Jiang-Hua Lu

The University of Hong Kong

MATH4302, Algebra II

Monday April 28, 2025

Outline

In this file:

4.1.4: Characterizations of finite Galois extensions

1 Characterizations of finite Galois extensions.

Recall:

Definition: A finite field extension $K \subset L$ is said to be Galois if

$$|\mathrm{Aut}_{K}(L)| = |L:K|.$$

- Artin's Theorem: For any field L and any finite group H of Aut(L),

 1 L is a Galois extension of L^H ; $A \in L$: $A \in H$ 2 $Aut_{L^H}(L) = H$. $A \in L$: $A \in L$: $A \in H$ $A \in H$

Consequence of Artin's Theorem:

$$K \subset L^{G}$$

Corollary. Let $K \subset L$ be a finite field extension and let $G = \operatorname{Aut}_K(L)$.

- |G| divides [L:K]; In particular, $|G| \leq [K:L]$; [L:K]
- **2** $K \subset L$ is Galois if and only if $K = L^G$.

Proof. Applying Artin's Theorem to $G = Aut_K(L)$, we see that

$$|G|=[L:L^G].$$

By the Tower Theorem,

Theorem,
$$[L:K] = [L:L^G][L^G:K] = [G][L^G:K],$$

so |G| divides [L:K]. In particular, $|G| \leq [L:K]$, and |G| = [L:K] if and only if $[L^G:K] = 1$ which is the same as $L^G = K$.

Q.E.D.

Thus

A finite field extension $K \subset L$ is Galois iff one of the two holds:

- 1) $|Aut_K(L)| = |L:K|;$
- 2) $K = L^{G}$.

We will give:

• two more equivalent characterizations of finite Galois extensions.

Lemma on minimal polynomials of elements in finite Galois extensions:

Lemma. Let $K \subset L$ be a finite Galois extension and $G = \operatorname{Aut}_K(L)$. Let $\alpha \in L$ and p(x) the minimal polynomial of α in K[x]. Let

$$G\alpha = \{\sigma(\alpha) : \sigma \in G\} = \{\alpha, \alpha_2, \dots, \alpha_r\}.$$

Then

1
$$G\alpha = \{\text{all roots of } p \text{ in } L\}, \text{ and } p(x) = (x - \alpha)(x - \alpha_2) \cdots (x - \alpha_r).$$

2 In particular, p(x) splits completely in L[x] with no repeated roots;

Proof. Let
$$q(x) = (x - \alpha)(x - \alpha_2) \cdots (x - \alpha_r) \in L[x]$$
.

- All coefficients of q(x) are in $L^G = K$, so $q(x) \in K[x]$.
- By Lemma 0, every element in $G\alpha$ is a root of p.
- Thus $\deg(q) \leq \deg(p)$.

 $\alpha l_1 = \alpha l$

Recall definitions: Let $K \subset L$ be an algebraic extension.

- $K \subset L$ is said to be normal if the minimal polynomial of every $\alpha \in L$ over K completely splits in L[x];
- $K \subset L$ is said to be separable if the minimal polynomial of every $\alpha \in L$ over K has no repeated roots in its splitting field over K.
- Thus $K \subset L$ is both normal and separable iff the minimal polynomial of every $\alpha \in L$ over K completely splits in L[x] and has no repeated roots in L.

If KCL is Galois, then KCL is normal & separable.

<u>Theorem:</u> A finite extension $K \subset L$ is Galois iff it is normal and separable.

Proof. By Lemma on minimal polynomials of elements in finite Galois extensions, a finite Galois extension is normal and separable.

- Assume a finite extension $K \subset L$ is normal and separable.
- By Primitive Element Theorem, L is a simple extension of K;
- Let $L = K(\alpha)$ for $\alpha \in L$ and $[et \ p(x) \in K[x]]$ be the minimal polynomial of α over K.
- Then p(x) splits completely over L and has no repeated roots in L;
- By the <u>Basic lemma on automorphism groups of finite simple</u> extensions, *L* is Galois over *K*.

Q.E.D.

Basic Lemma on automaphism grup of finite simple extensions: Suppose $K \subset L = K(\alpha)$, α afrebra, let p(x) = K(x) be the mini. poly. of of pin L. We have a map Autr(L) -> Rp, orsota) is bijective. => 0 | Autx(L) | = |Rp| < depp = [L:K] @ |Aut xLD|=|L:K| (=> P completely splits in LIX) of wy no repeat roots Lemma O: The KCL and to fix) = K[x], if xGL is a root of fin L, so is oral for every of Autic(L)

Recap:

Let $K \subset L$ be a finite extension and let $G = \operatorname{Aut}_K(L)$. The following three statements are equivalent:

- |G| = [L : K] (Definition of $K \subset L$ being Galois);
- **2** $L^G = K$;
- \odot L is a normal and separable extension of K.

For a fourth characterization, recall

• $f(x) \in K[x]$ is said to be separable if f has no repeated roots in its splitting field.

Theorem: A finite extension L of K is a normal and separable if and only if L is the splitting field of a separable polynomial over K.

Proof. Assume first that $K \subset L$ is a normal and separable.

- Then *L* is the splitting field of some $f(x) \in K[x]$ over *K*.
- Let $f = cp_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$, where $c \in K\setminus\{0\}$, and $p_1,\ldots,p_k \in K[x]$ are monic irreducible and pairwise distinct.
- Let $\tilde{f} = p_1 p_2 \cdots p_k \in K[x]$. Then \tilde{f} and f have same roots in L.
- Each p_i splits completely in L[x] with no repeated roots.
- Two different p_i and p_j have no common roots.
- Thus $\tilde{f} \in K[x]$ is separable and L is a splitting field of \tilde{f} .

Proof Continued:

Assume *L* is the splitting field of a separable $f(x) \in K[x]$ over *K*. We prove |G| = [L : K] by induction on [L : K].

- If [L:K]=1, nothing to prove.
- Assume that $[L:K] \geq 2$.
- Let $p(x) \in K[x]$ be an irreducible factor of f in K[x].
- Then p and f share a common root $\alpha \in L$. Let R_p be the set of all the roots of p in L.
- Since f completely splits in L with no repeated roots, the same holds for p(x).
- Thus $|R_p| = \deg(p) = [K(\alpha) : K]$.

Proof Continued:

- By Construction Lemma of Automorphisms of Splitting Fields, G acts on R_p transitively.
- $\operatorname{Aut}_{K(\alpha)}(L)$ is the stabilizer subgroup at $\alpha \in R_p$.
- Thus $G/\operatorname{Aut}_{K(\alpha)}(L) \cong R_p$.
- Hence $|G| = |\operatorname{Aut}_{K(\alpha)}(L)||R_{\rho}| = |\operatorname{Aut}_{K(\alpha)}(L)|[K(\alpha) : K].$
- Applying induction assumption to L being splitting field of f over $K(\alpha)$ and f separable over $K(\alpha)$, have $|\operatorname{Aut}_{K(\alpha)}(L)| = [L : K(\alpha)]$.
- By the Tower Theorem, $|G| = [L : K(\alpha)][K(\alpha) : K] = [L : K]$.

Q.E.D.

Summary: Four characterizations of Galois extensions:

Theorem

For a finite extension $K \subset L$ with $G = \operatorname{Aut}_K(L)$, the following are equivalent:

- **1** $K \subset L$ is Galois, i.e., |G| = [L : K];
- **2** $K = L^{G}$;
- **3** The extension $K \subset L$ is normal and separable;
- **4** L is a splitting field over K of some separable polynomial in K[x].

Corollary: For a perfect field K, for example, K has characteristic 0 or is a finite field, a finite extension $K \subset L$ is Galois if and only if L is a splitting field over K.

A non-example: Let $K = \mathbb{F}_2(t)$ and let $L = K(\sqrt{t})$, a splitting field of

$$f(x) = x^2 = t.$$

The extension is not separable:

$$f(x) = (x - \sqrt{t})^2.$$

Thus the extension $K \subset L$ is normal but not Galois.

Example.
$$\mathbb{Q} \subset L = \mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})$$
: $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{Q}(\sqrt[3]{2})$

• Splitting field of $f(x) = x^3 - 2$, thus Galois.

- $\operatorname{Gal}_{\mathbb{Q}}(L)$ is isomorphic to a subgroup of S_3 because f has three roots.
- Know $|L:\mathbb{Q}|=6$, so $|\mathrm{Gal}_{\mathbb{Q}}(L)|=6$.
- Thus $\operatorname{Gal}_{\mathbb{Q}}(L) \cong S_3$.

L is a Galois extension of \mathbb{Q} .

Example. Let L be the splitting field of
$$f(x) = x^5 - 4x + 2 \in \mathbb{Q}[x]$$
.

- As f is irreducible over \mathbb{Q} by Eisenstein's criterion, f has no repeated roots L. Thus $Gal_{\mathbb{Q}}(L)$ is isomorphic to a subgroup of S_5 .
- Calculus shows that f has three real roots and two complex roots.
- The complex conjugation $z \to \overline{z}$ is one element of order 2 in $\operatorname{Gal}_{\mathbb{O}}(L)$.
- Yeal • A root root r of f gives $L_1 = \mathbb{Q}(r)$ with $[L_1 : \mathbb{Q}] = 5$. Thus $|\operatorname{Gal}_{\mathbb{Q}}(L)| = |L:Q|$ is divisible by 5.
- Cauchy's theorem implies that $Gal_{\mathbb{Q}}(L)$ has an element of order 5.
- Conclude that $Gal_{\mathbb{Q}}(L) \cong S_5$.