# Homological Methods in Rewriting

Mirai Ikebuchi, MIT

# Equational Theories, Term Rewriting Systems (TRSs)

- Set of variables  $V = \{x_1, x_2, x_3, ...\}$
- Signature (set of const/func symbols)  $\Sigma = \{c, f, g, +, ...\}$ 
  - ► Terms:  $f(x_1)$ ,  $f(c + x_1)$ ,  $g(x_2, f(x_1))$ , ...
- Set of rules

$$R = \{(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3), f(x_1 + x_2) = f(x_1) + f(x_2), \dots\}$$
Equational Theory (unordered)

$$R = \{(x_1 + x_2) + x_3 \longrightarrow x_1 + (x_2 + x_3), f(x_1 + x_2) \longrightarrow f(x_1) + f(x_2), \ldots\}$$

Term Rewriting System (ordered)

#### What This Talk is about

R: given an equational theory/TRS

Is there any smaller equational theory/TRS equivalent to R?

How many rules are needed?

- find a lower bound using algebra.
- + brief intro & history of the algebra we are going to use.

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$
  
 $x_1 \cdot e = x_1,$   
 $x_1 \cdot x_1^{-1} = e,$   
 $e \cdot x_1 = x_1,$   
 $x_1 \cdot x_1^{-1} = e.$ 

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$
  
 $x_1 \cdot e = x_1,$   
 $x_1 \cdot x_1^{-1} = e,$ 

$$e \cdot x_1 = x_1,$$
  
$$x_1^{-1} \cdot x_1 = e.$$

enough

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$
  
 $x_1 \cdot e = x_1,$   
 $x_1 \cdot x_1^{-1} = e,$   
 $e \cdot x_1 = x_1,$   
 $x_1 \cdot x_1^{-1} = e.$ 

#### enough

Presentation with 2 axioms

$$x_1 \cdot (((x_2^{-1} \cdot (x_1^{-1} \cdot x_3))^{-1} \cdot x_4) \cdot (x_2 \cdot x_4)^{-1})^{-1} = x_3,$$
  
$$x_1 \cdot x_1^{-1} = e.$$

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$
  
 $x_1 \cdot e = x_1,$   
 $x_1 \cdot x_1^{-1} = e,$   
 $e \cdot x_1 = x_1,$   
 $x_1 \cdot x_1^{-1} = e.$ 

#### enough

Presentation with 2 axioms

$$x_1 \cdot (((x_2^{-1} \cdot (x_1^{-1} \cdot x_3))^{-1} \cdot x_4) \cdot (x_2 \cdot x_4)^{-1})^{-1} = x_3,$$
  
$$x_1 \cdot x_1^{-1} = e.$$

Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.

$$x_1/((((x_1/x_1)/x_2)/x_3)/(((x_1/x_1)/x_1)/x_3)) = x_2$$

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$
  
 $x_1 \cdot e = x_1,$   
 $x_1 \cdot x_1^{-1} = e,$ 

$$e \cdot x_1 = x_1,$$
  
$$x_1^{-1} \cdot x_1 = e.$$

#### enough

Presentation with 2 axioms

over the same signature

$$x_1 \cdot (((x_2^{-1} \cdot (x_1^{-1} \cdot x_3))^{-1} \cdot x_4) \cdot (x_2 \cdot x_4)^{-1})^{-1} = x_3,$$
  
$$x_1 \cdot x_1^{-1} = e.$$

Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.

$$x_1/((((x_1/x_1)/x_2)/x_3)/(((x_1/x_1)/x_1)/x_3)) = x_2$$

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$
  
 $x_1 \cdot e = x_1,$   
 $x_1 \cdot x_1^{-1} = e,$ 

$$e \cdot x_1 = x_1,$$
  
$$x_1^{-1} \cdot x_1 = e.$$

enough

Presentation with 2 axioms

over the same signature

$$x_1 \cdot (((x_2^{-1} \cdot (x_1^{-1} \cdot x_3))^{-1} \cdot x_4) \cdot (x_2 \cdot x_4)^{-1})^{-1} = x_3,$$
  

$$x_1 \cdot x_1^{-1} = e.$$

Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.

$$x_1/((((x_1/x_1)/x_2)/x_3)/(((x_1/x_1)/x_1)/x_3)) = x_2$$

#### Questions

#### Question 1.

Is there a presentation with one axiom over signature  $\{\cdot, \cdot^{-1}, e\}$ ?

#### Answer.

No. [Tarski, Neumann, Kunen] We need at least 2 axioms.

#### Question 2.

What about other equational theories/TRSs?

Is there a generic way to know how many rules are needed to present a given equational theory/TRS?

#### A lower bound by [Malbos-Mimram, FSCD'16]

 $(\Sigma, R)$ : complete (= terminating & confluent) TRS  $\exists$  a computable number  $MM(\Sigma, R)$  s.t.

$$MM(\Sigma, R) \le \#R'$$

for any TRS  $(\Sigma', R')$  equivalent to  $(\Sigma, R)$ .

- Not many TRSs are known to have  $MM(\Sigma, R) > 1$
- ⇒ The inequality just tells "any equivalent TRS has at least
- 0 or 1 rule" for most examples. 😢
- "Equivalence" for TRSs with possibly different signatures

#### [Ikebuchi, FSCD '19]

Fix  $\Sigma$ . R: complete TRS over  $\Sigma$ . If deg(R) is 0 or prime,

 $\exists e(R)$ : (computable) nonnegative integer s.t.

$$\#R - e(R) \le \#R'$$

for any R' over  $\Sigma$  equivalent to R.  $(\stackrel{*}{\leftrightarrow}_R = \stackrel{*}{\leftrightarrow}_{R'})$ 

For a complete TRS R of the theory of groups over  $\{\cdot, \cdot^{-1}, e\}$ , we get  $\deg(R) = 2$  and #R - e(R) = 2.

"Any TRS presenting the theory of groups has at least 2 rules."

Tarski's theorem is obtained as a corollary.

#### [Ikebuchi, FSCD '19]

Fix  $\Sigma$ . R: complete TRS over  $\Sigma$ . If deg(R) is 0 or prime,

 $\exists e(R)$ : (computable) nonnegative integer s.t.

$$MM(\Sigma, R) \le \#R - e(R) \le \#R'$$

for any R' over  $\Sigma$  equivalent to R.  $(\stackrel{*}{\leftrightarrow}_R = \stackrel{*}{\leftrightarrow}_{R'})$ 

For a complete TRS R of the theory of groups over  $\{\cdot, \cdot^{-1}, e\}$ , we get  $\deg(R) = 2$  and #R - e(R) = 2.

"Any TRS presenting the theory of groups has at least 2 rules."

Tarski's theorem is obtained as a corollary.

#### **Outline**

- Definitions of deg, e(R)
  - Examples
- Proof Overview
- More About Homology & History
- Conclusion

#### **Outline**

- Definitions of deg, e(R)
  - Examples
- Proof Overview
- More About Homology & History
- Conclusion

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\})$ ,

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, \dots\}$$

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\})$ ,

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, \dots\}$$

Example:  $R = \{ \underline{f(x_1, x_2, x_2)} \rightarrow \underline{x_1}, g(x_1, x_1, x_1) \rightarrow e \}$ 

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\}),$ 

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0$$

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\}),$ 

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0$$

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\}),$ 

$$deg(R) = gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0$$
  $#_2 f(x_1, x_2, x_2) - #_2 x_1 = 2$ 

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\}),$ 

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0$$
  $#_2 f(x_1, x_2, x_2) - #_2 x_1 = 2$ 

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\}),$ 

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0$$
  $#_2 f(x_1, x_2, x_2) - #_2 x_1 = 2$ 

$$#_1g(x_1, x_1, x_1) - #_1e = 3$$

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\}),$ 

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example:  $R = \{ f(x_1, x_2, x_2) \to x_1, g(\underline{x_1}, \underline{x_1}, \underline{x_1}) \to e \}$ 

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0$$
  $#_2 f(x_1, x_2, x_2) - #_2 x_1 = 2$ 

$$#_1g(x_1, x_1, x_1) - #_1e = 3$$

$$\therefore \deg(R) = \gcd\{0,2,3\} = 1$$

 $\#_i t$ : the number of occurrences of  $x_i$  in  $t \in \text{Term}(\Sigma, \{x_1, x_2, \dots\}),$ 

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example:  $R = \{ f(x_1, x_2, x_2) \to x_1, g(\underline{x_1}, \underline{x_1}, \underline{x_1}) \to e \}$ 

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0$$
  $#_2 f(x_1, x_2, x_2) - #_2 x_1 = 2$ 

$$\#_1 g(x_1, x_1, x_1) - \#_1 e = 3$$

$$\therefore \deg(R) = \gcd\{0,2,3\} = 1$$

deg(R) = 0 iff  $\rightarrow_R$  preserves the multiset of variables

**E.g.** 
$$R = \{f(f(x_1, x_2), x_3) \to f(x_1, f(x_2, x_3)), g(f(x_1, x_1)) \to f(g(x_1), g(x_1))\}$$

#### Matrix D(R)

$$R = \{l_1 \rightarrow r_1, ..., l_n \rightarrow r_n\}$$
 : complete TRS (*n* rules)

Fix a rewriting strategy.

D(R):  $n \times m$  matrix, (i, j)-th entry  $D(R)_{ij}$  is the difference between the numbers of  $l_i \rightarrow r_i$  used in two normalizing paths

$$t_j \stackrel{u_j o u_{j,1} o \cdots o u_{j,k}}{\underbrace{v_j o v_{j,1} o \cdots o v_{j,k'}}} \hat{t}_j$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}). \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_$$

 $x_1 + x_2$ 

$$D(R) = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 \\ A_1 & & & \\ A_2 & & & \\ A_3 & & & \\ A_4 & & & \end{pmatrix}$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}). \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{2}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_$$

$$D(R) = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 \\ A_1 & & & \\ A_2 & & & \\ A_3 & & & \\ A_4 & & & \end{pmatrix}$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}). \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C_$$

$$D(R) = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & & \\ A_3 & & \\ A_4 & & \end{pmatrix}$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}). \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_$$

$$D(R) = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & & \\ A_3 & & \\ A_4 & & \end{pmatrix}$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}). \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C_$$

$$D(R) = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & & \\ A_3 & & \\ A_4 & & \end{pmatrix}$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}). \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C_$$

$$D(R) = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & 2 & & \\ A_3 & & & \\ A_4 & & & \end{pmatrix}$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}). \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_$$

 $x_1 + x_2$ 

$$D(R) = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & 2 & & \\ A_3 & & & \\ A_4 & & & \end{pmatrix}$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}). \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_$$

$$D(R) = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & 2 & & \\ A_3 & 0 & & \\ A_4 & 0 & & \end{pmatrix}$$

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}) . \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C$$

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & 0 & 1 & 1 \\ A_2 & 0 & 0 & 0 \\ A_3 & 0 & 0 & 1 & 1 \\ A_4 & 0 & 0 & 1 & 1 \end{array}$$

#### Definition of e(R)

Let  $d = \deg(R)$ 

Consider D(R) as a matrix over  $\mathbb{Z}/d\mathbb{Z}$ 

$$\simeq \mathbb{Z} \text{ if } d = 0$$

 $ightharpoonup \simeq \mathbb{F}_d$  (finite field) if d is prime

If *d* is prime:  $e(R) = \operatorname{rank}(D(R))$ 

If d = 0: compute the "Smith normal form" of D(R) by elementary row/column operations e(R) =(the number of  $\pm 1$ s in the Smith n.f.)

# Definition of e(R)

Let  $d = \deg(R)$ 

Consider D(R) as a matrix over  $\mathbb{Z}/d\mathbb{Z}$ 

- $\simeq \mathbb{Z} \text{ if } d = 0$
- $ightharpoonup \simeq \mathbb{F}_d$  (finite field) if d is prime

If d is prime:  $e(R) = \operatorname{rank}(D(R))$ 

If d=0: compute the "Smith normal form" of D(R) by elementary row/column operations e(R)= (the number of  $\pm 1s$  in the Smith n.f.)

```
er \mathbb{Z}/d\mathbb{Z}
```

$$\simeq \mathbb{Z} \text{ if } d = 0$$

 $\simeq \mathbb{F}_d$  (finite field) if d is prime

If d is prime:  $e(R) = \operatorname{rank}(D(R))$ 

If d = 0: compute the "Smith normal form" of D(R) by elementary row/column operations e(R) =(the number of  $\pm 1$ s in the Smith n.f.)

#### **Outline**

- Definitions of deg, e(R)
  - Examples
- Proof Overview
- More About Homology & History
- Conclusion

### Example:

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}) . \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C$$

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & 0 & 1 & 1 \\ A_2 & 0 & 0 & 0 \\ A_3 & 0 & 0 & 1 & 1 \\ A_4 & 0 & 0 & 1 & 1 \end{array}$$

#### **Example:**

$$R = \begin{cases} A_{1} \cdot -(-x_{1}) \to x_{1}, & A_{2} \cdot -f(x_{1}) \to f(-x_{1}), \\ A_{3} \cdot -(x_{1} + x_{2}) \to (-x_{1}) \cdot (-x_{2}), & A_{4} \cdot -(x_{1} \cdot x_{2}) \to (-x_{1}) + (-x_{2}) . \end{cases}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{4}$$

$$C$$

### Example:

$$R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2) \cdot \end{cases}$$

$$C_3$$

$$C_4$$

$$C_1$$

$$C_2$$

$$C_3$$

$$C_4$$

$$C_4$$

#### Example: (cont.)

$$R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2) \cdot \end{cases}$$

By Main Theorem:

$$\#R - e(R) = 4 - 1 = 3 \le \#R'$$

for any equivalent TRS R'

⇒There is no equivalent TRS with 2 rules

An equivalent TRS with 3 rules:  $\{A_1, A_2, A_3\}$ 

## Example (the theory of groups)

Complete TRS

$$\begin{array}{lll} (x_{1} \cdot x_{2}) \cdot x_{3} \to x_{1} \cdot (x_{2} \cdot x_{3}) & e \cdot x_{1} \to x_{1} \\ x_{1} \cdot e \to x_{1} & x_{1} \cdot x_{1}^{-1} \to e \\ x_{1}^{-1} \cdot x_{1} \to e & x_{1}^{-1} \cdot (x_{1} \cdot x_{2}) \to x_{2} \\ e^{-1} \to e & (x^{-1})^{-1} \to x_{1} \\ x_{1} \cdot (x_{1}^{-1} \cdot x_{2}) \to x_{2} & (x_{1} \cdot x_{2})^{-1} \to x_{1}^{-1} \cdot x_{2}^{-1} \end{array}$$

with 48 critical pairs

- My program (https://github.com/mir-ikbch/homtrs) computes  $MM(\Sigma, R)$ , deg(R), D(R), e(R)
  - e(R) = 8 ( : #R e(R) = 2), MM(Σ, R) = 0

### Example (average and successors)

- ▶ D(R) is the 5×1 zero matrix.  $\Rightarrow e(R) = 0$ .  $\therefore \#R e(R) = \#R = 5$
- Generally: Given a TRS, if any critical pair is of "this type", then the TRS does not have any smaller equivalent TRSs.

## Example (average and successors)

$$\begin{array}{ll} A_1.\mathsf{ave}(0,0) \to 0, & A_2.\mathsf{ave}(x_1,\mathsf{s}(x_2)) \to \mathsf{ave}(\mathsf{s}(x_1),x_2), & A_3.\mathsf{ave}(\mathsf{s}(0),0) \to 0, \\ A_4.\mathsf{ave}(\mathsf{s}(\mathsf{s}(0)),0) \to s(0), & A_5.\mathsf{ave}(\mathsf{s}(\mathsf{s}(\mathsf{s}(x_1))),x_2) \to \mathsf{s}(\mathsf{ave}(\mathsf{s}(x_1),x_2)). \end{array}$$

the left path and the right path

- ► D(R) is the 5×1 zero matrix.  $\Rightarrow e(R) = 0$ . : #R e(R) = #R = 5
- Generally: Given a TRS, if any critical pair is of "this type", then the TRS does not have any smaller equivalent TRSs.

#### **Outline**

- Definitions of deg, e(R)
  - Examples
- Proof Overview
- More About Homology & History
- Conclusion

## **Assumption & Notation**

- ▶ Assume d = deg(R) is prime for simplicity
  - $\mathbb{Z}/d\mathbb{Z} = \{0,1,...,d-1\}$  forms a field
    - $\triangleright \mathbb{Z}/d\mathbb{Z}^n = \mathbb{Z}/d\mathbb{Z} \times ... \times \mathbb{Z}/d\mathbb{Z} : n\text{-dim. vector space}$
- (For d=0,  $\mathbb{Z}/d\mathbb{Z}\simeq\mathbb{Z}$  does not form a field, so the proof is more complicated.)

Main tools: linear algebra & Malbos-Mimram's results

They introduced two linear maps

$$\tilde{\partial}_1: \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$$

$$\tilde{\partial}_2: \mathbb{Z}/d\mathbb{Z}^{\#\mathrm{CP}(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$$

$$MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) \le \#R$$

 $MM(\Sigma, R) = MM(\Sigma', R')$  if  $(\Sigma, R)$  &  $(\Sigma', R')$  are equivalent. (shown via homological algebra.  $\ker \tilde{\partial}_1 / \mathrm{im} \tilde{\partial}_2$  is called the "second homology")

 $\therefore MM(\Sigma, R) \leq \#R'$  for any R' equivalent to R

They introduced two linear maps

$$\tilde{\partial}_1: \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$$

$$\tilde{\partial}_2: \mathbb{Z}/d\mathbb{Z}^{\#CP(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$$

$$MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) \le \#R$$

 $MM(\Sigma,R)=MM(\Sigma',R')$  if  $(\Sigma,R)$  &  $(\Sigma',R')$  are equivalent. (shown via homological algebra.  $\ker \tilde{\partial}_1/\mathrm{im}\tilde{\partial}_2$  is called the "second homology")

 $\therefore MM(\Sigma, R) \le \#R'$  for any R' equivalent to R

They introduced two linear maps

$$\tilde{\partial}_1: \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$$

$$\tilde{\partial}_2: \mathbb{Z}/d\mathbb{Z}^{\#\mathrm{CP}(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$$

If R is complete, the matrix representation is D(R)

 $MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) \le \#R$ 

 $MM(\Sigma,R)=MM(\Sigma',R')$  if  $(\Sigma,R)$  &  $(\Sigma',R')$  are equivalent. (shown via homological algebra.  $\ker \tilde{\partial}_1/\mathrm{im}\tilde{\partial}_2$  is called the "second homology")

 $\therefore MM(\Sigma, R) \leq \#R'$  for any R' equivalent to R

They introduced two linear maps

$$\tilde{\partial}_1: \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$$

$$\tilde{\partial}_2: \mathbb{Z}/d\mathbb{Z}^{\#\mathrm{CP}(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$$

$$MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) \le \#R$$

If R is complete, the matrix representation is D(R)

$$\ker \tilde{\partial}_1 = \{x \mid \tilde{\partial}_1(x) = 0\}$$

$$\operatorname{im} \tilde{\partial}_2 = \{\tilde{\partial}_2(x) \mid x \in \mathbb{Z}/d\mathbb{Z}^{\#\operatorname{CP}(R)}\}$$
subspaces of  $\mathbb{Z}/d\mathbb{Z}^{\#R}$ 

 $MM(\Sigma,R)=MM(\Sigma',R')$  if  $(\Sigma,R)$  &  $(\Sigma',R')$  are equivalent. (shown via homological algebra.  $\ker \tilde{\partial}_1/\mathrm{im}\tilde{\partial}_2$  is called the "second homology")

 $\therefore MM(\Sigma, R) \leq \#R'$  for any R' equivalent to R

They introduced two linear maps

$$\tilde{\partial}_1: \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$$

$$\tilde{\partial}_2: \mathbb{Z}/d\mathbb{Z}^{\#\mathrm{CP}(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$$

 $MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) \le \#R$ 

If R is complete, the matrix representation is D(R)

$$\ker \tilde{\partial}_1 = \{x \mid \tilde{\partial}_1(x) = 0\}$$

$$\operatorname{im} \tilde{\partial}_2 = \{\tilde{\partial}_2(x) \mid x \in \mathbb{Z}/d\mathbb{Z}^{\#\operatorname{CP}(R)}\}$$
subspaces of  $\mathbb{Z}/d\mathbb{Z}^{\#R}$ 

 $: \dim(\ker \tilde{\partial}_1/\mathrm{im}\tilde{\partial}_2) \le \dim(\ker \tilde{\partial}_1) \le \dim(\mathbb{Z}/d\mathbb{Z}^{\#R}) = \#R$ 

 $MM(\Sigma, R) = MM(\Sigma', R')$  if  $(\Sigma, R) \& (\Sigma', R')$  are equivalent.

(shown via homological algebra.

 $\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2$  is called the "second homology")

 $\therefore MM(\Sigma, R) \le \#R'$  for any R' equivalent to R

#### **Proof Overview**

 $\blacktriangleright$  #R - e(R) equals the dimension of  $V:=(\mathbb{Z}/d\mathbb{Z}^{\#R})/\mathrm{im}\tilde{\partial}_2$ 

$$\left( \because \dim((\mathbb{Z}/d\mathbb{Z}^{\#R})/\mathrm{im}\tilde{\partial}_2) = \dim(\mathbb{Z}/d\mathbb{Z}^{\#R}) - \dim(\mathrm{im}\tilde{\partial}_2) \\ = \#R - \mathrm{rank}(D(R)) = \#R - e(R) \right)$$

By more theorems from linear algebra,

$$\dim(V) = \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) + \dim(\operatorname{im} \tilde{\partial}_1) \le \#R$$

Any equivalent R, R' give the same  $\dim(\mathrm{im}\tilde{\partial}_1)$  and the same  $\dim(\ker\tilde{\partial}_1/\mathrm{im}\tilde{\partial}_2) = MM(\Sigma, R)$ 

$$\#R - e(R) = \dim(V) = \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) + \dim(\operatorname{im} \tilde{\partial}_1)$$
: invariant

$$\therefore \#R - e(R) \leq \#R'$$

#### Main Theorem

Fix  $\Sigma$ . R: complete TRS over  $\Sigma$ . If deg(R) is 0 or prime,

 $\exists e(R)$ : (computable) nonnegative integer s.t.

$$\#R - e(R) \le \#R'$$

for any R' over  $\Sigma$  equivalent to R.

## What if d = deg(R) is not either 0 or prime?

- $\triangleright \mathbb{Z}/d\mathbb{Z}$  has zero divisors.
  - e.g., for d = 4,  $2 \times 2 = 4 \equiv 0 \mod 4$ .
- ⇒ Many useful theorems don't work.
  - e.g., "Smith normal form" is no longer well defined.

#### **Outline**

- Definitions of deg, e(R)
  - Examples
- Proof Overview
- More About Homology & History
- Conclusion

## **String Rewriting Systems**

- String Rewriting Systems (SRSs)
  - ightharpoonup Alphabet  $\Sigma$
  - ▶ Rules  $R = \{ s_1 \rightarrow t_1, s_2 \rightarrow t_2, ... \}$   $s_i, t_i \in \Sigma^*$  (strings over  $\Sigma$ )
- Example
  - $\Sigma = \{a, b\}, R = \{ba \rightarrow ab, abb \rightarrow \epsilon\}$   $abab \rightarrow aabb \rightarrow a$

# How SRSs relate to algebra? — Monoids Presentation

- Any SRS  $(\Sigma, R)$  presents a monoid  $M = \Sigma^*/\leftrightarrow_R^*$  (multiplication: string concatenation)
- **Example:** 
  - Σ = {a}, R = {aa → ε} ⇒ Σ\* = {a<sup>n</sup>},
     M = {[ε], [a]}, [aa] = [ε]
     Σ = {a,b}, R = {ba → ab} ⇒ Σ\* = {ε, a, b, aa, ab, ba, ...},
     M = {[a<sup>n</sup>b<sup>m</sup>]}, [ba] = [ab], [bba] = [abb], ...

#### Monoids vs SRSs

- Equivalent SRSs present isomorphic monoids
- Any monoid can be presented by an SRS (possibly with an infinite alphabet & rules)



## Homology Groups in General

- There are many types of homology groups
  - Homology groups of a topological space
  - Homology groups of a group
  - •••
  - Homology groups of a general algebraic system (Quillen)
- Corresponds an "object" to a sequence of abelian groups that extracts some information from the object

### For topological spaces:



Homology groups

## For groups:



Group

Homology groups

# Homology groups of a group (= group homology)

- Group presentation  $\Sigma$  : alphabet, R : set of strings on  $\Sigma \cup \Sigma^{-1}$  ( $\Sigma^{-1} = \{a^{-1} \mid a \in \Sigma\}$ ,  $a^{-1}$  is the formal inverse of a)
- Monoid presented by alphabet  $\Sigma \cup \Sigma^{-1}$  and rules  $\{w \to \varepsilon \mid w \in R \cup \{xx^{-1}, x^{-1}x \mid x \in \Sigma\}\}$  forms a group
- Any group can be presented in this way.
- [Epstein, Q. J. Math., 1961] If G is presented by finite Σ, R,

$$#R - #\Sigma \ge s(H_2(G)) - \operatorname{rank} H_1(G)$$

2nd & 1st homology groups of G

We can construct homology groups for monoids/SRSs



but no application to rewriting known until 1987

## [Squier, J. Pure Appl. Algebra, 1987]

- Solved an open problem at the time: "Does there exist a monoid with a solvable word problem that cannot be presented by any finite complete SRS?" - Yes
  - Word problem is solvable = equality is decidable
  - If a finite complete SRS presents a monoid, the word problem of the monoid is solvable
- Squier discovered that if the 3rd homology group constructed from a complete SRS is not finitely generated, then the SRS is infinite. (His main theorem is even stronger)

#### Monoids vs SRSs

Any monoid can be presented by an SRS (possibly with an infinite alphabet & rules)



#### Monoids vs SRSs

Any monoid can be presented by an SRS (possibly with an infinite alphabet & rules)



- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with k kinds of vars) (k-tuple with m kinds of vars)
  - $\rightarrow$  (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with k kinds of vars) (k-tuple with m kinds of vars)
  - $\rightarrow$  (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (n-tuple with k kinds of vars) (k-tuple with m kinds of vars)
  - $\rightarrow$  (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (n-tuple with k kinds of vars) (k-tuple with m kinds of vars)
  - $\rightarrow$  (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with k kinds of vars) (k-tuple with m kinds of vars)
  - $\rightarrow$  (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with k kinds of vars) (k-tuple with m kinds of vars)
  - $\rightarrow$  (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with k kinds of vars) (k-tuple with m kinds of vars)
  - $\rightarrow$  (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication = Category

## Category of Terms

- ▶ Objects: natural numbers 0, 1, 2, 3, ...
- ▶ Morphisms  $k \rightarrow n$ : n-tuples of terms with vars in  $\{x_1, ..., x_k\}$
- Composition (multiplication):  $(k \to n) \cdot (m \to k) : (m \to n)$  $\langle t_1, ..., t_n \rangle \cdot \langle s_1, ..., s_k \rangle = \langle t_1[s_1/x_1, ..., s_k/x_k], ..., t_n[s_1/x_1, ..., s_k/x_k] \rangle$
- Identity:  $\langle x_1, ..., x_n \rangle : n \to n$

Term version of the free monoid  $\Sigma^*$ .

#### Lawvere Theories

A Lawvere theory is a category whose objects are 0,1,2,... where n equals the nth categorical power of 1

(Any morphism  $n \to k$  is a n-tuple of  $1 \to k$ )

- (SRS vs Monoid) = (TRS vs Lawvere theory)
- The Lawvere theory presented by a TRS R: Any term t is identified with s iff  $t \leftrightarrow_R^* s$

# Homology Groups for Lawvere theories/TRSs

- [Jibladze & Pirashvili, J. of Algebra, 1991] defined cohomology groups of Lawvere theories
- [Malbos & Mimram, FSCD 2016] figured out how to compute the 2nd homology  $H_2$  when the given TRS is complete and # of rules is bounded below by # of generators of  $H_2$ .
- ▶ [Ikebuchi, FSCD 2019] better lower bound I showed today

#### **Outline**

- Definitions of deg, e(R)
  - Examples
- Proof Overview
- More About Homology & History
- Conclusion

#### Conclusion

- We obtained a lower bound of the number of rewrite rules to present a TRS over a fixed signature.
- Relationship between rewriting and abstract algebra
- New algebraic tools & more research directions of TRSs/ equational theories