

CHEMISTRY

Retroalimentación

Tomo 1

¿Diga, cuánto(s) carbonos amorfos naturales se tienen en la siguiente relación?

*Carbón de piedra

* Hollín

*Diamante

*Grafito activado

*Negro animal

*Carbón

Resolución

Indicar la suma de carbonos primarios, secundarios, terciarios y cuaternarios del siguiente compuesto: $CH_2 - CH_3$

$$CH_{2} - CH_{3}$$

$$CH_{3} - CH - C - CH_{2} - CH_{2} - CH_{2} - CH_{3}$$

$$CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

$$CH_{2} - CH_{3}$$

$$CH_{2} - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

 $\Sigma de \ carbonos = 5 + 4 + 1 + 1 = 11$

El número de enlaces sigma (σ) y enlaces pi (π) respectivamente del siguiente compuesto:

La siguiente fórmula contiene átomos de carbono con hibridación:

Resolución

Tipo de hibridación	Orbitales que se hibridan	Tipos de enlace Simple, doble, triple	Tipos de hidrocarburos	Geometria	Ángulos de enlace
Sp ³	S, Px, Py, Pz	C-C simple	alcanos	orbital hibrido	109.5°
Sp²	S, Px, Py	C =C	alqueno	B	120°
Sp	S, Px	C≡ C triple	alquino	Be	180°

$$CH_{3} - CH_{2} - CH = CH - C - C \equiv CH$$

$$CH_{3} - CH_{2} - CH = CH - C - C \equiv CH$$

$$CH_{3} - CH_{2} - CH = CH - C - C \equiv CH$$

$$Sp^{3} \qquad Sp^{3} \qquad Sp^{2} \qquad Sp^{2} \qquad \parallel Sp \qquad Sp$$

$$CH_{3} - CH_{2} - CH = CH - C - C \equiv CH$$

$$Sp^{2}$$

Hibridación	sp^3	sp^2	sp
Cantidad	2	3	2

¿Qué fórmula global tiene el 4,4,8,11-tetrametildodeceno

Resolución

Es un hidrocarburo alqueno

$$\mathsf{C}_{\mathsf{n}}\mathsf{H}_{\mathsf{2n}}$$

4,4,8,11-tetrametildodeceno

1*C*

12*C*

#átomos de carbono=4(1)+12=16

$$C_nH_{2n}$$

$$C_{16}H_{2(16)}$$

$$C_{16}H_{32}$$

Respecto a los alcanos. Que afirmaciones son verdaderas?

- I. Son hidrocarburos saturados
- II. Tienen hibridación sp³
- III.Se conocen como parafinas.
- IV. Tienen isomería geométrica.

Resolución

Resolución

- I. Un compuesto saturado es un compuesto químico que tiene una cadena de átomos de carbono unidos entre sí por enlaces simples y tiene átomos de hidrógeno unidos a sus átomos de carbono. Los alcanos son un ejemplo de compuestos saturados.
- II. Dentro de las propiedades físicas ya mencionadas podemos decir que el "C" de alcanos al estar saturado presenta hibridación del tipo sp³, ya que une a 4 átomos diferentes o "H". Necesitando un orbital s y 3 orbitales p, dando lugar a 4 orbitales sp³.
- III. Parafina (baja reactividad) es el nombre común de un grupo de hidrocarburos alcanos.
- IV. A diferencia de los alquenos, que forman doble enlace, permitiendo una equidad de interacción entre los carbonos que conforman la cadena principal, bien sea en configuración cis o trans; los alcanos que presentan enlaces simples no hace posible la formación de isómeros dado que las interacciones tienden a ser irregulares entre ellos.

Rpta: I, II, III

Nombrar la siguiente

$$CH_3 - (CH_2)_6 - CH(CH_3) - C(CH_3)_3$$

estructura:

Resolución

Revisar teoría

Descomponiendo el hidrocarburo ramificado:

Metil

2,2,3 - tri metil decano

El nombre
$$CH_3$$
 CH_3 CH_3 de: $CH \equiv C - CH - CH_3 - CH$

Resolución

$$\begin{array}{c|c} \textbf{Metil} & \textbf{Metil} \\ \hline \textbf{CH}_3 & \textbf{CH}_3 \\ \hline \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & \textbf{5} \\ \textbf{CH} & \equiv \textbf{C} - \textbf{CH} - \textbf{CH}_3 - \textbf{CH} \\ \hline \textbf{6} & \textbf{CH}_3 \\ \hline \textbf{CH}_3 & \textbf{CH}_3 \\ \end{array}$$

La nomenclatura IUPAC para los alquinos es parecida a la de los alquenos. Localizamos la cadena continua más larga de átomos de carbono que incluya el enlace triple y cambiamos la terminación -ano del alcano precursor por la terminación -ino. La cadena se numera a partir del extremo más cercano al enlace triple, y la posición de este enlace se establece por su átomo de carbono con la numeración más baja. A los sustituyentes se les asignan números para indicar sus posiciones.

$$3,5 - di metil hex - 1 - ino$$

Nombre la estructura mostrada:

$$CH_2 - CH_3$$

|
 $CH_3 - C - CH_2 - CH - CH_2 - CH_3$

|
 $CH_3 - C - CH_2 - CH - CH_3 - CH_3$

NOMENCLATURA DE ALCANOS

REGLA 1: LA CADENA PRINCIPAL La primera regla de nomenclatura da el nombre base del compuesto.

Encuentre la cadena continua más larga de átomos de carbono, y utilice el nombre de esta cadena como el nombre base del compuesto.

REGLA 2: NUMERAR LA CADENA PRINCIPAL Para dar las posiciones de los sustituyentes, asigne un número a cada átomo de carbono de la cadena principal.

Numere la cadena más larga, comenzando por el extremo de la cadena que se encuentre más cerca de un sustituyente.

REGLA 3: NOMBRAR LOS GRUPOS ALQUILO Después, nombre a los grupos sustituyentes.

Nombre a los grupos sustituyentes unidos a la cadena más larga como **grupos alquilo**. Dé la posición de cada grupo alquilo mediante el número del átomo de carbono de la cadena principal al que está unido.