TabPFN: A Transformer That Solves Small Tabular Classification Problems In A Second

НИС МОП, 08.02.2023

Bayesian prediction

- Given: $D = (X_{train}, y_{train}), x_{test}$
- Given: set of hypotheses Φ
- Posterior predictive distribution (PPD):
 - \circ Find: $p(y_{test}|D, x_{test})$
- Marginalize PPD over the posterior distribution of ϕ :

$$p(y_{test}|D, x_{test}) = \int_{\Phi} p(y_{test}|\phi, x_{test})p(\phi|D)d\phi$$

• If we know sampling procedure $p(D|\phi)$ and prior $p(\phi)$:

$$p(y_{test}|D, x_{test}) \propto \int_{\Phi} p(y_{test}|\phi, x_{test}) p(|D|\phi) p(\phi) d\phi$$

Prior-Data Fitted Network: Prior-fitting

- Prior-Date Fitted Network = PFN
- PFN is a transformer trained to approximate the PPD.
- How to make it learn Φ ?
- Prior-fitting:
 - \circ Choose hypothesis with prior $p(\phi)$, generate dataset with $p(D|\phi)$
 - Fit datasets to "learn the prior"
- Authors introduce TabPFN, which works on tabular data.

Prior-Data Fitted Network

Authors introduce TabPFN, which works on tabular data.

Prior-Data Fitted Network

- The real-world datasets are fitted in a single forward pass
- Or in several forward passes with permutations:
 - shuffled feature columns and permuted class labels.

Which prior to use?

- Models for dataset generation:
 - Structural Causal Models
 - Bayesian Neural Networks

Structural Causal Models

- Generate a causal graph
- Each node n has a value:

$$f(Parents(n), \epsilon)$$

- where:
 - \circ ϵ is random noise
 - f is a deterministic function
- Generate a dataset based on a graph (small, up to 1024 samples).

Example of a SCM graph

Structural Causal Models

- It is actually regression.
- To turn *y* into a class label:
 - o sample number of classes
 - o sample boundaries from y values
- E.g., for 3 classes:
 - \circ $(-\infty,0],(0,1],(1,+\infty)$

Example of a SCM graph

Bayesian Neural Networks

- Generate an input and a small NN.
- Weights of the BNN are distributions rather than fixed numbers.

Example of a BNN

Experiments

Results on 2D datasets from sklearn: moons, circles, iris, wine

Experiments

Results on 30 small datasets (maximum 2000 samples, 100 features, 10 classes) from OpenML-CC18 suite

Experiments

	LightGBM	CatBoost	XGBoost	ASKL2.0	AutoGluon	${\it TabPFN}_{n.e.}$	TabPFN	TabPFN + AutoGluon
Wins AUC OVO	0	0	2	2	2	4	5	5
Wins Acc.	0	2	2	3	3	0	6	8
Wins CE	0	1	3	1	7	1	6	9
M. rank AUC OVO	6.6167	4.9667	5.4167	4.05	3.7833	4.65	3.7	2.8167
Mean rank Acc.	6.5333	4.9833	5.1833	4.8667	3.8167	4.5333	3.6167	2.4667
Mean rank CE	5.7333	5.6	5.4667	5.8	2.8667	4.6167	3.5333	2.3833
Win/T/L AUC vs Tab	5/4/21	9/4/17	6/5/19	10/6/14	13/4/13	4/8/18	-/-/-	15/7/8
Win/T/L Acc vs Tab	6/0/24	9/1/20	11/0/19	11/2/17	12/0/18	6/3/21	-/-/-	19/3/8
Win/T/L CE vs TabP	6/0/24	8/0/22	8/0/22	8/0/22	20/0/10	1/4/25	_/_/_	23/0/7
Mean AUC OVO	0.884±.012	0.89±.011	0.891±.011	0.894±.01	0.895±.01	0.891±.01	0.894±.01	0.898 ±.0097
Mean Acc.	$0.815 \pm .014$	$0.818 \pm .011$	$0.821 \pm .013$	$0.821 \pm .016$	$0.83 \pm .012$	$0.82 \pm .013$	$0.825 \pm .012$	$0.834 \pm .011$
Mean CE	$0.782 \pm .074$	$0.767 \pm .061$	$0.758 \pm .047$	$0.815 \pm .06$	$\boldsymbol{0.72} {\pm}.015$	$0.742 \pm .021$	$0.732 \pm .018$	$0.721 \pm .015$
Mean time (s)	3241	3718	3304	3601	3127	0.8688 (CPU)	24.57 (CPU)	3152 (CPU)
						0.0187 (GPU)	0.4197 (GPU)	3128 (GPU)

Results on 30 small datasets (maximum 2000 samples, 100 features, 10 classes) from OpenML-CC18 suite

Sources

- https://arxiv.org/abs/2207.01848v3
- https://towardsdatascience.com/why-you-should-use-bayesian-neural-network
 -aaf76732c150