Computational physics Final project

Fin analysis using finite element method

정준상, 김영훈

Presentation context

- 1. Basic of FEM with fin analysis
- 2. FEM with solid conduction heat transfer
- 3. FEM with given fin mesh
- 4. modeling & make a video
- 5. Result in 2D & 3D
- 6. Analysis

a. What is Finite Element Method?

b. What is fin?

c. How can we do this?

What is Finite Element Method?

FEM is an analytic method to find solution by calculating mesh.

For example, it can be used analyzing critical stress or temperature of material, deflection of beam.

What is Finite Element Method?

- FEM is an analytic method to find solution by calculating mesh.

We slice given geometry to "element".

We call the set of every elements, "mesh".

What is Finite Element Method?

- FEM is an analytic method to find solution by calculating mesh.

There could be multiple ways to generating mesh.

The geometry of mesh may affect the result.

What is Finite Element Method?

FEM is an analytic method to find solution by calculating mesh.

What is fin?

Fin is a surface that extend from an hot object to increase the heat transfer rate.

The amount of conduction, convection and radiation will affect the heat transfer.

In short, if the fin can transfer heat faster, the CPU can cooler.

How can we do this?

- There are several important coefficient about transient fin heat transfer.

1. Biot number (Bi)
$$Bi=rac{hL_c}{k}$$

2. Fourier number (Fo) $Fo = rac{lpha \Delta t}{dx*dy}$

How can we do this?

- Biot number (Bi)

$$Bi = rac{hL_c}{k}$$

 L_c : characteristic length

 $h: {
m convection\ heat\ transfer\ coefficient}$

k: conduction heat transfer coefficient

- Biot number is a coefficient that shows contribution of convection versus conduction in transient heat transfer.
- If Biot number >> 1, convection will be the dominant factor that contributes heat transfer
- If Biot number << 1, conduction will be the dominant factor that contributes heat transfer

How can we do this?

- Biot number (Bi)
$$Bi=rac{hL_c}{k}$$
 h: convection heat transfer coefficient

 L_c : characteristic length

k: conduction heat transfer coefficient

characteristic length is approximated length that describes "outer region VS inner region"

$$L_c pprox rac{ ext{Surface}}{ ext{Volume}} ext{ or } rac{ ext{Circumference}}{ ext{Surface}}$$

How can we do this?

- Fourier number (Fo) $Fo=rac{lpha\Delta t}{dx*dy}$ $\Delta t: ext{unit time step} \ dx ext{ and } dy: ext{unit length of mesh}$

 α : thermal diffusivity

- Fourier number is a coefficient that describes "how much heat will travel during the unit time step".

How can we do this?

- α : thermal diffusivity - Fourier number $_{(Fo)}$ $Fo=rac{lpha\Delta t}{dx*du}$ Δt : unit time step dx and dy: unit length of mesh
- Larger the unit time step becomes, unit mesh length has to be larger too.

If we set smaller unit mesh, FEM will collapse, since heat will pass through current mesh element and affect the others.

How can we do this?

- FEM is based on energy equilibrium.

(Heat flows to (m,n)) + (Heat that generated by (m,n)) = (Heat that (m,n) emit)

Assume there's no heat generated by material, (q = 0) and apply this condition to Heat diffusion equation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

We can use finite difference approximation to calculate second derivative.

How can we do this?

- Eventually, we can describe the node like below

$$egin{aligned} T_{m,n}^{p+1} &= Fo(T_{m+1,n}^p + T_{m-1,n}^p + T_{m,n+1}^p + T_{m,n-1}^p) \ &+ (1-4Fo)T_{m,n}^p \end{aligned}$$

 $ar{T}_{p}^{\uparrow} \ T_{m,n}^{p} : ext{temperature of node (m,n) in time (p)}$

Note that in only applies 2-dimensional, closed mesh (4 nodes are adjacent with node (m,n))

Other mesh case can be calculated like this

TABLE 5.3 Transient, two-dimensional finite-difference equations ($\Delta x = \Delta y$)

(a) Explicit Method Configuration Finite-Difference Equation **Stability Criterion** (b) Implicit Method $T_{m,n}^{p+1} = Fo(T_{m+1,n}^p + T_{m-1,n}^p)$ $(1+4Fo)T_{m,n}^{p+1}-Fo(T_{m+1,n}^{p+1}+T_{m-1,n}^{p+1})$ $+ T_{m\,n+1}^p + T_{m\,n-1}^p$ $Fo \leq \frac{1}{4}$ $+ T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1} = T_{m,n}^{p}$ (5.92) $+ (1 - 4Fo) T_{mn}^p$ (5.76)1. Interior node $T_{m,n}^{p+1} = \frac{2}{3} Fo(T_{m+1,n}^p + 2T_{m-1,n}^p)$ $(1 + 4Fo(1 + \frac{1}{3}Bi))T_{m,n}^{p+1} - \frac{2}{3}Fo$. $(1 + 4Fo(1 + \frac{1}{3}B)) T_{m,n}^{p+1} - \frac{5}{3}Fo \cdot Fo(3 + B) \le \frac{3}{4} \quad (5.86) \qquad (T_{m+1,n}^{p+1} + 2T_{m-1,n}^{p+1} + 2T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1})$ $+2T_{m,n+1}^{p}+T_{m,n-1}^{p}+2BiT_{\infty}$ $= T_{mn}^p + \frac{4}{3}Bi Fo T_{\infty}$ $+ (1 - 4Fo - \frac{4}{3}BiFo)T_{mn}^{p}$ (5.95)2. Node at interior corner with convection $T_{m,n}^{p+1} = Fo(2T_{m-1,n}^p + T_{m,n+1}^p)$ $(1 + 2Fo(2 + Bi))T_{m-1}^{p+1}$ $Fo(2 + Bi) \leq \frac{1}{2} \quad (5.88) \qquad -Fo(2T_{m-1,n}^{p+1} + T_{m,n-1}^{p+1}) + T_{m,n-1}^{p+1}$ $+ T_{m,n-1}^{p} + 2Bi T_{\infty}$ $+ (1 - 4Fo - 2Bi Fo) T_{mn}^{p}$ $= T_{mn}^p + 2Bi Fo T_{\infty}$ (5.96)3. Node at plane surface with convection^a $T_{m,n}^{p+1} = 2Fo(T_{m-1,n}^p + T_{m,n-1}^p + 2Bi T_{\infty})$ $(1 + 4Fo(1 + Bi))T_{mn}^{p+1}$ $+ (1 - 4Fo - 4Bi Fo) T_{m,n}^{p}$ (5.89) $Fo(1 + Bi) \le \frac{1}{4}$ (5.90) $-2Fo(T_{m-1,n}^{p+1}+T_{m,n-1}^{p+1})$ $= T_{mn}^p + 4Bi Fo T_{\infty}$ (5.97)4. Node at exterior corner with convection

Bergman, T. L., and Frank P. Incropera. *Fundamentals of Heat and Mass Transfer*. Seventh edition. Wiley, 2011.

^aTo obtain the finite-difference equation and/or stability criterion for an adiabatic surface (or surface of symmetry), simply set Bi equal to zero.

We made first model using numpy, matplotlib, and OpenCV to export animation

```
1 import numpy as np
   import matplotlib.pyplot as plt
   from matplotlib.cm import coolwarm
   from matplotlib.backends.backend_agg import FigureCanvasAgg
7 class FEM_2d:
       def __init__(self, alpha, X, Y, T, dx, dy) : --
       def return_index(self, x, y) : --
       def set_ic_rect(self, T, pt1 : list, pt2 : list) :
       def set_bc(self, T, X_axis : list=None, Y_axis : list=None) : "
       def return_plot(self, elev=45, azim=145) : ...
       def plot_status(self, elev=45, azim=145) : "
       def print_status(self) : --
       def build(self, dt) : ...
       def compute(self, t_end, verbose=False, save_gif=False, elev=45, azim=145) : ...
       def save_animation(self, t_end) : --
```


It's a model for rectangular fin, only affected by conduction and boundary condition.

You can adjust mesh size, initial conditions and boundary conditions

There are disadvantage with this model

- 1. There's too many meshes to calculate.
- 2. Using OpenCV to animate process wasn't good idea.
- 3. There's no utils for computing mesh until steady-state is reached.

We've made a second model that decrease computation, and uses FuncAnimation of matplotlib to animate process.

```
import numpy as np
     import matplotlib.pyplot as plt
     import time, sys
     from numpy import pi, sin, cos
     from math import sqrt
     from functools import partial
     from matplotlib.cm import coolwarm
     from matplotlib.animation import FuncAnimation
 11 > class Bound_node : -
 14 > class Mesh : ...
247 > class FEM 2D() : --
```

To decrease computation, we only compute the mesh inside the fin.

We've made a second model that decrease computation, and uses FuncAnimation of matplotlib to animate process.

To decrease computation, we use convolution to compute inner temperature of fin.

Because inside the fin, every nodes have 4 adjacent nodes, which means only conduction occurs, makes computation easier.

Details at final report - [2. model idea]

$$T_{m,n}^{p+1} = Fo(T_{m+1,n}^p + T_{m-1,n}^p + T_{m,n+1}^p + T_{m,n-1}^p) + (1-4Fo)T_{m,n}^p$$

TABLE 5.3 Transient, two-dimensional finite-difference

	(a) Explicit Metho	
Configuration	Finite-Difference Equation	(b) Implicit Method
$\begin{array}{c} n, n+1 \\ \Delta y \\ m-1, n \end{array}$ $m+1, n$ $m+1, n$	$T_{m,n}^{p+1} = Fo(T_{m+1,n}^p + T_{m-1,n}^p + T_{m,n+1}^p + T_{m,n-1}^n) + (1 - 4Fo)T_{m,n}^p $ (5.76)	$(1 + 4Fo)T_{m,n}^{p+1} - Fo(T_{m+1,n}^{p+1} + T_{m-1,n}^{p+1} + T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1}) = T_{m,n}^{p} $ (5.92)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{split} T^{p+1}_{m,n} &= \tfrac{2}{3} Fo(T^p_{m+1,n} + 2 T^p_{m-1,n} \\ & + 2 T^p_{m,n+1} + T^p_{m,n-1} + 2 Bi \ T_\infty) \\ & + (1 - 4 Fo - \tfrac{4}{3} \ Bi \ Fo) \ T^p_{m,n} \end{split} \tag{5.85}$ 2. Node at interior corner with convection	$(1 + 4Fo(1 + \frac{1}{3}Bi))T_{m,n}^{p+1} - \frac{2}{3}Fo \cdot (T_{m+1,n}^{p+1} + 2T_{m-1,n}^{p+1} + 2T_{m,n-1}^{p+1}) + 2T_{m,n-1}^{p+1} + T_{m,n-1}^{p+1})$ $= T_{m,n}^{p} + \frac{4}{3}BiFoT_{\infty} $ (5.95)
$\begin{array}{c c} & & & \\ &$	$\begin{split} T_{m,n}^{p+1} &= Fo(2T_{m-1,n}^p + T_{m,n+1}^p \\ &+ T_{m,n-1}^p + 2BiT_{\infty}) \\ &+ (1 - 4Fo - 2BiFo)T_{m,n}^p \end{split} \tag{5.87}$ 3. Node at plane surface with convection	$(1 + 2Fo(2 + Bi)) T_{mn}^{p+1} - Fo(2T_{m-1,n}^{p+1} + T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1}) = T_{m,n}^{p} + 2Bi Fo T_{\infty} $ (5.96)
m-1, n m	$T_{m,n}^{p+1} = 2Fo(T_{m-1,n}^p + T_{m,n-1}^p + 2Bi T_{\infty}) + (1 - 4Fo - 4Bi Fo) T_{m,n}^p$ (5.89) 4. Node at exterior corner with convection	$(1 + 4Fo(1 + Bi)) T_{m,n}^{p+1} $ $- 2Fo(T_{m-1,n}^{p+1} + T_{m,n-1}^{p+1})$ $= T_{m,n}^{p} + 4Bi Fo T_{\infty} $ (5.97)

computation, and uses FuncAnimation

To decrease computation, we use convolution to compute inner temperature of fin.

Because inside the fin, every nodes have 4 adjacent nodes, which means only conduction occurs, makes computation easier.

Details at final report - [2. model idea]

$$T_{m,n}^{p+1} = Fo(T_{m+1,n}^p + T_{m-1,n}^p + T_{m,n+1}^p + T_{m,n-1}^p) + (1-4Fo)T_{m,n}^p$$

 $[^]a$ To obtain the finite-difference equation and/or stability criterion for an adiabatic simply set $\it Bi$ equal to zero.

There are three geometry of second model

Model can adjust boundary condition, initial condition, and mesh size.

This model includes the convection heat transfer via surrounding air with given coefficient and temperature

You can see both the air and boundary temperature are different

We made a utils that compute mesh until steady-state.

If the model reaches steady-state in max iteration, it will shows the precision of convergence and average temperature. Otherwise, it will stop

```
Estimate computing time

1  dt = 0.0025
2  t_end = dt * 500
3  Triangle_fin.is_good(dt, t_end)

1  Triangle_fin.compute_steady_state(dt=0.0025, max_iter=1.0e+4)

1  1
```

```
Triangle_fin.compute_steady_state(dt=0.0025, max_iter=1.0e+4)

1

1
```

You can watch the average temperature difference via time.

And you can save or import computing result.

You can watch the average temperature difference via time.

More details at github repository.

https://github.com/jbw9964/FEM_2d.git

4. Modeling & make a video

Auto CAD를 이용한 structure 생성

```
1
          tmodel = createpde('thermal', 'steadystate');
          importGeometry(tmodel, ['small cube.stl']);
 3
          pdegplot(tmodel, 'FaceLabels', 'on', 'FaceAlpha', 0.5);
          msh= generateMesh(tmodel, 'Hmax', 0.005);
 5
          % Material properties
          kappa = 237; % In 2/m/K
          thermalProperties(tmodel, 'ThermalConductivity', kappa);
 9
10
          % BC of air
          thermalBC(tmodel, 'Face', [1 2 4:6], ...
11
12
              'ConvectionCoefficient', 20, ...
              'AmbientTemperature', 25);
13
14
15
          % BC of contact surface
16
          thermalBC(tmodel, 'Face', [3], ...
17
              'ConvectionCoefficient', 237, ...
18
              'AmbientTemperature', 90);
19
20
          % solve and plot
21
          Rt = solve(tmodel);
          pdeplot3D(tmodel, 'ColorMapData', Rt.Temperature);
22
23
24
          % calculate temperature
25
          S = sum(Rt.Temperature, 'all');
26
          sz = size(Rt.Temperature);
27
          tot sz = sz(1,1)*sz(1,2);
28
          avg = S/tot sz;
29
30
          % [] operator를 이용해 여러 문자형 벡터 결합
31
          % num2str로 숫자형값 -> 문자로 변환
32
          x = ['Average Temperature: ', num2str(avg)];
33
          disp(x)
34
          %disp('average Temperature:')
35
          %disp(avg)
36
```


Average Temperature: 70.4851

matlab을 이용한 steady state 구현

```
for i = 1:length(Rt.SolutionTimes)
                                                              36
                                                              37
                                                                             figure
                                                              38
                                                                             pdeplot3D(tmodel, 'ColorMapData', Rt.Temperature(:,i));
pdegplot(tmodel, 'FaceLabels', 'on', 'FaceAlpha', 0.5);
                                                              39
                                                                             title({['Time=' num2str(Rt.SolutionTimes(i)) 's']})
                                                              40
                                                              41
                                                                             frame = getframe(gcf);
                                                                             writeVideo(v, frame);
                                                              42
                                                              43
                                                              44
                                                              45
                                                                         end
                                                              46
                                                              47
                                                                         close(v)
                                                              48
                                                              49
                                                                         % temp 계산
                                                              50
                                                                         S = sum(Rt.Temperature);
                                                              51
                                                                         %sz = size(Rt.Temperature);
                                                                         %tot sz = sz(1,1)*sz(1,2);
                                                              52
                                                                         1 = length(Rt.Temperature);
                                                              53
                                                              54
                                                                         avg = S/1;
                                                              55
                                                              56
                                                                         x = ['Average Temperature: ', num2str(avg)];
                                                              57
                                                                         disp(x)
                                                              58
                                                              59
                                                                         %disp('average Temperature:')
                                                                         %disp(avg)
                                                              60
                                                              61
```

```
kappa = 237; % In 2/m/K
 8
          thermalProperties(tmodel, 'ThermalConductivity', ...
 9
              kappa, 'MassDensity', 2700, 'SpecificHeat', 8.97);
10
11
          % BC of air
12
          thermalBC(tmodel, 'Face', [1 2 4:6], ...
13
               'ConvectionCoefficient', 20, ...
14
              'AmbientTemperature', 25);
15
16
17
          % specify the stefan-boltzmann constant
18
          tmodel.StefanBoltzmannConstant = 5.670367e-8;
19
          % BC of contact surface
20
          thermalBC(tmodel, 'Face', [3], ...
21
22
               'ConvectionCoefficient', kappa, ...
23
              'AmbientTemperature', 90);
24
25
          % IC of model
26
          thermalIC(tmodel, 25);
27
28
          % solve and plot, choose time interval
          Rt = solve(tmodel, 0:0.05:50);
29
30
          %pdeplot3D(tmodel, 'ColorMapData', Rt.Temperature);
31
```

tmodel = createpde('thermal', 'transient');

importGeometry(tmodel, ['small cube.stl']);

msh= generateMesh(tmodel, 'Hmax', 0.01);

% Material properties

% cylinder.avi 생성

open(v)

v = VideoWriter('cube');

1

2

4

32

33

34

35

matlab을 이용한 transient video 제작

5. Result

핀 유용도(Fin effectiveness)

핀이 없을 때보다 있을 때 얼마나 더 많은 열을 방출하는지에 대한 척도

$$\varepsilon_f = \frac{q_f}{hA_c(T_b - T_{\infty})}$$

핀 효율(Fin efficiency) : 핀이 얼마나 효율적인지에 대한 척도

$$\eta_f \equiv rac{q_f}{q_{ ext{max}}} = rac{q_f}{h A_f (T_b - T_{\infty})}$$
 q_{max} : κ = inf인 경우

Efficiency of straight fins (rectangular, triangular, and parabolic profile)

3D results

steady state

Average Temperature: 70.4851

 $\eta_f = 69.977\%$

 $\varepsilon_{\rm f} = 3.499$

transient video

steady state transient video

Average Temperature: 75.8988 $\eta_{\text{f}} = 78.306\%$ $\epsilon_{\text{f}} = 5.068$

steady state transient video

Average Temperature: 79.1791

$$\eta_f = 83.352\%$$

$$\varepsilon_{\rm f}^{} = 2.501$$

run-on experiment

steady state

transient video

Average Temperature: 70.437

Half circle

 $T_f = 40.2091$

Triangle

 $T_f = 45.5461$

Rectangle

 $\eta_{\rm f}$ = 91.567%

$$\epsilon_{\rm f} = 2.747$$

comparison of 2D & 3D

Average Temperature: 75.8988

Average Temperature: 70.4851

 $T_f = 45.5461$

 $T_f = 40.2091$

How to compare these?

```
嘡 ▷ ▷ 日 … 前
1 Circle = np.load('Circle fin.npz')
 3 for i in Circle:
       print(i)
6 print('process time:\n', Circle['process time'])
7 print('process temp:\n', Circle['process avg'])
8 print('t mesh:\n', Circle['T mesh'])
10 x_circle = Circle['process_time']
11 y circle = Circle['process avg']
13 l = y circle[-1]*0.99
14 print('T_final =', y_circle[-1], '\nl =', 1)
16 plt.title('Circle fin')
plt.plot(x_circle, y_circle, color = 'blue', label = 'Temp-time', linewidth = 0.7)
18 plt.hlines(xmin = min(x circle), xmax = max(x circle), y = 1, color = 'red',
              linestyles = '--', linewidth = 0.7)
20 plt.xlabel('Time(sec)')
21 plt.ylabel('Temperature(°C)')
22 plt.grid()
23 plt.legend()
24 plt.show()
 process time
 process avg
 T mesh
 process time:
  [5.00000e-04 1.00000e-03 1.50000e-03 ... 1.22090e+01 1.22095e+01
  1.22100e+01]
 process temp:
  [26.89526888 27.10389247 27.28106995 ... 42.32534788 42.32534788
  42.32534788]
 t mesh:
  [[90. 25. 25. ... 25. 25. 25.]
  [90. 25. 25. ... 25. 25. 25.]
  [90. 25. 25. ... 25. 25. 25.]
  [90. 25. 25. ... 25. 25. 25.]
  [90. 25. 25. ... 25. 25. 25.]
  [90. 25. 25. ... 25. 25. 25.]]
 T final = 42.32534788063744
 1 = 41.902094401831064
```


= 41.902094401831064

```
df = DataFrame({'Circle_time': x_circle, 'Circle_temp': y_circle})
    #df2= DataFrame({'Circle_temp': y_circle})

    circle_Writ = pd.ExcelWriter('circle_fin.xlsx', engine = 'xlsxwriter')
    df.to_excel(circle_Writ, sheet_name = 'sheet1')
    #df2.to_excel(circle_Writ, sheet_name = 'sheet1')

workbook = circle_Writ.book
    worksheet = circle_Writ.sheets['Sheet1']

chart = workbook.add_chart({'type':'column'})

#chart.add_series({''})

circle_Writ.close()
```

3102	3100	1.5505	41.89982	
3103	3101	1.551	41.90023	
3104	3102	1.5515	41.90064	
3105	3103	1.552	41.90105	
3106	3104	1.5525	41.90146	
3107	3105	1.553	41.90187	
3108	3106	1.5535	41.90228	
3109	3107	1.554	41.90269	% =
3110	3108	1.5545	41.90309	
3111	3109	1.555	41.9035	
3112	3110	1.5555	41.90391	

Half cylinder(circle)

Sandwich(triangle)

6. Analysis

Q&A