EDMaL

Enhanced Detection of Al-Generated Text using Machine Learning

The Problem

of people do not trust companies to be **ethical** in their use of Al

Inaccurate results

Fake News

Misuse/Dishonest Use

Current Solutions

GPTZero

DetectGPT

Content-At-Scale AI Detector

ZeroGPT

DNA-GPT (Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text)

Our Research: Improving on DNA-GPT

4 Methods

Stemming from the DNA-GPT's original methods, we propose 4 methods to try to enhance their text-detection:

Current DNA-GPT Detection using N-Gram Analysis

Truncate the text, z, using the truncate ratio of γ . ($\gamma = 0.5$)

Regenerate from the truncated output, z_1 , using an LLM, K times. (K = 10)

Compare y_i to z_2 to classify z as Al-generated or Human-written We propose and test 4 additional methods of doing so along with doing analysis of ngrams (like DNA-GPT

Using computed scores in step 3, and based on a **threshold**, evaluate if text is Al-generated or human-written The threshold has to be fine-tuned to maximize scores for metrics

We grouped the 4 methods to improve step 3 into 2 groups:

Group A: Extensions of N-gram Analysis

Experimenting with common Machine Learning tools

SVM Random Forest Classifier (Support Vector Machine) TREE #2 TREE #4 CLASS C **CLASS D** CLASS C **MAJORITY VOTING FINAL CLASS**

We trained both by taking **feature vector** *x* as input and returning a label of 1 (Al-generated) or 0 (Human-written) as score_z.

Group B: Alternative Approaches

B.2

Other Ad-hoc methods

References

Levenshtein Edit Distance (Does not use Machine Learning)

By taking the number of transformations (with replace, insert and delete operations) to change y_i to z_2 , we aim to analyze the lexical structure of the text.

This method was added since its similar to the original N-gram analysis method DNA-GPT used.

Cosine Similarity This method aims to capture the semantic meaning of text and determine texts' semantic distance.

Word Embeddings With

3 Datasets

ELI5 - Explain Like I'm Five (Min 500) This was also used by DNA-GPT, allowing us to do a ground truth comparison

Questions and replies from users

Reply to questions

AI-Generated (50%)

Human-Written Replies (50%)

Small Reddit Dataset (Min 100 & 500)

Human-Written Posts (50%)

Human-Written Reddit **Posts**

Reply to post (1-shot) Create post (1-shot)

AI-Generated (50%)

Small Reddit **Dataset** (Min 100 & 500)

2 Metrics

AUROC (Area Under Receiver Operating Characteristic Curve)

TPR (True Positive Rate) at 1% FPR (False Positive Rate)

Both metrics were used by DNA-GPT, allowing for effective comparison of results.

1 Model, Baseline and Detection Scenario

Due to time constraints, only one type of each were experimented with. Model: GPT-3.5-Turbo, Baseline: DNA-GPT's original method, Detection Scenario: Black-Box

Results & Discussion

Scores for AUROC and TPR metrics for all 3 datasets and 5 methods (including DNA-GPT's original score), with the best-scores (with a margin of 1%) bolded red:

Datasets	ELI5 (Min 500)		Reddit Small (Min 500)		Reddit Small (Min 100)	
Method	AUROC	TPR	AUROC	TPR	AUROC	TPR
DNA-GPT (original)	96.85	63.50	-	-	-	-
DNA-GPT	98.07	59.08	88.32	8.06	71.50	1.36
Random Forest	97.20	61.04	87.60	12.16	71.83	2.89
SVM	97.91	56.78	84.09	8.04	71.62	2.64
Cosine Similarity	90.75	38.41	58.07	1.11	57.58	1.13
Edit Distance	95.45	34.19	77.29	3.96	60.58	0.78

ROC Curve on ELI5 (Min 500) dataset with GPT-3.5 Regeneration ROC Curve on Reddit (Min 100) dataset with GPT-3.5 Regeneration

DNA-GPT

- Able to closely match their original results
- Original N-Gram Analysis method proved to be extremely competitive

Random Forest Classifier and SVM

- Random forest classifier **performs the best**
- SVM has inferior performance, possibly because Random forest classifier relies on multiple models
- Both methods require training, thus with a larger dataset size, improved results can definitely be achieved

Cosine similarity with Word Embeddings

- Performed **much worse** than other methods
- Semantic meaning of regenerated samples likely to match z2 given z1 as context (especially if context is

Edit Distance vs N-Gram Analysis

- Lexical analysis of edit distance is much less effective than N-Gram analysis
- Edit distance is unable to differentiate words with similar spelling could have completely different meanings (eg. "Stationary" vs "Stationery")

Conclusion

- Group A, with a larger training dataset, could significantly improve DNA-GPT's original results
- Future Work: More models, detection scenarios and methods can be experimented with
- Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. Detectgpt: Zero-shot machine-generated text detection using probability curvature. arXiv preprint arXiv:2301.11305, 2023 alpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit lyyer. Paraphrasing evades detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint arXiv:2303.13408, 2023

Jwizzed. (2024, January 9). Core algorithms you should know in classification - jWizzed - medium. Medium. https://medium.com/@jwizzed_70966/core-algorithms-you-should-know-in-classification-593bebeae03c

- Yang, X. (2023, May 27). DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text. Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5: Long form question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3558–3567, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1346.
- Han, S. (2015). Cosine similarity based fingerprinting algorithm in WLAN indoor positioning against device diversity. https://www.semanticscholar.org/paper/Cosine-similarity-based-fingerprinting-algorithm-in-Han-Zhao, d203f5734f5ee9d49c0adff31805ed93034ca60e Draelos, V. a. P. B. R., MD PhD. (2020, February 2). Measuring Performance: AUC (AUROC). Glass Box. https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/