1 ZÁKLADY MATEMATIKY

1.1 Logika a množiny

Pojmy:

Výrok – je oznamovacia veta o ktorej má zmysel uvažovať, či je pravdivá alebo nie. Označujú veľkými písmenami A, B, ..., V, ... Z.

Axióma – tvrdenie, ktoré sa nedokazuje, je bez pochybností pravdivé. Pomocou axióm zavádzame základné matematické pojmy.

Definícia – je jasné slovné vymedzenie (obsahu) pojmu, výklad významu slova (termínu, výrazu) uvedením jeho základných, typických znakov, jeho presný opis

Hypotéza – oznamovacia veta, ktorá má charakter výroku, o ktorom v danom okamihu nemožno jednoznačne určiť, či je pravdivý alebo nepravdivý. Jedna z týchto podmienok však musí nastať. Vedecky prijateľná domnienka umožňujúca vedecké vysvetlenie nejakých javov. predpoklad, domnienka

Tvrdenie – výrok, ktorým sa niečo dokazuje; téza

Pravdivostná hodnota – je priradenie jednej z pravdivostných hodnôt danému výroku. Symbolicky sa značí najčastejšie číslicami alebo písmenami. Pravda – 1 alebo p, nepravda – 0 alebo n.

Logické spojky – spojky (napr. a, alebo, ak..., potom..., je ekvivalentné, nie je pravda, že...), pomocou ktorých z jednoduchých výrokov vytvárame zložitejšie výroky. V matematických zápisoch sa používajú symboly na zápis týchto spojok: konjunktor − ∧ disjunktor (nevylučujúci) − ∨ vylučujúci disjunktor - ∨ implikátor ⇒ ekvivalentor ⇔

Negácia výroku – je presne to, čo ten výrok netvrdí. Mení pravdivostnú hodnotu výroku na opačnú. Teda 1 na 0 a naopak. Označuje sa: A^{\prime} alebo $\neg A$, $(1)^{\prime} = 0$, $(A^{\prime})^{\prime} = A$

Konjunkcia – $A \wedge B$ – "a súčasne"/"a" – Platia oba výroky A aj B.

Disjunkcia – = alternatíva – A \vee B - ,, alebo" – Platí aspoň jeden z výrokov A,B.

Implikácia – A ⇒ B –,,z toho vyplýva"/,,ak..., tak..." – Výrok B platí za predpokladu, že platí výrok A.

Obmena implikácie – A \Rightarrow B platí vtedy, ak platí A $' \Leftarrow$ B' – Pri negovaní výrokov spojených s implikáciou sa implikácia obráti.

Obrátená implikácia – výrok A ⇒ B platí, ak platí aj A ← B – Ak teda platí implikácia a k nej obrátená implikácia, sú výroky ekvivalentné.

Ekvivalencia – A \Leftrightarrow B - ", práve vtedy ked" – Z A vyplýva B a z B vyplýva A. (A \Rightarrow B) \land (B \Rightarrow A)

Vyplýva – vyvíjať sa ako následok, dôsledok niečoho

Je ekvivalentné – "je rovné" – Dva ekvivalentné výroky hovoria to isté len inými slovami, logicky sa rovnajú.

Úsudok – je akt myslenia, ktorý má nasledujúci priebeh: 1. Poznáme pravdivostné hodnoty určitých výrokov – predpoklady úsudku , 2. Ďalším výrokom priraďujeme pravdivostné hodnoty – záver

úsudku. Úsudok vyjadríme pomocou výrokových formúl. Pri kontrole správnosti úsudku vyplníme tabuľku pravdivostného ohodnotenia všetkých formúl, ktoré v úsudku vystupujú.

Platný úsudok – úsudok je logicky správny.

Tautológia – výrok, výraz alebo formula logického kalkulu, ktorá je pravdivá pri akýchkoľvek významoch pravdivosti ich premenných.

Kontradikcia – alebo protirečenie je tvrdenie obsahujúce vzájomne si odporujúce myšlienky, vzájomné pôsobenie protikladov. Je kontradikcia výroková forma, ktorá v každom dosadení nadobudne pravdivostnú hodnotu nepravda. Kontradikcia je negácia tautológie.

Tabuľka pravdivostných hodnôt – ukazuje, kedy sú zložené výroky obsahujúce logické spojky pravdivé a kedy nie.

A	В	AAB	$A \vee B$	$A \Rightarrow B$	A⇔B
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

Kvantifikátor (existenčný, všeobecný, aspoň, najviac, práve) –

Existenčný kvant. – ∃ – aspoň jeden existuje

Všeobecný kvant. – \forall – pre všetky

Aspoň – minimálne, najmenej – výrok: Aspoň n je..., negácia: Najviac n - 1 je...

Najviac – maximálne, nanajvýš – výrok: Najviac n je..., negácia: Aspoň n + 1 je...

Práve – presne – výrok: Práve n je..., negácia: Najviac n – 1 alebo aspoň n +1 je...

Priamy a nepriamy dôkaz -

Priamy dôkaz implikácie A \Rightarrow **B.** Vychádzame z predpokladu implikácie A a priamym reťazcom implikácií B1, B2, B3, ..., B, kde B1, B2, B3, ..., B3 sú axiómy alebo dokázané tvrdenia a B je záver. Podstata priameho dôkazu, spočíva vo vytvorení akéhosi reťazca implikácií A \Rightarrow B1, B1 \Rightarrow B2, ..., Bk \Rightarrow B a následného logického záveru: A \Rightarrow B.

Príklad: Veta: Druhá mocnina nepárneho čísla je číslo nepárne.

Dôkaz: Preformulujme danú vetu - tvrdenie tak, aby malo tvar implikácie:

 \forall n \in N: n je nepárne číslo \Rightarrow n² je nepárne číslo [\forall n \in N: A(n) \Rightarrow B(n)]

A(n): n je nepárne číslo \Rightarrow B₁(n): n=2k+1, k \in N₀ \Rightarrow B₂(n): n² = (2k+1)² \Rightarrow B₃(n): n² = 4k² +4k+1 \Rightarrow B₄(n): n² = 2(2k² +2k)+1 \Rightarrow B₅(n): n² = 2k +1, k \in N₀ \Rightarrow **B(n)**: n² je nepárne číslo

Nepriamy dôkaz používame najmä na dôkaz implikácie $A \Rightarrow B$. Postupujeme tak, že najskôr **vytvoríme obmenu implikácie B'\Rightarrow A'** a túto dokazujeme priamo. B' \Rightarrow B1 \Rightarrow B2 \Rightarrow ... \Rightarrow Bn \Rightarrow A'. Využívame skutočnosť, že implikácia a jej obmena majú vždy rovnakú pravdivostnú hodnotu, a preto namiesto implikácie môžeme dokazovať jej obmenu.

Príklad: Veta: Ak n^2 je párne číslo, tak aj n je párne číslo. $\sim \forall n \in \mathbb{N}: 2 \mid n^2 \Rightarrow 2 \mid n$

Obmena vety: \forall n \in N: 2 nedelí n \Rightarrow 2 nedelí n²

Dôkaz: A(n): 2 nedelí
$$n \Rightarrow B_1(n)$$
: $n=2k+1$, $k \in N_0 \Rightarrow B_2(n)$: $n^2 = (2k+1)^2 \Rightarrow B_3(n)$: $n^2 = 4k^2 + 4k+1 \Rightarrow B_4(n)$: $n^2 = 2(2k^2 + 2k) + 1 \Rightarrow B_5(n)$: $n^2 = 2k + 1$, $k \in N_0 \Rightarrow B(n)$: 2 nedelí n2

Dôkaz sporom – Dôkaz sporom vety A ⇒ B sa robí tak, že sa daná implikácia neguje a pomocou reťazca implikácií sa dospeje k logickému sporu. Hovoríme, že sme prišli k sporu. Zo sporu vyplýva, že negované tvrdenie neplatí a teda musí platiť pôvodná veta.

Príklad: Veta: \forall n \in N: 2 | n \Rightarrow 2 | n 2

Negácia vety: \exists n \in N: 2 | n \land 2 nedelí n2

Dôkaz: $A(n): 2 \mid n \Rightarrow B_1(n): n=2k, k \in N \Rightarrow B_2(n): n^2 = (2k)^2 \Rightarrow B_3(n): n^2 = 4k^2 \Rightarrow B_4(n): n^2 = 2(2k^2) \Rightarrow B_5(n): n^2 = 2k, k \in N \Rightarrow B(n): 2 \mid n^2 - SPOR s \text{ predpokladom, že 2 nedelí } n^2, t.j. negovaná veta je nepravdivá ~ pôvodná veta je pravdivá.$

Množina – je istý súbor prvkov, ktorými môžu byť čísla, ľudia, veci,..., ktoré spĺňajú určitú vlastnosť. Je jednoznačne určená, keď o každom prvku viem povedať, či danú vlastnosť má alebo nemá, t.j. či do množiny patrí alebo nepatrí.

Prvok x patrí do množiny A zapisujeme: $x \in A$, prvok x nepatrí do množiny A zapisujeme: $x \notin A$, označenie: množiny: A, B, R ... prvky: a, b, 1, 2, ...

Môžeme ich rozdeliť podľa počtu prvkov na konečné, nekonečné a prázdne. Môžeme ich určiť vymenovaním prvkov, určením charakteristickej vlastnosti.

Prvky množiny – objekty množiny

Podmnožina – Majme dve množiny A a B. Ak je každý prvok množiny A tiež prvkom množiny B, pričom nie každý prvok množiny B je tiež prvkom množiny A, potom hovoríme, že množina A je podmnožinou B a označujeme A ⊂ B.

Nadmnožina – Množina A je časťou (podmnožinou) množiny B ($A \subseteq B$), ak každý prvok množiny A je súčasne prvkom množiny B. Uvedený vzťah sa dá vyjadriť aj pomocou pojmu **nadmnožina**. Množina B je nadmnožinou množiny A ($B \supseteq A$), ak každý prvok množiny A je súčasne prvkom množiny B.

Prienik − **A** ∩ **B** − Prienik množín A,B je množina, ktorá obsahuje prvky patriace do množiny A **a** súčastne do množiny B.

Zjednotenie – $A \cup B$ – Zjednotenie množín A,B je množina, ktorá obsahuje prvky patriace do množiny A, alebo do množiny B.

Rozdiel množín – A - B – Rozdiel množín A,B (v tomto poradí) je množina, ktorá obsahuje prvky patriace do A a súčastne nepatriace do B.

Vennove diagramy – zaviedol ich John Venn, sú to jednoduché grafické objekty na znázornenie množín.

Disjunktné množiny – Ak je prienikom dvoch množín A,B prázdna množina, tak sú tieto množiny disjunktné.

Prázdna množina – Ø – množina, ktorá neobsahuje žiaden prvok.

Doplnok množiny – A_B^I – Doplnok množiny A vzhľadom na množinu B je rozdiel množín B – A ak platí, že A \subset B.

Konečná a nekonečná množina – Konečná množina obsahuje konečný počet prvkov – napr. všetky dvojciferné párne čísla. **Nekonečná množina** obsahuje nekonečný počet prvkov – napr. všetky párne čísla.

Počet prvkov množiny – je konečný, nekonečný alebo prázdny.

Vlastnosti a vzťahy:

- o Implikácia (výrok) A \Rightarrow B je ekvivalentná s implikáciou (výrokom) B' \Rightarrow A' (výrok z A vyplýva B platí práve vtedy, keď platí výrok z negácie B vyplýva negácia A)
- o výroky A, B sú ekvivalentné, ak platia obe implikácie A \Rightarrow B, B \Rightarrow A
- o negácia konjunkcie (disjunkcie) je disjunkcia (konjunkcia) negácií
- o implikácia A ⇒ B je nepravdivá práve vtedy, keď je pravdivý výrok A a nepravdivý výrok B
- o pravdivostná hodnota zložených výrokov a negácie ("tabuľka pravdivostných hodnôt")
- o negácia výroku $\forall x \in M$ platí V(x) je $\exists x \in M$, pre ktoré neplatí V(x)
- o negácia výroku $\exists x \in M$, pre ktoré platí V(x) je $\forall x \in M$ neplatí V(x)
- A = B práve vtedy, keď súčasne platí $A \subset B$, $B \subset A$
- o pre počty prvkov zjednotenia dvoch množín platí I $A \cup B$ I = I A I + I B I I $A \cap B$ I
- $\circ (A \cap B)' = A' \cup B', (A \cup B)' = A' \cap B'$