MODELI RAČUNARSTVA - JEZIČNI PROCESORI 1 Siniša Srbljić, Sveučilište u Zagrebu

- 1. UVOD
- 2. REGULARNI JEZICI
- 3. KONTEKSTNO NEOVISNI JEZICI
- 4. REKURZIVNO PREBROJIVI JEZICI
- 5. KONTEKSTNO OVISNI JEZICI
- 6. RAZREDBA (TAKSONOMIJA) JEZIKA, AUTOMATA I GRAMATIKA

4. REKURZIVNO PREBROJIVI JEZICI

- 4.1. TURINGOV STROJ
- 4.2. GRAMATIKA NEOGRANIČENIH PRODUKCIJA
- 4.3. SVOJSTVA REKURZIVNIH I REKURZIVNO PREBROJIVIH JEZIKA

4. Rekurzivno prebrojivi jezici

REKURZIVNO PREBROJIVI JEZICI

- zasnivaju se na Turingovom stroju:
 - jezik **jest** rekurzivno prebrojiv
 - ako i samo ako postoji Turingov stroj koji ga prihvaća
- time je definirana istovjetnost RPJ i TS:
 - za bilo koji rekurzivno prebrojiv jezik
 - moguće je izgraditi Turingov stroj koji ga prihvaća

4.1. Turingov stroj, TS (Turing Machine, TM)

- 4.1.1. Osnovni model Turingovog stroja
- 4.1.2. Metode izrade Turingovog stroja
- 4.1.3. Prošireni modeli Turingovog stroja
- 4.1.4. Pojednostavljeni modeli Turingovog stroja
- 4.1.5. Generiranje jezika Turingovim strojem

4.1. Turingov stroj TS

TURINGOV STROJ

- je jednostavan
- bez obzira na to, predstavlja opći model računanja
- osnovna primjena TS je prihvaćanje jezika
- obzirom da može pisati po traci
 - TS se koristi za generiranje jezika
 - TS se koristi za računanje cjelobrojnih funkcija

DEFINICIJA TURINGOVOG STROJA

- TS nakon čitanja
 piše novi znak na traku
- glava se pomiče lijevo i desno
- traka je neograničena s desne strane
- na početku, niz w
 je upisan krajnje lijevo
 ostatak je popunjen s B

DONOŠENJE ODLUKE I AKCIJA

- upravljačka jedinica donosi odluku o
 - promjeni stanja
 - upisu znaka na traku
 - pomaku glave za čitanje i pisanje
- odluku donosi na osnovu
 - stanja
 - znaka na traci

FORMALNA DEFINICIJA TS

– formalno zadajemo sedmorkom:

$$TS = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

- gdje su
 - Q konačan skup stanja s početnim stanjem q₀
 - Γ konačan skup znakova trake s praznim znakom B
 - Σ konačan skup znakova trake bez praznog znaka B
 - δ funkcija prijelaza $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$
 - F ⊆ Q podskup prihvatljivih stanja
- funkcija $\delta(q, v) = (p, z, W)$:
 - na osnovu stanja q i pročitanog znaka v
 - određuje slijedeće stanje p, znak za upis na traku z i pomak W

TURINGOV STROJ PRIMJER

Zadan je TS M

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0,1\}, \{0,1,X,Y,B\}, \delta, q_0, B, \{q_4\})$$

$$0 \quad 1 \quad X \quad Y \quad B$$

$$q_0 \quad (q_1,X,R) \quad (q_1,0,R) \quad (q_2,Y,L) \quad (q_3,Y,R) \quad (q_1,Y,R)$$

$$q_2 \quad (q_1,0,L) \quad (q_0,X,R) \quad (q_2,Y,L) \quad (q_3,Y,R) \quad (q_4,B,R)$$

- M prihvaća jezik L(M) = $\{0^n1^n \mid n \ge 1\}$
 - u q₀ zamijeni krajnje lijevu 0 s X i u q₁ traži prvu 1 desno
 - u q₁ zamijeni krajnje lijevu 1 s Y i u q₂ traži krajnji X lijevo
 - u q₂ ostavi krajnje desni X i nastavi od q₀
 - ako u q₀ pročita Y, nema više 0, provjeri u q₃ ima li koja 1

PRIHVAĆANJE JEZIKA TSom

- rad TS opisujemo konfiguracijom $\alpha_1 q \alpha_2$ sa značenjem "lijevi dio trake stanje desni dio trake"
- TS čita krajnje lijevi znak niza α_2
- oznake za q moraju se razlikovati od oznaka za α
- pozicija glave se numerira:

$$X_1 X_2 X_{i-1} q X_i X_{i+1} X_{n-1} X_n$$

- lijevo od X₁ nema trake, nema lijevog pomaka
- desno od X_n je sve prazno, samo B
- za i>1 i $\delta(q,X_i) = (p,Y,L)$ TS promijeni konfiguraciju:

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n \underset{\mathbf{M}}{\succ} X_1X_2\cdots X_{i-2}pX_{i-1}YX_{i+1}\cdots X_n$$

PRIHVAĆANJE JEZIKA TSom

- za $\delta(q, X_i) = (p, Y, R)$ TS promijeni konfiguraciju:

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n \underset{M}{\succ} X_1X_2\cdots X_{i-1}YpX_{i+1}\cdots X_n$$

slijedom prijelaza:
 q₀0011 → XXYYBq₄

automat M prihvati niz 0011:

$$q_00011 \succ Xq_1011 \succ X0q_111 \succ Xq_20Y1 \succ q_2X0Y1 \succ$$

$$Xq_00Y1 \succ XXq_1Y1 \succ XXYq_11 \succ XXq_2YY \succ Xq_2XYY \succ$$

$$XXq_0YY \succ XXYq_3Y \succ XXYYq_3 \succ XXYYBq_4$$

PRIHVAĆANJE JEZIKA TSom

- izraz:
$$J_{\stackrel{m}{\succ}K}^{m}$$

znači da TS iz konfiguracije J prelazi u K u m koraka

za niz 0011 treba 13 prijelaza:

$$q_00011_n \stackrel{13}{\succ} XXYYBq_4$$

automat M prihvaća jezik koji ga dovodi u prihvatljivo stanje:

$$L(M) = \left\{ w \middle| w \in \Sigma^* \text{ i } q_0 w \underset{M}{\succ} \alpha_1 p \alpha_2 \text{ ; } p \in F \right\}$$

ako niz nije prihvatljiv, TS ne mora stati

PRIHVAĆANJE JEZIKA TSom

- TS prihvaća klasu rekurzivno prebrojivih jezika
 - ime na osnovu svojstva da TS ispisuje (nabraja) sve nizove
 - termin "rekurzivno" je u današnjem značenju
- kontekstno neovisni jezici su pravi podskup rekurzivno prebrojivih jezika
- za niz koji nije član jezika, TS ne mora stati
- za jezike gdje TS uvijek stane, kaže se da su samo rekurzivni
- klasa rekurzivnih jezika je podskup klase rekurzivno prebrojivih jezika

CJELOBROJNA ARITMETIKA TSom

- TS se koristi za računanje cjelobrojnih funkcija
- na traci se koristi notacija 0ⁿ10^m1....
 - niz n nula ima vrijednost n, niz m nula vrijednost m
 - nizovi nula odijeljeni su znakom 1
 - to je sustav s bazom s=1 (rimska notacija!)
- TS izračunava parcijalno rekurzivne funkcije
- ParRF i RPJ su ekvivalentni, se ne mora zaustaviti
- ako se TS uvijek zaustavi,
 radi se o potpuno rekurzivnim funkcijama
- PotRF i RekJ su ekvivalentni, TS se uvijek zaustavi

CJELOBROJNA ARITMETIKA TSom PRIMJER

- − TS računa m-n, ako je m<n razlika je 0
- za niz 0^m10ⁿ
 - TS za skida 0 lijevog broja i 0 desnog broja (upisuje 1)
 - ako je m>n ostane lijevo 0^{m-n}
 - ako je m=n ne ostane niti jedna nula
 - ako je m<n ostanu nule desno, pa ih TS mora ukloniti

- gradi se TS M = (
$$\{q_0,...,q_6\}$$
, $\{0,1\}$, $\{0,1,B\}$, δ , q_0 , B, \varnothing) $\delta(q_0,0)=(q_1,B,R)$ početna zamjena $\delta(q_1,0)=(q_1,0,R)$ $\delta(q_1,1)=(q_2,1,R)$ traži desni broj $\delta(q_2,1)=(q_2,1,R)$ $\delta(q_2,0)=(q_3,1,L)$ zamjeni i idi natrag $\delta(q_3,0)=(q_3,0,L)$ $\delta(q_3,1)=(q_3,1,L)$ $\delta(q_3,B)=(q_0,B,R)$ idi natrag

CJELOBROJNA ARITMETIKA TSom PRIMJER

– ako je m>n , briši jedinice i vrati nulu:

$$\delta(q_2,B)=(q_4,B,L)$$
 okreni natrag! $\delta(q_4,1)=(q_4,B,L)$ briši jedinice

$$\delta(q_4,0)=(q_4,0,L) \delta(q_4,B)=(q_6,0,R)$$
 idi lijevo i vrati nulu, STOP

– ako je m<n briši:</p>

$$\delta(q_0,1)=(q_5,B,R)$$
 briši jedinice desno $\delta(q_5,1)=(q_5,B,R)$ $\delta(q_5,0)=(q_5,B,R)$ briši nule i jedinice desno $\delta(q_5,B)=(q_6,B,R)$ sve obrisano, STOP

CJELOBROJNA ARITMETIKA TSom PRIMJER

– za niz 0010 vrijedi 2-1=1:

$$\begin{aligned} &q_00010 \succ Bq_1010 \succ B0q_110 \succ B01q_20 \succ B0q_311 \succ \\ &Bq_3011 \succ q_3B011 \succ Bq_0011 \succ BBq_111 \succ BB1q_21 \succ \\ &BB11q_2 \succ BB1q_41 \succ BBq_41 \succ Bq_4 \succ B0q_6 \end{aligned}$$

za niz 0100 vrijedi 1-2=0:

$$q_00100 \succ Bq_1100 \succ B1q_200 \succ Bq_3110 \succ q_3B110 \succ$$

 $Bq_0110 \succ BBq_510 \succ BBBq_50 \succ BBBBq_5 \succ BBBBBq_6$

VIŠEKOMPONENTNE OZNAKE STANJA

- olakšavaju izradu TS
- uz osnovno stanje bilježi se informacija koju ono nosi
- koriste se uglate zagrade: [q,a,b...]
 - znači da u stanju q nosimo parametre a, b itd.
- stanje je upravljačka komponenta
 - upravljačka komponenta može biti samo jedna
- informacija je radna komponenta
 - radnih komponenti može biti više

VIŠEKOMPONENTNA STANJA PRIMJER

- izgraditi TS koji prihvaća nizove kod kojih se prvi znak ne ponavlja unutar niza
- koristimo višekomponentno stanje [q,a]
- upravljačka komponenta ima dva stanja
 - q₀, prije čitanja prvog znaka
 - q₁, prvi znak je pročitan
- radna komponenta koristi se za pamćenje prvog znaka
 - može poprimiti vrijednosti 0, 1 i B
- imamo svega šest stanja:
 - $[q_0,B], [q_0,0], [q_0,1], [q_1,B], [q_1,0], [q_1,1]$

VIŠEKOMPONENTNA STANJA PRIMJER

- gradimo TS $M = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], B, \{[q_1,B]\})$
- funkcija prijelaza je:

$$\begin{split} &\delta([q_0,B],0) = ([q_1,0],0,R) \quad \delta([q_0,B],1) = ([q_1,1],1,R) \\ &\delta([q_1,0],1) = ([q_1,0],1,R) \quad \delta([q_1,1],0) = ([q_1,1],0,R) \\ &\delta([q_1,0],B) = ([q_1,B],B,L) \quad \delta([q_1,1],B) = ([q_1,B],B,L) \end{split}$$

- drugi primjer: pomak znakova za n mjesta u desno
 - koristimo n radnih komponenti
 - u svakom koraku prelazimo u novo stanje tako da rotiramo radne komponente

VIŠEKOMPONENTNI ZNAKOVI TRAKE

- znakovi trake mogu imati više komponenti
- za konačni skup komponenti, rad je ekvivalentan TS
- komponente zapišemo u posebne tragove trake
- ukupni znak trake je kombinacija komponenti

VIŠEKOMPONENTNI ZNAKOVI TRAKE

- tragove možemo koristiti za posebne namjene
- npr. pomoćni trag može se koristiti za označivanje ranije ispitanih znakova
- korisno za TS koji prihvaćaju jezike
 - gdje se dijelovi niza ponavljaju
 - gdje se dijelovi niza uspoređuju

4.1.3. Prošireni modeli Turingovog stroja

PROŠIRENJA OSNOVNOG MODELA

- TS s dvostranom beskonačnom trakom
- TS s višestrukim trakama
- TS s višedimenzionalnim ulaznim poljem
- TS s više glava za čitanje i pisanje
- Neizravni TS

4.1.4. Pojednostavljeni modeli TS

- POJEDNOSTAVLJENJA OSNOVNOG MODELA
 - stogovni stroj
 - stroj s brojilima
 - TS s ograničenim brojem stanja i znakova trake
 - univerzalni TS M_n

GENERIRANJE JEZIKA

- koristi se TS s višestrukim trakama
- jedna traka je izlazna,
 jednom upisani znak ne može se mijenjati
- glava za čitanje i pisanje izlazne trake miče se u desno
- nizovi jezika G(M) ispisuju se na izlaznu traku, kraj je #
- ako TS stane, G je konačan, inače je beskonačan
- TS generira klasu rekurzivno prebrojivih jezika
- jezik je rekurzivno prebrojiv samo ako postoji TS koji ga generira

PRIHVAĆANJE JEZIKA GENERIRANOG TS

- za TS M_1 koji generira $G(M_1)$ moguće je izgraditi TS M_2 koji prihvaća $L(M_2) = G(M_1)$
- gradi se TS M₂
 - ima jednu traku više od TS M₁i to je ulazna traka
- TS M₂ generira neki niz
 - ako je niz istovjetan zadanom, niz se prihvaća
 - inače, generira se sljedeći niz

GENERIRANJE JEZIKA PRIHVAĆENOG TS

- za TS M_2 koji prihvaća $L(M_2)$ moguće je izgraditi TS M_1 koji generira $G(M_1) = L(M_2)$
- gradi se TS M₁
 - jednostavan, generira rekurzivni jezik, uvijek stane
 - složen, generira rekurzivno prebrojiv jezik, nekad ne stane
- za rekurzivne jezike jednostavni TS
 - ispisuje sve nizove na radnu traku
 - simulira rad M2 i provjeri novi niz
 - ako je niz prihvatljiv, kopira ga sa radne trake na izlaznu

GENERIRANJE JEZIKA PRIHVAĆENOG TS

- za rekurzivno prebrojive jezike jednostavni TS
 - nekad ne stane
 - stoga ne može pokrenuti ispitivanje slijedećeg niza
- stoga se koristi složeni TS
- složeni TS
 - generira par i,j rastućim redoslijedom i+j, i
 - nakon toga generira niz duljine i na radnu traku
 - na kraju se provjerava prihvatljivost niza u j koraka
- tako se izbjegne situacija da se TS ne zaustavi

ISTOVJETNOST RekJ i KANONSKOG SLIJEDA

- u kanonskom slijedu kraći nizovi su ispred duljih
- redoslijed nizova iste duljine
 - određuje se po numeričkoj vrijednosti
 - kao broj s bazom jednakom broju znakova
- rekurzivne jezike moguće je generirati kanonskim slijedom
 - za generiranje se može koristiti jednostavan TS
 - neka sve nizove generira kanonskim slijedom na radnu traku
 - tada će na izlaznoj traci prihvaćeni nizovi biti isto poredani

ISTOVJETNOST RekJ i KANONSKOG SLIJEDA

- jezik G(M₁) kojeg je moguće generirati kanonskim slijedom jest rekurzivni jezik
- Neka
 - TS M₁ generira jezik G(M₁) kanonskim slijedom
 - TS M_2 prihvaća jezik $G(M_2)=G(M_1)$ i koji uvijek stane
- TS M₂ simulira rad TS M₁
 - M₂ generira niz kanonskim slijedom sve do w_i ili w_j
 - generira li w_i, niz je prihvatljiv i TS stane
 - generira li w_i, j>i, w_i sigurno nije prihvatljiv i automat stane

ISTOVJETNOST RekJ i KANONSKOG SLIJEDA

- ako je jezik $G(M_1)$ beskonačan, TS M_2 uvijek stane
- ako je jezik G(M₁) konačan
 i ako se ispuituju nizovi iza svih nizova od L (M₂)
 - TS M₂ nikad ne stane
- nije moguće izgraditi TS za opći slučaj konačnog jezika
- moguće je izgraditi pojedinačne TS

4.2. Gramatika neograničenih produkcija

4.2.1. Konstrukcija TS za jezik zadan GNP

4.2.2. Konstrukcija gramatike za jezik zadan TS

4.2. Gramatika neograničenih produkcija

DOZVOLJENI OBLICI PRODUKCIJA

- za kontekstno neovisne gramatike
 - na lijevoj strani imaju samo jedan nezavršni znak
- za regularne gramatike
 - dodatno, još su lijevo linearne i desno linearne
- za gramatike neograničenih produkcija $\alpha \rightarrow \beta$:
 - α i β su nizovi završnih i nezavršnih znakova
 - niz α ne smije biti prazan, $\alpha \neq \epsilon$
- gramatika neograničenih produkcija zive se gramatika tipa 0

Gramatika neograničenih produkcija

FORMALNA SPECIFIKACIJA

gramatika neograničenih produkcija je četvorka:

$$G = (V, T, P, S)$$

- za produkciju α→β definira se relacija ⇒ $\gamma\alpha\delta$ ⇒ $\gamma\beta\delta$
- refleksivno i tranzitivno okruženje relacije ⇒ je
- -G = (V, T, P, S) generira jezik:

$$L(G) = \left\{ w \middle| w \in T^*; S \Longrightarrow w \right\}$$

L(G) pripada klasi rekurzivno prebrojivih jezika

Gramatika neograničenih produkcija

PRIMJER

4.2.1. Konstrukcija TS za jezik zadan GNP

KONSTRUKCIJA TS IZ GNP

- G = (V, T, P, S)
 - ako je gramatika neograničenih produkcija i generira L(G),
 - tada je L(G) rekurzivno prebrojiv jezik
- po definiciji
 - L(G) je rekurzivno prebrojiv
 - ako postoji TS koji ga prihvaća: L(M) = L(G)

Konstrukcija TS za jezik zadan GNP

KONSTRUKCIJA TS IZ GNP

- gradi se nedeterministički TS (NTS)
 - s dvije trake
 - simulira rad gramatike G
- postupak:
 - na prvu traku zapiše se niz w
 - na drugu traku zapiše se početni nezavršni znak gramatike S
 - tijekom simulacije, nadrugu traku ispisuju se nizovi α
 - TS uspoređuje nizove α s nizom w i eventualno ga prihvati

Konstrukcija TS za jezik zadan GNP

KONSTRUKCIJA TS IZ GNP

- simulacija gramatike G se izvodi:
- 1. TS nedeterministički izabere mjesto i u nizu α druge trake, dakle za sve vrijednosti od i
- 2. po svim i, TS nedeterministički izabere produkciju $\beta \rightarrow \gamma$, dakle sve produkcije
- 3. po svim i, $\beta \rightarrow \gamma$, ako je β na mjestu i zamijeni se s γ
- 4. niz generiran na drugoj traci uspoređuje se s nizom w
 - ako su nizovi jednaki, TS se zaustavlja i prihvaća w
 - ako nisu jednaki, TS nastavlja od koraka 1.

4.2.2. Konstrukcija GNP za jezik zadan TS

KONSTRUKCIJA GNP IZ TS

- ako TS prihvaća RPJ L(M),
 - postoji gramatika neograničenih produkcija GNP
 - generira L(G) = L(M)
- gradi se G = (V, T, P, S)koja simulira rad TS $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$
 - gramatika G generira redom međunizove znakova
 - oni predstavljaju konfiguracije TS M

Konstrukcija GNP za jezik zadan TS

PRIMJER

4.3. Svojstva rekurzivnih i rekurzivno prebrojivih jezika

4.3.1. Svojstva zatvorenosti

4.3.2. Izračunljivost

4.3.3. Odlučivost

SVOJSTVA ZATVORENOSTI

- koriste se TS
- na temelju TS koji uvijek stane
 - RekJ su zatvoreni obzirom na uniju i komplement
 - RPJ zatvoreni su obzirom na operaciju unije
- važno svojstvo:
 - ako je komplement RPJ L rekurzivno prebrojiv
 - tada su L i L komplement rekurzivni!
 - nije li LC rekurzivno prebrojiv, L sigurno nije rekurzivan a vjerojatno nije ni rekurzivno prebrojiv

UNIJA REKURZIVNIH JEZIKA

- unija rekurzivnih jezika jest rekurzivni jezik
- TS M kao serijski spoj TS M₁ i TS M₂
 - TS M₁ prihvaća RekJ L₁
 - TS M₂ prihvaća RekJ L₂
- ako M₁ stane i prihvati niz, M stane i prihvati niz
- ako M₁ stane i ne prihvati niz, starta se M₂
- ako M₂ stane i prihvati niz, M stane i prihvati niz
- ako M₂ stane i ne prihvati niz, M ne prihvati niz

UNIJA REKURZIVNO PREBROJIVIH JEZIKA

- unija rekurzivno prebrojivih jezika jest rekurzivno prebrojivi jezik
- TS M kao paralelni spoj TS M₁ i TS M₂
 - TS M₁ prihvaća RPJ L₁
 - TS M₂ prihvaća RPJ L₂
- ako M₁ stane i prihvati niz, M stane i prihvati niz
- ako M₂ stane i prihvati niz, M stane i prihvati niz

KOMPLEMENT REKURZIVNOG JEZIKA

- komplement rekurzivnog jezika jest rekurzivni jezik
- − TS M kao komplement TS M₁ (okrenuti izlazi)
 - TS M₁ prihvaća RPJ L₁
- ako M₁ stane i prihvati niz, M stane i **ne** prihvati niz
- ako M₁ stane i **ne** prihvati niz, M stane i prihvati niz

KOMPLEMENT REK. PREBROJIVIH JEZIKA

- ako su jezik L i njegov komplement rekurzivno prebrojivi, tada su oba jezika rekurzivni!
- TS M kao paralelni spoj TS M₁ i TS M₂
 - TS M₁ prihvaća RPJ L₁
 - TS M_2 prihvaća RPJ $L_2 = L_1^C$
- ako M₁ stane i prihvati niz, M stane i prihvati niz
- ako M₂ stane i prihvati niz, M stane i **ne** prihvati niz
- M uvijek stane, dakle L i L^c su rekurzivni!

KOMPLEMENT REK. PREBROJIVIH JEZIKA

- za L i L^c vrijedi jedno od tri svojstava:
- 1. oba jezika L i L^c su rekurzivna
- 2. oba jezika L i L^c nisu rekurzivno prebrojivi
- 3. ako je L rekurzivno prebrojiv, ali ne i rekurzivan, L^c sigurno nije rekurzivno prebrojiv

4.3.2. Izračunljivost

DEFINICIJA IZRAČUNLJIVOSTI

- definiramo intuitivno
- problem jest izračunljiv
 - prihvaćanje jezika
 - računanje cjelobrojnih funkcija
 - generiranje jezika

ako postoji automat koji korak po korak (mehanički) rješava zadani problem

- ne nameću se nikakva ograničenja
 - na broj koraka
 - niti na veličinu spremnika
- ne traži se da postupak ikad stane

Izračunljivost

CHURCH-TURINGOVA HIPOTEZA

- na temelju intuitivne definicije izračunljivosti
- izračunljive funkcije su parcijalno rekurzivne funkcije
- pokazuje se samo prikladnost ove hipoteze
- parcijalno rekurzivne funkcije su izračunljive, jer je za njihovo računanjemoguće izgraditi TS

Izračunljivost

- SIMULACIJA RAM RAČUNALA S TS
 - probem kodiranja

Izračunljivost

- NEIZRAČUNLJIVOST DIJAGONALNOG JEZIKA
 - probem kodiranja

4.3.3. Odlučivost

DEFINICIJA ODLUČIVOSTI

- rekurzivni jezici su odlučivi
 - jer ih prihvaćaju TS koji uvijek stanu
- rekurzivni jezici su izračunljivi i odlučivi
- rekurzivno prebrojivi nisu odlučivi
 - jer ne postoji TS koji će uvijek stati
 - nije li w u jeziku, moguće je da TS nikad ne stane
 - ako TS ne stane, nema odluke da w ne pripada jeziku
- rekurzivno prebrojivi jezici su izračunljivi i neodlučivi
- univerzalni jezik Lu je primjer
 - rekurzivno prebrojivog jezika
 - dakle izračunljivog jezika koji **nije** odlučiv

Odlučivost

UNIVERZALNI TS I UNIVERZALNI JEZIK

Odlučivost

• IZRAČUNLJIVOST I ODLUČIVOST UNIVERZALNOG JEZIKA