

MATEMATIKA INFORMATIKA I (RELASI)

Rizki Yusliana Bakti, S.T., M.T

rizkiyusliana@unismuh.ac.id | HP. 085 396 530 032

PRODI INFORMATIKA

Pertemuan 3 & 4

Sub - CPMK

Mahasiswa mampu menjelasan tentang pengertian Relasi.

RELASI

- Relasi biner R antara himpunan A dan B adalah himpunan bagian dari $A \times B$.
- Notasi: $R \subseteq (A \times B)$
- a R b adalah notasi untuk $(a, b) \in R$, yang artinya a dihubungankan dengan b oleh R
- $a \not\in b$ adalah notasi untuk $(a, b) \not\in R$, yang artinya a tidak dihubungkan oleh b oleh relasi R.
- Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R

Contoh 1:

```
Misalkan A = \{Amir, Budi, Cecep\}, B = \{IF221, IF251, IF342, IF323\}

A \times B = \{(Amir, IF221), (Amir, IF251), (Amir, IF342), (Amir, IF323),

(Cecep, IF251), (Cecep, IF342), (Cecep, IF323)\}(Budi, IF221), (Budi, IF251), (Budi, IF342),

(Budi, IF323), (Cecep, IF221),
```

Misalkan R adalah relasi yang menyatakan mata kuliah yang diambil oleh mahasiswa pada Semester Ganjil, yaitu

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323)}

- Dapat dilihat bahwa $R \subseteq (A \times B)$
- A adalah daerah asal R, dan B adalah daerah hasil R.

Contoh 2:

Misalkan $P = \{2, 3, 4\}, Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi P deri P ke Q dengan

 $(p,q) \in R$ jika p habis membagi q

maka kita peroleh

$$R = \{(2,2), (2,4), (4,4), (2,8), (4,8), (3,9), (3,15)\}$$

- Relasi pada sebuah himpunan adalah relasi yang khusus
- Relasi pada himpunan A adalah relasi dari A x A
- Relasi pada himpunan A adalah himpunan bagian dari A x A

Diagram Panah

- $aRb \rightarrow R = \{(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323)\}$
- $pRq \rightarrow R = \{(2,2), (2,4), (2,8), (3,9), (3,15), (4,4), (4,8)\}$
- $aRa \rightarrow R = \{(2,2), (2,4), (2,8), (3,3), (3,9)\}$

Matriks

Misalkan R adalah relasi dari $A = \{a_1, a_2, ..., a_m\}$ dan $B = \{b_1, b_2, ..., b_n\}$.

Relasi R dapat disajikan dengan matriks $M = [m_{ij}]$,

$$M = \begin{bmatrix} b_1 & b_2 & \dots & b_n \\ a_1 & m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_m & m_{m1} & m_{m2} & \cdots & m_{mn} \end{bmatrix}$$

yang dalam hal ini

$$m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R \\ 0, & (a_i, b_j) \notin R \end{cases}$$

Thank You

Do you have any questions?