Formal Language and Automata Theory

Chapter Two

Finite automata (FA)

DFA Vs NFA

- When the machine is in a given state and reads the next input symbol, we know what the next state will be it is determined.
- In nondeterministic machine, several choices may exist for the next state at any point.
- Non-determinism is a generalization of determinism, so every deterministic finite automaton is automatically a non-deterministic finite automaton.
- DFAs are clearly a subset of NFAs.

Deterministic Finite Automaton (DFA)

Formal Definition of a DFA

A DFA can be represented by a 5-tuple (\mathbb{Q} , Σ , δ , \mathbb{q}_0 , \mathbb{F}) where:

- **Q** is a finite set of states.
- Σ is a finite set of symbols called the input alphabet.
- δ is the transition function where $\delta: Q \times \Sigma \to Q$
- $\mathbf{q_0}$ is the initial state from where any input is processed ($\mathbf{q_0} \in \mathbf{Q}$).
- **F** is a set of final state/states of Q ($F \subseteq Q$).

Graphical Representation of a DFA

A DFA is represented by digraphs called **state diagram**:

- The vertices represent the states.
- The arcs labeled with an input alphabet show the transitions.
- The initial state is denoted by an empty single incoming arc.
- The final state is indicated by double circles.

Example

Let a deterministic finite automaton be

- $Q = \{a, b, c\},\$
- $\Sigma = \{0, 1\},$
- $q_0 = \{a\},$
- $F=\{c\}$, and

• Transition function δ as shown by the following table:

Present state	Next state for input 0	Next state for input 1
a	a	Ъ
b	С	a
с	b	с

• Its graphical representation would be as follows:

• Find the result of $\delta(a, 0101)$

Solution: $\delta(a, olo1)$

```
=\delta(\delta(a,0),101)
```

$$=\delta$$
 (a, 101)

$$=\delta (\delta(a,1), 01)$$

$$=\delta(b, 01)$$

$$=\delta(\delta(b,0),1)$$

$$=\delta(c,1)$$

=c

Non-deterministic Finite Automaton (NDFA)

Formal Definition of an NDFA

An NDFA can be represented by a 5-tuple (Q, Σ , δ , q₀, F) where:

- **Q** is a finite set of internal states.
- Σ is a finite set of symbols called the input alphabets.
- δ is the transition function where δ : $Q \times \{\Sigma \cup \varepsilon\} \to 2Q$ (Here the power set of Q (2Q) has been taken because in case of NDFA, from a state, transition can occur to any combination of Q states)
- $\mathbf{q_0}$ is the initial state from where any input is processed $(\mathbf{q_0} \in \mathbf{Q})$.
- **F** is a set of final state/states of Q ($F \subseteq Q$).

Graphical Representation of an NDFA: (same as DFA)

An NDFA is represented by digraphs called state diagram.

- The vertices represent the states.
- The arcs labeled with an input alphabet show the transitions.
- The initial state is denoted by an empty single incoming arc.
- The final state is indicated by double circles.

Example

- Let a non-deterministic finite automaton be
- $Q = \{a, b, c\}$
- $\Sigma = \{0, 1\}$
- $q_0 = \{a\}$
- $F=\{c\}$

The transition function δ as shown below:

Present State	Next State for Input 0	Next State for Input 1
a	a, b	b
b	С	a, c
С	b, c	С

• Its graphical representation would be as follows:

Converting an NDFA to an Equivalent DFA

• Let $\mathbf{X} = (\mathbf{Q}_{\mathbf{x}}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{\mathbf{x}}, \mathbf{q}_{\mathbf{0}}, \mathbf{F}_{\mathbf{x}})$ be an NDFA which accepts the language $L(\mathbf{X})$. We have to design an equivalent DFA $\mathbf{Y} = (\mathbf{Q}_{\mathbf{y}}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{\mathbf{y}}, \mathbf{q}_{\mathbf{0}}, \mathbf{F}_{\mathbf{y}})$ such that $L(\mathbf{Y}) = L(\mathbf{X})$.

The following procedure converts the NDFA to its equivalent DFA:

Algorithm:

Input: An NDFA

Output: An equivalent DFA

- Step 1 Create state table from the given NDFA.
- Step 2 Create a blank state table under possible input alphabets for the equivalent DFA.
- Step 3 Mark the start state of the DFA by q_0 (Same as the NDFA).

- Step 4 Find out the combination of States $\{Q_0, Q_1, \dots, Q_n\}$ for each possible input alphabet.
- Step 5 Each time we generate a new DFA state under the input alphabet columns, we have to apply step 4 again, otherwise go to step 6.
- **Step 6** The states which contain any of the final states of the NDFA are the final states of the equivalent DFA.

Example 1

• Let us consider the NDFA shown in the figure below.

q	δ(q,0)	δ(q,1)
a	{a,b,c,d,e}	{d,e}
b	{c}	{e}
С	Ø	{b}
d	{e}	Ø
e	Ø	Ø

q	δ(q,0)	δ(q,1)
а	{a,b,c,d,e}	{d,e}
{a,b,c,d,e}	{a,b,c,d,e}	{b,d,e}
{d,e}	е	D
{b,d,e}	{c,e}	E
е	Ø	Ø
d	е	Ø
{c,e}	Ø	В
b	С	E
С	Ø	В

State table of DFA equivalent to NDFA

State diagram of DFA

Exercise

Construct an equivalent DFA for a given NDFA

Assignment

Construct an equivalent DFA for a given NDFA

DFA Minimization

- Questions of DFA size:
 - Given a DFA, can we find one with fewer states that accepts the same language?
 - What is the smallest DFA for a given language?
 - Is the smallest DFA unique, or can there be more than one "smallest" DFA for the same language?
- All these questions have neat answers...
- The task of *DFA minimization*, then, is to automatically transform a given DFA into a state-minimized DFA
 - Several algorithms and variants are known
 - Note that this also in effect can minimize an NFA (since we know algorithm to convert NFA to DFA)

DFA Minimization

- Some states can be redundant:
 - The following DFA accepts (a|b)+
 - State s1 is not necessary

DFA Minimization

• So these two DFAs are *equivalent*:

State Reduction by Partitioning

- We say two states \mathbf{p} and \mathbf{q} are $\mathbf{equivalent}$ (or indistinguishable), if, for every string $\mathbf{w} \in \Sigma^*$, transition $\delta(\mathbf{p}, \mathbf{w})$ ends in an accepting state if and only if $\delta(\mathbf{q}, \mathbf{w})$ does. In the preceding slide states S_1 and S_2 are equivalent.
- There are efficient algorithms available for computing the sets of equivalent states of a given DFA.
- The following two slides show:
 - the detailed steps for computing equivalent state sets of the DFA
 - constructing the reduced DFA.

State Reduction by Partitioning

• **Step 0**: Partition the states according to accepting/non-accepting.

$$\frac{P_1}{}$$
 $\frac{P_2}{}$ { 0, 1, 2 }

State Reduction by Partitioning(cont'ed)

• Step 1: Get the response of each state for each input symbol. Notice that States 3 and 0 show different responses from the ones of the other states in the same set.

Record responses for each input symbol

•Step 2: Partition the sets according to the responses, and go to Step 1 until no partition occurs.

Partition the set, and record responses for each input symbol

- •No further partition is possible for the sets P_{11} and P_{21} . So the final partition results are as follows.
 - $\{4, 5\}$

 $\{1, 2\}$

{0}

Exercise

• Minimize the given DFA.

