PRE REquisites

Step - 1

Step - 2

$$\mathcal{H} = \underbrace{\sum_{i=1}^{n} \chi_{i}}_{N}$$

For Example

$$u = 15.0 = 3$$

$$6^{2} = \left(\chi_{i} - \mu\right)^{2}$$

$$60^2 = 0.25 + 0.25 + 0 + 0.04 + 0.04$$

$$\chi = 4.0$$
 class o

Check Value belongs to o or 1

Calculate Prior

Total no of Samples

$$G_0^2 = 1.0.$$
 $G_1^2 = 2.0$

$$6^{2} = 2.0$$

Gaussian Naive Bayes

7					
,	Class	Mean	Variance	Observed Value	Prior
	0	3.0	1.0	4.0	0.6
	1	5.0	2.0	4.0	0.14

Aim

Compute likelyhood for
$$P(x/o) \xi P(x/i)$$

Calculate Posterior Probability $P(0/x) \xi P(1/x)$

By multiplying with the liklyhood with

- 3) Normalize Posterior Probability
- Predict the class with highest Posterior Probability.

Gaussian Density Formula

$$P(x/y) = \frac{1}{\sqrt{2\pi \cdot 6^2}} \exp\left(-\frac{(x-\mu)^2}{26^2}\right)$$

Calculate for class label o

$$P(x/o)$$
 $\mu_0 = 3.0$ $\epsilon_0^2 = 1.0$ $\pi = 4.0$

$$\frac{1}{\sqrt{2\pi r \cdot 1}} \exp \left(-\frac{\left(4-3\right)^2}{2 \cdot 1}\right) \rightarrow Simply if$$

Approx Values $\sqrt{2\pi} = 2.5066$ $\exp(-0.5) = 0.6065$ = 0.2419

Step - 2

Similarly do it for $P(\pi l_1)$ $\sqrt{4\pi} = 3.5449$ $\exp(-0.25) = 0.7788$ = 0.2197

Multiply Prior Value for class o $P(o/x) \propto P(x/o) \cdot P(o) = 0.2419.0.6$ = 0.14514

Similarly Calculate for class 1 $P(1/x) \propto P(x/i) \cdot P(i) = 0.2197.0.4$ = 0.0879

Step - 4

Normalize Posterior Probability P(x) = P(o|x) + P(i|x) = 0.14514 + 0.087Divide each class by P(x)

For class label $0 \rightarrow P(0/x) = \frac{0.14514}{0.233} = 0.622$ For class label $1 \rightarrow P(1/x) = \frac{0.0879}{0.233} = 0.377$

Step-5

Make Prediction

P(0/x) 7 P(1/x) Predicted class is o

W

Based on Posterior Probability

Bernoulli Nave Bayes

One or Absence it Predict Zero of a Condition like word appearing in a Document.

Step-1

Binarize the features Convert all features Values into binary like.

Absence = 0 Presence = 1

Step-2

Likely hood estimation

Class Conditional Probability

For each feature X Compute the Probability Absence or Presence with class y

$$P(x_i|y) = Count of x_i = 1 in classy + \infty$$

Total Samples in classy + 200

of is the Smoothing Parameter which is know as Laplace Smoothing

Multiply Probability for all features

Compute the Product of their

respective probability of the Condition

on the class

$$P(x|y) = \frac{1}{11} P(x_i/y)$$

Step - 3

Compute Prior Probability of each class like we did in Growssian Naive bayes

step-4

Make Prediction

Calculate Posterior Probability like we did in Graussian Noive bays

Multinomial Naive Bays

Count Based Frequency like Everything is Seen with MB.

Example

Counting Repeated words in the Script

Formula

 $P(x;|y) = Count of x; in class y + \infty$

Total count of all features in class y + oc. [v]

∝ = Smoothing Parameter

|V| = Total no of unique features among all the classes else Same as Bernoulis.