# Happiness Predictor

Maria, Manuela and Sindy



## Project Pipeline



## **About our project**

- The intention of our project was to create a machine model that would be able to predict the happiness of countries around the world and explore different factors that impacted this variable.
- To achieve this, we created and ran two different models on various datasets with different parameters and analyzed the performance of the model using different statistical techniques.
- Our dataset has various variables, including Country, Region, Subregion (Location), Life Ladder, Log GDP per capita, Social support, Healthy life expectancy at birth, Freedom to make life choices, Generosity, Perceptions of corruption, Positive affect, Negative affect, Various Health indicators
- From this data, we developed various visualizations using Tableau and Google Colab that showcase how our model works and further support our conclusion.

## **Data Acquisition**

## 1. World Happiness Report 2024

Mainly gathers data from the Gallup World poll (GWP) 2005 - 2023

#### Features:

- Log GDP per capita (World Development Indicators 2023 and 2024 was forecasted)
- Social support
- Healthy life expectancy at birth (WHO Global Health Observatory data last updated on 2020. Data is available for 200,2010, 2015 an 2019 for other periods interpolation and extrapolation are used)
- Freedom to make life choices
- Generosity
- Perceptions of corruption
- Positive affect
- Negative affect

## Target:

Life Ladder

## **Data Acquisition**

## 2. WHO - World health statistics 2024

Monitoring health for the SDGs, Sustainable Development Goals since 2005 Features - 60 metrics related to:

- Mortality-related SDG indicators (Categories of causes of deaths, Maternal and child mortality, Mortality due to injury, Mortality due to chronic diseases, Mortality attributable to environmental risk factors)
- Health-related SDGs (Infectious diseases, Risk factors for health, Metabolic risk factors, Environmental risk factors, Risks to women's and girls' health
- Health systems strengthening (Service delivery, Health financing)
- Progress towards WHO Triple Billion targets (One billion more people benefitting from UHC)

## Target:

- Life expectancy
- Healthy life expectancy
- However, the target data wasn't available for all years on the WHO dataset so we used the data on Healthy life expectancy at birth column in the World Happiness Report 2024

## **Data Acquisition**

## 3. Other datasets

- Countries and regions
  - ISO classification alpha-2 / alpha-3
  - Country / region (5) / sub-region (17)
- Sunshine hours for cities in the world
- World cities
  - Lat and Lng for main cities around the world

## **World Happiness Report dataset**

- Merge the world\_happiness\_df with the country\_regions\_df
- Confirm there aren't any NaN on the "Country name" to find countries with spelling mismatch
- Drop repeat country name column

Reorganize the order of the columns => Geographic info, year, features, and

target

| wor | ld_happines     | s_ml_df | = pd.merg      |                          |                   |                                        | egions_df,                            | left_on="Co | ountry name",                   | right_on=          | ="name", ho        | ow="left")<br>Python |
|-----|-----------------|---------|----------------|--------------------------|-------------------|----------------------------------------|---------------------------------------|-------------|---------------------------------|--------------------|--------------------|----------------------|
|     | Country<br>name | year    | Life<br>Ladder | Log GDP<br>per<br>capita | Social<br>support | Healthy life<br>expectancy<br>at birth | Freedom<br>to make<br>life<br>choices | Generosity  | Perceptions<br>of<br>corruption | Positive<br>affect | Negative<br>affect | name <sup>a</sup>    |
| 0   | Afghanistan     | 2008    | 3.723590       | 7.350416                 | 0.450662          | 50.500000                              | 0.718114                              | 0.164055    | 0.881686                        | 0.414297           | 0.258195           | Afghanistan          |
| 1   | Afghanistan     | 2009    | 4.401778       | 7.508646                 | 0.552308          | 50.799999                              | 0.678896                              | 0.187297    | 0.850035                        | 0.481421           | 0.237092           | Afghanistan          |
| 2   | Afghanistan     | 2010    | 4.758381       | 7.613900                 | 0.539075          | 51.099998                              | 0.600127                              | 0.117861    | 0.706766                        | 0.516907           | 0.275324           | Afghanistan          |
| 3   | Afghanistan     | 2011    | 3.831719       | 7.581259                 | 0.521104          | 51.400002                              | 0.495901                              | 0.160098    | 0.731109                        | 0.479835           | 0.267175           | Afghanistan          |
| 4   | Afghanistan     | 2012    | 3.782938       | 7.660506                 | 0.520637          | 51.700001                              | 0.530935                              | 0.234157    | 0.775620                        | 0.613513           | 0.267919           | Afghanistan          |
|     |                 |         |                |                          |                   |                                        |                                       |             |                                 |                    |                    |                      |

#### **WHO dataset**

- All the data was in rows, not columns. We had to pivot the final version of the df for the features to be columns.
- Drop unneeded columns (Questions are codified in IND\_CODE column).
  - IND\_CODE = ["WHOSIS\_0001", "WHOSIS\_0002"] are the targets. (The Healthy Life Expectancy at Birth (years) and Life Expectancy at Birth (years))
    - The metrics are only available on the dataset for 2021.
- Merge the WHO df with the Country Regions file.
  - Identify the region/sub-region NaN on the merge df and define if there is a way to work with those records.

|     | alpha-3 | name | region | sub-region |
|-----|---------|------|--------|------------|
| 1   | AFR     | NaN  | NaN    | NaN        |
| 53  | EMR     | NaN  | NaN    | NaN        |
| 62  | EUR     | NaN  | NaN    | NaN        |
| 71  | GLOBAL  | NaN  | NaN    | NaN        |
| 146 | AMR     | NaN  | NaN    | NaN        |
| 170 | SEAR    | NaN  | NaN    | NaN        |
| 199 | WPR     | NaN  | NaN    | NaN        |

#### AFR

AFR is a region, not a country => Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Ivory Coast, Democratic Republic of the Congo Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Republic of the Congo, Rwanda, São Tomé and Príncipe, Senegal, Seychelles, Sierra Leone, South Africa. South Sudan. Eswatini. Togo. Uganda. Tanzania. Zambia. Zimbabwe.

- Region: Africa
- Sub Region: Sub-Saharan Africa

#### **EMR**

Eastern Mediterranean Region does not have a single dedicated ISO code as it is a geographical region encompassing multiple countries, each with their own ISO code.

Afghanistan, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates, Yemen.

#### Afghanistan, Iran, Pakistan

- Region: Asia
- Sub Region: Southern Asia

Bahrain, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syrian Arab Republic, United Arab Emirates, Yemen

- Region: Asia
- · Sub Region: Western Asia

Egypt, Libya, Morocco, Sudan, Tunisia

- · Region: Africa
- · Sub Region: Northern Africa

#### Djibouti, Somalia

- · Region: Africa
- Sub Region: Eastern Africa

- Filter by NaN on the "Country name" to find countries with spelling mismatch.
  - Replace the country name on the world happiness df
  - Add Kosovo and update region and sub-region for Taiwan in the country\_regions\_df
- We had to merge the Life Expectancy at Birth (years) column from the World Happiness data set to get a target column.
  - Count NaN on the target column "Healthy life expectancy at birth"
  - Unfortunately we will lost 32.3% of the records for the ML model. (WHO special regions and target NaN)



#### **Sunshine Hours dataset**

- Merge the sunshine\_hours\_df with the world\_cities\_df to get the latitude and longitude
- Filter by NaN on the "country" to find countries with spelling mismatch
  - Replace the country on the world\_cities\_df
  - o Replace the city on the world\_cities\_df or the sunshine\_hours\_df

## All the datasets were exported to CSV files for ML modeling and tableau

|   | # Drop "cou<br>tableau_map<br>tableau_map | ping_df = |       |       |       | rop(col | umns=[" | countr | y", "ci | ty_asc: | ii"]) |       |       |       |        |        | Python  |
|---|-------------------------------------------|-----------|-------|-------|-------|---------|---------|--------|---------|---------|-------|-------|-------|-------|--------|--------|---------|
|   | Country                                   | City      | Jan   | Feb   | Mar   | Apr     | May     | Jun    | Jul     | Aug     | Sep   | Oct   | Nov   | Dec   | Year   | lat    | Ing     |
|   | 0 Ivory<br>Coast                          | Gagnoa    | 183.0 | 180.0 | 196.0 | 188.0   | 181.0   | 118.0  | 97.0    | 80.0    | 110.0 | 155.0 | 171.0 | 164.0 | 1823.0 | 6.1333 | -5.9333 |
|   | 1 Ivory<br>Coast                          | Bouaké    | 242.0 | 224.0 | 219.0 | 194.0   | 208.0   | 145.0  | 104.0   | 82.0    | 115.0 | 170.0 | 191.0 | 198.0 | 2092.0 | 7.6833 | -5.0167 |
| : | 2 Ivory<br>Coast                          | Abidjan   | 223.0 | 223.0 | 239.0 | 214.0   | 205.0   | 128.0  | 137.0   | 125.0   | 139.0 | 215.0 | 224.0 | 224.0 | 2296.0 | 5.3167 | -4.0333 |
| : | 3 Ivory<br>Coast                          | Odienné   | 242.0 | 220.2 | 217.3 | 214.7   | 248.8   | 221.8  | 183.5   | 174.5   | 185.4 | 235.8 | 252.0 | 242.6 | 2638.6 | 9.5000 | -7.5667 |
|   | 5 Benin                                   | Cotonou   | 213.9 | 210.0 | 223.2 | 219.0   | 213.9   | 141.0  | 136.4   | 148.8   | 165.0 | 207.7 | 243.0 | 223.2 | 2345.2 | 6.3667 | 2.4333  |
|   |                                           |           |       |       |       |         |         |        |         |         |       |       |       |       |        |        |         |

## **Random Forest vs Gradient Boost Models**

We did a regressor model for both random forest and gradient boost models because we were predicting numerical values.

| Random Forest                                                                                                                                                                                                   | Gradient Boost                                                                                                                                                                                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <ul> <li>How it works:</li> <li>Parallel training of independent trees</li> <li>Each tree is trained on a random subset of data and features</li> <li>Reduces overfitting through ensemble averaging</li> </ul> | How it works:      Sequential tree building     Each tree corrects errors of previous trees     Focuses on minimizing residual errors                                                          |  |  |  |  |
| <ul> <li>When to use:</li> <li>Smaller datasets</li> <li>Need interpretability</li> <li>Want robust, generalized performance</li> <li>Less time for hyperparameter tuning</li> </ul>                            | <ul> <li>When to use:</li> <li>Large, structured datasets</li> <li>Able to invest in tuning</li> <li>Want maximum predictive performance</li> <li>Complex, non-linear relationships</li> </ul> |  |  |  |  |

#### **Happiness Data**

## **Parameters:**

```
rf_model = RandomForestRegressor(
    n_estimators= 500,
    max_depth= 10,
    min_samples_split= 10,
    max_features= 'sqrt',
    min_samples_leaf= 1,
    random_state= 42
)
```

#### **Results:**

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.9306
Testing R<sup>2</sup> Score: 0.8400
```



#### Happiness Data w/ Regions

#### **Parameters:**

```
rf_model = RandomForestRegressor(
    n_estimators= 500,
    max_depth= 10,
    min_samples_split= 10,
    max_features= 'sqrt',
    min_samples_leaf= 1,
    random_state= 42
)
```

#### **Results:**

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.9308
Testing R<sup>2</sup> Score: 0.8760
```



#### **Happiness Data w/ Sub Regions**

#### **Parameters:**

```
rf_model = RandomForestRegressor(
    n_estimators= 500,
    max_depth= 10,
    min_samples_split= 10,
    max_features= 'sqrt',
    min_samples_leaf= 1,
    random_state= 42
)
```

#### **Results:**

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.9231
Testing R<sup>2</sup> Score: 0.8740
```



## **Random Forest Model**

#### **Happiness Data**

# Parameters: gb\_regressor = GradientBoostingRegressor( n\_estimators = 300,

max depth=3,

random state= 42

learning rate= 0.01,

min samples split= 2,

loss='squared error',

#### Results:

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.8501
Testing R<sup>2</sup> Score: 0.8285
```



#### Happiness Data w/ Regions

#### Parameters:

```
gb_regressor1 =GradientBoostingRegressor(
    n_estimators= 300,
    learning_rate= 0.01,
    max_depth= 3,
    min_samples_split= 2,
    loss='squared_error',
    random_state= 42
)
```

#### **Results:**

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.8601
Testing R<sup>2</sup> Score: 0.8224
```



#### **Happiness Data w/ Sub Regions**

```
Parameters:
```

```
gb_regressor2
=GradientBoostingRegressor(
    n_estimators= 300,
    learning_rate= 0.01,
    max_depth= 3,
    min_samples_split= 2,
    loss='squared_error',
    random state= 42
```

#### R):sults:

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.8620
Testing R<sup>2</sup> Score: 0.8232
```



## **Gradient Boost Model**

#### **WHO Data**

#### **Parameters:**

```
rf_regressor = RandomForestRegressor(
    n_estimators=500,
    random_state=78
)
```

#### **Results:**

previous 12 months (%)

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.9232
Testing R<sup>2</sup> Score: 0.5588
```



SDGIHR2021 - Average of 15 International Health Regulations core capacity scores
SDGIPV12M - Proportion of ever-partnered women and girls aged 15-49 years subjected to physical and/or sexual violence by a current or former intimate partner in the

#### **WHO Data w/ Regions**

#### **Parameters:**

```
rf_regressor1 = RandomForestRegressor(
    n_estimators=500,
    random_state=78
)
```

#### **Results:**

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.9400
Testing R<sup>2</sup> Score: 0.7566
```



SDGIHR2021 - Average of 15 International Health Regulations core capacity scores
MDG 0000000003 - Adolescent birth rate (per 1000 women)

#### **WHO Data w/ Sub Regions**

#### **Parameters:**

```
rf_regressor2 = RandomForestRegressor(
    n_estimators=500,
    random_state=78
)
```

#### **Results:**

```
Overfitting Diagnostics:
Performance Comparison:
Training R<sup>2</sup> Score: 0.9443
Testing R<sup>2</sup> Score: 0.7706
```



SDGIHR2021 - Average of 15 International Health Regulations core capacity scores

MDG\_0000000003 - Adolescent birth rate (per 1000 women)

## **Random Forest Model**

## **ANOVA**

**Log GDP** 

ANOVA Results for Log GDP per capita:

F-statistic: 1246.9248

p-value: 0.0000

Statistically significant

**Freedom to make Life Choices** 

ANOVA Results for Freedom to make life choices:

F-statistic: 307.0536

p-value: 0.0000

Statistically significant

Generosity

ANOVA Results for Generosity:

F-statistic: 44.8425

p-value: 0.0000

Statistically significant

**Life Expectancy at Birth** 

ANOVA Results for Healthy life expectancy at birth:

F-statistic: 1013.0566

p-value: 0.0000

Statistically significant

**Social Support** 

ANOVA Results for Social support:

F-statistic: 874.1956

p-value: 0.0000

Statistically significant

**Perceptions of Corruption** 

ANOVA Results for Perceptions of corruption:

F-statistic: 134.8096

p-value: 0.0000

Statistically significant

**Positive Affect** 

ANOVA Results for Positive affect:

F-statistic: 262.1806

p-value: 0.0000

Statistically significant

**Negative Affect** 

ANOVA Results for Negative affect:

F-statistic: 100.4659

p-value: 0.0000

Statistically significant

## **SQL Queries**

#### **Top 10 happiest countries**

```
%sql
WITH country_averages AS (
    SELECT `Country name`, ROUND(AVG(`Life Ladder`), 2) AS avg_life_ladder
    FROM happiness
    GROUP BY `Country name`
)
SELECT `Country name`, avg_life_ladder
FROM country_averages
ORDER BY avg_life_ladder DESC
LIMIT 10;
```

#### Table v +

|    | △ <sup>B</sup> <sub>C</sub> Country name | 1.2 avg_life_ladder |
|----|------------------------------------------|---------------------|
| 1  | Denmark                                  | 7.66                |
| 2  | Finland                                  | 7.62                |
| 3  | Iceland                                  | 7.47                |
| 4  | Norway                                   | 7.46                |
| 5  | Netherlands                              | 7.44                |
| 6  | Switzerland                              | 7.44                |
| 7  | Sweden                                   | 7.37                |
| 8  | Canada                                   | 7.3                 |
| 9  | New Zealand                              | 7.26                |
| 10 | Australia                                | 7.24                |

#### Top 10 countries with highest GDP

```
%sql
WITH country_averages AS (
    SELECT `Country name`, ROUND(AVG(`Log GDP per capita`), 2) AS avg_GDP
FROM happiness
    GROUP BY `Country name`
)
SELECT `Country name`, avg_GDP
FROM country_averages
ORDER BY avg_GDP DESC
LIMIT 10;
```

#### Table v +

|    | ABC Country name        | 1.2 avg_GDP |
|----|-------------------------|-------------|
| 1  | Luxembourg              | 11.64       |
| 2  | Qatar                   | 11.55       |
| 3  | Singapore               | 11.37       |
| 4  | Ireland                 | 11.17       |
| 5  | Switzerland             | 11.13       |
| 6  | United Arab Emirates    | 11.12       |
| 7  | Norway                  | 11.07       |
| 8  | United States           | 10.98       |
| 9  | Kuwait                  | 10.94       |
| 10 | Hong Kong S.A.R. of Chi | 10.91       |

#### Top 10 countries with highest life expectancy

```
%sql
WITH country_averages A5 (
    SELECT `Country name`, ROUND(AVG(`Healthy life expectancy at birth`), 2) A5 avg_life_expectancy
    FROM happiness
    GROUP BY `Country name`
)
SELECT `Country name`, avg_life_expectancy
FROM country_averages
ORDER BY avg_life_expectancy DESC
LIMIT 10;
```

|    | ABC Country name | 1.2 avg_life_expectancy |
|----|------------------|-------------------------|
| 1  | Japan            | 73.54                   |
| 2  | Singapore        | 72.92                   |
| 3  | Switzerland      | 72.17                   |
| 4  | South Korea      | 72                      |
| 5  | Israel           | 71.9                    |
| 6  | Iceland          | 71.87                   |
| 7  | Cyprus           | 71.75                   |
| 8  | France           | 71.64                   |
| 9  | Sweden           | 71.55                   |
| 10 | Spain            | 71.54                   |

----

