My Project

Generated by Doxygen 1.9.1

1 Todo List	1
2 Class Index	3
2.1 Class List	. 3
3 File Index	5
3.1 File List	. 5
4 Class Documentation	7
4.1 QOCOCscMatrix Struct Reference	. 7
4.1.1 Detailed Description	. 7
4.1.2 Member Data Documentation	. 7
4.1.2.1 i	. 7
4.1.2.2 m	. 8
4.1.2.3 n	. 8
4.1.2.4 nnz	. 8
4.1.2.5 p	. 8
4.1.2.6 x	. 8
4.2 QOCOKKT Struct Reference	. 8
4.2.1 Detailed Description	. 9
4.2.2 Member Data Documentation	. 9
4.2.2.1 AtoKKT	. 9
4.2.2.2 bwork	. 10
4.2.2.3 D	. 10
4.2.2.4 delta	. 10
4.2.2.5 Dinv	. 10
4.2.2.6 Dinvruiz	. 10
4.2.2.7 Druiz	. 10
4.2.2.8 Einvruiz	. 10
4.2.2.9 Eruiz	
4.2.2.10 etree	. 11
4.2.2.11 Finvruiz	
4.2.2.12 Fruiz	. 11
4.2.2.13 fwork	
4.2.2.14 GtoKKT	
4.2.2.15 iwork	
4.2.2.16 K	
4.2.2.17 k	
4.2.2.18 kinv	
4.2.2.19 kktres	
4.2.2.20 Li	
4.2.2.21 Lnz	
4.2.2.22 Lp	
4.c.c.cc Lp	. 12

4.2.2.23 Lx	 12
4.2.2.24 nt2kkt	 12
4.2.2.25 ntdiag2kkt	 12
4.2.2.26 p	 13
4.2.2.27 pinv	 13
4.2.2.28 Pnum_nzadded	 13
4.2.2.29 Pnzadded_idx	 13
4.2.2.30 PregtoKKT	 13
4.2.2.31 rhs	 13
4.2.2.32 xyz	 13
4.2.2.33 xyzbuff1	 13
4.2.2.34 xyzbuff2	 14
4.3 QOCOProblemData Struct Reference	 14
4.3.1 Detailed Description	 15
4.3.2 Member Data Documentation	 15
4.3.2.1 A	 15
4.3.2.2 At	 15
4.3.2.3 b	 15
4.3.2.4 c	 15
4.3.2.5 G	 15
4.3.2.6 Gt	 15
4.3.2.7 h	 16
4.3.2.8	 16
4.3.2.9 m	 16
4.3.2.10 n	 16
4.3.2.11 nsoc	 16
4.3.2.12 P	 16
4.3.2.13 p	 16
4.3.2.14 q	 17
4.4 QOCOSettings Struct Reference	 17
4.4.1 Detailed Description	 17
4.4.2 Member Data Documentation	 17
4.4.2.1 abstol	 17
4.4.2.2 abstol_inacc	 18
4.4.2.3 bisect_iters	 18
4.4.2.4 iter_ref_iters	 18
4.4.2.5 kkt_dynamic_reg	 18
4.4.2.6 kkt_static_reg	 18
4.4.2.7 max_iters	 18
4.4.2.8 reltol	 18
4.4.2.9 reltol_inacc	 18
4.4.2.10 ruiz_iters	 19

4.4.2.11 verbose	. 19
4.5 QOCOSolution Struct Reference	. 19
4.5.1 Member Data Documentation	. 19
4.5.1.1 dres	. 19
4.5.1.2 gap	. 20
4.5.1.3 iters	. 20
4.5.1.4 obj	. 20
4.5.1.5 pres	. 20
4.5.1.6 s	. 20
4.5.1.7 setup_time_sec	. 20
4.5.1.8 solve_time_sec	. 20
4.5.1.9 status	. 20
4.5.1.10 x	. 21
4.5.1.11 y	. 21
4.5.1.12 z	. 21
4.6 QOCOSolver Struct Reference	. 21
4.6.1 Detailed Description	. 22
4.6.2 Member Data Documentation	. 22
4.6.2.1 settings	. 22
4.6.2.2 sol	. 22
4.6.2.3 work	. 22
4.7 QOCOWorkspace Struct Reference	. 23
4.7.1 Detailed Description	. 24
4.7.2 Member Data Documentation	. 24
4.7.2.1 a	. 24
4.7.2.2 data	. 24
4.7.2.3 Ds	. 24
4.7.2.4 kkt	. 24
4.7.2.5 lambda	. 24
4.7.2.6 mu	. 25
4.7.2.7 s	. 25
4.7.2.8 sbar	. 25
4.7.2.9 sigma	. 25
4.7.2.10 solve_timer	. 25
4.7.2.11 ubuff1	. 25
4.7.2.12 ubuff2	. 25
4.7.2.13 ubuff3	. 25
4.7.2.14 W	. 26
4.7.2.15 Wfull	. 26
4.7.2.16 Winv	. 26
4.7.2.17 Winvfull	. 26
4.7.2.18 Wnnz	. 26

4.7.2.19 Wnnzfull	. 26
4.7.2.20 WtW	. 26
4.7.2.21 x	. 26
4.7.2.22 xbuff	. 27
4.7.2.23 y	. 27
4.7.2.24 ybuff	. 27
4.7.2.25 z	. 27
4.7.2.26 zbar	. 27
5 File Documentation	29
5.1 /home/govind/Desktop/git/qoco/include/cone.h File Reference	
5.1.1 Detailed Description	
5.1.2 LICENSE	
5.1.3 DESCRIPTION	
5.1.4 Function Documentation	. 31
5.1.4.1 bisection_search()	. 31
5.1.4.2 bring2cone()	
5.1.4.3 compute_centering()	. 32
5.1.4.4 compute_mu()	. 32
5.1.4.5 compute_nt_scaling()	. 33
5.1.4.6 cone_division()	. 33
5.1.4.7 cone_product()	. 33
5.1.4.8 cone_residual()	. 34
5.1.4.9 exact_linesearch()	. 34
5.1.4.10 linesearch()	. 35
5.1.4.11 nt_multiply()	. 35
5.1.4.12 soc_division()	. 36
5.1.4.13 soc_product()	. 36
5.1.4.14 soc_residual()	
5.1.4.15 soc_residual2()	. 37
5.2 /home/govind/Desktop/git/qoco/include/definitions.h File Reference	. 37
5.2.1 Detailed Description	. 39
5.2.2 LICENSE	. 39
5.2.3 DESCRIPTION	. 39
5.2.4 Macro Definition Documentation	. 39
5.2.4.1 qoco_abs	. 39
5.2.4.2 qoco_assert	. 39
5.2.4.3 qoco_calloc	. 39
5.2.4.4 qoco_free	. 39
5.2.4.5 qoco_malloc	. 40
5.2.4.6 qoco_max	. 40
5.2.4.7 qoco_min	. 40

5.2.4.8 qoco_sqrt	40
5.2.4.9 QOCOFloat_MAX	40
5.2.4.10 QOCOInt_MAX	40
5.2.4.11 safe_div	40
5.2.5 Typedef Documentation	41
5.2.5.1 QOCOFloat	41
5.2.5.2 QOCOInt	41
5.3 /home/govind/Desktop/git/qoco/include/enums.h File Reference	41
5.3.1 Enumeration Type Documentation	41
5.3.1.1 qoco_error_code	41
5.3.1.2 qoco_solve_status	42
5.4 /home/govind/Desktop/git/qoco/include/equilibration.h File Reference	42
5.4.1 Detailed Description	44
5.4.2 LICENSE	44
5.4.3 DESCRIPTION	44
5.4.4 Function Documentation	44
5.4.4.1 ruiz_equilibration()	44
5.4.4.2 unscale_variables()	45
5.5 /home/govind/Desktop/git/qoco/include/input_validation.h File Reference	45
5.5.1 Detailed Description	46
5.5.2 LICENSE	46
5.5.3 DESCRIPTION	46
5.5.4 Function Documentation	46
5.5.4.1 qoco_validate_data()	47
5.5.4.2 qoco_validate_settings()	47
5.6 /home/govind/Desktop/git/qoco/include/kkt.h File Reference	48
5.6.1 Detailed Description	49
5.6.2 LICENSE	50
5.6.3 DESCRIPTION	50
5.6.4 Function Documentation	50
5.6.4.1 allocate_kkt()	50
5.6.4.2 compute_kkt_residual()	50
5.6.4.3 construct_kkt()	51
5.6.4.4 construct_kkt_aff_rhs()	51
5.6.4.5 construct_kkt_comb_rhs()	51
5.6.4.6 initialize_ipm()	52
5.6.4.7 kkt_multiply()	52
5.6.4.8 kkt_solve()	52
5.6.4.9 predictor_corrector()	53
5.6.4.10 set_nt_block_zeros()	53
5.6.4.11 update_nt_block()	53
5.7 /home/govind/Desktop/git/goco/include/linalg.h File Reference	53

5.7.1 Detailed Description	56
5.7.2 LICENSE	56
5.7.3 DESCRIPTION	56
5.7.4 Function Documentation	56
5.7.4.1 axpy()	56
5.7.4.2 col_inf_norm_USymm()	56
5.7.4.3 construct_identity()	57
5.7.4.4 copy_and_negate_arrayf()	57
5.7.4.5 copy_arrayf()	57
5.7.4.6 copy_arrayi()	58
5.7.4.7 create_transposed_matrix()	58
5.7.4.8 csc_symperm()	58
5.7.4.9 cumsum()	59
5.7.4.10 dot()	59
5.7.4.11 ew_product()	60
5.7.4.12 free_qoco_csc_matrix()	60
5.7.4.13 inf_norm()	60
5.7.4.14 invert_permutation()	61
5.7.4.15 max_arrayi()	61
5.7.4.16 new_qoco_csc_matrix()	62
5.7.4.17 regularize()	62
5.7.4.18 row_col_scale()	62
5.7.4.19 row_inf_norm()	63
5.7.4.20 scale_arrayf()	63
5.7.4.21 SpMtv()	63
5.7.4.22 SpMv()	65
5.7.4.23 unregularize()	65
5.7.4.24 USpMv()	65
5.8 /home/govind/Desktop/git/qoco/include/qoco.h File Reference	66
5.8.1 Detailed Description	66
5.8.2 LICENSE	66
5.8.3 DESCRIPTION	66
5.9 /home/govind/Desktop/git/qoco/include/qoco_api.h File Reference	67
5.9.1 Detailed Description	68
5.9.2 LICENSE	68
5.9.3 DESCRIPTION	68
5.9.4 Function Documentation	68
5.9.4.1 qoco_cleanup()	68
5.9.4.2 qoco_set_csc()	69
5.9.4.3 qoco_setup()	69
5.9.4.4 qoco_solve()	70
5.9.4.5 qoco_update_settings()	70

5.9.4.6 set_default_settings()	71
5.9.4.7 update_matrix_data()	71
5.9.4.8 update_vector_data()	71
5.10 /home/govind/Desktop/git/qoco/include/qoco_error.h File Reference	72
5.10.1 Function Documentation	73
5.10.1.1 qoco_error()	73
5.11 /home/govind/Desktop/git/qoco/include/structs.h File Reference	73
5.11.1 Detailed Description	75
5.11.2 LICENSE	75
5.11.3 DESCRIPTION	75
5.12 /home/govind/Desktop/git/qoco/include/timer.h File Reference	75
5.12.1 Detailed Description	76
5.12.2 LICENSE	76
5.12.3 DESCRIPTION	76
5.12.4 Function Documentation	76
5.12.4.1 get_elapsed_time_sec()	76
5.12.4.2 start_timer()	77
5.12.4.3 stop_timer()	77
5.13 /home/govind/Desktop/git/qoco/include/utils.h File Reference	77
5.13.1 Detailed Description	79
5.13.2 LICENSE	79
5.13.3 DESCRIPTION	79
5.13.4 Function Documentation	79
5.13.4.1 check_stopping()	79
5.13.4.2 copy_settings()	80
5.13.4.3 copy_solution()	80
5.13.4.4 log_iter()	80
5.13.4.5 print_arrayf()	81
5.13.4.6 print_arrayi()	81
5.13.4.7 print_footer()	81
5.13.4.8 print_header()	81
5.13.4.9 print_qoco_csc_matrix()	82
5.14 /home/govind/Desktop/git/qoco/src/cone.c File Reference	82
5.14.1 Detailed Description	84
5.14.2 LICENSE	84
5.14.3 Function Documentation	84
5.14.3.1 bisection_search()	84
5.14.3.2 bring2cone()	85
5.14.3.3 compute_centering()	85
5.14.3.4 compute_mu()	85
5.14.3.5 compute_nt_scaling()	86
5.14.3.6 cone_division()	86

5.14.3.7 cone_product()		86
5.14.3.8 cone_residual()		87
5.14.3.9 exact_linesearch()		87
5.14.3.10 linesearch()		88
5.14.3.11 nt_multiply()		88
5.14.3.12 soc_division()		89
5.14.3.13 soc_product()		89
5.14.3.14 soc_residual()		90
5.14.3.15 soc_residual2()		90
5.15 /home/govind/Desktop/git/qoco/src/equilibration.c File Reference		90
5.15.1 Function Documentation		91
5.15.1.1 ruiz_equilibration()		92
5.15.1.2 unscale_variables()		92
5.16 /home/govind/Desktop/git/qoco/src/input_validation.c File Reference		92
5.16.1 Detailed Description		93
5.16.2 LICENSE		93
5.16.3 Function Documentation		94
5.16.3.1 qoco_validate_data()		94
5.16.3.2 qoco_validate_settings()		94
5.17 /home/govind/Desktop/git/qoco/src/kkt.c File Reference		95
5.17.1 Detailed Description		96
5.17.2 LICENSE		96
5.17.3 Function Documentation		96
5.17.3.1 allocate_kkt()		96
5.17.3.2 compute_kkt_residual()		96
5.17.3.3 construct_kkt()		97
5.17.3.4 construct_kkt_aff_rhs()		97
5.17.3.5 construct_kkt_comb_rhs()		98
5.17.3.6 initialize_ipm()		98
5.17.3.7 kkt_multiply()		98
5.17.3.8 kkt_solve()		99
5.17.3.9 predictor_corrector()		99
5.17.3.10 set_nt_block_zeros()		99
5.17.3.11 update_nt_block()		99
5.18 /home/govind/Desktop/git/qoco/src/linalg.c File Reference		100
5.18.1 Detailed Description		102
5.18.2 LICENSE		102
5.18.3 Function Documentation		102
5.18.3.1 axpy()		102
5.18.3.2 col_inf_norm_USymm()		102
5.18.3.3 construct_identity()		103
5.18.3.4 copy_and_negate_arrayf()		103

5.18.3.5 copy_arrayf()
5.18.3.6 copy_arrayi()
5.18.3.7 create_transposed_matrix()
5.18.3.8 csc_symperm()
5.18.3.9 cumsum()
5.18.3.10 dot()
5.18.3.11 ew_product()
5.18.3.12 free_qoco_csc_matrix()
5.18.3.13 inf_norm()
5.18.3.14 invert_permutation()
5.18.3.15 max_arrayi()
5.18.3.16 new_qoco_csc_matrix()
5.18.3.17 regularize()
5.18.3.18 row_col_scale()
5.18.3.19 row_inf_norm()
5.18.3.20 scale_arrayf()
5.18.3.21 SpMtv()
5.18.3.22 SpMv()
5.18.3.23 unregularize()
5.18.3.24 USpMv()
5.19 /home/govind/Desktop/git/qoco/src/qoco_api.c File Reference
5.19.1 Detailed Description
5.19.2 LICENSE
5.19.3 Function Documentation
5.19.3.1 qoco_cleanup()
5.19.3.2 qoco_set_csc()
5.19.3.3 qoco_setup()
5.19.3.4 qoco_solve()
5.19.3.5 qoco_update_settings()
5.19.3.6 set_default_settings()
5.19.3.7 update_matrix_data()
5.19.3.8 update_vector_data()
5.20 /home/govind/Desktop/git/qoco/src/qoco_error.c File Reference
5.20.1 Function Documentation
5.20.1.1 qoco_error()
5.21 /home/govind/Desktop/git/qoco/src/timer_linux.c File Reference
5.21.1 Function Documentation
5.21.1.1 get_elapsed_time_sec()
5.21.1.2 start_timer()
5.21.1.3 stop_timer()
5.22 /home/govind/Desktop/git/qoco/src/timer_macos.c File Reference
5.22.1 Function Documentation

5.22.1.1 get_elapsed_time_sec()	119
5.22.1.2 start_timer()	120
5.22.1.3 stop_timer()	120
5.23 /home/govind/Desktop/git/qoco/src/utils.c File Reference	120
5.23.1 Detailed Description	122
5.23.2 LICENSE	122
5.23.3 Function Documentation	122
5.23.3.1 check_stopping()	122
5.23.3.2 copy_settings()	122
5.23.3.3 copy_solution()	123
5.23.3.4 log_iter()	123
5.23.3.5 print_arrayf()	123
5.23.3.6 print_arrayi()	124
5.23.3.7 print_footer()	124
5.23.3.8 print_header()	124
5.23.3.9 print_qoco_csc_matrix()	124
Index	127

Chapter 1

Todo List

Member exact_linesearch (QOCOFloat *u, QOCOFloat *Du, QOCOFloat f, QOCOSolver *solver) get exact_linesearch working for SOCs.

2 Todo List

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

QOCOCscMatrix	
Compressed sparse column format matrices	7
QOCOKKT	
Contains all data needed for constructing and modifying KKT matrix and performing predictor-	
corrector step	8
QOCOProblemData	
SOCP problem data	14
QOCOSettings	
QOCO solver settings	17
QOCOSolution	19
QOCOSolver	
QOCO Solver struct. Contains all information about the state of the solver	21
QOCOWorkspace	
QOCO Workspace	23

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

/home/govind/Desktop/git/qoco/include/cone.h
/home/govind/Desktop/git/qoco/include/definitions.h
/home/govind/Desktop/git/qoco/include/enums.h
/home/govind/Desktop/git/qoco/include/equilibration.h
/home/govind/Desktop/git/qoco/include/input_validation.h
/home/govind/Desktop/git/qoco/include/kkt.h
/home/govind/Desktop/git/qoco/include/linalg.h
/home/govind/Desktop/git/qoco/include/qoco.h
/home/govind/Desktop/git/qoco/include/qoco_api.h67
/home/govind/Desktop/git/qoco/include/qoco_error.h
/home/govind/Desktop/git/qoco/include/structs.h
/home/govind/Desktop/git/qoco/include/timer.h
/home/govind/Desktop/git/qoco/include/utils.h
/home/govind/Desktop/git/qoco/src/cone.c
/home/govind/Desktop/git/qoco/src/equilibration.c
/home/govind/Desktop/git/qoco/src/input_validation.c
/home/govind/Desktop/git/qoco/src/kkt.c
/home/govind/Desktop/git/qoco/src/linalg.c
/home/govind/Desktop/git/qoco/src/qoco_api.c
/home/govind/Desktop/git/qoco/src/qoco_error.c
/home/govind/Desktop/git/qoco/src/timer_linux.c
/home/govind/Desktop/git/qoco/src/timer_macos.c
/home/govind/Deskton/git/gocg/src/utils c 120

6 File Index

Chapter 4

Class Documentation

4.1 QOCOCscMatrix Struct Reference

Compressed sparse column format matrices.

```
#include <structs.h>
```

Public Attributes

- QOCOInt m
- QOCOInt n
- QOCOInt nnz
- QOCOInt * i
- QOCOInt * p
- QOCOFloat * x

4.1.1 Detailed Description

Compressed sparse column format matrices.

4.1.2 Member Data Documentation

4.1.2.1 i

QOCOInt* QOCOCscMatrix::i

Row indices (length: nnz).

4.1.2.2 m

QOCOInt QOCOCscMatrix::m

Number of rows.

4.1.2.3 n

QOCOInt QOCOCscMatrix::n

Number of columns.

4.1.2.4 nnz

QOCOInt QOCOCscMatrix::nnz

Number of nonzero elements.

4.1.2.5 p

QOCOInt* QOCOCscMatrix::p

Column pointers (length: n+1).

4.1.2.6 x

QOCOFloat* QOCOCscMatrix::x

Data (length: nnz).

The documentation for this struct was generated from the following file:

• /home/govind/Desktop/git/qoco/include/structs.h

4.2 QOCOKKT Struct Reference

Contains all data needed for constructing and modifying KKT matrix and performing predictor-corrector step.

#include <structs.h>

Collaboration diagram for QOCOKKT:

Public Attributes

- QOCOCscMatrix * K
- QOCOFloat * delta
- QOCOFloat * Druiz
- QOCOFloat * Eruiz
- QOCOFloat * Fruiz
- QOCOFloat * Dinvruiz
- QOCOFloat * Einvruiz
- QOCOFloat * Finvruiz
- QOCOFloat k
- QOCOFloat kinv
- QOCOInt * p
- QOCOInt * pinv
- QOCOInt * etree
- QOCOInt * Lnz
- QOCOFloat * Lx
- QOCOInt * Lp
- QOCOInt * Li
- QOCOFloat * D
- QOCOFloat * Dinv
- QOCOInt * iwork
- unsigned char * bwork
- QOCOFloat * fwork
- QOCOFloat * rhs
- QOCOFloat * xyz
- QOCOFloat * xyzbuff1
- QOCOFloat * xyzbuff2
- QOCOFloat * kktres
- QOCOInt * nt2kkt
- QOCOInt * ntdiag2kkt
- QOCOInt * PregtoKKT
- QOCOInt * Pnzadded_idx
- QOCOInt Pnum_nzadded
- QOCOInt * AtoKKT
- QOCOInt * GtoKKT

4.2.1 Detailed Description

Contains all data needed for constructing and modifying KKT matrix and performing predictor-corrector step.

4.2.2 Member Data Documentation

4.2.2.1 AtoKKT

QOCOInt* QOCOKKT::AtoKKT

Mapping from elements in A to elements in the KKT matrix.

4.2.2.2 bwork

```
unsigned char* QOCOKKT::bwork
```

4.2.2.3 D

```
QOCOFloat* QOCOKKT::D
```

4.2.2.4 delta

```
QOCOFloat* QOCOKKT::delta
```

Diagonal of scaling matrix.

4.2.2.5 Dinv

```
QOCOFloat* QOCOKKT::Dinv
```

4.2.2.6 Dinvruiz

```
QOCOFloat* QOCOKKT::Dinvruiz
```

Inverse of Druiz.

4.2.2.7 Druiz

```
QOCOFloat* QOCOKKT::Druiz
```

Diagonal of scaling matrix.

4.2.2.8 **Einvruiz**

```
QOCOFloat* QOCOKKT::Einvruiz
```

Inverse of Eruiz.

4.2.2.9 Eruiz

```
QOCOFloat* QOCOKKT::Eruiz
```

Diagonal of scaling matrix.

4.2.2.10 etree

```
QOCOInt* QOCOKKT::etree
```

Elimination tree for LDL factorization of K.

4.2.2.11 Finvruiz

```
QOCOFloat* QOCOKKT::Finvruiz
```

Inverse of Fruiz.

4.2.2.12 Fruiz

```
QOCOFloat* QOCOKKT::Fruiz
```

Diagonal of scaling matrix.

4.2.2.13 fwork

```
QOCOFloat* QOCOKKT::fwork
```

4.2.2.14 GtoKKT

```
QOCOInt* QOCOKKT::GtoKKT
```

Mapping from elements in \boldsymbol{G} to elements in the KKT matrix.

4.2.2.15 iwork

```
QOCOInt* QOCOKKT::iwork
```

4.2.2.16 K

```
QOCOCscMatrix* QOCOKKT::K
```

KKT matrix in CSC form.

4.2.2.17 k

QOCOFloat QOCOKKT::k

Cost scaling factor.

4.2.2.18 kinv

```
QOCOFloat QOCOKKT::kinv
```

Inverse of cost scaling factor.

4.2.2.19 kktres

```
QOCOFloat* QOCOKKT::kktres
```

Residual of KKT condition.

4.2.2.20 Li

```
QOCOInt* QOCOKKT::Li
```

4.2.2.21 Lnz

```
QOCOInt* QOCOKKT::Lnz
```

4.2.2.22 Lp

```
QOCOInt* QOCOKKT::Lp
```

4.2.2.23 Lx

```
QOCOFloat* QOCOKKT::Lx
```

4.2.2.24 nt2kkt

```
QOCOInt* QOCOKKT::nt2kkt
```

Mapping from elements in the Nesterov-Todd scaling matrix to elements in the KKT matrix.

4.2.2.25 ntdiag2kkt

```
QOCOInt* QOCOKKT::ntdiag2kkt
```

Mapping from elements on the main diagonal of the Nesterov-Todd scaling matrices to elements in the KKT matrix. Used for regularization.

4.2.2.26 p

```
QOCOInt* QOCOKKT::p
```

Permutation vector.

4.2.2.27 pinv

```
QOCOInt* QOCOKKT::pinv
```

Inverse of permutation vector.

4.2.2.28 Pnum_nzadded

```
QOCOInt QOCOKKT::Pnum_nzadded
```

Number of elements of P->x that were added due to regularization.

4.2.2.29 Pnzadded_idx

```
QOCOInt* QOCOKKT::Pnzadded_idx
```

Indices of P->x that were added due to regularization.

4.2.2.30 PregtoKKT

```
QOCOInt* QOCOKKT::PregtoKKT
```

Mapping from elements in regularized P to elements in the KKT matrix.

4.2.2.31 rhs

```
QOCOFloat* QOCOKKT::rhs
```

RHS of KKT system.

4.2.2.32 xyz

```
QOCOFloat* QOCOKKT::xyz
```

Solution of KKT system.

4.2.2.33 xyzbuff1

```
QOCOFloat* QOCOKKT::xyzbuff1
```

Buffer of size n + m + p.

4.2.2.34 xyzbuff2

```
QOCOFloat* QOCOKKT::xyzbuff2
```

Buffer of size n + m + p.

The documentation for this struct was generated from the following file:

• /home/govind/Desktop/git/qoco/include/structs.h

4.3 QOCOProblemData Struct Reference

SOCP problem data.

```
#include <structs.h>
```

Collaboration diagram for QOCOProblemData:

Public Attributes

- QOCOCscMatrix * P
- QOCOFloat * c
- QOCOCscMatrix * A
- QOCOCscMatrix * At
- QOCOFloat * b
- QOCOCscMatrix * G
- QOCOCscMatrix * Gt
- QOCOFloat * h
- QOCOInt I
- QOCOInt nsoc
- QOCOInt * q
- QOCOInt n
- QOCOInt m
- QOCOInt p

4.3.1 Detailed Description

SOCP problem data.

4.3.2 Member Data Documentation

4.3.2.1 A

QOCOCscMatrix* QOCOProblemData::A

Affine equality constraint matrix.

4.3.2.2 At

QOCOCscMatrix* QOCOProblemData::At

Transpose of A (used in Ruiz for fast row norm calculations of A).

4.3.2.3 b

QOCOFloat* QOCOProblemData::b

Affine equality constraint offset.

4.3.2.4 c

QOCOFloat* QOCOProblemData::c

Linear cost term.

4.3.2.5 G

QOCOCscMatrix* QOCOProblemData::G

Conic constraint matrix.

4.3.2.6 Gt

QOCOCscMatrix* QOCOProblemData::Gt

Transpose of G (used in Ruiz for fast row norm calculations of G).

4.3.2.7 h

```
QOCOFloat* QOCOProblemData::h
```

Conic constraint offset.

4.3.2.8 I

```
QOCOInt QOCOProblemData::1
```

Dimension of non-negative orthant in cone C.

4.3.2.9 m

```
QOCOInt QOCOProblemData::m
```

Number of conic constraints.

4.3.2.10 n

```
QOCOInt QOCOProblemData::n
```

Number of primal variables.

4.3.2.11 nsoc

```
QOCOInt QOCOProblemData::nsoc
```

Number of second-order cones in C

4.3.2.12 P

```
QOCOCscMatrix* QOCOProblemData::P
```

Quadratic cost term.

4.3.2.13 p

```
QOCOInt QOCOProblemData::p
```

Number of affine equality constraints.

4.3.2.14 q

```
QOCOInt* QOCOProblemData::q
```

Dimension of each second-order cone (length of nsoc)

The documentation for this struct was generated from the following file:

• /home/govind/Desktop/git/qoco/include/structs.h

4.4 QOCOSettings Struct Reference

QOCO solver settings.

```
#include <structs.h>
```

Public Attributes

- QOCOInt max_iters
- QOCOInt bisect_iters
- QOCOInt ruiz_iters
- QOCOInt iter_ref_iters
- QOCOFloat kkt_static_reg
- QOCOFloat kkt_dynamic_reg
- QOCOFloat abstol
- QOCOFloat reltol
- QOCOFloat abstol_inacc
- QOCOFloat reltol_inacc
- unsigned char verbose

4.4.1 Detailed Description

QOCO solver settings.

4.4.2 Member Data Documentation

4.4.2.1 abstol

```
QOCOFloat QOCOSettings::abstol
```

Absolute tolerance.

4.4.2.2 abstol_inacc

```
QOCOFloat QOCOSettings::abstol_inacc
```

Low tolerance stopping criteria.

4.4.2.3 bisect_iters

```
QOCOInt QOCOSettings::bisect_iters
```

Number of bisection iterations for linesearch.

4.4.2.4 iter_ref_iters

```
QOCOInt QOCOSettings::iter_ref_iters
```

Number of iterative refinement iterations performed.

4.4.2.5 kkt_dynamic_reg

```
QOCOFloat QOCOSettings::kkt_dynamic_reg
```

Dynamic regularization parameter for KKT system.

4.4.2.6 kkt_static_reg

```
QOCOFloat QOCOSettings::kkt_static_reg
```

Static regularization parameter for KKT system.

4.4.2.7 max_iters

```
QOCOInt QOCOSettings::max_iters
```

Maximum number of IPM iterations.

4.4.2.8 reltol

```
QOCOFloat QOCOSettings::reltol
```

Relative tolerance.

4.4.2.9 reltol_inacc

```
QOCOFloat QOCOSettings::reltol_inacc
```

Low tolerance stopping criteria.

4.4.2.10 ruiz_iters

QOCOInt QOCOSettings::ruiz_iters

Number of Ruiz equilibration iterations.

4.4.2.11 verbose

unsigned char QOCOSettings::verbose

0 for quiet anything else for verbose.

The documentation for this struct was generated from the following file:

/home/govind/Desktop/git/qoco/include/structs.h

4.5 QOCOSolution Struct Reference

#include <structs.h>

Public Attributes

- QOCOFloat * x
- QOCOFloat * s
- QOCOFloat * y
- QOCOFloat * z
- QOCOInt iters
- QOCOFloat setup_time_sec
- QOCOFloat solve_time_sec
- QOCOFloat obj
- QOCOFloat pres
- QOCOFloat dres
- QOCOFloat gap
- QOCOInt status

4.5.1 Member Data Documentation

4.5.1.1 dres

QOCOFloat QOCOSolution::dres

Dual residual.

4.5.1.2 gap

QOCOFloat QOCOSolution::gap

Duality gap.

4.5.1.3 iters

QOCOInt QOCOSolution::iters

Number of iterations.

4.5.1.4 obj

QOCOFloat QOCOSolution::obj

Optimal objective value.

4.5.1.5 pres

QOCOFloat QOCOSolution::pres

Primal residual.

4.5.1.6 s

QOCOFloat* QOCOSolution::s

Slack variable for conic constraints.

4.5.1.7 setup_time_sec

QOCOFloat QOCOSolution::setup_time_sec

Setup time.

4.5.1.8 solve_time_sec

QOCOFloat QOCOSolution::solve_time_sec

Solve time.

4.5.1.9 status

QOCOInt QOCOSolution::status

Solve status.

4.5.1.10 x

QOCOFloat* QOCOSolution::x

Primal solution.

4.5.1.11 y

QOCOFloat* QOCOSolution::y

Dual variables for affine equality constraints.

4.5.1.12 z

```
QOCOFloat* QOCOSolution::z
```

Dual variables for conic constraints.

The documentation for this struct was generated from the following file:

/home/govind/Desktop/git/qoco/include/structs.h

4.6 QOCOSolver Struct Reference

QOCO Solver struct. Contains all information about the state of the solver.

```
#include <structs.h>
```

Collaboration diagram for QOCOSolver:

Public Attributes

- QOCOSettings * settings
- QOCOWorkspace * work
- QOCOSolution * sol

4.6.1 Detailed Description

QOCO Solver struct. Contains all information about the state of the solver.

4.6.2 Member Data Documentation

4.6.2.1 settings

QOCOSettings* QOCOSolver::settings

Solver settings.

4.6.2.2 sol

QOCOSolution* QOCOSolver::sol

Solution struct.

4.6.2.3 work

QOCOWorkspace* QOCOSolver::work

Solver workspace.

The documentation for this struct was generated from the following file:

• /home/govind/Desktop/git/qoco/include/structs.h

4.7 QOCOWorkspace Struct Reference

QOCO Workspace.

#include <structs.h>

Collaboration diagram for QOCOWorkspace:

Public Attributes

- QOCOProblemData * data
- QOCOTimer solve_timer
- QOCOKKT * kkt
- QOCOFloat * x
- QOCOFloat * s
- QOCOFloat * y
- QOCOFloat * z
- QOCOFloat mu
- QOCOFloat a
- QOCOFloat sigma
- QOCOInt Wnnz
- QOCOInt Wnnzfull
- QOCOFloat * W
- QOCOFloat * Wfull
- QOCOFloat * Winv
- QOCOFloat * Winvfull
- QOCOFloat * WtW
- QOCOFloat * lambda
- QOCOFloat * sbar
- QOCOFloat * zbar

- QOCOFloat * xbuff
- QOCOFloat * ybuff
- QOCOFloat * ubuff1
- QOCOFloat * ubuff2
- QOCOFloat * ubuff3
- QOCOFloat * Ds

4.7.1 Detailed Description

QOCO Workspace.

4.7.2 Member Data Documentation

4.7.2.1 a

QOCOFloat QOCOWorkspace::a

Newton Step-size

4.7.2.2 data

QOCOProblemData* QOCOWorkspace::data

Contains SOCP problem data.

4.7.2.3 Ds

QOCOFloat* QOCOWorkspace::Ds

Search direction for slack variables. Length of m.

4.7.2.4 kkt

QOCOKKT* QOCOWorkspace::kkt

Contains all data related to KKT system.

4.7.2.5 lambda

QOCOFloat* QOCOWorkspace::lambda

Scaled variables.

4.7.2.6 mu

```
QOCOFloat QOCOWorkspace::mu
Gap (s'*z/m)
```

4.7.2.7 s

```
QOCOFloat* QOCOWorkspace::s
```

Iterate of slack variables associated with conic constraint.

4.7.2.8 sbar

```
QOCOFloat* QOCOWorkspace::sbar
```

Temporary array needed in Nesterov-Todd scaling calculations. Length of max(q).

4.7.2.9 sigma

```
QOCOFloat QOCOWorkspace::sigma
```

Centering parameter

4.7.2.10 solve_timer

```
QOCOTimer QOCOWorkspace::solve_timer
```

Solve timer.

4.7.2.11 ubuff1

```
QOCOFloat* QOCOWorkspace::ubuff1
```

Temporary variable of length m.

4.7.2.12 ubuff2

```
QOCOFloat* QOCOWorkspace::ubuff2
```

Temporary variable of length m.

4.7.2.13 ubuff3

```
QOCOFloat* QOCOWorkspace::ubuff3
```

Temporary variable of length m.

26 Class Documentation

4.7.2.14 W

```
QOCOFloat* QOCOWorkspace::W
```

Upper triangular part of Nesterov-Todd Scaling

4.7.2.15 Wfull

```
QOCOFloat* QOCOWorkspace::Wfull
```

Full Nesterov-Todd Scaling

4.7.2.16 Winv

```
QOCOFloat* QOCOWorkspace::Winv
```

Upper triangular part of inverse of Nesterov-Todd Scaling

4.7.2.17 Winvfull

```
QOCOFloat* QOCOWorkspace::Winvfull
```

Full inverse of Nesterov-Todd Scaling

4.7.2.18 Wnnz

```
QOCOInt QOCOWorkspace::Wnnz
```

Number of nonzeros in upper triangular part of Nesterov-Todd Scaling.

4.7.2.19 Wnnzfull

```
QOCOInt QOCOWorkspace::Wnnzfull
```

Number of nonzeros in full Nesterov-Todd Scaling.

4.7.2.20 WtW

```
QOCOFloat* QOCOWorkspace::WtW
```

Nesterov-Todd Scaling squared

4.7.2.21 x

```
QOCOFloat* QOCOWorkspace::x
```

Iterate of primal variables.

4.7.2.22 xbuff

```
QOCOFloat* QOCOWorkspace::xbuff
```

Temporary variable of length n.

4.7.2.23 y

```
QOCOFloat* QOCOWorkspace::y
```

Iterate of dual variables associated with affine equality constraint.

4.7.2.24 ybuff

```
QOCOFloat* QOCOWorkspace::ybuff
```

Temporary variable of length p.

4.7.2.25 z

```
QOCOFloat* QOCOWorkspace::z
```

Iterate of dual variables associated with conic constraint.

4.7.2.26 zbar

```
QOCOFloat* QOCOWorkspace::zbar
```

Temporary array needed in Nesterov-Todd scaling calculations. Length of max(q).

The documentation for this struct was generated from the following file:

• /home/govind/Desktop/git/qoco/include/structs.h

28 Class Documentation

Chapter 5

File Documentation

5.1 /home/govind/Desktop/git/qoco/include/cone.h File Reference

#include "linalg.h"
Include dependency graph for cone.h:

This graph shows which files directly or indirectly include this file:

Functions

• void soc_product (const QOCOFloat *u, const QOCOFloat *v, QOCOFloat *p, QOCOInt n)

Computes second-order cone product u * v = p.

void soc division (const QOCOFloat *lam, const QOCOFloat *v, QOCOFloat *d, QOCOInt n)

Commpues second-order cone division lambda # v = d.

QOCOFloat soc_residual (const QOCOFloat *u, QOCOInt n)

Computes residual of vector u with respect to the second order cone of dimension n.

QOCOFloat soc_residual2 (const QOCOFloat *u, QOCOInt n)

void cone_product (const QOCOFloat *u, const QOCOFloat *v, QOCOFloat *p, QOCOInt I, QOCOInt nsoc, const QOCOInt *q)

Computes cone product u * v = p with respect to C.

void cone_division (const QOCOFloat *lambda, const QOCOFloat *v, QOCOFloat *d, QOCOInt I, QOCOInt nsoc, const QOCOInt *q)

Computed cone division lambda # v = d.

QOCOFloat cone residual (const QOCOFloat *u, QOCOInt I, QOCOInt nsoc, const QOCOInt *q)

Computes residual of vector u with respect to cone C.

void bring2cone (QOCOFloat *u, QOCOProblemData *data)

Performs u = u + (1 + a) * e where e is the cannonical vector for each cone LP Cone: e = ones(n), second-order cone: e = (1,0,0,...) and a is the minimum scalar value such that u + (1 + a) * e is in cone C.

 void nt_multiply (QOCOFloat *W, QOCOFloat *x, QOCOInt I, QOCOInt m, QOCOInt nsoc, QOCOInt *q)

Computes z = W * x where W is a full Nesterov-Todd scaling matrix. The NT scaling array for the LP cones are stored first, then the NT scalings for the second-order cones are stored in column major order.

void compute_mu (QOCOWorkspace *work)

Computes gap (z'*s/m) and stores in work->mu.

void compute nt scaling (QOCOWorkspace *work)

Compute Nesterov-Todd scalings and scaled variables.

void compute_centering (QOCOSolver *solver)

Computes centering parameter.

QOCOFloat linesearch (QOCOFloat *u, QOCOFloat *Du, QOCOFloat f, QOCOSolver *solver)

Conducts linesearch to compute a $\ln (0, 1]$ such that $u + (a / f) * Du \ln C$. For QPs this calls exact_linesearch() and for SOCPs this calls bisection_search()

- QOCOFloat bisection_search (QOCOFloat *u, QOCOFloat *Du, QOCOFloat f, QOCOSolver *solver)
 - Conducts linesearch by bisection to compute a $\ln (0, 1]$ such that $u + (a/f) * Du \ln C$ Warning: linesearch overwrites ubuff1. Do not pass in ubuff1 into u or Du. Consider a dedicated buffer for linesearch.
- QOCOFloat exact linesearch (QOCOFloat *u, QOCOFloat *Du, QOCOFloat f, QOCOSolver *solver)

Conducts exact linesearch to compute the largest a in (0, 1] such that u + (a / f) * Du in C. Currently only works for LP cone.

5.1.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.1.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.1.3 DESCRIPTION

Includes various functions necessary for cone operations.

5.1.4 Function Documentation

5.1.4.1 bisection_search()

```
QOCOFloat bisection_search (
          QOCOFloat * u,
          QOCOFloat * Du,
          QOCOFloat f,
          QOCOSolver * solver )
```

Conducts linesearch by bisection to compute a $\sin (0, 1]$ such that $u + (a / f) * Du \sin C$ Warning: linesearch overwrites ubuff1. Do not pass in ubuff1 into u or Du. Consider a dedicated buffer for linesearch.

и	Initial vector.
Du	Search direction.
f	Conservatism factor.
solver	Pointer to solver.

Returns

Step-size.

5.1.4.2 bring2cone()

Performs u = u + (1 + a) * e where e is the cannonical vector for each cone LP Cone: e = ones(n), second-order cone: e = (1,0,0,...) and a is the minimum scalar value such that u + (1 + a) * e is in cone C.

Parameters

и	Vector to bring to cone.
data	Pointer to problem data.

5.1.4.3 compute_centering()

```
void compute_centering ( {\tt QOCOSolver} \ * \ solver \ )
```

Computes centering parameter.

Parameters

solver Pointer to solver.

5.1.4.4 compute_mu()

Computes gap (z'*s / m) and stores in work->mu.

work	Pointer to workspace.

5.1.4.5 compute_nt_scaling()

Compute Nesterov-Todd scalings and scaled variables.

Parameters

work	Pointer to workspace.
------	-----------------------

5.1.4.6 cone_division()

Computed cone division lambda # v = d.

Parameters

lambda	Input vector.
V	Input vector.
d	Cone quotient of lambda and v.
1	Dimension of LP cone.
nsoc	Number of second-order cones.
q	Dimension of each second-order cone.

5.1.4.7 cone_product()

Computes cone product u * v = p with respect to C.

и	Input vector.
---	---------------

Parameters

V	Input vector.
р	Cone product of u and v.
1	Dimension of LP cone.
nsoc	Number of second-order cones.
q	Dimension of each second-order cone.

5.1.4.8 cone_residual()

Computes residual of vector u with respect to cone C.

Parameters

и	Vector to be tested.
1	Dimension of LP cone.
nsoc	Number of second-order cones.
q	Dimension of each second-order cone.

Returns

Residual: Negative if the vector is in the cone and positive otherwise.

5.1.4.9 exact_linesearch()

```
QOCOFloat exact_linesearch (
          QOCOFloat * u,
          QOCOFloat * Du,
          QOCOFloat f,
          QOCOSolver * solver )
```

Conducts exact linesearch to compute the largest a $\ln (0, 1]$ such that $u + (a / f) * Du \ln C$. Currently only works for LP cone.

Todo get exact_linesearch working for SOCs.

Parameters

и	Initial vector.
Du	Search direction.
f	Conservatism factor.
solver	Pointer to solver.

Returns

Step-size.

5.1.4.10 linesearch()

Conducts linesearch to compute a $\sin (0, 1]$ such that $u + (a / f) * Du \in C$. For QPs this calls exact_linesearch() and for SOCPs this calls bisection_search()

Parameters

и	Initial vector.
Du	Search direction.
f	Conservatism factor.
solver	Pointer to solver.

Returns

Step-size.

5.1.4.11 nt_multiply()

```
void nt_multiply (
          QOCOFloat * W,
          QOCOFloat * x,
          QOCOFloat * z,
          QOCOInt 1,
          QOCOInt m,
          QOCOInt nsoc,
          QOCOInt * q )
```

Computes z = W * x where W is a full Nesterov-Todd scaling matrix. The NT scaling array for the LP cones are stored first, then the NT scalings for the second-order cones are stored in column major order.

Parameters

W	Nesterov Todd scaling matrix.
Х	Input vector.
Z	Output vector.
1	Dimension of LP cone.
m	Length of x.
nsoc	Number of second-order cones in C.
q	Array of second-order cone dimensions.

5.1.4.12 soc_division()

Commpues second-order cone division lambda # v = d.

Parameters

lam	lam = (lam0, lam1) is a vector in second-order cone of dimension n.
V	v = (v0, v1) is a vector in second-order cone of dimension n.
d	Cone divisin of lam and v.
n	Dimension of second-order cone.

5.1.4.13 soc_product()

Computes second-order cone product u * v = p.

и	u = (u0, u1) is a vector in second-order cone of dimension n.	
V	v = (v0, v1) is a vector in second-order cone of dimension n.	
р	Cone product of u and v.	
n	Dimension of second-order cone.	

5.1.4.14 soc_residual()

```
QOCOFloat soc_residual ( {\tt const\ QOCOFloat\ *\ } u, {\tt QOCOInt\ } n\ )
```

Computes residual of vector u with respect to the second order cone of dimension n.

Parameters

и	u = (u0, u1) is a vector in second-order cone of dimension n	
n	Dimension of second order cone.	

Returns

Residual: norm(u1) - u0. Negative if the vector is in the cone and positive otherwise.

5.1.4.15 soc_residual2()

```
QOCOFloat soc_residual2 (  {\tt const\ QOCOFloat\ *\ } u,  QOCOInt n )
```

Computes $u0^2 - u1*u1$ of vector u with respect to the second order cone of dimension n.

Parameters

и	u = (u0, u1) is a vector in second order cone of dimension n.	
n	Dimension of second order cone.	

Returns

Residual: u0² - u1'*u1.

5.2 /home/govind/Desktop/git/qoco/include/definitions.h File Reference

```
#include <limits.h>
#include <math.h>
#include <stdlib.h>
```

Include dependency graph for definitions.h:

This graph shows which files directly or indirectly include this file:

Macros

- #define QOCOInt_MAX INT_MAX
- #define QOCOFloat MAX DBL MAX
- #define $qoco_max(a, b)$ (((a) > (b)) ? (a) : (b))
- #define qoco_min(a, b) (((a) < (b)) ? (a) : (b))
- #define qoco abs(a) (((a) > 0) ? (a) : (-a))
- #define safe_div(a, b) (qoco_abs(b) > 1e-15) ? (a / b) : QOCOFloat_MAX
- #define qoco_sqrt(a) sqrt(a)
- #define qoco_assert(a)
- #define qoco_malloc malloc
- #define qoco_calloc calloc
- #define qoco_free free

Typedefs

- typedef int QOCOInt
- typedef double QOCOFloat

5.2.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.2.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.2.3 DESCRIPTION

Defines various macros used in qoco.

5.2.4 Macro Definition Documentation

5.2.4.1 qoco_abs

```
#define qoco_abs( 
 a ) (((a) > 0) ? (a) : (-a))
```

5.2.4.2 qoco_assert

5.2.4.3 qoco_calloc

```
#define qoco_calloc calloc
```

5.2.4.4 qoco_free

```
#define qoco_free free
```

5.2.4.5 qoco_malloc

```
#define qoco_malloc malloc
```

5.2.4.6 qoco_max

```
#define qoco_max(  a, \\ b ) \mbox{ (((a) > (b)) ? (a) : (b))}
```

5.2.4.7 qoco_min

5.2.4.8 qoco_sqrt

5.2.4.9 QOCOFloat_MAX

```
#define QOCOFloat_MAX __DBL_MAX__
```

5.2.4.10 QOCOInt_MAX

```
\verb|#define QOCOInt_MAX INT_MAX| \\
```

5.2.4.11 safe_div

```
#define safe_div(  a, \\ b \text{ ) } (\texttt{qoco\_abs}(b) \text{ > 1e-15) ? } (a \text{ / b) : } \texttt{QOCOFloat\_MAX}
```

5.2.5 Typedef Documentation

5.2.5.1 QOCOFloat

typedef double QOCOFloat

5.2.5.2 QOCOInt

typedef int QOCOInt

5.3 /home/govind/Desktop/git/qoco/include/enums.h File Reference

This graph shows which files directly or indirectly include this file:

Enumerations

```
    enum qoco_error_code {
        QOCO_NO_ERROR = 0 , QOCO_DATA_VALIDATION_ERROR , QOCO_SETTINGS_VALIDATION_ERROR
        , QOCO_SETUP_ERROR ,
        QOCO_AMD_ERROR , QOCO_MALLOC_ERROR }
```

Enum for error codes.

enum qoco_solve_status {
 QOCO_UNSOLVED = 0 , QOCO_SOLVED = 1 , QOCO_SOLVED_INACCURATE , QOCO_NUMERICAL_ERROR
 ,
 QOCO_MAX_ITER }
 Enum for solver status.

5.3.1 Enumeration Type Documentation

5.3.1.1 qoco_error_code

enum qoco_error_code

Enum for error codes.

Enumerator

QOCO_NO_ERROR	
QOCO_DATA_VALIDATION_ERROR	
QOCO_SETTINGS_VALIDATION_ERROR	
QOCO_SETUP_ERROR	
QOCO_AMD_ERROR	
QOCO_MALLOC_ERROR	

5.3.1.2 qoco_solve_status

enum qoco_solve_status

Enum for solver status.

Enumerator

QOCO_UNSOLVED	
QOCO_SOLVED	
QOCO_SOLVED_INACCURATE	
QOCO_NUMERICAL_ERROR	
QOCO_MAX_ITER	

5.4 /home/govind/Desktop/git/qoco/include/equilibration.h File Reference

#include "linalg.h"
#include "structs.h"

Include dependency graph for equilibration.h:

This graph shows which files directly or indirectly include this file:

Functions

void ruiz_equilibration (QOCOSolver *solver)

Applies modified ruiz equilibration to scale data matrices. Computes D, E, F, and k as shown below to make the row and column infinity norms equal for the scaled KKT matrix.

void unscale_variables (QOCOWorkspace *work)

Undo variable transformation induced by ruiz equilibration.

5.4.1 Detailed Description

Author

```
Govind M. Chari govindchari1@gmail.com
```

5.4.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.4.3 DESCRIPTION

Provides functions to equilibrate problem data and scale variables.

5.4.4 Function Documentation

5.4.4.1 ruiz_equilibration()

```
void ruiz_equilibration ( {\tt QOCOSolver} \ * \ solver \ )
```

Applies modified ruiz equilibration to scale data matrices. Computes D, E, F, and k as shown below to make the row and column infinity norms equal for the scaled KKT matrix.

· clang-format off

```
[D][kPA^TG^T][D]|E||A00||E|[F][G00][F]
```

clang-format on

Parameters

solver | Pointer to solver.

5.4.4.2 unscale_variables()

```
void unscale_variables ( {\tt QOCOWorkspace} \ * \ work \ )
```

Undo variable transformation induced by ruiz equilibration.

Parameters

work	Pointer to workspace.
------	-----------------------

5.5 /home/govind/Desktop/git/qoco/include/input_validation.h File Reference

```
#include "enums.h"
#include "qoco_error.h"
#include "structs.h"
#include <stdio.h>
```

Include dependency graph for input_validation.h:

This graph shows which files directly or indirectly include this file:

Functions

- QOCOInt qoco_validate_settings (const QOCOSettings *settings)
 Validates solver settings.
- QOCOInt qoco_validate_data (const QOCOCscMatrix *P, const QOCOFloat *c, const QOCOCscMatrix *A, const QOCOFloat *b, const QOCOInt I, const QOCOInt nsoc, const QOCOInt *q)

Validate problem data.

5.5.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.5.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.5.3 DESCRIPTION

Includes functions that validate any user-provided data.

5.5.4 Function Documentation

5.5.4.1 qoco_validate_data()

Validate problem data.

Parameters

Р	Upper triangular part of quadratic cost Hessian in CSC form	
С	Linear cost vector	
Α	Affine equality constraint matrix in CSC form	
b	Affine equality constraint offset vector	
G	Conic constraint matrix in CSC form	
h	Conic constraint offset vector	
1	Dimension of non-negative orthant	
nsoc	Number of second-order cones	
q Dimension of each second-order cone		

Returns

Exitflag to check (0 for success, failure otherwise)

5.5.4.2 qoco_validate_settings()

Validates solver settings.

settings	Pointer to settings struct
----------	----------------------------

Returns

Exitflag to check (0 for success, failure otherwise)

5.6 /home/govind/Desktop/git/qoco/include/kkt.h File Reference

```
#include "cone.h"
#include "linalg.h"
#include "qdldl.h"
#include "structs.h"
Include dependency graph for kkt.h:
```


This graph shows which files directly or indirectly include this file:

Functions

void allocate kkt (QOCOWorkspace *work)

Allocate memory for KKT matrix.

void construct_kkt (QOCOSolver *solver)

Constructs upper triangular part of KKT matrix with -I for Nestrov-Todd scaling matrix (the (3,3) block)

• void initialize_ipm (QOCOSolver *solver)

Gets initial values for primal and dual variables such that (s,z) \in C.

void set_nt_block_zeros (QOCOWorkspace *work)

Set the Nesterov-Todd block to be zeros. Used prior to compute_kkt_residual().

void update nt block (QOCOSolver *solver)

Updates and regularizes Nesterov-Todd scaling block of KKT matrix.

void compute_kkt_residual (QOCOSolver *solver)

Computes residual of KKT conditions and stores in work->kkt->rhs.

void construct_kkt_aff_rhs (QOCOWorkspace *work)

Constructs rhs for the affine scaling KKT system. Before calling this function, work->kkt->kktres must contain the residual of the KKT conditions as computed by compute kkt residual().

void construct_kkt_comb_rhs (QOCOWorkspace *work)

Constructs rhs for the combined direction KKT system. Before calling this function, work->kkt->kktres must contain the negative residual of the KKT conditions as computed by compute_kkt_residual().

void predictor_corrector (QOCOSolver *solver)

Performs Mehrotra predictor-corrector step.

void kkt_solve (QOCOSolver *solver, QOCOFloat *b, QOCOInt iters)

Solves Kx = b once K has been factored. Solves via triangular solves and applies iterative refinement afterwards.

void kkt_multiply (QOCOSolver *solver, QOCOFloat *x, QOCOFloat *y)

Computes y = Kx where $[PA^{\wedge}TG^{\wedge}T]K = |A00|[G0-W'W-e*I]$.

5.6.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.6.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.6.3 DESCRIPTION

Provides various functions for solving, constructing and updating KKT systems.

5.6.4 Function Documentation

5.6.4.1 allocate_kkt()

Allocate memory for KKT matrix.

Parameters

	work	Pointer to workspace.	
--	------	-----------------------	--

5.6.4.2 compute_kkt_residual()

Computes residual of KKT conditions and stores in work->kkt->rhs.

clang-format off

```
[P A^T G^T ] [x] [c]
res = |A00||y] + |-b|[G00][z][-h + s]
```

clang-format on

solver	Pointer to solver.
--------	--------------------

5.6.4.3 construct_kkt()

Constructs upper triangular part of KKT matrix with -I for Nestrov-Todd scaling matrix (the (3,3) block)

clang-format off

```
[ P A^T G^T ]
```

```
K = |A 0 0|[G 0 - I]
```

clang-format on

Parameters

solver Pointer to solve	er
-------------------------	----

5.6.4.4 construct_kkt_aff_rhs()

```
void construct_kkt_aff_rhs ( {\tt QOCOWorkspace} \ * \ work \ )
```

Constructs rhs for the affine scaling KKT system. Before calling this function, work->kkt->kktres must contain the residual of the KKT conditions as computed by compute_kkt_residual().

Parameters

work Pointer to workspace.

5.6.4.5 construct_kkt_comb_rhs()

Constructs rhs for the combined direction KKT system. Before calling this function, work->kkt->kktres must contain the negative residual of the KKT conditions as computed by compute_kkt_residual().

Parameters

```
work Pointer to workspace.
```

 $\label{eq:ds = -cone_product(W' \ Dsaff), (W * Dzaff), pdata) + sigma * mu * e.} \\ * mu * e.$

5.6.4.6 initialize_ipm()

Gets initial values for primal and dual variables such that $(s,z) \in C$.

Parameters

5.6.4.7 kkt_multiply()

Computes y = Kx where [PA^TG^T] K = |A00| [G0-WW-e*I].

Parameters

solver	Pointer to solver.
X	Pointer to input vector.
У	Pointer to output vector.

5.6.4.8 kkt_solve()

Solves Kx = b once K has been factored. Solves via triangular solves and applies iterative refinement afterwards.

solver	Pointer to solver.
b	Pointer to rhs of kkt system.
iters	Number of iterations of iterative refinement performed.

5.6.4.9 predictor_corrector()

```
void predictor_corrector ( {\tt QOCOSolver} \ * \ solver \ )
```

Performs Mehrotra predictor-corrector step.

Parameters

solver Pointer to solver.

5.6.4.10 set_nt_block_zeros()

Set the Nesterov-Todd block to be zeros. Used prior to compute_kkt_residual().

Parameters

work Pointer to workspace.

5.6.4.11 update_nt_block()

Updates and regularizes Nesterov-Todd scaling block of KKT matrix.

```
[ P A^T G^T ]
```

K = |A 0 0|[G 0 - W'W - e * I]

Parameters

solver Pointer to solver.

5.7 /home/govind/Desktop/git/qoco/include/linalg.h File Reference

```
#include "definitions.h"
#include "structs.h"
```

Include dependency graph for linalg.h:

This graph shows which files directly or indirectly include this file:

Functions

- QOCOCscMatrix * new_qoco_csc_matrix (const QOCOCscMatrix *A)
 - Allocates a new csc matrix and copies A to it.
- QOCOCscMatrix * construct_identity (QOCOInt n, QOCOFloat lambda)
 - Allocates a new csc matrix that is lambda * I.
- void free_qoco_csc_matrix (QOCOCscMatrix *A)

Frees all the internal arrays and the pointer to the QOCOCscMatrix. Should only be used if QOCOCscMatrix and all internal arrays were malloc'ed.

void copy_arrayf (const QOCOFloat *x, QOCOFloat *y, QOCOInt n)

Copies array of QOCOFloats from x to array y.

void copy_and_negate_arrayf (const QOCOFloat *x, QOCOFloat *y, QOCOInt n)

Copies and negates array of QOCOFloats from x to array y.

void copy_arrayi (const QOCOInt *x, QOCOInt *y, QOCOInt n)

Copies array of QOCOInts from x to array y.

QOCOFloat dot (const QOCOFloat *u, const QOCOFloat *v, QOCOInt n)

Computes dot product of u and v.

QOCOInt max arrayi (const QOCOInt *x, QOCOInt n)

Computes maximum element of array of QOCOInts.

void scale arrayf (const QOCOFloat *x, QOCOFloat *y, QOCOFloat s, QOCOInt n)

Scales array x by s and stores result in y. y = s * x.

void axpy (const QOCOFloat *x, const QOCOFloat *y, QOCOFloat *z, QOCOFloat a, QOCOInt n)

Computes z = a * x + y.

• void USpMv (const QOCOCscMatrix *M, const QOCOFloat *v, QOCOFloat *r)

Sparse matrix vector multiplication for CSC matrices where M is symmetric and only the upper triangular part is given. Computes r = M * v.

void SpMv (const QOCOCscMatrix *M, const QOCOFloat *v, QOCOFloat *r)

Sparse matrix vector multiplication for CSC matrices. Computes r = M * v.

void SpMtv (const QOCOCscMatrix *M, const QOCOFloat *v, QOCOFloat *r)

Sparse matrix vector multiplication for CSC matrices where M is first transposed. Computes $r = M^{\wedge} T * v$.

QOCOFloat inf norm (const QOCOFloat *x, QOCOInt n)

Computes the infinity norm of x.

QOCOInt regularize (QOCOCscMatrix *M, QOCOFloat lambda, QOCOInt *nzadded_idx)

Adds lambda * I to a CSC matrix. Called on P prior to construction of KKT system in qoco_setup(). This function calls realloc() when adding new nonzeros.

• void unregularize (QOCOCscMatrix *M, QOCOFloat lambda)

Subtracts lambda * I to a CSC matrix. Called on P when updating matrix data in update_matrix_data(). This function does not allocate and must be called after regularize.

void col inf norm USymm (const QOCOCscMatrix *M, QOCOFloat *norm)

Computes the infinity norm of each column (or equivalently row) of a symmetric sparse matrix M where only the upper triangular portion of M is given.

void row_inf_norm (const QOCOCscMatrix *M, QOCOFloat *norm)

Computes the infinity norm of each row of M and stores in norm.

• QOCOCscMatrix * create_transposed_matrix (const QOCOCscMatrix *A)

Allocates and computes $A^{\wedge}T$.

void row_col_scale (const QOCOCscMatrix *M, QOCOFloat *E, QOCOFloat *D)

Scales the rows of M by E and columns of M by D. M = diag(E) * M * diag(S)

void ew product (QOCOFloat *x, const QOCOFloat *y, QOCOFloat *z, QOCOInt n)

Computes elementwise product $z = x \cdot * y$.

void invert_permutation (const QOCOInt *p, QOCOInt *pinv, QOCOInt n)

Inverts permutation vector p and stores inverse in pinv.

QOCOInt cumsum (QOCOInt *p, QOCOInt *c, QOCOInt n)

Computes cumulative sum of c.

QOCOCscMatrix * csc_symperm (const QOCOCscMatrix *A, const QOCOInt *pinv, QOCOInt *AtoC)

C = A(p,p) = PAP' where A and C are symmetric and the upper triangular part is stored.

5.7.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.7.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.7.3 DESCRIPTION

Provides various linear algebra operations.

5.7.4 Function Documentation

5.7.4.1 axpy()

Computes z = a * x + y.

Parameters

X	Input vector.
у	Input vector.
Z	Result vector.
а	Scaling factor.
n	Length of vectors.

5.7.4.2 col_inf_norm_USymm()

Computes the infinity norm of each column (or equivalently row) of a symmetric sparse matrix M where only the upper triangular portion of M is given.

Parameters

М	Upper triangular part of sparse symmetric matrix.
norm	Result vector of length n.

5.7.4.3 construct_identity()

```
QOCOCscMatrix* construct_identity (
          QOCOInt n,
          QOCOFloat lambda )
```

Allocates a new csc matrix that is lambda * I.

Parameters

n	Size of identity matrix.
lambda	Scaling factor for identity.

Returns

Pointer to new constructed matrix.

5.7.4.4 copy_and_negate_arrayf()

Copies and negates array of QOCOFloats from x to array y.

Parameters

Х	Source array.	
У	Destination array.	
n	Length of arrays.	

5.7.4.5 copy_arrayf()

```
QOCOFloat * y,
QOCOInt n )
```

Copies array of QOCOFloats from x to array y.

Parameters

Χ	Source array.	
У	Destination array.	
n	Length of arrays.	

5.7.4.6 copy_arrayi()

Copies array of QOCOInts from x to array y.

Parameters

X	Source array.
У	Destination array.
n	Length of arrays.

5.7.4.7 create_transposed_matrix()

Allocates and computes $A^{\wedge}T$.

Parameters

```
A Input matrix.
```

5.7.4.8 csc_symperm()

```
const QOCOInt * pinv,
QOCOInt * AtoC )
```

C = A(p,p) = PAP' where A and C are symmetric and the upper triangular part is stored.

Parameters

Α	
pinv	
AtoC	

Returns

QOCOCscMatrix*

5.7.4.9 cumsum()

Computes cumulative sum of c.

Returns

Cumulative sum of c.

5.7.4.10 dot()

```
QOCOFloat dot (  {\rm const\ QOCOFloat\ *\ } u, \\ {\rm const\ QOCOFloat\ *\ } v, \\ {\rm QOCOInt\ } n\ )
```

Computes dot product of u and v.

и	Input vector.
V	Input vector.
n	Length of vectors.

Returns

Dot product of u and v.

5.7.4.11 ew_product()

Computes elementwise product z = x .* y.

Parameters

X	Input array.
У	Input array.
z Output arra	Output array.
n	Length of arrays.

5.7.4.12 free_qoco_csc_matrix()

```
void free_qoco_csc_matrix (
          QOCOCscMatrix * A )
```

Frees all the internal arrays and the pointer to the QOCOCscMatrix. Should only be used if QOCOCscMatrix and all internal arrays were malloc'ed.

Parameters

```
A Pointer to QOCOCscMatrix.
```

5.7.4.13 inf_norm()

```
QOCOFloat inf_norm (  {\tt const\ QOCOFloat\ *\ x,}  QOCOInt n )
```

Computes the infinity norm of x.

Parameters

Х	Input vector.
n	Length of input vector.

Returns

Infinity norm of x.

5.7.4.14 invert_permutation()

Inverts permutation vector p and stores inverse in pinv.

Parameters

р	Input permutation vector.
pinv	Inverse of permutation vector.
n	Length of vectors.

5.7.4.15 max_arrayi()

```
QOCOInt max_arrayi ( {\tt const\ QOCOInt\ *\ x,} {\tt QOCOInt\ n\ )}
```

Computes maximum element of array of QOCOInts.

Parameters

X	Input array.
n	Length of array.

Returns

Maximum element of x.

5.7.4.16 new_qoco_csc_matrix()

Allocates a new csc matrix and copies A to it.

Parameters

```
A Matrix to copy.
```

Returns

Pointer to new constructed matrix.

5.7.4.17 regularize()

Adds lambda * I to a CSC matrix. Called on P prior to construction of KKT system in qoco_setup(). This function calls realloc() when adding new nonzeros.

Parameters

М	Matrix to be regularized.
lambda	Regularization factor.
nzadded_idx	Indices of elements of M->x that are added.

Returns

Number of nonzeros added to M->x.

5.7.4.18 row_col_scale()

Scales the rows of M by E and columns of M by D. M = diag(E) * M * diag(S)

Parameters

М	An m by n sparse matrix.
Ε	Vector of length m.
D	Vector of length m.

5.7.4.19 row_inf_norm()

Computes the infinity norm of each row of M and stores in norm.

Parameters

М	An m by n sparse matrix.
norm	Result vector of length m.

5.7.4.20 scale_arrayf()

Scales array x by s and stores result in y. y = s * x.

Parameters

Х	Input array.
У	Output array.
s	Scaling factor.
n	Length of arrays.

5.7.4.21 SpMtv()

```
const QOCOFloat * v, QOCOFloat * r)
```

Sparse matrix vector multiplication for CSC matrices where M is first transposed. Computes $r = M^{\wedge}T * v$.

Parameters

М	Matrix in CSC form.
V	Vector.
r	Result.

5.7.4.22 SpMv()

Sparse matrix vector multiplication for CSC matrices. Computes r = M * v.

Parameters

М	Matrix in CSC form.
V	Vector.
r	Result.

5.7.4.23 unregularize()

Subtracts lambda * I to a CSC matrix. Called on P when updating matrix data in update_matrix_data(). This function does not allocate and must be called after regularize.

Parameters

М	Matrix.
lambda	Regularization.

5.7.4.24 USpMv()

Sparse matrix vector multiplication for CSC matrices where M is symmetric and only the upper triangular part is given. Computes r = M * v.

Parameters

М	Upper triangular part of M in CSC form.
V	Vector.
r	Result.

5.8 /home/govind/Desktop/git/qoco/include/qoco.h File Reference

```
#include "cone.h"
#include "definitions.h"
#include "qoco_api.h"
#include "structs.h"
#include "utils.h"
```

Include dependency graph for qoco.h:

5.8.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.8.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.8.3 DESCRIPTION

This is the file that should be included when using QOCO.

5.9 /home/govind/Desktop/git/qoco/include/qoco_api.h File Reference

```
#include "definitions.h"
#include "enums.h"
#include "equilibration.h"
#include "input_validation.h"
#include "kkt.h"
#include "linalg.h"
#include "qoco_error.h"
#include "structs.h"
#include "utils.h"
```

Include dependency graph for qoco_api.h:

This graph shows which files directly or indirectly include this file:

Functions

QOCOInt qoco_setup (QOCOSolver *solver, QOCOInt n, QOCOInt m, QOCOInt p, QOCOCscMatrix *P, QOCOFloat *c, QOCOCscMatrix *A, QOCOFloat *b, QOCOCscMatrix *G, QOCOFloat *h, QOCOInt I, QOCOInt nsoc, QOCOInt *q, QOCOSettings *settings)

Allocates all memory needed for QOCO to solve the SOCP.

 void qoco_set_csc (QOCOCscMatrix *A, QOCOInt m, QOCOInt n, QOCOInt Annz, QOCOFloat *Ax, QOCOInt *Ap, QOCOInt *Ai)

Sets the data for a compressed sparse column matrix.

void set_default_settings (QOCOSettings *settings)

Set the default settings struct.

• QOCOInt qoco_update_settings (QOCOSolver *solver, const QOCOSettings *new_settings)

Updates settings struct.

• void update_vector_data (QOCOSolver *solver, QOCOFloat *cnew, QOCOFloat *bnew, QOCOFloat *hnew)

Updates data vectors. NULL can be passed in for any vector if that data will not be updated.

void update_matrix_data (QOCOSolver *solver, QOCOFloat *Pxnew, QOCOFloat *Axnew, QOCOFloat *Gxnew)

Updates data matrices. NULL can be passed in for any matrix data pointers if that matrix will not be updated. It is assumed that the new matrix will have the same sparsity structure as the existing matrix.

QOCOInt qoco_solve (QOCOSolver *solver)

Solves SOCP.

QOCOInt qoco_cleanup (QOCOSolver *solver)

Frees all memory allocated by qoco_setup.

5.9.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.9.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.9.3 DESCRIPTION

Exposes the API for QOCO.

5.9.4 Function Documentation

5.9.4.1 qoco_cleanup()

Frees all memory allocated by qoco_setup.

Parameters

solver	Pointer to solver.
--------	--------------------

Returns

Exitflag to check (0 for success, failure otherwise)

5.9.4.2 qoco_set_csc()

```
void qoco_set_csc (
          QOCOCscMatrix * A,
          QOCOInt m,
          QOCOInt n,
          QOCOInt Annz,
          QOCOFloat * Ax,
          QOCOInt * Ap,
          QOCOInt * Ai )
```

Sets the data for a compressed sparse column matrix.

Parameters

Α	Pointer to the CSC matrix.
m	Number of rows in the matrix.
n	Number of columns in the matrix.
Annz	Number of nonzero elements in the matrix.
Ax	Array of data for the matrix.
Ap	Array of column pointers for the data.
Ai	Array of row indices for data.

5.9.4.3 qoco_setup()

Allocates all memory needed for QOCO to solve the SOCP.

Parameters

solver	Pointer to solver.	
n	Number of optimization variables.	
m	Number of conic constraints.	
p	Number of affine equality constraints.	
P	Upper triangular part of quadratic cost Hessian in CSC form.	
С	Linear cost vector.	
Α	Affine equality constraint matrix in CSC form.	
b	Affine equality constraint offset vector.	
G	Conic constraint matrix in CSC form.	
h	Conic constraint offset vector.	
1	Dimension of non-negative orthant.	
nsoc	Number of second-order cones.	
q	Dimension of each second-order cone.	
settings	Settings struct.	

Returns

0 if no error or flag containing error code.

5.9.4.4 qoco_solve()

```
QOCOInt qoco_solve (
          QOCOSolver * solver )
```

Solves SOCP.

Parameters

solver	Pointer to solver.

Returns

Exitflag to check (0 for success, failure otherwise)

5.9.4.5 qoco_update_settings()

Updates settings struct.

Parameters

solver	Pointer to solver.
new_settings	New settings struct.

Returns

0 if update is successful.

5.9.4.6 set_default_settings()

Set the default settings struct.

Parameters

settings	Pointer to settings struct.
----------	-----------------------------

5.9.4.7 update_matrix_data()

Updates data matrices. NULL can be passed in for any matrix data pointers if that matrix will not be updated. It is assumed that the new matrix will have the same sparsity structure as the existing matrix.

Parameters

solver	Pointer to solver.
Pxnew	New data for P->x.
Axnew	New data for A->x.
Gxnew	New data for G->x.

5.9.4.8 update_vector_data()

```
QOCOFloat * cnew,
QOCOFloat * bnew,
QOCOFloat * hnew )
```

Updates data vectors. NULL can be passed in for any vector if that data will not be updated.

Parameters

solver	Pointer to solver.
cnew	New c vector.
bnew	New b vector.
hnew	New h vector.

5.10 /home/govind/Desktop/git/qoco/include/qoco_error.h File Reference

```
#include "definitions.h"
#include "enums.h"
#include <stdio.h>
```

Include dependency graph for qoco_error.h:

This graph shows which files directly or indirectly include this file:

Functions

• QOCOInt qoco_error (enum qoco_error_code error_code) Function to print error messages.

5.10.1 Function Documentation

5.10.1.1 qoco_error()

Function to print error messages.

Parameters

error_code

Returns

Error code as an QOCOInt.

5.11 /home/govind/Desktop/git/qoco/include/structs.h File Reference

```
#include "definitions.h"
```

#include "timer.h"

Include dependency graph for structs.h:

This graph shows which files directly or indirectly include this file:

Classes

• struct QOCOCscMatrix

Compressed sparse column format matrices.

• struct QOCOProblemData

SOCP problem data.

struct QOCOSettings

QOCO solver settings.

struct QOCOKKT

Contains all data needed for constructing and modifying KKT matrix and performing predictor-corrector step.

struct QOCOWorkspace

QOCO Workspace.

- struct QOCOSolution
- struct QOCOSolver

QOCO Solver struct. Contains all information about the state of the solver.

5.11.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.11.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.11.3 DESCRIPTION

Defines all structs used by QOCO.

5.12 /home/govind/Desktop/git/qoco/include/timer.h File Reference

#include "definitions.h"
Include dependency graph for timer.h:

This graph shows which files directly or indirectly include this file:

Functions

- · void start timer (QOCOTimer *timer)
 - Starts timer and sets tic field of struct to the current time.
- void stop_timer (QOCOTimer *timer)
 - Stops timer and sets toc field of struct to the current time.
- QOCOFloat get_elapsed_time_sec (QOCOTimer *timer)

Gets time in seconds recorded by timer. Must be called after start_timer() and stop_timer().

5.12.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.12.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.12.3 DESCRIPTION

Provides timing functions.

5.12.4 Function Documentation

5.12.4.1 get_elapsed_time_sec()

```
QOCOFloat get_elapsed_time_sec (
          QOCOTimer * timer )
```

Gets time in seconds recorded by timer. Must be called after start_timer() and stop_timer().

Parameters

timer Pointer to timer struct.

5.12.4.2 start_timer()

```
void start_timer (
          QOCOTimer * timer )
```

Starts timer and sets tic field of struct to the current time.

Parameters

timer | Pointer to timer struct.

5.12.4.3 stop_timer()

```
void stop_timer (
          QOCOTimer * timer )
```

Stops timer and sets toc field of struct to the current time.

Parameters

timer Pointer to timer struct.

5.13 /home/govind/Desktop/git/qoco/include/utils.h File Reference

```
#include "enums.h"
#include "linalg.h"
#include "structs.h"
#include <stdio.h>
```

Include dependency graph for utils.h:

This graph shows which files directly or indirectly include this file:

Functions

- void print_qoco_csc_matrix (QOCOCscMatrix *M)
 Prints dimensions, number of nonzero elements, data, column pointers and row indices for a sparse matrix in CSC form.
- void print_arrayf (QOCOFloat *x, QOCOInt n)

Prints array of QOCOFloats.

void print_arrayi (QOCOInt *x, QOCOInt n)

Prints array of QOCOInts.

void print_header (QOCOSolver *solver)

Prints QOCO header.

void log_iter (QOCOSolver *solver)

Print solver progress.

void print_footer (QOCOSolution *solution, enum qoco_solve_status status)

Prints QOCO footer.

unsigned char check_stopping (QOCOSolver *solver)

Checks stopping criteria. Before calling this function, work->kkt->rhs must contain the residual of the KKT conditions as computed by compute_kkt_residual().

void copy_solution (QOCOSolver *solver)

Copies data to QOCOSolution struct when solver terminates.

QOCOSettings * copy_settings (QOCOSettings *settings)

Allocates and returns a copy of the input settings struct.

5.13.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.13.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.13.3 DESCRIPTION

Provides various utility functions.

5.13.4 Function Documentation

5.13.4.1 check_stopping()

```
unsigned char check_stopping ( {\tt QOCOSolver} \ * \ solver \ )
```

Checks stopping criteria. Before calling this function, work->kkt->rhs must contain the residual of the KKT conditions as computed by compute_kkt_residual().

Parameters

solver Pointer to solver.

Returns

1 if stopping criteria met and 0 otherwise.

5.13.4.2 copy_settings()

```
QOCOSettings* copy_settings (
          QOCOSettings * settings )
```

Allocates and returns a copy of the input settings struct.

Parameters

settings	Input struct.
----------	---------------

Returns

Pointer to constructed and copies settings struct.

5.13.4.3 copy_solution()

Copies data to QOCOSolution struct when solver terminates.

Parameters

```
solver Pointer to solver.
```

5.13.4.4 log_iter()

Print solver progress.

Parameters

solver	Pointer to solver.

5.13.4.5 print_arrayf()

Prints array of QOCOFloats.

Parameters

X	Pointer to array.
n	Number of elements in array.

5.13.4.6 print_arrayi()

Prints array of QOCOInts.

Parameters

X	Pointer to array.
n	Number of elements in array.

5.13.4.7 print_footer()

Prints QOCO footer.

Parameters

solution	Pointer to solution struct.
status	Solve status.

5.13.4.8 print_header()

Prints QOCO header.

Parameters

```
solver Pointer to solver.
```

5.13.4.9 print_qoco_csc_matrix()

```
void print_qoco_csc_matrix (
          QOCOCscMatrix * M )
```

Prints dimensions, number of nonzero elements, data, column pointers and row indices for a sparse matrix in CSC form.

Parameters

M Pointer to QOCOCscMatrix that will be printed.

5.14 /home/govind/Desktop/git/qoco/src/cone.c File Reference

```
#include "cone.h"
#include "utils.h"
```

Include dependency graph for cone.c:

Functions

- $\bullet \ \ void \ soc_product \ (const \ QOCOFloat \ *u, \ const \ QOCOFloat \ *v, \ QOCOFloat \ *p, \ QOCOInt \ n) \\$
 - Computes second-order cone product u * v = p.
- void soc_division (const QOCOFloat *lam, const QOCOFloat *v, QOCOFloat *d, QOCOInt n)
 - Commpues second-order cone division lambda # v = d.
- QOCOFloat soc_residual (const QOCOFloat *u, QOCOInt n)
 - Computes residual of vector u with respect to the second order cone of dimension n.
- QOCOFloat soc_residual2 (const QOCOFloat *u, QOCOInt n)
 - Computes $u0^{\wedge}2$ u1'*u1 of vector u with respect to the second order cone of dimension n.
- void cone_product (const QOCOFloat *u, const QOCOFloat *v, QOCOFloat *p, QOCOInt I, QOCOInt nsoc, const QOCOInt *q)
 - Computes cone product u * v = p with respect to C.
- void cone_division (const QOCOFloat *lambda, const QOCOFloat *v, QOCOFloat *d, QOCOInt I, QOCOInt nsoc, const QOCOInt *q)

Computed cone division lambda # v = d.

QOCOFloat cone residual (const QOCOFloat *u, QOCOInt I, QOCOInt nsoc, const QOCOInt *q)

Computes residual of vector u with respect to cone C.

void bring2cone (QOCOFloat *u, QOCOProblemData *data)

Performs u = u + (1 + a) * e where e is the cannonical vector for each cone LP Cone: e = ones(n), second-order cone: e = (1,0,0,...) and a is the minimum scalar value such that u + (1 + a) * e is in cone C.

 void nt_multiply (QOCOFloat *W, QOCOFloat *x, QOCOInt I, QOCOInt m, QOCOInt nsoc, QOCOInt *q)

Computes z = W * x where W is a full Nesterov-Todd scaling matrix. The NT scaling array for the LP cones are stored first, then the NT scalings for the second-order cones are stored in column major order.

void compute_mu (QOCOWorkspace *work)

Computes gap (z'*s / m) and stores in work->mu.

void compute_nt_scaling (QOCOWorkspace *work)

Compute Nesterov-Todd scalings and scaled variables.

void compute_centering (QOCOSolver *solver)

Computes centering parameter.

QOCOFloat linesearch (QOCOFloat *u, QOCOFloat *Du, QOCOFloat f, QOCOSolver *solver)

Conducts linesearch to compute a $\ln (0, 1]$ such that $u + (a / f) * Du \ln C$. For QPs this calls exact_linesearch() and for SOCPs this calls bisection_search()

QOCOFloat bisection search (QOCOFloat *u, QOCOFloat *Du, QOCOFloat f, QOCOSolver *solver)

Conducts linesearch by bisection to compute a $\ln (0, 1]$ such that $u + (a/f) * Du \ln C$ Warning: linesearch overwrites ubuff1. Do not pass in ubuff1 into u or Du. Consider a dedicated buffer for linesearch.

QOCOFloat exact linesearch (QOCOFloat *u, QOCOFloat *Du, QOCOFloat f, QOCOSolver *solver)

Conducts exact linesearch to compute the largest a $\sin (0, 1]$ such that $u + (a / f) * Du \sin C$. Currently only works for LP cone.

5.14.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.14.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.14.3 Function Documentation

5.14.3.1 bisection_search()

```
QOCOFloat bisection_search (
          QOCOFloat * u,
          QOCOFloat * Du,
          QOCOFloat f,
          QOCOSolver * solver )
```

Conducts linesearch by bisection to compute a $\sin (0, 1]$ such that $u + (a / f) * Du \sin C$ Warning: linesearch overwrites ubuff1. Do not pass in ubuff1 into u or Du. Consider a dedicated buffer for linesearch.

Parameters

и	Initial vector.
Du	Search direction.
f	Conservatism factor.
solver	Pointer to solver.

Returns

Step-size.

5.14.3.2 bring2cone()

Performs u = u + (1 + a) * e where e is the cannonical vector for each cone LP Cone: e = ones(n), second-order cone: e = (1,0,0,...) and a is the minimum scalar value such that u + (1 + a) * e is in cone C.

Parameters

и	Vector to bring to cone.
data	Pointer to problem data.

5.14.3.3 compute_centering()

```
void compute_centering ( {\tt QOCOSolver} \ * \ solver \ )
```

Computes centering parameter.

Parameters

solver Pointer	to solver.
----------------	------------

5.14.3.4 compute_mu()

Computes gap (z'*s / m) and stores in work->mu.

Parameters

5.14.3.5 compute_nt_scaling()

Compute Nesterov-Todd scalings and scaled variables.

Parameters

```
work Pointer to workspace.
```

5.14.3.6 cone_division()

Computed cone division lambda # v = d.

Parameters

lambda	Input vector.
V	Input vector.
d	Cone quotient of lambda and v.
1	Dimension of LP cone.
nsoc	Number of second-order cones.
q	Dimension of each second-order cone.

5.14.3.7 cone_product()

```
QOCOFloat * p,
QOCOInt 1,
QOCOInt nsoc,
const QOCOInt * q )
```

Computes cone product u * v = p with respect to C.

Parameters

и	Input vector.
V	Input vector.
р	Cone product of u and v.
1	Dimension of LP cone.
nsoc	Number of second-order cones.
q	Dimension of each second-order cone.

5.14.3.8 cone_residual()

Computes residual of vector u with respect to cone C.

Parameters

и	Vector to be tested.
1	Dimension of LP cone.
nsoc	Number of second-order cones.
q	Dimension of each second-order cone.

Returns

Residual: Negative if the vector is in the cone and positive otherwise.

5.14.3.9 exact_linesearch()

```
QOCOFloat exact_linesearch (
          QOCOFloat * u,
          QOCOFloat * Du,
          QOCOFloat f,
          QOCOSolver * solver )
```

Conducts exact linesearch to compute the largest a $\ln (0, 1]$ such that $u + (a / f) * Du \ln C$. Currently only works for LP cone.

Todo get exact_linesearch working for SOCs.

Parameters

и	Initial vector.
Du	Search direction.
f	Conservatism factor.
solver	Pointer to solver.

Returns

Step-size.

5.14.3.10 linesearch()

```
QOCOFloat linesearch (
QOCOFloat * u,
QOCOFloat * Du,
QOCOFloat f,
QOCOSolver * solver )
```

Conducts linesearch to compute a $\sin (0, 1]$ such that $u + (a / f) * Du \in C$. For QPs this calls exact_linesearch() and for SOCPs this calls bisection_search()

Parameters

и	Initial vector.
Du	Search direction.
f	Conservatism factor.
solver	Pointer to solver.

Returns

Step-size.

5.14.3.11 nt_multiply()

```
void nt_multiply (
            QOCOFloat * W,
            QOCOFloat * x,
            QOCOFloat * z,
            QOCOInt 1,
            QOCOInt m,
            QOCOInt nsoc,
            QOCOInt * q )
```

Computes z = W * x where W is a full Nesterov-Todd scaling matrix. The NT scaling array for the LP cones are stored first, then the NT scalings for the second-order cones are stored in column major order.

Parameters

W	Nesterov Todd scaling matrix.
X	Input vector.
Z	Output vector.
1	Dimension of LP cone.
m	Length of x.
nsoc	Number of second-order cones in C.
q	Array of second-order cone dimensions.

5.14.3.12 soc_division()

Commpues second-order cone division lambda # v = d.

Parameters

lam	lam = (lam0, lam1) is a vector in second-order cone of dimension n.
V	v = (v0, v1) is a vector in second-order cone of dimension n.
d	Cone divisin of lam and v.
n	Dimension of second-order cone.

5.14.3.13 soc_product()

Computes second-order cone product u * v = p.

Parameters

и	u = (u0, u1) is a vector in second-order cone of dimension n.
V	v = (v0, v1) is a vector in second-order cone of dimension n.
р	Cone product of u and v.
n	Dimension of second-order cone.

5.14.3.14 soc_residual()

```
QOCOFloat soc_residual ( {\tt const\ QOCOFloat\ *\ } u, {\tt QOCOInt\ } n\ )
```

Computes residual of vector u with respect to the second order cone of dimension n.

Parameters

и	u = (u0, u1) is a vector in second-order cone of dimension n.	
n	Dimension of second order cone.	

Returns

Residual: norm(u1) - u0. Negative if the vector is in the cone and positive otherwise.

5.14.3.15 soc_residual2()

Computes $u0^2 - u1*u1$ of vector u with respect to the second order cone of dimension n.

Parameters

и	u = (u0, u1) is a vector in second order cone of dimension n.
n	Dimension of second order cone.

Returns

Residual: $u0^2 - u1*u1$.

5.15 /home/govind/Desktop/git/qoco/src/equilibration.c File Reference

```
#include "equilibration.h"
```

Include dependency graph for equilibration.c:

Functions

- void ruiz_equilibration (QOCOSolver *solver)
 - Applies modified ruiz equilibration to scale data matrices. Computes D, E, F, and k as shown below to make the row and column infinity norms equal for the scaled KKT matrix.
- void unscale_variables (QOCOWorkspace *work)

Undo variable transformation induced by ruiz equilibration.

5.15.1 Function Documentation

5.15.1.1 ruiz_equilibration()

```
void ruiz_equilibration ( {\tt QOCOSolver} \ * \ solver \ )
```

Applies modified ruiz equilibration to scale data matrices. Computes D, E, F, and k as shown below to make the row and column infinity norms equal for the scaled KKT matrix.

· clang-format off

```
[D][kPA^TG^T][D]|E||A00||E|[F][G00][F]
```

clang-format on

Parameters

```
solver Pointer to solver.
```

5.15.1.2 unscale_variables()

```
void unscale_variables ( {\tt QOCOWorkspace} \ * \ work \ )
```

Undo variable transformation induced by ruiz equilibration.

Parameters

work Pointer to workspace.

5.16 /home/govind/Desktop/git/qoco/src/input_validation.c File Reference

```
#include "input_validation.h"
```

Include dependency graph for input_validation.c:

Functions

- QOCOInt qoco_validate_settings (const QOCOSettings *settings)
 Validates solver settings.
- QOCOInt qoco_validate_data (const QOCOCscMatrix *P, const QOCOFloat *c, const QOCOCscMatrix *A, const QOCOFloat *b, const QOCOInt I, const QOCOInt I, const QOCOInt nsoc, const QOCOInt *q)

Validate problem data.

5.16.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.16.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.16.3 Function Documentation

5.16.3.1 qoco_validate_data()

Validate problem data.

Parameters

Р	Upper triangular part of quadratic cost Hessian in CSC form	
С	Linear cost vector	
Α	Affine equality constraint matrix in CSC form	
b	b Affine equality constraint offset vector	
G	Conic constraint matrix in CSC form	
h	Conic constraint offset vector	
1	Dimension of non-negative orthant	
nsoc	Number of second-order cones	
q	Dimension of each second-order cone	

Returns

Exitflag to check (0 for success, failure otherwise)

5.16.3.2 qoco_validate_settings()

```
QOCOInt qoco_validate_settings ( {\tt const~QOCOSettings~*~settings~})
```

Validates solver settings.

Parameters

settings	Pointer to settings struct
----------	----------------------------

Returns

Exitflag to check (0 for success, failure otherwise)

5.17 /home/govind/Desktop/git/qoco/src/kkt.c File Reference

#include "kkt.h"
#include "utils.h"

Include dependency graph for kkt.c:

Functions

void allocate_kkt (QOCOWorkspace *work)

Allocate memory for KKT matrix.

void construct_kkt (QOCOSolver *solver)

Constructs upper triangular part of KKT matrix with -I for Nestrov-Todd scaling matrix (the (3,3) block)

void initialize_ipm (QOCOSolver *solver)

Gets initial values for primal and dual variables such that $(s,z) \in C$.

void set nt block zeros (QOCOWorkspace *work)

Set the Nesterov-Todd block to be zeros. Used prior to compute_kkt_residual().

void update_nt_block (QOCOSolver *solver)

Updates and regularizes Nesterov-Todd scaling block of KKT matrix.

void compute_kkt_residual (QOCOSolver *solver)

Computes residual of KKT conditions and stores in work->kkt->rhs.

void construct_kkt_aff_rhs (QOCOWorkspace *work)

Constructs rhs for the affine scaling KKT system. Before calling this function, work->kkt->kktres must contain the residual of the KKT conditions as computed by compute kkt residual().

void construct_kkt_comb_rhs (QOCOWorkspace *work)

Constructs rhs for the combined direction KKT system. Before calling this function, work->kkt->kktres must contain the negative residual of the KKT conditions as computed by compute_kkt_residual().

void predictor_corrector (QOCOSolver *solver)

Performs Mehrotra predictor-corrector step.

void kkt_solve (QOCOSolver *solver, QOCOFloat *b, QOCOInt iters)

Solves Kx = b once K has been factored. Solves via triangular solves and applies iterative refinement afterwards.

void kkt_multiply (QOCOSolver *solver, QOCOFloat *x, QOCOFloat *y)

Computes y = Kx where $[PA^{\wedge}TG^{\wedge}T]K = |A00|[G0-W'W-e*I]$.

5.17.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.17.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.17.3 Function Documentation

5.17.3.1 allocate_kkt()

Allocate memory for KKT matrix.

Parameters

work Pointer to workspace.

5.17.3.2 compute_kkt_residual()

```
void compute_kkt_residual (
```

```
QOCOSolver * solver )
```

Computes residual of KKT conditions and stores in work->kkt->rhs.

clang-format off

```
[ P A^T G^T ] [ x ] [ c ]
```

res = |A 0 0| |y| + |-b| [G 0 0] [z] [-h + s]

clang-format on

Parameters

solver	Pointer to solver.
--------	--------------------

5.17.3.3 construct_kkt()

Constructs upper triangular part of KKT matrix with -I for Nestrov-Todd scaling matrix (the (3,3) block)

clang-format off

```
[PA^TG^T]
```

K = |A 0 0|[G 0 - I]

clang-format on

Parameters

solver	Pointer to solver
00,10,	1 0111101 10 001101

5.17.3.4 construct_kkt_aff_rhs()

Constructs rhs for the affine scaling KKT system. Before calling this function, work->kkt->kktres must contain the residual of the KKT conditions as computed by compute_kkt_residual().

Parameters

work	Pointer to workspace.

5.17.3.5 construct_kkt_comb_rhs()

Constructs rhs for the combined direction KKT system. Before calling this function, work->kkt->kktres must contain the negative residual of the KKT conditions as computed by compute_kkt_residual().

Parameters

work Pointer to workspace.

 $\label{eq:ds = -cone_product(W' \ Dsaff), (W * Dzaff), pdata) + sigma * mu * e.} \\ * cone_product((W' \setminus Dsaff), (W * Dzaff), pdata) + sigma * mu * e.} \\$

5.17.3.6 initialize_ipm()

Gets initial values for primal and dual variables such that $(s,z) \in C$.

Parameters

```
solver Pointer to solver.
```

5.17.3.7 kkt_multiply()

Computes y = Kx where [$P A^T G^T$] K = |A 0 0| [G 0 - WW - e * I].

Parameters

solver	Pointer to solver.
X	Pointer to input vector.
У	Pointer to output vector.

5.17.3.8 kkt_solve()

Solves Kx = b once K has been factored. Solves via triangular solves and applies iterative refinement afterwards.

Parameters

solver	Pointer to solver.
b	Pointer to rhs of kkt system.
iters	Number of iterations of iterative refinement performed.

5.17.3.9 predictor_corrector()

Performs Mehrotra predictor-corrector step.

Parameters

solver Pointer to solv	er.
------------------------	-----

5.17.3.10 set_nt_block_zeros()

Set the Nesterov-Todd block to be zeros. Used prior to compute_kkt_residual().

Parameters

```
work Pointer to workspace.
```

5.17.3.11 update_nt_block()

Updates and regularizes Nesterov-Todd scaling block of KKT matrix.

[P A^T G^T]

K = | A 0 0 | [G 0 -W'W - e * I]

Parameters

solver | Pointer to solver.

5.18 /home/govind/Desktop/git/qoco/src/linalg.c File Reference

#include "linalg.h"
Include dependency graph for linalg.c:

Functions

QOCOCscMatrix * new_qoco_csc_matrix (const QOCOCscMatrix *A)
 Allocates a new csc matrix and copies A to it.

QOCOCscMatrix * construct_identity (QOCOInt n, QOCOFloat lambda)

Allocates a new csc matrix that is lambda * I.

void free goco csc matrix (QOCOCscMatrix *A)

Frees all the internal arrays and the pointer to the QOCOCscMatrix. Should only be used if QOCOCscMatrix and all internal arrays were malloc'ed.

void copy_arrayf (const QOCOFloat *x, QOCOFloat *y, QOCOInt n)

Copies array of QOCOFloats from x to array y.

void copy_and_negate_arrayf (const QOCOFloat *x, QOCOFloat *y, QOCOInt n)

Copies and negates array of QOCOFloats from x to array y.

void copy_arrayi (const QOCOInt *x, QOCOInt *y, QOCOInt n)

Copies array of QOCOInts from x to array y.

QOCOFloat dot (const QOCOFloat *u, const QOCOFloat *v, QOCOInt n)

Computes dot product of u and v.

QOCOInt max_arrayi (const QOCOInt *x, QOCOInt n)

Computes maximum element of array of QOCOInts.

void scale_arrayf (const QOCOFloat *x, QOCOFloat *y, QOCOFloat s, QOCOInt n)

Scales array x by s and stores result in y. y = s * x.

void axpy (const QOCOFloat *x, const QOCOFloat *y, QOCOFloat *z, QOCOFloat a, QOCOInt n)

Computes z = a * x + y.

void USpMv (const QOCOCscMatrix *M, const QOCOFloat *v, QOCOFloat *r)

Sparse matrix vector multiplication for CSC matrices where M is symmetric and only the upper triangular part is given. Computes r = M * v.

void SpMv (const QOCOCscMatrix *M, const QOCOFloat *v, QOCOFloat *r)

Sparse matrix vector multiplication for CSC matrices. Computes r = M * v.

void SpMtv (const QOCOCscMatrix *M, const QOCOFloat *v, QOCOFloat *r)

Sparse matrix vector multiplication for CSC matrices where M is first transposed. Computes $r = M^{\wedge} T * v$.

QOCOFloat inf norm (const QOCOFloat *x, QOCOInt n)

Computes the infinity norm of x.

QOCOInt regularize (QOCOCscMatrix *M, QOCOFloat lambda, QOCOInt *nzadded_idx)

Adds lambda * I to a CSC matrix. Called on P prior to construction of KKT system in qoco_setup(). This function calls realloc() when adding new nonzeros.

void unregularize (QOCOCscMatrix *M, QOCOFloat lambda)

Subtracts lambda * I to a CSC matrix. Called on P when updating matrix data in update_matrix_data(). This function does not allocate and must be called after regularize.

void col_inf_norm_USymm (const QOCOCscMatrix *M, QOCOFloat *norm)

Computes the infinity norm of each column (or equivalently row) of a symmetric sparse matrix M where only the upper triangular portion of M is given.

void row inf norm (const QOCOCscMatrix *M, QOCOFloat *norm)

Computes the infinity norm of each row of M and stores in norm.

QOCOCscMatrix * create_transposed_matrix (const QOCOCscMatrix *A)

Allocates and computes $A^{\wedge}T$.

void row_col_scale (const QOCOCscMatrix *M, QOCOFloat *E, QOCOFloat *D)

Scales the rows of M by E and columns of M by D. M = diag(E) * M * diag(S)

• void ew_product (QOCOFloat *x, const QOCOFloat *y, QOCOFloat *z, QOCOInt n)

Computes elementwise product z = x .* y.

void invert_permutation (const QOCOInt *p, QOCOInt *pinv, QOCOInt n)

Inverts permutation vector p and stores inverse in pinv.

QOCOInt cumsum (QOCOInt *p, QOCOInt *c, QOCOInt n)

Computes cumulative sum of c.

QOCOCscMatrix * csc_symperm (const QOCOCscMatrix *A, const QOCOInt *pinv, QOCOInt *AtoC)

C = A(p,p) = PAP' where A and C are symmetric and the upper triangular part is stored.

5.18.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.18.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.18.3 Function Documentation

5.18.3.1 axpy()

Computes z = a * x + y.

Parameters

Х	Input vector.
у	Input vector.
Z	Result vector.
а	Scaling factor.
n	Length of vectors.

5.18.3.2 col_inf_norm_USymm()

Computes the infinity norm of each column (or equivalently row) of a symmetric sparse matrix M where only the upper triangular portion of M is given.

Parameters

M Upper triangular part of sparse symmet	Upper triangular part of sparse symmetric matrix.
norm	Result vector of length n.

5.18.3.3 construct_identity()

```
QOCOCscMatrix* construct_identity (
          QOCOInt n,
          QOCOFloat lambda )
```

Allocates a new csc matrix that is lambda \ast I.

Parameters

n	Size of identity matrix.
lambda	Scaling factor for identity.

Returns

Pointer to new constructed matrix.

5.18.3.4 copy_and_negate_arrayf()

Copies and negates array of QOCOFloats from x to array y.

Parameters

X	Source array.
У	Destination array.
n	Length of arrays.

5.18.3.5 copy_arrayf()

Copies array of QOCOFloats from x to array y.

Parameters

Х	Source array.
у	Destination array.
n	Length of arrays.

5.18.3.6 copy_arrayi()

Copies array of QOCOInts from x to array y.

Parameters

X	Source array.
У	Destination array.
n	Length of arrays.

5.18.3.7 create_transposed_matrix()

Allocates and computes $A^{\wedge}T$.

Parameters

```
A Input matrix.
```

5.18.3.8 csc_symperm()

C = A(p,p) = PAP' where A and C are symmetric and the upper triangular part is stored.

Parameters

Α	
pinv	
AtoC	

Returns

QOCOCscMatrix*

5.18.3.9 cumsum()

Computes cumulative sum of c.

Returns

Cumulative sum of c.

5.18.3.10 dot()

```
QOCOFloat dot (  {\tt const\ QOCOFloat\ *\ u,}   {\tt const\ QOCOFloat\ *\ v,}   {\tt QOCOInt\ } n\ )
```

Computes dot product of u and v.

Parameters

и	Input vector.
V	Input vector.
n	Length of vectors.

Returns

Dot product of u and v.

5.18.3.11 ew_product()

Computes elementwise product z = x .* y.

Parameters

X	Input array.
У	Input array.
Z	Output array.
n	Length of arrays.

5.18.3.12 free_qoco_csc_matrix()

Frees all the internal arrays and the pointer to the QOCOCscMatrix. Should only be used if QOCOCscMatrix and all internal arrays were malloc'ed.

Parameters

```
A Pointer to QOCOCscMatrix.
```

5.18.3.13 inf_norm()

Computes the infinity norm of x.

Parameters

Х	Input vector.
n	Length of input vector.

Returns

Infinity norm of x.

5.18.3.14 invert_permutation()

Inverts permutation vector p and stores inverse in pinv.

Parameters

р	Input permutation vector.
pinv	Inverse of permutation vector.
n	Length of vectors.

5.18.3.15 max_arrayi()

```
QOCOInt max_arrayi (  {\tt const\ QOCOInt\ *\ x,}  QOCOInt n )
```

Computes maximum element of array of QOCOInts.

Parameters

X	Input array.
n	Length of array.

Returns

Maximum element of x.

5.18.3.16 new_qoco_csc_matrix()

Allocates a new csc matrix and copies A to it.

Parameters

```
A Matrix to copy.
```

Returns

Pointer to new constructed matrix.

5.18.3.17 regularize()

```
QOCOInt regularize (
          QOCOCscMatrix * M,
           QOCOFloat lambda,
          QOCOInt * nzadded_idx )
```

Adds lambda * I to a CSC matrix. Called on P prior to construction of KKT system in qoco_setup(). This function calls realloc() when adding new nonzeros.

Parameters

М	Matrix to be regularized.
lambda	Regularization factor.
nzadded_idx	Indices of elements of M->x that are added.

Returns

Number of nonzeros added to M->x.

5.18.3.18 row_col_scale()

Scales the rows of M by E and columns of M by D. M = diag(E) * M * diag(S)

Parameters

М	An m by n sparse matrix.
Ε	Vector of length m.
D	Vector of length m.

5.18.3.19 row_inf_norm()

Computes the infinity norm of each row of M and stores in norm.

Parameters

М	An m by n sparse matrix.
norm	Result vector of length m.

5.18.3.20 scale_arrayf()

Scales array x by s and stores result in y. y = s * x.

Parameters

Х	Input array.
У	Output array.
s	Scaling factor.
n	Length of arrays.

5.18.3.21 SpMtv()

Sparse matrix vector multiplication for CSC matrices where M is first transposed. Computes $r = M^{\wedge}T * v$.

Parameters

М	Matrix in CSC form.
V	Vector.
r	Result.

5.18.3.22 SpMv()

```
const QOCOFloat * v, QOCOFloat * r)
```

Sparse matrix vector multiplication for CSC matrices. Computes r = M * v.

Parameters

М	Matrix in CSC form.	
V	Vector.	
r	Result.	

5.18.3.23 unregularize()

Subtracts lambda * I to a CSC matrix. Called on P when updating matrix data in update_matrix_data(). This function does not allocate and must be called after regularize.

Parameters

М	Matrix.
lambda	Regularization.

5.18.3.24 USpMv()

Sparse matrix vector multiplication for CSC matrices where M is symmetric and only the upper triangular part is given. Computes r = M * v.

Parameters

М	Upper triangular part of M in CSC form.
V	Vector.
r	Result.

5.19 /home/govind/Desktop/git/qoco/src/qoco_api.c File Reference

```
#include "qoco_api.h"
```

#include "amd.h"

Include dependency graph for qoco_api.c:

Functions

QOCOInt qoco_setup (QOCOSolver *solver, QOCOInt n, QOCOInt m, QOCOInt p, QOCOCscMatrix *P, QOCOFloat *c, QOCOCscMatrix *A, QOCOFloat *b, QOCOCscMatrix *G, QOCOFloat *h, QOCOInt I, QOCOInt nsoc, QOCOInt *q, QOCOSettings *settings)

Allocates all memory needed for QOCO to solve the SOCP.

 void qoco_set_csc (QOCOCscMatrix *A, QOCOInt m, QOCOInt n, QOCOInt Annz, QOCOFloat *Ax, QOCOInt *Ap, QOCOInt *Ai)

Sets the data for a compressed sparse column matrix.

void set default settings (QOCOSettings *settings)

Set the default settings struct.

- QOCOInt qoco_update_settings (QOCOSolver *solver, const QOCOSettings *new_settings)
 Updates settings struct.
- void update_vector_data (QOCOSolver *solver, QOCOFloat *cnew, QOCOFloat *bnew, QOCOFloat *hnew)

 Updates data vectors. NULL can be passed in for any vector if that data will not be updated.
- void update_matrix_data (QOCOSolver *solver, QOCOFloat *Pxnew, QOCOFloat *Axnew, QOCOFloat *Gxnew)

Updates data matrices. NULL can be passed in for any matrix data pointers if that matrix will not be updated. It is assumed that the new matrix will have the same sparsity structure as the existing matrix.

QOCOInt goco solve (QOCOSolver *solver)

Solves SOCP.

QOCOInt qoco_cleanup (QOCOSolver *solver)

Frees all memory allocated by qoco_setup.

5.19.1 Detailed Description

Author

Govind M. Chari govindchari1@gmail.com

5.19.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.19.3 Function Documentation

5.19.3.1 qoco_cleanup()

Frees all memory allocated by qoco_setup.

Parameters

Iver Pointer to solver.

Returns

Exitflag to check (0 for success, failure otherwise)

5.19.3.2 qoco_set_csc()

Sets the data for a compressed sparse column matrix.

Parameters

Α	Pointer to the CSC matrix.	
m	Number of rows in the matrix.	
n	Number of columns in the matrix.	
Annz	Number of nonzero elements in the matrix.	
Ax	Array of data for the matrix.	
Ар	Array of column pointers for the data.	
Ai	Array of row indices for data.	

5.19.3.3 qoco_setup()

Allocates all memory needed for QOCO to solve the SOCP.

Parameters

solver	Pointer to solver.	
n	Number of optimization variables.	
m	Number of conic constraints.	
р	Number of affine equality constraints.	
Р	Upper triangular part of quadratic cost Hessian in CSC form.	
С	Linear cost vector.	
Α	Affine equality constraint matrix in CSC form.	
b	Affine equality constraint offset vector.	
G	Conic constraint matrix in CSC form.	
h	Conic constraint offset vector.	
1	Dimension of non-negative orthant.	
nsoc	Number of second-order cones.	
q	Dimension of each second-order cone.	
settings	Settings struct.	

Returns

0 if no error or flag containing error code.

5.19.3.4 qoco_solve()

```
QOCOInt qoco_solve ( {\tt QOCOSolver} \ * \ solver \ )
```

Solves SOCP.

Parameters

solver Pointer to solver.	
---------------------------	--

Returns

Exitflag to check (0 for success, failure otherwise)

5.19.3.5 qoco_update_settings()

Updates settings struct.

Parameters

solver	Pointer to solver.
new_settings	New settings struct.

Returns

0 if update is successful.

5.19.3.6 set_default_settings()

Set the default settings struct.

Parameters

settings	Pointer to settings struct.
----------	-----------------------------

5.19.3.7 update_matrix_data()

```
QOCOFloat * Pxnew,
QOCOFloat * Axnew,
QOCOFloat * Gxnew )
```

Updates data matrices. NULL can be passed in for any matrix data pointers if that matrix will not be updated. It is assumed that the new matrix will have the same sparsity structure as the existing matrix.

Parameters

solver	Pointer to solver.
Pxnew	New data for $P->x$.
Axnew	New data for A->x.
Gxnew	New data for G->x.

5.19.3.8 update_vector_data()

Updates data vectors. NULL can be passed in for any vector if that data will not be updated.

Parameters

solver	Pointer to solver.	
cnew	New c vector.	
bnew	New b vector.	
hnew	New h vector.	

5.20 /home/govind/Desktop/git/qoco/src/qoco_error.c File Reference

```
#include "qoco_error.h"
```

Include dependency graph for qoco_error.c:

Functions

• QOCOInt qoco_error (enum qoco_error_code error_code)

Function to print error messages.

5.20.1 Function Documentation

5.20.1.1 qoco_error()

Function to print error messages.

Parameters

error_code

Returns

Error code as an QOCOInt.

5.21 /home/govind/Desktop/git/qoco/src/timer_linux.c File Reference

#include "timer.h"
Include dependency graph for timer_linux.c:

Functions

- void start_timer (QOCOTimer *timer)
 - Starts timer and sets tic field of struct to the current time.
- void stop_timer (QOCOTimer *timer)

Stops timer and sets toc field of struct to the current time.

• QOCOFloat get_elapsed_time_sec (QOCOTimer *timer)

Gets time in seconds recorded by timer. Must be called after start_timer() and stop_timer().

5.21.1 Function Documentation

5.21.1.1 get_elapsed_time_sec()

Gets time in seconds recorded by timer. Must be called after start_timer() and stop_timer().

Parameters

timer Pointer to timer struct.

5.21.1.2 start_timer()

```
void start_timer (
          QOCOTimer * timer )
```

Starts timer and sets tic field of struct to the current time.

Parameters

timer | Pointer to timer struct.

5.21.1.3 stop_timer()

```
void stop_timer (
          QOCOTimer * timer )
```

Stops timer and sets toc field of struct to the current time.

Parameters

timer Pointer to timer struct.

$5.22 \quad / home/govind/Desktop/git/qoco/src/timer_macos.c \ File \ Reference$

```
#include "timer.h"
```

Include dependency graph for timer_macos.c:

Functions

- void start_timer (QOCOTimer *timer)
 - Starts timer and sets tic field of struct to the current time.
- void stop_timer (QOCOTimer *timer)
 - Stops timer and sets toc field of struct to the current time.
- QOCOFloat get_elapsed_time_sec (QOCOTimer *timer)

Gets time in seconds recorded by timer. Must be called after start_timer() and stop_timer().

5.22.1 Function Documentation

5.22.1.1 get_elapsed_time_sec()

Gets time in seconds recorded by timer. Must be called after start_timer() and stop_timer().

Parameters

timer Pointer to timer struct.

5.22.1.2 start_timer()

```
void start_timer (
          QOCOTimer * timer )
```

Starts timer and sets tic field of struct to the current time.

Parameters

timer Pointer to timer struct.

5.22.1.3 stop_timer()

```
void stop_timer (
          QOCOTimer * timer )
```

Stops timer and sets toc field of struct to the current time.

Parameters

timer Pointer to timer struct.

5.23 /home/govind/Desktop/git/qoco/src/utils.c File Reference

```
#include "utils.h"
```

Include dependency graph for utils.c:

Functions

void print_qoco_csc_matrix (QOCOCscMatrix *M)

Prints dimensions, number of nonzero elements, data, column pointers and row indices for a sparse matrix in CSC form.

void print_arrayf (QOCOFloat *x, QOCOInt n)

Prints array of QOCOFloats.

void print_arrayi (QOCOInt *x, QOCOInt n)

Prints array of QOCOInts.

void print_header (QOCOSolver *solver)

Prints QOCO header.

void log_iter (QOCOSolver *solver)

Print solver progress.

void print_footer (QOCOSolution *solution, enum qoco_solve_status status)

Prints QOCO footer.

unsigned char check_stopping (QOCOSolver *solver)

Checks stopping criteria. Before calling this function, work->kkt->rhs must contain the residual of the KKT conditions as computed by compute_kkt_residual().

void copy_solution (QOCOSolver *solver)

Copies data to QOCOSolution struct when solver terminates.

QOCOSettings * copy_settings (QOCOSettings *settings)

Allocates and returns a copy of the input settings struct.

5.23.1 Detailed Description

Author

```
Govind M. Chari govindchari1@gmail.com
```

5.23.2 LICENSE

Copyright (c) 2024, Govind M. Chari This source code is licensed under the BSD 3-Clause License

5.23.3 Function Documentation

5.23.3.1 check_stopping()

```
unsigned char check_stopping ( {\tt QOCOSolver} \ * \ solver \ )
```

Checks stopping criteria. Before calling this function, work->kkt->rhs must contain the residual of the KKT conditions as computed by compute kkt residual().

Parameters

solver	Pointer to solver.

Returns

1 if stopping criteria met and 0 otherwise.

5.23.3.2 copy_settings()

Allocates and returns a copy of the input settings struct.

Parameters

settings	Input struct.
----------	---------------

Returns

Pointer to constructed and copies settings struct.

5.23.3.3 copy_solution()

```
void copy_solution ( {\tt QOCOSolver} \ * \ solver \ )
```

Copies data to QOCOSolution struct when solver terminates.

Parameters

```
solver Pointer to solver.
```

5.23.3.4 log_iter()

Print solver progress.

Parameters

```
solver Pointer to solver.
```

5.23.3.5 print_arrayf()

Prints array of QOCOFloats.

Parameters

Χ	Pointer to array.
n	Number of elements in array.

5.23.3.6 print_arrayi()

Prints array of QOCOInts.

Parameters

Х	Pointer to array.
n	Number of elements in array.

5.23.3.7 print_footer()

Prints QOCO footer.

Parameters

solution	Pointer to solution struct.
status	Solve status.

5.23.3.8 print_header()

Prints QOCO header.

Parameters

solver Pointer to solver.

5.23.3.9 print_qoco_csc_matrix()

```
void print_qoco_csc_matrix (
```

QOCOCscMatrix * M)

Prints dimensions, number of nonzero elements, data, column pointers and row indices for a sparse matrix in CSC form.

Parameters

M Pointer to QOCOCscMatrix that will be printed.

Index

/hon	ne/govind/Desktop/git/qoco/include/cone.h, 29	bisection_search
/home/govind/Desktop/git/qoco/include/definitions.h, 37		cone.c, 84
/hon	ne/govind/Desktop/git/qoco/include/enums.h, 41	cone.h, 31
/hon	ne/govind/Desktop/git/qoco/include/equilibration.h,	bring2cone
	42	cone.c, 85
/hon	ne/govind/Desktop/git/qoco/include/input_validation.h,	cone.h, 32
	45	bwork
/hon	ne/govind/Desktop/git/qoco/include/kkt.h, 48	QOCOKKT, 9
	ne/govind/Desktop/git/qoco/include/linalg.h, 53	,
	ne/govind/Desktop/git/qoco/include/qoco.h, 66	С
	ne/govind/Desktop/git/qoco/include/qoco_api.h, 67	QOCOProblemData, 15
	ne/govind/Desktop/git/qoco/include/qoco_error.h, 72	check_stopping
	ne/govind/Desktop/git/qoco/include/structs.h, 73	utils.c, 122
	ne/govind/Desktop/git/qoco/include/timer.h, 75	utils.h, 79
	ne/govind/Desktop/git/qoco/include/utils.h, 77	col_inf_norm_USymm
	ne/govind/Desktop/git/qoco/src/cone.c, 82	linalg.c, 102
	ne/govind/Desktop/git/qoco/src/equilibration.c, 90	linalg.h, 56
	ne/govind/Desktop/git/goco/src/input validation.c,	compute centering
/11011	92	cone.c, 85
/hon	ne/govind/Desktop/git/qoco/src/kkt.c, 95	cone.h, 32
	ne/govind/Desktop/git/qoco/src/linalg.c, 100	compute_kkt_residual
	ne/govind/Desktop/git/qoco/src/qoco_api.c, 110	kkt.c, 96
	ne/govind/Desktop/git/qoco/src/qoco_api.c, 110	kkt.h, 50
	ne/govind/Desktop/git/qoco/src/timer_linux.c, 117	compute_mu
	ne/govind/Desktop/git/qoco/src/timer_macos.c, 117	cone.c, 85
		cone.h, 32
/11011	ne/govind/Desktop/git/qoco/src/utils.c, 120	compute_nt_scaling
Α		cone.c, 86
^	QOCOProblemData, 15	cone.h, 32
2	QOOT TOBIETIDATA, TO	cone.c
а	QOCOWorkspace, 24	bisection_search, 84
abst	·	bring2cone, 85
ausi		compute_centering, 85
ahat	QOCOSettings, 17 ol_inacc	
ausi	QOCOSettings, 17	compute_mu, 85
ماامد	•	compute_nt_scaling, 86
alloc	cate_kkt	cone_division, 86
	kkt.c, 96	cone_product, 86
۸.	kkt.h, 50	cone_residual, 87
At	00000 11 0 1 45	exact_linesearch, 87
	QOCOProblemData, 15	linesearch, 88
Atok		nt_multiply, 88
	QOCOKKT, 9	soc_division, 89
axpy		soc_product, 89
	linalg.c, 102	soc_residual, 89
	linalg.h, 56	soc_residual2, 90
L		cone.h
b	0000Dushlam Data 45	bisection_search, 31
L :	QOCOProblemData, 15	bring2cone, 32
bise	ct_iters	compute_centering, 32
	QOCOSettings, 18	compute mu 32

compute_nt_scaling, 32	data
cone_division, 33	QOCOWorkspace, 24
cone_product, 33	definitions.h
cone_residual, 34	qoco_abs, 39
exact_linesearch, 34	qoco_assert, 39
linesearch, 35	qoco_calloc, 39
nt_multiply, 35	qoco_free, 39
soc_division, 36	qoco_malloc, 39
soc_product, 36	qoco_max, 40
soc_residual, 36	qoco_min, 40
soc_residual2, 37	qoco_sqrt, 40
cone_division	QOCOFloat MAX 40
cone.c, 86	QOCOFloat_MAX, 40 QOCOInt, 41
cone.h, 33	QOCOInt, 41 QOCOInt_MAX, 40
cone_product cone.c, 86	safe_div, 40
cone.h, 33	delta
cone_residual	QOCOKKT, 10
cone.c, 87	Dinv
cone.h, 34	QOCOKKT, 10
construct identity	Dinvruiz
linalg.c, 103	QOCOKKT, 10
linalg.h, 57	dot
construct_kkt	linalg.c, 105
kkt.c, 97	linalg.h, 59
kkt.h, 50	dres
construct_kkt_aff_rhs	QOCOSolution, 19
kkt.c, 97	Druiz
kkt.h, 51	QOCOKKT, 10
construct_kkt_comb_rhs	Ds
kkt.c, 98	QOCOWorkspace, 24
kkt.h, 51	
copy_and_negate_arrayf	Einvruiz
linalg.c, 103	QOCOKKT, 10
linalg.h, 57	enums.h
copy_arrayf	QOCO_AMD_ERROR, 42
linalg.c, 103	QOCO_DATA_VALIDATION_ERROR, 42 qoco error code, 41
linalg.h, 57	QOCO_MALLOC_ERROR, 42
copy_arrayi	QOCO_MAX_ITER, 42
linalg.c, 104	QOCO NO ERROR, 42
linalg.h, 58	QOCO NUMERICAL ERROR, 42
copy_settings	QOCO_SETTINGS_VALIDATION_ERROR, 42
utils.c, 122	QOCO SETUP ERROR, 42
utils.h, 80 copy_solution	qoco_solve_status, 42
utils.c, 123	QOCO_SOLVED, 42
utils.h, 80	QOCO SOLVED INACCURATE, 42
create_transposed_matrix	QOCO UNSOLVED, 42
linalg.c, 104	equilibration.c
linalg.h, 58	ruiz_equilibration, 91
csc_symperm	unscale_variables, 92
linalg.c, 104	equilibration.h
linalg.h, 58	ruiz_equilibration, 44
cumsum	unscale_variables, 44
linalg.c, 105	Eruiz
linalg.h, 59	QOCOKKT, 10
-	etree
D	QOCOKKT, 10
QOCOKKT, 10	ew_product

linalg.c, 105	QOCOKKT, 11
linalg.h, 60	kinv
exact_linesearch	QOCOKKT, 11
cone.c, 87	kkt
cone.h, 34	QOCOWorkspace, 24
,	kkt.c
Finvruiz	allocate_kkt, 96
QOCOKKT, 11	compute_kkt_residual, 96
free_qoco_csc_matrix	construct kkt, 97
linalg.c, 106	construct_kkt_aff_rhs, 97
linalg.h, 60	construct kkt comb rhs, 98
Fruiz	initialize_ipm, 98
QOCOKKT, 11	kkt_multiply, 98
fwork	kkt_solve, 98
QOCOKKT, 11	predictor_corrector, 99
	set_nt_block_zeros, 99
G	update_nt_block, 99
QOCOProblemData, 15	kkt.h
gap	allocate_kkt, 50
QOCOSolution, 19	compute_kkt_residual, 50
get_elapsed_time_sec	construct kkt, 50
timer.h, 76	construct_kkt_aff_rhs, 51
timer_linux.c, 117	construct_kkt_comb_rhs, 51
timer_macos.c, 119	initialize_ipm, 51
Gt	kkt_multiply, 52
QOCOProblemData, 15	kkt_solve, 52
GtoKKT	predictor_corrector, 52
QOCOKKT, 11	set_nt_block_zeros, 53
	update_nt_block, 53
h	• — —
QOCOProblemData, 15	kkt_dynamic_reg
	QOCOSettings, 18 kkt multiply
i	kkt.c, 98
QOCOCscMatrix, 7	
inf_norm	kkt.h, 52
linalg.c, 106	kkt_solve
linalg.h, 60	kkt.c, 98
initialize_ipm	kkt.h, 52
kkt.c, 98	kkt_static_reg
kkt.h, 51	QOCOSettings, 18
input_validation.c	kktres
qoco_validate_data, 94	QOCOKKT, 12
qoco_validate_settings, 94	1
input_validation.h	QOCOProblemData, 16
qoco_validate_data, 46	lambda
qoco_validate_settings, 47	QOCOWorkspace, 24
invert_permutation	Li
linalg.c, 107	QOCOKKT, 12
linalg.h, 61	linalg.c
iter_ref_iters	axpy, 102
QOCOSettings, 18	col_inf_norm_USymm, 102
iters	construct_identity, 103
QOCOSolution, 20	copy_and_negate_arrayf, 103
iwork	copy_arrayf, 103
QOCOKKT, 11	copy_arrayi, 104
	create_transposed_matrix, 104
K	csc_symperm, 104
QOCOKKT, 11	cumsum, 105
k	dot, 105
	act, 100

	ew_product, 105		QOCOSettings, 18
	free_qoco_csc_matrix, 106	mu	
	inf_norm, 106		QOCOWorkspace, 24
	invert_permutation, 107		
	max_arrayi, 107	n	
	new_qoco_csc_matrix, 107		QOCOCscMatrix, 8
	regularize, 108		QOCOProblemData, 16
	row_col_scale, 108	new	_qoco_csc_matrix
	row_inf_norm, 108		linalg.c, 107
	scale_arrayf, 109		linalg.h, 61
	SpMtv, 109	nnz	
	SpMv, 109		QOCOCscMatrix, 8
	unregularize, 110	nsoc	
	USpMv, 110		QOCOProblemData, 16
linal	g.h	nt2k	kt
	axpy, 56		QOCOKKT, 12
	col_inf_norm_USymm, 56	nt_n	nultiply
	construct_identity, 57		cone.c, 88
	copy_and_negate_arrayf, 57		cone.h, 35
	copy_arrayf, 57	ntdia	ag2kkt
	copy_arrayi, 58		QOCOKKT, 12
	create transposed matrix, 58		
	csc_symperm, 58	obj	
	cumsum, 59		QOCOSolution, 20
	dot, 59	_	
	ew_product, 60	Р	
	free_qoco_csc_matrix, 60		QOCOProblemData, 16
	inf_norm, 60	p	
	invert_permutation, 61		QOCOCscMatrix, 8
	max_arrayi, 61		QOCOKKT, 12
	new_qoco_csc_matrix, 61		QOCOProblemData, 16
	regularize, 62	pinv	
	row_col_scale, 62		QOCOKKT, 13
	row_inf_norm, 63	Pnui	m_nzadded
	scale arrayf, 63		QOCOKKT, 13
	SpMtv, 63	Pnza	added_idx
	SpMv, 65		QOCOKKT, 13
	unregularize, 65	pred	lictor_corrector
	USpMv, 65		kkt.c, 99
lings	earch		kkt.h, 52
111103	cone.c, 88	Preg	jtoKKT
	cone.h, 35		QOCOKKT, 13
Lnz	00110.11, 00	pres	
LIIZ	QOCOKKT, 12		QOCOSolution, 20
log_		print	_arrayf
log_	utils.c, 123		utils.c, 123
	utils.h, 80		utils.h, 80
Lp	utils.11, 00	print	_arrayi
ĽΡ	QOCOKKT, 12		utils.c, 124
Lx	QOCORRI, 12		utils.h, 81
LX	QOCOKKT, 12	print	_footer
	QOCORRI, 12		utils.c, 124
m			utils.h, 81
-	QOCOCscMatrix, 7	print	_header
	QOCOProblemData, 16		utils.c, 124
max	_arrayi		utils.h, 81
	linalg.c, 107	print	_qoco_csc_matrix
	linalg.h, 61		utils.c, 124
max	iters		utils.h, 82
····uʌ			

q	goco set csc
QOCOProblemData, 16	qoco_api.c, 112
qoco_abs	qoco_api.h, 69
definitions.h, 39	QOCO_SETTINGS_VALIDATION_ERROR
QOCO_AMD_ERROR	enums.h, 42
enums.h, 42	qoco_setup
qoco_api.c	qoco_api.c, 113
qoco_cleanup, 112	qoco_api.h, 69
qoco_set_csc, 112	QOCO SETUP ERROR
qoco_setup, 113	enums.h, 42
qoco_solve, 113	qoco_solve
qoco_update_settings, 114	qoco_api.c, 113
set_default_settings, 114	qoco_api.h, 70
update_matrix_data, 114	qoco_solve_status
update_vector_data, 115	enums.h, 42
• – –	QOCO_SOLVED
qoco_api.h	
qoco_cleanup, 68	enums.h, 42
qoco_set_csc, 69	QOCO_SOLVED_INACCURATE
qoco_setup, 69	enums.h, 42
qoco_solve, 70	qoco_sqrt
qoco_update_settings, 70	definitions.h, 40
set_default_settings, 71	QOCO_UNSOLVED
update_matrix_data, 71	enums.h, 42
update_vector_data, 71	qoco_update_settings
qoco_assert	qoco_api.c, 114
definitions.h, 39	qoco_api.h, 70
qoco_calloc	qoco_validate_data
definitions.h, 39	input_validation.c, 94
qoco_cleanup	input_validation.h, 46
qoco_api.c, 112	qoco_validate_settings
qoco_api.h, 68	input_validation.c, 94
QOCO_DATA_VALIDATION_ERROR	input_validation.h, 47
enums.h, 42	QOCOCscMatrix, 7
qoco_error	i, 7
qoco_error.c, 116	m, 7
qoco_error.h, 73	n, 8
qoco_error.c	nnz, 8
qoco_error, 116	p, 8
qoco_error.h	x, 8
qoco_error, 73	QOCOFloat
qoco_error_code	definitions.h, 41
enums.h, 41	QOCOFloat_MAX
qoco_free	definitions.h, 40
definitions.h, 39	QOCOInt
qoco_malloc	definitions.h, 41
definitions.h, 39	QOCOInt_MAX
QOCO_MALLOC_ERROR	definitions.h, 40
enums.h, 42	QOCOKKT, 8
qoco max	AtoKKT, 9
definitions.h, 40	bwork, 9
QOCO_MAX_ITER	D, 10
enums.h, 42	delta, 10
qoco_min	Dinv, 10
definitions.h, 40	Dinvruiz, 10
QOCO NO ERROR	Druiz, 10
enums.h, 42	Einvruiz, 10
QOCO NUMERICAL ERROR	Eruiz, 10
enums.h, 42	etree, 10
Gliulio.ii, 42	GII GG, 10

Finvruiz, 11	setup_time_sec, 20
Fruiz, 11	solve_time_sec, 20
fwork, 11	status, 20
GtoKKT, 11	x, 20
iwork, 11	y, 21
K, 11	z, 21
k, 11	QOCOSolver, 21
kinv, 11	settings, 22
kktres, 12	sol, 22
Li, 12	work, 22
Lnz, 12	QOCOWorkspace, 23
Lp, 12	a, 24
Lx, 12	data, 24
nt2kkt, 12	Ds, 24
ntdiag2kkt, 12	kkt, 24
p, 12	lambda, 24
pinv, 13	mu, 24
Pnum_nzadded, 13	s, 25
Pnzadded idx, 13	sbar, 25
<u> </u>	
PregtoKKT, 13	sigma, 25
rhs, 13	solve_timer, 25
xyz, 13	ubuff1, 25
xyzbuff1, 13	ubuff2, 25
xyzbuff2, 13	ubuff3, 25
QOCOProblemData, 14	W, 25
A, 15	Wfull, 26
At, 15	Winv, 26
b, 15	Winvfull, 26
c, 15	Wnnz, 26
G, 15	Wnnzfull, 26
Gt, 15	WtW, 26
h, 15	x, 26
I, 16	xbuff, 26
m, 16	y, 27
n, 16	ybuff, 27
nsoc, 16	z, 27
P, 16	zbar, 27
p, 16	
q, 16	regularize
QOCOSettings, 17	linalg.c, 108
abstol, 17	linalg.h, <mark>62</mark>
abstol_inacc, 17	reltol
bisect iters, 18	QOCOSettings, 18
iter_ref_iters, 18	reltol_inacc
kkt_dynamic_reg, 18	QOCOSettings, 18
kkt_static_reg, 18	rhs
max_iters, 18	QOCOKKT, 13
reltol, 18	row_col_scale
reltol_inacc, 18	linalg.c, 108
ruiz_iters, 18	linalg.h, 62
verbose, 19	row inf norm
QOCOSolution, 19	linalg.c, 108
dres, 19	linalg.h, 63
	ruiz_equilibration
gap, 19	equilibration.c, 91
iters, 20	equilibration.h, 44
obj, 20	ruiz iters
pres, 20	QOCOSettings, 18
s, 20	QUOUSERINGS, 10

S	start_timer, 77
QOCOSolution, 20	stop_timer, 77
QOCOWorkspace, 25	timer_linux.c
safe_div	get_elapsed_time_sec, 117
definitions.h, 40	start_timer, 118
sbar	stop_timer, 118
QOCOWorkspace, 25	timer_macos.c
scale_arrayf	get_elapsed_time_sec, 119
linalg.c, 109	start_timer, 120
linalg.h, 63	stop_timer, 120
set_default_settings	ubuff1
qoco_api.c, 114	QOCOWorkspace, 25
qoco_api.h, 71	ubuff2
set_nt_block_zeros	QOCOWorkspace, 25
kkt.c, 99	ubuff3
kkt.h, 53	QOCOWorkspace, 25
settings	unregularize
QOCOSolver, 22	linalg.c, 110
setup_time_sec	linalg.h, 65
QOCOSolution, 20	unscale_variables
sigma OOCOWorkenago 35	equilibration.c, 92
QOCOWorkspace, 25 soc division	equilibration.h, 44
-	update_matrix_data
cone.c, 89 cone.h, 36	qoco_api.c, 114
soc_product	qoco_api.h, 71
cone.c, 89	update_nt_block
cone.h, 36	kkt.c, 99
soc residual	kkt.h, 53
cone.c, 89	update_vector_data
cone.h, 36	qoco_api.c, 115
soc residual2	qoco_api.h, 71
cone.c, 90	USpMv
cone.h, 37	linalg.c, 110
sol	linalg.h, 65
QOCOSolver, 22	utils.c
solve_time_sec	check_stopping, 122
QOCOSolution, 20	copy_settings, 122
solve_timer	copy solution, 123
QOCOWorkspace, 25	log_iter, 123
SpMtv	print_arrayf, 123
linalg.c, 109	print_arrayi, 124
linalg.h, 63	print_footer, 124
SpMv	print_header, 124
linalg.c, 109	print_qoco_csc_matrix, 124
linalg.h, 65	utils.h
start_timer	check_stopping, 79
timer.h, 77	copy_settings, 80
timer_linux.c, 118	copy_solution, 80
timer_macos.c, 120	log_iter, 80
status	print_arrayf, 80
QOCOSolution, 20	print_arrayi, 81
stop_timer	print_footer, 81
timer.h, 77	print_header, 81
timer_linux.c, 118	print_qoco_csc_matrix, 82
timer_macos.c, 120	
	verbose
timer.h	QOCOSettings, 19
get_elapsed_time_sec, 76	

W	
	QOCOWorkspace, 25
Wful	•
vviui	•
	QOCOWorkspace, 26
Winv	/
	QOCOWorkspace, 26
١٨/:	•
Win	-
	QOCOWorkspace, 26
Wnn	Z
	QOCOWorkspace, 26
١٨/	•
vvnn	zfull
	QOCOWorkspace, 26
work	(
	QOCOSolver, 22
1 4 / 4 1 4	
WtW	
	QOCOWorkspace, 26
Х	
	QOCOCscMatrix, 8
	QOCOSolution, 20
	QOCOWorkspace, 26
xbuf	f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	QOCOWorkspace, 26
	QOCOVVOIKSPACE, 26
xyz	
	QOCOKKT, 13
xyzb	uff1
/\ <u>J</u> =-0	QOCOKKT, 13
	•
xyzb	
	QOCOKKT, 13
У	
,	00000001000000
	QOCOSolution, 21
	QOCOWorkspace, 27
ybuf	f
,	QOCOWorkspace, 27
	QOOOVIOINSpace, 27
Z	
	QOCOSolution, 21
	QOCOWorkspace, 27
zhor	
zbar	
	QOCOWorkspace, 27