
                                           0.081 0.93519
## ParticipantNum10 0.117138
                                0.120356
                                           0.973
                                                   0.33042
## ParticipantNum11 -1.511709
                                0.127825 -11.826 < 2e-16 ***
## ParticipantNum12 -0.905086
                                0.125980
                                          -7.184 6.75e-13 ***
                                          -7.513 5.78e-14 ***
## ParticipantNum13 -0.835407
                                0.111194
## ParticipantNum14 0.140468
                                0.133084
                                           1.055 0.29121
## ParticipantNum15 -0.389592
                                0.130610
                                          -2.983 0.00286 **
## ParticipantNum16 -0.403415
                                0.125514
                                          -3.214 0.00131 **
## ParticipantNum17 -0.258169
                                0.116870
                                          -2.209 0.02717 *
## ParticipantNum18 0.237645
                                0.127199
                                           1.868 0.06172 .
## ParticipantNum19
                     0.215079
                                0.131014
                                           1.642
                                                   0.10066
## ParticipantNum20 -0.127446
                                0.118540
                                          -1.075 0.28232
## ParticipantNum21 -0.529821
                                0.124290
                                          -4.263 2.02e-05 ***
## ParticipantNum22 -0.635773
                                0.129948
                                          -4.893 9.95e-07 ***
## ParticipantNum23 -0.116231
                                0.128929
                                          -0.902 0.36731
## ParticipantNum24 -0.185631
                                0.118829
                                          -1.562 0.11825
## ParticipantNum25 -0.168322
                                0.114136
                                          -1.475 0.14028
                                           5.510 3.59e-08 ***
## Confidence2
                     0.265347
                                0.048160
## Confidence3
                     0.612710
                                0.055887
                                          10.963
                                                  < 2e-16 ***
## Confidence4
                     0.921494
                                0.070987
                                           12.981
                                                  < 2e-16 ***
## StrengthLevel4.5 0.393987
                                0.050513
                                           7.800 6.20e-15 ***
```

```
## StrengthLevel8
                    0.755990
                               0.052585 14.376 < 2e-16 ***
## StrengthLevel12
                    1.177464
                               0.056747 20.749 < 2e-16 ***
## StrengthLevel25
                    2.319228
                               0.078473 29.554 < 2e-16 ***
## StrengthLevel40
                               0.105644
                                         28.584 < 2e-16 ***
                    3.019729
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 22255
                            on 20446
                                      degrees of freedom
## Residual deviance: 18697
                            on 20414
                                      degrees of freedom
## AIC: 18763
## Number of Fisher Scoring iterations: 6
ANOVA:
anova(fit2, test = 'Chi')
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: Accuracy
## Terms added sequentially (first to last)
##
##
##
                 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                 20446
                                             22255
                                            21950 < 2.2e-16 ***
## ParticipantNum 24
                      305.03
                                 20422
## Confidence
                  3 1115.15
                                 20419
                                             20834 < 2.2e-16 ***
## StrengthLevel
                  5
                     2137.27
                                 20414
                                            18697 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
All are significant.
Check goodness of fit:
res.P = residuals(fit1, type="pearson")
res.D = residuals(fit1, type="deviance") #or residuals(fit), by default
boxplot(cbind(res.P, res.D), labels = c("Pearson", "Deviance"))
```



```
par(mfrow=c(1,2))
plot(fit1$fitted.values, res.P, pch=16, cex=0.6, ylab='Pearson Residuals', xlab='Fitted Values')
lines(smooth.spline(fit1$fitted.values, res.P, spar=0.9), col=2)
abline(h=0, lty=2, col='grey')
plot(fit1$fitted.values, res.D, pch=16, cex=0.6, ylab='Deviance Residuals', xlab='Fitted Values')
lines(smooth.spline(fit1$fitted.values, res.D, spar=0.9), col=2)
abline(h=0, lty=2, col='grey')
```


Run tests:

```
library(lawstat)
runs.test(y = res.P, plot.it = TRUE)
```

##

```
## Runs Test - Two sided
##
## data: res.P
## Standardized Runs Statistic = -1.3917, p-value = 0.164
title(main='Pearson Residual Runs Test')
```

Pearson Residual Runs Test

Standardized Runs Statistic = -1.3917, p-value = 0.164title(main='Deviance Residual Runs Test')

Deviance Residual Runs Test

Sheffe's Pariwise Comparisions:

library(multcomp)

##

##

##

##

\$parameters

\$means

test

Accuracy

Scheffe Confidence

1 0.6304897 0.4827331 3962

2 0.7278427 0.4451081 5901

```
## Loading required package: mvtnorm
## Loading required package: survival
## Loading required package: TH.data
## Loading required package: MASS
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
       geyser
library(agricolae)
par(mfrow = c(1,1))
sheffetest.1 = scheffe.test(fit1,'Confidence')
print(sheffetest.1)
## $statistics
##
                  \mathsf{Df}
                                    Mean
```

 $0.9092832\ 20413\ 2.605344\ 0.7658825\ 124.5052$

name.t ntr alpha

std

r Min Max Q25 Q50 Q75

1

1

0

```
## 3 0.8132169 0.3897707 5841
                                   1 1
## 4 0.8680160 0.3385090 4743
                                0
##
## $comparison
## NULL
##
## $groups
      Accuracy groups
## 4 0.8680160
## 3 0.8132169
## 2 0.7278427
                    С
## 1 0.6304897
                    d
## attr(,"class")
## [1] "group"
plot(sheffetest.1)
```

Groups and Range


```
sheffetest.2 = scheffe.test(fit1, 'StrengthLevel')
print(sheffetest.2)
```

```
## $statistics
##
       MSerror
                  Df
                            F
                                    Mean
##
     0.9092832 20413 2.214537 0.7658825 124.5052
##
## $parameters
                    name.t ntr alpha
##
        test
##
     Scheffe StrengthLevel
##
## $means
##
        Accuracy
                       std
                              r Min Max Q25 Q50 Q75
       0.5355436 0.4988096 3348
                                  0
## 12 0.8005351 0.3996575 3364
                                  0
```

```
## 25 0.9336574 0.2489156 3497
                                      1
## 4.5 0.6357039 0.4813021 3445
                                  0
                                      1
                                          0
                                               1
                                                   1
## 40 0.9675803 0.1771381 3393
                                                   1
## 8
       0.7164706 0.4507774 3400
                                  0
                                          0
                                               1
                                                   1
## $comparison
## NULL
##
## $groups
##
        Accuracy groups
## 40 0.9675803
## 25 0.9336574
## 12 0.8005351
                      b
## 8
       0.7164706
## 4.5 0.6357039
                      d
## 1
       0.5355436
##
## attr(,"class")
## [1] "group"
plot(sheffetest.2)
```

Groups and Range

