ESERCITAZIONE PER LA VERIFICA INTERMEDIA
-s Funtioni Riconside Espección) camo
PROVA SCRITTA DEC 15/7/2015 ESERCITIO 3
twice: 'a -> 'a list -> bool
Tale cle twice x xs = True se x occarre esattamente 2 volte in xs, false altiment
CON RICORSIONE ESPRICTRA
let Twice x xs = let Twice x xs = let rec conta y ys = match ys with
$\begin{array}{c} () \rightarrow 0 \\ \downarrow 2::2s \rightarrow if \ 2=y \ Then \ 1+(conta \ y \ 2s) \\ else \ conta \ y \ 2s \end{array}$
in $conta \times xS = 2$;
VERSIONE PIU EFFICIENTE CHE SI FERMA NON APPENA TROVA 3 COPIE DECL'ECEMENTO

Cet Twice x xs = let contan n y ys = match (n, ys) with $(0,[]) \rightarrow T_{nue}$ (m, ()) when m > 0 -> false V (O, ≥::25) → if z=g Then folse else contan D y 25 (m, 2::2s) when m>0 -> if z=y Then Contan m-1 y 25 else contan m y 25 im contan 2 x xs;

	gioved	ì 14 dic	cembre		16:3		A	a	_ i c	ર્ગ	s. i	5~J i	E	E	SPC	iα	T+												
				-																									
								Ţ	3		s ;	7	, <u>L</u>	· (2 .	۲;	8					4							
						P	ct	_	T	- 9 o C	· C	0		7		P))											
							۱		્રે	T		f		т Х	ر	1			if)	×	= 7	2	_	he	\sim	,	1 4	y
																								e	es,	2		y	
									ĺ~		(4) (25,	\sim	_{))	6)			2	,					
											\ 1									/				/ .	/				

giovedì 14 dicembre 2017 16:57 II VERIFICA INTERMEDIA. DEL ZO16 ESERCITIO 3 canc: 'a list > 'a > 'a list tale de (canc lis n) concella l'ultima occorrente di m in Cis CON RICORIONE ESPICICITA [3;4;5;4;2;1) 4 Pet nec conc P m = Pet nec member x lis = match lis with [] -> felse 1 Z:: 25 -> if (x=2) Then True else mende x 25 match & with [] ([] X::xs -> if x=m Then

x::xs -> if x=m Then if member m xs Then

X:: (canc xs m)

Then xs

else x:: (canc xs m)

else x:: (canc xs m)

if member m xs Then

x:: (canc xs m)

else x:: (canc xs m)

if member m xs Then

x:: (canc xs m) giovedì 14 dicembre 2017 17:22 SOLUTIONE SENTA RICORSIONE ESPRICAA [8,4,7,4,5] 4 () -> (), felse 5::[] - 5::[],false 4:: [5] -0 5:: [], True 7:: [4;5) -> 7::[5], True 4:; [7;5] -0 4::[7;5], True Pet canc en = Per f x (91,91)= if x = m && not y2 Then (y1, True)
else
(x::y1, y2) Cet (eis, b) = foldo f (O, felse) e in eis ;;

giovedì 14 dicembre 2017 17:32 APPELLO 19/01/2017 ESENCIZIO 4 multiset: 'a list o ('a * int) list [3;3;5;5;6;7;7] [(3,2);(5;3);(6;1);(7,2)] SolutionE Ricolsins [3;3;5;5;6;7;7] 3 [(3,1); (5;3);(6;1); (72)) /(3,1) let nec multiset lis = metch Ris with $\Gamma \rightarrow \Gamma$ X::xs -> Pet e= multiset xs in match e with $[] \rightarrow (x, \lambda) :: []$

)	(y	,~	`) :;	ys	→	if	((x, (y, x,	=y nt) - n) :: (The:: y	x s r)::,	95.

giovedi 14 dicembre 2017 17:45 SEN-ZA	ai Consi ONE ESPLICITA
	$\begin{bmatrix} 3,3,4,5,5,5,7,7\\ $
	$7::[) \rightarrow (7,\Lambda)::[)$ $7::(\Rightarrow) \rightarrow (7,2)::()$ $5::[7;7) \rightarrow (5,\Lambda)::[(7,2)]$
	Cet multiset Cis - Pet f x y =
	(21,224):: $(21,22)$::
	in fold f [) lis ;;