ΦΥΣ. 133 ΕΡΓΑΣΙΑ # 1

1. Αποδείξτε ότι το μέτρο R του διανύσματος θέσης του κέντρου μάζας ως προς τυχαία αρχή συστήματος αναφοράς δίνεται από την εξίσωση:

$$M^{2}R^{2} = M\sum_{i}m_{i}r_{i}^{2} - \frac{1}{2}\sum_{i,j}m_{i}m_{j}r_{ij}^{2}$$

= Époule ôte to Scaruella Diens tou KM Sivetar and the Eficuen:

Mnopoile va paipoule enolieves to litpo tor R ws:

$$R^{2} = \overrightarrow{R} \cdot \overrightarrow{R} = \frac{1}{\mu^{2}} \left(\sum_{i} m_{i} \overrightarrow{r_{i}} \right) \cdot \left(\sum_{j} m_{j} \overrightarrow{r_{j}} \right) = \frac{1}{\mu^{2}} \sum_{ij} m_{i} m_{j} \left(\overrightarrow{r_{i}} \cdot \overrightarrow{r_{j}} \right) \Rightarrow$$

$$\Rightarrow \left[\mu^{2} R^{2} = \sum_{ij} m_{i} m_{j} \left(\overrightarrow{r_{i}} \cdot \overrightarrow{r_{j}} \right) \right] \qquad (1)$$

Il à courses tras sont la Seifoute ore M2R2=MIm: T2- = Imm my rig (2)

Ano (1) k (2) enopievos blinospe oze repines va Seifospe oze to Sefi hillos zys (1) eivas i60 pe to Sefi hillos zys (2) qua va anoseifospe to Jyzoipevo.

To Scavela
$$\vec{r}_{ij} = \vec{r_i} - \vec{r_j} \Rightarrow \vec{r_{ij}} = (\vec{r_i} - \vec{r_j}) \cdot (\vec{r_i} - \vec{r_j}) \Rightarrow (\vec{r_i} - \vec{r_i}) \Rightarrow (\vec{r_i} - \vec{$$

Aveckadistavras ser (2) Exorte: HR= H = M; = 2 = 1 = m, m, r; 2-1 = m, m, r; 2+ Im, m, r; 2+ Im,

$$\Rightarrow H^{2}R^{2} = \mathcal{M}_{i}^{2} m_{i} r_{i}^{2} - \frac{1}{9} \xi_{i} m_{j} \xi_{i} m_{i} r_{i}^{2} - \frac{1}{9} \xi_{i} m_{i} \chi_{i} \chi_{i}^{2} + \xi_{i} m_{i} m_{j} (\vec{r_{i}} \cdot \vec{r_{j}}) =$$

$$= \xi_{i} m_{j} \chi_{m_{i}} r_{i}^{2} - \frac{1}{9} \xi_{i} m_{j} \chi_{m_{i}} r_{i}^{2} - \frac{1}{9} \xi_{i} m_{i} \chi_{m_{j}} r_{j}^{2} + \xi_{i} m_{i} m_{j} (\vec{r_{i}} \cdot \vec{r_{j}}) =$$

$$= \frac{1}{9} \xi_{i} m_{j} \chi_{m_{i}} r_{i}^{2} - \frac{1}{9} \xi_{i} m_{j} \chi_{m_{i}} r_{j}^{2} + \xi_{i} m_{i} m_{j} (\vec{r_{i}} \cdot \vec{r_{j}}) =$$

$$= \frac{1}{9} \xi_{i} m_{j} \chi_{m_{i}} r_{i}^{2} - \frac{1}{9} \xi_{i} m_{j} \chi_{m_{i}} r_{j}^{2} + \xi_{i} m_{i} m_{j} (\vec{r_{i}} \cdot \vec{r_{j}}) =$$

Οι 2 πρώτοι όρα όμως είναι ίδωι αφού αντιπροσωπεύαν τα ίδια αθροίφιατα

Erropievous:
$$\mu^2 R^2 = \sum_{i,j} m_i m_j (\vec{r_i} \cdot \vec{r_j})$$
 now eivar of (1)

2. Θεωρήστε 2 ομόκεντρους κυλίνδρους, το ύψος των οποίων συμπίπτει με τον κατακόρυφο άξονα z και ακτίνες $R \pm \varepsilon$, όπου ε είναι πολύ μικρό. Ένα πολύ μικρό πούλι πάχους 2ε εισέρχεται ανάμεσα στους δύο κυλίνδρους και μπορεί να θεωρηθεί σαν υλικό σημείο το οποίο μπορεί να κινείται ελεύθερα σε σταθερή απόσταση από τον άξονα z. Αν χρησιμοποιήσουμε κυλινδρικές συντεταγμένες (ρ, ϕ, z) για την θέση του, τότε το ρ είναι σταθερό, ρ=R, ενώ φ και z μεταβάλλονται ελεύθερα. Να γραφούν και να λυθούν η εξίσωση του 2^{ου} νόμου του Newton για την γενική κίνηση του πουλιού, συμπεριλαμβανομένης και της επίδρασης της βαρύτητας. Περιγράψτε την κίνηση του πουλιού.

IE KUMWSpikis Genteraghières, co Sianapa diens à Siverai ano:

$$\Rightarrow \vec{a} = \vec{p} \hat{\rho} + \dot{\rho} \frac{d\hat{\rho}}{dt} + \dot{\rho} \dot{\phi} \hat{\phi} + \rho \ddot{\phi} \hat{\phi} + \rho \dot{\phi} \frac{d\phi}{dt} + \ddot{z} \hat{z} \Rightarrow$$

$$\Rightarrow \vec{a} = \vec{p} \hat{\rho} + \dot{\rho} \dot{\phi} \hat{\phi} + \dot{\rho} \dot{\phi} \hat{\phi} + \rho \dot{\phi} \hat{\phi} + \rho \dot{\phi} \hat{\phi} + \ddot{z} \hat{z} \Rightarrow$$

$$\Rightarrow \vec{a} = (\ddot{\rho} - \rho \dot{\phi}^2) \hat{\rho} + (g \dot{\rho} \dot{\phi} + \rho \ddot{\phi}) \hat{\phi} + \ddot{z} \hat{z} \hat{z}$$

$$\Rightarrow \vec{a} = (\ddot{\rho} - \rho \dot{\phi}^2) \hat{\rho} + (g \dot{\rho} \dot{\phi} + \rho \ddot{\phi}) \hat{\phi} + \ddot{z} \hat{z} \hat{z} \hat{z}$$

$$(3)$$

 $\frac{d\hat{\rho}}{dt} = -\dot{\phi}\hat{\rho}$ $\frac{\partial}{\partial t} = -\dot{\phi}\hat{\rho}$ Onus daiveras ero Simlavo existia, η Lieraboli equi Sieiduvers

του Siavietiaros $\hat{\phi}$ ce l' xponies erighes t_1 και t_2 $(\hat{\theta}_1, \hat{\theta}_2)$ Eivau $\Delta \hat{\phi} = \Delta \phi (-\hat{\phi}) = -\dot{\phi} \Delta t \hat{\rho} \Rightarrow \frac{\partial}{\partial t} = -\dot{\phi}\hat{\rho}$.

Το αρνητικό πρό ετρο προκύπτα από το χεγονός ότι $d\hat{\phi}$ //- $\hat{\phi}$ αφού τα $\hat{\phi}$ και $\hat{\phi}_{a}$ και $\hat{\phi}_{a}$ είναι κάθετα τα $\hat{\phi}_{a}$ και $\hat{\phi}_{a}$ και για μινη ή historian con averificacis do Lo onus non do Lo

Exortie enopieros to Staviofiaca F, V kar a ce kulivoques conteraphères.

H Sivatin 500 Spa 620 noide eine n Sivatin ens bapiereas $\vec{F_g} = -mg\hat{Z}$ kar n kádech Sivatin 500 agnérar anó 20 efectopisó toixula tou kudinspou $\vec{F_N} = -N\hat{\rho}$ de N 20 hégédor ens Siratins.

Το πούλι ωστόσο βρίσκεται σε ορισμένο ρ αφού η διάμετρος του ισούται με την απόσταση των 2 κυλίνδρων $p=R \Rightarrow \dot{p}=\ddot{p}=\emptyset$. (4)

Ano to 2º volto του Newton Exouple: F=ma =>

$$\Rightarrow \vec{F}_{\rho} = m\vec{a}_{\rho}, \quad \vec{F}_{\phi} = m\vec{a}_{\phi} \quad \vec{F}_{z} = m\vec{a}_{z}$$

$$\Rightarrow \vec{F}_{\rho} = \vec{F}_{N}, \quad \vec{F}_{\phi} = 0 \quad \vec{F}_{z} = \vec{F}_{\phi}$$

$$\Rightarrow -N\hat{\rho} \Rightarrow (\ddot{\rho} - \rho\dot{\phi}^{2})\hat{\rho} \stackrel{(4)}{=} -N = -m\rho\dot{\phi}^{2} \Rightarrow N = m\rho\dot{\phi}^{2} \quad (5)$$

$$(2\dot{\phi}\dot{\phi} + \rho\ddot{\phi})\hat{\phi} = 0 \stackrel{(4)}{\Rightarrow} \rho\ddot{\phi} = 0 \Rightarrow \dot{\phi} = 6ca\theta = \dot{\phi}_{o} \quad (6)$$

$$-mg\hat{z} = m\ddot{z}\hat{z} \Rightarrow -g = \ddot{z} \Rightarrow \dot{z} = -g\dot{t} + \dot{z}_{o} \Rightarrow Z = Z_{o} + \dot{z}\dot{t} - \frac{1}{2}g\dot{t}^{2} \quad (7)$$

Hefiewer (5) Se Siver nation Apobopie. To those nou Seixure eiver our n Sivety $N = 6 \pi a D$ adai logue $\pi r s$ (6) $r = d_0 = 6 \pi a D$.

Επομένως η κίνηση του πουθιού είναι:

Το πούλι κόνει ελεύθερη πτώ 67 καθώς περιστρέφεται με σταθερή χωνιανή ταχύτητα φ. Επρεπε να είναι σταθερή η φ. για διατήρηση της στροφορμής. Η τροχιά του είναι fua επιμικινόμενη σπείρα

 Αν L είναι η Lagrangian για ένα σύστημα με η βαθμούς ελευθερίας που ικανοποιούν τις εξισώσεις Lagrange, δείξτε με απ' ευθείας αντικατάσταση ότι:

$$L' = L + \frac{dF(q_1, q_2, ..., q_n, t)}{dt}$$

Ικανοποιεί τις εξισώσεις Lagrange όπου F τυχαία, αλλά παραγωγίσιμη, συνάρτηση των μεταβλητών της.

H eficuen lagrange eine:
$$\frac{1}{dt} \left(\frac{\partial l}{\partial \dot{q}_i} \right) - \frac{\partial l}{\partial q_j} = \emptyset$$
 (1)

Il via ovapry hagrange 1' eiva :

$$l' = l + \frac{dF(q_i, q_2, \dots q_n, t)}{dt} \Rightarrow l' = l + \sum_{i=0}^{F} \frac{Q_i}{Q_i} + \frac{Q_i}{Q_i}$$
 (2)

Tra a moduji za appoiduatos, finopoilie va deupisoulie env (2) ws mpos

ANTINADIGEOILE TYN (3) GEYN (1) O note éxoule:

$$\frac{d}{dt} \left[\frac{\partial}{\partial q_{i}} \left(l + \frac{\partial F}{\partial q_{i}} \frac{\partial q_{i}}{\partial t} + \frac{\partial F}{\partial t} \right) \right] - \frac{\partial}{\partial q_{i}} \left(l + \frac{\partial F}{\partial q_{i}} \frac{\partial q_{i}}{\partial t} + \frac{\partial F}{\partial t} \right) =$$

$$=\frac{1}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}}-\frac{\partial \mathcal{L}}{\partial q_{j}}+\frac{1}{dt}\left[\frac{\partial}{\partial \dot{q}_{j}}\left(\frac{\partial F}{\partial q_{i}}\dot{q}_{i}+\frac{\partial F}{\partial t}\right)\right]-\frac{\partial}{\partial q_{j}}\left(\frac{\partial F}{\partial q_{i}}\dot{q}_{i}+\frac{\partial F}{\partial t}\right)=$$

$$= \frac{1}{dt} \left[\frac{\partial}{\partial \dot{q}_{i}} \frac{\partial F}{\partial \dot{q}_{i}} \dot{q}_{i} + \frac{\partial}{\partial \dot{q}_{i}} \frac{\partial F}{\partial t} \right] - \frac{\partial}{\partial \dot{q}_{i}} \frac{\partial F}{\partial \dot{q}_{i}} \dot{q}_{i} - \frac{\partial}{\partial \dot{q}_{i}} \frac{\partial F}{\partial t} =$$

$$=\frac{d}{dt}\left(\frac{\partial F}{\partial q_i}\right)-\frac{\partial}{\partial q_j}\left(\frac{\partial F}{\partial q_i}\frac{\partial q_j}{\partial t}+\frac{\partial F}{\partial t}\right)=\frac{d}{dt}\left(\frac{\partial F}{\partial q_i}\right)-\frac{\partial}{\partial q_j}\left(\frac{dF}{dt}\right)$$

Evallacoreas en supa ens rapagiques seo repossoitevo anorelequa:

$$\frac{d}{dt} \left(\frac{\partial F}{\partial q_i} \right) - \frac{d}{dt} \left(\frac{\partial F}{\partial q_i} \right) = \emptyset$$

Enopierus o via hagranguen L'ixavonoici en escuen hagrange.

4. Ένα σωματίδιο μάζας m κινείται σε μια διάσταση έτσι ώστε να του αντιστοιχεί η συνάρτηση Lagrange

$$L = \frac{m^2 \dot{x}^4}{12} + m \dot{x}^2 V(x) - V^2(x),$$

όπου V είναι μια παραγωγίσιμη συνάρτηση του x. Να βρεθούν οι εξισώσεις κίνησης για x(t) και να περιγραφή η φύση του συστήματος βάση της εξίσωσης αυτής.

Mas Siveral of Lagrangian
$$d = \frac{m^2 \dot{x}^4}{12} + m \dot{x}^2 V(x) - V^2(x)$$

The verbopoidie as estables xivosops trained a disorde convessioner lagrange

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{m^2 \dot{x}^3}{3} + 2m \dot{x} V(x) \right) - m \dot{x}^2 \frac{dV(x)}{dx} + 2V(x) \frac{dV(x)}{dx} \Rightarrow$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = m^2 \dot{x}^2 \ddot{x} + \frac{2m \ddot{x}}{dx} V(x) + 2m \dot{x} \frac{dV}{dx} \frac{dx}{dx} - m \dot{x}^2 \frac{dV}{dx} + 2V \frac{dV}{dx} \Rightarrow$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = m^2 \dot{x}^2 \ddot{x} + m \dot{x}^2 \frac{dV}{dx} + 2m \ddot{x} V + 2V \frac{dV}{dx} \Rightarrow$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = m^2 \dot{x}^2 \ddot{x} + m \dot{x}^2 \frac{dV}{dx} + 2m \ddot{x} V + 2V \frac{dV}{dx} \Rightarrow$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = m^2 \dot{x}^2 \ddot{x} + m \dot{x}^2 \frac{dV}{dx} + 2m \ddot{x} V + 2V \frac{dV}{dx} \Rightarrow$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = m^2 \dot{x}^2 \ddot{x} + m \dot{x}^2 \frac{dV}{dx} + 2m \ddot{x} V + 2V \frac{dV}{dx} \Rightarrow$$

Enolièves rade opos in rai or Suo opor linopè ve civar dices zis eficios la dagrange. AndaSi: $m\ddot{x} = -\frac{dV}{dx} \Rightarrow m\ddot{x} = \dot{p} = -\frac{dV}{dx}$ (1) $m\ddot{x}^2 = -2V \Rightarrow \frac{d}{dt} (m\dot{x}^2) = -2\frac{dV}{dt} \Rightarrow$ $\Rightarrow m\ddot{x}\ddot{x} = -2\frac{dV}{dt} \Rightarrow$ $\Rightarrow m\ddot{x}\ddot{x} = -2\frac{dV}{dt} \Rightarrow$ $\Rightarrow m\ddot{x}\ddot{x} = -\frac{dV}{dx} \Rightarrow \dot{p} = -\frac{dV}{dx}$ (2)

Anladri kai oi 2 opoi stepispadour éva povodiactato Swapiko medo adoù Sivour Gar anotélectua to 2º votro tor Newton.

5. Έστω $q_1,...,q_n$ αποτελούν ένα σύνολο ανεξάρτητων γενικευμένων συντεταγμένων για ένα σύστημα με n βαθμούς ελευθερίας, με Lagrangian L (q,\dot{q},t) . Ας υποθέσουμε ότι μετασχηματίζουμε σε ένα άλλο σύνολο ανεξάρτητων συντεταγμένων $s_1,...,s_n$ μέσω των εξισώσεων μετασχηματισμού:

$$q_i = q_i(s_1,...,s_n,t), i=1,...,n$$

(τέτοιος μετασχηματισμός ονομάζεται σημειακός μετασχηματισμός, point transformation). Δείξτε ότι αν η συνάρτηση Lagrange εκφραστεί συναρτήσει των s_j , \dot{s}_j και t μέσω των εξισώσεων του μετασχηματισμού, τότε η L ικανοποιεί τις εξισώσεις Lagrange ως προς τις s συντεταγμένες:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}_j} \right) - \frac{\partial L}{\partial s_j} = 0$$

Tra va Seifortie ozi d (s;, s;, t) exavonois en eficuer hagrange, xonstronaité

zov kaviova zur sindeum erraperiscus ; Seigvovas en efepersoj cur si, s. arioqi, qi

$$\frac{\partial k}{\partial s_i} = \frac{\partial k}{\partial q_i} \frac{\partial q_i}{\partial s_i} + \frac{\partial k}{\partial \dot{q}_i} \frac{\partial \dot{q}_i}{\partial s_i}$$
 (1)

$$\frac{\partial L}{\partial \dot{s}_{i}} = \frac{\partial L}{\partial q_{i}} \frac{\partial q_{i}}{\partial \dot{s}_{j}} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{s}_{i}}$$
(2)

And the (3) exacts:
$$\frac{\partial q_i}{\partial \dot{s}_i} = \frac{\partial q_i}{\partial \dot{s}_j} = \frac{\partial q_i}$$

To
$$9^{\circ}$$
 hilos ϵ_{15} escaps (5) evan : $\frac{d}{dt} \left(\frac{\partial q_{i}}{\partial s_{k}} \right)$ kan enotieves : $\left[\frac{\partial q_{i}}{\partial s_{j}} = \frac{d}{dt} \left(\frac{\partial q_{i}}{\partial s_{k}} \right) \right]$ (6)

Tèlos adoi $q_i = q_i(s_j,t)$ evaperer salasi hovo eur s_i hau t Da exalue: $\frac{\partial q_i}{\partial s_i} = \emptyset \qquad (7)$

 $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{s}_{i}}\right) - \frac{\partial L}{\partial \dot{s}_{i}} = \frac{d}{dt}\left[\frac{\partial L}{\partial \dot{q}_{i}}\right] + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{s}_{i}} - \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{s}_{i}} - \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{s}_{i}} = \frac{\partial L}{\partial \dot{q}_{i}} \frac{d}{\partial \dot{s}_{i}} \left(\frac{\partial Q_{i}}{\partial \dot{s}_{i}}\right) + \frac{\partial q_{i}}{\partial \dot{s}_{i}} \frac{d}{\partial \dot{q}_{i}} \left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial q_{i}}{\partial \dot{s}_{i}} - \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{s}_{i}} = \frac{\partial L}{\partial \dot{q}_{i}} \frac{d}{\partial \dot{q}_{i}} \left(\frac{\partial Q_{i}}{\partial \dot{s}_{i}}\right) + \frac{\partial q_{i}}{\partial \dot{s}_{i}} \frac{d}{\partial \dot{q}_{i}} \left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial q_{i}}{\partial \dot{s}_{i}} - \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{s}_{i}} - \frac{\partial \dot{q}_{i}}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{s}_{i}} - \frac{\partial \dot{q}_{i}}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{s}_{i$

And my (6) o 12 kar 1 opos ana Joipovar onòre: de (21) 21 = 21: [dt (21) 21] =0