

NIT MEGHALAYA

EMBEDDED SYSTEM **DESIGN AND APPLICATION** (CS 313)

LAB 1:- INTRODUCTION

Embedded System

- An **embedded system** is a system that has software embedded into computer-hardware, which makes a system dedicated for an application or specific part of an application.
- Embedded system can be **microprocessor** or **microcontroller** based.

Microprocessor and Microcontroller

MICROPROCESSOR

- Assimilates function of CPU.
- Used in design of general purpose systems.
- Overall cost and power consumption of a system built using a microprocessor is high.
- Not used in real time systems.

MICROCONTROLLER

- Can be considered as a small computer.
- Used in automatically controlled devices.
- Overall cost and power consumption of a system built using a microcontroller is less.
- Used to handle real time tasks.

Families of Microcontrollers

The First Microcontroller

■ During 1970 and 1971 **Gary Boone** of Texas Instruments invented first microcontroller **TMS1802NC**.

■ It had five thousand transistors providing 3000 bits of program memory and 128 bits of access memory!! So, it was possible to program it to perform a range of functions.

About the KIT (STM32F401)

- Developed by ST Microelectronics.
- CPU ARM Cortex© M4 (ARM-Advanced RISC Machines)
- 512 KB Flash Memory (Programmable) and 96-KB SRAM
- USB 2.0 type A to mini B
- mbed-enabled (mbed.org): **Mbed** is a platform and operating system for internet-connected devices based on 32-bit ARM Cortex-M microcontrollers. Such devices are also known as Internet of Things devices. The project is collaboratively developed by Arm and its technology partners.

About the KIT (STM32F401)

- Support of wide choice of Integrated Development Environments (IDEs) including IARTM, ARM[®] Keil[®], GCC-based IDEs
- http://www.st.com/en/evaluation-tools/nucleof401re.html

What is Arduino?

- Open-source platform used for building electronics projects.
- Consists of both a physical programmable circuit board (often referred to as a microcontroller) and a piece of software.
- Arduino does not need a separate piece of hardware (called a programmer) in order to load new code onto the board you can simply use a USB cable.
- The Uno is one of the more popular boards in the Arduino family and a great choice for beginners.

STM32F401 Nucleo kit

ST Link USB Type A to mini B

Reset Button

User Button

Red LED (power)

Green LED (test)

Arduino Connector and Analog input

Red/Green LED (com)

Arduino
Connector
and Digital
output

STM32 Microcontroller

LEDs Description

■ There are three LEDs on the STM32 NUCLEO

kit.

- LD1
- LD2
- LD3

WWW.st.com/stm.32nucleo

LD3

LD1

LD2

LD 1

- The tricolor LED (green, orange, red) LD1 (COM) provides information about ST-LINK communicate on status.
- LD1 default color is red. LD1 turns to green to indicate that communication is in progress between the PC and the ST-LINK/V2-1, with the following setup:
 - Slow blinking Red/Off: at power-on before USB initialization
 - Fast blinking Red/Off: after the first correct communication between the PC and ST-LINK/V2-1 (enumeration)
 - Red LED On: when the initialization between the PC and ST-LINK/V2-1 is complete
 - Green LED On: after a successful target communication initialization Blinking Red/Green: during communication with target
 - Green On: communication finished and successful
 - Orange On: Communication failure

LD2

- User LD2: the green LED is a user LED connected to Arduino signal D13 corresponding to STM32 I/O PA5 (pin 21) or PB13 (pin 34) depending on the STM32 target :
 - the I/O is HIGH value, the LED is on
 - the I/O is LOW, the LED is off

LD3

■ LD3 PWR: The red LED indicates that the STM32 part is powered and +5V power is available.

PINS LABEL

Arduino Header CN6 & CN8

Arduino Header CN9

CN7 Header

CN10 Header

Requirements

- STM32F401 Evaluation/Development board
- USB mini to USB Type B Connector
- Development environment (IDEs or mbed account).

Start Development

- During this course we will use the online compiler from http://developer.mbed.org to compile our projects.
- The compiler supports programs written in C or Python.

■ STEP 1 – Go to http://developer.mbed.org

■ STEP 2 – Create an account

■ STEP 3 – Go to Compiler

- STEP 4 Selecting Device
 - Click on the device selection on the top RHS of the Complier Screen

- STEP 5 Selecting Platform
 - Click on Add Platform

■ STEP 6 – Selecting Board

■ STEP 7 – Add Board to mbed Compiler

Adding other Boards

- You can select any board as in step 6.
- The same can be added to the mbed compiler as in step 7
- In this lab we will use the NUCLEO-F401RE board
- Next, we again click on the compiler to begin writing our first programs.

■ STEP 8 – Goto the compiler and verify if NUCLEO-F401RE is selected as the compiler platform

Program: Blinking LED

Click on new -> New Program

Writing program

Click on main cpp

```
main.cpp X
 1 #include "mbed.h"
 3 DigitalOut myled(LED1);
 5 int main() {
     while(1) {
        myled = 1; // LED is ON
        wait(0.2); // 200 ms
     myled = 0; // LED is OFF
10
        wait(1.0); // 1 sec
11
12 }
13
```

Compiling your code

Click on Compile

Compiling

- On successful compiling you will notice a file is downloaded
- The file is saved by default in the download folder

STM32 Connection to PC

- Connect your STM32
 NUCLEO to your computer via the USB cable
- Observe that the LEDs are turned on and the USER LED will start blinking

Execution

Copy the code from the Download folder and paste to the NUCLEO folder

Success

- If everything works, then you have successfully uploaded your program to your evaluation board.
- Now you are ready to develop more systems using this kit.

Thank you

