

# EECS 230 Deep Learning Lecture 16: Variational Autoencoder

## Outline

- ☐Generative model
- □ Variational autoencoder
  - **□** Autoencoder
  - □ Variational autoencoder





#### So far...

- $\square$  Discriminative model P(y|x)
  - ☐Given input data x, predict y
  - ☐ E.g., classification, regression
- ☐Generative model
  - $\square$  Model data distribution P(x)
  - $\square$  Sample from P(x) to generate new data



## Generative model









## Types of generative neural networks

□ Boltzmann machines
 □ Sigmoid belief networks
 □ Variational autoencoders (inference net + generator net)
 □ Generative adversarial networks (generator net + discrimator net)
 □ Normalizing flows
 □ Diffusion Models





#### Autoencoder

□ Special type of feed forward network for □ Compression □ Denoising □ Sparse representation □ Data generation



#### Autoencoder

□Encoder: f()

□Decoder: g()

 $\square$ Autoencoder: g(f(x)) = x





#### Linear autoencoder

Objective: find weights W<sub>f</sub> and W<sub>g</sub> that minimize reconstruction error

$$\min_{\mathbf{W}} \frac{1}{2} \sum_{n} \left| \left| \mathbf{W}_{g} \mathbf{W}_{f} \mathbf{x}_{n} - \mathbf{x}_{n} \right| \right|_{2}^{2}$$

☐ When using Euclidean norm (i.e., squared loss), solution is the same as principal component analysis (PCA)



# Recap: principle component analysis

□ Components with maximum variance





## Non-linear autoencoder

 $\Box$ f() and g() are both non-linear functions

$$\min_{W} \frac{1}{2} \sum_{n} \left| \left| g(f(\boldsymbol{x}_n; \boldsymbol{W}_f); \boldsymbol{W}_g) - \boldsymbol{x}_n \right| \right|_2^2$$





## Sparse representation

- ☐When more hidden nodes than inputs, use regularization to constrain autoencoder
- ☐ Example: force hidden nodes to be sparse

$$\min_{\boldsymbol{W}} \frac{1}{2} \sum_{n} \left| \left| g(f(\boldsymbol{x}_n; \boldsymbol{W}_f); \boldsymbol{W}_g) - \boldsymbol{x}_n \right| \right|_2^2 + \operatorname{c} \max_{\boldsymbol{T}} \left( f(\boldsymbol{x}_n; \boldsymbol{W}_f) \right)$$
where  $nnz(f(\boldsymbol{x}_n; \boldsymbol{W}_f))$  is the number of non-zero entries in the vector produced by  $f$ .

 $\square$  Aporoximate objective:  $L_1$  regularization

$$\min_{\boldsymbol{W}} \frac{1}{2} \sum_{n} \left| \left| g(f(\boldsymbol{x}_n; \boldsymbol{W}_f); \boldsymbol{W}_g) - \boldsymbol{x}_n \right| \right|_2^2 + c \left| \left| f(\boldsymbol{x}_n; \boldsymbol{W}_f) \right| \right|_1$$



## Denoising autoencoder

 $\square$  Consider noisy version  $\widehat{x}$  of the input x



## Variational/Probabilistic autoencoder

- ☐ Instead of a single value for each attribute, represent each attribute as a range of values
- □VAE: Describe latent attribute in probabilistic terms





## Variational/Probabilistic autoencoder





## Variational/Probabilistic autoencoder

```
    □Let f() and g() represent conditional distributions
    □f: Pr(h|x; w<sub>f</sub>)
    □g: Pr(x|h; w<sub>g</sub>)
    □The decoder g() can be treated as a generative model
    □First sample h from Pr(h)
    □Then sample x from Pr(x|h; w<sub>g</sub>)
```



#### Variational autoencoder

□ Idea: train encoder  $Pr(h|x; w_f)$  to approach a simple and fixed distribution, e.g., N(h; 0, I)

$$\max_{\boldsymbol{W}} \sum_{n} \log \Pr(\boldsymbol{x}_{n}; \boldsymbol{W}_{f}, \boldsymbol{W}_{g}) - c KL(\Pr(\boldsymbol{h} | \boldsymbol{x}_{n}; \boldsymbol{W}_{f}) | | N(\boldsymbol{h}; \boldsymbol{0}, \boldsymbol{I}))$$

Kullback-Leibler divergence
Distance measure for distributions



#### Variational Autoencoder Likelihood

 $\square$  How to compute  $Pr(x_n; W_f, W_g)$ ?

$$\Pr(\mathbf{x}_n; \mathbf{W}_f, \mathbf{W}_g) = \int_{\mathbf{h}} \Pr(\mathbf{x}_n | \mathbf{h}; \mathbf{W}_g) \Pr(\mathbf{h} | \mathbf{x}_n; \mathbf{W}_f) d\mathbf{h}$$

□Obtain mean and variance of Pr(h) by neural network

$$Pr(h|x_n; W_f) = N(h; \mu_n(x_n; W_f), \sigma_n(x_n; W_f)I)$$



# Reparameterization trick





# **VAE** implementation





## **MNIST VAE**

$$\max_{\boldsymbol{W}} \sum_{n} \log \Pr(\boldsymbol{x}_{n}; \boldsymbol{W}_{f}, \boldsymbol{W}_{g}) - c KL(\Pr(\boldsymbol{h} | \boldsymbol{x}_{n}; \boldsymbol{W}_{f}) | | N(\boldsymbol{h}; \boldsymbol{0}, \boldsymbol{I}))$$

#### Kullback-Leibler divergence





# **Examples from VAE**

