IT464 Lab Assignment 2

(i) Apply Decision tree, Naive Bayes classifiers and Random Forest to detect the target as yes or no (for bank data) and to detect the diabetes as yes or no (for diabetes data) using the following data sets. (40M) https://www.kaggle.com/datasets/krantiswalke/bankfullcsv https://www.kaggle.com/datasets/shashankvichare/diabetes-prediction (ii) Test the algorithm's performance on the following test datasets. Test Datasets: (a) bank-test.xls (b) diabetes-test.xls

Bank

```
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix,roc_curve,auc
import matplotlib.pyplot as plt
df = pd.read_csv("bank-full.csv")
categorical_cols = ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'Target']
label_encoders = {}
for col in categorical cols:
     le = LabelEncoder()
     df[col] = le.fit_transform(df[col])
label_encoders[col] = le
X = df.drop(columns=['Target'])
y = df['Target']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
dt = DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=10,
                                     max features=None, max leaf_nodes=None, min_impurity_decrease=0.0,
min_samples_leaf=2, min_samples_split=5, min_weight_fraction_leaf=0.0,
                                      random_state=None, splitter='best
dt.fit(X_train, y_train)
dt_pred = dt.predict(X_test)
print("Accuracy:", accuracy_score(y_test, dt_pred))
print("Classification_Report:\n", classification_report(y_test, dt_pred))
cm = confusion_matrix(y_test, dt_pred)
print("\nConfusion Matrix:")
print(cm)
```

```
nb = GaussianNB()
nb.fit(X_train, y_train)
nb_pred = nb.predict(X_test)
 print("Accuracy:", accuracy_score(y_test, nb_pred))
print("Classification Report:\n", classification_report(y_test, nb_pred))
 cm = confusion_matrix(y_test, nb_pred)
  print("\nConfusion Matrix:")
  print(cm)
  # Random Forest Classifier
 \label{eq:reconstruction} \textbf{rf} = \textbf{RandomForestClassifier(bootstrap=True, ccp\_alpha=0.0, class\_weight=None, criterion='gini', class\_weight=None, class\_weight=N
                                                                                                           max_depth=20, max_features='sqrt', max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_samples_leaf=1, min_samples_split=2,
                                                                                                           min_weight_fraction_leaf=0.0, n_estimators=200, random_state=42)
 rf.fit(X_train, y_train)
 rf_pred = rf.predict(X_test)
print("=== Random Forest ===")
print("Accuracy:", accuracy_score(y_test, rf_pred))
print("Classification Report:\n", classification_report(y_test, rf_pred))
cm = confusion_matrix(y_test, rf_pred)
  print("\nConfusion Matrix:")
  print(cm)
dt_probs = dt.predict_proba(X_test)[:, 1]
dt_fpr, dt_tpr, _ = roc_curve(y_test, dt_probs)
dt_auc = auc(dt_fpr, dt_tpr)
 nb_probs = nb.predict_proba(X_test)[:, 1]
nb_fpr, nb_tpr, _ = roc_curve(y_test, nb_probs)
nb_auc = auc(nb_fpr, nb_tpr)
rf_probs = rf.predict_proba(X_test)[:, 1]
rf_fpr, rf_tpr, _ = roc_curve(y_test, rf_probs)
rf_auc = auc(rf_fpr, rf_tpr)
```

```
plt.figure(figsize=(8, 6))
plt.plot(dt_fpr, dt_tpr, label=f'Decision Tree (AUC = {dt_auc:.2f})')
plt.plot(nb_fpr, nb_tpr, label=f'Naïve Bayes (AUC = {nb_auc:.2f})')
plt.plot(rf_fpr, rf_tpr, label=f'Random Forest (AUC = {rf_auc:.2f})')
plt.plot([0, 1], [0, 1], 'k--', label='Random Chance')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curves for Bank Target Prediction')
plt.legend(loc='lower right')
plt.show()
```

```
test_df=pd.read_excel("bank-test.xlsx",header=4);
test df=test df.iloc[1:]
test\_df=test\_df.drop(test\_df.columns[\theta],axis=1)
test df
for col in test_df.columns:
    test_df[col] = test_df[col].astype(str).str.lower()
month_map = {
    "january": "jan", "february": "feb", "march": "mar", "april": "apr",
"may": "may", "june": "jun", "july": "jul", "august": "aug",
"september": "sep", "october": "oct", "november": "nov", "december": "dec"
test_df["month"] = test_df["month"].str.strip().str.lower().replace(month_map)
for col in categorical_cols[:-1]:
    if col in test df.columns:
         test df[col] = label encoders[col].transform(test df[col])
test_X_scaled = scaler.transform(test_df)
test predictions = {
     "Decision Tree": dt.predict(test X scaled),
    "Naïve Bayes": nb.predict(test_X_scaled),
    "Random Forest": rf.predict(test_X_scaled)
for model_name, predictions in test_predictions.items():
    print(f"=== {model_name} Predictions ===")
    print(predictions)
```

=== Decision Tr Accuracy: 0.891 Classification	29713590622	58		
	precision	recall	fl-score	support
θ	0.92	0.96	0.94	7952
1	0.57	0.40	0.47	1091
accuracy			0.89	9043
macro avq	0.75	0.68	0.70	9043
weighted avg	0.88	0.89	0.88	9043
Confusion Matri	v.			
[[7624 328]				
[655 436]]				
=== Naïve Bayes	; ===			
Accuracy: 0.824	83689041247	38		
Classification	Report:			
	precision	recall	fl-score	support
θ	0.93	0.87	0.90	7952
1	0.34	0.49	0.40	1091
accuracy			0.82	9043
macro avg	0.63	0.68	0.65	9043
weighted avg	0.86	0.82	0.84	9043
Confusion Matri	x:			
[[6922 1030]	700			
[554 537]]				
=== Random Fore				
Accuracy: 0.902		77		
Classification				
	precision	recall	fl-score	support
0	0.92	0.97	0.95	7952
1	0.65	0.42	0.51	1091
accuracy			0.90	9043
macro avg	0.78	0.69	0.73	9043
weighted avg	0.89	0.90	0.89	9043
Confusion Matri	x:			
[[7704 248]				
[638 453]]				

:	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	Decision Tree Prediction	Naïve Bayes Prediction	Random Forest Prediction
_	1 40.0	0	2		0	1303.0			0	6.0	4	1585.0	8.0	405.0	405.0	2	No	Yes	Yes
	2 66.0					50775.0				21.0		646.0	22.0	94.0	94.0		No	Yes	No
	3 50.0					24161.0				25.0		1395.0	49.0	414.0	414.0		Yes	Yes	Yes
	4 72.0					-134.0				20.0		381.0	30.0	576.0	576.0		Yes	Yes	Yes
	5 61.0					-1382.0				23.0		1096.0	52.0	257.0	257.0		Yes	Yes	No
	6 77.0					68792.0				28.0		653.0	54.0	498.0	498.0		No	Yes	Yes
	7 44.0					864.0				2.0		590.0	45.0	30.0	30.0		No	No	No
	8 38.0					23208.0				2.0		924.0	40.0	84.0	84.0		No	No	No
	9 26.0					2263.0				27.0		1379.0	50.0	69.0	69.0		Yes	No	Yes
1	0 84.0					28385.0				5.0		633.0	8.0	488.0	488.0		Yes	Yes	Yes
1	1 43.0					28813.0				22.0		928.0	7.0	237.0	237.0		Yes	Yes	Yes
1	2 27.0					31857.0				1.0		1427.0	35.0	597.0	597.0		No	Yes	No
1	3 32.0					33084.0				10.0		1883.0	55.0	27.0	27.0		Yes	No	No
1	4 31.0					44960.0				19.0		1795.0	38.0	595.0	595.0		Yes	Yes	No
1	5 40.0					42639.0				16.0		1178.0	29.0	24.0	24.0		Yes	No	No

Diabetes

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import (classification_report, accuracy_score, confusion_matrix,
roc_curve, auc)
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from \ sklearn.ensemble \ import \ Random Forest Classifier
from imblearn.over_sampling import SMOTE import matplotlib.pyplot as plt
df = pd.read_csv("Diabetespred.csv")
df.fillna(df.median(), inplace=True)
X = df.drop("Outcome", axis=1)
y = df["Outcome"]
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, stratify=y, random_state=42
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
sm = SMOTE(random_state=42)
X_train_res, y_train_res = sm.fit_resample(X_train_scaled, y_train)
dt model = DecisionTreeClassifier(
     criterion='entropy',
max_depth=None,
min_samples_split=5,
      min samples leaf=2,
      random state=42
dt model.fit(X train_res, y train_res)
y_pred_dt = dt_model.predict(X_test_scaled)
print("---- becision free ctassifier ---- )
print("Accuracy:", accuracy_score(y_test, y_pred_dt))
print("Classification Report:\n", classification_report(y_test, y_pred_dt))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_dt))
```

```
nb_model = GaussianNB(var_smoothing=le-09)
nb_model.fit(X_train_res, y_train_res)
y_pred_nb = nb_model.predict(X_test_scaled)
 print("\n---- Gaussian Naive Bayes Classifier ---
print("Accuracy:", accuracy_score(y_test, y_pred_nb))
print("Classification Report:\n", classification_report(y_test, y_pred_nb))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_nb))
# Random Forest Classifier
rf_model = RandomForestClassifier(
            criterion='gini',
              max_depth=10,
              min_samples_split=5,
            min samples leaf=1,
             n_estimators=200,
              random_state=42
rf model.fit(X train res, y train res)
y_pred_rf = rf_model.predict(X_test_scaled)
print("\n---- Random Forest Classifier ----")
print( \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) 
# ROC Curve and AUC for Each Classifier
dt probs = dt_model.predict_proba(X_test_scaled)[:, 1] # probabilities for class 1
dt_fpr, dt_tpr, _ = roc_curve(y_test, dt_probs)
dt_auc = auc(dt_fpr, dt_tpr)
nb_probs = nb_model.predict_proba(X_test_scaled)[:, 1]
nb_fpr, nb_tpr, _ = roc_curve(y_test, nb_probs)
nb_auc = auc(nb_fpr, nb_tpr)
rf_probs = rf_model.predict_proba(X_test_scaled)[:, 1]
rf_fpr, rf_tpr, _ = roc_curve(y_test, rf_probs)
rf_auc = auc(rf_fpr, rf_tpr)
```

```
plt.figure(figsize=(8, 6))
plt.plot(dt_fpr, dt_tpr, label=f'Decision Tree (AUC = {dt_auc:.2f})')
plt.plot(nb_fpr, nb_tpr, label=f'Naive Bayes (AUC = {nb_auc:.2f})')
plt.plot(rf_fpr, rf_tpr, label=f'Random Forest (AUC = {rf_auc:.2f})')
plt.plot([0, 1], [0, 1], 'k--', label='Random Chance')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curves for Diabetes Prediction')
plt.legend(loc='lower right')
plt.show()
```

```
test_df=pd.read_excel("diabetes-test.xlsx",header=5)
test_df=test_df.iloc[1:]
test_df=test_df.drop(test_df.columns[0],axis=1)
test_df
test_X_scaled = scaler.transform(test_df)
test_predictions = {
    "Decision Tree": dt_model.predict(test_X_scaled),
    "Naïve Bayes": nb_model.predict(test_X_scaled),
    "Random Forest": rf_model.predict(test_X_scaled)
}

for model_name, predictions in test_predictions.items():
    print(f"=== {model_name} Predictions ====")
    print(predictions)
```

```
--- Decision Tree Classifier ----
Accuracy: 0.65
Classification Report:
                 precision
                                recall fl-score
                                                      support
                      θ.75
θ.51
                                 0.69
0.58
                                             θ.72
θ.55
                                                           64
                                                           36
                                             0.65
0.63
0.65
    accuracy
                                                          100
                     0.63
0.66
                                 0.64
                                                          100
   macro avg
                                 0.65
                                                          100
weighted avg
Confusion Matrix:
[[44 20]
[15 21]]
---- Gaussian Naive Bayes Classifier -----
Accuracy: 0.69
Classification Report:
                                recall fl-score
                 precision
                                                      support
                                 0.72
            θ
                     0.78
                                             0.75
                                                           64
                     0.56
                                 0.64
                                             0.60
                                                           36
   accuracy
                                             0.69
                                                          100
                      0.67
                                 0.68
                                             0.67
0.69
                                                          100
   macro avg
weighted avg
                      0.70
                                 0.69
                                                          100
Confusion Matrix:
[[46 18]
[13 23]]
----- Random Forest Classifier -----
Accuracy: 0.76
Classification Report:
                 precision
                                recall fl-score
                                                      support
                     θ.83
θ.65
                                 0.78
0.72
                                             0.81
0.68
                                                           64
36
    accuracy
                                             θ.76
θ.75
                                                          100
                      0.74
                                                          100
                                 0.75
   macro avq
weighted avg
                     0.77
                                 0.76
                                             0.76
                                                          100
Confusion Matrix:
 [[50 14]
 [10 26]]
```


	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Decision Tree Prediction	Naïve Bayes Prediction	Random Forest Prediction
1	12.0	49.0	56.0	18.0	331.0	50.0	0.192313	21.0	No	Yes	No
2	4.0	128.0	39.0	53.0	367.0	22.0	0.411382	21.0	Yes	Yes	No
3	15.0	95.0	113.0	40.0	494.0	27.0	0.780781	48.0	Yes	Yes	Yes
4	12.0	77.0	37.0	9.0	193.0	23.0	0.392337	55.0	No	No	No
5	9.0	53.0	83.0	6.0	481.0	24.0	0.861166	63.0	No	Yes	No
6	1.0	96.0	30.0	37.0	473.0	18.0	1.438416	32.0	No	Yes	No
7	4.0	148.0	103.0	49.0	405.0	40.0	1.251075	42.0	Yes	Yes	Yes
8	11.0	120.0	86.0	47.0	450.0	24.0	1.217705	37.0	Yes	Yes	Yes
9	12.0	143.0	88.0	15.0	266.0	29.0	0.833595	60.0	No	Yes	Yes
10	3.0	102.0	114.0	27.0	453.0	28.0	1.709989	70.0	No	Yes	No

Q2. Apply Decision tree for the California Housing Dataset to predict the house price and show it. (10M) https://www.geeksforgeeks.org/dataset-for-linear-regression/ Note: Exclude "longitude, latitude and ocean proximity" parameters/variables. Compute the price for the "housing2" test data using the trained Decision tree.

```
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import matplotlib.pyplot as plt
import numpy as np
housing_data = pd.read_csv('housing.csv')
housing_data = housing_data.drop(['longitude', 'latitude', 'ocean_proximity'], axis=1)
housing_data['total_bedrooms'].fillna(housing_data['total_bedrooms'].median(), inplace=True)
housing_data['rooms_per_household'] = housing_data['total_rooms'] / housing_data['households']
housing_data['bedrooms_per_room'] = housing_data['total_bedrooms'] / housing_data['total_rooms']
housing_data['population_per_household'] = housing_data['population'] / housing_data['households']
housing_data['median_income'] = np.loglp(housing_data['median_income'])
housing_data['total_rooms'] = np.loglp(housing_data['total_rooms'])
X = housing_data.drop('median_house_value', axis=1)
y = housing_data['median_house_value']
poly = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly.fit_transform(X)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_poly)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
dt_model.fit(X_train, y_train)
y_pred = dt_model.predict(X_test)
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, alpha=0.5)
plt.xlabel('Actual Prices')
plt.ylabel('Predicted Prices')
plt.title('Actual vs Predicted Prices (Decision Tree)')
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red')
plt.grid(True)
plt.show()
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2 score(y test, y pred)
```

```
print(f"Mean Absolute Error (MAE): {mae:.2f}")
print(f"Mean Squared Error (MSE): {mse:.2f}")
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
print(f"R-squared Score (R2): {r2:.4f}")
housing test_data = pd.read_csv("housing2.csv", skiprows=2)
housing_test_data = housing_test_data.drop(housing_test_data.columns[0], axis=1)
housing_test_data = housing_test_data.drop(index=housing_test_data.index[0]).reset_index(drop=True)
expected_columns = ['housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income']
housing_test_data = housing_test_data[expected_columns]
housing_test_data['total_bedrooms'].fillna(housing_test_data['total_bedrooms'].median(), inplace=True)
housing_test_data['total_bedrooms'].fillna(housing_test_data['total_bedrooms'] / housing_test_data['households']
housing_test_data['bedrooms_per_room'] = housing_test_data['total_bedrooms'] / housing_test_data['total_rooms']
housing_test_data['population_per_household'] = housing_test_data['population'] / housing_test_data['households']
housing_test_data['median_income'] = np.loglp(housing_test_data['median_income'])
housing_test_data['total_rooms'] = np.loglp(housing_test_data['total_rooms'])
housing_test_data_scaled = scaler.transform(housing_test_data['total_rooms'])
housing_test_data_scaled = scaler.transform(housing_test_data_scaled)
housing_test_data['Predicted_Price'] = housing_test_data_scaled)
housing_test_data
```


Mean Absolute Error (MAE): 50022.68 Mean Squared Error (MSE): 4857231631.10 Root Mean Squared Error (RMSE): 69693.84 R-squared Score (R²): 0.6293

Tes	t Data with Predi	ctions:								
	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	rooms_per_household	bedrooms_per_room	population_per_household	Predicted_Price
0	20.0	8.322151	302.0	999.0	302.0	2.052905	13.619205	0.073426	3.307947	296684.210526
	10.0	8.966739	645.0	2307.0	265.0	1.113829	29.573585	0.082302	8.705660	245533.444444
2	63.0	9.068546	619.0	1659.0	227.0	2.254161	38.224670	0.071338	7.308370	438157.285714
3	46.0	8.230844	984.0	607.0	334.0	2.034758	11.239521	0.262120	1.817365	479654.915663
4	10.0	8.366835	578.0	653.0	391.0	1.886660	11.000000	0.134387	1.670077	314410.100000
5	23.0	8.307213	458.0	1458.0	285.0	2.047719	14.217544	0.113031	5.115789	296684.210526
6	9.0	9.179159	791.0	1472.0	369.0	1.840661	26.265583	0.081614	3.989160	192886.440678
	42.0	8.434464	916.0	657.0	353.0	2.180508	13.036827	0.199044	1.861190	491122.459459
8	5.0	8.865594	101.0	1289.0	383.0	2.241029	18.493473	0.014259	3.365535	472050.500000
9	33.0	8.603554	404.0	980.0	481.0	1.550325	11.330561	0.074128	2.037422	480200.250000

Q3. Perform SVM and Bayes classifiers on the following data to predict credit card fraud. (20M)

https://www.kaggle.com/datasets/nishipatkar/credit-card-details (a) Predict credit card fraud for the test data: creditcard-test.xls

SVM

```
import pandas as pd
                                                                            回个少古早
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
from imblearn.over sampling import SMOTE
df = pd.read_csv("creditcard.csv")
print("Class distribution in dataset before SMOTE:")
print(df['Class'].value counts())
X = df.drop(columns=['Class'])
y = df['Class']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
smote = SMOTE(sampling strategy=0.1,random state=42)
X train resampled, y train resampled = smote.fit resample(X train, y train)
svm_model = SVC(kernel='rbf', C=10, gamma='auto', random_state=42)
svm model.fit(X train resampled, y train resampled)
y_pred = svm_model.predict(X test)
print("Updated Classification Report:")
print(classification_report(y_test, y_pred))
plt.figure(figsize=(6, 5))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', cmap='Blues',
            xticklabels=['Non-Fraud', 'Fraud'], yticklabels=['Non-Fraud', 'Fraud'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```

Class distribu	tion in dat	aset befo	re SMOTE:		
Class					
0 284315					
1 492					
Name: count, d	type: int64				
Updated Classi	fication Re	port:			
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	56864	
1	0.80	0.67	0.73	98	
accuracy			1.00	56962	
macro avg	0.90	0.84	0.86	56962	
weighted avg	1.00	1.00	1.00	56962	


```
test_df = pd.read_excel("creditcard-test.xlsx", header=3)
test_df = test_df.iloc[1:].reset_index(drop=True)
test_df = test_df.drop(test_df.columns[0], axis=1)
test_df = test_df.apply(pd.to_numeric, errors='coerce')

X_test_new = scaler.transform(test_df)
y_test_pred = svm_model.predict(X_test_new)
test_df['Predicted Class'] = y_test_pred

test_df
```

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V23	V24	V25	V26	V27	V28	Amount	Predicted Class
0	11707.0	7.28	-0.53	8.17	9.32	1.11	0.53	-0.43	9.69	9.72	6.07	1.13	0.46	9.82	3.30	5.07	-0.71	-0.91	958.184120	0
1	75775.0	0.76	5.92	-0.69	-0.49	7.88	1.13	6.90	3.62	0.00	3.35	0.10	5.18	1.85	4.39	-0.24	8.38	8.82	822.209306	0
2	50010.0	-0.92	7.57	6.30	2.68	2.93	0.32	5.06	0.15	5.29	6.11	5.35	7.84	7.02	-0.73	2.97	2.22	5.75	61.662134	0
3	11996.0	4.00	1.22	0.65	4.29	7.33	-0.45	1.19	1.57	7.58	4.94	0.20	3.60	2.41	3.28	8.67	6.05	5.99	956.869145	0
4	3360.0	8.60	6.43	-0.34	10.00	0.36	7.91	4.96	8.80	3.94	4.96	6.72	9.73	8.07	0.11	8.31	9.96	7.78	159.284273	0
5	71278.0	2.63	-0.31	3.91	1.75	-0.12	0.89	8.17	1.13	5.53	7.10	8.75	5.97	-0.26	9.98	5.18	2.07	1.04	282.008097	0
6	15904.0	8.27	4.01	6.60	8.61	6.04	9.74	6.60	3.67	9.28	8.75	6.50	9.99	3.69	3.92	8.26	-0.66	6.67	109.150863	0
7	47645.0	7.86	2.27	0.87	9.47	6.45	-0.12	1.41	0.68	8.83	2.65	5.60	2.94	4.44	4.70	9.25	2.96	-0.68	839.448067	0
8	40430.0	0.27	1.17	5.53	4.90	9.94	7.12	6.69	6.89	3.64	5.44	5.75	-0.20	9.61	7.96	-0.52	-0.71	3.52	120.055819	0
9	14347.0	1.85	9.79	0.96	0.00	8.24	2.39	0.28	8.34	9.68	1.87	4.88	9.15	2.60	2.51	-0.89	3.61	-0.93	201.238715	0
10	rows × 31	colum	ns																	

Naive Bayes

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc
from imblearn.over_sampling import SMOTE
df = pd.read_csv("creditcard.csv")
X = df.drop(columns=['Class'])
y = df['Class']
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
X_{train}, X_{test}, y_{train}, y_{test} = train_{test_{split}}(X_{scaled}, y, test_{size=0.2}, train_{test_{size}})
smote = SMOTE(random_state=42)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
nb_model = GaussianNB()
nb model.fit(X train resampled, y train resampled)
y_pred = nb_model.predict(X_test)
y pred prob = nb model.predict proba(X test)[:, 1]
print("Updated Classification Report:")
print(classification_report(y_test, y_pred))
plt.figure(figsize=(6, 5))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', cmap='Blues',
            xticklabels=['Non-Fraud', 'Fraud'], yticklabels=['Non-Fraud', 'Fraud'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
roc auc = auc(fpr, tpr)
plt.figure(figsize=(6, 5))
plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC Curve (AUC = {roc_auc:.4f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```

```
fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
roc_auc = auc(fpr, tpr)
plt.figure(figsize=(6, 5))
plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC Curve (AUC = {roc_auc:.4f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
test_df = pd.read_excel("creditcard-test.xlsx", header=3)
test_df = test_df.iloc[1:].reset_index(drop=True)
test_df = test_df.drop(test_df.columns[0], axis=1)
test_df = test_df.apply(pd.to_numeric, errors='coerce')
X_test_new = scaler.transform(test_df)
y_test_pred = nb_model.predict(X_test_new)
test df['Predicted Class'] = y_test_pred
test_df
```

```
Class distribution in dataset before SMOTE:
Class
0
     284315
1
        492
Name: count, dtype: int64
Updated Classification Report:
                           recall f1-score
              precision
                                               support
           Θ
                   1.00
                             0.97
                                        0.99
                                                 56864
           1
                   0.06
                             0.88
                                        0.11
                                                    98
                                        0.97
                                                 56962
    accuracy
   macro avg
                   0.53
                             0.93
                                        0.55
                                                 56962
weighted avg
                   1.00
                             0.97
                                        0.99
                                                 56962
```


	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Predicted Class
0	11707.0	7.28	-0.53	8.17	9.32	1.11	0.53	-0.43	9.69	9.72	6.07	1.13	0.46	9.82	3.30	5.07	-0.71	-0.91	958.184120	
1	75775.0	0.76	5.92	-0.69	-0.49	7.88	1.13	6.90	3.62	0.00	3.35	0.10	5.18	1.85	4.39	-0.24	8.38	8.82	822.209306	
2	50010.0	-0.92	7.57	6.30	2.68	2.93	0.32	5.06	0.15	5.29	6.11	5.35	7.84	7.02	-0.73	2.97	2.22	5.75	61.662134	
3	11996.0	4.00	1.22	0.65	4.29	7.33	-0.45	1.19	1.57	7.58	4.94	0.20	3.60	2.41	3.28	8.67	6.05	5.99	956.869145	
4	3360.0	8.60	6.43	-0.34	10.00	0.36	7.91	4.96	8.80	3.94	4.96	6.72	9.73	8.07	0.11	8.31	9.96	7.78	159.284273	
5	71278.0	2.63	-0.31	3.91	1.75	-0.12	0.89	8.17	1.13	5.53	7.10	8.75	5.97	-0.26	9.98	5.18	2.07	1.04	282.008097	
6	15904.0	8.27	4.01	6.60	8.61	6.04	9.74	6.60	3.67	9.28	8.75	6.50	9.99	3.69	3.92	8.26	-0.66	6.67	109.150863	
7	47645.0	7.86	2.27	0.87	9.47	6.45	-0.12	1.41	0.68	8.83	2.65	5.60	2.94	4.44	4.70	9.25	2.96	-0.68	839.448067	
8	40430.0	0.27	1.17	5.53	4.90	9.94	7.12	6.69	6.89	3.64	5.44	5.75	-0.20	9.61	7.96	-0.52	-0.71	3.52	120.055819	
9	14347.0	1.85	9.79	0.96	0.00	8.24	2.39	0.28	8.34	9.68	1.87	4.88	9.15	2.60	2.51	-0.89	3.61	-0.93	201.238715	

Q4. Perform KNN Classification to detect the diabetes as yes or no (for diabetes data) and to classify the flower type (for flower data) using the following data sets. (30M) https://www.kaggle.com/datasets/shashankvichare/diabetes-prediction https://www.kaggle.com/datasets/arshid/iris-flower-dataset (a) diabetes-test.xls (b) flower-test.xls

Diabetes

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
 import seaborn as sns
from sklearn.model_selection import train_test_split
 from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import (Accuracy_score, confusion_matrix, classification_report, roc_auc_score, roc_curve)
from imblearn.over_sampling import SMOTE
 diabetes df = pd.read csv("Diabetespred.csv")
X = diabetes_df.drop('Outcome', axis=1)
y = diabetes_df['Outcome']
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)
 smote = SMOTE(random_state=42)
 X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train_smote)
X_test_scaled = scaler.transform(X_test)
knn = KNeighborsClassifier(n_neighbors=25, p=2, weights='uniform')
knn.fit(X_train_scaled, y_train_smote)
 y_pred = knn.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print("\nTest Set Accuracy: {:.2f}%".format(accuracy * 100))
 cm = confusion_matrix(y_test, y_pred)
 print("\nConfusion Matrix:")
print(cm)
 print("\nClassification Report:")
print(classification_report(y_test, y_pred))
```

```
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix")
plt.show()
y pred proba = knn.predict proba(X test scaled)[:, 1]
roc_auc = roc_auc_score(y_test, y_pred_proba)
print("ROC AUC Score: {:.2f}".format(roc_auc))
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
plt.figure(figsize=(6, 4))
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc, color='darkorange')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
test df = pd.read excel("diabetes-test.xlsx", header=5)
test df = test df.iloc[1:]
test_df = test_df.drop(test_df.columns[0], axis=1)
test_df.columns = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
                   'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']
test_df_scaled = scaler.transform(test_df)
test_predictions = knn.predict(test_df_scaled)
test_df['Predicted_Outcome'] = test_predictions
print("\nPredicted Diabetes Outcomes:")
test_df[['Predicted_Outcome'
```

```
Test Set Accuracy: 80.00%
Confusion Matrix:
[[53 11]
 9 2711
Classification Report:
              precision
                           recall fl-score
                                              support
                   0.85
                             0.83
                                       0.84
                                                   64
           Θ
           1
                   0.71
                             0.75
                                       0.73
                                                   36
                                                  100
                                       0.80
   accuracy
                   0.78
                             0.79
                                       0.79
   macro avg
                                                   100
                   0.80
                                       0.80
                                                  100
weighted avg
                             0.80
```


	Pregnancies		comes: BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Predicted_Outcome
1	12.0	49.0	56.0	18.0	331.0	50.0	0.192313	21.0	No
2	4.0	128.0	39.0	53.0	367.0	22.0	0.411382	21.0	Yes
3	15.0	95.0	113.0	40.0	494.0	27.0	0.780781	48.0	Yes
4	12.0	77.0	37.0	9.0	193.0	23.0	0.392337	55.0	No
5	9.0	53.0	83.0	6.0	481.0	24.0	0.861166	63.0	Yes
6	1.0	96.0	30.0	37.0	473.0	18.0	1.438416	32.0	No
7	4.0	148.0	103.0	49.0	405.0	40.0	1.251075	42.0	Yes
8	11.0	120.0	86.0	47.0	450.0	24.0	1.217705	37.0	Yes
9	12.0	143.0	88.0	15.0	266.0	29.0	0.833595	60.0	Yes
10	3.0	102.0	114.0	27.0	453.0	28.0	1.709989	70.0	Yes

Flower

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
flower_df = pd.read_csv("IRIS.csv")
X = flower_df.drop(columns=["species"])
y = flower_df["species"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
knn = KNeighborsClassifier(n\_neighbors=2\theta, \ p=2, \ weights="distance") \\ knn.fit(X\_train\_scaled, \ y\_train)
y_pred = knn.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print("Classification Report:\n", classification_report(y_test, y_pred))
cm = confusion_matrix(y_test, y_pred)
labels = y.unique()
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix for KNN Model")
plt.show()
```

Accuracy: 1.0 Classification Re	eport:				
	precision	recall	fl-score	support	
Iris-setosa	1.00	1.00	1.00	10	
Iris-versicolor	1.00	1.00	1.00	9	
Iris-virginica	1.00	1.00	1.00	11	
accuracy			1.00	30	
macro avg	1.00	1.00	1.00	30	
weighted avg	1.00	1.00	1.00	30	


```
print("=====Predictions=====")
test_df=pd.read_excel("flower-test.xlsx",header=2)
test_df=test_df.iloc[1:]
test_df=test_df.drop(test_df.columns[0],axis=1)
test_df_scaled = scaler.transform(test_df)
predictions = knn.predict(test_df_scaled)
test_df["Predicted_Species"] = predictions
test_df
```

	====Predicti	ons====			
:	sepal_length	sepal_width	petal_length	petal_width	Predicted_Species
1	6.4882	3.4127	6.1458	1.0739	Iris-versicolor
2	6.1154	3.2755	3.8060	0.2730	Iris-versicolor
3	6.7766	2.6693	2.9153	1.8620	Iris-versicolor
4	4.2439	3.7411	6.1605	2.0016	Iris-versicolor
5	5.7619	3.7088	2.2250	1.9717	Iris-versicolor
6	4.3800	3.2337	4.1747	0.5083	Iris-setosa
7	7.4658	3.2460	1.4442	0.9018	Iris-versicolor
8	4.7213	3.2989	6.4811	2.1413	Iris-virginica
9	6.4095	2.8048	5.9670	1.5241	Iris-virginica
10	7.1456	3.2493	1.4223	1.1015	Iris-versicolor