Compiladores Análise Sintática Análise Sintática Ascendente

Profa. Dra. Ana Carolina Lorena UNIFESP

- Também chamada de Análise Redutiva
 - Tenta construir árvore de derivação a partir das folhas, produzindo derivação mais à direita ao reverso
 - Parte-se dos símbolos terminais, em direção ao símbolo inicial da gramática

Visão Geral:

- Um analisador sintático ascendente usa uma pilha para efetuar a análise
- A pilha conterá símbolos terminais, não-terminais e estados de um AFD
- —A pilha está vazia no início da análise e conterá o símbolo inicial ao término de uma análise bem sucedida
- -Um AFD define os estados de um analisador sintático ascendente, e é utilizado para acompanhar os estados do analisador sintático

Visão Geral:

- –O analisador ascendente tem duas ações possíveis (além da ação "aceita" ao término da análise bem sucedida):
 - Empilha um terminal da cadeia de entrada para o topo da pilha;
 - Reduz uma cadeia α do topo da pilha para um símbolo nãoterminal A, dada a escolha BNF $A \rightarrow \alpha$
 - Operação de substituição do lado direito de uma produção pelo não-terminal correspondente no lado esquerdo

São chamados de analisadores empilha-reduz

- Visão Geral:
 - Uma característica adicional dos analisadores ascendentes é a gramática aumentada
 - Necessária para garantir um único estado inicial do autômato finito (com pilha)
 - Os analisadores ascendentes são mais poderosos que os descendentes

• Visão Geral:

- —Início: fita de entrada contém a sequência a ser analisada seguida de \$ e a pilha contém apenas \$
- Reconhecimento: transfere símbolos da fita de entrada para a pilha até que se tenha na pilha um lado direito de produção
 - Esse lado é então substituído (reduzido) pelo símbolo do lado esquerdo da regra
- -Processo segue até que a entrada seja toda lida
- —Se a sentença for válida, a pilha será reduzida ao símbolo inicial

• Exemplo: considere a gramática para operações de adição:

$$E \rightarrow E + n \mid n$$

Para a entrada n + n, as ações do analisador são:

Pilha	Entrada	Ação				
\$	n + n \$	empilha				
\$n	+ n \$	reduz E → n				
\$E	+ n \$	empilha				
\$E +	n \$	empilha				
\$E + n	\$	reduz E \rightarrow E + n				
\$E	\$	aceita				

Observar que linhas 3 e 6 contêm ações diferentes com E (porque entradas são diferentes)

• Exemplo: considere a gramática aumentada para operações de adição:

$$E' \rightarrow E$$

 $E \rightarrow E + n \mid n$

Para a entrada n + n, as ações do analisador são:

Pilha	Entrada	Ação				
\$	n + n \$	empilha				
\$n	+ n \$	reduz E → n				
\$E	+ n \$	empilha				
\$E +	n \$	empilha				
\$E + n	\$	reduz E → E + n				
\$E	\$	aceita				

Analisador acompanha uma derivação à direita da cadeia de entrada, mas os passos de derivação ocorrem na ordem inversa:

$$E' \Rightarrow E \Rightarrow E + n \Rightarrow n + n$$

• Exemplo: considere a gramática para parênteses balanceados:

$$S \rightarrow (S)S \mid \varepsilon$$

Para a entrada (), as ações do analisador são:

Pilha	Entrada	Ação			
\$	()\$	empilha			
\$ ()\$	reduz S $\rightarrow \epsilon$			
\$ (S)\$	empilha			
\$(S)	\$	reduz S $\rightarrow \varepsilon$			
\$(S)S	\$	reduz S \rightarrow (S)S			
\$ S	\$	aceita			

• Exemplo: considere a gramática aumentada para parênteses balanceados:

$$S' \rightarrow S$$

 $S \rightarrow (S)S \mid \varepsilon$

Para a entrada (), as ações do analisador são:

Pilha	Entrada	Ação			
\$	()\$	empilha			
\$ ()\$	reduz S $\rightarrow \epsilon$			
\$ (S)\$	empilha			
\$(S)	\$	reduz S $\rightarrow \epsilon$			
\$(S)S	\$	reduz S \rightarrow (S)S			
\$ S	\$	aceita			

Analisador acompanha uma derivação à direita da cadeia de entrada, mas os passos de derivação ocorrem na ordem inversa:

$$S' \Rightarrow S \Rightarrow (S)S \Rightarrow (S) \Rightarrow ()$$

- O analisador empilha símbolos da entrada até ter na pilha uma sequência de símbolos que corresponde à definição de algum não-terminal
 Essa sequência define o handle
- Redução consiste em substituir o handle na pilha pelo não-terminal que o corresponde
- Uso da sequência correta de handles deve levar ao símbolo inicial da gramática

- Os handles são as sequências de símbolos que são lados direitos de produção, tais que suas reduções levam, no final, ao símbolo inicial da gramática
 - Pelo reverso de uma derivação mais à direita
 - Se uma gramática é não-ambígua, então toda forma sentencial gerada por ela tem exatamente um handle

- Assim, as ações de um reconhecedor empilha-reduz são:
 - Empilha: coloca no topo da pilha o símbolo que está sendo lido (e estado de AFD) e avança a leitura
 - Reduz: substitui o handle do topo da pilha pelo não-terminal correspondente
 - Aceita: reconhece a sentença de entrada
 - Erro: acusa erro

- Há alguns tipos de analisadores ascendentes:
 - Mais geral: LR(1)
 - L: entrada é processada da esquerda para a direita
 - R: derivação à direita é produzida
 - 1: um símbolo de verificação à frente é usado
 - LR(0): sem verificação à frente
 - Marca é examinada após ter aparecido na pilha
 - SLR(1): LR(1) simples
 - Usa algumas estruturas da LR(0)
 - LALR(1): Look Ahead LR(1)
 - Simplificação do LR(1) geral

- Vantagem analisadores LR(k):
 - São capazes de reconhecer praticamente todas as estruturas sintáticas definidas por GLC
 - São capazes de descobrir erros mais cedo
- Desvantagem analisadores LR(k):
 - Dificuldade de implementação

Esquema geral analisadores LR(1):

A pilha armazena símbolos da gramática (Xi) intercalados com estados do analisador (do AFD)

Analisador é dirigido por tabela de análise

- Tabela de análise: tabela de transição de estados formada por duas partes
 - Ação: contém ações associadas aos terminais da entrada
 - Transição: contém transições de estados com relação aos não-terminais

	AÇÃO	TRANSIÇÃO			
	TERMINAIS	NÃO-TERMINAIS			
E	empilha				
S T					
Т	reduz				
Α		estados			
D	aceita				
D O					
S	erro				

- Funcionamento: seja Em o estado no topo da pilha e ai a entrada corrente
 - Analisador consulta Ação[Em, ai], que pode ser:
 - Empilha Ex: empilha ai Ex
 - Reduz n (n = número de produção A $\rightarrow \beta$): desempilha 2r símbolos, em que r = $|\beta|$, e o empilhamento de A Ey, onde Ey resulta em consulta a Transição[Em, A]
 - Aceita: analisador reconhece entrada como válida
 - Erro: analisador identifica erro sintático

- Exemplo
- 1) E → E v T
- 2) $E \rightarrow T$
- 3) T \rightarrow T & F
 - 4) T \rightarrow F
- 5) $F \rightarrow (E)$
- 6) $F \rightarrow id$

	id	V	&	()	\$	Е	Т	F
0	e5			e4			1	2	3
1		e6				AC			
2		r2	e7		r2	r2			
3		r4	r4		r4	r4			
4	e5			e4			8	2	3
5		r6	r6		r6	r6			
6	e5			e4				9	3
7	e5			e4					10
8		e6			e11				
9		r1	e7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

• Bibliografia consultada LOUDEN, K. C. Compiladores: princípios e práticas. São Paulo: Pioneira Thompson Learning, 2004. (Cap. 5) RICARTE, I. Introdução à Compilação. Rio de Janeiro: Editora Campus/Elsevier, 2008. (Cap. 4) PRICE, A. M. A. e TOSCANI, S. S. Implementação de Linguagens de Programação: Compiladores. Bookman, 2008 (Cap. 3)