23MAC260 Elliptic Curves: Week 8

Last updated: April 1, 2024

Now we start on the third part of the module — the **analytic** theory of elliptic curves over the complex numbers \mathbb{C} . We will see that a complex elliptic curve can be parametrised by the points of a parallelogram in the complex plane, using a special function called the *Weierstrass* \wp -function.

1 Functions on the complex plane

We start by defining two special classes of complex functions. You may have seen these definitions in the Complex Analysis module, albeit in a slightly different form.

Definition 1.1 (Meromorphic, holomorphic, order). Let z_0 be a point in the complex plane.

(i) A function f is **meromorphic at** z_0 if it has a Laurent series expansion

$$f(z) = a_k(z - z_0)^k + a_{k+1}(z - z_0)^{k+1} + \cdots$$
 $(a_i \in \mathbb{C})$

valid in some punctured disk $0 < |z - z_0| < \varepsilon$ around the point z_0 . In the above series $k \in \mathbb{Z}$ is an integer (possibly negative) and $a_k \neq 0$.

- (ii) A function f is **holomorphic at** z_0 if it is meromorphic at z_0 and $k \ge 0$ in the above series expansion.
- (iii) The integer k is called the **order** of f at z_0 , denoted $\operatorname{ord}_{z_0}(f)$. If k < 0 we say f has a **pole** of order -k at z_0 ; if k > 0 we say f has a **zero** of order k at z_0 .

Note that if f has a pole at z_0 then f is not defined at z_0 !

Examples:

1. The exponential function $\exp:\mathbb{C}\to\mathbb{C}$ is holomorphic at every point of \mathbb{C} . Its power series expansion at $z_0=0$ is:

$$\exp(z) = 1 + z + \frac{1}{2}z^{2} + \frac{1}{6}z^{3} \cdots$$
$$= \sum_{n=1}^{\infty} \frac{1}{n!} z^{n}$$

so in this case $a_n = \frac{1}{n!}$.

2. The function $f(z) = \frac{1}{z^2}\cos(z)$ is meromorphic at $z_0 = 0$: its expansion looks like

$$f(z) = \frac{1}{z^2} \left(1 - \frac{1}{2} z^2 + \frac{1}{4!} z^4 \cdots \right)$$
$$= z^{-2} - \frac{1}{2} + \frac{1}{4!} z^2 \cdots$$

So f has a pole of order 2 at 0.

1.1 Theorems about complex functions

Holomorphic functions have remarkably different properties from their real counterparts (namely, infinitely differentiable real functions). The next theorem is one of the best examples of this:

Theorem 1.2 (Liouville). Let $f : \mathbb{C} \to \mathbb{C}$ be a function which is holomorphic at every point $z_0 \in \mathbb{C}$.

If f is bounded, meaning there is a real number B such that

$$|f(z)| \leq B$$
 for all $z \in \mathbb{C}$,

then f must be a constant function.

Integration of holomorphic and meromorphic functions also has remarkable properties. We record the following definition and result for use next time:

Definition 1.3. Let f be a function which is meromorphic at $z_0 \in \mathbb{C}$. Write

$$f(z) = a_k(z-z_0)^k + a_{k+1}(z-z_0)^{k+1} + \cdots \qquad (a_i \in \mathbb{C}, \ k \in \mathbb{Z})$$

The **residue** of f at z_0 is the coefficient a_{-1} in the above series.

Theorem 1.4 (Residue Theorem). Let f be a meromorphic function. Let γ be a simple closed curve in $\mathbb C$ that does not pass through any pole of f, and let z_1, \ldots, z_n be the poles of f inside γ . Then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_{k}).$$

$$\cdot z_{2}$$

$$\cdot z_{3}$$

This picture illustrates the meaning of the Residue Theorem. If f is a meromorphic function with poles at z_1 , z_2 , z_3 , then the value of the integral $\int_{\gamma} f(z)dz$ does not change if we deform the simple closed curve γ .

2 Lattices and doubly-periodic functions

Now we move on to specific kinds of "periodic" complex functions. To say what this means precisely, we need the following definition:

Definition 2.1. Let ω_1 , ω_2 be two nonzero complex numbers such that $\omega_1/\omega_2 \notin \mathbb{R}$. The lattice spanned by ω_1 and ω_2 is

$$L = \{m\omega_1 + n\omega_2 \mid m, n \in \mathbb{Z}\}.$$

The fundamental parallelogram Π for the lattice L is the subset

$$\Pi = \{x\omega_1 + y\omega_2 \mid x, y \in \mathbb{R}, 0 \le x, y < 1\}.$$

This picture shows a lattice in the complex plane. The lattice is spanned by ω_1 and ω_2 . Black dots show the points of the lattice; the shaded region (not including the dashed edges) is the fundamental parallelogram Π .

Remark: For any point $z \in \mathbb{C}$, there exist unique complex numbers $\omega \in L$ and $z_0 \in \Pi$ such that $z = z_0 + \omega$. In other words, there is a bijection between points of Π and elements of the *quotient group* \mathbb{C}/L .

We are familiar with the idea of periodic functions of a real variable, the most famous examples being the trigonometric functions \sin and \cos . In this context, to say that f is periodic means that adding an integer multiple of some fixed real number p to the argument does not change the value of f:

$$f(x + np) = f(x)$$
 for all $n \in \mathbb{Z}$.

We are going to consider the corresponding notion for functions of a complex variable.

Definition 2.2. Let L be a lattice in the complex plane. A meromorphic function f is **doubly periodic** with respect to L if

$$f(z + \omega) = f(z)$$
 for all z and for all $\omega \in L$

Again, in contrast to the case of periodic real functions, this condition is highly restrictive for holomorphic functions:

Theorem 2.3. Let f be a function which is holomorphic at every point $z_0 \in \mathbb{C}$ and doubly-periodic with respect to a lattice L. Then f is constant.

The proof is an easy consequence of Liouville's Theorem:

Proof. A holomorphic function is continuous, so it is bounded on the compact set

$$\overline{\Pi} = \{x\omega_1 + y\omega_2 \mid x, y \in \mathbb{R}, 0 \le x, y \le 1\}$$

But any $z \in \mathbb{C}$ can be written as $z = z_0 + \omega$ with $z_0 \in \Pi$ and $\omega \in L$. Hence $f(z) = f(z_0)$, and so f is bounded on the whole complex plane \mathbb{C} . Therefore by Liouville's Theorem, f is constant.

We'll use this next week to prove that the "most important" doubly-periodic function, called the *Weierstrass* \wp -function, satisfies a certain differential equation, and this will enable us to use \wp to parametrise elliptic curves.

3 Weierstrass \wp -function

The most important example of a doubly-periodic meromorphic function is the following:

Definition 3.1 (Weierstrass \wp -function). Let L be a lattice in the complex plane. The Weierstrass \wp -function associated to L is defined as

$$\wp_{L}(z) = \frac{1}{z^{2}} + \sum_{\omega \in L, \ \omega \neq 0} \left(\frac{1}{(z - \omega)^{2}} - \frac{1}{\omega^{2}} \right).$$
(*)

This function is defined by an infinite series, so it is not obvious that it converges, but in fact it does for all $z \in \mathbb{C} \setminus L$. Let's sketch the proof of this fact, together with some other important properties of the Weierstrass \wp -function:

Theorem 3.2. Let L be a lattice in the complex plane and let $\wp_L(z)$ be the Weierstrass \wp -function associated to L. Then

- 1. $\wp_L(z)$ is meromorphic, with a pole of order 2 at each point $\omega \in L$ and no other poles;
- 2. $\wp_L(z)$ is an even function of z, meaning $\wp_L(-z) = \wp_L(z)$;
- 3. $\wp_{\rm L}(z)$ is doubly-periodic with respect to L:

$$\wp_L(z+\omega)=\wp_L(z)$$
 for all $\omega\in L$.

Proof.

1. We sketch the proof of this part and refer to Silverman pp.165–166 for more details. Fix $z\neq 0$ and $\omega\neq 0$ such that $|z|<\frac{1}{2}|\omega|$. Then $|z-w|\geq \frac{1}{2}|\omega|$ and $|2\omega-z|<3|\omega|$. So

$$\left| \frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right| = \left| \frac{z(2\omega - z)}{\omega^2 (z - w)^2} \right|$$

$$\leq \frac{3|z||\omega|}{|\omega|^2 \left(\frac{1}{2}|\omega|\right)^2}$$

$$\leq \frac{12|z|}{|\omega|^3}$$

This implies that, up to a finite number of terms, the series defining $\wp_{\rm L}(z)$ is bounded in absolute value by

$$12|z|\sum_{\omega\in L,\,\omega\neq 0}\frac{1}{|\omega|^3}$$

This shows that the series is absolutely convergent for $z \in \mathbb{C} \setminus L$ and converges uniformly on compact subsets of $\mathbb{C} \setminus L$, hence defines a holomorphic function on $\mathbb{C} \setminus L$ by a theorem of complex analysis.

Finally the series expansion shows that $\wp_L(z)$ has a double pole at every point $\omega \in L$.

2. To see that $\wp_{\rm L}(z)$ is even, notice that for any $\omega\in{\rm L}$ we also have $-\omega\in{\rm L}$. Now

$$\frac{1}{(-z-\omega)^2} = \frac{1}{(z+\omega)^2} = \frac{1}{(z-(-\omega))^2}$$

and

$$\frac{1}{(-\omega)^2} = \frac{1}{\omega^2}$$

so that when we take the sum in Definition (*) over all $\omega \in L$ we obtain exactly the same terms in both the sum for $\wp_L(z)$ and $\wp_L(-z)$.

3. To prove $\wp_L(z)$ is doubly-periodic with respect to L, differentiate (*) to get:

$$\wp_{\mathsf{L}}'(z) = -2\sum_{\omega \in \mathsf{L}} \frac{1}{(z-\omega)^3} \quad \text{ for all } z \in \mathbb{C} \setminus \mathsf{L}.$$

But then for a fixed element $\omega_0 \in L$ we get

$$\wp_{L}'(z+\omega_{0}) = -2\sum_{\omega\in L} \frac{1}{(z-(\omega-\omega_{0}))^{3}} = -2\sum_{\omega\in L} \frac{1}{(z-\omega)^{3}} = \wp_{L}'(z) \qquad (**)$$

where the middle equality uses the fact that $\omega\mapsto\omega-\omega_0$ is a bijection $L\to L$. Integrating (**) we get that

$$\wp_L(z+\omega_0)=\wp_L(z)+c$$
 for a constant c .

Now choose ω_0 so that $\frac{1}{2}\omega_0 \notin L$ and plug in $z=-\frac{1}{2}\omega_0$: we get

$$\wp_L\left(\frac{1}{2}\omega_0\right)=\wp_L\left(-\frac{1}{2}\omega_0\right)+c \qquad \text{so} \quad \ c=\wp_L\left(\frac{1}{2}\omega_0\right)-\wp_L\left(-\frac{1}{2}\omega_0\right)=0$$

since from Part (2) we know $\wp_L(z)$ is even.