MATLAB 可能会用得上的一些小 tips

- 1. 对 $m \times n$ 矩阵A为例,矩阵元素A(i,j)的序号为 $(j-1) \times m+i$,相互转换关系也可以通过 sub2ind 和 ind2sub 转换
- 2. 三个取整的函数区别: floor(x)是向数轴左侧取整, fix(x)是向中部取整, ceil(x)是向数轴右侧取整
- 3. rem(A,n)==0 能判断 A 中矩阵能否被 n 整除
- 4. 书 P33 页有将字符串中的小写字母变为大写字母,其余字符不变的程序,如果考试考到可以参考
- 5. 特殊矩阵:

命令代码		
zeros	零矩阵	
ones	一矩阵	
eye	单位矩阵	
rand	01 均匀分布随机矩阵	
randn	均值为0,方差为1的标准正态分布随机矩阵	
magic(n)	n阶魔方矩阵	
vander(V)	以向量V作为基础向量的范德蒙德矩阵	
hilb(n)	希尔伯特矩阵	
<pre>invhilb(n)</pre>	希尔伯特逆矩阵	
compan(p)	伴随矩阵	
pascal(n)	n阶帕斯卡矩阵	
diag(A)	提取对角线元素	
diag(A,k)	提取第 k 条对角线上的元素,主对角线是第 0 条,向上则依次+1,向下依次-1	
diag(V)	构建以行向量V为对角线的对角线矩阵	
triu(A)	取上三角矩阵	
triu(A,k)	取A第k条对角线以上的元素	
tril(A)	取下三角矩阵	
tril(A,k)	取A第k条对角线以下的元素	
rot90(A,k)	A 矩阵逆时针翻转 k 次,k 的缺省是 1	
fliplr(A)	左右翻转	
flipud(A)	上下翻转	
norm(A,k)	求范数, k=1,2,inf	
cond(A,k)	求条件数, k=1,2,inf	
[V,D]=eig(A)	求 A 的特征值矩阵与特征向量, V 是特征值的对角线矩阵, D 是对应特征向量	

6. 求多项式的根有两种方法

% 方法一 P = [3 -7 0 5 2 -18];

```
A = compan(P) % 先求伴随矩阵
x = eig(A) % 再求特征值, 就直接得到根

% 方法二
P = [3 -7 0 5 2 -18];
x = roots(P);
```

- 7. switch 语句表达式中, case 的表达式如果是多个值,需要用 cell 矩阵,可借用 num2cell 把普通的数值矩阵转成 cell
- 8. for 循环的本质:

```
      for 循环变量 = 矩阵表达式

      循环体语句

      end
```

将矩阵的各列元素赋给循环变量, 然后执行循环体语句

- 9. 当 norm(A,1)==0 时,可以认为 A 是很小的矩阵
- 10. 有两个预定义变量 nargin 和 nargout 能够记录调用该函数时输入实参与输出实参的个数

```
function fout = charray(a,b,c)
if nargin == 1
  fout = a;
elseif nargin == 2
  fout = a + b;
elseif nargin == 3
  fout = (a*b*c)/2;
end
end
```

11. 其他形式的线性直角坐标图

命令代码	用途
bar(x,y,选项)	条形图
stairs(x,y,选项)	阶梯图
stem(x,y,选项)	杆图
fill(x,y,选项)	填充图
polar(theta,rho,选项)	极坐标图
semilogx(x,y,选项)	半对数坐标,x 轴为常用对数刻度,y 保持线性刻度
semilogy(x,y,选项)	半对数坐标,y轴为常用对数刻度,x保持线性刻度
loglog(x,y,选项)	全对数坐标
fplot(filename, lims, tol, 选项)	书 P97 顶部,自适应曲线绘制

- 12. 在用 mesh, surf 画三维图像之前,需要用[X,Y] = meshgrid(x,y)生成网格坐标矩阵
- 13. mesh or surf 的调用: mesh/surf(x,y,z)即可
- 14. 一些难题的笔记:

```
% 两个等直径圆管的交线
m = 30;
z = 1.2 * (0: m) / m;
```

```
r = ones(size(z));
theta = (0:m)/m * 2 * pi;
x1 = r' * cos(theta);
y1 = r' * sin(theta); % 生成第一个圆管的坐标矩阵
z1 = z' * ones(1,m+1);
x = (-m : 2 : m) / m;
x2 = x' * ones(1, m+1);
y2 = r' * sin(theta);
z2 = r' * cos(theta);
surf(x1,y1,z1);
axis equal
axis off
hold on
surf(x2,y2,z2);
axis equal
axis off
hold off
title("两个等直径圆管的交线")
```

两个等直径圆管的交线

图 1 执行结果

15. 求两平面交线

```
clc;
  clear;
  [x,y] = meshgrid(-10:0.2:10);
  z1 = (x.^2-2*y.^2) + eps;
  a = input('a=?')
  z2 = a * ones(size(x));
  subplot(1,2,1);
  mesh(x,y,z1);
  hold on;
  mesh(x,y,z2);
  v = [-10,10,-10,10,-100,100];
  axis(v);
  grid on;
  hold off;
  r0 = abs(z1 - z2)<=1;</pre>
```

```
xx = r0.*x;
yy = r0.*y;
zz = r0.*z1;
subplot(1,2,2);
plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'*');
axis(v);
grid on;
```


图 2 执行结果

16. 句柄部分先跳过,最后再看