#### (19) 世界知的所有権機関 国際事務局



# 

(43) 国際公開日 2005 年9 月1 日 (01.09.2005)

**PCT** 

## (10) 国際公開番号 WO 2005/080334 A1

(51) 国際特許分類<sup>7</sup>: C07D 209/34, 235/26, 263/58, 277/68, 401/02, 403/02, 405/02, 413/02, 417/02, 471/06, 487/06, 498/06, A61K 31/40, 31/4184, 31/423, 31/428, 31/4745, 31/536, 31/551, A61P 25/22, 25/24

(21) 国際出願番号: PCT/JP2005/003095

(22) 国際出願日: 2005 年2 月18 日 (18.02.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2004-045979 2004年2月23日(23.02.2004) JP

(71) 出願人(米国を除く全ての指定国について): 住友製薬株式会社 (SUMITOMO PHARMACEUTICALS CO., LTD.) [JP/JP]; 〒5418510 大阪府大阪市中央区道修町2丁目2番8号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 高堂 透 (KODO, Toru) [JP/JP]; 〒5418510 大阪府大阪市中央区道修町2丁目2番8号住友製薬株式会社内 Osaka (JP). 深谷孝幸 (FUKAYA, Takayuki) [JP/JP]; 〒5540022 大阪府大阪市此花区春日出中3丁目1番98号住友製薬株式会社内 Osaka (JP). 小山 功二 (KOYAMA, Koji) [JP/JP]; 〒5540022 大阪府大阪市此花区春日出中3丁目1番98号住友製薬株式会社内 Osaka (JP). 増本秀治 (MASUMOTO, Shuji) [JP/JP]; 〒5540022 大阪府大阪市此花区春日出中3丁大阪市此花区春日出中3丁目1番98号住友製薬株

式会社内 Osaka (JP). 藤林 奈保 (FUJIBAYASHI, Nao) [JP/JP]; 〒5418510 大阪府大阪市中央区道修町 2 丁目 2番8号住友製薬株式会社内 Osaka (JP).

(74) 代理人: 五十部 穣 (ISOBE, Yutaka); 〒5540022 大阪府大阪市此花区春日出中 3 丁目 1 番 9 8 号 住友製薬株式会社 知的財産部内 Osaka (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: NOVEL HETEROCYCLIC COMPOUND

(54) 発明の名称: 新規へテロ環化合物

(57) Abstract: Disclosed is a drug having a high affinity for benzodiazepine  $\omega_3$  receptors which contains, for example, a compound represented by the formula (1) below as an active constituent and has curative and preventive effects on anxiety and depression. (1) [In the formula,  $R^1$  and  $R^2$  independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or the like;  $R^3$  and  $R^4$  independently represent a hydrogen atom, an optionally substituted alkyl group or the like;  $R^5$ ,  $R^6$ ,  $R^7$  and  $R^8$  independently represent a hydrogen atom, an optionally substituted alkyl group or the like; and X represents an oxygen atom, a sulfur atom,  $NR^{10}$  or the like (wherein  $R^{10}$  represents a hydrogen atom, an optionally substituted alkyl group or the like).]

#### (57) 要約:

# 例えば

# 式(1):

[式中、R<sup>1</sup> およびR<sup>2</sup> は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいアリール基などを表す。

R³およびR⁴は、各々独立して、水素原子、置換されてもよいアルキル基などを表す。

R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいアリール基などを表す。

Xは、酸素原子、硫黄原子、NR<sup>10</sup>などを表す。

(式中、 $R^{1}$  0 は、水素原子、置換されてもよいアルキル基などを表す。)] で表される化合物等を有効成分として含有する、不安及びうつ病の治療作用及び予防効果を示す、ベンゾジアゼピン $\omega_3$  受容体に高い親和性を有する薬物を提供する

1

## 明細書

## 新規ヘテロ環化合物

## 技術分野

5 本発明は、ベンゾジアゼピンω3 受容体に選択的に作用する新規なヘテロ環化合物からなる医薬品に関する。

# 背景技術

10

15

従来の抗不安薬は、ベンゾジアゼピン系薬剤と、セロトニン5-HT<sub>1A</sub>受容体アゴニストや選択的セロトニン再取り込み阻害剤(SSRI)に代表されるセロトニン系薬剤に大別される。ベンゾジアゼピン系薬剤は、即効性があり強い抗不安作用を有する反面、薬物依存形成、過度の鎮静および認知障害などの副作用を示す場合があることが問題となっている。また、不安障害は高い確率でうつ病を併発することが知られているが、ベングジアゼピン系薬剤は一般にはうつ病に対して治療効果を発揮しにくいため、そのような場合の治療効果には限界がある。一方、セロトニン系抗不安薬は、その薬効発現までの服薬期間が長いこと、SSRIにおける性機能障害等の特有の副作用、治療初期の不安増強および治療抵抗性等の問題が存在する。従って、副作用が少なく、かつうつ病にも薬効を有する新しい抗不安薬の創製が望まれている。

20 ベンゾジアゼピン受容体には、GABA<sub>A</sub> 受容体複合体上の中枢型ベンゾジアゼピン 受容体 2種(ベンゾジアゼピンω<sub>1</sub>およびベンゾジアゼピンω<sub>2</sub> 受容体)とミトコンドリア外膜上の末梢型ベンゾジアゼピン受容体(ベンゾジアゼピンω<sub>3</sub> 受容体)の3 つのサブタイプが存在する。ベンゾジアゼピンω<sub>3</sub> 受容体アゴニストは脳内でのニューロステロイド産生を介して間接的にGABA<sub>A</sub> 受容体機能を調節することで抗不安 作用を発現することが報告されている。さらにベンゾジアゼピンω<sub>3</sub> 受容体アゴニストは、ベンゾジアゼピン系薬剤の持つ副作用を示さないことが報告されており、

2

抗うつ作用をも併せ持つことが知られている。したがって、ベンゾジアゼピンω。 受容体アゴニストは、副作用が少なく、かつ不安障害・うつ病をはじめとする精神 疾患に対して幅広い作用スペクトルを持つ治療薬となりうることが期待される。

一方、上記の抗不安・抗うつ薬としての可能性に加え、ベンゾジアゼピンω₃受容体アゴニストが、睡眠障害、けいれん、てんかん、認知機能障害、アルツハイマー病、パーキンソン病、ハンチントン舞踏病、統合失調症、ニューロパチー、多発性硬化症、脳梗塞、癌、または、高血圧、心筋梗塞などの循環器系疾患、さらには、リウマチ性関節炎などの免疫系疾患等に有用である可能性も指摘されている。

特許文献1および特許文献2には不安関連疾患、うつ病、てんかんなどの中枢性疾患の治療薬として、特許文献3には痴呆症治療薬として2ーアリールー8ーオキソジヒドロプリン誘導体が開示されている。特許文献4には不安関連疾患、免疫疾患の治療薬として2ーフェニルー4ーピリミジニルアミノ部分または2ーフェニルー4ーピリミジニルオキシ部分を有する酢酸アミド誘導体が開示されている。

また特許文献5では心臓血管疾患、アレルギーおよび感染症状の予防薬もしくは 15 治療薬、または不安症状の治療薬として4-アミノー3-カルボキシキノリン類お よびナフチリジン類が開示されている。

さらに特許文献6ではニューロペプチドYレセプター拮抗剤としてベンゾチアゾリン誘導体が開示されている。

特許文献1:国際公開第99/28320号パンフレット

20 特許文献 2:特開 2001-48882号公報

特許文献3:国際公開第02/10167号パンフレット

特許文献4:国際公開第96/32383号パンフレット

特許文献5:特開平2-32058号公報

特許文献6:特開2001-139574号公報

10

5

15

本発明の課題は、従来のベンゾジアゼピン類では必ずしも満足できる治療効果が得られていない症状(強迫性障害、パニック障害)に対し有効で、かつベンゾジアゼピン類で認められる過度の鎮静あるいは精神依存性などの副作用を示さない不安及びその関連疾患、うつ病、認知機能障害、けいれんなどの中枢性疾患の治療作用及び予防効果を示す、ベンゾジアゼピンω。受容体に高い親和性を有する薬物を提供することにある。

本発明者らは鋭意検討した結果、以下に示す化合物がベンゾジアゼピンω。受容体に対して、選択的かつ高い結合親和性を有することを見出し、本発明を完成させるに至った。

10 すなわち、本発明は、

## [1] 式(1):

[式中、R<sup>1</sup> およびR<sup>2</sup> は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換されてもよいアリール基、置換されてもよいへテロアリール基、もしくは置換されてもよい飽和ヘテロ環基を表すか、またはR<sup>1</sup> およびR<sup>2</sup> は一緒になって、それらが結合する窒素原子と共に、置換されてもよい飽和ヘテロ環基を表す。

R<sup>3</sup> およびR<sup>4</sup> は、各々独立して、水素原子、ハロゲン原子、置換されてもよい アルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基 、または置換されてもよいアルキニル基を表す。

R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>は、各々独立して、水素原子、置換されてもよいア

4

ルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、 置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換されてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアルカノイル基、置換されてもよいアルコキシカルボニル基、置換されてもよいアリールオキシカルボニル基、置換されてもよいカルバモイル基、置換されてもよいスルファモイル基、 置換されてもよいカルバモイル基、置換されてもよいスルファモイル基、 置換されてもよいウレイド基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基、置換されてもよいアルキルスルホニル基、または一E ーAで表される基(式中、Eは、単結合、酸素原子、硫黄原子、一SO一、一SO 2 一、一NR。一または一CO一を表し、Aは、置換されてもよいアリール基また は置換されてもよいヘテロアリール基を表し、R。は水素原子または置換されても よいアルキル基を表す。)を表す。

Xは、酸素原子、硫黄原子、 $NR^{10}$ 、または $CR^{11}R^{12}$ を表す。

10

20

25

(式中、R<sup>1</sup> ° は、水素原子、置換されてもよいアルキル基、置換されてもよいシ クロアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基 、置換されてもよいアルカノイル基、または置換されてもよいアルコキシカルボニ ル基を表す。

R¹¹およびR¹²は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換されてもよいアリール基、置換されてもよいヘテロアリール基、ハロゲン原子、シアノ、水酸基、置換されてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアリールオキシ基、置換されてもよいアルカノイル基、置換されてもよいアロイル基、置換されてもよいアロイル基、置換されてもよいヘテロアリールカルボニル基、置換されてもよいアルコキシカルボニル基、カルボキシ基、または置換されてもよいカルバモイル基を表すか、またはR¹¹とR¹²は、一緒になって、オキソまたは=NOHを表す。)

また、(i) Xが $NR^{1}$  のとき、 $R^{8}$  と $R^{1}$  が一緒になって、式(1)は式(2):

$$R^{6}$$
 $R^{7}$ 
 $R^{7$ 

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、および $R^7$ は前記と同義であり、  $Z^1$ は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち 1 つは酸素原子、硫黄原子または $-NR^{13}$  - (式中、 $R^{13}$  は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。また、該アルキレン基の隣り合った原子間で二重結合を形成してもよい。)を表してもよい。

(ii) R<sup>4</sup> と R<sup>5</sup> が一緒になって、式(1) は式(3):

10

15

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^6$ 、 $R^7$ 、 $R^8$ 、およびXは前記と同義であり、 $Z^2$  は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち1つは酸素原子、硫黄原子または $-NR^{1/3}-$ (式中、 $R^{1/3}$  は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。また、該アルキレン基の隣り合った原子間で二重結合を形成してもよい。)を表してもよい。

ただし、

(1) Xが酸素原子または硫黄原子であり、次の(a)または(b)である時は、 $R^1$  および $R^2$  は一緒になって、それらが結合する窒素原子と共に、置換されても

よい飽和ヘテロ環基を表すことはない。

- (a) R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> が全て水素原子である。
- (b)  $R^5$ 、 $R^6$ 、 $R^7$ および $R^8$ のうち、 $1\sim 2$ 個がそれぞれ独立して、ハロゲン原子であり、残りが水素原子である。
- 5 (2) XがCR<sup>11</sup> R<sup>12</sup>であり、R<sup>11</sup> およびR<sup>12</sup>がそれぞれ独立して、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基であり、次の(a)または(b)である時は、R<sup>1</sup> およびR<sup>2</sup> は、水素原子もしくは置換されてもよいアルキル基、またはR<sup>1</sup> およびR<sup>2</sup> は隣接する窒素原子と一緒になって置換されてもよい飽和ヘテロ環基を表すことはない。
  - (a) R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> が全て水素原子である。
  - (b)  $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれぞれ独立して、ハロゲン原子、置換されてもよいアルキル基またはニトロであり、残りが水素原子である。]
- 15 で表される化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩を含有する、抗不安または抗うつ剤、

# [2] 式(1)

$$R^{6}$$
 $R^{7}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{2'}$ 
 $R^{7}$ 
 $R^{7}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{1'}$ 
 $R^{1'}$ 
 $R^{2'}$ 
 $R^{1'}$ 
 $R^{1'}$ 

[式中、R<sup>1</sup>'およびR<sup>2</sup>'は、各々独立して、水素原子、置換されてもよいアルキ ル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換 されてもよいアルキニル基、置換されてもよいアリール基、置換されてもよいへテロアリール基、もしくは置換されてもよい飽和ヘテロ環基を表すか、またはR<sup>1</sup>'

7

およびR<sup>2</sup>,は一緒になって、それらが結合する窒素原子と共に、式(4):



5

(式中、nは0または1を表し、mは1、2または3を表す。Yは単結合、酸素原子または硫黄原子を表す。Qはメチレン、エチレンまたは置換されてもよいo-フェニレン基を表す。)を表す。

R<sup>3</sup> およびR<sup>4</sup> は、各々独立して、水素原子、ハロゲン原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基を表す。

R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>は、各々独立して、水素原子、置換されてもよいア ルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、 10 置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換さ れてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアルカノ イル基、置換されてもよいアルコキシカルボニル基、置換されてもよいアリールオ キシカルボニル基、置換されてもよいヘテロアリールオキシカルボニル基、カルボ キシ基、置換されてもよいカルバモイル基、置換されてもよいスルファモイル基、 15 置換されてもよいウレイド基、置換されてもよいアルキルチオ基、置換されてもよ いアルキルスルフィニル基、置換されてもよいアルキルスルホニル基、または一E -Aで表される基(式中、Eは、単結合、酸素原子、硫黄原子、-SO-、-SO 2 一、一NR9 ーまたは一COーを表し、Aは、置換されてもよいアリール基、ま たは置換されてもよいヘテロアリール基を表し、R®は水素原子または置換されて 20 もよいアルキル基を表す。)を表す。

Xは、酸素原子、硫黄原子、 $NR^{10}$ 、または $CR^{11}R^{12}$ を表す。

(式中、R¹ºは、水素原子、置換されてもよいアルキル基、置換されてもよいシ クロアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基 10

15

20

、置換されてもよいアルカノイル基、または置換されてもよいアルコキシカルボニ ル基を表す。

R<sup>1</sup> 1 およびR<sup>1</sup> 2 は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換されてもよいアリール基、置換されてもよいヘテロアリール基、ハロゲン原子、シアノ、水酸基、置換されてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアリールオキシ基、置換されてもよいアルカノイル基、置換されてもよいアロイル基、置換されてもよいヘテロアリールカルボニル基、置換されてもよいアルコキシカルボニル基、カルボキシ基、または置換されてもよいカルバモイル基を表すか、またはR<sup>1</sup> とR<sup>1</sup> は、一緒になって、オキソまたは=NOHを表す。)

また、(i) Xが $NR^{1}$  のとき、 $R^{8}$  と $R^{1}$  が一緒になって、式(1')は式(2'):

$$R^{6}$$
 $R^{7}$ 
 $R^{7$ 

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、および $R^7$ は前記と同義であり、 $Z^1$ は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち1つは酸素原子、硫黄原子または $-NR^{13}$  - (式中、 $R^{13}$  は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。また、該アルキレン基の隣り合った原子間で二重結合を形成してもよい。)を表してもよい。

(ii) R<sup>4</sup> と R<sup>5</sup> が一緒になって、式 (1') は式 (3'):

$$R^{6}$$
 $R^{7}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{2'}$ 
 $R^{1'}$ 
 $R^{2'}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{2'}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{3}$ 
 $R$ 

(式中、 $R^1$ '、 $R^2$ '、 $R^3$ 、 $R^6$ 、 $R^7$ 、 $R^8$ 、およびXは前記と同義であり  $Z^2$  は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち 1 つは酸素原子、硫黄原子または $-NR^{13}$  - (式中、 $R^{13}$  は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。また、該アルキレン基の隣り合った原子間で二重結合を形成してもよい。)を表してもよい。

ただし、前記(i)または(ii)ではない場合においては、

- (1) R<sup>1</sup> 'およびR<sup>2</sup> 'は同時に水素原子を表すことはない。
- (2) R1'またはR2'は飽和ヘテロ環基を表すことはない。
- 10 (3) R<sup>1</sup> 'およびR<sup>2</sup> 'が一緒になって、それらが結合する窒素原子と共に、式(4) を表す時、Qは置換されてもよいo-フェニレン基を表す。
  - (4) R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>は、同時に水素原子を表すことはない。
- (5)  $R^5$ 、 $R^6$ 、 $R^7$ および $R^8$ のうち、 $1\sim 2$ 個がそれぞれ独立して、ハロゲン原子、または置換されてもよいアルキル基であるとき、残りは水素原子ではない。
  - (6) Xが硫黄原子を表し、 $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれ ぞれ独立して、ハロゲン原子、ニトロ、アルキル基、ハロゲン原子で置換されたアルキル基、アルコキシ基、または置換されてもよいアミノ基であるとき、残りは水素原子ではない。
- 20 (7) Xが酸素原子を表し、 $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれ ぞれ独立して、ハロゲン原子、アルコキシ基、または置換されてもよいアリールカルボニル基であり、残りが水素原子である時、 $R^{1}$  または $R^{2}$  は水素原子ではな

VIO

10

25

- (8) Xが酸素原子を表し、 $R^7$  がニトロであり、 $R^5$ 、 $R^6$  および $R^8$  が水素原子である時、 $R^1$  および $R^2$  は同時にアルキル基を表すことはない。
- (9) XがNR<sup>1</sup> <sup>o</sup> を表し、R<sup>5</sup> 、R<sup>6</sup> 、R<sup>7</sup> およびR<sup>8</sup> のうち、1~2個がそれ ぞれ独立して、置換されてもよいアルキル基、置換されてもよいアルコキシ基、ハ ロゲン原子、またはシアノであるとき、残りは水素原子ではない。
- (10) Xが $CR^{1}$   $R^{1}$   $^{2}$  を表す時、 $R^{1}$   $^{1}$  および $R^{1}$   $^{2}$  は、各々独立して、水素原子、ハロゲン原子で置換されてもよいアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基を表すか、または $R^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{2}$  は、一緒になって、オキソまたは $R^{1}$   $^{1}$   $^{1}$   $^{2}$  は、一緒になって、オキソまたは $R^{1}$   $^{1}$   $^{2}$  は、 $R^{1}$   $^{3}$  または $R^{2}$   $^{2}$  は水素原子ではない。

で表される化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩

- [3] [2] における式(1')が、式(2')または式(3')で表す化合物では ない場合において、さらに、
  - (11) $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれぞれ独立して、ハロゲン原子、置換されてもよいアルキル基、置換されてもよいピリミジルアミノ基または置換されてもよいチアゾリルであるとき、残りは水素原子ではない。
- (12) Xが硫黄原子を表し、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> のうち、1~2個がそ 20 れぞれ独立して、ハロゲン原子、ニトロ基、アルキル基、ハロアルキル基、置換さ れてもよいアルコキシ基、または置換されてもよいアミノ基であるとき、残りは水 素原子ではない。
  - (13) Xが酸素原子を表し、 $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれぞれ独立して、ハロゲン原子、置換されてもよいアルコキシ基、または置換されてもよいアリールカルボニル基であり、残りが水素原子である時、 $R^1$  'または $R^2$  'は水素原子ではない。

(14)  $XがNR^1$   $^0$  を表し、 $R^5$  、 $R^6$  、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれぞれ独立して、置換されてもよいヘテロアリール基であり、残りが水素原子である時、 $R^1$  'または $R^2$  'は水素原子ではない。

[2] に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容され 5 る塩、

[4] XがNR<sup>10</sup>であり、R<sup>8</sup>とR<sup>10</sup>が一緒になって、式(2")

$$R^{5}$$
 $R^{4}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{1'}$ 
 $R^{7}$ 
 $R^$ 

[式中、R<sup>1</sup>′、R<sup>2</sup>′、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>、R<sup>6</sup> およびR<sup>7</sup> は、[2] における意義と同義である。Z<sup>1</sup>′は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち1つは酸素原子、硫黄原子または一NR<sup>13</sup>ー(式中、R<sup>13</sup>は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。]

で表される、[2]記載の化合物もしくはそのプロドラッグ、またはそれらの薬学 上許容される塩、

15 [5]  $R^5$ 、 $R^6$  および $R^7$  のうち、少なくとも 1 つが-E-A(式中、E およびAは、[2] における意義と同義である。)で表される基である、[4] 記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[6] Z¹'が置換されてもよいトリメチレンまたはテトラメチレン(該トリメチレンおよびテトラメチレンの炭素原子のうち1つは酸素原子で置き換えることができる。)である、[4]または[5]に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

「7<sup>1</sup> R<sup>4</sup> と R<sup>5</sup> が一緒になって、式(3")

20

[式中、 $R^1$ '、 $R^2$ '、 $R^3$ 、 $R^6$ 、 $R^7$ 、 $R^8$  およびXは、 [2] における意義と同義である。  $Z^2$  'は置換されてもよいアルキレン基を表し、該アルキレン基の 炭素原子のうち1つは酸素原子に置き換えることができる。]

5 で表される、[2]記載の化合物もしくはそのプロドラッグ、またはそれらの薬学 上許容される塩、

[8]  $R^6$ 、 $R^7$ および $R^8$ のうち、少なくとも1つが-E-A(式中、EおよびAは、[2]における意義と同義である。)で表される基である、[7]記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

10 [9]  $Z^2$ 'が置換されてもよいエチレンである、[7]または[8]に記載の 化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[10] R¹'が、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキール基を表し、R²'が置換されてもよいアルキル基、置換されてもよいアリール基を表し、R²'が置換されてもよいヘテロアリール基を表すか、またはR¹'およびR²'は一緒になって、それらが結合する窒素原子と共に、式(4'):



15

(式中、nは0または1を表し、mは1、2または3を表す。Y'は単結合または酸素原子を表す。Q'は置換されてもよいo-フェニレン基を表す。)を表し;

 $R^3$  および $R^4$  が、各々独立して、水素原子、ハロゲン原子、または置換されて

13

もよいアルキル基を表し;

10

15

20

25

R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>のうち少なくとも1つは、-E-Aで表される基( 式中、EおよびAは、[2]における意義と同義である。)である、[2]または [3]に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容され る塩、

[11] Xが、酸素原子または硫黄原子である、[10]記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[12] XがNR¹ºであり、R¹ºが水素原子または置換されてもよいアルキル基である、[10]記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[13] XがCR<sup>1</sup> R<sup>1</sup> 2であり、R<sup>1</sup> 1 およびR<sup>1</sup> 2が、各々独立して、水素原子、ハロゲン原子で置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基である、[10] 記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[14] R¹'およびR²'が、水素原子、または置換されてもよいアルキル基を表し、R⁵、R⁶、R¹およびR³は、各々独立して、水酸基、ニトロ、シアノ、アルコキシ基、シクロアルキル基、置換されてもよいアミノ基、アルキルスルホニル基、アリールスルホニル基、または置換されてもよいヘテロアリール基で置換されたアルキル基;置換されてもよいアルケニル基;置換されてもよいアルケニル基;置換されてもよいアルキニル基;水酸基;置換アミノ基;置換アルコキシ基;置換されてもよいアルカノイル基;置換されてもよいアルコキシカルボニル基;置換されてもよいアリールオキシカルボニル基;置換されてもよいカルバモイル基;アリールオキシカルボニル基;力ルボキシ基;置換されてもよいカルバモイル基;アリール基で置換されたスルファモイル基;置換されてもよいウレイド基;置換されてもよいアルキルチオ基;置換されてもよいアルキルスルフィニル基;置換されてもよいアルキルスルフィニル基;置換されてもよいアルキルスルフィニル基;置換されてもよいアルキルスルフィニル基;置換されてもよい

アルキルスルホニル基;または-E-A,で表される基(式中、Eは、単結合、酸素原子、硫黄原子、-SO-、-SO2 ー、-NR9 ーまたは-CO-を表し、A ,は、水酸基またはアミノ基で置換されたアルキル基、ハロゲン原子で置換されたアルコキシ基、アルコキシカルボニル基、カルボキシ基、アミノ基(該アミノ基は、1つまたは2つのアルキル基、アルカノイル基、またはアルコキシカルボニル基で置換されていてもよい。)、カルバモイル基、アリール基、アリールオキシ基、アルキルスルホニル基またはアリールスルホニル基で置換されたフェニル基;置換されてもよいナフチル基;または置換されてもよいヘテロアリール基を表す。R9 は水素原子または置換されてもよいアルキル基を表す。)で表される、E1 またはE1 に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[15] R¹'、R²'のうち、少なくともどちらか一方が アリール基(該アリール基は、ハロゲン原子、水酸基、アルコキシ基、またはアルカノイル基で置換されてもよい)であり、かつXが硫黄原子を表し、R⁵、R⁶、R¹およびR³は、各々独立して、置換アルキル基(置換基としては、水酸基、ニトロ、シアノ、アルコキシ基、シクロアルキル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アルカノイルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニル基、アリールスルホニル基、置換されてもよいアリール基または置換されてもよいヘテロアリール基から選ばれる); 置換されてもよいシクロアルキル基; 置換されてもよいアルカノイル基; 置換されてもよいアルコキシカルボニル基; 置換されてもよいアリールオキシカルボニル基; 置換されてもよいアリールオキシカルボニル基; 置換されてもよいアカノイル基; 置換されてもよいアルコキシカルボニル基; 置換されてもよいアリールオキシカルボニル基; 置換されてもよいアカールオキシカルボニル基; 置換されてもよいカルバモイル基; 置換されてもよいスルファモイル基; 置換されてもよいアルキルスルフィニル基; 置換されてもよいアルキルスルカホニル基; 素た

は-E-Aで表される基(式中、Eは、単結合、酸素原子、硫黄原子、-SO-、 $-SO_2$  ー、 $-NR^9$  ーまたは-CO-を表し、Aは、置換されてもよいアリール基または置換されてもよいヘテロアリール基を表す。 $R^9$  は水素原子または置換されてもよいアルキル基を表す。)で表される、[2]または[3]に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[16]  $R^{1}$ '、 $R^{2}$ 'のうち、少なくともどちらか一方が アリール基(該アリール基は、ハロゲン原子、水酸基、アルコキシ基、またはアルカノイル基で置換されてもよい)であり、Xが酸素原子、 $NR^{10}$ 、または $CR^{11}R^{12}$ である、 [2] または [3] に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

# [17] 式(5)

10

(式中、n、m、およびYは、[2]における意義と同義である。Q は置換されてもよいo-フェニレン基を表す。)を表す。

20 R³およびR⁴は、各々独立して、水素原子、ハロゲン原子、置換されてもよい

アルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基を表す。

R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、

- 置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換されてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアルカノイル基、置換されてもよいアルコキシカルボニル基、置換されてもよいアリールオキシカルボニル基、置換されてもよいヘテロアリールオキシカルボニル基、カルボキシ基、置換されてもよいカルバモイル基、置換されてもよいスルファモイル基、
- 10 置換されてもよいウレイド基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基、置換されてもよいアルキルスルホニル基、または-E-Aで表される基を表す。

(式中、Eは、単結合、酸素原子、硫黄原子、-SO-、 $-SO_2-$ 、 $-NR^9-$ または-CO-を表し、Aは、置換されてもよいアリール基、または置換されてもよいヘテロアリール基を表し、 $R^9$ は水素原子または置換されてもよいアルキル基を表す。)

ただし、 $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  は、同時に水素原子を表すことはない。 X' は、酸素原子、硫黄原子、 $NR^{10}$ 、または $CR^{11}$   $R^{12}$   $R^{12}$  を表す。 (式中、 $R^{10}$  は、 [2] における意義と同義である。

20 R<sup>1 1 a</sup> およびR<sup>1 2 a</sup> は、各々独立して、水素原子、ハロゲン原子で置換されてもよいアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基を表すか、またはR<sup>1 1 a</sup> とR<sup>1 2 a</sup> は、一緒になって、オキソまたは=NOHを表す。)
ただし、

25 (1) Xが硫黄原子または $NR^{1}$  のである時、 $R^{5}$  、 $R^{6}$  、 $R^{7}$  および $R^{8}$  のうち、 $1\sim 2$  個がそれぞれ独立して、ハロゲン原子、アルキル基、トリハロメチル基、

または置換されてもよいアルコキシ基であるとき、残りは水素原子ではない。

(2) Xが酸素原子である時、R<sup>7</sup>がハロゲン原子ではない。] で表される化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩

5 [18] R<sup>1</sup> \* は置換されてもよいアルキル基または置換されてもよいシクロアルキル基を表し、R<sup>2</sup> \* は置換されてもよいアリール基、または置換されてもよいヘテロアリール基を表し、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> のうち、少なくとも1つがーEーA(式中、EおよびAは、[2]における意義と同義である。)で表される基である、[17]に記載の化合物もしくはそのプロドラッグ、またはそれらの薬り上許容される塩、

[18-2] R<sup>6</sup>が一E一A(式中、EおよびAは、[2]における意義と同義である。)で表される基である、[17]に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[19] Eが、単結合を表す、[18]および[18-2]に記載の化合物もし 15 くはそのプロドラッグ、またはそれらの薬学上許容される塩、

[20]  $R^1$  。は置換されてもよいアルキル基を表し、 $R^2$  。は置換されてもよいアリール基、または置換されてもよいヘテロアリール基を表し、 $R^6$  および/又は $R^8$  が、ハロゲン原子である、 [17] に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

#### 20 [21] 式(6)

[式中、R¹b およびR²b は、各々独立して、置換アルキル基、置換されてもよ

18

いアルケニル基、または置換されてもよいアルキニル基を表す。

R³ およびR⁴ は、[2] における意義と同義である。

10

15

20

R<sup>5</sup>b、R<sup>6</sup>b、R<sup>7</sup>bおよびR<sup>8</sup>bは、各々独立して、水素原子、置換されて もよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケ ニル基、置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基 、置換されてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよい アルカノイル基、置換されてもよいアルコキシカルボニル基、置換されてもよいア リールオキシカルボニル基、置換されてもよいヘテロアリールオキシカルボニル基 、カルボキシ基、置換されてもよいカルバモイル基、置換されてもよいスルファモ イル基、置換されてもよいウレイド基、置換されてもよいアルキルチオ基、置換さ れてもよいアルキルスルフィニル基、置換されてもよいアルキルスルホニル基、ま たは $-E-A^b$ で表される基(式中、Eは、[2]における意義と同義であり、Abは、置換フェニル基(置換基としては、ハロゲン原子、水酸基もしくは置換され てもよいアミノ基で置換されたアルキル基、ハロゲン原子で置換されたアルコキシ 基、アルコキシカルボニル基、カルボキシ基、アミノ基(該アミノ基は、例えば、 1つまたは2つのアルキル基、アルカノイル基、またはアルコキシカルボニル基な どで置換されていてもよい。)、カルバモイル基、アリール基、アリールオキシ基 、アルキルスルホニル基またはアリールスルホニル基から選ばれる);置換されて もよいナフチル基;あるいは置換されてもよいヘテロアリール基を表す。)であり 、R<sup>5</sup>b、R<sup>6</sup>b、R<sup>7</sup>bおよびR<sup>8</sup>bのうち、少なくとも1つが一EーA<sup>b</sup>で表 される基を表す。

Xは、酸素原子、硫黄原子、 $NR^{10}$ 、または $CR^{11b}R^{12b}$ を表す。 (式中、 $R^{10}$ は、[2]における意義と同義である。

 $R^{1\ 1\ b}$  および $R^{1\ 2\ b}$  は、各々独立して、水素原子、ハロゲン原子で置換されてもよいアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基を表すか、または $R^{1\ 1\ b}$  と $R^{1\ 1}$ 

<sup>2 b</sup> は、一緒になって、オキソまたは=NOHを表す。)]

で表される化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩

[21-2] R<sup>6</sup> が-E-A<sup>b</sup> (式中、EおよびA<sup>b</sup> は、[21] における意義と同義である。)で表される基である、[21] に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩、

[22] [2]~[21-2]のいずれかに記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩を有効成分として含有する医薬、および[23] [2]~[21-2]のいずれかに記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩を有効成分として含有する、抗不安または抗うつ剤に関する。

## 発明を実施するための最良の形態

以下に、本発明をさらに具体的に説明する。

15 本発明における各々の基の説明は、特に指示した場合を除き、その基が他の基の 一部分である場合にも該当する。

なお、本明細書における置換基の数は、置換可能であれば特に制限はなく、1または複数である。

「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子 20 などが挙げられる。

R³およびR⁴における好ましいハロゲン原子としては、例えばフッ素原子が挙 げられる。

「アルキル基」としては、例えばメチル、エチル、プロピル、イソプロピル、ブ チル、イソブチル、secーブチル、tertーブチル、ペンチル、1ーメチルブ 25 チル、2ーメチルブチル、3ーメチルブチル、1ーエチルプロピル、ヘキシル、ヘ プチル、オクチル、ノニルまたはデシルなどの炭素原子数1から10の直鎖状また

20

は分枝鎖状のアルキル基が挙げられる。好ましいアルキル基としては炭素原子数 1 から 6 の直鎖状または分枝鎖状のアルキル基が挙げられる。

「アルケニル基」としては、例えばビニル、1ープロペニル、2ープロペニル、1ーメチルー1ープロペニル、1ーブテニル、2ーブテニル、3ーブテニルまたは1ーメチルー1ーブテニルなどのような少なくとも1つの二重結合を有する炭素原子数2から6の直鎖状または分枝鎖状のアルケニル基が挙げられる。好ましいアルケニル基としては炭素原子数3から6の直鎖状または分枝鎖状のアルケニル基が挙げられる。

「アルキニル基」としては、例えばエチニル、1ープロピニル、2ープロピニル 10 、1ーメチルー2ープロピニル、1ーブチニル、2ーブチニル、3ーブチニルまた は1ーメチルー2ーブチニルなどのような少なくとも1つの三重結合を有する炭素 原子数2から6の直鎖状または分枝鎖状アルキニル基が挙げられる。好ましいアル キニル基としては炭素原子数3から6の直鎖状または分枝鎖状のアルキニル基が挙 げられる。

「シクロアルキル基」としては、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロプテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、またはシクロオクテニルなどのような炭素原子数3から8の飽和または不飽和のシクロアルキル基が挙げられる。好ましいシクロアルキル基としては炭素原子数3から6の飽和または不飽和のシクロアルキル基が挙げられる。

「アルコキシ基」としては、例えばメトキシ、エトキシ、プロポキシ、ブトキシ、イソプロポキシ、イソブトキシ、secーブトキシ、tertーブトキシ、ペントキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノニルオキシ、またはデシルオキシなどの炭素原子数1から10の直鎖状または分枝鎖状のアルコキシ基が挙げられる。好ましいアルコキシ基としては炭素原子数1から6の直鎖状または分枝鎖状のアルコキシ基が挙げられる。

25

21

「アルカノイル基」としては、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、ヘプタノイル、オクタノイル、ノナノイル、またはデカノイルなどの炭素原子数1から10の直鎖状または分枝鎖状のアルカノイル基が挙げられる。好ましいアルカノイル基としては炭素原子数1から6の直鎖状または分枝鎖状のアルカノイル基が挙げられる。

「アルカノイルオキシ基」としては、例えば、ホルミルオキシ、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、イソブチリルオキシ、バレリルオキシ、イソバレリルオキシ、ピバロイルオキシ、ヘキサノイルオキシ、ヘプタノイルオキシ、オクタノイルオキシ、ノナノイルオキシ、またはデカノイルオキシなどの炭素原子数1から10の直鎖状または分枝鎖状のアルカノイルオキシ基が挙げられる。好ましいアルカノイルオキシ基としては、炭素原子数1から6の直鎖状または分枝鎖状のアルカノイル基を有するアルカノイルオキシ基が挙げられる。

10

15

20

「アルコキシカルボニル基」としては、例えばメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、イソプロポキシカルボニル、ル、イソブトキシカルボニル、secーブトキシカルボニル、tertーブトキシカルボニル、ペントキシカルボニル、ヘキソキシカルボニル、ヘプトキシカルボニル、ハプトキシカルボニル、カクトキシカルボニル、ノニルオキシカルボニル、またはデシルオキシカルボニルなどの炭素原子数2から11の直鎖状または分枝鎖状のアルコキシカルボニル基が挙げられる。好ましいアルコキシカルボニル基としては炭素原子数1から6の直鎖状または分枝鎖状のアルコキシカルボニル基が挙げられる。

「アルキルチオ基」としては、例えばメチルチオ、エチルチオ、プロピルチオ、 ブチルチオ、イソプロピルチオ、イソブチルチオ、secーブチルチオ、tert 25 ーブチルチオ、ペンチルチオ、ヘキシルチオ、ヘプチルチオ、オクチルチオ、ノニ ルチオ、またはデシルチオなどの炭素原子数1から10のアルキルチオ基が挙げら

22

れる。好ましいアルキルチオ基としては炭素原子数1から6の直鎖状または分枝鎖 状のアルキル基を有するアルキルチオ基が挙げられる。

「アルキルスルフィニル基」としては、例えばメチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、ブチルスルフィニル、イソプロピルスルフィニル、ルスグラルスルフィニル、secーブチルスルフィニル、tertーブチルスルフィニル、ペンチルスルフィニル、ヘキシルスルフィニル、ヘプチルスルフィニル、ハプチルスルフィニル、ルスクチルスルフィニル、ノニルスルフィニル、またはデシルスルフィニルなどの炭素原子数1から10のアルキルスルフィニル基が挙げられる。好ましいアルキルスルフィニル基としては炭素原子数1から6の直鎖状または分枝鎖状のアルキル基を有するアルキルスルフィニル基が挙げられる。

10

15

25

「アルキルスルホニル基」としては、例えばメチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、イソプロピルスルホニル、イソブチルスルホニル、secーブチルスルホニル、tertーブチルスルホニル、ペンチルスルホニル、ヘキシルスルホニル、ヘプチルスルホニル、オクチルスルホニル、ノニルスルホニル、またはデシルスルホニルなどの炭素原子数1から10のアルキルスルホニル基が挙げられる。好ましいアルキルスルホニル基としては炭素原子数1から6の直鎖状または分枝鎖状のアルキル基を有するアルキルスルホニル基が挙げられる。

「トリハロメチル基」としては、例えばトリフルオロメチル、トリクロロメチル 20 またはトリブロモメチル基などが挙げられる。

「置換アルキル基」、「置換アルケニル基」、「置換アルキニル基」、「置換アルコキシ基」、「置換シクロアルキル基」、「置換アルカノイル基」、「置換アルコキシカルボニル基」、「置換アルキルチオ基」、「置換アルキルスルフィニル基」はよび「置換アルキルスルホニル基」における置換基としては、例えばハロゲン原子、水酸基、ニトロ、シアノ、アルコキシ基、シクロアルキル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アルカノイルアミノ基、アルコキシカルボ

23

ニルアミノ基、アルキルスルホニル基、またはアリールスルホニル基などが挙げられる。

置換アルキル基、置換アルコキシ基、および置換アルキニル基における置換基には、上記の他、置換されてもよいアリール基または置換されてもよいヘテロアリール基も挙げられる。

置換シクロアルキル基における置換基には、上記の他、アルキル基も挙げられる

「置換アルキル基」、「置換アルケニル基」、「置換アルキニル基」、「置換アルコキシ基」、「置換シクロアルキル基」、「置換アルカノイル基」、「置換アルコキシカルボニル基」、「置換アルキルチオ基」、「置換アルキルスルフィニル基」はよび「置換アルキルスルホニル基」における好ましい置換基としては、例えばハロゲン原子、水酸基、アミノ基、アルキルアミノ基、またはジアルキルアミノ基等が挙げられる。

10

20

25

また、 $R^9$ 、 $R^{10}$  および $R^{13}$  における「置換アルキル基」における好ましい 置換基としては、例えばアリール基またはヘテロアリール基等が挙げられる。

「アリール基」としては、例えばフェニルまたはナフチルなどの炭素原子数10以下のアリール基が挙げられる。

「ヘテロアリール基」としては、例えば窒素原子、硫黄原子および酸素原子からなる群から選ばれる1~4個のヘテロ原子を含有する、単環の5または6員の芳香族複素環基または二環の9から10員の芳香族複素環基が挙げられ、具体的には、ピリジル(窒素原子がオキシド化されていてもよい。)、チエニル、フリル、ピロリル、ピラゾリル、イミダゾリル、ピラジル、ピリミジル、ピリダジル、オキサゾリル、チアゾリル、オキサジアゾリル、トリアゾリル、テトラゾリル、キノリル、ベンゾチエニル、ベンゾフリル、インドリル、キナゾリニル、ベンゾチアゾリル、ベンゾオキサゾリル、ベンズイミダゾリル、ナフチリジニルまたはイミダゾピリジニルなどが挙げられる。好ましいヘテロアリール基としては、窒素原子、硫黄原子

24

および酸素原子からなる群から選ばれる1~3個のヘテロ原子を含有する、単環の5または6員の芳香族複素環基が挙げられる。さらに好ましくはピリジルが挙げられる。

「アロイル基」としては、例えばベンゾイル、トルオイル、ナフトイルなどの炭素原子数6~10のアリール基を有するアリールカルボニル基が挙げられる。

「アリールオキシカルボニル基」、「アリールオキシ基」、「アリールチオ基」、「アリールスルフィニル基」、「アリールスルホニル基」、「ヘテロアリールカルボニル基」および「ヘテロアリールオキシカルボニル基」におけるアリール部分またはヘテロアリール部分は、前記と同義である。

10

15

20

25

「置換アリール基」および「置換ヘテロアリール基」における置換基としては、 例えばハロゲン原子、水酸基、ニトロ、シアノ、アルキル基(該アルキル基は、例 えばハロゲン原子、水酸基、アルカノイルオキシ基、置換されていてもよいアミノ 基、または水酸基で置換されてもよいアルキル基、アルカノイル基、ハロゲン原子 、水酸基もしくはアルコキシカルボニル基で置換されていてもよい飽和ヘテロ環な どで置換されていてもよい。)、アルコキシ基(該アルコキシ基は、例えばハロゲ ン原子、水酸基、カルボキシ基、シクロアルキル基、置換されていてもよいアミノ 基、またはアルキル基、アルカノイル基、ハロゲン原子、水酸基もしくはアルコキ シカルボニル基で置換されていてもよい飽和ヘテロ環などで置換されていてもよい 。)、アルコキシカルボニル基、カルボキシ基、アルカノイル基(該アルカノイル 基は、例えば、ハロゲン原子などで置換されていてもよい。)、アミノ基(該アミ ノ基は、例えば、1つまたは2つの無置換のアルキル基、アルカノイル基、アルコ キシカルボニル基または飽和ヘテロ環などで置換されていてもよい。)、カルバモ イル基(該カルバモイル基は、例えば、無置換あるいはジアルキルアミノ基あるい は飽和ヘテロ環基で置換されたアルキル基を1つまたは2つ有してもよい)、スル ファモイル基(該スルファモイル基は1つまたは2つのアルキル基などで置換され ていてもよい。)、アリール基、飽和ヘテロ環基(該飽和ヘテロ環基は水酸基で置

25

換されてもよいアルキル基などで置換されていてもよい。)、アリールオキシ基、 アルキルスルホニル基またはアリールスルホニル基などが挙げられる。

また、置換アリール基における置換基には、メチレンジオキシまたはエチレンジオキシなどのアルキレンジオキシ基も挙げられる。

5 また、置換アリール基として、式(7):



10

15

(式中、 $n^7$ は0、1または2を表し、 $m^7$ は1、2、3または4を表し、 $n^7$ と $m^7$ の和は、2、3、または4である。 $R^2$  o は、水素原子、置換されてもよいアルキル基、置換されてもよいアルカノイル基、または置換されてもよいアルコキシカルボニル基を表す。)で表される基を挙げることが出来る。

置換アルキル基および置換アルコキシ基における置換基としての置換アリール基および置換へテロアリール基における置換基、および「置換アリールオキシカルボニル基」、「置換アリールチオ基」、「置換アリールスルフィニル基」、「置換アリールスルフィニル基」、「置換アリールスルホニル基」、「置換へテロアリールオキシカルボニル基」および「置換のフェニレン基」における置換基としては、前記の「置換アリール基」および「置換へテロアリール基」における置換基と同じ基が挙げられる。

R<sup>1</sup> およびR<sup>2</sup> における「置換アルキル基」および「置換アルコキシ基」における置換基としての置換アリール基および置換へテロアリール基における好ましい置換基、および、「置換アリール基」、「置換へテロアリール基」、「置換アリール20 オキシカルボニル基」、「置換アリールチオ基」、「置換アリールスルフィニル基」、「置換アリールスルホニル基」、「置換へテロアリールオキシカルボニル基」および「置換のフェニレン基」における好ましい置換基としては、例えばハロゲン原子、水酸基、ニトロ、シアノ、アルキル基(該アルキル基は、例えばハロゲン原子、水酸基またはアミノ基などで置換されていてもよい。)、アルコキシ基(該ア

20

ルコキシ基は、例えばハロゲン原子などで置換されていてもよい。)、アルコキシカルボニル基、カルボキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、カルバモイル基またはアルキレンジオキシ基などが挙げられる。

「飽和ヘテロ環基」における飽和ヘテロ環としては、例えば窒素原子、硫黄原子および酸素原子からなる群から選ばれる1~4個のヘテロ原子を含有する、単環の4~8員環の飽和ヘテロ環が挙げられ、具体的にはピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、パーヒドロアゼピン、テトラヒドロフラン、またはテトラヒドロピランなどが挙げられる。

また、これら飽和ヘテロ環基はベンゼン環が縮環していてもよい。

10 飽和ヘテロ環基における結合位置は、炭素原子上または窒素原子上である。

好ましい飽和ヘテロ環基としては、窒素原子および酸素原子からなる群から選ばれる1~2個のヘテロ原子を含有する、単環の5~6員環の飽和ヘテロ環基または、例えば次式:



15 などで表される、飽和ヘテロ環基にベンゼン環が縮環したものが挙げられる。

置換飽和ヘテロ環基における置換基としては、例えばハロゲン原子、水酸基、アルキル基 (該アルキル基は、例えばハロゲン原子または水酸基などで置換されていてもよい。)、またはアルコキシ基 (該アルコキシ基は、例えばハロゲン原子などで置換されていてもよい。)などが挙げられる。

「置換アミノ基」における置換基としては、例えばアルキル基、アリール基で置換されてもよいアルキル基、アルキル基、ハロゲン原子、アルコキシ基もしくはトリハロメチル基で置換されてもよいアリール基、アルカノイル基、アルコキシカルボニル基またはアロイル基などが挙げられる。

「置換カルバモイル基」、「置換スルファモイル基」および「ウレイド基」にお

ける置換基としては、例えばアルキル基、アルキル基やハロゲン原子で置換されて もよいアリール基で置換されてもよいアルキル基、またはアルキル基やハロゲン原 子で置換されてもよいアリール基などが挙げられる。

「アルキレン基」としては、例えばメチレン、エチレン、トリメチレン、テトラメチレンまたはペンタメチレンなどの炭素数1から5のアルキレン基が挙げられ、炭素原子のうち一つは酸素原子、硫黄原子または $-NR^{1\ 3}$  ー(式中、 $R^{1\ 3}$  は、例えば水素原子または置換されてもよいアルキル基などを表す。)で置き換えられてもよい。また、該アルキレン基の隣り合った原子間で二重結合を形成してもよい

10 Z<sup>1</sup> およびZ<sup>1</sup> 'における好ましいアルキレン基としては、炭素数3から4のアルキレン基、または炭素数2または3で1つの酸素原子が含まれるアルキレン基が挙げられる。

Z²およびZ²'における好ましいアルキレン基としては炭素数2から3のアルキレン基が挙げられる。

15 「置換されてもよいアルキレン基」における置換基としては、例えばハロゲン原子など 子、水酸基、アルキル基(該アルキル基は、例えば水酸基またはハロゲン原子など で置換されていてもよい。)、アルコキシ基(該アルコキシ基は、例えばハロゲン 原子などで置換されていてもよい。)、置換されていてもよいアミノ基などが挙げられる。

20 R<sup>6</sup> としては、一E一Aで表される基が好ましい。

(式中、EおよびAは、前記と同様である。) Aにおける置換アリール基として、 例えば、式(7):

(式中、n<sup>7</sup>は0、1または2を表し、m<sup>7</sup>は1、2、3または4を表し、n<sup>7</sup>とm

 $^7$ の和は、 $^2$ 、 $^3$ 、または $^4$ である。 $^2$ 0 は、水素原子、置換されてもよいアルキル基、置換されてもよいアルカノイル基、または置換されてもよいアルコキシカルボニル基を表す)を挙げることができる。また、 $^2$ 0 は、水素原子、置換されてもよいアルコキシカ

なお、本発明化合物は、好ましくは2-[6-[(ジメチルアミノ)]スルフォニル]-2-オキソー1, 3-ベンズオキサゾール-3(2H) ーイル]-N-(1-フェニルエチル) アセトアミド 並びに 2-[6-[(ジメチルアミノ)]スルフォニル]-2-オキソー1, 3-ベンズオキサゾール-3(2H) ーイル]-N-メチル-N-フェニルアセトアミドを含まない。

10

15

本発明化合物(1)またはその薬学上許容される塩は、例えば以下の方法によって製造することができる。

#### 製造法1

$$R^{6}$$
 $R^{7}$ 
 $R^{8}$ 
 $(101)$ 
 $R^{5}$ 
 $R^{4}$ 
 $R^{3}$ 
 $(102)$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{8}$ 
 $(103)$ 

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、 $R^7$ 、 $R^8$  およびXは前記のとおりであり、L Gは脱離基(例えば塩素原子、臭素原子またはヨウ素原子などのハロゲン原子、アセトキシなどのアシルオキシ基、またはトシルオキシまたはメシルオキシなどのスルホニルオキシ基など)を表し、 $R^2$  のはアルキル基(例えばメチル、エチルまたはt-ブチルなど)を表す。)

# 工程1 (アルキル化)

化合物(101)またはその塩を化合物(102)またはその塩と反応させることにより、中間体(103)を製造することができる。反応は、必要により塩基の存在下、また、場合により相間移動触媒の存在下、適当な不活性溶媒中で約-20で一用いた溶媒の沸点までの範囲の温度で、10分間~48時間反応させることにより行うことができる。

塩基としては、例えばトリエチルアミンまたはピリジン等の有機塩基、炭酸カリウム、水酸化ナトリウムまたは水素化ナトリウム等の無機塩基、またはナトリウムメトキシドまたはカリウムtert-ブトキシド等の金属アルコキシド等が挙げられる

相間移動触媒としては、例えば硫酸水素テトラブチルアンモニウムなどが挙げら

れる。

不活性溶媒としては、例えばアセトニトリルや、クロロホルムもしくはジクロロメタン等のハロゲン化炭化水素系溶媒、ベンゼンもしくはトルエン等の芳香族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフランもしくは1,4ージオキサン等のエーテル系溶媒、メタノール、エタノールもしくは2ープロパノール等のアルコール系溶媒、またはN,Nージメチルホルムアミド、Nーメチルピロリドンもしくはジメチルスルホキシド等の非プロトン性極性溶媒もしくはこれらの混合溶媒等が挙げられる。

## 工程2 (加水分解)

10 中間体(103)を加水分解することで中間体(104)を製造できる。反応は 、適当な溶媒中で酸性または塩基性条件下、約0℃~用いた溶媒の沸点までの範囲 の温度で、10分間~48時間反応させることにより行うことができる。溶媒とし ては、例えば、メタノール、エタノール、2一プロパノールのようなアルコール系 溶媒、1,4ージオキサン等のエーテル系溶媒、水、またはこれらの混合溶媒等が 挙げられる。酸としては、例えば塩酸または硫酸等の鉱酸、またはギ酸、酢酸、プロピオン酸もしくはシュウ酸等の有機酸等が挙げられる。塩基としては、例えば水 酸化リチウム、水酸化ナトリウムもしくは水酸化カリウム等の水酸化アルカリ、または炭酸ナトリウムまたは炭酸カリウム等の炭酸アルカリ等が挙げられる。

#### 工程3(縮合)

20 中間体(104)またはその塩を化合物(105)またはその塩と反応させてア ミド結合を形成させることにより、化合物(1)を製造することができる。このア ミド結合形成反応は、塩化チオニルまたはオキサリルクロライド等を用いる酸クロ ライド法、対応する酸無水物を用いる酸無水物法、クロロ炭酸エステル等を用いる 混合酸無水物法、またはジシクロヘキシルカルボジイミドまたはカルボニルジイミ ダゾール等の縮合剤を用いる方法などの通常の方法を用いて行うことができる。

本発明化合物(1)またはその薬学上許容される塩は、例えば以下の方法によっ

ても製造することができる。

## 製造法2(アルキル化)

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、 $R^7$ 、 $R^8$  およびXは前記のとおりであり、LGは製造法1記載と同義である。)

化合物 (101) またはその塩を化合物 (106) またはその塩と反応させることにより、化合物 (1) を製造することができる。反応は、必要により塩基の存在 下、また、場合により相間移動触媒の存在下、適当な不活性溶媒中で約-20℃~ 用いた溶媒の沸点までの範囲の温度で、10分間~48時間反応させることにより 行うことができる。

塩基、相関移動触媒および不活性溶媒としては前述(製造例1-工程1)のものが挙げられる。

15 前掲の化合物(106)またはその塩は、例えば以下の方法によって製造することができる。

#### 製造法3

5

$$LG \xrightarrow{R^3 \ LG'} + HNR^1R^2 \longrightarrow (107)$$

$$LG \xrightarrow{R^3 \ N} R^1$$

$$R^4 \xrightarrow{R^2} (106)$$

(式中、 $R^1$ 、 $R^2$ 、 $R^3$  および $R^4$  は前記のとおりであり、LGは製造法1記載と同義であり、LG'は脱離基(例えば塩素原子または臭素原子などのハロゲン原子など)を表す。ここで、LG'はLGと異なり、かつ、LGよりも反応性が高い脱離基であることが好ましい。)

化合物(107)またはその塩を化合物(108)またはその塩と反応させることにより、化合物(106)を製造することができる。反応は、必要により塩基の存在下適当な不活性溶媒中、約-20 $^{\circ}$  $^{\circ}$ 一用いた溶媒の沸点までの範囲の温度で、10分間 $^{\circ}$ 48時間反応させることにより行うことができる。

塩基および不活性溶媒としては前述(製造例1-工程1)のものが挙げられる。 本発明化合物(3)またはその薬学上許容される塩は、例えば以下の方法によって製造することができる。

#### 15 製造法4

$$\begin{array}{c|c}
R^{3} \\
\hline
 & Z^{2} \\
\hline
 & N \\$$

$$R^{6}$$
 $R^{7}$ 
 $R^{8}$ 
(302)

 $R^{3}$ 
 $HNR^{1}R^{2}$ 
 $R^{7}$ 
 $R^{8}$ 
(105)

$$\begin{array}{c|c}
R^3 & & \\
R^7 & & & \\
R^7 & & & \\
R^8 & & & \\
\end{array}$$
(3)

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^6$ 、 $R^7$ 、 $R^8$ 、 $Xおよび<math>Z^2$  は、前記のとおりであり、 $R^{2\,1}$  はアルキル基(例えばメチル、エチルまたは t ーブチルなど)を表す。)

#### 5 工程1(加水分解)

化合物(301)を加水分解することで中間体(302)を製造できる。反応は、適当な溶媒中で酸性または塩基性条件下、約0 $^{\circ}$ ~用いた溶媒の沸点までの範囲の温度で、10分間~48時間反応させることにより行うことができる。溶媒、酸および塩基としては、前述(製造例1-工程2)のものが挙げられる。

# 10 工程 2 (縮合)

中間体(302)またはその塩を化合物(105)またはその塩と反応させてアミド結合を形成させることにより、化合物(3)を製造することができる。このア

ミド結合形成反応としては製造例1-工程3で挙げたような通常の方法を用いて行うことができる。

# 製造法5

5

10 (式中、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>およびXは前記のとおりであり、R<sup>50</sup>、R<sup>60</sup>、R<sup>70</sup> 、R<sup>80</sup>はR<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>、R<sup>8</sup>と同義であり、LGおよびR<sup>20</sup>は製造法1記載と同義であり、LG"は、塩素原子、臭素原子、ヨウ素原子、またはトリフルオロメタ

ンスルホニルオキシなどを表し、Mは、トリメチルスズ、トリエチルスズ、トリブチルスズ、カテコールボラン、 $B(OR^{2^2})_2$ (式中、 $R^{2^2}$ は、水素原子、メチル、エチルまたはイソプロピルを表す。)、または、下記式(116)

$$R^{23}$$
 $R^{23}$ 
 $R^{23}$ 
 $R^{23}$ 
 $R^{23}$ 
 $R^{23}$ 
 $R^{23}$ 

10

15

20

5 (式中、R<sup>23</sup>は、水素原子またはメチルを表し、nnは、0または1の整数を表す。) を表す。)

# 工程1 (アルキル化)

化合物(110)またはその塩を化合物(102)またはその塩と反応させることにより、中間体(111)を製造することができる。このアルキル化反応は、製造列1-工程1と同様の方法で行うことができる。

# 工程2 (カップリング反応)

中間体(1 1 1)を、適当な不活性溶媒中 2 0  $\mathbb{C}$ ~ 1 5 0  $\mathbb{C}$ にて、好ましくは 5 0  $\mathbb{C}$ ~ 1 2 0  $\mathbb{C}$ にて、パラジウム触媒および塩基の存在下、1~3 当量、好ましくは 1~1.5 当量の化合物(1 1 2)と反応させることにより、中間体(1 1 3)を得ることができる。

パラジウム触媒としては、パラジウムー炭素、水酸化パラジウム、酢酸パラジウム ( $\Pi$ )、テトラキストリフェニルホスフィンパラジウム (0)、トリス (ジベンジリデンアセトン) ジパラジウム (0)、ビス (トリフェニルホスフィン) パラジウム ( $\Pi$ ) クロリド、1, 1'ービス (ジフェニルホスフィノ) フェロセンパラジウム ( $\Pi$ ) クロリドなどが用いられる。好適な触媒として、テトラキストリフェニルホスフィンパラジウム (0) が挙げられる。

塩基としては、例えばトリエチルアミンまたはピリジン等の有機塩基、炭酸カリウム、水酸化ナトリウムもしくは水素化ナトリウム等の無機塩基、またはナトリウ

ムメトキシドもしくはカリウム tert-ブトキシド等の金属アルコキシド等が挙 がられる。

# 10 工程 3 (加水分解)

中間体(113)を加水分解することで中間体(114)を製造できる。反応は、製造例1-工程2と同様の方法で行うことができる。

# 工程4(縮合)\_

中間体(114)またはその塩を化合物(105)またはその塩と反応させてア 5 に結合を形成させることにより、化合物(115)を製造することができる。このアミド結合形成反応は、製造例1-工程3と同様の方法で行うことができる。

### 製造法6

20

$$R^{4}$$
  $R^{3}$   $O$   $N^{-}$   $R^{2}$   $N^{-}$   $N^{-}$ 

(式中、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>およびXは前記のとおりであり、R<sup>50</sup>、R<sup>60</sup>、R<sup>71</sup>、R<sup>80</sup>はR<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>、R<sup>8</sup>と同義であり、LGならびにR<sup>20</sup>は製造法1記載と同義であり、LG"ならびにMは製造法5記載と同義である。)

# 5 工程1 (アルキル化)

化合物(110)またはその塩を化合物(106)またはその塩と反応させることにより、化合物(117)を製造することができる。このアルキル化反応は、製造例1-工程1と同様の方法で行うことができる。

# 工程2 (カップリング反応)

10 化合物 (117) を、適当な不活性溶媒中20  $\mathbb{C}$   $\mathbb{$ 

15

### 製造法7

$$R^{23}$$
  $R^{23}$   $R$ 

$$R^{23}$$
 $R^{23}$ 
 $R$ 

39

$$R^{4} R^{3} O$$
 $R^{4} R^{3} O$ 
 $N^{-} R^{2}$ 
 $N^{-} R^{2}$ 
 $N^{-} R^{2}$ 
 $N^{-} R^{2}$ 
 $N^{-} R^{2}$ 

(115)

(式中、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>およびXは前記のとおりであり、R<sup>50</sup>、R<sup>60</sup>、R<sup>70</sup>、R<sup>80</sup>はR<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>、R<sup>8</sup>と同義であり、R<sup>20</sup>は製造法1記載と同義であり、LG"、R<sup>23</sup>ならびにnnは、製造法5記載と同義である。)

### 5 工程1 (メタル化反応)

化合物(110)から前述(製造法5-工程1)の反応操作により合成できる化合物(111)を、適当な不活性溶媒中20  $\mathbb{C}$   $\mathbb{$ 

パラジウム触媒としては、酢酸パラジウム( $\Pi$ )、テトラキストリフェニルホスフィンパラジウム(O)、トリス(ジベンジリデンアセトン)ジパラジウム(O)、1, 1'ービス(ジフェニルホスフィノ)フェロセンパラジウム( $\Pi$ )クロリドなどが用いられる。

15 塩基としては、例えばトリエチルアミンもしくはピリジン等の有機塩基、酢酸カリウム、、炭酸カリウム、水酸化ナトリウムもしくは水素化ナトリウム等の無機塩基、またはナトリウムメトキシドもしくはカリウム tert-ブトキシド等の金属アルコキシド等が挙げられる。

ホスフィンリガンドとしては、例えばトリーtertーブチルホスフィン、トリシクロへキシルホスフィン、2-(ジシクロへキシルホスフィノ)-2'-(N、N-ジメチルアミノ)ビフェニル、2-(ジーtertーブチルホスフィノ)ビフェニル等が挙げられる。

不活性溶媒としては、例えばアセトニトリルや、クロロホルムまたはジクロロメタン等のハロゲン化炭化水素系溶媒、ベンゼンもしくはトルエン等の芳香族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフランもしくは1,4ージオキサン等のエーテル系溶媒、メタノール、エタノールもしくは2ープロパノール等のアルコール系溶媒、またはN,Nージメチルホルムアミド、Nーメチルピロリドンもしくはジメチルスルホキシド等の非プロトン性極性溶媒もしくはこれらの混合溶媒等が挙げられる。好適な溶媒として、エーテル類が挙げられる。

### 工程2 (カップリング反応)

中間体(120)を、適当な不活性溶媒中20 $^{\circ}$ ~150 $^{\circ}$ Cにて、好ましくは 10 50 $^{\circ}$ ~120 $^{\circ}$ Cにて、パラジウム触媒および塩基の存在下、1~3当量、好ましくは1~1.5当量の化合物(121)と反応させることにより、中間体(113)を得ることができる。パラジウム触媒、塩基および不活性溶媒としては前述(製造例5-工程2)のものが挙げられる。

## 工程3(加水分解)

15 中間体(113)を加水分解することで中間体(114)を製造できる。反応は 、製造例1-工程2と同様の方法で行うことができる。

### 工程4(縮合)

中間体(114)またはその塩を化合物(105)またはその塩と反応させてアミド結合を形成させることにより、化合物(115)を製造することができる。このアミド結合形成反応は、製造例1-工程3と同様の方法で行うことができる。

#### 製造法8

(式中、R<sup>1</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>およびXは前記のとおりであり、R<sup>50</sup>、R<sup>60</sup>、R<sup>70</sup> 、R<sup>80</sup>はR<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>、R<sup>8</sup>と同義であり、LG"、R<sup>23</sup>ならびにnnは、製造法5記載と同義である。)

### 工程1 (メタル化反応)

化合物 (110) から前述 (製造法6-工程1) の反応操作により合成できる化合物 (117) を、適当な不活性溶媒中20  $\mathbb{C}$   $\mathbb{C}$  この $\mathbb{C}$  にて、好ましくは50  $\mathbb{C}$  ついて、パラジウム触媒、塩基、また場合によりホスフィンリガンドの存在下、1  $\mathbb{C}$  3 当量、好ましくは1  $\mathbb{C}$  1. 5 当量の化合物 (118) または (119)

)と反応させることにより、中間体(122)を得ることができる。パラジウム触媒、塩基、ホスフィンリガンドおよび不活性溶媒としては前述(製造例7-工程1)のものが挙げられる。

# 工程2 (カップリング反応)

中間体 (122) を、適当な不活性溶媒中20  $\mathbb{C}$   $\mathbb{C}$ 

10

# 中間体の製法

化合物(101)のうち、Xが $NR^{10}$ を表し、 $R^{8}$ と $R^{10}$ が、一緒になって、式(201)

(201)

15 (式中、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびZ<sup>1</sup> は、前記のとおりである。)を表す化合物、ならびに化合物(301)は、文献(J. Org. Chem., (1997), 62, 6582-6587およびJ. Med. Chem., (1997), 40, 639-646)に記載の方法もしくはそれに準じた方法に従って合成することができる。さらに、化合物(101)のうちXが酸素原子を表す化合物については、文献(
 20 J. Heterocyclic Chem., (1991), 28, 933-937)記載の方法もしくはそれに準じた方法、Xが硫黄原子を表す化合物については、文献(J. Heterocyclic Chem., (1988), 25, 1183

-1190)記載の方法もしくはそれに準じた方法、 $XがNR^{10}$  を表す化合物については、文献(Synthesis, (2001), 541-543)記載の方法もしくはそれに準じた方法、 $XがCR^{11}R^{12}$  を表す化合物については、文献(Tetrahedron Lett., (1979), 20, 2857-2860およびTetrahedron Lett., (2002), 43, 193-195)記載の方法もしくはそれに準じた方法に従って合成することができる。

また、前記式(1)の化合物において、官能基を適宜変換することによって、式(1)の別の化合物としてもよい。官能基の変換は、通常行われる一般的方法(例えば、Comprehensive Organic Transformations、R. C. Larock、(1989)等を参照)によって行うことができる。

10

本明細書を通じて、保護基、縮合剤などは、この技術分野において慣用されているIUPAC-IUB(生化学命名委員会)による略号で表わすことがある。

出発化合物および目的化合物の好適な塩および医薬として許容しうる塩は、慣用の無毒性塩であり、それらとしては、有機酸塩(例えば酢酸塩、トリフルオロ酢酸15塩、マレイン酸塩、フマル酸塩、クエン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、蟻酸塩またはトルエンスルホン酸塩など)および無機酸塩(例えば塩酸塩、臭化水素酸塩、よう化水素酸塩、硫酸塩、硝酸塩または燐酸塩など)のような酸付加塩、アミノ酸(例えばアルギニン、アスパラギン酸またはグルタミン酸など)との塩、アルカリ金属塩(例えばナトリウム塩またはカリウム塩など)などの金属塩、アンモニウム塩、または有機塩基塩(例えばトリメチルアミン塩、トリエチルアミン塩、ピリジン塩、ピコリン塩、ジシクロヘキシルアミン塩またはN、N'ージベンジルエチレンジアミン塩など)などの他、当業者が適宜選択することができる。

25 上記において説明した製造法において、反応点以外の何れかの官能基が説明した 反応条件下で変化するかまたは説明した方法を実施するのに不適切な場合は、反応 10

20

点以外を保護し、反応させた後、脱保護することにより目的化合物を得ることができる。保護基としては、文献(例えばProtective Groups in Organic Synthesis、T. W. Greene、John Wiley & Sons Inc.、(1981)等)に記載されているような通常の保護基を用いることができ、更に具体的には、アミンの保護基としてはエトキシカルボニル、tert-ブトキシカルボニル、アセチルまたはベンジル等を、また水酸基の保護基としてはトリアルキルシリル、アセチルまたはベンジル等をあげることができる。

保護基の導入および脱離は、有機合成化学で常用される方法(例えば、上記のProtective Groups in Organic Synthesis参照)またはそれらに準じた方法により行うことができる。

上記各製造法における中間体および目的化合物は、有機合成化学で常用される精製法、例えば中和、濾過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィー等に付して単離精製することができる。また、中間体においては、特に精製することなく次の反応に供することも可能である。

15 本発明化合物(1)の中には、互変異性体が存在し得るものがあるが、本発明は 、これらを含め、全ての可能な異性体およびそれらの混合物を包含する。

本発明化合物(1)の薬学上許容される塩を取得したい時は、化合物(1)が薬学上許容される塩の形で得られる場合には、そのまま精製すればよく、また、遊離の形で得られる場合には、適当な有機溶媒に溶解もしくは懸濁させ、酸または塩基を加えて通常の方法により塩を形成させればよい。また、化合物(1)およびその薬学上許容される塩は、水あるいは各種溶媒との付加物の形で存在することもあるが、これら付加物も本発明に包含される。本発明化合物(1)には、不斉炭素原子にもとづく1個以上の立体異性体が包含されうる場合があるが、かかる異性体およびそれらの混合物はすべてこの発明の範囲に包含される。

25 さらに本発明の範囲には本発明化合物(1)のプロドラッグも含まれる。本発明においてプロドラッグとは、生体内で酸加水分解により、あるいは酵素的に分解さ

45

れて前記式(1)の化合物を与える誘導体をいう。例えば、前記式(1)の化合物 が水酸基やアミノ基、またはカルボキシ基を有する場合は、これらの基を常法に従って修飾してプロドラッグを製造することができる。

例えばカルボキシル基を有する化合物であればそのカルボキシル基がアルコキシカルボニル基となった化合物、アルキルチオカルボニル基となった化合物、またはアルキルアミノカルボニル基となった化合物が挙げられる。

また、例えばアミノ基を有する化合物であれば、そのアミノ基がアルカノイル基で置換されアルカノイルアミノ基となった化合物、アルコキシカルボニル基により置換されアルコキシカルボニルアミノ基となった化合物、アシロキシメチルアミノ基となった化合物、またはヒドロキシルアミンとなった化合物が挙げられる。

10

20

25

また例えば水酸基を有する化合物であれば、その水酸基が前記アシル基により置換されてアシロキシ基となった化合物、リン酸エステルとなった化合物、またはアシロキシメチルオキシ基となった化合物が挙げられる。

これらのプロドラッグ化に用いる基のアルキル部分としては前記アルキル基が挙 15 げられ、そのアルキル基は例えばアルコキシ基等により置換されていてもよい。好 ましい例としては、次のものが挙げられる。

例えばカルボキシル基がアルコキシカルボニル基となった化合物についての例としては、メトキシカルボニル基またはエトキシカルボニル基などのアルコキシカルボニル基、またはメトキシメトキシカルボニル基、エトキシメトキシカルボニル基、2ーメトキシエトキシカルボニル基基、2ーメトキシエトキシカルボニル基基またはピバロイルオキシメトキシカルボニル基などのアルコキシ基により置換されたアルコキシカルボニル基が挙げられる。

本発明化合物は、ベンゾジアゼピンω。受容体アゴニスト作用を有する。それゆ え、不安障害及びその関連疾患、うつ病、認知機能障害またはけいれんなどの中枢 性疾患の治療または予防に有用である。

医療目的には、本発明の化合物は、局所、経腸、静脈内、筋肉内、吸入、点鼻、

関節内、髄腔内、経気管または経眼投与を含めての経口、非経口投与、外用に適した固体状または液状の有機または無機賦形剤などの薬学上許容しうる担体との混合物として医薬製剤の形態で使用できる。該医薬製剤としては、カプセル剤、錠剤、ペレット剤、糖衣錠、散剤、顆粒剤、坐剤、軟膏剤、クリーム剤、ローション剤、吸入剤、注射剤、パップ剤、ゲル剤、テープ剤、点眼剤、液剤、シロップ剤、エアゾール剤、懸濁剤、乳剤などの固体、半固体または液体が挙げられる。これらの製剤は通常の方法により製造することができる。所望により、これらの製剤に、助剤、安定剤、湿潤剤ないし乳化剤、緩衝剤、その他慣用の添加剤を加えることができる。

10 本発明化合物の用量は患者の年齢および状態に応じて増減するが、化合物(1)の平均一回量約0.1mg、1mg、10mg、50mg、100mg、250mg、500mgおよび1,000mgが、例えば不安障害及びその関連疾患、うつ病、認知機能障害、けいれんといった中枢性疾患に対して有効である。一般には、ヒトに投与する場合、1日当り0.1mg/個体ないし約1,000mg/個体、550mg/104mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050mg/1050

以下に実施例および試験例を用いて本発明を詳細に説明するが、本発明は何らこれらに限定されるものではない。なお、本明細書において記載の簡略化のために次の略語を使用することもある。

20 Me:メチル

Et:エチル

Pr:プロピル

i-Pr:イソプロピル・

t-Bu:tert-ブチル

25 Ph:フェニル

Pv:ピリジル

47

Bn:ベンジル

· Boc:tert-ブトキシカルボニル

### 参考例1

5 2-アミノー4-ブロモフェノール

4-プロモー2-ニトロフェノール(25.0g, 115mmol)のテトラヒドロフラン(250mL)溶液に5%ロジウム炭素(2.20g)を加え、20-25℃にて4.5時間水素雰囲気下攪拌した。反応後、ロジウム炭素を濾過し溶媒を減圧留去することにより2-アミノー4-プロモフェノール(21.6g, 98%)を得た。

IR (cm<sup>-1</sup>):1200,1279,1437,1497,2791

#### 参考例2

10

5-ブロモー1, 3-ベンズオキサゾールー2 (3H) -オン

15 2ーアミノー4ーブロモフェノール (3.50g, 18.6 mm o 1) のテトラヒドロフラン (100 mL) 溶液に20-25℃で1, 1'ーカルボニルジイミダゾール (3.62g, 22.3 mm o 1) を加え1.5時間還流した。反応後、反応液を20-25℃まで冷却し2N塩酸水溶液を加え酢酸エチルにて抽出した。この有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。ろ過後、溶媒を減圧留去することにより5ーブロモー1,3ーベンズオキサゾールー2 (3H) ーオン (3.89g, 定量的)を得た。IR (cm<sup>-1</sup>):960、1149、1474、1622、1751

#### 参考例3

25 tert-ブチル (5-ブロモー2-オキソー1, 3-ベンズオキサゾールー3 (2H) -イル) アセテート

5ーブロモー1, 3ーベンズオキサゾールー2 (3H) ーオン (47.8g,223mmol)のアセトン (400mL) /ジメチルホルムアミド (40mL) 溶液に20-25℃で炭酸カリウム (3.28g,23.7mmol)、ブロモ酢酸 tertーブチル (36.3mL,246mmol)を加え、20-25℃にて3時間攪拌した。濾過後、溶媒を減圧留去して得られた残渣をヘキサンにて洗浄することでtertーブチル (5ーブロモー2ーオキソー1,3ーベンズオキサゾールー3 (2H) ーイル)アセテート (71.5g,98%)を得た。
IR (cm<sup>-1</sup>):1151、1242、1485、1736、1782

#### 10 参考例 4

(5ープロモー2ーオキソー1, 3ーベンズオキサゾールー3 (2H) ーイル) 酢酸

tert-ブチル (5-ブロモ-2-オキソ-1, 3-ベンズオキサゾールー3 (2H) -イル) アセテート (71.5g, 218mmol) の1, 4-ジオキ サン (360mL) 溶液に20-25℃で4N塩酸/1, 4-ジオキサン溶液 (340mL, 1.36mmol)、酢酸 (360mL) を加え50℃にて4.5時間 攪拌した。反応後、水を加え酢酸エチルにて抽出した。この有機層を飽和食塩水で 洗浄してから無水硫酸ナトリウムにて乾燥した。濾過後、溶媒を減圧留去して得られた残渣をヘキサンにて洗浄することで (5-ブロモ-2-オキソ-1, 3-ベン ズオキサゾール-3 (2H) -イル) 酢酸 (58.3g, 98%) を得た。 IR (cm<sup>-1</sup>):1028、1227、1483、1736、2953

#### 参考例5

(2-オキソー5-フェニルー1, 3-ベンズオキサゾールー3 (2H) ーイル) 25 酢酸

2ーアミノー4ーフェニルフェノールを出発原料とし、参考例2~4と同様の方

法で(2-オキソー5-フェニルー1, 3-ベンズオキサゾールー3(2H)ーイル) 酢酸を合成した。

IR (cm<sup>-1</sup>):1030,1241,1483,1728,1763

## 5 参考例 6

(5-ニトロー2ーオキソー1, 3ーベンズオキサゾールー3 (2H) ーイル) 酢酸

2-アミノー4-ニトロフェノールを出発原料とし、参考例2~4と同様の方法で(5-ニトロ-2-オキソー1,3-ベンズオキサゾール-3(2H)-イル)

10 酢酸を合成した。

IR (cm<sup>-1</sup>):1020,1252,1487,1728,1782

## 参考例7

[2-オキソー5-(3-チエニル)-1,3-ベンズオキサゾールー3(2H)

15 - イル] 酢酸

た。

参考例3で合成した化合物(328mg, 1mmo1)の1, 4-ジオキサン(7.5mL)溶液に、20-25℃で3-チオフェンボロン酸(154mg, 1.20mmo1)、テトラキストリフェニルホスフィンパラジウム(35.0mg, 30.0μmo1)、炭酸カリウム(415mg, 3.00mmo1)水溶液(120.5mL)を加え、窒素置換したのち、120℃で3時間攪拌した。反応後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムにて乾燥し、ろ過後、溶媒を減圧留去し、tertーブチル [2-オキソー5-(3-チェニル)-1,3-ベンズオキサゾール-3(2H)-イル]アセテートを粗生成物として得た。続いて参考例4と同様の操作を行い[2-オキソー5ー(3-チェニル)-1,3-ベンズオキサゾール-3(2H)-イル]酢酸を合成し3-チェニル)-1,3-ベンズオキサゾール-3(2H)-イル]酢酸を合成し

50

IR (cm<sup>-1</sup>):1030,1250,1491,1724,1782

### 参考例8

(5-ブロモー2-オキソー1,3-ベンズチアゾールー3(2H)-イル)酢酸 文献(国際公開第97/43282号パンフレット)に従い合成した。 IR(cm<sup>-1</sup>):1182、1342、1437、1635、1743

#### 参考例9

(7-ブロモー2-オキソー1, 3-ベンズチアゾールー3 (2H) ーイル) 酢酸 参考例8と同様、文献(国際公開第97/43282号パンフレット) に従い合成した。

IR (cm<sup>-1</sup>):1109,1234,1570,1684,1733

#### · 参考例10

15 (6 ープロモー3 ーメチルー2 ーオキソー2,3 ージヒドロー1 Hーベンズイミダ ゾールー1 ーイル)酢酸

文献(J. Org. Chem., (1995), 60, 1565-1582) に記載の方法によって得られるエチル 6-ブロモー2-オキソー2, 3-ジヒドロー1H-ベンズイミダゾールー1-カルボキシレート(2.85g, 10.0mm o 1)、メタノール(962mg, 30.0mmo1)、トリフェニルホスフィン(3.93g, 15.0mmo1)のテトラヒドロフラン(60mL)溶液にジエチルアゾジカルボキシレート(40%トルエン溶液, 6.53g, 15.0mmo1)を加え、20-25℃で7時間撹拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1~2/1)で精製して、エチル 6-ブロモー3-メチルー2-オキソー2, 3-ジヒドロー1Hーベンズイミダゾールー1-カルボキシレートとジエチルアゾジカルボキシレート

51

由来不純物の混合物を得た。この混合物にトルエン(25mL)を加え、攪拌後、 結晶をろ取し、エチル 6-プロモー3-メチルー2-オキソー2, 3-ジヒドロ -1H-ベンズイミダゾールー1-カルボキシレートを粗精製物として得た。

続いてエチル 6-ブロモ-3-メチル-2-オキソ-2, 3-ジヒドロ-1H 5 -ベンズイミダゾール-1-カルボキシレート(2.88g,9.63mmol) のメタノール(70mL)懸濁液に5N水酸化ナトリウム水溶液(4mL)を加え 20-25℃で30分撹拌した。反応液を減圧濃縮し、残渣に水(50mL)を加 え、4N塩酸水をpH1となるまで加えた。この懸濁液を30分撹拌した後、濾取 し、濾上物を50℃で減圧乾燥した。この固体をトルエン(25mL)に懸濁し、 10 110℃まで加熱後、20-25℃までゆっくり冷却した。不溶物を濾取し、減圧

乾燥して5-ブロモー1-メチルー1,3-ジヒドロー2H-ベンズイミダゾール -2-オンを1.29g得た。

5 - ブロモー1 - メチルー1, 3 - ジヒドロー2 H - ベンズイミダゾールー2 ーオンに参考例3、4 と同様の操作を行い、(6 - ブロモー3 - メチルー2 - オキソ - 2, 3 - ジヒドロー1 H - ベンズイミダゾールー1 - イル)酢酸を合成した。

¹ H - NMR(400MH z,DMSO-d<sub>6</sub>): δ3. 32(s,3H), 4. 62(s,2H), 7. 13(d,1 H,J=8. 3 H z), 7. 24(d d,1 H,J=8. 3, 1. 8 H z), 7. 48(d,1 H,J=1. 8 H z), 13. 12(b r,1 H).

20

#### 参考例11

(5ーブロモー3ーメチルー2ーオキソー2, 3ージヒドロー1Hーベンズイミダ ゾールー1ーイル)酢酸。

文献 (J. Org. Chem., (1995), 60, 1565-1582) に記 載の方法によってtertーブチル 5ーブロモー2ーオキソー2, 3ージヒドロー1Hーベンズイミダゾールー1ーカルボキシレートを合成し、さらに参考例10

52

と同様の方法にてメチル化を行い、tert-ブチル 5ーブロモー3ーメチルー 2-オキソー2, 3-ジヒドロー1H-ベンズイミダゾールー1-カルボキシレートを得た。

10 さらに参考例3、4と同様の操作を行い、(5 - ブロモー3 - メチルー2 - オキソー2、3 - ジヒドロー1 H - ベンズイミダゾールー1 - イル)酢酸を合成した。 <sup>1</sup> H - NMR(400MHz,DMSO-d<sub>6</sub>):δ3、33(s,3H),4、60(s,2H),7、13(d,1H,J=8、3Hz),7、21(dd,1H,J=8、3,1、9Hz),7、44(d,1H,J=1、8Hz),13、15、14(br,1H).

### 参考例12

20

25

メチル 3, 4ージヒドロキノリンー1(2H)ーカルボキシレート

テトラヒドキノリン (18.0mL, 143mmol) のN, Nージメチルホルムアミド (100mL) 溶液に20-25 ℃で炭酸カリウム (79.3g, 574mmol) を加えた後、0 ℃にてクロロギ酸メチル (33.2mL, 430mmol) を滴下し50 ℃にて6時間攪拌した。反応後、20-25 ℃まで冷却し、水を加え酢酸エチル/トルエン (1/1) にて抽出した。この有機層を水、2 N塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。ろ過後、溶媒を減圧留去することによりメチル 3, 4ージヒドロキノリン-1 (2H) ーカルボキシレート (27.2g, 99%) を得た。

IR (cm<sup>-1</sup>):1036,1134,1327,1493,1701

#### 参考例13

メチル 6-プロモー3, 4-ジヒドロキノリンー1 (2H) -カルボキシレート メチル 3, 4-ジヒドロキノリンー1 (2H) -カルボキシレート (4.50 g, 23.5 mm o 1) のN, N-ジメチルホルムアミド (20 m L) 溶液に $0^{\circ}$  にてN-プロモスクシイミドを加え $20-25^{\circ}$  で3時間攪拌した。反応後、水を加え酢酸エチルにて抽出した。この有機層を水、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。ろ過後、溶媒を減圧留去することによりメチル 6-プロモー3, 4-ジヒドロキノリン-1 (2H) -カルボキシレート (6.06 g, 95%) を得た。

IR (cm<sup>-1</sup>):1038,1130,1321,1441,1701

#### 参考例14

10

15 メチル 6ーブロモー8ーニトロー3,4ージヒドロキノリンー1 (2H) ーカル ボキシレート

テトラフルオロほう酸ニトロニウム (4.06g,30.6mmol)のアセトニトリル (100mL)溶液に、0℃にてメチル 6ーブロモー3,4ージヒドロキノリンー1 (2H) ーカルボキシレート (5.90g,21.8mmol)のアセトモトリル (100mL)溶液を加え、10分間同温で攪拌した。反応後、0℃にて水を加え酢酸エチルで抽出した。この有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。ろ過後、溶媒を減圧留去することでメチル 6ーブロモー8ーニトロー3,4ージヒドロキノリンー1 (2H) ーカルボキシレート (7.19g、定量的)を得た。

25 IR (cm<sup>-1</sup>):810,1174,1321,1439,1701

54

### 参考例15

8 ー ブロモー 5 , 6 ー ジヒドロー 4 H ー イミダゾ [4 , 5 , 1 ー i j] キノリンー 2 (1 H) ー オン

還元鉄(24.1g, 431mmo1)の酢酸(250mL)溶液を約70℃まで加熱した後、メチル 6ーブロモー8ーニトロー3, 4ージヒドロキノリンー1 (2H)ーカルボキシレート(19.4g, 61.6mmo1)の酢酸(200mL)溶液を1時間かけて滴下し、約80℃にて2時間攪拌した。反応後、20−2 5℃に戻した後、セライト(10g)、酢酸エチル(200mL)を加え30分攪拌し、セライト濾過を行った。得られた濾液に1N塩酸水溶液(500mL)を加え、20−25℃で30分攪拌し、酢酸エチルで抽出した。この有機層を水(2回)、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。ろ過後、溶媒を減圧留去することで8ーブロモー5,6ージヒドロー4Hーイミダゾ[4,5,1ーij]キノリン−2(1H)ーオン(14.6g,94%)を粗精製物として得た。

15 IR (cm<sup>-1</sup>): 1144, 1491, 1657, 1707, 3143

### 参考例16

8 ーブロモー5,6 ージヒドロー4Hーイミダゾ [4,5,1ーij] キノリンー2 (1H) ーオンに対し、参考例3と同様の操作を行うことでtertーブチル(8 ーブロモー2ーオキソー5,6 ージヒドロー4Hーイミダゾ [4,5,1ーij] キノリンー1 (2H) ーイル)アセテートを得た。

 $IR (cm^{-1}) : 1153, 1421, 1498, 1697, 1741$ 

55

(8-) では、 (8-) では、(8-) では、(

tertーブチル (8ーブロモー2ーオキソー5,6ージヒドロー4Hーイミダゾ [4,5,1-ij] キノリンー1 (2H) ーイル) アセテートに対し、参考例4と同様の操作を行うことで(8ーブロモー2ーオキソー5,6ージヒドロー4Hーイミダゾ [4,5,1-ij] キノリンー1 (2H) ーイル) 酢酸を得た。 IR  $(cm^{-1}):980$ 、1217、1240、1624、1718

## 参考例18

10 (2-オキソー8-フェニルー5,6-ジヒドロー4H-イミダゾ [4,5,1-ij] キノリンー1 (2H) -イル) 酢酸

参考例16にて合成した化合物とフェニルほう酸を用いて参考例7と同様の反応を行い、tert-ブチル (2-オキソ-8-フェニルー5,6-ジヒドロー4H-イミダゾ [4,5,1-ij]キノリンー1(2H)-イル)アセテートを得た。

続いて参考例4と同様の操作により(2-オキソー8-フェニルー5, 6-ジドロー4 Hーイミダゾキノリンー1(2 H)ーイル)酢酸を合成した。 IR(c m $^{-1}$ ):1 1 1 1 1 2 2 3 、1 4 2 9 、1 6 4 3 、1 7 2 8

#### 20 参考例19

15

エチル 2-(8-) 2-(2-) 2-) 2-) 2-) 2-) 2-) 2-) 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1

参考例15で合成した化合物(1.00g, 3.95mmol)のN, Nージメ チルホルムアミド(10.0ml)溶液に炭酸カリウム(819mg, 5.93m 25 mol)、エチル 2ーブロモプロパノエート(616μL, 4.74mmol) を順次加え50℃にて1.5時間攪拌した。反応後、反応液を20-25℃まで冷

却し、0℃にて1N塩酸水溶液に注いだ。酢酸エチル/トルエン(1/1)にて抽 出後、有機層を水で洗浄してから、無水硫酸ナトリウムにて乾燥した。濾過後、溶 媒を減圧留去し、エチル 2- (8-ブロモー2-オキソー5,6-ジヒドロー4 H-イミダゾ [4, 5, 1-ij] キノリン-1 (2H) -イル) プロパノエート (1.64g, 定量的)を得た。

 $IR (cm^{-1}) : 1024, 1406, 1497, 1693, 1733$ 

### 参考例20

2- (8-ブロモー2-オキソー5, 6-ジヒドロー4H-イミダゾ [4, 5, 1 - i j] キノリン-1 (2H) -イル) ブロピオン酸 10 エチル 2-(8-ブロモー2-オキソー5,6-ジヒドロー4H-イミダゾ[ 4, 5, 1-ij] キノリン-1 (2H) -イル) プロパノエート (1. 35g, 3. 82mmo1) のテトラヒドロフラン (10mL) 溶液に水酸化リチウム (2 75mg, 11.5mmo1) 水溶液(10mL) を20-25℃にて加え同温で 2. 5時間攪拌した。反応後、反応液を氷冷下、1 N塩酸水に注ぎ酢酸エチルで抽 15 出した。この有機層を飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した 。濾過後、溶媒を減圧留去して得られた残渣を酢酸エチルーへキサンより再結晶す ることで、2-(8-ブロモー2-オキソー5,6-ジヒドロー4H-イミダゾ[ 4, 5, 1-ij] キノリン-1 (2H) -イル) ブロピオン酸 (815mg, 6 6%)を得た。

 $IR (cm^{-1}) : 1070, 1201, 1414, 1635, 1653$ 

#### 参考例21

20

8-ブロモー4ー (ヒドロキシメチル) ー5, 6ージヒドロー4Hーイミダゾ [4 , 5, 1-ij] キノリン-2 (1H) ーオン 25 文献 (J. Med. Chem., (1994), 37, 3956-3968) に記

57

載の方法によって得られるメチル 1, 2, 3, 4-テトラヒドロキノリンー 2-カルボキシレート塩酸塩を原料とし、参考例 1  $2\sim 1$  5 と同様の操作を行うことでメチル 8-プロモー2-オキソー1, 2, 5, 6-テトラヒドロー4 H-イミダゾ [4, 5, 1-ij]キノリンー4-カルボキシレートを得た。

- メチル 8ーブロモー2ーオキソー1, 2, 5, 6ーテトラヒドロー4Hーイミダゾ [4, 5, 1-ij] キノリンー4ーカルボキシレート(50.0mg,16 1mmo1)、水素化ほう素ナトリウム(60.8mg,1.61mmo1)のテトラヒドロフラン(1.5mL)懸濁液を50℃に加熱後、メタノール/テトラヒドロフラン(0.40mL/0.5mL)溶液を10分かけて滴下し、同温にて1時間攪拌した。反応後、0℃にて飽和塩化アンモニウム水溶液を滴下し酢酸エチルにて抽出した。この有機層を飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。濾過後、溶媒を減圧留去することで8-ブロモー4ーヒドロキシメチルー5,6ージヒドロー4Hーイミダゾ [4,5,1-ij] キノリンー2(1H)ーオン(48.5mg,定量的)を得た。
- 15 IR (cm<sup>-1</sup>): 1066, 1196, 1398, 1487, 1684

### 参考例22

メチル 8ープロモー1ーメチルー2ーオキソー1, 2, 5, 6ーテトラヒドロー4Hーイミダゾ [4, 5, 1ーij] キノリンー4ーカルボキシレート

メチル 8ーブロモー2ーオキソー1, 2, 5, 6ーテトラヒドロー4Hーイミダゾ [4, 5, 1-ij] キノリンー4ーカルボキシレート(100mg, 321μmo1)のN, Nージメチルホルムアミド(1.0mL)溶液に20-25℃にて炭酸カリウム(66.6mg, 482μmo1)、よう化メチル(60.0μL, 964μmo1)を順次加え、1時間攪拌した。反応後、水を加え酢酸エチル/トルエン(1/1)にて抽出した。この有機層を水、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。濾過後、溶媒を減圧留去して得られた残渣をシリ

58

カゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)で精製することにより、メチル 8-ブロモー1-メチルー2-オキソー1, 2, 5, 6-テトラヒドロー4Hーイミダゾ [4, 5, 1-i j ] キノリンー4-カルボキシレート (77.9mg, 75%) を得た。

5 IR (cm<sup>-1</sup>):1007,1159,1400,1500,1701

### 参考例23

8 ーブロモー1ーメチルー2ーオキソー1,2,5,6ーテトラヒドロー4Hーイ -ミダゾ [4,5,1ーij] キノリンー4ーカルボン酸

メチル 8ープロモー1ーメチルー2ーオキソー1, 2, 5, 6ーテトラヒドロー4Hーイミダゾ [4, 5, 1ーij]キノリンー4ーカルボキシレート(62.2mg, 191μmo1)のテトラヒドロフラン(0.60mL)ーメタノール(0.60mL)溶液に水酸化リチウム(13.7mg, 574μmo1)水溶液(0.20mL)を20-25℃にて加え1.5時間攪拌した。反応後、1N塩酸水を加え酢酸エチルで抽出した。この有機層を飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。濾過後、溶媒を減圧留去することで8ープロモー1ーメチルー2ーオキソー1, 2, 5, 6ーテトラヒドロー4Hーイミダゾ [4, 5, 1ーij]キノリンー4ーカルボン酸(55.7mg, 94%)を得た。IR(cm<sup>-1</sup>):1007、1041、1209、1498、1705

20

#### 参考例24

25 文献(国際公開第90/15058号パンフレット)に記載の方法に従い合成した tert ert er

59

ダゾ [4, 5, 1-ij] キノリン-5-イル)カルバメート(1.30g, 4.49mmol)のN, N-ジメチルホルムアミド(10mL)溶液にブロモ酢酸メチル(450μL, 4.70mmol)、炭酸カリウム(871mg, 6.30mmol)を加え、20-25℃で1時間攪拌した後、約50℃で4.5時間攪拌した。反応溶液を氷冷下、5%硫酸水素カリウム水溶液(40mL)に注ぎ、酢酸エチル/トルエン(1/1)で抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、溶媒を減圧留去し、得られた残渣をヘキサン、ジエチルエーテルで懸濁洗浄し、ろ取し、メチル [5-[(tert-ブトキシカルボニル)アミノ]-2-オキソー5,6-ジヒドロー4H-イミダゾ [4,5,1-ij] キノリン-1(2H)-イル] アセテート(1.02g,63%)を得た。IR(cm-1):1003、1246、1423、1684、1743

### 参考例25

10

20

25

[5-[(tert-ブトキシカルボニル) アミノ] -2-オキソー5,6-ジヒドロ-4H-イミダゾ [4,5,1-ij] キノリン-1 (2H) -イル] 酢酸メチル [5-[(tert-ブトキシカルボニル) アミノ] -2-オキソー5,6-ジヒドロ-4H-イミダゾキノリン-1 (2H) -イル] アセテート(500mg,1.38mmo1)のメタノール/テトラヒドロフラン(1/1,10mL)溶液を氷冷し、水酸化ナトリウム(166mg,4.15mmo1)と水(2mL)を加え、40分間攪拌し、20-25℃にてさらに1時間攪拌した。反応溶液に1N塩酸水溶液(5mL)、水(5mL)を加えて酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、溶媒を減圧留去し、[5-[(tert-ブトキシカルボニル)アミノ] -2-オキソー5,6-ジヒドロ-4H-イミダゾ[4,5,1-ij] キノリン-1(2H) -イル]酢酸(533mg,定量的)を得た。

IR (cm<sup>-1</sup>):1157,1219,1491,1635,1684

### 参考例26

tertーブチル (2-アミノー3-ニトロフェノキシ)アセテート 2-アミノー3-ニトロフェノール (2.51g, 16.3 mmol) とN, Nージ メチルホルムアミド (15mL) の混合物に20-25℃機拌下、炭酸カリウム (3.15g, 22.8 mmol) とブロモ酢酸tertーブチル (2.55mL, 17.3 mmol) を加え、20-25℃で2時間半攪拌した。反応液を水に注ぎ、トルエンで抽出した。有機層を水、飽和食塩水の順に洗い、無水硫酸ナトリウムで乾燥、ろ過後、溶媒を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢 酸エチル=10/1)で精製し、3.59g(82%)のtertーブチル (2-アミノー3-ニトロフェノキシ)アセテートを得た。 IR (cm<sup>-1</sup>):1151、1236、1433、1736、3350

### 参考例27

20

25

15 tertーブチル (2ーアミノー 5 ーブロモー 3 ーニトロフェノキシ) アセテート

tertーブチル (2-アミノー3ーニトロフェノキシ)アセテート (2.5 4g, 9.47mmol)のN, Nージメチルホルムアミド (15mL)溶液に氷冷攪拌下、Nーブロモスクシンイミド (1.77g, 9.94mmol)を加えた。反応混合物を氷冷下1時間、20-25 ℃にて3時間攪拌した。反応液を10%チオ硫酸ナトリウム水溶液に注ぎ、ジエチルエーテルを加えて20-25 ℃で30分間攪拌後、有機層と水層を分液した。ジエチルエーテル層を水、飽和食塩水の順に洗い、無水硫酸ナトリウムで乾燥、ろ過後、溶媒を減圧濃縮し、3.26g (99%)のtertーブチル (2-アミノー5-ブロモー3-ニトロフェノキシ)アセテートを得た。

IR (cm<sup>-1</sup>):1151,1209,1514,1743,3369

#### 参考例28

7ーブロモー5ーニトロー2H-1, 4ーベンズオキサジンー3(4H)ーオンtertーブチル (2ーアミノー5ープロモー3ーニトロフェノキシ)アセテ
5 ート(2.33g, 6.71mmol)、pートルエンスルホン酸1水和物(100mg, 0.526mmol)およびトルエン(10mL)の混合物を80℃で2時間攪拌した。反応液を減圧濃縮し、残渣に飽和炭酸水素ナトリウム水溶液を加えてクロロホルムで抽出した。有機層を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥、ろ過後、溶媒を減圧濃縮し、1.82g(99%)の7ープロモー5ーニトロー2H-1, 4ーベンズオキサジンー3(4H)ーオンを得た。
1 R(cm<sup>-1</sup>):1063、1284、1483、1525、1697

### 参考例 2 9

5-ニトロー7-フェニルー2H-1, 4-ベンズオキサジンー3 (4H) ーオン 7-ブロモー5-ニトロー2H-1, 4-ベンズオキサジンー3 (4H) ーオン (1.02g, 3.74mmol)、フェニルほう酸(547mg, 4.49mmol)、炭酸カリウム(1.55g, 11.2mmol)、テトラキストリフェニルホスフィンパラジウム(130mg, 0.112mmol)、1,4ージオキサン(10mL)および水(2mL)の混合物を2時間還流攪拌した。反応液を20-25℃まで冷却し、水、20 クロロホルムを加えて分液した。水層に5%硫酸水素カリウムを加えて酸性にし、酢酸エチルで抽出した。有機層を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥、ろ過後、溶媒を減圧濃縮し、880.5mg(87%)の[(4-アミノー5-ニトロビフェニルー3-イル)オキシ]酢酸を得た。

続いて、得られた生成物(869mg, 3.01mmol)、pートルエンスルホン酸 1水和物(90.1mg, 0.474mmol)およびトルエン(15mL)の混合物を1 時間半還流攪拌した。反応液を減圧濃縮し、残渣に飽和炭酸水素ナトリウム水溶液 WO 2005/080334

PCT/JP2005/003095

を加えてクロロホルムで抽出した。有機層を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥、ろ過後、溶媒を減圧濃縮し、772mg(95%)の5-ニトロー7-フェニルー2H-1,4-ベンズオキサジン-3(4H)-オンを得た。

IR (cm<sup>-1</sup>):1176,1270,1336,1541,1709

5

### 参考例30

(2ーオキソー8ーフェニルー4,5ージヒドロイミダゾ [1,5,4ーde] [1,4] ベンズオキサジンー1 (2H) ーイル) 酢酸

水素化リチウムアルミニウム (96.8 mg, 2.55 mmo1) のテトラヒドロフラ
10 ン (3 mL) 懸濁液に還流攪拌下、5ーニトロー7ーフェニルー2H-1,4ーベン
ズオキサジンー3 (4 H) ーオン (173 mg,0.638 mmo1) のテトラヒドロフ
ラン (5 mL) 溶液を10分間かけて滴下し、さらに1時間還流した。反応液を氷冷し、水 (0.1 mL)、15%水酸化ナトリウム水溶液 (0.1 mL)、水 (0.3 mL)) の順に滴下し、ジエチルエーテルと無水炭酸カリウムを加えて20-25℃で3
15 0分間攪拌した。ろ過後、減圧濃縮し、121 mgの7ーフェニルー3,4ージヒド
ロー2H-1,4ーベンズオキサジンー5ーアミンの粗生成物を得た。

この粗生成物に参考例4の合成の際と同様の操作を行い(2-オキソー8-フェニルー4, 5-ジヒドロイミダゾ [1, 5, 4-de] [1, 4] ベンズオキサジンー1 (2H) -イル)酢酸を得た。

20 IR (cm<sup>-1</sup>):1036,1201,1336,1653,1724

#### 参考例31

25

tertーブチル (2ーオキソー9ーフェニルー4, 5, 6, 7ーテトラヒドロイミダゾ [4, 5, 1-jk] [1] ベンズアゼピンー1 (2H) ーイル) アセテート

文献 (Tetrahedron Lett., (1983), 24, 4711-4

63

712)

に記載の方法に従い得られる 2, 3, 4, 5ーテトラヒドロー1 H-1 ーベンズアゼピンを用いて参考例 1 6 の化合物を合成した際と同様の方法により t e r t ーブチル (9 ーブロモー2 ーオキソー4, 5, 6, 7 ーテトラヒドロイミダゾベンズアゼピン-1 (2 H) ーイル)アセテートを合成した。

tertーブチル (9ーブロモー2ーオキソー4, 5, 6, 7ーテトラヒドロイミダゾベンズアゼピンー1 (2H) ーイル) アセテート (1.84g, 4.83 mmol)、フェニルほう酸 (706mg, 5.79mol)、テトラキストリフェニルホスフィンパラジウム (168mg, 145μmol)の1, 4ージオキサン (20mL)溶液に炭酸カリウム (2.00g, 14.5mmol)の水溶液 (4.0mL)を加え、窒素置換を行った後、5時間還流下攪拌した。反応液を20ー25℃まで冷却し、5%炭酸カリウム水溶液、クロロホルムを加えて分液した。有機層を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥、ろ過後、溶媒を減圧濃縮した。得られた残渣をジエチルエーテル/ヘキサンで懸濁させ結晶を濾取することでtertーブチル (2ーオキソー9ーフェニルー4, 5, 6, 7ーテトラヒドロイミダゾ [4, 5, 1ーjk] [1] ベンズアゼピンー1 (2H) ーイル)アセテート (1.74g, 95%)を得た。

IR (cm<sup>-1</sup>):1153,1234,1481,1701,1741

#### 20 参考例32

(2-オキソー9-フェニルー4, 5, 6, 7-テトラヒドロイミダゾ <math>[4, 5, 1-jk] [1] ベンズアゼピンー1 (2H) ーイル)酢酸

tertーブチル (2-オキソー9-フェニルー4, 5, 6, 7ーテトラヒドロイミダゾ [4, 5, 1-jk] [1] ベンズアゼピンー1 (2H) ーイル) アセラートに参考例4と同様の操作を行い(2-オキソー9-フェニルー4, 5, 6, 7ーテトラヒドロイミダゾ [4, 5, 1-jk] [1] ベンズアゼピンー1 (2H)

)ーイル)酢酸を合成した。

IR (cm<sup>-1</sup>):1200,1433,1483,1660,1730

### 参考例33

5 2ーブロモーNーメチルーNーフェニルアセトアミド

N-メチルアニリン (1.90 mL, 17.5 mm o 1)、トリエチルアミン (2.44 mL, 17.5 mm o 1) の酢酸エチル (40 mL) 溶液に0  $\mathbb{C}$  にてブロモアセチルブロミド (1.52 mL, 17.5 mm o 1) の酢酸エチル (40 mL) 溶液を加え、20-25  $\mathbb{C}$  にて30 分攪拌した。反応後、ろ過し、溶媒を減圧留去することで2- ブロモーN- メチルーN- フェニルアセトアミド (4.60 g, 定量的)を得た。

IR (cm<sup>-1</sup>):1109, 1375, 1593, 1624, 1683

#### 参考例34

10

#### 参考例35

25 tertーブチル [2-オキソー5-(4,4,5,5-テトラメチルー1,3 ,2-ジオキサボランー2-イル)-1,3-ベンズオキサゾールー3(2H)-

 $IR (cm^{-1}) : 933, 1103, 1144, 1497, 1684$ 

イル] アセテート

参考例3で合成した化合物(5.00g, 15.2mmol)、ビス(ピナコラト)ジボロン(4.26g, 16.8mmol)、酢酸カリウム(2.25g, 22.9mmol)、トリシクロヘキシルホスフィン(1.03g, 3.67mmol)と1,4ージオキサン(95mL)の混合物に20-25℃で攪拌下、トリス(ジベンジリデンアセトン)ジパラジウム(0)(699.5mg, 0.764mmol)を加え、その後24時間加熱還流した。反応液を20-25℃まで冷却した後、飽和炭酸水素ナトリウム水溶液に注ぎ、酢酸エチルで抽出した。有機層を水、飽和食塩水の順に洗い、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1~5/1)で精製し、tertーブチル [2-オキソー5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)-1,3-ベンズオキサゾールー3(2H)-イル]アセテート(4.46g,78%)を得た。

## 15 参考例36

Nーメチルー2ー [2-オキソー5-(4, 4, 5, 5-テトラメチルー1, 3, 2-ジオキサボランー2ーイル) -1, 3-ベンズオキサゾールー3 <math>(2H) ーイル[2-N-7エニルアセトアミド

実施例27で得た化合物を出発原料とし、参考例35と同様の方法によって合成20 した。

 $IR (cm^{-1}) : 704, 1140, 1458, 1666, 1786$ 

### 参考例37

(5-クロロー2-オキソー1, 3-ベンズオキサゾールー3 (2H) -イル)酢 25 酸

5 ークロロー1, 3 ーベンズオキサゾールー2(3H)ーオンを出発原料とし、

66

参考例3、参考例4と同様の操作を行い合成した。

 $IR (cm^{-1}) : 798, 1240, 1724, 1774, 3064$ 

参考例38

5 (5-シアノー2ーオキソー1, 3ーベンズオキサゾールー3 (2H) ーイル) 酢酸

4ーヒドロキシー3ーニトロベンゾニロリルを出発原料とし、実施例28、参考 例2~4と同様の操作を行い合成した。

 $IR (cm^{-1}) : 673, 1243, 1490, 1730, 3084$ 

10

### 実施例1

2-(2-オキソー5-フェニルー1, 3-ベンズオキサゾールー3(2H)ーイル)-N, N, -ジプロピルアセトアミド

参考例 5 で合成した化合物(2 6 9 m g, 1.00 m m o 1)のN, N ージメチルホルムアミド(1.0 m L)溶液に20-25℃で1-エチルー3-(3ージメチルアミノプロピル)ーカルボジイミド塩酸塩(2 3 0 m g, 1.20 m m o 1)、1-ヒドロキシベンゾトリアゾール(1 3 5 m g, 1.00 m m o 1)、ジプロピルアミン(1 3 7 μ L, 1.00 m m o 1)を順次加え20-25℃にて3時間攪拌した。反応後、反応液に水を加え酢酸エチル/トルエン(1/1)混合溶媒で10 抽出した。この有機層を水、5%硫酸水素ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。ろ過後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製することにより、2-(2-オキソー5-フェニルー1,3-ベンズオキサゾールー3(2 H)ーイル)ーN,N,ージプロピルアセトアミド(219 m g,62%)を得た。

IR (cm<sup>-1</sup>):1147,1485,1647,1772,1790

67

### 実施例2

3-[2-(3,4-ジヒドロキノリン-1(2H)-イル)-2-オキソエチル ] -5-フェニル-1,3-ベンズオキサゾール-2(3H)-オン

5 参考例5で合成した化合物から実施例1と同様の方法で合成した。

IR (cm<sup>-1</sup>):1022,1387,1487,1643,1784

### 実施例3

3-[2-(3,4-ジヒドロイソキノリン-2(1H)-イル)-2-オキソエ 5-[2-(3,4-ジヒドロイソキノリン-2(1H)-イル)-2-オキソエ 5-[2-(3,4-ジヒドロイソキノリン-2(1H)-イル)-2-オキソエ 参考例 5-[2-(3,4-i)] 5-[2-(3,4-i)]

## 実施例4

20

25

15 メチル 3ー {メチル [ (5ーフェニルー1, 3ーベンズオキサゾールー3 (2 H) ) ーイル) アセチル] アミノ} ベンゾエート

参考例 5 で合成した化合物(1.08 mg, 4.00 mm o 1)のジクロロメタン(15 mL)懸濁溶液に 20-25 でオキサリルクロライド( $384\mu$ L, 4.40 mm o 1)を加えた後さらにN,Nージメチルホルムアミドを 1 滴加え、1時間攪拌した。反応後、溶媒を減圧留去し、トルエンを加え再び減圧溜去した。さらに真空ポンプにて十分溶媒を取り除いた後、テトラヒドロフラン(10 mL)を加え酸クロライド溶液を調製した。メチル 3-( メチルアミノ)ベンゾエート(793 m g, 4.80 mm o 1)のテトラヒドロフラン(10 m L)溶液に調製した酸クロライド溶液を 20-25 で滴下し、30 分攪拌した。反応後、水を加え酢酸エチルで抽出した。この有機層を 1 N塩酸水溶液、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。濾過後、溶媒を減圧留去して得られた残渣をシ

68

リカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル= $3/1\sim1/1$ )で精製することにより、メチル  $3-\{$ メチル  $[(5-フェニル-1, 3-ベンズオキサゾール-3(2H)-イル)アセチル]アミノ<math>\}$ ベンゾエート(1.37g,82%)を得た。

5 IR (cm<sup>-1</sup>):1086,1242,1483,1672,1774

参考例5で合成した化合物から、実施例1または実施例4と同様の方法で、実施 例5-25の化合物を得た。

$$\begin{array}{c|c}
O \\
NR^{1}R^{2} \\
\hline
O \\
O
\end{array}$$

|                  | U     |                                                                        |                          |  |  |
|------------------|-------|------------------------------------------------------------------------|--------------------------|--|--|
| 実施例番号            | $R^1$ | $R^2$                                                                  | IR(cm <sup>-1</sup> )    |  |  |
| 5                | Me    | Ph<br><b>OMe</b>                                                       | 1120、1385、1485、1662、1778 |  |  |
| 6.               | Me    |                                                                        | 1039、1383、1485、1674、1782 |  |  |
| 7                | Me    | → OMe                                                                  | 1022,1248,1508,1670,1770 |  |  |
| 8                | Me    |                                                                        | 1020,1250,1481,1672,1770 |  |  |
| 9                | Me    | — <u>⟨_</u> >-CI                                                       | 1090、1250、1483、1670、1768 |  |  |
| 10               | Me    |                                                                        | 1020、1250、1383、1483、1664 |  |  |
| 11               | Me    | OH<br>———OH                                                            | 920、1120、1387、1481、1657  |  |  |
| 12               | Me    | ОН                                                                     | 1124,1244,1483,1655,1778 |  |  |
| 13               | Me    | $ \sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ | 1082,1381,1483,1714,1770 |  |  |
| 14               | Me    | NMe <sub>2</sub>                                                       | 1020、1442、1479、1658、1778 |  |  |
| 15               | Me    | NMe <sub>2</sub>                                                       | 1392、1484、1600、1650、1783 |  |  |
| 16               | Me    |                                                                        | 925,1486,1521,1646,1785  |  |  |
| NMe <sub>2</sub> |       |                                                                        |                          |  |  |

|       |                                        | _1.                                                                                           |
|-------|----------------------------------------|-----------------------------------------------------------------------------------------------|
| $R^1$ | $R^2$                                  | $IR(cm^{-1})$                                                                                 |
| Me    | 2-Py                                   | 1022、1252、1589、1670、1772                                                                      |
| Me    | 3-Py                                   | 1097、1381、1485、1670、1780                                                                      |
| Me    | シクロヘキシル                                | 1097、1238、1485、1643、1778                                                                      |
| Me    | Bn                                     | 1026, 1483, 1649, 1749, 1768                                                                  |
| Et    | Ph                                     | 1018、1257、1487、1664、1776                                                                      |
| Et    | 3-Py                                   | 1020、1284、1653、1670、1792                                                                      |
| Et    | Bn                                     | 1247, 1392, 1483, 1646, 1768                                                                  |
| Pr    | $-(CH_2)_2$ -OMe                       | 1252、1390、1483、1647、1782                                                                      |
| i-Pr  | Ph                                     | 1252、1481、1653、1670、1794                                                                      |
|       | Me<br>Me<br>Me<br>Me<br>Et<br>Et<br>Et | Me 2-Py Me 3-Py Me シクロヘキシル Me Bn Et Ph Et 3-Py Et Bn Pr -(CH <sub>2</sub> ) <sub>2</sub> -OMe |

# 実施例 2 6

N-メチル-2-(5-ニトロ-2-オキソー1,3-ベンズオキサゾール-3(

5 2H) ーイル) ーNーフェニルアセトアミド

参考例6で合成した化合物から実施例1と同様の方法で合成した。

IR (cm<sup>-1</sup>):1338,1485,1522,1664,1790

### 実施例27

10 2 - (5 - プロモー2 - オキソー1, 3 - ベンズオキサゾールー3 (2 H) - イル ) - N - メチルーN - フェニルアセトアミド

参考例4で合成した化合物(10.0g, 36.8mmo1)のN, N-ジメチルホルムアミド(1.0mL)溶液に20-25℃でN-メチルアニリン(4.78mL,44.1mmo1)、1-エチル-3-(3-ジメチルアミノプロピル) -カルボジイミド塩酸塩(9.07g,47.3mmo1)、1-ヒドロキシベンゾトリアゾール(4.97g,36.8mmo1)を順次加え、16時間攪拌した。反応後、水を加え酢酸エチル/トルエン(1/1)混合溶媒で抽出した。この有機層を水で洗浄してから無水硫酸ナトリウムにて乾燥した。ろ過後、溶媒を減圧留

71

去して得られた残渣を2-プロパノールを用いて再結晶することにより2-(5-ブロモー2-オキソー1, 3-ベンズオキサゾールー3(2H)-イル)-N-メチル-N-フェニルアセトアミド(11.1g,84%)を得た。

IR (cm<sup>-1</sup>): 1120, 1377, 1483, 1666, 1772

5

### 実施例28

N-メチルー2-(2-オキソー1, 3-ベンズオキサゾールー3(2H)-イル)-N-フェニルアセトアミド

窒素気流下10%パラジウム炭素(3.00mg)のメタノール(1.0m1) 10 溶液中に実施例27で合成した化合物(36.6mg, 0.101mmo1)のメ タノール(3.0m1)溶液を加え、水素雰囲気下にて20-25℃で2時間攪拌 した。セライト濾過の後、減圧留去することでN-メチル-2-(2-オキソー1 ,3-ベンズオキサゾール-3(2H)-イル)-N-フェニルアセトアミド(3 0.7mg,100%)を得た。

15 IR (cm<sup>-1</sup>):1020,1240,1489,1670,1767

### 実施例 2 9

20

25

N-メチル-2-(2-オキソー5-ピリジン-3-イル-1, 3-ベンズオキサ ゾール-3(2H)-イル)-N-フェニルアセトアミド

実施例27で合成した化合物(1.08g, 3.00mmol)、3ーピリジンほう酸(443mg, 3.60mmol)、テトラキストリフェニルホスフィンパラジウム(104mg, 90.0μmol)の1,4ージオキサン(30mL)溶液に炭酸カリウム(1.24g, 9.00mmol)の水溶液(6.0mL)を加え、2時間還流下攪拌した。反応後、0℃にて飽和炭酸水素ナトリウム水溶液/酢酸エチルの混合溶液に注ぎ、酢酸エチルにて抽出した。この有機層を飽和食塩水で洗浄してから、無水硫酸ナトリウムにて乾燥した。ろ過後、溶媒を減圧留去して得

られた残渣を2-プロパノールを用いて再結晶することによりN-メチルー2-(2-オキソー5-ピリジンー3-イルー1, 3-ベンズオキサゾールー3 (2 H) -イル) -N-フェニルアセトアミド (746mg, 69%) を得た。 IR (cm $^{-1}$ ): 1022、1246、1483、1657、1780

5

実施例27で合成した化合物から、実施例29と同様の方法で、実施例30-3 7の化合物を得た。

| 実施例番号 | $R^{6}$           | $IR(cm^{-1})$                |
|-------|-------------------|------------------------------|
|       | OMe               | ,                            |
| 30    |                   | 1020, 1379, 1483, 1670, 1778 |
| 31    | MeO               | 1020, 1387, 1489, 1670, 1772 |
| 32    | CF <sub>3</sub>   | 1016,1381,1489,1651,1788     |
|       | NHBoc             | •                            |
| 33    |                   | 1018, 1157, 1238, 1666, 1766 |
| 34    | Me <sub>2</sub> N | 1232、1386、1490、1673、1762     |
| 35    | 2-Pv              | 1080、1387、1587、1660、1786     |
|       | 4 D.              |                              |
| 36    | 4-Py              | 1016、1383、1485、1668、1780     |
| 37    | 3ーチエニル            | 1022、1371、1490、1658、1774     |
|       |                   |                              |

## 10 実施例38

2-[5-(4-アミノフェニル)-2-オキソー1,3-ベンズオキサゾールー3(2H)-イル]-N-メチル-N-フェニルアセトアミド塩酸塩

IR (cm<sup>-1</sup>):1120,1243,1382,1483,1774

参考例3で合成した化合物から、参考例4、実施例1および実施例29と同様の 10 方法で、実施例39-41の化合物を得た。

| 実施例番号 | R <sup>6</sup>    | $IR(cm^{-1})$                |
|-------|-------------------|------------------------------|
| 39    | NHBoc             | 1155, 1234, 1484, 1648, 1778 |
| 40    | Me <sub>2</sub> N | 1018,1234,1488,1608,1770     |
| 41    | 3ーチエニル            | 1018,1147,1234,1646,1770     |

参考例3で合成した化合物から、参考例4、実施例1および実施例29と同様の 方法で、実施例42-45の化合物を得た。

| 実施例番号 | $R^6$             | $IR(cm^{-1})$                |
|-------|-------------------|------------------------------|
| 42    | NHBoc             | 1160、1240、1484、1646、1785     |
| 43    | Me <sub>2</sub> N | 1243, 1488, 1610, 1648, 1781 |
| 44    | 4-Py              | 1030、1485、1597、1647、1792     |
| 45    | 3ーチエニル            | 1253, 1380, 1494, 1648, 1785 |

# 実施例46

2- [5-(4-アミノフェニル)-2-オキソー1,3-ベンズオキサゾールー

3 (2H) -イル] -N-ベンジル-N-メチルアセトアミド塩酸塩

IR (cm<sup>-1</sup>):1024,1251,1484,1652,1770

10

### 実施例47

2-(5-アニリノ-2-オキソー1,3-ベンズオキサゾール-3(2H)-イル)-N-メチル-N-フェニルアセトアミド

トリス(ジベンジリデンアセトン)ジパラジウム(22.9mg,25.0 $\mu$ m o 1)、4,5-ビス(ジフェニルホスフィノ)-9,9'-ジメチルキサンテン (43.4mg,75.0 $\mu$ mo1)のトルエン(4.0mL)溶液を窒素置換後、30 $^{\circ}$ にて30分攪拌した。反応溶液を20-25 $^{\circ}$ に戻した後、実施例27 $^{\circ}$ で

合成した化合物( $181 \,\mathrm{mg}$ ,  $500 \,\mu\,\mathrm{mo}\,1$ )、炭酸セシウム( $228 \,\mathrm{mg}$ ,  $700 \,\mu\,\mathrm{mo}\,1$ )、アニリン( $68.3 \,\mu\,\mathrm{L}$ ,  $750 \,\mu\,\mathrm{mo}\,1$ )を加え、窒素置換を行い5時間、還流下攪拌した。反応後、反応液を $20-25 \,\mathrm{C}$ まで冷却し飽和炭酸水素ナトリウム水溶液を加えクロロホルムにて抽出した。この有機層を飽和食塩水で洗浄してから、無水硫酸ナトリウムにて乾燥した。濾過後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー( $0.2 \,\mathrm{mg}$ )が開業することにより、 $0.2 \,\mathrm{mg}$ 0、 $0.2 \,\mathrm{mg}$ 0 を得た。

10 IR (cm<sup>-1</sup>):1020,1387,1489,1595,1757

実施例27で合成した化合物から、実施例47と同様の方法で、実施例48および実施例49の化合物を得た。

| 実施例番号 | $R^6$   | $IR(cm^{-1})$            |
|-------|---------|--------------------------|
| 48    | Me<br>N | 1227、1392、1495、1655、1768 |
| 49    | H<br>N  | 1018、1491、1581、1627、1770 |

15

5

### 実施例50

N-y チルー 2-(2-x) キソー 5-y エノキシー 1 、 3-x ンズオキサゾールー 3(2H)-7 ルーフェニルアセトアミド

10

フェノール(188mg, 2.00mmol)のピリジン(2.0mL)溶液に実施例27で合成した化合物(181mg, 0.500mmol)、炭酸カリウム(415mg, 3.00mmol)、酸化銅(II)(199mg, 2.50mmol)を加え、窒素置換を行った後、11時間還流下攪拌した。反応後、反応液を20-25℃まで冷却し、クロロホルムで希釈した後、濾過した後、濾液に水を加え、クロロホルムにて抽出した。この有機層を2N塩酸水溶液で洗浄してから、無水硫酸ナトリウムにて乾燥した。濾過後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製することにより、Nーメチルー2-(2ーオキソー5ーフェノキシー1,3ーベンズオキサゾールー3(2H)ーイル)ーNーフェニルアセトアミド(100mg,53%)を得た。

IR (cm<sup>-1</sup>):1016,1387,1487,1664,1778

参考例8または参考例9で合成した化合物から、実施例1および実施例29と同 15 様の方法で、実施例51-54の化合物を得た。

| 実施例番号 | $R^6$ | R <sup>8</sup> | $IR(cm^{-1})$            |
|-------|-------|----------------|--------------------------|
| 51    | Br    | Н              | 1234、1325、1471、1643、1695 |
| 52    | Н     | Br             | 1145、1236、1456、1641、1695 |
| 53    | Ph    | Н              | 1232、1336、1467、1635、1687 |
| 54    | Н     | Ph             | 1144、1236、1470、1643、1680 |

参考例8または参考例9で合成した化合物から、実施例1および実施例29と同様の方法で、実施例55-58の化合物を得た。

| 1 \   |       |                |                              |
|-------|-------|----------------|------------------------------|
| 実施例番号 | $R^6$ | R <sup>8</sup> | IR(cm <sup>-1</sup> )        |
| 55    | Br    | Н              | 1331, 1470, 1583, 1660, 1684 |
| 56    | Н     | Br             | 1313、1465、1589、1662、1684     |
| 57    | Ph    | Н              | 1118、1330、1495、1593、1670     |
| 58    | Н     | . Ph           | 1322、1429、1495、1593、1664     |

5 参考例10または参考例11で合成した化合物から、実施例1および実施例29 と同様の反応を行い、実施例59および実施例60の化合物を得た。

| 実施例番号 | $R^6$ | $R^7$ | $IR(cm^{-1})$            |
|-------|-------|-------|--------------------------|
| 59    | Н     | Ph    | 1232、1396、1449、1653、1712 |
| 60    | Ph    | Н     | 1230、1406、1440、1647、1712 |

参考例10または参考例11で合成した化合物から、実施例1および、実施例2 10 9または実施例47と同様の方法で、実施例61-66の化合物を得た。

| 実施例番号 | $R^6$  | $R^7$          | IR(cm <sup>-1</sup> )        |
|-------|--------|----------------|------------------------------|
| 61    | Н      | Ph             | 1389、1435、1489、1672、1716     |
| . 62  | Ph     | Н              | 1389、1441、1495、1670、1695     |
| 63    | H      | 3-Py           | 1290、1392、1490、1670、1720     |
| 64    | 3-Py   | H.             | 1118, 1425, 1493, 1659, 1697 |
| 65    | Н      | N <sub>N</sub> | 1389、1497、1579、1655、1713     |
| 66    | H<br>N | H<br>H         | 1313、1390、1504、1662、1695     |

参考例10または参考例11で合成した化合物から、実施例1または実施例4、 および実施例29と同様の方法で、実施例67-69の化合物を得た。

$$R^6$$
 $R^7$ 
 $R^7$ 
 $R^2$ 
 $R^7$ 
 $R^7$ 

| 実施例番号 | $R^2$ | R <sup>6.</sup> | $R^7$ | $IR(cm^{-1})$                |
|-------|-------|-----------------|-------|------------------------------|
| 67    | i-Pr  | H               | Ph    | 1249、1444、1529、1651、1724     |
| 68    | i-Pr  | Ph              | Н     | 1168, 1259, 1439, 1649, 1716 |
| 69    | t-Bu  | Ph              | Н     | 1238、1438、1662、1691、1710     |

79

1-(2-オキソー2-ピペリジンー1-イルエチル)-8-フェニルー5,6-ジェドロー4H-イミダゾ <math>[4,5,1-ij]キノリンー2 (1H)-オン参考例18で合成した化合物から実施例1と同様の方法で合成した。

IR (cm<sup>-1</sup>):1011,1228,1498,1643,1697

5

### 実施例71

1-[2-(3,4-ジヒドロキノリン-1(2H)-イル)-2-オキソエチル ] -8-フェニル-5,6-ジヒドロ-4H-イミダゾ [4,5,1-ij] キノリン-2(1H)-オン

10 参考例18で合成した化合物から実施例1と同様の方法で合成した。

IR (cm<sup>-1</sup>):1105,1230,1435,1641,1720

### 実施例72

1-[2-(3, 4-ジヒドロイソキノリン-2(1H)-イル)-2-オキソエ 5 チル]-8-フェニル-5, 6-ジヒドロー4H-イミダゾ [4, 5, 1-ij] キノリン-2(1H)-オン

参考例18で合成した化合物から実施例1と同様の方法で合成した。

IR (cm<sup>-1</sup>):14.12、1464、1491、1654、1704

### 20 参考例 7 3

1-[2-(2,3-ジヒドロー4H-1,4-ベンズオキサジンー4-イル)-2-オキソエチル]-8-フェニルー5,6-ジヒドロー4H-イミダゾ <math>[4,5], [4,5]

参考例18で合成した化合物から実施例4と同様の方法で合成した。

25 IR (cm<sup>-1</sup>):1257, 1394, 1429, 1490, 1670

参考例18で合成した化合物から、実施例1または実施例4と同様の方法で、実施例74-109の化合物を得た。

| 実施例番号 | $R^1$ | $R^2$              | $IR(cm^{-1})$               |
|-------|-------|--------------------|-----------------------------|
| 74    | Н     | Ph .               | 1196、1238、1497、1558、1687    |
| 75    | Н     | i-Pr               | 972, 1230, 1423, 1662, 1713 |
| 76    | Me    | Ph                 | 1122,1230,1423,1666,1713    |
| 77    | Me    | OMe                | 970、1284、1489、1674、1693     |
| 78    | Me    | OMe                | 1120,1238,1425,1662,1691    |
| 79    | Me    | CI                 | 1018,1280,1492,1591,1674    |
| 80    | Me    | CI                 | 1012,1284,1425,1670,1695    |
| 81    | Me    |                    | 1103,1491,1660,1676,1705    |
| 82    | Me    | OH                 | 1065,1234,1488,1653,1691    |
| 83    | Me    | ОН                 | 970、1016、1421、1674、1693     |
| 84    | Me    |                    | 1290、1421、1493、1676、1705    |
| 85    | Me    | CO <sub>2</sub> Me | 972、1103、1423、1662、1705     |
| 86    | Me    | CO <sub>2</sub> Me | 974、1275、1425、1659、1701     |

| 実施例番号 | $R^1$ | $R^2$                   | $IR(cm^{-1})$                |
|-------|-------|-------------------------|------------------------------|
| 87    | Me    | CONH <sub>2</sub>       | 1234、1383、1425、1491、1662     |
| 88    | Me    | CONH <sub>2</sub>       | 1107、1383、1645、1674、1697     |
| 89    | Me    | CONH <sub>2</sub>       | 1387, 1429, 1492, 1666, 1700 |
| 90    | Me    | CO <sub>2</sub> H       | 1132, 1232, 1383, 1491, 1699 |
| 91    | Me    | OMe                     | 972, 1228, 1491, 1655, 1695  |
| 92    | Me    | NMe <sub>2</sub>        | 1105, 1236, 1490, 1646, 1700 |
| 93    | Me    | $\sim$ NMe <sub>2</sub> | 1427, 1494, 1604, 1654, 1691 |
| 94    | Me    | NMe <sub>2</sub>        | 1429、1496、1521、1658、1712     |
| 95    | Me    | 2-Ру                    | 974、1134、1313、1660、1697      |
| 96    | Me    | 3-Ру                    | 972, 1232, 1423, 1666, 1709  |
| 97    | Me    | 4-Py                    | 970、1238、1429、1587、1672      |
| 98    | Me    | N <sub>3</sub>          | 1101,1238,1423,1650,1697     |
| 99    | Me    | N                       | 1236, 1419, 1496, 1643, 1704 |
| 100   | Me    |                         | 1288、1415、1496、1652、1708     |

**WO** 2005/080334

| 実施例番号 | $R^1$ | $R^2$            | IR(cm <sup>-1</sup> )        |
|-------|-------|------------------|------------------------------|
| 101   | Me    | Bn               | 1124、1236、1493、1653、1693     |
| 102   | Me    | シクロヘキシル          | 1146、1230、1495、1643、1716     |
| 103   | Me    | 9                | 1084、1230、1495、1649、1713     |
| 104   | Et    | Ph               | 1132,1230,1423,1664,1713     |
| 105   | Et    | Bn               | 975, 1261, 1425, 1652, 1704  |
| 106   | Et    | 3-Py             | 1136, 1281, 1425, 1670, 1713 |
| 107   | Pr    | Pr               | 1101,1230,1495,1649,1705     |
| 108   | Pr    | $-(CH_2)_2$ -OMe | 1446,1494,1649,1689,1706     |
| 109   | i-Pr  | Ph               | 1117,1298,1425,1659,1689     |

## 実施例110

2-(8-ブロモ-2-オキソー5,6-ジヒドロ-4H-イミダゾ [4,5,1] -ij]キノリン-1(2H)-イル)-N,N-ジプロピルアセトアミド 参考例17で合成した化合物から実施例1と同様の方法で合成した。 IR(cm<sup>-1</sup>):978、1232、1409、1641、1707

## 実施例111

2-(8-ブロモー2-オキソー5,6-ジヒドロー4Hーイミダゾ [4,5,1]
 -ij] キノリンー1(2H) ーイル) -NーメチルーNーフェニルアセトアミド 参考例17で合成した化合物から実施例1と同様の方法で合成した。
 IR(cm<sup>-1</sup>):970、1103、1504、1662、1705

## 15 実施例112

N-ベンジル-2- (8-ブロモ-2-オキソー5, 6-ジヒドロー4H-イミダ

83

ゾ [4, 5, 1-ij] キノリンー1 (2H) ーイル) ーNーメチルアセトアミド 参考例17で合成した化合物から実施例1と同様の方法で合成した。

IR (cm<sup>-1</sup>):1016,1232,1408,1655,1695

実施例113 5

10

Nーメチルー2ー(2ーオキソー5,6ージヒドロー4Hーイミダゾ[4,5,1 - i j] キノリン-1 (2H) -イル) -N-フェニルアセトアミド 実施例111で合成した化合物から実施例28と同様の方法で合成した。

IR (cm<sup>-1</sup>):970,1099,1421,1660,1699

実施例111で合成した化合物から、実施例29と同様の方法で、実施例114 -122の化合物を得た。

| ,     |                  |                              |
|-------|------------------|------------------------------|
| 実施例番号 | $R^6$            | IR(cm <sup>-1</sup> )        |
| 114   | MeO              | 972、1236、1491、1660、1705      |
| 115   | MeO              | 1034, 1242, 1425, 1487, 1668 |
| 116   | F <sub>3</sub> C | 1072、1117、1329、1660、1716     |
| 117   | F <sub>3</sub> C | 974、1065、1323、1660、1709      |
| 118   | $Me_2N$          | 1124、1419、1504、1670、1689     |
| 119   | 2-Py             | 1126、1230、1425、1666、1705     |
| 120   | 3-Ру             | 974、1421、1491、1659、1691      |
| 121   | 4-Py             | 974、1234、1497、1662、1709      |
| 122   | 3ーチエニル           | 971,1427,1494,1662,1704      |

参考例16で合成した化合物から、参考例4、実施例1または実施例4、および 実施例29と同様の方法で、実施例123-127の化合物を得た。

| 実施例番号            | $R^6$             | IR(cm <sup>-1</sup> )        |
|------------------|-------------------|------------------------------|
| 123              | 2-Py              | 974、1228、1437、1643、1701      |
| $1\overline{2}4$ | 3-Ру              | 1147, 1228, 1414, 1643, 1691 |
| 125              | 4-Py              | 1147、1230、1412、1647、1705     |
| 126              | Me <sub>2</sub> N | 1230、1504、1608、1652、1700     |
| 127              | 3ーチエニル            | 1145、1230、1508、1652、1704     |

参考例16で合成した化合物から、参考例4、実施例1または実施例4、および 実施例29と同様の方法で、実施例128-132の化合物を得た。

5

| 実施例番号 | · R <sup>6</sup>  | $IR(cm^{-1})$            |
|-------|-------------------|--------------------------|
| 128   | 2-Ру              | 1113,1230,1466,1643,1713 |
| 129   | 3-Py              | 1111,1240,1433,1651,1682 |
| 130   | 4-Py              | 991、1105、1497、1647、1716  |
| 131   | Me <sub>2</sub> N | 1118,1427,1506,1662,1691 |
| 132   | 3ーチエニル            | 1097、1409、1508、1654、1700 |

実施例111で合成した化合物から、実施例47と同様の方法で、実施例133

- 1 3 5 の化合物を得た。

| 実施例番号 | $R^6$   | $IR(cm^{-1})$            |
|-------|---------|--------------------------|
| 133   | H<br>N  | 974、1124、1493、1668、1691  |
| 134   | H<br>N. | 1122,1327,1429,1581,1647 |
| 135   | Me<br>N | 1122、1423、1486、1656、1712 |

### 実施例136

5 Nーメチルー2ー(2ーオキソー8ーフェノキシー5,6ージヒドロー4Hーイミダゾ [4,5,1-ij] キノリンー1(2H)ーイル)-Nーフェニルアセトアミド

実施例111で合成した化合物から実施例50と同様の方法で合成した。

IR (cm<sup>-1</sup>): 957, 1124, 1209, 1423, 1674

10

## 実施例137

15 参考例20で合成した化合物から実施例4と同様の方法で合成した。

 $^{1}$  H-NMR (CDC1<sub>3</sub>)  $\delta$  1. 52 (d, 3H, J=7. 1Hz), 2. 02

87

(quintet, 2H, J=5. 9Hz), 2. 78 (t, 2H, J=6. 0Hz), 3. 25 (s, 3H), 3. 59-3. 53 (m, 1H), 3. 70-3. 64 (m, 1H), 5. 23 (q, 1H, J=7. 1Hz), 7. 00-6. 97 (m, 3H), 7. 24 (d, 1H, J=1. 1Hz), 7. 37-7. 33 (m, 3H),

### 実施例138

10

2-(8-) ロモー2- オキソー5, 6- ジヒドロー4 Hーイミダゾ [4, 5, 1 - i j ] キノリンー1 (2 H) ーイル) -2, 2- ジフルオローN- メチルーN- フェニルアセトアミド

参考例15および参考例34で合成した化合物から、参考例3と同様の方法で合成した。

<sup>1</sup> H-NMR (CDC1<sub>3</sub>) δ7. 24(d, 2H, J=7. 7Hz), 2. 05 (
quintet, 2H, J=5. 8Hz), 2. 75 (t, 2H, J=6. 0Hz)

15 ), 3. 40(s, 3H), 3. 77(t, 2H, J=5. 8Hz), 7. 00(s, 2H), 7. 10 (t, 1H, J=7. 2Hz), 7. 19 (t, 3H, J=7. 4Hz), 7. 24(d, 2H, J=7. 7Hz).

## 実施例139

20  $2-[8-70\pi-4-(EF0\pi+5)+F)-2-7\pi+7-5$ ,  $6-70\pi-7$  $4H-7\pi+7$  [4, 5, 1-ij]+7+7-1 [2H)-7+7  $[4N-7\pi+7]$ 

参考例21で合成した化合物(43.5mg,154μmo1)のN,N-ジメチルホルムアミド(0.50mL)溶液に、20-25℃にて炭酸カリウム(31.9mg,230μmo1)、参考例33で合成した化合物(45.6mg,200μmo1)のN,N-ジメチルホルムアミド(0.50mL)溶液を加え、50

88

℃にて1.5時間攪拌した。反応後、水を加え酢酸エチル/トルエン(1/1)にて抽出した。この有機層を水、飽和食塩水で洗浄してから無水硫酸ナトリウムにて乾燥した。濾過後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=30/1)で精製することにより、2ー[8-ブロモー4ー(ヒドロキシメチル)-2ーオキソー5,6ージヒドロー4Hーイミダゾ [4,5,1-ij] キノリンー1(2H)ーイル]ーNーメチルーNーフェニルアセトアミド(22.7mg,34%)を得た。

<sup>1</sup> H-NMR (CDC1<sub>3</sub>) δ1. 93-1. 85 (m, 1H), 2. 11-2. 04 (m, 1H), 2. 87-2. 79 (m, 2H), 3. 32 (s, 3H), 3 10 . 95-3. 79 (m, 2H), 4. 16-4. 08 (m, 1H), 4. 34 (s, 2H), 4. 97 (dd, 1H, J=9. 9Hz, 3. 6Hz), 6. 87 (s, 1H), 7. 02 (d, 1H, J1. 4Hz), 7. 34 (d, 2H, J=7. 2Hz), 7. 43 (t, 1H, J=7. 4Hz), 7. 51 (t, 2H, J=7. 8Hz).

15

#### 実施例14.0

実施例139で合成した化合物とから実施例29と同様の方法で合成した。
<sup>1</sup> H-NMR (CDC1<sub>3</sub>) 1.97-1.89 (m, 1H), 2.15-2.0
9 (m, 1H), 2.97-2.92 (m, 2H), 3.31 (s, 3H), 3.
99-3.84 (m, 2H), 4.17-4.11 (m, 1H), 4.43 (s, 2H), 5.23 (dd, 1H, J=10.1Hz, 3.4Hz), 6.91 (s
, 1H), 7.09 (d, 1H, J=1.0Hz), 7.35-7.30 (m, 3H), 7.43 (t, 3H, J=4.1Hz), 7.54-7.48 (m, 4H)

### 実施例141

8ープロモーN, 1ージメチルー2ーオキソーNーフェニルー1, 2, 5, 6ーテ トラヒドロー4 Hーイミダゾ  $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$ , 1ーi j  $\end{bmatrix}$  キノリンー4ーカルボキシアミド

参考例23で合成した化合物から実施例4と同様の方法により合成した。

<sup>1</sup> H-NMR (CDC1<sub>3</sub>) δ7.53-7.49 (m, 4H), 1.90-1.81 (m, 1H), 2.18-2.09 (m, 1H)、2.70 (dt, 1H, J)

10 =16.4Hz, 4.2Hz), 3.01-2.93 (m, 1H), 4.87 (dd, 1H, J=5.4Hz, 3.3Hz), 6.95 (s, 1H), 7.00 (s, 1H), 7.43-7.39 (m, 1H), 7.53-7.49 (m, 4H).

#### 実施例142

N, 1ージメチルー2ーオキソーNーフェニルー1, 2, 5, 6ーテトラヒドロー4Hーイミダゾ [4, 5, 1ーij] キノリンー4ーカルボキシアミド 実施例141で合成した化合物から実施例28と同様の方法により得た。
 IR (cm<sup>-1</sup>):1005、1119、1342、1659、1693

### 20 実施例143

tertーブチル (1ー  $\{2-[$ メチル (フェニル) アミノ]-2-オキソエチル $\}$  2ーオキソー1, 2, 5, 6ーテトラヒドロー4Hーイミダゾ [4, 5, 1-i] キノリンー5ーイル) カルバメート

参考例25で合成した化合物を原料とし実施例27と同様の方法で合成した。

25 IR (cm<sup>-1</sup>): 1166, 1284, 1425, 1496, 1689

90

実施例144

20

実施例143で合成した化合物(145mg, 0.330mmol)の1,4-ジオキサン (0.50mL) 溶液に、4N塩酸/1,4-ジオキサン(0.45m L)を加え、50℃で2.5時間攪拌した。反応後、溶媒を減圧留去し、ジエチル エーテルで懸濁洗浄し、ろ取、乾燥し、2-(5-アミノー2-オキソー5,6-ジヒドロー4Hーイミダゾ [4, 5, 1-ij] キノリンー1 (2H) ーイル)ー N-メチル-N-フェニルアセトアミド塩酸塩(91.0mg、73%)を得た。 10 続いて、得られた化合物(30.0mg,80.0μmo1)のメタノール(0 . 30mL) 溶液に、アセトアルデヒド(約50 μL)、シアノ水素化ホウ素ナト リウム (10.0mg, 160µmo1) を加え、20-25℃で4時間攪拌した 。10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水 で洗浄し、無水硫酸ナトリウムにて乾燥し、ろ過後、溶媒を減圧留去し、2-[5 15 - (ジエチルアミノ) -2-オキソー5, 6-ジヒドロー4H-イミダゾ [4, 5 , 1-ij] キノリンー1 (2H) ーイル] -N-メチル-N-フェニルアセトアミド(28.0mg, 9.1%)を得た。

IR (cm<sup>-1</sup>):1390,1425,1496,1654,1708

参考例30で合成した化合物から、実施例1または実施例4と同様の方法で、実 施例145-147の化合物を得た。

$$\bigcap_{N} \bigcap_{N} \bigcap_{N$$

| •     |       |       |                              |
|-------|-------|-------|------------------------------|
| 実施例番号 | $R^1$ | $R^2$ | IR(cm <sup>-1</sup> )        |
| 145   | Me    | Ph    | 966, 1284, 1495, 1662, 1718  |
| 146   | Me    | Bn    | 966, 1007, 1194, 1653, 1728  |
| 147   | Pr    | Pr    | 1147, 1194, 1410, 1624, 1718 |

参考例32で合成した化合物から、実施例1または実施例4と同様の方法で、実 施例148-150の化合物を得た。

$$\bigcap_{N} \bigcap_{N} \bigcap_{N$$

| - | 実施例番号 | $R^1$ | $R^2$ | $IR(cm^{-1})$                |
|---|-------|-------|-------|------------------------------|
| - | 148   | Мe    | Ph    | 1122、1265、1425、1660、1705     |
|   | 149   | Me    | Bn    | 1119、1352、1483、1655、1705     |
|   | 150   | Pr    | Pr    | 1147, 1232, 1487, 1651, 1713 |

参考例5で合成した化合物から、実施例1または実施例4と同様の方法で、実施 例151-158の化合物を得た。

| 実施例番号 | $R^2$            | $IR(cm^{-1})$              |
|-------|------------------|----------------------------|
| 151   | NMe <sub>2</sub> | 694、756、1483、1662、1778     |
| 152   | NMe <sub>2</sub> | 698、756、1481、1670、1772     |
| 153   | NEt <sub>2</sub> | 692、758、1483、1676、1778     |
| 154   | N N              | 692, 756, 1481, 1666, 1778 |
| 155   |                  | 692, 756, 1113, 1666, 1772 |
| 156   | ОН               | 692, 758, 1481, 1649, 1786 |
| 157   | ОН               | 690、758、1483、1645、1787     |
| 158   | OH               | 687、756、1383、1674、1767     |

参考例5で合成した化合物から、実施例1または実施例4と同様の方法で、実施例159-160の化合物を得た。

| 実施例番号 | $R^2$            | IR(cm <sup>-1</sup> )  |
|-------|------------------|------------------------|
| 159   | NMe <sub>2</sub> | 692、766、1483、1662、1768 |
| 160   | Me               | 694、760、1483、1664、1770 |

参考例5で合成した化合物から、実施例1または実施例4と同様の方法で、実施例161-168の化合物を得た。

| 実施例番号 | $R^2$               | IR(cm <sup>-1</sup> )      |
|-------|---------------------|----------------------------|
| 161   | ОН                  | 692, 758, 1483, 1659, 1767 |
| 162   | CONH <sub>2</sub>   | 692、760、1250、1633、1780     |
| 163   | ONNNMe <sub>2</sub> | 692、758、1383、1630、1780     |
| 164   | ONNNEt <sub>2</sub> | 696、758、1483、1651、1774     |
| 165   | ON N                | 696、758、1483、1651、1765     |
| 166   |                     | 692、758、1649、1664、1786     |
| 167   |                     | 692, 756, 1657, 1672, 1765 |
| 168   | NMe <sub>2</sub> Me | 760、1381、1485、1624、1776    |

## 実施例169

N- (ヒドロキシエチル) -2- (2-オキソ-5-フェニル-1, 3-ベンズオキサゾール-3 (2H) -イル) -N-フェニルアセトアミド

参考例5で合成した化合物から、実施例1と同様の方法で合成した。

5 IR (cm<sup>-1</sup>): 696, 1022, 1387, 1674, 1780

実施例27で合成した化合物から、実施例29と同様の方法で、実施例170-175の化合物を得た。

| 実施例番号 | $R^6$             | $IR(cm^{-1})$           |
|-------|-------------------|-------------------------|
| 170   | Me                | 704、808、1493、1676、1778  |
| 171   | F                 | 700、818、1493、1657、1780  |
| 172   | CI                | 696、814、1481、1676、1782  |
| 173   | NC                | 696、820、1489、1676、1780  |
| 174   | F <sub>3</sub> CO | 692、1151、1489、1662、1774 |
| 175   | O S O Me          | 660、1151、1306、1668、1770 |

10

# 実施例176

Nーメチルー 2 ー [2-オキソー5-(1,3-チアゾールー5-イル)-1,3

96

-ベンズオキサゾールー3 (2H) - イル] - N-フェニルアセトアミド

実施例27で合成した化合物(50.0mg, 138 $\mu$ mol)、5-(トリブチルスタニル)-1, 3-チアゾール(62.2mg, 166 $\mu$ mol)、テトラキストリフェニルホスフィンパラジウム(8.00mg, 6.92 $\mu$ mol)のトルエン(2.0mL)溶液を2時間還流下攪拌した。反応後、0 $^{\circ}$ Cにて飽和炭酸水素ナトリウム水溶液/酢酸エチルの混合溶液に注ぎ、酢酸エチルにて抽出した。この有機層を飽和食塩水で洗浄してから、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾過後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/11)で精製することにより、N-メチルー2-[2-オキソー5-(1,3-チアゾールー5-イル)-1,3-ベンズオキサゾールー3(2H)-イル]-N-フェニルアセトアミド(22.7mg,45%)を得た。

 $IR (cm^{-1}) : 696, 1240, 1377, 1660, 1774$ 

## 15 実施例177

10

20

25

Nーメチルー2ー [2-オキソー5-(フェニルスルホニル)-1, 3-ベンズオキサゾールー3 <math>(2H)-イル]-Nーフェニルアセトアミド

実施例27で合成した化合物(361mg, 1.00mmo1)のジメチルホルムアミド(3.0mL)溶液にベンゼンスルフィン酸・ナトリウム塩(263mg, 1.00mmo1)、よう化銅(286mg, 1.50mmo1)を室温にて加え、110~120℃にて18時間攪拌した。反応後、反応液を室温まで冷却し、水中に注ぎ、酢酸エチル/トルエン(1/1)にて抽出した。この有機層を水で洗浄してから、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾過後、溶媒を減圧留去し、粗精製物をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=2/1)にて精製することによりNーメチルー2~[2ーオキソー5~(フェニルスルホニル) ~1,3~ベンズオキサゾール~3(2H) ~イル] N0つエニルアセトア

97

ミド (13.0mg、3%) を得た。

IR (cm<sup>-1</sup>): 621, 727, 1306, 1680, 1792

# 実施例178

5 2-[5-[4-(ジフルオロメトキシ) フェニル] -2-オキソー1, 3ベンズ オキサゾールー3 (2 H) -イル] -N-メチルーN-フェニルアセトアミド 参考例36で合成した化合物 (50.0mg, 122 μmo1)、1-ブロモー4-(ジフルオロメトキシ)ベンゼン (20.1 μL, 147 μmo1)、テトラキストリフェニルホスフィンパラジウム (7.08 mg, 6.12 μmo1) の1 , 4-ジオキサン (2.0 mL) 溶液に炭酸カリウム (50.8 mg, 367 μmo1) の水溶液 (0.40 mL) を加え、2時間還流下攪拌した。反応後、0℃にて水中に注ぎ、酢酸エチルにて抽出した。この有機層を飽和食塩水で洗浄してから、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾過後、溶媒を減圧留去し、粗精製物をシリカゲルクロマトグラフィー (ヘキサン/酢酸エチル=3/1)にて精製することにより2-[5-[4-(ジフルオロメトキシ)フェニル]-2-オキソー1,3ベンズオキサゾールー3 (2 H) -イル]-N-メチルーN-フェニルアセトアミド (21.1 mg、41%)を得た。

 $IR (cm^{-1}) : 696, 1111, 1495, 1674, 1774$ 

20 参考例36で合成した化合物から、実施例178と同様の方法で、実施例179 -290の化合物を得た。

|       | <u></u>            |                            |
|-------|--------------------|----------------------------|
| 実施例番号 | $R^6$              | $IR(cm^{-1})$              |
| 179   | NH <sub>2</sub>    | 694、740、1385、1664、1765     |
| 180   | N.Me               | 692、764、1493、1664、1778     |
| 181   | NMe <sub>2</sub>   | 700、746、1483、1666、1775     |
| 182   | NMe <sub>2</sub>   | 690、781、1020、1660、1782     |
| 183   | OH                 | 694、1254、1670、1757、3304    |
| 184   | OH                 | 700、1113、1595、1767、3369    |
| 185   | HO                 | 698、1227、1493、1670、3296    |
| 186   | F <sub>3</sub> C O | 661、1163、1238、1680、1772    |
| 187   | Me                 | 708, 822, 1254, 1674, 1778 |
| 188   | F <sub>3</sub> C   | 694、1151、1660、1705、1782    |
| 189   | EtO <sub>2</sub> C | 694、769、1099、1666、1778     |
| 190   | CO <sub>2</sub> H  | 694、1385、1483、1660、1778    |

| 実施例番号 | $R^6$                           | $IR(cm^{-1})$           |
|-------|---------------------------------|-------------------------|
| 191   | HO <sub>2</sub> C               | 769、1105、1236、1711、1782 |
| 192 , | H <sub>2</sub> N                | 706、1489、1657、1678、1770 |
| 193   | Me <sub>2</sub> N               | 766、1387、1487、1659、1786 |
| 194   | NH <sub>2</sub><br>O=\$=O       | 690、1169、1385、1657、1763 |
| 195   | H <sub>2</sub> N <sub>S</sub> O | 815、1165、1325、1655、1782 |
| 196   | Me NH<br>O=S=O                  | 696、1325、1479、1657、1751 |
| 197   | Me N S                          | 692、1163、1319、1655、1778 |
| 198   | Et NH<br>O=\$=O                 | 700、1153、1335、1659、1768 |
| 199   | Et N S                          | 663、1313、1487、1659、1784 |
| 200   | NMe <sub>2</sub><br>O=S=O       | 715、1167、1336、1660、1782 |

| 実施例番号 | $R^6$               | $IR(cm^{-1})$              |
|-------|---------------------|----------------------------|
| 201   | Me <sub>2</sub> N S | 696、1163、1331、1672、1782    |
| 202   | O Me                | 692, 741, 1236, 1660, 1774 |
| 203   | MeO                 | 694、810、1252、1676、1716     |
| 204   | OH                  | 700、1387、1487、1659、1763    |
| 205   | HO                  | 694、798、1490、1668、1784     |
| 206   | t-Bu-ONH            | 702、1244、1485、1662、1772    |
| 207   | Me<br>N O t-Bu      | 748、1144、1481、1666、1778    |
| 208   | Et<br>NO t-Bu       | 752、1144、1481、1674、1776    |
| 209   | $Me_2N$             | 692, 789, 1487, 1662, 1778 |
| 210   |                     | 692, 787, 1487, 1655, 1786 |

| 実施例番号     | $R^6$               | $IR(cm^{-1})$              |
|-----------|---------------------|----------------------------|
| 211       |                     | 694、1020、1383、1662、1774    |
| 212 t-Bu~ | O N<br>Me           | 702、1165、1485、1670、1780    |
| 213       |                     | 692、1383、1485、1662、1778    |
| 214       |                     | 692、1117、1485、1664、1778    |
| 215       |                     | 694、1115、1481、1670、1774    |
| 216       | OH                  | 694、1244、1485、1653、1780    |
| 217       | HO                  | 700、1246、1485、1662、1782    |
| 218       | HO                  | 702、1043、1240、1674、1774    |
| 219 M     | $e_2N$              | 692, 786, 14871660, 1774   |
| 220 M     | le <sub>2</sub> N O | 692, 804, 1489, 1670, 1772 |

| 実施例番号            | $R^6$             | $IR(cm^{-1})$               |
|------------------|-------------------|-----------------------------|
| 221              | Et <sub>2</sub> N | 696、1242、1483、1672、1774     |
| 222 '            | Et <sub>2</sub> N | 692、1234、1489、1672、1774     |
| 223              |                   | 746、1242、1483、1670、1774     |
| 224              |                   | 694、1018、1483、1670、1774     |
| 225              |                   | 692, 1236, 1489, 1672, 1774 |
| 226              | ○N O              | 700、1126、1600、1651、1784     |
| 227              | $0$ N $_{0}$      | 696、1115、1483、1670、1774     |
| 228 <b>t-B</b> u |                   | 698、1167、1242、1670、1776     |
| 229              | Me N              | 694、1020、1485、1664、1778     |
| 230              | Me                | 694、1242、1489、1660、1774     |

| 実施例番号    | $R^6$                               | $IR(cm^{-1})$           |
|----------|-------------------------------------|-------------------------|
| 231      | Et N                                | 694、1383、1489、1659、1784 |
| 232<br>i | -Pr-N                               | 696、1244、1385、1659、1784 |
| 233      | NNN H                               | 696、1485、1599、1670、1772 |
| 234      |                                     | 694、746、1485、1670、1772  |
| 235      | CI                                  | 698、810、1475、1670、1774  |
| 236      | F <sub>3</sub> C<br>NH <sub>2</sub> | 696、808、1113、1664、1790  |
| 237      | CI                                  | 694、1020、1383、1668、1774 |
| 238      | CI                                  | 694、748、1246、1670、1776  |
| 239      | H <sub>2</sub> NOC N                | 872、1120、1389、1651、1778 |
| 240      | MeON                                | 793、1252、1458、1668、1778 |

| 実施例番号 | $R^6$                   | $IR(cm^{-1})$              |
|-------|-------------------------|----------------------------|
| 241   | Et ON                   | 791、1246、1437、1659、1774    |
| 242   | $\nabla$                | 793、1250、1443、1668、1776    |
| 243   |                         | 795、1254、1443、1670、1778    |
| 244   | $N \longrightarrow O N$ | 796、1254、1443、1668、1778    |
| 245   | $H_2N$                  | 698, 796, 1462, 1662, 1782 |
| 246   | NNN                     | 779、1387、1456、1664、1774    |
| 247   | ON N                    | 696、1246、1441、1668、1774    |
| 248   | Me N N                  | 789、1254、1444、1674、1755    |
| 249   | NC_N                    | 696、829、1477、1659、1780     |
| 250   | NC N                    | 688、1022、1246、1657、1778    |

| 実施例番号 | $R^6$                | $IR(cm^{-1})$               |
|-------|----------------------|-----------------------------|
| 251   | F <sub>3</sub> C N   | 704、822、1088、1653、1776      |
| 252 \ | F <sub>3</sub> C     | 700、1020、1132、1655、1784     |
| 253   | H <sub>2</sub> NOC N | 708, 822, 1655, 1689, 1786  |
| 254   | $H_2N$               | 696、1387、1662、1753、3203     |
| 255   | Me N O               | 704、1383、1498、1662、1788     |
| 256   | Et N N               | 700、1022、1497、1659、1780     |
| 257   | MeON                 | 692、1281、1485、1664、1774     |
| 258   | Et O N               | 694、1284、1479、1662、1759     |
| 259   | ON                   | 692, 1282, 1483, 1662, 1778 |
| 260   |                      | 746、1281、1481、1670、1774     |

| 実施例番号                             | $R^6$               | $IR(cm^{-1})$           |
|-----------------------------------|---------------------|-------------------------|
| 261                               | ON ON               | 820、1290、1485、1655、1776 |
| 262 t-E                           | Bu O N O N          | 694、1022、1277、1672、1780 |
| 263                               | Me N                | 694、1041、1279、1479、1772 |
| <b>t-Bu</b><br>264                |                     | 694、1018、1483、1670、1778 |
| <sup>265</sup> t-Bu <sup>-C</sup> |                     | 694、1165、1483、1670、1778 |
| 266                               | $H_2N$              | 694、808、1487、1653、1765  |
| 267                               | Me <sub>2</sub> N N | 696、804、1489、1603、1774  |
| 268                               | NN                  | 812、1493、1595、1672、1767 |
| 269                               | 0                   | 806、1117、1487、1670、1778 |
| 270                               | Me N N              | 744、1235、1485、1670、1778 |

| 実施例番号 | $R^6$        | $IR(cm^{-1})$           |
|-------|--------------|-------------------------|
| 271   | Me           | 706、1020、1639、1682、1786 |
| 272   | $N \sim 0$   | 694、806、1250、1670、1778  |
| 273.  | N            | 694、1014、1250、1670、1780 |
| 274   | 0 > N > 0    | 694、1115、1250、1668、1778 |
| 275   | CI_NN        | 696、704、1389、1674、1786  |
| 276   | $H_2N$ $N$   | 694、1024、1479、1655、1778 |
| 277   | H<br>Me N N  | 692、1117、1606、1759、3244 |
| 278   | Me<br>Me N N | 696、1383、1408、169、1788  |
| 279   | Et N N       | 696、1020、1527、1601、1778 |
| 280   |              | 696、1246、1527、1597、1765 |

| 実施例番号 | $R^6$     | IR(cm <sup>-1</sup> )       |
|-------|-----------|-----------------------------|
| 281   | N N N     | 698、804、1242、1597、1765      |
| 282   | ONNN<br>N | 700、1240、1473、1676、1782     |
| 283   | S         | 696、1014、1495、1664、1774     |
| 284   |           | 696、793、1383、1659、1782      |
| 285   | SN        | 696、1014、1381、1662、1774     |
| 286   | N N       | 690、806、1491、1653、1761      |
| 287   | t-Bu-O    | 698, 1101, 1398, 1686, 1772 |
| 288   | Me-N      | 806、1016、1381、1659、1784     |
| 289   | Et-N      | 806、1385、1487、1657、1784     |
| 290   | i-Pr-N    | 750、1385、1485、1674、1776     |

# 実施例 2 9 1

Nーメチルー 2 ー [2 ーオキソー 5 ー [5 ートリフルオロメチル] ピリジンー 2 ー [5 ー [5] ー

109

アミド

酢酸パラジウム(1. 10mg, 4. 90μmo1)、2ージシクロヘキシルホスフィノー2´ー(N, Nージメチルアミノ)ビフェニル(3. 86mg, 9. 80μmo1)のテトラヒドロフラン(1. 5mL)溶液を20−25℃にて10分 撹拌後、参考例36で合成した化合物(100mg, 245μmo1)、2ークロロー5ートリフルオロメチルピリジン(53. 4mg, 294μmo1)、フッ化セシウム(112mg, 735μmo1)を加え、10時間還流下攪拌した。反応後、反応液を飽和炭酸水素ナトリウム水溶液中に注ぎ、酢酸エチルにて抽出後、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾過後、溶媒を減圧留去し、残渣にメタノールを加え、結晶を濾取しNーメチルー2ー[2ーオキソー5ー[5ートリフルオロメチル]ピリジンー2ーイル]−1, 3ーベンズオキサゾールー3(2H)ーイル]ーNーフェニルアセトアミド(38. 3mg、37%)を得た。IR(cm<sup>-1</sup>):696、1122、1319、1672、1780

15 参考例36で合成した化合物から、実施例291と同様の方法で、実施例292 -294の化合物を得た。

| 実施例番号 | $R^6$            | $IR(cm^{-1})$           |
|-------|------------------|-------------------------|
| 292   | F <sub>3</sub> C | 694、1109、1309、1670、1776 |
| 293   | F <sub>3</sub> C | 694、1109、1311、1674、1778 |
| 294   |                  | 704、814、1468、1653、1782  |

## 実施例295

 $[3-(3-\{2-[メチル(フェニル)アミノ]-2-オキソエチル}-2-オキソー2, 3-ジヒドロー1, 3-ベンズオキサゾールー5ーイル)フェノキシ]酢酸$ 

参考例 3 6 で得られた化合物から実施例 1 7 8 と同様の方法で合成した t e r t - ブチル  $[3-(3-\{2-[メチル(フェニル)アミノ]-2-オキソエチル <math>\}$  -2-オキソ-2, 3-ジヒドロ-1, 3-ベンズオキサゾール-5-イル)フェノキシ]アセテートに対し、参考例 <math>4 と同様の操作を行い合成した。

 $IR (cm^{-1}) : 696, 1022, 1365, 1660, 1763$ 

#### 実施例296

10

 $[4-(3-\{2-[メチル(フェニル)アミノ]-2-オキソエチル\}-2-オ$  15 キソー2, 3-ジヒドロー1, 3-ベンズオキサゾールー5ーイル)フェノキシ] 酢酸

111

参考例36で得られた化合物から実施例178と同様の方法で合成した t e r t ーブチル  $[4-(3-\{2-[メチル (フェニル) アミノ] -2-オキソエチル \} -2-オキソー2, 3-ジヒドロー1, 3-ベンズオキサゾールー5ーイル)フェノキシ]アセテートに対し、参考例4と同様の操作を行い合成した。$ 

5  $I \cdot R (cm^{-1}) : 825, 1086, 1198, 1489, 1759$ 

#### 実施例297

2-[5-[3-(アミノエチル)] フェニル] -2-オキソー1, 3-ベンズオキ サゾール-3(2H) -イル] -N-メチル-N-フェニルアセトアミド塩酸塩

 $IR (cm^{-1}) : 694, 1387, 1487, 1643, 1768$ 

15

#### 実施例298

Nーメチルー2ー [2-オキソー5-(3-ピペラジンー1ーイルフェニル)-1, 3-ベンズオキサゾールー3(2H)-イル]-Nーフェニルアセトアミド二塩酸塩

- 20 参考例36で得た化合物から実施例178と同様の方法で合成した tert-ブチル  $4-[3-(3-\{2-[メチル(フェニル)アミノ]-2-オキソエチル <math>\}-2-$ オキソー2、3-ジヒドロー1、3-ベンズオキサゾールー5-イル)フェニル] ピペラジン-1-カルボキシレートに対し、実施例38と同様の操作を行い合成した。
- 25 IR (cm<sup>-1</sup>): 690, 1242, 1493, 1641, 1784

#### 実施例 2 9 9

Nーメチルー2ー [2-オキソー5-[3-(2-ピペリジンー4ーイルエトキシ) フェニル] <math>-1, 3-ベンズオキサゾールー3 <math>(2H) -イル] -Nーフェニル アセトアミド塩酸塩

5 実施例228で得た化合物から、実施例38と同様の方法で合成した。 IR (cm<sup>-1</sup>):694、1022、1379、1662、1778

#### 実施例300

Nーメチルー2ー [2-オキソー5ー [6-(ピペリジンー4-イルオキシ)ピリ [3-3ーイル]-110 ジンー[3-4ーイル]-10 ジンー3ーイル]-10 ボンズオキサゾールー3 [2H)-4ーイル]-10 ニルアセトアミド塩酸塩

実施例262で得た化合物から、実施例38と同様の方法で合成した。 IR (cm<sup>-1</sup>):694、1126、1248、1653、1776

## 15 実施例301

Nーメチルー2ー [2-オキソー5-[6-(ピペリジンー4-イルメトキシ) ピリジンー3ーイル] -1, 3ーベンズオキサゾールー3 <math>(2H) ーイル ]-Nーフェニルアセトアミド塩酸塩

実施例264で得た化合物から、実施例38と同様の方法で合成した。

20 IR (cm<sup>-1</sup>): 694, 1244, 1651, 1763, 3365

#### 実施例302

Nーメチルー2ー [2-オキソー5ー [6-(ピペリジンー4-イルエトキシ)ピリジンー3-イル]-1, 3-ベンズオキサゾール-3(2H)-イル]-N-フ

25 エニルアセトアミド塩酸塩

実施例265で得た化合物から、実施例38と同様の方法で合成した。

113

 $IR (cm^{-1}) : 617, 1248, 1645, 1782, 3358$ 

## 実施例303

2-[5-(2,3-ジヒドロ-1H-イソインドールー5-イル)-2-オキソ 5-1,3-ベンズオキサゾールー3(2H)-イル]-N-メチルー<math>N-フェニル アセトアミド塩酸塩

実施例287で得た化合物から、実施例38と同様の方法で合成した。

 $IR (cm^{-1}) : 818, 1385, 1489, 1659, 1782$ 

## 10 実施例304

15

2-(5-) ロモー2- オキソー1, 3- ベンズオキサゾールー3 (2H) ーイル) -N, N-ジイソプロピルアセトアミド

参考例4で得た化合物から、実施例1と同様の方法で合成した。

IR (cm<sup>-1</sup>): 798, 1020, 1489, 1650, 1782

参考例35で合成した化合物から、実施例178、参考例4および実施例1と同様の方法で、実施例305-308の化合物を得た。

$$R^6$$

| 実施例番号 | $R^6$ | $IR(cm^{-1})$              |
|-------|-------|----------------------------|
| 305   | Me Ne | 702、775、1020、1643、1784     |
| 306   | Me O  | 704、1020、1643, 1733、1778   |
| 307   | Me O  | 611, 791, 1252, 1641, 1770 |
| 308   | S     | 683、696、1248、1647、1778     |

参考例35で合成した化合物から、実施例178、参考例4および実施例1と同様の方法で、実施例309-312の化合物を得た。

| 実施例番兒 | F R <sup>6</sup> | $IR(cm^{-1})$              |
|-------|------------------|----------------------------|
| 309   | Me O             | 698, 798, 1651, 1726, 1782 |
| 310   | Me O             | 696、800、1240、1649、1784     |
| 311   | HO               | 787、1012、1487、1651、1780    |
| 312   | s                | 683、804、1489、1649、1784     |

参考例3.5で合成した化合物から、実施例178、参考例4および実施例1と同様の方法で、実施例313-315の化合物を得た。

| 実施例番号 | $R^6$                         | $IR(cm^{-1})$           |
|-------|-------------------------------|-------------------------|
| 313   | F O F                         | 717、806、1111、1678、1770  |
| 314   | F <sub>3</sub> C              | 714、1140、1178、1668、1790 |
| 315   | F <sub>3</sub> C <sub>O</sub> | 665、804、1491、1674、1770  |

#### 実施例316

N-[2-(2-)] N-[2-(2-)] N-[2-] N

参考例3で得た化合物から、実施例29、参考例4および実施例1と同様の方法 で合成した。

 $IR (cm^{-1}) : 692, 808, 1491, 1662, 1774$ 

## 実施例317

10

N-エチルー2ー [2-オキソー5-[4-(トリフルオロメチル)]フェニル]-1, 3-ベンズオキサゾールー3 (2H) -イル]-N-ピリジンー3-イルアセトアミド

15 参考例3で得た化合物から、参考例4、実施例1および実施例29と同様の方法

117

で合成した。

IR (cm<sup>-1</sup>): 717, 827, 1068, 1327, 1670

参考例3で合成した化合物から、実施例29、参考例4および実施例1または実 5 施例4と同様の方法で、実施例318-328の化合物を得た。

| <br>実施例番号 | $\mathbb{R}^2$   | IR(cm <sup>-1</sup> )       |
|-----------|------------------|-----------------------------|
| 318       | OH               | 804、1207、1248、1651、1770     |
| 319       | ОН               | 692, 1207, 1489, 1659, 1774 |
| 320       | NMe <sub>2</sub> | 692、1205、1250、1659、1774     |
| 321       | NEt <sub>2</sub> | 692, 1157, 1250, 1662, 1778 |
| 322       | N                | 692、1158、1250、1659、1776     |
| 323       | NO O             | 806、1119、1207、1659、1778     |
| 324       | ОН               | 692, 804, 1248, 1662, 1774  |
| 325       |                  | 750、1205、1493、1659、1787     |
| 326       | N N              | 787、1151、1254、1668、1761     |
| 327       | N                | 712, 802, 1207, 1248, 1666  |
| 328       | N_CI             | 804、1248、1460、1676、1770     |

参考例3で合成した化合物から、実施例29、参考例4および実施例1または実施例4と同様の方法で、実施例329-330の化合物を得た。

$$F_3CO \longrightarrow N R^2$$

$$N R^1$$

| 実施例番号 | $R^1$  | $R^2$ | $IR(cm^{-1})$           |
|-------|--------|-------|-------------------------|
| 329   | HN O t | -Bu   | 804、1248、1489、1670、1778 |
| 330   | Et     | . N   | 698、1140、1241、1670、1780 |

5

参考例3で合成した化合物から、実施例29、参考例4および実施例1と同様の 方法で、実施例331-344の化合物を得た。

| 実施例番号 | $R^2$ | $IR(cm^{-1})$           |
|-------|-------|-------------------------|
| 331   | F     | 762、1022、1483、1670、1765 |
| 332   | F     | 802、1248、1510、1660、1776 |
| 333   | CI    | 688、798、1479、1664、1776  |
| 334   | CI    | 702、795、1477、1666、1792  |

| 実施例番号 | $R^2$              | $IR(cm^{-1})$           |
|-------|--------------------|-------------------------|
| 335   | CI                 | 712、804、1481、1660、1776  |
| 336 ' | OH                 | 692、804、1244、1649、1767  |
| 337   | OMe                | 690、1022、1248、1655、1772 |
| 338   | CF <sub>3</sub>    | 696、1120、1323、1674、1768 |
| 339   | OCF <sub>3</sub>   | 690、806、1153、1655、1759  |
| 340   | CO <sub>2</sub> Me | 700、796、1674、1711、1772  |
| 341   | F                  | 795、1024、1510、1662、1768 |
| 342   | CI                 | 806、1020、1479、1670、1772 |
| 343   | CI                 | 808、1120、1471、1655、1761 |
| 344   | N_CI               | 798、1103、1458、1668、1768 |

参考例3で合成した化合物から、実施例29、参考例4および実施例1と同様の 方法で、実施例345-346の化合物を得た。

| 実施例番号 | $R^1$ | $IR(cm^{-1})$          |
|-------|-------|------------------------|
| 345   | Et    | 692、710、1479、1653、1786 |
| 346   | i-Pr  | 706、804、1296、1653、1772 |

## 実施例347

IR (cm<sup>-1</sup>): 611, 712, 1022, 1639, 1774

10 参考例3で合成した化合物から、実施例29、参考例4および実施例1と同様の 方法で、実施例348-356の化合物を得た。

$$\begin{array}{c|c}
 & O \\
 & N \\
 & R^2 \\
 & O \\
 & O
\end{array}$$

| 実施例番号 | $R^1$ | $R^2$            | $IR(cm^{-1})$              |
|-------|-------|------------------|----------------------------|
| 348   | Me    | F                | 685、750、1605、1660、1768     |
| 349   | Ме    | CI               | 771、814、1481、1676、1788     |
| 350   | Ме    | CI               | 687、795、1589、1649、1790     |
| 351   | Me    | OH               | 690、808、1485、1666、1774     |
| 352   | Me    | OMe              | 795、804、1248、1668、1780     |
| 353   | Me    | CF <sub>3</sub>  | 808、1068、1117、1331、1780    |
| 354   | Me    | OCF <sub>3</sub> | 692、1161、1483、1674、1782    |
| 355   | Me    | OOMe             | 625, 762, 1271, 1662, 1776 |
| 356   | Εt    |                  | 690、766、820、1664、1768      |

# 実施例357

3-[2-(3,4-ジヒドロキノリン-1(2H)-イル)-2-オキソエチル [3-5-ピリジン-4-イル-1,3-ベンズオキサゾール-2(3H)-オン

参考例3で得た化合物から、実施例29、参考例4および実施例1と同様の方法で合成した。

 $IR (cm^{-1}) : 688, 754, 1489, 1637, 1765$ 

## 5 実施例358

3-[2-(3,4-ジヒドロイソキノリン-2(1H)-イル)-2-オキソエ<math>-5-ピリジン-4-イル-1,3-ベンズオキサゾール-2(3H)-オ

参考例3で得た化合物から、実施例29、参考例4および実施例1と同様の方法 10 で合成した。

IR (cm<sup>-1</sup>): 742, 808, 1595, 1639, 1780

#### 実施例359

2-(5-アミノー2-オキソー1, 3-ベンズオキサゾールー3(2H)-イル

15 ) -N-メチル-N-フェニルアセトアミド

実施例26で得た化合物から、実施例28と同様の方法で合成した。

IR (cm<sup>-1</sup>): 629, 11,15, 1483, 1660, 1763

#### 実施例360

20 2-[5-[(4-クロロフェニル)] アミノ]-2-オキソー1, 3-ベンズオキ サゾール-3(2H) ーイル]-NーメチルーNーフェニルアセトアミド

実施例 359 で合成した化合物(50.0mg,  $168\mu mo1$ )、4-クロルフェニルほう酸(52.6mg,  $336\mu mo1$ )、酢酸銅(II)(30.5mg,  $168\mu mo1$ )の塩化メチレン(1.0mL)溶液にトリエチルアミン(46

25 .  $8\,\mu$  L,  $3\,3\,6\,\mu$  m o 1) を加え、 $1\,5$  時間  $2\,0\,-\,2\,5$   $^{\circ}$  にて攪拌した。反応後、反応液を水中に注ぎ、酢酸エチルにて抽出した。この有機層を飽和食塩水で洗浄

125

5 IR (cm<sup>-1</sup>):695,808,1489,1767,3388

## 実施例361

セトアミド

10

Nーメチルー2ー[2ーオキソー5ー $\{[(4$ ートリフルオロメトキシ)フェニル ] アミノ $\}$ ー1, 3ーベンズオキサゾールー3(2 H) ーイル] ーNーフェニルア

実施例359で得た化合物から、実施例360と同様の方法で合成した。 IR (cm<sup>-1</sup>):692、1151、1497、1662、1759

#### 実施例362

- 15 2- (5-ヒドロキシ-2-オキソ-1, 3-ベンズオキサゾ-ル-3 (2H)-イル)-N-メチル-N-フェニルアセトアミド
  - 1,4-ビス (ベンジルオキシ)-2-ニトロベンゼンを出発原料とし、実施例 28、参考例 2と同様の操作を行い、5-ヒドロキシ-1,3-ベンズオキサゾー  $\nu-$ 2 (3H)-オンを合成した。
- 5ーヒドロキシー1、3ーベンズオキサゾールー2(3H)ーオン(302mg, 2.00mmol)のジメチルホルムアミド(3.0mL)溶液に、tertーブチルジメチルシリルクロライド(317mg, 2.10mmol)、イミダゾール(163mg, 2.40mmol)を加え、20-25℃にて3.5時間攪拌した。反応後、0℃にて水中に注ぎ、酢酸エチル/トルエン(1/1)にて抽出した。この有機層を水、飽和食塩水で洗浄してから、無水硫酸ナトリウムにて乾燥した
  - 。乾燥剤を濾過後、溶媒を減圧留去し、粗精製物をシリカゲルクロマトグラフィー

126

 $(\sim$ キサン/酢酸エチル=2/1) にて精製し、 $5-\{[tert-ブチル(ジメチル)シリル]オキシ\}-1$ ,3-ベンズオキサゾール-2(3H)-オン(386mg,73%)を得た。

 $5-\{[tert-ブチル(ジメチル)シリル]オキシ\}-1,3-ベンズオキ$  サゾールー2(3H)ーオンに対し、実施例139と同様の操作を行い、2-[5-1]  $-\{[tert-ブチル(ジメチル)シリル]オキシ\}-2-オキソー1,3-ベンズオキサゾールー3(<math>2H$ )ーイル]-N-メチルーN-フェニルアセトアミドを合成した。

 $IR (cm^{-1}) : 698, 835, 1676, 1743, 3305$ 

20 実施例362で合成した化合物から、実施例360と同様の方法で、実施例36 3-365の化合物を得た。

| 実施例番号 | $R^6$ | IR(cm <sup>-1</sup> )  |
|-------|-------|------------------------|
| 363   | Me Ne | 700、808、1491、1668、1780 |
| 364   | ON ON | 694、704、1223、1660、1778 |
| 365   | N. O. | 698、810、1491、1676、1774 |

参考例37で合成した化合物から、実施例1または実施例4と同様の方法で、実 施例366-369の化合物を得た。

| 実施例番号 | $R^2$ | $IR(cm^{-1})$           |
|-------|-------|-------------------------|
| 366   |       | 688、798、1381、1487、1655  |
| 367   | ОН    | 690、1491、1655、1790、3385 |
| 368   | N     | 787、916、1373、1664、1778  |
| 369   | N     | 669、920、1018、1675、1787  |

参考例38で合成した化合物から、実施例1または実施例4と同様の方法で、実 施例370-372の化合物を得た。

| 実施例番号 | $R^2$ | $IR(cm^{-1})$           |
|-------|-------|-------------------------|
| 370   |       | 710、1252、1493、1668、1776 |
| 371   | O.H   | 690、1012、1491、1655、1797 |
| 372   | N     | 742、785、1252、1660、1788  |

5

## 実施例373

2-(5-ベンゾイル-2-オキソ-1, 3-ベンズオキサゾール-3(2H)-イル) -N-メチルーN-フェニルアセトアミド

4-ヒドロキシベンゾフェノンを出発原料とし、参考例14、参考例15、参考 10 例2および実施例139と同様の操作を行い合成した。

IR (cm<sup>-1</sup>): 688, 1252, 1495, 1653, 1788

#### 実施例374

2-ブロモー6-ニトロフェノールを出発原料とし、参考例15、参考例2および実施例139と同様の操作を行い合成した。

 $IR (cm^{-1}) : 698, 766, 1016, 1670, 1782$ 

参考例374で合成した化合物から、実施例29と同様の方法で、実施例375 -378の化合物を得た。

| 実施例番号 | $R^8$            | $IR(cm^{-1})$           |
|-------|------------------|-------------------------|
| 375   |                  | 696、748、1435、1664、1774  |
| 376   | OCF <sub>3</sub> | 696、1158、1252、1668、1774 |
| 377   | N                | 700、1007、1464、1664、1772 |
| 378   | N                | 640、777、1597、1664、1765  |

実施例379

5

2-(5-) ロモー7- フルオロー2- オキソー1, 3- ベンズオキサゾールー3 (2 H) - イル) -N ーメチルーN ーフェニルアセトアミド

10 4-ブロモー2-フルオロー6-ニトロフェノールを出発原料とし、参考例15、参考例2および実施例139と同様の操作を行い合成した。

IR (cm<sup>-1</sup>): 638, 684, 1497, 1657, 1784

参考例379で合成した化合物から、実施例29と同様の方法で、実施例380 -383の化合物を得た。

| 実施例番号 | $R^6$             | $IR(cm^{-1})$           |
|-------|-------------------|-------------------------|
| 380   |                   | 646、760、1495、1651、1786  |
| 381   | F <sub>3</sub> CO | 694、1259、1497、1660、1782 |
| 382   | N.                | 700、806、1066、1662、1778  |
| 383   |                   | 700、825、1331、1676、1786  |

## 5 実施例384

2-(7-7)ルオロー2-3キソー1, 3-4ンズオキサゾールー3(2H)-4ル) -N-3サントアミド

実施例379で得た化合物から、実施例28と同様の操作を行い合成した。

IR (cm<sup>-1</sup>):696,1059,1483,1660,1788

10

#### 実施例385

2-(5-) ロモー7- クロロー2- オキソー1, 3- ベンズオキサゾールー3 ( 2H) - イル) -N- メチルーN- フェニルアセトアミド

4 ーブロモー 2 ークロロフェノールを出発原料とし、参考例 1 4、参考例 1 5、 15 参考例 2 および実施例 1 3 9 と同様の操作を行い合成した。  $IR (cm^{-1}) : 633, 702, 1477, 1659, 1794$ 

参考例385で合成した化合物から、実施例29と同様の方法で、実施例386 -388の化合物を得た。

| CI    |                  |                        |
|-------|------------------|------------------------|
| 実施例番号 | $R^6$            | $IR(cm^{-1})$          |
| 386   |                  | 696、754、1009、1659、1792 |
| 387   | F <sub>3</sub> C | 705、831、1326、1675、1794 |
| 388   | · N              | 640、708、1477、1670、1776 |

## 実施例389

2-(7-アセチル-5-プロモー2-オキソー1, 3-ベンズオキサゾールー3 (2H) - (7) - (2N) - (

10 1-(5-ブロモー2-ヒドロキシー3-ニトロフェニル) エタノンを出発原料 とし、参考例15、参考例2および実施例139と同様の操作を行い合成した。 IR(cm<sup>-1</sup>):698、1369、1464、1651、1790

#### 実施例390

15 2-[7-アセチルー2-オキソー5-[4-(トリフルオロメトキシ) フェニル <math>]-1, 3-ベンズオキサゾールー3 <math>(2H) -イル]-N-メチルーN-フェニ

132

ルアセトアミド

参考例389で得た化合物から、実施例29と同様の方法で合成した。

IR (cm<sup>-1</sup>): 696, 1201, 1269, 1666, 1795

5 実施例391

2-(7-アセチル-2-オキソー5-ピリジン-4-イルー1,3-ベンズオキ サゾールー3 <math>(2H) ーイル) -NーメチルーNーフェニルアセトアミド 参考例389で得た化合物から、実施例29と同様の方法で合成した。 IR  $(cm^{-1}):700$ 、1387、1595、1662、1792

10

実施例392

2-(7-アセチル-5-プロモ-2-オキソ-1,3-ベンズオキサゾール-3 (2H)- (2H)- N- N- メチル- N- ピリジン-3- (2H)- (5- プロモ-2- ヒドロキシ-3- ニトロフェニル) エタノンを出発原料 とし、参考例 <math>15、参考例  $2\sim 4$  および実施例 1 と同様の操作を行い合成した。 IR  $(cm^{-1}):629、839、1373、1682、1794$ 

実施例393

2-[7-アセチルー2-オキソー5-[4-(トリフルオロメトキシ) フェニル 20 <math>]-1, 3-ベンズオキサゾールー3 <math>(2H)-7ル]-N-メチルーN-ピリジン-3-7ルアセトアミド

参考例392で得た化合物から、実施例29と同様の方法で合成した。 IR (cm<sup>-1</sup>):629、1203、1385、1672、1797

25 実施例394

2- (2-オキソー5-ピリジン-3-イル-1, 3-ベンゾチアゾール-3(2

WO 2005/080334

H) -イル) - N, N-ジイソプロピルアセトアミド

参考例8で得た化合物から、実施例1および実施例29と同様の操作を行い合成 した。

IR (cm<sup>-1</sup>): 717, 802, 1184, 1639, 1686

5

#### 実施例395

Nーメチルー 2 - (2 -  $\lambda$  +  $\lambda$  -  $\lambda$ 

参考例8で得た化合物から、実施例1および実施例29と同様の操作を行い合成 10 した。

IR (cm<sup>-1</sup>): 700, 756, 1493, 1662, 1695

## 実施例396

N-メチルー2-  $(2-\lambda$ キソー7ーピリジンー3ーイルー1, 3ーベンゾチアゾールー3 (2H) -イル) -N-フェニルアセトアミド

参考例9で得た化合物から、実施例1および実施例29と同様の操作を行い合成 した。

IR (cm<sup>-1</sup>): 702, 773, 1322, 1448, 1664

## 20 実施例397

Nーメチルー 2 ー [2 ーオキソー 5 ー (ピリジンー 3 ーイルアミノ) ー 1 , 3 ーベ ンゾチアゾールー 3 (2 H) ーイル ] ー Nーフェニルアセトアミド

参考例8で得た化合物から、実施例1および実施例47と同様の操作を行い合成 した。

25 IR (cm<sup>-1</sup>):698,1120,1321,1483,1662

134

#### 実施例398

tert tert

文献(J. Org. Chem., (1995), 60, 1565-1582)に記載の方法に従い合成した tert-ブチル 5-ブロモー2-オキソー2, 3-ジヒドロー1H-ベンズイミダゾールー1-カルボキシレートに対し、実施例139と同様の操作を行い合成した。

 $IR (cm^{-1}) : 698, 810, 1145, 1682, 1768$ 

10

#### 実施例399

tertーブチル 3-{2-[メチル (フェニル) アミノ] -2-オキソエチル } -2-オキソー5-フェニルー2, 3-ジヒドロー1Hーベンズイミダゾールー1-カルボキシレート

15 実施例398で得た化合物から、実施例29と同様の操作を行い合成した。 IR (cm<sup>-1</sup>):698、760、1321、1672、1747

#### 実施例400

Nーメチルー 2 ー (2 ー  $\lambda$  キソー 6 ー フェニルー 2 , 3 ー ジヒドロー 1 Hーベンズ 20 イミダゾールー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1

実施例399で合成した化合物(1.15g, 2.52mmo1)の酢酸(2.50mL)溶液に 4N塩酸/1, 4-ジオキサン溶液(2.50mL, 10.0mmo1)を加え、20-25℃で1時間撹拌した。反応液を減圧濃縮し、トルエンを加え再び減圧溜去してN-メチルー2ー(2-オキソー6-フェニルー2, 3-ジヒドロー1H-ベンズイミダゾールー1ーイル)-N-フェニルアセトアミド(943mg, 100%)を得た。

135

 $IR (cm^{-1}) : 696, 762, 1483, 1670, 1697$ 

#### 実施例401

2-(3-7) (3-7) (3-7) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1) (3-1)

実施例 400で合成した化合物(143mg,0.400mmo1)、2ープロパノール(72.0mg,1.20mmo1)、トリフェニルホスフィン(157mg,0.600mmo1)のテトラヒドロフラン(2.5mL)溶液にジエチルアゾジカルボキシレート(40%トルエン溶液,261mg,0.600mmo1)を加え、20-25%で7時間撹拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製して2-(3-4)プロピルー2-3キソー6-7エニルー2、3-3ビドロー1 H-ベンズイミダゾールー1-4ル)-N-メチル-N-フェニルアセトアミド(77.0mg,48%)を得た。

 $IR (cm^{-1}) : 624, 700, 756, 1660, 1707$ 

15

10

#### 実施例402

2-(3-)ブチルー2-オキソー6-フェニルー2, 3-ジヒドロー1 H-ベンズ イミダゾールー1-イル) -N-メチルーN-フェニルアセトアミド

実施例400で合成した化合物(143mg, 0.400mmol)、ブタノー
20 ル(89.0mg, 1.20mmol)、トリフェニルホスフィン(157mg,
0.600mmol)のテトラヒドロフラン(2.5mL)溶液にジエチルアゾ
ジカルボキシレート(40%トルエン溶液, 261mg, 0.600mmol)を
加え、20-25℃で7時間撹拌した。反応液を減圧濃縮し、残渣をシリカゲルカ
ラムクロマトグラフィーで精製して2-(3-ブチル-2-オキソー6-フェニル
25 -2,3-ジヒドロー1 Hーベンズイミダゾールー1ーイル)-NーメチルーNーフェニルアセトアミド(104mg,63%)を得た。

136

IR (cm<sup>-1</sup>):696,760,1495,1659,1716

#### 実施例403

2- (6-ブロモー2-オキソー2, 3-ジヒドロー1H-インドールー1-イル

5 ) -N-メチルーN-フェニルアセトアミド

文献 (Synthesis, (1993), 51-53) に記載の方法に従い合成した6-ブロモー1, 3-ジヒドロー2H-インドールー2-オンに対し、実施例 139と同様の操作を行い合成した。

 $IR (cm^{-1}) : 698, 899, 1369, 1662, 1726$ 

10

#### 実施例404

Nーメチルー2ー [2-オキソー5ー(フェニルエチニル)-1, 3-ベンズオキ サゾールー3(2H)-イル]-Nーフェニルアセトアミド

アルゴン雰囲気下、ジクロロビスアセトニトリルパラジウム(Ⅱ) (1.00m

g , 3. 00μmol)、2-ジシクロヘキシルホスフィノー2, 4,6-トリイソプロピルー1,1-ピフェニル(3.90mg,8.30μmol)、炭酸セシウム(234mg,720μmol)のアセトニトリル溶液(1.0mL)を調製し、実施例27で合成した化合物(100mg,277μmol)を加えた。反応混合物を20-25℃にて30分間撹拌後、フェニルアセチレン(40.0μ L,360μmol)を滴下し、90℃で2時間撹拌した。室温に冷却後、水で希釈し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。乾燥剤を濾過後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグフィー(ヘキサン/酢酸エチル=3/1)で精製し、N-メチルー2-[2-オキソー5-(フェニルエチニル)-1,3-ベンズオキサゾールー3(2H)-イル]-N-フェニルアセトアミド(73.0mg,69%)を得た。

IR (cm<sup>-1</sup>):694,1016,1238,1670,1782

#### 実施例405

N-メチルー2ー [2-オキソー5-(ピリジンー3-イルエチニル)-1,3-ベンズオキサゾールー3 <math>(2H)-イル]-N-フェニルアセトアミド

5 実施例27で得た化合物から、実施例404と同様の方法で合成した。

 $IR (cm^{-1}) : 690, 746, 1497, 1670, 1772$ 

#### 実施例406

実施例27で得た化合物から、実施例404と同様の方法で合成した。 IR (cm<sup>-1</sup>):700、1196、1495、1632、3196

15 試験例1:ベンゾジアゼピン $\omega_3$  受容体およびベンゾジアゼピン $\omega_1$  、 $\omega_2$  受容体 結合阻害実験

ベンゾジアゼピン $\omega_3$  受容体結合実験は、文献(Mol. Phamacol., 34, 800-805, 1988)の方法に、ベンゾジアゼピン $\omega_1$ 、 $\omega_2$  受容体結合実験は、文献(Neurophama col., 34, 1169-1175, 1995)の方法に、それぞれ準拠して行った。

20 SD系雄性ラット(日本チャールス・リバー)を断頭した後、腎臓および大脳皮質を 採取した。腎臓膜画分(ω₃)の調製は、組織湿重量の5倍量の氷冷50 mM トリス-塩 酸緩衝液(pH 7.6)を添加しホモジナイズした。ホモジネートを20,000g、4℃にて10 分間遠心した。得られた沈渣を再懸濁し、20,000g、4℃にて10分間遠心した。さら に同様の再懸濁・遠心操作をもう一度繰り返し、得られた沈渣を受容体結合実験の 際に1アッセイあたりのタンパク質含有量が 0.1 mgとなるように50 mM トリス -塩酸緩衝液(pH 7.6)を用いて希釈した。大脳皮質膜画分の調製(ω₁およびω₂)

138

は、組織湿重量の15倍量の氷冷リン酸カリウム緩衝液 (200 mM KC1, 20 mM KOH, 20 mM KH<sub>2</sub>PO<sub>4</sub>, pH 7.4)を添加しホモジナイズした。ホモジネートを32,500g、4<sup> $\circ$ </sup>Cにて15分間遠心した。得られた沈渣を再懸濁し、32,500g、4<sup> $\circ$ </sup>Cにて15分間遠心した。さらに同様の再懸濁・遠心操作をもう一度繰り返し、得られた沈渣を受容体結合実験の際に1アッセイあたりのタンパク質含有量が 0.1 mg となるようにリン酸カリウム緩衝液を用いて希釈した。両膜標品は、-80<sup> $\circ$ </sup>Cにて凍結保存した。

5

10

20

[ $^{3}$ H]標識リガンドとしては、[ $^{3}$ H]-PK-11195( $\omega_{3}$ の場合;パーキンエルマー社) または[³H]-Ro-15-1788 [flumazenil] ( $\omega_1$  および $\omega_2$  の場合;パーキンエルマー 社)を用いた。非標識リガンドとしては、PK-11195 (ω<sub>3</sub> の場合;シグマアルドリ ッチ社) またはフルマゼニル (flumazenil) ( $\omega_1$  および $\omega_2$  の場合;シグマアル ドリッチ社)を用いた。結合阻害実験において、全結合量を求める場合には、0.5% DMSO、最終濃度1 nMの[³H]標識リガンドおよび膜画分を混和し(全量1 mL)、4℃  $(\omega_3$  の場合) または25°C  $(\omega_1$  および $\omega_2$  の場合) で 1 時間インキュベートした 。非特異的結合量を求める場合には、0.5% DMSOの代わりに最終濃度10 μ Mの非標識 リガンドを加え、本発明化合物の結合親和性を検討する場合には、最終濃度100 nM  $(\omega_3$  の場合)、10  $\mu$  M  $(\omega_1$  および $\omega_2$  の場合)の本発明化合物DMSO溶液を加え た。1時間後に、受容体に結合した標識リガンドを、セルハーベスターを用いて0.3 %ポリエチレンイミン処理GF/Bフィルター上に吸引濾過し、氷冷50 mM トリスー塩 酸緩衝液  $(\omega_3$  の場合) または氷冷リン酸カリウム緩衝液  $(\omega_1$  および $\omega_2$  の場合 ) で1回洗浄した。GF/Bフィルター上の放射活性を液体シンチレーションカウンタ ー(パッカード社製Tri Carb 2700TR)で測定した。試験結果は、標識リガンドに対 する結合阻害率(%)で表記した。

実施例で得られた化合物について、試験例 1 に示す試験を行った。ベンゾジアゼ 25 ピン $\omega_3$  受容体結合阻害実験結果について表 1 に示す。なお、表 1 に示したすべて の化合物について、 $10~\mu$  Mの実施例化合物DMSO溶液を用いた時、ベンゾジアゼピン

139

 $\omega_1$  および $\omega_2$  受容体結合阻害率は60%以下であった。

表1

| 化合物     | [ <sup>3</sup> H]-PK-11195 |
|---------|----------------------------|
| (実施例番号) | 結合阻害率(%)                   |
| 5       | 98                         |
| 18      | 71                         |
| 29      | 79                         |
| 55      | 98                         |
| 56      | 99                         |
| 60      | 100                        |
| 61      | 100                        |
| 67      | 53                         |
| 96      | 95                         |
| 113     | 93                         |
| 135     | 86                         |
| 136     | 95                         |
| 137     | 83                         |
| 142     | . 83                       |
| 147     | 100                        |
| 150     | 97                         |
| 161     | 96                         |
| 185     | . 97                       |
| 195     | 91                         |
| 213     | 71                         |
| 327     | 88                         |
| 350     | 80                         |
| 369     | 85                         |
| 373     | 89                         |
| 389     | . 97                       |
| 395     | 95                         |
| 401     | 88                         |

# 試験例2:イソニアジド誘発けいれんに対する作用(抗けいれん作用)

本発明化合物のイソニアジド誘発けいれんに対する拮抗作用は、文献(J. Pharma col. Exp. Ther., 26, 649-656, 1993)の方法に準拠して行った。

イソニアジドはGABA生合成酵素を阻害し、GABA神経終末におけるGABA枯渇に基づき全身性けいれんを誘発する。したがって、GABA<sub>A</sub>受容体機能を直接的または間接的に亢進する薬物、例えばベンゾジアゼピン受容体作動薬、アロプレグナノロンなどのニューロステロイド、さらに、ニューロステロイド産生を促進するベンゾジアゼピンω<sub>3</sub> 受容体作動薬は、この全身性けいれんに対して拮抗作用を示すことが知られている。

10 試験には、5週齢のddY系雄性マウス(日本エスエルシー)を1群5匹で用いた。0. 5%メチルセルロースに懸濁した本発明化合物30mg/kgを腹腔内投与した20分後に、イソニアジド(住友製薬)300mg/kgを皮下投与した。マウスをプラスチック製ケージに入れ、イソニアジド投与から全身性間代性けいれん・強直性けいれんが生じるまでの時間を記録した。各化合物投与群の平均けいれん発現時間を、溶媒投与群の平均する百分率(%)として計算した。

実施例で得られた化合物について、試験例2に示す試験を行った。その結果を表 2に示す。

#### 20 表 2

| 化合物 (実施例番号) | けいれん発現時間(%) |
|-------------|-------------|
| 18          | 194         |
| 96          | 152         |

141

# 産業上の利用可能性

本発明化合物はベンゾジアゼピン $\omega_3$  受容体に対して、選択的かつ高い結合親和性を有することが判明した。従って、本発明により新たなうつまたは不安の症状を含む中枢性疾患の治療または予防剤の提供が可能となった。

WO 2005/080334

142

### 請求の範囲

## 1. 式(1):

5

10

15

20

[式中、R<sup>1</sup> およびR<sup>2</sup> は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換されてもよいアリール基、置換されてもよいヘテロアリール基、もしくは置換されてもよい飽和ヘテロ環基を表すか、またはR<sup>1</sup> およびR<sup>2</sup> は一緒になって、それらが結合する窒素原子と共に、置換されてもよい飽和ヘテロ環基を表す。

R<sup>3</sup> およびR<sup>4</sup> は、各々独立して、水素原子、ハロゲン原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基を表す。

R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> は、各々独立して、水素原子、置換されてもよいアルケニル基、 世換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換されてもよいアルカノイル基、置換されてもよいアルコキシ基、置換されてもよいアルカノイル基、置換されてもよいアルコキシカルボニル基、置換されてもよいアリールオキシカルボニル基、置換されてもよいカルバモイル基、置換されてもよいスルファモイル基、 世換されてもよいカルバモイル基、置換されてもよいスルファモイル基、 置換されてもよいウレイド基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基、置換されてもよいアルキルスルホニル基、または一E ーAで表される基(式中、Eは、単結合、酸素原子、硫黄原子、一S〇一、一S〇

15

20

 $_2$  一、 $_1$  一または $_2$  一または $_3$  一または $_4$  この 一を表し、 $_4$  は、置換されてもよい $_4$  に関換されてもよい $_5$  には置換されてもよい $_5$  には、 $_5$  には、

Xは、酸素原子、硫黄原子、 $NR^{10}$ 、または $CR^{11}R^{12}$ を表す。

(式中、R<sup>10</sup>は、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基、置換されてもよいアルカノイル基、または置換されてもよいアルコキシカルボニル基を表す。

R¹¹およびR¹²は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換されてもよいアリール基、置換されてもよいヘテロアリール基、ハロゲン原子、シアノ、水酸基、置換されてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアリールオキシ基、置換されてもよいアルカノイル基、置換されてもよいアロイル基、置換されてもよいアロイル基、置換されてもよいヘテロアリールカルボニル基、置換されてもよいアルコキシカルボニル基、カルボキシ基、または置換されてもよいカルバモイル基を表すか、またはR¹¹とR¹²は、一緒になって、オキソまたは=NOHを表す。)

また、(i) X が N  $R^{1}$  のとき、 $R^{8}$  と  $R^{1}$  が一緒になって、式(1)は式(2):

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、および $R^7$ は前記と同義であり、  $Z^1$ は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち 1

つは酸素原子、硫黄原子または $-NR^{13}-($ 式中、 $R^{13}$ は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。また、該アルキレン基の隣り合った原子間で二重結合を形成してもよい。)を表してもよい。

(ii) R<sup>4</sup> と R<sup>5</sup> が一緒になって、式(1) は式(3):

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^6$ 、 $R^7$ 、 $R^8$ 、およびXは前記と同義であり、 $Z^2$  は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち1つは酸素原子、硫黄原子または $-NR^{1/3}-$ (式中、 $R^{1/3}$  は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。また、該アルキレン基の隣り合った原子間で二重結合を形成してもよい。)を表してもよい。

ただし、

5

- (1) Xが酸素原子または硫黄原子であり、次の(a) または(b) である時は、 $R^1$  および $R^2$  は一緒になって、それらが結合する窒素原子と共に、置換されてもよい飽和ヘテロ環基を表すことはない。
- 15 (a) R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> が全て水素原子である。
  - (b)  $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれぞれ独立して、ハロゲン原子であり、残りが水素原子である。
- (2) Xが $CR^{1}$   $^{1}$   $R^{1}$   $^{2}$  であり、 $R^{1}$   $^{1}$  および $R^{1}$   $^{2}$  がそれぞれ独立して、置換されてもよいアルキル基、置換されてもよいアルキル基、置換されてもよいアルキニル基であり、次の(a)または(b)である時は、 $R^{1}$  および $R^{2}$  は、水素原子もしくは置換されてもよいアルキル基、または $R^{1}$  および $R^{2}$  は隣接する窒素原子と一緒になって置換されてもよい飽

和ヘテロ環基を表すことはない。

- (a) R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> が全て水素原子である。
- (b)  $R^5$ 、 $R^6$ 、 $R^7$ および $R^8$ のうち、 $1\sim 2$ 個がそれぞれ独立して、ハロゲン原子、置換されてもよいアルキル基またはニトロであり、残りが水素原子である

で表される化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩を含有する、抗不安または抗うつ剤。

# 2. 式(1')

5

$$R^{6}$$
 $R^{7}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{3}$ 
 $R^{2'}$ 
 $R^{2'}$ 
 $R^{1'}$ 
 $R^{1'}$ 
 $R^{8}$ 
 $R^{8}$ 
 $R^{8}$ 

10 [式中、R¹'およびR²'は、各々独立して、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換されてもよいアリール基、置換されてもよいヘテロアリール基、もしくは置換されてもよい飽和ヘテロ環基を表すか、またはR¹'はよびR²'は一緒になって、それらが結合する窒素原子と共に、式(4):



15

(式中、nは0または1を表し、mは1、2または3を表す。Yは単結合、酸素原子または硫黄原子を表す。Qはメチレン、エチレンまたは置換されてもよい $\sigma$ つエニレン基を表す。)を表す。

R<sup>3</sup> およびR<sup>4</sup> は、各々独立して、水素原子、ハロゲン原子、置換されてもよい 20 アルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基

146

、または置換されてもよいアルキニル基を表す。

R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> は、各々独立して、水素原子、置換されてもよいアルキール基、置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換されてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアルカノイル基、置換されてもよいアルコキシカルボニル基、置換されてもよいアリールオキシカルボニル基、置換されてもよいアリールオキシカルボニル基、置換されてもよいカルバモイル基、置換されてもよいスルファモイル基、置換されてもよいウレイド基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基、置換されてもよいアルキルスルホニル基、または一EーAで表される基(式中、Eは、単結合、酸素原子、硫黄原子、一SO一、一SOュー、一NR<sup>9</sup> 一または一CO一を表し、Aは、置換されてもよいアリール基、または、置換されてもよいへテロアリール基を表し、R<sup>9</sup> は水素原子または置換されてもよいアルキル基を表す。)を表す。

15 Xは、酸素原子、硫黄原子、NR<sup>10</sup>、またはCR<sup>11</sup>R<sup>12</sup>を表す。

(式中、R¹ºは、水素原子、置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基、置換されてもよいアルカノイル基、または置換されてもよいアルコキシカルボニル基を表す。

20 R<sup>1 1</sup> およびR<sup>1 2</sup> は、各々独立して、水素原子、置換されてもよいアルキル基 、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、置換され てもよいアルキニル基、置換されてもよいアリール基、置換されてもよいヘテロア リール基、ハロゲン原子、シアノ、水酸基、置換されてもよいアミノ基、置換され てもよいアルコキシ基、置換されてもよいアリールオキシ基、置換されてもよいア ルカノイル基、置換されてもよいアロイル基、置換されてもよいヘテロアリールカ ルボニル基、置換されてもよいアルコキシカルボニル基、カルボキシ基、または置

換されてもよいカルバモイル基を表すか、または $R^{1}$  と $R^{1}$  は、一緒になって、オキソまたは=NOHを表す。)

また、(i) XがN  $R^{1}$  のとき、 $R^{8}$  と  $R^{1}$  が一緒になって、式(1')は式(2'):

(式中、 $R^1$ '、 $R^2$ '、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、および $R^7$  は前記と同義であり、 $Z^1$  は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち 1 つは酸素原子、硫黄原子または $-NR^{13}-($ 式中、 $R^{13}$  は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。また、該アル 10 キレン基の隣り合った原子間で二重結合を形成してもよい。)を表してもよい。

(ii) R<sup>4</sup> と R<sup>5</sup> が一緒になって、式(1') は式(3'):

(式中、 $R^{1}$ 、 $R^{2}$ 、 $R^{3}$ 、 $R^{6}$ 、 $R^{7}$ 、 $R^{8}$ 、およびXは前記と同義であり、 $Z^{2}$  は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち1つは酸素原子、硫黄原子または $-NR^{13}$  - (式中、 $R^{13}$  は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。また、該アルキレン基の隣り合った原子間で二重結合を形成してもよい。)を表してもよい。

ただし、前記(i)または(ii)ではない場合においては、

- (1) R<sup>1</sup> 'およびR<sup>2</sup> 'は同時に水素原子を表すことはない。
- (2) R<sup>1</sup>'またはR<sup>2</sup>'は飽和ヘテロ環基を表すことはない。
- (3) R<sup>1</sup> およびR<sup>2</sup> が一緒になって、それらが結合する窒素原子と共に、式(
- 4)を表す時、Qは置換されてもよいo-フェニレン基を表す。
- 5 (4)  $R^5$ 、 $R^6$ 、 $R^7$ および $R^8$ は、同時に水素原子を表すことはない。
  - (5)  $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれぞれ独立して、ハロゲン原子、または置換されてもよいアルキル基であるとき、残りは水素原子ではない
- (6) Xが硫黄原子を表し、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> のうち、1~2個がそれ でれ独立して、ハロゲン原子、ニトロ、アルキル基、ハロゲン原子で置換されたアルキル基、アルコキシ基、または置換されてもよいアミノ基であるとき、残りは水素原子ではない。
  - (7) Xが酸素原子を表し、 $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれ ぞれ独立して、ハロゲン原子、アルコキシ基、または置換されてもよいアリールカルボニル基であり、残りが水素原子である時、 $R^{1}$  または $R^{2}$  は水素原子ではない。
  - (8) Xが酸素原子を表し、 $R^7$  がニトロであり、 $R^5$ 、 $R^6$  および $R^8$  が水素原子である時、 $R^1$  および $R^2$  は同時にアルキル基を表すことはない。
- (9) XがN  $R^1$  ° を表し、 $R^5$  、 $R^6$  、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれ 20 ぞれ独立して、置換されてもよいアルキル基、置換されてもよいアルコキシ基、ハロゲン原子、またはシアノであるとき、残りは水素原子ではない。

で表される化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩

- 3. 請求項2における式(1')が、式(2')または式(3')で表す化合物ではない場合において、さらに、
- 5 (11) R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>のうち、1~2個がそれぞれ独立して、ハロゲン原子、置換されてもよいアルキル基、置換されてもよいピリミジルアミノ基または置換されてもよいチアゾリルであるとき、残りは水素原子ではない。
- (12) Xが硫黄原子を表し、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> のうち、1~2個がそれぞれ独立して、ハロゲン原子、ニトロ基、アルキル基、ハロアルキル基、置換されてもよいアルコキシ基、または置換されてもよいアミノ基であるとき、残りは水素原子ではない。
  - (13) Xが酸素原子を表し、 $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれぞれ独立して、ハロゲン原子、置換されてもよいアルコキシ基、または置換されてもよいアリールカルボニル基であり、残りが水素原子である時、 $R^1$  'または $R^2$  'は水素原子ではない。
  - (14)  $XがNR^1$   $^0$  を表し、 $R^5$  、 $R^6$  、 $R^7$  および $R^8$  のうち、 $1\sim 2$  個がそれぞれ独立して、置換されてもよいヘテロアリール基であり、残りが水素原子である時、 $R^1$  'または $R^2$  'は水素原子ではない。

請求項2に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容さ 20 れる塩。

4. XがNR<sup>10</sup>であり、R<sup>8</sup>とR<sup>10</sup>が一緒になって、式(2")

$$R^{6}$$
 $R^{7}$ 
 $R^{7}$ 

10

[式中、 $R^1$ '、 $R^2$ '、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$  および $R^7$  は、請求項 2 における意義と同義である。 $Z^1$  'は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち 1 つは酸素原子、硫黄原子または $-NR^{1/3}$  - (式中、 $R^{1/3}$  は、水素原子または置換されてもよいアルキル基を表す。)に置き換えることができる。〕

で表される、請求項2記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。

- 5.  $R^5$ 、 $R^6$  および $R^7$  のうち、少なくとも1つが-E-A(式中、Eおよび Aは、請求項2における意義と同義である。)で表される基である、請求項4記載 の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。
- 6. Z¹'が置換されてもよいトリメチレンまたはテトラメチレン(該トリメチレンおよびテトラメチレンの炭素原子のうち1つは酸素原子で置き換えることができる。)である、請求項4または5に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。
- 15 7. R<sup>4</sup> とR<sup>5</sup> が一緒になって、式(3")

[式中、 $R^1$ '、 $R^2$ '、 $R^3$ 、 $R^6$ 、 $R^7$ 、 $R^8$  およびXは、請求項 2 における意義と同義である。  $Z^2$  'は置換されてもよいアルキレン基を表し、該アルキレン基の炭素原子のうち 1 つは酸素原子に置き換えることができる。]

- 20 で表される、請求項2記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。
  - 8. R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>のうち、少なくとも1つが一E-A(式中、Eおよび

Aは、請求項2における意義と同義である。)で表される基である、請求項7記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。

- 9. Z<sup>2</sup>'が置換されてもよいエチレンである、請求項7または8に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。
- 5 10. R¹'が、水素原子、置換されてもよいアルキル基、置換されてもよいシ クロアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキ ニル基を表し、R²'が置換されてもよいアルキル基、置換されてもよいアリール 基、または置換されてもよいヘテロアリール基を表すか、またはR¹'およびR²' は一緒になって、それらが結合する窒素原子と共に、式(4'):



10

(式中、nは0または1を表し、mは1、2または3を表す。Y'は単結合または酸素原子を表す。Q'は置換されてもよいo-フェニレン基を表す。)を表し;

R³およびR⁴が、各々独立して、水素原子、ハロゲン原子、または置換されてもよいアルキル基を表し;

- 15 R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> のうち少なくとも1つは、-E-Aで表される基( 式中、EおよびAは、請求項2における意義と同義である。)である、請求項2ま たは3記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される 塩。
- 11. Xが、酸素原子または硫黄原子である、請求項10記載の化合物もしくは 20 そのプロドラッグ、またはそれらの薬学上許容される塩。
  - 12. Xが $NR^1$  ° であり、 $R^1$  ° が水素原子または置換されてもよいアルキル基である、請求項1 O 記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。
  - 13. Xが $CR^{1}$   $R^{1}$   $R^{2}$  であり、 $R^{1}$  および $R^{1}$  が、各々独立して、水素

152

原子、ハロゲン原子で置換されてもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基である、請求項10記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。

R¹'およびR²'が、水素原子、または置換されてもよいアルキル基を表 5 し、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>は、各々独立して、水酸基、ニトロ、シアノ、ア ルコキシ基、シクロアルキル基、置換されてもよいアミノ基、アルキルスルホニル 基、アリールスルホニル基、または置換されてもよいヘテロアリール基で置換され たアルキル基;置換されてもよいシクロアルキル基;置換されてもよいアルケニル 基;置換されてもよいアルキニル基;水酸基;置換アミノ基;置換アルコキシ基; 10 置換されてもよいアルカノイル基;置換されてもよいアルコキシカルボニル基;置 換されてもよいアリールオキシカルボニル基;置換されてもよいヘテロアリールオ キシカルボニル基;カルボキシ基;置換されてもよいカルバモイル基;アリール基 で置換されたスルファモイル基;置換されてもよいウレイド基;置換されてもよい アルキルチオ基;置換されてもよいアルキルスルフィニル基;置換されてもよいア 15 ルキルスルホニル基;または一E-A'で表される基(式中、Eは、単結合、酸素 原子、硫黄原子、-SO-、 $-SO_2-$ 、 $-NR^9-$ または-CO-を表し、A'は、水酸基またはアミノ基で置換されたアルキル基、ハロゲン原子で置換されたア ルコキシ基、アルコキシカルボニル基、カルボキシ基、アミノ基(該アミノ基は、 1つまたは2つのアルキル基、アルカノイル基、またはアルコキシカルボニル基で 20 置換されていてもよい。)、カルバモイル基、アリール基、アリールオキシ基、ア ルキルスルホニル基またはアリールスルホニル基で置換されたフェニル基;置換さ れてもよいナフチル基;または置換されてもよいヘテロアリール基を表す。R®は 水素原子または置換されてもよいアルキル基を表す。)で表される、請求項2また は3に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される 25

塩。

15. R<sup>1</sup>, R<sup>2</sup>, のうち、少なくともどちらか一方が アリール基(該アリール 基は、ハロゲン原子、水酸基、アルコキシ基、またはアルカノイル基で置換されて もよい)であり、かつXが硫黄原子を表し、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>は、各々 独立して、置換アルキル基(置換基としては、水酸基、ニトロ、シアノ、アルコキ シ基、シクロアルキル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、ア 5 ルカノイルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニル基、ア リールスルホニル基、置換されてもよいアリール基または置換されてもよいヘテロ アリール基から選ばれる) ; 置換されてもよいシクロアルキル基; 置換されてもよ いアルケニル基;置換されてもよいアルキニル基;ハロゲン原子;シアノ;ニトロ ;水酸基;置換されてもよいアミノ基;置換アルコキシ基;置換されてもよいアル 10 カノイル基;置換されてもよいアルコキシカルボニル基;置換されてもよいアリー ルオキシカルボニル基;置換されてもよいヘテロアリールオキシカルボニル基;カ ルボキシ基;置換されてもよいカルバモイル基;置換されてもよいスルファモイル 基;置換されてもよいウレイド基;置換されてもよいアルキルチオ基;置換されて もよいアルキルスルフィニル基;置換されてもよいアルキルスルホニル基;または ーE-Aで表される基(式中、Eは、単結合、酸素原子、硫黄原子、-SO-、-SO。一、一NR®一または一CO一を表し、Aは、置換されてもよいアリール基 または置換されてもよいヘテロアリール基を表す。R®は水素原子または置換され てもよいアルキル基を表す。)で表される、請求項2または3に記載の化合物もし くはそのプロドラッグ、またはそれらの薬学上許容される塩。 20

16.  $R^{1}$ '、 $R^{2}$ 'のうち、少なくともどちらか一方が アリール基(該アリール基は、ハロゲン原子、水酸基、アルコキシ基、またはアルカノイル基で置換されてもよい)であり、Xが酸素原子、 $NR^{10}$ 、または $CR^{11}R^{12}$ である、請求項2または3に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。

17. 式(5)

[式中、 $R^1$  。は置換されてもよいアルキル基または置換されてもよいシクロアルキル基を表し、 $R^2$  。は置換されてもよいアリール基、または置換されてもよいヘテロアリール基を表すか、または $R^1$  。および $R^2$  。は一緒になって、それらが結合する窒素原子と共に、式(4''):

5

15

20

(式中、n、m、およびYは、請求項2における意義と同義である。Q'は置換されてもよいo-フェニレン基を表す。)を表す。

R<sup>3</sup> およびR<sup>4</sup> は、各々独立して、水素原子、ハロゲン原子、置換されてもよい アルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルケニル基 、または置換されてもよいアルキニル基を表す。

R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup> は、各々独立して、水素原子、置換されてもよいアルケニル基、 置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換さ れてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアルカノ イル基、置換されてもよいアルコキシカルボニル基、置換されてもよいアリールオ キシカルボニル基、置換されてもよいヘテロアリールオキシカルボニル基、カルボ キシ基、置換されてもよいカルバモイル基、置換されてもよいスルファモイル基、 置換されてもよいウレイド基、置換されてもよいアルキルチオ基、置換されてもよ いアルキルスルフィニル基、置換されてもよいアルキルスルホニル基、または一E

155

-Aで表される基を表す。

5

(式中、Eは、単結合、酸素原子、硫黄原子、-SO-、-SO<sub>2</sub> -、-NR<sup>9</sup> - または-CO-を表し、Aは、置換されてもよいアリール基、または置換されてもよいヘテロアリール基を表し、R<sup>9</sup> は水素原子または置換されてもよいアルキル基を表す。)

ただし、 $R^5$ 、 $R^6$ 、 $R^7$  および $R^8$  は、同時に水素原子を表すことはない。 X' は、酸素原子、硫黄原子、 $NR^{10}$ 、または $CR^{11}$   $R^{12}$   $R^{12}$  を表す。 (式中、 $R^{10}$  は、請求項2における意義と同義である。

R<sup>1 1 a</sup> およびR<sup>1 2 a</sup> は、各々独立して、水素原子、ハロゲン原子で置換され 10 てもよいアルキル基、置換されてもよいシクロアルキル基、置換されてもよいアル ケニル基、または置換されてもよいアルキニル基を表すか、またはR<sup>1 1 a</sup> とR<sup>1</sup> <sup>2 a</sup> は、一緒になって、オキソまたは=NOHを表す。) ただし、

- (1) Xが硫黄原子または $NR^{1}$  のある時、 $R^{5}$ 、 $R^{6}$ 、 $R^{7}$  および $R^{8}$  のうち  $1\sim 2$  個がそれぞれ独立して、ハロゲン原子、アルキル基、トリハロメチル基、または置換されてもよいアルコキシ基であるとき、残りは水素原子ではない。
  - (2) Xが酸素原子である時、R<sup>7</sup>がハロゲン原子ではない。] で表される化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。
- 20 18. R¹ \* は置換されてもよいアルキル基または置換されてもよいシクロアルキル基を表し、R² \* は置換されてもよいアリール基、または置換されてもよいヘテロアリール基を表し、R⁵、R⁵、R⁵、R¹ およびR\* のうち、少なくとも1つがーE-A(式中、EおよびAは、請求項2における意義と同義である。)で表される基である、請求項17に記載の化合物もしくはそのプロドラッグ、またはそれらの25 薬学上許容される塩。
  - 19. Eが、単結合を表す、請求項18に記載の化合物もしくはそのプロドラッ

グ、またはそれらの薬学上許容される塩。

20. R¹ a は置換されてもよいアルキル基を表し、R² a は置換されてもよいアリール基、または置換されてもよいヘテロアリール基を表し、R6 および/又はR8 が、ハロゲン原子である、請求項17に記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩。

# 21. 式(6)

5

15

20

$$R^{6b}$$
 $R^{7b}$ 
 $R^{7b}$ 
 $R^{8b}$ 
 $R^{8b}$ 
 $R^{3}$ 
 $R^{2b}$ 
 $R^{2b}$ 
 $R^{1b}$ 
 $R^{2b}$ 
 $R^{7b}$ 
 $R^{7b}$ 
 $R^{8b}$ 

[式中、R¹ b およびR² b は、各々独立して、置換アルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基を表す。

10 R³およびR⁴は、請求項2における意義と同義である。

R<sup>5</sup>b、R<sup>6</sup>b、R<sup>7</sup>b およびR<sup>8</sup>b は、各々独立して、水素原子、置換されてもよいアルケ もよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルキニル基、ハロゲン原子、シアノ、ニトロ、水酸基、置換されてもよいアミノ基、置換されてもよいアルコキシ基、置換されてもよいアルカノイル基、置換されてもよいアルコキシカルボニル基、置換されてもよいアリールオキシカルボニル基、置換されてもよいアリールオキシカルボニル基、置換されてもよいカルバモイル基、置換されてもよいスルファモイル基、置換されてもよいウレイド基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルカニル基、または一EーA<sup>b</sup>で表される基(式中、Eは、請求項2における意義と同義であり、A<sup>b</sup>は、置換フェニル基(置換基としては、ハロゲン原子、水酸基もしくは置換されてもよいアミノ基で置換されたアルキル基、ハロゲン原子で置換されたアルコキ

157

シ基、アルコキシカルボニル基、カルボキシ基、アミノ基(該アミノ基は、例えば、1つまたは2つのアルキル基、アルカノイル基、またはアルコキシカルボニル基などで置換されていてもよい。)、カルバモイル基、アリール基、アリールオキシ基、アルキルスルホニル基またはアリールスルホニル基から選ばれる);置換されてもよいナフチル基;あるいは置換されてもよいヘテロアリール基を表す。)であり、 $R^{5-b}$ 、 $R^{6-b}$ 、 $R^{7-b}$  および $R^{8-b}$  のうち、少なくとも1つが $-E-A^b$  で表される基を表す。

5

Xは、酸素原子、硫黄原子、 $NR^{10}$ 、または $CR^{11b}R^{12b}$ を表す。 (式中、 $R^{10}$ は、請求項2における意義と同義である。

10 R<sup>1 1 b</sup> およびR<sup>1 2 b</sup> は、各々独立して、水素原子、ハロゲン原子で置換されてもよいアルキル基、置換されてもよいアルケニル基、または置換されてもよいアルキニル基を表すか、またはR<sup>1 1 b</sup> とR<sup>1 2 b</sup> は、一緒になって、オキソまたは=NOHを表す。)]

で表される化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩 15 。

- 22. 請求項2~21のいずれか一項記載の化合物もしくはそのプロドラッグ、 またはそれらの薬学上許容される塩を有効成分として含有する医薬。
- 23. 請求項2~21のいずれか一項記載の化合物もしくはそのプロドラッグ、またはそれらの薬学上許容される塩を有効成分として含有する、抗不安または抗う 20 つ剤。

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/003095

| A. CLASSIFICATION OF SUBJECT MATTER Int.Cl <sup>7</sup> C07D209/34, 235/26, 263/58, 277/68, 401/02, 403/02, 405/02,           |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| 1110.01                                                                                                                       | 413/02, 417/02, 471/06, 487/0                                                                                    |                                                                                                                                                                                                     | ·                          |  |  |
| A 1' 4 - T4                                                                                                                   | 31/423, 31/428, 31/4745, 31/5                                                                                    |                                                                                                                                                                                                     | 25/24                      |  |  |
| According to International Patent Classification (IPC) or to both national classification and IPC                             |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| B. FIELDS SEARCHED                                                                                                            |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| _                                                                                                                             | nentation searched (classification system followed by cla<br>C07D209/34, 235/26, 263/58, 2                       |                                                                                                                                                                                                     | 02-14,                     |  |  |
|                                                                                                                               | 405/02-14, 413/02-14, 417/02-                                                                                    | -14, 471/06, 487/06, 498                                                                                                                                                                            | 3/06,                      |  |  |
|                                                                                                                               | A61K31/40-554                                                                                                    |                                                                                                                                                                                                     |                            |  |  |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| _                                                                                                                             |                                                                                                                  | tsuyo Shinan Toroku Koho<br>roku Jitsuyo Shinan Koho                                                                                                                                                | 1996-2005<br>1994-2005     |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| Electronic data b                                                                                                             | pase consulted during the international search (name of d                                                        | lata base and, where practicable, search te                                                                                                                                                         | rms used)                  |  |  |
| <b>9</b> -3-1 - <b>9</b> -3                                                                                                   |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| C. DOCUMEN                                                                                                                    | NTS CONSIDERED TO BE RELEVANT                                                                                    |                                                                                                                                                                                                     |                            |  |  |
| Category*                                                                                                                     | Citation of document, with indication, where ap                                                                  | nranriate of the relevant nassages                                                                                                                                                                  | Relevant to claim No.      |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     | 7                          |  |  |
| X<br>Y                                                                                                                        | WO 03/077847 A2 (MERCK & CO. 25 September, 2003 (25.09.03)                                                       |                                                                                                                                                                                                     | 2-23                       |  |  |
|                                                                                                                               | (5) in Claim 7, Claim 17;                                                                                        |                                                                                                                                                                                                     |                            |  |  |
|                                                                                                                               | page 199, Example No. 5<br>& US 2004-58820 A1                                                                    |                                                                                                                                                                                                     |                            |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| P,X                                                                                                                           | WO 2004/087658 A1 (UCB, S.A.)                                                                                    | ) ,                                                                                                                                                                                                 | 1-23                       |  |  |
|                                                                                                                               | 14 October, 2004 (14.10.04)                                                                                      |                                                                                                                                                                                                     |                            |  |  |
| A                                                                                                                             | JP 9-510706 A (Pfizer Inc.),                                                                                     |                                                                                                                                                                                                     | 1-23                       |  |  |
|                                                                                                                               | 28 October, 1997 (28.10.97),<br>& WO 96/04250 A1 & EP                                                            | 775110 71                                                                                                                                                                                           |                            |  |  |
|                                                                                                                               | & WO 98/04230 AI                                                                                                 | //5110 AI                                                                                                                                                                                           |                            |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| Further documents are listed in the continuation of Box C.                                                                    |                                                                                                                  | See patent family annex.                                                                                                                                                                            |                            |  |  |
| * Special categories of cited documents:  "A" document defining the general state of the art which is not considered          |                                                                                                                  | "T" later document published after the integrate date and not in conflict with the applica                                                                                                          |                            |  |  |
| to be of part                                                                                                                 | cicular relevance                                                                                                | the principle or theory underlying the in                                                                                                                                                           | nvention                   |  |  |
| "E" earlier application or patent but published on or after the international filing date                                     |                                                                                                                  | "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive                                                              |                            |  |  |
|                                                                                                                               | which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other | step when the document is taken alone "Y" document of particular relevance: the c                                                                                                                   | laimed invention cannot be |  |  |
| special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means                   |                                                                                                                  | "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination |                            |  |  |
| "P" document published prior to the international filing date but later than the                                              |                                                                                                                  | being obvious to a person skilled in the art                                                                                                                                                        |                            |  |  |
| priority date                                                                                                                 | e claimed                                                                                                        | "&" document member of the same patent fa                                                                                                                                                           | шшу                        |  |  |
| Date of the actual completion of the international search                                                                     |                                                                                                                  | Date of mailing of the international search report                                                                                                                                                  |                            |  |  |
| 22 Apri                                                                                                                       | il, 2005 (22.04.05)                                                                                              | 17 May, 2005 (17.05                                                                                                                                                                                 | 5.05)                      |  |  |
|                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| Name and mailing address of the ISA/ Japanese Patent Office                                                                   |                                                                                                                  | Authorized officer                                                                                                                                                                                  |                            |  |  |
| Dapanese racent Office                                                                                                        |                                                                                                                  |                                                                                                                                                                                                     |                            |  |  |
| Facsimile No.                                                                                                                 |                                                                                                                  | Telephone No.                                                                                                                                                                                       |                            |  |  |

### A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl.<sup>7</sup> C07D209/34、235/26、263/58、277/68、401/02、403/02、405/02、413/02、417/02、471/06、487/06、498/06、A61K31/40、31/4184、31/423、31/428、31/4745、31/536、31/551、A61P25/22、25/24

#### B. 調査を行った分野

### 調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.<sup>7</sup> C07D209/34、 235/26、 263/58、 277/68、 401/02-14、 403/02-14、 405/02-14、 413/02-14、 417/02-14、 471/06、 487/06、 498/06、 A61K31/40-554

#### 最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

#### 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN)

C. 関連すると認められる文献

| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                  | 関連する<br>請求の範囲の番号 |
|-----------------|----------------------------------------------------------------------------------------------------|------------------|
| X<br>Y          | WO 03/077847 A2 (MERCK & CO., INC) 2003.09.25,<br>請求項7の(5)、請求項17、199頁Ex.No.5 & US 2004-58820 A1    | 1 2-23           |
| P, X            | WO 2004/087658 A1 (UCB, S.A.) 2004.10.14                                                           | 1-23             |
| A               | JP 9-510706 A (ファイサ゛ー・インコーホ゜レーテット゛) 1997. 10. 28<br>& WO 96/04250 A1 & EP 775118 A1 & US 5889010 A | 1-23             |
|                 | · · · · · · · · · · · · · · · · · · ·                                                              |                  |

### 「C欄の続きにも文献が列挙されている。

**パテントファミリーに関する別紙を参照。** 

#### \* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願

### の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献