Any graph can be a minimum dependency graph

YANG Zonghan

April 7, 2020

Definition We call a dependency graph D *minimum*, if no dependency graph D' on the same set of events that have fewer edges in D.

Theorem Any graph can be a minimum dependency graph.

Proof. Let G = (V, E). Assign every edge with a label of [|E|], using function num : $E \mapsto [|E|]$. Consider a set of mutually independent events $\{\mathcal{E}_1, \mathcal{E}_2, \cdots, \mathcal{E}_{|E|}\}$ on some probability space Ω . Construct event for every vertex $v \in V$ that

$$\mathcal{E}_{\nu} = \bigcap_{(\mathfrak{u}, \nu) \in E} \mathcal{E}_{num((\mathfrak{u}, \nu))}$$

The graph is obviously a dependency graph. Also, it's minimum: any graph G' with fewer edges doesn't have at least one edge in G, which is independent in the G' but not in G.

Acknowledgement Thanks 毛昕渝 for checking the validity.