TEORÍ BAHASA DAN AUTOMATÁ

Asep Muhidin, S.Kom, M.Kom asep.muhidin@gmail.com

www.facebook.com/asep.muhidin

www.github.com/asepmuhidin

www.twitter.com/asepmuhidin

asepmuhidin.blogspot.co.id

Alamat . Perum BCM Blok A.18 No.18 Cikarang - Selatan, Bekasi

Telp: 081316806705

Apa itu Teori Bahasa dan Automata?

Bahasa

Alami/ Natural

- Sebagai alat komunikasi
- Tata aturannya lebih luas
- contoh : bahasa indonesia, daerah, bahasa inggris, dll

Formal

- Sebagai bagian dari kajian logika ilmiah
- Tata aturannya lebih ketat
- contoh: bahasa pemograman, compiler, dll

Bahasa yang dibahas dalam mata kuliah ini adalah bahasa FORMAL

Teori Himpunan

- **Set/Himpunan**: sekumpulan objek/elemen/member yang memiliki definisi yang jelas
- Contoh: A = {0,1}; B = {a, b, c}
- Infinite set: himpunan dengan jumlah anggota yang tak terbatas
- Contoh:
 - N = natural numbers = {1,2,3,...}
 - Z = integers = {...,-2,-1,0,1,2,...}
- **Empty set** (himpunan kosong) dinotasikan dengan φ atau {}

 Union dari himpunan A dan B dinotasikan dengan A U B adalah kumpulan dari semua elemen yang ada di A atau di B

Contoh:
$$A = \{0,1\}; B = \{a, b, c\}$$

 $C = A \cup B \rightarrow \{0,1,a,b,c\}$

 Intersection dari himpunan A dan B dinotasikan dengan A ∩ B adalah kumpulan elemen yang menjadi anggota A dan juga B sekaligus

Contoh:
$$A = \{0,1,b\}; B = \{a, b, c\}$$

 $C = A \cap B \rightarrow \{b\}$

 Complement A dinotasikan Ā adalah semua objek yang berada di dalam pembicaraan yang bukan menjadi anggota himpunan A

Contoh: A = {b}; B = {a, b, c}
$$\bar{\mathbf{A}} = \{ a,c \}$$

- Kita menggunakan tanda minus (–) untuk menyatakan subtraction
- Sebagai contoh,

$${a, b, c} - {a, c} = {b}$$

 ${a, b} - {d, e} = {a, b}$

- A B juga bisa kita sebut sebagai komplemen B relatif terhadap A
- Lihat bahwa A Ā adalah A

- A adalah subset dari B dinotasikan dengan A ⊆ B, terjadi jika semua elemen A menjadi anggota himpunan B contoh : {1,2,3} ⊆ {1,2,3,4,5,6}
- Dalam hal ini, B dikatakan superset dari A

TEOREMA 1. Untuk sembarang himpunan A berlaku hal-hal sebagai berikut:

- (a) A adalah himpunan bagian dari A itu sendiri (yaitu, $A \subseteq A$).
- (b) Himpunan kosong merupakan himp. bagian dari A ($\emptyset \subseteq A$).
- (c) Jika $A \subseteq B$ dan $B \subseteq C$, maka $A \subseteq C$
- $\emptyset \subseteq A$ dan $A \subseteq A$, maka \emptyset dan A disebut himpunan bagian tak sebenarnya (improper subset) dari himpunan A.

Contoh: $A = \{1, 2, 3\}$, maka $\{1, 2, 3\}$ dan Ø adalah improper subset dari A.

• $A \subseteq B$ berbeda dengan $A \subseteq B$

 $A \subset B$: A adalah himpunan bagian dari B tetapi $A \neq B$. A adalah himpunan bagian sebenarnya (proper subset) dari B.

Contoh: {1} dan {2, 3} adalah proper subset dari {1, 2, 3}

 $A \subseteq B$: digunakan untuk menyatakan bahwa A adalah himpunan bagian (subset) dari B yang memungkinkan A = B.

Latihan

Misalkan A = $\{1, 2, 3\}$ dan B = $\{1, 2, 3, 4, 5\}$.

Tentukan semua kemungkinan himpunan C sedemikian sehingga $A \subset C$ dan $C \subset B$, yaitu A adalah proper subset dari C dan C adalah proper subset dari B.

Jawaban:

- Power set dari A adalah himpunan semua subsets dari A
 - Notasi power set dari A = p(A)
 - Misal, A = $\{0,1\}$
 - Power set dari $A = p(A) = \{\phi, \{0\}, \{1\}, \{0,1\}\}$
- Kardinalitas dari sebuah himpunan adalah jumlah elemen/anggota dari sebuah himpunan tersebut.
 - Notasi kardinalitas dari himpunan A = |A|
- Kardinalitas dari power set himpunan A
 - Dihitung dengan cara: $|p(A)| = 2^{|A|}$
 - Contoh: jika $A = \{0,1\} \square |p(A)| = 2^2 = 4$

Sequence dan Tuple [1]

- Suatu sequence dari objek adalah daftar dari objek dalam urutan tertentu.
- Contoh: (7, 21, 57); (4, 1)
- **Tuple** adalah sequence dengan jumlah anggota terbatas
- Contoh:

k-tuple

3-tuple (7, 21, 57)

2-tuple (7, 21) = **pair**

 Cartesian product atau cross product dari A dan B, dinotasikan dengan A x B, adalah semua pair terurut dalam (a, b), di mana a € A dan b € B

Contoh:

```
A = \{1,2\} and B = \{a,b,c\}
A x B = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}
B x A = ?
Apakah A x B = B x A ???
```

Contoh:

- (i) Misalkan C= { 1, 2, 3 }, dan D= { a, b}, maka C x D= { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }
- (ii) Misalkan A=B= himpunan semua bilangan riil, maka A x B= himpunan semua titik di bidang datar

Catatan:

- 1. Jika Adan B merupakan himpunan berhingga, maka:
 - $|A \times B| = |A| \cdot |B|$
- 2. $(a, b) \neq (b, a)$
- 3. A x B \neq B x A, dengan syarat A atau B tidak kosong.
- 4. Jika $A=\Phi$ atau $B=\Phi$, maka $A \times B=B \times A=\Phi$

Fungsi dan Relasi [1]

- Sebuah fungsi akan menerima input dan selalu menghasilkan sebuah nilai output.
- Komponen fungsi:
 - Domain: daerah asal = himpunan input yang diperbolehkan untuk suatu fungsi
 - Kodomain: daerah kawan = himpunan yang merupakan kemungkinan output sebuah fungsi
 - Range: daerah hasil = himpunan output hasil dari suatu fungsi
- Fungsi disebut juga dengan pemetaan/mapping, di mana sebuah fungsi akan memetakan domain ke kodomain, dengan hasilnya adalah range.
- $f: A \square B$ artinya f adalah fungsi dengan domain A, kodomain B, sehingga f(A) merupakan range dari fungsi f.
- Contohnya, abs : Z □ Z

- Diberikan fungsi f : A → B
- Fungsi f disebut fungsi pada atau surjektif atau onto jika dan hanya jika untuk sembarang b ∈ B terdapat paling tidak satu a dalam domain A sehingga berlaku f(a) = b. Dengan kata lain, pada suatu fungsi surjektif, kodomain sama dengan range-nya (f(A) = B).
- Setiap anggota himpunan A mempunyai 1 kawan di B.

- Diberikan fungsi f : A → B
- Fungsi f disebut **fungsi satu-satu** atau **injektif** atau **into** <u>jika dan</u> <u>hanya jika</u> untuk sembarang a_1 dan $a_2 \in A$ dengan $a_1 \neq a_2$ berlaku $f(a_1) \neq f(a_2)$. Dengan kata lain, bila $a_1 = a_2$ maka $f(a_1) = f(a_2)$.
- Setiap anggota himpunan A memiliki 1 kawan di B yang tunggal (hanya punya 1 pasangan dari A).

Graph [1]

Sebuah **graph** adalah sekumpulan point/node dengan garis-garis yang menghubungkan antar node tersebut.

Definisi

G = (V,E), V: kumpulan node, E: kumpulan garis

$$G = (\{1,2,3,4\}, \{(1,2),(1,4),(1,3),(2,4),(3,4)\})$$

