Concours: Oral ENS Rennes sur dossier 2024

Blanc Alexandre AB004972 alex-blanc3@outlook.fr

11 juillet 2024

1 Exercice d'Algèbre

I. Soit $M \in M_n(\mathbb{Z})$ que l'on suppose diagonalisable sur \mathbb{C} et dont toutes les valeurs propres sont de modules strictement inférieur à 1. Montrer que M = 0.

II. Soit $p \geq 3$ un entier premier et considérons le morphisme de réduction modulo p :

$$\pi_p: A \in GL_n(\mathbb{Z}) \longrightarrow A \, mod \, p \in Gl_n(\mathbb{Z}/p\mathbb{Z})$$

Montrer que si $A \in \ker \pi_p$ est d'ordre fini, alors $A = I_n$

2 Exercice d'Analyse

2.1 Exercice 1

I. Calculer pour $a \in \mathbb{C}$ tel que Re(a) > 0 et $\xi \in \mathbb{R}$

$$\int_{-\infty}^{0} e^{-i\xi x} e^{ax} \mathrm{d}x$$

II. Soit $N \in \mathbb{N}^*$ et $\omega_1, \dots, \omega_N \in \mathbb{C} \setminus \mathbb{R}$ deux à deux distincts. Déterminer une fonction $f : \mathbb{R} \to \mathbb{C}$ telle que pour tout $\xi \in \mathbb{R}$:

$$\int_{\mathbb{R}} e^{-i\xi x} f(x) dx = \frac{1}{\prod_{j=1}^{N} (\xi - \omega_j)}.$$

2.2 Exercice 2

Soit $n \in \mathbb{N}$ et $f : \mathbb{R} \to \mathbb{R}$ \mathcal{C}^{∞} tels que :

$$\lim_{|x| \to \infty} \frac{f(x)}{x^n} = 0$$

I. Montrer que $f^{(n+1)}$ s'annule.

II. En déduire que pour tout $p \in \mathbb{N}$ tel que p > n, $f^{(p)}$ s'annule.