	QUEUING THEORY
#	RECAP
1	poisson process 21
-	$\stackrel{\sim}{=} \lambda_1 + \lambda_2$
	ne poisson process
	2 poisson processes
	birth-death process
-	3 3
	$\frac{1}{2}$
	ù ù ù
	Station: # of customers / packets in the system.
	State 11. 4 of Costolivers Paches
	Albic/D/E
	AIBICIUIL
	A-arrival process (2) mean
	B- Service process (mean 11)
	D- # max of customers/packets (buffersize)
	U t
	E - population size that will need service
	A/B/C A/B/C/D
	$ \begin{array}{c} E = \infty \\ \end{array} $
	p - 00
	M/M/1 cone server
	arrival process the service process
_	is memoryless is memory less
	Cocission arrival with Coxponential with service

rate m

arrival rate 2)

Date 24.8. 2020
Page 3

$$0 \quad g = 0.1 \quad \lambda = 9 \quad \text{customers/min}$$

$$\omega = \frac{L}{2} = \frac{g}{1 - g} \times \frac{1}{\lambda} = \frac{0.1}{0.9} \times \frac{1}{9} = \frac{1}{31} \text{ mins.}$$

$$0 \quad \lambda = 9 \quad \text{customers/min} \qquad M = 10 \quad \text{customers/min.}$$

$$1 = \frac{0.9}{0.1} = 9 \quad \omega = \frac{L}{\lambda} = \frac{9}{9} = 1 \quad \text{min} \quad \frac{W = \omega_0 + \omega_0 \text{sun}}{1 - L_2 + L_0 \text{sun}}$$

$$1 = \frac{1}{49} \quad \omega = \frac{L}{\lambda} = \frac{\lambda}{1} = \frac{1}{4} = \frac{1}$$

$$\frac{\partial}{\partial t} = \frac{\partial P_{N}(t)}{\partial t} = -(4t)P_{N} + \lambda P_{N-1}$$

$$\frac{\partial}{\partial t} = \frac{\lambda}{u} P_{N-1}$$

dPn= (t) = 0 - (2+m) PN-1 + 2PN-2 + MPN $P_n = P_0$ P_0 P_0 P_0 $\frac{1}{1000} = 1$ $\frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} = 1$ QUIZ PN blocking probability mon. / thu. on moodle M/m/m M/m/m gllabus: porob. theory, m/m/1