Find analytical and numerical (Five-diagonal matrix method) solutions of onedimensional Poisson equation

$$\frac{\partial^2 P}{\partial x^2} = -f(x); x \in (0,1)$$

with the following conditions:

1.
$$f(x) = x^2 + 2x + 3;$$

 $P(x=0) = 1$ $P(x=1) = 0$

2.
$$f(x) = \sin(x);$$

 $P(x=0) = 1$ $P(x=1) = 0$

3.
$$f(x) = e^x$$
;
 $P(x=0) = 1$ $P(x=1) = 0$

4.
$$f(x) = x^{2} \sin(\pi x);$$
$$P(x=0) = 1 \quad P(x=1) = 0$$

5.
$$f(x) = e^{x} \cos(x);$$
$$P(x=0) = 1 \quad P(x=1) = 0$$

6.
$$f(x) = 2x^2 + 5x + 3;$$
$$P(x = 0) = 0 \quad P(x = 1) = 1$$

7.
$$f(x) = \sin^2(x);$$

 $P(x=0) = 0$ $P(x=1) = 1$

8.
$$f(x) = xe^{x}$$
;
 $P(x=0) = 0$ $P(x=1) = 1$

9.
$$f(x) = x^{2} \cos(2\pi x);$$
$$P(x=0) = 0 \quad P(x=1) = 1$$

10.
$$f(x) = e^x \sin(x);$$

 $P(x=0) = 0$ $P(x=1) = 1$

11.
$$f(x) = x^2 + 5x + 13;$$

 $P_x(x=0) = 0$ $P(x=1) = 1$

12.
$$f(x) = \sin^2(x) + \cos(x);$$

 $P_x(x=0) = 0$ $P(x=1) = 1$

13.
$$f(x) = e^x + x^3$$
;
 $P_x(x=0) = 0$ $P(x=1) = 1$

14.
$$f(x) = (x^2 + 3)\cos(\frac{\pi x}{2});$$

 $P_x(x=0) = 0 \quad P(x=1) = 1$

15.
$$f(x) = e^x \sin(\pi x);$$

 $P_x(x=0) = 0 \quad P(x=1) = 1$

16.
$$f(x) = 5x^2 + x + 3;$$

 $P(x = 0) = 1$ $P_x(x = 1) = 0$

17.
$$f(x) = \sin(x) + 2\cos(x);$$

 $P(x=0) = 1$ $P_x(x=1) = 0$

18.
$$f(x) = e^x + x^3 + 2;$$

 $P(x=0) = 1$ $P_x(x=1) = 0$

19.
$$f(x) = (x^2 + 3x + 2)\sin(\frac{\pi x}{2});$$

 $P(x = 0) = 1$ $P_x(x = 1) = 0$

20.
$$f(x) = e^x \cos(x);$$

 $P(x=0) = 1$ $P_x(x=1) = 0$

Draw graphs for analytical and numerical solutions together, find the maximum difference between these two solutions in the given interval.