EECS 376: Foundations of Computer Science

Chris Peikert 30 January 2023

Today's Agenda

- * Recap: Strings, Languages, DFAs & their abilities
- * Turing Machines (TMs) and Church-Turing thesis
- * Pseudocode vs TMs
- * Deciders and decidability

Alphabets, Strings, Languages

- * An *alphabet* is a <u>finite</u> set of characters, usually denoted Σ
 - * Typically implicit, e.g., ASCII characters or binary $\{0,1\}$
- * A $(\Sigma$ -)string is a <u>finite</u> sequence of characters from Σ
 - * The *length* of a string x (# chars) is denoted |x|
 - * The *empty string* is denoted ε ; it has length 0
- * A $(\Sigma$ -)*language* is (possibly infinite) set of $(\Sigma$ -)strings: $L \subseteq \Sigma^*$
 - * The language of all strings is denoted Σ^*
- * Example: $\Sigma = \{0,1\}, \Sigma^* = \{\varepsilon, 0, 1, 00, ...\}, |010| = 3, 0^3 1^2 = 00011$

What is a "problem"?

* We consider *decision problems*, where the goal is to *decide* if a given object has a certain property

376
Output integer prime?

abba Is the given string a palindrome?

...The list goes on!

Languages & their Membership Problems

- * Any <u>finite</u> object Z can be **encoded** as a <u>finite</u> **string** $\langle Z \rangle$ (e.g., in ASCII, or binary, as in a computer).
- * In this view, a property is a set of strings: a language

The membership (or, decision) problem for a language L: Given a string x, decide if $x \in L$ (say yes/no, accept/reject, etc.)

What is a "Computer"?

- * Goal: formalize the notion of a "computer" that can "solve" decision problems—i.e., "decide" languages.
- * A <u>D</u>eterministic <u>F</u>inite <u>A</u>utomaton reads the input string one character at a time, and ends in either an *accept* or *reject* (non-accept) state. We say that the DFA *decides* language L if it:
 - * (i) <u>accepts</u> every string $x \in L$, and
 - * (ii) <u>rejects</u> every string $x \notin L$.
- * A language is *regular* if some DFA decides it. **Q:** Is *every* language regular?
- * Theorem: No DFA decides $\{0^k1^k \mid k \ge 0\}$.

No DFA decides $\{0^k 1^k \mid k \ge 0\}$

- * Suppose that some DFA M decides $\{0^k1^k \mid k \geq 0\}$.
- * Let n = # of states of M, and let $x = 0^{n+1}1^{n+1}$.
- * Claim: We can write x = uwv so that M is in the <u>same</u> state before and after reading substring $w \neq \varepsilon$.
- * M must accept $uwwv \notin \{0^k1^k \mid k \geq 0\}$. Contradiction!

<u>repeat</u> a state while reading 0^{n+1}

Various Models of "Computers"

- * DFAs
- Pushdown Automata
- * Context-free Grammars
- * Lambda Calculus
- * Turing Machines
- * RAM (random access memory) computer
- * Quantum Computers
- * DNA computers

*

Our Model

Alan Turing (1912-1954):
British pioneering computer scientist
Inventor of the "Turing Machine."

A Thought Experiment

- * Imagine you are given a huge string x
 - * $|x| \gg$ number of neurons in your brain
- * The string is written on ordered pages of paper, and you have a pen to write with
- * **Q:** Can you decide if $x \in \{0^k 1^k \mid k \ge 0\}$?

••

How do people solve problems?

- * Suppose we're given a huge "input" that's written down
- * What's the <u>bare minimum</u> that we need to solve the problem?
 - * **Brain** to **direct** our efforts
 - * *Eyes* (or other sense) to *read* with
 - * *Pen* to write with
 - * Symbols to write down

How do people solve problems?

Without loss of generality (?):

- * We use only finitely many symbols
- * The paper is an <u>unbounded</u> (infinite) array of squares that can each store *one* symbol
- * At each moment, we look at a <u>single</u> square
- * We read what's in the square, write an appropriate symbol, then move our gaze to an adjacent square
- * (?) Our brain decides what to do next based on what we currently see and what we did so far, but it only has finite memory

This is a *Turing Machine* (*TM*)

The "brain" of a TM is like a DFA, except it additionally specifies:

- what we write and
- whether move left or right

Note: " $a \rightarrow b$, R" means if the contents of the cell is a, then write b and move right.

There are <u>two</u> special "termination" states: **accept** and **reject**.

Q: Set of inputs accepted by this TM?

A: $\{x \in \{0,1\}^* \mid x \text{ contains no } 0s\}$

Turing Machine

- * A *Turing Machine* is a 7-tuple $(Q, \Gamma, \Sigma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:
 - * Q is a finite set of **states**
 - * $q_0 \in Q$ is the *initial state*
 - * $F = \{q_{accept}, q_{reject}\} \subseteq Q$ are the final (accept/reject) states
 - * Σ is the *input alphabet*
 - * $\Gamma \supseteq \Sigma \cup \{\perp\}$ is the *tape alphabet* ($\perp \notin \Sigma$ is the *blank symbol*)
 - * $\delta:(Q \setminus F) \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the *transition function*
- * Takeaway: TMs are a well-defined type of "computer".

Simulations

- * Intuitively, if a "computer" M_1 can simulate another "computer" M_2 , then M_1 is <u>at least as powerful</u> as M_2 . They are equivalent if M_2 can also simulate M_1 .
- * All known computational models are either:
 - * Weaker than TMs (e.g., DFAs, PDAs) or
 - * Equivalent to TMs in what they can compute (e.g., random-access machines, lambda calculus, quantum computers, etc.)
- * Church-Turing thesis: Any "computer" (e.g. any alien technology) can be simulated by some Turing Machine. (This is a conjecture!)

Pseudocode vs TMs

- * Claim: Given enough memory, <u>any</u>
 TM can be simulated by a "Boolean"
 function on strings written in
 pseudocode (e.g., C++).
- * Q: Can any "Boolean" function on strings written in pseudocode (e.g., C++) be simulated by a TM?

Key Idea: $TM \equiv$ "bool M(string x)"

simulateM(string x):

- // simulates TM $\bf M$ on string x
- // hard-coded transition function
- // maintain state & tape cells

return accept/reject according to M

Decision Programs

- * Q: Suppose we run a function "bool M(string x)" (i.e., a TM) on string x. What are the possible outcomes?
 - * M either (i) accepts, (ii) rejects, or (iii) it "loops" (forever)
- * A TM M decides a language L if it:
 - 1. <u>accepts</u> every string $x \in L$, and
 - 2. <u>rejects</u> every string $x \notin L$.

In this case, we say that M is a **decider** (for L), and L is **decidable**.

* Note: By definition, M <u>does not loop</u> on any input!

More Generally: Language of a TM

- * **Definition:** The **language** of a TM M is $L(M) := \{x : M \text{ accepts } x\}$.
- * Question: What if $x \notin L(M)$? (M(x) does not accept.)
- * Answer: Then M either rejects x, or loops on x!
- * Conclusion: TM M decides language L iff L(M) = L and M halts on every input.
- * Definition: TM M recognizes language L if L(M) = L (regardless of whether M ever loops).
- * More on this later...

Summary

- * We have formalized the notions of a "problem" and "computer", as follows:
 - * "Decision problem" \equiv "Is string $x \in L$ (associated language)?"
 - * "Computer" \equiv TM \equiv "bool M(string x)"
- * We also have a precise definition of what it means for a computer to solve a problem:
 - * "A decision problem can be solved on a computer"
 - ≡ "some TM <u>decides</u> the associated language"

Next time: Can <u>every</u> decision problem be solved on a computer?

