







## 皮膚標記於軟組織感測系統之定位精準度探討

Positioning accuracy of skin markers in soft tissue deformation systems

報告者:柯筆翔

學號: R09631044

指導教授:顏炳郎 博士

日期:2022/09/12

## 目錄





#### 背景-電腦輔助手術

- 電腦輔助手術(CAS)搭配手術機器人可以提升手術的精準度
- ▶ 透過導航軟體輔助醫生手術
- ▶ 手術導航公司: Brainlab, GE Healthcare, Cascination







Brainlab

GE Healthcare

Cascination

#### 背景-軟組織穿刺

# DRF

骨科手術的DRF marker

#### → 骨科手術

特性:標記與骨頭間沒有相對位移

導航:傳統的固定式標記(DRF)

#### 軟組織穿刺

特性:組織變形,傳統的DRF無法計算組織變形

目的: 開發可以計算軟組織表面變形的感測系統

導航:皮膚標記



軟組織穿刺的Skin marker 5

#### 文獻-總括

- ■常見的皮膚標記感測系統
  - 1. 雙眼視覺相機
  - 2. 電磁式追蹤器
  - 3. 光學追蹤器



常見的皮膚標記方式

#### 文獻-雙目視覺

- ■皮膚標記:AR marker
- 感測原理:雙目視覺相機
- ■特性:

深度資訊誤差大內外部參數校準



以AR marker作為皮膚標記

#### 文獻-電磁感測器

- ▶ 皮膚標記:微小的感測線圈
- ▶ 感測原理:以磁場產生器在工作範圍內產生磁場
- ▶ 特性:

手術房中同時有產生磁場的機器(如電腦斷層掃描金屬干擾



電磁感測器原理



以微小感應線圈作為皮膚標記

#### 文獻-光學追蹤器

- ▶ 皮膚標記:光學反光球
- 感測原理:紅外線掃瞄空間中的光學標記
- ⇒特性 有醫療用產品



光學追蹤器於手術房內使用



DRF(綠圈)與皮膚標記(紅圈)

#### 文獻整理

|      | 雙眼視覺相機    | 電磁<br>感測器 | 光學<br>追蹤器 |
|------|-----------|-----------|-----------|
| 皮膚標記 | AR marker | 感測線圈      | 光學反光球     |
| 感測原理 | 雙目視覺相機    | 磁場產生器     | 紅外線掃瞄     |
| 特性   | 深度資訊誤差大   | 外在磁場干擾    | 有醫療產品     |

#### 研究目的

■以光學標記作為皮膚標記估測軟組織表面

■探討光學標記擺放與估測精準度關係

■探討光學標記數量與估測精準度關係

## 研究方法

#### 研究方法



#### 實驗器材

- ▶ 光學追蹤器
- Northern Digital 開發
- 機型Polaris Vicra
- ► 60Hz sample rate
- DRF的估測誤差RMS 0.25mm
- ■可以讀取獨立光學標記



Polaris Vicra光學追蹤器



固定光學標記DRF



獨立光學標記

## 軟組織表面估測系統

軟組織表面

估測系統

光學標記前 處理

皮膚座標系 模型

- 1. 鬼影標記去除
- 2. 皮膚光學標記初始化
- 3. 光學標記編號
- 4. 幾何確認

## 光學標記前處理

#### 目的:

- 1. 去除錯誤資訊
- 2. 建立初始座標
- 3. 當標記有脫落



#### 鬼影標記去除





#### 成因:





NDI紅外線相機

- 真實的光學標記
- ② 鬼影標記 17

## 鬼影標記去除



#### 解法:





NDI紅外線相機

(B,C) B,C球連線的延伸線

## 初始化





## 光學標記編號







#### 解法:

$$c_{-2(a,b,c,d)} = \sum_{m \neq a, m \neq c}^{M} \min_{n \neq b, n \neq d}^{N} (|D_{SM*(a,m)} - D_{SM(b,n)}|)$$

#### 幾何確認:

- 1. 符合呼吸起伏範圍<40mm
- 2.  $c_{2(a,b,c,d)}$

## 軟組織表面估測系統

光學標記前 處理 目的:去除雜訊

- 1. 鬼影標記去除
- 2. 皮膚光學標記初始化
- 3. 光學標記編號
- 4. 幾何確認

軟組織表面 估測系統

> 皮膚座標系 模型

- 1. 表面座標系建立
- 2. Least square求旋轉矩陣
- 3. 德勞內三角形分割
- 4. 相似三角形變形量估測

#### 皮膚座標系模型

Nonrigid Deformation

Rigid Transform

Deformation

{NDI}:光學追蹤器坐標系

 $\{org, t_0\}$ :初始坐標系(病人坐標系)

## 建立皮膚坐標系



{NDI}:光學追蹤器坐標系

 $\{org,t_0\}$ :初始坐標系(病人坐標系)

## 建立皮膚坐標系



## 建立皮膚坐標系

 $\{org,t_0\}$ :初始坐標系(病人坐標系)



 $\{org,t_0\}$ :初始坐標系(病人坐標系)

{org,t}:其他時刻下皮膚坐標系



假設沒有deformation:

$${^{org,t_0}P_{SM',t(i)}} = {^{org,t_0}_{org,t}}t + {^{org,t_0}_{org,t}}R^{org,t}P_{SM',t(i)}$$

 $\{org,t_0\}$ :初始坐標系(病人坐標系)



 $\{org,t_0\}$ :初始坐標系(病人坐標系)



 $\{org,t_0\}$ :初始坐標系(病人坐標系)







#### 皮膚座標系模型

Nonrigid Deformation

Rigid Transform

Deformation













Ref:(Markert, Koschany et al. 2010)

# 德勞內三角化













# 實驗

#### 實驗分類:

- 1. 剛體實驗
- 2. 軟組織實驗
- 3. 人體實驗



軟組織實驗

## 剛體實驗

#### 目的:

驗證轉移矩陣T在剛體標記下可行

#### 方法:

在光學標記固定在一剛體上並以NDI內建的演算法當作Ground truth(誤差為RMS 0.25mm)



光學標記固定在剛體上



# 剛體實驗結果

|              | 平均誤差    | 最大誤差           |
|--------------|---------|----------------|
| Rz           | 0.23°   | 0.55°          |
| Ry           | 0.49°   | $0.84^{\circ}$ |
| Rx           | 0.27°   | 0.56°          |
| X            | 0.09 mm | 0.12 mm        |
| Y            | 0.03 mm | 0.04 mm        |
| $\mathbf{Z}$ | 0.12 mm | 0.19 mm        |

| 旋轉 | 剛是 | 豊產 | 生 | 的 | 誤差 |
|----|----|----|---|---|----|
|----|----|----|---|---|----|

|         | 平均誤差                      | 最大誤差   |  |
|---------|---------------------------|--------|--|
| Rz      | $0.02^{\circ}$            | 0.13°  |  |
| Ry      | 0.25°                     | 0.73°  |  |
| Rx      | 0.13°                     | 0.42°  |  |
| X       | 0.09mm 0.14mm             |        |  |
| Y       | 0.01mm                    | 0.03mm |  |
| ${f Z}$ | 0.11mm<br>亚 段 剛 腆 孝 井 码 : | 0.21mm |  |

平移剛體產生的誤差

<sup>\*</sup>NDI error:0.25mm(RMS)

## 軟組織實驗

#### 實驗步驟

- 1. 皮膚標記的擺放方式
- 2. 皮膚標記數量
- 3. 表面進入點的位置與誤差

實驗對象: 充氣仿體的腹腔

實驗方式: 將仿體充氣 計算估測的三維誤差







#### 皮膚標記的擺放方式

固定marker數量:4顆

固定entry位置











斜長方擺放

菱形擺放

# 皮膚標記的擺放方式

■ 面積 內角度數 affine誤差 deformation誤差

|                      | 斜長方擺放                 | 菱形擺放                  |
|----------------------|-----------------------|-----------------------|
| 面積                   | 2835.9mm <sup>2</sup> | 2505.4mm <sup>2</sup> |
| 最大內角度數               | 82°                   | 63°                   |
| affine誤差             | 1.03mm                | 0.55mm                |
| Affine+deformation誤差 | 0.96mm                | 0.43mm                |

只靠一個entry無法得知此擺設方式優劣





# 擺放方式與表面進入點









菱形擺放

長方擺放

|          | 方式一(最大面積) | 方式二(平行四邊) | 方式三(菱形) |  |
|----------|-----------|-----------|---------|--|
| <0.25    | 4顆        | 5顆        | 4顆      |  |
| 0.25~0.5 | 7顆        | 11顆       | 13顆     |  |
| 0.5~0.75 | 8顆        | 6顆        | 9顆      |  |
| >0.75    | 13顆       | 9顆        | 6顆      |  |

## 擺放方式與表進入點

- ▶ 透過菱形擺放方式分析
- 1. Affine的誤差越小,估測越準
- 2. 銳角三角形估測效果越好,最大角<70° 鈍角三角形估測效果較差
- 3. 三角形面積<2700mm²
- 4. 左右上下對稱的擺放估測較準

|                          | 左三角形               | 右三角形                  |
|--------------------------|--------------------|-----------------------|
| 面積                       | $3307 \text{mm}^2$ | 2358.4mm <sup>2</sup> |
| 最大內角度數                   | 75°                | 68°                   |
| affine誤差                 | 0.78mm             | 0.5mm                 |
| Affine+deformation<br>誤差 | 0.63mm             | 0.32mm                |



深綠色為affine誤差 前綠色為deform誤差



深綠色為affine誤差 前綠色為deform誤差47









48







總估測範圍18000mm<sup>2</sup> 六顆涵蓋範圍80% 最大三角形面積<2821.4mm<sup>2</sup> 最大角度83° 49





|       | 四顆                    | 六顆                    |
|-------|-----------------------|-----------------------|
| 三角型面積 | 2358.4mm <sup>2</sup> | 2821.4mm <sup>2</sup> |
| 最大角   | 68°                   | 83°                   |









六顆



# 人體測試







|               | 4顆菱形   | 4顆斜長方      | 6顆        |
|---------------|--------|------------|-----------|
| Affine誤差      | 1.88mm | 2.86mm     | 1.35mm    |
| Affine+deform | 1 12mm | 2.83mm     | 0.63mm    |
| 誤差            | 1.43mm | 2.03111111 | U.USIIIII |

#### 結論

#### ■擺放方式

德勞內三角化銳角三角形準確度較高(最大角<70°) 三角形面積<2700mm² 擺放方式左右對稱準確度較高

#### ▶ 光學標記數量

數量越多越準確 超過6顆光學標記後 平均誤差維持在0.37mm

#### ■ 未來展望

估測內部腫瘤 針對不同的穿刺部位做分析

# 謝謝委員聆聽

## 參考文獻

- Li, J., et al., Application of Artificial Intelligence in Diabetes Education and Management: Present Status and Promising Prospect. Front Public Health, 2020. 8: p. 173.
- Keylock, L., et al., The Effect Of Age On The Lumbar Spine Of Cricket Fast Bowlers. Medicine & Science in Sports & Exercise, 2020. 52(7S): p. 72-73.
- Luerken, L., et al., Stereotactic Percutaneous Electrochemotherapy as Primary Approach for Unresectable Large HCC at the Hepatic Hilum. Cardiovasc Intervent Radiol, 2021. **44**(9): p. 1462-1466.
- 4. Jiang, B., et al., Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory. Chin Neurosurg J, 2018. 4: p. 23.
- 5. Nicolau, S., et al., Augmented reality in Iaparoscopic surgical oncology. Surg Oncol, 2011. 20(3): p. 189-201.
- Spinczyk, D., A. Karwan, and M. Copik, Methods for abdominal respiratory motion tracking. Comput Aided Surg, 2014. 19(1-3): p. 34-47.
- 7. Wood, B.J., et al., Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol, 2005. **16**(4): p. 493-505.
- 8. Tinguely, P., et al., Stereotactic image-guided microwave ablation for malignant liver tumors—a multivariable accuracy and efficacy analysis. Frontiers in oncology, 2020. **10**: p. 842.
- Oliveira-Santos, T., et al. Passive single marker tracking for organ motion and deformation detection in open liver surgery. in International Conference on Information Processing in Computer-Assisted Interventions. 2011. Springer.
- 10. Sorkine-Hornung, O. and M. Rabinovich, Least-squares rigid motion using svd. Computing, 2017. 1(1): p. 1-5.
- 11. Giesen, F.e.e.C.a.J., Delaunay Triangulation Based Surface Reconstruction. 2006.
- 12. Markert, M., A. Koschany, and T. Lueth, *Tracking of the liver for navigation in open surgery*. International journal of computer assisted radiology and surgery, 2010. **5**(3): p. 229-235.