第3章 特殊函数及其应用

- § 3.1 Laplace 算子
- § 3.2 圆域上的 Helmholtz 方程
- § 3.3 Bessel 方程与 Bessel 函数
- § 3.4 Bessel 方程特征值问题及Bessel 函数的应用
- § 3.5 球形域上的 Laplace 方程
- § 3.6 Legendre 方程与 Legendre 函数
- § 3.7 Legendre 方程特征值问题及Legendre 函数应用

问题: 1) 分离变量法与坐标系的关系?

2) 应用时如何确定S-L框架?

3) 特殊函数在这里扮演什么样的角色?

§ 3.1 Laplace 算子

例:高维热传导方程

$$\begin{cases} u_t(X,t) = a^2 \Delta u(X,t) & X \in \Omega \subset \mathbb{R}^n, t > 0 \\ u|_{\partial\Omega} = 0 & u|_{t=0} = \varphi \end{cases}$$

注: 齐次(第一类)边界条件

令 u(X,t) = U(X)T(t) (分离时间与空间变量)

$$\Rightarrow \frac{T'}{a^2T} = \frac{\Delta U}{U} = -\lambda \quad (\lambda 为待定常数)$$

$$\Rightarrow \begin{cases} T' + \lambda a^2 T = 0 \\ \Delta U + \lambda U = 0 \end{cases}$$
 — Helmholtz 方程

注: 高维发展方程 → 求解 Helmholtz 方程 + 边界条件

(Ω 上 Laplace 算子的特征值问题)

例: Poisson 方程

$$\begin{cases} \Delta u = f & X \in \Omega \subset \mathbb{R}^n \\ u|_{\partial\Omega} = 0 & \end{cases}$$

注: 齐次(第一类)边界条件

想法: 求解 Ω 上 Laplace 算子的特征值问题

- → 特征函数族
- → 沿特征函数展开(特征函数法)

综上,三大典型方程高维问题转化为:

求解 $\Delta U + \lambda U = 0$ (齐次边界条件)

或者 $\Delta U = 0$ (非齐次边界条件)

注: Laplace 方程可看成 Helmholtz 方程中λ = 0

Laplace 算子在常见坐标中的表达式

平面极坐标: (r, θ)

$$\begin{cases} x = r \cos \theta & (0 \le \theta < 2\pi) \\ y = r \sin \theta & \end{cases}$$

$$\Delta v = v_{xx} + v_{yy}$$

$$= v_{rr} + \frac{1}{r} v_r + \frac{1}{r^2} v_{\theta\theta}$$

$$= \frac{1}{r} (r v_r)_r + \frac{1}{r^2} v_{\theta\theta} \qquad (5\pi)$$

注: Laplace 算子的表达式与角度取值范围无关

柱坐标: (r, θ, z)

$$\begin{cases} x = r \cos \theta & (0 \le \theta < 2\pi) \\ y = r \sin \theta & z = z \end{cases}$$

$$(x, y, z)$$

$$(x, y, z)$$

$$x$$

$$\theta$$

$$\Delta v = v_{xx} + v_{yy} + v_{zz}$$

$$= v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} + v_{zz}$$

$$= \frac{1}{r} (rv_r)_r + \frac{1}{r^2} v_{\theta\theta} + v_{zz}$$

球坐标: (r, ϕ, θ)

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$$

$$\Delta v = v_{xx} + v_{yy} + v_{zz}$$

$$= \frac{1}{r^2} (r^2 v_r)_r + \frac{1}{r^2} \left(v_{\theta\theta} + \cot \theta v_{\theta} + \frac{1}{\sin^2 \theta} v_{\phi\phi} \right)$$

$$= \frac{1}{r^2} (r^2 v_r)_r + \frac{1}{r^2} \left(\frac{1}{\sin \theta} (\sin \theta v_\theta)_\theta + \frac{1}{\sin^2 \theta} v_{\phi\phi} \right)$$

 $(0 \le \phi < 2\pi)$

 $(0 \le \theta \le \pi)$ $(0 \le \phi \le 2\pi)$

球面 Laplace 算子

(练习)

Laplace 算子在平移、正交变换下保持不变

不失一般性, 仅以二维情形说明

若
$$\begin{cases} \bar{x} = ax + by + e \\ \bar{y} = cx + dy + f \end{cases}$$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 则 $u_{\bar{x}\bar{x}} + u_{\bar{y}\bar{y}} = u_{xx} + u_{yy}$ 可直接验证(练习)

注: 平移不变性显然

§ 3. 2 圆域上的 Helmholtz 方程

方程:
$$\begin{cases} u_{xx} + u_{yy} + \lambda u = 0 \\ u|_{x^2 + y^2 = r_0^2} = 0 \end{cases}$$

$$x^{2} + y^{2} < r_{0}^{2}$$

(λ 为待定常数)

注: 齐次(第一类)边界条件

区域形状 → 使用极坐标

$$\Rightarrow \begin{cases} u_{rr} + \frac{1}{r}u_{r} + \frac{1}{r^{2}}u_{\theta\theta} + \lambda u = 0 & 0 < r < r_{0}, \ 0 < \theta < 2\pi \\ u(r_{0}, \theta) = 0 & 0 \le \theta < 2\pi \\ \hline{\lim_{r \to 0^{+}}} |u(r, \theta)| < \infty & -\mathbf{elk}$$

$$u(r, 0) = u(r, 2\pi) \\ u_{\theta}(r, 0) = u_{\theta}(r, 2\pi) & \mathbf{elk}$$

$$u_{\theta}(r, 0) = u_{\theta}(r, 2\pi) & \mathbf{elk}$$

$$u_{\theta}(r, 0) = u_{\theta}(r, 2\pi) & \mathbf{elk}$$

令
$$u(r,\theta) = R(r)\Phi(\theta)$$
 (分离变量)

方程
$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} + \lambda u = 0$$

方程
$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} + \lambda u = 0$$

$$\Rightarrow R''\Phi + \frac{1}{r}R'\Phi + \frac{1}{r^2}R\Phi'' + \lambda R\Phi = 0$$

$$\Rightarrow \frac{r^2R'' + rR'}{R} + \lambda r^2 = -\frac{\Phi''}{\Phi} = \mu$$

$$\Rightarrow \begin{cases} r^2 R'' + rR' + (\lambda r^2 - \mu)R = 0 \\ \Phi'' + \mu \Phi = 0 \end{cases}$$

周期条件
$$\Rightarrow$$

$$\begin{cases} \Phi(0) = \Phi(2\pi) \\ \Phi'(0) = \Phi'(2\pi) \end{cases}$$

自然条件
$$\Rightarrow |R(0)| < \infty$$

(μ为待定常数)

先解
$$\begin{cases} \Phi'' + \mu \Phi = 0 \\ \Phi(0) = \Phi(2\pi) \qquad \Phi'(0) = \Phi'(2\pi) \end{cases}$$

讨论可知(练习)
$$0 \le \mu = n^2$$
 $(n = 0, 1, 2, \cdots)$

$$(n = 0, 1, 2, \cdots)$$

且
$$\Phi_n(\theta) = A_n \cos n\theta + B_n \sin n\theta$$

再解
$$r^2R'' + rR' + (\lambda r^2 - \mu)R = 0$$

$$\Rightarrow r^2R'' + rR' + (\lambda r^2 - n^2)R = 0$$

作变量代换
$$x = \sqrt{\lambda}r$$
 $f(x) = R(\frac{x}{\sqrt{\lambda}}) = R(r)$

$$\Rightarrow x^2 f'' + x f' + (x^2 - n^2) f = 0 \qquad \sqrt{\lambda} f'(x) = R'(r)$$

$$\sqrt{\lambda}f'(x) = R'(r)$$

注: λ 若为负值,则 x为复变量 n阶 (标准) Bessel 方程

注: 柱坐标下的 Helmholtz/Laplace 方程(柱形区域)

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} + u_{zz} + \lambda u = 0$$

令
$$u(r,\theta,z) = R(r)\Phi(\theta)Z(z)$$
 (分离变量)

$$\Rightarrow R''\Phi Z + \frac{1}{r}R'\Phi Z + \frac{1}{r^2}R\Phi''Z + R\Phi Z'' + \lambda R\Phi Z = 0$$

$$\Rightarrow \frac{r^2R'' + rR'}{R} + \lambda r^2 + r^2 \frac{Z''}{Z} = -\frac{\Phi''}{\Phi} = \mu$$

$$\int \Phi'' + \mu \Phi = 0 \qquad (\mu 为待定常数)$$

$$\begin{cases} \Phi'' + \mu \Phi = 0 & (\mu)$$
 (μ 为待定常数)
$$\Rightarrow \begin{cases} Z'' + \alpha Z = 0 & (\alpha)$$
 为待定常数)
$$r^2 R'' + rR' + [(\lambda - \alpha)r^2 - \mu]R = 0 \end{cases}$$

$$r^{2}R'' + rR' + [(\lambda - \alpha)r^{2} - \mu]R = 0$$

作变量代换
$$x = \sqrt{\lambda - \alpha} r$$
 $f(x) = R(\frac{x}{\sqrt{\lambda - \alpha}}) = R(r)$ $\Rightarrow x^2 f'' + x f' + (x^2 - \mu) f = 0$ $(x \text{ 可能为复数})$ $\Rightarrow x^2 f'' + x f' + (x^2 - n^2) f = 0$ $(n \text{ phease})$ $\Rightarrow x^2 f'' + x f' + (x^2 - n^2) f = 0$ $(n \text{ phease})$

- 结论:(1) 求解柱坐标下的 Helmholtz/Laplace 方程的关键转化为求解 n 阶 Bessel 方程
 - (2) 可应用于<mark>圆形区域或柱形区域上的二阶</mark> 典型偏微分方程

— Wave, Heat, Poisson, Laplace

§ 3. 3 Bessel 方程与 Bessel 函数

§ 3. 3. 1 二阶线性常微分方程的解析理论

对于变系数的常微分方程,它们的解一般不能用初等函数表示,求它们的幂级数解是较有效的方法。

为了求解Bessel 方程与Legendre 方程,我们引入关于幂级数解法的两个重要定理。

在复数域上考察二阶线性常微分方程

$$w''(z) + p(z)w'(z) + q(z)w(z) = 0$$
 (A)

z 为复变量, w=w(z) 为未知函数, p(z), q(z) 是已知函数。

- 定义(1) 若 z_0 是 p(z), q(z) 的解析点,则称 z_0 是 方程(A)的常点。
 - (2) 若 z_0 是 p(z) 的至多一级极点, 是 q(z) 的至多二级极点, 则称 z_0 是 方程(A)的正则奇点。

Cauchy定理 设 p(z), q(z) 在 $|z-z_0| < R$ 内解析,则初值问题

$$\begin{cases} w''(z) + p(z)w'(z) + q(z)w(z) = 0\\ w(z_0) = \alpha, w'(z_0) = \beta \end{cases}$$
(B)

在圆域 $|z-z_0| < R$ 内的解存在且唯一。

如果选取两组线性无关的初值 $(\alpha_1, \beta_1), (\alpha_2, \beta_2), \alpha_1 | z - z_0 | < R$ 内,

可采用幂级数方法求出方程(A)的线性无关的两个解析解

$$w_1(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \ w_2(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n,$$

从而得到通解 $w(z) = C_1 w_1(z) + C_2 w_2(z)$.

Fuchs (富克斯) 定理 设 z_0 是 方程 (A) 的正则奇点,即 $(z-z_0)p(z)$, $(z-z_0)^2q(z)$ 在 $|z-z_0|< R$ 内解析,则在空心圆域 $0<|z-z_0|< R$ 内,

方程(A)有另个线性无关解

$$w_1(z) = (z - z_0)^{\rho_1} \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$
 (C)

$$w_2(z) = \gamma w_1(z) \ln(z - z_0) + (z - z_0)^{\rho_2} \sum_{n=0}^{\infty} b_n (z - z_0)^n, \quad (D)$$

其中,系数 $a_0b_0 \neq 0$,常数 γ 可以为0,常数 ρ_1, ρ_2 称为正则奇点 z_0 的指标。

把形如
$$(z-z_0)^{\rho} \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 的级数称为广义幂级数。

注:(1)若 z_0 是 p(z) 的至少2级极点,或是 q(z) 的至少3级极点,或是它们的本性奇点,则称 z_0 是 方程(A)的非正则奇点。此时,方程(A)在空心圆域内有两个线性无关解,其形式等同于(C)或(D)式,但是求和指标的下限应改为 $-\infty$.

(2) 当常数 $\gamma \neq 0$ 或 ρ_1, ρ_2 至少有一个为非整数时,为保证单值解析性,空心圆域应理解为沿某支割线剪开后的带裂痕圆域。

§ 3. 3. 2 n 阶 Bessel 方程求解

n 阶 Bessel 方程
$$x^2 f'' + x f' + (x^2 - n^2) f = 0$$

近似地, 在x=0 附近

Bessel 方程 ≈ Euler 方程

即

$$x^2 f'' + x f' - n^2 f \approx 0$$
 $(|x| \ll 1)$

将Bessel 方程的通解表示为

$$f(x) = c_1 f_1(x) + c_2 f_2(x)$$

进而期望当 | x |≪1时

$$f_1(x) \sim \begin{cases} x^n & n > 0 \\ 1 & n = 0 \end{cases}$$
 $f_2(x) \sim \begin{cases} x^{-n} & n > 0 \\ \ln|x| & n = 0 \end{cases}$

求解 n 阶 Bessel 方程

$$x^2 f'' + x f' + (x^2 - n^2) f = 0$$

注:n为参数,可实可复

$$\Rightarrow f'' + \frac{1}{x}f' + \frac{x^2 - n^2}{x^2}f = 0$$

只考虑 $n \in \mathbb{R}$,不妨设 $n \ge 0$

尝试广义幂级数形式解

$$f(x) = x^{c} \sum_{k=0}^{\infty} a_{k} x^{k} = \sum_{k=0}^{\infty} a_{k} x^{k+c} \qquad (a_{0} \neq 0)$$

这里 c, a_k 为待定常数 $(k = 0, 1, 2, \cdots)$

$$x^2 f'' + xf' + (x^2 - n^2)f = 0$$

直接计算可得

直接计算可得
$$xf' = \sum_{k=0}^{\infty} (k+c)a_k x^{k+c}$$

$$x^2 f'' = \sum_{k=0}^{\infty} (k+c)(k+c-1)a_k x^{k+c}$$

$$\Rightarrow \sum_{k=0}^{\infty} (k+c)^2 a_k x^{k+c} + (x^2 - n^2) \sum_{k=0}^{\infty} a_k x^{k+c} = 0$$

$$\Rightarrow (c^2 - n^2)a_0 x^c + \lceil (1+c)^2 - n^2 \rceil a_1 x^{1+c}$$

$$+\sum_{k=2}^{\infty} x^{k+c} \left[\left((k+c)^2 - n^2 \right) a_k + a_{k-2} \right] = 0$$

$$\Rightarrow \begin{cases} (c^{2} - n^{2}) a_{0} = 0 \\ \left[(1+c)^{2} - n^{2} \right] a_{1} = 0 \\ \left[\left((k+c)^{2} - n^{2} \right) a_{k} + a_{k-2} \right] = 0 \end{cases} \qquad k = 2, 3, \cdots$$

$$\Rightarrow \begin{cases} c^{2} - n^{2} = 0 \\ (1+2c) a_{1} = 0 \\ k(k+2c) a_{k} + a_{k-2} = 0 \end{cases} \qquad k = 2, 3, \cdots$$

$$\frac{1}{2}$$

$$\Rightarrow \begin{cases} a_{1} = 0 \\ a_{k} = -\frac{a_{k-2}}{k(k+2c)} \end{cases} \qquad k = 2, 3, \cdots$$

$$\Rightarrow \begin{cases} a_{1} = a_{3} = a_{5} = \cdots = 0 \\ a_{2m} = -\frac{a_{2m-2}}{2m(2m+2c)} & m = 1, 2, \cdots \end{cases}$$

$$\Rightarrow a_{2m} = (-1)^{m} a_{0} \frac{1}{2m \cdot (2m-2) \cdot \cdots \cdot 4 \cdot 2}$$

$$\cdot \frac{1}{(2m+2c)(2m-2+2c) \cdot \cdots \cdot (2+2c)}$$

$$\Rightarrow a_{2m} = \frac{(-1)^{m} a_{0}}{2^{2m} m! (m+c)(m-1+c) \cdot \cdots \cdot (1+c)}$$

$$m = 1, 2, \cdots$$

从而, 当c = n 时, 可得到广义幂级数解

$$f_1(x) = \sum_{m=0}^{\infty} a_{2m} x^{2m+c}$$

$$=\sum_{m=0}^{\infty}\frac{(-1)^m a_0}{2^{2m}m!(m+c)(m-1+c)\cdots(1+c)}x^{2m+c}$$

注: (1) a_0 的取值可确定此解

(2)
$$f_1(x) \sim x^n \quad (|x| \ll 1)$$

问题: (1) a_0 取何值应用时较为方便?

(2) 如何求另一个(与 f_1 线性无关的)解?

$$f_1(x) = \sum_{m=0}^{\infty} \frac{(-1)^m a_0}{2^{2m} m! (m+c)(m-1+c) \cdots (1+c)} x^{2m+c}$$

取
$$a_0 = \frac{1}{2^c \Gamma(1+c)}$$
 Gamma 逐数 $c=n$

$$c = n$$

$$\Rightarrow f_1(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+1+c)} \left(\frac{x}{2}\right)^{2m+c}$$

$$=\sum_{m=0}^{\infty}\frac{(-1)^m}{m!\Gamma(m+1+n)}\left(\frac{x}{2}\right)^{2m+n}$$

$$=: J_n(x)$$

$$s\Gamma(s) = \Gamma(s+1) \quad \forall s > 0$$

第一类 n 阶 Bessel 函数

$$c^{2}-n^{2}=0$$

 $(1+2c)a_{1}=0$
 $k(k+2c)a_{k}+a_{k-2}=0$ $k=2,3,\cdots$

再尝试
$$c = -n$$
 (只需考虑 $n > 0$)

情形 1 2n ∉ Z

$$\Rightarrow k + 2c = k - 2n \neq 0$$

$$k=\underline{1},2,\cdots$$

$$\Rightarrow \begin{cases} a_1 = 0 \\ a_k = -\frac{a_{k-2}}{k(k+2c)} \end{cases} \qquad k = 2, 3, \dots$$

⇒
$$\begin{cases} a_{2m-1} = 0 & m = 1, 2, \dots \\ a_{2m} = \frac{(-1)^m a_0}{2^{2m} m! (m+c)(m-1+c) \dots (1+c)} \end{cases}$$

$$c^{2} - n^{2} = 0$$

$$(1+2c) a_{1} = 0$$

$$k(k+2c) a_{k} + a_{k-2} = 0$$

$$k = 2, 3, \dots$$

情形 2 2n 为奇数 (c=-n)

$$\Rightarrow \exists 0 \le m_0 \in \mathbb{Z}$$
 s.t. $2m_0 + 1 + 2c = 0$

$$\Rightarrow \begin{cases} a_{2m} = \frac{(-1)^m a_0}{2^{2m} m! (m+c)(m-1+c) \cdots (1+c)} \\ a_1 = a_3 = a_5 = \cdots = a_{2m_0-1} = 0 \end{cases}$$

$$m = 1, 2, \cdots$$

可选取
$$a_{2m_0+1} = 0$$
 (与递归等式相容)

$$\Rightarrow a_{2m-1} = 0 \qquad m = 1, 2, \cdots$$

$$c^{2}-n^{2}=0$$

 $(1+2c)a_{1}=0$
 $k(k+2c)a_{k}+a_{k-2}=0$ $k=2,3,\cdots$

情形 3 2n 为偶数 $\Leftrightarrow c \in \mathbb{Z}^- \ (c = -n)$

$$\Rightarrow \exists m_0 \in \mathbb{Z}^+ \text{ s.t. } 2m_0 + 2c = 0$$

$$\Rightarrow a_{2m_0-2} = \dots = a_0 = 0$$
 (与 $a_0 \neq 0$ 矛盾)

综上,当 $c = -n \notin \mathbb{Z}^-$ 时,方程有广义幂级数解

$$f_2(x) = \sum_{m=0}^{\infty} a_{2m} x^{2m+c} \qquad \sim x^{-n} \quad (|x| \ll 1)$$

$$=\sum_{m=0}^{\infty}\frac{(-1)^m a_0}{2^{2m}m!(m+c)(m-1+c)\cdots(1+c)}x^{2m+c}$$

$$f_2(x) = \sum_{m=0}^{\infty} \frac{(-1)^m a_0}{2^{2m} m! (m+c)(m-1+c) \cdots (1+c)} x^{2m+c}$$

$$\mathfrak{P} a_0 = \frac{1}{2^c \Gamma(1+c)}$$

$$c = -n \notin \mathbb{Z}^-$$

$$\Rightarrow f_2(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+1+c)} \left(\frac{x}{2}\right)^{2m+c}$$

$$=\sum_{m=0}^{\infty}\frac{(-1)^m}{m!\Gamma(m+1-n)}\left(\frac{x}{2}\right)^{2m-n}$$

$$=: J_{-n}(x)$$

$$=: J_{-n}(x) \qquad s\Gamma(s) = \Gamma(s+1) \quad \forall s \notin \mathbb{Z}^- \cup \{0\}$$

第一类—n阶 Bessel 函数

$$J_{-n}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+1-n)} \left(\frac{x}{2}\right)^{2m-n} -n \notin \mathbb{Z}^-$$

注意到

$$\frac{1}{\Gamma(s)} = 0 \quad \forall s = 0, -1, -2, \cdots$$

对于 $-n \in \mathbb{Z}^-$, 可以形式上定义

$$J_{-n}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+1-n)} \left(\frac{x}{2}\right)^{2m-n}$$

注: (1) 此时前 n 项 $(0 \le m \le n-1)$ 为 0

(2)
$$J_{-n}(x) = (-1)^n J_n(x)$$
 $(n \in \mathbb{Z})$ (练习)

总结:(1) Bessel 方程具有广义幂级数解

$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+1+n)} \left(\frac{x}{2}\right)^{2m+n} \qquad (n \in \mathbb{R})$$

(2)
$$J_{n}(x) \sim x^{n} \qquad (n \notin \mathbb{Z})$$

$$J_{-n}(x) \sim x^{|n|} \sim J_{n}(x) \qquad (n \in \mathbb{Z})$$

$$(|x| \ll 1)$$

(3) 当 $n \notin \mathbb{Z}$ 时, Bessel 方程的通解为

$$f(x) = c_1 J_n(x) + c_2 J_{-n}(x)$$

注: 收敛性、可微性可直接验证 (练习)

问题: 当 $n \in \mathbb{Z}$ 时, Bessel 方程的通解如何表示?

第二类 Bessel 函数(又称Neumann函数)的构造

定义

$$Y_n(x) := \frac{J_n(x)\cos n\pi - J_{-n}(x)}{\sin n\pi} \qquad (n \notin \mathbb{Z})$$

注: 当 $n \notin \mathbb{Z}$ 时, $Y_n(x)$ 与 $J_n(x)$ 线性无关, 从而 Bessel

方程的通解可写为

$$f(x) = c_1 J_n(x) + c_2 Y_n(x) \qquad (n \notin \mathbb{Z})$$

定义

$$Y_n(x) := \lim_{s \to n} \frac{J_s(x) \cos s\pi - J_{-s}(x)}{\sin s\pi} \qquad (n \in \mathbb{Z})$$

$$\frac{0}{0}$$
 不定型

$$J_{-n}(x) = (-1)^n J_n(x) \quad (n \in \mathbb{Z})$$

应用 L'Hospital 法则可得(计算冗长)

$$Y_0(x) = \frac{2}{\pi} J_0(x) \left(\ln \frac{x}{2} + \gamma \right) - \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)^2} \left(\frac{x}{2} \right)^{2m} \sum_{k=0}^{m-1} \frac{1}{k+1}$$

$$Y_n(x) = \frac{2}{\pi} J_n(x) \left(\ln \frac{x}{2} + \gamma \right) - \frac{1}{\pi} \sum_{m=0}^{n-1} \frac{(n-m-1)^m}{m!} \left(\frac{x}{2} \right)^{2m-n}$$

$$-\frac{1}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(m+n)!} \left(\frac{x}{2}\right)^{2m+n} \left(\sum_{k=0}^{n+m-1} \frac{1}{k+1} + \sum_{k=0}^{m-1} \frac{1}{k+1}\right)$$

其中
$$(n=1,2,\cdots)$$

其中
$$\gamma = \lim_{k \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{k} - \ln k \right) = 0.57721 \dots$$
(Euler 常数)

注:(1)当|x|<1时,不失一般性只考虑x>0,

$$Y_n(x) \sim \begin{cases} \ln x & (n=0) \\ -x^{-n} & (n>0) \end{cases}$$

(2)
$$Y_{-n}(x) = (-1)^n Y_n(x)$$
 (n $\in \mathbb{Z}$) (练习)

从而 $n \ge 0$ 时 Bessel 方程的通解为

$$f(x) = c_1 J_n(x) + c_2 Y_n(x)$$

注: 从第一类 Bessel 函数可以衍生出 Bessel 方程的 多种形式的解,如第三类Bessel函数,又称Hankel函数 (可参阅书中第 93页)

第一类 Bessel 函数的性质

常用递推公式: $\forall n \in \mathbb{R}$

$$(1) \quad \frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x)$$

(2)
$$\frac{d}{dx} \left[x^{-n} J_n(x) \right] = -x^{-n} J_{n+1}(x)$$

$$\Rightarrow$$
 (3) $xJ_{n}'(x) + nJ_{n}(x) = xJ_{n-1}(x)$

(4)
$$x J_n'(x) - n J_n(x) = -x J_{n+1}(x)$$

$$\Rightarrow$$
 (5) $x J_{n-1}(x) + x J_{n+1}(x) = 2n J_n(x)$

(6)
$$J_{n-1}(x) - J_{n+1}(x) = 2J_n'(x)$$

- 注: (1) 公式 (4) $\Rightarrow J_0'(x) = -J_1(x)$,根据递推公式, 掌握了 $J_0(x)$ 理论上就可了解 $J_n(x)$ ($n \in \mathbb{Z}$)
 - (2) 递推公式可用来计算有关 $J_n(x)$ 的积分

(3)
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x \qquad J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

- ⇒ $J_{n+\frac{1}{2}}(x)$ $(n \in \mathbb{Z})$ 为初等函数(仅有的!)
- (4) 第二类 Bessel 函数有同样的递推公式

§ 3. 3. 3 Bessel 函数无穷远渐近表示与零点

$$J_n(x) = \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right) + O(x^{-\frac{3}{2}}) \quad (x \gg 0)$$

 $J_n(x)$ 有无穷多正值零点,记为 Damped Cosine $0 < \mu_1^{(n)} < \mu_2^{(n)} < \dots < \mu_m^{(n)} < \dots$

- 注:(1)上述渐近公式的证明比较复杂
 - (2) $\mu_m^{(n)}$ 一般没有确定的公式表达(有数值表)
 - (3) $\lim_{m\to\infty} \left[\mu_{m+1}^{(n)} \mu_m^{(n)} \right] = \pi$
 - (4) $Y_n(x) = \sqrt{\frac{2}{\pi x}} \sin\left(x \frac{n\pi}{2} \frac{\pi}{4}\right) + O(x^{-\frac{3}{2}}) \quad (x \gg 0)$

Bessel 函数的零点在特征值问题中有重要意义。由渐进表达式,

 $J_n(x)$, $Y_n(x)$ 都有无穷多个实零点。

$$J_{n}(x) = \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+1+n)} \left(\frac{x}{2}\right)^{2m+n} \qquad (n \in \mathbb{R})$$

下面是一些关于Bessel 函数零点的重要结论(证明略):

- (1) 当 n > -1 时, $J_n(x)$ 所有零点都在实轴上, 且非0零点都是1级的。
- (2) $J_n(x)$ 的零点在实轴上关于原点是对称分布的。 (:: $J_n(-x) = (-1)^n J_n(x)$)
- (3) 当 $n \in \mathbb{Z}$ 时, 0是 $J_n(x)$ 的 |n| 级零点; 当 $n \notin \mathbb{Z}$ 时, 0是 $J_n(x)$ 的支点。

(4) $J_n(x)$ 与 $J_{n+1}(x)$ 的零点是彼此相间的,即 $J_n(x)$ 的任意两个相邻实零点之间必存在且只有一个 $J_{n+1}(x)$ 的零点。 $J_n(x)$ 与 $J_{n+1}(x)$ 无非0的公共零点。 $J_n(x)$ 第一个正零点小于 $J_{n+1}(x)$ 的第一个正零点。 (5) $J'_n(x)$ 与 $J_n(x) + hxJ'_n(x)$ (h为常数)都有无穷多个实零点。

From N. Asmar, PDEs with Fourier Series and Boundary Value Problems, Second Edition

From N. Asmar, PDEs with Fourier Series and Boundary Value Problems, Second Edition

第一类Bessel函数的正值零点数值表

$\mu_m^{(n)}$ n	0	1	2	3	4	5
1	2.405	3.832	5.136	6.380	7.588	8.771
2	5.520	7.016	8.417	9.761	11.065	12.339
3	8.654	10.173	11.620	13.015	14.373	15.700
4	11.792	13.324	14.796	16.223	17.616	18.980
5	14.931	16.471	17.960	19.409	20.827	22.218
6	18.071	19.616	21.117	22.583	24.019	25.430
7	21.212	22.760	24.270	25.748	27.199	28.627
8	24.352	25.904	27.421	28.908	30.371	31.812
9	27.493	29.047	30.569	32.065	33.537	34.989

引自《数学物理方程与特殊函数》(第三版), 王元明编

第二类Bessel函数

From N. Asmar, PDEs with Fourier Series and Boundary Value Problems, Second Edition

§ 3. 3. 4 虚变量 Bessel 方程

柱坐标下的 Laplace 方程 (柱形区域)

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} + u_{zz} = 0$$
令 $u(r,\theta,z) = R(r)\Phi(\theta)Z(z)$ (分离变量)
$$\Rightarrow R''\Phi Z + \frac{1}{r}R'\Phi Z + \frac{1}{r^2}R\Phi''Z + R\Phi Z'' = 0$$

$$\Rightarrow \frac{r^2R'' + rR'}{R} + r^2\frac{Z''}{Z} = -\frac{\Phi''}{\Phi} = \mu$$

$$\begin{cases} \Phi'' + \mu\Phi = 0 & (\mu \text{ 为待定常数}) \\ Z'' + \alpha Z = 0 & (\alpha \text{ 为待定常数}) \end{cases}$$

$$\Rightarrow \begin{cases} Z'' + \alpha Z = 0 & (\alpha \text{ 为待定常数}) \\ r^2R'' + rR' - [\alpha r^2 + \mu]R = 0 \end{cases}$$

$$r^{2}R'' + rR' - [\alpha r^{2} + \mu]R = 0$$

作变量代换
$$x = \sqrt{\alpha}r$$
 $f(x) = R(\frac{x}{\sqrt{\alpha}}) = R(r)$

$$\Rightarrow x^2 f'' + x f' - (x^2 + n^2) f = 0 \qquad (0 \le \mu = n^2)$$

称为n 阶虚变量Bessel方程。

再作变量代换 $\xi = ix$, 上述方程化为n阶Bessel方程

$$\Rightarrow \xi^2 f'' + \xi f' + (\xi^2 - n^2) f = 0$$

⇒ n 阶虚变量Bessel方程的通解为

$$f(x) = CJ_n(ix) + DY_n(ix)$$

引进两个实函数

$$I_{n}(x) \triangleq e^{-i\frac{n\pi}{2}} J_{n}(ix) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+1+n)} \left(\frac{x}{2}\right)^{2m+n},$$

$$K_{n}(x) \triangleq \begin{cases} \frac{\pi[-I_{n}(x) + I_{-n}(x)]}{\sin n\pi}, & n \notin \mathbb{Z} \\ \frac{\pi[-I_{n}(x) + I_{-n}(x)]}{\sin n\pi}, & n \notin \mathbb{Z} \end{cases}$$

$$\lim_{s \to n} \frac{\pi[-I_{s}(x) + I_{-s}(x)]}{\sin s\pi}, & n \in \mathbb{Z}$$

 $I_n(x)$, $K_n(x)$ 分别称为第一、第二类n阶虚变量Bessel函数。

可以证明 $I_n(x)$, $K_n(x)$ 不存在实零点,且

$$|I_n(0)| < +\infty, \lim_{x\to 0} |K_n(x)| = +\infty$$

n阶虚变量Bessel方程的通解为: $f(x) = AI_n(x) + BK_n(x)$.

§ 3. 4 Bessel 方程特征值问题 及Bessel 函数的应用

柱坐标下的 Helmholtz/Laplace 方程通过分离变量,得到关于R(r) 的Bessel 方程。如果在圆柱或圆盘上求解问题,则需配以边界条件,构成Bessel特征值问题

$$\begin{cases} r^{2}R'' + rR' + (\lambda r^{2} - v^{2})R = 0, & 0 < r < a \\ |R(0)| < +\infty, & \alpha R(a) + \beta R'(a) = 0 \end{cases}$$
 (1)

其中,有界性条件是由于r=0是方程的正则奇点而自然添加。

这是正则奇点下的S-L特征值问题,故有 $\lambda = \omega^2 \ge 0$.

令
$$x = \omega r$$
, $y(x) = R(\frac{x}{\omega}) = R(r)$, 则(1)式化为标准的Bessel方程 $x^2 y'' + xy' + (x^2 - v^2)y = 0$ (3)

(3) 的通解为

$$R(r) = CJ_{\nu}(\omega r) + DY_{\nu}(\omega r)$$

由于 $Y_{\nu}(x)$ 在 $x=0$ 处无界, $|R(0)| < +\infty \Rightarrow D=0$
$$\Rightarrow \alpha J_{\nu}(\omega a) + \beta J_{\nu}'(\omega a) = 0$$
 (4)

根据 $J_{\nu}(x)$ 的零点性质,可得特征值和特征函数如下;

Case 1. a 端为第1类边界条件(β =0)

$$\lambda_n = \omega_{1n}^2, n = 1, 2, \cdots, \quad \omega_{1n}$$
 是方程 $J_{\nu}(\omega a) = 0$ 的第 n 个正根,特征函数 $R_n(r) = J_{\nu}(\omega_{1n}r)$.

Case 2. a 端为第11类边界条件 (α =0)

$$\lambda_n = \omega_{2n}^2, n = 1, 2, \dots, \quad \omega_{1n}$$
 是方程 $J'_{\nu}(\omega a) = 0$ 的第 n 个正根,特征函数 $R_n(r) = J_{\nu}(\omega_{2n}r)$. 另加特征值 $\lambda_0 = 0, \quad R_0(r) = 1$.

Case 3. *a* 端为第111类边界条件

$$\lambda_n = \omega_{3n}^2, n = 1, 2, \cdots$$
, ω_{1n} 是方程 $\alpha J_{\nu}(\omega a) + \beta J_{\nu}'(\omega a) = 0$ 的第 n 个正根,特征函数 $R_n(r) = J_n(\omega_{3n}r)$.

由S-L定理,特征函数系
$$\{J_{\nu}(\omega_{1n}r)\}$$
, $\{1,J_{\nu}(\omega_{2n}r)\}$, $\{J_{\nu}(\omega_{3n}r)\}$

分别是函数空间 $L_r^2([0,a])$ 里的完备正交基底。

故对 $\forall f(r) \in L_r^2([0,a])$, 有Fourier-Bessel展开

$$f(r) = \sum_{n=0}^{+\infty} C_n J_{\nu}(\omega_{kn}r), \qquad C_n = \frac{1}{N_{\nu kn}^2} \int_0^a r f(r) J_{\nu}(\omega_{kn}r) dr,$$

其中, 模平方

$$N_{vkn}^2 = \int_0^a r J_v^2(\omega_{kn}r) dr.$$

例 求解 Helmholtz 方程:

$$\begin{cases} u_{xx} + u_{yy} + \lambda u = 0 & x^2 + y^2 < r_0^2 \\ u|_{x^2 + y^2 = r_0^2} = 0 & (\lambda 为待定常数) \end{cases}$$

使用分离变量法 $u(r,\theta) = R(r)\Phi(\theta)$

$$\Rightarrow \begin{cases} r^2 R'' + rR' + (\lambda r^2 - n^2)R = 0 & (0 \le n \in \mathbb{Z}) \\ |R(0)| < \infty & R(r_0) = 0 \end{cases}$$

注:(1)原方程两端同乘以u,分部积分可得

$$\int_{x^2 + y^2 < r_0^2} -|\nabla u|^2 + \lambda |u|^2 dx dy = 0 \implies \lambda > 0$$

(2) 第二类齐次边界条件蕴含 λ≥0 (练习)

$$r^2R'' + rR' + (\lambda r^2 - n^2)R = 0$$
 $(0 \le n \in \mathbb{Z}, \lambda > 0)$

$$(0 \le n \in \mathbb{Z}, \lambda > 0)$$

根据 Bessel 方程的通解公式可得

$$x = \sqrt{\lambda} r$$

$$R(r) = c_1 J_n(\sqrt{\lambda} r) + c_2 Y_n(\sqrt{\lambda} r)$$

$$|R(0)| < \infty$$

$$\Rightarrow R(r) = J_n(\sqrt{\lambda} r)$$
 (忽略常数 c_1)

$$R(r_0) = 0$$

$$\Rightarrow J_n(\sqrt{\lambda} r_0) = 0$$

$$\Rightarrow \sqrt{\lambda_m^{(n)}} = \frac{\mu_m^{(n)}}{r_0} \qquad (\mu_m^{(n)} \to J_n(x)$$
 的正值零点)

从而得到满足自然条件和边界条件的一族解

$$R_{mn}(r) = J_n(\frac{\mu_m^{(n)}}{r_0}r)$$
 $(0 \le n \in \mathbb{Z}, m \in \mathbb{Z}^+)$

$$\nabla \Phi_n(\theta) = A_n \cos n\theta + B_n \sin n\theta \qquad (0 \le n \in \mathbb{Z})$$

从而得到 Helmholtz 方程的解

$$J_{n}(\sqrt{\lambda_{m}^{(n)}} r) \cos n\theta \qquad (0 \le n \in \mathbb{Z}, m \in \mathbb{Z}^{+})$$

$$J_{n}(\sqrt{\lambda_{m}^{(n)}} r) \sin n\theta \qquad (n \in \mathbb{Z}^{+}, m \in \mathbb{Z}^{+})$$

圆域上 Laplace 算子的特征函数

$$\lambda = \lambda_m^{(n)} = \left(\frac{\mu_m^{(n)}}{r_0}\right)^2 \qquad -$$
 特征值

注: (1) 可以证明特征函数在 $L^2(B_{r_0}(O))$ 内正交,

类似矩形域上的特征函数 $\sin \frac{n\pi x}{L} \sin \frac{m\pi y}{M}$

$$J_n(\sqrt{\lambda_m^{(n)}} r) \cos n\theta$$
 $J_n(\sqrt{\lambda_m^{(n)}} r) \sin n\theta$

$$J_n(\sqrt{\lambda_m^{(n)}} r) \sin n\theta$$

注: (2) 注意到 $\cos n\theta$, $\sin n\theta$ 在 $L^2([0,2\pi])$ 内正交,

并且 $dxdy = rdrd\theta$, 只需证明 $J_n(\sqrt{\lambda_m^{(n)}}r)$

相同的n不同的m在加权r的平方可积函数空间 $L_r^2([0,r_0])$ 内

正交,这可直接验证 (练习)

或应用Sturm-Liouville 理论

(3) Laplace 算子的特征函数的完备正交特性 是应用(特征函数法)可行的基础

Bessel 函数的进一步应用

例: 求解
$$\begin{cases} u_t = a^2(u_{xx} + u_{yy}) & x^2 + y^2 < 1, t > 0 \\ u|_{x^2 + y^2 = 1} = 0 & u|_{t=0} = 1 - (x^2 + y^2) \end{cases}$$

注: 齐次(第一类)边界条件 圆形区域

解: 令
$$u(x, y, t) = U(x, y)T(t)$$

$$\Rightarrow \frac{T'}{a^2T} = \frac{\Delta U}{U} = -\lambda \qquad (\lambda \, \text{为待定常数})$$

$$\Rightarrow \begin{cases} T' + \lambda a^2 T = 0 \\ \Delta U + \lambda U = 0 \end{cases}$$

边界条件
$$\Rightarrow U|_{x^2+y^2=1}=0$$

Laplace算子 特征值问题

采用极坐标,由前面讨论可知特征函数为

$$J_n(\mu_m^{(n)} r) \cos n\theta$$
 $J_n(\mu_m^{(n)} r) \sin n\theta$

对应的特征值为
$$\lambda = (\mu_m^{(n)})^2$$
 $(0 \le n \in \mathbb{Z}, m \in \mathbb{Z}^+)$

$$\Rightarrow T_{mn}(t) = \exp\left[-a^2(\mu_m^{(n)})^2 t\right] \qquad (相差常数意义下)$$

从而得到满足方程和边界条件的一族解

$$\exp\left[-a^2(\mu_m^{(n)})^2t\right]J_n(\mu_m^{(n)}r)\cos n\theta$$

$$\exp\left[-a^2(\mu_m^{(n)})^2t\right]J_n(\mu_m^{(n)}r)\sin n\theta$$

$$(0 \le n \in \mathbb{Z}, m \in \mathbb{Z}^+)$$

期望
$$u(r,\theta,t) = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \exp\left[-a^2(\mu_m^{(n)})^2 t\right] J_n(\mu_m^{(n)} r)$$

$$\cdot \left[C_{mn} \cos n\theta + D_{mn} \sin n\theta\right]$$

满足初始条件 $u(r,\theta,0)=1-r^2$

$$\sum_{m=1}^{\infty} \sum_{n=0}^{\infty} J_n(\mu_m^{(n)} r) \left[C_{mn} \cos n\theta + D_{mn} \sin n\theta \right]$$

$$\Rightarrow C_{mn} = D_{mn} = 0 \quad (n > 0)$$

$$\Rightarrow 1 - r^2 \sim \sum_{m=1}^{\infty} C_m J_0(\mu_m^{(0)} r)$$

沿特征函数展开

Fourier-Bessel 级数

$$\Rightarrow C_m = \frac{1}{\int_0^1 \left[J_0(\mu_m^{(0)} r) \right]^2 r dr} \int_0^1 J_0(\mu_m^{(0)} r) (1 - r^2) r dr$$

例: 求解常微分方程

$$x^{2}f'' + axf' + (b + cx^{d})f = 0$$
 (a,b,c,d 为常数)

解: $cd = 0 \rightarrow Euler 方程(易解)$

不妨设 $cd \neq 0$

令
$$x = kt^{\alpha}$$
 $u(t) = t^{-\beta} f(kt^{\alpha})$ (k, α, β) 为待定常数)

$$\Rightarrow t^2 u'' + [2\beta + (\alpha - 1)\alpha + 1]tu'$$

$$+\left[c\alpha^{2}k^{d}t^{d\alpha}+(a-1)\alpha\beta+b\alpha^{2}+\beta^{2}\right]u=0$$

$$\mathbb{R} \begin{cases} 2\beta + (a-1)\alpha = 0 \\ d\alpha = 2 \quad c\alpha^2 k^d = 1 \end{cases}$$

$$\Rightarrow t^2 u'' + tu' + (t^2 - n^2)u = 0 \quad (n \text{ M Bessel 方程})$$

记为 $-n^2$

例:(Bernoulli 的悬链问题)

$$\Rightarrow \begin{cases} \alpha U'' + U' + \lambda U = 0 \\ U(0) \text{ 有界}, U(l) = 0 \end{cases} (\lambda \text{ 为待定常数})$$

及
$$T'' + \lambda a^2 T = 0$$

 $xU'' + U' + \lambda U = 0$ 不是 Bessel 方程。

注意
$$a=1,b=0,c=\lambda,d=1$$
 \Rightarrow $\alpha=2,\beta=0,k=\frac{1}{4\lambda}$ \Rightarrow 作变量替换 $s=2\sqrt{\lambda x},\ y(s)=U(\frac{s^2}{4\lambda})=U(x)$

$$\Rightarrow$$
 作变量替换 $s = 2\sqrt{\lambda x}$, $y(s) = U(\frac{s^2}{4\lambda}) = U(x)$

$$xU'' + U' + \lambda U = 0$$
 转化成 0 阶Bessel 方程

$$s^2 y'' + sy' + s^2 u = 0$$

$$\Rightarrow$$
 $y(s) = CJ_0(s) + DY_0(s) \Rightarrow U(x) = CJ_0(2\sqrt{\lambda x}) + DY_0(2\sqrt{\lambda x})$

$$:U(0)$$
有界 $\Rightarrow D=0$,

$$\nabla U(l) = CJ_0(2\sqrt{\lambda l}) = 0 \implies$$

又
$$U(l) = CJ_0(2\sqrt{\lambda l}) = 0$$
 ⇒ 特征值 $\lambda_n = \frac{x_n^2}{4l}, n = 1, 2, \cdots, x_n \not\equiv J_0(x)$ 的第 n 个正零点,特征函数 $U_n(x) = J_0\left(x_n\sqrt{\frac{x}{l}}\right), n = 1, 2, \cdots$

特征函数
$$U_n(x) = J_0\left(x_n\sqrt{\frac{x}{l}}\right), \quad n = 1, 2, \cdots.$$

$$T_n(t) = A_n \cos \omega_n t + B_n \sin \omega_n t,$$

$$\omega_n = \frac{a \, x_n}{2\sqrt{l}}, n = 1, 2, \cdots$$

$$\Rightarrow u(x,t) = \sum_{n=1}^{+\infty} (A_n \cos \omega_n t + B_n \sin \omega_n t) J_0 \left(x_n \sqrt{\frac{x}{l}} \right),$$

曲初始条件
$$u|_{t=0} = \sum_{n=1}^{+\infty} A_n J_0 \left(x_n \sqrt{\frac{x}{l}} \right) = f(x),$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \sum_{n=1}^{+\infty} \omega_n B_n J_0 \left(x_n \sqrt{\frac{x}{l}} \right) = g(x),$$

$$\Rightarrow A_n, B_n, n=1,2,\cdots$$

注: $\{U_n(x)\}$ 是函数空间 $L^2([0,l])$ 里的完备正交基底。

§ 3.5 球形域上的 Laplace 方程

方程:
$$u_{xx} + u_{yy} + u_{zz} = 0$$
 $x^2 + y^2 + z^2 < 1$

区域形状 \rightarrow 使用球坐标 (r, ϕ, θ)

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

$$\Rightarrow \frac{1}{r^2} \left(r^2 u_r \right)_r + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \left(\sin \theta u_\theta \right)_\theta + \frac{1}{\sin^2 \theta} u_{\phi \phi} \right) = 0$$

$$0 < r < 1, \ 0 < \theta < \pi, \ 0 < \phi < 2\pi$$

$$\Leftrightarrow u(r,\phi,\theta) = R(r)\Phi(\phi)\Theta(\theta)$$
 (分离变量)

$$\Rightarrow \frac{1}{r^2} \frac{\left(r^2 R'\right)'}{R} + \frac{1}{r^2} \left[\frac{1}{\sin \theta} \frac{\left(\sin \theta \Theta'\right)'}{\Theta} + \frac{1}{\sin^2 \theta} \frac{\Phi''}{\Phi} \right] = 0$$

$$\frac{1}{r^2} \frac{\left(r^2 R'\right)'}{R} + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \frac{\left(\sin \theta \Theta'\right)'}{\Theta} + \frac{1}{\sin^2 \theta} \frac{\Phi''}{\Phi} \right) = 0$$

$$\Rightarrow \begin{cases} \Phi'' + \alpha \Phi = 0 \\ \frac{1}{\sin \theta} \frac{(\sin \theta \Theta')'}{\Theta} + \frac{-\alpha}{\sin^2 \theta} = -\mu \end{cases} (\alpha, \mu)$$
 为待定常数)
$$r^2 R'' + 2rR' - \mu R = 0$$
 Euler 方程

注: (1) Φ 的周期条件 $\Rightarrow \alpha = m^2$ $(0 \le m \in \mathbb{Z})$

(2) 若是球形域上的 Helmholtz 方程, 则导出 $r^2R'' + 2rR' + (\lambda r^2 - \mu)R = 0$

(球 Bessel 方程)可化为 Bessel 方程求解

$$\frac{1}{\sin \theta} \frac{\left(\sin \theta \Theta'\right)'}{\Theta} + \frac{-\alpha}{\sin^2 \theta} = -\mu$$

$$\alpha = m^2$$

$$\alpha = m^2$$

作变量代换 $x = \cos\theta$ $f(x) = \Theta(\theta)$ 计算可得(练习)

$$(1-x^2)f'' - 2xf' + \left(\mu - \frac{m^2}{1-x^2}\right)f = 0 \qquad (-1 < x < 1)$$

特别地,当m=0时

m阶 Legendre 伴随方程

$$(1-x^2)f'' - 2xf' + \mu f = 0 \qquad (-1 < x < 1)$$

注: (1) $m=0 \longleftrightarrow u 与 \phi$ 无关 Legendre 方程

(2) Laplace / Helmholtz 方程的定解条件的处理 与圆域情形类似

§ 3.6 Legendre 方程与 Legendre 函数

§ 3.5.1 Legendre 方程求解

$$(1-x^2)f'' - 2xf' + \mu f = 0 \qquad (-1 < x < 1)$$

记 $\mu = n(n+1)$, n 可实可复

$$\Rightarrow f'' - \frac{2x}{1 - x^2} f' + \frac{n(n+1)}{1 - x^2} f = 0 \qquad (-1 < x < 1)$$

尝试幂级数形式解

在|x|<1内解析

$$f(x) = \sum_{k=0}^{\infty} a_k x^k \qquad (-1 < x < 1)$$

这里 a_k 为待定常数 $(k = 0, 1, 2, \cdots)$

$$\Rightarrow \sum_{k=2}^{\infty} k(k-1)a_k x^{k-2} + \sum_{k=0}^{\infty} [n(n+1) - k(k+1)]a_k x^k = 0$$

$$\sum_{k=2}^{\infty} k(k-1)a_k x^{k-2} + \sum_{k=0}^{\infty} \left[n(n+1) - k(k+1) \right] a_k x^k = 0$$

$$\Rightarrow \sum_{k=0}^{\infty} \left[(n(n+1) - k(k+1)) a_k + (k+2)(k+1) a_{k+2} \right] x^k = 0$$

$$\Rightarrow a_{k+2} = \frac{(k-n)(k+n+1)}{(k+2)(k+1)} a_k \qquad (k = 0, 1, 2, \dots)$$

 \Rightarrow 奇数项系数与偶数项系数无关,分别由 a_1 和 a_0 的取值确定

取
$$a_1 \neq 0$$
 $a_0 = 0$ 得到 $f_2(x) = \sum_{m=0}^{\infty} a_{2m+1} x^{2m+1}$

$$a_{k+2} = \frac{(k-n)(k+n+1)}{(k+2)(k+1)} a_k$$

注:(1)直接计算可得

$$a_{2m} = \frac{a_0}{(2m)!} (2m - 2 - n)(2m - 4 - n) \cdots (0 - n)$$

$$\cdot (2m - 2 + n + 1)(2m - 4 + n + 1) \cdots (0 + n + 1)$$

$$a_{2m+1} = \frac{a_1}{(2m+1)!} (2m - 1 - n)(2m - 3 - n) \cdots (1 - n)$$

$$\cdot (2m-1+n+1)(2m-3+n+1)\cdots (1+n+1)$$

 $(m = 0, 1, 2, \cdots)$

(2) 对于<mark>适当值的 n,可以用 Gamma 函数简化</mark> 系数的表达式

注:(3) f_1, f_2 线性无关,从而 Legendre 方程通解为

$$f(x) = c_1 f_1(x) + c_2 f_2(x)$$

(收敛性、可微性可直接验证, 练习)

(4) 可以证明: 当 $n \notin \mathbb{Z}$ 时, f_1, f_2 在|x|<1内绝对 收敛, 但在x=1或-1处发散(练习) ⇒ f 在 $|x| \le 1$ 上无界(一般不是想要的!)

只考虑 $n \in \mathbb{Z}$,不妨设 $n \geq 0$

$$\Rightarrow a_{n+2} = a_{n+4} = \cdots = 0$$

$$\Rightarrow f_1, f_2$$
 之一为 n 次多项式
另一为无穷级数

$$n(n+1) = (-n-1)(-n)$$

$$\Rightarrow f_1, f_2$$
 之一为 n 次多项式 $a_{k+2} = \frac{(k-n)(k+n+1)}{(k+2)(k+1)} a_k$

取适当值的 $a_1(n奇)$ 或 $a_0(n偶)$ 使得该多项式在

x=1 处值为1 (正规化)

记此多项式为 $P_n(x)$ —

通过(较繁杂的)计算可得

n次 Legendre 多项式 或第一类Legendre 函数

$$P_n(x) = \sum_{m=0}^{\lfloor n/2 \rfloor} (-1)^m \frac{(2n-2m)!}{2^n m! (n-m)! (n-2m)!} x^{n-2m}$$

这里
$$[n/2] = \begin{cases} (n-1)/2 & n 为奇数 \\ n/2 & n 为偶数 \end{cases}$$

特别地,最高次项系数为

$$a_n = \frac{(2n)!}{2^n (n!)^2}$$

可以用常微分方程中的Liouville公式求得另外一个线性无关解。

Liouville公式: 设 $y_1(x)$ 是方程

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$

的非零解,则
$$y_2(x) = y_1(x) \int \frac{1}{[y_1(x)]^2} \exp(-\int P(x) dx) dx$$

是上述方程的另一个线性无关解。

Legendre 方程的另一个无穷级数解记为 $Q_n(x)$,则

$$Q_n(x) = P_n(x) \int \frac{1}{[P_n(x)]^2} \exp(-\int \frac{-2x}{1 - x^2} dx) dx = P_n(x) \int \frac{dx}{(1 - x^2)[P_n(x)]^2}$$

$$\Rightarrow Q_n(x) = \frac{1}{2} P_n(x) \ln \frac{1+x}{1-x} - \sum_{k=1}^{\left[\frac{n+1}{2}\right]} \frac{2n-4k+3}{(2k-1)(n-k+1)} P_{n-2k+1}(x)$$

 $Q_n(x)$ 称为第二类Legendre 函数。

- 注: (1) 可以证明 当 $x \to \pm 1$ 时, $Q_n(x) \to \infty$, 故 $Q_n(x)$ 在 $|x| \le 1$ 上无界
 - (2) 当 $0 \le n \in \mathbb{Z}$ 时 Legendre 方程的通解为 $f(x) = c_1 P_n(x) + c_2 Q_n(x)$
 - (3) Legendre 多项式的生成函数(或母函数):

$$\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n \qquad |x| \le 1, |t| < 1$$

(4) Rodrigues (罗德里格斯)公式:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \qquad n = 0, 1, 2, \dots$$

前几个 Legendre 多项式

$$P_0(x) = 1$$

$$P_1(x) = x$$

$$P_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$

$$P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$$

$$P_6(x) = \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$$

$$P_7(x) = \frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x)$$

From N. Asmar, PDEs with Fourier Series and Boundary Value Problems, Second Edition

From N. Asmar, PDEs with Fourier Series and Boundary Value Problems, Second Edition

Legendre 多项式的性质(练习)

- (1) 若 n 为奇(偶)数,则 $P_n(x)$ 为奇(偶)函数
- (2) $P_n(1) = 1 \perp P_n(-1) = (-1)^n \quad (n = 0, 1, 2, \dots)$
- (3) $|P_n(x)| \le 1$, $\forall |x| \le 1$, $n = 0, 1, 2, \dots$
- (4) $P_n(x)$ 在区间 [-1, 1] 上有且仅有 n 个相异简单零点
- (5) $(n+1)P_{n+1}(x) + nP_{n-1}(x) = (2n+1)xP_n(x)$
- (6) 正交:

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & m \neq n \\ \frac{2}{2n+1} & m = n \end{cases}$$

 $(n=1,2,\cdots)$

§ 3. 5. 2 伴随Legendre 方程求解

Helmholtz 方程在球坐标下,得到关于 θ 的常微分方程

$$\frac{1}{\sin\theta} \frac{\left(\sin\theta\Theta'\right)'}{\Theta} + \frac{-\alpha}{\sin^2\theta} = -\mu$$

$$\alpha = m^2$$
(1)

作变量代换 $x = \cos \theta$, $f(x) = \Theta(\theta) = \Theta(\arccos x)$, 计算可得

$$(1-x^2)f'' - 2xf' + \left(\mu - \frac{m^2}{1-x^2}\right)f = 0 \qquad (-1 < x < 1)$$
 (2)

此为m阶 Legendre 伴随方程。特别地,当m=0即 $\alpha=0$ 时,为Legendre方程。

$$|\Theta(0)| < +\infty$$
, $|\Theta(\pi)| < +\infty \Rightarrow |f(\pm 1)| < +\infty \longrightarrow$ 自然边界条件

当 $m ∈ \mathbb{Z}^+$ 时,我们找出Legendre方程的与伴随Legendre方程的联系。

令
$$f(x) = (1-x^2)^{\frac{m}{2}} y(x)$$
,代入方程(2)⇒
$$(1-x^2)y'' - 2x(m+1)y' + [\mu - m(m+1)]y = 0$$
(3)

若对Legendre方程

$$(1-x^2)v'' - 2xv' + \mu v = 0 \tag{4}$$

关于x 求一阶导数,可得

$$(1-x^2)(v')'' - 2x(1+1)(v')' + [\mu - 1 \cdot (1+1)]v' = 0$$

恰为方程(3)取 m=1 时的情形。

一般地,对方程(4)两边关于x 求m 阶导数,可以得到

$$(1-x^2)v^{(m+2)} - 2x(m+1)v^{(m+1)} + [\mu - m(m+1)]v^{(m)} = 0$$

 \Rightarrow 当v(x)是Legendre方程(4)的解时, $y(x) = v^{(m)}(x)$

是方程(3)的解,进一步, $f(x) = (1-x^2)^{\frac{m}{2}} y(x)$ 是整数m 阶 伴随Legendre方程(2)的解。

当 $\mu=n(n+1)$ 时, Legendre方程(4)的通解为

$$v(x) = CP_n(x) + DQ_n(x)$$

 $P_n(x)$ 为n次Legendre多项式, $Q_n(x)$ 为n次第二类Legendre函数。记

$$P_n^m(x) = (1 - x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_n(x),$$

$$Q_n^m(x) = (1 - x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} Q_n(x)$$

$$m \le n$$

它们分别称作m阶n次第一类、第二类Legendre函数。

相应地, m阶伴随Legendre方程(2)的通解为

$$f(x) = CP_n^m(x) + DQ_n^m(x),$$

其中,伴随Legendre函数 $P_n^m(x)$ 在 ± 1 有界, $Q_n^m(x)$ 在 ± 1 无界。

§ 3.7 Legendre 方程特征值问题 及Legendre函数应用

正则奇点下的S-L定理: S-L型方程的特征值问题

$$\begin{cases} \left(k(x)f'\right)' - q(x)f + \lambda \rho(x)f = 0, & a < x < b, \\ |f(a)| < +\infty, & |f(b)| < +\infty \longrightarrow \text{ add.} \end{cases}$$
 (1)

方程的系数满足

- (i) $k(x) \in C^1[a,b], q(x), \rho(x) \in C[a,b],$
- (ii) 在(a,b)上,k(x) > 0, $q(x) \ge 0$, $\rho(x) > 0$, a, b端是k(x)的零点 (至多一级),或是q(x)的极点(至多一级)。

则该正则奇点下的特征值问题的特征值、特征函数与S-L定理2有相同的结论。

注:上述定理假设了两端均为正则奇点,若一端为正则奇点,另一端为常点,则常点端配以齐次边界条件,如Bessel特征值问题。

Legendre方程的特征值问题

$$\begin{cases} (1-x^2)f'' - 2xf' + \lambda f = 0, & -1 < x < 1, \\ |f(\pm 1)| < +\infty \longrightarrow \text{ as } \pm \text{ as } \pm \text{ as } +1, \end{cases}$$
 (1)

±1 是Legendre方程的正则奇点。类似于Bessel 方程的特征值问题 Legendre方程的特征值问题是上述S-L定理的一个特殊情形。

事实上,根据上一节对Legendre方程解的分析, Legendre方程的 特征值为 $\lambda_n = n(n+1), n = 0, 1, 2, \dots,$

$$\lambda_n = n(n+1), \ n = 0, 1, 2, \dots,$$

相应特征函数为 n 次Legendre 多项式

$$P_n(x), n=1,2,\cdots$$

$\left\{P_n(x)\right\}_{n=0}^{\infty}$ 是函数空间 $L^2([-1,1])$ 里的完备正交基底。

 $\forall \varphi(x) \in L^2([-1,1])$, 有Fourier-Legendre展开

$$\varphi(x) = \sum_{n=0}^{+\infty} C_n P_n(x),$$

其中, 广义Fourier系数

$$C_n = \frac{1}{\|P_n(x)\|^2} \int_{-1}^1 \varphi(x) P_n(x) dx,$$

$$||P_n(x)||^2 = \int_{-1}^1 |P_n(x)|^2 dx = \frac{2}{2n+1}.$$

由上一节的讨论, m阶伴随Legendre方程的特征值问题

$$\begin{cases} (1-x^2)f'' - 2xf' + \left(\mu - \frac{m^2}{1-x^2}\right)f = 0, & -1 < x < 1 \\ |f(\pm 1)| < +\infty \longrightarrow \text{ as } \pm \text{ as } \pm \text{ as } \pm \text{ as } -1 < x < 1 \end{cases}$$
 (1)

的特征值为 $\mu_n = n(n+1), n = 0, 1, 2, \dots$

相应特征函数为 m阶n次第二类Legendre 函数

$$P_n^m(x) = (1-x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_n(x), \qquad m \le n.$$

对任意固定的 $m \in \mathbb{Z}^+$,

 $\left\{P_n^m(x)\right\}_{n=m}^{\infty}$ 是函数空间 $L^2([-1,1])$ 里的完备正交基底。

 $\forall \varphi(x) \in L^2([-1,1])$, 有Fourier-Legendre展开

$$\varphi(x) = \sum_{n=m}^{+\infty} C_n P_n^m(x),$$

其中, 广义Fourier系数

$$C_n = \frac{1}{\|P_n(x)\|^2} \int_{-1}^1 \varphi(x) P_n^m(x) dx,$$

$$||P_n^m(x)||^2 = \int_{-1}^1 |P_n^m(x)|^2 dx = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}, \quad n=m,m+1,\dots$$

例: 求单位球内关于 z 轴旋转对称的调和函数

解: 方程为
$$u_{xx} + u_{yy} + u_{zz} = 0$$
 $x^2 + y^2 + z^2 < 1$

使用球坐标 (r, ϕ, θ)

关于 z 轴旋转对称

$$\Rightarrow$$
 u 与 ϕ 无关

$$\Rightarrow \frac{1}{r^2} \left(r^2 u_r \right)_r + \frac{1}{r^2 \sin \theta} \left(\sin \theta u_\theta \right)_\theta = 0$$

$$\Leftrightarrow u = u(r,\theta) = R(r)\Theta(\theta)$$

$$\Rightarrow \frac{1}{r^2} \frac{\left(r^2 R'\right)'}{R} + \frac{1}{r^2} \frac{1}{\sin \theta} \frac{\left(\sin \theta \Theta'\right)'}{\Theta} = 0$$

$$\frac{1}{r^2} \frac{\left(r^2 R'\right)'}{R} + \frac{1}{r^2} \frac{1}{\sin \theta} \frac{\left(\sin \theta \Theta'\right)'}{\Theta} = 0$$

$$\Rightarrow \begin{cases} \frac{1}{\sin \theta} \frac{(\sin \theta \Theta')'}{\Theta} = -\mu & (\mu)$$
 (μ) 为待定常数)
$$r^2 R'' + 2rR' - \mu R = 0$$
 Euler 方程

作变量代换 $x = \cos \theta$ $f(x) = \Theta(\theta)$ $\mu = n(n+1)$

$$\Rightarrow (1-x^2)f'' - 2xf' + n(n+1)f = 0 \qquad (-1 < x < 1)$$

$$\Rightarrow 0 \le n \in \mathbb{Z}$$

且 $\Theta(\theta) = P_n(\cos\theta)$

Legendre 方程

$$f(x) = \Theta(\theta)$$
有界

$$\Rightarrow R(r) = r^n$$
 (相差常数意义下)

 $|R(0)| < \infty$

一般的,关于 z 轴旋转对称的调和函数为

$$u = u(r,\theta) = \sum_{n=0}^{\infty} (C_n r^n + D_n r^{-(n+1)}) P_n(\cos \theta)$$

(1) 球内:
$$u = \sum_{n=0}^{\infty} C_n r^n P_n(\cos \theta)$$
 (2) 球外: $u = C_0 + \sum_{n=0}^{+\infty} D_n r^{-(n+1)} P_n(\cos \theta)$

dxdydz =

 $r^2 dr \sin \theta d\theta d\phi$

注:系数 C_n , D_n 可由边界条件确定

例:
$$u\Big|_{r=1} = \cos^2 \theta$$

$$\Rightarrow \cos^2 \theta = \sum_{n=0}^{\infty} C_n P_n(\cos \theta)$$

$$\Rightarrow \int_0^{\pi} \cos^2 \theta P_m(\cos \theta) \sin \theta d\theta = \int_{-1}^1 x^2 P_m(x) dx$$

$$= \sum_{n=0}^{\infty} C_n \int_0^{\pi} P_n(\cos \theta) P_m(\cos \theta) \sin \theta d\theta$$

$$= \sum_{n=0}^{\infty} C_n \int_{-1}^{1} P_n(x) P_m(x) dx = C_m \int_{-1}^{1} (P_m(x))^2 dx$$

$$\Rightarrow C_{m} = \frac{1}{\int_{-1}^{1} (P_{m}(x))^{2} dx} \int_{-1}^{1} x^{2} P_{m}(x) dx$$

$$= \frac{2m+1}{2} \int_{-1}^{1} x^{2} P_{m}(x) dx \qquad u = \sum_{n=0}^{\infty} C_{n} r^{n} P_{n}(\cos \theta)$$

$$= \frac{2m+1}{2} \frac{1}{2^{m} m!} \int_{-1}^{1} x^{2} \frac{d^{m}}{dx^{m}} (x^{2}-1)^{m} dx$$

$$= \begin{cases} 1/3 & m=0\\ 2/3 & m=2 \end{cases}$$

$$= \begin{cases} 1/3 & m=0\\ 2/3 & m=2 \end{cases}$$

$$P_{0}(x) = 1$$

$$P_{2}(x) = \frac{1}{2} (3x^{2}-1)$$

$$P_{3}(x) = \frac{1}{2} (3x^{2}-1)$$

$$P_{4}(x) = \frac{1}{2} (3x^{2}-1)$$

例: 球坐标下3维调和方程 $\Delta_3 u = 0$ 的解的一般形式

解: 方程为 $u_{xx} + u_{yy} + u_{zz} = 0$,

使用球坐标 (r, ϕ, θ)

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

$$\Rightarrow \frac{1}{r^2} \left(r^2 u_r \right)_r + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \left(\sin \theta u_\theta \right)_\theta + \frac{1}{\sin^2 \theta} u_{\phi \phi} \right) = 0,$$

$$0 < \theta < \pi$$
, $0 < \phi < 2\pi$

令
$$u(r, \phi, \theta) = R(r)\Phi(\phi)\Theta(\theta)$$
 (分离变量)

$$\Rightarrow \frac{1}{r^2} \frac{\left(r^2 R'\right)'}{R} + \frac{1}{r^2} \left[\frac{1}{\sin \theta} \frac{\left(\sin \theta \Theta'\right)'}{\Theta} + \frac{1}{\sin^2 \theta} \frac{\Phi''}{\Phi} \right] = 0$$

$$\frac{1}{r^2} \frac{\left(r^2 R'\right)'}{R} + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \frac{\left(\sin \theta \Theta'\right)'}{\Theta} + \frac{1}{\sin^2 \theta} \frac{\Phi''}{\Phi} \right) = 0$$

$$\Rightarrow \begin{cases} \Phi'' + \alpha \Phi = 0 \\ \frac{1}{\sin \theta} \frac{(\sin \theta \Theta')'}{\Theta} + \frac{-\alpha}{\sin^2 \theta} = -\mu \qquad (\alpha, \mu)$$
 为待定常数)
$$r^2 R'' + 2r R' - \mu R = 0 \qquad \text{Euler 方程}$$

$$\begin{cases} \Phi'' + \alpha \Phi = 0 \\ \Phi(\phi + 2\pi) = \Phi(\phi) \end{cases}$$
 (A)
$$\begin{cases} \frac{1}{\sin \theta} \frac{(\sin \theta \Theta')'}{\Theta} + \frac{-\alpha}{\sin^2 \theta} = -\mu \\ |\Theta(0)| < +\infty, |\Theta(\pi)| < +\infty \end{cases}$$
 (B)

(A) 中 Φ 的周期条件 \Rightarrow $\{\cos m\phi\}$ 特征值为 $\alpha_m = m^2$, 相应特征函数为 $\{\sin m\phi\}$ $\{0 \le m \in \mathbb{Z}\}$

(B) 事实上是m 阶伴随Legendre方程特征值问题,由上节讨论得

特征值为
$$\mu_n = n(n+1), n = 0, 1, 2, \dots$$

相应特征函数为

$$\Theta_{mn}(\theta) = P_n^m(\cos\theta), \quad m \le n.$$

Euler 方程

$$r^2R'' + 2rR' - n(n+1)R = 0, \quad n = 0, 1, 2, \dots$$

的解为
$$R_n(r) = A_n r^n + B_n r^{-(n+1)}$$

 \Rightarrow 球坐标下3维调和方程 $\Delta_3 u = 0$ 的解的一般形式

$$u(r,\theta,\phi) = \sum_{n=0}^{+\infty} \sum_{m=0}^{n} (A_n r^n + B_n r^{-(n+1)}) P_n^m(\cos\theta) (C_{nm}\cos m\phi + D_{nm}\sin m\phi).$$

注: 关于z 轴旋转对称的调和函数相当于取 $\alpha = m^2 = 0$ 时得到的解。

Gamma 函数简单回顾

定义
$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx, \quad \forall s > 0.$$

性质: (1)
$$\Gamma(s) = (s-1)! \quad \forall s \in \mathbb{Z}^+$$

(2)
$$s\Gamma(s) = \Gamma(s+1) \quad \forall s > 0$$

(3)
$$\lim_{s\to 0} \Gamma(s) = \infty$$

利用(2)可将 Gamma 函数延拓到 R\{0,-1,-2,…}

$$\Rightarrow \lim_{s \to k} \Gamma(s) = \infty \quad (k = 0, -1, -2, \cdots)$$

有时写成

$$\frac{1}{\Gamma(s)} = 0 \quad \forall s = 0, -1, -2, \cdots$$

