Announcements

- HW7 (project proposal) is due tomorrow.
- HW8 will be posted.

Today's Lecture

- Bayesian feature selection
 - · Spike and slab model
 - · Bernoulli-Gaussian model
 - · L0 regularization
- p-norm and Bridge Regression

ASSUME:
$$\overline{\chi}_j = 0$$
, $\overline{y} = 0$

$$p(\beta|X) = p(y|X,X)$$

$$= \prod_{j=1}^{\infty} \left\{ S_{0}(w_{j}), |F| S_{0}=0 \right.$$

$$= \prod_{j=1}^{\infty} \left\{ N(w_{j}), |\sigma|^{2} \sigma_{w^{2}} \right\}, |F| S_{0}=1.$$

TYPICALLY TW = LARGE (>>1), BUT DEPENDS
ON REGULARIZATION DESIRED ON 8:=1 (RELEVANT
FEATURES.
SINCE THE APPROACH EFFECTIVELY COMPUTES THE
FULL P(8), 1T 15:
-THOROUGH
- COMPUTATIONALLY DEMANDING, OR
APPROXIMATE /SUB-
OPTIMAL.

SUGHTLY DIFFERENT VIEW: COMBINE & AND W INTO I VECTOR. MODEC: P(y|x,w, y, \(\frac{7}{2}\))=N(y|\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\f

$$(Y 15 A BINARY MASK FOR W).$$

$$P(W, Y | B) = P(B|W, Y) P(W, Y)$$

$$= P(B|W, Y)$$

$$= P(W, Y)$$

```
JOINT PRIOR p(w, \xi) = \frac{1}{2}
p(w, \xi) = p(w)p(\xi)
= N(w|0, Tw = ) ro (1-ro)
\frac{2}{2} BERNOULI-GAUSSIAN MODER
fob_{1}(w, \xi) \propto -log p(w, \xi) d
(PROP CONST'S OF w, \xi).
```

TAKE
$$(w^2 \rightarrow \infty)$$
, so DON'T REGULARIZE $\delta = 1$

WEIGHTS

CAN SHOW:

 $f_{obj}(w, \delta) = |y - \chi w|^2 + \lambda |x|_0$
 $f_{obj}(w, \delta) = |y - \chi w|^2 + \lambda |x|_0$

REDEFINE $w = w_{\delta}$.

THEN:

 $f_{obj}(w) = |y - \chi w|^2 + \lambda |w|_0$

BRIDGE REGRESSION	- \
GENERALIZE LO, LI, LZ REGULARIZERS/CUM	USTRAINTS.
EST. W USING MAP WITH AN.	
EXPONENTIAL POWER DISTRIBUTION AS A	PRIOR:
$= \frac{\left x_{j} - \mu_{j}\right }{2a\Gamma(b)} \exp \left\{-\frac{\left x_{j} - \mu_{j}\right }{a^{b}}\right\}$	4.16 }
-> Murphy Eq. (13,132) may have er	rors.
LEADS to AN ESTIMATE:	_
$\hat{w} = \operatorname{argmin} \left\{ NLL(w) + \lambda \left\{ \frac{\partial}{\partial w} \right\} \right\}$	b≥0,
LIKE AN "L" RE	
OR" P-norm" BAS	1920

D: ONE POINT X, Y,
=) fob; (w) oc [y, - (w, x, 1+ w, x, 12)]?
Agiven data point
(+) [w + w_2).

