De£nitions

You should be familiar with:

- Graph, V, E, n = |V|, m = |E|.
- Vertices, adjacent, neighbours.
- Edges, incident, degree, $\sum_{v \in V} \deg(v) = 2m$.
- Multi-edge, loop, simple graph.
- Path, cycle, connected.
- Breadth-£rst search (we will review it again.)

Adjacency Matrix

Α	1	2	3	4	5
1	0	1	0	1	0
2	1	0	0	1	0
3	0	0	0	0	1
4	1	1	0	0	0
5	0	0	1	0	0

Adjacency Lists

Incidence Lists

(plus references from edges to their endpoints.)

Breadth-First Search

Algorithm BFS(Graph G, vertex s):

- 1: Initialize an empty queue Q.
- 2: Color all vertices white.
- 3: Color s gray and put it into Q.
- 4: **while** Q is not empty **do**
- 5: $u \leftarrow Q.dequeue()$
- 6: **for** all neighbours v of u **do**
- 7: **if** v is white **then**
- 8: Color v gray and put it into Q.
- 9: Colour *u* black.

Example: BFS(8)

Q:				
----	--	--	--	--

Graphs

Depth-First Search

15-6

Algorithm DFS(Graph G):

- 1: Colour all vertices white.
- 2: **for** all vertices v in G **do**
- 3: If v is white, DFS-Visit(v)

Algorithm DFS-VISIT(Vertex u):

- 1: Colour u gray.
- 2: **for** all neighbours v of u **do**
- 3: **if** v is white **then**
- 4: DFS-Visit(v)
- 5: Colour u black.

Example:

Depth-First Search

Algorithm DFS-NonRecursive(Graph G):

- 1: Colour all vertices white and put them on a stack S.
- 2: **while** S is not empty **do**
- 3: $u \leftarrow S.peek()$
- 4: **if** u is white **then**
- 5: Colour u gray.
- 6: **for** all neighbours v of u **do**
- 7: **if** v is white **then**
- 8: $S.\mathsf{push}(v)$
- 9: **else**
- 10: Colour u black.
- 11: S.pop()

Example:

S: