Trabajo Práctico Nº4

Métodos de Aprendizaje No Supervisado

Grupo 1

- Augusto Henestrosa
- Francisco Choi
- Nicolás de la Torre

Algoritmos a desarrollar

- Kohonen
- Oja
- Hopfield

Desarrollo

Python 3.8.0

Librerías utilizadas:

- Numpy
- Matplotlib
- Sklearn
- Pandas

PCA

PCA

Distribución de las variables

Diferencia entre PCA y Oja

Eta fijo

Diferencia entre PCA y Oja

Eta variable

Evolución de w

Inflación vs Desempleo

• Oja • Input

Evolución de w

PBI vs Esperanza de vida

OjaInput

Kohonen - Testing

Entrenamos la red de neuronas variando los siguientes ítems:

- Inicialización del vector → valores random o valores de la matriz de entrada
- Eta → fijo o variable
- \blacksquare R \rightarrow fijo o variable
- Cálculo de la distancia → distancia euclidiana o correlación

Relacionamos a cada país con su neurona más cercana y generamos:

- Mapa de calor
- Matriz de distancias (Matriz U)
- Indicador de país

Cálculo de Eta y R

Para eta variable utilizamos la fórmula:

$$Eta = 1/t$$

Para R variable utilizamos la fórmula:

$$R = 1 + (R_0 - 1)e^{-0.002 * t}$$
 $R_0 = 2$

Para R fijo: $R = \sqrt{2}$

Iteraciones: 1000

Todos los valores estandarizados

R var
Eta fixed
Valores random
Distancia euclidea

Matriz de distancias

Entrenamiento

R var

Eta var

Valores iniciales

Distancia euclidea

Matriz de distancias

Entrenamiento

R var
Eta var
Inicialización random
Distancia euclídea

Matriz de distancias

Entrenamiento

R var
Eta var
Inicialización random
Correlación

Matriz de distancias

Entrenamiento

Hopfield - Testing

Buscamos cuatro patrones cuyo producto interno sea cercano a 1/-1

- Cambiamos las letras
 - o J, A, T, O
 - o J, E, C, A
 - o F, A, N, J
 - o A, M, K, Z
 - A, K, M, I → Mejor producto interno

Se selecciona una letra aleatoriamente y se le agrega ruido

Ruido: [0.1; 0.4] incrementando de a 0.05

Hopfield - Testing

Patrones elegidos: A, K, M, I

```
-1
```


10% de probabilidad de mutación

20% de probabilidad de mutación

*

30% de probabilidad de mutación

Mutación vs Éxito

Mutación vs Éxito

Patrones 'menos' ortogonales: J E C A

Menos éxito!

Energía

 \blacksquare Pm = 0.3

Energía

■ Pm = 0.5

Conclusiones particulares

Oja

- La regla de Oja permite calcular los componentes principales de manera más rápida que PCA.
- Utilizar eta variable permite calcular los componentes principales con mayor precisión

Kohonen

- Kohonen permite producir una representación discreta en forma de mapa
- Todas las configuraciones tuvieron resultados muy similares en cuanto a Error final(diferencia de 0.1)

Hopfield

- Con probabilidad de mutación mayor a 0.5 (mucho ruido) la red no tiene forma de distinguir patrones
- La red logra identificar patrones a pesar que las letras hayan sido drásticamente modificadas
- Es muy importante que los patrones sean ortogonales
- Con mucho ruido, la red puede converger a otro patrón o a un estado espúreo
- La energía es siempre descendente

Conclusiones generales

- Los métodos de aprendizaje no supervisado son muy útiles para clasificar y obtener información de un conjunto de datos sobre el que no tenemos información adicional
- Puede ser muy difícil determinar si están funcionando o no

