259

PROBLEMS 12.2

1. Show that the equation $x^2 + y^2 = z^3$ has infinitely many solutions for x, y, z positive integers.

[*Hint*: For any $n \ge 2$, let $x = n(n^2 - 3)$ and $y = 3n^2 - 1$.]

2. Prove the theorem: The only solutions in nonnegative integers of the equation $x^2 + 2y^2 = z^2$, with gcd(x, y, z) = 1, are given by

$$x = \pm (2s^2 - t^2)$$
 $y = 2st$ $z = 2s^2 + t^2$

where s, t are arbitrary nonnegative integers.

[Hint: If u, v, w are such that y = 2w, z + x = 2u, z - x = 2v, then the equation becomes $2w^2 = uv$.]

- 3. In a Pythagorean triple x, y, z, prove that not more than one of x, y, or z can be a perfect square.
- **4.** Prove each of the following assertions:
 - (a) The system of simultaneous equations

$$x^2 + y^2 = z^2 - 1$$
 and $x^2 - y^2 = w^2 - 1$

has infinitely many solutions in positive integers x, y, z, w.

[*Hint*: For any integer $n \ge 1$, take $x = 2n^2$ and y = 2n.]

(b) The system of simultaneous equations

$$x^2 + y^2 = z^2$$
 and $x^2 - y^2 = w^2$

admits no solution in positive integers x, y, z, w.

(c) The system of simultaneous equations

$$x^2 + y^2 = z^2 + 1$$
 and $x^2 - y^2 = w^2 + 1$

has infinitely many solutions in positive integers x, y, z, w.

[*Hint*: For any integer $n \ge 1$, take $x = 8n^4 + 1$ and $y = 8n^3$.]

5. Use Problem 4 to establish that there is no solution in positive integers of the simultaneous equations

$$x^2 + y^2 = z^2$$
 and $x^2 + 2y^2 = w^2$

[Hint: Any solution of the given system also satisfies $z^2 + y^2 = w^2$ and $z^2 - y^2 = x^2$.]

6. Show that there is no solution in positive integers of the simultaneous equations

$$x^2 + y^2 = z^2$$
 and $x^2 + z^2 = w^2$

hence, there exists no Pythagorean triangle whose hypotenuse and one of whose sides form the sides of another Pythagorean triangle.

[Hint: Any solution of the given system also satisfies $x^4 + (wy)^2 = z^4$.]

- 7. Prove that the equation $x^4 y^4 = 2z^2$ has no solutions in positive integers x, y, z. [*Hint:* Because x, y must be both odd or both even, $x^2 + y^2 = 2a^2$, $x + y = 2b^2$, $x y = 2c^2$ for some a, b, c; hence, $a^2 = b^4 + c^4$.]
- **8.** Verify that the only solution in relatively prime positive integers of the equation $x^4 + y^4 = 2z^2$ is x = y = z = 1.

[Hint: Any solution of the given equation also satisfies the equation

$$z^4 - (xy)^4 = \left(\frac{x^4 - y^4}{2}\right)^2.$$

9. Prove that the Diophantine equation $x^4 - 4y^4 = z^2$ has no solution in positive integers x, y, z.

[*Hint*: Rewrite the given equation as $(2y^2)^2 + z^2 = (x^2)^2$ and appeal to Theorem 12.1.]

10. Use Problem 9 to prove that there exists no Pythagorean triangle whose area is twice a perfect square.

[*Hint*: Assume to the contrary that $x^2 + y^2 = z^2$ and $\frac{1}{2}xy = 2w^2$. Then $(x + y)^2 = z^2 + 8w^2$, and $(x - y)^2 = z^2 - 8w^2$. This leads to $z^4 - 4(2w)^4 = (x^2 - y^2)^2$.]

11. Prove the theorem: The only solutions in positive integers of the equation

$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{z^2}$$
 $gcd(x, y, z) = 1$

are given by

$$x = 2st(s^2 + t^2)$$
 $y = s^4 - t^4$ $z = 2st(s^2 - t^2)$

where s, t are relatively prime positive integers, one of which is even, with s > t.

12. Show that the equation $1/x^4 + 1/y^4 = 1/z^2$ has no solution in positive integers.