Feature Analysis Techniques for Disease Prediction from Protein Isoforms

1 Introduction

Feature analysis is a vital step in machine learning (ML) to identify which features (input variables) most influence a model's ability to predict a target variable. In this context, the dataset contains protein isoform data with two features: p-value_lowest (statistical significance of the isoform) and effector_score (a measure of the isoform's biological effect). The target is to predict a disease-related outcome (e.g., disease severity or risk) based on these protein characteristics. This document explains four feature analysis techniques—Built-in Feature Importance, Permutation Importance, Linear Regression Coefficient Analysis, and Feature-Target Correlation Analysis—in a beginner-friendly way with technical details, tailored to the disease prediction task.

2 Built-in Feature Importance Analysis

2.1 What is it?

Built-in feature importance is a method used by tree-based ML models (e.g., Random Forests, Gradient Boosting) to quantify how much each feature, such as p-value_lowest or effector_score, contributes to predicting disease from protein isoforms. It relies on internal metrics, like how often a feature is used to split data in decision trees or how much it reduces impurity (e.g., Gini index).

2.2 Why use it?

This method is fast and specific to tree-based models, revealing which protein features drive disease predictions. It's useful for:

- Identifying key protein properties linked to disease.
- Simplifying models by removing less important features.
- Explaining model predictions to biologists or clinicians.

2.3 How does it work?

- 1. **Extract Importance Scores**: The feature_importances_attribute provides scores based on how much each feature (e.g., effector_score) reduces impurity during training.
- 2. **Normalize to Percentages**: Convert raw scores to percentages by dividing each by the sum of all scores and multiplying by 100.
- 3. **Include Weights**: Incorporate statistical weights (e.g., normalized p-values from weights_norm) to contextualize importance with significance.
- 4. **Store and Display**: Organize results in a table and display the top features.

2.4 Technical Details

- **Models**: Works with models like Random Forest or XGBoost, where feature_importances_ is available.
- **Formula**: For a feature *f*, importance is based on the total reduction in impurity across all splits involving *f*. Percentage importance is:

$$\text{Importance}_{\text{\%}} = \left(\frac{\text{Importance}_f}{\sum \text{Importance}_i}\right) \times 100$$

• **Assumptions**: Assumes the model is trained on features p-value_lowest and effector_score, aligned with feature_names_filtered.

2.5 Example Output

For a Random Forest model predicting disease:

Feature	Imp. (%)	P-val. Wt.
effector_score	70.40	0.95
p-value_lowest	29.60	0.90

This suggests effector_score is the dominant feature for disease prediction, contributing 70.4% to the model's decisions.

2.6 Limitations

- Only applies to tree-based models.
- May overemphasize features used frequently in splits, even if they have limited predictive power for disease.

3 Permutation Importance Analysis

3.1 What is it?

Permutation importance measures a feature's importance by evaluating how much a model's performance (e.g., predicting disease risk) degrades when the feature's values (e.g., effector_score) are randomly shuffled. A large performance drop indicates high importance.

3.2 Why use it?

This model-agnostic method is robust and works with any model, making it ideal for validating feature importance in protein-disease studies. It's useful for:

- Confirming which protein features impact disease predictions.
- Detecting overfitting or data leakage in biological data.
- Comparing feature importance across models.

3.3 How does it work?

- 1. **Calculate Importance**: Randomly shuffle a feature's values in the test set and measure the change in model performance (e.g., negative mean squared error for disease severity).
- 2. **Repeat and Average**: Shuffle multiple times (e.g., 10) to compute mean importance and standard deviation.

- 3. **Normalize to Percentages**: Convert positive importance scores to percentages, setting negative or zero scores to 0%.
- 4. **Evaluate Significance**: Flag features as significant if their importance exceeds 2 standard deviations from zero.
- 5. **Flag Issues**: Identify features with high importance but low p-value weight (e.g., < 0.5) as potential signs of overfitting.

3.4 Technical Details

- **Function**: Uses scikit-learn's permutation_importance with n_repeats=10, random_state=42, and scoring='neq mean squared error'.
- **Formula**: Importance for feature *f*:

$$Importance_f = Score_{original} - Score_{shuffled}$$

Percentage importance (for positive Importance $_{f}$):

$$\mathbf{Importance}_{\%} = \left(\frac{\mathbf{Importance}_f}{\sum \mathbf{Importance}_i}\right) \times 100$$

• **Significance**: A feature is significant if |Importance_f| $> 2 \times \text{Std}_f$.

3.5 Example Output

For a model predicting disease:

Feature	Raw Imp.	Imp. (%)	Sig.	P-val. Wt.
effector_score	1.234567	75.20	True	0.95
p-value_lowest	0.406789	24.80	True	0.90

This indicates effector_score strongly impacts disease prediction accuracy.

3.6 Limitations

- Computationally intensive due to repeated shuffling.
- Assumes test data (X_test_filtered) is representative of disease cases.
- Negative importance scores can complicate interpretation.

4 Linear Regression Coefficient Analysis

4.1 What is it?

This method uses the coefficients of a Linear Regression model to measure the importance of features like p-value_lowest and effector_score for predicting disease. The magnitude of a coefficient reflects the feature's linear impact on the disease outcome.

4.2 Why use it?

It's specific to linear models and interpretable for linear relationships in protein-disease data. Useful for:

- Understanding linear effects of protein features on disease.
- Comparing with non-linear methods (e.g., tree-based importance).
- Guiding feature selection for linear disease prediction models.

4.3 How does it work?

- 1. Standardize Features: Scale features to mean 0 and standard deviation 1 using StandardScaler.
- 2. Fit Model: Train a Linear Regression model on standardized data.
- 3. Extract Coefficients: Use absolute coefficients as importance measures.
- 4. Normalize to Percentages: Convert absolute coefficients to percentages.
- 5. Include Weights: Add statistical weights (e.g., p-values) for context.

4.4 Technical Details

• Standardization: Transforms features:

$$X_{\text{scaled}} = \frac{X - \mu}{\sigma}$$

• Model: Linear Regression solves:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

where β_1 and β_2 are coefficients for p-value_lowest and effector_score.

• Importance: Absolute coefficient percentage:

$$\mathbf{Importance_\%} = \left(\frac{|\beta_i|}{\sum |\beta_j|}\right) \times 100$$

4.5 Example Output

Feature	Coef.	Imp. (%)	P-val. Wt.
effector_score	-2.1234	68.30	0.95
p-value_lowest	0.9876	31.70	0.90

This shows effector_score has a strong negative linear effect on disease prediction.

4.6 Limitations

- Assumes linear relationships, which may not capture complex disease-protein interactions.
- Sensitive to multicollinearity between p-value_lowest and effector_score.
- Requires standardization for fair comparison.

5 Feature-Target Correlation Analysis

5.1 What is it?

This method calculates the Pearson correlation coefficient between each feature (p-value_lowest, effector_score) and the disease outcome to measure their linear relationship strength.

5.2 Why use it?

It's model-agnostic and simple, revealing which protein features are linearly related to disease. Useful for:

- Identifying features for linear disease prediction models.
- Exploring relationships in protein-disease data.
- Detecting potential multicollinearity.

5.3 How does it work?

- 1. **Calculate Correlations**: Compute Pearson correlation between each feature and the disease outcome.
- 2. Handle NaN: Set invalid correlations (e.g., from constant features) to 0.
- 3. Normalize to Percentages: Convert absolute correlations to percentages.
- 4. Display Top Features: Show the top features by absolute correlation.

5.4 Technical Details

• **Pearson Correlation**: For feature *x* and target *y*:

$$\mathbf{corr}(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

• Percentage: Absolute correlation percentage:

$$\textbf{Correlation}_{\textbf{\%}} = \left(\frac{|\textbf{corr}(x,y)|}{\sum |\textbf{corr}(x_i,y)|}\right) \times 100$$

5.5 Example Output

Feature	Corr.	Corr. (%)
effector_score	-0.8500	67.50
p-value_lowest	0.4100	32.50

This suggests effector_score has a strong negative linear relationship with disease.

5.6 Limitations

- Only captures linear relationships, missing non-linear disease-protein interactions.
- Sensitive to outliers in effector_score or disease data.
- Doesn't account for feature interactions.

6 Comparing the Techniques

Technique	Model-Agn.	Non-Linear	Comp. Cost	Key Metric
Built-in Impor- tance	No	Yes	Low	Impurity Red.
Permutation Importance	Yes	Yes	High	Perf. Drop
LR Coefficient	No	No	Medium	Coef. Mag.
Correlation Analysis	Yes	No	Low	Pearson Corr.

7 Conclusion

These four techniques provide complementary insights into the protein isoform dataset for disease prediction:

- Built-in: Quick for tree-based models, highlighting effector_score as critical for disease.
- Permutation: Robust validation, confirming key protein features across models.

- LR Coefficient: Reveals linear effects, useful for linear disease models.
- Correlation: Simple exploration of linear relationships in protein-disease data.

By combining these methods, researchers can identify critical protein features, guide disease prediction models, and ensure robust biological insights.