A	atmospheric discharge, 34
acid-alkali modeling, 154–156 acid rain, 141 active layer thickness, 59–60, 88–90 active layer velocity, 83–87, 90, 99–100 aggregate, lightweight (LWA), 3, 285–294 aggregate kilns, 43f	atmospheric discharge, 34 atomization, 149–152 axial motion, 26–28 axial segregation, 102 B Bac, N., 196 Bagnold, R. A., 53–54, 63 banding, 102 Barr, P. V., 67, 68, 197, 200–201
air composition, 299 infiltration, 34, 43, 47, 56, 259 at low pressure (dry), 303–304 water percentage calculations, 256 air-fuel ratio, 136–137 air requirements for combustion acid-alkali modeling, 154–156 determining, 135–136 pulverized coal or coke, 145, 146–147, 170	Becher process, 283–284 Becker, H. A., 47 bed. See also specific types depth, determining, 29–30 heat transfer flame to bed, 195–196 introduction, 173–174 paths, 17f rotating bed mode, 214–215 wall to bed, 198–199, 207–211
sources of, 34 air velocities, typical values	segregation model, 106–110 thermal model, 218–224 bed behavior diagram, 23–24
of, 43 <i>f</i> annular shift kiln, 5 <i>f</i> Arrhenius equation, 41, 153 Ash Grove Cement Plant, 51	bed behavior diagram, 23–24 bed motion, modes of, 20 <i>f</i> bed phenomenon, 15–18 Blasius, H., 39
Aspdin, Joseph, 2 atmosphere international standard	Blasius problem, 80 bloating, 233, 286, 288–292 Boateng, A. A., 67, 68, 69, 197
measurements, 312–313 units of conversion, 301	boiler and industrial furnace act (EPA), 130, 141

Boudouard reaction, 281–282	firing in kilns, 143–144, 156
Boynton, R. S., 272	heat transfer, 196
Brimacombe, J. K., 282	sensible heat calculations, 258
	tires combined with, 142
C	types of, 139–140
1-1	Cohen, E. S., 196
calcination, 246–247, 261,	coke, 140–141, 143–146, 170–171
266–272	combustion. See also specific types,
calcination calculation, 251, 255	e.g. char combustion
calciners, fluidized-bed, 6f	air requirements for
Campbell, C. S., 70	acid-alkali modeling,
carbon black, 142	154–156
carbon dioxide (CO2), 133,	determining, 135–136
138, 289	pulverized coal or coke, 145
carbon monoxide (CO), 133, 163	146–147, 170
carbothermic reduction, 280–284	sources of, 34
Carnot cycle, 240	CFD modeling, 156–158
cascading bed, 19–21	heat release calculations, 261
cataracting bed, 20f	introduction, 129–131
cement, history of, 1–2 cement kilns	mass and energy balance, 255
	mole and mass fractions of
air infiltration, 47	intended fule, 131–133
air velocities, 43 <i>f</i>	practical stoichiometry,
Craya-Curtet parameter, 47, 156	135–136
· ·	radiative effect of combustion
energy usage, 278–280	gases, 195–196
fuel types used, 141	combustion chemistry, 133–135
history of, 1–2	combustion efficiency, 34, 46,
schematic, 276 cement process chemistry,	48, 50
275–278	combustion modeling
cenosphere, 149	acid-alkali, 154–156
centrifuging bed, 19–21	Hawthrone method, 154
CFD. <i>See</i> computational fluid	overview, 152–154
dynamics (CFD)	computational fluid
char combustion, 147–149	dynamics (CFD)
clay, 287, 289–294	modeling rotary kiln processes,
coal	156–160 pulverized fuel burner
combustion chemistry, 133	evaluation, 163–169
combustion requirements,	
170–171	concentration transport equation, 41, 153
conveying air, 248, 259	concrete, 3, 287 <i>f</i>
delivery and firing systems,	concrete ships, 286
145–146	confined flame theory, 47

confined jet-free jet relation, 46–47 confined jets, 34, 43–44, 46–48, 155 continuity equation, 40, 153 conversion factors, SI to British, 298, 302 coolers, 10, 12f Couette flow, 35–37 countercurrent flow rotary kiln, 4f cracking, 51, 140 Craya, A., 47	jet properties and, 43–53 saltation and, 53–56 environmental sustainability, 145 equation of state, 41, 153 F Fan, L. T., 106 fans. See specific types of Ferron, J. R., 60, 72, 207–211 field kilns, 2 flame shape and character air-fuel ratio in, 137–138
Craya-Curtet parameter, 47–48, 155–156	Craya-Curtet parameters, 47–48, 156
Curtet, R., 47	droplet fuel size and, 151
D	heat dissipation and, 130 heat flux and, 46–47
Damkohler I and II, 42, 46	luminosity-emissions relation, 51, 195
Davies, T. R. H., 61	flame temperature, adiabatic,
dirty fans, 56	136–138
dolomite, 267–268	flame theory, 47
dryers, 10	flotsam, 109, 114. See also
dry kilns, 9–10	percolation
dumbell-type rotary kiln, 7 <i>f</i> dust, site survey, 249	flow behavior, transverse,
dust constituents, 260	24–26
dust entrainment, 34, 40, 53–56.	flow visualization modeling,
See also entrainment;	154–156
saltation	flue gases, 134, 260 fluid flow
E	laminar and turbulent, 36–39, 154
Edison, Thomas A., 2	in pipes, 33–40
efficiency, thermal, 243–244	sources of, 34, 43
Ehlers, E. G., 289, 290	forced draft fans, 56
emissions modeling, 161–163	4-nine destruction
emissivity, 194–195	efficiencies, 138
energy cost savings, 142, 145	freeboard aerodynamics
energy savings, maximizing, 135	in dust entrainment, 34, 40,
enthalpy transport equation,	53–56
41, 153	fluid flow in pipes, effect on,
	mara novi in pipes, effect on,
entrainment. See also dust	33–40 introduction, 33–34

freeboard aerodynamics (Continued) mixing and, 43–53 total flow inducement, 56 freeboard phenomenon-bed phenomena synergy, 15–17, 33 freeboard(s) dimensionless parameters of combustion, 42 heat transfer among exposed surfaces, 199–203 coefficients for radiation, 196–198 to exposed bed and wall, 3–4, 4f, 15, 198–199 introduction, 173–174 to the wall, 187–189 in indirect fired kilns, purging volatiles, 12 thermal model, 218–221 free jet-confined jet relation, 46–47 free jets, 43–45 friction velocity, 40 fuel. See also specific fuel types atomization of liquid, 149–152 combusion and, 129–131 energy calculations, 256	gases H, U, S, G, 306–311 radiative effect of combustion, 195–196 specific heats, 304–305 gas flow rate, 34 gas-phase combustion, 158–159 Gauthier, C., 86 Gibbs free energy and entropy, 159, 240–243 grain inertia regime, 63 grain temperature, 66 granular flow defined, 59 equations of motion, 64–67 kinetic theory application to, 63–64 mechanisms of momentum transfer, 63 modeling, 59–62, 72 observed, in a rotary drum, 25, 68–72 other flow types compared, 61–62, 61f theories governing, 62–63 granular temperature, 66, 87–88, 90 Greek nomenclature, Appendix green coke, 140 Guruz, H. K., 196 Gyro-Therm, 50
friction velocity, 40 fuel. <i>See also specific fuel types</i> atomization of liquid, 149–152 combusion and, 129–131	87–88, 90 Greek nomenclature, Appendix green coke, 140
types used in rotary kilns, 130–131, 138–139 fuel-air systems, 135–136, 137 <i>f</i> fuel efficiency, 51, 135, 138,	Gyro-Therm, 50 H Hagen-Poiseuille equation of
154, 244 fuel heating value, 130, 134–135 fuel NOx, 161–162 fuel oil firing, 149–152	laminar flow, 37 Hawthrone method, 154 Hayde, Stephen J., 3, 286 hazardous waste incineration, 130, 138, 243
G gas components, natural and exit gas, 250 gaseous fuels, 130, 137, 138f	heat balance, 239 heat content, units of conversion, 300–301 heat exchange, cross section, 16f heat flux, 46–47, 175
, , , - , 1	, , , ,

heat of reaction/heat of	single particle for shale processing, 232–237
formation, 240 heat recuperators, 8	solution procedure, 224–227
heat transfer	Henein, H., 67, 69, 113, 119
in the bed, 173–174, 207–215	higher heating value (HHV), 134
bed to wall, 198–199, 207–211	horizontal kilns, 4–7
combustive gases, radiative	Hottel, H. C., 196
effect, 195–196	
conduction, 174, 175–180,	I
211–215	ilmenite, 283
conduction-convection	indirect fired kilns, 12–13
problems, 182–184	induced draft (I.D.) fan, 34,
conduction in the wall,	35, 56
187–189	infiltration air, 34, 43, 47,
convection, 174, 180–182	56, 259
estimating, 40	instantaneous jet, 51
exposed surfaces, 198–203	irradiation, 192
flame to bed, 195–196	, ,
in the fluid, 42 methods overview, 174–175	J
packed beds, 211–214	
radiant, 50	Jenkins, B. G., 154, 205
radiation, 51, 138, 174,	jets. See flame shape and
189–191	character; specific types of
radiation exchange, 194–195	jetsam, 109. <i>See also</i> percolation
radiation shape factors,	jetsam loading-number
192–194	concentration, 124–125
refractory lining materials and,	K
184–187	
rotating bed mode, 214–215	kerosene, 149
shell losses, 184	kidney, 107
wall to bed, 198–199, 207–211	kiln design, 29–30, 56, 135. See
heat transfer, freeboard	also specific types of kilns
among exposed surfaces,	kiln geometry
199–203	determining capacity, 28
coefficients for radiation,	plug-flow estimations from, 29
196–198	residence time relation, 18, 23,
to exposed bed and wall, 198–199	26–27
introduction, 173–174	kiln loading, 21–23 kiln wall
to the wall, 187–189	heat transfer
heat transfer model	freeboard, 187–189
results and application,	refractory lining materials
228–232	and. 184–187

kiln wall (Continued)	energy balance inputs, 246–247
shell losses, 184	global heat and material,
wall to bed, 198–199,	243–244
207–211	introduction, 239
	mass balance inputs, 245–246
L	sensible energy, input and
	output, 258–260
laminar jets, 45	shell heat loss, 251–254
Lewis number, 152	site survey-measured variables,
lightweight aggregate (LWA), 3,	247–251
285–294	
lime kilns	thermal module for chemically
about, 272–274	reactive system, 244–245
active layer, 59	metallurgy, extractive, 280
air velocities, 43f	methane combustion, 133–134
Craya-Curtet parameter,	microexplosions, 152
156, 273	Millen, Thomas, 2
history of, 1–2, 266	minerals process applications
modern, 10	carbothermic reduction
lime manufacturing, 265–266, 272	processes, 280–283
lime products, 260	cement kilns, 275–280
limestone, 248, 259, 266	cement process chemistry,
limestone calcination, 246–247,	276–278
261, 266–272	introduction, 265
limestone calcination kilns, 47	lightweight aggregate, 285–294
liquid burnable materials (LBM),	lime manufacturing, 265–266
130, 152, 196	limestone dissociation
long dry kilns, 9–10	(calcination), 266–272
long kilns, history of, 2	ore reduction processes, 280
lower heating value (LHV),	rotary lime kiln, 272–274
134–135	mixing
Luminis Pty. Ltd., 50	atomization requirements,
Lun, C. K. K., 65, 83, 98	149–152
Lunn, 104	in carbothermic processes, 282
Luxton, R. E., 51	
	Hawthrone method, 154 introduction, 101
M	•
	jet properties and, 43–53
Mach number, 41	modeling within the bed,
mass, units of conversion, 300	105–106
mass and energy balance	purpose of, 24
calcination calculation,	turbulent, 39, 154
251, 255	Moles, F. D., 154, 196, 205
chemical compositions, 246	momentum equation, 153
combustion, 251, 255	Mullinger, P. J., 154

N	momentum equation
Nathan, G. J., 51	numerical solution scheme,
natural gas, 138, 196, 250,	90–91
256, 258	solution in the active layer,
Navier-Stokes, 56, 64, 159	83–85
Newby, M. P., 47	results and validation, 92–94
Nicholson, T., 26–28	simplifying assumptions, 74–75
nitric oxide (NOx) emissions, 51,	Peclet number, 42 Peray, K. E., 275
161–162	percolation
nomenclature, Appendix	defined, 102
notation, variables, unit, and	spontaneous, 104, 107–109,
description, 297	112–113, 120
nozzle tip velocities, 43	percolation velocity, 106, 107,
,	110–112, 114
	Pershin, V. F., 59–60
O	petroleum coke, 140–141
Owen, P. R., 54	Phillips, E. L., 289
oxy-hemoglobin formation, 133	pipes, fluid flow in, 33–40
ony nemograpim formation, 100	PJ burner, 51
	plug-flow estimations, 29
P	Polak, S. L., 140
Parker, D. J., 29	pollution control, 34, 50, 135,
particle-laden jets, 52–53, 143	244. See also specific
particulate flow behavior in rotary	pollutants
kilns, 67–68, 160	Portland cement, 2
particulate flow model	pot kilns, 2
active layer	Prandtl number, 38, 41
analytical expression for	precalciners, 10
thickness of the, 88–90	precessing jets, 49–51
momentum equation	preheaters, 11f
solution, 83–85	pressure, units of conversion, 301
velocity profile in the,	prompt NO, 162
85–87	pulverized fuel
application, 94–95	burner evaluation using CFD,
density and granular	163–169
temperature profiles,	combustion systems confined jets, 33–34, 46
87–88	particle-laden jets, 52
description, 73–74	delivery and firing systems,
introduction, 72–73	145–146
momentum conservation	reaction kinetics of carbon
governing equations, 75–79	particles, 147–149
integral equation, 79–83	sources of, 139–144
integral equation, 12 00	3341663 01, 107 111

R	introduction, 15–17
radiosity, 192	transverse bed motion, 19–23
Ransome, F., 2	transverse flow behavior, 24–26
reacting flows, multicomponent,	rotary reactor, 15
basic equations, 40–43	round jets, 45–46
recirculation, 46–47	Ruhland, W., 154
recirculation vortex, 48–49, 156	rutile, 283
relaxation time, 52–53	
residence time, 46, 149, 154	S
dimensionless, 28–30	saltation, 53–56, 146
residence time-kiln geometry	Sarofim, A., 196
relation, 18, 23, 26–27	Savage, S. B., 62, 104, 111
Reynolds number, 36, 41, 46, 150	Schlichting, H., 35
Reynolds principle, 36, 37, 38	Schneider, G. M., 51
Ricou, F. P., 45–46	scrubbing, 141
rolling bed, 20–22, 73–79, 82	seals, 34
Rosin-Rammler relation,	Seaman, W. C., 22, 26, 28, 61
143–144, 160	segregation
rotary kilns. See also specific types of	mechanisms of, 102–104
basics, 3–4, 129	reducing, 104
competitive features, 3, 12, 287	segregation equation solutions
dams and tumblers, purpose	mixing and segregation,
of, 7–8	116–117, 125–127
design challenges, 56	radial mixing, 115–116
efficiency, 51, 56	strongly segregating system,
evolution of, 1–7	114–115
fuel types used in, 130–131,	segregation model
138–139	application, 120–121
lifters, energy-savings with, 7–8	within the bed, 106–110
other contact kilns compared,	boundary conditions, 113–114
4–7	governing equations, 110–113
regulation of, 130, 141,	governing equations numerical
287–288	solution, 117–119
sizing, 19	introduction, 105–106
types of, 7–13	validation, 119–120
rotary kilns, operation basics	segregation rates, 103
axial motion, 26–28	sensible heat calculations, 66
bed phenomenon, 16–19	sensible heat defined, 240
dimensionless residence time,	shaft-type kilns, 4, 6
28–30	shale, 3, 232–237, 286, 288–294
freeboard phenomenon, 15–17	shell heat loss, 184, 250, 251–254
geometrical features and their	ships, concrete, 286
transport effects, 18–19	short dry kilns, 10, 11f

sieving, inverse, 103 Singh, D. K., 60, 68, 72, 207–211 skin friction coefficient, 40 slate, 286, 289–294 slipping bed, 20 SL/RN kilns, 280–283 slumping bed, 20, 82 Spaulding, D. B., 45–46 squeeze expulsion, 110	Thring, M. W., 47 tire combustion, 141–143 titaniferous materials, 282–285 tongue, 107 trajectory segregation, 102–103 transport phenomenon history of, 2 modeling, 16 Tscheng, S. H., 211
stack gases, 134 stationary kilns, 2	turbulence modeling, 158–159 turbulent diffusion flames, 34,
Stefan-Boltzmann constant, 300 Strouhal number, 50–51	42, 46 turbulent jets, 43–46, 154
submerged jets, 43–44 sulfar dioxide (SO2)	turbulent kinetic energy (TKE), 154
emissions, 141 surface velocity, deep beds, 26	turbulent variable swirl burners, 48, 50
swirling jets, 48–49 swirl number, 49	V
T	van der Hegge Zijnen, 45 vaporization, 134–135,
Tackie, E. N., 56	150–152
temperature, formulas for	vapors
calculating, 300. See also	H, U, S, G, 306–311
specific types of	specific heats, 304–305
temperature thermal model	velocity, units of conversion, 300
description, 216–217	Venkateswaran, V., 282
one-dimensional for bed and	vertical kilns, 4–7
freeboard, 218–221	viscosity, 35-36, 98-99
quasi three-dimensional for	von Karman, T., 79
the bed, 223–224	vortex shedding, 48–49, 156
of rotary kiln processes, 215–216	W
two-dimensional for the bed, 221–223	Wang, R. H., 106 waste fuels, 130, 152, 196, 287
thermal NO, 162 thermodynamics, chemical, 239–240	Watkinson, A. P., 211 wet kilns, 9
thermodynamic tables	7
gases, 301	Z
inorganic materials, 313	Zhang, Y., 70