1. Let $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. Note that $\mathbb{Q}(\sqrt{2})$ is field and more specifically it is known as an algebraic number field. The binary operations on $\mathbb{Q}(\sqrt{2})$ are the standard addition and multiplication of numbers. Verify for all $\alpha \neq 0$ in $\mathbb{Q}(\sqrt{2})$ that there exists a $\beta \in \mathbb{Q}(\sqrt{2})$ such that $\alpha \cdot \beta = 1$.

Solution: Consider $\alpha = a + b\sqrt{2} \neq 0$, where $a, b \in \mathbb{Q}$. Let

$$\beta = \frac{1}{\alpha} = \frac{1}{a + b\sqrt{2}} \cdot \left(\frac{a - b\sqrt{2}}{a - b\sqrt{2}}\right) = \left(\frac{a}{a^2 - 2b^2}\right) - \left(\frac{b}{a^2 - 2b^2}\right)\sqrt{2} \in \mathbb{Q}(\sqrt{2}).$$

Clearly,

$$\alpha \cdot \beta = \frac{a^2 + ab\sqrt{2} - ab\sqrt{2} - 2b^2}{a^2 - 2b^2} = 1.$$

Note that if $a+b\sqrt{2}\neq 0$ where $b\neq 0$ then $a-b\sqrt{2}\neq 0$ (otherwise this implies $\sqrt{2}=\frac{a}{b}$) and

$$a^{2} - 2b^{2} = (a + b\sqrt{2}) \cdot (a - b\sqrt{2} \neq 0) \neq 0.$$

2. Is the space of non-negative functions on the interval [0,1] a vector space over the real numbers \mathbb{R} ? Justify your answer with a proof.

Solution: The "space" of non-negative functions on the interval [0,1] is not a vector space over the real numbers. Under the standard operations it is not closed under scalar multiplication.

Proof. Suppose $f:[0,1]\to\mathbb{R}$ is a non-negative function on the interval [0,1] and let c<0. If $f(x)\geq 0$ for all $x\in[0,1]$ we have that $cf(x)\leq 0$ for all $x\in[0,1]$.

3. Let $M_{2\times 2}$ be the set of 2×2 matrices with real entries, i.e.

$$M_{2\times 2} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}.$$

 $M_{2\times 2}$ is a vector space over the reals with the operations

$$k \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix} \text{ with } k \in \mathbb{R}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$$

Identify the additive identity in $M_{2\times 2}$ and justify your answer with a proof.

Solution: The additive identity element in $M_{2\times 2}$ is the matrix $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. We will show O has the property that for any matrix $A \in M_{2\times 2}$ we have A+O=A. By uniqueness of the identity element in a vector space we must have that O is the identity.

Proof. Let $A \in M_{2\times 2}$ then $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for some $a, b, c, d \in \mathbb{R}$. By definition

$$A + O = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} a + 0 & b + 0 \\ c + 0 & d + 0 \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$= A$$

4. Are the positive real numbers a field? Justify your answer.

Solution: The positive real numbers are not a field because there is no additive identity element. The real numbers \mathbb{R} by contrast are a field and the additive element is 0.

5. Suppose $a \in \mathbb{F}$, $v \in V$, and av = 0. Prove a = 0 or v = 0.

Solution: We will suppose that $a \neq 0$ and show that v = 0.

Proof. Suppose $a \neq 0$ and show that v = 0. If $a \neq 0$ then there exists a unique multiplicative inverse element in the field, call it a^{-1} . If

$$av = 0$$

then

$$a^{-1}(av) = a^{-1}0 = 0,$$

and thus

$$v = 0$$
.