ANÁLISIS DE UN DBCA CON ARREGLO TRIFACTORIAL

Evaluación de 3 Niveles de N, 2 de P, en dos epocas de aplicación en el cultivo de la piña (Ananas comosus, Merr.) y sus efectos en el rendimiento, bajo ocndiciones de Mazatenango, Suchitepequez.

Ruiz, E. (1982), realizó su trabajo de tesis en la finca San Rafael, ubicada en el municipio de Mazatenango, Suchitepéquez, instalando un experimento sobre fertilización en piña (Ananas comosus Merr). Fue utilizado un arreglo factorial combinatorio 3x2x2 y un DBCA con 3 repeticiones. Los factores y niveles evaluados fueron los siguientes:

• A. Nitrógeno: 70, 100 y 130 kg/ha

• B. Fósforo: $5, 25 \, kg/ha$

• C. Número de aplicaciones: 1, 2 (50% cada una con intervalo de 70 días).

La variable respuesta medida fue el rendimiento de frutos (tm./ha.) obtenido en cada unidad experimental.

Table 1: Factores, Niveles Y Claves

FACTOR	NIVEL	CLAVE
	$70 \; kgs/Ha$	$\overline{A_1}$
Nitrógeno kgs/Ha (A)	$100 \ kgs/Ha$	A_2
	$130 \ kgs/Ha$	A_3
Fósforo kgs/Ha (B)	5 kgs/Ha	B_1
	$25 \ kgs/Ha$	B_2
Aplicaciones (Intervalo de 70 días) (C)	1	C_1
	2	C_2

Table 2: Combinaciones o Tratamientos

TRATAMIENTO	CLAVE
$70 \; kgs/Ha \ge 5 \; kgs/Ha \ge 1$	$A_1B_1C_1$
$70~kgs/Ha \ge 5~kgs/Ha \ge 2$	$A_1B_1C_2$
$70~kgs/Ha \ge 25~kgs/Ha \ge 1$	$A_1B_2C_1$
$70~kgs/Ha \ge 25~kgs/Ha \ge 2$	$A_1B_2C_2$
$100 \; kgs/Ha \ge 5 \; kgs/Ha \ge 1$	$A_2B_1C_1$
$100 \; kgs/Ha \ge 5 \; kgs/Ha \ge 2$	$A_2B_1C_2$
$100~kgs/Ha \ge 25~kgs/Ha \ge 1$	$A_2B_2C_1$
$100~kgs/Ha \ge 25~kgs/Ha \ge 2$	$A_2B_2C_2$
$130 \; kgs/Ha \ge 5 \; kgs/Ha \ge 1$	$A_3B_1C_1$
$130~kgs/Ha \ge 5~kgs/Ha \ge 2$	$A_3B_1C_2$
$130~kgs/Ha \ge 25~kgs/Ha \ge 1$	$A_3B_2C_1$
$130~kgs/Ha \ge 25~kgs/Ha \ge 2$	$A_3B_2C_2$

Table 3: Rendimiento en Tm./Ha. de piña

		A_1				A_2				A_3			
		B_1		B_2		B_1		B_2		B_1		B_2	
	C_1	C_2	C_1	C_2	C_1	C_2	C_1	C_2	C_1	C_2	C_1	C_2	\sum
I	33.303	30.682	32.727	31.818	30.682	32.955	33.523	33.442	31.818	34.091	35.985	32.102	
II	34.470	33.333	33.838	32.071	32.955	34.375	34.848	33.864	39.015	33.117	35.606	32.386	
III									32.955			0 0 -	
$X_{ijk.}(ABC)$	102.838	98.106	104.227	97.222	96.154	98.012	99.28	104.124	103.788	97.565	109.722	298.579	
$X_{i\ldots}(A)$		402.393				397.57				409.654	Į.		
$X_{.j}(B)$			596.463						613.154	:			
$X_{ij}(AB)$	200.944		201.449		194.166		203.404	Ŀ	201.353		208.301	=	
$X_{k.}(C)$			616.009							593.608	3		
$X_{i.k.}(AC)$	207.065			195.328	195.434			202.136	5213.51			196.144	
$X_{.jk.}(BC)$	302.78				293.683			313.229)			299.925	

VERIFICACIÓN DE SUPUESTOS

I. Supuesto de Normalidad - Test de Shapiro Wilk

- H_0 : La distribución de los datos no difiere de la normal
- H_1 : La distribución de los datos difiere de la normal

##		Test	Variable	Statistic	p value	Normality
##	1	Shapiro-Wilk	70 Kg./Ha5 Kg./Ha1	0.9661	0.6461	YES
##	2	Shapiro-Wilk	70 Kg./Ha5 Kg./Ha2	0.9068	0.4075	YES
##	3	Shapiro-Wilk	70 Kg./Ha25 Kg./Ha1	0.9085	0.4130	YES
##	4	Shapiro-Wilk	70 Kg./Ha25 Kg./Ha2	0.8712	0.2989	YES
##	5	Shapiro-Wilk	100 Kg./Ha5 Kg./Ha1	0.8882	0.3488	YES
##	6	Shapiro-Wilk	100 Kg./Ha5 Kg./Ha2	0.9825	0.7468	YES
##	7	Shapiro-Wilk	100 Kg./Ha25 Kg./Ha1	0.9655	0.6434	YES
##	8	Shapiro-Wilk	100 Kg./Ha25 Kg./Ha2	0.8421	0.2196	YES
##	9	Shapiro-Wilk	130 Kg./Ha5 Kg./Ha1	0.8651	0.2817	YES
##	10	Shapiro-Wilk	130 Kg./Ha5 Kg./Ha2	0.9291	0.4854	YES
##	11	Shapiro-Wilk	130 Kg./Ha25 Kg./Ha1	0.8597	0.2667	YES
##	12	${\tt Shapiro-Wilk}$	130 Kg./Ha25 Kg./Ha2	0.8546	0.2528	YES

Rendimiento de piña en tma./ha en diferentes tratamientos

Figure 1: Rendimiento de piña (Tm./Ha.) en los 12 tratamientos

	Pruebas de normalidad						
		Shapiro-Wilk					
	Tratamiento	Sig.					
Rendimiento	70 Kg/Ha. x 5 Kg./Ha. x 1	,646					
Tm/Ha.	70 Kg./Ha. x 5 Kg./Ha. x 2	,407					
	70 Kg./Ha. x 25 Kg./Ha. x 1	,413					
	70 Kg./Ha. x25 Kg./Ha. x 2	,299					
	100 Kg./Ha. x 5 Kg./Ha. x 1	,349					
	100 Kg./Ha. x 5 Kg./Ha. x 2	,747					
	100 Kg./Ha. x 25 Kg./Ha. x 1	,643					
	100 Kg./Ha. x 25 Kg./Ha. x 2	,220					
	130 Kg./Ha. x 5 Kg./Ha. x 1	,282					
	130 Kg./Ha. x 5 Kg./Ha. x 2	,485					
	130 Kg./Ha. x 25 Kg./Ha. x 1	,267					
	130 Kg./Ha. x 25 Kg./Ha. x 2	,253					

Figure 2: Test Shapiro Wilk para el Rendimiento (Tm./Ha.) en los 12 tratamientos - SPSS

Según el test de normalidad Shapiro Wilk, los valores de rendimiento de piña en tm./ha. para todos los tratamientos se distribuyen normalmente

II. Supuesto de Homocedasticidad - Test de Levene

```
• H_0: \hat{\sigma}_{T1}^2 = \hat{\sigma}_{T2}^2 = \dots = \hat{\sigma}_{T12}^2
```

•
$$H_1: \hat{\sigma}_{T1}^2 \neq \hat{\sigma}_{T2}^2 \neq \cdots \neq \hat{\sigma}_{T12}^2$$

```
## Levene's Test for Homogeneity of Variance (center = mean)
## Df F value Pr(>F)
## group 11 2.1073 0.06151 .
## 24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Prueba de homogeneidad de varianzas

Rendimiento Tm.	/Ha.		
Estadístico de			
Levene	df1	df2	Sig.
2,10	7 11	I	24 ,062

Figure 3: Test de Levene - SPSS

De acuerdo al test de levene las varianzas del rendimiento de pi \tilde{n} a en Tm./Ha. en los 12 tratamientos son estad \tilde{n} sticamente iguales

ANÁLISIS DE VARIANZA PARA EL RENDIMIENTO DE PIÑA EN Tm./Ha.

Modelo Lineal Aditivo

$$x_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + (\alpha\beta)_{ij} + (\alpha\delta)_{ik} + (\beta\delta)_{jk} + (\alpha\beta\delta)_{ijk} + \gamma_l + \xi_{ijkl}$$

$$i = 1, 2, 3 \ (a = 3)$$

$$j = 1, 2 \ (b = 2)$$

$$k = 1, 2 \ (c = 2)$$

$$l = 1, 2, 3 \ (r = 3)$$

Suma de Cuadrados

•
$$TC = \frac{x^2}{abcr} = \frac{1209.62^2}{35} = 4.0643702 \times 10^4$$

•
$$SCT = \sum x_{ijkl}^2 - TC = 151.718097$$

•
$$SC_A = \sum \frac{x_{i...}^2}{bcr} - TC = 6.1668474$$

•
$$SC_B = \sum \frac{x_{.j..}^2}{acr} - TC = 7.7385967$$

•
$$SC_C = \sum \frac{x_{-k}^2}{abr} - TC = 13.9390223$$

•
$$SC_{AB} = (\sum \frac{x_{ij...}^2}{cr} - TC) - SC_A - SC_B = 3.4172677$$

•
$$SC_{AC} = (\sum \frac{x_{i,k}^2}{br} - TC) - SC_A - SC_C = 26.4153052$$

•
$$SC_{BC} = (\sum \frac{x_{jk.}^2}{ar} - TC) - SC_B - SC_C = 0.4916347$$

•
$$SC_{ABC} = (\sum \frac{x_{ij...}^2}{l} - TC) - SC_A - SC_B - SC_C - SC_{AB} + SC_{AC} + SC_{BC} = 2.6991257$$

•
$$SC_{Blog.} = \sum \frac{x^2}{abc} - TC = 13.1396411$$

Hipótesis Estadísticas

Factor A: Nitrógeno

1.
$$H_0: \alpha_i = 0$$

 $H_1: \alpha_i \neq 0$

2. Nivel de confianza $\alpha = 1\%$; 5%

3.
$$F_0 = 0.8729$$

4.
$$F_{5\%}(2,22) = 3.4433568$$

 $F_{1\%}(2,22) = 5.7190219$

5.
$$F_0 < F_{1\%}(2,22)$$

6. Dado que $F_0 < F_{5\%}(2,22)$ se acepta la H_0 , por lo tanto no existe diferencia significativa (p > 5%) entre el rendimiento promedio (Tm./Ha.) de las 3 dosis de nitrógeno.

Factor B: Fósforo

- 1. $H_0: \beta_j = 0$ $H_1: \beta_j \neq 0$
- 2. Nivel de confianza $\alpha = 1\%$; 5%
- 3. $F_0 = 2.191$
- 4. $F_{5\%}(1,22) = 4.3009495$ $F_{1\%}(1,22) = 7.9453857$
- 5. $F_0 < F_{5\%}(1,22)$
- 6. Dado que $F_0 < F_{5\%}(1,22)$ se acepta la H_0 , por lo tanto no existe diferencia significativa (p > 5%) entre el rendimiento promedio(Tm./Ha.) de las 3 dosis de fósforo.

Factor C : Aplicaciones

- 1. $H_0: \delta_k = 0$ $H_1: \delta_k \neq 0$
- 2. Nivel de confianza $\alpha=1\%;\ 5\%$
- 3. $F_0 = 3.946$
- 4. $F_{5\%}(1,22) = 4.3009495$ $F_{1\%}(1,22) = 7.9453857$
- 5. $F_0 < F_{5\%}(1,22)$
- 6. Dado que $F_0 < F_{5\%}(1,22)$ se acepta la H_0 , por lo tanto no existe diferencia significativa (p > 5%) entre el rendimiento promedio(Tm./Ha.) con respecto al momento de aplicación.

Interacción AxB: Nitrógeno x Fósforo

- 1. $H_0: (\alpha\beta)_{ij} = 0$ $H_1: (\alpha\beta)_{ij} \neq 0$
- 2. Nivel de confianza $\alpha = 1\%$; 5%
- 3. $F_0 = 0.484$
- 4. $F_{5\%}(2,22) = 3.4433568$ $F_{1\%}(2,22) = 5.7190219$
- 5. $F_0 < F_{5\%}(2,22)$
- 6. Dado que $F_0 < F_{5\%}(2,22)$ se acepta a la H_0 , por lo tanto no existe interacción (p > 5%) y los factores son independientes.

Interacción AxC: Nitrógeno x Aplicaciones

- 1. $H_0: (\alpha \delta)_{ik} = 0$ $H_1: (\alpha \delta)_{ik} \neq 0$
- 2. Nivel de confianza $\alpha = 1\%$; 5%
- 3. $F_0 = 3.739$
- 4. $F_{5\%}(2,22) = 3.4433568$ $F_{1\%}(2,22) = 5.7190219$
- 5. $F_0 > F_{5\%}(2,22)$
- 6. Dado que $F_0 > F_{5\%}(2,22)$ se rechaza a la H_0 , por lo tanto existe interacción (p > 5%) y los factores no son independientes.

Interacción BxC : Fósforo x Aplicaciones

- 1. $H_0: (\beta \delta)_{jk} = 0$ $H_1: (\beta \delta)_{jk} \neq 0$
- 2. Nivel de confianza $\alpha = 1\%$; 5%
- 3. $F_0 = 0.139$
- 4. $F_{5\%}(1,22) = 4.3009495$ $F_{1\%}(1,22) = 7.9453857$
- 5. $F_0 < F_{5\%}(1,22)$
- 6. Dado que $F_0 < F_{5\%}(1,22)$ se acepta a la H_0 , por lo tanto no existe interacción (p > 5%) y los factores son independientes.

Interacción AxBxC : Nitrógeno x Fósforo x Aplicaciones

- 1. $H_0: (\alpha\beta\delta)_{ijk} = 0$ $H_1: (\alpha\beta\delta)_{ijk} \neq 0$
- 2. Nivel de confianza $\alpha = 1\%$; 5%
- 3. $F_0 = 0.382$
- 4. $F_{5\%}(2,22) = 3.4433568$ $F_{1\%}(2,22) = 5.7190219$
- 5. $F_0 < F_{5\%}(2,22)$
- 6. Dado que $F_0 < F_{5\%}(2,22)$ se acepta a la H_0 , por lo tanto no existe interacción (p > 5%) y los factores son independientes.

Table 4: ANOVA manualmente

F.V	G.L	SC.	CM.	F_0	Sig.
Bloque	2	13.1396411	6.5698205	1.8599258	
A	2	6.1668474	3.0834237	0.8729217	No
В	1	7.7385967	7.7385967	2.190808	No
\mathbf{C}	1	13.9390223	13.9390223	3.9461575	No
A * B	2	3.4172677	1.7086339	0.4837167	No
A * C	2	26.4153052	13.2076526	3.7391057	*
B * C	1	0.4916347	0.4916347	0.1391825	No
A*B*C	2	2.6991257	1.3495629	0.3820632	No
Error	22	77.7106563	3.5323026		
Total	35	151.718097			

```
## [1] "Anova en R-Studio"
```

```
Df Sum Sq Mean Sq F value Pr(>F)
## BLOQUE
                                   2 13.14
                                              6.570
                                                      1.860 0.1793
## NITRÓGENO
                                       6.17
                                              3.083
                                                      0.873 0.4317
## FÓSFORO
                                   1
                                       7.74
                                              7.739
                                                      2.191 0.1530
## APLICACIONES
                                      13.94
                                             13.939
                                                      3.946 0.0596
                                   1
## NITRÓGENO:FÓSFORO
                                   2
                                       3.42
                                              1.709
                                                      0.484 0.6229
## NITRÓGENO: APLICACIONES
                                   2
                                      26.42
                                             13.208
                                                      3.739 0.0400 *
## FÓSFORO: APLICACIONES
                                                      0.139 0.7127
                                   1
                                       0.49
                                              0.492
## NITRÓGENO:FÓSFORO:APLICACIONES
                                   2
                                       2.70
                                              1.350
                                                      0.382 0.6869
## Residuals
                                     77.71
                                              3.532
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Variable	donondionto	Rendimiento er	o Tm/⊔o

F.V	Tipo III de suma de cuadrados	gl	Cuadrático promedio	Sig.	Sig.
Bloque	13,140	2	6,570	,179	N.S.
Α	6,167	2	3,083	,432	N.S.
В	7,739	1	7,739	,153	N.S.
С	13,939	1	13,939	,060	N.S.
A * B	3,417	2	1,709	,623	N.S.
A * C	26,415	2	13,208	,040	*
B * C	,492	1	,492	,713	N.S.
A * B * C	2,699	2	1,350	,687	N.S.
Error	77,711	22	3,532		
Total	151,718	35			

Figure 4: ANOVA - SPSS

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	74.01	13	5.69	1.61	0.1566
BLOQUE	13.14	2	6.57	1.86	0.1793
NITRÓGENO	6.17	2	3.08	0.87	0.4317
FÓSFORO	7.74	1	7.74	2.19	0.1530
APLICACIONES	13.94	1	13.94	3.95	0.0596
NITRÓGENO*FÓSFORO	3.42	2	1.71	0.48	0.6229
NITRÓGENO*APLICACIONES	26.42	2	13.21	3.74	0.0400
FÓSFORO*APLICACIONES	0.49	1	0.49	0.14	0.7127
NITRÓGENO*FÓSFORO*APLICACI	2.70	2	1.35	0.38	0.6869
Error	77.71	22	3.53		
Total	151.72	35			

Figure 5: ANOVA - InfoStat

COMPARACIONES MULTIPLES A PRIORI

PARA FACTOR A: NITRÓGENO

$$Totales = \begin{cases} SC_c = \frac{Q^2}{rbc \sum c_i^2} \\ Q = \sum c_i x_i ... \end{cases}$$

$$C_1 = \mu_{3...} \ vs. \ (\mu_{1...} \ ; \ \mu_{2...}) \Rightarrow C_1 = 2\mu_{3..} \ - \ \mu_{1...} \ - \ \mu_{2...}$$

 $C_2 = \mu_{2...} \ vs. \ \mu_{1...} \Rightarrow C_2 = \mu_{2...} \ - \ \mu_{1...}$

I. HIPÓTESIS

 $H_0: c=0$

 $H_1: c \neq 0$

II. NIVEL DE SIGNIFICANCIA

 $\alpha = 0.05$

 $\alpha = 0.01$

III. VERIFICACIÓN DE ORTOGONALIDAD

	μ_{1}	μ_{2}	μ_{3}
C_1	-1	-1	2
C_2	-1	1	0
$k_i l_i$	1	-1	0

$$\sum \frac{k_i l_i}{n} = 0$$

$\overline{x_{i}}$	402.393	397.57	409.654	$\sum C_i^2$	$\sum c_i x_i \dots$	SC_c	F_0	Sig.
C_1	-1	-1	2	6	19.345	1.4028125	0.3971383	No
C_2	-1	1	0	2	-4.823	3.3376042	0.9448806	No

$$SC_{C_1} = \frac{Q^2}{rbc\sum c_i^2} = \frac{(19.345)^2}{3(2)2(6)} = 5.1976253$$

$$SC_{C_2} = \frac{Q^2}{rbc\sum_{c_i^2} c_i^2} = \frac{(-4.823)^2}{3(2)2(2)} = 0.969222$$

IV. ESTADÍSTICO DE PRUEBA

$$F_{C1} = \frac{CM_{C_1}}{CM_E} = \frac{5.1976253}{3.5323026} = 1.4714553$$

$$F_{C_2} = \frac{CM_{C_2}}{CM_E} = \frac{0.969222}{3.5323026} = 0.2743882$$

Se comprueba que $SC_A = SC_{C_1} + SC_{C_2}$

- $SC_A = 6.1668474$
- $SC_{C_1} + SC_{C_2} = 5.1976253 + 0.969222 = 6.1668474$

V. PUNTO CRÍTICO

- $F_t = 4.3009 \text{ al } 5\%$
- $F_t = 7.9454$ al 1%

VI. VALOR EXPERIMENTAL

- $F_{C_1} = 1.4714553$
- $F_{C_2} = 0.2743882$

Contrastes

NITRÓGENO	Contraste	E.E.	SC	gl	CM	F	p-valor	
Contrastel	1.61	1.33	5.20	1	5.20	1.47	0.2380	_
Contraste2	-0.40	0.77	0.97	1	0.97	0.27	0.6056	
Total			6.17	2	3.08	0.87	0.4317	

Coeficientes de los contrastes

NITRÓGENO	Ct.1	Ct.2
100 Kg./Ha.	-1.00	1.00
130 Kg./Ha.	2.00	0.00
70 Kg./Ha.	-1.00	-1.00

Figure 6: Contraste a Priori para Factor Nitrógeno

VII. DECISIÓN

- Para el C_1 se acepta la H_0 con un 95% de confianza. Por lo tanto no existe diferencia significativa en el rendimiento de piña (Tm./Ha.) con dosis de nitrógeno de 70,100 y 130 kg./ha.
- Pe acepta la H_0 con un 95% de confianza. Por lo tanto no existe diferencia significativa en el rendimiento de piña (Tm./Ha.) con dosis de nitrógeno de 70 y 100 kg./ha.

PARA FACTOR B: FÓSFORO

$$Totales = \begin{cases} SC_c = \frac{Q^2}{rac \sum c_i^2} \\ Q = \sum c_i x_{.j..} \end{cases}$$

$$\frac{\mathbf{B}: \quad B_1 \quad B_2}{\mu_{.1..} \quad \mu_{.2..}}$$

$$C_1 = \mu_{.2..} \ vs. \ \mu_{.1..} \Rightarrow C_1 = \mu_{.2..} - \mu_{.1..}$$

I. HIPÓTESIS

$$H_0: c=0$$

$$H_1: c \neq 0$$

II. NIVEL DE SIGNIFICANCIA

$$\alpha = 0.05$$

$$\alpha = 0.01$$

III. VERIFICACIÓN DE ORTOGONALIDAD

<i>C</i> 1 1	
C_1 -1 1	
$k_i l_i$ -1 1	

$$\sum \frac{k_i l_i}{n} = 0$$

$\overline{x_{.j}}$	596.463	613.154	$\sum C_i^2$	$\sum c_i x_{.j}$	SC_c	F_0	Sig.
C_1	-1	1	2	16.691	7.7385967	2.190808	No

$$SC_{C_1} = \frac{Q^2}{rac\sum c_i^2} = \frac{(16.691)^2}{3(3)2(2)} = 7.7385967$$

IV. ESTADÍSTICO DE PRUEBA

$$F_{C1} = \frac{CM_{C_1}}{CM_E} = \frac{7.7385967}{3.5323026} = 2.190808$$

Se comprueba que $SC_B = SC_{C_1}$

- $SC_B = 7.7385967$
- $SC_{C_1} = 7.7385967$

V. PUNTO CRÍTICO

- $F_t = 4.3009 \text{ al } 5\%$
- $F_t = 7.9454$ al 1%

VI. VALOR EXPERIMENTAL

• $F_{C_1} = 2.190808$

Contrastes FÓSFORO	Contraste	E.E.	SC	gl	CM	F	p-valor	
Contrastel	0.93	0.63	7.74	1	7.74	2.19	0.1530	
Total			7.74	1	7.74	2.19	0.1530	
Coeficiento FÓSFORO 25 Kg./Ha. 5 Kg./Ha.	Ct.1 1.00	contr	astes					

Figure 7: Contraste a Priori para Factor Fósforo

VII. DECISIÓN

• Para el C_1 se acepta la H_0 con un 95% de confianza. Por lo tanto no existe diferencia significativa en el rendimiento de piña (Tm./Ha.) con dosis de fósforo de 25 y 5 kg./ha.

PARA FACTOR C : APLICACIONES

$$Totales = \begin{cases} SC_c = \frac{Q^2}{rab \sum c_i^2} \\ Q = \sum c_i x_{..k.} \end{cases}$$

$$\begin{array}{c|cccc}
C: & C_1 & C_2 \\
\hline
& \mu_{..1.} & \mu_{..2.}
\end{array}$$

$$C_1 = \mu_{..2.} \ vs. \ \mu_{..1.} \Rightarrow C_1 = \mu_{..2.} - \mu_{..1.}$$

I. HIPÓTESIS

 $H_0: c=0$

 $H_1: c \neq 0$

II. NIVEL DE SIGNIFICANCIA

 $\alpha = 0.05$

 $\alpha = 0.01$

III. VERIFICACIÓN DE ORTOGONALIDAD

$$\begin{array}{c|cccc} & \mu_{..1.} & \mu_{..2} \\ \hline C_1 & -1 & 1 \\ k_i l_i & -1 & 1 \\ \end{array}$$

$$\sum \frac{k_i l_i}{n} = 0$$

$\overline{x_{k.}}$	616.009	593.608	$\sum C_i^2$	$\sum c_i x_{k.}$	SC_c	F_0	Sig.
C_1	-1	1	2	-22.401	13.9390223	3.9461575	No

$$SC_{C_1} = \frac{Q^2}{rab\sum c_i^2} = \frac{(-22.401)^2}{3(3)2(2)} = 13.9390223$$

IV. ESTADÍSTICO DE PRUEBA

$$F_{C1} = \frac{CM_{C_1}}{CM_E} = \frac{13.9390223}{3.5323026} = 3.9461575$$

Se comprueba que $SC_C = SC_{C_1}$

- $SC_C = 13.9390223$
- $SC_{C_1} = 13.9390223$

V. PUNTO CRÍTICO

- $F_t = 4.3009 \text{ al } 5\%$
- $F_t = 7.9454$ al 1%

VI. VALOR EXPERIMENTAL

• $F_{C_1} = 3.9461575$

APLICACIONES	Contraste	E.E.	SC	gl	CM	F	p-valor
Contrastel	-1.24	0.63	13.94	1	13.94	3.95	0.0596
Total			13.94	1	13.94	3.95	0.0596
Coeficientes		ontras	tes				
Coeficientes APLICACIONES		ontras	tes				

Figure 8: Contraste a Priori para el Factor Aplicaciones

VII. DECISIÓN

• Para el C_1 se acepta la H_0 con un 95% de confianza. Por lo tanto no existe diferencia significativa en el rendimiento de piña (Tm./Ha.) con las diferentes aplicaciones.

COMPARACIONES MULTIPLES A POSTERIORI

PARA FACTOR A: NITRÓGENO

1. PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CM_E}{bcr}} = \sqrt{\frac{3.5323026}{2(2)3}} = 0.5425482$$

II. AES: De la tabla Duncan \Rightarrow ($\alpha=5\%$, a = 3, $GL_E=22$)

	2	3
AES	2.935	3.085
ALS	1.592379	1.6737612

III.
$$\bar{x}_{i...} = \frac{x_{i...}}{bcr}$$

$$\bar{x}_{1...} = \frac{x_{1...}}{bcr} = \frac{402.393}{2(2)(3)} = 33.5328$$

$$\bar{x}_{2...} = \frac{x_{2...}}{bcr} = \frac{397.57}{2(2)(3)} = 33.1308$$

$$\bar{x}_{3...} = \frac{x_{3...}}{bcr} = \frac{409.654}{2(2)(3)} = 34.1378$$

IV. Número de comparaciones

$$\frac{a(a-1)}{2} = \frac{3(3-1)}{2} = 3$$

V. Ordenamos los promedios de forma ascendente

\bar{x}_{2}	\bar{x}_{1}	\bar{x}_{3}
33.5328	33.1308	34.1378

MÉTODO I

\bar{x}_{2}	\bar{x}_{1}	\bar{x}_{3}
33.5328	33.1308	34.1378

	2	3
AES	2.935	3.085
ALS	1.592379	1.6737612

Comparaciones	Dif.	ALS	Dif > ALS	Sig.
$ar{x}_{130~Kg./Ha.} - ar{x}_{100~kg./Ha.} \ ar{x}_{130~kg./Ha.} - ar{x}_{70~kg./Ha.} \ ar{x}_{70~kg./Ha.} - ar{x}_{70~kg./Ha.} \ ar{x}_{70~kg./Ha.} - ar{x}_{100~kg./Ha.}$	0.605	1.6737612 1.592379 1.592379	No No No	No No No

MÉTODO II: TRIANGULAR

	33.13	33.53	34.14	
33.13	0	0.40 <	1.01 <	ALS
33.53		0	0.61	1.67
34.14			0	1.59

MÉTODO III

\overline{X}_{2}	\overline{X}_{1}	\overline{X}_{3}
33.13	33.53	34.14
	а	

2	3
2.94	3.09
1.59	1.67

1.- 34.14 - 1.67 = 32.47

DUNCAN EN R-STUDIO

```
## Study: modelo ~ "NITRÓGENO"
## Duncan's new multiple range test
## for RENDIMIENTO
##
## Mean Square Error: 3.532303
## NITRÓGENO, means
##
##
              RENDIMIENTO
                             std r
                                        Min
## 100 Kg./Ha.
                 33.13083 1.815306 12 30.682 36.818
                 34.13783 2.604805 12 30.357 39.015
## 130 Kg./Ha.
## 70 Kg./Ha. 33.53275 1.775270 12 30.682 37.662
## Alpha: 0.05; DF Error: 22
## Critical Range
         2
## 1.591239 1.670827
## Means with the same letter are not significantly different.
              RENDIMIENTO groups
## 130 Kg./Ha.
                 34.13783
## 70 Kg./Ha.
                 33.53275
                               a
## 100 Kg./Ha.
                 33.13083
```

Test:Duncan Alfa=0.05

Error: 3.5323 gl: 22 NITRÓGENO Medias n E.E. 130 Kg./Ha. 34.14 12 0.54 A 70 Kg./Ha. 33.53 12 0.54 A 100 Kg./Ha. 33.13 12 0.54 A

Figure 9: Fuente: InfoStat

Table 19: Duncan al 5% del rendimiento de piña en Tm./Ha.

Dosis de Nitrógeno	$\bar{X}_{i}(rendimiento)$	Sig.
$\overline{130 \; Kg./Ha.}$	34.14	a
$70 \ Kg./Ha.$	33.53	\mathbf{a}
$100 \ Kg./Ha.$	33.13	a

Rendimiento de Piña en Tm./Ha. según niveles de nitrógeno

Figure 10: Fuente: InfoStat

PARA FACTOR B: FÓSFORO

1. PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CM_E}{acr}} = \sqrt{\frac{3.5323026}{3(2)3}} = 0.4429887$$

II. AES : De la tabla Duncan \Rightarrow ($\alpha=5\%$, b = 2, $GL_E=22$)

	2
AES	2.935
ALS	1.300172

III.
$$\bar{x}_{.j.} = \frac{x_{.j.}}{acr}$$

$$\bar{x}_{.1..} = \frac{x_{.1..}}{acr} = \frac{596.463}{3(2)3} = 33.1368$$

$$\bar{x}_{.1..} = \frac{x_{.1..}}{acr} = \frac{596.463}{3(2)3} = 33.1368$$

$$\bar{x}_{.2..} = \frac{x_{.2..}}{acr} = \frac{613.154}{3(2)3} = 34.0641$$

IV. Número de comparaciones

$$\frac{b(b-1)}{2} = \frac{2(2-1)}{2} = 1$$

V. Ordenamos los promedios de forma ascendente

$\bar{x}_{.1}$	$\bar{x}_{.2}$
33.1368	34.0641

MÉTODO I

$$\begin{array}{ccc} \bar{x}_{.1..} & \bar{x}_{.2..} \\ \hline 33.1368 & 34.0641 \end{array}$$

$$\begin{array}{cc} & 2 \\ \hline {\rm AES} & 2.935 \\ {\rm ALS} & 1.300172 \\ \end{array}$$

Comparaciones	Dif.	ALS	Dif > ALS	Sig.
$\bar{x}_{25 \ Kg./Ha.} - \bar{x}_{5 \ kg./Ha.}$	0.9273	1.300172	No	No

MÉTODO II: TRIANGULAR

	33.1368	34.0641	
33.1368	0	1 <	ALS
34.0641		0	1.3

MÉTODO III

$\bar{x}_{.1}$	$\bar{x}_{.2}$		2
33.1368	34.0641	AES	2.9
a		ALS	1.302

1.-34.0641 - 1.3024 = 32.76168

DUNCAN EN R-STUDIO

```
##
## Study: modelo ~ "FÓSFORO"
## Duncan's new multiple range test
## for RENDIMIENTO
## Mean Square Error: 3.532303
## FÓSFORO, means
##
             RENDIMIENTO std r Min Max
##
## 25 Kg./Ha. 34.06411 2.064864 18 30.909 38.131
## 5 Kg./Ha. 33.13683 2.050785 18 30.357 39.015
##
## Alpha: 0.05; DF Error: 22
##
## Critical Range
##
## 1.299241
##
## Means with the same letter are not significantly different.
##
             RENDIMIENTO groups
## 25 Kg./Ha.
                34.06411
## 5 Kg./Ha.
                33.13683
```

Test:Duncan Alfa=0.05

Error: 3.5323 gl: 22 FÓSFORO Medias n E.E. 25 Kg./Ha. 34.06 18 0.44 A 5 Kg./Ha. 33.14 18 0.44 A

Figure 11: Fuente: InfoStat

Table 25: Duncan al 5% del rendimiento de piña en Tm./Ha.

Dosis de Fósforo	$\bar{X}_{.j}(rendimiento)$	Sig.
25 Kg./Ha.	34.0641	a
5 Kg./Ha.	33.1368	a

Rendimiendto de piña en Tm./Ha. según niveles de fósforo

Figure 12: Fuente: InfoStat

PARA FACTOR C : APLICACIONES

1. PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CM_E}{abr}} = \sqrt{\frac{3.5323026}{3(2)3}} = 0.4429887$$

II. AES : De la tabla Duncan \Rightarrow ($\alpha=5\%$, c = 2, $GL_E=22$)

	2
AES	2.935
ALS	1.300172

III.
$$\bar{x}_{.j.} = \frac{x_{.j.}}{abr}$$

 $\bar{x}_{..1.} = \frac{x_{.1.}}{abr} = \frac{616.009}{3(2)3} = 34.2227$
 $\bar{x}_{..2.} = \frac{x_{..2.}}{abr} = \frac{593.608}{3(2)3} = 32.9782$

IV. Número de comparaciones

$$\frac{c(c-1)}{2} = \frac{2(2-1)}{2} = 1$$

V. Ordenamos los promedios de forma ascendente

$\bar{x}_{2.}$	$\bar{x}_{1.}$
32.9782	34.2227

MÉTODO I

$$\begin{array}{ccc} \bar{x}_{..2.} & \bar{x}_{..1.} \\ \hline 32.9782 & 34.2227 \end{array}$$

$$\begin{array}{c} & 2\\ \hline {\rm AES} & 2.935\\ {\rm ALS} & 1.300172 \end{array}$$

Comparaciones	Dif.	ALS	Dif > ALS	Sig.
$\bar{x}_{25 \ Kg./Ha.} - \bar{x}_{5 \ kg./Ha.}$	6.6405	1.300172	No	No

MÉTODO II: TRIANGULAR

	32.9782	34.2227	
32.9782	0	1.2	ALS
34.2227		0	1.3

MÉTODO III:

$\bar{x}_{.2}$	$\bar{x}_{.1}$		2
32.9782	34.2227	AES	2.935
a		ALS	1.30020

1.-34.0641 - 1.3024 = 32.922495

DUNCAN EN R-STUDIO

```
##
## Study: modelo ~ "APLICACIONES"
## Duncan's new multiple range test
## for RENDIMIENTO
## Mean Square Error: 3.532303
## APLICACIONES, means
##
## RENDIMIENTO
                     std r Min
                                      Max
       34.22272 2.368847 18 30.682 39.015
       32.97822 1.578992 18 30.357 36.818
## 2
##
## Alpha: 0.05; DF Error: 22
##
## Critical Range
##
## 1.299241
## Means with the same letter are not significantly different.
    RENDIMIENTO groups
## 1
       34.22272
## 2
       32.97822
```

Test:Duncan Alfa=0.05

Error: 3.5323 gl: 22

APLICACIONES Medias n E.E.

1 34.22 18 0.44 A
2 32.98 18 0.44 A

Figure 13: Fuente: InfoStat

Table 31: Duncan al 5% del rendimiento de piña en Tm./Ha.

APLICACIONES	$\bar{X}_{k.}(rendimiento)$	Sig.
1	34.2227	a
2	32.9782	a

Rendimiento de piña en Tm./Ha. según aplicaciones

Figure 14: Fuente: InfoStat

INTERACCIÓN AxB: NITRÓGENOxFÓSFORO

1. PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CM_E}{cr}} = \sqrt{\frac{3.5323026}{2(3)}} = 0.767279$$

II. AES: De la tabla Duncan \Rightarrow ($\alpha=5\%$, $ab=6,\,GL_E=22$)

	2	3	4	5	6
AES	2.935	3.085 2.3670558	3.175	3.245	3.29
ALS	2.2519639		2.4361109	2.4898204	2.524348

III.
$$\bar{x}_{ij..} = \frac{x_{ij..}}{cr}$$

$$\bar{x}_{11..} = \frac{x_{11..}}{cr} = \frac{200.944}{2(3)} = 33.49$$

$$\bar{x}_{12..} = \frac{x_{12..}}{cr} = \frac{201.449}{2(3)} = 33.57$$

$$\bar{x}_{21..} = \frac{x_{21..}}{cr} = \frac{194.166}{2(3)} = 32.36$$

$$\bar{x}_{22..} = \frac{x_{22..}}{cr} = \frac{203.404}{2(3)} = 33.9$$

$$\bar{x}_{31..} = \frac{x_{31..}}{cr} = \frac{201.353}{2(3)} = 33.56$$

$$\bar{x}_{32..} = \frac{x_{32..}}{cr} = \frac{208.301}{2(3)} = 34.72$$

IV. Número de comparaciones

$$\frac{ab(ab-1)}{2} = \frac{6(6-1)}{2} = 15$$

V. Ordenamos los promedios de forma ascendente

\bar{x}_{21}	\bar{x}_{11}	\bar{x}_{31}	\bar{x}_{12}	\bar{x}_{22}	\bar{x}_{32}
32.36	33.49	33.56	33.57	33.90	34.72

MÉTODO III

	\bar{x}_{11}	\bar{x}_{31}	\bar{x}_{12}	\bar{x}_{22}	\bar{x}_{32}		2	3	4	5	Ξ
1	33.4907	33.5588	33.5748	33.9007	34.7168	AES	2.935	3.085	3.175	3.245	
		a				ALS	2.25	2.37	2.44	2.49	

1.- 34.7168 -2.52 = 32.1968

```
## [1] "Duncan al 5% del Rendimiento en Tm./Ha."
##
## Study: modeloGeneral ~ "AB"
##
## Duncan's new multiple range test
## for RENDIMIENTO
##
## Mean Square Error: 3.532303
##
## AB,
       means
##
##
                          RENDIMIENTO
                                            std r
                                                            Max
                             33.90067 1.934564 6 30.909 36.818
## 100 Kg./Ha.-25 Kg./Ha.
## 100 Kg./Ha.-5 Kg./Ha.
                             32.36100 1.443903 6 30.682 34.375
## 130 Kg./Ha.-25 Kg./Ha.
                             34.71683 2.311588 6 32.102 38.131
## 130 Kg./Ha.-5 Kg./Ha.
                             33.55883 2.962939 6 30.357 39.015
## 70 Kg./Ha.-25 Kg./Ha.
                             33.57483 2.140069 6 31.818 37.662
## 70 Kg./Ha.-5 Kg./Ha.
                             33.49067 1.532756 6 30.682 35.065
## Alpha: 0.05; DF Error: 22
##
## Critical Range
##
## 2.250352 2.362906 2.434842 2.485398 2.522931
## Means with the same letter are not significantly different.
##
##
                          RENDIMIENTO groups
## 130 Kg./Ha.-25 Kg./Ha.
                             34.71683
## 100 Kg./Ha.-25 Kg./Ha.
                             33.90067
## 70 Kg./Ha.-25 Kg./Ha.
                             33.57483
## 130 Kg./Ha.-5 Kg./Ha.
                             33.55883
## 70 Kg./Ha.-5 Kg./Ha.
                             33.49067
                                            а
## 100 Kg./Ha.-5 Kg./Ha.
                             32.36100
               Test:Duncan Alfa=0.05
               Error: 3.5323 gl: 22
               NITRÓGENO FÓSFORO
                                     Medias n E.E.
               130 Kg./Ha. 25 Kg./Ha. 34.72 6 0.77 A
               100 Kg./Ha. 25 Kg./Ha.
                                     33.90 6 0.77 A
               70 Kg./Ha. 25 Kg./Ha.
                                      33.57 6 0.77 A
               130 Kg./Ha. 5 Kg./Ha.
                                      33.56 6 0.77 A
               70 Kg./Ha. 5 Kg./Ha.
                                      33.49 6 0.77 A
                                      32.36 6 0.77 A
               100 Kg./Ha. 5 Kg./Ha.
```

Figure 15: Fuente: InfoStat

Medias con una letra común no son significativamente diferentes (p > 0.05)

Table 34: Duncan al 5% para el rendimiento de piña en Tm./Ha.

Nitrógeno x Fósforo	$\bar{X}_{ij}(rendimiento)$	Sig.
$\overline{130 \; Kg./Ha. \; - \; 25 \; Kg./Ha.}$	34.72	a
$100 \; Kg./Ha. \; - \; 25 \; Kg./Ha.$	33.90	a
$70 \; Kg./Ha. \; - \; 25 \; Kg./Ha.$	33.57	\mathbf{a}
$130 \; Kg./Ha. \; - \; 5 \; Kg./Ha.$	33.56	\mathbf{a}
$70 \; Kg./Ha. \; - \; 5 \; Kg./Ha.$	33.49	\mathbf{a}
$100 \ Kg./Ha 5 \ Kg./Ha.$	32.36	a

Interacción Nitrógeno-Fósforo

INTERACCIÓN AxC: NITRÓGENOXAPLICACIONES

1. PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CM_E}{br}} = \sqrt{\frac{3.5323026}{2(3)}} = 0.767279$$

II. AES : De la tabla Duncan \Rightarrow ($\alpha=5\%$, ac = 6, $GL_E=22$)

2	3	4	5	6
 		3.175 2.44	-	

III.
$$\bar{x}_{i.k.} = \frac{x_{i.k.}}{br}$$

$$\bar{x}_{1.1.} = \frac{x_{1.1.}}{br} = \frac{207.065}{2(3)} = 34.51$$

$$\bar{x}_{1.2.} = \frac{x_{1.2.}}{br} = \frac{195.328}{2(3)} = 32.55$$

$$\bar{x}_{2.1.} = \frac{x_{2.1.}}{br} = \frac{195.434}{2(3)} = 32.57$$

$$\bar{x}_{2.2.} = \frac{x_{2.2.}}{br} = \frac{202.136}{2(3)} = 33.69$$

$$\bar{x}_{3.1.} = \frac{x_{3.1.}}{br} = \frac{213.51}{2(3)} = 35.58$$

$$\bar{x}_{3.2.} = \frac{x_{3.2.}}{cr} = \frac{196.144}{2(3)} = 32.69$$

IV. Número de comparaciones

$$\frac{ac(ac-1)}{2} = \frac{6(6-1)}{2} = 15$$

V. Ordenamos los promedios de forma ascendente

$\bar{x}_{1.2.}$	$\bar{x}_{2.1.}$	$\bar{x}_{3.2.}$	$\bar{x}_{2.2.}$	$\bar{x}_{1.1.}$	$\bar{x}_{3.1.}$
32.55	32.57	32.69	33.69	34.51	35.58

MÉTODO III

$\bar{x}_{1.2}$	$\bar{x}_{2.1}$	$\bar{x}_{3.2}$	$\bar{x}_{2.2}$	$\bar{x}_{1.1}$	$\bar{x}_{3.1}$
32.55	32.57	32.69	33.69	34.51	35.58
				a	_

	2	3	4	5	6
AES	2.935	3.085	3.175	3.245	3.29
ALS	2.25	2.37	2.44	2.49	2.52

1.- 35.58 -2.52 = 33.06

2.- 34.51-2.49 = 32.04

```
## [1] "Duncan al 5% del Rendimiento en Tm./Ha."
##
## Study: modeloGeneral ~ "AC"
##
## Duncan's new multiple range test
## for RENDIMIENTO
##
## Mean Square Error: 3.532303
##
## AC, means
##
##
                 RENDIMIENTO
                                  std r
                                           Min
## 100 Kg./Ha.-1
                    32.57233 1.585683 6 30.682 34.848
## 100 Kg./Ha.-2
                    33.68933 1.996681 6 30.682 36.818
## 130 Kg./Ha.-1
                    35.58500 2.811215 6 31.818 39.015
## 130 Kg./Ha.-2
                    32.69067 1.413434 6 30.357 34.091
## 70 Kg./Ha.-1
                    34.51083 1.751128 6 32.727 37.662
## 70 Kg./Ha.-2
                    32.55467 1.253429 6 30.682 34.091
##
## Alpha: 0.05; DF Error: 22
##
## Critical Range
##
                   3
## 2.250352 2.362906 2.434842 2.485398 2.522931
## Means with the same letter are not significantly different.
##
##
                 RENDIMIENTO groups
## 130 Kg./Ha.-1
                    35.58500
## 70 Kg./Ha.-1
                    34.51083
                                 ab
## 100 Kg./Ha.-2
                    33.68933
                                 ab
## 130 Kg./Ha.-2
                    32.69067
                                  b
## 100 Kg./Ha.-1
                    32.57233
                                  b
## 70 Kg./Ha.-2
                    32.55467
           Test:Duncan Alfa=0.05
           Error: 3.5323 gl: 22
            NITRÓGENO APLICACIONES Medias n E.E.
           130 Kg./Ha. 1
                                      35.59
                                             6 0.77 A
           70 Kg./Ha. 1
                                      34.51 6 0.77 A
           100 Kg./Ha. 2
                                      33.69
                                             6 0.77 A
           130 Kg./Ha. 2
                                      32.69
                                             6 0.77
           100 Kg./Ha. 1
                                      32.57
                                             6 0.77
                                                        В
           70 Kg./Ha. 2
                                      32.55 6 0.77
                                                        В
```

Figure 16: Fuente: InfoStat

Medias con una letra común no son significativamente diferentes (p > 0.05)

Table 37: Duncan al 5% para el rendimiento de piña en Tm.Ha

Nitrógeno x Aplicaciones	$\bar{X}_{i.k.}(rendimiento)$	Sig.	
$\frac{130 \ Kg./Ha 1}{}$	35.59	a	
$70 \ Kg./Ha 1$	34.51	\mathbf{a}	b
$100 \ Kg./Ha 2$	33.69	\mathbf{a}	b
$130 \ Kg./Ha 2$	32.69		b
$100 \ Kg./Ha 1$	32.57		b
$70 \ Kg./Ha 1$	32.55		b

Interacción Nitrógeno-Aplicaciones

INTERACCIÓN BxC: FÓSFOROxAPLICACIONES

1. PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CM_E}{ar}} = \sqrt{\frac{3.5323026}{3(3)}} = 0.6264807$$

II. AES: De la tabla Duncan \Rightarrow ($\alpha=5\%$,bc = 4, $GL_E=22$)

	2	3	4
AES	2.935	3.085	3.175
ALS	1.84	1.93	1.99

III.
$$\bar{x}_{.jk.} = \frac{x_{.jk.}}{ar}$$

$$\bar{x}_{.11.} = \frac{x_{.11.}}{ar} = \frac{302.78}{3(3)} = 33.64$$

$$\bar{x}_{.12.} = \frac{x_{.12.}}{ar} = \frac{293.683}{3(3)} = 32.63$$

$$\bar{x}_{.21.} = \frac{x_{.21.}}{ar} = \frac{313.229}{3(3)} = 34.8$$

$$\bar{x}_{.22.} = \frac{x_{.22.}}{ar} = \frac{299.925}{3(3)} = 33.33$$

IV. Número de comparaciones

$$\tfrac{bc(bc-1)}{2} = \tfrac{4(4-1)}{2} = 6$$

V. Ordenamos los promedios de forma ascendente

$\bar{x}_{.12.}$	$\bar{x}_{.22.}$	$\bar{x}_{.11.}$	$\bar{x}_{.21.}$
32.63	33.33	33.64	34.8

MÉTODO III

$\bar{x}_{.12}$	<i>x</i> _{.22}	$\bar{x}_{.11.}$	$\bar{x}_{.21.}$
32.63	33.33	33.64	34.8
		a	

	2	3	4
AES	2.935	3.085	3.175
ALS	1.84	1.93	1.99

1.- 34.8 - 1.99 = 32.81

2.- 33.64 - 1.93 = 31.71

```
##
## Study: modeloGeneral ~ "BC"
## Duncan's new multiple range test
## for RENDIMIENTO
##
## Mean Square Error: 3.532303
##
## BC, means
##
                RENDIMIENTO
                                  std r
                                           Min
                   34.80322 2.327447 9 30.909 38.131
## 25 Kg./Ha.-1
                   33.32500 1.553749 9 31.818 36.818
## 25 Kg./Ha.-2
## 5 Kg./Ha.-1
                   33.64222 2.397726 9 30.682 39.015
## 5 Kg./Ha.-2
                   32.63144 1.616593 9 30.357 34.375
## Alpha: 0.05; DF Error: 22
## Critical Range
##
## 1.837405 1.929305 1.988040
## Means with the same letter are not significantly different.
##
##
                RENDIMIENTO groups
## 25 Kg./Ha.-1
                   34.80322
## 5 Kg./Ha.-1
                   33.64222
                                 ab
## 25 Kg./Ha.-2
                   33.32500
                                 ab
## 5 Kg./Ha.-2
                   32.63144
               Test:Duncan Alfa=0.05
               Error: 3.5323 gl: 22
               FÓSFORO APLICACIONES Medias n E.E.
               25 Kg./Ha. 1
                                      34.80 9 0.63 A
                                      33.64 9 0.63 A B
               5 Kg./Ha. 1
                                      33.33 9 0.63 A B
32.63 9 0.63 B
               25 Kg./Ha. 2
               5 Kg./Ha. 2
```

Figure 17: Fuente: InfoStat

Medias con una letra común no son significativamente diferentes (p > 0.05)

Table 40: Duncan al 5% para el rendimiento de piña en Tm.Ha

Fósforo x Aplicaciones	$\bar{X}_{i.k.}(rendimiento)$	Sig.	
25 Kg./Ha 1	34.8	a	
5 Kg./Ha 1	33.64	\mathbf{a}	b
25 Kg./Ha 2	33.33	\mathbf{a}	b
25 Kg./Ha 2	32.63		b

Interacción Fósforo-Aplicaciones

INTERACCIÓN AxBxC : NITRÓGENOxFÓSFOROxAPLICACIONES

1. PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CM_E}{r}} = \sqrt{\frac{3.5323026}{3}} = 1.0850964$$

II.
$$AES$$
: De la tabla Duncan \Rightarrow ($\alpha = 5\%$, $abc = 12$, $GL_E = 22$)

2	3	4	5	6	7	8	9	10	11	12
 2.935 3.18			-							

III.
$$\bar{x}_{ijk.} = \frac{x_{ijk.}}{r}$$

$$\bar{x}_{111.} = \frac{x_{111.}}{r} = \frac{102.838}{3} = 34.28$$

$$\bar{x}_{112.} = \frac{x_{112.}}{r} = \frac{98.106}{3} = 32.7$$

$$\bar{x}_{121.} = \frac{x_{121.}}{r} = \frac{104.227}{3} = 34.74$$

$$\bar{x}_{122.} = \frac{x_{122.}}{r} = \frac{97.222}{3} = 32.41$$

$$\bar{x}_{211.} = \frac{x_{211.}}{r} = \frac{96.154}{3} = 32.05$$

$$\bar{x}_{212.} = \frac{x_{212.}}{r} = \frac{98.012}{3} = 32.67$$

$$\bar{x}_{221.} = \frac{x_{221.}}{r} = \frac{99.28}{3} = 33.09$$

$$\bar{x}_{222.} = \frac{x_{222.}}{r} = \frac{104.124}{3} = 34.71$$

$$\bar{x}_{311.} = \frac{x_{311.}}{r} = \frac{103.788}{3} = 34.6$$

$$\bar{x}_{312.} = \frac{x_{312.}}{r} = \frac{97.565}{3} = 32.52$$

$$\bar{x}_{321.} = \frac{x_{321.}}{r} = \frac{109.722}{3} = 36.57$$

$$\bar{x}_{322.} = \frac{x_{322.}}{r} = \frac{98.579}{3} = 32.86$$

IV. Número de comparaciones

$$\frac{abc(abc-1)}{2} = \frac{12(12-1)}{2} = 66$$

V. Ordenamos los promedios de forma ascendente

\bar{x}_{211} .	$\bar{x}_{122.}$	$\bar{x}_{312.}$	$\bar{x}_{212.}$	$\bar{x}_{112.}$	\bar{x}_{322} .	$\bar{x}_{221.}$	\bar{x}_{111} .	$\bar{x}_{311.}$	$\bar{x}_{222.}$	$\bar{x}_{121.}$	$\bar{x}_{321.}$
32.05	32.41	32.52	32.67	32.70	32.86	33.09	34.28	34.60	34.71	34.74	36.57

MÉTODO III

$\bar{x}_{211.}$	$\bar{x}_{122.}$	\bar{x}_{312} .	$\bar{x}_{212.}$	$\bar{x}_{112.}$	\bar{x}_{322}	$\bar{x}_{221.}$	\bar{x}_{111} .	$\bar{\chi}_{311.}$	$\bar{x}_{222.}$	$\bar{x}_{121.}$	$\bar{x}_{321.}$
32.05	32.41	32.52	32.67	32.7	32.86	33.09	34.28	34.6	34.71	34.74	36.57
								a			
				b							
	2							Q		11	
	2	3	4	5	6	1	8	9	10	- 11	12
AES	2 2.935	3 3.085	3.175	3.245	3.29	3.33	3.36	3.38	3.4	3.415	3.4

1.- 36.57 - 3.72 = 32.85 2.- 34.74 - 3.71 = 31.03

Test:Duncan Alfa=0.05

Error: 3.5323 gl: 22

NITRÓGENO	FÓSFORO	APLICACIONES	Medias	n	E.E.		
130 Kg./Ha.	25 Kg./Ha.	1	36.57	3	1.09	A	
70 Kg./Ha.	25 Kg./Ha.	1	34.74	3	1.09	A	В
100 Kg./Ha.	25 Kg./Ha.	2	34.71	3	1.09	A	В
130 Kg./Ha.	5 Kg./Ha.	1	34.60	3	1.09	A	В
70 Kg./Ha.	5 Kg./Ha.	1	34.28	3	1.09	A	В
100 Kg./Ha.	25 Kg./Ha.	1	33.09	3	1.09	A	В
130 Kg./Ha.	25 Kg./Ha.	2	32.86	3	1.09		В
70 Kg./Ha.	5 Kg./Ha.	2	32.70	3	1.09		В
100 Kg./Ha.	5 Kg./Ha.	2	32.67	3	1.09		В
130 Kg./Ha.	5 Kg./Ha.	2	32.52	3	1.09		В
70 Kg./Ha.	25 Kg./Ha.	2	32.41	3	1.09		В
100 Kg./Ha.	5 Kg./Ha.	1	32.05	3	1.09		В

Medias con una letra común no son significativamente diferentes (p > 0.05)

Figure 18: Fuente: InfoStat

```
##
## Study: modeloGeneral ~ "TRATAMIENTOS"
## Duncan's new multiple range test
## for RENDIMIENTO
##
## Mean Square Error: 3.532303
##
## TRATAMIENTOS, means
##
##
                             RENDIMIENTO
                                               std r
                                                        Min
                                                                Max
## 100 Kg./Ha.-25 Kg./Ha.-1
                                33.09333 2.0043429 3 30.909 34.848
## 100 Kg./Ha.-25 Kg./Ha.-2
                                34.70800 1.8394554 3 33.442 36.818
## 100 Kg./Ha.-5 Kg./Ha.-1
                                32.05133 1.2059297 3 30.682 32.955
## 100 Kg./Ha.-5 Kg./Ha.-2
                                32.67067 1.8628463 3 30.682 34.375
## 130 Kg./Ha.-25 Kg./Ha.-1
                                36.57400 1.3616523 3 35.606 38.131
## 130 Kg./Ha.-25 Kg./Ha.-2
                                32.85967 1.0757789 3 32.102 34.091
## 130 Kg./Ha.-5 Kg./Ha.-1
                                34.59600 3.8689615 3 31.818 39.015
## 130 Kg./Ha.-5 Kg./Ha.-2
                                32.52167 1.9368803 3 30.357 34.091
## 70 Kg./Ha.-25 Kg./Ha.-1
                                34.74233 2.5888067 3 32.727 37.662
## 70 Kg./Ha.-25 Kg./Ha.-2
                                32.40733 0.8115703 3 31.818 33.333
## 70 Kg./Ha.-5 Kg./Ha.-1
                                34.27933 0.8963405 3 33.303 35.065
## 70 Kg./Ha.-5 Kg./Ha.-2
                                32.70200 1.7899556 3 30.682 34.091
##
## Alpha: 0.05; DF Error: 22
## Critical Range
##
          2
                   3
                            4
                                      5
                                               6
                                                        7
## 3.182478 3.341654 3.443386 3.514884 3.567964 3.608782 3.640929 3.666674
         10
                  11
                           12
## 3.687532 3.704562 3.718532
##
## Means with the same letter are not significantly different.
##
                             RENDIMIENTO groups
## 130 Kg./Ha.-25 Kg./Ha.-1
                                36.57400
## 70 Kg./Ha.-25 Kg./Ha.-1
                                34.74233
                                             ab
## 100 Kg./Ha.-25 Kg./Ha.-2
                                34.70800
                                             ab
## 130 Kg./Ha.-5 Kg./Ha.-1
                                34.59600
                                             ab
## 70 Kg./Ha.-5 Kg./Ha.-1
                                34.27933
                                             ab
## 100 Kg./Ha.-25 Kg./Ha.-1
                                33.09333
                                             ab
## 130 Kg./Ha.-25 Kg./Ha.-2
                                32.85967
                                              b
## 70 Kg./Ha.-5 Kg./Ha.-2
                                32.70200
                                              b
## 100 Kg./Ha.-5 Kg./Ha.-2
                                32.67067
                                              b
## 130 Kg./Ha.-5 Kg./Ha.-2
                                32.52167
                                              b
## 70 Kg./Ha.-25 Kg./Ha.-2
                                32.40733
                                              b
## 100 Kg./Ha.-5 Kg./Ha.-1
                                32.05133
                                              b
```

a las Aplicaciones = Primera Aplicación 37,000 37,000 5 Kg./Ha. 25 Kg./Ha. 25 Kg./Ha. 100 Kg./Ha. 130 Kg./Ha.

Medias marginales estimadas de Tm/Ha.

Figure 19: APLICACION 1-> NITRÓGENOxFÓSFORO

Niveles de Nitrogeno

Figure 20: APLICACION2 -> NITRÓGENOxFÓSFORO

ANÁLISIS DE TENDENCIA

FACTOR A: DOSIS DE NITRÓGENO

$$Totales = \left\{ \begin{array}{l} SC_{R(A)} = \frac{Q^2}{bcr \sum c_i^2} \\ Q = \sum c_i x_{i...} \end{array} \right.$$

Table 43:

$\overline{x_{i}}$	402.393	397.57	409.654	$\sum c_i^2$	$\sum c_i x_i$	SC_c	F_0	Sig.
Lineal	-1	0	1	2	7.261	2.196755	0.62	No
Cuadrático	1	-2	1	6	16.907	3.9700923	1.12	No

$$\begin{split} SC_{A(Lineal)} &= \frac{Q^2}{bcr\sum c_i^2} = \frac{7.261^2}{12(2)} = 2.196755 \Rightarrow F_0 = \frac{CM_{A_{Lineal}}}{CM_E} = \frac{2.196755}{3.5323026} = 0.62 \\ SC_{A(Cuadra.)} &= \frac{Q^2}{bcr\sum c_i^2} = \frac{16.907^2}{12(6)} = 3.9700923 \Rightarrow F_0 = \frac{CM_{A_{Cuadra.}}}{CM_E} = \frac{3.9700923}{3.5323026} = 1.12 \\ \alpha &= 0.05 \rightarrow F_{5\%}(1,22) = 4.3009495 \\ \alpha &= 0.01 \rightarrow F_{1\%}(1,22) = 7.9453857 \end{split}$$

Se comprueba que $SC_A = SC_{A_{lineal}} + SC_{A_{Cuadra}}$

- $SC_A = 6.1668474$
- $SC_{A_{lineal}} + SC_{A_{Cuadra.}} = 2.196755 + 3.9700923 = 6.1668474$

FACTOR B: DOSIS DE FÓSFORO

$$Totales = \begin{cases} SC_{R(B)} = \frac{Q^2}{acr \sum c_i^2} \\ Q = \sum c_i x_{.j..} \end{cases}$$

Table 44:

$\overline{x_{.j}}$	596.463	613.154	$\sum c_i^2$	$\sum c_i x_{.j}$	SC_c	F_0	Sig.
Lineal	-1	1	2	16.691	7.7385967	2.19	No

$$SC_{B(Lineal)} = \frac{\mathit{Q}^2}{\mathit{bcr}\sum c_i^2} = \frac{16.691^2}{18(2)} = 7.7385967 \Rightarrow F_0 = \frac{\mathit{CM}_{B_{Lineal}}}{\mathit{CM}_E} = \frac{7.7385967}{3.5323026} = 2.19$$

$$\alpha = 0.05 \rightarrow F_{5\%}(1, 22) = 4.3$$

$$\alpha = 0.01 \to F_{1\%}(1,22) = 7.95$$

Se comprueba que $SC_B = SC_{B_{lineal}}$

- $SC_B = 7.7385967$
- $\bullet \quad SC_{B_{lineal}} = 7.7385967$

FACTOR C: APLICACIONES

$$Totales = \begin{cases} SC_{R(C)} = \frac{Q^2}{abr \sum c_i^2} \\ Q = \sum c_i x_{..k.} \end{cases}$$

Table 45:

$\overline{x_{k.}}$	616.009	593.608	$\sum c_i^2$	$\sum c_i x_{k.}$	SC_c	F_0	\overline{Sig} .
Lineal	-1	1	2	-22.401	13.9390223	3.95	No

$$SC_{C(Lineal)} = \frac{Q^2}{abr\sum c_i^2} = \frac{-22.401^2}{18(2)} = 13.9390223 \Rightarrow F_0 = \frac{CM_{C_{Lineal}}}{CM_E} = \frac{13.9390223}{3.5323026} = 3.95$$

$$\alpha = 0.05 \rightarrow F_{5\%}(1, 22) = 4.3$$

$$\alpha = 0.01 \rightarrow F_{1\%}(1, 22) = 7.95$$

Se comprueba que $SC_C = SC_{C_{lineal}}$

- $SC_C = 13.9390223$
- $SC_{C_{lineal}} = 13.9390223$

INTERACCIÓN A x B : NITRÓGENO x FÓSFORO

$$Totales = \left\{ \begin{array}{l} SC_{R(A*B)} = \frac{Q^2}{cr(\sum c_A^2)(\sum c_B^2)} \\ Q = \sum c_{i_A}c_{i_B}x_{ij.}. \end{array} \right.$$

		A_1	A_2	A_3	$\sum c_{i_A}^2$
	Cuadrática C_i	1	-2	1	6
	Lineal C_i	-1	0	1	2
B_1	-1	200.94	194.17	201.35	
B_2	1	201.45	203.40	208.30	
$\sum c_{i_B}^2$	2				

$$\begin{array}{c|cccc} & A_{Lineal} & A_{Cuadr\acute{a}.} \\ \hline \\ B_{Lineal} & A_{Lin.}B_{Lin.} & A_{Cuad.}B_{Lin.} \\ \end{array}$$

$$\begin{split} SC_{A_{Lin.}*B_{Lin.}} &= \frac{Q^2}{cr(\sum c_A^2)(\sum c_B^2)} = \frac{6.44^2}{(2)3(2)(2)} = 1.7280667 \\ SC_{A_{Cuad.}B_{Lin.}} &= \frac{Q^2}{cr(\sum c_A^2)(\sum c_B^2)} = \frac{-11^2}{(2)3(6)(2)} = 1.6805556 \end{split}$$

$$F_{A_{Lin}*B_{Lin}} = 0.4892182$$

$$F_{A_{Cuad}*B_{Lin}} = 0.4757677$$

$$\alpha = 0.05 \rightarrow F_{5\%}(1, 22) = 4.3$$

$$\alpha = 0.01 \to F_{1\%}(1,22) = 7.95$$

INTERACCIÓN A x C : NITRÓGENO x APLICACIONES

$$Totales = \left\{ \begin{array}{l} SC_{R(A*C)} = \frac{Q^2}{br(\sum c_A^2)(\sum c_C^2)} \\ Q = \sum c_{i_A}c_{i_C}x_{i.k.} \end{array} \right.$$

		A_1	A_2	A_3	$\sum c_{i_A}^2$
	Cuadrática C_i	1	-2	1	6
	Lineal C_i	-1	0	1	2
C_1	-1	207.07	195.43	213.51	
C_2	1	195.33	202.14	196.14	
$\sum c_{i_C}^2$	2				

$$\begin{array}{c|cccc} & A_{Lineal} & A_{Cuadr\acute{a}.} \\ \hline C_{Lineal} & A_{Lin.}C_{Lin.} & A_{Cuad.}C_{Lin.} \\ \end{array}$$

$$\begin{split} SC_{A_{Lin.}*C_{Lin.}} &= \frac{Q^2}{br(\sum c_A^2)(\sum c_C^2)} = \frac{-5.63^2}{(2)3(2)(2)} = 1.3207042 \\ SC_{A_{Cuad.}C_{Lin.}} &= \frac{Q^2}{br(\sum c_A^2)(\sum c_C^2)} = \frac{-42.53^2}{(2)3(6)(2)} = 25.1222347 \end{split}$$

$$F_{A_{Lin}*C_{Lin}} = 0.3738933$$

$$F_{A_{Cuad}*C_{Lin}} = 7.1121412$$

$$\alpha = 0.05 \rightarrow F_{5\%}(1, 22) = 4.3$$

$$\alpha = 0.01 \rightarrow F_{1\%}(1, 22) = 7.95$$

INTERACCIÓN B x C : FÓSFORO x APLICACIONES

$$Totales = \left\{ \begin{array}{l} SC_{R(B*C)} = \frac{Q^2}{ar(\sum c_B^2)(\sum c_C^2)} \\ Q = \sum c_{i_B}c_{i_C}x_{.jk.} \end{array} \right.$$

		B_1	B_2	$\sum c_{i_B}^2$
	Lineal C_i	-1	1	2
C_1	-1	302.78	313.23	
C_2	1	293.68	299.93	
$\sum c_{i_C}^2$	2			

$$\frac{B_{Lineal}}{C_{Lineal}} \quad B_{Lin.}C_{Lin.}$$

$$SC_{B_{Lin.}*C_{Lin.}} = \frac{Q^2}{ar(\sum c_B^2)(\sum c_C^2)} = \frac{-4.2^2}{(3)3(2)(2)} = 0.49$$

 $F_{B_{Lin}*C_{Lin}} = 0.1387197$

$$\alpha = 0.05 \rightarrow F_{5\%}(1, 22) = 4.3$$

$$\alpha = 0.01 \to F_{1\%}(1,22) = 7.95$$

Table 52: ANOVA COMPLETO

F.V	G.L	SC.	CM.	F_0	Sig.
Bloque	2	13.1396	6.57	1.86	
A	2	6.1668	3.08	0.87	No
В	1	7.7386	7.74	2.19	No
$^{\mathrm{C}}$	1	13.939	13.94	3.95	No
A*B	2	3.4173	1.71	0.48	No
$A_{Lin.} * B_{lin.}$	1	1.7281	1.73	0.49	No
$A_{Lin.} * B_{Cuad.}$	1	1.6806	1.68	0.48	No
A * C	2	26.4153	13.21	3.74	*
$A_{Lin.} * C_{lin.}$	1	1.3007	1.3007	0.37	No
$A_{Cuad.} * C_{Lin.}$	1	25.1222	25.1222	7.11	*
B * C	1	0.4916	0.49	0.14	No
$B_{Lin.} * C_{lin.}$	1	0.49	0.49	0.14	No
A * B * C	2	2.6991	1.35	0.38	No
Error	22	77.7107	3.53		
Total	35	151.7181			

Dado que la Tendencia de la interacción de $A_{Cuad.}*C_{Lin.}$, resultó significativa; amerita estimar los parámetros de dicho modelo.

- Sea el Factor A : Dosis de Nitrógeno = X_1
- Sea el Factor C : Aplicaciones = X_3

X_1	X_3	X_{1}^{2}	X_1X_3	$X_1^2 X_3$	Y
70	1	4900	70	4900	34.51
70	2	4900	140	9800	32.55
100	1	10000	100	10000	32.57
100	2	10000	200	20000	33.69
130	1	16900	130	16900	35.58
130	2	16900	260	33800	32.69

```
##
## Call:
## lm(formula = y ~ x1 + x3 + x1_2 + x1_2x3)
##
## Residuals:
                 2
                         3
##
   0.6611 -0.6611 -1.1498 1.1498 0.4887 -0.4887
##
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 40.1029294 19.3009877
                                       2.078
                                                0.286
               -0.1460278 0.3861389
                                      -0.378
                                                0.770
## x3
               -0.1171381
                           3.8784578
                                      -0.030
                                                0.981
                           0.0019869
## x1 2
                0.0009399
                                       0.473
                                                0.719
               -0.0001062 0.0003319
                                      -0.320
                                                0.803
## x1_2x3
## Residual standard error: 1.999 on 1 degrees of freedom
## Multiple R-squared: 0.4843, Adjusted R-squared: -1.579
## F-statistic: 0.2348 on 4 and 1 DF, p-value: 0.892
```

MODELO ESTIMADO

 $y = 40.1029 - 0.1460X_1 - 0.1171X_3 + 0.0009399X_1^2 - 0.0001062X_1^2X_2$

CONCLUSIONES Y RECOMENDACIONES

- Según el Test de Duncan al 95% de confianza , el mejor tratamiento para el rendimiento de piña en Tm./Ha. es con una dosis de Nitrógeno de 130 Kg./Ha. y una dosis de 25 kg./Ha.
- Según el Test de Duncan al 95% de confianza el factor dosis de Nitrógeno y Aplicaciones me ofrece diferencias significativas para el rendimiento de piña Tm./Ha., siendo el mejor tratamiento el aplicado una sola vez con 130 kg/Ha. de Nitrógeno.
- Según el Test de Duncan al 95% de confianza, el factor dosis de Fósforo y Aplicaciones me ofrece diferencias significativas para el rendimiento de piña Tm./Ha., siendo el mejor tratamiento el aplicado una sola vez con 25 kg/Ha. de Fósforo.
- Se recomienda que por temas económicos usar dosis de Nitrógeno en 70 kg/Ha , una dosis de 5 kg/Ha. de Fosforo en una sola aplicación, esto me ofrece resultados estadisticamente iguales en comparación con el mejor tratamiento según el Test de Duncan.
- Dado que al aumentar la cantidad de dosis de Nitrógeno Y fósforo , el rendimiento de piña en Tm./Ha aumenta, pueden realizarse ensayos con cantidades superiores al que se han aplicado en este trabajo.