TD n°1

Valeran MAYTIE

1 Automata

Exercise 1.1 – Let \mathcal{A} an automata, give an automata \mathcal{A}_* such that $(L_{\mathcal{A}})^* = L_{\mathcal{A}_*}$

Correction 1.1

Let $\mathcal{A} = (Q, \Sigma, \delta, I, F)$, we want to construct \mathcal{A}_* :

• We add all initial states to the finite states for recognizing the empty word.

•

So at the end we have $\mathcal{A}_* = (Q, \Sigma, \delta', I, F \cup I)$

Exercise 1.2 -

Correction 1.2

Exercise 1.3 -

Correction 1.3

Exercise 1.4 –

Correction 1.4

Exercise 1.5 -

Correction 1.5

Exercise 1.6 – Let $\Sigma = \{0, 1\}$ an alphabet.

- \bullet We consider a language L_2 the set of binary words representing a multiple of two. This language is recognizable?
- \bullet Same question for L_3 the set of binary words representing a multiple of three.
- What about the L_6 language for binary words representing a multiple of 6?

Correction 1.6

 \bullet For L_2 we just need to recognize the words which end in 0 :

• For L_3 we have $3 \ (n \bmod 3 \in \{0, 1, 2\})$.

For each edge (k the number read):

- If we read a zero, new result : 2k
- If we read a zero, new result : 2k + 1

state	read	next
$\overline{q_0}$	0	$0 \times 2 \bmod 3 = 0$
	1	$0 \times 2 + 1 \bmod 3 = 1$
$\overline{q_1}$	0	$1 \times 2 \bmod 3 = 2$
	1	$1 \times 2 + 1 \bmod 3 = 0$
$\overline{q_2}$	0	$2 \times 2 \mod 3 = 1$
	1	$2 \times 2 + 1 \mod 3 = 2$

• For L_6 , we can use the same construction (7 states).

Exercise 1.7 – A Dyck language is the set D of well-parenthesized words on an alphabet $\{(,)\}$. For example, the word (()()()()()()) is well parenthesized.

This property can be formally defined:

- \bullet For any prefix u of w, the number of) in u is less than the number of (
- There are as many (as there are) in the word

Show that D is not a regular language.

Correction 1.7

Assume that D is regular.

We have the word $w = (p)^p$ with $p \le 1$. We pose $x = \varepsilon$, $y = (p)^p$ and $z = (p)^p$.

The conditions are well verified : $|xy| \le p$ and $|y| \ge 1$.

If we consider the word xy^2z . This word has 2p (and p). So xy^2z is not in D.

By the pumping lemma D is not regular.