Jakub Radoszewski, Wojciech Rytter

Paweł Parys Program

Treść zadania, Opracowanie

Dostępna pamięć: 64 MB.

OI, Etap I, 20.10-17.11.2008

Słonie

W Bajtockim Zoo ma się za chwilę odbyć parada, w której uczestniczyć będą wszystkie znajdujące się w nim słonie. Pracownicy zoo zachęcili już zwierzęta do ustawienia się w jednym rzędzie, gdyż zgodnie z zarządzeniem dyrektora zoo taka powinna być początkowa figura parady.

Niestety, na miejsce przybył sam dyrektor i zupełnie nie spodobała mu się wybrana przez pracowników kolejność słoni. Dyrektor zaproponował kolejność, w której według niego zwierzęta będą się najlepiej prezentować, i wydał pracownikom polecenie poprzestawiania słoni zgodnie z tą propozycją.

Aby uniknąć nadmiernego chaosu tuż przed paradą, pracownicy postanowili przestawiać słonie, zamieniając miejscami kolejno pewne pary słoni. Przestawiane zwierzęta nie muszą sąsiadować ze sobą w rzędzie. Wysiłek potrzebny do nakłonienia słonia do ruszenia się z miejsca jest wprost proporcjonalny do jego masy, a zatem wysiłek związany z zamianą miejscami dwóch słoni o masach m_1 oraz m_2 można oszacować przez $m_1 + m_2$. Jakim minimalnym wysiłkiem pracownicy mogą poprzestawiać słonie tak, aby usatysfakcjonować dyrektora?

Napisz program, który:

- wczyta ze standardowego wejścia masy wszystkich słoni z zoo oraz aktualną i docelową kolejność słoni w rzędzie,
- wyznaczy taki sposób poprzestawiania słoni, który prowadzi od kolejności początkowej do docelowej i minimalizuje sumę wysiłków związanych ze wszystkimi wykonanymi zamianami pozycji słoni,
- wypisze sumę wartości tych wysiłków na standardowe wyjście.

Wejście

Pierwszy wiersz wejścia zawiera jedną liczbę całkowitą n ($2 \le n \le 1\,000\,000$), oznaczającą liczbę słoni w Bajtockim Zoo. Dla uproszczenia zakładamy, że słonie są ponumerowane od 1 do n. Drugi wiersz zawiera n liczb całkowitych m_i ($100 \le m_i \le 6\,500$ dla $1 \le i \le n$), pooddzielanych pojedynczymi odstępami i oznaczających masy poszczególnych słoni (wyrażone w kilogramach).

Trzeci wiersz wejścia zawiera n różnych liczb całkowitych a_i ($1 \le a_i \le n$), pooddzielanych pojedynczymi odstępami i oznaczających numery kolejnych słoni w aktualnym ustawieniu. Czwarty wiersz zawiera n różnych liczb całkowitych b_i ($1 \le b_i \le n$), pooddzielanych pojedynczymi odstępami i oznaczających numery kolejnych słoni w ustawieniu proponowanym przez dyrektora zoo. Możesz założyć, że ustawienia reprezentowane przez ciągi (a_i) oraz (b_i) są różne.

Wyjście

Pierwszy i jedyny wiersz wyjścia powinien zawierać jedną liczbę całkowitą, oznaczającą minimalny łączny wysilek związany z poprzestawianiem słoni, w wyniku którego z ustawienia reprezentowanego przez (a_i) uzyskuje się ustawienie (b_i) .

Przykład

Dla danych wejściowych:
6
2400 2000 1200 2400 1600 4000
1 4 5 3 6 2
5 3 2 4 6 1
poprawnym wynikiem jest:
11200

 $Jeden\ z\ najlepszych\ sposobów\ poprzestawiania\ słoni\ uzyskujemy,\ zamieniając\ miejscami\ kolejno\ pary\ słoni:$

- 2 i 5 wysilek związany z zamianą to 2 000 + 1 600 = 3 600, a uzyskane ustawienie to 1 4 2 3 6 5.
- 3 i 4 wysitek to 1200 + 2400 = 3600, a uzyskane ustawienie to 1 3 2 4 6 5,
- 1 i 5 wysilek to 2 400 + 1 600 = 4 000, a uzyskane ustawienie to 5 3 2 4 6 1, czyli ustawienie docelowe.

Rozwiązanie

Wstęp

Aby łatwiej wyobrazić sobie zadanie, jakie przed pracownikami zoo postawił dyrektor, spróbujemy przedstawić je graficznie. W tym celu zdefiniujemy funkcję $p: \{1,2,\ldots,n\} \rightarrow \{1,2,\ldots,n\}$ w następujący sposób:

$$p(b_1) = a_1, \quad p(b_2) = a_2, \quad \dots, \quad p(b_n) = a_n.$$

Zauważmy, że wówczas p(x) = y będzie oznaczało, że słoń o numerze x powinien znaleźć się w końcowym ustawieniu w miejscu, które jest aktualnie zajmowane przez słonia o numerze y. Wszystkie liczby b_i są różne, zatem p jest poprawnie zdefiniowaną funkcją, a ponieważ wszystkie liczby a_i są różne, p jest permutacjq zbioru $\{1,2,\ldots,n\}$. Sytuację z zadania możemy zatem przedstawić w postaci grafu skierowanego, w którym wierzchołkami są numery $1,2,\ldots,n$ słoni, krawędziami natomiast wartości funkcji p (patrz rys. 1).

Dalej, jak każdą permutację, funkcję p można rozłożyć na tak zwane *cykle proste* C_1, C_2, \ldots, C_c . W tym celu należy wystartować z dowolnego wierzchołka grafu i podążać po krawędziach, aż dojdzie się z powrotem do tego wierzchołka (dlaczego zawsze trafia

się w końcu w wierzchołek początkowy trasy?), po czym usunąć znaleziony cykl z grafu i kontynuować proces aż do wyczerpania wszystkich wierzchołków — patrz rys. 2.

Rys. 1: Graf wyznaczony przez funkcję p dla przykładu z treści zadania. Wierzchołki grafu reprezentują numery słoni, natomiast strzałka z x do y obrazuje relację "słoń x powinien zająć miejsce słonia y".

Rys. 2: Rozkład grafu z rys. 1 na cykle proste: trójelementowy, dwuelementowy i jednoelementowy.

Zastanówmy się teraz, jak na tle opisanego rozkładu na cykle proste wygląda operacja zamiany miejscami słoni o numerach e oraz f. Koszt takiej zamiany to $m_e + m_f$. Jeżeli słonie e oraz f znajdują się w tym samym cyklu, to następuje wówczas podział tego cyklu na dwa rozłączne, z których jeden zawiera jednego z tych słoni, a drugi drugiego — patrz rys. 3.

Rys. 3: Zamiana miejscami trzeciego i szóstego słonia w cyklu prowadzi do powstania dwóch cykli trójelementowych.

W szczególności, w wyniku zamiany miejscami dwóch słoni, które sąsiadują na cyklu, jeden z powstałych cykli jest jednoelementowy, co oznacza dokładnie tyle, że po tej zamianie jeden ze słoni znajduje się na swojej pozycji docelowej (rys. 4).

Rys. 4: Zamiana miejscami pierwszego i drugiego słonia w cyklu powoduje, że pierwszy słoń trafia na właściwą pozycję.

74 Słonie

Z kolei jeżeli słonie *e* oraz *f* należą do różnych cykli, to zamiana ich miejscami powoduje sklejenie tych cykli w jeden (rys. 5).

Rys. 5: Zamiana miejscami słoni należących do różnych cykli.

Rozwiązanie wzorcowe¹

Przyjmijmy następujące oznaczenia:

- \bullet |C| długość cyklu C, czyli liczba wierzchołków grafu w nim zawartych
- suma(C) suma mas słoni należących do cyklu C
- min(C) masa najlżejszego słonia na cyklu C
- min masa najlżejszego słonia w ogóle.

Naszym celem jest sprowadzenie układu cykli reprezentowanego przez permutację p do takiego, który będzie złożony wyłącznie z cykli jednoelementowych. W rozwiązaniu wzorcowym każdy cykl C rozpatrujemy osobno, a wspomniane przekształcenie realizujemy, stosując do C jedną z następujących metod przestawiania słoni.

Metoda 1. Porządkujemy cały cykl pojedynczymi zamianami sąsiednich słoni (jak na rys. 4). Za każdym razem zamieniamy najlżejszego słonia z całego cyklu (min(C)) z jego poprzednikiem na cyklu, w wyniku czego poprzednik ten trafia na właściwe miejsce (patrz rys. 6). W ten sposób najlżejszego słonia przemieszczamy łącznie |C|-1 razy, natomiast każdego z pozostałych słoni z cyklu — dokładnie raz. Łączny koszt porządkowania cyklu tą metodą wynosi zatem:

$$metoda_1(C) = suma(C) + (|C| - 2) \cdot min(C). \tag{1}$$

Metoda 2. Tym razem postępujemy bardzo podobnie, jednakże do obsłużenia całego cyklu wykorzystujemy globalnie najlżejszego słonia (min). W tym celu zamieniamy go z najlżejszym słoniem cyklu (min(C)), a następnie za jego pomocą przestawiamy kolejno wszystkie słonie z cyklu C (poza min(C)) jak poprzednio, po czym z powrotem zamieniamy min z min(C). Na ten ciąg zamian można też spojrzeć jak na sklejenie C z cyklem zawierającym min, po którym następuje ustawienie wszystkich słoni z C na właściwych miejscach za pomocą pojedynczych zamian ze słoniem min. W ten sposób najlżejszy słoń w całym zoo zostaje przemieszczony |C|+1 razy, najlżejszy w cyklu — 2 razy, a każdy z pozostałych słoni tego cyklu — dokładnie raz. Łączny koszt wszystkich przestawień to wówczas:

$$metoda_2(C) = suma(C) + min(C) + (|C| + 1) \cdot min.$$
 (2)

¹Duża część opisu rozwiązania wzorcowego została zaczerpnięta z pracy [37].

Rys. 6: Porządkowanie czteroelementowego cyklu za pomocą pierwszej metody. Zakładamy, że najlżejszy słoń ma numer 1.

Okazuje się, że w całym rozwiązaniu wystarczy wziąć pod uwagę jedynie dwie opisane metody i dla każdego cyklu w rozkładzie do uporządkowania użyć korzystniejszej z nich². Ostatecznie otrzymujemy następujący minimalny koszt poprzestawiania słoni:

$$\sum_{i=1}^{c} \min(\text{metoda}_1(C_i), \text{ metoda}_2(C_i)).$$
(3)

Implementacja

Jako podsumowanie słownego opisu rozwiązania wzorcowego umieszczamy poniższy jego pseudokod. Łatwo sprawdzić, że cały algorytm ma złożoność czasową O(n). Konkretne implementacje tego algorytmu można znaleźć w plikach slo.cpp, slol.java oraz slol.pas.

```
1: { Konstrukcja permutacji p. }
2: for i := 1 to n do p[b_i] := a_i;
3:
4: { Rozkład p na cykle proste. }
5: odw: array[1..n] := (false, false, ..., false);
6: c := 0;
7: for i := 1 to n do
8: if not odw[i] then begin
9: c := c + 1; x := i;
```

²Dodajmy tylko, że dla niektórych cykli zachodzi min(C) = min, i wówczas druga metoda traci sens, jednakże nie trzeba się tym faktem przejmować, gdyż wówczas i tak $metoda_2(C) > metoda_1(C)$.

```
while not odw[x] do begin
10:
            odw[x] := \mathbf{true};
11:
            C_c := C_c \cup \{x\};
12:
            x := p[x];
13:
14:
       end
15:
16:
    { Wyznaczenie parametrów cykli. }
17:
    min := \infty;
    for i := 1 to c do begin
19:
       suma(C_i) := 0; min(C_i) := \infty;
20:
       forall e \in C_i do begin
21:
         suma(C_i) := suma(C_i) + m_e;
22:
         min(C_i) := min(min(C_i), m_e);
23:
       min := min(min, min(C_i));
25:
26: end
27:
    { Obliczenie wyniku. }
29: w := 0;
    for i := 1 to c do begin
       metoda_1(C_i) := suma(C_i) + (|C_i| - 2) \cdot min(C_i);
       metoda_2(C_i) := suma(C_i) + min(C_i) + (|C_i| + 1) \cdot min;
32:
       w := w + \min(\text{metoda}_1(C_i), \text{metoda}_2(C_i));
33:
34: end
35: return w;
```

Uzasadnienie poprawności

Na sam koniec opisu rozwiązania wzorcowego pozostawiliśmy jego dowód poprawności. Jest on, niestety, trochę skomplikowany, jednakże jest to jedyna niezawodna metoda sprawdzenia tego, czy w rozwiązaniu nie zapomnieliśmy o żadnym z przypadków.

Jeżeli C jest cyklem, to przez

$$koszt(C) = min(metoda_1(C), metoda_2(C))$$

oznaczmy koszt uporządkowania tego cyklu w rozwiązaniu wzorcowym. Niech dalej OPT(p) oznacza najmniejszy możliwy koszt poprzestawiania wszystkich słoni zgodnie z zarządzeniem dyrektora. Aby wykazać poprawność rozwiązania wzorcowego, wystarczy udowodnić, że

$$OPT(p) \geqslant \sum_{i=1}^{c} \operatorname{koszt}(C_i).$$
 (4)

Nierówność (4) udowodnimy przez indukcję względem liczby zamian wykonywanych w rozwiązaniu optymalnym. Przypadek zerowej liczby zamian jest trywialny. Załóżmy

więc, że (4) zachodzi dla wszystkich permutacji, dla których algorytm optymalny wykonuje k-1 zamian, i niech p będzie dowolną permutacją, do której uporządkowania algorytm ten potrzebuje k zamian. Musimy udowodnić, że (4) zachodzi także dla p.

Przyjrzyjmy się pierwszemu krokowi rozwiązania optymalnego "OPT" uruchomionego dla p. Załóżmy, że są w nim zamieniane słonie e oraz f. Permutację po ich zamianie oznaczmy przez p' — uporządkowanie jej przez algorytm optymalny wymaga k-1 zamian, więc wiadomo, że nierówność (4) zachodzi dla p'. W zależności od wzajemnego położenia e oraz f wyróżniamy teraz kilka przypadków.

Przypadek 1: e i f należą do tego samego cyklu w p. Dla ustalenia uwagi niech $e, f \in C_1$. Po zamianie słoni cykl C_1 rozpada się na dwa mniejsze cykle (patrz rys. 3). Oznaczmy te cykle przez A i B oraz niech $e \in A$ i $f \in B$. Wówczas rozkład p' na cykle proste wygląda tak: $\{A, B, C_2, C_3, \ldots, C_c\}$, a stąd i z (4) dla p' mamy:

$$OPT(p) = OPT(p') + m_e + m_f \geqslant \text{koszt}(A) + \text{koszt}(B) + \sum_{i=2}^{c} \text{koszt}(C_i) + m_e + m_f.$$

Aby pokazać (4) dla p, wystarczy zatem udowodnić, że:

$$koszt(A) + koszt(B) + m_e + m_f \geqslant koszt(C_1).$$
 (5)

Dalsze uzasadnienie możemy podzielić na trzy podprzypadki:

Przypadek 1.1: $koszt(A) = metoda_1(A)$ **i** $koszt(B) = metoda_1(B)$. Korzystając z faktu, że zbiór słoni zawartych w cyklu C_1 jest sumą zbiorów słoni odpowiadających A oraz B, oraz z tego, że każda z wartości min(A), min(B), m_e , m_f jest nie mniejsza niż $min(C_1)$, mamy:

$$\begin{split} \operatorname{metoda}_1(A) + \operatorname{metoda}_1(B) + m_e + m_f &= \\ &= \operatorname{suma}(A) + \left(|A| - 2\right) \cdot \min(A) + \operatorname{suma}(B) + \left(|B| - 2\right) \cdot \min(B) + m_e + m_f \geqslant \\ &\geqslant \operatorname{suma}(C_1) + \left(|C_1| - 2\right) \cdot \min(C_1) = \operatorname{metoda}_1(C_1) \geqslant \operatorname{koszt}(C_1). \end{split}$$

Intuicyjnie, pokazaliśmy, że zamiast rozbijać cykl C_1 na cykle A i B (za pomocą zamiany e z f) i każdy z nich porządkować za pomocą pierwszej metody, można równie dobrze od razu uporządkować cały cykl C_1 za pomocą tej metody.

Przypadek 1.2: $koszt(A) = metoda_1(A)$ i $koszt(B) = metoda_2(B)$ (lub odwrotnie). Podobnie jak poprzednio, w poniższej nierówności liczba składników nie zmienia się, a jedynie zastępujemy cięższe słonie przez $min(C_1)$ lub min:

$$\begin{split} \operatorname{metoda}_1(A) + \operatorname{metoda}_2(B) + m_e + m_f &= \\ &= \operatorname{suma}(A) + \left(|A| - 2\right) \cdot \operatorname{min}(A) + \operatorname{suma}(B) + \operatorname{min}(B) + \left(|B| + 1\right) \cdot \operatorname{min} + m_e + m_f \geqslant \\ &\geqslant \operatorname{suma}(C_1) + \operatorname{min}(C_1) + \left(|C_1| + 1\right) \cdot \operatorname{min} = \operatorname{metoda}_2(C_1) \geqslant \operatorname{koszt}(C_1). \end{split}$$

Tym razem intuicja stojąca za powyższym ciągiem przekształceń jest taka, że zamiast wprowadzać najlżejszego słonia tylko do cyklu B, można go wprowadzić od razu do całego C_1 , co nie przynosi żadnej straty, a może się dodatkowo opłacić przy porządkowaniu fragmentu C_1 odpowiadającego cyklowi A.

Przypadek 1.3: $koszt(A) = metoda_2(A)$ **i** $koszt(B) = metoda_2(B)$. I tym razem do wyprowadzenia (5) wykorzystujemy te same spostrzeżenia. W tym przypadku strata wynikła z rozbicia cyklu C_1 jest ewidentna: intuicyjnie, zamiast wprowadzać słonia *min* osobno do każdego z cykli A, B, można na samym początku wprowadzić go do całego C_1 :

$$\begin{split} & \operatorname{metoda}_{2}(A) + \operatorname{metoda}_{2}(B) + m_{e} + m_{f} = \\ & = suma(A) + min(A) + \left(|A| + 1\right) \cdot min + suma(B) + min(B) + \left(|B| + 1\right) \cdot min + m_{e} + m_{f} \geqslant \\ & \geqslant suma(C_{1}) + min(C_{1}) + \left(|C_{1}| + 1\right) \cdot min = \operatorname{metoda}_{2}(C_{1}) \geqslant \operatorname{koszt}(C_{1}). \end{split}$$

Przypadek 2: e **i** f **należą do różnych cykli.** Dla ustalenia uwagi niech tym razem $e \in C_1, f \in C_2$. Po zamianie słoni cykle C_1 i C_2 łączą się w jeden cykl A (patrz rys. 5), stąd rozkład p' na cykle to: $\{A, C_3, C_4, \dots, C_c\}$. Stąd i z (4) dla p' otrzymujemy:

$$OPT(p) = OPT(p') + m_e + m_f \geqslant \text{koszt}(A) + \sum_{i=3}^{c} \text{koszt}(C_i) + m_e + m_f.$$

Aby pokazać (4) dla p, wystarczy udowodnić, że:

$$koszt(A) + m_e + m_f \geqslant koszt(C_1) + koszt(C_2).$$
(6)

Bez straty ogólności załóżmy, że $min(C_1) \leq min(C_2)$, czyli $min(A) = min(C_1)$. Tym razem mamy dwa podprzypadki:

Przypadek 2.1: koszt $(A) = \text{metoda}_1(A)$. Korzystając z tego, że cykl A jest sumą (pod względem zbioru zawartych w nim słoni) cykli C_1 oraz C_2 , a także z założenia $min(A) = min(C_1)$ oraz nierówności: $m_f \geqslant min(C_2)$ i $m_e, min(A) \geqslant min$, otrzymujemy następujący ciąg przekształceń:

$$\begin{split} & \operatorname{metoda}_{1}(A) + m_{e} + m_{f} = \\ & = \operatorname{suma}(A) + \left(|A| - 2 \right) \cdot \min(A) + m_{e} + m_{f} \geqslant \\ & \geqslant \operatorname{suma}(C_{1}) + \left(|C_{1}| - 2 \right) \cdot \min(C_{1}) + \operatorname{suma}(C_{2}) + \min(C_{2}) + \left(|C_{2}| + 1 \right) \cdot \min = \\ & = \operatorname{metoda}_{1}(C_{1}) + \operatorname{metoda}_{2}(C_{2}) \geqslant \operatorname{koszt}(C_{1}) + \operatorname{koszt}(C_{2}). \end{split}$$

Intuicja tym razem jest taka, że zamiast łączyć cykle C_1 i C_2 i porządkować otrzymany cykl A metodą 1, można sam cykl C_1 uporządkować tą metodą (tu nic nie tracimy, gdyż $min(A) = min(C_1)$), natomiast cykl C_2 połączyć nie z C_1 , ale z cyklem zawierającym najlżejszego słonia min, co odpowiada zastosowaniu do C_2 drugiej metody porządkowania.

Przypadek 2.2: $koszt(A) = metoda_2(A)$. Podobnie jak poprzednio, na mocy warunków $min(A) = min(C_1)$, $m_f \ge min(C_2)$ oraz $m_e \ge min$, mamy:

```
\begin{split} & \operatorname{metoda}_{2}(A) + m_{e} + m_{f} = \\ & = \operatorname{suma}(A) + \min(A) + \left(|A| + 1\right) \cdot \min + m_{e} + m_{f} \geqslant \\ & \geqslant \operatorname{suma}(C_{1}) + \min(C_{1}) + \left(|C_{1}| + 1\right) \cdot \min + \operatorname{suma}(C_{2}) + \min(C_{2}) + \left(|C_{2}| + 1\right) \cdot \min = \\ & = \operatorname{metoda}_{2}(C_{1}) + \operatorname{metoda}_{2}(C_{2}) \geqslant \operatorname{koszt}(C_{1}) + \operatorname{koszt}(C_{2}). \end{split}
```

Intuicyjnie, nie opłaca się ponosić kosztu połączenia cykli C_1 i C_2 , żeby potem uporządkować wynikowy cykl A za pomocą najlżejszego słonia min, gdyż na pewno nie gorszym rozwiązaniem jest wprowadzenie słonia min do każdego z cykli C_1 , C_2 z osobna. Innymi słowy, $min + min(A) + m_e + m_f \geqslant 2 \cdot min + min(C_1) + min(C_2)$.

Inne rozwiązania

Wśród potencjalnych rozwiązań błędnych można wyróżnić przede wszystkim takie, które przy porządkowaniu cykli zapominają o jednej z metod: drugiej (plik slobl.cpp, 20% punktów) lub pierwszej (plik slobl.cpp, 10% punktów). Przypomnijmy, że takich błędów można uniknąć, jeżeli przeprowadzi się dowód poprawności rozwiązania lub chociażby sprawdzi poprawność swojego rozwiązania na większej grupie losowych testów, porównując jego wyniki z jakimkolwiek rozwiązaniem na pewno poprawnym, chociażby wykładniczym. Innym błędem było wykonywanie wszystkich obliczeń na liczbach całkowitych 32-bitowych — takie rozwiązanie, wskutek błędu przepełnienia typu, zdobywało 60% punktów za to zadanie (implementacja w pliku slob3.cpp).

Wśród rozwiązań wolniejszych można wymienić rozwiązanie kwadratowe względem n (plik slosl.cpp), będące nieefektywną implementacją rozwiązania wzorcowego i zdobywające 40% punktów, oraz zaimplementowane w pliku slosl.cpp i uzyskujące 10% punktów rozwiązanie siłowe, rozważające wszystkie możliwości zamian słoni, poczynając od najtańszych.

Testy

Zadanie było sprawdzane na 10 zestawach danych testowych. Wszystkie testy za wyjątkiem tych z grupy b to testy w jakimś sensie losowe. Większość testów zawiera losową permutację *p* słoni. Ponieważ zupełnie losowa permutacja zawiera statystycznie stosunkowo mało cykli, to w testach 4 i 10a wygenerowano permutacje o dużych liczbach cykli. Poza tym specjalną postać mają testy 9a oraz te z grupy b — patrz opisy poniżej.

W następującym zestawieniu testów n oznacza liczbę słoni, natomiast pozostałe parametry charakteryzują własności permutacji p: c_1 to liczba cykli jednoelementowych (czyli takich, które nie wymagają żadnych zamian), m_1 to liczba cykli, których optymalne uporządkowanie otrzymuje się za pomocą metody 1, natomiast m_2 to liczba cykli, które należy porządkować metodą 2.

Nazwa	n	$\mathbf{c_1}$	\mathbf{m}_1	m ₂	Opis
slo1.in	10	1	1	1	test losowy
slo2.in	100	2	4	1	test losowy
slo3.in	1000	2	8	0	test losowy
slo4.in	10000	24	55	24	test losowy o zwiększonej liczbie cykli
slo5.in	100 000	2	8	1	test losowy

80 Słonie

Nazwa	n	\mathfrak{c}_1	m_1	m_2	Opis
slo6.in	920 000	1	9	7	test losowy
slo7.in	960 000	2	6	11	test losowy
slo8a.in	980 000	0	6	8	test losowy
slo8b.in	980 000	979998	1	0	potrzeba tylko jednej zamiany
slo9a.in	1000000	904788	44788	424	90% słoni na swoim miejscu
slo9b.in	1000000	0	500 000	0	wszystkie cykle dwuelementowe
slo10a.in	1000000	307	330	1212	test losowy o zwiększonej liczbie cykli
slo10b.in	1000000	0	1	0	jeden długi cykl