Recurrence in the Left Shift

Neal Nesbitt

May 1, 2016

1 Notation

Consider some arbitrary system $\mathcal{A}^{\mathbb{Z}}$ with a dynamic $T: \mathcal{A} \to \mathcal{A}$ that causes \mathcal{A} to take on a finite number of states $\mathcal{A} = a_0, \dots, a_n$. We call these states our <u>alphabet</u>, and say the dynamic represents "motion" of the system from one state to another under this dynamic: $T(a^{\{k\}}) = a^{\{k+1\}}$.

Definition 1.1. Alphabet of a system $\mathcal{A}^{\mathbb{Z}}$

Let $\mathcal{A}^{\mathbb{Z}}$ have a range \mathcal{A} that takes on finitely many states. We then call the collection of these states the system's alphabet.

Thus if we know the state of the system at some point $k \in \mathbb{Z}$, $a^{\{k\}} \in \mathcal{A}$, we can mark prior and subsequent applications of the dynamic in a sequence $a \in \mathcal{A}^{\mathbb{Z}}$

$$a = \{\cdots, a^{k-1}, a^k, a^{k+1}, \cdots\}$$

I call this the state sequence of a at k.

Definition 1.2. <u>State Sequence</u> of an element in a dynamic system at some point content...