

3799 - Kadj Squares

Asia - Tehran - 2006/2007

In this problem, you are given a sequence S_1 , S_2 ,..., S_n of squares of different sizes. The sides of the squares are integer numbers. We locate the squares on the positive x - y quarter of the plane, such that their sides make 45 degrees with x and y axes, and one of their vertices are on y = 0 line. Let b_i be the x coordinates of the bottom vertex of S_i . First, put S_1 such that its left vertex lies on x = 0. Then, put S_i , (i > 1) at minimum b_i such that

a)

$$b_i > b_{i-1}$$
 and

b)

the interior of S_i does not have intersection with the interior of $S_1...S_{i-1}$.

The goal is to find which squares are visible, either entirely or partially, when viewed from above. In the example above, the squares S_1 , S_2 , and S_4 have this property. More formally, S_i is visible from above if it contains a point p, such that no square other than S_i intersect the vertical half-line drawn from p upwards.

Input

The input consists of multiple test cases. The first line of each test case is n ($1 \le n \le 50$), the number of squares. The second line contains n integers between 1 to 30, where the i-th number is the length of the sides of S_i . The input is terminated by a line containing a zero number.

Output

For each test case, output a single line containing the index of the visible squares in the input sequence, in ascending order, separated by blank characters.

Sample Input

```
4
3 5 1 4
3
2 1 2
```

Sample Output

1 2 4 1 3

Tehran 2006-2007