# Understanding the Kubernetes CNI and Network Policy

July 27, 2022







# What is Project Calico?

The Project Calico community develops and maintains
Calico, an open source networking and network security solution for containers, virtual machines, and host-based workloads.



https://projectcalico.org

- @projectcalico
- https://github.com/projectcalico/community
- https://slack.projectcalico.org
- https://discuss.projectcalico.org

6000+

Slack channel members

150+

**Contributors** 

1,000,000+

Nodes powered by Calico every day



#### **The Kubernetes Network Model**



- IP per Pod → VMs & Processes ≅ Pods & Containers
- Isolation with Network Policy -> simple "flat" network



# **Kubernetes Network Implementations**





# **Kubernetes Network Implementations**





# Calico Quickstart Demo



# What is Network Policy?



- Simple "flat" network
- Isolation is not defined by the structure of the network



# **Kubernetes Network Policy**

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: blue-policy
  namespace: production
spec:
  podSelector:
    matchLabels:
      color: blue
  ingress:
  - from:
    - podSelector:
        matchLabels:
          color: red
    ports:
      - port: 80
```



## Introduction to the Sample Application

#### Yet Another Online Bank (YaoBank)





# **Kubernetes Network Policy Quick Demo**



# **Network Policy Support**

#### **Kubernetes Network Policy**

- Ingress & egress rules
- Pod selectors
- Namespace selectors
- Port lists
- Named ports
- IP blocks & excepts
- TCP, UDP, or SCTP

#### **Calico Network Policy**

- Namespaced & global scopes
- Deny and log actions
- Policy ordering
- Richer matches, including:
  - ServiceAccounts
  - ICMP
- Istio integration, including:
  - Cryptographic identity matching
  - Layer 5-7 match criteria



# **Calico Network Policy**

```
apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:
  name: blue-policy
  namespace: production
spec:
 order: 50
  selector: color == 'blue'
  ingress:
  - action: Allow
    protocol: TCP
    source:
      selector: color == 'red'
    destination:
      ports:
        - 80
```

```
apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
  name: red-policy
spec:
  order: 100
  selector: color == 'red'
  ingress:
  - action: Deny
    source:
      selector: color == 'blue'
  - action: Allow
    source:
      serviceAccounts:
        selector: color == 'green'
```



# Calico Network Policy Quick Demo



# Calico cluster and the eBPF data plane





# **Networking Software**

In networking, devices/networks usually each have an architecture of:

- A control plane
- A data plane

The blue arrows represent device and network state.

The green arrow represent "user" network traffic.



#### What is eBPF?

- A Linux kernel feature that lets you run small programs inside the Linux kernel
- Allows small programs to be loaded into the kernel, and attached to hooks
- Event driven
- Does not require kernel source code change or loading kernel modules
- Generic kernel v5.4.0+ or RH kernel v4.18.0-193+



# **About Pluggable Dataplanes**

- Today, Calico offers 4 <u>plugable</u> data planes:
  - Linux iptables
  - Windows HNS
  - Linux eBPF
  - Linux VPP\*

(\*currently tech-preview)





## **About Pluggable Dataplanes**

Control plane code reuse

Specialised, minimal dataplane code

- Targeted feature set
- Future-proofing
- Agility (for everyone!)





#### **About the Linux eBPF Data Plane**

- Scales to higher throughput
- Uses less CPU per Gigabit
- Has native support for Kubernetes services:
  - Preserves external client source IP addresses all the way to the pod
  - Supports DSR (Direct Server Return) for better efficiency
  - Uses less CPU than kube-proxy





### **TCP Connect Time**





# With Kube-Proxy (non-eBPF)





#### With Calico eBPF





# Calico eBPF Quick check Demo



# Recap of eBPF dataplane

- Alternative Calico dataplane for Linux
- Higher throughput = lower CPU/GBit
- Lower latency (especially for services)
- Preserves source IP from external clients
  - Good for web server logs
- kube-proxy replacement
- DSR on supported fabrics

big quality of life improvement



# Check your understanding - Q1

#### Select all that may apply:

The key principles of K8s' network model are:

- Every pod gets its own IP address
- Containers within a pod share the pod IP address and can communicate freely with each other
- Pods are in the same subnet
- 4. Pods can communicate with other pods in the cluster directly without NAT
- Pods are in an overlay network
- 6. Network isolation is defined using network policies
- Pods communicate with workloads outside the cluster without NAT



# Check your understanding - Q2

Select all that may apply:

Kubernetes Network Security.

- Assumes a flat pod network
- Is defined using network policies
- Is abstracted from the network using labels and selectors
- Relies in network plugins to enforce network policy
- 5. Relies on the capabilities of the underlying network



# Check your understanding - Q3

#### Select all that may apply:

#### eBPF...:

- 🔽 Is a mechanism for running small programs in a virtual machine within the Linux Kernel
- 2. Is a new way to write loadable kernel modules
- 🔽 🛮 Is a safe way to run code in the kernel due to sandboxing
- 4. Is restricted to only access networking related kernel functionality



# Thank you

https://projectcalico.org

Pick a channel

- @projectcalico
- https://github.com/projectcalico/community
- https://slack.projectcalico.org
- https://discuss.projectcalico.org



Follow us on:









