

## Національний Технічний університет України "Київський політехнічний інститут" імені Ігоря Сікорського

## Лабораторна робота №02\_АС\_01

# Дослідження розгалужених електричних кіл синусоїдного струму

Виконав ст. групи AA-00 Коваленко К.К. Перевірив Іваненко І.І.

## Лабораторна робота №02\_AC\_01. " Дослідження розгалужених електричних кіл синусоїдного струму"

**Мета роботи**: Оволодіти методами аналізу і отримати навички експериментального дослідження розгалужених електричних кіл синусоїдного струму

#### Послідовність виконання

Вибрати електричне коло відповідно до заданого викладачем варіанту N, який визначається номером студента у журналі групи.

#### Варіанти індивідуального завдання









Задати параметри елементів заданого електричного кола відповідно до свого варіанта:

## Для груп АА-01, ВВ-01

| $E_{xm} = 6 \cdot mV$ $f_x = 40 \cdot kHz$  | $E_{xm} = 8 \cdot mV$ $f_{x} = 50 \cdot kHz$  |
|---------------------------------------------|-----------------------------------------------|
| $\psi_{\mathbf{X}} = 22.5 \deg$             | $\psi_{X} = 30 \deg$                          |
| $R1 = 28\Omega \qquad \qquad R2 = 36\Omega$ | $R1 = 29\Omega \qquad \qquad R2 = 38\Omega$   |
| $R3 = 44\Omega \qquad \qquad R4 = 52\Omega$ | $R3 = 47 \Omega \qquad \qquad R4 = 56 \Omega$ |
| L1 = 0.111 mH $C1 = 142.103 nF$             | L1 = 0.092 mH $C1 = 109.762 nF$               |
| Варіант 3,13, 23,33                         | Варіант 4,14, 24,34                           |

| $E_{xm} = 10 \cdot mV$ | $f_X = 60 \cdot kHz$      | $E_{xm} = 12 \cdot mV$ | $f_X = 70 \cdot kHz$    |
|------------------------|---------------------------|------------------------|-------------------------|
|                        | $\psi_{\rm X} = 37.5\deg$ |                        | $\psi_{\rm X} = 45\deg$ |
| $R1 = 30\Omega$        | $R2 = 40 \Omega$          | $R1 = 31 \Omega$       | $R2 = 42 \Omega$        |
| $R3 = 50\Omega$        | $R4 = 60 \Omega$          | $R3 = 53 \Omega$       | $R4 = 64 \Omega$        |
| L1 = 0.08  mH          | C1 = 88.419 nF            | L1 = 0.07  mH          | C1 = 73.343  nF         |
| Варіант 3              | 5,15, 25,35               | Варіант (              | 5,16, 26,36             |

| $E_{xm} = 14 \cdot mV$ | $f_X = 80 \cdot kHz$      | $E_{xm} = 16 \cdot mV$ | $f_X = 90 \cdot kHz$    |
|------------------------|---------------------------|------------------------|-------------------------|
|                        | $\psi_{\rm X} = 52.5\deg$ |                        | $\psi_{\rm X} = 60\deg$ |
| $R1 = 32 \Omega$       | $R2 = 44 \Omega$          | $R1 = 33 \Omega$       | $R2 = 46\Omega$         |
| $R3 = 56\Omega$        | $R4 = 68 \Omega$          | $R3 = 59 \Omega$       | $R4=72\Omega$           |
| L1 = 0.064 mH          | C1 = 62.17 nF             | L1 = 0.058  mH         | C1 = 53.588  nF         |

| Варіант 7,17, 27,37 | Варіант 8,18, 28,38 |
|---------------------|---------------------|
|                     |                     |
|                     | T                   |

## Для груп АА-02, ВВ-02

| $E_{xm} = 3 \cdot mV$ | $f_X = 20 \cdot kHz$     | $E_{xm} = 6 \cdot mV$ | $f_X = 30 \cdot kHz$     |
|-----------------------|--------------------------|-----------------------|--------------------------|
|                       | $\psi_{\rm X} = 7.5\deg$ |                       | $\psi_{\rm X} = 15 \deg$ |
| $R1 = 36\Omega$       | $R2 = 42\Omega$          | $R1 = 37 \Omega$      | $R2 = 44 \Omega$         |
| $R3 = 48\Omega$       | $R4 = 54 \Omega$         | $R3 = 51 \Omega$      | $R4 = 58 \Omega$         |
| L1 = 0.286 mH         | C1 = 221.049  nF         | L1 = 0.196  mH        | C1 = 143.383 nF          |
| Варіанти              | 1,11, 21,31              | Варіант 2             | 2, 12, 22,32             |

| $E_{xm} = 9 \cdot mV$ | $f_X = 40 \cdot kHz$   | $E_{xm} = 12 \cdot mV$ | $f_X = 50 \cdot kHz$          |
|-----------------------|------------------------|------------------------|-------------------------------|
|                       | $\psi_{X} = 22.5 \deg$ |                        | $\psi_{\mathbf{X}} = 30 \deg$ |
| $R1 = 38\Omega$       | $R2 = 46\Omega$        | $R1 = 39 \Omega$       | $R2 = 48\Omega$               |
| $R3 = 54 \Omega$      | $R4 = 62 \Omega$       | $R3 = 57 \Omega$       | $R4 = 66 \Omega$              |
| L1 = 0.151 mH         | C1 = 104.707  nF       | L1 = 0.124  mH         | C1 = 81.618 nF                |
| Варіант 3             | 3,13, 23,33            | Варіант 4              | ,14, 24,34                    |

| $E_{xm} = 15 \cdot mV$ | $f_X = 60 \cdot kHz$      | $E_{xm} = 18 \cdot mV$ | $f_x = 70 \cdot kHz$      |
|------------------------|---------------------------|------------------------|---------------------------|
|                        | $\psi_{\rm X} = 37.5\deg$ |                        | $\psi_{X} = 45 \deg$      |
| $R1 = 40\Omega$        | $R2 = 50 \Omega$          | $R1 = 41 \Omega$       | $R2 = 52\Omega$           |
| $R3 = 60 \Omega$       | $R4 = 70\Omega$           | $R3 = 63 \Omega$       | $R4 = 74 \Omega$          |
| L1 = 0.106 mH          | C1 = 66.315 nF            | L1 = 0.093  mH         | $C1 = 55.455 \mathrm{nF}$ |
| Варіант 5              | 5,15, 25,35               | Варіант 6              | ,16, 26,36                |

| $E_{xm} = 21 \cdot mV$ | $f_X = 80 \cdot kHz$      | $E_{xm} = 24 \cdot mV$ | $f_X = 90 \cdot kHz$      |
|------------------------|---------------------------|------------------------|---------------------------|
|                        | $\psi_{\rm X} = 52.5\deg$ |                        | $\psi_{\rm X} = 60\deg$   |
| $R1 = 42 \Omega$       | $R2 = 54 \Omega$          | $R1 = 43\Omega$        | $R2 = 56\Omega$           |
| $R3 = 66 \Omega$       | $R4=78\Omega$             | $R3 = 69 \Omega$       | $R4 = 82 \Omega$          |
| L1 = 0.084  mH         | $C1 = 47.368 \mathrm{nF}$ | L1 = 0.076  mH         | $C1 = 41.125 \mathrm{nF}$ |
| Варіант 7              | ,17, 27,37                | Варіант 8              | ,18, 28,38                |

| $E_{xm} = 27 \cdot mV$ | $f_X = 100 \cdot kHz$     | $E_{xm} = 30 \cdot mV$ | $f_X = 110 \cdot kHz$         |
|------------------------|---------------------------|------------------------|-------------------------------|
|                        | $\psi_{X} = 67.5 \deg$    |                        | $\psi_{\mathbf{X}} = 75 \deg$ |
| $R1 = 44 \Omega$       | $R2 = 58\Omega$           | $R1 = 45 \Omega$       | $R2 = 60 \Omega$              |
| $R3 = 72\Omega$        | $R4 = 86\Omega$           | $R3 = 75 \Omega$       | $R4 = 90\Omega$               |
| L1 = 0.07  mH          | $C1 = 36.172 \mathrm{nF}$ | L1 = 0.065  mH         | $C1 = 32.153 \mathrm{nF}$     |
| Варіант 9              | 9,19, 29,39               | Варіант 0              | ,10, 20,30                    |

## Розрахункова частина

Визначити струм в індуктивному елементі і напругу на ємнісному елементі символічним методом у такій послідовності:

□ Визначити і обчислити значення комплексних опорів (імпедансів) елементів кола;

|           | Визначити комплексне значення електрорушійної сили;          |
|-----------|--------------------------------------------------------------|
|           | Побудувати еквівалентну комплексну схему заданого            |
| електричн | ого кола;                                                    |
|           | Розрахувати комплексний струм в індуктивному і напругу на    |
| емнісному | елементах;                                                   |
|           | За комплексними значеннями розрахувати амплітуду і           |
| початкову | фазу струму в індуктивному і напруги на ємнісному елементах; |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |
|           |                                                              |

#### Експериментальна частина

#### Послідовність виконання роботи

Побудувати засобами *Electronic Workbench* електричне коло, приклад якого наведено на рис. 01-AC.01.

На рис. 01-АС.01 показані:

E1 — джерело синусоїдної напруги. Джерела напруги і струму знаходяться на вкладці *Sources*;

R1, R2, R3, R4 — резистори. Резистори знаходяться на вкладці *Basic*;

L1 — індуктивний елемент (індуктор). Індуктори знаходяться на вкладці *Basic*;



Рис. 01-АС.01 Варіант 00



Рис. 01-АС.02 Варіант 00

- С1 конденсатор. Конденсатори знаходяться на вкладці *Basic*;
- PV1 вольтметр у режимі вимірювання синусоїдної напруги (режим AC). Вольтметри знаходяться на вкладці *Indicator*;
- PA1 амперметри у режимі вимірювання синусоїдного струму (режим AC) Амперметр знаходиться на вкладці *Indicators*.
- V\_V кероване напругою джерело напруги. Керовані джерела напруги знаходяться на вкладці *Sources*;
- I\_V кероване струмом джерело напруги. Керовані джерела напруги знаходяться на вкладці *Sources*;
  - SW1 комутатор (ключ). Ключі знаходяться на вкладці *Basic*.

| Resistor Properties                                                                                                          |      |                          | 2 🛭                    |
|------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|------------------------|
| Label Value Fault Display Analysis So                                                                                        | etup |                          |                        |
| Resistance (R): First-order temperature coefficient (TC1): Second-order temperature coefficient (TC2): Resistance tolerance: | 0    | Ω <b>[-</b><br>Ω/*C<br>% | ✓ Use global tolerance |
|                                                                                                                              |      |                          | ОК Отмена              |

Рис. 01-АС.03

Задати значення параметрів елементів кола, обчислені у розрахунковій частини.

Запустити процес моделювання, натиснувши на кнопку I/O у верхньому правому куті екрану.

Синхронізувати осцилограф для отримання стійкого зображення на його екрані.

При роботі з осцилографом дотримуватися таких рекомендацій:

- Масштаб за часом (Time base) встановити такий, щоб на екрані осцилографа розміщувалося 1,5...2 періоди коливань.
- Запуск осцилографа (Triger) встановити від зовнішнього сигналу (Ext), наростанням імпульсу 

  з нулевим (0,0) рівнем запуску (Level).

|      | За допомогою візирів на екрані осцилографа визначити період   |
|------|---------------------------------------------------------------|
| поча | аткові фази струму в індуктивності і напруги на ємності       |
|      | рівняти результати обчислень і вимірювань і зробити висновки. |
| •    | На захист представити паперовий і електронний варіанти.       |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |
|      |                                                               |



## Національний Технічний університет України (КРІ)

#### Кафедра теоретичної електротехніки



#### Лабораторна робота №02\_АС\_01

з дисципліни "Основи електротехніки та електроніки"

" Дослідження розгалужених електричних кіл синусоїдного струму "

Виконав: Студент групи EE-00 Петренко П.П. Перевірив: доц. Коваленко К.К.

Київ —20\_\_

**Мета роботи**: Оволодіти методами аналізу і отримати навички експериментального дослідження розгалужених електричних кіл синусоїдного струму з одним джерелом енергії

#### Завдання

Визначити струм в індуктивному елементі і напругу на ємнісному елементі символічним методом. Розрахунки перевірити числовим експериментом комп'ютерними симуляторами *Electronic Workbench, Multisim*.

#### Завдання для варіанту 00



#### Розрахункова частина

Розрахунок струмів у вітках кола і напруг на елементах кола виконуємо методом еквівалентних перетворень, використовуючи математичну комп'ютерну програму **Mathcad**.

Визначаємо струм в індуктивному елементі і напругу на ємнісному елементі у такій послідовності:

1. обчислюємо комплексне значення електрорушійної сили

Ex := 
$$\frac{E_{xm}}{\sqrt{2}} \cdot e^{j \cdot \psi_{x}} = (3.505 + 0.461j) \cdot mV$$

2. визначаємо кутову частоту

$$\omega := 2 \cdot \pi \cdot f_{X} = 1.257 \times 10^{5} \frac{1}{s}$$

3. визначаємо комплексні опори (імпеданси) елементів кола

$$Z_{R1} = R1$$
  $Z_{R2} = R2$   $Z_{R3} = R3$   $Z_{R4} = R4$  
$$Z_{L1} \coloneqq (j \cdot \omega) \cdot L1$$
 
$$Z_{C1} \coloneqq \frac{1}{[(j \cdot \omega) \cdot C1]}$$

4. визначаємо еквівалентний комплексний опір послідовного з'єднання L1-R4 і обчислюємо його значення

$$Z_{L_R4} := Z_{L1} + R4 = (74 + 56j) \Omega$$

5. визначаємо еквівалентний комплексний опір паралельного з'єднання віток L1-R4 та R2 і обчислюємо його значення

Za := 
$$\frac{1}{\frac{1}{R2} + \frac{1}{Z_{L_R4}}}$$
 = (37.833 + 9.951j)  $\Omega$ 

6. визначаємо еквівалентний комплексний опір послідовного з'єднаних ділянок C1, R3, Za

$$Zb := R3 + Z_{C1} + Za = (105.833 - 46.049j) \Omega$$

7. визначаємо струм в еквівалентному комплексному опорі Zb

Ib := 
$$\frac{Ex}{Zb}$$
 =  $(26.253 + 15.784j) \cdot \mu A$ 

8. визначаємо комплексну напругу на ємнісному елементі

$$U_{C1} := Z_{C1} \cdot Ib = (0.884 - 1.47j) \text{ mV}$$

9. визначаємо діюче значення комплексної напруги на ємнісному елементі

$$\left| U_{C1} \right| = \sqrt{(0.884)^2 + (1.47)^2} = 1.715 \text{ mV}$$

10. визначаємо амплітудне значення комплексної напруги на ємнісному елементі

$$U_{Cm} = \sqrt{2} \cdot U_{C1} = 2.426 \text{ mV}$$

11. визначаємо початкову фазу комплексної напруги на ємнісному елементі

$$\psi_{C1} = \operatorname{atan}\left(\frac{\operatorname{Im}(U_{C1})}{\operatorname{Re}(U_{C1})}\right) = \operatorname{atan}\left(\frac{1.47}{0.884}\right) = -1.029 = -58.986 \text{ deg}$$

12. визначаємо струм в еквівалентному комплексному опорі Za

$$Ua := Za \cdot Ib = (0.836 + 0.858j) \text{ mV}$$

13. визначаємо комплексний струм в індуктивному елементі

$$I_{L1} \coloneqq \frac{\text{Ua}}{Z_{L\_R4}} = (12.767 + 1.939j) \, \mu\text{A}$$

14. визначаємо діюче значення комплексного струму в індуктивному елементі

$$\left|I_{L1}\right| = \sqrt{(12.767)^2 + (1.939)^2} = 12.913 \ \mu A$$

15. визначаємо амплітудне значення комплексного струму в індуктивному елементі

$$I_{Lm} = \sqrt{2} \cdot I_{L1} = 18.262 \ \mu A$$

16. визначаємо початкову фазу комплексного струму в індуктивному елементі

$$\psi_{L1} = \operatorname{atan}\left(\frac{\operatorname{Im}(I_{L1})}{\operatorname{Re}(I_{L1})}\right) = \operatorname{atan}\left(\frac{1.939}{12.767}\right) = 0.151 \cdot \operatorname{rad} = 8.634 \operatorname{deg}$$

- 17. записуємо напругу на ємнісному елементі як функцію часу  $\mathbf{u_C(t)} = 1.715 \cdot \sqrt{2} \cdot \sin \left( 1.257 \times \ 10^5 \cdot \mathbf{t} 1.029 \right) \cdot \text{mV}$
- 18. записуємо струм в індуктивному елементі як функцію часу

$$i_L(t) = 12.913 \cdot \sqrt{2} \cdot \sin(1.257 \times 10^5 \cdot t + 0.151) \cdot \mu A$$

#### Експериментальна частина

#### Послідовність виконання роботи

Будуємо засобами *Electronic Workbench* електричне коло для варіанту 00 (рис. 02-AC.01).



Рис. 01-АС.02 Варіант 00

На рис. АС 01.2 показані:

E1 — джерело синусоїдної напруги (вкладка *Sources* компонент *AC Voltage Source*);

R1 — резистор (вкладка *Basic* компонент *Resistor*);

L1 — індуктивний елемент (вкладка *Basic* компонент *Inductor*);

C1 — конденсатор (вкладка Basic компонент Capacitor);

PV\_V1 — кероване напругою джерело напруги (вкладка *Sources* компоненти *Voltage—Controlled Voltage Source*);



Рис. 01-АС.03 Варіант 00

I\_V1 — кероване струмом джерело напруги (вкладка *Sources* компоненти *Current—Controlled Voltage Source*);

Осцилограф (*Oscilloscope*), призначений для відображення графіків залежностей електричних величин від часу. Осцилограф знаходиться на вкладці *Instrument* (третій зліва);

Задаємо значення параметрів елементів кола відповідно до індивідуального варіанту 00.

Переводимо амперметр і вольтметр у режим вимірювання синусоїдного струму — AC.

Запускаємо процес моделювання, натиснувши на кнопку І/О у верхньому правому куті екрану.



Рис. 01-АС.04 Варіант 00

Таблиця 01-АС.01

|                            | Параметри         |                        |                   |
|----------------------------|-------------------|------------------------|-------------------|
|                            | Діюче<br>значення | Амплітудне<br>значення | Початкова<br>фаза |
| Струм в індукторі, тА      |                   |                        |                   |
| Результати обчислень       | 12.913 μΑ         | 18.262 μΑ              | 8,634             |
| Результати вимірювань      | 12.97 μΑ          | 18.3588 μΑ             | 7,5               |
| Напруга на конденсаторі, V |                   |                        |                   |
| Результати обчислень       | 1.715 mV          | 2.426 mV               | -58.986           |
| Результати вимірювань      | 1.703 mV          | 2.4058 mV              | -59.1             |



Рис. 01-АС.05 Варіант 00

Знімаємо покази амперметра і вольтметра, тобто діючі значення, і заносимо їх у табл. 01-AC.01.

За допомогою осцилографа знімаємо осцилограми залежності струму в індуктивності і напруги на ємності від часу. На осцилограмах (AC\_01.3, AC\_01.4) за допомогою візирів вимірюємо амплітудні значення струму в індуктивності і напруги на ємності і записуємо їх в табл. 01-AC.01.

За допомогою візирів визначаємо зсув за часом напруги на ємності відносно вхідної напруги (рис. AC\_01.5).

$$\Delta t_{Uc} := 9.25 \cdot \mu s$$

Визначаємо різницю фаз між вхідною напругою і напругою на ємнісному елементі



Рис. 01-АС.06 Варіант 00

$$\phi_{Uc} = \frac{\Delta t_{Uc}}{T} \cdot 360 = \Delta t_{Uc} \cdot (f_x) \cdot 360 = 66.6$$

Визначаємо початкову фазу напруги на ємнісному елементі

$$\psi_{Uc} = \psi_x + \phi_{Uc} = 7.5 - 66.6 = -59.1$$

Заносимо знайдене значення початкової фази напруги на ємнісному елементі у табл. 01-AC.01

Визначаємо зсув за часом синусоїди струму в індуктивності відносно синусоїди вхідної напруги. Як видно з осцилограми (AC\_01.6), між цими синусоїдами нульовий зсув по часу

$$\Delta t \parallel \Sigma = 0 \cdot \mu s$$

Отже, зсув фаз між цими синусоїдами також буде рівний нулю

$$\phi_{\text{IL}} = \frac{0}{T} \cdot 360 = 0 \cdot (f_{\text{X}}) \cdot 360 = 0$$

Визначаємо початкову фазу струму в індукторі

$$\psi_{\text{IL}} = \psi_{\text{x}} + \phi_{\text{IL}} = 7.5 + 0 = 7.5$$

Заносимо знайдене значення початкової фази напруги на ємнісному елементі у табл. 01-AC.01

#### Теоретичні відомості

## Символічний метод розрахунку електричних кіл синусоїдного струму

Аналіз і розрахунок електричних кіл, як вже зазначалось, значно спрощується, якщо електрорушійні сили, напруги, струми, а також параметри елементів електричних кіл представити комплексними числами. Метод розрахунку, що ґрунтується на такому представленні, дістав назву *символічного*.

Розрахунок електричних кіл синусоїдного струму доцільно здійснювати у такій послідовності:

| параметри джерел напруги (електрорушійні сили і внутрішні опори) і   |  |  |  |
|----------------------------------------------------------------------|--|--|--|
| струму (струми джерел і внутрішні провідності) представляються       |  |  |  |
| комплексними значеннями;                                             |  |  |  |
| параметри споживачів електричної енергії також представляються       |  |  |  |
| комплексними значеннями;                                             |  |  |  |
| при невідомі синусоїдні струми і напруги комплексними величинами з   |  |  |  |
| невідомими значеннями;                                               |  |  |  |
| □ будуються комплексні схеми заміщення елементів кола і на їх основі |  |  |  |
| булується комплексна схема замішення електричного кола у пілому.     |  |  |  |

- □ визначаються невідомі струми і напруги на елементах і розраховуються їх значення;
- □ за знайденими комплексними значеннями визначаються миттєві значення струмів і напруг як функцій часу.



Рис. Т01-АС.01

Розглянемо приклади застосування символічного методу для розрахунку електричних кіл синусоїдного струму.

#### Розрахунок простих електричних кіл синусоїдного струму

Застосування символічного методу для розрахунку простих електричних кіл дає змогу дослідити основні електромагнітні процеси у колах, визначити необхідні параметри елементів електричних кіл.

#### Послідовне з'єднання реостата і реальної котушки.

**Приклад 3.14.** Реальна котушка, індуктивність якої дорівнює 124 mH, активний опір 7.8  $\Omega$ , і реостат опором 27  $\Omega$  з'єднані послідовно і увімкнені в електричну мережу промислової частоти напругою 220 V. Визначити струм у колі, напруги на елементах кола, потужності елементів.

#### Розв'язок

Для адекватного відображення електромагнітних процесів на промисловій частоті достатньо для реальної котушки вибрати схему

заміщення, що складається з резистивного та індуктивного елементів. З'єднання ідеальних елементів у схемі заміщення доцільно вибрати послідовним, оскільки саме досліджуване коло — послідовне з'єднання елементів. Для заміщення реостата на промисловій частоті достатньо одного ідеального елемента — резистивного. Електрична схема досліджуваного кола зі схемами заміщення реальних електротехнічних пристроїв зображена на рис.3.34.

Запишемо комплексні параметри елементів кола

$$\begin{split} \underline{Z}_{R1} &= R_1 = 27 \ \Omega \\ \underline{Z}_{R2} &= R_2 = 7.8 \ \Omega \\ \underline{Z}_{L2} &= j \cdot \omega \cdot L_2 = j \cdot 2 \cdot \pi \cdot f \cdot L_2 = j \cdot 2 \cdot 3.14 \cdot 50 \cdot 0.124 = j \cdot 39 \ \Omega \end{split}$$

Запишемо комплексне значення вхідної напруги, прийнявши для зручності початкову фазу напруги рівною нулю

$$U = 220 \cdot e^{j \cdot 0}$$

Будуємо комплексну схему заміщення електричного кола за отриманими комплексними параметрами його елементів (3.34 в).

За законом Ома у комплексній формі визначаємо струм у колі

$$\underline{I} = \frac{\underline{U}}{\underline{Z}_{R1} + \underline{Z}_{R2} + \underline{Z}_{L2}} = \frac{220 \cdot e^{j \cdot 0}}{27 + 7.8 + j \cdot 39} = 2.802 + j \cdot 3.141 \text{ A} = 4.209 \cdot e^{-j \cdot 0.842}$$

Кут зсуву фаз між напругою і струмом у колі  $\epsilon$  аргументом еквівалентного опору всього кола і дорівню $\epsilon$ 

$$\varphi = \psi_U - \psi_I = 0 - (-0.842) = 0.842 = 48.3^{\circ}$$

Струм у колі змінюватиметься у часі за законом

$$i(t) = 4.209 \cdot \sqrt{2} \cdot \sin(100\pi t - 0.842) = 4.209 \cdot \sqrt{2} \cdot \sin(100\pi t - 48.3^{\circ})$$

Визначаємо значення напруг на елементах комплексної схеми заміщення електричного кола (рис. 3.34 в)

$$\underline{U}_{R1} = \underline{I} \cdot \underline{Z}_{R1} = 4.209 \cdot e^{-j \cdot 0.842} \cdot 27 = 114 \cdot e^{-j \cdot 0.842} V$$

$$\underline{U}_{R2} = \underline{I} \cdot \underline{Z}_{R2} = 4.209 \cdot e^{-j \cdot 0.842} \cdot 7.8 = 33 \cdot e^{-j \cdot 0.842} V$$

$$\underline{U}_{L2} = \underline{I} \cdot \underline{Z}_{L2} = 4.209 \cdot e^{-j \cdot 0.842} \cdot j \cdot 39 = 164 \cdot e^{+j \cdot 0.729} V$$

Визначаємо комплексні значення напруг на елементах кола. Комплексне значення напруги на реостаті дорівнюватиме комплексному значенню напруги на резистивному елементі  $R_1$ 

$$\underline{U}_1 = \underline{U}_{R1}$$
,

оскільки схема заміщення реостата одноелементна.

Комплексне значення напруги на реальній котушці дорівнюватиме

$$\underline{U}_2 = \underline{I} \cdot (\underline{Z}_{R2} + \underline{Z}_{L2}) = 4.209 \cdot e^{-j \cdot 0.842} \cdot (7.8 + j \cdot 39) = 167 \cdot e^{+j \cdot 0.531} \text{ V}$$

Різниця фаз напруги на реальній котушці і струму у колі дорівнюватиме

$$\varphi_2 = \psi_{U2} - \psi_I = 0.531 - (-0.842) = 1.373 = 79^\circ$$

Активна потужність резистивних елементів дорівнюватиме

$$P_1 = I^2 \cdot R_1 = 4.209^2 \cdot 27 = 478 \text{ W}$$
  
 $P_2 = I^2 \cdot R_2 = 4.209^2 \cdot 7.8 = 138 \text{ W}$ 

Реактивна потужність індуктивного елемента

$$Q_2 = I^2 \cdot X_2 = 4.209^2 \cdot 39 = 690 \text{ VAr}$$

Комплексна потужність реальної котушки

$$\underline{S}_2 = \underline{U}_2 \cdot \underline{I}^* = 167 \cdot e^{+j \cdot 0.531} \cdot 4.209 \cdot e^{+j \cdot 0.842} = (138 + 690 j) \text{ V} \cdot \text{A}$$

Комплексна потужність всього кола у цілому

$$\underline{S} = P + jQ = \underline{U} \cdot \underline{I}^* = 220 \cdot e^{j \cdot 0} \cdot 4.209 \cdot e^{+j \cdot 0.842} = (616 + 690 j) \text{ V} \cdot \text{A}$$

Баланс активної потужності виконується

$$P = 616 \text{ W} = P_1 + P_2 = 478 + 138 = 616 \text{ W}$$

Баланс реактивної потужності також виконується

$$Q = 690 \text{ VAr} = Q_2 = 690 \text{ VAr}$$

**Приклад 3.15.** Реальна котушка і реостат з'єднані послідовно і увімкнені в електричну мережу промислової частоти з напругою 380 V. Вольтметр, увімкнений паралельно реостату, показує 200 V, а вольтметр, увімкнений паралельно котушці, показує 300 V. Амперметр, увімкнений послідовно з котушкою і реостатом, показує 12.5 А. Визначити опір реостату, активний опір реальної котушки та індуктивність котушки.

#### Розв'язок

Схеми заміщення реостату і реальної котушки вибираємо такі ж самі, як і у попередньому прикладі, керуючись тими самими міркуваннями. Електрична принципова схема, комплексна схема заміщення і векторна діаграма напруг на елементах і струму у колі наведена на рис. 3.34 у попередньому прикладі.

За теоремою косинусів визначаємо косинус кута зсуву фаз між напругою і струмом

$$\cos \varphi = \frac{U^2 + U_1^2 - U_2^2}{2 \cdot U \cdot U_1} = \frac{380^2 + 200^2 - 300^2}{2 \cdot 380 \cdot 200} = 0.621$$

Визначаємо активну та реактивну складові вхідної напруги

$$U_a = U \cdot \cos \varphi = 380 \cdot 0.621 = 236 \text{ V}$$
  
 $U_r = U \cdot \sin \varphi = U \cdot \sqrt{1 - (\cos \varphi)^2} = 380 \cdot 0.784 = 298 \text{ V}$ 

Визначаємо активну складову напруги на реальній котушці

$$U_{2a} = U_{R2} = U_a - U_1 = U_a - U_{R1} = 236 - 200 = 36 \text{ V}$$

Знаходимо значення опору реостату і реальної котушки

$$R_1 = \frac{U_1}{I} = \frac{U_{R1}}{I} = \frac{200}{12.5} = 16 \Omega$$
  
 $R_2 = \frac{U_{2a}}{I} = \frac{U_{R2}}{I} = \frac{36}{12.5} = 3 \Omega$ 

Визначаємо індуктивний опір котушки

$$X_{L2} = \frac{U_r}{I} = \frac{298}{12.5} = 24 \Omega$$

