#### EQUIPMENT MAINTENANCE COST ANALYSIS REPORT

#### **FOR**

#### **SUMMERS TAYLOR INC.**

#### ENTC 5030 - INVESTIGATIONS IN TECHNOLOGY

Gold Agharese

Summers Taylor Inc., Elizabethton

Due Date: 5/2/2018

#### Contents

| FIGURES                                                         | 3  |
|-----------------------------------------------------------------|----|
| TABLES                                                          | 3  |
| COMPANY BACKGROUND                                              | 4  |
| LITERATURE REVIEW ON THE COMPARATIVE ANALYSIS OF EQUIPMENTS –   |    |
| MAINTANANCE                                                     | 5  |
| SCOPE OF THE PROBLEM                                            | 6  |
| OBJECTIVE OF THE STUDY                                          | 7  |
| PRESENTATION OF RESULTS & ANALYSIS                              | 9  |
| A Drill-down On the Maintenance Cost Variables                  | 14 |
| Top 20 Equipment Maintenance Cost for 2017                      | 22 |
| Top 20 Equipment Maintenance Cost for 2016                      | 24 |
| Top 20 Equipment Maintenance Cost for 2015                      | 25 |
| Total Maintenance Cost for 2018 (Inconclusive)                  | 26 |
| DISCUSSION OF IDENTIFIED PROBLEMS AND RECOMMENDATIONS           | 28 |
| REFERENCES                                                      | 30 |
| Appendix A                                                      | 31 |
| A.1 Minitab Data for Normality Test on Major Maintenance Issues | 31 |
| A.2 Minitab Output                                              | 32 |
| Appendix B                                                      | 33 |
| B.1 Parameters of Interest for Pareto Analysis                  | 33 |
| Appendix C                                                      | 34 |
| C.1: List of Equipment                                          | 34 |

#### FIGURES

| Figure 1: Residual Plot of Maintenance cost                       |
|-------------------------------------------------------------------|
| Figure 2: Boxplot of cost                                         |
| Figure 3: Pareto Chart of Maintenance Issue                       |
| Figure 4: Further Analysis of the three major cost contributors   |
| Figure 5: Top 10 Labor Cost                                       |
| Figure 6: Top 10 Parts Cost                                       |
| Figure 7:Top 10 Sub Vendor Costs                                  |
| Figure 8: Top 10 Total Maintenance Costs (Labor + Parts + Vendor) |
| Figure 9: Maintenance Overview by Period                          |
| Figure 10: Top 20 Maintenance Costs - 2017                        |
| Figure 11: Top 20 Maintenance Costs - 2016                        |
| Figure 12: Top 20 Equipment Maintenance Cost - 2015               |
| Figure 13: Total Maintenance Cost - 2018                          |
|                                                                   |
|                                                                   |
|                                                                   |
| TABLES                                                            |
| Table 1: Key personnel                                            |
| Table 2: Top 10 equipment Subgroup and Equipment IDs              |

#### **COMPANY BACKGROUND**

Summers Taylor is an award-winning, family owned leading materials producer and heavy construction contractor founded in 1932 in Elizabethton, Tennessee. The company has been in business for over 80 years and serves the tri-state region of Northeast Tennessee, Southwest Virginia and Western North Carolina ("Summers-Taylor", 2018). The company has a strong team of over 375 employees; own four hot-mix asphalt plants, eight ready-mix concrete plants and truck fleets; it is the largest in the region.

Summers Taylor provides services such as asphalt/concrete manufacturing, site preparation required for major building development, highway construction, piping/utilities, bridge construction, environmental and airport construction. Some of the company's notable achievements include multiple NAPA quality in construction awards, nine time TDOT awards and was the first in the area to offer warm mix asphalt which is the new green in pavement construction and porous asphalt, HydroFlo.

The company's vision focus on "quality is our shield" while its mission is based on "providing quality workmanship at a reasonable price". The company builds on quality which has sustained it for more than seven decades under three generations of leadership while maintaining its long reputation for delivering quality work. Besides quality, the company also believes in its people (workers).

# LITERATURE REVIEW ON THE COMPARATIVE ANALYSIS OF EQUIPMENTS – MAINTANANCE

The maintenance of heavy equipment is a critical operation to the business of companies in the heavy construction industry. In most cases, the successful delivery of projects will highly depend on the reliability and efficiency of a company's fleet of equipment. Recent industry evolvement has necessitated project owners requesting potential contractors to summit along their bids, the performance report of their equipment. This development has further raised the requirements for most companies to stand a chance of being competitive in winning and delivery client's expectations in jobs. Publications reveal that exceeding of schedule, cost and failures in many projects arise as a result of poor equipment maintenance practices (Nunnally et al, 1997). It is therefore imperative that construction companies have and retain reliable and cost-effective maintenance regimes that will position them for profitable project delivery.

Alwood et al. (1989) stated that equipment reliability is a critical factor when trying to complete a project within budget and on schedule. Without the proper working equipment, productivity decreases, delays increase, possible injuries occur, and unnecessary costs are incurred. Tatari et al. (2006) investigated that the primary agenda of the equipment maintenance process is to achieve higher productivity, more operational flexibility and viable economic considerations. The past research shows that the appropriate selection of equipment has always been considered as a strategic decision during the construction phase of any project.

Gransberg et al. (2006) proposed two factors that can be considered when establishing proper equipment maintenance culture: (i) type and condition of the site work; which includes the distance to be traveled; and (ii) desired productivity; which is a critical factor that affects equipment selection. Vorster et al. (2009) concluded that preventive maintenance programs are easily understood costs that occur at discrete recurring intervals. Tires, tracks, and ground

engaging tools exhibit predictable patterns that are worthy of investigation in their own right.

Fuel consumption rates per unit time of equipment operation can also be forecasted in linear fashion (although actual fuel costs are market driven). Earthmoving-scheduling and fleet-assignment methods using various integer programming models for equipment assignment for better utilization and maintainability. They asserted that unit costs of heavy equipment maintenance are affected by factors such as the experience of the operators, condition of equipment, type of soil, and team composition. Therefore, the cost of a good maintenance regime vary throughout projects, and the use of static values is not consistent with jobsite realities.

#### **SCOPE OF THE PROBLEM**

For Investigation in technology final project titled "we fix your Technology/related problem – How can we help?" a team of six students from East Tennessee State University (names listed in the Table 1 below) visited Summers Taylor Inc., sequel to an invitation by the company. The aim of the visit was to identify initial technology-related problem that the company has; one which the team can use experimental and statistical study to analyze and propose a workable solution to.

After the first meeting with the company, the group was provided with the company's equipment maintenance cost data. The data consist of about 240 equipment IDs (equipment specific), its labor cost, parts cost, sublet vendor cost and the date of transaction with detailed description of the maintenance work carried out.

The group's task is to help the company troubleshoot this equipment maintenance cost data using statistical tool to determine variations, abnormalities and possibly suggest ways to reduce maintenance cost/the equipment that is maintenance cost effective given the data provided.

For this reason, this paper presents specified aims/objectives of study; Problem specific literature review, Data collection, analysis, evaluation of the problem, solution design and implementation method suggested for achieving possible solution.

Table 1: Key personnel

| PERSONEL            | NAME                                                                                   |
|---------------------|----------------------------------------------------------------------------------------|
| Client              | Summers – Taylor Inc                                                                   |
| Sponsor             | ETSU                                                                                   |
| Client Rep          | Mr. Grant Summers                                                                      |
| Project Team Leader | Gold Agharese                                                                          |
| Team                | Olufunke Bankole, Kenneth Ifalade, Patience Isine, Tare-Ebi Ojokai,<br>Adesanmi Solesi |

#### **OBJECTIVE OF THE STUDY**

The team was presented with equipment maintenance cost data for several periods. See Appendix C.1 for list of equipment. The data consist of over 30,000 maintenance transactions for all construction equipment for several periods. The data includes several information both measures and qualitative in relation to each maintenance activity carried out. However only the information used by the team will be stated in this report. It includes an equipment ID which is unique to just one equipment, equipment description, which is the brand of the equipment, Item code description which specifies the category of maintenance carried out on an equipment. The quantitative data consist of the labor cost, parts cost, and sublet vendor costs. With no specific problem stated by the company, the team decided to find ways the company might be able to reduce cost by analyzing the data and presenting the company with useful information that can benefit the company in terms of efficiency. Tableau software, and mini tab statistical software were used for the data analysis. The following specific objectives are stated below:

- To find anomalies and trends by comparing total maintenance cost between periods
- To find the maintenance categories with the highest frequency of occurrence, together with the top four equipment with the highest maintenance cost within each category.
- To find twenty equipment with the highest labor costs, parts cost, sublet vendor costs,
   and total costs (the sum total of labor, parts, and sublet vendor costs) for the entire period covered by the data.
- To find twenty equipment with the highest total maintenance costs for specific periods.

#### PRESENTATION OF RESULTS & ANALYSIS

#### Normality of Data on Major Maintenance Issues

The normality test is to determine that the maintenance data has been drawn from normally distributed population (within a reasonable tolerance). A valid normality test is an indication of the reliability of further tests that will be carried out on the data.



Figure 1: Residual Plot of Maintenance cost

Figure 1 above is the residual plots of maintenance cost arising from the three cost components (Labor cost, Parts cost and Vendor cost) showing even spread of the data points along the straight line of the normal probability plot with a visible outlier on a single data point; randomly scattered on the residual vs fitted value and on the residual vs observation order with the same noticeable outlier; relatively skewed on both sides of the histogram plot. There are no

evident problems indicated by these plots that violates the model assumptions. Therefore, the model assumption for normality of data distribution is reasonably satisfied.

#### The Box Plot

In its simplest form, the boxplot is a visual display that presents five sample statistics - the minimum, the lower quartile, the median, the upper quartile and the maximum.



Figure 2: Boxplot of cost

Figure 2 above shows the Boxplot, which indicate the total maintenance is affected by the different cost variables (Labor cost, Parts cost and Vendor cost). The components variable is shown to have more frequency of occurrence and have a higher contribution to the total maintenance cost. Also, the boxplot of the Service: PM Eqp Engine Count is skewed to the right, with the upper whisker is much longer than the bottom whisker. This identifies the variable with

the outlier captured by the normality plot. Further investigation revealed the equipment Id to be S4450 (of the Caterpillar D8R Dozer subgroup).

#### **Pareto Analysis**

The initial data presented to the team represented the company's maintenance cost from 1994 till date. The cost were categorized as Labor cost, Parts cost and Vendor cost. At a glance, the data did not provide any insight into what equipment or equipment subgroups might be contributing more to the company's maintenance expenses. One method the team used in identifying the most significant contributors to the maintenance cost was Pareto Analysis. In this method, the data was decomposed into systems i.e. equipment subgroups, cost type and major recurring maintenance issues. Using the recorded cost categories, the weighted values (i.e. cost multiplied by its frequency) were plotted as a function of cumulative percentage of the major maintenance issues (see Appendix 2 for Pareto data). This plot usually shows that approximately 80% of maintenance cost is as a result of 20% of the failure types (or maintenance issues). This can reveal what issues the maintenance department should focus on. Once specific issues have been identified with a subgroup, further analysis can then be carried out to drill down to the actual equipment Id contributing more of the maintenance issue.

Shown in figure 3 below is the weighted Pareto analysis carried out on 8 most frequent maintenance issues for the period 2014 - 2018. A weighted Pareto chart accounts for the severity of the maintenance cost for each of the issues weighted against the frequencies with which they occurred.



Figure 3: Pareto Chart of Maintenance Issue

From the above figure 3, it is evident that component costs accounts for 65.4% of total maintenance cost for the period. Combine that with electrical cost accounts for 77.2% of total maintenance cost for the period. And Combine that with Engine/Fuel System cost accounts for 83.8.2% of total maintenance cost for the period. For the purpose effecting better maintenance regime and cost control, it will be insightful for the company to pay greater attention to these three major maintenance issues (Component cost, electrical cost and Engine/Fuel System cost).

Figure 4 below shows further analysis of the three major cost contributors (Component cost, electrical cost and Engine/Fuel System cost) to identify the specific equipment Ids responsible for the greater part of the cost associated with them. This was achieved by identifying 5 equipment Ids that makes the greater contribution to each of the three categories of maintenance issues.



Figure 4: Further Analysis of the three major cost contributors

From the total components cost which accounted for 65.4% of total maintenance cost for the period, the equipment id S597 (from the Roadtec RP190 Paver 2009 subgroup) is the highest contributor (\$120,585) to maintenance cost spent on components.

Also Electrical cost accounted for 11.8% of the total maintenance cost for the period, the equipment Id S596 from the (Roadtec 2500D Shuttle Buggy) is the highest contributor (\$96,606) to electrical cost of maintenance. While Engine/Fuel System cost accounted for 6.6% of the total maintenance cost for the period, the equipment Id T190 from the (Oshkosh Mixer 2008) is the highest contributor (\$24,164) to Engine/Fuel System cost of maintenance.

#### A Drill-down On the Maintenance Cost Variables

For better understanding of where the larger part of the maintenance cost are accruing from, a drilled-down analysis was carried out to identify the top 10 equipment subgroup and equipment IDs in each of the cost components (i.e Labor cost, Parts cost and Vendor cost), which are responsible for larger part of the overall maintenance cost.

#### 1. Top 10 Labor Cost

Figure 5 below provide insight into the top 10 equipment subgroup and equipment Ids responsible for greater part of the labor cost in the company's maintenance regime. The chart reveals equipment Id S597 (of the Roadtec RP190 Paver 2006 subgroup) to have highest labor maintenance cost throughout the maintenance data period.



#### 2. Top 10 Parts Cost

Figure 6 below provide insight into the top 10 equipment subgroup and equipment ids responsible for greater portion of the parts cost in the company's maintenance regime.



Figure 6: Top 10 Parts Cost

The chart reveals equipment Id S456 (of the Caterpillar D8L Dozer 1985 subgroup) has the highest parts cost throughout the maintenance data period.

#### 3. Top 10 Vendor Cost

Figure 7 below provide insight into the top 10 equipment subgroup and equipment Ids responsible for greater part of the vendor cost in the company's maintenance regime. The chart reveals equipment Id S4450 (of the Caterpillar D8R Dozer subgroup) has the highest vendor cost (\$398,363) throughout the maintenance data period.



#### 4. Top 10 Total Maintenance Cost

Table 2 below provide insight into the top 10 equipment subgroup and equipment ids responsible for greater part of the total maintenance cost in the company's entire maintenance history (1994 – 2018). It can be seen from the following Figure 8, that the Caterpillar series are the first 4 most expensive equipment to maintain. The equipment Id S464 (of the Caterpillar D9N Doze R1993 subgroup) has the highest overall maintenance cost for the entire maintenance data period, with a total maintenance cost of \$624,135, from which 0.89% is contributed by labor cost, 75.99% is contributed by parts cost and 23.12% is contributed by vendor cost respectively.

Table 2: Top 10 equipment Subgroup and Equipment IDs

|                        | Equip Description / Equip ID     |                                  |                          |                                   |                                  |                               |                  |                           |                                    |                        |
|------------------------|----------------------------------|----------------------------------|--------------------------|-----------------------------------|----------------------------------|-------------------------------|------------------|---------------------------|------------------------------------|------------------------|
|                        | CATERPILLAR<br>D9N DOZER<br>1993 | CATERPILLAR<br>D8L DOZER<br>1985 | Caterpillar<br>D8R DOZER | CATERPILLAR<br>D8N W/RIPP<br>1990 | ROADTEC RP-<br>190 PAVER<br>2006 | CATERPILLAR<br>D9R DOZER 1998 | CAT D8R<br>DOZER | Kenworth<br>T-800<br>1998 | 2005<br>ROADTEC<br>RP-190<br>PAVER | KENWORTH<br>T800B 1998 |
|                        | S464                             | S456                             | S4450                    | S455                              | S594                             | S4451                         | S457             | S2221                     | S593                               | S2224                  |
| Labor % of Total cost  | 0.89%                            | 0.56%                            | 0.75%                    | 1.13%                             | 6.88%                            | 1.55%                         | 1.41%            | 2.23%                     | 5.73%                              | 2.55%                  |
| Parts % of Total cost  | 75.99%                           | 87.81%                           | 26.83%                   | 74.17%                            | 74.73%                           | 68.94%                        | 83.71%           | 71.50%                    | 70.88%                             | 70.91%                 |
| Vendor % of Total cost | 23.12%                           | 11.63%                           | 72.42%                   | 24.69%                            | 18.39%                           | 29.51%                        | 14.88%           | 26.27%                    | 23.38%                             | 26.55%                 |
| Total                  | 624,135                          | 591,582                          | 550,062                  | 487,677                           | 399,309                          | 388,555                       | 331,182          | 324,198                   | 284,100                            | 280,418                |

Equip ID

S455

S456

S457

S464

S593

S594

S2221

S2224

S4450

S4451

## Top 10 Total Maintenance Costs (Labor+Parts +Vendor)



Figure 8: Top 10 Total Maintenance Costs (Labor + Parts + Vendor)

#### 5. Maintenance overview By Period

A quick overview of the monthly maintenance cost for the period of 2012 – 2017 is depicted in figure 9 below.

#### **Monthly Costs**



The trend of sum of Total (L+P+V) for Date Month.

Figure 9: Maintenance Overview by Period

The maintenance summary shows significant peaks in maintenance cost during for the period indicated. Generally, the peak cost are seen to reflect in December of each year (with the exception of maximum cost peak occurring in March 2017). Within this period, maintenance cost for December 2013 was highest with total cost of \$1,680,314; followed by December 2014 recording \$756,366. These two periods also present an interesting observation as can be seen in the sharp decline of approximately 55% reduction in annual peak maintenance cost between December 2013 and December 2014.

#### **Top 20 Equipment Maintenance Cost for 2017**

Figure 10 below provide insight into major equipment Ids and their respective maintenance cost for the year 2017. The chart reveals equipment Id S4450 (of the Caterpillar D8R Dozer subgroup) has the highest overall maintenance cost for the year 2017.



Figure 10: Top 20 Maintenance Costs - 2017

#### **Top 20 Equipment Maintenance Cost for 2016**

Figure 11 below provide insight into major equipment Ids that have highest maintenance cost for the year 2016.

#### 2016 - Top 20 Maintenance Costs



Figure 11: Top 20 Maintenance Costs - 2016

The chart reveals equipment Id S445 (of the Caterpillar D8N W/RIPP 1990 subgroup) has the highest overall maintenance cost for the year 2016.

#### **Top 20 Equipment Maintenance Cost for 2015**

Figure 12 below provide insight into major equipment Ids that have highest maintenance cost for the year 2015.

#### 2015-Top 20 Maintenance Costs



Figure 12: Top 20 Equipment Maintenance Cost - 2015

The chart reveals equipment Id S464 (of the Caterpillar D9N Dozer 1993 subgroup) has the highest overall maintenance cost for the year 2015.

#### **Total Maintenance Cost for 2018 (Inconclusive)**

Figure 13 below provide a brief overview of maintenance cost so far for the year 2018.

#### Total Maintenance costs in 2018 by months



Figure 13: Total Maintenance Cost - 2018

Although the year 2018 is inclusive, there seems to be drastic cumulative reduction in monthly maintenance cost. However, a maintenance data that appears to be an outlier is identified in a future date (December 26<sup>th</sup>, 2018). Further investigation revealed the equipment Id to be S4117 (belonging to the 1999 CATERPILLAR 320 subgroup).

#### DISCUSSION OF IDENTIFIED PROBLEMS AND RECOMMENDATIONS

- 1. For Service: PM Eqp Engine maintenance expenses, equipment Id S4450 (of the Caterpillar D8R Dozer subgroup) had an unusual vendor cost of \$333,598 in 2017. In the same year, the mean vendor cost for Service: PM Eqp Engine maintenance issues stood at \$1,846. Hence, vendor maintenance cost for the equipment Id S4450 had approximately 99% deviation from the mean. This should be subject to further investigation to identify the reason for the unusual high vendor cost for that period. Information gathered from this could be helpful in helping to the company in modifying its maintenance regime to better guide against having similar failures that warranted that sudden surge in vendor cost for rectifying the associated Service: PM Eqp Engine maintenance issue.
- 2. As depicted in figure 3, the Pareto analysis showed the three major maintenance issues that absorbs more than 80% of the company's maintenance cost, namely the Components cost, electrical cost and Engine/Fuel System cost. For the purpose effecting better maintenance regime and cost control, it will be insightful to pay greater attention to these three major maintenance issues. A more efficient maintenance and repair approach in these three areas would undoubtedly have significant savings for the company. A good way to start is to see the possibility of emphasizing better maintenance culture for equipment id S597 (from the Roadtec RP190 Paver 2009 subgroup) due to the extremely high cost of fixing its components failures. Could a different equipment that cost less in component replacement or better component reliability be an option?

Another aspect to look into would be finding cost-effective ways to resolve the electrical issues coming from equipment Id S596 (of the Roadtec 2500D Shuttle Buggy subgroup) because of the high cost of resolving the electrical issues associated with the equipment. Focusing more on proactive electrical maintenance for this equipment could minimize its electrical failures.

- 3. As revealed by figure 8, the Caterpillar series are the first 4 most expensive equipment to maintain. An improved maintenance culture for this series would be worth the time and investment.
- 4. Figure 13 showed a maintenance data that appears to be an outlier (posted on a future date December 26<sup>th</sup>, 2018), with equipment Id S4117 (belonging to the 1999 CATERPILLAR 320 subgroup). Further investigation should be made to ascertain the correctness of this data.
- 5. One of the interesting observation captured from the data analysis is the fact that most maintenance cost peaks took place mostly in December each year. It is unknown why this is the case. This invariably possess questions that the company might want to investigate.
  - Are there certain kind of high cost maintenance reserved to be carried out during that time of the year?
  - Is December likely a project peak period when almost all equipment are deployed to project sites, thereby experiencing more breakdowns?
  - Is weather a factor?
  - Is the cost of securing vendor maintenance cost higher for the period?

#### **REFERENCES**

Alwood, R.J., 1989. Techniques and Applications of Expert System in the Construction Industry. Horwood, England

Gransberg, D., Popescu, C., & Ryan, R. (2006). Construction equipment management for engineers, estimators, and owners. Boca Raton, FL: Taylor & Francis Group.

Nunnally, S. (1977). Managing construction equipment. Englewood Cliffs, NJ: Prentice-Hall

Summers-Taylor. (2018). Summerstaylor.com. Retrieved 29 April 2018, from http://summerstaylor.com/index.php/about-us/history

Tatari, O., Skibniewski, M., 2006. Integrated agent-based construction equipment management: Conceptual design. J. Civil Eng. Manage. 12 (3), 231–236.

Vorster, M. C. (2009). Construction equipment economics, 1st Ed., Pen Publications

## Appendix A

## A.1 Minitab Data for Normality Test on Major Maintenance Issues

| A.1 Minitab Data for Normality Test on Major Ma |                             |  |  |  |  |
|-------------------------------------------------|-----------------------------|--|--|--|--|
| Cost                                            | Maintenance Issue           |  |  |  |  |
| \$206,045.409                                   | Components                  |  |  |  |  |
| \$447,288.336                                   | Components                  |  |  |  |  |
| \$505,163.559                                   | Components                  |  |  |  |  |
| \$583,999.383                                   | Components                  |  |  |  |  |
| \$159,345.767                                   | Components                  |  |  |  |  |
| \$78,831.060                                    | Electrical                  |  |  |  |  |
| \$117,267.500                                   | Electrical                  |  |  |  |  |
| \$118,110.339                                   | Electrical                  |  |  |  |  |
| \$90,271.451                                    | Electrical                  |  |  |  |  |
| \$18,243.119                                    | Electrical                  |  |  |  |  |
| \$124,037.537                                   | Engine/Fuel System          |  |  |  |  |
| \$224,930.287                                   | Engine/Fuel System          |  |  |  |  |
| \$116,917.786                                   | Engine/Fuel System          |  |  |  |  |
| \$184,097.296                                   | Engine/Fuel System          |  |  |  |  |
| \$55,365.822                                    | Engine/Fuel System          |  |  |  |  |
| \$83,518.805                                    | Tires/Tubes                 |  |  |  |  |
| \$89,462.700                                    | Tires/Tubes                 |  |  |  |  |
| \$38,686.828                                    | Tires/Tubes                 |  |  |  |  |
| \$72,497.220                                    | Tires/Tubes                 |  |  |  |  |
| \$22,061.033                                    | Tires/Tubes                 |  |  |  |  |
| \$67,018.342                                    | Hydraulic Count             |  |  |  |  |
| \$99,933.696                                    | Hydraulic Count             |  |  |  |  |
| \$128,197.941                                   | Hydraulic Count             |  |  |  |  |
| \$102,011.842                                   | Hydraulic Count             |  |  |  |  |
| \$22,407.455                                    | Hydraulic Count             |  |  |  |  |
| \$212,822.636                                   | Service:PM DT Engine Count  |  |  |  |  |
| \$142,634.925                                   | Service:PM DT Engine Count  |  |  |  |  |
| \$82,413.961                                    | Service:PM DT Engine Count  |  |  |  |  |
| \$67,677.913                                    | Service:PM DT Engine Count  |  |  |  |  |
| \$17,589.778                                    | Service:PM DT Engine Count  |  |  |  |  |
| \$44,249.602                                    | Service:PM Eqp Engine Count |  |  |  |  |
| \$64,444.476                                    | Service:PM Eqp Engine Count |  |  |  |  |
| \$80,760.910                                    | Service:PM Eqp Engine Count |  |  |  |  |
| \$474,947.645                                   | Service:PM Eqp Engine Count |  |  |  |  |
| \$18,728.054                                    | Service:PM Eqp Engine Count |  |  |  |  |
| \$52,822.065                                    | Chassis/Suspension Count    |  |  |  |  |
| \$179,718.447                                   | Chassis/Suspension Count    |  |  |  |  |
| \$71,173.638                                    | Chassis/Suspension Count    |  |  |  |  |
| \$156,028.810                                   | Chassis/Suspension Count    |  |  |  |  |
| \$19,762.658                                    | Chassis/Suspension Count    |  |  |  |  |

#### A.2 Minitab Output

## One-way ANOVA: Cost versus Maintenance Issue Method

Alternative hypothesis Not all means are equal

Significance level  $\alpha = 0.05$  Equal variances were assumed for the analysis.

#### **Factor Information**

| Factor       | Levels | Values                                                                                                                                                      |
|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maint. Issue | 8      | Chassis/Suspension Count, Components, Electrical, Engine/Fuel System, Hydraulic Count, Service:PM DT Engine Count, Service:PM Eqp Engine Count, Tires/Tubes |

### **Analysis of Variance**

| Source       | DF | Seq SS      | Contribution | Adj SS      | Adj MS      | F-Value | P-Value |
|--------------|----|-------------|--------------|-------------|-------------|---------|---------|
| Maint. Issue | 7  | 3.66415E+11 | 50.35%       | 3.66415E+11 | 52345037431 | 4.64    | 0.001   |
| Error        | 32 | 3.61311E+11 | 49.65%       | 3.61311E+11 | 11290982999 |         |         |
| Total        | 39 | 7.27727E+11 | 100.00%      |             |             |         |         |

#### **Model Summary**

| S      | R-sq   | R-sq(adj) | PRESS       | R-sq(pred) |
|--------|--------|-----------|-------------|------------|
| 106259 | 50.35% | 39.49%    | 5.64549E+11 | 22.42%     |

#### Means

| Maint. Issue                      | Ν | Mean   | StDev  | 95% CI           |
|-----------------------------------|---|--------|--------|------------------|
| Chassis/Suspension Count          | 5 | 95901  | 68748  | (-895, 192697)   |
| Components                        | 5 | 380368 | 187588 | (283572, 477165) |
| Electrical                        | 5 | 84545  | 40801  | (-12251, 181341) |
| Engine/Fuel System                | 5 | 141070 | 65388  | (44274, 237866)  |
| Hydraulic Count                   | 5 | 83914  | 40662  | (-12882, 180710) |
| Service:PM DT Engine Count        | 5 | 104628 | 75142  | (7832, 201424)   |
| Service:PM Eqp Engine Count       | 5 | 136626 | 190543 | (39830, 233422)  |
| Tires/Tubes Pooled StDev = 106259 | 5 | 61245  | 29425  | (-35551, 158041) |

## Appendix B

## B.1 Parameters of Interest for Pareto Analysis

|                          | Freq. of   |                   |             |
|--------------------------|------------|-------------------|-------------|
| Maintenance Issue        | Occurrence | <b>Total Cost</b> | Weighted    |
| Components               | 7550       | 1929864.151       | 1.45705E+10 |
| Electrical               | 3291       | 798031.857        | 2.62632E+09 |
| Engine/Fuel System       | 2094       | 705348.728        | 1.47700E+09 |
| Tires/Tubes              | 1923       | 306226.585        | 5.88874E+08 |
| Hydraulic Count          | 1606       | 419569.277        | 6.73828E+08 |
| Service:PM DT Engine     |            |                   |             |
| Count                    | 1486       | 523139.213        | 7.77385E+08 |
| Service:PM Eqp Engine    |            |                   |             |
| Count                    | 1371       | 683130.688        | 9.36572E+08 |
| Chassis/Suspension Count | 1295       | 479505.617        | 6.20960E+08 |

## Appendix C

## C.1: List of Equipment

| Equipment ID   | Equipment Description                    |
|----------------|------------------------------------------|
| R242           | Caterpillar 740                          |
| R243           | Caterpillar 740                          |
| R244           | Caterpillar 740B                         |
| S968           | CATERPILLAR 740 ARTICULATED              |
| S969           | CATERPILLAR 740 ARTICULATED              |
| S970           | KOMATSU HM400-2 ARTICULATED              |
| S971           | CATERPILLAR 740 ARTICULATED TRUCK W/BED  |
| S972           | CATERPILLAR 740 ARTICULATED TRUCK W/BED  |
| S973           | CATERPILLAR 740 ARTICULATED TRUCK W/BED  |
| S974           | CATERPILLAR 740 ARTICULATED TRUCK        |
| S975           | Caterpillar 745C ARTICULATED TRUCK W/BED |
| S976           | Caterpillar 745C ARTICULATED TRUCK W/BED |
| S169           | 1989 FORD DUMP TRUCK                     |
| S176           | 1995 FORD LNT 8000 TRUCK                 |
| S179           | FORD F800 TRUCK 1999                     |
| S185           | 1974 FORD LT-9000                        |
| S199           | 1985 INTERNATIONAL                       |
| S207           | 1992 FORD DUMP TRUCK                     |
| S2211          | FORD LT 9000 1995                        |
| S2211<br>S2213 | 1995 LT 9000 FORD TRUCK                  |
| S2216          | 1995 LT 9000 FORD TRUCK                  |
| S2210<br>S2219 | 1998 KENWORTH T800B TRUCK                |
|                |                                          |
| S2220          | 1998 KENWORTH T800B TRUCK                |
| S2221          | Kenworth T-800 1998                      |
| S2222          | 1998 KENWORTH T800B TRUCK                |
| S2223          | 1998 KENWORTH T800B TRUCK                |
| S2224          | KENWORTH T800B 1998                      |
| S2225          | 1998 KENWORTH T800B TRUCK                |
| S2226          | 1998 KENWORTH T800B TRUCK                |
| S2227          | 1998 KENWORTH T800B TRUCK                |
| S2228          | 1998 KENWORTH T800B TRUCK                |
| S2229          | 2005 MACK CV713                          |
| S2230          | 2005 MACK CV713                          |
| S2231          | 2005 MACK CV713                          |
| S2232          | 2005 MACK CV713                          |
| S2233          | 2005 MACK CV713                          |
| S2234          | 2005 MACK CV713                          |
| S2235          | 2005 MACK CV713                          |
| S2236          | 2005 MACK CV713                          |
| S2237          | 2005 MACK CV713                          |
| S2238          | 2005 MACK CV713                          |
| S2239          | 2005 MACK CV713                          |
| S2240          | 2005 MACK CV713                          |
| S2241          | 2005 MACK CV713                          |
| S2242          | 2005 MACK CV713                          |
| S2243          | 2005 MACK CV713                          |
| S2244          | 2005 MACK CV713                          |
| S2245          | 2007 MACK CTP713                         |

| <b>Equipment ID</b> | <b>Equipment Description</b>              |
|---------------------|-------------------------------------------|
| S2246               | 2007 MACK CTP713                          |
| S2247               | 2007 MACK CTP713                          |
| S2248               | 2007 MACK CTP713                          |
| S2249               | 2007 MACK CTP713                          |
| S2250               | 2007 MACK CTP713                          |
| S2251               | 2007 MACK CTP713                          |
| S2252               | 2007 MACK CTP713                          |
| S2253               | 2007 MACK CTP713                          |
| S2254               | 2007 MACK CTP713                          |
| S2255               | 2007 MACK CTP713                          |
| S2256               | 2007 MACK CTP713                          |
| S2257               | 2007 MACK CTP713                          |
| S2258               | 2007 MACK CTP713                          |
| S2259               | 2007 MACK CTP713                          |
| S2260               | 2007 MACK CTP713                          |
| S2261               | 2007 MACK CTP713                          |
| S2262               | 2007 MACK CTP713                          |
| S2263               | 2007 MACK CTP713                          |
| S2264               | 2007 MACK CTP713                          |
| S2265               | KENWORTH T880 2015 DUMP TRUCK             |
| S2266               | KENWORTH T880 2015 DUMP TRUCK             |
| S2267               | KENWORTH T880 2015 DUMP TRUCK             |
| S2268               | KENWORTH T880 2015 DUMP TRUCK             |
| S2269               | KENWORTH T880 2015 DUMP TRUCK             |
| S2270               | KENWORTH T880 2015 DUMP TRUCK             |
| S2271               | KENWORTH T880 2015 DUMP TRUCK             |
| S2272               | KENWORTH T880 2015 DUMP TRUCK             |
| S2273               | KENWORTH T880 2015 DUMP TRUCK             |
| S2274               | KENWORTH T880 2015 DUMP TRUCK             |
| S2275               | KENWORTH T880 2015 DUMP TRUCK             |
| S2276               | KENWORTH T880 2015 DUMP TRUCK             |
| S2277               | KENWORTH T880 2015 DUMP TRUCK             |
| S2278               | KENWORTH T880 2015 DUMP TRUCK             |
| S2279               | KENWORTH T880 2015 DUMP TRUCK             |
| S2280               | KENWORTH T880 2015 DUMP TRUCK             |
| S2281               | KENWORTH T880 2015 DUMP TRUCK             |
| S2282               | KENWORTH T880 2015 DUMP TRUCK             |
| S2283               | KENWORTH T880 2015 DUMP TRUCK             |
| S2284               | KENWORTH T880 2015 DUMP TRUCK             |
| S2285               | KENWORTH T880 2015 DUMP TRUCK             |
| S2286               | KENWORTH T880 2015 DUMP TRUCK             |
| S2287               | KENWORTH T880 2017 DUMP TRUCK             |
| S2288               | KENWORTH T880 2017 DUMP TRUCK             |
| S2289               | KENWORTH T880 2017 DUMP TRUCK             |
| S2290               | KENWORTH T880 2017 DUMP TRUCK             |
| S2291               | KENWORTH T880 2017 DUMP TRUCK             |
| S2292               | KENWORTH T880 2017 DUMP TRUCK             |
| S2293               | KENWORTH T880 2017 DUMP TRUCK             |
| S2294               | KENWORTH T880 2017 DUMP TRUCK             |
| S2295               | KENWORTH T880 2017 DUMP TRUCK             |
| S2296               | KENWORTH T880 2017 DUMP TRUCK             |
| S2297               | KENWORTH T880 2017 (TAG ALONG) DUMP TRUCK |
| S2300               | KENWORTH T880 QUAD 2017 DUMP TRUCK        |
| S2301               |                                           |
| 52301               | KENWORTH T880 QUAD 2017 DUMP TRUCK        |

| <b>Equipment ID</b> | Equipment Description                                       |
|---------------------|-------------------------------------------------------------|
| S2302               | KENWORTH T880 QUAD 2017 DUMP TRUCK                          |
|                     | KENWORTH T880 QUAD 2017 DUMP TRUCK                          |
| S2304               | KENWORTH T880 QUAD 2017 DUMP TRUCK                          |
| S2305               | KENWORTH T880 QUAD 2017 DUMP TRUCK                          |
| S2306               | KENWORTH T880 QUAD 2017 DUMP TRUCK                          |
| S2307               | KENWORTH T880 QUAD 2017 DUMP TRUCK                          |
| S2308               | KENWORTH T880 QUAD 2017 DUMP TRUCK                          |
| S2309               | KENWORTH T880 QUAD 2017 DUMP TRUCK                          |
| S240                | Ford L9000 Dump Truck                                       |
| S2400               | MACK DUMP TRUCK GU713 2014                                  |
| S2401               | MACK DUMP TRUCK GU713 2014                                  |
| S2402               | MACK DUMP TRUCK GU713 2014 (YELLOW)                         |
| S2403               | MACK DUMP TRUCK GU713 2014                                  |
| S2404               | MACK DUMP TRUCK GU713 2014                                  |
| S2405               | MACK DUMP TRUCK GU713 2016                                  |
| S264                | 1988 KENWORTH T-800 ASPHALT                                 |
| S265                | 1988 KENWORTH T-800                                         |
| S267                | 1988 KENWORTH T-800                                         |
| S269                | 1988 KENWORTH T-800                                         |
| S271                | 1988 KENWORTH T-800                                         |
| T2200               | International 960 Roll Off Truck 1995 (CLD 9 966)           |
| T2201               | Freightliner 1FV Septic Tank Truck 1997 (CLD 9 963)         |
| T2203               | Tank Truck                                                  |
| T2204               | WHGM ROLLOFF TRUCK 1992                                     |
| R227                | KOMATSU D61                                                 |
| S4450               |                                                             |
| S4451               | Caterpillar D8R DOZER CATERPILLAR D9R DOZER 1998            |
| S4458               | CAT D4HLX DOZER                                             |
| S4460               | CAT D5M DOZER  CAT D5M DOZER                                |
| S4460<br>S4461      |                                                             |
|                     | Komatsu D61 EXD w/Advantage Pro Radio CATERPILLAR D6RXL     |
| S4500<br>S4501      | CATERPILLAR D8T                                             |
| S4502               |                                                             |
|                     | CATERPILLAR D6R XL                                          |
| S4503               | CATERPILLAR D8R II                                          |
| S4504<br>S4505      | CATERPILLAR D6RXL (R91) (2003) CATERPILLAR D6N Dozer (2010) |
| S4505               | ` /                                                         |
| \$4506              | JOHN DEERE 700K                                             |
| S4507               | CATERPILLAR D6R (R116)                                      |
| S455                | CATERPILLAR D8N W/RIPP 1990                                 |
| S456                | CAT DOD DOZER                                               |
| \$457               | CAT D8H                                                     |
| S459                | CATERRILLAR DON DOZER 1992                                  |
| S464                | CATERPILLAR D9N DOZER 1993                                  |
| \$467               | CAT DOLL DOZER 1994                                         |
| S469                | CAT. D8H DOZER                                              |
| R231                | Cat 336 Excavator                                           |
| R249                | KOMATSU PC290LC w/Drum Cutter                               |
| S407                | CATERPILLAR 325BL W/ICE 6E VIBRO                            |
| S4109               | LINKBELT 290LX                                              |
| S4110               | CATERPILLAR 325 CL 2003                                     |
| S4111               | CATERPILLAR 330C L EXCAVATOR (2003)                         |
| S4112               | CATERPILLAR 420E                                            |
| S4113               | CATERPILLAR 312C 2005 CATERPILLAR 420D W/SMALL HAMMER       |
| S4114               |                                                             |

| <b>Equipment ID</b> | Equipment Description                            |
|---------------------|--------------------------------------------------|
| S4115               | CATERPILLAR 330DL                                |
| S4117               | 1999 CATERPILLAR 320                             |
| S4124               | CATERPILLAR 330CL                                |
| S4125               | CATERPILLAR 325CL (HAMMER)                       |
| S4127               | LINKBELT 330LX                                   |
| S4131               | CATERPILLAR 330D L Excavator 2007                |
| S4134               | CATERPILLAR 320D L 2010                          |
| S4136               | 2008 JOHN DEERE 850DX CE-75                      |
| S4139               | Caterpillar 336E EXCAVATOR (R117)                |
| S4141               | Caterpillar 349F Excavator Total                 |
| S4146               | Caterpillar 323F Excavator W/Thumb               |
| S4147               | CATERPILLAR 325F LCR EXCAVATOR (2017)            |
| S4405               | 330 CAT EXCAVATOR                                |
| S4407               | CATERPILLAR 325 CL 2005                          |
| S4408               | LINKBELT 290LX                                   |
| T170                | 2004 OSHKOSH MIXER                               |
| T171                | OSHKOSH MIXER 2004                               |
| T172                | OSHKOSH WHAEK 2004                               |
| T173                | Oshkosh Mixer                                    |
| T174                | OSHKOSH Mixer 2007                               |
| T175                | OSHKOSH NAKU 2007<br>OSHKOSH S-SERIES MIXER 2007 |
| T176                | 2007 OSHKOSH S-SERIES MIXER                      |
| T177                | OSHKOSH Mixer 2007                               |
| T188                | 2008 OSHKOSH S-SERIES MIXER                      |
| T189                | 2008 OSHKOSH S-SERIES MIXER                      |
| T190                | OSHKOSH Mixer 2008                               |
| T191                | 2008 OSHKOSH S-SERIES MIXER                      |
| T192                | 2008 OSHKOSH S-SERIES MIXE2                      |
| T193                | OSHKOSH Mixer                                    |
| T194                | OSHKOSH Mixer 2007                               |
| T195                | OSHKOSH Mixer 2007                               |
| T196                | 2004 Oshkosh Mixer                               |
| T197                | 2004 Oshkosh Mixer Truck                         |
| T198                | 2004 Oshkosh Mixer                               |
| T199                | Oshkosh Mixer 2004                               |
| T200                | OSHKOSH Mixer 2004                               |
| T201                | Oshkosh Mixer Front S-SERIES 2005                |
| T202                | OSHKOSH MIXER FRONT                              |
| T203                | 2006 Oshkosh Mixer Front Discharge               |
| T204                | 2004 OSHKOSH MIXER WITH GLIDER                   |
| T206                | Oshkosh Wrecked Mixer 2008                       |
| T207                | OSHKOSH Concrete Mixer                           |
| T208                | Oshkosh Mixer 2014                               |
| T209                | 2014 Oshkosh Mixer                               |
| T210                | 2014 Oshkosh Mixer                               |
| T211                | 2014 Oshkosh Mixer                               |
| T212                | 2014 OSBROSH MIXER  2016 Terex FD5000 Mixer      |
| T213                | 2016 Terex FD5000 Mixer  2016 Terex FD5000 Mixer |
| T214                |                                                  |
| T232                | Terex Mixer 2016 Oshkosh S2346 Mixer 2014        |
|                     |                                                  |
| T235                | OSHKOSH MIXER 2001 (ETC09)                       |
| T236                | OSHKOSH MIXER 1999 (ETC04)                       |
| T237                | OSHKOSH FRONT MIXER 2001 (ETC12)                 |
| T238                | OSHKOSH MIXER 1999 (ETC02)                       |

| Equipment ID | <b>Equipment Description</b>           |
|--------------|----------------------------------------|
| T239         | OSHKOSH MIXER 2001 (ETC08)             |
| T247         | Oshkosh Mixer S2346 (Trainer Cab) 2018 |
| T248         | Oshkosh Mixer S2346 2018               |
| T249         | Oshkosh Mixer S2346 2018               |
| T250         | OSHKOSH MIXER 2017                     |
| R247         | Weiler Paver 385B 2017                 |
| S561         | VOGELE 700 SUPER PAVER                 |
| S562         | Caterpillar AP555F 8' Paver 2015       |
| S563         | Roadtec RP190E RT Paver 2015           |
| S566         | Weiler Paver 385B 2017                 |
| S569         | JERSEY SPREADER Total                  |
| S572         | BLAW KNOX PAVER PF-3200                |
| S573         | BLAW KNOX PAVER PF-3172                |
| S574         | BLAW KNOX PAVER PF-3172                |
| S575         | BLAW KNOX RE 100 ROAD WIDNER           |
| S577         | RoadTec Paver RP-190E 2017             |
| S579         | Roadtec SB-2500E Shuttle Buggy         |
| S584         | PF180 PAVER 180H                       |
| S585         | BLAW KNOX WIDNER                       |
| S586         | ROADTEC RP-170 PAVER                   |
| S587         | BLAW KNOX PF 161                       |
| S589         | ROADTEC 2500D SHUTTLE BUGGY            |
| S591         | BLAW-KNOX PF161                        |
| S593         | 2005 ROADTEC RP-190 PAVER              |
| S594         | ROADTEC RP-190 PAVER 2006              |
| S595         | INGERSOLLRAND BLAW KNOX PF3172         |
| S596         | ROADTEC 2500D SHUTTLE BUGGY            |
| S597         | Roadtec RP190 Paver 2009               |