Лабораторная работа №6

Модель «хищник-жертва»

Алиева Милена Арифовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16

Список иллюстраций

Задание переменных окружения в хсоз для модели	8
Модель «хищник-жертва» в хсоз	8
Динамика изменения численности хищников и жертв модели	
Лотки-Вольтерры при $a=2,b=1,c=0.3,d=1,x(0)=$	
$2, y(0) = 1 \dots \dots$	9
Фазовый портрет модели Лотки-Вольтерры при $a=2, b=1, c=1$	
0.3, d = 1, x(0) = 2, y(0) = 1	10
Задание начальных значений в блоках интегрирования	11
Задание начальных значений в блоках интегрирования	11
Модель «хищник–жертва» в xcos с применением блока Modelica .	12
Параметры блока Modelica для модели "хищник–жертва"	13
Динамика изменения численности хищников и жертв модели	
Лотки-Вольтерры при $a=2,b=1,c=0.3,d=1,x(0)=$	
$2, y(0) = 1 \dots \dots$	14
Фазовый портрет модели Лотки-Вольтерры при $a=2, b=1, c=1$	
0.3, d = 1, x(0) = 2, y(0) = 1	14
Динамика изменения численности хищников и жертв модели	
Лотки-Вольтерры при $a=2,b=1,c=0.3,d=1,x(0)=$	
$2, y(0) = 1 \dots \dots$	15
	Модель «хищник-жертва» в хсоз

Список таблиц

1 Цель работы

Реализовать модель "хищник-жертва" в *хсоѕ*

2 Задание

- 1. Реализовать модель "хищник-жертва" в хсоѕ
- 2. Реализовать модель "хищник-жертва" с помощью блока Modelica в хсоз
- 3. Реализовать модель "хищник-жертва" в OpenModelica

3 Выполнение лабораторной работы

1. Модель «хищник-жертва» (модель Лотки — Вольтерры) представляет собой модель межвидовой конкуренции. В математической форме модель имеет вид:

$$\begin{cases} \dot{x} = ax - bxy \\ \dot{y} = cxy - dy, \end{cases}$$

где x — количество жертв; y — количество хищников; a,b,c,d — коэффициенты, отражающие взаимодействия между видами: a — коэффициент рождаемости жертв; b — коэффициент убыли жертв; c — коэффициент рождения хищников; d — коэффициент убыли хищников. Зафиксируем начальные данные: $a=2,\,b=1,\,c=0.3,\,d=1,\,x(0)=2,\,y(0)=1$. В меню Моделирование, Задать переменные окружения зададим значения коэффициентов $a,\,b,\,c,\,d$ (рис. 3.1).

Рис. 3.1: Задание переменных окружения в хсоз для модели

Для реализации модели "хищник-жертва" в дополнение к блокам CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f потребуется блок CSCOPXY — регистрирующее устройство для построения фазового портрета. В параметрах блоков интегрирования необходимо задать начальные значения x(0)=2, y(0)=1. Готовая модель «хищник-жертва» представлена на рис. 3.2.

Рис. 3.2: Модель «хищник-жертва» в хсоѕ

2. В меню Моделирование, Установка необходимо задать конечное время

интегрирования, равным времени моделирования: 30.

Результат моделирования представлен на рис. 3.3. Черной линией обозначен график x(t) (динамика численности жертв), зеленая линия определяет y(t) — динамику численности хищников

Рис. 3.3: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

На рис. 3.4 приведён фазовый портрет модели Лотки-Вольтерры.

Рис. 3.4: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

3. В параметрах верхнего и среднего блока интегрирования необходимо задать начальные значения s(0)=0,999 и i(0)=0,001 (рис. 3.5,3.6).

·	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	2
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Рис. 3.5: Задание начальных значений в блоках интегрирования

Рис. 3.6: Задание начальных значений в блоках интегрирования

4. Реализуем модели с помощью блока Modelica в xcos. Для реализации модели с помощью языка Modelica потребуются следующиеблоки *xcos*: CLOCK_c, CSCOPE, CSCOPXY, TEXT_f, MUX, CONST_m и MBLOCK (Modelica generic).

Рис. 3.7: Модель «хищник-жертва» в хсоз с применением блока Modelica

Рис. 3.8: Параметры блока Modelica для модели "хищник-жертва"

В результате моделирования получаем следующие графики (рис. 3.9, 3.10). Они идентичны построенным без блока Modelica.

Рис. 3.9: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1

Рис. 3.10: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

5. Реализуем модель «хищник – жертва» в OpenModelica. Построим графики изменения численности популяций и фазовый портрет.

parameter Real a = 2; parameter Real b = 1;

```
parameter Real c = 0.3;
parameter Real d = 1;
parameter Real x0 = 2;
parameter Real y0 = 1;

Real x(start=x0);
Real y(start=y0);
equation
    der(x) = a*x - b*x*y;
    der(y) = c*x*y - d*y;
```

Выполним симуляцию, поставим конечное время 30с. Получим график изменения численности хищников и жертв (рис. 3.11).

Рис. 3.11: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

4 Выводы

В процессе выполнения данной лабораторной реализована модель "хищникжертва" в xcos.