Formale Grundlagen der Informatik II 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Stéphane Le Roux, Ph.D.

Sommersemester 2013 03. 06. 2013

Gruppenübung

Aufgabe G1 (Aussagenlogische Formeln)

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := (\neg p \land \neg q) \rightarrow (p \lor (\neg q \land r))$$

Ist die Formel erfüllbar? Ist sie allgemeingültig?

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	
0	0	1
0	1	1
1	0	1
1	1	0

- (c) Geben Sie eine Formel $\varphi(p,q,r)$ an, welche genau dann wahr ist, wenn höchstens eine der Variablen p,q,r wahr ist.
- (d) Geben Sie eine Formel $\varphi(p,q,r,s)$ an, welche genau dann wahr ist, wenn genau drei der Variablen denselben Wert haben.

Aufgabe G2 (Modellbeziehung)

Beweisen oder widerlegen Sie die folgenden Aussagen.

- (a) $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
- (b) Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
- (c) Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
- (d) $\{\varphi, \psi\} \models \vartheta$ genau dann, wenn $\varphi \models \vartheta$ oder $\psi \models \vartheta$.

Aufgabe G3 (Modellbeziehung)

Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.

- (a) $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
- (b) $\neg(\varphi \lor \psi) \equiv \neg \varphi \lor \neg \psi$
- (c) $\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$
- (d) $\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$

\mathbf{L}	ııcııb	IIIA
па	usüb	unu

- Abgabe am 12.6.-14.6. 2013 in der Übung. Denken Sie daran Ihre Antworten zu begründen. -

Aufgabe H1 (Exklusiv-Oder)

(4 Punkte)

Definiere \oplus (Exklusiv-Oder, XOR, Parity) durch $p \oplus q := (p \lor q) \land \neg (p \land q)$. Zeigen Sie, dass XOR auch auf diese weiteren Weisen angegeben werden kann: $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$ und $p \oplus q \equiv \neg (p \leftrightarrow q)$.

Aufgabe H2 (Wahrheitstafeln)

(4 Punkte)

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := \neg (p \to q) \oplus q$$

Ist die Formel erfüllbar? Ist sie allgemeingültig? Geben Sie auch eine zu φ äquivalente Formel mit nur einem (schon bekannten) Junktor an.

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	r	
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Aufgabe H3 (Grammatik für Aussagenlogiksyntax)

(2 Punkte)

Geben Sie für festes $n \in \mathbb{N}$ eine kontextfreie Grammatik für AL_n an, über $\Sigma = \{0, 1, (,), \neg, \wedge, \vee\} \cup \{p_1, \dots, p_n\}$.

Minitest

Aufgabe M1 (Syntax)

Sei φ eine syntaktisch korrekte aussagenlogische Formel. Welche der folgenden Aussagen stellen syntaktisch korrekte aussagenlogische Formeln dar?

Aufgabe M2 (Natürliche vs. formale Sprache)

Seien A und B aussagenlogische Formeln. Kennzeichen Sie die Bedeutung der folgenden Formeln.

Aufgabe M3 (Modellbeziehung)

Wahr oder falsch?

- (a) Seien *A* und *B* logische Formeln. Für alle Modelle \Im gilt $\Im \models (A \rightarrow B) \iff \Im \models (\neg B \rightarrow \neg A)$. \Box wahr \Box falsch
- (b) Sei \Im eine Interpretation mit $\Im(p) = \Im(q) = 0$. Es gilt $\Im \models ((\neg p \land q) \lor (p \land \neg q) \lor (p \land q))$.

Heute Mathe, morgen ???

Zwei Mathematikerinnen erzählen.

Vortragsreihe für Studierende der Mathematik

jeweils Mittwoch, ab 14 Uhr in \$1|03 223

5. Juni Rike Betten Gestern Mathe, dann **Consultant**, heute **EnBW**

19. Juni *Prof. Dr. Hannah Markwig* Gestern Mathe, heute ... **Mathe**