Chapitre 4 : Développement limité et Applications

1 Généralités

1.1 Vocabulaire de la topologie de \mathbb{R}

Soient $\theta,\,F$ et A des sous-ensembles de $\mathbb R,$ et a un élément de $\mathbb R$ $D\acute{e}finitions$:

- 1. Un intervalle centré en a est un intervalle de la forme $|a \epsilon, a + \epsilon|$ avec $\epsilon > 0$
- 2. θ est un **ouvert** de \mathbb{R} si $\forall x \in \theta, \exists \epsilon > 0$ tels que $|x \epsilon, x + \epsilon| \subset \theta$
- 3. F est un fermé de \mathbb{R} si $\mathcal{C}_{\mathbb{R}}F$ est un ouvert de \mathbb{R}
- 4. V est un **voisinage** de a si $\exists \epsilon > 0$ tel que $]a \epsilon, a + \epsilon [\subset V]$
- 5. L'intérieur de A, noté $\overset{\circ}{A}$, est le plus grand ouvert contenu dans A
- 6. L'adhérence de A, noté \overline{A} , est le plus petit fermé contenant A

Remarque:

 θ est un ouvert de $\mathbb{R} \Leftrightarrow \theta$ est un voisinage de chacun de ses points

Exemples:

- un intervalle ouvert est un ouvert, un intervalle fermé est un fermé.
- $-\theta =]1, 2[\cup]5, 6[$ est un ouvert de \mathbb{R} .
- $F = [1, 2] \cup [5, 6]$ est un fermé de \mathbb{R} .

1.2 Définitions et premières propriétés

Définitions :

Soit n un entier, soient a un réel et V un voisinage de a, soit f définie sur V à valeur dans \mathbb{R} . Nous disons que f admet un **développement limité d'ordre** n **au voisinage de** a noté $DL_n(a)$ si, il existe un polynôme P de degré au plus n (c-à-d $P \in \mathbb{R}_n[X]$) tel que, sur V,

$$f(x) = P(x - a) + \sigma((x - a)^n)$$

ou encore

$$f(x) = \alpha_0 + \alpha_1(x-a) + \alpha_2(x-a)^2 + \ldots + \alpha_n(x-a)^n + (x-a)^n \epsilon(x)$$
 avec $\lim_{x \to a} \epsilon(x) = 0$
 $P(x-a)$ est la **partie régulière** du DL de f en a

Proposition: Unicité du $DL_n(0)$ de f

Si f admet un $DL_n(0)$ alors celui-ci est unique

Proposition: Troncature d'un DL

Si f admet un $DL_n(0)$ de partie régulière $P \in \mathbb{R}_n[X]$, alors $\forall k \in \{0, \dots, n\}$, f admet un $DL_k(0)$ obtenu en tronquant P à l'ordre k

Proposition:

- f admet un $DL_0(0) \Leftrightarrow f$ est continue en 0
- f admet un $DL_1(0) \Leftrightarrow f$ est dérivable en 0

Proposition:

Si
$$f(x) = P(x) + x^n \epsilon(x)$$
 avec $P \in \mathbb{R}_n[X]$ et $\lim_{x \to 0} \epsilon(x) = 0$

— f est paire $\Rightarrow P$ est paire

— f est impaire $\Rightarrow P$ est impair

Théorème : Formule de Taylor-Lagrange

Soit f une fonction définie sur [a,b] de classe C^n sur [a,b] et n+1 fois dérivable sur]a,b[alors, $\exists c \in]a,b[$, tel que

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

Théorème : Formule de Taylor-Young

Soient f une fonction classe C^{n-1} sur I (intervalle de \mathbb{R}) et $a \in I$ si $f^{(n)}(a)$ existe alors

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + (x-a)^n \epsilon(x)$$

avec $\lim_{x \to a} \epsilon(x) = 0$

Extension:

Soient f une fonction classe C^{n-1} sur I et $0 \in I$ si $f^{(n)}(0)$ existe alors

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + x^{n} \epsilon(x)$$

2

avec $\lim_{x\to 0} \epsilon(x) = 0$

Exercice : Déterminer les $DL_n(0)$ des fonctions suivantes

$$1. \ f(x) = e^x$$

$$2. \ f(x) = \sin(x)$$

$$3. \ f(x) = \cos(x)$$

4.
$$f(x) = (1+x)^{\alpha}$$
 Précisez les cas particuliers $\alpha = -1$ et $\alpha = \frac{1}{2}$

$$5. \ f(x) = ch(x)$$

$$6. \ f(x) = sh(x)$$

1.3 Opérations sur les DL

Proposition: Linéarité

Si f admet un $DL_n(0)$ dont la partie régulière est P, si g admet un $DL_n(0)$ dont la partie régulière est Q, alors

- 1. f + g admet un $DL_n(0)$ dont la partie régulière est P + Q
- 2. Si $\lambda \in \mathbb{R}$, λf admet un $DL_n(0)$ dont la partie régulière est λP

Proposition: Produit

Si f admet un $DL_n(0)$ dont la partie régulière est P, si g admet un $DL_n(0)$ dont la partie régulière est Q, alors fg admet un $DL_n(0)$ dont la partie régulière est obtenue par troncature du polynôme PQ au degré n

 ${\it Proposition}: Composition$

Si f admet un $DL_n(0)$ dont la partie régulière est P, si g admet un $DL_n(0)$ dont la partie régulière est Q, alors $g \circ f$ admet un $DL_n(0)$ dont la partie régulière est obtenue par troncature du polynôme $Q \circ P$ au degré n

Exercice : Déterminer le $DL_n(0)$ de $f(x) = \sqrt{1 + \cos x}$

- 1. Déterminer le $DL_n(0)$ de $\cos x$
- 2. Calculer $1 + \cos x$ puis $\sqrt{1 + \cos x}$
- 3. Déterminer le $DL_n(0)$ de $\sqrt{1+u(x)}$ puis utiliser le dans le 2^e item

1.4 Primitivation et autres DL

Proposition:

Soient $n \in \mathbb{N}$, I un intervalle ouvert contenant 0 et f une fonction de I dans \mathbb{R} . Si f est de classe C^1 sur I, si f' admet un $DL_n(0)$ alors f admet un $DL_{n+1}(0)$. De plus, si la partie régulière de f' du $DL_n(0)$ est P, alors la partie régulière de f du $DL_{n+1}(0)$ est

$$f(0) + \int_0^x P(t)dt$$

Exercice : Déterminer le $DL_n(0)$ des fonctions suivantes

1.
$$f(x) = ln(1+x)$$

2.
$$f(x) = ln(1-x)$$

3.
$$f(x) = Arctan(x)$$

2 Applications des DL

2.1 Calcul de limites

Exercice : Déterminer la limite suivante :

$$\lim_{x \to 0} \frac{sh(x) - 2sh(2x) + sh(3x)}{ln(1+x+2x^2) + \sqrt{1-2x} - 1 - x^2}$$

2.2 Position d'une courbe par rapport à une de ses tangentes

Exercice : Déterminer la position de la courbe par rapport à sa tangente en 0 : $\begin{cases} f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x} & si \ x > 0 \\ f(0) = \frac{1}{2} \end{cases}$

- 1. Écrire f(x) sous la forme $\frac{1}{DL_n(0)} \frac{1}{x}$
- 2. Déterminer l'équation de la tangente à C_f

3 Notions de développement asymptotique

3.1 Position d'une courbe par rapport à ses asymptotes

Soit f une fonction définie sur V, voisinage de 0.

Définition - Proposition :

f admet un développement asymptotique dans l'échelle des x^n (\in **N**) si :

$$\exists \alpha \in \mathbf{Z}, \exists P \in \mathbb{R}[X] \ tel \ que \ deg(P) \leq n, \forall x \in V,$$

$$f(x) = x^{\alpha}(P(x) + x^{n}\epsilon(x))$$

Nous disons que f admet un développement asymptotique au voisinage de 0 avec la précision $x^{\alpha+n}$

5

Exercice : Position d'une courbe par rapport à ses asymptotes

Soit $f(x) = \sqrt[3]{x^3 + x^2 + 1}$, déterminer l'asymptote en $+\infty$ et les positions des courbes

- 1. Faire un changement de variable $X = \frac{1}{x}$ donc $f(x) = f(\frac{1}{X})$
- 2. Calculer le $DL_n(0)$ de $(1+u)^{\alpha}$ avec $\alpha = \frac{1}{3}$
- 3. Écrire l'équation de l'asymptote à C_f en $+\infty$
- 4. Déterminer la position de la courbe par rapport à l'asymptote