MetaQuant: Learning to Quantize by Learning to Penetrate Non-differentiable Quantization

Chen Shangyu

October 15, 2019

Overview

- Motivation
- 2 MetaQuant
- 3 Experiment
- 4 Conclusion

Motivation

 Traditional training-based quantization replies on Straight-Through-Estimator (STE) en enable training:
 Forward:

$$\ell = \mathsf{Loss}(f(Q(\mathbf{W}); \mathbf{x}), y) \tag{1}$$

Backward:

$$\frac{\partial Q(r)}{\partial r} = \begin{cases} 1 & \text{if} & |r| \le 1 \\ 0 & \text{else.} \end{cases}$$
 (2)

 Gradient Mismatch: the gradients of the weights are not generated using the value of weights, but rather its quantized value.

Chen Shangyu (NTU)

Motivation (Cont.)

- We propose to learn $\frac{\partial Q(\mathbf{W})}{\partial \mathbf{W}}$ by a neural network (\mathcal{M}) during quantization training.
- M is called meta quantizer and is trained together with the base quantized model.
- \mathcal{M} takes $\frac{\partial L}{\partial Q(\mathbf{W})}$ and \mathbf{W} as inputs in a coordinate-wise manner, then its output is assigned to $\frac{\partial L}{\partial \mathbf{W}}$ for weights update using common optimization methods such as SGD and Adam.

MetaQuant

Figure: Overflow of MetaQuant

5 / 14

MetaQuant (Cont.)

dorefa:

$$\tilde{\mathbf{W}} = \mathcal{A}(\mathbf{W}) = \frac{\tanh(\mathbf{W})}{2\max(|\tanh(\mathbf{W})|)} + \frac{1}{2}, \tag{3}$$

$$\hat{\mathbf{W}} = Q(\tilde{\mathbf{W}}) = 2 \frac{\text{round}\left[(2^k - 1)\tilde{\mathbf{W}}\right]}{2^k - 1} - 1.$$
 (4)

BWN:

$$\tilde{\mathbf{W}} = \mathcal{A}(\mathbf{W}) = \mathbf{W}, \tag{5}$$

$$\hat{\mathbf{W}} = Q(\tilde{\mathbf{W}}) = \frac{1}{n} ||\tilde{\mathbf{W}}||_{I_1} \times \operatorname{sign}(\tilde{\mathbf{W}}).$$
 (6)

Incorporation of Meta Quantizer in Base Training

Figure: Incorporation of meta quantizerinto quantization training

Training of Meta Quantizer

Forward:

$$\tilde{\mathbf{W}}^{t} = \mathcal{A}(\mathbf{W}^{t}) = \mathcal{A}\left[\mathbf{W}^{t-1} - \alpha \times \pi(\mathcal{M}_{\phi}(\mathbf{g}_{\hat{\mathbf{W}}}^{t-1}, \tilde{\mathbf{W}}^{t-1}) \frac{\partial \tilde{\mathbf{W}}^{t-1}}{\partial \mathbf{W}^{t-1}})\right],$$

$$\ell = \operatorname{Loss}\left\{f\left[Q(\tilde{\mathbf{W}}^{t}); \mathbf{x}\right], y\right\}, \tag{7}$$

Backward:

$$\frac{\partial L}{\partial \phi^t} = \frac{\partial L}{\partial \tilde{\mathbf{W}}^t} \frac{\partial \tilde{\mathbf{W}}^t}{\partial \phi^t} = \mathcal{M}_{\phi}(\mathbf{g}_{\hat{\mathbf{W}}^t}, \tilde{\mathbf{W}}^t) \frac{\partial \tilde{\mathbf{W}}^t}{\partial \phi^t}.$$
 (8)

Chen Shangyu (NTU)

Design of Meta Quantizer

$$extsf{FCGrad}: \mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}) = extsf{FCs}(\phi, \sigma, g_{\hat{\mathbf{W}}}),$$

$$\texttt{MultiFC}: \qquad \mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}, \tilde{\mathbf{W}}) = g_{\hat{\mathbf{W}}} \cdot \mathsf{FCs}(\phi, \sigma, \tilde{\mathbf{W}}).$$

$$\texttt{LSTMFC}: \qquad \mathcal{M}_{\phi}(g_{\hat{\mathbf{W}}}, \hat{\mathbf{W}}) = g_{\hat{\mathbf{W}}} \cdot \mathsf{FCs}(\phi_{FCs}, \sigma, (\mathsf{LSTM}(\phi_{LSTM}, \hat{\mathbf{W}}))).$$

Experiments: CIFAR10

Network	Forward	Backward	Optimization	Test Acc (%)	FP Acc (%)
ResNet20	dorefa	STE	-	80.745(2.113)	91.5
		MultiFC	SGD	88.942(0.466)	
		LSTMFC		88.305(0.810)	
		FCGrad		88.840(0.291)	
		STE		89.782(0.172)	
		MultiFC	Adam	89.941(0.068)	
		LSTMFC		89.979(0.103)	
		FCGrad		89.962(0.068)	
	BWN	STE		75.913(3.495)	
		LSTMFC	SGD	89.289(0.212)	
		FCGrad		88.949(0.231)	
		STE		89.896(0.182)	
		LSTMFC	Adam	90.036(0.109)	
		FCGrad		90.042(0.098)	

Experiments: CIFAR100

Network	Forward	Backward	Optimization	Test Acc (%)	FP Acc (%)
ResNet56	dorefa	STE		42.265(8.143)	71.22
		MultiFC	SGD	65.791(0.415)	
		LSTMFC		63.645(2.183)	
		FCGrad		64.351(0.935)	
		STE		66.419(0.533)	
		MultiFC	Adam	66.588(0.375)	
		LSTMFC		66.483(0.793)	
		FCGrad		66.564(0.351)	
	BWN	STE		34.479(11.737)	
		LSTMFC	SGD	63.346(2.253)	
		FCGrad		64.402(1.434)	
		STE		64.297(1.309)	
		LSTMFC	Adam	66.584(0.349)	
		FCGrad		67.018(0.329)	

Experiments: ImageNet

Network	Forward	Backward	Optimization	FP Top1/Top5(%)	Quant Top1/Top5 (%)
ResNet18	dorefa	STE MultiFC FCGrad	Adam	67.756/88.224*	58.349(2.072)/81.477(1.567) 59.472(0.025)/82.410(0.010) 59.835(0.359)/82.671(0.232)
	BWN	STE MetaQuant	SGD-M		59.426/83.000 61.436/83.912

Table: Experimental result of MetaQuant and STE using dorefa, BWN on ImageNet. *: Full-Precision accuracy is slightly lower than the reported number in torchvision for we use Imdb format to read in data for efficient process, which brings in a slight drop.

Convergence

Figure: Convergence speed of MetaQuant V.S STE using SGD/Adam in ResNet20, CIFAR10, dorefa.

Conclusion

- To learn the gradient for penetration of the non-differentiable quantization function in training-based quantization by a meta quantizer.
- This meta network is general enough to be incorporated into various base models and can be updated using the loss of the base models.