11 Veröffentlichungsnummer:

0 269 806 Α1

(P)

EUROPÄISCHE PATENTANMELDUNG

- 21 Anmeldenummer: 87114161.0
- 2 Anmeldetag: 29.09.87

(9) Int. Cl.4: **C07D 231/14**, C07D 231/16. C07D 403/06, C07D 403/04, C07D 413/04, C07D 403/10. A01N 43/56

- 3 Priorität: 04.10.86 DE 3633840
- 49 Veröffentlichungstag der Anmeldung: 08.06.88 Patentblatt 88/23
- Benannte Vertragsstaaten: AT BE CH DE ES FR GB GR IT LI NL SE
- 17 Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE)
- 2 Erfinder: Sohn, Erich, Dr. Lerchenbergstrasse 46/1 D-7300 Esslingen(DE) Erfinder: Handte, Reinhard, Dr.

Thellweg 23

D-8901 Gablingen(DE)

Erfinder: Mildenberger, Hilmar, Dr.

Fasanenstrasse 24

D-6233 Keikheim (Taunus)(DE) Erfinder: Bürstell, Helmut, Dr.

Am Hohlacker 65

D-6000 Frankfurt am Main 50(DE)

Erfinder: Bauer, Klaus, Dr. **Doorner Strasse 53D** D-6450 Hanau(DE)

Erfinder: Bieringer, Hermann, Dr.

Eichenweg 26

D-6239 Eppstein/Taunus(DE)

- Phenyipyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener.
- Verbindungen der Formel I

worin R Halogen, Hydroxy, Cyano, Nitro, (subst.) Alkyl, (subst.) Alkoxy, (Halogen)alkylthio, Carboxy, Alkoxycarbonyl; (Halogen)Alkylsulf(inyl)(onyl) oder -(onyloxy); (Halogen)phenyl, (Halogen)phenoxy; X in 3 oder 5-Position einen (Thio)carbonsäure - oder davon abgeleiteten gegebenenfalls heterocyclischen Rest; Y Halogen, m = die Zahl 0 oder 1 und n eine Zahl von 0 bis 5 bedeutet, besitzen wertvolle pflanzenwuchsregulierende Eigenschaften und eignen sich darüberhinaus als Safener zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.

87114161:0

HOECHST AKTIENGESELLSCHAFT

HOE 86/F247

Dr.AU/gm-je

Beschreibung

Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener

Phenylaminopyrazole mit herbizider Wirkung sind z.B. aus EP-A 138 149 bekannt.

Es wurden neue Phenylpyrazolcarbonsäurederivate gefunden die überraschenderweise hervorragende pflanzenwachstumsregulierende Eigenschaften besitzen und darüber hinaus phytotoxische Nebenwirkungen von Herbiziden gegenüber Kulturpflanzen vermindern.

Gegenstand der vorliegenden Erfindung sind daher die Verbindungen der Formel I

15

10

5

20 worin

R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro, (C_1-C_4) Alkyl, (C_1-C_4) Halogenalkyl, (C_1-C_4) Alkoxy- (C_1-C_4) alkyl, (C_1-C_6) Alkoxy, (C_1-C_6) Alkoxy- (C_1-C_4) alkoxy, (C_1-C_6) Halogenalkoxy, (C_1-C_4) Alkylthio,

- $(C_1-C_4) \\ \mbox{Halogenalkylthio, Carboxy, } (C_1-C_4) \\ \mbox{Alkylsulfinyl, } (C_1-C_4) \\ \mbox{Halogenalkylsulfinyl, } (C_1-C_4) \\ \mbox{Halogenalkylsulfonyl, } (C_1-C_4) \\ \mbox{Halogenalkylsulfonyl, } (C_1-C_4) \\ \mbox{Alkylsulfonyloxy, Halogen(C_1-C_4) alkylsulfonyloxy, Phenyl, } \\ \mbox{Halogenphenyl, Phenoxy oder Halogenphenoxy,}$
- 30 X = in Position 3 oder 5 des Pyrazolringes orientiert ist und einen Rest der Formeln

-CN, -C-OR
1
, -CSR 2 , -C-NR 3 R 4 ,

35

Y = Halogen

5

10

15

35

Z = 0 oder S

U = 0, S oder N-R,

R

Wasserstoff, (C -C)Alkyl,

(C -C)Alkyl, das ein- oder mehrfach durch Halogen
und/oder ein- bis zweifach durch Hydroxy,

(C -C)Alkoxy,

(C -C)Alkoxy,

(C -C)Alkoxy(C -C)alkoxy, (C -C)-Alkylthio,

(C -C)Alkylsulfinyl, (C -C)Alkylsulfonyl, Mono- ode
Di-(C -C -Alkyl)amino, Cyano, Aminocarbonyl,

(C -C)Alkylcarbonyl, (C -C -Alkoxy)carbonyl,

Cyclo(C -C)-alkyl, Tri(C -C)alkyl-silyl, Benzyloxy,

Benzyloxyethoxy, Phenyl, Phenyl, das durch Halogen oder

(C -C)Alkyl substituiert ist, durch Phenoxy,

Phenylthio, die durch Halogen oder (C -C)Alkyl

substituiert sein können, durch Oxiranyl,

Tetrahyrofuryl, Triazolyl, Pyridinyl, Imidazolyl, durch

Carboxy, Carboxylat mit einem für die Landwirtschaft
einsetzbaren Kation oder durch den Rest
-O-N=C(CH3)2 substituiert ist,

 (C_3-C_6) Alkenyl, (C_3-C_6) -Halogenalkenyl,

unsubstituiertes oder durch Halogen oder (C1-C4)Alkyl

durch Halogen oder (C1-C4)Alkyl substituiertes

substituiertes Cyclo(C_3 - C_7) alkyl, unsubstituiertes oder

25

30

einen Rest der Formeln

$$-N = C(R^{10})_{2}, -NR^{3}R^{11}, NR^{3}R^{11}, NR^{3}R^{11}$$

в в

oder ein für die Landwirtschaft einsetzbares Kation,

R² (C₁-C₁₂)Alkyl oder (C₁-C₁₂)Alkyl, das bis zu zweifach durch (C₁-C₄)Alkoxyethoxy, Cyclo(C₃-C₆)alkyl,
Benzyloxy, Phenyl, Phenoxy, (C₁-C₄)Alkylthio, (C₁-C₄-Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für die Landwirtschaft einsetzbares Kation, substituiert ist,

 R^3 jeweils unabhängig voneinander (C_1-C_6) -Alkyl, Phenyl oder (C_3-C_6) -Alkenyl,

Wasserstoff, (C_-C_)Alkyl oder (C_-C_)Alkyl, das bis zu zweifach durch (C_-C_)Alkoxy, (C_-C_4)Alkoxy-ethoxy, Hydroxy, Hydroxyimino, (C_-C_4)-Alkoxyimino, Halogen, Cyclo(C_-C_6)alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, (C_-C_4-Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, (C_-C_4)Alkyl oder (C_-C_4)Alkoxy substituiert ist; (C_-C_6)-Alkenyl, (C_-C_6)-Coloalkyl, einen Rest der Formeln

 3 12 , 2

- R und R gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten drei- bis siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C₁-C₄)Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann,
- R^{5} H, (C_1-C_2) Alkyl oder Phenyl, oder im Falle X = $-CS-OR^{5}$ ein für die Landwirtschaft einsetzbares Kation,
- 25 R jeweils unabhängig voneinander H, (C-C)Alkyl oder Benzyl,
- R jeweils unabhängig voneinander H, (C₁-C₂)Alkyl, das unsubstituiert oder durch Phenyl, das unsubstituiert oder durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl oder (C₁-C₄)Alkoxy substituiert ist, durch Hydroxy, Cyano, (C₁-C₄-Alkoxy)-carbonyl, (C₁-C₄)-Alkylthio, (C₁-C₄)-Alkoxy, Cyclo(C₅-C₇)alkyl oder Benzyloxy substituiert ist,
- 35 (C₃-C₆)Alkenyl, Halogen(C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, Cyclo(C₅-C₈)alkyl, Cyclo(C₅-C₆)alkenyl, (C₁-C₆-Alkyl)carbonyl,

Halogen(C₁-C₆-alkyl)carbonyl, [(C₁-C₆-Alkyl)amino]carbonyl, Benzoyl, Halogenbenzoyl oder Methylbenzoyl

- jeweils unabhängig voneinander (C₁-C₀)Alkyl, das
 unsubstituiertes oder durch Phenyl,
 Cyclo(C₂-C₂)alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio
 oder Halogen substituiert ist,
 oder zwei Reste R gemeinsam mit Z und dem
 Kohlenstoffatom, an das sie gebunden sind, einen
 unsubstituierten oder durch (C₁-C₄)Alkyl, Hydroxy(C₁-C₄)alkyl, Halogen(C₁-C₄)alkyl oder Phenyl
 substituierten 5- oder 6-gliedrigen gesättigten
 heterocyclischen Ring;
- R jeweils unabhängig voneinander H, Halogen, (C₁-C₄)-Alkyl, Nitro oder Cyano,
- unabhängig voneinander H, (C₁-C₆)Alkyl, das
 unsubstituiert oder durch (C₁-C₄)Alkoxy, Triazolyl
 oder Imidazolyl substituiert ist, Cyclo(C₃-C₆)alkyl,
 (C₂-C₆)Alkenyl, Phenyl oder Benzyl, oder im Falle R¹=-N=C(R¹⁰)₂ beide Restingemeinsam mit dem Kohlenstoffatom, an das sie
 gebunden sind, ein unsubstituiertes oder durch Methyl
 oder Halogen substituiertes Cyclo-(C₅-C₇)alkyl,
 - R¹¹ (C₁-C₄)Alkyl, Phenyl, (C₁-C₆-Alkyl)carbonyl, Benzyl, Benzoyl, Halogenbenzyl, Halogenbenzoyl oder Methylbenzoyl,
- R H, (C₁-C₄)Alkyl, Formyl, (C₁-C₆-Alkyl)carbonyl,
 Benzoyl, Halogenbenzoyl, Methylbenzoyl oder
 Trihalogenacetyl,
- 35 R¹³ (C₁-C₄)Alkyl, Phenyl oder Methylphenyl,
 - 0 oder 1,
 - n eine ganze Zahl von 0 bis 5, insbesondere 1 bis 3,

- p eine ganze Zahl von 0 bis 4, insbesondere 0 bis 2 und
- q eine ganze Zahl von 0 bis 6, insbesondere 0 bis 3,
- bedeuten, sowie deren für landwirtschaftliche Zwecke verträglichen Salze und Quaternisierungsprodukte.

Die Salzbildung bzw. Quaternisierung erfolgt hierbei am basischen Stickstoffatom des Pyrazolrings. Die Salzbildung oder Quaternisierung ist nicht möglich, wenn R, R ein Kation bedeutet oder R, R, R eine Carboxylatgruppe enthält.

Bevorzugt unter den Verbindungen der Formel I sind insbesondere solche, bei denen R= Halogen, (C_1-C_4) Alkyl, Halogen (C_1-C_4) alkyl oder (C_1-C_4) Alkoxy; X= CN, $-\text{COOR}^1$, CO-SR^2 oder $-\text{CONR}^3 R^4$; Y= Halogen; $R^1, R^2 = H$, (C_1-C_4) Alkyl (C_2-C_4) Alkenyl, (C_2-C_4) Alkinyl, (C_1-C_4) Alkoxy $-(C_1-C_4)$ alkyl oder ein Kation; $R_1^3 R^4 = H$, (C_1-C_4) Alkyl, m= 0 oder 1 und n= 1 bis 3 bedeuten. Von besonderem Interesse hierbei sind Verbindungen mit $R_n = 2$,6-Dialkyl, Mono- oder Dihalogen oder mono-Trifluormethyl.

Der Rest Y ist insbesondere in Position 4 des Pyrazolringes orientiert.

Unter Halogen ist F, Cl, Br oder J, insbesondere F, Cl oder Br zu verstehen.

 (C_1-C_4) Halogenalkyl enthält 1 bis 5, insbesondere 1 bis 3 Chlor oder Fluoratome; bevorzugt ist der Rest CF_3 .

Halogeniertes (C₁-C₁)Alkyl enthält insbesondere 1 bis 13 Chlor- oder Fluoratome, hierzu zählen beispielsweise die Reste 2,2,2-Trichlorethyl, 4-Chlorbutyl, 2,2,2-Trifluorethyl, 1,1,1,3,3,3-Hexafluorprop-2-yl; 2,2,3,4,4,4-Hexafluorbutyl und 3,3,4,4,5,5,6,6,7,7,8,8,8-Trideka_fluoroct-1-yl.

(C₁-C₂)Halogenalkylthio, Halogen(C₁-C₂)alkylsulfinyl, Halogen(C₁-C₄)alkylsulfonyl und Halogen(C₁-C₄)alkylsulfonyloxy enthalten jeweils insbesondere 1 bis 9 Chlor- oder Fluoratome;

Halogeniertes (C-C)Alkenyl enthält insbesondere 1 bis 3 Chlor oder Fluoratome.

Halogenphenyl, Halogenbenzyl oder Halogenbenzoyl enthalten insbesondere 1 bis 3 Fluor, Chlor oder Bromatome.

Unter Trihalogenacetyl ist insbesondere Trichlor- und Trifluoracetyl zu verstehen.

Für den Fall, daß der Rest -NR R (für X = CO-NR R) einen heterocyclischen Ring bildet, ist hierunter beispielsweise Piperidin, Morpholin, 2,6-Dimethylmorpholin, Piperazin, Triazol, Imidazol, Pyrazol, Thiazol und Benzimidazol zu verstehen.

Für den Fall, daß in den aufgeführten Substituenten zusätzlich zum Pyrazolring - weitere basische Stickstoffatome auftreten, ist auch eine mehrfache Salzbildung oder Quaternisierung möglich.

Für die Herstellung der Salze geeignet sind alle anorganischen oder organischen Säuren, die aufgrund ihres pKs-Wertes zur Salzbildung befähigt sind, z.B. Halogenwasserstoffsäuren, Salpetersäure, Schwefelsäure, Phosphorsäure, Phosphorsäuren, Sulfonsäuren, Halogenessigsäuren oder Oxalsäure.

Als Quaternisierungsprodukte sind die Umsetzungsprodukte mit Alkyl-, Alkylthioalkyl-, Alkoxyalkyl-, insbesondere (C_-C_)Alkyl- und gegebenenfalls im Phenylrest substituierten, insbesondere halogenierten Phenacylhalogeniden zu verstehen. Die Herstellung der Quaternisierungsprodukte der Verbindungen der Formel I erfolgt nach allgemein üblichen Methoden.

Als Kationen für R, R oder R, die für die Landwirtschaft einsetzbar sind, kommen Metallkationen z.B. Alkali- oder Erdalkalikationen wie Na, K, Mg oder organische Kationen wie organisches substituiertes Ammonium, organisch substituiertes Phosphonium, Sulfonium oder Sulfoxonium oder andere Stickstoff-kationen in Betracht.

Organisch substituiertes Ammonium bedeutet primäres, sekundāres, tertiāres, quartāres, aliphatisches, aromatisches oder heteroaromatisches Ammonium, das 1 bis drei N- Atome enthalten kann. Die Stickstoffatome des Amins können hierbei auch Teil eines cyclischen Systems sein. Als Beispiele für solche Ammoniumsalze seien genannt: Mono-, Di-, Tri-, Tetra[(C,-C,)Alkyl]ammonium wie Isopropylammonium, Butylammonium, Stearylammonium, Triethylammonium, Mono-, Di-, Tri-Methoxypropylammonium, Triethanolammonium, Tripropanolammonium, oder Ammoniumverbindungen mit gemischten Resten wie tert.-Butyldiethanolammonium, Triethylbenzylammonium, Hydroxyethyltrimethylammonium, Chlorethyltrimethylammonium, oder Allylammonium, Diallylammonium, Cyclohexylammonium, Menthanylammonium, Aminoethylammonium, Ethylendiammonium, Benzhydrylammonium, Pyrrolidinium, Morphilinium, 3-Pyridylammonium, Piperidinium oder Piperazinium, oder ein von einer Aminosäure oder deren Ester abgeleitetes Ammonium wie $[NH_3-CH_2-COOCH_3]^+$.

Organisch substituiertes Phosphonium, organisches Sulfonium oder organisches Sulfoxonium enthalten aliphatische oder arylaliphatische Reste, wie sie für Ammonium angegeben wurden.

Andere Stickstoff-Kationen sind beispielsweise Hydrazonium, Hydroxylammonium, Guanidinium, Aminoguanidinium oder deren Substitutionsprodukte.

Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung der Verbindungen der Formel I, dadurch

15

20

9

gekennzeichnet, daß man eine Verbindung der Formel II

worin R (C₁-C₆)-Alkyl Verbindung der Formel III

bedeutet, mit einer

$$H_2N-NH-$$
 R (III)

umsetzt und anschließend gegebenenfalls derivatisiert.

Das Verfahren wird bei 0° bis 120°C in einem organischen Lösemittel gegebenenfalls in Gegenwart einer organischen Säure, wie p-Toluolsulfonsäure, Methansulfonsäure, durchgeführt. Als Lösemittel können polare Verbindungen wie Alkohole, z.B. Ethanol, Methanol, organische Säuren wie Eisessig, chlorierte Kohlenwasserstoffe wie Dichlorethan oder aromatische Lösemittel wie Toluol, Xylol eingesetzt werden.

Während der Reaktion entstehen als Zwischenstufen die Verbindungen der Formel IVa und IVb.

35 Diese Zwischenprodukte können isoliert werden und anschließend unter den oben beschriebenen Bedingungen

20

25

cyclisiert werden. Bei der direkten Weiterreaktion werden in der Regel Gemische der Verbindungen der Formel I d.h. die Verbindungen der Formel Ia und Ib nebeneinander erhalten.

Die Verbindungen der Formeln (Ia) bzw. (Ib) können nach üblichen Verfahren an der Gruppe -COOR oder durch Halogenierung des Pyrazolrestes derivatisiert werden.

So lassen sich die Pyrazole der Formeln Ia oder Ib unter den üblichen Bedingungen der Aromatenhalogenierung in der 4-Position des Pyrazolrestes halogenieren, s. Houben-Weyl, Methoden der organischen Chemie Band 5/3 S. 503 ff, Band 5/4, S. 13 ff (1962). Zur Derivatisierung wird weiterhin der Rest -COOR in bekannter Weise in andere für X genannte Reste umgewandelt, z.B. durch Verseifung, Veresterung, Umesterung, Amidierung, Salzbildung etc. wie dies z.B. in den deutschen Offenlegungsschriften DE-OS 34 44 918 und DE-OS 34 42 690 beschrieben ist, oder es erfolgt auf übliche Weise Salzbildung oder Quaternisierung am basischen Stickstoffatoms des Pyrazolrings.

Die Ausgangsverbindungen der Formel II lassen sich durch Umsetzung der Verbindungen der Formel V mit Verbindungen der Formel VI in Gegenwart einer organischen Hilfsbase,

$$R^{14}-OCH=CH_{2} \qquad \qquad R^{15}-C-C-OR^{1}$$
(V) (VI)

10

15

20

25

30

35

erhalten (Literatur: Chem. Ber. 115, S. 2766-2782 (1982)). R bedeutet eine Abgangsgruppe wie Cl, Br, OSO₂CF₃

Als Hilfsbase können organische Amine wie Triethylamin oder Pyridin eingesetzt werden. Das Verfahren wird zwischen -20° und +30°C durchgeführt. Die erhaltenen Verbindungen der Formel II können direkt ohne Aufarbeitung weiter umgesetzt werden. Die Ausgangsverbindungen der Formel III lassen sich nach üblichem Verfahren, s. Houben Weyl, Methoden der organischen Chemie Bd 10/2 S. 169 (1967) herstellen.

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I als Pflanzenwuchsregulatoren. Mit den erfindungsgemäßen Verbindungen sind typische wachstumsregulierende Effekte erzielbar. Die Verbindungen greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen sowie zur Ernteerleichterung wie zum Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Des weiteren eignen sie sich zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringert oder völlig verhindert werden kann. Besonders hervorzuheben ist die wachstumsregulatorische Wirksamkeit der Verbindungen als Wuchshemmer in Getreide, Mais, Soja, Tabak, Baumwolle, Ackerbohne, Raps, Reis, Sonnenblume, Rasen sowie ihre Fähigkeit, den Gehalt an erwünschten Inhaltsstoffen wie Kohlehydraten (z.B. Zuckerrohr oder Hirsekulturen) und Protein bei Nutzpflanzen zu erhöhen. Schließlich zeigen die Verbindungen eine sehr gute Verbesserung der Fruchtabszission, insbesondere bei Zitrusfrüchten.

10

15

Eine weitere Lösung der gestellten Aufgabe sind auch das Pflanzenwachstum regulierende Mittel, die sich durch einen wirksamen Gehalt mindestens einer der erfindungsgemäßen Verbindung auszeichnen. Die Aufwandmenge der Verbindungen der Formel I beträgt im allgemeinen 0,02 bis 2,5 kg Wirksubstanz pro ha, vorzugsweise 0,05 bis 1,5 kg/ha. Die Verbindungen lassen sich bei ihrem praktischen Einsatz gegebenenfalls auch vorteilhaft mit bekannten Wachstumsregulatoren oder natürlichen oder pflanzlichen Hormonen kombinieren.

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I als Safener. So wurde gefunden, daß sie phytotoxische Nebenwirkungen von Pflanzenschutzmitteln, insbesondere von Herbiziden, beim Einsatz in Nutzpflanzenkulturen vermindern oder ganz unterbinden.

Die Verbindungen der Formel I können zusammen mit anderen
Herbiziden ausgebracht werden und sind dann in der Lage,
schädliche Nebenwirkungen dieser Herbizide zu
antagonisieren oder völlig aufzuheben, ohne die herbizide
Wirksamkeit dieser Herbizide gegen Schadpflanzen zu
beeinträchtigen. Hierdurch kann das Einsatzgebiet
herkömmlicher Pflanzenschutzmittel ganz erheblich
vergrößert werden. Solche Verbindungen, die die Eigenschaft
besitzen, Kulturpflanzen gegen phytotoxische Schäden durch
Herbizide zu schützen, werden Antidots oder "Safener"

30

genannt.

Herbizide, deren phytotoxische Nebenwirkungen mittels der Verbindungen der Formel I herabgesetzt werden können, sind z.B. Carbamate, Thiolcarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und

Phenoxyphenoxycarbonsäurederivate sowie

Heteroaryloxyphenoxycarbonsäurederivate wie Chinolyloxy-,

Chinoxalyloxy-, Pyridyloxy-, Benzoxazolyloxy-,
Benzthiazolyloxy-phenoxy-carbonsäureester und ferner
Dimedonoximabkömmlinge. Bevorzugt hiervon sind
Phenoxyphenoxy- und Heteroaryloxyphenoxycarbonsäureester.
Als Ester kommen hierbei insbesondere niedere Alkyl-,
Alkenyl und Alkinylester in Frage.

Beispielsweise seien, ohne daß dadurch eine Beschränkung erfolgen soll, folgende Herbizide genannt:

- A) Herbizide vom Typ der Phenoxyphenoxy- und Heteroaryloxy phenoxycarbonsäure-(C₁-C₄)alkyl-, (C₂-C₄)alkenyl- und (C₃-C₄)alkinylester wie
 - 2-(4-(2,4-Dichlorphenoxy)-phenoxy)-propions & uremethylester.
 - 2-(4-(4-Brom-2-chlorphenoxy)-phenoxy)-propions & uremethylester,
 - 2- (4- (4-Trifluormethylphenoxy)-phenoxy)-propionsäuremethylester,
 - 2- (4- (2-Chlor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester,
 - 2-(4-(2,4-Dichlorbenzyl)-phenoxy)-propionsäuremethylester.
 - 4- (4- (4-Trifluormethylphenoxy)-phenoxy)-pent-2-en-säureethylester,
 - 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäureethylester.
 - 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäurepropargylester;
 - 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäure-trimethylsilylmethylester,
 - 2- (4- (6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester,
 - 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäureethylester,
 - 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propions & uremethylester,

- 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäureethylester
- 2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-propion-säurebutylester,
- 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäureethylester,
- 2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)-propionsäureethylester,
- 2-(4-(6-Chlor-2-chinolyloxy)-phenoxy)-propionsäureethylester,
- B) Chloracetanilid-Herbizide wie
 N-Methoxymethyl-2,6-diethyl-chloracetanilid,
 N-(3'-Methoxyprop-2'-yl)-methyl-6-ethyl-chloracetanilid,
 N-(3-Methyl-1,2,4-oxdiazol-5-yl-methyl)-chloressigsäure2,6-dimethylanilid,
- C) Thiocarbamate wie S-Ethyl-N,N-dipropylthiocarbamat oder S-Ethyl-N,N-diisobutylthiocarbamat
- Dimedon-Derivate wie

 2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy

 2-cyclo-hexen-1-on,

 2-(N-Ethoxybutyrimidoyl)-5-(2-phenylthiopropyl)-3-hydroxy-2-cyclohexen-1-on oder

 2-(1-Allyloxyiminobutyl)-4-methoxycarbonyl-5,5-dimethyl-3-oxocyclohexenol.

 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on,

 2-(N-Ethoxybutyrimidoyl)-3-hydroxy-5-(thian-3-yl)-2-cyclohexen-1-on.

Das Mengenverhältnis Safener: Herbizid kann innerhalb weiter Grenzen, im Bereich zwischen 1:10 und 10:1, insbesondere zwischen 2:1 und 1:10, schwanken. Die jeweils optimalen Mengen an Herbizid und Safener sind abhängig vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden

Pflanzenbestandes und lassen sich von Fall zu Fall durch entsprechende Versuche ermitteln.

Haupteinsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum, aber auch Baumwolle, Zuckerrüben, Zuckerrohr und Sojabohne.

Die Safener der Formel I können je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht werden oder zusammen mit dem Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung der Anbaufläche vor der Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein. Bevorzugt ist die gemeinsame Anwendung mit dem Herbizid. Hierzu können Tankmischungen oder Fertigformulierungen eingesetzt werden.

Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, das dadurch gekennzeichnet ist, daß eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid appliziert wird.

Die erfindungsgemäßen Verbindungen der Formel I können, gegebenenfalls im Gemisch mit weiteren Wirkkomponenten oder auch zusammen mit einem Herbizid, als Spritzpulver, emulgierbare Konzentrate, versprühbare Lösungen, Stäubemittel, Beizmittel, Dispersionen, Granulate oder Mikrogranulate in den üblichen Zubereitungen angewendet werden.

Unter Spritzpulvern werden in Wasser gleichmäßig dispergierbare Präparate verstanden, die neben dem

Wirkstoff außer gegebenenfalls einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenylsulfonate und Dispergiermittel, z.B.

ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'disulfonsaures Natrium, dibutylnaphthalinsulfonsaures
Natrium oder auch oleoylmethyltaurinsaures Natrium
enthalten. Ihre Herstellung erfolgt in üblicher Weise z.B.
durch Mahlen und Vermischen der Komponenten.

10

30

Emulgierbare Konzentrate können z.B. durch Auflösen des Wirkstoffes in einem inerten organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter

- Zusatz von einem oder mehreren Emulgatoren hergestellt werden. Bei flüssigen Wirkstoffen kann der Lösungsmittelanteil ganz oder auch teilweise entfallen. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calciumsalze wie
- Ca-dodecylbenzolsulfonat, oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyglykolether, Sorbitanfettsäureester,
- 25 Polyoxethylensorbitanfettsäureester oder Polyoxethylensorbitester.

Stäubemittel werden durch Vermahlen des Wirkstoffes mit fein verteilten, festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Pyrophillit oder Distomeenerde erhalten.

Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von

35 hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Bindemitteln, z.B.

Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration etwa 10 bis 90 Gew.-%; der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 10 bis 80 Gew.-% betragen. Staubfähige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 1 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierungen
20 gegebenenfalls die jeweils üblichen Haft-, Netz-,
Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Fülloder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form
vorliegenden Konzentrate gegebenenfalls in üblicher Weise
verdünnt, z.B. bei Spritzpulvern, emulgierbaren
Konzentraten, Dispersionen und teilweise auch bei
Mikrogranulaten mittels Wasser. Staubförmige und
granulierte Zubereitungen sowie versprühbare Lösungen
verden vor der Anwendung üblicherweise nicht mehr mit
weiteren inerten Stoffen verdünnt.

Die benötigten Aufwandmengen der Verbindungen der Formel I bei ihrem Einsatz als Safener können je nach Indikation und verwendetem Herbizid innerhalb weiter Grenzen schwanken und variieren im allgemeinen zwichen 0,01 und 10 kg Wirkstoff je Hektar.

35

Folgende Beispiele dienen zur Erläuterung der Erfindung.

A. Formulierungsbeispiele

- 5 a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel I und 90 Gewichtsteile Talkum oder Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel I, 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gewichtsteil oleoylmethyltaurinsaures

 Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares
 Dispersionskonzentrat wird erhalten, indem man 20

 Gewichtsteile einer Verbindung der Formel I mit 6
 Gewichtsteilen Alkylphenolpolyglykolether ((R)Triton X 207), 3 Gewichtsteilen Isotridecanolpolyglykolether (8 AeO) und 71 Gewichtsteilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 377°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5
 Mikron vermahlt.
 - d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gewichtsteilen einer Verbindung der Formel I, 75 Gewichtsteilen Cyclohexanon als Lösungsmittel und 10 Gewichtsteilen oxethyliertes Nonylphenol als Emulgator.
 - e) Ein Wasser leicht emulgierbares Konzentrat aus einem Phenoxycarbonsäureester und einem Antidot (10:1) wird erhalten aus

- 12,00 Gew.-% 2-[4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy]propionsäureethylester
- 1,20 Gew.-% Verbindung der Formel I

- 69,00 Gew.-% Xylol
- 7,80 Gew.-% dodecylbenzolsulfonsaurem Calcium
- 6,00 Gew.-% ethoxyliertem Nonylphenol (10 EO)
- 10 4,00 Gew.-% ethoxyliertem Rizinusöl (40 EO)

Die Zubereitung erfolgt wie unter Beispiel a) angegeben.

- f) Ein in Wasser leicht emulgierbares Konzentrat aus einem
 15 Phenoxycarbonsäureester und einem Antidot (1:10) wird
 erhalten aus
 - 4,0 Gew.-% 2-[4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy]propionsäureethylester
- 20 40,0 Gew.-% Verbindung der Formel I
 - 30,0 Gew.-% Xylol
 - 20,0 Gew.-% Cyclohexanon
 - 4,0 Gew.-% dodecylbenzolsulfonsaurem Calcium
 - 2,0 Gew.-% ethoxyliertem Rizinusöl (40 EO)

25

B. Chemische Beispiele

Beispiele 1 und 2

30 1-Phenyl-pyrazol-5(und 3)-carbonsäureethylester

Zu 14 g Oxalsäurehalbethylesterchlorid wurde zwischen 0° und 30°C 15 g Ethylvinylether zugetropft und 20 h bei 20 - 30°C nachgerührt. Das Reaktionsgemisch wurde im

Wasserstrahlvakuum eingeengt und in 100 ml Eisessig aufgenommen. Zu dieser Lösung tropfte man zwischen 10 und 80°C 10,8 g Phenylhydrazin in 150 ml Eisessig zu und

erhitzte das Gemisch 2 h zum Rückfluß. Man gab das erhaltene Produkt in 1 l Wasser und extrahierte es zweimal mit 300 ml Essigester. Der organische Extrakt wurde einmal mit 100 ml Wasser, zweimal mit 100 ml gesättigter
NaHCO₃-Lösung und wieder mit 100 ml Wasser gewaschen und über Mg₂SO₄ getrocknet. Nach destillativer Trennung erhielt man

1-Phenyl-pyrazol-5-carbonsäureethylester Kp 100-102/0,5 Torr (Beispiel 1)

1-Phenyl-pyrazol-3-carbonsäureethylester Kp 125-128/0,5 Torr (Beispiel 2)

10 Ausbeute: 10,5 g

Beispiel 3

15

1-Phenyl-pyrazol-5-carbonsäure

4,4 g 1-Phenyl-pyrazol-5-carbonsäureethylester von Beispiel
1 wurden mit 10 ml 16,5 % wäßrigem NaOH und 10 ml Ethanol
6 h bei Raumtemperatur gerührt; das Ethanol wurde
abdestilliert, die wäßrige Phase zweimal mit 10 ml Toluol
20 extrahiert und mit konz. HCl auf pH 3 eingestellt. Der
Niederschlag wurde abgesaugt, mit wenig Wasser gewaschen
und getrocknet: Man erhielt 3,1 g Produkt vom Fp. 182 183°C

25 Beispiel 4

1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethylester

Zu 137 g Oxalsäurehalbethylesterchlorid tropfte man unter

Kühlen mit Eis/Kochsalz 145 g Ethyl-vinylether zu; Nach
Erwärmen auf Raumtemperatur wurde 20 h nachgerührt. Die
flüchtigen Bestandteile wurden abdestilliert und der
Rückstand im Wasserstrahlvakuum fraktioniert. Man erhielt
4-Ethoxy-2-oxo-but-3-en-säureethylester vom Kp 140-143°C.

17,5 g des Produktes wurde in 200 ml Toluol gelöst.
Bei 0°C wurden 17,5 g 2,6-Dichlorphenylhydrazin unter
Rühren hinzugeführt. Man erhitzte langsam zum Sieden und

trennte am Wasserabscheider Ethanol und Wasser ab, bis der Siedepunkt bei 111°C konstant blieb. Der Rückstand wurde mit Toluol verdünnt, zweimal mit 2n Salzsäure, gesättigter Hydrogencarbonatlösung und Wasser gewaschen, getrocknet, zur Trockene eingedampft und aus Ethanol umkristallisiert.

Ausbeute: 18,3 g

Fp: 51-53°C

Beispiel 5

10

5

4-Brom-1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethylester

14,3 g 1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethylester vom Beispiel 4 wurden in 100 ml Eisessig gelöst, mit
15 10 g Na-Acetat versetzt und bei Raumtemperatur 4,5 g Brom
zugetropft. Nach 60 h wurde das Reaktionsgemisch auf 1 1
Wasser gegossen. Der Niederschlag wurde abgesaugt, mit Wasser nachgewaschen und aus Ethanol
umkristallisiert. Ausbeute: 8,2 g
Fp: 62-65°C.

20

Beispiele 6 und 7

1-(3-Trifluormethylphenyl)-pyrazol-5(und 3)-carbonsäure-cyclohexylester

25

30

35

Zu 19,5 g Oxalsäurehalbcyclohexylesterchlorid wurden 15 g Ethylvinylether bei 0°C zugetropft, das Gemisch 20 h bei Raumtemperatur gerührt und die leichtflüchtigen Anteile abdestilliert. Man gab 200 ml Toluol und 0,5 g p-Toluolsulfonsäure hinzu und erhitzte 2 h am Wasserabscheider. Bei 100°C wurden eine Lösung von 17,6 g 3-Trifluormethylphenylhydrazin in 100 ml Toluol hinzugefügt und das Gemisch am Wasserabscheider erhitzt, bis das Destillat konstant bei 111°C überdestillierte. Das Produkt wurde mit Toluol verdünnt, zweimal mit 100 ml 2n HCl, zweimal mit 100 ml gesättigter NaHCO₃-Lösung und einmal mit 100 ml Wasser gewaschen, über MgSO₄ getrocknet und die Lösung zur

Trockene eingedampft. Nach Säulenchromatographie erhielt man

1-(3-Trifluormethylphenyl)-pyrazol-5-carbonsäurecyclohexylester, als farbloses Oel, Ausbeute 8,2 g (Beispiel 6) und 1-(3-Trifluormethylphenyl)-pyrazol-3-carbonsäurecyclohexylester, als Oel, Ausbeute 8,7 g (Beispiel 7) Die Verbindungen wurden H-NMR-spektroskopisch charakterisiert.

- 10 Beispiele 8 und 9
 - 1-(4-Methylphenyl)-pyrazol-5(und 3)-carbonsäuremethylester
- Zu einer Lösung von 16 g 4-Ethoxy-2-oxo-but-3-en-säure-15 methylester in 100 ml Eisessig wurden bei 50°C 12,5 g p-Tolylhydrazin in 150 ml Eisessig zugegeben. Man rührte 5 h bei 100°C, gab das Gemisch auf 1 1 Wasser und extrahierte zweimal mit 150 ml Essigester. Die organische Phase wurde mit gesättigter NaHCO₃-Lösung und anschließend 20 mit Wasser gewaschen und getrocknet. Nach Einengen im Wasserstrahlvakuum wurde das Gemisch im Hochvakuum destillativ getrennt. Man erhielt 4,1 g 1-(4-Methylphenyl)-pyrazol-5-carbonsäure-methylester vom 25 vom Kp 0,01 138-142° C 0,01
 Die Verbindungen wurden H-NMR-spektroskopisch charakterisiert.

Die in der nachfolgenden Tabelle angegebenen Verbindungen der Formel I werden nach den in den vorangehenden Beispielen beschriebenen Verfahrensweisen hergestellt oder aus oben beschriebenen Verbindungen durch Derivatisierung erhalten.

Tabelle I

Bsp.Nr.	R _n	4-Y	X .	Fp(°C) (Kp/torr)
10	Н	Н	5-C00K	
11	н	Н	5-C00Na	
12	Ħ	Ħ	5-COOPNH (C;H,OH);	131-132
13	**	#	5-000NR,-c-C.H,,	
14	**	Br	5-C00C2H6	59-61
15	. н	Br	3-C00C2H6	75- 87
16	П	Br	5-COO HAND	Oel
17	н	Br	5-COOH2NO-c-C.H.,	139-143
18	н	Cl	5-C00C2H6	·
19	₩	.	5-C00H	
20	n	** .	5-C00n-C12H25	
21	**	H	3-C00H	142-144
22	₩	W	3-COO ⁹ NH(C ₂ H ₄ OH);	0el
23	Ħ	Br	3-C00C2H5	
24	**	₩	3C00H	
25	#	Ħ	3C00nC ₆ H ₁₃	
26	Ħ	Cl	3C00CH ₃	66-68
27	W	Ħ	3C00H	174-175
28	₩	Ħ	3-C00K	
29	W	Ħ	3-COOCH2CC1,	
30	4-CH ₃	Н	5-C00H	192-196
31	4-CH3	Н	3-C00H	169-172
32	W	Br	5000C2H8	
33	*	W	3-C00C2H5	
34	2,4-012	н	5-C00C2H4	56-60
35	Ħ	₩.	5-C00H	212-213

	Beispiel- Nr.	R _n	4-Y	` x	Fp(°C) (Kp/torr)
	36	2,4-012	Н	3-C00H	177-180
5	37	11	Ħ	5-COSC ₂ H ₅	Oel
	38	н	17	5-CON N	Oel
	39	П	Br	5-C00C2H5	45-48
	40	TT	Ħ	3-C00C2H4	91-102
10	41	п	#	3-COOH	184-188
	42	Ħ	W	5-C00H	175-177
	43	Ħ	Ħ	5-COOPNH (C2HLOH),	72-75
	44	W	#	5-COOK	> 260
15	45	W	н	3-C00C2H6	72-77
•	46	₩	н	5-COOCH2CF2CFHCF3	Oel
	47	Ħ	**	5-C00-n-C12H2E	Oel.
	48	Ħ	Ħ	5-C00-c-C.H.1	Oel
	49	Ħ	Ħ	5-C00 [°] Li [†]	>260
20	50	Ħ	Ħ	3-C00 ⁻ K ⁺	>260
	51	Ħ	Ħ	5-C00 Ca1/2	178-180
	52	Ħ	π	5-COOPNH. (+)	140-143
	53	Ħ	Br	5-CONH ₂	118-120
	54	n	н	3-C00 ⁹ NH,⊕	212-215
25	55	Ħ	Br	5-CN	106-110
	56	Ħ	Ħ	5C0-N C	
	57	Ħ	. #	5-CONHCH2CH2OH	49-50
30	58	n	Ħ	5-COOCH2SCH3	•
	59	W	Cl	5- CN-N	
35	60	π	Ħ	3-C CH ₃	

	Beispiel- Nr.	R _n	4-Y	x	Fp(°C) (Kp/torr)
,	61	2,4-Cl2	C1	5-C CH,	-
5	63	2 6 (04)	U	5-C00H	167-170
	62	2,6-(CH ₃) ₂	П #	5-C00C ₂ H ₅	101-108/0,02
	63	 #	 17	3-C00-14,0H);	83-86
	64	" T	 11	3-000 H ₃ N⊕-c-C ₆ H ₁₁	
	65	TI .	n	3-000H3N-C-C4H11	144-146
10	66	Ħ	Br	5-CNH NHOH	
	67	π	Br	5-COOCH2-CF2CHFCF3	
	68	17	Cl	5-C00H	
15	69	n	Cl	5-CNH NHOH	
	70	2,6-(C ₂ H ₅) ₂	н	5-C00C2H5	119-123/0,01
	71	П	Н	3-C00C2H5	135-152/0,01
20	72	π	н	5-COOH	142-146
	73	Ħ	н	3-C00H	162-164
	74	#	Br	5-C00H	117-123
	75	π	W	3-C00H	.136-141
	76	W	W	5-CONH ₂	
25	77	n	Br	3-CONHOH	
	78	Ħ	π	5-COONC 2 H.	
	79	#	Cl	5-C00H	
	80	π	Cl	3-C00H	
30	81	π	Cl	5-000n-0 ₁₂ H ₂₅	•
	82	2-CH3, 6-C2H5	Н	5-C00C2H5	120-125/0,02
	82	Ħ	**	3-C00C2H6	140-144/0,02
	83	m	Ħ	5-C00H	126-128
35	84	n	π	5-C00 H2N	137-140

	Beispiel- Nr.	R _n	4-Y	x	Fp(°C) (Kp/torr)
	85	2-CH ₃ , 6-C ₂ H ₅	Br	5-C00H	
5	86	T 0113/0 02118	Cl	5-C00C ₂ H ₆	
	87	Ħ	77	3-CODH	
	88	2,6-01:	н	5-C00H	207-208
	89	Ħ	Br	5-C00H	187-192
	90	Ħ	н	5-CONH 2	117-118
10				F.	
	91	Ħ	H	5-CONH-C1	225
	92	Ħ	**	5-COSC 2He	0e1
	93	Ħ	**	5-C00(CH ₂) ₂ (CF ₂) ₅ -CF ₃	57-61
15	94	**	Ħ	5-C00-n-C12H28	44-48
	95	П	Ħ	5-C00CH;	113-115
	96	W	m	5-CN	94-96
	97	π	#	5-CONHCH;	220-223
	98	2,6-Cl ₂ ,3-NO	, #	5-C00C2H4	Oel
20	99	W	• #	5-C00H	178-179
	100	2,6-Cl ₂		5-CNHNH COL	176-177
25	101	π	π	NH 5-CNHOH	
	102	#	Ħ	5-C 0-NC(CH ₃);	
30	103	ч	77	5-C N CH ₃	
	104	•	Br	5-C00C2H6	
	105	π	Br	5-COOCH:CF:CHFCF:	
35		W	#	0 5-C -NHSO:CH:	
	106	77	••	Jac -Huanieus	

	Beispiel- Nr.	R _n ·	4-Y	X	Fp(°C) (Kp/torr)
5	107	2,6-Cl ₂	Br	5-C NH	
	108	п	Cl	5-000c2H5	
	109	π	Cl	5-C00H	
10	110	π	Cl	5 - N II N-N H	
	111	ч	π	5-C-N	
15				•	
	112	m	н	3-C00H	
	113	W	Br	3-C00C2H5	
	114	н	Cl	3-C00CH3	
	115	3,4-Cl ₂	Н	5-C00C2H5	95-99
20	116	Ħ	Ħ	3-C00C2H5	93-96
	117	Ħ	17 ·	5-C00H	217-219
	118	П	Ħ	5-COOPNP(C2H.OH);	137-140
	119	Ħ	Br	5-COONC(CH ₃) ₂	
	120	Ħ	Cl	5-C00CH ₃	
25	121	Ħ	Ħ	3-C00C2H6	
	122	₩	Ħ	5-C00nC ₁₂ H ₂₅	
	123	3,5-Cl ₂	Н	5-C00C2H5	94-97
	124	Ħ	₩	5-COOH	229-232
_	125	W	Bī	5-COOH	
30	126	W	m	3-C00H	•
	127	n	Cl	5-C00C2Hs	
	128	2,3,4-01;	Ĥ	5-C00C2H8	Oel
	129	Ħ	н	5-COOH	146
	130	π	#	3-C00C2H6	Oel
35	131	π	Br	5-C00H	
	132	Ħ	•	5-COCC H2 CF2 CHFCF3	• • •

	Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
	133	2,3,4-01;	Br	5-C00CH2CCl;	
5	134	Ħ	Cl	5-C00H	
	135	2,4,6-Cl;	н '	5-C00C2H5	99-101
	136	Ħ	Ħ	3-C00C2H8	114-115
	137	Ħ	Ħ	5-C00H	
	138	π	W	3-C00H	
10	139	n	Ħ	5-C00CH ₃	
	140	π	Br	5-COOH	
	141	Ħ	Br	3-COOH	
	142	π	Cl	5-C00H	
	143	Ħ	**	3-C00H	
15	144	4-C.H.	Н	5-C00C2H5	40-43
1)	145	π	W	3-C00C2H5	89-92
	146	Ħ	Ħ	3-C00H	196-199
	147	Ħ	н	5-C00nC12H26	•
	148	Ħ	Br	5-C00H	
20	149	π	Br	3-C00H	
20	150	Ħ	Cl.	5-COOH	
	151	π	*	3-C00H	
	152	2-C1	Н	5-COOCH3	64-70
	153	Ħ	Ħ	5-C00C2H5	81
25	154	n		5-C00H	157-161
2)	155	**	Ħ	5-CONH ₂	
٠	156	#	•	5-CONHC 2 H 5	
•	157	Ħ	•	5-CONHNHC 2 H 5	
	158	Ħ	W	5-COSC 2Hs	
30	159,	n	#	5-C00-nC12H25	
JU	160	Ħ	₩	3-C00C2H4	
	161	Ħ	#	3-COSC ₂ H ₅	
		Ħ	W	3-C00H	
	162	**	#	3-C00nC ₄ H ₉	
7=	163	**		5-C00C ₂ H ₅	81
35	164	17	Br	7-000 1 mg	01

	Beispiel- Nr.	R _n	4-Y	×	Fp(°C) (Kp/torr)
	165	2-01	Br	5-COSC ₂ H ₅	
5	166	77	Ħ	5-C00H	
	167	Ħ	Ħ	3-C00C2H5	
	168	n	Cl	5-C00C2H5	
	169	Ħ	Cl	5-C00H	
	170	₩	Ħ	3-C00C2H5	
10	171	Ħ	TT	3-COSC2H5	
	172	2,4-Cl ₂ -5-OCH ₃	Н	5-C00C2H5	Oel
	173	Ħ	Ħ	5-C00H	187-190
	174	π	Ħ	3-C00C2H5	
	175	Ħ	Br	5-COSC ₂ H ₅	
15	176	Ħ	Cl	3-C00C2H5	
	177	π	Ħ	5-C00C2H5	
	178	2,4-C1 ₂ -5-CO ₂ C ₂ H	Н	5-C00C2H5	170-175/0,01
	179	11	71 11	5-COOCH,	
	180	Ħ	Ħ	5-C00-c-C4H11	
20	181	П	W	3-C00C2H6	•
	182	Ħ	Br :	5-C00C:H5	
	183	Ħ	Cl	5-C00C2H8	
	184	2-F-4-C1-5-OCH;	4	5-C00C2H5	155-162/0,01
	185	Ħ	ł W	5-C00H	207-210
25	186	77	Ħ	5-CN	
	187	Ħ	Ħ	5-CONH ₂	
	188	T	#	5-CNHNH2	
	189	W	•	3-C00C2H5	
	190	n	Ħ	3-C00H	
30	191	п	₩ .	5-COONH.	
,,	192	Ħ	Ħ	5-C00K	
	193	H	Cl	5-C00CH3	
	194	#	Cl	5-C00H	
	195	Ħ	#	3-C00CH ₃	
35	196	₩.	Br	5-C00C.H.	
	197	4	Br	5-COOCH2CCH	
					

	Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
	198	2-F-4-C1-5-OCH,	Br	3-C00C2H5	
5	199	4-CF 3	н	5-C00C2H6	53-54
	200	Ħ	Ħ	3-C00C2H6	79-84
	201	4-0F ₃ -2,6-(ND ₂) ₂	Н	5-C00C2H8	108-112
	202	Ħ	Ħ	3-C00C ₂ H ₅	138-142
	203	2,C1-4CF;	Н	500002H5	45-47
10	204	π	π	5 C00H	149-150
	205	π	π	3-C00C2H6	66-69
	206	3-CF ₃	Н	5-C00C2H6	87-101/0,01
	207	π	₩	3-C00C ₂ H ₆	79-84
	208	Ħ	Ħ	5-C00H	136-138
15	209	Ħ	Ħ	3-C00 (Ca2+)/2	244-261
	210	17	Ħ	3-C00K	242
	211	П	17	3-C00Na	283 ·
	212	#	Ħ	5-C00 ^{Ca2+} 1/2	128-131
	213	17	Ħ	3-C00-c-C.H.1	67-68
20	214	n	Br	3-C00-C-C.H.1	86-91
	215	π	н :	5-C00-c-C.H.1	155-160/0,5
	216	Ħ	Br	5-C00-c-C4H11	0el
	217	#	Н	5-C00 ⁻ K ⁺	208-213
	218	п	Ħ	5-C00"NH. +	65-71
25	219	Ħ	#	3-C00"NH. +	207-212
	220	Ħ	Ħ	3-C00 ⁻ Li ⁺	>250
	221	**	*	5-CONH-4-C6H4-4-C1	
	222	Ħ	*	5-C(NH ₂)NOCH ₃	
_	223	π	Ħ	5-C00CH2CH2C-C4H11	
30	224	п	W	5-CSOC ₂ H ₆	
	225		Ħ	3-COSC ₂ H ₆	
	226	m	BI	5-COSC ₂ H ₈	•
	227	Ħ	Br	3-COSC ₂ H ₆	
7-	228	#	Cl	5-COONHCOCH;	
35	229	#	Cl	5-C00(CH ₂) ₂ OC ₂ H ₂ CH ₃	
	230	П	я	5-COOCH2C6H5	

	Beispiel- Nr	R _n	4-Y	X	Fp(°C) (Kp/Torr)
	231	2,4-F ₂	н	5-C00C ₂ H ₅	102-106/0,02
5	232	Ħ	m	3-C00C2H5	120-122/0,02
	233	π	W	5-C00H	196-199
	234	П	Br	5-C00H	165-168
	235	П	Br	3-C00C2H6	
	236	п	C1	5-C00H	
10	237	4-F	н	5-C00C2H5	96-98
	238	4-F	н	3-C00C2H5	44-49
	239	Ħ	Н	5-C00H	147-148
	240	π	н	5-COSC ₂ H ₅	62-65
	241	п	Ħ	5-CSSC ₂ H ₅	
15	242	П	Ħ	5-CSN(CH ₃) ₂	
	243	π	π	5-CONHNHOCC6H5	
	244	п	**	3-COSC ₂ H ₈	
	245	п	Ħ	3-CCNH ₂	
	246	π	Br	5-C00H	207 (Zers.)
20	247	п	: Br	5-CO-N	
	248	π	Br	3-C00C2H5	79-83
0.5	249	Ħ	Cl	5-C00H	
25	250	•	П	3-C00H	
	251	4BI	н	5-C00C2H5	63-65
	252	Ħ	Ħ	5-C00C2H5	78-81
	253	П	₩	5-C00H	
30	254	Ħ	Ħ	5-COSC ₂ H ₅	
90	255	m	#	3-COSC ₂ H ₅	
	256	Ħ	Br	5-C00H	
	257	₩ .	Cl	5-C00H	
	258	Ħ	#	3-C00H	
35	259	4-C1	Н	5-C00C2H5	60-65
	260	#	Ħ	3-C00H	169-174

	Beispiel- Nr	R _n .	4-Y	X	Fp(°C) (Kp/Torr)
	261	4-C1	н	5-COOH	181 - 182
5	262 .	Ħ	Ħ	3-C00C2H5	71-74
	263	Ħ	Br	3-C00C2H5	107-109
	264	п	Ħ	5-C00C2H8	109-112
	265	π	н	5-C00" H2N	152-154
10	266	17	Ħ	5-C00-H, N	Oel
	267	Ħ	Br	н ₃ с-/ 5-соон	196-198
	268	π	#	5-COO HN+ (C2H4OH)	
15	200			H ₃ C-	1112-114
	269	π	#	5-C00 H.N+ H	Oel
	270	3-C1	н	50000 H H3C	55-60
	271	m ·	# ·	5-COOH	205
	272	3-C1-5-NO ₂	Н	5-C00C2H5	104-116
20	273	n	Ħ	3-C00C2H5	141-147
	274	3-C1	. H	3-C00H	
	275	Ħ	· •	3-COSC ₂ H ₅	
	276	Ħ	Br	5-C00CH;	
	277	π	Cl	5-C00H	
25	278	Ħ	Ħ	3-C00H	
	279	3-C00C2H6	Н	3-C00C2H5	92-95
	280	•	**	5-C00C2H5	85-87
	281 3	-coo_HN_(C5H*OH)*	Н	3-000 HN (C2H, OH);	0el
	282	3-C00H	Н	5-C00H	236-238
30	283	3C00H	Н .	3-C00H	240-243
	284	4-C00H	Н	5-C00H	>260
	285	Ħ	Ħ	3-C00H	>260
	286	3-OCF 2 CHF 2	H	5-C00-c-C4H11xH2S	0. 0el
	287	Ħ	Ħ	5-C00C2H6	Oel
35	288	Ħ	Н	3-C00C2H6	47-51
	289	π	₩	5-C00-c-C ₆ H ₁₁	Oel
	290	Ħ	₩	3-C00-c-C.H11	Oel

291 3-OCF ₂ CHF ₂ H 5-COO-i-Borneyl Oel 5 292	_
5 292 # # 3-C00-i-Borneyl 88-90 293 # Br 5-C00-c-C ₄ H ₁₁ Oel 294 # # 3-C00C ₂ H ₈ 62-64 295 # 5-C00C ₂ H ₆ Oel 296 # Cl 5-C00C ₂ H ₆ 10 297 # # 3-C00C ₂ H ₈	
293	
294	
295	
296 " C1 5-COOC ₂ H ₅ 10 297 " " 3-COOC ₂ H ₅	
10 297 " " 3-C00C ₂ H ₅	
27.	
298 3-0CF2CHFCF3 H 5-COOC2H6 01	
299 " " 5-COOH 129-131	
300 " " 5-COSC ₂ H ₅	
301 " H 5-CN	
15 302 " " 3-COOC ₂ H ₅ 44-46	
303 " " 3-COOH 104 (Zers	.)
304 " H 3-COSC ₂ H ₅	
305 " Br 5-COOC ₂ H ₅	
306 " " 3-C00C ₂ H ₅	
20 307 3-0CF ₃ H 5-C00C ₂ H ₆ Öl	
308 " H 3-C00C ₂ H ₆ 55-58	
309 " C1 5-COOC ₂ H ₆	
310 4-OCF ₃ H 5-COOC ₂ H ₆ Ö1	
311 " H 5-COOH 157-158	
25 312 " " 3-COOC ₂ H ₅ 68-71	
313 " C1 5-COOC ₂ H ₅ 98-99	
314 3-NO ₂ H 5-COOC ₂ H ₅ 76-82	
315 3-0CHF ₂ H 5-COOC ₂ H ₅	
316 " " 5-COOH	
30 317 2,4-F ₂ ,3,5-Cl ₂ H 5-COOC ₂ H ₅	
318 " " 3-COOC ₂ H ₅	
319 " " 5-COOH	
320 " Br 5-COOC ₂ H ₈	
321 " C1 3-C00C ₂ H ₈	
35 322 4-0-C ₆ H ₅ H 5-COC ₂ H ₈	
323 " 5-COOH	

				Fp(°C)Kp(torr)
324	4-0-C ₆ H ₅	Н	3-C00C ₂ H ₅	
325	4-0-C ₆ H ₄ -2-			
326	4-NH ₂	Н		0. 0.
327	3-NHCOCH ₃		3-C00C ₂ H ₅	84-87
328	3-SH		5-C00C ₂ H ₅	
329			5-C00C ₂ H ₅	
	3-S-C ₆ H ₅		5-C00C ₂ H ₅	
330	3-S0 ₂ -C ₆ H ₅		5-COOCH ₃	
331	2,6-Cl ₂ -4-CF ₃	•	5-C00C ₂ H ₅	69-71 .
332	n	Н	5-CONH ₂	171-173
333	Ħ	Н	5-CN	67-69
334	Ħ	Н	3-C00C ₂ H ₅	112-115
335	4-NO ₂	Н	3-C00C ₂ H ₅	159-161
336	3-C2H5	Н	5-C00C ₂ H ₅	0el
337	Ħ	Н	3-0000 zH5	Oel
338	3-0CF ₃	Н	5-C00H	113-115
339	4-0CF ₃	Br	3-C00C2H5	92-97
340	4-F-3-NO ₂	H	5-C00C ₂ H ₅	74-76
341	Ħ	H	5-C00H	178 Zers.
342	2,4,6-Cl ₃	8r	5-C00C ₂ H ₅	64-65
343	2,4,6 -Cl₃3- CH	₃ H	5-C00C2H5	38-42
344	3-F-	н	5-C00C ₂ H ₅	Oel
345	3-F	Н	3-C00C ₂ H ₅	Oel
346	2-CF ₃	н	5-C00C ₂ H ₅	Oel
347	n	н	5-C00H	130-132
348	2-C1-5-CF ₃	н	5-C00C2H5	Oel
349	Ħ	Н	3-C00C ₂ H ₅	Oel

Beisp.	-Nr. R _n	4-Y	X	Fp(°C) Kp(torr)
350	3,5-(CF ₃) ₂	Н	5-C00C ₂ H ₅	63-67
351	17	Н	3-C00C ₂ H ₅	108-110
352	11	Н	5-C00H	124-126
353	2,4-Cl ₂ -6-CH ₃	Н	5-C00C 2 H 5	63-65
354	F ₅	Н	5-C00C ₂ H ₅	Oel
355	11	н	3-C00C ₂ H ₅	0el
356 .	11	н	5-C00H	146-150
357	4-NHCH=C(CN) ₂	Н	3-C00C ₂ H ₅	>220
358	4-1	н	3-C00C ₂ H ₅	115-117
359	3-NHCOCOOC₂H₅	Н	5-C00C ₂ H ₅	50-54
360	2,4-Cl ₂ -5NO ₂	Br	5-CONH ₂	204-206
361	2,4,6-Cl ₃ -3NO	_z H	5-C00C ₂ H ₅	94-101
362	11	Н	5-COOH	185-187
363	17	н	5-C00K	189-192
364	3-CF ₃	Н	5-CON(C ₂ H ₅) ₂	66-68
365	n	Н	5-CONHCH2CH(OCH3)2	92-94
366	Ħ	Н	5-CONH ₂	119-121
367	17	Н	5-CONHCH ₃	72-77
368	11	Н	5-CONHCH2CH(CH3)-n-C.H	• Oel
369	#	Н	5-CONH-c-C ₆ H ₁₁	134 Zers.
370	2-C1-4-CF ₃	Br	5-C00C ₂ H ₅	0el
371	17	Br	3-C00C ₂ H ₅	38-41
372	TT .	Н	5-C00-(0)-0CH(CH ₃)C00C₂H ₅	Oel

Beips.	-Nr. R _n	4-Y	x	Fp(°C) Kp(torr)
374	2 (1 5)	NO LI	5 0000 H	
	2-C1-5-I		5-C00C ₂ H ₅	78-82
375	2-C1	н	5-CO (Benzimidazol-l-yl)	117-121
376	#	н	5-CON 0	125-126
377	5-N0 ₂ -2-	-SC ₆ H ₅ H	5-C00C₂H₅	Oel
378	5-C1-2-I	NO ₂ H	5-C00C ₂ H ₅	90-94
379	3-C1-4-	NO₂ H	5-C00C ₂ H ₅	109-113
380	2,4-(SC	6H ₅) ₂ -5-NO ₂ H	5-C00CH ₃	145-148
381	4-0-CH	з Н	5-C00C ₂ H ₅	Oel
382	17	Н	3-C00C ₂ H ₅	Oel
383	11	н	5-COOH	
384	77			170-172
		Н	3-C00H	185-187
385	2,3,5,6		5-C00C ₂ H ₅	57-60
386	#	Н	5-C00H	128-130
387	77	Н	5-CON(C ₂ H ₅) ₂	80-83
388	Ħ	Н	5-C00-n-C ₆ H ₁₃	Oel
389	3-N) н	5-C00C 2 H 5	96-101
390	3-NO ₂ -4-	-0C ₆ H ₅ H	5-C00C2H5	52-54
391	Ħ	н	5-COOH	178-181
392	4-NH-SO ₂	CH ₃ H	3-C00C 2H 5	150-155
393	3-C1-4-F	. H	5-C00C2H5	84-87
394	17	н	3-C00C 2 H 5	122-125
395	**	н	5-C00H	>225
396	4-F-3-CF	3 "	3-C00C ₂ H ₅	24-29
397	4-N(CH ₃)	2-3-CF ₃ H	5-C00C ₂ H ₅	Oel
398	Ħ	н	3-C00C2H5	Oel

Beisp	Nr. R _n	4-Y	X	Fp(°C) Kp(torr)
399	3-01-2,6-(0	C₂H₅) H	5-C00C ₂ H ₅	Oel
400	11	H .	3-C00C ₂ H ₅	Oel
401	11	Н	5-C00H	145-147
402	11	Br	5-C00C ₂ H ₅	Oel
403	2,4-Br ₂	Н	5-C00C ₂ H ₅	Oel
404	π	Н	3-C00C ₂ H ₅	103-105
405	Ħ	н	5-C00H	217-219
406	11	Br	5-C00C ₂ H ₅	0el
407	2,4-Cl ₂	Н	3-CONHSO2CH3	155-159
408	17	Н	3-C00CH ₃	105-107
409	π	н	3-COOCH2C=CH	101-103
410	17	Н	5-COOCH2C≅CH	0el
411	17	Н	5-COOCH(CH ₃) ₂	Oel
412	17	Н	5-COOCH ₂ CCl ₃	Oel
413	Ħ	Н	5-COONC (CH ₃) ₂	87-89
414	π	Н	5-C00CH(CF ₃) ₂	Oel
415	Ħ	Н	5-CN	70-71
416	π	н	5-C00CH ₂ Si(CH ₃) ₃	Oel
417	Ħ	Н	3-C00CH ₂ Si(CH ₃) ₃	51-54
418	17	н	5-CON 0	Oel

Biologische Beispiele

A. Wachstumsregulierung

5 1. Wuchshemmung an Getreide

In Schalenversuchen im Gewächshaus wurden junge Getreidepflanzen (Weizen, Gerste, Roggen) im 3-Blattstadium mit erfindungsgemässen Verbindungen in verschiedenen Wirkstoffkonzentrationen (kg/ha) tropfnass gespritzt.

Nachdem die unbehandelten Kontrollpflanzen eine Wuchshöhe von etwa 55 cm erreicht hatten, wurde bei allen Pflanzen der Zuwachs gemessen und die Wuchshemmung in 15 % des Zuwachses der Kontrollpflanzen berechnet. Es wurde außerdem die phytotoxische Wirkung der Verbindungen beobachtet, wobei 100% den Stillstand des Wachstums und 0% ein Wachstum entsprechend den unbehandelten Kontrollpflanzen bedeuten. Es zeigte sich, daß die Verbindungen sehr gute wachstumsregulierende Eigenschaften besitzen. Die Ergebnisse sind in der nachfolgenden Tabelle zusammengestellt.

25

20

10

Tabelle

	Verbindungen nach Bsp.Nr.	Anwendungs-	Wuchshe			Phytotox.
5				Gerste	Roggen	WIIKUIIG
	17	2.5 1.25	15 11	22 16	19 14	keine Schäden
	34	11	14 10	21 14	17 11	keine Schäden
10	42	11	25 22	38 23	22 17	keine Schäden
	43	n n	24 21	38 22	23 16	keine Schäden
	44	n n	24 20	37 23	23 17	keine Schäden
15	52	II .	22 18	31 26	21 17	keine Schäden
	53	n	16 10	21 15	19 13	keine Schäden
	55	11 11	14 9	20 13	21 14	keine Schäden
20	62	п п	18 14	21 15	14 12	keine Schäden
	72	п	14 12	17 15	14 9	keine Schäden
	83	n n	19 12	22 14	19 13	keine Schäden
25	88	н	23 18	36 28	29 20	keine Schäden
	89	n n	26 21	39 24	24 19	keine Schäden
	90	W II	14 10	21 16	18 13	keine Schäden
30	92	π	17 11	22 17	19 14	keine Schäden

	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchshe			Phytotox. Wirkung
				Gerste	Roggen	WIIKUNG
5	115	2.5 1.25	16 11	21 17	19 14	keine Schäden
	116	11	17 12	22 17	19 13	keine Schäden
	117	17	19 14	24 19	21 16	keine Schäden
10	128	17 81	16 11	21 16	17 13	keine Schäden
	129	71 81	22 18	31 25.	22 19	keine Schäden
	135	19	15 11	19 16	18 14	keine Schäden
15	140	n	20 14	24 19	22 17	keine Schäden
	153	n n	20 13	23 19	21 16	keine Schäden
	154	11	22 15	27 23	24 19	keine Schäden
20	178	н .	14 12	19 14	19 15	keine Schäden
	185	H	13 9	18 13	15 9	keine Schäden
	204	11	16 11	19 16	17 15	keine Schäden
25	206	n n	15 13	20 13	18 14	keine Schäden
	208	m	20 14	35 24	22 17	keine Schäden
	217	н	17 14	27 22	22 17	keine Schäden
30	218	n n	18 15	27 23	19 16	keine Schäden
	246	H H	25 21	38 29	27 24	keine Schäden
	267	n n	21 17	30 23	22 17	keine Schäden
35	269	m m	24 21	37 28	27 23	keine Schäden

	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha				Phytotox. Wirkung
			Weizen	Gerste	Roggen	
5	295	2.5 1.25	19 16	29 24	22 17	keine Schäden
J	356	11 11	19 15	28 22	21 16	keine Schäden
	366	11	17 11	21 16	17 13	keine Schäden
10	405	ii n	24 21	37 28	23 18	keine Schäden
. •	413	ti fi	19 13	26 19	18 13	keine Schäden

*

10

15

2. Wuchshemmung in Wasserreis

Reispflanzen wurden in Töpfen im Gewächshaus bis zum 3-Blattstadium angezogen, und dann mit den erfindungsgemässen Verbindungen behandelt. Die Substanzen wurden sowohl durch Spritzung appliziert als auch in das Wasser gegeben.

3 Wochen nach Behandlung wurde bei allen Pflanzen der Zuwachs gemessen und die Wuchshemmung in % des Zuwachses der Kontrollpflanzen berechnet. Es wurde außerdem auf eine mögliche phytotoxische Wirkung der Verbindungen geachtet.

Die Wuchshemmung wurde als prozentualer Wert ermittelt, wobei 100% den Stillstand des Wachstums und 0% ein Wachstum entsprechend dem der unbehandelten Kontrollpflanzen bedeuten.

Die Ergebnisse sind in der nachfolgenden Tabelle zusammengefaßt.

20

<u>Tabelle</u>

Verbindungen nach Bsp. Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)	Phytotox. Wirkung
42	2.5 1.25 0.62	26 24 20	keine Schäden
43	11 11	27 24 19	keine Schäden
62	11 11 11	19 15 8	keine Schäden
83	11 17 11	21 16 13	keine Schäden
88 .	н П П	19 16 12	keine Schäden
178	11 11	22 17 15	keine Schäden
206	и и <u>-</u>	25 19 17	keine Schäden
208	11 11 11	32 27 21	keine Schäden
218	11 11	26 20 17	keine Schäden
219	11 11	27 21 17	keine Schäden
246	11 11	29 25 21	keine Schäden

10

3. Wuchshemmung an Sojabohnen

Ca. 10 cm große Sojabohnen wurden mit den Wirkstoffzubereitungen tropfnaß bespritzt. Nach 3 Wochen wurde bonitiert.

Die Wuchshemmung wurde als prozentualer Wert ermittelt, wobei 100 % den Stillstand des Wachstums und 0 % ein Wachstum entsprechend dem der unbehandelten Kontrollpflanzen bedeutet.

<u>Tabelle</u>

15	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)	Phytotox. Wirkung
	35	2.5	22 .	keine Schäden
	88	2.5	25	ti
	89	2.5	27	ti
	42	2.5	26	п
20	43	2.5	24	n 👻
	44	2.5	26	H

25

B. Safener - Wirkung

Beispiel 1

Getreide, vorzugsweise Weizen, wurde im Gewächshaus in Plastiktöpfen von 9 cm Durchmesser bis zum 3-4 Blattstadium herangezogen und dann gleichzeitig mit den erfindungsgemäßen Verbindungen und den getesteten Herbiziden im Nachlaufverfahren behandelt. Herbizide und die Verbindungen der Formel I wurden dabei in Form wässriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 800 1/ha ausgebracht. 3-4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde.

Die Ergebnisse aus Tabelle V veranschaulichen, daß die erfindungsgemäßen Verbindungen starke Herbizidschäden an den Kulturpflanzen effektiv reduzieren können.

Selbst bei starken Überdosierungen des Herbizids werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert, geringere Schäden völlig aufgehoben. Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen eignen sich deshalb in ausgezeichneter Weise zur selektiven Unkrautbekämpfung in Getreidekulturen.

30 Beispiel 2

Getreide und die beiden Schadgräser Avena fatua und Alopecurus myosuroides wurden in Plastiktöpfen von 9 bzw. 13 cm Durchmesser in lehmigen Sandboden ausgesät,

35

20

unter optimalen Wuchsbedingungen im Gewächshaus bis zum 3-4 Blattstadium bzw. zur beginnenden Bestockung angezogen und mit Mischungen aus den erfindungsgemäßen Verbindungen und den Herbiziden behandelt. Die Präparate wurden dabei in Form wässriger Suspensionen oder Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 - 600 1/ha ausgebracht.

3-4 Wochen nach der Applikation wurden die Versuchspflanzen auf Wachstumsveränderungen und Schädigung im Vergleich
zu unbehandelten und mit den Herbiziden alleine behandelten
Kontrollen visuell bonitiert.

Die Ergebnisse aus der Tabelle V zeigen, daß die erfingsgemäßen Verbindungen sehr gute Safenereigenschaften bei
Getreidepflanzen aufweisen und somit Herbizidschäden
wirkungsvoll verhindern können, ohne die eigentliche herbizide Wirkung gegen Schadgräser zu beeinträchtigen.

Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen können somit zur selektiven Unkrautbekämpfung eingesetzt werden.

Safenerwirkung der erfindungsgemäßen Verbindungen. Schädigung der Kulturpflanzen in %.

<u>Tabelle</u>

Beispiel-Nr.	herbizide TA	Wirkung HV
H ₁	85	80
$H_1 + 16$	40	_
$H_1 + 17$	45	.
H ₁ + 26	40	-
$H_1 + 27$	40	-
H ₁ + 30	50	-
$H_1 + 34$	40	_
$H_1 + 45$	20	35
$H_1 + 46$	30	40
$H_1 + 47$	30	-
$H_1 + 48$	30	_
$H_1 + 49$	-	50
$H_1 + 50$	30	-
H ₁ + 51	. -	50
$H_1 + 54$	-	50
$H_1 + 65$	30	_
H ₁ + 84	40	55
$H_1 + 96$	30	-
H ₁ + 98	50	-
$H_1 + 99$	-	40
H ₁ + 128	-	50
H ₁ + 136	20	-
H ₁ + 153	30	65
$H_1 + 154$	40	-
$H_1 + 164$	40	-
H ₁ + 178	50	-
H ₁ + 201	30	-
$H_1 + 204$	40	35

Beispiel-Nr.	herbizide TA	Wirkung HV
H ₁ + 205	50	30
$H_1 + 209$	50	_
$H_1 + 210$	35	-
$H_1 + 211$	40	55
$H_1 + 218$	-	40
$H_1 + 219$	35	-
H ₁ + 220	50	-
$H_1 + 237$	40	-
$H_1 + 238$	30	-
$H_1 + 239$	50	-
$H_1 + 240$	50	-
$H_1 + 246$	40	30
$H_1 + 251$	30	. -
$H_1 + 252$	30	40
$H_1 + 259$	30	-
$H_1 + 260$	40	50
$H_1 + 261$	50	40
H ₁ + 262	. 40	45
$H_1 + 265$	•	50
$H_1 + 269$	-	50
$H_1 + 270$	60	50
$H_1 + 271$	20	45
H ₁ + 279	50	-
H ₁ + 280	50	-
H ₁ + 286	10	40
H ₁ + 288	30	40
H ₁ + 289	40	-
H ₁ + 293	50	-
H ₁ + 294	40	-
H ₁ + 295	50	-
H ₁ + 298	-	50
H ₁ + 311	40	40
H ₁ + 312	40	50
$H_1 + 314$	40	-

Beispiel-Nr.		Wirkung		
	TA	HV		
H ₁ + 331	40	-		
H ₁ + 334	20	50		
$H_1 + 340$	40	-		
H ₁ + 342	40	-		
H ₁ + 343	40	-		
H ₁ + 344	40	•		
H ₁ + 346	40	-		
H ₁ + 347	40	•••		
H ₁ + 348	30	-		
H ₁ + 349	20	50		
H ₁ + 350	40	50		
H ₁ + 352	-	50		
H ₁ + 353	40	-		
H ₁ + 371	40	35		
H ₁ + 373	45	60		
H ₁ + 375	35	-		
H ₁ + 389	20	50		
H ₁ + 391	. 40	-		
H ₁ + 394	40	-		
H ₁ + 395	40	-		
$H_1 + 407$	40	35		
H ₁ + 408	35	35		
$H_1 + 409$	40	40		
$H_1 + 410$	60	50		
$H_1 + 415$	40	-		
H ₁ + 416	30	60		
$H_1 + 417$	40	40		

Erklärungen und Abkürzungen

Dosierungen der Mischungspartner:

H₁ : 2,0 kg a.i. / ha (TA)

0,3 kg a.i. / ha (HV)

Safener : 2,5 kg a.i. / ha

H₁ = Fenoxaprop - ethyl
TA = Triticum aestivum
HV = Hordeum vulgare

15

10

ş

Patentansprüche

 Verbindungen der Formel I, deren Salze und Quaternisierungsprodukte,

worin

5

20

R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro,

(C₁-C₄)Alkyl, (C₁-C₄)Halogenalkyl, (C₁-C₄)Alkoxy(C₁-C₄)alkyl, (C₁-C₆)Alkoxy, (C₁-C₆)Alkoxy-(C₁-C₄)alkoxy,
(C₁-C₆)Halogenalkoxy, (C₁-C₄)Alkylthio,
(C₁-C₄)Halogenalkylthio, Carboxy, (C₁-C₄)Alkoxycarbonyl,
(C₁-C₄)Alkylsulfinyl, (C₁-C₄)Halogenalkylsulfinyl,
(C₁-C₄)Alkylsulfonyl, (C₁-C₄)Halogenalkylsulfonyl,
(C₁-C₄)Alkylsulfonyloxy, (C₁-C₄)Halogenalkylsulfonyloxy,
Phenyl, Halogenphenyl, Phenoxy oder Halogenphenoxy,

X = in Position 3 oder 5 des Pyrazolringes orientiert ist und einen Rest der Formeln

Y = Halogen
Z = O oder S
U = O, S oder N-R

R Wasserstoff, (C-C)Alkyl, (C₁-C₁₂)Alkyl, das ein- oder mehrfach durch Halogen und/oder ein- bis zweifach durch Hydroxy, (C₁-C₄)Alkoxy, (C₁-C₄)Alkoxy(C₁-C₄)alkoxy, (C₁-C₄)-Alkylthio, (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfonyl, Mono- ode Di-(C₁-C₄-alkyl)amino, Cyano, Aminocarbonyl, 10 (C₁-C₄)Aîkylcarbonyl, (C₁-C₄-Alkoxy)carbonyl, Cyclo(C₃-C₇)-alkyl, Tri(C₁-C₄)alkyl-silyl, Benzyloxy, Benzyloxyethoxy, Phenyl, Phenyl, das durch Halogen oder (C,-C,)Alkyl substituiert ist, durch Phenoxy, 15 Phenylthio, die durch Halogen oder (C1-C4)-Alkyl substituiert sein können, durch Oxiranyl, Tetrahydrofuryl, Triazolyl, Pyridinyl, Imidazolyl, durch Carboxy, Carboxylat mit einem für die Landwirtschaft einsetzbaren Kation oder durch den Rest 20 -O-N=C(CH_q), substituiert ist, (C₃-C₆)Alkenyl, (C₃-C₆)-Halogenalkenyl, unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl substituiertes Cyclo(C3-C7)alkyl, unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl substituiertes Cyclo(C₅-C₇)alkenyl, (C₃-C₆)Alkinyl, 25 1,2-Epoxy-prop-3-y1, Phenyl oder Phenyl, das ein oder zweifach durch Halogen, Nitro, Cyano, (C,-C,)Alkyl, (C₁-C₄-Alkoxy)carbonyl oder (C₁-C₄)Alkoxy substituiert ist, (C₁-C₄-Alkyl)carbonyl, Phenylcarbonyl, wobei der 30 Phenylring durch Halogen, Nitro, Cyano oder (C₁-C₄)Alkyl substituiert sein kann,

einen Rest der Formeln

$$-N=C(R^{10})_{2}, -NR^{3}R^{11}, \qquad NR^{3}R^{11}, \qquad NR^{3}R^{11}$$

$$\sum_{n=1}^{N} \sum_{n=1}^{N} \sum_{n=1}^{N$$

oder ein für die Landwirtschaft einsetzbares Kation,

- 15 R² (C₁-C₁)Alkyl oder (C₁-C₁)Alkyl, das bis zu zweifach durch (C₁-C₄)Alkoxyethoxy, Cyclo(C₃-C₆)alkyl,
 Benzyloxy, Phenyl, Phenoxy, (C₁-C₄)Alkylthio, (C₁-C₄-Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für die Landwirtschaft einsetzbares Kation, substituiert ist,
 - R jeweils unabhängig voneinander (C₁-C₆)-Alkyl, Phenyl oder (C₃-C₆)-Alkenyl;
- 25 R⁴ Wasserstoff, (C₁-C₂)Alkyl oder (C₁-C₂)Alkyl, das bis zu zweifach durch (C₁-C₂)Alkoxy, (C₁-C₂)Alkoxy-ethoxy, Hydroxy, Hydroxyimino, (C₁-C₂)-Alkoxyimino, Halogen, Cyclo(C₃-C₆)alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, (C₁-C₂-Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, (C₁-C₂)Alkyl oder (C₁-C₂)Alkoxy substituiert ist; (C₃-C₆)-Alkenyl, (C₃-C₆)Cycloalkyl, einen Rest der Formeln
- 35 -NR³R¹², -O-R⁶, -NH-CONH₂, -NH-CS-NH₂ oder -SO₂R¹³ oder

- R³ und R⁴ gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten dreibis siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C₁-C₄)Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann,
- R⁵ H, (C₁-C₆)Alkyl oder Phenyl, oder im Falle X = 10
 -CS-OR⁵ ein für die Landwirtschaft einsetzbares Kation,
 - R jeweils unabhängig voneinander H, (C₁-C₄)Alkyl oder Benzyl,
- Property of the state of the st
- Jeweils unabhängig voneinander (C₁-C₂)Alkyl, das unsubstituiertes oder durch Phenyl,

 Cyclo(C₂-C₂)alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio oder Halogen substituiert ist,

 oder zwei Reste R gemeinsam mit Z und dem

 Kohlenstoffatom, an das sie gebunden sind, einen

unsubstituierten oder durch (C₁-C₄)Alkyl, Hydroxy-(C₁-C₄)alkyl, Halogen(C₁-C₄)alkyl oder Phenyl substituierten 5- oder 6-gliedrigen gesättigten heterocyclischen Ring;

- P jeweils unabhängig voneinander H, Halogen, (C-C)-Alkyl, Nitro oder Cyano,
- unabhängig voneinander H, (C₁-C₂)Alkyl, das
 unsubstituiert oder durch (C₁-C₄)Alkoxy, Triazolyl
 oder Imidazolyl substituiert ist, Cyclo(C₃-C₄)alkyl,
 (C₂-C₄)Alkenyl, Phenyl oder Benzyl, oder im Falle R¹=-N=C(R¹⁰)₂ beide Reste
 R¹⁰ gemeinsam mit dem Kohlenstoffatom, an das sie
 gebunden sind, ein unsubstituiertes oder durch Methyl
 oder Halogen substituiertes Cyclo-(C₅-C₇)alkyl,
 - R¹¹ (C₁-C₄)Alkyl, Phenyl, (C₁-C₆-Alkyl)carbonyl, Benzyl, Benzyl, Halogenbenzyl, Halogenbenzoyl oder Methylbenzoyl,
- R H, (C₁-C₄)Alkyl, Formyl, (C₁-C₆-Alkyl)carbonyl, Benzoyl, Halogenbenzoyl, Methylbenzoyl oder Trihalogenacetyl,
- 25 R¹³ (C₁-C₄)Alkyl, Phenyl oder Methylphenyl,
 - m 0 oder 1
 - n eine ganze Zahl von 0 bis 5
- p eine ganze Zahl von 0 bis 4 und
 - q eine ganze Zahl von 0 bis 6
- 35 bedeuten.

 Verfahren zur Herstellung der Verbindungen der Formel I von Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

5

$$R^{14}$$
-O-CH=CH-C-C-OR (II)

worin R (C₁-C₆)Alkyl Verbindung der Formel III

bedeutet, mit einer

10

$$H_2^{N-NH}$$
 (III)

umsetzt und anschließend gegebenenfalls derivatisiert.

- 3. Pflanzenbehandlungsmittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
- 4. Pflanzenwachstumsregulierende Mittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
 - 5. Mittel zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
 - 6. Verwendung der Verbindungen der Formel I zur Wachstumsregulierung von Pflanzen.

30

- 7. Verwendung der Verbindungen der Formel I zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.
- 8. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man auf die Pflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I app¹iziert.

- 9. Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß man auf die Kulturpflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid appliziert.
- 10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß das Herbizid ein Phenoxy-phenoxy- oder
 Heteroaryloxyphenoxy-carbonsäureester ist.

Patentansprüche Österreich und Spanien:

Verfahren zur Herstellung von Verbindungen der Formel I

1

worin

5

R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro,

(C₁-C₄)Alkyl, (C₁-C₄)Halogenalkyl, (C₁-C₄)Alkoxy(C₁-C₄)alkyl, (C₁-C₆)Alkoxy, (C₁-C₆)Alkoxy-(C₁-C₄)alkoxy,
(C₁-C₆)Halogenalkoxy, (C₁-C₄)Alkylthio,
(C₁-C₄)Halogenalkylthio, Carboxy, (C₁-C₄)Alkoxycarbonyl,
(C₁-C₄)Alkylsulfinyl, (C₁-C₄)Halogenalkylsulfinyl,
(C₁-C₄)Alkylsulfonyl, (C₁-C₄)Halogenalkylsulfonyl,
(C₁-C₄)Alkylsulfonyloxy, (C₁-C₄)Halogenalkylsulfonyloxy,
Phenyl, Halogenphenyl, Phenoxy oder Halogenphenoxy,

20 X = in Position 3 oder 5 des Pyrazolringes orientiert ist und einen Rest der Formeln

.

Y = Halogen Z = O oder S U = O, S oder N-R.

R Wasserstoff, (C₁-C₁₂)Alkyl,
(C₁-C₁₂)Alkyl, das ein- oder mehrfach durch Halogen und/oder ein- bis zweifach durch Hydroxy, (C₁-C₆)Alkoxy, (C₁-C₄)Alkoxy(C₁-C₄)alkoxy, (C₁-C₄)-Alkylthio, (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfonyl, Mono- ode Di-(C₁-C₄-alkyl)amino, Cyano, Aminocarbonyl, 10 (C₁-C₄)Alkylcarbonyl, (C₁-C₄-Alkoxy)carbonyl, Cyclo(C₃-C₇)-alkyl, Tri(C₁-C₄)alkyl-silyl, Benzyloxy, Benzyloxyethoxy, Phenyl, Phenyl, das durch Halogen oder $(C_1 - C_{\Delta})$ Alkyl substituiert ist, durch Phenoxy, 15 Phenylthio, die durch Halogen oder (C1-C2)-Alkyl substituiert sein können, durch Oxiranyl, Tetrahydrofuryl, Triazolyl, Pyridinyl, Imidazolyl, durch Carboxy, Carboxylat mit einem für die Landwirtschaft einsetzbaren Kation oder durch den Rest 20 -O-N=C(CH₃)₂ substituiert ist, (C₃-C₆)Alkenyl, (C₃-C₆)-Halogenalkenyl, unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl substituiertes Cyclo(C₃-C₇)alkyl, unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl substituiertes Cyclo(C₅-C₇)alkenyl, (C₃-C₆)Alkinyl, 1,2-Epoxy-prop-3-yl, Phenyl oder Phenyl, das ein oder 25 zweifach durch Halogen, Nitro, Cyano, (C1-C4)Alkyl, (C₁-C₄-Alkoxy)carbonyl oder (C₁-C₄)Alkoxy substituiert ist, (C₁-C₄-Alkyl)carbonyl, Phenylcarbonyl, wobei der 30 Phenylring durch Halogen, Nitro, Cyano oder (C_1-C_4) Alkyl substituiert sein kann,

einen Rest der Formeln

10

oder ein für die Landwirtschaft einsetzbares Kation,

- 15 R² (C₁-C₁)Alkyl oder (C₁-C₁)Alkyl, das bis zu zweifach durch (C₁-C₄)Alkoxyethoxy, Cyclo(C₃-C₆)alkyl,
 Benzyloxy, Phenyl, Phenoxy, (C₁-C₄)Alkylthio, (C₁-C₄-Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für die Landwirtschaft einsetzbares Kation, substituiert ist,
 - R³ jeweils unabhängig voneinander (C₁-C₆)-Alkyl, Phenyl oder (C₃-C₆)-Alkenyl,
- 25 R Wasserstoff, (C₁-C₂)Alkyl oder (C₁-C₂)Alkyl, das bis zu zweifach durch (C₁-C₂)Alkoxy, (C₁-C₄)Alkoxy-ethoxy, Hydroxy, Hydroxyimino, (C₁-C₄)-Alkoxyimino, Halogen, Cyclo(C₃-C₄)alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, (C₁-C₄-Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl oder (C₁-C₄)Alkoxy substituiert ist; (C₃-C₆)-Alkenyl, (C₃-C₆)Cycloslkyl, einen Rest der Formeln
- $-NR^3R^{12}$, $-O-R^6$, $-NH-CONH_2$, $-NH-CS-NH_2$ oder $-SO_2R^{13}$ oder

- gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten drei- bis siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C₁-C₄)Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann,
- R^{5} H, $(C_1 C_K)$ Alkyl oder Phenyl, oder im Falle R =-CS-OR ein für die Landwirtschaft einsetzbares Kation,
 - jeweils unabhängig voneinander H, (C,-C,)Alkyl oder Benzyl,
- 15 jeweils unabhängig voneinander H, (C₁-C₁₂)Alkyl, das unsubstituiert oder durch Phenyl, das unsubstituiert oder durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl oder (C₁-C₄)Alkoxy substituiert ist, durch Hydroxy, Cyano, (C₁-C₄-Alkoxy)-carbonyl, (C₁-C₄)-Alkylthio, (C₁-C₄)-Alkoxy, Cyclo(C₅-C₇)alkyl oder Benzyloxy substituiert 20 (C₃-C₆)Alkenyl, Halogen(C₃-C₆)Alkenyl, Halogen(C₃-C₆)-alkenyl, (C₃-C₆)Alkinyl, Cyclo(C₅-C₈)alkyl, Cyclo(C₅-C₆)alkenyl, (C₁-C₆-Alkyl)carbonyl, Halogen(C₁-C₆-alkyl)carbonyl,
- 25 [(C_-C_-Alkyl)amino]carbonyl, Benzoyl, Halogenbenzoyl oder Methylbenzoyl
- jeweils unabhängig voneinander (C₁-C₆)Alkyl, das 30 unsubstituiertes oder durch Phenyl, Cyclo(C₅-C₇)alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio oder Halogen substituiert ist, oder zwei Reste R gemeinsam mit Z und dem 35 Kohlenstoffatom, an das sie gebunden sind, einen

unsubstituierten oder durch (C₁-C₄)Alkyl, Hydroxy-(C₁-C₄)alkyl, Halogen(C₁-C₄)alkyl oder Phenyl substituierten 5- oder 6-gliedrigen gesättigten heterocyclischen Ring;

5

P jeweils unabhängig voneinander H, Halogen, (C₁-C₄)-Alkyl, Nitro oder Cyano,

10

- unabhängig voneinander H, (C -C)Alkyl, das unsubstituiert oder durch (C -C)Alkoxy, Triazolyl oder Imidazolyl substituiert ist, Cyclo(C -C)alkyl, (C -C)Alkenyl, Phenyl oder Benzyl, oder beide Reste R¹⁶ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, ein unsubstituiertes oder durch Methyl oder Halogen substituiertes Cyclo-(C -C)alkyl,
- R¹¹ (C₁-C₄)Alkyl, Phenyl, (C₁-C₆-Alkyl)carbonyl, Benzyl, Benzyl, Halogenbenzyl, Halogenbenzoyl oder Methylbenzoyl,

20

15

- R¹² H, (C₁-C₄)Alkyl, Formyl, (C₁-C₆-Alkyl)carbonyl, Benzoyl, Halogenbenzoyl, Methylbenzoyl oder Trihalogenacetyl,
- 25 R¹³ (C₁-C₄)Alkyl, Phenyl oder Methylphenyl,
 - m 0 oder 1
 - n eine ganze Zahl von 0 bis 5

- p eine ganze Zahl von 0 bis 4 und
- q eine ganze Zahl von 0 bis 6
- 35 bedeuten,

dadurch gekennzeichnet, daß man eine Verbindung der Formel II

$$R^{14}$$
 - O- CH= CH- C- C- OR (II).

worin R (C₁-C₆)Alkyl Verbindung der Formel III

bedeutet, mit einer

$$H_2^{N-NH}$$
 (III)

umsetzt und anschließend gegebenenfalls derivatisiert.

- 2. Pflanzenbehandlungsmittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
- 3. Pflanzenwachstumsregulierende Mittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
- 4. Mittel zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
- 5. Verwendung der Verbindungen der Formel I zur Wachstumsregulierung von Pflanzen.
- 6. Verwendung der Verbindungen der Formel I zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.
- 7. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man auf die Pflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I appliziert.

- 8. Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß man auf die Kulturpflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid appliziert.
- 9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß das Herbizid ein Phenoxy-phenoxy- oder Heteroaryloxyphenoxy-carbonsäureester ist.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 87 11 4161

	EINSCHLÄGIO	GE DOKUMENTE		
Kategorie	Kennzeichnung des Dokum der maßgebli	ents mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
X	DE-A-1 670 382 (CF * Seite 4 *	HINOIN)	1	C 07 D 231/14 C 07 D 231/16
A	EP-A-0 151 866 (EL	I LILLY)		C 07 D 231/16 C 07 D 403/06 C 07 D 403/04
Ρ,Α	EP-A-0 204 242 (BA	YER)		C 07 D 403/04 C 07 D 403/10
P,A	EP-A-0 234 119 (MA	Y & BAKER)		A 01 N 43/56
				•
				RECHERCHIERTE SACHGEBIETE (Int. CI.4
				C 07 D 231/00 C 07 D 403/00 C 07 D 413/00 A 01 N 43/00
·				
Der voi	rliegende Recherchenbericht wurd	ie für alle Patestansprüche erstellt		
	Recherchonart N HAAG	Abschilderen der Recherche 10-01-1988	 	Profer

EPO FORM 1503 03.82 (P0403)

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung desselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
 E: älteres Patentdokument, das jedoch erst am oder
 nach dem Anmeldedatum veröffentlicht worden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument