Modeling nonlinear relationships

David Puelz

Polynomial models

Log transformations

Log-log models and price elasticity

Utilities data set

The data set utilities contains information on the utility bills for a house in Minnesota. We'll focus on two variables:

- **dailyspend** is the average amount of money spent on utilities (e.g. heating) for each day during the month
- **temp** is the average temperature outside for that month

What problems do you see here?


```
model <- lm(dailyspend ~ temp, data=utilities)
summary(model)
Call:
lm(formula = dailyspend ~ temp, data = utilities)
Residuals:
   Min 10 Median 30 Max
-2.847 -0.504 -0.024 0.515 2.448
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.34762 0.20645 35.6 <2e-16 ***
       temp
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.866 on 115 degrees of freedom
Multiple R-squared: 0.841, Adjusted R-squared: 0.84
F-statistic: 608 on 1 and 115 DF, p-value: <2e-16
```

Linearity and homoscedasticity are violated

Using polynomial regression to fix problems

- If a polynomial curve (e.g., quadratic, cubic, etc) would be a better fit for the data than a line, we can fit a curve to the data
- The way we do this is by adding X^2 , X^3 , etc. terms to the model as additional predictors

```
poly.model <- lm(dailyspend ~ temp + I(temp^2), data=utilities)
summarv(polv.model)
Call:
lm(formula = dailyspend ~ temp + I(temp^2), data = utilities)
Residuals:
    Min 10 Median 30 Max
-2.8725 -0.2805 -0.0393 0.2639 2.1912
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.472289 0.390789 24.24 < 2e-16 ***
           -0.211555 0.019105 -11.07 < 2e-16 ***
temp
I(temp^2) 0.001248 0.000204 6.12 1.3e-08 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.755 on 114 degrees of freedom
Multiple R-squared: 0.88, Adjusted R-squared: 0.878
F-statistic: 419 on 2 and 114 DF, p-value: <2e-16
```

Adding an X^2 term fits a parabola to the data

It solves the linearity problem!

What about a higher-order polynomial?

- We could fit a cubic curve by adding an X³ term (in addition to the X and X² terms)
- Making the polynomial higher order will increase R²—why not go nuts and fit a 7th degree polynomial?

Degree		R^2
1	linear	0.841
2	quadratic	0.8803
3	cubic	0.8812
4	quartic	0.8813
5		0.8815
6		0.8822
7		0.8837

Too high a degree "overfits" the data

Too high a degree creates dangers with extrapolation

• Start simple: only add higher-degree terms to the extent it gives you a substantial increase in R², or makes an assumption hold that wasn't holding before

- Start simple: only add higher-degree terms to the extent it gives you a substantial increase in R², or makes an assumption hold that wasn't holding before
- Be careful about overfitting

- Start simple: only add higher-degree terms to the extent it gives you a substantial increase in R², or makes an assumption hold that wasn't holding before
- Be careful about overfitting
- Be particularly careful about extrapolating beyond the range of the data

- Start simple: only add higher-degree terms to the extent it gives you a substantial increase in R², or makes an assumption hold that wasn't holding before
- Be careful about overfitting
- Be particularly careful about extrapolating beyond the range of the data
- Mind-bender: We can think about an X² term as an interaction of X with itself: in a parabola, the slope depends on the value of X!

Polynomial models

Log transformations

Log-log models and price elasticity

Using transformations to enhance interpretability and fix problems

- Sometimes, a violation of regression assumptions can be fixed by transforming one or the other of the variables (or both).
- When we transform a variable, we have to also transform our interpretation of the model
- Often the new interpretation is more meaningful!

The log transformation

The log transformation is frequently useful in regression, because many nonlinear relationships are naturally exponential.

- $\log_b x = y$ when $b^y = x$
- For example, $\log_{10} 1000 = 3$, $\log_{10} 100 = 2$, and $\log_{10} 10 = 1$
- The natural log is \log_e , where $e\approx 2.72$ when we say "log" we will usually mean "natural log" (although for our purposes the base doesn't matter)

Moore's Law

- Moore's Law was a prediction made by Gordon Moore in 1965 (!) that the number of transistors on computer chips would double every 2 years
- This implies exponential growth, so a linear model won't fit well (and neither will any polynomial)

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

A linear model is a spectacular fail

Modeling exponential growth

- If $Y = ae^{bX}$, then $log(Y) = \underbrace{log(a)}_{\beta_0} + \underbrace{b}_{\beta_1} X$
- In other words, log(Y) is a linear function of X
- So to model Y as an exponential function of X, predict log(Y) as a linear function of X

log(Transistors) does have a linear relationship with year

A log-linear model satisfies the linearity assumption

Our model is

$$log(\overline{Transistors}) = -681.21 + 0.35 \cdot Year$$

Our model is

$$log(\widehat{Transistors}) = -681.21 + 0.35 \cdot Year$$

Two interpretations of the slope coefficient:

• Every year, the predicted log of transistors goes up by 0.35

Our model is

$$log(\widehat{Transistors}) = -681.21 + 0.35 \cdot Year$$

Two interpretations of the slope coefficient:

- Every year, the predicted log of transistors goes up by 0.35
- More useful: Every year, the predicted number of transistors goes up by 35%

Slope interpretations in the presence of logs

Model	Equation	Interpretation
Linear	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$	1 unit increase in X $ ightarrow$
		$\widehat{eta}_{\scriptscriptstyle 1}$ unit increase in \widehat{Y}
Log-linear	$\log(\hat{Y}) = \hat{\beta}_{o} + \hat{\beta}_{1}X$	1 unit increase in X $ ightarrow$
		$pprox (100 \widehat{eta}_1)\%$ increase in \widehat{Y}
Linear-log	$\hat{\mathbf{Y}} = \hat{\boldsymbol{\beta}}_{0} + \hat{\boldsymbol{\beta}}_{1} \log(\mathbf{X})$	1% increase in X $ ightarrow$
		$pprox$ 0.01 $\widehat{eta}_{\scriptscriptstyle 1}$ unit increase in \widehat{Y}
Log-log	$\log(\hat{Y}) = \hat{\beta}_{o} + \hat{\beta}_{1}\log(X)$	1% increase in X $ ightarrow$
		$pprox \hat{eta}_1\%$ increase in \hat{Y}

Slope interpretations in the presence of logs

Model	Example	Interpretation
Linear	$\hat{Y} = 2 + 0.3X$	1 unit increase in X $ ightarrow$
		0.3 unit increase in Ŷ
Log-linear	$\log(\hat{Y}) = 2 + 0.3X$	1 unit increase in X $ ightarrow$
		$pprox$ 30% increase in \hat{Y}
Linear-log	$\hat{Y} = 2 + 0.3 \log(X)$	1% increase in X $ ightarrow$
		$pprox$ 0.003 unit increase in $\hat{ m Y}$
Log-log	$\log(\hat{Y}) = 2 + 0.3 \log(X)$	1% increase in X $ ightarrow$
		$pprox$ 0.3% increase in \hat{Y}

When is the log transformation useful?

- You can transform *X*, *Y*, or both
- Anytime you need to "squash" one of the variables (logs make huge numbers not so big!), try transforming it with a log
- In this case, Transistors is skewed right so it is a good candidate for log
- You may need to do a little bit of trial and error to see what works best
- Other transformations are possible!

Log-log models and price elasticity

An elasticity interpretation for log-log models

- The beer data set contains sales data for cases of beer sold at a supermarket chain
- PRICE12PK is the price of 12-packs, and CASES12PK is the number of 12-packs sold
- There are also variables for 18-packs and 30-packs

What is price elasticity?

• Price elasticity is the ratio of how much demand (quantity sold) will increase when the price increases:

elasticity =
$$\frac{\% \text{ change in demand}}{\% \text{ change in price}}$$

= $\% \text{ increase in demand when price increases by 1\%}$

What is price elasticity?

• Price elasticity is the ratio of how much demand (quantity sold) will increase when the price increases:

elasticity =
$$\frac{\% \text{ change in demand}}{\% \text{ change in price}}$$

= $\% \text{ increase in demand when price increases by 1\%}$

• This is exactly our interpretation of slope coefficients in a log-log model!

Will a linear model work to predict quantity from price?

This is essentially a demand curve:

Fitting a log-log model

Log transformations can also fix heteroscedasticity!

Compare the residual plots for the linear model (left) vs the log-log model (right):

