

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики Кафедра исследования операций

Горбунов Александр Александрович

Оценка стоимости опциона в биномиальной модели рынка

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научный руководитель:

к.ф-м.н., доцент В.В. Морозов

Содержание

1	Введение								
2	Дискретный случай								
	2.1 Описание модели	4							
	2.2 Построение графика	6							
	2.3 Метод Ричардсона	8							
3	Непрерывный случай								
	3.1 Описание модели	12							
	3.2 Построение графика	29							
4	4 Заключение	29							
$\Pi_{ m j}$	Приложение А. Коды программ	30							
	Построение границы области немедленного исполнения в дискретном слу	чае . 30							
	тучае 32								
Классический биномиальный метод									
	Метод Ричардсона	36							
Cı	Список литературы	41							

1 Введение

В данной работе исследуется построение границы области немедленного исполнения для американского колл-опциона в биномиальной модели рынка, а также оценка его стоимости.

Опцион — это контракт, который дает право на покупку актива по заранее оговоренной стоимости, которая называется ценой исполнения, через некоторый промежуток времени.

Американский опцион — это дериватив, дающий право на конкретное действие с активом по оговоренной цене в любой момент времени между датой заключения контракта и сроком его исполнения.

Колл-опцион — это опцион, владелец которого получает прибыль в том случае, когда стоимость базового актива растёт в будущем.

Для оценки стоимости американского колл-опциона применяются различные способы. В данной работе основное внимание уделятся двум методам: дискретному и непрерывному с использованием биномиальной модели рынка и модели геометрического броуновского движения [1].

Будем считать, что нам заранее известны следующие параметры:

- -S это стоимость акции в начальный момент времени;
- *K* это цена исполнения опциона;
- -T это срок действия договора;
- δ это параметр, отвечающий за выплачиваемые компанией держателям акций дивиденды;
 - $-\sigma$ это волатильность рынка;
 - r это процентная ставка (коэффициент дисконтирования).

Дополнительно, полагается, что стоимость акции удовлетворяет геометрической модели броуновского движения:

$$ds(t) = s(t)(\alpha dt + \sigma dz(t))$$

В последующих главах будут подробно описаны дискретный и непрерывный случаи, а также будут получены верхние границы оценки стоимости американского коллопциона. В дополнение к этому, будет описан метод Ричардсона [3], позволяющий ускорить вычисления стоимости американского опциона в дискретном случае для биномиальной модели рынка.

2 Дискретный случай

2.1 Описание модели

Опишем биномиальную модель рынка. Будем далее предполагать, что исходный отрезок времени поделён на n частей, а также что для каждого момента времени у стоимости акции имеется только две возможности: с вероятностью p (p - $puc\kappa$ -нейтральная mepa) она может увеличиться в u>1 раз, а с вероятностью 1-p - уменьшиться в u раз, т.е. измениться в $d=u^{-1}$ раз. Таким образом, цена акции после n таких шагов будет равна $S_j=Su^j$, где $j\in [-n,n]$.

Рис. 1: Изменение стоимости акции в биномиальной модели рынка с течением времени

Не ограничивая общности, будем считать, что речь идет о покупке только одной акции. Пусть S — это её стоимость в начальный момент времени.

Компания выплачивает держателям своих акций дивиденды в размере $S_j\delta\Delta t$, где S_j - это текущая стоимость акции, $\Delta t=\frac{T}{n}$ - длина периода в биномиальной модели рынка (T - момент исполнения опциона, n - число шагов). Предполагается, что все деньги, полученные с дивидендов идут на покупку акций той же компании. Т.е. будет куплено $\frac{S_j\delta\Delta t}{S_j}=\delta\Delta t$ акций.

Итого, имеем $1 + \delta \Delta t$ акций. Распишем это выражение в более удобном виде:

$$1 + \delta \Delta t = e^{\delta \Delta t} \approx \delta \Delta t + 1 = e^{\delta \Delta t}$$

Дополнительно, потребуется привести новую стоимость акции, которая изменилась в результате одного шага, к предыдущему моменту времени с помощью коэффициента дисконтирования r.

$$S=\underbrace{e^{-r\Delta t}}_{ ext{дисконтируется число акций}}\underbrace{e^{\delta \Delta t}}_{ ext{средняя стоимость акции}}\underbrace{S\left(up+d(1-p)
ight)}_{ ext{средняя стоимость акции}}$$

Описанная модель (биномиальная модель) была впервые предложена Коксом, Россом и Рубинштейном [1] в 1979 году.

Поскольку, по условию p не дано, то это значение необходимо вычислить. Сократим уравнение на S и выразим p:

$$e^{(r-\delta)\Delta t} - d = p(u-d)$$

Сделав замену $a=e^{(r-\delta)\Delta t},$ получим:

$$p = \frac{a - d}{u - d}$$

Далее нам достаточно найти u, потому что $d=\frac{1}{u}$. Т.к. стоимость акции удовлетворяет модели геометрического броуновского движения, то справедливо следующее равенство:

$$ds(t) = s(t)(\alpha dt + \sigma dz(t)),$$

где Var[dz(t)] = dt.

Теперь распишем $Var\left[\frac{ds(t)}{s(t)}\right]$ двумя способами для того, чтобы потом составить уравнение, которое позволит найти u.

С одной стороны,

$$Var\left[\frac{ds(t)}{s(t)}\right] = Var\left[\frac{s(t)(\alpha dt + \sigma dz(t))}{s(t)}\right] = Var\left[\alpha dt + \sigma dz(t)\right] =$$
$$= \sigma^{2} Var\left[dz(t)\right] = \sigma^{2} dt = e^{\sigma^{2} \Delta t} - 1.$$

Введём следующее обозначение:

$$b^2 = a^2 (e^{\sigma^2 \Delta t} - 1)$$

В таком случае, полученное равенство можно переписать в таком виде:

$$Var\left[\frac{ds(t)}{s(t)}\right] = \frac{b^2}{a^2}.$$

А с другой стороны,

$$Var\left[\frac{ds(t)}{s(t)}\right] = \left(\frac{u}{a} - 1\right)^2 p + \left(\frac{d}{a} - 1\right)^2 (1 - p)$$

Поскольку

$$d = \frac{1}{u}, \qquad p = \frac{a-d}{u-d} = \frac{a-\frac{1}{u}}{u-\frac{1}{u}},$$

ТО

$$Var\left[\frac{ds(t)}{s(t)}\right] = \frac{(u-a)^2}{a^2} \frac{a - \frac{1}{u}}{u - \frac{1}{u}} + \frac{(\frac{1}{u} - a)^2}{a^2} \frac{u - a}{u - \frac{1}{u}}$$

Теперь мы имеем право записать следующее уравнение:

$$\frac{(u-a)^2}{a^2} \frac{a - \frac{1}{u}}{u - \frac{1}{u}} + \frac{(\frac{1}{u} - a)^2}{a^2} \frac{u - a}{u - \frac{1}{u}} = \frac{b^2}{a^2}$$

Домножим обе части на $a^2 \cdot \left(u - \frac{1}{u}\right)$:

$$(u-a)^2 \left(a - \frac{1}{u}\right) + \left(\frac{1}{u} - a\right)^2 (u-a) = b^2 \left(u - \frac{1}{u}\right)$$

После раскрытия скобок, группировки слагаемых и сокращений получим достаточно простое квадратное уравнение

$$au^2 - (a^2 + b^2 + 1)u + a = 0,$$

из которого вытекает, что

$$u = \frac{a^2 + b^2 + 1 + \sqrt{(a^2 + b^2 + 1)^2 - 4a^2}}{2a}$$

После того, как все требуемые параметры найдены, можно перейсти к построению границы области немедленного исполнения.

2.2 Построение графика

Стоимость опциона равна дисконтированному за n шагов среднему выигрышу, т.е.

$$e^{-rn\Delta t} E[S_j - K]^+$$
, где

$$(S_j - K)^+ = \begin{cases} S_j - K & , S_j - K > 0 \\ 0 & , S_j - K \le 0 \end{cases}$$

Если на момент исполнения опциона цена акции больше, чем K - цена исполнения опциона (она прописывается в договоре), то выигрыш $S_j - K$, иначе опцион не предъявляется.

 $\begin{cases} V_j^i = \max(e^{-r\Delta t} (pV_{j+1}^{i+1} + (1-p)V_{j-1}^{i+1}), S_j - K) \\ V_j^n = (S_j - K)^+, \end{cases}$

Граница немедленного исполнения строится с помощью метода динамического программирования на основе последовательности V_i^j следующим образом: её значение в заданный момент времени i есть S_j , номер j которого является максимальным среди всех j, для которых выполнено следующее неравенство [2]:

$$V_j^i \le S_j - K$$

С помощью программы, написанной на языке Python (см. приложение А) удалось построить график, представленный на Рис. 2, который наглядно отображает вид этой границы. Вдоль оси абсцисс расположено время, а вдоль оси ординат граничное значение для опциона.

Рис. 2: Граница области немедленного исполнения в дискретном случае при $T=2, \sigma=0.3, K=100, S=120, r=0.02, \delta=0.07$

2.3 Метод Ричардсона

Мы рассмотрим оценку стоимости американского опциона с помощью полинома, которая базируется на экстраполяции с помощью малого количества точек исполнения. Это требуется для ускорения вычислений, требуемых для расчёта стоимости американского опциона [3].

Пусть F(h) - значение функции процентной ставки при шаге h. Требуется найти значение F(0). F(h) имеет следующий вид:

$$F(h) = F(0) + a_1 h^p + a_2 h^r + O(h^s),$$

где s > r > p.

Мы также имеем право записать

$$F(kh) = F(0) + a_1(kh)^p + a_2(kh)^r + O(h^s),$$

$$F(qh) = F(0) + a_1(qh)^p + a_2(qh)^r + O(h^s)$$

Выразим a_1 . Для этого разделим первое уравнения на $(kh)^r$, второе - на $(qh)^r$, а далее вычтем из одного другое.

$$\frac{F(kh)}{(kh)^r} = \frac{F(0)}{(kh)^r} + a_1(kh)^{p-r} + a_2,$$

$$\frac{F(qh)}{(qh)^r} = \frac{F(0)}{(qh)^r} + a_1(qh)^{p-r} + a_2$$

$$\frac{F(kh)}{(kh)^r} - \frac{F(qh)}{(qh)^r} = \frac{F(0)}{(kh)^r} - \frac{F(0)}{(qh)^r} + a_1((kh)^{p-r} - (qh)^{p-r})$$

Домножим левую и правую часть на $(khq)^r$.

$$q^{r}F(kh) - k^{r}F(qh) = q^{r}F(0) - k^{r}F(0) + a_{1}((kh)^{p}q^{r} - (qh)^{p}k^{r})$$

$$a_{1} = \frac{q^{r}(F(kh) - F(0))}{(kh)^{p}q^{r} - (qh)^{p}k^{r}} - \frac{k^{r}(F(qh) - F(0))}{(kh)^{p}q^{r} - (qh)^{p}k^{r}}$$

Аналогичным образом выразим a_2 . Для этого разделим первое уравнения на $(kh)^p$, второе - на $(qh)^p$, а далее вычтем из одного другое.

$$\frac{F(kh)}{(kh)^p} = \frac{F(0)}{(kh)^p} + a_1 + a_2(kh)^{r-p},$$
$$\frac{F(qh)}{(qh)^p} = \frac{F(0)}{(qh)^p} + a_1 + a_2(qh)^{r-p}$$

$$\frac{F(kh)}{(kh)^p} - \frac{F(qh)}{(qh)^p} = \frac{F(0)}{(kh)^p} - \frac{F(0)}{(qh)^p} + a_2((kh)^{r-p} - (qh)^{r-p})$$

Домножим левую и правую часть на $(khq)^p$.

$$q^{p}F(kh) - k^{p}F(qh) = q^{p}F(0) - k^{p}F(0) + a_{2}((kh)^{r}q^{p} - (qh)^{r}k^{p})$$

$$a_{2} = \frac{q^{p}(F(kh) - F(0))}{(kh)^{r}q^{p} - (qh)^{r}k^{p}} - \frac{k^{p}(F(qh) - F(0))}{(kh)^{r}q^{p} - (qh)^{r}k^{p}}$$

Подставим найденные коэффициенты a_1, a_2 в уравнение

$$F(h) = F(0) + a_1 h^p + a_2 h^r + O(h^s)$$

$$F(h) = F(0) + \frac{q^r (F(kh) - F(0)) - k^r (F(qh) - F(0))}{k^p q^r - q^p k^r} + \frac{q^p (F(kh) - F(0)) - k^p (F(qh) - F(0))}{k^r q^p - q^r k^p}$$

Домножим числитель и знаменатель первой дроби на $k^r q^p$, второй дроби - на $k^p q^r$.

$$F(h) = F(0) + \frac{k^r q^{r+p} (F(kh) - F(0)) - k^{2r} q^p (F(qh) - F(0))}{k^{p+r} q^{p+r} - k^{2r} q^{2p}} - \frac{k^r q^{2p} (F(kh) - F(0)) - k^{p+r} q^p (F(qh) - F(0))}{k^{p+r} q^{p+r} - k^{2r} q^{2p}}$$

Домножим уравнение на $k^{p+r}q^{p+r} - k^{2r}q^{2p}$:

$$F(h)(k^{p+r}q^{p+r} - k^{2r}q^{2p}) =$$

$$= F(0)(k^{p+r}q^{p+r} - k^{2r}q^{2p} - k^rq^{r+p} + k^{2r}q^p + k^rq^{2p} - k^{p+r}q^p) +$$

$$+F(kh)(k^rq^{r+p} - k^rq^{2p}) + F(qh)(-k^{2r}q^p + k^{p+r}q^p)$$

Поделим обе части уравнения на $k^r q^p$:

$$F(h)(k^{p}q^{r} - k^{r}q^{p}) = F(0)(k^{p}q^{r} - k^{r}q^{p} - q^{r} + k^{r} + q^{p} - k^{p}) +$$

$$+F(kh)(q^{r} - q^{p}) + F(qh)(-k^{r} + k^{p})$$

Введем несколько обозначений:

$$A = q^{r} - q^{p} + k^{p} - k^{r},$$

$$B = k^{r} - k^{p},$$

$$C = k^{p}q^{r} - k^{r}q^{p} - q^{r} + k^{r} + q^{p} - k^{p} =$$

$$= q^{r}(k^{p} - 1) - q^{p}(k^{r} - 1) + k^{r} - k^{p}.$$

Перепишем некоторые слагаемые уравнения:

$$F(h)(k^{p}q^{r} - k^{r}q^{p}) = F(h)C + F(h)\underbrace{(q^{r} - q^{p} + k^{p} - k^{r})}_{A}$$

$$F(kh)(q^{r} - q^{p}) = F(kh)(q^{r} - q^{p} + k^{p} - k^{r} - k^{r} + k^{p}) = F(kh)(A - B)$$

Подставим преобразованные слагаемые, выразим F(0):

$$F(0) = \frac{F(h) C + F(h) A}{C} + \frac{F(kh) A - F(kh) B}{C} - \frac{F(qh) B}{C}$$

Отсюда

$$F(0) = F(h) + \frac{A}{C}[F(h) - F(kh)] - \frac{B}{C}[F(kh) - F(qh)],$$

Пусть

 P_1 - стоимость опциона, которая может быть исполнена только в момент времени T. Положим $P_1 = F(qh)$.

 P_2 - стоимость опциона, которая может быть исполнена только в моменты времени T/2 или T. Положим $P_2 = F(kh)$.

 P_3 - стоимость опциона, которая может быть исполнена только в моменты времени $T/3,\, 2\, T/3$ или T. Положим $P_3=F(h).$

Значения $P_1, P_2, P_3, ...$ определяют последовательность, предел которой есть стоимость американсого опциона. Одним из способов вычисления данного предела является экстраполяция Ричардсона.

Положим $q=3, k=\frac{3}{2}, p=1, r=2$. Разложим F(h) в ряд Тейлора около точки F(0) и откинем слагаемые третьего порядка и выше [3]. Тогда

$$P = P_3 + \frac{A}{C}(P_3 - P_2) - \frac{B}{C}(P_2 - P_1)$$

$$\frac{A}{C} = \frac{q^r - q^p + k^p - k^r}{q^r(k^p - 1) - q^p(k^r - 1) + k^r - k^p} = \frac{9 - 3 + \frac{3}{2} - \frac{9}{4}}{9(\frac{3}{2} - 1) - 3(\frac{9}{4} - 1) + \frac{9}{4} - \frac{3}{2}} = \frac{\frac{21}{4}}{\frac{3}{2}} = \frac{7}{2}$$

$$\frac{B}{C} = \frac{k^r - k^p}{q^r(k^p - 1) - q^p(k^r - 1) + k^r - k^p} = \frac{\frac{9}{4} - \frac{3}{2}}{9(\frac{3}{2} - 1) - 3(\frac{9}{4} - 1) + \frac{9}{4} - \frac{3}{2}} = \frac{\frac{3}{4}}{\frac{3}{2}} = \frac{1}{2}$$

Откуда мы приходим к выводу, что

$$P = P_3 + \frac{7}{2}(P_3 - P_2) - \frac{1}{2}(P_2 - P_1).$$

На основе данного равенства реализуется ускоренный биномиальный метод (см. приложение A), который работает гораздо быстрее, чем классический биномиальный метод (см. Табл. 1) [4].

Таблица 1: Сравнение классического биномиального метода и метода Ричардсона

S	K	Τ	σ	r	δ	n	Классический метод, с.	Метод Ричардсона, к.
80	100	0.5	0.2	0.03	0.07	100	0.015	0.009
80	100	0.5	0.2	0.03	0.07	500	0.339	0.160
80	100	0.5	0.2	0.03	0.07	1000	1.334	0.753
80	100	0.5	0.2	0.03	0.07	10000	137.842	64.530

3 Непрерывный случай

3.1 Описание модели

Рассмотрим американский колл-опцион с датой погашения T и ценой исполнения K. Будем считать, что стоимость акции удовлетворяет модели геометрического броуновского движения:

$$ds(t) = s(t)[\alpha dt + \sigma dz(t)],$$

где s(t) - стоимость акции в момент времени $t, \quad \alpha = r - \delta, \quad r$ - процентная ставка (или коэффициент дисконтирования), δ - размер дивидендных выплат, а σ - коэффициент волатильности.

Стоимость американского опциона в момент времени t имеет следующий вид:

$$F(S,t) = \max_{\tau \ge t} E[e^{-r(\tau - t)} (s(\tau) - K)^{+}],$$

где S = s(t).

При этом справедлива оценка:

$$F(S,t) \ge max[(S-K)^+, C(S,t)] > 0,$$

т.к. $(S-K)^+,$ C(S,t) - это частные значения F(S,t) при $\tau=t$ и $\tau=T,$ соответственно, и т.к. C(S,t)>0.

Введем множество немедленного исполнения и его нижнюю границу

$$\varepsilon = \{(S, t) \mid F(S, t) = S - K\}$$
$$B(t) = \min\{S \mid (S, t) \in \varepsilon\}$$

Рис. 3: Граница множества немедленного исполнения B(t)

При попадании в область немедленного исполнения американский опцион сразу предъявляется. Наибольший интерес представляет построение границы данного множества (Рис. 3).

Пусть

$$\tau_L = min\{t \mid s(t) = L\}$$

Введём средний дисконтированный платёж следующим образом:

$$W(S,L) = \underbrace{E[e^{-r\tau_L} \left(L-K\right) \mathbb{1}_{\{\tau_L < T\}}]}_{\text{достигли границы } L} + \underbrace{E[e^{-rT} \left(s(T)-K\right)^+ \mathbb{1}_{\{\tau_L \geq T\}}\right]}_{\text{дошли до } T, \text{ не достигнув } L} = V(S,L) + U(S,L)$$

Рис. 4: Пояснение к расчёту среднего дисконтированного платежа

Справедливы следующие неравенства:

$$W(S, L) < F(S, 0)$$

$$\underline{F}(S, 0) = \max_{L} W(S, L) < F(S, 0),$$

где $\underline{F}(S,0)$ - это нижняя оценка множества немедленного исполнения в нулевой момент времени.

Поскольку

$$ds(t) = s(t)[\alpha dt + \sigma dz(t)],$$

то рассматривая данную запись как дифференциальное уравнения, получим:

$$s(t) = S e^{\tilde{\alpha}t + \sigma z(t)} = S e^{x(t)},$$

Рис. 5: Демонстрация достижения процессом границы x_L за конечное время где $\widetilde{\alpha}=\alpha-\frac{\sigma^2}{2}.$ В таком случае

$$x(t) = \widetilde{\alpha}t + \sigma z(t)$$

Если считать, что s(t)=L, т.е. $S\,e^{x(t)}=L,$ то

$$x(t) = \ln(\frac{L}{S}) = x_L > 0, \qquad (L > S)$$

Для построения границы воспользуемся вспомогательными инструментами. Для начала, рассмотрим вероятность того, что рассматриваемый процесс достигнет границы x_L за конечное время (Puc. 5).

$$P(\tau_L \le t) = G(x_L, t) = \Phi\left(\frac{-x_L + \widetilde{\alpha}t}{\sigma\sqrt{t}}\right) + e^{\frac{2\widetilde{\alpha}x_L}{\sigma^2}}\Phi\left(\frac{-x_L - \widetilde{\alpha}t}{\sigma\sqrt{t}}\right)$$

Плотность распределения в таком случае имеет следующий вид:

$$g(x_L, t) = G'_t(x_L, t) = \frac{x_L}{\sigma t^{\frac{3}{2}}} \varphi\left(\frac{-x_L + \widetilde{\alpha}t}{\sigma \sqrt{t}}\right) = g(x_L, t, \widetilde{\alpha})$$

Легко видеть, что

$$G(x_L, t) = \int_0^T g(x_L, t) dt$$

С учётом введённых обозначений, величину V(S,L) можно переписать в следующем виде:

$$V(S, L) = (L - K) E[e^{-r\tau_L} \mathbb{1}_{\{\tau_L < T\}}] = (L - K) \int_0^T e^{-rt} g(x_L, t, \widetilde{\alpha}) dt$$

Распишем подробно показатель экспоненты, находящейся под интегралом (с учётом экспоненты, входящей в состав $q(x_L, t, \widetilde{\alpha})$)

$$-rt - \frac{1}{2} \left(\frac{-x_L + \widetilde{\alpha}t}{\sigma \sqrt{t}} \right) = -\left(\frac{x_L - \xi t}{\sigma \sqrt{t}} \right)^2 + x_L \left(\frac{\widetilde{\alpha} - \xi}{\sigma^2} \right),$$

где $\xi = \sqrt{\widetilde{\alpha}^2 + 2r\sigma^2}$.

С учётом следующего обозначения

$$\beta_{1,2} = \frac{-\widetilde{\alpha} \pm \xi}{\sigma^2},$$

показатель экспоненты будем иметь вид:

$$-rt - \frac{1}{2} \left(\frac{-x_L + \widetilde{\alpha}t}{\sigma\sqrt{t}} \right) = -\frac{1}{2} \left(\frac{x_L - \xi t}{\sigma\sqrt{t}} \right)^2 - \beta_1 x_L.$$

В таком случае, V(S, L) будет выглядеть следующим образом:

$$V(S, L) = (L - K) e^{-\beta_1 x_L} \int_0^T g(x_L, t, \widetilde{\alpha}) dt = (L - K) \left(\frac{S}{L}\right)^{\beta_1} G(x_L, T, \xi).$$

Поскольку,

$$G(x_L, T, \xi) = \Phi\left(\frac{-x_L + \xi T}{\sigma\sqrt{T}}\right) + e^{\frac{2\xi x_L}{\sigma^2}} \Phi\left(\frac{-x_L - \xi T}{\sigma\sqrt{T}}\right) = \Phi\left(\frac{-x_L + \xi T}{\sigma\sqrt{T}}\right) + \left(\frac{S}{L}\right)^{-\frac{2\xi}{\sigma^2}} \Phi\left(\frac{-x_L - \xi T}{\sigma\sqrt{T}}\right),$$

то окончательное выражение для V(S, L) принимает вид:

$$V(S,L) = (L - K) \left[\left(\frac{S}{L} \right)^{\beta_1} \Phi \left(\frac{-x_L + \xi T}{\sigma \sqrt{T}} \right) + \left(\frac{S}{L} \right)^{\beta_2} \Phi \left(\frac{-x_L - \xi T}{\sigma \sqrt{T}} \right) \right].$$

Теперь перейдём к рассмотрению величины U(S, L).

$$U(S,L) = U(S,L,0) = e^{-rT} E[(s(T) - K)^{+} \mathbb{1}_{\{\tau_L \ge T\}}]$$

$$U(S,L,t) = e^{-r(T-t)} E[(s(T) - K)^{+} \mathbb{1}_{\{\tau_L \ge T\}}]$$

Будем считать, что U(S,L,t)=U(S,t), т.к. L фиксировано. Согласно уравнению Беллмана, справедливо:

$$U(S,t) = e^{-r dt} E[U(S(t+dt), t+dt)]$$

Вычтем из обеих частей уравнения слагаемое $e^{-r\,dt}U(S,t)$ и получим:

$$U(S,t)(1 - e^{-r dt}) = e^{-r dt} E[dU(S,t)],$$

где dU(S,t) = U(s(t+dt), t+dt) - U(S,t) - приращение U(S,t).

Распишем дифференциал с помощью формулы Ито:

$$dU(S,t) = U'_{s} ds(t) + U'_{t} dt + \frac{1}{2} U''_{ss} (ds(t))^{2} =$$

$$= U'_{s} S(\alpha dt + \sigma dz(t)) + U'_{t} dt + \frac{1}{2} U''_{ss} S^{2} \sigma^{2} dt$$

Последнее равенство справедливо, поскольку $(dz(t))^2=dt$. В силу малости величины dt, можно полагать $e^{-r\,dt}=1$. Таким образом, получаем, что

$$rdtU = \alpha SU_s' dt + U_t' dt + \frac{1}{2}U_{ss}''S^2\sigma^2 dt$$
$$rU = \alpha SU_s' + U_t' + \frac{1}{2}U_{ss}''S^2\sigma^2$$

Теперь запишем краевую задачу для этого уравнения:

$$\begin{cases} \frac{1}{2}U_{ss}''S^2\sigma^2 + \alpha SU_s' + U_t' - rU = 0\\ U(S,T) = (S-K)^+, & 0 < S < L\\ U(L,t) = 0, & 0 \le t \le T \end{cases}$$

Сделаем замены r = T - t, $x = \ln S$, $U(S,t) = e^{ax+b\tau} u(x,\tau)$. Далее будем подбирать константы a,b таким образом, чтобы в конечном итоге получить уравнение теплопроводности $\frac{1}{2}\sigma^2 u''_{xx} = u'_{\tau}$. Теперь распишем частные производные, которые присутствуют в краевой задаче, с учётом введённых замен.

$$\begin{split} x_s' &= \frac{1}{S} \\ U_s' &= a \frac{U}{S} + e^{ax+b\tau} \frac{u_x'}{S} \frac{u}{u} = \frac{U}{S} (a + \frac{u_x'}{u}) \\ U_{ss}'' &= \frac{U}{S^2} \left[\left(a + \frac{u_x'}{u} \right)^2 - a - \frac{u_x'}{u} + \frac{u_{xx}''}{u} - \frac{(u_x')^2}{u^2} \right] \\ U_t' &= (-b)U + e^{ax+b\tau} (-u_\tau') = -U(b + \frac{u_\tau'}{u}) \end{split}$$

Далее подставляем эти частные производные в исходное дифференциальное уравнение:

$$\frac{1}{2}\sigma^{2}U\left[\left(a + \frac{u'_{x}}{u}\right)^{2} - a - \frac{u'_{x}}{u} + \frac{u''_{xx}}{u} - \frac{(u'_{x})^{2}}{u^{2}}\right] + \alpha\left(a + \frac{u'_{x}}{u}\right)U - U\left(b + \frac{u'_{\tau}}{u}\right) - rU = 0$$

Остаётся подобрать a, b таким образом, чтобы коэффициент перед $\frac{u_x'}{u}$ и свободный член равнялись 0.

$$\begin{cases} \frac{1}{2}\sigma^2(2a-1) + \alpha = 0\\ \frac{1}{2}\sigma^2(a^2-a) + \alpha a - b - r = 0 \end{cases}$$

Получаем, что

$$\begin{cases} a = -\frac{\tilde{\alpha}}{\sigma^2} \\ b = \frac{1}{2}\sigma^2 a^2 + \tilde{\alpha}a - r = \frac{\sigma^2 \tilde{\alpha}^2}{2\sigma^4} - \frac{\tilde{\alpha}^2}{\sigma^2} - r = -\frac{\tilde{\alpha}^2 + 2r\sigma^2}{2\sigma^2} = -\frac{\xi^2}{2\sigma^2} \end{cases}$$

 ${\bf C}$ учётом этих a,b получаем стандартное уравнение теплопроводности:

$$\frac{1}{2}\sigma^2 \frac{u_{xx}''}{u} = \frac{u_{\tau}'}{u}$$
$$\frac{1}{2}\sigma^2 u_{xx}'' = u_{\tau}'$$

Перепишем краевые условия с учётом введённых ранее обозначений:

$$U(S,T) = (S - K)^{+}$$

$$e^{ax}u(x,0) = (e^{x} - K)^{+}$$

$$u(x,0) = e^{-ax}(e^{x} - K)^{+}, \qquad x < x_{L}$$

$$U(L,t) = 0$$

$$e^{ax_L + b\tau} u(x_L, \tau) = (e^x - K)^+$$

$$u(x_L, \tau) = 0, \qquad 0 \le \tau \le T$$

Итого получаем (Рис. 6):

$$\begin{cases} \frac{1}{2}\sigma^2 u_{xx}'' = u_{\tau}', & x < x_L \\ u(x,0) = e^{-ax}(e^x - K)^+, & x < x_L \\ u(x_L,\tau) = 0, & 0 \le \tau \le T \end{cases}$$

Для того, чтобы решить данную задачу (для полубесконечного стержня), сведём её к задаче для бесконечного стержня следующим образом:

Рис. 6: Пояснение к задаче для полубесконечного стержня

Введём

$$u_0(x) = e^{-ax}(e^x - K)^+, \quad \forall x$$

Также будем считать, что K < L, т.к. в противном случае $x_K = lnK \ge x_L$. Тогда задача имеет тривиальное решение, которое не представляет никакого интереса. Значит, $x_K < x_L$

Рассмотрим теперь случай, когда $x>x_L$. Продолжим следующим образом:

$$u(x,0) = \begin{cases} u_0(x), & x < x_L \\ 0, & x = x_L \\ -u_0(2x_L - x), & x > x_L. \end{cases}$$

Следует отметить, что при этом $u(x_L, \tau) = 0$ выполняется автоматически. Если $|u(x,\tau)| \leq Ce^{Bx^2}, B > 0, C > 0$, то задача на бесконечном стержне имеет решение в классе таких функций. Отметим, дополнительно, что u(x,0) обладает свойством кососимметричности, т.е.

$$u(x,0) = -u(2x_L - x, 0), \qquad \forall x$$

Рис. 7: Пояснение к задаче для бесконечного стержня

Воспользуемся данным свойством и представим решение в следующем виде:

$$u(x,0) = u_1(x,0) + u_2(x,0),$$

где

$$u_1(x,0) = \begin{cases} u_0(x), & x < x_L \\ 0, & x \ge x_L \end{cases}$$
$$u_2(x,0) = \begin{cases} 0, & x \le x_L \\ u_0(2x_L - x), & x > x_L \end{cases}$$

Отметим, что при этом $u_2(x,0)=-u_1(2x_L-x,0)$. Решим задачу для бесконечного стержня с начальным условием $u_1(x,0)$. Получив решение $u_1(x,\tau)$, автоматически получим решение $u_2(x,\tau)=-u_1(2x_L-x,\tau)$.

Введём

$$U_i(S,t) = e^{ax+b\tau} u_i(x,\tau), \quad i = 1, 2,$$

где x = lnS, $\tau = T - t$.

 $U_1(S,t)$ удовлетворяет терминальному условию:

$$U_1(S,T) = \begin{cases} S - K, & K \le S < L \\ 0, & \text{иначе} \end{cases}$$

Перепишем его в другом виде:

$$U_1(S,T) = \begin{cases} S - K, & S \ge K \\ 0, & S < K \end{cases} - \begin{cases} S - K, & S \ge L \\ 0, & S < L \end{cases}$$

Также справедливо, что

$$U_{1}(S,t) = C(S,t) - C_{1}(S,t) = Se^{-\delta(T-t)}\Phi\left(\frac{\ln\frac{S}{K} + (\widetilde{\alpha} + \sigma^{2})(T-t)}{\sigma\sqrt{T-t}}\right) - Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{S}{K} + \widetilde{\alpha}(T-t)}{\sigma\sqrt{T-t}}\right) - Se^{-\delta(T-t)}\Phi\left(\frac{\ln\frac{S}{L} + (\widetilde{\alpha} + \sigma^{2})(T-t)}{\sigma\sqrt{T-t}}\right) + Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{S}{L} + \widetilde{\alpha}(T-t)}{\sigma\sqrt{T-t}}\right) + Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{S}{L} + \widetilde{\alpha}(T-t)}{\sigma\sqrt{T-t}}\right)$$

Отсюда получаем решение

$$u_1(x,\tau) = e^{-ax-b\tau}U_1(e^x, T - \tau)$$

Следовательно,

$$u_2(x,\tau) = -u_1(2x_L - x,\tau) = -e^{-a(2x_L - x) - b\tau} U_1(e^{2x_L - x}, T - \tau)$$

$$U_2(S,t) = e^{ax + b\tau} u_2(x,\tau) = -e^{-a(2x_L - x)} U_1(e^{2x_L - x}, T - \tau)$$

Поскольку

$$x_L - x = lnL - lnS = ln\frac{L}{S},$$

то $U_2(S,t)$ принимает следующий вид:

$$U_2(S,t) = -\left(\frac{S}{L}\right)^{2a} U_1\left(\frac{L^2}{S},t\right).$$

При t=0

$$U(S,0) = U(S,L) = U_1(S,0) + U_2(S,0) =$$

$$C(S,0) - C_1(S,0) - \left(\frac{S}{L}\right)^{2a} \left[C\left(\frac{L^2}{S},0\right) - C_1\left(\frac{L^2}{S},0\right)\right]$$

Теперь, когда получен вид для компонент V(S,L), U(S,L), входящих в состав W(S,L), можно вернуться к общей задаче - к поиску нижней границы множества немедленного исполнения.

Рис. 8: Графики для U(S, L), W(S, L)

Для построения границы требуется решить уравнение

$$L(S,0) = S.$$

Заметим, что корни данного уравнения совпадают с корнями следующего уравнения:

$$W'(S, L(S, 0)) = W'_L(S, S) = 0$$

Следовательно, необходимо найти частную производную $W_L'(S,S)$. А для этого нужно вычислить $V_L'(S,S), U_L'(S,S)$.

$$V(S,L) = (L - K) \left[\left(\frac{S}{L} \right)^{\beta_1} \Phi \left(\frac{\ln \frac{S}{L} + \xi T}{\sigma \sqrt{T}} \right) + \left(\frac{S}{L} \right)^{\beta_2} \Phi \left(\frac{\ln \frac{S}{L} - \xi T}{\sigma \sqrt{T}} \right) \right]$$

Распишем более детально:

$$\left((L - K) \left(\frac{S}{L} \right)^{\beta_1} \right)_L' = \left(\frac{S}{L} \right)^{\beta_1} - \frac{(L - K)\beta_1}{S} \left(\frac{S}{L} \right)^{\beta_1 + 1} = \left(\frac{S}{L} \right)^{\beta_1} \left[1 - \frac{L - K}{L} \beta_1 \right]$$

Введём

$$b_{1,2}(M) = \frac{\ln M \pm \xi T}{\sigma \sqrt{T}}.$$

Теперь подставим в $V'_L(S, L)$:

$$V'_{L}(S, L) = \left(1 - \left(1 - \frac{K}{L}\right)\beta_{1}\right)\left(\frac{S}{L}\right)^{\beta_{1}}\Phi\left(b_{1}\left(\frac{S}{L}\right)\right) + \left(1 - \left(1 - \frac{K}{L}\right)\beta_{2}\right)\left(\frac{S}{L}\right)^{\beta_{2}}\Phi\left(b_{2}\left(\frac{S}{L}\right)\right) - \left(L - K\right)\left[\left(\frac{S}{L}\right)^{\beta_{1}}\frac{1}{L\sigma\sqrt{T}}\varphi\left(b_{1}\left(\frac{S}{L}\right)\right) + \left(\frac{S}{L}\right)^{\beta_{2}}\frac{1}{L\sigma\sqrt{T}}\varphi\left(b_{2}\left(\frac{S}{L}\right)\right)\right],$$

где $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ - функция плотности стандартного нормального распределения. Упростим полученное выражение. Для этого рассмотрим следующее отношение:

$$\frac{\varphi\left(b_1\left(\frac{S}{L}\right)\right)}{\varphi\left(b_2\left(\frac{S}{L}\right)\right)} = \frac{\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(b_1\left(\frac{S}{L}\right)\right)^2}}{\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(b_2\left(\frac{S}{L}\right)\right)^2}} = e^{\frac{1}{2}\left[\left(b_2\left(\frac{S}{L}\right)\right)^2 - \left(b_1\left(\frac{S}{L}\right)\right)^2\right]}$$

Распишем показатель экспоненты:

$$\frac{1}{2} \left[\left(b_2 \left(\frac{S}{L} \right) \right)^2 - \left(b_1 \left(\frac{S}{L} \right) \right)^2 \right] = \frac{1}{2} \left[b_2 \left(\frac{S}{L} \right) - b_1 \left(\frac{S}{L} \right) \right] \left[b_2 \left(\frac{S}{L} \right) + b_1 \left(\frac{S}{L} \right) \right] =$$

$$= \frac{1}{2} \left[\frac{\ln \left(\frac{S}{L} \right) - \xi T}{\sigma \sqrt{T}} - \frac{\ln \left(\frac{S}{L} \right) + \xi T}{\sigma \sqrt{T}} \right] \left[\frac{\ln \left(\frac{S}{L} \right) - \xi T}{\sigma \sqrt{T}} + \frac{\ln \left(\frac{S}{L} \right) + \xi T}{\sigma \sqrt{T}} \right] = -\frac{2\xi}{\sigma^2} \ln \frac{S}{L}$$

Следовательно, поскольку $\beta_{1,2}=\frac{-\widetilde{\alpha}\pm\xi}{\sigma^2}$, где $\xi=\sqrt{\widetilde{\alpha}^2+2r\sigma^2}$, получаем, что

$$\frac{\varphi\left(b_1\left(\frac{S}{L}\right)\right)}{\varphi\left(b_2\left(\frac{S}{L}\right)\right)} = e^{-\frac{2\xi}{\sigma^2}\ln\frac{S}{L}} = \left(\frac{L}{S}\right)^{\frac{2\xi}{\sigma^2}} = \left(\frac{L}{S}\right)^{\beta_1 - \beta_2}$$

Отсюда следует, что

$$\left(\frac{S}{L}\right)^{\beta_1} \frac{1}{L\sigma\sqrt{T}} \varphi\left(b_1\left(\frac{S}{L}\right)\right) = \left(\frac{S}{L}\right)^{\beta_2} \frac{1}{L\sigma\sqrt{T}} \varphi\left(b_2\left(\frac{S}{L}\right)\right)$$

Т.к. нас интересует случай S=L, то итоговое выражение для $V_L'(S,S)$ принимает следующий вид:

$$\begin{split} V_L'(S,S) &= \left(1 - \left(1 - \frac{K}{S}\right)\beta_1\right)\Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) + \left(1 - \left(1 - \frac{K}{S}\right)\beta_2\right)\Phi\left(-\frac{\xi\sqrt{T}}{\sigma}\right) - \\ &- (S - K)\frac{1}{S\sigma\sqrt{T}} \;\varphi\left(\frac{\xi\sqrt{T}}{\sigma}\right). \end{split}$$

Далее рассмотрим $U'_L(S, L)$.

$$U(S,L) = C(S,0) - C_1(S,0) - \left(\frac{S}{L}\right)^{2a} \left(C\left(\frac{L^2}{S},0\right) - C_1\left(\frac{L^2}{S},0\right)\right)$$

Рассмотрим (т.к. C(S,0) не зависит от L, то производную для этого слагаемого можно не расписывать)

$$C_{1}(S,0) = Se^{-\delta T}\Phi\left(d_{1}\left(\frac{S}{L}\right)\right) - Ke^{-rT}\Phi\left(d_{2}\left(\frac{S}{L}\right)\right)$$

$$C_{1}\left(\frac{L^{2}}{S},0\right) = \frac{L^{2}}{S}e^{-\delta T}\Phi\left(d_{1}\left(\frac{L}{S}\right)\right) - Ke^{-rT}\Phi\left(d_{2}\left(\frac{L}{S}\right)\right)$$

$$C\left(\frac{L^{2}}{S},0\right) = \frac{L^{2}}{S}e^{-\delta T}\Phi\left(d_{1}\left(\frac{L^{2}}{SK}\right)\right) - Ke^{-rT}\Phi\left(d_{2}\left(\frac{L^{2}}{SK}\right)\right)$$

$$\begin{split} \frac{\partial}{\partial L} C \left(\frac{L^2}{S}, 0 \right) &= \frac{2L}{S} e^{-\delta T} \Phi \left(d_1 \left(\frac{L^2}{SK} \right) \right) + 2 \frac{L^2}{S} e^{-\delta T} \frac{1}{L\sigma^2 \sqrt{T}} \varphi \left(d_1 \left(\frac{L^2}{SK} \right) \right) - \\ &- 2K e^{-rT} \frac{1}{L\sigma^2 \sqrt{T}} \varphi \left(d_2 \left(\frac{L^2}{SK} \right) \right) \end{split}$$

Поскольку $\frac{L^2}{S}e^{-\delta T}\varphi\left(d_1\left(\frac{L^2}{SK}\right)\right)=Ke^{-rT}\varphi\left(d_2\left(\frac{L^2}{SK}\right)\right)$, то производная примет следующий вид:

$$\frac{\partial}{\partial L}C\left(\frac{L^2}{S},0\right) = \frac{2L}{S}e^{-\delta T}\Phi\left(d_1\left(\frac{L^2}{SK}\right)\right)$$

Далее

$$-\frac{\partial}{\partial L}C_{1}\left(S,0\right) = Se^{-\delta T}\varphi\left(d_{1}\left(\frac{S}{L}\right)\right)\frac{1}{L\sigma\sqrt{T}} - Ke^{-rT}\varphi\left(d_{2}\left(\frac{S}{L}\right)\right)\frac{1}{L\sigma\sqrt{T}}$$

$$\left(\frac{S}{L}\right)^{2a} \frac{\partial}{\partial L} C_1 \left(\frac{L^2}{S}, 0\right) = \left(\frac{S}{L}\right)^{2a} \frac{1}{L\sigma\sqrt{T}} \frac{L^2}{S} e^{-\delta T} \varphi \left(d_1 \left(\frac{L}{S}\right)\right) - \left(\frac{S}{L}\right)^{2a} \frac{1}{L\sigma\sqrt{T}} K e^{-rT} \varphi \left(d_2 \left(\frac{L}{S}\right)\right)$$

В силу того, что

$$\frac{\varphi\left(d_2\left(\frac{S}{L}\right)\right)}{\varphi\left(d_2\left(\frac{L}{S}\right)\right)} = \left(\frac{S}{L}\right)^{2a},$$

справедливо следующее:

$$\frac{Ke^{-rT}\varphi\left(d_2\left(\frac{S}{L}\right)\right)}{L\sigma\sqrt{T}} = \left(\frac{S}{L}\right)^{2a} \frac{1}{L\sigma\sqrt{T}}Ke^{-rT}\varphi\left(d_2\left(\frac{L}{S}\right)\right).$$

Аналогично, поскольку

$$\frac{\varphi\left(d_1\left(\frac{S}{L}\right)\right)}{\varphi\left(d_1\left(\frac{L}{S}\right)\right)} = \left(\frac{L}{S}\right)^2 \left(\frac{S}{L}\right)^{2a},$$

то справедливо

$$\frac{Se^{-\delta T}\varphi\left(d_1\left(\frac{L}{S}\right)\right)}{L\sigma\sqrt{T}} = \left(\frac{S}{L}\right)^2 \frac{1}{L\sigma\sqrt{T}} \frac{L^2}{S} e^{-\delta T}\varphi\left(d_1\left(\frac{S}{L}\right)\right).$$

Следовательно,

$$\left(\frac{S}{L}\right)^{2a} \frac{\partial}{\partial L} C_1 \left(\frac{L^2}{S}, 0\right) = Se^{-\delta T} \varphi \left(d_1 \left(\frac{S}{L}\right)\right) \frac{1}{L\sigma\sqrt{T}} - Ke^{-rT} \varphi \left(d_2 \left(\frac{S}{L}\right)\right) \frac{1}{L\sigma\sqrt{T}}$$

Возвращаясь к $U_L'(S,L)$ и подставляя найденные выражения для производных, получаем:

$$U'_{L}(S, L) = -\left(\frac{S}{L}\right)^{2a} \frac{2L}{S} e^{-\delta T} \Phi\left(d_{1}\left(\frac{L^{2}}{SK}\right)\right) + \frac{2}{\sigma\sqrt{T}} \left[\frac{S}{L} e^{-\delta T} \varphi\left(d_{1}\left(\frac{S}{L}\right)\right) - \frac{K}{L} e^{-rT} \varphi\left(d_{2}\left(\frac{S}{L}\right)\right)\right]$$

Т.к.
$$Se^{-\delta T}\varphi\left(d_1\left(\frac{S}{L}\right)\right) = Le^{-rT}\varphi\left(d_2\left(\frac{S}{L}\right)\right)$$
, то

$$U'_{L}(S,L) = -\left(\frac{S}{L}\right)^{2a} \frac{2L}{S} e^{-\delta T} \Phi\left(d_{1}\left(\frac{L^{2}}{SK}\right)\right) + \frac{2}{\sigma\sqrt{T}} \left[\left(1 - \frac{K}{L}\right)e^{-rT}\varphi\left(d_{2}\left(\frac{S}{L}\right)\right)\right]$$

$$U'_{L}(S,L) = -\left(\frac{S}{L}\right)^{2a} \frac{2L}{S} e^{-\delta T} \Phi\left(d_{1}\left(\frac{L^{2}}{SK}\right)\right) + \frac{2}{\sigma\sqrt{T}} \left[\left(1 - \frac{K}{L}\right)\left(\frac{S}{L}\right)^{\beta_{1}}\varphi\left(b_{2}\left(\frac{S}{L}\right)\right)\right].$$

Окончательно, $W'_L(S, L)$ принимает следующий вид:

$$W'_{L}(S, L) = \left[1 - \left(1 - \frac{K}{L}\right)\beta_{1}\right] \left(\frac{S}{L}\right)^{\beta_{1}} \Phi\left(b_{1}\left(\frac{S}{L}\right)\right) + \left[1 - \left(1 - \frac{K}{L}\right)\beta_{2}\right] \left(\frac{S}{L}\right)^{\beta_{2}} \Phi\left(b_{2}\left(\frac{S}{L}\right)\right) + 2(a - 1)e^{-\delta T} \left(\frac{S}{L}\right)^{2a - 1} \left[\Phi\left(d_{1}\left(\frac{L^{2}}{SK}\right)\right) - \Phi\left(d_{1}\left(\frac{L}{S}\right)\right)\right] - 2ae^{-rT} \frac{K}{L} \left(\frac{S}{L}\right)^{2a} \left[\Phi\left(d_{2}\left(\frac{L^{2}}{SK}\right)\right) - \Phi\left(d_{2}\left(\frac{L}{S}\right)\right)\right]$$

Требуется найти решения следующей задачи:

$$W_L'(S,S) = 0$$

Введём обозначение $H(S,T)=W_L'(S,S)$ и перейдем к решению задачи H(S,T)=0. Покажем, что решение её существует и единственно.

$$\begin{split} H(S,T) &= \left[1 - \left(1 - \frac{K}{S}\right)\beta_1\right]\Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) + \left[1 - \left(1 - \frac{K}{S}\right)\beta_2\right]\Phi\left(-\frac{\xi\sqrt{T}}{\sigma}\right) + \\ &+ 2(a-1)e^{-\delta T}\left[\Phi\left(d_1\right) - \Phi\left(\frac{(\widetilde{\alpha} + \sigma^2)\sqrt{T}}{\sigma}\right)\right] - 2ae^{-rT}\frac{K}{S}\left[\Phi\left(d_2\right) - \Phi\left(\frac{\widetilde{\alpha}\sqrt{T}}{\sigma}\right)\right], \end{split}$$

где

$$d_{1} = \frac{\ln\left(\frac{S}{K}\right) + (\widetilde{\alpha} + \sigma^{2})T}{\sigma\sqrt{T}}$$
$$d_{2} = \frac{\ln\left(\frac{S}{K}\right) + \widetilde{\alpha}T}{\sigma\sqrt{T}}$$

Для начала, докажем существование решения.

$$H(K,T) = \Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) + \Phi\left(\frac{-\xi\sqrt{T}}{\sigma}\right) + 0 = 1$$

$$\lim_{s \to \infty} H(S,T) = H(\infty,T) = (1-\beta_1)\Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) + (1-\beta_2)\Phi\left(\frac{-\xi\sqrt{T}}{\sigma}\right) + 2(a-1)e^{-\delta T}\left(1-\Phi\left(\frac{(\tilde{\alpha}+\sigma^2)\sqrt{T}}{\sigma}\right)\right)$$

Покажем, что $H(\infty, T)$ имеет следующий вид (Рис. 9):

Рис. 9: Предполагаемый график для $H(\infty, T)$

Поскольку $a=-\frac{\tilde{\alpha}}{\sigma^2},$ то

$$H(\infty,0) = \frac{1}{2}(1-\beta_1) + \frac{1}{2}(1-\beta_2) + 2(a-1)\frac{1}{2} = 1 - \frac{\beta_1 + \beta_2}{2} + a - 1 = 0$$

$$H'_T(\infty,T) = \frac{\xi}{2\sigma\sqrt{T}} \left[(1-\beta_1) - (1-\beta_2) \right] \varphi\left(\frac{\xi\sqrt{T}}{\sigma}\right) + \frac{2(\widetilde{\alpha} + \sigma^2)\delta e^{-\delta T}}{\sigma^2} \left(1 - \Phi\left(\frac{(\widetilde{\alpha} + \sigma^2)\sqrt{T}}{\sigma}\right) \right) + \frac{2(\widetilde{\alpha} + \sigma^2)e^{-\delta T}}{2\sigma^3\sqrt{T}} \varphi\left(\frac{(\widetilde{\alpha} + \sigma^2)\sqrt{T}}{\sigma}\right)$$

Преобразуем множители, входящие в состав первого слагаемого:

$$\begin{split} \frac{\xi}{2\sigma\sqrt{T}}\left[(1-\beta_1)-(1-\beta_2)\right] &= \frac{\xi(\beta_2-\beta_1)}{2\sigma\sqrt{T}} = -\frac{2\xi^2}{2\sigma\sqrt{T}} - \frac{2(\widetilde{\alpha}+2\sigma^2r)}{2\sigma^3\sqrt{T}} \\ \varphi\left(\frac{\xi\sqrt{T}}{\sigma}\right) &= e^{-\delta T}\varphi\left(\frac{(\widetilde{\alpha}+\sigma^2)\sqrt{T}}{\sigma}\right) \end{split}$$

Далее поскольку

$$\varphi\left(\frac{\xi\sqrt{T}}{\sigma}\right) = e^{-\delta T}\varphi\left(\frac{(\widetilde{\alpha} + \sigma^2)\sqrt{T}}{\sigma}\right),$$

то $H_T'(\infty,T)$ имеет следующий вид:

$$H_T'(\infty,T) = -\frac{2\delta}{\sigma\sqrt{T}}e^{\delta T}\varphi\left(\frac{(\widetilde{\alpha}+\sigma^2)\sqrt{T}}{\sigma}\right) + \frac{2(\widetilde{\alpha}+\sigma^2)}{\sigma^2}\delta\left(1-\Phi\left(\frac{(\widetilde{\alpha}+\sigma^2)\sqrt{T}}{\sigma}\right)\right)$$

Известно, что

$$1 - \Phi(x) < \frac{\varphi(x)}{x}, \quad \forall x > 0$$

Следовательно, считая, что $\frac{(\tilde{\alpha}+\sigma^2)\sqrt{T}}{\sigma}>0$ (т.к. в противном случае, если выражение будет меньше или равно 0, то $H_T'(\infty,T)<0$ сразу), получаем:

$$1 - \Phi\left(\frac{(\widetilde{\alpha} + \sigma^2)\sqrt{T}}{\sigma}\right) < \frac{\varphi(\frac{(\widetilde{\alpha} + \sigma^2)\sqrt{T}}{\sigma})}{(\widetilde{\alpha} + \sigma^2)\sqrt{T}} \sigma$$

Следовательно, $H_T'(\infty,T) < 0$, а значит и $H(\infty,T) < 0$, что вместе с H(K,T) = 1 обеспечивает существование решения уравнения H(S,T) = 0.

Перейдем к обоснованию единственности.

$$\begin{split} H(S,T) &= \left[1 - \left(1 - \frac{K}{S}\right)\beta_1\right]\Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) + \left[1 - \left(1 - \frac{K}{S}\right)\beta_2\right]\Phi\left(-\frac{\xi\sqrt{T}}{\sigma}\right) + \\ &+ 2(a-1)e^{-\delta T}\left[\Phi\left(d_1\right) - \Phi\left(\frac{(\widetilde{\alpha} + \sigma^2)\sqrt{T}}{\sigma}\right)\right] - 2ae^{-rT}\frac{K}{S}\left[\Phi\left(d_2\right) - \Phi\left(\frac{\widetilde{\alpha}\sqrt{T}}{\sigma}\right)\right], \end{split}$$

где
$$\beta_{1,2} = \frac{-\tilde{\alpha} \pm \sqrt{\tilde{\alpha}^2 + 2r\sigma^2}}{\sigma^2}, \quad a = -\frac{\tilde{\alpha}}{\sigma^2}.$$

Отыщем производную по S для данной функции:

$$H'_{S}(S,T) = -\frac{K}{S^{2}}\beta_{1}\Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) - \frac{K}{S^{2}}\beta_{2}\Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) + 2(a-1)\frac{e^{-\delta T}}{S\sigma\sqrt{T}}\varphi(d_{1}) + 2a\frac{Ke^{-rT}}{S^{2}}\left[\Phi(d_{2}) - \Phi\left(\frac{\widetilde{\alpha}\sqrt{T}}{\sigma}\right)\right] - 2a\frac{Ke^{-rT}}{S^{2}\sigma\sqrt{T}}\varphi(d_{2})$$

Сделаем замену $e^{-\delta T}\varphi(d_1) = \frac{K}{S}e^{-rT}\varphi(d_2)$:

$$\begin{split} H_S'(S,T) &= -\frac{K}{S^2} \beta_1 \Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) - \frac{K}{S^2} \beta_2 \Phi\left(\frac{\xi\sqrt{T}}{\sigma}\right) - \\ &- \frac{2Ke^{-rT} \varphi(d_2)}{S^2 \sigma \sqrt{T}} + 2a \frac{Ke^{-rT}}{S^2} \left[\Phi(d_2) - \Phi\left(\frac{\widetilde{\alpha}\sqrt{T}}{\sigma}\right)\right] = 0 \end{split}$$

Для доказательства единственности корня необходимо убедиться в том, что не будем возникать подобных ситуаций (Рис. 10):

Рис. 10: Нежелательное поведение H(S,T)

В таком случае, строгая положительность второй производной $H'_{SS}(S,T)$ позволит избежать возникновения таких случаев. Покажем, что $H'_{SS}(S,T)>0$.

Для простоты, перепишем $H'_{S}(S,T)$ в более удобном виде:

$$H_S'(S,T) = \frac{1}{S^2} \cdot (\ldots)$$

.

В таком случае

$$H'_{SS}(S,T) = \left(\frac{1}{S^2} \cdot (\ldots)\right)' = \underbrace{\left(\frac{1}{S^2}\right)'(\ldots)}_{=0} + \frac{1}{S^2} \cdot (\ldots)' =$$

$$= \frac{1}{S^2} \left[\frac{2K}{\sigma\sqrt{T}} d_2 \varphi(d_2) \frac{1}{S\sigma\sqrt{T}} e^{-rT} + 2ae^{-rT} K \frac{1}{S\sigma\sqrt{T}} \varphi(d_2) \right]$$

Сравним полученное выражение с нулём. После сокращений получаем, что необходимо, чтобы выполнялось следующее неравенство:

$$\frac{d_2}{\sigma\sqrt{T}} + a > 0$$

Известно, что

$$\begin{cases} a = -\frac{\widetilde{\alpha}}{\sigma^2} \\ d_2 = \frac{\ln\left(\frac{S}{K}\right) + \widetilde{\alpha}T}{\sigma\sqrt{T}} \end{cases} \Rightarrow \frac{\ln\left(\frac{S}{K}\right) + \widetilde{\alpha}T}{(\sigma\sqrt{T})^2} - \frac{\widetilde{\alpha}}{\sigma^2} = \frac{\ln\left(\frac{S}{K}\right)}{\sigma^2T} > 0$$

А это верно, поскольку мы считаем, что S > K. Следовательно, $H'_S(S,T) = 0, H''_{SS}(S,T) > 0$, а значит, мы доказали единственность корня. Таким образом, доказаны существование и единственность решения следующего уравнения:

$$W_L'(S,S) = 0$$

А поскольку корни этого уравнения совпадают с корнями L(S,0)=S, то задача построения нижней границы области немедленного исполнения опциона решена.

3.2 Построение графика

С помощью программы, написанной на языке Python (см. приложение А) удалось построить график, представленный на Рис. 11, который наглядно отображает вид этой границы. Вдоль оси абсцисс расположено время, а вдоль оси ординат граничное значение для опциона.

Рис. 11: Граница области немедленного исполнения в непрерывном случае при $T=2, \sigma=0.3, K=100, S=120, r=0.02, \delta=0.07$

4 Заключение

В данной работе было рассмотрено построение границы области немедленного исполнения для американского колл-опциона в биномиальной модели рынка. В итоге, были получены результаты для

- 1. Дискретной модели
- 2. Непрерывной модели

Дополнительно, был использован метод Ричардсона, который позволил существенно ускорить расчёты в дискретном случае. Был проведён сравнительный анализ классического биномиального метода и метода Ричардсона. Также были построены графики границ в непрерывном и дискретном случаях.

Приложение А. Коды программ

Построение границы области немедленного исполнения в дискретном случае

```
\# Libraries
import numpy as np
import matplotlib.pyplot as plt
\# \ Discrete \ model
Т
     = 2
si
     = 0.3
K
     = 100
S
     = 120
    = 0.02
delta = 0.07
    = 1000
v = np.zeros(2*n+1, dtype=np.float)
s = np.zeros(2*n+1, dtype=np.float)
dt = T / n
r inv = np.exp(-r*dt)
a = np.exp((r-delta)*dt)
b2 = a ** 2 * (np.exp(si**2 * dt) - 1)
tmp = a ** 2 + b2 + 1
u = (tmp + np.sqrt(tmp * tmp - 4 * a * a)) / (2*a)
d = 1 / u
p = (a - d)/(u - d)
q = 1 - p
p1 = r inv * p
q1 = r_iv * q
s[0] = K
for j in range (1, n+1):
    s[j] = s[j-1] * u
    s[-j] = s[-j+1] * d
for j in range(-n, n+1, 2):
    v[j] = max(s[j]-K,0)
```

```
\begin{array}{lll} B\_i = & [ ] \\ & \text{for } i \text{ in } \mathbf{range}(1 \,,\, n{+}1,\, 1) \colon \\ & & \text{for } j \text{ in } \mathbf{range}(-(n{-}i) \,, (n{-}i) {+}1 \,, 2) \colon \\ & & v[j] = \mathbf{max}(p1 \, * \, v[j{+}1] \, + \, q1 \, * \, v[j{-}1] \,, \, s[j] \, - \, K) \\ & \text{for } j \text{ in } \mathbf{range}(-(n{-}i) \,, (n{-}i) {+}1 \,, 2) \colon \\ & & \text{if } v[j] <= s[j] \, - \, K \colon \\ & & B\_i \,. \, insert \, (0 \,, s[j{-}2]) \\ & & \text{break} \\ \\ & plt \,. \, figure \, (\, figsize \, = \, (10 \,, 5) \,) \\ & plt \,. \, plot \, (B\_i) \\ & plt \,. \, show \, () \end{array}
```

Построение границы области немедленного исполнения в непрерывном случае

```
\# Libraries
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from scipy.special import erf
\# \ Continuous \ model
Т
                       = 2
                       = 0.3
 si
K
                       = 100
S
                       = 120
 r
                       = 0.02
                      = 0.07
de
alp
                      = r-de
                     = r-de-si**2/2
 alpw
bb
                      = -\text{alpw}/\sin **2
                       = np. sqrt (alpw**2+2*r*si**2)
 ksi
                       = (-alpw+ksi)/si**2
be1
                       = (-alpw-ksi)/si**2
be2
                       = K*be1/(be1-1)
 Sz
N = lambda x: (erf(x/np.sqrt(2))+1)/2
b1 = lambda S, L, t : (np.log(S/L) + ksi*t)/(si*np.sqrt(t))
b2 = lambda S, L, t : (np.log(S/L)-ksi*t)/(si*np.sqrt(t))
 d1 = lambda S, L, t : (np.log(S/L) + (alpw+si**2)*t)/(si*np.sqrt(t))
 d2 = lambda S, L, t : (np. log (S/L) + alpw*t) / (si*np. sqrt (t))
 \mathbf{def} \, \mathrm{PW}(\mathrm{S},\mathrm{L},\mathrm{t}):
             A1 = (1-(L-K)/L*be1)*(S/L)**(be1)*N(b1(S,L,t))
             A2 = (1-(L-K)/L*be2)*(S/L)**(be2)*N(b2(S,L,t))
             A3 = -2*np.exp(-de*t)*(alpw+si**2)/si**2*(S/L)**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**2*(S/L)**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**2*(S/L)**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(2*bb-1)*(N(d1(L**2/S))*(alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+si**2)/si**(Alpw+
             A4 = 2*np.exp(-r*t)*alpw/si**2*K/L*(S/L)**(2*bb)*(N(d2(L**2/S,K,t))-N(d2(L**2/S,K,t)))
              return A1+A2+A3+A4
```

32

n = 1000

```
\begin{array}{lll} & \text{for } k \text{ in } \text{range}(0\,,\,\,n)\colon \\ & t = T \,*\, (1 - k/n) \\ & \text{PW\_tmp} = \text{lambda } \text{L1: abs}(\text{PW}(\text{L1}\,,\text{L1}\,,t)) \\ & \text{res} = \text{minimize}(\text{PW\_tmp},\,\,[K]\,,\,\,\text{bounds} = \,[(K,Sz)]\,,\,\,\text{method='TNC'}) \\ & l\_\text{nepr.append}(\,\text{res}\,.x\,[0]) \\ & \text{plt.figure}(\,\text{figsize}\,=(10\,,\!5)) \\ & \text{plt.plot}(\,l\_\text{nepr}) \\ & \text{plt.xlabel}(\,'t\,') \\ & \text{plt.ylabel}(\,'S\,') \\ & \text{plt.show}() \end{array}
```

Классический биномиальный метод

```
\# Libraries
import numpy as np
import time
def classic_bin(S, K, T, sigma, r, delta, n, res):
    start time = time.time()
    \# Initialize parameters
    v = np.zeros(2*n+1, dtype=np.float)
    s = np.zeros(2*n+1, dtype=np.float)
    dt = T / n
    r inv = np.exp(-r*dt)
    a = np.exp((r-delta)*dt)
    b2 = a ** 2 * (np.exp(sigma * sigma * dt) - 1)
    tmp = a ** 2 + b2 + 1
    u = (tmp + np. sqrt (tmp * tmp - 4 * a * a)) / (2*a)
    d = 1 / u
    p = (a - d)/(u - d)
    q = 1 - p
    p1 = r_i v * p
    q1 = r inv * q
    s[0] = S
    # The level to calculate the bound for
    level = 2*n//3
    for j in range (1, n+1):
        s[j] = s[j-1] * u
        s[-j] = s[-j+1] * d
    \# Store option values at time index i=n
    for j in range(-n, n+1, 2):
        v[j] = max(s[j]-K,0)
    \#\ Work\ backwards\ in\ time
    for i in range (n-1, -1, -1):
```

```
for j in range(-i,i+1,2):
    v[j] = max(p1 * v[j+1] + q1 * v[j-1], s[j] - K)

# Getting the bound
for j in range(level+1,-level,-1):
    if (v[j] > s[j] - K):
        bound = s[j]
        break

# Return binomial option value
C = v[0]
finish_time = time.time()
print("%.3f" % C, "___", "%.3f" % res, '_____', bound, ',____', finish]
```

Метод Ричардсона

```
\# Libraries
import numpy as np
import time
def P1(S, K, T, sigma, r, delta, n):
    # Initialize parameters
    v = np.zeros(2*n+1, dtype=np.float)
    s = np.zeros(2*n+1, dtype=np.float)
    b = np.zeros(2*n+1, dtype=np.float)
    vtmp = np.zeros(2*n+1, dtype=np.float)
    dt = T / n
    r inv = np.exp(-r*T) \# (!) changed here
    a = np.exp((r-delta)*dt)
    b2 = a ** 2 * (np.exp(sigma * sigma * dt) - 1)
    tmp = a ** 2 + b2 + 1
    u = (tmp + np. sqrt (tmp * tmp - 4 * a * a)) / (2*a)
    d = 1 / u
    p \, = \, (\, a \, - \, d\,) \, / \, (\, u \, - \, d\,)
    q = 1 - p
    s[0] = S
    for j in range (2, n+1, 2):
        s[j] = s[j-2] * u*u
        s[-j] = s[-j+2] * d*d
    \# Store option values at time index i=n
    for j in range(-n, n+1, 2):
        v[j] = max(s[j]-K,0)
    \# Store binomial terms
    m = n \# (!)  changed here
    b[m] = p**m
    for j in range (1, m+1):
        k = m - 2*j
        b[k] = b[k+2] * ((m-j+1)/j)*(q/p)
```

```
\# Evaluate at time i=0
    sumproduct = 0
    for k in range(-m, m+1, 2):
        sumproduct += b[k]*v[k]
    vtmp[0] = r_iv * sumproduct
    \# Return P(1) value
    P 1 = \text{vtmp}[0]
    return P 1
def P2(S, K, T, sigma, r, delta, n):
    # Initialize parameters
    v = np.zeros(2*n+1, dtype=np.float)
    s = np.zeros(2*n+1, dtype=np.float)
    b = np.zeros(2*n+1, dtype=np.float)
    vtmp = np.zeros(2*n+1, dtype=np.float)
    dt = T / n
    r_{inv} = np.exp(-r*T/2) \# (!) \ changed \ here
    a = np.exp((r-delta)*dt)
    b2 = a ** 2 * (np.exp(sigma * sigma * dt) - 1)
    tmp = a ** 2 + b2 + 1
    u = (tmp + np. sqrt (tmp * tmp - 4 * a * a)) / (2*a)
    d = 1 / u
    p = (a - d)/(u - d)
    q = 1 - p
    s[0] = S
    for j in range (2, n+1, 2):
        s[j] = s[j-2] * u*u
        s[-j] = s[-j+2] * d*d
    \# Store option values at time index i=n
    for j in range(-n, n+1, 2):
        v[j] = max(s[j]-K,0)
   \# Store binomial terms
   m = n // 2 \# (!) changed here
```

```
b[m] = p**m
    for j in range (1, m+1):
        k = m - 2*j
        b[k] = b[k+2] * ((m-j+1)/j)*(q/p)
    \# Evaluate \ at \ time \ index \ i=n/2=m
    for j in range(-m, m+1, 2):
        \# sumproduct(b | 2k-m|, v | 2k-m+j|, k=0 to m by 1)
        sumproduct = 0
        for k in range (0, m+1):
            sumproduct += b[2*k-m] * v[2*k-m+j]
        vtmp[j] = sumproduct
        vtmp[j] = max(r_inv*vtmp[j], s[j]-K)
    for j in range(-m,m+1,2):
        v[j] = vtmp[j]
   \# Evaluate at time i=0
    sumproduct = 0
    for k in range(-m,m+1,2):
        sumproduct += b[k]*v[k]
    vtmp[0] = r inv * sumproduct
   \# Return P(2) value
   P 2 = \text{vtmp}[0]
    return P 2
def P3(S, K, T, sigma, r, delta, n):
    \# Initialize parameters
    v = np.zeros(2*n+1, dtype=np.float)
    s = np.zeros(2*n+1, dtype=np.float)
    b = np.zeros(2*n+1, dtype=np.float)
    vtmp = np.zeros(2*n+1, dtype=np.float)
    dt = T / n
    r inv = np.exp(-r*T/3)
    a = np.exp((r-delta)*dt)
    b2 = a ** 2 * (np.exp(sigma * sigma * dt) - 1)
    tmp = a ** 2 + b2 + 1
```

```
u = (tmp + np. sqrt (tmp * tmp - 4 * a * a)) / (2*a)
d = 1 / u
p = (a - d)/(u - d)
q = 1 - p
s[0] = S
for j in range (2, n+1, 2):
    s[j] = s[j-2] * u*u
    s[-j] = s[-j+2] * d*d
\# Store option values at time index i=n
for j in range(-n, n+1, 2):
    v[j] = max(s[j]-K,0)
\# Store binomial terms
m = n // 3
b[m] = p**m
for j in range (1, m+1):
    k = m - 2*j
    b[k] = b[k+2] * ((m-j+1)/j)*(q/p)
\# Evaluate \ at \ time \ index \ i=2n/3=2m
for j in range(-2*m, 2*m+1, 2):
    \# sumproduct(b[2k-m], v[2k-m+j], k=0 to m by 1)
    sumproduct = 0
    for k in range (0, m+1):
        sumproduct += b[2*k-m] * v[2*k-m+j]
    vtmp[j] = sumproduct
    vtmp[j] = max(r_inv*vtmp[j], s[j]-K)
for j in range(-m, m+1, 2):
    v[j] = vtmp[j]
\# Evaluate \ at \ time \ index \ i=n/3=m
for j in range(-m, m+1, 2):
    \# sumproduct(b[2k-m], v[2k-m+j], k=0 to m by 1)
    sumproduct = 0
```

```
for k in range (0, m+1):
            sumproduct += b[2*k-m] * v[2*k-m+j]
        vtmp[j] = sumproduct
        vtmp[j] = max(r_inv*vtmp[j], s[j]-K)
    for j in range(-m, m+1, 2):
        v[j] = vtmp[j]
    \# Evaluate at time i=0
    sumproduct = 0
    for k in range(-m, m+1, 2):
        sumproduct += b[k]*v[k]
    vtmp[0] = r_iv * sumproduct
   \# Return P(3) value
   P_3 = \text{vtmp}[0]
    return vtmp[0]
def richardson bin(S, K, T, sigma, r, delta, n, res):
    start time = time.time()
   P_1 = P1(S, K, T, sigma, r, delta, n)
   P 2 = P2(S, K, T, sigma, r, delta, n)
   P 3 = P3(S, K, T, sigma, r, delta, n)
    finish time = time.time()
    t = finish time - start time
    val = P_3 + 3.5*(P_3 - P_2) - 0.5*(P_2 - P_1)
    print("%.3f" % val, ", "%.3f" % res, '==', "%.3f" % t)
    return
```

Список литературы

- [1] Cox J., Ross S.A., Rubinstein M. Option Pricing: A Simplified Approach // Journal of Financial Economics. 1979. V. 7, № 3. P. 229-263.
- [2] Broadie M., Detemple J. American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods // The Review of Financial Studies. 1996. V. 9, № 4. P. 1211-1250.
- [3] Geske R., Johnson H. E. The American Put Option Valued Analytically // The Journal of Finance. 1984. V. 39, № 5. P. 1511-1524.
- [4] Hull J., White A. The Use of the Control Variate Technique in Option Pricing // The Journal of Financial and Quantitative Analysis. 1988. V. 23, № 3. P. 237-251.