CHARACTER TABLE FOR C_{nh} POINT GROUP

Character table for C_{2h} point group

	E	C ₂ (z)	i	$\sigma_{ m h}$	Linear Functions, Rotations	Quadratic
$\mathbf{A_g}$	1	1	1	1	R_z	$x^2, y^2, z^2,$ xy
$\mathbf{B}_{\mathbf{g}}$	1	-1	1	-1	R_x, R_y	xz, yz
A_{u}	1	1	-1	-1	Z	
$\mathbf{B}_{\mathbf{u}}$	1	-1	-1	1	x, y	

Character table for C_{3h} point group

	E	C ₃ (z)	$(C_3)^2$	$\sigma_{\rm h}$	S ₃	(S ₃) ⁵	Linear functions, Rotations	Quadratic
A'	1	1	1	1	1	1	R_z	x^2+y^2, z^2
E'	1	e e*	e* e	1 1	e e*	e* e	x+iy x-iy	(x^2-y^2, xy)
A''	1	1	1	-1	-1	-1	Z	
E''	1 1	e e*	e* e	-1 -1	-e *	-e* -e	R_x+iR_y R_x-iR_y	(xz, yz)

 $e = \exp(2\pi i/3)$

Character table for C_{4h} point group

	E	C ₄ (z)	C ₂	(C ₄) ³	i	$(S_4)^3$	$\sigma_{\rm h}$	S ₄	Linear Functions, Rotations	Quadratic
$\mathbf{A_g}$	1	1	1	1	1	1	1	1	R_z	x^2+y^2, z^2
$\mathbf{B}_{\mathbf{g}}$	1	-1	1	-1	1	-1	1	-1		x^2-y^2 , xy
$\mathbf{E_g}$	1	i	-1	-i	1	i	-1	-i	R_x+iR_y	
Lg	1	-i	-1	i	1	-i	-1	i	R_x - iR_y	(xz, yz)
$\mathbf{A}_{\mathbf{u}}$	1	1	1	1	-1	-1	-1	-1	z	
B _u	1	-1	1	-1	-1	1	-1	1		
Eu	1	i	-1	-i	-1	-i	1	i	x+iy	
ւս	1	-i	-1	i	-1	i	1	-i	x-iy	

Character table for C_{5h} point group

	E	C ₅	$(C_5)^2$	$(C_5)^3$	$(C_5)^4$	σ_{h}	S ₅	$(S_5)^7$	$(S_5)^3$	$(S_5)^9$	Linear Functions, Rotations	Quadratic
A'	1	1	1	1	1	1	1	1	1	1	R_z	x^2+y^2, z^2
E'1	1	e	e^2	e ^{2*}	e*	1	e	e^2	e ^{2*}	e*	x+iy	
IF 1	1	e*	e ^{2*}	e^2	e	1	e*	e^{2*}	e^2	e	x-iy	
E'2	1	e^2	e*	e	e^{2*}	1	e^2	e^*	e	e^{2*}		
E 2	1	e ^{2*}	e	e*	e^2	1	e^{2*}	e	e*	e^2		(x^2-y^2, xy)
A''	1	1	1	1	1	-1	-1	-1	-1	-1	Z	
E''1	1	e	e^2	e ^{2*}	e^*	-1	-e	e ⁻²	-e ^{2*}	-e*	R_x+iR_y	
	1	e*	e ^{2*}	e^2	e	-1	-e*	-e ^{2*}	e ⁻²	-e	R_x - iR_y	(xz, yz)
E''2	1	e^2	e*	e	e^{2*}	-1	e ⁻²	-e*	-e	-e ^{2*}		
L 2	1	e ^{2*}	e	e*	e^2	-1	-e ^{2*}	-e	-e*	e ⁻²		

 $e = \exp(2\pi i/5)$

Character table for C_{6h} point group

	-	G ()			(C)2	(C.)5		(G.)5	(0.)5		C	G	Linear Functions,	
	E	$C_6(z)$	$\mathbf{C_3}$	C_2	$(C_3)^2$	$(C_6)^5$	i	$(S_3)^5$	$(S_6)^5$	$\sigma_{\rm h}$	S ₆	S_3	Rotations	Quadratic
$\mathbf{A_g}$	1	1	1	1	1	1	1	1	1	1	1	R_z	x^2+y^2, z^2	
$\mathbf{B_g}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
	1	e	-e*	-1	-e	e^*	1	e	-e*	-1	-е	e*	R_x+iR_y	
$\mathbf{E_{1g}}$	1	e*	-e	-1	-e*	e	1	e^*	-е	-1	-e*	e	R_x - iR_y	(xz, yz)
	1	-e*	-е	1	-e*	-e	1	-e*	-e	1	-e*	-е		
$\mathbf{E_{2g}}$	1	-е	-e*	1	-e	-e*	1	-e	-e*	1	-e	-e*		(x^2-y^2, xy)
$\mathbf{A}_{\mathbf{u}}$	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	Z	
B _u	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
	1	e	-e*	-1	-e	e*	-1	-e	e*	1	e	-е*	x+iy	
$\mathbf{E_{1u}}$	1	e*	-e	-1	-e*	e	-1	-e*	e	1	e*	-е	x-iy	
	1	-e*	-е	1	-e*	-e	-1	e*	e	-1	e*	e		
$\mathbf{E}_{2\mathbf{u}}$	1	-e	-e*	1	-e	-e*	-1	e	e*	-1	e	e*		

 $e = \exp(\pi i/3)$