[320] Complexity + Big O (Worksheet: Complexity Analysis)

Department of Computer Sciences University of Wisconsin-Madison

Let f(N) be the number of times line A executes, with N=len(L). What is f(N) in each case?

def search(L, target):
 for x in L:
 if x == target: #line A
 return True
 return False

Worst Case (target is at end of list): f(N) =_______

Best Case (target is at beginning of list): f(N) =_______

Average Case (target in middle of list):

f(N) =

assume this is asked unless otherwise stated

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).

We classify algorithm complexity by classifying the **order of growth** of a function f(N), where f gives the number of steps the algorithm must perform for a given input size.

Big O definition: if $f(N) \le C * g(N)$ for large N values and some fixed constant C, then $f(N) \in O(g(N))$

Let **f(N)** be the number of times line A executes, with N=len(L). What is f(N) in each case?

```
def search(L, target):
   for x in L:
      if x == target: #line A
         return True
   return False
```

Worst Case (target is at end of list): $f(N) = N \in O(N)$

Best Case (target is at beginning of list): f(N) =_____

Average Case (target in middle of list):

assume this is asked unless otherwise stated

A **step** is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).

We classify algorithm complexity by classifying the order of growth of a function f(N), where f gives the number of steps the algorithm must perform for a given input size.

Big O definition: if $f(N) \le C * g(N)$ for large N values and some fixed constant C, then $f(N) \in O(g(N))$

def search(L, target):
 for x in L:
 if x == target: #line A
 return True
 return False

Let f(N) be the number of times line A executes, with N=len(L). What is f(N) in each case?

Worst Case (target is at end of list): $f(N) = N \in O(N)$

Best Case (target is at beginning of list): $f(N) = 1 \in O(1)$

Average Case (target in middle of list): f(N) =

assume this is asked unless otherwise stated

A step is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).

We classify algorithm complexity by classifying the **order of growth** of a function f(N), where f gives the number of steps the algorithm must perform for a given input size.

Big O definition: if $f(N) \le C * g(N)$ for large N values and some fixed constant C, then $f(N) \in O(g(N))$

def search(L, target):
 for x in L:
 if x == target: #line A
 return True
 return False

 assume this is asked unless

Let f(N) be the number of times line A executes, with N=len(L). What is f(N) in each case?

Worst Case (target is at end of list): $f(N) = N \in O(N)$

Best Case (target is at beginning of list): $f(N) = 1 \in O(1)$

Average Case (target in middle of list): $f(N) = \frac{N}{2} \in O(N)$

A **step** is any unit of work with bounded execution time (it doesn't keep getting slower with growing input size).

We classify algorithm complexity by classifying the **order of growth** of a function f(N), where f gives the number of steps the algorithm must perform for a given input size.

Big O definition: if $f(N) \le C * g(N)$ for large N values and some fixed constant C, then $f(N) \in O(g(N))$

otherwise stated

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1.

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound?

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$?

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1. $N \ge 4$

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound?

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$?

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1. $N \ge 4$

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound? C = 4

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$?

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1. $N \ge 4$

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound? C = 4 and $N \ge 3$

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$?

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1. $N \ge 4$

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound? C = 4 and $N \ge 3$

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$? $f(N) \in O(N^2)$

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1. $N \ge 4$

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound? C = 4 and $N \ge 3$

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$? $f(N) \in O(N^2)$ (tighter upper bound)

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1. $N \ge 4$

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound? C = 4 and $N \ge 3$

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$? $f(N) \in O(N^2)$ (tighter upper bound)

Somebody claims $f(N) \in O(N)$, offering C=30 and N>0. Suggest an N value to counter their claim.

Assume N = 20. and $2N^2 + N + 12 \le 30N$.

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1. $N \ge 4$

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound? C = 4 and $N \ge 3$

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$? $f(N) \in O(N^2)$ (tighter upper bound)

Somebody claims $f(N) \in O(N)$, offering C=30 and N>0. Suggest an N value to counter their claim.

Assume N = 20. and $2N^2 + N + 12 \le 30N$. However, $800 + 20 + 12 \le 600$.

Let
$$f(N) = 2N^2 + N + 12$$

If we want to show $f(N) \in O(N^3)$, what is a good lower bound on N? Let's have C=1. $N \ge 4$

To show $f(N) \in O(N^2)$, do we pick 1, 2, or 4 for the C? After picking C, what should we choose for N's lower bound? C = 4 and $N \ge 3$

What is more informative to show? $f(N) \in O(N^3)$ or $f(N) \in O(N^2)$? $f(N) \in O(N^2)$ (tighter upper bound)

Somebody claims $f(N) \in O(N)$, offering C=30 and N>0. Suggest an N value to counter their claim.

Assume N=20. and $2N^2+N+12\leq 30N$. However, $800+20+12\nleq 600$. Therefore, the suggest value of N=20.


```
nums = [...]
```

first100sum = 0

for x in nums[:100]:
 first100sum += x
print(first100sum)

If we increase the size of nums from 20 items to 100 items, the code will probably take _____ times longer to run.

If we increase the size of nums from 100 to 1000, will the code take longer? Yes / No

The complexity of the code is O(_____), with N=len(nums).

```
nums = [...]
```

first100sum = 0

for x in nums[:100]:
 first100sum += x
print(first100sum)

If we increase the size of nums from 20 items to 100 items, the code will probably take 5 times longer to run.

If we increase the size of nums from 100 to 1000, will the code take longer? Yes / No

The complexity of the code is O(_____), with N=len(nums).

```
nums = [...]
```

first100sum = 0

```
for x in nums[:100]:
    first100sum += x
print(first100sum)
```

If we increase the size of nums from 20 items to 100 items, the code will probably take 5 times longer to run.

If we increase the size of nums from 100 to 1000, will the code take longer? Yes / No No

The complexity of the code is O(_____), with N=len(nums).

```
nums = [...]
```

first100sum = 0

for x in nums[:100]:
 first100sum += x
print(first100sum)

If we increase the size of nums from 20 items to 100 items, the code will probably take 5 times longer to run.

If we increase the size of nums from 100 to 1000, will the code take longer? Yes / No No

The complexity of the code is O(1), with N=len(nums).

L.insert(0, x) L.pop(0)
$$x = L[0]$$
 $x = max(L)$ $x = len(L)$

L.append(x) L.pop(-1) L2.extend(L)
$$x = sum(L)$$
 found = X in L

L.insert(0, x) L.pop(0) x = L[0] x = max(L) x = len(L)

L.append(x) L.pop(-1) L2.extend(L) x = sum(L) found = X in L

L.insert(0, x) L.pop(0) x = L[0] x = max(L) x = len(L)

L.append(x) L.pop(-1) L2.extend(L) x = sum(L) found = X in L

L.insert(0, x) L.pop(0) x = L[0] x = max(L) x = len(L)

L.append(x) L.pop(-1) L.extend(L) x = sum(L) found = X in L

L.insert(0, x) L.pop(0)
$$x = L[0]$$
 $x = max(L)$ $x = len(L)$
L.append(x) L.pop(-1) L2.extend(L) $x = sum(L)$ found = X in L

L.insert(0, x) L.pop(0)
$$x = L[0]$$
 $x = max(L)$ $x = len(L)$
L.append(x) L.pop(-1) $x = L[0]$ $x = max(L)$ found = X in L

Each of the following list operations are either O(1) or O(N), where N is len(L). Circle those you think are O(N).

L.insert(0, x) L.pop(0) x = L[0] x = max(L) x = len(L)L.append(x) L.pop(-1) L2.extend(L) x = sum(L) found = X in L

```
L = [...]
for x in L:
   avg = sum(L) / len(L)
   if x > 2*avg:
       print("outlier", x)
```

```
L = [...]
for x in L: N+1 steps
  avg = sum(L) / len(L)
  if x > 2*avg:
     print("outlier", x)
```

```
L = [...]
for x in L: N+1 steps
  avg = sum(L) / len(L) N steps
  if x > 2*avg:
     print("outlier", x)
```

```
L = [...]
for x in L: N+1 steps
  avg = sum(L) / len(L) N steps
  if x > 2*avg:
     print("outlier", x)
```

$$\mathbf{O}((\mathbf{N}+1)\mathbf{N}) = \mathbf{O}(\mathbf{N}^2 + \mathbf{N})$$

```
L = [...]
for x in L: N+1 steps
   avg = sum(L) / len(L) N steps
   if x > 2*avg:
        print("outlier", x)
```

$$O((N + 1)N) = O(N^2 + N) = O(N^2)$$

```
L = [...]
for x in L: N+1 steps
   avg = sum(L) / len(L) N steps
   if x > 2*avg:
        print("outlier", x)
```

$$O((N + 1)N) = O(N^2 + N) = O(N^2)$$

Is there a way to optimize the code?

Calculate avg outside the loop.

A	=	[]
В	=	[]
fo	or	x in A:
		for y in B:
		<pre>print(x*y)</pre>

The complexity of code is

O(_____)

```
A = [...] len(A) = M
B = [...]

for x in A:
    for y in B:
        print(x*y)
```

The complexity of code is

O(_____)

A = [...]
$$len(A) = M$$

B = [...] $len(B) = N$
for x in A:
for y in B:
print(x*y)

The complexity of code is

O(______

A = [...]
$$len(A) = M$$

B = [...] $len(B) = N$
for x in A:
for y in B:
print(x*y)

$$len(A) = M$$
 and $len(B) = N$

The complexity of code is

O(_____)

$$A = [...] \qquad len(A) = M$$
$$B = [...] \qquad len(B) = N$$

$$len(A) = M$$
 and $len(B) = N$

The complexity of code is

O(______)

$$A = [...] \qquad len(A) = M$$
$$B = [...] \qquad len(B) = N$$

for x in A:
$$M+1$$
 steps
for y in B: $N+1$ steps
print(x*y)

how would you define the variable(s) to describe the size of the input data?

$$len(A) = M$$
 and $len(B) = N$

The complexity of code is

O(_____)

$$A = [...] \qquad len(A) = M$$
$$B = [...] \qquad len(B) = N$$

for x in A:
$$M+1$$
 steps
for y in B: $N+1$ steps
print(x*y)

how would you define the variable(s) to describe the size of the input data?

$$len(A) = M$$
 and $len(B) = N$

The complexity of code is

$$O((M + 1)(N + 1)) = O(MN + M + N + 1) = O(MN)$$

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right_idx > left_idx and L[left_idx] == target

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right_idx > left_idx and L[left_idx] == target

ı	3	5	8	10	20	73	80
---	---	---	---	----	----	----	----

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right idx > left idx and L[left idx] == target

ldx	0	I		2	3	}	4	5	6	7	8	
	I	,	3	5		8	10	20	73	80		_

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right_idx > left_idx and L[left_idx] == target

ldx	0	I		2	3	4	5	6	7	8
	I		3	5	8	10	20	73	80	

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(____)

return right_idx > left_idx and L[left_idx] == target

ldx	0	_	I	2		3		4		5		6		7		8	
	1		3		5		8	I	0	,	20	7	3	8	30		

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right idx > left idx and L[left idx] == target

ldx	0	I	2	3	4	5	6	7	8
	ı	3	5	8	10	20	73	80	

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right idx > left idx and L[left idx] == target

ldx	0	I	2	3	4	5	6	7	8
	1	3	5	8	10	20	73	80	

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right_idx > left_idx and L[left_idx] == target

ldx	0	I	2	3	4	5	6	7	8
	I	3	5	8	10	20	73	80	
		; ; ;							
		·	; ; ; ; ;						

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right idx > left idx and L[left idx] == target

ldx	0	I	2	3	4	5	6	7	8
	I	3	5	8	10	20	73	80	
		i !	; ; ; ; ;					ή ! ! !	

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(_____)

return right_idx > left_idx and L[left_idx] == target

ldx	0	I	2	3	4	5	6	7	8
	I	3	5	8	10	20	73	80	

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then f(N) =

The complexity of binary search is O(____)

return right_idx > left_idx and L[left_idx] == target

ldx	0	I	2	3	4	5	6	7	8
	I	3	5	8	10	20	73	80	
cut									
cut									
cut									

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then $f(N) = log_2N$

The complexity of binary search is O(_____)

return right_idx > left_idx and L[left_idx] == target

ldx	0	I	2	3	4	5	6	7	8
	I	3	5	8	10	20	73	80	
cut									
cut									
cut									

```
7
```

```
# assume L is already sorted, N=len(L)
def binary_search(L, target):
    left_idx = 0 # inclusive
    right_idx = len(L) # exclusive
    while right_idx - left_idx > 1:
        mid_idx = (right_idx + left_idx) // 2
        mid = L[mid_idx]
        if target >= mid:
            left_idx = mid_idx
        else:
            right_idx = mid_idx
```

If f(N) is the number of times this step runs, then $f(N) = log_2N$

The complexity of binary search is O(logN)

return right idx > left idx and L[left idx] == target

ldx	0	I	2	3	4	5	6	7	8
	I	3	5	8	10	20	73	80	
cut									
cut									
cut									

```
s1 = tuple("...") # could be any string
s2 = tuple("...")
```

```
# version A
import itertools

matches = False
for p in itertools.permutations(s1):
    if p == s2:
        matches = True
```

what is the complexity of version A? what is the complexity of version B?

```
# version B
s1 = sorted(s1)
s2 = sorted(s2)
matches = (s1 == s2)

Examples, merge sort, quick sort
assumed sorted is O(N log N)
```

```
s1 = tuple("...") # could be any string <math>len(s1) = N

s2 = tuple("...") len(s2) = N
```

```
# version A
import itertools

matches = False
for p in itertools.permutations(s1):
    if p == s2:
        matches = True
```

what is the complexity of version A? what is the complexity of version B?

```
# version B
s1 = sorted(s1)
s2 = sorted(s2)
matches = (s1 == s2)

Examples, merge sort, quick sort
assumed sorted is O(N log N)
```

```
s1 = tuple("...") # could be any string len(s1) = N

s2 = tuple("...") len(s2) = N

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA
```

```
# version A
import itertools

matches = False
for p in itertools.permutations(s1):
    if p == s2:
        matches = True

# version B
s1 = sorted(s1)
s2 = sorted(s2)
matches = (s1 == s2)

Examples, merge sort, quick sort
assumed sorted is O(N log N)
```

what is the complexity of version A?

$$s1 = tuple("...") # could be any string $len(s1) = N$
 $s2 = tuple("...")$ $len(s2) = N$$$

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N	N-I	N-2		2	I
choices	choices	choices	•••	choices	choice

version A

import itertools

matches = False
for p in itertools.permutations(s1):
 if p == s2:
 matches = True

what is the complexity of version A?

what is the complexity of version B?

version B

s1 = sorted(s1)

s2 = sorted(s2)

matches = (s1 == s2)

Examples, merge sort, quick sort

assumed sorted is $O(N \log N)$

$$s1 = tuple("...") # could be any string $len(s1) = N$
 $s2 = tuple("...")$ $len(s2) = N$$$

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N choices	N-1 choices	N-2 choices	 2 choices	l choice

Total choices = N*(N-1)*(N-2)*...*2*1

```
# version A
import itertools
```

matches = False
for p in itertools.permutations(s1):
 if p == s2:
 matches = True

what is the complexity of version A?

what is the complexity of version B?

version B

s1 = sorted(s1)
s2 = sorted(s2)
matches = (s1 == s2)

Examples, merge sort, quick sort assumed sorted is $O(N \log N)$

$$s1 = tuple("...") # could be any string $len(s1) = N$
 $s2 = tuple("...")$ $len(s2) = N$$$

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N choices	N-1 choices	N-2 choices	 2 choices	l choice

Total choices = N*(N-1)*(N-2)*...*2*1Therefore, total permutations for (A,B,C) = 3*2*1

```
# version A
```

import itertools

matches = False
for p in itertools.permutations(s1):
 if p == s2:
 matches = True

what is the complexity of version A?

what is the complexity of version B?

version B

s1 = sorted(s1)

s2 = sorted(s2)

matches = (s1 == s2)

Examples, merge sort, quick sort

assumed sorted is $O(N \log N)$

$$s1 = tuple("...") # could be any string $len(s1) = N$
 $s2 = tuple("...")$ $len(s2) = N$$$

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N choices	N-1 choices	N-2 choices	 2 choices	l choice

Total choices = N*(N-1)*(N-2)*...*2*1Therefore, total permutations for (A,B,C) = 3*2*1

```
# version A
```

import itertools

matches = False
for p in itertools.permutations(s1): N! steps
 if p == s2:
 matches = True

what is the complexity of version A?

what is the complexity of version B?

version B

s1 = sorted(s1)
s2 = sorted(s2)

matches = (s1 == s2)

Examples, merge sort, quick sort

assumed sorted is $O(N \log N)$

$$s1 = tuple("...") # could be any string $len(s1) = N$
 $s2 = tuple("...")$ $len(s2) = N$$$

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N choices	N-I choices	N-2 choices	 2 choices	l choice

Total choices = N*(N-1)*(N-2)*...*2*1Therefore, total permutations for (A,B,C) = 3*2*1

```
# version A
import itertools

matches = False
for p in itertools.permutations(s1): N! steps
   if p == s2: N steps
      matches = True
```

version B

s1 = sorted(s1)
s2 = sorted(s2)

matches = (s1 == s2)

Examples, merge sort, quick sort

assumed sorted is $O(N \log N)$

what is the complexity of version A?

```
s1 = tuple("...") # could be any string
                                           len(s1) = N
s2 = tuple("...")
                                            len(s2) = N
```

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N choices	N-1 choices	N-2 choices	 2 choices	l choice

Total choices = N*(N-1)*(N-2)*...*2*1Therefore, total permutations for (A,B,C) = 3*2*1

```
# version A
                                                      # version B
import itertools
matches = False
for p in itertools.permutations(s1): N! steps
    if p == s2: N steps
        matches = True
                                                         assumed sorted is O(N \log N)
```

s1 = sorted(s1)s2 = sorted(s2)matches = (s1 == s2)Examples, merge sort, quick sort

what is the complexity of version A? O(N * N!)

$$s1 = tuple("...") # could be any string $len(s1) = N$
 $s2 = tuple("...")$ $len(s2) = N$$$

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N choices	N-1 choices	N-2 choices	 2 choices	l choice

Total choices = N*(N-1)*(N-2)*...*2*1Therefore, total permutations for (A,B,C) = 3*2*1

```
# version A
import itertools

matches = False
for p in itertools.permutations(s1): N! steps
   if p == s2: N steps
      matches = True
```

what is the complexity of version A? O(N * N!)

```
s1 = tuple("...") # could be any string <math>len(s1) = N

s2 = tuple("...") len(s2) = N
```

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N choices	N-1 choices	N-2 choices	 2 choices	l choice

Total choices = N*(N-1)*(N-2)*...*2*1Therefore, total permutations for (A,B,C) = 3*2*1

```
# version A
import itertools

matches = False
for p in itertools.permutations(s1): N! steps
   if p == s2: N steps
      matches = True
```

what is the complexity of version A? O(N * N!)

what is the complexity of version B? $O(N \log N + N \log N)$

$$s1 = tuple("...") # could be any string $len(s1) = N$
 $s2 = tuple("...")$ $len(s2) = N$$$

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N	N-I	N-2	 2	l
choices	choices	choices	choices	choice

Total choices = N*(N-1)*(N-2)*...*2*1Therefore, total permutations for (A,B,C) = 3*2*1

```
# version A
import itertools

matches = False
for p in itertools.permutations(s1): N! steps
   if p == s2: N steps
      matches = True
```

assumed sorted is $O(N \log N)$

what is the complexity of version A? O(N * N!)

what is the complexity of version B? $O(N \log N + N \log N) = O(2N \log N)$

$$s1 = tuple("...") # could be any string $len(s1) = N$
 $s2 = tuple("...")$ $len(s2) = N$$$

For Example, s1 = (A, B, C), then permutations of s1 are

ABC BCA

ACB CAB

BAC CBA

N choices	N-1 choices	N-2 choices	 2 choices	l choice

Total choices = N*(N-1)*(N-2)*...*2*1Therefore, total permutations for (A,B,C) = 3*2*1

```
# version A
import itertools

matches = False
for p in itertools.permutations(s1): N! steps
    if p == s2: N steps
        matches = True
```

what is the complexity of version A? O(N * N!)

what is the complexity of version B? $O(N \log N + N \log N) = O(2N \log N) = O(N \log N)$

print(nums)

```
9
```

i	# of items for the inner for loop
0	N
ľ	N-I
2	N-2
• • •	•••
N-I	I
N	0

selection_sort(nums)

print(nums)

```
9
```

```
\label{eq:def_selection_sort(L):} \text{ if this runs } f(N) \text{ times, where } N = \text{len}(L), \\ \text{for } i \text{ in } \text{range}(\text{len}(L)): \\ \text{idx_min} = i \\ \text{for } j \text{ in } \text{range}(i, \text{ len}(L)): \\ \text{if } L[j] < L[idx_min]: \\ \text{idx_min} = j \\ \text{# swap values at } i \text{ and } idx_min \\ L[idx_min], L[i] = L[i], L[idx_min] \\ \text{nums} = [2, 4, 3, 1] \\ \text{selection sort(nums)} \\ \text{The complexity of selection sort is } O(\_\_\_)
```

i	# of items for the inner for loop
0	N
I	N-I
2	N-2
• • •	•••
N-I	I
N	0

print(nums)

```
9
```

nums = [2, 4, 3, 1]
selection_sort(nums)
print(nums)

	then $f(N) = N + (N-1) + (N-2) + + 2 + 1 + 0$
	$-\frac{N(N+1)}{2}$
	2
n	ı]

The complexity of selection sort is

if this runs f(N) times, where N=len(L),

i	# of items for the inner for loop
0	N
I	N-I
2	N-2
• • •	•••
N-I	I
N	0

```
9
```

```
def selection_sort(L):
    for i in range(len(L)):
        idx_min = i
        for j in range(i, len(L)):
            if L[j] < L[idx_min]:
                idx_min = j

# swap values at i and idx_min
L[idx_min], L[i] = L[i], L[idx_min]</pre>
```

i # of items for the inner for loop

O N

I N-I

2 N-2

...

N-I I

N 0

if this runs $f(N)$ times, where $N=len(L)$,
then $f(N) = N + (N-1) + (N-2) + + 2 + 1 + 0$
$=\frac{N(N+1)}{N} = \frac{N^2 + N}{N}$
2 2

The complexity of selection sort is O(_____)

```
9
```

```
def selection_sort(L):
    for i in range(len(L)):
        idx_min = i
        for j in range(i, len(L)):
            if L[j] < L[idx_min]:
                idx_min = j

# swap values at i and idx_min
L[idx_min], L[i] = L[i], L[idx_min]</pre>
```

i	# of items for the inner for loop
0	N
I	N-I
2	N-2
• • •	•••
N-I	I
N	0

if this runs f(N) times, where N=len(L), then f(N) = N + (N-1) + (N-2) + ... + 2 + 1 + 0 $= \frac{N(N+1)}{2} = \frac{N^2 + N}{2} = \frac{N^2}{2} + \frac{N}{2}$

The complexity of selection sort is O()

```
9
```

i	# of items for the inner for loop
0	N
I	N-I
2	N-2
• • •	•••
N-I	I
N	0
	1

if this runs f(N) times, where N=len(L),

then
$$f(N) = N + (N - 1) + (N - 2) + ... + 2 + 1 + 0$$

$$= \frac{N(N + 1)}{2} = \frac{N^2 + N}{2} = \frac{N^2}{2} + \frac{N}{2}$$

The complexity of selection sort is

$$O(\frac{N^2}{2} + \frac{N}{2}) = O(\frac{N^2}{2}) = O(N^2)$$