

Predict cancer mortality rates for US counties.

Case Study 1

By: Anand mohan

18BCS6218

CONT ENTS

- Ol Data Preparation
- O2 Data Exploration
- 03 Training
- 04 Testing
- O5 Conclusion

Missing Values

Out of 34 columns 3 columns have missing values

Most columns dont have a linear relationship with the target columns but some have

Categorical Data after some processing showed relatioship with the target column

Numeric Graphs

Categorical Relationship

Median income per capita binned by decile vs Target Deathrate

Data Distribution

Model 1

70 features Adj $R^2 = 0.578$

Drop some columns with high P-value

Model 2

68 features Adj $R^2 = 0.578$

repeat the process till p-value and VIf are not significant

Model 9

32 features Adj $R^2 = 0.557$

Error Terms

The Error terms are normally distributed

We can see that the fitted values are reasonably close to the actual values, since the two distributions overlap a bit. However, there is definitely some room for improvement.

Target = incidenceRate*0.65+MedianAgeFemale*-0.06+PctHS18_24* 0.05+PctHS25_0ver* 0.04+PctBachDeg25_0ver*-0.16+PctUnemployed16_0ver*0.08+PctPublicCoverageAlone*0.06+PctOtherRace*-0.07 +PctMarriedHouseholds*-0.07+BirthRate *-0.06+avg Income bwn[22640, 34218.1]*0.02+Alaska*0.07+Arizona* -0.05+Arkansas *0.04+California *-0.04+Colorado* -0.05+Georgia* -0.02+Hawaii* -0.07+Idaho*-0.04+Iowa * -0.02+Kentucky *0.03+Montana* -0.04+New Mexico*-0.05+New York* -0.05+North Carolina* -0.02+Oklahoma*0.05+Oregon*-0.02+Pennsylvania*-0.03+Tennessee* 0.02+Utah*-0.09+Virginia*0.02

Mean Absolute Error: 0.0503361345116567

Mean Squared Error: 0.0047229149770521995

Root Mean Squared Error: 0.06872346744054901

Overall we have a decent model, but we also acknowledge that we could do better.

We have a couple of options:

Add new features (avgAnnCount/avgDeathsPerYear/PctWhite etc.) Build a non-linear model Remove or Transform Outliers

Application of the state of the

Thank You

All the Documents are uploaded on GitHub: github.com/tenoob/Machine-Learning/tree/master/sem5/CaseStudy1

