

Spatial CNN

2020/3/5

Tubular Structure Segmentation Using Spatial Fully Connected Network with Radial Distance Loss for 3D Medical Images

Chenglong Wang, Yuichiro Hayashi, Masahiro Oda, Hayato Itoh, Takayuki Kitasaka, Alejandro F. Frangi, and Kensaku Mori

- 1. Graduate School of Information Science, Nagoya University, Nagoya, Japan
- 2. Graduate School of Informatics, Nagoya University, Nagoya, Japan
- 3. Aichi Institute of Technology, Toyota, Japan
- 4. School of Computing and School of Medicine, University of Leeds, Leeds, UK
- 5. Information Technology Center, Nagoya University, Nagoya, Japan
- 6. Research Center for Medical Bigdata, National Institute of Informatics, Tokyo, Japan

MICCAI 2019

Abstract

Motivation

- Small object size
- Spatial information lost using 2D or 3D-patched methods
- Unclear to learn useful context features from abundant 3D data
- Long-range relationship and details correctness

Contribution

- Radial distance loss
- 3D recurrent convolutional layers

3D Spatial-FCN

- 3D recurrent convolutional layer
 - Spatial-CNN: first proposed to detect traffic lane
 - Slice-by-slice convolutional layer
 - Reinforce spatial contraints

3D Spatial-FCN

- Spatial-CNN
 - Capture structured object
 - Reinforce spatial information via inter-layer propagation

3D Spatial-FCN

- 3D Spatial-FCN
 - Recurrent convolutional layers(RCLs)

$$\mathbf{\mathcal{Z}}_{c,i,j,k} = \begin{cases} \mathbf{\mathcal{X}}_{c,i,j,k}, & \text{if } i = 0 \\ \mathbf{\mathcal{X}}_{c,i,j,k} + f(\mathbf{\mathcal{Z}}_{c,i-1,j,k} * K), & \text{if } 0 < i < W, \end{cases}$$

RCLs

- Radial distance map
 - Normalized distance to centerlines of airways
 - As loss function: RCLs
- Compared with centerline extraction
 - Centerline overlap (CO)

$$L = -\frac{1}{2} \sum_{k=0}^{1} \mathcal{W}_k \left(\frac{2 \sum_{i=0}^{N} p_{i,k} d_{i,k}}{\sum_{i=0}^{N} p_{i,k}^2 + \sum_{i=0}^{N} d_{i,k}^2} \right)$$

- Normalized: $\mathbf{D} = -\frac{1}{\max(\mathbf{F})}\mathbf{F} + 1$

Experimetns

- Monte-Carlo cross-validation
- 35 training + 3 validation
- Test on three unseen datasets acquired in different hospital

Method	Dataset	DSC' (%)	DSC''(%)	Se (%)	CO' (%)	CO" (%)			
(1) In-house dataset									
Yun et al. [2]	Train: 59 Test:8	89.9 ± 8.9	_	_	_	_			
Meng et al. [4]	Train: 30 Test:20	86.6	_	79.6	_	_			
(2) Our bronchus dataset									
VoxResNet (Dice loss) [13]	MCCV Test:3	79.6 ± 3.7	90.0 ± 3.4	72.3 ± 5.0	39.2 ± 2.7	31.0 ± 2.1			
V-Net (Dice loss) [9]		65.4 ± 9.9	91.0 ± 2.0	69.0 ± 2.0	28.3 ± 3.9	19.8 ± 1.1			
$\underline{\text{V-Net (RD loss)}}$		83.3 ± 2.0	88.4 ± 0.7	76.3 ± 4.6	53.8 ± 1.0	66.6 ± 4.9			
U-Net (Dice loss) [8]		64.0 ± 19.5	92.4 ± 1.6	82.9 ± 5.7	47.2 ± 18.1	54.3 ± 9.0			
Our proposed		88.7 ± 1.2	94.5 ± 0.8	86.5 ± 1.0	76.6 ± 6.0	80.6 ± 5.6			

Results

Results comparation, validation

Ground truth

U-Net (Dice loss)

Ground truth

U-Net (Dice loss)

U-Net (RD loss)

S) Our proposed Case 1

U-Net (RD loss) Case 2

Our proposed 2

Results

• Results comparation, test

(a) Test case 1

(b) Test case 2

(c) Test case 3

AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks

Yulei Qin, Mingjian Chen, Hao Zheng, Yun Gu, Mali Shen, Jie Yang, Xiaolin Huang, Yue-Min Zhu, and Guang-Zhong Yang

- 1. Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University
- 2. Institute of Medical Robotics, Shanghai Jiao Tong University
- 3. CREATIS (CNRS UMR 5220, INSERM U1206), INSA Lyon, Lyon, France
- 4. Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK

MICCAI 2019 ₁₁

Abstract

Motivation

- Put emphasis on the connectivity of voxels
- Utilize wide-range context knowledge

Contribution

- Multi-task learning: predict voxel probability and connectivity
- Incorporate voxel coordinates and their distance to lung borders

Voxel connectivity

- Voxel connectivity
 - Generate from ground truth label

Voxel connectivity

- 26-connectivity modeling
 - Decomposing one task into 26 different tasks
 - Pairwise voxels agree with each other in connectivity

$$\mathcal{L} = 1 - \frac{1}{26} \sum_{i=1}^{26} \frac{2 \sum_{x \in X} p_i(x) y_i(x)}{\sum_{x \in X} (p_i(x) + y_i(x)) + \epsilon}$$

Flow

Architecture

- 26-connectivity modeling
- Lung distance map
- Voxel coordinates map

Experiments

• 20 training + 10 testing

Case	AirwayNet				Jin et al. [3]			Juarez et al. [4]				
	DSC	TPR	FPR	PPV	DSC	TPR	FPR	PPV	DSC	TPR	FPR	PPV
1	92.4	86.5	0.003	99.2	90.4	84.4	0.010	97.2	91.0	83.8	0.002	99.5
2	87.5	78.5	0.003	98.8	73.8	60.8	0.011	94.0	76.9	62.6	0.000	99.8
3	91.1	85.3	0.004	97.7	88.9	83.1	0.008	95.6	91.1	84.6	0.002	98.8
4	82.9	73.1	0.009	95.7	79.6	66.5	0.002	99.1	70.8	55.6	0.004	97.4
5	90.8	86.2	0.015	95.9	90.6	85.3	0.012	96.6	89.3	81.4	0.003	99.1
6	91.5	89.2	0.025	94.0	84.5	88.3	0.091	81.0	92.3	87.9	0.012	97.1
7	90.6	87.6	0.025	93.7	88.2	85.3	0.034	91.2	90.3	85.1	0.014	96.2
8	91.7	88.9	0.017	94.7	86.4	88.1	0.054	84.8	90.2	86.5	0.018	94.2
9	93.1	88.8	0.009	97.8	90.5	84.3	0.009	97.7	85.9	75.9	0.004	98.9
10	90.4	83.2	0.003	98.9	88.2	79.3	0.002	99.4	88.3	79.4	0.001	99.5
Mean	90.2	84.7	0.011	96.6	86.1	80.5	0.023	93.7	86.6	78.3	0.006	98.1
Std.	2.8	4.9	0.008	1.9	5.2	8.9	0.027	5.9	6.7	10.3	0.006	1.7

Methods	DSC	TPR	FPR	PPV
AirwayNet w/o Conn	87.1 ± 6.4	79.3 ± 9.6	$0.007{\pm}0.008$	$\boxed{97.6{\pm}2.5}$
AirwayNet w/o D&C	88.4 ± 5.4	81.6 ± 8.7	0.009 ± 0.009	97.1 ± 2.1
AirwayNet w/o FCS	90.1 ± 2.8	84.4 ± 4.9	0.011 ± 0.008	96.8 ± 1.9
AirwayNet	$90.2{\pm}2.8$	$84.7{\pm}4.9$	0.011 ± 0.008	96.6 ± 1.9

Results

• Results comparation

Thanks for listening!

2020/3/5