EQUIVALENCE PARTITIONING

- 1. Make equivalences classes for the input variable for this method that accepts the numbers 1 1000: public boolean isEven(int n)
 - a) 3 possible equivalence partitions exist:
 - i. Below 1
 - ii. 1 to 1000 range
 - iii. Above 1000

Equivalance Classes (parameter int n)	public boolean isEven(int n)
n < 1	Invalid
0 < n < 1001	Valid
1000 < n	Invalid

- 2. Make equivalences classes for an input variable that represents a mortgage applicant's salary. The valid range is \$1,000 pr. month to \$75,000 pr. month
 - a) 3 possible equivalence partitions exist:
 - i. Below 1000
 - ii. Between 1000 and 75000
 - iii. Above 75000

Equivalance Classes (parameter s)	
s < 1000	Invalid
1000 <= s <= 75000	Valid
75000 < s	Invalid

- 3. Make equivalences classes for the input variables for this method: public static int getNumDaysinMonth(int month, int year)
 - a) For month 3 equivalence partitions exist:
 - i. Below 1
 - ii. Between 1 and 12
 - iii. Above 12
 - b) For year 3 equivalence partitions exist (limited by int32 max):
 - i. Below -2,147,483,647
 - ii. Between -2,147,483,647 and 2,147,483,647
 - iii. Above 2,147,483,647

Equivalance Classes (parameter m)	getNumDaysinMonth(int month, int year)
m < 1	Invalid
0 < m < 13	Valid
12 < m	Invalid
Equivalance Classes (parameter y)	getNumDaysinMonth(int month, int year)
y < -2,147,483,647	Invalid
-2,147,483,647 <= y <= 2,147,483,647	Valid
2,147,483,647 < y	Invalid

BOUNDARY VALUE ANALYSIS

- 1. Do boundary value analysis for equivalence partitioning exercise 1
- 2. Do boundary value analysis for equivalence partitioning exercise 2
- 3. Do boundary value analysis for equivalence partitioning exercise 3

Exercise	Invalid		Invalid		
1	0	1	500	1000	1001
2	999	1000	37000	75000	75001
3	-2,147,483,6	-2,147,483,647	0	2,147,483,647	2,147,48
	48				3,648

DECISION TABLES

- 1. Make a decision table for the following business case: No charges are reimbursed (DK: refunderet) to a patient until the deductible (DK: selvrisiko) has been met. After the deductible has been met, reimburse 50% for Doctor's Office visits or 80% for Hospital visits.
- 2. Make a decision table for leap years. Leap year: Most years that are evenly divisible by 4 are leap years. An exception to this rule is, that years that are evenly divisible by 100 are not leap years, unless they are also evenly divisible by 400, in which case they are leap years.

DECISION TABLES								ľ
Deductible business case								
Condition					-			
Doctor office visit deductible met		t	f	f				
Hospital visit deductible met		f	t	f				
Action					2			
50% reimburse	у	у						
80% reimburse	у		у					
no reimburse				у				
Leap year business case								
Condition								
Year is divisible by 4		t	t	t	f	f	f	f
Year is divisible by 4 and 100		t	f	f	t	t	f	f
Year is divisible by 100 and 400		f	t	f	t	f	t	f
Action								
Year is a leap year	У			у				
Year is not a leap year		у	у		у	у	у	у