Capítulo 7
Propriedades
periódicas dos
elementos

Desenvolvimento da tabela periódica

- No início do século XIX, os avanços na química fizeram com que fosse mais fácil isolar os elementos de seus compostos. Como resultado, o número de elementos conhecidos duplicou, passando de 31, em 1800, a 63, em 1865.
- Em 1869, Dmitri Mendeleev, na Rússia, e Lothar Meyer, na Alemanha, publicaram esquemas de classificação dos elementos quase idênticos. Ambos notaram que propriedades físicas e químicas semelhantes se repetiam periodicamente quando os elementos eram dispostos em ordem crescente de massa atômica.

Desenvolvimento da tabela periódica

- O crédito da descoberta da periodicidade das propriedades dos elementos foi dado a Mendeleev, pois ele aprofundou mais suas ideias e estimulou a realização de novos trabalhos.
- Sua insistência em listar elementos com características semelhantes no mesmo grupo o obrigou a deixar espaços em branco em sua tabela. Mendeleev chegou a prever, corajosamente, a existência e as propriedades de alguns elementos.

Desenvolvimento da tabela periódica

- Em 1913, dois anos depois que Rutherford propôs o modelo nuclear do átomo, o físico inglês Henry Moseley desenvolveu o conceito de *números atômicos* e identificou corretamente o número atômico como sendo o número de prótons no núcleo do átomo.
- O conceito de número atômico esclareceu alguns problemas na tabela periódica vigente na época de Moseley, baseada em massas atômicas, e tornou possível a identificação dos "buracos" na tabela periódica, o que levou à descoberta de novos elementos.

- A força de atração entre um elétron e o núcleo depende da magnitude da carga nuclear e da distância média entre o núcleo e o elétron. A força aumenta à medida que a carga nuclear aumenta, e diminui à medida que o elétron se move para mais longe do núcleo.
- Em um átomo polieletrônico, a situação é complicada. Cada elétron em um átomo polieletrônico é *blindado* do núcleo pelos demais elétrons, sofrendo, portanto, uma atração líquida menor do que sofreria se os outros elétrons não estivessem presentes

- Em um átomo polieletrônico, a situação é complicada. Cada elétron em um átomo polieletrônico é *blindado* do núcleo pelos demais elétrons, sofrendo, portanto, uma atração líquida menor do que sofreria se os outros elétrons não estivessem presentes.
- O elétron experimenta uma atração líquida que é o resultado da atração nuclear enfraquecida pelas repulsões intereletrônicas, uma carga nuclear parcialmente blindada, ou carga nuclear efetiva, Z_{ef}, que é sempre menor que a carga nuclear real.

$$Z_{\rm ef} = Z - S$$

O valor de S é geralmente próximo do número de elétrons de caroço do átomo.

- A carga nuclear efetiva aumenta da esquerda para a direita em qualquer período da tabela periódica. Embora o número de elétrons de caroço permaneça igual em todo o período, o número de prótons aumenta.
- Em um grupo, a carga nuclear efetiva que atua sobre os elétrons de valência varia muito menos que em um período.
- Porém, a carga nuclear efetiva aumenta ligeiramente à medida que descemos em um grupo, porque a nuvem mais difusa dos elétrons de caroço é menos eficaz em blindar os elétrons de valência da carga nuclear.

BROWN LEMAY BURSTEN MURPHY WOODWARD STOLTZFUS

Figura 7.5 Variações da carga nuclear efetiva para os elementos do segundo e do terceiro período. Indo de um elemento para outro na tabela periódica, o aumento da Z_{ef}, que atua sobre os elétrons mais internos (1») (circulos vermelhos), acompanha de perto o aumento da carga nuclear Z (linha preta), porque esses elétrons não são muito blindados. Os resultados de vários métodos para calcular a Z_{ef} em relação aos elétrons de valência são mostrados em outras cores.

Tamanhos de átomos e íons

- A menor distância que separa dois núcleos durante as colisões equivale a duas vezes o raio dos átomos. Chamamos esse raio de *raio atômico não ligante* ou *raio de van der Waals*.
- Podemos também definir o raio atômico com base na distância d entre os núcleos de dois átomos quando eles se encontram ligados um ao outro. O raio atômico ligante (raio covalente) para qualquer átomo em uma molécula é igual à metade da distância de ligação d.

Figura 7.6 Distinção entre os raios atômicos não ligante e ligante em uma molécula.

Tamanhos de átomos e íons

Com valores de raio atômico, é possível estimar os comprimentos de ligação em moléculas.
 Vejamos as tendências periódicas dos raios atômicos.

Tamanhos de átomos e íons

- Quando um cátion é formado a partir de um átomo neutro, os elétrons são removidos dos orbitais atômicos ocupados que estão mais distantes do núcleo. Além disso, quando um cátion é formado, a repulsão entre os elétrons é reduzida. Assim, cátions são menores que os átomos que os formam.
- Quando elétrons são adicionados a um átomo para formar um ânion, o aumento da repulsão entre os elétrons faz com que eles se espalhem mais no espaço. Assim, os ânions são maiores que os átomos que os formam.
- Para íons de mesma carga, os raios iônicos aumentam à medida que descemos em um grupo da tabela periódica. Em uma série isoeletrônica, o raio iônico diminui com o aumento da carga nuclear.

Energia de ionização

- A energia de ionização de um átomo ou íon representa a energia mínima necessária para remover um elétron de um átomo ou íon gasoso isolado em seu estado fundamental.
- Em geral, a primeira energia de ionização, I_1 , é a energia necessária para remover o primeiro elétron de um átomo neutro. A segunda energia de ionização, I_2 , é a energia necessária para remover o segundo elétron, e assim por diante.
- As energias de ionização de um dado elemento aumentam à medida que ocorrem remoções sucessivas de elétrons: $I_1 < I_2 < I_3$, e assim por diante.

Tabela 7.2 Valores de energias de ionização sucessivas, I, para os elementos do sódio ao argônio (kJ/mol).

Elemento	11	12	13	14	15	16	17
Na	496	4.562		(Elétrons	da camada mais i	nterna)	
Mg	738	1.451	7.733				
Al	578	1.817	2.745	11.577			
Si	786	1.577	3.232	4.356	16.091		
P	1.012	1.907	2.914	4.964	6.274	21.267	
S	1.000	2.252	3.357	4.556	7.004	8.496	27.107
CI	1.251	2.298	3.822	5.159	6.542	9.362	11.018
Ar	1.521	2.666	3.931	5.771	7.238	8.781	11.995

Energia de ionização

 Vejamos as tendências periódicas das primeiras energias de ionização. Em geral, átomos menores têm energias de ionização mais elevadas. Os mesmos fatores influenciam o tamanho atômico e as energias de ionização.

Afinidade eletrônica

- Todas as energias de ionização para os átomos são positivas: a energia deve ser absorvida para que ocorra a remoção de um elétron. A maioria dos átomos também pode ganhar elétrons para formar ânions. A variação de energia que acontece quando um elétron é adicionado a um átomo gasoso é chamada de afinidade eletrônica. Para a maioria dos átomos, energia é liberada quando um elétron é adicionado.
- Em resumo, a diferença entre energia de ionização e afinidade eletrônica é a seguinte: a energia de ionização mede a variação de energia quando um átomo *perde* um elétron, enquanto a afinidade eletrônica mede a variação de energia quando um átomo *ganha* um elétron. Quanto maior for a atração entre um átomo e um elétron adicionado, mais *negativa* será a afinidade eletrônica do átomo.

Metais, não metais e metaloides

Os elementos podem ser agrupados como metais, não metais e metaloides.
 Algumas das propriedades distintivas de metais e não metais estão resumidas a seguir.

Tabela 7.3 Propriedades características de metais e não metais.

Metais	Não metais
São reluzentes, têm várias cores, embora a maioria seja prateada	Não são reluzentes, têm várias cores
São sólidos maleáveis e flexíveis	São geralmente sólidos frágeis; alguns são duros e outros são macios
São bons condutores de calor e eletricidade	São maus condutores de calor e eletricidade
A maioria dos óxidos metálicos é iônica, sólida e básica	A maioria dos óxidos não metálicos são substâncias moleculares que formam soluções ácidas
Tendem a formar cátions em solução aquosa	Tendem a formar ânions ou oxiânions em solução aquosa

Metais, não metais e metaloides

- Quanto mais um elemento exibir as propriedades físicas e químicas dos metais, maior será seu caráter metálico.
- Metais tendem a ter energias de ionização baixas e, portanto, costumam formar cátions de maneira relativamente fácil. Como resultado, os metais são oxidados (perdem elétrons) quando reagem. A primeira energia de ionização é o melhor indicador de que um elemento se comporta como um metal ou um não metal.
- Os compostos formados por um metal e um não metal tendem a ser substâncias iônicas.
- A maioria dos óxidos de metais é básica.

Figura 7.15 Estados de oxidação representativos dos elementos. Observe que o hidrogênio apresenta números de oxidação positivo e negativo, sendo 1 e -1.

Metais, não metais e metaloides

- Por causa de suas afinidades eletrônicas relativamente grandes e negativas, não metais tendem a ganhar elétrons quando reagem com metais.
- Os compostos formados inteiramente por não metais geralmente são substâncias moleculares que tendem a ser gases, líquidos ou sólidos com baixo ponto de fusão à temperatura ambiente.
- A maioria dos óxidos não metálicos é ácida, isso significa que aqueles que se dissolvem na água formam ácidos.
- As propriedades dos metaloides ficam entre as dos metais e as dos não metais, podendo ter algumas propriedades metálicas características, mas não todas. Vários metaloides, principalmente o silício, são semicondutores elétricos, representando os principais elementos utilizados em circuitos integrados e em chips de computador.

Tendências dos metais dos grupos 1A e 2A

 Os metais alcalinos são sólidos metálicos macios. Todos têm propriedades metálicas características, como a cor prateada, o brilho metálico e a alta condutividade térmica e elétrica.

Tabela 7.4 Algumas propriedades dos metais alcalinos.

Elemento	Configuração eletrônica	Temperatura de fusão (°C)	Densidade (g/cm³)	Raio atômico (Å)	I ₁ (kJ/mol)
Lítio	[He]2s ¹	181	0,53	1,28	520
Sódio	[Ne]3s ¹	98	0,97	1,66	496
Potássio	[Ar]4s ¹	63	0,86	2,03	419
Rubídio	[Kr]5s ¹	39	1,53	2,20	403
Césio	[Xe]6s ¹	28	1,88	2,44	376

Tendências dos metais dos grupos 1A e 2A

- Os metais alcalinos são encontrados na natureza apenas na forma de compostos. Na maioria das vezes, todos os metais alcalinos se ligam diretamente a não metais.
- Por exemplo, eles reagem com o hidrogênio para formar hidretos. O **íon hidreto**, H⁻, átomo de hidrogênio que ganhou um elétron, é diferente do íon de hidrogênio, H⁺, formado quando um átomo de hidrogênio perde seu elétron. Reagem também fortemente com água e oxigênio.
- Submetidos a uma chama, os íons de cada metal alcalino emitem luz de comprimento de onda característico.

Tendências dos metais dos grupos 1A e 2A

- os metais alcalino-terrosos são todos sólidos à temperatura ambiente e possuem propriedades metálicas típicas. Em comparação aos metais alcalinos, os metais alcalinoterrosos são mais duros, densos e fundem a temperaturas mais elevadas.
- As primeiras energias de ionização dos metais alcalino-terrosos são baixas, mas não chegam a ser menores que as dos metais alcalinos. Consequentemente, os metais alcalino-terrosos são menos reativos que seus vizinhos metais alcalinos.

Tabela 7.5 Algumas propriedades do metais alcalino-terrosos.

Elemento	Configuração eletrônica	Temperatura de fusão (°C)	Densidade (g/cm ³)	Raio atômico (Å)	I ₁ (kJ/mol)
Berílio	[He]2s ²	1.287	1,85	0,96	899
Magnésio	[Ne]3s ²	650	1,74	1,41	738
Cálcio	[Ar]4s ²	842	1,55	1,76	590
Estrôncio	[Kr]5s ²	777	2,63	1,95	549
Bário	[Xe]6s ²	727	3,51	2,15	503

- O <u>hidrogênio</u> é um não metal encontrado, na maioria das vezes, como um gás incolor diatômico, H₂(g). Sua reatividade em relação aos não metais reflete a maior tendência de manter seu elétron em comparação com os metais alcalinos. Facilmente, o hidrogênio forma compostos moleculares com não metais. Como já visto, ele forma também íons H⁺ e H⁻.
- O <u>oxigênio</u> é um gás incolor à temperatura ambiente e é encontrado em duas formas moleculares (*alótropos*): O_2 e O_3 . O **ozônio** está presente em quantidades muito pequenas na camada superior da atmosfera e no ar poluído e é formado a partir do O_2 na presença de descargas elétricas, como em tempestades violentas. O oxigênio tem uma grande tendência de atrair elétrons de outros elementos, oxidando-os.

- O <u>enxofre</u> é encontrado diversas formas alotrópicas; sendo a mais comum e estável delas o sólido amarelo de fórmula molecular S₈. Assim como o oxigênio, o enxofre tem a tendência de ganhar elétrons dos outros elementos para formar sulfetos, que contêm o íon S²⁻. O enxofre e os seus compostos (incluindo aqueles presentes no carvão e no petróleo) podem sofrer combustão. O produto principal é o dióxido de enxofre, um dos principais poluentes atmosféricos.
- O <u>selênio</u>, elemento relativamente raro, é essencial para a vida em quantidades bem pequenas, embora seja tóxico em doses elevadas. Há muitos alótropos do Se, incluindo várias estruturas de anel semelhantes ao S_8 .
- A estabilidade térmica dos compostos formados com elementos do grupo 6A e hidrogênio diminui ao longo do grupo.

- Algumas propriedades dos elementos do grupo 7A, os halogênios, podem ser vistas a seguir. Diferentemente dos elementos do grupo 6A, todos os halogênios são não metais típicos. Suas temperaturas de ebulição e de fusão aumentam à medida que o número atômico aumenta.
- Os halogênios têm afinidades eletrônicas altamente negativas, formando íons halogeneto, X⁻.

Tabela 7.7 Algumas propriedades dos halogênios.

Elemento	Configuração eletrônica	Temperatura de fusão (°C)	Densidade	Raio atômico (Å)	I ₁ (kJ/mol)
Flúor	[He]2s ² 2p ⁵	-220	1,69 g/L	0,57	1.681
Cloro	[Ne]3s ² 3p ⁵	-1 02	3,12 g/L	1,02	1.251
Bromo	$[Ar]4s^23d^{10}4p^5$	-7,3	3,12 g/cm ³	1,20	1.140
lodo	$[Kr]5s^24d^{10}5p^5$	114	4,94 g/cm ³	1,39	1.008

- Os elementos do grupo 8A, conhecidos como **gases nobres**, são todos não metais, gases à temperatura ambiente e monoatômicos. Algumas propriedades físicas dos gases nobres estão listadas a seguir.
- São também muito pouco reativos, porque têm as subcamadas s e p completamente preenchidas. Somente os gases nobres mais pesados formam compostos, e apenas com não metais muito ativos, como o flúor.

Tabela 7.8 Algumas propriedades dos gases nobres.

Elemento	Configuração eletrônica	Temperatura de fusão (°C)	Densidade (g/L)	Raio atômico* (Å)	/ ₁ (kJ/mol)
Hélio	1s ²	4,2	0,18	0,28	2.372
Neonio	[He]2s ² 2p ⁶	27,1	0,90	0,58	2.081
Argônio	[Ne]3s ² 3p ⁶	87,3	1,78	1,06	1.521
Criptônio	$[Ar]4s^23d^{10}4p^6$	120	3,75	1,16	1.351
Xenônio	[Kr]5s ² 4d ¹⁰ 5p ⁶	165	5,90	1,40	1.170
Radônio	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶	211	9,73	1,50	1.037