第一章 离散信号与系统

1.1 因果性、记忆性

是否用到了x[n]的未来值/过去值,而不是其他可计算的值。

1.2 LTI 系统

既是线性系统,又是时不变系统,称为LTI系统。其**充要条件**是 $y[n] = x[n] \otimes h[n]$ 。

1.2.1 因果系统

$$h[n] = h[n]u[n]$$

1.2.2 稳定系统

$$\sum_{-\infty}^{+\infty} |h(n)| = M < +\infty$$

1.2.3 特征频率与 LTI 系统

若是有一个无限长的指数信号,那么有一个单频信号: 2.27

$$\left[e^{j\omega_0 n}\right] \to \sum_{k=-\infty}^{+\infty} 2\pi\delta\left(\omega - \omega_0 + 2k\pi\right)$$

但是若是有限长,那么就有引入除去 ω_0 的分量,因此对于一个 LTI 系统来说,放大 $e^{j\omega_0 n}$ 和 $e^{j\omega_0 n}u[n]$ 需要的系统函数是不一样的。

1.3 差分方程的阶数

输出 y[n-i] 最高值和最低值 i 的差值。

LCCDE = linear constant-coefficient difference equation .

第二章 DTFT 变换

2.1 频域阶数

2.42

若是在原有的系统函数多一个 z ,说明原来 a_0z^0 的位置变成了 a_0z^1 ,也就是 a_n 变成了 a_{n+1} 。同理 z^{-1} 对应 a_{n-1} 。由于使用因果信号, z^{-1} 的形式更合适。

2.2 系统设计

2.56,

需要一个系统时,可以通过其定义入手,配凑式子。同时,对于特定的频率分量,其幅度、角度变换是由其频率响应改变的。

2.3 DTFT 推导细节

$$\begin{split} DTFT^{-1}\left[X\left(e^{j\omega}\right)\right] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(e^{j\omega}\right) e^{j\omega n} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{k=-\infty}^{+\infty} x(k) e^{-j\omega k}\right) e^{j\omega n} d\omega \\ &= \sum_{k=-\infty}^{+\infty} x(k) \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega(k-n)} d\omega \\ &= \sum_{k=-\infty}^{+\infty} x(k) \delta(k-n) = x(n) \end{split}$$

注意 2π 与 $\delta(n)$ 的由来: 单位虚数的积分。

将 IDTFT 展开成累加的形式,实际上是将不同频率的分量逐个恢复:

$$\begin{split} X(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(e^{j\omega}\right) e^{j\omega n} d\omega \\ &= \frac{1}{2\pi} \sum_{-\infty}^{+\infty} X\left(e^{jk\Delta\omega}\right) e^{jk\Delta\omega n} \Delta\omega = \sum_{-\infty}^{+\infty} \frac{\left[X\left(e^{jk\Delta\omega}\right)\Delta\omega\right]}{2\pi} e^{jk\Delta\omega n} \end{split}$$

表 2.1: DTFT 变换对

时域函数	DTFT
$\delta(n)$	1
1	$\sum_{k=-\infty}^{+\infty} 2\pi\delta(\omega + 2k\pi)$
u(n)	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega + 2k\pi)$
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{+\infty} 2\pi\delta \left(\omega - \omega_0 + 2k\pi\right)$
$W_N(n)$	$\frac{\sin\left(\frac{\omega N}{2}\right)}{\sin\left(\frac{\omega}{2}\right)}e^{-j\frac{(N-1)\omega}{2}}$
$\frac{w_c}{\pi} \frac{\sin\left[w_c(n-\alpha)\right]}{w_c(n-\alpha)}$	$e^{-j\omega\alpha}(u(\omega+\omega_c)-u(\omega-\omega_c))$

表 2.2: DTFT 变换性质

性质名称	表达式
线性	
时域平移-频域调制	$x(n-m) \to e^{-jwm} X\left(e^{jw}\right)$
时域调制-频域平移	$e^{jnw}x(n) \rightarrow X\left(e^{j(w-w_0)}\right)$
时域翻折	$x(-n) \to X(e^{-j\omega})$
帕塞瓦尔定理	$\sum_{n=-\infty}^{\infty} x(n)y^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{jw}) Y^*(e^{jw}) dw$ $\sum_{n=-\infty}^{\infty} x(n) ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{jw}) ^2 dw$

可以利用帕赛瓦尔定理解决一些求和式子: Slide P83.

2.4 DTFT 对称性

共轭对称与共轭反对称序列定义,实际上是实部、虚部分别的奇偶对称:

$$x_e(n) = x_e^*(-n)$$

$$x_o(n) = -x_o^*(-n)$$

任意序列都可以进行共轭分解:

$$x(n) = x_e(n) + x_o(n)$$

$$x(-n) = x_e(-n) + x_o(-n) = x_e^*(n) - x_o^*(n)$$

$$x_e(n) = \frac{1}{2} [x(n) + x^*(-n)]$$

$$x_o(n) = \frac{1}{2} [x(n) - x^*(-n)]$$

根据下一小节的性质:

$$X_{e} (e^{j\omega}) = \frac{1}{2} \left[X (e^{j\omega}) + X^{*} (e^{-j\omega}) \right]$$
$$X_{o} (e^{j\omega}) = \frac{1}{2} \left[X (e^{j\omega}) - X^{*} (e^{-j\omega}) \right]$$

同样的对频域函数进行变换:

$$X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{-j\omega})$$

$$X_e (e^{j\omega}) = \frac{1}{2} \left[X (e^{j\omega}) + X^* (e^{-j\omega}) \right]$$
$$X_o (e^{j\omega}) = \frac{1}{2} \left[X (e^{j\omega}) - X^* (e^{-j\omega}) \right]$$

逆变换:

$$DTFT\{\operatorname{Re}[x(n)]\} = X_e\left(e^{j\omega}\right)$$

$$DTFT\{j\operatorname{Im}[x(n)]\} = X_o\left(e^{j\omega}\right)$$

2.5 变换共轭性质

具有普适性。

$$\mathcal{Z}[x^*[n]] = \sum_{n = -\infty}^{\infty} x^*[n] z^{-n} = \left(\sum_{n = -\infty}^{\infty} x[n] (z^*)^{-n}\right)^* = X^*(z^*)$$

$$\mathcal{Z}[x[-n]] = \sum_{n = -\infty}^{\infty} x[-n] z^{-n} = \sum_{n = -\infty}^{\infty} x[n] (z^{-1})^{-n} = X(z^{-1})$$

$$\mathcal{Z}[\operatorname{Re}\{x[n]\}] = \mathcal{Z}\left[\frac{x[n] + x^*[n]}{2}\right] = \frac{1}{2} [X(z) + X^*(z^*)]$$

$$\mathcal{Z}[\operatorname{Im}\{x[n]\}] = \mathcal{Z}\left[\frac{z[n] - x^*[n]}{2j}\right] = \frac{1}{2j} [X(z) - X^*(z^*)]$$

2.6 Z 变换

表 2.3: 2 变换对

时域函数	z 域函数	ROC
$\delta(n)$	1	全平面
u(n)	$\frac{z}{z-1}$	z > 1
$a^n u(n)$	$\frac{z}{z-a}$	z > a
$-a^n u(-n-1)$	$\frac{z}{z-a}$	z < a
$\cos(\omega_0 n)u(n)$	$\frac{z^2 - z\cos\omega_0}{z^2 - 2z\cos\omega_0 + 1}$	z > 1
$\sin(\omega_0 n)u(n)$	$\frac{z\sin\omega_0}{z^2 - 2z\cos\omega_0 + 1}$	z > 1

表 2.4: 2 变换性质

时域函数	z 域函数	原 ROC	变换后 ROC
x(-n)	$X(z^{-1})$	$\alpha < z < \beta$	$\frac{1}{\beta} < z < \frac{1}{\alpha}$
$x(\frac{n}{a}), a > 0$	$X(z^a)$	$\alpha < z < \beta$	$\alpha^{1/a} < z < \beta^{1/a}$
$x(n\pm m)$	双边 $z^{\pm m}X(z)$	1 1 '	$\alpha < z < \beta$
x(n-m)u(n)	单边 z^{-m} $\left[X(z) + \sum_{k=-m}^{-1} x(k)z^{-k} \right]$	z > a	z > a

见下页

时域函数	z 域函数	原 ROC	变换后 ROC
x(n+m)u(n)	单边 $z^m \left[X(z) - \sum_{k=0}^{m-1} x(k) z^{-k} \right]$	z > a	z > a
线性性			原收敛域的交集
nx(n)	$-z\frac{\mathrm{d}X(z)}{\mathrm{d}z}$	$\alpha < z < \beta$	$\alpha < z < \beta$
$n^m x(n)$	$\left[-z\frac{\mathrm{d}}{\mathrm{d}z}\right]^m X(z)$	$\alpha < z < \beta$	$\alpha < z < \beta$
$a^n x(n)$	$X(\frac{z}{a})$	$\alpha < z < \beta$	$\alpha < \left \frac{z}{a} \right < \beta$
$x_1(n)\otimes x_2(n)$	$X_1(z)X_2(z)$		原收敛域交集
$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(\frac{z}{v}) X_2(v) v^{-1} \mathrm{d}v^{1}$		收敛域是边界的乘积

初值定理

$$\lim_{z \to \infty} X(z) = \lim_{z \to \infty} \sum_{n=0}^{\infty} x(n)z^{-n} = x(0)$$

终值定理

$$\lim_{z \to 1} (z - 1)X(z) = x(\infty)$$

帕塞瓦尔定理

$$|Y(z)|_{z=1} = \sum_{n=-\infty}^{+\infty} x(n)h^*(n) = \frac{1}{2\pi j} \oint_c X(v)H^*\left(\frac{1}{V^*}\right)_V^{-1} dV$$

2.7 逆 Z 变换

2.7.1 部分分式法

对于有理多项式

$$X(z) = \frac{B(z)}{A(z)} = \frac{b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z + b_0}{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0}$$

对于分解得到的 $\frac{kz}{z-a}$

$$ka^{n}u(n), |z| > a$$
$$-ka^{n}u(-n-1), |z| < a$$

 $^{^{1}}$ 其中 C 是 $X_{1}(\frac{z}{v})X_{2}(v)$ 收敛域交集内的逆时针方向围线

2.8 从能量看 Z 变换与 DTFT

时域频域的能量是一致的、没有发生衰减。

2.9 Z变换与时域频域

为了解决非零状态系统,使用单边 Z 变换。 系统不改变频率:

$$y(n) = x(n)^* h(n)$$

$$= \sum_{m = -\infty}^{+\infty} h(m) e^{j[\omega_0(n-m)+\phi]} = e^{j[\omega_0 n + \phi]} \sum_{m = -\infty}^{+\infty} h(m) e^{-j\omega_0 m}$$

$$= e^{j[\omega_0 n + \phi]} H(e^{j\omega_0}) = x(n) H(e^{j\omega_0})$$

2.10 系统零极点与频率响应

单位圆上的系统函数是频率响应。

2.10.1 幅度响应

- 原点处的零极点幅度无影响
- 经过单位圆上的零点幅度归零,单位圆附近的零点出现谷点
- 经过单位圆上的极点幅度无穷大,单位圆附近的极点出现峰点
- 远离零极点时影响较小

2.10.2 相位响应

- 原点处的零极点对相位影响为线性, 极点会引起滞后, 零点会引起超前
- 靠近单位圆的零极点会引起较大的波动
- 远离极点零点的位置变换比较平缓
- 单位圆外部零点或极点造成相位连续增长,而单位圆内零极点对相位影响则随频率 周期性归零

对于圆内外零极点:

- 圆内极点: 顺时针经过, 相位迅速延后
- 圆外极点: 顺时针经过, 相位迅速提前
- 圆内零点: 顺时针经过: 相位迅速提前
- 圆外零点: 顺时针经过: 相位迅速延后

过单位圆零点相位突变 π。

2.11 LTI 系统幅相特性分析

当给定幅度特性时,总可以通过共轭分解找到一个系统满足要求:

$$\left|H\left(e^{j\omega}\right)\right|^{2} = H\left(e^{j\omega}\right)H*\left(e^{j\omega}\right) = H(z)H^{*}\left(\frac{1}{z^{*}}\right)\Big|_{z=e^{j\omega}}$$

2.11.1 全通系统

频响恒为 1, 其零极点分别为 a 与 $1/a^*$:

$$H_{ap}(z) = \frac{z^{-1} - a^*}{1 - az^{-1}} = -a^* \left(\frac{z - \frac{1}{a^*}}{z - a} \right)$$

其相位响应为: 群延迟为正值, 连续相位递减。

Assume:
$$a = re^{j\theta}$$

 $\arg \left[H_{ap} \left(e^{j\omega} \right) \right]$
 $= -\omega - 2 \arctan \left[\frac{r \sin(\omega - \theta)}{1 - r \cos(\omega - \theta)} \right]$
 $grd \left[H_{ap} \left(e^{j\omega} \right) \right]$
 $= \frac{1 - r^2}{\left| 1 - re^{-j(\omega - \theta)} \right|^2}$

用途:

- 相位均衡器,用于提高群延迟
- 任何因果稳定系统均可以分解为全通系统和最小相位的级联
- 若是系统不稳定,可以用于交换系统的零极点,而不改变幅度特性

2.11.2 最小相位系统

要求极点在单位圆内(主要考虑系统稳定性),要求零点在单位圆内(主要考虑相位变化最小)。

最小相位系统零极点均在单位圆内,极点往往与系统稳定性联系在一起,零点则往往与系统的延时特性联系在一起。逆系统也是因果稳定的,可以实现幅度和相位失真的完全补偿。

• 最小相位延迟,全通系统总是使最小相位系统的连续相位减小:

$$H(z) = H_{\min}(z)H_{ap}(z)$$

$$\arg \left[H\left(e^{j\omega}\right)\right] = \arg \left[H\min\left(e^{j\omega}\right)\right] + \arg \left[H_{ap}\left(e^{j\omega}\right)\right]$$

$$\arg \left[H\left(e^{j\omega}\right)\right] \le \arg \left[H_{\min}\left(e^{j\omega}\right)\right]$$

$$\left|\arg \left[H\left(e^{j\omega}\right)\right]\right| \ge \left|\arg \left[H_{\min}\left(e^{j\omega}\right)\right]\right|$$

• 最小群延迟, 全通系统的群延迟对于所有的频率皆为正值:

$$\operatorname{grd}\left[H\left(e^{j\omega}\right)\right] = \operatorname{grd}\left[H_{\min}\left(e^{j\omega}\right)\right] + \operatorname{grd}\left[H_{ap}\left(e^{j\omega}\right)\right]$$

 $\operatorname{grd}\left[H\left(e^{j\omega}\right)\right] \ge \operatorname{grd}\left[H_{\min}\left(e^{j\omega}\right)\right]$

• 最小能量延迟,最集中在n=0范围内:

$$\sum_{m=0}^{n} |h(n)|^2 \le \sum_{m=0}^{n} |h_{\min}(m)|^2$$

因此:

$$|h(0)| \le |h_{\min}(0)|$$

最大能量延迟则发生在全部零点位于单位圆外的系统,因此该系统也称为最大相位系统。

2.11.3 系统的补偿

幅度失真由最小相位因子补偿、相位失真利用全通因子补偿特定频段。

2.11.4 线性相位系统

定义: 群延迟 α 为常数 $\phi(\omega) = -\alpha\omega + \beta$

线性相位响应时域表现为信号平移,波形不发生失真。

不考虑幅度响应条件下,线性相位系统即是所要寻找的物理可实现的无失真传输系统。

若是群延迟 α 满足 2α 为整数,那么单位冲激响应严格对称,否则不严格对称,但是仍满足线性相位。

2.11.5 广义线性相位系统

在系统相位存在突变以及固定相位时,仍然存在恒定群延迟。 已知线性相位系统存在对称性,进行分析:

$$H\left(e^{j\omega}\right) = A(\omega)e^{-j(\omega\alpha - \beta)}$$

$$DTFT \quad [h(\alpha - n)] = H\left(e^{-j\omega}\right)e^{-j\omega\alpha} = A(\omega)e^{j\beta}$$

$$DTFT \quad [h(n + \alpha)] = H\left(e^{j\omega}\right)e^{j\omega\alpha} = A(-\omega)e^{j\beta}$$

因此, $A(\omega)$ 的对称性决定了 h(n) 的对称性(一致)。 根据对称形式与 2α 的奇偶性,有四类 FIR 线性相位滤波器。 对称冲激响应的系统特性推导:

得到:

- 1. 系统零点个数等于系统在原点的极点阶数相等
- 2. z_i 与 z_i^{-1} 均为零点
- 3. h(n) 为实数,零点共轭成对四类,其中 M = N 1:

$$H(z) = \pm z^{-(N-1)} H\left(z^{-1}\right)$$

$$H(z) = \frac{1}{2} \left[H(z) \pm z^{-(N-1)} H\left(z^{-1}\right) \right]$$

$$= \frac{1}{2} \left[\sum_{n=0}^{N-1} h(n) z^{-n} \pm z^{-(N-1)} \sum_{n=0}^{N-1} h(n) z^{n} \right]$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} h(n) \left[z^{-n} \pm z^{-(N-1)} z^{n} \right]$$

$$= z^{-\frac{N-1}{2}} \sum_{n=0}^{N-1} h(n) \left[\frac{z^{-\frac{N-1}{2}-n}}{z^{-\frac{N-1}{2}-n}} \pm z^{-\frac{N-1}{2}-n} \right]$$

$$H(\omega) = e^{-j\omega} \frac{N-1}{2} h(n) \left[\frac{(e^{j\omega})^{\frac{N-1}{2}-n}}{z^{-\frac{N-1}{2}-n}} \pm (e^{j\omega})^{-\frac{N-1}{2}-n} \right]$$

• I 类: M 为偶数, 偶对称: h(n) = h(M-n)

$$H(\omega) = \sum_{n=0}^{N-1} h(n) \cos \left[\left(\frac{N-1}{2} - n \right) \omega \right] = \sum_{n=0}^{N-1} h(n) \cos \left[\left(\frac{M}{2} - n \right) \omega \right]$$

• II 类: M 为奇数, 偶对称, 存在特殊零点:

$$H(z) = z^{-M}H\left(z^{-1}\right)$$

解得 $z = -1, \omega = \pi$

$$H(\omega) = \sum_{n=0}^{N-1} h(n) \cos \left[\left(\frac{N-1}{2} - n \right) \omega \right] = \sum_{n=0}^{N-1} 2h(n) \cos \left[\left(\frac{N-1}{2} - n \right) \omega \right]$$
$$\frac{N}{2} - n = m = \sum_{m=1}^{N} 2h \left(\frac{N}{2} - m \right) \cos \left[\left(m - \frac{1}{2} \right) \omega \right]$$

• III 类: M 为偶数, h(n) = -h(M-n) 特殊零点: $z = \pm 1$ 。

$$H(\omega) = \sum_{n=0}^{N-3} 2h(n)\sin\left[\left(\frac{N-1}{2} - n\right)\omega\right]$$
$$\left(\frac{N-1}{2} - n = m\right) = \sum_{m=1}^{2} 2h\left(\frac{N-1}{2} - m\right)\sin(m\omega)$$

• M 为奇数, h(n) = -h(M-n) 特殊零点: z = 1 。

$$H(\omega) = \sum_{n=0}^{N-1} h(n) \sin\left[\left(\frac{N-1}{2} - n\right)\omega\right]$$
$$= \sum_{n=0}^{\frac{N}{2} - 1} 2h(n) \sin\left[\left(\frac{N-1}{2} - n\right)\omega\right]$$
$$\left(\frac{N}{2} - n = m\right) = \sum_{m=1}^{\frac{N}{2}} 2h\left(\frac{N}{2} - m\right) \sin\left[\left(m - \frac{1}{2}\right)\omega\right]$$

对于一个关于 n = k 对称的序列, 其群延时为 k 。

2.11.5.1 最小相位分解

根据零点成对进行分解,分解到最小相位系统与线性相位系统。

第三章 信号采样与重构

需要解决的问题:

- 数字频率和模拟频率之间的对应关系: 时域采样对频域的影响
- 采样定理: 能否包含原始信号的所有信息? 如何无失真恢复原始信号? 是否有冗余信息可以去除? 是否可以进行速率的变化?
- 离散处理如何等效为一个模拟 LTI 系统?

3.1 理想周期采样重构

3.1.1 模拟-采样-数字频谱关系

一般采样都是不可逆的, 为了不丢失信息, 需要进行约束。

理想时域采样:

$$x_s(t) = x_c(t) * s(t) = \sum_{-\infty}^{+\infty} x_c(nT)\delta(t - nT)$$

其中:

$$s(t) = \sum_{-\infty}^{\infty} \delta(t - nT)$$

频域表示为:

$$\delta_{T_1}(t) = \sum_{-\infty}^{\infty} \delta\left(t - nT_1\right) \to \frac{2\pi}{T_1} \sum_{-\infty}^{\infty} \delta\left(\omega - n\omega_1\right)$$

$$X_s(\Omega) = \frac{1}{2\pi} X_c(\Omega) S(\Omega)$$

$$= \frac{1}{T} X_c(\Omega) \otimes \sum_{-\infty}^{+\infty} \delta(\Omega - n\Omega_0)$$

$$= \frac{1}{T} \sum_{n=1}^{\infty} X_c(\Omega - n\Omega_0)$$

那么从连续信号采样得到的是原始信号的频谱(带限 Ω_N)的周期(Ω_s)性拓延,当然,这是存在混叠的。

AD 是 CD 的工程近似。

进一步研究其离散采样信号的频谱:

对于采样信号:

$$\begin{split} X_{\mathrm{s}}(j\Omega) &= \int_{-\infty}^{+\infty} x_{s}(t) e^{-j\Omega t} dt \\ &= \int_{-\infty}^{+\infty} \left[\sum_{n=-\infty}^{+\infty} x_{c}(nT) \delta(t-nT) \right] e^{-j\Omega t} dt \\ &= \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{c}(nT) \delta(t-nT) e^{-j\Omega t} dt \\ &= \sum_{n=-\infty}^{+\infty} x_{c}(nT) e^{-j(\Omega T)n} \end{split}$$

对于数字信号:

$$X(j\omega) = \sum_{-\infty}^{\infty} x(n)e^{-j\omega n}$$
$$= \sum_{-\infty}^{\infty} x_c(nT)e^{-j\omega n}$$

经过两种形式的比对,可以得到:

$$X(j\omega)\Big|_{\omega=\Omega T} = X_s(j\Omega)$$

这就得到了一个重要的频率转换公式:

$$\Omega T = \omega$$

3.1.2 信号重构

通过理想重构滤波器:

$$h_r(t) = \frac{\sin(\pi t/T)}{\pi t/T}$$

其频域形式:

$$H(\omega) = TG_{\omega_a}(\omega)$$

其频率表示为,无混叠时采样点之外也无失真,有混叠时,则采样点之外存在一定 失真。

$$x_r(t) = x_s(t) \otimes h_r(t)$$

$$= \sum_{-\infty}^{+\infty} x(n)\delta(t - nT) \otimes h_r(t)$$

$$= \sum_{-\infty}^{+\infty} x(n)h_r(t - nT)$$

$$= \sum_{-\infty}^{+\infty} x(n)\frac{\sin(\pi(t - nT)/T)}{\pi(t - nT)/T}$$

3.1.3 奈奎斯特低通采样定理

若信号的频带满足 $|\omega|<\omega_c$,那么以至少 $2\omega_c$ 的速率采样就可以无失真的恢复原始信号。

3.1.4 奈奎斯特带通采样定理

若信号的频带满足 $|f|<\omega_c$,那么以至少 $2f_c$ 的速率采样,且满足 $f_s=\frac{4f_0}{2n+1}$ 就可以无失真的恢复原始信号。其中 f_0 为频带中心频率。

3.2 连续信号的离散化

$$X_r(j\Omega) = H_r(j\Omega)X_s(j\Omega) = H_r(j\Omega)X(e^{j\omega})\Big|_{\omega=\Omega T}$$

实际上处理的系统函数 $H_{eff}(j\Omega)$ 只能处理 $|\Omega| < \pi/T$ 。

3.3 抽取和内插

虽然带通定理降低了采样的速率,但是有时我们需要更高的带宽也就是更快的速度, 优点有:

- 处理带宽变宽
- 信号处理的盲区减少
- 量化信噪比可以提升

但是高速率的采样又会造成后续的信号处理速度不匹配,因此又需要降速,但是减少采样又想要不丢失信息。

3.3.1 信号整倍数抽取

其采样序列转变为,通过统一的形式表示一个周期的冲激函数,很是美观、方便:

$$\delta_D(n) = \frac{1}{D} \sum_{i=0}^{D-1} e^{j\frac{2\pi}{D}ni} = \begin{cases} 1 & n = 0, \pm D, \pm 2D, \dots \\ 0 & \text{其他} \end{cases}$$

其 Z 变换:

$$X_{D}(z) = \sum_{n=-\infty}^{\infty} x_{D}(n)z^{-n}$$

$$= \sum_{m=-\infty}^{+\infty} x(m)\delta_{D}(m)z^{-m/D}$$

$$= \sum_{m=-\infty}^{+\infty} \left(x(m)\frac{1}{D}\sum_{i=0}^{D-1} e^{j\frac{2\pi}{D}mi}\right)z^{-m/D}$$

$$= \frac{1}{D}\sum_{i=0}^{D-1} \sum_{m=-\infty}^{+\infty} x(m)e^{j\frac{2\pi}{D}mi}z^{-m/D}$$

$$= \frac{1}{D}\sum_{i=0}^{D-1} \sum_{m=-\infty}^{+\infty} x(m)\left(z^{\frac{1}{D}}e^{-j\frac{2\pi}{D}i}\right)^{-m}$$

$$= \frac{1}{D}\sum_{i=0}^{D-1} X\left(z^{\frac{1}{D}}e^{-j\frac{2\pi}{D}i}\right)$$

$$= \frac{1}{D}\sum_{i=0}^{D-1} \sum_{m=-\infty}^{+\infty} x(m)\left(z^{\frac{1}{D}}e^{-j\frac{2\pi}{D}i}\right)^{-m}$$

$$= \frac{1}{D}\sum_{i=0}^{D-1} X\left(z^{\frac{1}{D}}e^{-j\frac{2\pi}{D}i}\right)$$

当 D=1 时,退化到原始的 Z 变换。

从采样的模拟谱来看,降采样将交叠平移的**频率间隔缩小**了D倍,因此数字谱也是如此。

最终在数字频域的表现如下,可以看到平移中心没有变化,但是频谱已经被稀释(拉伸)了。

$$X_D(\omega) = \frac{1}{D} \sum_{i=0}^{D-1} X(\frac{\omega - 2\pi i}{D})$$

为了**防止混叠**,需要把可能产生混叠的部分滤除,在对数字信号 D 倍抽取之前,先用数字低通滤波器 π/D 滤波。

3.3.2 信号整倍数内插

内插显得很不可思议,对于一个 I 倍的内插结构,就是在原始序列的每两个点之前,插入 I-1 个零。也就是对于 $x_i(m)$ 来说,除去 m 为 I 的整倍数的点,其余都为 0 。

$$x_I(m) = \begin{cases} x\left(\frac{m}{I}\right) & (m = 0, \pm I, \pm 2I, \cdots) \\ 0 & \text{else} \end{cases}$$

类似的,来分析其频谱:

$$X_{I}(e^{j\omega})$$

$$= \sum_{m=-\infty}^{+\infty} X_{I}(m)e^{-j\omega m}$$

$$= \sum_{k=-\infty}^{+\infty} X_{I}(kI)e^{-j\omega Ik}$$

$$= \sum_{k=-\infty}^{+\infty} X(k)e^{-j\omega Ik} = X(e^{j\omega I})$$

可见,这里的形式比较简洁,就是简单的将频谱压缩了 I 倍。

将抽取后的频谱进行内插后的频谱进行时域还原,可以得到准确的内插值,提高了 时域的分辨率。

类似的, 在内插后需要进行低通滤波, 防止其搬运频谱也进入之后系统。

3.3.3 非整倍数抽取和内插

可以通过如图??的系统对信号进行非整倍数的抽取和内插。

图 3.1: 非整倍数抽取与内插系统

第四章 复习题

2.44, 5.49, 4.8,

附录 A 零极点幅度相位研究

Z=0.1 极点 无零点

Z=0.9 极点 无零点

Z=1.1 极点 无零点

Z=0.1 零点 无极点

Z=0.9 零点 无极点

Z=1.1 零点 无极点

