

FD6287T

Overview

FD6287T is a half-bridge that integrates three independent

Gate drive integrated circuit chip, designed for high voltage and high speed drive

dynamic MOSFET designCan operate up to +250V.

FD6287T built-in VCC/VBS undervoltage (UVLO) protection

Protection function to prevent the power tube from working at too low voltage.

FD6287T has built-in shoot-through prevention and dead time to prevent

Prevents the driven high- and low-side MOSFETs from passing through, effectively protecting

power component.

FD6287T has built-in input signal filtering to prevent input Noise interference.

encapsulation

Three phases250Vgate driver

Features

- Suspension absolute voltage +250V
- Power supply operating voltage range: 7~20V
- Integrated three independent half-bridge drivers
- Output current +1.5A/-1.8A
- 3.3V/5V input logic compatible
- VCC/VBS undervoltage protection (UV)
- Built-in pass-through prevention
- Built-in 200ns dec time
- Built-in is at filter function
- High and low end nnel mat ng
- The high-en tout is in phase with the input, the low-end output is in phase with the input
 - rse phase

pplication

Three-phase motor drive

1.Absolute maximum ratings(Unless otherwise specified, all pins areCOMas a reference point)

parameter		symbol	scope	unit
High side floating absolute voltage		V _{B1,2,3}	- 0.3~275	V
High-side floating offset voltage		V _{S1,2,3}	V _{B1,2,3} -25~V _{B1,2,3} +0.3	V
High side output voltage		V _{HO1,2,3}	V _{51,2,3} -0.3~V _{B1,2,3} +0.3	٧
Low side supply voltage	Low side supply voltage		- 0.3~25	٧
Low side output voltage		VLO1,2,3	- 0.3~Vcc+0.3	V
Logic input voltage (HIN, LIN*)		VIN	- 0.3~Vcc+0.3	V
Offset voltage slew rate range		dVs/dt	≤50	V/ns
Power dissipation@T _A ≤25-C	TSSOP-20	PD	≤1.25	W
Thermal resistance to ambient	TSSOP-20	Rahr	≤100	-C/W
Junction temperature range		Tj	≤150	-C
Storage temperature range		T _{stq}	- 55~150	-C

Note1: In any case, do not exceedPD.

Note2: Voltage exceeding absolute maximum ratings may damage the chip.

2. Recommended working conditions(All voltages are inCOMas a reference point)

parameter	symb	imum value	maximum value	unit
High side floating absolute voltage		V _{S1,2,3} +7	V _{S1,2,3} +20	V
Static high-side floating offset voltage	♦ V _{S1,2,3}	COM-2(Note1)	250	V
Dynamic high-side floating offset voltage	Q ,3	- 50(Note2)	250	V
High side output voltage	V _{HO1,2,3}	V s1,2,3	V _{B1,2,3}	V
Low side supply voltage	Vcc	7	20	V
Low side output voltage	VLO1,2,3	0	V cc	V
Logic input voltage (HIN, L 🗚)	VIN	0	Vcc	V
ambient temperature	TA	- 40	125	-C

Note1:V_{S1,2} or(COM v)arriv 250Vhour,HOnormal work.V_{S1,2,3}for(COM-2V)arrive(COM-V_{BS})hour,HOLogical state is maintained.

Note2:Vs1,2,3for(COM=2V),Width50nsof transient negative voltage,HOnormal work.

Note3: If the chip works above the recommended working conditions for a long time, its reliability may be affected. It is not recommended that the chip be operated above the recommended operating conditions for an extended period of

time.

REV_Preliminary 3 www.fortiortech.com

$\textbf{3. Static electrical parameters} (\textbf{Unless otherwise noted, otherwise} \textbf{T}_{\texttt{A}} = 25 - \texttt{C,V}_{\texttt{CC}} = \texttt{V}_{\texttt{BS1,2,3}} = 15 \texttt{V,V}_{\texttt{S}} = \texttt{COM})$

parameter	symbol	Test Conditions	minimum value	Typical value	maximum value	unit
High level input threshold voltage	VIH		2.7			V
Low level input threshold voltage	VIL				0.8	V
VccUndervoltage protection trip voltage	Vccuv+		5.8	6.4	7.0	V
VccUndervoltage protection reset voltage	V ccuv-		5.4	6.0	6.6	V
VccUndervoltage protection hysteresis voltage	V ccUVH		0.3	0.4		V
V _{BS} Undervoltage protection trip voltage	V _{BSUV+}		5.8	6.4	7.0	V
V _{BS} Undervoltage protection reset voltage	V _{BSUV} -		5.4	6.0	6.6	V
V _{BS} Undervoltage protection hysteresis voltage	V BSUVH		0.3	0.4		V
Floating power supply leakage current	Ilk	V _{B1,2,3} =V _{S1,2,3} =250V		0.1	5.0	μΑ
V _{BS} Quiescent Current	Iqbs	V _{IN} =0Vor5V		20	270	μΑ
V _{BS} dynamic current	I pbs	fнɪn1,2,3=20kHz	-	180	270	μΑ
VccQuiescent Current	Iocc	V _{IN} =0Vor5V		330	bo	uA
Vccdynamic current	Ipcc	fLIN1,2,3=20kHz		30	500	uA
LIN*High-level input bias current	Ilin+	V _{LIN} =0V		20	40	μΑ
LIN*Low level input bias current	Ilin-	V _{LIN} =5V			2	μΑ
HINHigh-level input bias current	I _{HIN+}	V _{HIN} =5V		20	40	μΑ
HINLow level input bias current	Ihin-	V _{HIN} =0V			2	μΑ
Input pull-down resistor	Rin		200	260	320	ΚΩ
High level output voltage	Vон	Io=10		0.6	0.9	V
Low level output voltage	Vol	Io 00mA		0.3	0.45	V
High level output short circuit pulse current	ЭН	Vo=0. V _{IN} =5V,PWD≤10μs	1.1	1.5	1.9	Α
Low level output short circuit pulse current	Iol	Vα 15V,V _{IN} =0V,PWD≤10µs	1.3	1.8	2.3	Α
Vsstatic negative pressure				- 6.0		V

4. Dynamic elemental parameters (Unless otherwise noted, otherwiseTa=25-C,Vcc=VBs1,2,3=15V,Vs=COM)

pār ter	symbol	Test Conditions	minimum value	Typical value	maximum value	unit
Output rising edge transfer	ton			300	450	ns
Output falling edge transfer time	t off			100	160	ns
Output rise time	t r	CL=1000pF		12		ns
Output fall time	tf	CL=1000pF		12		ns
High and low side delay matching	MT				50	ns
dead time	DT		100	200	300	ns

REV_Preliminary 4 www.fortiortech.com

5. Circuit diagram

6. Chip pin configuration

Table 6-1 Mn description

Pin number	Pin name	Pin description
1,2,3	HIN1,HIN2,HIN2	high side input
4,5,6	LIN1*,LIN2*,LI 3*	low side input
7	VC	Low side supply voltage
8	N	ground
9,10,11	LO ,LO2,L \1	low side output
12,15,18	3,VS2,VS1	High-side floating offset voltage
13,16,19	H 3,HO2,HO1	high side output
14,17,20	VB3,VB2,VB1	High side floating absolute voltage

REV_Preliminary 6 www.fortiortech.com

7. Switching time test standards

9. Pass-through prevention function

The chip's internal design is specifically designed to prevent power tube cut-through protection circuitry, which can effectively prevent high-side and low-side input signals from being interfered with.

Direct damage to the power tube caused by interference. The figure below shows how the shoot-through prevention circuit protects the power tube.

10. Dead zone function

A fixed dead time protection circuit is set up inside the chip. Thring the word time, both the high-side and low-side outputs are set low.

The set dead time must ensure that after one power tube is turned off worther power upe is turned on to effectively prevent the occurrence of upper and lower power tubes.

pass-through phenomenon. If the external dead they set by the logic input is greater than the dead time set internally in the chip, the

The external dead time is the chip output dead time; in the external dead time set by the logic input is less than the dead time set internally in the chip

time, the dead time output by the chip is the dead time set internally in the chip. The following figure depicts the dead time, input signal and driver

Timing relationship of output signals.

REV_Preliminary 8 www.fortiortech.com

11. Typical application circuit

C1: Power supply filter capacitor, $10\mu\text{F}\sim100\mu\text{F}$ can be selected according to the circum additions a close as possible to the chip pin.

R: Gate drive resistor, the resistance value depends on the driven device and the control of the

Dbs: Bootstrap diode, Schottky diode with high reverse breakdown y and short revery time should be selected.

Cbs: Bootstrap capacitor, ceramic capacitor or tantalum cap tor should selected, Tab 50µF can be selected, as close as possible to the chip pin.

Note: The above circuits and parameters are for reference only. The parameter of the actual valuation circuits eset based on the actual measurement results.

12. Package size (TSSOP-20)

Product number	Package form	Marking	Packing	quantity
FD6287T	TSSOP20	FD6287T	Tape&Reel	3000

Copyright Notice

Copyright by Fortior Technology (Shenzhen) Co., Ltd. All Rights Reserved.

Right to make changes —Fortior Technology (Shenzhen) Co., Ltd reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Fortior Technology (Shenzhen) Co., Ltd. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

This manual is copyrighted by Fortior Technology (Shenzhen) Co., Ltd. You may not reproduce, transmit, transscribe, store in a retrieval system, or translate into any language, in any form or by any it cans, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication with ut the expressly written permission from Fortior Technology (Shenzhen) Co., Ltd.

Fortior Technology(Shenzhen) Co.,Ltd.

Room203,2/F, Building No.11,Keji Central Road2,
SoftwarePark, High-Tech Industrial Park, Shenzhen, PR Ch. a 518 57

Tel: 0755-26867710 Fax: 0755-26867715

URL:http://www.fortiortech.com

Contained herein

Copyright by Fortior Technology (Stenzhen) Co.,Ltd all rights reserved.

REV_Preliminary 11 www.fortiortech.com