NEURAL NETWORKS SPEED-UP AND COMPRESSION

Lecture 2: Pruning

RECAP FROM LECTURE 1

We have considered

- Main neural network layers (linear, non-linear, normalization)
- Theoretical measurements of speed and memory
 - o FLOP / MAC
 - number of parameters
- Empirical measurements of speed and memory
 - FlopCo
 - PyTorch tools
- Arithmetic intensity

OUTLINE

- Neurons and connections in neural networks
 - Fully-connected & Convolutional layers
 - Pruning
- Unstructured pruning
- Structured pruning

NEURONS AND CONNECTIONS

FULLY-CONNECTED LAYER

Fully-connecte	ed layer	Y= WTX , Connections
45 65 650	22 4	\mathcal{I}_{1}
$\omega_{21} = \omega_{22} = \omega_{23}$	$z_2 = y_2$	72 43
	23	\mathcal{R}_3
		Necreous

FULLY-CONNECTED LAYER: PRUNE

FULLY-CONNECTED NEURAL NETWORK

CONVOLUTIONAL LAYER

CONVOLUTIONAL LAYER: PRUNE SHAPE (ROW)

CONVOLUTIONAL LAYER: PRUNE FILTER

CONVOLUTIONAL NEURAL NETWORK

CONVOLUTIONAL NEURAL NETWORK

CONVOLUTIONAL LAYER: PRUNE FILTER/CHANNEL/SHAPE

WHAT'S THE PROBLEM?

DL model limitations:

- High memory consumption
- Huge computational requirements
- Great power consumption

Difficult to deploy on portable devices (e.g. laptops and smartphones)

Efficient architecture design is required

RECAP: EPOCH OF NEURAL NETWORK TRAINING

PRUNING

or Fine-Grained Pruning or Weight Sparsification

List of possible criterions:

Weight-based criteria (L1/L2 norm)

Gradient-based criteria

$$\delta E = \sum_{i} g_{i} \delta u_{i} + \frac{1}{2} \sum_{i} h_{ii} \delta u_{i}^{2} + \frac{1}{2} \sum_{i \neq j} h_{ij} \delta u_{i} \delta u_{j} + O(||\delta U||^{3})$$

$$g_{i} = \frac{\partial E}{\partial u_{i}} \quad \text{and} \quad h_{ij} = \frac{\partial^{2} E}{\partial u_{i} \partial u_{j}}$$

UNSTRUCTURED PRUNING: LOTTERY TICKET HYPOTHESIS

Searching for Tickets: Iterative Magnitude Pruning

Iterative Magnitude Pruning with Rewinding

UNSTRUCTURED PRUNING: LOTTERY TICKET HYPOTHESIS

Benefits

 Achieves high rates of weight reduction without acc. drop (~ 95% of weights can be removed)

Drawbacks

- Requires hardware support for sparse computation speedup
- Hard to find sparsity level for all layers of the network

Removing structural parts instead of individual weights

Figure 2: The visualization of different types of pruning.

List of possible criterions:

- Weight-based criteria:
 - o L1/L2 norm
 - Scaling parameter in BN
- Activation-based criteria:
 - PCA of activations
- Gradient-based criteria
- Greedy and One-shot Pruning

Benefits

- Efficiently accelerates model
- No need of hardware/software support (pruned model is structurally equivalent to initial model)

Drawbacks

- Pruning channels/filters in one layer affects previous/subsequent layers
- Hard to find best filter configuration for the whole network

RESUME

RESUME

Current pipeline in pruning can be divided into two components

- Identifying the most promising neurons to be pruned
- Training and fine-tuning the pruned model to recover the base model's prediction performance

A successful pruning algorithm is an iterative progression of these components

```
Data: CNN model, training data
while Compression requirement not met or exceed budget
do
train model (to convergence);
compute pruning criteria;
prune parameters below threshold;
end
```

Algorithm 1: Workflow for model pruning.

RESUME

Table 1: Saliency measurements used in pruning.

	_	Basic idea	Saliency Expression
		Minimize pruned deterioration Remove weights with small values	$H_{ii}w_i^2; w_i^2/H_{ii}^{-1} \ w $
		Weight similarity and redundancy	$ w_i - w_j ; w - \mathbb{E}_{\text{geo}}[w] $ Penalize $\sum_{c'} w_{c',c,i,j}^2;$ $\sum_{c,i,j} w_{c',c,i,j}^2;$
•	Data-agnostic	Structured L1/2-norm penalty	Penalize $\sum_{c'} w_{c',c,i,j}^2; \sum_{c,i,j} w_{c',c,i,j} \sum_{c,i,j} w_{c',c,i,j}^2; \sum_{c,i,j} w_{c',c,i,j} $
		Magnitude of Batch Norm	
		Remove by filter similarity	Geometric mean
	_	Remove inactive neurons (APoZ)	$\sum_{i} \mathbb{I}_{z_i=0}$
		Remove activations with flat gradient	$\sum_i \mathbb{I}_{z_i=0} \ \sum_i rac{\mathcal{L}}{\partial z_i} z_i $
		Reconstruction error on channel pruning	$ z_i - z_i^{ ext{pruned}} $
•	Data-aware	Entropy	$\sum_{m}^{\infty} P(z_i) \log P(z_i)$, where $P(z_i)$ is probability of activations in bins
		Reconstruction error and L1 norm	-
		Neural Importance Score	$s_k = w_{i+1} ^T s_{k+1}$
		Remove insensitive neurons	Reset weights with small updates to initial value

30

PRUNING

