ALGORITMO DE DAVIS-PUTNAM Heurística y optimización

Enrique Benvenutto Navarro

1 Nomenclatura

- \bullet n: Número de iteración.
- i: Índice de variable.
- Ø : Conjunto vacío.
- $\{\emptyset\}$: Cláusula vacía
- \bullet \lor : Operador OR
- $\bullet \land : Operador AND$
- $\bullet \perp : Falso$
- ⊤ : Cierto
- $G_n = \{...\}$: Red de cláusulas de cada iteración.
- \bullet X_i : Variable de resolución de cada iteración.
- x_i y \bar{x}_i : Literales de X_i
- $Res(G_n, X_i)$: Operación de resolución de la red de cláusulas G_n respecto de los literales de X_i .
- $G_n \setminus Res(G_n, X_i)$: Conjunto resultante de la diferencia entre la red de cláusulas G_n y la operación de resolución $Res(G_n, X_i)$.

2 Introducción

Utilizado para encontrar un modelo que satisfaga una fórmula proposicional F dada en Forma Normal Conjuntiva (CNF). Pasos:

- 1. Se aplica el procedimiento de resolución hacia delante.
 - (a) Si el resultado es el conjunto vacío \emptyset , la formula es FACTIBLE. Se pasa al paso 2.
 - (b) Si el resultado es la cláusula vacía $\{\emptyset\}$, la fórmula es NO FACTIBLE.
 - (c) Si quedan cláusulas por resolver, vuelta al paso 1.
- 2. Se aplica la búsqueda del modelo hacia atrás.

3 Procedimiento de resolución hacia delante

Funciona por iteraciones n, hasta que $Res(G_n, X_i) = \emptyset$ ó $Res(G_n, X_i) = \{\emptyset\}$.

3.1 Determinamos G_n y X_i para la iteración

Iniciamos determinando la red de cláusulas y variable de resolución a utilizar.

- Si n=0 (primera iteración): G_n estará compuesta por las cláusulas de la fórmula proposicional F
- Si n > 0: G_n será $Res(G_{n-1}, X_i)$, es decir, el resultado de la operación de resolución de la iteración anterior.

La selección de X_i tendrá que ser de una que no hayamos utilizado en iteraciones anteriores. En la mayoría de ejercicios de la asignatura solicitan que sea en orden creciente de índice.

3.2 Aplicamos $Res(G_n, X_i)$

3.2.1 Comprobamos que X_i no tenga literales puros en G_n

Identificamos aquellas cláusulas de G_n que contengan literales puros de X_i , y las eliminamos (Un literal x_i es puro si \bar{x}_i no ocurre en ninguna cláusula de G_n , o viceversa).

3.2.2 Realizamos la disyunción de los literales que acompañan a x_i y \bar{x}_i

Seleccionamos las cláusulas de la red de cláusulas G_n que contengan x_i , y hacemos lo mismo para las que contengan \bar{x}_i . De estas cláusulas eliminamos x_i y \bar{x}_i , y sacamos la fórmula lógica derivada de la resolución:

$$\begin{pmatrix} \text{Cláusulas que tenían } x_i \\ \text{unidas por AND } (\land) \end{pmatrix} \vee \begin{pmatrix} \text{Cláusulas que tenían } \bar{x}_i \\ \text{unidas por AND } (\land) \end{pmatrix}$$

Y resolvemos la disyunción (\vee) . Ejemplo:

$$(C_1 \wedge C_3) \vee (C_2 \wedge C_4 \wedge C_5)$$

Resultaría en:

$$\begin{array}{c} (C_1 \vee C_2) \; , \; (C_3 \vee C_2) \\ (C_1 \vee C_4) \; , \; (C_3 \vee C_4) \\ (C_1 \vee C_5) \; , \; (C_3 \vee C_5) \end{array}$$

Si al eliminar x_i y \bar{x}_i de las cláusulas de G_n , todas las cláusulas solo contenían x_i ó \bar{x}_i , se quedan vacías. En este caso, hemos llegado a la cláusula vacía $\{\emptyset\}$ de la que se advertía en el punto 2. La fórmula F es NO FACTIBLE. Fin del algoritmo.

3.2.3 Simplificamos las cláusulas resultantes de la disyunción

- 1. Eliminamos tautologías (cuando una proposición es siempre cierta). Por ejemplo la cláusula $(x_1 \vee \bar{x}_1 \vee x_3)$, ya que siempre va a evaluar a verdadero debido a X_1 . Se elimina la cláusula entera.
- 2. Eliminamos cláusulas redundantes y aquellas que sean subconjuntos de otras, tanto de G_n como del resultado de la disyunción.

3.2.4 Resultado de la iteración

Las cláusulas que queden de la disyunción tras la simplificación serán cláusulas nuevas generadas. Les asignamos un número de cláusula. El resultado de la resolución $Res(G_n, X_i)$ está compuesto por aquellas cláusulas que no contuviesen la variable X_i en G_n , y aquellas cláusulas nuevas generadas por la disyunción. El resultado de la iteración lo daremos de la siguiente forma:

Resultado de la resolución de G_n respecto X_i :

$$Res(G_n, X_i) = \{C_A, C_C, ...\}$$

Conjunto resultante de la diferencia entre la red de cláusulas G_n y la operación de resolución $Res(G_n, X_i)$:

$$G_n \setminus Res(G_n, X_i) = \{C_B, C_D, ...\}$$

Pasamos a la siguiente iteración y volvemos al punto 3.1

Si no se generan cláusulas nuevas, y todas las cláusulas que había en G_n contenían la variable X_i además de otros literales, significa que el resultado es el conjunto vacío \varnothing . Este es el otro resultado del que se advertía en el punto 2. La fórmula F es FACTIBLE y se puede encontrar un modelo que la satisfaga. Pasamos a aplicar la búsqueda del modelo hacia atrás (Punto 4).

4 Búsqueda del modelo hacia atrás

Definimos que una cláusula se satisface cuando la evaluación de los literales y operaciones lógicas que la componen se evalúa a cierto (true). Utilizaremos la notación \top (cierto) y \bot (falso).

Empezaremos la búsqueda del modelo por el resultado de la última iteración del punto 3, e iremos hacia atrás recorriendo cada iteración hasta n = 0.

El objetivo es, en cada iteración, encontrar el valor de x_i de la iteración, o cualquier x_i no resuelto en otras iteraciones, que evalúe las cláusulas de $G_n \setminus Res(G_n, X_i)$ a cierto, de manera que obtengamos un modelo en el que los valores que asignemos a las variables evalúen todas las cláusulas de F a cierto (las satisfagan).

Es importante recalcar que pueden existir varios modelos que satisfagan F.

5 Ejemplo

A continuación mostraremos la resolución de un ejercicio de ejemplo.

Considera la fórmula F_1 en Forma Normal Conjuntiva, formada por las siguientes cláusulas:

$$C_1 : (\bar{x}_1 \lor x_4 \lor x_5 \lor \bar{x}_6)$$

$$C_2 : (x_1 \lor \bar{x}_4 \lor \bar{x}_7)$$

$$C_3 : (x_3 \lor x_6 \lor x_7)$$

$$C_4 : (\bar{x}_3 \lor \bar{x}_5)$$

$$C_5 : (\bar{x}_2 \lor x_3 \lor x_7)$$

Encuentre un modelo que satisfaga la fórmula F_1 .

Paso 3.1 Iteración 0:
$$G_0 = \{C_1, C_2, C_3, C_4, C_5\}, X_1$$

Paso 3.2.1 Comprobamos que X_1 no tenga literales puros:

• No tiene literales puros. x_1 y \bar{x}_1 existen.

Paso 3.2.2 Realizamos la disyunción de los literales que acompañan a x_1 y \bar{x}_1 :

•
$$(C_2 \vee C_1) \Rightarrow (\bar{x}_4 \vee \bar{x}_7 \vee x_4 \vee x_5 \vee \bar{x}_6)$$

Paso 3.2.3 Simplificamos las cláusulas resultantes de la disyunción:

• $(\bar{x}_4 \vee \bar{x}_7 \vee x_4 \vee x_5 \vee \bar{x}_6) \Rightarrow$ Es una tautología, la eliminamos

Paso 3.2.4 Resultado de la iteración:

Res
$$(G_0, X_1) = \{C_3, C_4, C_5\}$$

 $G_0 \setminus \text{Res}(G_0, X_1) = \{C_1, C_2\}$

Paso 3.1 Iteración 1: $G_1 = \{C_3, C_4, C_5\}, X_2$

Paso 3.2.1 Comprobamos que X_2 no tenga literales puros:

 $\bullet \ \bar{x}_2$ es un literal puro \Rightarrow Eliminamos la cláusula C_5 que lo contiene, de G_1

Paso 3.2.2 Realizamos la disyunción de los literales que acompañan a x_2 y \bar{x}_2 :

• \emptyset , ya que no hay cláusulas con X_2

Paso 3.2.3 Simplificamos las cláusulas resultantes de la disyunción:

 \bullet \emptyset , no hay nada que simplificar

Paso 3.2.4 Resultado de la iteración:

Res
$$(G_1, X_2) = \{C_3, C_4\}$$

 $G_1 \setminus \text{Res}(G_1, X_1) = \{C_5\}$

Paso 3.1 Iteración 2: $G_2 = \{C_3, C_4\}, X_3$

Paso 3.2.1 Comprobamos que X_3 no tenga literales puros:

• No tiene literales puros. x_3 y \bar{x}_3 existen.

Paso 3.2.2 Realizamos la disyunción de los literales que acompañan a x_3 y \bar{x}_3 :

• $(C_3 \vee C_4) \Rightarrow (x_6 \vee x_7 \vee \bar{x}_5)$

Paso 3.2.3 Simplificamos las cláusulas resultantes de la disyunción:

• No hay que simplificar $(x_6 \lor x_7 \lor \bar{x}_5)$

Paso 3.2.4 Resultado de la iteración:

Res
$$(G_2, X_3) = \{C_6 : (x_6 \lor x_7 \lor \bar{x}_5)\}\$$

 $G_2 \backslash \text{Res}(G_2, X_1) = \{C_3, C_4\}$

Paso 3.1 Iteración 3: $G_3 = \{C_6\}, X_5$: ya que G_3 no tiene ninguna cláusula con X_4

Paso 3.2.1 Comprobamos que X_5 no tenga literales puros:

• \bar{x}_5 es un literal puro \Rightarrow Eliminamos la cláusula C_6 que lo contiene, de G_3

Paso 3.2.2 Realizamos la disyunción de los literales que acompañan a x_3 y \bar{x}_3 :

• Ø, ya que no hay cláusulas

Paso 3.2.3 Simplificamos las cláusulas resultantes de la disyunción:

 \bullet Ø, ya que no se ha generado nada

Paso 3.2.4 Resultado de la iteración:

$$\operatorname{Res}(G_2, X_3) = \emptyset$$

$$G_0 \setminus \operatorname{Res}(G_0, X_1) = \{C_6\}$$

Hemos llegado a \emptyset , por lo que F_1 ES FACTIBLE. Pasamos al paso 4, la búsqueda del modelo hacia atrás.

Paso 4: Búsqueda del modelo hacia atrás:

Iteración	X_i	Cláusulas que evaluar a cierto	Valores que evalúan las cláusulas a cierto
3	X_5	$\{C_6\}$	$x_5 = \bot$
2	X_3	$\{C_3, C_4\}$	$x_3 = \bot, x_6 = \top$
4	X_2	$\{C_5\}$	$x_2 = \bot$
0	X_1	$\{C_1, C_2\}$	$x_1 = \bot, x_4 = \bot$

Y con esto, hemos encontrado el siguiente modelo M_1 que satisface F_1

$$M_1 = \{x_1 = \bot, x_2 = \bot, x_3 = \bot, x_4 = \bot, x_5 = \bot, x_6 = \top\}$$

6 Recomendación

Acompañar estos apuntes con ejercicios resueltos de exámenes de años anteriores.