Lesson 8: Linear Regression Model - Part 2

⋄ Introduction

Welcome back! In Part 1, we introduced linear regression and its core concepts. Now, it's time to get hands-on. In this lesson, you will:

- Learn how to train a linear regression model
- Understand how to evaluate it
- See an example in Python using scikit-learn

Steps to Build a Linear Regression Model

1. Prepare the Data

Ensure your dataset has input features (X) and a target variable (y).

2. Split the Dataset

Typically into training and testing sets (e.g., 80/20 split).

3. Train the Model

Fit the linear regression model to the training data.

4. Make Predictions

Use the trained model to predict the target variable on test data.

5. Evaluate Performance

Use metrics like MSE (Mean Squared Error) and R² (coefficient of determination).

Python Implementation

```
import numpy as np
import pandas as pd
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
# Sample data
data = {
  'Area (sq ft)': [1000, 1500, 2000, 2500, 3000],
  'Price ($)': [200000, 250000, 300000, 350000, 400000]
}
df = pd.DataFrame(data)
# Features and target
X = df[['Area (sq ft)']]
y = df['Price ($)']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Model
model = LinearRegression()
model.fit(X_train, y_train)
# Predictions
y pred = model.predict(X test)
# Evaluation
print("Mean Squared Error (MSE):", mean_squared_error(y_test, y_pred))
print("R<sup>2</sup> Score:", r2_score(y_test, y_pred))
# Visualization
plt.scatter(X, y, color='blue', label='Actual data')
plt.plot(X, model.predict(X), color='red', label='Regression Line')
plt.xlabel("Area (sq ft)")
plt.ylabel("Price ($)")
plt.legend()
plt.title("Linear Regression Example")
plt.show()
```

⋄ Evaluation Metrics Explained

Metric	What It Means
MSE	Measures the average squared error between predicted and actual values
R ² Score	Indicates how well the model explains the variability of the target variable
	$R^2 = 1$ means perfect fit, $R^2 = 0$ means no predictive power

Mini Exercise (Optional)

Try this yourself:

Modify the dataset to include more houses, or try predicting salaries based on years of experience using a dataset from Kaggle.

◇ Outro

Awesome work! In this lesson, you learned:

- How to train and test a linear regression model
- How to evaluate model performance
- ✓ How to use Python and scikit-learn to bring theory into practice

Linear regression is your launchpad for more advanced models like polynomial regression, logistic regression, and beyond.