Building EMERALD-UI a protein alignment visualization tool for EMERALD

Presenter: Andrei Preoteasa

Research Group: Algorithmic Bioinformatics Lab

Project: emerald-ui

Presentation Structure What We'll Cover Today

- 1. Background & Motivation
- 2. Limitations of Traditional Methods
- 3. **EMERALD Algorithm**
- 4. EMERALD UI Overview
- 5. Technical Implementation
- 6. EMERALD-UI In Action

Background & Motivation Why Protein Alignment Matters

Proteins are the workhorses of biology, and comparing their sequences helps us understand function, evolution, and disease.

Example Protein Alignment:

```
A: MKTAYIAKQRQISFVKSHFSRQ
B: MKTA--AKQRQISFVKSHFSRQ
```

Match: +5 Mismatch: -2 Gap: -6

How Are Proteins Aligned?

- **Sequence alignment algorithms** compare amino acid sequences to find similarities.
- **Cost matrices** (e.g., BLOSUM, PAM) assign scores for matches, mismatches, and gaps.
- The goal: **maximize total score** by aligning similar regions and penalizing differences.

	C	S	Т	Α	G	P	D	Е	Q	N	Н	R	K	M	Ι	L	V	W	Υ	F	
C	9																				С
S	-1	4																			S
Т	-1	1	5																		Т
Α	0	1	0	4																	Α
G	-3	0	-2	0	6																G
P	-3	-1	-1	-1	-2	7															Р
D	-3	0	-1	-2	-1	-1	6														D
Ε	-4	0	- 1	-1	-2	- 1	2	5													Е
Q	-3	0	-1	-1	-2	-1	0	2	5												Q
N	-3	1	0	-2	0	-2	1	0	0	6											N
Н	-3	-1	-2	- 2	-2	-2	-1	0	0	1	8										Н
R	-3	-1	-1	-1	-2	-2	-2	0	1	0	0	5									R
K	-3	0	-1	-1	-2	-1	-1	1	1	0	-1	2	5								Κ
M	-1	-1	-1	-1	-3	- 2	-3	-2	0	- 2	-2	-1	-1	5							М
I	-1	-2	- 1	- 1	-4	-3	-3	-3	-3	-3	-3	-3	-3	1	4						I
L	- 1	-2	- 1	- 1	-4	- 3	-4	- 3	-2	- 3	- 3	-2	-2	2	2	4					T

Issues in Protein Alignment

- Gap Placement: Deciding where to insert gaps affects biological interpretation.
- Scoring Bias: Choice of cost matrix influences which regions align.
- Multiple Valid Alignments: Different alignments may be equally plausible.
- Functional Relevance: Not all aligned regions are biologically meaningful.

Example Scenario:

Traditional: ACDEFG--HIJK Alternative (Same cost): ACDE--FGHIJK

Instead of finding one "optimal" alignment, what if we could:

- Explore the alignment landscape Find all good alignments, not just the best
- Identify trustworthy regions Discover where alignments consistently agree
- Reduce scoring bias See robust patterns across different parameters
- Focus on functional relevance Highlight biologically meaningful regions

The EMERALD Approach:

" If multiple high-scoring alignments agree on a region, that region is probably functionally important!

This is exactly what **EMERALD** does - it reveals which parts of your alignment you can trust.

99

EMERALD by itself

EMERALD is a terminal application for generating protein alingments written in C++.

Issues

- App only gives raw data, which is hard to interpret
- Only work in the terminal, which is hard to use
- Limited input methods

How EMERALD-UI Solves These Problems

- Intuitive Visualization: Draws an interactive, easy-to-use graph from raw EMERALD output.
- Accessible Interface: Runs in the browser, no terminal required.
- Flexible Input: Paste sequences, upload files, or search directly from UniProt.
- Alignment Confidence: Highlights common areas of multiple alignments.
- Parameter Exploration: Instantly adjust scoring and see how alignments change.
- **Safety Windows Visualization:** Highlights common regions in 3D structures of proteins.

Technology Stack

React

Modern UI framework for building interactive web applications.

TypeScript

Type-safe code for reliability and maintainability.

WebAssembly (WASM)

Runs EMERALD executable in-browser.

D3.js

Interactive, data-driven visualizations.

UniProt API

Direct protein sequence search.

Mol*

3D protein structure visualization.

Demo Time

Let's see EMERALD-UI in action!

Thank You!

Questions?

Feel free to ask about EMERALD-UI, protein alignment, or anything from today's presentation.