Chapter 3, Section 8

April 17, 2025

1. Let $f: X \to Y$ be a continuous map of topological spaces. Let \mathscr{F} be a sheaf of Abelian groups on X, and assume that $R^i f_*(\mathscr{F}) = 0$ for all i > 0. Show that there are natural isomorphisms, for each $i \ge 0$,

$$H^i(X, \mathscr{F}) \cong H^i(Y, f_*\mathscr{F}).$$

(This is a degenerated case of the Leray spectral sequence.)

- **2.** Let $f: X \to Y$ be an affine morphism of schemes (II, Ex. 5.17) with X Noetherian, and let \mathscr{F} be a quasi-coherent sheaf on X. Show that the hypotheses of (Ex. 8.1) are satisfies, and hence that $H^i(X, \mathscr{F}) \cong H^i(Y, f_*\mathscr{F})$ for each $i \ge 0$. (This gives another proof of (Ex. 4.1).)
- **3.** Let $f: X \to Y$ be a morphism of ringed spaces, let \mathscr{F} be an \mathscr{O}_X -module, and let \mathscr{E} be a locally free \mathscr{O}_Y -module of finite rank. Prove the *projection formula* (cf. (II, Ex. 5.1))

$$R^i f_*(\mathscr{F} \otimes f^* \mathscr{E}) \cong R^i f_*(\mathscr{F}) \otimes \mathscr{E}.$$

- **4.** Let Y be a Noetherian scheme, and let \mathscr{E} be a locally free \mathscr{O}_Y -module of rank n+1, $n \ge 1$. Let $X = \mathbb{P}(\mathscr{E})$ (II, §7), with the invertible sheaf $\mathscr{O}_X(1)$ and the projection morphism $\pi: X \to Y$.
 - (a) Then $\pi_*(\mathcal{O}(l)) \cong S^l(\mathcal{E})$ for $l \geq 0$, $\pi_*(\mathcal{O}(l)) = 0$ for l < 0 (II, 7.11); $R^i\pi_*(\mathcal{O}(l)) = 0$ for 0 < i < n and all $l \in \mathbb{Z}$; and $R^n\pi_*(\mathcal{O}(l)) = 0$ for l > -n 1.
 - (b) Show there is a natural exact sequence

$$0 \to \Omega_{X/Y} \to (\pi^* \mathscr{E})(-1) \to \mathscr{O} \to 0,$$

- cf. (II, 8.13), and conclude that the relative canonical sheaf $\omega_{X/Y} = \bigwedge^n \Omega_{X/Y}$ is isomorphic to $(\pi^* \bigwedge^{n+1} \mathscr{E})(-n-1)$. Show furthermore that there is a natural isomorphism $R^n \pi_*(\omega_{X/Y}) \cong \mathscr{O}_Y$ (cf. (7.1.1)).
- (c) Now show, for any $l \in \mathbb{Z}$, that

$$R^n\pi_*(\mathscr{O}(l))\cong\pi_*(\mathscr{O}(-l-n-1))\otimes\bigwedge^{n+1}\mathscr{E}$$

- (d) Show that $p_a(X) = (-1)^n p_a(Y)$ (use (Ex. 8.1)) and $p_q(X) = 0$ (use II, 8.11).
- (e) In particular, if Y is a nonsingular projective curve of genus g, and $\mathscr E$ a locally free sheaf of rank 2, then X is a projective surface with $p_a = -g$, $p_g = 0$, and irregularity g (7.12.3). This kind of surface is called a geometrically ruled surface (V, §2).