TUTORING AND SPILLOVER EFFECTS:

Measuring Spillover Effects of High Impact Tutoring onto Peers of Low Performing Students

HIGH IMPACT TUTORING: AN OVERVIEW

Definition:

- One-to-One or Small Group Sessions
- ≥ 3 Days a Week
- ≥50 Cumulative Hours

Policy

- Cost Effective: Effect-size/\$1,000 (Harris, 2009)
 - Tutoring: 0.9SD
 - Computer Assisted Instruction: 0.6SD
 - Increased instructional time: 0.4SD
 - Early Childhood: 0.17SD
 - School Reform: 0.116SD
 - Reduced Class Size: 0.08SD
- Comparatively better at targeting low SES and performing students (Dietrichson et al. 2017)
- Scalable (Oreopolous et al. 2020)
- Make a policy related thing to understand

Research

- Unknown: Spill-over onto peers
- Implications for previous research and experimental designs:
 - Bias?
 - Peer Effects?
 - True Impact of Tutoring?

RESEARCH QUESTION

What effect does tutoring low performing students have on peers of the tutored students?

Importance

- Policy: Better understand effectiveness of program
 - Federal: Americorps, Department of Education
 - State/local
 - NGO
- Research/Theory:
 - Tutoring literature: Fills gap that previous experiments were unable to.
 - Previous Designs unsuited for spillovers.
 - Peer literature: Studies how intervention effects existing peer groups
 - Instead of optimizing peer groups for most effective results.

Theory & Mechanisms:

<u>Peer Effects</u>: "An externality in which peers' background, current behavior, or outcomes affect an outcome of another individual"

- $Y_{ict} = f(X_{ict}, \alpha_c, P_{ict})$
 - *Y*_{ict}: Academic or Behavioral Outcomes of Student *i* in classroom *c* in time *t*
 - *X_{ict}*: Characteristics of student *i*
 - α_c : Classroom characteristics
 - P_{ict} : The peers of student i
- How could P_{ict} affect Y_{ict} ?
 - Bad Apple/Shining Light: Provide poor/great academic or behavioral habits for student *i* to follows
 - Does P_{ict} relationship differentially impact Y_{ict} ?
 - What if P_{ict} receives tutoring, what happens to Y_{ict} ?

Input Mechanism Outcome

Peer *j* Receives
Tutoring

- Peer Collaboration/Teaching
- Adoption of new behavioral habits
- More Attention from Teacher

- Customized Learning
- -Alternative Pedagogies
- More time on Task
- -Specialized Attention

LITERATURE REVIEW

Tutoring

- Oreopoulos Et al. 2020
 - Pooled effect 0.37SD
 - Paraprofessional Tutors: 0.4SD
 - Grades 1 5: 0.41SD
 - 1-to-1 sessions: 0.46SD
 - 1-to-3 sessions: 0.38SD
 - During School: 0.48SD
 - After School: 0.2SD (Weakly Signif.)
- Large scale experiments
 - 15 studies to date with samples 400+
 - Gersten et al. (2015):
 - 4 State, 76 school math intervention: 0.34SD
 - Parker et al. (2019):
 - Cross grade 4-8 math intervention: 0.24SD

Peer Effects in Education

- Generally, better peers \rightarrow higher achievement for student i
- Note, read outcome as: For every 1.0SD \uparrow in peer math achievement, student *i* has a *** \uparrow in math achievement
 - Exploited microdata & fixed effects, noisy but significant increases (Hanushek 2003, Beets 2004, Sass 2008): 0.03SD − 1.19SD ↑
 - Quasi-Experimental Designs:
 - Randomized Classroom Assignment (Kang 2007, Wang 2010): <u>0.27SD − 0.5SD</u>
 - Randomized Peer Formation, College Roommates (Sacerdote 2001, Foster 2006, Zimmerman 2003): Null – 0.06GPA
 - Experimental Design:
 - <u>Financial incentive for female students</u> → 0.16SD ↑ for male classmates (Kremer et al)
 - Randomized low achieving students into high achieving peer groups → 0.06SD↓
 for low achieving students, segregation between ability in peer groups. (Carrell
 et al 2013).
- Lower performing students could receive strongest peer effects
 - Kang 2007: Bottom 25th percentile received 0.47 SD ↑ (74% higher than pooled estimate)
 - Other studies find likewise in vary size (Sass 2008, Imberman et al 2008).
- Peer formation helps determine achievement
 - Students seek relationships with academically similar individuals → these relationships can influence behavioral and academic choices in schools (Gremmen et al 2017, Shin 2018).

INTERVENTION

- Partner with National Student Support Accelerator to provide high intensity math tutoring to underperforming students in grades 3-5 in order to study spillovers onto peers/friends of non-tutored students.
 - Research Center at Brown University, devoted to "translating promising research about how tutoring can benefit students into action on the ground."
 - National Student Support Accelerator already has relationships with school districts and tutoring organizations in over 8 States:
 - California: San Jose Unified School District, Santa Barbara Unified School District
 - Georgia : Gwinnett County Public Schools
 - North Carolina : Guilford County Public Schools
 - Texas: Spring Independent School District, Pharr-San Juan-Alamo Independent School District
- Why Math?
 - Previous literature provides largest, less noisy outcomes than English/literature interventions
 - Most school districts above already have English/Literature tutoring interventions → Lower two-sided compliance problems
- Why Grades 3-5?
 - Elementary schools have highest treatment effect from tutoring
 - Administrative test score data is available starting in grade 2 for these states, allows for baseline measures

BILL& MELINDA GATES foundation

WALION FAMILY FOUNDATION

DESIGN: OUTCOME & MEASUREMENTS

- Data:
 - Administrative data from participating school districts
 - Previous year's math score
 - Demographic information of students
 - Current year's classroom assignment
 - Behavioral/academic punishments (if any)
 - Survey-Data
 - Friendship sheets:
 - Information that elicits 3 "best" friends in class
 - Why?
 - Allows us to study if spillover's effect size is related to relation of tutored student
- Study Sample: "Eligible Students"
 - Lowest 25% of students based on math score in previous year in current class.
 - Students that were present in district previous year
 - Students in "regular" classes.
 - Why?
 - Meaningful policy-wise
 - Cost effective use with available data
- Treatment: 20 week, 3-to-1, 50-minute, 3 days a week, tutoring sessions in math.
 - Taught by: Paraprofessionals already contracted with school districts, as part of National Student Support Accelerator.
 - Why?
 - Emulating other large scale RCTS that had 0.31 0.34 SD treatment effects

- Design: Saturated Treatment
 - Treatment 1: treat 50% of eligible students
 - Treatment 2: treat all but one eligible student
 - Control: business as usual
 - Why?
 - Allows for meaningful spillover effects
 - Efficiency: Treat 50% of 2 classes or 100% of 1 class?

- Main outcome: Value Added Math Score on...
 - Spillover of tutoring onto nontutored eligible students.
 - Spillover of tutoring on eligible or noneligible students on friendship sheets.
- Secondary outcome:
 - Behavioral violations (if data is available) of nontutored eligible students or peers on friendship sheets of tutored students
 - Value added scores disaggregated...
 - by grade level
 - by sex
 - By sex of tutored/nontutored friend (MtM, FtF, FtM, MtF)

DESIGN: RANDOMIZATION

T1: 50% of eligible students are offered tutoring

T2: All but one eligible student is offered tutoring

C: Business as usual

- 1. Offer high intensity math tutoring program to all eligible elementary schools in sample during year before intervention. Notify that conditional on acceptance, only a portion will randomly receive a yearlong tutoring intervention.
- Of those that accept, identify average math achievement of grades 3-5, stratify on school district and math achievement to make triplets.
- 3. Randomly assign schools in stratification to either T1, T2, or Control
- During week 1 identify lowest 25% of students based on previous year math achievement on state exam in every classroom. These are the eligible students.
- 5. Within T1 & T2, randomly assign one classroom in grades 3, 4, and 5 to receive tutoring.
- 6. At week 5, offer tutoring program to parents of eligible students in T1, T2 classrooms. Parents that accept have their children randomized into treatment.

DESIGN: RANDOMIZATION

"Who do you work and talk with the most in class?"*

*Not final language on friendship sheet

Tutored Comparison

- 7. At **end of week 6**, distribute friendship sheets for students to fill out.
- 8. At week 7, begin tutoring sessions with T1, T2 eligible students. Sessions are held during non-core classes (PE, Art, etc...). Sessions are done 3-to-1.
- 9. Sessions **continue for 20 active weeks of school**. Students take their state's standardized test and school year ends.

• Additional:

- Comparisons will be:
 - Between lowest 25% of students in T1, T2, and C classrooms.
 - Friends on friend sheets of T1, T2, and C tutored students
- T1, T2 schools provide one classroom per grade as to minimize interference (if we treat 2 3rd grade classrooms, there could be additional unrecorded spillovers).
- All 3rd, 4th, 5th grade classrooms in C school can be used as controls (no fear of interference).

POWER CALCULATIONS

- What is an appropriate effect size?
 - Previous literature: 1.00SD \uparrow in peers' achievement $\rightarrow \sim 0.3$ SD \uparrow for student i
 - Large scale tutoring: 0.3SD ↑ for tutored's achievement → ~0.09SD ↑ for nontutored achievement
 - Possible T1, T2, C classrooms
 - 240 students grades 3,4,5 in each school (Texas school data)
 - 25 students in each classroom (National avg classroom size)
 - $\frac{240}{25} = \sim 9$ classrooms in grades 3,4,5 per school
 - T1 Schools: 3 classrooms in study
 - T2 Schools: 3 classrooms in study
 - C Schools: 9 classrooms in study
 - Possible tutored students
 - 25 students in each classroom; 25% = 6 eligible students
 - T1: 50% of eligible students = 3 tutored students
 - T2: All but one eligible student = 5 tutored students
 - C: Business as usual

Fixed Parameters

- N = 6 eligible students
- ICC = .11 (Hedges, 2007)*
- $R^2 = .5$ (Hedges, 2007)*
- Control = 50% of schools
- T1 = 30% of schools
- T2 = 20% of schools
 - *ICC, R² taken from Education based RCT metaanalysis

Slope-SNT: 0.21SD

Schools	75% Comphance	50% Compliance
350	SNT: 0.089SD; Slope-SNT: 0.19SD	SNT: 0.12SD; Slope-SNT: 0.23SD
400	SNT: 0.08SD; Slope-SNT: 0.18SD	SNT: 0.1SD; Slope-SNT: 0.22SD
450	SNT: 0.07SD;	SNT: 0.96SD,

Slope-SNT: 0.17SD

Power Calculation & MDES
 Need at least 260 schools
 to comply for MDES of
 0.09SD

COSTS OF EXPERIMENT

- Costs mainly to fund at-cost tutoring for 20 weeks:
 - Tutors:
 - 20\$ per hour
 - 60\$ per student operational fee (supplies, etc.)
 - 2.5 hours per week
 - 20 weeks
 - 3 to 1 sessions
 - 20\$ * 2.5 hours * 20 weeks + 60\$* 3 students = **1180\$ per 3 students**
 - T1:
 - ~9 Students need tutoring (3 per grade)
 - 1180\$ * 3 groups * 78 Schools = \$276,120
 - T2:
 - ~15 Students need tutoring (5 per grade)
 - 1180\$* ~ 5 groups * 52 Schools * 2 tutors = \$613,600
- Research based costs:
 - Research manager, two-year salary: \$145,000
 - Research assistants, two-year salary: \$100,000
 - Total Costs:
 - \$276,120 + \$613,600 + \$145,000 + \$100,000 = \$1,134,720

MODEL AND ISSUES

Main Model: $Y_{ic} = \pi_0 + \pi_1 Z_{ic} I_{ic} + \pi_2 I_{ic} + \pi_3 Y_{ic,-1} + X_i + B_{ic} + G_c + S_{ic} + e_{ic}$

- Y_{ic} = End-line Math Score of Student I in class C
- Z_{ic} = Indicator if tutored student in treatment classroom(TE)
- I_{ic} = Indicator if in eligible student in treatment classroom(SNT)
- $Y_{ic,-1}$ = baseline math score
- X_i = baseline covariate information
- B_{ic} = blocking fixed effect
- S_{ic} = School fixed effect
- G_c = grade fixed effect

Issues

- Compliance:
 - Schools that don't win tutoring might be less responsive in carrying out surveys.
 - Schools might already have tutoring programs in math, outside tutoring.
- Interference:
 - Cross-grade spillover within T1, T2 schools?
- Attrition:
 - Differential attrition from study? Control students leave district in response to no tutoring, treated students leave study due to displeasure of tutoring.
 - Small sample sizes, attrition can harm measurements
- Further Considerations:
 - Crafting friendship sheet that adequately answer question across grade levels
 - Differential impact of tutoring by school district/tutoring organization

MORE

- Saturation Slope Model: $Y_{ic} = \pi_0 + \pi_1(50\%)Z_{ic} + \pi_2(100\% 1)Z_{ic} + \pi_3(50\%)I_{ic} + (100\% 1)I_{ic} + \pi_3Y_{ic-1} + X_i + B_{ic} + G_{ic} + S_{ic} + e_{ic}$
 - Same as before but have a 100% and 50% saturation variables
- Friendship Sheet Model: $Y_{ic} = \pi_0 + \pi_1 Z_{ic} + \pi_2 I_{ic} * Fr_{ic} + \pi_3 Fr_{ic} + \pi_4 Fr_{ic} + \pi_5 Y_{ic-1} + X_i + B_{ic} + G_{ic} + S_{ic} + e_{ic}$
 - Same as before but Fr_{ic} is indicator if you are on the friend sheet. Therefore, the interaction is the heterogenous effect of being on the friend sheet and also being an eligible student
 - Fr_{ic} alone is being an ineligible friend