Logarithmic Equation (HKMO Classified Questions by topics)

1984 FSI.4

若 $2 = \log_d 81$, 求 d 的值。If $2 = \log_d 81$, find the value of d.

1986 FSI.4

若 $3 = \log_4 d$, 求 d 的值。If $3 = \log_4 d$, find the value of d.

1988 FG8.1

若 $\log_9 S = \frac{3}{2}$,求 S 的值。If $\log_9 S = \frac{3}{2}$, find the value of S.

1989 HG7

若
$$\log_2[\log_3(\log_7 x)] = \log_3[\log_7(\log_2 y)] = \log_7[\log_2(\log_3 z)] = 0$$
,
求 $x + y + z$ 的值。

If $\log_2[\log_3(\log_7 x)] = \log_3[\log_7(\log_2 y)] = \log_7[\log_2(\log_3 z)] = 0$, find the value of x + y + z.

1989 FSI.4

若 $3 = \log_d 125$, 求 d 的值。If $3 = \log_d 125$, find the value of d.

1989 FI1.4

已知 $1 = \log (6d - 2)$, 求 d 的值。If $1 = \log (6d - 2)$, find the value of d.

1989 FG9.3

已知 $\log_9(\log_2 k) = \frac{1}{2}$,求 k 的值。If $\log_9(\log_2 k) = \frac{1}{2}$, find the value of k.

1990 HI9

若
$$x^{\log_{10} x} = \frac{x^3}{100}$$
,且 $x > 10$,求 x 的值。

If $x^{\log_{10} x} = \frac{x^3}{100}$ and x > 10, find the value of x.

1990 FI3.2

若 $\log_{10} 1000 = \log_2 b$,求 b 的值。If $\log_{10} 1000 = \log_2 b$, find the value of b.

1990 FG10.2

若 $\log_{10}(k-1) - \log_{10}(k^2 - 5k + 4) + 1 = 0$, 求 k 的值。

If $\log_{10}(k-1) - \log_{10}(k^2 - 5k + 4) + 1 = 0$, find the value of k.

1991 HI8

若 $\log_7[\log_5(\log_3 x)] = 0$, 求 x 的值。If $\log_7[\log_5(\log_3 x)] = 0$,

find the value of x.

1992 HI1

$$若(\log x)^4 - 3(\log x)^2 - 4 = 0$$
,且 $x > 1$,求 x 的值。

If $(\log x)^4 - 3(\log x)^2 - 4 = 0$ and x > 1, find the value of x.

1993 FI1.2

若 $log_2[log_2(2b) + 2] + 2$ = 2,求 b 的值。

Find the value of *b* if $\log_2\{\log_2[\log_2(2b) + 2] + 2\} = 2$.

1994 HI4

設
$$\log_a x = 2$$
 及 $2a + x = 8$, 求 $a + x$ 的值。

If $\log_a x = 2$ and 2a + x = 8, find the value of a + x.

1994 HG5

設
$$x > 0$$
 及 $y > 0$ 。若 $(\log_3 x)(\log_2 x)(\log_{2x} y) = \log_x x^2$,求 y 的值。

Given that x > 0 and y > 0,

find the value of y if $(\log_3 x)(\log_x 2x)(\log_{2x} y) = \log_x x^2$.

1994 FG6.1

若 $\log_2 a - 2 \log_a 2 = 1$,求 a 的值。If $\log_2 a - 2 \log_a 2 = 1$, find the value of a.

1995 FI5.1

已知
$$\log_7(\log_3(\log_2 x)) = 0$$
。若 $a = x^{\frac{1}{3}}$,求 a 的值。

It is given that $\log_7(\log_3(\log_2 x)) = 0$. Find the value of a, if $a = x^{\frac{1}{3}}$.

1996 FI3.3

若 $\log_b(3^c - 8) = 2 - c$,求 c 的值。Find the value of c if $\log_3(3^c - 8) = 2 - c$.

1997 FG3.3

已知
$$\log \frac{x}{2} = 0.5$$
 及 $\log \frac{y}{5} = 0.1$ 。若 $\log xy = c$,求 c 的值。

It is given that $\log \frac{x}{2} = 0.5$ and $\log \frac{y}{5} = 0.1$. If $\log xy = c$, find teh value of c.

1998 FGS.3

若 $\log_c 27 = 0.75$, 求 c 的值。If $\log_c 27 = 0.75$, find the value of c.

2000 FI2.1

如果 $\log_2(\log_4 P) = \log_4(\log_2 P)$ 及 $P \neq 1$, 求 P 的值。

If $\log_2(\log_4 P) = \log_4(\log_2 P)$ and $P \neq 1$, find the value of P.

2001 FG3.4

已知
$$5^{\log 30} \times \left(\frac{1}{3}\right)^{\log 0.5} = d \circ 求 d$$
 的值。

Given that $5^{\log 30} \times \left(\frac{1}{3}\right)^{\log 0.5} = d$, find the value of d.

Logarithmic Equation (HKMO Classified Questions by topics)

2004 FI4.1

設 a 為實數。若 a 滿足方程 $\log_2(4^x+4)=x+\log_2(2^{x+1}-3)$,求 a 的值。 Let a be a real number.

If a satisfies the equation $\log_2(4^x + 4) = x + \log_2(2^{x+1} - 3)$, find the value of a.

2006 FI1.1

若 a 為實數且滿足方程 $\log_2(x+3) - \log_2(x+1) = 1$, 求 a 的值。

If a is a real number satisfying $\log_2(x+3) - \log_2(x+1) = 1$, find the value of a.

2009 HI9

已知 a 和 b 是整數。設 a-7b=2 及 $\log_{2b}a=2$,求 $a\times b$ 的值。

Given that a and b are integers. Let a - 7b = 2 and $\log_{2b} a = 2$,

find the value of $a \times b$.

2009 FG4.4

設
$$Q = \log_{2+\sqrt{2^2-1}} \left(2 - \sqrt{2^2 - 1}\right)$$
, 求 Q 的值。

Let $Q = \log_{2+\sqrt{2^2-1}} \left(2 - \sqrt{2^2 - 1} \right)$, find the value of Q.

2012 FI2.4

若 S 是方程 $\sqrt{2012} \cdot x^{\log_{2012} x} = x^3$ 的所有正根之乘積的最後 3 位數字(個位數,十位數,百位數)之和,求 S 的值。

If S is the sum of the last 3 digits (hundreds, tens, units) of the product of the positive roots of $\sqrt{2012} \cdot x^{\log_{2012} x} = x^3$, find the value of S.

2015 FI4.4

若 δ 是方程 $x^{\log_7 x} = 10$ 所有實根的積, 求 δ 的值。

If δ is the product of all real roots of $x^{\log_7 x} = 10$, determine the value of δ .

2016 FI1.1

解方程 $\log_5 a + \log_3 a = \log_5 a \cdot \log_3 a$, 其中 a > 1 為實數。

Solve the equation $\log_5 a + \log_3 a = \log_5 a \cdot \log_3 a$ for real number a > 1.

2016 FI3.4

若實數 x 及 y 滿足方程 $2 \log_{10}(x + 2y) = \log_{10} x + \log_{10} y$, 求 $d = \frac{x}{y}$ 的值。

If real numbers x and y satisfy the equation $2 \log_{10} (x - 2y) = \log_{10} x + \log_{10} y$, determine the value of $d = \frac{x}{y}$.

2017 HI14

若 $a + \log_2 b = a^2 + \log_2 b^3 - 10 = 3$, 其中 b > 1, 求 b 的值。

If $a + \log_2 b = a^2 + \log_2 b^3 - 10 = 3$, where b > 1, find the value of b.

2017 FI3.2

若x 是正整數且 $\log_{10} 2^x > 3$,求x 的最小值c。

If x is a positive integer and $\log_{10} 2^x > 3$, determine c, the minimum value of x. **2017 FI4.2**

若
$$x$$
 及 y 為實數且 $1 < y < x$ 及 $\log_x y + 3 \log_y x = \frac{13}{2}$, 求 $b = \frac{x + y^4}{x^2 + y^2}$ 的值。

If x and y are real numbers with 1 < y < x and $\log_x y + 3 \log_y x = \frac{13}{2}$,

determine the value of $b = \frac{x + y^4}{x^2 + y^2}$.

2018 HI4

解
$$\log\left(1+\frac{1}{1}\right) + \log\left(1+\frac{1}{2}\right) + \log\left(1+\frac{1}{3}\right) + \dots + \log\left(1+\frac{1}{n}\right) = 5$$
 °

Solve
$$\log\left(1+\frac{1}{1}\right) + \log\left(1+\frac{1}{2}\right) + \log\left(1+\frac{1}{3}\right) + \dots + \log\left(1+\frac{1}{n}\right) = 5$$
.

2021 P1O11

若 $\log_9 x^{18} = (\log_3 x)^3$, 求 x 的最小值。

If $\log_9 x^{18} = (\log_3 x)^3$, find the least value of x.

2022 P1Q11

 x_1 及 x_2 是方程 $(\log 2x)(\log 3x) = a$ 的實根,其中 a 為實數。求 x_1x_2 的值。 x_1 and x_2 are the real roots of the equation $(\log 2x)(\log 3x) = a^2$, where a is a real number. Find the value of x_1x_2 .

2023 HG10

下列方程有一個實數解:
$$\begin{cases} 3\log_a(\sqrt{x}\log_a x) = 26\\ \log_{\log_a x} x = 24 \end{cases}$$
, 求 a 的值。

The following system of equations has one real number solution $\begin{cases} 3\log_a\left(\sqrt{x}\log_a x\right) = 26\\ \log_{\log_a x} x = 24 \end{cases}$, find the value of a.

Answers

Answers				
1984 FSI.4	1986 FSI.4	1988 FG8.1	1989 HG7	1989 FSI.4
9	64	27	480	5
1989 FI1.4	1989 FG9.3	1990 HI9	1990 FI3.2	1990 FG10.2
2	8	100	8	14
1991 HI8	1992 HI1	1993 FI1.2	1994 HI4	1994 HG5
243	100	2	6	9
1994 FG6.1 4 or $\frac{1}{2}$	1995 FI5.1 2	1996 FI3.3 2	1997 FG3.3 1.6	1998 FGS.3 81
2000 FI2.1	2001 FG3.4	2004 FI4.1	2006 FI1.1	2009 HI9
16	15	2	1	32
2009 FG4.4	2012 FI2.4	2015 FI4.4	2016 FI1.1	2016 FI3.4
-1	17	1	15	4
2017 HI14 16	2017 FI3.3 10	2017 FI4.2 1	2018 HI4 99999	2021 P1Q11 1/27
2022 P1Q11 $\frac{1}{6}$	2023 HG10 64			