UTS PENGOLAHAN CITRA

INTELLIGENT COMPUTING

NAMA : Al Nizar Baihaqi

NIM : 202331181

KELAS : C

DOSEN: Ir. Darma Rusjdi, M.Kom

NO.PC : 27

ASISTEN: 1. Abdur Rasyid Ridho

2. Rizqy Amanda

3. Kashrina Masyid Azka

4. Izzat Islami Kagapi

INSTITUT TEKNOLOGI PLN TEKNIK INFORMATIKA 2024/2025

DAFTAR ISI

Contents

DAFTAR ISI		2
BAB I		3
PENDAHULUAN		3
1.1	Rumusan Masalah	3
1.2	Tujuan Masalah	3
1.3	Manfaat Masalah	3
BAB II		4
LANDASAN TEORI		4
BAB III		5
PENUTUP		8
DAFTAR P	DAFTAR PUSTAKA	

BABI

PENDAHULUAN

1.1 Rumusan Masalah

- a. Bagaimana melakukan proses deteksi warna RGB, pembuatan histogram warna,
- b. menentukan nilai ambang batas optimal, serta memperbaiki gambar backlight
- c. menggunakan metode pengolahan citra digital.

1.2 Tujuan Masalah

Untuk memahami proses deteksi warna RGB pada gambar, menentukan nilai ambang batas optimal, serta meningkatkan kualitas gambar backlight menggunakan teknik grayscale, brightness adjustment, dan contrast enhancement.

1.3 Manfaat Masalah

Mahasiswa dapat menerapkan konsep dasar pengolahan citra digital dalam deteksi warna, thresholding, histogram analisis, dan perbaikan gambar, sehingga dapat digunakan dalam aplikasi digital imaging atau computer vision.

BAB II

LANDASAN TEORI

2.1 Pengolahan Citra Digital

Pengolahan citra digital adalah teknik manipulasi gambar secara numerik menggunakan komputer untuk berbagai keperluan, mulai dari deteksi objek, filtering, hingga perbaikan kualitas gambar.

2.2 Deteksi Warna

Deteksi warna dilakukan dengan memisahkan channel RGB dan memberikan threshold (ambang batas) agar hanya pixel warna tertentu yang muncul. Nilai threshold ditentukan berdasarkan histogram warna.

2.3 Histogram Citra

Histogram adalah grafik distribusi jumlah pixel terhadap intensitas warna. Dengan histogram, kita bisa tahu sebaran intensitas tiap warna untuk menentukan ambang batas optimal.

2.4 Tresholding

Thresholding memisahkan pixel ke dalam kategori objek (foreground) dan latar belakang (background) berdasarkan nilai ambang batas tertentu.

2.5 Perbaikan Gambar Backlight

Backlight menyebabkan objek tampak gelap karena membelakangi cahaya.

Perbaikannya dilakukan dengan:

- Mengubah gambar ke grayscale
- Meningkatkan brightness
- Meningkatkan contrast

Tujuannya agar detail wajah atau objek tetap terlihat jelas meskipun latar belakang terang.

BAB III

HASIL

Nomor 1: Deteksi Warna & Histogram

```
[12]: der Universitätingen in production (inner, inversitäting)

[13]: der Universitätingen (inner, inner, upper)

[14]: mask - cvi.lindung (inner, inner, upper)

[15]: mask - cvi.lindung (inner, inner, upper)

[16]: mask - cvi.lindung (inner, inner, upper)

[17]: mask - cvi.lindung (inner, inner, upper)

[18]: mask - cvi.lindung (inner, inner, upper)

[18]: mask - cvi.lindung (inner, inner, upper)

[18]: mask - cvi.lindung (inner, upper)

[18
```

```
[22]: plt.subplot(2,2,1)
   plt.title("Cites Sell")
   plt.title("Cites Sell")
   plt.subplot(2,2,2)
   plt.subplot(2,2,2)
   plt.title("Citeski Noron")
   plt.limbow(red_detected)
   plt.subplot(2,2,3)
   plt.title("Citeski Nd_Sm")
   plt.title("Citeski Nd_Sm")
   plt.subplot(2,2,5)
   plt.subplot(2,2,5)
   plt.subplot(2,2,5)
   plt.subplot(2,2,5)
   plt.subplot(2,2,5)
   plt.title("Citeski Nire")
   plt.limbow(bloc_detected)
   plt.subplot(2,2,5)
   plt.title("Citeski Nire")
   plt.limbow(bloc_detected)
   plt.nubl("Unitski Nire")
```

- Deteksi warna biru, merah, dan hijau berhasil dilakukan dengan threshold tertentu.
- Histogram warna RGB menunjukkan distribusi intensitas pixel.
- Warna biru dominan di intensitas 140-210, hijau di 140-200, dan merah di 160-220.

Nomor 2: Menentukan Ambang Batas

```
def threshold_warna(image, lower, upper):
                     mask = cv2.inRange(image, lower, upper)
                     hasil = cv2.bitwise_and(image, image, mask=mask)
                     return hasil
 red_detected - threshold_warna(img, lower_red, upper_red)
green_detected - threshold_warna(img, lower_green, upper_green)
blue_detected - threshold_warna(img, lower_blue, upper_blue)
plt.figure(figsize (12, 8))
<Figure size 1200x800 with 0 Axes>
(Figure size 1200x800 with 0 Axes>
                                                                           [22]: (-0.5, 1599.5, 991.5, -0.5)
plt.subplot(2,2,1)
plt.title("Citra Asli")
                                                                                                                               Deteksi Merah
                                                                                             Citra Asli
plt.imhow(img)
plt.axis("ord")
plt.subplot(2,2,2)
plt.vitle("Deteksi Mersh")
plt.imhow(red_detected)
plt.amin("off")
plt.subplot(2,2,3)
plt.title("Detekni Hijao")
                                                                                          Deteksi Hijau
                                                                                                                                Deteksi Biru
plt.imhow(green_detected)
plt.amin("off")
plt.subplot(2,2,4)
plt.title("Detekni Biru")
plt.imshow(blue_detected)
plt.min("off")
```

- 1. Nilai threshold dipilih berdasarkan histogram.
- 2. Urutan nilai threshold dari terkecil ke terbesar:
 - a. Biru: [0,0,140] [150,150,210]
 - b. Hijau: [0,140,0] [150,200,150]
 - c. Merah: [160,0,0] [220,150,150]
- 3. Alasan: sesuai puncak distribusi pada histogram.

Nomor 3: Perbaikan Gambar Backlight

- 1. Gambar asli \rightarrow Grayscale \rightarrow Brightness dinaikkan \rightarrow Contrast diperkuat.
- 2. Hasil:
 - a. Grayscale membuat gambar lebih netral
 - b. Brightness adjustment meningkatkan pencahayaan di area gelap
 - c. Contrast adjustment mempertegas perbedaan antara objek dengan background

BAB IV

PENUTUP

- Deteksi warna RGB dapat dilakukan menggunakan thresholding sesuai histogram.
- Histogram warna membantu menentukan nilai threshold optimal.
- Perbaikan backlight dapat dilakukan dengan grayscale, brightness, dan contrast adjustment.

DAFTAR PUSTAKA

MENENTUKAN LUAS OBJEK CITRA DENGAN TEKNIK SEGMENTASI BERDASARKAN WARNA PADA RUANG WARNA HSV. (2021). In *Dielektrika* (Vol. 8, Issue 2, pp. 137–146).

C, M. K., V., Micheal, D. R., & D, S. (2024). On Generalized Sugeno's Class Generator and Best Parameter Value Based Intuitionistic Fuzzy Approach for Enhancing Low-Light Images. *Prosiding Seminar Implementasi Teknologi Informasi Dan Komunikasi*. https://doi.org/10.2139/ssrn.4940408

Ridho'i, A. & Program Studi Teknik Elektro, Fakultas Tekni, Universitas 17 Agustus 1945 Surabaya. (2023). PENERAPAN PENGOLAHAN CITRA UNTUK PERBAIKAN GAMBAR 2 DIMENSI DENGAN MENGGUNAKAN MATLAB. In *JOUTICA* (Vols. 8–8, Issue 1, pp. 64–65) [Journal-article]. https://jurnalteknik.unisla.ac.id/index.php/informatika