Лабораторна робота №1. Підготовка даних

2025-03-01

Перший огляд датасету

Одразу бачимо, що ϵ числові колонки, які зчиталися, як текстові. Warning пропону ϵ застосувати функцію problems, щоб дізнатися, що пішло не так під час спроби розпарсити значення колонок csv файлу.

```
dt <- read_csv("../data/raw/air_quality.csv")</pre>
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.q.:
    dat <- vroom(...)</pre>
##
    problems(dat)
glimpse(dt)
## Rows: 5,882,208
## Columns: 25
## $ date
             <dttm> 2024-08-31 23:00:00, 2024-08-31 23:00:00, 2024-08-31 23:00:~
## $ sitename <chr> "Hukou", "Zhongming", "Zhudong", "Hsinchu", "Toufen", "Miaol~
## $ county
             <chr> "Hsinchu County", "Taichung City", "Hsinchu County", "Hsinch~
             <dbl> 62, 50, 45, 42, 50, 40, 39, 44, 46, 49, 44, 58, 45, 62, 58, ~
## $ aqi
## $ status
             <chr> "Moderate", "Good", "Good", "Good", "Good", "Good", "Good", ~
## $ so2
             <dbl> 0.9, 1.6, 0.4, 0.8, 1.0, 1.1, 0.9, 1.3, 2.5, 0.7, 1.9, 0.1, ~
## $ co
             <chr> "0.17", "0.32", "0.17", "0.2", "0.16", "0.17", "0.18", "0.24~
                                                "33.5", "35.2", "35.3"
             <chr> "35.0", "27.9", "25.1", "30.0",
## $ o3
             <chr> "40.2", "35.1", "40.6", "35.9", "35.9", "35.0", "42.9", "39.~
## $ o3 8hr
## $ pm10
             <chr> "18.0", "27.0", "21.0", "19.0", "18.0", "15.0", "14.0", "21.~
             <chr> "17.0", "14.0", "13.0", "10.0", "14.0", "12.0", "9.0", "12.0~
## $ pm2.5
## $ no2
             <dbl> 2.3, 7.6, 2.9, 4.0, 1.8, 4.0, 2.4, 6.8, 7.3, 5.6, 7.3, 9.8, ~
## $ nox
             <dbl> 2.6, 9.3, 4.1, 4.8, 3.1, 5.1, 3.1, 7.3, 7.7, 6.3, 7.7, 10.5,~
## $ no
             <dbl> 0.3, 1.6, 1.1, 0.7, 1.2, 1.1, 0.7, 0.5, 0.3, 0.7, 0.4, 0.7, ~
## $ windspeed <chr> "2.3", "1.1", "0.4", "1.9", "1.8", "1.4", "0.6", "1.2"
## $ winddirec <chr> "225", "184", "210", "239", "259", "235", "203", "38", "8", ~
## $ unit
             <chr> "0.2", "0.2", "0.2", "0.2", "0.1", "0.1", "0.1", "0.2", "0.1~
## $ co 8hr
## $ pm2.5 avg <dbl> 20.1, 15.3, 13.8, 13.0, 15.3, 12.2, 11.4, 13.5, 14.2, 15.1, ~
## $ pm10 avg <chr> "26.0", "23.0", "24.0", "26.0", "28.0", "17.0", "16.0", "21.~
              <dbl> 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, ~
## $ longitude <dbl> 121.0389, 120.6411, 121.0890, 120.9724, 120.8987, 120.8201, ~
## $ latitude <dbl> 24.90010, 24.15196, 24.74091, 24.80564, 24.69691, 24.56499, ~
## $ siteid
              <dbl> 22, 31, 23, 24, 25, 26, 27, 28, 29, 30, 32, 20, 34, 35, 36, ~
```

Parsing issues

Застосування функції problems показало, що:

- іноді замість порожнього значення використовується "-" або "ND". Через це відповідні колонки стають текстовими
- трапляється неправильний формат дати (роздільник / замість очікуваного –).

```
problems(dt)
```

```
## # A tibble: 223 x 5
                                                       file
##
        row
              col expected
                                   actual
##
      <int> <int> <chr>
                                   <chr>
                                                       <chr>
## 1 274922
               7 a double
                                                    /Users/artem/KPI/Data Analy~
## 2 274922
               13 a double
                                                    /Users/artem/KPI/Data Analy~
                                                    /Users/artem/KPI/Data Analy~
## 3 274922
             14 a double
## 4 274922
               15 a double
                                                    /Users/artem/KPI/Data Analy~
## 5 274922
              20 a double
                                                    /Users/artem/KPI/Data Analy~
## 6 274922 22 a double
                                                    /Users/artem/KPI/Data Analy~
## 7 496094
            1 date in ISO8601 2023/11/13 10:00:00 /Users/artem/KPI/Data Analy~
              1 date in ISO8601 2023/11/13 10:00:00 /Users/artem/KPI/Data Analy~
## 8 496095
## 9 496096
              1 date in ISO8601 2023/11/13 10:00:00 /Users/artem/KPI/Data Analy~
## 10 496097
               1 date in ISO8601 2023/11/13 10:00:00 /Users/artem/KPI/Data Analy~
## # i 213 more rows
```

До функції read_csv додано аргумент na, який вказує, що значення "","-" і "ND" треба сприймати як порожні. Виправлено формат дати. Колонки sitename, county, pollutant і status перетворено на категорійні. Проблеми із типами даних на цьому вирішено.

```
dt <- read_csv(
   "../data/raw/air_quality.csv",
   na = c("", "-", "ND"),
   col_types = c(date = "character")
)

dt$date <- anytime(dt$date)

dt <- dt %>% mutate(
   sitename = as.factor(sitename),
   county = as.factor(county),
   pollutant = as.factor(pollutant),
   status = as.factor(status)
)

glimpse(dt)
```

```
<dbl> 35.0, 27.9, 25.1, 30.0, 33.5, 35.2, 35.3, 24.6, 30.3, 29.4, ~
## $ o3
## $ o3 8hr
              <dbl> 40.2, 35.1, 40.6, 35.9, 35.9, 35.0, 42.9, 39.7, 40.4, 37.0, ~
## $ pm10
              <dbl> 18, 27, 21, 19, 18, 15, 14, 21, 33, 20, 32, 29, 34, 37, 17, ~
              <dbl> 17, 14, 13, 10, 14, 12, 9, 12, 16, 12, 17, 18, 12, 21, 13, 1~
## $ pm2.5
             <dbl> 2.3, 7.6, 2.9, 4.0, 1.8, 4.0, 2.4, 6.8, 7.3, 5.6, 7.3, 9.8, ~
## $ no2
## $ nox
             <dbl> 2.6, 9.3, 4.1, 4.8, 3.1, 5.1, 3.1, 7.3, 7.7, 6.3, 7.7, 10.5,~
## $ no
             <dbl> 0.3, 1.6, 1.1, 0.7, 1.2, 1.1, 0.7, 0.5, 0.3, 0.7, 0.4, 0.7, ~
## $ windspeed <dbl> 2.3, 1.1, 0.4, 1.9, 1.8, 1.4, 0.6, 1.2, 0.5, 0.9, 0.9, 1.2, ~
## $ winddirec <dbl> 225, 184, 210, 239, 259, 235, 203, 38, 8, 97, 244, 252, 19, ~
## $ unit
              ## $ co_8hr
              <dbl> 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.2, 0.1, 0.3, ~
## $ pm2.5 avg <dbl> 20.1, 15.3, 13.8, 13.0, 15.3, 12.2, 11.4, 13.5, 14.2, 15.1, ~
## $ pm10_avg <dbl> 26, 23, 24, 26, 28, 17, 16, 21, 26, 21, 26, 32, 25, 32, 29, ~
## $ so2 avg
              <dbl> 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, ~
## $ longitude <dbl> 121.0389, 120.6411, 121.0890, 120.9724, 120.8987, 120.8201, ~
## $ latitude <dbl> 24.90010, 24.15196, 24.74091, 24.80564, 24.69691, 24.56499, ~
              <dbl> 22, 31, 23, 24, 25, 26, 27, 28, 29, 30, 32, 20, 34, 35, 36, ~
## $ siteid
```

Виявлення закодованих і неадекватних значень

Дослідження колонки "sitename"

Проблем не виявлено

```
table(dt$sitename)
```

```
##
##
                               Annan
                                                               Banqiao
##
                               71911
                                                                 71915
##
                             Cailiao
                                                              Changhua
##
                               71913
                                                                 71891
##
                 Changhua (Dacheng)
                                                   Changhua (Tianwei)
##
                               19357
                                                                    41
##
                 Changhua (Yuanlin)
                                                              Chaozhou
##
                               25771
                                                                 71236
                                                   Chiayi (Shuishang)
##
                              Chiayi
##
                               71912
                                                                   166
##
                           Chonglun
                                                               Dacheng
##
                                                                 32538
## Dajia (Rinan Elementary School)
                                                                  Dali
                                                                 71627
##
                              Daliao
                                                                Datong
##
                               71899
                                                                 71934
##
                              Dayuan
                                                      Dayuan (Zhubei)
##
                               71942
                                                                    11
##
                           Dongshan
                                                                Douliu
##
                               71916
                                                                 71884
##
    [ reached getOption("max.print") -- omitted 103 entries ]
```

Дослідження колонки "county"

Проблем не виявлено

```
table(dt$county)
```

##				
##	Changhua County	Chiayi City	Chiayi County	Hsinchu City
##	293423	71912	143986	75850
##	Hsinchu County	Hualien County	Kaohsiung City	Keelung City
##	143846	71912	888497	71913
##	Kinmen County	Lienchiang County	Miaoli County	Nantou County
##	71913	71914	219683	216420
##	New Taipei City	Penghu County	Pingtung County	Taichung City
##	898819	71910	305495	367033
##	Tainan City	Taipei City	Taitung County	Taoyuan City
##	366827	503766	143809	448718
##	Yilan County	Yunlin County		
##	147071	287491		

Дослідження колонки "аqі"

Очевидно кодові значення: -1

```
table(dt$aqi)
##
##
                0
                        1
                                2
                                        3
                                               4
                                                       5
                                                                       7
                                                                               8
                                                                                       9
       -1
                                                               6
##
     7391
               36
                      122
                               77
                                      111
                                              58
                                                     245
                                                             577
                                                                    1258
                                                                            2518
                                                                                   3732
##
       10
               11
                       12
                               13
                                       14
                                              15
                                                      16
                                                              17
                                                                      18
##
     7125
             9678
                   15063
                           20175
                                   23382
                                          32298
                                                   35373
                                                           43842
                                                                   49767
##
    [ reached getOption("max.print") -- omitted 290 entries ]
Рядки, де aqi == -1, майже повністю заповнені NA.
dt %>% filter(aqi == -1) %>% select(!c(0:3))
## # A tibble: 7,391 x 22
##
        agi pollutant status
                                 so2
                                        co
                                              o3 o3 8hr pm10 pm2.5
##
      <dbl> <fct>
                      <fct> <dbl> <
##
    1
         -1 <NA>
                       <NA>
                                 0.9
                                      0.17
                                               NA
                                                      NA
                                                            14
                                                                   10
                                                                        8.2
                                                                               9.9
                                                                                     1.6
##
    2
         -1 <NA>
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                                                      NA
                                                              NA
                                                                    NA
                                                                         NA
                                                                                NA
##
    3
         -1 <NA>
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                              NA
                                                                    NA
                                                                         NA
                                                                                NA
                                                                                      NA
         -1 <NA>
##
    4
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                              NA
                                                                    NA
                                                                         NA
                                                                                NA
                                                                                      NA
##
    5
         -1 < NA >
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                              NA
                                                                    NA
                                                                         NA
                                                                                NA
                                                                                      NA
##
    6
         -1 <NA>
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                              NA
                                                                    NA
                                                                         NA
                                                                                NA
                                                                                      NA
##
    7
         -1 <NA>
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                              NA
                                                                    NA
                                                                         NA
                                                                                NA
                                                                                      NA
##
    8
         -1 <NA>
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                              NA
                                                                    NA
                                                                         NA
                                                                                NA
                                                                                      NA
##
   9
         -1 <NA>
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                              NA
                                                                    NA
                                                                                NA
                                                                                      NA
                                                                         NA
## 10
         -1 <NA>
                        <NA>
                                NA
                                      NA
                                                NA
                                                       NA
                                                              NA
                                                                     NA
                                                                         NA
                                                                                NA
                                                                                      NA
## # i 7,381 more rows
## # i 10 more variables: windspeed <dbl>, winddirec <dbl>, unit <lgl>,
## #
       co_8hr <dbl>, pm2.5_avg <dbl>, pm10_avg <dbl>, so2_avg <dbl>,
## #
       longitude <dbl>, latitude <dbl>, siteid <dbl>
Який відсоток, займаються такі рядки? Менше 0.2%.
mean(dt$aqi == -1, na.rm = TRUE)
## [1] 0.001265758
```

Дослідження колонки "pollutant"

Проблем не виявлено

```
table(dt$pollutant)
```

```
##
##
     Carbon Monoxide (CO) Nitrogen Dioxide (NO2)
                                                                       Ozone
##
                                                                         100
                                              23951
##
               Ozone (8hr)
                                               PM10
                                                                       PM2.5
##
                    250979
                                              75230
                                                                     2296437
##
     Sulfur Dioxide (SO2)
##
                        497
```

Дослідження колонки "status"

Проблем не виявлено

table(dt\$status)

```
##
##
                                                         Hazardous
                              Good
##
                           3185191
                                                                 51
##
                          Moderate
                                                         Unhealthy
##
                           2159158
                                                              51008
## Unhealthy for Sensitive Groups
                                                    Very Unhealthy
##
                            343909
                                                                173
```

Дослідження колонки "so2"

Очевидно кодові значення: -999. Є підозрілі від'ємні числа. Можна припустити, що від'ємні показники є наслідком неідеалньості калібрування датчиків (тобто вони є справжніми, а не кодовими). Також у датасеті зафіксовані значно більші за модулем додатні концентрації, тому зсув показників є незначним.

table(dt\$so2)

##											
##	-999	-4.1	-3.4	-0.8	-0.75	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2
##	3	1		1			2				1868
##	-0.13	-0.1	0	0.1	0.2	0.3	0.4	0.41	0.5	0.6	0.7
##	1	2982	66010		64554	82827				145602	162218
##	0.78	0.8	0.9			1.07		1.11	1.12	1.13	1.14
##	1	176570	188558		1		228865	1	1	1	1
##	1.2	1.21	1.26		1.3			1.35	1.39	1.4	1.5
##	233568	1	2	1	235985	1	1	1	1	234208	229847
##	1.55	1.57	1.58	1.59	1.6	1.61	1.63	1.65	1.67	1.7	
##	1	1	1	2	221475	1				212248	1
##	1.76	1.77		1.8				1.85	1.86	1.87	1.88
##	1	1			2					1	1
##	1.9	1.91	_					2.03			
	190522	2						1		2	1
##		2.1	2.11	_	2.17			2.2		2.22	
##	2	165383		1				154496		1	2
##	2.25	2.26	2.28	2.29	2.3	2.34	2.35	2.37	2.38	2.4	2.41
##	2	1		2	143099	1				130414	3
##	2.45	2.47	2.48	2.49	2.5	2.55		2.57			
##	1	1			120750	2				3	
##	2.64	2.65	2.67	2.69	2.7	2.71		2.74		2.76	
##	1	1	1	2	100664	2	1				1
##	2.79	2.8	2.81		2.85				2.9		
##	1	_	1			1		2		2	
##	2.99	3	3.02								
##	1										
##	3.21		3.24			3.3		3.41			
##	1							1			49108
##	3.51	3.52				3.7					3.91
##	1	1		1							1
##	3.92		4.1			4.3			_		4.7
##	2		28417	1				1			17590
##		4.79	4.8			5					5.34
##		1		1				1			
##	5.35		5.5			5.8		5.9			6.2
##	1	10176	9577	8923	8315	7623	1	7267	6792	6358	5973

##	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7	7.1	7.2	7.3
##	5498	5209	4900	4533	4199	4128	3992	3536	3546	3244	3095
##	7.4	7.5	7.6	7.7	7.8	7.9	8	8.02	8.1	8.2	8.3
##	2954	2643	2631	2426	2377	2273	2199	1	2053	1982	1864
##	8.4	8.5	8.6	8.7	8.8	8.9	9	9.1	9.2	9.3	9.4
##	1770	1641	1590	1562	1419	1465	1227	1274	1254	1204	1153
##	9.5	9.6	9.7	9.8	9.9	10	10.1	10.2	10.3	10.4	10.5
##	1043	1094	1012	968	900	3262		177	199	152	193
##	10.6	10.7	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5	11.6
##	185	161	136	132	4949	141	125	114	93	119	112
##	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7
##	105	88	129	3390	95	75	73	73	73	80	70
##	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8
##	79	66	2480	57	64	56	57	46	48	54	62
##	13.9	14	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9
##	60	1863	46	51	36	38	49	53	35	42	43 16
##	15	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	
##	1450	30	37	27	34	34	36	33	46	31	1110
## ##	16.1	16.2 16	16.3 38	16.4	16.5	16.6	16.7 21	16.8	16.9	17	17.1 23
## ##	26 17.2	17.3	17.4	42 17.5	18 17.6	31 17.7		18 17.9	18 18	887 18.1	18.2
## ##	22	17.3	17.4	27	17.6	24		25	717	25	10.2
## ##	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3
## ##	13	10.4	16.5	18	15.7	19	16.9	553	19.1	13.2	19.3
##	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4
##	19.4	14	15.0	19.7	7	8	431	20.1	14	10	20.4
##	20.5	20.6	20.7	20.8	20.9	21	21.1	21.2	21.3	21.4	21.5
##	8	8		8	8	353		14	14	6	11
##	21.6	21.7		21.9	22	22.1	22.2	22.3	22.4	22.5	22.6
##	10	10		7	287	5		8	6	4	4
##	22.7	22.8	22.9	23	23.1	23.2	23.3	23.4	23.5	23.6	23.7
##	11	10	8	257	5	7		6	10	4	6
##	23.8	23.9	24	24.1	24.2	24.3	24.4	24.5	24.6	24.7	24.8
##	8	7	197	11	11	7		2	2	8	4
##	24.9	25	25.1	25.2	25.3	25.4		25.6	25.7	25.8	25.9
##	8	185	4			4			9	5	4
##	26	26.1	26.2	26.3	26.4		26.6	26.7	26.8	26.9	27
##	138	4	1	5	4	5	3	3	3	2	116
##	27.1	27.2	27.3	27.4	27.5	27.6			27.9	28	28.1
##	5	6	7	2	6	2	3	1	2	105	1
##	28.2	28.3	28.4	28.6	28.7	28.8	28.9	29	29.1	29.3	29.4
##	2	1	1	4	2	1	3	74	1	4	1
##	29.5	29.6	29.7		30	30.1	30.2	30.3	30.4	30.5	30.6
##	3	1	2		73	9	2	1	3	2	1
##	30.7	30.8	30.9	31	31.1	31.2	31.3	31.4	31.5	31.6	31.8
##	1	1	4	55	2	1	1	2	5	1	4
##	31.9	32	32.1	32.2	32.3	32.4	32.5	32.6	32.7	32.8	33
##	2	56	3		2	3		3	2	1	52
##	33.1	33.5	33.6		34	34.1	34.2	34.3	34.4	34.5	34.6
##	2	5	4	1		2		1	1		2
##	34.7	34.8	34.9	35	35.1	35.4	35.6	35.7	35.8	35.9	36
##	2	1	1		1			1	2		34
##	36.1	36.3	36.5	36.6	36.7			37	37.2	37.3	37.5
##	3	2	1	2	2	3	1	27	1	3	2

##	37.6	37.8	38	38.1	38.3	38.6	38.9	39	39.1	39.4	39.6
##	3	1	14	1	1	2	2	21	2	1	2
##	40	40.3	40.6	40.8	40.9	41	41.2	41.3	41.4	41.5	41.6
##	15	1	1	1	3	11	1	1	1	2	2
##	41.8	41.9	42	42.1	42.3	42.4	42.5	42.6	42.7	42.8	43
##	1	3	9		4	2	1	1	1	2	14
##	43.1	43.3	43.5	43.8	44	44.1	44.3	44.5	44.7	44.9	45
##	1	1	1		14	1		1	1	1	13
##	45.1	45.6	45.8	46	46.4	46.6	46.7	47	47.1	47.2	47.5
##	1	1	1	12	2	1	1	6	2	1	3
##	47.8	47.9	48	48.8	49	49.4	49.7	50	50.7	50.8	50.9
##	2	1	9	1	5	2	2	6	3	1	1
##	51	51.3	52	52.1	52.7	52.8	52.9	53	53.1	53.4	53.5
##	4	1	7	1	1	1	2	6	2	1	1
##	53.7	53.9	54	54.7	54.8	54.9	55	55.2	55.3	55.4	56
##	1	2	8	1	1	2	3	4	2	2	5
##	57	57.7	57.8	58	58.1	58.6	59	59.1	59.7	59.8	60
##	4	2	2	2	1	1	4	3	1	1	5
##	60.5	60.8	61	61.3	61.5	61.6			62		
##	1		4		2			1			1
##		63			64			65.4			66.1
##	1	4		1	1	1	1	1	2	1	3
##	66.3	67		68	69	69.2	69.4	69.8	69.9	70	70.1
##	2	2	2	1	4	2	1	2	1	2	1
##	70.2	70.7	72	72.3	73	73.4		74.8	75	76	76.2
##	1	2	1	1	2		3		3		2
##	77	78	79.5	80.4	81	81.3	81.7	82	83	83.3	84
##	1	2	1	1	2	1	1	5	3	1	1
##	84.6	85	86	87.8	88	91	91.8	93	93.7	94	96
##	1	5	3	2	2	2	2	1	2	1	1
##	97	97.2	98.1	98.2	99.4	100	100.5	101	101.3	102.2	102.7
##	1	1	1	1	2	3	2	1	2	1	1
##	103	109	111	113.3	115.6	115.9	116	117.8	118.7	119	124
##	1		2		2		1		1	1	1
##	129.3	131	132	137.6			180				
##	2	2	1	1	1	1	1	1			

Дослідження колонки "со"

Очевидно кодові значення: -999. Є від'ємні числа.

```
##
## 000 0 274 0 120 0 02 0 01
```

-999 -0.274 -0.129 -0.03 -0.02 -0.01 ## 8 1 1 80 148 174

Дослідження колонки "о3"

Очевидно кодові значення: -999. Є від'ємні числа.

```
table(filter(dt, o3 < 0)$o3)</pre>
```

```
##
## -999    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
## 1 10 16 17 29 27 29 39 62 110 138
```

Дослідження колонки "о3_8hr"

 ϵ від'ємне число -1. Хоча воно і схоже на кодове, за аналогією до попередніх колонок, припустимо, що воно справжнє. До того ж, частка таких рядків дуже мала: у цьому можна переконатися, поглянувши на гістограму.

```
table(filter(dt, o3_8hr < 0)$o3_8hr)

##
## -1
## 50

ggplot(dt, aes(x = o3_8hr)) +
    geom_histogram()</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 153648 rows containing non-finite outside the scale range
(`stat_bin()`).

Дослідження колонки "рт10"

Очевидно кодові значення: -999

```
table(filter(dt, pm10 < 0)$pm10)</pre>
```

```
##
## -999
## 2
```

Дослідження колонки "рт2.5"

Очевидно кодові значення: -999

```
table(filter(dt, pm2.5 < 0)$pm2.5)

##
## -999
## 3</pre>
```

Дослідження колонки "по2"

€ від'ємні числа.

Дослідження колонки "nox"

€ від'ємні числа.

```
##
## -1.6 -0.5 -0.4 -0.3 -0.2 -0.1
## 1 4 21 26 59 49
```

Дослідження колонки "по"

table(filter(dt, no < 0)\$no)</pre>

€ від'ємні числа.

```
##
\#\# -7.2 -2.32 -2.04 -0.91 -0.87 -0.86 -0.74 -0.62 -0.6 -0.57 -0.51 -0.5 -0.46
          1
               1
                     1
                          1
                               1
                                     1
                                          2
                                                1
                                                     1
                                                          1 1370
\#\# -0.4 -0.34 -0.31 -0.3 -0.29 -0.26 -0.22 -0.21 -0.2 -0.19 -0.17 -0.14 -0.13
        1
             1 4478
                        1
                                3
                                     1
                                        1
                                             7214
                                                    1
                                                           1
## -0.12 -0.11 -0.1 -0.09 -0.08 -0.05 -0.04 -0.03 -0.02 -0.01
           1 13271
                     1
                           3
```

Дослідження колонки "windspeed"

€ від'ємні числа.

```
table(filter(dt, windspeed < 0)$windspeed)
##</pre>
```

```
## -0.4 -0.2 -0.1
## 15 1 56
```

Дослідження колонки "winddirec"

Очевидно кодові значення: 990

```
table(filter(dt, winddirec < 0 | winddirec > 360) winddirec)
##
## 990
## 578
Рядки, де winddirec == 990, у всьому іншому на вигляд цілком адекватні.
dt %>% filter(winddirec == 990) %>% select(!c(0:3))
## # A tibble: 578 x 22
##
       agi pollutant status
                              so2
                                     CO
                                          o3 o3 8hr pm10 pm2.5
                                                                  no2
                                                                        nox
                                                                               no
##
                   <fct> <dbl> <
     <dbl> <fct>
## 1
                                          42.4
        49 <NA>
                      Good
                              NA
                                   NA
                                                 53.4
                                                                0 NA
                                                                         NA
                                                                               NA
## 2
        58 Ozone (8~ Moder~
                              0.3 0.19 55.8
                                                57.6
                                                                  0.7
                                                         1
                                                              0
                                                                        1.1
                                                                              0.4
## 3
        58 Ozone (8~ Moder~
                              0.2 0.19
                                         55.4
                                                57.9
                                                         2
                                                              0
                                                                  0.9
                                                                        1.4
                                                                              0.5
## 4
        58 Ozone (8~ Moder~
                              0.3 0.23 60.2
                                                57.9
                                                                        1.7
                                                                              0.5
                                                         6
                                                              0
                                                                  1.1
## 5
        45 <NA>
                     Good
                              0.2 0.25
                                         51.7
                                                        1
                                                                              0.4
                                                49.7
                                                              0
                                                                  1.1
                                                                        1.5
## 6
        44 <NA>
                              0.3 0.25 49.4
                     Good
                                                48.1
                                                         2
                                                              0
                                                                  1.7
                                                                        1.9
                                                                              0.2
##
        41 <NA>
                     Good
                              0.2 0.24 49.2
                                                45
                                                         3
                                                              0
                                                                  1.9
                                                                        2.2
                                                                              0.3
## 8
        38 <NA>
                     Good
                              0.3 0.26 49.5
                                                42
                                                        7
                                                              1
                                                                  2.3
                                                                              0.3
                                                                        2.6
## 9
        60 PM2.5
                     Moder~
                              0.8 0.55 14.5
                                                24
                                                       NA
                                                             NA 20.3 20.9
                                                                              0.5
## 10
        80 PM2.5
                     Moder~
                              0.9
                                   0.34 29.6
                                                48.5
                                                        42
                                                             29
                                                                  8.9
                                                                        9.3
                                                                              0.4
## # i 568 more rows
## # i 10 more variables: windspeed <dbl>, winddirec <dbl>, unit <lql>,
## #
       co_8hr <dbl>, pm2.5_avg <dbl>, pm10_avg <dbl>, so2_avg <dbl>,
       longitude <dbl>, latitude <dbl>, siteid <dbl>
## #
Дослідження колонки "unit"
Усі NA. Колонку можна буде видалити.
table(dt$unit)
## 
Дослідження колонки "со 8hr"
€ від'ємні числа.
table(filter(dt, co 8hr < 0)$co 8hr)</pre>
##
## -1
## 35
Дослідження колонки "pm2.5 avg"
€ від'ємні числа.
table(filter(dt, pm2.5 avg < 0)$pm2.5 avg)</pre>
##
## -1
## 6
```

Дослідження колонки "pm10_avg"

€ від'ємні числа.

```
table(filter(dt, pm10_avg < 0)$pm10_avg)

##
## -1
## 6</pre>
```

Дослідження колонки "so2 avg"

€ від'ємні числа.

```
table(filter(dt, so2_avg < 0)$so2_avg)
##
## -1
## 12</pre>
```

Дослідження колонки "longitude"

Значення 0 схоже на помилкове. Колонку можна буде видалити, оскільки цю інформацію навряд чи вдасться використати.

```
table(dt$longitude)
```

```
##
##
              0
                  118.312256
                                119.566158 119.93149378
                                                            119.949875
                                                                            119.9525
##
            191
                        60297
                                      60294
                                                   14280
                                                                 39182
                                                                                  10
##
     119.952724 120.12416667 120.12444444
                                                120.1547 120.18339722 120.19933333
##
           1455
                            2
                                       8089
                                                        5
                                                                 17763
                                                                               41937
##
     120.202617
                   120.202842
                                   120.2175
                                              120.218333 120.21947897
                                                                           120.22085
##
          43744
                        18364
                                      60285
                                                       10
                                                                  6505
                                                                                6716
## 120.22238056 120.24205556
##
           3309
                           21
    [ reached getOption("max.print") -- omitted 169 entries ]
```

Дослідження колонки "latitude"

Значення 0 схоже на помилкове. Колонку можна буде видалити, оскільки цю інформацію навряд чи вдасться використати.

```
table(dt$latitude)
```

```
##
                                            22.35222 22.37094722 22.38474167
##
             0
                  21.958069
                              22.260899
##
           191
                      60274
                                   16152
                                               41793
                                                             6157
                                                                         13476
##
       22.4794
                    22.4795
                              22.523108
                                           22.526986
                                                        22.544317 22.54779444
##
                      60282
                                   58125
                                                                3
                                                                          1497
     22.560847
##
                  22.564136 22.56413611
                                           22.565747
                                                        22.565833
                                                                      22.58564
##
             1
                         10
                                   41941
                                               18332
                                                            60294
                                                                           833
##
     22.587069
                22.6044507
##
    [ reached getOption("max.print") -- omitted 169 entries ]
```

Дослідження колонки "siteid"

Проблем не виявлено. Колонку можна буде видалити, оскільки цю інформацію навряд чи вдасться використати.

table(dt\$siteid)

##													
##	0	1	2	3	4	5	6	7	8	9	10	11	12
##	28	48909	48913	48922	48907	48908	48909	48911	48907	48911	49167	48938	48937
##	13	14	15	16	17	18	19	20	21	22	23	24	25
##	48912	48920	48913	48928	48910	48936	48907	48929	48907	48912	48922	48926	48915
##	26	27	28	29	30	31	32	33	34	35	36	37	38
##	48908	48913	48909	48902	48621	48919	48914	48907	48904	48909	48913	48878	48915
##	39	40	41	42	43	44	45	46	47	48	49	50	51
##	48901	48903	48908	48906	48908	48906	48905	48879	48905	48910	48905	44256	48893
##	52	53	54	55	56	57	58	59	60	61	62	63	64
##	48891	47832	48882	21	48727	48890	48901	48881	46733	48884	48907	48906	49174
##	65	66	67	68	69	70	71	72	73	74	75	76	77
##	48907	48910	48895	48907	48912	48895	48897	48907	21	21	48908	21	48886
##	78	80	83	84	85	86	87	90	92	96	201	202	203
##	48883	48869	48895	48907	32531	19	21	19	21	21	33508	40585	48201
##	204	206	310	311	312	313	314						
##	48722	1	30426	40148	31521	38758	166						

Підбиття підсумків, очищення від кодів і видалення непотрібних колонок

Колонки, що містять очевидно кодові значення:

- aqi кодові: -1
- so2 кодові: -999
- со кодові: -999
- о3 кодові: -999
- pm10 кодові: -999
- pm2.5 кодові: -999
- winddirec кодові: 990

Колонки, що містять від'ємні значення:

- so2
- co
- o3
- o3 8hr
- no2
- nox
- no
- windspeed
- co_8hr
- pm2.5_avg
- pm10 avg
- so2_avg

Колонки, які можна видалити:

- unit порожня колонка
- longitude корисність під сумнівом
- latitude корисність під сумнівом
- siteid корисність під сумнівом

Припуститимо, що від'ємні показники є справжніми, а не кодовими, і виникли через незначний зсув у калібруванні датчиків. За неохідності (наприклад, для логаритмування) цей зсув можна буде компенсувати додаванням певного числа до всіх значень відповідної колонки.

Кодові значення замінимо на NA і видалимо непотрібні колонки.

```
dt <- dt %>%
  replace_with_na(replace = list(
    aqi = -1,
    so2 = -999,
    co = -999,
    o3 = -999,
    pm10 = -999,
    pm2.5 = -999,
    winddirec = 990
    ))

dt <- dt %>% select(!c(unit, longitude, latitude, siteid))
```

Оцінка кількості пропущених значень

Колонки, у яких NA більше, ніж 5%

Повний код для підготовки даних

Повний код знаходиться у папці code/lab1_cleaning.R