Disclaimer

This document is an exam summary that follows the slides of the *Introduction to Machine Learning* lecture at ETH Zurich. The contribution to this is a short summary that includes the most important concepts, formulas and algorithms. This summary was created during the spring semester 2018 by Yannik Merkli and adapted in 2024 by Nicolas Wehrli. Due to updates to the syllabus content, some material may no longer be relevant for future versions of the lecture. This work is published as CC BY-NC-SA.

@**()**(\$)(9)

I do not guarantee correctness or completeness, nor is this document endorsed by the lecturers. Feel free to point out any erratas. For the full LATEX source code, consider https://github.com/nwehrli/ymerklieth-summaries.

Basics	Ridge closed form: $\hat{w} = (X^T X + \lambda I)^{-1} X^T y$	coeffs., $k(\binom{x}{v}, \binom{x'}{v'}) = k(x, x')k(y, y'), k(\binom{x}{v}, \binom{x'}{v'}) =$	Algorithm (Lloyd's heuristic):
Orth: A: $det(A) \in \{+1, -1\}, AA^T = A^T A = I$	Classification	$k(x,x') + k(y,y')$, $k(x,x') = g(\langle x,x'\rangle)$, g all Tay-	Initialize cluster centers $\mu^{(0)} = [\mu_1^{(0)},, \mu_k^{(0)}]$
trace(ABC) = trace(BCA) = trace(CAB)	$\hat{y} = sign(f(x)) = sign(w^T x), z = yf(x)$ Surrogate	lor coefficients non-negative, $\forall f. \ k(x,y) =$	While still changes in assignments:
$trace(A) = \sum \lambda_i(A); \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	Losses for 0-1: $\ell_{\exp(z)} = e^{-z}$, $\ell_{\log}(z) = \log(1 + e^{-z})$ $\nabla_z \ell_{\exp}$ explodes for $z \to -\infty$, sens. to outliers.	$f(x)k_1(x,y)f(y)$ Kern. Ridge Reg. $\min_{w} \frac{1}{n} y - \Phi w ^2 + \lambda w _2^2 =$	$z_i^{(t)} = \underset{j \in \{1, \dots, k\}}{\operatorname{argmin}} \ x_i - \mu_j^{(t-1)}\ _2^2; \ \mu_j^{(t)} = \frac{1}{n_j^{(t)}} \sum_{i: z_i^{(t)} = j} x_i$
$A = \sum_{k=1}^{rk(A)} \sigma_{k,k} u_k(v_k)^T, A^{\dagger} = US'V^T; \sigma'_{k,k} = \frac{1}{\sigma_{k,k}}$	Logistic Reg. $L(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i w^T x_i})$ (li-	$\min_{\alpha} \frac{1}{n} y - K\alpha _2^2 + \lambda \alpha^\top K\alpha$	$\mathcal{O}(nkd)$ per it., worst-case exponential it.
Deriv: $\frac{\partial}{\partial x}b^Tx = \frac{\partial}{\partial x}x^Tb = b^T, \frac{\partial}{\partial x} x _2^2 =$	near boundary!) MM and SVM	k Nearest Neighbor classifier i: Pick k and distance metric $d \cdot ii$: For given	Conv. proof: $\hat{R}(\mu, z) := \sum_{i=1}^{n} x_i - \mu_{z_i} _2^2$.
$ 2x^T, \frac{\partial}{\partial x} x - a _2 = \frac{(x-a)^T}{ x-a _2}, \frac{\partial}{\partial x}(x^T A x) =$	$w_{\text{MM}} = \arg\max_{\ w\ _2 = 1} \min_{1 \le i \le n} y_i \langle w, x_i \rangle$	x , find among $x_1,,x_n \in D$ the k closest to	$\hat{R}(\mu^{(t)}, z^{(t)}) \ge \hat{R}(\mu^{(t)}, z^{(t+1)}) \ge \hat{R}(\mu^{(t+1)}, z^{(t+1)})$ k-mean++
$x^{T}(A^{T} + A), \frac{\partial}{\partial x}(b^{T}Ax) = A^{T}b, \nabla_{X}(c^{T}Xb) =$	$w_{\text{SVM}} = \arg \min \ w\ _2 \text{ s.t. } y_i \langle w, x_i \rangle \ge 1, \forall i$ If data linearly sep. , 1. $w_{\text{SVM}} = w_{\text{MM}} \ w_{\text{SVM}}\ _2$	$x \rightarrow x_{i_1},,x_{i_k}$ · iii: Output the majority vote of labels	- Start with random data point as center
$cb^{T}, \nabla_{X}(c^{T}X^{T}b) = bc^{T}; A _{op} = sup_{ x _{2}=1} Ax _{2}$	2. GD on logistic reg. $(\eta = 1)$: $\frac{w^t}{\ w^t\ _2} \rightarrow w_{\text{MM}}$	Neural Networks	- for $j = 2$ to k : i_j sampled with prob.
$\mathbf{convex} \iff f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(x) \ge f(x) + (\nabla f(x)) = f(x) + (\nabla$	If not and $ker(X) = \emptyset$, GD on logistic reg.	$F(x) = W^{L} \phi^{L-1} (W^{L-1} (\phi^{1} (W^{1} x)))$	$P(i_j = i) = \frac{1}{z} \min_{1 \le l < j} x_i - \mu_l _2^2; \ \mu_j \leftarrow x_{i_j}$
$\lambda (f(y); f(y)) \ge f(x) + \langle \nabla f(x), y - x \rangle; D^2 f(x) \ge 0$ $\alpha f + \beta g \mathbf{c}.; \max(f, g) \mathbf{c}. \text{ if } f, g \mathbf{c}., \alpha, \beta \ge 0$	$(\eta = \frac{4}{\lambda_{max}(X)}) w^t \rightarrow \hat{w}, \hat{w}$ global min.	ReLU: max(0,z), Tanh: $\frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$ Sigmoid: $\varphi(z) = \frac{1}{1 + \exp(-z)}$, $\varphi' = (1 - \varphi)\varphi$	in exp. conv. to $\mathcal{O}(\log k)$ ·OPT
$f \circ g = f(g(x))$ c. if f c., g a. $\vee f$ c., non-dec., g c.	Hinge loss: $l_H(w; x, y) = max\{0, 1 - yw^Tx\}$	Sigmoid: $\varphi(z) = \frac{1}{1 + \exp(-z)}, \varphi' = (1 - \varphi)\varphi$	Selecting <i>k</i> : elbow method, regularization
$p_{\mu,\Sigma}(x) = \frac{1}{\sqrt{(2\pi)^p det(\Sigma)}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$	soft-mar. $w^* = \operatorname{argmin} w _2^2 + \lambda \sum_{i=1}^n l_H(w; x_i, y_i)$	Universal Approximation Theorem: We can approximate any arbitrary smooth target func-	Dimension Reduction
$\mathbf{X} \sim \mathcal{N}(\mu, \Sigma) \Longrightarrow A\mathbf{X} + b \sim \mathcal{N}(A\mu + b, A\Sigma A^{T})$	w	tion, with 1+ layer with sufficient width.	Principal component analysis (PCA) Given: $D = \{x_1,, x_n\} \subset \mathbb{R}^d$, $1 \le k \le d$
Jensen ineq: $g(E[X]) \le E[g(X)]$, g convex	$g_i(w) = \max\{0, 1 - y_i w^T x_i\} + \lambda w _2^2$	Forward Propagation	Siven: $D = \{x_1,, x_n\} \subset \mathbb{R}^n$, $1 \le k \le u$ $\sum_{d \times d} = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$, $\mu = \frac{1}{n} \sum_{i=1}^n x_i = 0$!!
Regression	$\nabla_w g_i(w) = \begin{cases} -y_i x_i + 2\lambda w & \text{, if } y_i w^T x_i < 1\\ 2\lambda w & \text{, if } y_i w^T x_i \ge 1 \end{cases}$	Input: $v^{(0)} = [x;1]$ Output: $f = W^{(L)}v^{(L-1)}$	$Sol.: (W, z_1,, z_n) = \underset{n}{\operatorname{argmin}} \sum_{i=1}^{n} Wz_i - x_i _2^2,$
Linear Regression $f(x) = w^T x; X \in \mathbb{R}^{n \times d}$	Multi-Class Classification $y_i w x_i \ge 1$	Hidden: $z^{(l)} = W^{(l)}v^{(l-1)}, v^{(\bar{l})} = [\varphi(z^{(l)}); 1]$	where $W \in \mathbb{R}^{d \times k}$: $W^T W = I_k$, $W^* = (v_1 v_k)$
$L(w) = Xw - y _2^2; X^T X \hat{w} = X^T y$	$\hat{y}(x) = \operatorname{argmax}_{k \in \{1,,K\}} f_k(x); f = (f_1,,f_K)$	Backpropagation	w/ v_i evec. of Σ and evals $\lambda_1 \ge \ge \lambda_d \ge 0$.
$d \le n : \hat{w} = (X^T X)^{-1} X^T y \text{ if } rk(X) = d$	OvR : For each class $k \in [K]$:	$\left(\nabla_{W^{(L)}}\ell\right)^T = \frac{\partial \ell}{\partial W^{(L)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial W^{(L)}}$	Projections $z_1,,z_n \in \mathbb{R}^k$ are given by
$n < d : \hat{w} = (X^T X)^{\dagger} X^T y; rk(X) = n \hat{w} _2 \text{ min.}$	1. Relabel $\tilde{y}_i = 1$ if $y_i = k$, else $\tilde{y}_i = -1$ as \mathcal{D}_k	$(-1)^T \partial \ell \partial \ell \partial f \partial z^{(L-1)}$	$z_i = W^T x_i$ where $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^T$,
$\nabla_w L(w) = 2X^T (Xw - y)$	2. Train f_k as binary classifier on \mathcal{D}_k	$\left(\nabla_{W^{(L-1)}}\ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-1)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}}$	Kernel PCA
Gradient Descent 1. Start arbitrary $w_o \in \mathbb{R}$	Cross-E. Loss: $\ell_{ce}(f(x), y) = -\log\left(\frac{e^{f_y(x)}}{\sum_{k=1}^{K} e^{f_k(x)}}\right)$	$\left(\nabla_{W^{(L-2)}}\ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-2)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}$	For general $k \ge 1$, the Kernel PC are given by $\alpha^{(1)},, \alpha^{(k)} \in \mathbb{R}^n$, where $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i$ is obtained
2. Do $w_{t+1} = w_t - \eta \nabla L(w_t)$ until $ w^t - w^{t-1} _2 \le \epsilon$	OvO: $L(w) = \sum_{i=1}^{n} \ell_{ce}(f_w(x_i), y_i)$; GD on $L(w)$	Only compute the gradient. Rand. init.	from: $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T$, $\lambda_1 \ge \ge \lambda_d \ge 0$
GD conv. to \hat{w} if $rk(X^TX) = d, \eta < \frac{2}{\lambda_{max}(X^TX)}$	Multiplicative noise model: $y = y^*(x)\varepsilon$ Cost Sensitive Classification	weights by distr. assumption for φ . ($2/n_{in}$ for ReLu and $1/n_{in}$ or $2/(n_{in} + n_{out})$ for Tanh)	Point <i>x</i> projected as $z \in \mathbb{R}^k$: $z_i = \sum_{j=1}^n \alpha_j^{(i)} k(x, x_j)$
$ w^{t+1} - \hat{w} \le I - \eta X^T X _{op} w^t - \hat{w} _2 \le \rho^{t+1} w^0 - \hat{w} _2$	Replace loss by: $l_{CS}(w;x,y) = c_v l(w;x,y)$	Overfitting	
$\ \hat{w}\ _2$; $\eta_{opt} = \frac{2}{\lambda_{max} + \lambda_{min}}$; $\rho_{min} = 1 - \eta_{opt} \lambda_{min} = \frac{\kappa - 1}{\kappa + 1}$	Metrics (convention: positive = rare)	Regularization; Early Stopping; Dropout:	Autoencoders $f_1 : \mathbb{R}^d \to \mathbb{R}^k$, $f_2 : \mathbb{R}^k \to \mathbb{R}^d$ Try to learn identity function: $x \approx f(x;\theta)$
minibatch SGD: $\nabla L_S(w)$ on random $S \subset D$ eve-	Accuracy= $\frac{\text{\#correct predictions}}{\text{\#all predictions}} = \frac{TP+TN}{TP+TN+FP+FN}$,	ignore hidden units with prob. $1-p$, after training use all units and scale weights by p , Patch	$f(x;\theta) = f_2(f_1(x_1;\theta_1);\theta_2); f_1 : \text{en-, } f_2 : \text{decoder}$
ry iter.; $ S = 1$ SGD; $E_S(\nabla L_S(w)) = \nabla L(w)$ strictly c. \implies stationary point is unique g.	Precision= $\frac{\#correct'+'predictions}{\#all'+'predictions} = \frac{TP}{TP+FP} = 1$ -FDR	ning use all units and scale weights by <i>p</i> ; Batch Normalization : normalize the input data for	Lin. activation func. & square loss => PCA
min.; strongly c. \implies unique g. min. exists	$Rec.=TPR = \frac{TP}{TP+FN} = \frac{TP}{n_{+}}, FPR = \frac{FP}{TN+FP} = \frac{FP}{n_{-}} = T1$	each mini-batch, rescale and shift;	Probability Modeling
Errors	E1 score = $2TP$ = 2	CNN $\varphi(W*v^{(l)})$	Assumption: Data set is generated iid Find $h: X \to Y$ that minimizes pred. error
exp. estim. err.: $E_X(\ell(f(X), f^*(X))); y = f^*(X) + \varepsilon$ generaliz. err.: $L(f; \mathbb{P}_{X,Y}) = E_{X,Y}(\ell(f(X), Y))$	F1 score = $\frac{2TP}{2TP+FP+FN} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$	The out. dim. of applying $k f \times f \times d$ filters ($d = \#$ channels) to $n \times m$ image with padding p	$\hat{y} = h^*(x) = \mathbb{E}[Y X=x]$ for sq. loss
$L(\hat{f}; \mathbb{P}_{X,Y}) = E_X((\hat{f}(X) - f^*(X))^2) + \sigma^2(\text{sq. loss})$	$\hat{y_{\tau}}(x) = \operatorname{sign}(\hat{f}(x) - \tau)$ (varying threshold)	and stride s is: $(\frac{n+2p-f}{s}+1)\times(\frac{m+2p-f}{s}+1)$ with	Maximum Likelihood Estimation (MLE)
$L(\hat{f}_{\mathcal{D}}; \mathcal{D}_{\text{test}}) = \frac{1}{ \mathcal{D}_{\text{test}} } \sum_{(x,y) \in \mathcal{D}_{\text{test}}} \ell(\hat{f}_{\mathcal{D}}(x), y) \text{ estim.}$	Kernels $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ Reparam. $w = \phi^T \alpha$; $f(x) = \sum_{i=1}^n \alpha_i \langle \phi(x_i), \phi(x) \rangle$		Choose a particular parametric $\hat{p}(Y X,\theta)$
generaliz. err.; g. err. + const = exp. estim err.	A kernel is valid if <i>K</i> is sym.: $k(x,z) = k(z,x)$	k channels. If $t \times t$ pooling is applied, both dimensions are divided by t , nr. channels stays.	$\theta^* = \underset{\theta}{\operatorname{amax}} \hat{p}(y_{1:n} x_{1:n}, \theta)$
k-fold CV: \uparrow k $\Longrightarrow \hat{f}_{M_i,\mathcal{D}'} \approx \hat{f}_{M_i,\mathcal{D}_{use}}$, $CV_k(M_i) \approx$	and psd: $z^T K z \ge 0$	Don't forget bias : 1 per filter + #outputs for	$\stackrel{\text{iid}}{=} \operatorname{amin}_{\theta} - \sum_{i=1}^{n} \log \hat{p}(y_i x_i, \theta)$
$L(\hat{f}_{M_i,\mathcal{D}_{use}}; \mathbb{P}_{X,Y});$ extreme: LOOCV	mono. : $k(x,y) = (x^{T}y)^{m}$, poly : $k(x,y) = (1 +$	any fully connected layer. Learning with momentum	Ex. Conditional Linear Gaussian
Bias-Variance Tradeoff	$x^{\top}y)^m$, RBF: $k(x,z) = \exp(-\frac{\ x-z\ _{\alpha}}{\tau})$, $\alpha = 1 \Rightarrow \text{La}$	$a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W \leftarrow W - a$	Assume Gaussian noise $y = f(x) + \epsilon$ with $\epsilon \sim$
Bias _D ² $(\hat{f}_D, x) := (E_D(\hat{f}_D(x)) - f^*(x))^2$	placian, $\alpha = 2 \Rightarrow$ Gaussian Marcore Theorem: Valid kernels can be decom-	Clustering	$\mathcal{N}(0,\sigma^2)$ and $f(x) = w^{\top}x$:
$\operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}}) := E_{X}(\operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}}, X)); \operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}) :=$	Mercers Theorem : Valid kernels can be decomposed into a lin. comb. of inner products.	k-mean $\hat{R}(u) = \nabla^n$ min $ x_i - u_i ^2$ non-convey NP-	$\hat{p}(y \mid x, \theta) = \mathcal{N}(y; w^{\top} x, \sigma^2)$ The entimal $\hat{p}(y; w)$ can be found using MLE:
$E_X(\operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}(X))); \operatorname{Pred. err. } E_{\mathcal{D}}(L(\hat{f}_{\mathcal{D}}; \mathbb{P}_{X,Y})) =$	Kernel composition $k = k_1 + k_2$, $\bar{k} = k_1 \cdot k_2$, $\forall c >$	$\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1,k\}} x_i - \mu_j _2^2$, non-convex, NP-	The optimal \hat{w} can be found using MLE: $\hat{w} = \operatorname{argmax} p(y x, \theta) = \operatorname{argmin} \sum (y_i - w^{\top}x_i)^2$
$\operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}) + \operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}}) + \sigma^{2}$	0. $k = c \cdot k_1$, $\bar{k} = f(k_1)$, f pwr. series w/ non-neg.	hard, kernelizable, local opt., spherical bias	$w - \underset{w}{\operatorname{argmax}} p(y x, 0) = \underset{w}{\operatorname{argmin}} \sum (y_i - w \cdot x_i)^2$

Maximum a Posteriori Estimate

Assume $y = f(x; \theta^*) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$, but $\theta^* \sim \mathcal{N}(0, \sigma_0^2 I_d)$ The posterior distribution of θ is given by: $p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)}{p(\mathcal{D})} \cdot p(\theta)$

Now we want to find the MAP for θ : $\hat{\theta} = \operatorname{argmax}_{\theta} p(\theta \mid \mathcal{D})$

 $= \operatorname{argmax}_{\theta} p(\mathcal{D} \mid \theta) \cdot p(\theta)$

 $= \operatorname{argmin}_{\theta}^{n} - \sum_{i=1}^{n} \log p(y_i \mid x_i, \theta) - \log p(\theta)$ $= \operatorname{argmin}_{\theta} \frac{\sigma^2}{\sigma^2} ||\theta||_2^2 + \sum_{i=1}^n (y_i - f(x_i; \theta))^2$

Regularization can be understood as MAP inference, with different priors (= regularizers) and likelihoods (= loss functions).

Statistical Models for Classification

f minimizing the population risk: $f^*(x) =$ $\operatorname{argmax}_{\hat{v}} p(\hat{y} \mid x)$

This is called the Bayes' optimal predictor for the 0-1 loss. Assuming iid. Bernoulli noise, the conditional probability is:

$$p(y \mid x, w) \sim \text{Ber}(y; \sigma(w^{\top}x))$$

Where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function. Using MLE we get:

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^{\top} x_i))$$

Which is the logistic loss. Instead of MLE we can estimate MAP, e.g. with a Gaussian prior:

$$\hat{w} = \underset{w}{\operatorname{argmin}} \lambda ||w||_{2}^{2} + \sum_{i=1}^{n} \log(1 + e^{-y_{i}w^{\top}x_{i}})$$

Bayesian Decision Theory

Given $p(y \mid x)$, a set of actions A and a cost $C: Y \times A \mapsto \mathbb{R}$, pick the action with the maximum expected utility.

$$a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_v[C(y, a) \mid x]$$

Can be used for asymmetric costs or abstenti-

Generative Modeling

Aim to estimate p(x, y) for complex situations using Bayes' rule: $p(x,y) = p(x|y) \cdot p(y)$

Gaussian Bayes Classifier

No independence assumption, model the features with a multivariate Gaussian $\mathcal{N}(x; \mu_v, \Sigma_v)$:

$$\mu_y = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} x_j$$

$$\sum_y = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} (x_j - \hat{\mu}_y) (x_j - \hat{\mu}_y)^\top$$

This is also called the **quadratic discriminant** analysis (QDA). LDA: $\Sigma_{+} = \Sigma_{-}$, Fisher LDA: $p(y) = \frac{1}{2}$, classify x as outlier if: $p(x) \le \tau$.

Gaussian Naive Bayes Classifier

GBC with diagonal Σ s (assume features independent). Estimate the parameters via MLE:

MLE for class prior: $p(y) = \hat{p}_v = \frac{\text{Count}(Y=y)}{n}$ MLE for feature distribution:

$$p(x_i \mid y) = \mathcal{N}(x_i; \hat{\mu}_{y,i}, \sigma_{v,i}^2)$$

$$\mu_{y,i} = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} x_{j,i}$$

$$\sigma_{y,i}^2 = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} (x_{j,i} - \hat{\mu}_{y,i})^2$$
Predictions are made by:
$$y = \underset{\hat{y}}{\text{argmax}} p(\hat{y} \mid x) = \underset{\hat{y}}{\text{argmax}} p(\hat{y}) \cdot \prod_{i=1}^{d} p(x_i \mid \hat{y})$$
Equivalent to decision rule for him class:

Equivalent to decision rule for bin. class.:

$$y = \operatorname{sgn}\left(\log \frac{p(Y=+1 \mid x)}{p(Y=-1 \mid x)}\right)$$

Where f(x) is called the discriminant function. If the conditional independence assumption is violated, the classifier can be overconfident.

Avoiding Overfitting

MLE is prone to overfitting. Avoid this by restricting model class (fewer parameters, e.g. GNB) or using priors (restrict param. values).

Generative vs. Discriminative Discriminative models:

p(y|x), can't detect outliers, more robust

Generative models:

p(x,y), can be more powerful (detect outliers, missing values) if assumptions are met, are typically less robust against outliers

Fisher's linear discriminant analysis (LDA; c=2)

Assume: p = 0.5; $\hat{\Sigma}_{-} = \hat{\Sigma}_{+} = \hat{\Sigma}$

discriminant f.: $f(x) = log \frac{p}{1-p} + \frac{1}{2} [log \frac{|\Sigma_-|}{|\hat{\Sigma}|}]$

 $+((x-\hat{\mu}_{-})^{T}\hat{\Sigma}_{-}^{-1}(x-\hat{\mu}_{-}))-((x-\hat{\mu}_{+})^{T}\hat{\Sigma}_{+}^{-1}(x-\hat{\mu}_{+}))]$ Predict: $y = sign(f(x)) = sign(w^T x + w_0)$

$w = \hat{\Sigma}^{-1}(\hat{\mu}_+ - \hat{\mu}_-); w_0 = \frac{1}{2}(\hat{\mu}_-^T \hat{\Sigma}^{-1} \hat{\mu}_- - \hat{\mu}_+^T \hat{\Sigma}^{-1} \hat{\mu}_+)$

Outlier Detection $P(x) = \sum_{v=1}^{c} P(y)P(x|y) = \sum_{v} \hat{p}_{v} \mathcal{N}(x|\hat{\mu}_{v}, \hat{\Sigma}_{v}) \le \tau$

Gaussian Mixture Model

Mixture modeling $P(x|\theta) = P(x|\mu; \Sigma, w)$

1)Model each cluster j as prob. distr. $P(x|\theta_i)$

2)data iid, lklh.: $P(D|\theta) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_j P(x_i|\theta_j)$ 3) θ should minimize neg log-likelihood:

 $\theta^* = \underset{\theta}{\min} L(D; \theta) = \underset{\theta}{\min} - \sum_i \log \sum_j w_j P(x_i | \theta_j)$

Ex: $P(x|\theta) = \sum_i w_i \mathcal{N}(x; \mu_i, \Sigma_i), P(z_i = j) = w_i$ $\Sigma w_i = 1$, $P(z, x) = w_z \mathcal{N}(x | \mu_z, \Sigma_z)$

Gaussian-Mixture Bayes classifiers

Estimate class prior P(y); Est. cond. distr. for each class: $P(x|y) = \sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \sum_i^{(y)})$

$P(y|x) = \frac{1}{P(x)}p(y)\sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \Sigma_i^{(y)})$

Hard-EM algorithm

Initialize parameters $\theta^{(0)}$ For t = 1, 2...: Predict class z_i for each x_i :

E:
$$z_i^{(t)} = \operatorname{argmax}_z P(z|x_i, \theta^{(t-1)}) =$$

= $\operatorname{argmax}_z P(z|\theta^{(t-1)}) P(x_i|z, \theta^{(t-1)}) =$
= $\operatorname{argmax}_z w_z^{(t-1)} \mathcal{N}(x_i|\mu_z^{(t-1)}, \Sigma_z^{(t-1)})$

M: Compute the MLE as for the Gaussian B. **Enc.-Dec. Att.:** dec.: *Q* so far. enc.: *K*, *V* class.: $\theta^{(t)} = \operatorname{argmax}_{\theta} P(D^{(t)}|\theta)$

 $\forall i.(x_i, z_i^{(t)}) \in D^{(t)}$; works poorly if clust. overlap Special case: fix $w_z = \frac{1}{L}$, spher. cov. $\Sigma_z = \sigma^2 \mathbb{I}$

 \rightarrow k-means: **E:** $z_i^{(t)} = \operatorname{argmin}_z ||x_i - \mu_z^{(t-1)}||_2^2$

M:
$$\mu_j^{(t)} = \frac{1}{n_j} \sum_{i: z_i^{(t)} = j} x_i$$

Soft-EM algorithm: While not converged

E-step: For each i and j calculate $\gamma_i^{(t)}(x_i)$ $\gamma_j^t(x_i) = P(Z_i = j | x_i, \theta_t) = \frac{P(x_i | Z_i = j, \theta_t) P(Z_i = j | \theta_t)}{P(x_i; \theta_t)} =$ $Q(\theta; \theta^{(t-1)}) = \mathbb{E}_{y_{1:n}}[\log P(x_{1:n}, y_{1:n} | \theta) | x_{1:n}, \theta^{(t-1)}]$ $= \mathbb{E}_{v_{1:n}}[\log \prod_{i=1}^{n} P(x_i, y_i | \theta) | x_{1:n}, \theta^{(t-1)}] =$ $=\sum_{i=1}^{n} \mathbb{E}_{v_i}[\log P(x_{1:n}, y_i; \theta) | x_i, \theta^{(t-1)}] =$

 $\sum_{i=1}^{n} \sum_{j=1}^{k} P(y_i = j | x_i, \theta^{(t-1)}) \log(P(x_i, y_i = j; \theta))$

 $= \sum_{i=1}^{n} \sum_{i=1}^{k} \gamma_{i}^{t}(x_{i}) \log(P(y_{i} = j)P(x_{i}|y_{i} = j;\theta))$

If constraint $\sum_{i=1}^{m} P(y_i = j; \theta) = 1$ (m: #labels): $\to \mathcal{L}(\theta, \lambda) = Q(\theta; \theta^{(t-1)}) + \lambda(\Sigma_i^m P(y_i = j) - 1)$

M-step: Fit clusters to weighted data points:

Genrl: $\theta^{(t)} = \operatorname{argmax}_{\theta} Q(\theta; \theta^{(t-1)}), \gamma_i^t(x_i) fixed!$

$$w_{j}^{(t)} \leftarrow \frac{1}{n} \sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i}); \mu_{j}^{(t)} \leftarrow \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})x_{i}}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})}$$
$$\sum_{j}^{(t)} \leftarrow \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})(x_{i} - \mu_{j}^{(t)})^{T}}{\sum_{i=1}^{n} \gamma_{i}^{(t)}(x_{i})} \{+ \nu^{2} \mathbb{I}\}$$

SSL w/ GMMs: labeled p.: y_i : $\gamma_i^{(t)}(x_i) = 1[j = y_i]$

unl. p.: $\gamma_i^{(t)}(x_i) = P(Z = j | x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$

Large Language Models

Sequence-to-sequence: Use RNN with hidden state, keep hidden state, encoder: current input + last hidden state \rightarrow new hidden state, decoder: current hidden state \rightarrow output token + new hidden state

Transformers

Use encoder/decoder architecture, don't need recurrence because of (self-) attention (multihead), encoder: self-attention + feed-forward (FCNN), decoder: self-attention, encoderdecoder attention, feed-forward **Self-attention:** For the tokens X, generate query $Q = X \times W_O$, key $K = X \times W_K$, value V = $X \times W_V$. For each token, perform dot product of query and key, use soft-maxed version to scale value, i.e. $Z = \operatorname{softmax}(\frac{Q \times K \top}{\sqrt{d_k}})V$

Positional Encodings: Add to word embeddings, e.g. sine functions w/ different freq.