Trabajo: Entrega Final

Alumna: Verónica Soledad Rocha

Objetivo:

Hacer que el modelo muestre una estadistica de la cantidad de tareas que tenemos previstas para el sprint, clasificadas por su estado

1. Instalamos las librerias

```
In [5]: #!pip install -U google-generativeai
#!pip install openai==0.28

import google.generativeai as genai
import openai
import requests
import os
from io import BytesIO
```

2. Defino mi apikey

3. Generamos la respuesta para el cliente en base al prompt proporcionado

```
In [7]: def generate_text_with_gemini(prompt):
    model = genai.GenerativeModel('gemini-1.5-flash')
    response = model.generate_content(f"{prompt} indicar que se revisará lo que
    #get the response´s text
    generated_text = response.candidates[0].content.parts[0].text
    return generated_text
```

4. Importamos más librerias

```
import sys
print ("Python que ejecuta el notebook:",sys.executable)
```

Python que ejecuta el notebook: C:\Users\VS\miniconda3\envs\generacion-de-promt\p ython.exe

```
In [9]: import numpy
print ("numpy:",numpy.__version__, "en", numpy.__file__)
```

```
numpy: 1.23.5 en C:\Users\VS\miniconda3\envs\generacion-de-promt\lib\site-package
s\numpy\__init__.py
```

```
In [10]: import pandas as pd
    print ("pandas:",pd.__version__)

pandas: 1.5.0

In [7]: import pandas as pd
    import tkinter as tk
    from tkinter import filedialog, messagebox
```

5. Interactuamos con el cliente para preguntarle ¿qué quiere revisar?

```
In [11]: initial_prompt = input("Hola, qué es lo que quieres revisar, clasificar?")
    print("Revisaremos el documento y te indicaremos los resultados. Por favor, prop
```

Revisaremos el documento y te indicaremos los resultados. Por favor, proporciónam e el archivo que deseas revisar

6. Le pedimos que importe el archivo que desea revisar

```
In [12]: from ipywidgets import FileUpload
    from IPython.display import display

# Creamos y mostramos el widget de subida
    uploader = FileUpload(accept='.xlsx,.xls', multiple=False)
    display(uploader)
```

FileUpload(value=(), accept='.xlsx,.xls', description='Upload')

7. Leemos el archivo suministrado y lo mostramos por pantalla

```
In [13]: import pandas as pd
         from io import BytesIO
         from IPython.display import display
         # Comprobamos que el usuario ya subió algo
         if uploader.value:
             val = uploader.value
             if isinstance(val, dict):
                  Content = next(iter(val.values()))['contente']
             else:
                 first = val [0]
                  if isinstance(first, dict):
                      content = first['content']
                 else:
                      content = first.content
             df = pd.read_excel(BytesIO(content))
             display(df)
         else:
             print("No se ha subido ningun archivo")
```

C:\Users\VS\miniconda3\envs\generacion-de-promt\lib\site-packages\openpyxl\worksh eet_read_only.py:85: UserWarning: Cell L19 is marked as a date but the serial va lue 6689546 is outside the limits for dates. The cell will be treated as an erro r.

for idx, row in parser.parse():

	Objetivo	Historia de usuario (HdU)	Código tarea	Descripción tarea	Sprint	Sprint goal	Prioridad	R
0	A. Modelo de prevención de fraude	A.1. Existen políticas, procedimientos y roles	A1.T1	"Relevar y documentar todas las normas, políti	NaN	NaN	Must	
1	NaN	A.2. Verificar mediante una muestra de casos d	A2.T1	Identificar si este punto fue cubierto en algu	Sprint 1	NaN	Must	
2	B. Contratación de productos de inversión en o	B.1.Existe un proceso con definición de respon	B1.T1	Verificar la existencia y vigencia de normativ	NaN	NaN	Could	
3	NaN	B.2 Los empleados de sucursal que asisten a lo	B2.T1	"Relevar la normativa vigente del regulador qu	NaN	NaN	Could	
4	NaN	NaN	B2.T2	Relevar el circuito de asignación de la funció	NaN	NaN	Could	
5	NaN	NaN	B2.T3	"Listar a los colaboradores sujetos al requisi	NaN	NaN	Should	
6	NaN	B.3 Las funciones para operar en mercado, está	B3.T1	"Detectar a los colaboradores que poseen permi	NaN	NaN	Must	
7	C. Controles de efectivo en sucursales	C.1.Para el mes de marzo de 2025, se realizaro	C1.T1	Elaborar un resumen ejecutivo de la normativa 	NaN	NaN	Should	
8	NaN	NaN	C1.T2	Obtener los registros de ejecución de los sigu	Sprint 1	Si	Must	
9	NaN	NaN	C1.T3	Definir el universo de sucursales que sí indic	Sprint 1	Si	Must	
10	NaN	NaN	C1.T4	Seleccionar una muestra	Sprint 1	Si	Must	

	Objetivo	Historia de usuario (HdU)	Código tarea	Descripción tarea	Sprint	Sprint goal	Prioridad	R
				de sucursales y justif				
11	NaN	NaN	C1.T5	A partir de la muestra de sucursales seleccion	Sprint 1	Si	Must	
12	D. Alta de clientes y productos en oficinas	D.1.El proceso de alta de clientes/productos s	D1.T1	Identificar la norma aplicable para la solicit	NaN	NaN	Could	
13	NaN	D.2. Seleccionar una muestra de clientes/produ	D2.T2	Identificar el universo de clientes de banca i	Sprint 1	NaN	Must	
14	NaN	NaN	D2.T3	Mediante un tratamiento masivo de datos: evalu	NaN	NaN	Should	
15	NaN	D.3.Las visitas a clientes empresas, a los que	D3.T1	"Identificar el universo de clientes de Banca	Sprint 1	NaN	Must	
16	NaN	NaN	D3.T2	"Realizar un análisis masivo de datos para ver	Sprint 1	Si	Must	
17	NaN	NaN	D3.T3	"Seleccionar una muestra de clientes del unive	Sprint 1	NaN	Must	
18	NaN	NaN	D3.T4	"Identificar la normativa interna que establec	Sprint 1	NaN	Must	
19	NaN	NaN	D3.T5	"Sobre la muestra seleccionada, evaluar el gra	Sprint 1	NaN	Must	
20	E. Funcionamiento de los controles	E.1. Evaluación del diseño del mapa de riesgos	E1.T1	Obtener del RCA la matriz de riesgos y control	NaN	NaN	Must	

	Objetivo	Historia de usuario (HdU)	Código tarea	Descripción tarea	Sprint	Sprint goal	Prioridad	R
21	NaN	NaN	E1.T2	Realizar un mapeo entre el resto de HdU (cread	NaN	NaN	Must	
22	NaN	NaN	E1.T3	Realizar una revisión preliminar del mapa de r	NaN	NaN	Must	
23	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

24 rows × 21 columns

8. Realizamos el recuento de tareas y clasificación solicitada

```
In [14]: #1 volvemos a leer el archivo
    df = pd.read_excel(BytesIO(content))

# 2. Filtra solo las tareas de Sprint 1
    sprint1 = df[df["Sprint"] == 'Sprint 1']

# 3. Total de tareas definidas en Sprint 1
    total_tareas = sprint1.shape[0]
    print(f"Total de tareas definidas en Sprint 1: {total_tareas}\n")

# 4. Clasifica esas tareas por estado (columna "Status")
    conteo_por_estado = (
        sprint1["Status"]
        .value_counts()
        .rename_axis("Status")
        .reset_index(name="Cantidad")
)
```

Total de tareas definidas en Sprint 1: 11

C:\Users\VS\miniconda3\envs\generacion-de-promt\lib\site-packages\openpyxl\worksh
eet_read_only.py:85: UserWarning: Cell L19 is marked as a date but the serial va
lue 6689546 is outside the limits for dates. The cell will be treated as an erro
r.
 for idx, row in parser.parse():

9. Realizamos el conteo y cálculo del porcentaje de representativida de cada estado y lo exponemos

```
'Porcentaje': (pct.values * 100).round(2)
})

# 3) Opcional: añadir el símbolo "%"
conteo_por_estado['Porcentaje'] = conteo_por_estado['Porcentaje'].astype(str) +

# 4) Mostramos el resultado
print(f"Total de tareas en Sprint 1: {total_tareas}\n")
display(conteo_por_estado)
```

Total de tareas en Sprint 1: 11

	Status	Cantidad	Porcentaje
0	To review	4	36.36%
1	Bloqueada	3	27.27%
2	Doing	3	27.27%
3	Con comentarios Vero	1	9.09%

11. Importamos matplotlib

```
In [16]: import matplotlib.pyplot as plt
In [17]: # 1) Definir los datos
         conteo_por_estado = pd.DataFrame({
             'Status': ['To review', 'Bloqueada', 'Doing', 'Con comentarios Vero'],
             'Porcentaje': ['36.36%', '27.27%', '27.27%', '9.09%']
             })
In [18]: # 2) Convertir la columna de porcentaje a valores numéricos
         conteo_por_estado['Porcentaje_num'] = (
             conteo_por_estado['Porcentaje']
             .str.rstrip('%')  # quita el '%'
.astype(float)  # convierte a float
In [19]: # 3) Dibujar el gráfico de torta
         plt.figure(figsize=(6,6)) # tamaño de la figura
         plt.pie(
             conteo_por_estado['Porcentaje_num'],
             labels=conteo_por_estado['Status'],
             autopct='%1.1f%%', # formato de las etiquetas internas
                                   # rota el inicio para mejor visualización
             startangle=90
         plt.title('Distribución porcentual de tareas por estado')
         plt.axis('equal') # para asegurar proporciones circulares
         plt.show()
```

Distribución porcentual de tareas por estado

10. Imprimo la notebook en pdf

In [1]: pip install pyppeteer nest_asyncio

Requirement already satisfied: pyppeteer in c:\users\vs\miniconda3\envs\generacio n-de-promt\lib\site-packages (2.0.0) Requirement already satisfied: nest_asyncio in c:\users\vs\miniconda3\envs\genera cion-de-promt\lib\site-packages (1.6.0) Requirement already satisfied: appdirs<2.0.0,>=1.4.3 in c:\users\vs\miniconda3\en vs\generacion-de-promt\lib\site-packages (from pyppeteer) (1.4.4) Requirement already satisfied: certifi>=2023 in c:\users\vs\miniconda3\envs\gener acion-de-promt\lib\site-packages (from pyppeteer) (2025.4.26) Requirement already satisfied: importlib-metadata>=1.4 in c:\users\vs\miniconda3 \envs\generacion-de-promt\lib\site-packages (from pyppeteer) (8.7.0) Requirement already satisfied: pyee<12.0.0,>=11.0.0 in c:\users\vs\miniconda3\env s\generacion-de-promt\lib\site-packages (from pyppeteer) (11.1.1) Requirement already satisfied: tqdm<5.0.0,>=4.42.1 in c:\users\vs\miniconda3\envs \generacion-de-promt\lib\site-packages (from pyppeteer) (4.67.1) Requirement already satisfied: urllib3<2.0.0,>=1.25.8 in c:\users\vs\miniconda3\e nvs\generacion-de-promt\lib\site-packages (from pyppeteer) (1.26.20) Requirement already satisfied: websockets<11.0,>=10.0 in c:\users\vs\miniconda3\e nvs\generacion-de-promt\lib\site-packages (from pyppeteer) (10.4) Requirement already satisfied: typing-extensions in c:\users\vs\miniconda3\envs\g eneracion-de-promt\lib\site-packages (from pyee<12.0.0,>=11.0.0->pyppeteer) (4.1 3.2) Requirement already satisfied: colorama in c:\users\vs\miniconda3\envs\generacion -de-promt\lib\site-packages (from tqdm<5.0.0,>=4.42.1->pyppeteer) (0.4.6) Requirement already satisfied: zipp>=3.20 in c:\users\vs\miniconda3\envs\generaci on-de-promt\lib\site-packages (from importlib-metadata>=1.4->pyppeteer) (3.21.0) Note: you may need to restart the kernel to use updated packages.

```
In [3]: import os
        import nbformat
        import nest_asyncio
        import asyncio
        from pyppeteer import launch
        # Aplicamos el parche para permitir bucles anidados en Jupyter
        nest_asyncio.apply()
        # Nombre de notebook y destino
        NOTEBOOK = "Entrega Final.ipynb"
        HTML_FILE = "Entrega Final.html"
        DOWNLOADS = os.path.join(os.path.expanduser("~"), "Downloads")
        OUTPUT_PDF = os.path.join(DOWNLOADS, "Entrega1.pdf")
        # 1) Convertimos .ipynb → .html
        os.makedirs(DOWNLOADS, exist_ok=True)
        os.system(f'jupyter nbconvert --to html "{NOTEBOOK}" --output "{HTML_FILE}"')
        # 2) Función asíncrona para abrir el HTML en Edge/Chromium y volcarlo a PDF
        async def html_to_pdf(input_html, output_pdf):
            browser = await launch(
                executablePath=r"C:\Program Files (x86)\Microsoft\Edge\Application\msedg
                headless=True,
                args=['--no-sandbox']
            )
            page = await browser.newPage()
            await page.goto(f'file:///{os.path.abspath(input_html)}', waitUntil='network
            await page.pdf({
                'path': output_pdf,
                'format': 'A4',
                'printBackground': True,
                'margin': {'top':'0.5in','bottom':'0.5in','left':'0.5in','right':'0.5in'
```

```
})
    await browser.close()

# 3) Ejecutamos La tarea asíncrona en el mismo bucle de Jupyter
asyncio.get_event_loop().run_until_complete(
    html_to_pdf(HTML_FILE, OUTPUT_PDF)
)

print(f" PDF creado correctamente en:\n {OUTPUT_PDF}")

PDF creado correctamente en:
    C:\Users\VS\Downloads\Entrega1.pdf
In []:
```