

MD407 – En ARM-baserad laborationsdator för utbildning

Examensarbete inom Högskoleingenjörsprogrammet i Elektroteknik

Fredrik Östman

MD407 - En ARM-baserad laborationsdator för utbildning

Fredrik Östman

© FREDRIK ÖSTMAN, 2014

Institutionen för data- och informationsteknik Chalmers tekniska högskola 412 96 Göteborg

Tel: 031-772 1000 Fax: 031-772 3663

Institutionen för data- och informationsteknik Göteborg, 2014

Förord

Detta examensarbete är genomfört på Chalmers och syftar till att utveckla en ny laborationsdator baserad på en 32-bitars ARM-processor. Arbetet är en del av högskoleingenjörsprogrammet Elektroteknik på Chalmers och är påbörjat under 2013 och slutfört 2014 och skall totalt sett motsvara 15 högskolepoäng.

Jag vill tacka Roger Johansson för all hjälp som handledare för projektet.

Fredrik Östman

Sammanfattning

Syftet med projektet är att ta fram en laborationsdator baserad på en 32-bitars ARM-processor. Denna skall främst vara avsedd till att användas för undervisning kring maskinorienterad programmering. Ett nytt system behövs för att ersätta befintlig laborationsutrustning som i dag används i flertalet elektronik-relaterade kurser på Chalmers. I dagsläget används olika plattformar i de kurser som hålls och förhoppningen är att en ny plattform skall kunna ersätta dessa med en gemensam lösning.

Roger Johansson påbörjade under 2013 arbetet med att ta fram en kravspecifikation för den nya utrustningen. Arbetet med att konstruera prototyper och montera dessa har pågått under 2013 och 2014, allt arbete är utfört på Chalmers under handledning av Roger.

Resultatet av arbetet är en färdig prototyp som är redo att funktionstestas. Om tester visar att allt fungerar som det ska så kommer plattformen med stor sannolikhet integreras i undervisningen och användas under laborationer.

Systemet kan kompletteras med expansionsmoduler vilket innebär att det kan kompletteras för att fungera nya laborationer samt som en grundenhet vid exjobb och projekt.

Utvecklingen av plattformen har skett framförallt med fokus på att ta fram stabil hårdvara som är både elektrisk och mekanisk lämpad för sitt syfte. Detta innebär att ingen mjukvara är inkluderad i arbetet. Kravspecifikation, elektriska scheman och översikt av prototyp är bifogade i slutet av rapporten.

Innehåll

1	Inle	edning	1
	1.1	Bakgrund	1
	1.2	Syfte	1
	1.3	Avgränsningar	2
2	Met	tod	2
	2.1	Genomgång av kravspecifikation	2
	2.2	Schemaritning	2
	2.3	Kretskortskonstruktion	3
	2.4	Montering och test av prototyper	3
3	Tek	nisk dokumentation av MD407	4
	3.1	Kravspecifikation	4
	3.2	Översikt av MD407	5
		3.2.1 ARM-processor	5
		3.2.2 CAN	5
		3.2.3 Ethernet	5
		3.2.4 OTG USB	6
		3.2.5 USB Debug	6 6
		3.2.7 SD minneskort	7
		3.2.8 Nätdel	7
		3.2.9 Skyddskretsar	8
	3.3	Expansions moduler	10
4	Unr	oföljning av kravspecifikation	11
4	Opp	Joining av kravspecinkation	11
5	Disl	kussion och slutsatser	13
6	Fort	tsatt utveckling	13
\mathbf{A}	\mathbf{Kre}	etsschema	15
В	Kon	nponentplacering	22
\mathbf{C}	Kon	nponentlista	23
		vspecifikation	25
\mathbf{E}	Tids	splanering	32
\mathbf{F}	Plai	nering av gränssnitt anslutna till processor	33

Beteckningar

Lista över beteckningar som används i denna rapport.

- CAN Controller Area Network
- UART Universial Asynchronous Receiver/Transmitter TA BORT
- PCB Printed Circuit Board
- CAD Computer Aided Design
- ESD Electric Static Discharge
- PWM Puls Width Modulation
- RMII Reduced Media Independent Interface
- SDIO Secure Digital Input Output
- **GPIO** General-purpose input/output
- TVS Transient-voltage-suppression

1 Inledning

I detta kapitel ges en kort inledning till projektet vilket innefattar bakgrund, syfte och avgränsningar.

1.1 Bakgrund

Befintlig laborationsutrustning för flera elektronikrelaterade kurser där undervisning kring maskinorienterad programmering hålls på Chalmers börjar bli föråldrade och behöver ersättas. Behovet är stort av ett gemensamt system istället för unika lösningar för olika laborationer och olika kurser.

Det finns flera färdiga utvecklingsplattformar tillgängliga på marknaden men ingen av dessa är helt lämpade då de inte uppfyller de krav som ställs utan att ansluta flera lösa expansionsmoduler. Att utveckla mjukvara och dokumentation för en ny plattform är ett mycket omfattande arbete vilket innebär att det behöver användas under en längre period. Det är därför viktigt att garantera långsiktig tillgång av hårdvara vilket gör det olämpligt att använda färdiga lösningar som kan sluta tillverkas efter ett par år.

1.2 Syfte

Syftet med projektet är att utveckla en öppen utbildningsdator baserad på en 32-bitars ARM-processor som kan användas under kurser, laborationer och projekt på Chalmers.

Laborationsdatorn skall vara anpassad efter behoven som finns i olika kurser och dessutom vara pedagogiskt utformad. Hårdvaran måste vara konstruerad på ett sätt som gör den tålig mot ESD, felkopplingar och mekaniska påfrestningar.

Målet är att projektet ska leda till en plattform som täcker kravspecifikationen och är tillräckligt välkonstruerad för att tillverka ett antal prototyper för att testa i mindre skala.

När prototyp finns färdig skall dokumentation sammanställas för att möjliggöra vidare utveckling och produktion av fler enheter.

Det långsiktiga målet är att plattformen skall ersätta befintlig laborationshårdvara på Chalmers och utgöra en enhetlig hårdvara i flera kurser. En stabil hårdvara med flera användningsområden kommer samtidigt minska behovet av flera olika lösningar vilket innebär en långsiktig lösning med mindre miljöpåverkan.

1.3 Avgränsningar

- Projektets fokus är främst utveckling av hårdvara och dokumentation av denna. I mån av tid kommer prototyp att testas med hjälp av programkodsexempel från tillverkaren av processorn men detta är inget som att behandlas i denna rapport.
- Inga färdiga expansionsmoduler kommer att konstrueras men underlag för att underlätta konstruktion av dessa kommer att tas fram. Underlagen kommer att bestå av mallar som kan användas i följande CAD program: Cadsoft Eagle PCB, Altium Designer samt KiCAD. Dessa mallar inkluderar mekaniska dimensioner över kortet och information om vart de olika stiften är anslutna in i ARM-processorn.
- Hårdvara som tillverkas för hand kommer att endast att avsedd för att testa prototyper och underlaget kommer ej att vara anpassat för massproduktion.

2 Metod

I detta kapitel beskrivs de olika arbetsmomenten i projektet.

2.1 Genomgång av kravspecifikation

Första delen av projektet bestod av att granska kravspecifikationen som sammanställts av Roger Johansson. Kravspecifikationen är ett resultat av en förstudie där behovet hos olika föreläsare på Chalmers har samlats in för att komma fram till vad som ny utrustning skall innehålla för att få ett så brett användningsområde som möjligt. Efter diskussioner under de första veckorna utvidgades kravspecifikationen att omfatta alla krav.

2.2 Schemaritning

Genom att utgå från några befintliga utvecklingsplattformar [1, 2]och studera dess uppbyggnad valdes olika delar ut som var lämpliga att implementera i den nya plattformen. Denna information användes tillsammans med referenskonstruktioner från fabrikanters datablad för att ta fram ett kretsschema.

Schemat ritades upp i mjukvaran Cadsoft Eagle PCB [3] och granskades tillsammans med handledare under flera möten för att garantera att allt var korrekt och uppfyllde kraven. Eagle PCB användes för detta arbete på grund av att denna mjukvara har använts till andra delar av utbildningsutrustningen och enhetlig dokumentation efterfrågades.

2.3 Kretskortskonstruktion

Med färdigt schema påbörjades processen med att konstruera kretskortet.

Kontaktdon placerades ut på lämpliga positioner och de yttre måtten för kretskortet ritades ut. I design processen lades stort fokus på att få en mekaniskt stabil konstruktion där kontaktdon placerades på ena sidan av kortet för att inte vara i vägen för expansionsmoduler som monteras ovanpå kortet. Övriga komponenter placerades sedan ut och kopplades samman enligt schemat. Specifik information kring rekommendationer av kretskortskonstruktion för de olika komponenterna hämtades från fabrikanternas datablad för respektive kretsar.

2.4 Montering och test av prototyper

Då kretskortskonstruktionen var färdig beställdes mönsterkort och komponenter för två prototyper och monterades för hand med lödugn. Första versionen av kortet fungerade bra men saknade vissa komponenter som till exempel ESD skydd på expansionskontakter. Då dessa delar var uppdaterade beställdes version två av mönsterkorten och ytterligare tre prototyper monterades. Fortsatta tester visade att konstruktionen fortfarande hade vissa fel men dessa kunde korrigeras genom att kapa banor på mönsterkortet och löda in tunt kablage.

Korrigeringar av dessa fel fördes in i underlagen vilket gav den slutgiltiga versionen (Bilaga A). En maskinellt tillverkad upplaga av den sista versionen beställdes i 10 exemplar för utvärdering på Chalmers.

3 Teknisk dokumentation av MD407

Detta kapitel beskriver hur de olika delarna av plattformen fungerar samt motivering till varför de finns med.

3.1 Kravspecifikation

Detta är en kort sammanfattning av kravspecifikationen, den fullständiga kravspecifikationen finns bifogad som bilaga D.

- MD407 skall byggas kring en ARM-processor.
- Underlag och dokumentation skall släppas som öppen hårdvara.
- MD407 skall stödja kommunikation via CAN, Ethernet, USB-master och USB-slave.
- Kortet skall vara konstruerat på ett sätt som minskar risken för skador vid felkoppling av ledare, kortslutning, ESD-stötar eller liknande.
- Samtliga I/O anslutningar på processorn skall vara tillgängliga via stiftlister för att kunna ansluta expansionsmoduler.
- Fyra kontaktdon med totalt 32 I/O skall finnas för bakåtkompatibilitet mot befintlig laborationsutrustning.
- En 3.5mm analogutgång med förstärkare skall vara integrerad på kortet för att kunna ansluta t.ex. hörlurar.
- Systemet ska vara pedagogiskt utformat och vara väldokumenterat.
- Utvecklingen av hårdvaran ska ske i Cadsoft Eagle PCB.
- Nätdelen ska vara konstruerad för matningsspänning upp till 50V DC och vara skyddad mot pol-vändning på dess ingång.

3.2 Översikt av MD407

Följande kapitel beskriver de olika delarna av utvecklingsplattformen. Referenser till kretsar (Ux) är till kretsschemat i Bilaga A.

3.2.1 ARM-processor

ARM-processorn som valdes till projektet för att uppfylla kravspecifikationen är SMT32F407 [4].

Genom att konfigurera processorn är det möjligt att välja vilka ben som de olika gränssnitten SPI, UART, CAN osv. skall kopplas till. Konfigurering kan ej ske helt fritt eftersom att de flesta gränssnitt har två till tre möjliga ben de kan anslutas till. Genom att studera datablad och ansluta kretsar på rätt sätt kan samtliga gränssnitt användas samtidigt utan konflikt.

Bilaga F visar hur de olika gränssnitten är anslutna till processorn och verifierar samtidigt att varje gränssnitt har en dedikerad port som kan knytas direkt till den interna logiken för respektive gränssnitt [4].

Dessutom är gränssnitten anslutna utan att använda port D och E på processorn vilket innebär att 32 parallella digitala kanaler är tillgängliga som portar X3, X4, X5 och X7.

3.2.2 CAN

Portarna K4 och K5 används för CAN-kommunikation. Till dessa portar ansluts RJ11-kablage med 4 eller 6 ledare av den typ av kabel som normalt används till fasta telefoner.

De två kretsarna MAX13054ASA+ (U24 och U25) används eftersom CAN-kommunikation sker med hjälp av differentiell kommunikation och signalerna från ARM sker med 0-5V logikniåver. Dessutom har kretsarna inbyggt kortslutnings- och överspänningsskydd på utgående signalledare[5].

Då kortet är bestyckat med dubbla CAN-portar är det möjligt att koppla kabel mellan dessa och på så sätt laborera med att sända och ta emot CAN-data genom "loopback" med en laborationsdator..

3.2.3 Ethernet

Ethernet-kontrollern DP83848 (U23) hanterar all nätverkskommunikation. Kretsen är ansluten till ARM-processorn genom att använda RMII vilket reducerar antalet ledare som krävs för att ansluta kretsen till processorn [6].

Kontakten X9 är av den typ som har en inbyggd transformator istället för att kontakten och transformatorn är två separata komponenter. Den inbyggda transformatorn ger en galvanisk skild kommunikation vilket är viktigt för att förhindra att jordströmmar mellan två kommunicerande enheter uppstår.

3.2.4 OTG USB

Porten K2 används för att ansluta USB-enheter direkt till ARM-processorn och låta denna agera master och kommunicera med enheterna. Denna port kan användas för att ansluta till exempel tangentbord, USB-minnen och liknande.

Kretsen STMP2141STR (U17) begränsar den ström som finns tillgänglig för USB anslutna enheter till 500mA och indikerar med hjälp av LED3 om gränsen överskrids.

3.2.5 USB Debug

Port K1 används för USB-kommunikation mellan ARM-processorn och en dator. Kretsen FT230X (U18) emulerar en serieport på den dator den ansluts till vilket ger en enkel kommunikationskanal mellan enheterna.

Gränssnittet kan användas både för generell kommunikation och för att ladda ner program till ARM-processorn. För att ladda över mjukvara till ARM-processorn krävs en enkel monitor som placeras i processorns minne. Denna mjukvara kommer att utvecklas på Chalmers innan plattformen introduceras på laborationer.

En annan stor fördel med denna port är att det genom att ställa strömbrytaren (SW1) i rätt läge är möjligt att låta hela plattformen drivas av den tillgängliga strömmen i USB porten i datorn.

3.2.6 Hörlursförstärkare

Förstärkarkretsen TPA6111A2D (U14) används för att förstärka signalen från ARM-processorn för att driva hörlurar som ansluts till 3.5mm-uttaget (X8) [7].

Signalen till förstärkarkretsen kan genereras på två sätt från utgången PA5.

- PWM signal som lågpassfiltreras med hjälp utav R10 och C21 vilket genererar en varierande analog spänning till förstärkaren.
- DAC signal med hjälp utav DAC2 OUT enheten på processorn.

På den aktuella konstruktionen är ljudnivån satt till en fast nivå som anses ge en lämplig ljudnivå i anslutna hörlurar. Nivån går att ändra genom att byta värde på motstånd R14 och R15 men i kommande versioner skulle det vara möjlighet att ersätta detta motstånd med en potentiometer.

Hörlursuttaget kan även användas till andra tillämpningar som till exempel generering av vågformer för analys med oscilloskop i laborationsyfte.

3.2.7 SD minneskort

Hållaren för minneskort (U13) kan användas för att ansluta ett micro-SD-kort till processorn. Kommunikation med minneskortet kan ske genom ett SDIO- eller SPI-gränssnitt. SPI-gränssnittet har valts på denna plattform då det är lättare att implementera stöd för kommunikation med minneskort i mjukvaran på processorn. Nackdelen med att använda SPI är att det ger en långsammare överföringshastighet av data mellan processor och minneskortet både vid läsning och skrivning.

Vid behov av snabbare dataöverföring kan en SDIO ansluten modul konstrueras och anslutas via expansionsportarna.

3.2.8 Nätdel

Plattformen kan matas via Debug USB (K1) anslutningen eller den interna stabiliserade nätdelen. Vid de tillfällen högre inspänning önskas som till exempel vid batteridrift ansluts kortet till den externa DC-kontakten (K3). I detta läge är det i princip bara den fysiska kontakten på nätdelen som begränsar vilken nätdel som kan anslutas så länge den är av DC typ. Helvågslikriktaren på ingången gör att polariteten på ingången inte har någon betydelse.

Den switchade nätdelen på kortet är konstruerad med regulatorn TPS54160ADGQ (U21) från Texas Instruments. Den maximala inspänningen till denna är 60V och spänning på utgången konfigureras av värden på resistorerna R34 och R35. Kretsen kan maximalt leverera 1.5A men är begränsad med automatsäkring till 1A. Om kortet matas via USB är strömmen dock begränsad till 500mA eftersom ett normalt USB uttag inte klarar av att leverera mer ström.

3.3V genereras av linjär regulatorn LP3875EMP-3.3 (U6) och den maximala strömmen på 3.3V-matningen begränsas av säkringarna F1 och F2.

3.2.9 Skyddskretsar

GPIO-anslutningarna på ARM-processorn är relativt tåliga och klarar sig normalt sett bra vid försiktigt användande då de har skyddsdioder på varje anslutning som klarar korta pulser med hög spänning. För att skapa en robust lösning och förlänga livslängden på systemet krävs ytterligare externa skyddskretsar.

Det finns olika sätt att skydda sig mot överspänning och ESD-urladdningar. Vilken typ av lösning som implementeras beror framförallt på vilken grad av skydd som krävs samt hur många GPIO-portar som behöver skyddas. Följande lösningar har utvärderats för att bedöma vilken som är lämplig och hur mycket plats som krävs på kretskortet för respektive lösning:

Lösning	Fördelar	Nackdelar
Resistor	Billig och enkel lösning	Strömbegränsad utgång,
		bandbreddsbegränsande som
		ingång, utrymmeskrävande,
		klarar ej långa pulser med
		överspänning.
RC filter	Billig lösning, något bättre	Strömbegränsande som utgång,
	skydd än med enbart	bandbreddsbegränsande som
	resistor då kondensatorn	ingång, utrymmeskrävande,
	kan absorbera	klarar ej långa pulser med
	urladdningar.	överspänning.
Resistor + TVS	Dyr lösning, klarar långa	Utrymmeskrävande
	pulser med överspänning	
IC-krets med flera	Kompakt lösning, ofta	Ej lämplig om kanalerna som
kanaler som	enkel parallell design på	behöver skyddas är utspridda på
individuellt skyddas	kretskortet, klarar långa	kretskortet då det blir svårt att
med TVS och	pulser med överspänning	nyttja alla kanaler i kretsen.
resistor.		

Tabell 1: Jämförelse mellan olika skyddslösningar för GPIO portar

Då det främsta kravet på skyddslösning i detta fall är att lösningen behöver vara kompakt då det är många GPIO portar som behöver skyddas valdes den sista lösningen: IC-kretsen TPD8F003 som skyddar 8 parallella anslutningar och är uppbyggd av både ESD-dioder och resistorer i en kapsel.

De övriga anslutningarna (CAN,USB och Ethernet) är skyddande med speciella skyddskretsar som är anpassade för de spänningsnivåer och den bandbredd som krävs för olika gränssnitt. Här behövde olika kretsar inte utvärderas på samma sätt som för anslutningarna till processorn då tillverkaren av de olika skyddskretsarna anger vilket gränssnitt de är avsedda för. Den avgörande faktorn var istället kostnaden för kretsarna.

Nätdelen är relativt tålig då spänningsregulatorn klarar upp till 60V. Utöver detta har en likriktarbrygga placerats direkt efter inkommande matningsspänning vilket gör det möjligt att ansluta en spänningskälla med godtycklig polaritet.

3.3 Expansions moduler

För expansion av plattformen med moduler anpassade för nya kurser eller projekt är samtliga in/utgångar från processorn tillgängliga via två stycken 50 pinnars kontaktdon. I kontakterna finns även $3.3\mathrm{V}$ och $5\mathrm{V}$ tillgängligt.

Plattformen har utformats på ett sätt som gör att samtliga knappar och kontaktdon är tillgängliga även om en expansionsmodul är ansluten.

För att förenkla processen med att ta fram nya expansionsmoduler har mallar med kontaktdon placerade på rätt positioner samt de yttre maximala måtten för modulen tagits fram. Målet är att successivt ta fram mallar till de större PCB-CAD-mjukvarorna och i detta projekt har exempelmallar för Eagle PCB, KiCad samt Altium tagits fram.

Som ett exempel på hur moduler kan se ut konstruerades en modul för att ansluta Digilent moduler till MD407.

Figur 1: Expansionsmodul för Digilent-moduler

4 Uppföljning av kravspecifikation

I detta kapitel sker uppföljning i tabellform av de krav som är ställda i den bifogade krav-specifikationen (Bilaga D).

Krav	Uppfyllt?	Hur är kravet uppfyllt?
1.1	JA	Tydlig märkning av I/O pinnar
1.2	JA	Kommunikation möjlig genom bland annat CAN och USB
1.3	JA	Väldokumenterad konstruktion med tydligt elektriskt schema
2.1	JA	MD407 är baserad på ARM-processorn STM32F407
2.2	JA	Kontakt med JTAG gränssnitt finns på kortet
2.3	JA	Möjligt via JTAG interface
2.1.1	JA	USB, Ethernet, USB-master, USB-host stödjs
2.1.2	JA	Då det är möjligt att konfigurera vilka ben på processorn som de olika
		gränssnitten kan anslutas till går det att anpassa efter aktuella behov.
		Bilaga F visar hur gränssnitten har konfigurerats för att användas
		samtidigt utan konflikt.
2.2.1	JA	Två 50 portars IDC kontakter ger tillgång till alla ben på processor
2.2.2	JA	Fyra kontaktdon på sidan av kortet
2.3.1	JA	Grön lysdiod kopplad till matningsspänningen
2.3.2	JA	Två lysdioder monterade och anslutna till processor
2.3.3	JA	Knapp ansluten till reset ingång på processor
2.3.4	Delvis	Stiftlist med tre lägen
3.1	JA	Konstruktion utförd utan att hänsyn till någon standard
3.2.1	JA	STM32F407 uppfyller minneskraven
3.3.1	JA	Alla kommunikationsgränssnitt tillgängliga via 50 portars IDC
		kontakter
3.3.2	JA	En 8MHz kristall är ansluten till ARM-processorn. Med hjälp av intern
		PLL i processorn kan klockfrekvensen justeras från 2MHz upp till
		168MHz. Detta gör det möjligt att anpassa klockfrekvensen efter
		aktuellt behov och då samtidigt påverka EMI och strömförbrukning.
		Den externa kretsen som hanterar nätverkskommunikationen
		(DP83848) har en egen oscillator på 50MHz. Denna frekvens är ej
		valbar då kretsen behöver en 50MHz referensignal för att hantera
		nätverkskommunikationen.
3.3.3	Delvis	Konstruktion efter rekommendationer i kretsars datablad, EMC ej
		testad
3.4.1	JA	Kortets yttre dimensioner är 160x100mm
3.5.1	JA	EMC ej uppmätt men konstruktion har utförts med EMC i åtanke
3.6.1	JA	Regulator klarar max 60V in och säkringar begränsar ström
3.6.2	JA	Helvågslikriktning på ingång
3.7.1	JA	ESD dioder på samtliga anslutningar
3.8.1	JA	Datablad för kretsar som används har studerats under designarbetet
3.9.1	JA	6st fästpunkter placerade på punkter med hård belastning
3.10.1	JA	Vid normal drift i rumstemperatur är inga komponenter varma
3.11.1	NEJ	Framgår ej i det elektriska schemat men kommer att ingå i manualen

Tabell 2: Uppföljning av kravspecifikation

5 Diskussion och slutsatser

Syftet och målet med projektet var att utveckla tillverka en fungerande prototyp av MD407 enligt given kravspecifikation.

Utvecklingen har gått bra och samtliga punkter i kravspecifikationen är uppfyllda. Resultatet av arbetet är en prototyp som är tillverkad och redo att testas för att få återkoppling från användare samt verifiera att MD407 lämpar sig för de tilltänkta användningsområdena.

Tidig respons från anställda på Chalmers har varit positiv och initiala tester visar att MD407 bör fungera utmärkt för sitt syfte.

Arbetet med utvecklingen av MD407 påbörjades i mars 2013 och följde till en början den ursprungliga tidsplanen. Underlag i form av schema och kretskortslayout var färdigställda i början av maj månad och ett första prototyp kretskort samt komponenter beställdes. I slutet av maj monterades och testades MD407 och de fel som upptäcktes korrigerades på kretskortet och i underlagen. Arbetet stannade sedan upp på grund av studieuppehåll innan rapportskrivningen hade påbörjats. Under ett uppehåll på ett år utfördes endast mindre uppdateringar på underlag samt beställning av 10 st färdiga kretskort för utvärdering på Chalmers.

När arbetet med att skriva rapport startade i augusti 2014 gick det åt mycket tid för att sätta sig in i projektet igen och arbetet avbröts flertalet gånger vilket ledde till att det tog ytterligare ett år innan rapporten lämnades in. Uppehållet mellan projekt och rapportskrivning var väldigt ineffektivt och innebar mycket extra arbete.

6 Fortsatt utveckling

När de enheter som beställdes i slutfasen av projektet har testats för att se att allt fungerar behöver återkoppling sammanställas för att utföra eventuella förändringar och tillägg innan fler enheter produceras. Dessa tester bör utföras av både studenter och föreläsare för att få in synpunkter från en så bred grupp som möjligt.

När uppdatering av underlag har skett bör en förserie av kort tillverkas för att introducera MD407 på Chalmers i ett fåtal kurser för vidare utvärdering. Om MD407 visar sig fungera bra kan användningen successivt ökas till fler kurser.

Det kommer att krävas mycket arbete med att ta fram laborationer och mjukvara för dessa men detta arbete är redan påbörjat.

Det långsiktiga målet är att undersöka möjligheten att låta fler skolor använda plattformen. En större volym av tillverkade kort skulle reducera kostnaden per enhet och göra samarbete kring laborationsunderlag mellan olika skolor möjligt.

Som en del av den fortsatta utvecklingen är förhoppningen att användare av plattformen själva tar fram expansionsmoduler till plattformen och gör dessa tillgängliga för övriga användare. Detta kommer att innebära att moduler för många olika tillämpningar kommer att finnas tillgängliga efter några år.

Referenser

- [1] Discovery kit for STM32F407, STMicroelectronics, 01 2014, rev. 4. [Online]. Available: http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf (2014-03-21)
- [2] STM3220G-EVAL evaluation board, STMicroelectronics, 01 2012, rev. 5. [Online]. Available: http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00022972.pdf (2013-04-21)
- [3] EAGLE PCB CAD software, Cadsoft. [Online]. Available: http://www.cadsoftusa.com/ (2013-03-31)
- [4] STM32F407 datasheet, STMicroelectronics, 10 2015, rev. 6. [Online]. Available: http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf (2015-10-01)
- Industry-Standard High-Speed CAN Transceivers with 80V Fault Protection, Maxim Integrated, 2 2013, rev. 1. [Online]. Available: http://datasheets.maximintegrated.com/en/ds/MAX13050-MAX13054.pdf (2014-02-21)
- [6] Extreme Temperature Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver, Texas Instruments, 6 2012. [Online]. Available: http://www.ti.com/lit/ds/symlink/dp83848-ep.pdf (2013-03-16)
- [7] 150-mW Stereo Headphone Audio Amplifier, Texas Instruments, 6 2004, rev. 2. [Online]. Available: http://www.ti.com/lit/ds/symlink/tpa6111a2.pdf (2013-05-31)

A Kretsschema

B Komponentplacering

C Komponentlista

MD407 rev

ģ	Value	Device	ge	Parts
_		PINHD-2X3		JP1
7	100R	R-EU_R0603	R0603	R1, R4
;				C1, C2, C3, C4, C5, C6, C7, C8, C29, C32, C40, C43, C44, C45, C48,
23	100n/X7R/50V	C-EUC0603	C0603	C49, C50, C51, C52, C53, C54, C55, C56
က	10k	4R-NCAY16	CAY16	RN1, RN2, RN3
_	10k	R-EU_R0603	R0603	R2, R3, R9, R11, R23, R24, R30
_	1A	1812L050PR	PTC1812L	F1
7	1k5	R-EU_R0603	R0603	R37, R38
က	1u/X7R/25V	C-EUC0805	C0805	C23, C24, C26
_	200k	R-EU_R0603	R0603	R31
4	20k	R-EU_R0603	R0603	R12, R13, R14, R15
_	220n/X7R/25V	C-EUC0805	C0805	C21
7	22p	C-EUC0603	C0603	C10, C13
7	22u/X5R/6V3	C-EUC1206	C1206	C27, C28
_	25436NAH	25436NAH	25436N	SW1
_	27R	4R-NCAY16	CAY16	RN4
2	27R	R-EU_R0603	R0603	R10, R19, R20, R21, R22
_	2k2	4R-NCAY16	CAY16	RN7
7	2k2	R-EU_R0603	R0603	R36, R39
_	2n7	C-EUC0603	C0603	C37
4	2u2/X5R/6V3	C-EUC0603	C0603	C11, C12, C14, C15
7	30k	R-EU_R0603	R0603	R17, R34
_	330R	4R-NCAY16	CAY16	RN9
1	3n9	C-EUC0603	C0603	C36
7	4.7nF/100V	C-EUC0805	C0805	C57, C58
_	4.87k	R-EU_R0603	R0603	R40
_	400mA	1812L020PR	PTC1812L	F2
3	47u/X7R/16V	C-EUC2220K	C2220K	C35, C41, C42
_	4p7	C-EUC0603	C0603	C38
13	4u7/X7R/16V	C-EUC0805	C0805	C9, C16, C17, C18, C19, C20, C22, C25, C30, C31, C39, C46, C47
7	4u7/X7S/100V	C-EUC1210	C1210	C33, C34
_	500901-0801	500901-0801	MICROSD_500901-0801	U13
က	51R	4R-NCAY16	CAY16	RN5, RN6, RN8
2	59R	R-EU_R0603	R0603	R6, R41, R42, R43, R44
_	5k6	R-EU_R0603	R0603	R35
4	61201021621	61201021621	057-010-1	X3, X4, X5, X7
_	61202021621	61202021621	057-020-1	X2
l				

Page 1

MD407_rev4

7	61205021621	61205021621	057-050-1	X1, X6
_	61400416021	61400416021	61400416021	K2
_	61400416121	61400416121	61400416121	K1
7	6,15006E+11	6,15006E+11	6,15006E+11	K4, K5
2	620R	R-EU_R0603	R0603	R18, R25, R26, R27, R33
က	742792097	R-EU_R0805	R0805	R5, R8, R16
_	7447789118	WE-PD-7447789118_73	WE-PD-7447789118_73 WE-PD_7332/7345_PLASTIC_BA L1	1-1
7	75k	R-EU_R0603	R0603	R7, R32
—	8MHz	7B-8.000MAAJ-T	CRYSTAL-SMD-5X3	γ1
_	Blue	LED0603		LED5
_	DF01S	DF01S	SOT508P985X260-4N	U19
_	DP83848CVV	DP83848CVV	QFP50P900X900X160-48N	U23
_	FC681465P	FC681465P	DC-PLUG	K3
3	FIDUCIAL	FIDUCIAL		U\$1, U\$2, U\$3
_	FT230XS	FT230XS		U18
_	FXO-HC736R-50	FXO-HC736R-50	CRYSTAL-SMD-7.5X5.2-6PIN	U22
က	Green	LED0603	LED-0603	LED2, LED4, LED6
_	J1011F01PNL	J1011F01PNL	.)	6X
—	KLBR4	KLBR4		X8
_	LP3875EMP-3.3	LP3875EMP-3.3	SOT15P696X180-5N	U20
7	MAX13054ASA+	MAX13054ASA+	SOIC127P600X175-8N	U24, U25
9	MOUNT-HOLE4.1	MOUNT-HOLE4.1	4,1	H1, H2, H3, H4, H5, H6
7	PESD2CAN,215	PESD2CAN,215	SOT23	U26, U27
က	RED	LED0603	LED-0603	LED1, LED3, LED7
7	SKQBARA010PTH	SKQBARA010PTH	TACTILE-PTH	S1, S2
_	SMF5.0AT1	SMF5.0AT1		D1
7	SP3003-02JTG	SP3003-02JTG	SOT65P220X110-5N	U15, U16
_	SS2H10-E3/52T	DIODE-DO214AA	DO214AA	D2
_	STM32F407VGT7	STM32F407VGT7		U1
_	STMPS2141STR	STMPS2141STR		U17
_	TPA6111A2D	TPA6111A2D	SOIC127P600X175-8N	U14
1	TPD8F003	TPD8F003	16-WFDFN	U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12
_	TPS54160ADGQ	TPS54160ADGQ	SOP50P490X110-11N	U21

Page 2

D Kravspecifikation

Detta kapitel innehåller den officiella kravspecifikationen från Chalmers.

Laborationsdator MD407, kravspecifikation

1 Generella krav, mål och syften

Laborationsdatorn MD407 är avsedd att användas I undervisning kring maskinorienterad programmering. Speciellt ska den stödja flera kommunikationsprotokoll och ha goda möjligheter till anslutning av olika in- och utmatningsenheter.

Laborationsdatorn ska kunna användas av en bred kategori med varierande bakgrund, från nybörjare till erfarna experter.

Krav 1.1:

Kortet skall vara utformat för att underlätta elektriska mätningar.

Krav 1.2:

Det skall vara möjligt att inkludera flertalet MD407 enheter i en installation och låta dessa kommunicera med varandra genom ett eller flera protokoll.

Krav 1.3:

Dokumentation av hårdvara skall göras tillgänglig för samtliga projektdeltagare samt släppas som öppen hårdvara. Underlaget skall vara tillräckligt detaljerat för att möjligöra reproduktion av den hådrvara som projektet resulterar i.

2 Funktionella krav

Krav 2.1:

MD407 skall vara baserad på en modern 32-bitars mikrokontroller, förslagsvis STM32F407.

Krav 2.2:

Ett JTAG gränsnitt skall vara tillgängligt på MD407 kortet. Det skall vara möjligt att programmera processorn med en standard PC genom att använda ett standard gränsnitt.

Krav 2.3:

MD407 skall stödja ISP programmering (dvs. Programmering av eneheten utan att att avlägsna några elektriska komponenter)

2.1 Kommunikationsgränsnitt

Krav 2.1.1:

MD407 skall stöjda följande kommunikationstandarder:

CAN, Ethernet, USB-master, USB-host.

Krav 2.1.2:

Det skall vara möjligt att samtidigt använda alla kommunikationsgränsnitt som är implementerade.

2.2 I/O anslutningar

Krav 2.2.1:

Samtliga I/O anslutningar på processorn skall vara tillgänliga genom expansionsportar.

Krav 2.2.2:

Fyra stycken kontaktdon med totalt 32 I/O är ett krav på kortet för bakåtkompabilitet med befintlig laborationsutrustning.

2.3 Användargränssnitt

Krav 2.3.1:

En lysdiod skall indikera att matninspänning är ansluten till MD407.

Krav 2.3.2:

Processorn på MD407 kortet skall med hjälp av lysdioder på kortet kunna användas för enklare felsökning och laborationer utan behöva ansluta extern mätutrustning.

Krav 2.3.3:

Det skall vara möjligt att utföra en reset av processorn utan att koppla ur matninspänningen till kortet.

Krav 2.3.4:

En stiftlist med plats för att placera en bygel på fyra olika positioner skall finnas på kortet. Dessa fyra lägen skall vara kopplade till ingångar på processorn och på så sätt göra det möjligt att ge indata till denna.

3 Icke-funktionella krav

3.1 Standard

Ingen specifik standard måste beaktas under designen av kortet.

3.2 Programvarukrav

Krav 3.2.1:

Den utvalda processorn skall minst uppfylla följande krav:

- -512 KB non-volatile program-memory
- -192 KB volatile data memory

3.3 Hårdvarukrav

Krav 3.3.1:

Samtliga ej använda kommunikationsgränsnitt på processorn skall vara tillgängliga på generalla I/O portar. Dessa kan behöva externa kretsar för att fungera.

Krav 3.3.2:

Utvald klockfrekvens för processorn skall inte vara högre än vad som anses vara nödvändigt för tilltänkta användningsområden. Detta för att minska EMI påverkan och strömförbrukningen.

Krav 3.3.3:

MD407 kortet skall vara designat för att uppfylla grundläggande krav för elektrisk säkerhet och EMI dämpning.

3.4 Mekaniska dimensioner

Krav 3.4.1:

De yttre dimensionerna på kortet skall följa standard för Europakort.

3.5 Elektromagnetisk kompatibilitet

Krav 3.5.1:

Det finns inga specifika krav för elektomagnetisk kompatibilitet förutom att kortet måste uppfylla grundläggande krav I EMC direktivet för att kunna CE märka produkten.

3.6 Elektrisk last

Nätdel

Krav 3.6.1:

Nätdelen skall vara konstruerad för inspänning mellan 12VDC till 48VDC. Säkring skall begränsa den totala ström användningen till 500mA.

Krav 3.6.2:

MD407 ska hantera polvändning av matningsspänning på kontakten till nätdelen.

3.7 I/O gränsnitt

Krav 3.7.1:

Samtliga I/O anslutningar skall vara ESD skyddade.

3.8 Kommunikations kretsar

Krav 3.8.1:

Kommunikationskretsar på kortet skall vara implementerade enligt tillverkarens rekommendationer. Inga specifika krav är specifierade för dessa kretsar.

3.9 Mekanisk påverkan

Krav 3.9.1:

Konstruktionen skall vara tillräckligt mekanisk robust för att användas i dess tilltänkta labratoriemiljö.

3.10 Klimatpåverkan

Krav 3.10.1:

MD407 skall vara designad för att användas i normal rumstemperatur (23 °C) med normal luftfuktighet.

3.11 Kemisk påverkan

Krav 3.11.1:

MD407 skall ej användas eller förvaras i en miljö som innehåller någon form av skadliga kemikalier som kan påverka kortet eller dess funktionalitet. Detta skall framgå tydligt i dokumentationen för slutanvändare.

Appendix 2

Översikt av kravspecifikation med uppskattning av hur viktigt det är att uppfylla de olika kraven samt relevansen av att verifiera att de olika kraven är uppfyllda.

V – Väldigt relevant, M – Medium relevant, E – Ej relevant

Table 3 – Kravspecifikation översikt

Subject	Krav ref.	MD407 design	MD407 Verifikation
Generella krav	1.1	V	V
и	1.2	V	V
и	1.3	V	M
Funktionella krav	2.1	V	V
u	2.2	V	V
u	2.3	V	V
u	2.1.1	V	V
u	2.1.2	М	М
ш	2.2.1	V	V
ш	2.2.2	V	V
ш	2.3.1	V	V
ш	2.3.2	V	V
и	2.3.3	V	V
u	2.3.4	V	V
Icke funktionella krav	3.1	М	Е
u	3.2	V	V
ш	3.3.1	V	V
ш	3.3.2	V	V
ш	3.3.3	V	N
ш	3.4.1	V	V
ш	3.5.1	V	N
Elektrisk last	3.6.1	V	V
и	3.6.2	V	V
I/O gränsnitt	3.7.1	V	V
Kommunikationskretsar	3.8.1	V	М
Mekanisk påverkan	3.9.1	V	М
Klimatpåverkan	3.10.1	V	N
Kemisk påverkan	3.11.1	М	М

E Tidsplanering

Innan projektet påbörjades upprättades en tidsplan enligt följande:

Månad	Vecka	Planerade mål
(2013)		
Mars	1	Genomgång kravspecifikation och förstudier.
	2	Fortsatt förstudie, sammanställning av lämpliga lösningar samt
		diskussion med handledare.
	3	Val av komponenter och planering över hur de olika gränssnitten
	3	skall anslutas till ARM-processor.
	4	Struktur för kretsschemat samt påbörja kretsschemat.
April	1	Fortsatt schemaritning
	2	Genomgång och kontroll av schema för att verifiera att
		kravspecifikation kan uppfyllas med konstruktionen.
		Genomgång av datablad för de olika kretsarna för att kunna
	3	ansluta dem och deras kringkomponenter så optimalt det går.
	J 3	Skapa footprints för komponenterna som ska monteras på
		kretskortet.
	4	Kretskorts CAD
Maj	1	Kretskorts CAD och genomgång av design med handledare
	2	Generering av underlag för beställning av kretskort och
		komponenter för beställning av första prototyp kretskortet
	3	Montering av kretskort samt funktionstest av hårdvara som ej
	, J	programmeras
	4	Buggfixar samt funktionstest av de olika gränssnitten på kortet
	4	med hjälp av mjukvara från tillverkaren av ARM-processor.
Juni	1	Rapportskrivning
	2	Rapportskrivning
	3	Rapportskrivning samt förberedelser inför muntlig presentation.

F Planering av gränssnitt anslutna till processor

Varje port i vänsterkolumnen kan kopplas till gränssnitten som finns i kolumnerna AF0-AF13. Gränssnitten har ett begränsat antal portar de kan kopplas till vilket innebär att de inte kan anslutas till valfritt ben på processorn. I följande lista har därför de markerade gränssnitten valts ut på ett sätt som gör att samtliga gränssnitt som är implementerade på kortet kan användas samtidigt utan att konflikt. Port PD och PE har avsiktligt lämnats oanvända eftersom att de har reserverats för att ge 32 stycken parallella I/O kanaler ut från processorn.

STM32F405xx, STM32F407xx

Pinouts and pin description

		4 AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
		AF14					z		×									
	AF13	DCMI					DCMI_HSYN		DCMI_PIXCK			од Тира	DCMI_D1					
	AF12	FSMC/SDIO /OTG_FS					OTG_HS_SOF											
	AF11	ΗΞ	ETH_MII_CRS	ETH_MII _RX_CLK _ETH_RMII_REF	ETH_MDIO	ETH_MII_COL				ETH MII RX DV ETH RMIII CRS_DV								
	AF10	OTG_FS/ OTG_HS				OTG_HS_ULPI_ D0		OTG_HS_ULPI_ CK			OTG_FS_SOF		OTG_FS_ID	OTG_FS_DM	OTG_FS_DP			
ping	AF9	CAN1/2 TIM12/13/							TIM13_CH1	TIM14_CH1				CAN1_RX	CAN1_TX			
ion map	AF8	UART4/5/ USART6	UART4_TX	UART4_RX														
Table 9. Alternate function mapping	AF7	USART1/2/3/ I2S3ext	USART2_CTS	USART2_RTS	USART2_TX	USART2_RX	USART2_CK				USART1_CK	USART1_TX	USART1_RX	USART1_CTS	USART1_RTS			
9. Altern	94V	SPI3/I2Sext /I2S3					SPI3_NSS I2S3_WS											SPI3_NSS/ I2S3_WS
Table	AF5	SP11/SP12/ 12S2/12S2e xt					SPI1_NSS	SPI1_SCK	SPI1_MISO	SPI1_MOSI								SPI1_NSS
	AF4	12C1/2/3									12C3_SCL	I2C3_SMB A						
	AF3	TIM8/9/10	TIM8_ETR		TIM9_CH1	TIM9_CH2		TIMB_CH1N	TIM8_BKIN	TIM8_CH1N								
	AF2	TIM 3/4/5	TIM 5_CH1	TIM5_CH2	EHO_2MIT	TIM5_CH4			TIM3_CH1	TIM3_CH2								
	AF1	TIM1/2	TIM2_CH1_ ETR	TIM2_CH2	TIM2_CH3	TIM2_CH4		TIM2_CH1_ ETR	TIM1_BKIN	TIM1_CH1N	TIM1_CH1	TIM1_CH2	TIM1_CH3	TIM1_CH4	TIM1_ETR			TIM 2_CH1 TIM 2_ETR
	AF0	SYS									MC01					JTMS- SWDIO	JTCK- SWCLK	JTDI
		Port	PA0	PA1	PA2	PA3	PA4	PA5	PA6	A PA7	PA8	PA9	PA10	PA11	PA12	PA13	PA14	PA15
										PortA								

47/

DocID022152 Rev 5

61/199

Pinouts and pin description

STM32F405xx, STM32F407xx

		AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
		AF14																
	AF13	DCMI						DCMI_D10	DCMI_D5	DCMI_VSYN	DCMI_D6	DCMI_D7						
	AF12	FSMC/SDIO /OTG_FS								FSMC_NL	SDIO_D4	spio_ps			OTG_HS_ID		OTG_HS_DM	OTG_HS_DP
	AF11	ЕТН	ETH_MII_RXD2	ETH_MII_RXD3				ETH_PPS_OUT			ETH_MILTXD3		ETH_MII_RX_ER	ETH_MII_TX_EN ETH RMII_TX_EN	ETH MILTXDO ETH RMILTXDO	ETH_MIL_TXD1 ETH_RMIL_TXD1		
ned)	AF10	OTG_FS/ OTG_HS	OTG_HS_ULPI_ D1	OTG_HS_ULP!_ D2				OTG_HS_ULP!_					OTG_HS_ULPI_	OTG_HS_ULPI_ D4	OTG_HS_ULPI_	OTG_HS_ULP!_ D6		
(contin	AF9	CAN1/2 TIM12/13/ 14						CAN2_RX	CAN2_TX		CAN1_RX	CAN1_TX			CAN2_RX	CAN2_TX	TIM12_CH1	TIM12_CH2
apping	AF8	UART4/5/ USART6																
Table 9. Alternate function mapping (continued)	AF7	USART1/2/3/ I2S3ext					I2S3ext_SD		USART1_TX	USART1_RX			USART3_TX	USART3_RX	USART3_CK	USART3_CTS	USART3_RTS	
ernate fu	AF6	SPI3/I2Sext /I2S3				SPI3_SCK I2S3_CK	SPI3_MISO	SPI3_MOSI I2S3_SD									I2S2ext_SD	
le 9. Alt	AF5	SP11/SP12/ 12S2/12S2e xt				SPI1_SCK	SPI1_MISO	SPI1_MOSI				SPI2_NSS I2S2_WS	SPIZ_SCK I2SZ_CK		SPIZ_NSS I2S2_WS	SPIZ_SCK I2S2_CK	SPI2_MISO	SPI2_MOSI I2S2_SD
Tab	AF4	12C1/2/3						I2C1_SMB	I2C1_SCL	12C1_SDA	I2C1_SCL	I2C1_SDA	I2C2_SCL	I2C2_SDA	I2C2_SMB			
	AF3	TIM8/9/10 /11	TIM8_CH2N	TIM8_CH3N							TIM10_CH1	TIM11_CH1					TIM8_CH2N	TIM8_CH3N
	AF2	TIM 3/4/5	TIM3_CH3	TIM3_CH4			TIM3_CH1	TIM3_CH2	TIM4_CH1	TIM4_CH2	TIM4_CH3	TIM4_CH4						
	AF1	TIM1/2	TIM1_CH2N	TIM1_CH3N		TIM2_CH2							TIM2_CH3	TIM2_CH4	TIM1_BKIN	TIM1_CH1N	TIM1_CH2N	TIM1_CH3N
	AF0	SYS				JTDO/ TRACES WO	NJTRST											RTC_ REFIN
		Port	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7	PB8	PB9	PB10	PB11	PB12	PB13	PB14	PB15
		ш									PortB							

62/199 DocID022152 Rev 5

STM32F405xx, STM32F407xx

Pinouts and pin description

		AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
		AF14 A	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVE	EVB
										-	2	en .	80	4	6			-
	AF13	DCMI							DCMI_D0	DCMI_D1	DCMI_D2	DCMI_D3	DCMI_D8	DCMI_D4	DCMI_D9			
	AF12	FSMC/SDIO /OTG_FS							spio_be	20 Olas	SDIO_D0	SDIO_D1	spio_bz	spio_p3	SDIO_CK			
	AF11	FT		ETH_MDC	ETH_MII_TXD2	ETH _MIL_TX_CLK	ETH_MII_RXD0	ETH MII RXD1										
(pər	AF10	OTG_FS/ OTG_HS	OTG_HS_ULP!_ STP		OTG_HS_ULPI_ DIR	OTG_HS_ULP!_ NXT												
(contin	AF9	CAN1/2 TIM12/13/ 14																
apping	84A	UART4/5/ USART6							USART6_TX	USART6_RX	USART6_CK		UART4_TX	UART4_RX	UART5_TX			
Table 9. Alternate function mapping (continued)	AF7	SPI3/I2Sext USART1/2/3/											USART3_TX/	USART3_RX	USART3_CK			
ernate fu	AF6	SPI3/I2Sext /I2S3			I2S2ext_SD					I2S3_MCK			SPIB_SCK/ I2S3_CK	SPI3_MISO/	SPI3_MOSI			
le 9. Alte	AF5	SP11/SP12/ 12S2/12S2e xt			SPI2_MISO	SPI2_MOSI I2S2_SD			I2S2_MCK			I2S_CKIN		12S3ext_SD				
Tab	AF4	12C1/2/3										I2C3_SDA						
	AF3	TIM8/9/10							TIM8_CH1	TIM8_CH2	TIM8_CH3	TIM8_CH4						
	AF2	TIM 3/4/5							TIM3_CH1	TIM3_CH2	TIM3_CH3	TIM3_CH4						
	AF1	Z/IW1/2																
	AF0	SYS										MCO2						
		r _o	82	PC1	PC2	PC3	PC4	PCS	PC6	PC7	PC8	PG	PC10	PC11	PC12	PC13	PC14	PC15
	Port									Port C								

DocID022152 Rev 5 63/199

Pinouts and pin description

STM32F405xx, STM32F407xx

						Tab	le 9. Alte	ernate fu	Table 9. Alternate function mapping (continued)	apping	(continu	(pər					
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SP11/SP12/ 12S2/12S2e xt	SPI3/12Sext //2S3	SPI3/125ext USART1/2/3/ //253 1253ext	UART4/5/ USART6	CAN1/2 TIM12/13/	OTG_FS/ OTG_HS	H	FSMC/SDIO /OTG_FS	DСМI	AF14	AF15
	PD0										CAN1_RX			FSMC_D2			EVENTOUT
	PD1										CAN1_TX			FSMC_D3		9	EVENTOUT
	PD2			TIM3_ETR						UART5_RX				SDIO_CMD	DCMI_D11		EVENTOUT
	PD3								USART2_CTS					FSMC_CLK			EVENTOUT
	PD4								USART2_RTS					FSMC_NOE		Ш	EVENTOUT
	PD5								USART2_TX					FSMC_NWE		Ш	EVENTOUT
	PD6								USART2_RX					FSMC_NWAIT			EVENTOUT
Port D	PD7								USART2_CK					FSMC_NE1/ FSMC_NCE2			EVENTOUT
	PD8								USART3_TX					FSMC_D13			EVENTOUT
	PD9								USART3_RX					FSMC_D14		ш	EVENTOUT
	PD10								USART3_CK					FSMC_D15		9	EVENTOUT
	PD11								USART3_CTS					FSMC_A16		9	EVENTOUT
	PD12			TIM4_CH1					USART3_RTS					FSMC_A17		Ш	EVENTOUT
	PD13			TIM4_CH2										FSMC_A18		Ш	EVENTOUT
	PD14			TIM4_CH3										FSMC_D0		В	EVENTOUT
	PD15			TIM4_CH4										FSMC_D1			EVENTOUT

64/199 DocID022152 Rev 5

STM32F405xx, STM32F407xx

Pinouts and pin description

		AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
		AF14																
	AF13	DCMI	DCMI_D2	DCMI_D3			DCMI_D4	DCMI_D6	DCMI_D7									
	AF12	FSMC/SDIO /OTG_FS	FSMC_NBL0	FSMC_NBL1	FSMC_A23	FSMC_A19	FSMC_A20	FSMC_A21	FSMC_A22	FSMC_D4	FSMC_D5	FSMC_D6	FSMC_D7	FSMC_D8	FSMC_D9	FSMC_D10	FSMC_D11	FSMC_D12
	AF11	ЕТН			ETH_MILTXD3	,				,	,	,						
(per	AF10	OTG_FS/ OTG_HS																
(continu	AF9	CAN1/2 TIM12/13/ 14		-			-	-	-						-	-	-	
apping	AF8	UART4/5/ USART6					-	-	-		-		-	-	-	-	-	
Table 9. Alternate function mapping (continued)	AF7	USART1/2/3/ I2S3ext																
ernate fu	AF6	SPI3/I2Sext /I2S3																
le 9. Alt	AF5	SP11/SP12/ 12S2/12S2e xt					-								-	-	-	
Tab	AF4	12C1/2/3																
	AF3	TIM8/9/10 /11					-	TIM9_CH1	TIM9_CH2	-	-	-			-	-	-	
	AF2	TIM 3/4/5	TIM4_ETR															
	AF1	TIM1/2			·			-		TIM1_ETR	TIM1_CH1N	TIM1_CH1	TIM1_CH2N	TIM1_CH2	TIM1_CH3N	TIM1_CH3	TIM1_CH4	TIM1_BKIN
	AF0	SYS			TRACECL K	TRACEDO	TRACED1	TRACED2	TRACED3									
		Port	DE0	PE1	PE2	PE3	PE4	PE5	PE6	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15
										PortE								

DocID022152 Rev 6 65/201