FGI 2020 GUIA 1

Agosto 2020

1. Ejercicios GUÍA 1

GUÍA 1: Problema 1

Respuestas:

a Fuerza resultante sobre el cuerpo $(\vec{F} \equiv \Sigma_i \vec{F}_i$)

 \vec{F} $\vec{F} = (\frac{15}{2}, \frac{-7}{2}) N.$

b La resultante \vec{F} forma el ángulo θ_i , expresado en radianes, con la fuerza $(\vec{F_i})$ dado por:

Para $\vec{F_1}$

 $\theta_1 = 0.6705$

Para $\vec{F_2}$

 $\theta_2 = 0.6340$

Para $\vec{F_3}$

 $\theta_3 = 1.9196$

Para $\vec{F_4}$

 $\theta_4 = 0.4366$

GUÍA 1: Problema 2

Respuestas:

a El módulo de la fuerza $\vec{F_1}$ es:

 $|ec{F_1}|$

 $|\vec{F_1}| \approx 544.8 \, N.$

b El ángulo α que forma la fuerza $\vec{F_1}$ con la dirección vertical (orientación hacia arriba) es:

 $\alpha = 0.5079.$

1.1. GUÍA 1: Problema 3

Respuestas:

a El módulo de la velocidad final (|v|) al cabo de 5 segundos de aplicar la fuerza, según la masa del cuerpo m es:

GUÍA 1: Problema 4

Respuestas:

a El tiempo transcurrido ($\Delta t \equiv t_{fin} - t_{ini}$) para recorrer 4 metros aplicando la fuerza \vec{F} en el sentido de la velocidad inicial $\vec{v_{ini}}$ es:

Para
$$\vec{F} \parallel v_{ini}$$

$$\Delta t = 1 \, s.$$

b La distancia recorrida d antes de detenerse, si si aplica la fuerza \vec{F} en sentido contrario a la velocidad inicial $\vec{v_{ini}}$ es:

d antes de detenerse con $\vec{F} \not\parallel \vec{v_{ini}}$

$$d = 9/4 \, m$$
.

c El valor mínimo del módulo de la velocidad inicial $(|v_{ini}|_{min})$ necesaria para lograr recorrer 4 m antes de detenerse cuando se aplica la fuerza \vec{F} en sentido contrario a la velocidad inicial es:

Para recorrer 4 m con $\vec{F} \not\parallel \vec{v_{ini}}$

$$|\vec{v_{ini}}|_{min} = 4 \, m/s.$$

GUÍA 1: Problema 5

Respuestas:

a La aceleración del cuerpo, para todo tiempo, es:

 $\vec{a}(t)$

$$\vec{a}(t) = \begin{cases} (0, 0) & \text{si } t < -1 s \\ \left(2, \frac{t}{s}\right) \frac{m}{s^2} & \text{si } -1 s \le t \le 2 s \\ (0, 0) & \text{si } 2 s < t \end{cases}$$

La velocidad del cuerpo, para todo tiempo, es:

 $\vec{v}(t)$

$$\vec{v}(t) = \begin{cases} (4, 0) \frac{m}{s} & \text{si } t < -1 s \\ \left(2\frac{t}{s} + 6, \frac{t^2}{2s^2} - \frac{1}{2}\right) \frac{m}{s} & \text{si } -1 s \le t \le 2 s \\ (10, \frac{3}{2}) \frac{m}{s} & \text{si } 2 s < t \end{cases}$$

El vector posición del cuerpo, para todo tiempo, es:

 $\vec{r}(t)$

$$\vec{r}(t) = \begin{cases} \left(4\frac{t}{s} + 1, \frac{1}{3}\right) m & \text{si } t < -1 s \\ \left(\frac{t^2}{s^2} + 6\frac{t}{s} + 2, \frac{t^3}{6 s^3} - \frac{t}{2}\right) m & \text{si } -1 s \le t \le 2 s \\ \left(10\frac{t}{s} - 2, \frac{3t}{2s} - \frac{8}{3}\right) m & \text{si } 2 s < t \end{cases}$$

b La gráfica de las magnitudes cinemáticas se muestra en la figura $1\,$

Figura 1: Gráfico de aceleración, velocidad y posición del cuerpo para todo tiempo (arriba) y posición en el plano (abajo).

GUÍA 1: Problema 6

Respuestas:

a La fuerza adicional $\vec{F_{Ad}}$ para imprimir $\vec{a} = -2m/s^2 \hat{i}$ es:

$$\vec{F_{Ad}}$$
 si \vec{a} es $-2 \, m/s^2 \, \hat{i}$

$$\vec{F_{Ad}} = (-4 - 3(\sqrt{2} - 1), 4 + 3\sqrt{2}) N$$

 $\approx (-5,2426, 8,2426) N.$

b La fuerza adicional $\vec{F_{Ad}}$ para alcanzar el equilibrio del cuerpo es:

$\vec{F_{Ad}}$ para equilibrio

$$\vec{F_{Ad}} = (3(1 - \sqrt{2}), 4 + 3\sqrt{2}) N \approx (-1,2426, 8,2426) N.$$

GUÍA 1: Problema 7

Respuestas:

a La aceleración del cuerpo, para todo tiempo, es:

 $\vec{a}(t)$

$$\vec{a}(t) = \begin{cases} (0, 0) & \text{si } t < 1 s \\ (-2, 3 t/s + 1) m/s^2 & \text{si } 1 s \le t \le 2 s \\ (0, 0) & \text{si } 2 s < t \end{cases}$$

La velocidad del cuerpo, para todo tiempo, es:

v(t

$$\vec{v}(t) = \begin{cases} (-4, -2) \ m/s & \text{si } t < 1 \, s \\ \left(-2 \, t/s - 2, \, (3/2) \, t^2/s^2 + t/s - 9/2\right) \, m/s & \text{si } 1 \, s \le t \le 2 \, s \\ (-6, \, 7/2) \ m/s & \text{si } 2 \, s < t \end{cases}$$

El vector posición del cuerpo, para todo tiempo, es:

$$\vec{r}(t)$$

$$\vec{r}(t) = \begin{cases} (-4\,t/s + 2,\, -2\,t/s) \ m & \text{si } t < 1\,s \\ \left(-\frac{t^2}{s^2} - 2\frac{t}{s} + 1,\, \frac{t^3}{2\,s^3} + \frac{t^2}{2\,s^2} - \frac{9\,t}{2\,s} + \frac{3}{2}\right) \ m & \text{si } 1\,s \le t \le 2\,s \\ \left(-6\frac{t}{s} + 5,\, \frac{7\,t}{2\,s} - \frac{17}{2}\right) \ m & \text{si } 2\,s < t \end{cases}$$

GUÍA 1: Problema 8

Respuestas:

a Las componentes cartesianas de la fuerza $(\vec{F_3})$ que debe ejercer el resorte único son:

 $ec{F}_3$

$$\begin{split} \vec{F_3} &= \left(\frac{\sqrt{3}\,K_1\,\Delta\ell_1}{2} + \frac{K_2\,\Delta\ell_2}{2}\right)\,\hat{i} + \left(\frac{K_1\,\Delta\ell_1}{2} - \frac{\sqrt{3}\,K_2\,\Delta\ell_2}{2}\right)\,\hat{j} \\ &\approx (0.1979, -0.1628)\,\,N. \end{split}$$

b La dirección (dada por ángulo $\alpha,$ expresada en radianes, respecto de $+\hat{x})$ es:

a

 $\alpha \approx -0.6884$.

c La enlongación del resorte único $(\Delta \ell_3)$ es:

 $\Lambda \ell$

 $\Delta \ell_3 = 51,2516 \, cm.$

GUÍA 1: Problema 9

Respuestas:

a El estiramiento $(\Delta \ell)$ es:

 $\Delta \ell$

$$\Delta \ell_1 = \Delta \ell_2 = \ell$$
en el caso a), mientras que $\Delta \ell_1 = \ell \left(\frac{k_2}{k_1 + k_2}\right)$ y
$$\Delta \ell_2 = \ell \left(\frac{k_1}{k_1 + k_2}\right) \text{ para el caso b)}.$$

b El caso en el cual la fuerza ejercida es mayor es:

Mayor fuerza (\vec{F})

caso a), resortes "en paralelo".

c El valor de la constante elástica equivalente $\left(k_{Eq}\right)$ es:

Constante elástica k_{Eq}

$$k_{Eq} = k_1 + k_2$$
, en el caso a), y $\frac{1}{k_{Eq}} = \frac{1}{k_1} + \frac{1}{k_2}$
 $\implies k_{Eq} = \frac{k_1 k_2}{k_1 + k_2}$, en el caso b).

GUÍA 1: Problema 10

Respuestas:

a El apartamiento $|y-\ell_0|$, respecto de la longitud natural, ℓ_0 es:

 $y - \ell_0$

$$|y-\ell_0|=\frac{g\,m}{K}$$
para el caso a) y $|y-\ell_0|=\frac{1}{2}\frac{g\,m}{K}$ para el caso b).