Nome:				

Lab 02: Conceitos sobre performance. Cálculo e verificações de métricas.

- **1º Pense e Responda**: as seguintes alterações em um computador aumentam o throughput, diminuem o tempo de resposta ou ambos?
 - a) Substituir o processador por uma versão mais rápida
 - b) Acrescentar processadores adicionais (iguais aos já existentes) em um computador que utiliza múltiplos processadores para tarefas separadas.

2º Pense e Responda: calcule a performance dos computadores A e B na realização de diversas tarefas. Indique qual computador tem melhor performance em cada tarefa.

Tarefa	Computador A		Compu	Melhor?	
	Tempo (s)	Performance	Tempo (s)	Performance	wemor?
1	10		15		
2	20		15		
3	5		20		
4	30		30		_
5	0,5		2		

3º Pense e Responda: calcule a performance relativa de cada tarefa, entre os computadores A e B do exercício anterior.

Tarefa	Performance Relativa entre A e B
1	
2	
3	
4	
5	

4º Pense e Responda: faça o download do código do programa "sum_full.c", no portal do aluno, e meça o tempo de resposta para realizar a soma de N números aleatórios de ponto flutuante e anote o resultado (campo "real"). O que você concluiu?

N	Tempo de Resposta		
10			
100			
1.000			
10.000			
100.000			
1.000.000			
10.000.000			

5º Pense e Responda: usando o programa "sum_full.c", meça novamente o tempo de execução, anotando o tempo de resposta e o tempo de CPU (Usuário e Sistema). O que você concluiu?

N	Tempo de Resposta	Tempo de CPU (Usuário)	Tempo de CPU (Sistema)
10			
100			
1.000			
10.000			
100.000			
1.000.000			
10.000.000			

6º Pense e Responda: Qual a taxa de clock de um determinado computador que tem período de clock de 250 ps?

7º Pense e Responda: descubra a taxa de clock de seu processador e calcule o período de clock. Se estiver no Linux, use o comando "cat /proc/cpuinfo".

8º Pense e Responda: Considerando as equações simples de relacionamento entre as métricas do Usuário e as métricas do Projetista, como um projetista pode melhorar o desempenho (tempo de CPU) de um computador?

9º Pense e Responda: um determinado programa executa em 10 segundos no computador A, que tem um clock de 2 GHz. Um engenheiro quer construir o computador B, que executará esse mesmo programa em 6 segundos. O engenheiro calculou que é possível aumentar a taxa de clock, mas esse aumento afetará o restante do projeto da CPU, fazendo com que o computador B precise executar esse programa com uma quantidade de ciclos de clock 20% maior do que a quantidade de ciclos do computador A. Qual taxa de clock o computador B deve ter?

10º Pense e Responda: dado o que você aprendeu até aqui, por que o CPI seria importante?

11º Pense e Responda: dois computadores, A e B, executam a mesma arquitetura de conjunto de instruções. O computador A tem um tempo de ciclo de clock de 250 ps e um CPI de 2,0 para um determinado programa, e o computador B tem um tempo de ciclo de clock de 500 ps e um CPI de 1,2 para o mesmo programa. Qual é o computador mais rápido para esse programa, e por quanto?

12º Pense e Responda: um projetista de compilador está tentando decidir entre duas sequências de código que exigem as seguintes contagens de instruções:

	Instruction counts for each instruction class			
Code sequence	A	В	C	
1	2	1	2	
2	4	1	1	

Os projetistas de hardware forneceram os seguintes fatos:

	CPI for each instruction class			
	A	В	C	
CPI	1	2	3	

Pergunta-se:

- a) Qual sequência de código executa mais instruções?
- b) Qual sequência de código será mais rápida?
- c) Qual é o CPI de cada sequência?

CPU clock cycles =
$$\sum_{i=1}^{n} (CPI_i \times C_i)$$

$$CPI = \frac{CPU \ clock \ cycles}{Instruction \ count}$$