## Durabilité, résilience et changement de régime en modélisation et simulation participative

## Raphaël Duboz Étienne Delay

Cirad, UMR Astre, UMR Sens, IRD UMMISCO, UCAD, Dakar, Sénégal

















AVEC LE SOUTIEN DE











## Carte d'identité du projet : Recherche Action Participative

3 Composantes
4 Pays
6 Living Labs
14 Instituts partenaires
110 Chercheuses et Chercheurs
67 stages
7 thèses



#### **Financement et cofinancement :**

- Union européenne (4M€)
- Agence Française de Développement (2M€)
- Cirad (3,1M€)
- IRD (0,47M€)





### **Projets Intégrés:**





**TAZCO** 

**DELTA** 



#### Pays:

- Sénégal: Lac de Guiers
- Bénin: Zone cotonnière et maraîchère
- Laos: Province de Champasak
- Cambodge: Province de Battambang

## 3 Composantes

**Living Labs** 



# **Gestion des Connaissances Modélisation**





Ruche de Projets et coordination

Raphaël Duboz, Etienne Delay

# Durabilité Résilience Changement(s) de régime (s)

Application pêcherie continentale

#### Contexte:

La ressource halieutique est menacée par la surpêche et la pollution

Nous abordons la situation comme étant un problème de Commun





## \_Approche ComMod pour la modélisation du système avec les acteurs du système

Co-construction d'un modèle conceptuel avec la méthode ARDI (Acteur Ressources, Dynamiques, Interactions) (Etienne *et al.* 2011)







**Narratifs** 

.dot

# Approche ComMod pour la modélisation du système avec les acteurs du système

Capturer les dynamiques

| Mois                | Juillet  | Août     | Septembre | Octobre  | Novembre | Décembre | Janvier | Février | Mars | Avril | Mai  | Juin |
|---------------------|----------|----------|-----------|----------|----------|----------|---------|---------|------|-------|------|------|
| Prix du Galax (CFA) | 750-1000 | 750-1000 | 750-1000  | 750-1000 | 1250     | 1250     | 1250    | 1500    | 1500 | 1500  | 2500 | 2500 |





## -Approche ComMod pour la modélisation du système avec les acteurs du système

- Définition des éléments spatiaux (réserves communautaire?)
- Face validation avec les pêcheurs
- Intégration des modifications (prix du poisson, distance de pêche)



## Théorie de la viabilité (J.P. Aubin, 1991)

L'ensemble des évolutions d'un système dans un espace de contraintes K, connaissant les conditions initiales X(0) et le système de contrôle U

$$V(x_0) = \begin{cases} x(.) \lor x(0) = x_0 \text{ and } \begin{cases} x'(t) = f(x(t), u(t)) \\ u(t) \in U(x(t)) \lor t \ge 0 \end{cases}$$



2011

L'objectif est de trouver l'ensemble des états viables appartenant à K → Le noyau de viabilité

$$widtharpoonup Viab\,K = \left\{x_0 \in K, \exists \, x(.) \in V\left(x_0\right), \forall \, t \geqslant 0 \,, x(t) \in K\right\}$$



## Application pêcherie au Lac de Guiers, Sénégal



$$\begin{cases} \frac{dB}{dt} = rB(t) \left(1 - \frac{B(t)}{k}\right) - qanB(t) \\ \\ \frac{dC}{dt} = \alpha(qanB(t)) - \lambda n - \gamma C(t) \\ \\ u_1(t) = n \\ \\ u_2(t) = \alpha \\ \\ (u_1, u_2) \in U(x(t)) = [u_{1\min}, u_{1\max}] \times [u_{2\min}, u_{2\max}] \\ \\ (B, C) \in K = [B_{\min}, k] \times [C_{\min}, +\infty] \end{cases}$$



Une trajectoire viable pour B = 1500t et C = 70Mds FCFA à t=0

## \_\_\_\_\_ Travailler avec des modèles discrets, stochastiques et à horizon fini

#### J.D. Mathias and G. Deffuant and A. Brias

From tip-ping point to tipping set: Extending the concept of regime shift to uncertain dynamics for real-world applications. *Ecological Modelling*, 2024.

## Modèle de récolte d'une biomasse à croissance limitée par le capacité de charge du milieu

$$B(t+1) = B(t) \left[ g(K - B(t)(B(t) - \alpha) - hB(t) \right] \Delta t + \sigma_t \epsilon_{(t+1)} \Delta t$$



Régimes de satisfaction

# Approche ComMod pour la modélisation du système avec les acteurs du système

Un plan complet sur les inputs pour identifier les configurations satisfaisantes



→ Augmentation de la taille des réserves de pêche





# Approche ComMod pour la modélisation du système avec les acteurs du système



Pattern Space Exploration (Chérel et al, 2015)



Saison de pêche et pisciculture

« le nouveau a toujours contre lui les chances écrasantes des lois statistiques et de leur probabilité qui, pratiquement dans les circonstances ordinaires, équivaut à une certitude ; le nouveau apparaît donc toujours comme un miracle. » (Arendt 1957,p.302)



Transformer les résultats de modèles en narratifs qui fasse du sens pour les acteurs

# **Pour discuter :** de Prométhée aux Communs

Durabilité, satisfaction, autant de fenêtres ouvertent sur une approche par les Communs. (Delay et al. 2022) :

- Le conflit entre les communautés : comment accompagner une ontologie relationnelle plutôt qu'antagoniste.
  - La solutions proposer par les autochtones est résolument relationnelle (saisons de pêche et pisciculture).
- Donner du sens aux interventions dans le monde réel
- Accompagner les pêcheurs vers une émergence forte (réduire le décalage prométhéen).





## **Take-home Message**

#### Réduction:

- ARDI
- Modèle SMA & Viabilité

### Amplification:

- Transformer de la donnée en information (Data → Narratif)
- Discuter les éléments repoussoirs (Navigation négative)



B. Latour, 2007, le pédofile de boavista, la decouverte.

Les approches **ComMod**, une condition pour réduire le « **décalage prométhéen** » et opérationnaliser les **Communs**