Homework 2

Samuel Lindskog

September 6, 2024

Problem 1

1. Show that f_n converges to 0 pointwisely

Proof: For all x in (0,1), for all real $\epsilon > 0$ there exists an integer $N = \lceil \log_x \epsilon \rceil$ such that for all integers n > N we have $d(x^n, 0) < \epsilon$.

2. Does f_n converge to 0 uniformly?

Proof: No. Suppose to the contrary that $\{f_n\}$ converges uniformly. Then $\forall \epsilon > 0, \exists N \in \mathbb{Z}$ such that n > N implies $\forall x \in X, d(f_n(x), 0) < \epsilon$. But there exists ϵ in (0, 1) such that $\forall N \in \mathbb{Z}$, there exists $x_n = \epsilon^{1/(n+1)}$ with n > 0, N such that $(x_n)^n > \epsilon$.

Problem 2

Let Y be a subspace of X and let S be a subset of Y. show that the closure of S in Y coincides with $\overline{S} \cap Y$ where \overline{S} is the closure of S in X.

Proof: Suppose y is in the closure of S in Y. Then for all r > 0 there exists $B(y,r) \cap S \neq 0$. Then a sequence $\{y_n\}_{n=1}^{\infty}$ exists with $y_n \in Y$ such that $\forall r > 0$ there exists $N \in \mathbb{N}$ such that n > N implies $d(y_n, y) < r$. Therefore $\{y_n\}$ is a sequence in Y which converges to y and following theorem 1.11, because $y \in X$ this implies $y \in \overline{S} \land y \in Y$, which is logically equivalent to $y \in \overline{S} \cap Y$.

Problem 3

A sequence $\{x_k\}_{k=1}^{\infty}$ in a metric space (X,d) is a fast cauchy sequence if

$$\sum_{k=1}^{\infty} d(x_k, x_{k+1}) < \infty.$$

Show that a fast Cauchy sequence is a Cauchy sequence.

Proof: If $\{x_k\}_{k=1}^{\infty}$ a fast sequence then the sum of all x_k is a finite real number. Then there exists $a \in \mathbb{R}$ with a > 0, and $N \in \mathbb{N}$ such that

$$a - \lim_{n \to \infty} \sum_{k=1}^{n} d(x_k, x_{k+1}) = 0$$
 (1)

$$a - \sum_{k=1}^{N} d(x_k, x_{k+1}) = \lim_{n \to \infty} \sum_{N+1}^{n} d(x_k, x_{k+1}).$$
 (2)

It follows from the definition of a metric that for $l, m \in \mathbb{N}$ with l, m > N

$$a - \sum_{k=1}^{N} d(x_k, x_{k+1}) \ge d(x_l, x_m). \tag{3}$$

Following equation one, we can establish that for all $\epsilon > 0$, with $\epsilon > a - \sum_{k=1}^{N} d(x_k, x_{k+1})$, there exists N such that l, m > N implies $d(x_l, x_m) < \epsilon$, and thus $\{x_k\}$ is Cauchy.