Etude d'une suite définie implicitement

Soit $p \in \mathbb{N}^*$.

L'objectif du problème est d'étudier les solutions des équations (E_p) : $\ln x + x = p$ d'inconnue $x \in \mathbb{R}^{+*}$.

Partie I - Etude de la suite des solutions

- 1. Montrer que l'équation (E_p) possède une unique solution et que celle-ci appartient au segment [1,p]. Dans la suite du problème, cette solution sera notée x_p .
- 2. Montrer que la suite $(x_p)_{p\geq 1}$ est croissante.
- 3.a Montrer que $\frac{\ln x_p}{p} \underset{p^{\infty}}{\longrightarrow} 0$ et en déduire $x_p \underset{p^{\infty}}{\sim} p$.
- 3.b Déterminer la limite de $x_{p+1} x_p$.
- 4.a Donner un équivalent simple à $\ln x_p$. En déduire $x_p = p \ln p + o(\ln p)$.
- 4.b On pose $y_p = x_p p + \ln p$. Donner un équivalent simple à y_p . En déduire $x_p = p \ln p + \frac{\ln p}{p} + o \left(\frac{\ln p}{p}\right)$.

Partie II - Approximation numérique de x_p

Dans cette partie, l'entier p est fixé.

- 1. Montrer que $\forall x \ge 1, \ln x \le x 1$.
- 2. Soit $f: \mathbb{R}^{+*} \to \mathbb{R}$ définie par $f(x) = p \ln x$.
- 2.a Montrer que f est décroissante et que $x_{_{p}}$ est le seul point fixe de $f^{\ (1)}$
- 2.b Soit $a \in [1, p]$ et (u_n) la suite définie par :

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, u_{\scriptscriptstyle n+1} = f(u_{\scriptscriptstyle n}) = p - \ln u_{\scriptscriptstyle n} \end{cases}$$

Montrer que la suite (u_n) est bien définie et que $\forall n \in \mathbb{N}, u_n \in [1, p]$.

- 2.c Justifier la monotonie des suites (u_{2n}) et (u_{2n+1}) puis leur convergence.
- 2.d On pose $\alpha = \lim_{n^{\infty}} u_{2n}$ et $\beta = \lim_{n^{\infty}} u_{2n+1}$.

 Justifier que $\alpha, \beta \in [1, p]$ puis que $f(\alpha) = \beta$ et $f(\beta) = \alpha$.
- 2.e En observant que la fonction $x \mapsto x \ln x$ est strictement croissante sur [1, p], établir que $\alpha = \beta$.
- 2.f En déduire que $u_n \to x_n$.
- 3. On reprend les notations précédentes en se plaçant dans le cas p=2 et en prenant a=1.
- 3.a Représenter sur un graphique d'unité 4 cm la construction des termes u_k pour $k \in \{0,1,2,...,6\}$.
- 3.b Déterminer la valeur décimale par défaut de x_2 à la précision 10^{-2} . On précisera la démarche qui a permis d'obtenir celle-ci

 $^{^{(1)}}$ On appelle point fixe d'une fonction $\,f\,$ tout $\,x\,$ tel que $\,f(x)=x\,.$