Finding Similar Sets

Applications
Shingling
Minhashing
Locality-Sensitive Hashing

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - > Find near-neighbors in high-dimensional space
- **Examples:**
 - Pages with similar words
 - For duplicate detection, classification by topic
 - > Customers who purchased similar products
 - Products with similar customer sets
 - > Images with similar features
 - Users who visited similar websites

Problem to solve

- Given high-dimensional data points
- And a distance function
 - > That quantifies the distance between points
- ◆ Find all pairs of points that are within some distance threshold
- ◆ Naïve solution would take O(N²) for N points
- ◆ We'll look at O(N) solutions

Relation to Previous Lectures

◆ Ch. 6: Finding frequent pairs

Naïve solution:

Single pass but requires space quadratic in the number of items O(N²)

N ... number of distinct items

 $K \dots$ number of items with support $\geq s$

A-Priori:

<u>First pass:</u> Find frequent singletons For a pair to be **a frequent pair candidate**, its singletons have to be frequent!

Second pass:

Count only candidate pairs!

Relation to Previous Lectures

- ◆ Ch. 6: Finding frequent pairs
- **◆ Further improvement: PCY**
 - Pass 1: Items 1...NCount exact frequency of each item:
 - Take pairs of items {i,j}, hash them into B buckets and count of the number of pairs that hashed to each bucket:

Relation to Previous Lecture

- ◆ Ch. 6: Finding frequent pairs
- **◆ Further improvement: PCY**
 - **→** Pass 1:
 - Count exact frequency of each item:
 - Take pairs of items {i,j}, hash them into B buckets and count of the number of pairs that hashed to each bucket:
 - **Pass 2:**
 - For a pair {i,j} to be a candidate for a frequent pair, its singletons {i}, {j} have to be frequent and the pair has to hash to a frequent bucket!

Items 1...N

Relation to Previous Lecture

- ♦ Last time: Finding frequent pairs
- **Ch. 6: A-Priori**Main idea: Candidates

Instead of keeping a count of each pair, only keep a count of <u>candidate</u> pairs!

Today's lecture: Find pairs of similar docs

Main idea: Candidates

- -- Pass 1: Take documents and hash them to buckets such that documents that are similar hash to the same bucket
- -- Pass 2: Only compare documents that are candidates (i.e., they hashed to a same bucket)

Benefits: Instead of O(N²) comparisons, we need O(N) comparisons to find similar documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,

Finding Similar Items

Problem Formulation

- ◆ Item represented as a set of objects
 - "baskets"=?
- Problem becomes: find similar sets
 - "finding similar items" = "finding items having similar objects"
- Challenges:
 - Large sets
 - Large number of items/sets

Distance Measures

- Goal: Find near-neighbors in highdimensional space
 - ➤ We formally define "near neighbors" as points that are a "small distance" apart
- ◆ For each application, we first need to define what "distance" means
- **◆ Today: Jaccard distance/similarity**

Task: Finding Similar Documents

Goal: Given a large number (in the millions or billions) of documents, find "near duplicate" pairs

Applications:

- Mirror websites, or approximate mirrors
 - Don't want to show both in search results
- Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Finding Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture

Shingling

Step 1: *Shingling:* Convert documents to sets

Documents as High-Dimensional Data

◆ Step 1: *Shingling:* Convert documents to sets

♦ Simple approaches:

- Document = set of words appearing in document
- Document = set of "important" words
- Don't work well for this application. Why?
- ◆ Need to account for ordering of words!
- ◆ A different way: Shingles!

Define: Shingles

- lacktriangle A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - > Assume tokens = characters, for examples
- **Example:** k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - > Option: Shingles as a "bag" (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- ◆ Caveat: You must pick *k* large enough, or most documents will have most shingles
 - > k = 5 is OK for short documents
 - k = 10 is better for long documents

May want to compress long shingles

Compressing Shingles

- ◆ To compress long shingles, we can hash them to numbers
 - > Each number may be represented as (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
 - ➤ Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- ◆ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the singles: $h(D_1)$ = {1, 5, 7}

Why is compression needed?

- How many k-shingles?
 - > Rule of thumb: imagine 20 characters in alphabet
 - Estimate of number of k-shingles is 20k
 - \rightarrow 4-shingles: 20⁴ or 160,000 or 2^{17.3}
 - \triangleright 9-shingles: 20⁹ or 512,000,000,000 or 2³⁹
- How many buckets?
 - > Assume we use 4 bytes to represent a bucket
 - \triangleright Assume buckets are numbered in range 0 to $2^{32} 1$
 - > This is much smaller than possible number of 9-shingles
 - Compression
 - Represent each shingle with 4 bytes, not 9 bytes

Thought Question

- Why is it better to hash 9-shingles (say) to 4 bytes than to use 4-shingles?
- ◆ Hint: How random are the 32-bit sequences that result from 4-shingling?

Why hash 9-shingles to 4 bytes rather than use 4-shingles?

- ◆ With 4-shingles, 2^{17.3} possible singles
 - Most sequences of four bytes are unlikely or impossible to find in typical documents
 - \triangleright Effective number of different shingles is much less than the number of buckets $2^{32} 1$
 - Not efficient use of memory
- ◆ With 9-shingles, 2³⁹ possible shingles
 - Many more than 2³² buckets
 - After hashing, may get any sequence of 4 bytes
 - Effectient use of memory

Similarity Metric for Shingles

- lacktriangle Document D_1 is a set of its k-shingles $C_1 = S(D_1)$
- ◆ Equivalently, each document is a vector of 0s,1s in the space of k-shingles
 - > Each unique shingle is a dimension
 - Vectors are very sparse
- ◆ A natural similarity measure is the Jaccard similarity

Jaccard Similarity of Sets

◆ The Jaccard similarity of two sets is the size of their intersection divided by the size of their union

Sim
$$(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Example: Jaccard Similarity

- 3 in intersection
- 8 in union

Jaccard similarity = 3/8

 Jaccard distance = 1 – Jaccard Similarity or 5/8 in this example

Motivation for Minhash/LSH

Use k-shingles to create Signatures: short integer vectors that represent sets and reflect their similarity

- Suppose we need to find near-duplicate documents among million documents
- Naïvely, we would have to compute pairwise
 Jaccard similarities for every pair of docs
 - $> \approx 5*10^{11}$ comparisons
 - ➤ At 10⁵ secs/day and 10⁶ comparisons/sec, it would take **5 days**
- ◆ For million, it takes more than a year...

MinHashing

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

From Sets to Boolean Matrices

- Rows = elements of the universal set
- ◆ Columns = sets
- ◆ 1 in row e and column S if and only if element e is a member of set S
- Column similarity is the Jaccard similarity of the sets of their rows with 1: intersction/union of sets
- ◆ Typical matrix is sparse (many 0 values)
 - May not really represent the data by a boolean matrix
 - > Sparse matrices are usually better represented by the list of non-zero values (e.g., triples)
 - But the matrix picture is conceptually useful

Example 3.6

Element	S_1	S_2	S_3	S_4
\overline{a}	1	0	0	1
\boldsymbol{b}	0	0	1	0
\boldsymbol{c}	0	1	0	1
d	1	0	1	1
e	0	0	1	0

- Universal set: {a, b, c, d, e}
- Matrix represents sets chosen from universal set
- \bullet S1 = {a, d}, S2 = {c], S3 = {b, d, e} and S4 = {a, c, d}
- Example: rows are products and columns are customers, represented by set of items they bought
- ◆ Jacquard similarity of S1, S4: intersection/union = 2/3

Example: Jaccard Similarity of Columns

When Is Similarity Interesting?

- When the sets are so large or so many that they cannot fit in main memory
- Or, when there are so many sets that comparing all pairs of sets takes too much time
- 3. Or both

Outline: Finding Similar Columns

- Compute signatures of columns = small summaries of columns
- Examine pairs of signatures to find similar signatures
 - Essential: "similarities of signatures" and "similarities of columns" are related
- Optional: check that columns with similar signatures are really similar

Warnings

- Comparing all pairs of signatures may take too much time, even if not too much space
 - A job for Locality-Sensitive Hashing
- These methods can produce false negatives, and even false positives (if the optional check is not made)

Signatures

- Key idea: "hash" each column C to a small signature Sig(C), such that:
 - Sig (C) is small enough that we can fit a signature in main memory for each column
 - 2. Sim (C_1, C_2) is the same as the "similarity" of Sig (C_1) and Sig (C_2)

Four Types of Rows

• Given columns C_1 and C_2 , there are 4 types of rows and may be classified as:

$$C_1$$
 C_2
 a
 1
 1
 \leftarrow type "a"

 b
 1
 0
 \leftarrow type "b"

 c
 0
 1
 \leftarrow type "c"

 d
 0
 0
 \leftarrow type "d"

- lacktriangle Also, a = "# rows of type <math>a", etc.
- ◆ Note Sim $(C_1, C_2) = a / (a + b + c)$
 - > Jacquard similarity: intersection/union
 - \geq "a" is intersection, "a+b+c" is union

Minhashing

- ◆ To minhash a set represented by a column of the matrix, pick a random permutation of the rows
- ◆ Define "hash" function h (C) = the number of the first (in the permuted order) row in which column C has 1
- ◆ Use several (e.g., 100) independent hash functions to create a signature

Minhashing Example (3.7)

Element	S_1	S_2	S_3	S_4		Element	S_1	S_2	S_3	S_4
$\overline{}$	1	0	0	1		b	0	0	1	0
b	0	0	1	0		e	0	0	1	0
c	0	1	0	1		\boldsymbol{a}	1	0	0	1
d	1	0	1	1	Permute	d	1	0	1	1
e	0	0	1	0	remute	\boldsymbol{c}	0	1	0	1

- To minhash a set represented by a column of the characteristic matrix, pick a permutation of the rows
- The minhash value of any column is the "index" number of the first row, in the permuted order, in which that column has a 1
- For set S1, first 1 appears in row a, so:

$$h(S1) = a$$
 $h(S2) = c$
 $h(S3) = b$
 $h(S4) = a$

Minhashing Example

Input matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix *M*

2	1	2	1
2	1	4	1
1	2	1	2

Surprising Property: Connection between Minhashing and Jaccard Similarity

- The probability that minhash function for a random permutation of rows produces same value for two sets equals Jaccard similarity of those sets
 - \rightarrow "The probability that $h(C_1)=h(C_2)$ " is the same as "Sim (C_1, C_2) "
- Recall four types of rows:

	C ₁	C ₂
a	1	1
b	1	0
С	0	1
d	0	0

- Sim(C_1 , C_2) for both Jacquard and Minhash are a/(a+b+c)!
 - ➤ Why? Look down the permuted columns C₁ and C₂ until we see a 1
 - If it's a type-a row, then $h(C_1) = h(C_2)$. If a type-b or type-c row, then not. (Don't count the *type-d* rows)

Similarity for Signatures

- Sets represented by characteristic matrix M
- To represent sets: pick at random some number n of permutations of the rows of M
 - > 100 permutations or several hundred
- Call minhash functions determined by these permutations $h_1, h_2, ..., h_n$
- From column representing set S, construct minhash signature for S:
 - \triangleright vector $[h_1(S), h_2(S), ..., h_n(S)]$, usually represented as column
- Construct a signature matrix: ith column of M replaced by minhash signature for ith column
- ◆ The similarity of signatures is the fraction of the hash functions in which they agree

Min Hashing – Example

Input matrix

1	4	3	1
3	2	4	1
7	1	7	0
6	3	6	0
2	6	1	0
5	7	2	1
4	5	5	1

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

40

Minhash Signatures

- ◆ Pick (say) 100 random permutations of the rows
- ◆ Think of Sig (C) as a column vector
- ◆ Let Sig (C)[i] = according to the i th permutation, the number of the first row that has a 1 in column C

Implementation – (1)

- Not feasible to permute a large characteristic matrix explicitly
 - Suppose 1 billion rows
 - Hard to pick a random permutation from 1...billion
 - Representing a random permutation requires 1 billion entries
 - Accessing rows in permuted order leads to thrashing

Can simulate the effect of a random permutation by a random hash function

- Maps row numbers to as many buckets as there are rows
- May have collisions on buckets
- Not important as long as number of buckets is large

Implementation – (2)

- A good approximation to permuting rows: pick around 100 hash functions
- For each:
 - \triangleright column c (set representing a document)
 - \rightarrow hash function h_i
- Keep a "slot" in signature matrix M (i,c)
- Intent: M(i,c) will become the smallest value of $h_i(r)$ for which column c has 1 in row r
 - \rightarrow $h_i(r)$ gives order of rows for i^{th} permuation

Implementation – (3)

```
for each row r

for each column c

if c has 1 in row r

for each hash function h_i do

if h_i(r) is a smaller value than M(i, c) then

M(i, c) := h_i(r);
```

Computing Minhash Signatures: Example 3.8

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Two hash functions give permutations of rows:

$$h1 = x+1 \mod 5$$
, $h2 = 3x +1 \mod 5$

	$ S_1 $	S_2	S_3	S_4
h_1	∞	∞	∞	∞
h_2	∞	∞	∞	∞

Initial signature matrix

For row 0: Replace existing signature values with lower hash values for S1 and S4, since both have 1 in row

Computing Minhash Signatures: Example 3.8 (part 2)

Row	S_1	S_2	S_3	$ S_4 $	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

	$ S_1 $	S_2	S_3	S_4
h_1	1	∞	2	1
h_2	1	∞	4	1

For row 1: replace h1 and h2 values for S3, since row has a 1 and values are lower

For row 2: replace values for S2 since set has a 1 value. Do not replace values for S4, because existing values are lower

46

Computing Minhash Signatures: Example 3.8 (part 3)

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

	$\mid S_1 \mid$	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

For row 3: don't replace h1 values--all are below 4; replace h2 values with 0 for S1, S3, S4

For row 4: replace h1 value for S3, don't replace h2 value since current value is lower Note: result is same as 47 permutations to find first 1