Computer Vision – TP13 Generative Models

Miguel Coimbra, Hélder Oliveira

Outline

- Generative Models
- Autoencoders
- Variational autoencoders (VAEs)
- Generative adversial networks (GANs)

Outline

- Generative Models
- Autoencoders
- Variational autoencoders (VAEs)
- Generative adversial networks (GANs)

Supervised vs. Unsupervised

Supervised learning

- We have access to a set of training data for which we know the correct class/answer
- Training data: $\{(x_i, y_i)\}_{i=1}^N$
- x_i : data (e.g., image)
- y_i : label

Examples

- Image classification
- Image segmentation
- Object detection
- Etc.

TREE, SKY

Object Detection

Semantic Segmentation

Supervised vs. Unsupervised

- Unsupervised learning
 - Discover hidden structures in the data
 - Training data: $\{x_i\}_{i=1}^N$
 - x_i : only data (e.g., image), no label!

- Examples
 - Clustering
 - Dimensionality reduction
 - Generative models
 - Etc.

Generative models

 Given a set of training data, learn their distribution and generate new data from a similar distribution

- Explicit: returns $p_{model}(x)$
- Implicit: generate samples only

Applications

- Generate new data for simulations
 - Reinforcement learning
- Generate new data for model training
 - Data augmentation
- Fill in the gaps of measured data
 - Super-resolution
 - Colorization
- Inference of latent representation

Outline

- Generative Models
- Autoencoders
- Variational autoencoders (VAEs)
- Generative adversial networks (GANs)

- Objective
 - Find representative features of the data
- Unsupervised learning
 - No data labels required
- Simple idea
 - Learn a representation of the data and try to recover the original data from that!

Representative features

Fei-Fei Li & Justin Johnson & Serena Yeung

Representative features

Fei-Fei Li & Justin Johnson & Serena Yeung

Reconstruction

Fei-Fei Li & Justin Johnson & Serena Yeung

Reconstruction

Fei-Fei Li & Justin Johnson & Serena Yeung

Reconstruction

Fei-Fei Li & Justin Johnson & Serena Yeung

Training

Fei-Fei Li & Justin Johnson & Serena Yeung

Use the learned features for other tasks!

Fei-Fei Li & Justin Johnson & Serena Yeung

Use the learned features for other tasks!

Fei-Fei Li & Justin Johnson & Serena Yeung

Avoid trivial solutions

- Undercomplete: dim(z) << dim(x)
 - Forces to capture the most salient features
 - Dimensionality reduction
 - Capture meaningful factors of variation
- Regularized
 - Encourage the model to have some properties

Sparse Autoencoders

Code sparsity

$$LOSS = \|x - \hat{x}\|_{2}^{2} + \|z\|_{1}$$

- Helps learning good features for classification
- Forces a (Laplace) prior on latent representation
- Different from weight regularization! Why?

Denoising Autoencoders

Definition

- Encoder function: z = E(x)
- Decoder function: $\hat{x} = D(z)$
- Noisy version of data: $\tilde{x} = x + noise$
- Denoising autoencoder:

$$LOSS_{den} = ||x - D(E(\tilde{x}))||_2^2$$

Implicitly learns the structure of the data

Denoising Autoencoders

https://www.pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/

Outline

- Generative Models
- Autoencoders
- Variational autoencoders (VAEs)
- Generative adversial networks (GANs)

Variational Autoencoders

- Idea: we can use the autoencoder approach to generate data from a specific distribution
- Training: data sampled from such distribution
- Use autoencoder to generate the statistical description of the data

Variational Autoencoders

Idea

 Encoder and decoder provide distributions (their parameters), not data points!

Assumptions

- Training data $\{x_i\}_{i=1}^N$
- -p(z) Gaussian distribution
- -p(x|z) Gaussian distribution (Encoder)
- p(z|x) approximated by a Gaussian distribution (Decoder)

Variational Autoencoders

Training

– Use a variational lower bound of the loglikelihood $\log p(x_i)$

Generate data

- Sample z from a Gaussian prior
- Use decoder to get (Gaussian) p(x|z)
- Sample x|z from p(x|z)

Data likelihood intractable to compute:

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

Use a network to model encoder distribution

$$q_{\phi}(z|x) \approx p(z|x)$$

 Then, optimize a lower bound of the data likelihood:

$$\log p_{\theta}(x) \ge E_z[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$$

Encoder and decoder networks return distribution parameters

Mean and (diagonal) covariance of z | x

Mean and (diagonal) covariance of x | z

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung

 Sample from these distributions to get latent z and image x

Mean and (diagonal) covariance of z | x

Mean and (diagonal) covariance of x | z

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung

Putting it all together: maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Let's look at computing the bound (forward pass) for a given minibatch of input data

Input Data

 \boldsymbol{x}

Fei-Fei Li & Justin Johnson & Serena Yeung

Putting it all together: maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

Putting it all together: maximizing the likelihood lower bound

Fei-Fei Li & Justin Johnson & Serena Yeung

Putting it all together: maximizing the likelihood lower bound

Fei-Fei Li & Justin Johnson & Serena Yeung

Putting it all together: maximizing the likelihood lower bound

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung

Generating data

- 1. Sample z from prior
- Use decoder network
- 3. Sample from Gaussian posterior

Sample z from $~z \sim \mathcal{N}(0,I)$ Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

VAEs results

32x32 CIFAR-10

Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Latent representations

z contains independent factors!

Outline

- Generative Models
- Autoencoders
- Variational autoencoders (VAEs)
- Generative adversial networks (GANs)

GANs taking over

Track updates at the GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo

Generative adversarial networks

Main idea

- In contrast with other models (e.g., VAEs), it does not provide explicit information about data distribution (i.e., density function)
- Generate samples only

• How?

 Define an adversarial two-player game between a generator and a discriminator

Generative adversarial networks

https://sthalles.github.io/intro-to-gans/

Generator

Learns a transformation from a simple noise distribution to training distribution (e.g., images)

Training samples

Discriminator

Distinguish between real and fake images

Training GANs

- Train jointly the generator and the discriminator in a minimax game
 - Generator: try to fool the discriminator by generating real-looking images
 - Discriminator: try to distinguish between real and generated images

Training GANs

Minimax objective function

$$\min_{\theta_G} \max_{\theta_D} E_{p_{train}} \log D_{\theta_D}(x) + E_{p(z)} \log(1 - D_{\theta_D}(G_{\theta_G}(z)))$$

- Discriminator: maximize the objective so that D(x) is close to 1 (real) and D(G(z)) close to 0 (fake)
- Generator: minimize the objective so that D(G(z)) is close to 1 (the discriminator is fooled)
- Solved via alternating gradient optimization

Generating data

 After training, just use the generator to generate new samples

- Useful side-effect:
 - Discriminator can be used for transfer learning (why?)

GANs architectures

- Image GANs mainly use CNNs
- Generator
 - Upsampling + convolutional layers: similar to decoder in AEs
- Discriminator
 - Similar to classification CNN

GANs results

Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196. 2017 Oct 27.

Latent representations

Interpretable vector math

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. 2015 Nov 19.

Conditional Gans

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Conditional Gans

Welsh springer spaniel

Daisy

Miyato et al, "Spectral Normalization for Generative Adversarial Networks", ICLR 2018

Super Resolution

bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original

Ledig et al, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network", CVPR 2017

Image to Image

Isola et al, "Image-to-Image Translation with Conditional Adversarial Nets", CVPR 2017

Cycle Gan

Input Video: Horse Output Video: Zebra

https://www.youtube.com/watch?v=9reHvktowLY

Generative models: VAEs vs GANs

VAEs

- © Principled (max likelihood) approach
- Provide explicit distributions
- Provide blurry samples

GANs

- Beautiful, state-of-the-art samples
- ☼ Trickier to train (unstable)
- Do not provide explicit distributions

Resources

- F.F. Li, J. Johnson, S. Young. Convolutional Neural Networks for Visual Recognition, Stanford University, 2017
 - Lecture 13- "Generative models"
 - http://cs231n.stanford.edu/slides/2017/cs231n_2017_l ecture13.pdf
- I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Cambridge: MIT press, 2016.
 - Chapter 14 "Autoencoders"
 - Chapter 20 "Deep Generative Models"

Some links

- Generative Models I (Michigan Online)
 - https://www.youtube.com/watch?v=Q3HU2vEhD5Y
- Generative Models II (Michigan Online)
 - https://www.youtube.com/watch?v=igP03FXZqgo