Welcome to CME 250 Introduction to Machine Learning!

Spring 2020 – Online version April 30th 2020

Today's schedule: Tree-based methods

- The easiest way to classify: Decision Trees
- How to reduce variance:
 - Bagging: Creating multiple identically distributed trees
 - Random Forest: Creating multiple identically distributed and uncorrelated trees
 - Gradient Boosting trees: Creating incrementally better trees.

Let's get to know each other...

Breakout room

You

Name

Location

Department

Year

Who is your new office mate? E.g.: Family, Pet, Plant, Fridge, Noisy neighbor ...

3 mins

Chat/Audio/Video

Experience

Data Exploration Prediction Models

Performance Analysis

Task

Recap Supervised Learning Learn from examples **Model Selection** Outputs Inputs /Variance Regression Classification Error Given Y is quantitative Y is categorical **Prediction KNN** error predict Model complexity Linear Regression Using dummy Cross-Validation Regularization Confusion Matrix variables? Predicted Labels Estimate prediction Control complexity: Logistic Regression Hyperparameters error (+) samples regularization correctly classified Precision I $=\frac{TP}{TP+FP}$ **SVM** K-fold CV, LOOCV Ridge, Lasso

y = a x + b

Prediction Models

Supervised Learning Part III: Tree-based methods

Introduction to Statistical Learning
Chapter 8:Tree-based methods

Elements Statistical Learning

Chapter 9.2:Tree-based methods

Chapter 10: Boosting and Additive Trees

Chapter 15: Random Forest

Easy dataset to classify

KNN
Linear Regression
Logistic Regression
SVM

What is the diagnosis for this sample?

Not so easy dataset to classify

Not so easy dataset to classify

What is the diagnosis for this sample?

How would you explain this data set in simple words?

Easiest way to find decision boundaries = Decision Tree

Creating CART: Classification and Regression Tree

Divide Feature space into uniform regions*

How to assign a value inside each region?

How to choose regions?

/S

*Sounds familiar to clustering

Group samples with similar features

Group samples with similar outputs

How to assign a value inside each region?

Similar to K-NN

Regression

$$\begin{vmatrix} -5 & 9 \\ 10 & 9.8 \\ 11.3 & 10.2 \end{vmatrix} = \begin{vmatrix} 7.55 \\ 10.2 \end{vmatrix}$$

Average

$$\widehat{y_{R_k}} = \frac{1}{|R_k|} \sum_{j \in R_k} y^{(j)}$$

Classification

$$\widehat{y_{R_k}} = \frac{\text{Most popular}}{\text{category}}$$

Combinatorial problem: Get suboptimal solution

Recursive binary splitting

Find:

1. Input feature
$$X_j$$
2. Cutpoint S

$$R_1 = \{x^{(i)} | x_j^{(i)} < s\}$$

$$R_2 = \{x^{(i)} | x_j^{(i)} \ge s\}$$

$$R_1 = \left\{ x^{(i)} | x_j^{(i)} < s \right\}$$

$$R_2 = \left\{ x^{(i)} | x_j^{(i)} \ge s \right\}$$

such that

$$\sum_{x^{(i)} \in R_1} L(y^{(i)}, \widehat{y_{R_1}}) + \sum_{x^{(i)} \in R_2} L(y^{(i)}, \widehat{y_{R_2}})$$

is minimized

Combinatorial problem: Get suboptimal solution

Recursive binary splitting

Find:

1. Input feature
$$X_j$$
2. Cutpoint S

$$R_1 = \{x^{(i)} | x_j^{(i)} < s\}$$

$$R_2 = \{x^{(i)} | x_j^{(i)} \ge s\}$$

$$R_1 = \left\{ x^{(i)} | x_j^{(i)} < s \right\}$$

$$R_2 = \left\{ x^{(i)} | x_j^{(i)} \ge s \right\}$$

such that

$$\sum_{x^{(i)} \in R_1} L(y^{(i)}, \widehat{y_{R_1}}) + \sum_{x^{(i)} \in R_2} L(y^{(i)}, \widehat{y_{R_2}})$$

is minimized

Combinatorial problem: Get suboptimal solution

Recursive binary splitting

Find:

1. Input feature
$$X_j$$
2. Cutpoint S

$$R_1 = \{x^{(i)} | x_j^{(i)} < s\}$$

$$R_2 = \{x^{(i)} | x_j^{(i)} \ge s\}$$

$$R_1 = \left\{ x^{(i)} | x_j^{(i)} < s \right\}$$

$$R_2 = \left\{ x^{(i)} | x_j^{(i)} \ge s \right\}$$

such that

$$\sum_{x^{(i)} \in R_1} L(y^{(i)}, \widehat{y_{R_1}}) + \sum_{x^{(i)} \in R_2} L(y^{(i)}, \widehat{y_{R_2}})$$

is minimized

We iterate in each of the subregions

Combinatorial problem: Get suboptimal solution

Recursive binary splitting

Find:

1. Input feature
$$X_j$$
2. Cutpoint S

$$R_1 = \{x^{(i)} | x_j^{(i)} < s\}$$

$$R_2 = \{x^{(i)} | x_j^{(i)} \ge s\}$$

$$R_1 = \left\{ x^{(i)} | x_j^{(i)} < s \right\}$$

$$R_2 = \left\{ x^{(i)} | x_j^{(i)} \ge s \right\}$$

such that

$$\sum_{x^{(i)} \in R_1} L(y^{(i)}, \widehat{y_{R_1}}) + \sum_{x^{(i)} \in R_2} L(y^{(i)}, \widehat{y_{R_2}})$$

is minimized

We iterate in each of the subregions

Combinatorial problem: Get suboptimal solution

For categorical variables: use dummy variables

How to compute loss?

Regression

RSS: Residual sum of squares

$$L(y^{(i)}, \widehat{y_{R_k}}) = (y^{(i)} - \widehat{y_{R_k}})^2$$

Classification

Misclassification error

$$L(y^{(i)}, \widehat{y_{R_k}}) = I(y^{(i)} \neq \widehat{y_{R_k}})$$

How to compute loss?

Regression

RSS: Residual sum of squares

$$L(y^{(i)}, \widehat{y_{R_k}}) = (y^{(i)} - \widehat{y_{R_k}})^2$$

Classification

Misclassification error

How to compute loss for classification?

Measure region **purity** with categories k

$$\hat{p}_{R_m,k} = \frac{1}{|R_m|} \sum_{x^{(i)} \in R_m} I(y^{(i)} = k)$$

Gini Index
$$G = \sum_{k=1}^{K} \hat{p}_{R_m,k} (1 - \hat{p}_{R_m,k})$$

Cross-Entropy
$$D = -\sum_{k=1}^{K} \hat{p}_{R_m,k} \log(\hat{p}_{R_m,k})$$

Capture non-linear interactions

Hard to capture additivity (vs Linear Regression)

There are generalizations:

- MARS: Multivariate Adaptive Regression Splines
- MART: Multiple Additive Regression Trees

How is the variance – bias tradeoff of decision trees?

Solution I: Tree Pruning Reduce model complexity

FIGURE 8.5, ISL (8th printing 2017)

FIGURE 8.4, ISL (8th printing 2017)

FIGURE 8.1, ISL (8th printing 2017)

Bias

Solution 2: **Tree "Averaging"**

Reduce variance

Variance _

"You can cooperate"

How can we combine trees?

Average answers

Bagging

Boosting

Bagging: Averaging Trees

If we have B trees

 $\hat{f}^B(x)$

Then

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x)$$
 (regression) or popular (classification) category

How do we construct B trees?

How do we construct B trees?

Option I) Option 2) Create B subsets of Create B identically distributed samples the data of size N Each subset will be smaller, bias Bootstrap will increase

What is Bootstrap?

How to create new samples?

What is Bootstrap?

How to create new samples?

Draw each sample independently

Bagging: Bootstrap Aggregation

Then

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x)$$
 (regression) or

Most popular (classification) category

Bootstrap samples are not uncorrelated

Uncorrelated

How to create uncorrelated samples?

Subsample features at random!

Random Forests

Subsample features at random!

$$selected \approx \begin{cases} total \\ features \end{cases}$$

Random Forests vs. Bagging

Spam Data

How can we combine trees?

Average answers

Bagging

Hyperparameter = # trees

Boosting

Gradient Boosting Trees

Best off-the-shelf classifier

Gradient Boosting Trees

Best off-the-shelf classifier

$$\hat{f}_{\text{avg}}(x) = \lambda \sum_{b=1}^{B} \hat{f}^b(x)$$

Hyperparameters $B = \# \text{ trees} \longrightarrow \text{Overfitting}$ $\lambda = \text{Learning rate (small)}$ d = depth tree

Recap

Coming up ... (Last class)

Practical Example:

How to choose the **best** method?

Intro to Neural Networks & Deep Learning