Maths for Physics

March 23, 2022

Contents

1	Intr	roduzione
2	Ana	alisi complessa
	2.1	Numeri complessi
	2.2	Serie e successioni
	2.3	Serie di potenze
	2.4	Funzione complessa
	2.5	Proiezione stereografica e punto all'infinito
	2.6	Singolarità
	2.7	Superfici di Riemann
	2.8	Integrazione
		2.8.1 Integrali di linea e forme differenziali
		2.8.2 Forme differenziali e campi vettoriali in \mathbb{R}^2
		2.8.3 Formula integrale di Cauchy
	2.0	Sovie di Louvent

Lecture 1

Introduzione

 $\begin{array}{ccc} mar & 01 & mar \\ 2022 & 12:30 \end{array}$

Il corso si articola in due filoni principali:

- Analisi complessa
- Spazi funzionali, algebra operatoriale, spazi infiniti dimensionali
 - ♦ trasformata di Fourier
 - ♦ trasformata di Laplace
 - ♦ distribuzioni

Libri. vedi e-learning

2 Analisi complessa

2.1 Numeri complessi

Si vede un richiamo sui numeri complessi. Storicamente sono comparsi nel XVI secolo per la risoluzione di equazioni polinomiali di terzo grado. Con essi si trovano soluzioni algebriche che non hanno soluzioni nel campo reale. Un esempio è $x^2 + 1 = 0$.

In fisica si sono visti nell'elettromagnetismo: in elettrotecnica si utilizza l'impedenza; in meccanica quantistica, la funzione d'onda è un oggetto complesso, $\Psi \in \mathbb{C}$.

Definizione. Un numero complesso è una coppia ordinata (a,b) con $a,b \in \mathbb{R}$ tali che siano definite l'addizione

$$(a,b) + (c,d) = (a+c,b+d)$$

la moltiplicazione

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

e la relazione di equivalenza

$$(a,b) = (c,d) \iff a = c \land b = d$$

con tale definizione è possibile dimostrare che l'insieme di tale coppie ordinate formano un campo (nel senso della definizione algebrica).

Teorema. L'insieme

$$\mathbb{C} = \{(a, b) \mid a, b \in \mathbb{R}\}\$$

è un campo abeliano rispetto alle operazioni di addizione e moltiplicazione.

Osservazione.

- La proprietà commutativa e la proprietà associativa derivano da quelle dei numeri reali.
- Esiste l'identità additiva (detto zero per analogia con \mathbb{R}) ed è (0,0).
- \bullet Esiste l'opposto di (a, b) definito come

$$(a,b) + (-a,-b) = (0,0)$$

- Esiste l'identità moltiplicativa (detta uno) ed è (1,0).
- \bullet Esiste l'inverso di (a,b) definito come

$$(a,b) \cdot \frac{1}{(a,b)} = (1,0)$$

Per trovare l'inverso si risolve

$$(a,b)\cdot(x,y) = (1,0) \implies \begin{cases} ax - by = 1 \\ ay + bx = 0 \end{cases} \implies \begin{cases} x = \frac{a}{a^2 + b^2} \\ y = -\frac{b}{a^2 + b^2} \end{cases}$$

Dunque

$$\frac{1}{(a,b)}=\left(\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2}\right)$$

Teorema. Il sottoinsieme

$$\mathbb{C}_0 = \{(a,0) \mid a \in \mathbb{R}\} \subset \mathbb{C}$$

è un campo a sua volta rispetto all'addizione ed alla moltiplicazione. Esso è isomorfo ad \mathbb{R} : cioè esiste una mappa tra i due insiemi che ne preserva la struttura: $f(a,0) \mapsto f(a)$.

Inoltre, \mathbb{C}_0 ha la stessa relazione di ordine di \mathbb{R} . Questo è importante perché \mathbb{C} non ha nessuna relazione d'ordine e non è possibile introdurne una in maniera sensata.

Definizione. L'unità immaginaria è (0,1) = i.

Si nota subito che multipli di i non hanno sempre parte immaginaria e dunque numeri che hanno solo parte immaginaria non formano un campo:

$$(0,1)\cdot(0,1)=(-1,0)\in\mathbb{C}_0$$

Quindi la soluzione di $x^2 + 1 = 0$ risulta essere x = (0,1). Si nota che anche (0,-1) risulta essere soluzione. In particolare, (0,-1) = -i.

Segue che $\pm i = \pm \sqrt{-1}$. Quindi $x^2 + 1 = 0$ ha soluzioni $x = \pm i$.

Definizione. Forma cartesiana. Considerato

$$z = (a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1)(b, 0) = a + ib$$

con $a, b \in \mathbb{R}$ e $z \in \mathbb{C}$. Inoltre, $a = \text{Re}\{z\}$ e $b = \text{Im}\{z\}$.

Definizione. La coniugazione complessa è un automorfismo (cioè una corrispondenza tra di un campo e se stesso che lascia invariate le relazioni). Considerato, z = a + ib, il suo complesso coniugato è

$$\overline{z} = a - ib = (a, -b)$$

Ne segue che

$$\overline{i} = -i, \quad \overline{z+w} = \overline{z} + \overline{w}, \quad \overline{zw} = \overline{z} \, \overline{w}$$

Le operazioni notevoli che si possono fare sono

$$z + \overline{z} = 2a = 2\operatorname{Re}\{z\}, \quad z - \overline{z} = 2ib = 2i\operatorname{Im}\{z\}, \quad z\overline{z} = a^2 + b^2 = |z|^2$$

Piano complesso. di Argand-Gauss. Il piano ha due assi ortogonali su cui si rappresenta la parte reale e la parte immaginaria di un numero complesso. Ogni punto è individuato da coordinate cartesiane o da coordinate sferiche. In questo modo la somma di numeri complessi diventa la somma di vettori.

Definizione. In questo modo si può utilizzare la rappresentazione tramite le coordinate polari. Considerato

$$z = a + ib = r(\cos\theta + i\sin\theta)$$

dove $r=|z|=\sqrt{a^2+b^2}$ e $\tan\theta=\frac{b}{a}$ a meno di 2π . L'angolo θ è detto anche argomento e si indica come

$$\theta = \operatorname{Arg}(z) = \begin{cases} \arctan \frac{b}{a}, & a > 0 \\ \arctan \frac{b}{a} + \pi, & a < 0, b > 0 \\ \arctan \frac{b}{a} - \pi, & a < 0, b < 0 \\ \frac{\pi}{2}, & a = 0, b > 0 \\ -\frac{\pi}{2}, & a = 0, b < 0 \\ -\pi, & a < 0, b = 0 \end{cases}$$

tutto questo è definito a meno di $2k\pi$, con $k \in \mathbb{Z}$.

Definizione. Formula di Eulero. Per utilizzare tale formula, si vuole estendere ai numeri complessi, l'esponenziale definito per i numeri reali. Considerato $z \in \mathbb{C}$, z = x + iy allora

$$e^z = e^{x+iy} = e^x e^{iy}$$

si assume che le proprietà della funzione esponenziale rimangano invariante sia per argomento reale che per argomento complesso. Quindi si ha $e^x \in \mathbb{R}$ e $e^{iy} \in \mathbb{C}$. Pertanto

$$e^{iy} = A(y) + iB(y)$$

si deriva una volta rispetto ad y e si assume che la derivata si comporti allo stesso modo anche con i numeri complessi. Quindi

$$d_y e^{iy} = ie^{iy} = i(A(y) + iB(y)) = A'(y) + iB'(y) \implies \begin{cases} A(y) = B'(y) \\ B(y) = -A'(y) \end{cases}$$

derivando una seconda volta si ha

$$d_y^2 e^{iy} = i(ie^{iy}) = -e^{iy} = -A(y) - iB(y) = A''(y) + iB''(y) \implies \begin{cases} A(y) = -A''(y) \\ B(y) = -B''(y) \end{cases}$$

Queste sono delle equazioni differenziali da cui si può estrarre la soluzione; le condizioni al contorno sono $e^{i0}=1$. Dunque

$$\begin{cases} A(0) = 1 \\ B(0) = 0 \end{cases} \implies \begin{cases} A'(0) = 0 \\ B'(0) = 1 \end{cases}$$

le cui soluzioni sono

$$\begin{cases} A(y) = \cos y \\ B(y) = \sin y \end{cases}$$

questa è detta forma polare o di Eulero

$$e^{iy} = \cos y + i \sin y$$

Dunque si è così estesa la definizione di esponenziale ai numeri complessi. Si nota che

$$e^z = e^x e^{iy} = e * x(\cos y + i\sin y)$$

e considerato $|z| \ll 1$, cioè $x,y \ll 1$ si utilizza l'espansione in serie di Taylor per ottenere

$$e^z \approx (1+x)(1+iy) = 1+x+iy = 1+z$$

dunque l'espansione di Taylor funziona anche per i numeri complessi. In particolare

$$e^z = \lim_{z \to \infty} \left(e^{\frac{z}{n}}\right)^n = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$$

Osservazione. Considerato $z = re^{i\theta}$ segue $\overline{z} = re^{-i\theta}$. Inoltre

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Da ciò si evince la formula di de Moivre. Considerato $n \in \mathbb{Z}$, segue

$$z^{n} = (re^{i\theta})^{n} = r^{n}e^{in\theta} = r^{n}(\cos(n\theta) + i\sin(n\theta))$$

Definizione. Così si può trovare anche la radice n-esima. La radice n-esima w di un numero complesso z è tale per cui $w^n = z$. Infatti

$$w=z^{\frac{1}{n}}=\left[r(\cos\theta+i\sin\theta)\right]^{\frac{1}{n}}=\sqrt[n]{r}\left[\cos\left(\frac{\theta+2k\pi}{n}\right)+i\sin\left(\frac{\theta+2k\pi}{n}\right)\right]$$

per de Moivre. Inoltre, esistono n differenti radici di z se $|z| \neq 0$.

Esempio.

- La radice quadrata di $1 = 1e^{i0}$ risulta essere $e^{ik\pi}$, con $k \in \{0, 1\}$.
- La radice quadrata di $-1 = e^{i\pi}$ risulta essere $e^{i\left(\frac{\pi}{2} + k\pi\right)}$ con $k \in \{0, 1\}$.

Equazione di secondo grado in \mathbb{C} . Un'equazione di secondo grado su \mathbb{C} si scrive come

$$az^2 + bz + c = 0$$
, $a, b, c \in \mathbb{R}$, $z \in \mathbb{C}$

Teorema. Un'equazione di tale tipo ha sempre due soluzioni nel campo complesso. La natura delle soluzioni è dato dal discriminante $\Delta = b^2 - 4ac$.

• Per $\Delta \geq 0$ si ha

$$z_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}, \quad z_{1,2} \in \mathbb{R}$$

• Per $\Delta < 0$ (cioè $-\Delta > 0$) si ha

$$z_{1,2} = \frac{-b \pm \sqrt{-(-\Delta)}}{2a} = \frac{-b \pm i\sqrt{-\Delta}}{2a}, \quad z_{1,2} \in \mathbb{C}$$

e si ha $z_1 = \overline{z}_2$.

Logaritmo. Considerato

$$z = re^{i\varphi} = e^{\ln r}e^{i\varphi} = e^{\ln r + i\varphi}$$

Si può definire il logaritmo come

$$\ln z = \ln r + i\varphi$$

Il logaritmo ha valori diversi in base all'angolo: se tale angolo viene considerato con multipli di 2π , il numero z è sempre lo stesso, ma il suo logaritmo cambia. Il logaritmo è una funzione polidroma.

Dunque, bisogna fare una scelta del valore di φ in modo da renderlo univoco

$$\begin{cases} \varphi \in [0, \pi], & y > 0 \\ \varphi \in [-\pi, 0], & y < 0 \end{cases}$$

La funzione $\operatorname{Arg}(z)$ ha già le proprietà corrette, dunque si definisce il logaritmo in modo univoco come

$$\ln z = \ln r + i \operatorname{Arg}(z)$$

Tuttavia, in questo modo la funzione non è più continua e si ha un branch cut. Il logaritmo è discontinuo per $x \in (-\infty, 0]$. Il branch cut risulta essere $\mathbb{C} \setminus (-\infty, 0)$.

Osservazione. Vale $\overline{\ln z} = \ln \overline{z}$. Infatti

$$\ln r - i\operatorname{Arg}(z) = \ln r + i\operatorname{Arg}(\overline{z})$$

dato che si ha

$$\overline{z} \leadsto \begin{cases} \overline{r} = r \\ \overline{\varphi} = -\varphi \end{cases}$$

Lecture 2

 $\begin{array}{ccc} lun & 07 & mar \\ 2022 & 12:30 \end{array}$

2.2 Serie e successioni

Si vedrà la proiezione stereografica.

Si studiano le successione e le serie sul campo dei numeri complessi. Per poter definire la successione ad una serie è necessario definire un concetto di distanza. Su $\mathbb C$ questo è possibile perché è definita la norma |z| che soddisfa le proprietà di distanza d(a,b), per due $a,b\in\mathbb C$:

- d(a,b) = d(b,a)
- $d(a,b) = 0 \iff a = b$
- $\forall c \in \mathbb{C}, d(a,c) + d(b,c) \ge d(a,c)$

Si definisce un concetto di distanza tra due numeri complessi $z_1, z_2 \in \mathbb{C}$ come il numero reale $|z_1 - z_2|$.

Definizione. Successione convergente. La successione di numeri $\{z_1, z_2, \ldots, z_n, \ldots\}$ con $z_k \in \mathbb{C}$ si dice convergere a $z \in \mathbb{C}$ se e solo se la successione dei numeri reali $|z_k - z| \to 0$, quando $k \to +\infty$.

Osservazione. Se si decompone un numero complesso nelle sue parti reale ed immaginaria allora

$$z_k - z = \operatorname{Re}(z_k - z) + i\operatorname{Im}(z_k - z)$$

ma

$$\operatorname{Re}(z_k - z) \le |z_k - z| \le |\operatorname{Re}(z_k - z)| + |\operatorname{Im}(z_k - z)|$$

 $\operatorname{Im}(z_k - z) \le |z_k - z| \le |\operatorname{Re}(z_k - z)| + |\operatorname{Im}(z_k - z)|$

Pertanto

$$|z_k - z| \to 0$$
, $k \to +\infty \iff \operatorname{Re}(z_k - z) \to 0 \land \operatorname{Im}(z_k - z) \to 0$, $k \to +\infty$

Dove le successioni di parti reali ed immaginarie sono successioni di numeri reali.

Definizione. Successioni di Cauchy. Una successione di Cauchy è una successione successione $\{z_k\}_k$ tale che

$$\forall \varepsilon > 0, \exists N_{\varepsilon} > 0 \mid n, m > N_{\varepsilon} \implies |z_n - z_m| < \varepsilon$$

Osservazione. Si nota che

- Se la successione $\{z_k\}$ è di Cauchy allora pure $\{\operatorname{Re}(z_k)\}$ e $\{\operatorname{Im}(z_k)\}$ sono successioni di Cauchy.
- Tutte le successioni convergenti in C sono di Cauchy.
- In $\mathbb C$ vale anche il viceversa perché è uno spazio metrico completo.

Definizione. Serie. La serie $\sum_n z_n$ con $z_n \in \mathbb{C}$ converge a $z \in \mathbb{C}$ se la successione delle somme parziali $\{S_n\}$ convergenze a z. Le somme parziali sono

$$S_n = \sum_{k=0}^{n-1} z_k$$

Osservazione. Si osserva

- Condizione necessaria per la convergenza è $z_n \to 0$ per $n \to +\infty$. Dunque $\text{Re}(z_n) \to 0$ e $\text{Im}(z_n) \to 0$ per $n \to +\infty$.
- Condizione sufficiente per la convergenza è la convergenza assoluta: se converge $\sum_n |z_n|$ su \mathbb{R} allora converge anche $\sum_n z_n$ su \mathbb{C} .

Esempio. Si consideri la serie

$$\sum_{n=0}^{\infty} \frac{1}{n!} (i\theta)^n$$

con $\theta \in \mathbb{R}$. Si studia la convergenza assoluta

$$\sum_{n=0}^{\infty} \left| \frac{1}{n!} (i\theta)^n \right| = \sum_{n=0}^{\infty} \frac{1}{n!} |i\theta|^n = \sum_{n=0}^{\infty} \frac{1}{n!} |\theta|^n = e^{|\theta|}$$

quindi la serie converge assolutamente su $\mathbb R$ a $e^{|\theta|}$ e quindi la serie originale converge in $\mathbb C$ a

$$\sum_{n=0}^{\infty} \frac{1}{n!} (i\theta)^n = e^{i\theta}$$

Questo è come si definisce l'esponenziale complesso.

Osservazione. Si può ricordare la formula di Eulero

$$\begin{split} e^{i\theta} &= \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{(2n)!} + \sum_{n=0}^{\infty} \frac{(i\theta)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(i^2)^n}{(2n)!} \theta^{2n} + \sum_{n=0}^{\infty} i \frac{(i^2)^n}{(2n+1)!} \theta^{2n+1} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \theta^{2n} + i \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \theta^{2n+1} = \cos \theta + i \sin \theta \end{split}$$

Si nota che riordinare i termini di una serie non ne cambia il valore se e solo se tale serie converge assolutamente, questo vale per il teorema delle serie di Riemann.

2.3 Serie di potenze

Definizione. Una serie di potenza è una quantità $S(z, z_0)$ dove z_0 è il centro della serie, $z, z_0 \in \mathbb{C}$ ed è definita come

$$S(z, z_0) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

con $a_n \in \mathbb{C}$ costanti.

Si studia la sua convergenza per ogni valore fissato di z, cioè si studia la convergenza puntuale. Si definisce l'insieme

$$E = \{ z \in \mathbb{C} \mid S(z, z_0) \text{ converge} \}$$

Osservazione. L'insieme E non è vuoto perché z_0 è suo elemento e la serie converge a $S(z_0, z_0) = a_0$.

Definizione. Raggio di convergenza. Si definisce l'insieme delle distanze

$$D = \{ |z - z_0| \mid z \in E \}$$

Il raggio di convergenza è $R = \sup_{z \in E} |z - z_0| = \sup D$, cioè la maggiore distanza da z_0 per cui S converge.

Osservazione. Si osserva

- Una serie di potenze convergente in \mathbb{C} , convernge in un cerchio di raggio R.
- Se la serie converge solo per $z=z_0$ allora R=0.
- Se la serie converge $\forall z \in \mathbb{C}$ allora $R = +\infty$.

Definizione. Si vedono due definizioni per calcolare il raggio di convergenza. Una funziona solamente se un limite esiste.

• Vale

$$R = \left(\lim_{n \to +\infty} \sup_{k \ge n} |a_k|^{\frac{1}{k}}\right)^{-1}$$

questo si riduce a

$$\lim_{n \to +\infty} \frac{1}{|a_n|^{\frac{1}{n}}}$$

quando quest'ultimo limite esiste.

• Vale

$$R = \lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|}$$

quando il limite esiste.

Una volta trovato R, allora si può affermare che la serie converge per $|z - z_0| < R$ e diverge per $|z - z_0| > R$. Per $|z - z_0| = R$ la convergenza dipende dal caso particolare.

Esempio. Si consideri la serie geometrica

$$\sum_{n=0}^{\infty} z^n$$

essa è una particolare serie di potenze che ha $a_n = 1 \ \forall n \in z_0 = 0$. Si consideri la somma parziale n-esima:

$$S_n = \sum_{k=0}^{n-1} z^k = 1 + z + z^2 + \dots + z^{n-1} = \frac{1 - z^n}{1 - z}$$

Si studia la convergenza. Si utilizza il primo criterio

$$\lim_{n \to \infty} \frac{1}{1^{\frac{1}{n}}} = 1 \implies R = 1$$

Per il secondo criterio si ha

$$\lim_{n \to \infty} \frac{1}{1} = 1 \implies R = 1$$

pertanto la serie ha raggio di convergenza pari ad 1. Infatti

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - z^n}{1 - z} = \frac{1}{1 - z} \iff |z| < 1$$

Se |z| > 1 allora

$$\lim_{n\to\infty} S_n = \infty$$

Per |z|=1 si può riscrivere $z=e^{i\theta}$ e per qualsiasi valore di $\theta\in\mathbb{R}$ si ha

$$\sum_{n=0}^{\infty} a_n e^{i\theta} = \infty$$

perché $a_n=1 \ \forall n$ perché non è soddisfatta la condizione necessaria di convergenza $\lim_{n\to\infty}a_n=0$.

Pertanto la serie $\sum_{n=0}^{\infty} z^n$ converge solamente per |z| < 1.

Definizione. Una serie bilatera è la serie

$$S(z, z_0) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n \frac{1}{(z - z_0)^n} = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n$$

l'ultima uguaglianza è vera quando

$$c_n = \begin{cases} a_n, & n \ge 0 \\ b_n, & n < 0 \end{cases}$$

Se la serie $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converge con raggio R allora $|z-z_0| < R$. Se la serie $\sum_{n=0}^{\infty} b_n \frac{1}{(z-z_0)^n}$ converge con raggio R' allora

$$\frac{1}{|z-z_0|} < R' \implies |z-z_0| > R'$$

pertanto, la regione di convergenza è l'intersezione tra le due. Per R' < R si ha una corona circolare, per R' > R si ha l'insieme vuoto.

Esempio. La funzione esponenziale è definita come

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

con $a_n = \frac{1}{n!}$ e $z_0 = 0$. Si calcola il suo raggio di convergenza:

$$R = \lim_{n \to \infty} \frac{1}{|a_n|^{\frac{1}{n}}} = \lim_{n \to \infty} (n!)^{\frac{1}{n}} = \lim_{n \to \infty} (n^n e^{-n})^{\frac{1}{n}} = \lim_{n \to \infty} n e^{-1} = +\infty$$

si utilizza la formula di Stirling $n! \sim n^n e^{-n}$. Quindi la funzione esponenziale converge in tutto $\mathbb C$

Esempio. Si consideri la serie

$$\sum_{n=0}^{\infty} (in)^{in} z^n$$

essa ha $a_n = (in)^{in}$ e $z_0 = 0$. Si studia il raggio di convergenza con il primo criterio si utilizza il fatto che

$$|a_n| = |(in)^{in}| = |e^{in\ln(in)}| = |e^{in(\ln i + \ln n)}| = |e^{in(i\frac{\pi}{2} + \ln n)}| = |e^{-n\frac{\pi}{2}}| |e^{in\ln n}| = e^{-\frac{\pi}{2}n}$$

ricordando che $|e^{i\theta}| = 1, \forall \theta \in \mathbb{R}$. Pertanto

$$R = \lim_{n \to \infty} \frac{1}{|a_n|^{\frac{1}{n}}} = \lim_{n \to \infty} \frac{1}{e^{-\frac{\pi}{2}}} = e^{\frac{\pi}{2}}$$

Osservazione. La derivata di una serie di potenze, con raggio di convergenza R, ha ancora raggio di convergenza R. Si definisce la derivata come

$$S'(z, z_0) = \sum_{n=0}^{\infty} n a_n (z - z_0)^{n-1}$$

Si mostra avere lo stesso raggio di convergenza tramite il primo criterio

$$R' = \lim_{n \to \infty} \sup_{k > n} |ka_k|^{\frac{1}{k}} = \lim_{n \to \infty} \sup_{k > n} |a_k|^{\frac{1}{k}} = R$$

questo perché

$$\lim_{n \to \infty} \sup_{k \ge n} k^{\frac{1}{k}} = \lim_{n \to \infty} e^{\frac{\ln n}{n}} = e^0 = 1$$

Corollario. Una serie di potenze è infinitamente differenziabile all'interno del proprio raggio di convergenza.

Osservazione. I coefficienti di

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

sono

$$a_k = \frac{f^{(k)}(z_0)}{k!}$$

2.4 Funzione complessa

Definizione. Una funzione complessa è una mappa $f: \mathbb{C} \to \mathbb{C}$ che associa un punto $z \in \mathbb{C}$ ad un punto $w = f(z) \in \mathbb{C}$.

Inoltre, vale

$$f(z) = \operatorname{Re}(f(z)) + i\operatorname{Im}(f(z))$$

e dato che qualsiasi numero complesso si può scrivere come z = x + iy allora si può scrivere

$$f(z) = u(x, y) + iv(x, y)$$

con $u, v : \mathbb{R}^2 \to \mathbb{R}$ funzioni reali.

Definizione. Continuità di una funzione. Una funzione f(z) è continua in $z_0 \in \mathbb{C}$ se essa è definita in un intorno di z_0 e se esiste finito il limite

$$\lim_{z \to z_0} f(z) = f(z_0)$$

Definizione. Limite. Il valore $f(z_0)$ è il limite di f(z) per $z \to z_0$ se

$$\forall \varepsilon > 0, \exists \delta > 0 \mid |z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon$$

Osservazione. Come nel caso di \mathbb{R}^2 , il limite deve essere indipendente dal cammino utilizzato.

Esempio. Si consideri

$$\lim_{z \to 0} \frac{\overline{z}}{z}$$

questo limite non esiste perché dipende dal cammino. Infatti, lungo l'asse reale si ha y=0 e pertanto

$$\lim_{x \to 0} \frac{x - iy}{x + iy} = \lim_{x \to 0} \frac{x}{x} = 1$$

d'altra parte, lungo l'asse immaginario si ha x=0 e quindi

$$\lim_{y \to 0} \frac{x - iy}{x + iy} = \lim_{y \to 0} \frac{-iy}{iy} = -1$$

Definizione. Continuità in un dominio. La funzione f(z) è continua su di un dominio $D \subset \mathbb{C}$ se essa è continua $\forall z \in D$.

Definizione. Derivata di una funzione continua. La funzione f(z) è differenziabile in z_0 se il limite

$$d_z f(z_0) \equiv f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

esiste.

Osservazione. Dato che la derivata è definita come un limite, se il limite esiste, allora la derivata è indipendente dal cammino.

Definizione. Funzione olomorfa. Una funzione differenziabile su di dominio $D\subset\mathbb{C}$ è detta olomorfa su tale dominio.

Esempio. Una funzione olomorfa su \mathbb{C} è

$$f(z) = z^3$$

infatti

$$f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

posto $\Delta z \equiv z - z_0$, con $z_0 \in \mathbb{C}$, si ha

$$f'(z) = \lim_{\Delta z \to 0} \frac{(z_0 + \Delta z)^3 - z_0^3}{\Delta z} = \lim_{\Delta z \to 0} \frac{3z_0^2 \Delta z + 3z_0 (\Delta z)^2 + (\Delta z)^3}{\Delta z} = 3z_0^2$$

la derivata esiste ed è indipendente dall'incremento, quindi $f(z) = z^3$ è olomorfa su tutto \mathbb{C} .

Esempio. La funzione $f(z) = \overline{z}$ non è olomorfa su \mathbb{C} . Questo perché

$$\lim_{\Delta z \to 0} \frac{\overline{(z_0 + \Delta z)} - \overline{z}_0}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

ma, come visto, tale limite non esiste.

Lecture 3

Proposizione. Valgono

 $\begin{array}{ccc} mar & 08 & mar \\ 2022 & 12:30 \end{array}$

- $\bullet \ (f \pm g)'(z) = f'(z) \pm g'(z)$
- (fg)'(z) = f'(z)g(z) + f(z)g'(z)
- $\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) f(z)g'(z)}{g^2(z)}$, quando $g(z) \neq 0$
- $d_z(f \circ q)(z) = f'(q(z))q'(z)$
- Considerata w = f(z) una funzione olomorfa in z_0 con $f'(z_0) \neq 0$, allora $z = f^{-1}(w)$ è olomorfa in $w_0 = f(z_0)$ e vale

$$(f^{-1}(w_0))' = \frac{1}{f'(z_0)}$$

Si determina la differenziabilità di una funzione in termini pratici.

Condizioni di Cauchy-Riemann. Queste condizioni sono equivalenti alla definizione tramite il rapporto incrementale, ma sono più pratiche. Esse sono condizioni necessarie e sufficienti per verificare la differenziabilità di una funzione f(z) in $z_0 \subset \mathbb{C}$. In \mathbb{C} la differenziabilità è legata alla derivabilità.

Teorema. Si consideri una funzione f(z) = u(x,y) + iv(x,y) con $u,v: \mathbb{R}^2 \to \mathbb{R}$ tali che u,v abbiano derivate parziali continue in un intorno di $z_0 = x_0 + iy_0$. Allora le condizioni di Cauchy-Riemann sono

$$\partial_x f(z_0) = -i \,\partial_y f(z_0)$$

oppure, analogamente

$$\partial_x u(x_0, y_0) = \partial_y v(x_0, y_0)$$
$$\partial_y u(x_0, y_0) = -\partial_x v(x_0, y_0)$$

ed esse sono necessarie e sufficienti per definire f(z) differenziabile in z_0 .

Dimostrazione. Si vede come le condizioni di Cauchy-Riemann sono necessarie (f differenziabile implica condizioni). Se f(z) è differenziabile allora esiste la derivata e quindi

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

questo limite esiste ed esso non dipende da $h \subset \mathbb{C}$, quindi non dipende nemmeno dal cammino verso 0. Pertanto, si può procedere sull'asse reale ed sull'asse immaginario. Dunque, sull'asse reale $h = h_x \in \mathbb{R}$ e si ha

$$f'(z_0) = \lim_{h_x \to 0} \frac{f(z_0 + h_x) - f(z_0)}{h_x}$$

$$= \lim_{h_x \to 0} \frac{u(x_0 + h_x, y_0) + iv(x_0 + h_x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{h_x}$$

$$= \partial_x u(x_0, y_0) + i\partial_x v(x_0, y_0)$$

Mentre sull'asse immaginario $h = ih_y, h_y \in \mathbb{R}$ e si ha

$$f'(z_0) = \lim_{h_y \to 0} \frac{f(z_0 + ih_y) - f(z_0)}{ih_y}$$

$$= \lim_{h_y \to 0} \frac{u(x_0, y_0 + h_y) + iv(x_0, y_0 + h_y) - u(x_0, y_0) - iv(x_0, y_0 + h_y)}{ih_y}$$

$$= \frac{1}{i} \partial_y u(x_0, y_0) + \partial_y v(x_0, y_0)$$

Dato che la derivata dev'essere indipendente del cammino, segue che le espressioni devono essere identiche:

$$\begin{cases} \partial_x u = \partial_y v \\ \partial_y u = -\partial_x v \end{cases}$$

Si vede come le condizioni di Cauchy-Riemann sono sufficienti. Si consideri $h = h_x + ih_y$ e la definizione di derivata come limite

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{u(x_0 + h_x, y_0 + h_y) + iv(x_0 + h_x, y_0 + h_y) - u(x_0, y_0) - iv(x_0, y_0)}{h_x + ih_y}$$

Siccome u e v sono differenziabili in un intorno di z_0 allora per Taylor si ha

$$u(x_0 + h_x, y_0 + h_y) = u(x_0, y_0) + h_x \,\partial_x u(x_0, y_0) + h_y \,\partial_y u(x_0, y_0) + o(|h|)$$
$$v(x_0 + h_x, y_0 + h_y) = v(x_0, y_0) + h_x \,\partial_x v(x_0, y_0) + h_y \,\partial_y v(x_0, y_0) + o(|h|)$$

Sostituendo si ha

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{h_x \, \partial_x u + h_y \, \partial_y u + i h_x \, \partial_x v + i h_y \, \partial_y v}{h_x + i h_y}$$

$$= \lim_{h \to 0} \frac{h_x \, \partial_x u - h_y \, \partial_x v + i h_x \, \partial_x v + i h_y \, \partial_x u}{h_x + i h_y}$$

$$= \lim_{h \to 0} \frac{(h_x + i h_y)(\partial_x u + i \, \partial_x v)}{h_x + i h_y} = \partial_x u + i \, \partial_x v$$

Nella seconda uguaglianza si applicano le condizioni di Cauchy-Riemann. Il limite esiste, è finito e non dipende da h. Pertanto

$$f'(z_0) = (\partial_x u + i \,\partial_x v)\big|_{(x_0, y_0)}$$

Osservazione. Le condizioni di Cauchy-Riemann permettono di scrivere le derivate di f(z) = u(x, y) + iv(x, y) in quattro modi equivalenti:

$$f'(z) = \begin{cases} \partial_x u + i \, \partial_x v \\ \partial_y u - i \, \partial_y v \\ \partial_x u - i \, \partial_y u \\ \partial_y u + i \, \partial_x u \end{cases}$$

Esempio. Si consideri la funzione f(z) = z = x + iy. Si ha u(x, y) = x e v(x, y) = y. Per le condizioni di Cauchy-Riemann si ha

$$\begin{cases} \partial_x u = 1 \equiv \partial_y v = 1 \\ \partial_y u = 0 \equiv -\partial_x v = 0 \end{cases}$$

Questo equivale in ogni punto $z \in \mathbb{C}$, quindi f(z) = z è olomorfa in tutto \mathbb{C} .

Esempio. Si vede una funzione non olomorfa. Si consideri $f(z) = \overline{z} = x - iy$. Si ha u(x, y) = x e v(x, y) = -y. Le condizioni diventano

$$\partial_x u = 1 \neq \partial_u v = -1$$

le condizioni non sono verificare per alcun $z \in \mathbb{C}$; pertanto, la funzione non è mai olomorfa.

Osservazione. Se una funzione contiene \overline{z} , allora essa non è mai olomorfa (anzi è antiolomorfa).

Definizione. Operatori differenziali in $z \in \overline{z}$. Si definiscono due operatori differenziali rispetto a $z \in \overline{z}$ come

$$\partial_z \equiv \frac{1}{2} (\partial_x - i \, \partial_y), \quad \partial_{\overline{z}} \equiv \frac{1}{2} (\partial_x + i \, \partial_y)$$

Teorema. Se una funzione f(z) è olomorfa su di un dominio $D \subset \mathbb{C}$ allora

$$\partial_{\overline{z}} f(z) = 0$$

Dimostrazione. Infatti

$$\begin{split} \partial_{\overline{z}}f(z) &= \frac{1}{2}(\partial_x f(z) + i\,\partial_y f(z)) = \frac{1}{2}(\partial_x (u(x,y) + iv(x,y)) + i\,\partial_y (u(x,y) + iv(x,y))) \\ &= \frac{1}{2}\left[\partial_x u + i\,\partial_x v + i\,\partial_y u - \partial_y v\right] = 0 \end{split}$$

l'ultima uguaglianza è data dal fatto che f(z) è olomorfa e quindi segue valere le condizioni di Cauchy-Riemann.

Osservazione. Quando una funzione è derivabile nel campo complesso, allora è derivabile un numero infinito di volte (per cui è detta funzione analitica). Le funzioni u e v non sono qualsiasi, ma sono funzioni armoniche: hanno precise relazione tra le loro derivate.

Le condizioni di Cauchy-Riemann affermano che $\partial_x f(z) = -i \partial_y f(z)$, ma se f(z) è olomorfa, allora ammette derivate seconde

$$\partial_x\partial_x f(z) = -i\,\partial_x\partial_y f(z) \iff \partial_x^2 f(z) = -i\,\partial_{xy}^2 f(z) = -i\,\partial_y\partial_x f(z) = -\partial_y^2 f(z)$$

dove nell'ultima uguaglianza si sono usate le condizioni di Cauchy-Riemann. Pertanto

$$(\partial_x^2 + \partial_y^2) f(z) = 0 \iff \nabla^2 f = 0$$

cioè f soddisfa l'equazione di Laplace in \mathbb{R}^2 , cioè f è una funzione armonica.

Esempio. Si consideri la funzione $f(z) = \text{Re}(z) = \frac{1}{2}(z + \overline{z})$. Tale funzione non è olomorfa perché dipende da \overline{z} (propriamente, perché la derivata parziale rispetto \overline{z} non è nulla).

Esercizio. Si mostri valere quanto affermato utilizzando u e v, mostrando la violazione delle condizioni di Cauchy-Riemann.

Esempio. Si consideri la funzione $f(z) = |z|^2 = z\overline{z}$. Essa è olomorfa solamente in z = 0 perché $\partial_{\overline{z}}z\overline{z} = z$.

Definizione. Anti-olomorfia. Una funzione f(z) è detta anti-olomorfa se

$$\partial_z f(z) = 0$$

Osservazione. Si dimostra che se f(z) è anti-olomorfa, allora $\overline{f}(z)$ è olomorfa.

Definizione. Polinomi a coefficienti complessi. Un polinomio a coefficienti complessi è una funzione del tipo

$$P(z) = \sum_{k=0}^{n} a_k z^k$$

 $con z, a_i \in \mathbb{C}.$

Osservazione. Esso è una funzione olomorfa su tutto $\mathbb C$ in quanto $\partial_{\overline z} P(z) = 0$. Inoltre

$$\partial_z P(z) = \sum_{k=1}^{n-1} k a_k z^{k-1}$$

Invece, i polinomi del tipo

$$Q(z,\overline{z}) = \sum_{n,m=0}^{k} a_{nm} z^{n} \overline{z}^{m}$$

non sono olomorfi perché

$$\partial_{\overline{z}}Q(z,\overline{z}) \neq 0$$

Osservazione. Si consideri la funzione esponenziale $f(z) = e^z$. Non si sa come fare la derivata rispetto a \overline{z} per verificare l'olomorfia, in quanto si è scritta la derivata solamente in funzione di x ed y. Posto z = x + iy si ha

$$f(z) = e^z = e^x(\cos y + i\sin y) = e^x\cos y + i(e^x\sin y) = u(x,y) + iv(x,y)$$

Per le condizioni di Cauchy-Riemann si ha

$$\begin{cases} \partial_x u = e^x \cos y \equiv \partial_y v = e^x \cos y \\ \partial_y u = -e^x \sin y \equiv -\partial_x v = -e^x \sin y \end{cases}$$

Inoltre $\partial_z e^z = \frac{1}{2} (\partial_x - i \, \partial_y) e^z$ si vede che $\partial_z e^z = e^z$.

Definizione. Si possono definire le funzioni trigonometriche come

$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

Esercizio. Svolgere la derivata del seno e del coseno, verificando il dominio di olomorfia (che è \mathbb{C}).

Definizione. Si possono definire le funzioni iperboliche come

$$\cosh z = \frac{1}{2} \left(e^z + e^{-z} \right)$$
$$\sinh z = \frac{1}{2} \left(e^z - e^{-z} \right)$$

2.5 Proiezione stereografica e punto all'infinito

Si introduce la nozione della proiezione stereografica di un punto all'infinito. Dato che \mathbb{C} è rappresentabile con un piano, si possono avere infiniti in varie direzioni. Tuttavia, tutti i punti all'infinito sono uno solo punto e ciò si vede quando si considera il piano complesso come la proiezione di una sfera.

Il punto all'infinito estende \mathbb{C} ed ha particolari proprietà.

I numeri complessi del piano $\mathbb C$ possono essere rappresentati come punti sulla superficie di una sfera

$$S^{2} = \left\{ (\xi, \eta, \zeta) \mid \xi^{2} + \eta^{2} + \left(\zeta - \frac{1}{2}\right)^{2} = \frac{1}{4} \right\}$$

Per proiettare un punto dalla sfera al piano si considera la retta che passa per il polo nord ed il punto della sfera. Il punto d'intersezione con il piano complesso è la proiezione $(x, y, 0) \mapsto (x, y) \in \mathbb{C}$. [immagine]

La mappa si può ricavare considerando triangoli simili

$$\frac{x}{\xi} = \frac{y}{\eta} = \frac{1}{1 - \xi}$$

che implica

$$x = \frac{\xi}{1 - \xi}, \quad y = \frac{\eta}{1 - \xi}$$

Ricordando l'equazione della sfera si hanno le equazioni

$$\xi = \frac{x}{x^2 + y^2 + 1}, \quad \eta = \frac{y}{x^2 + y^2 + 1}, \quad \zeta = \frac{x^2 + y^2}{x^2 + y^2 + 1}$$

si ha una mappa univoca tra ogni punto di $\mathbb C$ ad S^2 , ma esiste un punto di S^2 che non è raggiungibile tramite tale mappa: $(\xi,\eta,\zeta)=(0,0,1)$. Infatti quando $\zeta=1$ si ha $x=y=\infty$. Questo punto è detto punto all'infinito.

Si definisce l'insieme di compattificazione di \mathbb{C} come $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ ed esso si può identificare con la sfera: $\hat{\mathbb{C}} \leftrightarrow S^2$. La sfera è detta sfera di Riemann.

Osservazione. La proiezione è fatta dal polo nord, tuttavia traslando la sfera verso il basso di un'unità, si può utilizzare la proiezione dal polo sud (0,0,-1). In questo caso, il punto all'infinito $z = \infty$ viene mappato ad un punto $w = z^{-1} = 0$ e viceversa.

Il polo nord della sfera originale è mappato al punto all'infinito, mentre il polo nord della sfera traslata è mappato a zero. Similmente per gli altri punti: l'emisfero superiore della sfera originale mappa i punti al di fuori della circonferenza unitaria, mentre l'emisfero superiore della sfera traslata mappa i punti all'interno della circonferenza unitaria.

La visualizzazione è più semplice se si considera la sfera unitaria centrata nell'origine: posta la proiezione dal polo nord, l'emisfero superiore mappa i punti oltre la circonferenza unitaria, mentre l'emisfero inferiore mappa quelli all'interno; il polo sud è mappato a zero, mentre il polo nord ad infinito. Tuttavia, ponendo la proiezione dal polo sud, i ruoli degli emisferi si scambiano

e quindi il polo nord è mappato a zero ed il polo sud ad infinito. Per passare da una descrizione all'altra si utilizza la mappa di transizione definita da $w = z^{-1}$ e $z = w^{-1}$.

Per studiare una funzione f(z) su \mathbb{C} e comprendere il suo comportamento a $z=\infty$ si può studiare $f\left(\frac{1}{w}\right)$ intorno a $w=\frac{1}{z}=0$.

Se $f\left(\frac{1}{w}\right)$ è olomorfa o singolare in w=0 allora f(z) è olomorfa o singolare in $z=\infty$.

2.6 Singolarità

Si vedono le singolari delle funzioni olomorfe.

Definizione. Una funzione f(z) olomorfa su tutto \mathbb{C} si dice intera.

Definizione. I punti in cui f(z) non è intera, non è differenziabile o non è definita si dicono punti di singolarità.

Le singolarità sono classificate come

• Isolata. Un punto z_0 è un punto di singolarità isolata per una funzione f(z) olomorfa (cioè differenziabile) se esiste un intorno D di z_0 di raggio ε definito come

$$D(z_0, \varepsilon) = \{ z \in \mathbb{C} \mid 0 < |z - z_0| < \varepsilon \}$$

tale per cui f è olomorfa (e quindi definita) su D, ma $f(z_0)$ non è definita o non è differenziabile.

• Non isolata. Se tale intorno non esiste, allora la singolarità non è isolata. Si nota che basta anche solo un punto z_1 tale che $|z_0 - z_1| < \varepsilon$ con $f(z_1)$ non olomorfa per avere che $f(z_0)$ non è una singolarità isolata.

Singolarità isolata. Esistono tre tipi di singolarità isolate

• Rimovibile. Se $f(z_0)$ non è definita, ma esiste finito

$$\lim_{z \to z_0} f(z)$$

allora si estende f(z) in z_0 definendo

$$f(z_0) = \lim_{z \to z_0} f(z)$$

Dato che la singolarità è isolata, segue che la funzione f(z) estesa diventa olomorfa in $D \cup \{z_0\}$.

• Polo di ordine k. Se esiste finito il limite

$$\lim_{z \to z_0} (z - z_0)^k f(z) = a \neq 0$$

con $k \in \mathbb{N}$. Si dice che f(z) ha un polo di ordine k. Per k = 1 si ha un polo semplice, per k = 2 si ha un polo doppio, etc.

• Essenziale. Essa è una singolarità che non si può rimuovere moltiplicando per alcuna potenza $(z-z_0)^k$.

Pertanto, il limite di f(z) per $z \to z_0$ non esiste e f(z) oscilla tanto più rapidamente tanto quanto si è vicini a z_0 ; essa oscilla rapidamente in base al cammino. Tale funzione assume qualsiasi valore un numero infinito di volte in base al cammino con cui ci si avvicina. Successivamente si vedono due teoremi.

Esempio. Si consideri la funzione $f(z) = \frac{\sin z}{z}$. Essa non è olomorfa in z = 0. Tuttavia, esiste finito il limite

$$\lim_{z \to 0} \frac{\sin z}{z} = 1$$

Dunque, definendo f(0) = 1 allora f(z) è olomorfa in z = 0 e $\forall z \in \mathbb{C}$.

Osservazione. Si osserva che nelle vicinanze di un polo di ordine k si può scrivere $f(z) = \frac{g(z)}{(z-z_0)^k}$, con g(z) olomorfa e $\lim_{z\to z_0} g(z) \neq 0$.

Osservazione. Dato un polo di ordine n, il limite

$$\lim_{z \to z_0} (z - z_0)^k f(z) = \infty, \quad \forall k < n$$

In particolare, per k=0 cioè $\lim_{z\to z_0} f(z)=\infty$ segue che la funzione diverge al polo.

Esempio. Si consideri la funzione

$$f(z) = \frac{3z - 2}{(z - 1)^2(z + 1)(z - 4)}$$

In questo caso, i suoi poli sono gli zeri del denominatore (ma potrebbe non sempre essere così, bisogna fare il limite per essere sicuri): z = 1 è un polo doppio, z = -1 e z = 4 sono poli singoli.

Teorema. Weierstrass. Se z_0 è una singolarità essenziale di una funzione f(z) allora

$$\forall \varepsilon, \delta > 0, \forall c \in \mathbb{C}, \exists z \mid |z - z_0| < \delta, |f(z) - c| < \varepsilon$$

cio
è avvicinandosi arbitrariamente alla singolarità essenziale, ci si pu
ò avvicinare arbitrariamente a qualsiasi numero complesso.

Teorema. Picard. In un intorno di z_0 singolarità essenziale di una funzione f(z), tale funzione assume qualsiasi valore complesso un numero infinito di volte con eccezione al più di un valore.

Esempio. Si consideri la funzione $f(z) = e^{\frac{1}{z}}$. Essa ha una singolarità essenziale in z = 0. Dato $c \in \mathbb{C}$ con $c \neq 0$ e dato $\delta > 0$, si può trovare z con $|z| < \delta$ tale che $e^{\frac{1}{z}} = c$. Infatti, posto $z = re^{i\theta}$ e $c = \rho e^{i\varphi}$, e considerato

$$c = e^{\frac{1}{z}} = e^{\frac{1}{r}e^{-i\theta}} = e^{\frac{1}{r}(\cos\theta - i\sin\theta)} \equiv \rho e^{i\varphi}$$

Uguagliando fattore a fattore si ha

$$\begin{cases} e^{\frac{\cos\theta}{r}} = \rho \\ e^{i\frac{-\sin\theta}{r}} = e^{i\varphi} \end{cases} \implies \begin{cases} \frac{\cos\theta}{r} = \ln\rho \\ -\frac{\sin\theta}{r} = \varphi \end{cases} \implies \begin{cases} -\tan\theta = \frac{\varphi}{\ln\rho} \\ \varphi^2 + \ln^2\rho = \frac{1}{r^2} \end{cases}$$

Studiando tale sistema, si afferma che esiste sempre una soluzione. Tuttavia, dato che $\rho e^{i\varphi} = \rho e^{i(\varphi+2k\pi)}$ per qualche $k \in \mathbb{Z}$, segue che si può ridefinire $\varphi' = \varphi + 2k\pi$ e quindi la seconda equazione è

$$(\varphi')^2 + \ln^2 \rho = \frac{1}{r^2}$$

con φ' arbitrariamente grande. Pertanto, r dev'essere arbitrariamente piccolo per mantenere l'uguaglianza. Quindi $r < \delta$ ed f(z) può assumere qualsiasi valore quando $r \to 0$. L'unico valore che non può assumere è f(z) = 0.

Definizione. Funzione meromorfa. Una funzione f(z) è meromorfa se ha solo singolarità rimovibili o poli in un dominio $D \subset \mathbb{C}$. Cioè non ha singolarità essenziali. Non si considerano le singolarità a $z = \infty$.

Osservazione. Si possono studiare le proprietà di singolarità di f(z) in $z=\infty$ studiando le 2022 14:30 proprietà di f(w) con $w=\frac{1}{z}$ in w=0.

Grazie alla doppia mappa della proiezione stereografica

- i poli diventano zeri e viceversa
- le singolarità essenziali rimangono tali

Esempio. Si consideri la funzione

$$f(z) = \frac{z^8 + z^4 + 2}{(z-1)^3(3z+2)^2} = \frac{A(z)}{B(z)}$$

Gli zeri di tale funzione sono gli zeri di A(z), mentre i poli sono gli zeri di B(z) quando non ha fattori in comune con A(z). Le singolarità sono z = 1 e $z = -\frac{2}{3}$. Si studia che tipo di polo sono

$$\lim_{z \to 1} (z - 1)^3 \frac{z^8 + z^4 + 2}{(z - 1)^3 (3z + 2)^2} = \frac{4}{5}$$

dunque z=1 è un polo di ordine terzo. Per esercizio studiare la natura di $z=-\frac{2}{3}$. Si osserva anche se il punto ad infinito $z=\infty$ è una singolarità. Si pone $z=\frac{1}{w}$ e si scrive

$$f\left(\frac{1}{w}\right) = \frac{\frac{1}{w^8} + \frac{1}{w^4} + 2}{(\frac{1}{w} - 1)^3(\frac{3}{w} + 2)^2} = \frac{1 + w^4 + 2w^8}{w^3(1 - w)^3(3 + 2w)^2}$$

Si studia w = 0:

$$\lim_{w \to 0} w^3 \frac{1 + w^4 + 2w^8}{w^3 (1 - w)^3 (3 + 2w)^2} = \frac{1}{9}$$

dunque w=0 è un polo di ordine terzo, pertanto $z=\infty$ è un polo di ordine terzo per f(z).

Esempio. Si consideri la funzione

$$f(z) = e^z$$

Si ricorda essere una funzione su \mathbb{C} . Tuttavia, si deve comunque studiare $z=\infty$. Per quanto già visto, risulta immediato che

$$f\left(\frac{1}{w}\right) = e^{\frac{1}{w}}$$

ha una singolarità essenziale in $\frac{1}{z}=w=0$. Pertanto, $z=\infty$ è una singolarità essenziale per $f(z)=e^z$.

Singolarità non isolata. Esistono due tipi di singolarità non isolate:

- punto limite di una sequenza di singolarità isolate;
- punto di diramazione di una funzione a più valori (multivalued, come il logaritmo).

Esempio. Si vede un esempio per la prima categoria. Si consideri la funzione

$$f(z) = \tan\frac{1}{z} = \frac{\sin\frac{1}{z}}{\cos\frac{1}{z}}$$

la tangente sui numeri complessi è ancora definita come il rapporto tra seno e coseno, i quali sono definiti in termini della funzione esponenziale. Tuttavia, la funzione f(z) non è definita in z=0 ed ha dei poli nei punti z_k in cui cos $\frac{1}{z}$ si annulla. Tali zeri sono

$$z_k = \frac{1}{(2k+1)\frac{\pi}{2}}, \quad k \in \mathbb{Z}$$

Si dimostra essere dei poli semplici. Espandendo in serie di Taylor fino al secondo ordine attorno z_k si ha

$$f(z) = \frac{\sin\frac{1}{z_k} + d_z \sin\left(\frac{1}{z_k}\right)(z - z_k) + \dots}{\cos\frac{1}{z_k} + d_z \cos\frac{1}{z_k}(z - z_k) + \dots} \sim_{z_k} \frac{1 - \frac{1}{2z_k^4}(z - z_k)^2}{\frac{1}{z_k^2}(z - z_k) - \frac{1}{z_k^3}(z - z_k)^2} \sim_{z_k} \frac{z_k^2}{z - z_k}$$

Inoltre, la successione $\{z_k\}$ converge a

$$\lim_{k \to \infty} z_k = \lim_{k \to \infty} \frac{2}{(2k+1)\pi} = 0$$

pertanto, in qualsiasi intorno di z=0 si ha almeno un z_k e questo implica che z=0 è una singolarità non isolata. Infatti, ogni z_k è una singolarità isolata, perché per ogni z_k esiste un intorno che non contiene altri z_k ed in cui la funzione è olomorfa escluso al più z_k stesso.

Esempio. Si vede un esempio per la seconda categoria. Si consideri la funzione

$$f(z) = \sqrt{z} \equiv w$$

La funzione f(z) = w(z) è la funzione ("funzione" non nel senso di Analisi I, bensì di relazione che può associare ad un punto del dominio più valori in un codominio) inversa di $z(w) = w^2$, tuttavia, w^2 non è (in generale) iniettiva. La mancanza di iniettività implica che f(z) sia una funzione a molteplici valori. Infatti $\forall z \mid z = re^{i\theta}$ si possono definire (almeno) due valori di w(z):

$$w_0(z) = \sqrt{r}e^{i\frac{\theta}{2}}, \quad w_1(z) = \sqrt{r}e^{i\frac{\theta}{2} + \pi}$$

e tutti i numeri $w_{0k}(z)$ e $w_{1k}(z)$ che sono rotazioni di $2k\pi$ dei due valori riportati. Si escludono queste molteplici soluzioni scegliendo $\theta \in (-\pi, \pi]$. Le due soluzioni sono chiamate rami (branches).

Ciò è analogo alla situazione sui numeri reali $y(x) = x^2$ che ha per soluzione $x(y) = \pm \sqrt{y}$. Tuttavia, mentre da un lato (quello reale) la scelta di uno dei due rami (positivo o negativo) implica che y(x) sia differenziabile per $x \neq 0$; dall'altro (quello complesso) non è così: z = 0 è una singolarità ed è impossible definire $w_0(z)$ e $w_1(z)$ su $\mathbb{C} \setminus \{0\}$ in modo che w_0 e w_1 siano olomorfe (oltretutto, esse non sono nemmeno continue).

Infatti, scegliendo un punto $z_0 \in \mathbb{C}$, $z_0 = r_0 e^{i\theta_0}$, si ha

$$w_0(z_0) = \sqrt{r_0}e^{i\frac{\theta_0}{2}}$$

Si consideri un cammino chiuso Γ_{α} intorno a z_0 che non include non l'origine, ed un secondo cammino chiuso Γ_{β} che la contiene. La fase dei punti di Γ_{α} varia tra due valori di θ , uno massimo ed uno minimo. La distanza tra i due angoli risulta essere $\Delta \theta < 2\pi$, proprio perché non si include l'origine (in questo caso l'origine è il punto di singolarità perché $f(x) = \sqrt{z}$ non è olomorfa in z = 0 dato che non è ivi derivabile). Sul piano complesso di $f(z) = \sqrt{z} = w$ (cioè quello che ha assi Re(w) e Im(w)), il valore di w oscilla tra un massimo ed un minimo per poi tornare al valore di partenza.

Invece, sul cammino Γ_{β} la fase varia di 2π , perché è inclusa l'origine, cioè il punto di singolarità. Infatti, si passa da θ a $\theta + 2\pi$ e dunque

$$w_0(z) = \sqrt{r}e^{i\frac{\theta}{2}} \to \sqrt{r}e^{i\frac{\theta+2\pi}{2}} = \sqrt{r}e^{i\left(\frac{\theta}{2}+\pi\right)} = w_1(z)$$

Pertanto, sul piano complesso di w, la curva Γ_{β} non è più una chiusa, bensì collega le due soluzioni w_0 e w_1 : percorrendo una curva chiusa (nel piano di z, del dominio) che contiene z=0 (cioè la singolarità), si passa su di un altro ramo della funzione (nel piano di w, del codominio). Una rotazione di 4π risulta essere l'identità. Dunque, i rami possibili sono possibili sono solo due. Pertanto, il punto z=0 è un punto di diramazione. Dato che

$$w_1(z) = -w_0(z)$$

segue che la funzione non è continua in z=0. A questo punto si introduce il branch cut cioè l'esclusione di una regione del piano complesso (inteso come dominio) per rendere impossibile la costruzione di curve chiuse che permettano di passare da un branch all'altro.

Pertanto, su $\mathbb{C} \setminus (-\infty, 0]$ risulta che \sqrt{z} sia ben definita e su tale insieme, $w_0(z)$ e $w_1(z)$ sono funzioni olomorfe, continue e ad una sola variable.

Osservazione. L'analisi complessa dà informazioni solamente sul numero di branch cut e su quale punto si ha la diramazione, ma non permette di stabilire come dev'essere posto nel piano complesso.

Il branch cut è arbitrariamente posizionato, ma deve contenere il punto di diramazione ed impedire di poter girare intorno ad esso. Una volta fissata la scelta, allora il valore di tutti i rami è fissato.

2.7 Superfici di Riemann.

Una volta fissata la disposizione del cut, tutti i valori della funzione in tutti i rami sono fissati sapendo il valore in un punto. Considerata

$$f(z) = \sqrt{z}$$

definendo il taglio $(-\infty, 0]$ e ponendo $\sqrt{1} = 1$, si ha completamente determinato f(z), $w_0(z)$ e $w_1(z)$.

Questo implica l'esistenza di (almeno) una descrizione alternativa in cui non sono presenti tagli ed in cui le funzioni a valori multipli diventano a singola variabile ed olomorfe. Si arrivare a tale descrizione estendendo il dominio con molteplici copie del dominio stesso $D \subset \mathbb{C}$.

Esempio. Lo stesso punto $z \in \mathbb{C}$ si può immaginare abbia due diverse immagini, $f_1(z)$ ed $f_2(z)$, sotto la stessa funzione f(z). Raddoppiando \mathbb{C} si avrebbero due copie, z_1 e z_2 , con $f_1(z_1)$ e $f_2(z_2)$ dove f_1 ed f_2 sono funzioni ad un valore (single valued).

Definizione. Il nuovo dominio formato da molteplici copie del dominio complesso si chiama superficie di Riemann e corrisponde ad un'estensione di \mathbb{C} . Le copie di \mathbb{C} devono essere connesse lungo il branch cut. In questo modo, attraversando il precedente cut, si passa da un ramo all'altro.

In generale, sono presenti tante copie di $D \subset \mathbb{C}$ quanti sono i branches (eventualmente infiniti come per il logaritmo).

Esempio. Si consideri

$$f(z) = \sqrt{z} = \sqrt{r}e^{i\left(\frac{\theta + 2k\pi}{2}\right)}$$

Basta estendere il dominio di θ a $(-\pi, 3\pi]$. In questo modo si copre $\mathbb{C} \setminus (-\infty, 0]$ due volte. Si definisce $D_0 = (-\pi, \pi]$ e $D_1 = (\pi, 3\pi]$. Con una rotazione di 2π si passa da D_0 a D_1 e viceversa; con una rotazione di 4π si ha l'identità.

La funzione così definita ha un singolo valore ovunque perché $D_0 \cup D_1$ contiene più copie di \mathbb{C} .

Lecture 5

lun 14 mar 2022 12:30

2.8 Integrazione

Le proprietà di olomorfia di f(z) su $\mathbb C$ possono essere determinate da condizioni di Cauchy-Riemann.

Sul campo complesso, le proprietà di differenziabilità sono collegate alle proprietà di integrabilità.

Definizione. Una curva è una mappa continua

$$\gamma: [a,b] \subset \mathbb{R} \to \mathbb{C}, \quad t \mapsto \gamma(t) = x(t) + iy(t)$$

I valori $z_a = \gamma(a)$ e $z_b = \gamma(b)$ sono gli estremi della curva.

Definizione. Una curva ha orientazione positiva se il verso di percorrenza è antiorario. Essa ha orientazione negativa se ha verso orario.

Definizione. La curva con orientazione opposta è data dalla mappa tale per cui

$$-\gamma: [a,b] \to D, \quad t \mapsto \gamma(a+b-t)$$

che viene detta $-\gamma$.

Definizione. Una curva semplice è una curva che non interseca se stessa, cioè è una mappa iniettiva:

$$\gamma(t_1) \neq \gamma(t_2), \quad \forall t_1 \neq t_2$$

Definizione. Una curva chiusa è una curva γ tale per cui

$$\gamma(a) = \gamma(b)$$

Definizione. Una curva di Jordan è una curva semplice e chiusa. Gli unici due punti coincidenti sono gli estremi.

Teorema. Ogni curva di Jordan divide il piano complesso in due regioni. Se la curva è orientata positivamente, allora la regione interna è a sinistra; mentre se è orientata negativamente, allora la regione interna è a destra.

Definizione. Una curva regolare a tratti (piecewise regular) è una curva $\gamma(t) = x(t) + iy(t)$ tale per cui x(t) e y(t) sono continue per $t \in [a,b]$ e per cui esiste una partizione di [a,b] in cui $\dot{x}(t)$ e $\dot{y}(t)$ sono continue e non simultaneamente nulle.

Esempio. Un rettangolo sul piano complesso è una curva regolare a tratti.

Esempio. La funzione

$$\gamma(t) = e^{(\rho + i\omega)t} = e^{\rho t}\cos(\omega t) + ie^{\rho t}\sin(\omega t)$$

con $t \in [0, 2\pi]$, e $\rho, \omega \in \mathbb{R}$. Tale curva è la spirale logaritmica.

Definizione. Una curva è omotopa ad un'altra se si può deformare in maniera continue nell'altra.

Due curve γ_1 e γ_2 su di un dominio $D \subset \mathbb{C}$ con gli stessi estremi [a,b] sono omotope se esiste una mappa γ continua che manda una curva nell'altra. La mappa

$$\gamma: [a,b] \times [0,1] \to D \subset \mathbb{C}$$

è tale che $\gamma(t,u)\in D,\,\forall t\in [a,b]$ e $\forall u\in [0,1]$ e si ha

$$\gamma(t,0) = \gamma_1(t), \quad \gamma(t,1) = \gamma_2(t)$$

inoltre

$$\gamma(a, u) = \gamma_1(a) = \gamma_2(a), \quad \gamma(b, u) = \gamma_1(b) = \gamma_2(b)$$

Per ogni valore di u si ha una curva sul dominio e variandola si passa da γ_1 a γ_2 .

Definizione. Dominio semplicemente connesso. Due curve chiuse γ_1 e γ_2 sono omotope se $\forall u \in [0,1], \ \gamma(a,u) = \gamma(b,u), \ \gamma(t,0) = \gamma_1(t)$ e $\gamma(t,1) = \gamma_2(t)$. Dunque, il dominio D (su cui sono definite γ_i) è semplicemente connesso se ogni curva chiusa è omotopa ad un punto.

Questo vale a dire che ogni curva chiusa può essere deformata in un unico punto e ciò è possibile se non sono presenti fori nel dominio.

Definizione. Integrale. Considerata una curva regolare a tratti

$$\gamma: [a,b] \to D \subset \mathbb{C}, \quad t \mapsto \gamma(t) = x(t) + iy(t)$$

con $t \in [a, b] \subset \mathbb{R}$. Dato un dominio $D \subset \mathbb{C}$ ed una funzione f(z) con $z = \gamma(t)$ continua $\forall z = \gamma(t) \in D$ e $\forall t \in [a, b]$, si definisce l'integrale di linea di f(z) lungo γ come

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

dove $\gamma'(t) = d_t \gamma(t) = x'(t) + iy'(t)$. Pertanto,

$$\int_{\gamma} f(z) dz = \int_{a}^{b} [u(x(t), y(t)) + iv(x(t), y(t))] [x'(t) + iy'(t)] dt$$

dove f(z) = u(x, y) + iv(x, y). Questo implica che

$$\int_{\gamma} f(z) dz = \int_{a}^{b} ux' - vy' dt + i \int_{a}^{b} uy' + vx' dt$$

cioè si è scritto l'integrale complesso come due integrali reali di linea.

Esempio. Si consideri

$$f(z) = |z|^2 = x^2 + y^2$$

sulla curva

$$\gamma(t) = x(t) + iy(t) = t + it, \quad t \in [0, 1]$$

Dunque, l'integrale è

$$\int_{\gamma} f(z) dz = \int_{0}^{1} x^{2} + y^{2} dt + i \int_{0}^{1} x^{2} + y^{2} dt = \int_{0}^{1} 2t^{2} dt (1+i) = 2(1+i) \left[\frac{t^{3}}{3} \right]_{0}^{1} = \frac{2}{3} (1+i)$$

Lecture 6

 $\begin{array}{cccc} mar & 15 & mar \\ 2022 & 12:30 \end{array}$

Osservazione. Il fatto che l'integrale complesso si può scrivere come somma di due integrali reali di linea implica che l'integrale è un operatore lineare ed i cammini possono essere sommati:

$$\int_{\gamma} af(z) + bg(z) dz = a \int_{\gamma} f(z) dz + b \int_{\gamma} g(z) dz, \quad \forall a, b \in \mathbb{C}$$

Inoltre

$$\int_{\gamma_1} f(z) + \int_{\gamma_2} f(z) = \int_{\gamma_1 + \gamma_2} f(z)$$

quando $\gamma_1(b) = \gamma_2(a)$, cioè i percorsi hanno un estremo in comune. Queste proprietà permettono di scrivere

$$\int_{\gamma} f(z) \, \mathrm{d}z = -\int_{-\gamma} f(z) \, \mathrm{d}z$$

Osservazione. L'integrale è indipendente dalla parametrizzazione scelta per una curva γ . Si passa da $\gamma_1(t)$, con $t \in [a,b]$, ad un'altra parametrizzazione $\gamma_2(\tau)$, con $\tau \in [\alpha,\beta]$. Si definisce la funzione $t(\tau)$ la parametrizzazione che è una mappa di classe C^1 , da $[\alpha,\beta] \to [a,b]$ tale che $\gamma_1(t(\tau)) = \gamma_2(\tau)$.

Allora

$$\int_{\gamma_1} f(z) dz = \int_a^b f(\gamma_1(t)) \gamma_1'(t) dt = \int_\alpha^\beta f(\gamma_1(t(\tau))) \gamma_1'(t(\tau)) t'(\tau) d\tau$$

dove $dt = t'(\tau)dt$. Applicando la parametrizzazione si ottiene

$$\int_{\gamma_1} f(z) dz = \int_{\alpha}^{\beta} f(\gamma_2(\tau)) \gamma_2'(\tau) d\tau = \int_{\gamma_2} f(z) dz$$

notando che $\gamma_2'(\tau) = \gamma_1'(t(\tau)) t'(\tau)$.

Definizione. La lunghezza di una curva è

$$L = \int_{a}^{b} |\gamma'(t)| dt = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

Teorema. Disuguaglianza di Darboux. Considerata una curva $\gamma(t)$ regolare a tratti di lunghezza L ed una funzione f(z) continua e limitata su γ (limitata cioè $|f(z)| \leq M$ quando valutata su gamma); allora vale

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le LM$$

Dimostrazione. Infatti

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| = \left| \int_{a}^{b} f(\gamma(t)) \, \gamma'(t) \, \mathrm{d}t \right| \le \int_{a}^{b} \left| f(\gamma(t)) \gamma'(t) \right| \, \mathrm{d}t \le \int_{a}^{b} M |\gamma'(t)| \, \mathrm{d}t = ML$$

Esempio. Si consideri la curva

$$\gamma(\theta) = Re^{i\theta}, \quad y'(\theta) = Rie^{i\theta}, \quad \theta \in [0, 2\pi)$$

e la funzione $f(z) = \frac{1}{z}$. Dunque

$$\int_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{Re^{i\theta}} Rie^{i\theta} d\theta = 2\pi i$$

Definizione. Valore principale. Il valore principale di un integrale generalizza il concetto di integrale improprio. Se la funzione f(z) è continua su di una curva $\gamma(t)$, con $t \in [a, b]$ escluso un punto $\xi \in \gamma(t)$, allora si considera una circonferenza di raggio ε intorno a ξ . Tale circonferenza interseca la curva un due punti $\gamma(\xi')$ e $\gamma(\xi'')$. [immagine] Pertanto, si possono definire gli integrali

$$I_{\alpha} = \int_{a}^{\xi'} f(\gamma(t)) \gamma'(t) dt, \quad I_{b} = \int_{\xi''}^{b} f(\gamma(t)) \gamma'(t) dt$$

Se I_a e I_b esistono per $\varepsilon \to 0$ allora $I_a + I_b$ è l'integrale improprio di f(z) lungo γ . Altrimenti, se entrambi $I_x \to \pm \infty$, per $\varepsilon \to 0$, ma $\lim_{\varepsilon \to 0} I_a + I_b = \alpha \in \mathbb{C}$ è finito, allora si definisce il valore principale (principal value, PV) di tale integrale come

$$\int_{\gamma} f(z) dz = \lim_{\varepsilon \to 0} \int_{a}^{\xi'(\varepsilon)} f(z) dt + \int_{\xi''(\varepsilon)}^{b} f(z) dt$$

Osservazione. Qualora le singolarità fossero più di una ξ_1,ξ_2,\ldots , allora il valore principale è

$$\int_{\gamma} f(z) dz = \lim_{\varepsilon \to 0} \sum_{i=0}^{n} \int_{\xi''_{i}}^{\xi'_{j+1}} f(z) dz$$

dove $\xi_0'' \equiv a \in \xi_{n+1}' \equiv b$

Esempio. Si consideri la funzione $f(z) = (z - x)^{-n}$, con $x \in [a, b]$ e $n \in \mathbb{N}$; e la curva $\gamma(t) = t$. La funzione ha una singolarità per z = x. Pertanto

$$I_{a} = \int_{a}^{x-\varepsilon} \frac{\mathrm{d}t}{(t-x)^{n}} = \begin{cases} \frac{(-1)^{n}}{1-n} \left[\frac{1}{(x-a)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right], & n > 1\\ \ln \varepsilon - \ln(x-a), & n = 1 \end{cases}$$

$$I_{b} = \int_{x+\varepsilon}^{b} \frac{\mathrm{d}t}{(t-x)^{n}} = \begin{cases} \frac{1}{1-n} \left[\frac{1}{(b-x)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right], & n > 1\\ \ln(b-x) - \ln \varepsilon, & n = 1 \end{cases}$$

Allora, il valore principale è

$$\int_{\gamma} (z-x)^{-n} dz = \int_{a}^{b} \frac{dt}{(t-x)^{n}} = \begin{cases} \frac{1}{1-n} \left[\frac{1}{(b-x)^{n-1}} - \frac{1}{(x-a)^{n-1}} \right], & n > 1 \text{ e dispari} \\ \ln \frac{b-x}{a-x}, & n = 1 \end{cases}$$

Nel caso di n pari, il valore principale non è definito perché non esiste il limite della somma.

2.8.1 Integrali di linea e forme differenziali

Definizione. Una forma differenziale è

$$\omega \equiv P(x, y) \, \mathrm{d}x + Q(x, y) \, \mathrm{d}y$$

dove P, Q sono funzioni di classe C^1 su $D \subset \mathbb{R}^2$.

Esempio. L'esempio più semplice è il differenziale stesso

$$df = \partial_x f(x, y) dx + \partial_y f(x, y) dy$$

Definizione. L'integrale di una forma differenziale ω su di una curva γ regolare a tratti

$$\gamma(t) = x(t) + iy(t), \quad t \in [a, b]$$

risulta essere

$$\int_{\gamma} \omega = \int_{a}^{b} P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) dt$$

Scrivendo dz = dx + i dy, si può associare una funzione f(z) = u(x,y) + iv(x,y) alla forma differenziale

$$\omega = u \, dx - v \, dy + i(u \, dy + v \, dx) = (u + iv) \, dx + i(u + iv) \, dy = f(z) \, dx + if(z) \, dy = f(z) \, dz$$

pertanto, l'integrale diventa

$$\int_{\gamma} \omega = \int_{\gamma} f(z) \, \mathrm{d}z$$

Teorema. di Green. Considerata una forma differenziale ω definita su di un dominio S racchiuso da una curva di Jordan γ con orientazione positiva; allora

$$\int_{\gamma} P(x, y) dx + Q(x, y) dy = \iint_{S} \partial_{x} Q(x, y) - \partial_{y} P(x, y) dx dy$$

Dimostrazione. Si dimostra separatamente che

$$\int_{\gamma} P(x, y) \, dx = \iint_{S} -\partial_{y} P \, dx \, dy$$
$$\int_{\gamma} Q(x, y) \, dy = \iint_{S} \partial_{x} Q \, dx \, dy$$

così vale pure la somma membro a membro.

Si consideri una curva γ che limita una regione

$$S_1 = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

Le funzioni g_1 e g_2 sono funzioni di classe $C^1([a,b])$. Si definisce la curva

$$\gamma \equiv \bigcup_i \gamma_i$$

ciascuna γ_i è parametrizzata come

$$\begin{split} \gamma_1: z(t) &= t + ig_1(t), \quad t \in [a,b] \\ \gamma_2: z(t) &= b + it, \quad t \in [g_1(b), g_2(b)] \\ -\gamma_3: z(t) &= t + ig_2(t), \quad t \in [a,b] \\ -\gamma_4: z(t) &= a + it, \quad t \in [g_1(a), g_2(a)] \end{split}$$

L'integrale su ciascuna curva è

$$\int_{\gamma_1} P(x, y) \, dx = \int_a^b P(x, y_1(x)) \, dx$$

$$\int_{\gamma_2} P(x, y) \, dx = \int_{\gamma_4} P(x, y) \, dx = 0$$

$$\int_{\gamma_3} P(x, y) \, dx = -\int_{-\gamma_3} P(x, y) \, dx = -\int_a^b P(x, y_2(x)) \, dx$$

Pertanto

$$\int_{\gamma} P(x, y) \, dx = \int_{a}^{b} P(x, g_1(x)) - P(x, g_1(x)) \, dx$$

Allora stesso tempo

$$\iint_{S_1} \partial_y P(x, y) \, \mathrm{d}x \, \mathrm{d}y = -\int_a^b \int_{g_1(x)}^{g_2(x)} \partial_y P(x, y) \, \mathrm{d}x \, \mathrm{d}y = -\int_a^b P(x, g_2(x)) - P(x, g_1(x)) \, \mathrm{d}x$$
$$= \int_{\gamma} P(x, y) \, \mathrm{d}x$$

La dimostrazione dell'integrale di Q è analoga:

$$\int_{\gamma} Q(x, y) \, \mathrm{d}y = \iint_{S_2} \partial_x Q \, \mathrm{d}x \, \mathrm{d}y$$

si utilizza una figura simile, ma ruotata di 90°.

Teorema. di Cauchy. In generale, un integrale di linea dipende dal cammino particolare γ . Per le funzioni olomorfe, l'integrale sul cammino prescinde dal cammino, ma dipende solamente dagli estremi.

Esistono due versioni di questo teorema, quella di Cauchy è meno generale.

Si consideri una funzione f(z) olomorfa su di un dominio D semplicemente connesso, ed una curva chiusa γ su D; allora

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

Osservazione. Esiste una generalizzazione di questo teorema dovuta a Goursat che non richiede l'ipotesi che f sia derivabile su di un dominio semplicemente connesso, bensì basta assumere che γ sia omotopa ad un punto.

Pertanto

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

anche su domini molteplicitamente (contrapposto a semplicemente) connessi se γ è omotopa ad un punto.

Dimostrazione. di Cauchy. Una curva generica si può scrivere come unione di curve semplici. Pertanto, si assume che γ sia semplice. Si utilizza il teorema di Green applicandolo ai due reali seguenti

$$\int_{\gamma} f(z) dz = \int_{\gamma} (u dx - v dy) + i \int_{\gamma} (v dx + u dy)$$

$$\stackrel{\text{Green}}{=} \iint_{S} -\partial_{y} u - \partial_{x} v dx dy + i \iint_{S} -\partial_{y} v + \partial_{x} u dx dy = 0$$

dove nel primo integrale si pone $P=u,\,Q=-v$ e nel secondo integrale si pone $P=v,\,Q=u$. Dato che f(z) è olomorfa, seguono valere le condizioni di Cauchy-Riemann, pertanto entrambi gli integrali sono nulli.

Osservazione. Per la dimostrazione si è richiesto che u e v siano funzioni di classe C^1 ; ma il teorema vale più in generale.

Corollario. L'integrale di una funzione f(z) olomorfa sul dominio D semplicemente connesso non dipende dal cammino particolare γ .

Dimostrazione. Si considerino due curve γ_1 e γ_2 in D con medesimi estremi. Definita la curva $\gamma = \gamma_1 - \gamma_2$ e per il teorema di Cauchy si ha

$$\int_{\gamma} f(z) dz = 0 \iff \int_{\gamma_1} f(z) dz + \int_{-\gamma_2} f(z) dz = 0$$

$$\iff \int_{\gamma_1} f(z) dz - \int_{\gamma_2} f(z) dz = 0 \iff \int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

Visto che il cammino non è importante, allora si scrivono solamente gli estremi di integrazione

$$\int_{A}^{B} f(z) \, \mathrm{d}z$$

Osservazione. In generale, se D non è semplicemente connesso allora il teorema non vale.

Esempio. Si consideri la funzione

$$f(z) = \frac{1}{z-a}, \quad a \in \mathbb{C}$$

olomorfa solo su $\mathbb{C} \setminus \{a\}$. Per ogni curva chiusa γ_2 che non contiene a si ha

$$\int_{\mathcal{X}_2} f(z) \, \mathrm{d}z = 0$$

per Goursat. Integrando sulla curva γ_1 , circonferenza di raggio R, che racchiude a si ha

$$\gamma_1(t) = a + Re^{it}, \quad t \in [0, 2\pi), \qquad \gamma'_1(t) = iRe^{it}$$

Quindi

$$\int_{\gamma_1} f(z) \, dz = \int_{\gamma_1} \frac{1}{z - a} \, dz = \int_0^{2\pi} \frac{1}{a + Re^{it} - a} i Re^{it} \, dt = 2\pi i$$

Più avanti si vede come la formula integrale di Cauchy permette di scrivere una funzione in base a come si espande attorno alle sue singolarità.

Lecture 7

ven 18 mar 2022 14:30

Teorema. Si consideri una funzione f(z) olomorfa su di un dominio D. Per un punto arbitrario $z_0 \in D$ si può sempre definire la primitiva

$$F(z) = \int_{z_0}^z f(z') \, \mathrm{d}z'$$

Inoltre, anche F(z) è una funzione olomorfa e vale

$$F'(z) = f(z)$$

Dimostrazione. Si calcola

$$F'(z) = \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = \lim_{h \to 0} \frac{1}{h} \left[\int_{z_0}^{z+h} f(z') \, dz' - \int_{z_0}^{z} f(z') \, dz' \right]$$
$$= \lim_{h \to 0} \frac{1}{h} \int_{z}^{z+h} f(z') \, dz'$$

Ponendo $z' = z + \zeta'$ allora

$$F(z) = \lim_{h \to 0} \frac{1}{h} \int_0^h f(z + \zeta') \,\mathrm{d}\zeta'$$

Dato che f(z) è olomorfa, essa è continua, pertanto

$$f(z + \zeta') = f(z) + g(z, \zeta')$$

dove $g(z,\zeta')$ è una funzione tale per cui

$$\lim_{\zeta' \to 0} g(z, \zeta') = 0$$

Dunque

$$F'(z) = \lim_{h \to 0} \frac{1}{h} \int_0^h f(z) + g(z, \zeta') \, d\zeta' = f(z) + \lim_{h \to 0} \frac{1}{h} \int_0^h g(z, \zeta') \, d\zeta'$$

La funzione g è continua e quindi limitata sulla curva di integrazione. Per la disuguaglianza di Darboux si può scrivere

$$\lim_{h \to 0} \left| \frac{1}{h} \int_0^h g(z, \zeta') \, \mathrm{d}\zeta' \right| \le \lim_{h \to 0} \left| \frac{1}{h} \right| \left| h \max_{\gamma_{0,h}} g(z, \zeta') \right| = \lim_{h \to 0} \left| \max_{\gamma_{0,h}} g(z, \zeta') \right| = 0$$

dove $\gamma_{0,h}$ è una curva tra 0 ad h. Quindi

$$F'(z) = f(z)$$

Corollario. Due primitive di f(z) differiscono per una costante.

Corollario. Il valore di un integrale è il valore della primitiva agli estremi

$$\int_{A}^{B} f(z) dz = F(B) - F(A)$$

2.8.2 Forme differenziali e campi vettoriali in \mathbb{R}^2

La forma differenziale dopo aver usare le condizioni di Cauchy-Riemann si può scrivere come

$$\omega = f(z) dx + (-v + iu) dy$$

Definizione. Una forma differenziale

$$\omega = P(x, y) dx + Q(x, y) dy$$

si dice chiusa se e solo se

$$\partial_u P = \partial_x Q$$

Definizione. Una forma differenziale è esatta se

$$\omega = dg = \partial_x g(x, y) dx + \partial_u g(x, y) dy$$

Osservazione. Ogni forma chiusa è anche esatta

$$\partial_x \partial_y q(x, y) = \partial_y \partial_x q(x, y)$$

Si consideri una funzione f(z) olomorfa con primitiva

$$F(z) = U(x, y) + iV(x, y)$$

con $U, V : \mathbb{R}^2 \to \mathbb{R}$. Si può scrivere il differenziale di f(z)

$$\omega = f(z) dz = F'(z) dz = \partial_x (U + iV) dx + \partial_y (U + iV) dy = d(U + iV) = dF$$

Quindi $\omega=f(z)\,\mathrm{d}z$ è esatta. Inoltre, segue che l'integrale su di una curva in un insieme semplicemente connesso è nullo

$$\int_{\gamma} \omega = 0$$

Ogni forma differenziale chiusa è esatta su di un insieme semplicemente connesso.

Ogni forma differenziale $\omega = f(z) dz$ con f(z) funzione olomorfa può essere scritta come dF dove F è la primitiva di F e quindi ω è esatta. In fisica, questi concetti si applicano ai campi vettoriali

$$\vec{A}(x,y) = (P(x,y), Q(x,y))$$

L'integrale di linea su un campo vettoriale è

$$\int_{\gamma} \vec{A} \cdot d\vec{x} = \int_{\gamma} P(x, y) dx + Q(x, y) dy$$

allora la condizione di chiusura corrisponde al campo vettoriale irrotazionale: $\nabla \times \vec{A} = 0$. La forma esatta implica valere

$$\vec{A} = \nabla V$$

dove V è un campo scalare (quindi \vec{A} è un campo vettoriale conservativo). Pertanto, su di un dominio semplicemente connesso, le due condizioni coincidono: una forma differenziale chiusa è esatta, cioè un campo irrotazionale è anche conservativo.

Esempio. Il lavoro svolto da una forza conservativa non dipende dal cammino. Considerato il campo \vec{F} , si associa una forma differenziale ω chiusa. Dato che \mathbb{R}^n è semplicemente connesso, segue esiste un campo scalare U detto energia potenziale per cui $\vec{F} = \nabla U$. Inoltre, il lavoro tra i due punti è

$$\int_{A}^{B} F_{x}(x,y) dx + F_{y}(x,y) dy = U(B) - U(A)$$

2.8.3 Formula integrale di Cauchy

Teorema. Si consideri una funzione f(z) olomorfa su di un dominio D semplicemente connesso; e si consideri una curva di Jordan γ con orientazione positiva. Per ogni z_0 nella regione interna a γ si ha

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} \,\mathrm{d}z$$

Dimostrazione. Dato che D è semplicemente connesso allora si può deformare in modo continuo la curva γ di modo da ottenere una circonferenza γ_{ε} di raggio ε attorno a z_0 . Inoltre, gli integrali su tali due percorsi sono uguali per il teorema di Cauchy. Pertanto

$$\int_{\gamma} \frac{f(z)}{z - z_0} dz = \int_{\gamma_{\varepsilon}} \frac{f(z)}{z - z_0} dz = \int_{\gamma_{\varepsilon}} \frac{f(z_0)}{z - z_0} dz + \int_{\gamma_{\varepsilon}} \frac{f(z) - f(z_0)}{z - z_0} dz$$

$$= f(z_0) \int_{\gamma_{\varepsilon}} \frac{dz}{z - z_0} + \int_{\gamma_{\varepsilon}} \frac{f(z) - f(z_0)}{z - z_0} dz$$

$$\implies \int_{\gamma} \frac{f(z)}{z - z_0} dz = \lim_{\varepsilon \to 0} f(z_0) \int_{\gamma_{\varepsilon}} \frac{dz}{z - z_0} + \int_{\gamma_{\varepsilon}} \frac{f(z) - f(z_0)}{z - z_0} dz$$

$$= \lim_{\varepsilon \to 0} f(z_0) \int_{0}^{2\pi} \frac{1}{z_0 + \varepsilon e^{i\theta} - z_0} i\varepsilon e^{i\theta} d\theta = 2\pi i f(z_0)$$

Il secondo integrale nel limite tende a zero quando ε tende a zero perché l'integrale di una funzione f(z) continua tende a zero per la lunghezza dell'intervallo di integrazione tendente a zero.

Osservazione. Questo teorema permette di costruire i valori di f(z) all'interno della regione delimitata da γ partendo dai valori su γ stessa. Questa proprietà è detta olografia.

Corollario. Se f(z) è una funzione olomorfa in z_0 , allora essa è ivi differenziabile infinite volte e le derivate si possono scrivere come

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} \,\mathrm{d}z$$

Dimostrazione. Bisogna derivare n volte la formula integrale di Cauchy rispetto a z_0 , utilizzando il fatto che

$$d_{z_0}^n \frac{1}{z - z_0} = \frac{n!}{(z - z_0)^{n+1}}$$

Dato che l'integrale è finito, allora f è differenziabile n volte in z. Si può scambiare l'ordine di integrazione e derivazione perché l'integrando e la sua derivata sono continui. Inoltre, l'integrazione avviene in un insieme compatto.

La formula integrale di Cauchy è un caso particolare per curve semplici e chiuse. Se la curva non è semplice, allora essa si può avvolgere più volte attorno a z_0 .

Definizione. Il winding number, il numero di avvolgimenti è

$$n(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0}$$

e si ha

$$n(\gamma, z_0) f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} \,\mathrm{d}z$$

Esempio. Si consideri la circonferenza γ di raggio r e centro z_0 , percorsa k volte. La curva è

$$\gamma(t) = z_0 + re^{it}, \quad t \in [0, 2k\pi)$$

Mentre il numero di avvolgimenti è

$$n(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0} = \frac{1}{2\pi i} \int_{0}^{2k\pi} \frac{1}{re^{it}} ire^{it} \, \mathrm{d}t = k$$

Teorema. Considerata una curva $\gamma(t)$ chiusa, $t \in [a, b]$ e considerato $z_0 \notin \gamma$, si ha $n(\gamma, z_0) \in \mathbb{Z}$.

Dimostrazione. Si definisce l'integrale

$$F(s) = \int_{a}^{s} \frac{\gamma'(t)}{\gamma(t) - z_0} dt$$

esso è tale per cui F(a) = 0. La sua derivata rispetto s è

$$F'(s) = \frac{\gamma'(s)}{\gamma(s) - z_0}$$

Inoltre, la seguente derivata è

$$d_s(e^{-F(s)}(\gamma(s) - z_0)) = -e^{-F(s)}F'(s) + e^{-F(s)}\gamma'(s)$$
$$= e^{-F(s)} \left[-\frac{\gamma'(s)}{\gamma(s) - z_0} (\gamma(s) - z_0) + \gamma'(s) \right] = 0$$

Pertanto

$$e^{-F(b)}(\gamma(b) - z_0) = e^{-F(a)}(\gamma(a) - z_0)$$

Dato che $\gamma(a)=\gamma(b)$ in quanto la curva è chiusa si ha

$$e^{-F(b)} = e^{-F(a)}$$

Inoltre, F(a) = 0 e dunque

$$e^{-F(b)} = 1 \implies F(b) = 2k\pi i, \quad k \in \mathbb{Z}$$

Tuttavia

$$F(b) = \int_0^b \frac{\gamma'(t)}{\gamma(t) - z_0} dt = \int_{\gamma} \frac{dz}{z - z_0} = 2\pi i n(\gamma, z_0) \implies k = n(\gamma, z_0) \in \mathbb{Z}$$

Definizione. Una funzione f(z) olomorfa su di un cerchio C_R di raggio R attorno a $z_0 \in \mathbb{C}$ è analitica, cioè si può espandere in serie di potenze (quindi è anche derivabile infinite volte):

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

con

$$a_n = \frac{1}{n!} d_z^n f(z_0) = \frac{1}{2\pi i} \int_{C_R} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Il raggio R è il raggio di convergenza. La serie di potenze così scritta è la serie di Taylor.

Teorema. di Morera. Il teorema di Cauchy garantisce che per una funzione f(z) olomorfa su D semplicemente connesso si abbia

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

dove γ è una curva di Jordan. Il teorema di Morera afferma che se una funzione ha tale proprietà, allora è olomorfa.

Si consideri una funzione f(z) su di un dominio D semplicemente connesso e tale che

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

dove γ è una curva semplice chiusa contenuta in D. Allora f(z) è olomorfa.

Dimostrazione. Si consideri un punto $z_0 \in D$ e due cammini γ , γ' da z_0 a $z \in D$. Si definisce la funzione

$$F(z) = \int_{\gamma_{z_0,z}} f(\zeta) \,\mathrm{d}\zeta$$

che vale per ogni z in un intorno di z_0 contenuto in D. Inoltre vale

$$\int_{\gamma_{z_0,z} - \gamma'_{z_0,z}} f(\zeta) \,\mathrm{d}\zeta = 0$$

per ipotesi. Si consideri il punto z + h e si consideri la curva Γ che parta da z_0 , passi per z + h, per z per poi ritornare a z_0 . Pertanto

$$0 = \int_{\Gamma} f(\zeta) d\zeta = F(z+h) + \int_{\gamma_{z+h,z}} f(\zeta) d\zeta - F(z)$$

Dato che f è continua su D, segue F è differenziabile e che il rapporto incrementale è

$$F'(z) = \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{\gamma_{z,z+h}} f(\zeta) \,d\zeta = f(z)$$

dove l'ultima uguaglianza è motivata nello stesso modo della dimostrazione dell'esistenza della primitiva di una funzione olomorfa (cioè il teorema e la sua dimostrazione ad inizio lezione). Dato che ciò vale $\forall z_0 \in D$ allora F(z) è olomorfa e quindi analitica. Pertanto, tutte le derivate sono funzioni olomorfe, in particolare F'(z) = f(z).

Lecture 8

lun 21 mar 2022 12:30

Ulteriori proprietà delle funzioni olomorfe si possono dedurre dalla formula integrale di Cauchy

Teorema. Valor medio. Si consideri una funzione f(z) olomorfa su di un dominio $D \subset \mathbb{C}$ semplicemente connesso. Vale

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$$

che è il valor medio della funzione sulla circonferenza.

Dimostrazione. Si applica la formula integrale di Cauchy con $z_0 = a$ e $\gamma(\theta) = a + re^{i\theta}$, $\theta \in [0, 2\pi]$. Pertanto

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(a + re^{i\theta})}{a + re^{i\theta} - a} i re^{i\theta} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{i\theta}) d\theta$$

Definizione. Dato uno spazio topologico S (un insieme? in cui sono definiti degli insiemi aperti e sia chiusa l'operazione di unione [r]) ed un punto $z_0 \in S$. Dicasi z_0 punto di bordo di S se ogni intorno di z_0 contiene sia punti di S che del suo complementare S^c . L'insieme dei punti di bordo è la frontiera ∂S .

Teorema. Massimo modulo. Si consideri una funzione f(z) olomorfa e non identicamente costante su di un dominio D limitato tale che f sia continua sul suo bordo. Allora |f(z)| raggiunge il proprio valore massimo sulla frontiera di D. Se $f(z) \neq 0$ in D, allora anche il minimo di |f(z)| è sulla frontiera di D.

Dimostrazione. Si consideri un disco

$$D(z_0, R) = \{ z \in \mathbb{C} \mid |z - z_0| < R \}$$

dove f non sia identicamente costante. Per ogni circonferenza

$$C_0 = \left\{ z \in \mathbb{C} \mid z = z_0 + re^{i\theta}, r, \theta \in \mathbb{R} \right\}$$

di centro z_0 contenuta in $D(z_0, R)$, per il teorema del valor medio si ha

$$|f(z_0)| = \frac{1}{2\pi} \left| \int_0^{2\pi} f(z_0 + re^{i\theta} d\theta) \right| \le \frac{1}{2\pi} \int_0^{2\pi} \left| f(z_0 + re^{i\theta} d\theta) \right| \le \max_{\theta \in [0, 2\pi)} \left| f(z_0 + re^{i\theta}) \right|$$

Esiste un valore di r per cui l'uguaglianza è stretta. Se valesse l'uguaglianza (e quindi vale per ogni r, θ), allora una funzione olomorfa di modulo costante, è una funzione costante, che non è contemplato per ipotesi. Pertanto, esiste un punto z_1 su tale circonferenza in z_0 tale per cui $|f(z_1)| > |f(z_0)|$. Per l'arbitrarietà di z_0 , questo vale ogni punto di $D(z_0, R)$, e dunque il massimo non può essere un punto interno dell'insieme D. Tuttavia, una funzione continua su di un insieme compatto ha un massimo. Pertanto, tale massimo si deve trovare nella chiusura di D, ma visto che non è interno, segue che esso è sulla frontiera.

Per dimostrare che il minimo è anch'esso sul bordo qualora $f(z) \neq 0$ in D, si studia $g(z) = \frac{1}{f(z)}$. Senza l'ipotesi aggiuntiva su |f|, vien da sé che il minimo del modulo è nel punto z in cui f(z) = 0 (si nota che il modulo è non negativo).

Teorema. di Liouville. Una funzione f(z) olomorfa e limita su \mathbb{C} (cioè intera e limitata) è costante.

Dimostrazione. La limitatezza garantisce l'esistenza di un numero reale M tale per cui $|f(z)| \leq M$ per ogni $z \in \mathbb{C}$. Si consideri una circonferenza in z_0 di raggio R: $\gamma(\theta) = z_0 + Re^{i\theta}$. Per la formula integrale di Cauchy si scrive la derivata prima di f in z_0

$$|f'(z_0)| = \frac{1}{2\pi} \left| \int_{\gamma} \frac{f(z)}{(z - z_0)^2} dz \right| = \frac{1}{2\pi R} \left| \int_{0}^{2\pi} f(z_0 + Re^{i\theta}) e^{-i\theta} d\theta \right|$$

$$\leq \frac{1}{2\pi R} \int_{0}^{2\pi} \left| f(z_0 + Re^{i\theta}) \right| d\theta \leq \frac{1}{2\pi} \frac{2\pi M}{R} = \frac{M}{R}$$

dato che f(z) è intera (e quindi olomorfa su \mathbb{C}) si può scegliere R arbitrariamente grande, pertanto

$$\lim_{R \to \infty} |f'(z_0)| \le \lim_{R \to \infty} \frac{M}{R} = 0$$

Dato che la derivata di f è nulla per ogni punto del piano complesso, segue che f è identicamente costante ovunque.

Teorema. fondamentale dell'algebra. Un polinomio complesso (cioè un polinomio con coefficienti complessi) di grado n ha n radici complesse.

Dimostrazione. Si consideri il polinomio

$$P(z) = \sum_{j=0}^{n} a_j z^j, \quad a_j \in \mathbb{C}$$

Per n=0 la tesi è immediata, perché ci sono zero radici in \mathbb{C} . Si consideri $n\geq 1$. La funzione $\frac{1}{P(z)}$ tende a zero per $z\to\infty$. Se P(z) non si annullasse, allora $\frac{1}{P(z)}$ sarebbe una funzione olomorfa in tutto \mathbb{C} . Inoltre, grazie al limite precedente, essa sarebbe limitata (oltre a non essere costante). Tuttavia, ciò contraddice il teorema di Liouville. Pertanto, esiste almeno una radice α_1 . Scrivendo $z\equiv z-\alpha_1+\alpha_1$ in P(z) ed espandendo le potenze si ha

$$P(z) = \sum_{j=0}^{n} c_j (z - \alpha_1)^j$$

con c_j funzioni di a_j ed α_1 . Dato che $P(\alpha_1) = 0$ segue $c_0 = 0$ e si può fattorizzare il polinomio

$$P(z) = (z - \alpha_1)P_{n-1}(z) = (z - \alpha_1)\sum_{j=0}^{n-1} c_j(z - \alpha_1)^j$$

Ripetendo quanto fatto, ottenendo ogni volta la relazione

$$P_{n-j}(z) = (z - \alpha_j)P_{n-j}(z)$$

Fino ad arrivare a

$$P(z) = \prod_{i=1}^{n} (z - \alpha_i) P_0(z)$$

dove $P_0(z)$ un polinomio di ordine zero, cioè una costante. Confrontando con i coefficienti a_n si ottiene $P_0(z) = a_n$. Dunque, si sono ottenute n radici per un polinomio di grado n.

Teorema. di unicità. Tutti gli zeri di una funzione olomorfa sono punti isolati. Sia f(z) una funzione olomorfa su un dominio $D \subset \mathbb{C}$ tale che $f(z_n) = 0$ per ogni elemento della successione $\{z_n\}$ in D, con $z_n \neq z_0$ punto di convergenza della successione. Allora f(z) = 0, $\forall z \in D$.

Dimostrazione. Per olomorfia, esiste un disco D_0 centrato in z_0 in cui f(z) si può scrivere come serie di Taylor intorno z_0

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

dato che f è continua e $f(z_n) = 0$, si ha

$$f(z_0) = \lim_{n \to \infty} f(z_n) = \lim_{n \to \infty} 0 = 0$$

Si scrive f(z) con una funzione g(z) olomorfa

$$g(z) = \frac{f(z)}{z - z_0} = \sum_{n=1}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^{n-1}$$

Dato che q è continua, segue

$$f'(z_0) = g(z_0) = \lim_{n \to \infty} g(z_n) = \lim_{n \to \infty} 0 = 0$$

dunque, g'(z) = 0 [r] e così via. Si mostra che tutti i coefficienti dello sviluppo di Taylor di f(z) sono nulli. Pertanto, f(z) = 0, $\forall z \in D$.

Si considera $z_1 \in \partial D_0$, $z_1 \in D$. Dato che $f(z_1) = 0$, segue esistere una sequenza $\{z_n\}$ e si può trovare un disco D_1 che si sovrappone parzialmente con D_0 e sul quale f(z) = 0, $\forall z \in D_0 \cap D_1$. In quanto D è un insieme connesso, si può estendere la procedura fino a coprire tutto D.

Osservazione. Risulta cruciale che $z_0 \in D$. Altrimenti, la funzoine

$$f(z) = \sin\frac{1}{z}$$

è olomorfa su $\mathbb{C}\setminus\{0\}$ ed è nulla su tutti i punti della successione $z_n=\frac{1}{n\pi}$. La successione converge a zero, ma esso non è un punto di D. Il teorema non si può applicare, infatti tale funzione non è identicamente nulla in $\mathbb{C}\setminus\{0\}$.

Corollario. Se la funzione f(z) olomorfa è nulla in un aperto contenuto nel dominio D allora essa è nulla su tutto il dominio.

2.9 Serie di Laurent

L'olomorfia e l'analiticità sono proprietà strettamente collegate nell'insieme dei numeri complessi: una funzione olomorfa si può scrivere come serie di Taylor

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

per ogni $z_0 \in D$ in cui $f(z_0)$ sia olomorfa e per ogni disco $|z-z_0| < R$ interamente contenuto in D, si ha

$$a_n = \frac{1}{n!} f^{(n)}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^n} dz$$

[r]

Osservazione. La funzione f(z) è analitica perch può essere differenziabile infinite volte.

Osservazione. Questo fatto non accade nell'insieme dei numeri reali. Esso è una differenza importante tra analisi reale ed analisi complessa.

Esempio. La serie di Taylor di una funzione reale è

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Se essa converge in un intorno di x_0 e la somma coincide con f(x) allora la funzione f(x) è analitica. Tuttavia, esistono funzioni di classe C^{∞} che non sono analitiche:

$$f(x) = e^{-\frac{1}{x^2}}$$

Essa è differenziabile infinite volte, ma ha una serie di Taylor attorno a x_0 che è identicamente nulla. Tuttavia, $f(x) \neq 0$ per ogni $x \neq x_0$ in un intorno di x_0 . Pertanto, f(x) non è analitica.

Lecture 9

mar 22 mar 2022 12:30

Per domini non semplicemente connessi è possibile dare una rappresentazione in serie per una funzione olomorfa su di un anello. Risulta tipico utilizzare questo tipo di serie con singolarità isolate. La serie che si ottiene è una serie bilatera e si chiama serie di Laurent.

Teorema. Sia f(z) una funzione olomorfa su di un anello

$$K = \{ z \in \mathbb{C} \mid r < |z - z_0| < R \}$$

dove $z_0 \in \mathbb{C}$ è il centro e r < R sono i raggi. Su tale insieme si può rappresentare la funzione f(z) come

$$f(z) = \sum_{n=-\infty}^{\infty} d_n (z - z_0)^n = \sum_{n=0}^{\infty} d_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{d_{-n}}{(z - z_0)^n}$$

I coefficienti d_n sono dati da

$$d_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} \, \mathrm{d}z$$

dove γ è una curva semplice, chiusa, con orientazione positiva all'interno di K contenente z_0 . Il primo addendo della serie è detto parte regolare, il secondo addendo è detto parte principale.

Osservazione. In generale si ha

$$d_n \neq \frac{f^{(n)}(z_0)}{n!}$$

perché la serie non contiene più potenze solamente positive. Quindi i coefficienti non si possono scrivere in termini di semplici derivate (z_0 può essere una singolarità).

Proposizione. Si vede una conseguenza del teorema di Cauchy. Sia f(z) una funzione olomorfa su di un dominio D (non necessariamente semplicemente connesso). Si consideri un insieme di curve chiuse semplici, orientate positivamente, γ, γ_i , che non intersecano tra loro. Sia γ una curva che contenga ogni γ_i e sia $S \subset D$ un insieme semplicemente connesso limitato da γ e γ_i . Vale

$$\int_{\gamma} f(z) \, \mathrm{d}z = \sum_{i=1}^{n} \int_{\gamma_i} f(z) \, \mathrm{d}z$$

Dimostrazione. Per ogni curva interna a γ , si aggiungono due segmenti orientati. Il primo, \overline{AB}_i , dalla curva interna alla curva γ ; il secondo, \overline{CD}_i , in verso opposto. Tali segmenti si posizionano in modo che A sia infinitamente vicino a D e medesimo per B con C. A questo punto, per l'orientazione positiva delle curve, si costruisce la frontiera

$$\Gamma = -\gamma + \sum_{i} \overline{CD}_{i} + \gamma_{i} + \overline{AB}_{i}$$

Essa limita l'insieme semplicemente connesso $S \subset D$. Per il teorema di Cauchy segue

$$0 \equiv \int_{\Gamma} f(z) dz = -\int_{\gamma} f(z) dz + \sum_{i} \int_{\overline{AB}_{i}} f(z) dz + \int_{\gamma_{i}} f(z) dz + \int_{\overline{CD}_{i}} f(z) dz$$
$$= -\int_{\gamma} f(z) dz + \sum_{i} \int_{\gamma_{i}} f(z) dz$$

Gli integrali sui segmenti aggiunti sono uguali ed opposti, perché infinitesimamente vicini. La tesi segue immediatamente.

Dimostrazione. Si consideri un punto z nell'anello K ed una curva $\widetilde{\gamma}$ semplice chiusa in K che circonda z. Inoltre, siano γ e Γ due circonferenze di centro z_0 che definiscono una corona circolare in K contenente z e $\widetilde{\gamma}$. Per la formula integrale di Cauchy, si può scrivere

$$f(z) = \frac{1}{2\pi i} \int_{\widetilde{\gamma}} \frac{f(z')}{z' - z} dz'$$

Nella regione delimitata dalle curve Γ , γ , $\widetilde{\gamma}$, la funzione integranda è olomorfa. Si applica la proposizione precedente. Nel caso in esame si ha

$$\int_{\Gamma} \frac{f(z')}{z'-z} dz' - \int_{\gamma} \frac{f(z')}{z'-z} dz' - \int_{\widetilde{\gamma}} \frac{f(z')}{z'-z} dz' = 0$$

Utilizzando la formula integrale di Cauchy precedente si ha

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z')}{z' - z} dz' - \frac{1}{2\pi i} \int_{\gamma} \frac{f(z')}{z' - z} dz'$$

Si calcola l'integrale su Γ . Si riscrive la frazione integranda

$$\frac{1}{z'-z} = \frac{1}{z'-z_0 - (z-z_0)} = \frac{1}{z'-z_0} \frac{1}{1 - \frac{z-z_0}{z'-z_0}} = \frac{1}{z'-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{z'-z_0}\right)^n$$

Si utilizza la serie geometrica in quanto vale $|z-z_0|<|z'-z_0|$ (cioè un generico punto all'interno della regione delimitata dalle curve Γ , γ e $\tilde{\gamma}$ è più vicino al centro di un punto che si trova su Γ , cioè sulla circonferenza più esterna). Pertanto si ha

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z' - z} dz' = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z' - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{z' - z_0}\right)^n dz'
= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\Gamma} \frac{f(z')}{(z' - z_0)^{n+1}} (z - z_0)^n dz' = \sum_{n=0}^{\infty} d_n (z - z_0)^n$$

Si è ottenuta la parte regolare.

Si calcola l'integrale su γ . Dato che $|z-z_0|>|z'-z_0|$, segue potersi scrivere

$$\frac{1}{z'-z} = \frac{1}{z'-z_0 - (z-z_0)} = -\frac{1}{z-z_0} \frac{1}{1 - \frac{z'-z_0}{z-z_0}} = -\frac{1}{z-z_0} \sum_{n=0}^{\infty} \left(\frac{z'-z_0}{z-z_0}\right)^n$$

Sostituendo questa espressione nell'integrale e ponendo k = n + 1, si ha

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z')}{z' - z} \, dz' = -\frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\gamma} \frac{f(z')}{(z - z_0)^{n+1}} (z' - z_0)^n \, dz'$$

$$= -\frac{1}{2\pi i} \sum_{k=1}^{\infty} \int_{\gamma} \frac{f(z')}{(z' - z_0)^{-k+1}} \frac{1}{(z - z_0)^k} \, dz' = -\sum_{k=1}^{\infty} \frac{d_{-k}}{(z - z_0)^k}$$

Si è ottenuta la parte principale.

Dato che f(z) è olomorfa sull'anello K, si possono deformare continuamente le curve Γ e γ fino a farle coincidere. A tal punto si ottengono le espressioni nella tesi per f(z) e per i coefficienti d_n .

Osservazione. Il valore minimo ed il valore massimo dei raggi r ed R sono

$$R = \left(\lim_{n \to \infty} \sup_{k > n} |d_k|^{\frac{1}{k}}\right)^{-1}, \quad n \ge 0$$

cioè la parte regolare è una serie di potenze centrata in z_0 e convergente nel disco $|z-z_0| < R$. Allora stesso modo la parte principale si può intendere come una serie di potenze nella variabile $w=\frac{1}{z-z_0}$ convergente sul disco $|w|<\frac{1}{r}$ dove

$$r = \lim_{n \to \infty} \sup_{k \ge n} |d_{-k}|^{\frac{1}{k}}, \quad n \ge 1$$

L'intersezione delle due regioni dà $r < |z - z_0| < R$. La serie converge uniformemente sull'anello K e su ogni suo sotto-anello.

Esempio. Si consideri la funzione

$$f(z) = \frac{12}{z(z+1)(2-z)}$$

Essa ha tre poli semplici in z = -1, 0, 2. Inoltre, essa è olomorfa in tre regioni:

- 0 < |z| < 1
- 1 < |z| < 2
- $2 < |z| < \infty$

Si calcola la serie di Laurent in ogni regione. Una metodologia comoda a tal fine è decomporre la funzione in frazioni elementari (tramite la decomposizione in fratti semplici) e scrivere ciascuna frazione come una serie geometrica. Dunque, per trovare le serie di Laurent conviene scrivere

$$f(z) = \frac{4}{z} \left(\frac{1}{1+z} + \frac{1}{2-z} \right)$$

In quanto |z| < 1, segue

$$\frac{1}{1+z} = \frac{1}{1-(-z)} = \sum_{n=0}^{\infty} (-z)^n, \qquad \frac{1}{2-z} = \frac{1}{2} \frac{1}{1-\frac{z}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n}$$

Pertanto

$$f(z) = \sum_{n=0}^{\infty} \left[4(-1)^n + 2^{-n+1} \right] z^{n-1}$$

Il raggio più piccolo è r=0, mentre il raggio più grande è R=1 perché qualsiasi numero sotto radice n-esima tende ad 1.

Nella seconda regione si ha $\frac{|z|}{2}<1,$ ma |z|>1,dunque

$$\frac{1}{1+z} = \frac{1}{z} \frac{1}{1+\frac{1}{z}} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n}{z^n}$$

mentre la serie geometrica già utilizzata per l'altro addendo è ancora valida. Pertanto, la serie di Laurent risulta essere

$$f(z) = \frac{4}{z} \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{n+1}} + \frac{z^n}{2^{n+1}} = \sum_{n=0}^{\infty} \frac{z^n}{2^n} + \frac{2}{z} + 4 \sum_{n=2}^{\infty} \frac{(-1)^n}{z^n}$$

Nell'ultima regione, la serie geometrica del primo addendo è identica al caso precedente, mentre per il secondo addendo si ha

$$\frac{1}{2-z} = -\frac{1}{z} \frac{1}{1-\frac{2}{z}} = -\sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$$

La serie di Laurent corrispondente è

$$f(z) = 4\sum_{n=0}^{\infty} \frac{(-1)^n - 2^n}{z^{n+2}}$$

che converge per |z| > 2.

Serie di Laurent e singolarità isolate. I poli ed i coefficienti delle espansioni sono strettamente connessi. Il numero di potenze negative determina la natura del polo. Per un numero infinito di potenze negative si ha una singolarità essenziale.

Considerata una singolarità isolate z_0 di una funzione f(z), esiste un anello

$$K = \{ z \in \mathbb{C} \mid 0 < |z - z_0| < \delta \}$$

in cui f(z) è olomorfa e, dunque, esiste l'espansione in serie di Laurent. La forma della serie contiene informazioni sulla natura della singolarità:

- Se z_0 è una singolarità rimovibile, allora la parte principale è assente. La serie di Laurent coincide con la serie di Taylor. Questo perché sostituendo la funzione con la sua serie di Taylor in un intorno di z_0 , si rimuove tale punto di singolarità.
- Se z_0 è un polo di ordine k, allora la parte principale della serie di Laurent contiene solamente i primi k termini

$$f(z) = \sum_{n=-k}^{\infty} d_n (z - z_0)^n$$

cio
è $d_{-k} = 0, \, \forall k > n$ e $d_{-n} \neq 0$. Anche gli altri $d_{-k}, \, k < n$, possono essere nulli.

ullet Se z_0 è una singolarità essenziale, allora la parte principale della serie di Laurent contiene infiniti termini

$$f(z) = \sum_{n = -\infty}^{\infty} d_n (z - z_0)^n$$

Esempio. Si consideri la funzione

$$f(z) = \frac{1}{z^5(z+1)}$$

Essa ha un polo semplice in z = -1 ed un polo di ordine quinto in z = 0. In un intorno di z = 0 si ha |z| < 1 e dunque

$$f(z) = \frac{1}{z^5} \frac{1}{z+1} = \frac{1}{z^5} \sum_{n=0}^{\infty} (-1)^n z^n = \sum_{n=0}^{\infty} (-1)^n z^{n-5} = \sum_{k=1}^{5} \frac{(-1)^{k+1}}{z^k} + \sum_{k=0}^{\infty} (-1)^{k+1} z^k$$

La parte principale si ferma a $d_{-5}=1$ e si conferma che z=0 è difatti un polo di ordine quinto. Si studia il punto z=-1. Si pone u=z+1 e come nel caso precedente, si riscrive la parte non singolare come una serie geometrica

$$f(u) = \frac{1}{u} \frac{1}{(u-1)^5} = -\frac{1}{u} \left(\sum_{n=0}^{\infty} u^n \right)^5 = -\frac{1}{u} - 5 - 15u - 35u^2 + \dots$$

In questo caso, la parte principale contiene solamente il termine d_{-1} confermando che z=-1 è un polo semplice.

Esempio. La funzione $e^{\frac{1}{z}}$ ha una singolarità isolata essenziale in z=0 ed è olomorfa su $\mathbb{C}\setminus\{0\}$. La sua serie di Laurent in z=0 è

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^{-n}$$

e converge per $0 < |z| < \infty$. Tutti i coefficienti d_k per k > 0 svaniscono. Si ha un numero infinito di potenze negative attorno a z = 0. Si calcola il raggio di convergenza

$$R = \left(\lim_{n \to \infty} |d_n|^{\frac{1}{n}}\right)^{-1} = +\infty$$

perché $d_n = 0$ per $n \ge 0$. Invece

$$r = \lim_{n \to \infty} \left| \frac{d_{-n-1}}{d_{-n}} \right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Pertanto $e^{\frac{1}{z}}$ su $0 < |z| < \infty$ e la singolarità essenziale in z = 0 implica un numero finito di d_{-k} .