Tópicos de Matemática Discreta

- 1. (a) Diga se é verdadeira ou falsa a seguinte afirmação: Se a fórmula proposicional $((\neg p_0 \land p_1) \lor (p_0 \leftrightarrow \neg p_1)) \rightarrow p_0$ tem o valor lógico falso, então a proposição p_1 tem valor lógico verdadeiro.
 - (b) Considere que p representa a proposição $\forall_{x \in D} (x \in \text{impar} \to (\exists_{y \in D} \exists_{z \in D} x + y = z))$. Diga, justificando, se p \in verdadeira para $D = \{-13, -10, -2, 3, 2, 5\}$. Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 2. Considere os conjuntos $A = \{-2, 1, 3\}, B = \{x \in \mathbb{Z} : |x| + 1 \in A\} \in C = \{-2, 1, \{1, 3\}\}.$
 - (a) Justificando, determine $(B \times A) \cap (A \times A)$.
 - (b) Determine $\mathcal{P}(C) \setminus \mathcal{P}(A)$. Justifique a sua resposta.
- 3. (a) Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: Para quaisquer conjuntos $A, B \in C$, se $A \setminus C = B \setminus C$, então A = B.
 - (b) Prove que, para quaisquer conjuntos $A, B \in C$, se $A \cap B \subseteq C$, então $A \subseteq C \cup (A \setminus B)$.
- 4. Prove, por indução nos naturais, que $n^3 + 2n$ é divisível por 3, para todo $n \in \mathbb{N}$.
- 5. Considere a função $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definida da seguinte forma

$$f(n) = \left\{ \begin{array}{ll} (n, n+1) & \text{se } n \text{ \'e par} \\ (n+1, n+2) & \text{se } n \text{ \'e impar} \end{array} \right..$$

- (a) Justificando, defina por extensão, $f(\{0,1\}) \cap f(\{2,3\})$ e $f^{\leftarrow}(\{(0,1),(1,2)\})$.
- (b) Diga, justificando, se f é injetiva e/ou sobrejetiva.
- 6. Seja R a relação de equivalência em $A = \{z \in \mathbb{Z} : -4 \le z \le 4\}$ definida por:

$$xRy$$
 se e só se $\exists_{q\in\mathbb{Z}} x + 3y = 4q$,

para quaisquer $x, y \in A$.

- (a) Indique, sem justificar, $[-1]_R$ e A/R.
- (b) Mostre que, de facto, R é uma relação transitiva.
- 7. Consideremos o c.p.o. (A, \leq) com o seguinte diagrama de Hasse associado:
 - (a) Indique, sem justificar:
 - i. o conjunto dos minorantes de $X = \{d, g, i\}$;
 - ii. $x, y \in A$ não comparáveis tais que existe $\sup(\{x,y\})$;
 - iii. $z, w \in A$ tais que não existe $\sup(\{z, w\})$.
 - (b) Indique, justificando, um subconjunto Y de A com pelo menos 4 elementos tal que (Y, \leq) é um reticulado.
- 4 com pelo llado.
- 8. Dê exemplo de ou justifique que não existe
 - (a) um grafo com 4 vértices, tendo exatamente dois deles grau par;
 - (b) um grafo sem ciclos de comprimento superior a 3;
 - (c) uma árvore com um número par de arestas e todos os vértices de grau ímpar.

Cotações	1.	2.	3.	4.	5.	6.	7.	8.
	1,75+1,75	1 + 1	1,5 + 1,5	1,75	1+1	1,25+1	1,5+1,25	0,75+1+1

