ENERGY SYSTEMS & TRAINING

Glasgow Triathlon Club

PRESENTATION

- Part 1: The three energy systems
- Part 2: Types of training and physiologic adaptations
- Part 3: Monitoring

ENERGY

3 ENERGY SYSTEMS...

Exercise begins

Carbs

Fats

Exercise Energy depletion

Minutes later...

IMMEDIATE ENERGY: THE ATP-PCR SYSTEM

- Type: High intensity exercise of short duration (100m dash, 25m sprint or weightlifting)
- Source of energy: Intramuscular high energy phosphates (ATP and PCr)
- Sustaining exercise beyond this point and recovering requires an additional source of energy to replenish ATP

SHORT-TERM ENERGY: THE LACTIC ACID SYSTEM

- Resynthesis of high-energy phoshates at a high rate to continue strenuous exercise
- Source of energy: Stored muscle glycogen through anaerobic glycolysis
- Rapid and large accumulations of blood lactate occur during maximal exercise that lasts between 60 and 180s

LACTATE ACCUMULATION

For healthy, untrained persons, blood lactate begins to accumulate and rise exponentially at 55% of maximal capacity for aerobic metabolism.

LONG-TERM ENERGY: THE AEROBIC SYSTEM

- Glycolysis produces relatively little ATP.
- Responsible for most energy transfer
- Oxygen consumption rises exponentially during the first minutes of exercise then plateau at ones steady state
- Steady state represents a balance between energy required by the working muscles and ATP production in aerobic metabolism
 - (no appreciable blood lactate accumulates here)
- <u>Limitations in this state:</u> fluid loss, electrolyte depletion, other factors?

ENERGY CONSUMPTION DURING RECOVERY

ENERGY SPECTRUM OF EXERCISE

Figure 3-1 Energy sources for muscle as a function of activity duration. Schematic presentation showing how long each of the major energy systems can endure in supporting all-out work. Source: Edington and Edgerton, 1976. Used with permission.

PART 2: TYPES OF TRAINING & PHYSIOLOGICAL ADAPTATIONS

TRAINING ZONES

Level	%HR	%VO2	Increases	Type of training
Easy:: Level 1	60-70	55-65	Aerobic energy, aerobic pathway, capilliary density, mitochondria, FFA utilization	Long slow distance
Steady: Level 2	71-75	66-75	Aerobic energy, aerobic pathways	Endurance
Moderate: Level 3	76-80	76-80	FOG recruitment, aerobic glycolysis, oxygen transport	Stregth/ endurance
Hard: Level 4	81-90	81-90	Anaeobic threshold, lactic acid clearance.	Endurance, interval, threshold power
Very Hard: Level 5	91-100	91-100	Maximal oxygen transport, anaerobic energy sources	Interval/ power

ANAEROBIC

LACTATE THRESHOLD TRAINING

• By-product of glycogen broken down anaerobically is **lactic acid**.

• Accumulation = burning cramping sensation

Lactate threshold or OBLA

Lactate threshold and OBLA

Speed to VO₂: 8.5=50% 9.0=75%

Training aims to shift the lactate threshold or OBLA. VO_{2max} can only improve to a certain degree (genetics) but LT can be shifted meaning...

INTERVAL TRAINING

- Anaerobic intervals targeting lactic acid system
- 'Lactic stacking'

Work: relief	Work interval	Relief interval	Intensity
1:3	30s-1 minute	Active relief	85-90%

- Indicators you are working in the right zone:
- HR (90%MHR), RPE (15 hard-17 very hard), ventilatory threshold.

METABOLIC ADAPTATIONS TO LA INTERVALS

Adaptation	Outcome	
Increased levels and activity of the	Increased storage of glycogen as long as dietary	
enzyme glycogen synthase	intake is adequate	
Improved subjective measurement of	Increased tolerance of lactic acid as the individual	
exertion	becomes accustomed to the feeling of discomfort	
Increased capilliarization	Improved O ₂ delivery and lactic acid clearance	
Increased size and number of		
mitochondria	Increased capacity for aerobic energy production	
Increased levels of myoglobin	Improved O ₂ extraction in the muscle cells	

+ Increased aerobic capacity of the type 2a muscle fibres (FOG) Note: when anaerobic glycolysis is the main pathway for energy production glycogen stores are rapidly depleted. Adequate recovery necessary to avoid overtraining & injury

AEROBIC

CONSTANT PACE TRAINING/ LSD

- Steady, prolonged training at approx. 60-80%
 VO2max (74-88% MHR) = conversational pace
- Usually 1 hour +
- Metabolic adaptations:

Area of adaptation	Adaptation to training	
Muscle fibre recruitment	Increased type 1 muscle fibre recruitment	
Glycogen stores	50% Increase	
Muscle stores of triglycerides	Increased	
Aerobic enzymes	Increased activity and number	
Myoglobin levels	75-80% Increase	
Mitochondria	Increased number and size	
Capilliarization	Increased	
Hypertrophy	Increased hypertrophy of type 1 muscle fibres	
Fat metabolism	Increased	
Type 2 muscle fibres	Decreased mass	

AEROBIC INTERVALS

• Scope: allows improvement of aerobic capacity enough to progress onto high intensity continuous training.

Work: relief	Work interval	Relief interval	Intensity
1:1 / 1:1.5	3-5 mins	Active relief	75% MHR+

Adaptations to aerobic intervals			
Adaptations	Outcome		
Increased muscular stores of triglycerides and glycogen	Improved aerobic metabolism of fats and		
Increased levels and activity of aerobic enzymes	carbohydrates		
Increased levels of haemoglobin and myoglobin	Improved oxygen delivery and extraction leading to increased VO _{2max}		
Increased capillarization	Improved oxygen delivery		
Increased recruitment of fast oxidation glycolytic fibres (type 2a)	Increased aerobic capacity of FOG fibres		

Adaptations to endurance training			
Respiratory	Enhanced oxygen exchange in lungs		
	Improved blood flow through lungs		
	Decreased submaximal respiratory rate		
	Decreased submaximal respiratory ventilation		
Cardiovascular	Increased cardiovascular output		
	Increased blood vloume, red blood cell count & Hb concentration		
	Enhanced blood flow to skeletal muscles		
	Improved thermoregulation		
Musculoskeletal	Increased mitochondrial size and density		
	Increased oxidative enzyme concentrations		
	Increased myoglobin concentrations		
	Increased capiliarisation in muscle bed		
	Increased oxygen difference between arterial and venous blood		

PART 3: METHODS OF MONITORING EXERCISE INTENSITY

MHR & %VO_{2max}

- o MHR=220-age (30)= 190bpm
- o (MHR=200-(0.5 x age)
- Accuracy +/- 12bpm
- \circ 60% of VO_{2max} = 74% MHR
- Assumption: HR drops to zero

Corresponding percentage VO _{2max} to percentage MHR			
VO _{2max}	%MHR		
50	66		
55	70		
60	74		

65	77
70	81
75	85
80	88
85	92
90	96

HRR and % VO_{2max}

Variables: Age and RHR

Using Karvonen formula...

e.g 27 year old male with RHR of 65bpm

Target HR 75%HRR

$$MHR = 220-27 = 193$$

$$HRR = 193-65 = 128$$

$$%HRR = 128 \times 0.75 = 96$$

$$96 + 65 = 161$$
bpm

RATING OF PERCEIVED EXERTION (RPE)

Subjective feeling during exercise

6-20 scale (Borg)

0-10+ scale (category ratio scale)

Preferred level of exertion:

12-14 on Borg scale ←→Steady state

/
CR-10 scale
0.0
0.0
0.5 Just noticeable
1.0 Very weak
1.5
2.0 Light/ weak
3.0 Moderate
3.5
4.0 Somewhat strong
4.5
5.0
5.5
6.0
6.5 Very strong
7.0
7.5
8.0
9.0
10.0 Extremely strong
10 + highest possible

RELATIONSHIP BETWEEN MHR, HRR AND RPE AT DIFFERENT EXERCISE INTENSITIES

Intensity classification	%MHR	%HRR	RPE
Very light	<35	20<	<10
Light	35-54	20-39	10-11
Moderate	55-69	40-59	12-13
Hard	70-89	60-84	14-16
Very Hard	≥ 90	≥ 85	17-19
Maximal	100	100	20

Swimming: MHR approx. 13bpm lower in both trained and untrained individuals compared to running.

Reasons: musculature, venous return, position, cooling effect e.G HR calculation for 45 year old swimming at 70% MHR:

220-45=175

175-13= 162

 $162 \times 0.7 = 113$

CONCLUSION

- Apply the **training principles** to your training:
- \rightarrow Specific
- $\rightarrow Progressive$
- $\rightarrow Overload$
- \rightarrow Reversibility

Behaviour change

REFERENCES

- McArdle Katch and Katch
- Essentials in Strength and conditioning