Hotel Cancellation Problem and Overbooking Tactics Analysis

Contents

- 1 Business Overview
- 2 Overbooking Optimization
- 3 Cancellation Improvement
- 4 Summary

Business Overview

Hotel Background Information

Provide services for customers from **20+** countries

Average annual booking: **40k**Average total customers:

100k+

42% customer book reservations **3 months** ahead

Provide Resort&City
Hotel Reservations

July to November is the peak of hotel passenger flow

High Hotel Cancelation Rate

Cancelation rate over the past three years

2015: 63.0% **2016**: 64.1%. **2017**: 61.3%

2016 Hotel industry cancellation rate

 The average percentage of canceled reservations, is currently 24%.

No Deposit Booking Policy

- No Deposit---
- No refund
- Refundable

 Among all the cancelation cases, 88% customer are in "No deposit policy" type

(e.g., using deposits policy and overbooking strategy)

Overbooking as Industry Tactics

Overbooking in hotel management is a confidence strategy which accept more reservations than rooms you have available and anticipate some will cancel

No-show

Last-minute cancellation

Advantages of overbooking in hotels

- Minimizes losses by creating a backup plan for cancelled reservations
- Achieving full occupancy as no financial potential is wasted

Potential damage of overbooking in hotels

- Negative guest experiences when it comes to aggressive overbooking
- Bad reviews from customers will harm the hotel reputation and have long-term negative effect

What is the most suitable overbooking rate to reduce vacancy?

Can overbooking perfectly solve the cancelation problem?

How can any other options tackle high cancelation problem?

Optimizing Overbooking Rate using Random Forest

- Exploring the data and select significant features.
- Build up different models and decide the most suitable one.
- Improve the random forest model and estimate the overbooking rate.

Data source and data cleaning

1. Data source

"Hotel Booking Demand" from Kaggle

- **119,390** data points
- 32 attributes

2. Data cleaning

- Filled up missing value
- Remove abnormal data
- Remove outlier
- Remove duplicate data

3. Split data

3/4 training 1/4 test

Exploratory Data Analysis

Remove features

Reason 1:

Features must can be obtained at reservation.

- booking changes
- reservation status
- assigned_room_type

Reason 2:

Data masking.

country

Select features

Visualization

ANOVA test

Linear regression

14 features selected

- whether equal room type
- adults
- babies
- hotel
- meal
- is_repeated_guest
- lead_time

- previous_cancellations
- customer_type
- required_car_parking_spaces
- arrival_date_month
- · distribution channel
- agent
- · deposit type

Build Random Forest Model and Get Importance Table

Random Forest

rf.fit <- randomForest(is_canceled-whether_equal_room_type-adults-babies-hotel+meal+is_repeated_guest+lead_time+pr
evious_cancellations+customer_type-required_car_parking_spaces+arrival_date_month+distribution_channel+agent+depos
it type_data=train_data_importance=TRUE)</pre>

Error rate=19.45%

Importance table

Mean decrease of accuracy

Select Random Forest as Our Model


```
number_of_feature error.lda error.qda error.log
                     1 0.2646361 0.2646361 0.2646361
[1,]
                     2 0.2651254 0.2604009 0.2654771
[2,]
[3,]
                     3 0.2687033 0.2602786 0.2682139
                     4 0.2654618 0.2628319 0.2646973
[5,]
                     5 0.2618075 0.2614558 0.2612417
                     6 0.2600491 0.2780297 0.2591317
[6,]
                     7 0.2589177 0.2779535 0.2591470
[7,]
                     8 0.2589789 0.3076312 0.2583980
[8,]
```

Cross-validation error of LDA, QDA, and logistic regression from 1 to 8 features

Random forest error rate=19.45%

Predict

Evaluate and revise the random forest model

Real

	Positive	Negative	
Positive	TP 24,022	FP 7,892	Actual shows
Negative	FN 9,126	TN 48,370	3110W3

Actual no shows

Loss of failing to provide rooms due to aggressive overbooking

- Negative customer experience
- Negative word of mouth
- Loss of customer loyalty
- Costs of compensation

Profits generated from overbooking

Revenue from utilizing cancelled rooms

The model should:

- predict the cancelation rate with high accuracy
- shows up avoid having actual shows up more than actual no shows

Threshold – a crucial parameter

Security rate = 1 - (actual shows up / actual no shows)

The security rate should:

- Larger than 0
- As small as possible

We set the security rate at 10%

When 9 customers are actually staying, 10 customers will be actually leaving.

Adjust threshold and generate the final model

Set the threshold from 0.05 to 0.5 to build up several new models.

¾ training	¼ test	Threshold	Actual shows up	Actual no shows	Security rate	Total error rate
		0.05	34.8%	9.9%	-496.8%	25.53%
10 fold cross validation		0.1	25.1%	15.1%	-181.0%	21.37%
		0.2	17.0%	23.5%	-22.6%	19.41%
		0.25	14.8%	26.4%	4.6%	19.11%
		0.27	14.0%	27.5%	13.5%	19.03%
		0.3	23.3%	28.7%	21.4%	19.03%
		0.4	9.7%	35.1%	52.8%	19.13%
		0.5	7.8%	39.3%	66.4%	19.45%

Final model: Random Forest with threshold equals to 0.27

Generate overbooking rate based on test set

Real

Predict

	Positive	Negative
Positive	TP 5,827	FP 1,089
Negative	FN 5,224	TN 17,660

• Cancellation rate = 23.2%

• Overbooking rate = $Cancellation \ rate \times \frac{Current \ booking}{Total \ capacity}$

Overbooking rate = 23.2%

Accuracy rate = 78.87%

Increase revenue \$1,237,272 per year

Optimal Overbooking Rate Model Testing

☑ What the model can help with

- Accurately estimate the cancellation rate
- Set a red line for overbooking

■ What the model can't help with

Stably offset large percentage of the revenue lost caused by no-shows

> Generally accurate prediction on cancellation rate

A need to tackle the problem from the root cause

Total error rate

False positive rate

Increasing but not satisfying utilization vacancy

➤ May due to the data's nature of high variance

Minimized overbooking risk

47.27% False negative rate 20.85% Vacancy utilization rate

Cancellation Improvement with Various Approaches

- <u>EDA & Logistic Regression</u>: Discover the extent of different factors' effect on customer's decision of reservation cancelling. → Focus on these features to provide a better service
- Clustering: Discover features that highly affect customer's decision of reservation canceling → Implement "Stratified Deposit Plan"

Reviewing EDA and Logistic Regression

Factor effect through the lens of **EDA**

 City hotel faces more severe cancellation problem

 Lowest cancellation rates for both hotels appear in August

Higher special request number > seems to improve stickiness and less cancellation

Special Request

First-time customers have higher tendency to cancel their booking

Factor effect through logistic regression

P(Cancellation)

$$= \frac{e^{\beta_0 + \beta_1 LeadTime + \beta_2 Previous Cancellation + \dots}}{1 + e^{\beta_0 + \beta_1 LeadTime + \beta_2 Previous Cancellation + \dots}}$$

red_ car_ parki	mark et_se gme nt_O ffline TA/T O	is_re peat ed_g uest	distri butio n_ch anne l_Dir ect	total _of_s pecia l_req uests	custo mer_ type _Gro up	previ ous_ book ings_ not_ canc eled	butio	aver age_ daily _rate	mark et_se gme nt_C ompl eme ntary	lead _tim e	custo mer_ type _Tra nsien t	previ ous_ canc ellati ons
-2.48	-1.62	-0.81	-0.75	-0.63	-0.44	-0.24	0.1	0.219	0.323	0.376	0.555	1.744 18

Possible strategies inspired by EDA observation and LR model

Initiative 1

Observation

• Longer leading time—higher cancellation

Possible measures

- Deliver directed push to customers after booking
- Content of push: reminder message, ads of featured service, festival greetings

Initiative 2

Observation

 Cancellation possibility varies with Distribution channels and customer types

Possible measures

- Reshape customer target and distribution strategy
- For example, reserve more rooms to direct distribution channel and direct ads with more focus on Group customer.

requ ired _car _par king _spa _ces	mar ket_ seg men t_Of fline TA/ TO	is_r epe ated _gu est	distr ibuti on_ cha nnel _Dir ect		ome r_ty	ious _bo okin gs_n	on_ cha nnel _Cor	aver	mar ket_ seg men t_Co mpl eme ntar	lead _tim e	cust ome r_ty pe_ Tran sien t	prev ious _can cella tion s
-2.5	-1.6	-0.8	-0.8	-0.6	-0.4	-0.2	0.1	0.22	0.32	0.38	0.56	1.74

Potential Problem & Potential Strategy

Majority are "No Deposit"

Very likely to cancel due to

No Extra Expense

√ "Stratified Deposit Plan"

Industry Evidence:

Deposit can lower the cancellation rate.

Strategy:

Different deposit for different clusters of customers

Sector	Predicted cancel rate	Mean/centroid of each variable	Number of datapoint
1			
2			
3			

Clustering with Customer Behavior Data

Clustering with Customer Behavior Data

3D Clustering Graph

Clustering Data Result

Sector	Cancel rate	Number of customers
1	0.128948275	26119
2	0.059561129	319
3	0.353251046	58089

Sector	lead_time	previous_bookings _not_canceled	price		
1	1.455220592	0.292239366	4.27062846		
2	1.583392646	22.76489028	3.55557916		
3	4.451020014	0.020021002	4.60584244		

Clustering with Customer Behavior Data

Clustering Data Result

Sector	Number of customers	Cancel rate	Cancel level	
1	26119	0.129	Middle	
2	319	0.060	Low	
3	58089	0.353	High	

sector	lead_time	previous_bookings _not_canceled	price		
1	Low	Middle	Middle		
2	Middle	High	Low		
3	High	Low	High		

Other related Factors

Summary & Answers to Business Questions

Answers to Business Questions

1. What is the most suitable overbooking rate to reduce vacancy?

Random forest model \rightarrow Predicted cancellation \rightarrow Overbooking rate = $Cancellation\ rate \times \frac{Current\ booking}{Total\ capacity} = 23.2%$

- 2. Can overbooking perfectly solve cancellation problem?
 - **Benefits** improve the utilization of customers' cancellation
 - Imperfection plenty of vacancies remain
- 3. How can any other options tackle high cancellation problem?

Motivation → **Tackle the root**: to improve customers' credit on cancellation

Strategies:

- Stratified Deposit Plan different deposit discounts for customers
- More Initiative Upgraded Promotion Mechanism adjusting the distribution channel, and more based on data pattern

Appendix

Revenue Increased

hotel	arri_year	arri_month	rooms	prc	over	rev	total
City Hotel	2016	June	3923	108.8876	1	427165.9	5333071
City Hotel	2016	May	3676	108.64	1	399360.6	5333071
City Hotel	2016	October	4219	108.4667	1	457621	5333071
City Hotel	2016	September	3871	118.155	1	457378	5333071
City Hotel	2017	April	3919	121.885	1	477667.3	5333071
City Hotel	2017	June	3971	129.138	1	512806.9	5333071
City Hotel	2017	May	4556	132.1264	1	601968.1	5333071
Resort Hotel	2016	April	1867	68.64242	1	128155.4	5333071
Resort Hotel	2016	August	1685	190.9587	1	321765.4	5333071
Resort Hotel	2016	March	1778	57.08722	1	101501.1	5333071
Resort Hotel	2016	May	1802	71.42881	1	128714.7	5333071
Resort Hotel	2016	October	1984	66.71244	1	132357.5	5333071
Resort Hotel	2017	April	1742	87.71724	1	152803.4	5333071
Resort Hotel	2017	August	1800	207.3455	1	373221.9	5333071
Resort Hotel	2017	July	1754	177.6805	1	311651.5	5333071
Resort Hotel	2017	June	1676	117.7484	1	197346.3	5333071
Resort Hotel	2017	May	1757	86.27518	1	151585.5	5333071