Chapter One Introduction to Pipelined Processors

Principle of Designing Pipeline Processors

(Design Problems of Pipeline Processors)

Shortcut Method of finding Latency

Forbidden Latency Set,F = {5} U {2} U {2}= { 2,5}

 The initial collision vector (ICV) is a binary vector formed from F such that

$$C = (C_n C_2 C_1)$$

where $C_i = 1$ if $i \in F$ and $C_i = 0$ if otherwise

Thus in our example

- The procedure is as follows:
- 1. Start with the ICV
- For each unprocessed state,
 For each bit i in the CV_i which is 0, do the following:
- a. Shift CV_i right by i bits
- b. Drop i rightmost bits

- c. Append zeros to left
- d. Logically OR with ICV
- e. If step(d) results in a new state then form a new node for this state and join it with node of CV_i by an arc with a marking i.
- This shifting process needs to continue until no more new states can be generated.

10010

$$ICV - 10010$$
 OR $CV_i - \underline{00001}$ CV* 10011

$$ICV - 10010$$
 OR $CV_i - \underline{00000}$ $CV^* 10010$

$$ICV - 10010$$
 OR $CV_i - \underline{00010}$ CV* 10010

$$ICV - 10010$$
 OR $CV_i - \underline{00001}$ CV* 10011

ICV - 10010 OR

 $CV_i - 00011$

CV* 10011

ICV - 10010 OR

 $CV_i - \underline{00000}$

CV* 10010

$$i = 5$$

ICV - 10010 OR

 $CV_i - \underline{00000}$

CV* 10010

- The state with all zeros has a self-loop which corresponds to empty pipeline and it is possible to wait for indefinite number of latency cycles of the form (7),(8), (9),(10) etc.
- Simple Cycle: latency cycle in which each state is encountered only once.
- Complex Cycle: consists of more than one simple cycle in it.
- It is enough to look for simple cycles

- Greedy Cycle: A simple cycle is a greedy cycle if each latency contained in a cycle is the minimal latency(outgoing arc) from a state in the cycle.
- A good task initiation sequence should include the greedy cycle.

Simple cycles & Greedy cycles

- The Simple cycles are?
- The Greedy cycles are ?

Simple cycles & Greedy cycles

- The simple cycles are (3),(5),(1,3,3),(4,3) and
 (4)
- The Greedy cycle is (1,3,3)

In the above example, the cycle that offers MAL is (1, 3, 3) (MAL = (1+3+3)/3 = 2.333)

	1	2	3	4	5	6	7	8	9	10	11	12	13
Sa	A_1	A_2			A ₅	A ₁	A_2	A ₈		A ₅			A ₈
Sb		A_1	A_2	A_1	A_2	A ₅		A ₅	A ₈		A ₈		
Sc			A ₁				A ₅		A ₅	A ₈		A ₈	

UQ: Problem

Consider the reservation table given below

	1	2	3	4	5	6	7	8	9
S_1	X								X
S_2		X	Х					Х	
S_3				Х					
S ₄					X	X			
S_5							X	X	

Problem

- i. Find the forbidden set of latencies
- State the collision vector
- iii. Draw the state transition diagram
- iv. List simple cycles and greedy cycles
- v. Calculate MAL (minimum average latency)