The Standard Error

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Simple idea: Choose a random subset of the population

Estimating a population mean

Controlled scenario: True population with N := 4,082 individuals

Heights: h_1, h_2, \ldots, h_N

Population mean:

$$\mu_{\mathsf{pop}} := \frac{1}{N} \sum_{i=1}^{N} h_i = 175.6$$

400 random samples

Sample mean = 175.5 ($\mu_{pop} = 175.6$)

400 random samples

Sample mean = 175.2 ($\mu_{pop} = 175.6$)

400 random samples

Sample mean = 176.1 ($\mu_{pop} = 175.6$)

Random sampling

Data: $a_1, a_2, ..., a_N$

Random samples: \tilde{x}_1 , \tilde{x}_2 , ..., \tilde{x}_n

Each \tilde{x}_i is selected independently and uniformly at random with replacement

Samples are independent identically distributed (i.i.d.) random variables with pmf $\,$

$$p_{\widetilde{x}_j}(a_i) = P(\widetilde{x}_j = a_i) = \frac{1}{N}, \qquad 1 \leq i \leq N, \ 1 \leq j \leq n$$

Sample means of 10,000 subsets of size 400

Sample mean has to be analyzed probabilistically

Sample mean is unbiased

Modeled as a random variable

$$ilde{m} := rac{1}{n} \sum_{i=1}^n ilde{x}_i$$
 $\mathrm{E}\left[ilde{m}
ight] = \mu_{\mathsf{pop}}$

Standard error

Random measurements: \tilde{x}_1 , \tilde{x}_2 , ..., \tilde{x}_n

Deterministic parameter of interest: γ

Unbiased estimator: $h(\tilde{x}_1, \dots, \tilde{x}_n)$

The standard error of the estimator is its standard deviation

$$\mathsf{se}\left[h(\tilde{x}_1,\ldots,\tilde{x}_n)\right] := \sqrt{\mathrm{Var}\left[h(\tilde{x}_1,\ldots,\tilde{x}_n)\right]}$$

Standard error

Since the estimator is unbiased $\mathrm{E}\left[h(\tilde{x}_1,\ldots,\tilde{x}_n)\right]=\gamma$

$$se [h(\tilde{x}_1, \dots, \tilde{x}_n)] := \sqrt{\operatorname{Var} [h(\tilde{x}_1, \dots, \tilde{x}_n)]}$$

$$= \sqrt{\operatorname{E} \left[(h(\tilde{x}_1, \dots, \tilde{x}_n) - \operatorname{E} [h(\tilde{x}_1, \dots, \tilde{x}_n)])^2 \right]}$$

$$= \sqrt{\operatorname{E} \left[(h(\tilde{x}_1, \dots, \tilde{x}_n) - \gamma)^2 \right]}$$

Standard error of the sample mean

$$\operatorname{se}\left[\widetilde{m}\right]^{2} = \operatorname{Var}\left[\widetilde{m}\right] = \operatorname{Var}\left[\frac{1}{n}\sum_{j=1}^{n}\widetilde{x}_{j}\right]$$
$$= \frac{1}{n^{2}}\operatorname{Var}\left[\sum_{i=1}^{n}\widetilde{x}_{i}\right]$$

Uncorrelated random variables

If \tilde{a} and \tilde{b} are uncorrelated

$$\operatorname{Var}[\tilde{a} + \tilde{b}] = \operatorname{Var}[\tilde{a}] + \operatorname{Var}[\tilde{b}]$$

Sum of independent random variables

Independent random variables \tilde{a}_1 , \tilde{a}_2 , ..., \tilde{a}_n with finite variance

$$\operatorname{Var}\left[\sum_{k=1}^{n} \tilde{a}_{k}\right] = \operatorname{Var}\left[\tilde{a}_{1}\right] + \operatorname{Var}\left[\sum_{k=2}^{n} \tilde{a}_{k}\right]$$
$$= \operatorname{Var}\left[\tilde{a}_{1}\right] + \operatorname{Var}\left[\tilde{a}_{2}\right] + \operatorname{Var}\left[\sum_{k=3}^{n} \tilde{a}_{k}\right]$$
$$= \sum_{k=1}^{n} \operatorname{Var}\left[\tilde{a}_{k}\right]$$

Standard error of the sample mean

$$\operatorname{se}\left[\widetilde{m}\right]^{2} = \frac{1}{n^{2}} \operatorname{Var}\left[\sum_{j=1}^{n} \widetilde{x}_{j}\right]$$

$$= \frac{1}{n^{2}} \sum_{j=1}^{n} \operatorname{Var}\left[\widetilde{x}_{j}\right]$$

$$= \frac{\sigma_{\operatorname{pop}}^{2}}{n}$$

$$\operatorname{Var}\left[\widetilde{x}_{j}\right] := \operatorname{E}\left[\left(\widetilde{x}_{j} - \operatorname{E}\left[\widetilde{x}_{j}\right]\right)^{2}\right]$$

$$= \operatorname{E}\left[\left(\widetilde{x}_{j} - \mu_{\operatorname{pop}}\right)^{2}\right]$$

$$= \sum_{i=1}^{N} (a_{i} - \mu_{\operatorname{pop}})^{2} p_{\widetilde{x}_{j}}(a_{i})$$

$$= \frac{1}{N} \sum_{i=1}^{N} (a_{i} - \mu_{\operatorname{pop}})^{2} = \sigma_{\operatorname{pop}}^{2}$$

Standard error of the sample mean

$$\operatorname{se}\left[\widetilde{m}\right] = \frac{\sigma_{\mathsf{pop}}}{\sqrt{n}}$$

No dependence on *N*!

Height data: n = 20

 $\mu_{\rm pop}:=$ 175.6 cm, $\sigma_{\rm pop}=$ 6.85 cm

Total population N := 4,082

10⁴ sample means

n = 100

 $\mu_{\mathrm{pop}} := 175.6 \mathrm{~cm},~\sigma_{\mathrm{pop}} = 6.85 \mathrm{~cm}$

Total population N := 4,082

10⁴ sample means

n = 1,000

 $\mu_{\mathrm{pop}} := 175.6 \mathrm{~cm},~\sigma_{\mathrm{pop}} = 6.85 \mathrm{~cm}$

Total population N := 4,082

10⁴ sample means

Height data

Estimating a population proportion

COVID-19 prevalence in New York

Population proportion:

$$\theta_{\mathsf{pop}} = 0.05$$

1,000 random samples out of 8.8 million

Sample proportion = 0.055 ($\theta_{pop} = 0.05$)

1,000 random samples out of 8.8 million

Sample proportion = 0.049 ($\theta_{pop} = 0.05$)

1,000 random samples out of 8.8 million

Sample proportion = 0.052 ($\theta_{pop} = 0.05$)

Sample proportions of 10,000 subsets of size 1,000

Standard error of sample proportion

Data: a_1, a_2, \ldots, a_N

$$a_i = 1$$
 if *i*th data point satisfies a certain condition

Random samples:
$$\tilde{x}_1, \, \tilde{x}_2, \, \ldots, \, \tilde{x}_n$$

Sample proportion is sample mean
$$ilde{m} := rac{1}{n} \sum_{j=1}^n ilde{x}_j$$

$$\operatorname{se}\left[\tilde{m}\right] = \frac{\sigma_{\mathsf{pop}}}{\sqrt{n}}$$

Population variance

$$\sigma_{\mathsf{pop}}^{2} := \frac{1}{N} \sum_{i=1}^{N} (a_{i} - \theta_{\mathsf{pop}})^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} a_{i}^{2} - \frac{2\theta_{\mathsf{pop}}}{N} \sum_{i=1}^{N} a_{i} + \frac{1}{N} \sum_{i=1}^{N} \theta_{\mathsf{pop}}^{2}$$

$$= \theta_{\mathsf{pop}} - 2\theta_{\mathsf{pop}}^{2} + \theta_{\mathsf{pop}}^{2}$$

$$= \theta_{\mathsf{pop}} (1 - \theta_{\mathsf{pop}})$$

Standard error of sample proportion

Data: $a_1, a_2, ..., a_N$

$$a_i = 1$$
 if *i*th data point satisfies a certain condition

Random samples:
$$\tilde{x}_1, \, \tilde{x}_2, \, \ldots, \, \tilde{x}_n$$

Sample proportion is sample mean $\tilde{m} := \frac{1}{n} \sum_{j=1}^{n} \tilde{x}_{j}$

$$\operatorname{se}\left[\tilde{m}\right] = rac{\sigma_{\mathsf{pop}}}{\sqrt{n}}$$

$$= \sqrt{rac{ heta_{\mathsf{pop}}(1 - heta_{\mathsf{pop}})}{n}}$$

 $\theta_{\mathsf{pop}} := 0.05$

Total population N := 8 million

Distribution of 10^4 sample means for n = 100

 $\theta_{\mathsf{pop}} := 0.05$

Total population N := 8 million

Distribution of 10^4 sample means for n = 1,000

 $\theta_{\mathsf{pop}} := 0.05$

Total population N := 8 million

Distribution of 10^4 sample means for n = 10,000

What have we learned

Definition of standard error

Standard error of sample mean and sample proportion

Random sampling works!