Finite Sample Properties of the EM Algorithm Applied to Transmission Tomography

Alvin Sheng, Eric Yanchenko, Jimmy Hickey

Department of Statistics North Carolina State University

March 31, 2021

Motivation

Figure: CT machine (https://www.medicalnewstoday.com/articles/153201) and scan (https://scienceblog.cancerresearchuk.org/2018/12/04/lung-cancer-screening-part-1-the-benefits-and-harms-according-to-clinical-trials/).

Jiaxing Sheng's PhD thesis: "An Entropic Bayesian Algorithm for Reconstructing Incomplete Poisson Data."

Simplified Scan

We consider 3 different sections of a scan.

- The space outside of the scan. Below in gray. This will not be estimated.
- ② The space outside the patient but inside the scan. Below in purple. The true θ value for these pixels is 0, but we still need to estimate them.
- The space inside the patient. Below in yellow. We need to estimate this.

Figure: Scan Example

0 Angles

Figure: Horizontal and vertical projections.

4/24

2 Angles

Figure: Horizontal, vertical, and diagonal projections.

6 Angles

Figure: Projections with slopes of -2, -1/2, 1/2, and 2. Horizontal, vertical, and diagonal projections were omitted.

Illustrative Example

Figure: A simple scan

- The source emits $X_1 \sim \text{Poisson}(d)$ photons.
- ② Pixel 1 has a value of θ_1 . When the photons from the emitter intercept, $X_2|X_1 \sim \text{Binomial}(n=X_1,p=e^{-\theta_1})$ photons pass through.
- **3** Pixel 2 has a value of θ_2 and $X_3|X_2 \sim \text{Binomial}(n=X_2,p=e^{-\theta_2})$ pass.
- ① Pixel 3 has a value of θ_3 and $X_4|X_3 \sim \text{Binomial}(n=X_3,p=e^{-\theta_3})$ pass.
- **1** The detector then receives X_4 photons.

Data

- Data
 - Photons that reach the detector, X_4 .
- Missing Data
 - Photons initially emitted, X₁.
 - Photons that pass at each stage, X₂ and X₃.
- Parameters
 - Poisson rate parameter d, known a priori.
 - Theta values of each intersected pixel, θ_1 , θ_2 , and θ_3 .

The EM Algorithm

Recall that the EM Algorithm has two steps.

- E Step: Calculate $Q(\theta|\theta^{\nu})$
- **3** M Step: Calculate $\theta^{\nu+1}$ that maximizes $Q(\theta|\theta^{\nu})$ with respect to θ .

In general we will have multiple projections, indexed by i, each passing through pixels, indexed by j. We maximize the following Q surrogate function by taking partial derivatives and setting them equal to 0.

$$M_{ij} = E(X_{ij}|Y_i = y_i, \boldsymbol{\theta}^{\nu})$$

$$N_{ij} = E(X_{ij'}|Y_i = y_i, \boldsymbol{\theta}^{\nu})$$

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{\nu}) = \sum_{i} \sum_{j} \left[-N_{ij}\ell_{ij} + (M_{ij} - N_{ij})\log(1 - e^{-\ell_{ij}\theta_{j}}) \right]$$

$$\frac{\partial Q}{\partial \theta_{j}} = -\sum_{i} N_{ij}\ell_{ij} + \sum_{i} \frac{(M_{ij} - N_{ij})\ell_{ij}}{e^{\ell_{ij}\theta_{j}} - 1} \stackrel{\text{set}}{=} 0$$

MC Experimental Design

Degrees of Freedoms and Metrics. N = 10 and $d = 10^9$ for all experiments.

- Theta Pattern
 - Three Circles
 - Checkered Pattern
 - Fun Patterns
- Radius
 - 3
 - 5
 - 10
- Number of Non-horizontal/vertical Angles
 - None
 - Two
 - Six
- Metrics
 - Frobenius Norm of the difference between the true and estimated theta matrices (RMSE)
 - Spectral Norm of the difference
 - Iterations

Three Circle Plots, Radius 5, 0 angles

Figure: True theta, estimated theta, absolute difference for three circles, scan radius 5

Three Circle Plots, Radius 5, 2 angles

Figure: True theta, estimated theta, absolute difference for three circles, scan radius 5

12 / 24

Three Circle Plots, Radius 5, 6 angles

Figure: True theta, estimated theta, absolute difference for three circles, scan radius 5

Three Circle Plots, Radius 10, 6 angles

Figure: True theta, estimated theta, absolute difference for three circles, scan radius 10

Three Circle Theta Results

Monte Carlo Simulation Results with N=10. Maximum standard error in () at top of each column.

Radius	Angles	RMSE (0.09)	Spec. Norm (0.7)	Iterations
3	0	0.43	2.7	34 (9)
	2	0.09	0.5	30 (5)
	6	0.06	0.3	30 (5)
5	0	0.51	3.9	50 (10)
	2	0.31	2.1	90 (40)
	6	0.13	0.9	100 (20)
10	0	0.63	7.5	300 (100)
	2	0.48	5.2	210 (40)
	6	0.38	3.9	250 (20)

Three Circles Error Plot

Checker Theta Plots

Monte Carlo Simulation Results with N = 10.

Figure: True theta, estimated theta, absolute difference for checker pattern.

Checker Theta Results

Monte Carlo Simulation Results with N=10. Maximum standard error in () at top of each column.

Radius	Angles	RMSE (0.01)	Spec. Norm (0.7)	Iterations (5)
3	0	0.75	3.6	34
	2	0.35	1.8	74
	6	0.10	0.6	56
5	0	0.75	5.6	100
	2	0.61	4.2	160
	6	0.27	1.7	170

Face Theta Plots

Monte Carlo Simulation Results with N = 10.

Figure: True theta, estimated theta, absolute difference for face

Face Theta Results

Monte Carlo Simulation Results with N=10. Maximum standard error in () at top of each column.

Radius	Angles	RMSE (< 0.01)	Spec. Norm (< 0.1)	Iterations (10)
3	0	0.62	3.7	80
	2	0.10	0.5	50
	6	0.05	0.3	53
5	0	0.61	4.6	150
	2	0.27	1.9	110
	6	0.12	0.9	97
10	0	0.65	9.5	250
	2	0.37	4.1	250
	6	0.24	2.9	220

Boos Theta Plots

Figure: True theta, estimated theta, absolute difference for Boos

Boos Theta Results

Monte Carlo Simulation Results with N = 10.

Radius	Angles	RMSE (< 0.01)	Spec. Norm (0.1)	Iterations (3)
10	0	0.62	8.9	250
	2	0.40	4.8	270
	6	0.30	3.6	280

Discussion

- Visually can see very good $\hat{\theta}$
- RMSE and Spectral Norm: increase as Radius increases but decrease as number of angles increases
- Number of iterations increases as radius and angles increases
- Circle patterns give better results than obscure shapes
- Take home point: Angles are so important!
- Outstanding Questions
 - How would the performance change for even more angles?
 - How would errors change for larger N?
 - Determine how error/time scales with N and radius.
 - Compare to MM algorithm.
- Limitations
 - Very slow as radius increases.
 - Some patterns experience convergence issues.

References

Kenneth Lange, Richard Carson, et al.

Em reconstruction algorithms for emission and transmission tomography. *J. Comput. Assist. Tomogr*, 8(2):306–316, 1984.

Kenneth Lange.

Numerical analysis for statisticians.

Springer Science & Business Media, 2010.