ZK Bootcamp: Homework 2

Kuriakin Zeng

July 28, 2022

Problem 1

Proof. $B = \{0,1\}$ and the operation \oplus is a group

- Closure. It's easy to see that from the rules that the output is $\in B$
- Associativity. $0 \oplus 1 = 1 \oplus 0 = 1$
- Identity. The identity element is 0 since for $b \in B$, b + 0 = b and it's unique
- Inverse element. $0^{-1} = 0$ and $1^{-1} = 1$

Problem 2

• Odd squares are $\equiv 1 \pmod{8}$

Proof. Squares are produced by adding consecutive odd numbers. An odd square is produced by summing the odd number of odd numbers: the first odd square is 1, the second odd square is 1+3+5=9, and the subsequent odd squares is 1+3+5+(3+4n)+(5+4n) where $n=\{1,2,3,...\}$ It's easy to see that the first two odd squares $\equiv 1 \pmod{8}$ and 1+3+5+(3+4n)+(5+4n) can be rewritten as 1+3+5+(8+8n). Since $8+8n\equiv 0 \pmod{8}$, it must be that all odd squares $\equiv 1 \pmod{8}$

• Even squares are $\equiv 0 \pmod{8}$

Proof. An even square is produced by summing the even number of odd numbers: the first even square is 1+3=4, and the subsequent is 1+3+(1+4n)+(3+4n) where $n=\{1,2,3,...\}$ We can rewrite the equation as 8+8n, thus it must be that even squares are $\equiv 0 \pmod{8}$

Problem 3

We generate a random private key (n) and use a point on elliptic curve (G) [secp256k1 $\rightarrow y^2 = x^3 + 7$] to generate the public key $n \cdot G$. The hash of the public key is the Bitcoin address. Helpful resource: https://www.youtube.com/watch?v=muIv8I6v1aE

Problem 4

The three represent the worst case complexity of a function, i.e. the amount of resources required to run a function in the worst case scenario

- O(n) means the complexity grows linearly with respect to the input size
- O(1) means the complexity doesn't grow with respect to the input size
- O(logn) means the complexity grows logarithmically with respect to the input size

Problem 5

The best case for proof size is O(1)