Yelp Photo Classification

Mi Yan

Food?

or

Drink?

Food?

or

Drink?

Food 0.0001

Drink 0.9999

Food 0.0001

Drink 0.9999

Food photos for Uchiko

o ke sake, grapefruit, pink peppercorn

m) unfiltered, nutty, pineapple, cream soda akabe gura tokubetsu junmai m) mint, ripe plum, stone fruit lovarma tokubetsu junmai

) clean winter air, fresh fruit, dry age "snow shadow" tokubetsu junma hirame crudo myoga • mbuba • chii. * 22

Drink photos for Uchiko

On an evenly split test set,, overall precision of 94%, and recall of 70%. While these numbers can definitely be improved,

On an evenly split test set,, overall precision of 94%, and recall of 70%. While these numbers can definitely be improved,

On an evenly split test set,, overall precision of 94%, and recall of 70%. While these numbers can definitely be improved,

Drink photos for Uchiko

Convolutional Neural Network Transfer Learning

Dataset and Resources

Input: 128 x 128 x 3 (RGB)

Dataset Split

80,000 photos

Dataset and Resources

Input: 128 x 128 x 3 (RGB)

Dataset Split

80,000 photos

CPU (my mac)

GPU (AWS EC2)

~100 Times Faster

Training / Validation error curves

Predicted Probability

Predicted Probability

Confusion Matrix for Test data

Confusion Matrix for Test data

Accuracy = 95.39%

Precision = 95.47%

Recall = 95.39%

Confusion Matrix for Test data

Accuracy = 95.39%

Precision = 95.47% vs 94% (yelp)

Recall = 95.39% vs 70% (yelp)

Questions?

Mi Yan

Linkedin: https://www.linkedin.com/in/mi-yan-0617

Github: https://github.com/MiYan617/Projects

Email: yanmi617@gmail.com

Summary

- Train a photo classifier based on CNN transfer learning algorithm
- Improve the precision and recall
- Mislabel could be one reason limiting the further improvement
- Other base models or model stacking methods may help more