Mathematical Statistics: Midterm Exam

Name:

Net ID:
You may use your notes and the course lecture notes, but no other sources. The test is out of 50 points . There are two sections: a true or false section with five questions (worth 15 points total), and a free response section with four questions (worth 35 points total).
True or false [3 pt each: 1 pt for correct answer, 2 pts for justification]
1. All unbiased estimators are consistent.
2. All consistent estimators are unbiased.

3. Fix a model $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$. If C is a $1 - \alpha$ confidence set for θ , then the test

$$\psi(\omega) = \begin{cases} 0 & \exists \theta_0 \in \Theta_0 : \theta_0 \in C(\omega) \\ 1 & \text{otherwise} \end{cases}$$

has level α .

4. If $\sqrt{n}(T_n - \mu) \stackrel{d}{\to} Z$ for some $\mu \in \mathbb{R}$ and $Z \sim \mathcal{N}(0, 1)$, then $\sqrt{n}(T_n^2 - \mu^2) \stackrel{d}{\to} Z^2$.

3

5. The mean squared error of an estimator never depends on the true value of the parameter.

ANOVA model [35 pts total] Given positive integers n_1, \ldots, n_k , consider independent observations Y_{ij} , $i = 1, \ldots, k, j = 1, \ldots, n_i$ satisfying

$$Y_{ij} = \theta_i + \varepsilon_{ij} \,,$$

where $\theta_1, \dots, \theta_k \in \mathbb{R}$ are unknown and the random variables ε_{ij} are all independent and satisfy

$$\mathbb{E}\varepsilon_{ij} = 0$$
, $\operatorname{Var}\varepsilon_{ij} = \sigma^2$,

where we assume for simplicity that σ is known. This is called the ANOVA model, and it is used to understand the differences between different groups of test subjects.

1. [5 pts] Fix $t = (t_1, ..., t_k)$. Propose an estimator for $\sum_{i=1}^k t_i \theta_i$, and calculate its bias and variance.

2. [5 pts] Assume that the random variables ε_{ij} are σ^2 -subgaussian. Given $\alpha \in (0,1)$, construct a $1-\alpha$ confidence set for $\sum_{i=1}^k t_i \theta_i$.

3. [10 pts] Assuming as above that the random variables ε_{ij} are σ^2 -subgaussian, construct a confidence set $C \subseteq \mathbb{R}^k$ such that

$$\mathbb{P}_{\theta} \{ (\theta_1, \dots, \theta_k) \in C \} \ge 1 - \alpha.$$

Comment on the difference between the confidence set constructed in this set and the confidence set constructed in Part 2.

4. [15 pts] Assuming now that the random variables ε_{ij} are i.i.d. $\mathcal{N}(0, \sigma^2)$. Write explicitly the test statistic for a likelihood ratio test between

$$\Theta_0 := \{ (\theta_1, \dots, \theta_k) : \theta_1 = \dots = \theta_k \}$$

$$\Theta_1 := \mathbb{R}^k \setminus \Theta_0.$$

Give an intuitive interpretation of this statistic.

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK