

麻辣精灵 GIS 概要设计

院系: 地球与空间科学学院

班级: 2017 级五班

组名: 麻辣精灵 GIS

组员: 姜金廷 李法承 李子锦 马涵聪

目录

—、	概述	3
_,	术语表	3
三、	用例	4
四、	设计概述	6
4	.1 简述	6
4	2 系统结构设计	6
	4.2.1 数据存取子系统结构设计	7
	4.2.2 外部数据输入输出子系统设计	9
4	3 系统界面	11
4	.4 约束和假定	15
五、	对象模型	15
六、	对象描述	18
七、	动态模型	20
7	.1 场景	20
7	2 状态图	24
八.	非功能性需求	26

一、概述

麻辣精灵 GIS 项目为本组尝试开发的小型 GIS 应用软件,模仿市面上已有的 ArcGIS, QGIS 等软件,开发一款能够进行数据存取、数据编辑、地图操作、地图查询以及外部数据输入输出的应用软件。

系统主要为一个前端与用户交互的应用界面,存储数据采用数据库和文件管理结合的形式。用户通过键鼠操作与应用界面交互,进行数据的读取、保存;对地理数据进行在图层、图形进行编辑修改,对要素字段进行增删改等操作;对要素实现属性查询,暂不实现空间查询功能;对图层进行多种可视化渲染,增强显示效果;同时还可以从本系统中导出图片,或输入文件,实现与其他系统的兼容效果。

软件目标平台为 Windows 平台,开发环境为 Visual Studio ,使用基于.Net Framework 的 C#语言,项目通过 Github 平台共享协作,内容部分参考《软件工程》课程内容,及其他地理信息系统软件的相关内容。

小组分工如下:

- 姜金廷——组长,负责数据存取,外部数据输入输出子系统
- 李法承——负责地图操作,数据编辑子系统
- 李子锦——负责专题地图子系统,及文档,软件的整饰设计
- 马涵聪——负责数据查询子系统,及文档,软件的整饰设计

二、术语表

- Shp 文件——shape 文件由 ESRI 开发,一个 ESRI(Environmental Systems Research Institute)的 shape 文件包括一个主文件,一个索引文件,和一个 dBASE 表。其中主文件的后缀就是.shp
- Shx 文件——shape 文件的索引文件
- Dbf 文件——shape 文件的属性表文件
- 要素——feature, 指一个几何实体, 在 shp 文件中存储于一条记录中
- 要素类——由相同类型的几何实体构成的集合,对应于一份 shp 文件
- 多段线——Polyline, 指单个要素包含多段折线, 每个折线由若干点连接形成, 每个点只能连接 1-2 条线段
- 多边形——Polygon, 指单个要素包含多个环形, 每个环为闭合环, 顺时针记录为外环, 逆时针记录为内环。外环不能直接包含外环, 内环不能直接包含内环。一个外环可以有多个相离内环(都包含于内环), 一个内环只能有一个外环。
- 大端序——**高位**字节存入**低地址,低位字**节存入**高地址**
- 小端序——低位字节存入低地址,高位字节存入高地址,一般的 X86 PC 系统存储格式

三、用例

图表 1 数据存取用例图

地图操作子系统用例图

数据编辑子系统用例图

专题地图用例图

查询子系统用例图

图表 2 外部数据输入输出用例图

四、设计概述

4.1 简述

软件总体采用面向对象的设计方法。采用客户端与 MySQL 数据库系统相连接,并与文件管理系统进行文件交互。数据库使用 MySQL 8.0 版本,数据库引擎为 InnoDB,程序使用 C#语言,Visual Studio 进行项目管理,并且代码通过 GitHub 进行共享。

4.2 系统结构设计

本软件主要包括数据编辑、数据存取、专题制图、地图操作、数据查询、外部数据输入输出等子系统。

地图操作不改变数据本身,但是改变地图的显示内容。用户可通过缩放、漫游来观察重点内容,并可通过改变图层顺序来改变其叠加方式。地图制图的内容由窗口内容决定,因此也必须通过地图操作来进行调整。

数据编辑子系统与数据存取子系统同为 GIS 系统的数据来源, 它不仅能修改所读取的数据, 还能创造新的矢量数据与属性数据。数据编辑的对象既可以是要素, 也可以是图层, 它能灵活地对 GIS 数据进行调整, 从而得到用户想要的数据。

专题地图子系统主要用于制作专题地图,将现有数据设置为自己喜欢的风格,根据数据特点制成专题地图,以便进行相关的研究。

4.2.1 数据存取子系统结构设计

数据文件采用 MySQL 数据库管理系统和文件管理系统结合使用。

数据库建立名为'MalaSpiritGISDB'的模式(Schema),数据库引擎为 InnoDB,字符集为 UTF8MB4。模式中创建 1+n 张表格(Table),第一张表为头表 header,记录了系统中 n 个需要存储的要素类信息。

列名	类型	特性	备注
ID	UNSIGNED INT	Not null; primary key;	唯一标识所有
		Auto Incremental;	的要素类
		Unique	
Туре	ENUM('POINT', 'POLYLINE',	Not null	记录系统可以
	'POLYGON', 'MULTIPOINT')		实现的类型
Name	VARCHAR(45)	Not null	要素类的名称,
			也用作图层显
			示时的名称
Count	UNSIGNED INT	Not null	要素类中的要
			素数量
Xmin	DOUBLE	Not null	要素类的 MBR
Ymin	DOUBLE	Not null	要素类的 MBR
Xmax	DOUBLE	Not null	要素类的 MBR
Ymax	DOUBLE	Not null	要素类的 MBR
FilePath	VARCHAR(100)	Not null	几何文件的路
			径 (绝对)

图表 3 头表的设计

其余 n 张表每个为记录一个要素类的属性信息的表格,表格名字为对应要素类的 Name 字段,表格的行数为对应要素类的 Count 字段。

X,农怕的们数为对应安条关的 Count 于权。			
列名	类型	特性	备注
ID	UNSIGNED INT	Not null; primary	唯一标识所有的要
		key; Auto	素
		Incremental; Unique	
FileBias	UNSIGNED INT	Not null	该要素在几何文件
			中的偏移位置(from
			begin)
FileLength	UNSIGNED INT	Not null	该要素在几何文件
			中的长度
Other attribute			其他需要记录的属
			性信息, 类型由代码
			决定

图表 4 属性表的设计

每个要素类的几何文件存储于文件管理系统之中,为提高系统的兼容性,采用*.shp 文件格式进行存储,部分字段本系统默认不实现,用0代替。

*.shp 文件格式介绍如下。

字节位置	字段	类型	备注

0-3	文件编号	Int32	大端序
4-23			未被使用
24-27	文件长度	Int32	大端序,包括文件头
28-31	版本	Int32	小端序
32-35	图形类型	Int32	见下表
36-67	MBR	Double	Xmin ymin xmax
			ymax
68-83	Z 坐标值范围	Double	Zmin,zmax 不使用
94-99	M 坐标值范围	Double	Mmin max 不使用

图表 5 shp 文件头格式

图形类型	类型值
空图形	0
Point 点	1
Polyline 多段线	3
Polygon 多边形	5
MultiPoint 多点	8
其他类型不实现	

图表 6 shp 文件图形类型

文件头部分一共 100 个字节,接下来为若干个变长记录字段,每个字段代表一个要素,且不同要素的字段长度不同,详情见下方多表。

字节位置	字段	类型	备注
0-3	编号	Int32	大端序
4-7	记录长度	Int32	大端序, 不包括编号
			和长度本身
8-11	图形类型	Int32	点为1
12-19	点x坐标	Double	
19-26	点 y 坐标	Double	

图表 7 点 Point 记录格式

字节位置	字段	类型	备注
0-3	编号	Int32	大端序
4-7	记录长度	Int32	大端序, 不包括编号
			和长度本身
8-11	图形类型	Int32	多段线为3
12-43	MBR	Double	Xmin ymin xmax
			ymax
44-47	PartNum	Int32	多段线的段数
48-51	PointNum	Int32	多段线的点数
52-	Parts	Int32[]	每段线的起始点下
			标, 一共 PartNum 个
			下标,总长度为
			4*PartNum
-	Points	PointD[]	每个点的坐标,一个
			点为两个 double 值,

			x 和 y。总长度为
			16*PointNum
	图表 8 多	段线 Polyline 记录格式	
字节位置	字段	类型	备注
0-3	编号	Int32	大端序
4-7	记录长度	Int32	大端序,不包括编号 和长度本身
8-11	图形类型	Int32	多边形为 5
12-43	MBR	Double	Xmin ymin xmax ymax
44-47	PartNum	Int32	多边形的环数
48-51	PointNum	Int32	多边形的点数
52-	Parts	Int32[] PointD[]	每个环的起始点下标,一共 PartNum个下标,一共 PartNum。每为4*PartNum。每段环的顺时针记录为内环。每个环的点记录为闭环,即一个点别形对应 4 个点记录。每个点的坐标,一个点为两个 double 值,x 和 y。总长度为16*PointNum
	 图表 9 多;	 边形 Polygon 记录格式	
字节位置	字段	类型	备注
0-3	编号	Int32	大端序
4-7	记录长度	Int32	大端序,不包括编号 和长度本身
8-11	图形类型	Int32	多点为8
12-43	MBR	Double	Xmin ymin xmax ymax
44-47	PointNum	Int32	多点要素的点数
48-	Points	PointD[]	每个点的坐标。一个 点为两个 double 值, x 和 y。总长度为

图表 10 多点 MultiPoint 记录格式

16*PointNum

4.2.2 外部数据输入输出子系统设计

系统需要能够从外部读入 shp 文件,本系统需实现读入 shp 文件, shx 文件, dbf 文件以保

证 Shapefile 文件内容足够齐全。上文已经介绍了 shp 文件的具体格式,此处继续介绍其余两份文件的格式。

Shx 文件包含与 shp 文件相同的 100 个字节的文件头,及若干个 8 字节定长记录。每条记录为一个 int32 类型表示记录在 shp 文件中该要素的位移,一个 int32 类型表示记录在 shp 文件中该要素记录的长度。

Dbf 文件结构如下, dbf 文件分为两部分: 文件结构说明区和数据区。文件结构说明区又分为数据库参数区和记录结构表区, 各 32 个字节

字节位置	字段	类型	备注
0	数据库版本	Byte	没看懂说明。。。但写
			0x03 就行
1-3	文件修改日期	Byte[3]	YY-MM-DD.YY= 当
			前年份-1900
4-7	记录数 count	Int32	大端序,即 shp 中的
			要素数量
8-9	第一条记录的位置	Short	等于文件结构说明
			区的长度
10-11	每条记录的长度	Short	包含记录的删除标
	length		志 (delete flag)
12-31			保留字节,不使用

图表 11 数据库参数区结构

字节位置	字段	类型	备注
0-10	字段名	Char[10]	字段名不足 10 字节
			用 0x00 补齐
11	字段类型	Byte	C – Character
			N – Numeric
			F – Float
			D – Date
			T – DateTime
			B – Double
			I – Integer
			L – Logical
			以上为系统需要用
			到的类型
12-15			保留字节
16	字段记录的长度	Byte	
17	字段记录精度	Byte	
18-31			保留字节,不使用

图表 12 记录结构表区结构

文件结构说明区后为数据区,每个要素的记录按顺序用二进制记录。最终 dbf 的文件大小为 32+m*32+1+n*length+1

其中两个1分别对应这两个区域的结束标志 0x0d 和 0x1a

4.3 系统界面

(1) 地图操作界面:

点击菜单栏的"放大"或"缩小"按钮即可进入缩放模式,鼠标会变成缩放图标,此时在显示区域内点击鼠标左键会以点击点为中心放缩。另外也可通过滚动鼠标中键来实现类似的放缩效果。

漫游状态下, 按住鼠标左键时鼠标会自动变成漫游图标, 此时鼠标进行移动即可实现漫游。

选中图层后,点击图层栏上方的"上移"、"下移"、"置顶"、"置底"按钮即可调整图层顺序。

(2) 数据编辑界面

在图层所在区域点击鼠标右键,可打开属性表、修改图层名称或删除图层。

在图层空白处点击鼠标右键,可选择新建图层。

创建要素 选择要素

点击菜单栏"创建要素"即可增加图形。单击鼠标左键确定折点或创建点要素,双击左键 创建线要素或面要素。之后可对要素进行操作,使其变成复合折线或复合面。

点击菜单栏"选择要素"即可开始选中要素。"选择要素"状态下,右键选中要素可删除图形、拖动图形、输入偏离值使图形移动、编辑线要素和面要素的节点,并可使线要素变为复合折线或使面要素裁剪为复合面。

增加字段					
FID	Shape *	REGION_ID			
6501	面	5408			
6502	面	5426			
6503	面	5539			
6504	面	5540			
6505	面	5567			
	FID 6501 6502 6503 6504	FID Shape * 6501 面 6502 面 6503 面 6504 面			

打开属性表后, 可选择增加字段。

选中字段后右键,可删除字段。另单击某属性值后即可进行修改。

(3) 专题地图界面:

双击图层下方的点/线/面图标,即可修改要素符号类型。

□ ☑ 火车站

在图层列表中右击图层,选择要素,在显示系统里面,选择渲染字段和渲染方法,即可对图层进行渲染。

样式引用(F)...

取消

确定

右击图层, 选择标注要素, 即可添加注记。或者在主菜单的插入栏中, 选择添加文本等。

(4) 条件查询界面

用户在查询窗口中下拉"图层"选择查询的目标图层。系统自动显示当前图层中对象的所有属性的字段名,用户双击字段名进行输入。选择字段名后系统自动显示该字段对应的唯一值。用户单击选择符号,再双击选择唯一值或输入查询目标。最后点击"应用"按键运行该表达式。

表达式运行完毕,若存在图形对象满足表达式,在画布中高亮对应的图形对象。若用户 对属性表进行查看,图形对象的所有属性也会被高亮。

4.4 约束和假定

- (1) 输入坐标移动图形或输入属性值时,数值的精确度为 10^{-6} 。这是受 float 浮点型的精确度所限制的。
- (3) Shapefile 系列文件最大大小不应超过 2GB,且内部的字段也有相应的长度规定。而本系统的数据库管理的长度限制相对宽松,能够进行数量较多的存储。

五、对象模型

1.地图操作子系统

Form:地图操作子系统

Map:地图

name:string rate:int deviation:PointF layers:array

Map()
~Map()
move()
changeRate()
changeOrder()

2.数据编辑子系统

Form:数据编辑子系统

Layer:图层

id: int 编号

name: 图层名称 style: dictionary 样式 features: array 要素数组

count: int要素数

Layer() 构造函数,重载 ~Layer() 析构函数,释放要素

add() 增加要素 delete() 删除要素

Feature:要素

id: int 编号

type: string 种类

spatialData: array 矢量数据,数组 attributeData: dictionary 属性数据,字

典

deviation: PointF 偏移值

Feature() 构造函数 ~Feature() 析构函数 move() 移动,改变偏离值 editSpatial() 编辑节点 addAttribute() 增加字段 deleteAttribute() 删除字段 editAttribute() 编辑属性值

3.专题地图子系统

Form: 专题地图子系统

Layer:图层

id: int 编号

name: 图层名称 style: dictionary 样式

features: array 要素数组 count: int要素数

Layer() 构造函数,重载

~Layer() 析构函数, 释放要素

add() 增加要素 delete() 删除要素

Feature:要素

id int 编号

type: string 种类

spatialData: array 矢量数据,数组

attributeData: dictionary 属性数据,字

典

deviation: PointF 偏移值

Feature() 构造函数 ~Feature() 析构函数 move() 移动,改变偏离值 editSpatial() 编辑节点 addAttribute() 增加字段 deleteAttribute() 删除字段 editAttribute() 编辑属性值

Figure 1 数据存取对象细化模型

Figure 2 数据存取处理器对象模型

六、对象描述

1、名称: 地图

属性:

name	string	地图的名称
rate	int	地图的放缩比例
deviation	PointF	地图的漫游偏移
layers	array	图层数组,即所绑定的图层

方法:

名称	参数	返回类型	返回值	用途	
Мар	无/文件地址、	无	无	新建一个空白地图, 或从图层	
	数据库地址			创建新的地图	
~Map	无	无	无	释放资源	
move	PointF	无	无	地图进行漫游时改变偏移值	
				deviation	
changeRate	int	无	无	地图进行放缩时改变显示比	
				例尺	
changeOrder	array	无	无	改变图层的顺序	

2、名称: 图层

属性:

属性	类型	说明
id	int	图层编号,用于唯一识别
name	string	图层名称,用于用户标注
style	dictionary	样式字典,用于地图制图
features	array	要素数组,即所绑定的要素
count	int	所包含的要素数量

方法:

名称	参数	返回类型	返回值	用途
Layer	无/文件地址、	无	无	新建一个图层
	数据库地址			
~Layer	无	无	无	释放资源
add	Feature	无	无	增加一个要素
delete	int	无	无	删除索引对应的要素

3、名称:要素

属性

属性	类型	说明	
id	int	要素编号,用于唯一识别	
type	FeatureType	识别要素的种类	
mbr	PointD[4]	最小外接矩形	
pointNum	int	点的数量	
attributeData	DataTable	要素的属性数据	
deviation	PointF	要素矢量数据的偏移值	

方法:

名称	参数	返回类型	返回值	用途
Feature	spationData,attributeData	无	无	生成要素
~Feature	无	无	无	释放资源

move	PointF	无	无	改变偏离值
editSpatial	PointF	无	无	编辑节点
addAttribute	string	无	无	增加字段
deleteAttribute	string	无	无	删除字段
editAttribute	string	无	无	编辑属性值

4、名称:要素处理器

属性

属性	类型	说明
Records	MLRecord[]	将头表中的部分信息实时更
		新在内存中

方法

名称	参数	返回类型	返回值	用途
LoadFeature	Int	MLFeature	加载的要	从数据库和文件
			素对象	中加载要素类
SaveFeature	Int	无	无	将 内 存 中 的
				Feature 保存至数
				据库和文件
LoadFeatureFromShp	String	MLFeature	加载的要	将数据从shp系列
			素对象	文件中导入, 并保
				存于数据库和文
				件中
SaveMap	无	无	无	将地图转成图片
				并保存

七、动态模型

7.1 场景

场景一: 用户新建了一个空白的面图层, 然后点击"创建要素", 通过移动鼠标并点击鼠标左键绘制了一个多边形, 双击鼠标左键完成绘制。之后用户点击"选择要素", 选中了多边形并右键打开菜单, 选择"编辑节点", 移动了多边形一个节点的位置。再之后右键多边形选择"拖动图形", 将多边形向右上方挪动了一些位置。紧接着用户打开该图层的属性表, 新建了一个字段"海拔", 点击对应位置输入了数据"50", 然后删除了字段。再之后用户右键多边形选择了"删除多边形", 右键图层选择了"删除图层"。最后退出程序。

场景二:

专题制图:用户可以修改要素符号类型,添加地图注记,并选择对图层进行渲染等操作,以制作专题地图。其顺序图如下:

场景三: 用户开始操作一个包含两个图层的地图。他先点击了"放大"按钮, 然后对准某个要素点击鼠标左键, 地图放大了。之后他点击了"漫游"按钮, 然后按住鼠标左键拖动地图, 使地图左下角的内容居中。最后他在图层栏点中第二个图层, 点击"上移"键后使第二个图层位于最顶层, 并退出了程序。

地图操作顺序图

场景四: 用户在图层中选择要素,选中后用户点击属性按键,弹出属性表窗口进行查看后用户关闭该窗口。

场景五: 用户使用条件查询功能,在属性表达式输入窗口中输入正确的表达式并点击运行,查看图层中高亮的筛选结果后关闭属性表达式输入窗口。

场景六: 用户选择要素类, 导入到系统内存中。

7.2 状态图

1.地图操作:

2.数据编辑:

3.专题地图

4. 查看属性

5. 条件查询

八、非功能性需求

1.数据编辑的便捷性: 提供更多途径实现完成绘制, 如在双击之外新增一个同样功能的按钮。 2.地图操作的便捷性: 提供更多途径实现完成放缩, 如在放大模式下向左拖动仍然可以实现 缩小。