3.9 — Logarithmic Regression

ECON 480 • Econometrics • Fall 2021

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- <u>ryansafner/metricsF21</u>
- metricsF21.classes.ryansafner.com

Outline

Natural Logarithms

Linear-Log Model

Log-Linear Model

Log-Log Model

Comparing Across Units

Joint Hypothesis Testing

Life
$$\widehat{\text{Expectancy}}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{GDP}_i$$

Life
$$\widehat{\text{Expectancy}}_i = \hat{\beta}_0^{\hat{}} + \hat{\beta}_1^{\hat{}} \text{GDP}_i$$

Life
$$\widehat{\text{Expectancy}}_i = \hat{\beta_0} + \hat{\beta_1} \text{GDP}_i + \hat{\beta_2} \text{GDP}_i^2$$

Life
$$\widehat{\text{Expectancy}}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{GDP}_i$$
Life $\widehat{\text{Expectancy}}_i = \hat{\beta}_0 + \hat{\beta}_1 \text{GDP}_i + \hat{\beta}_2 \text{GDP}_i^2$
Life $\widehat{\text{Expectancy}}_i = \hat{\beta}_0 + \hat{\beta}_1 \ln \text{GDP}_i$

Natural Logarithms

Logarithmic Models

- Another useful model for nonlinear data is the logarithmic model[†]
 - We transform either X, Y, or *both* by taking the (natural) logarithm
- Logarithmic model has two additional advantages
 - 1. We can easily interpret coefficients as **percentage changes** or **elasticities**
 - 2. Useful economic shape: diminishing returns (production functions, utility functions, etc)

[†] Don't confuse this with a **logistic (logit) model** for *dependent* dummy variables.

The Natural Logarithm

- The exponential function, $Y = e^X$ or Y = exp(X), where base e = 2.71828...
- Natural logarithm is the inverse, Y = ln(X)

The Natural Logarithm: Review I

• Exponents are defined as

$$b^n = \underbrace{b \times b \times \cdots \times b}_{n \text{ times}}$$

 \circ where base b is multiplied by itself n times

• Example:
$$2^3 = 2 \times 2 \times 2 = 8$$

• Logarithms are the inverse, defined as the exponents in the expressions above

If
$$b^n = y$$
, then $log_b(y) = n$

- \circ *n* is the number you must raise *b* to in order to get *y*
- **Example**: $log_2(8) = 3$

The Natural Logarithm: Review II

• Logarithms can have any base, but common to use the natural logarithm (ln) with base e=2.71828...

If
$$e^n = y$$
, then $\ln(y) = n$

The Natural Logarithm: Properties

• Natural logs have a lot of useful properties:

$$1. \ln(\frac{1}{x}) = -\ln(x)$$

$$2. \ln(ab) = \ln(a) + \ln(b)$$

$$3. \ln(\frac{x}{a}) = \ln(x) - \ln(a)$$

$$4. \ln(x^a) = a \ln(x)$$

$$5. \frac{d \ln x}{d x} = \frac{1}{x}$$

The Natural Logarithm: Example

• Most useful property: for small change in x, Δx :

$$\underbrace{\ln(x + \Delta x) - \ln(x)}_{\text{Difference in logs}} \approx \underbrace{\frac{\Delta x}{x}}_{\text{Relative change}}$$

Example: Let x = 100 and $\Delta x = 1$, relative change is:

$$\frac{\Delta x}{x} = \frac{(101 - 100)}{100} = 0.01 \text{ or } 1\%$$

• The logged difference:

$$\ln(101) - \ln(100) = 0.00995 \approx 1\%$$

Elasticity

$$\epsilon_{Y,X} = \frac{\%\Delta Y}{\%\Delta X} = \frac{\left(\frac{\Delta Y}{Y}\right)}{\left(\frac{\Delta X}{X}\right)}$$

- ullet Numerator is relative change in Y, Denominator is relative change in X
- Interpretation: a 1% change in X will cause a $\epsilon_{Y,X}$ % chang in Y

Math FYI: Cobb Douglas Functions and Logs

• One of the (many) reasons why economists love Cobb-Douglas functions:

$$Y = AL^{\alpha}K^{\beta}$$

• Taking logs, relationship becomes linear:

$$ln(Y) = ln(A) + \alpha ln(L) + \beta ln(K)$$

- With data on (Y, L, K) and linear regression, can estimate α and β
 - \circ α : elasticity of Y with respect to L
 - lacksquare A 1% change in L will lead to an lpha% change in Y
 - \circ β : elasticity of Y with respect to K
 - A 1% change in K will lead to a β % change in Y

Math FYI: Cobb Douglas Functions and Logs

Example: Cobb-Douglas production function:

$$Y = 2L^{0.75}K^{0.25}$$

• Taking logs:

$$\ln Y = \ln 2 + 0.75 \ln L + 0.25 \ln K$$

- ullet A 1% change in L will yield a 0.75% change in output Y
- ullet A 1% change in K will yield a 0.25% change in output Y

Logarithms in R I

• The log() function can easily take the logarithm

```
gapminder <- gapminder %>%
  mutate(loggdp = log(gdpPercap)) # log GDP per capita
gapminder %>% head() # look at it
```

country	continent	year	lifeExp	pop	gdpPercap	loggdp
<fct></fct>	<fct></fct>	<int></int>	<qpf></qpf>	<int></int>	<dpl></dpl>	< q p >
Afghanistan	Asia	1952	28.801	8425333	779.4453	6.658583
Afghanistan	Asia	1957	30.332	9240934	820.8530	6.710344
Afghanistan	Asia	1962	31.997	10267083	853.1007	6.748878
Afghanistan	Asia	1967	34.020	11537966	836.1971	6.728864
Afghanistan	Asia	1972	36.088	13079460	739.9811	6.606625
Afghanistan	Asia	1977	38.438	14880372	786.1134	6.667101

6 rows

Logarithms in R II

- Note, log() by default is the **natural logarithm** ln(), i.e. base e
 - \circ Can change base with e.g. log(x, base = 5)
 - Some common built-in logs: log10, log2

```
log10(100)
## [1] 2
log2(16)
## [1] 4
log(19683, base=3)
## [1] 9
```

Logarithms in R III

Note when running a regression, you can pre-transform the data into logs (as I did above),
 or just add log() around a variable in the regression

```
lm(lifeExp ~ loggdp,
  data = gapminder) %>%
  tidy()
```

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<pre><dpl></dpl></pre>	<dpl></dpl>	<pre><dpl></dpl></pre>
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

```
lm(lifeExp ~ log(gdpPercap),
  data = gapminder) %>%
  tidy()
```

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dpl></dpl>	<dpl></dpl>	<dbl></dbl>
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
log(gdpPercap)	8.405085	0.148762	56.500206	0.000000e+00

Types of Logarithmic Models

• Three types of log regression models, depending on which variables we log

1. Linear-log model:
$$Y_i = \beta_0 + \beta_1 \ln X_i$$

- 2. Log-linear model: $\ln Y_i = \beta_0 + \beta_1 X_i$
- 3. Log-log model: $\ln Y_i = \beta_0 + \beta_1 \ln X_i$

Linear-Log Model

Linear-Log Model

• Linear-log model has an independent variable (X) that is logged

$$Y = \beta_0 + \beta_1 \ln X_i$$
$$\beta_1 = \frac{\Delta Y}{\left(\frac{\Delta X}{X}\right)}$$

• Marginal effect of $\mathbf{X} o \mathbf{Y}$: a 1% change in X o a $\frac{\beta_1}{100}$ unit change in Y

library(broom)

lin_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

Life
$$\widehat{\text{Expectancy}}_i = -9.10 + 9.41 \ln \text{GDP}_i$$

library(broom)

lin_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dpl></dpl>	<dpl></dpl>	< dbl>
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

Life
$$\widehat{\text{Expectancy}}_i = -9.10 + 9.41 \ln \text{GDP}_i$$

• A 1% change in GDP \rightarrow a $\frac{9.41}{100} =$ 0.0941 year increase in Life Expectancy

library(broom)

lin_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dpl></dpl>	<dbl></dbl>	<dpl></dpl>
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

Life
$$\widehat{\text{Expectancy}}_i = -9.10 + 9.41 \ln \text{GDP}_i$$

- A 1% change in GDP \rightarrow a $\frac{9.41}{100} =$ 0.0941 year increase in Life Expectancy
- A 25% fall in GDP \rightarrow a $(-25 \times 0.0941) =$ 2.353 year decrease in Life Expectancy

library(broom)

lin_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dpl></dpl>	<dbl></dbl>	<dpl></dpl>
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

Life
$$\widehat{\text{Expectancy}}_i = -9.10 + 9.41 \ln \text{GDP}_i$$

- A 1% change in GDP \rightarrow a $\frac{9.41}{100} =$ 0.0941 year increase in Life Expectancy
- A 25% fall in GDP \rightarrow a $(-25 \times 0.0941) =$ 2.353 year decrease in Life Expectancy
- A 100% rise in GDP \rightarrow a $(100 \times 0.0941) =$ 9.041 year increase in Life Expectancy

Linear-Log Model Graph I

Linear-Log Model Graph II

Log-Linear Model

Log-Linear Model

• Log-linear model has the dependent variable (Y) logged

$$\ln Y_i = \beta_0 + \beta_1 X$$

$$\beta_1 = \frac{\left(\frac{\Delta Y}{Y}\right)}{\Delta X}$$

• Marginal effect of $X \to Y$: a 1 unit change in $X \to a \beta_1 \times 100$ % change in Y

Log-Linear Model in R (Preliminaries)

- We will again have very large/small coefficients if we deal with GDP directly, again let's transform gdpPercap into \$1,000s, call it gdp_t
- Then log LifeExp

continent	year	lifeExp	pop	gdpPercap	loggdp	gdp_t	loglife
<fct></fct>	<int></int>	<qpf></qpf>	<int></int>	<dbl></dbl>	<qpf></qpf>	<qpf></qpf>	<qpf></qpf>
Asia	1952	28.801	8425333	779.4453	6.658583	0.7794453	3.360410
Asia	1957	30.332	9240934	820.8530	6.710344	0.8208530	3.412203
Asia	1962	31.997	10267083	853.1007	6.748878	0.8531007	3.465642
Asia	1967	34.020	11537966	836.1971	6.728864	0.8361971	3.526949
Asia	1972	36.088	13079460	739.9811	6.606625	0.7399811	3.585960
Asia	1977	38.438	14880372	786.1134	6.667101	0.7861134	3.649047
	<fct> Asia Asia Asia Asia Asia Asia</fct>	<fct> <int> Asia 1952 Asia 1957 Asia 1962 Asia 1967 Asia 1972</int></fct>	<fct> <int> <dbl> Asia 1952 28.801 Asia 1957 30.332 Asia 1962 31.997 Asia 1967 34.020 Asia 1972 36.088</dbl></int></fct>	<fct> <int> <dbl> <int> Asia 1952 28.801 8425333 Asia 1957 30.332 9240934 Asia 1962 31.997 10267083 Asia 1967 34.020 11537966 Asia 1972 36.088 13079460</int></dbl></int></fct>	<fct> < int> < dbl> < int> < dbl> Asia 1952 28.801 8425333 779.4453 Asia 1957 30.332 9240934 820.8530 Asia 1962 31.997 10267083 853.1007 Asia 1967 34.020 11537966 836.1971 Asia 1972 36.088 13079460 739.9811</fct>	<fct> < int> < dbl> < dbl> < dbl> Asia 1952 28.801 8425333 779.4453 6.658583 Asia 1957 30.332 9240934 820.8530 6.710344 Asia 1962 31.997 10267083 853.1007 6.748878 Asia 1967 34.020 11537966 836.1971 6.728864 Asia 1972 36.088 13079460 739.9811 6.606625</fct>	<fct> < int> < int> < dbl> < dbl> < dbl> Asia 1952 28.801 8425333 779.4453 6.658583 0.7794453 Asia 1957 30.332 9240934 820.8530 6.710344 0.8208530 Asia 1962 31.997 10267083 853.1007 6.748878 0.8531007 Asia 1967 34.020 11537966 836.1971 6.728864 0.8361971 Asia 1972 36.088 13079460 739.9811 6.606625 0.7399811</fct>

term	estimate	std.error	statistic	p.value
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dpl></dpl>	<dpl></dpl>
(Intercept)	3.966639	0.0058345501	679.85339	0.000000e+00
gdp_t	0.012917	0.0004777072	27.03958	2.920378e-134
2 rows				

$$\ln \widehat{\text{Expectancy}}_i = 3.967 + 0.013 \, \text{GDP}_i$$

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dbl></dbl>	<dpl></dpl>	<dpl></dpl>
(Intercept)	3.966639	0.0058345501	679.85339	0.000000e+00
gdp_t	0.012917	0.0004777072	27.03958	2.920378e-134

$$\ln \widehat{\text{Expectancy}}_i = 3.967 + 0.013 \, \text{GDP}_i$$

• A \$1 (thousand) change in GDP \rightarrow a $0.013 \times 100\% =$ 1.3% increase in Life Expectancy

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dpl></dpl>	<dpl></dpl>	<dbl></dbl>
(Intercept)	3.966639	0.0058345501	679.85339	0.000000e+00
gdp_t	0.012917	0.0004777072	27.03958	2.920378e-134

$$ln(\text{Life Expectancy})_i = 3.967 + 0.013 \text{ GDP}_i$$

- A \$1 (thousand) change in GDP \rightarrow a $0.013 \times 100\% =$ 1.3% increase in Life Expectancy
- A \$25 (thousand) fall in GDP \rightarrow a $(-25 \times 1.3\%) =$ 32.5% decrease in Life Expectancy

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dpl></dpl>	<dpl></dpl>	<dpl></dpl>
(Intercept)	3.966639	0.0058345501	679.85339	0.000000e+00
gdp_t	0.012917	0.0004777072	27.03958	2.920378e-134

$$ln(\text{Life Expectancy})_i = 3.967 + 0.013 \text{ GDP}_i$$

- A \$1 (thousand) change in GDP \rightarrow a $0.013 \times 100\% =$ 1.3% increase in Life Expectancy
- A \$25 (thousand) fall in GDP \rightarrow a $(-25 \times 1.3\%) =$ 32.5% decrease in Life Expectancy
- A \$100 (thousand) rise in GDP \rightarrow a $(100 \times 1.3\%) =$ 130% increase in Life Expectancy

Linear-Log Model Graph I

Log-Log Model

Log-Log Model

• Log-log model has both variables (X and Y) logged

$$\ln Y_i = \beta_0 + \beta_1 \ln X_i$$

$$\beta_1 = \frac{\left(\frac{\Delta Y}{Y}\right)}{\left(\frac{\Delta X}{X}\right)}$$

- Marginal effect of $\mathbf{X} \to \mathbf{Y}$: a 1% change in $X \to \mathsf{a}\,\beta_1$ % change in Y
- β_1 is the **elasticity** of Y with respect to X!

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dpl></dpl>	<qpf></qpf>	<qpf></qpf>
(Intercept)	2.864177	0.02328274	123.01718	0
loggdp	0.146549	0.00282126	51.94452	0

$$\ln \widehat{\text{Expectancy}}_i = 2.864 + 0.147 \ln \text{GDP}_i$$

term	estimate	std.error	statistic	p.value
<chr></chr>	<pre><dpl></dpl></pre>	<dbl></dbl>	<qpf></qpf>	<dpl></dpl>
(Intercept)	2.864177	0.02328274	123.01718	0
loggdp	0.146549	0.00282126	51.94452	0

$$\ln \widehat{\text{Expectancy}}_i = 2.864 + 0.147 \ln \text{GDP}_i$$

• A 1% change in GDP \rightarrow a 0.147% increase in Life Expectancy

term	estimate	std.error	statistic	p.value
<chr></chr>	<dbl></dbl>	<dpl></dpl>	<qpf></qpf>	<qpf></qpf>
(Intercept)	2.864177	0.02328274	123.01718	0
loggdp	0.146549	0.00282126	51.94452	0

$$\ln \widehat{\text{Expectancy}}_i = 2.864 + 0.147 \ln \text{GDP}_i$$

- A 1% change in GDP \rightarrow a 0.147% increase in Life Expectancy
- A 25% fall in GDP \rightarrow a $(-25 \times 0.147\%) =$ 3.675% decrease in Life Expectancy

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpl></dpl>	<dpl></dpl>	<qpf></qpf>	<qpf></qpf>
(Intercept)	2.864177	0.02328274	123.01718	0
loggdp	0.146549	0.00282126	51.94452	0

$$\ln \widehat{\text{Expectancy}}_i = 2.864 + 0.147 \ln \text{GDP}_i$$

- A 1% change in GDP \rightarrow a 0.147% increase in Life Expectancy
- A 25% fall in GDP \rightarrow a $(-25 \times 0.147\%) =$ 3.675% decrease in Life Expectancy
- A 100% rise in GDP \rightarrow a $(100 \times 0.147\%) =$ 14.7% increase in Life Expectancy

Log-Log Model Graph I


```
ggplot(data = gapminder)+
  aes(x = loggdp,
      y = loglife)+
  geom_point(color="blue", alpha=0.5)+
  geom_smooth(method="lm", color="orange")+
  labs(x = "Log GDP per Capita",
      y = "Log Life Expectancy")+
  ggthemes::theme_pander(base_family = "Fira Sans Condensed",
      base_size=16)
```


Comparing Models I

Model	Equation	Interpretation
Linear- Log	$Y = \beta_0 + \beta_1 \ln X$	1% change in $X o rac{\hat{eta}_1}{100}$ unit change in Y
Log -Linear	$ \ln Y = \beta_0 + \beta_1 X $	1 unit change in $X \to \hat{\beta_1} \times 100\%$ change in Y
Log-Log	$ \ln Y = \beta_0 + \beta_1 \ln X $	1% change in $X \to \hat{\beta_1}$ % change in Y

- Hint: the variable that gets **logged** changes in **percent** terms, the variable not logged changes in **unit** terms
 - Going from units → percent: multiply by 100
 - Going from percent → units: divide by 100

Comparing Models II

- Models are very different units, how to choose?
 - \circ Compare R^2 's
 - Compare graphs
 - Compare intution

	Life Exp.	Log Life Exp.	Log Life Exp.
Constant	-9.10 ***	3.97 ***	2.86 ***
	(1.23)	(0.01)	(0.02)
GDP (\$1000s)		0.01 ***	
		(0.00)	
Log GDP	8.41 ***		0.15 ***
	(0.15)		(0.00)
N	1704	1704	1704
R-Squared	0.65	0.30	0.61
SER	7.62	0.19	0.14

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Comparing Models III

When to Log?

- In practice, the following types of variables are logged:
 - Variables that must always be positive (prices, sales, market values)
 - Very large numbers (population, GDP)
 - Variables we want to talk about as percentage changes or growth rates (money supply, population, GDP)
 - Variables that have diminishing returns (output, utility)
 - Variables that have nonlinear scatterplots
- Avoid logs for:
 - Variables that are less than one, decimals, 0, or negative
 - Categorical variables (season, gender, political party)
 - Time variables (year, week, day)

Comparing Across Units

Comparing Coefficients of Different Units I

$$\hat{Y}_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

- ullet We often want to compare coefficients to see which variable X_1 or X_2 has a bigger effect on Y
- What if X_1 and X_2 are different units?

Example:

$$\widehat{\text{Salary}}_i = \beta_0 + \beta_1 \text{ Batting average}_i + \beta_2 \text{ Home runs}_i$$

$$\widehat{\text{Salary}}_i = -2,869,439.40 + 12,417,629.72 \text{ Batting average}_i + 129,627.36 \text{ Home runs}_i$$

Comparing Coefficients of Different Units II

• An easy way is to standardize the variables (i.e. take the Z-score)

$$X_Z = \frac{X_i - \overline{X}}{sd(X)}$$

[†] Also called "centering" or "scaling."

Comparing Coefficients of Different Units: Example

Variable	Mean	Std. Dev.
Salary	\$2,024,616	\$2,764,512
Batting Average	0.267	0.031
Home Runs	12.11	10.31

$$\widehat{\text{Salary}}_i = -2,869,439.40 + 12,417,629.72 \text{ Batting average}_i + 129,627.36 \text{ Home runs}_i$$

 $\widehat{\text{Salary}}_Z = 0.00 + 0.14 \text{ Batting average}_Z + 0.48 \text{ Home runs}_Z$

- Marginal effects on Y (in standard deviations of Y) from 1 standard deviation change in X:
- $\hat{\beta}_1$: a 1 standard deviation increase in Batting Average increases Salary by 0.14 standard deviations

$$0.14 \times \$2,764,512 = \$387,032$$

• $\hat{\beta}_2$: a 1 standard deviation increase in Home Runs increases Salary by 0.48 standard deviations

$$0.48 \times \$2,764,512 = \$1,326,966$$

Standardizing in R

• Use the scale() command inside mutate() function to standardize a variable

Joint Hypothesis Testing

Joint Hypothesis Testing I

Example: Return again to:

$$\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1} Male_i + \hat{\beta_2} Northeast_i + \hat{\beta_3} Midwest_i + \hat{\beta_4} South_i$$

• Maybe region doesn't affect wages at all?

•
$$H_0: \beta_2 = 0, \beta_3 = 0, \beta_4 = 0$$

• This is a **joint hypothesis** to test

Joint Hypothesis Testing II

• A joint hypothesis tests against the null hypothesis of a value for **multiple** parameters:

$$H_0: \beta_1 = \beta_2 = 0$$

the hypotheses that **multiple** regressors are equal to zero (have no causal effect on the outcome)

• Our alternative hypothesis is that:

$$H_1$$
: either $\beta_1 \neq 0$ or $\beta_2 \neq 0$ or both

or simply, that H_0 is not true

Types of Joint Hypothesis Tests

1)
$$H_0$$
: $\beta_1 = \beta_2 = 0$

- Testing against the claim that multiple variables don't matter
- Useful under high multicollinearity between variables
- H_a : at least one parameter $\neq 0$

2)
$$H_0$$
: $\beta_1 = \beta_2$

- Testing whether two variables matter the same
- Variables must be the same units
- $H_a: \beta_1(\neq, <, \text{ or } >)\beta_2$

3)
$$H_0$$
: ALL β 's = 0

- The "Overall F-test"
- ullet Testing against claim that regression model explains NO variation in Y

Joint Hypothesis Tests: F-statistic

- The F-statistic is the test-statistic used to test joint hypotheses about regression coefficients with an F-test
- This involves comparing two models:
 - 1. Unrestricted model: regression with all coefficients
 - 2. **Restricted model**: regression under null hypothesis (coefficients equal hypothesized values)
- \bullet F is an analysis of variance (ANOVA)
 - \circ essentially tests whether R^2 increases statistically significantly as we go from the restricted model $\$ rightarrow $\$ unrestricted model
- F has its own distribution, with two sets of degrees of freedom

Joint Hypothesis F-test: Example I

Example: Return again to:

$$\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1} Male_i + \hat{\beta_2} Northeast_i + \hat{\beta_3} Midwest_i + \hat{\beta_4} South_i$$

- $H_0: \beta_2 = \beta_3 = \beta_4 = 0$
- H_a : H_0 is not true (at least one $\beta_i \neq 0$)

Joint Hypothesis F-test: Example II

Example: Return again to:

$$\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1} Male_i + \hat{\beta_2} Northeast_i + \hat{\beta_3} Midwest_i + \hat{\beta_4} South_i$$

Unrestricted model:

$$\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1} Male_i + \hat{\beta_2} Northeast_i + \hat{\beta_3} Midwest_i + \hat{\beta_4} South_i$$

Restricted model:

$$\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1} Male_i$$

• F-test: does going from restricted to unrestricted model statistically significantly improve \mathbb{R}^2 ?

$$F_{q,(n-k-1)} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

$$F_{q,(n-k-1)} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

• R_u^2 : the R^2 from the unrestricted model (all variables)

$$F_{q,(n-k-1)} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

- R_u^2 : the R^2 from the unrestricted model (all variables)
- R_r^2 : the R^2 from the **restricted model** (null hypothesis)

$$F_{q,(n-k-1)} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

- R_u^2 : the R^2 from the unrestricted model (all variables)
- R_r^2 : the R^2 from the **restricted model** (null hypothesis)
- q: number of restrictions (number of $\beta' s = 0$ under null hypothesis)

$$F_{q,(n-k-1)} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

- R_u^2 : the R^2 from the unrestricted model (all variables)
- R_r^2 : the R^2 from the **restricted model** (null hypothesis)
- q: number of restrictions (number of $\beta' s = 0$ under null hypothesis)
- k: number of X variables in unrestricted model (all variables)

$$F_{q,(n-k-1)} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

- R_u^2 : the R^2 from the unrestricted model (all variables)
- R_r^2 : the R^2 from the **restricted model** (null hypothesis)
- q: number of restrictions (number of $\beta' s = 0$ under null hypothesis)
- k: number of X variables in unrestricted model (all variables)
- *F* has two sets of degrees of freedom:
 - $\circ \ q$ for the numerator, (n-k-1) for the denominator

$$F_{q,(n-k-1)} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

- Key takeaway: The bigger the difference between $(R_u^2 R_r^2)$, the greater the improvement in fit by adding variables, the larger the F!
- This formula is (believe it or not) actually a simplified version (assuming homoskedasticity)
 - I give you this formula to build your intuition of what F is measuring

F-test Example I

• We'll use the wooldridge package's wage1 data again

```
# load in data from wooldridge package
library(wooldridge)
wages <- wage1

# run regressions
unrestricted_reg <- lm(wage ~ female + northcen + west + south, data = wages)
restricted_reg <- lm(wage ~ female, data = wages)</pre>
```

F-test Example II

Unrestricted model:

$$\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1} Female_i + \hat{\beta_2} Northeast_i + \hat{\beta_3} Northcen + \hat{\beta_4} South_i$$

Restricted model:

$$\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1} Female_i$$

- $H_0: \beta_2 = \beta_3 = \beta_4 = 0$
- q = 3 restrictions (F numerator df)
- n k 1 = 526 4 1 = 521 (F denominator df)

F-test Example III

- We can use the car package's linear Hypothesis () command to run an F-test:
 - first argument: name of the (unrestricted) regression
 - second argument: vector of variable names (in quotes) you are testing

```
# load car package for additional regression tools
library("car")

# F-test
linearHypothesis(unrestricted_reg, c("northcen", "west", "south"))

## Linear hypothesis test
```

```
## Linear hypothesis test
##
## Hypothesis:
## northcen = 0
## west = 0
## south = 0
##
## Model 1: restricted model
## Model 2: wage ~ female + northcen + west + south
```

Second F-test Example: Are Two Coefficients Equal?

• The second type of test is whether two coefficients equal one another

Example:

$$\widehat{wage_i} = \beta_0 + \beta_1 \text{Adolescent height}_i + \beta_2 \text{Adult height}_i + \beta_3 \text{Male}_i$$

• Does height as an adolescent have the same effect on wages as height as an adult?

$$H_0: \beta_1 = \beta_2$$

• What is the restricted regression?

$$\widehat{wage_i} = \beta_0 + \beta_1 (Adolescent height_i + Adult height_i) + \beta_3 Male_i$$

• q = 1 restriction

Second F-test Example: Data


```
# load in data
heightwages<-read_csv("../data/heightwages.csv")

# make a "heights" variable as the sum of adolescent (height81) and adult (height85) height
heightwages <- heightwages %>%
    mutate(heights=height81+height85)
height_reg<-lm(wage96~height81+height85+male, data=heightwages)
height_restricted_reg<-lm(wage96~heights+male, data=heightwages)</pre>
```

Second F-test Example: Data

• For second argument, set two variables equal, in quotes

```
linearHypothesis(height_reg, "height81=height85") # F-test
```

```
## Linear hypothesis test
##
## Hypothesis:
## height81 - height85 = 0
##
## Model 1: restricted model
## Model 2: wage96 ~ height81 + height85 + male
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 6591 5128243
## 2 6590 5127284 1 959.2 1.2328 0.2669
```

• Insufficient evidence to reject $H_0!$

All F-test I


```
summary(unrestricted_reg)
```

```
##
## Call:
## lm(formula = wage ~ female + northcen + west + south, data = wages)
## Residuals:
      Min
               10 Median
                               30
                                      Max
## -6.3269 -2.0105 -0.7871 1.1898 17.4146
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.5654
                           0.3466 21.827 <2e-16 ***
## female
               -2.5652
                           0.3011 -8.520 <2e-16 ***
## northcen
               -0.5918
                           0.4362 - 1.357
                                           0.1755
                0.4315
                           0.4838
                                  0.892
                                           0.3729
## west
  south
               -1.0262
                           0.4048 - 2.535
                                           0.0115 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.443 on 521 degrees of freedom
## Multiple R-squared: 0.1376,
                                 Adjusted R-squared: 0.131
## F-statistic: 20.79 on 4 and 521 DF, p-value: 6.501e-16
```

- Last line of regression output from summary() is an All F-test
 - $\circ H_0$: all $\beta' s = 0$
 - \circ the regression explains no variation in Y
 - \circ Calculates an F-statistic that, if high enough, is significant (p-value < 0.05) enough to reject H_0

All F-test II

- Alternatively, if you use broom instead of summary():
 - glance() command makes table of regression summary statistics
 - tidy() only shows coefficients

• "statistic" is the All F-test, "p.value" next to it is the p value from the F test