Assignment5

12011517 李子南

Q1.

Suppose R is an antisymmetric relation, S is a subset of R

Because R is antisymmetric

Thus
$$(a,b)\in R \wedge (b,a)\in R o (a=b)$$

Therefore
$$(a,b) \in R \land (a
eq b)
ightarrow (b,a)
otin R$$

Because $S\subseteq R$

Therefore $(a,b) \notin R \rightarrow (a,b) \notin S$

Then
$$(a,b) \in S \wedge (a
eq b) o (b,a)
otin S$$

This equals
$$(a,b) \in S \land (b,a) \in S \rightarrow (a=b)$$

Therefore the subset of antisymmetric relation is also antisymmetric

Q2.

 ${\it R}$ is symmetric

$$R^* = \cup_{k=1}^{\infty} R^k$$

If
$$(a,b) \in R^*$$
 , then there exist $(a,v_1) \in R, (v_1,v_2) \in R, \ \dots \ , (v_k,b) \in R$

Because R is symmetric

Therefore there also exist $(b,v_k)\in R,\;\ldots\;,(v_2,v_1)\in R,(v1,a)\in R$

Therefore $(b,a) \in R$

Therefore R^{st} is also symmetric

Q3.

$$R^2 = R \circ R$$

For every
$$(a,b) \in R$$

Because R is reflexive, there exist $(b,b) \in R$

Therefore $(a,b) \in R^2$

Therefore $R\subseteq R^2$

Q4.

Yes

Because R is a symmetric relation on a set A

Then
$$(a,b)\in R o (b,a)\in R$$

Therefore (a,b)
otin R o (b,a)
otin R

Thus
$$(a,b)\in \overline{R} o (b,a)\in \overline{R}$$

Therefore the \overline{R} is symmetric

Q5.

(a) Yes

Because for $n_i>0$, $\prod_{k=0}^i n_i \geq \sum_{k=0}^i n_i$

Therefore $n \preccurlyeq n$, $(n,n) \in R$

Therefore this relation is reflective

(b)No

e.g.

 $75 \preccurlyeq 14$ becasuse $3+5 \leq 2*7$

 $14 \preccurlyeq 75$ because $2+7 \leq 3*5$

(c)No

e.g.

 $26 \preccurlyeq 22$ because $2+13 \leq 2*11$

 $22 \preccurlyeq 14$ because $2+11 \leq 2*7$

But $26 \not \preceq 14$ because 2+13>2*7

Q6.

$$R = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{bmatrix}$$

$$R^2 = egin{bmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}$$

$$R^3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$R^* = R \cup R^2 \cup R^3$$

Q7.

(1) R is reflective because everyone have the same sign of zodiac with himself $(x,x)\in R$

R is symmetric because x and y have the same sign of the zodiac then y and x have the same sign of the zodiac $(x,y)\in R\land (y,x)\in R$

R is transitive because x and y have the same sign of the zodiac and y and z have the same sign of the zodiac then x and z have the same sign of the zodiac $(x,y)\in R \land (y,z)\in R \rightarrow (x,z)\in R$

Therefore this is a equivalence relation

(2)R is reflective because everyone was born in the same year with himself $(x,x) \in R$

R is symmetric because ${\sf x}$ and ${\sf y}$ were born in the same year then ${\sf y}$ and ${\sf x}$ was born in the same year

$$(x,y)\in R\wedge (y,x)\in R$$

R is transitive because x and y were born in the same year and y and z were born in the same year then x and z were born in the same year $(x,y)\in R \land (y,z)\in R \to (x,z)\in R$

Therefore this is a equivalence relation

(3) R is not transitive

e.g. x, y have been in Shanghai, y, z have been in Beijing, but x have not been in Beijing

In this case $(x,y)\in R, (y,z)\in R$ but (x,z)
otin R

Therefore R is not equivalence

Q8.

R is reflective $orall x \in R, x-x=0 \in Q$

R is symmetric $x-y\in Q o (y-x)=-(x-y)\in Q$ because Q is close under negative

R is transitive $x-y\in Q, y-z\in Q$

Thus
$$(x-y)+(y-z)=x-z\in Q$$

Therefore R is transitive

$$[1] = k, k \in Q$$

$$\left[\frac{1}{2}\right] = k, k \in Q$$

$$[\pi] = k + \pi, k \in Q$$

Q9.

(a)No

 \propto is not symmetric e.g. $n=O(n^2)$ but $n^2
eq O(n)$

(b)Yes

 \propto is reflective $f \leq rac{1}{2}f$, f = O(f)

 \propto is antisymmetric

If
$$f=O(g), f
eq g$$
 , there exist $f\leq Cg$

There doesn't exist $g \leq C \ f$

Therefore \propto is antisymmetric

 \propto is transitive

If
$$f \leq C_1 g, g \leq C_2 h$$

Then $f < C_1C_2h$

$$f = O(h)$$

Therefore \propto is transitive

Thus ∞ is partial ordering

(c) Yes

Every function is either $f \propto g$ or $g \propto f$

Therefore \propto is a total ordering

Q10.

≼ is reflective

Because $R\subseteq R$ for every $R\in R(S)$

≼ is antisymmetric

Because if $R_1 \subseteq R_2, R_1
eq R_2$, then $R_2 \not\subseteq R_1$

≼ is transitive

Because if $R_1 \subseteq R_2, R_2 \subseteq R_3$

Then $R_1 \subseteq R_3$

Therefore $(R(S), \preccurlyeq)$ is a poset

Q11.

(a) There exists a nonempty $R \subseteq P(N)$ with no maximal element.

Assume set $R = \{\{1\}, \{1, 2\}, \dots, \{1, 2, \dots k\}\}, n \in N$

 $\{1,2,\ldots,n\}$ is the maximal element in R

Because N is an infinite set

We can always find $\{1,2,\ldots,n\}\subseteq\{1,2,\ldots,n+1\}, n\in N$ in R

Which means we can not find a maximal value in ${\cal R}$

Therefore there exists a nonempty $R \subseteq P(N)$ with no maximal element

(b) There exists a nonempty $R \subseteq P(N)$ with no minimal element.

Assume set $R = \{\{k, \dots, n\}, \{k+1, \dots, n\}, \dots\}, k \in N, n \in N, k < n$

Because $n \in N, N$ is an ifinite set

We can always find $\{x+1,\ldots,n\}\subseteq\{x,\ldots,n\}$

Which means we can not find a minimal value in ${\cal R}$

Therefore there exists a nonempty $R \subseteq P(N)$ with no minimal element

(c) There exists a nonempty $T \subseteq P(N)$ that has neither minimal nor maximal elements.

Set $\{p,\ldots,q\}\in T$ is the minimal element of T , $\{j,\ldots,k\}\in T$ is the maximal element of T and j< p< q< k

Because $p,q,j,k\in N$, N is an infinite set

Therefore we can always find $\{p+1,\ldots,q-1\}\subseteq\{p,\ldots,q\}$, $\{j,\ldots,k\}\subseteq\{j-1,\ldots,k+1\}$ as new minimal and maximal element

Thus, there exists a nonempty $T \subseteq P(N)$ that has neither minimal nor maximal elements.

Q12.

- $\mathsf{(a)} n$
- (b) a,b,c
- (c) Yes n
- (d) No
- (e) l,n
- (f) $\it l$
- (g) There is no lower bound of $\{f,g,h\}$
- (h) None