Natural Convection: Correlations and slides

- Pertinent Dimensionless Parameters
 - > Grashof Number:

$$Gr_L = \frac{g\beta(T_s - T_{\infty})L^3}{v^2} \square \frac{\text{Buoyancy Force}}{\text{Viscous Force}}$$

 $L \rightarrow$ characteristic length of surface

 $\beta \rightarrow$ coefficient of thermal expansion

$$\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p}$$

Perfect Gas: $\beta = 1/T(K)$

Rayleigh Number:

$$Ra_L = Gr_L \Pr = \frac{g\beta(T_s - T_{\infty})L^3}{v\alpha}$$

- Mixed Convection
 - ➤ A condition for which forced and free convection effects are comparable.

$$ightharpoonup$$
 Exists if $\frac{Gr_L}{Re_L^2} \sim O(1)$

➤ Heat Transfer Correlations for Mixed Convection:

$$Nu^n \approx Nu_{FC}^n \pm Nu_{NC}^n$$

- $+ \rightarrow$ assisting and transverse flows
- \rightarrow opposing flows

$$n \approx 3$$

Vertical Plates

• Free Convection Boundary Layer Development on a Heated Plate:

- Ascending flow with the maximum velocity occurring in the boundary layer and zero velocity at both the surface and outer edge.
- \triangleright How do conditions differ for a cooled plate $(T_s < T_{\infty})$?

• Form of the *x*-Momentum Equation for Laminar Flow

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = g\beta(T - T_{\infty}) + v\frac{\partial^{2}u}{\partial y^{2}}$$
Net Momentum Fluxes Buoyancy Force Viscous Force

 \triangleright Temperature dependence requires that solution for u(x,y) be obtained concurrently with solution of the boundary layer energy equation for T(x,y).

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2}$$

(Inertia Forces)

- The equations and solutions are said to be <u>coupled</u>.

Derivation – Similarity Solution out of scope for this class

 \triangleright Nusselt Numbers $(Nu_x \text{ and } \overline{Nu}_L)$:

$$Nu_{x} = \frac{hx}{k} = -\left(\frac{Gr_{x}}{4}\right)^{1/4} \frac{dT^{*}}{d\eta} \bigg|_{\eta=0} = \left(\frac{Gr_{x}}{4}\right)^{1/4} g\left(\Pr\right)$$

$$g\left(\Pr\right) = \frac{0.75 \Pr^{1/2}}{\left(0.609 + 1.221 \Pr^{1/2} + 1.238 \Pr\right)^{1/4}} \qquad \left(0 < \Pr < \infty\right)$$

$$\overline{h} = \frac{1}{L} \int_{0}^{L} h \, dx \to \overline{Nu}_{L} = \frac{4}{3} Nu_{L}$$

- Transition to Turbulence
 - ➤ Amplification of disturbances depends on relative magnitudes of buoyancy and viscous forces.
 - ➤ Transition occurs at a critical Rayleigh Number.

$$Ra_{x,c} = Gr_{x,c} \Pr = \frac{g\beta(T_s - T_{\infty})x^3}{v\alpha} \approx 10^9$$

- Empirical Heat Transfer Correlations
 - ightharpoonup Laminar Flow $\left(Ra_L < 10^9\right)$:

$$\overline{Nu}_{L} = 0.68 + \frac{0.670 Ra_{L}^{1/4}}{\left[1 + \left(0.492 / \text{Pr}\right)^{9/16}\right]^{4/9}}$$

➤ Turbulent Flow (note this is average over entire length – no need to average over laminar and turbulent lengths separately)

$$\overline{Nu}_{L} = \left\{ 0.825 + \frac{0.387 Ra_{L}^{1/6}}{\left[1 + \left(0.492 / \Pr \right)^{9/16} \right]^{4/9}} \right\}^{2}$$

 \triangleright Note that average Nu varies as $Ra_L^{1/3}$

Horizontal Plates

- Buoyancy force is normal, instead of parallel, to the plate.
- Flow and heat transfer depend on whether the plate is heated or cooled and whether it is facing upward or downward.
- Heated Surface Facing Upward or Cooled Surface Facing Downward

How does \overline{h} depend on L when $\overline{Nu}_L \propto Ra_L^{1/3}$?

• Heated Surface Facing Downward or Cooled Surface Facing Upward

Inclined Plates

• Refer to class notes

The Long Horizontal Cylinder

• Boundary Layer Development and Variation of the Local Nusselt Number for a Heated Cylinder:

• The Average Nusselt Number:

$$\overline{Nu}_D = \left\{ 0.60 + \frac{0.387 R a_D^{1/6}}{\left[1 + \left(0.559 / \text{Pr} \right)^{9/16} \right]^{8/27}} \right\}^2$$

$$Ra_D < 10^{12}$$

Spheres

• The Average Nusselt Number:

$$\overline{Nu}_D = 2 + \frac{0.589 Ra_D^{1/4}}{\left[1 + \left(0.469/\text{Pr}\right)^{9/16}\right]^{4/9}}$$

Natural Convection through channels

- Refer to class notes
 - Limits large spacing and narrow spacing
 - Concept of optimal spacing for maximum heat transfer from an array of vertical plates under forced convection
 - <u>Correlations of Bar Cohen and Rohsenow</u> for different boundary conditions (refer Incropera and Dewitt)