

POP Studies of Earth Sciences Codes Jesús Labarta, BSC

POP services

POP and ES

- Analyzed several codes ...
 - IFS, FVM
 - NEMO
 - MONARCH
 - ICON

- Towards Best Practices in
 - Performance Analysis Methodology and Tools
 - Programming Practices

Structure

384 cores

Structure

Scaling

T(48) =465 ms

Hierarchical Performance Model

Efficiencies: ~ (0,1] Multiplicative model

$$CompEff = Ieff * IPCeff * Feff$$

$$\eta_{\parallel} = LB * Ser * Trf$$

Efficiency model

Avg Useful IPC(48) =0.67

Avg Useful Frequency(48) = 2.061 GHz

Load Balance

Within a model and coupled runs

Communication analysis

What ifs

MPI strong scaling

1.2 1.4

1.6

L1L2

3.0 3.5

4.0 4.5

L2L3

1.0

1.5

IPC

2.0

MPI+OMP strong scaling

L1L2

Sampled traces

Very poor IPC sub regions within region of moderate average IPC

Regions with poor IPC

Limited benefit of L3

Sampled traces

☐ End

eosbn2_mp_bn2_

Aggregated time vaying behavior

POP and ES

- Observations ...
 - Granularities
 - Instruction scaling
 - IPCs and Memory bandwidth
 - L3 use
 - Pack-unpack
 - False sharing
- Recommendations: Asynchrony and overlap
 - Tasks
- ... and co-design
 - RISC-V vector
 - OpenMP
 - Features: Free agents, precompiled task graphs
 - Libraries: DLB, TAMPI, TALP

RISC-V & Long vectors

- Raise ISA semantic level
 - Vector instructions == tasks
 - "less words, more work"
 - The importance of ISA

- Parallelism
 - Decouple Front end back end
 - Less pressure, throughput orientation
 - OoO execution
- Osmotic membrane
 - Convey access pattern semantics to the architecture.
 - Potential to optimize memory throughput.

EPI SDV ecosystem

- RISC-V cluster
 - Commercially available RISC-V platforms
 - Porting and configuring HPC software stack and increase productivity (e.g., SLURM, MPI, OpenMP, BSC tools, SDV1.2)
- SDV: RVV @ FPGA nodes
 - CI Infrastructure: Validation at "scale"
 - Software development and co-design steering
 - Test real "complex" codes @ real RTL
 - EPAC1.5 RTL improvement
 - Give to EPI partners and interested users easy access to the latest EPAC technology
 - Two step procedure

Contact: filippo.mantovani@bsc.es

EPI SDV ecosystem

EPI SDV roadmap

When

HW available

- Validate code on RISC-V - Test compiler infrastructure

RISC-V scalar

platform x 8

Vehave: Simulator of vec. Instr.

- Analyze

optimum

vectorizing

potential and

vector length

1111-0

11111-0

Single core

 Test VEC acc. architecture

X FPGA single core + VEC acc. as a multinode

 Test MPI applications on VEC acc.

X FPGA VEC acc. multicore

- Test OpenMP applications on VEC acc.

EPAC chip 1.5 Multicore and multinode

- Test applications on EPAC 1.5

EPAC chip 2.0 Multicore and multinode

- Test applications on EPAC 2.0

Performance Optimisation and Productivity

A Centre of Excellence in HPC

Contact:

https://www.pop-coe.eu mailto:pop@bsc.es @POP HPC

