16				 				 		
1										
4		11								
1	Reg. No		11 111	 			 			
-1	Tres. Lin			 		 1 3			11	
ŧ	-	5								

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Seventh Semester

18AUE313T - ARTIFICIAL NEURAL NETWORKS AND FUZZY LOGIC

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

Tim	ne: 3 Hours		Max.	Marks:	: 100
	Mar	ks BL	со		
1.	` '	g algorithm? B) DBSCAN D) t-SNE	1	İ	1
2.	What is the input layer in a neural network resp (A) Applying activation functions (B	oonsible for? 3) Providing the network with raw data	1	2	1
	(C) Backpropagation (D	Pooling information			
3.	What do you call the variables that adjust the network?	emselves during learning in a neural	1	2	1
	· ·) Gradients) Labels			
4.		data to train the model?) Unsupervised learning) Semi-supervised learning	1	and .	1
5.	What is the primary characteristic of a feed forv (A) Cycles or loops between neurons (B	vard neural network?) Data flows in one direction, from input to output	1	2	2
	(C) Continuous feedback to input layers (D) Memory retention across sequences			
6.	In a feed forward neural network, what layer in predictions?	1	2	2	
	•) Input layer) Output layer			
7.	Which algorithm is used alongside back propag network?	1	3	2	
	(A) K-Means (B)	Principal Component Analysis (PCA)			
	(C) Gradient Descent (D)) Decision Trees			
8.	What role does the loss function play in back pr (A) Determines the architecture of the neural network	opagation?) Provides initial weights for the neurons	1	2	2
	(C) Measures the difference between the actual and predicted output	Acts as the activation function for the hidden layers			

9.	Which of the following best defines a fuzzy(A) A set with clear boundaries between its members and non-members.(C) A set that contains only integers.	set? (B) A set where elements have degrees of membership between 0 and 1. (D) A set defined by a probability distribution.	1	2	3
10.	What is the primary difference between cris(A) Crisp sets have elements with degrees of membership.(C) Crisp sets have a clear boundary for membership, while fuzzy sets do not.	p sets and fuzzy sets? (B) Fuzzy sets do not allow overlapping between sets. (D) Fuzzy sets can only have integer values.	1	2	3
presents 4	Which of the following is a common application (A) Text processing (C) Control systems	ation of fuzzy logic? (B) Financial analysis (D) Cryptography	1	2	3
12.	If an element has a membership degree o membership degree in the complement of A (A) 0.3 (C) 1.0		ì	3	3
13.	What is the primary function of a fuzzy logic(A) To operate using binary logic only.(C) To transform a fuzzy set into a crisp value.	c controller (FLC)? (B) To map crisp input values to crisp output values. (D) To make decisions based on vague or imprecise information.	i	2	4
14.	In a fuzzy logic controller, what is the role of (A) Convert crisp inputs into fuzzy sets. (C) Convert fuzzy outputs back into crisp values.		1	2	4
15.	In a fuzzy logic controller, the "rule base" co (A) The crisp input and output values. (C) A collection of fuzzy if-then rules.	ontains: (B) The defuzzification methods available. (D) The history of all control actions taken.	1	2	4
16.	 Why the designer to choose a fuzzy logic co (A) FLCs are always faster in computation. (C) FLCs can be intuitively designed based on expert knowledge without requiring precise mathematical models. 		I	3	4
17.	 What is a neuro-fuzzy system primarily desit (A) Reduce neural network computation time. (C) Combine the learning capability of neural networks with the linguistic representation power of fuzzy logic. 	igned to achieve? (B) Implement fuzzy logic in binary systems. (D) Replace traditional neural networks.	1	2	5
18.	Adaptive Neuro-Fuzzy Inference Systems (A) Clustering tasks. (C) Image recognition.	ANFIS) are primarily used for: (B) Function approximation. (D) Speech synthesis	1	2	5

19.	What differentiates a neuro-fuzzy system (A) The elimination of if-then rules.	from a traditional fuzzy system? (B) The ability to automatically tune membership functions based on data.	1	2	5
	(C) Operating exclusively in the fuzzy domain.	(D) Ignoring input-output data relations.			
20.	Which application could benefit from the (A) Password hashing (C) Graphics rendering	interpretability of a neuro-fuzzy system? (B) Medical diagnosis (D) Data compression	wax	3	5
	$PART - B (5 \times 4 =$	Mar	ks BL	CO	
	Answer any 5 (Questions			
21.	Compare human brain and traditional con	nputers.	4	4	I
22.	How back-propagation is used to reduce e	errors in machine learning?	4	3	1
23.	What is perceptron and logistic neuron?		4	2	2
24.	List any four algorithm for low dimension	n datasets.	4	2	2
25.	What is linguistic variable and term in fuz	zzy set theory?	4	2	3
26.	Justify the need of PID controllers with p	ractical applications.	4	3	4
27.	Give an overview about Neuro-fuzzy syst	iems.	4	1	5
	PART - C (5 × 12 =	= 60 Marks)	Mar	ks BL	CO
	Answer all Qu	· ·			
28.	possibilities related to accuracy and	about regression analysis and suggest the convergence. OR)	12	3	1
	(b) "Developing a system where a car on continuous feedback from the ro	adjusts its own suspension settings based oad conditions to achieve the optimal ride ne learning approach and explain briefly			
29.	(a) Compare feed forward and Back pro	opagation neural networks?	12	2	2
	(b) Explain the need of Multi-layer renetwork. Justify with example?	neural network over single-layer neural			
30.	sets.	Gaussian membership function in fuzzy	12	2	3
	(b) Explain fuzzy if-then rule base with	OR)			
31.	, ,	zy logic controller in Anti-lock braking	12	4	4
	(0	OR) fuzzy logic controller in Automotive			
32.	conditioning unit.	d implementation of Automotive Air-	12	2	5
	•	OR) ro controller explain with any practical			

* * * *