Université Pierre et Marie Curie - LM223 - Année 2012-2013

Interro nº 3

Exercice 1:

- 1. Montrer que si $P \in O(n)$, alors $det(P) = \pm 1$.
- 2. Donner quatre matrices de SO(2).
- 3. Compléter la matrice suivante P pour que $P \in SO(3)$ où $P = \begin{pmatrix} \frac{2}{3} & \cdot & \cdot \\ \frac{-1}{3} & \cdot & \cdot \\ \frac{2}{3} & \cdot & \cdot \end{pmatrix}$.

Exercice 2:

Soit
$$M = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 1 \\ -1 & 1 & 3 \end{pmatrix}$$
.

- 1. Trouver une matrice $P \in O(3)$ telle que $P^{-1}MP$ soit diagonale.
- 2. Soit q la forme quadratique associée à M. Donner l'expression de q.
- 3. Est-ce que q est définie positive?
- 4. Soit $\mathcal{E} = \{x \in \mathbb{R}^3 \mid q(x) = 1\}$. On note $m = \inf_{x \in \mathcal{E}} ||x||$. Montrer que $m \in \mathbb{R}$, et qu'il existe exactement deux points $p_1, p_2 \in \mathcal{E}$ tels que $||p_1|| = ||p_2|| = m$.

Exercice 3:

- 1. Soit $M = \begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{-4}{5} \end{pmatrix}$. Montrer que $M \in O(2)$, puis donner les caractéristiques géométriques de M (i.e. si M est une rotation d'angle θ , déterminer θ , et si M est une symétrie, déterminer l'axe de cette symétrie).
- 2. Donner la matrice de $M_2(\mathbb{R})$ qui représente (dans la base canonique) la symétrie orthogonale d'axe $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 \mid y = 2x\}$.

Exercice 4:

Soit u=(1,-2,-2), v=(-4,5,2) et F le sous-espace vectoriel de \mathbb{R}^3 qu'ils engendrent. On considère \mathbb{R}^3 muni du produit scalaire usuel.

- 1. Déterminer une base orthonormée de F.
- 2. Déterminer une base orthonormée de F^{\perp} .
- 3. Calculer la projection orthogonale de (1, 2, 1) sur F.
- 4. Donner (dans la basse canonique de \mathbb{R}^3), la matrice de s_F , la symétrie orthogonale par rapport à F.