Example 7

In $\triangle ABC, AB > AC$. M is the midpoint of BC.AD is the angle bisector of $\angle A.$ $CE \perp AD$ at E. Prove:

$$ME = \frac{1}{2}(AB - AC).$$

Solution: Extend CE to meet AB at F. Since $AE \perp CF$ and AE is the angle bisector of $\angle A, AE$ is the perpendicular bisector of CF. Thus FE = EC, AC = AF, and E is the midpoint of CF. Therefore, ME is the midline of $\triangle CBF$, and

 $ME = \frac{1}{2}BF = \frac{1}{2}(AB - AF) = \frac{1}{2}(AB - AC).$