

有向无环图的关键路径

AOE-网描述工程。有两个问题需要解决:

- *完成整项工程至少需要多少时间?
- *那些活动是影响工程进度的关键?

8个活动、6个事件的AOE-网, V₁表示整个工程开始, V₆表示整个工程结束。事件V₄ 表示活动a₃和a₅已经完成, 活动a₇可以开始

- 源点: 唯一的一个入度为零的点
- 汇点: 唯一的一个出度为零的点
- 关键路径:路径长度(路径上各活动持续时间之和)最长的路径。这也是完成工程所需要的最短时间。
- 事件V_i 最早发生时间ve(i): 从源点到V_i的最长路径长度。
- 活动 a_i 的最早开始时间e(i):为活动 a_i (< v_i , v_k >)弧的弧尾事件ve(j)
- 事件 V_i 最迟发生时间 $V_i(i)$: 不推迟整个工程完成的前提下事件 V_i 最迟必须开始的时间。
- 活动a_i的最迟开始时间](i):不推迟整个工程完成的前提下活动a_i 最迟必须开始的时间。
- 关键活动: l(i) = e(i) 的活动称为关键活动。关键路径上的所有活动都是关键活动。要求工程最少需要完成时间、要加快工程进度, 只能考察和改进关键活动, 它们是影响工程进度的关键。

制作: 李青山

有向无环图的关键路径算法

思路:

- 1. 求出AOE-网中的关键活动,即求出I(i) = e(i) 的活动 $a_i (< v_i, v_k >)$ 。
- 2.对活动 a_i (< v_i , v_k >),其持续时间为dut(<j,k>),则有:
 - (1) e(i) = ve(j);
 - (2) $l(i) = vl(k) dut(\langle j, k \rangle)$
- (1) 从ve(0) =0开始向前递推: ve(j) = Max(i) {ve(i) + dut(<i,j>)}
 <i,j>属于T, j =1,2,...,n-1; T是所有以第j个项点为头的弧的集合
 - (2) 从vl(n-1) = ve(n-1) 开始向后递推: $vl(i) = Min(j) \{vl(j) dut(\langle i, j \rangle)\}$

 $\langle i,j \rangle$ 属于S,i=n-2,...,0;S是所有以第i个顶点为尾的弧的集合

有向无环图的关键路径算法

输入: AOE-网

输出: 求出所有关键活动, 进而求出所有关键路径

步骤:

step1.输入e条弧<j,k>, 建立AOE-网的存储结构;

step2.从源点 v_0 出发,令ve[0]=0,按拓扑有序求其余各顶点的最早发生时间ve[i](1<=i<=n)。如果得到拓扑有序序列中顶点个数小于网中顶点数n,则说明网中存在环,算法终止;否则执行step3;

step3.从汇点 v_n 出发,令vl[n-1]=ve[n-1],按逆拓扑有序求其余各项点的最迟发生时间vl[i](n-2>=i>=2);

有向无环图的关键路径示例

顶点	ve	vl
\mathbf{v}_1	0	0
v_2	3	4
v_3	2	2
V_4	6	6
V_5	6	7
v_6	8	8

活动	e	1	1-e
a_1	0	1	1
a_2	0	0	0
a_3	3	4	1
a_4	3	4	1
a_5	2	2	0
a_6	2	5	3
a_7	6	6	0
a_8	6	7	1

*关键活动的改进可以改进工程进度;

*关键活动速度提高要有限度,前提是不能改变 关键路径

*若网中有多条关键路径,要改进工程进度, 必须同时提高几条关键路径上的关键活动的 速度。

带权有向图的最短路径

- 源点:路径上的第一个顶点
- 终点:路径上的最后一个顶点
- 最短路径:
 - *从源点到终点所含边的数目最少的路径。 (用BFS边 历方法可以求得)
 - *从源点到终点路径上边的权值之和最小的路径。(用 Dijkstra算法和Floyd算法可以求得)
- 从某个源点到其余各顶点的最短路径(设源点为 v_0 ,终点可以是 $v_1,v_2,...,v_n$,则可以求得n条最短路径)
- 每一对顶点之间的最短路径(源点可以为 $v_1,v_2,...,v_n$,终点也可以是 $v_1,v_2,...,v_n$,源点与终点不能相等,可以求得n(n-1)条最短

某个源点到其余各顶点的最短路径

源点	终点	最短路径	路径长度
v_0	\mathbf{v}_1	无	
v_0	v_2	(v_0, v_2)	10
v_0	v_3	(v_0, v_4, v_3)	50
v_0	v_4	(v_0, v_4)	30
v_0	V_5	(v_0, v_4, v_3, v_5)	60

最短路径算法

思路:

- 1.Dijkstra: 按路径长度递增的次序产生最短路径。
- 2.用向量D[i]表示当前所找到的从源点v到每个终点 v_i 的最短路径的长度。它的初态为:若从v到 v_i 有弧,则D[i]为弧上权值;否则为无穷大。这时,长度为 $D[j]=Min(i)\{D[i]\mid v_i$ 属于 $V\}$ 的路径就是从v出发的长度最短的一条最短路径。设为 (v,v_i) 。
- 3. 设S为已求得最短路径的终点的集合,则下一条最短路径(设其终点为X)或者是弧(v,X),或者是中间只经过S中的顶点而最后到达顶点X的路径。即下一条长度次短的最短路径的长度为 $D[j] = Min(i)\{D[i] \mid v_i$ 属于S},其中,D[i]或者是弧 (v,v_i) 上的权值,或者是D[k] $(v_k$ 属于S)和弧 (v_k,v_i) 上的权值之和。

制作: 李青山

最短路径算法

输入: 带权有向图

输出:n条最短路径

步骤:

step1.从源点v出发到图上其余各顶点(终点) v_i 可能达到的最短路径长度的初值为:若从v到 v_i 有弧,D[i]为弧上权值;否则为无穷大;

step2.选择 v_j ,使得 $D[j]=Min(i)\{D[i]\mid v_i$ 属于V- $S\}$, v_j 就是当前求得的一条从v出发的最短路径的终点。令S=S U $\{j\}$;

step3.修改从v出发到集合V-S上任一项点 v_k 可达的最短路径长度。如果 D[j] + arcs[j][k] < D[k],则修改D[k] = D[j] + arcs[j][k];

step4.重复操作step2、step3共n-1次。由此求得从v到图上其余各顶点的最短路径是依路径长度递增的序列。

终	从v ₀ 到各终点的D值和最短路径的求解过程				
点	i=1	i=2	i=3	i=4	i=5
\mathbf{v}_1	无穷大	无穷大	无穷大	无穷大	无穷大(无)
\mathbf{v}_2	$10\left(v_{0},v_{2}\right)$				
\mathbf{v}_3	无穷大	$60(v_0, v_2, v_3)$	$50(v_0, v_4, v_3)$		
v_4	$30\left(v_{0},v_{4}\right)$	$30\left(v_{0},v_{4}\right)$			
V_5	$100 (v_0, v_5)$	$100\left(\mathbf{v}_{0},\mathbf{v}_{5}\right)$	$90(v_0, v_4, v_5)$	$60(v_0, v_4, v_3, v_5)$	
v_j	v_2	V_4	V_3	V_5	
S	$\{v_0^{},v_2^{}\}$	$\{v_0, v_2, v_4\}$	$\{v_0, v_2, v_3, v_4\}$	$\{v_0, v_2, v_3, v_4, v_5\}$	

制作:李青山

每一对顶点之间的最短路径

两种方法:

*每次以一个项点为源点,重复执行Dijkstra算法n次,便可求得每一对项点之间最短路径。 $T(n) = O(n^3)$ *Floyd算法。 $T(n) - O(n^3)$