2007-PH

EE24BTECH11027 - satwikagv

- 35) An electromagnetic wave with $\bar{E}(z,t) = E_0 \cos(\omega t kz)\hat{i}$ is traveling in free space and crosses a disc of radius 2 m placed perpendicular to the z-axis. If $E_0 = 60Vm^{-1}$, the average power, in Watt, crossing the disc along the z-direction is
 - a) 30

b) 60

- c) 120
- d) 270
- 36) Can the following scalar and vector potentials describe an electromagnetic field? $\phi(\bar{x},t) = 3xyz - 4t$

$$\bar{A}(\bar{x},t) = (2x - \omega t)\hat{i} + (y - 2z)\hat{j} + (z - 2xe^{i\omega t})\hat{k}$$

where ω is a constant.

- a) Yes, in the Coulomb gauge.
- c) Yes, provided $\omega = 0$.
- b) Yes, in the Lorentz gauge.
- d) No.
- 37) For a particle of mass m in a one-dimensional harmonic oscillator potential of the form $V(x) = \frac{1}{2}m\omega^2 x^2$, the first excited energy eigenstate is $\psi(x) = xe^{-ax^2}$. The value of a is

 - a) $m\omega/4\hbar$ b) $m\omega/3\hbar$
- c) $m\omega/2\hbar$
- d) $2m\omega/3\hbar$

- 38) If $[x, p] = i\hbar$, the value of $[x^3, p]$ is

- a) $2i\hbar x^2$ b) $-2i\hbar x^2$ c) $3i\hbar x^2$ d) $-3i\hbar x^2$
- 39) There are only three bound states for a particle mass m in a one-dimensional potential well of the form shown in the figure. The depth V_0 of the potential satisfies

a)
$$\frac{2\pi^2h^2}{ma^2} < V_0 < \frac{9\pi^2h^2}{ma^2}$$

b) $\frac{\pi^2h^2}{n^2} < V_0 < \frac{2\pi^2h^2}{n^2}$

b)
$$\frac{\pi^2 h^2}{ma^2} < V_0 < \frac{2\pi^2 h^2}{ma^2}$$

c)
$$\frac{2\pi^2h^2}{ma^2} < V_0 < \frac{8\pi^2h^2}{ma^2}$$

c)
$$\frac{2\pi^2h^2}{ma^2} < V_0 < \frac{8\pi^2h^2}{ma^2}$$

d) $\frac{2\pi^2h^2}{ma^2} < V_0 < \frac{50\pi^2h^2}{ma^2}$

40) An atomic state of hydrogen is represented by the following wavefunction:

$$\psi(r,\theta,\phi) = \frac{1}{\sqrt{2}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \left(1 - \frac{r}{2a_0}\right) e^{-r/2a_0} \cos \theta.$$
 where a_0 is a constant. The quantum numbers of the state are

a)
$$l=0, m=0, n=1$$
 b) $l=1, m=1, n=2$ c) $l=1, m=0, n=2$ d) $l=2, m=0, n=3$

41) Three operators X, Y and Z satisfy the commutation relations $[X, Y] = i\hbar Z, [Y, Z] = i\hbar X, [Z, X] = i\hbar Y$. The set of all possible eigenvalues of the operator Z , in units of \hbar , is

a) $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ c) $\{0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2, \pm \frac{5}{2}, \ldots\}$ d) $\{-\frac{1}{2}, \frac{1}{2}\}$

42) A heat pump working on the Carnot cycle maintains the inside temperature of a house at 22° C by supplying $450kJs^{-1}$. If the outside temperature is 0° C, the heat taken, in kJs^{-1} , from the outside air is approximately

a) 487 b) 470 c) 467 d) 417

43) The vapour pressure p (in mm of Hg) of a solid, at temperature T , is expressed by $\ln p = 23 - 3863/T$ and that of its liquid phase by $\ln p = 19 - 3063/T$. The triple point(in Kelvin) of the material is

a) 185 b) 190 c) 195 d) 200

44) The free energy of a photon gas is given by $F = -\left(\frac{a}{3}\right)VT^4$, where a is a constant. The entropy S and the pressure P of the photon gas and the pressure P of the photon gas and P is P and P

45) A system has energy levels $E_0, 2E_0, 3E_0, \ldots$, where the excited states are triply degenerate. Four non interacting bosons is $5E_0$, the number of microstates is

46) In accordance with the selection rules for electric dipole transitions, the $4^{3}P_{1}$ state of helium can decay by photo emission to the states

a)
$$2^{1}S_{0}$$
, $2^{1}P_{1}$ and $3^{1}D_{2}$
b) $3^{1}S_{0}$, $3^{1}P_{1}$ and $3^{1}D_{2}$
c) $3^{3}P_{2}$, $3^{3}P_{0}$ and $3^{3}D_{3}$
d) $2^{3}S_{1}$, $3^{3}D_{2}$ and $3^{3}D_{1}$

47) If an atom is in the 3D_3 state, the angle between the its orbital and spin angular momentum vectors $(\bar{L} \text{ and } \bar{S})$ is

48) The hyperfine struct	ture of $Na\left(3^{2}P_{\frac{3}{2}}\right)$ wi	th nuclear spin $I = \frac{3}{2}$	hae
48) The hyperfine structure of $Na(3^2P_{\frac{3}{2}})$ with nuclear spin $I = \frac{3}{2}$ has			
a) 1 state	b) 2 states	c) 3 states	d) 4 states
 49) The allowed rational energy levels of a rigid hetero-nuclear diatomic molecule are expressed as ε_j = BJ (J + 1), where B is the rotational constant and J is a rotational quantum number. In a system of such diatomic molecules of reduced mass μ, some of the atoms of one element are replaced by a heavier isotope, such that the reduced mass is changed to 1.05μ. In the rotational spectrum of the system, the shift in the spectral line, corresponding to a transition J = 4 → J = 5, is 			
a) 0.475 B	b) 0.50 B	c) 0.95 B	d) 1.0 <i>B</i>
b) four: 1 are Rama	lamental vibrational r n active and 2 are inf n active and 3 are inf an active and 2 are in	rared active.	lle is

51) A piece of paraffin is placed in a uniform magnetic field H_0 . The sample contains hydrogen nuclei of mass m_p , which interact only with external magnetic field. An additional oscillating magnetic field is applied to observe resonance absorption. If g_l is the g-factor of the hydrogen nucleus, the frequency, at which resonance absorption

c) $\frac{g_l e H_0}{2\pi m_p}$

d) three: 2 are Raman active and 1 are infrared active.

b) $\frac{3g_l e H_0}{4\pi m_p}$

takes place, is given by