সূচিপত্ৰ

অধ্যায়	শিরোনাম	পৃষ্ঠা	
প্রথম	সেট ও ফাংশন	٥	
দিতী য়	বীজগাণিতিক রাশি	96	
তৃতীয়	জ্যামিতি	৬৩	
চতুৰ্থ	জ্যামিতিক অঞ্চন	44	
পথ্যম	সমীকরণ	৯৬	
যষ্ঠ	অসমতা	১২৩	
সশ্তম	অসীম ধারা	১৩৬	
অফ্টম	ত্ৰিকোণমিতি	289	
নবম	সূচকীয় ও লগারিদমীয় ফাংশন	১৯৩	
দশম	দ্বিপদী বিস্তৃতি	২২৩	
একাদশ	স্থানাঙ্ক জ্যামিতি	২৩৯	
ঘাদশ	সমতলীয় ভেক্টর	293	
ত্রয়োদশ	ঘন জ্যামিতি	২৮৭	
চতুৰ্দশ	সম্ভাবনা	৩০৬	
0.75	স্মরণীয় কয়েকজন গণিতবিদ	७२४	
	পরিশিক্ট	්	

অধাায় ১

সেট ও ফাংশন (Set and Function)

সেটের ধারণা ও ব্যবহার গণিতে বিশেষ গুরুত্বপূর্ণ। এ জন্য অন্টম ও নবম-দশম শ্রেণির গণিত বইতে সেট সম্পর্কে আলোচনা করা হয়েছে। এ অধ্যায়ে তার বিস্তৃতি হিসেবে আরও আলোচনা করা হলো। এ অধ্যায় শেষে শিক্ষার্থীরা –

- ► সার্বিক সেট, উপসেট, পুরক সেট ও শক্তি সেট গঠন করতে পারবে।
- ► বিভিন্ন সেটের সংযোগ, ছেদ ও অশ্তর নির্ণয় করতে পারবে।
- ► সেট প্রক্রিয়ার ধর্মাবলির যৌদ্ভিক প্রমাণ করতে পারবে।
- ► সমতৃল সেট বর্ণনা করতে পারবে এবং এর মাধ্যমে অসীম সেটের ধারণা ব্যাখ্যা করতে পারবে।
- ► সেটের সংযোগের শক্তি সেট নির্ণয়ের সূত্র ব্যাখ্যা করতে পারবে এবং ভেনচিত্র ও উদাহরণের সাহায়্যে তা যাচাই করতে পারবে।
- ► সেট প্রক্রিয়া প্রয়োগ করে জীবনভিত্তিক সমস্যা সমাধান করতে পারবে।
- ► সেটের সাহায্যে অন্বয় ও ফাংশন এর ধারণা ব্যাখ্যা করতে পারবে।
- ফাংশনের ডোমেন ও রেঞ্জ নির্ণয় করতে পারবে।
- ▶ এক-এক ফাংশন, সার্বিক ফাংশন ও এক-এক সার্বিক ফাংশন উদাহরণের সাহায্যে ব্যাখ্যা করতে পারবে।
- ► বিপরীত ফাংশন ব্যাখ্যা করতে পারবে।
- ► লেখচিত্রের সাহায্যে কোন অন্বয়্ম ফাংশন কিনা তা যাচাই করতে পারবে।
- অন্বয় ও ফাংশনের লেখচিত্র অঞ্জন করতে পারবে।

সেট (Set)

বাশ্তব বা চিন্তা জগতের বশ্তুর যেকোনো সুনির্ধারিত সংগ্রহকে সেট বলা হয়। যেমন, $S = \{1.4, 9, 16, 25, 36, 49, 64, 81, 100\}$ তালিকাটি 10 থেকে বড়ো নয় এমন স্বাভাবিক সংখ্যার বর্গের সেট। সেটকে এভাবে তালিকার সাহায্যে বর্ণনা করাকে **তালিকা পদ্ধতি** বলা হয়। যে সকল বশ্তু নিয়ে সেট গঠিত এদের প্রত্যেককে ঐ সেটের উপাদান বলা হয়। x, A সেটের উপাদান হলে লেখা হয় $x \in A$ এবং x, A সেটের উপাদান না হলে লেখা হয় $x \notin A$ । উপরোক্ত সেট S কে লেখা যায় ফর্মা-১, উচ্চতর গণিত, ১ম-১০ম শ্রেশি

ই উচ্চতর গণিত

 $S = \{x: x, 100$ থেকে বড় নয় এমন পূর্ণবর্গ সংখ্যা $\}$ । এই পন্ধতিকে সেট গঠন পন্ধতি বলা হয়।

কাজ: উপরের আলোচনায় ক) S যে সেট তা ব্যাখ্যা কর।খ) S কে অন্যভাবে প্রকাশ কর।

সার্বিক সেট (Universal Set)

মনে কবি

 $S = \{x : x$ ধনাত্মক পূর্ণসংখ্যা এবং $5x \le 16\}$

 $T=\{x:x$ ধনাত্মক পূর্ণসংখ্যা এবং $x^2<20\}$

 $P = \{x : x$ ধনাত্মক পূর্ণসংখ্যা এবং $\sqrt{x} \le 2\}$

এই সেট তিনটির উপাদানসমূহ $U = \{x : x \text{ throws } p^{4}(x)\}$ সেটটির উপাদান নিয়ে গঠিত। U কে S, T, P সেটের জন্য সার্বিক সেট বিবেচনা করা যায়।

সেটসংক্রান্ত কোনো আলোচনায় একটি নির্দিন্ট সেটকে সার্বিক সেট বলা হয়, যদি আলোচনাধীন সকল সেটের উপাদানসমূহ ঐ নির্দিন্ট সেটের অন্তর্ভুক্ত হয়।

কয়েকটি ৰিশেষ সংখা সেট

 $N=\{1,2,3,\cdots\}$ অর্থাৎ সকল স্বাভাবিক সংখ্যা বা ধনাত্মক পূর্ণসংখ্যার সেট।

 $Z=\{\cdots,-2,-1,0,1,2,3,\cdots\}$ অর্থাৎ সকল পূর্ণসংখ্যার সেট।

 $Q=\{x: x=rac{p}{q},$ যেখানে p যেকোনো পূর্ণসংখ্যা এবং q যেকোনো ধনাত্মক পূর্ণসংখ্যা $\}$ অর্থাৎ সকল মূলদ সংখ্যার সেট।

 $R = \{x : x$ বাস্তব সংখ্যা $\}$ অর্থাৎ সকল বাস্তব সংখ্যার সেট।

উপসেট (Subset)

A ও B সেট হলে A কে B এর উপসেট বলা হয় যদি ও কেবল যদি A এর প্রত্যেক উপাদান B এর উপাদান হয় এবং একে $A\subseteq B$ লিখে প্রকাশ করা হয়। যেমন $A=\{2,3\},\ B=\{2,3,5,7\}$ এর উপসেট। $A,\ B$ এর উপসেট না হলে $A\not\subseteq B$ লেখা হয়। যেমন $A=\{1,3\},\ B=\{2,3,5,7\}$ এর উপসেট নয়।

উদাহরণ ১. যদি $A = \{x : x \text{ ধনাত্মক পূর্ণসংখ্যা}\}, B = \{0\}$ এবং $X = \{x : x \text{ পূর্ণসংখ্যা}\}$ হয়, তবে A, B এবং X এর মধ্যে সম্পর্ক কী?

সমাধান: এখানে $A \subseteq X$, $B \subseteq X$, $B \not\subseteq A$ ।

কাজ: মনে কর $X = \{x : x পূর্ণসংখ্যা\}$ ।

- ক) X কে সার্বিক সেট ধরে, X এর তিনটি উপসেট বর্ণনা কর।
- খ) X এর দুটি উপসেট বর্ণনা কর যাদের কোনোটিই অপরটির উপসেট নয়।

ফাঁকা সেট (Empty Set)

অনেক সময় এরুপ সেট বিবেচনা করতে হয় যাতে কোনো উপাদান থাকে না। এরুপ সেটকে ফাঁকা সেট বলা হয় এবং প্র অথবা {} লিখে প্রকাশ করা হয়।

উ**দাহরণ ২** $\{x:x$ বাস্তব সংখ্যা এবং $x^2<0\}$ একটি ফাঁকা সেট, কেননা কোনো বাস্তব সংখ্যার বর্গ ঋণাত্মক নয়।

উদাহরণ ৩. $F = \{x : x, 2018 > 100$

সেট সমতা (Equality of Sets)

A ও B সেট যদি এমন হয় যে এদের উপাদানগুলো একই তবে A ও B একই সেট এবং তা A=B লিখে প্রকাশ করা হয়। যেমন $A=\{1,2,3,4\},\ B=\{1,2,2,3,4,4,4\}$ । লক্ষ্ণ কর কোনো সেটে একই উপাদান বার বার থাকলেও সেটা একবার থাকার মতোই বিবেচনা করা হচ্ছে। A=B হয় যদি ও কেবল যদি $A\subset B$ এবং $B\subset A$ হয়। সেট সমতা প্রমাণে এই তথ্য খুবই প্রয়োজনীয়।

প্রকৃত উপসেট (Proper Subset)

A কে B এর প্রকৃষ্ণ উপসেট বলা হয় যদি ও কেবল যদি $A\subseteq B$ এবং $A\neq B$ । অর্থাৎ A এর প্রত্যেক উপাদান B এরও উপাদান এবং B তে অন্তত একটি উপাদান আছে যা A তে নেই। যেমন $A=\{1,2\},\ B=\{1,2,3\}$ । A, B এর প্রকৃত উপসেট বুঝাতে $A\subset B$ লেখা হয়।

- ক) যেকোনো সেট A এর জন্য $A\subseteq A$ । এর কারণ $x\in A\implies x\in A$ ।
- খ) যেকোনো সেট A এর জন্য $\varnothing\subseteq A$ । এর কারণ $\varnothing\subseteq A$ না হলে \varnothing তে একটি উপাদান x আছে যা A তে নাই। কিন্তু ইহা কখনই সত্য নয় কারণ \varnothing ফাঁকা সেট। অতএব $\varnothing\subseteq A$ । উল্লেখ্য ফাঁকা সেট বা \varnothing যেকোনো সেটের প্রকৃত উপসেট।

সেটের অন্তর (Difference of Sets)

A ও B সেট হলে $A\setminus B$ সেটটি হচ্ছে $\{x:x\in A$ এবং $x\not\in B\}$ ।

 $A\setminus B$ কে A বাদ B সেট বলা হয় এবং A এর যে সকল উপাদান B তে আছে সেগুলো A থেকে বর্জন করে $A\setminus B$ গঠন করা হয়। $A\setminus B\subseteq A$ ।

উদাহরণ 8. $A=\{0,1,2,3,4,5,6,7,8,9\}$ এবং $B=\{0,\ 2,\ 4,\ 6,\ 8,\ 10\}$ হলে $A\setminus B=\{1,3,5,7,9\}$ ।

উচ্চতর গণিত 8

পুরক সেট (Complementary Set)

সার্বিক সেট U এবং $A\subseteq U$ হলে A এর পুরক সেট হচ্ছে $U\setminus A$ ।

অর্থাৎ $U \setminus A = \{x : x \in U \text{ এবং } x \notin A\}$ ।

সার্বিক সেট থেকে A সেটের উপাদানগুলো বর্জন করলেই A এর পুরক সেট পাওয়া যায় এবং তাকে A' বা Ac লিখে প্রকাশ করা হয়।

উদাহরণ α . যদি সার্বিক সেট U সকল পূর্ণসংখ্যার সেট হয় এবং A সকল ঋণাত্মক পূর্ণসংখ্যার সেট হয়, তবে (U সাপেকে) A এর পুরক সেট A' বা $A^c=\{0,1,2,3,\cdots\}$

শব্তি সেট (Power Set)

A সেটের সকল উপসেটের সেটকে A এর শক্তি সেট বলা হয় এবং P(A) দারা নির্দেশ করা হয়। উল্লেখা যে Ø ⊆ A। কাজেই Ø, P(A) এরও উপাদান।

A সেট	P(A) শক্তি সেট
$A = \emptyset$	$P(A) = \{\emptyset\}$
$A = \{a\}$	$P(A) = \{\emptyset, A\}$
$A = \{a, b\}$	$P(A) = \{\emptyset, \{a\}, \{b\}, A\}$
$A = \{a, b, c\}$	$P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, A\}$

কাজ:

- ক) $U=\{1,2,3,4,5,6,7,8,9,10\}$ হলে নিচের সেটগুলো তালিকা পদ্ধতিতে লিখ:
 - (3) $A = \{x : x \in U, 5x > 37\}$ (2) $B = \{x : x \in U, x + 5 < 12\}$
 - (a) $C = \{x : x \in U, 6 < 2x < 17\}$ (b) $D = \{x : x \in U, x^2 < 37\}$
- খ) $U=\{x:x\in Z^+,1\leq x\leq 20\}$ হলে নিচের সেটগুলো তালিকা পদ্ধতিতে লিখঃ

 - (১) $A = \{x : x, 2 \text{ us yiPoo}\}\$ (২) $B = \{x : x, 5 \text{ us yiPoo}\}\$
 - (৩) $C = \{x : x, 10 \text{ এর গুণিতক}\}$

প্রদত্ত তথ্যের আলোকে $C\subset A$. $B\subset A$, $C\subset B$ এর কোনগুলো সত্য বা মিথ্যা বল।

গ) যদি $A = \{a, b, c, d, e\}$ হয়, তবে P(A) নির্ণয় কর।

উদাহরণ ৬. $A=\{a,b\}$ এবং $B=\{b,c\}$ হলে দেখাও যে, $P(A)\cup P(B)\subseteq P(A\cup B)$ । সমাধান: এখানে, $P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$ । $P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\} \mid$ $A \cup B = \{a, b, c\}, P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \mid A \cup B = \{a, b, c\}, P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ সূতরাং, $P(A) \cup P(B) \subseteq P(A \cup B)$ ।

কাজ-

 ক) যদি A = {1,2,3}, B = {1,2}, C = {2,3} এবং D = {1,3} হয়, তবে দেখাও $\mathfrak{A}, P(A) = \{A, B, C, D, \{1\}, \{2\}, \{3\}, \emptyset\}$

খ) যদি $A = \{1, 2\}$ এবং $B = \{2, 5\}$ হয়, তবে দেখাও যে,

(3) $P(A) \cap P(B) = P(A \cap B)$, (2) $P(A) \cup P(B) \neq P(A \cup B)$

ভেনচিত্র (Venn Diagram)

সেটসংক্রান্ত তথ্যাদি অনেক সময় চিত্রে প্রকাশ করা সুবিধাজনক। উদ্ভাবক John Venn (১৮৩৪ – ১৯২৩) এর নামানুসারে এরুপ চিত্রকে ভেনচিত্র বলা হয়। গণিত বইতে এ সম্পর্কে বিশদ আলোচনা করা হয়েছে।

উদ্দাহরণ ৭. সার্বিক সেট U এর সাপেক্ষে A সেট এর পূরক সেট A' এর চিত্রবুপ:

সেটের সংযোগ (Union of Sets)

A ও B সেট হলে এদের সংযোগ সেট হচেছ $A \cup B = \{x : x \in A$ অথবা $x \in B\}$ । অর্থাৎ A ও B উভয় সেটের সকল উপাদান নিয়ে গঠিত সেটই $A \cup B$ ।

সেটের ছেদ (Intersection of Sets)

A ও B সেট হলে এদের **ছেদ সেট** হচ্ছে $A\cap B=\{x:x\in A$ এবং $x\in B\}$ । অর্থাৎ A ও B সেটের সকল সাধারণ উপাদান নিয়ে গঠিত সেটই $A\cap B$ । উদাহরণ ৮. সার্বিক সেট $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ এর দুটি উপসেট $A = \{x : x$ মৌলিক সংখ্যা $\}$ এবং $B = \{x : x$ বিজোড় সংখ্যা $\}$ । তাহলে A = {2.3,5,7} এবং B = {1,3.5,7,9}। সূতরাং $A \cup B = \{1, 2, 3, 5, 7, 9\}, A \cap B = \{3, 5, 7\},$ $A' = \{0, 1, 4, 6, 8, 9\}, B' = \{0, 2, 4, 6, 8\}.$

 $A' \cup B' = \{0, 1, 2, 4, 6, 8, 9\}, A' \cap B' = \{0, 4, 6, 8\},\$

 $(A \cap B)' = \{0, 1, 2, 4, 6, 8, 9\}, (A \cup B)' = \{0, 4, 6, 8\}$

উচ্চতর গণিত 3

কাজ: আগের পৃষ্ঠার উদাহরণের সেটগুলোকে ভেন চিত্রে দেখাও।

নিম্ছেদ সেট (Disjoint Set)

যদি A ও B সেট এমন হয় যে $A \cap B = \emptyset$, তবে A ও B কে নিচ্ছেদ সেট বলা হয়।

উদাহরণ ৯. $A=\{x:x$ ধনাত্মক পূর্ণসংখ্যা $\}$ এবং $B=\{x:x$ ঋণাত্মক পূর্ণসংখ্যা $\}$ হলে Aও B সেটদ্বয় নিশ্ছেদ, কেননা $A \cap B = \emptyset$ ।

উদাহরণ ১০. $A = \{x : x \in R \text{ এবং } 0 \le x \le 2\}$ এবং $B = \{x : x \in N \text{ এবং } 0 \le x \le 2\}$ $PA \subseteq A, A \cup B = A, A \cap B = B = \{1.2\}$

উদাহরণ ১১. $A=\{x:x\in R \text{ এবং }1\leq x\leq 2\}$ এবং $B=\{x:x\in R \text{ এবং }0< x< 1\}$ হলে, $A \cup B = \{x: x \in R \text{ uবং } 0 < x \leq 2\}$ uবং $A \cap B = \emptyset$ অর্থাৎ A ও B নিম্ছেদ।

কার্তেসীয় গুণজসেট (Cartesian Product Set)

দুটি সেট A এবং B এর কার্তেসীয় গুণজ $A \times B = \{(x,y) : x \in A \text{ এবং } y \in B\}$ । উদাহরণ ১২. $A = \{1,2\}, B = \{a,b,c\}$ দুটি সেট। সুতরাং এই দুটি সেটের কার্তেসীয় গুণজ

মেট $A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$ ।

সেট প্রক্রিয়ার কতিপয় প্রতিজ্ঞা

এখানে প্রত্যেক ক্ষেত্রে U সার্বিক সেট এবং A, B, C সেটগুলো U এর উপসেট।

- ক) বিনিময়বিধি
 - (5) $A \cup B = B \cup A$

(2) $A \cap B = B \cap A$

- খ) সংযোগবিধি

 - (3) $(A \cup B) \cup C = A \cup (B \cup C)$ (2) $(A \cap B) \cap C = A \cap (B \cap C)$
- গ) বণ্টনবিধি
 - (3) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (2) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- ঘ) ডি মরগ্যানের সত্র
 - (3) $(A \cup B)' = A' \cap B'$
- (2) $(A \cap B)' = A' \cup B'$

- ভ) অন্যান্য সূত্র
 - (3) $A \cup A = A$, $A \cap A = A$
- (2) $A \cup \emptyset = A, A \cap \emptyset = \emptyset$
- (o) $A \cup U = U$, $A \cap U = A$
- (8) $A \subseteq B \implies B' \subseteq A'$
- (a) $A \subseteq B \implies A \cup B = B$
- (b) $A \subseteq B \implies A \cap B = A$

(9) $A \subseteq A \cup B$

(b) $A \cap B \subset A$

(a) A \ B = A ∩ B'

বিনিময়বিধির প্রতিজ্ঞা দুটি যাচাইকরণ

নিচের বামের চিত্রে গাঢ় অংশটুকু $A\cup B$ এবং $B\cup A$ উভয় সেটই নির্দেশ করে। সুতরাং এক্কেত্রে দেখা যাচ্ছে $A\cup B=B\cup A$ । নিচের ডানের চিত্রে গাঢ় অংশটুকু $A\cap B$ এবং $B\cap A$ উভয় সেটই নির্দেশ করে। সুতরাং এক্কেত্রে দেখা যাচ্ছে $A\cap B=B\cap A$ ।

উপরে ভেনচিত্রের সাহায্যে যাচাই করা হয়েছে। এবার সুনির্দিন্ট উদাহরণ দিয়ে দেখা যাক।

মনে করি $A=\{1,2,4\}$ এবং $B=\{2,3,5\}$ দুটি সেট।

তাহলে, $A \cup B = \{1, 2, 4\} \cup \{2, 3, 5\} = \{1, 2, 3, 4, 5\}$ ।

আবার, $B \cup A = \{2,3,5\} \cup \{1,2,4\} = \{1,2,3,4,5\}$ ।

সূতরাং এক্ষেত্রে $A \cup B = B \cup A$ ।

ञगामित्क, $A \cap B = \{1, 2, 4\} \cap \{2, 3, 5\} = \{2\}$

এবং $B \cap A = \{2,3,5\} \cap \{1,2,4\} = \{2\}$ ।

সূতরাং এক্ষেত্রে $A \cap B = B \cap A$ ।

সংযোগবিধির প্রতিজ্ঞা দুটির যাচাইকরণ

নিচের বামের চিত্রে গাঢ় অংশটুকু $A \cup (B \cup C)$ এবং $(A \cup B) \cup C$ উভয় সেটই নির্দেশ করে। সূতরাং এক্ষেত্রে $A \cup (B \cup C) = (A \cup B) \cup C$ । নিচের ডানের চিত্রে গাঢ় অংশটুকু $A \cap (B \cap C)$ এবং $(A \cap B) \cap C$ উভয় সেটই নির্দেশ করে। সূতরাং এক্ষেত্রে $(A \cap B) \cap C = A \cap (B \cap C)$ ।

উচ্চতর গণিত

মনে করি
$$A=\{a,b,c,d\}, B=\{b,c,f\}$$
 এবং $C=\{c,d,g\}$ । তাহলে, $B\cup C=\{b,c,f\}\cup\{c,d,g\}=\{b,c,d,f,g\}$ এবং $A\cup (B\cup C)=\{a,b,c,d\}\cup\{b,c,d,f,g\}=\{a,b,c,d,f,g\}$ । আবার, $A\cup B=\{a,b,c,d\}\cup\{b,c,f\}=\{a,b,c,d,f\}$ এবং $(A\cup B)\cup C=\{a,b,c,d,f\}\cup\{c,d,g\}=\{a,b,c,d,f,g\}$ । সূতরাং এক্ষেত্রে $(A\cup B)\cup C=A\cup (B\cup C)$ । আবার, $B\cap C=\{b,c,f\}\cap\{c,d,g\}=\{c\}$ এবং $A\cap (B\cap C)=\{a,b,c,d\}\cap\{c\}=\{c\}$ । আবার, $A\cap B=\{a,b,c,d\}\cap\{b,c,f\}=\{b,c\}$ এবং $(A\cap B)\cap C=\{b,c\}\cap\{c,d,g\}=\{c\}$ । সূতরাং এক্ষেত্রে $A\cap (B\cap C)=\{a,b,c,d\}\cap\{c,d,g\}=\{c\}$ ।

কাজ: বন্টনবিধির সূত্রটি যাচাই কর, যেখানে $A=\{1,2,3,6\}, B=\{2,3,4,5\}$ এবং $C=\{3,5,6,7\}$ । এই যাচাইকরণ ভেনচিত্রের মাধ্যমেও দেখাও।

দ্রুক্তব্য: সেটের সংযোগ ও ছেদ প্রক্রিয়া দুটির প্রতিটি অপরটির প্রেক্ষিতে বন্টন নিয়ম মেনে চলে। প্রতিজ্ঞা ১ (ডি মরগ্যানের সূত্র). সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য ক) $(A \cup B)' = A' \cap B'$ খ) $(A \cap B)' = A' \cup B'$

প্রমাণ: (কেবল প্রথমটির প্রমাণ নিচে দেখানো হয়েছে। পরেরটির প্রমাণ নিজে কর।)

ক) মনে করি, x ∈ (A ∪ B)'। তাহলে, x ∉ A ∪ B।

 $\implies x \not\in A$ এবং $x \not\in B \implies x \in A'$ এবং $x \in B' \implies x \in A' \cap B'$

 $(A \cup B)' \subseteq A' \cap B'$

b

আবার মনে করি, $x\in A'\cap B'$ । তাহলে, $x\in A'$ এবং $x\in B'$ ।

 $\implies x \notin A \text{ age } x \notin B \implies x \notin A \cup B \implies x \in (A \cup B)'$

 $A' \cap B' \subseteq (A \cup B)'$

সুতরাং $(A \cup B)' = A' \cap B'$ ।

প্রতিজ্ঞা ২, সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য $A\setminus B=A\cap B'$

প্রমাণ: মনে করি,
$$x\in A\setminus B$$
। তাহলে, $x\in A$ এবং $x\not\in B$ । $\implies x\in A$ এবং $x\in B'\implies x\in A\cap B'$

$$A \setminus B \subseteq A \cap B'$$

আবার মনে করি, $x \in A \cap B'$ । তাহলে, $x \in A$ এবং $x \in B'$ ।

$$\implies x \in A \text{ and } x \notin B \implies x \in A \setminus B$$

$$A \cap B' \subseteq A \setminus B$$

সূতরাং, $A \setminus B = A \cap B'$ ।

প্রতিজ্ঞা ৩. যেকোনো সেট A,B,C এর জন্য

$$\overline{\Phi}) \quad A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$\forall$$
) $A \times (B \cup C) = (A \times B) \cup (A \times C)$

প্রমাণ:(কেবল প্রথমটির প্রমাণ নিচে দেখানো হয়েছে। পরেরটির প্রমাণ নিজে কর।)

ক) সংজ্ঞানুসারে, $A \times (B \cap C)$

$$= \{(x, y) : x \in A, y \in B \cap C\}$$

$$=\{(x,y):x\in A,\ y\in B\ \text{arr}\ y\in C\}$$

$$= \{(x,y): (x,y) \in A \times B \text{ and } (x,y) \in A \times C\}$$

$$= \{(x,y) : (x,y) \in (A \times B) \cap (A \times C)\}$$

$$A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$$

আবার, $(A \times B) \cap (A \times C)$

$$= \{(x,y) : (x,y) \in A \times B \text{ are } (x,y) \in A \times C\}$$

$$=\{(x,y):x\in A,\ y\in B\ \text{ and }x\in A,\ y\in C\}$$

$$= \{(x,y) : x \in A, y \in B \cap C\}$$

$$= \{(x,y) : (x,y) \in A \times (B \cap C)\}$$

$$\therefore (A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$$

সুতরাং, $A \times (B \cap C) = (A \times B) \cap (A \times C)$ ।

সেট প্রক্রিয়াসংক্রান্ত আরও কডিপয় প্রতিজ্ঞা

- ক) A যেকোনো সেট হলে A ⊆ A।
- খ) ফাঁকা সেট Ø যেকোনো সেট A এর উপসেট। ফুর্মা-২, উচ্চতর গণিত, ৯ম-১০ম প্রেণি

উচ্চতর গণিত 50

গ) A ও B যেকোনো সেট হলে A=B হবে যদি ও কেবল যদি $A\subset B$ এবং $B\subset A$ হয়।

- ঘ) যদি A ⊂ Ø হয়, তবে A = Ø।
- ঙ) যদি $A \subseteq B$ এবং $B \subseteq C$ তবে, $A \subseteq C$ ।
- চ) $A \subseteq B$ যেকোনো সেট হলে, $A \cap B \subseteq A$ এবং $A \cap B \subseteq B$ ।
- ছ) A G B যেকোনো সেট হলে, $A \subset A \cup B$ এবং $B \subset A \cup B$ ।

প্রমাণ: কেবল দুইটি প্রতিজ্ঞার প্রমাণ দেওয়া হয়েছে। অন্যগুলো নিজে কর।

- ঘ) দেওয়া আছে, $A\subseteq\varnothing$, আবার আমরা জানি, $\varnothing\subseteq A$ । সূতরাং $A=\varnothing$ ।
- ছ) সেট সংযোগের সংজ্ঞানুযায়ী, A সেটের সকল উপাদান $A \cup B$ সেটে থাকে। সুতরাং উপসেটের সংজ্ঞানুযায়ী $A \subseteq A \cup B$ । একই যুদ্ভিতে $B \subseteq A \cup B$ ।

কাজ: নিচের সকল সেট সার্বিক সেট U এর উপসেট বিবেচনা করতে হবে।

- ক) দেখাও যে, $A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$ ।
- খ) দেখাও যে, $A \subset B$ হবে যদি এবং কেবল যদি নিম্নান্ত যেকোনো একটি শর্ত খাটে;

 - (3) $A \cap B = A$ (2) $A \cup B = B$
- (o) B' ⊂ A'

- (8) $A \cap B' = \emptyset$ (c) $B \cup A' = U$
- গ) দেখাও যে,
 - (5) $A \setminus B \subset A \cup B$
- (2) $A' \setminus B' = B \setminus A$

(o) A\B ⊂ A

- (৪) $A \subset B$ হলে, $A \cup (B \setminus A) = B$
- (৫) $A \cap B = \emptyset$ হলে, $A \subset B'$ এবং $A \cap B' = A$ এবং $A \cup B' = B'$
- ঘ) দেখাও যে,
 - (3) $(A \cap B)' = A' \cup B'$
- (2) $(A \cup B \cup C)' = A' \cap B' \cap C'$
- (a) $(A \cap B \cap C)' = A' \cup B' \cup C'$

এক-এক মিল (One-One Correspondence)

মনে করি, $A=\{a,b,c\}$ তিনজন লোকের সেট এবং $B=\{30,40,50\}$ ঐ তিনজন লোকের বয়সের সেট। অধিকন্তু মনে করি, a এর বয়স 30 বছর, b এর বয়স 40 বছর এবং c এর বয়স 50 বছর। বলা যায় যে, A সেটের সাথে B সেটের এক-এক মিল আছে।

সংজ্ঞা $\mathbf 3$ (এক-এক মিল): যদি A সেটের প্রতিটি উপাদানের সাথে B সেটের একটি ও কেবল একটি উপাদানের মিল উপাদান এবং B সেটের প্রতিটি উপাদানের সাথে A সেটের একটি ও কেবল একটি উপাদানের মিল স্থাপন করা যায়, তবে তাকে A ও B এর মধ্যে এক-এক মিল বলা হয়। A ও B এর মধ্যে এক-এক মিলকে সাধারণত $A \leftrightarrow B$ লিখে প্রকাশ করা হয় এবং A সেটের কোনো সদস্য x এর সঙ্গে B সেটের যে সদস্য y এর মিল করা হয়েছে তা $x \leftrightarrow y$ লিখে বর্ণনা করা হয়।

সমতুল সেট (Equivalent Set)

ধরি, $A = \{1,2,3\}$ এবং $B = \{a,b,c\}$ দুটি সেট। নিচের চিত্রে A ও B সেটদ্বয়ের মধ্যে একটি এক-এক মিল স্থাপন করে দেখানো হলো:

সংজ্ঞা ২ (সমতুল সেট): যেকোনো সেট A ও B এর মধ্যে যদি একটি এক-এক মিল $A \leftrightarrow B$ বর্ণনা করা যায়, তবে A ও B কে সমতুল সেট বলা হয়। A ও B কে সমতুল বোঝাতে $A \sim B$ লেখা হয়। $A \sim B$ হলে, এদের যেকোনো একটিকে অপরটির সাথে সমতুল বলা হয়। লক্ষণীয় যে, যেকোনো সেট A, B ও C এর জন্য

- খ) A ~ B হলে B ~ A
- গ) $A \sim B$ এবং $B \sim C$ হলে $A \sim C$ ।

উদাহরণ ১৩. দেখাও যে, $A=\{1,2,3,\cdots,n\}$ এবং $B=\{1,3,5,\cdots,2n-1\}$ সেটদ্বর সমতুল, যেখানে n একটি স্বাভাবিক সংখ্যা।

সমাধান: A ও B সমতুল, কারণ সেট দুটির মধ্যে নিচের মতো একটি এক-এক মিল রয়েছে।

১২

মশ্তব্য: আগের পৃষ্ঠার চিত্রিত এক-এক মিলটিকে $A\leftrightarrow B: k\leftrightarrow 2k-1,\ k\in A$ দ্বারা বর্ণনা করা যায়।

উ**দাহরণ ১**৪. দেখাও যে, স্বাভাবিক সংখ্যার সেট N এবং জোড় সংখ্যার সেট $A=\{2,\,4,\,6,\,\cdots,\,2n,\,\cdots\}$ সমতুল।

সমাধান: $N=\{1,2,3,\cdots,n,\cdots\}$ ও A সমতুল সেট, কারণ N এবং A এর মধ্যে নিচের চিত্রের মতো একটি এক-এক মিল রয়েছে।

মশ্তব্য: উপরে চিত্রিত এক-এক মিলটিকে $N\leftrightarrow A:n\leftrightarrow 2n, n\in N$ দ্বারা বর্ণনা করা যায়।

দ্রুটব্য: ফাঁকা সেট Ø কে নিজের সমতুল ধরা হয়। অর্থাৎ, Ø ~ Ø।

প্রতিজ্ঞা 8. প্রত্যেক সেট A তার নিজের সমতুল। অর্থাৎ, $A\sim A$ ।

প্রমাণ: $A=\varnothing$ হলে, $A\sim A$ ধরা হয়। আর $A\ne\varnothing$ হলে প্রত্যেক সদস্য x এর সঙ্গে তার নিজেকে মিল করে এক-এক মিল $A\leftrightarrow A: x\leftrightarrow x,\ x\in A$ স্থাপিত হয়। সুতরাং $A\sim A$ ।

প্রতিজ্ঞা ৫, A ও B সমতুল সেট এবং B ও C সমতুল সেট হলে A ও C সমতুল সেট।

প্রমাণ: যেহেতু $A\sim B$, সুতরাং A এর প্রত্যেক সদস্য x এর সঞ্চো B এর একটি অনন্য সদস্য y এর মিল করা যায়। আবার যেহেতু $B\sim C$, সুতরাং B এর এই সদস্য y এর সঞ্চো C এর একটি অনন্য সদস্য x এর মিল করা যায়। এখন x এর সদস্য x এর সঞ্চো x এর সদস্য x এর সমস্য x এর স

ব্যবধি (Interval)

a ও b বাস্তব সংখ্যা এবং a < b হলে

- ক) $(a,b) = \{x \in R : a < x < b\}$ কে খোলা ব্যৰ্থি (open interval) বলে।
- খ) $[a,b]=\{x\in R: a\leq x\leq b\}$ কে বন্ধ ব্যবধি (closed interval) বলে।

গ) $(a,b] = \{x \in R : a < x \le b\}$ এবং $[a,b) = \{x \in R : a \le x < b\}$ কে যথাক্রমে খোলা-বন্ধ ও বন্ধ-খোলা ব্যব্ধি বলে।

সাল্ত ও অন্ত সেট (Finite and Infinite Sets)

 $A=\{15,16,17,18,19,20,21,22\}$ সেটটির সদস্যগুলো গণনা করে দেখা যায় যে, A সেটের সদস্য সংখ্যা 8। এই গণনার কাজ A সেটের সঙ্গো $B=\{1,2,3,4,5,6,7,8\}$ সেটের একটি এক-এক মিল স্থাপন করে সম্পন্ন করা হয়। যেমন, নিচের চিত্রে দেখানো হয়েছে।

সংজ্ঞা ৩ (সান্ত ও অনন্ত সেট): গণনা করে যে সকল সেটের সদস্য সংখ্যা নির্ধারণ করা যায়, এদের সান্ত সেট বলা হয়। কোনো সেট A সান্ত সেট না হলে. একে অনন্ত সেট বলা হয়।

- খ) যদি কোনো সেট A এবং $J_m=\{1,2,3,\cdots,m\}$ সমতুল হয়, যেখানে $m\in N$, তবে A একটি সাল্ত সেট এবং A এর সদস্য সংখ্যা m।
- গ) A কোনো সাল্ত সেট হলে, A এর সদস্য সংখ্যাকে n(A) দ্বারা সূচিত করা হয়।

দ্রুতব্য:

- ক) $J_1=\{1\},\ J_2=\{1,2\},J_3=\{1,2,3\}$ ইত্যাদি প্রত্যেককেই N এর **সান্ত উপসে**ট বলা হয় এবং $n(J_1)=1,\ n(J_2)=2,\ n(J_3)=3$ ইত্যাদি। বাস্তবিক পক্ষে, $J_m\sim J_m$ এবং $n(J_m)=m$ ।
- খ) শুধুমাত্র সাল্ত সেটেরই সদস্য সংখ্যা নির্দিষ্ট করা যায়। n(A) লিখলে বুঝতে হবে A সাল্ত সেট।
- গ) A ও B সমতুল সেট এবং এদের মধ্যে একটি সেট সান্ত হলে অপর সেটটিও সান্ত হবে এবং n(A)=n(B) হবে।

প্রতিজ্ঞা ৬. যদি A সান্ত সেট হয় এবং B , A এর প্রকৃত উপসেট হয়, তবে B সান্ত সেট এবং n(B) < n(A) হবে।

প্রতিজ্ঞা ৭. A অনন্ত সেট হবে যদি ও কেবল যদি A ও A এর একটি প্রকৃত উপসেট সমতুল হয়।

১৪

দ্রুতব্য: স্বাভাবিক সংখ্যার সেট N একটি অনন্ত সেট।

সান্ত সেটের উপাদান সংখ্যা

সাল্ত সেট A এর উপাদান সংখ্যা n(A) দ্বারা সূচিত করা হয়েছে এবং n(A) নির্ধারণের পন্ধতি ব্যাখ্যা করা হয়েছে। এবার মনে করি, $n(A)=p>0,\ n(B)=q>0$ যেখানে $A\cap B=\varnothing$ ।

উপরের চিত্রে বর্ণিত এক-এক মিল থেকে দেখা যায় যে, $A\cup B\sim J_{p+q}$ । অর্থাৎ, $n(A\cup B)=p+q=n(A)+n(B)$ । এ থেকে নিচের প্রতিজ্ঞাটি বলা যায়। প্রতিজ্ঞা ৮. যদি A ও B পরস্পর নিশ্ছেদ সান্ত সেট হয়, তবে $n(A\cup B)=n(A)+n(B)$ । এই প্রতিজ্ঞাকে সম্প্রসারণ করে বলা যায় যে, $n(A\cup B\cup C)=n(A)+n(B)+n(C)$ । একইভাবে $n(A\cup B\cup C\cup D)=n(A)+n(B)+n(C)+n(D)$ ইত্যাদি, যেখানে A,B,C,D সেটগুলো পরস্পর নিশ্ছেদ সান্ত সেট। প্রতিজ্ঞা ৯. যেকোনো সান্ত সেট A ও B এর জন্য $n(A\cup B)=n(A)+n(B)-n(A\cap B)$ । প্রমাণ: এখানে, $A\setminus B$. $A\cap B$ এবং $B\setminus A$ সেট তিনটি পরস্পর নিশ্ছেদ সেট [ভেনচিত্র দ্রন্টব্য]।

ফলে
$$A=(A\setminus B)\cup (A\cap B)$$
 এবং $B=(B\setminus A)\cup (A\cap B)$
অতথ্য $A\cup B=(A\setminus B)\cup (A\cap B)\cup (B\setminus A)$
 $\therefore n(A)=n(A\setminus B)+n(A\cap B)\cdots (1)$
 $\therefore n(B)=n(B\setminus A)+n(A\cap B)\cdots (2)$
 $n(A\cup B)=n(A\setminus B)+n(A\cap B)+n(B\setminus A)\cdots (3)$
সূতরাং, (1) নং থেকে পাই, $n(A\setminus B)=n(A)-n(A\cap B)$
এবং (2) নং থেকে পাই, $n(B\setminus A)=n(B)-n(A\cap B)$
এখন, $n(A\setminus B)$ এবং $n(B\setminus A)$ (3) এ বসিয়ে পাই,
 $n(A\cup B)=n(A)-n(A\cap B)+n(B)-n(A\cap B)$
 $\therefore n(A\cup B)=n(A)+n(B)-n(A\cap B)$

কাজ:

- ক) নিম্নান্ত প্রত্যেক ক্ষেত্রে A ও B এর মধ্যে সম্ভাব্য সকল এক-এক মিল বর্ণনা কর:
 (১) A = {a, b}, B = {1,2}
 (২) A = {a, b, c}, B = {a, b, c}
- খ) ক নং প্রশ্নে বর্ণিত প্রত্যেক এক-এক মিলকরণের জন্য $F=\{(x,y):x\in A,y\in B\}$ এবং $x\leftrightarrow y$ সেটটি তালিকা পন্ধতিতে বর্ণনা কর।
- গ) মনে করি $A=\{a,b,c,d\}$ এবং $B=\{1,2,3.4\}$ । $A\times B$ এর একটি উপসেট F বর্ণনা কর যার অন্তর্ভুক্ত ক্রমজোড়গুলোর প্রথম পদের সচ্চো দ্বিতীয় পদের মিল করা হলে, $A\otimes B$ এর একটি এক-এক মিল স্থাপিত হয় যেখানে, $a\leftrightarrow 3$ ।
- ঘ) দেখাও যে, $A=\{1,2,3,\cdots,n\}$ ও $B=\{1,2,2^2,\cdots,2^{n-1}\}$ সেট দুটি সমতুল।
- ঙ) দেখাও যে, $S=\{3^n: n=0$ অথবা $n\in N\}$ সেটটি N এর সমতুল।
- চ) ঠিক উপরের প্রশ্নে বর্ণিত সেউ S এর একটি প্রকৃত উপসেট বর্ণনা কর যা S এর সমতুল।
- ছ) দেখাও যে, সকল বিজোড় স্বাভাবিক সংখ্যার সেট $A=\{1,3,5,7,\cdots\}$ অনন্ত সেট।

ৰাস্তৰ সমস্যা সমাধানে সেট

বাস্তব সমস্যা সমাধানে ভেনচিত্র ব্যবহার করা হয়। এখানে উল্লেখ্য যে, প্রতি সেটের উপাদান সংখ্যা ভেনচিত্রে লেখা হবে, তা কয়েকটি উদাহরণের মাধ্যমে দেখানো হলো।

উ**দাহরণ ১৫.** 50জন লোকের মধ্যে 35জন ইংরেজি বলতে পারে, 25জন ইংরেজি ও বাংলা বলতে পারে এবং প্রত্যেকেই দুটি ভাষার অশ্তত একটি বলতে পারে। বাংলা বলতে পারে কতজন? কেবল মাত্র বাংলা বলতে পারে কতজন? সমাধান: মনে করি, সকল লোকের সেট S এবং তাদের মধ্যে যারা ইংরেজি বলতে পারে তাদের সেট E, যারা বাংলা বলতে পারে তাদের সেট B।

তাহলে প্রশ্নানুসারে, $n(S)=50,\ n(E)=35,\ n(E\cap B)=25$ এবং $S=E\cup B$ । মনে করি, n(B)=x।

তাহলে,
$$n(S) = n(E \cup B) = n(E) + n(B) - n(E \cap B)$$
 থেকে পাই,

$$50 = 35 + x - 25$$
 বা, $x = 50 - 35 + 25 = 40$ অর্থাৎ, $n(B) = 40$

বাংলা বলতে পারে 40জন।

এখন, যারা কেবলমাত্র বাংলা বলতে পারে, তাদের সেট হচ্ছে $(B\setminus E)$ ।

মনে করি, $n(B \setminus E) = y$ ।

যেহেতু $E\cap B$ এবং $(B\setminus E)$ নিশ্ছেদ এবং $B=(E\cap B)\cup (B\setminus E)$ [ভেনচিত্র দ্রুন্টব্য] সুতরাং $n(B)=n(E\cap B)+n(B\setminus E)$ ।

∴
$$40 = 25 + y$$
 বা, $y = 40 - 25 = 15$ অর্থাৎ, $n(B \setminus E) = 15$

∴ কেবলমাত্র বাংলা বলতে পারে 15জন।

অতএব, বাংলা বলতে পারে 40জন এবং কেবলমাত্র বাংলা বলতে পারে 15জন।

উদাহরণ ১৬. একটি শ্রেণির 35জন বালিকার প্রত্যেকে দৌড়, সাঁতার ও নাচের কমপক্ষে যেকোনো একটি পছন্দ করে। তাদের মধ্যে 15জন দৌড়, 4জন সাঁতার, দৌড় ও নাচ, 2জন শুধু দৌড়, 7জন দৌড় ও সাঁতার পছন্দ করে কিন্তু নাচ নয়। x জন সাঁতার ও নাচ কিন্তু দৌড় নয়, 2x জন শুধু নাচ, 2জন শুধু সাঁতার পছন্দ করে।

- ক) এ তথ্যপুলো ভেনচিত্রে দেখাও।
- খ) x নির্ণয় কর।
- গ) সেটের মাধ্যমে ব্যাখ্যা কর: যে সমস্ত বালিকা দৌড় ও নাচ পছন্দ করে কিন্তু সাঁতার নয়।
- ঘ) কতজন বালিকা দৌড় ও নাচ পছন্দ করে কিন্তু সাঁতার পছন্দ করে না?

সমাধান:

ক) ধরি, সেট J= যারা দৌড় পছন্দ করে, S= যারা সাঁতার পছন্দ করে, D= যারা নাচ পছন্দ করে। নিচে তথ্যগুলো ভেনচিত্রে দেখানো হলো।

- খ) ভেনচিত্র হতে $J'=\{$ যে সব বালিকা দৌড় পছন্দ করে না $\}$ ।
 অর্থাৎ n(J')=35-15=20 বাঁ, 2x+x+2=20 বা, 3x=18 বা x=6।
- গ) যে সব বালিকা দৌড় ও নাচ পছন্দ করে কিন্তু সাঁতার পছন্দ করে না: $J\cap D\cap S'$ ।
- ঘ) ভেনচিত্রে $n(J\cap D\cap S')=y$ এবং দেওয়া আছে n(J)=15।

$$\therefore y + 4 + 7 + 2 = 15 \text{ at } y = 21$$

শুধু 2জন বালিকা দৌড় এবং নাচ পছন্দ করে কিন্তু সাঁতার পছন্দ করে না। উদাহরণ ১৭. 24 জন ছাত্রের 18 জন বান্কেটবল খেলা পছন্দ করে, 12 জন ভলিবল খেলা পছন্দ করে। দেওয়া আছে, U= শ্রেণির ছাত্রদের সেট, B= বান্কেটবল খেলা পছন্দ করে এমন ছাত্রের সেট, V= ভলিবল খেলা পছন্দ করে এমন ছাত্রদের সেট। মনে কর $n(B\cap V)=x$ এবং ভেনচিত্রে নিচের তথ্যগুলো ব্যাখ্যা কর:

- ক) $B \cup V$ সেটের বর্ণনা দাও এবং $n(B \cup V)$ কে x এর মাধ্যমে প্রকাশ কর।
- খ) ৫ এর সম্ভাব্য ন্যুনতম মান নির্ণয় কর।
- গ) x এর সম্ভাব্য বৃহত্তম মান নির্ণয় কর।

সমাধান:

ক) B∪V হলো এমন সব ছাত্রের সেট যারা বাস্কেটবল বা ভলিবল খেলা পছন্দ করে।
ফর্মা-৩, উচ্চতর গণিত, ৯ম-১০ম শ্রেণি(দাখিল)

$$n(B \cup V) = (18 - x) + x + (12 - x) = 30 - x$$

- খ) x বা $n(B \cap V)$ ফুদ্রতম যখন $B \cup V = U$ অর্থাৎ $n(B \cup V) = n(U)$ বা 30 - x = 24 বা x = 6
 - ∴ সভাব্য ফুদ্রতম মান x = 6।
- গ) $n(B\cap V)$ বৃহত্তম যখন $V\subset B$ তখন, $n(B\cap V)=n(V)$ বা x=12
 - ∴ সভাব্য বৃহত্তম মান x = 12।

কাজ:

- ক) কোনো শ্রেণির 30 জন ছাত্রের 20 জন ফুটবল এবং 15 জন দাবা পছন্দ করে। প্রত্যেক ছাত্র দুটি খেলার অন্তত যেকোনো একটি খেলা পছন্দ করে। কতজন ছাত্র দুটি খেলাই পছন্দ করে?
- খ) কিছু সংখ্যক লোকের মধ্যে 50জন বাংলা, 20জন ইংরেজি এবং 10জন বাংলা ও ইংরেজি বলতে পারে। দুটি ভাষার অন্তত একটি ভাষা কতজন বলতে পারে?
- গ) ঢাকা বিশ্ববিদ্যালয়ের আধুনিক ভাষা ইনস্টিটিউটের 100 জন শিক্ষার্থীর মধ্যে 42 জন ফ্রেঞ্চ, 30 জন জার্মান, 28 জন স্প্যানিশ নিয়েছে। 10 জন নিয়েছে ফ্রেঞ্চ ও স্প্যানিশ, 8 জন নিয়েছে জার্মান ও স্প্যানিশ, 5 জন নিয়েছে জার্মান ও ফ্রেঞ্চ, 3 জন তিনটি ভাষাই নিয়েছে।
 - (১) কতজন শিক্ষার্থী ঐ তিনটি ভাষার একটিও নেয়নি?
 - (২) কতজন শিক্ষার্থী ঐ তিনটি ভাষার কেবল একটি ভাষা নিয়েছে?
 - (৩) কতজন শিক্ষার্থী ঐ তিনটি ভাষার কেবল দুটি ভাষা নিয়েছে?
- ঘ) কোনো স্কুলের নবম শ্রেণির বিজ্ঞান শাখার 50 জন শিক্ষার্থীর মধ্যে 29 জন জীববিজ্ঞান, 24 জন উচ্চতর গণিত এবং 11 জন জীববিজ্ঞান ও উচ্চতর গণিত উভয় বিষয় নিয়েছে। কতজন শিক্ষার্থী জীববিজ্ঞান বা উচ্চতর গণিত বিষয় দুটির কোনটিই নেয়নি?

অনুশীলনী ১.১

(i) কোন সেটের সদস্য সংখ্যা 2n হলে, এর উপসেটের সংখ্যা হবে 4^n । 3.

$$(ii)$$
 সকল মূলদ সংখ্যার সেট $Q=\left\{rac{p}{q}:\;p,q\in Z
ight\}$ ।

(iii) $a, b \in R$; $(a, b) = \{x : x \in R \text{ are } a < x < b\}$ |

উপরের উদ্ভিগুলোর আলোকে নিচের কোনটি সঠিক?

- **ず**) i ଓ ii
- খ) ii ও iii
- N) 2 8 222
- ঘ) i. ii ও iii

প্রত্যেক $n\in N$ এর জন্য $A_n=\{n,2n,3n,\cdots\}$ হলে (2-8) নং প্রশ্নের উত্তর দাও:

- A₁ ∩ A₂ এর সমান নিচের কোনটি?
 - す) A
- * A.
- 列) A3
- 되) A₄

- নিচের কোনটি A₃ ∩ A₆ এর সমান?
 - 不
 A
 2
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
- খ) A2

- A₂ ∩ A₃ এর পরিবর্তে নিচের কোনটি লেখা যায়?
 - **ず**) A:
- ३) A₄

- $x \in \mathcal{C}$. দেওয়া আছে $U = \{x : 1 \le x \le 20, \ x \in Z\}, \ A = \{x : x$ বিজোড় সংখ্যা $\}$ এবং $B = \{x : x$ মৌলিক সংখ্যা\। নিম্নের সেটগুলো তালিকা পন্ধতিতে লিপিবন্ধ কর:
 - **क**) A

- গ) $C = \{x : x \in A \text{ এবং } x \in B\}$ 되) $D = \{x : x \in A \text{ asyal } x \in B\}$
- ৬. ভেনচিত্রে A ও B সেটের উপাদানগুলোর সংখ্যা দেখানো হয়েছে। যদি n(A)=n(B) হয়, তবে নির্ণয় কর ক) x এর মান খ) $n(A \cup B)$ গ) $n(B \setminus A)$ ।

- বদি U = {x : x ধনাত্মক পূর্ণসংখ্যা}, A = {x : x ≥ 5} ⊂ U এবং B = {x : 5x < 12} ⊂ U তবে n(A ∩ B) এবং n(A' ∪ B) এর মান নির্ণয় কর।
- ৮. যদি $U = \{x : x$ জোড় পূর্ণসংখ্যা $\}$, $A = \{x : 3x \ge 25\} \subset U$ এবং $B = \{x : 5x < 1\}$ $12\}\subset U$ হয়, তাহলে $n(A\cap B)$ এবং $n(A'\cap B')$ এর মান নির্ণয় কর।

- ৯. দেখাও যে, ক) $A\setminus A=\varnothing$ খ) $A\setminus (A\setminus A)=A$ ।
- ১০. দেখাও যে, $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ।
- ১১. যদি $A\subset B$ এবং $C\subset D$ হয়, তবে দেখাও যে, $(A\times C)\subset (B\times D)$ ।
- ১২. দেখাও যে, $A=\{1,2,3,\cdots,n\}$ এবং $B=\{1,2,2^2,\cdots,2^{n-1}\}$ সেট দুটি সমতুল।
- ১৩. দেখাও যে, স্বাভাবিক সংখ্যাসমূহের বর্গের সেট $\{1,4,9,16,25,36,\cdots\}$ একটি অনন্ত সেট।
- ১৪. প্রমাণ কর যে, n(A)=p. n(B)=q এবং $A\cap B=\varnothing$ হলে, $n(A\cup B)=p+q$ ।
- ১৫. প্রমাণ কর যে, A,B,C সাল্ভ সেট হলে, $n(A\cup B\cup C)=n(A)+n(B)+n(C)-n(A\cap B)-n(B\cap C)-n(C\cap A)+n(A\cap B\cap C)$ ।
- ১৬. $A=\{a,b,x\}$ এবং $B=\{c,y\}$ সার্বিক সেট $U=\{a,b,c,x,y,z\}$ এর উপসেট হলে,
 - ক) যাচাই কর যে, (i) $A \subset B'$ (ii) $A \cup B' = B'$ (iii) $A' \cap B = B$ ।
 - খ) নির্ণয় কর: (A ∩ B) U (A ∩ B')।
- ১৭. কোনো শ্রেণির 30 জন শিক্ষার্থীর মধ্যে 19 জন অর্থনীতি, 17 জন ভূগোল, 11 জন পৌরনীতি, 12 জন অর্থনীতি ও ভূগোল, 4 জন পৌরনীতি ও ভূগোল, 7 জন অর্থনীতি ও পৌরনীতি এবং 3 জন তিনটি বিষয়ই নিয়েছে। কতজন শিক্ষার্থী তিনটি বিষয়ের কোনটিই নেয়নি?
- ১৮. নিচের ভেনচিত্রে সার্বিক সেট $U = A \cup B \cup C$ ।

- ক) যদি $n(A \cap B) = n(B \cap C)$ হয়, তবে x এর মান নির্ণয় কর।
- খ) যদি $n(B\cap C')=n(A'\cap C)$ হয়, তবে y এর মান নির্ণয় কর।
- গ) n(U) এর মান নির্ণয় কর।
- ১৯. নিচের ভেনচিত্রে $U = A \cup B \cup C$ এবং n(U) = 50।

- ক)

 প্র এর মান নির্ণয় কর।
- খ) n(B∩C') এবং n(A'∩B) এর মান নির্ণয় কর।
- গ) n(A ∩ B ∩ C') এর মান নির্ণয় কর।
- ২০. তিনটি সেট $A,\ B$ এবং C এমনভাবে দেওয়া আছে যেন, $A\cap B=\varnothing$, $A\cap C=\varnothing$ এবং $C\subset B$ । ভেনচিত্র অঞ্চন করে সেটগুলোর ব্যাখ্যা দাও।
- ২১. দেওয়া আছে $A=\{x:2< x\leq 5,\ x\in R\}.$ $B=\{x:1\leq x<3, x\in R\}$ এবং $C=\{2,4,5\}$ । নিম্নের সেটগুলো সেট গঠন পদ্ধতিতে প্রকাশ কর:
 - $\overline{\Phi}$ $A \cap B$

- \forall) $A' \cap B'$
- গ) A'∪B
- ২২. দেওয়া আছে $U=\{x:x<10,x\in R\},\ A=\{x:1< x\le 4\}$ এবং $B=\{x:3\le x<6\}$ । নিচের সেটগুলো সেট গঠন পন্ধতিতে প্রকাশ কর:
 - $\overline{\Phi}$) $A \cap B$
- খ) A'∩B
- গ) $A \cap B'$
- ঘ) A'∩B'
- ২৩. নিমে প্রতিক্ষেত্রে A ও B সেট দেওয়া আছে, $A\cup B$ নির্ণয় কর এবং যাচাই কর যে $A\subset (A\cup B)$ এবং $B\subset (A\cup B)$ ।
 - ক) $A = \{-2, -1, 0, 1, 2\}$ এবং $B = \{-3, 0, 3\}$
 - খ) $A=\{x:x\in N,\ x<10$ এবং x,2 এর গুণিতক $\}$ এবং $B=\{x:x\in N,\ x<10$ এবং x,3 এর গুণিতক $\}$
- ২৪. নিম্নের প্রতিক্ষেত্রে $A \cap B$ নির্ণয় কর এবং যাচাই কর যে, $(A \cap B) \subset A$ এবং $(A \cap B) \subset B$ । ক) $A = \{0, 1, 2, 3\}, \ B = \{-1, 0, 2\}$ খ) $A = \{a, b, c, d\}, \ B = \{b, x, c, y\}$
- ২৫. বেগম রোকেয়া কলেজের ছাত্রীদের মধ্যে বিচিত্রা, সন্ধানী ও পূর্বাণী পত্রিকার পাঠ্যাভ্যাস সম্পর্কে পরিচালিত এক সমীক্ষায় দেখা গেল 60% ছাত্রী বিচিত্রা, 50% ছাত্রী সন্ধানী, 50% ছাত্রী পূর্বাণী, 30% ছাত্রী বিচিত্রা ও সন্ধানী, 30% ছাত্রী বিচিত্রা ও পূর্বাণী, 20% ছাত্রী সন্ধানী ও পূর্বাণী এবং 10% ছাত্রী তিনটি পত্রিকাই পড়ে।
 - ক) শতকরা কতজন ছাত্রী উদ্ভ পত্রিকা তিনটির কোনটিই পড়ে না?
 - খ) শতকরা কতজন ছাত্রী উক্ত পত্রিকাগুলোর মধ্যে কেবল দুটি পডে?.

১২

২৬. $A = \{x : x \in R \text{ are } x^2 - (a+b)x + ab = 0\}, B = \{1, 2\} \text{ are } C = \{2, 4, 5\}$

- ক) A সেটের উপাদানসমূহ নির্ণয় কর।
- খ) দেখাও যে, $P(B \cap C) = P(B) \cap P(C)$ ।
- গ) প্রমাণ কর যে, $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ।
- ২৭. একটি শ্রেণির 100 জন ছাত্রের মধ্যে 42 জন ফুটবল, 46 জন ক্রিকেট এবং 39 জন দাবা খেলে। এদের মধ্যে 13 জন ফুটবল ও ক্রিকেট, 14 জন ক্রিকেট ও দাবা এবং 12 জন ফুটবল ও দাবা খেলতে পারে। এছাডা 7 জন কোনো খেলায় পারদর্শী নয়।
 - ক) উল্লিখিত তিনটি খেলায় পারদর্শী এমন ছাত্রদের সেট এবং কোনো খেলায় পারদর্শী নয় এমন ছাত্রদের সেট ভেনচিত্রে দেখাও।
 - খ) কতজন ছাত্র উল্লিখিত তিনটি খেলায়ই পারদর্শী তা নির্ণয় কর।
 - গ) কতজন ছাত্র কেবলমাত্র একটি খেলায় পারদশী? কতজন অন্তত দুটি খেলায় পারদশী?
- ২৮. P(Ø), P({Ø}) সেট নির্ণয় কর।
- ২৯. এক গ্রামে এক মিস্ত্রী ছিল। সে তাদের ঘর তৈরি করত যারা নিজেরা নিজেদের ঘর তৈরি করতো না। মিস্ত্রীর ঘর কে তৈরি করত?
- ৩০. $A=\{x: x
 ot\in A\}$ । সেট A নিয়ে বিস্তৃত আলোচনা কর।

ফাংশন (Function)

অন্বয় (Relation)

অনেক সময় আমরা সেট X এর উপাদানগুলোর মধ্যে অথবা সেট X ও সেট Y এর উপাদানগুলোর মধ্যে বিভিন্ন সম্পর্ক বিবেচনা করি। যেমন, স্বাভাবিক সংখ্যার সেট N এ বড়ো-ছোটো সম্পর্ক, কোনো পরিবারে ভাই-বোন সম্পর্ক, তোমার শ্রেণির শিক্ষার্থীদের সঞ্জো সর্বশেষ জন্মদিনে তাদের বয়সের সম্পর্ক। এ প্রসঞ্জো নবম-দশম শ্রেণির গণিত বই দ্রুন্টব্য।

উদাহরণ ১৮. মনে করি $A=\{0,1,2,3\}$ একটি সেট। A সেটের উপাদানগুলোর মধ্যে x< y সম্পর্কটিকে $A\times A$ এর উপসেট $S=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$ দ্বারা বর্ণনা করা যায়, যেখানে S সেটের অন্তর্ভুক্ত ক্রমজোভৃগুলোর (প্রথম অংশক) < (দ্বিতীয় অংশক)। এক্ষেত্রে S হলো A সেটে বর্ণিত < অন্বয়।

উদাহরণ ১৯. মনে করি কোনো পরিবারে a পিতা, b মাতা, cবড়ো ছেলে, d ছোটো ছেলে, e মেয়ে, f বড়ো ছেলের স্ত্রী। পরিবারের সদস্যদের সেটকে F ধরে আমরা পাই $F=\{a,b,c,d,e,f\}$ । F সেটে ভাই সম্পর্ক অর্থাৎ x হলো y এর ভাই সম্পর্কটিকে $B=\{(c,d),(c,e),(d,c)\}$ দ্বারা বর্ণনা

করা যায়, যেখানে B সেটের অন্তর্ভুক্ত ক্রমজোড়গুলোর প্রথম অংশক হলো দ্বিতীয় অংশকের ভাই। B সেট হলো F সেটে ভাই অন্বয়।

সংজ্ঞা 8 (অন্বয়). X ও Y সেট হলে এদের কার্তেসীয় গুণজ সেট $X \times Y$ এর যেকোনো উপসেটকে X হতে Y এ একটি **অন্বয়** বলা হয়। অর্থাৎ $R \subset X \times Y$ হলো X হতে Y এ বর্ণিত অন্বয়।

কাজ: Z সেটে ^{1}x হলো y এর বর্গ অন্বয়টিকে ক্রমজোড়ের সেট রূপে বর্ণনা কর।

ফাংশন (Function)

সেটের মতো ফাংশনের ধারণাও গণিতে একটি অত্যন্ত গুরুত্বপূর্ণ বিষয়। ব্যবহারিক প্রয়োজনে দুটি চলক অথবা দুটি সেটের মধ্যে সম্পর্ক বিবেচনা করা হয়।

উদাহরণ ২০. বৃত্তের ব্যাসার্ধ ও পরিসীমার মধ্যে যে সম্পর্ক তাকে $p=2\pi r$ লিখে প্রকাশ করা হয় যেখানে r চলক বৃত্তের ব্যাসার্ধ ও p চলক বৃত্তের পরিসীমা নির্দেশ করে। এখানে r এর প্রত্যেক সম্ভাব্য মানের জন্য p এর একটি ও কেবল একটি মান নির্দিশ্ট হয়। আমরা বলি, p চলক r চলকের একটি ফাংশন এবং লিখি p=f(r), যেখানে $f(r)=2\pi r$ ।

এই ফাংশনীয় সম্পর্কটি দ্বারা r এর ব্যাপ্তি সেট X থেকে p এর ব্যাপ্তি সেট Y এ একটি ফাংশন সংজ্ঞায়িত হয়েছে বলেও ধরা হয়। এই ফাংশনকে X থেকে Y তে বর্ণিত অন্বয় $\{(r,p):r\in X$ এবং $p\in Y$ ও $p=2\pi r\}$ রূপেও বিবেচনা করা হয়। অন্বয়ের ধারণা নবম-দশম শ্রেণির গণিত বইয়ে ব্যাখ্যা করা হয়েছে।

সংজ্ঞা ৫ (ফাংশন). যদি X ও Y সেট হয় এবং কোনো নিয়মের অধীনে X সেটের প্রত্যেক উপাদানের সঞ্চো Y সেটের একটি ও কেবল একটি উপাদানকে সংশ্লিন্ট করা হয় তবে ঐ নিয়মকে X থেকে Y এ বর্ণিত একটি ফাংশন বলা হয়। এর্প ফাংশনকে f,g,F,G ইত্যাদি প্রতীক দ্বারা নির্দেশ করা হয়। সংজ্ঞা ৬ (ডোমেন ও কোডোমেন): যদি X সেট হতে Y সেটে f একটি ফাংশন হয়, তবে তাকে $f:X \to Y$ লিখে প্রকাশ করা হয়। X সেটকে $f:X \to Y$ ফাংশনের ডোমেন (Domain) এবং Y সেটকে এর কোডোমেন (Codomain) বলা হয়।

সংজ্ঞা ৭ (প্রতিবিম্ব ও প্রাক প্রতিবিম্ব). যদি $f:X\to Y$ ফাংশনের অধীনে $x\in X$ এর সাথে $y\in Y$ সংশ্লিষ্ট হয়, তবে এই ফাংশনের অধীনে y কে x এর প্রতিবিম্ব বা ইমেজ (Image) এবং x কে y এর প্রাক প্রতিবিম্ব (Preimage) বলা হয় এবং y=f(x) লিখে তা প্রকাশ করা হয়।

সংজ্ঞা ৮ (রেঞ্জ)ঃ $f:X\to Y$ ফাংশনের অধীনে Y এর যে সকল উপাদান X এর কোনো উপাদানের ইমেজ হয়, এদের সেটকে f ফাংশনের রেঞ্জ (Range) বলা হয় এবং 'রেঞ্জ f' দ্বারা প্রকাশ করা হয়। অর্থাৎ রেঞ্জ $f=\{y:y=f(x)$ যেখানে $x\in X\}=\{f(x):x\in X\}$ । লক্ষণীয় যে রেঞ্জ f কোভোমেন Y এর উপসেট।

২৪

উদাহরণ ২১. $f: x \to 2x+1, \ x \in Z;$ পূর্ণ সংখ্যার সেট Z হতে Z এ একটি ফাংশন বর্ণনা করে। এই ফাংশনের অধীনে পূর্ণসংখ্যা x এর প্রতিবিদ্ধ y=f(x)=2x+1; ফাংশনটির ডোমেন, ডোম f=Z এবং ফাংশনটির রেঞ্জ, রেঞ্জ $f=\{y: y=2x+1, \ x \in Z\}$ সকল বিজোড় পূর্ণসংখ্যার সেট।

উদাহরণ ২২. ক্রমজোড়ের সেট $F = \{(0,0), (1,1), (-1,1), (2,4), (-2,4), (3,9), (-3,9)\}$ একটি ফাংশন বর্ণনা করে, যার ডোমেন হলো F এর অন্তর্ভুক্ত ক্রমজোড়গুলোর প্রথম অংশকগুলোর সেট এবং রেঞ্জ হলো F এর অন্তর্ভুক্ত ক্রমজোড়গুলোর দ্বিতীয় অংশকগুলোর সেট।

অর্থাৎ ডোম $F=\{0,1,-1,2,-2,3,-3\}$ এবং রেঞ্চ $F=\{0,1,4,9\}$

একটু লক্ষ করলে এক্ষেত্রে দেখা যাবে যে F এর অধীনে $x \in \mathbb{C}$ ডোম F এর প্রতিবিম্ব $F(x) = x^2$ । উল্লেখ্য যে, একটি ক্রমজোড়ের সেট কেবল তখনই একটি ফাংশন বর্ণনা করে যখন ভিন্ন ভিন্ন ক্রমজোড়ের প্রথম অংশক ভিন্ন হয়।

উদাহরণ ২৩. নিচে বর্ণিত ফাংশন F এর ডোমেনকে A ও রেঞ্জকে B ধরে ফাংশনটিকে চিত্র দারা বর্ণনা করা যায়, যেখানে A এর প্রত্যেক বিন্দু থেকে একটি ও কেবল একটি তীর চিহ্নিত রেখা আরম্ভ হয়ে B সেটের একটি ও কেবল একটি বিন্দুতে শেষ হয়েছে (বামের চিত্র)। উল্লেখ্য যে, ফাংশনের কোডোমেন হিসেবে একটি সেট Y (যার উপসেট B) নিয়েও ফাংশনটিকে চিত্রিত করা যায় (ডানের চিত্র)।

বিপরীত ফাংশন (Inverse Function)

নিচের তিনটি চিত্রে তিনটি ফাংশন বর্ণনা করা হয়েছে।

ক) উপরের বামের চিত্রের ফাংশনটির অধীনে $a \to 1, b \to 2, c \to 4$ । এই ফাংশনটি এক-এক কিন্তু সার্বিক নয় কেননা 3 এর কোনো প্রাক প্রতিবিদ্ধ নেই।

খ) উপরের মাঝের চিত্রের ফাংশনটির অধীনে $a \to 1, b \to 2, c \to 2$ । এই ফাংশনটি সার্বিক কিন্তু এক-এক নয় কেননা b ও c এর প্রতিবিদ্ধ 2।

গ) উপরের ডানের চিত্রের ফাংশনটির অধীনে $a \to 2, b \to 1, c \to 3$ । এই ফাংশনটি এক-এক ও সার্বিক। শেষোক্ত ক্ষেত্রে কোডোমেন D এর প্রত্যেক উপাদানের জন্য ডোমেন A এর একটি ও কেবল একটি উপাদান নির্দিষ্ট হয়েছে। ফলে, D হতে A তে একটি ফাংশন বর্ণিত হয়েছে, যেই ফাংশনকে প্রদন্ত ফাংশনের বিপরীত ফাংশন বলা হয়।

সংজ্ঞা ৯ (বিপরীত ফাংশন): মনে করি, $f:A\to B$ একটি এক-এক ও সার্বিক ফাংশন। একটি ফাংশন $g:B\to A$ বর্ণিত হয় যেখানে প্রত্যেক $b\in B$ এর জন্য g(b)=a যদি ও কেবল যদি f(a)=b হয়। এই ফাংশন g কে f এর বিপরীক্ত ফাংশন বলা হয় এবং f^{-1} দ্বারা নির্দেশ করা হয় অর্থাৎ $g=f^{-1}$ ।

পাশের পৃষ্ঠার ডানের চিত্রে বর্ণিত ফাংশনটি f হলে $f^{-1}:D\to A$ এবং $f^{-1}(1)=b,\ f^{-1}(2)=a,$ $f^{-1}(3)=c$ ৷ উপরের অন্য দুটি চিত্রে বর্ণিত ফাংশন দুটির বিপরীত ফাংশন সম্ভব নয় ৷

উদাহরণ ২৪. মনে করি, $A=\{2,3,5,7\}$ এবং $B=\{1,2,4,7,10\}$ । A এর যে যে সদস্য দারা B এর যে যে সদস্য বিভাজ্য হয় এদেরকে নিচের চিত্রে তীর চিহ্নিত করে দেখানো হলো:

এখানে $D=\{(2,2),(2,4),(2,10),(5,10),(7.7)\}$ এরূপ অন্বিত সদস্যদের দ্বারা গঠিত ক্রমজোড়গুলোর সেট, যা দ্বারা এই বিভাজ্যতা সম্পর্কটি বর্ণনা করা যায়। D সেটে অন্তর্ভুক্ত ক্রমজোড়গুলোর প্রথম অংশ A এর সদস্য ও দ্বিতীয় অংশ B এর সদস্য যেখানে প্রথম অংশ দ্বারা দ্বিতীয় অংশ বিভাজ্য। অর্থাৎ, $D\subset A\times B$ এবং $D=\{(x,y):x\in A,y\in B$ এবং x দ্বারা y বিভাজ্য), এখানে D সেটটি A সেট থেকে B সেটে একটি অন্বয়।

উদাহরণ ২৫. বাস্তব সংখ্যার ক্রমজোড়ের সেট $L=\{(x,y):x\in R,\ y\in R$ এবং $x< y\}$ বিবেচনা করি। দুটি বাস্তব সংখ্যা a,b এর জন্য a< b যদি ও কেবল যদি $(a,b)\in L$ হয়। সূতরাং L সেট দ্বারা বাস্তব সংখ্যার ছোটো-বড়ো সম্পর্ক বর্ণিত হয়।

উদাহরণ ২৬. নিচের কোন অম্বয়টি (relation) ফাংশন নয়? যুক্তি দাও।

ফর্মা-৪, উচ্চতর পণিত, ৯ম-১০ম শ্রেপি

২৬

সমাধান: উপরের বাম পাশের সম্পর্কটি ফাংশন নয় কারণ $2 \to 4$, $2 \to 5$ এবং $3 \to 4$, $3 \to 5$ । বাকি তিনটি সম্পর্কই ফাংশন।

উদাহরণ ২৭. $f:x \to 2x^2+1$ ফাংশনের রেঞ্জ নির্ণয় কর যেখানে ডোমেন $X=\{1,2,3\}$ ।

সমাধান: $f(x) = 2x^2 + 1$ যেখানে $x \in X$ ।

$$f(1) = 2(1)^2 + 1 = 3$$
, $f(2) = 2(2)^2 + 1 = 9$ এবং $f(3) = 2(3)^2 + 1 = 19$ ।
∴ {1,2,3} এর রেজে সেট = {3,9,19}।

উদাহরণ ২৮. $f:x \to mx + c$ ফাংশনের জন্য 2 এবং 4 এর প্রতিবিদ্ধ যথাক্রমে 7 ও -1। তাহলে নির্ণয় কর:

- ক) m এবং c এর মান।
- খ) f এর অধীনে 5 এর প্রতিবিম।
- গ) f এর অধীনে 3 এর প্রাক প্রতিবিম্ব।

সমাধান:

- ক) f(x)=mx+c এ দেওয়া আছে $f:2 \to 7$ অর্থাৎ f(2)=7 বা, $2m+c=7\cdots\cdots(1)$ $f:4 \to -1$ অর্থাৎ f(4)=-1 বা, $4m+c=-1\cdots\cdots(2)$ (1) ও (2) থেকে পাই m=-4 এবং c=15
- খ) f এর অধীনে 5 এর প্রতিবিম্ব $f(5) = -4 \times 5 + 15 = -5$
- গ) 3 এর প্রাক প্রতিবিদ্ধ x হলে f(x)=3 অর্থাৎ -4x+15=3 বা x=3

কাজ: $F=\{(-2,4),(-1,1),(0,0),(1,1),(2,4)\}$ অম্বয়টি কী ফাংশন? এর ডোমেন ও রেঞ্জ নির্ণয় কর। সম্ভব হলে F এর জন্য একটি সূত্র নির্ণয় কর।

মশ্তব্য: কোনো ফাংশন F এর ডোমেন এবং ডোমেনের প্রত্যেক সদস্য x এর অনন্য প্রতিবিদ্ব F(x)নির্দিন্ট করা হলেই ফাংশনটি নির্ধারিত হয়। অনেক সময় ডোমেন উহ্য রাখা হয়। এরূপ ক্ষেত্রে ডোমেন হিসেবে ঐ সেটকে গ্রহণ করা হয়, যার প্রত্যেক উপাদানের জন্য F(x) নির্ধারিত থাকে।

উদাহরণ ২৯. $F(x)=\sqrt{1-x}$ দ্বারা বর্ণিত ফাংশনের ডোমেন নির্ণয় কর। F(-3), F(0), $F\left(\frac{1}{2}\right)$, F(1), F(2) এর মধ্যে যেগুলো সংজ্ঞায়িত সেগুলো নির্ণয় কর।

সমাধান: $F(x)=\sqrt{1-x}\in R$ যদি ও কেবল যদি $1-x\geq 0$ বা $1\geq x$ অর্থাৎ, $x\leq 1$ সূতরাং ডোম $F=\{x:x\in R$ এবং $x\leq 1\}$

এখানে
$$F(-3) = \sqrt{1 - (-3)} = \sqrt{4} = 2$$

$$F(0) = \sqrt{1-0} = \sqrt{1} = 1$$

$$F\left(\frac{1}{2}\right) = \sqrt{1 - \frac{1}{2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$$

$$F(1) = \sqrt{1-1} = 0$$

F(2) সংজ্ঞায়িত নয়, কেননা $2 \notin$ ডোম F।

কাজ:

ক) নিচের কোন অন্বয়টি ফাংশন নয়? য়য়ি দাও।

- খ) $f:x \to 4x+2$ দ্বারা বর্ণিত ফাংশন যার ডোমেন $D=\{-1,3,5\}$ । ফাংশনটির রেঞ্জ সেট নির্ণয় কর।
- গ) প্রদত্ত S অম্বয়টিকে তালিকা পন্ধতিতে বর্ণনা কর এবং কোনগুলো ফাংশন তা নির্ধারণ কর। ডোম S ও রেঞ্জ S নির্ণয় কর, যেখানে $A=\{-2,-1,0,1,2\}$ ।
 - (১) S = {(x,y): x ∈ A, y ∈ A এবং x + y = 1}
 - (২) $S = \{(x, y) : x \in A, y \in A \text{ are } x y = 1\}$
 - (a) $S = \{(x, y) : x \in A, y \in A \text{ and } y = x^2\}$
 - (8) $S = \{(x, y) : x \in A, y \in A \text{ and } y^2 = x\}$
- ঘ) F(x) = 2x 1 দ্বারা বর্ণিত ফাংশনের জন্য
 - (১) F(-2), F(0), এবং F(2) নির্ণয় কর।
 - (২) $F\left(\frac{a+1}{2}\right)$ নির্ণয় কর, যেখানে $a \in R$ ।
 - (৩) F(x) = 5 হল xে নির্ণয় কর।
 - (8) F(x) = y হলে x নির্ণয় কর, যেখানে $y \in R$ ।

এক-এক ফাংশন (One-One Function)

সংজ্ঞা ১০ (এক-এক ফাংশন): যদি কোনো ফাংশন f এর অধীনে এর ডোমেনের ভিন্ন ভিন্ন সদস্যের প্রতিবিদ্ধ সর্বদা ভিন্ন হয়, তবে ফাংশনটিকে এক-এক (one-one) ফাংশন বলা হয়। অর্থাৎ $x_1, x_2 \in \text{ডোম } f$ এবং $x_1 \neq x_2$ হলে $f(x_1) \neq f(x_2)$ ।

উপরের সংজ্ঞা থেকে দেখা যায়, একটি ফাংশন f:A o B এক-এক ফাংশন হবে, যদি ও কেবল যদি $f(x_1)=f(x_2)$ হলে $x_1=x_2$ হয় যেখানে $x_1,x_2\in A$ ।

উদাহরণ ৩০. $f(x)=3x+5, \ x\in R$ ফাংশনটি কি এক-এক ফাংশন?

সমাধান: মনে করি $a,b \in R$ এবং f(a) = f(b)।

তাহলে 3a + 5 = 3b + 5 বা, 3a = 3b বা, a = b।

সূতরাং f ফাংশনটি এক-এক।

উদাহরণ ৩১. দেখাও যে, $F:R \to R, \ F(x)=x^2$ ফাংশনটি এক-এক নয়।

সমাধান: $x_1=-1, x_2=1$ নিয়ে দেখি যে, $x_1\in$ ডোম $F,x_2\in$ ডোম F এবং $x_1\neq x_2$ ।

কিন্দু
$$F(x_1) = F(-1) = (-1)^2 = 1, F(x_2) = F(1) = (1)^2 = 1$$

অর্থাৎ $F(x_1)=F(x_2)$, \therefore F এক-এক নয়।

দ্রু**তব্য**: কোনো ফাংশনের বিপরীত অম্বয় ফাংশন নাও হতে পারে।

উদাহরণ ৩২. $f(x)=\frac{x}{x-2}, \ x\neq 2$ বর্ণিত ফাংশনের জন্য নির্ণয় কর: ক) f(5) খ) $f^{-1}(2)$

সমাধান:

$$f(x) = \frac{x}{x-2}, x \neq 2$$

∴ $f(5) = \frac{5}{5-2} = \frac{5}{3} = 1\frac{2}{3}$

খ) ধরি,
$$a=f^{-1}(2)$$
 তাহলে $f(a)=2$
$$\Longrightarrow \frac{a}{a-2}=2 \implies a=2a-4 \implies a=4$$

$$\therefore f^{-1}(2)=4$$

উদাহরণ ৩৩. $f(x) = 3x + 1, \ 0 \le x \le 2$

- ক) f এর রেঞ্জ নির্ণয় কর।
- খ) দেখাও যে f এক-এক ফাংশন।
- গ) f^{-1} নির্ণয় কর এবং f ও f^{-1} এর লেখচিত্র অঞ্চন কর।

সমাধান:

- ক) f(x) = 3x + 1, $0 \le x \le 2$ হতে পাই প্ৰাশু বিন্দুছয় (0,1) এবং (2,7)∴ রেঞা $f: R = \{y: 1 \le y \le 7\}$
- খ) যেহেতু প্রত্যেক $y\in R$ এর জন্য একমাত্র $x\in\{0\leq x\leq 2\}$ এর ইমেজ y দেখানো হয়েছে। সূত্রাং f এক-এক ফাংশন।
- গ) ধরি, y=f(x), x এর ইমেজ। তাহলে, $y=3x+1 \implies x=\frac{1}{3}(y-1)$ যা লেখচিত্রে দেখানো হয়েছে। বিপরীত ফাংশন $f^{-1}:y\to x$ যেখানে, $x=\frac{1}{3}(y-1)$ বা, $f^{-1}:y\to\frac{1}{3}(y-1)$ যা চিত্রে দেখানো হয়েছে। y এর স্থালে x স্থাপন করে পাই, $f^{-1}:x\to\frac{1}{3}(x-1)$ f^{-1} এর অঞ্চিত রেখা $y=\frac{1}{3}(x-1),\ 1\le x\le 7$ দেখানো হয়েছে।

সার্বিক ফাংশন (Onto Function)

চিত্রে ফাংশন f এর অধীনে সেট $A=\{1,2,3\}$ এবং $B=\{5,7,9\}$ বিবেচনা করি যেখানে $1\to 5,\ 2\to 7$ এবং $3\to 9$ অর্থাৎ B এর প্রত্যেক উপাদান A সেটের একটি উপাদানের প্রতিবিম্ব। এইরূপ ফাংশনকে সার্বিক ফাংশন বলা হয়।

সংজ্ঞা ১১ (সার্বিক ফাংশন). একটি ফাংশন $f:A\to B$ কে সার্বিক ফাংশন (onto function) বলা হবে যদি প্রত্যেক $b\in B$ এর জন্য একটি $a\in A$ পাওয়া যায় যেন f(a)=b হয়। অর্থাৎ B=রেঞ্জ f।

উদাহরণ ৩৪. যদি $f:R\to R$ এবং $g:R\to R$ ফাংশন দুটি f(x)=x+5 এবং g(x)=x-5 দ্বারা সংজ্ঞায়িত হয়, তবে দেখাও যে, f এর বিপরীত ফাংশন g।

উচ্চতর গণিত 30

সমাধান: f ফাংশনটি এক-এক, কেননা

$$f(x_1) = f(x_2)$$
 হলে $x_1 + 5 = x_2 + 5$ বা, $x_1 = x_2$ ।
আবার, f ফাংশনটি সার্বিক, কেননা

$$y=f(x)$$
 হলৈ $x+5=y$ বা, $x=y-5\in R$ ৷

সূতরাং বিপরীত ফাংশন f^{-1} বিদ্যমান।

$$f^{-1}(x) = y$$
 হল $f(y) = x$ বা, $y + 5 = x$ বা, $y = x - 5$
আবার, $f^{-1}(x) = x - 5 = q(x)$

 f^{-1} ও g উভয়ের ভোমেন একই হওয়ায় $f^{-1}=g$

কাজ:

ক) নিমের প্রতিটি এক-এক ফাংশনের জন্য সংশ্লিষ্ট f⁻¹ নির্ণয় কর, যদি বিদ্যমান হয়।

(3)
$$f(x) = \frac{3}{x-1}, x \neq 1$$
 (3) $f(x) = \frac{2x}{x-2}, x \neq 2$

(2)
$$f(x) = \frac{2x}{x-2}, x \neq 2$$

(a)
$$f: x \to \frac{2x+3}{2x-1}, x \neq \frac{1}{2}$$

- খ) বর্ণিত ফাংশন $f(x)=rac{4x-9}{x-2},\ x
 eq 2$ এর ক্ষেত্রে যদি f^{-1} বিদ্যমান হয় তবে
 - (১) $f^{-1}(-1)$ এবং $f^{-1}(1)$ নির্ণয় কর।
 - (২) x এর মান নির্ণয় কর যেন 4 f⁻¹(x) = x
- গ) বর্ণিত ফাংশন $f(x)=rac{2x+2}{x-1}$, x
 eq 1 এর জন্য যদি f^{-1} বিদ্যমান হয় তবে
 - (১) f⁻¹(3) নির্ণয় কর।
 - (২) $f^{-1}(p) = kp, \ p$ এর সাপেকে k কে প্রকাশ কর।
- ঘ) নিম্নান্ত প্রত্যেক ক্ষেত্রে প্রদন্ত সম্পর্ক F একটি ফাংশন কিনা তা নির্ণয় কর। F ফাংশন হলে উহার ভোমেন এবং রেঞ্জ নির্ণয় কর, উহা এক-এক কিনা তাও নির্ধারণ কর:

 - (3) $F = \{(x, y) \in \mathbb{R}^2 : y = x\}$ (2) $F = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$

 - (b) $F = \{(x, y) \in \mathbb{R}^2 : y^2 = x\}$ (8) $F = \{(x, y) \in \mathbb{R}^2 : y = \sqrt{x}\}$
- ঙ) যদি $f: \{-2, -1, 0, 1, 2\} \rightarrow \{-8, -1, 0, 1, 8\}$ ফাংশনটি $f(x) = x^3$ দারা সংজ্ঞায়িত হয় তবে দেখাও যে, f এক-এক এবং সার্বিক।
- চ) $f:\{1,2,3,4\}\to R$ একটি ফাংশন যা f(x)=2x+1 দ্বারা সংজ্ঞায়িত। দেখাও যে, f এক-এক ফাংশন কিন্তু সার্বিক ফাংশন নয়।

অম্বয় ও ফাংশনের লেখচিত্র

লেখচিত্র হলো ফাংশনের জ্যামিতিক উপস্থাপন। y=f(x) লেখচিত্র অঞ্চনের জন্য O বিন্দুতে পরস্পর ছেদী লম্ব দুটি সরলরেখা XOX' এবং YOY' নেওয়া হয়। O কে মূলবিন্দু, XOX' কে x আক্ষ এবং YOY' কে y আক্ষ বলা হয়।

y=f(x) ফাংশনের লেখচিত্র অঞ্চনের জন্য $a\leq x\leq b$ ব্যবধিতে স্বাধীন চলক x এবং অধীন চলক y এর মানগুলোর তালিকা প্রস্তৃত করতে হয়। অতঃপর তালিকার সীমিত সংখ্যক বিন্দুগুলোকে xy সমতলে স্থাপন করতে হয়। প্রাপ্ত বিন্দুগুলোকে সরলরেখা অথবা বক্ররেখা দ্বারা যুক্ত করলে y=f(x) ফাংশনের লেখচিত্র পাওয়া যায়। নবম-দশম শ্রেণির গণিতে লেখচিত্র সম্পর্কে প্রাথমিক ধারণা প্রদান করা হয়েছে। এখানে, সরলরৈখিক (Linear) ফাংশন, দ্বিঘাত (Quadratic) ফাংশন এবং বৃত্তের লেখচিত্র অঞ্চন সম্পর্কে আলোচনা করা হয়েছে।

সরলরৈখিক ফাংশন

সরলরৈখিক ফাংশন এর সাধারণ রূপ হলো f(x)=mx+b যেখানে, m এবং b বাস্তব সংখ্যা। এর লেখচিত্র একটি রেখা যার ঢাল হলো m এবং y অক্ষের ছেদক b।

এখানে, ধরি m=3 এবং b=2 তাহলে ফাংশনটি দাঁড়ায় f(x)=3x+2

বর্ণিত ফাংশন হতে x ও y এর নিমর্প সংশ্লিউ মান পাওয়া যায়:

X	-2	-1	0	1	2
у	-4	-1	2	5	8

বিঘাত ফাংশন (Quadratic Function)

দ্বিঘাত ফাংশন হলো একটি ফাংশন যা $y=ax^2+bx+c$ সমীকরণ দ্বারা বর্ণিত যেখানে a, b ও c বাস্তব সংখ্যা এবং $a\neq 0$ । প্রদন্ত ফাংশনে ধরি a=1, b=-4, c=-1। তাহলে $y=ax^2+bx+c$ কে লেখা যায় $y=x^2-4x-1$ । বর্ণিত ফাংশন হতে x ও y এর সংশ্লিউ মান পাওয়া যায় যা নিচের সারণিতে দেখানো হয়েছে।

ত্র্

x	$x^2 - 4x - 1$	y
-1	$(-1)^2 - 4(-1) - 1$	4
0	$(0)^2 - 4(0) - 1$	-1
1	$(1)^2 - 4(1) - 1$	-4
2	$(2)^2 - 4(2) - 1$	-5
3	$(3)^2 - 4(3) - 1$	-4
4	$(4)^2 - 4(4) - 1$	-1
5	$(5)^2 - 4(5) - 1$	4

উপরে দ্বিঘাত ফাংশনটির লেখচিত্র। এই দ্বিঘাত ফাংশন এর কিছু সাধারণ বৈশিষ্ট্য লক্ষ করি।

- ক) লেখচিত্রটি পরাবৃত্ত আকারের।
- খ) লেখচিত্রটির y অক্ষের সমান্তরাল রেখা বা y অক্ষ বরাবর প্রতিসাম্য বিন্দু পাওয়া যাবে।
- গ) একটি বিন্দুতে ফাংশনটির মান ক্ষুদ্রতম বা বৃহত্তম হবে।

বৃত্তের লেখচিত্র

উল্লেখ্য যে p, q ও r ধ্রুবক এবং $r \neq 0$ হলে R এ $S = \{(x,y): (x-p)^2 + (y-q)^2 = r^2\}$ অন্বয়ের লেখ একটি বৃত্ত যার কেন্দ্র (p,q) এবং ব্যাসার্থ r (নবম-দশম শ্রেণির গণিত দ্রুউব্য)। ছক কাগজে (p,q) বিন্দু পাতন করে ঐ বিন্দুকে কেন্দ্র করে r ব্যাসার্থ নিয়ে বৃত্ত অঞ্জন করে লেখচিত্রটি পাওয়া যায়।

মশ্তব্য: যে অম্বয়ের সমাধান সেট অসীম, এর লেখচিত্র অজ্জনের স্বীকৃত পদ্ধতি হলো যথেন্ট সংখ্যক সমাধানের প্রতিরূপী বিন্দু ছক কাগজে পাতন করে সাবলীলভাবে ঐ সব বিন্দু যোগ করা, যাতে অম্বয়টির লেখচিত্রের ধরন দ্বার্থহীনভাবে বুঝা যায়। কিন্তু যে অম্বয়ের লেখচিত্র বৃত্ত, এর জন্য কম্পাস ব্যবহার করলে কাজ সহজ ও সুন্দর হয় বিধায় শেষোক্ত পদ্ধতি অবলম্বন করা হলো।

উদাহরণ ৩৫.
$$S = \{(x, y) : x^2 + y^2 = 16\}$$

সুতরাং S এর লেখচিত্র একটি বৃত্ত, $x^2+y^2=4^2$ যার কেন্দ্র (0,0) এবং ব্যাসার্ধ r=4।

S এর লেখচিত্র নিম্নে দেখানো হলো:

কাজ:

ক) নিমের প্রত্যেক ক্ষেত্রে প্রদত্ত সমীকরণ থেকে y কে a এর ফাংশন রূপে প্রকাশ কর।

(3)
$$y-2=3(x-5)$$

(3)
$$y-5=-2(x+1)$$

(b)
$$y-2=\frac{1}{2}(x+3)$$

(2)
$$y-5 = -2(x+1)$$

(8) $y-5 = \frac{4}{3}(x-3)$

খ) লেখচিত্র অঞ্চন কর:

(3)
$$y = 3x - 1$$

(2)
$$x + y = 3$$

(a)
$$x^2 + y^2 = 9$$

(3)
$$x + y = 3$$

(8) $y = \frac{1}{3}x + 1$

উদাহরণ ৩৬. দেওয়া আছে $f:x o rac{2x-1}{2x+3}$ ।

ক)
$$f\left(-\frac{1}{3}\right) = \overline{\Phi}$$
ত?

- খ) ফাংশনটি এক-এক কিনা তা নির্ধারণ কর।
- গ) $2f^{-1}(x) = x$ হলে x এর মান নির্ধারণ কর।

সমাধান:

ক) দেওয়া আছে, $f:x o rac{2x-1}{2x+3}$ । সুতরাং $f(x)=rac{2x-1}{2x+3}$ ।

$$f\left(-\frac{1}{3}\right) = \frac{2\left(-\frac{1}{3}\right) - 1}{2\left(-\frac{1}{3}\right) + 3} = \frac{-\frac{2}{3} - 1}{-\frac{2}{3} + 3} = \frac{-\frac{5}{3}}{\frac{7}{3}} = -\frac{5}{3} \cdot \frac{3}{7} = -\frac{5}{7}$$

খ) দেওয়া আছে, $f:x o rac{2x-1}{2x+3}$ । সূতরাং $f(x)=rac{2x-1}{2x+3}$ ।

ফর্মা-৫, উচ্চতর গণিত, ৯ম-১০ম শ্রেণি

ৰা,
$$x+1=0$$
 বা, $x=-1$
∴ নিৰ্ণয় মান $x=-1$

অনুশীলনী ১.২

١.	$\{(2,2),(4,2),(2,10)\}$), (7, 7)} অস্বয়ের	ভোমেন কোনটি?			
	季) {2,4,5,7}		∜) {2,2,10,7}			
	গ) {2,4,10,7}		ঘ) {2,4,7}			
2.	$S = \{(x,y) : x \in $ কোনটি S অম্বয়ের সদ		$y=x^2\}$ এবং $A=$	= {-2, -1, 0, 1. 2} নিচের		
	季) (2,4)		∜) (-2,4)			
	গ) $(-1,1)$		ঘ) $(1,-1)$			
೦.	यमि $S = \{(1,4), (2,$	1), (3, 0), (4, 1), (5,4)} হয় তবে,			
	(i) S অস্বয়ের রেঞ্জ		######################################			
	(ii) S অম্বয়ের বিপরীত অম্বয়, $S^{-1}=\{(4,1),(1,2),(0,3),(1,4),(4,5)\}$					
	(iii) S অস্বয়টি একটি ফাংশন					
	উপরের তথ্যের আলোকে নিচের কোনটি সঠিক?					
	す) i も ii	**i 영 iii	গ) i ও iii	ঘ) i, ii ও iii		
8.	যদি $F(x) = \sqrt{x-1}$	হয় তবে F(10) =	কত?			
	 9	খ) 3	গ) —3	ঘ) $\sqrt{10}$		
₢.	$S = \{(x, y) : x^2 + y \}$	$y^2 - 25 = 0$ এবং	$x \ge 0$ হলে,			
	(i) অস্থাটি ফাংশন নয়।					
	(ii) অম্বয়টির লেখচিত্র একটি অর্ধবৃত্ত।					
	(iii) অম্বয়টির লেখচিত্র x অক্ষের উপর অর্ধতলে থাকবে।					
	নিচের কোনটি সঠিক?					
	季) <i>i</i> , <i>ii</i>	খ) i, iii	N) ii, iii	ঘ) i, ii ও iii		
৬.	$F(x) = \sqrt{x - 1} = 3$	2 হলে 🗴 এর মান ব	হত?			
	ক) 5	খ) 24	গ) 25	ঘ) 26		

ক) ডোম $F=\{x\in R:x\neq 1\}$ খ) ডোম $F=\{x\in R:x\geq 1\}$

৭. $F(x) = \sqrt{x-1}$ ফাংশনটির ডোমেন নিচের কোনটি?

গ) ডোম $F = \{x \in R : x \le 1\}$

ঘ) ডোম $F=\{x\in R:x>1\}$

উচ্চতর গণিত 99

- (i) নিচে প্রদত্ত S অম্বয়গুলোর ডোমেন, রেঞ্জ ও বিপরীত অম্বয় নির্ণয় কর। b.
 - (ii) S অথবা S^{-1} অন্বয়গুলো ফাংশন কিনা তা নির্ধারণ কর।
 - (iii) ফাংশনগুলো এক-এক কিনা নির্ধারণ কর।
 - $\overline{\Phi}$) $S = \{(1,5), (2,10), (3,15), (4,20)\}$
 - \forall) $S = \{(-3.8), (-2,3), (-1,0), (0,-1), (1,0), (2,3), (3,8)\}$
 - গ) $S = \left\{ \left(\frac{1}{2}, 0\right), (1, 1), (1, -1), \left(\frac{5}{2}, 2\right), \left(\frac{5}{2}, -2\right) \right\}$
 - $S = \{(-3, -3), (-1, -1), (0, 0), (1, 1), (3, 3)\}$
 - $S = \{(2,1), (2,2), (2,3)\}$
- ৯. $F(x) = \sqrt{x-1}$ দ্বারা বর্ণিত ফাংশনের জন্য
 - ক) F(1), F(5) এবং F(10) নির্ণয় কর।
 - খ) $F(a^2+1)$ নির্ণয় কর যেখানে $a \in R$ ।
 - গ) F(x) = 5 হলে, x নির্ণয় কর।
 - ঘ) F(x) = y হলে, x নির্ণয় কর যেখানে $y \ge 0$ ।
- ১০. $F:R\to R,\ F(x)=x^3$ ফাংশনের জন্য
 - ক) ডোম F এবং রেঞ্জ F নির্ণয় কর।
- খ) দেখাও যে, F এক-এক ফাংশন।

গ) F⁻¹ নির্ণয় কর।

- ঘ) দেখাও যে, F-1 একটি ফাংশন।
- ১১. ক) $f:R\to R$ একটি ফাংশন যা $f(x)=ax+b; a,b\in R, a\neq 0$ দ্বারা সংজ্ঞায়িত হলে, দেখাও যে, f এক-এক এবং সার্বিক।
 - খ) $f:[0,1] \to [0,1]$ ফাংশনটি $f(x)=\sqrt{1-x^2}$ দ্বারা সংজ্ঞায়িত হলে, দেখাও যে, fএক-এক এবং সার্বিক।
- ক) যদি $f:R\to R$ এবং $g:R\to R$ ফাংশনদ্বয় $f(x)=x^3+5$ এবং $g(x)=(x-5)^{\frac{1}{2}}$ 25 দ্বারা সংজ্ঞায়িত হয়, তবে দেখাও যে, $q=f^{-1}$ ।
 - খ) যদি $f:R\to R$ ফাংশনটি f(x)=5x-4 দ্বারা সংজ্ঞায়িত হয়, তবে, $y=f^{-1}(x)$ নির্ণয় কর।
- ১৩. S অন্বয়ের লেখচিত্র অঞ্জন কর এবং অন্বয়টি ফাংশন কিনা তা লেখচিত্র থেকে নির্ণয় কর।

 - গ) $S = \{(x, y) : 3x + y = 4\}$ ঘ) $S = \{(x, y) : x = -2\}$
- S অন্বয়ের লেখচিত্র অঞ্জন কর এবং অন্বয়টি ফাংশন কিনা তা লেখচিত্র থেকে নির্ণয় কর।

- ১৫. দেওয়া আছে, F(x) = 2x 1।
 - ক) F(x+1) এবং $F\left(\frac{1}{2}\right)$ এর মান নির্ণয় কর।
 - খ) F(x) ফাংশনটি এক-এক কিনা তা যাচাই কর, যখন $x,y\in R$ ।
 - গ) F(x)=y হলে x এর তিনটি পূর্ণ সাংখ্যিক মানের জন্য y এর মান নির্ণয় কর এবং y=2x-1 সমীকরণটির লেখচিত্র অঞ্চন কর।
- ১৬. $f:R\to R$ এবং $g:R\to R$ ফাংশন দুটি যথাক্রমে f(x)=3x+3 এবং $g(x)=\frac{x-3}{3}$ দ্বারা সংজ্ঞায়িত।
 - ক) $g^{-1}(-3)$ এর মান নির্ণয় কর।
 - খ) f(x) সার্বিক ফাংশন কিনা তা নির্ধারণ কর।
 - গ) দেখাও যে, $g=f^{-1}$ ৷
- ১৭. দেওয়া আছে, $f(x)=\sqrt{x-4}$ ।
 - ক) f(x) এর ডোমেন নির্ণয় কর।
 - খ) f(x) এক-এক ফাংশন কিনা নির্ধারণ কর।
 - গ) $\int^{-1}(x)$ ফাংশন কিনা তা লেখচিত্রের সাহায্যে নির্ণয় কর।