AA203 Optimal and Learning-based Control

Dynamic programming, discrete LQR

Roadmap

Principle of optimality

The key concept behind the dynamic programming approach is the principle of optimality

Suppose optimal path for a multi-stage decision-making problem is

- first decision yields segment a b with cost J_{ab}
- remaining decisions yield segments b-e with cost J_{be}
- optimal cost is then $J_{ae}^* = J_{ab} + J_{be}$

Principle of optimality

- Claim: If a-b-e is optimal path from a to e, then b-e is optimal path from b to e
- Proof: Suppose b-c-e is the optimal path from b to e. Then

$$J_{bce} < J_{be}$$

and

$$J_{ab} + J_{bce} < J_{ab} + J_{be} = J_{ae}^*$$

Contradiction!

Principle of optimality

Principle of optimality (for discrete-time systems): Let π^* : = $\{\pi_0^*, \pi_1^*, ..., \pi_{N-1}^*\}$ be an optimal policy. Assume state \mathbf{x}_k is reachable. Consider the subproblem whereby we are at \mathbf{x}_k at time k and we wish to minimize the cost-to-go from time k to time k. Then the truncated policy $\{\pi_k^*, \pi_{k+1}^*, ..., \pi_{N-1}^*\}$ is optimal for the subproblem

- tail policies optimal for tail subproblems
- notation: $\pi_k^*(\mathbf{x}_k) = \pi^*(\mathbf{x}_k, k)$

Applying the principle of optimality

Principle of optimality: if b-c is the initial segment of the optimal path from b to f, then c-f is the terminal segment of this path

Hence, the optimal trajectory is found by comparing:

$$C_{bcf} = J_{bc} + J_{cf}^*$$

$$C_{bdf} = J_{bd} + J_{df}^*$$

$$C_{bef} = J_{be} + J_{ef}^*$$

Applying the principle of optimality

- need only to compare the concatenations of immediate decisions and optimal decisions
 → significant decrease in computation / possibilities
- in practice: carry out this procedure backward in time

Example

Example

Example

Optimal cost: 18; Optimal path: $a \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow h$

4/12/21 AA 203 | Lecture 5

DP Algorithm

- Model: $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k, k), \quad \mathbf{u}_k \in U(\mathbf{x}_k)$
- Cost: $J(\mathbf{x}_0) = h_N(\mathbf{x}_N) + \sum_{k=0}^{N-1} g(\mathbf{x}_k, \pi_k(\mathbf{x}_k), k)$

DP Algorithm: For every initial state \mathbf{x}_0 , the optimal cost $J^*(\mathbf{x}_0)$ is equal to $J_0(\mathbf{x}_0)$, given by the last step of the following algorithm, which proceeds backward in time from stage N-1 to stage 0:

$$J_N(\mathbf{x}_N) = h_N(\mathbf{x}_N)$$

$$J_k(\mathbf{x}_k) = \min_{\mathbf{u}_k \in U(\mathbf{x}_k)} g(\mathbf{x}_k, \mathbf{u}_k, k) + J_{k+1}(f(\mathbf{x}_k, \mathbf{u}_k, k)), \qquad k = 0, ..., N-1$$

Furthermore, if $\mathbf{u}_k^* = \pi_k^*(\mathbf{x}_k)$ minimizes the right hand side of the above equation for each \mathbf{x}_k and k, the policy $\{\pi_0^*, \pi_1^*, \dots, \pi_{N-1}^*\}$ is optimal

Comments

- discretization (from differential equations to difference equations)
- quantization (from continuous to discrete state variables / controls)
- global minimum
- constraints, in general, simplify the numerical procedure
- optimal control in closed-loop form
- curse of dimensionality

Discrete LQR

- Canonical application of dynamic programming for control
- One case where DP can be solved analytically (in general, DP algorithm must be performed numerically)

Discrete LQR: select control inputs to minimize

$$J_0(\mathbf{x}_0) = \frac{1}{2} \mathbf{x}_N^T Q_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \left(\mathbf{x}_k^T Q_k \mathbf{x}_k + \mathbf{u}_k^T R_k \mathbf{u}_k + 2 \mathbf{x}_k^T S_k \mathbf{u}_k \right)$$

subject to the dynamics

$$\mathbf{x}_{k+1} = A_k \mathbf{x}_k + B_k \mathbf{u}_k, \qquad k \in \{0, 1, \dots, N-1\}$$

assuming

$$Q_k = Q_k^T \succeq 0, \quad R_k = R_k^T \succ 0, \quad \begin{bmatrix} Q_k & S_k \\ S_k^T & R_k \end{bmatrix} \succeq 0 \quad \forall k$$

Discrete LQR

Many important extensions, some of which we'll cover later in this class

- Tracking LQR: \mathbf{x}_k , \mathbf{u}_k represent small deviations ("errors") from a nominal trajectory (possibly with nonlinear dynamics)
- Cost with linear terms, affine dynamics: can consider today's analysis with augmented dynamics

$$\mathbf{y}_{k+1} = \begin{bmatrix} \mathbf{x}_{k+1} \\ 1 \end{bmatrix} = \begin{bmatrix} A_k & c_k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \mathbf{u}_k = \tilde{A}\mathbf{y}_k + \tilde{B}\mathbf{u}_k$$

Discrete LQR – brute force

Rewrite the minimization of

$$J_0(\mathbf{x}_0) = \frac{1}{2} \mathbf{x}_N^T Q_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \left(\mathbf{x}_k^T Q_k \mathbf{x}_k + \mathbf{u}_k^T R_k \mathbf{u}_k + 2 \mathbf{x}_k^T S_k \mathbf{u}_k \right)$$

subject to dynamics

$$\mathbf{x}_{k+1} = A_k \mathbf{x}_k + B_k \mathbf{u}_k, \qquad k \in \{0, 1, \dots, N-1\}$$

as...

Discrete LQR – brute force

Discrete LQR – brute force

Defining suitable notation, this is

$$\min_{\mathbf{z}} \quad \frac{1}{2} \mathbf{z}^T W \mathbf{z}$$

s.t. $C \mathbf{z} + \mathbf{d} = \mathbf{0}$

with solution from applying NOC (also SOC in this case, due to problem convexity):

$$\begin{bmatrix} \mathbf{z}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} = \begin{bmatrix} W & C^T \\ C & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{0} \\ -\mathbf{d} \end{bmatrix}$$

First step:

$$J_N^*(\mathbf{x}_N) = \frac{1}{2} x_N^T Q_N x_N = \frac{1}{2} x_N^T P_N x_N$$

Going backward:

$$J_{N-1}^{*}(\mathbf{x}_{N-1}) = \min_{\mathbf{u}_{N-1}} \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \end{bmatrix}^{T} \begin{bmatrix} Q_{N-1} & S_{N-1} \\ S_{N-1}^{T} & R_{N-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \end{bmatrix} + \mathbf{x}_{N}^{T} P_{N} \mathbf{x}_{N} \right)$$

$$= \min_{\mathbf{u}_{N-1}} \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \end{bmatrix}^{T} \begin{bmatrix} Q_{N-1} & S_{N-1} \\ S_{N-1}^{T} & R_{N-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \end{bmatrix} + \left(A_{N-1} \mathbf{x}_{N-1} + B_{N-1} \mathbf{u}_{N-1} \right)^{T} P_{N} (A_{N-1} \mathbf{x}_{N-1} + B_{N-1} \mathbf{u}_{N-1}) \right)$$

Unconstrained NOC:

$$\nabla_{u_{N-1}} J_{N-1}(\mathbf{x}_{N-1}) = R_{N-1} \mathbf{u}_{N-1} + S_{N-1}^T \mathbf{x}_{N-1} + B_{N-1} \mathbf{u}_{N-1} + B_{N-1} \mathbf{u}_{N-1}) = \mathbf{0}$$

$$\Longrightarrow \mathbf{u}_{N-1}^* = -(R_{N-1} + B_{N-1}^T P_N B_{N-1})^{-1} (B_{N-1}^T P_N A_{N-1} + S_{N-1}^T) \mathbf{x}_{N-1}$$

$$:= F_{N-1} x_{N-1}$$

Note also that:

$$\nabla_{u_{N-1}}^2 J_{N-1}(\mathbf{x}_{N-1}) = R_{N-1} + B_{N-1}^T P_N B_{N-1} \succ 0$$

Plugging in the optimal policy:

$$J_{N-1}^{*}(\mathbf{x}_{N-1}) = \frac{1}{2} \mathbf{x}_{N-1}^{T} \left(Q_{N-1} + A_{N-1}^{T} P_{N} A_{N-1} - (A_{N-1}^{T} P_{N} B_{N-1} + S_{N-1}) (R_{N-1} + B_{N-1}^{T} P_{N} B_{N-1})^{-1} (B_{N-1}^{T} P_{N} A_{N-1} + S_{N-1}^{T}) \right) \mathbf{x}_{N-1}$$

$$:= \frac{1}{2} \mathbf{x}_{N-1}^{T} P_{N-1} \mathbf{x}_{N-1}$$

Algebraic details aside:

- Cost-to-go (equivalently, "value function") is a quadratic function of the state at each step
- Optimal policy is a time-varying linear feedback policy

Proceeding by induction, we derive the Riccati recursion:

1.
$$P_N = Q_N$$

2.
$$F_k = -(R_k + B_k^T P_{k+1} B_k)^{-1} (B_k^T P_{k+1} A_k + S_k^T)$$

3.
$$P_k = Q_k + A_k^T P_{k+1} A_k - (A_k^T P_{k+1} B_k + S_k) (R_k + B_k^T P_{k+1} B_k)^{-1} (B_k^T P_{k+1} A_k + S_k^T)$$

4.
$$\pi_k^*(\mathbf{x}_k) = F_k \mathbf{x}_k$$

5.
$$J_k^*(\mathbf{x}_k) = \frac{1}{2}\mathbf{x}_k^T P_k \mathbf{x}_k$$

Compute policy backwards in time, apply policy forward in time.

Next time

Stochastic DP

$$V^*(x) = \max_{u} \left(R(x, u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, u) V^*(x') \right)$$