

دانشگاه شاهد دانشکده فنی و مهندسی گروه برق - کنترل

طراحی و ساخت سیستم شناوری مغناطیسی یک آهنربای دائمی بر مبنای کنترل کننده PID

دانشجو: عليرضا اميري

شماره دانشجویی: ۹۸۲۱۵۱۰۲۸

استاد راهنما: دكتر محمدحسين كاظمى

فهرست مطالب

۲) . پیشینه پژوهش

نتیجه گیری

کلیات پڑوهش

- مفهوم فیزیکی
- ساختار كلى يك سيستم شناورى مغناطيسى و انواع آن
 - اجزای اصلی سیستم شناوری مغناطیسی
 - كاربردها

مفهوم فيزيكي

نیروهای وارد بر جسم در راستای عمودی کاملا برابر و در خلاف جهت یکدیگر باشند تا برآیند نیروهای وارد بر این جسم برابر صفر شود.

اجزاى اصلى سيستم شناورى مغناطيسي

بخش كنترلى:

• کنترلر PID

• عملگر

بخش الكتريكي:

• الكترومگنت

• حسگر

• پردازنده

• تقویت کننده

بخش مكانيكي:

• جس

و يايه

انواع سیستم های شناوری مغناطیسی

سیستم شناوری نوع دفعی Repulsive

سیستم شناوری نوع جذبی Attractive

كاربرد سيستم شناورى مغناطيسي

محصولات

وسايل معلق زينتي

كاربرد صنعتي

قطار های سریع السیر MagLev

غیر خطی ناپایدار

كاربرد كنترلي

ساختار سخت افزاري سيستم شناوري مغناطيسي

پیشینه پژوهش

• نمونه های پیشین انجام شده در مقالات و نشریات

۱. مقایسه روش های تنظیم زیگلر-نیکولز و کوهن کن در سیستم شناوری مغناطیسی

• استفاده از دو حسگر اثر هال

مقایسه روش های تنظیم زیگلر-نیکولز و کوهن کن در سیستم شناوری مغناطیسی

استفاده از فتو ترانزیستور
 به عنوان حسگر

۳. کنترل PID سیستم شناوری مغناطیسی

• استفاده از ۵ فتو دیو د به عنوان حسگر و تشخیص موقعیت جسم با بررسی تعداد حسگرهای فعال شده

روش شناسی پژوهش و یافته ها

- مدار الكتريكي
- ساختار مکانیکی
 - سيستم كنترلي
- شناسایی سیستم
- رسم نمودارهای کنترلی و پیدا کردن مقادیر بهره و صفر و قطبها
 - طراحی کنترلر و شبیه سازی برای سیستم تخمین زده شده

- الكترومگنت
- مدار تقویت کننده
- کنترل جریان بازگشتی
 - حسگر اثر هال
- حذف اثر الكترومگنت
 - منابع تغذیه

ساختار الكتريكي - مدار تقويت كننده

• استفاده از مدار تقویت کننده ترانزیستوری بر منای MOSFET

مزیت MOSFET در مقایسه با BJT

\blacktrian{\psi}{p}

پایداری دمایی

ساختار الكتريكي - كنترل جريان بازگشتي

• استفاده از دیود هرزگرد برای کنترل جریان بازگشتی

ساختار الكتريكي - حسكر و حذف اثر الكترومگنت

استفاده از حسگر اثر هال: حساسیت به تغییرات شدت میدان مغناطیسی

نزدیک شدن آهنربا به حسگر

افزایش ولتاژ خروجی حسگر اثر هال

رابطهی خروجی حسگر با موقعیت آهنربا

سیگنال ورودی بر حسب موقعیت آهنربا پس از حذف اثر الکترومگنت

مدار الكتريكي سيستم شناوري مغناطيسي

- استفاده از آداپتور 24V به منظور تغذیه الکترومگنت
- تبدیل ولتاژ 24V به 9V با استفاده از رگولاتور به منظور تغذیه آردوینو
 - استفاده از پایهی 5V آردوینو به منظور تغذیه حسگر های اثر هال

ساختار مكانيكي

- پایه چوبی L شکل
- آهنربای نئودیمیومی به قطر
 1.5 cm و ارتفاع

ساختار کنترلی

- پیاده سازی برنامه ی کنترلی بر روی برد آردوینو UNO R3
- اجرای برنامه بدون استفاده از کتابخانه. (تعریف کنترلر PID و فرایند کنترل در داخل حلقه ی اجرای برنامه)
 - اجرای برنامه با استفاده از کتابخانهی PID_v1.

فلوچارت کنترلی سیستم شناوری مغناطیسی

- جمع آوری داده های ورودی و خروجی و تفکیک به داده های آموزشی و آزمایشی
 - شناسایی سیستم به کمک نرم افزار System Identification متلب
 - تعیین میزان اعتبار مدل تخمین زده شده بر حسب شاخص های متلب

داده های آموزشی

داده های آزمایشی

مقایسهی مدل تخمین زده شده و داده های آموزشی

مقایسهی مدل تخمین زده شده و داده های آزمایشی

تابع تبدیل تخمین زده شده و گزارش شناسایی سیستم

Status:

Estimated using TFEST on time domain data "data_train".

Fit to estimation data: 43.34%

FPE: 0.6898 MSE: 0.6882

رسم نمودارهای کنترلی و پیدا کردن مقادیر بهره و صفر و قطبها

- استفاده از دستور ()zpk به منظور پیدا کردن مقادیر بهره و صفر و قطب ها
- رسم نمودار Rlocus به منظور نمایش محل صفر و قطب ها و تحلیل پایداری

مقادیر بهره و صفر و قطبها

- بهره منفی
- دو صفر سمت چپ دور از محور jw
- یک صفر سمت راست نزدیک به محور jw
 - يک جفت قطب مختلط
- یک قطب حقیقی سمت چپ نزدیک محور jw

From input "u1" to output "y1":
-0.0097111 (s+74.07) (s+15.07) (s-0.3998)
-----(s+0.01953) (s^2 + 47.91s + 1045)

نمودار Rlocus

طراحی کنترلر و شبیه سازی برای سیستم تخمین زده شده

- طراحی یک حلقه کنترلی با کنترلر PID در نرمافزار Simulink
 - تنظیم ضرایب PID با استفاده از ابزار Auto tuning
 - تنظیم دقیق ضرایب به منظور دست یابی به بهترین پاسخ
 - تحلیل ویژگی های کنترلی پاسخ به دست آمده

مقایسه پاسخ پله سیستم حلقه باز، حلقه بسته بدون کنترلر و حلقه بسته با کنترلر PID

ضرایب و ویژگی های کنترلی کنترلر PID

Controller Parameters

	Tuned	Block	
Р	11.2142	11.2142	_
I	0.79511	0.79511	
D	-23.4599	-23.4599	
N	0.47801	0.47801	
			•

Performance and Robustness

	Tuned	Block	
Rise time	6.94 seconds	6.94 seconds	_
Settling time	41.4 seconds	41.4 seconds	
Overshoot	2.51 %	2.51 %	
Peak	1.03	1.03	
Gain margin	8.6 dB @ 0.424 rad/s	8.6 dB @ 0.424 rad/s	
Phase margin	60.3 deg @ 0.131 rad/s	60.3 deg @ 0.131 rad/s	
Closed-loop stability	Stable	Stable	•

نتيجهگيري

- بررسی نتایج حاصل از ساختار سخت افزاری
 - بررسي نتايج حاصل از سيستم كنترلي

نتیجه گیری از سیستم سخت افزاری

- سیستم الکتریکی و مکانیکی طراحی شده در این پژوهش، توانایی اجرای عملیاتهای خواسته شده را دارند.
- با استفاده از برد آردوینو می توان سیستم کنترلی مورد نظر را به درستی پیادهسازی و اجرا کرد.

نتیجه گیری از سیستم کنترلی

- با استفاده از کنترلر PID نمی توان به طور پایدار سیستم را کنترل کرد.
- در بهترین آزمایش، آهنربا ۲۰ ثانیه حول نقطه کار رفتار نوسانی داشت.

دانشکده فنی و مهندسی گروه برق - کنترل ممنون از توجه شما

دانشجو: عليرضا اميري

شماره دانشجویی: ۹۸۲۱۵۱۰۲۸

استاد راهنما: دكتر محمدحسين كاظمى