Dokumentation HC1 16-Bit

Notations: A accumulator

M memory

PC program counter

aaaaa five bits for specifying a memory address eeeee five bits for specifying a memory address > 1

8-Bit Instructions

Instruction	Encoding	Operation	Comment
LOAD A, address	000 aaaaa	A ← M[address]	Load A with content of memory location
STORE A, address	001 aaaaa	M[address] ← A	Store A into memory location
ADD A, address	010 aaaaa	A ← A + M[address]	Add A with M[address] and store result back into A
SUB A, address	011 aaaaa	A ← A - M[address]	Subtract A by M[address] and store result back into A
NAND A, address	100 eeeee	A ← not(A and M[address]	Perform bitwise logical NAND operation of A and M[address] and store result back into A
IN A	100 00000	A ← Input	Input to A
OUT A	100 00001	Output ← A	Output from A
JZ address	101 aaaaa	IF A == 0 THEN PC ← address	Jump to address if A is zero
JPOS address	110 aaaaa	IF A > 0 THEN PC ← address	Jump to address if A is a positive number
J address	111 aaaaa	PC ← address	Jump always to address

The upper 8 Bit of the instruction must be 0.

Example:

<u>0000 0000</u> 010 11111-- ADD

16-Bit Instructions

Instruction	Encoding	Operation	Comment
LOAD A, address	0001 аааааааааааа	A ← M[address]	Load A with content of memory location
STORE A, address	0010 aaaaaaaaaaaa	M[address] ← A	Store A into memory location
ADD A, address	0011 aaaaaaaaaaaa	A ← A + M[address]	Add A with M[address] and store result back into A
SUB A, address	0100 аааааааааааа	A ← A - M[address]	Subtract A by M[address] and store result back into A
NAND A, address	0101 aaaaaaaaaaaa	A ← not(A and M[address]	Perform bitwise logical NAND operation of A and M[address] and store result back into A
IN A	0110 000000000000	A ← Input	Input to A
OUT A	0110 000000000001	Output ← A	Output from A
JZ address	0111 aaaaaaaaaaaa	IF A == 0 THEN PC ← address	Jump to address if A is zero
JPOS address	1000 аааааааааааа	IF A > 0 THEN PC ← address	Jump to address if A is a positive number
J address	1001 aaaaaaaaaaaa	PC ← address	Jump always to address

Architektur des HC1 16-Bit(Stand 28.09.2016)

