WEST

Generate Collection

L15: Entry 3 of 12

File: EPAB

Oct 15, 1997

PUB-NO: EP000800817A2

DOCUMENT-IDENTIFIER: EP 800817 A2

TITLE: Cosmetic and dermatological photoprotective compositions containing a triazine derivative and monoalkyl esters of aplha-hydroxycarboxylic acids

PUBN-DATE: October 15, 1997

INVENTOR-INFORMATION:

NAME

COUNTRY

GERS-BARLAG, HEINRICH DR

DE

KROEPKE, RAINER

DE

ASSIGNEE-INFORMATION:

NAME

COUNTRY

BEIERSDORF AG

DE

APPL-NO: EP97105494

APPL-DATE: April 3, 1997

PRIORITY-DATA:

INT-CL (IPC): A61K 7/42

EUR-CL (EPC): A61K007/42; A61K007/48

ABSTRACT:

CHG DATE=19990617 STATUS=O> Light-protective combination comprises 4,4',4"-(1,3,5-triazine-2,4,6-triyltriimino)-tris-benzoic acid-tris(2-ethylhexyl ester) (I) (i.e. '<u>Uvinul</u> T 150' (RTM)); and an alpha -hydroxycarboxylate ester of formula R"-C(R')(OH)-COOR"' (II). R', R" = H or 1-25C alkyl (optionally substituted by carboxyl, OH, aldehyde and/or oxo); or CR'R" = 3-7 ring C cycloalkyl (optionally substituted by carboxyl, OH, oxo and/or 1-25C n-alkyl); and R"' = 1-25C alkyl. Also claimed is the use of (II) as a solvent or solubiliser for (I).

pert at

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 800 817 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

15.10.1997 Patentblatt 1997/42

(51) Int. Cl.6: A61 K 7/42

(21) Anmeldenummer: 97105494.5

(22) Anmeldetag: 03.04.1997

(84) Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LINL

(30) Priorität: 17.04.1996 DE 19615039

(71) Anmelder: Beiersdorf Aktiengesellschaft 20245 Hamburg (DE)

(72) Erfinder:

- · Gers-Barlag, Heinrich Dr. 25495 Kummerfeld (DE)
- · Kröpke, Rainer 22527 Hamburg (DE)
- (54)Kosmetische und dermatologsiche Lichtschutzformulierungen mit einem Gehalt an Triazinderivaten und Alkylmonoestern von x-Hydroxycarbon-säuren
- Lichtschutzwirksame Wirkstoffkombinationen (57) aus 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesaure-tris(2-ethylhexylester) und einem oder mehreren Alkylmonoestern von α-Hydroxycarbonsäuren.

Beschreibung

10

30

35

40

45

50

Die vorliegende Erfindung betrifft kosmetische und dermatologische Lichtschutzzubereitungen, insbesondere hautpflegende kosmetische und dermatologische Lichtschutzzubereitungen.

Die schädigende Wirkung des ultravioletten Teils der Sonnenstrahlung auf die Haut ist allgemein bekannt. Während Strahlen mit einer Wellenlänge, die kleiner als 290 nm ist (der sogenannte UVC-Bereich), von der Ozonschicht in der Erdatmosphäre absorbiert werden, verursachen Strahlen im Bereich zwischen 290 nm und 320 nm, dem sogenannten UVB-Bereich, ein Erythem, einen einfachen Sonnenbrand oder sogar mehr oder weniger starke Verbrennungen.

Als ein Maximum der Erythermwirksamkeit des Sonnenlichtes wird der engere Bereich um 308 nm angegeben.

Zum Schutze gegen UVB-Strahlung sind zahlreiche Verbindungen bekannt, bei denen es sich zumeist um Derivate des 3-Benzylidencamphers, der 4-Aminobenzoesäure, der Zimtsäure, der Salicylsäure, des Benzophenons sowie auch des 2-Phenylbenzimidazols handelt.

Auch für den Bereich zwischen etwa 320 nm und etwa 400 nm, den sogenannten UVA-Bereich, ist es wichtig, Filtersubstanzen zur Verfügung zu haben, da auch dessen Strahlen Schäden hervorrufen können. So ist erwiesen, daß UVA-Strahlung zu einer Schädigung der elastischen und kollagenen Fasern des Bindegewebes führt, was die Haut vorzeitig altern läßt, und daß sie als Ursache zahlreicher phototoxischer und photoallergischer Reaktionen zu sehen ist. Der schädigende Einfluß der UVB-Strahlung kann durch UVA-Strahlung verstärkt werden.

Die UV-Strahlung kann aber auch zu photochemischen Reaktionen führen, wobei dann die photochemischen Reaktionsprodukte in den Hautmetabolismus eingreifen.

Vorwiegend handelt es sich bei solchen photochemischen Reaktionsprodukten um radikalische Verbindungen, z.B. Hydroxylradikale. Auch undefinierte radikalische Photoprodukte, welche in der Haut selbst entstehen, können aufgrund ihrer hohen Reaktivität unkontrollierte Folgereaktionen an den Tag legen. Aber auch Singulettsauerstoff, ein nichtradikalischer angeregter Zustand des Sauerstoffmoleküls kann bei UV-Bestrahlung auftreten, ebenso kurzlebige Epoxide und viele Andere. Singulettsauerstoff beispielsweise zeichnet sich gegenüber dem normalerweise vorliegenden Triplettsauerstoff (radikalischer Grundzustand) durch gesteigerte Reaktivität aus. Allerdings existieren auch angeregte, reaktive (radikalische) Triplettzustände des Sauerstoffmoleküls.

Ferner zählt UV-Strahlung zur ionisierenden Strahlung. Es besteht also das Risiko, daß auch ionische Spezies bei UV-Exposition entstehen, welche dann ihrerseits oxidativ in die biochemischen Prozesse einzugreifen vermögen.

Ein vorteilhafter UVB-Filter ist der 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester), synonym: 2,4,6-Tris-fanilino-(p-carbo-2'-ethyl-1'-hexyloxy)]-1,3,5-triazin.

Diese UVB-Filtersubstanz wird von der BASF Aktiengesellschaft unter der Warenbezeichnung UVINUL® T 150 vertrieben und zeichnet sich durch gute UV-Absorptionseigenschaften aus.

Der Hauptnachteil dieses UVB-Filters ist die schlechte Löslichkeit in Lipiden. Bekannte Lösungsmittel für diesen UVB-Filter können maximal ca. 15 Gew.-% dieses Filters lösen, entsprechend etwa 1 - 1,5 Gew.-% gelöster, und damit aktiver, UV-Filtersubstanz.

Es war indes überraschend und für den Fachmann nicht vorauszusehen, daß lichtschutzwirksame Wirkstoffkombi-

nationen aus 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester) und einem oder mehreren Alkylmonoestern von α -Hydroxycarbonsäuren, wobei diese α -Hydroxycarbonsäuremonoester die allgemeine Formel

10

5

besitzen,

(a) wobei R' und R" unabhängig voneinander gewählt werden aus der Gruppe

15

- (a1) H-,
- (a2) verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl-,
- (a3) mit einer oder mehreren Carboxylgruppen und/oder Hydroxygruppen und/oder Aldehydgruppen und/oder Oxogruppen (Ketogruppen) substituiertes verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl- oder

20

25

- (b) wobei das α -Kohlenstoffatom der α -Hydroxycarbonsäure mit R' und R" zusammen eine
 - (b1) unsubstituierte Cycloalkylgruppe mit 3 bis 7 Ringatomen oder eine
 - (b2) mit einer oder mehreren Carboxylgruppen und/oder Hydroxygruppen und/oder Oxogruppen (Ketogruppen) und/oder verzweigten und/oder unverzweigten C_{1-25} -Alkylgruppen substituierte Cycloalkylgruppe mit 3 bis 7 Ringatomen

ausbildet und

wobei R⁻⁻ gewählt wird aus der Gruppe verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl-, den Nachteilen des Standes der Technik abhelfen

Erfindungsgemäß ist insbesondere auch die Verwendung von α -Hydroxycarbonsäuremonoestern, wobei diese α -Hydroxycarbonsäuremonoester die allgemeine Formel

35

40

45

50

55

besitzen,

- (a) wobei R' und R" unabhängig voneinander gewählt werden aus der Gruppe
 - (a1) H-
 - (a2) verzweigtes oder unverzweigtes C1-25-Alkyl-,
 - (a3) mit einer oder mehreren Carboxylgruppen und/oder Hydroxygruppen und/oder Aldehydgruppen und/oder Oxogruppen (Ketogruppen) substituiertes verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl- oder
- (b) wobei das α -Kohlenstoffatom der α -Hydroxycarbonsäure mit R' und R" zusammen eine
 - (b1) unsubstituierte Cycloalkylgruppe mit 3 bis 7 Ringatomen oder eine
 - (b2) mit einer oder mehreren Carboxylgruppen und/oder Hydroxygruppen und/oder Oxogruppen (Ketogruppen) und/oder verzweigten und/oder unverzweigten C₁₋₂₅-Alkylgruppen substituierte Cycloalkylgruppe mit 3 bis 7 Ringatomen

ausbildet und

wobei R'" gewählt wird aus der Gruppe verzweigtes oder unverzweigtes C_{1-25} -Alkyl-, als Lösungsmittel, Lösungsvermittler oder Solubilisator für 4,4',4''-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester), insbeson-

dere für die Verwendung in Lichtschutzmitteln.

10

20

Voraussetzung für die Verwendbarkeit der erfindungsgemäßen Wirkstoffkombinationen für die erfindungsgemäßen Zwecke ist natürlich die kosmetische bzw. dermatologische Unbedenklichkeit der zugrundeliegenden Substanzen.

Es ist erfindungsgemäß möglich die Einsatzmengen von 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäuretris(2-ethylhexylester) in kosmetischen oder dermatologischen Zubereitungen gegenüber dem Stande der Technik zu verdoppeln.

Zwar ist aus der Europäischen Patentanmeldung 685 226 bekannt, bestimmte Diester und Triester in Kombination mit 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester) in kosmetischen Lichtschutzzubereitungen zu verwenden. Der Fachmann wurde aber durch diese Schritt nicht auf den Weg zur vorliegenden Erfindung geführt.

Ferner war erstaunlich, daß durch Zugabe erfindungsgemäßer α-Hydroxycarbonsäuremonoester eine Stabilisierung von Lösungen des 4,4',4"-(1,3,5-Triazin-2,4,6-triytriimino)-tris-benzoesäure-tris(2-ethylhexylester) bewirkt wird, da die letztere Substanz nicht nur schlechte Löslichkeit aufweist, sondern auch aus seiner Lösung leicht wieder auskristallisiert. Erfindungsgemäß ist daher auch ein Verfahren zur Stabilisierung von Lösungen des 4,4',4"-(1,3,5-Triazin-2,4,6-triyttriimino)-tris-benzoesäure-tris(2-ethylhexylester), dadurch gekennzeichnet, daß solchen Lösungen ein wirksamer Gehalt an erfindungsgemäßen α-Hydroxycarbonsäuremonoestern zugesetzt wird.

Besonders bevorzugt sind die Kombinationen, welche als α -Hydroxycarbonsäuremonoester Ester der Milchsäure enthalten, insbesondere C_{10-18} -Alkylester der Milchsäure, bevorzugt C_{12-13} -Alkylester der Milchsäure enthalten.

Solche C_{12-13} -Alkylester der Milchsäure sind beispielsweise erhältlich unter der Produktbezeichnung "COSMACOL ELI" der Gesellschaft EniChem Augusta Industriale.

Aber auch die Monoester der Glycolsäure, Mandelsäure, Äpfelsäure, Weinsteinsäure und Citronensäure sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

Die Gesamtmenge an 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester) in den fertigen kosmetischen oder dermatologischen Zubereitungen wird vorteilhaft aus dem Bereich von 0,1 - 10,0 Gew.-%, bevorzugt 0,5 - 6,0 Gew.-% gewählt, bezogen auf das Gesamtgewicht der Zubereitungen.

Die Gesamtmenge an einem oder mehreren erfindungsgemäßen α -Hydroxycarbonsäuremonoester in den fertigen kosmetischen oder dermatologischen Zubereitungen wird vorteilhaft aus dem Bereich von 0,1 - 25,0 Gew.-%, bevorzugt 0,5 - 15,0 Gew.-% gewählt, bezogen auf das Gesamtgewicht der Zubereitungen.

Es ist von Vorteil, Gewichtsverhältnisse von 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethyl-hexylester) und einem oder mehreren erfindungsgemäßen α -Hydroxycarbonsäuremonoester aus dem Bereich von 1 : 10 bis 10 : 1, bevorzugt 1 : 4 bis 4 : 1, zu wählen.

Erfindungsgemäße kosmetische und dermatologische Zubereitungen enthalten vorteilhaft außerdem anorganische Pigmente auf Basis von Metalloxiden und/oder anderen in Wasser schwerlöslichen oder unlöslichen Metalloxiden und/oder anderen in Wasser schwerlöslichen oder unlöslichen Metalloxiden dungen, insbesondere der Oxide des Titans (TiO₂), Zinks (ZnO), Eisens (z.B. Fe₂O₃), Zirkoniums (ZrO₂), Siliciums (SiO₂), Mangans (z.B. MnO), Aluminiums (Al₂O₃), Cers (z.B. Ce₂O₃), Mischoxiden der entsprechenden Metalle sowie Abmischungen aus solchen Oxiden. Besonders bevorzugt handelt es sich um Pigmente auf der Basis von TiO₂.

Es ist besonders vorteilhaft im Sinne der vorliegenden Erfindung, wenngleich nicht zwingend, wenn die anorganischen Pigmente in hydrophober Form vorliegen, d.h., daß sie oberflächlich wasserabweisend behandelt sind. Diese Oberflächenbehandlung kann darin bestehen, daß die Pigmente nach an sich bekannten Verfahren mit einer dünnen hydrophoben Schicht versehen werden.

Eines solcher Verfahren besteht beispielsweise darin, daß die hydrophobe Oberflächenschicht nach einer Rektion gemäß

$$n TiO_2 + m (RO)_3 Si-R' \rightarrow n TiO_2 (oberfl.)$$

erzeugt wird. n und m sind dabei nach Belieben einzusetzende stöchiometrische Parameter, R und R' die gewünschten organischen Reste. Beispielsweise in Analogie zu DE-OS 33 14 742 dargestellte hydrophobisierte Pigmente sind von

Vorteilhafte TiO₂-Pigmente sind beispielsweise unter den Handelsbezeichnungen MT 100 T von der Firma TAYCA, ferner M 160 von der Firma Kemira sowie T 805 von der Firma Degussa erhältlich.

Die erfindungsgemäßen kosmetischen und/oder dermatologischen Lichtschutzformulierungen können wie üblich zusammengesetzt sein und dem kosmetischen und/oder dermatologischen Lichtschutz, ferner zur Behandlung, der Pflege und der Reinigung der Haut und/oder der Haare und als Schminkprodukt in der dekorativen Kosmetik dienen.

Zur Anwendung werden die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen in der für Kosmetika üblichen Weise auf die Haut und/oder die Haare in ausreichender Menge aufgebracht.

Besonders bevorzugt sind solche kosmetischen und dermatologischen Zubereitungen, die in der Form eines Sonnenschutzmittels vorliegen. Vorteilhaft können diese zusätzlich mindestens einen weiteren UVA-Filter und/oder mindestens ein anorganisches Pigment, bevorzugt ein anorganisches

Mikropigment, enthalten.

Die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen können kosmetische Hilfsstoffe enthalten, wie sie üblicherweise in solchen Zubereitungen verwendet werden, z.B. Konservierungsmittel, Bakterizide, Parfürne, Substanzen zum Verhindern des Schäumens, Farbstoffe, Pigmente, die eine färbende Wirkung haben, Verdickungsmittel, anfeuchtende und/oder feuchthaltende Substanzen, Fette, Öle, Wachse oder andere übliche Bestandteile einer kosmetischen oder dermatologischen Formulierung wie Alkohole, Polyole, Polymere, Schaumstabilisatoren, Elektrolyte, organische Lösungsmittel oder Silikonderivate.

Ein zusätzlicher Gehalt an Antioxidantien ist im allgemeinen bevorzugt. Erfindungsgemäß können als günstige Antioxidantien alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.

Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsaure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsultoximine, Homocysteinsulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Furfurylidensorbitol und dessen Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Hamsaure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO₄) Selen und dessen Derivate (z.B. Selenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

Die Menge der vorgenannten Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 - 20 Gew.-%, insbesondere 1 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen

Sofern Vitamin A, bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Die Lipidphase kann vorteilhaft gewählt werden aus folgender Substanzgruppe:

- Mineralöle, Mineralwachse
- Öle, wie Triglyceride der Caprin- oder der Caprylsäure, vorzugsweise aber Rizinusöl;
- Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z.B. mit Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren;
 - Alkylbenzoate;

50

Silikonöle wie Dimethylpolysiloxane, Diethylpolysiloxane, Diphenylpolysiloxane sowie Mischformen daraus.

Die Ölphase der Emulsionen, Oleogele bzw. Hydrodispersionen oder Lipodispersionen im Sinne der vorliegenden Erfindung wird vorteilhaft gewählt aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder unverzweigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylstearat, Erucyloleat, Erucyloleat, Erucyloleat, Sowie synthetische, halbsyntheti-

sche und natürliche Gemische solcher Ester, z.B. Jojobaöl.

25

30

35

50

55

Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silkonöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z.B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr.

Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Lipidkomponente der Ölphase einzusetzen.

Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C₁₂₋₁₅-Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylylether.

Besonders vorteilhaft sind Mischungen aus C_{12-15} -Alkybenzoat und 2-Ethylhexylisostearat, Mischungen aus C_{12-15} -Alkybenzoat und Isotridecylisononanoat sowie Mischungen aus C_{12-15} -Alkybenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat.

Von den Kohlenwasserstoffen sind Paraffinöl, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

Vorteilhaft kann die Ölphase ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden.

Vorteilhaft wird Cyclomethicon (Octamethylcyclotetrasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Aber auch andere Silikonöle sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden, beispielsweise Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan).

Besonders vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, aus Cyclomethicon und 2-Ethylhexylisostearat.

Die wäßrige Phase der erfindungsgemäßen Zubereitungen enthält gegebenenfalls vorteilhaft

- Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylengly-kol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl, -monoethyl- oder - monoethylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte, ferner Alkohole niedriger C-Zahl, z.B. Ethanol, Isopropanol, 1,2-Propandiol, Glycerin sowie insbesondere ein oder mehrere Verdickungsmittel, welches oder welche vorteilhaft gewählt werden können aus der Gruppe Siliciumdioxid, Aluminiumsilikate, Polysaccharide bzw. deren Derivate, z.B. Hyaluronsäure, Xanthangummi, Hydroxypropylmethylcellulose, besonders vorteilhaft aus der Gruppe der Polyacrylate, bevorzugt ein Polyacrylat aus der Gruppe der sogenannten Carbopole, beispielsweise Carbopole der Typen 980, 981, 1382, 2984, 5984, jeweils einzeln oder in Kombination.

Die kosmetischen oder dermatologischen Lichtschutzzubereitungen enthalten vorteilhaft anorganische Pigmente, insbesondere Mikropigmente, z.B. in Mengen von 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise in Mengen von 0,5 Gew.-% bis 10 Gew.-%, insbesondere aber 1 Gew.-% bis 6 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen.

Es ist erfindungsgemäß vorteilhaft, außer den erfindungsgemäßen Kombinationen öllösliche UVA-Filter und/oder UVB-Filter in der Lipidphase und/oder wasserlösliche UVA-Filter und/oder UVB-Filter in der wäßrigen Phase einzusetzen.

Vorteilhaft können die erfindungsgemäßen Lichtschutzformulierungen weitere Substanzen enthalten, die UV-Strahlung im UVB-Bereich absorbieren, wobei die Gesamtmenge der Filtersubstanzen z.B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, insbesondere 1 bis 6 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische Zubereitungen zur Verfügung zu stellen, die die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenschutzmittel dienen.

Die weiteren UVB-Filter können öllöslich oder wasserlöslich sein. Vorteilhafte öllösliche UVB-Filtersubstanzen sind z.B.:

- 3-Benzylidencampher-Derivate, vorzugsweise 3-(4-Methylbenzyliden)campher, 3-Benzylidencampher;
- 4-Aminobenzoesäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoesäure(2-ethylhexyl)ester, 4-(Dimethylamino)benzoesäureamylester;
 - Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester, 4-Methoxyzimtsäureisopentylester;
 - Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzalmalonsäuredi(2-ethylhexyl)ester;

Vorteilhafte wasserlösliche UVB-Filtersubstanzen sind z.B.:

20

50

- Salze der 2-Phenylbenzimidazol-5-sutfonsäure wie ihr Natrium-, Kalium- oder ihr Triethanolammonium-Salz, sowie die Sulfonsäure selbst;
- Sulfonsäure-Derivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Salze;
 - Sulfonsäure-Derivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure,2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und deren Salze.

Die Liste der genannten weiteren UVB-Filter, die in Kombination mit den erfindungsgemäßen Wirkstoffkombinationen verwendet werden können, soll selbstverständlich nicht limitierend sein.

Es kann auch von Vorteil sein, die erfindungsgemäßen Kombinationen mit weiteren UVA-Filtern zu kombinieren, die bisher üblicherweise in kosmetischen Zubereitungen enthalten sind. Bei diesen Substanzen handelt es sich vorzugsweise um Derivate des Dibenzoylmethans, insbesondere um 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion und um 1-Phenyl-3-(4'-isopropylphenyl)propan-1,3-dion. Auch diese Kombinationen bzw. Zubereitungen, die diese Kombinationen enthalten, sind Gegenstand der Erfindung. Es können die für die UVB-Kombination verwendeten Mengen eingesetzt werden.

Ferner ist vorteilhaft, die erfindungsgemäßen Wirkstoffkombinationen mit weiteren UVA- und/oder UVB-Filtern zu kombinieren.

Es ist auch besonders vorteilhaft, die erfindungsgemäßen Wirkstoffkombinationen mit Salicylsaurederivaten zu kombinieren, von denen einige Vertreter bekannt sind, welche ebenfalls UV-Strahlung absorbieren können. Zu gebräuchlichen UV-Filtern gehören

Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der erfindungsgemäßen kosmetischen und/oder dermatologischen Lichtschutzzubereitungen, das dadurch gekennzeichnet ist, daß man in an sich bekannter Weise den 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester) in einer oder mehreren α-Hydroxycarbonsäuremonoestern oder einer Ölphase mit einem Gehalt an α-Hydroxycarbonsäuremonoestern bei gleichmäßigem Rühren und gegebenenfalls unter Erwärmen suspendiert und gewünschtenfalls homogenisiert, gegebenenfalls mit weiteren Lipidkomponenten und gegebenenfalls mit einem oder mehreren Ernulgatoren vereinigt, hernach die Ölphase mit der wäßrigen Phase, in welche gegebenenfalls ein Verdickungsmittel eingearbeitet worden ist, und welche vorzugsweise etwa die gleiche Temperatur besitzt wie die Ölphase, vermischt, gewünschtenfalls homogenisiert und auf Raumtemperatur abkühlen läßt. Nach Abkühlen auf Raumtemperatur kann, insbesondere, wenn noch flüchtige Bestandteile

eingearbeitet werden sollen, nochmaliges Homogenisieren erfolgen.

Die nachfolgenden Beispiele sollen die vorliegende Erfindung verdeutlichen, ohne sie einzuschränken. Alle Mengenangaben, Anteile und Prozentanteile sind, soweit nicht anders angegeben, auf das Gewicht und die Gesamtmenge bzw. auf das Gesamtgewicht der Zubereitungen bezogen.

Beispiel 1	
O/W-Emulsion	-
	Gew%
Stearinsäure	3.50
Glycerin	3.00
Cetearyl Alkohol	0.50
Konservierungsmittel	q.s.
Parfum	q.s.
Caprylyl Ether	8.00
Uvinul T150	5.00
Cosmacol ELI	12.0
Natriumhydroxid (45%ig)	0.33
Carbomer	0.20
Wasser, demin.	ad 100.0

Beispiel 2		
W/O-Emulsion		
	Gew%	
Arlacel 989	5.50	
Butylenglykol	5.00	
Konservierungsmittel	q.s.	
Parfum	q.s.	
Cosmacol ELI	12.00	
Uvinul T150	5.00	
Cetearylisononanoat	6.00	
Carbomer	0.20	
Wasser, demin.	ad 100.0	

Beispiel 3		
5	Hydrodispersionsgel	
		Gew%
	Carbomer	0.50
	Butylenglykol	5.00
10	Cosmacol ELI	10.00
	Natriumhydroxid (45%ig)	0.35
15	Konservierungsmittel	q.s.
	Parfum	q.s.
	Uvinul T150	5.00
	Hydroxypropylcellulose	0.60
	Wasser, demin.	ad 100.00
20		

Patentansprüche

25

30

35

40

45

50

1. Lichtschutzwirksame Wirkstoffkombinationen aus 4,4,4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2ethylhexylester) und einem oder mehreren Alkylmonoestern von α-Hydroxycarbonsäuren, wobei diese α-Hydroxycarbonsauremonoester die allgemeine Formel

besitzen.

- (a) wobei R' und R" unabhängig voneinander gewählt werden aus der Gruppe
 - (a1) H-,
 - (a2) verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl-,
 - (a3) mit einer oder mehreren Carboxylgruppen und/oder Hydroxygruppen und/oder Aldehydgruppen und/oder Oxogruppen (Ketogruppen) substituiertes verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl- oder
- (b) wobei das α -Kohlenstoffatom der α -Hydroxycarbonsäure mit R' und R" zusammen eine
 - (b1) unsubstituierte Cycloalkylgruppe mit 3 bis 7 Ringatomen oder eine
 - (b2) mit einer oder mehreren Carboxylgruppen und/oder Hydroxygruppen und/oder Oxogruppen (Ketogruppen) und/oder verzweigten und/oder unverzweigten C1-25-Alkylgruppen substituierte Cycloalkylgruppe mit 3 bis 7 Ringatomen

wobei R'" gewählt wird aus der Gruppe verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl-.

Verwendung von α -Hydroxycarbonsäuremonoestern, wobei diese α -Hydroxycarbonsäuremonoester die allgemeine Formel

besitzen,

10

15

5

- (a) wobei R' und R" unabhängig voneinander gewählt werden aus der Gruppe
 - (a1) H-
 - (a2) verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl-,
 - (a3) mit einer oder mehreren Carboxylgruppen und/oder Hydroxygruppen und/oder Aldehydgruppen und/oder Oxogruppen (Ketogruppen) substituiertes verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl- oder
- (b) wobei das α -Kohlenstoffatom der α -Hydroxycarbonsäure mit R' und R" zusammen eine

20

- (b1) unsubstituierte Cycloalkylgruppe mit 3 bis 7 Ringatomen oder eine
- (b2) mit einer oder mehreren Carboxylgruppen und/oder Hydroxygruppen und/oder Oxogruppen (Ketogruppen) und/oder verzweigten und/oder unverzweigten C₁₋₂₅-Alkylgruppen substituierte Cycloalkylgruppe mit 3 bis 7 Ringatomen

25 ausbildet und

wobei R'" gewählt wird aus der Gruppe verzweigtes oder unverzweigtes C₁₋₂₅-Alkyl-, als Lösungsmittel oder Lösungsvermittler oder Solubilisator für 4,4',4"-{1,3,5-Triazin-2,4,6-triyltriimino}-tris-benzoesäure-tris(2-ethylhexylester), insbesondere für die Verwendung in Lichtschutzmitteln.

- Kombinationen nach Anspruch 1 oder Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß als weitere Lichtschutzfiltersubstanzen Salicylsäurederivate aus der Gruppe (4-Isopropylbenzylsalicylat), (2-Ethylhexylsalicylat) lat, Octylsalicylat) und oder (Homomenthylsalicylat) gewählt werden.
- 4. Kombinationen nach Anspruch 1 oder Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß die Gesamtmenge an 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester) in den fertigen kosmetischen oder dermatologischen Zubereitungen aus dem Bereich von 0,1 10,0 Gew.-%, bevorzugt 0,5 6,0 Gew.-%
 gewählt wird, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.
- 5. Kombinationen nach Anspruch 1 oder Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß die Gesamtmenge an einem oder mehreren α-Hydroxycarbonsäuremonoestern in den fertigen kosmetischen oder dermatologischen Zubereitungen aus dem Bereich von 0,1 25,0 Gew.-%, bevorzugt 0,5 15,0 Gew.-% gewählt wird, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.
- 6. Kombinationen nach Anspruch 1 oder Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß Gewichtsverhältnisse von 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester) und einem oder mehreren Salicylsäurederivaten aus dem Bereich von 1:10 bis 10:1, bevorzugt 1:4 bis 4:1, gewählt werden.

50

55