

# RDA: Reciprocal Distribution Alignment for Robust Semi-supervised Learning

Yue Duan<sup>1</sup>, Lei Qi<sup>2</sup>, Lei Wang<sup>3</sup>, Luping Zhou<sup>4</sup>, and Yinghuan Shi<sup>1</sup>

<sup>1</sup> Nanjing University, China <sup>2</sup> Southeast University, China <sup>3</sup> University of Wollongong, Australia <sup>4</sup> University of Sydney, Australia

## Introduction

Lately, confidence-based pseudo-labeling [1,2] and distribution alignment [2,3,4] have been introduced to SSL, boosting the performance to a new height. FixMatch [1] utilizes the confidence-based threshold to select more accurate pseudo-labels and proves the superiority of this technique. Despite this threshold preventing the model from risk of noisy pseudo-labels, since the learning difficulties of different classes are different, a fixed threshold is not a "silver bullet" for all scenarios of SSL. We try to ask — is the confidence-based threshold really necessary for pseudo-labeling? Motivated by this, we rethink pseudo-labeling in a hyperparameter-free way while noticing that **distribution alignment (DA)** has been introduced to SSL [2,4]. We consider only using DA to improve the pseudo-labels without additional hyperparameters, i.e., DA is enough for pseudo-labeling. However, original DA is based on a strong assumption: "labeled data and unlabeled data share the same distribution". Thus, we have the following motivations:

## Motivation

- **◆**Improve pseudo-label quality by using only distribution alignment without introducing confidence threshold.
- ◆Distribution alignment fails in mismatched distribution scenarios.
- **◆**Explore a more general distribution alignment to meet the challenge of mismatched distributions.

## Method



#### **Reciprocal Distribution Alignment (RDA)**

We use ground-truth label y and complementary label  $\overline{y}$  (selected randomly from classes excluding ground-truth label) of labeled data to train Default Classifier  $\mathcal{D}$  and Auxiliary Classifier  $\mathcal{A}$ , respectively. Given an unlabeled sample u,  $\mathcal{D}$  predicts pseudo-label p and  $\mathcal{A}$  predicts complementary label q for its weakly-augmented version.  $\mathbf{RDA}$  is applied on p and q by reciprocally scaling each other to the distributions of their reversed versions obtained by Reverse Operation (Proposition 1). We then enforce consistency regularization on the aligned pseudo-label and complementary label against corresponding predictions for strongly-augmented u, i.e.,  $p_s$  (from  $\mathcal{D}$ ) and  $q_s$  (from  $\mathcal{A}$ ).

#### Theoretical Analysis

**Proposition 1** (*Reverse Operation*). In the case of using  $\mathcal{A}$  to predict pseudo-labels, we have  $\overline{q} = Norm(q)$ , where Norm(x) is the normalized operation.

**Theorem 1**. For pseudo-label p and the reversed pseudo-label p obtained by *Reverse Operation*, we show that the entropy of  $\overline{p}$  is larger than that of  $p: \mathcal{H}(\overline{p}) \geq \mathcal{H}(p)$ , where  $\mathcal{H}(\cdot)$  refers to the entropy.

# Experiments

| Method                                 |                                       | CIFAR-10                               |                                    |                                  |    |                                      | mini-ImageNet   STL-10 |                                          |  |
|----------------------------------------|---------------------------------------|----------------------------------------|------------------------------------|----------------------------------|----|--------------------------------------|------------------------|------------------------------------------|--|
|                                        | 20 labels                             | 40 labels                              | 80 labels                          | 100 labels                       |    | 1000 labels                          |                        | 1000 labels                              |  |
| MixMatch*                              | $27.84 \pm 10.63$                     | $51.90 \pm 11.76$                      | $80.79 \pm 1.28$                   | -                                |    | -                                    |                        | $38.02 \pm 8.29$                         |  |
| $\frac{\text{AlphaMatch}^{\dagger}}{}$ |                                       | $91.35 \pm 3.38$                       | -                                  |                                  | Ι. |                                      |                        |                                          |  |
| FixMatch<br>CoMatch                    | $84.97 \pm 10.37$<br>$88.43 \pm 7.22$ | $89.18 {\pm} 1.54 \\ 93.21 {\pm} 1.55$ | $91.99 \pm 0.71 \\ 94.08 \pm 0.31$ | $93.14\pm0.76$<br>$94.55\pm0.27$ |    | $39.03 \pm 0.66$<br>$43.72 \pm 0.58$ |                        | $65.38 \pm 0.42^*$<br>$79.80 \pm 0.38^*$ |  |
| RDA                                    | $92.03{\pm}2.01$                      | $94.13{\pm}1.22$                       | $94.24 {\pm} 0.42$                 | $94.35 \pm 0.25$                 |    | $46.91{\pm}1.16$                     |                        | $82.63{\pm}0.54$                         |  |

Tab. 1 Accuracy (%) in the conventional matched SSL setting.

|                                                                                           |                                              |                                                    |                                          |                                          |                         | ~ //// ~                         |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------|----------------------------------|--|--|
| $egin{array}{ccc} & &   & & & \\ Method & & &   & & \\ & & & & & \\ & & & & & \\ & & & &$ | CIFAR-10                                     |                                                    |                                          |                                          |                         | mini-ImageNet                    |  |  |
|                                                                                           | 40 labels, $N_0 = 10$ 100 labels, $N_0 = 40$ |                                                    | s, $N_0 = 40$                            |                                          | 1000 labels, $N_0 = 40$ |                                  |  |  |
|                                                                                           | $\gamma = 2$                                 | 5                                                  | 5                                        | 10                                       |                         | 10                               |  |  |
| FixMatch<br>RDA                                                                           | $74.97 \pm 5.80$<br>$88.58 \pm 4.05$         | $64.62{\pm}6.13$<br><b>79.90</b> $\pm$ <b>2.80</b> | $58.72 \pm 3.61$ <b>79.33</b> $\pm 1.37$ | $57.49 \pm 4.56$ <b>70.93</b> $\pm 2.91$ |                         | $21.40\pm0.53$<br>$25.99\pm0.19$ |  |  |
|                                                                                           |                                              |                                                    |                                          |                                          |                         | r                                |  |  |

Tab. 3 Accuracy (%) with mismatched and imbalanced  $C_x$ ,  $C_u$ .

|          |                  | CIFAR-10               | STL-10 $(\gamma_l \neq \gamma_u)$ |                        |                  |                    |
|----------|------------------|------------------------|-----------------------------------|------------------------|------------------|--------------------|
| Method   | $\gamma_u = 1$   | 50                     | 150                               | 100 (reversed)         | $\gamma_l = 10$  | 20                 |
| FixMatch |                  | $73.90 \pm 0.25$       | $69.60 \pm 0.60$                  | $65.50 \pm 0.05$       | $72.90 \pm 0.09$ | $63.40 \pm 0.21$   |
| DARP     | $85.40 \pm 0.55$ | $77.30 \pm 0.17$       | $72.90 \pm 0.24$                  | $74.90 \pm 0.51$       | $77.80\pm0.33$   | $69.90 \pm 0.40$   |
| RDA      | $93.35{\pm}0.24$ | $\bf 79.77 {\pm} 0.06$ | $\bf 74.48 {\pm} 0.24$            | $\bf 79.25 {\pm} 0.52$ | $87.21 \pm 0.44$ | $83.21 {\pm} 0.52$ |

Tab. 4 Accuracy (%) under DARP's protocol.

|                | CIFAR-10         |                  |                  |                  | CIFA             | R-100                       | mini-ImageNet      |                  |  |
|----------------|------------------|------------------|------------------|------------------|------------------|-----------------------------|--------------------|------------------|--|
| Method         | 40 labels        |                  | 100 labels       |                  | 400 labels       | 1000 labels                 | 1000 labels        |                  |  |
|                | $N_0 = 10$       | 20               | 40               | 80               | 40               | 80                          | 40                 | 80               |  |
| FixMatch       | $85.72 \pm 0.93$ | $76.53 \pm 3.03$ | $93.01 \pm 0.72$ | $71.57 \pm 1.88$ | $25.66 \pm 0.46$ | $\overline{40.22 \pm 1.00}$ | $36.20\pm0.36$     | $28.33 \pm 0.41$ |  |
| FixMatch w. DA | $71.23 \pm 1.25$ | $47.85 \pm 1.99$ | $56.78 \pm 1.28$ | $34.18 \pm 0.86$ | $22.66 \pm 1.53$ | $31.06 \pm 0.51$            | $33.87 \pm 0.40$   | $23.53 \pm 0.72$ |  |
| CoMatch        | $60.27 \pm 3.22$ | $39.48 \pm 2.20$ | $52.82 \pm 2.03$ | $26.91 \pm 0.75$ | $23.97 \pm 0.62$ | $28.35 \pm 1.20$            | $30.24 \pm 1.37$   | $21.47 \pm 0.86$ |  |
| RDA            | $92.57{\pm}0.53$ | $81.78 \pm 6.44$ | $94.23{\pm}0.36$ | $79.00{\pm}2.67$ | $30.86 \pm 0.78$ | $\overline{41.29 \pm 0.43}$ | $ 42.73{\pm}0.84 $ | 36.73±1.0        |  |

Tab. 2 Accuracy (%) in the mismatched scenario with imbalanced  $C_x$  and balanced  $C_y$ .



Fig. 1 (x, y, z): (labels,  $N_0, \gamma$ ,). (a), (c), (e) and (g): Distribution of labels. (b), (d), (f) and (h): Probability density of confidence scores.

# Conclusion

First, we describe a scenario that has not been discussed extensively by recently-proposed SSL work: **mismatched distributions**. Second, we improve distribution alignment by proposed **RDA** so that this technique could be applied into mismatched scenario safely. Then we show *RDA results in a form of maximizing the input-out mutual information without any prior information*. Finally, we demonstrate that our method outperforms existing baselines significantly under various scenarios.

Acknowledgements. This work is supported by projects from NSFC Major Program (62192783), CAAI-Huawei MindSpore (CAAIXSJLJJ-2021-042A), China Postdoctoral Science Foundation (2021M690609), Jiangsu NSF (BK20210224), and CCF-Lenovo Bule Ocean. Thanks to Prof. Penghui Yao's helpful discussions.

### References

- [1] Sohn, K., Berthelot, D., Li, C.L., Zhang, Z., Carlini, N., Cubuk, E.D., Kurakin, A., Zhang, H., Raffel, C.: Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In: NeurIPS (2020)
- [2] Li, J., Xiong, C., Hoi, S.C.: Comatch: Semi-supervised learning with contrastive graph regularization. In: ICCV (2021)
- [3] Bridle, J.S., Heading, A.J., MacKay, D.J.: Unsupervised classifiers, mutual information and "phantom targets". In: NeurIPS (1992)
- [4] Berthelot, D., Carlini, N., Cubuk, E.D., Kurakin, A., Sohn, K., Zhang, H., Raffel, C.: Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring. In: ICLR (2020)