





# Índice

- Space-filling curves
- 2. Hilbert curves













Los MBB son "**representados**" por sus centroides Cada MBB es enumerado por el H-index de su centroide







**Peano-Hilbert order** 





R-Tree se llena empaquetando n=6 bloques, en orden del H-index

Esta variante solo funciona como estructura estática



















#### **AQUÍ HAY UN ERROR**

la repartición debería ser equitativa













Que hacer si el nodo se sobrecarga?







#### Que hacer si el nodo se sobrecarga?

Creamos un nodo padre







Agrupamos los puntos en grupos de 3 (la capacidad del nodo) en orden del H-index.







La cantidad de grupos es mayor a 3 (la capacidad del nodo padre).

Entonces, creamos otro nivel del árbol



















**Hilbert packed R-tree** 



**Morton packed R-tree** 













LHV: Largest Hilbert value



Los nodos internos almacenan LHV

Esto nos ayudará a ordenar los nodos, y seleccionar una hoja durante la inserción.







#### Por ejemplo:

LHV de R1 es 21, ya que es el h-index de C LHV de R2 es 35, ya que es el h-index de F LHV de R3 es 46, ya que es el h-index de I

LHV de Q1 es 46, ya que es el LHV de R3



Durante la inserción, se selecciona el nodo con **LHV mínimo que supera al h-index** del **nuevo dato**.



Por ejemplo: Agregamos el punto x, el cual tiene h-index 25.







Por ejemplo: Agregamos el punto x, el cual tiene h-index 25.







Por ejemplo: Agregamos el punto x, el cual tiene h-index 25.



LHV(R1)<h-index(x)
LHV(R2)>h-index(x)
LHV(R3)>h-index(x)
LHV(R1)<LHV(R2)
LHV(R2)

A B C D E F G H I J K L M N

Elegimos R1 (es el menor que supera)



Por ejemplo: Agregamos el punto x, el cual tiene h-index 25.



Note que el nodo R2 se sobrecarga

:C





**Sobrecarga** Buscamos apoyo del hermano **izquierdo**.



Repartimos todos los datos entre los nodos



#### **Sobrecarga** Buscamos apoyo del hermano **izquierdo**.



Repartimos todos los datos entre los nodos

Pero, que hacemos si el nodo izquierdo está lleno?



#### **Sobrecarga** Buscamos apoyo del hermano **izquierdo**.



Repartimos todos los datos entre **todos** los nodos



#### **Sobrecarga** Buscamos apoyo del hermano **izquierdo**.



Repartimos todos los datos entre **todos** los nodos

Pero, que hacemos si todos los nodos izquierdos están llenos?



#### **Sobrecarga** Buscamos apoyo del hermano **izquierdo**.



Repartimos todos los datos entre **todos** los nodos

Pero, que hacemos si todos los nodos izquierdos están llenos?

Creamos nuevo nodo

... y repartimos todos los datos entre **todos** los nodos



#### **Sobrecarga** Buscamos apoyo del hermano **izquierdo**.



Repartimos todos los datos entre **todos** los nodos

Pero, que hacemos si todos los nodos izquierdos están llenos?

Creamos nuevo nodo

... y repartimos todos los datos entre **todos** los nodos



#### Sobrecarga

Buscamos apoyo del hermano izquierdo.



#### Note que el nodo padre se **sobrecarga**

Entonces, repetimos este proceso en los nodos internos, donde tomamos como referencia el LHV.







