Algorytmy numeryczne - zadanie 3 Metoda ALS w systemach rekomendacji

Sposób obliczeń

- Obliczenia przeprowadzono w programie napisanym w języku Python 3.8.
- Do obliczeń wykorzystano typy float64 (nazywanym dalej double) z biblioteki Numpyversji 1.18.0rc1
- W obliczeniach brano pod uwagę jedynie produkty dla których istniało przynajmniej siedem ocen w przypadku zbioru średniego i dużego i dwie oceny dla zbioru małego
- W celu parsowania danych wykorzystywano biblioteki Numpy Pandas
- W wyniku wyselekcjonowania danych nie istnieje możliwość predykcji dla produktów bądź klientów bez ocen bądź z ich nieodpowiednią ilością

ZASTOSOWANIE ALGORYTMU ALS I JEGO EFEKTY

Wyniki

Rys.1. Wartość funkcji celu w zalżności od ilości powtórzeń algorytmu

Analiza wyników i wnioski

Dla każdego zbioru danych zastosowanie algorytmu ALS daje podobne rezultaty. Wstępnie wartości ulegają znacznemu spadkowi. Wraz z kolejnymi powtórzeniami tempo spadku wartości ulega zmniejszeniu.

Dla d = 2 i $\lambda = 0.3$ po 40 iteracjach zauważalna jest stabilizacja wartości, niezależnie od rozmiaru zbioru danych. Większe zbiory wymagają niewiele więcej powtórzeń do uzykania stabilności niż małe zbiory.

WPŁYW OBRANYCH PARAMETRÓW NA WYNIKI

Wyniki

Rys.2. Wartość funkcji celu w zalżności od iteracji algorytmu dla kolejnych wartości d i dla λ = 0.1

Rys.3. Wartość funkcji celu w zalżności od iteracji algorytmu dla kolejnych wartości d i dla $\lambda=1$

Analiza wyników i wnioski

Wraz ze wzrostem wartości parametru d, stabilizacja wartości następuje szybciej, natomiast wzrost wartości parametru λ powoduje opóźnienie stabilizacji wartości.

WPŁYW PARAMETRU D NA JAKOŚĆ STWORZONYCH REKOMENDACJI I CZAS OBLICZEŃ

Wyniki

Rys.4. Wartość procentowa określająca przekroczenie zakresu wyników predykcji w zależności od wartości parametrów d i λ

Rys.5. Czas wykonywania obliczeń w zależności od parametru d dla kolejnych wartości parametru d dla różneh wielkości zbiorów dla 50 powtórzeń algorytmu ALS

Rys.6. Zależność między błędem bezwzględnym przewydywań, a wartościami parametru d dla kolejno większych zbiorów danych.

Analiza wyników i wnioski

Rys.4

Wraz ze wzrostem wartości parametru d, następuje wzrost jakości (dokładności) rekomendacji. Wzrost wartości współczynnika λ również powoduje wzrost jakości (dokładności) rekomendacji. Poniższe testy zostały przeprowadzone dla średniego zbioru danych wejściowych (205 produktów). Ilość iteracji algorytmu – 300. Rekomendacje są uznawane za niedokładne gdy są mniejsze od 0.5 lub większe od 5

Rys.5

Wraz ze wzrostem parametru d, rośnie średni czas obliczeń metody ALS. Wyniki zagregowano w 50 elementowe zbiory.

Rys.6

Dalsze zwiększanie wartości parametru d, nie przynosi żadnych dodatkowych korzyści. Poniższy wykres przedstawia błąd bezwzględny predykcji w zależności od wartości parametru d.