

Programmation linéaire Sécurité et aide à la décision CM 02

Abdelkader Ouali

abdelkader.ouali@unicaen.fr

Université de Caen Normandie, 14032 Caen, France.

2020

Rappel

Rappel

Un PL comporte 3 éléments :

• Les variables : les inconnus du problème

• Les contraintes : ce qui caractérise une solution

• La fonction objectif : ce qu'on veut minimiser/maximiser

Rappel: Modélisation

- Les expressions des contraintes et de la fonction objectif sont linéaires
- Les variables doivent être multipliées par des constantes et non pas par d'autres variables

Rappel: Modélisation

Types d'un PL:

• PL : les variables sont réelles

• PLNE : les variables sont entières

• PL 0/1: les variables sont binaires

 MILP : certaines variables sont réelles et d'autre sont entières (ou binaire)

- Les variables ne peuvent prendre que la valeur 0 ou 1
- Utilisé dans des problèmes de décision

 Minimiser le nombre de violations du problème de 2-coloration pour le graphe G=({A,B,C},{(A,B),(B,C)}).

- Les variables ne peuvent prendre que la valeur 0 ou 1
- Utilisé dans des problèmes de décision

- Minimiser le nombre de violations du problème de 2-coloration pour le graphe G=({A,B,C},{(A,B),(B,C)}).
- Les variables désigne l'affection d'une couleur à un nœud
- 2 couleurs * 3 nœuds = 6 variables booléennes
- A1, A2, B1, B2, C1, C2

Affecter les couleurs :

•
$$A1 + A2 = 1$$

•
$$B1 + B2 = 1$$

•
$$C1 + C2 = 1$$

Minimiser les couleurs :

$$ullet$$
 A1 + B1 - arc11 ≤ 1

$$\bullet \ \mathsf{A2} + \mathsf{B2} - \mathsf{arc} \mathsf{12} \leq \mathsf{1}$$

$$ullet$$
 B1 + C1 - arc21 ≤ 1

• B2 + C2 -
$$arc22 \le 1$$

Fonction objectif:

ightharpoonup min : arc11 + arc12 + arc21 + arc22

Rappel: résolution graphique

- S'utilise pour résoudre un problème à 2 variables (ou 3)
- Techniquement applicable à 4+
- Chaque axe représente une variable
- Les contraintes délimitent la zone de solutions
- La solution optimale, si elle existe, est un des sommets du polygone

Rappel: résolution graphique

Inégalités :

•
$$x_1 + 2x_2 < 12$$

•
$$x_1, x_2 \ge 0$$

•
$$x + 2y = 12$$

•
$$2y = 12 - x$$

•
$$y = 6 - 0.5x$$

- ullet Si on a un \leq alors les solutions sont sous la droite
- Si ≥ au-dessus

Rappel: résolution graphique

Équations:

• c1 :
$$y = 12 - x$$

•
$$c2: y = 5 + x$$

•
$$5 + x = 12 - x$$

•
$$2x = 12 - 5$$

•
$$2x = 7$$

•
$$x = 3.5$$

•
$$y = 5 + x$$

•
$$y = 5 + 3.5$$

•
$$y = 8.5$$

Simplexe

Simplexe

- Algorithme de résolution des problèmes d'optimisation linéaire
- PL en nombres réels
- Se découpe en 3 étapes :
 - mise en forme standard
 - initialisation d'une solution base
 - progression

Forme standard

- Variables à droite, constante positive à gauche
- Variables d'écart pour les contraintes de type ≤
- Variables d'excédent pour les contraintes de type ≥
- $x = x^- x^+$ avec $x^-, x^+ > 0$ si x est non restreinte
- PL sous forme standard, toutes les variables sont ≥ 0, toutes les contraintes sont des égalités

$$\begin{aligned} \operatorname{Ex}: & \operatorname{Max} Z = 1000 \ x_1 + 1200 \ x_2 \\ & \operatorname{s.c.} 10 \ x_1 + 5 x_2 \leq 200 \\ & 2x_1 + 3 x_2 \leq 60 \\ & x_1 \leq 34 \\ & x_2 \leq 14 \\ & x_1, x_2 \geq 0 \end{aligned} \qquad \begin{aligned} \operatorname{Ex}: & \operatorname{Max} Z = 1000 \ x_1 + 1200 \ x_2 \\ & \operatorname{s.c.} 10 \ x_1 + 5 x_2 + e_1 = 200 \\ & 2x_1 + 3 x_2 + e_2 = 60 \\ & x_1 + e_3 = 34 \\ & x_2 + e_4 = 14 \\ & x_1, x_2, e_1, e_2, e_3, e_4 \geq 0 \end{aligned}$$

Initialisation

- Trouve une solution de base réalisable
- ou bien détecte l'infaisabilité
- On exprime les variables de base (initialement les variables d'écart) en fonction des variables hors base
- Une solution de base réalisable est obtenue en annulant les variables hors base

Progression

- On passe d'un sommet à un sommet voisin
- Tout en augmentant la valeur de la fonction objectif
- Ou on détecte une fonction objectif non majorée
- On exprime la nouvelle variable de base en fonction des variables hors base

Variables entrantes

- La variable ayant le plus grand coefficient positif
- ullet Si toutes les variables sont ≤ 0 alors on ne peut plus augmenter, on a atteint la solution **optimale**

Variables sortantes

• Première variable qui s'annule quand on augmente la variable entrante

• La plus petite des variables, non nulle

$$\max_{(x_1, x_2)} [F(x_1, x_2) = 6x_1 + 4x_2].$$
 sous les contraintes :
$$\begin{cases} 3x_1 + 9x_2 \le 81 \\ 4x_1 + 5x_2 \le 55 \\ 2x_1 + x_2 \le 20 \end{cases}$$

forme canonique

$$\max F(x_1, x_2) = 6x_1 + 4x_2$$

$$\begin{cases} 3x_1 + 9x_2 + e1 = 81 \\ 4x_1 + 5x_2 + e2 = 55 \\ 2x_1 + x_2 + e3 = 20 \\ x_1, x_2 \ge 0, \ e_1, e_2, e_3 \ge 0 \end{cases}$$

forme standard

 Dictionnaire: On exprime les variables de base e₁, e₂, e₃ en fonction des variables hors-base x₁, x₂.

$$e_1 = 81 - 3x_1 - 9x_2$$

$$e_2 = 55 - 4x_1 - 5x_2$$

$$e_3 = 20 - 2x_1 - x_2$$

$$F = 6x_1 + 4x_2$$

Solution de base réalisable initiale :

$$x_1 = 0$$
, $x_2 = 0$, $e_1 = 81$, $e_2 = 55$, $e_3 = 20$ avec $F = 0$.

- Variable entrante $x_e : \max_{>0} \{6, 4\} = 6 \Rightarrow |x_e = x_1|$.
- Variable sortante x_s : on maintient les contraintes $e_1 ≥ 0$, $e_2 ≥ 0$, $e_3 ≥ 0$

$$\Rightarrow x_1 = \min_{>0} \{ \frac{81}{3}, \frac{55}{4}, \frac{20}{2} \} = 10 \Rightarrow |x_s = e_3|.$$

Nouvelle Solution de base réalisable :

$$x_1 = 10$$
, $x_2 = 0$, $e_1 = 51$, $e_2 = 15$, $e_3 = 0$ avec $F = 60$.

$$x_1 = 10 - \frac{1}{2}x_2 - \frac{1}{2}e_3$$

$$e_1 = 81 - 3(10 - \frac{1}{2}x_2 - \frac{1}{2}e_3) - 9x_2$$

$$e_2 = 55 - 4(10 - \frac{1}{2}x_2 - \frac{1}{2}e_3) - 5x_2$$

$$F = 6(10 - \frac{1}{2}x_2 - \frac{1}{2}e_3) + 4x_2$$

ce qui donne le dictionnaire :

$$x_1 = 10 - \frac{1}{2}x_2 - \frac{1}{2}e_3$$

$$e_1 = 51 - \frac{15}{2}x_2 + \frac{3}{2}e_3$$

$$e_2 = 15 - 3x_2 + 2e_3$$

$$F = 60 + x_2 - 3e_3$$

Variable entrante $x_e : \max_{>0} \{1, -3\} = 1 \Rightarrow x_e = x_2$.

Variable sortante x_s : on maintient $x_1 \ge 0$, $e_1 \ge 0$, $e_2 \ge 0$

$$\Rightarrow x_2 = \min_{>0} \{ \frac{10}{1/2}, \frac{51}{15/2}, \frac{15}{3} \} = 5 \Rightarrow |x_s = e_2|.$$

Nouvelle Solution de base réalisable (étape 2):

$$x_1 = \frac{15}{2}, \ |x_2 = 5|, e_1 = \frac{27}{2}, \ |e_2 = 0|, e_3 = 0 \text{ avec } F = 65.$$

Outils en ligne

https://www.zweigmedia.com/simplex/simplex.php

D . /	/ www	. Z w C 1	-gmc	ara.co	m/ 61	Lmpic	, A / D 1	
Table	au 1:							
	x	y	s1	s2	s3	P		
s1	3	9	1	Θ	Θ	Θ	81	
s2	4	5	Θ	1	Θ	Θ	55	
s3	2	1	Θ	Θ	1	Θ	20	
P	-6	-4	0	Θ	Θ	1	Θ	_
Table	au 2:							
	x	y	s1	s2	s3	P		_
s1	Θ	7.5	1	Θ	-1.5	Θ	51	
s2	Θ	3	Θ	1	-2	Θ	15	
x	1	0.5	Θ	Θ	0.5	Θ	10	
P	0	-1	Θ	Θ	3	1	60	
Table	au 3:							
	x	у	s1	s2 s3		s3	p	
s1	Θ	Θ	1	-2.5	3.5		Θ	13.5
y	0	1	0	0.333333 -0.66		666667	Θ	5
x	1	0	Θ	-0.166667	7 0.8	33333	Θ	7.5
Р	Θ	0	Θ	0.333333	2.	33333	1	65

Complexité

Méthode du simplexe : on explore seulement les sommets qui permettent d'augmenter la fonction objectif \Rightarrow on réduit le nombre de solution de base à explorer.

Complexité = nombre d'itération dans le simplexe (phase2).

- On peut construire des exemples avec une complexité exponentielle en O(2ⁿ) itérations (Klee-Minty, 1972).
- Mais dans la pratique la complexité du simplexe croît peu avec le nombre n de variables. En pratique, le nombre d'itérations est proportionnel au nombre m de contraintes (de m à 3m itérations).

Autre méthodes

- La méthode de l'ellipsoïde
- Les méthodes affines
- Les méthodes de point intérieurs

Séparation et évaluation Branch and Bound

- Utilisée pour résoudre des PLNE, PL 0/1 et MILP
- Un sous ensemble de variable dont les valeurs sont entières
- Une solution n'est pas forcément un sommet du polyèdre !
 - parcourir toutes les solutions de l'espace de recherche
 - explosion combinatoire

• Principe:

- Résoudre la relaxation
 - ightharpoonup toutes les variables sont définies dans $\mathbb R$
- Si une variable entière reçoit une valeur réelle
 - ➡ créer deux nœuds où les valeurs de la variable dans chaque nœud est la partie entière (-/+) de la valeur réelle (e.g. ...,3, 3.7, 4,...)
- Dans chaque nœuds
 - évaluer la **borne inférieure** pour éviter d'explorer inutilement certaines branches

Séparation et évaluation Branch and Bound

