Math 220 8 - Leoture 12 February 1, 2021

1. Last home

Point #1 All nohons we use are local e.g.

tocal boundedness, local uniform convergence, local

Point #2 Work with families

F family of continuous or holomorphic functions in 2

Definitions

locally uniformly

F morma/ <=> every seguence in F has convergent subsequence

 \mathcal{F} locally $\langle \Longrightarrow \rangle + \times \mathcal{F} \wedge \mathcal{F} \wedge \times \mathcal{F}$

(L B)

Monkel's Theorem & family of holomorphic functions in 21

F normal <=> F locally bounded.

This fails in real analysis,

F = { sin n x } locally bounded in R & mot mor mol.

(We can't even arrange pointwise convergence)

Question c.e. What is the correct statement in real

analysis i.e. continuous functions?

Remark

This requires the motion of equicontinuity.

There will be several rersions.

11 No hone of Equiconhauity strongest

II f equicontinuous on 2

+ ε > 0 3 8 > 0 + 1x-y/ < 8 + f e F: 1f(x) - f(y)/ < ε.

Main Point If I = ff } this says f uniformly continuous.

In general, this says

all fe F are uniformly continuous, "uniformly"

that is, the same S in the definition of uniform continuity

works for all f & F, uniformly

1 Fix m > 0. The family

 $\mathcal{F} = \{ f: (o, i) \rightarrow \mathbb{R}, | f(x) - f(y) | \leq m | (x-y) \} = guiconhousus.$

Suffices to take S = E and note

1x-y/ < S => 1f(x) - f(y)/ < m /x-y/ < E + fe F.

 $|\mathcal{I}| \mathcal{F} = \left\{ f = \sum_{k=0}^{202} a_k x^k, |a_k| \le 1 \right\} = \text{guice nhowous on}$

[-1,1]

$$\left| \frac{f(x) - f(y)}{x - y} \right| = \left| \sum_{k=0}^{2\alpha x'} a_k \left(x^{k-1} + \dots + y^{k-1} \right) \right|$$

< \(\sigma_{\alpha} \) \(\lambda_{\alpha} \rangle \lambda_{\alpha} \rangle \) \(\lambda_{\alpha} \rangle \lambda_{\alpha} \rangle \) \(\lambda_{\alpha} \rangle \lambda_{\alpha} \r

 $\mathcal{F} = \{f_n\}; \quad f_n(x) = n \times n \text{ of equiconhouses in } [0,1].$

TV) See also the Proposition at the end of lecture.

Variations

11) Equiconfinuous

[11] equicon housus at each point (Conway).

 $\forall x \in \mathcal{U}$ $\forall \varepsilon > 0$ \mathcal{F} $\Delta(x, \xi)$ s. ε . $\forall y \in \Delta(x, \xi) \Rightarrow /f(y) - f(x)/\langle \varepsilon$. $\forall f \in \mathcal{F}$

When F = ff 3 this says f is continuous at each point.

[11] locally equiconhnuous

₩ Z A E u, F/A is requirent nuous

IIV requirementous on all compacts (Rudin, Ablfors, us)

VK = 21 compact, F/K equiconhnuous

$$|V| \Rightarrow |W|$$
 Just use $K = \Delta_x$ where Δ_x is

a bounded neighborhood of * in u.

III Question C Charack n'zation of mormolity? Theorem (Argela - Ascoli) F family of continuous functions F normal (=) F is locally equicontinuous & locally bounded. Theorem (Montel) I family of holomorphic functions. F mormal <=> F locally bounded. Question & Why is local equicontinuity needed in real analysis? Why is local equicontinuity NOT moreded in Question E complex analysis?

Answer to E

Proposition + family of holomorphic functions.

F is locally bounded => F is locally equicontinuous.

=> 3 \(\tau \) (a, 2r) such that

F/o (a, 2+) is bounded by M.

Claim Ja (a,r) is equiconhnuous.

Fix Eyo. Let 2, w 6 & (a,r). Take fe F.

$$|f(z) - f(w)| = \frac{1}{2\pi i} \int \frac{f(s)}{s-2} ds - \frac{1}{2\pi i} \int \frac{f(s)}{s-\omega} ds / \frac{1}{2\pi \omega} ds$$

$$|s-a|=2r$$

$$|s-a|=2r$$

$$=\frac{1}{2\pi}\left/\int \frac{\varphi(s)}{(3-x)}\left(\frac{1}{3-x}-\frac{1}{3-w}\right)ds\right/$$

$$= \frac{1}{2\pi} / \int f(s) \cdot \frac{2 - 2}{(3 - 2)(3 - 2)} ds$$

$$= \frac{2M}{r}. \ /2-w/. = K/2-w/ \ \text{for} \ K = \frac{2M}{r}.$$

let
$$S = \frac{\varepsilon}{\kappa}$$
. If $|z-w| < S = |f(z) - f(w)| \le \kappa |z-w| < \varepsilon$.

QED

Conclusion

Proposition + Arzelà - Ascoli => Montel

We only prove Argelà- Ascoli (next hme)

