第3章逻辑代数基础

Logic Algebra

逻辑代数描述了二值变量的运算规律,它是英国数学家布尔(George Boole)于1849年提出的,也称布尔代数。逻辑代数是按逻辑规律进行运算的代数,是分析和设计数字逻辑电路不可缺少的基础数学工具。

电路中的信号变量都为二值变量,只能有0、 1两种取值。

逻辑代数与算术不同。

§3.1 逻辑代数运算法则

Operations of Logic Algebra

A 的反向 运算为**A**

$$-\frac{1}{0} = 1$$

$$\bar{1} = 0$$

或运算 逻辑加

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

与运算 逻辑乘

$$\mathbf{0} \bullet \mathbf{0} = \mathbf{0}$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

1. 基本定律

每一个定律都有两种形式:逻辑加和逻辑乘。这两种形式互为"对偶式" Dual。

逻辑加 Addition 逻辑乘 Multiplication

3) 定律 3
$$A+(BC)=(A+B)(A+C)$$
; $A(B+C)=AB+AC$ (分配律)

4) 定律 4
$$A+0=A$$
, $A+1=1$; $A \cdot 0=0$, $A \cdot 1=A$ (0-1律)

5) 定律 5
$$A+\overline{A}=1$$
; $A \cdot \overline{A}=0$ (互补律)

8) De. Morgan Theorum
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$
; $\overline{AB} = \overline{A} + \overline{B}$ (摩根定理)

推论
$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$
; $\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$

2. 基本规则

1) 代入规则

等式两侧某一变量都用一个逻辑函数代入,等式仍成立。

例: 摩根定理

若
$$\overline{AX} = \overline{A} + \overline{X}$$
 $X = BC$

左侧:
$$\overline{AX} = \overline{ABC}$$
 右侧: $\overline{A} + \overline{BC} = \overline{A} + \overline{B} + \overline{C}$

有
$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$
 摩根定理推论

2) 反演规则 Complementary

将一个函数表达式 F 中所有的"与"(·)换成"或"(+),"或"(+)换成"与"(·);"0"换成"1","1"换成"0";原变量换成反变量,反变量换成原变量,则所得到的逻辑函数即F的反函数,表达式为 \overline{F} 。

 \overline{F} 称为函数 F 的反函数。如果 F 成立, \overline{F} 也成立。

注意: 运算顺序不变

例 已知
$$F = A(B + \overline{C}) + CD$$
, 求 \overline{F}

解:
$$\overline{F} = (\overline{A} + \overline{B}C)(\overline{C} + \overline{D})$$

3) **对偶规则** Duality

若 F 为一逻辑函数, 如果将该函数表达式中所有

则所得到的逻辑函数即F的对偶式,表达式为F'。

如果 F 成立, F' 也成立

例: **已知** $F = A(B + \overline{C}) + CD$ 分别求 F' 和 F

解:
$$F' = (A+B\overline{C})(C+D)$$

$$\overline{\mathbf{F}} = (\overline{\mathbf{A}} + \overline{\mathbf{B}}\mathbf{C})(\overline{\mathbf{C}} + \overline{\mathbf{D}})$$

3. 常用公式

iII:
$$A+AB = A(1+B) = A$$

2)
$$AB + A\overline{B} = A;$$
 $(A + B)(A + \overline{B}) = A$

$$\overline{\mathbb{H}}$$
: $AB+A\overline{B}=A(B+\overline{B})=A$

3)
$$A+\overline{A}B = A+B;$$
 $A(\overline{A}+B)=AB$

$$A+\overline{A}B = (A+\overline{A})(A+B) = A+B$$

4)
$$AB+\overline{A}C+BC = AB+\overline{A}C;$$
 $(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$ 冗余定理

证:

$$AB+\overline{A}C+BC = AB+\overline{A}C+(A+\overline{A})BC = AB+\overline{A}C+ABC+\overline{A}BC$$

$$=AB+\overline{A}C$$

推论: $AB + \overline{AC} + BCDE = AB + \overline{AC}$

5) 异或公式 (XOR)
$$A \oplus B = \overline{A \odot B}$$

$$\overrightarrow{\mathbf{M}}$$
: $AB + \overline{AB} = \overline{AB} + \overline{AB}$

$$A \oplus A = 0$$
, $A \oplus \overline{A} = 1$, $A \oplus 0 = A$, $A \oplus 1 = \overline{A}$

6) 异或的因果关系 Causality

如果
$$A \oplus B \oplus C = D$$

则
$$\begin{cases} A \oplus B \oplus D = C; \\ A \oplus C \oplus D = B; \\ B \oplus C \oplus D = A; \end{cases}$$

多变量异或,变量为1的个数为奇数,异或结果为1;1的个数为偶数,结果为0;与变量为0的个数无关。

§3.2 逻辑函数的标准形式

Standard Forms of Logic Function

3.2.1 最小项及标准与或式

1. 最小项(标准与项) Minterms (Standard Product Form)

与项定义为字母(原变量或其反变量)的逻辑乘项

 \overline{AB} \overline{BCD} \overline{AE}

最小项 (标准与项): n 变量函数, n 变量组成的与项中,每个变量都以原变量或反变量形式出现一次,且只出现一次。

n 个变量 \longrightarrow 2^n 个最小项

例如: 3 变量 A, B, C, 有 2³ = 8 个最小项:

 $\overline{A} \cdot \overline{B} \cdot \overline{C} \quad \overline{A} \cdot \overline{B}C \quad \overline{A}B\overline{C} \quad \overline{A}BC$

 $A\overline{B} \cdot \overline{C} A\overline{B}C AB\overline{C} AB\overline{C}$

2. 最小项真值表

变量 A]	量 B	<u>C</u>	最	小项	— <u>—</u> 4ВС	\overline{ABC}	A B C	A BC	ABC	ABC	ABC	Z ABC
0	0	0			1	0	0	0	0	0	0	0
0	0	1			0	1	0	0	0	0	0	0
0	1	0			0	0	1	000	0	0	0	0
0	1	1			0	0	000	1	0	0	0	0
1	0	0			0	0	0	0	1	0	0	0
1	0	1		1000)	0	0	0	0	0	1	0	0
1	1	0			0	0	0	0	0	0	1	0
1	1	1			0	0	0	0	0	0	0	1

当ABC取某一组值时,只有一个最小项值为1, 其他都等于0

7. 最小项真值表 例: ABC = 1 ABC: 010 010 = 2 所以 \overline{ABC} 的编号为 m_2

亦	异	最/	小 项编号	号 m _o	\mathbf{m}_1	m_2	m_3	m_4	m_5	m_6	$\overline{\mathbf{m}}_{7}$
A]	≡ B_	$\mathbf{C}^{\mathbf{J}}$	最小项	\overline{ABC}	A BC	ĀBC	ABC	$A\overline{B}\overline{C}$	\overline{ABC}	ABC	C ABC
0	0	0		1	0	0	0	0	0	0	0
0	0	1		0	1	0	0	0	0	0	0
0	1	0		0	0	100	0	0	0	0	0
0	1	1		0	0	0	1	0	0	0	0
1	0	0		0	0	0	0	1	0	0	0
1	0	1	choo	0	0	0	0	0	1	0	0
1	1	0		0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	0	1

最小项编号 m_i : 使某一最小项为 1 时, 变量取值的二进制数对应的十进制数为此最小项的编号

例:

2 变量 A, B:
$$m_1 = \overline{AB}$$
, $m_3 = AB$

4 变量 A, B, C, D:
$$m_1 = \overline{A} \ \overline{B} \ \overline{CD}$$
 $m_5 = \overline{ABCD}$
 $m_{13} = \overline{ABCD}$

- 1: 变量 变量取 1 对应于原变量
- 0: 反变量 变量取 0 对应于反变量

注意:字母的排列顺序

3. 标准与或式 Standard sum of products form

$$F = \overline{AB} + A\overline{C} + A\overline{BC}$$
 与或式

与或式说明, 变量取何值时, 函数 F=1

如果一个与或式函数的每个与项都是最小项,这个函数称为标准与或式

例:

$$F_{1}(A,B,C) = \overline{A}B\overline{C} + AB\overline{C} + \overline{A}BC + ABC$$

$$= m_{2} + m_{6} + m_{3} + m_{7}$$

$$= \sum_{1} m(2,3,6,7)$$
标准与或式

m 可以忽略

例 1: 将下列函数写成标准与或式:

$$F_{1}(A,B,C) = AB + BC + AC$$

$$= AB(C + \overline{C}) + BC(A + \overline{A}) + AC(B + \overline{B})$$

$$= ABC + AB\overline{C} + \overline{ABC} + A\overline{BC}$$

$$= m_{7} + m_{6} + m_{3} + m_{5}$$

$$= \sum m(3,5,6,7)$$
标准与或式

注: F(A,B,C) 必须写全,涉及字母顺序即最小项编号

3.2.2 最大项及标准或与式

和项(或项) 定义为字母(原变量或反变量)的逻辑加项.

$$A+B$$
 $\overline{A}+B+\overline{C}$ $\overline{D}+E+F$

1. 最大项 Maxterms

n 变量组成的或项中,每个变量都以原变量或反变量的形式出现一次,且只出现一次,此或项为最大项,也称为标准或项(Standard Sum Terms)。

n 个变量 $\Longrightarrow 2^n$ 个最大项

三变量最大项真值表

李	量	ı								
			A + B +	$C, A+B+\overline{C}$	$A + \overline{B} + \overline{B}$	$-C, A + \overline{B} + \overline{C}$	$\overline{A} + B + 0$	$C, \overline{A} + B + \overline{C}$	$\overline{S}, \overline{A} + \overline{B} + \overline{G}$	$C, \overline{A} + \overline{B} + \overline{C}$
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	doic	1	1	1
0	1	1	1	1	1	0/60	1	1	1	1
1	0	0	1	1	1	icrol	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	school	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

当 ABC 取某一组值时, 只有一个最大项值为0, 其他都 等于1

18

三变量最大项真值表

<u> ক্রা</u>	量		M_0	\mathbf{M}_{1}	M_2	M_3	M_4	M_{5}	M_{6}	M_{7}
		\boldsymbol{C}	A+B+C	C , $A + B + \overline{C}$,	$A + \overline{B} + C$	$A + \overline{B} + \overline{C}$	$, \overline{A} + B + C,$	$\overline{A} + B + \overline{C}$,	$\overline{A} + \overline{B} + C$,	$\overline{A} + \overline{B} + \overline{C}$
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	anics.	1	1	1
0	1	1	1	1	1	0/60	1	1	1	1
1	0	0	1	1	1,110	1	0	1	1	1
1	0	1	1	1	01	1	1	0	1	1
1	1	0	1	school	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

使某一最大项为0时, A、B、C 取值的二进制数对应的十进制数为此最大项的编号: M_i

3 变量 A, B, C 例:

$$M_2 = A + \overline{B} + C$$
 (010) $\notin A + \overline{B} + C = 0$
 $M_4 = \overline{A} + B + C$

4 变量
$$A,B,C,D$$
 $M_2=A+B+\overline{C}+D$
$$M_{10}=\overline{A}+B+\overline{C}+D$$
 注意: 最大项
$$\begin{cases} 0 & \Leftrightarrow \text{原变量} \\ 1 & \Leftrightarrow \text{反变量} \end{cases}$$

2. 标准或与式 Standard Product of Sums

$$F = (A + \overline{B})(B + C)$$
 或与式

或与式说明,变量取何值时,函数 F=0

每个或项都是最大项称为标准或与式

例: 任何一个括号等于0, F₂等于0

$$F_2(A,B,C) = (A+B+C)(A+B+\overline{C})(\overline{A}+B+C)(\overline{A}+B+\overline{C})$$
0 0 0 0 1 1 0 1
$$= M_0 \cdot M_1 \cdot M_4 \cdot M_5$$

$$= \prod M(0,1,4,5)$$
M可以忽略

3.2.3 两种标准式间的关系

1) 最小项和最大项互为反函数

$$\overline{m_i} = M_i$$
 $F(A,B,C)$: $\overline{m_1} = \overline{A} \ \overline{B} \ C = A + B + \overline{C} = M_1$ $\overline{M_j} = m_j$ 最小项编号 最大项编号

2) 不在最小项中出现的编号,一定出现在最大项的编号中

$$F(A,B,C) = \Sigma \text{ m } (2,3,5,6,7)$$
 F₁ 与或式 = $\Pi \text{ M } (0,1,4)$ F₂ 或与式

ABC	F F_1 F_2	$- F = F_1 = F_2$
0 0 0	0 \mathbf{M}_{0}	
0 0 1	0 \mathbf{M}_{1}	F_1 说明函数何时为 1
0 1 0	1 m ₂	F_2 说明函数何时为 0
0 1 1	1 m ₃	
1 0 0	0 M	4 标准与或式和标准或
1 0 1	1 m ₅	与式是一个逻辑关系的
1 1 0	1 m ₆	两种表达方式
1 1 1	1 m ₇	

§3.3 逻辑函数的公式化简

Simplification Using Logic Algebra

一个逻辑函数有多种表达形式

例如: $F = XY + \overline{Y}Z$ 与或式 $= (X + \overline{Y})(Y + Z)$ 或与式 $= \overline{XY} \cdot \overline{\overline{Y}Z}$ 与非-与非式

= XY+Y Z 与或非式

上面五种都是最简表达式

化简目的: 少用元件完成同样目的,降低成本。

例: 用门电路实现下列函数

$$F_1 = \overline{A}B + B + A\overline{B}$$

$$F_2 = A + B$$

$$\begin{array}{c|c}
A & & \\
B & & \\
\end{array}$$

公式法化简 (Laws, Theorems, Formula)

例1: 用公式法化简下式

$$F = A\overline{B} + \overline{AC} + \overline{BC}$$

$$= A\overline{B} + \overline{AC} \cdot \overline{BC}$$

$$= A\overline{B} + (A + \overline{C})(B + \overline{C})$$

$$= A\overline{B} + AB + A\overline{C} + B\overline{C} + \overline{C}$$

$$= A + \overline{C}$$

方法二

$$= \overline{AB} + \overline{(A + B)C}$$

$$= \overline{AB} + \overline{A} + \overline{B} + \overline{C}$$

$$= \overline{AB} + \overline{AB} + \overline{C}$$

例 2: 用公式法化简下式

$$F = \overline{ABC} + \overline{ABC} + \overline{DE}(B+G) + \overline{D} + (\overline{A}+B)D + \overline{ABCDE} + \overline{ABDEG}$$

$$= \overline{AB} + \overline{D} + \overline{ABD}$$

$$= \overline{AB} + \overline{D} + \overline{ABD}$$

$$= \overline{AB} + \overline{D} + \overline{D} + \overline{D} + \overline{AD} + BD$$

$$= \overline{AB} + \overline{D} + \overline{AD} + B$$

例 3: 将下列函数化简成最简或与式。

$$G = (A + B + \overline{C})(A + B)(A + \overline{C})(B + \overline{C})$$

解: 对偶关系

$$G' = AB\overline{C} + AB + A\overline{C} + B\overline{C}$$
$$= AB + A\overline{C} + B\overline{C}$$
$$G = (A + B)(A + \overline{C})(B + \overline{C})$$

例 4:

课堂练习

用公式法化简下式

$$F_{1}(A, B, C) = \overline{A}BC + \overline{B} + \overline{C}$$

$$= \overline{A} + \overline{B} + \overline{C}$$

$$F_{2}(A, B, C, D) = AC + \overline{A} + \overline{C} + \overline{A}\overline{B}C + ABD$$

$$= 1$$

$$F_{3}(A, B) = A \oplus A\overline{B}$$

$$= \Delta B$$

作业:

- 3.8 (1, 2, 3, 8, 9, 10, 11, 18, 19, 20)
- 3.11 (1, 3, 7)
- 3.12 (1, 3, 5)
- 3.15 (1, 3, 6)
- 3.18(1, 3, 7)
- 3.19(1,3)

- 3.20
- 3.21(1,3,5)
- 3.22(1,3,5)
- 3.23(2)
- 3.24(2)