Experiment_with_data

Saurabh Gupta June 12, 2017

Problem statement

In this problem, we have to classify the "Income.Group" based on the predictors. We use rpart classifiers to classify the dataset.

Load the library

```
suppressMessages(library(caret))
suppressMessages(library(doParallel))
suppressMessages(library(Hmisc))
library(data.table)
```

Data loading and exploration

We load the data from given urls. Our goal is to predict the Income.Group for testData and we prepare our model on Vehicle dataset.

```
cl <- makeCluster(detectCores())
registerDoParallel(cl)

#fileUrlTrain <- "https://datahack-prod.s3.ap-south-1.amazonaws.com/workshop_train_file/train_gbW7HTd.c
#download.file(fileUrlTrain,destfile = "./fileTrain.csv")
Vehicle <- read.csv("fileTrain.csv",header=T,na.strings = "")

#fileUrlTest <- "https://datahack-prod.s3.ap-south-1.amazonaws.com/workshop_test_file/test_2AFBew7.csv"
#download.file(fileUrlTest,destfile = "./fileTest.csv")
testData <- read.csv("fileTest.csv",header = T,na.strings = "")</pre>
```

Data Cleaning

We convert the Income.Group value (if it is "<=50K" it gives X0 otherwise it gives X1)

```
names(Vehicle) <- gsub("[.]","_",names(Vehicle))
names(testData) <- gsub("[.]","_",names(testData))
Vehicle$Income_Group <- factor(ifelse(Vehicle$Income_Group=="<=50K",0,1))
Vehicle$Income_Group <- make.names(Vehicle$Income_Group)
Vehicle$Income_Group <- factor(Vehicle$Income_Group)</pre>
```

Data Visualization

Classes in the response variable is unbalanced. Hence sampling is need to get the good accuracy.

```
str(Vehicle)
```

```
32561 obs. of 12 variables:
## 'data.frame':
##
   $ TD
                    : int 1 2 3 4 5 6 7 8 9 10 ...
                   : int 39 50 38 53 28 37 49 52 31 42 ...
## $ Age
                   : Factor w/ 8 levels "Federal-gov",..: 7 6 4 4 4 4 6 4 4 ...
## $ Workclass
                   : Factor w/ 16 levels "10th", "11th", ...: 10 10 12 2 10 13 7 12 13 10 ...
##
   $ Education
  $ Marital Status: Factor w/ 7 levels "Divorced", "Married-AF-spouse", ...: 5 3 1 3 3 3 4 3 5 3 ...
##
   $ Occupation
                   : Factor w/ 14 levels "Adm-clerical",..: 1 4 6 6 10 4 8 4 10 4 ...
   $ Relationship : Factor w/ 6 levels "Husband", "Not-in-family", ...: 2 1 2 1 6 6 2 1 2 1 ...
##
##
   $ Race
                    : Factor w/ 5 levels "Amer-Indian-Eskimo",..: 5 5 5 3 3 5 5 5 5 ...
## $ Sex
                    : Factor w/ 2 levels "Female", "Male": 2 2 2 2 1 1 1 2 1 2 ...
## $ Hours_Per_Week: int 40 13 40 40 40 40 16 45 50 40 ...
## $ Native_Country: Factor w/ 41 levels "Cambodia", "Canada", ...: 39 39 39 39 5 39 23 39 39 ...
## $ Income_Group : Factor w/ 2 levels "XO", "X1": 1 1 1 1 1 1 1 2 2 2 ...
table(Vehicle$Income_Group)
##
##
      XΟ
           X1
## 24720
         7841
prop.table(table(Vehicle$Income_Group))
##
##
         XΟ
                    X1
## 0.7591904 0.2408096
```

Missing value detection and treatment

We replaced missing value to the value which occurs frequently in that predictor

```
colSums(is.na(Vehicle))
```

```
##
                ID
                                         Workclass
                                                          Education Marital_Status
                                Age
##
                 0
                                               1836
##
       Occupation
                     Relationship
                                               Race
                                                                Sex Hours_Per_Week
              1843
                                                  0
                                                                   0
## Native_Country
                      Income_Group
               583
Vehicle$Workclass <- impute(Vehicle$Workclass,mode)</pre>
Vehicle$Occupation <- impute(Vehicle$Occupation,mode)</pre>
Vehicle$Native_Country <- impute(Vehicle$Native_Country,mode)</pre>
```

Create train and test data

```
index <- createDataPartition(Vehicle$Income_Group,p=0.7,list=FALSE)
training <- Vehicle[index,]
testing <- Vehicle[-index,]</pre>
```

Model Building

```
classProbs = T,
    sampling = "up",
    allowParallel = TRUE,
    summaryFunction = twoClassSummary
)

rpart_mod <- train(Income_Group ~ .,
    data=training,
    method="rpart",
    trControl=ctrl,
    tuneLength=30,
    metric="ROC",
    na.action = na.omit
)</pre>
```

Loading required package: rpart

Prediction for training data

##

##

```
predicted <- predict(rpart_mod,testing)</pre>
caret::confusionMatrix(predicted,testing$Income_Group)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
               XΟ
           X0 5840 447
##
           X1 1576 1905
##
##
##
                  Accuracy : 0.7929
##
                    95% CI: (0.7847, 0.8009)
##
       No Information Rate: 0.7592
       P-Value [Acc > NIR] : 1.341e-15
##
##
##
                     Kappa : 0.5133
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.7875
               Specificity: 0.8099
##
##
            Pos Pred Value: 0.9289
##
            Neg Pred Value: 0.5473
##
                Prevalence: 0.7592
            Detection Rate: 0.5979
##
      Detection Prevalence : 0.6436
##
         Balanced Accuracy: 0.7987
##
```

'Positive' Class : XO

ROC

```
suppressMessages(library(ROSE))
roc.curve(testing$Income_Group,predicted)
```

ROC curve

Area under the curve (AUC): 0.799

Prediction for testData

```
# predicted <- ifelse(predicted == "X0", "<=50K", ">50K")
# df <- data.frame(ID = testData$ID, Income.Group=predicted)
# write.csv(df,file = "final_solutions.csv")</pre>
```