Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 16 & 17: Controllo in retroazione dallo stato

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

In queste lezioni

- ▶ II problema del controllo
 - ▶ Controllo in retroazione: setup e proprietà
 - ▶ Forma canonica di controllo
 - ▶ Allocazione degli autovalori: ingresso singolo
 - ▶ Allocazione degli autovalori: ingressi multipli
 - ▶ Stabilizzabilità

Il problema del controllo

sistema con stato x(t), ingresso u(t) e uscita y(t)

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

Problemi di controllo

sistema con stato x(t), ingresso u(t) e uscita y(t)

Problema di regolazione:

stabilizzare il sistema ad uno stato desiderato (tipicamente zero)

Problema di asservimento (tracking):

inseguire un andamento desiderato dell'uscita

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17 November 19, 2019 5 /

Controllo in "catena aperta" o open-loop

sistema con stato x(t), ingresso u(t) e uscita y(t)

legge di controllo u(t) non dipende dai valori di x(t), y(t)

approccio semplice, ma non ideale se il sistema è incerto e/o soggetto a disturbi esterni!

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17

November 19, 2019 6 / 37

Controllo in retroazione o feedback

sistema con stato x(t), ingresso u(t) e uscita y(t)

legge di controllo u(t) dipende dai valori di x(t) e/o y(t)

approccio più complesso (richiede sensori di misura), ma robusto a incertezze e/o disturbi esterni!

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17 November 19, 2019 7 / 37

Controllo in retroazione o feedback

sistema con stato x(t), ingresso u(t) e uscita y(t)

dallo stato: u(t) = f(x(t)) (allo stesso istante t!)

1. Retroazione statica

dall'uscita: u(t) = f(y(t)) (allo stesso istante t!)

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17

November 19, 2019 8 / 3

Controllo in retroazione o feedback

sistema con stato x(t), ingresso u(t) e uscita y(t)

dallo stato: $u(t)=f(x(\tau)), \ \tau\in[t_0,t]$ 2. Retroazione dinamica dall'uscita: $u(t)=f(y(\tau)), \ \tau\in[t_0,t]$

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

Controllo in retroazione di sistemi lineari: setup

$$x(t+1) = Fx(t) + Gu(t), \quad x(0) = x_0 \in \mathbb{R}^n$$

 $y(t) = Hx(t)$

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019 10 /

Controllo in retroazione di sistemi lineari: setup

$$x(t+1) = (F + GK)x(t) + Gv(t), \quad x(0) = x_0 \in \mathbb{R}^n$$

 $y(t) = Hx(t)$

$$u(t) = Kx(t) + v(t), K \in \mathbb{R}^{m \times n}$$
 retroazione statica dallo stato

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17

November 19, 2019 11

Controllo in retroazione di sistemi lineari: setup

$$x(t+1) = (F + G\overline{K}H)x(t) + Gv(t), \quad x(0) = x_0 \in \mathbb{R}^n$$

 $y(t) = Hx(t)$

$$u(t) = \bar{K}Hx(t) + v(t), \ \bar{K} \in \mathbb{R}^{m \times p}$$
 retroazione statica dall'uscita

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17

November 19, 2019 12 / 3

Esempio introduttivo

Retroazione statica dall'uscita

$$J\ddot{\theta} = -\beta\dot{\theta} + u$$

$$u = ke, \ k \in \mathbb{R}$$

$$y = \theta$$

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{J} & -\frac{\beta}{J} \end{bmatrix} x$$

$$y = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

Esempio introduttivo

Giacomo Baggio

 $\mathbf{v} = \theta$

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

November 19, 2019

Retroazione dallo stato ed equivalenza algebrica

$$\Sigma^{(K)}: \qquad \begin{array}{l} x(t+1) = (F+GK)x(t) + Gv(t) \\ y(t) = Hx(t) \end{array}$$

Come si modificano le matrici del sistema per effetto di un cambio di base T?

$$\bar{F} = T^{-1}FT$$
, $\bar{G} = T^{-1}G$, $\bar{H} = HT$, $\bar{K} = KT$

Raggiungibilità del sistema retroazionato dallo stato

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$

 $X_R(t)$ = spazio di raggiungibilità in t passi di Σ

$$\Sigma^{(K)}$$
: $x(t+1) = (F + GK)x(t) + Gv(t)$

 $X_R^{(K)}(t) =$ spazio di raggiungibilità in t passi di $\Sigma^{(K)}$

Teorema: $X_R(t) = X_R^{(K)}(t)$, per ogni scelta della matrice di retroazione $K \in \mathbb{R}^{m \times n}$.

 Σ raggiungibile $\iff \Sigma^{(K)}$ raggiungibile

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

Forma di Kalman del sistema retroazionato dallo stato

$$\Sigma^{(K)}$$
: $x(t+1) = (F+GK)x(t) + Gv(t)$
 $y(t) = Hx(t)$

$$F_{\mathcal{K}} \triangleq T^{-1}FT = egin{bmatrix} F_{11} & F_{12} \ 0 & F_{22} \end{bmatrix}, \quad G_{\mathcal{K}} \triangleq T^{-1}G = egin{bmatrix} G_1 \ 0 \end{bmatrix}, \quad K_{\mathcal{K}} \triangleq \mathcal{K}T = egin{bmatrix} \mathcal{K}_1 & \mathcal{K}_2 \end{bmatrix}$$

$$T^{-1}x=egin{bmatrix} x_R(t+1)\ x_{NR}(t+1) \end{bmatrix}=egin{bmatrix} F_{11}+G_1K_1 & F_{12}+G_1K_2\ 0 & F_{22} \end{bmatrix}egin{bmatrix} x_R(t)\ x_{NR}(t) \end{bmatrix}+egin{bmatrix} G_1\ 0 \end{bmatrix}v(t)$$

Il sottosistema non raggiungibile non è influenzato dalla retroazione!

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

/ 37

Basi cicliche di \mathbb{R}^n

$$\Sigma$$
: $x(t+1) = Fx(t) + gu(t)$, $g \in \mathbb{R}^{n \times 1}$ $(m=1 = \text{singolo ingresso})$

$$\Sigma$$
 raggiungibile \implies rank $(\mathcal{R}) = n$
$$\implies \operatorname{rank}\left(\left[g \quad Fg \quad F^2g \quad \cdots \quad F^{n-1}g\right]\right) = n$$

$$\implies \{g, \ Fg, \ F^2g, \ \ldots, \ F^{n-1}g\} \text{ base di } \mathbb{R}^n$$

base ciclica di \mathbb{R}^n

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17 November 19, 2019 18

Basi cicliche di \mathbb{R}^n

$$\Sigma$$
: $x(t+1) = Fx(t) + gu(t)$, $g \in \mathbb{R}^{n \times 1}$ $(m=1 = \text{singolo ingresso})$

Consideriamo il cambio di base $T = \mathcal{R}$

$$\bar{F} = T^{-1}FT = \begin{bmatrix} 0 & 0 & \cdots & 0 & -\alpha_0 \\ 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \cdots & 0 & -\alpha_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & -\alpha_{n-1} \end{bmatrix}, \quad \bar{g} = T^{-1}g = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$

$$\Delta_F(\lambda) = \det(\lambda I - F) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda + \alpha_0$$

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019 19

Forma canonica di controllo

$$\Sigma$$
: $x(t+1) = Fx(t) + gu(t)$, $g \in \mathbb{R}^{n \times 1}$ ($m = 1 = \text{singolo ingresso}$)

Con un ulteriore cambio di base Q arriviamo alla forma canonica di controllo

$$F_{c} = Q^{-1}\bar{F}Q = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -\alpha_{0} & -\alpha_{1} & -\alpha_{2} & \cdots & -\alpha_{n-1} \end{bmatrix}, \quad g_{c} = Q^{-1}\bar{g} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 1 \end{bmatrix}$$

$$\Delta_F(\lambda) = \det(\lambda I - F) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda + \alpha_0$$

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17

November 19, 2019 20 / 3

Forma canonica di controllo: osservazioni

$$\Sigma$$
: $x(t+1) = Fx(t) + gu(t)$, $g \in \mathbb{R}^{n \times 1}$ $(m = 1 = \text{singolo ingresso})$

- 1. Σ raggiungibile $\iff \Sigma$ può essere portato in forma canonica di controllo.
- **2.** Il calcolo della forma di controllo **non** richiede il calcolo esplicito del cambio di base $T_c \triangleq TQ$ ma solo dei coefficienti del polinomio $\Delta_F(\lambda) = \det(\lambda I F)$.
- **3.** Se \mathcal{R} e \mathcal{R}_c sono le matrici di raggiungibilità del sistema di partenza e del sistema in forma canonica di controllo allora $\mathcal{T}_c = \mathcal{R}\mathcal{R}_c^{-1}$.

Giacomo Baggio

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

Allocazione autovalori (m = 1)

$$\Sigma$$
: $x(t+1) = Fx(t) + gu(t)$, $g \in \mathbb{R}^{n \times 1}$

$$\Sigma^{(K)}$$
: $x(t+1) = (F + gK)x(t) + gv(t)$

Come fare ad assegnare a F + gK degli autovalori desiderati?

 $\Sigma^{(K)}$ raggiungibile \implies trasformiamo il sistema in forma canonica di controllo!

$$F_c = T_c^{-1}FT$$
, $g_c = T_c^{-1}g$, $K_c = KT_c = \begin{bmatrix} k_{1,c} & \cdots & k_{n,c} \end{bmatrix}$

$$F_c + g_c K_c = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -\alpha_0 + k_{1,c} & -\alpha_1 + k_{2,c} & -\alpha_2 + k_{3,c} & \cdots & -\alpha_{n-1} + k_{n,c} \end{bmatrix}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

Allocazione autovalori (m = 1)

$$\Delta_{F_c+g_c,K_c}(\lambda) = \lambda^n + (\alpha_{n-1} - k_{n,c})\lambda^{n-1} + \dots + (\alpha_1 - k_{2,c})\lambda + (\alpha_0 - k_{1,c})$$

$$p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_1\lambda + p_0$$
 = polinomio con autovalori desiderati

1. Siano
$$k_{1,c}^* \triangleq \alpha_0 - p_0, \ldots, k_{n,c}^* \triangleq \alpha_{n-1} - p_{n-1}$$

2. Sia
$$K_c^* \triangleq \begin{bmatrix} k_{1,c}^* & \cdots & k_{n,c}^* \end{bmatrix}$$

3.
$$K^* \triangleq K_c^* T_c^{-1} = \text{matrice di retroazione desiderata}$$
!

IMC-TdS-1920: Lez 16 & 17

Allocazione autovalori (m = 1): osservazioni

- 1. Il procedimento permette di allocare gli autovalori a nostro piacimento! L'unico vincolo è la raggiungibilità di Σ (e quindi di $\Sigma^{(K)}$).
- **2.** Se tutti gli autovalori vengono allocati in zero $(p(\lambda) = \lambda^n)$ abbiamo costruito un **Dead-Beat Controller (DBC)**!
- 3. Il calcolo della forma canonica di controllo richiede solo il calcolo dei coefficienti del polinomio $\Delta_F(\lambda) = \det(\lambda I F)$. Mentre, Il cambio di base \mathcal{T}_c^{-1} per ottenere \mathcal{K}^* si può calcolare come $\mathcal{T}_c^{-1} = \mathcal{R}_c \mathcal{R}^{-1}$.
- 4. Il procedimento rimane invariato per sistemi a tempo continuo.

November 19, 2019 23 / 37 Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17 November 19, 2019 24 / 37

Esempio

$$x(t+1) = egin{bmatrix} 1 & 2 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix} u(t)$$

 K^* tale che il sistema retroazionato abbia autovalori $\lambda_1 = \lambda_2 = \lambda_3 = 0$ (DBC)?

$$K^* = \begin{bmatrix} -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

Allocazione autovalori (m = 1): metodo alternativo

$$\Sigma$$
: $x(t+1) = Fx(t) + gu(t)$, $g \in \mathbb{R}^{n \times 1}$

$$\Sigma^{(K)}$$
: $x(t+1) = (F + gK)x(t) + gv(t)$

$$p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_1\lambda + p_0$$
 = polinomio con autovalori desiderati

Risolvere
$$\Delta_{F+gK}(\lambda) = \det(\lambda I - F - gK) = p(\lambda)$$
 con incognita K

Sistema di equazioni lineari con incognite k_1, \ldots, k_n , $K = \begin{bmatrix} k_1 & \cdots & k_n \end{bmatrix}$!

November 19, 2019

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17

Esempio (cont.)

$$x(t+1) = egin{bmatrix} 1 & 2 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix} u(t)$$

 K^* tale che il sistema retroazionato abbia autovalori $\lambda_1 = \lambda_2 = \lambda_3 = 0$ (DBC)?

$$K^* = \begin{bmatrix} -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Funzione di trasferimento del sistema retroazionato

$$\Sigma^{(K)}$$
: $x(t+1) = (F+gK)x(t)+gv(t)$
 $y(t) = Hx(t)$

Che forma ha la f.d.t. W(z) di $\Sigma^{(K)}$?

$$W(z) = H(zI - F - gK)^{-1}g = H_c(zI - F_c - g_cK_c)^{-1}g_c$$

$$= \frac{\beta_{n-1}z^{n-1} + \dots + \beta_1z + \beta_0}{z^n + (\alpha_{n-1} - k_{n,c})z^n + \dots + (\alpha_1 - k_{2,c})z + (\alpha_0 - k_{1,c})}$$

La funzione modifica solo i poli della funzione di trasferimento !

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17 November 19, 2019 28 / 37

Allocazione autovalori (m > 1)

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$, $G \in \mathbb{R}^{n \times m}$

$$\Sigma^{(K)}$$
: $x(t+1) = (F + GK)x(t) + Gv(t)$

Come fare ad assegnare a F + GK degli autovalori desiderati?

$$F + GK = F + \begin{bmatrix} g_1 & \cdots & g_m \end{bmatrix} \begin{bmatrix} k_1 \\ \vdots \\ k_m \end{bmatrix} = F + g_1k_1 + \cdots + g_mk_m$$

Idea: Selezionare un singolo ingresso (una sola riga k_i non nulla) ed usare la procedura vista prima (m = 1)!

Problema: Il sistema potrebbe non essere raggiungibile da un singolo ingresso anche se Σ raggiungibile!!

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

29 / 37

Esempio

$$x(t+1) = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} u(t)$$

Il sistema è raggiungibile? È raggiungibile da un ingresso?

Il sistema è raggiungibile, ma non è raggiungibile da un ingresso.

IMC-TdS-1920: Lez 16 & 17 Giacomo Baggio November 19, 2019

Allocazione autovalori (m > 1): Lemma di Heymann

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$, $G \in \mathbb{R}^{n \times m}$

$$\Sigma^{(K)}$$
: $x(t+1) = (F + GK)x(t) + Gv(t)$

Come fare ad assegnare a F + GK degli autovalori desiderati se Σ **non** è raggiungibile da un ingresso?

Usare una retroazione preliminare che renda Σ raggiungibile da un ingresso !!

Teorema: Se (F, G) è raggiungibile e se g_i è una colonna non nulla di G, esiste una matrice $M \in \mathbb{R}^{m \times n}$ tale che $(F + GM, g_i)$ è raggiungibile.

Esempio (cont.)

$$x(t+1) = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} u(t)$$

 K^* tale che il sistema retroazionato abbia autovalori $\lambda_1 = \lambda_2 = 1/2$?

Prendendo $M = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ il sistema è raggiungibile dal primo ingresso g_1 .

$$K^* = M + \begin{bmatrix} 1 & -1/4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1/4 \\ 1 & 0 \end{bmatrix}.$$

Giacomo Baggio IMC-TdS-1920: Lez 16 & 17 November 19, 2019

Giacomo Baggio IMC-TdS-1920: Lez 16 & 17

November 19, 2019

31 / 37

Allocazione autovalori (m > 1): osservazioni

- 1. Esistono algoritmi per trovare la matrice di retroazione preliminare M.
- 2. L'approccio appena visto è piuttosto intuitivo ma ha delle limitazioni.

Ad esempio, usando un singolo ingresso si può ottenere un DBC che porta a zero lo stato in un numero di passi non inferiore a n. Con più ingressi invece esistono casi in cui è possibile costruire un DBC che porta a zero lo stato in un numero di passi inferiore a n

Quindi, usando tecniche più avanzate (che sfruttano la cosiddetta forma canonica di controllo multivariabile) si possono ottenere prestazioni di controllo migliori.

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17 November 19, 2019

Stabilizzabilità a t d

$$\Sigma : x(t+1) = Fx(t) + Gu(t)$$
 n-dimensionale

Definizione: Il sistema Σ si dice stabilizzabile se esiste un controllo in retroazione dallo stato che rende il sistema asintoticamente stabile.

Teorema: Le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile.
- 2. Il sottosistema non raggiungibile di Σ ha autovalori con modulo minore di 1.
- 3. La matrice PBH [zI F G] ha rango n, $\forall z$ con $|z| \ge 1$.

Giacomo Baggio IMC-TdS-1920: Lez. 16 & 17 November 19, 2019

Stabilizzabilità in tempo finito (a t.d.)

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$
 n-dimensionale

Definizione: Il sistema Σ si dice stabilizzabile in tempo finito se esiste un controllo in retroazione dallo stato che porta lo stato del sistema a zero in tempo finito.

Teorema: Le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile in tempo finito.
- 2. Σ ammette un DBC.
- 3. Il sottosistema non raggiungibile di Σ ha autovalori nulli.
- 4. Σ è controllabile (a zero).
- 5. La matrice PBH [zI F G] ha rango n, $\forall z$ con $z \neq 0$.

Stabilizzabilità a t c

$$\Sigma : \dot{x}(t) = Fx(t) + Gu(t)$$
 n-dimensionale

Definizione: Il sistema Σ si dice stabilizzabile se esiste un controllo in retroazione dallo stato che rende il sistema asintoticamente stabile.

Teorema: Le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile.
- 2. Il sottosistema non raggiungibile di Σ ha autovalori con parte reale minore di 0.
- 3. La matrice PBH [zI F G] ha rango n, $\forall z$ con $\Re[z] \ge 0$.

IMC-TdS-1920: Lez. 16 & 17 Giacomo Baggio November 19, 2019

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019

Esempio

$$\dot{x}(t) = \begin{bmatrix} 0 & \alpha \\ 0 & -\alpha \end{bmatrix} x(t) + \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} u(t), \quad \alpha \in \mathbb{R}$$

Stabilizzabilità al variare di $\alpha \in \mathbb{R}$?

Il sistema è stabilizzabile se $\alpha > 0$.

Giacomo Baggio

IMC-TdS-1920: Lez. 16 & 17

November 19, 2019 37 / 37

