





#### 12.24196

### Introduction to Embedded Systems

Prof. Dr.-Ing. Stefan Kowalewski | Julius Kahle, M. Sc. Summer Semester 2025

Part 2

**Data Buses** 

#### Introduction

- Most embedded systems are interconnected
  - Microcontroller and external devices (board)
  - Engine control unit and tachometer (car)
  - Process control center and magnetic valve (plant)
- All communication share common principles
- Implementations vary in
  - Costs
  - Safety and reliability
  - Real-time capability
  - Data rate
  - Flexibility





### Part A

#### **Data Communication Basics**

- ► Fourier analysis and sampling theorem
- Topology
- ► ISO/OSI
  - Mechanical and electrical properties
  - Bit encoding
  - Frames
  - Error detection and correction
  - Medium access

Layer 1

Layer 2





### **Bus Topology**

- Linear line (with terminators)
- Passive connection (no repeating)
- Only one partner can send at a time
- All partners can listen to all communication
- Advantages
  - Cheap
  - Simple
- Disadvantages
  - Multiple access (Babbling idiot, security)
  - Single point of failure





# **Bus Topology**







# **Bus Topology**







- Dedicated connection to central station
- Buffering and repeating
- Multiple partners can send at the same time
- Only sender and receiver can listen to communication
- Advantages
  - Multiple access, no collisions
  - Only central station is single point of failure
- Disadvantages
  - Expensive central station
  - More wiring























### **Ring Topology**

- Circular line (unidirectional)
- Active connection (repeating / changing)
- Multiple partners can send at the same time
- Some partners can listen to communication
- Advantages
  - High quality of service
  - Multiple access (to some extend)
- Disadvantages
  - Complex (expensive)
  - Single point of failure





## **Ring Topology**







## **Ring Topology**







## ISO/OSI

- International Organization for Standardization
- Open Systems Interconnection
- 7 Layer architecture
- One task per layer
- Very complex
- Reference model
- Here: layers 1 & 2

| Layer 7: Application Laye | Layer | <sup>-</sup> 7: App | lication | Layer |
|---------------------------|-------|---------------------|----------|-------|
|---------------------------|-------|---------------------|----------|-------|

Layer 6: Presentation Layer

Layer 5: Session Layer

Layer 4: Transport Layer

Layer 3: Network Layer

Layer 2: Data Link Layer

Layer 1: Physical Layer





### **Physical Layer**

- Defines mechanical properties
  - Medium: copper, optical fiber, air, EM waves
  - Connectors: form and pin assignment
- Defines electrical / optical properties
  - Voltage
  - Frequencies
  - Baud rate
  - Bit encoding
- Hardware
  - Cable, connector, terminator, antenna, amplifier
  - Transceiver, repeater, hub





## **Bit Encoding**

- Return to Zero (RZ)
- Non Return to Zero (NRZ)
- Differential NRZ
- Bit stuffing
- Manchester Code
- ► 4B/5B Code





#### **Return to Zero**

- Return to neutral state between all pulses
- Needs three states
- Self-synchronizing
- ► Half data rate







#### Non Return to Zero

- No neutral state
- Needs synchronization
- Capacitive problems
- ► Full data rate





### **Synchronization**

- Clocks are never perfectly synchronous
- Clock A ticks every 100μs
- Clock B ticks every 90μs
- Clock A sends nine ones → high level for 900μs
- Clock B interprets this as ten ones







#### **Differential NRZ**

- 0 is represented by level change
- ▶ 1 is represented by no level change
- No problems for long sequences of 0s







### **Bit Stuffing**

- Prevents long sequences of 1s
- Sender inserts a 0 after a sequence of n 1s (n = 6 for USB)
- Receiver (checks and) removes inserted 0s
- Code violations (frame delimiters)







### **Manchester Code (IEEE 802.3)**

- No neutral state
- Self-synchronizing
- No capacitive problems
- Half data rate

Rising Edge = 1

Falling Edge = 0

(inverted in G.E. Thomas version)





### 4B/5B

- Uses some form of NRZ
- ▶ 80% data rate
- Encoding table prevents long sequences (FDDI with NRZI)

| Name | 4B   | 5B    | Name | 4B   | 5B    | Name | 5B    | Desc     |
|------|------|-------|------|------|-------|------|-------|----------|
| 0    | 0000 | 11110 | 8    | 1000 | 10010 | Q    | 00000 | Quiet    |
| 1    | 0001 | 01001 | 9    | 1001 | 10011 | 1    | 11111 | Idle     |
| 2    | 0010 | 10100 | А    | 1010 | 10110 | J    | 11000 | Start #1 |
| 3    | 0011 | 10101 | В    | 1011 | 10111 | K    | 10001 | Start #2 |
| 4    | 0100 | 01010 | С    | 1100 | 11010 | Т    | 01101 | End      |
| 5    | 0101 | 01011 | D    | 1101 | 11011 | R    | 00111 | Reset    |
| 6    | 0110 | 01110 | Е    | 1110 | 11100 | S    | 11001 | Set      |
| 7    | 0111 | 01111 | F    | 1111 | 11101 | Н    | 00100 | Halt     |





## ISO/OSI

Layer 7: Application Layer

Layer 6: Presentation Layer

Layer 5: Session Layer

Layer 4: Transport Layer

Layer 3: Network Layer

Layer 2: Data Link Layer

Layer 1: Physical Layer





### **Data Link Layer**

- Encapsulates data (bits) into frames
- Frame synchronization
- Logical link control
  - Automatic repeat request (ARQ)
  - Forward error correction (FEC)
  - Flow control
- Media access control
- Hardware: Switch, Bridge
- Two sublayers
  - Logical Link Control (LLC)
  - Media Access Control (MAC)





#### **Frames**

- On layer 2 data is transferred in frames
- Typical parts of a frame
  - Start delimiter
  - Sender address
  - Receiver address
  - Identifier
  - Acknowledgement

- Length of frame / data
- User data
- Checksum
- End delimiter







#### **Error Detection**

- Parity bit
  - Append parity bit such that the sum off all bits is even / odd
  - One bit error detection
- Cyclic Redundancy Check (CRC)
  - Hash function based on polynomial division
  - Detection of burst errors
- Hamming Code
  - Set of parity bits
  - Single error correction
  - (Double error detection)





### **Hamming Code**

Published by Richard Hamming in 1950

- ► For (up to) 2<sup>n</sup>-1 Bits in a hamming encoded message:
  - Positions that are powers of 2 are Parity Bits (n Parity Bits)
  - Remaining Bits are the data Bits (2<sup>n</sup>-n-1 Data Bits)
  - A Data Bit at position x is protected by the Parity Bits that comprise x
- Example: 14 Bits in the encoded message
  - Positions 1, 2, 4 and 8 are Parity Bits
  - Positions 3, 5-7, 9-14 are Data Bits
  - Data Bit 11 is protected by the Parity Bits 1, 2 and 8 (1 + 2 + 8 = 11)





### **Hamming Code – Example (Encoding)**

- Encode the 8 Bit message (01010010)<sub>2</sub> with <u>even</u> parity:
- ► Use 4 Parity Bits:  $(2^3 3 1 < 8 <= 2^4 4 1)$
- Structure of encoded message:
  - $p_1p_2d_3p_4d_5d_6d_7p_8d_9d_{10}d_{11}d_{12}$
- Fill in the message:
  - $p_1p_20p_4101p_80010$
- Calculate Parity Bits:
  - $p_1 + d_3 + d_5 + d_7 + d_9 + d_{11}$  has to be <u>even</u> ->  $p_1 = 1$
  - $p_2 + d_3 + d_6 + d_7 + d_{10} + d_{11}$  has to be <u>even</u> ->  $p_2 = 0$
  - $p_4 + d_5 + d_6 + d_7 + d_{12}$  has to be <u>even</u> ->  $p_4 = 0$
  - $p_8 + d_9 + d_{10} + d_{11} + d_{12}$  has to be <u>even</u> ->  $p_8 = 1$
- Encoded message is: (100010110010)<sub>2</sub>





### **Automatic Repeat Request**

- Successful transmission
  - A sends frame to B
  - B acknowledges frame
- Unsuccessful transmission (transmission error)
  - A send frame to B
  - B detects error
  - B sends negative acknowledgement ("NACK")
  - A resends frame to B
- Unsuccessful transmission (transmission lost)
  - A sends frame to B
  - Timeout occurs
  - A resends frame to B





#### **Media Access Control**

Regulates access to a shared medium





Dynamic MAC

With collisions: CSMA/CD

Without collisions: CSMA/CR





**Hybrid** 

**A3** 

**B3** 

**C3** 

**A2** 

**B2** 

**C2** 

### CSMA/CD

- Carrier sense multiple access / collision detection
- Wait until medium is free
- Start sending
- If collision is detected
  - Scramble
  - Back off
- High data rate / long range







## CSMA/CR

- Carrier sense multiple access / collision resolution
- Wait until medium is free
- Start sending
- If collision is dominated
  - Stop sending
  - Start receiving
- No Collisions
- Either dominant
  - 1 ("wired or") or
  - 0 ("wired and")







### Part B

#### **Data Bus Standards**

- ► I<sup>2</sup>C bus
- CAN bus
- FlexRay
- PROFIBUS





### Inter-Integrated Circuit (I<sup>2</sup>C) Bus

- Connects multiple devices on the same board
- Developed by Philips in 1980s
- Also known as Two Wire Interface (TWI)
- Five modes
  - Standard mode: 100 kbit/s
  - Fast mode: 400 kbit/s
  - Fast mode plus: 1 Mbit/s
  - High speed mode: 3.4 Mbit/s
  - Ultra-high speed mode: 5 Mbit/s
- Noise-prone (used inside shielded casings)
- Simple and cheap
- Very popular





## **I<sup>2</sup>C – Exemplary Setup**







# I<sup>2</sup>C – Physical Layer

- Two lines connected to pull-up resistors
  - SCL: serial clock line

- SDA: serial data line
- Devices are connected via open connectors
- ► High level (logical 1): >0.7V (usually 3.3V 5V)
- ► Low level (logical 0): -0.5V 0.3V
- Maximum Capacity 400pF (few meters)
- Wired-AND (dominant 0)





A sends 1. B sends 0 and dominates.







# I<sup>2</sup>C – Bit Encoding







# I<sup>2</sup>C – Data Link Layer

- Each device has a unique 7 bit address (priority)
- Frame structure (Simplification\*)



- Master-Slave principle
  - Master polls / pushes data
- Multi-master
  - arbitration by CSMA/CR: first 0 wins
- No error detection / correction
- Flow control by
  - Acknowledgement
  - Clock stretching

\*I<sup>2</sup>C additionaly uses register addresses, these are excluded in the lecture





# **I<sup>2</sup>C – Example: Simple Write**







# I<sup>2</sup>C – Example: Simple Read



- Master doesn't want to receive more bytes
  - → Sends NACK





# I<sup>2</sup>C – Example: Efficient Double Read



- Master doesn't want to receive more bytes
  - → Sends NACK





# **I**<sup>2</sup>C – Example: Restart









# **I<sup>2</sup>C – Example: Master Arbitration**







# I<sup>2</sup>C – Example: Clock stretching







# **Controller Area Network (CAN) Bus**

- Connects multiple controller units in harsh environments
  - Up to 5km at 10kbit/s
  - Up to 25m at 1Mbit/s
- Developed by Bosch in 1983
  - Reduce number and length of cables (weight / cost)
  - Reduce number and types of connectors (wiring errors)
- Standardized in ISO 11898
- Main application as automotive bus
- Also used as industrial field bus (CANopen)





# **CAN – Exemplary Setup**







# **CAN – Physical Layer**

- Shielded twisted pair (also: optical fiber)
- Comfort bus (low speed) also possible with single line
- Higher data rates use difference signals
  - Prevents common-mode interference (Gleichtaktstörung)
  - Can use optional third line CAN\_GND
- Simple NRZ with bit stuffing after 5 equal bits
- Wired-AND (dominant 0; see I<sup>2</sup>C)
- Usually up to 32 participants
- 64, 110, and 128 (with limitations) possible
- More participants with repeaters and bridges
- Bus termination with 120Ω resistor





### **CAN** – Data Link Layer

- Each message type has unique identifier (priority)
- Devices have no address
- 4 frame types
- Arbitration by CSMA/CR: first 0 wins
- CRC (15 bit) error detection





# **CAN – Object Identifier**

- Unique bit mask
  - 11 bits: base frame format (CAN 2.0A)
  - 29 bits: extended frame format (CAN 2.0B)
- Each object ID should only be sent by one device
- Each device can have multiple object IDs
- Object ID is used for arbitration
- Assignment of object IDs is fixed in specification
  - CAN matrix document
  - Reserve object IDs for future extensions





### **CAN – Matrix**

Message: Motor 1

Receiver: all

Identifier: 0x0280

Data rate: 500kBaud

Length: 8 byte

Periodicity: 10ms

| Signal              | Byte | Bit | Init | Range | Interpretation                      |
|---------------------|------|-----|------|-------|-------------------------------------|
|                     |      |     |      |       |                                     |
| Pedal check         | 1    | 1   |      |       | 0: pedal ok<br>1: use default value |
| Kick-down<br>switch | 1    | 2   |      |       | 0: no kick-down<br>1: kick-down     |
| •••                 |      |     |      |       |                                     |



#### **CAN – Frames**

#### Data frame

| 1 Bit | 11 Bits | 1 Bit | 2 Bit  | 4 Bit | 064 Bit | 16 Bit | 2 Bit | 7 Bit |
|-------|---------|-------|--------|-------|---------|--------|-------|-------|
| SOF   | ID      | RTR=0 | R Bits | DLC   | Data    | CRC    | ACK   | EOF   |

#### Remote frame

| 1 Bit | 11 Bit | 1 Bit | 2 Bit  | 4 Bit | 16 Bit | 2 Bit | 7 Bit |
|-------|--------|-------|--------|-------|--------|-------|-------|
| SOF   | ID     | RTR=1 | R Bits | DLC   | CRC    | ACK   | EOF   |

request

RTR= Remote transmission

**SOF= Start of Frame** 

R Bits = two reserved Bits

DLC = Data Length Control

CRC = Cyclic Redundancy Check

**EOF** = **End** of Frame





- Overload frame (analog to active error frame)
- Interframe space: three recessive bits (pause)





### **CANopen**

- Application layer protocol
- Based on CAN bus
- Developed ESPRIT project (lead developer: Bosch)
- Since 1995 by CAN in Automation (CiA)
- ► EN 50325-4
- Four basic services
  - Request: application requests service
  - Indication: system notifies application of event
  - Response: application replies to an indication
  - Confirmation: system confirms service execution





# **FlexRay**

- Automotive network communication protocol
- Developed FlexRay consortium (2000)
- Core partners
  - BMW
  - Daimler
  - Motorola (Freescale)
  - Philips (NXP Semiconductors)
  - Later: Bosch, General Motors, Volkswagen
- Deterministic timing real time capable (X-by-wire)
- Hybrid MAC: TDMA + dynamic part (reservation)
- Integrates parts of ByteFlight protocol (BMW)





## FlexRay – Exemplary Setup

- 2 channels with up to 10Mbit/s each
  - Use both channels for redundancy
  - Use single channel for higher data rate
- Distributed clock synchronization (no master)
- Bus, star, and star with buses topologies





# FlexRay - Physical Layer

- Shielded twisted pair
- ► NRZ
  - High 3.5 V
  - Low 1.5 V
  - Idle 2.5 V
  - Suspension 0 V
- Clock drift < 0.15% compared to reference clock</p>
- Maximum signal delay < 2.5μs</li>
- 8 samples per bit (majority vote of 5 samples)





# FlexRay – Data Link Layer

- Repeating communication cycle
- Static part for real-time communication (TDMA)
- Dynamic part for other communication (FTDMA)
- ► CRC (11 bit) error detection for header
- CRC (24 bit) error detection for payload

| Static segment | Dynamic segment | Symbol window | Network<br>Idle Time |
|----------------|-----------------|---------------|----------------------|
|----------------|-----------------|---------------|----------------------|





# FlexRay - Static Slot



TSS: Transmission Start Sequence

FSS: Frame Start Sequence BSS: Byte Start Sequence FES: Frame End Sequence





# FlexRay - Dynamic Slot





# FlexRay - Payload

#### Flex Ray Frame



- 0: reserved
- 1: payload preamble indicator
- 2: sync frame indicator
- 3: null frame indicator
- 4: startup frame indicator





# FlexRay – Static Segment



| slot | node | message | channel |
|------|------|---------|---------|
| 1    | Α    | A1      | А       |
| Т    | A    | A1      | В       |
| 2    | В    | B1      | А       |
| 2    | С    | C1      | В       |
| 3    | D    | D1      | А       |
|      | D    | D2      | В       |
| 4    | E    | E1      | А       |
| 4    | А    | A2      | В       |
| 5    | С    | C2      | А       |
|      | В    | B2      | В       |







# FlexRay - Dynamic Segment

| slot | node | message | event |
|------|------|---------|-------|
| 6    | Α    | Α4      |       |
| 7    | С    | C3      |       |
| 8    | D    | D3      |       |
| 9    | В    | В3      |       |
| 10   | E    | E3      |       |

#### resulting dynamic slots:

- slots 7,9 and 10 are filled with minislots
- message B3 doesn't fit into the dynamic segment







# FlexRay - Dynamic Segment

| slot | node | message | event |
|------|------|---------|-------|
| 6    | Α    | Α4      |       |
| 7    | С    | C3      |       |
| 8    | D    | D3      |       |
| 9    | В    | В3      |       |
| 10   | E    | E3      |       |

#### resulting dynamic slots:

- slots 6 and 9 are filled with minislots
- all triggered messages can be send







# **Process Field Bus (PROFIBUS)**

- Field bus for automation in industrial environments
- Publicly founded German research project (BMBF)
- "Dezentrale Peripherie" (DP) (1993)
  - Focus on central controller using remote sensors and actors
  - Simple, fast (12Mbit/s)
- "Prozessautomation" (PA)
  - Limited current (explosion protection)
  - Very slow (31.25kbit/s)
- "Fieldbus Message Specification" (FMS) (1991)
  - First version
  - Very complex, replaced by DP
- ► IEC 61158 / IEC 61784





# **PROFIBUS-DP – Exemplary Setup**

#### singleimmæsttær sættupp







## PROFIBUS-DP – Physical Layer

- RS-485
  - Shielded twisted pair
  - 9600 bit/s 12Mbit/s
  - Bus topology with  $150\Omega$  terminators
  - 100m 1200m between repeaters (depends on data rate)
  - NRZ
- Optical fiber
  - Star, bus, or (redundant) ring topology
  - Up to 15km between repeaters





### PROFIBUS-DP – Data Link Layer

- Fieldbus Data Link (FDL)
- Each device has 7 bit address
- 5 frame types
- Master polls / pushes data
- Multi-master by token passing
- CRC (8 bit) error detection
- Hamming distance of 4 for delimiters





# **PROFIBUS-DP – Token Passing**

SPS controls actor using latest sensor data





No Data



Variable data length

Fix data length

Token

Short Confirmation

**SD 1:** Start delimiter, signals type of data

**DA:** Destination adress

**SA:** Source adress

**FC:** Function code, extension of data type

FCS: Frame checking sequence, error handling

ED: End delimiter





No Data



Variable data length



Fix data length

Token

Short Confirmation

LE: Length of PDU

**LEr:** Repetition of LE

**DSAP:** Destination Service Access Point

SSAP: Source Service Access Point

**PDU:** Protocol Data Unit





No Data



Variable data length



Fix data length



▶ Token

Short Confirmation





No Data



Variable data length



Fix data length



Token



Short Confirmation





No Data



Variable data length



Fix data length



Token



Short Confirmation

SC





# **PROFIBUS-DP – Application Layer**

#### DPV0

- Original specification
- Cyclic exchange of data
- Automation technology

#### DPV1

- Acyclic data communication
- Alarm management
- Chemical engineering

#### ► DPV2

- Isochronous data communication
- Slave to slave communication
- Robot control





#### Literature

- Vector E-Learning: <a href="http://www.vector-elearning.com">http://www.vector-elearning.com</a>
- PROFIBUS Handbuch: <a href="http://www.profibus.felser.ch/">http://www.profibus.felser.ch/</a>
- ► Heinz Wörn, Uwe Brinkschulte: Echtzeitsysteme, Springer-Verlag, 2005. ISBN 3-540-20588-8.





## **Summary**

- All data communication follows basic principles
  - Limitation by bandwidth
  - Degradation due to damping
- Embedded data communication has special demands
  - Cheap and simple
  - Real-time capable
  - Robust
- Physical Layer defines how bit streams are transported
  - Mechanical and electrical characteristics
  - Bit encoding
  - Synchronization





### **Summary**

- Data Link Layer defines how messages are transported
  - Frame formats
  - Medium access
  - Error correction and flow control
- Different areas of application use fitting protocols
  - I<sup>2</sup>C for intra board communication
  - CAN for intra car communication
  - FlexRay for intra car communication with real time and higher data rates
  - PROFIBUS for industrial controllers



