# Maths: Differential equations cheat sheet

# 1 First order

Let be I an interval of  $\mathbb{R}$ .

$$(E): y' = a(x)y + b(x)$$

with  $a, b \in \mathbb{R}^I$ .

# 1.1 Homogenous equation

$$(E_0): y' = a(x)y$$

The solution set of  $(E_0)$  is, with  $A \in \mathcal{D}(I) \mid A' = a$ :

$$S_0 = \{x \longmapsto \lambda e^{A(x)} \mid \lambda \in \mathbb{R} \}$$

# 1.2 Particular solution

#### 1.2.1 Constant variation

Let be  $\lambda \in \mathcal{D}(I)$ .

Let be  $f(x) = \lambda(x)e^{A(x)}$ .  $f \in \mathcal{D}(I)$  by product and composition.

$$f$$
 solution of  $(E)$   $\Leftrightarrow$   $f' = a(x)f(x) + b(x)$   
 $\Leftrightarrow$   $\lambda'(x)e^{A(x)} + a(x)\lambda(x)e^{A(x)} = a(x)f(x) + b(x)$   
 $\Leftrightarrow$   $\lambda'(x) = b(x)e^{-A(x)}$ 

Therefore  $f(x) = \lambda(x)e^{A(x)}$  is solution of  $(E) \iff \lambda'(x) = b(x)e^{-A(x)}$ .

## 1.2.2 Constant coef and exponential second member

$$(E_1): y'-ay=\lambda e^{\alpha x}$$

If  $\alpha = -a$ , then  $x \longmapsto Cxe^{\alpha x}$ ,  $C \in \mathbb{R}$  is solution;

Else  $(\alpha \neq -a)$ ,  $x \mapsto Ce^{\alpha x}$  is solution.

#### 1.3 Full solutions

The solution set of (E) is, with f a solution,

$$\{f + h_0 \mid h_0 \in S_0\}$$

So the solutions on I are, for  $x_0 \in I$ ,

$$\left\{ x \longmapsto \lambda e^{A(x)} + e^{A(x)} \int_{x_0}^x b(t) e^{-A(t)} dt \quad \middle| \quad \lambda \in \mathbb{R} \right\}$$



# 2 Second order with constant coefficients

$$(E'): ay'' + by' + cy = f(x)$$

with:  $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}$  and  $f \in \mathbb{C}^{\mathbb{R}}$ .

## 2.1 Homogenous equation

$$(E_0'): ay'' + by' + cy = 0$$

$$(E'_c): ax^2 + bx + c = 0$$

If  $(E'_c)$  has one double root r, the solution set of  $(E'_0)$  is :

$$\{x \longmapsto (\lambda x + \mu)e^{rx} \mid \lambda, \mu \in \mathbb{C}\}$$

Else if  $(E'_c)$  has two roots  $(r_1, r_2) \in \mathbb{C}$ , the solution set of  $(E'_0)$  is:

$$\{x \longmapsto \lambda e^{r_1 x} + \mu e^{r_2 x} \mid \lambda, \mu \in \mathbb{C}\}$$

If  $(r_1, r_2) \in \mathbb{C} \setminus \mathbb{R}$ , then  $\exists (\alpha, \beta) \in \mathbb{R} \mid r_1 = \overline{r_2} = \alpha + i\beta$ , and the real solution set for  $(E'_0)$  is:

$$\{x \longmapsto (\lambda \sin(\beta x) + \mu \cos(\beta x))e^{\alpha x} \mid \lambda, \mu \in \mathbb{R}\}$$

### 2.2 Particular solution

With  $S_0$  the solution set of  $(E'_0)$ , and g a solution of (E'), the solution set of (E') is of the form :

$$\{q + h_0 \mid h_0 \in S_0\}$$

#### 2.2.1 Exponential second member

$$(E_1'): ay'' + by' + cy = Ae^{\alpha x}$$

If  $\alpha$  is not solution of  $(E'_c)$ , then  $x \longmapsto Ce^{\alpha x}$ ,  $C \in \mathbb{R}$  is solution of (E');

Else if  $\alpha$  is a simple root of  $(E'_c)$ , then  $x \longmapsto Cxe^{\alpha x}$ ,  $C \in \mathbb{R}$  is solution of (E');

Else if  $\alpha$  is the double root of  $(E'_c)$ , then  $x \longmapsto Cx^2 e^{\alpha x}$ ,  $C \in \mathbb{R}$  is solution of (E');

