MATH1060: Midterm 3 Practice Problems

The following are practice problems for the first exam.

1. Find all solutions to the following trigonometric equations:

(a)
$$4\cos^2\phi - 1 = 0$$
 $\phi = \frac{\pi}{3} + n\pi, \frac{2\pi}{3} + n\pi$

(b)
$$\csc \nu + \cot \nu = 1 \ \nu = \frac{\pi}{2} + 2\pi n$$

(c)
$$\tan(3\eta) - 1 = 0$$
 $\eta = \frac{\pi}{12} + \frac{n\pi}{3}$

(d) This question was impossible to solve analytically.

2. Find the exact value of each of the following expressions:

(a)
$$\sin(\pi/12) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

(b)
$$\tan(165^\circ) = \frac{\sqrt{3} - 3}{\sqrt{3} + 3}$$

(c)
$$\cos(18^\circ)\cos(12^\circ) - \sin(18^\circ)\sin(12^\circ) = \frac{\sqrt{3}}{2}$$

(d)
$$\sin \frac{\pi}{12} \cos \frac{\pi}{4} + \sin \frac{\pi}{4} \cos \frac{\pi}{12} = \frac{\sqrt{3}}{2}$$

(e)
$$\cos 75^{\circ} + \cos 15^{\circ} = \frac{\sqrt{6}}{2}$$

3. Find the exact solutions to the following trigonometric equations in the interval $[0, 2\pi)$

(a)
$$\cos 2\chi - \cos \chi = 0$$
. $\chi = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$

(b)
$$\tan 2\nu - 2\cos \nu = 0$$
. This one is tough. $\nu = \frac{\pi}{6}, \frac{3\pi}{2}, \frac{5\pi}{6}$

(c)
$$4 - 8\sin^2 \mu = 0$$
. $\mu = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

(d) $\sin\frac{\rho}{2}+\cos\rho=0$. $\rho=\pi$. There is a subtlety in this problem (and problems like it) that we did not discuss in class. This subtlety will not come up on the exam, however there may be a problem similar to this one. Briefly, the issue is that since the original equation has the angle $\frac{\rho}{2}$, if we solve for ρ , and add an integer multiple of 2π to get a coterminal angle, then $\frac{\rho+2\pi n}{2}$ will not necessarily be coterminal to $\frac{\rho}{2}$. In class, we solved this problem and determined $\frac{-\pi}{3}$ is a solution. Then we hastily concluded that $\frac{5\pi}{3}$ is also a solution. A quick check shows that $\frac{5\pi}{3}$ is not a solution, so the only solution in $[0,2\pi)$ is $\rho=\pi$. Again, this will not be an issue you need to worry about on the exam. It is easily dealt with, though.

(e)
$$\sin \frac{\beta}{2} + \cos \beta = 1$$
. $\beta = 0, \frac{\pi}{3}, \frac{5\pi}{3}$

- 4. Use the power reducing formula to rewrite the expression $\sin^4 x \cos^2 x$ in terms of the first power of cosine. $\frac{1}{16} \left[1 \cos(2x) \cos(4x) \cos(2x) \cos(4x) \right]$
- 5. Use the sum-to-product or product-to-sum formula to rewrite each expression:
 - (a) $\sin 5\gamma \sin 3\gamma = \frac{1}{2} \left[\cos(2\gamma) \cos(8\gamma) \right]$
 - (b) $\cos 6\delta + \cos 2\delta = 2\cos(4\delta)\cos(2\delta)$
- 6. Use the half-angle formula to simplify $\sqrt{\frac{1-\cos 14x}{2}}$. $\sin(7x)$
- 7. If $\sin u = \frac{7}{25}$ and u lies in the second quadrant, find $\cos(u/2) \cdot \sqrt{1/50}$
- 8. Use any means you like to solve the triangle with $\alpha=24.3^{\circ},\ \gamma=54.6^{\circ},\ {\rm and}\ c=10.3.$ $\beta=101.1^{\circ},\ a=5.20,\ b=12.40$
- 9. Use any means you like to solve the triangle with $\alpha=120^{\circ},\ \beta=45^{\circ},\ {\rm and}\ c=16.\ \gamma=15^{\circ},\ a=53.54,\ b=43.71$
- 10. Use any means you like to solve the triangle with $\beta=63.2^{\circ},\ \gamma=47.6^{\circ}$ and b=12.2. $\alpha=69.2^{\circ},\ a=12.78,\ c=10.09$
- 11. Use any means you like to solve the triangle with $\alpha = 110^{\circ}$, a = 125, and b = 100. $\beta_1 = 48.74^{\circ}$, $\gamma_1 = 21.26^{\circ}$, $c_1 = 48.23$. Only one solution.
- 12. Use any means you like to solve the triangle with $\beta = 100^{\circ}$, b = 14, and c = 19. Impossible.
- 13. Use any means you like to solve the triangle with $\alpha = 28^{\circ}$, b = 12.8, and a = 8. $\beta_1 = 48.69^{\circ}$, $\gamma_1 = 103.31^{\circ}$, $c_1 = 16.58$, and $\beta_2 = 131.31^{\circ}$, $\gamma_2 = 20.69^{\circ}$, $c_2 = 6.42$
- 14. Use Heron's Formula to find the area of a triangle with side lengths 7, 8, and 9. Answer: $12\sqrt{5}$
- 15. Use any means you like to solve the triangle with $\alpha = 50^{\circ}$, b = 15 and c = 30. a = 23.38, $\beta = 29.44^{\circ}$, $\gamma = 100.56^{\circ}$
- 16. Use any means you like to solve the triangle with side lengths 7,8, and 9. $\beta = 48.19^{\circ}$, $\alpha = 73.40^{\circ}$, $\gamma = 58.41^{\circ}$. Depending on how you labelled the angles, your answer may differ, but the numbers should be the same.
- 17. Write the vector, \vec{v} , with initial point (-4,5) and terminal point (3,-1) in standard form. Answer: $\vec{v} = \langle 7, -6 \rangle$
- 18. Write the vector from the last question as a linear combination of the standard unit vectors \hat{i} and \hat{j} . Answer: $\vec{v} = 7\hat{i} 6\hat{j}$
- 19. Compute the magnitude of the vector, \vec{v} , from the last question. Answer: $||\vec{v}|| = \sqrt{85}$
- 20. Let $\vec{v} = \langle 3, -1 \rangle$ and $\vec{w} = \langle -1, 4 \rangle$. Write $3\vec{v} 2\vec{w}$ in standard form. Answer: $\langle 11, -11 \rangle$