目录

1	实验名称	2
2	实验目的	2
3	实验元器件	3
4	实验任务	3
	4.1 功能要求	3
	4.2 己知条件	3
	4.3 技术指标要求	4
	4.4 测量内容	4
5	实验原理及参考电路	4
	5.1 实验电路	4
	5.2 电路安装与调试技术	5
	5.2.1 合理布局, 分级装调	5
	5.2.2 电路调试技术	5
6	实验过程	6
	6.1 放大倍数及额定功率	6
	6.2 输入阻抗	7
	6.3 输入灵敏度	7
	6.4 噪声电压	7
	6.5 整机效率	7
	6.6 频率响应	8
7	实验小结	8

1 实验名称

音响放大器的设计

2 实验目的

- 音响放大器的基本组成
- 音调特性控制方法与实现原理
- 了解集成功率放大器内部电路工作原理,掌握其外围电路的设计与主要性能参数的测试方法
- 掌握音响放大器的设计方法与电子线路系统的装调技术—综合运用所学知识,进行小型多级电子线路系统的设计与装调

3 实验元器件

名称	型号/参数	数量		
作代刊计	LM386	3		
集成功放	NE5532	3		
	10kΩ	5		
	$13k\Omega$	1		
山 [[H	30 k Ω	2		
电阻 	$47\mathrm{k}\Omega$	3		
	$75 \mathrm{k}\Omega$	1		
	10 Ω 2W	1		
	$0.01 \mu F$	2		
	$0.22\mu\mathrm{F}$	1		
	$0.1 \mu F$	1		
电容	$1\mu F$	1		
	$10\mu\mathrm{F}$	8		
	$220\mu F$	2		
	$470\mu F$	12		
电位器	10 k Ω	3		
七 世	470kΩ	2		
话筒	输出 5mV	1		
音乐播放器	/	1		

4 实验任务

设计一个音响

4.1 功能要求

具有话音放大、音调控制、音量控制、卡拉 OK 伴唱等功能(不含电子混响)。

4.2 已知条件

• 集成功放 LM386。

- 话筒 600Ω, 输出信号 5mV。
- 集成运放 NE5532。
- 10Ω/2W 负载电阻 1 只。
- 8Ω/4W 扬声器 1 只。
- 音源 (MP3 or PC)。
- 电源电压 ±9V(双电源)。

4.3 技术指标要求

- 额定功率: $P_o \ge 0.3 \text{W} (\gamma < 3\%)$
- 负载阻抗: $R_L = 10\Omega(2W)$
- 频率响应: $f_L = 50$ Hz, $f_H = 20$ kHz
- 输入阻抗: $R_i \gg 20$ k Ω
- 音调控制特性: 1kHz 处增益为 0dB、125Hz 和 8kHz 处有 12dB 的调节范围, $A_{VL}=A_{VH}$ 20dB(选做)

4.4 测量内容

5 实验原理及参考电路

5.1 实验电路

5.2 电路安装与调试技术

5.2.1 合理布局,分级装调

- 音响放大器是一个小型电路系统,安装前要对整机线路进行合理布局
- 一般按照电路的顺序一级一级地布线
- 功放级应远离输入级
- 每一级的地线尽量接在一起
- 连线尽可能短, 否则很容易产生自激
- 安装前应检查元器件的质量
- 安装时特别要注意功放块、运算放大器、电解电容等主要器件的引脚和极性,不能接错
- 从输入级开始向后级安装,也可以从功放级开始向前逐级安装
- 安装一级调试一级,安装两级要进行级联调试,直到整机安装与调试完成

5.2.2 电路调试技术

- 1. 电路的调试过程一般是先分级调试,再级联调试,最后进行整机调试与性能指标测试。
- 2. 分级调试又分为静态调试与动态调试。

静态调试时,将输入端对地短路,用万用表测该级输出端对地的直流电压。话放、混放、音调电路均由运放组成,若运放是单电源供电,其静态输出直流电压均为 VCC/2, 功放级输出 (OTL 电路) 也为 VCC/2, 且输出电容 CC 两端充电电压也 应为

VCC/2。若是双电源供电,直流电压均为 0。动态调试是指输入端接入规定的信号,用示波器观测该级输出波形,并测量各项性能指标是否满足题目要求,如果相差很大,应检查电路是否接错,元器件数值是否合乎要求,否则是不会出现很大偏差的。

3. 级联调试

单级电路调试时的技术指标较容易达到,但级联后级间相互影响,可能使单级的技术指标发生很大变化,甚至两级不能进行级联。产生的主要原因:一是布线不太合理,形成级间交叉耦合,应考虑重新布线;二是级联后各级电流都要流经电源内阻,内阻压降对某一级可能形成正反馈,应接 RC 去耦滤波电路。R 一般取几十欧姆,

C 一般用几百微法大电容与 0.1F 小电容相并联。由于功放输出信号较大,易对前级产生影响,引起自激。集成块内部电路多极点引起的正反馈易产生高频自激,常见高频自激现象如图所示。

可以加强外部电路的负反馈予以抵消,如功放级 脚与 之间接入几百皮法的电容,形成电压并联负反馈,可消除叠加的高频毛刺。

6 实验过程

6.1 放大倍数及额定功率

图 1: 三级级联放大测量 $A_{\rm v}=335.6$

 $R_{\rm L}$ =9.812 $\Omega V_{\rm o}$ =5.130 $\rm V$

 $P_{\rm o} = V_{\rm o}^2 / R_{\rm L} = 0.346 {\rm W}$

图 2: 输入阻抗实验电路图

6.2 输入阻抗

采用在输入回路串入已知电阻的方法测量输入电阻,其局部连接示意图如上图所示。 R 取值尽量与 R_i 接近(此处取 R=100k Ω)。用示波器一通道始终监视輸出 v_i 波形,用另一个通道先后測量 R 接入和不接入时的输出电压 V_{o1} (测量值为 5.280V) 和 V_{o2} (测量值为 2.540V) 则输入电阻为 $R_i = V_{o2} * R/V_{o1} - V_{o2} = 99.83$ k Ω 满足输入阻抗要求

6.3 输入灵敏度

使音响放大器输出额定功率时所需的输入电压(有效值)称为输入灵敏度 V_s 。测量条件与额定功率的测量相同。测量方法是,先使 V_i 从零开始逐渐增大,直到电路输出达到额定功率值(对应于输出电压值 V_o),此时对应的 V_i 值即为输入灵敏度。

测得输入灵敏度 $V_s=15\text{mV}$

6.4 噪声电压

音响放大器的输入为零时,输出负载 R_L ,上的电压称为噪声电压 V_N 。测量条件同上。测量方法是,使输入端对地短路,音量电位器为最大值,用示波器观测负载 R_L 两端输出电压波形的有效值.

测得噪声电压 $V_{\rm N}=1.025{\rm mV}$

6.5 整机效率

其表达式为 $\eta = P_{\rm o}/P_{\rm c} \times 100\%$

式中, P_0 为输出的额定功率; P_c 为输出额定功率时所消耗的电源功率,可通过电源电压与电流的乘积获得.

测得 $P_{\rm c}=0.738$ W 又由之前实验测得, $P_{\rm o}=0.346$ W,可算得整机效率 $\eta=\frac{0.3001}{0.635}\times 100\%=46.88\%$

6.6 频率响应

f/Hz	20	40	50	500	100	200	500	600	800
$V_{ m O}/{ m mV}$	4.120	4.880	5.040	5.200	5.280	5.280	5.360	5.280	5.360
f/Hz	1K	5k	10k	20k	30k	40k	45k	50k	100k
$V_{ m o}/{ m V}$	3.201	5.280	5.160	5.160	5.040	5.120	5.120	5.080	4.960

由测量数据可知, $f_L \approx 40Hz$, $f_H > 100kHz$

7 实验小结

本次实验让我学会了电路的级联调试。虽然电路搭建很快,但是调试电路却花费了 两节课的时间。但是这个时间是值得的,因为我掌握了我不熟悉的方法,当最后完美试 音的时候, 我觉得这一个月的时间是值得的