Programa del curso

Facultad de Ingeniería

Análisis y Diseño II

2 créditos teóricos y 2 créditos prácticos

A. Información del profesor

Nombre del profesor

Inga. Hilda Ruth Flores Muñoz

Correo electrónico

hrflores@correo.url.edu.gt

Campus o sede

Central

Horario

Martes y jueves de 5:30 a 7:00 p.m. y viernes de 5:30 a 9:00 p.m.

B. Información general

Descripción

Para la formación del ingeniero de software de nuestros días, la recomendación curricular de ACM e IEEE enfatiza la importancia de las áreas de conocimiento de Modelación y Análisis de Software (MAA) y Diseño de Software (DES). Este es el segundo de dos cursos de especialización en la disciplina de Ingeniería de Software y se asume que el estudiante ya cuenta con conocimientos sólidos de programación orientada a objetos y bases de datos. El primer curso se enfoca en las técnicas básicas de análisis y diseño de software, mientras que el segundo profundiza en las actividades de diseño de componentes, de arquitecturas de software y de la interfaz de usuario.

Modalidad

Mixta (Blended). Se combinarán momentos de aprendizaje autónomo, de parte del estudiante y guiado en la plataforma de aprendizaje de la Universidad; así como conferencias virtuales con los profesores, donde se favorecerá la metodología activa.

Facultad de Ingeniería

C. Malla curricular

COMPETENCIAS GENÉRICAS

El egresado landivariano se identifica por:

Pensamiento		
lógico, reflexivo y		
analógico		

Pensamiento crítico

Resolución de problemas

Habilidades de investigación

Uso de TIC y gestión de la información Comunicación efectiva, escrita y oral

Comprensión lectora Compromiso ético y ciudadanía

Liderazgo constructivo

Aprecio y respeto por la diversidad e interculturalidad

Creatividad

COMPETENCIAS ESPECÍFICAS (propias del curso)

Competencia 1

Construye diseños óptimos para soluciones de software que responden a las necesidades del negocio y el contexto del mercado, buscando constantemente la optimización de recursos, la consideración de atributos de calidad y la aplicación de patrones.

METODOLOGÍA

Este curso se desarrollará a través de los siguientes métodos de aprendizaje-enseñanza: Aprendizaje invertido, gamificación, aprendizaje basado en retos, aprendizaje por indagación, aprendizaje basado en equipos, análisis de casos.

COMPETENCIA 1

Programa del curso

Facultad de Ingeniería

Construye diseños óptimos para soluciones de software que responden a las necesidades del negocio y el contexto del mercado, buscando constantemente la optimización de recursos, la consideración de atributos de calidad y la aplicación de patrones.

Saber conceptual (contenido temático)

FUNDAMENTOS

Introducción: definición de arquitectura de software, perfil del arquitecto, prácticas de ingeniería, operaciones y devops, fundamentos.

Pensamiento arquitectónico: arquitectura y diseño, equilibrio de arquitectura y codificación.

Modularidad: definición, cohesión, acoplamiento, métricas, transición a componentes. Características arquitectónicas: operativas, estructurales, transversales. Extracción del dominio, de los requerimientos, explícitas e implícitas. Caso de Sand. de Silicón. Medición y gestión de arquitectura.

Pensamiento basado en componentes.

ESTILOS ARQUITECTÓNICOS

Fundamentos: patrones, unitary, cliente servidor, desktop + database server, browser + webserver, three-tier, monolithic vs. distributed, falacias de diseño.

Estilos de arquitectura por capas.

Estilo de arquitectura basada en servicios.

Estilo de arquitectura basada en microservicios.

Cómo elegir el estilo de arquitectura adecuada. Caso de estudio.

HABILIDADES TÉCNICAS Y BLANDAS

Decisiones de arquitectura: anti-patrones de diseño, registros de decisiones de arquitectura, estructura básica (ADR), analizando riesgos de la arquitectura con modelos ágiles, diagramación y presentación de arquitecturas (UML, C4, ArchiMate). Equipos de arquitectos, negociación y liderazgo.

Validación y verificación.

Saber procedimental (habilidades y destrezas)

Resolución de problemas con software.

Aplicación del modelo idóneo a un problema que se resuelve con software.

Saber actitudinal (conductas observables)

Lectura comprensiva y preparación antes de la clase.

Participación activa.

Trabajo colaborativo.

Desarrollo de competencias del perfil de egreso.

Integridad, puntualidad y compromiso con la calidad.

Indicador de logro 1 (resultado): Construye diseños óptimos para soluciones de software que responden a las necesidades del negocio y el contexto del mercado, buscando constantemente la optimización de recursos, la consideración de atributos de calidad y la aplicación de patrones.

Facultad de Ingeniería

a. Estrategias de evaluación sumativa

Estrategias	Puntaje
Pruebas parciales	20
Exámenes cortos y otras actividades en clase	20
Proyectos y prácticas de laboratorio	40
Examen final	20
TOTAL	100

b. Estrategias de evaluación formativa

Técnicas formativas	Procedimiento	
Retroalimentación	Comentarios pertinentes en la entrega de los	
	laboratorios y proyectos.	
Diálogo socrático	Preguntas y respuestas orales a ejemplos y problemas	
	que se realizarán a lo largo de la secuencia de	
	aprendizaje.	
One minute paper	Textos cortos sobre los temas ya vistos comprobando	
	sus saberes.	
Trabajos en pequeños	Dinámicas de grupo en clase como 1-2-3-all.	
grupos para resolver dudas		
Citas individuales	Tutorías de retroalimentación solicitadas por el	
	estudiante, por medios electrónicos.	

CALENDARIO DE REFERENCIA POR TEMAS

Fecha	Tema	Actividad de evaluación
Semana 1	Introducción: definición de arquitectura	Períodos teóricos: Aprendizaje
15 – 19 mayo	de software, perfil del arquitecto,	invertido, gamificación, análisis
	prácticas de ingeniería, operaciones y	de casos.
	devops, fundamentos.	Períodos prácticos: aprendizaje
	Pensamiento arquitectónico:	basado en retos, aprendizaje
	arquitectura y diseño, equilibrio de	basado en proyectos,
	arquitectura y codificación.	aprendizaje por indagación,
	Modularidad: definición, cohesión,	aprendizaje basado en equipos.
	acoplamiento, métricas, transición a	
	componentes.	
Semana 2	Características arquitectónicas:	
22 - 26 mayo	operativas, estructurales, transversales.	
	Extracción del dominio, de los	
	requerimientos, explícitas e implícitas.	
	Caso de Sand. de Silicón.	

CEAT
Centro de Ensoñeza Aprondizaje y Tecnología Educativa
-Padre Luis Acheeránglio, S. J.:

Facultad de Ingeniería

	Medición y gestión de arquitectura.	
	Pensamiento basado en componentes.	
Semana 3	Fundamentos: patrones, unitary, cliente	Períodos teóricos: Aprendizaje
29 mayo – 2-	servidor, desktop + database server,	invertido, gamificación, análisis
junio	browser + webserver, three-tier,	de casos.
	monolithic vs. distributed, falacias de	Períodos prácticos: aprendizaje
	diseño.	basado en retos, aprendizaje
		basado en proyectos,
		aprendizaje por indagación,
		aprendizaje basado en equipos
		Parcial I
Semana 4	Estilos de arquitectura por capas.	Períodos teóricos: Aprendizaje
5 – 9 junio		invertido, gamificación, análisis
		de casos.
Semana 5	Estilo de arquitectura basada en	Períodos prácticos: aprendizaje
12 – 16 junio	servicios.	basado en retos, aprendizaje
		basado en proyectos,
		aprendizaje por indagación,
		aprendizaje basado en equipos
Semana 6	Estilo de arquitectura basada en	Períodos teóricos: Aprendizaje
19 – 23 junio	microservicios.	invertido, gamificación, análisis
	Cómo elegir el estilo de arquitectura	de casos.
	adecuada. Caso de estudio.	Períodos prácticos: aprendizaje
		basado en retos, aprendizaje
		basado en proyectos,
		aprendizaje por indagación,
		aprendizaje basado en equipos
		Parcial II
Semana 7	Decisiones de arquitectura: anti-	Períodos teóricos: Aprendizaje
26 – 30 junio	patrones de diseño, registros de	invertido, gamificación, análisis
	decisiones de arquitectura, estructura	de casos.
	básica (ADR), analizando riesgos de la	Períodos prácticos: aprendizaje
	arquitectura con modelos ágiles,	basado en retos, aprendizaje
	diagramación y presentación de	basado en proyectos,
_	arquitecturas (UML, C4, ArchiMate).	aprendizaje por indagación,
Semana 8	Equipos de arquitectos, negociación y	aprendizaje basado en equipos
3 – 7 julio	liderazgo.	
	Validación y verificación	Examen final.

Programa del curso

Facultad de Ingeniería

REFERENCIAS BIBLIOGRÁFICAS

IEEE (s.f.). Software Engineering Body of Knowledge – SWEBOK. Recuperado de: https://www.computer.org/education/bodies-of-knowledge/software-engineering

IEEE SA (s.f.). Standards. Institute of Electrical and Electronics Engineers, Inc – IEEE. Recuperado de: https://standards.ieee.org/

ISO (s.f.) International Standards. International Organization for Standardization – ISO. Recuperado de: https://www.iso.org/home.html

Jacobson, I., Lawson, H., Ng, P.W., McMahon, P.E., Goedicke, M. (2019). The Essentials of Modern Software Engineering. Association for Computing Machinery and Morgan & Claypool Publishers.

Kendall, K. & Kendall, J. (2011). Análisis y diseño de sistemas. Octava edición. Pearson Educación.

Pressman, R.S., Maxim, B.R. (2010) Software Engineering. A practitioner's Approach. 8th. Edition: McGrawHill Education.

Richards, M. & Ford, N. (2020). Fundamentals of Software Architecture. O'Reilly Media, Inc.

S.f. (2022). Azure application architecture fundamentals. Microsoft. https://learn.microsoft.com/en-us/azure/architecture/guide/

Sommerville, I. (2016). Software Engineering. Pearson Education Limited.

Stephens, R. (2015). Beginning Software Engineering.

Williams, L. (2013). An Introduction to Software Engineering. Edition one.

Winters, T., Manshreck, T., Wright, H. (2020) Software Engineering at Google. Lessons Learned from Programming Over Time. O'Reilly.