Oscillateur harmonique

Direction, sens

Loi de Hooke

$$\vec{T} = -k(\ell - \ell_0) \vec{e}_{\rightarrow M}$$

Solution générale

Théorème : Solution canonique

Les solutions de l'équation différentielle

$$\frac{\mathrm{d}^2 X}{\mathrm{d}t^2} + \omega^2 X = 0$$

sont les fonctions sinusoïdales de pulsation ω :

$$X(t) = X_m \cos(\omega t + \varphi)$$

On définit également la *fréquence* $f=\omega/(2\pi)$ (parfois écrite v) et la *période* $T=1/f=2\pi/\omega$. Un système régi par cette équation différentielle est un *oscillateur harmonique*. La pulsation d'un *système masse-ressort* est en particulier $\omega=\sqrt{\frac{k}{m}}$.

Courbe

Déphasages

Expression générale

Conditions initiales

Les variations de l'*écart X* à *la position d'équilibre* d'un oscillateur harmonique peuvent s'écrire de manière équivalente :

$$X(t) = X_m \cos(\omega t + \varphi) = X_0 \cos(\omega t) + \frac{V_0}{\omega} \sin(\omega t)$$

avec:

- X_0 l'écart initial à la position d'équilibre,
- V_0 la vitesse initiale.

Principe

Représentation de Fresnel: Utilisation

Détermination graphique

Exercice: conditions initiales

On considère un système masse-ressort

On considère une masse m attachée en M à l'extrémité d'un ressort de constante de raideur k et de longueur à vide ℓ_0 dont l'autre extrémité O est immobile. La masse est en mouvement sans frottement sur un support horizontal. On note x la mesure algébrique de son abscisse par rapport à O.

- 1. La masse est lâchée sans vitesse initiale en $x_0 = 3\ell_0/2$. Déterminer l'expression de x(t) et de l'écart X entre x et la position d'équilibre. Préciser l'amplitude et la phase du mouvement et tracer l'allure de x(t).
- 2. On communique désormais une vitesse \dot{x}_0 à la masse quand elle est en x_0 . Déterminer la nouvelle expression de x(t), et en déduire l'amplitude et la phase du mouvement par une construction de Fresnel.
- 3. On a $k = 5 \,\mathrm{N \cdot m^{-1}}$, $\ell_0 = 30 \,\mathrm{cm}$ et $m = 200 \,\mathrm{g}$. Calculer la pulsation des oscillations de la masse. Déterminer la norme minimale $|\dot{x}_0|$ de la vitesse pour laquelle la masse atteint le point O et le premier instant où cela se produit (on distinguera selon le signe de \dot{x}_0).

Exercice: circuit LC

On considère un circuit électrique formé d'un condensateur de capacité C branché aux bornes d'une bobine d'auto-inductance L. On note u_c la tension aux bornes du condensateur, $q = Cu_c$ sa charge et i_c le courant (en convention récepteur pour le condensateur).

- 1. Établir les équations différentielles vérifiées par la charge du condensateur et par l'intensité du courant dans le circuit. Les mettre sous la forme canonique d'un oscillateur harmonique de pulsation ω dont on donnera l'expression.
- 2. On a $L = 15 \,\text{mH}$ et $C = 5 \,\mu\text{F}$. Quel sera le courant maximal au cours des oscillations si à l'instant initial on a $u_C = 5 \,\text{V}$ et $i_C = -50 \,\text{mA}$.

Analogie électromécanique

Analogie électromécanique

On peut établir une *analogie mécanique/électrocinétique* entre un oscillateur harmonique mécanique et un oscillateur harmonique : _____

grandeur	mécanique	électrocinétique
élongation	X	q
vitesse	$\frac{\mathrm{d}X}{\mathrm{d}t}$	$i = \frac{\mathrm{d}q}{\mathrm{d}t}$
\mathscr{E}_{pot}	$\frac{1}{2}kx^2$	$\frac{1}{2}\frac{q^2}{C}$
raideur	\bar{k}	$\frac{1}{C}$
$arepsilon_{ ext{cin}}$	$\frac{1}{2}mv^2$	$\frac{1}{2}Li^2$
masse inertielle	\bar{m}	L
pulsation √raideur/inertie	$\sqrt{k/m}$	$\sqrt{1/(LC)}$
PFD	$F = -kX = m\dot{V}$	$-\frac{q}{C} = L \frac{\mathrm{d}i}{\mathrm{d}t}$

Deux formes d'énergie

Énergies d'un système masse-ressort

On associe à un système masse-ressort

- l'énergie cinétique : $\mathcal{E}_c = \frac{1}{2}\dot{x}^2$, associée à la vitesse*
- l'énergie potentielle élastique : $\mathcal{E}_{pot} = \frac{1}{2}kx^2$, associée à l'élongation du ressort

Équipartition de l'énergie

On considère un oscillateur harmonique

Les énergies \mathcal{E}_c et \mathcal{E}_{pot} oscillent à 2ω , avec la *même amplitude*.

Elles sont en *opposition de phase* : l'une est maximale quand l'autre est minimale.

Leur somme est constante : l'énergie mécanique \mathcal{E}_{m} est conservée,

L'énergie est alternativement sous formes cinétique et potentielle

Pour $X(t) = X_m \cos(\omega t)$, on peut écrire $\mathcal{E}_m = \frac{1}{2}kX_m^2 = \frac{1}{2}mv_{\text{max}}^2$

Les valeurs moyennes temporelles des énergies cinétique et potentielle sont égales. On dit qu'il y a *équipartition* de l'énergie totale entre ces deux formes.

Portrait de phase

Trajectoires dans l'espace des phases

Les trajectoires dans l'espace des phases sont des cercles en coordonnées $(X; \dot{X}/\omega_0)$.

Indispensable

Indispensable

- établir l'équation différentielle, en déduire la pulsation
- déterminer amplitude et phase à l'aide des conditions initiales ou par lecture graphique
- tracer les évolutions temporelles de la position, de la vitesse, de l'accélération
- connaître les expressions et savoir tracer les évolutions temporelles des énergies potentielle et cinétique
- savoir transposer les résultats mécanique en électrocinétique et inversement