The Python Battery Optimisation and Parameterisation Package (PyBOP)

Brady Planden, Nicola Courtier, David Howey Department of Engineering Science, University of Oxford, UK

Abstract

Battery models are complex and require many parameters. Identification of these parameters is challenging due to:

- Parameter uniqueness is unknown (in principle or in practice).
- Users may not be experts in modelling, but still want to know if their models are fit for purpose.
- Excitation signals are not obvious in gathered test data.
- Battery models are used over a range of temperatures, pressures and C-rates, so model parameters need to be determined accordingly.

Many ad hoc methods have been developed to address to these challenges. However, a standardised framework for identification and optimisation is required to ensure that parameters are correctly identified.

Design Philosophy

PyBOP¹ is a modular battery model parameterisation and optimisation package, with a focus on classes built upon PyBaMM² models. This is achieved through a variety of probabilistic methods³ for time series parameter identification and optimisation with physical and empirical type models.

PyBOP's hierarchical design with interface to PyBaMM

Generate problem, cost function, and optimisation class problem = pybop.FittingProblem(model, parameters, dataset) cost = pybop.SumSquaredError(problem)

optim = pybop.Optimisation(cost, optimiser=pybop.CMAES) x, final_cost = optim.run()

PyBOP's internal design philosophy includes modular cost functions, optimisers, and forward models.

Cost functions: RMSE, SSE, MLE, MAP

Optimisers: Gradient Descent, Adam, IRPropMin, CMAES, XNES, SNES, NelderMead, PSO

Parameterisation and Optimisation

Parameter Identification

general system excitation.

Input: Sinusoidal current excitation

Parameter identification via terminal voltage, V and OCV contribution, V_{ocv} . The cost function is integrated over both signals with equal weighting.

Parameter convergence plots providing information on the performance of the optimiser and cost function.

Design Optimisation

Target: Find optimal electrode coating thicknesses for maximum specific energy. The chemistry is LNMO-Gr/SiOx, with a Single Particle Model (SPM) cycled at 1C optimised with a Particle Swam Algorithm (PSO).

Region I: Electrodes too thin compared to inactive material Region II: Poor N:P balance

Region III: Electrodes too thick causing transport limitations Region IV: Ideal N:P balance and optimised wrt active material and transport

Conclusions

- PyBOP presents methods for parameterisation and optimisation of a variety of battery models, enabling rapid parameter verification and comparison.
- Workflows for parameter identification of equivalent circuit and physics-based models have been presented, discussing parameter uniqueness and identifiability.
- A design optimisation workflow for LNMO Gr/SiOx chemistry was presented with physical insights.

GitHub Repository: pybop-team/pybop

Installation: pip install pybop

References

- [1] Planden, B., Courtier, N., & Howey, D. Python Battery Optimisation and Parameterisation (PyBOP) (v24.3) [Computer software].
- [2] Sulzer, V., et al. "Python Battery Mathematical Modelling (PyBaMM)." Journal of Open Research Software, vol. 9, no. 1, Ubiquity Press, 2021.
- [3] Clerx, M., Robinson, M., Lambert, B., Lei, C. L., Ghosh, S., Mirams, G. R., & Gavaghan, D. J. (2019). Probabilistic Inference on Noisy Time Series (PINTS). Journal of Open Research Software, 7(1), 23.

Acknowledgements

This work was supported by the EU IntelLiGent and Faraday Institution Multi-scale Modelling Projects.

Examples

