* Penrose graphical notation 171
Map A: V→W B: WaV →U B
Tensoring by juxtaposition: $AB = A \otimes B : V \otimes W \otimes V \longrightarrow W \otimes U$
1 WHV
Linearity by +: 2 0 + 30 u
Contraction/composition with arcs: ATV: VeV→U
v [†]
Identity map to and dual pairing $v \wedge v^* = \sum_i v^i \otimes v_i$ (assume f.din.)
also "co-dual" ("Cosimir") VVV* = ∑ Vi ⊗ Vi
ex dual of A is "A": wx -> V*. "A" \(V* \otimes W \) is "matrix"
W
Vect has transpositions √X : V&W → W&V
Repr. $\mathbb{C}[S^n] \longrightarrow \mathbb{E} \mathrm{nd}(V^{\otimes n})$ by $\sigma \mapsto \sigma_{\mathbb{R}}$. $\underline{\mathbb{E}} \times (123) \mapsto X$.
Trace Let $T:V \rightarrow V$. $ = \left(\sum_{i} v_i \otimes v^i\right) \circ id_{v_i} \otimes T \circ \left(\sum_{j} v^j \otimes v_j\right) $ $ = \sum_{i,j} v_i(v^j) \cdot v^i(T(v_j)) = \sum_{i} v^i(T(v_i)) = +T. $
$= \sum_{i} v_{i}(v_{i}) \cdot v^{i}(T(v_{i})) = \sum_{i} v^{i}(T(v_{i})) = +T.$
ex $Ov = tr idv = dim V.$
= 4
Metrics Suppose If $\in V^* \otimes V^*$ is a non-degenerate bilinear form.
(ie., fi): V→V* is an isomorphism)
Let the be inverse: The = 1.
1) If symmetric, $f = \hat{f} = \hat{f} = 0 = \dim V$
2) If antisymmetric, II = - \$\hat{z} = -dim V
3) In either case, $1 = 1 = 1$.
Convention: fix sym/alt form & drop arrows. So:
al = 10 and = 1:11/1/ 1 if sym
$N = 1 = N$ and $= dion V \cdot (1 \text{ if sym})$

 $\rho = | if sym, \rho = - | if antisym, so <math>\rho = | for both.$ ex antisym gives Z/2Z winding # for closed curve. * 50(3) invariant of 3-valent (cubic) fugraphs. (Penvose 171. "Apps of neg-dim fensors") Take $V = C^3$, $\Lambda = dot$ product $\Lambda = i det$ C(3/V) = 2/E1, so will give ReH.) $\lambda = N$, etc. $(\lambda = i \cdot cross \text{ product})$ Lemma > < = > - X Pt Let a,b,c be some permutation of std. bosis. Non-zero evaluations must be of form secola = Va or secolo = - axb $\underline{\otimes}$ Θ = 8-8 = 3²-3=6 = -6 since det alternating ($\wedge = \Rightarrow$) Thm (Penrose '71, pt by Kauffman) Image of graph \(= # edge 3-colorings of \(\Gamma \) if I's planar. Pf Let e, ez, e, be std basis. Value of im of Γ is sum over all assignments of e,,ez,ez to edges. Only care about non-zero assignments, which is when distinct vectors around each vtx. Consider ez edges and simplify: $y \stackrel{k}{\searrow} e_3 \stackrel{k}{\swarrow} y$ $\bigoplus_{X} X$ $\bigoplus_{Y} X$ Result: a collection of simple closed curves labeled e, bez. $\mathbb{Z}/2\mathbb{Z}$ intersection #=0 \Longrightarrow even # of Θ 's, so this assignment is a positive summand. Contributes +1.

Composition is by connecting corresponding pts on boundary, with
$$O = N$$
.

 $eBr_{SS}(N) = eBr_{SS}(N) = eBr_{SS}($

For g=so(N), Killing form same, and trace form prop. to Killing form. Projector $gL(N) \rightarrow so(N)$ is $A \mapsto \pm (A - A^{T}) = \pm (\cancel{b} - \cancel{b}) = \pm (11 - X) \circ A$. Let #= 11-X. #=-# 50 #=-# So, up to scaling, can use I - # and > -> > for Wsom(1). # edge 3-colorings = $W_{SO(3)}(\Gamma) = 2^{v-e} W_{SL(2)}(\Gamma)$. (two different-seeming ways to calculate!)

	Part I
9/26/17	Last time: tensor diagrams, Penrose polys
	A cellular/combinatorial embedding of a graph 1 into a surface I is
	one where Γ is $\Sigma^{(i)}$ (i.e., no genus holes in faces; Σ obtained
	by gluing disks),
	ex (dual graphs are w.r.t. such embeddings)
	A planar graph is a graph with a cellular emb. to 5^2 .
	Some as giving abstract ribbon structure. Thicken I in stc, or attach
	hisks to 2 of ribbon graph to get stc.
	Recall Ws. (M) for cubic f.v. graph M:
	> -> > - > / -> / (11-t) generally)
	in $Br(N)$, where $O=N$, $P=1$, etc.
	Thm (Bar-Notan '97) Coefficient of Nf in Welln (17) is a signed count
	of cellular embeddings of f.v.graph Γ into oriented genus- $(1-\frac{f}{2}+\frac{V}{4})$ sfcs. Sign of emb. = $TT \in V$ where $E_V = \begin{cases} +1 & \text{if } V \text{ matches ori. of } E \\ -1 & \text{if } V \text{ reversed ori.} \end{cases}$
	In Θ example, $\frac{1}{3} \stackrel{\text{def}}{\circ} \frac{1}{2} \stackrel{\text{def}}{=} \Theta$
	Pf Think of as
	for ribbon structure of embeddings (-1 for local accounting of sign)
	An individual term gives $\pm N^f$ where $f = \# bodry 5^1 's = \# attached 0^2 s$
	v - e + f = 2 - 2g $3v = 2e$ (cubic)
	$50 q = 1 - \frac{1}{2} + \frac{1}{4}$
	((an look at poly $X^{1+\frac{1}{4}}$ $W_{\mathcal{H}(X^{-1/2})}$ (Γ) =: $\sigma(\Gamma)$ so X^{5} term is
	for genus-g cell. embs.)

	2+⊻
	Thin Let WHOP (T) = coeff of N2+2.
	$ W_{se(N)}^{top}(\Gamma) = \# planar embeddings of \Gamma.$
	Pf Follows from Whitney '33: All planar embs of cubic 1 are
	related by moves B. A,B contain even # verts, each,
	so sign is constant.
	,
	Restatement of 4-color than (Bar-Natan '97) (Using Tait colorings)
	Thu $W_{sl(x)}^{top}(\Gamma) \neq 0 \implies W_{sl(z)}(\Gamma) \neq 0$.
	Et (3)
	(Aside: / -> // > -> // + te counts all cell.embs.)
*	Coincidence
	Recall Wso(w) (1) via / 1 \frac{1}{2} (11-x) \rightarrow \to
	Thun (Penrose '71) $W_{so(-2)}(\Gamma) \doteq W_{so(3)}(\Gamma)$ Cup to a be for fixed a,b.
	Will prove.
	(Thun (Sze gedy 102) = Wso(4) (17), too.)
	\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}
*	Trace radical of Br ₂ (-2)
	$tr(\phi) = \emptyset \in \mathbb{C} \langle \phi, \phi \rangle := tr(\phi \circ \phi) = \emptyset \in \mathbb{C} (trace form)$
	Degenerate elements of a trace form (the trace radical) give relations
	for closed graphs (since they are all trace of graph with cut-open edge)
	Topis Cince they are an increase graph and control
	Trace radical of Brz(-2) gen by)(+X+X. Working in quotient,
	$11 + \frac{1}{1} + \frac{1}{1} = 0$ is binor identity.
	,
	$\frac{1}{2}(\gamma_1 - \chi) = \gamma_1 - \frac{1}{2} \gamma \qquad \text{so} \qquad \bigcup_{so(-2)} (\Gamma) = \bigcup_{sl(-2)} (\Gamma),$
	Later, $\doteq \omega_{sur}(\Gamma)$.

k U2(sl (2))
Warmup: $V=C^2$ defining repr. of $SL(2)$
1) $\Lambda = \det is invt_2 - form. O = -2$
2) $\chi = (12)_*$ is $sL(2)$ -init.
$\frac{\det}{n} = \sum_{\sigma \in \mathbb{N}} \sigma_{\varepsilon} $ is symmetrizer
= \(\frac{1}{\sigma} = \frac{5}{\sigma} \) (-1) \(\sigma \) is antisymmetrizer
$H = 0$ since dim $V = 2$ and dim $im(\frac{1}{3!}HH) = dim \Lambda^3 V = 0$
50 0 = 110 = IN - N - N - N + X + X = 2(11 + X - X)
hence $X = 11 + \%$
3) Schur-Weyl duality => C[5"] -> Endsl(2) (V@n)
TL-2 Temperley-Lieb algebra.
4) Irred repris are $V_n := Sym^n V = im(\frac{1}{n!} + \frac{1}{n!})$
$V_2 \approx adjoint repr.$ Projector is $\phi := \frac{1}{2} + \frac{1}{2} = \frac{1}{2} (11 + x) = 11 + \frac{1}{2} = \frac{1}{2}$
5) Clebsch-Gordon => V2 &V2 = V4 &V2 &V0, 50 dim Homsus (V2 &V2, V2) = 1.
=> top is only homomorphism up to scaling. (so Lie bracket of sl(2))
1
/ → # > → \$ X → \$ gives Walcz)(1) (up to renorm)
(This is WSI(-2) (17) if you squint and doubt move strands around)
Can extend to X -> 35, etc.
ex Can distinguish of from o (f.v. graphs)
Deformation to $U_q(sl(z)) : (q=1 \text{ is } sl(z)) V \text{ a } 2-0 \text{ irred. repr.}$
1) $0 = -[2]_q = -q-q^{-1}$
2) $\chi = q^{1/2} \chi$ (and votation) $\chi = \chi$ $\gamma = -q^{3/2}$
3) C[Ba] - Fred (Ven)
4) finite-dim. irred. repres one $V_n := im \stackrel{\text{diff}}{\longleftarrow}$. Jones-Wenzl projector $P^{(n)}$
$\Leftrightarrow 1 + \frac{1}{12} \stackrel{\sim}{}_{0} \stackrel{\sim}{}_{0}$
5) (lebsh-Gordon => 1st unique-up-to-scaling 3-form on V2.

abelian flows, for ab. gp. of order n.)

*Relationship to Penrose • $Y_{\Gamma}(1) \doteq W_{sl(2)}(\Gamma)$ (since $Y_{\Gamma}(1)$ is for $g^{\prime = 1}$) · Yp(1) is also for 9=-1 case. in particular, $\chi = -)(-\chi)$, the binor identity so yr (1) = Ws(-2) (r) Hence West-27 (1) = Wester (1) * Dubrovnik poly 2-var extension. (Kauffman "An invariant of regular isotopy") Birman-Murakami-Wenzl algebra BMW(a,z) is category, similar in country to Br. Same as Kauffman tangle algover ((a,z) y = a $y = a^{-1}$ y = z()(-x)=) $0 = 1 + \frac{a - a^{-1}}{Z} = : \delta$ Let $z = q - q^{-1}$ | Schurwell relationship) of Ug slizy DL(a, Z) for links, divided by S. Busis for BMW2 (a,z) is)1, x, X Primitive idempotents: (1) e₁ = 5' 0 (2) $e_2 = \frac{1}{q+q^{-1}} \left(e^{-1} \right) \left(-\frac{1+ae^{-1}}{5a} \right) + \left(-\frac{1}{5a} \right)$ 9 -5-9-1 swaps ez=>e3 (3) e3 = \frac{1}{9+9-1} (9) (+ \frac{1-\alpha 9}{60} \forall - \forall) non-triv. trace radical if a= ±1, a= 9-3, or a= -93

Give Kauffman bracket.

*Jaeger polynomial ('89)

| Formed Penrose polys

If
$$a = q^{N-1}$$
 with NeZ

if $q \to 1$, $s \to N$ and $z \to 0$

so get $Br(N)$
 $e_1 \to \frac{1}{k}$
 $e_2 \to \frac{1}{2}$
 $e_1 + e_2 \to 1$
 $e_1 - s^{-1}x$

So $\cdot / \mapsto g + e_3$

is a 2-var generalization of Wsoms

(or $f \mapsto g$) with different (imit)