Problem

As shown in the figure below, in $\triangle ABC, \angle ABD = 2\angle C.AD$ is the angle bisector of $\angle A.BD \perp AD$ at D. Show that $BD = \frac{1}{2}(AC - AB)$.

Solution

Extend BD to meet AC at M. Since AD is the angle bisector of $\angle A$. and $BD \perp AD$, $\angle BAD = \angle MAD = \alpha, AB = AM, \angle ABD = \angle AMD = \beta.$

Since $\angle ABD = \angle AMD = 2\angle C$, $\angle MCB = \angle MBC = \gamma$ $AM = 2BD = MC = AC - AM \Rightarrow BD = \frac{1}{2}(AC - AB)$.

