Contents

catterplot	
Interpreting a Scatterplot	
Direction	
•	
Strength	
Notes about Correlation	
Outliers	

Day 24

Scatterplot

- Different colors to indicate different groups
- Each dot is a case [(x, y) point]
- Temperature \rightarrow explanatory variable
- Scale \rightarrow response variable

Interpreting a Scatterplot

- 1. <u>Direction</u> of the association
- 2. Form of the associations
- 3. Strength
- 4. Outliers

Direction

Linear

• One ellipse major axis describes relationship well.

Positive

Figure 1: Positive Association

- X ↑, Y ↑
- Linear

Negative

Figure 2: Negative Association

- $X \uparrow, Y \downarrow$ Linear

No Association

Figure 3: No Association

• Best we can do is a horizontal line

More Complex Association

- $X \uparrow, Y \cong$
- Polynomial
- Sinusoidal $(\sin(), \cos())$

Figure 4: Complex

Nonlinear

- Exponential
- $\bullet \;\; {\rm Logarithmic \; Power}$
- Need multiple ellipses to describe relationship

Strength

Only makes sense to discuss one direction & form are identified! How closely the points follow the form you identified.

$\underline{\text{Correlation:}}$

$$r = \frac{1}{n-1} \sum \left(\frac{x - \overline{x}}{S_x} \right) \left(\frac{y - \overline{y}}{S_y} \right)$$

Figure 5: Correlation Formula

Contribution to r is t

- $x_i > \bar{x} \rightarrow y_i > \bar{y}$
- fill in later from picture

Notes about Correlation

- $-1 \le r \le 1$
 - -r=1: all points on line with positive slope
 - -r = -1: all points on line with negative slope
- r is only interpretable for <u>linear</u> association!
 - Can have very strong non linear association but correlation close to 0. See more complex association figure.
- \bullet Correlation is $\underline{\text{unitless}}$ and $\underline{\text{invariant}}$ to linear transformation.
- Correlation is highly susceptible to outliers.

Figure 6: Outlier messing things up

- Correlation ≈ 0.85
- Major influence on correlation

Outliers

Linear Regression

In population, x and y are related:

$$y = \beta_0 + \beta_1 + \epsilon$$

- β_0 = y-intercept (b portion in y = mx + b)
- $\beta_1 = \text{slope (m portion in } y = mx + b)$
 - both above are parameters
- $\epsilon \sim N(0, \sigma)$
 - Random variable

X is assumed fixed and is not random.

 $\beta_0 + \beta_1$ is <u>not</u> random. - You give me x, I give you $\beta_0 + \beta_1 x$

Y is a random variable because ϵ is a random variable.

Before I observe the case:

- I know x-value
- I do not know y-value

<u>Problem:</u> β_0 and β_1 are parameters <u>BUT</u> we have sample data.

How to estimate β_0 and β_1 ?

Criterion:

$$SS_{(residuals)} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Figure 7: Sum of Squared Residual Formula

• \hat{y} = "predicted y" = value of y obtained by plugging x into the equation of the line.

Minimize the criterion over all possible lines $\hat{y} = mx + b$

In stats: $\hat{y} = b_0 + b_1 x$. This is called the least squares regression line.

- $b_1 = r \times \frac{s_{\underline{y}}}{s_{\underline{x}}}$ $b_0 = \bar{y} b_1 \bar{x}$

Interpretation

- $y_i \hat{y}_i$: prediction error or <u>residual</u>. How much above/below the least squared line the actual y-value is.
- b_1 : slope is the predicted change in y for one-unit increase in x.
 - Always meaningful
- b_0 : y-intercept: predicted value of y when x = 0
 - Only meaningful if x = 0 is a plausible data value near/in the range of observed x-values.