Midterm Review Session

DSC 40A, Fall 2021 @ UC San Diego Suraj Rampure, with help from many others

Agenda

- Bird's eye view of the course.
- Select past exam problems.
- Review of select problems from Homeworks 1, 2, and 3.

Bird's eye view of the course

What is this course about?

- So far, this course has really been about one thing: learning from data.
- ► The recipe:
 - 1. Choose a prediction rule.
 - 2. Choose a loss function.
 - 3. Minimize empirical risk, i.e. average loss, on your dataset to find the best predictions/parameters.
- Let's look at all of this a little more deeply.

Choosing a prediction rule

In lecture, we've studied two prediction rules in depth:

- ► The **constant hypothesis**, *h* (Lectures 1-5).
 - We didn't call it a "prediction rule" at the time, but it is one.
 - Equivalent to saying H(x) = h, i.e. we predict the same output for everyone.
- The simple linear prediction rule, $H(x) = w_0 + w_1 x$ (Lectures 6-7).
 - Now, predictions vary depending on x (x is called a feature).
- ► You also looked at $H(x) = w_1 x$ in Homework 3, 1f.

Some questions...

- Suppose I've chosen to use a constant prediction rule h. Which h do I use?
- Suppose I've chosen to use a simple linear prediction rule $H(x) = w_0 + w_1 x$. What should w_0 and w_1 be?
- Answer: Loss functions can help us.

Loss functions

- A **loss function** L(h, y) measures how a prediction h is from the truth y.
- We've seen several loss functions so far:
 - Absolute loss: L(h, y) = |y h|.
 - ► Squared loss: $L(h, y) = (y h)^2$.
 - ► UCSD loss: $L(h, y) = 1 e^{-(y-h)^2/\sigma^2}$.
 - \triangleright 0-1 loss: L(h, y) = 0 if h = y, otherwise 1.
- Different loss functions have different properties, the key ones being their ease of minimization and their robustness to outliers.

Empirical risk

- ► Loss functions are great but they only measure the quality of a single prediction for a single true value.
- In order to get a sense of the quality of a prediction on our entire dataset, we must take the average of our chosen loss function over our entire dataset.
- The result is called empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- If using absolute loss, *R* is called **mean absolute error**.
- ▶ If using squared loss, *R* is called mean squared error.

The constant hypothesis, h

To find the best h (denoted as h^*) to make constant predictions with, we need to choose a loss function.

If we choose absolute loss, the resulting empirical risk (i.e. mean absolute error) is

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

► If we choose squared loss, the resulting empirical risk (i.e. mean squared error) is

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

► We also looked at the resulting empirical risk when we choose 0-1 loss and UCSD loss.

The simple linear prediction rule, $H(x) = W_0 + W_1 x$

 w_0 and w_1 are called **parameters**. To find the **optimal parameters** (denoted as w_0^* and w_1^*), we again need a loss function

- ▶ We could choose absolute loss see Homework 3, Q3.
 - The resulting problem is called "least absolute deviations regression."
- ► The more common choice, though, is squared loss:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

► This problem is called **least squares regression**.

Minimizing empirical risk

After choosing a prediction rule and loss function, and writing out the corresponding empirical risk, we need to minimize the empirical risk to find the best predictions/parameters.

Some ways we've minimized empirical risk:

- Calculus.
- Other algebraic arguments.
- Gradient descent.

Minimizing empirical risk with calculus

- Strategy: take derivative(s), set it to 0, and solve.
- Constant hypothesis, squared loss:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2 \implies h^* = \bar{x}$$

Simple linear prediction rule, squared loss:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad \sigma_y$$

$$\implies w_1^* = \frac{\sum_{i=1}^n (x_i - x)(y_i - y)}{\sum_{i=1}^n (x_i - \bar{x})^2} = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

- Several homework problems.
 - ► HW 2 Q3, HW 3 Q1f.

Minimizing empirical risk with algebraic arguments

- Since absolute loss is not differentiable, the resulting empirical risk (mean absolute error) also isn't. We couldn't use calculus.
- For the constant hypothesis, $R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$.
- We instead minimized R_{abs} by finding a formula for the slope of R at any h (that isn't one of the y_i):

slope of R at h =
$$\frac{1}{n} (\#(y_i < h) - \#(y_i > h))$$

► The median is where the slope of R goes from - to +; it minimizes $R_{abs}(h)$.

Minimizing empirical risk using gradient descent

- Sometimes, even when our empirical risk is differentiable, there is no **closed-form solution** for the minimizing input.
 - Example: Empirical risk for L_{ucsd} .
- Solution: gradient descent.
- Gradient descent tries to minimize a function R(h) through an iterative process.
 - **Key idea**: Move opposite the direction of the slope.
 - For Given an initial guess, h_0 , for the minimizer and a step-size/learning rate α , gradient descent updates are made with the update equation

$$h_i = h_{i-1} - \alpha \cdot \frac{d}{dh} R(h_{i-1})$$

Gradient descent

- ► **Key theorem:** Gradient descent is guaranteed to find the global minimum of a function if that function is **convex** and **differentiable**, given an appropriate step size.
- A function f is **convex** if it is true that given any two inputs a, b, the line segment joining (a, f(a)) and (b, f(b)) does not go below the graph of f.
 - Convex functions are "bowl" shaped.
 - Second derivative test.

Summary of key results

Other concepts — spread

- ▶ Different loss functions lead to empirical risk functions that, for the constant prediction rule, are minimized at various measures of center.
 - Absolute loss: median.
 - Squared loss: mean.
 - ► 0-1 loss: **mode**.
- ► The minimum value of these empirical risks (i.e. the lowest height on the graph of *R*) is a measure of the **spread** of the data.
 - Absolute loss: median absolute deviation from the median.
 - Squared loss: variance.
 - 0-1 loss: proportion of values not equal to the mode.

Other concepts — correlation

- ► The correlation coefficient, *r*, is a measure of the linear association between two variables.
- ► It ranges between -1 and 1.
 - r = 1 indicates a perfect positive linear association (x and y lie exactly on a straight line that is sloped upwards).
 - ► r = -1 indicates a perfect negative linear association between x and y.
 - ► The closer *r* is to 0, the weaker the linear association between *x* and *y* is.
- \triangleright w_1^* can be written in terms of r:

$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$