MATH 104 - WEEKLY ASSIGNMENT 1

DUE 5 SEPTEMBER 2016, BY 16:00

- (1) Let $(\mathbb{F}, +, \cdot)$ be a field. Show the following:
 - (i) For $a, b, c \in \mathbb{F}$, $a + c = b + c \Rightarrow a = b$.
 - (ii) For $a, b, c \in \mathbb{F}$ and $c \neq 0$, $ac = bc \Rightarrow a = b$.
 - (iii) For every $a \in \mathbb{F}$, -(-a) = a.
 - (iv) For every $a \in \mathbb{F}$ with $a \neq 0$, $(a^{-1})^{-1} = a$.
 - (v) For every $a, b \in \mathbb{F}$, (-a)b = a(-b) = -(ab).
 - (vi) For every $a, b \in \mathbb{F}$, (-a)(-b) = ab.
 - (vii) (-1)(-1) = 1.
- (2) Let $(\mathbb{F}, +, \cdot)$ be a field. Show the following:
 - (i) 0 (the additive identity) is unique.
 - (ii) 1 (the multiplicative identity) is unique.
 - (iii) For every $a \in \mathbb{F}$, the additive inverse of a is unique.
 - (iv) For every $a \in \mathbb{F}$, $a \neq 0$, the multiplicative inverse of a is unique.
 - (v) $0 \cdot a = 0$, for all $a \in \mathbb{F}$.
 - (vi) For $a, b \in \mathbb{F}$, $ab = 0 \Rightarrow a = 0$ or b = 0.
- (3) Let $(\mathbb{F}, +, \cdot, <)$ be an ordered field. Show the following:
 - (i) If $a, b, c \in \mathbb{F}$ and a > b, then a + c > b + c.
 - (ii) If $a, b, c \in \mathbb{F}$, a > b and c > 0, then ac > bc.
 - (iii) If $a, b, c \in \mathbb{F}$, a > b and c < 0, then ac < bc
 - (iv) If $a, b, c, d \in \mathbb{F}$, a > b and c > d, then a + c > b + d.
 - (v) If $a \in \mathbb{F}$ and a > 0, then -a < 0.
 - (vi) If $a \in \mathbb{F}$ and $a \neq 0$, then $a^2 > 0$.
 - (vii) If $a, b \in \mathbb{F}$ and a, b > 0, then $a < b \Leftrightarrow a^2 < b^2$.
 - (viii) If $a, b \in \mathbb{F}$ and $a, b \ge 0$, then $a = b \Leftrightarrow a^2 = b^2$.
 - (ix) If $a, b \in \mathbb{F}$ and a, b > 0, then $a < b \Leftrightarrow b^{-1} < a^{-1}$.
- (4) Show that \mathbb{Z}_2 is not an ordered field.
- (5) Show that there exists a unique x > 0 in \mathbb{R} such that $x^2 = 2$. (Hint: Follow the proof we did to show that $\nexists q \in \mathbb{Q}$ with $x^2 = 2$, but this time for \mathbb{R} .)
- (6) Let $(\mathbb{F}, +, \cdot)$ be an ordered field, and $\emptyset \neq A \subset \mathbb{F}$ bounded from above. Show that, if A has a least upper bound, then it is unique.

- (7) For $(0,1) \subset \mathbb{R}$, show that $\sup(0,1) = 1$.
- (8) Are the following RIGHT or WRONG in \mathbb{R} ? Justify your answer.
 - (i) Let $\emptyset \neq A \subset \mathbb{R}$, bounded from above. Then, $\forall x \in A, x \leq \sup A$.
 - (ii) Let $\emptyset \neq A \subset \mathbb{R}$, bounded from above, and let $x \in \mathbb{R}$. Then: x upper bound of $A \Leftrightarrow \sup A \leq x$.
 - (iii) Let $\emptyset \neq A \subset \mathbb{R}$, bounded from above. Then, sup $A \in A$.
- (9) (i) Let A, B non-empty subsets of \mathbb{R} , bounded from above. Show that, if $A \subset B$, then $\sup A \leq \sup B$.
 - (ii) Let $A \subset \mathbb{R}$. We say that m is a maximal element of A if m is an upper bound of A such that $m \in A$. Suppose that A has a maximal element max A. Show that $\max A = \sup A$. Does $(0,1) \subset \mathbb{R}$ have a maximal element?
- (10) Let $A \subset \mathbb{R}$. We say that A is bounded from below if there exists $b \in \mathbb{R}$ such that $b \leq a$, for all $a \in A$. If such a b exists, it is called a lower bound of A. Moreover, we say that b is a greatest lower bound of A (we also call it infimum of A and denote it by inf A) if
 - (i) b is a lower bound of A, and
 - (ii) $b \ge c$, for all c lower bounds of A. Show that every $\emptyset \ne A \subset \mathbb{R}$ that is bounded from below has a greatest lower bound.