

دانشگاه صنعتی شاهرود دانشکده مهندسی کامپیوتر و فناوری اطلاعات

سیستمهای عامل

معرفى فرآيندها

استاد: عليرضاً تجري

سیستمهای عامل _ دانشکده مهندسی کامپیوتر _ دانشگاه صنعتی شاهرود

notepad.exe

- فایلی که میتوان آن را اجرا کرد.
 - بدون نیاز به مفسر
- با دابل کلیک یا اجرا در مفسر فرمان
 - با دابل کلیک بر روی shortcut
 - مثال
 - فایلهای با پسوند exe
 - فایل کامپایل شده یک فایل •

• برنامهها در کجا قرار دارند؟

- در دیسک سختدر فایل سیستم
 - در پوشهها
- برنامه
- یک فایل
- قابل اجرا شدن

- فایلهای اجرایی دارای ساختارهای استاندارد هستند.
- همانطور که فایلهای عکس یا ویدئو یا ورد یا html دارای ساختار

ELF header

Program header table

.text

.data

Section header table

مثال: ساختار فایلهای اجرایی در لینوکس
در هر بخش تعدادی بایت داده قرار دارد.

```
00000000 7F 45 4C 46
                     02
                               00
                                  00
                                      00
                                         00
                                            00 00
                                                  00 00 ELF....
0000000f | 00
            03 00 3E 00 01 00
                               00 00 40 05 00 00 00 00
                                                         . . . > . . . . . @ . . . . .
0000001e 00
            00 40 00 00 00 00
                               00 00 00 30 19 00 00 00
                                                         ..@.....0....
                               40 00 38 00 09 00 40 00
0000002d 00
                                                         . . . . . . . . @ . 8 . . . . @ .
            00 00 00 00 00 00
0000003c 1D 00 1C 00 06 00 00 00 04 00 00 00 40 00 00
```

• فایلهای اجرایی دارای ساختارهای استاندارد هستند.

- این ساختار وابسته به سیستمعامل است.

I	00000000	4 D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	<u>M</u> Z
I	000000f	00	В8	00	00	00	00	00	00	00	40	00	00	00	00	00	
1	0000001e	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
I	0000002d	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
I	0000003c	F0	00	00	00	0E	1F	BA	0E	00	В4	09	CD	21	В8	01	
I	0000004b	4C	CD	21	54	68	69	73	20	70	72	6F	67	72	61	6D	L.!This program
ł	0000005a	20	63	61	6E	6E	6F	74	20	62	65	20	72	75	6E	20	cannot be run
I	00000069	69	6E	20	44	4 F	53	20	6D	6F	64	65	2E	0D	0D	0A	in DOS mode
١	00000078	24	00	00	00	00	00	00	00	4B	E3	16	1D	0F	82	78	\$x
		•															•

DOS header

PE Signature

COFF Header

Optional Header

Section Table

Mappable Sections

- فایلهای اجرایی دارای ساختارهای استاندارد هستند.
 - این ساختار وابسته به سیستمعامل است.

- به همین دلیل برنامههای اجرایی ویندوز در لینوکس اجرا نمی شود و ۱۱ >

بالعكس.

DOS header

PE Signature

COFF Header

Optional Header

Section Table

Mappable Sections

ELF header
Program header table
.text
.data
Section header table

- فایلهای اجرایی دارای ساختارهای استاندارد هستند.
 - این ساختار وابسته به سیستمعامل است.
- به همین دلیل برنامههای اجرایی ویندوز در لینوکس اجرا نمی شود و بالعکس.

 Dos header

ELF header

حتی اگر فرمت فایلهای اجرایی ویندوز و لینوکس یکسان بود، باز هم برنامههای لینوکس در ویندوز اجرا نمی شد. چرا؟

Section Table

Section header table

- فایل برنامه دارای بخشهای مختلفی است.
 - تعدادی سرآیند. مانند:
- معماری پردازندهای که میتواند این برنامه را اجرا کند
 - کتابخانههای مورد استفاده
 - بخشهای مربوط به کد و داده
 - بخش کد: این بخش با text. شناخته می شود.
 - کد به زبان ماشین که پردازنده می تواند آن را اجرا کند.
 - بخش داده: این بخش با data. شناخته می شود.
- دادههای global برنامه. متغیرهایی که خارج از main تعریف شدهاند.

ELF header

Program header table

.text

.data

Section header table

وقتی یک برنامه را اجرا میکنیم، چه اتفاقی میافتد؟

- سیستم عامل بررسی می کند که آیا می تواند فایل را اجرا کند یا خیر
 - فرمت فایل درست است؟ میتوان روی این پردازنده اجر شود؟ و ...
- سیستم عامل یک فضای خالی در حافظه اصلی برای این برنامه در نظر می گیرد.
 - بخش text. و data. را از فایل برنامه به فضای برنامه در حافظه اصلی کپی می کند.
 - نرمافزاری به نام بارکننده، کتابخانههای مورد نیاز را در حافظه اصلی قرار می دهد.
 - برنامه آماده اجرا است.

وقتی یک برنامه را آجرا میکنیم، چه اتفاقی می افتد؟

• سیستمعامل بررسی میکند که آیا می تواند فایل را اجراکند یا خیر

به برنامهای که در حافظه قرار گرفته است، گیرد. فرآیند (Process)

میگوییم.

برنامه اماده اجرا است.

فرآيند چيست؟

- برنامهای است که در حافظه قرار گرفته است.
 - برنامهای که دستورات آن اجرا میشود.
 - فرآیندها در کجا قرار دارند؟
 - حافظه اصلی
 - برنامهها در کجا قرار دارند؟
 - فایل سیستم
 - مىتوان فرآيندها را ديد!
 - Task Manager با استفاده از

فرآیند شامل چه چیزهای است؟

- کد: دستورالعملهایی به زبان ماشین که پردازنده آنها را به صورت پشتسرهم اجرا میکند (text).
- داده: دادههای global ای که بخش کد از آنها برای ذخیره کردن متغیرها استفاده میکند (data).
 - حافظه پویا: بخش از حافظه که به صورت پویا (با استفاده از new) اختصاص داده شده است (heap).
 - پشته: بخشی از حافظه که آدرسهای برگشت از توابع و پارامترهای محلی تابع در آن ذخیره می شود (Stack).
 - رجیسترهای پردازنده: رجیسترهایی که در دستورالعملهای پردازنده از آنها استفاده میشود.
 - رجیستر PC (در برخی از پردازندههای، نام این رجیستر IP است.)
 - رجیسترهای همه منظوره

بخشهای فرآیند در حافظه اصلی و پردازنده

از اسلایدهای کتاب سیلبرشاتز

فرآیند چه تفاوتی با برنامه دارد؟

- برنامه ماهیت غیرفعال passive دارد.
- اگر بعد از چند روز به برنامه نگاه کنیم، هیچ تغییری نکرده است.
 - متغیرهای درون بخش data برنامه تغییری نمی کنند.
 - فرآیند ماهیت فعال active دارد.
 - برنامه در هر یک ثانیه میلیونها تغییر میکند.
 - متغیرهای درون بخش data فرآیند تغییر میکنند.

می توان از روی یک برنامه، چند فرآیند ایجاد کرد.

پس از اینکه فرآیند به وجود آمد، چه اتفاقی میافتد؟

- در ابتدا،
- دادهای در بخش stack و جود ندارد.
- مقدار اولیه متغیرهای گلوبال در data وجود دارد.
 - کد برنامه در text قرار دارد.
 - پس از آن برنامه می تواند اجرا شود.
 - توسط؟ پردازنده
- از کجا؟ از یک مکان خاص در حافظه (تابع main)
- برنامه الآن به چه زبانی است؟ زبان ماشین (زبان پردازنده)
 - دستورالعملها به صورت پشتسرهم اجرا میشوند.

پس از اینکه فرآیند به وجود آمد، چه اتفاقی میافتد؟

- در حین اجرا،
- مقدار رجیستر PC تغییر میکند.
 مقدار رجیسترهای دیگر پردازنده تغییر میکند.
 - بستگی به دستوراتی دارد که اجرا میشود.
 - اگر دادهای در متغیرهای گلوبال نوشته شود،
- حافظه متغیرهای گلوبال موجود در بخش data تغییر می کند.
 - اگر تابعی صدا زده شود، بخش stack تغییر میکند.
- اگر شیئ ایی new یا delete شود، بخش heap تغییر میکند.
- پس از صدا زدن فراخوانی سیستمی exit، اجرا به پایان میرسد.

اگر از یک برنامه، دو فرآیند به وجود بیاید، چگونه اجرا میشوند؟

- آیا اینکار امکان دارد؟
- بله، برنامه را دو بار اجرا میکنیم. (مثلاً دو notepad باز میکنیم.)
 - در ابتدا، حافظه هر دو فرآیند مثل هم است.
 - باکار کردن با یک فرآیند،
 - حافظه آن تغییر میکند.
 - بخش کد (text) ثابت باقی میماند.
 - رجیسترهای پردازنده تغییر میکنند.
 - شماره دستوری که اجرا می شود و ...

آیا به محض قرار گرفتن برنامه در حافظه، اجرا میشود؟

- وقتی که برنامه در حافظه قرار گرفت (فرآیند ایجاد شد)،
 - فرآیندهای دیگری هم در سیستم وجود دارد.
 - چندبرنامگی Multi-Programming
- پردازنده در حال اجرای دستورالعملهای یک فرآیند دیگر است.
 - سیستمعامل
 - چه زمانی فرآیند جدید اجرا میشود؟
 - چه زمانی فرآیندهای دیگر اجرا میشوند؟

سیستم عامل، اجرای فرآیندها را با استفاده از تعدادی صف، مدیریت میکند.

در هر لحظه، پردازنده، فقط یک دستورالعمل از یک فرآیند را اجرا میکند.

چگونه اجرای فرآیندها مدیریت میشود؟

- سیستم عامل، اجرای فرآیندها را با استفاده از تعدادی صف، مدیریت میکند.
 - به عنوان مثال، صف آماده
 - یک صف که در آن، فرآیندهایی که آماده اجرا هستند، قرار میگیرند.
 - فرآیندهای جدید به این صف اضافه میشوند.
 - سیستمعامل، هر باریک فرآیند از این صف انتخاب میکند
 - طی عملیاتی، پردازنده، آن فرآیند را اجرا میکند.
 - تا زمانی که
 - اتفاقی در سیستم رخ دهد
 - يا نتوان آن فرآيند را اجرا كرد.

- هر فرآیند در حین اجرا، دارای وضعیتهای متفاوتی است.
- وضعیت جدید (New): زمانی که فرآیند ایجاد شده است.
 - حافظه به آن اختصاص داده شده است.
 - هنوز هیچ دستوری از این فرآیند اجرا نشده است.

- وضعیت آماده (Ready): آماده اجرا شدن توسط پردازنده
 - اجرای فرآیند، مورد قبول سیستمعامل قرار گرفت.
 - هنوز هم هیچ دستورالعملی اجرا نشده است.

- وضعیت در حال اجرا (Running): در حالی اجرا شدن دستورالعملها توسط پردازنده
- سیستم عامل تصمیم گرفت که این فرآیند بر روی پردازنده اجرا شود.
- اگر وقفهای رخ بدهد، باید کد سیستم عامل اجرا شود (روتین سرویس وقفه)، بنابراین، فرآیند به وضعیت آماده برمی گردد.

- وضعیت انتظار (Waiting): منتظر یک رخداد یا انجام عملیات ورودی/خروجی
 - فرآیند درخواست یک عملیات ورودی/خروجی دارد.
 - زمانبر است / توسط سخت افزار دیگری اجرا می شود.
 - پردازنده باید فرآیند دیگری را اجرا کند.

- وضعیت تمام شده (Terminated): اجرای فرآیند به اتمام رسیده
 - فرآیند فراخوانی سیستمی exit را صدا زده
 - در اجرای فرآیند مشکلی پیش آمده که نمی توان اجرا را ادامه داد.

سیستمعاملهای مختلف، ممکن است نمودارهای متفاوتی داشته باشند.

از اسلایدهای کتاب سیلبرشاتز

وقتی چند فرآیند داریم، هر یک در چه state ای است؟

Process Control Block بلوک کنترل فرآیند

- یک ساختار داده که سیستمعامل برای هر فرآیند نگهداری میکند.
 - در حافظه اصلی
 - چه کاربردی دارد؟
 - همه اطلاعات مربوط به فرآیند در آن موجود است.
 - وضعیت فرآیند چیست؟
 - مقدار رجیسترهای پردازنده چیست؟
 - چه کاربری این فرآیند را ایجاد کرده است؟
 - این فرآیند چه فایلهایی را باز کرده است؟
 - و ...

بلوک کنترل فرآیند Process Control Block

- چه فیلدهایی دارد؟
- Process State حالت فرآيند –

وضعیت پردازنده Process State

- مقدار رجیستر شمارنده برنامه Program Counter
- مقدار رجیسترهای دیگر پردازنده CPU Registers
- اطلاعات زمانبندی پردازنده CPU Scheduling Information
 - اولویتهای فرآیند و ...

Process Control Block بلوک کنترل فرآیند

- چه فیلدهایی دارد؟
- اطلاعات مديريت حافظه Memory Management Information
 - چه بخشی از حافظه به فرآیند اختصاص داده شده است؟
 - اطلاعات حسابرسي Accounting Information
 - شناسه فرآیند
 - چه کاربری در چه زمانی فرآیند را اجرا کرده و ...
 - اطلاعات وضعیت ورودی/خروجی IO/ State Information
 - فایلهای باز شده توسط فرآیند و ...

بلوک کنترل فرآیند Process Control Block

process state

process number

program counter

registers

memory limits

list of open files

جدول فرآيندها Process Table

بلوک کنترل فرآیند Process Control Block

با داشتن این دو مورد، میتوان فرآیند را متوقف کرد و دوباره اجرا کرد.

process state process number program counter registers memory limits list of open files در حافظه سیستمعامل stack heap data text

حافظه برنامه

نحوه جابه جایی فرآیندها بر روی پردازنده

زمانبندی فرآیند Process Scheduling

- تعیین اینکه یک فرآیند به چه صورتی اجرا بشود.
- و چگونه وضعیت فرآیند از new به terminated میرسد.
 - وقتی چند فرآیند در سیستم داریم.

زمانبند فرآیند Process Scheduler

- بخشی از (هسته) سیستم عامل که عمل زمانبندی فرآیند را انجام می دهد.
- با استفاده از یک سری صف زمانبندی (Scheduling Queue) اینکار را انجام می دهد.
 - نمودار وضعیت فرآیند، برای همه فرآیندها یکسان است.
 - هر فرآیند در هر لحظه دارای یک وضعیت است.
 - سؤال: در هر لحظه از زمان، چند فرآیند دارای وضعیت x است؟

زمانبند فرآیند Process Scheduler

• سؤال: در هر لحظه از زمان، چند فرآیند دارای وضعیت x است؟

- در هر لحظه از زمان، در برخی از وضعیتها، چند فرآیند وجود دارد.
 - خدمات دهی به این فرآیندها نیاز به یک سری صف دارد.
 - صفهای زمانبندی، یک صفهایی هستند که فرآیندها در آن قرار میگیرند.
 - اشارهگر به PCB فرآیند
 - بخشی از سیستمعامل

از اسلایدهای کتاب سیلبرشاتز

تغییر متن Context Switch

- پردازنده چطور فرآیندهای مختلف را اجرا میکند؟
- فرض کنید پردازنده در حال اجرای فرآیند A است.
 - پس از آن، باید فرآیند B اجرا شود.
- همانطور که قبلاً گفتیم، برخی از اطلاعات فرآیند در پردازنده وجود دارد
 - رجیستر PC (آدرس دستور بعدی که باید اجرا شود)
 - رجیسترهای همه منظوره
 - رجیسترهای کنترلی

تغییر متن Context Switch

- برخی از اطلاعات فرآیند در پردازنده وجود دارد
 - وضعیت پردازنده CPU State
- قبل از اجرای فرآیند \mathbf{B} بر روی پردازنده، باید اطلاعات فرآیند \mathbf{A} که در پردازنده وجود دارد، ذخیره شود.
 - در كجا؟ در PCB فرآيند A
 - به اینکار ذخیره وضعیت State Save گفته می شود.
- هنگامی که خواستیم اجرای A را از سر بگیریم، باید این اطلاعات را بر روی پردازنده قرار دهیم
 - اطلاعات را از کجا بیاوریم؟ از PCB فرآیند A
 - به اینکار بازگشت وضعیت State Restore گفته می شود.

تغییر متن Context Switch

:Context Switch •

- عملیاتی که طی آن یک فرآیند از روی پردازنده برداشته می شود و فرآیند دیگر بر روی پردازنده قرار می گیرد.
 - دارای دو عمل است
 - State Save -
 - برای فرآیندی که هماکنون بر روی پردازنده اجرا میشود
 - State Restore -
 - برای فرآیندی که قرار است بر روی پردازنده اجرا شود
 - یک سرباز است و در این زمان کار مفیدی انجام نمی شود.
 - پردازندههای جدید، دارای دستورالعملهای مخصوصی برای اینکار هستند.