

Exercises

1. Find the argument form for the following argument and determine whether it is valid. Can we conclude that the conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal. Socrates is human.

- .. Socrates is mortal.
- 2. Find the argument form for the following argument and determine whether it is valid. Can we conclude that the conclusion is true if the premises are true?

If George does not have eight legs, then he is not a spider.

George is a spider.

- ∴ George has eight legs.
- 3. What rule of inference is used in each of these arguments?
 - Alice is a mathematics major. Therefore, Alice is either a mathematics major or a computer science major.
 - b) Jerry is a mathematics major and a computer science major. Therefore, Jerry is a mathematics major.
 - c) If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed.
 - **d)** If it snows today, the university will close. The university is not closed today. Therefore, it did not snow today.
 - e) If I go swimming, then I will stay in the sun too long. If I stay in the sun too long, then I will sunburn. Therefore, if I go swimming, then I will sunburn.
- 4. What rule of inference is used in each of these arguments?
 - **a)** Kangaroos live in Australia and are marsupials. Therefore, kangaroos are marsupials.
 - **b)** It is either hotter than 100 degrees today or the pollution is dangerous. It is less than 100 degrees outside today. Therefore, the pollution is dangerous.
 - c) Linda is an excellent swimmer. If Linda is an excellent swimmer, then she can work as a lifeguard. Therefore, Linda can work as a lifeguard.
 - **d)** Steve will work at a computer company this summer. Therefore, this summer Steve will work at a computer company or he will be a beach bum.
 - e) If I work all night on this homework, then I can answer all the exercises. If I answer all the exercises, I will understand the material. Therefore, if I work all night on this homework, then I will understand the material.

- 5. Use rules of inference to show that the hypotheses "Randy works hard," "If Randy works hard, then he is a dull boy," and "If Randy is a dull boy, then he will not get the job" imply the conclusion "Randy will not get the job."
- 6. Use rules of inference to show that the hypotheses "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on," "If the sailing race is held, then the trophy will be awarded," and "The trophy was not awarded" imply the conclusion "It rained."
- 7. What rules of inference are used in this famous argument? "All men are mortal. Socrates is a man. Therefore, Socrates is mortal."
- 8. What rules of inference are used in this argument? "No man is an island. Manhattan is an island. Therefore, Manhattan is not a man."
- **9.** For each of these collections of premises, what relevant conclusion or conclusions can be drawn? Explain the rules of inference used to obtain each conclusion from the premises.
 - a) "If I take the day off, it either rains or snows." "I took Tuesday off or I took Thursday off." "It was sunny on Tuesday." "It did not snow on Thursday."
 - b) "If I eat spicy foods, then I have strange dreams." "I have strange dreams if there is thunder while I sleep." "I did not have strange dreams."
 - c) "I am either clever or lucky." "I am not lucky." "If I am lucky, then I will win the lottery."
 - d) "Every computer science major has a personal computer." "Ralph does not have a personal computer." "Ann has a personal computer."
 - e) "What is good for corporations is good for the United States." "What is good for the United States is good for you." "What is good for corporations is for you to buy lots of stuff."
 - f) "All rodents gnaw their food." "Mice are rodents." "Rabbits do not gnaw their food." "Bats are not rodents."
- 10. For each of these sets of premises, what relevant conclusion or conclusions can be drawn? Explain the rules of inference used to obtain each conclusion from the premises.
 - a) "If I play hockey, then I am sore the next day." "I use the whirlpool if I am sore." "I did not use the whirlpool."
 - b) "If I work, it is either sunny or partly sunny." "I worked last Monday or I worked last Friday." "It was not sunny on Tuesday." "It was not partly sunny on Friday."
 - c) "All insects have six legs." "Dragonflies are insects." "Spiders do not have six legs." "Spiders eat dragonflies."

- d) "Every student has an Internet account." "Homer does not have an Internet account." "Maggie has an Internet account."
- e) "All foods that are healthy to eat do not taste good." "Tofu is healthy to eat." "You only eat what tastes good." "You do not eat tofu." "Cheeseburgers are not healthy to eat."
- f) "I am either dreaming or hallucinating." "I am not dreaming." "If I am hallucinating, I see elephants running down the road."
- 11. Show that the argument form with premises p_1, p_2, \dots, p_n and conclusion $q \rightarrow r$ is valid if the argument form with premises p_1, p_2, \dots, p_n, q , and conclusion r is valid.
- 12. Show that the argument form with premises $(p \land t) \rightarrow$ $(r \lor s), q \to (u \land t), u \to p$, and $\neg s$ and conclusion $q \to r$ is valid by first using Exercise 11 and then using rules of inference from Table 1.
- 13. For each of these arguments, explain which rules of inference are used for each step.
 - a) "Doug, a student in this class, knows how to write programs in JAVA. Everyone who knows how to write programs in JAVA can get a high-paying job. Therefore, someone in this class can get a high-paying job."
 - b) "Somebody in this class enjoys whale watching. Every person who enjoys whale watching cares about ocean pollution. Therefore, there is a person in this class who cares about ocean pollution."
 - c) "Each of the 93 students in this class owns a personal computer. Everyone who owns a personal computer can use a word processing program. Therefore, Zeke, a student in this class, can use a word processing program."
 - d) "Everyone in New Jersey lives within 50 miles of the ocean. Someone in New Jersey has never seen the ocean. Therefore, someone who lives within 50 miles of the ocean has never seen the ocean."
- 14. For each of these arguments, explain which rules of inference are used for each step.
 - a) "Linda, a student in this class, owns a red convertible. Everyone who owns a red convertible has gotten at least one speeding ticket. Therefore, someone in this class has gotten a speeding ticket."
 - b) "Each of five roommates, Melissa, Aaron, Ralph, Veneesha, and Keeshawn, has taken a course in discrete mathematics. Every student who has taken a course in discrete mathematics can take a course in algorithms. Therefore, all five roommates can take a course in algorithms next year."
 - c) "All movies produced by John Sayles are wonderful. John Sayles produced a movie about coal miners. Therefore, there is a wonderful movie about coal miners."
 - d) "There is someone in this class who has been to France. Everyone who goes to France visits the Louvre. Therefore, someone in this class has visited the Louvre."

- 15. For each of these arguments determine whether the argument is correct or incorrect and explain why.
 - a) All students in this class understand logic. Xavier is a student in this class. Therefore, Xavier understands logic.
 - b) Every computer science major takes discrete mathematics. Natasha is taking discrete mathematics. Therefore, Natasha is a computer science major.
 - c) All parrots like fruit. My pet bird is not a parrot. Therefore, my pet bird does not like fruit.
 - d) Everyone who eats granola every day is healthy. Linda is not healthy. Therefore, Linda does not eat granola every day.
- 16. For each of these arguments determine whether the argument is correct or incorrect and explain why.
 - a) Everyone enrolled in the university has lived in a dormitory. Mia has never lived in a dormitory. Therefore, Mia is not enrolled in the university.
 - b) A convertible car is fun to drive. Isaac's car is not a convertible. Therefore, Isaac's car is not fun to drive.
 - c) Quincy likes all action movies. Quincy likes the movie Eight Men Out. Therefore, Eight Men Out is an action movie.
 - d) All lobstermen set at least a dozen traps. Hamilton is a lobsterman. Therefore, Hamilton sets at least a dozen
- 17. What is wrong with this argument? Let H(x) be "x is happy." Given the premise $\exists x H(x)$, we conclude that H(Lola). Therefore, Lola is happy.
- **18.** What is wrong with this argument? Let S(x, y) be "x is shorter than y." Given the premise $\exists sS(s, Max)$, it follows that S(Max, Max). Then by existential generalization it follows that $\exists x S(x, x)$, so that someone is shorter than himself.
- 19. Determine whether each of these arguments is valid. If an argument is correct, what rule of inference is being used? If it is not, what logical error occurs?
 - a) If n is a real number such that n > 1, then $n^2 > 1$. Suppose that $n^2 > 1$. Then n > 1.
 - **b)** If *n* is a real number with n > 3, then $n^2 > 9$. Suppose that $n^2 \le 9$. Then $n \le 3$.
 - c) If n is a real number with n > 2, then $n^2 > 4$. Suppose that $n \le 2$. Then $n^2 \le 4$.
- **20.** Determine whether these are valid arguments.
 - a) If x is a positive real number, then x^2 is a positive real number. Therefore, if a^2 is positive, where a is a real number, then a is a positive real number.
 - **b)** If $x^2 \neq 0$, where x is a real number, then $x \neq 0$. Let a be a real number with $a^2 \neq 0$; then $a \neq 0$.
- 21. Which rules of inference are used to establish the conclusion of Lewis Carroll's argument described in Example 26 of Section 1.4?
- 22. Which rules of inference are used to establish the conclusion of Lewis Carroll's argument described in Example 27 of Section 1.4?

- **23.** Identify the error or errors in this argument that supposedly shows that if $\exists x P(x) \land \exists x Q(x)$ is true then $\exists x (P(x) \land Q(x))$ is true.
 - 1. $\exists x P(x) \lor \exists x Q(x)$ Premise
 - 2. $\exists x P(x)$ Simplification from (1)
 - 3. P(c) Existential instantiation from (2)
 - 4. $\exists x Q(x)$ Simplification from (1)
 - 5. Q(c) Existential instantiation from (4)
 - 6. $P(c) \land Q(c)$ Conjunction from (3) and (5)
 - 7. $\exists x (P(x) \land Q(x))$ Existential generalization
- **24.** Identify the error or errors in this argument that supposedly shows that if $\forall x (P(x) \lor Q(x))$ is true then $\forall x P(x) \lor \forall x Q(x)$ is true.
 - 1. $\forall x (P(x) \lor Q(x))$ Premise
 - 2. $P(c) \lor Q(c)$ Universal instantiation from (1)
 - 3. P(c) Simplification from (2)
 - 4. $\forall x P(x)$ Universal generalization from (3)
 - 5. Q(c) Simplification from (2)
 - 6. $\forall x Q(x)$ Universal generalization from (5)
 - 7. $\forall x (P(x) \lor \forall x Q(x))$ Conjunction from (4) and (6)
- **25.** Justify the rule of universal modus tollens by showing that the premises $\forall x (P(x) \rightarrow Q(x))$ and $\neg Q(a)$ for a particular element a in the domain, imply $\neg P(a)$.
- **26.** Justify the rule of **universal transitivity**, which states that if $\forall x(P(x) \rightarrow Q(x))$ and $\forall x(Q(x) \rightarrow R(x))$ are true, then $\forall x(P(x) \rightarrow R(x))$ is true, where the domains of all quantifiers are the same.
- **27.** Use rules of inference to show that if $\forall x(P(x) \rightarrow (Q(x) \land S(x)))$ and $\forall x(P(x) \land R(x))$ are true, then $\forall x(R(x) \land S(x))$ is true.
- **28.** Use rules of inference to show that if $\forall x (P(x) \lor Q(x))$ and $\forall x ((\neg P(x) \land Q(x)) \rightarrow R(x))$ are true, then $\forall x (\neg R(x) \rightarrow P(x))$ is also true, where the domains of all quantifiers are the same.
- **29.** Use rules of inference to show that if $\forall x(P(x) \lor Q(x))$, $\forall x(\neg Q(x) \lor S(x))$, $\forall x(R(x) \to \neg S(x))$, and $\exists x \neg P(x)$ are true, then $\exists x \neg R(x)$ is true.
- **30.** Use resolution to show the hypotheses "Allen is a bad boy or Hillary is a good girl" and "Allen is a good boy or

- David is happy" imply the conclusion "Hillary is a good girl or David is happy."
- **31.** Use resolution to show that the hypotheses "It is not raining or Yvette has her umbrella," "Yvette does not have her umbrella or she does not get wet," and "It is raining or Yvette does not get wet" imply that "Yvette does not get wet."
- **32.** Show that the equivalence $p \land \neg p \equiv \mathbf{F}$ can be derived using resolution together with the fact that a conditional statement with a false hypothesis is true. [*Hint*: Let $q = r = \mathbf{F}$ in resolution.]
- **33.** Use resolution to show that the compound proposition $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$ is not satisfiable.
- *34. The Logic Problem, taken from WFF'N PROOF, The Game of Logic, has these two assumptions:
 - 1. "Logic is difficult or not many students like logic."
 - 2. "If mathematics is easy, then logic is not difficult."
 - By translating these assumptions into statements involving propositional variables and logical connectives, determine whether each of the following are valid conclusions of these assumptions:
 - a) That mathematics is not easy, if many students like logic.
 - **b)** That not many students like logic, if mathematics is not easy.
 - c) That mathematics is not easy or logic is difficult.
 - **d)** That logic is not difficult or mathematics is not easy.
 - e) That if not many students like logic, then either mathematics is not easy or logic is not difficult.
- *35. Determine whether this argument, taken from Kalish and Montague [KaMo64], is valid.

If Superman were able and willing to prevent evil, he would do so. If Superman were unable to prevent evil, he would be impotent; if he were unwilling to prevent evil, he would be malevolent. Superman does not prevent evil. If Superman exists, he is neither impotent nor malevolent. Therefore, Superman does not exist.

1.7 Introduction to Proofs

1.7.1 Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs. A proof is a valid argument that establishes the truth of a mathematical statement. A proof can use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven theorems. Using these ingredients and rules of inference, the final step of the proof establishes the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs. The arguments we introduced in Section 1.6 to show that statements involving propositions and quantified statements are true were formal proofs, where all steps were supplied, and the rules for each step in the argument were given. However, formal proofs of useful theorems can