#### Projeto e Simulação de uma ULA RISC-V em VHDL

Dérick Daniel Silva de Andrade - 23/1003522 CIC0099 - Organização e Arquitetura de Computadores

#### Introdução

O presente trabalho tem como objetivo a construção e simulação de uma ULA em VHDL para o processador RISC-V de 32 bits no EdaPlayground. O circuito possui três entradas, uma para o opcode da instrução e duas para os dados; e três saídas: o resultado da operação realizada, uma flag para o resultado zero e outra flag para o resultado dos testes de condição. O funcionamento da ULA se dá através do comando case-when para verificar o opcode e comandos if then else para atribuir o valor das flags de zero e de condição.

## Comparações com e sem sinal

As comparações sem sinal são feitas utilizando o conversor unsigned() que faz com que o número seja considerado como um inteiro positivo. Já a comparação com sinal é feita com o conversor signed e faz com que o número esteja representado em complemento de 2 com o bit mais significativo como representante do sinal.

## Detecção de overflow

A detecção de overflow na soma pode ser feita a partir da comparação do bit mais significativo de ambos números, se ambos forem iguais e o resultado da soma for diferente deles, então ocorreu overflow.

Na subtração, o overflow ocorre quando subtrai-se números de sinais opostos e pode ser detectado comparando o bit mais significativo de ambos, se forem diferentes verifica-se o sinal do subtraendo, que deve ser o oposto do sinal do resultado.

# Segue a tabela e as forma de onda do testbench:

| Α          | Ор  | В          | Z          | А         | Op   | В         | Z |
|------------|-----|------------|------------|-----------|------|-----------|---|
| 3          | ADD | 5          | 8          | 4         | SLT  | 4         | 0 |
| 3          | ADD | ې          | 0          | 0xFFFFFFE | SLTU | 0xFFFFFFF | 1 |
| 3          | ADD | -5         | -2         | 0xFFFFFFF | SLTU | 0xFFFFFFE | 0 |
| 5          | SUB | 3          | 2          | 0xFFFFFFF | SLTU | 0xFFFFFFF | 0 |
| 5          | SUB | 5          | 0          | 4         | SGE  | 3         | 1 |
| 5          | SUB | -9         | 14         | 4         | SGE  | -4        | 0 |
| 5          | SUB | 10         | -5         | _         | 302  |           |   |
| 0xFFFFFFF  | AND | 0x0F0F0F0F | 0x0F0F0F0F | 3         | SGE  | 4         | 0 |
| 0x0000FFFF | OR  | 0xFFFF0000 | 0xFFFFFFF  | 4         | SGE  | 4         | 1 |
| 0xAAAAAAA  | XOR | 0x5555555  | 0xFFFFFFF  | 0xFFFFFFF | SGEU | 0xFFFFFFE | 1 |
| 0x00000001 | SLL | 0x00000004 | 0x00000010 | 0xFFFFFFE | SGEU | 0xFFFFFFF | 0 |
| 5          | SRL | 1          | 2          | 0xFFFFFFF | SGEU | 0xFFFFFFF | 1 |
| 0x80000005 | SRA | 0x00000001 | 0xC0000002 | 0xFFFFFFF | SEQ  | 0xFFFFFFF | 1 |
| 3          | SLT | 4          | 1          | 0xFFFFFFF | SEQ  | 0xFFFFFFE | 0 |
| 4          | SLT | 3          | 0          | 0xFFFFFFF | SNE  | 0xFFFFFFE | 1 |

