Recall: Superposition for Linear Homogeneous ODEs

Suppose the linearly independent functions $y_1(t)$ and $y_2(t)$ both solve the 2nd order linear homogeneous ODE given by

$$L[y] = 0,$$
 then $y_h = c_1 y_1(t) + c_2 y_2(t)$

is the general solution to the homogeneous ODE.

Proof:

$$L \left[c_1 y_1 + c_2 y_2 \right] \stackrel{\text{Linearity 1}}{=} L \left[c_1 y_1 \right] + L \left[c_2 y_2 \right]$$

$$\stackrel{\text{Linearity 2}}{=} c_1 L \left[y_1 \right] + c_2 L \left[y_2 \right]$$

$$= c_1 \cdot 0 + c_2 \cdot 0 = 0$$

Superposition for Linear Inhomogeneous ODEs

Suppose the linearly independent functions $y_1(t)$ and $y_2(t)$ both solve the 2^{nd} order linear homogeneous ODE given by

$$L[y] = 0,$$
 then $y_h = c_1 y_1(t) + c_2 y_2(t)$

is the general solution to the homogeneous ODE. If some particular solution y_p solves $\frac{1}{1}$

$$L[y_p] = g(t) \neq 0,$$
 then $y = c_1 y_1(t) + c_2 y_2(t) + y_p$

is the general solution to the inhomogeneous ODE.

Proof:

$$L\left[c_{1}y_{1}+c_{2}y_{2}+y_{\rho}\right]\overset{\text{Linearity 1}}{=}L\left[c_{1}y_{1}\right]+L\left[c_{2}y_{2}\right]+L\left[y_{\rho}\right]$$

$$\overset{\text{Linearity 2}}{=}\underbrace{c_{1}L\left[y_{1}\right]+c_{2}L\left[y_{2}\right]}_{0}+\underbrace{L\left[y_{\rho}\right]}_{g(t)}=g(t)$$

For proof of uniqueness of y_p , see DiffQs §2.5.1

Solving Linear Inhomogeneous IVPs

$$L[y(t)] = g(t) \neq 0 \quad \Rightarrow \quad y(t) = y_h(t) + y_p(t)$$
 ex: Second order $L[y] = g(t) \neq 0$ with $y(0) = y_0$, $y'(0) = v_0$

$$y_h = c_1 y_1(t) + c_2 y_2(t)$$

$$y(0) = y_0 = c_1 y_1(0) + c_2 y_2(0) + y_p(0)$$

$$y'(0) = v_0 = c_1 y_1'(0) + c_2 y_2'(0) + y_p'(0)$$

Convert to matrix notation:

$$\begin{bmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 - y_p(0) \\ v_0 - y'_p(0) \end{bmatrix}$$

Same solvability condition as homogeneous IVPs ($W \neq 0$). Do not forget to include y_p when solving for c_1 and c_2 !

Rough idea for finding y_p for L[y] = g(t)

Method of Undeteremined Coefficients:

1. Find the family of functional forms obtained by differentiating g(t).

2. Guess a linear combination of the family members for y_p .

3. Plug guess into ODE and solve the algebraic system.

ex: Find the particular solution to $y'' + 2y' + 2y = 2t^2 - 2$.

Guess:
$$y_p = At^2 + Bt + C$$
 (3 Unknown Coefficients)

$$y'_{p} = 2At + B, \quad y''_{p} = 2A$$
$$2A + 2(2At + B) + 2(At^{2} + Bt + C) = 2t^{2} - 2$$
$$2At^{2} + (4A + 2B)t + 2(A + B + C) = 2t^{2} - 2$$

group by powers of t: (3 Algebraic Equations)

$$\frac{t^2:}{2At^2 = 2t^2} \Rightarrow A = 1$$

$$\frac{t^1:}{4At + 2Bt} = 0$$

$$4 + 2B = 0 \Rightarrow B = -2$$

$$\frac{t^0:}{2A + 2B + 2C} = -2$$

$$2 - 4 + 2C = -2 \Rightarrow C = 0$$

 $y_p = t^2 - 2t$

 $r = \frac{-2 \pm \sqrt{4 - 8}}{2}$

= -1 + i

ex: Solve
$$y'' + 2y' + 2y = 2t^2 - 2$$
 with $y(0) = 1, y'(0) = -3$.
 $y = c_1y_1 + c_2y_2 + \underbrace{y_p}_{t^2 - 2t}$

$$y_{1,2}=e^{rt}$$

$$y(t) = e^{-t} (c_1 \cos(t) + c_2 \sin(t)) + t^2 - 2t$$

initial conditions:

$$y(0) = 1 = c_1 \implies c_1 = 1$$

 $y'(t) = -e^t (c_1 \cos(t) + c_2 \sin(t)) + e^t (c_2 \cos(t) - c_1 \sin(t)) + 2t - 2$

$$y'(0) = -3 = -c_1 + c_2 - 2 \Rightarrow c_2 = 0$$
$$y(t) = e^{-t}\cos(t) + t^2 - 2t$$

Method of Undetermined Coefficients: L[y] = g(t)

1. Find the homogeneous solutions:

$$2^{nd} \text{ order } \Rightarrow y_h = c_1 y_1 + c_2 y_2$$

2. Find the family of functional forms obtained by differentiating g(t). ex: $g(t) = t^2 e^{-t}$

$$g' = 2\underline{te^{-t}} - t^2e^{-t}$$
 $g'' = \underline{2e^{-t}} - 2te^{-t} - 2te^{-t} + t^2e^{-t}$
family $= \{t^2e^{-t}, te^{-t}, e^{-t}\}$

3. Guess a linear combination of the family members for y_p .

$$y_p = At^2e^{-t} + Bte^{-t} + Ce^{-t}$$

4. Plug guess into ODE and solve the algebraic system. group coeffs. by funcs of t, ex: 3 eqs., 3 unknowns (A, B, C)

Complication: Mathematical Resonance (L[y] = g(t))

- 1. Find the homogeneous solutions: $y_h = c_1y_1 + c_2y_2$
- 2. Find the family of functional forms obtained by differentiating g(t).
- 3. Guess a linear combination of the family members for y_p .

$$g(t) = t^2 e^{-t}$$
 \Rightarrow naively guess: $y_p = At^2 e^{-t} + Bte^{-t} + Ce^{-t}$

4. Plug guess into ODE and solve the algebraic system.

ex: suppose $y_1 = e^{-t}$ and $y_2 = e^{3t}$

$$L[y_p] = AL[t^2e^{-t}] + BL[te^{-t}] + CL[e^{-t}] = t^2e^{-t}$$

<u>Problem:</u> 3 eqs, 2 unkowns $(A, B) \Rightarrow$ impossible to solve (overdetermined system)

Solution: Mulitply the problematic family member by t until we get a new L.I. family member that is not y_1 or y_2 .

Complication: Mathematical Resonance (L[y] = g(t))

1. Find the homogeneous solutions:

$$2^{nd}$$
 order $\Rightarrow y_h = c_1 y_1 + c_2 y_2$

- 2. Find the family of functional forms obtained by differentiating g(t).
- 3. Guess a linear combination of the family members for y_p .
 - Multiply any family member that is L.D. with $y_1(t)$ or $y_2(t)$ by t repeatedly until you obtain a linear combination of L.I. functions that are also L.I. with the fundamental set $\{y_1, y_2\}$

ex:
$$y_1 = e^{-t}$$
 with $g(t) = t^2 e^{-t}$ family = $\{t^2 e^{-t}, te^{-t}, e^{-t}\}$
 $y_p = At^2 e^{-t} + Bte^{-t} + Ct^3 e^{-t}$

4. Plug guess into ODE and solve the algebraic system.

Practice spotting mathematical resonance

(1)
$$y' + 6y = \cos t + t^2$$

 $y_h = c_1 e^{-6t}$
family = $\{\cos t, \sin t, t^2, t, 1\}$
 $y_p = A\cos t + B\sin t$
 $+ Ct^2 + Dt + E$
(2) $y'' = t^2$ $y_h = c_1 + c_2 t$

(2)
$$y'' = t^2$$
 $y_h = c_1 + c_2$
family = $\{t^2, \underline{t}, \underline{1}\}$
 $y_p = At^2 + Bt^3 + Ct^4$
(3) $y'' + 3y' + 2y = 5e^{-t}$
 $y_h = c_1 e^{-t} + c_2 e^{-2t}$

family = $\{\underline{e^{-t}}\}$

 $y_p = Ate^{-t}$

$$y_h = c_1 e^{-t} + c_2 t e^{-t}$$
family = $\left\{ \frac{e^{-t}}{e^{-t}} \right\}$

$$y_p = At^2 e^{-t}$$
(5) $y'' + 6y' = \cos t + t^2$

$$y_h = c_1 e^{-6t} + c_2$$

family = $\{\cos t, \sin t, t^2, t, 1\}$

 $+ Ct^{2} + Dt + Ft^{3}$

 $y_p = A \cos t + B \sin t$

(4) $v'' + 2v' + v = 12e^{-t}$

Find the general solution of $y'' + 5y' + 4y = e^{-4t}$

$$r_{1,2} = \frac{-5 \pm \sqrt{25 - 16}}{2} = \frac{-5 \pm 3}{2} = -1, -4$$

$$y_h = c_1 e^{-t} + \underbrace{c_2 e^{-4t}}_{\propto g(t)}$$

Try:
$$y_p = Ate^{-4t}$$

 $y'_p = A(e^{-4t} - 4te^{-4t})$
 $y''_p = -Ae^{-4t} - 4A(e^{-4t} - 4te^{-4t})$
 $= -8Ae^{-4t} + 16Ate^{-4t}$

plug into DE:

$$-8Ae^{-4t} + 16Ate^{-4t} + 5Ae^{-4t} - 20Ate^{-4t} + 4Ate^{-4t} = e^{-4t}$$
$$(-8+5)Ae^{-4t} + (20-20)te^{-4t} = e^{-4t}$$
$$-3Ae^{-4t} = e^{-4t}$$

$$A=-\frac{1}{3}$$

$$y = c_1 e^{-4t} + c_2 e^{-t} - \frac{1}{3} t e^{-4t}$$

Find the general solution of $y'' + 4y' + 4y = e^{-2t}$

$$r_{1,2} = \frac{-4 \pm \sqrt{16 - 16}}{2} = -2$$

$$y_h = \underbrace{c_1 e^{-2t}}_{\propto g(t)} + c_2 t e^{-2t}$$
Try:
$$y_p = A t^2 e^{-2t}$$

$$y'_p = A \left(2t e^{-2t} - 2t^2 e^{-2t}\right)$$

$$y''_p = 2A \left(e^{-2t} - 2t e^{-2t}\right) - 2A \left(2t e^{-2t} - 2t^2 e^{-2t}\right)$$

$$= 4A t^2 e^{-2t} - 8A t e^{-2t} + 2A e^{-2t}$$

plug into DE:

$$4At^{2}e^{-2t} - 8Ate^{-2t} + 2Ae^{-2t} + 8Ate^{-2t} - 8At^{2}e^{-2t} + 4At^{2}e^{-2t} = e^{-2t}$$
$$(-8+8)At^{2}e^{-2t} + (-8+8)te^{-2t} + 2Ae^{-2t} = e^{-2t}$$
$$2Ae^{-2t} = e^{-2t}$$

$$2A = 1$$
 $\Rightarrow A = \frac{1}{2}$

$$y = c_1 e^{-2t} + c_2 t e^{-2t} + \frac{1}{2} t^2 e^{2t}$$

$$L\left[y_{p}\right]=g(t)$$

1. Find the homogeneous solutions:

$$2^{nd}$$
 order $\Rightarrow y_h = c_1 y_1 + c_2 y_2$

- 2. Find the family of functional forms obtained by differentiating g(t).
- 3. Guess a linear combination of the family members for y_p .
 - Multiply any family member that is L.D. with $y_1(t)$ or $y_2(t)$ by t repeatedly until you obtain a linear combination of L.I. functions that are also L.I. with the fundamental set $\{y_1, y_2\}$

4. Plug guess into ODE and solve the algebraic system.