МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра функционального анализа и аналитической экономики

Критерий Манна-Уитни

Курсовая работа

Мартиневского Д. А. студента 2 курса, специальность «Математика и информационные технологии» Научный руководитель: доцент, кандидат физ.-мат. наук Сташулёнок С. П.

Содержание

1.	Статистический критерий	3
2.	Гипотеза однородности и её альтернативы	4
2.	Критерии Уилкоксона и Манна-Уитни	5
<i>3</i> .	Эквивалентность критериев Уилкоксона и Манна-Уитни	6
4.	Пример решения задачи	8
<i>5</i> .	Примеры использования критерия Манна-Уитни	9
Ли	тература	11

1. Статистический критерий

Правило, позволяющее принять или отвергнуть гипотезу H на основе реализации выборки $x_1, ..., x_n$, называется *статистическим критерием*. Обычно критерий задается при помощи *статистики критерия* $T(x_1, ..., x_n)$ такой, что для нее типично принимать умеренные значения в случае, когда гипотеза H верна, и большие (малые) значения, когда H не выполняется.

При проверке гипотез с помощью критериев всегда присутствует возможность ошибочно отвергнуть гипотезу H, когда на самом деле она верна. В общем случае задается малое число α — вероятность, с которой мы можем позволить себе отвергнуть верную гипотезу H (например, $\alpha = 0.05$). Это число называют уровнем значимости. Исходя из предположения, что гипотеза H верна, определяется наименьшее значение $x_{1-\alpha}$, удовлетворяющее условию $P(T(x_1, ..., x_n) \ge x_{1-\alpha}) \le \alpha$. Такое $x_{1-\alpha}$ называют критическим значением: гипотеза H отвергается, если $t_0 = T(x_1, ..., x_n) \ge x_{1-\alpha}$ (произошло маловероятное событие), и принимается — в противном случае.

При этом величина $\alpha_0 = P(T(x_1, ..., x_n) \ge t_0)$ задает фактический уровень значимости. Он равен вероятности того, что статистика T (измеряющая степень отклонения полученной реализации от наиболее типичной) за счет случайности примет значение t_0 или даже больше. Фактический уровень значимости — наименьший уровень, на котором проверяемая гипотеза H принимается.

Пример. Предположим, что кто-то подбросил 10 раз монетку, и в 8 случаях она упала гербом вверх. Можно ли считать эту монетку симметричной?

Используем для описания эксперимента схему Бернулли, т.е. будем считать данные эксперимента реализацией выборки $X=(x_1,...,x_{10})$, где $x_i=1$ (выпадет герб) с вероятностью θ и $x_i=0$ (выпадет решка) с вероятностью $1-\theta$. Проверим гипотезу H: $\theta=\frac{1}{2}$ на уровне значимости $\alpha=0.05$ и вычислим α_0 .

В качестве статистики T можно взять сумму $x_1+\dots+x_n$. Тогда гипотезе $H\colon \theta=\frac{1}{2}$ противоречат значения, которые близки к 0 или n. Известно, что сумма $T=x_1+\dots+x_n$ имеет биномиальное распределение:

$$P(T \ge k) = \sum_{i=k}^{n} C_n^i \theta^i (1 - \theta)^{n-i}$$

Для $\theta=\frac{1}{2}$ правая часть этого выражения при k=8 равна $\frac{45+10+1}{1024}\approx 0.055$ и при k=9 равна $\frac{10+1}{1024}\approx 0.011$. Поэтому для $\alpha=0.05$ наименьшим $x_{1-\alpha}$ удовлетворяющим условию $P(T(x_1,\ldots,x_n)\geq x_{1-\alpha})\leq \alpha$, будет 9. Поскольку полученное в эксперименте значение $t_0=T(x_1,\ldots,x_n)=8<9$, на заданном уровне значимости гипотеза H: $\theta=\frac{1}{2}$ принимается.

С другой стороны, фактический уровень значимости $\alpha_0 = P(T \ge 8) \approx 0.055$, что всего на 0.005 превосходит заданный уровень: уже при $\alpha = 0.06$ гипотезу H следует отклонить.

На основе данных эксперимента нельзя уверенно принять или отвергнуть гипотезу H (хотя последнее представляется более правдоподобным). Следовало бы еще несколько раз подбросить монетку, чтобы прийти к более взвешенному заключению.

Вычисление фактического уровня значимости нередко позволяет избегнуть категоричных (и при этом — ошибочных) выводов, сделанных лишь на основе сравнения t_0 с критическим значением $x_{1-\alpha}$ найденным для формально заданного α .

2. Гипотеза однородности и её альтернативы

Пусть есть два набора наблюдений $x_1, ..., x_n$ и $y_1, ..., y_m$, будем рассматривать их как реализовавшиеся значения случайных величин $X_1, ..., X_n$ и $Y_1, ..., Y_m$ таких, что:

- 1. Случайные величины $X_1, ..., X_n$ независимы и имеют общую функцию распределения F(x).
- 2. Случайные величины $Y_1, ..., Y_m$ независимы и имеют общую функцию распределения G(x).
- 3. Обе функции F и G неизвестны, но принадлежат множеству всех непрерывных функций распределения.

Гипотеза однородности. H_0 : $\forall x : G(x) = F(x)$.

В качестве гипотез, конкурирующих с H_0 , выделим следующие **альтернативы:**

- а) $Heoднopoднocmu\ H_1$: $\exists\ x: G(x) \neq F(x)$;
- б) Доминирования H_2 : $\forall x : G(x) \le F(x)$, $\exists x : G(x) < F(x)$;

- в) Правого сдвига H_3 : $\forall x : G(x) = F(x \theta)$, где параметр $\theta > 0$ (эта альтернатива частный случай предыдущей);
- г) *Масштаба H*₄: $\forall x : G(x) = F(\frac{x}{\theta})$, где параметр $\theta > 0$, $\theta \neq 1$;

Причины, по которым следует рассматривать конкурирующие гипотезы, отличные от H_1 , таковы:

- 1. С практической точки зрения бывает важно уловить отклонения от H_0 только определенного вида (например, наличие систематического прироста у y_i по сравнению с x_i);
- 2. За счет сужения (по сравнению с H_1) множества пар распределений (F,G), составляющих альтернативное подмножество, обычно удается построить более эффективные (чувствительные) критерии, настроенные на обнаружение отклонений от H_0 конкретного вида;

2. Критерии Уилкоксона и Манна-Уитни

Данные критерии применяются для проверки гипотезы однородности H_0 против альтернативы доминирования H_2 , в частности, — против альтернативы правого сдвига H_3 .

Пусть заданы две выборки $X = (x_1, ..., x_n)$ и $Y = (y_1, ..., y_m)$, такие что $\forall x \in X, y \in Y: x \neq y$, рассмотрим объединенную выборку $(x_1, ..., x_n, y_1, ..., y_m)$ и построим ее вариационный ряд, где под вариационным рядом понимается неубывающая последовательность из значений выборки.

Для элемента x_i рассмотрим значение R_i , которое будет равно номеру места (рангу) элемента x_i в построенном нами объединенном вариационном ряду.

Пусть $T = R_1 + \dots + R_n$. Т.е. T — сумма номеров мест (рангов), которые занимают в объединенном вариационном ряду элементы выборки X. Критерий, основанный на ранговой статистике T, и есть критерий Уилкоксона.

Пусть $U = \sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij}$, где $f_{ij} = \begin{cases} 1, \text{если } x_i < y_j \\ 0, \text{в противном случае}. \end{cases}$ Т.е. U - общее число тех случаев, когда элементы выборки Y в объединенном вариационном ряду идут после элементов выборки X. Критерий, основанный на ранговой статистике <math>U, и есть критерий Манна-Уитни.

Критерий, основанный на статистике Т, был предложен Ф. Уилкоксоном в 1945 г. для выборок одинакового размера и распространен на случай $n \neq m$ Х. Манном и Д. Уитни в 1947 г.

После того, как мы посчитали значение статистики U, необходимо определить критическое значение критерия для данных n и m. Если полученное значение U меньше либо равно табличного, то принимается альтернативная гипотеза. Если же полученное значение U больше табличного, принимается нулевая гипотеза.

3. Эквивалентность критериев Уилкоксона и Манна-Уитни

Покажем, что критерии Уилкоксона и Манна-Уитни эквивалентны, для этого покажем, что одно можно выразить из другого. Докажем, что верно равенство

$$T+U=nm+\frac{n(n+1)}{2}.$$

Для начала заметим, что $\frac{n(n+1)}{2}=1+2+\cdots+n$. Преобразуем исходное равенство в равенство $(T-\frac{n(n+1)}{2})+U=nm$. Рассмотрим его часть $T-\frac{n(n+1)}{2}=T-(1+2+\cdots+n)=(R_1+\cdots+R_n)-(1+2+\cdots+n)$. Теперь заменим слагаемое $(R_1+\cdots+R_n)$ на $(R_{(1)}+\cdots+R_{(n)})$, где $(R_{(1)},\ldots,R_{(n)})$ - вариационный ряд (R_1,\ldots,R_n) , т.к. сумма не изменилась мы имеем право сделать такую замену.

$$T - \frac{n(n+1)}{2} = (R_{(1)} + \dots + R_{(n)}) - (1+2+\dots + n) = (R_{(1)} - 1) + (R_{(2)} - 2) + \dots + (R_{(n)} - n).$$

Заметим, что каждое его слагаемое равно количеству элементов выборки Y идущих перед i-ым по значению элементом выборки X в объединенном вариационном ряду.

Действительно, если $R_{(1)}$ — номер места минимального элемента выборки X в построенном нами объединенном вариационном ряду, то $R_{(1)}$ — 1 будет равно количеству элементов в объединенном вариационном ряду идущих перед ним, а т.к. мы выбрали минимальный элемент выборки X, то перед ним могут быть только либо только элементы выборки Y, либо ничего.

Если $R_{(2)}$ — номер места второго по значению элемента выборки X в построенном нами объединенном вариационном ряду, то $R_{(2)}$ — 1 будет равно количеству элементов в объединенном вариационном ряду идущих перед ним, т.к. мы выбрали второй по значению элемент выборки X, следовательно перед ним есть ровно один элемент выборки X и чтобы получить количество элементов выборки Y надо отнять единицу, т.е. количество элементов выборки Y будет равно $R_{(2)}$ — 2.

Если $R_{(n)}$ — номер места максимального элемента выборки X в построенном нами объединенном вариационном ряду, то $R_{(n)}$ — 1 будет равно количеству элементов в объединенном вариационном ряду идущих перед ним, т.к. мы выбрали максимальный элемент выборки X, следовательно перед ним есть ровно n-1 элементов выборки X и чтобы получить количество элементов выборки Y надо отнять их количество, т.е. количество элементов выборки Y будет равно $R_{(n)}-1-(n-1)=R_{(n)}-n$.

Тогда выражение $T-\frac{n(n+1)}{2}$ будет равно общему число тех случаев, когда элементы выборки Y в объединенном вариационном ряду идут перед элементом выборки X. Другими словами $T-\frac{n(n+1)}{2}=\sum_{i=1}^n\sum_{j=1}^m f_{ij}^*$, где $f_{ij}^*=\begin{cases} 1, \text{если } x_i>y_j \\ 0, \text{в противном случае} \end{cases} = \begin{cases} 0, \text{если } x_i< y_j \\ 1, \text{в противном случае} \end{cases}$ (т.к. $\forall x\in X, y\in Y: x\neq y$, мы можем упустить знак = в неравенстве $x_i< y_j$).

Тогда,

$$\left(T - \frac{n(n+1)}{2}\right) + U = \sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij}^* + \sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{m} (f_{ij}^* + f_{ij}) = \sum_{i=1}^{n} \sum_{j=1}^{m} 1 = nm.$$

4. Пример решения задачи

Пусть даны две нормально распределенные ($\mu=0,\sigma=1$) выборки X=(-1.75,-0.29,-0.93,-0.45,0.51) и Y=(-0.33,0.09,0.13,-0.24,-0.88). Требуется проверить гипотезу однородности для этих выборок.

Покажем, как найти статистику U двумя способами:

1. Будем использовать формулу

$$U = \sum_{i=1}^n \sum_{j=1}^m f_{ij}$$
, где $f_{ij} = \begin{cases} 1$, если $x_i < y_j \\ 0$, в противном случае

Т.е. будем фиксировать элемент $x \in X$ и считать, сколько элементов $y \in Y$ строго больше него.

Количество элементов из Y строго больших -1.75: 5

Количество элементов из Y строго больших -0.29: 3

Количество элементов из Y строго больших -0.93: 5

Количество элементов из Y строго больших -0.45: 4

Количество элементов из У строго больших 0.51: 0

$$U = 5 + 3 + 5 + 4 + 0 = 17$$

2. Будем использовать формулу

$$T + U = nm + \frac{n(n+1)}{2} \Leftrightarrow U = nm + \frac{n(n+1)}{2} - T$$

Найдем значение T, для этого построим объединенный вариационный ряд выборок X и Y (черным цветом обозначим элементы выборки X, красным — элементы выборки Y) и расставим ранги:

$$\begin{pmatrix} -1.75 & -0.93 & -0.88 & -0.45 & -0.33 & -0.29 & -0.24 & 0.09 & 0.13 & 0.51 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{pmatrix}$$

$$T = 1 + 2 + 4 + 6 + 10 = 23$$

$$U = nm + \frac{n(n+1)}{2} - T = 5 * 5 + \frac{5 * (5+1)}{2} - 23 = 25 + 15 - 23$$

$$= 17$$

Т.к. критическое значение для n=5 и m=5 равно 2 и U=17>2, следовательно принимается нулевая гипотеза, т.е. выборки однородны.

5. Примеры использования критерия Манна-Уитни

Для получения результатов критерия Манна-Уитни будем использовать функцию из библиотеки SciPy для языка программирования Python. Будем работать с выборками из 30-ти элементов. Сгенерируем выборки 10 раз. Уровень значимости примем равным $\alpha=0.05$.

Пример 1. Рассмотрим две нормально распределенные выборки с параметрами ($\mu = 0, \sigma = 1$) и ($\mu = 0, \sigma = 2$).

Номер	Значение	р-значение	Результат
	статистики		
1	343	0.05768	Однородны
2	392	0.19763	Однородны
3	438	0.43249	Однородны
4	416	0.31020	Однородны
5	347	0.06483	Однородны
6	356	0.08343	Однородны
7	336	0.04667	Неоднородны
8	236	0.00079	Неоднородны
9	433	0.40363	Однородны
10	372	0.12594	Однородны

Пример 2. Рассмотрим две выборки, первая будет нормально распределенной выборкой с параметрами ($\mu = 0, \sigma = 1$), вторая будет равномерно распределенной выборкой с параметрами (a = -1, b = 1).

Номер	Значение	р-значение	Результат
	статистики		
1	411	0.28461	Однородны
2	382	0.15915	Однородны
3	362	0.09789	Однородны
4	409	0.27466	Однородны
5	401	0.23667	Однородны
6	312	0.02103	Неоднородны
7	431	0.39222	Однородны
8	405	0.25529	Однородны
9	364	0.10310	Однородны
10	401	0.23667	Однородны

Пример 3. Рассмотрим две равномерно распределенные выборки с параметрами (a=-2,b=2) и (a=-2.5,b=2.5).

Номер	Значение	р-значение	Результат
	статистики		
1	434	0.40937	Однородны
2	371	0.12290	Однородны
3	402	0.24125	Однородны
4	446	0.47936	Однородны
5	279	0.00585	Неоднородны
6	365	0.10578	Однородны
7	441	0.44999	Однородны
8	301	0.01406	Неоднородны
9	448	0.49115	Однородны
10	433	0.40363	Однородны

Литература

- 1. Лагутин М. Б., Наглядная математическая статистика
- 2. Ивченко Г. И, Медведев Ю. И., Математическая статистика
- 3. http://www.saburchill.com/IBbiology/downloads/002.pdf
- 4. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhit neyu.html