Minimal auf**spannende** Bäume

Nico Haaf und Josua Kugler

12.05.20 oder so

Grundlegende Definitionen

Sei S eine endliche Menge und $U\subseteq P(S)$ Familie von Teilmengen.

Grundlegende Definitionen

Sei S eine endliche Menge und $U\subseteq P(S)$ Familie von Teilmengen.

Definition

Das Paar M=(S,U) heißt **Matroid** und U die Familie der **unabhängigen Mengen** von M, wenn gilt:

Grundlegende Definitionen

Sei S eine endliche Menge und $U\subseteq P(S)$ Familie von Teilmengen.

Definition

Das Paar M=(S,U) heißt **Matroid** und U die Familie der **unabhängigen Mengen** von M, wenn gilt:

- $A \in U, B \subseteq A \implies B \in U$

Definition

Eine maximale unabhängige Menge heißt eine Basis des Matroids. Alle Basen enthalten die gleiche Anzahl von Elementen, der Rang r(M) des Matroids.

Sei $W\subseteq P(M)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(E,K).

Lemma

Ist G = (E, K) Graph, so ist M = (K, W) ein Matroid.

Sei $W\subseteq P(M)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(E,K).

Lemma

lst G = (E,K) Graph, so ist M = (K,W) ein Matroid.

Beweis.

Axiom 1

Sei $W\subseteq P(M)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(E,K).

Lemma

lst G = (E,K) Graph, so ist M = (K,W) ein Matroid.

Beweis.

- Axiom 1
- Axiom 2

Sei $W\subseteq P(M)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(E,K).

Lemma

Ist G = (E, K) Graph, so ist M = (K, W) ein Matroid.

Beweis.

• Wälder $W=(E,A),\ W'=(E,B)$ mit #B=#A+1. Komponenten $T_1,...,T_m$, Eckenmengen $E_1,...,E_m$, Kantenmengen $A_1,...,A_m$.

Sei $W\subseteq P(M)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(E,K).

Lemma

Ist G = (E, K) Graph, so ist M = (K, W) ein Matroid.

Beweis.

- Wälder W=(E,A), W'=(E,B) mit #B=#A+1. Komponenten $T_1,...,T_m$, Eckenmengen $E_1,...,E_m$, Kantenmengen $A_1,...,A_m$.
- Nun: $\#A_i = \#E_i 1$, $E = E_1 \cup ... \cup E_m$, $A = A_1 \cup ... \cup A_m$. $\#B > \#A \implies \exists$ Kante $k \in B$, die E_s , E_t verbindet. Dann ist $W'' = (E, A \cup k)$ Wald.

Matroide und Graphen - Folgerungen

Korollar

Basen von M=(K,W) sind die aufspannenden Bäume.

Matroide und Graphen - Folgerungen

Korollar

Basen von M = (K, W) sind die aufspannenden Bäume.

Korollar

Rang des Matroids ist r(M)=#E-t, wobei t die Anzahl der Komponenten von G ist.

Algorithmus von Kruskal

Eingabe: gewichteter Graph G = (V, E) mit n Kno-

ten, Funktion $w:E \to \mathbb{R}$

Ausgabe: minimal Spannbaum G' von G

- (1) while #G < n-1
- (2) betrachte Kante e aus G mit $w(e) = \min_{e \in E} w(e)$
- (3) if G' mit e azyklisch then e von G zu G'
- (4) else entferne e in G

Algorithmus von Kruskal - Korrektheitsbeweis

Theorem

M=(K,W) Matroid mit Gewichtsfunktion $w:K\to\mathbb{R}$. Algorithmus liefert minimalen Spannbaum:

- Sei $A_0 = \emptyset \in W$.
- ② Ist $A_1 = \{a_1, ..., a_i\} \subseteq K$, so sei $X_i = \{k \in S \setminus A_i \mid A_i \cup \{x\} \in U\}$. Falls $X_i = \emptyset$, so ist A_i gesuchte Basis. Andernfalls wähle ein $a_{i+1} \in X_i$ mit minimalem Gewicht, und setze $A_{i+1} = A_i \cup \{a_{i+1}\}$. Iteriere (2).