

Course Overview

You are here...

Term	CDF	GCD	GCDAI	PGPDSAI
Term 1	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python
Term 2	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques
Term 3	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling
		Minor Project	Minor Project	Minor Project
Term 4		Machine Learning Foundation	Machine Learning Foundation	Machine Learning Foundation
Term 5		Machine Learning Intermediate	Machine Learning Intermediate	Machine Learning Intermediate
Term 6		Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)
		Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)
		Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)
		Capstone Project	Capstone Project	Capstone Project
Term 7		Bonus: Industrial ML (ML – 4 & 5)	Basics of AI, TensorFlow, and Keras	Basics of AI, TensorFlow, and Keras
Term 8			Deep Learning Foundation	Deep Learning Foundation
Term 9			NPL – I/CV – I	CV – I
Term 10			NLP – II/CV – II	NLP – I
			Capstone Project	Capstone Project
Term 11				CV – II
Term 12				NLP – II
				NLP – III + CV – III
				AutoVision & AutoNLP

Term Context

- Introduction to Machine Learning
- Linear Regression
- Logistic Regression

- **Regression Measures**
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

1. Confusion Matrix

- It describes the performance summary of prediction result of a classification model.
- Gives types of errors being made i.e. Type I and Type II Errors.

(General View)

	Predicted Negative	Predicted Positive	Total
Actual Negative	Actual Negative True Negative		N
Actual Positive	False Negative	True Positive	Р
Total	N'	P'	P + N

(Example: Cancer Classification)

	Predicted No	Predicted Yes	Total
Actual No	100	10	110
Actual Yes	5	50	55
Total 105		60	165

False Positive = Type 1 Error False Negative = Type 2 Error

Regression Measures

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

- Confusion Matrix (GOD FATHER)
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- **Classification Report**

2. Accuracy

- It gives a measure of correct classification of tuples when the class distribution is relatively balanced.
- In the pattern recognition literature, this is also referred to as the Overall Recognition Rate of the classifier.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

	Predicted No	Predicted Yes	Total
Actual No 100		10	110
Actual Yes	5	50	55
Total 105		60	165

Accuracy =
$$\frac{50 + 100}{50 + 100 + 10 + 5} = \frac{150}{165} = 0.93$$

(Relatively Balanced Class Data)

Need of Model Evaluation

Regression Measures

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

- **Confusion Matrix**
- Accuracy 95.1. -- 90.7. 80.7. Classification Error 5.1. 10.7. 20.7.
- Sensitivity / Specificity
- Precision / Recall
- F Measure / Fβ Measure
- ROC/AUC
- **Classification Report**

3. Classification Error

- It gives a measure of incorrect classification of tuples when the class distribution is relatively balanced.
- This is also referred to as the **Misclassification** rate of the classifier.

Error Rate =
$$\frac{FP + FN}{TP + TN + FP + FN}$$

	Predicted No	Predicted Yes	Total
Actual No 100		10	110
Actual Yes	5	50	55
Total 105		60	165

Error Rate =
$$\frac{10+5}{50+100+10+5} = \frac{15}{165} = \underline{0.09}$$

(Relatively Balanced Class Data)

Need of Model Evaluation

- Regression Measures
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared
- **Classification Measures**
- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

TPR 4. Sensitivity / Specificity

- Sensitivity is referred to as **True Positive Rate** i.e., the proportion of positive tuples that are correctly identified.
- Specificity is referred to as True Negative Rate i.e., the proportion of negative tuples that are correctly identified.

Sensitivity =
$$\frac{TP}{P}$$

$$\sum Specificity = \frac{TN}{N}$$

	Predicted No	Predicted Yes	Total
Actual No	9560	140	9700
Actual Yes	210	90	300
Total	9770	230	10,000

(Imbalanced Class Data)

Need of Model Evaluation

- Regression Measures
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

5. Precision / Recall

- Precision provides measure of exactness, i.e. what percentage of tuples labelled as positive are actually such.
- Recall provides measure of completeness, i.e. what percentage of positive tuples are labelled as such.

$$\mathbf{Recall} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

	Predicted No	Predicted Yes	Total
Actual No	9560	140	9700
Actual Yes	210	90	300
Total	9770	230	10,000

Precision =
$$90 \div 230 = 0.39$$

Recall =
$$90 \div 300 = 0.30$$

(Imbalanced Class Data)

- **Need of Model Evaluation**
- Regression Measures
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared
- **Classification Measures**
- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- F Measure / Fβ Measure
- ROC/AUC
- Classification Report

6. F – Measure / F_{β} – Measure

- It is also known as F₁ score which is an alternative way to combine Precision and Recall into single measure.
- It is the harmonic mean of precision and recall by which it gives equal weight to precision and recall.

F = 2 *
$$\frac{\text{precision} * \text{recall}}{\text{precision} + \text{recall}}$$

	Predicted No	Predicted Yes	Total
Actual No	Actual No 9560		9700
Actual Yes	210	90	300
Total	9770	230	10,000

$$F = 2 * \frac{0.39 * 0.30}{0.39 + 0.30} = 0.339$$

(Imbalanced Class Data)

6. F – Measure / F_{β} – Measure Cont.

- It is a weighted measure of precision and recall which assigns β times as much weight to recall as to precision.
- Commonly used F_{β} measures are F_2 and $F_{0.5}$.

$$F_{\beta} = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

	Predicted No	Predicted Yes	Total
Actual No 9560		140	9700
Actual Yes	210	90	300
Total	9770	230	10,000

$$F_{0.5} = \frac{(1+0.5^2) * 0.39 * 0.30}{0.5^2 * 0.39 + 0.30} = 0.36$$

(Imbalanced Class Data)

Regression Measures

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

7. ROC/AUC

- Receiver Operating Characteristic (ROC)/Area Under Curve (AUC).
- It provides visual measurement of performance for classification problem at various thresholds settings.
- It is also written as AUROC (Area Under the Receiver Operating Characteristics).
- ROC is a probability curve and AUC represents degree or measure of separability.
- It tells us the capability of model in distinguishing between classes.
- Higher the AUC, better the model is at predicting 0s as 0s and 1s as 1s.

Graphical Representation of AUROC

AUROC Example

- Let's say a model predicts probabilities whether a person having cancer or not.
- Using these probabilities, we plot the distribution as shown:

- Red distribution = Cancer No
- Green distribution = Cancer Yes

AUROC Example Cont.

A cut – off is decided to divide the patients having cancer or not. This is known as threshold point.

- Positive values above threshold True Positives
- Negative values above threshold False Positives
- Negative values below threshold True Negatives
- Positive values below threshold False Negatives

Trade Off between Sensitivity vs Specificity

- When we decrease the threshold, we get more positive values i.e. Sensitivity increases & Specificity decreases.
- When we increase the threshold, we get more negative values i.e. Sensitivity decreases & Specificity increases.

Trade Off between Sensitivity vs Specificity Cont.

- To plot ROC curve, instead of Specificity we use (1 Specificity).
- Now, as we increase the threshold, we decrease the TPR as well as the FPR.
- When we decrease the threshold, we are increasing the TPR and FPR.

- As Sensitivity increases, 1 Specificity also increases.
- As Sensitivity decreases, 1 Specificity also decreases.

Area Under Curve (AUC)

- The AUC is the area under the ROC curve.
- This score gives us a good idea of how well the model performances.

ROC – AUC Score Comparison

Classifiers with good performance usually lie in between the random ROC curve (baseline) and the perfect ROC curve.

Model Comparisons

- Model P with AUC = 1 gives perfect performance.
- Model R having AUC = 0.5 gives random predictions.
- Classifier A outperforms classifier B, as AUC score of A > B

Need of Model Evaluation

- **Regression Measures**
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

8. Classification Report

- The classification report function builds a text report showing the main classification metrices.
 - Precision
 - Recall
 - F1-score
 - Support: Support is the number of occurrences of each class in Actual Target.

	precision	recall	f1-score	support
0 1	0.77 0.79	0.89 0.62	0.82 0.69	106 73
avg / total	0.78	0.78	0.77	179

Classification Report of the Cancer Survival model

Till Next Time...

