c. Determine the direction cosines to each of the principal stresses and calculate $\theta_{x'x}$, $\theta_{x'y}$, $\theta_{x'z}$, $\theta_{y'x}$, $\theta_{y'y}$, $\theta_{y'z}$, $\theta_{z'x}$, $\theta_{z'y}$, and $\theta_{z'z}$.

Using MatLab

>> acos(V)*180/pi

ans =

129.3450	90.0000	39.3450
51.7807	126.8699	59.5231
62.3541	36.8699	67.6420

$\theta_{x,x} = 129.3$	$\theta_{x'y} = 51.8$	$\theta_{x,z}=62.4$
$\theta_{y,x} = 90.0$	$\theta_{y,y} = 126.9$	$\theta_{y'z} = 36.9$
$\theta_{z,x}=39.3$	$\theta_{z,y}=59.5$	$\theta_{z,z}=67.6$

d. Determine the transformation matrix from the original state of stress to the principal state of stress and prove that it is the transformation matrix by using it to transform the original state of stress.

$$>> T=V'$$

T =

-0.6340	0.6187	0.4640
	-0.6000	
0.7733	0.5072	0.3804

>> T*STRE*T'

ans =

>> P

 $\mathbf{P} =$

$$\begin{array}{cccc} -20.9902 & 0 & 0 \\ 0 & 20.0000 & 0 \\ 0 & 0 & 80.9902 \end{array}$$