

$$\Rightarrow \lambda = \frac{4}{6} = \frac{2}{3}$$

Hence, point B divides AC in the ratio 2:3.

Question 9:

Find the position vector of a point R which divides the line joining two points P and Q

whose position vectors are $(2\vec{a} + \vec{b})$ and $(\vec{a} - 3\vec{b})$ externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.

It is given that $\overrightarrow{OP} = 2\vec{a} + \vec{b}$, $\overrightarrow{OQ} = \vec{a} - 3\vec{b}$

It is given that point R divides a line segment joining two points P and Q externally in the ratio 1: 2. Then, on using the section formula, we get:

$$\overrightarrow{OR} = \frac{2(2\vec{a} + \vec{b}) - (\vec{a} - 3\vec{b})}{2 - 1} = \frac{4\vec{a} + 2\vec{b} - \vec{a} + 3\vec{b}}{1} = 3\vec{a} + 5\vec{b}$$

Therefore, the position vector of point R is $3\vec{a}+5\vec{b}$.

$$\overrightarrow{OQ} + \overrightarrow{OF}$$

Position vector of the mid-point of RQ = $\frac{\overline{OQ} + \overline{OR}}{2}$

$$= \frac{\left(\vec{a} - 3\vec{b}\right) + \left(3\vec{a} + 5\vec{b}\right)}{2}$$
$$= 2\vec{a} + \vec{b}$$
$$= \overrightarrow{OP}$$

Hence, P is the mid-point of the line segment RQ.

Question 10:

The two adjacent sides of a parallelogram are $2\hat{i}-4\hat{j}+5\hat{k}$ and $\hat{i}-2\hat{j}-3\hat{k}$.

Find the unit vector parallel to its diagonal. Also, find its area.

Adjacent sides of a parallelogram are given as: $\vec{a}=2\hat{i}-4\hat{j}+5\hat{k}$ and $\vec{b}=\hat{i}-2\hat{j}-3\hat{k}$

Then, the diagonal of a parallelogram is given by $\vec{a} + \vec{b}$.

$$\vec{a} + \vec{b} = (2+1)\hat{i} + (-4-2)\hat{j} + (5-3)\hat{k} = 3\hat{i} - 6\hat{j} + 2\hat{k}$$

Thus, the unit vector parallel to the diagonal is

$$\frac{\vec{a} + \vec{b}}{|\vec{a} + \vec{b}|} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{\sqrt{3^2 + (-6)^2 + 2^2}} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{\sqrt{9 + 36 + 4}} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{7} = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k}.$$

 $\vec{\cdot\cdot}$ Area of parallelogram ABCD = $\left| \vec{a} \times \vec{b} \right|$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 5 \\ 1 & -2 & -3 \end{vmatrix}$$

$$= \hat{i} (12+10) - \hat{j} (-6-5) + \hat{k} (-4+4)$$

$$= 22\hat{i} + 11\hat{j}$$

$$= 11(2\hat{i} + \hat{j})$$

$$\therefore |\vec{a} \times \vec{b}| = 11\sqrt{2^2 + 1^2} = 11\sqrt{5}$$

Hence, the area of the parallelogram is $11\sqrt{5}$ square units.

Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ

$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

Let a vector be equally inclined to axes OX, OY, and OZ at angle a.

Then, the direction cosines of the vector are $\cos a$, $\cos a$, and $\cos a$.

Now,

 $\cos^2\alpha + \cos^2\alpha + \cos^2\alpha = 1$

$$\Rightarrow 3\cos^2 \alpha = 1$$

$$\Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$$

Hence, the direction cosines of the vector which are equally inclined to the axes

$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

Question 12:

Let
$$\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is

perpendicular to both \vec{a} and \vec{b} , and $\vec{c}.\vec{d}$ = 15

Answer

$$\int_{1} e^{+} \vec{d} = d_1 \hat{i} + d_2 \hat{j} + d_3 \hat{k}$$

Since $ec{d}$ is perpendicular to both $ec{a}$ and $ec{b}$, we have:

$$\vec{d} \cdot \vec{a} = 0$$

$$\Rightarrow d_1 + 4d_2 + 2d_3 = 0$$
 ...(i)

And,

$$\vec{d}\cdot\vec{b}=0$$

$$\Rightarrow 3d_1 - 2d_2 + 7d_3 = 0$$
 ...(ii)

Also, it is given that:

$$\vec{c} \cdot \vec{d} = 15$$

$$\Rightarrow 2d_1 - d_2 + 4d_3 = 15$$
 ...(iii)

On solving (i), (ii), and (iii), we get:

$$d_1 = \frac{160}{3}$$
, $d_2 = -\frac{5}{3}$ and $d_3 = -\frac{70}{3}$

$$\therefore \vec{d} = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k} = \frac{1}{3}\left(160\hat{i} - 5\hat{j} - 70\hat{k}\right)$$

Hence, the required vector is $\frac{1}{3}\Big(160\hat{i}-5\hat{j}-70\hat{k}\Big)$

Question 13:

The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors

$$2\hat{i}+4\hat{j}-5\hat{k}$$
 and $\lambda\hat{i}+2\hat{j}+3\hat{k}$ is equal to one. Find the value of λ .

Answer

$$\left(2\hat{i}+4\hat{j}-5\hat{k}\right)+\left(\lambda\hat{i}+2\hat{j}+3\hat{k}\right)$$

$$= (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}$$

Therefore, unit vector along $\Big(2\hat{i}+4\hat{j}-5\hat{k}\Big)+\Big(\lambda\hat{i}+2\hat{j}+3\hat{k}\Big)_{\text{is given as:}}$

$$\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{(2+\lambda)^2+6^2+(-2)^2}} = \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{4+4\lambda+\lambda^2+36+4}} = \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{\lambda^2+4\lambda+44}}$$

Scalar product of $\left(\hat{i}+\hat{j}+\hat{k}\right)$ with this unit vector is 1.

$$\Rightarrow (\hat{i} + \hat{j} + \hat{k}) \cdot \frac{(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}} = 1$$

$$\Rightarrow \frac{(2+\lambda)+6-2}{\sqrt{2}}=1$$

$$\sqrt{\lambda^2 + 4\lambda + 44}$$

$$\Rightarrow \sqrt{\lambda^2 + 4\lambda + 44} = \lambda + 6$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = (\lambda + 6)^2$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = \lambda^2 + 12\lambda + 36$$

$$\Rightarrow 8\lambda = 8$$

$$\rightarrow \lambda = 1$$

Hence, the value of λ is 1.

Ouestion 14:

If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector

$$\vec{a} + \vec{b} + \vec{c}$$
 is equally inclined to \vec{a}, \vec{b} and \vec{c} .

Answer

Since $\vec{a}, \vec{b}, \text{ and } \vec{c}$ are mutually perpendicular vectors, we have

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

It is given that:

$$|\vec{a}| = |\vec{b}| = |\vec{c}|$$

Let vector $\vec{a} + \vec{b} + \vec{c}$ be inclined to \vec{a}, \vec{b} , and \vec{c} at angles θ_1 , θ_2 , and θ_3 respectively.

Then, we have:

$$\cos \theta_{1} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|}$$

$$= \frac{\left|\vec{a}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} \qquad \left[\vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a} = 0\right]$$

$$= \frac{\left|\vec{a}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

$$\cos \theta_{2} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{b}\right|} = \frac{\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|}$$

$$= \frac{\left|\vec{b}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|} \qquad \left[\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b} = 0\right]$$

$$= \frac{\left|\vec{b}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

$$\cos \theta_{3} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} = \frac{\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|}$$

$$= \frac{\left|\vec{c}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} \qquad \left[\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c} = 0\right]$$

$$= \frac{\left|\vec{c}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

Now, as $\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$, $\cos \theta_1 = \cos \theta_2 = \cos \theta_3$.

Hence, the vector $(\vec{a} + \vec{b} + \vec{c})$ is equally inclined to \vec{a}, \vec{b} , and \vec{c}

Question 15:

Prove that $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$, if and only if \vec{a} , \vec{b} are perpendicular,

given $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$

Answer

$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$$

 $\Leftrightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2$ [Distributivity of scalar products over addition]

$$\Leftrightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \qquad \qquad \left[\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \text{ (Scalar product is commutative)}\right]$$

 $\Leftrightarrow 2\vec{a}\cdot\vec{b}=0$

 $\Leftrightarrow \vec{a} \cdot \vec{b} = 0$

 \vec{a} and \vec{b} are perpendicular. $\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}$ (Given)

Question 16:

If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a}.\vec{b} \geq 0$ only when

(A)
$$0 < \theta < \frac{\pi}{2}$$
 (B) $0 \le \theta \le \frac{\pi}{2}$

(C)
$$0 < \theta < \pi_{(D)} \ 0 \le \theta \le \pi$$

Answer

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors so

that $\left| ec{a} \right|$ and $\left| ec{b} \right|$ are positive

******* END ******