Теория вероятностей. Лекция девятая Условное математическое ожидание

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

30.10.2018

Что дальше?

- распределение случайных величин
- медиана и математическое ожидание
- независимость случайных величин
- производящие функции как матожидание
- дисперсия, ковариация и корреляция
- векторные случайные величины, их совместные распределения, маргинальные распределения
- энтропия и условная энтропия
- условное математическое ожидание

Что сделано:

мы научились находить линейную (как и любую наперед заданную двухпараметрическую) зависимость значения одной случайной величины с помощью значений другой случайной величины. Для этого требуется рассчитать их дисперсии и ковариации, для чего достаточно знать матожидания.

С совместным распределением можно больше...

Напомним: случайная величина, ее распределение и ее энтропия

В вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ дискретная случайная величина $\xi:\Omega \to \mathbb{R}$ задает распределение

Здесь
$$p_i \stackrel{\triangle}{=} \mathbb{P}(\xi = x_i) = \mathbb{P}\{\omega \in \Omega \mid \xi(\omega) = x_i\}.$$

Число $H(\xi) \stackrel{\triangle}{=} -\sum_i p_i \log p_i$ называют энтропией этого распределения (этой случайной величины).

Напомним: совместные распределения

В вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$ векторная дискретная случайная величина $\vec{\xi} = (Y, X) : \Omega \to \mathbb{R}^2$ задает совместное распределение

У такой случайной величины и ее совместного распределения энтропия считается по формуле

$$H(\vec{\xi}) \stackrel{\triangle}{=} -\sum_{i,j} p_{ij} \log p_{ij}.$$

Напомним: свойства энтропии

- $1^0 \ H(X) \ge 0$, причем H(X) = 0 тогда и только тогда, когда X вырожденная случайная величина;
- $2^0~H(f(X)) \leq H(X)$ для любой функции $f: \mathbb{R} \to \mathbb{R}$, причем H(f(X)) = H(X) тогда и только тогда, когда f на $\{x_1,x_2,\dots\}$ биекция;
- $3^0\ H(X) \leq \log N$, если X принимает не более чем N значений,
 - причем $H(X) = \log N$ только при $p_i = 1/N$;
- 4^0 для $ec{\xi}=(X,Y)$ выполнено $H(ec{\xi})\leq H(X)+H(Y)$, причем $H(ec{\xi})=H(X)+H(Y)$ в точности для независимых X,Y.

Напомним: условная энтропия через условное распределение

$$H(X|Y) \stackrel{\triangle}{=} H(\vec{\xi}) - H(Y) = -\sum_{j} q_{j} \sum_{i} \frac{p_{ij}}{q_{j}} \log \frac{p_{ij}}{q_{j}}$$
$$= -\sum_{j} q_{j} \sum_{i} \mathbb{P}(X = x_{i}|Y = y_{j}) \log \mathbb{P}(X = x_{i}|Y = y_{j}),$$

где $\mathbb{P}(X|Y)$ — условное распределение случайной величины X относительно Y:

при	x_1	x_2	x_3	
y_1 :	$\mathbb{P}(X=x_1 Y=y_1) = \frac{p_{11}}{q_1}$	$\mathbb{P}(X = x_2 Y = y_1) = \frac{p_{12}}{q_1}$	$\mathbb{P}(X=x_3 Y=y_1) = \frac{p_{13}}{q_1}$	
y_2 :	$\mathbb{P}(X = x_1 Y = y_2) = \frac{p_{21}}{q_2}$	$\mathbb{P}(X = x_2 Y = y_2) = \frac{p_{22}}{q_2}$	$\mathbb{P}(X=x_3 Y=y_2) = \frac{p_{23}}{q_2}$	
		• • •		

Как восстановить X по Y, если условная энтропия H(X|Y) равна нулю...

<u>Подумать</u>: X является функцией от Y, то есть X = f(Y), тогда и только тогда, когда

$$H(X|Y) = -\sum_j q_j \sum_i \mathbb{P}(X=x_i|Y=y_j) \log \mathbb{P}(X=x_i|Y=y_j) = 0.$$

при	x_1	x_2	x_3	
y_1 :	$\mathbb{P}(X=x_1 Y=y_1) = \frac{p_{11}}{q_1}$	$\mathbb{P}(X = x_2 Y = y_1) = \frac{p_{12}}{q_1}$	$\mathbb{P}(X=x_3 Y=y_1) = \frac{p_{13}}{q_1}$	
y_2 :	$\mathbb{P}(X=x_1 Y=y_2)=\frac{p_{21}}{q_2}$	$\mathbb{P}(X=x_2 Y=y_2) = \frac{p_{22}}{q_2}$	$\mathbb{P}(X=x_3 Y=y_2) = \frac{p_{23}}{q_2}$	

 $\overline{\text{Подумать}}$: вроде бы X является (или не является) функцией от Y вне зависимости от выбора вероятности $\mathbb{P}...$

Измеримость случайных величин: банальности и не только

Любая дискретная случайная величина ξ порождает σ -алгебру $\sigma(\xi)$, для дискретных случайных величин ее можно выразить формулой

$$\sigma(\xi) \stackrel{\triangle}{=} \sigma \{ \{ \omega | \xi(\omega) = x \} | x \in \mathbb{R} \}$$

(это обозначение уже встречалось ранее при определении независимости случайных величин).

Если $\sigma(\xi) \subset \mathcal{H}$ для некоторой σ -алгебры \mathcal{H} , то говорят, что случайная величина ξ \mathcal{H} -измерима (измерима относительно σ -алгебры \mathcal{H}).

Для любой σ -алгебры ${\mathcal H}$ выполнено $\{\Omega,\varnothing\}\subset {\mathcal H}\subset {\mathcal F};$ \Rightarrow любая дискретная случайная величина ${\mathcal F}$ -измерима; \Rightarrow константы, и только они, $\{\Omega,\varnothing\}$ -измеримы. Если X=f(Y), то $X-\sigma(Y)$ -измеримая случайная величина.

Как проверить, является ли X функцией от Y, без применения вероятности...

Теорема. [с-но; от 0,5 до 1 балла] $X - \sigma(Y)$ -измеримая случайная величина тогда и только тогда, когда X = f(Y) для некоторой функции $f: \mathbb{R} \to \mathbb{R}$.

при	x_1	x_2	x_3	
y_1 :	$\mathbb{P}(X=x_1 Y=y_1)=\frac{p_{11}}{q_1}$	$\mathbb{P}(X=x_2 Y=y_1) = \frac{p_{12}}{q_1}$	$\mathbb{P}(X=x_3 Y=y_1) = \frac{p_{13}}{q_1}$	
y_2 :	$\mathbb{P}(X=x_1 Y=y_2)=\frac{p_{21}}{q_2}$	$\mathbb{P}(X = x_2 Y = y_2) = \frac{p_{22}}{q_2}$	$\mathbb{P}(X = x_3 Y = y_2) = \frac{p_{23}}{q_2}$	
		•••	• • •	

Что делать, если X не является $\sigma(Y)$ -измеримой, а выразить X через Y надо? Приближать $\sigma(Y)$ -измеримой!!

Напомним: условная вероятность относительно σ -алгебры

Пусть имеются полная группа событий H_1,\ldots,H_k,\ldots $(\Omega=\bigsqcup_{i=1}^\infty H_i)$, например заданных правилом $H_i\stackrel{\triangle}{=}\{\omega\in\Omega\,|\,Y(\omega)=y_i\}$, и порожденная ей σ -алгебра $\mathcal{H}=\sigma(H_1,\ldots,H_k,\ldots)$. Пусть $q_i\stackrel{\triangle}{=}\mathbb{P}(H_i)>0$.

Условной вероятностью $\mathbb{P}(W|\mathcal{H})$ события $W \in \mathcal{F}$ относительно σ -алгебры $\mathcal{H} = \sigma(H_1, \ldots, H_k, \ldots)$ называют \mathcal{H} -измеримую функцию

$$\Omega \ni \omega \mapsto \mathbb{P}(W|\mathcal{H})(\omega) \stackrel{\triangle}{=} \left\{ egin{array}{ll} \mathbb{P}(W|H_1), & \text{если } \omega \in H_1; \\ \dots & \\ \mathbb{P}(W|H_k), & \text{если } \omega \in H_k; \\ \dots & \end{array} \right.$$

Условное матожидание относительно σ -алгебры, I

Пусть имеются полная группа событий H_1,\ldots,H_k,\ldots $(\Omega=\bigsqcup_{i=1}^\infty H_i)$, например заданных правилом $H_i\stackrel{\triangle}{=}\{\omega\in\Omega\,|\,Y(\omega)=y_i\}$, и порожденная ей σ -алгебра $\mathcal{H}=\sigma(H_1,\ldots,H_k,\ldots)$. Пусть $q_i\stackrel{\triangle}{=}\mathbb{P}(H_i)>0$.

Условным математическим ожиданием $\mathbb{E}(\xi|\mathcal{H})$ дискретной случайной величины ξ относительно σ -алгебры $\mathcal{H} = \sigma(H_1, \ldots, H_k, \ldots)$ называют отображение $\mathbb{E}(\xi|\mathcal{H}): \Omega \to \mathbb{R}$, действующее по правилу:

$$\Omega \ni \omega \mapsto \mathbb{E}(\xi | \mathcal{H})(\omega) \stackrel{\triangle}{=} \begin{cases} \sum_{i \in \mathbb{N}} x_i \mathbb{P}(\xi = x_i | H_1), & \text{если } \omega \in H_1; \\ \dots \\ \sum_{i \in \mathbb{N}} x_i \mathbb{P}(\xi = x_i | H_k), & \text{если } \omega \in H_k; \\ \dots \end{cases}$$

будем говорить, что условное матожидание существует, если, конечно, все выражения выше определены и конечны.

Условное матожидание относительно σ -алгебры, Π

Важное замечание: как и условная вероятность $\mathbb{P}(\xi|\mathcal{H})$, условное матожидание $\mathbb{E}(\xi|\mathcal{H})$ является не числом, а \mathcal{H} -измеримой функцией, отображающей каждый исход ω в некоторое число.

Условным математическим ожиданием $\mathbb{E}(\xi|\mathcal{H})$ дискретной случайной величины ξ относительно σ -алгебры $\mathcal{H} = \sigma(H_1,\ldots,H_k,\ldots)$ $(\Omega = \bigsqcup_{i=1}^{\infty} H_i)$ называют отображение

$$\Omega \ni \omega \mapsto \mathbb{E}(\xi | \mathcal{H})(\omega) \stackrel{\triangle}{=} \left\{ \begin{array}{l} \sum_{i \in \mathbb{N}} x_i \mathbb{P}(\xi = x_i | H_1), & \text{если } \omega \in H_1; \\ \dots \\ \sum_{i \in \mathbb{N}} x_i \mathbb{P}(\xi = x_i | H_k), & \text{если } \omega \in H_k; \\ \dots \end{array} \right.$$

Будем говорить, что $\mathbb{E}(\xi|\mathcal{H})$ существует, если, конечно, все выражения выше определены и конечны.

Условное матожидание относительно случайной величины

Условное матожидание ξ относительно случайной величины η зададим формулой $\mathbb{E}(\xi|\eta) \equiv \mathbb{E}(\xi|\sigma(\eta))$. Иногда его вводят как функцию от области значений случайной величины η , т.е. как регрессию. Пример расчета по совместному распределению регрессии h_0

(Y,X)	x_1	x_2	x_3	 $\mathbb{P}(Y = y_j)$	$\mathbb{E}(X Y)$
y_1	p_{11}	p_{12}	p_{13}	 q_1	$h_0(y_1) \stackrel{\triangle}{=} \frac{1}{q_1} \sum_{i=1}^{\infty} x_i p_{1i}$
y_2	p_{21}	p_{22}	p_{23}	 q_2	$h_0(y_2) \stackrel{\triangle}{=} \frac{1}{q_2} \sum_{i=1}^{\infty} x_i p_{2i}$
y_3	p_{31}	p_{32}	p_{33}	 q_3	$h_0(y_3) \stackrel{\triangle}{=} \frac{1}{q_3} \sum_{i=1}^{\infty} x_i p_{3i}$
				 	•••

 $\overline{\xi,\eta}$ были скалярными величинами (отображались в числа). Можно ли вместо $\mathbb R$ взять что-то более общее?

Посчитать условное матожидание: индикаторные функции

Рассмотрим произвольное событие $A \in \mathcal{F}$ и его индикаторную функцию 1_A . Пусть имеется также полная группа событий H_1,\dots,H_k,\dots с порожденной ей σ -алгеброй \mathcal{H} . Теперь,

$$\mathbb{E}(1_A|\mathcal{H})(\omega) = \left\{ egin{array}{ll} \mathbb{P}(A|H_1), & ext{если } \omega \in H_1; \ \dots & = \mathbb{P}(A|\mathcal{H})(\omega). \ \mathbb{P}(A|H_k), & ext{если } \omega \in H_k. \ \dots \end{array}
ight.$$

 $\begin{subarray}{ll} \hline \end{subarray}$ Подумать: выразите $\mathbb{E}\xi$ через $\mathbb{E}(\xi|1_A)$. $\begin{subarray}{ll} \hline \end{subarray}$ проверьте формулу $\mathbb{E}(\xi|A)$ = $\mathbb{E}(\xi 1_A)/\mathbb{P}(A)$.

Свойства условного матожидания, стандартные +: [с-но]

Пусть на этом слайде всё существует априори...

- 0^0 $\mathbb{E}(1_A|\mathcal{H}) = \mathbb{P}(A|\mathcal{H})$ для всех $A \in \mathcal{F}$.
- $1^0 \mathbb{E}(\xi|\mathcal{H}) \ge 0$, если $\xi \ge 0$ для всех $\omega \in \Omega$.
- 2^0 $\mathbb{E}(\xi_1|\mathcal{H}) \geq \mathbb{E}(\xi_2|\mathcal{H})$, если $\xi_1(\omega) \geq \xi_2(\omega)$ для всех $\omega \in \Omega$.
- $3^0 \ \mathbb{E}(c|\mathcal{H}) = c$ для вырожденной случайной величины $c \in \mathbb{R};$ более того, $\mathbb{E}(\xi|\mathcal{H}) = \xi$ для \mathcal{H} -измеримой ξ , в частности, всегда $\mathbb{E}(f(\xi)|\xi) = f(\xi), \ \mathbb{E}(\xi|\xi) = \xi.$
- $4^0~\mathbb{E}(c\xi|\mathcal{H})=c\mathbb{E}(\xi|\mathcal{H})$ для $c\in\mathbb{R},$ более того, $\mathbb{E}(\eta\xi|\mathcal{H})=\eta\mathbb{E}(\xi|\mathcal{H}),$ если $\eta~\mathcal{H}$ -измерима.
- $5^0 \mathbb{E}(\xi_1|\mathcal{H}) + \mathbb{E}(\xi_2|\mathcal{H}) = \mathbb{E}(\xi_1 + \xi_2|\mathcal{H}).$
- $6^0 \ \eta_1 \mathbb{E}(\xi_1|\mathcal{H}) + \eta_2 \mathbb{E}(\xi_2|\mathcal{H}) = \mathbb{E}(\eta_1 \xi_1 + \eta_2 \xi_2|\mathcal{H})$ для \mathcal{H} -измеримых η_1, η_2 .
- 7^0 $\mathbb{E}(\xi\eta|\mathcal{H}) = \mathbb{E}(\xi|\mathcal{H})\mathbb{E}(\eta|\mathcal{H})$, если $\xi 1_H, \eta 1_H$ независимы для всех $H \in \mathcal{H}$.

Свойства условного матожидания, существование: [с-но]

- 8^0 $\mathbb{E}(\mathbb{E}(\eta|\mathcal{G}))$ существует тогда и только тогда, когда существует $\mathbb{E}\eta$, в частности, из существования $\mathbb{E}|\eta|$ следует существование $\mathbb{E}(\eta|\mathcal{G})$.
- $9^0 \ \mathbb{E}(\xi|\mathcal{H})$ существует, если ξ ограничена или принимает конечное число значений.
- $10^0~\mathbb{E}(|\xi\eta||\mathcal{H})$ существует, если $\mathbb{E}(\xi^2|\mathcal{H})$ и $\mathbb{E}(\eta^2|\mathcal{H})$ существуют.
- $11^0~\mathbb{E}(|\xi||\mathcal{H}), \mathbb{E}(\xi|\mathcal{H})$ существуют, если $\mathbb{E}(\xi^2|\mathcal{H})$ существует.
- $12^0 \ g(\mathbb{E}(\xi|\mathcal{H})) \leq \mathbb{E}(g(\xi)|\mathcal{H})$ для любой выпуклой (вниз) скалярной функции g; при этом, если существует матожидание справа, то и слева тоже существует.
- $13^0~\mathbb{E}(\sum_{i=1}^\infty \xi_i | \mathcal{H})$ существует и равно $\sum_{i=1}^\infty \mathbb{E}(\xi_i | \mathcal{H})$, если конечен ряд $\sum_{i=1}^\infty \mathbb{E}(|\xi_i| | \mathcal{H})(\omega)$ для всех $\omega \in \Omega$.

Условное матожидание как основание перпендикуляра

 18^0 Для случайной величины ξ ($\mathbb{E}\xi^2 < +\infty$) и случайной величины η среди всех таких $h: \mathbb{R} \to \mathbb{R}$, что $\mathbb{E}(h^2(\eta)) < +\infty$, невязка $\mathbb{E}(\xi - h(\eta))^2$ достигает минимума при $h_0(\eta) = \mathbb{E}(\xi|\eta)$; функция h_0 при этом является регрессией, а реализующееся минимальное значение — условной дисперсией $\mathbb{D}(\xi|\eta)$.

Замечание. Фактически в пространстве всевозможных интегрируемых с квадратом дискретных случайных величин ищется перпендикуляр из ξ на бесконечномерное линейное подпространство всех η -измеримых величин. Полученный результат и называют условным матожиданием ξ относительно η .

Доказательство оптимальности регрессии

<u>Д</u>оказательство. Можно положить $\xi = \sum_{i=1}^{\infty} x_i 1_{K_i}$ и $\eta = \sum_{j=1}^{\infty} y_j 1_{H_j}$ для некоторых наборов $x_i, \ y_j, \ K_i \ \left(\bigsqcup_{i=1}^{\infty} K_i = \Omega \right)$ и $H_j \ \left(\bigsqcup_{j=1}^{\infty} H_j = \Omega \right)$. Тогда мы перебираем числа $z_j = h(y_j)$, минимизируя

$$\mathbb{E}(\xi - h(\eta))^2 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (x_i - z_j)^2 \mathbb{P}(H_j \cap K_i)$$
$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (x_i - z_j)^2 p_{ji}.$$

В силу $\frac{\partial}{\partial z_j}\mathbb{E}(\xi-h(\eta))^2|_{z_j=h_0(y_j)}=0$, получаем $\sum_{i=1}^{\infty}(x_i-h_0(y_j))p_{ji}=0$, то есть

$$h_0(y_j) = \frac{\sum_{i=1}^{\infty} x_i p_{ij}}{\sum_{i=1}^{\infty} p_{ji}} = \frac{\sum_{i=1}^{\infty} x_i \mathbb{P}(\xi = x_i, \eta = y_j)}{\mathbb{P}(\eta = y_j)} = \sum_{i=1}^{\infty} x_i \mathbb{P}(\xi = x_i | \eta = y_j).$$

