Adaptive Deep Bayesian Neural Network $\left(ADBNN\right)$ Technical Documentation and Implementation Guide

Ninan Sajeeth Philip Artificial Intelligence Research and Intelligent Systems Thelliyoor 689544, India

February 13, 2025

Contents

1	Intr	roduction		
	1.1	Overview		
	1.2	Key Features		
2	System Architecture			
	2.1	High-Level Design		
	2.2	Core Components		
		2.2.1 DBNN Base Class		
		2.2.2 BinningHandler		
3	Mathematical Foundation 4			
	3.1	Bayesian Framework		
	3.2	Feature Pair Likelihood		
4	Implementation Details 4			
	4.1	Memory Management		
		4.1.1 GPU Memory Optimization		
	4.2	Adaptive Learning Process		
5	Model Types			
	5.1	Histogram-based Model		
		5.1.1 Bin Selection		
	5.2	Gaussian Model		
	5.3	Invertible DBNN		
6	Adaptive Learning			
	6.1	Sample Selection		
	6.2	Weight Updates		
7	GPU Optimization			
	7.1	Batch Processing		
8	Cac	he Management		
	8.1	Computation Cache		

9	Parallel Processing Architecture	8
	9.1 CUDA Implementation	8
	9.2 Memory Management Strategies	8
	9.3 Batch Processing Optimization	9
10	Numerical Stability	9
	10.1 Log-Space Computations	9
	10.2 Gradient Scaling	9
11	CUDA Stream Management	10
	11.1 Asynchronous Execution	10
	11.2 Memory Transfers	10
12	Feature Pair Generation	11
	12.1 Pair Selection Algorithm	11
	12.2 Feature Space Transformation	11
13	Adaptive Learning Implementation	12
	13.1 Sample Selection Strategy	12
14	Advanced Training Strategies	12
	14.1 Convergence Criteria	12
	14.2 Adaptive Learning Rate	12
15	Cross-Validation Strategy	13
	15.1 K-Fold Implementation	13
16	Weight Update Mechanisms	14
	16.1 Momentum-based Updates	14
17	Performance Metrics	14
	17.1 Classification Metrics	
	17.2 Statistical Significance Testing	15
18	Error Analysis	16
	18.1 Feature Importance Analysis	16
19	Custom Loss Functions	16
	19.1 Weighted Cross-Entropy	16
2 0	Configuration Management	16
	20.1 Dynamic Configuration	16
21	Common Issues and Solutions	16
	21.1 Memory Management	16

1 Introduction

1.1 Overview

The Adaptive Deep Bayesian Neural Network (ADBNN) is a sophisticated machine learning framework that combines Bayesian probability theory with adaptive learning techniques. This document provides a comprehensive technical overview of the implementation, architecture, and usage patterns.

1.2 Key Features

- Three model types: Histogram-based, Gaussian, and Invertible DBNN
- Adaptive learning with cardinality-based sample selection
- Memory-efficient batch processing with GPU acceleration
- Automatic feature pair generation and optimization
- Built-in cross-validation and model evaluation

2 System Architecture

2.1 High-Level Design

Figure 1: ADBNN System Architecture

2.2 Core Components

2.2.1 DBNN Base Class

The DBNN base class provides the foundation for all model implementations:

2.2.2 BinningHandler

The BinningHandler class manages data discretization and feature space binning:

3 Mathematical Foundation

3.1 Bayesian Framework

The ADBNN implements Bayesian inference through:

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)} \tag{1}$$

where:

- P(C|X) is the posterior probability
- P(X|C) is the likelihood
- P(C) is the prior probability
- P(X) is the evidence

3.2 Feature Pair Likelihood

For feature pairs (i, j), the likelihood is computed as:

$$P(X_{i,j}|C) = \prod_{k=1}^{n} P(x_i^k, x_j^k|C)$$
 (2)

4 Implementation Details

4.1 Memory Management

4.1.1 GPU Memory Optimization

Figure 2: Memory Management Strategies

4.2 Adaptive Learning Process

The adaptive learning process follows:

Algorithm 1 Adaptive Learning

- 1: Initialize model with uniform priors
- 2: while not converged do
- 3: Select samples based on cardinality
- 4: Update feature pairs likelihood
- 5: Compute posterior probabilities
- 6: Update weights based on errors
- 7: Check convergence criteria
- 8: end while

5 Model Types

5.1 Histogram-based Model

The histogram-based model implements a non-parametric approach to probability density estimation through adaptive binning.

5.1.1 Bin Selection

The bin selection process is governed by:

$$n_{bins} = \min\left(\max\left(\sqrt{N}, 20\right), \frac{N}{10}\right)$$
 (3)

where N is the number of samples in the dataset.

```
def _compute_optimal_bins(self, n_samples: int) -> int:
    min_bins = 20  # Minimum number of bins
    max_bin_ratio = 10  # Maximum ratio of samples to bins

optimal_bins = int(np.sqrt(n_samples))
    optimal_bins = max(optimal_bins, min_bins)
    optimal_bins = min(optimal_bins, n_samples // max_bin_ratio)

return optimal_bins
```

Listing 1: Bin Selection Implementation

5.2 Gaussian Model

The Gaussian model uses multivariate normal distributions to model feature pair relationships:

$$P(X|C) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)\right)$$
(4)

```
1 def _compute_gaussian_likelihood(self, features: torch.Tensor,
                                  mean: torch.Tensor,
                                  cov: torch.Tensor) -> torch.Tensor:
3
      dim = features.shape[1]
4
      centered = features - mean.unsqueeze(0)
      inv_cov = torch.inverse(cov)
6
      mahalanobis = torch.sum(
          torch.mm(centered, inv_cov) * centered,
9
          dim=1
      )
10
      det = torch.det(cov)
      norm_const = 1.0 / (torch.sqrt((2 * torch.pi) ** dim * det))
12
      return norm_const * torch.exp(-0.5 * mahalanobis)
```

Listing 2: Gaussian Model Implementation

5.3 Invertible DBNN

The invertible model adds bi-directional mapping capabilities:

Figure 3: Invertible DBNN Architecture

6 Adaptive Learning

6.1 Sample Selection

The sample selection process uses cardinality-based criteria:

$$C(x) = \sum_{i,j} \min_{y \in S} d((x_i, x_j), (y_i, y_j))$$
 (5)

where:

- C(x) is the cardinality score
- S is the set of selected samples
- $d(\cdot, \cdot)$ is the Euclidean distance

```
def _compute_sample_divergence(self, sample_data: torch.Tensor,
                                feature_pairs: List[Tuple]) -> torch.Tensor:
      n_samples = sample_data.shape[0]
3
      pair_distances = torch.zeros(
          (len(feature_pairs), n_samples, n_samples),
          device=self.device
      for i, pair in enumerate(feature_pairs):
9
          pair_data = sample_data[:, pair]
          diff = pair_data.unsqueeze(1) - pair_data.unsqueeze(0)
11
          pair_distances[i] = torch.norm(diff, dim=2)
12
13
      return torch.mean(pair_distances, dim=0)
```

Listing 3: Cardinality Computation

6.2 Weight Updates

The weight update process follows:

$$w_{t+1} = w_t + \eta \cdot \Delta w \tag{6}$$

where:

- w_t is the current weight
- η is the learning rate

• Δw is the weight update

Figure 4: Weight Update Process

7 GPU Optimization

7.1 Batch Processing

The batch processing system uses dynamic batch sizing:

$$B_{opt} = \min\left(\frac{M_{avail}}{4 \cdot S_{sample}}, B_{max}\right) \tag{7}$$

where:

- B_{opt} is the optimal batch size
- M_{avail} is available GPU memory
- S_{sample} is sample size in bytes
- B_{max} is maximum allowed batch size

Listing 4: Dynamic Batch Sizing

8 Cache Management

8.1 Computation Cache

The computation cache implements an LRU strategy:

Figure 5: Cache Management Strategy

9 Parallel Processing Architecture

9.1 CUDA Implementation

The ADBNN framework implements sophisticated CUDA optimization strategies for parallel processing. The core parallel processing architecture is built around efficient tensor operations and memory management.

Figure 6: CUDA Memory Hierarchy and Data Flow

9.2 Memory Management Strategies

Memory management is crucial for performance optimization. The system implements several key strategies:

```
class MemoryManager:
      def __init__(self, device):
          self.device = device
          self.memory_pool = {}
          self.allocation_threshold = 1e9
      def allocate_tensor(self, shape, dtype):
          size = np.prod(shape) * dtype.itemsize
          if size > self.allocation_threshold:
              return self._allocate_chunked(shape, dtype)
10
          return torch.empty(shape, dtype=dtype,
11
                            device=self.device)
13
14
      def _allocate_chunked(self, shape, dtype):
          chunk_size = self.allocation_threshold // dtype.itemsize
15
          chunks = []
16
          for i in range(0, np.prod(shape), chunk_size):
17
               chunk_shape = self._calculate_chunk_shape(
18
                   i, chunk_size, shape)
19
               chunk = torch.empty(chunk_shape, dtype=dtype,
20
                                 device=self.device)
21
               chunks.append(chunk)
```

Listing 5: Memory Management Implementation

9.3 Batch Processing Optimization

Efficient batch processing is implemented through dynamic batch sizing and parallel execution:

$$B_{opt} = \min\left(\frac{M_{GPU}}{4 \cdot S_{sample} \cdot F_{safety}}, B_{max}\right)$$
 (8)

where:

- M_{GPU} is total GPU memory
- S_{sample} is sample memory footprint
- F_{safety} is safety factor (typically 1.2)
- B_{max} is maximum allowed batch size

10 Numerical Stability

10.1 Log-Space Computations

To maintain numerical stability, probability computations are performed in log space:

$$\log P(C|X) = \log P(X|C) + \log P(C) - \log P(X) \tag{9}$$

Implementation details:

```
def _compute_log_posterior(self, features: torch.Tensor,
                             epsilon: float = 1e-10) -> torch.Tensor:
      # Compute log likelihoods
      log_likelihoods = self._compute_log_likelihood(features)
      # Add log priors
      log_priors = torch.log(self.priors + epsilon)
      log_unnormalized = log_likelihoods + log_priors
      # Log-sum-exp trick for numerical stability
11
      max_log = torch.max(log_unnormalized, dim=1,
                         keepdim=True)[0]
12
      log_sum = max_log + torch.log(torch.sum(
13
          torch.exp(log_unnormalized - max_log), dim=1,
14
          keepdim=True) + epsilon)
16
      return log_unnormalized - log_sum
```

Listing 6: Log-Space Computation

10.2 Gradient Scaling

For training stability, gradients are scaled using:

$$g_{scaled} = \text{clip}\left(\frac{g}{\|g\|_2 + \epsilon}, -\alpha, \alpha\right)$$
 (10)

where α is the maximum gradient norm.

11 CUDA Stream Management

11.1 Asynchronous Execution

The system implements asynchronous execution through CUDA streams:

```
class StreamManager:
      def __init__(self, n_streams=4):
          self.streams = [
3
               torch.cuda.Stream()
               for _ in range(n_streams)
6
          self.current_stream = 0
      def get_next_stream(self):
9
          stream = self.streams[self.current_stream]
10
          self.current_stream = ((self.current_stream + 1)
11
                                % len(self.streams))
12
          return stream
14
      @contextmanager
15
      def stream_context(self):
16
          stream = self.get_next_stream()
17
          with torch.cuda.stream(stream):
18
19
               yield stream
               torch.cuda.current_stream().wait_stream(stream)
```

Listing 7: CUDA Stream Management

Figure 7: Asynchronous Stream Execution

11.2 Memory Transfers

Efficient memory transfers are crucial for performance:

Listing 8: Optimized Memory Transfer

12 Feature Pair Generation

12.1 Pair Selection Algorithm

The feature pair selection process uses an information-theoretic approach:

$$I(X_i, X_j; C) = \sum_{c \in C} \sum_{x_i, x_j} P(x_i, x_j, c) \log \frac{P(x_i, x_j | c)}{P(x_i, x_j)}$$
(11)

Implementation:

```
def _select_feature_pairs(self, X: torch.Tensor,
                            y: torch.Tensor,
                             max_pairs: int) -> List[Tuple[int, int]]:
3
      n_features = X.shape[1]
      pairs_info = []
5
6
      # Compute mutual information for all pairs
      for i, j in combinations(range(n_features), 2):
          mi = self._compute_mutual_information(
              X[:, [i, j]], y)
10
          pairs_info.append((i, j, mi))
11
12
      # Sort by mutual information
13
      pairs_info.sort(key=lambda x: x[2], reverse=True)
14
15
      # Select top pairs
16
      selected_pairs = [
17
          (p[0], p[1])
18
          for p in pairs_info[:max_pairs]
19
20
21
      return selected_pairs
```

Listing 9: Feature Pair Selection

12.2 Feature Space Transformation

Features are transformed using adaptive binning:

$$b_{ij} = \left| \frac{x_{ij} - \min(x_j)}{\max(x_j) - \min(x_j)} \cdot n_{bins} \right|$$
 (12)

Figure 8: Feature Space Density Estimation

13 Adaptive Learning Implementation

13.1 Sample Selection Strategy

14 Advanced Training Strategies

14.1 Convergence Criteria

The training process employs multiple convergence criteria:

$$\Delta E = \frac{|E_t - E_{t-1}|}{E_{t-1}} < \epsilon_{conv} \tag{13}$$

where:

- E_t is the error at epoch t
- ϵ_{conv} is the convergence threshold

Listing 10: Convergence Check Implementation

14.2 Adaptive Learning Rate

The learning rate is adjusted dynamically:

$$\eta_t = \eta_0 \cdot \frac{1}{1 + \alpha t} \cdot \sqrt{\frac{1 - \beta^t}{1 - \beta}} \tag{14}$$

Figure 9: Adaptive Learning Rate Decay

15 Cross-Validation Strategy

15.1 K-Fold Implementation

The system implements stratified k-fold cross-validation:

```
class StratifiedKFold:
      def __init__(self, n_splits: int = 5,
                    shuffle: bool = True,
                    random_state: Optional[int] = None):
           self.n_splits = n_splits
          self.shuffle = shuffle
          self.random_state = random_state
      def split(self, X: torch.Tensor,
9
                 y: torch.Tensor) -> Iterator[Tuple[torch.Tensor,
                                                    torch.Tensor]]:
11
          # Get class distribution
12
          unique_classes = torch.unique(y)
13
           class_indices = {
14
               cls.item(): (y == cls).nonzero().view(-1)
15
               for cls in unique_classes
          }
18
          # Create stratified folds
19
          for fold in range(self.n_splits):
20
               train_indices = []
21
               val_indices = []
22
23
               for cls, indices in class_indices.items():
24
                   n_samples = len(indices)
25
                   n_val = n_samples // self.n_splits
26
                   start_idx = fold * n_val
27
                   end_idx = start_idx + n_val
                   val_indices.extend(indices[start_idx:end_idx])
30
                   train_indices.extend(
31
                       torch.cat([
32
                            indices[:start_idx],
33
                            indices[end_idx:]
34
35
                       ])
                   )
36
37
               yield train_indices, val_indices
```

Listing 11: Cross-Validation Implementation

16 Weight Update Mechanisms

16.1 Momentum-based Updates

The weight update process incorporates momentum:

$$v_t = \gamma v_{t-1} + \eta \nabla w_t \tag{15}$$

$$w_{t+1} = w_t - v_t (16)$$

Implementation details:

```
def _update_weights_with_momentum(self,
                                    gradients: Dict[str, torch.Tensor],
                                    velocity: Dict[str, torch.Tensor],
3
                                    learning_rate: float,
4
                                    momentum: float = 0.9) -> Dict[str, torch.Tensor
      new_velocity = {}
      updates = {}
      for param_name, grad in gradients.items():
9
          if param_name not in velocity:
              velocity[param_name] = torch.zeros_like(grad)
11
12
          # Update velocity
13
          new_velocity[param_name] = (
14
              momentum * velocity[param_name] +
15
              learning_rate * grad
16
17
          # Compute update
19
          updates[param_name] = new_velocity[param_name]
20
21
      return updates, new_velocity
```

Listing 12: Momentum Update Implementation

17 Performance Metrics

17.1 Classification Metrics

The system computes comprehensive classification metrics:

Balanced Accuracy =
$$\frac{1}{n_c} \sum_{i=1}^{n_c} \frac{TP_i}{TP_i + FN_i}$$
 (17)

where: - n_c is the number of classes - TP_i is true positives for class i - FN_i is false negatives for class i

```
n_classes = len(self.label_encoder.classes_)
13
      class_metrics = []
14
15
      for i in range(n_classes):
16
           tp = cm[i, i]
17
           fp = cm[:, i].sum() - tp
           fn = cm[i, :].sum() - tp
19
20
           precision = tp / (tp + fp) if (tp + fp) > 0 else 0
21
           recall = tp / (tp + fn) if (tp + fn) > 0 else 0
22
           f1 = 2 * (precision * recall) / (precision + recall) \
23
               if (precision + recall) > 0 else 0
24
25
           class_metrics.append({
26
               'precision': precision,
27
28
               'recall': recall,
               'f1': f1
29
           })
30
31
32
      # Overall metrics
33
      metrics['accuracy'] = accuracy_score(
34
           y_true.cpu(), y_pred.cpu()
35
36
      metrics['balanced_accuracy'] = balanced_accuracy_score(
37
           y_true.cpu(), y_pred.cpu()
38
39
      # ROC and AUC
40
41
      if probas is not None:
           metrics['roc_auc'] = roc_auc_score(
42
               y_true.cpu(),
43
               probas.cpu(),
44
45
               multi_class='ovr'
46
47
      return metrics
```

Listing 13: Metrics Computation

17.2 Statistical Significance Testing

The system implements statistical significance tests:

```
def perform_significance_test(self,
                                model1_preds: torch.Tensor,
                               model2_preds: torch.Tensor,
                                y_true: torch.Tensor,
4
                                alpha: float = 0.05) -> Dict[str, Any]:
      # McNemar's test for paired nominal data
6
      contingency_table = self._create_contingency_table(
          model1_preds, model2_preds, y_true
10
11
      statistic, p_value = mcnemar(contingency_table,
                                    exact=True)
12
13
      return {
14
          'statistic': statistic,
15
          'p_value': p_value,
16
17
          'significant': p_value < alpha
18
```

Listing 14: Statistical Testing

- 18 Error Analysis
- 18.1 Feature Importance Analysis
- 19 Custom Loss Functions
- 19.1 Weighted Cross-Entropy
- 20 Configuration Management
- 20.1 Dynamic Configuration
- 21 Common Issues and Solutions
- 21.1 Memory Management