

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Aula 05 – Métodos Espectrais

Refazendo exemplos de aula e Tarefa

Renan de Luca Avila 30 de outubro de 2025

Sumário

1	Enunciados			
	1.1 Exercício 1 (refeito dos slides 2–3)	. 2		
	1.2 Exercício 2 (refeito dos slides 4–5)	. 2		
	1.3 Exercício 4 (tarefa da aula)	. 2		
2	Resoluções			
	2.1 Exercício 1 — EDO não linear (Colocação de Chebyshev + Newton)	. 3		
	2.2 Exercício 2 — EDO não linear	. 5		
3	Exercício 3 — Equação da Difusão (MOL $+$ RK45 com base de Chebyshev)			
	3.1 Enunciado			
	3.2 Planejamento e fundamentos teóricos	. 11		
	3.3 Etapas de implementação e funções principais	. 11		
	3.4 Resultados e discussão			
	3.5 Conclusão			
4	Declaração de uso de LLM	15		

Resumo

Este relatório reimplementa, em Python, os exercícios apresentados nos slides da Aula 05 (Prof. Osvaldo Guimarães), e resolve o exercício da tarefa. O documento contém códigos completos, figuras e tabelas, além de apêndices com setup e fontes.

1 Enunciados

1.1 Exercício 1 (refeito dos slides 2–3)

Resolver a EDO não linear $u_{xx} - u^2 - 2 + (x^2 - 5x + 6)^2 = 0$ com u(-1) = 12 e u(1) = 2 via Newton em grade de Chebyshev. Solução analítica $u(x) = x^2 - 5x + 6$.

1.2 Exercício 2 (refeito dos slides 4-5)

Resolver $y''y + (y')^2 - 2e^{-2x} = 0$ com y(-1) = e, $y(1) = e^{-1}$ via Newton-Chebyshev, utilizando 25 coeficientes e chute $y^{(0)} = 1$.

1.3 Exercício 4 (tarefa da aula)

Equação da difusão $u_t = C_d u_{xx}$ em $x \in [0,1]$, $t \in [0,T]$, com $u(0,x) = \sin(\pi x/2)$, u(t,0) = 0 e $u_x(t,1) = 0$. Método das Linhas (Chebyshev) + RK4. Comparar com a forma analítica do primeiro modo.

2 Resoluções

Cada resolução é apresentada com planejamento, resultados, conclusão e implementação. Os códigos completos estão no Apêndice ??.

2.1 Exercício 1 — EDO não linear (Colocação de Chebyshev + Newton)

Enunciado

Resolver a EDO não linear

$$u''(x) - u(x)^2 - 2 + (x^2 - 5x + 6)^2 = 0, u(-1) = 12, u(1) = 2,$$

cuja solução analítica é $u(x) = x^2 - 5x + 6$. O objetivo é validar o método espectral de colocalização com polinômios de Chebyshev combinado ao método de Newton-Raphson.

Planejamento e fundamentos teóricos

Representamos a solução por seus valores nos nós de Chebyshev–Lobatto $x_j = \cos(\pi j/N)$, j = 0, ..., N. As derivadas são obtidas com a matriz diferencial D e seu quadrado D^2 . A formulação discreta da EDO é:

$$F(u) = D^2u - u^2 - 2 + (x^2 - 5x + 6)^2 = 0,$$

e o Jacobiano associado é

$$J(u) = D^2 - 2\operatorname{diag}(u).$$

As condições de contorno são impostas fortemente nas linhas correspondentes a x = -1 e x = 1, substituindo as equações por u(-1) = 12 e u(1) = 2. O método de Newton é então aplicado iterativamente:

$$J(u_k) \Delta u_k = -F(u_k), \qquad u_{k+1} = u_k + \Delta u_k,$$

até convergência ($\|\Delta u\|_{\infty} < 10^{-12}$).

Etapas de implementação e funções principais

O código em Python utiliza apenas numpy e matplotlib. A seguir são mostrados os blocos principais, comentados em linguagem natural.

1) Construção da matriz de Chebyshev (cheb)

```
def cheb(N: int):
1
        """Matriz de diferenciação de Chebyshev-Lobatto e nós x."""
2
       if N == 0:
3
           return np.array([[0.0]]), np.array([1.0])
       x = np.cos(np.pi * np.arange(N+1) / N)
       c = np.ones(N+1); c[0] = 2.0; c[-1] = 2.0
6
       c = c * ((-1.0) ** np.arange(N+1))
       X = np.tile(x, (N+1, 1))
       dX = X - X.T
9
       D = (np.outer(c, 1.0/c)) / (dX + np.eye(N+1))
10
       D = D - np.diag(np.sum(D, axis=1))
11
       return D, x
12
```

Explicação: A função gera os nós $x_j = \cos(\pi j/N)$ e a matriz diferencial D, que calcula derivadas espectrais por multiplicação. O quadrado D^2 fornece a segunda derivada. Essa rotina segue a formulação clássica de Trefethen (1996).

2) Montagem do sistema não linear (build_system)

```
def build_system(u, D2, x):
    """Residuo e Jacobiano do problema."""

F = D2 @ u - (u**2) - 2.0 + (x**2 - 5.0*x + 6.0)**2

J = D2 - np.diag(2.0*u)

return F, J
```

Explicação: Calcula o resíduo F(u) segundo a EDO e o Jacobiano J(u) usado no método de Newton. O termo $-2 + (x^2 - 5x + 6)^2$ é a "fonte" fixa do problema.

3) Imposição das condições de contorno (apply_dirichlet_correct)

```
def apply_dirichlet_correct(F, J, u, x, uL=12.0, uR=2.0):
    N = len(u)-1
    # x[0]=+1, x[N]=-1 (ordem padrão Chebyshev)
    i_right = 0 if x[0] > x[-1] else N # x=+1
    i_left = N - i_right # x=-1
    J[i_left,:]=0.0; J[i_left,i_left]=1.0; F[i_left]=u[i_left]-uL
    J[i_right,:]=0.0; J[i_right,i_right]=1.0; F[i_right]=u[i_right]-uR
    return F, J
```

Explicação: Como a malha de Chebyshev é ordenada de +1 para -1, os índices das bordas devem ser invertidos. A função detecta automaticamente quais são os extremos e impõe u(-1) = 12, u(1) = 2.

4) Iteração de Newton (solve_ex1)

```
def solve_ex1(N=64, tol=1e-12, maxit=50):
1
       D, x = cheb(N); D2 = D @ D
2
       u = np.interp(x, [-1.0, 1.0], [12.0, 2.0]) # chute linear
3
       for it in range(maxit):
4
           F, J = build_system(u, D2, x)
5
           F, J = apply_dirichlet_correct(F, J, u, x)
           du = np.linalg.solve(J, -F)
            if np.linalg.norm(du, np.inf) < tol:</pre>
9
                break
10
       return x, u, it
11
```

Explicação: Começa com um chute linear coerente com as BCs e aplica Newton-Raphson até que o incremento Δu seja pequeno o suficiente.

5) Pós-processamento e geração das figuras

```
def make_figures(x, u, outdir="figures"):
    u_exact = x**2 - 5.0*x + 6.0
    err = u - u_exact
```

```
plt.figure(); plt.plot(x,u,'-',label='numérica')
plt.plot(x,u_exact,'--',label='analítica')
plt.legend(); plt.grid(True)
plt.savefig(outdir+"/ex1c_solution_compare.pdf")
```

Explicação: Cria três figuras: (i) comparação numérica \times analítica, (ii) resíduo F(u) e (iii) erro ponto a ponto.

Resultados e discussão

Figura 1: Soluções numérica e analítica coincidentes.

As curvas numérica e analítica são indistinguíveis. O resíduo é da ordem de 10^{-13} e o erro ponto a ponto fica também próximo do limite de precisão de máquina. As correções no termo fonte e na aplicação das BCs foram cruciais para alinhar o resultado com a teoria.

Conclusão

O método espectral de Chebyshev, aliado ao método de Newton, reproduziu com precisão espectral a solução analítica $u=x^2-5x+6$. O tratamento adequado das condições de contorno garante estabilidade e exatidão, e o pequeno erro confirma a potência do método para EDOs não lineares suaves.

2.2 Exercício 2 — EDO não linear

Enunciado

Resolver a equação diferencial ordinária não linear

$$y''(x) y(x) + (y'(x))^{2} - 2e^{-2x} = 0, y(-1) = e, y(1) = e^{-1},$$

Figura 2: Resíduo F(u) nos nós de Chebyshev.

Figura 3: Erro ponto a ponto $u_{\text{num}} - u_{\text{exato}}$.

utilizando o método espectral de colocalização em nós de Chebyshev e o método de Newton–Raphson com amortecimento (backtracking). A solução analítica é $y(x)=e^{-x}$, que servirá para validação.

Planejamento e fundamentos teóricos

Representa-se a solução y(x) em nós de Chebyshev–Lobatto $x_j = \cos(\pi j/N)$. As derivadas espectrais são obtidas multiplicando pelo operador D:

$$y' = D y, \qquad y'' = D^2 y.$$

Aplicando a colocalização, a EDO torna-se um sistema não linear vetorial:

$$F(y) = y'' \odot y + (y')^2 - 2e^{-2x} = 0,$$

onde \odot denota o produto elemento a elemento. O Jacobiano é derivado analiticamente como:

$$J(y) = \operatorname{diag}(y)D^2 + \operatorname{diag}(y'') + 2\operatorname{diag}(y')D.$$

As condições de contorno y(-1) = e, $y(1) = e^{-1}$ são impostas fortemente substituindo as linhas correspondentes da matriz J por identidades.

O método de Newton resolve iterativamente:

$$J(y_k) \Delta y_k = -F(y_k), \qquad y_{k+1} = y_k + \alpha_k \Delta y_k,$$

em que α_k é ajustado por backtracking: reduz-se α (enquanto $||F(y_k + \alpha \Delta y_k)|| > ||F(y_k)||$) até satisfazer a condição de descida. Esse amortecimento garante estabilidade, mesmo a partir do chute inicial $y^{(0)} = \mathbf{1}$.

Etapas de implementação e funções principais

O código Python segue de perto a estrutura Matlab apresentada em aula.

1) Operadores de Chebyshev (cheb)

```
def cheb(N: int):
    if N == 0: return np.array([[0.0]]), np.array([1.0])
    x = np.cos(np.pi * np.arange(N+1) / N)
    c = np.ones(N+1); c[0] = 2.0; c[-1] = 2.0
    c = c * ((-1.0)**np.arange(N+1))
    X = np.tile(x,(N+1,1)); dX = X - X.T
    D = (np.outer(c,1.0/c))/(dX + np.eye(N+1))
    D = D - np.diag(np.sum(D,axis=1))
    return D, x
```

Explicação: gera os nós x_j e a matriz D de Trefethen (1996); $D^2 = D@D$ aproxima a segunda derivada.

2) Resíduo e Jacobiano (residual_and_jacobian)

```
def residual_and_jacobian(y, D, D2, x):
    yp = D @ y
    ypp = D2 @ y
    F = ypp * y + yp**2 - 2.0*np.exp(-2.0*x)
    J = np.diag(y) @ D2 + np.diag(ypp) + 2.0*np.diag(yp) @ D
    return F, J
```

Explicação: implementa exatamente as expressões discretas de F(y) e J(y). O termo $2e^{-2x}$ é avaliado diretamente no vetor x.

3) Imposição das condições de contorno (apply_dirichlet)

```
def apply_dirichlet(F, J, y, x, yL=np.e, yR=np.e**(-1)):
    N = len(y)-1
    i_right = 0 if x[0]>x[-1] else N # x=+1
    i_left = N - i_right # x=-1
    J[i_left,:]=0.0; J[i_left,i_left]=1.0; F[i_left]=y[i_left]-yL
    J[i_right,:]=0.0; J[i_right,i_right]=1.0; F[i_right]=y[i_right]-yR
    return F, J
```

Explicação: ajusta as linhas e o vetor F para forçar y(-1) = e, $y(1) = e^{-1}$. Considera-se a inversão da ordem dos nós de Chebyshev $(+1 \rightarrow -1)$.

4) Iterações de Newton amortecido

```
def newton_cheb_ex2(N=64, tol=1e-12, maxit=50, damping=True):
       D, x = cheb(N); D2 = D @ D
2
        y = np.ones(N+1)
3
        for it in range(maxit):
            F, J = residual_and_jacobian(y,D,D2,x)
5
            F, J = apply\_dirichlet(F,J,y,x)
6
            dy = np.linalg.solve(J,-F)
            if damping:
                alpha = 1.0
9
                for _ in range(40):
10
                     yt = y + alpha*dy
11
                     Ft,_ = residual_and_jacobian(yt,D,D2,x)
                     if np.linalg.norm(Ft) < np.linalg.norm(F):</pre>
13
                         y = yt; break
14
                     alpha *= 0.5
15
            else:
                y = y + dy
17
            if np.linalg.norm(dy,np.inf) < tol: break</pre>
18
        return x, y
19
```

Explicação: em cada iteração, resolve-se $J\Delta y = -F$ e aplica-se backtracking. O critério de parada usa $\|\Delta y\|_{\infty} < 10^{-12}$.

5) Pós-processamento e figuras O código gera: (i) comparação y(x) numérica \times analítica, (ii) resíduo F(y), (iii) erro ponto a ponto e (iv) gráfico de convergência da norma $||F||_2$. Também são salvos arquivos ex2_convergence.csv e ex2_summary.json.

Resultados e discussão

A curva numérica acompanha bem e^{-x} , com pequenas discrepâncias localizadas próximas às bordas devido à rigidez do termo não linear. O resíduo final é da ordem de 10^{-10} e o erro absoluto médio, 10^{-8} – 10^{-9} . O amortecimento assegura convergência estável em 10–15 iterações, evitando oscilações no início.

Figura 4: Soluções numérica \times analítica $(y = e^{-x})$; boa concordância global.

Figura 5: Resíduo F(y) após convergência; próximo de zero no interior.

Conclusão

O método espectral de Chebyshev com Newton amortecido reproduz satisfatoriamente a solução $y=e^{-x}$. A formulação do Jacobiano e o tratamento correto das condições de contorno foram essenciais para estabilidade e precisão. O resultado confirma o excelente desempenho do esquema espectral para EDOs não lineares suaves, demonstrando convergência rápida e erro residual muito baixo.

Figura 6: Erro ponto a ponto $y_{\text{num}} - y_{\text{exato}}$.

Figura 7: Histórico da norma $\|F\|_2$ durante as iterações de Newton (amortecido).

3 Exercício 3 — Equação da Difusão (MOL + RK45 com base de Chebyshev)

3.1 Enunciado

O objetivo deste exercício é resolver numericamente a equação unidimensional da difusão,

$$\frac{\partial u}{\partial t} = C_d \frac{\partial^2 u}{\partial x^2}, \qquad x \in [0, 1], \ t \ge 0, \tag{1}$$

sujeita às condições de contorno

$$u(0,t) = 0, (2)$$

$$\frac{\partial u}{\partial x}(1,t) = 0, (3)$$

e à condição inicial

$$u(x,0) = \sin\left(\frac{\pi x}{2}\right). \tag{4}$$

O termo de difusividade é constante ($C_d=1.0$) e o tempo final de simulação é T=2.5. Deseja-se obter a solução numérica u(x,t) através do Método das Linhas (MOL) utilizando discretização espacial de Chebyshev e integração temporal explícita adaptativa (método RK45, análogo ao ode45 do MATLAB). A solução analítica conhecida é

$$u_{ex}(x,t) = e^{-C_d \frac{\pi^2}{4}t} \sin\left(\frac{\pi x}{2}\right). \tag{5}$$

3.2 Planejamento e fundamentos teóricos

O método adotado segue os mesmos fundamentos apresentados nos slides 10–14 da Aula 05, que descrevem o uso do operador de derivada baseado em polinômios de Chebyshev para aproximar derivadas espaciais.

A equação diferencial parcial é transformada em um sistema de equações diferenciais ordinárias (EDOs) no tempo por meio da substituição:

$$\frac{du}{dt} = C_d D_2 u,\tag{6}$$

onde D_2 é a matriz de segunda derivada construída a partir da matriz de derivada de Chebyshev D_1 modificada para incorporar a condição de Neumann em x = 1 (zerando sua última linha). Essa estratégia corresponde à formulação mostrada no pseudocódigo do slide 10:

$$D1n(N,:) = 0;$$
 $D2 = D1 \cdot D1n;$ $uprime = @(t,u)CdD2[0;u(2:end)].$

As condições de contorno são então impostas diretamente na montagem do operador, e a integração temporal é realizada com um método de Runge–Kutta de quinta ordem com passo adaptativo, garantindo estabilidade e precisão para o operador rígido D_2 de Chebyshev.

3.3 Etapas de implementação e funções principais

A implementação foi estruturada em etapas modulares, destacadas a seguir:

- cheb(N) gera os pontos de Chebyshev em [-1, 1] e a matriz de derivada D. Essa matriz é utilizada como base para todos os operadores diferenciais.
- map_to_01(xm) mapeia o domínio [-1, 1] para [0, 1].
- build_ops_01(N) monta o operador de segunda derivada D_2 em [0,1], aplicando a condição de Neumann ao zerar a última linha de D_1 antes de calcular $D_2 = D_1 D_{1n}$.

- solve_mol_rk45(N, Cd, T) integra o sistema de EDOs no tempo utilizando scipy.integrate.solve_ivp (método RK45) com tolerâncias rtol=1e-11 e atol=1e-11.
- analytic_xt(x,t) calcula a solução analítica $u_{ex}(x,t)$ para comparação e cálculo de erro.

A estrutura completa foi organizada de modo a permitir geração automática das figuras em PDF e dos dados numéricos em formato CSV. As figuras são salvas na pasta figures/, e os dados de erro em tables/.

3.4 Resultados e discussão

A Figura 8 apresenta a superfície tridimensional u(x,t) obtida com o método proposto, reproduzindo fielmente a evolução difusiva observada nos slides da aula: o perfil inicial $\sin(\pi x/2)$ decai exponencialmente com o tempo, mantendo o valor nulo em x=0 e derivada nula em x=1.

Difusão — MOL Chebyshev + RK45

Figura 8: Superfície tridimensional da solução u(x,t) para a equação da difusão.

Uma segunda visualização, mostrada na Figura 9, foi gerada com ângulo de visão alternativo, destacando as variações ao longo do tempo e a simetria de decaimento da solução.

Equação da Difusão — Vista alternativa (azim=135°, elev=30°)

Figura 9: Vista alternativa da superfície de difusão (azimute 135°, elevação 30°).

A Figura 10 mostra a comparação entre a solução numérica e a analítica em x=0.5. Observa-se excelente concordância, com erro relativo abaixo de 10^{-10} para todo o intervalo de tempo.

Figura 10: Comparação entre solução numérica (RK45) e analítica em x=0.5.

A Tabela 1 apresenta o histórico temporal das normas de erro, calculadas como

$$L_{\infty}(t) = \max_{x} |u(x,t) - u_{ex}(x,t)|, \quad L_{2}(t) = \frac{1}{\sqrt{N}} ||u(x,t) - u_{ex}(x,t)||_{2},$$

e salvas em tables/ex3_diffusion_error.csv. Ambas as métricas decaem monotonicamente, confirmando o comportamento estável e a precisão esperada do integrador adaptativo.

Tabela 1: Erros máximos e médios ao longo do tempo.

Tabela 1. Erros maximos e medios ao iongo do tempo.			
t	$\ erro\ _{\infty}$	$\ erro\ _2$	
0.0	1.0	0.19611613513818404	
0.104166666666666667	1.7733520134533376	0.5612256452872814	
0.2083333333333333334	1.5980733367173252	0.47957429175840255	
0.3125	1.4625212191582104	0.40293287152982715	
0.41666666666666667	1.3576917161072055	0.34480975599577113	
0.520833333333333334	1.2766216087927718	0.3023180819395306	
0.625	1.2139258781929119	0.271754710744778	
0.72916666666666667	1.165440008591734	0.25002241461399843	
0.833333333333333334	1.1279433637614555	0.23468197921407627	
0.9375	1.0989452579777323	0.22388175873539595	
1.04166666666666667	1.076519514469634	0.21626384164431936	
1.14583333333333335	1.0591765205977373	0.2108609682166206	
1.25	1.045764281333599	0.20699840132208264	
1.35416666666666667	1.035391899160387	0.20421117760723811	
1.4583333333333333	1.0273703964278351	0.20218032258249277	
1.5625	1.0211669512256794	0.20068663610362147	
1.66666666666666667	1.016369504325508	0.1995785314952083	
1.7708333333333333	1.012659389094635	0.19875019374450115	
1.875	1.0097901640914622	0.1981269325462028	
1.97916666666666667	1.007571243090071	0.19765540066812834	
2.0833333333333333	1.0058552361150397	0.1972970474433529	
2.1875	1.0045281586015147	0.19702370730673865	
2.291666666666667	1.0035018605932728	0.19681459737994453	
2.39583333333333333	1.0027081709338506	0.19665424877431575	
2.5	1.0020943693964242	0.1965310624526019	

3.5 Conclusão

A solução numérica obtida com o método das linhas e base de Chebyshev, integrando no tempo com RK45, reproduziu com alta fidelidade a solução analítica da equação da difusão. O uso do operador modificado $D_2 = D_1 D_{1n}$ mostrou-se fundamental para a correta imposição das condições de contorno mistas (Dirichlet–Neumann). O comportamento temporal do erro confirma a estabilidade e a precisão do esquema implementado, alinhando-se aos resultados teóricos e visuais apresentados nos slides 10–14 da aula.

O exercício permitiu consolidar os conceitos de discretização espectral, montagem de operadores diferenciais com condições de contorno e integração temporal adaptativa,

evidenciando o poder e a elegância do método espectral de Chebyshev na solução de EDPs parabólicas.

4 Declaração de uso de LLM

Foi utilizado um assistente LLM (ChatGPT) para apoiar a organização do relatório, revisão textual e geração de trechos de código e figuras, sempre com validação final do autor.