In [1]:	<pre>import sys import time from typing import Tuple, List, Dict, Any, Callable import gym import numpy as np import matplotlib.pyplot as plt %matplotlib inline</pre>
In [2]:	<pre>def simple_plot(arr, xlabel: str, ylabel: str, title: str, save_path: str = "", show: bool = True, timeout: int = None,) -> None:</pre>
	<pre>if len(arr) == 2: plt.plot(arr[0], arr[1]) else: plt.plot(arr) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) if save_path: plt.savefig(save_path)</pre>
In [3]:	<pre>if timeout is not None: plt.pause(timeout) plt.draw() plt.waitforbuttonpress(timeout=5) plt.close() elif show: plt.show() plt.close()</pre> # Create the environment
	<pre>env = gym.make("FrozenLake-v1") env.reset() ''' The surface is described using a grid like the following: SFFF</pre>
In [4]:	<pre>Observation space: Discrete(16) Action space: Discrete(4) # Create an MDP from the env as a reference mdp = MDP(env) actions = { 'Left': 0, 'Down': 1,</pre>
	<pre>'Right': 2, 'Up': 3 } act_seq = (2 * ['Right']) + (3 * ['Down'] + ['Right']) print(f"Action sequence: {act_seq}") env.render() for a in act_seq: obs, rew, done, info = env.step(actions[a])</pre>
	<pre>obs, rew, done, info = env.step(actions[a]) env.render() print(f"Reward: {rew:.2f}") print(info, '\n') if done:</pre>
	HFFG (Right) SFFF FHFH HFFG Reward: 0.00 {'prob': 0.333333333333333333333333333333333333
	FFFH HFFG Reward: 0.00 {'prob': 0.333333333333333333333333333333333333
	<pre>{'prob': 0.333333333333333333333333333333333333</pre>
	<pre>FFFF FHFH FFFH HFFG Reward: 0.00 {'prob': 0.33333333333333333}</pre>
	Reward: 0.00 {'prob': 0.333333333333333333333333333333333333
	S: starting point, safe F: frozen surface, safe H: hole, fall to your doom G: goal, where the frisbee is located
	Reward is 0 for every step taken in $\{S,F,H\}$, 1 for reaching the final goal state G . $r=1 \text{ if } s=G$ $r=0 \text{ Otherwise}$ The state transition is not deterministic, becasue the transition probability of given state and action is not 1. $ 1.2 $ Starting with teh defintion of a value function, show that for a deterministic policy $\pi(s)$, the value function $v(s)$ can be expressed as:
	$v(s) = \sum_{s\prime \in S} p(s\prime s,a) \big[r(s,a,s\prime) + \gamma v(s\prime) \big]$ Return $G_t = \sum_{\tau=t}^T \gamma^{\tau-t} R_{\tau}$ Assume probabilistic transitions $T(s,a,s\prime) = R(s\prime a,s)$ Deterministic policy $\pi(s) = a \ \forall a \in A$
	$egin{align} v(s) &= E_{\pi}ig[G_t S_t = sig] \ v(s) &= E_{\pi}[\sum_{k=t}^{\infty} \gamma^{k-t}R_k s_t = s] \ &= E_{\pi}[R_t + \gamma\sum_{k=t+1}^{\infty} \gamma^{k-t}R_k s_t = s] \ &= \sum_a \pi(a s) \sum_{s\prime} p(s\prime a,s)ig[r(s,a,s\prime) + \gamma E_{\pi}[\sum_{k=t}^{\infty} \gamma^{k-t}R_k s_{t+1} = s\prime]ig] \ \end{aligned}$
	$=\sum_a \pi(a s) \sum_{s\prime} p(s\prime a,s) \big[r(s,a,s\prime) + \gamma v(s\prime) \big]$ In our case, $a=\pi(s)$ is a deterministic policy, we can omit the probability of policy in the above equation. $v(s) = \sum_{s\prime \in S} p(s\prime s,a) \big[r(s,a,s\prime) + \gamma v(s\prime) \big]$
	Write a functionTestPolicy(policy), that returns the average rate of successful episodes over 100 trials for a deterministic policy. What is the success rate of a policy(number of times completed / total number of trials) given by $\pi(s) = (s+1)$. def TestPolicy(self, policy: Callable, trials: int = 100, render: bool = False,
	<pre>verbose: bool = False,) -> float: """ Test a policy by running it in the given environment. :param policy: A policy to run. :param env: The environment to run the policy in. :param render: Whether to render the environment. :returns: success rate over # of trials. """ assert trials > 0 and isinstance(trials, int)</pre>
	<pre>success = 0 reward = 0 for _ in range(trials): obs = self.env.reset() done = False while not done: act = policy(obs) obs, rew, done, info = self.env.step(act) reward += rew if render:</pre>
In [7]:	<pre>self.env.render() time.sleep(0.1) if done and obs == 15: success += 1 success_rate = success / trials mean_reward = reward / trials if verbose: print(f"Success rate: {success_rate}") return success_rate, mean_reward</pre>
	<pre># 3. Naive policy policy = lambda s: (s + 1) % 4 naive_success_rates = [] for _ in range(10): naive_success_rate, _ = mdp.TestPolicy(policy, render=False) naive_success_rates.append(naive_success_rate) print(f"Average naive_success_rates: {np.mean(naive_success_rates)}") Average naive_success_rates: 0.017</pre> 1.4
	Write a functionLearnModel, that returns the transition probabilities $p(s' a,s)$ and reward function $r(s,a,s')$. Estimate these values over 10^5 random samples.
	<pre>:param n_samples: Number of random samples to use. :returns: transition probabilities and reward function. """ assert n_samples > 0 and isinstance(n_samples, int) # Dimension of observation space and action space (both discrete) P = np.zeros((self.nS, self.nA, self.nS)) # transition probability: S x A x S' -> [0, 1] R = np.zeros_like(P) # reward r(s, a, s') obs = self.env.reset() done = False for _ in range(n_samples): # Bandom action</pre>
	<pre>p1 = P.copy() # Don't modify P dircetly for s in range(self.nS): for a in range(self.nA): total_counts = np.sum(P[s, a, :]) if total_counts != 0: p1[s, a, :] /= total_counts # Avoid division by zero error R /= np.where(P!=0, P, 1) # Store the estimated transition probabilities and reward function self.P_hat = p1 self.R_hat = R</pre>
In [9]:	-
	Write a function PolicyEval() for evaluating a given deterministic policy and with the help of this function implement a policy iteration method to solve this environmentover 50 iterations. Plot the average rate of success of the learned policy at everyiteration. def PolicyEval(<pre>self, V: np.ndarray, policy: np.ndarray,</pre>
	<pre># Using the esitimations of the transition probabilities and reward function if self.P_hat is None or self.R_hat is None: self.learnModel() while True: delta = 0.0 for s in range(self.nS): act = policy[s] Vs = 0</pre>
In [11]:	<pre>for nxt_s in range(self.ns):</pre>
	<pre>def PolicyIteration(self, max_iter: int = 50, gamma: float = 0.99, theta: float = 1e-8): Policy iteration :param policy: a policy :param max_iter: maximum number of iterations :param gamma: discount factor :param theta: tolerance or termination threshold</pre>
	<pre>assert max_iter > 0 and isinstance(max_iter, int) assert 0 < gamma < 1 assert 0 < theta <= 1e-2, "Theta should be a small positive number" # Initialize V(s), \pi(s) V = np.zeros(self.ns) PI = np.zeros(self.ns, dtype=int) # since actions are integers success_rates = [] mean_rewards = [] print(f'\n</pre>
	<pre>for i in range(max_iter): PI_old = PI.copy() print(f'Iteration {i+1}: ', end='') # Policy Evaluation V = self.PolicyEval(V, PI, gamma, theta) # Policy Improvement PI = self.PolicyImprovement(V, gamma) PI_fn = lambda s: PI[s] success_rate, mean_rew = self.TestPolicy(PI_fn, trials=100, render=False, verbose=True) success_rates.append(success_rate)</pre>
In [12]:	<pre>mean_rewards.append(mean_rew) if np.all(PI_old == PI): print(f"\nPolicy is stable in {i} iterations") break return PI, V, success_rates, mean_rewards # 5. Policy iteration PI, V_pi, success_rates, mean_rewards = mdp.PolicyIteration(50, theta=sys.float_info.epsilon)</pre>
	<pre>print(f"PI: {PI}") print(f"V_pi: {V_pi}") plt.plot(success_rates) plt.xlabel("Iteration") plt.ylabel("Success rate") plt.title("Average rate of success of the learned policy (Policy Iteration)") plt.show() Policy Iteration: Iteration 1: Success rate: 0.0 Iteration 2: Success rate: 0.0</pre>
	Iteration 3: Success rate: 0.17 Iteration 4: Success rate: 0.7 Iteration 5: Success rate: 0.81 Iteration 6: Success rate: 0.72 Iteration 7: Success rate: 0.8 Policy is stable in 6 iterations PI: [0 3 3 3 0 0 2 0 3 1 0 0 0 2 1 0] V_pi: [0.5763029 0.53198255 0.50259427 0.48766523 0.59420851 0. 0.40967067 0.
	Average rate of success of the learned policy (Policy Iteration) 0.8 - 0.7 - 0.6 - 2
	1.6 Write a function Valuelter() that returns a deterministic policy learned through value-iteration over 50 iterations. Plot the average rate of success of the learned policy atevery iteration.
In [13]:	<pre>def ValueIter(self, max_iter: int = 50, gamma: float = 0.99, theta: float = 1e-8): assert max_iter > 0 and isinstance(max_iter, int) assert 0 < gamma < 1 # Initialize V(s), \pi(s)</pre>
	<pre>V = np.zeros(self.nS) PI = np.zeros(self.nS, dtype=int) # since actions are integers success_rates = [] mean_rewards = [] print(f'\n Value Iteration:') for i in range(max_iter): print(f'Iteration {i+1}: ', end='') delta = 0.0 for s in range(self.nS): v_old = V[s] # V(s) = max_a Q(s, a)</pre>
	<pre>Q = self.qValue(V, s, gamma) # Q(s_t, a) -> Vector of Q-values V[s] = max(Q) delta = max(delta, abs(V[s] - v_old)) if delta < theta: break PI = self.PolicyImprovement(V, gamma) PI_fn = lambda s: PI[s] success_rate, mean_rew = self.TestPolicy(PI_fn, trials=100, render=False, verbose=True)</pre>
In [14]:	<pre>success_rates.append(success_rate) mean_rewards.append(mean_rew) return PI, V, success_rates, mean_rewards # 6. Value iteration PI, V_pi, success_rates, mean_rewards = mdp.ValueIter(50, theta=sys.float_info.epsilon) print(f"PI: {PI}") print(f"V_pi: {V_pi}") plt.plot(success_rates) plt.xlabel("Iteration")</pre>
	plt.ylabel("Success rate") plt.title("Average rate of success of the learned policy (Value Iteration)") plt.show() Value Iteration: Iteration 1: Success rate: 0.0 Iteration 2: Success rate: 0.0 Iteration 3: Success rate: 0.28 Iteration 4: Success rate: 0.29 Iteration 5: Success rate: 0.37 Iteration 6: Success rate: 0.37
	Iteration 7: Success rate: 0.37 Iteration 8: Success rate: 0.37 Iteration 9: Success rate: 0.39 Iteration 10: Success rate: 0.44 Iteration 11: Success rate: 0.44 Iteration 12: Success rate: 0.51 Iteration 13: Success rate: 0.55 Iteration 14: Success rate: 0.77 Iteration 15: Success rate: 0.82 Iteration 16: Success rate: 0.77 Iteration 17: Success rate: 0.67 Iteration 18: Success rate: 0.63
	Iteration 19: Success rate: 0.73 Iteration 20: Success rate: 0.7 Iteration 21: Success rate: 0.71 Iteration 22: Success rate: 0.69 Iteration 23: Success rate: 0.8 Iteration 24: Success rate: 0.78 Iteration 25: Success rate: 0.75 Iteration 26: Success rate: 0.76 Iteration 27: Success rate: 0.77 Iteration 28: Success rate: 0.73 Iteration 29: Success rate: 0.77 Iteration 30: Success rate: 0.77
	Iteration 31: Success rate: 0.71 Iteration 32: Success rate: 0.77 Iteration 33: Success rate: 0.72 Iteration 34: Success rate: 0.74 Iteration 35: Success rate: 0.83 Iteration 36: Success rate: 0.65 Iteration 37: Success rate: 0.76 Iteration 38: Success rate: 0.77 Iteration 39: Success rate: 0.77 Iteration 39: Success rate: 0.74 Iteration 40: Success rate: 0.78 Iteration 41: Success rate: 0.76
	<pre>Iteration 42: Success rate: 0.71 Iteration 43: Success rate: 0.73 Iteration 44: Success rate: 0.74 Iteration 45: Success rate: 0.68 Iteration 46: Success rate: 0.75 Iteration 47: Success rate: 0.75 Iteration 48: Success rate: 0.75 Iteration 49: Success rate: 0.78 Iteration 50: Success rate: 0.77 PI: [0 3 3 3 0 0 2 0 3 1 0 0 0 2 1 0] V_pi: [0.51712003 0.45859806 0.41950398 0.39955579 0.54242641 0. 0.37103739 0. 0.58803251 0.65019925 0.63862743 0.</pre>
	Average rate of success of the learned policy (Value Iteration) 0.8 0.6 0.4 0.4
	2.1. Solve the environment using Q-learning over 5000 episodes. For exploration duringtraining, take random actions with probability 1-e/5000 where e is the number ofcurrent episode. Plot the success rate of the learned policy at an interval of 100episodes. (a) Train the policy using the following learning rates with γ = 0.99.Report what you observe.
	(a) Train the policy using the following learning rates with γ = 0.99.Report what you observe. A small α tends to work better than With a larger alpha, the Q Learning will add more weight to the reward to go. However, Q-Learning learn slowly. The Q value is not very good during the early stage of learning. (agent likely not visited every state in the environment) Q value may change dramatically with a large alpha which leard to instability depend on the method. MC is an unbiased estimator of the Q value but high variance. On the other hand, TD(0) is biased but low variance. Takeing a larger step size will let agent learn faster but create more variace on the estimation.
In [15]:	<pre># 7 learning_rate = [0.05, 0.1, 0.25, 0.5] discount_factor = [0.9, 0.95, 0.99] # (a) for lr in learning_rate: pi_QL, Q_pi, success_rates_QL = mdp.QLearning(</pre>
	<pre>simple_plot(success_rates_QL, xlabel="Iteration", ylabel="Success rate", title=(f"Average rate of success of the learned policy (Q Learning), " + r"\$\alpha=\$" + f"{lr}, " + r"\$\gamma=\$" + f"{0.99}"),</pre>
	<pre></pre>
	0.6 - 20 0.5 - 20 0.4 - 20 0.5 - 20 0.1
	Iteration Q Learning (alpha=0.1, gamma=0.99, strategy: epsilon): Average rate of success of the learned policy (Q Learning), α = 0.1, γ = 0.99 0.8 0.7 0.6
	90.5 - 0.4 - 0.2 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 -
	Average rate of success of the learned policy (Q Learning), $\alpha = 0.25$, $\gamma = 0.99$ 0.8 0.7 0.6 90.5 0.7 0.6 0.7 0.7 0.8 0.7 0.9 0.9
	Q Learning (alpha=0.5, gamma=0.99, strategy: epsilon): Average rate of success of the learned policy (Q Learning), α =0.5, γ =0.99
	Average rate of success of the learned policy (Q Learning), α = 0.5, γ = 0.99 0.8 0.7 0.6 18 0.5 0.7 0.7 0.7 0.8 0.9 0.9
	(b) Train the policy using the following discount factors with α = 0.05. Report what you observe. In FrozenLake-v0, the reward is 1 only in the goal state and 0 in all other states. It is better to encourage the agent to be foresight. As the discount factor γ increase, agent will focuse more on the long-term reward as opposed to the immediate reward which is the case in
In [16]:	<pre># (b) for g in discount_factor: pi_QL, Q_pi, success_rates_QL = mdp.QLearning(</pre>
	<pre>simple_plot(success_rates_QL, xlabel="Iteration", ylabel="Success rate", title=(f"Average rate of success of the learned policy (Q Learning), " + r"\$\alpha=\$" + f"{0.05}, " + r"\$\gamma=\$" + f"{g}"), # save_path=plot_dir / f'QL_a_{lr}_r_{g}.png',</pre>
	# save_path=plot_dir / f'QL_a_{lr}_r_{g}.png', show=True,) print("\n") Q Learning (alpha=0.05, gamma=0.9, strategy: epsilon): Average rate of success of the learned policy (Q Learning), α = 0.05, γ = 0.9 0.8 0.7 0.6
	9 0.5 - 0.4 - 0.2 - 0.1 - 0.0 - 10 - 20 - 30 - 40 - 50 - 10 - 10 - 10 - 10 - 10 - 10 - 1
	Average rate of success of the learned policy (Q Learning), $\alpha = 0.05$, $\gamma = 0.95$
	0.0 10 20 30 40 50 lteration lteration Q Learning (alpha=0.05, gamma=0.99, strategy: epsilon):
	Average rate of success of the learned policy (Q Learning), $\alpha = 0.05$, $\gamma = 0.99$ 0.8 0.6 0.7 0.9 0.9 0.9 0.9
	In the previous question, the exploration was linearly annealed. Solve the environmentusing Q-learning by proposing a different strategy to explore. Find a suitable α and γ for your method. Report your strategy and training results.
	<pre>Best \alpha = 0.1, \gamma = 0.99 for lr in learning_rate: for g in discount_factor: pi_QL, Q_pi, success_rates_QL = mdp.QLearning(</pre>
	<pre>simple_plot(success_rates_QL, xlabel="Iteration", ylabel="Success rate", title=(f"Average rate of success of the learned policy (Q Learning), " + r"\$\alpha=\$" + f"{lr}, " + r"\$\gamma=\$" + f"{g}"),</pre>

0.8	rate of success of the learned policy (Q Learning), $\alpha = 0.05$, $\gamma = 0.9$
P.0 Success rate	
0.8	
0.0 Success rate	
Average r 0.8 0.6 0.4	
0.2	0 10 20 30 40 50 Iteration
0.8 - 0.7 - 0.6 - 21 0.5 - 83 0.4 -	- Q Learning (alpha=0.1, gamma=0.9, strategy: exponential): rate of success of the learned policy (Q Learning), α = 0.1, γ = 0.9
○ 0.3 - 0.2 - 0.1 - 0.0 -	Q Learning (alpha=0.1, gamma=0.95, strategy: exponential):
Average r 0.8 0.6 0.4	rate of success of the learned policy (Q Learning), $\alpha = 0.1$, $\gamma = 0.95$
0.2	
Average r 0.8 0.6 0.4	
0.2	Q Learning (alpha=0.25, gamma=0.9, strategy: exponential):
0.8 0.7 0.6 0.5 0.4 0.3	
0.2 0.1 0.0 	1 / V V ' V ' V '
0.0 2000 2000 2000 2000 2000 2000 2000	
0.0 Average r	O 10 20 30 40 50 Literation Q Learning (alpha=0.25, gamma=0.99, strategy: exponential): rate of success of the learned policy (Q Learning), α = 0.25, γ = 0.99
0.8 0.6 0.4 0.4	
0.0 ————— Average r	0 10 20 30 40 50 lteration Q Learning (alpha=0.5, gamma=0.9, strategy: exponential): rate of success of the learned policy (Q Learning), $\alpha = 0.5$, $\gamma = 0.9$
0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 -	
0.0	1 . (\\\.\\\.\\\)
0.6 0.5 0.4 0.3 0.2 0.1	
0.0 Average r 0.8 0.7	0 10 20 30 40 50 Iteration Q Learning (alpha=0.5, gamma=0.99, strategy: exponential): rate of success of the learned policy (Q Learning), $\alpha = 0.5$, $\gamma = 0.99$
0.6 0.5 0.4 0.2 0.2 0.1 0.0	
	Count-based Exploration by using exponential decay: $\frac{dN}{dt} = -\lambda N$ on to this equation is:
In this case will absolu	$N(t)=N_0e^{-\lambda t}$ set N_0 is the initial exloration probability at $t=0$ is 1 and the constatnt λ is the decay constant, $\lambda=0.001$. Therefore, agent strally explore at $t=0$ and exponentially decay the exploration probability across time.
<pre>init_pr lamd = for t i Nt pro plt.plo plt.xla</pre>	<pre>cob = 1 0.001 in range(5_000): init_prob * np.exp(-lamd * t)</pre>
plt.xla plt.yla plt.tit	abel("Iteration") abel("Probability") tle("Exploreation Probability")
plt.xla plt.yla plt.tit plt.sho	ot(prob) abel("Iteration") abel("Probability") tle("Exploreation Probability")
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel("Iteration") abel("Probability") cle("Exploreation Probability") bw() Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 1.0 0.8 Alijiqequad 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability
plt.xla plt.yla plt.tit plt.sho 10 0.8 Alijiqeqod 0.4 0.2	abel ("Iteration") abel ("Probability") tle ("Exploreation Probability") Exploreation Probability