Authorizing Network Control at Software Defined Exchange Points

Arpit Gupta

Princeton University

http://sdx.cs.princeton.edu

Nick Feamster, Laurent Vanbever

Internet Exchange Points (IXPs)

Software Defined IXPs (SDXs)

SDX Opens Up New Possibilities

- More flexible business relationships
 - Make peering decisions based on time of day, volume of traffic & nature of application

- More direct & flexible traffic control
 - Define fine-grained traffic engineering policies
- Better security
 - Block or redirect attack traffic at finer level of granularity

SDX for DDoS Attack Mitigation

Attack traffic traverses two different SDXs

Remotely Block Attack Traffic

Victim remotely pushes block rules to SDX

Subscribe to Third Party Services

Victim Subscribes to Verisign for DDoS Protection

SDX vs. Traditional DDoS Defense

Remote influence

Physical connectivity to SDX not required

More specific

Drop rules based on multiple header fields, source address, destination address, port number ...

Coordinated

Drop rules can be coordinated across multiple IXPs

Spider-Man Dilemma

With Great Power Comes Great Responsibility

- Authorize Remote Requests
 - Is AS 88 owner of flow space under attack?

- Authorize Third Party Requests
 - Is Verisign authorized by AS 88 to block or redirect attack traffic?
 - Is AS 88 owner of flow space under attack?

Authorization Logic

Conventional Authorization Logic

- Applied over discrete resources
- Limited allowable actions (read/write etc.)

Authorization Logic for Network Control

- Resources → Set of packets within some flow space
- Actions → Transformations on the packet's metadata

FLANC Authorization Logic

Resource Ownership

Principals that own the resource under consideration

Allowed Actions

- Set of allowed transformations for resource owners,
 T:{sIP, sPort, dIP, dPort, phyPort} → {sIP, sPort, dIP, dPort, phyPort}
- e.g. Drop Telnet traffic from 10.0.0.1 and 20.0.0.1
 T:{{10.0.0.1,20.0.0.1}, *,*, {23},*} → {*,*,*,*,{}}

Delegations

 Mechanisms by which one principal gives other permission to operate on their resources

FLANC Authorization Logic at SDX

AS 88 sends Delegation Credentials

AS 88 says, Verisign speaks for AS 88 for T, where $T:\{*,*,\{128.112.0.0/16\},\{80,443\},*\} \rightarrow \{*,*,*,*,*\}$

AS 88's HTTP Server under Attack

AS 88 sends DOTS Message

Verisign sends SDN Policies

Checking Authorization at SDX

Request Handler

- Associate request with the principal (Verisign)
- Extract request transformation
 - T_{reg} :{*, *, 128.112.136.80, 80, *} \rightarrow {*,*,*,*,V}

Credential Handler

- CA says, "AS 88 owns {*, *, 128.112.0.0/16, *, * }"
- Delegation credentials from AS 88

Reference Monitor

- Generate a proof, "Verisign can say T_{req} "

Evaluation Results

Dataset: AS 88 IPS logs for 1 week, 550K alert events

Evaluation Results

FLANC incurs minimal performance overhead

Takeaways

- Authorizing Network Control at SDX is critical
- FLANC is the first step
 - Associates requests with principal
 - Considers flow space abstraction
 - Considers conditional delegations
- FLANC's scope is broader than SDX
 - Campus Network
 - Mitigating Route Hijacks