Aufgabenblatt Aussagenlogik - Mengenlehre 5

- 1. Formuliere als Folgerung (mit \Rightarrow)
 - a) Notwendige Bedingung für die Teilbarkeit durch 4 ist die Teilbarkeit durch 2.
 - b) a>2 und b>5 ist hinreichend dafür, dass ab > 10. ($G = Q^+$)
- 2. Bilde zu den Sätzen von Aufgabe 1
 - a) die Umkehrung (gilt eine der Umkehrungen?)
 - b) die Kontraposition.
- Bestimme die Lösungsmengen folgender Gleichungen (G = Q) und Ungleichungen (G = N), indem Du äquivalente Aussageformen bildest.

a)
$$3x + 7 = 25$$

b)
$$6(x + 3) - 5 = 2x + 17$$

c)
$$\frac{6}{x-3} = \frac{2}{x-5}$$

d)
$$\frac{12}{x+1} = \frac{4}{x-3}$$

e)
$$\frac{2n}{n+4} < \frac{2(n+1)}{(n+1)+4}$$

f)
$$\frac{n}{2n+5} \le 0.4$$

g)
$$0.1 \le \frac{3n}{4n+5} \le 1$$

h)
$$\frac{5}{8} < \frac{5n+1}{8n-6} < 3$$

- 4. a) Schreibe die folgenden Aussagen mit Quantoren.
 - b) Negiere die Aussagen. (ohne im Schlussresultat ¬ zu verwenden)
 - c) Für (2) bis (4): Ist die Aussage oder ihr Negat wahr?
 - (1) Alle Mädchen sind eitel.
 - (2) Es gibt einen Menschen, der 100m unter 10 s laufen kann.
 - (3) Alle Primzahlen sind ungerade.
 - (4) Es gibt eine rationale Zahl x mit $x^2 = 2$.
- 5. a) wie 4b) b) wie 4c)

(1)
$$\forall n \in \mathbb{N}: 2n - 1 > 0$$

(2)
$$\forall x \in \mathbb{Z}: 2x - 1 > 0$$

(3)
$$\forall n \in \mathbb{N}: n^2 - 1 \ge 0$$

(4)
$$\forall x \in \mathbb{Q}: x^2 - 1 \ge 0$$

(5)
$$\forall n \in \mathbb{N}: (n \ge 1 \land n^2 \ge 1)$$

(6)
$$\forall x \in \mathbb{Q}$$
: $(x^2 > 1 \lor x < 1)$

(7)
$$\forall x \in \mathbb{Z}$$
: ($|x| < 2 \lor x^2 \ge 4$) (8) $\forall x \in \mathbb{Q}$: ($(x-3)^2 = x^2-9$)

(8)
$$\forall x \in \mathbb{Q}$$
: $((x-3)^2 = x^2-9)$

(9)
$$\exists n \in \mathbb{N}$$
: (2 - 3n = n -2)

(10)
$$\exists n \in \mathbb{N}$$
: $(n^2 + 4 = 9)$

(11)
$$\exists x \in \mathbb{Q}$$
: (x>2 \land 2x+5 = 9)

(12)
$$\exists n \in \mathbb{N}$$
: $(n^2 = n + 2)$

www.mathematik.ch, B.Berchtold

Aufgabenblatt Aussagenlogik - Mengenlehre 6

- 1. a) Schreibe die folgenden Aussagen in einem deutschen Satz
 - b) Negiere die Aussagen (formal und deutsch)
 - c) Ist die Aussage oder ihr Negat wahr?
 - (1) $\forall n \in \mathbb{N} \exists m \in \mathbb{N}: n+m=5$
 - (2) $\exists m \in \mathbb{N} \ \forall n \in \mathbb{N}$: m < n + 1
 - (3) $\forall n \in \mathbb{N} \exists m \in \mathbb{N}: m < n + 1$
 - (4) $\exists n \in \mathbb{N} \exists m \in \mathbb{N}$: 2n + m = 8
 - (5) $\forall n \in \mathbb{N} \exists x \in \mathbb{Q}: n = x^2$
 - (6) $\exists x \in \mathbb{Q} \ \forall n \in \mathbb{N}$: $n = x^2$
- 2. a) wie 1b) b) wie 1c)
 - (1) $\forall x \in \mathbb{Q}: (x > 5 \rightarrow 2x + 3 > -1)$
 - (2) $\forall x \in \mathbb{Q}$: $(x^2 = -1 \rightarrow x = 2 \lor x = -2)$
 - (3) $\forall x \in \mathbb{Q}$: $(x^2 = 1 \rightarrow x = 1 \lor x = -1)$
 - (4) $\forall x \in \mathbb{Q}$: $(x > 2 \leftrightarrow -x > -2)$
 - (5) $\exists n \in \mathbb{N} \ \forall x \in \mathbb{Q}: (x > n \rightarrow x > n^2)$
- 3. Formuliere die Implikationen von Aufgabe3, Aufgabenblatt 4 als All-Aussagen.