Introduction

To accurately predict whether a Home Equity Loan is default or not, a relevant dataset containing accurate information and characteristics of borrowers needs to be examined. Once we have explored the dataset, our task will be to create machine learning models that leverage these key indicators to predict whether a loan will default.

Dataset

For this project, we used Home Equity Line of Credit (HMEQ) dataset. A home equity loan is a loan where the borrower uses the equity of his or her home as the underlying collateral. This data set reports characteristics and delinquency information for 5,960 home equity loans.

Descriptive Statistics

Following the examining an overview of numerical variables' mean and standard deviations, we found that many variables such as TARGET_LOSS_AMT, LOAN, and MORTDUE that may have outliers with more than 2 standard deviations above the mean values.

Description of Good Loans (No Default)

Description of Bad Loans (Default)

MSDS 422 Juhwi Kim

Bad_d	df.describe()											
	TARGET_BAD_FLAG	TARGET_LOSS_AMT	LOAN	MORTDUE	VALUE	YOJ	DEROG	DELINQ	CLAGE	NINQ	CLNO	DEBTINC
count	1189.0	1189.000000	1189.000000	1083.000000	1084.000000	1124.000000	1102.000000	1117.000000	1111.000000	1114.000000	1136.000000	403.000000
mean	1.0	13414.576955	16922.119428	69460.452973	98172.846227	8.027802	0.707804	1.229185	150.190183	1.782765	21.211268	39.387645
std	0.0	10839.455965	11418.455152	47588.194467	74339.822506	7.100735	1.468381	1.902961	84.952286	2.246976	11.812981	17.723586
min	1.0	224.000000	1100.000000	2063.000000	8800.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.524499
25%	1.0	5639.000000	9200.000000	39946.500000	59368.250000	2.000000	0.000000	0.000000	96.033333	0.000000	13.000000	32.383046
50%	1.0	11003.000000	14900.000000	60279.000000	82000.000000	6.000000	0.000000	0.000000	132.866667	1.000000	20.000000	38.079762
75%	1.0	17634.000000	21700.000000	85864.500000	116000.000000	12.000000	1.000000	2.000000	193.283333	3.000000	28.000000	43.285990
max	1.0	78987.000000	77400.000000	399550.000000	855909.000000	41.000000	10.000000	15.000000	1168.233561	17.000000	71.000000	203.312149

• Compared to borrowers that did not default on their loan, defaulted loans include extreme outlier with their home value at \$855K and Debt to Income Ratio seems to be much higher among borrowers defaulted on their loan.

Categorical Variables against Target Variables:

```
Class = REASON
REASON
DebtCon 3928
HomeImp 1780
Name: REASON, dtype: int64
Bad Flag REASON
DebtCon 0.189664
HomeImp 0.222472
Name: TARGET_BAD_FLAG, dtype: float64
..........................
Loss Amount REASON
DebtCon 16005.163758
HomeImp 8388.090909
Name: TARGET_LOSS_AMT, dtype: float64
================
```

• Compared to taking a home equity loan to use towards home improvement, Debt Consolidation results in higher amount of unpaid loan (\$8388 vs. 16005).

```
Class = JOB
JOB
Mgr 767
Office 948
Other 2388
ProfExe 1276
Sales 109
Self 193
Name: JOB, dtype: int64
Bad Flag JOB
Mgr 0.233377
Office 0.131857
Other 0.231993
ProfExe 0.166144
Sales 0.348624
```

MSDS 422 Juhwi Kim

 Compared to other jobs, people working in Sales showed higher probabilities of defaulting their home equity loans followed by self-employed borrowers. Comparing the amount of unpaid loans, self-employed borrowers show higher unpaid loan amount.

Distribution Visualization

To understand dataset better, I have evaluated distribution charts for all numerical variables for skewedness and visualize outliers.

MSDS 422 Juhwi Kim

Through distribution charting, we can observe that majority of variables show left-sided skewness. Only CLNO, the number of credit lines a borrower has, exhibits close to normally distributed form.

Missing Values

Overall, 12 out of 14 variables contain missing values and the number of missing values is listed below:

	Variables	Missing Values	5000					
0	TARGET_BAD_FLAG	0						
1	TARGET_LOSS_AMT	4771	4000					
2	LOAN	0	2000					
3	MORTDUE	518	3000					
4	VALUE	112	2000					
5	REASON	252						
6	JOB	279	1000					
7	YOJ	515				L	ш	
8	DEROG	708	0			7	m	
9	DELINQ	580		WALUE	CLNO	REASON	JOB	
10	CLAGE	308		>		Æ		
11	NINQ	510						
12	CLNO	222						
13	DEBTINC	1267						

 TARGET_LOSS_AMT has the highest number of missing values; however, it is due to corresponding loans have not been defaulted. Only when loan is defaulted, it will be flagged and result in amount of unpaid loan gets logged. For this variable, it will make sense to note it as 0.

DELINQ

DEBTING

MORTDUE

- Job and Reason are two object/categorical variables. While large portion of the reason for taking the loan is to consolidate debt, there could be other reasons beside debt consolidation or home improvement to take the loan; therefore, imputing missing values with mode may not truly reflect the data or possibly skew the result when there are only two options (DebtCons vs. HomeImp). Therefore, for Reason, I will proceed with imputing missing values by labeling them "Missing".
- For Jobs, the large portion of the jobs fall under "Other". Since Other is overarching and broader categorical label, I will proceed with imputing missing values using Mode which will transform NaN values into "Other".
- Following imputing missing values, I have applied one hot encoding to transform categorical variables into numerical variables:
 - For each reason and job category, if a borrower falls under the category, it will be indicated by 1. Otherwise, the value will be 0.

```
df["REASON_DEBTCON"] = (df.IMP_REASON.isin( ["DebtCon"] ) + 0 )
df["REASON_HOMEIMP"] = (df.IMP_REASON.isin( ["HomeImp"] ) + 0 )
df["REASON_MISSING"] = (df.IMP_REASON.isin( ["Missing"] ) + 0 )
```

```
df["JOB_Mgr"] = (df.IMP_JOB.isin(["Mgr"]) + 0)
df["JOB_Office"] = (df.IMP_JOB.isin(["Office"]) + 0)
df["JOB_Other"] = (df.IMP_JOB.isin(["Other"]) + 0)
df["JOB_ProfExe"] = (df.IMP_JOB.isin(["ProfExe"]) + 0)
df["JOB_Sales"] = (df.IMP_JOB.isin(["Sales"]) + 0)
df["JOB_Self"] = (df.IMP_JOB.isin(["Self"]) + 0)
```

• The missing values in the numerical variables: 'LOAN', 'MORTDUE', 'VALUE', 'YOJ', 'DEROG', 'DELINQ', 'CLAGE', 'NINQ', 'CLNO', 'DEBTINC' have been imputed using the column's median value.

Following the imputation of missing values and transformation of categorical variables into numerical variables, the dataset has been transformed to following format. The updated variables along with the first five rows of dataset is listed below:

4	3	2	1	0	
0.000000	1.000000	1.000000	1.000000	1.000000	TARGET_BAD_FLAG
1700.000000	1500.000000	1500.000000	1300.000000	1100.000000	LOAN
0.000000	1425.000000	767.000000	1109.000000	641.000000	IMP_TARGET_LOSS_AMT
0.000000	0.000000	0.000000	0.000000	0.000000	REASON_DEBTCON
1.000000	0.000000	1.000000	1.000000	1.000000	REASON_HOMEIMP
0.000000	1.000000	0.000000	0.000000	0.000000	REASON_MISSING
0.000000	0.000000	0.000000	0.000000	0.000000	JOB_Mgr
1.000000	0.000000	0.000000	0.000000	0.000000	JOB_Office
0.000000	1.000000	1.000000	1.000000	1.000000	JOB_Other
0.000000	0.000000	0.000000	0.000000	0.000000	JOB_ProfExe
0.000000	0.000000	0.000000	0.000000	0.000000	JOB_Sales
0.000000	0.000000	0.000000	0.000000	0.000000	JOB_Self
0.000000	1.000000	0.000000	0.000000	0.000000	M_MORTDUE
97800.000000	65019.000000	13500.000000	70053.000000	25860.000000	IMP_MORTDUE
0.000000	1.000000	0.000000	0.000000	0.000000	M_VALUE
112000.000000	89235.500000	16700.000000	68400.000000	39025.000000	IMP_VALUE
0.000000	1.000000	0.000000	0.000000	0.000000	M_YOJ
3.000000	7.000000	4.000000	7.000000	10.500000	IMP_YOJ
0.000000	1.000000	0.000000	0.000000	0.000000	M_DEROG
0.000000	0.000000	0.000000	0.000000	0.000000	IMP_DEROG
0.000000	1.000000	0.000000	0.000000	0.000000	M_DELINQ
0.000000	0.000000	0.000000	2.000000	0.000000	IMP_DELINQ
0.000000	1.000000	0.000000	0.000000	0.000000	M_CLAGE
93.333333	173.466667	149.466667	121.833333	94.366667	IMP_CLAGE
0.000000	1.000000	0.000000	0.000000	0.000000	M_NINQ
0.000000	1.000000	1.000000	0.000000	1.000000	IMP_NINQ
0.000000	1.000000	0.000000	0.000000	0.000000	M_CLNO
14.000000	20.000000	10.000000	14.000000	9.000000	IMP_CLNO
1.000000	1.000000	1.000000	1.000000	1.000000	M_DEBTING
34.818262	34.818262	34.818262	34.818262	34.818262	IMP_DEBTING

Upon successful data preparation, initial correlation test against target variables has been executed, which points to the debt-to-income ratio, number of delinquencies and derogatory may be more closely correlated with loan defaulting and subsequent unpaid loans.

