

集成电路原理与设计7.单级放大器

宋 美 shuangsonghz@zju.edu.cn

Syllabus

课数	向客	课数	向客
1	导论	9	差分放大器
2	工艺流程	10	运算放大器
3	器件模型一	11	逻辑门
4	器件模型二	12	组合逻辑
5	模拟基本单元	13	时序逻辑
6	电流镜与基准	14	加法器/乘法器
7	单级放大器	15	集成电路专题讲座一
8	课堂测验	16	集成电路专题讲座二

Recall the main points (1)

- Moore's Law
- Analog vs. digital in technology scaling down
- □ Transistor operation region and Equations
- Second order effect (body, channel length, short channel)
- □ Basic technology steps, lithography first, recognize layout

Recall the main points (2)

- Transistor as switches -> Linear region
- □ Transistor as diodes -> saturation region (1/gm)
- Transistor as current sink/source -> saturation region (rds)
- Current reference and mirror, matching considerations
- □ Cascode current mirror, Low voltage current mirror
- Bandgap reference

(Vbe -> Neg. TC, ΔVbe -> Pos. TC)

Outline

- General Consideration
- □ Common-Source Stage
 - CS Stage with Resistive Load
 - CS Stage with Diode-Connected Load
 - CS Stage with Current-Source Load
 - CS Stage with Source Degeneration
- Source Follower
- □ Common-Gate Stage

Outline

- General Consideration
- □ Common-Source Stage
 - CS Stage with Resistive Load
 - CS Stage with Diode-Connected Load
 - CS Stage with Current-Source Load
 - CS Stage with Source Degeneration
- Source Follower
- □ Common-Gate Stage

Amplifier: Ideal vs. Non-ideal (1)

Ideal amplifier:

$$y\left(t\right) = a_0 + a_1 x\left(t\right)$$

- □ Large-signal characteristic:a straight line
- \square α_1 : the "gain"
- \square α_0 : the "DC bias"

Amplifier: Ideal vs. Non-ideal (2)

Nonlinear amplifier

$$y(t) = a_0 + a_1 x(t) + a_2 x^2(t) + \dots + a_n x^n(t)$$

- ☐ Large signal excursions around bias point
- □ Varying "gain", approximated by polynomial
- ☐ Causes distortion of signal of interest
- ☐ In a sufficiently narrow range, x varies very little, and

$$\Delta y\left(t\right) = a_1 \Delta x\left(t\right)$$

Analog Design Octagon (1)

- Performance parameters trade with each other (via Gm)
- Multi-dimensional optimization problem

Analog Design Octagon (2)

- Power <-> Gm <-> Noise
- Power <-> Gm <-> Bandwidth

<-> Speed

- Power <-> Supply <-> Swing
- ☐ Gain <-> Bandwidth <-> Power
- **□** Gm <-> W/L <-> Zin

☐ Difficult to be done by Al

Single-Stage Amplifier

			ANG UNIVE
Common-Source Stage	Source Follower	Common-Gate Stage	Cascode
With Resistive Load With Diode-Connected Load With Current-Source Load With Active Load With Source Degeneration	With Resistive Bias With Current-Source Bias	With Resistive Load With Current-Source Load	Telescopic Folded

Common drain

Common gate

 $\mathbf{i}_{\text{out}} = \mathbf{g}_{\text{m}} \mathbf{v}_{\text{in}}$

vout = vin

 $R_{out} \approx 1/g_m$

 $\mathbf{i}_{\text{out}} = \mathbf{i}_{\text{in}}$

 $R_{in} \approx 1/g_m$

Inverse gain

Unit gain

Current Buffer

Outline

- General Consideration
- □ Common-Source Stage
 - CS Stage with Resistive Load
 - CS Stage with Diode-Connected Load
 - CS Stage with Current-Source Load
 - CS Stage with Source Degeneration
- Source Follower
- □ Common-Gate Stage

Outline

- □ For Common source/drain/gate
- From large signal to small signal to frequency behaviour
- □ Trade-offs

CS Stage with Resistive Load

VDD

- ☐ Common-Source Amplifier:
- Input voltage: V_{GS}
- Via Gm
- lacksquare Output voltage: $V_{ extsf{DS}}$

$$V_{GS} \stackrel{g_{m}}{\longrightarrow} V_{DS} \stackrel{R_{D}}{\longrightarrow} V_{DS}$$

- Two Kinds of Analysis Method
 - Large-signal Analysis
 - Small-signal Analysis

Large-signal Analysis (1)

 V_{in} increases from 0

①
$$V_{in} < V_{TH}$$
: M_1 --off, $I_D = 0$, $V_{out} = V_{DD}$

(2) $V_{in} > V_{TH}$: $V_{Out} = V_{DS} > V_{in} - V_{TH}$ M_1 --saturation region, $V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{I} (V_{in} - V_{TH})^2 R_D$ $V_{in}\uparrow$, $V_{out}\downarrow$

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2 \left(V_{in} - V_{TH} \right) V_{out} - V_{out}^2 \right] R_D$$

 \mathscr{A} V_{in} is high enough: M_1 --deep triode region

$$V_{out} \ll 2(V_{in} - V_{TH})$$

$$V_{out} = \frac{R_{on}}{R_{on} + R_{D}} V_{DD} = \frac{V_{DD}}{1 + \mu_{n} C_{ox} \frac{W}{L} R_{D} (V_{in} - V_{TH})}$$

Large-signal Analysis (2)

VDD

In saturation region, small-signal gain:

$$\begin{split} V_{out} &= V_{DD} - \frac{1}{2} \, \mu_n C_{ox} \, \frac{W}{L} \left(V_{in} - V_{TH} \right)^2 \, R_D \\ A_{_{V}} &= \frac{\partial V_{out}}{\partial V_{in}} = - \mu_n C_{ox} \, \frac{W}{L} \left(V_{in} - V_{TH} \right) R_D \, = - g_{_{m}} R_D \\ A_{_{V}} &= R_{_{D}} + R_{$$

- When the signal swing of V_{in} is large, non-linearity is an undesirable effect.

g_m with the input voltage

Saturation:
$$g_m = \mu_n C_{ox} \frac{W}{L} R_D \left(V_{GS} - V_{TH} \right) = \mu_n C_{ox} \frac{W}{L} R_D \left(V_{in} - V_{TH} \right)$$

 $g_{m} = \mu_{n} C_{ox} \frac{W}{I} V_{DS} = \mu_{n} C_{ox} \frac{W}{I} V_{out}$ Linear:

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2 \left(V_{in} - V_{TH} \right) V_{out} - V_{out}^2 \right]$$

Frequency & Noise Behavior

- ☐ The bandwidth of the Common Source Stage
- \Box A = $G_{\rm m} * r_{\rm o} / (1 + s * r_{\rm o} * C_{\rm o})$
- \Box $C_o \sim W^*L$ (Parasitic capacitance)

- \square Current Noise: $I^2 = (2/3) * 4kT/Gm$
- □ Voltage Noise: $V^2 = (2/3) * 4kTGm$

How to maximize the gain?

$$A_{v} = -g_{m}R_{D} = -\sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}}\frac{V_{RD}}{I_{D}} = -\sqrt{2\mu_{n}C_{ox}\frac{W}{L}\frac{V_{RD}}{\sqrt{I_{D}}}}$$

- Increase W/L: Parasitic capacitance
- □ Increase V_{RD} : Output swing decrease -> 0.5* V_{DD}
- □ Decrease I_D: The circuit get slower

Trade-off: Gain, bandwidth and voltage swing!

Channel length modulation:

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out}) R_D$$

$$r_O = \frac{1}{\lambda I_D}$$

$$A_{v} = \frac{\partial V_{out}}{\partial V_{in}} = -g_{m} \frac{r_{O}R_{D}}{r_{O} + R_{D}} = -g_{m} \left(r_{O} \parallel R_{D}\right)$$

$$g_{\rm m} \uparrow, R_{\rm D} \uparrow \Rightarrow A_{\rm V} \uparrow$$

Small-signal Analysis

 \square Including channel-length modulation of M_1

$$V_{out} = -g_m V_1 \left(r_O \| R_D \right)$$

$$V_{in} = V_1$$

$$A_v = -g_m \left(r_O \| R_D \right) = -g_m \frac{r_O R_D}{r_O + R_D}$$

$$= -g_m R_{out}$$

$$Qutput impedance:$$

$$= -g R$$

□ Output impedance:

■ When zero input, apply voltage at output and get output current

$$V_{in}=0 \qquad \frac{V_o}{I_o} = \left(r_O \| R_D\right)$$

$$R_{out} = \left(r_O \| R_D\right) \quad \text{if } \lambda=0, \ r_o=\infty \qquad R_{out} = R_D \qquad \text{Why??}$$

Channel-Length Modulation

$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

lacktriangle I_{D} is not a constant current, depending on V_{DS}

$$\lambda \propto \frac{1}{L} \frac{\sqrt{V_{DS} - V_{D,sat} + \Phi}}{V_{DS}}$$

$$L \uparrow \Rightarrow \lambda \downarrow$$

 \Box λ changes with $L => V_E$

$$g_{ds} = \frac{\partial i_D}{\partial v_{DS}}\Big|_{V_{GS,const}} = g_0 = \frac{I_D \lambda}{1 + \lambda V_{DS}} \approx I_D \lambda$$

$$r_O = \frac{1}{I_{DS}\lambda}$$

Early Voltage

工艺参数

$$\lambda = \frac{1}{V_E L} \quad r_O = \frac{V_E L}{I_{DS}}$$

Example

Ideal Current Source Load. M1 is biased in saturation

$$R_{D} \rightarrow \infty$$

$$A_{v} = -g_{m} \left(R_{D} \| r_{O} \right) = -g_{m} r_{O}$$

□ Intrinsic Gain:

■ the maximum voltage gain that can be achieved using a single device.

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out}) = I_1$$

$$V_{in} \uparrow$$

$$V_{out} \downarrow \downarrow$$

How to improve?

- Disadvantage of CS with resistive load
 - Be difficult to fabricate resistors with tightly-controlled value
 - Limited resistor value, reduce the swing of output
 - A reasonable physical size
- How to improve ?
 - Resistor -> MOS device
 - □ Diode-connected load
 - □ Current source
 - ☐ MOS in triode load
 - □

CS Stage with Diode-Connected

- the gate and drain are shorted -> transistor always operates in saturation
- □ as a small-signal resistor (Active Resistor)
- a "diode-connected" device

Measure of the Equivalent Impedance

$$\frac{V_X}{I_X} = \frac{1}{g_m + g_{mb} + r_o^{-1}} = \frac{1}{g_m + g_{mb}} //r_o$$

$$R_X \approx \frac{1}{g_m + g_{mb}}$$

$$(g_{\rm m}>>g_{\rm mbs}, g_{\rm m}>>1/r_{\rm O})$$

CS with Diode-Connected Load: NMOS

If η is neglected

Body-effect!

- ☐ the gain is independent of the bias current and voltages
 - As the input and output signal levels vary, the gain remains relative constant
- \Box the gain is decided by **the ratio** of (W/L) of M₁ and M₂ (accurate)
- ☐ the input-output characteristic is relatively linear

Large-signal Analysis

 \Box $V_{in} > V_{out} + V_{TH1}$, M_1 enters the triode region => the characteristic becomes nonlinear

CS with Diode-Connected Load - PMOS

☐ Transfer function

Small-signal Analysis

$$A_{v} = \frac{-g_{m1}}{g_{O1} + g_{O2} + g_{m2}} \approx -\frac{g_{m1}}{g_{m2}} = -\sqrt{\frac{\mu_{n} (W/L)_{1}}{\mu_{p} (W/L)_{2}}} \qquad A_{v} = -g_{m1} R_{out}$$

- Gain is a relatively weak function of device dimensions
- High gain => $(W/L)_1$ >> $(W/L)_2$
- =>disproportionately wide or long transistor (large input or load capacitor) reduction in allowable voltage swing (the same as R as the load)

CS Stage with Current Source Load

☐ Current-source load allows a high load resistance (why?) without

■ Longer transistors yield a higher voltage gain

 r_{o2} can be increased by increasing its length $:: L \uparrow, \lambda \downarrow \Rightarrow r_o \uparrow \Rightarrow A_V \uparrow$

CS Stage with Current Source Load

$$A_{v} = -g_{m1}r_{out} = -g_{m1}(r_{O1}//r_{O2})$$

For
$$M_2$$
, $I = \frac{1}{2} \mu_n C_{OX} \frac{W}{L} V_{ON}^2 = \frac{1}{2} \beta V_{ON}^2 \propto \frac{W}{L} V_{ON}^2$

-- if / is constant, $W_2 \uparrow$ -> $V_{\text{ON2}} \downarrow V_{\text{DS2,sat}} \approx V_{\text{ON2}}$, $V_{\text{out(max)}}$ is large V_{DD}

200~300 mV

-- $W_2 \uparrow L_2 \uparrow$ -> parasitic capacitor of $M_2 \uparrow$

- \Box For M_1 ,

$$:: I = \frac{1}{2} \beta V_{ON}^2$$

Transfer function

High Gain Small input range

Small-signal Performance

$$\frac{v_{\rm out}}{v_{\rm in}} = \frac{-g_{m1}}{g_{ds1} + g_{ds2}} = \left(\frac{2K'_N W_1}{L_1 I_D}\right)^{1/2} \left(\frac{-1}{\lambda_1 + \lambda_2}\right) \left(\frac{1}{\sqrt{I_D}}\right)!!! \quad \text{and} \quad R_{\rm out} = \frac{1}{g_{ds1} + g_{ds2}} \cong \frac{1}{I_D(\lambda_1 + \lambda_2)}$$

$$A_{v} = -g_{m1}R_{out} = -g_{m1}\left(r_{o1} \| r_{o2}\right)$$

Summary 1

Summary of CMOS Inverting Amplifiers

J		er ering rampimier.	=	
Inverter	AC Voltage Gain	AC Output Resistance	Bandwidth (CGB=0)	•
p-channel active load inverter	<u>-gm1</u> gm2	$\frac{1}{\text{gm2}}$	gm2 CBD1+CGS1+CGS2+CBD2	•
n-channel active load inverter	$\frac{-gm1}{gm2+gmb2}$	$\frac{1}{\text{gm2+gmb2}}$	gm2+gmb2 CBD1+CGD1+CGS2+CBS2	
Current source load inverter	-gm1 gds1+gds2	$\frac{1}{\text{gds}1+\text{gds}2}$	gds1+gds2 CBD1+CGD1+CDG2+CBD2	
n-channel depletion	-0m1	1	gmb2+gds1+gds2.	
load inverter	~ gmb2	gmb2+gds1+gds2	CBD1+CGD1+CGS2+CBD2	
Push-Pull inverter	$\frac{-(gm1+gm2)}{gds1+gds2}$	$\frac{1}{\text{gds}1+\text{gds}2}$	gds1+gds2 CBD1+CGD1+CGS2+CBD2	

Active NMOS Active PMOS Load Inverter Load Inverter

Depletion NMOS Current Source Load Inverter Load Inverter

Inverter

34

Summary 2

	CS - R	CS - Diode	CS Biased
DC gain			•
Output Swing			
Input Swing	•		
Area (large passive R)			
Bandwidth -3dB			
Bandwidth GBW			•

CS Stage with Source Degeneration

 \square Nonlinearity of circuit is due to nonlinear dependence of I_D upon V_{ON}

$$I_{DS} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{TH})^{2}$$

$$\downarrow R_{D}$$

$$V_{in} \circ V_{out}$$

$$\downarrow V_{in} \circ V_{out}$$

- \square R_S in series with the source -> input device more linear
 - \blacksquare As V_{in} increases, so do I_D and the voltage drop across R_S

Part of the change in V_{in} appears across R_S rather than gate-source overdrive, making variation in I_D smoother

 \Box Gain is now a weaker function of g_m

Large-signal Analysis

$$V_{out} = V_{DD} - I_D R_D \qquad A_V = \frac{\partial V_{out}}{\partial V_{in}} = \frac{\partial I_D}{\partial V_{ip}} \times R_D \qquad \bigvee_{\text{DD}}$$
 Define
$$G_m = -\frac{\partial I_D}{\partial V_{in}} \implies A_V = -G_m \times R_D \qquad \bigvee_{\text{DD}} R_D \qquad \bigvee_{\text{OUt}} R_D \qquad \bigvee_{\text{$$

$$\therefore G_m = -g_m \frac{1}{1 + g_m R_s} = -\frac{1}{\frac{1}{g_m} + R_s} R_s \uparrow \Rightarrow G_m \downarrow \qquad \frac{\text{Trade-off}}{R_s}$$

$$= -\frac{1}{\frac{1}{g_m} + R_s} R_s \Rightarrow \int_{g_m} A_s \Rightarrow \Delta I_D = \frac{\Delta V_{in}}{R_s} \Rightarrow G_m = \frac{1}{R_s}$$

$$= \cos t \text{ of linearization: lower gain, lower swing}$$

The cost of linearization: lower gain, lower swing

$$V_{in} = V_{1} + I_{out}R_{S}$$

$$I_{out} = g_{m}V_{1} - g_{mb}V_{X} - \frac{I_{out}R_{S}}{r_{O}}$$

$$= g_{m}(V_{in} - I_{out}R_{S}) + g_{mb}(-I_{out}R_{S}) - \frac{I_{out}R_{S}}{r_{O}}$$

$$= G_{m} = \frac{I_{out}}{V_{in}} = \frac{g_{m}r_{O}}{R_{S} + [1 + (g_{m} + g_{mb})R_{S}]r_{O}}$$

$$A_{V} = -G_{m} \times R_{D} = -\frac{g_{m}r_{o}}{R_{S} + [1 + (g_{m} + g_{mb})R_{S}]r_{o}}$$

$$R_{D}$$

$$R_{D}$$

$$V_{in} \circ V_{out}$$

$$V_{in}$$

$$A_{V} = -G_{m} \times R_{D} = -\frac{g_{m}r_{o}}{R_{s} + \left[1 + (g_{m} + g_{mb})R_{s}\right]r_{o}} R_{D} \approx -\frac{g_{m}}{1 + g_{m}R_{s}} R_{D}$$

(1)
$$R_{\rm S}=0$$

 I_D and g_m vary with V_{in}

- \Box V_{in} slightly great than V_{TH} , M1 is on,
- $\Box 1/g_{\rm m} >> R_{\rm S} G_{\rm m} \approx g_{\rm m}$
- $\Box V_{\rm in} \uparrow, \quad G_m = -\frac{g_m}{1 + g_m R_s}$
- □ V_{in} is very large, $R_{\text{S}} > 1/g_{\text{m}} = G_{\text{m}} = \frac{1}{R}$
- **1** if $V_{\text{in}} > V_{\text{out}}$ V_{TH} , linear region, Av \downarrow

Output Resistance

- \Box $r_{\rm O}$ is boosted by a factor of $1+(g_{\rm m}+g_{\rm mb})R_{\rm S}$, then added $R_{\rm S}$
- \blacksquare $R_{\rm S}$ is boosted by a factor of 1+($g_{\rm m}$ + $g_{\rm mb}$) $r_{\rm O}$, then added $r_{\rm O}$
- \square Compare $R_S = 0$ with $R_S > 0$
- If $R_S = 0$, $g_m V_1 = g_{mb} V_{bs} = 0$ and $I_X = V_X / r_O$
- □ If $R_S > 0$, $I_X R_S > 0$ and $V_1 < 0$, obtaining negative $g_m V_1$ and $g_{mb} V_{bs}$
- □ Thus, current supplied by V_X is less than V_X/r_o and hence output impedance is greater than r_o

Small signal model of degenerated CS with finite output resistance

 \square Since voltage drops across r_O and R_S must add up to V_{out} ,

$$V_{out} = I_{ro}r_O - \frac{V_{out}}{R_D}R_S$$

$$= -\frac{V_{out}}{R_D}r_O - \left[g_m\left(V_{in} + V_{out}\frac{R_S}{R_D}\right) + g_{mb}V_{out}\frac{R_S}{R_D}\right]r_O - V_{out}\frac{R_S}{R_D}$$

voltage gain is therefore

$$\frac{V_{out}}{V_{in}} = \frac{-g_m r_O R_D}{R_D + R_S + r_O + (g_m + g_{mb}) R_S r_O}$$

$$A_{V} = -\frac{g_{m}r_{o}}{R_{s} + [1 + (g_{m} + g_{mb})R_{s}]r_{o}} \frac{R_{D}\{R_{s} + [1 + (g_{m} + g_{mb})R_{s}]r_{o}\}}{R_{D} + R_{s} + [1 + (g_{m} + g_{mb})R_{s}]r_{o}} = -G_{m}R_{out}$$

- \Box $G_{\rm m}$: the transconductance when the output is shorted to ground
- \square R_{out} : the output resistance when the input voltage is set to zero

Summary

- Two kinds of analysis method: <u>large-signal analysis</u> and <u>small-signal analysis</u>
- Small-signal analysis
 - Small-signal equivalent circuits
 - Based on the equivalent circuits, deduct the gain, the output impedance, ...
- ☐ The main structures of common-source amplifier:

Outline

- General Consideration
- □ Common-Source Stage
 - CS Stage with Resistive Load
 - CS Stage with Diode-Connected Load
 - CS Stage with Current-Source Load
 - CS Stage with Source Degeneration
- Source Follower
- □ Common-Gate Stage

Source follower

- \square Input voltage: V_{GD}
- \square Output voltage: V_{SD}

Via Gm

- Main Features:
- ☐ High input impedance
- **□** Low output impedance
- Allowing the "source" potential to follow the "gate" voltage Aò1,

Voltage buffer -> Level shifter

Large-signal analysis

- \square $V_{in} < V_{TH}$: M_1 is off and $V_{out} = 0$
- \square $V_{in} > V_{TH}$: M_1 turns on in saturation

 $V_{\rm DS} = V_{\rm DD}$ and $V_{\rm GS} - V_{\rm 7H} \approx 0$ and $I_{\rm D1}$ flows through $R_{\rm S}$

 \square V_{in} increases further: $V_{\text{out}} = V_{\text{in}} - V_{GS}$ (level shifter)

$$\frac{1}{2} \mu_{n} C_{OX} \frac{W}{L} (V_{in} - V_{TH} - V_{out})^{2} R_{S} = V_{out}$$

neglecting channel-length modulation

Body effect?

Large-signal analysis

$$\frac{1}{2} \mu_{n} C_{OX} \frac{W}{L} (V_{in} - V_{TH} - V_{out})^{2} R_{S} = V_{out}$$

differentiating both sides:

$$\frac{1}{2} \mu_{n} C_{OX} \frac{W}{L} 2 \left(V_{in} - V_{TH} - V_{out} \right) \left(1 - \frac{\partial V_{TH}}{\partial V_{in}} - \frac{\partial V_{out}}{\partial V_{in}} \right) R_{S} = \frac{\partial V_{out}}{\partial V_{in}} = \frac{\partial V_{out}}{\partial V$$

$$\therefore \frac{\partial V_{TH}}{\partial V_{in}} = \frac{\partial V_{TH}}{\partial V_{SR}} \frac{\partial V_{SB}}{\partial V_{in}} = \eta \frac{\partial V_{out}}{\partial V_{in}} \qquad g_m = \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})$$

$$\therefore \frac{\partial V_{out}}{\partial V_{in}} = \frac{\mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_S}{1 + \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_S (1 + \eta)}$$

$$A_{v} = \frac{\partial V_{out}}{\partial V_{in}} = \frac{g_{m}R_{S}}{1 + (g_{m} + g_{mb})R_{S}} = \frac{g_{m}}{\frac{1}{R_{S}} + g_{m} + g_{mb}}$$

A. Voltage Gain

neglecting channel-length modulation

$$\mathbf{v}_{in} \stackrel{+}{ \downarrow} \mathbf{v}_{1} \qquad \mathbf{g}_{mb} \mathbf{v}_{bs}$$

$$= \mathbf{R}_{s}$$

$$\mathbf{v}_{in} \stackrel{+}{ \downarrow} \mathbf{v}_{1} \qquad \mathbf{g}_{mb} \mathbf{v}_{bs}$$

$$= \frac{1}{(1+\eta)}$$

$$KVL: V_{in} - V_1 = V_{out}, \quad V_{bs} = -V_{out}$$

$$KCL: g_m V_1 - g_{mb} V_{out} = V_{out} / R_S$$

From feedback system point of view

■ Nonlinear of Gain

$$A_{v} = \frac{g_{m}R_{S}}{1 + (g_{m} + g_{mb})R_{S}}$$

$$= \frac{1}{\frac{1}{g_{m}R_{S}} + (1 + \frac{g_{mb}}{g_{m}})} \approx \frac{1}{1 + \eta} \le 1$$

- **□** For typical V_{SB} , $\eta \sim 0.2$
- **□** Even if $R_S = \infty$, A_V is not equal to 1

current source $\Rightarrow R_S$ How to improve the linearity of gain?

B. Input impedance

$$R_{in} = rac{V_{in}}{I_{in}}
ightarrow \infty$$
 (in low frequency)

C. Output impedance

$$egin{align*} \mathbf{Q}_{\mathsf{mb}}\mathbf{V}_{\mathsf{bs}} & V_1 = -V_X \\ I_X - g_m V_X - g_{mb} V_X = 0 \end{bmatrix}$$

$$R_{out} = \frac{1}{g_m + g_{mb}} = \frac{1}{g_m} \left\| \frac{1}{g_{mb}} \right\|$$

• Body effect $decreases R_{out}$ of SF

Issues with Source follower

- ☐ Drawback 1: Nonlinearity
 - Nonlinear **dependence** of V_{TH} on the source potential (body effect)
 - \square r_{O} changes substantially with V_{DS}

- Nonlinearity can be eliminated if the bulk is tied to the source
- Lower mobility of PFETs yields a higher output impedance than that available in the NMOS counterpart V_{DD}

Possible only for PFETs since all NFETs usually share the same substrate -> **DNW**

Issues with Source follower

Drawback 2: Voltage headroom limitation

lacksquare Source followers shift the DC level of V_{GS} , thereby **consuming** voltage headroom

CS stage + Source follower

 M_1 in saturation:

$$V_X$$
 (min) > V_{GS1} - V_{TH1}

 M_2 M_3 : in saturation

$$V_X \text{ (min)} > V_{GS2} + (V_{GS3} - V_{TH3})$$

- \square A DC level of V_{GS2}
- The voltage swing is decreased

Comparison of SF and CS with low load

if
$$R_L = 1/g_m$$

$$\frac{V_{out}}{V_{in}}\bigg|_{SF} = \frac{R_L}{R_L + 1/g_m} = 0.5 \qquad \frac{V_{out}}{V_{in}}\bigg|_{CS} = -g_m R_L \approx 1$$

Source followers are not necessarily efficient drivers

Frequency behavior

- □ SF can provide some phase lead
- ☐ Rs -> Rs // 1/sCs

Outline

- General Consideration
- □ Common-Source Stage
 - CS Stage with Resistive Load
 - CS Stage with Diode-Connected Load
 - CS Stage with Current-Source Load
 - CS Stage with Source Degeneration
- Source Follower
- □ Common-Gate Stage

Common-Gate Stage

- ☐ Input voltage: source
- ☐ Output voltage: drain
- □ Current buffer
- Low input impedance

Via Gm

 $I_{\rm in} = I_{\rm out}$

Large-signal analysis

Assume V_{in} decreases from a large positive value and $\lambda=0$

1)
$$V_{\text{in}} \ge V_{\text{b}} - V_{\text{TH}} : M_1 \text{ is off, } V_{\text{ou}t} = V_{\text{DD}}$$

2) For lower
$$V_{in}$$
, M_1 : in saturation I_{in}

$$I_{D} = \frac{1}{2} \mu_{n} C_{OX} \frac{W}{L} (V_{b} - V_{in} - V_{TH})^{2}$$

$$V_{out} = V_{DD} - \frac{1}{2} \mu_{n} C_{OX} \frac{W}{L} (V_{b} - V_{in} - V_{TH})^{2} R_{D}$$

3) As V_{in} decreases further, $V_{GS1} \uparrow \Rightarrow I_D \uparrow$, $V_{out} \downarrow$, M_1 : the triode region

$$V_{DD} - \frac{1}{2} \mu_n C_{OX} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D = V_b - V_{TH}$$

$$V_{DD} - \frac{1}{2} \mu_n C_{OX} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D = V_b - V_{TH}$$

A. Input-output Characteristics

Large-signal analysis

B. Gain

• For *M*₁ in saturation,

For
$$M_1$$
 in saturation,
$$V_{DD} = V_{DD} - \frac{1}{2} \mu_n C_{OX} \frac{W}{L} \left(V_b - V_{in} - V_{TH} \right)^2 R_D \qquad V_b - V_{TH} \qquad M_1 \text{ in Saturation}$$

$$\frac{\partial V_{out}}{\partial V_{in}} = -\mu_n C_{OX} \frac{W}{L} \left(V_b - V_{in} - V_{TH} \right) \left(-1 - \frac{\partial V_{TH}}{\partial V_{in}} \right) R_D$$

$$\therefore \frac{\partial V_{TH}}{\partial V_{in}} = \frac{\partial V_{TH}}{\partial V_{SB}} = \eta$$

$$\therefore \frac{\partial V_{out}}{\partial V_{in}} = \mu_n C_{OX} \frac{W}{L} (V_b - V_{in} - V_{TH}) R_D (1 + \eta) = g_m (1 + \eta) R_D$$

! positive

- Body effect increases the effective $g_{\rm m}$
- For a given bias current and supply voltage, A_{V} can be maximized by
 - -- Increasing g_m by widening the input device
 - -- Increasing R_D
- \Box V_{out} (min)= V_{GS} - V_{TH} + V_{I1} , where V_{I1} denotes the minimum voltage required by I_1 57

A. Gain

Current through R_S : $-V_{out}/R_D$,

$$V_1 - \frac{V_{out}}{R_D} R_S + V_{in} = 0$$

 $V_1 - \frac{V_{out}}{R_D}R_S + V_{in} = 0$ Current through $r_{\rm O}$: $-V_{out}/R_D - g_mV_1 - g_{mb}V_1$

KVL:
$$r_O \left(-V_{out} / R_D - g_m V_1 - g_{mb} V_1 \right) - \frac{V_{out}}{R_D} R_S + V_{in} = V_{out}$$

$$r_{O} \left[-\frac{V_{out}}{R_{D}} - \left(g_{m} + g_{mb} \right) \left(V_{out} \frac{R_{S}}{R_{D}} - V_{in} \right) \right] - \frac{V_{out}}{R_{D}} R_{S} + V_{in} = V_{out}$$

$$\frac{V_{out}}{V_{in}} = \frac{(g_m + g_{mb})r_O + 1}{r_O + (g_m + g_{mb})r_O R_S + R_S + R_D} R_D$$

Be similar to that of a degenerated CS stage

Via Gm: Input resistance = 1/Gm

$$I_{\rm in} = I_{\rm out}$$

Small-signal Performance

B. Input impedance

Current through r_0 : $I_X + g_m V_1 + g_{mb} V_1 = I_X - (g_m + g_{mb}) V_{X_i}$ So

$$R_{D}I_{X} + r_{O}\left[I_{X} - (g_{m} + g_{mb})V_{X}\right] = V_{X}$$

$$\frac{V_{X}}{I_{X}} = \frac{R_{D} + r_{O}}{1 + (g_{m} + g_{mb})r_{O}} = \frac{1}{g_{O} + g_{m} + g_{mb}} \left(1 + \frac{R_{D}}{r_{O}}\right)$$

$$\approx \frac{R_{D}}{(g_{m} + g_{mb})r_{O}} + \frac{1}{(g_{m} + g_{mb})} \quad \text{if } (g_{m} + g_{mb})r_{O} >> 1$$

Output impedance

$$R_{out} = \left\{ \left[1 + \left(g_m + g_{mb} \right) R_S \right] r_O + R_S \right\} / / R_D \approx \left(g_m R_S r_O \right) / / R_D$$

- Be similar to that of a degenerated CS stage
- When Calculate Zout, short the input !!

Outline

- General Consideration
- □ Common-Source Stage
 - CS Stage with Resistive Load
 - CS Stage with Diode-Connected Load
 - CS Stage with Current-Source Load
 - CS Stage with Source Degeneration
- Source Follower
- □ Common-Gate Stage

Combination of all above

Cascode Stage

- ☐ CS stage + CG stage
- \square M_1 : the input device $V_{\rm in} \rightarrow I_1 = g_{\rm m1} V_{\rm in}$
- M_2 : the cascode device, routing the current to R_D $I_1 = I_2$
- - **□** telescopic cascode

Bias Conditions

M_1 , M_2 : in saturation

- \square M_1 : in saturation, $V_X \ge V_{in} V_{TH1}$
 - If M_1 and M_2 : both in saturation
 - --M₂ operates as a source follower
 - -- V_X is determined by V_b : $V_X = V_b V_{GS2}$ $\mathbf{v_{bias}}$ \mathbf{o}

$$V_b - V_{GS2} \ge V_{in} - V_{TH1}$$

so
$$V_b \ge V_{GS2} + V_{in} - V_{TH1}$$

- M_2 : in saturation, $V_{\text{out}} \ge V_{\text{b}} V_{\text{TH2}}$ if V_{b} is chosen to place M_1 at the edge of saturation $V_{\text{out}} \ge V_{\text{in}} + V_{\text{GS2}} V_{\text{TH2}} V_{\text{TH1}} = (V_{\text{GS1}} V_{\text{TH1}}) + (V_{\text{GS2}} V_{\text{TH2}})$
- Minimum output: $V_{ov1} + V_{ov2} \approx 2V_{ov} \sim 0.4-0.6V$

Reduce the output voltage swing (at least V_{ov})

Output Impedance

high output impedance!

 \square A common-source stage with a degeneration resistor (r_{O1})

$$R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2}$$
 assuming $g_m r_O >> 1$,
 $\approx (g_{m2} + g_{mb2})r_{O2}r_{O1}$

 \blacksquare M2 boosts the output impedance of M1 by a factor of $(g_{m2}+g_{mb2})r_{O2}$

$$A_{v} = -G_{m}R_{out}$$

$$= -g_{m1} \left[r_{O1} + r_{O2} + (g_{m2} + g_{mb2}) r_{O1} r_{O2} \right]$$

$$\approx g_{m1}g_{m2}r_{O1}r_{O2} \approx (g_{m}r_{O})^{2}$$

How to get high voltage gain?

A. Increasing length of the input transistor

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} \right)^2$$

$$g_{\scriptscriptstyle m} r_{\scriptscriptstyle o} = \sqrt{2 \mu_{\scriptscriptstyle n} C_{\scriptscriptstyle ox} \frac{W}{L} I_{\scriptscriptstyle D}} \, \frac{1}{\lambda I_{\scriptscriptstyle D}}, \lambda \propto \frac{1}{L} \Longrightarrow g_{\scriptscriptstyle m} r_{\scriptscriptstyle o} \propto \sqrt{L}$$

B. Cascode stage

$$A_{v} \approx \left(g_{m} r_{O}\right)^{2} \qquad r_{O} -> g_{m} r_{O}^{2}$$

$$r_O - > g_m r_O^2$$

Increase gain by $g_m r_o$ V_{ov} : double, Swing \downarrow

gain: double

Cascode Stage with current source load

■ Maximum gain is roughly equal to the square of the intrinsic gain of the transistors

Cascode vs. Cascade

$$A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$$
 $A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$

Trade-off between ? and ?

Cascode Structure as Current Source

- □ High output impedance
- Low voltage headroom

■ PMOS cascode

$$[1+(g_{m3}+g_{mb3})r_{O3}]r_{O4}+r_{O3}$$

$$R_{out} = \left\{ \left[1 + \left(g_{m2} + g_{mb2} \right) r_{O2} \right] r_{O1} + r_{O2} \right\} \left\| \left\{ \left[1 + \left(g_{m3} + g_{mb3} \right) r_{O3} \right] r_{O4} + r_{O3} \right\} \right.$$

$$|A_V| = g_{m1} R_{out}$$

$$A_{V} = g_{m1} \left[\left(g_{m2} r_{O2} r_{O1} \right) \| \left(g_{m3} r_{O3} r_{O4} \right) \right]$$

More examples

Summary

□ Common-Source Stage

Inverse Gain -> I-V curve why $R_D < r_0$ of a transistor

Source Follower

 $Gm = gm/1+gm^* R_D$

With high output resistance Similar to Cascode

□ Common-Gate Stage

Current input with (1/Gm) -> lout = lin

集成电路原理与设计7.单级放大器

宋 美 shuangsonghz@zju.edu.cn