Pregunta 1 (2,5 puntos)

Dados tres conjuntos arbitrarios no vacíos A, B y C y dos aplicaciones $f: A \longrightarrow B y$ $g: B \longrightarrow C$, demuestre que:

- a) si $g \circ f$ es inyectiva entonces f es inyectiva.
- b) si $g \circ f$ es sobreyectiva entonces g es sobreyectiva.

Pregunta 2 (2,5 puntos)

Se define en $\mathbb R$ la relación $\mathcal R$ dada por:

$$a \Re b$$
 si y sólo si $a^2 - b^2 = a - b$

Demuestre que \mathcal{R} es una relación de equivalencia y describa las clases de equivalencia.

Pregunta 3 (3 puntos)

Sea $(A, +, \cdot)$ un anillo conmutativo unitario.

- a) Demuestre que dados $x, y \in A$ si xy es inversible entonces x e y son inversibles.
- b) Demuestre que si $x \in A$ es inversible entonces x no es un divisor de cero.
- c) Sea $a \in A$ y sea aA el ideal generado por a. Demuestre que aA = A si y sólo si a es inversible.

Pregunta 4 (2 puntos)

Sea el número complejo $w = e^{i\frac{2\pi}{3}}$.

- a) Exprese w y w^2 en forma binómica y calcule $1 + w + w^2$.
- b) Resuelva en \mathbb{C} la ecuación $z^3 8i = 0$.