Command	Explanation	Notes
pnorm(x)	$\Pr(Z \le x)$	
pt(x,n-1)	$\Pr(T_{n-1} \le x)$	
pchisq(x,n-1)	$\Pr\left(\chi_{n-1}^2 \le x\right)$	
pf(x,v1,v2)	$\Pr\left(F_{v_1,v_2} \le x\right)$	
qnorm(p)	gives x satisfying $Pr(Z \le x) = p$	
qt(p,n-1)	gives x satisfying $Pr(T_{n-1} \le x) = p$	
qchisq(p,n-1)	gives x satisfying $\Pr\left(\chi_{n-1}^2 \le x\right) = p$	
qf(p,v1,v2)	gives x satisfying $Pr(F_{v_1,v_2} \le x) = p$	
t.test()	uh, it performs a <i>t</i> -test	
var.test()	performs a two-sample variance test	

Use p functions to find *p*-values and q functions to find critical values.

84% 16%

Figure 1: The green area is given by pnorm(-1); whereas the pink area is given by pnorm(-1,lower.tail=FALSE), or alternatively, by 1 - pnorm(-1).

Figure 2: The number x is such that 84% of the curve lies beneath it; and 16% lies above it. Find it with qnorm(0.84) or qnorm(0.16, lower.tail=FALSE).

The command t.test(x, mu = 3, alternative = "greater") will test $H_0: \mu \leq 3$ against $H_1: \mu > 3$.

The command t.test(A, B, var.equal=TRUE) will test whether the means of group A and group B are equal, assuming the two groups have the same variance.

The command var.test(A, B, alternative = "greater") will test whether group A has larger variance than group B.