MAT 1375, Classwork19, Fall2024

ID: Name:

1. The graph of $y = \tan^{-1}(x)$:

arctan(x)

(0,0)

Range: (-\frac{\pi}{2},\frac{\pi}{2}).

H.A.: $y = -\frac{\pi}{2}$, $y = \frac{\pi}{2}$

2. How to find the value of $tan^{-1}(x)$:

Let $\theta = \tan^{-1}(x)$. It implies $x = \frac{1}{2} \ln \left(\frac{b}{a}\right)$ where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. Then find the

 θ from the following table:

									<u> </u>		_
	θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
	$\tan(\theta)$	N(0)	-{3	-1	_\frac{\frac{3}{3}}{3}.	<u> </u>	11/10/1	15 F F F F F F F F F F F F F F F F F F F	2/2/-2	und	efine
1 4 W W A + (No M								ıc			

- 3. Find the value of the given inverse tangent functions.
 - a) $\tan^{-1}(\sqrt{3})$ d) $\tan^{-1}(-1)$

a) Lot 0= tan (N3)

b)

$$\tan(0)=\sqrt{3}$$

$$Q = \frac{\pi}{3}$$

4. Composition of Functions Involving with Inverse Trigonometry Functions.

a)
$$\sin^{-1}\left(\sin\left(\frac{\pi}{4}\right)\right)$$
 b) $\sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right)\right)$ c) $\cos(\cos^{-1}(0.6))$ d) $\cos(\cos^{-1}(1.5))$

b)
$$\sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right)\right)$$

c)
$$\cos(\cos^{-1}(0.6))$$

d)
$$\cos(\cos^{-1}(1.5)$$

e)
$$\sin^{-1}\left(\sin\left(\frac{3\pi}{2}\right)\right)$$
 f) $\sin^{-1}(\sin(\pi))$ g) $\cos\left(\tan^{-1}\left(\frac{5}{12}\right)\right)$

f)
$$\sin^{-1}(\sin(\pi))$$

g)
$$\cos\left(\tan^{-1}\left(\frac{5}{12}\right)\right)$$

a)
$$\sin^{-1}\left(\sin\left(\frac{1}{4}\right)\right) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{4}$$

$$\alpha) \sin^{-1}\left(\sin\left(\frac{\sqrt{2}}{4}\right)\right) = \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$

$$b) \sin^{-1}\left(\sin\left(\frac{\sqrt{2}}{4}\right)\right) = \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$

$$\sin\left(\frac{\sqrt{2}}{4}\right) = \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$

c)
$$\cos(\cos^{-1}(0.6)) = \cos(0) = 0.6$$

Let $0 = \cos^{-1}(0.6) \Rightarrow \cos(0) = 0.6$

Let
$$0 = \cos^{-1}(0.6) \Rightarrow \cos(0) = 0.6$$

Let
$$0=\cos^{-1}(1.5) \Rightarrow \cos(0)=1.5 \Rightarrow 0$$
 is undefined

e)
$$\sin\left(\sin\left(\frac{3\pi}{2}\right)\right) = \sin\left(-\frac{1}{2}\right)$$

$$f) \quad 2iN_{J} \quad \left(2iN_{(II)}\right) = 2iN_{J} \quad (0) = 0$$

Let
$$0=\tan^{7}(\frac{5}{2}) \Rightarrow \tan(0)=\frac{5}{12}$$
 and $0 \le 0 < \frac{7}{2}$

$$sin(0) = \frac{5}{13}$$
, $cos(0) = \frac{12}{13}$

$$cos(6) = \frac{12}{13}$$

$$\Rightarrow$$

$$\Rightarrow \cos(\tan^{1}(\frac{5}{12})) = \cos(0) = \frac{1^{2}}{13}$$