Homework 7 Algebraic Coding Theory Math 525

Stephen Giang RedID: 823184070

Problem 1:

(a) **Exercise 3.5.1:** Show that the word of all ones is in C_{24} . Deduce that C_{24} contains no words of weight 20

Notice $H^T = [I \ B]$ and let v = (1, 1, 1, ..., 1, 1) be the word of all ones. We can see that vH = 0, which means that $v \in C_{24}$

Let there be a codeword $c \in C_{24}$ with weight 20. Then we get that $v + c \in C_{24}$ has weight 4. This is a contradiction as the minimum distance of C_{24} is 8.

(b) **Exercise 3.5.2:** Prove fact (4) about C_{24} .

Notice we get that GH = B + B = 0. Also G has rank 12 so it is in fact a generator matrix.

(c) **Exercise 3.5.3:** Prove fact (5) about C_{24} .

Notice that a generator matrix for C^{\perp} is $[I \ B^T]$. Notice that $B = B^T$ such that the generator matrix is $[I \ B]$. Because C and C^{\perp} share the same generator matrix, they are the same.

Problem 2:

(a) **Exercise 3.6.5:** The code is C_{24} . Find the most likely error pattern if possible, for each of the following received words w.

w = 11100000000011011011011. Notice the following:

Notice the weight of s is 3. Thus we get

(b) **Exercise 3.6.6:** Find the most likely error pattern for any word with the given syndromes.

$$s_1 = 010010000000, s_2 = 011111010000$$

Because $wt(s_1) \le 3$, we get u = 0100100000000

Problem 3:

(a) **Exercise 3.7.3:** Decode each of the following received words that were encoded using C_{23} .

r = 10101110000010101011011

Let ri = 1010111000001010101101101.

Because $s_1 + b_i$ and $s_2 + b_i$ are never less than or equal to 2, the algorithm requests for retransmission.

(b) **Exercise 3.7.5:** Find the reliability of C_{23} transmitted over a BSC of probability p.

Notice the coset leaders:

- There is 1 coset leader of weight 0
- There is $\binom{23}{1} = 23$ coset leaders of weight 1
- There is $\binom{23}{2} = 253$ coset leaders of weight 2
- There is $\binom{23}{3} = 1771$ coset leaders of weight 3

By Th 3.2.8, we get that all these coset leaders are unique such that

$$\theta(p) = p^{23} + 23p^{22}(1-p) + 253p^{21}(1-p)^2 + 1771p^{20}(1-p)^3$$

- (c) Exercise 3.7.7: See solution guide
- (d) Exercise 3.7.8: See solution guide