# 線形部分空間の定義

 $\mathbb{R}^n$  の部分集合であって、ベクトル演算で閉じた集合について考える 原点を含み直線や平面などを一般化した概念である

ref: 行列と行列式の基 礎 p93~94

線形部分空間  $\mathbb{R}^n$  のベクトルからなる空集合でない集合 V は、次が成り立つとき線形部分空間あるいは簡単に部分空間であるという

- i. すべての  $\boldsymbol{u}, \boldsymbol{v} \in V$  に対して  $\boldsymbol{u} + \boldsymbol{v} \in V$  が成り立つ
- ii. すべての  $c \in \mathbb{R}$ ,  $\boldsymbol{u} \in V$  に対して  $c\boldsymbol{u} \in V$  が成り立つ

線形部分空間の例: $\mathbb{R}^n$  自身

たとえば、 $\mathbb{R}^n$  自身は明らかに  $\mathbb{R}^n$  の部分空間である

線形部分空間の例:零ベクトルだけからなる部分集合

零ベクトル  $\mathbf{0}$  だけからなる部分集合  $\{\mathbf{0}\}$  も部分空間である

V は空集合でないので、ある  $oldsymbol{v} \in V$  をとるとき、線形部分空間の定義 ii より

$$0 \cdot v = 0 \in V$$

よって部分空間は必ず 0 を含む

### 線形部分空間の例:ベクトルが張る空間

 $oldsymbol{\cdot}$  ベクトルが張る空間は線形部分空間  $oldsymbol{v}_1,oldsymbol{v}_2,\dots,oldsymbol{v}_k\in\mathbb{R}^n$  が張る空間  $\langleoldsymbol{v}_1,oldsymbol{v}_2,\dots,oldsymbol{v}_k
angle$  は部分空間である





[ Todo 1: ref: 行列と行列式の基礎 p94 命題 3.1.2]

たとえば  $\mathbb{R}^3$  において座標を (x,y,z) とするとき、xy 平面は  $\mathbb{R}^3$  の部分 空間である

| 座標部分空間  $\{1,2,\ldots,n\}$  の部分集合 I に対して、 $x_i~(i\in I)$  以外の座標がすべて 0 である部分集合は  $\mathbb{R}^n$  の部分集合である

このようなものを座標部分空間といい、 $\mathbb{R}^I$  と書く

$$\mathbb{R}^I = \langle \boldsymbol{e}_i \mid i \in I \rangle$$

と表すこともできる

 $oldsymbol{\psi}$  部分空間の張る空間は部分空間  $V \subset \mathbb{R}^n$  を部分空間、 $oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_k \in V$  とすると、

$$\langle \boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k \rangle \subset V$$





[ Todo 2: ref: 行列と行列式の基礎 p94 命題 3.1.4]

## 線形部分空間の例:共通部分

ref: 図で整理!例題で 納得!線形空間入門 p22

線形部分空間の共通部分は部分空間 V, W を  $\mathbb{R}^n$  の部分空間とするとき、共通部分  $V\cap W$  は  $\mathbb{R}^n$  の部分空間である



#### 和について

 $oldsymbol{a}$ ,  $oldsymbol{b} \in V \cap W$  とすると、共通部分の定義より、 $oldsymbol{a}$  と  $oldsymbol{b}$  は どちらも V と W の両方に属していることになる つまり、 $oldsymbol{a}$ ,  $oldsymbol{b} \in V$  かつ  $oldsymbol{a}$ ,  $oldsymbol{b} \in W$  である

V も W も部分空間なので、部分空間の定義より、

$$a + b \in V$$
  
 $a + b \in W$ 

 $oldsymbol{a}+oldsymbol{b}$ が V と W の両方に属していることから、 $oldsymbol{a}+oldsymbol{b}$  は  $V\cap W$  に属する

#### スカラー倍について

共通部分の定義より、 $\boldsymbol{a}$  は V と W の両方に属しているので、部分空間の定義より

$$c\mathbf{a} \in V$$
  
 $c\mathbf{a} \in W$ 

よって、ca は  $V \cap W$  に属するため、 $V \cap W$  はスカラー倍について閉じている

### 線形部分空間の例:和空間

線形部分空間の和は部分空間 V, W を  $\mathbb{R}^n$  の部分空間とするとき、和空間

$$V + W := \{ \boldsymbol{v} + \boldsymbol{w} \mid \boldsymbol{v} \in V, \boldsymbol{w} \in W \}$$

は  $\mathbb{R}^n$  の部分空間である

### 証明

#### 和について

 $a_1, a_2 ∈ V, b_1, b_2 ∈ W$  とする

V と W は部分空間なので、部分空間の定義より

$$a_1 + a_2 \in V$$
,  $b_1 + b_2 \in W$ 

一方、和空間の定義より、 $\boldsymbol{a}_1+\boldsymbol{b}_1$ ,  $\boldsymbol{a}_2+\boldsymbol{b}_2$  はそれぞれ V+W の元である

これらの元の和をとったときに、その和も V+W に属していれば、和空間は和について閉じているといえる

$$(a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2)$$
  
 $\in V + W$ 

上式で、和空間は和について閉じていることが示された

#### スカラー倍について

V と W は部分空間なので、部分空間の定義より

$$c\mathbf{a} \in V$$
 $c\mathbf{b} \in W$ 

一方、和空間の定義より、 $\mathbf{a} + \mathbf{b}$  は V + W の元である

この元をスカラー倍したときに、そのスカラー倍も V+W に属していれば、和空間はスカラー倍について閉じているといえる

$$c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$
$$\in V + W$$

上式で、和空間はスカラー倍について閉じていることが示された

# 線形写像の核空間

ref: 行列と行列式の基 礎 p94~95

 $oldsymbol{\$}$  線形写像の核空間は部分空間  $f\colon \mathbb{R}^n \to \mathbb{R}^m$  を線形写像とするとき、核空間  $\operatorname{Ker}(f)$  は  $\mathbb{R}^n$  の部分空間である

### 証明



[ Todo 3: ref: 行列と行列式の基礎 p69 問 2.15]

すでに学んだように、斉次形方程式  $A \boldsymbol{x} = \boldsymbol{0}$  の解の自由度を d とすると、基本解  $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_d \in \operatorname{Ker}(A)$  が存在して、任意の  $\boldsymbol{u} \in \operatorname{Ker}(A)$  に対して

$$\boldsymbol{u} = c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2 + \cdots + c_d \boldsymbol{u}_d$$

を満たす  $c_1, c_2, \ldots, c_d \in \mathbb{R}$  が一意的に定まる



[ Todo 4: ref: 行列と行列式の基礎 p95]

# 基底の定義

核空間の場合を参考にして、部分空間のパラメータ表示を与えるために基準として固定するベクトルの集合を定式化すると、<mark>基底</mark>という概念になる

ref: 行列と行列式の基 礎 p96

ベクトルの集合  $\{ m{v}_1, m{v}_2, \dots, m{v}_k \} \subset V$  は、次を満たすとき V の基底であるという

- i.  $\{ \boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k \}$  は線型独立である
- ii.  $V = \langle \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \rangle$

たとえば、基本ベクトルの集合  $\{e_1, e_2, \ldots, e_n\}$  は  $\mathbb{R}^n$  の基底であり、 これを  $\mathbb{R}^n$  の標準基底という

核空間について先ほど述べたことは、基底の言葉で言い換えると次のよう になる

 $oldsymbol{\$}$  斉次形方程式の基本解と核空間の基底 A を m × n 型行列とし、 $oldsymbol{u}_1, oldsymbol{u}_2, \ldots, oldsymbol{u}_d$  を  $Aoldsymbol{x} = oldsymbol{0}$  の基本解とするとき、 $\{oldsymbol{u}_1, oldsymbol{u}_2, \ldots, oldsymbol{u}_d\}$  は Ker(A) の基底である

# 線形写像の像空間



「Todo 5: ref: 行列と行列式の基礎 p96~97]

ref: 行列と行列式の基 礎 p96~97 ...........

# Zebra Notes

| Туре | Number |
|------|--------|
| todo | 5      |