Functional Analysis

Typed by: tw1320@ic.ac.uk

October 23, 2022

1 Preliminaries

1.1 Norms and Metrics

Definition 1.1. (Metric) Let X be a nonempty set. A function $d: X \times X \to \mathbb{R}^+$ satisfying the following is called a **metric**

- (Positive definitiness) $\forall x, y \in X, d(x, y) \ge 0$ if $x \ne y$ and $d(x, y) = 0 \iff x = y$
- (Symmetry) $\forall x, y \in X, d(x, y) = d(y, x)$
- (Triangle-inequality) $\forall x, y, z \in X, d(x, y) \leq d(x, z) + d(z, y)$

Definition 1.2. (Translation invariant) A metric d is **translation invariant** if $\forall x, y \in X, d(x, y) = d(x + a, y + a)$ for all $a \in X$.

To introduce the idea of a metric linear space, we need to define metrics on product spaces.

Definition 1.3. (Metric on Product Spaces) Given metric ρ on a vector space V over \mathbb{K} , a metric on $V \times V$ is defined by:

$$d((a,b),(c,d)) = (\rho(a,c)^p + \rho(b,d)^p)^{1/p}, p \in [1,\infty)$$

and on $\mathbb{K} \times V$ by:

$$d((\lambda, a), (\lambda', a')) = \max\{|\lambda - \lambda'|, \rho(a, a')\}\$$

Definition 1.4. (Metric Linear Spaces) A pair (X, d) with X being a linear space over \mathbb{K} and d being a metric is called a **metric linear space** if and only if addition and multiplication by scalar are continuous.

In other words, the following are true:

- $\bullet \ x_n \to x, \quad y_n \to y \implies x_n + y_n \to x + y$
- $\lambda_n \to \lambda, \lambda_n, \lambda \in \mathbb{K}, x_n \to x \implies \lambda_n x_n \to \lambda x$

It is easily verified and if d is translation invariant, then addition of vectors is continuous: namely, $d(x_n + y_n, x + y) = d(x_n - x, y - y_n) \le d(x_n - x, 0) + d(y_n - y, 0)$. However, a translation invariant metric does not guarantee that multiplication by scalar is continuous.

Example 1.5. Let X be the space of all sequences in \mathbb{R} and $d(x,y) = \sup_{i \in \mathbb{N}} |x^i - y^i|^{1/i}$, where the x^i denotes the i^{th} element of the sequence x. Then d is a metric on X and it is translation invariant.

Take $(x_n^i)_{i\in\mathbb{N}} = (a)_{i\in\mathbb{N}}$, a constant sequence with a > 1, and a scalar $\lambda_n = \xi^n, \xi \in (0, 1)$, so that $\lambda_n \to 0$ and $\lambda_n x_n \to 0$.

$$d(\lambda_n x_n, 0) = \sup_{i \in \mathbb{N}} |\xi|^{n/i} |a|^{1/i} \ge 1$$

So multiplication by scalar is not continuous.

Definition 1.6. (Norm) Let X be a nonempty set. A function $||\cdot||:X\to\mathbb{R}^+$ satisfying the following is called a **norm**:

- (Positive definitiness) $\forall x \in X, ||x|| \ge 0$ and $||x|| = 0 \iff x = 0$
- (Triangle-inequality) $\forall x, y \in X, ||x + y|| \le ||x|| + ||y||$
- (Homogeneity) $\forall x \in X, \forall \lambda \in \mathbb{K}, ||\lambda x|| = |\lambda|||x||$

Remark 1.7. Norm is a continuous function.

Definition 1.8. (Normed Linear Spaces) A pair $(X, ||\cdot||)$ with X being a linear space over \mathbb{K} and $||\cdot||$ being a norm is called a **normed linear space**

Note that every normed linear space is a metric space, since every norm can induce a metric by d(x,y) = ||x-y||. However, not every metric is a norm.

Example 1.9. Let X be the space of all sequences in \mathbb{R} and z > 1. A translation invariant metric d is defined by

$$d(x,y) = \sum_{i=1}^{\infty} z^{-n} \frac{|x_i - y_i|}{1 + |x_i - y_i|}$$

But d is not a norm, as it is not homogenous.

Example 1.10. Let $X = \mathbb{R}$ be the real numbers and $|\cdot|$ the Euclidean norm. Another example of a metric that is not a norm is given by:

$$d(x,y) = \min\{|x-y|, 1\}$$

this is not a norm because it is not homogenous. (Note also that it is not translation invariant.)

1.2 Common Spaces

 l_p Spaces For $p \in [1, \infty)$, the space l_p is defined as the set of all sequences $(x_n)_{n \in \mathbb{N}}$ such that

$$\sum_{n=1}^{\infty} |x_n|^p < \infty$$

the function

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

defines a norm on l_p .

 l_{∞} Spaces The space l_{∞} is defined as the set of all sequences $(x_n)_{n\in\mathbb{N}}$ such that

$$\sup_{n\in\mathbb{N}}|x_n|<\infty$$

the function

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$$

defines a norm on l_{∞} .

1.3 Inequalities

Proposition 1.11. (Young)

Corollary 1.12. $(i)(H\"{o}lder)$ (ii)(Minkowski)

Proposition 1.13. (Jensen)

Proposition 1.14. (Equivalent forms of Jensen)

- 2 Completeness and Separability
- 3 Hilbert Spaces
- 4 Finite Dimensional Spaces
- 5 Linear Operators
- 6 Dual Spaces
- 7 The Hahn Banach Theorems
- 8 The Uniform Boundedness Theorem
- 8.1 Baire's Category Theorem
- 9 The Open Mapping Theorem
- 10 The Closed Graph Theorem
- 11 Compact Operators