UC Berkeley Department of Statistics

STAT 210A: Introduction to Mathematical Statistics

Problem Set 11

Fall 2014

Problem 11.1

(Sub-Gaussian bounds and means/variances). Consider a random variable X such that

$$\mathbb{E}[e^{\lambda X}] \le e^{\frac{\lambda^2 \sigma^2}{2} + \lambda \mu}$$

for all $\lambda \in \mathbb{R}$.

- (a) Show that $\mathbb{E}[X] = \mu$.
- (b) Show that $Var(X) < \sigma^2$.
- (b) Suppose that the smallest possible σ satisfying the inequality above is chosen. Is it then true that $Var(X) = \sigma^2$? Prove or disprove.

Problem 11.2

(Gaussian maxima). Let $\{X_i\}_{k=1}^n$ be an i.i.d. sequence of $N(0, \sigma^2)$ random variables, and consider the random variable $Z = \max_{k=1,\dots,n} |X_k|$.

(a) Prove that

$$\mathbb{E}[Z] \le \sqrt{2\sigma^2 \log n} + \frac{4\sigma}{\sqrt{2\log n}} \quad \text{ for all } n \ge 2.$$

(*Hint*): You may use the tail bound $P(U \ge \delta) \le \sqrt{\frac{2}{\pi}} \frac{1}{\delta} e^{-\delta^2/2}$, valid for any standard Gaussian normal variate.

(b) Prove that

$$\mathbb{E}[Z] \ge (1 - 1/e)\sqrt{2\sigma^2 \log n}$$
 for all $n \ge 5$.

(c) Prove that $\frac{\mathbb{E}[Z]}{\sqrt{2\sigma^2 \log n}} \to 1$ as $n \to \infty$.

Problem 11.3

(Bernstein and expectations). Consider a nonnegative random variable that satisfies a concentration inequality of the form

$$P(Z \ge t) \le Ce^{-\frac{t^2}{2(\nu^2 + B)}}$$

for positive constants (ν, b) and $C \ge 1$.

- (a) Show that $\mathbb{E}[Z] \leq 2\nu(\sqrt{\pi} + \sqrt{\log C}) + 4B(1 + \log C)$.
- (b) Let $\{X_k\}_{k=1}^n$ be an i.i.d. sequence of zero-mean variables satisfying the Bernstein condition (2.16). Use part (a) to show that

$$\mathbb{E}\left[\left|\frac{1}{n}\sum_{k=1}^{n}X_{k}\right|\right] \leq \frac{2\sigma}{\sqrt{n}}(\sqrt{\pi} + \sqrt{\log 2}) + \frac{4b}{n}(1 + \log 2).$$

Problem 11.4

(Sub-Gaussian random matrices). Consider the random matrix Q = gB, where $g \in \mathbb{R}$ is a zero-mean sub-Gaussian variable with parameter σ .

- (a) Assume that g has a distribution symmetric around zero, and $B \in \mathcal{S}^{d \times d}$ is a deterministic matrix. Show that Q is sub-Gaussian with matrix parameter $V = c^2 \sigma^2 B^2$, for some universal constant c.
- (b) Now assume that $B \in \mathcal{S}^{d \times d}$ is random and independent of g, with the operator norm of B upper bounded by a constant b almost surely. Now show that Q is sub-Gaussian with matrix parameter $V = c^2 b^2 \sigma^2 I_{d \times d}$.