

Indexes to CORROSION

Vol. 63, Nos. 1-12

Title and Book Review Index

January (No. 1)***Proceedings of the CORROSION/2005 Research Topical Symposium***

Corrosion Resistance at Elevated Temperatures in Highly Aggressive Environments <i>M. Schütze</i>	4
Stress Corrosion Cracking Behavior of Alloys in Aggressive Nuclear Reactor Core Environments <i>G.S. Was and P.L. Andresen</i>	19
Material Performance in Chlorinated Supercritical Water Systems <i>C. Schroer, J. Konys, J. Novotny, and J. Hausselt</i>	46
Pushing the Limits of Metals in Corrosive Oil and Gas Well Environments <i>P.R. Rhodes, L.A. Skogsberg, and R.N. Tuttle</i>	63
Corrosion Review: "Introduction to the High Temperature Oxidation of Metals," by N. Birks, G.H. Meier, and F.S. Pettit <i>Reviewed by S.A. Bradford</i>	104

February (No. 2)

Discussion: Statistical Characterization of Pitting Corrosion—Part 1: Data Analysis and Part 2: Probabilistic Modeling for Maximum Pit Depth <i>A. Valor, D. Rivas, F. Caleyo, and J.M. Hallen</i>	107
Effect of Copper Addition on Corrosion Behavior of High-Performance Austenitic Stainless Steel in Highly Concentrated Sulfuric Acid Solution—Part 1 <i>S.-T. Kim and Y.-S. Park</i>	114
Galvanic Corrosion on Vacuum-Brazed UNS S31803 Duplex Stainless Steel Using Ni-Cr-Fe-P Alloy Filler Metals <i>L.H. Chiu, C.H. Wu, and H. Chang</i>	127
Sulfide Film Formation on Copper Under Electrochemical and Natural Corrosion Conditions <i>J. Smith, Z. Qin, F. King, L. Werme, and D.W. Shoesmith</i>	135
Crevice Corrosion Penetration Rates of Alloy 22 in Chloride-Containing Waters <i>X. He and D.S. Dunn</i>	145
Phosphorous Alloying and Annealing Effects on the Corrosion Properties of Nanocrystalline Co-P Alloys in Acidic Solution <i>H. Jung and A. Alfantazi</i>	159
Monitoring the Atmospheric Corrosion Loss of Copper During Wet/Dry Cyclic Conditions in Oxalic Acid Solutions <i>G.A. EL-Mahdy and K.B. Kim</i>	171
Investigation of Carbon Dioxide Corrosion of Mild Steel in the Presence of Acetic Acid—Part 1: Basic Mechanisms <i>K.S. George and S. Nešić</i>	178
Effect of Oil-in-Water Emulsions on the Performance of Carbon Dioxide Corrosion Inhibitors <i>E. Gulbrandsen and J. Kvarekval</i>	187

Corrosion of Bed Nozzle Alloys in a Wood-Waste Fluidized Bed Power Boiler

<i>J.R. Kish, D.L. Singbeil, P. Eng, O. Posein, and R. Seguin</i>	197
---	-----

***Corrosion Review:* "Coatings Technology Handbook,**

3rd Edition," by A.A. Tracton <i>Reviewed by K. Abate</i>	208
--	-----

March (No. 3)

Selective Corrosion in Sodium Chloride Aqueous Solution of Cupronickel Alloys with Aluminum and Iron Additions <i>R.C.N. Liberto, R. Magnabosco, and N. Alonso-Falleiros</i>	211
---	-----

Effect of Molybdenum and Chromium Addition on the Susceptibility to Sulfide Stress Cracking of High-Strength, Low-Alloy Steels

<i>S.U. Koh, J.M. Lee, B.Y. Yang, and K.Y. Kim</i>	220
--	-----

Primers to the Reinforcement in Mortars: Effectiveness as a Function of Primer Type, Exposure Conditions, and Amount of Sodium Chloride

<i>P. Castro-Borges, M. Balancán, E.I. Moreno, and J.H. Chan-Cabrera</i>	231
--	-----

Corrosion Inhibition of Aluminum Alloy 6061 by Rare Earth Chlorides

<i>A.K. Mishra and R. Balasubramaniam</i>	240
---	-----

Critical Ion Concentration for Pitting and General Corrosion of Copper

<i>A. Yabuki and M. Murakami</i>	249
--	-----

Effect of Chloride-to-Chromate Ratio on the Protective Action of Zinc Surface Films Under Atmospheric Weathering Conditions

<i>T. Prosek, D. Thierry, M. Olsson, and U. Bexell</i>	258
--	-----

High-Throughput Assessment of Inhibitor Synergies on Aluminum Alloy 2024-T3 Through Measurement of Surface Copper Enrichment

<i>B.D. Chambers and S.R. Taylor</i>	268
--	-----

Effect of Chromium Ion from Autoclave Material on Corrosion Behavior of Nickel-Based Alloys in Supercritical Water

<i>Y. Daigo, Y. Watanabe, and K. Sue</i>	277
--	-----

Acetate-Enhanced Corrosion of Carbon Steel—Further Factors in Oilfield Environments

<i>D. Pletcher, D. Sidorkin, and B. Hedges</i>	285
--	-----

***Corrosion Review:* "Corrosion Control Through Organic Coatings," by A. Forsgren**

<i>Reviewed by M. Davies</i>	296
------------------------------------	-----

April (No. 4)**Formation and Dissolution Behavior of Anodic Oxide Films on Titanium in Oxalic Acid Solutions**

<i>G.A. EL-Mahdy</i>	299
----------------------------	-----

Measurement of Electrolyte Resistance Fluctuations Generated by Oil-Brine Mixtures in a Flow-Loop Cell

<i>H. Bouazaze, F. Huet, and R.P. Nogueira</i>	307
--	-----

Indexes to CORROSION

Vol. 63, Nos. 1-12

Title and Book Review Index

January (No. 1)***Proceedings of the CORROSION/2005 Research Topical Symposium***

Corrosion Resistance at Elevated Temperatures in Highly Aggressive Environments <i>M. Schütze</i>	4
Stress Corrosion Cracking Behavior of Alloys in Aggressive Nuclear Reactor Core Environments <i>G.S. Was and P.L. Andresen</i>	19
Material Performance in Chlorinated Supercritical Water Systems <i>C. Schroer, J. Konys, J. Novotny, and J. Hausselt</i>	46
Pushing the Limits of Metals in Corrosive Oil and Gas Well Environments <i>P.R. Rhodes, L.A. Skogsberg, and R.N. Tuttle</i>	63
Corrosion Review: "Introduction to the High Temperature Oxidation of Metals," by N. Birks, G.H. Meier, and F.S. Pettit <i>Reviewed by S.A. Bradford</i>	104

February (No. 2)

Discussion: Statistical Characterization of Pitting Corrosion—Part 1: Data Analysis and Part 2: Probabilistic Modeling for Maximum Pit Depth <i>A. Valor, D. Rivas, F. Caleyo, and J.M. Hallen</i>	107
Effect of Copper Addition on Corrosion Behavior of High-Performance Austenitic Stainless Steel in Highly Concentrated Sulfuric Acid Solution—Part 1 <i>S.-T. Kim and Y.-S. Park</i>	114
Galvanic Corrosion on Vacuum-Brazed UNS S31803 Duplex Stainless Steel Using Ni-Cr-Fe-P Alloy Filler Metals <i>L.H. Chiu, C.H. Wu, and H. Chang</i>	127
Sulfide Film Formation on Copper Under Electrochemical and Natural Corrosion Conditions <i>J. Smith, Z. Qin, F. King, L. Werme, and D.W. Shoesmith</i>	135
Crevice Corrosion Penetration Rates of Alloy 22 in Chloride-Containing Waters <i>X. He and D.S. Dunn</i>	145
Phosphorous Alloying and Annealing Effects on the Corrosion Properties of Nanocrystalline Co-P Alloys in Acidic Solution <i>H. Jung and A. Alfantazi</i>	159
Monitoring the Atmospheric Corrosion Loss of Copper During Wet/Dry Cyclic Conditions in Oxalic Acid Solutions <i>G.A. EL-Mahdy and K.B. Kim</i>	171
Investigation of Carbon Dioxide Corrosion of Mild Steel in the Presence of Acetic Acid—Part 1: Basic Mechanisms <i>K.S. George and S. Nešić</i>	178
Effect of Oil-in-Water Emulsions on the Performance of Carbon Dioxide Corrosion Inhibitors <i>E. Gulbrandsen and J. Kvarekval</i>	187

Corrosion of Bed Nozzle Alloys in a Wood-Waste Fluidized Bed Power Boiler

<i>J.R. Kish, D.L. Singbeil, P. Eng, O. Posein, and R. Seguin</i>	197
---	-----

***Corrosion Review:* "Coatings Technology Handbook,**

3rd Edition," by A.A. Tracton <i>Reviewed by K. Abate</i>	208
--	-----

March (No. 3)

Selective Corrosion in Sodium Chloride Aqueous Solution of Cupronickel Alloys with Aluminum and Iron Additions <i>R.C.N. Liberto, R. Magnabosco, and N. Alonso-Falleiros</i>	211
---	-----

Effect of Molybdenum and Chromium Addition on the Susceptibility to Sulfide Stress Cracking of High-Strength, Low-Alloy Steels

<i>S.U. Koh, J.M. Lee, B.Y. Yang, and K.Y. Kim</i>	220
--	-----

Primers to the Reinforcement in Mortars: Effectiveness as a Function of Primer Type, Exposure Conditions, and Amount of Sodium Chloride

<i>P. Castro-Borges, M. Balancán, E.I. Moreno, and J.H. Chan-Cabrera</i>	231
--	-----

Corrosion Inhibition of Aluminum Alloy 6061 by Rare Earth Chlorides

<i>A.K. Mishra and R. Balasubramaniam</i>	240
---	-----

Critical Ion Concentration for Pitting and General Corrosion of Copper

<i>A. Yabuki and M. Murakami</i>	249
--	-----

Effect of Chloride-to-Chromate Ratio on the Protective Action of Zinc Surface Films Under Atmospheric Weathering Conditions

<i>T. Prosek, D. Thierry, M. Olsson, and U. Bexell</i>	258
--	-----

High-Throughput Assessment of Inhibitor Synergies on Aluminum Alloy 2024-T3 Through Measurement of Surface Copper Enrichment

<i>B.D. Chambers and S.R. Taylor</i>	268
--	-----

Effect of Chromium Ion from Autoclave Material on Corrosion Behavior of Nickel-Based Alloys in Supercritical Water

<i>Y. Daigo, Y. Watanabe, and K. Sue</i>	277
--	-----

Acetate-Enhanced Corrosion of Carbon Steel—Further Factors in Oilfield Environments

<i>D. Pletcher, D. Sidorkin, and B. Hedges</i>	285
--	-----

***Corrosion Review:* "Corrosion Control Through Organic Coatings," by A. Forsgren**

<i>Reviewed by M. Davies</i>	296
------------------------------------	-----

April (No. 4)**Formation and Dissolution Behavior of Anodic Oxide Films on Titanium in Oxalic Acid Solutions**

<i>G.A. EL-Mahdy</i>	299
----------------------------	-----

Measurement of Electrolyte Resistance Fluctuations Generated by Oil-Brine Mixtures in a Flow-Loop Cell

<i>H. Bouazaze, F. Huet, and R.P. Nogueira</i>	307
--	-----

Influence of Seawater Nutrient Content on the Early Immersion Corrosion of Mild Steel—Part 1: Empirical Observations <i>R.E. Melchers</i>	318
Modeling of Flow-Induced Corrosion with Nonuniform Boundary Conditions <i>J. Zhang and N. Li</i>	330
Enhancement of Localized Corrosion in Aluminum Alloys by Weak Acids <i>T.J.R. Leclerc, A.J. Davenport, and R.C. Newman</i>	338
Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media <i>L.R. Hilbert, T. Hemmingsen, L.V. Nielsen, and S. Richter</i>	346
Reactor Corrosion in Ceria Production by Hydrothermal Synthesis Under Supercritical Conditions <i>V. Shankar Rao and H.S. Kwon</i>	359
Corrosion Performance of Concrete Cylinder Piles <i>K. Lau, A.A. Sagüés, L. Yao, and R.G. Powers</i>	366
Epoxy Powder Clearcoats Used for Anticorrosive Purposes Cured with Ytterbium III Trifluoromethanesulfonate <i>S.J. Garcia and J. Suay</i>	379
Corrosion Review: "ASM Handbook, Volume 13c, Corrosion: Environments and Industries," by S.D. Cramer and B.S. Covino, Jr., editors Reviewed by M. Schorr	392

May (No. 5)

Heat-Affected Zone Sensitization and Stress Corrosion Cracking in 12% Chromium Type 1.4003 Ferritic Stainless Steel <i>M. Du Toit, G.T. Van Rooyen, and D. Smith</i>	395
Influence of Seawater Nutrient Content on the Early Immersion Corrosion of Mild Steel—Part 2: The Role of Biofilms and Sulfate-Reducing Bacteria <i>R.E. Melchers</i>	405
Stress Corrosion Cracking of Alloy 400 in Copper Sulfate Solution <i>A. Barnes, J. Deakin, and R.C. Newman</i>	416
Mechanical and Environmental Influences on Stress Corrosion Cracking of an X-70 Pipeline Steel in Dilute Near-Neutral pH Solutions <i>B. Fang, E.-H. Han, J. Wang, and W. Ke</i>	419
Effect of Pulsed Gas Tungsten Arc Welding Process Parameters on Pitting Corrosion Resistance of Type 304L Stainless Steel Welds <i>P.K. Giridharan and N. Murugan</i>	433
Environmental Effects on the Fracture Toughness of a Duplex Stainless Steel (UNS S31803) <i>S. Roychowdhury, V. Kain, and R.C. Prasad</i>	442
Stress Corrosion Cracking Behavior of Pure Titanium in Iodine-Alcohol Solutions <i>S.B. Farina and G.S. Duffó</i>	450
Cavitation—Corrosion Studies on Welded and Nonwelded Duplex Stainless Steel in Aqueous Lithium Bromide Solutions <i>D.M. García-García, J. García-Antón, A. Igual-Muñoz, and E. Blasco-Tamarit</i>	462
Effect of Fluoride Ions on Crevice Corrosion and Passive Behavior of Alloy 22 in Hot Chloride Solutions <i>R.M. Carranza, M.A. Rodríguez, and R.B. Rebak</i>	480
Corrosion Review: "Handbook of Plastic Processes," by C.A. Harper, editor Reviewed by K. Abate	494

June (No. 6)

Transition from Marine Immersion to Coastal Atmospheric Corrosion for Structural Steels <i>R.E. Melchers</i>	500
Interpretation of Impedance Data for Porous Electrodes and Diffusion Processes <i>D.M. Bastidas</i>	515
Sacrificial Anode Cathodic Protection of Aluminum-Coated Steel for Automotive Mufflers <i>Y.-S. Choi, D.-H. Shin, and J.-G. Kim</i>	522
Oxidation and Electrical Conductivity Behavior of Spinel Coatings for Metallic Interconnects of Solid Oxide Fuel Cells <i>P. Wei, X. Deng, M.R. Bateni, and A. Petric</i>	529
Use of Coupled Multi-Electrode Arrays to Advance the Understanding of Selected Corrosion Phenomena <i>N.D. Budiansky, F. Bocher, H. Cong, M.F. Hurley, and J.R. Scully</i>	537
Chemistry of Concentrated Salts Formed by Evaporation of Formation Water and the Impact on Stress Corrosion Cracking of Duplex Stainless Steel <i>A. Turnbull, P. Nicholson, and S. Zhou</i>	555
Three-Dimensional Boundary Element Method and Finite Element Method Simulations Applied to Stray Current Interference Problems. A Unique Coupling Mechanism That Takes the Best of Both Methods <i>L. Bortels, A. Dorochenko, B. Van den Bossche, G. Weyns, and J. Deconinck</i>	561
Corrosion Behavior of Model Zirconium Alloys in Deaerated Supercritical Water at 500°C <i>Q. Peng, E. Gartner, J.T. Busby, A.T. Motta, and G.S. Was</i>	577
Atmospheric Corrosion Monitoring Inside the Reactor Vessel of a Retired Nuclear Power Plant <i>E. Otero, D. de la Fuente, B. Chico, F. Madrid, V. Naranjo, and M. Morcillo</i>	591
Corrosion Review: "Modern Surface Technology," by F.-W. Bach Reviewed by W. Fürbeth	598
July (No. 7)	
Corrosion Behavior of Alloys 625 and 718 in Supercritical Water <i>X. Ren, K. Sridharan, and T.R. Allen</i>	603
Surface Layer Dissolution Kinetics of Aluminum Alloy 7075 in Various Temps <i>Z. Zhao and G.S. Frankel</i>	613
Pourbaix Diagrams for Nickel in Concentrated Aqueous Lithium Bromide Solutions at 25°C <i>M.J. Muñoz-Portero, J. García-Antón, J.L. Guiñón, and V. Pérez-Herranz</i>	625
Blistering on Painted Automotive Materials Induced by Galvanic Coupling with Rubber Material <i>N. LeBozec, J.-L. Baudoin, V. Orain, and D. Thierry</i>	635
Characterization of the Corrosion Products Formed on Carbon Steel in Qinghai Salt Lake Atmosphere <i>Q.X. Li, Z.Y. Wang, W. Han, and E.H. Han</i>	640
Research and Cracking Implications from an Assessment of Two Variants of Near-Neutral pH Crack Colonies in Liquid Pipelines <i>W. Bouaeshi, S. Ironside, and R. Eadie</i>	648
In Situ Observation of Initial Corrosion of MgAl9Zn1 Magnesium Alloy in Cyclic Wet-Dry Conditions Using Environmental Scanning Electron Microscopy <i>J. Chen, J. Wang, E. Han, and W. Ke</i>	661

Inhibition of Aluminum Alloy 2024 Corrosion by Vanadates: An In Situ Atomic Force Microscopy Scratching Investigation <i>M. Iannuzzi and G.S. Frankel</i>	672
Controlling Hydrogen Embrittlement in Precharged Ultrahigh-Strength Steels <i>H. Dogan, D. Li, and J.R. Scully</i>	689
Effect of Hydrocarbons on the Internal Corrosion of Oil and Gas Pipelines <i>S. Papavinam, A. Doiron, T. Panneerselvam, and R.W. Revie</i>	704
August (No. 8)	
2007 W.R. Whitney Award Lecture: Molecular In Situ Studies of Atmospheric Corrosion <i>C. Leygraf, J. Hedberg, P. Qiu, H. Gil, J. Henriquez, and C.M. Johnson</i>	715
Corrosion Kinetics Studies of AISI 1020 Carbon Steel from Dissolved Oxygen Consumption Measurements in Aqueous Sodium Chloride Solutions <i>L. Cáceres, L. Herrera, and T. Vargas</i>	722
Effects of Temper and Potential on Localized Corrosion Kinetics of Aluminum Alloy 7075 <i>T.-S. Huang and G.S. Frankel</i>	731
Purity of Colloidal Magnetite Particles Used as a Model Corrosion Product <i>M. Barale, C. Mansour, G. Lefèvre, F. Carrette, H. Catalette, E.M. Pavageau, M. Féodoroff, and G. Côté</i>	744
Time-Frequency Signal Filtering of Coulostatically Induced Transients Based on Empirical Mode Decomposition <i>Y.-T. Zhao and X.-P. Guo</i>	749
Protective Iron Carbonate Films—Part 3: Simultaneous Chemo-Mechanical Removal in Single-Phase Aqueous Flow <i>V. Ruzic, M. Veidt, and S. Nešić</i>	758
Flow-Assisted Corrosion of Carbon Steel Under Neutral Water Conditions <i>T. Satoh, Y. Shao, W.G. Cook, D.H. Lister, and S. Uchida</i>	770
Temperature Effects on Oxide Film Properties of Grade-7 Titanium <i>X. He, J.J. Noël, and D.W. Shoesmith</i>	781
Corrosion Resistance in Highly Concentrated Hydrochloric Acid and Creep Rupture Strength of a Ti-Pd Alloy for a Supercritical Water Oxidation Reactor <i>T. Oe, T. Iwamori, S. Kawasaki, A. Suzuki, H. Daimon, and K. Fujie</i>	793
Corrosion Fatigue of High-Copper Dental Amalgams <i>J. Agazadeh Mohandes, B. Majidi, and A. Beygi Kheradmand</i>	799
Corrosion Review: "Cathodic Protection," by L. Lazzari and P. Pedeferri Reviewed by A. Moosavi.....	808
September (No. 9)	
2007 F.N. Speller Award Lecture: Prediction of Reinforced Concrete Structure Durability by Electrochemical Techniques <i>J.A. González</i>	811
A Statistical Model for Localized Corrosion in 7xxx Aluminum Alloys <i>T.-S. Huang, S. Zhao, G.S. Frankel, and D.A. Wolfe</i>	819
Performance of High-Velocity Oxy-Fuel-Sprayed Chromium Carbide-Nickel Chromium Coating in an Actual Boiler Environment of a Thermal Power Plant <i>T.S. Sidhu, S. Prakash, and R.D. Agrawal</i>	828
Electrochemical Characteristics of Molybdenum/Aluminum-Neodymium Double Thin Film in Tetramethyl-Ammonium Hydroxide Solution <i>J.-H. Huang and S.-C. Yen</i>	835
Effects of Reinforcement and Coarse Aggregates on Chloride Ingress into Concrete and Time-to-Corrosion: Part 1—Spatial Chloride Distribution and Implications <i>H. Yu and W.H. Hartt</i>	843
Mössbauer Effect of Rust Layer Formed on Steel in Different Marine Corrosion Zones <i>Y. Li</i>	850
Significance of Hydrogen Evolution During Cathodic Protection of Carbon Steel in Seawater <i>T. Okstad, Ø. Rannestad, R. Johnsen, and K. Nisancioglu</i>	857
Correlation Between Electrochemical Noise Resistance and Noise Impedance for Mild and Stainless Steel as a Function of pH <i>A. Torres, J. Uruchurtu, J.G. González-Rodríguez, and S. Serna</i>	866
Effect of Orientation and Shielding in the Early Corrosion of Mild Steel in Tidal Marine Conditions <i>R. Jeffrey and R.E. Melchers</i>	872
Efficiency Control of Cathodic Protection Measured Using Passivation Verification Technique in Different Concrete Structures <i>I. Martínez, C. Andrade, O. Vennesland, U. Evensen, R.B. Polder, and J. Leggedor</i>	880
Corrosion Review: "Fatigue and Durability of Structural Materials," by S.S. Manson and G.R. Halford Reviewed by L. Magagnin.....	894
October (No. 10)	
Aluminum Basic Benzoate-Based Coatings: Evaluation of Anticorrosion Properties by Electrochemical Impedance Spectroscopy and Accelerated Tests <i>G. Blustein, R. Romagnoli, J.A. Jaén, A.R. Di Sarli, and B. del Amo</i>	899
Dissolution of Magnetite Coupled with Iron of Various Surface Areas <i>A.M. Al-Mayouf, N.A. Al-Mobarak, and A.A. Al-Swaiyih</i>	916
Effects of Reinforcement and Coarse Aggregates on Chloride Ingress into Concrete and Time-to-Corrosion: Part 2—Spatial Distribution of Coarse Aggregates <i>H. Yu, R.J. Himitob, and W.H. Hartt</i>	924
Investigating a Mechanism for Transgranular Stress Corrosion Cracking on Buried Pipelines in Near-Neutral pH Environments <i>S.L. Asher, B. Leis, J. Colwell, and P.M. Singh</i>	932
Effect of Simulated Groundwater Chemistry on Stress Corrosion Cracking of Alloy 22 <i>K.T. Chiang, D.S. Dunn, and G.A. Cagnolino</i>	940
A Galvanic Sensor for Monitoring the Corrosion Damage of Buried Pipelines: Part 3—Correlation of Probe Current to Cathodic Protection and Stray Current <i>Y.-S. Choi, J.-G. Kim, and J.-Y. Koo</i>	951
Comparison of Testing Techniques Used to Analyze the Corrosion Resistance of Sacrificial Coating Systems <i>D.P. Schmidt, B.A. Shaw, E. Sikora, W.W. Shaw, and L.H. Laliberte</i>	958

Corrosion of Phosphoric Irons in Cement Grout G. Sahoo, R. Balasubramaniam, and S. Misra.....	975
Corrosion Review: "ASM Handbook, Volume 13B, Corrosion: Materials," by S.D. Cramer, B.S. Covino, Jr. Reviewed by S. Brossia.....	983

November (No. 11)

Brass Corrosion Inhibitors in Simulated Atmospheric Water C. Liang and G. Gao	987
Fatigue Crack Growth Behavior of Sensitized Type 304 Stainless Steel Under Boiling Water Reactor Conditions Y.Y. Chen, H.C. Shih, L.H. Wang, and J.C. Oung.....	997
Testing of Carbon Dioxide Corrosion Inhibitor Performance at High Flow Velocities in Jet Impingement Geometry. Effects of Mass Transfer and Flow Forces E. Gulbrandsen and A. Granå	1009
Effects of Loading Mode and Temperature on Stress Corrosion Crack Growth Rates of a Cold-Worked Type 316L Stainless Steel in Oxygenated Pure Water Z. Lu, T. Shoji, Y. Takeda, A. Kai, and Y. Ito	1021
Stress Corrosion Crack Growth in Type 316 Stainless Steel in Supercritical Water Q.J. Peng, S. Teyssyre, P.L. Andresen, and G.S. Was	1033
Effect of Magnetic Field on the Corrosion Behavior of Magnetostrictive Iron-Gallium Alloy Single Crystals T.V. Jayaraman, S. Guruswamy, and M.L. Free.....	1042
Dependence of Stress Corrosion Crack Velocity on Strain Rate for a Binary Noble-Metal Alloy R.C. Newman.....	1048
A Mechanistic Model of Top-of-the-Line Corrosion Z. Zhang, D. Hinkson, M. Singer, H. Wang, and S. Nešić.....	1051

Corrosion Behavior of Zinc, Galvanized, Mild Steel in Water-Concrete Environment T. Błaszczyński and A. Łowirska-Kluge	1063
Corrosion Review: "Corrosion of Weldments," by J.R. Davis Reviewed by B. Valdez	1070

December (No. 12)

Thermal, Mechanical, and Anticorrosive Characterization of an Epoxy Primer M.T. Rodríguez, S.J. García, J.J. Gracenea, C. Vitores, and J.J. Suay.....	1075
Corrosion Mitigation in Supercritical Water with Chromium Ion Y. Daigo, Y. Watanabe, and K. Sue	1085
A Quantitative Study of Concrete-Embedded Steel Corrosion Using Potentiostatic Pulses D.M. Bastidas, J.A. González, S. Feliu, A. Cobo, and J.M. Miranda.....	1094
Influence of Oxygen Concentration of 288°C Water and Alloy Composition on the Films Formed on Fe-Ni-Cr Alloys C.S. Kumai and T.M. Devine	1101
Cold Work and Temperature Dependence of Stress Corrosion Crack Growth of Austenitic Stainless Steels in Hydrogenated and Oxygenated High-Temperature Water K. Arioka, T. Yamada, T. Terachi, and G. Chiba	1114
Corrosion of Structural Materials in Liquid Lead Alloys for Nuclear Applications J. Konys, W. Krauss, C. Schroer, H. Steiner, Z. Voss, and O. Wedemeyer	1124

Author Index**A**

- Agazadeh Mohandes. J. 799
Agrawal, R.D. 828
Alfantazi, A. 159
Allen, T.R. 603
Al-Mayouf, A.M. 916
Al-Mobarak, N.A. 916
Al-Swayih, A.A. 916
Alonso-Falleiros, N. 211
Andrade, C. 880
Andresen, P.L. 19, 1033
Arioka, K. 1114
Asher, S.L. 932

B

- Balancán, M. 231
Balasubramaniam, R. 240, 975
Barale, M. 744
Barnes, A. 416
Bastidas, D.M. 497, 515, 1094
Bateni, M.R. 497, 529

- Baudoin, J.-L. 635
Bexell, U. 258
Beygi Kheradmand, A. 799
Blasco-Tamarit, E. 462
Błaszczyński, T. 1063
Blustein, G. 899
Bocher, F. 497, 537
Bortels, L. 497, 561
Bouaeshi, W. 648
Bouazaze, H. 307
Budiansky, N.D. 497, 537
Busby, J.T. 497, 577

C

- Cáceres, L. 722
Caley, F. 107
Carranza, R.M. 480
Carrette, F. 744
Castro-Borges, P. 231
Catalette, H. 744
Chambers, B.D. 268
Chan-Cabrera, J.H. 231
Chang, H. 127
Chen, J. 661
Chen, Y.Y. 997

- Chiang, K.T. 940
Chiba, G. 1114
Chico, B. 497, 591
Chiu, L.H. 127
Choi, Y.-S. 497, 522, 951
Cobo, A. 1094
Colwell, J. 932
Cong, H. 497, 537
Cook, W.G. 770
Cote, G. 744
Cragnolino, G.A. 940

D

- Daigo, Y. 277, 1085
Daimon, H. 793
Davenport, A.J. 338
Deakin, J. 416
Deconinck, J. 497, 561
De la Fuente, D. 497, 591
del Amo, B. 899
Deng, X. 497, 529
Devine, T.M. 1101
Di Sarli, A.R. 899
Dogan, H. 689
Doiron, A. 704

- Dorochenko, A. 497, 561
Duffó, G.S. 450
Dunn, D.S. 145, 940
Du Toit, M. 395

E

- Eadie, R. 648
EL-Mahdy, G.A. 171, 299
Eng, P. 197
Evensen, U. 880

F

- Fang, B. 419
Farina, S.B. 450
Féodoroff, M. 744
Feliu, S. 1094
Frankel, G.S. 613, 672, 731, 819
Free, M.L. 1042
Fujie, K. 793

G

- Gao, G. 987
García, S.J. 379, 1075

García-Antón, J. 462, 625
 García-García, D.M. 462
 Gartner, E. 497, 577
 George, K.S. 178
 Gil, H. 715
 Giridharan, P.K. 433
 González, J.A. 811, 1094
 González-Rodríguez, J.G. 866

Gracenea, J.J. 1075
 Graná, A. 1009
 Guinón, J.L. 625
 Gulbrandsen, E. 187, 1009
 Guo, X.-P. 749
 Guruswamy, S. 1042

H
 Hallen, J.M. 107
 Han, E. 419, 640, 661
 Han, W. 640
 Hartt, W.H. 843, 924
 Hausselt, J. 46
 He, X. 145, 781
 Hedberg, J. 715
 Hedges, B. 285
 Hemmingsen, T. 346
 Henriquez, J. 715
 Herrera, L. 722
 Hilbert, L.R. 346
 Himiob, R.J. 924
 Hinkson, D. 1051
 Huang, J.-H. 835
 Huang, T.-S. 731, 819
 Huet, F. 307
 Hurley, M.F. 497, 537

I
 Iannuzzi, M. 672
 Igual-Muñoz, A. 462
 Ironside, S. 648
 Ito, Y. 1021
 Iwamori, T. 793

J
 Jaén, J.A. 899
 Jayaraman, T.V. 1042
 Jeffrey, R. 872
 Johnsen, R. 857
 Johnson, C.M. 715
 Jung, H. 159

K
 Kai, A. 1021
 Kain, V. 442
 Kawasaki, S. 793
 Ke, W. 419, 661
 Kim, J.-G. 497, 522, 951
 Kim, K.B. 171
 Kim, K.Y. 220
 Kim, S.-T. 114
 King, F. 135
 Kish, J.R. 197

Koh, S.U. 220
 Konya, J. 46, 1124
 Koo, J.-Y. 951
 Krauss, W. 1124
 Kumai, C.S. 1101
 Kvarekvál, J. 187
 Kwon, H.S. 359

L
 Laliberte, L.H. 958
 Lau, K. 366
 LeBozec, N. 635
 Leclerc, T.J.R. 338
 Lee, J.M. 220
 Lefèvre, G. 744
 Leggedor, J. 880
 Leis, B. 932
 Leygraf, C. 715
 Li, D. 689
 Li, N. 330
 Li, Q.X. 640
 Li, Y. 850
 Liang, C. 987
 Liberto, R.C.N. 211
 Lister, D.H. 770
 Lowinska-Kluge, A. 1063
 Lu, Z. 1021

M
 Madrid, F. 497, 591
 Magnabosco, R. 211
 Majidi, B. 799
 Mansour, C. 744
 Martinez, I. 880
 Melchers, R.E. 107, 318,
 405, 497, 500, 872
 Miranda, J.M. 1094
 Mishra, A.K. 240
 Misra, S. 975
 Morcillo, M. 497, 591
 Moreno, E.I. 231
 Motta, A.T. 497, 577
 Muñoz-Portero, M.J. 625
 Murakami, M. 249
 Murugan, N. 433

N
 Naranjo, V. 497, 591
 Nešić, S. 178, 758, 1051
 Newman, R.C. 338, 416,
 1048
 Nicholson, P. 497, 555
 Nielsen, L.V. 346
 Nisancioğlu, K. 857
 Noël, J.J. 781
 Nogueira, R.P. 307
 Novotny, J. 46

O
 Oe, T. 793
 Okstad, T. 857
 Olsson, M. 258
 Orain, V. 635

Otero, E. 497, 591
 Oung, J.C. 997

P

Panneerselvam, T. 704
 Papavinam, S. 704
 Park, Y.-S. 114
 Pavageau, E.M. 744
 Peng, Q. 497, 577, 1033
 Pérez-Herranz, V. 625
 Petric, A. 497, 529
 Pletcher, D. 285
 Polder, R.B. 880
 Posein, O. 197
 Powers, R.G. 366
 Prakash, S. 828
 Prasad, R.C. 442
 Prosek, T. 258

Q

Qin, Z. 135
 Qiu, P. 715

R

Rannestad, Ø. 857
 Rebak, R.B. 480
 Ren, X. 603
 Revie, R.W. 704
 Rhodes, P.R. 63
 Richter, S. 346
 Rivas, D. 107
 Rodríguez, M.A. 480
 Rodríguez, M.T. 1075
 Romagnoli, R. 899
 Roychowdhury, S. 442
 Ruzic, V. 758

S

Sagüés, A.A. 366
 Sahoo, G. 975
 Satoh, T. 770
 Schmidt, D.P. 958
 Schroer, C. 46, 1124
 Schütze, M. 4
 Scully, J.R. 497, 537, 689
 Seguin, R. 197
 Serna, S. 866
 Shankar Rao, V. 359
 Shao, Y. 770
 Shaw, B.A. 958
 Shaw, W.W. 958
 Shih, H.C. 997
 Shin, D.-H. 497, 522
 Shoesmith, D.W. 135, 781
 Shoji, T. 1021
 Sidhu, T.S. 828
 Sidorin, D. 285
 Sikora, E. 958
 Singbeil, D.L. 197
 Singer, M. 1051
 Singh, P.M. 932
 Skogsberg, L.A. 63
 Smith, D. 395

Smith, J. 135
 Sridharan, K. 603
 Steiner, H. 1124
 Suay, J. 379, 1075
 Sue, K. 277, 1085
 Suzuki, A. 793

T

Takeda, Y. 1021
 Taylor, S.R. 268
 Terachi, T. 1114
 Teysseyre, S. 1033
 Thierry, D. 258, 635
 Torres, A. 866
 Turnbull, A. 497, 555
 Tuttle, R.N. 63

U

Uchida, S. 770
 Uruchurtu, J. 866

V

Valor, A. 107
 Van den Bossche, B. 497,
 561
 Van Rooyen, G.T. 395
 Vargas, T. 722
 Veidt, M. 758
 Vennesland, O. 880
 Vitores, C. 1075
 Voss, Z. 1124

W

Wang, H. 1051
 Wang, J. 419, 661
 Wang, L.H. 997
 Wang, Z.Y. 640
 Was, G.S. 19, 497, 577,
 1033
 Watanabe, Y. 277
 Wedemeyer, O. 1124
 Wei, P. 497, 529
 Werme, L. 135
 Weyns, G. 497, 561
 Wolfe, D.A. 819
 Wu, C.H. 127

Y

Yabuki, A. 249
 Yamada, T. 1114
 Yang, B.Y. 220
 Yao, L. 366
 Yen, S.-C. 835
 Yu, H. 843, 924

Z

Zhang, J. 330
 Zhang, Z. 1051
 Zhao, S. 819
 Zhao, Y.-T. 749
 Zhao, Z. 613
 Zhou, S. 497, 555

Subject Index

A

AA2024-T3

AA2024 corrosion by vanadates, inhibition of, an in situ atomic force microscopy scratching investigation 672
inhibitor synergies on AA2024-T3 through measurement of surface copper enrichment, high throughput assessment of 268

Accelerated tests

aluminum basic benzoate-based coatings, anticorrosion properties by electrochemical impedance spectroscopy and accelerated tests, evaluation of 899

Accelerator-driven system

liquid lead alloys for nuclear applications, corrosion of structural materials in 1124

Acetate-enhanced corrosion

carbon steel, acetate-enhanced corrosion of, further factors in oilfield environments 285

Acetic acid and acid solutions. See also Acids and acid solutions

mild steel in the presence of acetic acid, investigation of carbon dioxide corrosion of, basic mechanisms 178

Acids and acid solutions. See Acetic; Carboxylic; Hydrochloric; Oxalic; Weak

Activity

nickel in concentrated aqueous lithium bromide solutions at 25°C, Pourbaix diagrams for 625

Alloy 22

Alloy 22, effect of simulated groundwater chemistry on stress corrosion cracking of 940

Alloy 22 in chloride-containing waters, crevice corrosion penetration rates of 145

Alloy 22 in hot chloride solutions, effect of fluoride ions on crevice corrosion and passive behavior of 480

Alloy 400

Alloy 400 in copper sulfate solution, stress corrosion cracking of 416

Alloys and alloying. See Aluminum; Brass; Cerium; Chromium; Cobalt; Copper; Corrosion-resistant; Cupronickel; Fe-Ga; Fe-Ni; Iodine; Lanthanum; MgAl9Zn1; Molybdenum; Nanocrystalline;

Ni-Cu; Nickel; Pb-17Li; Phosphorus; Superalloys; Silver; Tantalum; Titanium; Zinc; Zirconium

Alternating current impedance

copper during wet/dry cyclic conditions in oxalic acid solutions, monitoring the atmospheric corrosion loss of 171

Aluminum and aluminum alloys.

See also Alloys and alloying

AA2024 corrosion by vanadates, inhibition of, an in situ atomic force microscopy scratching investigation 672

AA7075, effects of temper and potential on localized corrosion kinetics of 731

AA7075 in various tempers, surface layer dissolution kinetics of 613

aluminum alloys by weak acids, enhancement of localized corrosion in 338

aluminum alloy 7xxx, a statistical model for localized corrosion in 819

Aluminum basic benzoate

aluminum basic benzoate-based coatings, anticorrosion properties by electrochemical impedance spectroscopy and accelerated tests, evaluation of 899

Aluminum sacrificial coatings. See also Coatings

sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958

Anaerobic corrosion

structural steels, transition from marine immersion to coastal atmospheric corrosion for 500

Analysis of variance

Type 304L stainless steel welds, effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of 433

Analytical solutions

flow-induced corrosion with non-uniform boundary conditions, modeling of 330

Anisotropic

AA7075, effects of temper and potential on localized corrosion kinetics of 731

Anodic oxidation

anodic oxide films on titanium in oxalic acid solutions, formation and dissolution behavior of 299

Anticorrosive coatings. See also Coatings

aluminum basic benzoate-based coatings, anticorrosion properties by electrochemical impedance spectroscopy and accelerated tests, evaluation of 899

Apparent activation energy

cold-worked Type 316L stainless steel in oxygenated pure water at a low stress intensity factor, effects of loading mode and temperature on stress corrosion crack growth rates of a 1021

Area-specific resistance

spinel coatings for metallic interconnects of solid oxide fuel cells, oxidation and electrical conductivity behavior of 529 structural steels, transition from marine immersion to coastal atmospheric corrosion for 529

Atmospheric corrosion

atmospheric corrosion, molecular in situ studies of 715 carbon steel in Qinghai Salt Lake atmosphere, characterization of corrosion products formed on 640

reactor vessel of a retired nuclear power plant, atmospheric corrosion monitoring inside 591 structural steels, transition from marine immersion to coastal atmospheric corrosion for 500 zinc surface films under atmospheric weathering conditions, effect of chloride-to-chromate ratio on the protective action of 258

Auger electron spectroscopy

austenitic stainless steel in highly concentrated sulfuric acid solution, effect of copper addition on corrosion behavior of high-performance 114

Austenitic stainless steel. See also by name; by type, by UNS number, Stainless steel

austenitic stainless steels in hydrogenated and oxygenated high-temperature water, cold work and temperature dependence of stress corrosion crack growth of 1114

austenitic stainless steel in highly concentrated sulfuric acid solution, effect of copper addition on corrosion behavior of high-performance 114

Automotive materials

painted automotive materials induced by galvanic coupling with rubber material, blistering on 635

B**B-amino-alcohol**

brass corrosion inhibitors in simulated atmospheric water 987

Films. See also Films and film formation

early immersion corrosion of mild steel, influence of seawater nutrient content on the, role of biofilms and sulfate-reducing bacteria 405

Biofouling

early immersion corrosion of mild steel, influence of seawater nutrient content on the, empirical observations 318

Biomass

bed nozzle alloys in a wood-waste fluidizing bed power boiler, corrosion of 197

Blistering

painted automotive materials induced by galvanic coupling with rubber material, blistering on 635

Boiling water reactors

cold-worked Type 316L stainless steel in oxygenated pure water at a low stress intensity factor, effects of loading mode and temperature on stress corrosion crack growth rates of a 1021

Type 304 stainless steel under boiling water reactor conditions, fatigue crack growth behavior of sensitized 997

Boundary element method

stray current interference problems, three-dimensional boundary element method and finite element method simulations applied to, a unique coupling method that takes the best of both methods 561

Boundary layer

flow-induced corrosion with non-uniform boundary conditions, modeling of 330

Brass and brass alloys. See also Alloys and alloying

brass corrosion inhibitors in simulated atmospheric water 987

Breakdown

AA7075, effects of temper and potential on localized corrosion kinetics of 731

C**Cabinet tests**

sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958

Cadmium plating

precharged ultrahigh-strength steels, controlling hydrogen embrittlement in 689

Calcareous deposits

cathodic protection of carbon steel in seawater, significance of hydrogen evolution during 857

Capacitance

carbon steel in sulfide media, reliability of electrochemical techniques for determining corrosion rates on 346

Carbon dioxide and solutions

carbon dioxide corrosion inhibitors, effect of oil-in-water emulsions on the performance of 187

carbon dioxide inhibitor performance at high-flow velocities in jet impingement geometry, effect of mass transfer and flow forces, testing of 1009

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

top-of-the-line corrosion, mechanistic model of 1051

Carbon dioxide corrosion

carbon steel, acetate-enhanced corrosion of, further factors in oilfield environments 285

mild steel in the presence of acetic acid, investigation of carbon dioxide corrosion of, basic mechanisms 178

protective iron carbonate films, chemo-mechanical removal in single-phase aqueous flow, simultaneous 758

Carbon steel. See also by name; by type; by UNS number; Steel

AISI 1020 carbon steel from dissolved oxygen consumption measurements in aqueous sodium chloride solutions, corrosion kinetics studies of 722

carbon dioxide corrosion inhibitors, effect of oil-in-water emulsions on the performance of 187

carbon dioxide inhibitor performance at high-flow velocities in jet impingement geometry, effect of mass transfer and flow forces, testing of 1009

carbon steel, acetate-enhanced corrosion of, further factors in oilfield environments 285

carbon steel in Qinghai Salt Lake atmosphere, characterization of corrosion products formed on 640

carbon steel in sulfide media, reliability of electrochemical techniques for determining corrosion rates on 346

carbon steel under neutral water conditions, flow-assisted corrosion of 770

coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena, use of 537

reactor vessel of a retired nuclear power plant, atmospheric corrosion monitoring inside 591

rust layer formed on steel in different marine corrosion zones, Mössbauer effect of 850

transgranular stress corrosion cracking on buried pipelines in near-neutral pH environments, investigating a mechanism for 932

Carboxylic acid and acid solutions.

See also Acids and acid solutions

anodic oxide films on titanium in oxalic acid solutions, formation and dissolution behavior of 299

atmospheric corrosion, molecular in situ studies of 715

Cathodic protection

aluminum-coated steel for automotive mufflers, sacrificial anode cathodic protection of 522

buried pipelines, galvanic sensor for monitoring corrosion damage of, correlation of probe current to cathodic protection and stray current 951

passivation verification technique in different concrete structures, efficiency control of cathodic protection measured using 880

Cavitation

duplex stainless steel in aqueous lithium bromide solutions, corrosion studies on welded and nonwelded, cavitation 462

Cement. See Concrete**Ceria**

ceria production by hydrothermal synthesis under supercritical conditions, reactor corrosion in 359

Cerium and cerium alloys. See also Alloys and alloying

inhibitor synergies on AA2024-T3 through measurement of surface copper enrichment, high throughput assessment of 268

Cerium chlorides

UNS A96061, corrosion inhibition by rare earth chlorides 240

Chemical film dissolution

protective iron carbonate films, chemo-mechanical removal in single-phase aqueous flow, simultaneous 758

Chloride and chloride solutions

Alloy 22 in hot chloride solutions, effect of fluoride ions on crevice corrosion and passive behavior of 480

bed nozzle alloys in a wood-waste fluidizing bed power boiler, corrosion of 197

chloride ingress into concrete and time-to-corrosion, effects of reinforcement and coarse aggregates on, spatial chloride distribution and implications 843

chloride ingress into concrete and time-to-corrosion, effects of reinforcement and coarse aggregates on, spatial distribution of coarse aggregates 924 concrete cylinder piles, corrosion performance of 366

copper, critical ion concentration for pitting and general corrosion of 249

supercritical water systems, material performance in 46

zinc surface films under atmospheric weathering conditions, effect of chloride-to-chromate ratio on the protective action of 258

Chloride threshold

chloride ingress into concrete and time-to-corrosion, effects of reinforcement and coarse aggregates on, spatial chloride distribution and implications 843

chloride ingress into concrete and time-to-corrosion, effects of reinforcement and coarse aggregates on, spatial distribution of coarse aggregates 924

Chlorination

highly aggressive environments, corrosion resistance at elevated temperatures in 4

Chromate

zinc surface films under atmospheric weathering conditions, effect of chloride-to-chromate ratio on the protective action of 258

Chromium and chromium alloys.

See also Alloys and alloying
high-strength, low-alloys steels, effect of molybdenum and chromium addition on susceptibility to sulfide stress cracking of 220

Chromium carbide-nickel chromium coatings. See also Coatings

high-velocity oxy-fuel-sprayed chromium carbide-nickel chromium coating in actual boiler environment of a thermal power plant, performance of 828

Chromium ions

nickel-based alloys in supercritical water, effect of chromium ion from autoclave material on corrosion behavior of 277
supercritical water with chromium ion, corrosion mitigation of 1085

Chromium oxide and solutions

nickel-based alloys in supercritical water, effect of chromium ion from autoclave material on corrosion behavior of 277
supercritical water with chromium ion, corrosion mitigation of 1085

Coarse aggregates

chloride ingress into concrete and time-to-corrosion, effects of reinforcement and coarse aggregates on, spatial chloride distribution and implications 843

chloride ingress into concrete and time-to-corrosion, effects of reinforcement and coarse aggregates on, spatial distribution of coarse aggregates 924

Coating performance

sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958

Coatings. See also Aluminum sacrificial; Anticorrosive; Chromium carbide-nickel chromium; Coating performance; Conversion; High-velocity oxy fuel; Organic topcoats; Powder; Spinel; Zinc metal; Zinc sacrificial

highly aggressive environments, corrosion resistance at elevated temperatures in 4

Cobalt and cobalt alloys. See also Alloys and alloying

nanocrystalline Co-P alloys in acidic solution, phosphorus alloying and annealing effects on the corrosion properties of 159

Cold work

austenitic stainless steels in hydrogenated and oxygenated high-temperature water, cold work and temperature dependence of stress corrosion crack growth of 1114

Cold-worked Type 316L stainless steel

cold-worked Type 316L stainless steel in oxygenated pure water at a low stress intensity factor, effects of loading mode and temperature on stress corrosion crack growth rates of a 1021

Concrete. See also Concrete piles; Reinforced; Steel-reinforced

mortars, primers to the reinforcement in, effectiveness as a function of primer type, exposure conditions, amount of sodium chloride 231

passivation verification technique in different concrete structures, efficiency control of cathodic protection measured using 880

reinforced concrete structure durability by electrochemical techniques, prediction of 811

Concrete piles

concrete cylinder piles, corrosion performance of 366

Condensed water

aluminum-coated steel for automotive mufflers, sacrificial anode cathodic protection of 522

Conductivity

oil-brine mixtures in a flow-loop cell, measurement of electrolyte resistance fluctuations generated by 307

Constant immersion

sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958

Contoured double-cantilever beam specimen

cold-worked Type 316L stainless steel in oxygenated pure water at a low stress intensity factor, effects of loading mode and temperature on stress corrosion crack growth rates of a 1021

Conversion coatings. See also Coatings

zinc surface films under atmospheric weathering conditions, effect of chloride-to-chromate ratio on the protective action of 258

- Copper and copper alloys.** *See also Alloys and alloying*
atmospheric corrosion, molecular *in situ* studies of 715
copper, critical ion concentration for pitting and general corrosion of 249
copper during wet/dry cyclic conditions in oxalic acid solutions, monitoring the atmospheric corrosion loss of 171
copper under electrochemical and natural corrosion conditions, sulfide film formation on 135
coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena, use of 537
- Copper enrichment**
austenitic stainless steel in highly concentrated sulfuric acid solution, effect of copper addition on corrosion behavior of high-performance 114
- Corrosion.** *See Acetate-enhanced; Anaerobic; Atmospheric; Carbon dioxide; Crevice; Erosion-corrosion; Flow-accelerated; Flow-induced; Galvanic; General; Intergranular attack and corrosion; Iron; Localized; Marine; Selective; Sour; Sweet; Thin film; Top-of-the-line*
- Corrosion fatigue**
high-copper dental amalgams, corrosion fatigue of 799
near-neutral pH crack colonies in liquid pipelines, research and cracking implications from an assessment of two variants of 648
- Corrosion in concrete**
coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena, use of 537
- Corrosion inhibition**
AA2024 corrosion by vanadates, inhibition of, an *in situ* atomic force microscopy scratching investigation 672
- Corrosion mitigation**
supercritical water with chromium ion, corrosion mitigation of 1085
- Corrosion potential**
copper under electrochemical and natural corrosion conditions, sulfide film formation on 135
- Corrosion protection**
sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958
- Corrosion rate measurements and monitoring**
buried pipelines, galvanic sensor for monitoring corrosion damage of, correlation of probe current to cathodic protection and stray current 951
carbon steel in sulfide media, reliability of electrochemical techniques for determining corrosion rates on 346
concrete-embedded steel corrosion using potentiostatic pulses, quantitative study of 1094
early immersion corrosion of mild steel, influence of seawater nutrient content on the, empirical observations 318
- Corrosion resistance.** *See also Pitting*
austenitic stainless steel in highly concentrated sulfuric acid solution, effect of copper addition on corrosion behavior of high-performance 114
bed nozzle alloys in a wood-waste fluidizing bed power boiler, corrosion of 197
coulostatically-induced transients based on empirical mode composition, time-frequency signal de-noising of 749
model zirconium alloys in deaerated supercritical water at 500°C, corrosion behavior of 577
- Corrosion-resistant alloys.** *See also Alloys and alloying*
corrosive oil and gas environments, pushing the limits of metals in 63
- Corrosion sensor**
buried pipelines, galvanic sensor for monitoring corrosion damage of, correlation of probe current to cathodic protection and stray current 951
- Corrosiveness**
supercritical water systems, material performance in 46
- Corrosive oil**
hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704
- Coulostatically-induced transients**
coulostatically-induced transients based on empirical mode composition, time-frequency signal de-noising of 749
- Crack coalescence**
near-neutral pH crack colonies in liquid pipelines, research and cracking implications from an assessment of two variants of 648
- Crack growth rate**
cold-worked Type 316L stainless steel in oxygenated pure water at a low stress intensity factor, effects of loading mode and temperature on stress corrosion crack growth rates of a 1021
Type 316 stainless steel in supercritical water, stress corrosion crack growth in 1033
- Cracking.** *See also Environmentally assisted; Stress corrosion; Sulfide stress*
Alloy 22, effect of simulated groundwater chemistry on stress corrosion cracking of 940
- Crack tip**
binary noble-metal alloy, dependence of stress corrosion crack velocity on strain rate for a 1048
- Crack tip opening displacement**
duplex stainless steel (UNS S31803), environmental effects on the fracture toughness of a 442
- Creep rupture strength**
Ti-Pd alloy for a supercritical water oxidation reactor, corrosion resistance in highly concentrated hydrochloric acid and creep rupture strength of a 793
- Crevice corrosion**
Alloy 22 in chloride-containing waters, crevice corrosion penetration rates of 145
Alloy 22 in hot chloride solutions, effect of fluoride ions on crevice corrosion and passive behavior of 480
coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena, use of 537
- Critical ion concentration**
copper, critical ion concentration for pitting and general corrosion of 249
- Cupronickel alloys.** *See also Alloys and alloying*
cupronickel alloys with aluminum and iron additions, selective corrosion in sodium chloride aqueous solution of 211
- Current.** *See Galvanic; Stray Current requirements*
cathodic protection of carbon steel in seawater, significance of hydrogen evolution during 857
- Cyclic polarization**
Alloy 22 in hot chloride solutions, effect of fluoride ions on crevice corrosion and passive behavior of 480

Cyclic voltammetry

inhibitor synergies on AA2024-T3 through measurement of surface copper enrichment, high throughput assessment of 268

Cylinders

concrete cylinder piles, corrosion performance of 366

D**Decavanadates**

AA2024 corrosion by vanadates, inhibition of, an in situ atomic force microscopy scratching investigation 672

Denickelification

cupronickel alloys with aluminum and iron additions, selective corrosion in sodium chloride aqueous solution of 211

Density function theory (DFT) calculations

atmospheric corrosion, molecular in situ studies of 715

Dental amalgams

high-copper dental amalgams, corrosion fatigue of 799

Deposition

nickel-based alloys in supercritical water, effect of chromium ion from autoclave material on corrosion behavior of 277 supercritical water with chromium ion, corrosion mitigation of 1085

Deposits

bed nozzle alloys in a wood-waste fluidizing bed power boiler, corrosion of 197

Design of experiments

Type 304L stainless steel welds, effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of 433

Differential scanning calorimetry

epoxy primer, thermal, mechanical, and anticorrosive characterization of an 1075

Diffusion. See also Hydrogen

concrete cylinder piles, corrosion performance of 366

Diffusion process

porous electrode and diffusion processes, interpretation of impedance data for 515

Direct current-traction

stray current interference problems, three-dimensional boundary element method and finite element method simulations applied to, a unique coupling method that takes the best of both methods 561

Dispersions

carbon dioxide corrosion inhibitors, effect of oil-in-water emulsions on the performance of 187

Dissolved oxygen content

Alloys 625 and 718 in supercritical water, corrosion behavior of 603

Dropwise condensation

top-of-the-line corrosion, mechanistic model of 1051

Duplex stainless steel. See also by name; by type; by UNS number; Stainless steel

duplex stainless steel (UNS S31803), environmental effects on the fracture toughness of a 442

duplex stainless steel in aqueous lithium bromide solutions, corrosion studies on welded and nonwelded, cavitation 462

stress corrosion cracking of duplex stainless steel, chemistry of concentrated salts formed by evaporation of formation water and the impact on 555

UNS S31803 stainless steel using Ni-Cr-Fe-P alloy filler metals, galvanic corrosion on vacuum-brazed 127

Durability

concrete cylinder piles, corrosion performance of 366

reinforced concrete structure durability by electrochemical techniques, prediction of 811

Dynamic-mechanical thermal analysis

epoxy primer, thermal, mechanical, and anticorrosive characterization of an 1075

E**Early corrosion rate**

early immersion corrosion of mild steel, influence of seawater nutrient content on the, role of biofilms and sulfate-reducing bacteria 405

Effects

AA7075, effects of temper and potential on localized corrosion kinetics of 731

Electric resistance

carbon steel under neutral water conditions, flow-assisted corrosion of 770

Electrochemical accelerated test

ytterbium III trifluoromethanesulfonate, epoxy powder clearcoats used for anticorrosive purposes cured with 379

Electrochemical corrosion potential

carbon steel under neutral water conditions, flow-assisted corrosion of 770

Electrochemical impedance spectroscopy

anodic oxide films on titanium in oxalic acid solutions, formation and dissolution behavior of 299

copper under electrochemical and natural corrosion conditions, sulfide film formation on 135 epoxy primer, thermal, mechanical, and anticorrosive characterization of an 1075

nanocrystalline Co-P alloys in acidic solution, phosphorus alloying and annealing effects on the corrosion properties of 159

UNS A96061, corrosion inhibition by rare earth chlorides 240 ytterbium III trifluoromethanesulfonate, epoxy powder clearcoats used for anticorrosive purposes cured with 379

Electrochemical noise

mild and stainless steel as a function of pH, electrochemical noise resistance and noise impedance for, correlation between 866

oil-brine mixtures in a flow-loop cell, measurement of electrolyte resistance fluctuations generated by 307

Electrochemical techniques and tests

aluminum basic benzoate-based coatings, anticorrosion properties by electrochemical impedance spectroscopy and accelerated tests, evaluation of 899

mild steel in the presence of acetic acid, investigation of carbon dioxide corrosion of, basic mechanisms 178

reinforced concrete structure durability by electrochemical techniques, prediction of 811

Electrode potential

coulostatically-induced transients based on empirical mode composition, time-frequency signal de-noising of 749

nickel in concentrated aqueous lithium bromide solutions at 25°C, Pourbaix diagrams for 625

Electrolyte resistance

oil-brine mixtures in a flow-loop cell, measurement of electrolyte resistance fluctuations generated by 307

Electroplating

spinel coatings for metallic interconnects of solid oxide fuel cells, oxidation and electrical conductivity behavior of 529

Elevation

mild steel in tidal marine conditions, effect of orientation and shielding in the early corrosion of 872

Empirical mode decomposition

coulostatically-induced transients based on empirical mode composition, time-frequency signal de-noising of 749

Emulsions

carbon dioxide corrosion inhibitors, effect of oil-in-water emulsions on the performance of 187

Environmentally assisted cracking

corrosive oil and gas environments, pushing the limits of metals in 63
near-neutral pH crack colonies in liquid pipelines, research and cracking implications from an assessment of two variants of 648

Environmental scanning electron microscopy

MgAl9Zn1 magnesium alloy in cyclic wet-dry conditions using environmental scanning electron microscopy, in situ observation of initial corrosion of 661

Epoxy primer

epoxy primer, thermal, mechanical, and anticorrosive characterization of an 1075

Erosion-corrosion

copper, critical ion concentration for pitting and general corrosion of 249

Evaporation

stress corrosion cracking of duplex stainless steel, chemistry of concentrated salts formed by evaporation of formation water and the impact on 555

Exposure testing

highly aggressive environments, corrosion resistance at elevated temperatures in 4

Extrapolation

structural steels, transition from marine immersion to coastal atmospheric corrosion for 500

Extreme value statistics

pitting corrosion, statistical characterization, data analysis and probabilistic modeling for maximum pit depth, discussion/reply 107

F**Fatigue crack growth**

Type 304 stainless steel under boiling water reactor conditions, fatigue crack growth behavior of sensitized 997

Fatigue strength

high-copper dental amalgams, corrosion fatigue of 799

Fe-Ga and Fe-Ga alloys. See also**Alloys and alloying**

iron-gallium alloy single crystals, effect of magnetic field on the corrosion behavior of magnetostrictive 1042

Films and film formation. See also**Biofilms; Chemical film dissolution; Mechanical film removal; Oxides and oxide films; Passive; Passive oxide; Protective iron carbonate**

carbon steel in sulfide media, reliability of electrochemical techniques for determining corrosion rates on 346

films formed on Fe-Ni-Cr alloys, influence of oxygen concentration of 288°C water and alloy composition on the 1101

Finite element method

high-copper dental amalgams, corrosion fatigue of 799
stray current interference problems, three-dimensional boundary element method and finite element method simulations applied to, a unique coupling method that takes the best of both methods 561

Flow-accelerated corrosion

carbon steel under neutral water conditions, flow-assisted corrosion of 770

Flow and flow conditions. See also**Turbulent single-phase; Two-phase**

carbon dioxide inhibitor performance at high-flow velocities in jet impingement geometry, effect of mass transfer and flow forces, testing of 1009

Flow-induced corrosion

flow-induced corrosion with non-uniform boundary conditions, modeling of 330

Flow rates

AISI 1020 carbon steel from dissolved oxygen consumption measurements in aqueous sodium chloride solutions, corrosion kinetics studies of 722

Fluidized bed combustion

bed nozzle alloys in a wood-waste fluidizing bed power boiler, corrosion of 197

Fluoride and fluoride solutions

Alloy 22 in hot chloride solutions, effect of fluoride ions on crevice corrosion and passive behavior of 480

Foil penetration

AA7075, effects of temper and potential on localized corrosion kinetics of 731

Formation water

stress corrosion cracking of duplex stainless steel, chemistry of concentrated salts formed by evaporation of formation water and the impact on 555

Fracture toughness

duplex stainless steel (UNS S31803), environmental effects on the fracture toughness of a 442

Frequency domain

coulostatically-induced transients based on empirical mode composition, time-frequency signal de-noising of 749

G**Galvanic corrosion**

molybdenum/aluminum-neodymium double thin film in tetramethyl ammonium hydroxide solution, electrochemical characteristics of 835

UNS S31803 stainless steel using Ni-Cr-Fe-P alloy filler metals, galvanic corrosion on vacuum-brazed 127

Galvanic coupling

buried pipelines, galvanic sensor for monitoring corrosion damage of, correlation of probe current to cathodic protection and stray current 951

magnetite coupled with iron of various surface areas, dissolution of 916

Painted automotive materials induced by galvanic coupling with rubber material, blistering on 635

Galvanic current

buried pipelines, galvanic sensor for monitoring corrosion damage of, correlation of probe current to cathodic protection and stray current 951

Galvanized steel. See also by name; by type; by UNS number; Steel

sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958

zinc surface films under atmospheric weathering conditions, effect of chloride-to-chromate ratio on the protective action of 258

General corrosion

copper, critical ion concentration for pitting and general corrosion of 249

Grade-7 titanium

Grade-7 titanium, temperature effects on oxide film properties of 781

Grain boundary creep

austenitic stainless steels in hydrogenated and oxygenated high-temperature water, cold work and temperature dependence of stress corrosion crack growth of 1114

Gumbel distribution

pitting corrosion, statistical characterization, data analysis and probabilistic modeling for maximum pit depth, discussion/reply 107

H

High-strength, low-alloy steel. See also by name; by type; by UNS number; Steel

high-strength, low-alloys steels, effect of molybdenum and chromium addition on susceptibility to sulfide stress cracking of 220

High-temperature water

cold-worked Type 316L stainless steel in oxygenated pure water at a low stress intensity factor, effects of loading mode and temperature on stress corrosion crack growth rates of a 1021

High-velocity oxy-fuel coatings. See also Coatings

high-velocity oxy-fuel-sprayed chromium carbide-nickel chromium coating in actual boiler environment of a thermal power plant, performance of 828

Hydrochloric acid and acid solutions. See also Acids and acid solutions

supercritical water systems, material performance in 46 Ti-Pd alloy for a supercritical water oxidation reactor, corrosion resistance in highly concentrated hydrochloric acid and creep rupture strength of a 793

Hydrogen adsorption

corrosive oil and gas environments, pushing the limits of metals in 63

Hydrogen diffusion

high-strength, low-alloys steels, effect of molybdenum and chromium addition on susceptibility to sulfide stress cracking of 220

Hydrogen embrittlement

corrosive oil and gas environments, pushing the limits of metals in 63

precharged ultrahigh-strength steels, controlling hydrogen embrittlement in 689

Hydrogen sulfide and solutions

corrosive oil and gas environments, pushing the limits of metals in 63

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

Hydrogen trapping

precharged ultrahigh-strength steels, controlling hydrogen embrittlement in 689

Hydrogen water chemistry

Type 304 stainless steel under boiling water reactor conditions, fatigue crack growth behavior of sensitized 997

Hydrothermal

ceria production by hydrothermal synthesis under supercritical conditions, reactor corrosion in 359

I

Image analysis

oil-brine mixtures in a flow-loop cell, measurement of electrolyte resistance fluctuations generated by 307

Immersion. See also Constant

early immersion corrosion of mild steel, influence of seawater nutrient content on the, empirical observations 318

Immersion testing

UNS S31803 stainless steel using Ni-Cr-Fe-P alloy filler metals, galvanic corrosion on vacuum-brazed 127

Impedance. See also Alternating current

brass corrosion inhibitors in simulated atmospheric water 987

porous electrode and diffusion processes, interpretation of impedance data for 515

Impedance spectrum

coulostatically-induced transients based on empirical mode composition, time-frequency signal de-noising of 749

Inhibition and inhibition efficiency. See also Corrosion inhibition

Alloy 22 in hot chloride solutions, effect of fluoride ions on crevice corrosion and passive behavior of 480

carbon dioxide corrosion inhibitors, effect of oil-in-water emulsions on the performance of 187

carbon dioxide inhibitor performance at high-flow velocities in jet impingement geometry, effect of mass transfer and flow forces, testing of 1009

Inhibitors. See also Inorganic

brass corrosion inhibitors in simulated atmospheric water 987

inhibitor synergies on AA2024-T3 through measurement of surface copper enrichment, high throughput assessment of 268

Inhibitory oil

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

Initiation J-intergral

duplex stainless steel (UNS S31803), environmental effects on the fracture toughness of a 442

Inorganic inhibitors

zinc surface films under atmospheric weathering conditions, effect of chloride-to-chromate ratio on the protective action of 258

In situ studies

atmospheric corrosion, molecular in situ studies of 715

MgAl9Zn1 magnesium alloy in cyclic wet-dry conditions using environmental scanning electron microscopy, in situ observation of initial corrosion of 661

Intergranular attack and corrosion

Alloy 400 in copper sulfate solution, stress corrosion cracking of 416

coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena, use of 537

pure titanium in iodine-alcohol solutions, stress corrosion cracking behavior of 450

Intergranular stress corrosion cracking

austenitic stainless steels in hydrogenated and oxygenated high-temperature water, cold work and temperature dependence of stress corrosion crack growth of 1114

- cold-worked Type 316L stainless steel in oxygenated pure water at a low stress intensity factor, effects of loading mode and temperature on stress corrosion crack growth rates of a 1021
- Iodine and iodine alloys.** *See also Alloys and alloying*
pure titanium in iodine-alcohol solutions, stress corrosion cracking behavior of 450
- Iron carbonate and solutions**
transgranular stress corrosion cracking on buried pipelines in near-neutral pH environments, investigating a mechanism for 932
- Iron corrosion**
AISI 1020 carbon steel from dissolved oxygen consumption measurements in aqueous sodium chloride solutions, corrosion kinetics studies of 722 magnetite coupled with iron of various surface areas, dissolution of 916
- Irradiated microstructure**
alloys in aggressive nuclear reactor core environments, stress corrosion cracking behavior of 19
- Irradiation-assisted stress corrosion cracking**
alloys in aggressive nuclear reactor core environments, stress corrosion cracking behavior of 19
- J**
- Jet impingement**
carbon dioxide inhibitor performance at high-flow velocities in jet impingement geometry, effect of mass transfer and flow forces, testing of 1009
- K**
- Kinetics**
AA7075, effects of temper and potential on localized corrosion kinetics of 731
AISI 1020 carbon steel from dissolved oxygen consumption measurements in aqueous sodium chloride solutions, corrosion kinetics studies of 722
- L**
- Lanthanum and lanthanum alloys.** *See also Alloys and alloying*
inhibitor synergies on AA2024-T3 through measurement of surface copper enrichment, high throughput assessment of 268
- Lanthanum chlorides**
UNS A96061, corrosion inhibition by rare earth chlorides 240
- Lead-bismuth eutectic**
liquid lead alloys for nuclear applications, corrosion of structural materials in 1124
- Lead-cooled reactors**
liquid lead alloys for nuclear applications, corrosion of structural materials in 1124
- Life-sized structures**
concrete-embedded steel corrosion using potentiostatic pulses, quantitative study of 1094
- Light water reactors**
alloys in aggressive nuclear reactor core environments, stress corrosion cracking behavior of 19
- Lithium bromide and solutions**
duplex stainless steel in aqueous lithium bromide solutions, corrosion studies on welded and nonwelded, cavitation 462 nickel in concentrated aqueous lithium bromide solutions at 25°C, Pourbaix diagrams for 625
- Localized corrosion**
AA7075, effects of temper and potential on localized corrosion kinetics of 731
AA7075 in various tempers, surface layer dissolution kinetics of 613 aluminum alloys by weak acids, enhancement of localized corrosion in 338 aluminum alloy 7xxx, a statistical model for localized corrosion in 819
- Localized repair**
mortars, primers to the reinforcement in, effectiveness as a function of primer type, exposure conditions, amount of sodium chloride 231
- Low-alloy steel.** *See also by name; by type; by UNS number; Steel*
corrosive oil and gas environments, pushing the limits of metals in 63
- M**
- Maghemite**
colloidal magnetite particles used as a model corrosion product, purity of 744
- Magnetite**
colloidal magnetite particles used as a model corrosion product, purity of 744
- Magnetite dissolution**
magnetite coupled with iron of various surface areas, dissolution of 916
- Magnetostriction**
iron-gallium alloy single crystals, effect of magnetic field on the corrosion behavior of magnetostrictive 1042
- Marine applications and environments.** *See also Salt lake; Seawater; Sodium chloride and solutions*
mild steel in tidal marine conditions, effect of orientation and shielding in the early corrosion of 872
- Marine atmospheric exposure**
sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958
- Marine corrosion**
rust layer formed on steel in different marine corrosion zones, Mössbauer effect of 850
- Mass transfer**
flow-induced corrosion with non-uniform boundary conditions, modeling of 330
- Mathematical modeling**
Type 304L stainless steel welds, effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of 433
- Mechanical film removal**
protective iron carbonate films, chemo-mechanical removal in single-phase aqueous flow, simultaneous 758
- Mechanism**
copper under electrochemical and natural corrosion conditions, sulfide film formation on 135
- Mechanistic model**
top-of-the-line corrosion, mechanistic model of 1051
- Metal dusting**
highly aggressive environments, corrosion resistance at elevated temperatures in 4
- Metastable events**
Grade-7 titanium, temperature effects on oxide film properties of 781
- Metavanadates**
AA2024 corrosion by vanadates, inhibition of, an in situ atomic force microscopy scratching investigation 672
- MgAl9Zn1 alloy.** *See also Alloys and alloying*
MgAl9Zn1 magnesium alloy in cyclic wet-dry conditions using environmental scanning electron microscopy, in situ observation of initial corrosion of 661

Microhardness

duplex stainless steel (UNS S31803), environmental effects on the fracture toughness of a 442

Microstructure

high-strength, low-alloys steels, effect of molybdenum and chromium addition on susceptibility to sulfide stress cracking of 220

Mild steel. See also by name; by type; by UNS number; Steel

early immersion corrosion of mild steel, influence of seawater nutrient content on the, empirical observations 318

mild steel in the presence of acetic acid, investigation of carbon dioxide corrosion of, basic mechanisms 178

mild steel in tidal marine conditions, effect of orientation and shielding in the early corrosion of 872

zinc, galvanized, mild steel in water-concrete environment, corrosion behavior of 1063

Modeling. See also Boundary element method; Finite element method; Gumbel distribution; Mathematical; Mechanistic; Pourbaix diagrams

aluminum alloy 7xxx, a statistical model for localized corrosion in 819

early immersion corrosion of mild steel, influence of seawater nutrient content on the, role of biofilms and sulfate-reducing bacteria 405

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

structural steels, transition from marine immersion to coastal atmospheric corrosion for 500

Molybdate

inhibitor synergies on AA2024-T3 through measurement of surface copper enrichment, high throughput assessment of 268

Molybdenum and molybdenum alloys. See also Alloys and alloying

high-strength, low-alloys steels, effect of molybdenum and chromium addition on susceptibility to sulfide stress cracking of 220

Monitoring

oil-brine mixtures in a flow-loop cell, measurement of electrolyte resistance fluctuations generated by 307

reactor vessel of a retired nuclear power plant, atmospheric corrosion monitoring inside 591

Mortars

mortars, primers to the reinforcement in, effectiveness as a function of primer type, exposure conditions, amount of sodium chloride 231

Mössbauer spectroscopy

colloidal magnetite particles used as a model corrosion product, purity of 744

rust layer formed on steel in different marine corrosion zones, Mössbauer effect of 850

Muffler

aluminum-coated steel for automotive mufflers, sacrificial anode cathodic protection of 522

Multi-coupled electrode arrays

coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena, use of 537

N**Nanocrystalline and nanocrystalline alloys. See also Alloys and alloying**

nanocrystalline Co-P alloys in acidic solution, phosphorus alloying and annealing effects on the corrosion properties of 159

Near-neutral pH

near-neutral pH crack colonies in liquid pipelines, research and cracking implications from an assessment of two variants of 648

X-70 pipeline steel in dilute near-neutral pH solutions, mechanical and environmental influences on stress corrosion cracking of an 419

Near-neutral pH stress corrosion cracking

transgranular stress corrosion cracking on buried pipelines in near-neutral pH environments, investigating a mechanism for 932

Nickel and nickel alloys. See also Alloys and alloying

Alloys 625 and 718 in supercritical water, corrosion behavior of 603

nickel-based alloys in supercritical water, effect of chromium ion from autoclave material on corrosion behavior of 277

nickel in concentrated aqueous lithium bromide solutions at 25°C, Pourbaix diagrams for 625

supercritical water systems, material performance in 46

Ni-Cr-Fe-P brazing filler

UNS S31803 stainless steel using Ni-Cr-Fe-P alloy filler metals, galvanic corrosion on vacuum-brazed 127

Noble metal

binary noble-metal alloy, dependence of stress corrosion crack velocity on strain rate for a 1048

Noise impedance

mild and stainless steel as a function of pH, electrochemical noise resistance and noise impedance for, correlation between 866

Noise resistance

mild and stainless steel as a function of pH, electrochemical noise resistance and noise impedance for, correlation between 866

Nondestructive testing

coulostatically-induced transients based on empirical mode composition, time-frequency signal de-noising of 749

Nuclear reactor vessel

reactor vessel of a retired nuclear power plant, atmospheric corrosion monitoring inside 591

Nutrients

early immersion corrosion of mild steel, influence of seawater nutrient content on the, empirical observations 318

early immersion corrosion of mild steel, influence of seawater nutrient content on the, role of biofilms and sulfate-reducing bacteria 405

O**Oil-wet**

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

Oil/water

oil-brine mixtures in a flow-loop cell, measurement of electrolyte resistance fluctuations generated by 307

On-site evaluation

passivation verification technique in different concrete structures, efficiency control of cathodic protection measured using 880

Organic topcoats. See also Coatings

sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958

- Oxalic acid and acid solutions.** See also **Acids and acid solutions**
copper during wet/dry cyclic conditions in oxalic acid solutions, monitoring the atmospheric corrosion loss of 171
- Oxidation.** See also **Anodic; Super-critical water**
Alloys 625 and 718 in supercritical water, corrosion behavior of 603
- Oxides and oxide films.** See also **Chromium oxides; Films and film formation; Passive oxide films**
model zirconium alloys in deaerated supercritical water at 500°C, corrosion behavior of 577
- Oxide scale**
nickel-based alloys in supercritical water, effect of chromium ion from autoclave material on corrosion behavior of 277
supercritical water with chromium ion, corrosion mitigation of 1085
- Oxygen and oxygen alloys.** See also **Alloys and alloying**
AISI 1020 carbon steel from dissolved oxygen consumption measurements in aqueous sodium chloride solutions, corrosion kinetics studies of 722 carbon dioxide inhibitor performance at high-flow velocities in jet impingement geometry, effect of mass transfer and flow forces, testing of 1009 copper, critical ion concentration for pitting and general corrosion of 249
- Oxygen consumption**
AISI 1020 carbon steel from dissolved oxygen consumption measurements in aqueous sodium chloride solutions, corrosion kinetics studies of 722
- Oxygen reduction**
aluminum alloys by weak acids, enhancement of localized corrosion in 338
- P**
- Packer brines**
corrosive oil and gas environments, pushing the limits of metals in 63
- Painted materials**
painted automotive materials induced by galvanic coupling with rubber material, blistering on 635
- Parameters**
early immersion corrosion of mild steel, influence of seawater nutrient content on the, role of biofilms and sulfate-reducing bacteria 405
- Particles**
colloidal magnetite particles used as a model corrosion product, purity of 744
- Particle shape**
high-copper dental amalgams, corrosion fatigue of 799
- Passivation and passivity**
near-neutral pH crack colonies in liquid pipelines, research and cracking implications from an assessment of two variants of 648
- Passivation verification technique**
passivation verification technique in different concrete structures, efficiency control of cathodic protection measured using 880
- Passive films.** See also **Films and film formation**
films formed on Fe-Ni-Cr alloys, influence of oxygen concentration of 288°C water and alloy composition on the 1101 phosphoric irons in cement grout, corrosion of 975
- Passive oxide films.** See also **Films and film formation**
Grade-7 titanium, temperature effects on oxide film properties of 781
- Pb-17Li alloy.** See also **Alloys and alloying**
liquid lead alloys for nuclear applications, corrosion of structural materials in 1124
- Penetration rate**
Alloy 22 in chloride-containing waters, crevice corrosion penetration rates of 145
- pH.** See also **Near-neutral**
nickel in concentrated aqueous lithium bromide solutions at 25°C, Pourbaix diagrams for 625
- Phosphoric irons**
phosphoric irons in cement grout, corrosion of 975
- Phosphorus and phosphorus alloys.** See also **Alloys and alloying**
nanocrystalline Co-P alloys in acidic solution, phosphorus alloying and annealing effects on the corrosion properties of 159
- Pipelines and line pipe steel.** See also **by name; by type; by UNS number; Steel**
buried pipelines, galvanic sensor for monitoring corrosion damage of, correlation of probe current to cathodic protection and stray current 951 near-neutral pH crack colonies in liquid pipelines, research and cracking implications from an assessment of two variants of 648
- stray current interference problems, three-dimensional boundary element method and finite element method simulations applied to, a unique coupling method that takes the best of both methods 561
- transgranular stress corrosion cracking on buried pipelines in near-neutral pH environments, investigating a mechanism for 932
- X-70 pipeline steel in dilute near-neutral pH solutions, mechanical and environmental influences on stress corrosion cracking of an 419
- Pit depth maxima**
pitting corrosion, statistical characterization, data analysis and probabilistic modeling for maximum pit depth, discussion/reply 107
- Pitting**
Alloys 625 and 718 in supercritical water, corrosion behavior of 603 copper, critical ion concentration for pitting and general corrosion of 249
- coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena, use of 537
- duplex stainless steel in aqueous lithium bromide solutions, corrosion studies on welded and nonwelded, cavitation 462
- phosphoric irons in cement grout, corrosion of 975
- pitting corrosion, statistical characterization, data analysis and probabilistic modeling for maximum pit depth, discussion/reply 107
- Pitting corrosion resistance**
Type 304L stainless steel welds, effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of 433
- UNS A96061, corrosion inhibition by rare earth chlorides 240

Plasticizer

epoxy primer, thermal, mechanical, and anticorrosive characterization of an 1075

Polarization and polarization testing. See also Cyclic; Potentiodynamic measurements

austenitic stainless steel in highly concentrated sulfuric acid solution, effect of copper addition on corrosion behavior of high-performance 114

cathodic protection of carbon steel in seawater, significance of hydrogen evolution during 857 phosphoric irons in cement grout, corrosion of 975

UNSA96061, corrosion inhibition by rare earth chlorides 240

Polarization resistance

carbon steel in sulfide media, reliability of electrochemical techniques for determining corrosion rates on 346

Polishing effects

AA7075 in various tempers, surface layer dissolution kinetics of 613

Porous electrode

porous electrode and diffusion processes, interpretation of impedance data for 515

Potential. See also Corrosion;

Electrochemical corrosion; Electrode; Repassivation

AA7075, effects of temper and potential on localized corrosion kinetics of 731

X-70 pipeline steel in dilute near-neutral pH solutions, mechanical and environmental influences on stress corrosion cracking of an 419

Potentiodynamic measurements

brass corrosion inhibitors in simulated atmospheric water 987

Potentiodynamic polarization

cupronickel alloys with aluminum and iron additions, selective corrosion in sodium chloride aqueous solution of 211

Potentiostatic pulse

concrete-embedded steel corrosion using potentiostatic pulses, quantitative study of 1094

Pourbaix diagrams

nickel in concentrated aqueous lithium bromide solutions at 25°C, Pourbaix diagrams for 625

Powder coatings. See also Coatings

ytterbium III trifluoromethanesulfonate, epoxy powder clearcoats used for anticorrosive purposes cured with 379

Precipitates and precipitation

nanocrystalline Co-P alloys in acidic solution, phosphorus alloying and annealing effects on the corrosion properties of 159

Prediction

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

Pressure

supercritical water systems, material performance in 46

Pressurized water reactors

austenitic stainless steels in hydrogenated and oxygenated high-temperature water, cold work and temperature dependence of stress corrosion crack growth of 1114

Primers

mortars, primers to the reinforcement in, effectiveness as a function of primer type, exposure conditions, amount of sodium chloride 231

Protective iron carbonate films.

See also Films and film formation

protective iron carbonate films, chemo-mechanical removal in single-phase aqueous flow, simultaneous 758

Pulsed gas tungsten arc welding process

Type 304L stainless steel welds, effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of 433

Pure water

carbon steel under neutral water conditions, flow-assisted corrosion of 770

Q**Quasi-stability diagrams**

highly aggressive environments, corrosion resistance at elevated temperatures in 4

R**Radiation-induced segregation**

alloys in aggressive nuclear reactor core environments, stress corrosion cracking behavior of 19

Radiolysis

alloys in aggressive nuclear reactor core environments, stress corrosion cracking behavior of 19

Rare earth metals

inhibitor synergies on AA2024-T3 through measurement of surface copper enrichment, high throughput assessment of 268

Reactors. See Boiling water; Lead-cooled; Light water; Pressurized water**Reinforced concrete**

chloride ingress into concrete and time-to-corrosion, effects of reinforcement and coarse aggregates on, spatial chloride distribution and implications 843

chloride ingress into concrete and time-to-corrosion, effects of reinforcement and coarse aggregates on, spatial distribution of coarse aggregates 924 concrete-embedded steel corrosion using potentiostatic pulses, quantitative study of 1094

Reinforcement

mortars, primers to the reinforcement in, effectiveness as a function of primer type, exposure conditions, amount of sodium chloride 231

reinforced concrete structure durability by electrochemical techniques, prediction of 811

Repassivation potential

Alloy 22 in hot chloride solutions, effect of fluoride ions on crevice corrosion and passive behavior of 480

Resistance. See Area-specific; Corrosion; Electric; Electrolyte; Pitting corrosion; Polarization**Rotating cylinder electrode**

protective iron carbonate films, chemo-mechanical removal in single-phase aqueous flow, simultaneous 758

Rubber

painted automotive materials induced by galvanic coupling with rubber material, blistering on 635

Rust layer

rust layer formed on steel in different marine corrosion zones, Mössbauer effect of 850

S**Sacrificial anodes**

aluminum-coated steel for automotive mufflers, sacrificial anode cathodic protection of 522

Salt fog spray

ytterbium III trifluoromethanesulfonate, epoxy powder clearcoats used for anticorrosive purposes cured with 379

Salt lake

carbon steel in Qinghai Salt Lake atmosphere, characterization of corrosion products formed on 640

Scanning electron microscopy

ceria production by hydrothermal synthesis under supercritical conditions, reactor corrosion in 359

colloidal magnetite particles used as a model corrosion product, purity of 744

copper during wet/dry cyclic conditions in oxalic acid solutions, monitoring the atmospheric corrosion loss of 171

UNS A96061, corrosion inhibition by rare earth chlorides 240

zinc, galvanized, mild steel in water-concrete environment, corrosion behavior of 1063

Seawater. See also Marine applications and environments;**Sodium chloride and solutions**

cathodic protection of carbon steel in seawater, significance of hydrogen evolution during 857

early immersion corrosion of mild steel, influence of seawater nutrient content on the, empirical observations 318

early immersion corrosion of mild steel, influence of seawater nutrient content on the, role of biofilms and sulfate-reducing bacteria 405

Segregation

nanocrystalline Co-P alloys in acidic solution, phosphorus alloying and annealing effects on the corrosion properties of 159

Selective corrosion

cupronickel alloys with aluminum and iron additions, selective corrosion in sodium chloride aqueous solution of 211

Selective dissolution

austenitic stainless steel in highly concentrated sulfuric acid solution, effect of copper addition on corrosion behavior of high-performance 114

Sensitization

ferritic stainless steel, heat-affected zone sensitization and stress corrosion cracking in 12% chromium type 1.4003 395

films formed on Fe-Ni-Cr alloys, influence of oxygen concentration of 288°C water and alloy composition on the 1101

Shear strength

UNS S31803 stainless steel using Ni-Cr-Fe-P alloy filler metals, galvanic corrosion on vacuum-brazed 127

Shielding

mild steel in tidal marine conditions, effect of orientation and shielding in the early corrosion of 872

Signal processing

coulostatically-induced transients based on empirical mode composition, time-frequency signal de-noising of 749

Simulated concentrated water

Alloy 22, effect of simulated groundwater chemistry on stress corrosion cracking of 940

Single crystal

iron-gallium alloy single crystals, effect of magnetic field on the corrosion behavior of magnetostrictive 1042

Slow strain rate testing

Alloy 22, effect of simulated groundwater chemistry on stress corrosion cracking of 940

binary noble-metal alloy, dependence of stress corrosion crack velocity on strain rate for a 1048

X-70 pipeline steel in dilute near-neutral pH solutions, mechanical and environmental influences on stress corrosion cracking of an 419

Sodium chloride and solutions

mortars, primers to the reinforcement in, effectiveness as a function of primer type, exposure conditions, amount of sodium chloride 231

Solubility of oxides

nickel-based alloys in supercritical water, effect of chromium ion from autoclave material on corrosion behavior of 277

supercritical water with chromium ion, corrosion mitigation of 1085

Sour corrosion

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

Sour service oil and gas well production

corrosive oil and gas environments, pushing the limits of metals in 63

Spinel coatings. See also Coatings

spinel coatings for metallic interconnects of solid oxide fuel cells, oxidation and electrical conductivity behavior of 529

Stability diagrams

highly aggressive environments, corrosion resistance at elevated temperatures in 4

Stainless steel. See also Austenitic; by name; by type; by UNS number; Duplex

ferritic stainless steel, heat-affected zone sensitization and stress corrosion cracking in 12% chromium type 1.4003 395

films formed on Fe-Ni-Cr alloys, influence of oxygen concentration of 288°C water and alloy composition on the 1101

Type 304L stainless steel welds, effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of 433

Type 316 stainless steel in supercritical water, stress corrosion crack growth in 1033

Steel. See also by name; by type; by UNS number; Carbon; Galvanized; High-strength, low-alloy; Low-alloy; Mild; Pipelines and line pipe; Ultrahigh-strength; Zinc-galvanized

duplex stainless steel in aqueous lithium bromide solutions, corrosion studies on welded and nonwelded, cavitation 462

ferritic stainless steel, heat-affected zone sensitization and stress corrosion cracking in 12% chromium type 1.4003 395

films formed on Fe-Ni-Cr alloys, influence of oxygen concentration of 288°C water and alloy composition on the 1101

structural steels, transition from marine immersion to coastal atmospheric corrosion for 500

Type 304L stainless steel welds, effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of 433

Type 316 stainless steel in supercritical water, stress corrosion crack growth in 1033

Steel-reinforced concrete

phosphoric irons in cement grout, corrosion of 975

Strain rate

X-70 pipeline steel in dilute near-neutral pH solutions, mechanical and environmental influences on stress corrosion cracking of an 419

Stray current

buried pipelines, galvanic sensor for monitoring corrosion damage of, correlation of probe current to cathodic protection and stray current 951

Stray current interference

stray current interference problems, three-dimensional boundary element method and finite element method simulations applied to, a unique coupling method that takes the best of both methods 561

Stress corrosion cracking. See also Intergranular; Irradiation-assisted; Near-neutral pH; Transgranular

Alloy 400 in copper sulfate solution, stress corrosion cracking of 416

binary noble-metal alloy, dependence of stress corrosion crack velocity on strain rate for a 1048

corrosive oil and gas environments, pushing the limits of metals in 63

ferritic stainless steel, heat-affected zone sensitization and stress corrosion cracking in 12% chromium type 1.4003 395

near-neutral pH crack colonies in liquid pipelines, research and cracking implications from an assessment of two variants of 648

pure titanium in iodine-alcohol solutions, stress corrosion cracking behavior of 450

stress corrosion cracking of duplex stainless steel, chemistry of concentrated salts formed by evaporation of formation water and the impact on 555

Type 316 stainless steel in supercritical water, stress corrosion crack growth in 1033

X-70 pipeline steel in dilute near-neutral pH solutions, mechanical and environmental influences on stress corrosion cracking of an 419

Stretch zone width

duplex stainless steel (UNS S31803), environmental effects on the fracture toughness of a 442

Sulfate-reducing bacteria

early immersion corrosion of mild steel, influence of seawater nutrient content on the, role of biofilms and sulfate-reducing bacteria 405

Sulfidation

highly aggressive environments, corrosion resistance at elevated temperatures in 4

Sulfides and sulfide solutions

carbon steel in sulfide media, reliability of electrochemical techniques for determining corrosion rates on 346 copper under electrochemical and natural corrosion conditions, sulfide film formation on 135

Sulfide stress cracking

corrosive oil and gas environments, pushing the limits of metals in 63

high-strength, low-alloys steels, effect of molybdenum and chromium addition on susceptibility to sulfide stress cracking of 220

Superalloys. See also Alloys and alloying

high-velocity oxy-fuel-sprayed chromium carbide-nickel chromium coating in actual boiler environment of a thermal power plant, performance of 828

Supercritical water

Alloys 625 and 718 in supercritical water, corrosion behavior of 603

model zirconium alloys in deaerated supercritical water at 500°C, corrosion behavior of 577

nickel-based alloys in supercritical water, effect of chromium ion from autoclave material on corrosion behavior of 277

supercritical water with chromium ion, corrosion mitigation of 1085

Type 316 stainless steel in supercritical water, stress corrosion crack growth in 1033

Supercritical water oxidation

ceria production by hydrothermal synthesis under supercritical conditions, reactor corrosion in 359

Ti-Pd alloy for a supercritical water oxidation reactor, corrosion resistance in highly concentrated hydrochloric acid and creep rupture strength of a 793

Surface analysis

atmospheric corrosion, molecular in situ studies of 715

Surface-enhanced Raman spectroscopy

films formed on Fe-Ni-Cr alloys, influence of oxygen concentration of 288°C water and alloy composition on the 1101

Sweet corrosion

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

Synergistic effect

protective iron carbonate films, chemo-mechanical removal in single-phase aqueous flow, simultaneous 758

Synthesis

colloidal magnetite particles used as a model corrosion product, purity of 744

T**Temper**

AA7075, effects of temper and potential on localized corrosion kinetics of 731

Temperature

Alloys 625 and 718 in supercritical water, corrosion behavior of 603

Grade-7 titanium, temperature effects on oxide film properties of 781

Type 316 stainless steel in supercritical water, stress corrosion crack growth in 1033

Testing. See Accelerated tests;

Analysis of variance; Auger electron spectroscopy; Cabinet tests; Corrosion rate measurements and monitoring; Cyclic voltammetry; Density functional theory calculations; Design of experiments; Differential scanning calorimetry; Dynamic-mechanical thermal analysis; Electrochemical accelerated test; Electrochemical impedance spectroscopy; Electrochemical techniques and tests; Environmental scanning electron microscopy; Exposure; Extrapolation; Extreme value statistics; Image analysis; Immersion testing; In situ studies; Monitoring; Mössbauer spectroscopy; Nondestructive; On-site evaluation; Passivation verification technique; Polarization and polarization testing; Potentiodynamic measurements; Prediction; Quasi-stability diagrams; Scanning electron microscopy; Slow strain rate; Stability diagrams; Surface analysis; Surface-enhanced Raman

spectroscopy; Transmission electron microscopy; Voltammetry; Weight-loss measurements; X-ray diffraction; X-ray photo-electron spectroscopy

Tetramethyl ammonium hydroxide and solutions

molybdenum/aluminum-neodymium double thin film in tetramethyl ammonium hydroxide solution, electrochemical characteristics of 835

Texture

model zirconium alloys in deaerated supercritical water at 500°C, corrosion behavior of 577

Thermal baking

precharged ultrahigh-strength steels, controlling hydrogen embrittlement in 689

Thermal spray

sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958

Thin film corrosion

molybdenum/aluminum-neodymium double thin film in tetramethyl ammonium hydroxide solution, electrochemical characteristics of 835

Tidal

mild steel in tidal marine conditions, effect of orientation and shielding in the early corrosion of 872

Time constant

concrete-embedded steel corrosion using potentiostatic pulses, quantitative study of 1094

Titanium and titanium alloys. See also Alloys and alloying

Grade-7 titanium, temperature effects on oxide film properties of 781

pure titanium in iodine-alcohol solutions, stress corrosion cracking behavior of 450

Ti-Pd alloy for a supercritical water oxidation reactor, corrosion resistance in highly concentrated hydrochloric acid and creep rupture strength of a 793

Titanium oxide and solutions

anodic oxide films on titanium in oxalic acid solutions, formation and dissolution behavior of 299

Top-of-the-line corrosion

top-of-the-line corrosion, mechanistic model of 1051

Transgranular stress corrosion cracking

transgranular stress corrosion cracking on buried pipelines in near-neutral pH environments, investigating a mechanism for 932

Transmission electron microscopy

colloidal magnetite particles used as a model corrosion product, purity of 744

Transmission line

porous electrode and diffusion processes, interpretation of impedance data for 515

Turbulent single-phase flow

protective iron carbonate films, chemo-mechanical removal in single-phase aqueous flow, simultaneous 758

Two-phase flow

oil-brine mixtures in a flow-loop cell, measurement of electrolyte resistance fluctuations generated by 307

Type 304 stainless steel

Type 304 stainless steel under boiling water reactor conditions, fatigue crack growth behavior of sensitized 997

U

Ultrahigh-strength steel. See also by name; by type; by UNS number; Steel

precharged ultrahigh-strength steels, controlling hydrogen embrittlement in 689

Underground car park

stray current interference problems, three-dimensional boundary element method and finite element method simulations applied to, a unique coupling method that takes the best of both methods 561

UNS A92024. See AA2024-T3

UNS A96061

UNS A96061, corrosion inhibition by rare earth chlorides 240

UNS N04400. See Alloy 400

UNS N06022. See Alloy 22

UNS S30400. See Type 304 stainless steel

UNS S31603. See Cold-worked Type 316L stainless steel

UNS S31803

duplex stainless steel (UNS S31803), environmental effects on the fracture toughness of a 442

V

Vacancy diffusion

austenitic stainless steels in hydrogenated and oxygenated high-temperature water, cold work and temperature dependence of stress corrosion crack growth of 1114

Vanadates

AA2024 corrosion by vanadates, inhibition of, an in situ atomic force microscopy scratching investigation 672

Voltammetry

copper under electrochemical and natural corrosion conditions, sulfide film formation on 135

W

Waste disposal

supercritical water systems, material performance in 46

Water. See also Condensed; Formation; High-temperature; Hydrogen water chemistry; Oil/water; Pure; Seawater; Simulated concentrated; Supercritical; Water chemistry; Water-concrete environment; Water-wet

supercritical water systems, material performance in 46

Water chemistry

alloys in aggressive nuclear reactor core environments, stress corrosion cracking behavior of 19

Water-concrete environment

zinc, galvanized, mild steel in water-concrete environment, corrosion behavior of 1063

Water-wet

hydrocarbons on the internal corrosion of oil and gas pipelines, effect of 704

Wave effect

mild steel in tidal marine conditions, effect of orientation and shielding in the early corrosion of 872

Weak acids and acid solutions. See also Acids and acid solutions

aluminum alloys by weak acids, enhancement of localized corrosion in 338

Weight-loss measurements

mild steel in the presence of acetic acid, investigation of carbon dioxide corrosion of, basic mechanisms 178

Welding and weldments

duplex stainless steel in aqueous lithium bromide solutions, corrosion studies on welded and nonwelded, cavitation 462

Type 304L stainless steel welds, effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of 433

Wet-dry conditions

MgAl9Zn1 magnesium alloy in cyclic wet-dry conditions using environmental scanning electron microscopy, in situ observation of initial corrosion of 661

Wettability

carbon dioxide corrosion inhibitors, effect of oil-in-water emulsions on the performance of 187

X

X-ray diffraction

colloidal magnetite particles used as a model corrosion product, purity of 744
copper during wet/dry cyclic conditions in oxalic acid solutions, monitoring the atmospheric corrosion loss of 171

X-ray photoelectron spectroscopy

austenitic stainless steel in highly concentrated sulfuric acid solution, effect of copper addition on corrosion behavior of high-performance 114

nanocrystalline Co-P alloys in acidic solution, phosphorus alloying and annealing effects on the corrosion properties of 159

Y

Ytterbium triflate

ytterbium III trifluoromethanesulfonate, epoxy powder clearcoats used for anticorrosive purposes cured with 379

Z

Zinc and zinc alloys. See also Alloys and alloying

atmospheric corrosion, molecular in situ studies of 715

Zinc-galvanized steel. See also by name; by type; by UNS number; Steel

zinc, galvanized, mild steel in water-concrete environment, corrosion behavior of 1063

Zinc metal coatings. See also Coatings

zinc surface films under atmospheric weathering conditions, effect of chloride-to-chromate ratio on the protective action of 258

Zinc sacrificial coatings. See also Coatings

sacrificial coating systems, comparison of testing techniques used to analyze the corrosion resistance of 958

Zirconium and zirconium alloys.

See also Alloys and alloying
model zirconium alloys in deaerated supercritical water at 500°C, corrosion behavior of 577

CORROSION RESEARCH CALENDAR

CORROSION accepts notices of calls for papers and upcoming research grants, meetings, symposia, and conferences. All pertinent information, including the date, time, location, and sponsor of an event should be submitted as far in advance as possible to: Suzanne Moreno, *CORROSION* Editorial Assistant, fax: +1 281-228-6359 or e-mail: suzanne.moreno@nace.org.

2008

January 22-24—Northeast Corrosion Conference 2008—Springfield, MA; Contact John Olson, Phone: +1 617-484-9085; E-mail: john@edi-cp.com.

January 30—February 1—The Waterborne Symposium: Advances in Sustainable Coating Technologies—New Orleans, LA; Contact The School of Polymers and High Performance Materials and Southern Society for Coatings Technology, Web site: www.psrce.usm.edu/waterborne.

February 3-6—12th Middle East Corrosion Conference and Exhibition—Manama, Bahrain; Contact Conference Secretariat, E-mail: bseng@batelco.com.bh; Web site: www.mecconline.org.

* **February 11-14—2008 Northern Area Western Conference—Edmonton, AB, Canada;** Contact Wayne Duncan, Phone: +1 708-955-2856; E-mail: wduncan@csicoating.com; Web site: http://www.nace.org/nace/content/sar_links/nawc/0707/NACEEdmontonCallforPapers.pdf.

February 12-14—2008 U.S. Army Corrosion Summit—Clearwater Beach, FL; Contact Claire Lesinski, Phone: +1 727-549-7013; E-mail: lesinksc@ctc.com; Web site: www.armycorrosion.com.

March 11-12—Waterborne and High Solids Coatings Conference—Brussels, Belgium; Contact Janet Saraty, Phone: +44 (0) 20 8487 0811; E-mail: conferences@pra-world.com.

* **March 16-20—CORROSION/2008 NACE Conference and Exhibition—New Orleans, LA;** Contact FirstService, NACE International, Phone: +1 281-228-6223; Web site: www.nace.org/c2008.

March 19-20—Globalcon 2008 Conference and Expo—Austin, TX; Contact Ashley Clark, Phone: +1 770-279-4392; E-mail: ashley@aeecenter.org.

* **March 20—World Corrosion Organization—New Orleans, LA;** Contact George Hays, Phone: +1 973-267-9429; E-mail: corrosion.org@gmail.com; Web site: www.corrosion.org.

August 4-6—12th Asia-Pacific Confederation of Chemical Engineering—Dalian, China; Contact Asia-Pacific Confederation of Chemical Engineering, E-mail: apcce@163.com; Web site: www.apcce.org.

October 5-10—17th International Corrosion Congress—Las Vegas, NV; Contact Cassie Davie, Phone: +1 281-228-6217; E-mail: cassie.davie@nace.org.

* Sponsored or cosponsored by NACE International.

To see a complete list of events, please visit the NACE Web site at www.nace.org, or go directly to:

http://www.nace.org/NACE/content/eventscalendar/events_index.asp