Effect of Potassium Fertilizer Rates on Soybean Trifoliate Concentration at Four different Location

Faith Oyewale OLABISI

Introduction

This study was conducted at four different locations in one year to assess the effect of potassium (K) fertilizer rates on soybean trifoliate K concentration at R4.

Each study was a randomized complete block design (RCBD) with K rate as the only treatment factor with levels 0, 50, 100, and 150 lbs K20/ac.

Note: The experiment work analysed in this project is a simulated experiment.

```
library(tidyverse)
library(car)
library(knitr)
library(readxl)
library(openxlsx)
library(lme4)
library(broom.mixed)
library(ggthemes)
library(emmeans)
library(multcomp)
```

```
soy_data <- read_excel('data/SoybeanWorkshop.xlsx', sheet = 'R')
view(soy_data)</pre>
```

Data Insight and Exploration

```
soy_data |>
    glimpse()
Rows: 16
Columns: 8
$ Plot
                              <dbl> 105, 203, 305, 401, 102, 207, 306, 402, 106, 202, 307, 404,~
$ TRT
                              <dbl> 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5
                              <chr> "R4", 
$ Stage
<dbl> 2.63, 2.76, 2.79, 2.67, 2.48, 2.87, 3.04, 2.67, 2.83, 3.17,~
$ A1.Kpct
$ 02.Kpct
                              <dbl> 1.17, 1.22, 1.32, 1.14, 1.60, 1.28, 1.30, 1.34, 1.85, 1.74,~
$ S1.Kpct
                              <dbl> 3.21, 2.90, 3.33, 3.13, 3.24, 3.28, 3.11, 3.35, 3.13, 3.10,~
                              <dbl> 0.74, 0.82, 1.05, 1.05, 0.95, 1.17, 1.25, 1.49, 1.21, 1.71,~
$ W1.Kpct
soy_data |>
str()
tibble [16 x 8] (S3: tbl_df/tbl/data.frame)
  $ Plot
                               : num [1:16] 105 203 305 401 102 207 306 402 106 202 ...
  $ TRT
                               : num [1:16] 1 1 1 1 2 2 2 2 4 4 ...
                              : chr [1:16] "R4" "R4" "R4" "R4" ...
  $ Stage
  $ Krate_lbac: num [1:16] 0 0 0 0 50 50 50 50 100 100 ...
                           : num [1:16] 2.63 2.76 2.79 2.67 2.48 2.87 3.04 2.67 2.83 3.17 ...
  $ A1.Kpct
  $ 02.Kpct
                           : num [1:16] 1.17 1.22 1.32 1.14 1.6 1.28 1.3 1.34 1.85 1.74 ...
  $ S1.Kpct : num [1:16] 3.21 2.9 3.33 3.13 3.24 3.28 3.11 3.35 3.13 3.1 ...
  $ W1.Kpct
                          : num [1:16] 0.74 0.82 1.05 1.05 0.95 1.17 1.25 1.49 1.21 1.71 ...
soy_data |>
    filter(
         Krate_lbac == 50 | Krate_lbac == 100
# A tibble: 8 x 8
                       TRT Stage Krate_lbac A1.Kpct 02.Kpct S1.Kpct W1.Kpct
     <dbl> <dbl> <chr>
                                                           <dbl>
                                                                              <dbl>
                                                                                                <dbl>
                                                                                                                   <dbl>
                                                                                                                                      <dbl>
         102
                            2 R4
                                                                  50
                                                                                2.48
                                                                                                   1.6
                                                                                                                     3.24
                                                                                                                                        0.95
1
2
         207
                            2 R4
                                                                  50
                                                                                                   1.28
                                                                                                                     3.28
                                                                                2.87
                                                                                                                                        1.17
```

```
3
    306
            2 R4
                             50
                                   3.04
                                                    3.11
                                                            1.25
                                           1.3
4
   402
            2 R4
                             50
                                   2.67
                                           1.34
                                                    3.35
                                                            1.49
5
   106
            4 R4
                            100
                                   2.83
                                           1.85
                                                    3.13
                                                            1.21
6
    202
            4 R4
                            100
                                   3.17
                                           1.74
                                                    3.1
                                                            1.71
7
            4 R4
                                   2.95
                                                            1.25
    307
                            100
                                           1.5
                                                    3.16
    404
            4 R4
                            100
                                   2.79
                                           1.19
                                                    2.95
                                                            1.53
```

```
soy_data |>
head(n = 10) |>
kable(
    caption = 'First Ten rows of the data'
)
```

Table 1: First Ten rows of the data

Plot	TRT	Stage	${\bf Krate_lbac}$	A1.Kpct	O2.Kpct	S1.Kpct	W1.Kpct
105	1	R4	0	2.63	1.17	3.21	0.74
203	1	R4	0	2.76	1.22	2.90	0.82
305	1	R4	0	2.79	1.32	3.33	1.05
401	1	R4	0	2.67	1.14	3.13	1.05
102	2	R4	50	2.48	1.60	3.24	0.95
207	2	R4	50	2.87	1.28	3.28	1.17
306	2	R4	50	3.04	1.30	3.11	1.25
402	2	R4	50	2.67	1.34	3.35	1.49
106	4	R4	100	2.83	1.85	3.13	1.21
202	4	R4	100	3.17	1.74	3.10	1.71

```
soy_data |>
summary() |>
kable(
   caption = 'Summary of the data'
)
```

Table 2: Summary of the data

Plot	TRT	Stage	$Krate_lbacA1.Kpct$		O2.Kpct	S1.Kpct	W1.Kpct
Min.	Min.	Length:16	Min.:	Min.	Min.	Min.	Min.
:102.0	:1.00		0.0	:2.480	:1.140	:2.900	:0.740
1st	1st	Class	1st Qu.:	1st	1st	1st	1st
Qu.:177.2	Qu.:1.75	:character	37.5	Qu.:2.737	Qu.:1.265	Qu.:3.087	Qu.:1.050

Plot	TRT	Stage	Krate_lba	cA1.Kpct	O2.Kpct	S1.Kpct	W1.Kpct
Median :255.5	Median :3.00	Mode :character	Median: 75.0	Median :2.810	Median :1.405	Median :3.145	Median :1.250
Mean :254.1	Mean :3.00	NA	Mean: 75.0	Mean :2.825	Mean :1.446	Mean :3.147	Mean :1.312
3rd Qu.:330.5	3rd Qu.:4.25	NA	3rd Qu.:112.5	3rd Qu.:2.942	3rd Qu.:1.570	3rd Qu.:3.217	3rd Qu.:1.575
Max. :407.0	Max. :5.00	NA	Max. :150.0	Max. :3.170	Max. :1.940	Max. :3.350	Max. :1.980

```
soy_data |>
summarise(
   mean_A1 = mean(A1.Kpct),
   mean_02 = mean(02.Kpct),
   mean_S1 = mean(S1.Kpct)
) |>
kable(
   caption = 'Mean of the three Plots'
)
```

Table 3: Mean of the three Plots

mean_A1	mean_O2	mean_S1
2.825	1.445625	3.146875

```
soy_data |>
names()

[1] "Plot" "TRT" "Stage" "Krate_lbac" "A1.Kpct"
```

"W1.Kpct"

Data Preparation for Analysis

"S1.Kpct"

[6] "02.Kpct"

In this chunk, we wrangled the data to best fit to perform data analysis and randomized complete block design

```
soy_data_final <- soy_data |>
  ## Convert the Krate from lbs/ac to Kg per hectare
  ## Represent the plot between 100 and 400 with a value of 1 to 4
 mutate(
   krate_kgha = Krate_lbac*0.453592/0.4044686,
   krate_kgha = round(krate_kgha, 0),
   Rep = case_when(
     Plot > 100 & Plot < 200 ~ 1,
     Plot > 200 & Plot < 300 ~ 2,
     Plot > 300 & Plot < 400 ~ 3,
     Plot > 400 ~ 4
    )
  ) |>
  ## Gather the location columns into a single column called 'location.k'
  gather(
   Location.k, K_pct,
   A1.Kpct, O2.Kpct, S1.Kpct, W1.Kpct
  ## Separate the location.k column into two different column
  ## called location and kname
  separate(
   Location.k,
   into = c('Location', 'Kname')
  ## select the columns that will be needed to perform the analysis
  dplyr::select(
   Location, Rep, krate_kgha, K_pct
  )
soy_data_final |>
  ## Group the data by the location of the site.
  group_by(
   Location
  ) |>
  summarise(
   meanK_pct = mean(K_pct),
# A tibble: 4 x 2
 Location meanK_pct
  <chr>
               <dbl>
```

1 A1

2.82

```
2 02 1.45
3 S1 3.15
4 W1 1.31
```

Data Visualization

```
## Visualize the rate of potassium application on the various site
soy_data_final |>
    ggplot(aes(as.factor(krate_kgha), K_pct))+
    geom_boxplot()+
    labs(
        x = "Rate of Potassium {krate_kgha}",
        y = 'K_pct',
        caption = '@FaithOyewaleOLABISI'
    )+
    theme_minimal()
```



```
## Visualize the rate of potassium application on the various site or location
soy_data_final |>
    ggplot(aes(as.factor(krate_kgha), K_pct))+
```

```
geom_boxplot(aes(fill = Location))+
theme_minimal()
```



```
soy_data_final |>
    ggplot(aes(as.factor(krate_kgha), K_pct))+
    geom_boxplot(aes(fill = Location))+
    facet_grid(.~Location)+
    theme_minimal()
```



```
soy_data_final |>
  ggplot(aes(K_pct))+
  geom_density(color = 'red')+
  theme_minimal()
```


Randomized Complete Block Design (RCBD) Model

```
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is near - Rescale variables?
```

soyk_mod

```
Linear mixed model fit by REML ['lmerMod']
Formula: K_pct ~ Location * fkrate_kgha + (1 | Location/frep)
   Data: soy_data_final_1
REML criterion at convergence: 17.9372
Random effects:
 Groups
                           Std.Dev.
              Name
 frep:Location (Intercept) 0.09027
               (Intercept) 0.15565
 Location
 Residual
                           0.15851
Number of obs: 52, groups: frep:Location, 13; Location, 4
Fixed Effects:
           (Intercept)
                                     Location1
                                                             Location2
               2.17417
                                       0.68583
                                                              -0.79333
             Location3
                                  fkrate_kgha1
                                                          fkrate_kgha2
               0.96917
                                      -0.17375
                                                              -0.01708
          fkrate_kgha3 Location1:fkrate_kgha1 Location2:fkrate_kgha1
               0.06125
                                       0.05375
                                                               0.01958
Location3:fkrate_kgha1 Location1:fkrate_kgha2 Location2:fkrate_kgha2
               0.15042
                                       0.01708
                                                              -0.05708
Location3:fkrate_kgha2 Location1:fkrate_kgha3 Location2:fkrate_kgha3
                                       0.04875
               0.12042
                                                               0.03458
Location3:fkrate_kgha3
              -0.13458
optimizer (nloptwrap) convergence code: 0 (OK); 0 optimizer warnings; 1 lme4 warnings
```

Anova(soyk_mod, type = 3)

Analysis of Deviance Table (Type III Wald chisquare tests)

Response: K_pct

Chisq Df Pr(>Chisq)

(Intercept) 657.961 1 < 2.2e-16 ***

Location 96.881 3 < 2.2e-16 ***

fkrate_kgha 25.995 3 9.561e-06 ***

Location:fkrate_kgha 30.987 9 0.0002975 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model Assumption

Within-group errors are iid $\sim N(0, var2)$

On this plot, looking for:

- Spread around zero
- Homogeneity (no patterns)
- Outliers (>3 or <-3)

```
soy_data_aug |>
  ggplot(aes(.fitted, .stdresid))+
  geom_point(aes(color = Location))+
  geom_hline(yintercept = c(-3, 0, 3), color = 'orange')+
  geom_smooth()+
  theme_minimal()
```

```
\ensuremath{\text{`geom\_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'
```


On this plot, looking for normality (points on top of line).

```
soy_data_aug |>
    ggplot(aes(sample = .stdresid))+
    stat_qq()+
    stat_qq_line()+
    theme_minimal()
```


Random effects are iid $\sim N(0,var1)$

On this plot, looking for normality.

```
randeff_LocRep <- ranef(soyk_mod)[[1]]

randeff_LocRep |>
    ggplot(aes(sample = '(intercept)'))+
    stat_qq()+
    stat_qq_line()+
    theme_minimal()
```

Warning in stat_qq(): All aesthetics have length 1, but the data has 13 rows. i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning in stat_qq_line(): All aesthetics have length 1, but the data has 13 rows. i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning: Computation failed in `stat_qq_line()`.
Caused by error in `(1 - h) * qs[i]`:
! non-numeric argument to binary operator


```
randeff_rep <- ranef(soyk_mod)[[2]]

randeff_rep |>
    ggplot(aes(sample = '(intercept)'))+
    stat_qq()+
    stat_qq_line()+
    theme_minimal()
```

Warning in stat_qq(): All aesthetics have length 1, but the data has 4 rows. i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning in stat_qq_line(): All aesthetics have length 1, but the data has 4 rows. i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning: Computation failed in `stat_qq_line()`.

Caused by error in `(1 - h) * qs[i]`:
! non-numeric argument to binary operator

Extracting model means and pairwise comparisons

Location = A1:

fkrate_kgha	${\tt emmean}$	SE	df	lower.CL	upper.CL
0	2.740	0.188	309	2.370	3.11
56	2.860	0.188	309	2.490	3.23
112	2.970	0.188	309	2.600	3.34
168	2.870	0.188	309	2.500	3.24

Location = 02:

fkrate_kgha emmean SE df lower.CL upper.CL 0 1.227 0.188 309 0.857 1.60

```
56
              1.307 0.188 309
                                 0.937
                                            1.68
 112
              1.477 0.188 309
                                  1.107
                                            1.85
              1.513 0.188 309
                                            1.88
 168
                                  1.144
Location = S1:
 fkrate_kgha emmean
                       SE df lower.CL upper.CL
              3.120 0.188 309
                                  2.750
                                            3.49
              3.247 0.188 309
                                            3.62
 56
                                  2.877
 112
              3.070 0.188 309
                                  2.700
                                            3.44
 168
              3.137 0.188 309
                                  2.767
                                            3.51
Location = W1:
                       SE df lower.CL upper.CL
 fkrate_kgha emmean
              0.915 0.180 467
                                  0.560
                                            1.27
 0
 56
              1.215 0.180 467
                                  0.860
                                            1.57
 112
              1.425 0.180 467
                                 1.070
                                            1.78
 168
              1.695 0.180 467
                                 1.340
                                            2.05
```

Degrees-of-freedom method: kenward-roger

Confidence level used: 0.95

Location = A1:

```
      fkrate_kgha
      emmean
      SE
      df
      lower.CL
      upper.CL
      .group

      112
      2.970000
      0.1879335
      309.42
      2.6002107
      3.339789
      a

      168
      2.870000
      0.1879335
      309.42
      2.5002107
      3.239789
      a

      56
      2.860000
      0.1879335
      309.42
      2.4902107
      3.229789
      a

      0
      2.740000
      0.1879335
      309.42
      2.3702107
      3.109789
      a
```

Location = 02:

```
      fkrate_kgha
      emmean
      SE
      df
      lower.CL
      upper.CL
      .group

      168
      1.513333
      0.1879335
      309.42
      1.1435440
      1.883123
      a

      112
      1.476667
      0.1879335
      309.42
      1.1068774
      1.846456
      ab
```

```
56
             1.306667 0.1879335 309.42 0.9368774 1.676456
             1.226667 0.1879335 309.42 0.8568774 1.596456
0
                                                            b
Location = S1:
 fkrate kgha
               emmean
                             SE
                                       lower.CL upper.CL .group
             3.246667 0.1879335 309.42 2.8768774 3.616456 a
56
 168
             3.136667 0.1879335 309.42 2.7668774 3.506456 a
0
             3.120000 0.1879335 309.42 2.7502107 3.489789 a
             3.070000 0.1879335 309.42 2.7002107 3.439789 a
112
Location = W1:
 fkrate_kgha
               emmean
                             SE
                                    df lower.CL upper.CL .group
             1.695000 0.1804059 467.10 1.3404923 2.049508
 168
             1.425000 0.1804059 467.10 1.0704923 1.779508
 112
             1.215000 0.1804059 467.10 0.8604923 1.569508
 56
0
             0.915000 0.1804059 467.10 0.5604923 1.269508
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
      then we cannot show them to be different.
      But we also did not show them to be the same.
```

```
soyk_pwc_LocRate |>
  ggplot(aes(fkrate_kgha, emmean))+
  geom_bar(aes(fill = Location), color = 'black',
           stat = 'identity', alpha = 0.8)+
  geom_text(aes(label = .group), nudge_y = 0.3,
            show.legend = F) +
 labs(
   x = 'K Rate (kg k2o/ha)',
   y = 'Plant K (%)',
    caption = '@Faith Oyewale OLABISI'
 )+
  theme minimal()+
 scale_fill_tableau()+
  theme(legend.position = 'none')+
  scale_y_continuous(limits = c(0, 4)) +
 facet_wrap(~Location)
```



```
soy_data_final_1 |>
    ggplot(aes(fkrate_kgha, K_pct))+
    geom_boxplot(aes(fill = Location), color = 'black', alpha = .8)+
    facet_wrap(~Location, scales = 'free')+
    scale_y_continuous(limits = c(.5, 4))+
    labs(
        x = 'K Rate (kg K20/ha)',
        y = 'Plant K (%)',
        caption = '@FaithOyewaleOLABISI'
    )+
    theme_minimal()+
    scale_fill_tableau()+
    theme(legend.position = 'none')
```


Acknowledgement

Kansas State University 2019 AGSA R Workshop - Introduction to R, taught by @leombastos.