Name : SOLUTIONS

Instructions: You get one point for taking this quiz.

1. Let
$$z = \arctan\left(\frac{y}{x}\right)$$
, where $x = e^t$ and $y = 1 - e^{-t}$.

(a) (1.5 pts.) Use the Chain Rule to find the derivative
$$\frac{dz}{dt}$$
 at $t=0$.

$$2 = \arctan(\frac{y}{2}), \text{ then } \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{\partial y}{dt}$$

$$= \left[\frac{1}{1 + (\frac{y}{2})^2}, \frac{-\frac{y}{2}}{2} \right] e^{\frac{t}{2}} + \left[\frac{1}{1 + (\frac{y}{2})^2}, \frac{1}{2} \right] (+e^{-\frac{t}{2}})$$

$$= \frac{dz}{dt} = \frac{1}{1 + (\frac{y}{2})^2}, \frac{dz}{dt} = \frac{1}{1 + (\frac{y}{2})^2} e^{-\frac{t}{2}}$$

$$= \frac{dz}{dt} = \frac{1}{1 + (\frac{y}{2})^2} e^{-\frac{t}{2}}$$

(b) (.5 pt.) Is the function
$$z = f(x,y)$$
 increasing or decreasing (or neither) at $t = 0$? Explain briefly.

Since 170, $f(x,y)$ is increasing.

2. (2 pts.) Find the directional derivative
$$D_{\mathbf{u}}f(\pi,0)$$
 of $f(x,y) = \sin(xy) + x$ in the direction