CSE 2017. 5(e). Show that moment of inertia of an elliftical area of most M and Deni-anis a and b about a diameter of length & is 4 marb. Further moment of inertia about a tangent is 5mp² where p is perpendicular distance of from centre of ellipse to tangent. Mpp' = Mox cos<sup>2</sup> O + My<sup>2</sup> sin<sup>2</sup> O Mox = moment of inertia  $M_{ox} = moment of inertia$   $M_{ox} = moment of inertia$  $TApp = \frac{Mb^2}{4} \cos^2\theta + \frac{Ma^2}{4} \sin^2\theta = \frac{M}{4} \left( b^2 \cos^2\theta + a^4 \sin^2\theta \right)$  $8^{2} \left[ b^{2}ab^{2}O + a^{2}sin^{2}O \right] = a^{2}b^{2}$   $b^{2}ab^{2}O + a^{2}sin^{2}O = a^{2}b^{2}/8n^{2} - 2$ Use (2) in (1), Proved Mpp' = Math

Part 2. Let equation of tangent be y = mx + \ \( a^2 m^2 + b^2 \) m= tano so we get [77' 11 PP'] 21tano-y + Ja2tan2016 = 0 - 3 Distance on 3 from (0,0) is given by - $D = \sqrt{a^2 + \tan^2 \theta + b^2} = \frac{4}{\sqrt{a^2 + \tan^2 \theta + b^2}}$ 11+ tar20 p = a sin 20 + b cos 20 - W Use 9 in 1 we get Mpp'= M (b'coo20+ a2sin20) = Mb2 By parallel axis theorem May = Mpy + M [dist bloo T7' and PP] = Mb2 + Mb2 = 5MB : M771 2 5M62 Hence proved.

CSE 2017. 6(c). Two uniform rods AB and AC of mass mond length 2a, are smoothly hinged together at A and move on horizontal plane. At time to mans centre of rod is at (5,7) refered to axes ox, oy and rods make angle 0 ± \$ with OX. Prove that kinetic energy of system is  $m \left[ \frac{3}{3} + 7 \right]^{2} + \left( \frac{1}{3} + 3 \right)^{2} + \frac{1}{3} + 3 \left[ \frac{1}{3} + 3 \right]^{2} + \frac{1}{3} + \frac{1}{3}$ ( L + Los \$ ) a 2 \$ 7 Also derive Lagrange's equations of motion for system if an external force with components [x, y] along axes at A. So1". D A A E For the 2 rods,  $T = \frac{1}{2}m \left( \frac{x_0^2 + y_0^2}{5} \right) + \frac{1}{2} \left( \frac{m_0^2}{12} \right) \left( \frac{6 + p^2}{5} \right)^2 +$ 1m ( = + y = y + 1 (mya) (0- p) \_ ()

9= (5, n) = centre of moss From the diagram Desing :  $\alpha_{D} = \xi - \alpha \sin \beta \sin \theta$   $\alpha = \xi + \alpha \sin \beta \sin \theta$   $\gamma_{D} = \xi + \alpha \sin \beta \cos \theta$   $\gamma_{D} = \xi + \alpha \sin \beta \cos \theta$ 70= \$1+ asing cool
75= 7 = - a sing cool no = & - a coopsino & - a sing woo o rie = & + asing a acoopring & + asing cond &  $y_0 = n + a \cos \phi \cos \theta \phi - a \sin \phi \sin \theta \theta$ y = - η + - acoop cooθ φ + asIn φ sinθ θ  $\dot{\lambda}_{D} + \dot{\lambda}_{E}^{2} = 2\dot{\xi}^{2} + 2\left(a\cos\beta\sin\theta\dot{\phi}^{2} + a\sin\beta\cos\theta\dot{\phi}^{2}\right)$ =  $2\dot{\xi} + 2a^2\cos^2\phi\sin^2\theta \dot{\phi}^2 + 2a^2\sin^2\phi\cos^2\theta \dot{\theta}^2$ +  $4a^2\sin\phi\cos\phi\sin\theta\cos\phi$  $\frac{1}{\sqrt{0}} + \frac{1}{\sqrt{6}} = 2\eta^{2} + 2a^{2}\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}\theta\cos^{2}$ Similarly Reavonging (1),  $T = \frac{1}{2} m \left[ \frac{\pi a^2}{4 p^2} + \frac{1}{3} \frac{ma^2}{2} \left[ 2 \vec{p}^2 + 2 \vec{o}^2 \right]$ Using (2) in above equation.

$$\frac{d}{dt}\left(\frac{1}{3} + \cos^2 \phi\right) = \left(2\sin\phi\cos\phi \, a^2 \phi^2 - \frac{1}{4}\sin\phi\cos\phi \, a^2 \phi^2 - \frac{1}{4}\cos\phi \,$$

A stream is rushing from a boiler through a conical pape, the diameters of the ends of which are D and d. If V and v be the corresponding velocities of the streams and if the motion is assumed to be steady and diverging from the vertex of the cone, then prove Isae  $\frac{v}{V} = \frac{\delta^2}{d^2} e^{-(v^2 - V^2)/2K}$ 

where K is the pressure divided by the density and is constant

Let P be the pressure, & the density and u the velocity at distance r from AB. The, the Person of the Person

Then esc equation of motion is given by  $u \frac{\partial u}{\partial s} = -\frac{1}{e} \frac{\partial P}{\partial s}$  [ since the motion is steady)

 $\eta_{1} \quad u \frac{\partial u}{\partial r} = -\frac{\kappa}{e} \frac{\partial e}{\partial r}$  [since as given,  $\kappa = \frac{\rho}{e} \Rightarrow \rho = \kappa e$ ] By integrating North 18, He get -10

Boundary conditions are (1) e=P, When u=

subjecting (1) to is, and (ii) viger  $\frac{v^{2}}{2} = -K \log \ell_{1} + C \qquad -3$ and  $\frac{V^{1}}{2} = -K \log \ell_{2} + C$ subtracting & from & we get

8(C) If the velocity of an incompressible fluid at the point (32) is given by (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32)

Jinu, 
$$y^{2} = \frac{3x^{2}}{y^{5}}$$
 $V = \frac{3x^{2}}{y^{5}}$ 
 $V = \frac{3x^{2}}{y^{5$ 



Integrating, wirt 2,  $\phi = -\frac{3z}{2} \int (2\pi) \left( \chi^2 + \chi^2 + \chi^2 \right)^{-5/2} d\chi = \left( \frac{3z}{2} \right) \left( \frac{-2}{3} \right) \left( \chi^2 + \chi^2 + Z^2 \right)^{-3/2}$ Step III. Streenlines (2+y422) 42 = \frac{73}{83} = \frac{70000}{82}. (on neglecting constant of interpretion) Stram lines are the solutions of  $\frac{dx}{u} = \frac{dy}{v} = \frac{dx}{v}$ pulting the values of respective terms, and so we obtain  $\frac{dn}{3\pi z} = \frac{dy}{3yz} = \frac{dz}{3z^2 - r^2} = \frac{2 dn + y dy + z dz}{3z(n^2 + y^2 + z^2) - 8^2 z} = \frac{2 dn + y dy + z dz}{28^2 z} = \frac{2 dn + y dy + z dz}{28^2 z}$ (i) (ii) (iii) (iv) (con that  $\frac{1}{2}z^2$ ) for Oar O, vikon  $\frac{dn}{x} - \frac{dy}{y}$ or Tx = ay - - - 1 duty rating, logn = logy + log a from O and B, D, we get  $\frac{dx}{2n} = \frac{2 dx + y dy + z dz}{2(x^2 + y^2 + z^2)}$  $m_1$   $\frac{4dn}{2} = \frac{3}{2} \frac{12ndn+2ydy+27dz}{x^2+y^2+z^2}$ Integrality, 4/0gn= 3/0g (22+y2+22) +/0y 5 m, [24= 6(22+y2+22)3) The required streamlines are the curves of intersection of