

Luiza Olivieri Ponte

Índice:

01 | Forecast

Paper: Gabriel /CNPq

02 | Forecast

FAPESP

o3 | Rádio

1/f

04 | Rádio

Paper: Feixe

01

Paper: Gabriel / CNPq

Timeline

Maio/2022

Entrei no grupo e o Gabriel me explicou o UCLCI

Set/2022

Comecei meu projeto da CNPq rodando os 3 modelos de interação

Mar/2023

Relatório parcial, tinha as rodadas dos 3 modelos com CMB

Set/2023

Relatório final, tinha as rodadas dos 3 modelos com CMB + BAO

Out/2023

Apresentei no SIICUSP os resultados do projeto - slide

Mar/2024

Apresentei no SIICUSP os resultados do projeto - poster

Projeto CNPq

CMB

Parâmetro	ΛCDM	Modelo 1	Modelo 2	Modelo 3	Modelo 4
H_0	67.21	67.49	100.70	83.06	77.47
$\Omega_b h^2$	0.0224	0.0224	0.0224	0.0225	0.0224
$\Omega_c h^2$	0.120	0.113	0.120	0.119	0.120
$100\theta_S$	1.042	1.042	1.042	1.042	1.042
$ln(10^{10}A_s)$	3.061	3.070	3.036	3.056	3.005
n_s	0.965	0.965	0.970	0.969	0.966
au	0.050	0.055	0.053	0.050	0.052
λ_i	0.2516	-0.9809	-1.9438	-1.4715	0.0006
ω_0	-	-0.061	0.013	0.0003	-2.256
σ_8	0.818	0.856	1.050	0.942	0.843
Age/Gyr	13.81	13.80	13.43	13.57	13.40

CMB + BAO

Parâmetro	ΛCDM	Modelo 1	Modelo 2	Modelo 3
H_0	68.06	68.61	68.51	68.65
$\Omega_b h^2$	0.0225	0.0225	0.0224	0.0224
$\Omega_c h^2$	0.118	0.108	0.132	0.119
$100\theta_S$	1.042	1.042	1.042	1.042
$ln(10^{10}A_{s})$	3.074	3.076	3.075	3.083
n_s	0.969	0.965	0.968	0.966
au	0.053	0.051	0.056	0.049
λ_1	0.0480	-0.1051	0.1325	0.0002
ω_0	-	-0.996	-1.068	-1.040
σ_8	0.817	0.896	0.762	0.834
Age/Gyr	13.78	13.78	13.78	13.79

Paper de interação

Modelo 1

Modelo 2

Modelo 3

Modelo 4

Problema:

TABLE III. $\Delta \chi^2 = \chi^2_{\Lambda \text{CDM}} - \chi^2_{\text{IDE}}$ and evidence level in $2 \ln \mathcal{B}$ scale compared to ΛCDM . Datasets 1, 2, 3, and 4 correspond to MCMC runs using the datasets CMB, CMB+BAO+SNIa+RSD, CMB+H₀, and CMB+BAO+SNIa+RSD+H₀ respectively. The χ^2 value for each model was calculated doing $\chi^2 = -2 \ln \mathcal{L}$, where \mathcal{L} is the likelihood at the convergence of the chain.

Model	Dataset 1		Dataset 2		Dataset 3		$\begin{array}{c c} \hline \text{Dataset 4} \\ \hline \Delta \chi^2 & 2 \ln \mathcal{B} \\ \hline \end{array}$	
Model	$\Delta\chi^2$	$2 \ln \mathcal{B}$	$\Delta\chi^2$	$2 \ln \mathcal{B}$	$\Delta\chi^2$	$2 \ln \mathcal{B}$	$\Delta\chi^2$	$2 \ln \mathcal{B}$
\overline{I}	3.7	4.8	0.8	-3.9	20.5	19.3	-22.0	-23.5
II	2.6	2.5	-0.6	-6.3	14.7	15.7	-82.3	-84.5
III	2.5	2.5	0.5	-2.9	18.8	17.1	-162.8	-162.0
IV	0.1	2.3	-0.6	-2.8	25.6	27.3	-39.6	-38.7

Referee questionou o motivo do $\Delta \chi^2 \stackrel{\ \ \ \ \ \ \ \ \ \ \ \ }{}$ O sendo que o modelo era para ser melhor que o Λ CDM.

O problema então está no dataset 4 em todos os modelos e no dataset 2 para os modelos 2 e 4

As cadeias foram re-rodadas algumas vezes com priors diferentes e os resultados mais atuais são:

- Prior de ordem de grandeza de 1e-7;
- $\Delta \chi^2$ do dataset 2 estão melhores
- Para o dataset 4, os $\Delta \chi^2$ ainda não estão > 0 mas estão melhorando

2024 RUN	2024 RUN	2024 RUN	2024 RUN	2024 RUN	2024 RUN	2024 RUN	2024 RUN	2024 RUN	2024 RUN	2024 RUN
DATA	LCDM X2	LCDM EVIDENCE	MODEL 1 X2	MODEL 1 EVIDENCE	MODEL 2 X2	MODEL 2 EVIDENCE	MODEL 3 X2	MODEL 3 EVIDENCE	MODEL 4 X2	MODEL 4 EVIDENCE
SET 2	1020.095	-568.9967453	XXX	XXX	1019.8334	-565.5549839	XXX	XXX	1020.0218	-568.2678222
SET 4	2681.21	-1397.470085	2692.916	-1401.740917	2683.538	-1400.696365	2687.878	-1403.76161	2683.3	-1402.169926
		DATA	MODEL 1 ΔX2	MODEL 12 ln B	MODEL 2 ΔX2	MODEL 2 2 ln B	MODEL 3 ΔX2	MODEL 32 ln B	MODEL 4 ΔX2	MODEL 42 ln B
SET 2	CMB, BAO, SNIA, RSD	SET 2	XXX	XXX	0.2616	0.005269897	XXX	XXX	0.0732	0.001113434
SET 4	CMB, BAO, SNIA, HO,RSD	SET 4	-11.706	-0.002650461	-2.328	-0.002002963	-6.668	-0.003901682	-2.09	-0.002916256
2024 RUN	2023 RUN	2023 RUN	2023 RUN	2023 RUN	2023 RUN	2023 RUN	2023 RUN	2023 RUN	2023 RUN	2023 RUN
			MODEL 1 X2	MODEL 1 EVIDENCE	MODEL 2 X2	MODEL 2 EVIDENCE	MODEL 3 X2	MODEL 3 EVIDENCE	MODEL 4 X2	MODEL 4 EVIDENCE
			XXX	XXX	1020.736	-572.1561494	XXX	XXX	1020.73	-570.398212
			2703.198	-1409.205466	2763.482	-1439.69711	2844.05	-1478.475986	2720.806	-1416.801234
		DATA	MODEL 1 ΔX2	MODEL 12 ln B	MODEL 2 ΔX2	MODEL 22 ln B	MODEL 3 ΔX2	MODEL 32 ln B	MODEL 4 ΔX2	MODEL 42 ln B
		SET 2	XXX	XXX	-0.641	-0.004809576	XXX	XXX	-0.635	-0.002136747
		SET 4	-21.988	-0.007263598	-82.272	-0.025857226	-162.84	-0.04894351	-39.596	-0.011932813

FAPESP

Timeline

Nov/2023

Comecei meu projeto da FAPESP rodando os 3 modelos com dados do BINGO

Maio/2024

Relatório parcial, tinha as rodadas dos 3 modelos com BINGO

Set/2024

Renovação de bolsa, tinha as rodadas dos 3 modelos BINGO + testes de compatibilidade

Nov/2024

Apresentei no SIICUSP os resultados do projeto - slide

Mar/2025

Apresentar no SIICUSP os resultados do projeto - poster

Jun/2025

Relatório final: ter as rodadas dos 3 modelos com BINGO + CMB + BAO

BINGO

Parâmetro	$\Lambda \mathrm{CDM}$	Modelo 1	Modelo 2	Modelo 3
$\Omega_b h^2$	0.0224 ± 0.0002	$0.0196^{+0.0024}_{-0.0023}$	$0.0187^{+0.0025}_{-0.0023}$	$0.0185^{+0.0028}_{-0.0024}$
$\Omega_c h^2$	$0.1189^{+0.0014}_{-0.0015}$	$0.1294^{+0.0067}_{-0.0064}$	$0.1510^{+0.0066}_{-0.0060}$	$0.1396^{+0.0065}_{-0.0060}$
$100\theta_s$	1.0420 ± 0.0003	$1.0384^{+0.0030}_{-0.0031}$	1.0359 ± 0.0022	$1.0392^{+0.0033}_{-0.0035}$
$\ln 10^{10} A_s$	3.080 ± 0.029	$2.838^{+0.061}_{-0.059}$	$2.814^{+0.055}_{-0.051}$	$3.07^{+0.26}_{-0.23}$
n_s	0.967 ± 0.005	$0.945^{+0.017}_{-0.018}$	0.946 ± 0.020	$0.997^{+0.24}_{-0.25}$
w_0	-	$-0.953^{+0.075}_{-0.071}$	$-1.58^{+0.09}_{-0.10}$	-1.65 ± 0.16
$\lambda_{(1,2)}$	-	-0.33 ± 0.18	$0.0156^{+0.0050}_{-0.0049}$	$0.0161^{+0.0047}_{-0.0045}$
H_0	67.7 ± 0.7	$56.1^{+1.9}_{-1.8}$	$59.4^{+1.1}_{-1.2}$	$59.1^{+2.6}_{-3.1}$
σ_8	$0.822^{+0.11}_{-0.10}$	$0.883^{+0.045}_{-0.049}$	$0.854^{+0.016}_{-0.015}$	$0.810^{+0.047}_{-0.041}$
Age/Gyr	13.80 ± 0.03	$14.28^{+0.25}_{-0.27}$	$14.37^{+0.24}_{-0.27}$	$14.87^{+0.29}_{-0.35}$
Ω_m	-	$0.471^{+0.029}_{-0.027}$	$0.482^{+0.021}_{-0.020}$	$0.455^{+0.047}_{-0.40}$

Compatibilidade entre simulações: BINGO + CMB

Compatibilidade entre simulação e dado: CMB + Planck

Compatibilidade entre simulação e dado: BINGO + Planck

Parâmetro	Teórico	CMB - Planck	BINGO	$\mathrm{CMB} + \mathrm{BINGO}$
Ω_b	0.0493	$0.0460^{+0.0036}_{-0.0028}$	$0.0473^{+0.0080}_{-0.0076}$	0.0558 ± 0.0011
Ω_c	0.2645	$0.246^{+0.020}_{-0.016}$	$0.292^{+0.031}_{-0.030}$	$0.302^{+0.007}_{-0.006}$
$ au_r$	0.0544	$0.0534^{+0.0071}_{-0.0070}$	-	$0.0574^{+0.0047}_{-0.0046}$
n_s	0.9649	$0.9650^{+0.0030}_{-0.0029}$	$0.958^{+0.0038}_{-0.0042}$	0.9643 ± 0.0020
h	0.6736	$0.697^{+0.021}_{-0.027}$	$0.740^{+0.048}_{-0.050}$	0.632 ± 0.006
$\ln 10^{10} A_s$	3.044	$3.042^{+0.014}_{-0.013}$	$1.99^{+0.027}_{-0.024}$	3.051 ± 0.009
w_0	-1.0	$-1.07^{+0.09}_{-0.08}$	$-1.31^{+0.02}_{-0.01}$	-0.85 ± 0.03
w_a	0.0	$-0.024^{+0.087}_{-0.085}$	$-0.036^{+0.086}_{-0.084}$	$-0.054^{+0.063}_{-0.065}$
Ω_m	-	$0.292^{+0.024}_{-0.018}$	$0.336^{+0.037}_{-0.034}$	0.358 ± 0.008

Próximos Passos:

- al Sky Survey
- Combinar as simulações de dados do BINGO com dados de BAO do Sloan Digital Sky Survey (SDSS e SDSS-III) e 6dF Galaxy Survey (6dFGS) e CMB do Planck para os 3 modelos de interação;
- Repetir a comparação com o modelo ΛCDM para analisar a viabilidade dos modelos propostos.

Rádio

1/f

Timeline

Jul/2024

Projeto feito em 1 mês na China

Jul/2024

Apresentei no evento da USTC os resultados do projeto - poster

?/2025

Rodar com novas configurações do 1/f

naivemap - sem 1/f

naivemap - com 1/f

naivemap - diferença

Próximos Passos:

- Rodar com novas configurações do 1/f;
- Adicionar outros ruídos nas simulações.

Rádio

Paper: Feixe

Timeline

Nov/2024 •

Reunião com Alex e Filipe sobre o paper "Analysis of Simulated Beam Patterns"

Dez/2024

Reprodução das imagens antigas do paper com arranjo "básico" do BINGO

Jan/2025

Rodar GRASP Full para fazer imagens com arranjo melhor do BINGO

Próximos Passos:

- Rodar GRASP Full com novo arranjo do BINGO para continuar o paper
- Nova reunião com o Filipe e Alex para darmos continuidade e termos acesso ao GRASP Full

Update:

- Criação de um .ini para o HIDE;
- Rodadas do HIDE para o céu inteiro;
- Rodadas do HIDE com arquivos diferentes de input para a faixa do BINGO.

Obrigada!

Luiza Olivieri Ponte