Laboratorium Teorii Automatów				
Projektowanie układów sekwencyjnych w formie diagramów skończenie stanowych				
Grupa 4b (wtorek 17.15)	Sonia Wittek, Katarzyna Wątorska, Bartłomiej Mróz			

Wstęp teoretyczny

Celem ćwiczenia było zapoznanie się z koncepcją maszyny skończenie stanowej i nabycie umiejętności projektowania jej. Nauczyliśmy się także używać środowiska LabVIEW z zainstalowanym modułem programowym Statechart w celu zaprogramowania układu logicznego sbRIO-9636.

Przebieg laboratorium

Maszyna stanowa sterująca poziomem cieczy w zbiorniku

W ramach przygotowania do pracy nad innymi maszynami stanowymi odtworzyliśmy projekt opisany w konspekcie do zajęć.

Na podstawie powyższego diagramu stanowego stworzyliśmy połączenia w programie LabVIEW:

Tak zaprojektowana maszyna stanowa działała zgodnie z oczekiwaniami:

Automat sygnalizujący, że na wejściu nastąpiła sekwencja "000"

Na początku narysowaliśmy diagram przepływu stanów dla tego automatu:

Następnie odtworzyliśmy powyższy diagram w LabVIEW:

Po właściwym opisaniu przejść otrzymaliśmy działający automat:

Przejazd kolejowy z poprzednich laboratoriów

Tabela minimalna wejść i wyjść dla II wersji automatu:

Q\DB	00	01	11	10
1	1 , 0	-,-	-,-	2 3, 1
23	2 3 , 1	4 5,1	6 7, 1	2 3 , 1
4 5	4 5 , 0	4 5 , 1	67,1	67,0
6 7	1, 0	4 5, 1	67 , 1	67 , 0

Przy czym $D = A \lor C$

Diagram przepływu stanów dla przejazdu kolejowego dla automatu Mealy'ego.

Następnie odtworzyliśmy powyższy diagram w programie LabVIEW:

Po właściwym opisaniu przejść otrzymaliśmy działający automat:

Podsumowanie

Na tych laboratoriach nauczyliśmy się tworzyć maszyny stanowe – tworzyć diagramy przepływu stanów oraz zaznajomiliśmy się ze środowiskiem LabVIEW, jego obsługą i możliwościami jakie oferuje. Dowiedzieliśmy się jak definiować wejścia i wyjścia maszyny, oraz jak projektować warunki przejścia Guard i akcje przejścia Action.