Real Analysis

Carter Aitken

2025-05-05

Abstract

Real Analysis the study of approximation on the reals.

Contents

1	Cardinality		
	1.1	Brief Motivation	2
	1.2	Function Theory	2

Chapter 1

Cardinality

1.1 Brief Motivation

We want to build a metric space to measure the distance between objects. We need

- 1. set X of objects.
- 2. need to measure closeness. func $d: X \times X \to [0, \infty)$ s/t
 - (a) $d(x,y) = 0 \iff x = y$
 - (b) d(x, y) = d(y, x)
 - (c) $d(x,z) \leq d(x,y) + d(y,z)$

We call d a metric on X. (X, d) is a **metric space**.

 $(\mathbb{R}, +' \circ^{\circ} (\sqrt{-})-)$ is a metric space. Note the BQN notation.

1.2 Function Theory

Definition 1.2.1: Injection. Let A, B be non-empty sets. We say $f: A \to B$ is injective **iff** $\forall a, b \in A$ $f(a) = f(b) \implies a = b$

Definition 1.2.2: Surjection. $f: A \to B$ is a surjection if $\forall b \in B \ \exists a \in A \ s/t \ f(a) = b$.

Definition 1.2.3: Bijective. $f: A \to B$ is bijective **iff** its injective and surjective.

Definition 1.2.4: Invertable. $f:A\to B$ is invertable **iff** $\exists g:B\to A$ s/t g(f(a))=a and f(g(b))=b $\forall a\in A,\ b\in B.$

We write $g = f^{-1}$ and call it "the" inverse.

Proposition 1.2.1. $f: A \to B$ is invertable **iff** f is bijective.

Proof. (\Longrightarrow) f is invertable. Suppose f(a) = f(b). We'll show a = b.

$$f^{-1}f(a)) = f^{-1}f(b)$$

$$\implies a = b$$

Now we'll show $\forall b \in B \ \exists a \in A \ f(a) = b$.

 $a = f^{-1}(b) \implies$ there is way to get from b to a, and it's f^{-1}

(\iff) Assume $f \leftarrow$ (bijective). We'll construct f's inverse. For $b \in B$ let a_b be the unique element of A s/t $f(a_b) = b$. a_b exists b/c of surjectivity of f, and it's unique b/c of injectivity.

$$g := \{g : A \to B, g(b) = a_b\}$$
$$f(g(b)) = f(a_b) = b$$
$$g(f(a_b)) = g(b) = a_b$$
$$\implies g = f^{-1}$$

Proposition 1.2.2. $\exists (injection) \ f : A \to B \iff \exists (surjection) \ g : B \to A$

Proof. (\Longrightarrow) Suppose $f: A \to B \leftarrow$ (injective). Let $b \in B$.

Case 1: $b \in f(A)$.

Let g(b) be the unique element of A s/t f(g(b)) = b, unique b/c $f \leftarrow$ (injective)

Case 2: $b \notin f(A)$.

Fix any $z \in A$. Let g(b) = z.

$$\implies g(b) = \begin{cases} f^{=}(b) & b \in f(A) \\ z & b \notin f(A) \end{cases}$$
 (1.1)

We claim g is a surjection. So we have to show $\forall a \in A, \exists b \in B \text{ s/t } g(b) = a \text{ Let}$

3

 $a \in A$ s/t $f(a) \in B$.

$$g(f(a)) \implies f(g(f(a))) = f(a)$$

(injective) $\implies g(f(a)) = a$
 $\implies g \leftarrow \text{(surjective)}$

 \Leftarrow Suppose $(g: B \to A) \leftarrow$ (surjective). $\forall a \in A$ choose $b_a \in B$ s/t $g(b_a) = a$. $f := \{f: A \to B \mid f(a) = b_a\}$. Suppose

$$f(x) = f(y)$$

$$\implies b_x = b_y$$

$$\implies g(b_x) = g(b_y)$$

$$\implies x = y$$

$$\implies f \leftarrow \text{(injective)}$$