2. Data Exploration

Predicting Heart Disease Mortality with Machine Learning Techniques Lorenzo Negri, July 2018

Numeric Feature Statistics

Summary statistics for minimum, maximum, mean, standard deviation, skewness and number of missing values for numeric columns, and the results calculation taken from all the observations are visible in table:

Feature	Min	Max	Mean	Std Dev	Skewness	N. Missing
econpct_civilian_labor	0.207	1	0.4672	0.0744	0.6459	0
econpct_unemployment	0.01	0.248	0.0597	0.0229	1.28 <mark>3</mark> 3	0
econpct_uninsured_adults	0.046	0.496	0.2175	0.0674	0.3639	2
econpct_uninsured_children	0.012	0.281	0.0861	0.0398	1.17 <mark>2</mark> 9	2
demopct_female	0.278	0.573	0.4988	0.0244	-2.921 <mark>1</mark>	2
demopct_below_18_years_of_age	0.092	0.417	0.2277	0.0343	0.5425	2
demopct_aged_65_years_and_older	0.045	0.346	0.17	0.0437	0.4957	2
demopct_hispanic	0	0.932	0.0902	0.1428	3.0 <mark>17</mark> 8	2
demopct_non_hispanic_african_american	0	0.858	0.091	0.1472	2.2 <mark>74</mark> 7	2
demopct_non_hispanic_white	0.053	0.99	0.77	0.2078	-1.16 <mark>7</mark> 3	2
demopct_american_indian_or_alaskan_native	0	0.859	0.0247	0.0846	6.9199	2
demopct_asian	0	0.341	0.0131	0.0254	<mark>6.194</mark> 3	2
demopct_adults_less_than_a_high_school_di ploma	0.0151	0.474	0.1488	0.0682	0.8274	0
demopct_adults_with_high_school_diploma	0.0653	0.559	0.3506	0.0706	-0.3221	0
demopct_adults_with_some_college	0.1095	0.474	0.3011	0.0523	0.0062	0
demopct_adults_bachelors_or_higher	0.0111	0.799	0.1995	0.0893	1.62 <mark>4</mark> 3	0
demobirth_rate_per_1k	4	29	11.677	2.7395	1.00 <mark>5</mark> 6	0
demodeath_rate_per_1k	0	27	10.3011	2.7 861	0.1309	0
healthpct_adult_obesity	0.131	0.471	0.3077	0.0432	-0.2831	2
healthpct_adult_smoking	0.046	0.513	0.2136	0.0629	0.6065	464
healthpct_diabetes	0.032	0.203	0.1093	0.0232	0.2036	2
healthpct_low_birthweight	0.033	0.238	0.0839	0.0223	0.9992	182
healthpct_excessive_drinking	0.038	0.367	0.1648	0.0505	0.244	978
healthpct_physical_inacticity	0.09	0.442	0.2772	0.053	-0.2194	2
healthair_pollution_particulate_matter	7	15	11.6259	1 .558	-0.3517	28
healthhomicides_per_100k	-0.4	50.49	5.9475	5.0318	2.7 <mark>09</mark> 2	1,967
healthmotor_vehicle_crash_deaths_per_100k	3.14	110.5	21.1326	10.4859	1.30 <mark>5</mark> 6	417
healthpop_per_dentist	339	28,130	3,431.43	2,569.45	2.8 <mark>99</mark> 7	244
healthpop_per_primary_care_physician	189	23,399	2,551.33	2,100.45	3. <mark>589</mark> 8	230
Target variable: heart_disease_mortality_per_100k	109	512	279.369	58.9533	0.4237	0

The **target variable** of our interest for the training of the machine-learning algorithm is nearly normal distributed and the skewness indicates a slight rightskewed values. On the left, the frequency chart of the **target variable** column.

Feature	Obs.	%
	Missing	
healthpct_adult_smoking	464	14.51
healthpct_low_birthweight	182	5.69
healthpct_excessive_drinking	978	30.58
healthair_pollution_particulate_matter	28	0.88
healthhomicides_per_100k	1967	61.51
healthmotor_vehicle_crash_deaths_per_100k	417	13.04
healthpop_per_dentist	244	7.63
healthpop_per_primary_care_physician	230	7.19

The **missing values** of columns with greater number appears in the table on the left, with also percentages. As we can see, *health_homicides_per_100k* has more than 60% of missing observations of the 3198 total. *Health_pct_excessive_drinking* is at second place with 30% of missing values.

Categorical Features

The categorical features of the observations, includes:

- area__rucc classification scheme that distinguishes metropolitan counties by the
 population size of their metro area, and nonmetropolitan counties by degree of
 urbanization and adjacency to a metro area. There are three metro and six nonmetro
 categories.
- **area_urban_influence** classification scheme that distinguishes metropolitan counties by population size of their metro area, and nonmetropolitan counties by size of the largest city or town and proximity to metro and micropolitan areas.
- **econ__economic_typology** classify all U.S. counties according to six mutually exclusive categories of economic dependence and six overlapping categories of policy-

relevant themes. The economic dependence types include farming, mining, manufacturing, Federal/State government, recreation, and nonspecialized counties. The policy-relevant types include low education, low employment, persistent poverty, persistent child poverty, population loss, and retirement destination.

• yr - two year reference.

Bar charts visualization of these features, indicate the following relevant notes:

- The years of reference has the same frequency for both.
- Nonspecialized economic typology is 40% of all others in the same category.

It appears that "year" is not a categorical feature of some interest and that would not help getting better results for our problem.

