BARYCENTRE

I) ACTIVITES

Activité 1 :

Sur une barre rigide de poids négligeable et de longueur 1m on considère deux boules métalliques de 500 g en A et de 350 g en B. M un point sur la barre.

Déterminer la position de M sachant que le système et e équilibre.

Activité 2:

Soit ABC un triangle rectangle en A et AC = 2AB.

- 1- Montrer qu'il existe un et un seul point G tel que : $2 \overrightarrow{AG} 3 \overrightarrow{BG} + 2 \overrightarrow{CG} = \overrightarrow{0}$
- 2- Tracer le point *G*
- 3- Si le plan est rapporté au repère $(A, \overrightarrow{AB}, \overrightarrow{AI})$ où I est milieu de [AC], quels seront les coordonnées du point G.

Activité 3:

Soit $(A_i)_{i\leq 4}$ une famille de 4 points, et $(\alpha_i)_{i\leq 4}$ 4 réels dont la somme est non nulle. Montrer que l'application :

$$\varphi \colon \mathcal{P} \to \mathcal{V}_2$$

$$M \mapsto \sum_{i=1}^4 \alpha_i \overrightarrow{MA_i}$$

est une bijection. L'application φ s'appelle l'application de Leibniz

(Wilhelm Leibniz 1646-1716)

II) DEFINITIONS ET PROPRIETES :

1) Vocabulaires

Définitions:

- Soit A un point et α un réel non nul ; le couple (A, α) s'appelle un **point pondéré**.
- Plusieurs points pondérés constituent un système pondéré

Barycentre de deux points pondérés.

2.1 Définitions.

Propriété:

Soit $\{(A,\alpha);(B,\beta)\}$ un système pondéré, tel que $\alpha+\beta\neq 0$ l'application $\begin{aligned} \varphi_2\colon \mathcal{P} \to \mathcal{V}_2 \\ M \mapsto \alpha \overrightarrow{AM} + \beta \ \overrightarrow{BM} \end{aligned}$ est une bijection. Il existe un et un seul point G qui vérifie $\varphi_2(G) = \overrightarrow{0}$

Preuve: φ_2 est l'application de Leibniz pour deux points

Définition:

Soit $\Sigma = \{(A, \alpha); (B, \beta)\}$ un système pondéré, tel que $\alpha + \beta \neq 0$; le barycentre du système pondéré Σ est le point G qui vérifie : $\alpha \overrightarrow{AG} + \beta \overrightarrow{BG} = \overrightarrow{0}$.

On écrit : $G = Bar\{(A, \alpha); (B, \beta)\}$

2.2 Propriétés de barycentre de deux points pondérés.

Soit $\Sigma = \{(A, \alpha); (B, \beta)\}$ un système pondéré, tel que $\alpha + \beta \neq 0$ et $G = Bar\{(A, \alpha); (B, \beta)\}$ On a donc $\alpha \overrightarrow{AG} + \beta \overrightarrow{BG} = \overrightarrow{0}$ et par suite : pour tout réel k non nul on a : $k\alpha \overrightarrow{AG} + k\beta \overrightarrow{BG} = \overrightarrow{0}$ et donc $G = Bar\{(A, k\alpha); (B, k\beta)\}$.

Propriété:

Le barycentre d'un système pondéré de deux points ne varie pas si on multiplie les poids par le même réel non nul

- Si $\alpha = \beta$ le barycentre du système pondéré $\{(A, \alpha); (B, \beta)\}$ s'appelle **l'isobarycentre de** A et B qui n'est que la milieu du segment [AB].
- Construction:

Construire $G = Bar\{(A, 3); (B, 2)\}$

• Soit $\Sigma = \{(A, \alpha); (B, \beta)\}$ un système pondéré, tel que $\alpha + \beta \neq 0$ et $G = Bar\{(A, \alpha); (B, \beta)\}$

On a donc : $\alpha \overrightarrow{AG} + \beta \overrightarrow{BG} = \overrightarrow{0}$

par suite : $\alpha \overrightarrow{AO} + \alpha \overrightarrow{OG} + \beta \overrightarrow{BO} + \beta \overrightarrow{OG} = \overrightarrow{0}$ où O est un pont quelconque dans le plan (\mathcal{P})

 $\mathsf{d'où}: (\alpha + \beta)\overrightarrow{OG} + \alpha \overrightarrow{AO} + \beta \ \overrightarrow{BO} = \overrightarrow{0}$

on conclut que : $\overrightarrow{OG} = \left(\frac{\alpha}{\alpha + \beta}\right) \overrightarrow{OA} + \left(\frac{\beta}{\alpha + \beta}\right) \overrightarrow{OB}$. (car $\alpha + \beta \neq 0$)

Propriété:

Soit $\Sigma = \{(A, \alpha); (B, \beta)\}$ un système pondéré, tel que $\alpha + \beta \neq 0$ et $G = Bar\{(A, \alpha); (B, \beta)\}$.

Pour tout point O du plan (\mathcal{P}) on a : $\overrightarrow{OG} = \left(\frac{\alpha}{\alpha + \beta}\right) \overrightarrow{OA} + \left(\frac{\beta}{\alpha + \beta}\right) \overrightarrow{OB}$.

Cette propriété s'appelle la propriété caractéristique du barycentre.

Propriété:

Si $G = Bar\{(A, \alpha); (B, \beta)\}$ alors les points A, B et G sont alignés.

Preuve:

Il suffit d'utiliser la propriété précédente en posant A=0 dans la propriété ; On aura $\overrightarrow{AG}=\left(\frac{\beta}{\alpha+\beta}\right)\overrightarrow{AB}$ D'où les vecteurs \overrightarrow{AG} et \overrightarrow{AB} sont colinéaires et par suite : les points A,B et G sont alignés.

Propriété:

Le plan (\mathcal{P}) et rapporté à un repère $\mathcal{R}(0,\vec{\iota},\vec{j})$, Soient $A(x_A,y_A)$ et $B(x_B,y_B)$ et $G=Bar\{(A,\alpha);(B,\beta)\}$ on a :

$$\begin{cases} x_G = \left(\frac{\alpha}{\alpha + \beta}\right) x_A + \left(\frac{\beta}{\alpha + \beta}\right) x_B \\ y_G = \left(\frac{\alpha}{\alpha + \beta}\right) y_A + \left(\frac{\beta}{\alpha + \beta}\right) y_B \end{cases}$$

Preuve : Il suffit d'utiliser la propriété caractéristique du barycentre.

Exercice:

Considérons les applications $f(x) = x^2 + 1$ et g(x) = 2x définies sur $\mathbb R$ soient C_f et C_g leurs courbes respectives dans un repère orthonormé. Pour tout x dans $\mathbb R$, on pose M_x le point de C_f d'affixe x et N_x le point d'affixe x de C_g .

- 1- Déterminer les coordonnées du point G_x isobarycentre de M_x et N_x .
- 2- Déterminer et tracer l'ensemble dans lequel varie G_x quand x varie dans \mathbb{R} .

3) Barycentre de trois points pondérés

3.1 Définition

Propriété:

Soit $\{(A,\alpha);(B,\beta);(C,\gamma)\}$ un système pondéré, tel que $\alpha+\beta+\gamma\neq 0$ l'application : $\varphi_3\colon \mathcal{P}\to\mathcal{V}_2$ $M\mapsto \alpha \overrightarrow{AM}+\beta \ \overrightarrow{BM}+\gamma \ \overrightarrow{CM}$ est une bijection. Il existe un et un seul point G qui vérifie $\varphi_3(G)=\overrightarrow{0}$ c est à dire : $\alpha \overrightarrow{AG}+\beta \ \overrightarrow{BG}+\gamma \ \overrightarrow{CG}=\overrightarrow{0}$

Preuve: φ_3 est l'application de Leibniz pour trois points

Propriété:

Soit $\Sigma = \{(A, \alpha); (B, \beta); (C, \gamma)\}$ un système pondéré, tel que $\alpha + \beta + \gamma \neq 0$ et $G = Bar\{(A, \alpha); (B, \beta); (C, \gamma)\}$ On a pour tout point O du plan (\mathcal{P}) : $\overrightarrow{OG} = \left(\frac{\alpha}{\alpha + \beta + \gamma}\right) \overrightarrow{OA} + \left(\frac{\beta}{\alpha + \beta + \gamma}\right) \overrightarrow{OB} + \left(\frac{\gamma}{\alpha + \beta + \gamma}\right) \overrightarrow{OC}$

Preuve : Même démonstration que dans le cas précèdent.

Propriété:

Le plan (\mathcal{P}) et rapporté à un repère $\mathcal{R}(O,\vec{\iota},\vec{\jmath})$, Soient $A(x_A,y_A)$; $B(x_B,y_B)$ $C(x_C,y_C)$ et $G = Bar\{(A,\alpha); (B,\beta); (C,\gamma)\}$ on a : $\begin{cases} x_G = \left(\frac{\alpha}{\alpha+\beta+\gamma}\right) x_A + \left(\frac{\beta}{\alpha+\beta+\gamma}\right) x_B + \left(\frac{\gamma}{\alpha+\beta+\gamma}\right) x_C \\ y_G = \left(\frac{\alpha}{\alpha+\beta+\gamma}\right) y_A + \left(\frac{\beta}{\alpha+\beta+\gamma}\right) y_B + \left(\frac{\gamma}{\alpha+\beta+\gamma}\right) y_C \end{cases}$

Propriété:

Le barycentre d'un système pondéré de trois points ne varie pas si on multiplie les poids par le même nombre non nul : $Bar\{(A,\alpha);(B,\beta);(C,\gamma)=Bar\{(A,k\alpha);(B,k\beta);(C,k\gamma)\}$ pour $k\neq 0$

Exercice:

Soit $G = Bar\{(A, \alpha); (B, \beta); (C, \gamma)\}$ où $\alpha + \beta \neq 0$ et $G' = Bar\{(A, \alpha); (B, \beta)\}$

Montrer que $G = Bar\{(G', (\alpha + \beta)); (C, \gamma)\}$

Propriété:

Si
$$G = Bar\{(A, \alpha); (B, \beta); (C, \gamma) \text{ avec } \alpha + \beta \neq 0 \text{ et } G' = Bar\{(A, \alpha); (B, \beta)\}$$

Alors : $G = Bar\{(G', (\alpha + \beta)); (C, \gamma)\}$

Remarque:

La propriété d'associativité nous permet de construire le barycentre de trois points pondérés.

Application:

Construire le barycentre du système pondéré $\{(A, -2); (B, 3); (C, 1)\}$

Cas particulier

Si les poids α ; β et γ sont égaux le barycentre de $\{(A, \alpha); (B, \alpha); (C, \alpha)\}$ s'appelle **le centre de gravité** du triangle ABC.

Exercice 1:

Soit ABC un triangle. Pour tout point M on pose

$$\begin{cases} \vec{u} = \overrightarrow{AM} + \overrightarrow{BM} + 2 \overrightarrow{CM} \\ \vec{v} = \overrightarrow{AM} + \overrightarrow{BM} - 2 \overrightarrow{CM} \end{cases}$$

- 1- Réduire l'écriture de \vec{u} .
- 2- Montrer que le vecteur \vec{v} est constant.
- 3- Déterminer l'ensemble des points M tel que les vecteurs \vec{u} et \vec{v} soient colinéaires.

Exercice 2:

Déterminer les ensembles suivants :

$$\Delta = \{ M \in (\mathcal{P}) / \left\| 4 \overrightarrow{AM} + 2 \overrightarrow{BM} - \overrightarrow{CM} \right\| = \left\| \overrightarrow{AM} + 2 \overrightarrow{BM} + 2 \overrightarrow{CM} \right\| \}$$

$$\Gamma = \{ M \in (\mathcal{P}) / \left\| \overrightarrow{AM} + \overrightarrow{BM} + 2 \overrightarrow{CM} \right\| = \left\| 3 \overrightarrow{AM} - 2 \overrightarrow{BM} - \overrightarrow{CM} \right\| \}$$

Exercice 3:

Le solide (S) est constitué d'un disque (\mathcal{D}) dont on a enlevé le disque (\mathcal{D}')

- (\mathcal{D}) est le disque de centre O et de rayon 2R
- (\mathcal{D}') est le disque de centre Ω et de rayon R

Déterminer et tracer le centre de gravité du solide.

5) Barycentre de quatre points pondérés

3.1 Définition

Propriété :

Soit
$$\{(A,\alpha);(B,\beta);(C,\gamma);(D,\delta)\}$$
 un système pondéré, tel que $\alpha+\beta+\gamma+\delta\neq 0$ l'application : $\varphi_4\colon \mathcal{P}\to\mathcal{V}_2$ $M\mapsto \alpha \overrightarrow{AM}+\beta \ \overrightarrow{BM}+\gamma \ \overrightarrow{CM}+\delta \ \overrightarrow{DM}$ est une bijection. Il existe un et un seul point G qui vérifie $\varphi_4(G)=\overrightarrow{0}$

Preuve : φ_4 est l'application de Leibniz pour quatre points

Propriété:

Soit
$$\Sigma = \{(A, \alpha); (B, \beta); (C, \gamma); (D, \delta)\}$$
 un système pondéré, tel que $\alpha + \beta + \gamma + \delta \neq 0$ et $G = Bar\{(A, \alpha); (B, \beta); (C, \gamma); (D, \delta)\}$ On a pour tout point O du plan (\mathcal{P}) :
$$\overrightarrow{OG} = \left(\frac{\alpha}{s}\right) \overrightarrow{OA} + \left(\frac{\beta}{s}\right) \overrightarrow{OB} + \left(\frac{\gamma}{s}\right) \overrightarrow{OC} + \left(\frac{\delta}{s}\right) \overrightarrow{OD} \text{ où } S = \alpha + \beta + \gamma + \delta$$

Preuve : Même démonstration que dans les cas précédents.

Propriété:

```
Le plan (\mathcal{P}) et rapporté à un repère \mathcal{R}(O,\vec{\imath},\vec{\jmath}), Soient A(x_A,y_A); B(x_B,y_B); C(x_C,y_C) et D(x_D,y_D) et G = Bar\{(A,\alpha); (B,\beta); (C,\gamma); (D,\delta)\} on a : \begin{cases} x_G = \left(\frac{\alpha}{S}\right) x_A + \left(\frac{\beta}{S}\right) x_B + \left(\frac{\gamma}{S}\right) x_C + \left(\frac{\delta}{S}\right) x_D \\ y_G = \left(\frac{\alpha}{S}\right) y_A + \left(\frac{\beta}{S}\right) y_B + \left(\frac{\gamma}{S}\right) y_C + \left(\frac{\delta}{S}\right) y_D \end{cases} Où S = \alpha + \beta + \gamma + \delta
```

Propriété:

Le barycentre d'un système pondéré de quatre points ne varie pas si on multiplie les poids par le même nombre non nul : $Bar\{(A,\alpha);(B,\beta);(C,\gamma);(D,\delta)\}=Bar\{(A,k\alpha);(B,k\beta);(C,k\gamma);(D,k\delta)\}$ pour $k\neq 0$

Exercice:

```
Soit G = Bar\{Bar\{(A, \alpha); (B, \beta); (C, \gamma); (D, \delta)\} où \alpha + \beta \neq 0 et \gamma + \delta \neq 0
Si G' = Bar\{(A, \alpha); (B, \beta)\} et G'' = Bar\{(C, \gamma); (D, \delta)\}
Montrer que : G = Bar\{(G', (\alpha + \beta)); (G'', \gamma + \delta)\}
```

Propriété:

```
Si G = Bar\{(A, \alpha); (B, \beta); (C, \gamma); (D, \delta)\} avec \alpha + \beta \neq 0 et \gamma + \delta \neq 0

Si G' = Bar\{(A, \alpha); (B, \beta)\} et G'' = Bar\{(C, \gamma); (D, \delta)\}

Alors G = Bar\{(G', (\alpha + \beta)); (G'', \gamma + \delta)\}
```

Remarque:

La propriété d'associativité nous permet de construire le barycentre de quatre points pondérés.

Application:

ABCD un rectangle tel que : AB = 2BC Construire le barycentre du système pondéré $\{(A, -2); (B, 3); (C, 1); (D, 1)\}$

Cas particulier

Si les poids α ; β et γ sont égaux le barycentre de $\{(A, \alpha); (B, \alpha); (C, \alpha); (D, \delta)\}$ s'appelle **le centre de gravité** du quadrilatère ABCD.

Exercice:

Déterminer des poids α , β , γ et δ pour les points A, B, C et D pour que $G = Bar\{(A, \alpha); (B, \beta); (C, \gamma); (D, \delta)\}$ dans le figure ci-dessous

