Predicting Loan Approval

Courtney Mazzulla, Dan Nealon, Karsyn Lee, Sunny Shin

April 18, 2023 https://github.com/sunnyshin0824/207 final project

Agenda

Question: Can we predict which loans will get approved?

Relevance:

In 2023, only 32% of banks in the US use artificial intelligence such as predictive analytics, speech recognition, and other models, to get a competitive edge in the market*

Unique Value:

We provide an affordable model for loan prediction (that determines who is eligible to receive a loan) that <68% of banks in America could benefit from

Why would a bank want to use ML for loan prediction?

Takes an average of 52 days for a bank to grant a loan, this model predicts instantly.

Reverse past and present discrimination in lending, and to foster a more inclusive economy by eliminating human biases.

Banks are less likely to give loans to defaulters due to no human error & a model with increased accuracy.

For banking companies that use human manual processing to distribute loans, this is a cost efficient way to reduce/optimize workforce and resources.

Statistical Summary of Dataset

168.000000

700.000000

1.000000

1.000000

360.00000

480.00000

ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History 592.000000 564.000000 count 614.000000 614.000000 600.00000 **Title:** Loan Prediction Problem Dataset 0.842199 5403.459283 1621.245798 146.412162 342,00000 mean 6109.041673 2926.248369 85.587325 65.12041 0.364878 std 150.000000 0.000000 9.000000 12.00000 0.000000 min 2877.500000 0.000000 25% 100.000000 360,00000 1.000000 **Source:** Kaggle 3812.500000 1188.500000 128.000000 360.00000 1.000000 50%

75%

max

5795.000000

81000.000000

3 **Size:** 12 x 615 training dataset

- Training dataset
- Validation dataset
- Test dataset

2297.250000

41667.000000

Data Types

5000 7500 10000 12500 15000 17500 20000

Value of Numeric Observation

300 200

0.6

Data Preprocessing

Imputation

- Convert categorical into numerical values
- Median Imputation for numerical
- Mode Imputation for categorical
- Conditional for gender on married
- CART for Credit_History

Dimensionality Reduction

- Correlation-based Feature Selection
- Combine features

Standardization

StandardScaler()

Correlation Matrix Post-Data Manipulation

0.2

-0.0

Baseline model + Improvements

Baseline Model

Considering the distribution of loan approvals in our training data, we decided to have our baseline model always predict approval.

This resulted in 70% accuracy on our training predictions.

Our next models would attempt to beat this performance.

Logistic Regression

Considering the classification requirement for any model we would construct to predict loan approvals, logistic regression would be a great first model.

Using Gender, Married, Dependents, Education, Self_Employed, Property_Area, Credit_History, Co-applicant Income/Applicant Income, LoanAmount / Loan_Amount_Term as predictors and loan status as our response, we were able to achieve the following performance with an 75/10/15 split of the data:

LogisticRegression:

Precision score: 0.816

Recall score: 0.977

F1 score: 0.889

Loss: 5.913

Accuracy: 0.829

Precision is important as we don't want to approve a loan if we shouldn't (FP)

Accuracy improvement on baseline

FFNN

In an effort to improve our model's performance, we decided to build a neural network model with one dense layer and a sigmoid activation function, which makes it a binary classification model.

Our hope is to split the problem of classification into a layered network of simpler elements, and perform faster predictions long-term.

FFNN train accuracy: 0.834 FFNN val accuracy: 0.747

FFNN test accuracy: 0.805

Hyperparameter Tuning

Learning Rate

[0.001, 0.01, 0.1]

Optimizer

[Adam, SGD]

Epochs

[100, 200, 300]

	Learning Rate	Optimizer	Epoch	Training Accuracy	Validation Accuracy
0	0.001	Adam	100	0.831633	0.747475
1	0.001	Adam	200	0.831633	0.747475
2	0.001	Adam	300	0.831633	0.747475
3	0.001	SGD	100	0.655612	0.595960
4	0.001	SGD	200	0.813776	0.737374
5	0.001	SGD	300	0.829082	0.747475
6	0.010	Adam	100	0.834184	0.747475
7	0.010	Adam	200	0.831633	0.747475
8	0.010	Adam	300	0.831633	0.747475
9	0.010	SGD	100	0.829082	0.747475
10	0.010	SGD	200	0.831633	0.747475
11	0.010	SGD	300	0.831633	0.747475
12	0.100	Adam	100	0.836735	0.727273
13	0.100	Adam	200	0.829082	0.737374
14	0.100	Adam	300	0.823980	0.727273
15	0.100	SGD	100	0.831633	0.747475
16	0.100	SGD	200	0.831633	0.747475
17	0.100	SGD	300	0.831633	0.747475

Improved FFNN test accuracy: 0.8130

Performance Improvement

Conclusion/Future State

Ensemble modeling

By combining the predictions of several models, using the ensemble modeling, we believe we can reduce the impact of individual model biases and errors, and produce a more accurate prediction.

Feature engineering

We can further improve the model by creating new features that capture additional information about the loan applicants. This can include socio-economic factors, geographic data, and other variables that may impact a borrower's likelihood of defaulting on a loan.

Incorporate new data sources

By incorporating new data sources such as credit scores, financial statements, and social media data, we can increase the accuracy of the model and make it more practical/user friendly in the market.

Thank You!

Team Contribution

	Courtney Mazzulla	Dan Nealon	Karsyn Lee	Sunny Shin
Data Research	Х	Х	Х	Х
Environment Set-up	Х	Х	Х	Х
Data Cleaning	X	Х	Х	Х
Data Splitting	X	Х	Х	X
Hyperparameter tuning	X	X	Х	X
Presentation slides	Х	Х	Х	Х