Analysis and Design of Algorithms

Algorithms
C53230
C23330

Tutorial

Week 06.5 (Video to be uploaded during recess week)

Alice and Bob are serving SHN in two separate rooms. They can only communicate through SMS, and they get charged \$1 for every bit they transmit to each other.

Alice has with her an integer x and Bob an integer y, both less than 2^n . Bob wants to know whether x = y.

Alice and Bob do the obvious thing. Alice sends x to Bob, and Bob compares x to y.

What is the worst-case cost for the communication between Alice and Bob?

$$(1) \Theta(n^2) \qquad (3) \Theta(\sqrt{n})$$

(3)
$$\Theta(\sqrt{n})$$

(2)
$$\Theta(n)$$

(4)
$$\Theta(\lg n)$$

Alice and Bob are serving SHN in two separate rooms. They can only communicate through SMS, and they get charged \$1 for every bit they transmit to each other.

Alice has with her an integer x and Bob an integer y, both less than 2^n . Bob wants to check whether x = y.

Alice randomly chooses a prime number p, computes $a = x \pmod{p}$, and sends p and a to Bob. Bob computes $b = y \pmod{p}$.

What is the cost if they want the false positive probability to be < 1%?

- $(1) \Theta(n^2) \qquad (3) \Theta(\sqrt{n})$
- (2) $\Theta(n)$
- (4) $\Theta(\lg n)$

This problem is about the 2D pattern matching problem. The text string T is an $n_1 \times n_2$ -sized rectangle, and the pattern string P is an $m_1 \times m_2$ -sized rectangle. Here $m_1 \leq n_1$ and $m_2 \leq n_2$.

What is the time complexity for the naïve algorithm that checks whether each $m_1 \times m_2$ -sized block in T equals P?

This problem is about the 2D pattern matching problem. The text string T is an $n_1 \times n_2$ -sized rectangle, and the pattern string P is an $m_1 \times m_2$ -sized rectangle. Here $m_1 \le n_1$ and $m_2 \le n_2$.

Extend the Karp-Rabin algorithm to solve the pattern matching problem in time $O(n_1n_2)$ with 1% probability of false positives.

Assume that arithmetic on integers of size $O(n_1 + n_2)$ can be done in O(1) time.