Overview: Cell2Cell Company

- Over 70,000 rows, with 78 different variables
- Variables we chose to use and what they stand for
 - Eqpdays: Number of days of the current equipment
 - Months: Months in Service
 - o Mou: Mean monthly minutes of use
 - Recchrge: Mean total recurring charge
 - Retcalls: Number of calls previously made to retention team
- Why we chose to use this dataset...

Business Objectives

- Create model to understand effect of variables on churn
- 2. Predict churn through comparison of multiple models
- 3. Develop plan to reduce churn based on model
- 4. Utilize model to increase profitability

Methodology

Identify the most important drivers of churn

- Decision Tree for data partition (JMP)
- 2) Logistic Regression for variable selection

Develop models for predicting customer churn

- 1) Logistic Regression
- 2) Decision Tree
- 3) Neural Network

Decision Tree - Variable Selection

- Data: Cell2Cell Original Data (71047 rows)
- Dependant variable: Churn
- Independant variables- All (reject calibrate, customer, churndep, and csa)
- Objective:
 - To know the significant variables
- Method: JMP-Analyze-Partition-Decision Tree
- Result:
 - AICC: 89357
- Conclusion:
 - eqpdays,months,mou,recchrge,retcalls are top 5 drivers
 to Churn

□All Rows						
Count	71047					
Mean 0.2900756						
Std Dev 0.4538002						
∨ Candidates						
Term	Candidate SS	LogWorth	Cut Point			
egpdays	337.6191030 *	488.0969074	305			
months			11			
mou	109.7735953	153.8426187				
recchrge	74.9078866	103.7604833	34.99			
retcalls		101.6264279	1			
retcall	78.6467017	87.9959719	1			
changem	51.9622830	71.0086488	0.25			
webcap		62.8968694	1			
incalls	45.5566330	61.9036474	1			
peakvce	45.1435682	61.3172103	9.33			
changer	43.8369006	59.4626987	406.93			
opeakvce	42.6951745	57.8430419	0.67			
creditde	45.9815919	51.7539859	1			
custcare	37.6880047	50.7488741	1.33			
outcalls	35.8329253	48.1246765	4			
unansvce	35.7179679	47.9621365	0.33			
mourec	26.9863838	35.6480393	0.07			
dropblk	26.8615980	35.4725790	0.33			
uniqsubs	24.7947462	32.6637977	2			
models	24.3460871	32.0400040				
retaccpt		27.4951138				
phones	20.4669115	26.8090791	2			
setprc	19.1975976	24.9505436	9.99			
revenue	18.8660577	24.2735812	28.46			

Logistic Regression - Variable Selection

- Data: Entire dataset
- Dependant variable- Churn
- Independant variables- All (except calibrate, customer, churndep, and csa)
- Objective:
 - To know the significant variables
- Method: R function-glm()
- Result:
 - o AICC: 52909
- Code: glm.c2c <- glm(churn ~

```
.-calibrat-churndep,
family=binomial(link='logit'), data=c2c)
```

- Conclusion:
 - AICC for decision tree higher

```
Coefficients: (2 not defined because of singularities)
              Estimate Std. Error z value Pr(>|z|)
                                   4.220 2.44e-05
(Intercept)
             3.722e+00 8.820e-01
             1.720e-03 8.101e-04
revenue
                                   2.123 0.033763
            -2.703e-04 5.094e-05 -5.306 1.12e-07
recchrge
            -2.817e-03 9.048e-04 -3.113 0.001852
            -3.410e-03 6.096e-03 -0.559 0.575892
directas
             8.332e-04 2.844e-04
overage
                                   2.929 0.003398
            7.180e-03 2.110e-03
                                   3.402 0.000668
roam
changem
            -5.104e-04 5.451e-05 -9.365 < 2e-16
changer
             2.343e-03 3.743e-04
                                   6.260 3.85e-10
dropvce
             1.130e-02 7.307e-03
                                   1.546 0.122043
blckvce
             6.618e-03 7.213e-03
                                   0.917 0.358939
           1.083e-03 4.694e-04
                                   2.307 0.021053
unansvce
            -5.940e-03 2.615e-03 -2.271 0.023135
custcare
threeway
            -3.205e-02 1.163e-02 -2.755 0.005876
```

Logistic Regression - Prediction

- Data: Training data (40,000 rows), Testing data (31047 rows)
- Dependant variable- Churn
- Independant variables- All (except calibrate, customer, churndep)
- Objective:
 - To predict churn
- Result:
 - Precision: Fraction of relevant instances among the retrieved instances = 2.81%
 - Recall: Fraction of the total amount of relevant instances that were actually retrieved correctly=58.81%

Logistic Regression - Prediction

 We chose to use the 5 variables that we concluded were the best in our Decision Tree Analysis

Precision = 2.62%

Same objectives and data as before but different variables

Recall = 59.96%

1.) Eqpdays: Number of days of the current equipment

retention team

2.)	Months: Months in Service	Predicted Response	Real Respor 0	nse 1	Row Total
3.)	Mou: Mean monthly minutes of use	0	 18209 0.985	277 0.015	18486 0.597
4.)	Recchrge: Mean total recurring charge	1	 12158 0.974	327 0.026	12485 0.403
5.)	Retcalls: Number of calls previously made to	Column Total	 30367 	604	 30971

Decision Tree - Prediction

- Data: Training data (40,000 rows), Testing data(31047 rows)
- Dependant variable- Churn
- Independent variables- eqpdays, months, mou, recchrge, retcalls
- Objective:
 - To predict churn
- Method: R package-rpart
- Result:
 - Precision=2.5%
 - Recall=42.8%

	Actual Churn = 0 (Not Churn)	Actual Churn = 1 (Churn)	Total
Prediction Churn = 0 (Model predicts not churn)	12,836	156	12,992
Prediction Churn = 1 (Model predicts churn)	17,602	453	18,055
Total	30,438	609	31,047

Classification Tree for Cell2Cell Data

Neural Network - Prediction

R package - neuralnet

 A machine learning that mimics the functioning of human brain and consists of a number of neurons that continuously interact with each other

Data Manipulation

- Dependent variables: churn
- Independent variables: 5 variables with the highest logworth from decision tree model
 - o eqpdays, months, mou, recchrge, retcalls
- Remove rows with missing values
- Normalize the data to prevent a particular variable affecting the prediction due to its large numeric value range
 - Training data: 39,859 rows, churn rate is approx. 50%
 - Testing data: 30,971 rows, churn rate is approx. 2%

Model Processing

- Randomly select 5,000 observations from the testing data to build the neural network model
- Train the neural network by testing different number of hidden layers: 20 or 10*2
- Predict churn behavior with the neural network
- Create a cross table to judge the quality of the predictions

Neural Network - Prediction

Model 1- Hidden layers: 20

Precision: 355/13969 = 2.54%

Recall: 355/604 = 58.8%

Model 2- Hidden layers: 10 * 2

Precision: 390/15038 = 2.59%

Recall: 390/604 = 64.6%

Comparison of the 4 Models

	Decision Tree (5 Variables)	Logistic Regression (All Variables)	Logistic Regression (5 Variables)	Neural Network (5 Variables)
Precision Rate	2.51%	2.81%	2.62%	2.59%
Recall Rate	42.8%	58.81%	59.96%	64.6%

- The decision tree with several branches predict poorly.
- Neural network model with 5 variables predicts well with highest recall rate.
- Compared with logistic regression model with all variables, logistic model with 5 selected variables has slightly lower precision rate but higher recall rate.
- Overall, logistic regression model and neural network are both acceptable models to predict customer churn behavior.

Recommendations

1. Equipment Ownership Duration -

- a. Create segments and market best fitting phones before critical replacement threshold
- Ensure Cell2Cell has most popular selection of devices with robust fulfillment channel.

Service Months -

- a. Increase outreach to flight-risk clients as months of service reach critical point.
- b. Ensure these clients are receiving segment specific marketing.
- 3. **Avg. Minutes of Use -** Those that use their phones most look for a best rate. Ensure competitive plans for longtime customers that average high monthly usage.
- 4. **Recurring Charges -** Do not wait until clients call to cancel their account to offer better price. Proactively reach out to customers with to offer lower priced plans when available.
- 5. **Customer Service Calls -** Have manager reach out to those with above average calls to company to ensure everything is good and ensure needs are met or exceeded.

Limitations and Summary

Limitations:

- 1. Low processing power: reduced training dataset for neural network
- 2. 2% of testing data had relevant variable (churn=1)
- 3. Highest predicted probability of churn with decision tree is 0.56

Summary:

- Decision tree useful for knowing significant variables
- Prediction/Scoring Logistic Regression and Neutmodel best fit
- Recall and Precision can not be increased simultaneously
- Neural network has highest recall rate
- Number of days of the current equipment, Months in Service, Mean monthly minutes of use, Mean total recurring charge, Number of calls previously made to retention team are top 5 drivers to Churn