Resumo de aula 9 - 2/2

Derivadas de e^x e lnx.

Teorema. São válidas as fórmulas de derivação

$$(a) f(x) = e^x \Longrightarrow f'(x) = e^x$$

$$(b)g(x) = lnx \Longrightarrow g'(x) = \frac{1}{x}, \ x > 0$$

Derivadas das Funções Trigonométricas

Teorema. São válidas as fórmulas de derivação

- (a) sen'x = cosx
- (b) cos'x = -senx
- (c) $tg'x = sec^2x$
- (d) sec'x = secxtgx
- (e) $\cot g' x = -\csc^2 x$
- (f) cosec'x = -cosecx cot gx

Regras de Derivação.

Teorema. Sejam f e g derivável em p e seja k uma constante. Então as funções f + g, kf e $f \cdot g$ são deriváveis em p e têm - se

(D1)
$$(f \pm g)'(p) = f'(p) \pm g'(p)$$
.

(D2)(kf)'(p) = kf'(p)

$$(D3)(f \cdot q)'(p) = f'(p)q(p) + f(p)q'(p)$$

(D3)
$$(f \cdot g)'(p) = f'(p)g(p) + f(p)g'(p)$$

(D4)Se $g(p) \neq 0$, então $\frac{f}{g}$ será derivável em $p \in (\frac{f}{g})'(p) = \frac{g(p)f'(p) - g'(p)f(p)}{[g(p)]^2}$

Observação: A notação [f(x)]' é usada com frequencia para indicar a derivada de f(x)em x.

Exemplo 0.1. Seja $f(x) = 4x^3 + x^2$. Calcule.

- (a)f'(x)
- (b) f'(1)

Solução.

Exemplo 0.2. Calcule g'(x) onde $g(x) = 5x^4 + 4$ Solução.

Exemplo 0.3. Calcule f'(x) onde $f(x) = \frac{2x+3}{x^2+1}$ Solução.

Exemplo 0.4. Seja $f(x) = (3x^2 + 1)e^x$. Calcule f'(x) Solução.

Exemplo 0.5. Seja $f(x) = x^3 + lnx$. Calcule f'(x) Solução.

Sejam $f_1, f_2, ..., f_n, n \ge 2$, funções deriváveis em p, temos que $(f_1+f_2+...+f_n)'(p)=f_1'(p)+f_2'(p)+...+f_n'(p)$

Exemplo 0.6. Calcule a derivada.

(a)
$$f(x) = 3x^5 + \frac{1}{3}x^4 + x + 2$$

(b)
$$g(x) = x^2 + \frac{1}{x^2} + \sqrt{x}$$

Solução.

Derivadas de Ordem Superior

Sejam f uma função e A o conjunto dos x para os quais f'(x) existe. A função $f': A \longrightarrow \mathbb{R}$ dada por $x \longmapsto f'(x)$, denomina-se função derivada ou, simplesmente, derivada de f, diremos, ainda que, que f' é a derivada de f. A derivada de f. A derivada de f. A derivada de f.

A derivada de f' denomina-se derivada de $2.^a$ ordem de f e é indicada por f'' ou por $f^{(2)}$, assim, f'' = (f')'. De modo análogo, define-se as derivadas de ordem superiores a 2 de f.

Exemplo 0.7. Seja $f(x) = 3x^3 - 6x + 1$. Determine f', f''

Solução.

Exemplo 0.8. Seja $f(x) = x \ln x - \cos x$. Determine f', f''

Solução.

Notações para a derivada

Se a função vem dada por y=f(x), a notação, $\frac{dy}{dx}$ (leia: derivada de y em relação a x) é usada para indicar a derivada de f em x, ou seja, $\frac{dy}{dx}=f'(x)$.

Usaremos, ainda, a notação $\frac{df}{dx}$ para indicar a função derivada de y = f(x): $\frac{df}{dx} = f'$. A derivada de y = f(x), em x, será então indicada por $\frac{df}{dx}(x)$, ou seja, $f'(x) = \frac{df}{dx}(x)$.

Se a função f for dada por s=f(t), as notações $\frac{ds}{dt}$ e $\frac{df}{dt}(t)$ serão usadas para indicar f'(t).