Studium Geigerova-Müllerova počítače pro záření gama

Tomáš Maršálek (A10B0632P)

měřeno 14. listopadu 2011

1 Měřící potřeby a přístroje

přístroj pro měření radioaktivního záření ROBOTRON 20 046, Geiger-Müllerův počítač pro záření gama, dva zářiče ⁶⁰Co o přibližně stejné aktivitě

2 Naměřené hodnoty

2.1 Charakteristika

Všechna měření probíhala 100 vteřin. Než počítač začal registrovat impulsy, velikost intervalu mezi měřeními byla 20V, poté 40V.

U [V]	počet impulzů [imp]	četnost [imp/min]	odchylka [imp/min]
340	0	0	0
360	158	94.8	7.5
400	167	100.2	7.8
440	152	91.2	7.4
480	162	97.2	7.6
520	165	99.0	7.7
560	149	89.4	7.3
600	165	99.0	7.7
640	178	106.8	8.0
680	161	96.6	7.6
720	198	118.8	8.5
760	229	137.4	9.1

2.2 Rozlišovací doba

Vzorky:

číslo	1	2
typ	radionuklid ⁶⁰ Co	radionuklid ⁶⁰ Co
číslo etalonu	099-01	099-03
počáteční aktivita [kBq]	185.10	185.90
aktivita ke dni měření [kBq]	46.539	46.740
poločas rozpadu [dnů]	1925.40	1925.40
rozpadů/min	2792337.8	2804406.3

Rozlišovací doba Geiger-Müllerova počítače:

vzorek	počet impulsů za 200s	četnost [imp/min]
bez zářiče	302	90.6
1	9288	2786.4
2	8865	2659.5
1 a 2	17670	5301.0

3 Výpočty

3.1 Charakteristika

Sklon plata zjistíme jako přírustek četnosti impulzů na úseku 100 V. Pomocí lineární regrese pro body nacházející se v platu vychází sklon 1.42~%/100V.

3.2 Rozlišovací doba

Pracovní napětí bylo zvoleno přibližně v polovině plata, tj. $U_P=520~\rm{V}.$ Rozlišovací dobu zjistíme ze vztahu

$$t_R = t \left[1 + \frac{t}{2} (R_{012} - R_0) \right], \quad kde \ t = \frac{R_{01} + R_{02} - R_{012} - R_0}{2(R_{01} - R_0)(R_{02} - R_0)}$$

Hodnoty R jsou počty registrovaných impulzů za sekundu pro daný zářič. Pro ztrátu impulzů při měření impulzů obou zářičů použijeme vztah

$$ztr\acute{a}ta = D - R = \frac{R}{1 - Rt_R} - R$$

3.3 Účinnost

Účinnost G-M počítače je pro daný zářič

$$f = \frac{R}{A(a_1 + a_2 + \dots + a_n)g} \cdot 100 \ [\%]$$

g je geometrický faktor, pro zvolenou vzdálenost mezi zářičem a počítačem 50 mm odpovídá 0.082103. a_i jsou počty kvant gama dané enegie vzniklých při jednom rozpadu, pro typ použitého zářiče je jejich součet roven 2. A je aktivita zářiče ke dni měření.

 $\mathbf{t_R}$ vychází **237.6** $\mu\mathbf{s}$, ztráta impulzů při měření obou zářičů **1.89** $\mathbf{imp/s}$. Účinnost je $\mathbf{0.6}$ %.

4 Závěr

Ztráta impulzů při měření obou zářičů byla 2%, metoda dvou zářičů byla v tomto případě použita správně, protože ztráta nepřevyšuje 10%. Účinnost G-M počítače vyšla 0.6%, což odpovídá pro měření záření gama.