

Remember, Record, Resist:

A Self-Contained QR-Code Archival System for Long-Term Information Preservation

a.k.a Lyra Phasma

Supervisor:

PLACEHOLDER: Supervisor

A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Science in Computer Science

PLACEHOLDER: University

College of Engineering and Information Technology

Department of Information Technology

Submission Date

2027

This thesis is dedicated to someone special for some special reason

Acknowledgements

Waffle, waffle

Abstract

Waffle, waffle

Table of Contents

1	Mat	hemati	cs		1
	1.1	Set Th	eory		1
	1.2			ematics	
		1.2.1	Key Con	ncepts	2
		1.2.2		ctives	
			1.2.2.1	Summary	2
		1.2.3	Truth Ta	ables	3
			1.2.3.1	Negation	3
			1.2.3.2	Conjuction	3
			1.2.3.3	Disjunction	3
			1.2.3.4	Biconditional	
			1.2.3.5	Implication	
			1.2.3.6	NAND	3
			1.2.3.7	NOR	3
			1.2.3.8	XOR	3
2	Sam	ple Tit	le		5
Α	Sam	ple Tit	le		7
В	Sam	nple Tit	le		9

List of Figures

List of Tables

Chapter 1 Mathematics

1.1 Set Theory

 $\{x: x \in \mathbb{R} \mid x > 0\}$ is the set of all strictly positive real numbers.

S = letters of the alphabet.

$$|S| = 26$$

Power of Sets

$$S = \{a, b, c\}$$

$$\mathcal{P}(S) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Let $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$:

Union: $A \cup B = \{1, 2, 3, 4, 5\}$

Intersection: $A \cap B = \{3\}$

Complement: $A \setminus B = \{1, 2\}$

Symmetric Difference: $A \triangle B = \{1, 2, 4, 5\}$

Union $A \cup B = \{1, 2, 3, 4, 5\}$

Intersection $A \cap B = \{3\}$

Complement $A \setminus B = \{1, 2\}$

Symmetric Difference $A \triangle B = \{1, 2, 4, 5\}$

Cartesian products

$$A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$$

$$B\times A=\{(3,1),(3,2),(4,1),(4,2)\}$$

$$A \times B \neq B \times A$$

1.2 Discrete Mathematics

1.2.1 Key Concepts

Arguments Group of statements, one of which is claimed to follow from the

others.

Proposition A statement that is either true or false, usually a declarative

sentence.

1.2.2 Connectives

Connectives	Symbols	Meaning
Negation	~/¬	Not
Conjunction	٨	And
Disjunction	V	Or
Implication/	\rightarrow	lf
Conditional	\rightarrow	11
Biconditional	\leftrightarrow	If and Only If
NAND	†	Not And
NOR	<u> </u>	Not Or
XOR	\oplus	Exclusive Or

1.2.2.1 **Summary**

Negation Inverts the truth value

Conjunction True when both statements are True

Disjunction True when at least one of the statements are True

Biconditional True when both statements have the same truth value

Implication False if First and Second Statement are True and False respec-

tively, otherwise all configurations are True

NAND Negation of Conjunction

NOR Negation of Disjunction

XOR Negation of Biconditional

1.2.3 Truth Tables

1.2.3.1 Negation

Р	\sim P
Т	F
F	Т

1.2.3.5 Implication

Р	Q	$P \rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

1.2.3.2 Conjuction

Р	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

1.2.3.6 NAND

Р	Q	P↑Q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

1.2.3.3 Disjunction

Р	Q	$P \lor Q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

1.2.3.7 NOR

Р	Q	P↓Q
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

1.2.3.4 Biconditional

Р	Q	$P \leftrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

1.2.3.8 XOR

Р	Q	$P \oplus Q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Chapter 2 Sample Title

In conclusion: give me a degree

Appendix A Sample Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Appendix B Sample Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.