CS 2009 Design and Analysis of Algorithms

Waheed Ahmed Email: waheedahmed@nu.edu.pk

Methods for Solving Recurrences

Revision

Recursion tree method

Iteration method or (Iterative Substitution Method)

Master method

• Substitution method or (Substitution Guess and Test method)

SUBSTITUTION METHOD

Algorithm, Proof of Correctness, Runtime

SUBSTITUTION METHOD

 Guess the form of the solution or Guess what the answer is (iterative substitution: iteratively apply the recurrence equation to itself to find a possible pattern)

- 2. Prove your guess is correct (using mathematical induction)
 - If proven ok
 - else retry different solution

Solving Recurrences by Substitution: Guess-and-Test

Guess (#1) Inductive Hypothesis Inductive Step

```
T(n) = 2T(n/2) + n
 T(n) = O(n)
T(n) \le cn for some constant c>0
  T(n/2) <= cn/2
  T(n) = 2T(n/2) + n
  T(n) \leq 2 \cdot c(n/2) + n
  T(n) \leq cn + n
                                 no choice of c could ever
  T(n) \leq (c+1) n
                                make (c + 1) n \le cn!
```

Our guess was wrong!!

Solving Recurrences by Substitution: G #2

Guess (#2)
$$T(n) = 2T(n/2) + n$$

$$T(n) = O(n^2)$$
IH
$$T(n) <= cn^2 \text{ for some constant } c>0$$
Inductive Step
$$T(n/2) <= c.\frac{n^2}{4}$$

$$T(n) = 2T(n/2) + n$$

$$T(n) \leq 2 \cdot (\frac{cn^2}{4}) + n$$

$$T(n) \leq \frac{cn^2}{2} + n$$

$$T(n) \leq \frac{cn^2}{2} + n$$

$$T(n) \leq \frac{cn^2}{2} + n \leq cn^2$$
Works for all n as long as $c>=2$!!

Solving Recurrences by Substitution: G #3

```
T(n) = 2T(n/2) + n
Guess (#3)
                        T(n) = O(nlogn)
                        T(n) <= cnlogn for some constant c>0
IΗ
                        T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log\left(\frac{n}{2}\right)
Inductive Step
                         T(n) = 2T(n/2) + n
                         T(n) \le 2 \cdot c \cdot \frac{n}{2} \log(\frac{n}{2}) + n
                         T(n) \le cn (log n - log 2) + n
                         T(n) \leq cn \log n - cn + n
Thus
                         T(n) \le cn \log n - cn + n \le cn \log n
                         Works for all n as long as c>=1!!
```

Guess and Test Method by Substitution: Ex #2, G # 1

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

Guess (# 1)

$$T(n) = O(n \log n)$$

(Inductive Hypothesis):

$$T(n) \le c n \log n \quad \text{for } c > 0$$

Inductive step, Assume

$$T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log(\frac{n}{2})$$

$$T(n) = 2T(\frac{n}{2}) + bnlogn$$

$$T(n) \le 2 \cdot c \frac{n}{2} \log(\frac{n}{2}) + bn \log n$$

 $T(n) \le cn (log n - log 2) + bn \log n$

$$T(n) \le cn \log n - cn + bn \log n$$

$$T(n) \le (c+b)n\log n - cn$$

Guess and Test Method by Substitution: Ex #2, G # 2

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

Guess (#1)

 $T(n) = O(n \log^2 n)$

(Inductive Hypothesis):

 $T(n) \le c n \log^2 n \text{ for } c > 0$

Inductive step, Assume

$$T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log^2(\frac{n}{2})$$

if c > b. So, T(n) is O(n log² n). In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

$$T(n) = 2T(\frac{n}{2}) + bnlogn$$

$$T(n) \le 2 \cdot c \frac{n}{2} \log^2(\frac{n}{2}) + bn \log n$$

$$T(n) \le cn (logn - log 2)^2 + bnlogn$$

$$T(n) \le cn \log^2 n - 2cn log n + cn + bn log n$$

$$T(n) \le cn \log^2 n + (b - 2c)n \log n + cn$$

Home Work: Apply Substitution Guess and Test method by assuming given guesses to find correct one.

$$T(n) = T(n/2) + n^2$$

Guess 1 : T(n)=O(n) , Guess 2 : $T(n)=O(n^2)$

$$T(n) = 4 T(n/4) + n$$

Guess 1 : T(n) = O(n), Guess 2 : $T(n) = O(n \log n)$

$$T(n) = T(n/2) + n$$

Guess 1 : T(n)=O(n) , Guess 2 : $T(n)=O(n^2)$

The Maximum Subarray Sum Problem

The Maximum Subarray Problem

• *Def*: The maximum subarray problem is the task of finding the largest possible sum of a contiguous subarray, within a given one-dimensional array A[1...n] of numbers.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	<i>15</i>	-4	7

The Maximum Subarray Problem

Divide-and-Conquer

- Base Case (n = 1)
 - Return itself (maximum subarray)
- Recursive Case (n > 1)
 - Divide array into two subarrays.
 - Find maximum sub array recursively
 - Merge the results.

Where is Result?

• The maximum subarray for any input must be in one of following cases:

Case 3: Cross the Middle

Goal: find the maximum subarray that crosses the middle

- (1) Start from the middle to find the left maximum subarray
- (2) Start from the middle to find the right maximum subarray

The solution of Case 3 is the combination of (1) and (2)

- Observation
 - The sum of A[x ... k] must be the maximum among A[i ... k] (left: $i \le k$)
 - The sum of A[k+1...y] must be the maximum among A[k+1...j] (right: j > k)
 - Solvable in linear time $\rightarrow \Theta(n)$

The Maximum Subarray Problem - Example

What is maximum subarray sum of this array

MaxSubArray: RECURSIVE CALLS

MaxSubArray: RECURSIVE CALLS


```
MaxSubarray(A, i, j)
   if i == j // base case
     return (i, j, A[i])
  else // recursive case
     k = floor((i + j) / 2)
     (1 low, 1 high, 1 sum) = MaxSubarray(A, i, k)
Divide (r low, r high, r sum) = MaxSubarray(A, k+1, j)
                                                            Conquer
     (c low, c high, c sum) = MaxCrossSubarray(A, i, k, j)
   if 1 sum >= r sum and 1 sum >= c sum // case 1
     return (1 low, 1 high, 1 sum)
   else if r sum >= 1 sum and r sum >= c sum // case 2 Combine
     return (r low, r high, r sum)
   else // case 3
     return (c low, c high, c sum)
```

```
Max (4,5,9)
  Max (-2,6,1)
                                                                    MSS=9
                    -5
    MSS = 6
                                  Max (6,-2,4)
                                    MSS=6
                                                                    Max (5,-6,-1)
                                                                      MSS=5
Max (-2,-5,-7)
              -2 | -5
                            6
 MSS= -2
       (1 low, 1 high, 1 sum) = MaxSubarray(A, i, k)
 Divide (r low, r high, r sum) = MaxSubarray(A, k+1, j)
                                                                   Conquer
        (c low, c high, c sum) = MaxCrossSubarray(A, i, k, j)
     if 1 sum >= r sum and 1 sum >= c sum // case 1
       return (1 low, 1 high, 1 sum)
     else if r sum >= 1 sum and r sum >= c sum // case 2 Combine
       return (r low, r high, r sum)
     else // case 3
       return (c low, c high, c sum)
```

```
Max (6,9,13)
    MSS=13
                                                              Max (4,5,9)
Max(-2,6,1)
                                                               MSS=9
                 -5
  MSS = 6
     (1 low, 1 high, 1 sum) = MaxSubarray(A, i, k)
Divide (r low, r high, r sum) = MaxSubarray(A, k+1, j)
                                                              Conquer
     (c low, c high, c sum) = MaxCrossSubarray(A, i, k, j)
   if 1 sum >= r sum and 1 sum >= c sum // case 1
     return (1 low, 1 high, 1 sum)
   else if r sum >= 1 sum and r sum >= c sum // case 2 Combine
     return (r low, r high, r sum)
   else // case 3
     return (c low, c high, c sum)
```

```
MaxCrossSubarray(A, i, k, j)
  left sum = -\infty
  sum=0
                         O(k-i+1) \neg
  for p = k downto i
    sum = sum + A[p]
    if sum > left sum
      left sum = sum
                                        -= O(j-i+1)
     max left = p
  right sum = -\infty
  sim=0
                          O(j-k) _
  for q = k+1 to j
    sum = sum + A[q]
   if sum > right sum
      right sum = sum
      max right = q
  return (max left, max right, left sum + right sum)
```

```
MaxSubarray(A, i, j)
                                                      O(1)
 if i == j // base case
   return (i, j, A[i])
 else // recursive case
   k = floor((i + j) / 2)
                                                     T(k-i+1)
   (1 low, 1 high, 1 sum) = MaxSubarray(A, i, k)
   (r_low, r_high, r_sum) = MaxSubarray(A, k+1, j) T(j-k)
    (c low, c high, c sum) = MaxCrossSubarray(A, i, k, j)
                                                      O(j-i+1)
  if 1 sum >= r sum and 1 sum >= c sum // case 1
   return (1 low, 1 high, 1 sum)
 else if r sum >= 1 sum and r sum >= c sum // case 2 O(1)
    return (r low, r high, r sum)
  else // case 3
   return (c low, c high, c sum)
```

1. Divide

- Divide a list of size n into 2 subarrays of size n/2
- $\Theta(1)$

2. Conquer

- Recursive case (n > 1)
 - find MaxSub for each subarrays
- Base case (n = 1)
 - Return itself

 $\Theta(1)$

Find MaxCrossSub for the original list

 $\Theta(n)$

- 3. Combine
- Pick the subarray with the maximum sum among 3 subarrays
 - <u>____</u>
- T(n) = time for running MaxSubarray (A, i, j) with j i + 1 = n

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \ge 2 \end{cases}$$

Binary Search

Binary Search Problem

 Given a sorted array of integers and a target value, find out if target exists in the array or not

Input: arr[] = {3,4,6,7}, target = 4

Output: Target is in index 2

Trivial Solution: Linear Search O(n) Complexity

Binary Search Problem

- Design O(logn) complexity algorithm
- Divide & Conquer

```
// C program to implement recursive Binary Search
#include <stdio.h>
// A recursive binary search function. It returns
// location of x in given array arr[l..r] is present,
// otherwise -1
int binarySearch(int arr[], int l, int r, int x)
    if (r >= 1) {
        int mid = 1 + (r - 1) / 2;
        // If the element is present at the middle
        // itself
        if (arr[mid] == x)
            return mid;
        // If element is smaller than mid, then
        // it can only be present in left subarray
        if (arr[mid] > x)
            return binarySearch(arr, 1, mid - 1, x);
        // Else the element can only be present
        // in right subarray
        return binarySearch(arr, mid + 1, r, x);
    // We reach here when element is not
    // present in array
    return -1;
```


- Three conditions
 - Array arr is sorted in ascending order
 - | <= r
 - x belong to arr [l....r]

Use loop invariant that the code is correct

- Initialization: The loop invariant has three parts
- 1. Array is sorted due to precondition of the method
- 2. Since arr.length is at least 1, thus I<=r
- 3. x is in arr b/c it is whole array and precondition guarantees that x is in array

- Maintenance: The loop invariant has three parts
- 1. Array arr is never changed so Case 1 is always true i.e. arr is sorted
- 2. Let I' and r' are the values of I and r at the end of 1st iteration, then we need I'<r' and x belongs to arr[I'.....r']
- 3. Let m be the average of I and r, thus x belongs to arr[l...m] or arr [m+1....j]
- 4. Case k belongs to arr[1...m] must have x<=a[m] and thus if condition is true, then r'=m, l =1, this l'<r' and since x belongs to arr[1...m], by assumption its belong to arr[l'.....j']

- Maintenance: The loop invariant has three parts
- 5. Case k does not belong to arr[1....m]

 must have x>a[m] and thus if condition is true, then r'=r, l =m+1, this l'<r' and since x belongs to arr[m+1.....r], by assumption its belong to arr[l'.....j']
 - For the algorithm to be correct, arr[1] = x and happens only when l = r
- Termination: The value r-l is guaranteed to be non-negative. Because integer division rounds down, it gets smaller on every loop iteration. Therefore the loop eventually terminates
- More Detail: https://www.cs.cornell.edu/courses/cs2112/2015fa/lectures/lec-loopinv/

Time Complexity

•
$$T(n) = 1 + T(n/2)$$

• O(n)