Univerzális programozás

Írd meg a saját programozás tankönyvedet!

Copyright © 2019 Dr. Bátfai Norbert

Copyright (C) 2019, Norbert Bátfai Ph.D., batfai.norbert@inf.unideb.hu, nbatfai@gmail.com,

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

https://www.gnu.org/licenses/fdl.html

Engedélyt adunk Önnek a jelen dokumentum sokszorosítására, terjesztésére és/vagy módosítására a Free Software Foundation által kiadott GNU FDL 1.3-as, vagy bármely azt követő verziójának feltételei alapján. Nincs Nem Változtatható szakasz, nincs Címlapszöveg, nincs Hátlapszöveg.

http://gnu.hu/fdl.html

COLLABORATORS

	TITLE : Univerzális progran	nozás	
ACTION	NAME	DATE	SIGNATURE
WRITTEN BY	Radi, Daniel	2019. március 12.	

REVISION HISTORY

NUMBER	DATE	DESCRIPTION	NAME			
0.0.1	2019-02-12	Az iniciális dokumentum szerkezetének kialakítása.	nbatfai			
0.0.2	2019-02-14	Inciális feladatlisták összeállítása.	nbatfai			
0.0.3	2019-02-16	Feladatlisták folytatása. Feltöltés a BHAX csatorna https://gitlab.com/nbatfai/bhax repójába.	nbatfai			

Ajánlás

"To me, you understand something only if you can program it. (You, not someone else!) Otherwise you don't really understand it, you only think you understand it."

—Gregory Chaitin, META MATH! The Quest for Omega, [METAMATH]

Tartalomjegyzék

I.	Bevezetés	1
1.	Vízió	2
	1.1. Mi a programozás?	. 2
	1.2. Milyen doksikat olvassak el?	
	1.3. Milyen filmeket nézzek meg?	
II.	. Tematikus feladatok	3
2.	Helló, Turing!	5
	2.1. Végtelen ciklus	. 5
	2.2. Lefagyott, nem fagyott, akkor most mi van?	. 6
	2.3. Változók értékének felcserélése	. 7
	2.4. Labdapattogás	
	2.5. Szóhossz és a Linus Torvalds féle BogoMIPS	. 9
	2.6. Helló, Google!	. 10
	2.7. 100 éves a Brun tétel	. 11
	2.8. A Monty Hall probléma	. 11
3.	Helló, Chomsky!	13
	3.1. Decimálisból unárisba átváltó Turing gép	. 13
	3.2. Az a ⁿ b ⁿ c ⁿ nyelv nem környezetfüggetlen	. 13
	3.3. Hivatkozási nyelv	. 14
	3.4. Saját lexikális elemző	. 14
	3.5. 133t.1	. 15
	3.6. A források olvasása	. 15
	3.7. Logikus	. 16
	3.8. Deklaráció	. 17

4.	Hell	ó, Caesar!	18
	4.1.	int *** háromszögmátrix	18
	4.2.	C EXOR titkosító	18
	4.3.	Java EXOR titkosító	18
	4.4.	C EXOR törő	18
	4.5.	Neurális OR, AND és EXOR kapu	19
	4.6.	Hiba-visszaterjesztéses perceptron	19
5.	Hell	ó, Mandelbrot!	20
	5.1.	A Mandelbrot halmaz	20
	5.2.	A Mandelbrot halmaz a std::complex osztállyal	20
	5.3.	Biomorfok	20
	5.4.	A Mandelbrot halmaz CUDA megvalósítása	20
	5.5.	Mandelbrot nagyító és utazó C++ nyelven	20
	5.6.	Mandelbrot nagyító és utazó Java nyelven	21
6.	Hell	ó, Welch!	22
	6.1.	Első osztályom	22
	6.2.	LZW	22
	6.3.	Fabejárás	22
	6.4.	Tag a gyökér	22
	6.5.	Mutató a gyökér	23
	6.6.	Mozgató szemantika	23
7	Helk	ó, Conway!	24
<i>'</i> •		Hangyaszimulációk	24
	7.1.	Java életjáték	24
		Qt C++ életjáték	24
		BrainB Benchmark	25
	,	Brown Benchmark	23
8.	Hell	ó, Schwarzenegger!	26
	8.1.	Szoftmax Pysssss MNIST	26
	8.2.		26
	8.3.	Mély MNIST	26
	8.4.	Deep dream	26
	8.5.	Robotpszichológia	27

0	Helló, Chaitin!	28
٠.		
	9.1. Iteratív és rekurzív faktoriális Lisp-ben	28
	9.2. Weizenbaum Eliza programja	28
	9.3. Gimp Scheme Script-fu: króm effekt	28
	9.4. Gimp Scheme Script-fu: név mandala	28
	9.5. Lambda	29
	9.6. Omega	29
П	I. Második felvonás	30
10). Helló, Arroway!	32
	10.1. A BPP algoritmus Java megvalósítása	32
	10.2. Java osztályok a Pi-ben	32
I		33
	10.3. Általános	34
	10.4. C	34
	10.5. C++	34
	10.6 Lisp	34

Előszó

Amikor programozónak terveztem állni, ellenezték a környezetemben, mondván, hogy kell szövegszerkesztő meg táblázatkezelő, de az már van... nem lesz programozói munka.

Tévedtek. Hogy egy generáció múlva kell-e még tömegesen hús-vér programozó vagy olcsóbb lesz allo-kálni igény szerint pár robot programozót a felhőből? A programozók dolgozók lesznek vagy papok? Ki tudhatná ma.

Mindenesetre a programozás a teoretikus kultúra csúcsa. A GNU mozgalomban látom annak garanciáját, hogy ebben a szellemi kalandban a gyerekeim is részt vehessenek majd. Ezért programozunk.

Hogyan forgasd

A könyv célja egy stabil programozási szemlélet kialakítása az olvasóban. Módszere, hogy hetekre bontva ad egy tematikus feladatcsokrot. Minden feladathoz megadja a megoldás forráskódját és forrásokat feldolgozó videókat. Az olvasó feladata, hogy ezek tanulmányozása után maga adja meg a feladat megoldásának lényegi magyarázatát, avagy írja meg a könyvet.

Miért univerzális? Mert az olvasótól (kvázi az írótól) függ, hogy kinek szól a könyv. Alapértelmezésben gyerekeknek, mert velük készítem az iniciális változatot. Ám tervezem felhasználását az egyetemi programozás oktatásban is. Ahogy szélesedni tudna a felhasználók köre, akkor lehetne kiadása különböző korosztályú gyerekeknek, családoknak, szakköröknek, programozás kurzusoknak, felnőtt és továbbképzési műhelyeknek és sorolhatnánk...

Milyen nyelven nyomjuk?

C (mutatók), C++ (másoló és mozgató szemantika) és Java (lebutított C++) nyelvekből kell egy jó alap, ezt kell kiegészíteni pár R (vektoros szemlélet), Python (gépi tanulás bevezető), Lisp és Prolog (hogy lássuk mást is) példával.

Hogyan nyomjuk?

Rántsd le a https://gitlab.com/nbatfai/bhax git repót, vagy méginkább forkolj belőle magadnak egy sajátot a GitLabon, ha már saját könyvön dolgozol!

Ha megvannak a könyv DocBook XML forrásai, akkor az alább látható **make** parancs ellenőrzi, hogy "jól formázottak" és "érvényesek-e" ezek az XML források, majd elkészíti a dblatex programmal a könyved pdf változatát, íme:

```
batfai@entropy:~$ cd glrepos/bhax/thematic_tutorials/bhax_textbook/
batfai@entropy:~/glrepos/bhax/thematic_tutorials/bhax_textbook$ make
rm -f bhax-textbook-fdl.pdf
xmllint --xinclude bhax-textbook-fdl.xml --output output.xml
xmllint --relaxng http://docbook.org/xml/5.0/rng/docbookxi.rng output.xml
  --noout
output.xml validates
rm -f output.xml
dblatex bhax-textbook-fdl.xml -p bhax-textbook.xls
Build the book set list...
Build the listings...
XSLT stylesheets DocBook - LaTeX 2e (0.3.10)
_____
Stripping NS from DocBook 5/NG document.
Processing stripped document.
Image 'dblatex' not found
Build bhax-textbook-fdl.pdf
'bhax-textbook-fdl.pdf' successfully built
```

Ha minden igaz, akkor most éppen ezt a legenerált bhax-textbook-fdl.pdf fájlt olvasod.

A DocBook XML 5.1 új neked?

Ez esetben forgasd a https://tdg.docbook.org/tdg/5.1/ könyvet, a végén találod az informatikai szövegek jelölésére használható gazdag "API" elemenkénti bemutatását.

Bevezetés

Vízió

1.1. Mi a programozás?

1.2. Milyen doksikat olvassak el?

- Olvasgasd a kézikönyv lapjait, kezd a **man man** parancs kiadásával. A C programozásban a 3-as szintű lapokat fogod nézegetni, például az első feladat kapcsán ezt a **man 3 sleep** lapot
- [KERNIGHANRITCHIE]
- [BMECPP]
- Az igazi kockák persze csemegéznek a C nyelvi szabvány ISO/IEC 9899:2017 kódcsipeteiből is.

1.3. Milyen filmeket nézzek meg?

• 21 - Las Vegas ostroma, https://www.imdb.com/title/tt0478087/, benne a Monty Hall probléma bemutatása.

II. rész

Tematikus feladatok

Bátf41 Haxor Stream

A feladatokkal kapcsolatos élő adásokat sugároz a https://www.twitch.tv/nbatfai csatorna, melynek permanens archívuma a https://www.youtube.com/c/nbatfai csatornán található.

Helló, Turing!

2.1. Végtelen ciklus

Írj olyan C végtelen ciklusokat, amelyek 0 illetve 100 százalékban dolgoztatnak egy magot és egy olyat, amely 100 százalékban minden magot!

Ha egy végtelen ciklust futtatunk a mag 100% terhelt lesz, ugyanis végtelenszer ismétli önmagát.

```
#include <omp.h>
int main()
{
    #pragma omp single
        {for(;;) {}}
}
```

Ha egy feladat megáll vagy elaltatjuk a sleep paranccsal, a mag 0% terhelt lesz.

```
#include <unistd.h>
int main()
{
for(;;) {usleep ( 100000 );}
}
```

Ha egy végtelent ciklust paralell futtatunk minden magon, minden mag 100% terhelt lesz. -openmp szükséges hozzá

```
#include <omp.h>

int main()
{
    #pragma omp parallel
    for(;;) {}
}
```

2.2. Lefagyott, nem fagyott, akkor most mi van?

Mutasd meg, hogy nem lehet olyan programot írni, amely bármely más programról eldönti, hogy le fog-e fagyni vagy sem!

Megoldás forrása: tegyük fel, hogy akkora haxorok vagyunk, hogy meg tudjuk írni a Lefagy függvényt, amely tetszőleges programról el tudja dönteni, hogy van-e benne vélgtelen ciklus:

```
Program T100
{
   boolean Lefagy(Program P)
   {
      if(P-ben van végtelen ciklus)
        return true;
      else
        return false;
   }
   main(Input Q)
   {
      Lefagy(Q)
   }
}
```

A program futtatása, például akár az előző v . c ilyen pszeudókódjára:

```
T100(t.c.pseudo)
true
```

akár önmagára

```
T100(T100)
false
```

ezt a kimenetet adja.

A T100-as programot felhasználva készítsük most el az alábbi T1000-set, amelyben a Lefagy-ra épőlő Lefagy2 már nem tartalmaz feltételezett, csak csak konkrét kódot:

```
Program T1000
{
  boolean Lefagy(Program P)
  {
    if(P-ben van végtelen ciklus)
      return true;
    else
      return false;
  }
  boolean Lefagy2(Program P)
```

```
if (Lefagy(P))
    return true;
    else
        for(;;);
}

main(Input Q)
{
    Lefagy2(Q)
}
```

Mit for kiírni erre a T1000 (T1000) futtatásra?

- Ha T1000 lefagyó, akkor nem fog lefagyni, kiírja, hogy true
- Ha T1000 nem fagyó, akkor pedig le fog fagyni...

akkor most hogy fog működni? Sehogy, mert ilyen Lefagy függvényt, azaz a T100 program nem is létezik.

Tegyük fel, hogy létezik olyan program (T100), ami el tudja dönteni egy másik programról, hogy van-e benne végtelen ciklus. Ha van, akkor megáll a program, ha nincs, akkor pedig végtelen ciklusba kezd. Létrehozunk egy új programot (T1000) az előzőt (T100) felhasználva és ha a T100 megállt, akkor végtelen ciklusba kezd, ha pedig a T100 kezdett végtelen ciklusba, akkor megáll.

A megállás csak akkor lehetséges, ha a T100 nem áll meg, de ez pedig csak akkor lehet, ha a második argumentumként kapott saját programunk megáll.

Ebből ellentmondásra jutottunk, tehát nem lehet ilyen programot írni.

2.3. Változók értékének felcserélése

Írj olyan C programot, amely felcseréli két változó értékét, bármiféle logikai utasítás vagy kifejezés nasználata nélkül!

Megoldás videó: https://bhaxor.blog.hu/2018/08/28/10_begin_goto_20_avagy_elindulunk

Megoldás forrása: Valtozo felcserelesek

```
#include <iostream>
#include <string>
using namespace std;
int main()
{
  int a = 1;
```

```
int b = 2;
string sel(" ");
cout << "A kezdo szamok: " << a << sel << b << "\n";

int c = a;
a = b;
b = c;
cout << "Uj valtozos felcserelessel: " << a << sel << b << "\n";

a = a+b;
b = a-b;
a = a-b;
cout << "Visszacsereles uj valtozo nelkul: " << a << sel << b << "\n";
}</pre>
```

Új változóval: Bevezetunk egy új változot amire "elmentjük" az 'a' valtozón tárolt informaciót. Ekkor 'a' valtozot felülirhatjuk 'b' valtozóval majd a 'b' változót az új változoval.

Új változó nélkül: Összeadjuk a két változót és magkapjuk az összeguket az egyik változon(itt 'a'). A másik változón(itt 'b') kivonjuk az összegből('a') a 'b' változót, a maradék 'a' eredeti érteke lesz. Ez után az összeget tartalmazó változón('a') kivonuk önmagából a 'b' értéket, ami jelenleg 'a' eredeti érteke, így megkapjuk a 'b' eredeti érteket.

2.4. Labdapattogás

Először if-ekkel, majd bármiféle logikai utasítás vagy kifejezés nasználata nélkül írj egy olyan programot, ami egy labdát pattogtat a karakteres konzolon! (Hogy mit értek pattogtatás alatt, alább láthatod a videókon.)

Megoldás videó: https://bhaxor.blog.hu/2018/08/28/labdapattogas

Megoldás forrása: Labdapattogtatas

Megjegyzes: Minden esetben felvesszük a kódhoz szükseges headert, amit a forrasban meg lehet talalni.

Elkészitjuk az ablakot a terminalbol es felvesszuk az adatait.

```
WINDOW *ablak;
ablak = initscr ();
```

Egy végtelen for ciklusba fog a program futni, ugyanis most nem lesz szükseg a labda megállitasara.

Felveszunk két változot (a for cikluson kivül) az ablak (x,y) méretének tárolására majd belementjük az érteket minden ciklusban. Ezt a forrásban megfeleztük hogy csak az ablak feléig dolgozzunk.

```
getmaxyx ( ablak, amy , amx );
```

Egyszerű forciklussal megrajzoljuk a határértékeket tetszőleges karakterekekkel, illetve a két maxértekkel a legtávolabbi pontot, az ellentkező sarkot. Ennek csak esztétikai jelentősége van.

```
for(int a = 0;a<amx;a++) {mvprintw ( amy, a, "=" );}
for(int b = 0;b<amy;b++) {mvprintw ( b, amx, "|" );}
mvprintw ( amy, amx, "/" );</pre>
```

Felveszünk két új változót a labda X,Y értekeinek tárolásara a végtelen cikluson kivül. Ez a labda pozició kezdő érteke. Felrajzoljuk a labdát a jelenlegi poziciójára majd frissitjük az ablakot, várunk hogy a mozgás emberi szemmel is észlelhető legyen majd eltoröljuk az ablakon megjelenitett elemeket.

```
mvprintw ( y, x, "0" );
refresh ();
usleep (100000);
clear();
```

Felveszünk két új változot a labda mozgasi sebessége meghatározásara és hozzáadjuk az érteket az előzo pozicióhoz.

```
x = x + xmo;

y = y + ymo;
```

Egyszerű if fügvennyel ellenőrizzuk hogy elérte-e a labda a határérteket. Ha elérte a sebesseget reciprokara állitjuk, ezzel a labda mozgásat az ellentkező irányba megforditva.

```
if ( x>=amx-1 ) {xmo = xmo * -1;}
if ( x<=0 ) {xmo = xmo * -1;}
if ( y<=0 ) {ymo = ymo * -1;}
if ( y>=amy-1 ) {ymo = ymo * -1;}
```

2.5. Szóhossz és a Linus Torvalds féle BogoMIPS

Írj egy programot, ami megnézi, hogy hány bites a szó a gépeden, azaz mekkora az int mérete. Használd ugyanazt a while ciklus fejet, amit Linus Torvalds a BogoMIPS rutinjában!

Megoldás forrása:

```
#include <stdio.h>
int
main (void)
{
  int h = 0;
  int n = 0x01;
  do
     ++h;
  while (n <<= 1);
  printf ("A szohossz ezen a gepen: %d bites\n", h);
  return 0;</pre>
```

```
}
```

Az egy érteku változot a bitshift operátorral eltoljuk amig lehet és minden lepést megszámolunk. Az eredmeny az értek bit árteku mérete. Ez a változó típusátol is függ.

2.6. Helló, Google!

Írj olyan C programot, amely egy 4 honlapból álló hálózatra kiszámolja a négy lap Page-Rank értékét! Megoldás forrása: Pagerank

Az alábbi funkció kiírja a belevezettet értékeket érkezesi sorrend szerint százados helyiértékig.

```
void kiir (double tomb[], int db)
{
  for(short i = 0; i < db; ++i)
  printf("%.2f \n",tomb[i]);
  }
</pre>
```

Az alábbi funkció kiszámolja a PageRank és a határérték távolságát a négy oldal jóságának felhasználásával, majd visszaadja azt double értékkent.

```
double tavolsag (double PR[], double PRv[], int n)
{
  int i;
  double osszeg = 0;

  for (i = 0; i < n; ++i)
    osszeg += (PRv[i] - PR[i]) * (PRv[i] - PR[i]);

  return sqrt(osszeg);
}</pre>
```

A main-ben felvesszük az oldalak linkjeinek számat mátrixként, illetve a pagerankot és a határértéket vektorkent.

Egy for függvényben elkezdjük a számolást. Ezen belül dupla for fügvénnyel összehasonlítjuk a mátrix minden koordinátájának felhasználásával a page "jóságat".

```
for(i = 0; i < 4; ++i)
{
    PR[i] = 0.0;
    for(j = 0; j < 4; ++j)
    PR[i] += (L[i][j] * PRv[j]);
}</pre>
```

Amennyiben a különbseg kisebb mint 0.00000001 akkor kilépünk a végtelen ciklusból, ha nem PRv-t feltöltjuk PR elemeivel. Ha ciklus véget ér, kiiratjuk az értékeket.

```
if(tavolsag (PR, PRv, 4) < 0.00000001)
     break;
}</pre>
```

2.7. 100 éves a Brun tétel

Írj R szimulációt a Brun tétel demonstrálására!

Megoldás videó: https://youtu.be/xbYhp9G6VqQ

Megoldás forrása: https://gitlab.com/nbatfai/bhax/blob/master/attention_raising/Primek_R

```
stp <- function(x) {
    primes = primes(x)
    diff = primes[2:length(primes)]-primes[1:length(primes)-1]
    idx = which(diff==2)
    t1primes = primes[idx]
    t2primes = primes[idx]+2
    rt1plust2 = 1/t1primes+1/t2primes
    return(sum(rt1plust2))
}</pre>
```

- 1. sor kiszámolja a prímeket x-ig.
- 2. sor az egymást követő prímek különbségét veszi. 3-2, 5-3, 7-5, 11-7, 13-11.
- 3. sor megnézi hol 2 a különbség. Ahol igaz, azok ikerprim párok.
- 4. sor a pár első tagját eltárolja, ahol 3 teljesül.
- 5. sor a második tagot az első+2 vel képzi és tárolja, ahol 4 teljesül.

Vegül reciprokokat képez, összeadja őket majd visszaadja az érteket.

A forrás további részében kirajzoltatjuk és láthatjuk, hogy egy felso határhoz konvergálnak az összegek.

2.8. A Monty Hall probléma

Írj R szimulációt a Monty Hall problémára!

Megoldás videó: https://bhaxor.blog.hu/2019/01/03/erdos_pal_mit_keresett_a_nagykonyvben_a_monty_hall-paradoxon_kapcsan

Megoldás forrása: https://gitlab.com/nbatfai/bhax/tree/master/attention_raising/MontyHall_R

```
kiserletek_szama=10000000
kiserlet = sample(1:3, kiserletek_szama, replace=T)
jatekos = sample(1:3, kiserletek_szama, replace=T)
```

```
musorvezeto=vector(length = kiserletek_szama)
for (i in 1:kiserletek szama) {
    if (kiserlet[i] == jatekos[i]) {
        mibol=setdiff(c(1,2,3), kiserlet[i])
    }else{
        mibol=setdiff(c(1,2,3), c(kiserlet[i], jatekos[i]))
    }
    musorvezeto[i] = mibol[sample(1:length(mibol),1)]
}
nemvaltoztatesnyer= which(kiserlet==jatekos)
valtoztat=vector(length = kiserletek_szama)
for (i in 1:kiserletek_szama) {
    holvalt = setdiff(c(1,2,3), c(musorvezeto[i], jatekos[i]))
    valtoztat[i] = holvalt[sample(1:length(holvalt),1)]
valtoztatesnyer = which(kiserlet==valtoztat)
sprintf("Kiserletek szama: %i", kiserletek_szama)
length (nemvaltoztatesnyer)
length(valtoztatesnyer)
length (nemvaltoztatesnyer) /length (valtoztatesnyer)
length (nemvaltoztatesnyer) +length (valtoztatesnyer)
```

A program véletlen eseteket generál. Meghatározzuk a kísérletek számat majd a játékos vektorban véletlenszerűen megadjuk mit választ esetenkent. A vektorok mérete a kisérletek számával egyenlő.

Egy for ciklussal végigmegyünk a kisérletek száman és megnézzuk hogy eltalálta-e az eredményt.

Ha nem találta el, a műsorvezető kap pontot.

Ha nyer, kiértékeljuk hogy hányszor nyert volna változtatás nélkül. Egyéb esetekben változtatással nyert volna.

Megszámoljuk a vektorokon az eseményeket majd kiiratjuk az eredményeket...

Helló, Chomsky!

3.1. Decimálisból unárisba átváltó Turing gép

Állapotátmenet gráfjával megadva írd meg ezt a gépet!

Megoldás forrása:

```
#include <iostream>
#include <string>
using namespace std;
int
main ( void )
{
int num;
string output;
cin >> num;
for(int i=0;i<num;++i) {output.append("1");}
cout << output << "\n";
}</pre>
```

Unáris szám annyi 1-es karakterből áll, ahány az értéke. Megadunk egy int értéket majd létrehozunk egy üres kimeneti stringet. A for függvény annyiszor fut le ahány a bementi számunk. Minden esetben hozzá-ad(appendál) egy karaktert a stringhez, ami egy 1-es karakter. Végül kiiratjuk a stringet.

3.2. Az aⁿbⁿcⁿ nyelv nem környezetfüggetlen

												generál	

S->abc|A

A->aABclabc

cB->Bc

bB->bb

```
S\rightarrow aSBC|aBC
CB\rightarrow BC
aB\rightarrow ab
bB\rightarrow bb
bC\rightarrow bc
cC\rightarrow cc
```

3.3. Hivatkozási nyelv

A [KERNIGHANRITCHIE] könyv C referencia-kézikönyv/Utasítások melléklete alapján definiáld BNF-ben a C utasítás fogalmát! Majd mutass be olyan kódcsipeteket, amelyek adott szabvánnyal nem fordulnak (például C89), mással (például C99) igen.

Megoldás forrása:

```
long long int
```

Új adattípus a C99 nyelvben. Explicit boolen adattípus komplex számokhoz. 32 bit méret, [-2,147,483,647, +2,147,483,647] közötti értékkel.

Aritmetikai és vezérlő utasítások függvényen belül, blokkban helyezkednek el. A tevékenység pontos megfogalmazása amit nem lehet részletezni, pontos jelentéssel bír.

3.4. Saját lexikális elemző

Írj olyan programot, ami számolja a bemenetén megjelenő valós számokat! Nem elfogadható olyan megoldás, amely maga olvassa betűnként a bemenetet, a feladat lényege, hogy lexert használjunk, azaz óriások vállán álljunk és ne kispályázzunk!

Felvesszük a megoldásunkat tároló intet 0-ként, hiszen ehhez adunk majd hozzá.

```
%{
#include <stdio.h>
int realnumbers = 0;
%}
```

Definiáljuk mi is az amit keresünk.

```
digit [0-9]
```

Valahányszor valós számot találunk, a (megoldás) darabszámot növeljük eggyel, és a kimeneti stringen a valós számot kiemeli egy "realnum=" -al.

```
{digit}*(\.{digit}+)? {++realnumbers; printf("[realnum=%s %f]", yytext, atof(yytext));}
```

Lehívjuk az yylex-et. A szokásos módon kiírjuk az eredményt standard outputon.

```
int
main ()
{
  yylex ();
  printf("The number of real numbers is %d\n", realnumbers);
  return 0;
}
```

3.5. I33t.I

Lexelj össze egy 133t ciphert!

```
%{
#include <stdio.h>
%}
leet [e]
%%
{leet} {printf("3");}
%%
int
main ()
{
  yylex ();
  return 0;
}
int yywrap() {return(1);}
```

A program valahányszor az "e" karaktert olvass a bemeneten, helyette egy "3"-as karaktert ír ki. Semmilyen más karakter nem változik. A main utáni rész megegyezik az előző felattal.

3.6. A források olvasása

Hogyan olvasod, hogyan értelmezed természetes nyelven az alábbi kódcsipeteket? Például

```
if(signal(SIGINT, jelkezelo) == SIG_IGN)
    signal(SIGINT, SIG_IGN);
```

Ha a SIGINT jel kezelése figyelmen kívül volt hagyva, akkor ezen túl is legyen figyelmen kívül hagyva, ha nem volt figyelmen kívül hagyva, akkor a jelkezelo függvény kezelje. (Miután a **man 7 signal** lapon megismertem a SIGINT jelet, a **man 2 signal** lapon pedig a használt rendszerhívást.)

Bugok

Vigyázz, sok csipet kerülendő, mert bugokat visz a kódba! Melyek ezek és miért? Ha nem megy ránézésre, elkapja valamelyiket esetleg a splint vagy a frama?

i. Ha a SIGINT jel kezelését végrehajtjuk, akkor a jel kezelését a 'jelkezelo' végezze.

```
if(signal(SIGINT, SIG_IGN)!=SIG_IGN)
    signal(SIGINT, jelkezelo);
```

ii. Ötször lefutó for ciklus.

```
for (i=0; i<5; ++i)
```

iii. Ugyan az mint az előző.

```
for (i=0; i<5; i++)
```

iv. for (i=0; i<5; tomb[i] = i++)

A 'tomb' elemeinek az index értékét adja meg.

v. Egy for ciklus ami addig fut le amíg eléri n-t és d indexértékét s indexértékéhez hasonlítja.

```
for (i=0; i< n && (*d++ = *s++); ++i)
```

vi. Két számot váró kiírás két függvényből.

```
printf("%d %d", f(a, ++a), f(++a, a));
```

vii. Két számot váró kiírás egy fügvényből és egy változóból.

```
printf("%d %d", f(a), a);
```

viii. Két számot váró kiírás egy nem nulla függvényből és egy változóból.

```
printf("%d %d", f(&a), a);
```

3.7. Logikus

Hogyan olvasod természetes nyelven az alábbi Ar nyelvű formulákat?

```
$(\forall x \exists y ((x<y)\wedge(y \text{ prim})))$
$(\forall x \exists y ((x<y)\wedge(y \text{ prim}))\wedge(SSy \text{ prim})) \\
)$
$(\exists y \forall x (x \text{ prim}) \supset (x<y)) $
$(\exists y \forall x (y<x) \supset \neg (x \text{ prim}))$</pre>
```

Megoldás forrása: https://gitlab.com/nbatfai/bhax/blob/master/attention_raising/MatLog_LaTeX Megoldás videó: https://youtu.be/ZexiPy3ZxsA, https://youtu.be/AJSXOQFF_wk

- 1. minden xre van egy annál nagyobb prímszán.
- 2. minden xre van egy annál nagyobb ikerprím számpár.
- 3. Van oylan y aminél minden x prím kisebb.
- 4. Van olyan y aminél bármely nagyobb szám prímszám.

3.8. Deklaráció

• egész

int a;

• egészre mutató mutató

```
int *b = &a;
```

• egész referenciája

```
int &r = a;
```

• egészek tömbje

```
int c[5];
```

• egészek tömbjének referenciája (nem az első elemé)

```
int (&tr)[5] = c;
```

• egészre mutató mutatók tömbje

```
int *d[5];
```

egészre mutató mutatót visszaadó függvény

```
int *h ();
```

• egészre mutató mutatót visszaadó függvényre mutató mutató

```
int *(*1) ();
```

• egészet visszaadó és két egészet kapó függvényre mutató mutatót visszaadó, egészet kapó függvény

```
int (*v (int c)) (int a, int b)
```

 függvénymutató egy egészet visszaadó és két egészet kapó függvényre mutató mutatót visszaadó, egészet kapó függvényre

```
int (*(*z) (int)) (int, int);
```

Helló, Caesar!

4.1. int *** háromszögmátrix

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

4.2. C EXOR titkosító

Írj egy EXOR titkosítót C-ben!

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

4.3. Java EXOR titkosító

Írj egy EXOR titkosítót Java-ban!

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

4.4. C EXOR törő

Írj egy olyan C programot, amely megtöri az első feladatban előállított titkos szövegeket! Megoldás videó: Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

4.5. Neurális OR, AND és EXOR kapu

R

Megoldás videó: https://youtu.be/Koyw6IH5ScQ

Megoldás forrása: https://gitlab.com/nbatfai/bhax/tree/master/attention_raising/NN_R

Tanulságok, tapasztalatok, magyarázat...

4.6. Hiba-visszaterjesztéses perceptron

C++

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

Helló, Mandelbrot!

5.1. A Mandelbrot halmaz

Megoldás videó:

Megoldás forrása:

5.2. A Mandelbrot halmaz a std::complex osztállyal

Megoldás videó:

Megoldás forrása:

5.3. Biomorfok

Megoldás videó: https://youtu.be/IJMbgRzY76E

Megoldás forrása: https://gitlab.com/nbatfai/bhax/tree/master/attention_raising/Biomorf

Tanulságok, tapasztalatok, magyarázat...

5.4. A Mandelbrot halmaz CUDA megvalósítása

Megoldás videó:

Megoldás forrása:

5.5. Mandelbrot nagyító és utazó C++ nyelven

Építs GUI-t a Mandelbrot algoritmusra, lehessen egérrel nagyítani egy területet, illetve egy pontot egérrel kiválasztva vizualizálja onnan a komplex iteréció bejárta z_n komplex számokat!

Megoldás forrása:

Megoldás videó:

Megoldás forrása:

5.6. Mandelbrot nagyító és utazó Java nyelven

Helló, Welch!

6.1. Első osztályom

Valósítsd meg C++-ban és Java-ban az módosított polártranszformációs algoritmust! A matek háttér teljesen irreleváns, csak annyiban érdekes, hogy az algoritmus egy számítása során két normálist számol ki, az egyiket elspájzolod és egy további logikai taggal az osztályban jelzed, hogy van vagy nincs eltéve kiszámolt szám.

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat... térj ki arra is, hogy a JDK forrásaiban a Sun programozói pont úgy csinálták meg ahogyan te is, azaz az OO nemhogy nem nehéz, hanem éppen természetes neked!

6.2. LZW

Valósítsd meg C-ben az LZW algoritmus fa-építését!

Megoldás videó:

Megoldás forrása:

6.3. Fabejárás

Járd be az előző (inorder bejárású) fát pre- és posztorder is!

Megoldás videó:

Megoldás forrása:

6.4. Tag a gyökér

Az LZW algoritmust ültesd át egy C++ osztályba, legyen egy Tree és egy beágyazott Node osztálya. A gyökér csomópont legyen kompozícióban a fával!

Megoldás videó:

Megoldás forrása:

6.5. Mutató a gyökér

Írd át az előző forrást, hogy a gyökér csomópont ne kompozícióban, csak aggregációban legyen a fával! Megoldás videó:

Megoldás forrása:

6.6. Mozgató szemantika

Írj az előző programhoz mozgató konstruktort és értékadást, a mozgató konstruktor legyen a mozgató értékadásra alapozva!

Megoldás videó:

Megoldás forrása:

Helló, Conway!

7.1. Hangyaszimulációk

Írj Qt C++-ban egy hangyaszimulációs programot, a forrásaidról utólag reverse engineering jelleggel készíts UML osztálydiagramot is!

Megoldás videó: https://bhaxor.blog.hu/2018/10/10/myrmecologist

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

7.2. Java életjáték

Írd meg Java-ban a John Horton Conway-féle életjátékot, valósítsa meg a sikló-kilövőt!

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

7.3. Qt C++ életjáték

Most Qt C++-ban!

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

7.4. BrainB Benchmark

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

Helló, Schwarzenegger!

8.1. Szoftmax Pyssss MNIST

aa Python a_2^2 aa a_{22} aa

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

8.2. Szoftmax R MNIST

R

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

8.3. Mély MNIST

Python

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

8.4. Deep dream

Keras

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

8.5. Robotpszichológia

Megoldás videó:

Megoldás forrása:

Helló, Chaitin!

9.1. Iteratív és rekurzív faktoriális Lisp-ben

Megoldás videó:

Megoldás forrása:

9.2. Weizenbaum Eliza programja

Éleszd fel Weizenbaum Eliza programját!

Megoldás videó:

Megoldás forrása:

9.3. Gimp Scheme Script-fu: króm effekt

Írj olyan script-fu kiterjesztést a GIMP programhoz, amely megvalósítja a króm effektet egy bemenő szövegre!

Megoldás videó: https://youtu.be/OKdAkI_c7Sc

Megoldás forrása: https://gitlab.com/nbatfai/bhax/tree/master/attention_raising/GIMP_Lisp/Chrome

Tanulságok, tapasztalatok, magyarázat...

9.4. Gimp Scheme Script-fu: név mandala

Írj olyan script-fu kiterjesztést a GIMP programhoz, amely név-mandalát készít a bemenő szövegből!

Megoldás videó: https://bhaxor.blog.hu/2019/01/10/a_gimp_lisp_hackelese_a_scheme_programozasi_nyelv

Megoldás forrása: https://gitlab.com/nbatfai/bhax/tree/master/attention_raising/GIMP_Lisp/Mandala

Tanulságok, tapasztalatok, magyarázat...

9.5. Lambda

Hasonlítsd össze a következő programokat!

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

9.6. Omega

III. rész

Bátf41 Haxor Stream

A feladatokkal kapcsolatos élő adásokat sugároz a https://www.twitch.tv/nbatfai csatorna, melynek permanens archívuma a https://www.youtube.com/c/nbatfai csatornán található.

Helló, Arroway!

10.1. A BPP algoritmus Java megvalósítása

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

10.2. Java osztályok a Pi-ben

Az előző feladat kódját fejleszd tovább: vizsgáld, hogy Vannak-e Java osztályok a Pi hexadecimális kifejtésében!

Megoldás videó:

Megoldás forrása:

Tanulságok, tapasztalatok, magyarázat...

IV. rész Irodalomjegyzék

10.3. Általános

[MARX] Marx, György, Gyorsuló idő, Typotex, 2005.

10.4. C

[KERNIGHANRITCHIE] Kernighan, Brian W. és Ritchie, Dennis M., A C programozási nyelv, Bp., Műszaki, 1993.

10.5. C++

[BMECPP] Benedek, Zoltán és Levendovszky, Tihamér, *Szoftverfejlesztés C++ nyelven*, Bp., Szak Kiadó, 2013.

10.6. Lisp

[METAMATH] Chaitin, Gregory, *META MATH! The Quest for Omega*, http://arxiv.org/PS_cache/math/pdf/0404/0404335v7.pdf , 2004.

Köszönet illeti a NEMESPOR, https://groups.google.com/forum/#!forum/nemespor, az UDPROG tanulószoba, https://www.facebook.com/groups/udprog, a DEAC-Hackers előszoba, https://www.facebook.com/groups/DEACHackers (illetve egyéb alkalmi szerveződésű szakmai csoportok) tagjait inspiráló érdeklődésükért és hasznos észrevételeikért.

Ezen túl kiemelt köszönet illeti az említett UDPROG közösséget, mely a Debreceni Egyetem reguláris programozás oktatása tartalmi szervezését támogatja. Sok példa eleve ebben a közösségben született, vagy itt került említésre és adott esetekben szerepet kapott, mint oktatási példa.