The Navigation Mechanism in a Rat's Brain

Yile Ying

1st June, 2018

The purpose of this study

- Learn from nature
- Gain insights into nature

→ Transfer findings into AI techniques

https://www.hse.ru/en/ma/cogito/

Learn from nature

- Building-Block Mechanism
- Lateralization
- Time Representation

Image Source: A. S. Alexander, D. A. Nitz, Current Biology, 2017

Generate insights into nature

• Using **Spiking Neural Network** to build biological non-implausible models to test hypothesis about the brain

Spike Timing Dependent Plasticity

Image Source: W. Wong, Electronic Design, 2017; H. Markram, Front. Synaptic Neurosci., 2011

Why chose "Navigation"?

- A fundamental aspect of our intelligence:
 - self-localize in the environment (landmark utilization)
 - update one's position on the basis of self-motion (path integration)
- Easy to test and compare with existing data and models

The Findings from a Rat's Brain

- Connections
- Functions
 - Spatial
 - Temporal
- Lateralization
- Building-Blocks

http://serious-science.org/genetic-manipulation-in-stem-cells-275

Connection

Posterior Parietal Cortex (PPC), Retrosplenial Cortex (RSC), Entorhinal Cortex (EC), Dentate Gyrus (DG), Cornu Ammonis 3 (CA3), Cornu Ammonis 2 (CA2), Cornu Ammonis 1 (CA1), Subicular Complex (SC).

Functional Neuron Groups

Image Source: E. I. Moser, M. Moser, N. Burgess, J. O'Keefe, et al.

Functions

Allo/Ego-centric	Encoded Information	PPC	RSC	EC	DG	CA3	CA2	CA1	SC
Allo & Ego	Cue (x Head direction)	\checkmark							
Route (Allo & Ego)	Route	\checkmark	\checkmark						
Ego	Head Direction	\checkmark	\checkmark	\checkmark					\checkmark
Ego	Head Direction x Self-motion	\checkmark	\checkmark						
Ego	Self-motion	\checkmark	\checkmark						
Allo & Ego	Multiple Stimuli		\checkmark						
Ego	Speed		\checkmark	\checkmark				\checkmark	
Allo	Grid			\checkmark					\checkmark
Allo & Ego	Grid x Head Direction			\checkmark					\checkmark
Allo	Border			\checkmark					\checkmark
Allo & Ego	Boundary Vector								\checkmark
Allo	Object x Place			\checkmark					
Allo	Ordor x place			\checkmark					
Allo	Place cells				\checkmark	\checkmark	\checkmark	\checkmark	
Allo	Social Information						\checkmark		

Spatial Scales

• Different groups of neurons encodes different scales

• Scale Independent

Image Source: H. Stensola, *Nature*, 2012; D. Nitz, *Nature*, 2012

Mystery Rhythms

- Theta Rhythms (4-7Hz)
 - Theta phase precession of place cells
 - Theta rhythm interference underlies grid cells
- Slow and Fast Gamma Rhythms (25-60 Hz; 60-100 Hz)
 - Modulate the synchronization between CA1 CA3, or CA1 MEC
 - Associated with long / short-path encoding
 - Slow gamma phase precession of place cells

Image Source: C. Zheng, Cell, 2016

Building Blocks

- Rigid Building Blocks
 - Describing basic elements of spatial cognition
 - Can be light independent/scale independent/motion independent etc.
- Dynamic Building Blocks
 - Modulated by the rigid building blocks
 - Can undergo "partial remapping" corresponding to changes

Lateralization – not obvious in HPC

	Left HPC	Right HPC					
	Less involved in short term memory of object-location associations	More involved in short term memory of object-location associations					
Human	London taxi drivers have smaller left hippocampus comparing to the right side	London taxi drivers have larger right hippocampus					
	More involved in egocentric sequential information encoding	More involved in allocentric spatial information encoding					
	Smaller left EC volume is found in patients who are progressing to Alzheimer than just in a stable mild cognitive impairment state	No difference					
	No difference	Activity decreased when retrieving more remote autobiographical memories, and more involved in recollective autobiographical memories retrieval					
Rodent	Left CA3 silencing impaired long-term memory	Right CA3 silencing does not impair long-term memory					
	Microinjecting ANG II (a type of hormone) to the left hippocampus increased learning and memory performance more	Increased less in learning and memory performance when ANG is injected					
	The left DG is more active during object exploration comparing to the right one	The right DG is less active in object exploration comparing to the left one					
Avian		Domestic chicks with damaged right hippocampus could not find the food buried in the center of the arena given geometric cues					

Time Representation

• Time Cells

- Firing Timings
- Brain Rhythms
- CA2?

The Attempts to Build an Artificial Rat

Image Source: Alex Rose, ECS Talk, 2018

Training & Testing

Image Source: Alex Rose, ECS Talk, 2018

CARLsim3

Izhikevich model + Spike Timing Dependent Plasticity + GPU

Image Source: E.M. Izhikevich, IEEE Transactions on Neural Networks, 2004

Mazes

d.

Deep Neural Networks for Grid Cells

Image Source: DeepMind & UCL Team, Nature, 2018

Conclusions

• Results:

- Building-block mechanism ✓
 - Boundary cells, grid cells, place cells
- Spiking Neural Network √

• Next:

- Time representation
- Lateralization
- Other factors such as emotions

http://www.cutestpaw.com/

Thanks!

https://designyoutrust.com/

Models

• Izhikevich Model:

Image Source: E.M. Izhikevich, IEEE Transactions on Neural Networks, 2004

• STDP:

$$\frac{du}{dt} = \frac{-u}{STP_tau_u} + STP_U(1 - u^-)\delta(t - t_{spk}) \tag{1}$$

$$\frac{dx}{dt} = \frac{1 - x}{STP_tau_x} - u^+x^-\delta(t - t_{spk}) \tag{2}$$

$$\frac{dI}{dt} = \frac{-I}{spk} + Au^+x - \delta(t - t_{spk}) \tag{3}$$

Image Source: CARLsim3 User Guide, UCI, 2016

Complex Structure

Group sgg_grid0, rate = [0, 21 Hz]

Spiking Boundary

