Electrical and Electronics Circuits (4190.206A 002)

- HW Problem 1-6: the resistance values were missing, and now it is updated as 4R, 2R, R. Please check the updated file.
- HW #1 is due on Oct. 7, 2019 3:15pm
- Make-up class
 - 9/30 (Mon) 7pm-8:15pm (the class attendance won't be checked, and video recording of the class will become available at ETL)
 - There will be still a regular class between 2:00pm~3:15pm on 9/30 (Mon)
- 1st mid-term exam: 10/21(Mon) or 10/23(Wed)
- 2nd mid-term exam: 11/13(Wed) or 11/18(Mon)
- Final exam: 12/11 (Wed) 2:00pm~3:15pm
- There will be a class on 10/9 (Wed) Hangul Day, but the class attendance won't be checked, and video recording of the class will become available at ETL.
- Grades: 3 exams 30, 30, 30% homework + attendance: 10% (If you cannot attend the class for official reason, please let me or TA know in advance.)
- Self-attendance check

Review

- Digital abstraction
 - Why go from analog to digital?
 - Definition of forbidden region, $V_{OH}, V_{OL}, V_{IH}, V_{IL}$
 - 🛚 Static discipline 💹 🔊
- Binary logic
 Binary number representation
 - AND, OR, NOT, NAND, NOR gates
 - Desired truth table → sum-of-products, then use simplification relations ~ ↓ Smy ok →
 - Implementation of logic gates using combination of digital switches and voltage drop across resistors → NOT, NAND, NOR and many other combinations

MOSFET

- Metal-Oxide Semiconductor Field-Effect Transistor
- S model ("Switch" model): V_{GS} vs. V_T

ple synd will accepted as on 1.

Sender Noise margins VIH receiver VIL O

Vary =0.

then desired output liso

a ideal assumption | Fixed

a. Ideal assumptions),
there won't any current
across the rath Vent

C. 1: deliver analy signal do other

Analog-Digital Conversion

Implementation of ADC

- Motivation for digital abstraction
 - Analog signals are too noisy
 - → Convert the analog signals to digital values and transmit the digital values
 - → Process (or calculate) digital values
 - → Then what? E.g. change of the room temperature, music playing, change of the LED brightness, video playing, self-driving car, communication, printer, ... almost everything connected to the digital device works in the analog world

- problem: noise. - need ways to interfree

- Digital device requires a way to interface with the analog world Analog-to-digital converter (ADC) Digital-to-analog converter (DAC)
- In one of your HW problems, you will see how to implement DAC using a simple resistor network.
 - Successive approximation register (SAR) ADC
 - Implemented with the help of digital controller

 (nulensing less half)

 (nulensing less half)

MOSFET Device Structure

- Metal-Oxide Semiconductor Field-Effect Transistor
- PN junction

Gate Gate oxide

Intel's 0.13-μm generation logic transistor.

Switch Resistor (SR) Model of MOSFET

- When MOSFET switch is turned on, there is resistance
- For example, $R_{ON} = 1k\Omega$

What Determines Resistor Value in Inverter?

- When v_{IN} =High, $v_{OUT} = V_S \frac{\kappa_{ON}}{R_{ON} + R_{IN}}$
- If $V_S=5V$, $V_T=1V$, $R_{ON}=1k\Omega$, $R_L=14k\Omega$, $v_{OUT}=0.33V$

Pull-up and Pull-down Resistors

Why Nonlinear Circuits?

- Diode
 - $i_D = I_S(e^{v_D/V_{TH}} 1)$ where I_S is typically $10^{-12}A$ and V_{TH} is typically 0.025V

MOSFET with gate and drain tied together

$$i_{DS} = \begin{cases} \frac{K(\nu_{DS} - V_T)^2}{2} & \text{for } \nu_{DS} \ge V_T \\ 0 & \text{for } \nu_{DS} < V_T \end{cases}$$

For the next several lectures...

- Goal: show how to implement amplifier using MOSFET
- Chap. 4 Analysis of Nonlinear Circuits
 - Analytical Solutions (4.2)
 - Graphical Analysis (4.3)
 - Piecewise Linear Analysis (4.4)
 - Incremental Analysis (4.5)
- Chap. 7 The MOSFET Amplifier
 - Large-Signal Analysis of the MOSFET Amplifier (7.6)
 - Operating Point Selection (7.7)
- Chap. 8 The Small-Signal Model

Hypothetical Nonlinear Element

Analytical Method

Apply KCL at node A (the node method),

$$\frac{v_D - V}{R} + i_D = 0 \tag{1}$$

$$i_D = ae^{bv_D}$$
 2

2 unknowns 2 equations

Solve the equation by

- trial and error
- numerical methods

Graphical Method

The solution should satisfy both equations

Graphical Method

Combine the two constraints

Incremental Analysis

• Assume our hypothetical LED is having $i_D = ae^{b \cdot v_D}$

Incremental Analysis

What we need is linear amplifier

Linear amplifier from nonlinear element

How can we implement linear amplifier from nonlinear components?

Result

Result

Why is the small signal response linear?

Can we guarantee that the response with respect to the small signal input always linear?

$$i_D = f(v_D)$$

$$large DC$$

$$v_D = V_D + \Delta v_D$$

$$about V_D$$

using Taylor's Expansion to expand

$$f(v_D) \text{ near } v_D = V_D:$$

$$i_D = f(V_D) + \frac{df(v_D)}{dv_D}\bigg|_{v_D = V_D} \cdot \Delta v_D$$

$$+ \frac{1}{2!} \frac{d^2 f(v_D)}{dv_D}\bigg|_{v_D = V_D} \cdot \Delta v_D^2 + \frac{1}{2!} \frac{d^2 f(v_D)}{dv_D}\bigg|_{v_D = V_D}$$

neglect higher order terms because Δv_D is small

 $i_D \approx f(V_D) + \frac{df(v_D)}{dv_D}\Big|_{v_D = V_D} \cdot \Delta v_D$ constant constant w.r.t. Δv_D w.r.t. Δv_D slope at V_D , I_D

We can write

$$I_D + \Delta i_D \approx f(V_D) + \left. \frac{df(v_D)}{dv_D} \right|_{v_D = V_D} \cdot \Delta v_D$$

equating DC and time-varying parts,

$$I_D =$$

$$-\text{varying parts,}$$

so, $D_{i_D} \mu D_{V_D}$

By notation, $Di_{D} = i_{d}$ $DV_{D} = V_{d}$

DC and time-varying parts,
$$I_D = f\left(V_D\right) \longrightarrow \text{operating point}$$

$$\Delta i_D = \frac{df(v_D)}{dv_D}\bigg|_{v_D = V_D} \cdot \Delta v_D$$

constant w.r.t. Δv_D

Example

$$i_D = a e^{bv_D}$$

$$I_D + i_d \approx a e^{bV_D} + a e^{bV_D} \cdot b \cdot v_d$$

Equate DC and incremental terms,

$$i_d = \underbrace{(a e^{bV_D}) b \cdot v_d}$$
 $i_d = \underbrace{I_D \cdot b \cdot v_d}$ \longrightarrow small signal behavior constant \longrightarrow linear!

Graphical Interpretation

$$I_D = a e^{bV_D}$$
 \longrightarrow operating point

$$i_d = I_D \cdot b \cdot v_d$$

we are approximating

Combined Together Large signal circuit:

By using graphical or analytical solution, find bias point.

Small signal reponse: $i_d = I_D b v_d$

behaves like:

Linearization

small signal circuit:

inear!