Physics-informed neural networks

Given training data of u, v, find λ_1, λ_2

Problem statement

$$u_t + \lambda_1 (uu_x + vu_y) = -p_x + \lambda_2 (u_{xx} + u_{yy}),$$

$$v_t + \lambda_1 (uv_x + vv_y) = -p_y + \lambda_2 (v_{xx} + v_{yy}),$$

$$u_x + v_y = 0 \longrightarrow u = \psi_y, \quad v = -\psi_x$$

 λ_1, λ_2 : unknown parameters to be identified. ψ : the stream function.

u, *v*: velocities

p: pressure

Ground truth from numerical simulation:

NN input: x, y, t **NN output:** ψ , p

NN architecture: 9 layers 20 neurons per layer

Training parameters: weights, biases, λ_1 , λ_2

Q: Why do we choose NN input/output this way?

Given training data of u, v, find λ_1, λ_2

Training data: 5000 pts of u, v within the domain **Collocation points:** 5000 pts within the domain

Ground truth from numerical simulation:

NN input: x, y, t **NN output:** ψ , p

NN architecture: 9 layers 20 neurons per layer

Training parameters: weights, biases, λ_1 , λ_2

Ground truth from numerical simulation:

Given training data of u, v, find λ_1, λ_2

Training data (from ground truth):

$$\{t^i, x^i, y^i, u^i, v^i\}_{i=1}^N$$
 $N = 5,000$

Collocation points:

$$\{t^i, x^i, y^i\}_{i=1}^N$$
 $N = 5,000$

Physics equations:

$$f := u_t + \lambda_1(uu_x + vu_y) + p_x - \lambda_2(u_{xx} + u_{yy})$$

$$g := v_t + \lambda_1(uv_x + vv_y) + p_y - \lambda_2(v_{xx} + v_{yy})$$

$$MSE := \frac{1}{N} \sum_{i=1}^{N} \left(|u(t^{i}, x^{i}, y^{i}) - u^{i}|^{2} + |v(t^{i}, x^{i}, y^{i}) - v^{i}|^{2} \right)$$
Data loss
$$+ \frac{1}{N} \sum_{i=1}^{N} \left(|f(t^{i}, x^{i}, y^{i})|^{2} + |g(t^{i}, x^{i}, y^{i})|^{2} \right)$$
Equation loss

Correct PDE	$u_t + (uu_x + vu_y) = -p_x + 0.01(u_{xx} + u_{yy})$ $v_t + (uv_x + vv_y) = -p_y + 0.01(v_{xx} + v_{yy})$
Identified PDE (clean data)	$u_t + 0.999(uu_x + vu_y) = -p_x + 0.01047(u_{xx} + u_{yy})$ $v_t + 0.999(uv_x + vv_y) = -p_y + 0.01047(v_{xx} + v_{yy})$
Identified PDE (1% noise)	$u_t + 0.998(uu_x + vu_y) = -p_x + 0.01057(u_{xx} + u_{yy})$ $v_t + 0.998(uv_x + vv_y) = -p_y + 0.01057(v_{xx} + v_{yy})$

Given training data of u, v, find λ_1, λ_2

Training data (from ground truth):

$$\{t^i, x^i, y^i, u^i, v^i\}_{i=1}^N$$
 $N = 5,000$

Collocation points:

$$\{t^i, x^i, y^i\}_{i=1}^N$$
 $N = 5,000$

Physics equations:

$$f := u_t + \lambda_1 (uu_x + vu_y) + p_x - \lambda_2 (u_{xx} + u_{yy})$$

$$g := v_t + \lambda_1 (uv_x + vv_y) + p_y - \lambda_2 (v_{xx} + v_{yy})$$

$$MSE := \frac{1}{N} \sum_{i=1}^{N} \left(|u(t^{i}, x^{i}, y^{i}) - u^{i}|^{2} + |v(t^{i}, x^{i}, y^{i}) - v^{i}|^{2} \right)$$
Data loss
$$+ \frac{1}{N} \sum_{i=1}^{N} \left(|f(t^{i}, x^{i}, y^{i})|^{2} + |g(t^{i}, x^{i}, y^{i})|^{2} \right)$$
Equation loss

Navier-Stokes equation coding exercise

• TF1.14

Pause and Ponder

Why is pressure prediction off by a constant?

- Do the input training data need to be sampled at the same inputs as the collocation points $\{t^i, x^i, y^i\}_i^N$?
- How to check if the PINN overfits the training data and collocation pts?

E.g., Nonlinear Schrodinger equation

Problem statement

$$ih_t + 0.5h_{xx} + |h|^2 h = 0$$
, $x \in [-5, 5]$, $t \in [0, \pi/2]$,

IC: $h(0, x) = 2 \operatorname{sech}(x)$,

BC: h(t, -5) = h(t, 5),

$$h_X(t, -5) = h_X(t, 5),$$

Training data (from ground truth):

$$\{x_0^i, h_0^i\}_{i=1}^{N_0}$$

Collocation points:

$$\{t_b^i\}_{i=1}^{N_b} \quad \{t_f^i, x_f^i\}_{i=1}^{N_f}$$

Physics equations:

$$f := ih_t + 0.5h_{xx} + |h|^2 h$$
.

$$MSE_{0} = \frac{1}{N_{0}} \sum_{i=1}^{N_{0}} |h(0, \mathbf{x}_{0}^{i}) - \mathbf{h}_{0}^{i}|^{2}, \quad \textbf{(1) IC}$$

$$MSE_{b} = \frac{1}{N_{b}} \sum_{i=1}^{N_{b}} \left(|h^{i}(t_{b}^{i}, -5) - h^{i}(t_{b}^{i}, 5)|^{2} + |h_{x}^{i}(t_{b}^{i}, -5) - h_{x}^{i}(t_{b}^{i}, 5)|^{2} \right)$$

$$\textbf{(2) BC}$$

$$MSE_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2$$
. (3) Eqn

E.g., Burgers' equation (identification)

Given training data of u, t, x find λ_1, λ_2

Correct PDE	$u_t + uu_x - 0.0031831u_{xx} = 0$
Identified PDE (clean data)	$u_t + 0.99915uu_x - 0.0031794u_{xx} = 0$
Identified PDE (1% noise)	$u_t + 1.00042uu_x - 0.0032098u_{xx} = 0$

Training data (from ground truth):

$$\{t_u^i, x_u^i, u^i\}_{i=1}^N$$
 $N = 2,000$

Collocation points:

$$\{t_u^i, x_u^i\}_{i=1}^N$$
 $N = 2,000$

Physics equations:

$$f := u_t + \lambda_1 u u_x - \lambda_2 u_{xx}$$

Data
$$MSE_{u} = \frac{1}{N_{u}} \sum_{i=1}^{N_{u}} |u(t_{u}^{i}, x_{u}^{i}) - u^{i}|^{2}$$
 loss Data points

Equation
$$MSE_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2$$
 Collocation points

Ground truth from numerical simulation:

Given training data of u, v, find λ_1, λ_2

Training data (from ground truth):

$$\{t^i, x^i, y^i, u^i, v^i\}_{i=1}^N$$
 $N = 5,000$

Collocation points:

$$\{t^{i}, x^{i}, y^{i}\}_{i=1}^{N}$$

Physics equations:

$$f := u_t + \lambda_1(uu_x + vu_y) + p_x - \lambda_2(u_{xx} + u_{yy})$$

$$g := v_t + \lambda_1(uv_x + vv_y) + p_y - \lambda_2(v_{xx} + v_{yy})$$

$$MSE := \frac{1}{N} \sum_{i=1}^{N} \left(|u(t^{i}, x^{i}, y^{i}) - u^{i}|^{2} + |v(t^{i}, x^{i}, y^{i}) - v^{i}|^{2} \right)$$
Data loss
$$+ \frac{1}{N} \sum_{i=1}^{N} \left(|f(t^{i}, x^{i}, y^{i})|^{2} + |g(t^{i}, x^{i}, y^{i})|^{2} \right)$$
Equation loss

Correct PDE	$u_t + (uu_x + vu_y) = -p_x + 0.01(u_{xx} + u_{yy})$ $v_t + (uv_x + vv_y) = -p_y + 0.01(v_{xx} + v_{yy})$
Identified PDE (clean data)	$u_t + 0.999(uu_x + vu_y) = -p_x + 0.01047(u_{xx} + u_{yy})$ $v_t + 0.999(uv_x + vv_y) = -p_y + 0.01047(v_{xx} + v_{yy})$
Identified PDE (1% noise)	$u_t + 0.998(uu_x + vu_y) = -p_x + 0.01057(u_{xx} + u_{yy})$ $v_t + 0.998(uv_x + vv_y) = -p_y + 0.01057(v_{xx} + v_{yy})$

Given training data of u, v, find λ_1, λ_2

Training data (from ground truth):

$$\{t^i, x^i, y^i, u^i, v^i\}_{i=1}^N$$
 $N = 5,000$

Collocation points:

$$\{t^{i}, x^{i}, y^{i}\}_{i=1}^{N}$$

Physics equations:

$$f := u_t + \lambda_1(uu_x + vu_y) + p_x - \lambda_2(u_{xx} + u_{yy})$$

$$g := v_t + \lambda_1(uv_x + vv_y) + p_y - \lambda_2(v_{xx} + v_{yy})$$

$$MSE := \frac{1}{N} \sum_{i=1}^{N} \left(|u(t^{i}, x^{i}, y^{i}) - u^{i}|^{2} + |v(t^{i}, x^{i}, y^{i}) - v^{i}|^{2} \right)$$
Data loss
$$+ \frac{1}{N} \sum_{i=1}^{N} \left(|f(t^{i}, x^{i}, y^{i})|^{2} + |g(t^{i}, x^{i}, y^{i})|^{2} \right)$$
Equation loss

• Application 1: Prediction of solution for a well-posed problem Given an eqn + BC + IC and parameters λ , what's the model prediction?

 Application 2: Prediction of solution when data is available within the domain but not at the IC, BC

Given an eqn and parameters λ , what's the model prediction best describes the data?

Application 3: Data-driven discovery of unknown parameters

What are the parameters λ that best describe the data and the eqn?

When can you use only data to train NN without physics constants, and still get a good NN prediction (i.e. consistent with the physics)?

- When the data is perfect without noise and available everywhere
- When the prediction is within the same {t,x} domain as the training data (no need to generalize the prediction to an unseen domain)

When can you use only data to train NN without physics constants, and still get a good NN prediction (i.e. consistent with the physics)?

- When the data is perfect without noise and available everywhere
- When the prediction is within the same {t,x} domain as the training data (no need to generalize the prediction to an unseen domain)

The point of PINN is that its prediction can be generalized to a domain without observations!