

Annu James

- Security has become a crucial issue in industry, business etc. due to the rapid growth of digital communication.
- One essential aspect for secure communications is "CRYPTOGRAPHY" means secret writing
- It provides essential techniques for securing information and protecting data.
- The classic cryptography deals with problem of secure communication.
- Modern cryptography deals with all adversarial threats facing parties who wish to carry some task in a network.
- The main aim is to provide secure solutions to a set of parties who wish to carry out a distributed task.

WHAT IS CRYPTOGRAPHY?

- Cryptography is the practice and study of techniques for secure communication in the presence of third parties called adversaries.
- It is the science of using mathematics to encrypt and decrypt data.
- It enables us to store sensitive information or transmit it across insecure networks.
- It cannot be read by anyone except the intended recipient.
- It is constructing and analyzing protocols that overcome the influence of adversaries.
- They are related to various aspects in information security.
- Application of cryptography include ATM cards, computer passwords, and electronic commerce.
- The conversion of information from a readable state to apparent nonsense which means the content is non-understandable.
- The originator of an encrypted message shared the decoding technique needed to recover the original information only with intended recipients.

- Modern cryptography is heavily based on mathematical theory and computer science practice.
- Cryptographic algorithms are designed around computational hardness assumptions, making such algorithms hard to break in practice by any adversary.
- Schemes are therefore termed computationally secure and theoretical advances,
- Improvements in integer factorization algorithms, and faster computing technology require these solutions to be continually adapted.

CRYPTOGRAPHY COMPONENTS

1. Cryptography:-

Cryptography is the practice and study of techniques for secure communication in the presence of third parties called adversaries.

2. Plaintext and Ciphertext:-

- The original message, before being transformed, is called plaintext.
- After the message is transformed, it is called ciphertext.
- An encryption algorithm transforms the plaintext into ciphertext; a decryption algorithm transforms the ciphertext back into plaintext.

3. Cipher:-

- Here encryption and decryption algorithms is referred as ciphers.
- The term cipher is also used to refer to different categories of algorithms in cryptography.

4. KEY :-

- A key is a number that the cipher, as an algorithm, operates on.
- To encrypt a message, we need an encryption algorithm, an encryption key, and the plaintext.

5. Alice, Bob, Eve:

In cryptography, three characters are used in an information exchange scenario; they are Alice, Bob, and Eve.

- Alice person who needs to send secure data.
- Bob recipient of the data.
- Eve person who somehow disturbs the communication between Alice and Bob by intercepting messages to uncover the data or by sending her own disguised messages.

Types of Cryptography:-

The Cryptography algorithm (ciphers) are mainly divided into two groups :- symmetric key (secret-key) cryptography algorithms and asymmetric (public-key) cryptography algorithms.

- > Symmetric-key Cryptography :-
- In symmetric-key cryptography, the same key is used by both parties.
- The sender uses the key for an encryption algorithm to encrypt data; the receiver uses the same key and the corresponding decryption algorithm to decrypt the data.
- In symmetric-key cryptography, the same key is used by the sender (for encryption) and the receiver (for decryption).
- The key is shared.

Asymmetric-key Cryptography :-

- In asymmetric or public-key cryptography, there are two keys: a private key and a public key.
- The private key is kept by the receiver. The public key is announced to the public.
- In public-key encryption/decryption, the public key that is used for encryption is different from the private key that is used for decryption.
- The public key is available to the public; the private key is available only to an individual.

Three types of keys:-

- There are three types of keys involved in cryptography and they are the secret key, the public key and the private key.
- The first, the secret key, is the shared key used in symmetric-key cryptography.
- The second and the third are the public and private keys used in asymmetric-key cryptography.

SYMMETRIC-KEY CRYPTOGRPHY

- The symmetric-key cryptography is mainly used in our network security.
- Today's ciphers are much more complex.

Traditional algorithms is discussed first, which are character-oriented and secondly modern ones are discussed which are bit-oriented.

- Traditional Ciphers :-
- ->Traditional ciphers are introduced which are character-oriented.
- ->Traditional symmetric-key ciphers are mainly divided into two categories , substitution ciphers and transposition ciphers.

Substitution Cipher:-

- -> A substitution cipher substitutes one symbol with another.
- -> If the symbols in the plaintext are alphabetic characters, we replace one character with another.
 - Eg: We can replace character A with D, and character T with Z. If the symbols are digits (0 to 9), we can replace 3 with 7, and 2 with 6.
- -> Substitution ciphers can be categorized as either monoalphabetic or polyalphabetic ciphers.

Monoalphabetic Cipher :-

- A character (or a symbol) in the plaintext is always changed to the same character (or symbol) in the ciphertext regardless of its position in the text.
 Eg If the algorithm says that character A in the plaintext is changed to character D, every character A is changed to character D.
- -> The relationship between characters in the plaintext and the ciphertext is a one-to-one relationship.

Polyalphabetic Cipher :-

- -> Each occurrence of a character can have a different substitute.
- ->The relationship between a character in the plaintext to a character in the ciphertext is a one-to-many relationship.
 - Eg:- Character A could be changed to D in the beginning of the text, but it could be changed to N at the middle.
- -> If the relationship between plaintext characters and ciphertext characters is one-to many, the key must tell us which of the many possible characters can be chosen for encryption.
- ->To achieve this goal, we need to divide the text into groups of characters and use a set of keys.
 - Eg: We can divide the text "THISISANEASYTASK" into groups of 3 characters and then apply the encryption using a set of 3 keys.
 - We then repeat the procedure for the next 3 characters.

Shift Cipher: The simplest monoalphabetic cipher is probably the shift cipher.

- -> It is assumed that the plaintext and ciphertext consist of uppercase letters (A to Z) only.
- -> In this cipher, the encryption algorithm is "shift key characters down," with key equal to some number and the decryption algorithm is "shift key characters up."

Eg:- If the key is 5, the encryption algorithm is "shift 5 characters down" (toward the end of the alphabet), the decryption algorithm is "shift 5 characters up" (toward the beginning of the alphabet).

If the end or beginning of the alphabet is reached, it is wrap around.

-> The shift cipher is sometimes referred to as the Caesar cipher.

Alphabet

- ABCD.....XYZ
- Cipher
- DEFG.....ABC

Transpostion Cipher :-

- -> In a transposition cipher, there is no substitution of characters; instead, their locations change.
- -> A character in the first position of the plaintext may appear in the tenth position of the ciphertext. A character in the eighth position may appear in the first position.
- -> A transposition cipher reorders (permutes) the symbols in a block of symbols.
- -> In a transposition cipher, the key is a mapping between the position of the symbols in the plaintext and cipher text.

> Simple modern Ciphers :-

- With the advent of the computer, ciphers need to be bit-oriented.
- This is because the information to be encrypted is not just text; it can also consist of numbers, graphics, audio, and video data.
- It is convenient to convert these types of data into a stream of bits, encrypt the stream, and then send the encrypted stream.
- When text is treated at the bit level, each character is replaced by 8 (or 16) bits, which means the number of symbols becomes 8 (or 16).
- Modem ciphers use a different strategy than the traditional ones.
- A modern symmetric cipher is a combination of simple ciphers.
- A modern cipher uses several simple ciphers to achieve its goal.

XOR Cipher:

- Modern ciphers are made of a set of simple ciphers.
- They are simple predefined functions in mathematics or computer science.
- The first one discussed here is called the XOR cipher.
- Its because uses the exclusive-or operation as defined in computer science.
- An XOR operation needs two data inputs plaintext.
- One of the inputs is the block to be the encrypted, the other input is a key; the result is the encrypted block.
- In an XOR cipher, the size of the key, the plaintext, and the ciphertext are all the same.
- XOR ciphers have a very interesting property: the encryption and decryption

are the same.

Rotation Cipher

- In rotation cipher, the input bits are rotated to the left or right. The rotation cipher can be keyed or keyless.
- In keyed rotation, the value of the key defines the number of rotations; in keyless rotation the number of rotations is fixed.
- The rotation cipher can be considered a special case of the transpositional cipher using bits instead of characters.
- The rotation cipher has an interesting property that if the length of the original stream is N, after N rotations, we get the original input stream.
- This means that it is useless to apply more than N 1 rotations.
- The number of rotations must be between 1 and N-1
- The decryption algorithm for the rotation cipher uses the same key and the opposite rotation direction.

If a right rotation is used in the encryption, a left rotation is used in a

decryption and vice versa.

- Modern Round Ciphers
- Round ciphers involve multiple rounds, where each round is a complex cipher made up of the simple ciphers that are previously described.
- The key used in each round is a subset or variation of the general key called the round key.
- If the cipher has N rounds, a key generator produces N keys, K1, K2, ..., KN, where K1 is used in round 1, K2 in round 2, and so on.
- Two modem symmetric-key ciphers are introduced here: DES and AES.
- These ciphers are referred to as block ciphers because they divide the plaintext into blocks and use the same key to encrypt and decrypt the blocks.

- Data Encryption Standard (DES)
- The algorithm encrypts a 64-bit plaintext block using a 64-bit key.
- DES has two transposition blocks (P-boxes) and 16 complex round ciphers (they are repeated).
- The 16 iteration round ciphers are conceptually the same, each uses a different key derived from the original key.
- The initial and final permutations are keyless straight permutations that are the inverse of each other.
- The permutation takes a 64-bit input and permutes them according to predefined values.
- Each round of DES is a complex round cipher.
- The structure of the encryption round ciphers is different from that of the decryption one.

DES function:

- The heart of DES is the DES function.
- The DES function applies a 48-bit key to the rightmost 32 bits Ri to produce a 32-bit output.
- This function is made up of four operations: an XOR, an expansion permutation, a group of S-boxes, and a straight permutation

- Advanced Encryption Standards (AES) :-
- The Advanced Encryption Standard (AES) was designed because DES's key was too small.
- AES is a very complex round cipher.
- AES is designed with three key sizes: 128, 192, or 256 bits.
- AES has three different configurations with respect to the number of rounds and key size.
- Table below shows the AES configration.
- The structure and operation of the other configurations are similar.
- The difference lies in the key generation.
- There is an initial XOR operation followed by 10 round ciphers.

Size of Data Block	Number of Rounds	Key Size
128 bits	10	128 bits
	12	192 bits
	14	256 bits

- The last round is slightly different from the preceding rounds; it is missing one operation.
- The 10 iteration blocks are almost identical, each uses a different key derived from the original key.
- The figure below shows the basic structure of AES.

ASYMMETRIC-KEY CRYPTOGRAPHY

- Also called public key cryptography
- An asymmetric-key (or public-key) cipher uses two keys:-one private and one public.
- Here two algorithms are introduced and they are RSA and Diffie-Hellman algorithm.

> RSA

- RSA is named for its inventors Rivest, Shamir, and Adleman (RSA).
- It uses two numbers, e and d, as the public and private keys.
- The two keys, e and d, have a special relationship to each other but here is shown how to calculate the keys without proof.

Selecting Keys:-

Bob use the following steps to select the private and public keys:-

- Bob chooses two very large prime numbers p and q.
 Note :- A prime number is one that can be divided evenly only by 1 and itself.
- 2. Bob multiplies the above two primes to find n, the modulus for encryption and decryption. ie, n = p X q.
- 3. Bob calculates another number $\varphi = (p 1) X (q 1)$.
- 4. Bob chooses a random integer e. He then calculates d so that d x e = 1 $mod \varphi$.
- 5. Bob announces e and n to the public; he keeps φ and d secret.
 - " In RSA, e and n are announced to the public; d and ϕ are kept secret."

- Encryption :-
- Anyone who needs to send a message to Bob can use n and e.
- Eg:- If Alice needs to send a message to Bob, she can change the message, usually a short one, to an integer. This is the plaintext.
 She then calculates the ciphertext, using e and n.
 - "C=pe(modn), Alice sends C, the ciphertext, to Bob
- Decryption :-
- Bob keeps p and d as private.
- When he receives the ciphertext, he uses his private key d to decrypt the message:-

- There is a restriction for RSA to work, the value of P must be less than the value of n.
- If P is a large number, the plaintext needs to be divided into blocks to make P less than n.

> DIFFIE-HELLMAN

- Diffie-Hellman was originally designed for key exchange.
- In the Diffie-Hellman cryptography, two parties create a symmetric session key to exchange data without having to remember or store the key for future use.
- They do not have to meet to agree on the key; it can be done through the Internet.

SECURITY SERVICES

- Network security can provide one of the five services.
- Four of these services are related to the message exchanged using the network.
- They are message confidentiality, integrity, authentication, and nonrepudiation.
- The fifth service provides entity authentication or identification.

MESSAGE CONFIDENTIALITY :-

- Message confidentiality or privacy means that the sender and the receiver expect confidentiality.
- The transmitted message must make sense to only the intended receiver.
- To all others, the message must be garbage.
- Eg:- when a customer communicates with her bank, she expects that the communication is totally confidential.

MESSAGE INTEGRITY :-

- Message integrity means that the data must arrive at the receiver exactly as they were sent.
- There must be no changes during the transmission, neither accidentally nor maliciously.
- As more and more monetary exchanges occur over the Internet, integrity is crucial.
- Eg :- It would be disastrous if a request for transferring \$100 changed to a request for \$10,000 or \$100,000.
- The integrity of the message must be preserved in a secure communication.

➤ MESSAGE AUTHENTICATION :-

- Message authentication is a service beyond message integrity.
- In message authentication the receiver needs to be sure of the sender's identity and that an imposter has not sent the message.

➤ MESSAGE NON - REPUDIATION :-

- Message nonrepudiation means that a sender must not be able to deny sending a message that he or she, in fact, did send.
- The burden of proof falls on the receiver.
- Eg: When a customer sends a message to transfer money from one account to another, the bank must have proof that the customer actually requested this transaction.

ENTITY AUTHENTICATION:-

- In entity authentication (or user identification) the entity or user is verified prior to access to the system resources (files, for example).
- Eg: A student who needs to access her university resources needs to be authenticated during the logging process. This is to protect the interests of the university and the student.

Asymmetric(public) Cryptography

- Also known as Public key cryptosystem.
- Uses, public key and private key.
- Encodes messages using mathematically related keys.
- RSA was he first public key crypto system
- Public key: Known to all parties engaged. Freely distributed to public. It is used to encrypt message.
- Private key: Known only to the owner and is kept secret.
- The owner uses private key to decrypt all the messages.
- Encryption can be done with any of these.
- Decryption is allowed only with the corresponding key pair.
- Eg: If Anil want to communicate with Bindu, he obtains Bindu's public key.
 Then he encrypts the message using the public key

WORKING

- Sender A (PKA, PRKA)
 PKA-Public key of A, PRKA-Private key of A
- Receiver B (PKB,PRKB)
- If A wants to send a confidential/secret message to B,
 - A will encrypt it with PKB. So that the message can be decrypted only by the private key of B, PRKB, which is known only to B
- If A wants to send an authenticated message to B, A will encrypt it with its private key, PRKA. So anyone can decrypt it using PKA, the public key of A.
- If A wants to send a secret, authenticated message to B?
 - Encrypt message with PRKA, then encrypt it with PKB. Send it. Receiver B will decrypt it with PRKB first and then with the PKA.

MESSAGE CONFIDENTIALITY

Confidentiality with Symmetric-Key Cryptography

Confidentiality with Asymmetric-Key Cryptography

a. Bob's keys are used in Alice-Bob communication

MESSAGE INTEGRITY

- One way to preserve the integrity of a document is through the use of a fingerprint. If Alice needs to be sure that the contents of her document will not be illegally changed
- To preserve the integrity of a document, both the document and the fingerprint are needed
- Message and Message Digest

ACreating and Checking the Digest

- MESSAGE AUTHENTICATION
- A hash function guarantees the integrity of a message. It guarantees that the
 message has not been changed. A hash function, however, does not
 authenticate the sender of the message.
- When Alice sends a message to Bob, Bob needs to know if the message is coming from Alice or Eve. To provide message authentication. The digest created by a hash function is normally called a modification detection code (MDC).
- MAC
- To provide message authentication, we need to change a modification detection code to a message authentication code (MAC). An MDC uses a keyless hash function. A MAC uses a keyed hash function. A keyed hash function includes the symmetric keybetween the sender and receiver when creating the digest. Figure shows how Alice uses a keyed hash function to authenticate her message and how Bob can verify the authenticity of the message.

DIGITAL SIGNATURE

- A digital signature needs a public-key system.
- An electronic signature can prove the authenticity of Alice as the sender of the message. We refer to this type of signature as a digital signature.
- A digital signature needs a public-key system.
 - In a cryptosystem, we use the private and public keys of the receiver;
- in digital signature, we use the private and public keys of the sender.

- Services
- A digital signature today provides message integrity.
- Digital signature provides message authentication.
- Nonrepudiation can be provided using a trusted party s

