

KOREAN PATENT ABSTRACTS(KR)

Document Code:B1

(11) Publication No.1001952620000

(44) Publication. Date. 19990211

(21) Application No.1019970002672

(22) Application Date. 19970129

(51) IPC Code:

H01L 27/10

(71) Applicant:

SAMSUNG ELECTRONICS CO., LTD.

(72) Inventor:

LEE, JIN U

(30) Priority:

(54) Title of Invention

FERROELECTRIC MEMORY DEVICE AND MANUFACTURING METHOD THEREOF

Representative drawing

(57) Abstract:

PURPOSE: A ferroelectric memory device is provided to easily reduce a cell size and to eliminate a pattern defect generated by reduction of the cell size in patterning a capacitor.

270 250 240 270 500 420 260 255 255 250 2410 270 300 410 2186₂₃₀₀216₂₁₇216_{230b}214 200 CONSTITUTION: An active region and an inactive region are defined in a semiconductor substrate(200). A transistor is formed on the active region. A bit line(240) is connected to a source region(217) of the transistor. A capacitor is formed on the bit line, connected to a drain region(218a,218b) of the transistor through a buried contact. The capacitor is simultaneously connected to each buried contact of two adjacent cells and extended across the two cells, so that the two cells share one storage electrode(250) and one plate electrode(260).

COPYRIGHT 2001 KIPO

if display of image is failed, press (F5)

(19) 대한민국특허청(KR) (12) 등록특허공보(B1)

(51) Int. CI. ⁶ HO1L 27/10		(45) 공고일자 (11) 등록번호 (24) 등록일자	1999년 06월 15일 10-0195262 1999년 02월 11일
(21) 출원번호 (22) 출원일자	10-1997-0002672 1997년01월29일	(65) 공개번호 (43) 공개일자	특 1998-0066897 1998년 10월 15일
(73) 특허권자	삼성전자주식회사 윤종용		
(72) 발명자	경기도 수원시 팔달구 매탄35 이진우	₹ 416	
(74) 대리인	경기도 수원시 권선구 권선동 권석홍, 노민식, 이영필	1231 번지	
심사관 : 김근모			

(54) 강유전체 메모리 장치 및 그 제조 방법

요약

강유전체 메모리 장치 및 그 제조 방법에 관하여 개시한다. 본 발명에서는 활성 영역 및 비활성 영역이 한정된 반도체 기판과, 상기 활성 영역상에 형성된 트랜지스터와, 상기 트랜지스터의 소스 영역에 접속 되어 있는 비트 라인과, 상기 비트 라인의 상부에 형성되고 매몰 콘택을 통하여 상기 트랜지스터의 드레 인 영역에 접속되어 있는 커패시터를 포함하는 복수의 셀로 이루어지는 강유전체 메모리 장치에 있어 서, 상기 커패시터는 상기 셀중 서로 이웃하고 있는 2개의 셀이 1개의 하부 전극과 1개의 상부 전극을 공용으로 사용하도록 상기 2개의 셀의 각 매몰 콘택에 동시에 접속된 상태로 상기 2개의 셀에 걸쳐서 연 장되어 있다. 본 발명에 의하면, 셀 사이즈 축소를 용이하게 할 수 있고, 셀 사이즈 축소에 따라 커패시 터 패터닝시에 발생되는 패터닝 불량과 같은 문제점도 방지할 수 있다.

叫丑도

£2

열세서

도면의 간단한 설명

도 1 및 도 2는 본 발명에 따른 강유전체 메모리 장치를 도시한 도면으로서, 도 1은 본 발명의 바람직한 실시예에 따른 강유전체 메모리 장치의 셀 레이아웃도이고, 도 2는 도 1의 2 - 2'선 단면도이다.

도 3 내지 도 8은 본 발명의 바람직한 실시예에 따라 강유전체 메모리 장치를 제조하는 방법을 설명하기 위한 단면도들이다.

도면의 주요 부분에 대한 부호의 설명

200 : 반도체 기판, 214 : 소자 분리막

216 : 게이트 절연막, 217 : 소스 영역

218a, 218b : 드레인 영역, 230a, 230b : 워드 라인

240 : 비트 라인, 250 : 하부 전극

252a, 252b : 매몰 콘택.255 : 강유전체막 260 : 상부 전극, 270 : 플레이트 라인

300 : 제1 층간 절연막 패턴, 400 : 제2 층간 절연막 패턴

410 : 제1 장벽층, 420 : 제2 장벽층

500 : 금속 층간 절연막 패턴

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 강유전체 메모리 장치 및 그 제조 방법에 관한 것으로, 특히 고집적화가 가능한 강유전체 메모리 장치(Ferroelectric Memory Device) 및 그 제조 방법에 관한 것이다.

최근, 박막 형성 기술의 진보에 의하여 강유전체막을 사용하는 불휘발성 메모리 장치에 대한 연구가 환 발해지고 있다. 강유전체 메모리 장치는 강유전체막의 분극 현상(Polarization Phenomenon)을 이용하는 것으로서, EPROM 또는 EEPROM에 비하여 읽기(read)/쓰기(write) 동작이 빠른 장점을 가지고 있다.

또한, DRAM에 사용되는 셀 커패시터의 유전막으로 강유전체막을 사용하면, 리프레쉬 동작이 요구되지 않으므로 DRAM의 전력 소모 및 동작 속도를 향상시킬 수 있다. 이러한 강유전체 메모리 장치는 RAM과 같이단일 전원 전압(single power supply voltage)으로 읽기 동작 및 쓰기 동작을 수행할 수 있으므로, 강유전체 RAM(ferroelectric RAM; FRAM)이라 불리운다.

한편, FRAM은 단위 셀(unit cell)의 구성 요소에 따라 두 가지로 분류할 수 있다. 그 하나는 단위 셀이 강유전체막을 게이트 절연막으로 사용하는 하나의 트랜지스터로 구성된 것이고, 다른 하나는 단위 셀이하나의 억세스 트랜지스터 및 강유전체막을 유전막으로 사용하는 하나의 셀 커패시터로 구성된 것이다. 여기서, 전자(前者)의 FRAM은 채널 영역인 실리콘 기판과 게이트 절연막인 강유전체막 사이의 계면에 실리콘 기판과 산소 원자가 반응하여 성장된 실리콘산화막이 형성되기 쉬운 문제점과, 실리콘 기판 및 강유전체막 사이의 격자상수(lattice constant) 차이 또는 열팽창계수 차이에 의하여 우수한 막질의 강유전체막을 형성하기 어려운 문제점이 있다. 따라서, 최근에 추자의 FRAM, 즉 DRAM 델 구조와 동일한 구조전체막을 하기 어려운 문제점이 있다. 따라서, 최근에 추자의 FRAM에 대한 연구가 활발해지고 있다. 여기서, 상기 강유전체막으로는 PZT(PbZrTiO3)막이 널리 사용되고 있다. 이 때, 셀 커패시터의 하부 전국, 즉 스토리지 전국은 내산화성이면서 용용점(melting point)이 높은 물질로 형성하여야 우수한 커패시터의 특성을 얻을 수 있으며, 그 대표적인 물질로 백금(Pt)을 들 수 있다.

PZT 형성 공정으로서 보편적으로 사용되고 있는 기술에 의하면, PZT를 좁-겔(sol-gel) 코팅 방식으로 침적한 후, 02 분위기의 퍼니스(furnace) 내에서 500 ~ 650℃ 사이의 온도로 어닐링함으로써, 분극 특성을 갖는 PZT를 형성하고 있다. 이 때, 강유전체막으로 사용된 PZT막의 어닐링 온도가 500 ~ 650℃이므로, 하부 전극으로서 알루미늄(AI)막을 사용하는 경우에는 알루미늄막으로 형성된 하부 전극이 변형된다. 따라서, PZT막을 강유전체막으로 사용하는 경우에 알루미늄막을 하부 전극으로 적용하기는 어렵다. 또한, 하부 전극으로서 텅스텐(₩)막을 사용하는 경우에도 PZT막을 어닐링함 때 텅스텐막이 산화되는 결과로 인해 유전율이 낮아지게 된다. 따라서, 650℃ 보다 높은 용융점(melting point) 및 내산화성을 갖는 백금을 사용하여 하부 전극을 형성하는 것이 현실적으로 적합하다.

한편, 지금까지 사용되어 온 대부분의 메모리 셀들은 트랜지스터, 커패시터 및 콘택흡 등이 평면 레이아 웃에서 래터럴(lateral)로 이루어졌으며, 이와 같은 트랜지스터, 커패시터 및 콘택흡 등의 각각의 면적 의 합이 메모리 셀의 면적을 결정하는 요인으로 작용하였다.

그러나, 기가 비트급의 메모리 셀을 구성하기 위하여는 제한된 면적 내에 트랜지스터, 커패시터 및 소스/드레인 영역과의 접속을 위한 콘택흡을 모두 포함하여야 하므로, 지금까지 제시되어 온 레이아웃 방법으로는 면적에 따른 한계를 극복할 수 없다. 따라서, 면적의 한계를 극복하기 위하여는 3차원적인 셀 구조가 필요하다. 즉, 셀 구조를 래터럴 레이아웃 구조에서 버티컬(vertical) 레이아웃 구조로 변경 하여야 한다.

또한, 제한된 셀 면적 내에서 필요한 셀 커패시턴스를 확보하기 위하여는 고유전 물질을 사용하거나 셀스토리지 노드의 높이를 높일 수 밖에 없다. 특히, 커패시터 구조를 COB(Capacitor over Bitline) 구조로 형성하는 반도체 장치에서는 비트 라인을 먼저 형성한 후, 그 비트 라인 위에 셀 커패시터를 형성함으로써, 제한된 셀 면적 내에서 셀 커패시터의 용량을 확보할 수 있게 된다.

그러나, 강유전체 메모리 용량이 증가할수록 단위 셀 사이즈는 점차 줄어들고 있으며, 백금을 사용하여 하부 전극을 형성하는 FRAM의 경우에는, 백금으로 이루어지는 하부 전국을 패터닝하기 위하여 현재 사용 되고 있는 식각 방법에 의하여 식각할 때 하부 전극의 측벽에 경사면이 형성되는 것을 피할 수 없게 된 다. 이와 같이 형성되는 경사면은 강유전체 커패시터의 사이즈가 감소함에 따라 커패시터의 패터닝 불량 을 초래하게 되어 결국 소자의 불량을 초래하게 된다.

발명이 이루고자하는 기술적 과제

따라서, 본 발명의 목적은 상기한 바와 같은 문제를 해결하기 위한 것으로서, 셀 사이즈 축소를 용이하 게 할 수 있는 강유전체 메모리 장치를 제공하는 것이다.

본 발명의 다른 목적은 강유전체 메모리 장치의 셀 사이즈가 감소하는 경우에도 하부 전극의 패터닝에 따른 커패시터의 패터닝 불량을 초래하지 않는 강유전체 메모리 장치의 제조 방법을 제공하는 것이다.

발명의 구성 및 작용

상기 목적을 달성하기 위하여 본 발명은, 활성 영역 및 비활성 영역이 한정된 반도체 기판과, 상기 활성 영역상에 형성된 트랜지스터와, 상기 트랜지스터의 소스 영역에 접속되어 있는 비트 라인과, 상기 비트 라인의 상부에 형성되고 매물 콘택을 통하여 상기 트랜지스터의 드레인 영역에 접속되어 있는 커패시터 를 포함하는 복수의 셀로 이루어지는 강유전체 메모리 장치에 있어서, 상기 커패시터는 상기 셀중 서로 이웃하고 있는 2개의 셀이 1개의 하부 전극과 1개의 상부 전극을 공용으로 사용하도록 상기 2개의 셀의 각 매몰 콘택에 동시에 접속된 상태로 상기 2개의 셀에 걸쳐서 연장되어 있는 것을 특징으로 하는 강유 전체 메모리 장치를 제공한다.

바람직하게는, 상기 커패시터는 서로 이웃하고 있는 2개의 셀에 걸쳐서 상기 비트 라인의 상부에서 총간 절연막을 개재하여 형성되고, 상기 2개의 셀의 각 매몰 콘택을 통하여 상기 2개의 셀의 각 드레인 영역 에 접속되어 있는 하부 전극과, 상기 하부 전극의 상부에서 서로 이웃하고 있는 2개의 하부 전극에 걸쳐 서 상기 2개의 하부 전극 각각의 상면의 일부에서만 중첩되도록 상기 하부 전극과 엇갈리게 배치되어 있 는 상부 전극과, 상기 하부 전극과 상부 전극 사이에 개재되어 있는 강유전체막을 포함한다.

더욱 바람직하게는, 상기 하부 전극 및 상부 전극은 백금족 금속 및 백금족 금속의 산화물로 이루어지는

군에서 선택된 어느 하나로 이루어지는 막이다.

또한 바람직하게는, 상기 강유전체막은 PZT(PbZrTi03), PbTi03, PbLaTi03, BST(BaSrTi03), BaTi03, Ba4Ti3012, SrBi2Ta209 및 SrTi03로 이루어지는 군에서 선택된 어느 하나로 이루어지는 막이다.

상기 강유전체막은 상기 상부 전국의 하부에만 형성될 수 있다. 그러나, 상기 강유전체막이 반도체 기판 전면에 형성되는 것도 가능하다.

바람직하게는, 상기 총간 절연막과 하부 전극과의 반응율 억제하기 위하여 상기 총간 절연막과 하부 전극 사이에 형성된 제1 장벽총을 더 포함한다. 더욱 바람직하게는, 상기 제1 장벽총은 TiO2막으로 이루어지다.

또한 바람직하게는, 상기 상부 전극 및 강유전체막을 덮는 TiO2막을 더 포함하고, 상기 매몰 콘택과 상기 하부 전극의 구성 물질간의 반응을 억제하기 위하여 상기 매몰 콘택과 상기 하부 전극 사이에 개재된 제3 장벽층을 더 포함한다. 더욱 바람직하게는, 상기 제3 장벽층은 TiN막, WN막, TiSiN막, TaSiN막 및 TiWN막으로 이루어지는 군에서 선택된 어느 하나의 막이다.

상기 다른 목적을 달성하기 위하여 본 발명은, 반도체 기판상에 활성 영역과 비활성 영역을 한정하는 단계와, 상기 활성 영역상에 소스 영역, 드레인 영역 및 워드 라인 역할을 하는 게이트 전극을 구비하는 트랜지스터를 형성하는 단계와, 상기 결과물상에 상기 소스 영역의 일부를 노출시키는 비트 콘택흡을 구 비한 제1 층간 절연막을 형성하는 단계와, 상기 비트 콘택흡을 채우는 제1 도전층을 형성하는 단계와, 상기 제1 도전층을 패터닝하여 상기 비트 콘택홀을 통해 상기 소스 영역과 접속되는 비트 라인을 형성하는 단계와, 상기 결과물상에 제2 층간 절연막을 형성하는 단계와, 상기 제2 층간 절연막 및 제1 층간 절 연막을 패터닝하여 상기 드레인 영역의 일부를 노출시키는 콘택흡을 형성하는 단계와, 상기 콘택흡을 제2 도전층으로 채워서 매몰 콘택을 형성하는 단계와, 상기 결과물상에 제1 금속막을 형성하는 단계와, 상기 제1 금속막을 패터닝하여 상기 매몰 콘택중 이웃하고 있는 2개의 매몰 콘택에 동시에 연결된 상태 로 상기 2개의 매몰 콘택이 포함된 2개의 트랜지스터에 걸쳐서 연장되어 있는 하부 전극을 형성하는 단 계와, 상기 하부 전극을 덮는 강유전체막을 형성하는 단계와, 상기 강유전체막상에 제2 금속막을 형성하 는 단계와, 상기 제2 금속막을 패터닝하여 상기 강유전체막을 사이에 두고 상기 하부 전국의 상부에서 서로 이웃하고 있는 2개의 하부 전극에 걸쳐서 상기 2개의 하부 전극의 일부에서만 중첩되도록 상기 하 부 전극과 엇갈리게 배치된 상부 전극을 형성하는 단계와, 상기 결과물 전면에 상기 상부 전극의 일부를 노출시키는 플레이트 콘택흡을 구비한 금속 총간 절연막을 형성하는 단계와, 상기 플레이트 콘택흡을 채 우는 제3 도전층을 형성하는 단계와, 상기 제3 도전층을 패터닝하여 상기 플레이트 콘택흡을 통해 상기 상부 전극과 접속되는 플레이트 라인을 청성하는 단계를 포함하는 것을 특징으로 하는 강유전체 메모리 장치의 제조 방법을 제공한다.

바람직하게는, 상기 매물 콘택을 형성하는 단계에서 상기 제2 도전층은 폴리실리콘, W, WN 및 WSi로 이루어지는 군에서 선택된 적어도 어느 하나의 물질을 증착하여 형성한다.

또한 바람직하게는, 상기 제1 금속막 및 제2 금속막은 백금족 금속 및 백금족 금속의 산화물로 이루어지는 군에서 선택된 어느 하나로 이루어지는 막으로 형성한다.

또한 상기 다른 목적을 달성하기 위하여 본 발명은, 반도체 기판상에 활성 영역과 비활성 영역을 한정하는 단계와, 상기 활성 영역상에 소스 영역, 드레인 영역 및 워드 라인 역할을 하는 게이트 전국을 구비하는 트랜지스터를 형성하는 단계와, 상기 결과물상에 상기 소스 영역의 일부를 노출시키는 비트 콘택흡을 구비한 제1 충간 절연막을 형성하는 단계와, 상기 비트 콘택흡을 채우는 제1 도전층을 형성하는 단계와, 상기 비트 콘택흡을 제우는 제1 도전층을 형성하는 단계와, 상기 제1 도전층을 패터닝하여 상기 비트 콘택흡을 통해 상기 소스 영역과 접속되는 비트 라인을 형성하는 단계와, 상기 결과물상에 제2 충간 절연막을 형성하는 단계와, 상기 제2 충간 절연막 및 제1 층간 절연막을 패터닝하여 상기 드레인 영역의 일부를 노출시키는 콘택흡을 형성하는 단계와, 상기 콘택흡을 제2 도전층으로 채워서 매몰 콘택을 형성하는 단계와, 상기 결과물 전면에 제1 장벽 물질층을 형성하는 단계와, 상기 제1 장벽 물질층을 해터닝하여 상기 매몰 콘택의 상면을 노출시키는 제1 장벽층을 형성하는 단계와, 상기 제1 장벽층이 형성된 결과물상에 제1 금속막을 형성하는 단계와, 상기 제1 금속막을 편에 포함된 2개의 트랜지스터에 걸쳐서 연장되어 있는 하부 전극을 형성하는 단계와, 상기 해부 전극을 덮는 강유전체막을 형성하는 단계와, 상기 강유전체막상에 제2 금속막을 형성하는 단계와, 상기 하부 전극을 덮는 강유전체막을 형성하는 단계와, 상기 강유전체막상에 제2 금속막을 형성하는 단계와, 상기 제2 금속막을 패터닝하여 상기 강유전체막을 사이에 두고 상기 하부 전극의 상부에서 서로 이웃하고 있는 2개의 하부 전극에 걸쳐서 상기 2개의 하부 전극의 일부에서만 중첩되도록 상기 하부 전극과 엇갈리게 배치된 상부 전극을 형성하는 단계와, 상기 정부 중의 필본에서만 중첩되도록 상기 하부 전극과 것말리게 배치된 상부 전극을 형성하는 단계와, 상기 제2 공벽 물질층을 위에 금속 총간 절연막을 형성하는 단계와, 상기 제2 공벽 물질층을 위에 금속 총간 절연막을 형성하는 단계와, 상기 제2 공벽 물질층을 해성하는 단계와, 상기 제2 공벽 물질층을 해성하는 단계와, 상기 제3 도전층을 형성하는 단계와, 상기 제3 도전층을 형성하는 단계와, 상기 제3 도전층을 해성하는 단계와, 상기 제3 도전층을 해성하는 단계와, 상기 제3 도전층을 해성하는 단계와, 상기 플레이트 콘택흡을 통해 상기 상부 전극과 접속되는 플레이트 라인을 형성하는 단계를 포함하는 것을 특징으로 하는 강유전체 메모리 장치의 제조 방법을 제공하다.

바람직하게는, 상기 제1 장벽 물질층 및 제2 장벽 물질층은 TiO2막으로 형성한다.

다음에, 본 발명의 바람직한 실시예에 대하여 청부 도면을 참조하여 상세히 설명한다.

도 1 및 도 2는 본 발명에 따른 강유전체 메모리 장치를 도시한 도면으로서, 도 1은 본 발명의 바람직한 실시예에 따른 강유전체 메모리 장치의 셀 레이아웃도이고, 도 2는 도 1의 2 - 2'선 단면도이다. 여기 , 단위 셀은 하나의 커패시터와 하나의 트랜지스터로 구성된다.

도 1을 참조하면, 본 발명에 따른 강유전체 메모리 장치는 x방향으로 소정의 길이를 갖도록 배치된 홥성 영역(212)과, 상기 홥성 영역(212)을 가로지르면서 y방향으로 서로 평행하게 배치되어 트랜지스터의 게이트 전극 역할을 하는 한 쌍의 워드 라인(230a, 230b)을 구비한다. 여기서, 상기 홥성 영역(212)은 상

기 워드 라인(230a, 230b)에 의해 소스 영역 및 드레인 영역으로 분할되며, 도 1에서 뵵 때 워드라인(230a)의 우측의 활성 영역, 즉 워드 라인(230b)의 좌측의 활성 영역은 트랜지스터의 소스 영역을 나타내고, 워드 라인(230a)의 좌측의 활성 영역 및 워드 라인(230b)의 우측의 활성 영역은 각각 트랜지스터의 드레인 영역을 나타낸다.

또한, 본 발명에 따른 강유전체 메모리 장치는 상기 활성 영역(212)상에서 그 소스 영역으로부터 양측의 드레인 영역에 형성되어 있는 매몰 콘택(252a, 252b)과 연결되도록 x방향으로 연장되어 있는 하부 전극(250)과, 상기 하부 전극(250)의 상부에서 강유전체막읍 사이에 두고 x방향으로 연장되고 서로 이웃하고 있는 2개의 하부 전극(250) 각각의 일부에서 중첩되어 있는 상부 전극(260)을 포함한다. 따라서, 서로 이웃하고 있는 2개의 셀에서 1개의 하부 전극(250) 및 1개의 상부 전극(260)을 공용으로 사용하게된다.

또한, 본 발명에 따른 강유전체 메모리 장치는 상기 소스 영역의 소정 영역을 노출시키기 위한 비트 콘택흡(240a)과, 상기 비트 콘택흡(240a)을 통하여 상기 소스 영역과 연결되고 x방향을 따라 배치된 비트라인(240)과, 상기 상부 전극(260)의 소정 영역을 노출시키기 위한 플레이트 콘택흡(270a)과, 상기 플레이트 콘택흡(270a)을 통하여 상기 상부 전극(260)과 연결되고 상기 워드라인(230a, 230b)과 평행하게 배치된 플레이트 라인(270)을 구비한다.

도 2를 참조하여 본 발명을 더욱 상세히 설명하면, 본 발명에 따른 강유전체 메모리 장치는 소자 분리막(214), 예컨대 필드 산화막에 의하여 활성 영역 및 비활성 영역이 한정된 반도체 기판(200)과, 상기 활성 영역의 소정 영역 상에 게이트 절연막(216)에 의해 이격되고 트랜지스터의 게이트 전극 역활을 하는 워드 라인(230a, 230b)과, 상기 워드 라인(230a, 230b)의 양 옆의 활성 영역 표면에 각각 형성된 트랜지스터의 소스 영역(217) 및 드레인 영역(218a, 218b)과, 제1 층간 절연막 패턴(300)을 통해 형성된 비트 콘택흡(240a)(도 1 참조)을 통하여 상기 소스 영역(217)에 접속되어 있는 비트 라인(240)과, 서로 이웃하고 있는 2개의 셀에 공용으로 포함되도록 상기 2개의 셀에 걸쳐서 상기 비트 라인(240)의 상부에 형성되고, 상기 제1 층간 절연막 패턴(300)과 상기 비트 라인(240)을 덮는 제2 층간 절연막 패턴(400)을 통해 형성된 상기 2개의 셀의 각 매몰 콘택(252a, 252b)(도 1 참조)을 통하여 상기 2개의 셀의 각 드레인 영역(218a, 218b)의 소정 영역과 접속되어 있는 하부 전극(250)과, 상기 하부 전극(250)의 상부에서 서로 이웃하고 있는 2개의 하부 전극(250)에 걸쳐서 상기 2개의 하부 전극(250)에 걸쳐서 상기 2개의 하부 전극(250)의 상보에서 안 중첩되도록 상기 하부 전극(250)과 엇갈리게 배치되어 연장되어 있는 상부 전극(260)과, 상기 하부 전극(250)과 상부 전극(250)을 덮는 금속 층간 절연막 패턴(500)을 통해 형성된 플레이트 콘택흡(270a)(도 1 참조)을 통하여 상기 상부 전극(260)상의 소정 영역과 접속되어 있는 플레이트 콘택흡(270a)(도 1 참조)을 통하여 상기 상부 전극(260)상의 소정 영역과 접속되어 있는 플레이트 콘택흡(270a)(도 1 참조)을 통하여 상기 상부 전극(260)상의 소정 영역과 접속되어 있는 플레이트 콘택흡(270a)(도 1 참조)을 통하여 상기 상부 전극(260)상의 소정 영역과 접속되어 있는 플레이트 콘택흡(270a)(도 1 참조)을 통하여 상기 상부 전극(260)상의 소정 영역과 접속되어 있는 플레이트 콘택흡(270a)(도 1 참조)을 통하여 상기 상부 전극(260)상의 소정 영역과 접속되어 있는 플레이트 콘택흡(270a)(도 1 참조)을 통하여 상기 상부 전극(260)상의 소정 영역과 접속되어 있는 플레이트 콘택흡(270a)(도 1 참조)을 통하여 상기 상부

상기 강유전체막(255)은 도시한 바와 같이 상기 상부 전극(260)의 하부에만 형성될 수도 있고, 상기 상부 전극(260)의 하부에서 반도체 기판 전면에 형성될 수도 있다.

여기서, 상기 하부 전극(250) 및 상부 전극(260)은 백금족 금속 및 백금족 금속의 산화물, 예를 들면 백금(Pt), 루테늄(Ru), 이리튬(Ir), 산화루테늄(Ru02) 및 산화이리튬(Ir02) 등으로 이루어지는 군에서 선택된 어느 하나의 물질로 이루어지는 막으로 형성할 수 있으며, 바람직하게는, 백금막으로 형성한다.

상기 강유전체막(255)은 PZT(PbZrTi03), PbTi03, PbLaTi03, BST(BaSrTi03), BaTi03, Ba4Ti3012, SrBi2Ta209 및 SrTi03로 이루어지는 군에서 선택된 어느 하나로 구성되는 막으로 형성하는 것이 바람직하다.

또한, 상기 하부 전극(250), 강유전체막(255) 및 상부 전극(260)과 충간 절연막들과의 사이에서 일어나는 반응을 억제하기 위하여, 상기 제2 충간 절연막 패턴(400)과 하부 전극(250) 사이에는 제1 장벽충(410)이 형성되어 있고, 상기 강유전체막(255) 및 상부 전극(260)과 금속 충간 절연막 패턴(500) 사이에는 제2 장벽충(420)이 형성되어 있다. 바람직하게는, 상기 제1 장벽충(410) 및 제2 장벽충(420)은 Ti02막으로 이루어진다.

도시하지는 않았으나, 상기 매몰 콘택(252a, 252b)을 구성하고 있는 도전 물질과 상기 하부 전극(250) 구성 물질과의 반응을 억제하기 위하여, 상기 매물 콘택(252a, 252b)과 하부 전극(250) 사이에 제3 장벽 충(도시 생략)을 형성할 수 있다. 바람직하게는, 상기 제3 장벽층은 TiN막, WN막, TiSiN막, TaSiN막 및 TiWN막으로 이루어지는 군에서 선택된 어느 하나의 막으로 이루어질 수 있다.

상기한 바와 같이, 본 발명에 따른 강유전체 메모리 장치의 구성에서는 하나의 커패시터와 하나의 트랜 지스터로 구성되는 단위 셀에서 이웃하는 2개의 셀이 1개의 하부 전극과 1개의 상부 전극을 공용으로 사 용할 수 있도록 공유하고 있다. 따라서, 셀 사이즈 축소를 용이하게 할 수 있고, 셀 사이즈 축소에 따라 커패시터 패터닝시에 발생되는 문제점도 방지할 수 있다.

도 3 내지 도 8은 본 발명의 바람직한 실시예에 따라 강유전체 메모리 장치를 제조하는 방법을 설명하기 위한 단면도들이다.

도 3을 참조하면, 반도체 기판(200)의 소정 영역에 소자 분리막(214), 예컨대 필드 산화막을 형성함으로 써, 활성 영역과 비활성 영역을 한정하고, 게이트 절연막(216)상에서 게이트 전극 역할을 하는 워드 라인(230a, 230b), 소스 영역(217) 및 드레인 영역(218a, 218b)을 구비하는 트랜지스터를 통상의 CMOS 형성 공정에 따른 방법으로 형성한다. 다음에, 상기 결과물 전면에 산화막, 예컨대 BPSG(boro-phosphosilicate glass)막을 약 4000 ~ 5000Å의 두께로 증착하여 제1 층간 절연막을 형성한다. 그 후, 상기제1 총간 절연막에 상기 소스 영역(217)의 일부를 노출시키는 비트 콘택흡(240a)을 형성한 후 상기 비트 콘택흡(240a)을 채우는 제1 도전층(도시 생략)을 형성하고 패터닝하여 상기 소스 영역에 접속되는 비트라인(240)을 형성한다.

그 후, 상기 비트 라인(240)이 형성된 결과물 전면에 산화막, 예컨대 BPSG막을 약 4000 ∼ 5000Å의 두 께로 증착하여 제2 총간 절연막을 형성한다. 그 후, 상기 제2 총간 절연막 및 제1 총간 절연막을 차례로 패터닝하여 상기 드레인 영역(218a, 218b)의 일부를 노출시키는 콘택흡(h1)을 형성함으로써 제1 총간 절

연막 패턴(300) 및 제2 층간 절연막 패턴(400)을 형성한다.

도 4를 참조하면, 상기 콘택흡(h1)이 형성된 결과물상에 도전 물질. 예를 들면 폴리실리콘, W, WN 및 WSi로 이루어지는 군에서 선택된 적어도 어느 하나의 물질을 증착하여 상기 콘택흡(h1)을 채우는 제2 도전층을 형성한 후 이를 CMP(Chemical Mechanical Polishing) 방법 또는 에치백 방법에 의하여 식각하여, 후속 공정에서 형성되는 강유전체 커패시터의 하부 전극과 트랜지스터의 드레인 영역(218a, 218b)을 연결시킬 매몰 콘택(252a, 252b)을 형성한다.

그 후, 상기 결과물 전면에 TiO2막을 증착한 후, 상기 매몹 콘택(252a, 252b)의 상면을 노출시키도록 상기 TiO2막을 패터닝하여 제1 장벽층(410)을 형성한다.

도시하지는 않았으나, 상기 매몰 콘택(252a, 252b)을 구성하고 있는 도전 물질과 상기 하부 전극(250) 구성 물질과의 반응을 억제하기 위하여, 스퍼터링 또는 CVD(Chemical Vapor Deposition) 방법에 의하여 상기 노출된 매몰 콘택(252a, 252b)의 상면에 TiN막, WN막, TiSiN막, TaSiN막 및 TiWN막으로 이루어지는 군에서 선택된 어느 하나의 막으로 이루어지는 장벽층(도시 생략)을 형성할 수 있다.

도 5를 참조하면, 상기 제1 장벽층(410)이 형성된 결과물 전면에 백금막을 스퍼터링법으로 중착하고, 상기 백금막을 패터닝하여 이웃하고 있는 2개의 트랜지스터 각각의 드레인 영역(218a, 218b)에 연결되어 있는 2개의 매달 콘택(252a, 252b)에 동시에 연결된 상태로 상기 2개의 트랜지스터에 걸쳐서 연장되어 2개의 셀에 의해 공유되는 하부 전극(250)을 형성한다.

도 6을 참조하면, 상기 하부 전극(250)이 형성된 결과물 전면에 강유전 물질막을 졸-겔(sol-gel) 코팅 방법에 의하여 코팅하고, 그 위에 백금막을 스퍼터링법으로 중착한다. 상기 강유전 물질막은 PZT(PbZrTiO3), PbTiO3, PbLaTiO3, BST(BaSrTiO3), BaTiO3, Ba4Ti3012, SrBi2Ta209 및 SrTiO3로 이루어 지는 군에서 선택된 어느 하나를 사용하여 형성할 수 있다.

그 후, 상기 백금막 및 강유전체막을 패터닝하여, 상기 하부 전극(250)의 상부에서 서로 이웃하고 있는 2개의 하부 전극(250)에 걸쳐서 상기 2개의 하부 전극(250)의 일부에서만 중첩되도록 상기 하부 전극(250)과 엇갈리게 배치된 상부 전극(260)과 강유전체막(255)을 형성한다. 이 때, 상기 강유전 물질 막을 상기 설명한 바와 같이 패터닝하지 않고 백금막만을 패터닝하여 상기 강유전 물질막이 반도체 기판 전면에 존재하도록 할 수도 있다. 따라서, 이웃하고 있는 2개의 셀에서 1개의 하부 전극(250) 및 1개의 상부 전극(260)을 공용으로 사용하게 된다.

도 7을 참조하면, 상기 상부 전극(260) 및 강유전체막(255)의 노출된 부분에 TiO2막을 중착하고, 그 상 면에 전체적으로 산화막, 예컨대 ECR(Electron Cyclotron Resonance) 플라즈마 소스를 사용하여 형성되 는 산화막을 소정의 두께로 중착하여 금속 충간 절연막을 형성한다. 그 후, 상기 금속 충간 절연막 및 TiO2막을 패터닝하여 상기 상부 전극(260)의 일부를 노출시키는 플레이트 콘택흡(270a)이 형성된 금속 충간 절연막 패턴(500) 및 제2 장벽충(420)을 형성한다.

도 8을 참조하면, 상기 플레이트 콘택흡(270a)이 형성된 결과물 전면에 상기 플레이트 콘택흡(270a)이 채워지도록 제3 도전층을 형성한 후 패터닝하여 커패시터의 플레이트 라인(270)을 형성한다. 상기 제3 도전층으로는 예를 들면 스퍼터링법에 의하여 형성된 Ti/TiN/Al막, Ti/TiN/W막, TiN/Al막 또는 TiN/W막을 사용할 수 있다.

발명의 효과

상기한 바와 같이, 본 발명에 따른 강유전체 메모리 장치에서는 하나의 커패시터와 하나의 트랜지스터로 구성되는 단위 셀에서 이웃하는 2개의 셀이 1개의 하부 전극과 1개의 상부 전극을 공용으로 사용할 수 있도록 공유하고 있다. 따라서, 셀 사이즈 축소를 용이하게 할 수 있고, 셀 사이즈 축소에 따라 커패시 터 패터닝시에 발생되는 패터닝 불량과 같은 문제점도 방지할 수 있다.

이상, 본 발명을 구체적인 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 이 가능하다.

(57) 청구의 범위

청구항 1

활성 영역 및 비활성 영역이 한정된 반도체 기판과, 상기 활성 영역상에 형성된 트랜지스터와, 상기 트 랜지스터의 소스 영역에 접속되어 있는 비트 라인과, 상기 비트 라인의 상부에 형성되고 매달 콘택을 통 하여 상기 트랜지스터의 드레인 영역에 접속되어 있는 커패시터를 포함하는 복수의 셀로 이루어지는 강 유전체 메모리 장치에 있어서, 상기 커패시터는

상기 셀중 서로 이웃하고 있는 2개의 셀이 1개의 하부 전극과 1개의 상부 전극을 공용으로 사용하도록 상기 2개의 셀의 각 매율 콘택에 동시에 접속된 상태로 상기 2개의 셀에 걸쳐서 연장되어 있는 것을 특 장으로 하는 강유전체 메모리 장치.

청구랑 2

제1항에 있어서, 상기 커패시터는

서로 이웃하고 있는 2개의 셀에 걸쳐서 상기 비트 라인의 상부에서 총간 절연막을 개재하여 형성되고, 상기 2개의 셀의 각 매몰 콘택을 통하여 상기 2개의 셀의 각 드레인 영역에 접속되어 있는 하부 전극 과

상기 하부 전국의 상부에서 서로 이웃하고 있는 2개의 하부 전국에 걸쳐서 상기 2개의 하부 전국 각각의

상면의 일부에서만 중첩되도록 상기 하부 전극과 엇갈리게 배치되어 있는 상부 전극과,

상기 하부 전극과 상부 전극 사이에 개재되어 있는 강유전체막을 포함하는 것을 특징으로 하는 강유전체 메모리 장치.

청구항 3

제2항에 있어서, 상기 하부 전극 및 상부 전극은 백금족 금속 및 백금족 금속의 산화물로 이루어지는 군에서 선택된 어느 하나로 이루어지는 막인 것을 특징으로 하는 강유전체 메모리 장치.

청구항 4

제2항에 있어서, 상기 강유전체막은 PZT(PbZrTiO3), PbTiO3, PbLaTiO3, BsT(BaSrTiO3), BaTiO3, Ba4TiO3, SrBi2Ta2O9 및 SrTiO3로 이루어지는 군에서 선택된 어느 하나로 이루어지는 막인 것을 특징으로 하는 강유전체 메모리 장치.

청구항 5

제2항에 있어서, 상기 강유전체막은 상기 상부 전극의 하부에만 형성된 것을 특징으로 하는 강유전체 메모리 장치.

청구항 6

제2항에 있어서, 상기 강유전체막은 반도체 기판 전면에 형성된 것을 특징으로 하는 강유전체 메모리 장 치.

청구항 7

제2항에 있어서, 상기 총간 절연막과 하부 전극과의 반응을 억제하기 위하여 상기 총간 절연막과 하부 전극 사이에 형성된 제1 장벽총을 더 포함하는 것을 특징으로 하는 강유전체 메모리 장치.

청구항 8

제7항에 있어서, 상기 제1 장벽층은 TiO2막으로 이루어진 것을 특징으로 하는 강유전체 메모리 장치.

청구항 9

제2항에 있어서, 상기 상부 전극 및 강유전체막을 덮는 TiO2막을 더 포항하는 것을 특징으로 하는 강유 전체 메모리 장치.

청구항 10

제2항에 있어서, 상기 매몰 콘택과 상기 하부 전극의 구성 물질간의 반응을 억제하기 위하여 상기 매몰 콘택과 상기 하부 전극 사이에 개재된 제3 장벽층을 더 포함하는 것을 특징으로 하는 강유전체 메모리 장치.

정구항 11

제10항에 있어서, 상기 제3 장벽층은 TiN막, WN막, TiSiN막, TaSiN막 및 TiWN막으로 이루어지는 군에서 선택된 어느 하나의 막인 것을 특징으로 하는 강유전체 메모리 장치.

청구항 12

반도체 기판상에 활성 영역과 비활성 영역을 한정하는 단계와,

상기 활성 영역상에 소스 영역, 드레인 영역 및 워드 라인 역할을 하는 게이트 전국을 구비하는 트랜지 스터를 형성하는 단계와.

상기 결과물상에 상기 소스 영역의 일부를 노출시키는 비트 콘택흡을 구비한 제1 층간 절연막을 형성하는 단계와,

상기 비트 콘택흡을 채우는 제1 도전층을 형성하는 단계와,

상기 제1 도전층을 패터닝하여 상기 비트 콘택홀을 통해 상기 소스 영역과 접속되는 비트 라인을 형성하는 단계와.

상기 결과물상에 제2 층간 절연막을 형성하는 단계와,

상기 제2 총간 절연막 및 제1 총간 절연막을 패터닝하여 상기 드레인 영역의 일부를 노출시키는 콘택흡을 형성하는 단계와,

상기 콘택흡을 제2 도전층으로 채워서 매몰 콘택을 형성하는 단계와,

상기 결과물상에 제1 금속막을 형성하는 단계와,

상기 제1 금속막을 패터닝하여 상기 매몰 콘택중 이웃하고 있는 2개의 매몰 콘택에 동시에 연결된 상태로 상기 2개의 매몰 콘택이 포함된 2개의 트랜지스터에 걸쳐서 연장되어 있는 하부 전극을 형성하는 단계와.

상기 하부 전국을 덮는 강유전체막을 형성하는 단계와,

상기 강유전체막상에 제2 금속막을 형성하는 단계와,

- 상기 제2 금속막을 패터닝하여 상기 강유전체막을 사이에 두고 상기 하부 전극의 상부에서 서로 이웃하고 있는 2개의 하부 전극에 걸쳐서 상기 2개의 하부 전극의 일부에서만 중첩되도록 상기 하부 전극과 엇 갈리게 배치된 상부 전극을 형성하는 단계와,
- 상기 결과물 전면에 상기 상부 전극의 일부를 노출시키는 플레이트 콘택흡을 구비한 금속 총간 절연막율 형성하는 단계와,
- 상기 플레이트 콘택흡을 채우는 제3 도전층을 형성하는 단계와,
- 상기 제3 도전층을 패터닝하여 상기 플레이트 콘택흡을 통해 상기 상부 전극과 접속되는 플레이트 라인을 형성하는 단계를 포함하는 것을 특징으로 하는 강유전체 메모리 장치의 제조 방법.

청구항 13

제12항에 있어서, 상기 매몰 콘택을 형성하는 단계에서 상기 제2 도전층은 폴리실리콘, W, WN 및 WSi로 이루어지는 군에서 선택된 적어도 어느 하나의 물질을 증착하여 형성하는 것을 특징으로 하는 강유전체메모리 장치의 제조 방법.

청구항 14

제12항에 있어서, 상기 제1 금속막 및 제2 금속막은 백금족 금속 및 백금족 금속의 산화물로 이루어지는 군에서 선택된 어느 하나로 이루어지는 막으로 형성하는 것을 특징으로 하는 강유전체 메모리 장치의 제 조 방법.

청구항 15

제12항에 있어서, 상기 강유전체막은 PZT(PbZrTiO3), PbTiO3, PbLaTiO3, BST(BaSrTiO3), BaTiO3, Ba4TiO3, SrBi2Ta2O9 및 SrTiO3로 이루어지는 군에서 선택된 어느 하나를 사용하여 형성하는 것을 특징으로 하는 강유전체 메모리 장치의 제조 방법.

청구항 16

- 반도체 기판상에 활성 영역과 비활성 영역을 한정하는 단계와.
- 상기 활성 영역상에 소스 영역, 드레인 영역 및 워드 라인 역할을 하는 게이트 전극을 구비하는 트랜지 스터를 형성하는 단계와.
- 상기 결과물상에 상기 소스 영역의 일부를 노출시키는 비트 콘택홀을 구비한 제1 층간 절연막을 형성하는 단계와,
- 상기 비트 콘택흡을 채우는 제1 도전층을 형성하는 단계와,
- 상기 제1 도전층을 패터닝하여 상기 비트 콘택흡을 통해 상기 소스 영역과 접속되는 비트 라인을 형성하 는 단계와,
- 상기 결과물상에 제2 층간 절연막을 형성하는 단계와,
- 상기 제2 총간 절연막 및 제1 총간 절연막을 패터닝하여 상기 드레인 영역의 일부를 노출시키는 콘택홈을 형성하는 단계와,
- 상기 콘택흡을 제2 도전층으로 채워서 매몰 콘택을 형성하는 단계와,
- 상기 결과물 전면에 제1 장벽 물질층을 형성하는 단계와,
- 상기 제1 장벽 물질층을 패터닝하여 상기 매몰 콘택의 상면을 노출시키는 제1 장벽층을 형성하는 단계 와,
- 상기 제1 장벽층이 형성된 결과물상에 제1 금속막을 형성하는 단계와,
- 상기 제1 금속막을 패터닝하여 상기 매월 콘택중 이웃하고 있는 2개의 매월 콘택에 동시에 연결된 상태로 상기 2개의 매월 콘택이 포함된 2개의 트랜지스터에 걸쳐서 연장되어 있는 하부 전극을 형성하는 단계와.
- 상기 하부 전극을 덮는 강유전체막을 형성하는 단계와.
- 상기 강유전체막상에 제2 금속막을 형성하는 단계와,
- 상기 제2 금속막을 패터닝하여 상기 강유전체막을 사이에 두고 상기 하부 전극의 상부에서 서로 이웃하고 있는 2개의 하부 전극에 걸쳐서 상기 2개의 하부 전극의 일부에서만 중첩되도록 상기 하부 전극과 엇갈리게 배치된 상부 전극을 형성하는 단계와.
- 상기 상부 전극 및 강유전체막의 노출된 표면에 제2 장벽 물질층을 형성하는 단계와,
- 상기 제2 장벽 물질층 위에 금속 층간 절연막을 형성하는 단계와,
- 상기 금속 층간 절연막 및 제2 장벽 물질층을 패터닝하여 상기 상부 전국의 일부를 노출시키는 플레이트 콘택흡을 구비한 금속 층간 절연막 패턴 및 제2 장벽층을 형성하는 단계와,
- 상기 플레이트 콘택흡을 채우는 제3 도전층을 형성하는 단계와,
- 상기 제3 도전층을 패터닝하여 상기 플레이트 콘택흡을 통해 상기 상부 전극과 접속되는 플레이트 라인을 형성하는 단계를 포함하는 것을 특징으로 하는 강유전체 메모리 장치의 제조 방법.

청구항 17

제16항에 있어서, 상기 제1 장벽 물질층 및 제2 장벽 물질층은 Ti02막으로 형성하는 것을 특징으로 하는 강유전체 메모리 장치의 제조 방법.

도연

도면1

도면2

도면3

도면4

도연5

도면6

도면7

도면8

