System Engineering Milestone 1: System Requirement Specification

1 Project Scope

The 3 dimensional location information for automated robots is crucial for their tracking and control. For robots above the ground, their location information can be easily acquired from GPS. However for underwater robots, specialized tracking system needs to be developed because traditional GPS signal cannot penetrate water.

This project will focus on designing a ranging system to obtain geographical location of an underwater robot. The project will be based on a prototype from previous developer where 2 beacons are used to measure the 1 dimensional location. The expected outcome of this project will be an improved prototype that is able to measure 3 dimensional location of the underwater robot with 1 master beacon mounted on the robot and 3 smaller beacons fixed in space. More details about the scope of the project are listed below:

• Assumptions and Constrains

There are a few assumptions described by clients and made in the table research. Some constrains are posed by previous developer of the prototype and some are found during the research of the project scope. Both of them are listed in appendix 1

• Context Diagram

To roughly delineate the boundary of our project, identify stakeholders, subsystems and their relationships, a context diagram is drawn in appendix 2.

• Stakeholders List

A stakeholder analysis is conducted to rank all stakeholders of this project in a list which can be found in appendix 3.

2 Needs List

The description and importance of needs from high-importance stakeholders are researched and listed below:

ID	Description	Importance	Stakeholder
N1	Locate underwater robot accurately	Essential	Client
N2	No cross talking between beacons	Highly Desirable	Client
N3	Real time tracking while robot is moving	Bonus	Client
N4	Avoid transmission error via signal encoding and processing	Bonus	Client
N5	Cause no damage to environment	Essential	ANU

Appendix 1 Constraints and Assumptions

Constraints

C1: This project will only focus on online services. Surgery, physiotherapy or any other medical services that requires users to meet health practitioners in person will not be designed.

C2: The designed RHAS will only serve areas where either telephone or internet is available. Otherwise, it is unrealistic to remotely contact users.

Assumptions

A1: The lack of healthcare resources in *rural and remote area listed in MMM standard* leads to inferior average health condition for residents there.

A2: Some of the *rural and remote area listed in MMM standard* do not have access to internet.

A3: Health practitioners working in hospitals and clinics are allowed to work in RHAS.

Appendix 2 Context Diagram

Appendix 3 Stakeholders List

Stakeholder	Power	Influence	immediacy	Vested Interest	Importance
Client	high	high	high	high	9
Australian	high	medium	low	low	7
National Uni-					
versity					
Previous De-	low	high	low	low	6
veloper					
Hardware	low	medium	low	low	5
Manufacturer					