UNSW SCHOOL OF PHYSICS

PHYS2111 – Quantum Mechanics Tutorial 6 SOLUTIONS

Marko Beocanin

Question 1

Consider a two-level system with a Hamiltonian given in some basis as

$$\hat{H} = \begin{pmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{pmatrix} .$$

What values of energy E allow stationary solutions of Schrödinger's equation?

A state is stationary if and only if it is an eigenstate of the Hamiltonian, in which case E must be some eigenvalue of \hat{H} . However, since \hat{H} is already diagonal, the values of E are simply given by $\varepsilon_1, \varepsilon_2$.

Bonus comments for interested students: The "if and only if" part of this hasn't been fully elaborated in class, so I wanted to provide a small proof (basically following the answer by jacob1729 on this Quora page) that a state is stationary (ie. all expectation values are independent of time) if and only if it is an eigenstate of the Hamiltonian.

The (eigenstate \implies stationary) direction of this proof is easy, and was outlined in class; eigenstates of the Hamiltonian can be written $|\psi(t)\rangle = |\psi_0\rangle \, e^{-iEt/\hbar}$, in which case it's easy to show that the exponential factors cancel out in any expectation value $\langle \psi | \hat{A} | \psi \rangle$. The other way (at least to me) is a little less obvious.

What about the (stationary \implies eigenstate) direction? Well, a convenient result which you saw in Tutorial 4 is that the time-evolution of expectation values is governed by the equation

$$\frac{d}{dt} \left\langle \hat{Q} \right\rangle = \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{Q} \right] \right\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle.$$

We've only been looking at time-independent operators, so let's assume that the final term $\frac{\partial \hat{Q}}{\partial t} = 0$; that is, that the operator has no explicit time-dependence.

Then, for a state to be stationary (ie. all expectation values are constant in time), we need the left hand side to be zero for all operators \hat{Q} . That means that the right hand side must also be zero, and so we have that

$$\left\langle \left[\hat{H}, \hat{Q}\right] \right\rangle = 0$$

for all operators \hat{Q} . Recalling our definition of expectation values, this means that for our stationary state $|\psi\rangle$, we have

$$\langle \psi | \left[\hat{H}, \hat{Q} \right] | \psi \rangle = 0.$$

Now, since \hat{H} is Hermitian, we can always expand $|\psi\rangle$ in an orthonormal eigenbasis of the Hamiltonian; that is $|\psi\rangle = \sum_i c_i |\phi_i\rangle$, where $\hat{H} |\phi_i\rangle = E_i |\phi_i\rangle$. Plugging this in and representing \hat{Q} as Q_{mn} in a basis of energy eigenstates, we get

$$\sum_{m,n} c_m^* c_n (E_m - E_n) Q_{mn} = 0.$$

This has to be zero for any Q_{mn} , and so each term in the sum has to vanish, and in particular each coefficient of Q_{mn} has to vanish; this gives

$$c_m^* c_n (E_m - E_n) = 0.$$

There are two possibilities: $E_m - E_n = 0$, in which case c_m, c_n may be non-zero; or $c_m^* c_n = 0$, which necessitates $c_m = c_n = 0$.

To understand this, let's think first of the case where the Hamiltonian has no degenerate energy levels. Then immediately we see that $|\psi\rangle$ has a well-defined energy E_m and is thus given by $|\psi\rangle = |\phi_m\rangle$ (up to some phase). But even in the case of a Hamiltonian with degenerate eigenvalues, we then have that $|\psi\rangle = \sum_i c_i |\phi_i\rangle$ where each $|\phi_i\rangle$ has degenerate energy $E_i = E_m$. But this is also an eigenstate of the Hamiltonian!

So, in both cases, $|\psi\rangle$ is an eigenstate of the Hamiltonian, and so we have proved our result.

Question 2

A Hamiltonian for a two-level system with interaction is given by

$$\hat{H} = \begin{pmatrix} \varepsilon_1 & V \\ V^* & \varepsilon_2 \end{pmatrix} \ .$$

where V is a complex number. What are the energy eigenvalues and corresponding eigenstates?

This is just an eigenvalue/eigenvector problem. We have

$$\det\begin{pmatrix} \varepsilon_1 - E & V \\ V^* & \varepsilon_2 - E \end{pmatrix} = (\varepsilon_1 - E)(\varepsilon_2 - E) - |V|^2 = 0.$$

Expanding, this gives

$$E^{2} - (\varepsilon_{1} + \varepsilon_{2})E + \varepsilon_{1}\varepsilon_{2} - |V|^{2} = 0$$

which can be solved using the quadratic formula and rearranged nicely to give two energy eigenvalues

$$E_{\pm} = \frac{\varepsilon_1 + \varepsilon_2 \pm \sqrt{(\varepsilon_1 - \varepsilon_2)^2 + 4 |V|^2}}{2}.$$

The eigenvectors are quite ugly and unillustrative, unless you do a lot of massaging which this question doesn't ask for. So, I leave you with the un-normalized

eigenvectors (to normalize them, just divide by the length):

unnormalised
$$|E_{\pm}\rangle = \begin{pmatrix} -\frac{\varepsilon_2 - \varepsilon_1 \mp \sqrt{(\varepsilon_2 - \varepsilon_1)^2 + 4|V|^2}}{2V^*} \\ 1 \end{pmatrix}$$

Question 3

A function defined on the semi-infinite domain $(0,\infty)$ is finite everywhere on the domain. It obeys the limit

$$\lim_{x \to \infty} f(x) \sim \frac{1}{x^a}.$$

Under what conditions on a is f(x) square-integrable?

For a function f(x) to be square integrable on this domain, we need the integral

$$\int_0^\infty |f(x)|^2 dx < \infty.$$

Notice that we have only been given the limiting behaviour of this function as $x \to \infty$, and so we're going to assume that there's no pathological limiting behaviour near the origin (eg. $\lim_{x\to 0} f(x) \sim 1/x$, whose square integral would diverge at the origin).

With that, then, we have that

$$|f(x)|^2 \sim \frac{1}{x^{2a}}$$

as $x \to \infty$, in which case

$$\int_0^t |f(x)|^2 dx \sim \begin{cases} \frac{1}{-2a+1} t^{-2a+1} & a \neq \frac{1}{2} \\ \ln t & a = \frac{1}{2} \end{cases}$$

as the upper bound $t \to \infty$. For this integral to converge and be finite as $t \to \infty$, then, we clearly need

$$a > \frac{1}{2}$$

which strict exclusion of a=1/2 since the logarithm diverges (albeit very slowly) at infinity.

Question 4

In maths you may remember that any function can be expanded in powers of x (the Taylor expansion). We can use the set of polynomials as a basis on some finite interval

$$f(x) = \sum_{i=0}^{\infty} a_i x^i$$

but the polynomials x^i are not orthonormal. Use Gram-Schmidt to orthogonalise the first few powers of x on the interval $-1 \le x \le 1$. Start with the function $|e_0\rangle \sim x^0 = 1$ and normalise it. Then normalise and orthogonalise $|e_1\rangle \sim x^1$, etc.

Answer:

$$|e_n\rangle = \sqrt{n+1/2} P_n(x), \quad (n=0,1,2,...)$$

where $P_n(x)$ are the Legendre polynomials.

Let's do this up to $\sim x^2$ to get the point across; I leave the general result to you. Let's start with the first vector

$$|e_0\rangle = 1$$

which needs to be normalized. This gives

$$|0\rangle = \frac{|e_0\rangle}{\sqrt{\langle e_0|e_0\rangle}}$$
$$= \frac{1}{\sqrt{\int_{-1}^1 1 dt}}$$
$$= \frac{1}{\sqrt{2}}.$$

where I'll do all my integrals over t so you don't confuse them with the functions of x.

Now, we consider our second vector $|e_1\rangle = x$. As usual, we define the (unnormalized vector)

$$|1'\rangle = |e_1\rangle - |0\rangle (\langle 0|e_1\rangle)$$

$$= x - \frac{1}{\sqrt{2}} \left(\int_{-1}^{1} dt \frac{t}{\sqrt{2}} \right)$$

$$= x$$

since t is an odd function integrated over a symmetric domain, so the inner product integral vanishes. All that's left to get our second vector $|1\rangle$ is to normalize it; this gives

$$\begin{aligned} |1\rangle &= \frac{|1'\rangle}{\sqrt{\langle 1'|1'\rangle}} \\ &= \frac{x}{\sqrt{\int_{-1}^{1} t^2 dt}} \\ &= \sqrt{\frac{3}{2}} x. \end{aligned}$$

Finally, let's do $|e_2\rangle = x^2$. We have our unnormalized vector

$$|2'\rangle = |e_2\rangle - |1\rangle(\langle 1|e_2\rangle) - |0\rangle(\langle 0|e_2\rangle)$$

$$= x^2 - \frac{3}{2}x \int_{-1}^1 t^3 dt - \frac{1}{2} \int_{-1}^1 t^2 dt$$

$$= x^2 - \frac{1}{3}.$$

where the second integral vanishes by the oddness of t^3 . All that's left is to normalize it, giving

$$|2\rangle = \frac{|2'\rangle}{\sqrt{\langle 2'|2'\rangle}}$$

$$= \frac{x^2 - \frac{1}{3}}{\sqrt{\int_{-1}^{1} (t^2 - \frac{1}{3})^2}}$$

$$= \sqrt{\frac{5}{8}} (3x^2 - 1).$$

And so on.

Question 5

(Griffith's) Consider the set of all functions of the form $p(x)e^{-x^2/2}$, where p(x) is a polynomial of degree < N in x, on the interval $-\infty < x < \infty$. Check that they constitute an inner product space. The "natural" basis is

$$|e_0\rangle = e^{-x^2/2}, |e_1\rangle = xe^{-x^2/2}, |e_2\rangle = x^2e^{-x^2/2}, \dots$$

Orthonormalize the first four of these, and comment on the result.

I leave it to you to show that this space constitutes an inner product space, with inner product given by

$$\left\langle p_1(x)e^{-x^2/2}|p_2(x)e^{-x^2/2}\right\rangle = \int_{-\infty}^{\infty} p_1(x)p_2(x)e^{-x^2}dx.$$

Now, this is basically the same sort of question as Question 4, so we'll zoom through it. I leave you to check all the integrals (and send me an email when you undoubtedly find a mistake here!). We have

$$|1\rangle = \frac{e^{-x^2/2}}{\sqrt{\int_{-\infty}^{\infty} e^{-t^2} dt}}$$
$$= \frac{1}{\pi^{1/4}} e^{-x^2/2}.$$

Then we have the unnormalized

$$|2'\rangle = xe^{-x^2/2} - \frac{1}{\sqrt{\pi}}e^{-x^2/2} \int_{-\infty}^{\infty} xe^{-x^2}$$

= $xe^{-x^2/2}$

in which case, normalizing, our second vector becomes

$$|2\rangle = \frac{xe^{-x^2/2}}{\sqrt{\int_{-\infty}^{\infty} t^2 e^{-t^2} dt}}$$
$$= \frac{\sqrt{2}}{\pi^{1/4}} xe^{-x^2/2}.$$

Next, we have the unnormalized

$$\begin{aligned} \left| 3' \right\rangle &= x^2 e^{-x^2/2} - \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} t^3 e^{-t^2} dt - \frac{1}{\sqrt{\pi}} e^{-x^2/2} \int_{-\infty}^{\infty} t^2 e^{-t^2} dt \\ &= (x^2 - \frac{1}{2}) e^{-x^2/2} \end{aligned}$$

such that, after normalizing, our third vector becomes

$$|3\rangle = \frac{(x^2 - \frac{1}{2})e^{-x^2/2}}{\sqrt{\int_{-\infty}^{\infty} (t^2 - \frac{1}{2})^2 e^{-t^2/2} dt}}$$
$$= \frac{\sqrt{2}}{\pi^{1/4}} (x^2 - \frac{1}{2})e^{-x^2/2}.$$

Finally, we have the unnormalized

$$\begin{split} \left| 4' \right\rangle &= x^3 e^{-x^2/2} - \frac{2}{\sqrt{\pi}} (x^2 - \frac{1}{2}) e^{-x^2/2} \int_{-\infty}^{\infty} (t^2 - \frac{1}{2}) t^3 e^{-t^2/2} dt \\ &- \frac{2}{\sqrt{\pi}} x e^{-x^2/2} \int_{-\infty}^{\infty} t^4 e^{-t^2} dt - \frac{1}{\sqrt{\pi}} e^{-x^2} \int_{-\infty}^{\infty} t^3 e^{-t^2} dt \\ &= (x^3 - \frac{3}{2} x) e^{-x^2/2} \end{split}$$

such that, after normalizing, our fourth vector becomes

$$|4\rangle = \frac{(x^3 - \frac{3}{2}x)e^{-x^2/2}}{\sqrt{\int_{-\infty}^{\infty} (t^3 - \frac{3}{2}t)^2 e^{-t^2} dt}}$$
$$= \frac{2}{\sqrt{3}\pi^{1/4}} (x^3 - \frac{3}{2}x)e^{-x^2/2}.$$

Question 6

Prove that if an operator in Hilbert space $\hat{\Omega}$ obeys the property

$$\langle h | \hat{\Omega} | h \rangle = \langle h | \hat{\Omega} | h \rangle^* \tag{1}$$

then it also has the property

$$\langle f | \hat{\Omega} | g \rangle = \langle g | \hat{\Omega} | f \rangle^*$$

where $|f\rangle$, $|g\rangle$, $|h\rangle$ are arbitrary functions. That is, both are equivalent definitions of a Hermitian operator.

Hint: Write $|h\rangle = |f\rangle + i|g\rangle$ and expand the imaginary part of Eq. (1).

Let's write $|h\rangle = |f\rangle + i\,|g\rangle$ where $|f\rangle\,, |g\rangle$ are arbitrary functions, as the hint suggests. Then our relation becomes

$$(\langle f| - i \langle g|) \hat{\Omega}(|f + i |g\rangle\rangle) = (\langle f| - i \langle g|) \hat{\Omega}(|f + i |g\rangle\rangle)^*$$

or, expanding, that

$$\begin{split} \left\langle f\right|\hat{\Omega}\left|f\right\rangle + \left\langle g\right|\hat{\Omega}\left|g\right\rangle + i[\left\langle f\right|\hat{\Omega}\left|g\right\rangle - \left\langle g\right|\hat{\Omega}\left|f\right\rangle] \\ = \left\langle f\right|\hat{\Omega}\left|f\right\rangle^* + \left\langle g\right|\hat{\Omega}\left|g\right\rangle^* - i[\left\langle f\right|\hat{\Omega}\left|g\right\rangle - \left\langle g\right|\hat{\Omega}\left|f\right\rangle]^*. \end{split}$$

Using our identity with h = f and h = g, we can cancel two terms on both sides of this equation, leaving us with

$$\langle f | \hat{\Omega} | g \rangle - \langle g | \hat{\Omega} | f \rangle = \langle g | \hat{\Omega} | f \rangle^* - \langle f | \hat{\Omega} | g \rangle^*$$

Now, this is tricky, and not quite alluded to in the hint from the question (I admit shamefully that I was helped by a "conversation" with ChatGPT here...) - but I can't quite see any other more straightforward way to approach it without additional assumptions on $|f\rangle$, $|g\rangle$. So, chugging onwards, let's do the same procedure, except this time let's take $|h\rangle = |f\rangle + |g\rangle$. Doing this and cancelling the appropriate terms should give

$$\langle f | \hat{\Omega} | g \rangle + \langle g | \hat{\Omega} | f \rangle = \langle g | \hat{\Omega} | f \rangle^* + \langle f | \hat{\Omega} | g \rangle^*.$$

We can then add these two equations together and divide both sides by two, which gives

$$\langle f | \hat{\Omega} | g \rangle = \langle g | \hat{\Omega} | f \rangle^*$$

which is our desired result.

Question 7

By directly calculating the integral,

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx.$$
 (2)

determine the Fourier Transform pairs of the following functions,

$$f(x) = \sin(\pi x) \tag{3}$$

The easiest way to approach this is to rewrite $\sin \pi x$ in terms of complex exponentials, as

$$\sin(\pi x) = \frac{1}{2i} (e^{i\pi x} - e^{-i\pi x})$$

in which case our Fourier transform becomes

$$F(k) = \frac{1}{(\sqrt{2\pi})^{2i}} \int (e^{i(\pi-k)x} - e^{-i(\pi+k)x}) dx.$$

Now, using the definition of the δ -function in terms of complex exponentials as

$$\delta(k - k') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(k - k')x} dx \tag{4}$$

along with the fact that $\delta(x) = \delta(-x)$ (which can be proven with a change of variables in the definition above), this gives

$$F(k) = \frac{\sqrt{2\pi}}{2i}\delta(k - \pi) - \delta(k + \pi).$$

This makes sense! The frequency of a sin function is fixed (up to overall sign, which can be absorbed in the coefficient out the front due to the

oddness of $\sin \pi x = -\sin \pi x$), and so in the frequency domain we see two spikes at \pm that frequency, with a relative sign accounting for the oddness.

(b) $f(x) = \begin{cases} 1 & \text{if } |x| \le \frac{1}{2} \\ 0 & \text{if } |x| > \frac{1}{2} \end{cases}$ (5)

This function is often called the top-hat function, for obvious reasons (hint: draw it out!). Going through the calculation, we have

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-1/2}^{1/2} e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{-ik} [e^{-ik/2} - e^{+ik/2}]$$

$$= \frac{2}{\sqrt{2\pi}k} \frac{1}{2i} [e^{ik/2} - e^{-ik/2}]$$

$$= \frac{1}{\sqrt{2\pi}} \frac{\sin(k/2)}{(k/2)}.$$

As a totally unrelated aside, have a chat with Peter if you want to know a wonderful link between this Fourier transform and diffraction patterns!

$$(c) e^{-\frac{1}{2}x^2} (6)$$

Once again going through, we have

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2 - ikx} dx.$$

The trick here is to complete the square inside the exponential. (We have that

$$-\frac{1}{2}x^2 - ikx = -\frac{1}{2}(x^2 + 2ikx)$$
$$= -\frac{1}{2}[(x + ik)^2 - i^2k^2]$$
$$= -\frac{1}{2}(x + ik)^2 - \frac{1}{2}k^2$$

so that our integral becomes

$$F(k) = \frac{1}{\sqrt{2\pi}} e^{-k^2} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-ik)^2} dx$$

where I've pulled the k-dependent exponential out the front. Now, we can do a change of variables $x \to x' = x - ik$ and use the standard Gaussian integral to evaluate this. **Remark:** technically, you need some complex analysis/contour integration to justify this substitution, since the substitution should naively shift the integral bounds into the complex plane as well, but I'm going to ignore these details. This gives

$$F(k) = e^{-\frac{1}{2}k^2}$$

which, miraculously, is the same as the original function, just with $x \leftrightarrow k!$

$$(d) e^{-|x|} (7)$$

Splitting up our integral into the $x \ge 0$ and x < 0 contributions, we have

$$F(k) = \frac{1}{\sqrt{2\pi}} \left[\int_{-\infty}^{0} e^{x(1-ik)} dx + \int_{0}^{\infty} e^{-x(1+ik)} dx \right].$$

But the exponential is just a standard integral which can be evaluated

$$\begin{split} F(k) &= \frac{1}{\sqrt{2\pi}} (-\frac{1}{1-ik}[1-0] + \frac{1}{1+ik}[0-1]) \\ &= -\frac{1}{\sqrt{2\pi}} (\frac{1}{1+ik} + \frac{1}{1-ik}) \\ &= -\frac{1}{\sqrt{2\pi}} \frac{2}{1+k^2}. \end{split}$$

Question 8

Prove the similarity theorem.

$$f(ax) \leftrightarrow \frac{1}{|a|} F\left(\frac{k}{a}\right)$$
 (8)

Perhaps the best way to approach this is just through direct substitution. Let's consider the Fourier transform of f(ax), denoted $\mathcal{F}\{f(ax)\}$; this is

$$\mathcal{F}\{f(ax)\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(ax)e^{-ikx} dx.$$

Next, we do a substitution $x \to x' = ax$, in which case dx = dx'/a. As for the integral bounds, the only thing that matters here is the sign of a, since our bounds are infinite (and of course, we take $a \neq 0$). If a is positive, the bounds remain unchanged and we can proceed without much further thought. However, if a is negative, the bounds should also flip. In this case, however, we can absorb the minus sign of a = -|a| back into the integral to swap the bounds back to their original order (from $-\infty$ to ∞). So, in both cases, we get

$$\mathcal{F}\{f(ax)\} = \frac{1}{|a|} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x') e^{-i\frac{k}{a}x'} dx'.$$

Since it doesn't matter what variable we use to integrate (x' or x) as it's a dummy variable, one immediately sees that the remaining integral (and $1/\sqrt{2\pi}$) factor out the front is the usual Fourier transform of f(x), only with k divided by a factor of a. So, we have that

$$\mathcal{F}\{f(ax)\} = \frac{1}{|a|}F(\frac{k}{a})$$

as required.

Question 9

Prove the shift theorem.

$$f(x-a) \leftrightarrow e^{-ika}F(k)$$
 (9)

This runs very similarly to the previous question. Plugging in directly to our formula, we have

$$\mathcal{F}\{f(x-a)\} = \frac{1}{\sqrt{2\pi}} \int f(x-a)e^{-ikx} dx$$

wherein, as before, we can substitute $x \to x' = x - a$, which leaves the integral bounds unchanged. This gives

$$\begin{split} \mathcal{F}\{f(x-a)\} &= \frac{1}{\sqrt{2\pi}} \int f(x') e^{-ik(x'+a)} dx' \\ &= e^{-ika} \frac{1}{\sqrt{2\pi}} \int f(x') e^{-ikx'} dx' \\ &= e^{-ika} F(k) \end{split}$$

as required. Note that we could pull out that e^{-ika} factor from the integral, since we were integrating over x', not k.

Question 10

(Bohm, Chapter 10) Using Fourier theory, calculate $\phi(k)$ and show that the following wave packet satisfies the uncertainty principle,

$$\psi(x) = \alpha_1 \exp\left[-\frac{\alpha x^2}{2}\right] \tag{10}$$

Here α_1 is used to normalise the wavefunction.

Rather than computing this from scratch with α, α_1 , let's use this as an opportunity to see how we can exploit our theorems, since we calculated a very similar integral in Question 7 (c). Namely, for $f(x) = e^{-\frac{1}{2}x^2}$, we showed that $F(k) = e^{-\frac{1}{2}k^2}$.

First of all, consider the α_1 out the front. It's trivial to show from the definition that $\mathcal{F}\{\alpha_1 f(x)\} = \alpha_1 \mathcal{F}\{f(x)\}.$

Next, we have the shift theorem. Assuming $\alpha > 0$ so everything is nice and convergent, we've been given $\alpha_1 f(\sqrt{\alpha}x)$ (where we have to be careful to take the square root, since x appears as a square inside f(x)). So, our fourier transform $\tilde{\psi}(k)$ of $\psi(x)$ is given by

$$\tilde{\psi}(k) = \frac{\alpha_1}{\sqrt{\alpha}} e^{-\frac{k^2}{2\alpha}}.$$

Now, to measure our uncertainties in x and p, remember that we need to use

 $\psi^*\psi$ and $\tilde{\psi}^*\tilde{\psi}$, not just the wavefunctions themselves. So, we have

$$\psi^* \psi \sim e^{-\alpha x^2}$$
$$\tilde{\psi}^* \tilde{\psi} \sim e^{-(1/\alpha)k^2}$$

where all we're looking for is the standard deviation, which is inside the exponential part. In particular, for a gaussian $\sim e^{-\frac{x^2}{2\sigma^2}}$, the uncertainty is given by σ . With this, we can read off

$$\sigma_x = \sqrt{\frac{1}{2\alpha}}$$
$$\sigma_k = \sqrt{\frac{\alpha}{2}}$$

such that

$$\sigma_x \sigma_k = \frac{1}{2}.$$

To compare this to the uncertainty principle, we recall that $p = \hbar k$, in which case $\sigma_p = \hbar \sigma_p$, and so

$$\sigma_x \sigma_p = \frac{\hbar}{2}$$

which does satisfy (and in fact reaches the maximal bound of) the uncertainty principle.

Question 11

Use the Gaussian wave function to check the equivalence of the x-space and k-space momentum operators in determining expectation value of the momentum.

We want to calculate $\langle p \rangle$ in some state $|\psi\rangle$, which we might as well take to be

$$\psi(x) = Ae^{-\frac{1}{2}x^2}$$
$$\psi(k) = Ae^{-\frac{1}{2}k^2}$$

since these have the exact same functional form, where A is just some normalization.

In position space,

$$\langle p \rangle = \int_{-\infty}^{\infty} dx \psi(x)^* (-i\hbar \frac{\partial}{\partial x}) \psi(x)$$
$$= i\hbar A^2 \int_{-\infty}^{\infty} dx x e^{-x^2}$$
$$= 0$$

since we're integrating against an odd \times even = odd function over a symmetric domain.

Meanwhile, in k space (with $p = \hbar k$), we have

$$\langle p \rangle = \int_{-\infty}^{\infty} dk \psi(k)^* (\hbar k) \psi(k)$$
$$= \hbar A^2 \int_{-\infty}^{\infty} dk k e^{k^2}$$
$$= 0$$

for the same reason. So, the two results line up, as expected.