Problem Set 4 Math 350, Fall 2018

• **Note:** Due to the midterm on Friday 10/5, this assignment is slightly shorter than usual. I recommend spending some time working reviewing old problems, working the "suggested" problems from earlier sets, and making sure you understand the theorems and proofs from class.

- **Read:** The rest of §8.
- **Suggestion:** Work (or think about) the following problems. Problems marked with a * have answers given at the back of the book.
 - $\S 8: 3^*, 5, 10$
- 1. (a) Let $f \in S_n$ be the cycle (x_1, x_2, \dots, x_r) . Show that o(f) = r.
 - (b) Suppose that $f = (x_1, x_2, \dots, x_r) \circ (y_1, y_2, \dots, y_s)$. Assume that these are disjoint cycles (that is, $x_i \neq y_j$ for all i, j). Prove that the order of f is the least common multiple of f and f.
 - (c) Find two transpositions whose product has order 3. This shows that the "disjoint" hypothesis is essential in part (b).
- For the next two exercises: Read the statement of Saracino exercise 8.10(a). You may use this statement without proof (but it is a good review exercise to prove it yourself).
- 2. Determine the largest possible order of an element of S_9 .
- 3. Does A_6 have an element of order 6? Does A_7 ? If so, give an example. If not, prove that it is impossible.
- 4. Suppose that H is a subgroup of S_n . Prove that either all elements of H are even permutations, or exactly half of the elements of H are even permutations.
 - *Hint:* Mimic the proof from class on Friday 9/28 that exactly half of the elements of S_n are in A_n .
- 5. Read the description of the dihedral group D_n of order 2n in Saracino Exercise 8.15. Solve parts (a) and (b) of that problem (check your answer to (b) in the back of the book).