УДК 621.039.54

ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ВЫГОРАНИЯ ТОПЛИВА С ПОМОЩЬЮ ПРОГРАММНОГО КОМПЛЕКСА SCALE 5

С.Н. Филимонов*, В.В. Артисюк**, А.Ю. Станковский*

- *Обнинский институт атомной энергетики НИЯУ МИФИ, г. Обнинск
- * *НОУ «ЦИПК», г. Обнинск

Цель работы — верификация (валидация) программного комплекса SCALE 5, сопряженного с многогрупповой библиотекой данных на основе ENDF/ В-V, для определения области применения к задачам по моделированию выгорания топлива для перспективных топливных циклов. Были проведены расчеты двух бенчмарков (UOX- и MOX-топлива), выполнено моделирование радиальных эффектов выгорания в топливной таблетке.

Ключевые слова: верификация, валидация, программный комплекс SCALE 5, выгорание топлива, топливный цикл, бенчмаркинг, внутритвэльные эффекты выгорания, «rim»-эффект.

Key words: verification, validation, SCALE 5 code package, burnup, fuel cycle, benchmarking, in-pellet heterogeneous effects, «rim»-effect.

ВВЕДЕНИЕ

С целью предотвращения реактивностных аварий при организации транспортировки или хранения топлива ядерных реакторов (как свежего, так и выгоревшего) требуется обеспечение подкритичности соответствующих инженерных систем на уровне 5% [1]. На практике, исследования в обоснование ядерной безопасности контейнеров и хранилищ проводятся, в основном, для загрузки свежим топливом, что приводит к существенному запасу подкритичности в случае обращения с выгоревшим топливом. При надлежащем учете выгорания этот запас можно трансформировать в повышение экономических показателей топливного цикла. В международной практике для подобных исследований сложился устойчивый термин «burnup credit» (ВUС-анализ) [2]. До того как реализация методологии ВUС будет принята лицензирующими организациями, необходимо доказать, что методы вычислений основных нейтронно-физических параметров дают адекватную оценку. В связи с этим в настоящее время основной акцент в продвижении ВUС ставится на валидацию и верификацию использования соответствующих компьютерных кодов.

Следует отметить, что большинство программных комплексов и методик расчета выгорания топлива ориентированы, в основном, на традиционные топливные композиции. Использование их для анализа перспективных топливных циклов

Рис. 1. Поведение k_{eff} при 1800-дневной кампании реактора РБЕЦ-М на мощности 900 МВт [3]

Рис. 2. Поведение $k_{\it eff}$ в зависимости от выгорания [4]

нуждается в дополнительном обосновании. Примеры расходящихся результатов бенчмаркинга приведены на рис. 1 и 2 соответственно для анализа выгорания в быстром свинцово-висмутовом реакторе [3] и реакторе-выжигателе минорных актинидов [4].

Целью работы является верификация и валидация программного комплекса SCALE 5 [5], сопряженного с многогрупповой библиотекой данных на основе ENDF/B-V,который был поставлен в ИАТЭ для учебных целей в соответствии с соглашением между ИАТЭ и RSICC (Radiation Safety Information Computational Center, Oak Ridge National Laboratory, USA), на данных по выгоранию топлива. SCALE представляет собой инструмент нового поколения для нейтронно-физических расчетов, в рамках которого объединены раннее независимо распространявшиеся проблемно-ориентированные коды (в терминологии SCALE — функциональные модули) для подготовки констант, анализа критичности, моделирования выгорания, расчета защиты и другие. Передача данных между функциональными модулями осуществляется посредством контрольных модулей. В данной работе были использованы контрольные модули TRITON и STARBUCS для верификации расчетов на выгорание соответственно UOX- и MOX-топлива PWR, предложенного NEA/OECD[6,7]. Валида-

ция осуществлялась на экспериментальных данных по внутритвэльным эффектам выгорания (так называемый «rim-effect») из работы [8].

КОНТРОЛЬНЫЕ МОДУЛИ ДЛЯ МОДЕЛИРОВАНИЯ ВЫГОРАНИЯ

Контрольный модуль STARBUCS. На практике STARBUCS[9] (Standardized Analysis of Reactivity for Burnup Credit using SCALE) используется для оценок безопасности транспортировки и хранения отработанного топлива. Для выполнения этих задач STARBUCS автоматизирует процесс генерации пространственно-зависимых нуклидных композиций (в твэле, топливной сборке, активной зоне — в зависимости от степени детализации системы, содержащей делящиеся нуклиды) с последующим вовлечением получаемых данных в трехмерный расчет по методу Монте-Карло для определения соответствующей критичности.

Контрольный модуль STARBUCS проводит расчет выгорания, основываясь на методологии, предложенной в ORIGEN-ARP[10]. Модуль ARP использует алгоритм создания проблемно-ориентированных библиотек сечений для кода ORIGEN-S[11] при помощи интерполяции сечений из библиотек, поставляемых в пакете SCALE и содержащих усредненные по спектру одногрупповые сечения для нескольких стандартных видов уранового (до 5% обогащения) и стандартного MOX-топлива в стандартных решетках (14×14, 15×15, 17×17) и для различных шагов выгорания. Для уранового топлива основными параметрами интерполяции являются начальное обогащение, выгорание и плотность замедлителя. При задании пользователем истории облучения сборки и времени ее охлаждения STARBUCS создает входные файлы модулей ARP и ORIGEN-S для каждой области топливной сборки и вычисляет в них концентрации нуклидов по шагу выгорания.

Помимо оперирования с поставляемыми библиотеками в SCALE 5 заявлена возможность создания пользователем проблемно-ориентированных библиотек сечений ARP непосредственно из расчетов модулей SAS2 или TRITON [12]. Эти библиотеки более детально учитывают специфику конкретной задачи.

По окончании моделирования выгорания топлива, STARBUCS объединяет полученные данные по расчетным областям и подготавливает входные файлы для контрольного модуля CSAS или CSAS6[13], отвечающего за расчет критичности (рис. 3).

В рамках выполнения данной работы были выявлены следующие особенности распространяемой RSICC версии SCALE 5:

Рис. 3. Структура контрольного модуля STARBUCS

- при исследовании систем, содержащих МОХ-топливо, могут быть использованы исключительно библиотеки ARP, поставляемые вместе со SCALE; проблемно-ориентированные библиотеки, создаваемые пользователем (с помощью TRITON или SAS2), не вовлекаются в последовательность вычислений;
- возможность использования TRITON для формирования проблемно-ориентированных библиотек заявлена, но не реализована;
- возможность использования SAS2 ограничена стандартным одномерным ячеечным расчетом с одной областью гомогенизации.

Эти особенности затрудняют анализ выгорания перспективных видов топлива с помощью контрольного модуля STARBUCS.

Контрольный модуль TRITON (Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion) был разработан для двумерного расчета топливных ячеек с возможностью анализа гетерогенных эффектов выгорания. Это позволяет учитывать тонкие эффекты, связанные с чувствительностью резонансов сечений к спектральному сдвигу, обусловленному изменением нуклидного состава в результате облучения.

Для подготовки библиотек сечений TRITON так же, как и STARBUCS, использует модули BONAMI и NITAWL (или CENTRM) [14], которые подаются на вход в транспортный код NEWT [15], использующий двумерный метод дискретных ординат для создания трехгрупповой библиотеки сечений, свертка которой осуществляется в модуле COUPLE и последующим моделированием шага выгорания (рис. 4).

Рис. 4. Структура контрольной последовательности TRITON

ВЕРИФИКАЦИЯ (ВАЛИДАЦИЯ) SCALE 5 Анализ UO,-бенчмарка

В ОЕСD/NEA была разработана серия бенчмарков для сравнения возможностей различных расчетных программ и библиотек ядерных данных [16]. Вurnup Credit Criticality Benchmark Phase I-B ориентирован на анализ концентраций ключевых изотопов при выгорании уран-оксидного топлива с различным обогащением в стандартной ячейке с двумерной геометрией [6]. Спецификация материалов активной зоны и история облучения топлива, используемая в ячеечном расчете, приведены в табл. 1. Из предлагаемых в бенчмарке задач, отличающихся историей облучения, были выбраны две, с минимальной и максимальной глубинами выгорания (27,35 и 44,34 ГВт-сут/тТМ). В качестве расчетной последовательности использовался контрольный модуль TRITON, т.к. в задаче предполагается двумерное представление топливной ячейки с заданными граничными условиями (отражение).

Спецификация топливной сборки*

Таблица 1

U0 ₂	2					
10,0	10,045 г/см³					
1,5	1,5586 см					
0,9	0,9563 см					
0,13	0,132 см					
0,0	0,0297 см					
347	347,2 см					
841	841 K					
620	620 K					
Ziro	Zircaloy-2 (97,91% Zr, 1,59% Sn, 0,5% Fe)					
558	558 K					
0,7	0,7569 г/см ³					
Задача 1						
	№ цикла	(кВт/кгU) / (сут) / (сут)				
	1	17,24 / 306 / 71				
тоя	2	19,43 / 381,7 / 83,1				
. 07.	3	17,04 / 466 / 85				
	4	14,57 / 461,1 / 1870				
Конечное выгорание		27,35 ГВт∙сут/тТМ				
Задача 2						
	№ цикла	(кВт/кгU) / (сут) / (сут)				
	1 31,12 / 306 / 71					
тоя	2	32,51 / 381,7 / 83,1				
. 571	3	26,20 / 466 / 85				
	4	22,12 / 461,1 / 1870				
Конечное выгорание						
	10,0 1,59 0,99 0,11 0,00 347 841 62С Ziro 558 0,79	1,5586 см 0,9563 см 0,132 см 0,0297 см 347,2 см 841 К 620 К Zircaloy-2 (97,9 558 К 0,7569 г/см³ 1 Лоне цикла 1 2 3 4 27,35 ГВт-с 1 ТОЯ Лоне цикла 1 2 3 3 4 3 4 3 4 3 7 7 7 7 7 7 7 7 8 7 8 8 7 8 8 7 8 8 8 8 9 8 9				

^{* -} соответствует сборке Combustion Engineering 14×14 [17]

Для идентификации проблемных нуклидов разработчиками бенчмарка было предложено использовать стандартное отклонение от среднего значения по бенчмарку, причем в процедуру усреднения включались и результаты эксперимента. На рисунках 5 и 6 представлено стандартное отклонение концентраций изотопов от среднего по бенчмарку для всех участников (всего 21 расчет от 16 организаций). В качестве критерия согласованности расчетов разработчиками было принято стандартное отклонение в 10%. Согласно этому критерию, были идентифицированы проблемные нуклиды ²³⁸Pu, ²⁴³Am, ¹⁰⁹Ag, ¹⁴⁹Sm, ¹⁵¹Sm, ¹⁵⁵Gd, к которым был добавлен еще ²³⁷Np.

В таблице 2 и на рис. 7 приводятся отклонения расчетных значений, полученных по TRITON, от экспериментальных, имеющихся в бенчмарке [6]. Анализ табл. 2 показывает, что TRITON дает наилучшее согласие по 238 Pu. Для других идентифицированных проблемных нуклидов (149 Sm и 237 Np) отклонение от экспериментального значения не лучше, чем в среднем по бенчмарку.

Рис. 5. Стандартное отклонение концентраций актинидов от среднего по бенчмарку значения

Рис. 6. Стандартное отклонение концентраций продуктов деления от среднего по бенчмарку значения

Отклонение значения концентрации от экспериментального значения

Таблица 2

	27,35 ГВт∙сут/тТМ		44,34 ГВт∙сут/тТМ	
Нуклид	Отклонение среднего значения по бенчмарку	Отклонение расчетного значения (TRITON)	Отклонение среднего значения по бенчмарку	Отклонение расчетного значения (TRITON)
¹³³ Cs	-0,01	0,16	0,00	0,17
143Nd	0,02	0,14	0,02	0,11
145 Nd	-0,01	0,14	-0,01	0,13
149Sm	-0,29	-0,30	-0,50	-0,50
¹⁵⁰ Sm	-0,06	0,08	-0,08	0,05
¹⁵² Sm	0,08	0,29	0,12	0,38
153 Eu	-0,03	0,12	-0,06	0,14
²³⁴ U	-0,01	0,12	0,01	0,15
²³⁵ U	-0,03	0,06	-0,10	-0,04
²³⁶ U	0,03	0,17	0,02	0,15
²³⁸ U	-0,01	-0,01	0,00	0,00
²³⁸ Pu	-0,11	-0,02	-0,09	-0,01
²³⁹ Pu	-0,01	0,09	-0,01	0,09
²⁴⁰ Pu	-0,01	0,10	-0,04	0,05
²⁴¹ Pu	-0,02	0,09	-0,03	0,05
²⁴² Pu	-0,04	0,18	-0,05	0,16
²³⁷ Np	0,09	0,17	0,07	0,16

Анализ МОХ-бенчмарка

Вторым бенчмарком является предложенный OECD/NEA для анализа эффектов реактивности MOX-топлива в реакторе под давлением Phase IV-A Burn-up Credit Benchmark [7]. Расчетная модель представляет собой бесконечную топливную ячейку, аналогичную используемой в бенчмарке с $\rm UO_2$ -топливом (спецификация представлена в табл. 3).

Рис. 7. Отклонение значения концентрации \mathcal{C}_i (среднего по бенчмарку, расчетного по SCALE) от экспериментального значения $\mathcal{C}_{\mathsf{эксп}}$

Спецификация топливной сборки

Таблица 3

Тип топлива	MOX				
Шаг решетки	1,33 см				
Диаметр топливной таблетки	0,824 см				
Толщина обкладки	0,063 см				
Материал обкладки					
Нуклид	Концентрация (атом/барн-см)				
Zr	4,2982E-2				
Fe	1,4838E-4				
Cr	7,5891E-5				
Вода					
Н	6,6724E-2				
0	3,3362E-2				
Изотопный состав Pu в МОХ-топливе					
Нуклид	%				
²³⁸ Pu	1,8				
²³⁹ Pu	59,0				
²⁴⁰ Pu	23,0				
²⁴¹ Pu	12,2				
²⁴² Pu	4,0				
Изотопный состав U в МОХ-топливе					
²³⁴ U	0,00119				
²³⁵ U	0,25000				
²³⁸ U	99,74881				

Основной целью бенчмарка является определение эффективного коэффициента размножения на разных стадиях выгорания топлива (начальная загрузка, 20, 40 и 60 МВт-сут/кгТМ) с различным временем охлаждения (1 год и 5 лет соответственно) и сравнение полученных значений по различным расчетным программам и библиотекам данных. Для выполнения данной задачи был выбран контрольный

Рис. 8. Сравнение k_{eff} со средним по бенчмарку значением

модуль STARBUCS. Результаты расчета представлены на рис. 8 в сравнении с усредненным значением эффективного коэффициента размножения по всем участникам бенчмарка. Отклонение от среднего значения не превышает 2%, что является удовлетворительным результатом расчета.

Рис. 9. Радиальное распределение Ри и Nd в твэле реактора ВВЭР-440 с обогащением 3,6% после штатной эксплуатации до максимального выгорания 50,6 МВт-сут/кг (экспериментальные данные взяты из работы [8])

Внутритвэльные эффекты выгорания

При глубоких выгораниях топлива наблюдается так называемый «rim-effect», связанный с радиальной неравномерностью выгорания в пределах топливной таблетки. Данный эффект приводит к увеличению выхода газовых продуктов деления в краевой области таблетки и повышению внутритвэльного давления. Ввиду важности обоснования стойкости твэлов при глубоких выгораниях в данной работе проведена валидация программного комплекса SCALE 5 на результатах электронно-зондового рентгеноспектрального микроанализа, полученных в НИИАР г. Димитровграда, по радиальному распределению Pu и Nd в твэле ВВЭР-440 [8]. Основной особенностью при моделировании неравномерности выгорания по топливной таблетке является использование нестандартного способа описания ячеечной модели. Этот способ заключается в задании большого количества одинаковых по площади кольцевых зон. Для построения такой модели в SCALE 5 предназначена директива

multiregion для задания ячейки решетки ТВС, которая обеспечивает возможность независимой подготовки сечений для каждой топливной зоны и каждого шага по выгоранию.

Рисунок 9 иллюстрирует сравнение расчетных (TRITON) и экспериментальных данных. В работе [8] Nd используется как показатель локального выгорания, поскольку он мало подвержен миграции. Отклонение полученных данных по Nd находится в пределах 20–50% (что, в принципе, ожидалось из расчетов UOX-бенчмарка). По Pu отклонение не превышает 5% в периферийной области топливной таблетки.

ЗАКЛЮЧЕНИЕ

В рамках данной работы была проведена верификация (валидация) программного комплекса SCALE 5 для выявления возможности его использования при анализе динамики нуклидов в перспективных топливных циклах. Были произведены расчеты бенчмарков по выгоранию UOX- и MOX-топлива, а также моделирование радиальных эффектов выгорания в топливной таблетке. В результате авторы отмечают возможность использования данного комплекса при анализе динамики плутониевых изотопов, в частности ²³⁸Pu, точность предсказания концентраций которых возрастает с ростом выгорания. В то же время важно отметить, что по редким землям (неизбежные примеси которых сопутствуют рециклу трансуранов) рассогласованность с экспериментом составляет 20–50%.

Литература

- 1. Implementation of burnup credit in spent fuel management systems/IAEA-TECDOC-1013, October 1997.
- $2. Practices and developments in spent fuel burnup credit applications/IAEA-TECDOC-1378, October\ 2003.$
- 3. Toshinsky G.I. Principles of Providing Passive Safety and Passive Safety Characteristics of SVBR Type RIs for Small Nuclear Power Plants without On-Site Refueling//The 2nd RCM of CRP «Small Reactors without On-Site Refueling», IAEA, June, 4-8, 2007.
- 4. Comparison Calculations for an Accelerator-driven Minor Actinide Burner//Nuclear Science, NEA/NSC/DOC(2001)13.
- 5. SCALE-5, SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, RSICC, CCC-7252.
- 6. DeHart M.D., Brady M.C., Parks C.V. OECD/NEA Burnup Credit Calculational Criticality Benchmark, Phase I-B Results//NEA/NSC/DOC (96) 06.
- 7. O Connor G.J., Bowden R.L., Thorne P.R. Phase IV-A: Reactivity Prediction Calculations for Infinite Arrays of PWR MOX Fuel Pin Cells//Nuclear Science, NEA/NSC/DOC(2003)3.
- 8. Голованов В.Н., Крюков Ф.Н., Кузьмин С.В., Никитин О.Н. Электронно-зондовый рентгеноспектральный микроанализ топливных композиций ядерных энергетических реакторов. Ульяновск: УлГУ, 2006.
- 9. Gauld I. C., Bowman S. M. STARBUCS: A SCALE control module for automated criticality safety analyses using burnup credit//Nuclear Science and Technology Division (94), ORNL/NUREG/CSD-2/VI/R7, May 2004.
- 10. Gauld I.C., Bowman S.M., Horwedel J. E., Leal L. C. ORIGEN-ARP: Automatic rapid processing for spent fuel depletion, decay, and source term analysis//Nuclear Science and Technology Division (94), ORNL/NUREG/CSD-2/VI/R7, May 2004.
- 11. Gauld I.C., Hermann O. ., Westfall R.M. ORIGEN-S: SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms//Nuclear Science and Technology Division (94), ORNL/NUREG/CSD-2/V2/R7, May 2004.
- 12. DeHart M.D. TRITON: A two-dimensional depletion sequence for characterization of spent nuclear fuel//Nuclear Science and Technology Division (94), ORNL/NUREG/CSD-2/R7, May 2004.

- 13. Hollenbach D.F., Petrie L.M. CSAS6: Control module for enhanced criticality safety analysis with KENO-VI//Nuclear Science and Technology Division (94), ORNL/NUREG/CSD-2/V1/R7, May 2004.
- 14. *Greene N. M.* BONAMI: Resonance self-shielding by the Bondarenko method//Nuclear Science and Technology Division (94), ORNL/NUREG/CSD-2/V1/R7, May 2004.
- 15. DeHart M.D. NEWT: A new transport algorithm for two-dimensional discrete ordinates analysis in non-orthogonal geometries//Nuclear Science and Technology Division (94), ORNL/NUREG/CSD-2/V1/R7, May 2004.
- 16. Brady M., Takano M., DeHart M.D., Okuno H., Nouri A., Sartori E. Finding of an International Study on Burnup Credit/Proc. of Intl. Conf. on the Physics of Reactors, PHYSOR 96, September 1620, 1996, Mito, Japan, Volume 4, L-41 L-52 (1996).
- 17. Guenther R.J. et al. Characterization of Spent Fuel Approved Testing Material ATM-104//PNL-5109-104, Pacific Northwest Laboratories, Richland, Washington, December 1991.

Поступила в редакцию 10.03.2009

A modification of an algorithm of numerical computation of the electrothermophysical characteristics of the thermionic reactors-converters fuel elements has been made. The program block for approximation of experimental voltage-current characteristics has been developed. The numerical method of the solution of equations of heat conduction for the emitter and of potential distribution between electrodes has been perfected.

УДК 621.039.54

Burnup Features with SCALE 5 Code Package \S.N. Filimonov, V.V. Artisyuk, A.Yu. Stankovskiy; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2010. – 10 pages, 3 tables, 9 illustrations. – References, 17 titles.

This paper deals with validation/verification of SCALE 5 code package coupled with ENDF/B-V cross-section data in order to reveal the domain of its application in simulating burnup dependent dynamics of important nuclides in reactor fuel. Two benchmarks were calculated (UOX & MOX) followed by in-pellet burnup analysis.

НАШИ АВТОРЫ

Антонова А.М. – к.т.н., доцент кафедры атомных и тепловых электрических станций Томского политехнического университета. E-mail: anton@ tpu.ru. Балыбердин А.С. – магистрант первого года обучения Нижегородского государственного технического университета им. Р.Е. Алексеева (НГТУ). E-mail: ats@nntu.sci-nnov.ru.

Бородин С.С. – аспирант кафедры «Атомные, тепловые станции и медицинская инженерия» НГТУ. E-mail: ats@nntu.sci-nnov.ru.

Веселова И.Н. – к.т.н., старший преподаватель кафедры «Теплоэнергетические технологии и оборудование» Волгодонского института (филиала) ЮРГТУ (НПИ). E-mail, anri@vdonsk.ru.

Гримов А.А. – студент Курского государственного технического университета.

E-mail: Grimmer2007@yandex.ru;

Дмитриев С.М. – д.т.н., профессор, проректор НГТУ, директор Института ядерной энергетики и технической физики, заведующий кафедрой «Атомные, тепловые станции и медицинская инженерия».

Дрейзин В.Э. – д.т.н., профессор, зав. кафедрой конструирования и технологии электронных средств Курского государственного технического университета. E-mail: drejzin_ve@mail.ru.

Загребаев А.М. – д.ф.-м.н., профессор Национального исследовательского ядерного университета «МИФИ» (НИЯУ МИФИ), кафедра «Математическое обеспечение систем».

E-mail: zagrk533@yandex.ru.

Катереев Р.О. – студент пятого курса Московского энергетического института (технического университета). Email: futnaf@yandex.ru.

Комолов И.А. – студент кафедры «Атомные и тепловые энергетические установки» Санкт-Петер-

бургского государственного политехнического университета. E-mail: kia081@rambler.ru.

Костанбаев С.В. – аспирант кафедры «Математическое обеспечение систем» НИЯУ МИФИ.

E-mail: Sergey.kostanbaev@gmail.com.

Круглов А.Б. – к.ф-м.н., старший преподаватель кафедры теплофизики НИЯУ МИФИ

Круглов В.Б. – старший преподаватель кафедры теплофизики НИЯУ МИФИ.

E-mail: viktorzir@ mail.ru.

Кряжев А.В. — студент шестого курса кафедры атомных и тепловых станций Томского политехнического университета. E-mail: KryazhevAV@mail.ru. Легчанов М.А. — к.т.н, старший преподаватель кафедры «Атомные, тепловые станции и медицинская инженерия» НГТУ. E-mail: ats@nntu.sci-nnov.ru.

Логвинов Д.И. – студент Курского государственного технического университета.

Лощаков И.И. – д.ф.-м.н., профессор, зав. кафедрой «Атомные и тепловые энергетические установки» Санкт-Петербургского государственного политехнического университета.

E-mail: Tim41@list.ru.

Львов А.В. – магистрант первого года обучения НГТУ.

Мазепа И.Н. – студент Курского государственного технического университета.

Наумов А.А. – студент Уральского государственного технического университета – УПИ (Екатеринбург). Новикова О.Ю. – главный специалист департамента эксплуатации АЭС с ВВЭР концерна «Росэнергоатом»

Овсянникова Н.В. – к.ф.-м.н., доцент НИЯУ МИФИ, кафедра «Математическое обеспечение систем». E-mail: ovs33@yandex.ru.