

TÍNH NGUYÊN HÀM TÍCH PHÂN

- 1. [nguyên hàm cơ bản] Biết hàm số F(x) liên tục trên \mathbb{R} thỏa mãn $\int e^x (x^2 2) dx = F(x) + C$. Số điểm cực trị của F(x) là:
 - **A.** 2.

B. 4.

C. 1.

- **Q.** 3.
- 2. [nguyên hàm] Xét hai hàm số f(x), g(x) là hàm số liên tục, có F(x), G(x) lần lượt là nguyên hàm của f(x), g(x). Xét các mệnh đề sau:
 - (i). F(x) + G(x) là một nguyên hàm của hàm số f(x) + g(x).
 - (ii). kF(x) là một nguyên hàm của hàm số kf(x) với $k \in \mathbb{R}$.
 - (iii). F(x). G(x) là một nguyên hàm của hàm số f(x). g(x)

Có bao nhiêu mệnh đề đúng trong 3 mệnh đề trên?

A. 0.

- **p.** 3.
- 3. [tính nguyên hàm] Cho hàm số $f(x) = 2x + \frac{1}{x} + 1$. Biết F(x) là một nguyên hàm của f(x)thỏa mãn F(1) = 0. Trong các khẳng định sau, khẳng định nào đúng ?
 - **A.** $F(x) = x^2 + x + \ln|x| + 2$.

B. $F(x) = x^2 + x + \ln|x| - 2$.

C. $F(x) = x^2 + x - \ln|x| - 2$.

- **Q.** $F(x) = x^2 x + \ln|x| + 2$.
- 4. [diện tích] Hình phẳng giới hạn bởi đồ thị hàm số $y = x^2 3x$ và đường thẳng y = 4 có diện tích bằng
 - **A.** $-\frac{125}{6}$.
- **B.** $\frac{5}{6}$.
- $\frac{9}{2}$.
- $\mathbf{p}. \frac{125}{6}.$
- 5. Tính diện tích hình phẳng giới hạn bởi hai đồ thị $y^2 = x^3$ và $y^2 = (2 x)^3$
- 6. Diện tích hình phẳng giới hạn bởi các đồ thị $y = x^2$ và y = |x 2| bằng bao nhiêu?
- 7. [thể tích] Trong không gian Oxyz cho vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3, thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ($0 \le x \le$ 3) là hình chữ nhật có hai kích thước là x và $2\sqrt{9-x^2}$.
 - a) Diên tích thiết diên là $S(x) = x\sqrt{9 x^2}$.

- b) Thể tích vật thể là V = 9.
- c) Chia vật thể trên thành hai phần có thể tích $V_1 < V_2$ bởi mặt phẳng x = 1 thì $\frac{V_1}{V_2}$ bằng 0,19 (kết quả làm tròn đến hàng phần trăm).
- d) Mặt phẳng x = a chia thể tích trên thành hai phần bằng nhau. Giá trị của a gần bằng 1,82.
- 8. [thể tích] Trong không gian Oxyz cho vật thể nằm giữa hai mặt phẳng x = -1 và x = 1. Thiết diện của vật thể đó cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thỏa mãn $-1 \le x \le 1$ là một tam giác vuông cân với cạnh huyền bằng $\sqrt{1-x^4}$.
 - a) Thiết diện là tam giác vuông cân có cạnh góc vuông là $\frac{\sqrt{1-x^4}}{\sqrt{2}}$.
 - b) Diện tích thiết diện là $S(x) = \frac{1-x^4}{2}$.
 - c) Công thức tính thể tích vật thể theo diện tích mặt cắt S(x) là $V = \pi \int_{-\infty}^{\infty} S(x) dx$.
 - d) Thể tích của vật thể đã cho là $\frac{2}{5}$.
- 9. [thể tích khối tròn xoay] Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường $y = 5 - x^2$ và y = 1 quanh trục hoành thuộc khoảng nào sau đây:
 - **A.** (0;50).
- **B.** (50;100).
- **C.** (100;150).
- 10. [tích phân] Gọi S là tập các giá trị của m thỏa mãn $\int_{-\infty}^{\infty} (2x-3) dx = m+7$. Tổng các phần tử của S bằng
 - **A.** 8.

B. 10.

C. 4.

- **Q.** 7.
- 11. [hàm lượng giác] Cho hàm số f(x) thỏa mãn f(0) = 1 và $f'(x) = 2\cos^2 x + 1 \ \forall x \in \mathbb{R}$. Khi đó $\int f(x) dx$ bằng

- **A.** $\frac{\pi^2 + 2\pi + 1}{16}$. **B.** $\frac{\pi^2 + 2\pi + 1}{9}$. **C.** $\frac{\pi^2 + 4\pi + 4}{8}$. **D.** $\frac{\pi^2 + 4\pi + 4}{16}$.
- 12. [hàm ghép] Cho hàm số $f(x) = \begin{cases} \frac{1}{x} & \text{khi } x \ge 1 \\ 3x^2 2 & \text{khi } x < 1 \end{cases}$. Giả sử F(x) là một nguyên hàm của hàm
 - số f(x) trên $\mathbb R$ thỏa mãn F(0)=2. Giá trị của F(-1)-3F(2) bằng
 - **A.** 2 ln 3.
- **B.** $-3 \ln 2$.
- **C.** 3 ln 2.

Chapter 6 – Tính nguyên hàm tích phân

Trang 55

13. Biết rằng số là môt trên nguyên hàm của hàm $f(x) = \begin{cases} \sqrt{x+1} & \text{khi} & x \ge 0 \\ (2x+1)^3 & \text{khi} & x < 0 \end{cases} \text{ và } F(3) + F(-1) = \frac{19}{3}.$

Giá trị của biểu thức P = F(-2) + F(8) bằng

- **B.** 27.
- **C.** 58.
- **Q.** 29.
- **14.** Cho hàm số $f(x) = \begin{cases} ax + 1 & \text{khi } x \ge 1 \\ x^2 + b & \text{khi } x < 1 \end{cases}$ với a, b là các tham số thực. Biết rằng f(x) liên tục và có đạo hàm trên \mathbb{R} . Tích phân $I = \int_{Y}^{X} f(x) dx$ bằng
 - **A.** $\frac{1}{3}$.

- **B.** $\frac{19}{2}$.
- $\frac{\mathbf{c}}{3}$.
- **p.** $\frac{25}{2}$.
- 15. Cho hàm số $f(x) = \begin{cases} ax^2 + bx + 1 & \text{khi } x \ge 0 \\ ax b 1 & \text{khi } x < 0 \end{cases}$. Biết rằng hàm số f(x) có đạo hàm trên \mathbb{R} . Tích phân $I = \int_{-3}^{-1} f(x) dx$ bằng
- **B.** $\frac{-22}{3}$.
- **C.** -14.
- **Q.**10.
- 16. Cho hình phẳng (H) giới hạn bởi $\frac{1}{4}$ cung tròn của đường tròn tâm O(0;0) và bán kính bằng 4, parabol (P) có tọa độ đỉnh I(2;2) và đi qua gốc tọa độ O, các đường thẳng x = 0; x = 4 như hình vẽ bên. a) Đường tròn có phương trình là $x^2 + y^2 = 4$.

- b) Parabol có phương trình $y = f(x) = -\frac{1}{2}x^2 + 2x$.
- c) Diện tích hình phẳng giới hạn bởi parabol (P), trục tung, trục hoành và đường thẳng x = 4 bằng $\frac{16}{3}$.
- d) Thể tích khối tròn xoay khi quay hình (H) quanh trục Ox bằng $\frac{512}{15}$.
- 17. [diện tích hình phẳng giao bởi parabol và đường thẳng] Cho hàm số $y=f(x)=x^2+1$ có đồ thị (C). Đường thẳng d cắt (C) lần lượt tại hai điểm A và B thỏa mãn $AB = m, m \in \mathbb{N}^*$. Gọi T là tập hợp tất cả các giá trị của tham số m để diện tích lớn nhất của hình phẳng (H) giới hạn bởi (C) và d nhỏ hơn 36. Tích tất cả các phần tử của T bằng
 - **A.** 216.
- **B.** 120.
- **C.** 720.

- 18. [tính chất tích phân] Xét tất cả các hàm số f(x) thỏa mãn $\int_{-\infty}^{\infty} f(x) dx = 6$. Giá trị nhỏ nhất của $\left(\int_{0}^{-2} f(x) dx\right)^{2} + 2 \int_{0}^{4} f(x) dx$ bằng bao nhiêu?
- 19. [hàm chứa tích phân] Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn $f(x) = x + \int x f(x) dx$. Giá trị của f(2) nằm trong khoảng nào sau đây?
 - A.(3;4).
- **B.**(4;5).
- $\mathbf{C}.(0;2).$
- **Q.** (2;3).
- **20.** [xử lý hàm số] Cho hai hàm số $f(x) = ax^4 + bx^3 + cx^2 + 3x$ và $g(x) = mx^3 + nx^2 x$, với $a, b, c, m, n \in \mathbb{R}$. Biết hàm số y = f(x) - g(x) có ba điểm cực trị là -1,2 và 3. Diện tích hình phẳng giới hạn bởi hai đường y = f'(x) và y = g'(x) bằng
 - **A.** $\frac{32}{2}$.
- **B.** $\frac{71}{9}$.
- **c.** $\frac{71}{6}$.
- $0.\frac{64}{9}$
- 21. [dùng tích phân giải toán hàm số] Cho hàm số y = f(x)có đạo hàm liên tục trên \mathbb{R} . Biết hàm y = f'(x) có đồ thị là đường cong trong hình bên. Khẳng định nào dưới đây sai?

- **A.** f(-1) < f(1). **B.** f(0) < f(1).
- C. f(-1) < f(4). Q. f(4) < f(0).
- 22. [quan sát đồ thị] Cho y = f(x), y = g(x) lần lượt là các hàm số đa thức bậc ba và bậc nhất có đồ thị như hình vẽ. Biết tung độ của A và C lần lượt là $\frac{7}{4}$ và $\frac{4}{3}$.

Hình phẳng được đánh dấu có diện tích bằng $\frac{40}{2}$. Giá trị của tích phân $\int_{1}^{2} [f(x) - x] dx$ bằng

- **B.** $\frac{-7}{32}$.
- $\frac{\mathbf{c}}{32}$.
- $\frac{-9}{16}$.

23. [đồ thị hàm f đã biết] Cho hàm số y = f(x) liên tục trên [-1; 6] và có đồ thị là đường gấp khúc ABC như hình bên.

Biết F là nguyên hàm của f thỏa mãn F(-1) = -2. Giá trị của F(4) + F(6) bằng

A. 3.

B. 4.

C. 8.

p. 5.

24. [diện tích phần tô màu] Tính diện tích hình phẳng tô màu (như hình vẽ), biết đường cong là một parabol có đỉnh là gốc tọa độ và đường thẳng có hệ số góc bằng -1.

Q. 3.

25. Cho hàm số $f(x) = x^3 + ax^2 + bx + c$ và hàm số g(x) = mx + n $(a, b, c, m, n \in \mathbb{R})$. Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại ba điểm phân biệt A, B, C sao cho BC = 2AB, và phân diện tích S_1, S_2 như hình vẽ. Khi đó $\frac{S_1}{S_2}$ bằng

26. [conic] Trong mặt phẳng (Oxy), cho hình tròn tâm O, bán kính $R=\sqrt{2}$. Gọi d là đường thẳng có phương trình x = -0.25, và I(0.25; 0). Hình phẳng (H) chứa tất cả các điểm M nằm trong hình tròn (C), nhưng luôn thỏa mãn $IM \leq d(M,d)$. Tính diện tích hình phẳng (H).

- 27. Tính diện tích hình phẳng phần tô đậm như hình vẽ, biết các đường cong là các parabol với các đỉnh (0; 0) và (8; 0), cắt nhau tại điểm (-8; 2), đường thẳng màu đen cắt trục hoành tại điểm có hoành độ bằng -4 và cắt trục tung tại điểm có tung độ bằng 2.

- 28. [thể tích cái phao] Gọi V là thể tích vật thể tròn xoay khi cho hình tròn có tâm I(2;0), bán kính R = 1 quay quanh trục tung. Tính $\frac{V}{\pi^2}$.
- 29. [quay nửa lục giác đều] Cho nửa lục giác đều ABCD nội tiếp đường tròn đường kính AD = 8 (tham khảo hình vẽ). Thể tích khối tròn xoay được tạo thành khi quay miền tứ giác ABCD quanh đường thẳng CD bằng

- **A.** 112π .
- **B.** $28\pi\sqrt{13}$.
- **C.** 70π .
- **Q.** 336π .