Activity	Germany
Domestic_flight_traveled (kgCO2e/passenger-km)	0.213
International_flight_traveled (kgCO2e/passenger-km)	0.145
km_diesel_local_passenger_train_traveled (kgCO2e/passenger-km)	0.0713
km_diesel_long_distance_passenger_train_traveled (kgCO2e/passenger-km)	0.044
km_electric_passenger_train_traveled (kgCO2e/passenger-km)	0.0668
km_bus_traveled (kgCO2e/passenger-km)	0.0434
km_petrol_car_traveled (kgCO2e/passenger-km)	0.147
km_Motorcycle_traveled (kgCO2e/passenger-km)	1.0001
km_ev_scooter_traveled (kgCO2e/passenger-km)	1.0001
km_ev_car_traveled (kgCO2e/passenger-km)	0.0621
diesel_car_traveled (kgCO2e/passenger-km)	0.185
water_consumed (kgCO2/m3)	0.1
electricity_used (kgCO2e/kWh)	0.1043
beef_products_consumed (kgCO2e/eur)	2.073
beverages_consumed (kgCO2e/eur)	0.4604
poultry_products_consumed (kgCO2e/eur)	0.2472
pork_products_consumed (kgCO2e/eur)	0.5388
processed_rice_consumed (kgCO2e/eur)	2.01
sugar_consumed (kgCO2e/eur)	0.414
vegetable_oils_fats_consumed (kgCO2e/eur)	0.4433
other_meat_products_consumed (kgCO2e/eur)	0.4832
dairy_products_consumed (kgCO2e/eur)	0.9415
fish_products_consumed (kgCO2e/eur)	0.5564
other_food_products_consumed (kgCO2e/eur)	0.453
hotel_stay (kgCO2e/room-night)	13.2

			Emission Factors		
France	Italy	Spain	Poland	Romania	Netherlands
0.6256	1.3924	1.0112	4.6038	2.7375	1.5054
0.6256	1.3924	1.0112	4.6038	2.7375	1.5054
0.0317	1.3924	1.0112	4.6038	2.7375	1.5054
0.0033	1.3924	1.0112	4.6038	2.7375	1.5054
0.187	0.0317	0.0514	4.6038	2.7375	0.0763
0.0295	0.0317	1.0112	4.6038	2.7375	1.5054
0.198	1.3924	1.0112	4.6038	2.7375	1.5054
0.0644	1.3924	1.0112	4.6038	2.7375	1.5054
0.0249	1.3924	1.0112	4.6038	2.7375	1.5054
0.103	1.3924	1.0112	4.6038	2.7375	1.5054
0.186	1.3924	1.0112	4.6038	2.7375	1.5054
0.6256	1.3924	1.0112	4.6038	2.7375	1.5054
0.0076	0.0874	0.0607	0.1708	2.7375	0.0787
1.945	1.433	1.682	1.776	1.435	0.6571
0.3487	0.4229	0.5065	0.6685	0.5514	0.5909
0.3464	0.3847	0.5294	0.7166	0.3088	0.1822
0.3829	0.4473	0.6914	1.202	0.8106	0.7118
0.1156	0.4641	0.2677	1.619	0.7429	0.2103
0.3251	0.3785	0.3435	0.6867	0.3844	0.54
0.2491	0.3161	0.3468	0.3224	0.2124	0.4401
0.4784	0.3472	0.3946	0.9585	0.3848	0.5532
0.9808	1.106	1.028	0.7564	1.057	1.029
0.5811	0.6092	0.726	1.063	0.8588	0.6271
0.4741	0.5263	0.5284	0.9089	0.6039	0.5796
6.7	14.3	7	49	25.5	14.8

Belgium Czc 1.3906 1.3906 1.3906	4.3275 4.3275 4.3275 4.3275	Portugal 1.8423 1.8423 1.8423	Sweden 1.7059 1.7059	Greece 5.0165	Hungary 3.6336
1.3906 1.3906	4.3275 4.3275	1.8423			3.6336
1.3906	4.3275		1.7059		
		1.8423		5.0165	3.6336
1 3906	4 3275		1.7059	5.0165	3.6336
1.0000	1.0210	1.8423	1.7059	5.0165	3.6336
0.0484	4.3275	0.0615	0.0129	5.0165	3.6336
1.3906	4.3275	1.8423	1.7059	5.0165	3.6336
1.3906	4.3275	1.8423	1.7059	5.0165	3.6336
1.3906	4.3275	1.8423	1.7059	5.0165	3.6336
1.3906	4.3275	1.8423	1.7059	5.0165	3.6336
1.3906	4.3275	1.8423	1.7059	5.0165	3.6336
1.3906	4.3275	1.8423	1.7059	5.0165	3.6336
1.3906	4.3275	1.8423	1.7059	5.0165	3.6336
0.0367	0.1248	0.052	0.0025	0.1605	0.0632
1.781	1.455	0.5061	1.412	1.135	1.985
0.3902	0.6838	0.5768	0.2513	0.5567	0.8678
0.3629	0.2939	0.4389	0.1494	0.6372	0.8652
0.8642	0.737	0.9367	0.3962	0.585	1.118
0.4693	2.056	0.2606	0.3757	0.5129	0.69
0.4564	0.6151	0.2357	1.084	0.6508	0.664
0.2805	0.9113	0.5391	0.221	0.6698	0.8061
0.6806	0.5575	0.6708	0.3448	0.6599	0.1959
0.7991	1.135	0.8951	0.9087	1.592	1.069
0.57	0.8656	0.9499	0.6567	0.6162	1.322
0.5284	0.7227	0.6687	0.4675	0.7382	0.8908
12.2	46.1	19	17.6	56.7	36.7

Austria	Bulgaria	Denmark	Finland	Slovakia	Ireland
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
0.0235	2.8893	0.114	0.0452	1.6118	0.0388
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
2.2715	2.8893	1.0614	1.5431	1.6118	2.0838
0.0487	0.1323	0.0531	0.0372	0.0434	0.0727
1.408	0.513	1.073	2.482	3.967	1.309
0.4682	0.9821	0.509	0.5724	0.5368	0.233
0.3403	1.051	0.4402	0.6334	0.1416	0.1157
0.4305	0.8094	0.9204	0.5315	0.4621	0.1558
6.302	1.157	1.109	2.339	0.0775	0.3906
0.5683	0.2958	0.4981	0.3978	0.392	0.3002
0.3482	0.9343	0.2471	0.1622	0.1397	0.0977
0.6031	1.249	0.4869	0.6358	0.3973	0.2726
0.7735	0.9755	2.107	1.019	0.7342	1.361
0.9421	0.5208	0.8718	1.036	0.6921	0.527
0.2441	1.121	0.5543	0.6121	0.5296	0.3987
19.3	27.82	5.875	11.1	12.84	23.9

Croatia	Lithuania	Slovenia	Latvia	Estonia	Cyprus
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
1.4483	2.404	1.5669	2.5706	3.9	6.3831
0.0649	0.0605	0.073	0.0298	0.2432	0.1591
0.6011	1.366	1.959	2.497	4.66	1.403
1.245	0.7645	0.3946	0.941	1.497	0.8024
0.4042	0.2434	0.3239	0.7709	0.385	0.6251
0.6566	0.6604	0.4083	0.5647	1.108	0.9758
0.8167	0.6752	0.3934	3.547	1.761	0.9369
0.4266	1.089	0.2846	0.8104	1.793	0.5581
0.7191	1.926	0.2676	1.57	0.9224	0.4743
0.374	0.1234	0.1606	0.5024	1.684	0.6738
0.5653	1.073	0.4009	0.542	1.251	1.924
0.6855	0.7078	0.511	0.8196	1.99	0.892
0.5489	1.153	0.6024	0.6732	0.9258	0.9558
11.72	21.41	14.59	20.15	32.48	72.6

		Per capita emiss	ion		
Luxembourg	Malta	Country	Year	PerCapita (kgCO2e)	
0.8752	0.8278	Austria	2023	7442.08	
0.8752	0.8278	Belgium	2023	9119.974	
0.8752	0.8278	Bulgaria	2023	6861.755	
0.8752	0.8278	Croatia	2023	5440.7835	
0.8752	0.0397	Cyprus	2023	7227.1657	
0.8752	0.8278	Czechia	2023	8500.418	
0.8752	0.8278	Denmark	2023	7602.126	
0.8752	0.8278	Estonia	2023	9784.225	
0.8752	0.8278	European Union	2023	6890.2993	
0.8752	0.8278	Finland	2023	14141.014	
0.8752	0.8278	France	2023	5031.372	
0.8752	0.8278	Germany	2023	7931.8743	
0.0848	0.0848	Greece	2023	6127.184	
0.607	0.607	Hungary	2023	5090.1766	
0.6151	0.393	Ireland	2023	11095.565	
0.3146	0.3966	Italy	2023	6084.0755	
0.1441	0.4857	Latvia	2023	7599.6065	
0.786	0.455	Lithuania	2023	7954.2584	
0.2133	0.4864	Luxembourg	2023	11861.919	
0.1592	0.5756	Malta	2023	3744.7104	
0.863	0.4756	Netherlands	2023	8464.481	
1.47	1.47	Poland	2023	8743.331	
0.1643	0.1643	Portugal	2023	5190.6157	
0.6407	0.6407	Romania	2023	5064.8828	
5.315	5.315	Slovakia	2023	4939.766	
		Slovenia	2023	7784.5387	

The information	above include em	ission factors and	per capita emissi	on.	
The table of emis	ssion factors have	categories under	the column "Activ	vity"	
and different cou	intries as the rema	aining columns.			
The table of emis	ssion factors have	categories under	the column "Activ	vity"	
and different cou	intries as the rema	aining columns.			
This is the instru	ction on how to ca	lculate an individu	ual carbon footprir	nt for either	
a single activity I	ike a hotel_stay o	r more than one a	ctivity.		
If a person from	Germany spend	one (1) night in a h	notel (hotel_stay),	the carbon	
footprint is (1 roc	m-night*13.2 kgC	O2e/room-night) :	= 13.2 kgCO2e.		
Therefore, deper	nding on individua	l's their carbon foo	otprint can be cald	culate.	
If the person is ir	nvolved in more th	an one activitity, t	he sum of their ca	arbon footprint	
will be calculated	d. For example, we	e can use two exa	mples here:		
The person from	Latvia bought 10	euro work of fish	products and spe	nt 2 a night at hot	el.
The total carbon	footprint is				
(10 eur *0.8196 l	kgCO2e/eur) + 2 r	night *20.15 kgCO	2e/room-night) =	48.496 kgCO2e.	
The per capita o	f this per is 7599.	6065 kgCO2e. Sir	nce Latvia is in Eu	ıropean Union (27),
the per capita fo	or European Union	(27) is 6890.299	3 kgCO2e and the	e per capita for the	World
is 6650.8427 kg	CO2e. If an indivi	dual mention their	activity or activitie	es, their carbon fo	otprint
can be calculate	dbase on the infor	mation in this file	in addition to stati	ing the per capita	
of their country, t	that of European U	Jnion (27) and the	World.		