Формальная постановка задачи оптимизации расписания с использованием алгоритма имитации отжига

Кяжин Никита Олегович

23 октября 2024 г.

Формальная постановка задачи

Дано:

- Пусть $J = \{j_1, j_2, \dots, j_N\}$ множество заданий, где N количество заданий.
- Пусть $\tau = \{t_1, t_2, \dots, t_N\}$ для каждого задания j_i задано время выполнения $t_i > 0$.
- Пусть $P = \{p_1, p_2, \dots, p_M\}$ множество процессоров, на которых выполняются задания, где M количество процессоров.

Расписание:

Расписанием является булева матрица $S^{N\times M}$, в которой $s_{ij}\in\{0,1\}$, где $i\in\{1,\ldots,N,\ a\ j\in\{1,\ldots,M.$ Значение $s_{ij}=1$ означает, что задание i выполняется на процессоре j, а $s_{ij}=0$ – что задание i не выполняется на процессоре j.

Обозначим G_j - множество индексов задач, которые выполняются j процессором. Тогда $T_j = \sum_{i \in G_j} t_i$ - время выполнения всех задач, запланированных на j процессор.

Требуется:

Построить расписание $S^{N\times M}$, при котором будет минизирован критерий, при этом все задания J будут выполнены на множестве процессоров P без прерываний, с учетом ограниченных ресурсов, и не будет пересечений в использовании процессоров.

Минимизируемый критерий:

В зависимости от остатка от деления на 2 контрольной суммы CRC32 от фамилии и инициалов выбирается один из следующих критериев:

- Критерий K_1 (разбалансированность расписания)
- Критерий K_2 (суммарное время ожидания)

 $CRC32_{KiazhinNO}=3618506679,$ следовательно выбираем 1 критерий для реализации.

Критерий разбалансированности расписания:

$$K_1 = T_{max} - T_{min} \tag{1}$$

где:

$$T_{max} = \max_{j \in 1, \dots, M} T_j \tag{2}$$

$$T_{min} = \min_{j \in 1, \dots, M} T_j \tag{3}$$

Ограничения

- Каждый процессор $p_j \in P$ в любой момент времени может выполнять не более одного задания.
- Во время выполнения задания процессором, не возникает прерываний.
- Процессор может мгновенно (без прерывания) переключаться между заданиями
- Каждое задание $j_i \in J$ должно быть выполнено только один раз и только на одном процессоре.
- Время выполнения $t_i \in \tau$ фиксировано.