Temporality of LLMs

•••

Dr. Wei Zhao 15/10/2024

Why this topic?

- Timing
 - Perplexity AI and SearchGPT
 - No temporal component
- Impacts
 - Hundreds of millions of users
 - ~30% user queries are time-sensitive (Archive Query Log)
 - Public disappointment
 - AI winter
 - Ο.

Why this topic?

- This topic is hard
 - Challenges
 - <u>temporal hallucination</u> and causes
 - temporal trustworthiness
 - temporal complexity
 - temporal evaluation
 - temporal dynamics (forecasting)
 - temporal agents (autonomous update)
 - grounding LLMs in time

Temporal challenges

• • •

Temporal Hallucination and Complexity

- Fabrication
 - For a query with no answer, LLMs invent a false answer

- Omission
 - For a query with multiple answers, LLMs provide an incomplete answer
 - GT answer: Mexico City, Guadalajara, León, Puebla, Toluca

- Omission
 - For a query with multiple answers, LLMs provide a partly correct answer
 - GT answer: California, Minnesota

- Misattribution
 - For a query with the answer to be a proper noun (person name/profession, etc), LLMs attribute to a wrong entity
 - GT answer: Secretary of State for Foreign Affairs

Temporal Complexity

- 1-hop: timestamp is stated explicitly
 - GT answer: 9 gold medals

Temporal Complexity

- 2-hop: timestamp is stated implicitly
 - O GT answer: Iowa, American state

Project results ...

Research questions

- RQ1 [Data]: How we benchmark temporality of LLMs?
- RQ2 [LLMs]: What are their temporalities?
- RQ3 [LLMs]: How do their temporalities change over time?
 - O How do different aspects of hallucination change over time?
 - Can LLMs answer a question with knowledge change over time?

Evaluation setup

- Models
 - GPT-4, GPT-40, GPT-3.5
 - closed-source
 - versatile across domains and modalities
 - Claude-3.5, Claude-3
 - closed-source
 - safety and ethical use
 - Llama-3-70b, Llama-3-8b
 - open-source

Evaluation setup

- Evaluation Metrics
 - Exact Match (True or False)
 - true if GT contained in model answer
 - F1 (Precision and Recall)
 - word overlap between GT and model answer
 - PEDANTS (Li et al 2024)
 - g(F1, prec, recall, query, GT, model answer)
 - good correlation with human on QA datasets

Dataset

Our dataset in a nutshell (RQ1)

- A temporal benchmark dataset for time-sensitive queries
 - temporal extension of the TriviaQA dataset
 - semi-automatic human annotation
 - 22 decade groups from 1330s to now (likely part of training data)
 - o #answers: 0, 1, 1+
 - fabrication and omission
 - o answer type: person, location, organization, etc
 - misattribution
 - o temporal complexity: 1-hop and 2-hop
 - implicit vs. explicit timestamp
 - o domains: history, geography, science, sports, entertainment, etc.

RQ1: Data construction

- Procedure for dataset construction
 - 1. select temporal questions from TriviaQA
 - 2. filter out questions if their answers do not change over time
 - 3. expand questions at different points in time

Data construction in a nutshell

- 4. annotate answers for the questions (semi-automatic process)
 - twice cheaper than human annotation, but Bing API access is expensive: free to use for only 1000 web queries per month

Data construction in a nutshell

- Procedure for dataset construction
 - 5. generate questions
 - with no answers to test fabrication
 - lifecycle of knowledge
 - with multiple answers to test omission
 - merge different time points in time into a time period

Data construction in a nutshell

- 6. generate two-hop questions (time is stated implicitly)
 - converted from 1-hop questions
 - pair 1-hop questions dated in the same year
 - merge into a two-hop question (LLM + human)
- 7. Assign an answer type to each question (LLM + human)
 - person name, location, number, time, etc.

- Aim for ~20,000 QA pairs, based on 500 QA pairs from TriviaQA
- current results are based on ~6,000 QA pairs

- Fabrication:
 - \circ #answer = 0
- Omission:
 - \circ #answer > 1

- Misattribution
 - Organization
 - Location
 - Person name

- Query complexity
 - o 1-hop
 - explicit time
 - o 2-hop
 - implicit time

- Explicit timestamp (1-hop)
 - o 1330s 2020s
 - o MM-DD
- Implicit timestamp
 - No decade (2-hop)

Analyses

RQ2: Misattribution - model temporality

- Model scaling super expensive but helps little ,
 - Llama-3-70b is still bad despite its large model size
 - person and others are harder to attribute
 - clever and cost-efficient ideas?
 - fundamental reason for bad temporality?
- minor point
 - GPT3.5 => GPT4, 'location' gets much better, why? insights will be useful for improving certain aspects.

RQ2: Fabrication - model temporality

- For a query with no answer, LLMs invent a false answer.
- Higher F1 means low fabrication rate
- Good when a query has answers, bad when a query hasn't.
- Model scaling helps little; see Llama-3-70b vs. -8b

RQ2: Omission - model temporality

- For a multi-answer question, LLMs give incomplete answer.
- Higher F1 means lower omission
- MAQs are harder than SAQ, LLM does a good job many MAQs are generated from SAQs.
- Surprisingly, Llama-3-70b is better in omission than in SAQ, despite the former being harder.

RQ2: One-hop vs. two-hop - model temporality

- Two-hop queries are much harder
- Claude-3.5 seems most robust
- More results are in the making (fabrication, omission, etc)

Temporal results

RQ3: Temporality changing over time

- 100 questions per group
- 10 decade groups
- poor results in distant past
 - o shortage of historical data
- poor results in 2020s
 - knowledge cut-off
- better results over time
 - data volume becomes bigger over time
- Can we improve LLMs brain in the distant past

RQ3: Question with knowledge/answer change over time

- x-axis: number of times LLMs answer correctly for time-sensitive answers.
- Each question has answers changing over 10 different points in time.
 - o answer correctly at one point in time vs. various points in time
- time=1, model difference is invisible they can answer all questions at least one time point
- Over time, performance decreases. LLama-3-70b struggles very much with knowledge change
- no-answer queries are included; sample 10 questions if a piece of knowledge has 10+ questions.

RQ3: Fabrication over time

- High F1 means low fabrication
- uptrend seen for GPT-40 and Claude-3.5 (data volume gets bigger over => LLMs get wiser)
- surge in 2020 brain of LLM is empty for recent data easier for LLMs not to provide answer
- no clear uptrend for Llama-3-70b? surge in 1940s?
- 100 questions per group; 10 decade groups

Summary of model temporality

	Fabrication	omission	misattribution	decade groups	knowledge change	data leakage	complexity implicit time
GPT-40	moderate	relatively low	moderate	poor before 1980s	sensitive	moderate	very poor
Claude-3.5	below moderate	relatively low	moderate	poor before 1980s	sensitive	moderate	very poor
Llama-3-70b	very high	moderate	very high	poor all the time	very sensitive	moderate	very poor

Thank you for your attention

Email

