

Extract File into SSMS:

- 1. Open the SQL Server Management Studio (SSMS 2021) and connect to the server.
 - **Note** You can open any SQL Server (MySQL, PostgreSQL, Oracle, etc.) and connect to your server.
- 2. Go to the Databases on the left side and click right and select new Database.

3. Enter the database name as blinkit and click on Ok.

4. Select blinkit database and click right and select Task → Import Flat File...

5. The Blinkit.csv file was imported into SQL Server using the Import Flat File Wizard. The file path was selected, the table was named **Blinkit** under the **dbo** schema, and data types were auto-detected. After previewing and confirming the structure, the import was completed by clicking **Finish**, creating the table in our database.

(Note - The extracted file should be in .csv/.txt.)

6. You can check that the table has been added to the Blinkit database and, if the table is not there, then refresh the database and then check.

CSV data download or show:

Data Transformation in SQL:

1. While import the CSV file, data types were modified as per the data structure: text columns like ITEM_FAT_CONTENT, ITEM_IDENTIFIER, and ITEM_TYPE were set to varchar, numeric columns like ITEM_VISIBILITY, ITEM_WEIGHT, Sales, and Rating were set to float, and OUTLET_ESTABLISHMENT_YEAR was assigned as int. Only the ITEM_WEIGHT column was allowed to have NULL values.

Column Name	Data Type		Primary Key	Allow Nulls
Item_Fat_Content	varchar(50)	-		
Item_Identifier	varchar(50)	•		
Item_Type	varchar(50)	-		
Outlet_Establishment_Year	int	-		
Outlet_Identifier	varchar(50)	-		
Outlet_Location_Type	varchar(50)	•		
Outlet_Size	varchar(50)	•		
Outlet_Type	varchar(50)	•		
Item_Visibility	float	-		
Item_Weight	float	-		<u>~</u>
Sales	float	-		
Rating	float	•		

2. Check the table in the database. There are 3 different values for ITEM_FAT_CONTENT, like LF, low fat and reg, so it has to be changed to LF, low fat → 'Low Fat' & reg → 'Regular'.

3. Update the table -

```
UPDATE BLINKIT
SET    ITEM_FAT_CONTENT =
CASE
        WHEN ITEM_FAT_CONTENT IN ('LF', 'LOW FAT') THEN 'LOW FAT'
        WHEN ITEM_FAT_CONTENT = 'REG' THEN 'REGULAR'
        ELSE ITEM_FAT_CONTENT
END;
```


* Requirements:

A. KPI's:

1. Total Sales:

The overall revenue generated from all items sold.

```
Input –
SELECT
```

```
CONCAT (
CAST (
SUM(SALES)/1000000
AS DECIMAL (10,2)),
'M') TOTALSALESMILLION
```

FROM BLINKIT;

Output -

2. Average Sales:

The average revenue per sale.

FROM BLINKIT;

Output -

	AvgSales
1	141

3. No of Items:

• The total count of different items sold.

```
Input -
```

SELECT

COUNT (*) AS NO_OF_ITEMS

FROM BLINKIT;

Output -

4. Average Rating:

• The average customer rating for items sold.

```
Input -
SELECT
ROUND (
AVG(RATING), 2
) AS AVEGRATING
FROM BLINKIT;
```

	AvegRating
1	3.97

B. Granular Requirements:

1. Total Sales by Fat Content:

```
Input -
      SELECT
             ITEM_FAT_CONTENT,
                    CONCAT (
                           ROUND (
                                  SUM(SALES)/1000 ,2)
                    'K') AS TOTALSALES
      FROM
```

BLINKIT

GROUP BY

ITEM_FAT_CONTENT;

Output -

Item_Fat_Content	TotalSales
Low Fat	776.32K
Regular	425.36K

2. Total Sales by Item Type:

Input -

SELECT Top 5 ITEM_TYPE, ROUND(SUM(SALES), 2) AS TOTALSALES

FROM

BLINKIT

GROUP BY

ITEM_TYPE

ORDER BY

TOTALSALES DESC;

Output -

9	
Item_Type	TotalSales
Fruits and Vegetables	178124.08
Snack Foods	175433.92
Household	135976.53
Frozen Foods	118558.88
Dairy	101276.46

3. Total sales by Item Fat Content and Outlet Location Type

Input -

SELECT

ITEM_FAT_CONTENT, OUTLET_LOCATION_TYPE, ROUND(SUM(SALES), 2) AS TOTALSALES

FROM

BLINKIT

GROUP BY

ITEM_FAT_CONTENT, OUTLET_LOCATION_TYPE

ORDER BY

OUTLET_LOCATION_TYPE;

Item_Fat_Content	Outlet_Location_Type	TotalSales
Regular	Tier 1	121349.9
Low Fat	Tier 1	215047.91
Regular	Tier 2	138685.87
Low Fat	Tier 2	254464.78
Low Fat	Tier 3	306807
Regular	Tier 3	165326.04

4. Fat Content by Outlet for Total Sales:

```
Input -
      SELECT OUTLET_LOCATION_TYPE,
                COALESCE ([LOW FAT], 0) AS LOW_FAT,
                COALESCE ([REGULAR], 0) AS REGULAR
      FROM
      (SELECT
             ITEM_FAT_CONTENT,
            OUTLET_LOCATION_TYPE,
             ROUND(SUM(SALES), 2) AS TOTALSALES
      FROM
             BLINKIT
      GROUP BY
             ITEM_FAT_CONTENT,
             OUTLET_LOCATION_TYPE
      ) AS SOURCETABLE
      PIVOT
      (
             SUM(TOTALSALES)
             FOR ITEM_FAT_CONTENT IN ([LOW FAT], [REGULAR])
      ) AS PIVOTTABLE
      ORDER BY OUTLET_LOCATION_TYPE;
Output -
       Regular
```

215047.91 121349.9

254464.78 138685.87

165326.04

306807

5. Outlet by Fat Content for Total Sales:

Tier 1

Tier 2

Tier 3

Input -

```
SELECT
      ITEM_FAT_CONTENT,
      COALESCE ([TIER 1], 0) AS TIER_1,
      COALESCE ([TIER 2], 0) AS TIER_2,
      COALESCE ([TIER 3], 0) AS TIER_3
FROM
(SELECT
      ITEM_FAT_CONTENT,
      OUTLET_LOCATION_TYPE,
      ROUND(SUM(SALES), 2) AS TOTALSALES
FROM
      BLINKIT
GROUP BY
      ITEM_FAT_CONTENT,
      OUTLET_LOCATION_TYPE) AS SOURCETABLE
PIVOT
(
      SUM(TOTALSALES)
      FOR OUTLET_LOCATION_TYPE IN ([TIER 1], [TIER 2], [TIER
3])
) AS PIVOTTABLE
      ORDER BY ITEM_FAT_CONTENT;
```

Output – Item_Fat_Content Tier_1 Tier_2 Tier_3 Low Fat 215047.91 254464.78 306807 Regular 121349.9 138685.87 165326.04

6. Total Sales by Outlet Establishment (Top 5):

Input -

SELECT TOP 5

OUTLET_ESTABLISHMENT_YEAR,

ROUND(SUM(SALES), 2) AS TOTALSALES

FROM

BLINKIT

GROUP BY

OUTLET_ESTABLISHMENT_YEAR

ORDER BY

TOTALSALES DESC;

Output -

Outlet_Establishment_Year	TotalSales
2018	204522.26
2017	133103.91
2016	132113.37
2014	131809.02
2022	131477.78

7. Total Sales by Outlet Establishment (Bottom 5):

Input -

SELECT TOP 5

OUTLET_ESTABLISHMENT_YEAR,

ROUND(SUM(SALES), 2) AS TOTALSALES

FROM

BLINKIT

GROUP BY

OUTLET_ESTABLISHMENT_YEAR

ORDER BY

TOTALSALES;

Outlet_Establishment_Year	TotalSales
2011	78131.57
2020	129103.96
2012	130476.86
2015	130942.78
2022	131477.78

C. Charts Requirements:

1. Percentage of Sales by Outlet Size:

Input -

SELECT

OUTLET_SIZE, ROUND(SUM(SALES), 2) AS TOTALSALES, ROUND((SUM(SALES) * 100.0 / SUM(SUM(SALES)) OVER ()), 2) AS PERSALES

FROM

BLINKIT

GROUP BY

OUTLET_SIZE

Output -

Outlet_Size	TotalSales	Per			
High	248991.59	20.72			
Medium	507895.74	42.27			
Small	444794.17	37.01			

2. Sales by Outlet Location:

Input -

SELECT

OUTLET_LOCATION_TYPE, ROUND(SUM(SALES), 2) AS TOTALSALES

FROM

BLINKIT

GROUP BY

OUTLET_LOCATION_TYPE

Output -

Outlet_Location_Type	TotalSales
Tier 1	336397.81
Tier 3	472133.03
Tier 2	393150.65

3. All Metrics by Outlet Type:

Input -

SELECT

OUTLET_TYPE,

ROUND(SUM(SALES), 2) AS TOTALSALES,

ROUND((SUM(SALES) * 100.0 / SUM(SUM(SALES))

OVER ()), 0) AS PERSALES,

ROUND(AVG(SALES), 0) AVGSALES,

COUNT (*) AS NO_OF_ITEMS,

ROUND(AVG(RATING), 2) AS AVEGRATING, ROUND(MAX(SALES), 2) AS MAXIMUMSALES,

ROUND(MIN(SALES),2) AS MINIMUMSALES

FROM

BLINKIT

GROUP BY

OUTLET_TYPE

Outlet_Type	TotalSales	PerSales	AvgSales	No_of_items	AvegRating	MaximumSales	MinimumSales
Supermarket Type1	787549.89	66	141	5577	3.96	266.89	31.49
Supermarket Type2	131477.78	11	142	928	3.97	265.19	31.89
Grocery Store	151939.15	13	140	1083	3.99	266.69	32.66
Supermarket Type3	130714 67	11	140	935	3.95	265.29	31.29

Required All Data (SQL View):

A. KPI's:

- 1. Total Sales: The overall revenue generated from all items sold.
 - → SELECT * FROM VW_TOTALSALES;
- **2. Average Sales:** The average revenue per sale.
 - → SELECT * FROM VW_AVGSALES;
- 3. No of Items: The total count of different items sold.
 - → SELECT * FROM VW_NOOFITEMS;
- **4. Average Rating:** The average customer rating for items sold.
 - → SELECT * FROM VW_AVGRATING;

B. Granular Requirements:

- 1. Total Sales by Fat Content:
 - → SELECT * FROM VW_SALES_FC;
- 2. Total Sales by Item Type:
 - → SELECT * FROM VW_SALES_IT;
- 3. Total sales by Item Fat Content and Outlet Location Type
 - → SELECT * FROM VW_SALES_OLT;
- 4. Fat Content by Outlet for Total Sales:
 - → SELECT * FROM VW_SALES_FCO ORDER BY OUTLET_LOCATION_TYPE;
- 5. Outlet by Fat Content for Total Sales:
 - → SELECT * FROM VW_SALES_OFC ORDER BY ITEM_FAT_CONTENT;
- 6. Total Sales by Outlet Establishment (Top 5):
 - → SELECT * FROM VW_SALES_OET5;
- 7. Total Sales by Outlet Establishment (Bottom 5):
 - → SELECT * FROM VW_SALES_OEB5;

C. Charts Requirements:

- 1. Percentage of Sales by Outlet Size:
 - → SELECT * FROM VW_PERSALES_OS;
- 2. Sales by Outlet Location:
 - → SELECT * FROM VW_SALES_OTL;
- 3. All Metrics by Outlet Type:
 - → SELECT * FROM VW_SALES_OT;