Jalal Kawash

Outline

- 1. Introduction
 - a. Binary Logic
 - b. Logic Gates
 - c. Boolean Functions & Logic Circuits
 - d. Logic Circuits
- 2. Minterms and Gate-Level Minimization
 - a. Minterms
 - b. Boolean Sum of Products
 - c. K-Maps

Section 1
[ntroduction

Section 1 Objectives

At the end of this section you will

- 1. Recall binary logic and logic operators
- 2. Recall the definition of AND, OR, NOT, and XOR
- 3. See the correspondence between gates and logic operators
- 4. Build Boolean functions
- 5. Build digital logic circuits that correspond to Boolean functions

Binary Logic

• Deals with:

- 1. Binary variables
 - Take values from {0, 1}
- 2. Logic operators
 - Three basic operators: AND, OR, and NOT

Logic Operators: AND

Logic Operators: AND

• Let x and y be binary variables, x.y or xy is defined by:

x	y	xy
0	0	O
O	1	O
1	O	0
1	1	1

Logic Operators: OR

Logic Operators: OR

• Let *x* and *y* be binary variables, *x*+*y* is defined by:

x	y	x+y
0	0	0
O	1	1
1	O	1
1	1	1

Logic Operators: NOT

• Let x be binary variables, x' is defined by:

\boldsymbol{x}	x'
O	1
1	O

Precedence

- Logic operators are applied in the following order:
- 1. Parentheses
- 2. NOT
- 3. AND
- 4. OR
- Exercise: Create truth tables for x+xy' and x+(xy)'

Useful Logic Laws

x+o=x	x.1 = x
x+x'=1	x.x' = 0
x+x=x	x.x = x
x+1=1	x.o = o
(x')' = x	
x+y=y+x	x.y = y.x
x + (y+z) = (x+y) + z	x(y.z) = (x.y)z
x(y+z) = x.y + x.z	x + y.z = (x+y)(x+z)
(x+y)'=x'.y'	(xy)' = x' + y'
x + xy = x	x(x+y)=x

Useful Logic laws

• Exercise: Verify these laws using truth tables

Logic Gates

- A logic gate is an electronic circuit that operates on one or more input signals to produce one output signal
- Signals represent os and 1s
 - Typically 0-1V for 0 and 2-3V for 1
- Logic gates are basic building blocks for digital machines
- There is a gate for each logic operator

AND gate

x	y	xy
0	O	0
O	1	O
1	O	0
1	1	1

Think of it as a function:
bit and(bit x, bit y)

OR gate

x	y	x+y
0	0	0
O	1	1
1	O	1
1	1	1

Think of it as a function:
bit or (bit x, bit y)

NOT gate (invertor)

Think of it as a function:
bit not(bit x)

x	x'
O	1
1	0

More Gates: Exclusive OR (XOR)

x	y	$x \oplus y$
O	0	0
O	1	1
1	O	1
1	1	O

$$x$$
 y
 $x \oplus y$

XOR is redundant

- $x \oplus y = x'y + y'x$
- $x \oplus y = (x+y)(xy)$
- Exercise: Verify these laws using truth tables

More Gates: NOT OR (NOR)

x	y	x+y	(x+y)
O	0	0	1
O	1	1	O
1	0	1	O
1	1	1	O

More Gates: NOT AND (NAND)

x	y	хy	(xy)'
0	0	0	1
0	1	O	1
1	0	0	1
1	1	1	0

Gates with more inputs

 It is possible to feed a gate (except invertors) more than 2 inputs

Note that this is equivalent to

Boolean Functions

- A Boolean function combines binary variables using logic operators.
- Examples:
- F1 = x + y'z
- F2 = x'y'z + x'yz + xy'
 - Exercise: Simplify to get x'z + xy'

Boolean Function Exercises

- Simplify:
- xyz' +x'yz+xyz+x'yz'
 - Answer: y
- (x+y'+z')(x'+z')
 - □ *Answer*: *z'* +*x'y'*
- yz(xz+x'+xz')
 - Answer: yz

Logic Circuits

- A logic circuit is formed of logic gates and calculates a Boolean function
- Example: x'y + y'x

Source: DL1.circ (xor1)

Logisim

- Free simulator for logic circuits
- Downloadable from various places
 - http://sourceforge.net/projects/circuit/
- Demo!
 - XOR1 & XOR2

Another XOR Circuit

Source: DL1.circ (xor2)

$$x \oplus y = (x+y)(xy)$$

Boolean Function Exercises

- Draw the corresponding logic circuit:
- xyz' +x'yz+xyz+x'yz'
 - Answer: y
- (x+y'+z')(x'+z')
 - □ *Answer*: *z'* +*x'y'*
- yz(xz+x'+xz')
 - Answer: yz

$$F = z' + x'y'$$

Source: DL1.circ (Example 1Function)

Boolean Function Exercise

• What is the Boolean function corresponding to the following circuit?

Source: DL1.circ

Self-Test Quiz

• What is the Boolean functions corresponding to the following circuit?

Section 2
Minerms and Gate-Level
Minimization

Section 2 Objectives

At the end of this section you will

- 1. Master the Boolean-Sum-of-Products algorithm
- 2. Convert truth tables to Boolean functions
- 3. Minimize minterms in a function using factorization
- 4. Minimize minterms in a function in canonical form using K-Maps

Boolean Sum of Products (BSP)

- Truth table = Boolean function(s) = Logic Circuit
- BSP Algorithm:
 - Given a truth table, convert each column C to an equivalent function F_C as follows:
 - 1. For each output column, for each row R where the output is 1:
 - $f_{\rm R} = empty$
 - For each input value x in R that is 1, $f_R = f_R x$
 - For each input value x in R that is o, $f_R = f_R \cdot x'$

2.
$$F_C = \sum_R f_R$$

BSP Example

x	y	$x \oplus y$
O	0	0
O	1	1 $\mathbf{x}'\mathbf{y}$
1	0	1 x'y 1 xy'
1	1	0

$$F = x'y + xy' = x \oplus y$$

BSP Example

 Convert the following table to 2 functions F1 and F2

What do F1 and F2 represent?

x	y	\boldsymbol{z}	F1	F2
O	O	O	0	0
O	O	1	1	0
O	1	O	1	0
O	1	1	O	1
1	O	О	1	0
1	O	1	0	1
1	1	O	0	1
1	1	1	1	1

Minterms

• BSP is often called sum of minterms

 Example: minterms with three variables

Minterm symbol	Minterm	Corrsponding binary number
m_o	x'y'z'	000
$m_{\scriptscriptstyle 1}$	x'y'z	001
m_2	x'yz'	010
$m_3^{}$	x'yz	<i>O11</i>
m_4	xy'z'	100
$m_5^{}$	xy'z	101
m_6	xyz'	110
m_7	xyz	111

Understanding minterms

- m_i corresponds to the binary number i
- (Assume a 3-variable function)
- If i = 1, i in binary is 001
- m_1 is x'y'z
 - That is, if the digit is 0, negate the corresponding variable (x' and y')
 - If the digit is 1, leave the corresponding variable as is (z)

Minterms Canonical Form

- A function is in canonical form if it is a sum of minterms
- Examples:
- F1(x, y, z) = x'yz' + x'yz + xy'z
 - $F1(x, y, z) = m_2 + m_3 + m_5$
 - $F1(x, y, z) = \Sigma(2, 3, 5)$
- F2(x, y, z) = x'y'z' + x'y'z + x'yz' + x'yz
 - $F2(x, y, z) = m_0 + m_1 + m_2 + m_3$
 - $F2(x, y, z) = \sum (0, 1, 2, 3)$

Karnaugh-Maps

- A K-map is a visual representation of a Boolean function in canonical form
- It helps in the process of simplifying a function
- An n-variable function in canonical form will have up to 2^n minterms
- The form in which the variable appear in a term (such as *x* or *x*') is called a *literal*
- In an n-variable function, each minterm consists of n literals (e.g. x'yz' in a 3-variable function)

2-Variable Functions

• Minterms:

m_o	x'y'	00
$m_{\scriptscriptstyle 1}$	x'y	<i>O</i> 1
m_2	xy'	10
$m_3^{}$	xy	11

• 2-variable map:

m_o	$m_{_{1}}$
m_2	$m_3^{}$

2-Variable Maps

• F1 = x'y' + x'y + xy is

m_o	$m_{_{1}}$
m_2	m_3

• F2 = x'y' + xy' is

m_o	$m_{_{1}}$
m_2	$m_3^{}$

Adjacency

m_o	$m_{_{1}}$
m_2	$m_3^{}$

- Two squares in a map are said to be adjacent if the corresponding minterms differ in one literal only.
- Example m_o and m_1 are adjacent
 - $m_o = x'y'$ and m_1 is x'y
 - Differ in y
 - Similarly, m_o and m_z are adjacent
 - m_2 and m_3
 - m_1 and m_3

Simplifying Functions

- Two adjacent squares can be combined to eliminate the different literal
- Example: x'y + xy = y(x+x') = y(1) = y
- A map gives us clues as to which minterms should be combined

•
$$F(x, y) = \sum (1, 2, 3)$$

- Combine 1 and 3
- Combine 2 and 3

$$\bullet \ F = x'y + xy' + xy$$

•
$$F = x'y + xy + xy' + xy$$
 (since $xy + xy = xy$)

•
$$F = y(x'+x) + x(y'+y)$$

•
$$F = y + x$$

m_o	$m_{_{1}}$
m_2	$m_3^{}$

$$(since xy + xy = xy)$$

2-Variable Map Observations

• The number of adjacent squares that can be combined is a power of 2

- 1. A single square represents a minterm with 2 literals (e.g. x'y)
- 2. 2 adjacent squares represent one minterm with 1 literal (e.g. *x*)
- 3. 4 adjacent squares represent the function F = 1

3-Variable Functions

m_o	x'y'z'
$m_{\scriptscriptstyle 1}$	x'y'z
m_2	x'yz'
$m_3^{}$	x'yz
m_4	xy'z'
$m_5^{}$	xy'z
m_6	xyz'
m_7	xyz

m_o	$m_{_{1}}$	$m_3^{}$	m_2
m_4	$m_5^{}$	m_{7}	m_6

Adjacency

Same definition

Adjacency

- o and 2 are adjacent
 - ooo and o10: they differ in one bit
 - The corresponding minterms x'y'z' and x'yz' only differ in y
- Note that 1 and 2 are not adjacent
 - oo1 and o10: they differ in more than one bit
 - Hence, the first row of the map is drawn as 0, 1, 3,
 2 instead of 0, 1, 2, 3

• $F(x, y, z) = \sum (2, 3, 4, 5)$

m_o	$m_{_{1}}$	m_3	m_2
m_4	m_5	m_7	m_6

- To simplify, combine
 - 3 and 2
 - 4 and 5

- $F(x, y, z) = \sum (2, 3, 4, 5)$
- F = x'yz' + x'yz + xy'z' + xy'z
- F = x'y(z'+z) + xy'(z'+z)
- F = x'y + xy'
- $F = x \oplus y$

m_o	$m_{_{1}}$	$m_3^{}$	m_2
m_4	m_5	m_7	m_6

m_o	$m_{_{1}}$	$m_3^{}$	m_2
m_4	$m_5^{}$	m_7	m_6

•
$$F(x, y, z) = \sum (3, 4, 6, 7)$$

•
$$F = x'yz + xy'z' + xyz' + xyz$$

- Combine
 - 4 and 6
 - □ 7 and 6
- F = x'yz + xy'z' + xyz' + xyz + xyz'
- F = x'yz + xz' + xy

- Also combine
 - 3 and 7
- F = x'yz + xz' + xy
- F = xz' + xy + x'yz + xyz
- F = xz' + xy + yz

m_o	$m_{_{1}}$	$m_3^{}$	m_2
m_4	m_5	m_7	m_6

3-Variable Map Observations

- 1. A single square represents 1 minterm with three literals (e.g., x'yz')
- 2. 2 adjacent squares represent one minterm with2 literals (e.g., xy')
- 3. 4 adjacent squares represent one minterm with 1 literal (e.g., z)
- 4. 8 adjacent squares represent the function F = 1

m_o	$m_{_{1}}$	m_3	m_2
m_4	$m_5^{}$	m_{7}	m_6

- F = x'y'z' + x'y'z + x'yz + x'yz'
- Combine (0,1), (1,3), (3,2), (2,0)
- F = x'
- One literal

4-Vraiable Maps

m_o	$m_{_{1}}$	$m_3^{}$	m_2
m_4	$m_5^{}$	m_{7}	m_6
$m_{_{12}}$	m_{i3}	$m_{_{15}}$	$m_{_{14}}$
m_8	m_9	$m_{_{11}}$	m_{10}

4-Variable Map Observations

- 1. A single square represents 1 minterm with 4 literals (e.g., wx'yz')
- 2. 2 adjacent squares represent one minterm with 3 literals (e.g., xy'z)
- 3. 4 adjacent squares represent one minterm with 2 literal (e.g., w'z)
- 4. 8 adjacent squares represent one minterm with 1 literal (e.g., z')
- 5. 16 adjacent squares is the function F = 1

Self-Test Quiz

• Draw a 4-variable K-map and simplify the following functions:

$$F(w, x, y, z) = \sum (0, 1, 5, 8, 9)$$

$$F(w, x, y, z) = \sum (1, 3, 5, 6, 9, 10, 11, 15)$$

Higher-Order K-Maps

- A 5-variable map is 3-D
- More dimensions are needed for higher order maps
- Useful only with computer programs

Optional Topics

- Maxterms
- Boolean product of sums (product of maxterms)
- 5-variable and 6-variable maps