

เรื่อง จำนวนวิธีในการเล่น Bloxorz บนสี่เหลี่ยมมุมฉากใดๆ
(A number of ways to play Bloxorz on rectangular)
โครงงานคณิตศาสตร์

รายงานฉบับสมบูรณ์ เสนอต่อ

ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ กระทรวงวิทยาศาสตร์และเทคโนโลยี

ได้รับทุนอุดหนุนโครงงานวิจัย พัฒนาและวิศวกรรม โครงการ "การประกวดโครงงานของนักวิทยาศาสตร์รุ่นเยาว์ ครั้งที่ 23 ประจำปีงบประมาณ 2564

จัดทำโดย

เด็กชายจิรสิน มากบุญนายพีรพันธ์ ภูริภัทรพันธุ์นายศุภวิชญ์ ณ ถลาง

นายณัฐวุฒิ ดุมลักษณ์

โรงเรียนภูเก็ตวิทยาลัย

เรื่อง จำนวนวิธีในการเล่น Bloxorz บนสี่เหลี่ยมมุมฉากใด ๆ (A number of ways to play Bloxorz on rectangular)

ได้รับทุนอุดหนุนโครงงานวิจัย พัฒนาและวิศวกรรม โครงการ "การประกวดโครงงานของนักวิทยาศาสตร์รุ่นเยาว์ ครั้งที่ 23 ประจำปีงบประมาณ 2564

จัดทำโดย

เด็กชายจิรสิน มากบุญนายพีรพันธ์ ภูริภัทรพันธุ์นายศุภวิชญ์ ณ ถลาง

นายณัฐวุฒิ ดุมลักษณ์

โรงเรียนภูเก็ตวิทยาลัย

ชื่อโครงงาน เรื่อง จำนวนวิธีในการเล่น Bloxorz บนสี่เหลี่ยมมุมฉากใด ๆ

(A number of ways to play Bloxorz on rectangular)

ผู้จัดทำ 1. เด็กชายจิรสิน มากบุญ

2. นายพีรพันธ์ ภูริภัทรพันธุ์

3. นายศุภวิชญ์ ณ ถลาง

ครูที่ปรึกษา นายณัฐวุฒิ ดุมลักษณ์

ชื่อโรงเรียน โรงเรียนภูเก็ตวิทยาลัย

สถานที่ติดต่อ 73/3 ถนนเทพกระษัตรี ตำบลตลาดใหญ่ อำเภอเมือง จังหวัดภูเก็ต

เบอร์โทรศัพท์ 076-212075

เบอร์โทรสาร 076-213922

E-mail krunattawoot@gmail.com

ระยะเวลา มิถุนายน - สิงหาคม 2563

บทคัดย่อ

การพลิกกล่องที่มีขนาด $1\times 1\times n$ ให้ลงหลุมขนาด 1×1 บนพื้นที่ที่จำกัด โดยห้ามพลิกกับมาที่เดิม และห้ามพลิกออกนอกอาณาเขตที่กำหนด เราจะสามารถทำได้อย่างไรเพื่อให้ประหยัดเวลามากที่สุดในการ พลิก box ซึ่งการพลิกให้ใช้เวลาน้อยที่สุดนั้นจะต้องมีจำนวนครั้งในการพลิกน้อยที่สุด จากการศึกษาพบว่า วิธีการเดินที่สั้นที่สุดของกล่องบนพื้นที่จำกัดสี่เหลี่ยมจัตุรัสใด ๆ และวิธีการเดินที่สั้นที่สุดของสี่เหลี่ยมผืนผ้า สามารถเขียนเป็นสมการได้ เช่น พื้นที่ขนาด $\left[(n+1)p+r\right]\times\left[(n+1)q+s\right]$ จะได้จำนวนครั้งในการพลิกที่ น้อยที่สุดมีค่า $\left[2p+2q-\frac{4n}{n+1}\right]+(r+1)+s$ ครั้ง รวมถึงสร้างโปรแกรมหาวิธีการเดินของ box ใน รูปแบบต่าง ๆ บนพื้นที่สี่เหลี่ยมมุมฉาก

กิตติกรรมประกาศ

โครงงานนี้สำเร็จสมบูรณ์ตามเป้าหมาย เนื่องจากได้รับความกรุณา ความร่วมมือ ความช่วยเหลือ คำแนะนำที่เป็นประโยชน์ต่อการศึกษา และแนวคิด ตลอดจนแก้ไขข้อบกพร่องต่าง ๆ จากผู้มีพระคุณหลาย ท่าน ผู้ศึกษาขอกราบขอบพระคุณเป็นอย่างสูงไว้ ณ โอกาสนี้

ขอกราบขอบพระคุณ คุณพ่อคุณแม่ที่คอยสนับสนุนการศึกษาค้นคว้าในครั้งนี้ คอยส่งเสริม และให้ กำลังใจมาโดยตลอด

ขอกราบขอบพระคุณ คุณครูณัฐวุฒิ ดุมลักษณ์อาจารย์ที่ปรึกษาโครงงานที่คอยให้คำปรึกษาและ แนะนำข้อมูลตั้งแต่ขั้นตอนแรกคือการค้นหาปัญหาที่สนใจ การศึกษาความรู้พื้นฐานในการแก้ปัญหาการนำ ความรู้พื้นฐานไปใช้ในการแก้ปัญหา การจัดทำรายงานและขั้นตอนสุดท้ายคือการจัดทำแผงโครงงานเพื่อ นำเสนอ ตลอดจนการตรวจสอบการแก้ไขข้อบกพร่องและเติมเต็มโครงงานจนสมบูรณ์ครบถ้วน

ขอกราบขอบพระคุณ คุณครูทุกท่านที่ได้ประสิทธิประสาทวิชาจนมาองค์ความรู้มาประยุกต์ใช้ในการ ทำโครงงานได้ รวมถึงได้รู้จักการค้นคว้าหาข้อมูลต่าง ๆ เพื่อใช้ในการอ้างอิง

ขอกราบขอบพระคุณ ผู้อำนวยการ วัชรศักดิ์ สงค์ปาน ผู้อำนวยการโรงเรียนภูเก็ตวิทยาลัยที่คอย สนับสนุนการทำโครงงานครั้งนี้ ทั้งปัจจัย รวมถึงอุปกรณ์เครื่องมือ

ผู้จัดทำ

สารบัญ

เรื่อง	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	ข
สารบัญ	ค
บทที่ 1 บทนำ	1
1.1 แนวคิดของโครงงาน	1
1.2 วัตถุประสงค์โครงงาน	1
1.3 ขอบเขตโครงงาน	1
1.4 ประโยชน์ที่คาดว่าจะได้รับ	1
1.5 นิยามศัพท์เฉพาะ	1
บทที่ 2 เอกสารที่เกี่ยวข้อง	2
2.1 การพิสูจน์อุปนัยเชิงคณิตศาสตร์	2
2.2 ภาษา C	2
2.3 การนับแบบรากต้นไม้ (Tree Diagram)	3
2.4 วิธีในการเล่น Bloxorz	3
บทที่ 3 วิธีการดำเนินการ	4
3.1 การหาจำนวนครั้งที่น้อยที่สุดในการพลิกของ box บนพื้นที่ปิดรูปสี่เหลี่ยมจัตุรัสขนาด n :	
ลงหลุม	4
3.2 การพิสูจน์จำนวนครั้งในการพลิกที่น้อยที่สุดของ ${ m box}$ บนพื้นที่สี่เหลี่ยมมุมฉากขนาด $4 imes$ และ $6 imes 6$	
3.3 การพิสูจน์ว่าจำนวนครั้งในการเคลื่อนที่ของ box บนพื้นที่ปิดมีค่าน้อยที่สุดโดยใช้	
แผนภาพรากต้นไม้	6

3.4 พิสูจน์ตารางขนาด $\mathrm{n} imes \mathrm{n}$
3.5 การหาจำนวนครั้งที่น้อยที่สุดในการเคลื่อนที่ของ box บนพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากขนาด
$m \times n$
$3.5.1$ ตารางขนาด $(3p+3) \times (3q+3)$
$3.5.2$ พิสูจน์ตารางขนาด $(3p+3) \times (3q+3)$
$3.5.3$ ตารางขนาด $(3p+3) \times (3q+1)$
$3.5.4$ พิสูจน์ตารางขนาด $(3p+3) \times (3q+1)$
$3.5.5$ ตารางขนาด $(3p+3) \times (3q+2)$
$3.5.6$ พิสูจน์ตารางขนาด $(3p+3) \times (3q+2)$
$3.5.7$ ตารางขนาด $(3p+1) \times (3q+1)$
$3.5.8$ พิสูจน์ตารางขนาด $(3p+1) \times (3q+1)$
$3.5.9$ ตารางขนาด $(3p+1) \times (3q+2)$
$3.5.10$ พิสูจน์ตารางขนาด $(3p+1) \times (3q+2)$
$3.5.11$ ตารางขนาด $(3p+2) \times (3q+2)$
$3.5.12$ พิสูจน์ตารางขนาด $(3p+2) \times (3q+2)$
$3.5.13$ พิสูจน์การเดินทางของ box ขนาด $1 \times 1 \times -1 \times 1 \times 6$ ด้วยโปรแกรม
3.5.14 พิสูจน์ว่า box ไม่สามารถพลิกให้จำนวนครั้งน้อยกว่านี้ได้แล้ว20
$3.5.15$ การหาจำนวนครั้งในการพลิกน้อยที่สุดของ box ขนาด $1 \! imes \! 1 \! imes \! 1 \! imes \! 1$
บทที่ 4 ผลการดำเนินการ
4.1 ทฤษฎีบทที่ 1
4.2 บทแทรกที่ 2
4.3 ทฤษฎีบทที่ 3
4.4 ทฤษฎีบทที่ 4

	4.5 ทฤษฎีบทที่ 5	28
	4.6 บทแทรกที่ 6	29
	4.7 ทฤษฎีบทที่ 7	29
	4.8 ทฤษฎีบทที่ 8	29
	4.9 บทแทรกที่ 9	29
	4.10 ทฤษฎีบทที่ 10	29
บทที่ 5	ร สรุปและอภิปรายผลการดำเนินการ	30
	5.1 สรุปผลการดำเนินงานโครงงาน	30
	5.2 อภิปรายผลการศึกษา	31
	5.3 ข้อเสนอแนะ	32
บรรณา	านุกรม	33
ภาคผน	ມາກ	34

บทที่ 1

บทน้ำ

1. แนวคิดของโครงงาน

Bloxorz คือ เกมที่ต้องพลิก box ขนาด $1\times1\times2$ ให้ลงหลุมขนาด 1×1 ที่อยู่บนระนาบเดียวกัน โดย box จะต้องเคลื่อนที่ในขอบเขตที่กำหนดเอาไว้ มีการพลิก 3 รูปแบบ คือ

- 1.1 พลิกจากด้าน 1×1 เป็นด้าน 2×1
- 1.2 พลิกจากด้าน 2×1 เป็นด้าน 2×1
- 1.3 พลิกจากด้าน 2×1 เป็นด้าน 1×1

โดยจะพลิกจากทิศทางใดก็ได้ ถ้าส่วนใดส่วนหนึ่งของ box ออกนอกพื้นที่ที่กำหนดไว้จะถือว่าเกมจบทันที
สมาชิกในกลุ่มมีความสนใจในรูปแบบการเล่นของ Bloxorz ว่าพื้นที่จำกัดพื้นที่หนึ่งสามารถที่จะพลิก
box ให้ลงหลุมได้กี่แบบและสามารถหาวิธีการเดินที่สั้นที่สุดได้หรือไม่ และถ้าเพิ่มความยาวของ box จะมีลักษณะ
การเดินเหมือนเดิมหรือไม่ โดยใช้ความสัมพันธ์และแบบรูปต่างๆในการคำนวณหาวิธีในการพลิกให้ลงหลุมต่าง ๆ ที่
box สามารถเคลื่อนที่ไปบนจุดนั้นได้ และใช้คอมพิวเตอร์ในการช่วยคำนวณหารูปแบบต่าง ๆ ที่ทำได้ เพื่อหา
รูปแบบที่ชัดเจนสำหรับพื้นที่จำกัดใด ๆ ที่กำหนดมา

2. วัตถุประสงค์โครงงาน

- $2.1\,\mathrm{rr}$ จำนวนครั้งในการพลิกกล่องขนาด $1\!\times\!1\!\times\!\mathrm{n}\,$ บนพื้นที่สี่เหลี่ยมมุมฉากใด ๆ ให้ได้จำนวนครั้งใน การพลิกที่น้อยที่สุด
- 2.2 หาจำนวนวิธีทั้งหมดในการพลิกกล่องขนาด $1\times1\times n$ บนพื้นที่สี่เหลี่ยมมุมฉากใด ๆ ให้ได้จำนวนการ พลิกที่น้อยที่สุด

3. ขอบเขตโครงงาน

- 3.1 หารูปแบบจำนวนการเคลื่อนที่เฉพาะ box ขนาด $1{\times}1{\times}\mathrm{n}$, n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 1
- 3.2 พื้นที่ปิดเป็นพื้นที่รูปสี่เหลี่ยมมุมฉาก และพื้นที่ปิดถูกแบ่งด้วยรูปสี่เหลี่ยมจัตุรัสขนาด $1 \! imes \! 1$

4. ผลที่คาดว่าจะได้รับ

- 4.1 ทราบความสัมพันธ์ของจำนวนวิธีทั้งหมดในการพลิก box ให้ลงหลุมบนสี่เหลี่ยมมุมฉากใด ๆ
- 4.2 ทราบความสัมพันธ์ของจำนวนครั้งที่น้อยที่สุดในการพลิก box ให้ลงหลุมบนสี่เหลี่ยมมุมฉากใด ๆ

นิยามศัพท์เฉพาะ

- $5.1~\mathrm{Bloxorz}$ คือ เกมที่มีเป้าหมายในการพลิกกล่องขนาด $1{\times}1{\times}2$ ให้ลงหลุม
- $5.2~{\rm box}$ คือ กล่องขนาด $1{\times}1{\times}n$ โดยที่ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 1
- 5.3 พลิก คือ การดัน box ไปข้างหน้าโดยให้ขอบของกล่องเป็นจุดหมุน
- 5.4 หลุม คือพื้นที่ขนาด 1×1 เป็นเป้าหมายที่ต้องพลิกกล่องให้มาวางบนพื้นที่นี้พอดี

บทที่ 2 เอกสารที่เกี่ยวข้อง

1. การพิสูจน์อุปนัยเชิงคณิตศาสตร์

หลักการมีหลายรูปแบบ เช่น

- 1.1 N = 1, 2, 3, ...
 - สำหรับ $n \in \mathbb{Z}^+$ และ P(n) เป็นข้อความในพจน์ของ n
 - ถ้า (1) P(1) เป็นจริง
 - $(2) ~{\rm ถ้า}~ P(k) ~{\rm เป็นจริง}~{\rm แล้ว}~ P(k+1) ~{\rm เป็นจริง}$ แล้ว P(n) เป็นจริงทุกค่า $n\in \mathbb{Z}^+$
- 1.2 สำหรับ $n\in \mathbb{Z}^+$ และ P(n) เป็นข้อความในพจน์ของ n และ $m\geq 1$ ถ้า (1) P(m) เป็นจริง
 - $(2) \ k \geq m \,, \, \text{ถ้า} \ P(k) \ เป็นจริง แล้ว} \ P(k+1) \ เป็นจริง แล้ว \ P(n) \ เป็นจริงทุกค่า \ n=m,m+1,m+2,...$
- 1.3 สำหรับ $n \in \mathbb{Z}^+$ และ P(n) เป็นข้อความในพจน์ของ n ถ้า (1) P(1) เป็นจริง
 - (2) ถ้า P(k) เป็นจริงทุกค่า $k \leq n$ แล้ว P(n+1) เป็นจริง แล้ว P(n) เป็นจริงทุกค่า n
- 1.4 สำหรับ $n \in \mathbb{Z}^+$ และ P(n) เป็นข้อความในพจน์ของ n ถ้า (1) P(1) เป็นจริง
 - (2) ถ้า P(k) เป็นจริงทุกค่า k < n แล้ว P(n) เป็นจริง แล้ว P(n) เป็นจริงทุกค่า n

2. ภาษา C

ภาษาพื้นฐานที่มีความง่ายไม่ซับซ้อนใช้ในการหารูปแบบทั้งหมดที่เกิดขึ้นมีโครงสร้างอยู่ 3 ส่วนคือ

- 2.1 Function Heading ประกอบด้วยชื่อฟังก์ชัน และอาจมีรายการของ argument (บาง คนเรียก parameter) อยู่ในวงเล็บ
- 2.2 Variable Declaration ส่วนประกาศตัวแปร สำหรับภาษาซี ตัวแปรหรือค่าคงที่ทุกตัว ที่ใช้ในโปรแกรมจะต้องมีการประกาศก่อนว่าจะใช้งานอย่างไร จะเก็บค่าในรูปแบบใดเช่น integer หรือ real number
- 2.3 Compound Statements ส่วนของประโยคคำสั่งต่าง ๆ ซึ่งแบ่งเป็นประโยคเชิงซ้อน (compound statement) กับประโยคนิพจน์ (expression statement) โดยประโยคเชิงซ้อนจะอยู่ ภายในวงเล็บปีกกาคู่หนึ่ง { และ } โดยในหนึ่งประโยคเชิงซ้อน จะมีประโยคนิพจน์ที่แยกจากกันด้วย เครื่องหมาย semicolon (;) หลายๆ ประโยครวมกัน และ อาจมีวงเล็บปีกกาใส่ประโยคเชิงซ้อนย่อย เข้าไปอีกได้

วิธีการเขียนโปรแกรมแบบรากต้นไม้สามารถทำโดยการใช้ฟังชั้นเรียกตัวเองเพื่อกระทำ แบบเดิมซ้ำกันไป ถ้ารากใดที่ไปต่อไม่ได้ก็จะหยุดดำเนินการและจะไปดำเนินการต่อในรากต่อไป การเช็คว่าเคยกระทำซ้ำหรือเปล่า ใช้วิธีการจำการกระทำที่ผ่าน ๆ มาลงในตัวแปรอาเรย์และ ทุกครั้งที่ทำการกระทำก็จะเช็คตั้งแต่ต้นว่าเคยทำการกระทำดังกล่าวไปหรือไม่

การเขียนโปรแกรมเกี่ยวกับตาราง ส่วนใหญ่ใช้วิธีการมองตารางเป็นตัวเลขในระนาบ 2 มิติ และสร้างเงื่อนไขต่างเกี่ยวกับตัวเลขเหล่านั้นขึ้นมา

3. การนับแบบรากต้นไม้ (Tree Diagram)

เป็นเครื่องมือที่ใช้สำหรับแสดงให้เห็นถึงความเป็นไปได้ของ ผลลัพธ์ที่จะเกิดขึ้นทั้งหมดใน ลักษณะของรูปภาพแทนการเขียนเซตของปริภูมิ การเขียนแผนภาพต้นไม้จะเริ่มจากจุดทางด้าน ซ้ายมือเสมอ และแตกกิ่งออกไปตามความเป็นไปได้ที่สามารถ เกิดขึ้นได้ในแต่ละทางเลือก ซึ่งในที่นี้ เราจะนำหลักการไปใช้ในการเขียนโปรแกรม

4. วิธีในการเล่น Bloxorz

Bloxorz เป็นเกมที่มีเป้าหมายในการพลิก box ขนาด $2\times1\times1$ ให้ลงหลุมขนาด 1×1 โดยที่ box ต้องอยู่ภายในพื้นที่ที่กำหนดและbox ห้ามออกนอกการพลิกของ box นั้นสามารถพลิกได้ ดังนี้

- 3.1 พลิกจากฐานที่มีด้านขนาด 1×1 ที่สัมผัสกับพื้นที่ปิด ณ ขณะนั้น ให้ฐานที่สัมผัสเป็น ด้านที่มีขนาด 2×1 แทน
- 3.2 พลิกจากฐานที่มีด้านขนาด 2×1 ที่สัมผัสกับพื้นที่ปิด ณ ขณะนั้น ให้ฐานที่สัมผัสเป็น ด้านที่มีขนาด 2×1 แทน
- 3.3 พลิกจากฐานที่มีด้านขนาด 2×1 ที่สัมผัสกับพื้นที่ปิด ณ ขณะนั้น ให้ฐานที่สัมผัสเป็น ด้านที่มีขนาด 1×1 แทน

บทที่ 3 วิธีการดำเนินการ

1. การหาจำนวนครั้งที่น้อยที่สุดในการเคลื่อนที่ของ box ขนาด $1\times1\times2$ บนพื้นที่ปิดรูปสี่เหลี่ยมจัตุรัสขนาด $\mathbf{n}\times\mathbf{n}$ ให้ลงหลุม

พิจารณา พื้นที่สี่เหลี่ยมจัตุรัสขนาด 1×1 ไม่สามารถคิดได้ เนื่องจากพื้นที่ไม่เพียงพอที่จะใส่หลุมและวาง box ใน เวลาเดียวกัน

พิจารณา พื้นที่สี่เหลี่ยมจัตุรัสขนาด 2×2 ไม่สามารถคิดได้ เนื่องจากการเคลื่อนที่ในครั้งแรกจะได้ระยะทาง 3 หน่วย เสมอ แต่พื้นที่มีความยาวแค่ 2 หน่วยไม่ว่าจะเคลื่อนที่ไปทางไหนก็จะออกนอกพื้นที่เสมอ

พิจารณา พื้นที่สี่เหลี่ยมจัตุรัสขนาด 3×3 สามารถเคลื่อนที่ได้ 2 แบบ และจำนวนการเคลื่อนที่ที่น้อยที่สุด คือ 8 ครั้ง **ดังรูป**

กำหนดให้ ช่องสีชมพูที่อยู่ในตารางแทน box ที่ตั้งอยู่บนพื้นที่โดยมีด้าน 1×1 เป็นฐาน ช่องสีม่วงที่อยู่ในตารางแทน box ที่ตั้งอยู่บนพื้นที่โดยมีด้าน 2×1 เป็นฐาน ช่องสีเทาที่อยู่ในตารางแทน หลุม ที่ตั้งอยู่บนพื้นที่ปิดรูปสี่เหลี่ยมจัตุรัส k เป็นจำนวนเต็มบวก

พิจารณา พื้นที่ปิดรูปสี่เหลี่ยมจัตุรัสขนาด $4 \! imes \! 4$

			•	
0	1	2	3	4
1				
2				
3				
4				

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดของรูปสี่เหลี่ยมจัตุรัสขนาด 4×4 เป็น 4 ครั้ง ดังรูป พิจารณา รูปสี่เหลี่ยมจัตุรัสขนาด 5×5

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดของรูปสี่เหลี่ยมจัตุรัสขนาด 5×5 เป็น 6 ครั้ง ดังรูป

พิจารณา รูปสี่เหลี่ยมจัตุรัสขนาด $6 \! imes \! 6$

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดของรูปสี่เหลี่ยมจัตุรัสขนาด 6×6 เป็น 8 ครั้ง ดังรูป จะสังเกตได้ว่ารูปแบบการเคลื่อนที่ของ box บนพื้นที่ปิดขนาด 4×4 , 5×5 และ 6×6 ให้ได้จำนวนครั้งในการ พลิกที่น้อยที่สุดมีรูปแบบที่แตกต่างกัน จึงสามารถแบ่งออกเป็น 3 กรณี ดังนี้ กำหนด n คือ ด้านของพื้นที่ปิด

- กรณีที่ $1 \text{ n} \equiv 1 \pmod{3}$
- กรณีที่ 2 $n \equiv 2 \pmod{3}$
- กรณีที่ 3 $n \equiv 0 \pmod{3}$

พิจารณา พื้นที่ปิดรูปสี่เหลี่ยมจัตุรัสขนาด 5×5 โดยคิดเฉพาะช่วงล่างและพลิก ${
m box}$ โดยไม่พลิกซ้ำ

จากแผนภาพรากต้นไม้ข้างต้น สังเกตได้ว่าในบางกรณีมีการเคลื่อนที่ซ้ำซึ่งขัดกับเงื่อนไขที่กำหนดจึงตัดออก และเมื่อ หาจำนวนครั้งในการเคลื่อนที่ได้ 1 กรณี เมื่อหากรณีถัด ๆ ไปกรณีใดที่มีจำนวนครั้งมากกว่ากรณีที่หาได้ก็จะตัดกรณี นั้นออก ทำให้สามารถสรุปได้ว่า

" จำนวนครั้งในการเคลื่อนที่ของ box ที่น้อยที่สุดบนพื้นที่ปิดขนาด 5×5 เป็น 6 ครั้ง " ใช้แนวคิดในทำนองเดียวกันนี้ในการพิสูจน์จำนวนครั้งในการเคลื่อนที่น้อยที่สุดของ box บนพื้นที่ปิดขนาดต่าง ๆ

การหาจำนวนวิธีในการเคลื่อนที่ของ box ขนาด $1 \times 1 \times 2$ บนพื้นที่ปิดรูปสี่เหลี่ยมจัตุรัสขนาด $\mathbf{n} \times \mathbf{n}$ ให้ลงหลุม

0	1	2	3	4	5	6	7	8	9	 n-2	n-1	n
1												
2												
3												
4				X _i								
5					<i>x</i> ₂							
6						<i>X</i> ₃						
7							x, +4					
8								x, +4				
9									$x_3 + 4$			
-							 			 		
n-2										 P		
n-1											Q	
n												R

 $P = x_1 + \left| n - (1 - k) \right|$ ให้ P คือ จำนวนครั้งในการพลิกที่น้อยที่สุดที่พื้นที่ปิดมีด้านที่หารด้วย 3 เหลือเศษ 1

 $Q = x_2^{} + \left| n - (2 - k) \right| \,$ ให้ Q คือ จำนวนครั้งในการพลิกที่น้อยที่สุดที่พื้นที่ปิดมีด้านที่หารด้วย 3 เหลือเศษ 2

 ${
m R}={
m x}_3+\left|{
m n}-(3-{
m k})
ight|$ ให้ ${
m R}$ คือ จำนวนครั้งในการพลิกที่น้อยที่สุดที่พื้นที่ปิดมีด้านที่หารด้วย 3 เหลือเศษ 3

กำหนดให้ ช่องสีต่างๆที่อยู่ในตารางแทน box ที่ตั้งอยู่บนพื้นที่โดยมีด้าน 1×1 เป็นฐาน ช่องสีแดงแทนจำนวนครั้งในการเคลื่อนที่เพิ่มขึ้นมา จำนวนครั้งที่น้อยที่สุดในการเคลื่อนที่ให้ลงหลุม (4,4) เป็น x_1 จำนวนครั้งที่น้อยที่สุดในการเคลื่อนที่ให้ลงหลุม (5,5) เป็น x_2 จำนวนครั้งที่น้อยที่สุดในการเคลื่อนที่ให้ลงหลุม (6,6) เป็น x_3

พิจารณา รูปสี่เหลี่ยมจัตุรัสขนาด 1×1 จะได้จำนวนครั้งที่น้อยที่สุดในการเคลื่อนที่ให้ลงหลุม เป็น $\mathbf{x_1} + 4$ ครั้ง โดยเพิ่มจากจำนวนครั้งในการเคลื่อนที่ของสี่เหลี่ยมจัตุรัสขนาด 4×4 อยู่ 4 ครั้ง ดัง

รูป (แทนด้วยสีแดง)

		ŭ (III.		,			
0	1	2	3	4	5	6	7
1							
2							
3							
4				x_1			
5					x_2		
6				1		x_3	
7				2	3		$x_1 + 4$

0	1	2	3	4	5	6	7
1							
2	1						
3	1						
4	2	\$10	3	4			
5				5			
6				ۍ ا			
7				6	,	7	8

การต่อด้านออกมาด้านขวาและด้านล่าง 3 หน่วย การเคลื่อนที่ที่น้อยที่สุดมีจำนวน 8 ครั้ง ซึ่ง 4 ครั้งมาจากการ เคลื่อนที่เดิมและอีก 4 ครั้ง มาจากการเคลื่อนที่ใหม่และการเคลื่อนที่ใหม่นี้เป็นการเคลื่อนที่ที่ได้ระยะทางน้องที่สุด และใช้จำนวนครั้งน้อยที่สุดเพราะการเดินให้ได้ระยะทาง 3 หน่วย ที่น้อยที่สุดใช้การเคลื่อนที่เพียง 2 รอบ ซึ่งการ เคลื่อนที่รอบเดียวไม่สามารถได้ระยะทาง 3 หน่วยได้ จึงไม่สามารถมีการเคลื่อนที่รูปแบบอื่นมาทดแทนได้ จึงได้ว่า 4 ครั้งใหม่เป็นการเคลื่อนที่ที่น้อยที่สุด

ในทำนองเดียวกัน รูปสี่เหลี่ยมจัตุรัสขนาด 10×10 และ ขนาด 13×13 จะมีจำนวนครั้งในการเคลื่อนที่ น้อยที่สุดเป็น x_1+8 และ x_1+12 ตามลำดับ

เมื่อ k เป็นจำนวนเต็มบวก

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดของรูปขนาด n=3k+1 คือ $x_{_1}+\left|n-(1-k)\right|$

ในทำนองเดียวกัน

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดของรูปขนาด n=3k+2 คือ $x_2+\left|n-(2-k)\right|$ จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดของรูปขนาด n=3k+3 คือ $x_3+\left|n-(3-k)\right|$

ซึ่ง $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3$ คือจำนวนการเคลื่อนที่ที่สั้นที่สุดจาก (1,1) ไป (4,4) ,(5,5) และ (6,6) ซึ่งมีค่าเท่ากับ 4,6 และ 8 ตามลำดับ

จะได้ว่า ถ้า n=3k+1 จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\left|n-(1-k)\right|$ ครั้ง ถ้า n=3k+2 จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\left|n-(2-k)\right|$ ครั้ง ถ้า n=3k+3 จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\left|n-(3-k)\right|$ ครั้ง

จาก
$$\mathbf{x}_1+\left|\mathbf{n}-(1-\mathbf{k})\right|$$
 ซึ่ง $\mathbf{n}=3\mathbf{k}+1$ และ $\mathbf{x}_1=4$ จะได้ว่า $\left|\mathbf{n}-(1-\mathbf{k})\right|=\left|3\mathbf{k}+1-1+\mathbf{k}\right|=\left|4\mathbf{k}\right|$

แต่ k เป็นจำนวนเต็มบวก

ดังนั้นจะได้ว่า
$$\left|\mathbf{n} - (1 - \mathbf{k})\right| = 4\mathbf{k}$$

ในทำนองเดียวกัน จะได้ว่า

$$|n - (2 - k)| = 4k + 2$$

 $|n - (6 - k)| = 4k + 4$

จากการหาจำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนพื้นที่ขนาด $4\times 4, 5\times 5$ และ 6×6 ทำให้สามารถ สร้างข้อคาดการณ์ได้ดังนี้

การเคลื่อนที่ของ ${
m box}$ ขนาด $1{ imes}1{ imes}2$ บนพื้นที่ปิดรูปสี่เหลี่ยมจัตุรัสขนาด ${
m n}{ imes}{
m n}$

- 1. ถ้า ${f n}$ สามารถเขียนในรูป $3{f k}+1$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $4{f k}$ ครั้ง
- 2. ถ้า ${f n}$ สามารถเขียนในรูป $3{f k}+2$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $4{f k}+2$ ครั้ง
- 3. ถ้า ${\bf n}$ สามารถเขียนในรูป $3{\bf k}+3$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $4{\bf k}+4$ ครั้ง เมื่อ ${\bf k}$ เป็นจำนวนเต็มบวก

พิสูจน์

กรณีที่ 1 ใช้หลักอุปนัยเชิงคณิตศาสตร์ในการพิสูจน์ว่า

"ถ้า $\mathbf{n}=3\mathbf{k}+1$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\left|\mathbf{n}-(1-\mathbf{k})\right|=4\mathbf{k}$ สำหรับทุกค่า \mathbf{k} ที่ เป็นจำนวนเต็มที่มากกว่าศูนย์"

ให้ P(k) แทนข้อความ n=3k+1 จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\left|n-(1-k)\right|$ แทนค่า k=1 ได้ว่า

จะได้จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น $\left| \mathbf{n} - (\mathbf{1} - \mathbf{k})
ight| = 4\mathbf{k}$

$$=4$$

ดังนั้น P(k) เป็นจริง

กำหนด m เป็นสมาชิกของจำนวนนับ

สมมติให้ P(m) เป็นจริง จะพิสูจน์ว่า P(m+1) เป็นจริง

แทนค่า k = m + 1 ได้ว่า

$$n = 3(m+1) + 1 = 3m + 4$$

จะได้จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น

$$|\mathbf{n} - (1 - \mathbf{k})| = |3\mathbf{m} + 4 - (1 - (\mathbf{m} + 1))|$$

$$= |3\mathbf{m} + 4 - (1 - \mathbf{m} - 1)|$$

$$= |4\mathbf{m} + 4|$$

$$= 4\mathbf{m} + 4$$

$$= 4(\mathbf{m} + 1)$$

จากหลักอุปนัยได้ว่า P(m+1) เป็นจริง

ดังนั้น "ถ้า n=3k+1 จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\left|n-(1-k)\right|=4k$ สำหรับทุก ค่า k ที่เป็นจำนวนเต็มที่มากกว่าศูนย์"

จากการพิสูจน์ข้างต้น ทำให้สามารถสรุปได้ว่า เมื่อ n แทนด้านของพื้นที่ปิดรูปสี่เหลี่ยมจัตุรัส และ n สามารถ เขียนให้อยู่ในรูปของ 3k+1 จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น 4k ครั้ง ทำการพิสูจน์กรณีที่ 2 และกรณีที่ 3 ในทำนองเดียวกัน

2. การหาจำนวนครั้งที่น้อยที่สุดในการเคลื่อนที่ของ box ขนาด $1\times1\times2$ บนพื้นที่ปิดรูปสี่เหลี่ยมมุมฉาก ขนาด $\mathbf{m}\times\mathbf{n}$

กำหนดให้ p และ q เป็นจำนวนนับ

<u>กรณีที่ 1</u> พื้นที่ขนาด $(3p+3) \times (3q+3)$

พิจารณา รูปสี่เหลี่ยมฝืนผ้าขนาด 6×9

		ข							
0	1	2	3	4	5	6	7	8	9
1									
2	1	2	3						
3	1		3						
4			4	Ę	5				
5				(3				
6				7	7	8	()	10

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 6×9 เป็น 10 ครั้ง ดังรูป หลักการนับคือให้พื้นที่ 6×6 เป็นพื้นที่เริ่มต้นที่ใช้ใน การต่อด้านออกไปข้างๆ ได้จำนวนวิธีการพลิกน้อยที่สุด เป็น 8 ครั้ง และต่อด้านออกมาทางแกน x เป็นระยะทาง x หน่วย จะได้จำการพลิกเพิ่มเป็น x ครั้ง

พิจารณา รูปสี่เหลี่ยมผืนผ้าขนาด 9 imes 12

		ข										
0	1	2	3	4	5	6	7	8	9	10	11	12
1												
2	1	2	3									
3	1	Z	3									
4			4	ļ	5							
5				(3							
6				,	7	8	,	9	10			
7									11			
8									11			
9									12	1	3	14

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 9×12 เป็น 14 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับข้างบนโดยให้พื้นที่ขนาด 6×9 เป็นพื้นที่เริ่มต้น

จะสามารถสร้างข้อคาดการณ์ได้ว่า ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมผืนผ้าสามารถเขียนให้อยู่ในรูป $(3\mathrm{p}+3) imes(3\mathrm{q}+3)$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $rac{2}{3}[(3\mathrm{p}+3)+(3\mathrm{q}+3)]$ ครั้ง

จาก จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูปสี่เหลี่ยมผืนผ้าขนาด 6×9 เป็น 10 ครั้ง เมื่อต่อด้านของ พื้นที่ปิดออกไปด้านละ 3 หน่วย จะสังเกตได้ว่าเกิดรูปสี่เหลี่ยมจัตุรัสขนาด 4×4 ซึ่งเราทราบรูปแบบของจำนวน ครั้งในการเคลื่อนที่ที่น้อยที่สุดแล้ว ซึ่งเมื่อพิจารณาต่อในทำนองเดียวกันของรูปสี่เหลี่ยมผืนผ้าขนาด 9×12 แล้ว ต่อออกไปอีกด้านละ 3 หน่วย ก็จะเกิดรูปสี่เหลี่ยมจัตุรัสในทำนองเดียวกัน เราจึงสามารถสรุปเป็นความสัมพันธ์ได้ ตามข้างต้น

พิสูจน์กรณีที่ 1

ตารางขนาด $(3p+3) \times (3q+3)$ เมื่อ p และ q เป็นจำนวนเต็มบวกใด q

		,		/ (2 / = =							
0	1	2	3	4	5	6	7	8	9		
1											
2	1	2	3								
3	1	∠	3								
4			4	7.1	5						
5				6							
6				7	7			9	10		

พิจารณาตารางขนาด 6×6 ในตาราง ขนาด $(3p+3)\times(3q+3)$ จากการพิสูจน์เบื้องต้นจะได้ว่าตาราง $6 \! imes \! 6$ -จะต้องใช้การเคลื่อนที่ 8 ครั้ง

เหลือตารางขนาด
$$(3p+3-6) \times (3q+3-6)$$

$$= (3p-3) \times (3q-3)$$

x+1พิจารณา ตารางขนาด 1×4

การที่จะให้ตำแหน่งของ box ขยับไปอีก 3 ช่องจะต้องใช้จำนวนในการเดิน 2 ครั้ง พิจารณา ด้าน 3p - 3

จะต้องใช้การเดินทั้งหมด $\frac{2}{3}(3\mathrm{p}-3)$ ครั้ง

ในทางเดียวกันด้าน $3{
m q}$ - 3 จะต้องใช้การเดินทั้งหมด ${2\over 3}(3{
m q}-3)$ ครั้ง จากกระบวนการข้างต้นจะสรุปได้ว่าจะต้องใช้การเคลื่อนที่ทั้งหมด

$$\frac{2}{3}(3p-3) + \frac{2}{3}(3q-3) + 8 = \frac{2}{3}(3p+3q) + 8 - 4$$

$$= \frac{2}{3}(3p+3q) + 4$$

$$= \frac{2}{3}(3p+3q+6)$$

$$= \frac{2}{3}[(3p+3)+(3q+3)]$$

 $x+2 \mid x+3$

ต่อไปนี้จะตั้งข้อคาดการณ์เป็นทฤษฎีบท

<u>กรณีที่ 2</u> พื้นที่ขนาด $(3p+3) \times (3q+1)$

พิจารณา รปสี่เหลี่ยมผืนผ้าขนาด 6×7

	0020 1	ขือเก	710100	THE TOTAL TO										
0	1	2	3	4	5	6	7							
1														
2	1													
3	1													
4	2	;	3											
5		4	1											
6		ţ	5	6	7	7	8							

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูปสี่เหลี่ยมผืนผ้าขนาด 6×7 เป็น 8 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ขนาด 6×4 เป็น

พิจารณา รปสี่เหลี่ยมผืนผ้าขนาด 9×10

7101	IN 1988 I GORIENDONIAN TORIN DX IO										
0	1	2	3	4	5	6	7	8	9	10	
1											
2	1										
3	1										
4	2	:	3								
5		4	4								
6		ţ	5	6	,	7	8				
7							9				
8							9				
9							10	1	1	12	

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 9×10 เป็น 12 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ ขนาด 6×7 เป็นพื้นที่เริ่มต้น

จะสามารถสร้างข้อคาดการณ์ได้ว่า ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมผืนผ้าสามารถเขียนให้อยู่ในรูป (3p+3) imes (3q+1) จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\frac{2}{3} [(3p+3) + (3q+1) - 1]$ ครั้ง

จาก จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูปสี่เหลี่ยมผืนผ้าขนาด 6×7 เป็น 8 ครั้ง เมื่อต่อด้านของ พื้นที่ปิดออกไปด้านละ 3 หน่วย จะสังเกตได้ว่าเกิดรูปสี่เหลี่ยมจัตุรัสขนาด 4×4 ซึ่งเราทราบรูปแบบของจำนวน ครั้งในการเคลื่อนที่ที่น้อยที่สุดแล้ว ซึ่งเมื่อพิจารณาต่อในทำนองเดียวกันของรูปสี่เหลี่ยมผืนผ้าขนาด 9×10 แล้ว ต่อออกไปอีกด้านละ 3 หน่วย ก็จะเกิดรูปสี่เหลี่ยมจัตุรัสในทำนองเดียวกัน เราจึงสามารถสรุปเป็นความสัมพันธ์ได้ ตามข้างต้น

พิสูจน์กรณีที่ 2

ตารางขนาด $(3p+3) \times (3q+1)$ เมื่อ p และ q เป็นจำนวนเต็มบวกใด q

0	1	2	3	4	5	6	7
1							
2	1						
3	1						
4	2	;	3				
5		4	1				
6		ţ	5	6	7	7	8

พิจารณาตารางขนาด 6×4 ในตารางขนาด $(3p+3)\times (3q+1)$ จากการพิสูจน์เบื้องต้นจะได้ว่าตาราง 6×4 จะต้องใช้การเคลื่อนที่ 6 ครั้ง

เหลือตารางขนาด
$$(3\mathrm{p}+3-6)\times(3\mathrm{q}+1-4)=\ (3\mathrm{p}-3)\times(3\mathrm{q}-3)$$

พิจารณาตารางขนาด $1 \! imes \! 4$

การที่จะให้ตำแหน่งของ ${
m box}$ ขยับไปอีก 3 ช่องจะต้องใช้จำนวนในการเดิน 2 ครั้ง

พิจารณาด้าน $3\mathrm{p}$ - 3

จะต้องใช้การเดินทั้งหมด $rac{2}{3}(3\mathrm{p}-3)$ ครั้ง

ในทางเดียวกันด้าน $3{
m q}$ - 3 จะต้องใช้การเดินทั้งหมด ${2\over 3}(3{
m q}-3)$ ครั้ง

จากกระบวนการข้างต้นจะสรุปได้ว่าจะต้องใช้การเคลื่อนที่ทั้งหมด

$$\frac{2}{3}(3p-3) + \frac{2}{3}(3q-3) + 6 = \frac{2}{3}(3p+3q) + 6 - 4$$

$$= \frac{2}{3}(3p+3q) + 2$$

$$= \frac{2}{3}(3p+3q+3)$$

$$= \frac{2}{3}[(3p+3) + (3q+1) - 1]$$

ต่อไปนี้จะตั้งข้อคาดการณ์เป็นทฤษฎีบท

<u>กรณีที่ 3</u> พื้นที่ขนาด $(3p+3) \times (3q+2)$

พิจารณา รปสี่เหลี่ยมฝืนผ้าขนาด 6×8

0	1	2	3	4	5	6	7	8
1								
2	1	2						
3	1	Δ						
4		3	4	1				
5			,	5				
6			(3	7	8	3	9

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 6×8 เป็น 9 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ขนาด 6×5 เป็นพื้นที่เริ่มต้น

พิจารณา รูปสี่เหลี่ยมผืนผ้าขนาด $9 \! imes \! 11$

0	1	2	3	4	5	6	7	8	9	10	11
1											
2	1	2									
3	1	Δ									
4		3	4	1							
5			,	5							
6			(3	7	8	3	9			
7								10			
8								10			
9								11	1	2	13

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 9×11 เป็น 13 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ ขนาด 6×8 เป็นพื้นที่เริ่มต้น

จะสามารถสร้างข้อคาดการณ์ได้ว่า ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมผืนผ้าสามารถเขียนให้อยู่ในรูป $(3\mathrm{p}+3) imes(3\mathrm{q}+2)$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\dfrac{2}{3}[(3\,\mathrm{p}+3)+(3\,\mathrm{q}+2)-\dfrac{1}{2}]$ ครั้ง

จาก จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูปสี่เหลี่ยมผืนผ้าขนาด 6×8 เป็น 9 ครั้ง เมื่อต่อด้านของ พื้นที่ปิดออกไปด้านละ 3 หน่วย จะสังเกตได้ว่าเกิดรูปสี่เหลี่ยมจัตุรัสขนาด 4×4 ซึ่งเราทราบรูปแบบของจำนวน ครั้งในการเคลื่อนที่ที่น้อยที่สุดแล้ว ซึ่งเมื่อพิจารณาต่อในทำนองเดียวกันของรูปสี่เหลี่ยมผืนผ้าขนาด 9×11 แล้ว ต่อออกไปอีกด้านละ 3 หน่วย ก็จะเกิดรูปสี่เหลี่ยมจัตุรัสในทำนองเดียวกัน เราจึงสามารถสรุปเป็นความสัมพันธ์ได้ ตามข้างต้น

พิสูจน์กรณีที่ 3

ตารางขนาด $(3p+3) \times (3q+2)$ เมื่อ p และ q เป็นจำนวนเต็มบวกใด q

0	1	2	3	4	5	6	7	8
0	1		9	-1	0	U	'	0
1								
2	1	2						
3	1	Δ						
4		3	4	4				
5			ţ	5				
6			(3	7	8	9	10

พิจารณาตารางขนาด 6×5 ในตารางขนาด $(3p + 3) \times (3q + 2)$ จากการพิสูจน์เบื้องต้นจะได้ว่าตาราง 6×5 จะต้องใช้การเคลื่อนที่ 7 ครั้ง เหลือตารางขนาด

$$(3p+3-6)\times(3q+2-5) \equiv (3p-3)\times(3q-3)$$

พิจารณาตารางขนาด 1×4

การที่จะให้ตำแหน่งของ box ขยับไปอีก 3 ช่องจะต้องใช้จำนวนในการเดิน 2 ครั้ง พิจารณาด้าน 3p - 3

จะต้องใช้การเดินทั้งหมด $\frac{2}{3}(3\mathrm{p}-3)$ ครั้ง

ในทางเดียวกันด้าน $3{
m q}$ - 3 จะต้องใช้การเดินทั้งหมด ${2\over 3}(3{
m q}-3)$ ครั้ง จากกระบวนการข้างต้นจะสรุปได้ว่าจะต้องใช้การเคลื่อนที่ทั้งหมด

$$\frac{2}{3}(3p-3) + \frac{2}{3}(3q-3) + 7 = \frac{2}{3}(3p+3q) + 7 - 4$$

$$= \frac{2}{3}(3p+3q) + 3$$

$$= \frac{2}{3}(3p+3q + \frac{9}{2})$$

$$= \frac{2}{3}[(3p+3) + (3q+2) - \frac{1}{2}]$$

ต่อไปนี้จะตั้งข้อคาดการณ์เป็นทฤษฎีบท

<u>กรณีที่ 4</u> พื้นที่ขนาด $(3p+1) \times (3q+1)$

พิจารณา รูปสี่เหลี่ยมฝืนผ้าขนาด 4×7

	. 1						
0	1	2	3	4	5	6	7
1							
2	1						
3	1						
4	2	6	3	4	Ę	5	6

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมฝืนผ้าขนาด 4×7 เป็น 6 ครั้ง ดั้งรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ขนาด 4×4 เป็นพื้นที่เริ่มต้น

พิจารณา รูปสี่เหลี่ยมผืนผ้าขนาด 7 imes 10

	9 6 10 1	ขึ้นเกิด	101001	1 1011	0 10 171	1 // 1				
0	1	2	3	4	5	6	7	8	9	10
1										
2	1									
3	1									
4	2	3	3	4		5	6			
5							7			
6							1			
7							8	()	10

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 7×10 เป็น 10 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ ขนาด 4×7 เป็นพื้นที่เริ่มต้น

จะสามารถสร้างข้อคาดการณ์ได้ว่า ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมผืนผ้าสามารถเขียนให้อยู่ในรูป (3p+1) imes(3q+1) จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $rac{2}{3}igl[(3p+1)+(3q+1)-2igr]$ ครั้ง

จาก จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูปสี่เหลี่ยมผืนผ้าขนาด 4×7 เป็น 6 ครั้ง เมื่อต่อด้านของ พื้นที่ปิดออกไปด้านละ 3 หน่วย จะสังเกตได้ว่าเกิดรูปสี่เหลี่ยมจัตุรัสขนาด 4×4 ซึ่งเราทราบรูปแบบของจำนวน ครั้งในการเคลื่อนที่ที่น้อยที่สุดแล้ว ซึ่งเมื่อพิจารณาต่อในทำนองเดียวกันของรูปสี่เหลี่ยมผืนผ้าขนาด 7×10 แล้ว ต่อออกไปอีกด้านละ 3 หน่วย ก็จะเกิดรูปสี่เหลี่ยมจัตุรัสในทำนองเดียวกัน เราจึงสามารถสรุปเป็นความสัมพันธ์ได้ ตามข้างต้น

พิสูจน์กรณีที่ 4

ตารางขนาด (3p+1) imes (3q+1) เมื่อ p และ q เป็นจำนวนเต็มบวกใด q

		` -	/ (
0	1	2	3	4	5	6	7
1							
2	1						
3	1						
4	2	:	3	4	ţ	5	6

พิจารณาตารางขนาด 4×4 ในตาราง ขนาด $(3p+1)\times (3q+1)$ จากการพิสูจน์เบื้องต้นจะได้ว่าตาราง 4×4 จะต้องใช้การเคลื่อนที่ 4 ครั้ง

เหลือตารางขนาด
$$(3p+1-4) imes(3q+1-4)$$
 $= (3p-3) imes(3q-3)$

พิจารณาตารางขนาด

1 🗸

การที่จะให้ตำแหน่งของ ${
m box}$ ขยับไปอีก 3 ช่องจะต้องใช้จำนวนในการเดิน 2 ครั้ง พิจารณาด้าน $3{
m p}$ - 3

จะต้องใช้การเดินทั้งหมด $rac{2}{3}(3\mathrm{p}-3)$ ครั้ง

ในทางเดียวกันด้าน $3{
m q}$ - 3 จะต้องใช้การเดินทั้งหมด ${2\over 3}(3{
m q}-3)$ ครั้ง

จากกระบวนการข้างต้นจะสรุปได้ว่าจะต้องใช้การเคลื่อนที่ทั้งหมด

$$\frac{2}{3}(3p-3) + \frac{2}{3}(3q-3) + 4 = \frac{2}{3}(3p+3q) + 4 - 4$$
$$= \frac{2}{3}(3p+3q)$$
$$= \frac{2}{3}[(3p+1) + (3q+1) - 2]$$

ต่อไปนี้จะตั้งข้อคาดการณ์เป็นทฤษฎีบท

 $\underline{\text{กรณีที่ 5}}$ พื้นที่ขนาด $(3p+1) \times (3q+2)$

พิจารณา รปสี่เหลี่ยมผืนผ้าขนาด 4×8

	ข							
0	1	2	3	4	5	6	7	8
1								
2	1	9						
3	1	2						
4		3	2	1	5	(3	7

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 4×8 เป็น 7 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ขนาด 4×5 เป็นพื้นที่เริ่มต้น

พิจารณา รูปสี่เหลี่ยมผืนผ้าขนาด 7 imes 11

		ข้ 🖰 🖰				•					
0	1	2	3	4	5	6	7	8	9	10	11
1											
2	1	2									
3	1	Δ									
4		3	2	4	5	(3	7			
5								8			
6								0			
7								9	1	0	11

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 7×11 เป็น 10 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ ขนาด 4×8 เป็นพื้นที่เริ่มต้น

จะสามารถสร้างข้อคาดการณ์ได้ว่า ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมผืนผ้าสามารถเขียนให้อยู่ในรูป $(3\mathrm{p}+1) imes(3\mathrm{q}+2)$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $rac{2}{3}[(3\mathrm{p}+1)+(3\mathrm{q}+2)-rac{3}{2}]$ ครั้ง

จาก จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูปสี่เหลี่ยมผืนผ้าขนาด 4×8 เป็น 7 ครั้ง เมื่อต่อด้านของ พื้นที่ปิดออกไปด้านละ 3 หน่วย จะสังเกตได้ว่าเกิดรูปสี่เหลี่ยมจัตุรัสขนาด 4×4 ซึ่งเราทราบรูปแบบของจำนวน ครั้งในการเคลื่อนที่ที่น้อยที่สุดแล้ว ซึ่งเมื่อพิจารณาต่อในทำนองเดียวกันของรูปสี่เหลี่ยมผืนผ้าขนาด 7×11 แล้ว ต่อออกไปอีกด้านละ 3 หน่วย ก็จะเกิดรูปสี่เหลี่ยมจัตุรัสในทำนองเดียวกัน เราจึงสามารถสรุปเป็นความสัมพันธ์ได้ ตามข้างต้น

พิสูจน์กรณีที่ 5

ตารางขนาด (3p+2) imes (3q+1) เมื่อ p และ q เป็นจำนวนเต็มบวกใด ๆ

0	1	2	3	4	5	6	7	8
1								
2	1	2						
3	1	Δ						
4		3	4	1	5	(3	7

พิจารณาตารางขนาด 4×5 ในตาราง ขนาด $(3p+2)\times (3q+1)$ จากการพิสูจน์เบื้องต้นจะได้ว่าตาราง 4×5 จะต้องใช้การเคลื่อนที่ 5 ครั้ง

เหลือตารางขนาด
$$(3p+2-5) \times (3q+1-4)$$
 = $(3p-3) \times (3q-3)$

พิจารณาตารางขนาด $1 \! imes \! 4$

x x+1 x+2 x+3

การที่จะให้ตำแหน่งของ box ขยับไปอีก 3 ช่องจะต้องใช้จำนวนในการเดิน 2 ครั้ง

พิจารณาด้าน 3p - 3

จะต้องใช้การเดินทั้งหมด $rac{2}{3}(3\mathrm{p}-3)$ ครั้ง

ในทางเดียวกันด้าน $3{
m q}$ - 3 จะต้องใช้การเดินทั้งหมด ${2\over 3}(3{
m q}-3)$ ครั้ง จากกระบวนการข้างต้นจะสรุปได้ว่าจะต้องใช้การเคลื่อนที่ทั้งหมด

$$\frac{2}{3}(3p-3) + \frac{2}{3}(3q-3) + 5 = \frac{2}{3}(3p+3q) + 5 - 4$$

$$= \frac{2}{3}(3p+3q) + 1$$

$$= \frac{2}{3}(3p+3q+\frac{3}{2})$$

$$= \frac{2}{3}[(3p+2) + (3q+1) - \frac{3}{2}]$$

ต่อไปนี้จะตั้งข้อคาดการณ์เป็นทฤษฎีบท

<u>กรณีที่ 6</u> พื้นที่ขนาด $(3p+2) \times (3q+2)$

พิจารณา รปสี่เหลี่ยมผืนผ้าขนาด 5×8

	ข							
0	1	2	3	4	5	6	7	8
1								
2	1	2						
3	1	Z						
4		3	2	4				
5			į	ŏ	6	,	7	8

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 5×8 เป็น 8 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ขนาด 5×5 เป็นพื้นที่เริ่มต้น

พิจารณา รูปสี่เหลี่ยมผืนผ้าขนาด 8×11

0	1	2	3	4	5	6	7	8	9	10	11
1											
2	1	9									
3	1	2									
4		3	4	1							
5				5	6	7	7	8			
6								9			
7								9			
8								10	1	1	12

จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูป สี่เหลี่ยมผืนผ้าขนาด 8×11 เป็น 12 ครั้ง ดังรูป ใช้วิธีการนับแบบเดียวกับกรณีที่ 1 โดยให้พื้นที่ ขนาด 5×8 เป็นพื้นที่เริ่มต้น

จะสามารถสร้างข้อคาดการณ์ได้ว่า ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมผืนผ้าสามารถเขียนให้อยู่ในรูป $(3{
m p}+2) imes (3{
m q}+2)$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $rac{2}{3} igl[(3{
m p}+2) + (3{
m q}+2) - 1 igr]$ ครั้ง

จาก จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดบนรูปสี่เหลี่ยมผืนผ้าขนาด $5 \! imes \! 8$ เป็น 8 ครั้ง เมื่อต่อด้านของ พื้นที่ปิดออกไปด้านละ 3 หน่วย จะสังเกตได้ว่าเกิดรูปสี่เหลี่ยมจัตุรัสขนาด $4\! imes\!4$ ซึ่งเราทราบรูปแบบของจำนวน ครั้งในการเคลื่อนที่ที่น้อยที่สุดแล้ว ซึ่งเมื่อพิจารณาต่อในทำนองเดียวกันของรูปสี่เหลี่ยมผืนผ้าขนาด $8\! imes\!11$ แล้ว ต่อออกไปอีกด้านละ 3 หน่วย ก็จะเกิดรูปสี่เหลี่ยมจัตุรัสในทำนองเดียวกัน เราจึงสามารถสรุปเป็นความสัมพันธ์ได้ ตามข้างต้น

พิสูจน์กรณีที่ 6

ตารางขนาด (3p+2) imes (3q+2) เมื่อ p และ q เป็นจำนวนเต็มบวกใดๆ

0	1	2	3	4	5	6	7	8
1								
2	1	2						
3								
4		3	4					
5			5		6	7		8

พิจารณาตารางขนาด 5×5 ในตาราง ขนาด $(3p+2)\times(3q+2)$ จากการพิสูจน์เบื้องต้นจะได้ว่าตาราง 5×5 จะต้องใช้การเคลื่อนที่ 6 ครั้ง เหลือตารางขนาด $(3p+2-5)\times(3q+2-5)$ $=(3p-3)\times(3q-3)$

เหลือตารางขนาด
$$(3p+2-5) \times (3q+2-5)$$
 = $(3p-3) \times (3q-3)$

พิจารณาตารางขนาด 1×4

X	x+1	x+2	x+3
---	-----	-----	-----

การที่จะให้ตำแหน่งของ box ขยับไปอีก 3 ช่องจะต้องใช้จำนวนในการเดิน 2 ครั้ง พิจารณาด้าน 3p - 3

จะต้องใช้การเดินทั้งหมด $\frac{2}{3}(3p-3)$ ครั้ง

ในทางเดียวกันด้าน $3{
m q}$ - 3 จะต้องใช้การเดินทั้งหมด ${2\over 3}(3{
m q}-3)$ ครั้ง

จากกระบวนการข้างต้นจะสรุปได้ว่าจะต้องใช้การเคลื่อนที่ทั้งหมด

$$\frac{2}{3}(3p-3) + \frac{2}{3}(3q-3) + 6 = \frac{2}{3}(3p+3q) + 6 - 4$$

$$= \frac{2}{3}(3p+3q) + 2$$

$$= \frac{2}{3}(3p+3q+3)$$

$$= \frac{2}{3}[(3p+2) + (3q+2) - 1]$$

ต่อไปนี้จะตั้งข้อคาดการณ์เป็นทฤษฎีบท

การพิสูจน์การเดินของ ${f Bloxorz}$ ด้วยกล่องขนาด $2 \times 1 \times 1$ ถึงขนาด $6 \times 1 \times 1$ บนพื้นที่สี่เหลี่ยมใด ๆ ด้วยโปรแกรม

พิสูจน์ด้วยภาษา C โดยใช้หลักการในการเขียนโปรแกรม คือ การใช้ฟังก์ชันเรียกตัวเองเพื่อเป็นการทำซ้ำ ทำให้เกิดการดำเนินการแบบรากต้นไม้และใช้เมทริกซ์มาช่วยในการสร้างตาราง

โดยโปรแกรมมีหลักการการทำงานดังนี้

- 1.รับค่าขนาดตาราง, ขนาดของ box
- 2.สร้างตารางขึ้นมาโดยกำหนดตารางเป็นช่อง ๆ โดยให้แต่ละช่องของตารางมีค่าเป็น 0 และแบ่ง กล่องเป็น ลูกบาศก์ขนาด $1 \times 1 \times 1$ โดยแต่ละลูกบาศก์มีค่าเป็น 1
- 3.เมื่อมองตารางจากข้างบนจะได้ว่าช่องตารางที่มีกล่องวางอยู่จะมีค่ามากกว่า 0 ส่วนช่องตาราง ที่ไม่มีกล่องวางอยู่จะมีค่าเท่ากับ 0
- 4.จากนั้นเริ่มดำเนินการการเคลื่อนที่โดยเคลื่อนที่ไปในทิศทางต่าง ๆ ซ้าย ขวา บน ล่าง วนไปเรื่อย ๆ โดยทำการดำเนินการทุกรูปแบบทั้ง 4 แบบอย่างละครั้ง ทุกครั้งที่ดำเนินการเคลื่อนที่โปรแกรมจะจดจำที่ ที่เคยพลิกผ่านไป และตรวจว่า box ออกนอกตารางที่กำหนดหรือไม่ ถ้าออกนอกตารางที่กำหนดหรือเดิน กลับมาซ้ำที่เดิมการดำเนินการนั้นก็จะถูกยกเลิกไป

5.เมื่อกล่องวางตัวในแนวแกน Z ที่หลุมก็จะนับว่าเป็นการจบการดำเนินการไปหนึ่งการดำเนินการ และนับเป็น 1 วิธีในการพลิกกล่องเพื่อสำเร็จเป้าหมาย

```
Board Size (XxY): 4 4
Show the way (1),not(2): 1
Show the position of box (1),not(2): 1
leght of box: 2
Frist round complete
2 0 0 0
0 0 0 0
0 0 0 0
                                                                                                                                               0000
                                                                                                                                                      0000
                                                                                                                                          ) S S S
                                                                                                                                          1000
                                                                                                                                                       0000
                                                                                                                                                1000
        0000
                                                                                                                                                0000
       0000
             0000
       9991
        0000
             0000
                                                                                                                                                                 z a-xis : 2 times
x a-xis : 1 times
y a-xis : 1 times
                    in z a-xis :
in x a-xis :
in y a-xis :
                                                                     times
times
```

3.การพิสูจน์ว่าการเคลื่อนที่ของ box บนพื้นที่ปิดมีค่าน้อยที่สุดและไม่มีน้อยกว่านี้แล้วโดยใช้หลักการนับ

การวางตัวของกล่องมีได้ 3 รูปแบบ คือการวางตัวในแกน x การวางตัวในแกน y และการวางตัวใน แกน z การพลิกให้ได้จำนวนครั้งที่ได้น้อยที่สุด ต้องใช้การเคลื่อนที่ให้ได้ระยะทางที่มากและต้องพอดีกับ จำนวนช่องตารางที่มีอยู่

การเคลื่อนที่ของ box มีด้วยกัน 3 รูปแบบคือ

- 1. การเคลื่อนที่จากวางตัวในแกน ${f x}$ หรือ ${f y}$ ไปเป็นการวางตัวในแกน ${f z}$
- 2. การเคลื่อนที่จากวางตัวในแกน z ไปเป็นการวางตัวในแกน x หรือ \mathbf{y}
- 3. การเคลื่อนที่จากวางตัวในแกน ${f x}$ หรือ ${f y}$ ไปเป็นการวางตัวในแกน ${f x}$ หรือ ${f y}$

การเคลื่อนที่ที่ได้ระยะทางมากที่สุดคือการเคลื่อนที่ในรูปแบบที่ 2 และเพื่อที่จะทำการเคลื่อนที่ครั้ง ที่ 2 ได้ จำเป็นต้องใช้การเคลื่อนที่รูปแบบที่ 1 เข้ามาช่วย ดังนั้นการเคลื่อนที่ที่ทำให้ได้ระยะทางมากที่สุด คือ การเคลื่อนที่รูปแบบที่ 1 และรูปแบบที่ 2 สลับกัน

การเคลื่อนที่รูปแบบที่ 1 และรูปแบบที่ 2 สลับกัน จะทำให้ได้ระยะทางในการเคลื่อนที่เป็น n+1 (เมื่อ n คือความยาวของ box) แต่การเคลื่อนที่รูปแบบนี้อย่างเดียว ไม่ทำให้เคลื่อนที่ไปจนถึงเป้าหมายได้ เสมอไป เพราะ ขนาดของตาราง อาจไม่พอดีกับระยะทางของการเคลื่อนที่ ดังจึงต้องใช้การเคลื่อนที่แบบอื่น เพื่อเข้ามาช่วยให้ได้ระยะทางที่พอดีกับขนาดของตาราง

โดยตารางมีความกว้างในแกน x และแกน y ต้องใช้การพลิกด้วยวิธีข้างต้นให้ชิดกับขอบของตาราง เพราะทุกครั้งที่ทำการเคลื่อนที่รูปแบบที่ 1 สลับกับแบบที่ 2 จะได้ระยะทาง n+1 แต่เมื่อทำการเปลี่ยน แกนเช่น วางตัวใน x ไปวางตัวในแกน z ไปวางตัวในแกน y จะทำให้ได้ระยะทางในแกน x เพียง n+1 ดังนั้นจึงต้องทำการเปลี่ยนทิศการเคลื่อนที่ให้น้อยที่สุดสำหรับการเคลื่อนที่แบบรูปแบบที่ 1 สลับรูปแบบที่ 2 เนื่องจากตารางมีทั้งระยะทางในแกน x และแกน y จึงจำเป็นต้องมีการเคลื่อนที่ทั้งในแกน x และ แกน y จึง ได้ว่าการเปลี่ยนทิศที่น้อยที่สุดคือ 1 ครั้ง

การเคลื่อนที่รูปแบบที่ 1 สลับรูปแบบที่ 2 ได้ระยะทาง (n+1)k ทำแบบนี้ทั้งแกน x และแกน y ถ้า ให้ระยะทางของตารางมีค่า $m \times i$ เราต้องนำค่า (n+1)k ที่เคลื่อนที่ได้ในแกน x ไปลบออกจากขนาดความ ยาวของตารางให้มากที่สุดในแกน x และเราต้องนำค่า (n+1)k ที่เคลื่อนที่ได้ในแกน y ไปลบออกจากขนาด ความยาวของตารางให้มากที่สุดในแกน y และยังเหลือความยาว $(m-(n+1)k) \times (i-(n+1)k)$ มาก พอที่จะให้ box เคลื่อนที่ไปยังจุดเชื่อมต่อกับการเคลื่อนที่แบบสลับรูปแบบที่ 1 กับรูปแบบที่ 2 ได้

0	1	2	3	4	5	6	7	8	9	10	11
1											
2	1	2									
3											
4		3									
5		4									
6											
7		5	6		7	8		9	10		11

จากรูปจะเห็นว่าการเคลื่อนที่ครั้งที่ 4 - 11 เป็นการเคลื่อนที่แบบรูปแบบที่ 1 สลับกับ รูปแบบที่ 2

การเคลื่อนที่ให้ได้จำนวนครั้งที่น้อยที่สุดนั้นต้องมีรูปแบบจำนวนตำแหน่งในการวางตัวของกล่องเพียง รูปแบบเดียว ประกอบด้วยการวางตั้งตัวในแนวแกน x การวางตัวในแนวแกน y และการวางตัวในแนวแกน z โดยการเคลื่อนที่น้อยที่สุด ไม่สามารถใช้การวางตัวแบบอื่นมาแทนกันได้เพราะจะทำให้ระยะทางเพิ่มขึ้นหรือ จำนวนครั้งในการพลิกเพิ่มขึ้น เพราะการเคลื่อนที่ไปแนวแกน x จะได้ระยะทางเพียงแกน x เท่านั้น และการ เคลื่อนที่ไปแนวแกน y จะได้ระยะทางเพียงแกน y เท่านั้น จึงไม่สามารถใช้การเคลื่อนที่ในแนวแกน x แทน การเคลื่อนที่ในแนวแกน y ได้ ดังนั้นจะได้ว่าการเคลื่อนที่ที่น้อยที่สุดในรูปแบบต่างๆมีจำนวนรูปแบบในการ วางตัวได้แบบเดียวแต่อาจสลับรูปแบบในการวางตัวกัน ดังรูปข้างล่าง

```
Board Size (XxY): 3 7
Show the way (1),not(2):
Show the position of box
Frist round complete
2 0 0 0 0 0 0
3 0 0 0 0 0 0
                         988
                               000
                                      000
                   988
                  888
                               000
                         988
                                       000
999
                  888
            991
                         888
                               000
                                      000
            888
                               000
                  992
                         888
      000
                                      000
                  988
                         0
0
1
            988
                               9
9
1
      000
            888
                         000
                               000
                  000
                                                      : 2 times
: 4 times
: 0 times
                  in z a-xis
in x a-xis
in y a-xis
```

```
566
100
     100
          888
                888
                           000
                      000
           000
                888
                      000
988
     988
          020
                888
                      000
     988
                919
                     919
                          000
           888
               0
0
1
     988
          888
                           988
                     991
     988
          000
                888
                     000
          in z a-xis : 2
in x a-xis : 4
in y a-xis : 0
                                                  times
times
times
```

```
100
               000
                    888
                         200
         888
                         888
                               000
               200
                    888
    888
         888
               000
                    100
                          100
         888
                         919
               888
                    Ø
1
Ø
    888
         888
                         991
                               000
               000
                    991
                         888
          000
               888
                    888
                                           : 2 times : 4 times : 0 times
  latt in z a-xis
latt in x a-xis
latt in y a-xis
less move is 6
Have 3 format
```

4.การหาจำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดของ box ขนาด 1 imes 1 imes n บนตารางรูปสี่เหลี่ยมมุมฉาก

โดยหลักการในการหาจำนวนครั้งที่น้อยที่สุดจะใช้หลักการที่กล่าวไปข้างต้น ซึ่งการพิจารณาจะ แบ่งออกเป็น n+1 กรณี ได้แก่ กรณีที่หารแล้วเหลือเศษ 1,2,3,...,n-1,n,n+1 โดยแบ่งจากเศษที่ได้ จากการหารขนาดของความยาวด้านของตารางด้วย n+1

กำหนดให้ $n\in \mathbb{Z}^+$ และ $n\geq 2$

ตารางมีขนาดของความยาวด้านมากกว่าหรือเท่ากับ $\,\mathrm{n}+2\,$

 $r,s \in \{1,2,3,...,n-1,n,n+1\}$; r และ s เป็นเศษเหลือจากการหารความยาวด้านของตารางด้วย n+1

ตารางขนาด $[(n+1)p+r] \times [(n+1)q+s]$ เมื่อ p และ q เป็นจำนวนเต็มบวก หลักในการหาจำนวนครั้งในการพลิก box ที่น้อยที่สุด โดยวิธีที่น้อยที่สุดนั้นมีได้หลากหลายรูปแบบ แต่ใน ทุกรูปแบบจำนวนครั้งในการพลิกตามแนวแกน x , y และ z มีค่าเท่ากัน จึงเลือกพิจารณามา 1 รูปแบบ เพื่อหาความสัมพันธ์ ดังรูป

พิจารณาโดยแบ่งออกเป็น 3 ส่วน ดังนี้

1. ส่วนต้น มีลักษณะดังรูป

จำนวนครั้งในการพลิกที่น้อยที่สุดของ box บนตารางรูปสี่เหลี่ยมมุมฉากขนาด (n+2) imes s ในส่วนต้น มีค่าเท่ากับ s (ซึ่งจะไม่ร่วมจุดเริ่มต้น)

2. ส่วนกลาง มีลักษณะดังรูป

จากหลักการการหาจำนวนครั้งที่น้อยที่สุด แบ่ง พิจารณาออกเป็นแกน x และแกน y ซึ่งทุก ๆ n+1 ช่องตาราง box จะต้องใช้การเคลื่อนที่ 2 ครั้ง เมื่อพลิกตามแนวแกน x จนไม่สามารถพลิกต่อได้ ก็ จะเปลี่ยนไปพลิกตามแนวแกน y โดยใช้หลักการ เดียวกัน จำนวนครั้งในการพลิกที่น้อยที่สุดของ box ในส่วนกลาง มีค่า

$$\begin{aligned} & \left\lfloor \frac{2}{n+1} \left[(n+1)p - n \right] + \frac{2}{n+1} \left[(n+1)q - n \right] \right] \\ & = \left\lfloor 2p + 2q - \frac{4n}{n+1} \right\rfloor & \text{Pis} \end{aligned}$$

3. ส่วนปลาย มีลักษณะดังรูป

จำนวนครั้งในการพลิกที่น้อยที่สุดของ box บน ตารางรูปสี่เหลี่ยมมุมฉากขนาด $\mathbf{r} \times (\mathbf{n}+2)$ ใน ส่วนปลาย มีค่าเท่ากับ $\mathbf{r}+1$ ครั้ง

<u>ข้อความคาดการณ์</u>

จำนวนครั้งในการพลิกที่น้อยที่สุดของ box ขนาด $n\times 1\times 1$ บนตารางขนาด $\left[(n+1)p+r\right]\times \left[(n+1)q+s\right]$ มีค่าเป็น $\left[2p+2q-rac{4n}{n+1}\right]+(r+1)+s$ ครั้ง

การพิสูจน์ข้อความคาดการณ์ว่าเป็นจริง

้เมื่อพิจารณาตารางขนาด $\left[(n+1)p+r\right] imes \left[(n+1)q+s\right]$ โดยแบ่งออกเป็น 3 ส่วนข้างต้น ซึ่งในแต่ ละส่วนเราทราบแล้วว่าจำนวนครั้งที่น้อยที่สุดของแต่ละส่วนเป็นเท่าใดเมื่อนำมารวมกันจึงได้เป็นข้อความ คาดการณ์ การพิสูจน์นั้นทำย้อนกลับโดยนำข้อความคาดการณ์กลับไปหาจำนวนครั้งที่น้อยที่สุดของแต่ละส่วน แล้วนำมารวมกันเพื่อตรวจสอบว่าตรงกับข้อความคาดการณ์หรือไม่ ดังต่อไปนี้

ส่วนที่ 1

ตารางมีขนาด
$$(n+2) imes s$$
 สามารถจัดรูปได้ว่า $(n+2) imes s = \left[(n+1)+1\right] imes s$
$$= \left[(n+1)(1)+1\right] imes \left[(n+1)(0)+s\right]$$

จากข้อความคาดการณ์

ได้ว่า
$$\left[2p + 2q - \frac{4n}{n+1}\right] + (r+1) + s = \left[2(1) + 2(0) - \frac{4n}{n+1}\right] + (1+1) + s$$

$$= \left[2 - \frac{4n}{n+1}\right] + s + 2$$

ส่วนที่ 2

ตารางมีขนาด $\left[(n+1)p-n\right] imes\left[(n+1)q-n\right]$ สามารถจัดรูปได้ว่า $\left[(n+1)p-n\right] imes\left[(n+1)q-n\right]=\left[(n+1)p+1\right] imes\left[(n+1)q+1\right]$ จากข้อความคาดการณ์

ได้ว่า
$$\left\lfloor 2p + 2q - \frac{4n}{n+1} \right\rfloor + (r+1) + s = \left\lfloor 2p + 2q - \frac{4n}{n+1} \right\rfloor + (1+1) + 1$$

$$= \left\lfloor 2p + 2q - \frac{4n}{n+1} \right\rfloor + 3$$

ส่วนที่ 3

ตารางมีขนาด
$$r \times (n+2)$$

สามารถจัดรูปได้ว่า
$$(n+2) imes s = \left[(n+1)+1\right] imes s$$

$$= \left[(n+1)(1)+r\right] imes \left[(n+1)(0)+1\right]$$

จากข้อความคาดการณ์

ได้ว่า
$$\left\lfloor 2p + 2q - \frac{4n}{n+1} \right\rfloor + (r+1) + s = \left\lfloor 2(0) + 2(1) - \frac{4n}{n+1} \right\rfloor + (r+1) + 1$$

$$= \left\lfloor 2 - \frac{4n}{n+1} \right\rfloor + r + 2$$

นำจำนวนครั้งที่ได้จากการแทนลงในข้อความคาดการณ์ทั้ง 3 ส่วน มารวมกันแต่ต้องหักลบออกอีก 2 ครั้ง เนื่องจากมีการใช้จุดร่วมกัน 2 จุด

จะได้
$$\left[2-\frac{4n}{n+1}\right]+s+2+\left[2-\frac{4n}{n+1}\right]+r+2+\left[2p+2q-\frac{4n}{n+1}\right]+3-2$$

$$=\left[2p+2q-\frac{4n}{n+1}\right]+2\left[2-\frac{4n}{n+1}\right]+r+s+5$$

$$=\left[2p+2q-\frac{4n}{n+1}\right]+2\left[2-\frac{4n}{n+1}\right]+(r+1)+s+4$$
พิจารณา $\left[2-\frac{4n}{n+1}\right]$
โดยที่ $2-\frac{4n}{n+1}=\frac{2n+2-4n}{n+1}$

ดยที่
$$2-rac{m}{n+1}=rac{2n+2}{n+1}$$
 $=rac{-2n+2}{n+1}$ $=rac{-2(n-1)}{n+1}$

จากการพิจารณา นำมาเขียนเป็นฟังก์ชัน $f(n)=rac{-2n+2}{n+1}$ แล้วนำไปพล็อตกราฟ ดังรูป

กราฟแสดงคำตอบของ f(x) เมื่อ $\, n = x \,$

จากกราฟ ได้ว่า ค่าของ \mathbf{x} มีค่าเข้าใกล้ -2

ทำให้
$$\left[2-\frac{4\mathrm{n}}{\mathrm{n}+1}\right]=-2$$
ดังนั้น $\left[2\mathrm{p}+2\mathrm{q}-\frac{4\mathrm{n}}{\mathrm{n}+1}\right]+2\left[2-\frac{4\mathrm{n}}{\mathrm{n}+1}\right]+(\mathrm{r}+1)+\mathrm{s}+4=\left[2\mathrm{p}+2\mathrm{q}-\frac{4\mathrm{n}}{\mathrm{n}+1}\right]+2(-2)+(\mathrm{r}+1)+\mathrm{s}+4$

$$=\left[2\mathrm{p}+2\mathrm{q}-\frac{4\mathrm{n}}{\mathrm{n}+1}\right]+(\mathrm{r}+1)+\mathrm{s}$$

จำนวนครั้งในการพลิกที่น้อยที่สุดของ
$$\log n$$
 ขนาด $1 \times 1 \times n$ บนตารางรูปสี่เหลี่ยมมุมฉากขนาด $\left[(n+1)p+r\right] imes \left[(n+1)q+s\right]$ ให้ลงหลุมขนาด 1×1 มีค่าเท่ากับ $\left|2p+2q-\frac{4n}{n+1}\right|+(r+1)+s$

บทที่ 4

ผลการดำเนินงาน

จากการศึกษารูปแบบความสัมพันธ์ของการเคลื่อนที่ของ box บนพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากขนาด ต่าง ๆ สามารถแบ่งออกเป็น 6 รูปแบบ โดยพิจารณาจากเศษของด้านพื้นที่ปิดที่เกิดจากการหารด้วย 3 ดังต่อไปนี้

สำหรับ box ขนาด $2 \times 1 \times 1$

ทฤษฎีบทที่ 1 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป $(3p+3)\times(3q+3)$ ได้ว่า จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\frac{2}{3}[(3p+3)+(3q+3)]$ ครั้ง

ตัวอย่างเช่น พื้นที่ปิดรูปสี่เหลี่ยมมุมฉากมีด้านยาว 12×15 หน่วย ได้ว่า 3p+3=12 และ 3q+3=15 จากนั้นนำไปแทนใน $\frac{2}{3}[(3p+3)+(3q+3)]$ ดังนั้น จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น 18 ครั้ง

บทแทรกที่ 2 ก้า ${f n}$ สามารถเขียนในรูป $3{f k}+3$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $4{f k}+4$ ครั้ง

ทฤษฎีบทที่ 3 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป (3p+3) imes(3q+1) ได้ว่า จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $rac{2}{3}igl[(3p+3)+(3q+1)-1igr]$ ครั้ง

ตัวอย่างเช่น พื้นที่ปิดรูปสี่เหลี่ยมมุมฉากมีด้านยาว 9×16 หน่วย ได้ว่า 3p+3=9 และ 3q+3=16 จากนั้นนำไปแทนใน $\frac{2}{3}[(3p+3)+(3q+1)-1]$ ดังนั้น จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น 16 ครั้ง

ทฤษฎีบทที่ 4 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป (3p+3) imes (3q+2) ได้ว่า จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\frac{2}{3}[(3p+3)+(3q+2)-\frac{1}{2}]$ ครั้ง

ตัวอย่างเช่น พื้นที่ปิดรูปสี่เหลี่ยมมุมฉากมีด้านยาว 6×17 หน่วย ได้ว่า $3\mathrm{p}+3=6$ และ $3\mathrm{q}+3=17$ จากนั้นนำไปแทนใน $\frac{2}{3}[(3\,\mathrm{p}+3)+(3\,\mathrm{q}+2)-\frac{1}{2}]$ ดังนั้น จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น 15 ครั้ง

ทฤษฎีบทที่ 5 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป $(3p+1)\times(3q+1)$ ได้ว่า จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\frac{2}{3}igl[(3p+1)+(3q+1)-2igr]$ ครั้ง

ตัวอย่างเช่น พื้นที่ปิดรูปสี่เหลี่ยมมุมฉากมีด้านยาว 13×19 หน่วย ได้ว่า $3\mathrm{p}+3=13$ และ $3\mathrm{q}+3=19$ จากนั้นนำไปแทนใน $\frac{2}{3}igl[(3\,\mathrm{p}+1)+(3\,\mathrm{q}+1)-2igr]$ ดังนั้น จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น 20 ครั้ง

บทแทรกที่ 6 ก้า ${
m n}$ สามารถเขียนในรูป $3{
m k}+1$ จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $4{
m k}$ ครั้ง

ทฤษฎีบทที่ 7 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป (3p+1) imes (3q+2) ได้ว่า จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $\frac{2}{3}[(3p+1)+(3q+2)-\frac{3}{2}]$ ครั้ง

ตัวอย่างเช่น พื้นที่ปิดรูปสี่เหลี่ยมมุมฉากมีด้านยาว 7×11 หน่วย ได้ว่า $3\mathrm{p}+3=7$ และ $3\mathrm{q}+3=11$ จากนั้นนำไปแทนใน $\frac{2}{3}[(3\,\mathrm{p}+1)+(3\,\mathrm{q}+2)-\frac{3}{2}]$ ดังนั้น จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น 11 ครั้ง

ทฤษฎีบทที่ 8 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป (3p+2) imes(3q+2) จะได้ จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น $rac{2}{3}igl[(3p+2)+(3q+2)-1igr]$ ครั้ง

ตัวอย่างเช่น พื้นที่ปิดรูปสี่เหลี่ยมมุมฉากมีด้านยาว 5×8 หน่วย ได้ว่า 3p+3=5 และ 3q+3=8 จากนั้นนำไปแทนใน $\frac{2}{3}[(3p+2)+(3q+2)-1]$ ดังนั้น จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น 8 ครั้ง

บทแทรกที่ 9 ถ้า n สามารถเขียนในรูป 3k+2 จะได้จำนวนครั้งในการเคลื่อนที่ที่น้อยที่สุดเป็น 4k+2 ครั้ง

สำหรับ box ขนาด $n \times 1 \times 1$

ทฤษฎีบทที่ ${f 10}$ ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป $\left[({f n+1}){f p+r} \right] imes \left[({f n+1}){f q+s} \right] \ {f 3} imes {f lo} {f n} \ {f 3} \ {f n} \ {f lo} \ {f m} \ {f r} \ {f lo} \ {f n} \ {f lo} \ {f l$

ตัวอย่างเช่น พื้นที่ปิดรูปสี่เหลี่ยมมุมฉากมีด้านยาว 5×10 หน่วย $\begin{array}{lll} & \text{Box} & \text{มีขนาด} & 3\times 1\times 1\\ & \text{ได้ว่า} & \text{n}=3, \text{p}=1, \text{q}=2, \text{r}=1, \text{s}=2\\ & \text{ดังนั้น} & \text{จำนวนครั้งในการเคลื่อนที่น้อยที่สุดเป็น} & 2(1)+2(2)-\frac{4(3)}{3+1} & +(1+1)+2=7 & \text{ครั้ง} \end{array}$

บทที่ 5

สรุปผลและข้อเสนอแนะ

- 1. สรุปผลการดำเนินงานโครงงาน
 - 1.1 รูปแบบเมื่อตารางเป็นแบบสี่เหลี่ยมจัตุรัสขนาด $1\times1,\ 2\times2$ และ 3×3 และ box มี ขนาด $1\times1\times2$
 - 1.1.1 จำนวนครั้งที่ ${
 m box}$ เคลื่อนที่ได้น้อยที่สุดบนพื้นที่ปิดรูปสี่เหลี่ยมจัตุรัสขนาด $3{ imes}3$ คือ 8 ครั้ง
 - 1.1.2 พื้นที่ปิดรูปสี่เหลี่ยมจัตุรัสขนาด 1×1 และ 2×2 มีพื้นที่ไม่เพียงพอให้ box สามารถเคลื่อนที่ได้
 - 1.2 รูปแบบเมื่อตารางเป็นแบบจัตุรัส และ box มีขนาด $1 \times 1 \times 2$
 - 1.2.1 กำหนดให้ ด้านยาว 3k+1 เมื่อ k เป็นสมาชิกของจำนวนนับ จำนวนครั้งที่ box พลิกได้น้อยที่สุดเป็น 4k ครั้ง
 - 1.2.2 กำหนดให้ ด้านยาว $3{
 m k}+2$ เมื่อ ${
 m k}$ เป็นสมาชิกของจำนวนนับ จำนวนครั้งที่ ${
 m box}$ พลิกได้น้อยที่สุดเป็น $4{
 m k}+2$ ครั้ง
 - 1.2.3 กำหนดให้ ด้านยาว $3{
 m k}+3$ เมื่อ ${
 m k}$ เป็นสมาชิกของจำนวนนับ จำนวนครั้งที่ ${
 m box}$ พลิกได้น้อยที่สุดเป็น $4{
 m k}+4$ ครั้ง
 - 1.3 รูปแบบเมื่อตารางเป็นรูปสี่เหลี่ยมมุมฉาก และ box มีขนาด $1 \times 1 \times 2$
 - 1.3.1 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป (3p+6) imes(3q+6) จะได้จำนวนครั้งในการพลิกน้อยที่สุดเป็น $rac{2}{3}igl[(3p+6)+(3q+6)igr]$ ครั้ง
 - 1.3.2 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป $(3\mathbf{p}+6)\times(3\mathbf{q}+4) \ \ \text{จะได้จำนวนครั้งในการพลิกที่น้อยที่สุดเป็น}$ $\frac{2}{3}\big[(3\mathbf{p}+6)+(3\mathbf{q}+4)-1\big] \ \ \text{ครั้ง}$
 - 1.3.3 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป (3p+6) imes (3q+5) จะได้จำนวนครั้งในการพลิกที่น้อยที่สุดเป็น $rac{2}{3}[(3p+6) + (3q+5) rac{1}{2}]$ ครั้ง
 - 1.3.4 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป $(3p+4)\times(3q+4) \,\,$ จะได้จำนวนครั้งในการพลิกที่น้อยที่สุดเป็น $\frac{2}{3}[(3p+4)+(3q+4)-2] \,\,$ ครั้ง

 - 1.3.6 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป (3p+5) imes(3q+5) จะได้จำนวนครั้งในการพลิกที่น้อยที่สุดเป็น $rac{2}{3}[(3p+5)+(3q+5)-1]$ ครั้ง

- $1.4\,$ รูปแบบเมื่อตารางเป็นสี่เหลี่ยมมุมฉาก และ box มีขนาด $1\! imes\!1\! imes\!n$
 - 1.4.1 ถ้าด้านของพื้นที่ปิดรูปสี่เหลี่ยมมุมฉากสามารถเขียนให้อยู่ในรูป $\left[(n+1)p+r \right] \times \left[(n+1)q+s \right] \text{ครั้ง โดยที่ } n,p,q,r,s \text{ เป็นจำนวนเต็มบวก จะได้}$ ว่าจำนวนครั้งในการพลิกที่น้อยที่สุดมีค่า $\left| 2p+2q-\frac{4n}{n+1} \right| + (r+1)+s$ ครั้ง

2. อภิปรายผลการศึกษา

จากการศึกษาพบว่าจำนวนวิธีในการเล่น Bloxorz บนสี่เหลี่ยมมุมฉากใด ๆ เพื่อให้ได้จำนวนครั้งใน การพลิกที่น้อยที่สุดสามารถเขียนออกมาในรูปของสูตรเป็นทฤษฎีที่สามารถใช้กับพื้นที่สี่เหลี่ยมมุม ฉากที่มีขนาดใด ๆ และความยาวของกล่องสามารถเขียนในรูป 1 imes 1 imes n เนื่องจากแต่ระรูปแบบ เคลื่อนที่ได้ระยะทางในแต่ละแกนไม่เท่ากัน (1. พลิกจากแกน x ไปแกน z ,2. พลิกจากแกน y ไป แกน z , พลิกจากแกน z ไปแกน x หรือ y) การเคลื่อนที่ให้ได้จำนวนการพลิกที่น้อยที่สุดไม่สามารถ ใช้การเคลื่อนที่รูปแบบอื่นมาทดแทนได้เพียงแต่สามารถสลับลำดับการเคลื่อนที่ของรูปแบบการ เคลื่อนที่ได้ ดังนั้น นั่นจึงเป็นเหตุผลที่ทำให้เกิดการเคลื่อนที่ที่ได้จำนวนครั้งที่น้อยที่สุดมีได้หลายแบบ ซึ่งการนับแบบแยกเป็น 3 ส่วนเป็นหนึ่งในวิธีที่พลิกได้น้อยที่สุด โดยมีหลักการว่า แบ่งพื้นที่ออกเป็น 3 ส่วน คือ 1. พื้นที่ที่กล่องพลิกเพียงในแกน $_{
m V}$, 2. พื้นที่ที่กล่องเดินเพียงในแกน $_{
m X}$ และ 3. พื้นที่ที่ กล่องเดินแบบชิดขอบจากมุมหนึ่งไปมุมตรงข้าม เหตุที่ใช้การนับเช่นนี้เป็นการนับที่พลิกได้น้อยที่สุด เพราะในส่วนที่ 1 และ 2 พื้นที่มีขนาดไม่มากพอที่จะพลิกรูปแบบอื่น และพื้นที่ส่วนที่ 3 การพลิก แบบชิดขอบของพื้นที่เป็นการพลิกแบบที่น้อยที่สุด (พิสูจน์ได้โดยการจัดวางตำแหน่งการเดินใหม่) วิธีการเคลื่อนที่แบบนี้เป็นวิธีที่สามารถมองได้ง่าย และพิสูจน์เรื่องนี้ได้โดยการนำสูตรในการพลิก รูปแบบนี้มาแทนในพื้นที่ทีละส่วน จากนั้นก็นำส่วนทั้ง 3 มารวมกันก็จะได้เป็นสูตรเดิมเนื่องจากการที่ แยกพื้นที่ออกเป็น 3 ส่วนแล้วคิดการเคลื่อนที่ที่ละส่วนแสดงว่าแต่ละส่วนไม่มีอะไรเกี่ยวข้องกันจึง สามารถใช้สูตรการเคลื่อนที่ที่ได้มาแทนแต่ละส่วนเพื่อพิสูจน์ว่าสูตรการเคลื่อนที่ที่ได้นี้ถูกต้อง ได้เป็น

สูตรคือ $\left[2p+2q-\frac{4n}{n+1}\right]+(r+1)+s$ โดยตารางมีขนาด $\left[(n+1)p+r\right]\times\left[(n+1)q+s\right]$ และกล่องมีขนาด $1\times1\times n$ นอกจากนี้ได้มีการเขียนโปรแกรมเพื่อหาจำนวนครั้งที่น้อยที่สุดแล

และกล่องมีขนาด $1 \times 1 \times n$ นอกจากนี้ได้มีการเขียนโปรแกรมเพื่อหาจำนวนครั้งที่น้อยที่สุดและ จำนวนรูปแบบทั้งหมดในการเคลื่อนที่ออกมาเพื่อเป็นตัวช่วยในการพิสูจน์การพลิกกล่องบนพื้นที่ต่าง ๆ เพื่อง่ายต่อการต่อยอดเพื่อหาความสัมพันธ์ต่อไป โดยโปรแกรมใช้หลักการหาจำนวนการเดินต่าง ๆ แบบรากต้นคือคิดทีละรูปแบบทีละรูปแบบถ้าพบว่ารูปแบบที่ได้มีค่าจำนวนการพลิกมากกว่าอีก รูปแบบก็จะตัดการเคลื่อนที่กรณีนั้นออกไป ซึ่งสามารถนำไปประยุกต์ใช้กับวิศวกรรมหุ่นยนต์ที่ใช้การ เคลื่อนที่ด้วยการพลิกเพื่อที่สุดหรือ ระยะทางที่น้อยที่สุด โดยมีเงื่อนไขว่าหุ่นยนต์ต้องมีรูปร่างเป็นกล่องและต้องเคลื่อนที่ด้วยการพลิก โดยนำไปใช้ในการเป็นแนวทางในการหาการเคลื่อนที่ที่น้อยที่สุดเพื่อไปถึงเป้าหมาย

www.csail.mit.edu

3. ข้อเสนอแนะ

- 3.1 สูตรสำหรับการเคลื่อนที่บนพื้นที่ 3 มิติ
- 3.2 หาวิธีการเคลื่อนที่ที่ง่ายต่อการนำไปใช้ในชีวิตจริงมากยิ่งขึ้น
- 3.3 โปรแกรมที่มีความเร็วในการหาการเคลื่อนที่ต่าง ๆ ที่เร็วกว่าเดิม
- 3.4 นำไปประยุกต์ให้สามารถใช้กับสถานการณ์

บรรณานุกรม

- CS109 Programming Projects Bloxorz . (2020).http://otfried.org/courses/cs109/project-bloxorz.html
- PSPACE-completeness of Bloxorz and of Games with 2-Buttons. (2020). https://www.groundai.com/project/pspace-completeness-of-bloxorz-and-of-games-with-2-buttons/1
- Game of Bloxorz Solving Agent Using Informed and Uninformed Search Strategies (2020).https://www.researchgate.net/publication/338759312_Game_of_Bloxorz_Solving_Agent_Using_Informed_and_Uninformed_Search_Strategies

ภาคผนวก

การหาจำนวนวิธีในการเคลื่อนที่ทั้งหมดและการเคลื่อนที่ที่น้อยที่สุดของ \mathbf{box} บนพื้นที่ปิดรูปสี่เหลี่ยมมุม ฉากขนาด $\mathbf{m} \times \mathbf{n}$ ที่แตกต่างกันทั้งหมดโดยใช้โปรแกรม $\mathbf{Dev-C++}$ (ภาษา \mathbf{C})

```
#include <stdio.h>
 1
 2
      #define MAX SIZEx 50
 3
      #define MAX SIZEy 50
 5
      #define MAX_STATE 3000
      // int TraversedI1J1I2J2[MAX_STATE][4];
 8
      // int NumState=0;
 9
10
      void initialBoard( int board[MAX_SIZEx][MAX_SIZEy], int sizex, int sizey)
11 🖵 {
         int i,j;
12
13
         for( i=0; i<sizex;i++ )</pre>
14 🖵
           for( j=0; j<sizey; j++ )</pre>
15
16 -
             board[i][j] = 0;
17
18
19
20
21
     22
24 🖵 {
25
       int i,j;
26
       initialBoard( board, sizex, sizey );
27
28
29
30 🖃
        for( i=0; i<sizex; i++ )</pre>
          for( j=0; j<sizey; j++ )</pre>
32 <del>|</del>
              if(1<fuc[3]){
   if( i == i1 && j == j1 )</pre>
34
                  board[i][j]++;
if( i == i2 && j == j2 )
35
37
                  board[i][j]++;
38
39 🖨
              if(2<fuc[3]){
	 if( i == i3 && j == j3 )
	 board[i][j]++;
40
41
42
42 F
43 =
             if(3<fuc[3]){
   if( i == i4 && j == j4 )
45
46
                 board[i][j]++;
47
              if(4<fuc[3]){
   if( i == i5 && j == j5 )
   board[i][j]++;</pre>
48
49
50
51
              if(5<fuc[3]){
  if( i == i6 && j == j6 )
52
53
                 board[i][j]++;
56
58
         for( i=0; i<sizex; i++ )</pre>
59 🖨
60
           for( j=0; j<sizey; j++ )</pre>
61 🗀
62
                printf("%d ", board[i][j] );
63
64
           printf("\n");
65
      int isTraversed( int tracebackStates[MAX_STATE][12], int numState,
int i1, int j1, int i2, int j2, int i3, int j3, int i4, int j4,int i5, int j5, int i6, int j6, int fuc[4])
70
71
72 🗏 {
73
74
        for( i=0; i<numState; i++ )</pre>
75 🗀
          if(tracebackStates[i][0] == i1 &&
76
77
              tracebackStates[i][1] == j1 &&
78
              tracebackStates[i][2] == i2 &&
79
              tracebackStates[i][3] == j2 &&
              tracebackStates[i][4] == i3 &&
80
              tracebackStates[i][5] == j3 &&
81
              tracebackStates[i][6] == i4 &&
83
              tracebackStates[i][7] == j4 &&
              tracebackStates[i][8] == i5 &&
tracebackStates[i][9] == j5 &&
84
85
              tracebackStates[i][10] == i6 &&
87
              tracebackStates[i][11] == j6 )
88
              return 1;
89
91
        return 0;
92
```

```
94
95
 96
97
                            int *numSolution,
int tracebackStates[MAX STATE][12],
 98
99
                            int numState,
int *times,
100
                             int *lesstimes,
                            int pnt,
int fuc[4],
101
102
103
                             int x,
104
105
                            int z )
106 🖵 {
107
             int i:
108
                      || j1<0 || i1>=sizex ||
|| j2<0 || i2>=sizex ||
109
           if( i1<0
                                                    j1>=sizey
110
                i2<0
                                                    j2>=sizey
                      j3<0
111
                i3<0
                                    i3>=sizex
                                                     j3>=sizey
                                i4>=sizex
                                                    j4>=sizey
                i4<0
112
113
                i5<0
                          j5<0
                                    i5>=sizex
                                                     j5>=sizey
114
                i6<0 || j6<0 || i6>=sizex || j6>=sizey )
115
              //printf("Can't move - End\n");
116
117
              return;
118
           if( isTraversed( tracebackStates, numState, i1, j1, i2, j2, i3, j3, i4, j4, i5, j5, i6, j6, fuc ) )
120
121
122
123
          if(pnt==2 && numState>*times){
124
             return;
125
126
127
128
129
          if( i1 == i2 && j1 == j2 && i1 == sizex-1 && j2 == sizey -1 && (sizex-1)*(fuc[3])==i1+i2+i3+i4+i5+i6 && (sizey-1)*(fuc[3])==j1+j2+j3+j4+j5+j6)
130 = 131 = 132 = 133 = 1
             if(pnt==1 && numState == *times && fuc[1]==1){
             for( i=0; i<numState; i++ )
               134
136
                                  tracebackStates[i][1].
                                  tracebackStates[i][2],
137
138
                                  tracebackStates[i][3],
139
                                  tracebackStates[i][4]
                                   tracebackStates[i]
141
                                  tracebackStates[i][6].
142
143
                                  tracebackStates[i
                                  tracebackStates[i][8],
144
                                  tracebackStates[i][9]
145
146
                                   tracebackStates[i][1
                                  tracebackStates[i][11],
147
148
                                  fuc );
149
             displayBoard( board, sizex, sizey, i1, j1, i2, j2, i3, j3, i4, j4, i5, j5, i6, j6, fuc );
150
151
152 <del>|</del>
153 <del>|</del>
             if(pnt==1 && numState == *times &&fuc[2]==1){
                 if(fuc[1]==2){
    printf("----\n");
154
155
                 printf("flatt in z a-xis : %d times\n",z);
printf("flatt in x a-xis : %d times\n",x);
printf("flatt in y a-xis : %d times\n",y);
if(fuc[1]==2)(
    printf("-----\n");
156
157
158
159
160
161
162
163
164
            (*numSolution)++;
165
          if((*times)==numState){
166
167
168
                (*lesstimes)++;
169
170 E
            if((*times)>numState){
    (*times)=(numState);
    (*lesstimes)=1;
172
173
174
175
            return:
176
          if((*times)<numState){</pre>
178
            return;
179
          //printf("It's in %d,%d - %d,%d\n", i1,j1, i2, j2 );
181
182
                       r this position
            if(1<fuc[3]){
184
                 tracebackStates[numState][0] = i1;
185
                tracebackStates[numState][1] = j1;
tracebackStates[numState][2] = i2;
tracebackStates[numState][3] = j2;
186
187
188
189
190 🚍
             if(2<fuc[3]){
                tracebackStates[numState][4] = i3;
tracebackStates[numState][5] = j3;
191
192
193
            if(3<fuc[3]){
   tracebackStates[numState][6] = i4;
   tracebackStates[numState][7] = j4;</pre>
194
195
196
197
198 =
199
200
            if(4<fuc[3]){
   tracebackStates[numState][8] = i5;
   tracebackStates[numState][9] = j5;</pre>
201
                tracebackStates[numState][10] = i6;
tracebackStates[numState][11] = j6;
203
204
```

206

```
208
             int w3=0,w4=0,w5=0,w6=0,w,11=1,12=2,13=0,14=0,15=0,16=0,k1=0,k2=0,k3=0,k4=0,k5=0,k6=0;
209
210 =
             w=fuc[3];
if(1<fuc[3]){
211
                 k1=w-l1+1;
                 k2=w-12+1;
213
214 =
             if(2<fuc[3]){
                 w3=1;
216
                 13=3;
                  k3=w-l3+1;
218
219 <del>|</del>
220
             if(3<fuc[3]){
                 w4=1;
221
                 14=4;
222
                 k4=w-14+1;
223
224 🖹
             if(4<fuc[3]){
                 w5=1;
226
227
                 15=5;
                 k5=w-15+1;
228
229
             if(5<fuc[3]){
230
                 w6=1:
231
                 16=6;
                 k6=w-16+1;
232
233
257
258 <del>-</del>
259
          else if( i1 == i2 && j1+1 == j2 )
            //printf("It's flatting in X-Axis\n");
260
261
262
263
            // move up
//printf("Moving up !\n");
traverse( board, sizex, sizey, i1-1, j1, i2-1, j2, i3-w3, j3, i4-w4, j4, i5-w5, j5, i6-w6, j6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x+1,y,z);
264
265
266
267
            traverse( board, sizex, sizey, i1+1, j1, i2+1, j2, i3+w3, j3, i4+w4, j4, i5+w5, j5, i6+w6, j6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x+1,y,z);
268
269
270
271
272
273
            traverse( board, sizex, sizey, i1, j1-l1, i2, j2-l2, i3, j3-l3, i4, j4-l4, i5, j5-l5, i6, j6-l6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x,y,z+1);
             // move right
//printf("Moving right !\n");
274
275
276
            traverse( board, sizex, sizey, i1, j1+k1, i2, j2+k2, i3, j3+k3, i4, j4+k4, i5, j5+k5, i6, j6+k6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x,y,z+1);
277
          // it's flatting in Y-Axis
else if( i1+1 == i2 && j1 == j2 )
278
279
280 🚍
            //printf("It's flatting in Y-Axis\n");
281
282
283
284
285
            traverse( board, sizex, sizey, i1-11, j1, i2-12, j2, i3-13, j3, i4-14, j4, i5-15, j5, i6-16, j6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x,y,z+1);
286
287
             // move down
//printf("Moving down !\n");
288
289
290
291
            traverse( board, sizex, sizey, i1+k1, j1, i2+k2, j2, i3+k3, j3, i4+k4, j4, i5+k5, j5, i6+k6, j6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x,y,z+1);
            // move left
//printf("Movi
292
293
294
            traverse( board, sizex, sizey, i1, j1-1, i2, j2-1, i3, j3-w3, i4, j4-w4, i5, j5-w5, i6, j6-w6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x,y+1,z);
295
296
297
            traverse( board, sizex, sizey, i1, j1+1, i2, j2+1, i3, j3+w3, i4, j4+w4, i5, j5+w5, i6, j6+w6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x,y+1,z);
298
234
235
236
          if( i1 == i2 && j1 == j2 )
            //printf("It's standing\n");
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
            // move up //nrintf("Moving up !\n");
traverse( board, sizex, sizey, i1-k1, j1, i2-k2, j2, i3-k3, j3, i4-k4, j4, i5-k5, j5, i6-k6, j6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x,y+1,z);
            traverse( board, sizex, sizex, i1+11, j1, i2+12, j2, i3+13, j3, i4+14, j4, i5+15, j5, i6+16, j6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x,y+1,z);
            // move left
//printf("Moving left !\n")
            traverse( board, sizex, sizey, i1, j1-k1, i2, j2-k2, i3, j3-k3, i4, j4-k4, i5, j5-k5, i6, j6-k6, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x+1,y,z);
252
253
254
255
            traverse (board, sizex, sizey, i1, j1+11, i2, j2+12, i3, j3+13, i4, j4+14, i5, j5+15, i6, j6+16, numSolution, tracebackStates, numState ,times,lesstimes,pnt,fuc,x+1,y,z);
```

```
int main()
328 🖵 {
329
         int sizex;
         int sizey;
int board[MAX_SIZEx][MAX_SIZEy];
330
331
          int numSolution = 0;
332
         int tracebackStates[MAX_STATE][12];
int numState=0;
333
334
335
          int times=99999;
         int lesstimes=1;
336
337
          int pnt=0;
338
         int fuc[4];
339
          int z=0;
340
341
          int x=0;
         int y=0;
         // get board's size
printf("Board Size (XxY): ");
scanf("%d", &sizex );
scanf("%d", &sizey );
343
344
345
346
347
          func(fuc);
348
349
         initialBoard( board, sizex, sizey );
350
351
         traverse( board, sizex, sizey, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8 numSolution, tracebackStates, numState , &times, &lesstimes, pnt, fuc, x, y, z);
353
         pnt=1;
         printf("Frist round complete\n");
354
355
          traverse( board, sizex, sizey, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8numSolution, tracebackStates, numState ,&times,&lesstimes,pnt,fuc,x,y,z);
356
357
          end(times, numSolution, lesstimes);
358
         return 0;
359
301
            printf("WRONG STATE !! Please Check %d,%d - %d,%d\n", i1, j1, i2, j2 );
         }
302
303
     L }
304
305
306
        int end(times,numSolution,lesstimes)
307 ☐ {
308 ☐
            if(times==99999){
309
           times=0;
310
311
312
          printf("-----\n");
          //printf("So, num solutions is %d\n", numSolution/2 );
printf("less move is %d\n", times );
printf("Have %d format \n",lesstimes/2);
313
314
315
316
          printf("----\n");
317
325
326
```