

Overview

- What is a LAN?
- □ LAN Problems
- □ Introduction to VLAN: Types of Virtual LANs
- □ Access and Trunk Ports of L2 Switch
- VLAN Tagging Rules
- □ IEEE 802.1Q standard
- □ VLAN L2 Routing
- VLAN Benefits

What is a LAN?

- □ LAN = Single broadcast domain = Subnet
- No routing between members of a LAN
- Routing required between LANs
- Immobility
- Security

Virtual LAN

- □ Virtual LAN = Broadcasts and multicast goes only to the nodes in the virtual LAN
- □ LAN membership defined by the network manager ⇒ Virtual

VLAN: Why?

- Virtual is Better than Real
 - Location-independent
 - ⇒ Marketing LAN can be all over the building
 - Users can move but not change LAN
 - Traffic between LANs is routed
 - ⇒ Better to keep all traffic on one LAN
 - Switch when you can, route when you must
 - ⇒ Do not VLAN over expensive WAN links
 - o Better security

Types of Virtual LANs

- □ Layer-1 VLAN = Group of Physical ports
- □ Layer-2 VLAN = Group of MAC addresses
- □ Layer-3 VLAN = IP subnet

Switch	VLAN	
Port	1	2
A 1		
A2		
A3		
B1		√
B2		

!	A1B234565600	21B23456560		
		0		
	D34578923434	63457892343		
		4		
	1345678903333	834567890333		
		3		
	3438473450555	943847345055		
		5		
	4387434304343	538743430434		
		3		
	4780357056135	678035705613		
	4700337030133	5		
	4153953470641	915395347064		
•	14133333470041	1		
		1		

3473436374133 047343637413

VLAN1 VLAN2

Layer-1 VLANs

```
LAN Segment 1

LAN Segment 4

LAN Segment 5

LAN Segment 2

LAN Segment 3

VLAN 1
```

- Also known as port switching
- Can be used to provide security and isolation
- Does not allow user mobility.
- \square Moved user has a new subnet \Rightarrow new IP address
 - ⇒ May go through a router to access the old server

Layer-2 VLANs

- □ LANs defined by a list of MAC addresses
- Provides full user movement
- □ Clients and server always on the same LAN regardless of location
- Problem: Too many addresses need to be entered and managed

0234786890

Is that a marketing node?

Layer-2 VLANs (Cont)

- Notebook PCs change docking stations
 - \Rightarrow MAC address changes
- Alternative: Membership implied by MAC protocol type field. VLAN1 = IP, VLAN2 = , ... **Ethernet**

Dest. Address | Src. Address | Protocol Type |

802.3

Dest. AddressLengthAAAAO3Protocol Type

Layer-3 VLANs

Dest. Addr | Src. Addr | Protocol Type | IP Dest. Addr | IP Source Addr |

- □ Also known as **virtual subnet**
- □ VLAN membership implied by MAC-layer protocol type field and subnet field 123.34.*.*
- □ VLAN configuration is learned by the switches
- □ Stations do not belong to VLANs, packets do.
- Multiprotocol stations are put into multiple VLANs

Higher Layer VLANs

- □ Different VLANs for different applications:
 - o FTP
 - Multimedia
- Service based VLANs: All workstations using Email server are on the EMAIL-VLAN, all workstations using employee database sever are on the HR-VLAN,...
- □ IP Multicast address based VLANs
- □ General policy based: VLAN membership can be based on a combination of incoming port, MAC address, subnet, or higher layer info, time of day.

VLAN Tagging

Dest. Addr Src. Addr VLAN Tag Prot. Type

- □ First switch adds tag containing VLAN id to all incoming packets
- □ Intermediate switches do not recompute the VLAN id
- □ Last switch removes tags from all outgoing packets
- □ Tag is <u>not</u> swapped at every hop like labels

IEEE 802.1Q: Features

- □ Allows up to 4095 VLANs (**0 to 4095 =4096**): 4094
- Allows port based, MAC address based, and higher-layer VLANs
- Upward compatible with existing VLAN-unware hubs and bridges
- Supports both shared-media and switched LANs
- Allows mixing legacy bridges and VLAN-aware bridges
- □ Retains plug and play mode of current LAN bridges

Features (Cont)

- Extends 802.1p priority mechanism to priority based on VLAN membership
- □ Allows priority associated with each VLAN
- VLAN-based priority takes precedence over other priority considerations
- □ Allows signaling priority information on non-priority (CSMA/CD) LANs
- □ Allows both local/universal MAC addresses
- Operation with/without explicit VLAN header in the frame

Features (Cont)

- Supports static and dynamic configurations for each VLAN
- □ Allows intermixing different IEEE 802 MACs and FDDI
- Allows signaling source routing information on CSMA/CD LANs
- Each VLAN is a subset of a "single" physical spanning tree
 Does not preclude future extensions to multiple spanning trees

Features (Cont)

- Overlapping VLANs:
 - Multiple stations with same individual address
 - One station with multiple interfaces using the same address
 - Restriction: One station or interface per VLAN

Tagging Rules

Tagging Rules (Cont)

- □ On a given LAN segment for a given VLAN, all frames should be either implicitly or explicitly tagged.
- □ Different VLANs on the same segment may use different options.
- Access Link: Contain VLAN unaware devices All frames on access links are untagged
- **Hybrid Link**: Contains both VLAN-aware and VLAN-unaware devices
 - All frames for some VLANs are tagged
 - All frames for other VLANs are untagged

Tagged Frame Format

□ Tag Header:

16b3b1b12bTPIDUser PriorityCFIVLAN Id

■ Ethernet Frame:

6B 6B 4B 2B 0-30B 4B
DA SA Tag PT [RIF] Data FCS

■ 802.3 Frame:

 6B
 6B
 4B
 2B
 0-30B
 42-1470B
 4B

 DA
 SA
 Tag
 Length
 [RIF]
 LLC
 Data
 FCS

Frame Format (Cont)

- □ TPID = Tag Protocol ID
- □ CFI/DEI = Canonical Format Indicator
 - = Bit order of address info in TR/FDDI frames
 - = Presence/absence of RIF in 802.3/Ethernet frames
- □ RIF = Routing Information Field
 - New routing type: 01 = Transparent frame
 ⇒No routing info.
- □ DA = Destination Address, SA = Source Address
 PT = Protocol Type, LLC = Logical Link Control
 FCS = Frame Check Sequence
- □ Largest data size = 1470 on 802.3

Communication Between VLANs

- Need routers
- □ Can use 1-armed VLAN-aware router
- □ VLAN-aware switches can route between VLANs
- □ Such switches can be placed in the core, in the edges, or everywhere

VLAN Benefits

- Segmentation,
- □ Resolve Thrashing,
- □ Reduced Broadcast Domain
- Mobility

Summary

- □ Virtual LANs ⇒ Location independent LAN Groups
- □ Layer-1, Layer-2, Layer-3, higher layer VLANs
- □ IEEE 802.1Q allows both explicit and implicit tagging
- □ Need routing between VLANs

References

- □ Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
- Switching, Routing, and Wireless Essentials Companion Guide, Cisco
- □ Draft Standard for Virtual Local Area Networks, IEEE P802.1Q/D6, May 16, 1997.
- Data Communications and Networking, Forouzan