<u>Логические основы</u> <u>ЭВМ, элементы и узлы</u>

Элементы

ЭВМ - совокупность узлов

Узел - совокупность элементов.

Элемент - это наименьшая функциональная часть, на которую может быть разбита ЭВМ при логическом проектировании и технической реализации.

Классификация элементов

По функциональному назначению:

- логические (реализующие одну из функций алгебры логики);
- 2. запоминающие (для хранения одноразрядного двоичного числа);
- з. вспомогательные (для формирования и генерации импульсов, таймеры, элементы индикаторов, преобразователи уровней и т.п.).

Классификация элементов

По типу сигналов:

- 1. Аналоговые
- 2. Цифровые

Классификация элементов

По способу представления входных и выходных сигналов:

- 1. потенциальные;
- 2. импульсные;
- з. импульсно-потенциальные.

Базовые логические элементы

Базовые логические элементы

Компьютер выполняет арифметические и логические операции при помощи *базовых логических элементов*, которые также еще называют

вентилями.

- □ Вентиль «И» конъюнктор. Реализует конъюнкцию.
- □ Вентиль «ИЛИ» дизъюнктор. Реализует дизъюнкцию.
- □ Вентиль «НЕ» инвертор. Реализует инверсию

Любая логическая операция может быть представлена через конъюнкцию, дизъюнкцию и инверсию

Любой сложный элемент компьютера может быть сконструирован из элементарных вентилей

Сигналы-аргументы и сигналы-функции

Вентили оперируют с электрическими импульсами:

- □ Импульс **имеется** логический смысл сигнала «1»
- □ Импульса нет логический смысл сигнала «0»

На входы вентиля подаются импульсы — **значения аргументов**,

на выходе вентиля появляется сигнал — значение функции

Логическая схема типа «И» (конъюнктор)

Электрическая цепь из двух последовательно подключенных выключателей

Α	В	A∧B
1	1	1
1	0	0
0	1	0
0	0	0

Конъюнктор

- □ На входы конъюнктора подаются сигналы 0 или 1
- □ На выходе конъюнктора появляются сигналы 0 или 1 в соответствии с таблицей истинности

Логическая схема типа «ИЛИ» (дизъюнктор)

Электрическая цепь из двух параллельно подключенных выключателей

Α	В	A∨B
1	1	1
1	0	1
0	1	1
0	0	0

Дизъюнктор

□ На входы дизъюнктора подаются сигналы 0 или 1

 □ На выходе дизъюнктора появляются сигналы 0 или 1 в соответствии с таблицей истинности

Логическая схема типа «НЕ» (инвертор)

Инвертор

На входы инвертораподаются сигналы 0 или 1

 □ На выходе инвертора появляются сигналы 1 или 0 в соответствии с таблицей истинности

Обозначения элементов

Логический элемент "НЕ"	Таблица истинности					
1	А	Q				
A 1 0 0	0	1				
	1	0				

Логический элемент "Исключающее ИЛИ"	Табл	блица истинности			
	A	В	Q		
A - 1 - 0	0	0	0		
В —	0	1	1		
=1	1	0	1		
	1	1	0		

Логический элемент "И-НЕ"	Таблица истинности					
	А	В	Q			
A & D Q-	0	0	1			
B	0	_ 1_	1			
- & _	1	0	1			
	1	1	0			

Логический элемент "ИЛИ-НЕ"	Таблица истинности					
	А	В	Q			
A - 21 /2- 0	0	0	1			
8 — 21	0	1	0			
—T_	1	0	0			
	1	1	0			

Таблица истинности элементов

THE PROPERTY AND ADDRESS OF THE PARTY AND ADDR	дные налы	Tac	5лица ис	гинность	для каждого	о логического элемента
A	В	«M»	«ИЛИ»	«И-НЕ»	«ИЛИ-НЕ»	«ИСКЛЮЧАЮЩЕЕ ИЛИ»
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	0	0

1/3/161

Узлы

<u>Узел</u> - совокупность элементов, которая реализует выполнение одной из машинных операций.

Классификация узлов

1. Комбинационные (автоматы без памяти)

Это узлы, выходные сигналы которых определяются только сигналом на входе, действующим в настоящий момент времени (включают сумматоры, схемы сравнения, шифраторы, дешифраторы, мультипликаторы, программируемые логические матрицы и т.д.);

2. Накапливающие (автоматы с памятью).

Сигналы на выходе зависят и от предыдущего состояния узла (включают триггеры, регистры, счётчики и т.п.)

3. Программируемые

Сигналы зависят от того, какая программа в них записана

КОДОПРЕОБРАЗОВАТЕЛЬ

Кодопреобразователь — это комбинационное устройство (КУ), имеющее **m** входов и **n** выходов и преобразующее входные **m**-разрядные двоичные числа в выходные **n**-разрядные.

- шифраторы
- дешифраторы.
- мультиплексор
- демультиплексор

ДЕШИФРАТОР/ШИФРАТОР

Дешифратор (ДШ) - это КУ с **m**-входами и п выходами, формирующие "1" только на одном из выходов, десятичный номер которого соответствует входной десятичной комбинации. Работа ДШ задается таблицей истинности.

<u>Шифратор</u> (СД) - решает обратную приведенной раньше задаче.

Дешифратор с тремя входами адреса и входом разрешения на 8 выходов (2³)

П	Адрес		С	Разрешение	ие Состояние выхо			ход	одов			
Логическая схема		A ₁	A ₀	E	D ₇	D ₆	D ₅	D ₄	D_3	D ₂	D ₁	D_0
	0	0	0	0	Х	X	X	Х	X	Х	Х	Х
	0	0	0	1	0	0	0	0	0	0	0	1
	0	0	1	0	Χ	Х	Х	Χ	X	Х	X	Х
A2 0	0	0	1	1	0	0	0	0	0	0	1	0
Aloo D7	0	1	0	0	Χ	Х	Х	Х	X	Х	Х	Х
& D6	0	1	0	1	0	0	0	0	0	1	0	0
&	0	1	1	0	X	X	X	X	X	Х	X	X
& oD4	0	1	1	1	0	0	0	0	1	0	0	0
& & & OD3	1	0	0	0	X	X	X	Х	Х	Х	Х	Χ
& & & D2	1	0	0	1	0	0	0	1	0	0	0	0
& & 0D1	1	0	1	0	Х	Х	Х	Х	X	Х	Х	Χ
& & & oD0	1	0	1	1	0	0	1	0	0	0	0	0
E 0	1	1	0	0	Χ	Х	Х	Х	X	Х	X	Χ
	1	1	0	1	0	1	0	0	0	0	0	0
	1	1	1	0	X	Х	X	Х	X	Х	Х	Х
	1	1	1	1	1	0	0	0	0	0	0	0
Дешифратор, реализованный на логических элементах «И» (AND).	Активное состояние выходов - логическая 1, неактивное - логический 0											
	x -	неак	тивн	ое состояние в	сех	выхс	одов	, для	при	ведё	ённо	Й
	сле	ва с	хемь	ы - логический (0.							

МУЛЬТИПЛЕКСОР

Мультиплексор - это КУ, которое осуществляет коммутацию одного из своих входов X на единственный выход У.

Подключение входа к выходу осуществляется в момент подачи на синхронизирующий вход с тактового импульса, а номер подключаемого к выходу входа определяется адресным кодом, подающимся на адресные входы мультиплексора А. <u>Демультиплексор</u> (ДМХ) решает обратную задачу.

Коммутатор - это КУ с **m** входами и **n** выходами, которое по заданным адресам **A** входа и **B** выхода соединяет между собой требуемые вход и выход.

Триггеры

- **Регистры** Предназначены для записи, хранения и преобразования в них двоичных чисел.
- □ В качестве элементарной ячейки регистра используется *триггер*, который может хранить одноразрядное двоичное число.
- □ Запись и считывание информации в регистр может производиться последовательно (поразрядно) или параллельно (всеми разрядами одновременно).

различают регистры

- ✓ последовательные,
- параллельные,
- ✓ последовательно-параллельные,
- ✓ параллельно-последовательные
- универсальные.

Регистры

Счётчик - Функциональный узел, предназначенный для подсчета числа получивших на его вход сигналов (импульсов) и фиксации результата в виде многоразрядного двоичного числа.

Счётчики подразделяются на

- □ суммирующие
- □ вычитающие
- □ реверсивные.

Триггер

- Важнейшая структурная единица оперативной памяти и регистров процессора. Используется в качестве запоминающих элементов ЭВМ (это устройства на основе магнитных материалов)
- □ Состоит из двух логических элементов «ИЛИ» и двух логических элементов «НЕ».
- Это конечный автомат, который обладает двумя устойчивыми состояниями и под воздействием управляющего сигнала переходит из одного состояния в другое.

Классификация триггеров

