Eigenvalues and eigenvectors

Let A be an nxn matrix. A scalar λ is said to be an eigenvalue or characteristic value or characteristic root of A if \exists a non zero vector X such that $\exists AX = \lambda X$. The vector X is said to be an eigenvector or a characteristic vector corresponding to λ .

EXI: Consider permutation matrix
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Eigenvector $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $AX = X$, $A = 1$

Other is $X = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, $A \times = -\times$, A = -1

- Properties of eigenvalues and eigenvectous:

 1) Any square matrix A and its transpose A have the same eigenvalues.
- 2) The sum of the eigenvalues of a matrix is equal to the trace of the matrix.
- 3) The product of the eigenvalues of a matrix A is equal to the determinant of A.
- 4) If λ_1 , λ_2 , ... λ_n are the eigenvalues of A, then the eigenvalues of A are λ_1 , λ_2 , ... λ_n by A^m are λ_1^m , λ_2^m , λ_2^m ..., λ_n^m
 - $\Rightarrow A^{-1}$ are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$
- 5) If all eigenvalues are positive then the determinant is positive. A matrix with negative determinant has atleast one negative eigenvalue.
- 6) If a matrix A is symmetric (A = AT) then its eigenvalues are real numbers.
- 7) If a matrix A is skewsymmetric (A = -AT) then its eigenvaluer are either 0 or purely imaginably
- 8) If A is a triangular matrix then its eigenvalues are diagonal entries of A.

- 9) Eigenvectour corresponding to distinct eigenvaluer of a real symmetric matrix are orthogonal.
- 10) If λ is eigenvalue of A, then $\lambda + K$ is eigenvalue of A + KI and eigenvectors of A and A + KI are same.
- 11) If sum of entrier of all shows (solumns) is a then a must be eigenvalue of the matrix and X=(1,1,...1) is corresponding eigenvected
- (Similar matrices have the same eigenvalues.

 (Similar matrices: A and B are similar matrices if f

 a non-singular matrix P such that P-AP=B)

 However their eigenvectors are nounally different.

ex:
$$A = \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -5 & -3 \\ 6 & 5 \end{bmatrix}$, $P = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$

- 13) Eigenvaluer of outhogonal matrix $(A^{T} = A^{T})$ are -1 or 1 $ex: A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- 14) Eigenvaluer of idempotent matrix (A2= A) is either 0 or

Eigenvalues of involuntary matricer
$$(A^2 = I)$$
 are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$ are either -1 or 1 .

 $(A^2 = I)$

For instance
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Characteristic eq.
$$|A - \lambda I| = 0$$

i.e. $\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = 0$

$$\Rightarrow (a_{11}-\lambda) (a_{22}-\lambda) - a_{12} a_{21} = 0$$

$$\Rightarrow \lambda^{2} - (a_{11}+a_{22})\lambda + a_{11} a_{22} - a_{12} a_{21} = 0$$

$$\Rightarrow \lambda^{2} - \text{trace } (A)\lambda + |A| = 0$$

For $3x3$ matrix

The characteristic equation is

$$\lambda^{3} - \text{trace } (A)\lambda^{2} + (\text{sum of minor along diagonal})\lambda - |A| = 0$$

$$ex: A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$

Trace $(A) = 6$

Minors along the diagonal: $M_{11} = 6 - 0 = 6$, $M_{22} = 3 - 4 = -1$, $M_{33} = 2 - 0 = 2$

$$|A| = 1(6 - 0) + 0 + 2(0 - 4) = 6 - 8 = -2$$

The characteristic eq. is $\lambda^{3} - 6\lambda^{2} + 7\lambda + 2 = 0$

Determine the eigenvalue and eigenvectors of the following matricer:

i) $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$

The characteristic eq. of A is $|A - \lambda I| = 0$

$$\Rightarrow \lambda^{2} - 3\lambda - 4 = 0$$

$$\Rightarrow \lambda = 4, -1 \quad \text{ou} \quad \text{the eigenvaluer of } A$$

$$To find \ \text{eigenvector}; \quad \text{For } \lambda_{1} = 4$$

$$Conxidu \qquad (A - \lambda_{1} I) X = 0$$

$$\begin{bmatrix} 1 - 4 & 2 \\ 3 & 2 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 2 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$-3x + 2y = 0$$

$$3x - 2y = 0$$

$$4x - 2x = 0$$

$$5x - 2y = 0$$

$$5x - 2y = 0$$

$$3x -$$

Thus
$$X = \begin{bmatrix} K \\ K \end{bmatrix}$$
 is the eigenvector corresponding to $\lambda_1 = 5$

For $\lambda_2 = 3$

Consider $(B - \lambda_2 I) X = 0$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow x + y = D$$

Let $y = K \Rightarrow x = -K$

Thus $X = \begin{bmatrix} -K \\ K \end{bmatrix}$ is the eigenvector corresponding to $\lambda = 3$

$$\Rightarrow \lambda A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$

And: The characteristic eq. is $|A - \lambda I| = 0$

$$\begin{vmatrix} 2 - \lambda & -3 & 1 \\ 1 & -2 - \lambda & 1 \\ 1 & -3 & 2 - \lambda \end{vmatrix} = D \qquad +3(2-1)+1(-3)$$

$$\begin{vmatrix} 2 - \lambda & -3 & 1 \\ 1 & -2 - \lambda & 1 \\ 1 & -3 & 2 - \lambda \end{vmatrix} = D \qquad +3(2-1)+1(-3)$$

$$\begin{vmatrix} \lambda^3 - 2\lambda^2 + \lambda + 0 = 0 \\ \Rightarrow \lambda (\lambda^2 - 2\lambda + 1) = 0 \\ \Rightarrow \lambda (\lambda^2 - 2\lambda + 1) = 0 \\ \Rightarrow \lambda (\lambda^2 - 2\lambda + 1) = 0 \\ \Rightarrow \lambda (\lambda^2 - 2\lambda + 1) = 0 \\ \Rightarrow \lambda (\lambda^2 - 2\lambda + 1) = 0 \\ \Rightarrow \lambda (\lambda^2 - 2\lambda + 1) = 0 \\ \Rightarrow \lambda (\lambda^2 - 2\lambda + 1) = 0 \\ \Rightarrow \lambda (\lambda^2 - 2\lambda + 1) = 0$$

$\therefore \lambda = 0, 1, 1$ are the eigenvalues.
<i>j</i>
To find eigenvectous:
FOL X = D
Consider $(A - \lambda_1 I) x = 0$
<u> </u>
1 -2 1 y = 0
Consider $\begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$
\ -2 1
$\mathcal{K} \overset{\longleftarrow}{\longleftrightarrow} \mathcal{K}_{2}$
l 5
$\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$
~ 2 -3 1
$R_2 \rightarrow R_2 - 2R_1$ $R_3 \rightarrow R_3 - R_1$
[1 -2 1]
~ p 1 -1
~ 0 1 −1 0 −1 1 _
$R \rightarrow R + R_2$
3 13 2
[1 -2 1]
0 1 -1
0 0 0

$$x-2y+z=0$$

$$y-z=0$$
Het $z \cdot K$ be the free variable
$$\Rightarrow y=K$$

$$\therefore x=K$$

$$\therefore \text{ Eigenvector corresponding to } \lambda_1=D \text{ is } X_1=\begin{bmatrix} K\\ K\\ K\\ K \end{bmatrix}$$
For $\lambda_2=1$

$$\begin{bmatrix} 1&-3&1\\ 1&-3&1\\ 1&-3&1\end{bmatrix}\begin{bmatrix} x\\ y\\ z\\ 0\end{bmatrix}$$

$$\Rightarrow x-3y+z=D$$

$$\text{Lab } y=K, \text{ and } z=K_2$$

$$\Rightarrow x=3K,-K_2$$

$$\therefore \text{ Eigenvector corresponding to } \lambda=1 \text{ is }$$

$$\lambda_2=\begin{bmatrix} 3K,-K_2\\ K_1\\ K_2\end{bmatrix}=\begin{bmatrix} 3\\ 1\\ 1\\ 1\end{bmatrix}$$

4)
$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$

Sol: The characteristic eq is $|A - \lambda I| = 0$

To find eigenvectors:
FOL
$$\lambda = 2$$

$$(A-\lambda_{1}I)X=D$$

$$\begin{bmatrix} 1 & 1 & 4 & x & 0 \\ 0 & 0 & 6 & y & = 0 \\ 0 & 0 & 3 & z & 0 \end{bmatrix}$$

Considu
$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 0 & 6 \\ 0 & 0 & 3 \end{bmatrix}$$

$$R_{3} \rightarrow R_{3} - \frac{1}{3} R_{2}$$

$$x+y+4z=0, \quad 6z=0 \Rightarrow z=0$$

$$x+y=0$$

$$det \quad y=K \Rightarrow x=-K$$

$$Thure \quad X_1 = \begin{bmatrix} -K \\ K \\ 0 \end{bmatrix}$$

$$(A-\lambda_2 I) \quad X=0$$

$$\begin{bmatrix} 0 & 1 & 4 \\ 0 & -1 & 6 \\ 0 & 0 & a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$y+4z=0, \quad -y+6z=0, \quad az=0$$

$$i.e. \quad y=0, \quad z=0$$

$$det \quad x=K$$

$$Thure \quad X_2 = \begin{bmatrix} K \\ 0 \\ 0 \end{bmatrix}$$

$$x \quad the \quad cigan vector \quad corresponding to \lambda=3$$

$$For \lambda=5$$

$$(A-\lambda_3 I) \quad X=0$$

$$-2x+y+4z=0, \quad -3y+6z=0 \Rightarrow y=3z$$

$$\Rightarrow -3x+6z=0$$
Ast $z=k$, $y=2k$, $x=3k$
Thus $x=3$ is the eigenvalue of $A=6$ is $a=5$.

Thus $a=3$ and $a=5$ are the 2 eigenvalue of $a=6$ is $a=6$.

Find $a=6$ is $a=6$ if $a=6$ is $a=6$ if $a=6$ if $a=6$ is $a=6$ if $a=6$ is $a=6$ if $a=6$ is $a=6$ if $a=6$ if $a=6$ is $a=6$ if $a=6$

Obtain the eigenvaluer and eigenvectous of the following matrices: 2) A= 7 3 1) A= 4 1 -1 2 Ans: 1 = 8, 1 = -2 Am: $\lambda = 3, 3$ X = [-K] X = 3k, X = k4) A= -1 2 -2 1 2 1 -1 -1 0 3) A = 1 1 3 1 1 5 1 3 1 1 1 Ans: $\lambda_1 = 1$, $\lambda_2 = \sqrt{5}$, $\lambda_3 = -\sqrt{5}$ Ann: $\lambda_1 = -2$, $\lambda_2 = 3$, $\lambda_3 = 6$ $X_1 = -K$ $X_2 = \begin{bmatrix} K \\ -K \end{bmatrix}$ $X_3 = \begin{bmatrix} K \\ 2K \end{bmatrix}$ $X_4 = \begin{bmatrix} K \\ 2K \end{bmatrix}$ $X_5 = \begin{bmatrix} (1-\sqrt{5})K \\ -K \end{bmatrix}$ $X_6 = \begin{bmatrix} (1+\sqrt{5})K \\ -K \end{bmatrix}$

5) Two eigenvalues of the matrix
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 egnal to 1 each. Find eigenvalues of A^{-1} .

Rayleigh's Power method to find the largest eigenvalue:
det $\lambda_1, \lambda_2, \dots \lambda_n$ be the eigenvaluer of a nxn matrix A.
), is called the dominant eigenvalue of A if it is
larger in absolute value than all other cizenvalues.
i.e. $ \lambda_1 > \lambda_2 > \lambda_3 $
The eigenvector corresponding to x is called dominant eigenvector of A.
eigenvector of A.
Not x be the initial approximation such that
$Ax_{e} = x \rightarrow 0$. In order to get a convergent sequence of
eigenvectous simultaneously scaling method is adopted
At each stage each components of the resultant approximate
At each stage, each components of the resultant approximate rector is to be divided by its absolutely largest component
Accordingly x in 1) can be scaled by dividing each of
its components by absolutely largest component of it. Thus
An = x = \ x \ , x ix the scaled vector of x.
Now the scaled vector x, is used in the next iteration
to obtain $Ax_1 = x = \lambda_2 x_2$. Proceeding this way we get
A $\alpha_n = \lambda_{n+1}$ α_{n+1} $\alpha_n = 0, 1, 2$ where λ_{n+1} is the numerically
largest eigenvalue up to desired accuracy and x is the
corresponding eigenvector.
•
Apply power method to A=[12] with initial x=[1]
2 1
Apply power method to $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ with initial $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and estimate the dominant eigenvalue and corresponding eigenvector of A .
ciannecter of A.
cigenvector of A. Sel: 2 = []
~~. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

$$A \times_{0} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} = c_{1} \times_{1}$$

$$A \times_{1} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.5 \\ 2 \end{bmatrix} = 2.5 \begin{bmatrix} 1 \\ 0.8 \end{bmatrix} = c_{2} \times_{2}$$

$$A \times_{2} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \end{bmatrix} = \begin{bmatrix} 2.6 \\ 2.8 \end{bmatrix} = 2.8 \begin{bmatrix} 0.93 \\ 1 \end{bmatrix} = C_{2} \times_{3}$$

$$A x_{3} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0.93 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.93 \\ 2.86 \end{bmatrix} = 2.93 \begin{bmatrix} 1 \\ 0.98 \end{bmatrix} = C_{4} x_{4}$$

$$A \times_{4} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0.98 \end{bmatrix} = \begin{bmatrix} 2.96 \\ 2.98 \end{bmatrix} = 2.98 \begin{bmatrix} 0.99 \\ 1 \end{bmatrix} = C \times_{5}$$

$$Ax_5 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0.99 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.99 \\ 2.98 \end{bmatrix} = 2.99 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} C \\ 6 \\ 6 \end{bmatrix}$$

$$Ax_{b} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 7 & 1 \end{bmatrix}$$
Since $x_{b} = x_{b}$, $x_{b} = 3$ is the dominant eigenvalue and

2) Per form Six iterations of the power method with scaling to approximate a dominant eigenvector of the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & 1 & 2 \\ 1 & 3 & 1 \end{bmatrix}$$

We $x_{=} (1, 1, 1)$ as the initial approximation.

Asol:

At iteration:
$$Ax_{0} = \begin{bmatrix} 1 & 2 & 0 \\ -2 & 1 & 2 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.60 \\ -2 & 1 & 2 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 0.60 \\ -2 & 1 & 2 \\ 1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 0.60 \\ 0.20 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.45 \\ 1.35 \\ 1.35 \end{bmatrix} = \begin{bmatrix} 0.45 \\ 0.45 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.45 \\ 1.35 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.48 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.48 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 1.59 \\ 1.31 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.51 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.55 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.50 \\ 0.50 \\ 1$$

Since
$$x = x$$
 $\lambda = 3$ is the dominant even value and

Since
$$x_5 = x_6$$
, $\lambda = 3$ is the dominant eigenvalue and 0.5 0.5 is the dominant eigenvector.

$$A \times_{0} = \begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = c_{1} \times_{1}$$

$$Ax_{1} = \begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -8 \\ 6 \end{bmatrix} = 8 \begin{bmatrix} -1 \\ 0.75 \end{bmatrix} = 2x_{2}$$

$$A_{\mathcal{X}_{2}} = \begin{bmatrix} 3 & -5 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 0.75 \end{bmatrix} = \begin{bmatrix} -6.75 \\ 5 \end{bmatrix} = 6.75 \begin{bmatrix} -1 \\ 0.741 \end{bmatrix} = 2 \times 3$$

$$A \chi_{3} = \begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 0.741 \end{bmatrix} = \begin{bmatrix} -6.705 \\ 4.964 \end{bmatrix} = 6.705 \begin{bmatrix} -1 \\ 0.7403 \end{bmatrix} = C_{4} \chi_{4}$$

$$A \times_{4} = \begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 0.7403 \end{bmatrix} = \begin{bmatrix} -6.7015 \\ 4.4612 \end{bmatrix} = 6.7015 \begin{bmatrix} -1 \\ 0.7403 \end{bmatrix} = C \times_{5}$$

Since
$$x_4 = x_5$$
, $\lambda = 6.701$ is the dominant eigenvalue and

and estimate the dominant eigenvalue and corresponding eigenvector of A.

a)
$$A = \begin{bmatrix} 5 & -2 & -2 \\ -3 & 5 & 0 \end{bmatrix}$$

An:
$$\lambda = 2$$
, $X = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

a)
$$A = \begin{bmatrix} 5 & -2 & -2 \\ -3 & 5 & 0 \\ 23 & -19 & -6 \end{bmatrix}$$
, $\chi_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ b) $A = \begin{bmatrix} -7 & 2 \\ 8 & -1 \end{bmatrix}$, $\chi_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Ans:
$$\lambda = -9$$
, $X = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

2) Per form Six iterations of the power method with scaling to approximate a dominant eigenvector of the matrix like
$$x_0 = (1, 1, 1)$$
 as the initial approximation.

Ans:
$$\lambda = 14.9992 \approx 15$$
, Ans: $\lambda = 3.4$

$$X = \begin{bmatrix} 1 \\ -0.9999 \\ 0.4999 \end{bmatrix} \approx \begin{bmatrix} 1 \\ -1 \\ 0.5 \end{bmatrix} \qquad X = \begin{bmatrix} 1 \\ 0 \\ 0.8157 \end{bmatrix}$$