VE401 Final Part2

Wang Yangyang

UM-SJTU JI

2022 Spring

1 Comparison Tests

- Comparison of Two Variances
- Comparison of Two Means
- Non-Parametric Methods
- Paired Test, Correlation

2 Categorical Data

- Pearson Statistics and Multinomial Distribution
- Goodness-of-Fit Test
- Test for Independence

- 1 Comparison Tests
 - Comparison of Two Variances
 - Comparison of Two Means
 - Non-Parametric Methods
 - Paired Test, Correlation
- 2 Categorical Data
 - Pearson Statistics and Multinomial Distribution
 - Goodness-of-Fit Test
 - Test for Independence

F-Distribution

Let $\chi^2_{\gamma_1}$ and $\chi^2_{\gamma_2}$ be independent chi-squared random variables with γ_1 and γ_2 degrees of freedom, respectively. Then the random variable

$$F_{\gamma_1,\gamma_2} = \frac{\chi_{\gamma_1}^2/\gamma_1}{\chi_{\gamma_2}/\gamma_2}$$

follows a *F-distribution* with γ_1 and γ_2 degrees of freedom Furthermore,

$$P[F_{\gamma_1,\gamma_2} < x] = P\left[\frac{1}{F_{\gamma_1,\gamma_2}} > \frac{1}{x}\right] = P\left[F_{\gamma_2,\gamma_1} > \frac{1}{x}\right]$$

Comparing Variances

Let S_1^2 and S_2^2 be sample variances based on independent random samples of sizes n_1 and n_2 drawn from *normal* populations with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , respectively. The test statistic is given by

$$F_{n_1-1,n_2-1}=\frac{S_1^2}{S_2^2}.$$

We reject at significance level α

- $H_0: \sigma_1 \leqslant \sigma_2 \text{ if } S_1^2/S_2^2 > f_{\alpha, n_1-1, n_2-1}$,
- $H_0: \sigma_1 \geqslant \sigma_2 \text{ if } S_2^2/S_1^2 > f_{\alpha, n_2-1, n_1-1},$
- $H_0: \sigma_1 = \sigma_2 \text{ if } S_1^2/S_2^2 > f_{\alpha/2,n_1-1,n_2-1} \text{ or } S_2^2/S_1^2 > f_{\alpha/2,n_2-1,n_1-1}.$

OC curve. The abscissa is defined by

$$\lambda = \frac{\sigma_1}{\sigma_2}$$
.

- 1 Comparison Tests
 - Comparison of Two Variances
 - Comparison of Two Means
 - Non-Parametric Methods
 - Paired Test, Correlation
- 2 Categorical Data
 - Pearson Statistics and Multinomial Distribution
 - Goodness-of-Fit Test
 - Test for Independence

Basic Cases

For two Normally Distributed Populations:

- $\bullet \ X^{(1)} \sim \textit{N}\left(\mu_1, \sigma_1^2\right)$
- $X^{(2)} \sim N(\mu_2, \sigma_2^2)$

Goal: compare μ_1 and μ_2 .

Three Basic Cases:

- σ_1^2 and σ_2^2 are known
- σ_1^2 and σ_2^2 are unknown but $\sigma_1^2=\sigma_2^2$
- σ_1^2 and σ_2^2 are unknown and not necessarily equal

Variance Known

Let $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with i = 1, 2 be samples of sizes n_1 and n_2 from normal distributions with unknown means μ_1, μ_2 and *known* variances σ_1^2, σ_2^2 . Then the test statistic is given by

$$Z = \frac{\bar{X}^{(1)} - \bar{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

We reject at significance level α

•
$$H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$$
 if $|Z| > z_{\alpha/2}$,

•
$$H_0: \mu_1 - \mu_2 \leqslant (\mu_1 - \mu_2)_0$$
 if $Z > z_{\alpha}$,

•
$$H_0: \mu_1 - \mu_2 \geqslant (\mu_1 - \mu_2)_0$$
 if $Z < -z_{\alpha}$.

Variance Known

When testing equality of means H_0 : $\mu_1 = \mu_2$, we have $(\mu_1 - \mu_2)_0 = 0$. We can use the OC curves for normal distributions with

$$d = rac{|\mu_1 - \mu_2|}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

with $n = n_1 = n_2$. When $n_1 \neq n_2$, we use the equivalent sample size

$$n = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2/n_1 + \sigma_2^2/n_2}.$$

Variance Equal but Unknown

Variances equal but unknown. Let $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with i = 1, 2 be samples of sizes n_1 and n_2 from normal distributions with unknown means μ_1 , μ_2 and equal but unknown variances $\sigma^2 = \sigma_1^2 = \sigma_2^2$. Then the test statistic is given by

$$T_{n_1+n_2-2} = \frac{\bar{X}^{(1)} - \bar{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{S_p^2 (1/n_1 + 1/n_2)}},$$

with pooled estimator for variance

$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2}.$$

We reject at significance level α

•
$$H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$$
 if $|T_{n_1 + n_2 - 2}| > t_{\alpha/2, n_1 + n_2 - 2}$,

•
$$H_0: \mu_1 - \mu_2 \leqslant (\mu_1 - \mu_2)_0$$
 if $T_{n_1 + n_2 - 2} > t_{\alpha, n_1 + n_2 - 2}$,

•
$$H_0: \mu_1 - \mu_2 \leqslant (\mu_1 - \mu_2)_0$$
 if $T_{n_1 + n_2 - 2} < t_{\alpha, n_1 + n_2 - 2}$.
• $H_0: \mu_1 - \mu_2 \geqslant (\mu_1 - \mu_2)_0$ if $T_{n_1 + n_2 - 2} < -t_{\alpha, n_1 + n_2 - 2}$.

Variance Equal but Unknown

OC curve. When testing equality of means H_0 : $\mu_1 = \mu_2$, we have $(\mu_1 - \mu_2)_0 = 0$. We can use the OC curves for the T-test in case of *equal* sample sizes $n = n_1 = n_2$

$$d=\frac{|\mu_1-\mu_2|}{2\sigma}.$$

When reading the charts, we must use the *modified sample size* $n^* = 2n - 1$.

Variance Not Necessarily Equal and Unknown

Let $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with i = 1, 2 be samples of sizes n_1 and n_2 from normal distributions with unknown means μ_1, μ_2 and not necessarily equal and unknown variances σ_1^2 , σ_2^2 . The test statistic is given by

$$T_{\gamma} = \frac{\bar{X}^{(1)} - \bar{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}, \quad \gamma = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

We reject at significance level α

•
$$H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$$
 if $T_{\gamma} > t_{\alpha/2,\gamma}$,

•
$$H_0: \mu_1 - \mu_2 \leqslant (\mu_1 - \mu_2)_0$$
 if $T_{\gamma} > t_{\alpha, \gamma}$,

•
$$H_0: \mu_1 - \mu_2 \geqslant (\mu_1 - \mu_2)_0$$
 if $T_{\gamma} < -t_{\alpha, \gamma}$.

Variance Not Necessarily Equal and Unknown

Remarks:

- Round γ down to the nearest integer.
- No simple OC curves for Welch's test.
- !!! It is not a good idea to pre-test for equal variances and then make a decision whether to use Student's or Welch's test.!!! It is fine to test for normality, equality of variances or other properties and then to gather new data for a comparison of means test. But using the same data creates serious problems.
- When variances are unknown, current recommendations are to always use Welch's test.

- 1 Comparison Tests
 - Comparison of Two Variances
 - Comparison of Two Means
 - Non-Parametric Methods
 - Paired Test, Correlation
- 2 Categorical Data
 - Pearson Statistics and Multinomial Distribution
 - Goodness-of-Fit Test
 - Test for Independence

Wilcoxon Rank-Sum Test

Let X and Y be two random samples following some continuous distributions. Decide whether to reject the null hypothesis

$$H_0: P[X > Y] = \frac{1}{2}$$
 or $H_0: P[X > Y] \le \frac{1}{2}$

Procedures:

- ① Let X_1, \ldots, X_m and $Y_1, \ldots, Y_n, m \le n$, be random samples from X and Y and associate the rank $R_i, i = 1, \ldots, m + n$, to the R_i th smallest among the m + n total observations. If ties in the rank occur, the mean of the ranks is assigned to all equal values.
- 2 Sum up the ranks of smaller samples. Then the test based on the statistic

$$W_m := \text{ sum of the ranks of } X_1, \ldots, X_m$$

is called the Wilcoxon rank-sum test.

Wilcoxon Rank-Sum Test

We reject $H_0: P[X > Y] = 1/2$ at significance level α if

- for small $m: W_m$ falls into the corresponding critical region, or
- for large $m(m \ge 20)$: perform a Z-test, since W_m is approximately normally distributed with

$$E[W_m] = \frac{m(m+n+1)}{2}, \quad Var[W_m] = \frac{mn(m+n+1)}{12}$$

If there are many ties, the variance may be corrected by taking

$$\operatorname{Var}\left[W_{m}\right] = \frac{mn(m+n+1)}{12 - \sum_{\text{groups}} \frac{t^{3}+t}{12}}$$

where the sum is taken over all groups of t ties (not always a good way).

- 1 Comparison Tests
 - Comparison of Two Variances
 - Comparison of Two Means
 - Non-Parametric Methods
 - Paired Test, Correlation
- 2 Categorical Data
 - Pearson Statistics and Multinomial Distribution
 - Goodness-of-Fit Test
 - Test for Independence

Paired Tests for Mean

Comparing means (or the location) of two related populations X and Y. Method: Pair the samples as D = X - Y.

Set the hypothesis as, i.e.,

$$H_0: \mu_D = \mu_X - \mu_Y = (\mu_X - \mu_Y)_0 = \mu_{D0}$$

Then use a T-test for D is called a paired T-test for X and Y

$$T_{n-1} = \frac{\bar{D} - \mu_{D_0}}{\sqrt{S_D^2/n}}$$

Paired vs. Pooled T-Tests

Assume that we have two populations of normally distributed random variables X and Y with equal variances σ^2 . We want to test

$$H_0: \mu_X - \mu_Y = (\mu_X - \mu_Y)_0$$

Then we could either perform a paired test or a pooled test. Which is more powerful? Let us compare the test statistics:

$$T_{
m pooled} = rac{ar{X} - ar{Y} - (\mu_X - \mu_Y)_0}{\sqrt{2S_p^2/n}}, \quad ext{critical value} = t_{lpha/2,2n-2}$$
 $T_{
m paired} = rac{ar{X} - ar{Y} - (\mu_X - \mu_Y)_0}{\sqrt{S_D^2/n}}, \quad ext{critical value} = t_{lpha/2,n-1}$

Compare the two denominators, which estimate

$$\frac{2\sigma^2}{n}$$
 with $\frac{\sigma_D^2}{n}$

Paired vs. Pooled T-Tests

Conclusion: From $\frac{\sigma_D^2}{n} = \frac{2\sigma^2}{n} (1 - \rho_{XY})$ we see

- If $\rho_{XY} > 0$, paired T-test is more powerful. The denominator of the paired statistic will be smaller than that of the pooled statistic, leading to a larger value of the statistic.
- If ρ_{XY} is zero (or even negative), pairing is unnecessary and pooled T-test is more powerful. The reason is that it is easier to reject H_0 when comparing with $t_{\alpha/2,2n-2}$ than with $t_{\alpha/2,n-1}$.
- \Rightarrow Positive correlation makes a paired T-test more powerful.

Test for Correlation Coefficient

First, find the estimation of ρ . Since

$$\widehat{\operatorname{Var}[X]} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\widehat{\operatorname{Cov}[X, Y]} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})$$

The natural choice for an estimator for the correlation coefficient is then

$$R := \widehat{\rho} = \frac{\sum (X_i - \bar{X}) (Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2} \sqrt{\sum (Y_i - \bar{Y})^2}}$$

Test for Correlation Coefficient

• Hypothesis test: We can test $H_0: \rho = \rho_0$, by Z-test, using the test statistic

$$\begin{split} Z &= \frac{\sqrt{n-3}}{2} \left(\text{ln} \left(\frac{1+R}{1-R} \right) - \text{ln} \left(\frac{1+\rho_0}{1-\rho_0} \right) \right) \\ &= \sqrt{n-3} \left(\text{Artanh}(R) - \text{Artanh} \left(\rho_0 \right) \right) \end{split}$$

• Confidence interval: A $100(1-\alpha)\%$ confidence interval for ρ ,

$$\left\lceil \frac{1+R-(1-R)e^{2z_{\alpha/2}/\sqrt{n-3}}}{1+R+(1-R)e^{2Z_{\alpha/2}/\sqrt{n-3}}}, \frac{1+R-(1-R)e^{-2z_{\alpha/2}/\sqrt{n-3}}}{1+R+(1-R)e^{-2z_{\alpha/2}/\sqrt{n-3}}} \right\rceil$$

or

$$\tanh\left(\operatorname{Artanh}(R)\pm\frac{z_{\alpha/2}}{\sqrt{n-3}}\right)$$

- 1 Comparison Tests
 - Comparison of Two Variances
 - Comparison of Two Means
 - Non-Parametric Methods
 - Paired Test, Correlation
- 2 Categorical Data
 - Pearson Statistics and Multinomial Distribution
 - Goodness-of-Fit Test
 - Test for Independence

Categorical Random Variables

A random variable X that can take on the values $1, \ldots, k$ with respective probabilities p_1, \ldots, p_k as above. A random sample of size n from X is collected and the results are expressed as a *random vector*

$$(X_1, X_2, ..., X_k)$$
 with $X_1 + X_2 + ... + X_k = n$

The Multinomial Distribution: A random vector $((X_1, ..., X_k), f_{X_1X_2...X_k})$ where

$$f_{X_1 X_2 \cdots X_k}(x_1, \dots, x_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

 $p_1, \ldots, p_k \in (0, 1), n \in \mathbb{N} \setminus \{0\}$ is said to have a multinomial distribution with parameters n and p_1, \ldots, p_k

- $E[X_i] = np_i, \quad i = 1, ..., k$
- $Var[X_i] = np_i(1-p_i), i = 1, ..., k$
- Cov $[X_i, X_i] = -np_i p_i, 1 \leq i < j \leq k$

The Pearson Statistics

Let $((X_1, ..., X_k), f_{X_1 X_2 ... X_k})$ be a multinomial random variable with parameters n and $p_1, ..., p_k$. For large n the *Pearson statistic*

$$\sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^{k} \frac{(X_i - np_i)^2}{np_i}$$

follows an approximate chi-squared distribution with k-1 degrees of freedom (because we have k-1 independent cells).

Cochran's Rule: This tell us how large *n* needs to be for the chi-squared distribution to be a good approximation to the true distribution of the Pearson statistic when

$$E[X_i] = np_i \geqslant 1$$
, for all $i = 1, ..., k$
 $E[X_i] = np_i \geqslant 5$, for 80% of all $i = 1, ..., k$

- 1 Comparison Tests
 - Comparison of Two Variances
 - Comparison of Two Means
 - Non-Parametric Methods
 - Paired Test, Correlation
- 2 Categorical Data
 - Pearson Statistics and Multinomial Distribution
 - Goodness-of-Fit Test
 - Test for Independence

Test for Multinomial Distribution

Let (X_1, \ldots, X_k) be a sample of size n from a categorical random variable with parameters (p_1, \ldots, p_k) . We perform the chi-squared goodness-of-fit test.

Note: In this test, we directly make assumptions on parameters p_i without estimation based on samples. This may happen when we already have some prior knowledge of the distribution (e.g. PRNG).

Procedures

Set

$$H_0: p_i = p_{i_0}, \quad i = 1, \ldots, k$$

2 Calculate the expected values

$$E_i = np_{i0}$$

Then test whether the Cochran's rule is satisfied.

Test for Multinomial Distribution

Procedures

3 If satisfied, calculate the Pearson statistic.

$$X_{k-1}^2 = \sum_{i=1}^k \frac{(X_i - np_{i0})^2}{np_{i0}}$$

which follows a chi-squared distribution with

degrees of freedom: independent cells -m = k - 1independent cells = k - 1, m=0

4 We reject H_0 at significance level α if $X_{k-1}^2 > \chi_{\alpha,k-1}^2$.

Goodness-of-Fit Test for Discrete Distribution

Now, we calculate the *estimates for parameters*, to make assumptions indirectly

Procedures

Suppose we guess that data follow some distribution, so we set the hypothesis as

 H_0 : A specific distribution with unknown parameter p_i e.g., H_0 : A Poisson distribution with parameter k.

② Estimate parameters p_i from the sample based on your hypothesis. e.g., for *Poisson distribution*, estimate k by $\hat{k} = \bar{X}$. Then we can calculate p_i . Suppose we have three categories $x = 0, x = 1, x \ge 2$, then

$$p_0 = P[X = 0] = \frac{e^{-\hat{k}}\hat{k}^0}{0!}, \quad p_1 = P[X = 1] = \frac{e^{-\hat{k}}\hat{k}^1}{1!},$$

$$p_2 = P[X \ge 2] = 1 - P[X = 0] - P[X = 1]$$

Goodness-of-Fit Test for Discrete Distribution

Procedures

3 Calculate the expected values $E_i = np_i$. Then make a table by yourself as below,

Category i	Exp. Frequency E_i	Obs. Frequency <i>O_i</i>
0	np_0	<i>x</i> ₀
1	np_1	x_1
2	np_2	<i>x</i> ₂
• • •		

Test whether the Cochran's Rule is satisfied. If not satisfied, then go back to procedure (ii) and (iii) and change your number of categories.

Goodness-of-Fit Test for Discrete Distribution

Procedures

5 If (iv) satisfied, calculate the Pearson statistic.

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

now follows a chi-squared distribution with

independent cells
$$-m = k - 1 - m$$

degrees of freedom, where *m* is the *number of parameters that we estimate*. e.g., for the previous Poisson distribution test with 3 categories,

$$k = 3, m = 1$$

6 We reject H_0 at significance level α if X^2 exceeds the critical value.

- 1 Comparison Tests
 - Comparison of Two Variances
 - Comparison of Two Means
 - Non-Parametric Methods
 - Paired Test, Correlation
- 2 Categorical Data
 - Pearson Statistics and Multinomial Distribution
 - Goodness-of-Fit Test
 - Test for Independence

Test for Independence

We define the marginal row and column sums

$$n_i = \sum_{j=1}^{c} n_{ij}, \quad n_{.j} = \sum_{i=1}^{r} n_{ij}$$

For a contingency table as below,

	column 1	column 2	column 3	
row 1	n ₁₁	n ₁₂	n ₁₃	n_1
row 2	n ₂₁	n ₂₂	n ₂₃	n_2 .
row 3	n ₃₁	n ₃₂	n ₃₃	n ₃ .
	n. ₁	n. ₂	n. ₃	n

Test for Independence

Procedures

If the hypothesis is that row and column categorizations are independent, then it should be the case that

$$H_0: p_{ij} = p_i \cdot p_j$$

2 Estimates for the row and column probabilities are $\widehat{p_i} = \frac{n_i}{n}$, $\widehat{p_{ij}} = \frac{n_{ij}}{n}$, so if H_0 is assumed,

$$\widehat{p_{ij}} = \widehat{p_{i\cdot}} \cdot \widehat{p_{\cdot j}} = \frac{n_i \cdot n_{\cdot j}}{n^2}$$

3 Calculate the expected values

$$E_{ij} = n \cdot \widehat{p_{ij}} = \frac{n_i \cdot n \cdot j}{n}$$

Then test whether the *Cochran's rule* is satisfied.

Test for Independence

Procedures

4 If satisfied, calculate the Pearson statistic.

$$X_{(r-1)(c-1)}^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

which follows a *chi-squared distribution* with degrees of freedom:

#independent cells
$$-m = rc - 1 - (r - 1 + c - 1) = (r - 1)(c - 1)$$

- #independent cells =
$$rc - 1$$

- $m = r - 1 + c - 1$

5 We reject H_0 if the value of $X_{(r-1)(c-1)}^2$ exceeds the critical value.

Test for Comparing Proportions

Now the row totals are fixed, rewrite the table in terms of proportions:

	column 1	column 2	column 3	
row 1	p_{11}	p_{12}	p_{13}	$p_{1.}=1$ (fixed)
row 2	p_{21}	p_{22}	p_{23}	$p_{2.}=1$ (fixed)
row 3	<i>p</i> ₃₁	p_{32}	<i>p</i> ₃₃	$p_{3.}=1$ (fixed)
row 4	p ₄₁	<i>p</i> ₄₂	<i>p</i> ₄₃	$p_4=1$ (fixed)

We want to compare proportions from each row, so

$$H_0: \left\{ \begin{array}{l} p_{11} = p_{21} = p_{31} = p_{41} \\ p_{12} = p_{22} = p_{32} = p_{42} \\ p_{13} = p_{23} = p_{33} = p_{43} \end{array} \right.$$

Test for Comparing Proportions

Procedure

1 Supposing that H_0 is true,

$$p_j := p_{1j} = p_{2j} = p_{3j} = p_{4j}$$

where p_j is the proportion of all objects following into the j th column. If H_0 is assumed, estimates for the column proportions are

$$\widehat{p}_j = \frac{n_{\cdot j}}{n}$$

2 Calculate the expected values

$$E_{ij} = n_i \cdot \widehat{p_{ij}} = n_i \cdot \widehat{p_j} = \frac{n_i \cdot n_{\cdot j}}{n}$$

Then test whether the *Cochran's rule* is satisfied.

Test for Comparing Proportions

Procedure

1 If satisfied, calculate the Pearson statistic.

$$X_{(r-1)(c-1)}^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

which follows a *chi-squared* distribution with degrees of freedom:

$$\# \text{ independent cells } -m = r(c-1) - (c-1) = (r-1)(c-1)$$

- #independent cells =
$$r(c-1)$$

- $m = (c-1)$

2 We reject H_0 if the value of $X_{(r-1)(c-1)}^2$ exceeds the critical value.