Analysis of Compression

1. COMPRESSIVE STRESS

Compressive loading of a member when applied (axially) concentric with the center of gravity of the member's cross-section, results in compressive stresses distributed uniformly across the section. This compressive unit stress is—

$$\sigma_{\rm e} = {{
m P} \over {
m A}}$$
(1)

A short column (slenderness ratio L/r equal to about unity or less) that is overloaded in compression may fail by crushing. From a design standpoint, short compression members present little problem. It is important to hold the compressive unit stress within the material's compressive strength.

For steel, the yield and ultimate strengths are considered to be the same in compression as in tension.

Any holes or openings in the section in the path of force translation will weaken the member, unless such openings are completely filled by another member that will carry its share of the load.

Excessive compression of long columns may cause failure by buckling. As compressive loading of a long column is increased, it eventually causes some eccentricity. This in turn sets up a bending moment, causing the column to deflect or buckle slightly. This deflection increases the eccentricity and thus the bending moment. This may progress to where the bending moment is increasing at a rate greater than the increase in load, and the column soon fails by buckling.

2. SLENDERNESS RATIO

As the member becomes longer or more slender, there is more of a tendency for ultimate failure to be caused by buckling. The most common way to indicate this tendency is the slenderness ratio which is equal to—

where L = unsupported length of member

r = the least radius of gyration of the section

$$r = \sqrt{\frac{I}{A}} \qquad (2)$$

If the member is made longer, using the same cross-section and the same compressive load, the resulting compressive stress will remain the same, although the tendency for buckling will increase. The slenderness ratio increases as the radius of gyration of the section is reduced or as the length of the member is increased. The allowable compressive load which may be applied to the member decreases as the slenderness ratio increases.

The various column formulas (Tables 3 and 4) give the allowable average compressive stress (σ) for the column. They do not give the actual unit stress developed in the column by the load. The unit stress resulting from these formulas may be multiplied by the cross-sectional area of the column to give the allowable load which may be supported.

3. RADIUS OF GYRATION

The radius of gyration (r) is the distance from the neutral axis of a section to an imaginary point at which the whole area of the section could be concentrated and still have the same amount of inertia. It is found by the expression: $r = \sqrt{I/A}$.

In the design of unsymmetrical sections to be used as columns, the least radius of gyration (r_{min}) of the section must be known in order to make use of the slenderness ratio (L/r) in the column formulas.

If the section in question is not a standard rolled section the properties of which are listed in steel handbooks, it will be necessary to compute this least radius of gyration. Since the least radius of gyration is—

$$r_{\omega in} = \sqrt{\frac{I_{min}}{A}} \qquad (3)$$

the minimum moment of inertia of the section must be determined.

Minimum Moment of Inertia

The maximum moment of inertia (I_{max}) and the minimum moment of inertia (I_{min}) of a cross-section are

3.1-2 / Column-Related Design

FIGURE 1

found on principal axes, 90° to each other.

$$I_{\max_{\min}} = \frac{I_x + I_y}{2} \pm \sqrt{\left(\frac{I_x - I_y}{2}\right)^2 + I_{xy}^2} \quad(4)$$

Knowing Ix, Ir, and Ixy it will be possible to find Imin.

Problem I

Locate the (neutral) x-x and y-v axes of the offset T section shown in Figure 2:

FIGURE 2

to locate neutral axis x-x:

	A	d	M
6" × 1".	6.0	0	. 0
$\overline{1'' \times 6''}$	6.0	- 3.5	-21.0
Total → →	12.0		21.0

where d = distance from center of gravity of element area to parallel axis (here: x₁-x₁)

and, applying formula #1 from Section 2.3, the distance of neutral axis x-x from its parallel axis x₁-x₁ is —

$$NA_{x-x} = \frac{\Sigma M}{\Sigma A} = \frac{-21.0}{12.0} = -1.75''$$

to locate neutral axis y-y:

	A	- d	M
1" × 6"	6.0	+ 1.5	+ 9.0
6" × 1"	6,0	0	0
Total *→	12.0		+ 9.0

$$NA_{y-y} = \frac{\Sigma M}{\Sigma A} = \frac{+ 9.0}{12.0} = + .75''$$

product of inertia

It will be necessary to find the product of inertia (I_{xy}) of the section. This is the area (A) times the product of distances d_x and d_y as shown in Figure 3.

In finding the moment of inertia of an area about a given axis (I_x or I_y), it is not necessary to consider the signs of d_x or d_y . However, in finding the product of inertia, it is necessary to know the signs of d_x and d_y because the product of these two could be either positive or negative and this will determine the sign of the resulting product of inertia. The total product of inertia of the whole section, which is the sum of the values of the individual areas, will depend upon these signs. Areas in diagonally opposite quadrants will have products of inertia having the same sign.

The product of inertia of an individual rectangular area, the sides of which are parallel to the x-x and y-y axes of the entire larger section is —

FIGURE 4

where:

a and b = dimensions of rectangle (= A)

d and c = distance of area's center of gravity to the x-x and y-y axes (= d_x and d_y)

The product of inertia of a T or angle section is — (See Figure 5).

$$I_x = A d_x^2$$

Moment of inertia

$$y = A d^2$$

-- Mament of inertio obout y-y axis

$$I_{\omega} = A d/d$$

Product of inertial about x-x and y y axes

1st Quodront $I_{xy} = +A d_x d_y$

2nd Quadrant
$$l_{xy} = -A d_x d_y$$

3rd Quadrant $I_{xy} = + A d_x d_y$

 $I_{xy} = - \Lambda \, d_x \, d_y$

FIGURE 3

FIGURE 5

Here, determine sign by inspection.

Problem 2

Determine the product of inertia of this offset T section about the x-x and y-y axes:

$$I_{xy} = \Sigma A (d_x)(d_y)$$

$$= 2.5 (+ 1)(+ .555) + 2 (- 1.25)(- .695)$$

$$= + 1.388 + 1.737$$

$$= + 3.125 \text{ in.}^4$$

Now use formula given previously for product of inertia of such a section:

$$I_{xy} = \frac{a d t (d - 2c)(a + t)}{4 (a + d)}$$
$$= \frac{(4)(5)(\frac{1}{2})(5 - \frac{2.5)(4 + \frac{1}{2})}{4 (4 + 5)}}{4 (4 + 5)}$$
$$= \frac{+ 3.125 \text{ in.}^{4}}{4}$$

3.1-4 / Column-Related Design

Problem 3

Determine the minimum radius of gyration of the offset T section shown previously (Fig. 2) and repeated here:

FJGURE 7

moment of inertia about axis x-x

	A	d	M	I	I_{g}
6" × 1"	6.0	0	0	0	.50
<u>I" × 6"</u>	6.0	— 3.5	— 21.0	+73.5	18.00
Total **→	12.0	•	<u> </u>	+ 92.	.00

$$NA_{x-x} = \frac{\Sigma M}{\Sigma A} = \frac{-21.0}{12.0} = -1.75$$
" and

$$I_x = I - \frac{M^2}{A} = 92.00 - 36.75 = 55.25 \text{ in.}^4$$

moment of inertia about axis y-y

	A	d	M	I	I_{g}
$\overline{1'' \times 6''}$	6.0	+ 1.5	+ 9.0	13.5	18.00
6" × 1"	6.0	0	0	0	.50
Total ⇒→	12.0		+ 9.0	+ 32.0	00

$$NA_{y,y} = \frac{\Sigma M}{\Sigma A} = \frac{+~9.0}{12.0} = +~.75''$$
 and

$$I_r = I - \frac{M^2}{A} = 32.00 - 6.75 = 25.25 \text{ in.}^4$$

product of inertia:

$$I_{xy} = \Sigma A (d_x)(d_y)$$

$$= (1 \times 6)(+1.75)(+.75) + (1 \times 6)(-1.75)(-.75)$$

$$= + 15.75 \text{ in.}^4$$

minimum moment of inertia

$$I_{min} = \frac{I_x + I_y}{2} - \sqrt{\left(\frac{I_x + I_y}{2}\right)^2 + I_{xy}^2}$$

$$= \frac{55.25 + 25.25}{2} - \sqrt{\left(\frac{55.25 - 25.25}{2}\right)^2 + (15.75)^2}$$

$$= 40.25 - 21.75$$

$$= 18.50 \text{ in.}^4$$

minimum radius of gyration

$$r_{min} = \sqrt{\frac{I_{min}}{A}}$$

$$= \sqrt{\frac{18.50}{12.0}} = \sqrt{1.542}$$

$$= 1.24''$$

As a matter of interest, this r_{min} is about axis x'-x', the angle (θ) of which is —

$$\tan 2\theta = -\frac{2 I_{xy}}{I_x - I_y}$$
 (See sketch below).

$$= -\frac{2 (15.75)}{55.25 - 25.25} = -1.05$$

$$2\theta = -46.4^{\circ} \text{ or } + 133.6^{\circ}$$
and $\theta = +66.8^{\circ}$

Any ultimate buckling could be expected to occur about this axis (x'-x').

Problem 4

The channel section, Figure 8, is to be used as a column. Determine its radius of gyration about its x-x axis.

Using the conventional formulas for the properties of the section —

FIGURE 8

area of the section

$$A = bd - b_1d_1 = (6)(4) - (5.5)(3.75)$$

= 3.375 in.²

distance of neutral axis

$$n = d - \frac{2 d^2t + b_1t^2}{2 db - 2 b_1d_1}$$

$$= 4 - \frac{2(4)^2(.25) + (5.5)(.25)^2}{2(4)(6) - 2(5.5)(3.75)}$$

$$= 2.764''$$

moment of inertia

$$I = \frac{2 d^{3}t + b_{1}t^{3}}{3} - A(d - n)^{2}$$

$$= \frac{2(4)^{3}(.25) + (5.5)(.25)^{3}}{3}$$

$$- 3.375 (4 - 2.764)^{2}$$

$$= 5.539''$$

radius of gyration

$$r = \sqrt{\frac{I}{A}}$$

$$= \sqrt{\frac{5.539}{3.375}}$$

$$= 1.281''$$

If a slide rule had been used, assuming a possible error of \pm one part in 1000 for every operation, this answer could be as high as 1.336" and as low as 1.197". This represents an error of + 4.3% and - 6.6%. For this reason it is necessary, when using these conventional formulas, to make use of logarithms or else do the work longhand. To do this requires about 30 minutes.

The radius of gyration will now be found directly, using the properties of thin sections, treating them as a line. See Table 2. Section 2.2.

Mean dimensions b and d are used, Figure 9.

$$r_{x} = \frac{\sqrt{d^{3}/3(2b+d)}}{b+2d}$$

$$= \frac{\sqrt{3.875^{3}/3(2 \times 5.75 + 3.875)}}{5.75 + 2(3.875)}$$

$$= 1.279''$$

The exact value obtained from this formula for r is 1.279". The value obtained by using the conventional formula is 1.281".

Assuming a possible error of \pm one part in 1000 for every operation of the slide rule, it would be possible to get an answer as high as 1.283" and as low as 1.275". This represents an error of about $\frac{1}{4}$ of the error using the conventional formulas with slide rule. The time for this last calculation was 2 minutes.

Moment of Inertia About Any Axis

Sometimes (as in Problem 3) the moment of inertia of a section is needed about an axis lying at an angle (θ) with the conventional x-x axis. This may be found by using the product of inertia (I_{xy}) of the section about the conventional axes (x-x) and (y-y) with the moments of inertia (y-y) about these same axes in the following formula:

$$I_x' = I_x \cos^2\theta + I_y \sin^2\theta - I_{xy} \sin^2\theta - \dots (7)$$

$$I_{r}' = I_{s}\sin^{2}\theta + I_{y}\cos^{2}\theta - I_{sy}\sin^{2}\theta \qquad (8)$$

3.1-6 / Column-Related Design

FIGURE 11

4. CRITICAL COMPRESSIVE STRESS

The critical load on a column as given by the Euler-formula is —

$$P_{\rm cr} = \frac{\pi^2 \to I}{L_{\rm c}^2} \qquad \dots (9)$$

where L_e = effective length of column.

This can be changed into terms of average critical

stress by dividing by the cross-sectional area of the column. Since $A = I/r^2$, this becomes —

$$\sigma_{\rm cr} = \frac{\pi^2 E}{(L_{\rm e}/r)^2} \qquad \dots (10)$$

Because this formula gives excessively high values for short columns, Engesser modified it by substituting the tangent modulus (E_{τ}) in place of the usual Young's modulus of elasticity (E).

The modified formula then becomes -

$$\sigma_{\rm cr} = \frac{\pi^2 E_{\rm t}}{(L_{\rm p}/r)^2} \qquad \dots (11)$$

where:

 E_t = tangent modulus of elasticity, corresponding to the modulus of elasticity when stressed to σ_{cr} .

r = least radius of gyration of the cross-section

L_e = effective length of the column, corresponding to the length of a pinned column that would have the same critical load. See Figure 11.

The Engesser formula is also called the Tangent Modulus formula and checks well with experimental values.

5. TANGENT MODULUS

Use of the Tangent Modulus formula necessitates a stress-strain curve (preferably in compression) of the material. See Figure 12, stress-strain curve for a quenched and tempered steel in compression. Whereas the usual Young's modulus of elasticity represents a fixed value for steel (30×10^6) according to the ratio

TABLE

Slenderness Ratios: Quenched & Tempered Steel

σ,	E,	L _e /r
110,000	30.2 × 10 ⁶	52.1
112,000	30.0	51.4
114,000	26,5	47.9
116,000	22.0	43,4
. 118,000	17.5	38.3
120,000	13,0	32.7
122,000	9.0	27.0
124,000	5:5	20.9
126,000	3.3	16.1
128,000	1.5	10.8

Engesser portion of curve (inelostic bending)

of stress to strain below the proportional limit, the tangent modulus of elasticity takes into consideration the changing effect of plastic strain beyond this point corresponding to the actual stress involved.

TABLE 1

Notice, in Figure 12, the broken lines representing the slope for various values of tangent modulus of clasticity (Et), in this case from 1× 10° psi up to 30×10^{6} . The compressive stress level $(\sigma_{\rm e})$ at which a given E, value applies is determined by moving out parallel from that reference modulus line (dotted), by means of parallel rule or other suitable device, until the stress-strain curve is intersected at one point only. The line is tangent at this point.

The compressive stress-strain curve for any material can be superimposed on this graph and the values of E_t at a given stress level (σ_c) read by the xame technique.

Tangent Modulus for Quanched and Tempered Steel 25 × 109 madulus (E,), ase FOIXES 15×106 10 × 10 SXICS 100 60 Stress ($\sigma_{\rm c}$), ks:

FIGURE 13

Le/r	E,	σ,
50	30.2×106	119,500
60-	30.2	82,900
70	30.2	60,900
75	30.2	53,000
80	30,2	46,600
90	30.2	36,800
100	30.2	29,850
~ 110	30.2	27,700
125	30.2	19,100
140	· 30.2	15,200

Euler portion of curve (elastic bending)

The values of tangent modulus (Et) for quenched and tempered steel, as read from Figure 12, are now plotted against the corresponding compressive stress (σ_c) . This is shown in Figure 13.

The Engesser or tangent modulus formula for critical stress (σ_{cr}) is then put into the following form —

$$\frac{L_r}{r} = \pi \sqrt{\frac{E_t}{\sigma_{cr}}} \qquad (12)$$

Resulting Critical Compressive Stress for Quenched and Tempered Steel (A suitable tector of safety must be applied to these values)

FIGURE 14

and the critical slenderness ratio (L_e/r) is determined for various values of stress (σ_e), resulting in Tables 1 and 2 for quenched and tempered steel only.

Table 1 gives corresponding values of slenderness ratio (L_e/r) for given values of stress (σ_e) above the proportional limit of a quenched and tempered steel.

Below the material's proportional limit, the use of Young's modulus (E) or tangent modulus (E_t) provide the same value. Table 2 for quenched and tempored steel gives the slenderness ratio ($L_{\rm e}/r$) for stress levels ($\sigma_{\rm e}$) within the proportional portion of the stress-strain curve. Since the original Euler formula for $\sigma_{\rm cr}$ applies here, this portion of the curve is often called the Euler curve.

6. PLOTTING ALLOWABLE STRESS CURYE

These values from Tables 1 and 2 are now plotted to form the curve in Figure 14. The Euler portion of the curve is extended upward by a broken line to indicate the variance that would be obtained by continuing to use the Euler formula beyond the proportional limit. This must be kept in mind in designing compression members having a low slenderness ratio (L/r).

A few test results are also shown to indicate the close relationship between the Tangent Modulus formula and actual values.

Note that a corresponding curve has been plotted below the main curve, representing the allowable

. TABLE 3-Allowable Compressive Stress (AISC)

Ronge of L.— Values r	Average Allowable Compressive Unit Stress (<u>o</u>)
0 to Ce	$\sigma = \left[1 - \frac{\left(\frac{KL}{r}\right)^2}{2C_c^2} \right] \frac{\sigma_r}{F.S.}$
C _e to 200	$\sigma = \frac{149,000,000}{\left(\frac{KL}{r}\right)^2} = \left(\frac{12,210}{\frac{KL}{r}}\right)^2$

where:

$$C_{c} = \sqrt{\frac{2 \pi^{2} E}{\sigma_{r}}}$$

$$F.S. = \frac{5}{3} + \frac{3}{8} \left(\frac{\frac{KL}{r}}{C_{c}}\right) - \frac{1}{8} \left(\frac{\frac{KL}{r}}{C_{c}}\right)^{3}$$

For very short columns, this factor of sofety (F.S.) is equal to that of members in tension (F.S. = 1.67). For longer columns, the safety of factor increases gradually to a maximum of F.S. = 1.92.

K = effective length factor

stress (σ) after applying a factor of safety of 1.8.

BASIC FORMULAS FOR COMPRESSION MEMBERS

In "Buckling Strength of Metal Structures," page 53, Bleich introduces a parabolic formula to express this tangent modulus curve for compression. By applying a factor of safety (F.S.), this becomes the allowable compressive stress. The basic parabolic formula thus modified is—

$$\underline{\sigma} = \frac{\sigma_{r}}{F.S.} - \frac{\sigma_{p}(\sigma_{r} - \sigma_{p})}{\pi^{2} E F.S.} \left(\frac{L_{e}}{r}\right)^{2} \qquad \dots (13)$$

E = modulus of elasticity

 $\sigma_{\rm p} = {
m proportional \ limit}$

 $\sigma_y = \text{yield point}$

F.S. = factor of safety

Any residual compressive stress (σ_{re}) in the member tends to lower the proportional limit (σ_p), or straight-line portion of the stress-strain curve in compression, without affecting the yield point. For the purpose of the above formula, it is assumed that

$$\sigma_{\rm p} = \sigma_{\rm y} - \sigma_{\rm re}$$

Also assuming this value of residual compressive stress is about half of the yield point, or $\sigma_{\rm re}=\frac{1}{2}\sigma_{\rm y}$, Formula #13 becomes:

$$\sigma = \frac{\sigma_{y}}{\text{F.S.}} - \frac{\sigma_{y}^{2}}{4 \pi^{2} \text{ E.F.S.}} \left(\frac{L_{e}}{r}\right)^{2} \dots (14)$$

This formula provides a parabolic curve, starting at a slenderness ratio of $(L_e/r=0)$ with values at yield stress (σ_r) , and extending down to one-half of this stress where it becomes tangent with the Euler curve at the upper limit of elastic bending.

The slenderness ratio at this point is:

$$\frac{L_e}{r} = \sqrt{\frac{2 \pi^2 E}{\sigma_y}} = \frac{23,925}{\sqrt{\sigma_y}} \text{ for steel} \dots (15)$$

. Above this slenderness ratio, the Euler formula is used:

$$\underline{\sigma} = \frac{\pi^2 E}{F.S. \left(\frac{L_e}{r}\right)^2} = \frac{1}{F.S.} \left[\frac{16,918}{L_e}\right]^2 \text{ for steel}$$
 (16)

FIGURE 15

8. AISC FORMULAS FOR COMPRESSION MEMBERS

The AISC has incorporated (1963) these basic column formulas endorsed by the Column Research Council Report in its specifications for structural buildings.

The slenderness ratio where the Euler and parabolic portions of the curve intersect, Formula 15, has been designated in the AISC Specification as (C_c) . This is also incorporated into Formula 13.

AISC uses a value of E=29,000,000 psi (instead of the usual 30,000,000 psi) for the modulus of elasticity of steel. For the Euler portion of the curve, Formula 16, AISC uses a factor of safety of 1.92.

The resulting new AISC column formulas are shown in Table 3.

Tables 6 through 14 give the AISC compression allowables for several strengths of structural steel.

For various conditions of column cross-section, Figure 15, there is a limiting ratio of element width to thickness (b/t). This ratio is expressed as being equal to or less than (\leq) a certain value divided by the square root of the material's yield strength. The related Table 4 permits direct reading of a compression element's b/t ratio for various yield strengths of steel.

At times it may be desirable to exceed the limiting b/t ratio of an element. This can be done if, in the calculations, substituting the shorter maximum width allowed (by the Fig. 15 limits) would give a compressive unit stress value within the allowable stress.

To help in visualizing relative savings in metal by the use of higher-strength steels, Figure 16 indicates the allowable compressive strength (σ) obtained from the Table 3 formulas for 8 different yield strengths. Notice that the advantage of the higher strengths drops off as the column becomes more slender.

3.1-10 / Column-Related Design

TABLE 4—Limiting b/t Ratios of Section Elements Under Compression

Limits of Ratio of Width to Thickness of Compression Elements for

Different Yield Strengths of Steel

. •														
Fig. 15 Ratio	33,000	36,000	42,000	45,000	46,000	50,000	55,000	60,000	65,000	90,000	95,000	100,000		
2,400 √σ ₇	13.2	12.6	11.7	11.3	11.2	10.7	10.2	9.8	9.4	8.0	7.8	7.6		
3,000 √σ _τ	16.5	15.8	14.5	14,1	14.0	13.4	12.8	12.2	11.8	10.0	9.7	9.5		
<u>4,000</u> √σ _τ	22.0	21.0	19.5	18.9	18.7	17.9	17.1	16.3	15.7	13.3	13.0	12.6		
8,000 √σ _τ	44.0	42.1	39.0	37.7	37.3	35.8	34.1	32.6	31.4	26.6	25.9	25.3		
10,000 √σ _r	55.0	52.6	48.7	47.1	46.6	44.7	42.6	40.8	39.2	33.4	32.4	31.6		

Round off to the nearest whale number.

^{*} Quenched and tempered steels: yield strength at 0.2% offset.

If the allowable stress curve of quenched and tempered steel (Fig. 14) were now superimposed on this graph, the even greater, strength advantage of quenched and tempered steel at lower slenderness ratios would be readily apparent.

The allowable compressive unit stress $(\underline{\sigma})$ for a given slenderness ratio (KL/r), from unity through 200, is quickly read from Tables 6 through 14 for steels of various yield strengths.

Above KL/r of 130, the higher-strength steels offer no advantage as to allowable compressive stress (σ). Above this point, use Table 7 for the more economical steel of 36,000 psi yield strength.

OTHER FORMULAS FOR COMPRESSION MEMBERS

Table 5 gives the AASHO formulas, which are applicable to bridge design.

As a matter of general interest, the column formula established for use of quenched and tempered steel on the Carquinez Strait Bridge (California) is—

$$\sigma = 36,000 - 1.75 \left(\frac{L}{r}\right)^2$$

TABLE 5—AASHO Allowable Stress for Compression Members
Having Rigid Ends and Concentric Loads

A-7 ond A-373	34" and under σ₁ == 50,000 psi	over $\frac{3}{4}$ " to $\frac{1}{2}$ " $\sigma_{\tau} = 46,000 \text{ psi}$	over 1½" to 4" σ ₇ = 42,000 psi
$\sigma = 15,000 - \frac{1}{4} \left(\frac{L}{r}\right)^2$	$\sigma = 22,00056 \left(\frac{L}{r}\right)^2$	$\sigma = 20,00046 \left(\frac{L}{r}\right)^2$	$\sigma = 18,00039 \left(\frac{L}{r}\right)^2$
L to 140	L r to 125	L to 125	L/r to 125

Steel skeleton for 10-story Buffalo, New York opartment building features unique shap-welded construction. Principal erection element is a "bent" consisting of a 50' floor girder or "needle beam" threaded through the web of column section near each end and welded. Girder is supported mainly by an angle bracket or "saddle" previously welded to the column web. Girders cantilever out as much as 13' from column.

-Allowable Compressive (a) Values (1963 AISC), Main Members

,	
stee	
yield	
io psi	
-33,000	
LE 6	•
TABLE	

	•	21.210	20,660	20 010	10.970	18.440	17,530	16,530	15,470	14,320	13,100	11,810	10,430	8,970	7,730	6,730	5,910	5,230	4,660	4,180	3,770	
	co	21.250	06.7.00	20.080	19.350	18,530	17,620	16,640	15,580	14,440	13,230	11,940	10,570	9,110	7,840	6,820	5,980	5,290	4,710	4,230	3,810	
		21,300	20.780	20,150	19.420	18,610	17,710	16,740	15,690	14,560	13,350	12,070	10,710	9,260	7,960	016'9	090'9	5,350	4,770	4,270	3,850	
	•	21,350	20.830	20.220	19.500	18,700	17,810	16,840	15,790	14,670	13,480	12,200	10,850	9,410	8,070	7,010	6,140	5,420	1.820	4,320	3,890	
	.40	21,390	20.890	20,280	19.580	18,780	17,900	16,940	15,900	14,790	13,600	12,330	10,990	9,550	8,190	2,100	6,220	5,490	4,880	4,360	3,930	
•	4	21,440	20,950	20,350	19,650	18,860	17,990	17,040	16,010	14,900	13,720	12,470	11,130	9,700	8,320	7,200	6,300	5,550	4,930	4,410	3,970	1
	n	21,480	21,000	20,410	19,730	18,950	18,080	17,140	16,120	15,020	13,840	12,590	11,260	9,850	8,4.10	7,300	6,380	5,620	4,990	4,460	4,010	1
	2	21,520	21,050	20,480	19,800	19,030	18,170	17,240	16,220	15,130	13,970	12,720	11,400	066'6	8,570	7,410	6,460	5,690	5,050	4,510	4,050	
	-	21,560	21,100	20,540	19,870	19,110	18,260	17,330	16,330	15,240	14,090	12,850	11,540	10,140	8,700	7,510	6,550	5,760	5,110	4,560	4,090	
	ratio		21,160	20,600	19,940	19,190	18,350	17,430	16,430	15,360	14,200	12,980	11,670	10,280	9,840	7,620	6,640	5,830	5,170	4,610	4,140	000
	ᅺ		2	2	ឧ	8	82	8	2	80	8	8	9	120	8	140	55	160	27	8	8	٤
													٠		•	4						
	۰	19,460	18,980	18,420	17,780	17,070	16,280	15,430	14,510	13,530	12,490	11,380	10,210	9,960	7,730	6,730	5,910	5,230	4,660	4,180	3,770	
	, ca	19,500	19,030	18,840	17,850	17,140	16,360	15,520	14,610	13,640	12,600	11,900	10,330	060'6	7,840	9,820	2,980	5,290	4,710	4,230	3,810	
	7	19,540	19,080	18,540	17,920	17,220	16,440	15,610	14,700	13,740	12,710	11,610	10,450	9,220	7,960	016'9	6,060	5,350	4,770	4,270	3,850	
•	•	19,580	19,130	18,600	17,980	17,290	16,520	15,690	14,800	13,840	12,810	11,720	10,570	9,340	8,070	7,010	6,140	5,420	4,820	4,320	3,890	
	, ທ	19,620	19,180	18,660	18,050	17,360	16,600	15,780	14,890	15,930	12,920	11,830	069'01	9,470	8,190	7,100	6,220	5,490	4,880	4,360	3,930	
1	4	19,660	19,230	18,710	18,110	17,430	16,680	15,860	14,980	14,030	13,020	11,950	10,800	9,590	8,320	7,200	6,300	5,550	4,930	4,410	3,970	
,		19,690	19,280	18,770	18,180	17,500	16,760	15,950	15,070	14,130	13,130	12,060	10,920	9,720	8,440	7,300	.6,380	5,620	4,990	4,460	4,010	
	(* ∰ ** 2 ™.,	19,730	19,320 (19,280	18,820	18,240	17,570	16,840	16,030	15:160	14,230	13,230	12,170	11,040	9,840	8,570	7,410	6,460	5,690	5,050	4,510	4,050	
	Tarak da ka	19,770	19,370	18,880	18,300	17,640	16,920	16,120	15,250	14,320	13,330	12,280	11,150	9,99,6	8,700	7,510	6,550	5,760	5,110	4,560	4,090	
	ailo	**	19,410	18,930	18,360	17,710	16,990	16,200	15,340	14,420	13,430	12,380	11,270	10,090	8,830	7,620	6,640	5,830	5,170	4,610	4,140	3,730

8 57

TABLE B-42,000 psi yield steel

		т	4	+	4	+ : :	 ``	4			4-		_	4-																		
TABLE 9-45,000 psi yield steel		26,640	25,910	25,010	23,960	22,780	21.470	20.040	18 490	16,830	15.040	13,120	11,070	9,390																		
	ko .	26,710	25,990	25,110	24,070	22,900	21,610	20.190	05981	17.000	15.220	13,320	11,270	9,540																		
	4	26,770	26,070	25,200	24,180	23,030	21,740	20.340	18.810	17.170	15.410	13,510	11,470	069'6																		
	ં છ	26,830	26,150	25,290	24,290	23,150	21,880	20.480	18.970	17,340	15,590	13,710	11,670	9,850																		
	8	2 26,890		25,390	24,400	23,270	22,010	20.630	19,130	17,510	15,770	13,900	11,910	10,010																		
	_	26,950	26,300	25,480	24,500	23,390	22,140	20,770	19.280	17,670	15,950	14,100	12,110	10,180																		
	ollo		26,370	25,570	24,610	23,510	22,270	20,910	19,440	17,840	16,130	14,290	12,320	10,350																		
	KL ralio		2	20	30	40	20	8	70	80	8	8	110	120																		
d steel	٥	24,700	24,000	23,150	22,190	21,100	19,910	18,610	17,210	15,710	14,090	12,370	10,550	8,970																		
	. 60	24,760	24,070	23,240	22,290	21,220	20,030	18,750	17,350	15,860	14,260	12,550	10,720	9,110																		
		24,820	24,150	23,330	22,390	21,330	20,160	18,880	17,500	16,010	14,430	12,730	10,910	9,260																		
	, •	24.880	24,220	23,420	22,490	21,440	20,280	19,010	17,640	16,170	14,590	12,900	11,100	9,410																		
B-42,000 psi yield	. 10	24,940	24,290	23,510	22,590	21,550	20,400	19,140	17,780	16,320	14,750	13,080	11,280	9,560																		
12,000	4.	24,990	24,360	23,590	22,690	21,660	20,520	19,270	17,920	16,470	14,910	13,250	11,470	9,710																		
	е .	25,050	24,430.	23,680	22,780	21,770	20,640	19,400	18,060	16,620	15,070	13,420	11,650	9,870																		
TABLE	3	25,100	24,500	23,760	22,880	21,870	20,760	19,530	18,200	16,770	15,230	13,590	11,830	10,030																		
L	-	25,150	25,150					25,150	25,150	25,150										24,570	23,840	22,970	21,980	20,870	099'61	18,340	16,920	15,390	13,760	12,010	10,200	
	atio		24,630	23,920	23,060	22,080	20,990	19,790	18,480	17,060	15,550	13,930	12,190	10,370																		
	KL - ratio		2	20	စ္က	9	20	90	70	80	8	8	2	2																		

25,740 25,650

25,820 24,910

26,580 26,510

24,810 23,740 22,530 16,300

14,480

15,650 16,480 14,850 14,660 12,920 12,720

21,050 19,590 18,170 18,000

21,190

21,330

22,660 23,850

19,740

19,890 18,330 12,520

10,700 9,090

10,880 9,240

TABLE 10-46,000 psi yield steel

		ļ									
·	. - -	Ş					•				
	Ī-	e l	-	2	3	4.	ĸŋ	۰	. 7		۰
			27,540	27,480	27,420	27,360	27,300	: 27,230	27,160	27,090	27,020
	2	26,950	26,870	26,790	26,720	26,630	26,550	26,470	26,380	26,290	26,210
	20	26,110	26,020	25,930	25,830	25,730	25,640	. 25,540	25,430	25,330	25,230
6	ဗ္ဂ	25,120	25,010	24,900	24,790	24,680	24,560	24,450	24,330	24,210	24,100
	9	23,970	23,850	23,730	23,600	23,480	23,350	. 23,220	23,090	22,960	22,830
	50	22,690	22,560	22,420	22,280	22,140	22,000	21,860	21,720	21,570	21,430
•	9	21,280	21,130	20,980	20,830	20,680	20,530	20,370	20,220	20,060	19,900
	8	19,740	19,580	19,420	19,260	001'61	18,930	18,760	18,600	18,430	18,260
	80	18,080	17,910	17,740	095'21	066'21	17,210	17,030	16,850	16,670	16,480
	8	16,300	16,120	15,930	15,740	15,550	15,360	. 15,170	14,970	14,780	14,580
	8	14,390	14,190	13,990	13,790	13,580	13,380	13,170	12,960	12,750	12,540
	21	12,330	12,120	11,900	11,690	11,490	11,290	001'11'	016'01	10,720	10,550
·	120	10,370	10,200	10,030	9,870	9,710	095'6	19,410	9,260	9,110	8,970

Above r Above this palni		* Above r of 130, the higher-strength steets offer no advantage as to allowable compressive stress $\underline{(e)}$. Above this paint, use Tabla 7 for the mare economical steel of 36,000 psi yield strength. K multiplied by actual length $\{l\}$ = effective length,	
	퍃	Above r ol Above this paint, r K multiplied	

TABLE 11-50,000 psi yield steel

	۵	32,230	31,140	29,810	28,270	26,540	24,630	22,540	20,280	17,830	15,180	12,540	10,520	8,950
		+-	<u> </u>	ļ			_	<u> </u>	<u> </u>	<u> </u>		<u> </u>		
	20	32,330	31,260	29,950	28,440	26,730	24,830	22,760	20,510	18,000	15,460	12,770	10,700	9,090
	^	32,420	31,380	30,090	28,600	26,900	25,030	22,970	20,740	10,330	15,730	13,010	10,880	9,240
psi yield steel	9	32,510	31,490	30,230	26,760	27,080	25,220	23,190	20,970	16,580	16,000	13,260	11,070	9,390
psi yie	s	32,600	31,600	30,370	28,910	27,260	25,420	23,400	21,200	10,830	16,260	13,510	11,270	9,540
	4	32,690	31,720	30,500	29,070	27,430	25,610	23,610	21,430	19,070	16,530	13,780	11,470	069'6
12—5	. m·	32,770	31,820	30,630	29,220	27,600	25,800	23,820	21,660	19,320	16,790	14,040	11,670	9,850
TABLE 12-55,000	. 2	32,850	31,930	30,760	29,370	27,770	25,990	24,020	21,880	19,560	17,050	14,350	11,880	10,010
	-	32,930	32,030	30,890	29,520	27,940	26,180	24,230	22,100	19,800	17,310	14,630	12,090	10,180
	. <u>e</u>		32,130	31,010	29,670	28,110	26,360	24,430	22,320	20,040	17,570	14,910	12,310	10,350
	자 r dib		2	ឧ	8	9	20	99	5	g.	%	100	110	120
	٨	29,340	28,400	27,280	25,970	24,510	22,890	21,120	19,210	17,150	14,940	12,570	10,550	8,970
		Ň	7	27	25	24	7	2]	16	1	. 14,	12,	10	
	69 ·	29,420 2	28,510 2	27,400 27	26,110 25	24,660 24	23,060 22	21,310 21	19,410 19,	71 075,71	15,170 '14,	12,800 12,	10,720 10,	9,110
	8 2													
d steel	8 4 9	29,420	28,610 28,510	27,400	26,110	24,660	23,060	21,310	19,410	17,370	. 021'51	12,800	10,720	9,110
ste		0 29,500 29,420	28,610 28,510	27,520 27,400	26,250 26,110	24,810 24,660	23,220 23,060	0 21,490 21,310	19,610 19,410	17,580 17,370	15,390 15,170	13,040 12,800	10,910 10,720	0 9,260 9,110
ste		29,500 29,500 29,420	28,710 28,610 28,510	27,630 27,520 27,400	26,380 26,250 26,110	24,950 24,810 24,660	23,390 23,220 23,060	21,670 21,490 21,310	019,800 19,610 19,410	076,71 086,71 097,71	15,620 15,390 15,170	13,290 13,040 12,800	11,100 10,910 10,720	9,410 9,260 9,110
ste		29,660 29,500 29,500 29,420	28,800 28,710 28,610 28,510	27,750 27,630 27,520 27,400	26,510 26,380 26,250 26,110	25,110 24,950 24,810 24,660	23,560 23,390 23,220 23,060	21,850 21,670 21,490 21,310	19,990 · 19,800 19,610 19,410	17,990 17,790 17,580 17,370	15,840 15,620 15,390 15,170	13,530 13,290 13,040 12,800	11,290 11,100 10,910 10,720	9,560 9,410 9,260 9,110
TABLE 11-50,000 psi yield steel	8 8	29,730 29,660 29,500 29,500 29,420	28,900 28,800 28,710 28,610 28,510	27,860 27,750 27,630 27,520 27,400	26,640 26,510 26,380 26,250 26,110	25,260 25,110 24,950 24,810 24,660	23,720 23,550 23,390 23,220 23,060	22,020 21,850 21,670 21,490 21,310	20,190 19,990 19,800 19,610 19,410	18,200 17,990 17,580 17,580	16,060 15,840 15,620 15,390 15,170	13,770 13,530 13,290 13,040 12,800	11,490 11,290 11,100 10,910 10,720	9,710 9,560 9,410 9,260 9,110
ste	. 3 4 5	29,800 29,730 29,660 29,500 29,500 29,420	28,990 28,900 28,800 28,710 28,610 28,510	27,970 27,860 27,750 27,630 27,520 27,400	26,770 26,640 26,510 26,380 26,250 26,110	25,400 25,260 25,110 24,950 24,810 24,660	23.880 23,720 23,550 23,390 23,220 23,060	22,200 22,020 21,850 21,670 21,490 21,310	20,380 20,190 19,990 19,800 19,610 19,410	18,410 18,200 17,990 17,790 17,580 17,370	16,290 16,060 15,840 15,620 15,390 15,170	14,000 13,770 13,530 13,290 13,040 12,800	11,690 11,490 11,290 11,100 10,910 10,720	9,870 9,710 9,560 9,410 9,260 9,110
ste	. 3 4 5	29,870 29,800 29,730 29,660 29,500 29,500 29,420	29,080 28,990 28,900 28,800 28,710 28,610 28,510	28,080 27,970 27,860 27,750 27,630 27,520 27,400	26,900 26,770 26,640 26,510 26,380 26,250 26,110	25,550 25,400 25,260 25,110 24,960 24,810 24,660	24,040 23,880 23,720 23,560 23,390 23,220 23,060	22,370 22,200 22,020 21,850 21,670 21,490 21,310	20,560 20,380 20,190 19,990 19,800 19,610 19,410	18,610 18,410 18,200 17,990 17,790 17,580 17,370	16,500 16,290 16,060 15,840 15,620 15,390 15,170	14,240 14,000 13,770 13,530 13,290 13,040 12,800	11,900 11,690 11,490 11,290 11,100 10,910 10,720	10,030 9,870 9,710 9,560 9,410 9,260 9,110

TABLE 14-65,000 psi yield steel

TABLE 13-60,000 psi yield steel

	₩		Ļ	_	<u> </u>	!	ļ -	L_		<u> </u>		oxdot	LI
65	38,130	36,720	34,980	32,960	30,670	28,130	25,340	22,300	19,000	15,510	12,770	10,700	060'6
,	38,250	36,870	35,170	021,66	30,910	28,390	25,630	22,620	19,350	15,840	13,010	10,880	9,240
9	38,370	37,030	35,350	33,390	31,150	28,660	25,920	22,930	19,690	16,170	13,260	020'11	9,390
40	38,480	37,180	35,530	33,600	31,380	28,920	26,200	23,240	20,020	16,510	13,510	11,270	9,540
4	38,590.	37,320	35,710	33,800	31,620	29,180	26,490	23,550	20,360	16,860	13,780	11,470	069'6
e	38,700	37,460	35,890	34,010	31,850	29,430	26,770	23,860	20,690	17,240	14,040	11,670	9,850
2	38,810	37,600	36,060	34,210	32,070	29,660	27,040	24,160	21,020	17,600	14,320	11,880	10,010
-	38,900	37,740	36,230	34,400	32,300	29,930	27,320	24,460	21,340	17,960	14,610	12,090	10,180
ralio		37,870	36,390	34,600	32,520	30,180	27,590	24,760	21,670	18,310	14,900	12,310	10,350
됩니		2	20	ဇ္တ	6	ß	9	70	8	8	8	2	.120
	35,120	33,860	32,320	30,530	28,520	26,300	23,860	21,210	18,340	15,200	12,540	10,520	8,950
89	35,230	34,000	32,480	30,720	28,730	26,530	24,110	21,490	18,640	015'51	12,770	10,700	060'6
۲.	35,340	34,130	32,650	30,910	28,940	26,760	24,360	21,760	18,940	15,880	010'E1	10,880	9,240
•	35,440	34,270	32,810	31,090	29,150	26,990	24,610	22,030	19,230	16,190	13,260	11,070	066'6
٠,	35,540	34,400	32,960	31,280	29,350 .	27,210	24,860	22,300	19,520	16,510	13,510	11,270	9,540
· 4	35,640	34,520	33,120	31,460	29,560	27,440	25,110	22,560	19,810	16,820	13,780	11,470	069'6
G	35,740	34,650	33,270	31,630	29,760	27,660	25,350	22,830	20,090	17,130	14,040	11,670	9,850
	35,830	34,770	33,420	018'10	29,950	27,880	25,590	23,090	20,380	17,440	14,320	11,880	10,010
. 1	35,920	34,890	33,570	31,980	30,150	28,100	25,830	23,350	20,660	17,740	14,610	12,090	10,180
ratio		010'56	012'88	32,150	30,340	016,82	26,060	019'67	20,940	18,040	14,900	12,310	10,350
ᄫ		. 10	20	8	40	8	8	20	8	8	홍	110	120

32,740 30,430 25,050 21,990 15,200

* See note on previous page