

What is error control coding?

Figure 1: Communication system

- ▶ The second main task of coding: error control
- Protect information against channel errors

Mutual information and error control

- ▶ Mutual information I(X, Y) = the information transmitted on the channel
- Why do we still need error control?
- Example: consider the following BSC channel (p = 0.01, $p(x_1) = 0.5$, $p(x_2) = 0.5$):

Figure 2: Binary symmetric channel (BSC)

- ▶ The receiver would like to know the source messages
 - ▶ In absence of communication, the uncertainty is H(X) = 1 bit/msg
 - ▶ With communication, the uncertainty is $H(X|Y) \approx 0.081$ bit/msg

Mutual information and error control

- The reduction in uncertainty due to communication = mutual information
 - ► $I(X, Y) = H(X) H(X|Y) = \approx 0.919 \text{ bit/msg}$
- \triangleright Even though we have large I(X,Y), we still lose some information
 - lacktriangle Imagine downloading a file, but having 1% wrong bits

Why is error control needed?

- ▶ In most communications it is required that *all* bits are received correctly
 - ▶ Not 1% errors, not 0.1%, not 0.0001%. **None!**
- ▶ But that is not possible unless the channel is ideal.
- So what do to? Error control coding

Modelling the errors on the channel

- lacktriangle We consider only binary channels (symbols $=\{0,1\}$
- ▶ An error = a bit is changed from 0 to 1 or viceversa
- Errors can appear:
 - independently: each bit on its own
 - in packets of errors: groups of errors

Modelling the errors on the channel

- Changing the value of a bit = modulo-2 sum with 1
- ▶ Value of a bit remains the same = modulo-2 sum with 0

Figure 3: Channel error model

- ► Channel model we use (simple):
 - The transmitted sequence is summed modulo-2 with an error sequence
 - Where the error sequence is 1, there is a bit error
 - Where the error sequence is 0, there is no error

$$\mathbf{r}=\mathbf{c}\oplus\mathbf{e}$$

Mathematical properties of modulo-2 arithmetic

- Product is the same as for normal arithmetic
- ▶ Multiplication is distributive just like in normal case

$$a(b \oplus c) = ab \oplus ac$$

► Subtraction = addition. There is no negativation. Each number is its own negative

$$a \oplus a = 0$$

Error detection vs correction

What can we do about errors?

- ▶ Error detection: find out if there is any error in the received sequence
 - don't know exactly where, so cannot correct the bits, but can discard whole sequence
 - perhaps ask the sender to retransmit (examples: TCP/IP, internet communication etc)
 - easier to do
- ▶ Error correction: find out exactly which bits have errors, if any
 - locating the error = correcting error (for binary channels)
 - can correct all errored bits by inverting them
 - useful when can't retransmit (data is stored: on HDD, AudioCD etc.)
 - harder to do than mere detection

Overview of error control coding process

The process of error control:

1. Want to send a sequence of k bits = **information word**

$$\mathbf{i} = i_1 i_2 ... i_k$$

2. For each possible information word, the coder assigns a **codeword** of length n > k:

$$\mathbf{c} = c_1 c_2 ... c_n$$

- 3. The codeword is sent on the channel instead of the original information word
- 4. The receiver receives a sequence $\hat{\mathbf{c}} \approx \mathbf{c}$, with possible errors:

$$\hat{\mathbf{c}} = \hat{c_1}\hat{c_2}...\hat{c_n}$$

5. The decoding algorithm detects/corrects the errors in $\hat{\mathbf{c}}$

Definitions

- ► An **error correcting code** is an association between the set of all possible information words to a set of codewords
 - ► Each possible information word i has a certain codeword c
- ▶ The association can be done:
 - randomly: codewords are selected and associated randomly to the information words
 - based on a certain rule: the codeword is computed with some algorithm from the information word
- ▶ A code is a **block code** if it operates with words of *fixed size*
 - ▶ Size of information word $\mathbf{i} = k$, size of codeword $\mathbf{c} = n$, n > k
 - Otherwise it is a non-block code
- A code is linear if any linear combination of codewords is also a codeword
- ▶ The **coding rate** of a code is:

$$R = k/n$$

Definitions

- ► A code *C* is an *t*-**error-detecting** code if it is able to *detect t* or less errors
- ► A code *C* is an *t*-**error**-**correcting** code if it is able to *correct t* or less errors
- Examples: at blackboard

A first example: parity bit

- Add parity bit to a 8-bit long information word, before sending on a channel
 - coding rate R = 8/9
 - can detect 1 error in a 9-bit codeword
 - detection algorithm: check if parity bit matches data
 - fails for 2 errors
 - cannot correct error (don't know where it is located)
- Add more parity bits to be able to locate the error
 - Example at blackboard
 - coding rate R = 8/12
 - can detect and correct 1 error in a 9-bit codeword

A second example: repetition code

- Repeat same block of data n times
 - want to send a k-bit information word
 - ightharpoonup codeword to send = the information word repeated n=5 times
 - coding rate R = k/n = 1/5
 - can detect and correct 2 errors, and maybe even more if they do not affect the same bit
 - error correcting algorithm = majority rule
 - not very efficient

Redundancy

- ▶ Because k < n, we introduce **redundancy**
 - \blacktriangleright to transmit k bits of information we actually send more bits (n)
- ► Error control coding adds redundancy, while source coding aims to reduce redundancy -> Contradiction?
 - but now redundancy is added in a controlled way, with a purpose
- Source coding and error control coding in practice: do sequentially, independently
 - 1. First perform source coding, eliminating redundancy in representation of data
 - 2. Then perform error control coding, adding redundancy for protection

Shannon's noisy channel theorem (second theorem, channel coding theorem)

▶ A coding rate is called **achievable** for a channel if, for that rate, there exists a coding and decoding algorithm guaranteed to correct all possible errors on the channel

Shannon's noisy channel coding theorem (second theorem)

For a given channel, all rates below capacity R < C are achievable. All rates above capacity, R > C, are not achievable.

Channel coding theorem explained

In layman terms:

- ► For all coding rates *R* < *C*, **there is a way** to recover the transmitted data perfectly (decoding algorithm will detect and correct all errors)
- ► For all coding rates *R* > *C*, **there is no way** to recover the transmitted data perfectly

Example:

- ▶ Send binary digits on a BSC channel with capacity 0.7 bits/message
- ► For any coding rate *R* < 0.7 there exist an error correction code that allow perfect recovery
 - ightharpoonup R < 0.7 = for every 7 bits of data, coding adds more than 3 bits, on average
- ▶ With less than 3 bits for every 7 bits of data => impossible to recover all data

Ideas behind channel coding theorem

- ▶ The rigorous proof of the theorem is too complex to present
- Key ideas of the proof:
 - ▶ Use very long information words, $k \to \infty$
 - Use random codes, compute the probability of having error after decoding
 - If R < C, in average for all possible codes, the probability of error after decoding goes to 0
 - ▶ If the average for all codes goes to 0, there exists at least on code better than the average
 - ▶ That is the code we should use
- The theorem does not tell what code to use, only that some code exists
 - ▶ There is no clue of how to actually find the code in practice
 - Only some general principles:
 - using longer information words is better
 - random codewords are generally good
- In practice, cannot use infinitely long codewords, so will only get a good enough code

Distance between codewords

Practical ideas for error correcting codes:

- ▶ If a codeword c_1 is received with errors and becomes identical to another codeword $c_2 ==>$ cannot detect any errors
 - ▶ Receiver will think it received a correct codeword c_2 and the information word was i_2 , but actually it was i_1
- ▶ We want codewords as different as possible from each other
- ▶ How to measure this difference? **Hamming distance**

Hamming distance

▶ The **Hamming distance** of two binary sequences **a**, **b** of length *n* = the total number of bit differences between them

$$d_H(\mathbf{a},\mathbf{b}) = \sum_{i=1}^N a_i \oplus b_i$$

- We need at least $d_H(a, b)$ bit changes to convert one sequence into another
- ▶ It satisfies the 3 properties of a metric function:
 - 1. $d_H(\mathbf{a}, \mathbf{b}) \ge 0 \quad \forall \mathbf{a}, \mathbf{b}$, with $d_H(\mathbf{a}, \mathbf{b}) = 0 \Leftrightarrow \mathbf{a} = \mathbf{b}$
 - 2. $d_H(\mathbf{a}, \mathbf{b}) = d_H(\mathbf{b}, \mathbf{a}), \forall \mathbf{a}, \mathbf{b}$
 - 3. $d_H(\mathbf{a}, \mathbf{c}) \leq d_H(\mathbf{a}, \mathbf{b}) + d_H(\mathbf{b}, \mathbf{c}), \forall \mathbf{a}, \mathbf{b}, \mathbf{c}$
- ▶ The minimum Hamming distance of a code, $d_{Hmin} = \text{the}$ minimum Hamming distance between any two codewords $\mathbf{c_1}$ and $\mathbf{c_2}$
- Example at blackboard

Nearest-neighbor decoding

Coding:

- Design a code with large d_{H min}
- ▶ Send a codeword **c** of the code

Decoding:

- ▶ Receive a word **r**, that may have errors
- Error detecting:
 - check if r is part of the codewords of the code C:
 - ▶ if *r* is part of the code, decide that there have been no errors
 - ▶ if *r* is not a codeword, decide that there have been errors
- Error correcting:
 - if r is a codeword, decide there are no errors
 - else, choose codeword nearest to the received r, in terms of Hamming distance
 - this is known as nearest-neighbor decoding

Performance of nearest neighbor decoding

Theorem:

- ▶ If the minimum Hamming distance of a code is d_{Hmin} , then:
 - 1. the code can detect up to $d_{Hmin}-1$ errors
 - 2. the code can *correct* up to $\left\lfloor \frac{d_{Hmin}-1}{2} \right\rfloor$ errors using nearest-neighbor decoding

Consequence:

- ▶ It is good to have d_{Hmin} as large as possible
 - This implies longer codewords, i.e. smaller coding rate, i.e. more redundancy

Performance of nearest neighbor decoding

Proof:

- 1. at least d_{Hmin} binary changes are needed to change one codeword into another, $d_{Hmin} 1$ is not enough => the errors are detected
- 2. the received word \mathbf{r} is closer to the original codeword than to any other codeword => nearest-neighbor algorithm will find the correct one
 - lacktriangle because $\left\lfloor rac{d_{H_{min}}-1}{2}
 ight
 floor =$ less than half the distance to another codeword

Note: if the number of errors is higher, can fail:

- ▶ Detection failure: decide that there were no errors, even if they were (more than $d_{Hmin} 1$)
- Correction failure: choose a wrong codeword

Example: blackboard

Linear block codes

- ▶ A code is a **block code** if it operates with words of *fixed size*
 - ▶ Size of information word $\mathbf{i} = k$, size of codeword $\mathbf{c} = n$, n > k
 - Otherwise it is a non-block code
- A code is linear if any linear combination of codewords is also a codeword
- A code is called systematic if the codeword contains all the information bits explicitly, unaltered
 - coding merely adds supplementary bits besides the information bits
 - codeword has two parts: the information bits and the parity bits
 - example: parity bit added after the information bits
- Otherwise the code is called non-systematic
 - the information bits are not explicitly visible in the codeword
- Example: at blackboard

Generator matrix

All codewords for a linear block code can be generated via a matrix multiplication:

$$i \cdot [G] = c$$

$$i \cdot G \qquad C$$

Figure 4: Codeword construction with generator matrix

- ▶ [G] = **generator matrix** of size $k \times n$
- Row-wise interpretation:
 - ightharpoonup c = a linear combination of rows in [G]
 - ▶ The rows of [G] = a basis for the linear code
- ▶ All operations are done in modulo-2 arithmetic

Parity check matrix

 Every generator matrix [G] has a complementary parity-check matrix [H] such that

$$0 = [H] \cdot [G]^T$$

- ▶ How to check if a binary word is a codeword or not?
- ► For every codeword **c** generated with [*G*]:

$$0 = [H] \cdot \mathbf{c}^T$$

Proof:

$$\mathbf{i} \cdot [G] = \mathbf{c}$$
 $[G]^T \cdot \mathbf{i}^T = \mathbf{c}^T$
 $[H] \cdot \mathbf{c}^T = [H] \cdot [G]^T \cdot \mathbf{i}^T = 0$

Parity check matrix

- ▶ [H] is the parity-check matrix, size = $(n k) \times n$
- ▶ [G] and [H] are related, one can be deduced from the other
- ▶ The resulting vector $z = [H] \cdot [c]^T$ is the **syndrome**
- ► All codewords generated with [G] will produce 0 when multiplied with [H]
- ▶ All binary sequences that are not codewords will produce \neq 0 when multiplied with [H]
- Column-wise interpretation of multiplication:

Figure 5: Codeword checking with parity-check matrix

[G] and [H] for systematic codes

- For systematic codes, [G] and [H] have special forms
- Generator matrix
 - first part = identity matrix
 - second part = some matrix Q

$$[G]_{k\times n}=[Q_{k\times (n-k)}\ I_{k\times k}s]$$

- Parity-check matrix
 - first part = identity matrix
 - second part = same Q, transposed

$$[H]_{(n-k)\times n} = \begin{bmatrix} I_{(n-k)\times(n-k)} & Q_{(n-k)\times k}^T \end{bmatrix}$$

- Can easily compute one from the other
- Example at blackboard

Interpretation as parity bits

- ▶ The additional bits added by coding are actually just parity bits
 - Proof: write the generation equations (example)
- ▶ Generator matrix [G] creates the codeword as:
 - first part = information bits (systematic code, first part of [G] is identity matrix)
 - additional bits = combinations of information bits = parity bits
- Parity-check matrix [H] checks if parity bits correspond to information bits
 - Proof: write down the parity check equation (see example)
- ▶ If all parity bits match the data, the syndrome z = 0
 - otherwise the syndrome $\mathbf{z} \neq \mathbf{0}$
- ► Generator & parity-check matrices are just mathematical tools for easy computation & checking of parity bits

Syndrome-based error detection

Syndrome-based error **detection** for linear block codes:

1. generate codewords with generator matrix:

$$\mathbf{i} \cdot [G] = \mathbf{c}$$

- 2. send codeword **c** on the channel
- 3. a random error word **e** is applied on the channel
- 4. receive word $\mathbf{r} = \mathbf{c} \oplus \mathbf{e}$
- 5. compute **syndrome** of **r**:

$$z = [H] \cdot r^T$$

- 6. Decide:
 - If z = 0 = r has no errors
 - If $\mathbf{z} \neq 0 => \mathbf{r}$ has errors

Syndrome-based error correction

Syndrome-based error **correction** for linear block codes:

- ▶ Syndrome $\mathbf{z} \neq \mathbf{0} = \mathbf{r}$ has errors, we need to locate them
- ▶ The syndrome is the effect only of the error word:

$$z = [H] \cdot r^T = [H] \cdot (c^T \oplus e^T) = [H] \cdot e^T$$

- 7. Create a **syndrome lookup table**:
 - for every possible error word \mathbf{e} , compute the syndrome $\mathbf{z} = [H] \cdot \mathbf{e}^T$
 - ▶ start with error words with 1 error (most likely), then with 2 errors (less likely), and so on
- 8. Locate the syndrome ${\bf z}$ in the table, read the corresponding error word $\widehat{{\bf e}}$
- 9. Find the correct word:
 - adding the error word again will invert the errored bits back to the originals

$$\hat{\mathbf{c}} = \mathbf{r} \oplus \hat{\mathbf{e}}$$

Example

Example: at blackboard

Conditions on [H] for error detection and correction

Conditions for syndrome-based error detection:

- ▶ We can detect errors if the syndrome is **non-zero**
- ▶ To detect a single error: every column of [H] must be non-zero
- ➤ To detect two error: sum of any two columns of [H] cannot be zero
 - that means all columns are different
- ▶ To detect n errors: sum of any n or less columns of [H] cannot be zero

Conditions on [H] for error detection and correction

Conditions for syndrome-based error correction:

- ▶ We can correct errors if the syndrome is **unique**
- ▶ To correct a single error: all columns of [H] are different
 - so the syndromes, for a single error, are all different
- ► To correct *n* errors: sum of any *n* or less columns of [*H*] are all different
 - much more difficult to obtain than for decoding

Rearranging the columns of [H] (the order of bits in the codeword) does not affect performance

Hamming codes

- A particular class of linear error-correcting codes
- ▶ Definition: a **Hamming code** is a linear block code where the columns of [H] are the binary representation of all numbers from 1 to $2^r 1$, $\forall r \geq 2$
- Example (blackboard): (7,4) Hamming code
- ▶ Systematic: arrange the bits in the codeword, such that the control bits correspond to the columns having a single 1
 - no big difference from the usual systematic case, just a rearrangement of bits
 - makes implementation easier
- Example codeword for Hamming(7,4):

$c_1 c_2 i_3 c_4 i_5 i_6 i_7$

Properties of Hamming codes

- From definition of [H] it follows:
 - 1. Codeword has length $n = 2^r 1$
 - 2. r bits are parity bits (also known as control bits)
 - 3. $k = 2^r r 1$ bits are information bits
- ▶ Notation: (n,k) Hamming code
 - ightharpoonup n = codeword length = $2^r 1$,
 - ▶ $k = number of information bits = 2^r r 1$
 - Example: (7,4) Hamming code, (15,11) Hamming code, (127,120) Hamming code

Properties of Hamming codes

- Can detect two errors
 - ▶ All columns are different => can detect 2 errors
 - ▶ Sum of two columns equal to a third => cannot correct 3

OR

- Can correct one error
 - ▶ All columns are different => can correct 1 error
 - Sum of two columns equal to a third => cannot correct 2
 - ▶ Non-systematic: syndrome = error position

BUT

- Not simultaneously!
 - same non-zero syndrome can be obtained with 1 or 2 errors, can't distinguish

Coding rate of Hamming codes

Coding rate of a Hamming code:

$$R = \frac{k}{n} = \frac{2^r - r - 1}{2^r - 1}$$

The Hamming codes can correct 1 OR detect 2 errors in a codeword of size n

- \triangleright (7,4) Hamming code: n=7
- ▶ (15,11) Hamming code: n = 15
- (31,26) Hamming code: n = 31

Longer Hamming codes are progressively weaker:

- weaker error correction capability
- better efficiency (higher coding rate)
- more appropriate for smaller error probabilities

Encoding & decoding example for Hamming(7,4)

See whiteboard.

In this example, encoding is done without the generator matrix G, directly with the matrix H, by finding the values of the parity bits c_1 , c_2 , c_4 such that

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = [H] \begin{vmatrix} c_1 \\ c_2 \\ i_3 \\ c_4 \\ i_5 \\ i_6 \\ i_7 \end{vmatrix}$$

For a single error, the syndrome is the binary representation of the location of the error.

Circuit for encoding Hamming(7,4)

Figure 6: Hamming Encoder

- Components:
 - A shift register to hold the codeword
 - Logic OR gates to compute the parity bits

Circuit for decoding Hamming(7,4)

Figure 7: Hamming Encoder

- Components:
 - A shift register to hold the received word
 - ▶ Logic OR gates to compute the bits of the syndrome (z_i)
 - ▶ **Binary decoder**: activates the output corresponding to the binary input value, fixing the error

SECDED Hamming codes

- Hamming codes can correct 1 error OR can detect 2 errors, but we cannot differentiate the two cases
- ► Example:
 - ▶ the syndrome $\mathbf{z} = [H] \cdot \mathbf{r}^T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ can be caused by:
 - ▶ a single error in location 3 (bit i_3)
 - two errors in location 1 and 2 (bits c_1 , bits c_2)
 - if we know it is a single error, we can go ahead and correct it, then use the corrected data
 - ▶ if we know there are two errors, we should NOT attempt to correct them, because we cannot locate the errors correctly
- Unfortunately, it is not possible to differentiate between the two cases.
- ightharpoonup Solution? Add additional parity bit ightarrow SECDED Hamming codes

SECDED Hamming codes

- Add an additional parity bit to differentiate the two cases
 - $ightharpoonup c_0 = \operatorname{sum} \operatorname{of} \operatorname{all} n \operatorname{bits} \operatorname{of} \operatorname{the codeword}$
- ► For (7,4) Hamming codes:

▶ The parity check matrix is extended by 1 row and 1 column

$$\tilde{H} = \begin{bmatrix} 1 & 1 \\ 0 & \mathbf{H} \end{bmatrix}$$

- Known as SECDED Hamming codes
 - ► Single Error Correction Double Error Detection

Encoding and decoding of SECDED Hamming codes

- ► Encoding:
 - ightharpoonup compute codeword using $ilde{H}$
 - ightharpoonup alternatively, prepend $c_0 = \mathsf{sum}$ of all other bits

Encoding and decoding of SECDED Hamming codes

Decoding

lacktriangle Compute syndrome of the received word using $ilde{H}$

$$\tilde{\mathbf{z}} = \begin{bmatrix} z_0 \\ \mathbf{z} \end{bmatrix} = [\tilde{H}] \cdot \mathbf{r}^T$$

- $ightharpoonup z_0$ is an additional bit in the syndrome corresponding to c_0
- z₀ tells us whether the received c₀ matches the parity of the received word
 - z₀ = 0: the additional parity bit c₀ matches the parity of the received word
 - z₀ = 1: the additional parity bit c₀ does not match the parity of the received word

Encoding and decoding of SECDED Hamming codes

- Decoding (continued):
 - Decide which of the following cases happened:
 - If no error happened: $z_1 = z_2 = z_3 = 0, z_0 = \forall$
 - ▶ If 1 error happened: syndrome is non-zero, $z_0 = 1$ (does not match)
 - ▶ If 2 errors happened: syndrome is non-zero, z₀ = 0 (does match, because the two errors cancel each other out)
 - ▶ If 3 errors happened: same as 1, can't differentiate
- ▶ Now can simultaneously differentiate between:
 - ▶ 1 error: \rightarrow perform correction
 - ▶ 2 errors: → detect, but do not perform correction
- ▶ Also, if correction is never attempted, can detect up to 3 errors
 - minimum Hamming distance = 4 (no proof given)
 - don't know if 1 error, 2 errors or 3 errors, so can't try correction

Summary until now

- Systematic codes: information bits + parity bits
- Generator matrix: use to generate codeword

$$\mathbf{i} \cdot [G] = \mathbf{c}$$

Parity-check matrix: use to check if a codeword

$$0 = [H] \cdot \mathbf{c}^T$$

Syndrome:

$$\mathbf{z} = [H] \cdot \mathbf{r}^T$$

- Syndrome-based error detection: syndrome non-zero
- ► Syndrome-based error correction: lookup table
- ▶ Hamming codes: [H] contains all numbers $1...2^r 1$
- SECDED Hamming codes: add an extra parity bit

Cyclic codes

Definition: **cyclic codes** are a particular class of linear block codes for which *every cyclic shift of a codeword is also a codeword*

- Cyclic shift: cyclic rotation of a sequence of bits (any direction)
- Are a particular class of linear block codes, so all the theory up to now still applies
 - they have a generator matrix, parity check matrix etc.
- ▶ But they can be implemented more efficient than general linear block codes (e.g. Hamming)
- Used everywhere under the common name CRC (Cyclic Redundancy Check)
 - Network communications (Ethernet), data storage in Flash memory

Binary polynomials

 Every binary sequence a corresponds to a polynomial a(x) with binary coefficients

$$a_0 a_1 ... a_{n-1} \to \mathbf{a}(\mathbf{x}) = a_0 \oplus a_1 x \oplus ... \oplus a_{n-1} x^{n-1}$$

Example:

$$10010111 \rightarrow 1 \oplus x^3 \oplus x^5 \oplus x^6 \oplus x^7$$

- From now on, by "codeword" we also mean the corresponding polynomial.
- ► Can perform all mathematical operations with these polynomials:
 - addition, multiplication, division etc. (examples)
- ▶ There are efficient circuits for performing multiplications and divisions.

Generator polynomial

Theorem:

All the codewords of a cyclic code are multiples of a certain polynomial g(x), known as **generator polynomial**.

Properties of generator polynomial g(x):

- ▶ The generator polynomial has first and last coefficient equal to 1.
- ▶ The generator polynomial is a factor of $X^n \oplus 1$
- ▶ The *degree* of g(x) is n k, where:
 - ▶ The codeword = polynomial of degree n-1 (n coefficients)
 - ▶ The information polynomial = polynomial of degree k-1 (k coefficients)

$$(k-1) + (n-k) = n-1$$

▶ The degree of g(x) is the number of parity bits of the code.

Finding a generator polynomial

Theorem:

If g(x) is a polynomial of degree (n-k) and is a factor of $X^n \oplus 1$, then g(x) generates a (n,k) cyclic code. Example:

$$1 \oplus x^7 = (1 \oplus x)(1 \oplus x + \oplus x^3)(1 \oplus x^2 \oplus x^3)$$

Each factor generates a code:

- ▶ $1 \oplus x$ generates a (7,6) cyclic code
- ▶ $1 \oplus x \oplus x^3$ generates a (7,4) cyclic code
- ▶ $1 \oplus x^2 \oplus x^3$ generates a (7,4) cyclic code

Computing the codewords

Start from **information polynomial** with k bits

$$i(x) = i_0 \oplus i_1 x \oplus ... \oplus i_{k-1} x^{k-1}$$

Non-systematic codeword generation:

▶ Codeword = $i(x) \cdot g(x)$

$$c(x) = i(x) \cdot g(x)$$

Systematic codeword generation:

$$c(x) = b(x) \oplus x^{n-k}i(x)$$

where b(x) is the remainder of dividing $x^{n-k}i(x)$ to g(x):

$$x^{n-k}i(x)=a(x)g(x)\oplus b(x)$$

► (Proof: at blackboard)

Proving the cyclic property

We prove that any cyclic shift of a codeword is also a codeword. Proof: at whiteboard

► Original codeword

$$c_0c_1c_2...c_{n-1} \rightarrow \mathbf{c}(\mathbf{x}) = c_0 \oplus c_1x \oplus ... \oplus c_{n-1}x^{n-1}$$

▶ Cyclic shift to the right by 1 position

$$c_{n-1}c_0c_1...c_{n-2} \to \mathbf{c}'(\mathbf{x}) = c_{n-1} \oplus c_0x \oplus ... \oplus c_{n-2}x^{n-1}$$

Note that

$$\mathbf{c}'(\mathbf{x}) = x \cdot \mathbf{c}(\mathbf{x}) \oplus c_{n-1} x^n \oplus c_{n-1}$$
$$= x \cdot \mathbf{c}(\mathbf{x}) \oplus c_{n-1} (x^n \oplus 1)$$

Since $\mathbf{c}(\mathbf{x})$ is a multiple of g(x), so is $x \cdot \mathbf{c}(\mathbf{x})$. Also $(x^n \oplus 1)$ is always a multiple of g(x). It follows that their sum $\mathbf{c}'(\mathbf{x})$ is a also a multiple of g(x), which means it is a codeword.

Cyclic code encoder circuits

- Coding = based on polynomial multiplications and divisions
- Efficient circuits for multiplication / division exist, that can be used for systematic or non-systematic codeword generation (draw on blackboard)

Circuits for multiplication of binary polynomials

Figure 8: Circuits for polynomial multiplication

Operation of multiplication circuits

- ► The input polynomial is applied at the input, 1 bit at a time, starting from highest degree
- ► The output polynomial is obtained at the output, 1 bit at a time, starting from highest degree
- ▶ Because output polynomial has larger degree, the circuit needs to operate a few more samples until the final result is obtained. During this time the input is 0.
- ► Examples: at the whiteboard

Linear analysis of multiplication circuits

- ► These circuits are **linear time-invariant systems** (remember Digital Signal Processing class?), because they are composed only of summations, multiplication by scalars, and delay blocks.
- ► Therefore, using the Z transform approach (to come soon in Digital Signal Processing class), the output can be computed based on the graph of the system:
 - ▶ Draw the graph of the system: cells become z^{-1} blocks, everything else is the same
 - ▶ Every z^{-1} block means a delay of one, which is what a cell does
 - Call the input polynomial is X(z)
 - ► Call the output polynomial is **Y**(**z**)
 - Every z^{-1} block means multiplying with z^{-1}
 - $\,\blacktriangleright\,$ Compute the output Y(z) based on X(z), from the graph

Linear analysis of multiplication circuits

We get:

$$Y(z) = X(z) \cdot G(z) \cdot z^{-m}$$

meaning that the output polynomial = input polynomial * g(x) polynomial, with a delay of m bits (time samples).

The delay of m time samples is caused by the fact that the input polynomial has degree (k-1), but the resulting polynomial has larger degree (k-1)+m, therefore we need to wait m more time samples until we get the full result.

Circuits for division binary polynomials

Figure 9: Circuits for polynomial division

Operation of division circuits

- ► The input polynomial is applied at the input, 1 bit at a time, starting from highest degree
- ► The output polynomial is obtained at the output, 1 bit at a time, starting from highest degree
- ▶ Because output polynomial has smaller degree, the circuit first outputs some zero values, until starting to output the result.
- Examples: at the whiteboard

Linear analysis of division circuits

- These circuits are also linear time-invariant systems, because they are composed only of summations, multiplication by scalars, and delay blocks.
- ► Therefore, using the Z transform approach, the output can be computed based on the graph of the system:
 - ightharpoonup Draw the graph of the system: cells become z^{-1} blocks, everything else is the same
 - ightharpoonup Every z^{-1} block means a delay of one, which is what a cell does
 - ► Call the input polynomial is **X**(**z**)
 - ► Call the output polynomial is **Y**(**z**)
 - Every z^{-1} block means multiplying with z^{-1}
 - ightharpoonup Compute the output $\mathbf{Y}(\mathbf{z})$ based on $\mathbf{X}(\mathbf{z})$, from the graph

Linear analysis of division circuits

We get:

$$Y(z) = \frac{X(z)}{G(z)}$$

meaning that the **output polynomial** = input polynomial / g(x) polynomial.

Cyclic encoder circuit

- Non-systematic cyclic encoder circuit:
 - simply a polynomial multiplication circuit
- ► A systematic cyclic encoder circuit:
 - more complicated
 - must analyze first Linear Feedback Shift Registers (LFSR)

Linear-Feedback Shift Registers (LFSR)

- ► A **flip-flop** = a cell holding a bit value (0 or 1)
 - called "bistabil" in Romanian
 - operates on the edges of a clock signal
- ► A **register** = a group of flip-flops, holding multiple bits
 - example: an 8-bit register
- ▶ A **shift register** = a register where the output of a flip-flop is connected to the input of the next one
 - ▶ the bit sequence is shifted to the right
 - has an input (for the first cell)
- ▶ A **linear feedback shift register** (LFSR) = a shift register for which the input is a computed as a linear combination of the flip-flops values
 - ▶ input = usually a XOR of some cells from the register
 - like a division circuit without any input
 - feedback = all flip-flops, with coefficients g_i in general
 - example at whiteboard

States and transitions of LFSR

- ▶ **State** of the LFSR = the sequence of bit values it holds at a certain moment
- ▶ The state at the next moment, S(k+1), can be computed by multiplication of the current state S(k) with the **companion matrix** (or **transition matrix**) [T]:

$$S(k+1) = [T] * S(k)$$

▶ The companion matrix is defined based on the feedback coefficients g_i :

$$T = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ g_0 & g_1 & g_2 & \dots & g_{m-1} \end{bmatrix}$$

- ▶ Note: reversing the order of bits in the state -> transposed matrix
- \triangleright Starting at time 0, then the state at time k is:

$$S(k) = [T]^k S(0)$$

Period of LFSR

- ▶ The number of states is finite -> they must repeat at some moment
- ► The state equal to 0 must not be encountered (LFSR will remain 0 forever)
- ► The **period** of the LFSR = number of time moments until the state repeats
- ▶ If period is N, then state at time N is same as state at time 0:

$$S(N) = [T]^N S(0) = S(0),$$

which means:

$$[T]^N = I_m$$

Maximum period is $N_{max} = 2^m - 1$ (excluding state 0), in this case the polynomial g(x) is called **primitive polynomial**

LFSR with inputs

- ▶ What if the LFSR has an input added to the feedback (XOR)?
 - example at whiteboard
 - ▶ assume the input is a sequence $a_{N-1}, ... a_0$
- Since a LFSR is a linear circuit, the effect is added:

$$S(1) = [T] \cdot S(0) + \begin{bmatrix} 0 \\ 0 \\ \dots \\ a_{N-1} \end{bmatrix}$$

In general

$$S(k_1) = [T] \cdot S(k) + a_{N-k} \cdot [U],$$

where [U] is:

$$[U] = \begin{bmatrix} 0 \\ 0 \\ ... \\ 1 \end{bmatrix}$$

Systematic cyclic encoder circuit

- Draw on whiteboard only (sorry!)
- Initially the LFSR state is 0 (all cells are 0)
- Switch in position I:
 - information bits applied to the output and to the division circuit
 - first bits = information bits, systematic, OK
 - ▶ LFSR with feedback and input, input = information bits
- Switch in position II:
 - LFSR with feedback and input, input = feedback
 - output bits are also applied to the input of the division circuit
- ▶ In the end all cells end up in 0, so ready for next encoding
 - because the input and feedback cancel each other (are identical)

Systematic cyclic encoder circuit

- ▶ Why is the result the desired codeword?
- ▶ The output polynomial c(x):
 - 1. has the information bits in the first part (systematic)
 - 2. is a multiple of g(x) ==> therefore it is the systematic codeword for the information bits
- the output c(x) is a multiple of g(x) because:
 - ▶ the output is always applied also t the input of the division circuit
 - ▶ after division, the cells end up in 0 <=> no remainder <=> so c(x) is a multiple g(x)
- Side note: we haven't really explained why the constructed output c(x) is a codeword, but we proved that it is so, and this is enough

The parity-check matrix for systematic cyclic codes

- Cyclic codes are linear block codes, so they have a parity-check and a generator matrix
 - but it is more efficient to implement them with polynomial multiplication / division circuits
- ► The parity-check matrix [H] can be deduced by analyzing the states of the LFSR
 - it is a LFSR with feedback and input
 - the input is the codeword c(x)
 - do computations at whiteboard . . .
 - ▶ ... arrive at expression for matrix [H]

The parity-check matrix for systematic cyclic codes

▶ The parity check matrix [H] has the form

$$[H] = [U, TU, T^2U, ...T^{n-1}U]$$

▶ The cyclic codeword satisfies the usual relation

$$S(n) = 0 = [H]\mathbf{c}^\mathsf{T}$$

▶ In case of error, the state at time n will be the syndrome (non-zero):

$$S(n) = [H]\mathbf{r}^\mathsf{T} \neq 0$$

- ▶ Implement a 1-error-correcting cyclic decoder using LFSRs
- Draw schematic at whiteboard only (sorry!)
- Contents of schematic:
 - main shift register MSR
 - main switch SW
 - 2 LFSRs (divider circuits) after g(x)
 - 2 error locator blocks, one for each divider
 - ▶ 2 validation gates V1, V2, for each divider
 - output XOR gate for correcting errors

- Operation phases:
- 1. Input phase: SW on position I, validation gate V1 blocked
 - ▶ The received codeword r(x) is received one by one, starting with largest power of x^n
 - ► The received codeword enters the MSR and first LFSR (divider)
 - ▶ The first divider computes r(x) : g(x)
 - ▶ The validation gate V1 is blocked, no output
- ▶ Input phase ends after *n* moments, the switch SW goes into position II
- ▶ If the received word has no errors, all LFSR cells are 0 (no remainder), will remain 0, the error locator will always output 0

- 2. Decoding phase: SW on position II, validation gate V1 open
 - ▶ LFSR keeps running with no input for *n* more moments
 - ▶ the MSR provides the received bits at the output, one by one
 - exactly when the erroneous bit is at the main output of MSR, the error locator will output 1, and the output XOR gate will correct the bit (TO BE PROVEN)
 - during this time the next codeword is loaded into MSR and into second LFSR (input phase for second LFSR)
- ▶ After *n* moments, the received word is fully decoded and corrected
- ► SW goes back into position I, the second LFSR starts decoding phase, while the first LFSR is loading the new receiver word, and so on
- ► **To prove:** error locator outputs 1 exactly when the erroneous bit is at the main output

Theorem: if the k-th bit r_{n-k} from r(x) has an error, the error locator will output 1 exactly after k-1 moments

- ▶ The k-th bit will be output from MSR after k-1 moments, i.e. exactly when the error locator will output 1 -> will correct it
- Proof:
 - 1. assume error on position r_{n-k}
 - 2. the state of the LFSR at end of phase I = syndrome = column (n k) from [H]

$$S(n) = [H]\mathbf{r}^T = [H]\mathbf{e}^T = T^{n-k}U$$

3. after another k-1 moments, the state will be

$$T^{k-1}T^{n-k}U = T^{n-1}U$$

- 4. since $T^n = I_n -> T^{n-1} = T^{-1}$
- 5. $T^{-1}U$ is the state preceding state U, which is state

- Step 5 above can be shown in two ways:
 - reasoning on the circuit
 - lacktriangle using the definition of \mathcal{T}^{-1}

$$T = \begin{bmatrix} g_1 & g_2 & \dots g_{m-1} & 1 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}$$

- ▶ The error locator is designed to detect this state $T^{-1}U$, i.e. it is designed as shown
- ▶ Therefore, the error locator will correct an error
- ▶ This works only for 1 error, due to proof (1 column from [H])

- A different variant of cyclic decoder
- Consider the parity check matrix [H] of the cyclic code
- ▶ Perform elementary transformations on [H] to obtain a reduced matrix [H_R] such that:
 - last column contains only 1's
 - ▶ all other columns contain a single 1 somewhere
- ▶ **Elementary transformation** = summation of two rows
- Some rows can be deleted if they cannot be put into required form -> the matrix $[H_R]$ will have J rows (the more the better)
- ▶ Denote with A_j the entries of the resulting vector:

$$A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_J \end{bmatrix} = [H_R]r^T$$

- ▶ Because a codeword c^T produces 0 when multiplied with [H], it will produce 0 when multiplied with $[H_R]$ also
 - because rows of $[H_R]$ = summation of rows of [H], but c^T makes a 0 with all of them
- ► Then

$$A = [H_R]r^T = [H_R](c + e)^T = [H_R]e^T$$

- $ightharpoonup e^T$ is the error word having 1's where errors are
- \triangleright Consider how many of the entries A_k are equal to 1
 - ▶ If there is just one error on last position of e, all A_k are 1
 - If there is just one error on some other position (non-last), only a single A_k is 1

- ▶ **Theorem:** If there are at most $\left\lfloor \frac{J}{2} \right\rfloor$ errors in e, then
 - if $\sum_{k} A_k > \lfloor \frac{J}{2} \rfloor$, then there is an error on last position
 - if $\sum A_k \leq \lfloor \frac{J}{2} \rfloor$, then there is no error on last position
- ► So we can **reliably** detect an error on last position even though there might be errors on other positions

► Proof:

- if no error is on last position, at most $\left|\frac{J}{2}\right|$ sums A_k are equal to 1
- if there is error on last position, then there are less than half errors on other position, so less then half A_k 's are 0
- ▶ Because the code is cyclic, we can rotate the codeword so that next bit is last one -> compute again and decide for second bit, and so on for all

- Draw schematic on whiteboard only (sorry!)
- Contents:
 - a cyclic shift register
 - \triangleright circuits for computing the sums A_k
 - ▶ adder and comparator that adds all A_j and compares sum with $\lfloor \frac{J}{2} \rfloor$
 - output XOR gate for correcting the error
- Operation
 - received word is loaded into shift register
 - ightharpoonup compute A_j , decide and correct error on first bit (last position)
 - word rotates cyclically, do the same on next bit
 - and so on until all bits have been on last position and corrected

Packets of errors

- Until now, we considered a single error
- ▶ If errors appear independently in a long data sequence, they will be typically rare -> only one error in a codeword is likely
- ► So a single error may be good enough for random errors

But:

- ▶ In real life, many times the errors appear in packets
- ▶ A packet of errors (an error burst) is a sequence of two or more consecutive errors
 - examples: fading in wireless channels
- ▶ The **length** of the packet = the number of consecutive errors

Condition on columns of [H]

Consider e errors in a codeword

Conditions on the parity-check matrix [H]:

- ► Error **detection** of *e* independent errors
 - ▶ sum of **any** *e* or fewer columns is **non-zero**
- Error detection of a packet of e errors
 - ▶ sum of any consecutive e or fewer columns is non-zero
- Error correction of e independent errors
 - ▶ sum of **any** *e* or fewer columns is **unique**
- Error correction of a packet of e errors
 - sum of any consecutive e or fewer columns is unique

Detection of packets of errors

Theorem:

Any (n,k) cyclic codes is capable of detecting any error packet of length n-k or less

- ▶ In other words: remainder after division with g(x) is always non-zero
- ► A large fraction of longer bursts can also be detected (but not all)
- No proof (too complicated)

Correction of packets of errors

- More difficult to analyze in general, will consider only the case of packets two errors
- ▶ Cyclic encoder: identical! (might need a longer g(x) though)
- Cyclic decoder with LFSR: similar, but error locator must be changed

Cyclic decoder for packets of 2 errors or less

- Similar schematic, but error locator is changed
- ► Operation is identical
- ► Error locator:
 - Assume the error word has errors on positions (n-k) and (n-k-1)
 - After phase I, the state of the LFSR = column (n k) + column (n k 1)

$$S(n) = T^{n-k}U \oplus T^{n-k-1}U$$

ightharpoonup After k-1 samples, the first erroneous bit is at the output, and the state is

$$S(n+k-1)=T^{-1}U\oplus T^{-2}U=\begin{bmatrix}0\\1\\...\\0\end{bmatrix}$$

At the next sample, the state will be

$$S(n+k) = T^{-1}U = \begin{bmatrix} 1 \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

Design of error locator

- ► The error locator must detect these two states -> draw on whiteboard
- ▶ If only a single error appears —> also works

Summary of cyclic codes

- Generated using a generator polynomial g(x)
- Non-systematic:

$$c(x) = i(x) \cdot g(x)$$

Systematic:

$$c(x) = b(x) \oplus X^{n-k}i(x)$$

- ▶ b(x) is the remainder of dividing $X^{n-k}i(x)$ to g(x)
- ▶ A codeword is always a multiple of g(x)
- ▶ Error detection: divide by g(x), look at remainder
- Schematics:
 - Cyclic encoder
 - Cyclic decoder with LFSR
 - Thresholding cyclic decoder
 - Encoder/decoder for packets of up to 2 errors