IIMT2641 Assignment 5

Sibo Ding

Spring 2023

Q1 Tree Models

Load the Data

```
state <- read.csv("StateData.csv")</pre>
head(state) # First 6 rows
     Population Income Illiteracy LifeExp Murder HighSchoolGrad Frost
##
Area
## 1
           3615
                  3624
                              2.1
                                    69.05
                                            15.1
                                                           41.3
                                                                   20
50708
## 2
            365
                  6315
                              1.5
                                    69.31
                                            11.3
                                                           66.7
                                                                  152
566432
                                    70.55
                                             7.8
                                                                   15
## 3
           2212
                  4530
                              1.8
                                                           58.1
113417
                                    70.66
## 4
           2110
                  3378
                              1.9
                                            10.1
                                                           39.9
                                                                   65
51945
                              1.1
                                                                   20
## 5
          21198
                  5114
                                    71.71
                                            10.3
                                                           62.6
156361
                  4884
                              0.7
                                    72.06
                                             6.8
                                                           63.9
                                                                  166
## 6
           2541
103766
     Longitude Latitude Region
## 1 -86.7509 32.5901 South
## 2 -127.2500 49.2500
                          West
## 3 -111.6250 34.2192
                          West
## 4 -92.2992 34.7336 South
## 5 -119.7730 36.5341
                          West
## 6 -105.5130 38.6777
                          West
dim(state) # Number of observations and variables
## [1] 50 11
names(state) # Names of variables
## [1] "Population"
                         "Income"
                                          "Illiteracy"
                                                           "LifeExp"
## [5] "Murder"
                         "HighSchoolGrad" "Frost"
                                                           "Area"
## [9] "Longitude"
                         "Latitude"
                                          "Region"
```

Train-test Split

```
library(caTools)
set.seed(12)
```

```
# Randomly split the dataset with 70% in the training set
spl <- sample.split(state$LifeExp, SplitRatio = 0.7)
train <- state |> subset(spl == TRUE)
test <- state |> subset(spl == FALSE)
```

7-variable Linear Regression Model

```
lm1 <- lm(LifeExp ~ Population + Murder + Frost + Income + Illiteracy +
Area + HighSchoolGrad, data = train)

lm1_pred <- predict(lm1, newdata = test)
# Out-of-sample R^2
SSE <- sum((test$LifeExp - lm1_pred) ^ 2)
SST <- sum((test$LifeExp - mean(train$LifeExp)) ^ 2)
R2_lm1 <- 1 - SSE/SST
R2_lm1
## [1] 0.05283534</pre>
```

4-variable Linear Regression Model

```
lm2 <- lm(LifeExp ~ Population + Murder + Frost + HighSchoolGrad, data
= train)

lm2_pred <- predict(lm2, newdata = test)
# Out-of-sample R^2
SSE <- sum((test$LifeExp - lm2_pred) ^ 2)
SST <- sum((test$LifeExp - mean(train$LifeExp)) ^ 2)
R2_lm2 <- 1 - SSE/SST
R2_lm2
## [1] 0.6438655</pre>
```

By removing independent variables, the R^2 on the test test is increased, meaning the overfitting problem is alleviated. The equivalent procedure in CART is pruning to have a smaller tree.

CART Model

```
library(rpart)
library(rpart.plot)

rtree <- rpart(LifeExp ~ Population + Murder + Frost + Income +
Illiteracy + Area + HighSchoolGrad, data = train, method = "anova",
minbucket = 5)

prp(rtree) # Plot the tree</pre>
```


Independent variables Murder and Population appear in the tree. The CART model is easier to interpret.

CART Prediction

```
rtree_pred <- predict(rtree, newdata = test, type = "vector")
# Out-of-sample R^2
SSE <- sum((test$LifeExp - rtree_pred) ^ 2)
SST <- sum((test$LifeExp - mean(train$LifeExp)) ^ 2)
R2_rtree <- 1 - SSE/SST
R2_rtree
## [1] 0.1813543</pre>
```

Random Forest

```
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1234)
rf <- randomForest(LifeExp ~ Population + Murder + Frost + Income +
Illiteracy + Area + HighSchoolGrad, data = train, ntree = 100, nodesize
= 5)
rf_pred <- predict(rf, newdata = test)
# Out-of-sample R^2</pre>
```

```
SSE <- sum((test$LifeExp - rf_pred) ^ 2)
SST <- sum((test$LifeExp - mean(train$LifeExp)) ^ 2)
R2_rf <- 1 - SSE/SST
R2_rf
## [1] 0.6121284</pre>
```

Best Model

```
# Out-of-sample R^2
c("7-variable lm" = R2_lm1, "4-variable lm" = R2_lm2,
    "Tree" = R2_rtree, "Random Forest" = R2_rf)
## 7-variable lm 4-variable lm Tree Random Forest
## 0.05283534 0.64386555 0.18135431 0.61212838
```

The 4-variable linear regression model has the highest out-of-sample \mathbb{R}^2 . The tree model is the easiest to interpret.

Q2 Clustering

```
bow <- read.csv("DailyKos.csv")</pre>
```

Hierarchical Clustering

```
# Compute distances between points
distances <- dist(bow, method = "euclidean")
# Hierarchical clustering
hbow <- hclust(distances, method = "ward.D")</pre>
```

Euclidean distance metrics is used to calculate distances.

Hierarchical clustering takes lot of time because in each recursion, it calculates the distance of all combinations between every two data points.

Plot the dendrogram

```
plot(hbow)
```

Cluster Dendrogram

distances hclust (*, "ward.D")

Choose the Number of Clusters

10 clusters are recommended for different categories of articles.

```
no_clusters <- 10
# Cut the tree into 10 clusters
h_10clust <- cutree(hbow, no_clusters)
# No. of observations in each cluster
table(h_10clust)
## h_10clust
## 1 2 3 4 5 6 7 8 9 10
## 1266 179 279 139 407 714 63 95 146 142</pre>
```

Split the Clusters and Analyze Each Cluster

```
# Split the dataset into a dataset for each cluster
# Find the six most frequent words in each cluster
no_clusters <- 10
for (i in 1:no_clusters){
  bow |>
    subset(h_10clust == i) |> # Filter
    colMeans() |> # Take the average of each column
    sort(decreasing = TRUE) |>
    head() |>
    print.data.frame()
  cat("\n") # Add a line for easier reading
}
```

```
## [1] bush kerry democrat
                                      poll
                                                 republican state
## <0 rows> (or 0-length row.names)
## [1] november
                           poll
                                      challenge bush
               vote
republican
## <0 rows> (or 0-length row.names)
## [1] democrat
                 republican state
                                      bush
                                                 parties
                                                           senate
## <0 rows> (or 0-length row.names)
##
## [1] kerry
               bush
                        poll
                                presided voter
                                                campaign
## <0 rows> (or 0-length row.names)
##
## [1] bush
                     iraq
                                   war
                                                  administration
presided
## [6] american
## <0 rows> (or 0-length row.names)
##
             democrat elect
## [1] poll
                                kerry
                                         bush
                                                  race
## <0 rows> (or 0-length row.names)
##
## [1] dean
               kerry
                        democrat campaign edward
                                                  gephardt
## <0 rows> (or 0-length row.names)
## [1] bush
                     administration presided
                                                  war
                                                                 iraq
## [6] house
## <0 rows> (or 0-length row.names)
##
## [1] kerry
                          poll
                                             clark
                                                       primaries
              dean
                                   edward
## <0 rows> (or 0-length row.names)
##
                        challenge democrat vote
## [1] november poll
                                                       house
## <0 rows> (or 0-length row.names)
```

There is a cluster that is mostly about the Iraq war. There are several clusters that are mostly about the democratic party.

K-means Clustering

```
no clusters <- 10
set.seed(23)
kbow <- kmeans(bow, no clusters)</pre>
k 10clust <- kbow$cluster
# No. of observations in each cluster
table(k 10clust)
## k 10clust
##
     1
          2
               3
                    4 5
                             6 7
                                       8
                                                10
              43 142 293 195 1750 356 160 165
##
    46 280
```

The number of observations in each cluster is different from hierarchical clustering, because the clustering algorithms are different.

Split the Clusters and Analyze Each Cluster

```
# Split the dataset into a dataset for each cluster
# Find the six most frequent words in each cluster
no clusters <- 10
for (i in 1:no_clusters){
 bow |>
   subset(k_10clust == i) |>
   colMeans() |>
   sort(decreasing = TRUE) |>
   head() >
   print.data.frame()
 cat("\n")
}
## [1] democrat
                 parties
                            republican state
                                                  seat
                                                            senate
## <0 rows> (or 0-length row.names)
##
## [1] bush
                     administration presided
                                                  time
                                                                 year
## [6] house
## <0 rows> (or 0-length row.names)
##
                        presided iraq
## [1] bush
               kerry
                                          vote
                                                   democrat
## <0 rows> (or 0-length row.names)
## [1] dean
                kerry
                          clark
                                              democrat primaries
                                    edward
## <0 rows> (or 0-length row.names)
##
## [1] kerry
                                 campaign presided democrat
               bush
                        poll
## <0 rows> (or 0-length row.names)
##
## [1] iraq
               war
                        bush
                                 iraqi
                                          american official
## <0 rows> (or 0-length row.names)
##
                                 democrat general elect
## [1] bush
               poll
                        kerry
## <0 rows> (or 0-length row.names)
## [1] democrat republican state
                                       elect
                                                            parties
                                                  senate
## <0 rows> (or 0-length row.names)
##
## [1] november poll
                          challenge democrat vote
                                                        house
## <0 rows> (or 0-length row.names)
## [1] november
                 vote
                            poll
                                     challenge bush
republican
## <0 rows> (or 0-length row.names)
```

Overall, these two groups of clusters have very similar keywords, like "bush", "kerry", "republican", "november", "iraq", etc.
2 clusters starting with "november" among 10 clusters are identical with hierarchical clustering.