#### Síntese de Proteínas

-polipeptídeos codificado por genes;

-R= grupo lateral: dá aos aminoácidos propriedades únicas (hidrofóbico, hidrofílico, básico ou ácido).



Estruturais Enzimáticas Receptores Hormônios Anticorpos

~90% da energia celular é voltada para a síntese protéica.

## Proteínas: diferentes níveis de organização



-1ª: sequência aa.

-2<sup>a</sup>: inter-relações espaciais (α-hélices e folhas  $\beta$ ) estabilizadas por pontes de H.

α-hélices: cilindricas. As cadeias laterais dos aminoácidos viradas para fora.

folhas β: regiões vizinhas da cadeia polipeptídica associam-se, resultando em uma estrutura achatada e rígida.

-3<sup>a</sup>: dobras tridimensionais (auxiliadas por chaperonas).

-4ª: associação de 2 ou mais polipeptídeos (multiméricas).





Proteínas: 20aa

#### Em busca do código genético:

#### 1- 1950, Zamecnik:

tratou ratos com aa radioativo, examinou frações subcelulares para a presença de radioatividade – fração = partículas ribonucleoprotéicas (RIBOSSOMOS);

#### 2- Hoagland e Zamecnick:

Portanto – formação de um aminoacil-RNAt

3- Hipótese do adaptador: reconheceria de um lado um aa específico e do outro a sequência de nt (em um RNAm) que codificaria tal aa.



#### Em busca do código genético:

Pelo menos 3 nucleotídeos seriam necessários para codificar cada aa.

#### 1961: Nirenberg e Matthaei:



Testou cada aminoácido separadamente. Marcados com radioatividade.

Apenas para o aa Fenialanina (UUU) se formou um polipeptídeo radioativo

Para outras trincas, os polinucleotídeos sintéticos foram formados com fosforilase de polinucleotídeos que catalisa a formação de RNA com ADP, GDP, UDP e CDP. Alterando a concentração de cada um dos nucleotídeos eles deduziram os tripletes da maioria dos aa.



#### Em busca do código genético:

#### **1964: Khorana**

- -sintetizou quimicamente polirribonucleotídeos (RNA) contendo de 2 a 4 bases diferentes.
- -Ex o copolímero ACACACACACACAC: formava-se polipeptídeo sintético com = quantidade de histidina (CAC) e de treonina (ACA).

Dessa forma foi desvendado o código genético – descoberta mais importante do sec XX!!!

| Synthetic<br>mRNA   | Polypeptide(s) synthesized            |  |  |
|---------------------|---------------------------------------|--|--|
| (UG) <sub>n</sub>   | (Ser-Leu)                             |  |  |
| (UG) <sub>n</sub>   | (Val-Cys)                             |  |  |
| $(AC)_n$            | (Thr-His)                             |  |  |
| (AG) <sub>n</sub>   | (Arg-Glu)                             |  |  |
| (UUC) <sub>n</sub>  | (Ser-Ser) and (Leu-Leu) and (Phe-Phe) |  |  |
| (UUG),              | (Leu-Leu) and (Val-Val) and (Cys-Cys) |  |  |
| (AAG) <sub>n</sub>  | (Arg-Arg) and (Lys-Lys) and (Glu-Glu) |  |  |
| (CAA) <sub>n</sub>  | (Thr-Thr) and (Asn-Asn) and (Gln-Gln) |  |  |
| (UAC) <sub>n</sub>  | (Thr-Thr) and (Leu-Leu) and (Tyr-Tyr) |  |  |
| (AUC) <sub>n</sub>  | (Ile-Ile) and (Ser-Ser) and (His-His) |  |  |
| (GUA),              | (Ser-Ser) and (Val-Val)               |  |  |
| (GAU),              | (Asp-Asp) and (Met-Met)               |  |  |
| (UAUC),             | (Tyr-Leu-Ser-Ile)                     |  |  |
| (UUAC),             | (Leu-Leu-Thr-Tyr)                     |  |  |
| (GAUA) <sub>n</sub> | None                                  |  |  |
| (GUAA),             | None                                  |  |  |

|              |   |                                       | Seond letter             |                                 |                                |                  |  |
|--------------|---|---------------------------------------|--------------------------|---------------------------------|--------------------------------|------------------|--|
|              |   | U                                     | С                        | Α                               | G                              |                  |  |
| First letter | U | UUU Phe<br>UUC Leu<br>UUA Leu         | UCU<br>UCC<br>UCA<br>UCG | UAU Tyr<br>UAC Stop<br>UAG Stop | UGU Cys<br>UGC Stop<br>UGG Trp | U<br>C<br>A<br>G |  |
|              | С | CUU<br>CUC<br>CUA<br>CUG              | CCU<br>CCC<br>CCA<br>CCG | CAU His CAC Gin CAG             | CGU<br>CGC<br>CGA<br>CGG       | U C A G U        |  |
| First        | Α | AUU<br>AUC<br>AUA ]<br>Ile<br>AUG Met | ACU<br>ACC<br>ACA<br>ACG | AAU Asn<br>AAC AAA<br>AAG Lys   | AGU Ser<br>AGC AGA AGG         | UCAG             |  |
|              | G | GUU<br>GUC<br>GUA<br>GUG              | GCU<br>GCC<br>GCA<br>GCG | GAU Asp<br>GAC GAA<br>GAA GIU   | GGU<br>GGC<br>GGA<br>GGG       | U<br>C<br>A<br>G |  |

#### Código genético:



- -degeneração não é uniforme (alguns aa só 1 trinca, outros, até 6!!!)
- -61 codons aa e 3 stop codons
- -conservado ao longo da evolução biológica (com algumas exceções).
- -códons podem ser usados de forma diferencial ("codon usage")

#### Código genético:

#### -Causa da redundância:

O anticodon do tRNA é capaz de se parear com codons diferentes

#### Hipótese da Oscilação

-Suporte: Não existem 61 tRNA, mas sim 32 na maioria dos organismos e 22 em mitocôndrias).

-pareamento da 3 base não é rígido. Anticodon Ex: um mesmo RNAt reconhece 2 códons codificadores de Ser.

Ex: Serina



#### Aspectos gerais da síntese protéica

Componentes necessários

Ribossomos RNAm RNAt



#### Ribossomos RNAr + Proteínas

| Ribosomes                                       | rRNAs r-pro                        | teins |
|-------------------------------------------------|------------------------------------|-------|
| Bacterial (70S) 50S<br>mass: 2.5 MDa            | 23S = 2904 bases<br>5S = 120 bases | 31    |
| 66% RNA 30S                                     | 16S = 1542 bases                   | 21    |
| Mammalian (205) COC                             | 28S = 4718 bases                   | 49    |
| Mammalian (80S) 60S<br>mass: 4.2 MDa<br>60% RNA | 5.8S = 160 bases<br>5S = 120 bases |       |
| 40S                                             | 18S = 1874 bases                   | 33    |

Subunidades dissociadas quando livres



Grande – ligações peptídicas da cadeia de aa em formação.

Pequena – correto pareamento códon x anticódon.

# RNAm: possui a mensagem (os códons) que irão interagir com os anticódons do aminoacil-RNAt



Figure 6-21 Molecular Biology of the Cell 5/e (© Garland Science 2008)



Eucariotos: genes interrompidos (introns).

Transcrito primário: é editado em eucariotos, enquanto que em procariotos já é processado pelos ribossomos.



#### **RNAt**

Adaptadores entre aa e os codons do RNAm durante a tradução. Existe de 1 a 4 RNAt para cada aa. 70-90nt. Forma de trevo por pareamentos intramoleculares.



Seu processamento envolve clivagens e metilações Podem conter nucleosídeos não presentes no transcrito (ex: inosina, pseudouridina, diidrouridina, 1-metilguanosina) devido a edições pós-transcricionais





### Passo a passo generalizado da síntese protéica

# 1- ATIVAÇÃO DOS AMINOÁCIDOS

- -20 aa
- -20 aminoacil-RNAt sintetase
- -32 RNAt
- -ATP
- $-Mg^{+2}$

FORMAÇÃO DOS RNAt ACOPLADOS AOS DEVIDOS aa:

**AMINOACIL-RNAT** 

#### O aa é acoplado ao RNAt pela Aminoacil-RNAt sintetase

$$aa + tRNA + ATP$$
  $\xrightarrow{Mg^{+2}}$  aminoacil-RNAt +AMP + PPi





Existe um Aminoacil-RNAt sintetase para cada aa

# A iniciação envolve pareamento de bases entre o RNAm e o RNAr em procarioto:

-Pequena subunidade do ribossomo se liga ao RNAm e acha o sítio *start* via sequência Shine-Dalgarno (EM PROCARIOTOS APENAS).



Shine-Dalgarno = sequência de polipurinas complementar a uma sequência muito conservada da ponta 3'do rRNA 16S. Está a menos de 10 nt acima do AUG inicial.

Shine-Dalgarno ausente em eucariotos

## 2- INÍCIO (Procariotos)

-Um aminoacil-RNAt <u>INICIADOR</u>, entra no sítio P do ribossomo. É o único aminoacil-RNAt que consegue entrar em P.



- Fatores de iniciação:

Energia: GTP, Mg<sup>+2</sup>= cofator



# O 1° aminoacil-RNAt a entrar no ribossomo é modificado:

- -bactéria, mitocôndria e cloroplasto;
- -RNAt iniciador carrega uma Met formilada;
- -O RNAt iniciador reconhece os códons AUG, GUG e UUG;
- -as metioninas dos demais RNAt, usados no alongamento não são formiladas;
- -Após a síntese protéica, o formil é removido por uma deformilase gerando NH2 normal;
- -Quando a Met não é o codon iniciador, ela é removida (~1/2 da proteínas).

#### Detalhes do Início em *E. coli*

- -30S se liga ao RNAm juntamente com IFs
- -IF3: estabiliza 30S livre e impede que ele se ligue ao 50S sem o envolvimento do RNAm
- -IF1: se liga próximo ao sítio A e não deixa o RNAt iniciador se ligar;
- -IF2: liga o aminoacil RNAt iniciador ao sítio P;
- -Quando os IFs são liberados 30S + 50S



## Iniciação da tradução em eucariotos



1 Small subunit binds to methylated cap



2 Small subunit migrates to initiation site



3 If leader is long, subunits may form queue



- -~ a de procariotos.
- -Mais fatores envolvidos.
- -pequena subunidade (40S) reconhece 5'do RNAm CAP (e não o sítio de iniciação diretamente).
- -40S migra pelo RNAm a partir do CAP até chegar no AUG inicial.

### Fatores de iniciação em Eucariotos:

-aminoacil RNAt iniciador = RNAtMet(i): fosforilado no C 2'da ribose na base 64.

-12 IFs



-eIF2 liga o RNAtMet(i) ao complexo contendo outros eIFs e 40S;

-ligação do RNAm aos eIF4A,B,E e G (no CAP 5') e à PABP (na PoliA)

 complexo migra pelo RNAm a partir do CAP até chegar no AUG, cujo contexto é: NNNPuNNAUGG

Depois a 60S se liga e os elF são liberados

#### 3- ALONGAMENTO DA CADEIA DE AMINOÁCIDOS

-A ligação peptídica ocorre quando o polipeptídeo carreado pelo peptidil-RNAt do sítio P é transferido para o aa carregado pelo RNAt que acabou de chegar em A. Processo catalisado pela grande subunidade.

#### 3- ALONGAMENTO DA CADEIA DE AMINOÁCIDOS

- -Ribossomo se move para a próxima trinca (Translocação) e o RNAt sem o aa vai para E (*exit*) e o peptidil RNAt que estava em A passa para P.
- usa GTP Mg<sup>+2</sup> e fatores de alongamento

#### **3- ALONGAMENTO**

Fator de alongamento EF-Tu (em procarioto, mas similar em eucariotos). Faz a mediação da ligação de um tRNA-aminoacil ao sítio A vazio do ribossomo.



A ligação codon+anticodon no sítio A, muda a conformação do ribossomo e faz com que EF-Tu hidrolise o GTP, liberando EF-Tu+GDP.



# Transferência do polipeptídeo do RNAt peptidil do sítio P para o RNAt aminoacil do sítio A (atividade da grande subunidade)

RNAr **23S** tem atividade de **peptidil transferase**Tanto o RNAr como as proteínas de 50S são necessárias



#### 4- TRANSLOCAÇÃO

-Translocação do RNAm e do RNAt para "baixo" no ribossomo. O RNAt sem aa vai para E (*exit*) e o peptidil RNAt que estava em A passa para P. O sítio A fica livre para receber o próximo RNAt.

-Catalizada por EF-G (EM PROCARIOTOS).

Requer EF-G (no estado ativado, com GTP)

Em eucariotos: eEF2 (translocase dependente de GTP)

EF-G hidrolisa o GTP e causa translocação:

Faz o RNAt carregando a cadeia de aa sair de A e ir para P



#### **Término**

Códons: UAA, UAG, UGA

Em bactéria a frequência: UAA>UGA>UAG

Mutação que gera stop códon = sem sentido

Códons reconhecidos por fatores protéicos (e não por RNAt)

#### Reação de término:

- -Liberação da cadeia de aa do último RNAt
- -Liberação dos RNAs m e t e dissociação do ribossomo

#### 5- TÉRMINO

Códons de término UAA, UAG, UGA são reconhecidos por

Fatores de Liberação (RF)

1- RF libera da cadeia peptídica;

2- RRF (fator de reciclagem ribossômica) entra no sítio A;

3- EF-G transloca o ribossomo e RRF vai para o sítio P;

4- Ribossomo se dissocia.



# VAMOS VER SE VOCÊS ENTENDERAM MESMO?

#### Você não pode dormir sem saber:

- 1) O código genético é degenerado (hipótese da oscilação);
- 2) A síntese de proteínas envolve: RNAm, RNAt, Ribossomos (RNAr+proteínas)
- sítios A, P e E;
- 3) Fases da tradução:
- -ATIVAÇÃO dos aa (RNAt+aa);
- -INÍCIO (ligação da pequena subunidade + IF + RNAt iniciador\*, seguido de acoplamento da grande subunidade) ligação códon-anticódon: PEQUENA SUBUNIDADE.
- -ALONGAMENTO: fatores de alongamento responsáveis pela adição de aa-RNAt ao sítio A e pela translocação do ribossomo. Grande subunidade: peptidil transferase;
- -TÉRMINO: fatores de liberação da cadeia de aa e de Reciclagem Ribossômica