DOCKET NO. 8229=014-27

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Krishnaswamy RAMKUMAR, 2813

et al.

09/975,256 SERIAL NO.: EXAMINER: Hogans, David L.

FILING DATE: October 12, 2001

FOR:

October 12, 2001

METHOD FOR GROWING ULTRA THIN NITRIDED OXIDE STORY

AMENDMENT

OMMISSIONER FOR PATENTS

I, D.C. 20231 ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

SIR:

Responsive to the outstanding Office Action dated August 5, 2002, entry of the following is respectfully requested.

IN THE SPECIFICATION

On page 6, at lines 8-17, please replace the paragraph there with the following paragraph as follows:

A conventional method for incorporating nitrogen into a gate oxide layer comprises

annealing a preformed oxide layer in the presence of nitrous oxide gas (N₂O). Annealing with N₂O, however, is generally not effective in incorporating more than 1 to 1.5 wt.% of N in the gate oxide layer. Additionally, in order to achieve significant nitrogen incorporation using N₂O gas, it has been found necessary to pre-heat the gas before it enters the furnace. Preheating is usually conducted by flowing the N₂O gas through a torch that is maintained at a temperature of from 800 °C to 950 °C. A helical torch is typically employed to increase the residence time of the gas in the torch. The N₂O nitridation anneal itself is typically conducted at temperatures in excess of 900 °C.