

Dynamic Programming

Matrix Chain Multiplication

Dynamic Programming

- Introduction
- Drawback of Recursion
- Elements of Dynamic Programming
- Matrix Chain Multiplication

Dynamic Programming

- Like divide and conquer, DP solves problems by combining solutions from subproblems.
- Unlike divide and conquer, subproblems are not independent.
- DP reduces computation by
 - Solving subproblems in a bottom-up fashion.
 - Storing solution to a subproblem the first time it is solved.
 - Looking up the solution when subproblem is encountered again.
- Examples
 - Matrix Multiplication
 - Longest Common Subsequence

Drawbacks of Recursion: Recursion Tree for nth Fibonacci Term

Soultion2:

- Dynamic Programming Approach
 - Tabulation Method
 - Bottom-up Approach

F (0)	F(I)	F(2)	F(3)	F(4)	F(5)
0	I	- 1	2	3	5

Steps in Dynamic Programming

- I. Characterize structure of an optimal solution.
- 2. Define value of optimal solution recursively.
- 3. Compute optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from computed values.

Matrix Chain Multiplication

- Given : a chain of matrices $\{A_1, A_2, ..., A_n\}$.
- Once all pairs of matrices are parenthesized, they can be multiplied by using the standard algorithm as a sub-routine.
- A product of matrices is **fully parenthesized** if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses. [Note: since matrix multiplication is associative, all parenthesizations yield the same product.]

Matrix-chain Multiplication ...contd

- Example: consider the chain A_1, A_2, A_3, A_4 of 4 matrices
 - Let us compute the product $A_1A_2A_3A_4$
- There are 5 possible ways:
 - $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

The way the chain is parenthesized can have a dramatic impact on the cost of evaluating the product.

Matrix-chain Multiplication ...contd

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
- There are 2 ways to parenthesize

```
((AB)C) = D_{10\times5} \cdot C_{5\times50}
AB \Rightarrow 10 \cdot 100 \cdot 5 = 5,000 \text{ scalar multiplications}
DC \Rightarrow 10 \cdot 5 \cdot 50 = 2,500 \text{ scalar multiplications}
(A(BC)) = A_{10\times100} \cdot E_{100\times50}
BC \Rightarrow 100 \cdot 5 \cdot 50 = 25,000 \text{ scalar multiplications}
AE \Rightarrow 10 \cdot 100 \cdot 50 = 50,000 \text{ scalar multiplications}
75,000
```

Matrix-chain Multiplication ...contd

- Matrix-chain multiplication problem
 - Given a chain $A_1, A_2, ..., A_n$ of *n* matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$
 - Parenthesize the product $A_1A_2...A_n$ such that the total number of scalar multiplications is minimized
- Brute force method of exhaustive search takes time exponential in n

eg:-

$$A_1(5x4), A_2(4x6), A_3(6x2), A_4(2x7)$$

 $A_1(p_0xp_1), A_2(p_1xp_2), A_3(p_2xp_3), A_4(p_3xp_4)$

- The structure of an optimal solution
 - Let us use the notation $A_{i..j}$ for the matrix that results from the product $A_i A_{i+1} \dots A_j$
 - An optimal parenthesization of the product $A_1A_2...A_n$ splits the product between A_k and A_{k+1} for some integer kwhere $1 \le k < n$
 - First compute matrices $A_{1...k}$ and $A_{k+1...n}$; then multiply them to get the final matrix $A_{1...n}$

$$A_1(5x4), A_2(4x6), A_3(6x2), A_4(2x7)$$

 $A_1(p_0xp_1), A_2(p_1xp_2), A_3(p_2xp_3), A_4(p_3xp_4)$

- Recursive definition of the value of an optimal solution
 - Let m[i, j] be the minimum number of scalar multiplications necessary to compute $A_{i...i}$
 - Minimum cost to compute $A_{1..n}$ is m[1, n]
 - Suppose the optimal parenthesization of $A_{i..j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k < j$

...contd

- $A_{i..j} = (A_i A_{i+1} ... A_k) \cdot (A_{k+1} A_{k+2} ... A_j) = A_{i..k} \cdot A_{k+1..j}$
- Cost of computing $A_{i..j}$ = cost of computing $A_{i..k}$ + cost of computing $A_{k+1..j}$ + cost of multiplying $A_{i..k}$ and $A_{k+1..j}$
- Cost of multiplying $A_{i..k}$ and $A_{k+1..j}$ is $p_{i-1}p_k p_j$
- ► $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_k p_j$ for $i \le k < j$
- m[i, i] = 0 for i=1,2,...,n

$$A_1(5x4), A_2(4x6), A_3(6x2), A_4(2x7)$$

 $A_1(p_0xp_1), A_2(p_1xp_2), A_3(p_2xp_3), A_4(p_3xp_4)$

Dynamic Programming Approach ...contd

$$m[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j & \text{otherwise} \end{cases}$$

- To keep track of how to construct an optimal solution, we use a table s
- $s[i, j] = value of k at which <math>A_i A_{i+1} ... A_j$ is split for optimal parenthesization
- Algorithm:
 - First computes costs for chains of length l=1
 - Then for chains of length l=2,3,... and so on
 - Computes the optimal cost bottom-up

$$A_1(5x4), A_2(4x6), A_3(6x2), A_4(2x7)$$

$$A_1(p_0xp_1), A_2(p_1xp_2), A_3(p_2xp_3), A_4(p_3xp_4)$$

Chain of length I

$$M[1,1]=M[2,2]=M[3,3]=M[4,4]=0$$

0			
	0		
		0	
			0

Chain of length 2

$$M[1,2]=5\times4\times6=120$$

$$M[2,3]=4\times6\times2=48$$

$$M[3,4]=6\times2\times7=84$$

0	120		
	0	48	
		0	84
			0

Split Matrix S

$$A_1(5x4), A_2(4x6), A_3(6x2), A_4(2x7)$$

$A_1(p_0xp_1), A_2(p_1xp_2), A_3(p_2xp_3)_1, A_4(p_3xp_4)$

Chain of length 3

M[1,3]

Case:I

M[1,1]+M[2,3] =0+48+(5x4x2) =88

Case:2

M[1,2]+M[3,3] =120+0+(5×6×2) =180

M[2,4]

Case:I

M[2,2]+M[3,4] =0+84+(4x6x7) =252

Case:2

M[2,3]+M[4,4] =48+0+(4x2x7) =104

0	120		
	0	48	
		0	84
			0

0	120	88	
	0	48	104
		0	84
			0

Chain of length 4

M[1,4]

Case:I

M[1,1]+M[2,4] =0+104+(5×4×7) =244

Case:2

M[1,2]+M[3,4] =120+84+(5×6×7) =414

Case:3

M[1,3]+M[4,4] =88+0+(5x2x7) =158

0	120	88	158
	0	48	104
		0	84
			0

ı	ı	3
	2	3
		3

Algorithm to Compute Optimal Cost

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table *m* and split table *s*

MATRIX-CHAIN-ORDER(p[], n)

```
for i \leftarrow 1 to n
                                                          Takes O(n^3) time
    m[i, i] \leftarrow 0
                                                          Requires O(n^2) space
for l \leftarrow 2 to n
    for i \leftarrow 1 to n-l+1
                i \leftarrow i+l-1
                m[i,j] \leftarrow \infty
                for k \leftarrow i to j-1
                             q \leftarrow m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]
                             if q < m[i, j]
                                          m[i,j] \leftarrow q
                                          s[i,j] \leftarrow k
```

return *m* and *s*

Constructing Optimal Solution

- Our algorithm computes the minimum-cost table m and the split table s
- The optimal solution can be constructed from the split table s
 - Each entry s[i, j] = k shows where to split the product A_i $A_{i+1} \dots A_j$ for the minimum cost

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i = j

2 then print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i = j

2 then print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Split Matrix S

I	I	3
	2	3
		3

