Comparative Statics Exercises

- 1) Prove that if f is differentiable, then f has increasing differences if and only if $\frac{\partial^2 f(x,\theta)}{\partial x \partial \theta} \geq 0$.
- 2) Consider the parameterized optimization problem

$$\max_{x \in [0,1]} (1-x)p(x) + q(1-p(x))$$

where $p(\cdot) > 0$ is strictly increasing and concave. Assume that x^* is on the interior of [0, 1].

- i) Use the implicit function theorem to show how the optimal choice of x given q, $x^*(q)$ changes as q changes.
 - ii) How does the value function change as q changes?
- 3) Consider the parameterized optimization problem

$$\max_{x,z} \quad f(x,z;\theta)$$

where $x, y, \theta \in \mathbb{R}$. Assume f is twice continuously differentiable. Let f_{ij} denote $\frac{\partial^2 f}{\partial i \partial j}$ for $i, j \in \{x, z, \theta\}$ i.e. f_{xx} is the second derivative of f and f_{xz} is the cross partial derivative of f with respect to f and f are f and f and f and f and f and f are f and f and f and f are f are f and f are f are f and f are f are f are f and f are f and f are f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f are f are f and f are f

- i) What conditions on f_{xx} , f_{zz} , and f_{xz} must hold for $(x^*(\theta), z^*(\theta))$ to be a local maximum? (Hint: what must be true of the Hessian matrix with respect to choice variables at a local maximum?)
 - ii) Use the implicit function theorem to characterize $\frac{\partial}{\partial \theta}x^*(\theta)$ and $\frac{\partial}{\partial \theta}z^*(\theta)$ in terms of f_{ij} .
 - iii) Let $f_{x\theta}=0$, $fz\theta<0$, $f_{xz}>0$. Describe the comparative statics. Now let $f_{xz}<0$

and describe the comparative statics. Interpret this result.

iv) Show that if f is supermodular, then $\frac{\partial}{\partial \theta}x^*(\theta) > 0$ and $\frac{\partial}{\partial \theta}z^*(\theta) > 0$.