Devoir à la maison n°01: corrigé

Problème 1 — Bac C 1992

Partie I - Etude des fonctions fn

1. La fonction h_n est clairement dérivable sur $]-1,+\infty[$ et

$$\forall x \in]-1, +\infty[, h'_n(x) = \frac{n}{1+x} + \frac{1}{1+x}^2 > 0$$

On en déduit que h_n est strictement croissante sur $]-1,+\infty[$.

REMARQUE. On peut aussi remarquer que

$$\forall x \in]-1, +\infty[, h_n(x) = n \ln(1+x) + 1 - \frac{1}{1+x}]$$

Ainsi h_n est-elle strictement croissante sur $]-1,+\infty[$ comme la différence d'une fonction strictement croissante t d'une fonction strictement décroissante sur cet intervalle.

2. A nouveau, f_n est dérivable sur $]-1,+\infty[$ et

$$\forall x \in]-1, +\infty[, f'_n(x) = nx^{n-1}\ln(1+x) + \frac{x^n}{1+x} = x^{n-1}h_n(x)$$

La fonction h_n est strictement croissante sur $]-1,+\infty[$ et nulle en 0. Ainsi est-elle strictement négative sur]-1,0[et strictement positive sur]-1,0[.

Cas n pair

Si n est pair, $(-1)^n = 1$ donc $\lim_{n \to +\infty} f_n = -\infty$. Par ailleurs, il est clair que $\lim_{n \to +\infty} f_n = +\infty$.

x	-1		0		$+\infty$
χ^{n-1}		_	0	+	
h _n (x)		_	0	+	
$f'_n(x)$		+	0	+	
f _n (x)	$-\infty$		0		+∞

Cas n impair

Si $\mathfrak n$ est impair, $(-1)^{\mathfrak n}=-1$ donc $\lim_{-1^+}\mathfrak f_{\mathfrak n}=+\infty.$ Comme précédemment, $\lim_{+\infty}\mathfrak f_{\mathfrak n}=+\infty.$

χ	-1		0		$+\infty$
χ^{n-1}		+	0	+	
$h_n(x)$		_	O	+	
$f'_n(x)$		_	0	+	
f _n (x)	+∞		0		+∞

3. On factorise $f_2(x) - f_1(x)$:

$$\forall x \in]-1, +\infty[, \ f_2(x) - f_1(x) = x(x-1)\ln(1+x)$$

x	-1		0		1		$+\infty$
x		_	0	+		+	
x - 1		_		_	0	+	
ln(1 + x)		_	0	+		+	
$f_2(x) - f_1(x)$		_	0	_	0	+	

On en déduit que \mathcal{C}_1 est situé au-dessus de \mathcal{C}_2 sur]-1,1] et au-dessous sur $[1,+\infty[$. On peut préciser que les deux courbes s'intersectent en les points de coordonnées (0,0) et $(1,\ln 2)$.

Partie II – Etude d'une suite

1. Pour tout $x \in [0,1]$, $0 \leqslant \ln(1+x) \leqslant \ln 2$ par croissance du logarithme. Par suite, $0 \leqslant f_n(x) \leqslant x^n \ln 2$ pour tout $x \in [0,1]$. Par croissance de l'intégrale, on a alors

$$0 \leqslant U_n \leqslant \int_0^1 x^n \ln 2 \, dx = \frac{\ln 2}{n+1}$$

Puisque $\lim_{n\to+\infty}\frac{\ln 2}{n+1}=0$, le théorème d'encadrement garantit que (U_n) converge vers 0.

2. f_{n+1} est dérivable sur $]-1,+\infty[$ comme produit de fonctions dérivables sur cet intervalle et

$$\forall x \in]-1, +\infty[, \ f'_{n+1}(x) = (n+1)f_n(x) + \frac{x^{n+1}}{1+x}$$

3. De manière équivalente,

$$\forall x \in]-1,+\infty[, \ f_n(x) = \frac{1}{n+1}f'_{n+1}(x) - \frac{1}{n+1} \cdot \frac{x^{n+1}}{1+x}$$

En intégrant sur [0, 1], on obtient

$$U_{n} = \frac{1}{n+1}(f_{n+1}(1) - f_{n+1}(0)) - \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+1} dx}{1+x} = \frac{\ln 2}{n+1} - \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+1} dx}{1+x}$$

4. La formule précédente donne

$$U_1 = \frac{\ln 2}{2} - \frac{1}{2} \int_0^1 \frac{x^2 dx}{1+x}$$

Remarquons alors que $x^2 = (x+1)(x-1) + 1$ de sorte que

$$\int_0^1 \frac{x^2 dx}{1+x} = \int_0^1 (x-1) dx + \int_0^1 \frac{dx}{1+x} = -\frac{1}{2} + \ln 2$$

Ainsi

$$U_1 = \frac{1}{4}$$

5. On peut procéder par récurrence mais on peut aussi remarquer que pour $x \neq -1$

$$\frac{1 - (-x)^{n+1}}{1 - (-x)} = \sum_{k=0}^{n} (-x)^k$$

Par conséquent

$$\frac{x^{n+1}}{1+x} = (-1)^{n+1} \left(\frac{1}{1+x} - \sum_{k=0}^{n} (-1)^k x^k \right)$$

En intégrant sur [0, 1], on obtient

$$V_n = (-1)^{n+1} \left(\ln 2 - \sum_{k=0}^n \frac{(-1)^k}{k+1} \right)$$

On en déduit par exemple que

$$U_n = \frac{1 + (-1)^n}{2(n+1)} \ln 2 + \frac{(-1)^n}{n+1} \sum_{k=0}^n \frac{(-1)^{k+1}}{k+1}$$