Gradient boosted trees with XGBoost

CREDIT RISK MODELING IN PYTHON

Michael Crabtree

Data Scientist, Ford Motor Company

Decision trees

- Creates predictions similar to logistic regression
- Not structured like a regression

Decision trees for loan status

• Simple decision tree for predicting loan_status probability of default

Decision tree impact

Loan	True loan status	Pred. Loan Status	Loan payoff value	Selling Value	Gain/Loss
1	0	1	\$1,500	\$250	-\$1,250
2	0	1	\$1,200	\$250	-\$950

A forest of trees

- XGBoost uses many simplistic trees (ensemble)
- Each tree will be slightly better than a coin toss

Creating and training trees

- Part of the xgboost Python package, called xgb here
- Trains with .fit() just like the logistic regression model

```
# Create a logistic regression model
clf_logistic = LogisticRegression()
# Train the logistic regression
clf_logistic.fit(X_train, np.ravel(y_train))
```

```
# Create a gradient boosted tree model
clf_gbt = xgb.XGBClassifier()
# Train the gradient boosted tree
clf_gbt.fit(X_train,np.ravel(y_train))
```

Default predictions with XGBoost

```
Predicts with both .predict() and .predict_proba()
      .predict_proba() produces a value between 0 and 1
      .predict() produces a 1 or 0 for loan_status
# Predict probabilities of default
gbt_preds_prob = clf_gbt.predict_proba(X_test)
# Predict loan_status as a 1 or 0
gbt_preds = clf_gbt.predict(X_test)
# gbt_preds_prob
array([[0.059, 0.940], [0.121, 0.989]])
# gbt_preds
array([1, 1, 0...])
```

Hyperparameters of gradient boosted trees

- Hyperparameters: model parameters (settings) that cannot be learned from data
- Some common hyperparameters for gradient boosted trees
 - learning_rate : smaller values make each step more conservative
 - max_depth : sets how deep each tree can go, larger means more complex

Let's practice!

CREDIT RISK MODELING IN PYTHON

Column selection for credit risk

CREDIT RISK MODELING IN PYTHON

Michael Crabtree

Data Scientist, Ford Motor Company

Choosing specific columns

We've been using all columns for predictions

```
# Selects a few specific columns
X_multi = cr_loan_prep[['loan_int_rate','person_emp_length']]

# Selects all data except loan_status
X = cr_loan_prep.drop('loan_status', axis = 1)
```

- How you can tell how important each column is
 - Logistic Regression: column coefficients
 - Gradient Boosted Trees:?

Column importances

- Use the .get_booster() and .get_score() methods
 - Weight: the number of times the column appears in all trees

```
# Train the model
clf_gbt.fit(X_train,np.ravel(y_train))
# Print the feature importances
clf_gbt.get_booster().get_score(importance_type = 'weight')
```

```
{'person_home_ownership_RENT': 1, 'person_home_ownership_OWN': 2}
```

Column importance interpretation

```
# Column importances from importance_type = 'weight'
{'person_home_ownership_RENT': 1, 'person_home_ownership_OWN': 2}
```

clf_gbt number of trees = 2

Plotting column importances

• Use the plot_importance() function

```
xgb.plot_importance(clf_gbt, importance_type = 'weight')
{'person_income': 315, 'loan_int_rate': 195, 'loan_percent_income': 146}
```


Choosing training columns

- Column importance is used to sometimes decide which columns to use for training
- Different sets affect the performance of the models

Columns	Importances	Model Accuracy	Model Default Recall
loan_int_rate, person_emp_length	(100, 100)	0.81	0.67
loan_int_rate, person_emp_length, loan_percent_income	(98, 70, 5)	0.84	0.52

F1 scoring for models

- Thinking about accuracy and recall for different column groups is time consuming
- F1 score is a single metric used to look at both accuracy and recall

$$F1 \, Score = 2 * (\frac{precision * recall}{precision + recall})$$

• Shows up as a part of the classification_report()

	precision	recall	f1-score	support
Non-Default	0.93	0.99	0.96	9198
Default	0.96	0.72	0.82	2586
micro avg	0.93	0.93	0.93	11784
macro avg	0.94	0.85	0.89	11784
weighted avg	0.93	0.93	0.93	11784

Let's practice!

CREDIT RISK MODELING IN PYTHON

Cross validation for credit models

CREDIT RISK MODELING IN PYTHON

Michael Crabtree

Data Scientist, Ford Motor Company

Cross validation basics

- Used to train and test the model in a way that simulates using the model on new data
- Segments training data into different pieces to estimate future performance
- Uses DMatrix, an internal structure optimized for XGBoost
- Early stopping tells cross validation to stop after a scoring metric has not improved after a number of iterations

How cross validation works

- Processes parts of training data as (called folds) and tests against unused part
- Final testing against the actual test set

¹ https://scikit ² learn.org/stable/modules/cross_validation.html

Setting up cross validation within XGBoost

- 'binary':'logistic' is used to specify classification for loan_status
- 'eval_metric': 'auc' tells XGBoost to score the model's performance on AUC

Using cross validation within XGBoost

• DMatrix() creates a special object for xgboost optimized for training

The results of cross validation

Creates a data frame of the values from the cross validation

		ı		
	train-auc-mean	train-auc-std	test-auc-mean	test-auc-std
0	0.898444	0.002041	0.892701	0.006615
1	0.907534	0.001368	0.899609	0.008587
2	0.914467	0.002170	0.908039	0.007474
3	0.919102	0.000843	0.911437	0.007616
4	0.923488	0.001320	0.914825	0.006873

Cross validation scoring

Uses cross validation and scoring metrics with cross_val_score() function in scikit-learn

```
# Import the module
from sklearn.model_selection import cross_val_score
# Create a gbt model
xg = xgb.XGBClassifier(learning_rate = 0.4, max_depth = 10)
# Use cross valudation and accuracy scores 5 consecutive times
cross_val_score(gbt, X_train, y_train, cv = 5)
```

array([0.92748092, 0.92575308, 0.93975392, 0.93378608, 0.93336163])

Let's practice!

CREDIT RISK MODELING IN PYTHON

Class imbalance in loan data

CREDIT RISK MODELING IN PYTHON

Michael Crabtree

Data Scientist, Ford Motor Company

Not enough defaults in the data

- The values of loan_status are the classes
 - Non-default: 0
 - Default: 1

```
y_train['loan_status'].value_counts()
```

loan_status	Training Data Count	Percentage of Total
O	13,798	78%
1	3,877	22%

Model loss function

- Gradient Boosted Trees in xgboost use a loss function of log-loss
 - The goal is to minimize this value

$$Log \ Loss = -\frac{1}{N} \sum_{i=1}^{N} [y_i * \log(p_i) + (1 - y_i) * \log(1 - p_i)]$$

True loan status	Predicted probability	Log Loss
1	0.1	2.3
0	0.9	2.3

• An inaccurately predicted default has more negative financial impact

The cost of imbalance

A false negative (default predicted as non-default) is much more costly

Person	Loan Amount	Potential Profit	Predicted Status	Actual Status	Losses
A	\$1,000	\$10	Default	Non-Default	-\$10
В	\$1,000	\$10	Non-Default	Default	-\$1,000

• Log-loss for the model is the same for both, our actual losses is not

Causes of imbalance

- Data problems
 - Credit data was not sampled correctly
 - Data storage problems
- Business processes:
 - Measures already in place to not accept probable defaults
 - Probable defaults are quickly sold to other firms
- Behavioral factors:
 - Normally, people do not default on their loans
 - The less often they default, the higher their credit rating

Dealing with class imbalance

Several ways to deal with class imbalance in data

Method	Pros	Cons
Gather more data	Increases number of defaults	Percentage of defaults may not change
Penalize models	Increases recall for defaults	Model requires more tuning and maintenance
Sample data differently	Least technical adjustment	Fewer defaults in data

Undersampling strategy

Combine smaller random sample of non-defaults with defaults

Combining the split data sets

- Test and training set must be put back together
- Create two new sets based on actual loan_status

Undersampling the non-defaults

- Randomly sample data set of non-defaults
- Concatenate with data set of defaults

Let's practice!

CREDIT RISK MODELING IN PYTHON

