Skript Analysis 1 Vorlesung 3

Alle Angaben ohne Gewähr

1. November 2023

Fortsetzung

Behauptung 0.1.1 \cap ist kommutativ $A \cap B \iff B \cap A$

Beweis:

$$A \cap B = \{x | x \in A \land x \in B\}$$
$$= \{x | x \in B \land c \in A\}$$
$$= B \cap A$$

Behauptung 0.1.2 Distributivität von \cap und \cup $A \cup (B \cap C) \iff (A \cup B) \cap (A \cup C)$

Beweis:

$$x \in A \cup (B \cap C) \iff x \in A \land x \in B \cap C$$

$$\iff x \in A \lor (x \in B \land x \in C)$$

$$\iff (x \in A \lor x \in B) \land (c \in A \lor x \in C)$$

$$\iff x \in A \cup B \land x \in A \cup B$$

$$\iff (A \cup B) \cap (A \cup C)$$

Die restlichen Beweise sind ähnlich

Definition 0.1.1: Mengenfamilien

Sei J beliebige Menge $J \neq \emptyset$

Eine Familie von Mengen (Mengenfamilie) ist gegeben durch A_j f
pr jeden $j \in J$ Schreibe:

 $\{A_j\}_{j\in J}$

Definition 0.1.2: Schnitt und Vereinigungsmengen

Es kommt öfters vor, dass man eine Menge I gegeben hat (Indexmenge genannt) und jedem Element $i \in I$ der Indexmenge wird eine Menge A_i zugeordnet. So eine Zuordnung nennt man dann auch Mengenfamilie indiziert über I. In so einem Fall schreibt man dann auch:

$$\bigcap_{i \in I} A_i := \{ x \in M \mid \forall i \in I : x \in A_i \}$$

$$\bigcup_{i \in I} A_i := \{ x \in M \mid \exists i \in I : x \in A_i \}$$

Definition 0.1.3: Kartesisches Produkt

Sind M und N Mengen, und ist $m \in M$ und $n \in N$, so bezeichnet (m, n) das geordnete Paar bestehend aus $m \in M$ und $n \in N$. Zwei solche Paare (m_1, n_1) und (m_2, n_2) sind nach Definition genau dann gleich, wenn $m_1 = m_2$ und $n_1 = n_2$. Man schreibt

$$M \times N := \{(x, y) \mid x \in M \land y \in N\}$$

und nennt $M \times N$ das kartesische Produkt von M und N.

0.2 Relationen und Äquivalenzrelationen

Definition 0.2.1: Relation

Relation R = (A, B, G) $G \subset A \times B$ (G ist der Graph von $R = G_R$) $(a,b) \in G$ a ist R-verwandt zu aRb

$$R_1 = (A_1, B_1, G_1)$$

 $R_2 = (A_2, B_2, G_2)$
 $R_1 = R_2 \Leftrightarrow A_1 = A_2 \wedge B_1 = B_2 \wedge G_1 = G_2$

Definition 0.2.2: Inverse Relation

Inverse Relation R^{-1} :

$$R^{-1} = (B, A, G_{R^{-1}})$$

$$G_{R^{-1}} = \{(b, a) \mid (a, b) \in G_R\}$$

Beispiel 0.2.1

 $A = \{1, 2, 3, 4\}$

kleiner Relation ='<':= (A, A, G_C)

mit
$$G_L := \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}\$$

 $a_1 < a_2 \Leftrightarrow (a_1,a_2) \in G_L$

Definition 0.2.3: Äquivalenzrelation

Sei R=(A,A,G) eine Relation, diese Relation heißt Äquivalenz
relation wenn gilt:

R ist reflexiv: $\forall a \in A : aRa \quad (\forall a \in A : (a, a) \in G)$

R ist symetrisch: $\forall a_1, a_2 \in A : a_1Ra_2 \Leftrightarrow a_2Ra_1$

R ist transitiv: $\forall a_1, a_2, a_3 \in A : a_1Ra_2 \land a_2Ra_3 \Rightarrow a_1Ra_3$

Ist $a_1Ra_2((a_1,a_2) \in G)$ so nennt man a_1 äquivalent zu a_2 bezüglich R

Definition 0.2.4: R Äquivalenzrelation auf A

$$[a]_R := \{b \in A \mid aRb\}$$

Für Äquivalenzklassen schreiben wir auch $a \sim_R b$ für aRb oder a = b modulo R

Note:-

Beobachtung: $\forall a \in A \text{ ist } [a]_R \neq \emptyset$ Reflexivität: $aR_a \Rightarrow a \in [a]_R$

$$\begin{aligned} a_1, a_2 \in [a]_R &\Rightarrow a_1 v_R a, a_2 \sim_R a \\ &\Rightarrow a_1 v_R a, a \sim_R a_2 \Rightarrow a_1 \sim_R a_2 \text{ also } a_1 \in [a_2]_R \end{aligned}$$

Behauptung 0.2.1 R Äquivalenzrelation auf A

Für $a_1, a_2 \in \mathbb{A}$ ist entweder $[a_1]_R = [a_2]_R$ oder $[a]_R \cap [a_2]_R = \emptyset$

Beweis: Da $[a_1]_R$, $[a_2]_k \neq \emptyset$ reicht zu zeigen ist $[a_1]_R \cap [a_2]_R \neq \emptyset \Rightarrow [a_1]_R = [a_2]_R$ Sei $b \in [a_1]_R \cap [a_2]_R$ Sei $c \in [a_1]_R$, $c \sim_R a_1$ und $b \sim_R a_1 \Rightarrow a_1 \sim_R b \Rightarrow c \sim_R b$ Auch $b \in [a_2]_R$: $b \sim_R a_2 \Rightarrow c \sim_R a_2$ dh. $c \in [a_2]_R$ Also ist $[a_1]_R \subset [a_2]_R$

Korellation 0.2.1

Genauso (Symetrie) $[a_2]_R \subset [a_1]_R$

Ist R Aquivalenzrelation auf $A \neq \emptyset$. Dann sind $a_1, a_2 \in A$ entweder äquivalent oder sie gehören zu disjunkten Äquivalenzrelation.

Note:-

Sei $A \neq \emptyset$.

Zerlegung: $F = \{A_j\}_{j \in I}$ $A_j \subset A$ mit:

1)

$$\forall j \in J : A_j \neq \emptyset$$

2)

$$j_1,j_2\in]\,,j_1\neq j_2:A_{j_1}\cap A_{j_2}=\emptyset$$

3)

$$\bigcup_{j\in I}A_j=A$$