# CS 440 Introduction to Artificial Intelligence

Lecture 21:

Cross-Validation – Linear Regression

May 7, 2020

- Agent cannot directly observe state of environment
  - Observations agent makes are limited and noisy
- Agent's actions can influence state of environment
- Results of actions not deterministic
  - Defined by probability distribution

#### Formalization

- State space S
  - Agent does not know what state it is in
- Set of actions A
  - Actions can be noisy
  - Results of actions a probability distribution over other states
- Transition function T(s,a)
  - T(s,a) result of taking action a while in state s
    - Noisy actions:
      - T(s,a) is a probability distribution over state space
      - $T(s,a) = \{p(s'_1), p(s'_2), ..., p(s'_n)\}$ 
        - where p(s',) is the probability that performing action a while in state s
          will result in state s'
    - Defined for all combinations of s∈S, a∈A
- Reward function R
- Immediate objective: Agent must determine what action to take in order to maximize future expected reward

- Belief defined as a probability distribution over state space
- $S = \{s_1, s_2, ..., s_n\}$
- $b = \{p(s_1), p(s_2), ..., p(s_n)\}$ 
  - p(s<sub>i</sub>) is the agent's estimate of the likelihood it is in state s<sub>i</sub>
- For discrete state space consists of a probability for each state
  - Often times probability of most states will be 0
- For non-discrete problem consist of a probability density function
  - Example: Gaussian

## Exploration vs Exploitation

- Exploration
  - Gain information about environment
  - Reduce uncertainty of belief
- Exploitation
  - Find a solution to the problem
    - Reach the goal
    - Get to a high reward state
- A solution to the pomdp needs to balance exploration and exploitation





environment













### Rutgers

## End of Reasoning Under Uncertainty

- Probability
- Bayes theorem
- Bayesian Networks
- Markov Chains
- Markov Decision Processes
- Hidden Markov Models
- Partially Observable Markov Decision Processes

### RUTGERS Learning and Reasoning in Unknown Environments

What is Learning?

### RUTGERS Learning and Reasoning in Unknown Environments

- What is Learning?
  - Use previous experience to solve problem
  - Example solutions to problems
    - Learning by demonstration
  - Examine trends in data to predict solution
    - Data mining
  - Train agent to perform task
    - Reinforcement learning

- Model
  - Representation of environment
  - Queried to find solutions to problems
- Models used in first two thirds of class
  - Examples:
    - State/Action/Transition/Reward models
    - Bayesian networks
    - Markov models
    - Logical statements
  - We defined these models
  - Agent used models we built
- What if we allowed the agent to build the models?

#### Learned Model

- Allow agent to build or modify model
  - Example: Robot map its environment
    - Robot must generate some representation of its environment
    - Able to query this representation
- Models may not be intuitive to programmer
  - Mapping of inputs to solutions

### Decision Trees Revisited

- Used tables of data to build decision trees
- Tree we built could be seen as a learned model
  - Learned from data in table
  - Example of data mining
- Could we adapt decision tree algorithm to build tree dynamically?
  - Build tree as we classify data
  - Adapt tree based on data being classified

# A Regression Problem



# Linear Regression



Objective: Minimize the

Sum of Squared Errors

i.e. sum of squared differences

between y values

and the green line

$$y = W_0 + W_1 \cdot x$$

- ŷi is the prediction of the linear model
- · yi the actual value for input xi
- Then minimize:  $Q = \Sigma i (\hat{y}i yi)2$

# Quadratic Regression



Objective: Minimize the

Sum of Squared Errors

i.e. sum of squared differences

between y values

and the green curve

$$y = W_0 + W_1 \cdot x + W_2 \cdot x^2$$