Deep Learning

Deep Learning in One Slide

- What is it: Extract useful patterns from data.
- How: Neural network + optimization
- How (Practical): Python + TensorFlow & friends
- Hard Part: Good Questions + Good Data
- Why now:
 Data, hardware, community, tools, investment
- Where do we stand?
 Most big questions of intelligence have not been answered nor properly formulated

Exciting progress:

- · Face recognition
- · Image classification
- · Speech recognition
- · Text-to-speech generation
- · Handwriting transcription
- · Machine translation
- Medical diagnosis
- · Cars: drivable area, lane keeping
- Digital assistants
- Ads, search, social recommendations
- Game playing with deep RL

History of Deep Learning Ideas and Milestones*

Perspective:

- Universe created 13.8 billion years ago
- Earth created
 4.54 billion years ago
- Modern humans 300,000 years ago
- Civilization 12,000 years ago
- Written record
 5,000 years ago

- 1943: Neural networks
- 1957: Perceptron
- 1974-86: Backpropagation, RBM, RNN
- 1989-98: CNN, MNIST, LSTM, Bidirectional RNN
- · 2006: "Deep Learning", DBN
- 2009: ImageNet
- 2012: AlexNet, Dropout
- 2014: GANs
- 2014: DeepFace
- 2016: AlphaGo
- 2017: AlphaZero, Capsule Networks
- 2018: BERT

^{*} Dates are for perspective and not as definitive historical record of invention or credit

Deep Learning Breakthroughs: What Changed?

- Compute CPUs, GPUs, ASICs
- Organized large(-ish) datasets
 Imagenet
- Algorithms and research: Backprop, CNN, LSTM
- Software and Infrastructure
 Git, ROS, PR2, AWS, Amazon
 Mechanical Turk, TensorFlow, ...
- Financial backing of large companies Google, Facebook, Amazon, ...

The Challenge of Deep Learning: Efficient Teaching + Efficient Learning

- Humans can learn from very few examples
- Machines (in most cases) need thousands/millions of examples

Why Deep Learning? Scalable Machine Learning

Deep Learning is Representation Learning

(aka Feature Learning)

Combing Neurons in Hidden Layers: The "Emergent" Power to Approximate

Universality: For any arbitrary function f(x), there exists a neural network that closely approximate it for any input x

Special Purpose Intelligence: Estimating Apartment Cost

Deep Learning: Training and Testing

Training Stage:

Testing Stage:

How Neural Networks Learn: Backpropagation

Forward Pass:

Backward Pass (aka Backpropagation):

Loss Functions

- Loss function quantifies gap between prediction and ground truth
- For regression:
 - Mean Squared Error (MSE)
- For classification:
 - Cross Entropy Loss

Mean Squared Error

$$MSE = rac{1}{N}\sum_{i}(t_i - s_i)^2$$
 $CE = -\sum_{i}^{C}t_ilog(s_i)$ Ground Truth Ground Truth CE

Cross Entropy Loss

Classes Prediction
$$CE = -\sum_{i}^{C} t_{i} log(s_{i})$$
 Ground Truth $\{0,1\}$

Backpropagation

Task: Update the weights and biases to decrease loss function

Subtasks:

- Forward pass to compute network output and "error"
- 2. Backward pass to compute gradients
- A fraction of the weight's gradient is subtracted from the weight.

Loss function:

$$C = \frac{(y-a)^2}{2}$$

Learning is an Optimization Problem

Task: Update the weights and biases to decrease loss function

Use mini-batch or stochastic gradient descent.

Mini-Batch Size

Mini-Batch size: Number of training instances the network evaluates per weight update step.

- Larger batch size = more computational speed
- Smaller batch size = (empirically) better generalization

"Training with large minibatches is bad for your health. More importantly, it's bad for your test error. Friends don't let friends use minibatches larger than 32."

- Yann LeCun

Revisiting Small Batch Training for Deep Neural Networks (2018)

Useful Deep Learning Terms

- Basic terms:
 - Deep Learning ≈ Neural Networks
 - Deep Learning is a subset of Machine Learning
- Terms for neural networks:
 - MLP: Multilayer Perceptron
 - DNN: Deep neural networks
 - RNN: Recurrent neural networks
 - LSTM: Long Short-Term Memory
 - CNN: Convolutional neural networks
 - DBN: Deep Belief Networks
- Neural network operations:
 - Convolution
 - Pooling
 - Activation function
 - Backpropagation

Computer Vision

Deep Learning is Hard: Illumination Variability

Pose Variability and Occlusions

gure 1. The deformable and truncated cat. Cats exhibit (

Deep Learning is Hard: Intra-Class Variability

Parkhi et al. "Cats and dogs." 2012.

Convolutional Neural Networks (CNN)

Sample Architecture

What is ImageNet?

- ImageNet: dataset of 14+ million images (21,841 categories)
- Let's take the high level category of **fruit** as an example:
 - Total 188,000 images of fruit
 - There are 1206 Granny Smith apples:

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - · More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
- Beautifully uniform: 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - · More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
- Ensemble of 6 models
- SENet (2017): 2.99% to 2.251%
 - Squeeze and excitation block: network is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

How?

Data Augmentation

Overfitting and Regularization

- Help the network generalize to data it hasn't seen.
- Big problem for small datasets.
- Overfitting example (a sine curve vs 9-degree polynomial):

Overfitting and Regularization

 Overfitting: The error decreases in the training set but increases in the test set.

Regularization: Early Stoppage

Original Set		
Training		Testing
Training	Validation	Testing

- Create "validation" set (subset of the training set).
 - Validation set is assumed to be a representative of the testing set.
- Early stoppage: Stop training (or at least save a checkpoint)
 when performance on the validation set decreases

Regularization: Dropout

- Dropout: Randomly remove some nodes in the network (along with incoming and outgoing edges)
- Notes:
 - Usually p >= 0.5 (p is probability of keeping node)
 - Input layers p should be much higher (and use noise instead of dropout)
 - Most deep learning frameworks come with a dropout layer

CV: Applications

Object Recognition / Classification

Object Detection

R-CNN: Regions with CNN features

Semantic Segmentation

Colorization of Images

Background Removal (2017)

Applications: Image Caption Generation

a man sitting on a couch with a dog a man sitting on a chair with a dog in his lap

Video Description Generation

Correct descriptions.

S2VT: A man is doing stunts on his bike.

S2VT: A herd of zebras are walking in a field.

Relevant but incorrect descriptions.

S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

Venugopalan et al.

"Sequence to sequence-video to text." 2015.

Code: https://vsubhashini.github.io/s2vt.html

Generative Adversarial Network (GANs)

Generative Adversarial Networks (GANs) are a way to make a generative model by having two neural networks compete with each other.

The **discriminator** tries to distinguish genuine data from forgeries created by the generator.

The **generator** turns random noise into immitations of the data, in an attempt to fool the discriminator.

Progressive GAN 10/2017 1024 x 1024

Autoencoders

- Unsupervised learning
- · Gives embedding
 - Typically better embeddings come from discriminative task

http://projector.tensorflow.org/

Current Challenges

- Transfer learning: Unable to transfer representation to most reasonably related domains except in specialized formulations.
 - Understanding: Lacks "reasoning" or ability to truly derive "understanding" as
 previously defined on anything but specialized problem formulations.
 (Definition used: Ability to turn complex information to into simple, useful
 information.)
- · Requires big data: inefficient at learning from data
- Requires supervised data: costly to annotate real-world data
- Not fully automated: Needs hyperparameter tuning for training: learning rate, loss function, mini-batch size, training iterations, momentum, optimizer selection, etc.
- Reward: Defining a good reward function is difficult.
- Transparency: Neural networks are for the most part black boxes (for realworld applications) even with tools that visualize various aspects of their operation.
- Edge cases: Deep learning is not good at dealing with edge cases.

Robustness: Fooled by a Little Distortion

Natural Language Processing (NLP)

Word Embeddings (Word2Vec)

Output Laver

Skip Gram Model:

Recurrent Neural Networks

Applications

- Sequence Data
- Text
- Speech
- Audio
- Video
- Generation

Long-Term Dependency

Short-term dependence:
 Bob is eating an apple.

Context -

Bob likes apples. He is hungry and decided to have a snack. So now he is eating an apple.

In theory, vanilla RNNs can handle arbitrarily long-term dependence.

In practice, it's difficult.

Long Short-Term Memory (LSTM) Networks: Pick What to Forget and What To Remember

Conveyer belt for **previous state** and **new data**:

- Decide what to forget (state)
- Decide what to remember (state)
- 3. Decide what to output (if anything)

Bidirectional RNN

 Learn representations from both previous time steps and future time steps

Encoder-Decoder Architecture

Encoder RNN encodes input sequence into a fixed size vector, and then is passed repeatedly to decoder RNN.

NLP: Applications

More Deeper Application of NLP

Group 1	Group 2	Group 3
Cleanup, Tokenization	Information Retrieval and Extraction (IR)	Machine Translation
Stemming	Relationship Extraction	Automatic Summarization/ Paraphracing
Lemmatization	Named Entity Recognation (NER)	Natural Language Generation
Part of Speech Tagging	Sentiment Analysis/Sentance Boundary Dismbiguation	Reasoning over
Query Expansion	World sense and Dismbiguation	Knowledge Based
Parsing	Text Similarity	Quation Answering System
Topic Segmentationand Recognation	Coreference Resolution	Dialog System
Morphological Degmentation (Word/Sentences)	Discourse Analysis	Image Captioning & other Multimodel Tasks