Question number	Scheme	Marks
5 (a)	$4e^{4x}(6x+2)^{\frac{3}{2}} + \frac{3}{2} \cdot 6 \cdot e^{4x}(6x+2)^{\frac{1}{2}} = 4e^{4x}(6x+2)^{\frac{3}{2}} + 9e^{4x}(6x+2)^{\frac{1}{2}}$	M1 A1 A1
	$e^{4x}\sqrt{6x+2}(24x+17)$	dM1 A1 [5]
(b)	$\frac{3\cos 3x(2x-4)^3 - \sin 3x \cdot 2 \cdot 3 \cdot (2x-4)^2}{\left[(2x-4)^3\right]^2} = \left[\frac{3\cos 3x(2x-4)^3 - 6\sin 3x(2x-4)^2}{(2x-4)^6}\right]$	M1 A1 A1
	OR $\frac{3\cos 3x(2x-4)^3 - (24x^2 - 96x + 96)\sin 3x}{(2x-4)^6}$	
	ALT using product rule $\sin 3x(2x-4)^{-3}$	
	$3\cos 3x(2x-4)^{-3} + \sin 3x(-3)(2)(2x-4)^{-4} = \left[3\cos 3x(2x-4)^{-3} - 6\sin 3x(2x-4)^{-4}\right]$	M1 A1 A1 [3]
	Total	8 marks

Part	Mark	Additional Guidance	
(a)		$\frac{3}{2}$	
	M1	Use of product rule to give an expression of the form $pe^{4x}(6x+2)^{\frac{3}{2}} + qe^{4x}(6x+2)^{\frac{1}{2}}$	
		where $p = 1$ or 4, $q > 1$. There must be a + sign between terms.	
	A1	Either term correct. Note that simplification is not required for this mark.	
	A1	Both terms correct. Note that simplification is not required for this mark.	
	dM1	Obtains an expression of the form $e^{4x} \left(\sqrt{6x+2} \right) (Ax+B)$ where $A, B \neq 0$ You must check their working here that it follows from their attempt at product	
	GIVII	rule. There must be an intermediate step seen as follows for example:	
		$4e^{4x}(6x+2)^{\frac{3}{2}} + 9e^{4x}(6x+2)^{\frac{1}{2}} = e^{4x}(6x+2)^{\frac{1}{2}} \left(4(6x+2)+9\right)$	
		Note: This mark is dependent on the first M Mark	
	A1	Correct $A = 24$ and correct $B = 17$	
(b)		Attempt at the quotient rule. Numerator must be the difference of two terms (either way	
		round) of the form $k \cos 3x(2x-4)^3 - l \sin 3x(2x-4)^2$, $k = \pm 3$ $l \ge 3$	
	M1	OR accept: (terms wrong way around) $l\sin 3x(2x-4)^2 - k\cos 3x(2x-4)^3$, $k = \pm 3$ $l \ge 3$	
		Denominator must be of the form $(2x-4)^6$ or accept $\left[(2x-4)^3\right]^2$	
	A1	Either term correct, either way round.	
	A1	Fully correct	
	ALT		
		Use of product rule to give an expression of the form	
	M1	$k\cos 3x(2x-4)^{-3} - l\sin 3x(2x-4)^{-4}, k = \pm 3 l \geqslant 3$	
		Accept for this mark $l \sin 3x(2x-4)^{-4} - k \cos 3x(2x-4)^{-3}$	
	A1	Either term correct.	
	A1	Fully correct	
	NB: Ignore any subsequent simplification of their derivative.		