

Informed Search

Georges Sakr ESIB

Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
- Graph Search

Recap: Search

Recap: Search

Search problem:

- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans

Uninformed Search

Uniform Cost Search

Strategy: expand lowest path cost

The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

[Demo: contours UCS empty (L3D1)]

[Demo: contours UCS pacman small maze (L3D3)]

Informed Search

- A heuristic is:
 - A function that estimates how close a state is to a goal
 - Designed for a particular search problem

- A heuristic is:
 - A function that estimates how close a state is to a goal
 - Designed for a particular search problem

- A heuristic is:
 - A function that estimates how close a state is to a goal
 - Designed for a particular search problem

- A function that estimates how close a state is to a goal
- Designed for a particular search problem

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

Straight line distance to ESIB

Bekfaya	366
ESIB	0
Hazmieh	160
Karantina	242
Mansourieh	178
Dekwaneh	77
Jal El Dib	244
Nahr El Mot	241
Broumana	380
Mkales	98
Ain Saade	193
Beit Mery	253
Antelias	329
Baabdat	374

h(x)

Example: Heuristic Function

Straight line distance to ESIB

Bekfaya	366
ESIB	0
Hazmieh	160
Karantina	242
Mansourieh	178
Dekwaneh	77
Jal El Dib	244
Nahr El Mot	241
Broumana	380
Mkales	98
Ain Saade	193
Beit Mery	253
Antelias	329
Baabdat	374

h(x)

Expand the node that seems closest...

Expand the node that seems closest...

What can go wrong?

Expand the node that seems closest...

What can go wrong?

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

[Demo: contours greedy empty (L3D1)]

[Demo: contours greedy pacman small maze (L3D4)]

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

[Demo: contours greedy empty (L3D1)]

[Demo: contours greedy pacman small maze (L3D4)]

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]

[Demo: contours greedy pacman small maze (L3D4)]

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

UCS

UCS

Greedy

Example: Teg Grenager

Uniform-cost orders by path cost, or backward cost g(n)

Example: Teg Grenage

Uniform-cost orders by path cost, or backward cost g(n)

Example: Teg Grenage

Uniform-cost orders by path cost, or backward cost g(n)

Example: Teg Grenage

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

Example: Teg Grenager

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

Example: Teg Grenager

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

Example: Teg Grenage

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

Should we stop when we enqueue a goal?

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

What went wrong?

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

Proof:

Imagine B is on the fringe

Proof:

Imagine B is on the fringe

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
 Definition of f-cost

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$

$$f(n) \le g(A)$$

Definition of f-cost Admissibility of h

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$

$$f(n) \le g(A)$$

$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal h = 0 at a goal

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B

$$f(n) \le f(A) < f(B)$$

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand beforeB

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand beforeB
- A expands before B

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand beforeB
- A expands before B
- A* search is optimal

Properties of A*

Properties of A*

Uniform-Cost

UCS vs A* Contours

Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Comparison

Greedy Uniform Cost A*

A* Applications

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)] [Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Creating Heuristics

 Most of the work in solving hard search problems optimally is in coming up with admissible heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Example: 8 Puzzle

Actions

Goal State

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

 Heuristic: Number of tiles misplaced

Goal State

- Heuristic: Number of tiles misplaced
- Why is it admissible?

Goal State

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) =

Goal State

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) =

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

Statistics from Andrew Moore

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) =
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

Statistics from Andrew Moore

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) =
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

Statistics from Andrew Moore

What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?

Goal State

- What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance

Goal State

- What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?

Goal State

- What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?
- 7
 2
 4

 5
 6

 8
 3
 1

Total Manhattan distance

Start State

Goal State

- Why is it admissible?
- h(start) =

What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?

Total Manhattan distance

Start State

Goal State

- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18

What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?

Total Manhattan distance

Start State

Goal State

- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

 With A*: a trade-off between quality of estimate and work per node

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expande
 - What's wrong with it?

 With A*: a trade-off between quality of estimate and work per node

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expande
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

• Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work.

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work.

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Idea: never expand a state twice

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

State space graph

State space graph

State space graph

State space graph

State space graph

State space graph

State space graph

State space graph

Main idea: estimated heuristic costs ≤ actual costs

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A to C)$$

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A to C)$$

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A to C)$$

Consequences of consistency:

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A to C)$$

- Consequences of consistency:
 - The f value along a path never decreases

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A to C)$$

- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A to C)$$

- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

A* graph search is optimal

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

