The Hausdorff Measure of Regular ω -languages is Computable*

Ludwig Staiger

Martin-Luther-Universität Halle-Wittenberg Institut für Informatik Kurt-Mothes-Str. 1, **D**-**06120** Halle, Germany

Electronic mail: staiger@cantor.informatik.uni-halle.de

^{*}This paper was written during my visit to the Centre of Discrete Mathematics and Theoretical Computer Science, Auckland, August 1998

2 L. Staiger

Abstract

We show that there is an algorithm which computes Hausdorff dimension and Hausdorff measure of arbitrary regular ω -languages. Our algorithm is a generalization of the one given in [MS94] which was designed to compute Hausdorff dimension and Hausdorff measure of regular ω -languages closed in the Cantor topology.

Our new algorithm is based on a decomposition lemma for regular ω -languages and a relationship between the Hausdorff measure of regular ω -languages of a special shape and their closures.

In several previous papers we have shown how to calculate Hausdorff dimension and measure for certain classes of regular ω -languages (cf. [MS94], [St89], and [St93]). In this note we show that the results obtained in the papers [MS94] and [St93] can be used to give an effective procedure for the calculation of the Hausdorff measure for arbitrary regular ω -languages.

To this end we derive a decomposition lemma for regular ω -languages which extends in some sense decompositions presented by A. Arnold [Ar83], K. Wagner [Wa79] and L. Staiger and K. Wagner [SW74].

We assume the reader to be familiar with the basic facts of the theory of regular languages. Let X be a finite alphabet of cardinality $r:=\operatorname{card} X\geq 2$, and let X^* and X^ω be the sets of (finite) words and ω -words over X, respectively. Concatenation is denoted by "·" and the prefix relation by " \sqsubseteq ". As usual, we consider X^ω as a topological space (Cantor space). The $\operatorname{closure}$ of a subset $F\subseteq X^\omega$, $\mathcal{C}(F)$, is described as $\mathcal{C}(F):=\{\xi:\mathbf{A}(\{\xi\})\subseteq\mathbf{A}(F)\}$, where $\mathbf{A}(E)$ is the set of all finite prefixes of ω -words $\eta\in E$.

We postpone the definition of regularity for ω -languages to Section 2.

For more details on ω -languages and regular ω -languages see the survey papers [St97] and [Th90].

1 Hausdorff Dimension and Hausdorff Measure

First, we shall describe briefly the basic formulae needed for the definition of Hausdorff dimension and Hausdorff measure. For more background and motivation see Section 1 of [MS94].

We define, for $\alpha \in [0, \infty)$, $F \subseteq X^{\omega}$ and $V \subseteq X^*$,

$$\mathcal{L}_{\alpha}(F;V) := \sum_{v \in V} r^{-\alpha \cdot |v|}, \text{ and}
\mathcal{L}_{\alpha}(F) := \liminf_{n \to \infty} \left\{ \mathcal{L}_{\alpha}(F;V) : V \cdot X^{\omega} \supseteq F \land \underline{\ell}(V) \ge n \right\},$$
(1)

where $\underline{\ell}(V) := \inf\{|v| : v \in V\}.$

Now consider $I\!\!L_{\alpha}(F)$ as a function of α . Then there is an $\alpha(F) \in [0,\infty)$ such that

$$I\!\!L_{\alpha}(F) = \begin{cases} \infty, & \text{if } \alpha < \alpha(F), \\ 0, & \text{if } \alpha > \alpha(F). \end{cases}$$
 (2)

This number $\alpha(F)$ is called the *Hausdorff dimension* of F, $\dim F$, that is, the Hausdorff dimension of F is given by

$$\dim F = \sup \{ \alpha : \alpha = 0 \lor \mathbb{L}_{\alpha}(F) = \infty \} = \inf \{ \alpha : \mathbb{L}_{\alpha}(F) = 0 \}.$$

The Hausdorff dimension for regular ω -languages has been proved to be computable (cf. [Ba89], [MW88] or [St89]). The aim of this note is to show how one can compute the value $\mathbb{L}_{\dim F}(F)$ (the Hausdorff measure of F) for an arbitrary regular ω -language.¹

In [MS94] we presented an algorithm which computes, simultaneously, the dimension $\dim F$ and the value $I\!\!L_{\dim F}(F)$ for regular ω -languages closed in the Cantor topology of X^ω . Our new algorithm will be based on this procedure. To this end we derive some properties of the function $I\!\!L_\alpha$. From the definition (1) one has immediately

$$I\!\!L_{\alpha}(w \cdot F) = r^{-\alpha \cdot |w|} \cdot I\!\!L_{\alpha}(F) \tag{3}$$

Since regular ω -languages are Borel sets in the Cantor space (cf. [St97], [Th90]), they are measurable with respect to \mathbb{L}_{α} . Thus we have the following (cf. [Fa85]).

¹Observe that $I\!\!L_{\dim F}(F)$ is not specified by (2).

²A set $F \subseteq X^{\omega}$ is *closed* if $F = \mathcal{C}(F)$.

L. Staiger

Proposition 1 Assume $(F_i)_{i=0}^{\infty}$ is a family of mutually disjoint ω -languages measurable with respect to \mathbb{L}_{α} . Then

$$I\!\!L_{\alpha}(\bigcup_{i=0}^{\infty} F_i) = \sum_{i=0}^{\infty} I\!\!L_{\alpha}(F_i) .$$

Finally, we quote Theorem 6 of [MS94] (see also Lemma 4.5 of [St93]).

Proposition 2 Let $V \subseteq X^*$ be regular and prefix-free. Then

$$I\!\!L_{\alpha}(V^{\omega}) = I\!\!L_{\alpha}(\mathcal{C}(V^{\omega}))$$
.

2 Decomposition of Regular ω -languages

An ω -language $F\subseteq X^\omega$ is called *regular* provided there are a finite automaton $\mathfrak{A}=(X,S,s_0,\Delta)$ and a table $\mathcal{T}\subseteq\{S':S'\subseteq S\}$ such that $\xi\in F$ if and only if $Inf(\mathfrak{A},\xi)\in\mathcal{T}$ where $Inf(\mathfrak{A},\xi)$ is the set of all states $s\in S$ through which the automaton $\mathfrak A$ runs infinitely often when reading the input ξ .

Observe that the ω -language $F = \{\xi : Inf(\mathfrak{A}, \xi) \in \mathcal{T}\}$ is the disjoint union of all sets $F_{S'} = \{\xi : Inf(\mathfrak{A}, \xi) = S'\}$ where $S' \in \mathcal{T}$.

We are going to split F into smaller mutually disjoint parts. Let $\mathfrak{A}=(X,S,s_0,\Delta)$ be fixed. We refer to a word $v\in X^*$ as (s,S')-loop completing if and only if

- 1. v is not the empty word,
- 2. $\Delta(s,v)=s$ and $\{\Delta(s,v'):v'\sqsubseteq v\}=S'$, and
- 3. $\{\Delta(s,v'):v'\sqsubseteq v''\}\subset S'$ for all proper prefixes $v''\sqsubset v$ with $\Delta(s,v'')=s$,

and we call a word $w \in X^*$ (s, S')-loop entering provided

- 1. $\Delta(s_0, w) = s$, and
- 2. if $w = w' \cdot x$ for some $x \in X$ then $\Delta(s_0, w') \notin S'$.

Denote by $V_{(s,S')}$ the set of all (s,S')-loop completing words and by $W_{(s,S')}$ the set of all (s,S')-loop entering words. Both languages are regular and constructible from the finite automaton $\mathfrak{A}=(X,S,s_0,\Delta)$. Moreover, $V_{(s,S')}$ is prefix-free, whereas $W_{(s,S')}$ need not be so.

Nevertheless, every $\xi \in F_{S'}$ has a unique representation $\xi = w \cdot v_1 \cdots v_i \cdots$ where $w \in W_{(s,S')}$ and $v_i \in V_{(s,S')}$. Here the state $s \in S'$ is uniquely determined as the state succeeding the last state $\hat{s} \notin S'$ in the sequence $(\Delta(s_0,u))_{u \in \mathcal{E}}$. Thus we obtain the following.

Lemma 3 (Decomposition Lemma) Let $\mathfrak{A}=(X,S,s_0,\Delta)$ be a finite automaton and let $S'\subseteq S$. Then

$$F_{S'} = \bigcup_{s \in S'} \bigcup_{w \in W_{(s,S')}} w \cdot V_{(s,S')}^{\omega} , \qquad (4)$$

and the sets $w \cdot V^{\omega}_{(s,S')}$ are pairwise disjoint.

3 The Algorithm

Finally we derive the proof of our main result.

Theorem 4 There is an algorithm which computes the Hausdorff measure $\mathbb{L}_{\dim F}(F)$ for every regular ω -language.

From the decomposition in Lemma 3 we obtain via (3) and Proposition 1 a formula for the Hausdorff measure of $F_{S'}$:

$$I\!\!L_{\alpha}(F_{S'}) = \sum_{s \in S'} \left(\sum_{w \in W_{(s,S')}} r^{-\alpha \cdot |w|} \right) \cdot I\!\!L_{\alpha}(V_{(s,S')}^{\omega}) . \tag{5}$$

Since for regular languages $L\subseteq X^*$ the structure generating function of L, $\mathfrak{s}_L(t):=\sum_{w\in L}t^{|w|}$, is rational with integer coefficients and computable from L (cf. [KS86] or [SS78]), the sum $\sum_{w\in W_{(s,S')}}r^{-\alpha\cdot |w|}$ is computable, provided α is computable.

Proposition 2 shows that $I\!\!L_{\alpha}(V_{(s,S')}^{\omega})=I\!\!L_{\alpha}(\mathcal{C}(V_{(s,S')}^{\omega}))$, because the language $V_{(s,S')}$ is regular and prefix-free.

6 L. Staiger

Thus we obtain

$$I\!\!L_{\alpha}(F_{S'}) = \sum_{s \in S'} \mathfrak{s}_{W_{(s,S')}}(r^{-\alpha}) \cdot I\!\!L_{\alpha}(\mathcal{C}(V_{(s,S')}^{\omega})) . \tag{6}$$

Now the simultaneous computation of Hausdorff dimension and Hausdorff measure of a regular ω -language $F\subseteq X^\omega$ given by some finite automaton $\mathfrak{A}=(X,S,s_0,\Delta)$ and a table $\mathcal{T}\subseteq\{S':S'\subseteq S\}$ proceeds as follows. Details should be carried out analogously to the algorithm described in Section 3 of [MS94].

- 1. For every $S' \in \mathcal{T}$ and every $s \in S'$ estimate the regular languages $V_{(s,S')}$ and $W_{(s,S')}$.
- 2. For every $S' \in \mathcal{T}$ estimate the adjacency matrix $\mathcal{A}_{S'}$ of $\mathcal{C}(V_{(s,S')}^{\omega})$.
- 3. Calculate an eigenvalue $\lambda_{S'}$ of $\mathcal{A}_{S'}$ of maximum modulus.⁴
- 4. $\lambda_{\max} := \max\{|\lambda_{S'}| : S' \in \mathcal{T}\}.$
- 5. $\dim F := \log_r \lambda_{\max}$.
- 6. If $|\lambda_{S'}| < \lambda_{\max}$ then $IL_{\dim F}(\mathcal{C}(V_{(s,S')}^{\omega})) := 0$.
- 7. If $|\lambda_{S'}| = \lambda_{\max}$ then compute
 - (a) $I\!\!L_{\dim F}(\mathcal{C}(V^{\omega}_{(s,S')}))$ according to Section 3 of [MS94], and
 - (b) $\mathfrak{s}_{W_{(s,S')}}(\lambda_{\max}^{-1}).$

8.

$$I\!\!L_{\dim F}(F) := \sum_{\lambda_{S'} = \lambda_{\max}} \sum_{s \in S'} \mathfrak{s}_{W_{(s,S')}}(\lambda_{\max}^{-1}) \cdot I\!\!L_{\dim F}(\mathcal{C}(V_{(s,S')}^{\omega})) \ .$$

References

[Ar83] A. Arnold, Rational ω -languages are non-ambiguous, Theoret. Comput. Sci. **26** (1983), 221–223.

- [Ba89] C. Bandt, Self-similar sets 3: Constructions with sofic systems, Mh. Math. 108 (1989), 89 102.
- [Fa85] K.J. Falconer, *The Geometry of Fractal Sets*, Cambridge University Press, Cambridge 1985.
- [KS86] W. Kuich and A. Salomaa, *Semirings, automata, languages*, Springer-Verlag, Berlin 1986.
- [MS94] W. Merzenich and L. Staiger, Fractals, Dimension, and Formal Languages, RAIRO Inform. Théor. **28**(2) (1994), 361 386.
- [MW88] R.D. Mauldin and S.C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309(2) (1988), 811 829.
- [SS78] A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power series, Springer-Verlag, New York 1978
- [St89] L. Staiger, Combinatorial properties of the Hausdorff dimension, J. Statist. Plann. Inference **23** (1989), 95 100.
- [St93] L. Staiger, Kolmogorov complexity and Hausdorff dimension, Inform. and Comput. **103**(2) (1993), 159 194.
- [St97] L. Staiger, ω -languages, in: Handbook of Formal Languages (G. Rozenberg and A. Salomaa Eds.), Vol. 3, Springer-Verlag, Berlin 1997, 339 387.
- [SW74] L. Staiger und K. Wagner, Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen, Elektron. Informationsverarb. Kybernetik EIK 10(7) (1974), 379 392.
- [Th90] W. Thomas, Automata on Infinite Objects, in: Handbook of Theoretical Computer Science (J. Van Leeuwen Ed.), Vol. B, Elsevier, Amsterdam 1990, 133 191.
- [Wa79] K. Wagner, On ω -regular sets, Inform. and Control 43 (1979), 123-177.