Cây

- 1. Cây
- 2. Tính chất của cây
- 3. Ứng dụng của cây
- 4. Cây khung và cây khung nhỏ nhất
- 5. Thuật toán Prim
- 6. Thuật toán Kruskal
- 7. Bài tập

Cây

• Định nghĩa 1: Cây là đồ thị vô hướng, liên thông và không có chu trình.

• Ví dụ:

Ví dụ

• Chỉ ra các Cây trong các đồ thị dưới đây

Rừng

• Rừng là đồ thị mà mỗi thành phần liên thông của nó là một cây.

Tính chất

- Định lý: Một đồ thị vô hướng là một cây nếu giữa mọi cặp đỉnh của nó luôn tồn tại một đường đi đơn duy nhât.
- Chứng minh! (dựa vào định nghĩa)

Cây có gốc

- Định nghĩa 2: Cây có gốc là cây được tạo từ một cây bằng cách chọn một đỉnh bất kỳ làm gốc, định hướng tất cả cạnh bằng hướng đi ra từ gốc.
- Ví dụ:

Cây có gốc

- T là một cây có gốc. Nếu v là một đỉnh khác gốc của T, khi đó cha của v là đỉnh u duy nhất sao cho có một cụng hướng từ u đến v. Ta gọi u là **cha** của v và v là **con** của u.
- Các đỉnh có cùng cha là anh em.
- **Tổ tiên** của một đỉnh khác với gốc là các đỉnh trên đường đi từ gốc tới đỉnh này.
- Con cháu của đỉnh v là các đỉnh có v là tổ tiên.
- Các đỉnh của cây gọi là **lá** nếu chúng không có đỉnh con.
- Các đỉnh có con gọi là đỉnh trong.
- Nếu u là một đỉnh của cây thì **cây con** với gốc u là đồ thị con của cây đang xét, bao gồm u và tất cả con cháu và các cạnh liên thuộc với con cháu của u.

Cây m —phân

• Định nghĩa 3: Cây có gốc được gọi là cây m —phân nếu tất cả các đỉnh trong của nó không có quá m con. Cây được gọi là m —phân đầy đủ nếu mọi đỉnh trong có đúng m con. Cây m —phân với m=2, được gọi là cây nhị phân.

Cây con bên trái và phải trong cây nhị phân

- 1. Cây
- 2. Tính chất của cây
- 3. Ứng dụng của cây
- 4. Cây khung và cây khung nhỏ nhất
- 5. Thuật toán Prim
- 6. Thuật toán Kruskal
- 7. Bài tập

Tính chất (1)

- Định lý 2: Cây với n đỉnh thì có đúng (n-1) cạnh.
- Chứng minh!

Tính chất (2)

- Định lý 3: Cây m —phân đầy đủ với i đỉnh trong sẽ có tất cả $n=m\times i+1$ đỉnh.
- Chứng minh!

Tính chất (3)

- Định lý 4: Cây m -phân đầy đủ với
 - n đỉnh có $i=\frac{n-1}{m}$ đỉnh trong và $l=\frac{(m-1)n+1}{m}$ lá;
 - i đỉnh trong có n=mi+1 đỉnh và l=(m-1)i+1 lá;
 - l lá có $n=\frac{ml-1}{m-1}$ đỉnh và $i=\frac{l-1}{m-1}$ đỉnh trong.
- Chứng minh!

Tính chất (4)

- **Định lý 5**: Có nhiều nhất m^k lá trong cây m —phân với độ cao h.
- Chứng minh!
- **Hệ quả**: Nếu cây m —phân độ cao h có l lá, thì $h \ge \lceil \log_m^l \rceil$. Nếu cây m —phân đầy đủ và cân đối, thì $h = \lceil \log_m^l \rceil$.
- Chứng minh!

- 1. Cây
- 2. Tính chất của cây
- 3. Ứng dụng của cây
- 4. Cây khung và cây khung nhỏ nhất
- 5. Thuật toán Prim
- 6. Thuật toán Kruskal
- 7. Bài tập

Cây tìm kiếm nhị phân

Cây quyết định

Cây trò chơi

- 1. Cây
- 2. Tính chất của cây
- 3. Ứng dụng của cây
- 4. Cây khung và cây khung nhỏ nhất
- 5. Thuật toán Prim
- 6. Thuật toán Kruskal
- 7. Bài tập

Đặt vấn đề

• Cần phải cào tuyết những con đường nào để đảm bảo thông tuyến giữa 2 thành phố bất kỳ ?

Cây khung

- Định nghĩa 1: Cho G là một đơn đồ thị. Một cây được gọi là cây khung của G nếu nó là một đồ thị con của G và chứa tất cả đỉnh của G.
- Ví dụ: Tìm 1 và tất cây khung của đồ thị sau.

Tính chất

- Định lý 1: Một đồ thị là liên thông khi và chỉ khi nó có cây khung.
- Chứng minh!

Cây khung nhỏ nhất

• Định nghĩa 2: Cây khung nhỏ nhất trong một đồ thị liên thông có trọng số là một cây khung có tổng trọng số trên các cạnh của nó là nhỏ nhất.

Ứng dụng

- Computer networks,
- Telecommunications networks,
- Transportation networks,
- Water supply networks,
- Electrical grids
- ...

- 1. Cây
- 2. Tính chất của cây
- 3. Ứng dụng của cây
- 4. Cây khung và cây khung nhỏ nhất
- 5. Thuật toán Prim
- 6. Thuật toán Kruskal
- 7. Bài tập

Thuật toán Prim

ALGORITHM 1 Prim's Algorithm.

```
procedure Prim(G: weighted connected undirected graph with n vertices)
T := a minimum-weight edge
for i := 1 to n - 2
e := an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```

- 1. Cây
- 2. Tính chất của cây
- 3. Ứng dụng của cây
- 4. Cây khung và cây khung nhỏ nhất
- 5. Thuật toán Prim
- 6. Thuật toán Kruskal
- 7. Bài tập

Thuật toán Kruskal

ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
for i := 1 to n - 1
e := any edge in G with smallest weight that does not form a simple circuit when added to T
T := T with e added
return T {T is a minimum spanning tree of G}
```

- 1. Cây
- 2. Tính chất của cây
- 3. Ứng dụng của cây
- 4. Cây khung và cây khung nhỏ nhất
- 5. Thuật toán Prim
- 6. Thuật toán Kruskal
- 7. Bài tập

Bài tập

- **Bài 1**: G là một đơn đồ thị có n đỉnh. Chứng minh rằng G là cây khi chỉ khi G liên thông và có (n-1) cạnh.
- Bài 2: T là cây khi và chỉ khi T không có chu trình nhưng nếu thêm bất kỳ một cạnh nào đó ta sẽ có một chu trình