

Mtrx 4700: Experimental Robotics

Sensors, Measurements & Perception

Dr. Stefan B. Williams

Course Outline

Week	Date	Content	Labs	Due Dates
1	5 Mar	Introduction, history & philosophy of robotics		
2	12 Mar	Robot kinematics & dynamics	Kinematics/Dynamics Lab	
3	19 Mar	Sensors, measurements and perception	"	
4	26 Mar	Robot vision and vision processing.	No Tute (Good Friday)	Kinematics Lab
	2 Apr	BREAK		
5	9 Apr	Localization and navigation	Sensing with lasers	
6	16 Apr	Estimation and Data Fusion	Sensing with vision	
7	23 Apr	Extra tutorial session (sensing)	Robot Navigation	Sensing Lab
8	30 Apr	Obstacle avoidance and path planning	Robot Navigation	
9	7 May	Extra tutorial session (nav demo)	Major project	Navigation Lab
10	14 May	Robotic architectures, multiple robot systems		
11	21 May	Robot learning		
12	28 May	Case Study		
13	4 June	Extra tutorial session (Major Project)	"	Major Project
14		Spare		

Robot & Agent

Perception

the act or faculty of apprehending by means of the senses or of the mind; cognition; understanding.

Perception: Low to High Levels

- Measurements from cameras, laser scanners and other perception sensors.
- Features (corner, line, texture)
- **Spatial Structure**
- Object Recognition
- **Motion Tracking**
- Activity/Action/Behavior Recognition
- Interaction & Higher level Perception

Perception Sensors

Mechatronics 4721: Sensors and Signals

Introduction, Signal Processing and Modulation, Radiometers, Imaging Infrared, Visible Imaging and Image Intensifiers, Time of Flight Sensors, Time of Flight Applications, Time of Flight Imaging, Propagation Effects, Target and Clutter Characteristics, Detection of Signals in Noise, High Range-Resolution Techniques, Doppler Measurement, Millimetre Wave Radiometers, Radio Tags and Transponders, Range Estimation and Tracking, Angle Tracking, Tracking Moving Targets in 3D, Phased Array Principles, Synthetic Aperture Methods, 3D Imaging

- What we focus on:
 - Laser scanners (this week)
 - Cameras (next week)

Laser based Range Measurement

Time of Flight (TOF)

$$D = \frac{C \cdot t}{2}$$

Get a line or surface using one laser measurement device

- Scanning
- 2D and 3D

2D Laser Scanners

3D-View

Schwartz electro-optics [NIST]

JPL Small Laser Scanner

ACFR (Mark Bishop)

Hostile Areas: Fog, Dust or Smoke

"Last pulse measuring" techniques

Other ways to get range estimates

- Big Issue with Scanners: SCANNING
- Stereo Cameras
- Structured Light with Camera
- And...

Eliminate Scanning

- 3DVSystem
- Kodak

Range Image Processing

In Detail (for localization & mapping)

- Line Extraction/Estimation
- Scan/Surface/Range Image Matching

Mention Briefly

- Recognition
- Non-rigid surface matching
- Advanced topics

Line Extraction/Estimation

Lines are a predominant feature in human-made (engineered) environments.

Line Estimation and Segmentation

Line formula

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y = ax + b$$

Line Estimation

Least square minimization

• Line Equation:
$$y - ax - b = 0$$

• Error in fit:
$$\sum_{i} (y_i - ax_i - b)^2$$

• Solution:
$$\begin{pmatrix} \overline{xy} \\ \overline{y} \end{pmatrix} = \begin{pmatrix} \overline{x^2} & \overline{x} \\ \overline{x} & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

Line Splitting/Segmentation

Line Splitting/Segmentation

Line Splitting/Segmentation

The perpendicular distance of a point from a line segment

$$r = u(y_1 - y_2) + v(x_2 - x_1) + y_2x_1 - y_1x_2$$

$$d = \frac{r}{D}$$

The problem: Noisy Data

The Hough Transform

- Use a voting mechanism
- One of the most popular ones: the Hough transform.
- Can be used for lines and other shapes.

Voting Space

$$b = y - ax$$

Voting Space

In practice, the polar form of the line is used.

$$\rho = x\cos\theta + y\sin\theta$$

to avoid problems with lines that are nearly vertical.

An example

Hough Transform Algorithm

- 1. Quantize the parameter space appropriately.
- 2. Assume that each cell in the parameter space is an accumulator. Initialize all cells to zero.
- 3. For each point (x,y) in the (visual & range) image space, increment by 1 each of the accumulators that satisfy the equation.
- 4. Maxima in the accumulator array correspond to the parameters of model instances.

Lines may not be good as features

Surface Registration/Scan Matching

- Align two partiallyoverlapping point sets given initial guess of relative transform
- point set = mesh =surface = shape

$$p(\mathbf{B} \mid \mathcal{T}', \mathbf{A})$$

$$p(z_k \mid x_k, M)$$

Video from Szymon Rusinkiewicz's 3DIM 2001 talk

2D/3D Shape Matching

If correct correspondences are known, it is possible to find correct relative transformation (rotation + translation).

How to find **Correspondences**?

Surface Matching is a **Data Association** problem.

- User input
- Feature matching
- Surface signatures
- Iterated Closest Point (ICP)

Iterated Closest Point (ICP)

- A heuristic way to solve **Data Association**
- Assume closest points correspond to each other, compute the best transformation.

Iterated Closest Point (ICP)

- ... and iterate to find alignment [Besl & McKay 92]
- Converges if starting position "close enough"

Robot Localization using ICP

The ICP algorithm of Best and Mckay [1992]

```
Function ICP(Model, Scene);
begin
E' \leftarrow +\infty;
(Rot, Trans) ← Initialize-Registration(Scene, Model);
repeat
  E \leftarrow E';
  Registered-Scene \leftarrow Apply-Registration(Scene, Rot, Trans);
  Pairs ← Return-Closest-Pairs(Registered-Scene, Model);
  (Rot, Trans, E') ← Update-Registration(Scene, Model, Pairs, Rot, Trans);
  until |E' - E| < \tau;
return (Rot, Trans);
end.
```


ICP Variants [Rusinkiewicz 01]

Procedures:

- Selecting source points (from one or both point sets)
- Matching to points in the other point set
- Weighting the correspondences
- Rejecting certain (outlier) point pairs
- Assigning an error metric to the current transform
- Minimizing the error metric

Stage 1: Selecting

- **Use all Points**
- Uniform subsampling
- Random sampling
- Normal surface sampling

For outdoor applications, the data may not be dense enough. SICK: 0.25, 0.5 1 degree resolution.

Stage 2: Matching

- Closest point
- Normal shooting
- Closest compatible point

Stage 2: Matching

- Matching strategy has greatest effect on convergence and speed
- Finding closest point is the most expensive stage of the ICP algorithm
- Speed Up: Structure for Organizing Data

Good Refs:

S. A. Nene and S. K. Nayar. Closet Point Search in High Dimensions. Proc. of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, June 1996.

T. Liu, A. Moore, A.Gray and K Yang. An Investigation of Practical Approximate Nearest Neighbor Algorithms, 2004.

Stage 3: Weighting

- Weighting can achieve the same effect with selecting.
- But weighting is more...

Stage 4: Rejecting

- Distance between corresponding points
- Robust methods
- (SLAM in Dynamic Environments)
- (SLAM with DATMO)

Stage 5: Error Metric & Stage 6: Minimizing this metric

Point-to-point distance

$$E = \sum_{i=1}^{n} \| \oplus (\mathcal{T}', b^i) - a^i \|^2$$

$$\hat{T}_{\theta} = \arctan \frac{\sum_{b_{x}a_{y}} - \sum_{b_{y}a_{x}}}{\sum_{b_{x}a_{x}} + \sum_{b_{y}a_{y}}}$$

$$\hat{T}_{x} = \bar{a}_{x} - (\bar{b}_{x}\cos\hat{T}_{\theta} - \bar{b}_{y}\sin\hat{T}_{\theta})$$

$$\hat{T}_{y} = \bar{b}_{y} - (\bar{a}_{x}\sin\hat{T}_{\theta} + \bar{a}_{y}\cos\hat{T}_{\theta})$$

$$\bar{a}_{x} = \frac{1}{n}\sum_{i=1}^{n}a_{x}^{i} , \ \bar{a}_{y} = \frac{1}{n}\sum_{i=1}^{n}a_{y}^{i} , \ \bar{b}_{x} = \frac{1}{n}\sum_{i=1}^{n}b_{x}^{i} , \ \bar{b}_{y} = \frac{1}{n}\sum_{i=1}^{n}b_{y}^{i}$$

$$\sum_{b_{x}a_{x}} = \sum_{i=1}^{n}(b_{x}^{i} - \bar{b}_{x})(a_{x}^{i} - \bar{a}_{x}) , \quad \sum_{b_{y}a_{y}} = \sum_{i=1}^{n}(b_{y}^{i} - \bar{b}_{y})(a_{y}^{i} - \bar{a}_{y})$$

$$\sum_{b_{x}a_{y}} = \sum_{i=1}^{n}(b_{x}^{i} - \bar{b}_{x})(a_{y}^{i} - \bar{a}_{y}) , \quad \sum_{b_{y}a_{x}} = \sum_{i=1}^{n}(b_{y}^{i} - \bar{b}_{y})(a_{x}^{i} - \bar{a}_{x})$$

See Further reading [3] for the derivation

ICP Issues

- From the point of view of Computer Science:
 - Speed
 - **Stability**
 - Tolerance of Noise and/or Outliers
 - Convergence
- From the point of view of Robotics:
 - Measurement Noise
 - Sparse Data
 - Featureless Data
 - Uncertainty Estimation

ICP based SLAM [Wang & Thorpe 02]

*Map:*Red→Stationary
Gray→Moving

Current Scan:

Yellow→Stationary Blue→Unidentified Green→Moving

Tracking:

Green Box→MO

White Box \rightarrow

Future Location

Magenta→ data

associated with

MO

Simultaneous Localization and Mapping with Detection, Tracking and Classification of Moving Objects
(C) 2001-2002 Chieh-Chih Wang, The Robotics Institute, Carnegie Mellon University.

Hierarchical Free-Form Object based SLAM [Wang & Thorpe 2004]

Ground Vehicle SLAM

3D Laser Mapping (Video courtesy of P Newman)

Ground Vehicle SLAM

Visual Saliency Loop Closure (Video courtesy of P Newman)

Major Projects & Advanced Topics

- Integration and Simplification (Mapping)
- Multiple Surface Registration (SLAM)
- Non-rigid (Deformable) Surface Matching
- Laser-based Car Tracking
- Object Recognition in Urban Areas
- 3D Object Classification and Recognition
- And more...

Further Reading

- Siegwart & Nourbakhsh, Introduction to Autonomous Mobile Robots
 - **Chapter 4: Perception**
- 2. Jain, Kasturi & Schunck, *Machine Vision*
 - Chapter 6: Contours
- Forsyth & Ponce, Computer Vision A Modern Approach
 - Chapter 21: Range Data

