TABLE 9.2 Summary of Tests for Series

Test	Series	Converges	Diverges	Comment
nth-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	r < 1	r ≥ 1	Sum: $S = \frac{a}{1 - r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty}b_n=L$		Sum: $S = b_1 - L$
p-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	<i>p</i> ≤ 1	
Alternating Series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$		Remainder: $ R_N \le a_{N+1}$
Integral (f is continuous, positive, and decreasing)	$\sum_{n=1}^{\infty} a_n, a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) \ dx \text{ converges}$	$\int_{1}^{\infty} f(x) \ dx \ \text{diverges}$	Remainder: $0 < R_N < \int_N^\infty f(x) \ dx$
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\sqrt[n]{ a_n }<1$	$\lim_{n\to\infty}\sqrt[n]{ a_n }>1$	Test is inconclusive if $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1$.
Ratio	$\sum_{n=1}^{\infty} a_n$	$\left \lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right <1\right $	$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right > 1$	Test is inconclusive if $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1.$
Direct Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$0 \le a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n \text{ converges}$	$0 \le b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n \text{ diverges}$	
Limit Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n \text{ converges}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n \text{ diverges}$	

EXERCISES for Section 9.6

In Exercises 1—20, use the Ratio Test to test for convergence or divergence of the series. In Exercises 1–20, use the Ratio Test to test for convergence or divergence of the series.

(a) $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ (b) $\sum_{n=1}^{\infty} \frac{n!}{3^n}$ (c) $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ (d) $\sum_{n=1}^{\infty} \frac{n!}{3^n}$ (e) $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ (f) $\sum_{n=1}^{\infty} \frac{n!}{n!}$ (g) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(n+2)}{n!}$ (g) $\sum_{n=0}^{\infty} \frac{(-1)^{n+2}}{n!}$ (h) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (h) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (h) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (h) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (h) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{n(n+1)}$ (h) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (h) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (h) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (h) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{n(n+1)}$ (h) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{n!}$

$$\bigcirc \quad \widehat{1} \sum_{n=0}^{\infty} \frac{n!}{3^n} \quad \stackrel{\mathscr{D}}{\longrightarrow} \quad$$

$$\sum_{n=0}^{\infty} \frac{3^n}{n!}$$

C, 2.
$$\sum_{n=1}^{\infty} n(\frac{2}{3})^n$$

4.
$$\sum_{n=1}^{\infty} n \left(\frac{3}{2}\right)^n$$

$$(5) \sum_{n=1}^{\infty} \frac{n}{2^n}$$

$$7. \sum_{n=1}^{\infty} \frac{2^n}{n^2}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{n!}$$

$$\stackrel{\circ}{\mathbb{L}}_{6}$$
. $\stackrel{\circ}{\sum} \frac{n^2}{2n}$

8.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{n(n+1)}$$

C10.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(3/2)^n}{n^2}$$