Life Extension of the P-3 Aircraft by Robotic Applications of LPB

Greg Kauffman, Doug Hornbach and Paul Prevéy Lambda Technologies

Trung T. Nguyen
NAVAIR Patuxent River, Maryland

NAVAIR Public Release 11-458
Distribution Statement A –
"Approval for Public Release.
Distribution is Unlimited"

OUTLINE

- Statement of Problem
- LPB Application to Floor Beam
- LPB Application to Propeller Bore
- Summary/Conclusions

STATEMENT OF PROBLEM

- Fatigue cracking and SCC cause:
 - reduced service life
 - increased O&M costs
 - reduced fleet readiness
- Floor Beam Fatigue
 - FSFT reveals fatigue failures in 7075-T6 Floor Beam
- Propeller Bore SCC/Fatigue
 - Heavy Shot peening and reaming done to mitigate SCC
 - Blades scrapped after 3 SP + re-machining cycles

Goals:

Use LPB to enhance floor beam fatigue life Substitute LPB for SP in propeller bore

LPB Application to Floor Beam

Statement of Problem

* Images from LG04ER0112_VolII Report

- During FSFT, floor beams failed at combined 20,500 simulated flight hours and simulated fuselage pressure cycles
- Without proper repair fleet may not meet required service life
- Inspection can be proven costly
- In-flight failure could be catastrophic resulting in loss of aircraft and life

Fatigue Crack-Prone Floor Beams

Cut outs in the FS 515 floor beam prone to fatigue cracking

Proposed LPB Solution

- Turnkey robotic system for in-situ maintenance
- Treat the fatigue critical areas

PHASE 1 - RESIDUAL STRESS DESIGN/ **DEMONSTRATION ON SPECIMEN**

DEPOT

7075-T651 SAMPLE

Proposed LPB Solution

- Turnkey robotic system for in-situ maintenance
- Treat the fatigue critical areas

At present, RS design and proof of concept on feature specimen

Applied Stresses

Analysis based on maximum pressure of 6.55psi.

Applied Stresses

- Peak stress magnitude 45-55 ksi
- Model correlates well to the FSFT

Fatigue Design Diagram

Residual stress of –60 ksi will lead to SAFE zone. Fatigue life will be extended.

Residual Stress Goals

Cracks 2 and 3

- Process inside face rectangular cutout radius
- Achieve -60 ksi residual stress in LPB zone

Cracks 4 and 5

- Process front and back face of the 2.5"
- Achieve -60 ksi residual stress in LPB zone
- Achieve through-thickness compression

Feature Specimen Design

Simulate geometry of the fatigue critical areas

Application of LPB Process

Process design completed

- Tool design
- Process parameters
- Processing codes

RS Measurement Cracks 2 and 3 Feature Specimen

MEASUREMENT LOCATION

Achieved –75 ksi at a depth of 0.010" Compared to the required -60 ksi

RS Measurement Crack 4-5 Feature Specimen

MEASUREMENT LOCATION

Achieved –80 ksi at a depth of 0.010" Through-thickness compression

Fatigue Performance Cracks 2 and 3

20x Fatigue Life Improvement

Fatigue Performance Cracks 4 and 5

15x Fatigue Life Improvement

Cost-Benefit Analysis

ASSUMPTIONS:

- 150 aircraft in the fleet
- Maintenance Costs (estimate)
 - 4 inspections till end of life of a/c at \$20,000 per inspection
 - No replacement for cracked floor beams
- LPB Processing Costs (estimate)
 - 15 a/c to be LPB treated per year at \$12,000 per a/c
 - Initial Non-recurring Costs = \$1.2M

Projected Cost Savings ≈ \$10M

Summary – Floor Beam

LPB Processing

- 15-20X Fatigue Life Improvement
- Extended Service Life Would Reduce or Eliminate Need for Inspections
- Estimated Savings of \$10M on Maintenance

LPB Program Phase I complete Ready for transition to production

LPB Application to Propeller Bore

SCC in P-3 Propeller Blade Bore

Blades Scrapped after 3 SP + Reaming Overhaul ~ \$35,000 per Blade

Estimated Cost of Current Overhaul Practice: >\$1,000 per Blade

Robotic LPB Treatment of P-3 Propeller Bore

Residual Stress

LPB PRODUCED DEEPER AND HIGHER MAGNITUDE COMPRESSION THAN SHOT PEENING

Baseline Fatigue Performance

LPB PRODUCED >30X LIFE IMPROVEMENT

Active Corrosion Fatigue Performance

LPB PRODUCED 10X LIFE IMPROVEMENT

Surface Roughness

P3 PROP SHANK BORE SURFACE

MIRROR-LIKE SURFACE FINISH FROM LPB ELIMINATES THE NEED FOR REAMING AND RE-MACHINING

Substitution of LPB for SP

- 30X improved baseline fatigue life
- 10X improved corrosion fatigue life
- Mirror-like surface finish
- One-step process with no loss of material

Saves \$1,000 per blade processed Eliminates 3-cycle scrap rate for \$35,000 blade

Integration Into Production

- 1. NAVAIR Cherry Point
 - P-3 Overhaul
- 2. Pacific Propeller Intl.
 - P-3 & C-130 Overhaul
- Robins AFB
 - C-130 Overhaul

Robotic LPB systems were placed into three MRO facilities. Over 1,000 blades are expected to be processed each year.

Cost-Benefit Analysis

ASSUMPTIONS:

- Maintenance
 - Repeatedly Shot peened and reamed
 - Blade retired and replaced after 3 rework cycles
- Costs
 - \$1,500 per blade
 - \$35,000 per blade for replacement
- LPB process costs per year
 - 1,152 Blades per year
 - Initial Non-recurring Costs = \$1.2M

Projected Cost Savings = \$10M

Projected Cost Avoidance Through Replacement = \$35,000 per blade

Summary – Propeller Bore

LPB reduces maintenance costs by an estimated \$1M annually

Elimination of 3-cycle scrap rate is estimated to yield \$10M in cost avoidance each year

