Subquandle Lattices

Kieran Amsberry, August Bergquist, Thomas Horstkamp, Meghan Lee

Mentor: Dr. David Yetter

Kansas State University REU

August 5, 2022

Motivation

- Quandles are useful in knot theory, expressing a complete invariant of unoriented knots; they also have interesting properties as an algebraic structure.
- As with other algebraic structures such as groups and rings, quandles have sub-objects called subquandles.
- We consider inner automorphism groups, lattice structure, and complemented properties of subquandles.

Definition

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following conditions for all $x, y, z \in Q$:

Q1. Idempotence: $x \triangleright x = x$.

Definition

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following conditions for all $x, y, z \in Q$:

- Q1. Idempotence: $x \triangleright x = x$.
- Q2. Inversion: $(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$.

Definition

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following conditions for all $x, y, z \in Q$:

- Q1. Idempotence: $x \triangleright x = x$.
- Q2. Inversion: $(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$.
- Q3. Distributivity: $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

Definition

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following conditions for all $x, y, z \in Q$:

- Q1. Idempotence: $x \triangleright x = x$.
- Q2. Inversion: $(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$.
- Q3. Distributivity: $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

We say $Q' \subseteq Q$ is a **subquandle** of Q if it closed under \triangleright and \triangleright^{-1} . Denote this by $Q' \preccurlyeq Q$, or $Q' \prec Q$ if $Q' \neq Q$.

Definition

• If (Q, \triangleright) and (R, \triangleright_1) are quandles, a **quandle homomorphism** $f: Q \to R$ is a function satisfying $f(a \triangleright b) = f(a) \triangleright_1 f(b)$ for every $a, b \in Q$.

Definition

- If (Q, \triangleright) and (R, \triangleright_1) are quandles, a **quandle homomorphism** $f: Q \to R$ is a function satisfying $f(a \triangleright b) = f(a) \triangleright_1 f(b)$ for every $a, b \in Q$.
- A bijective quandle homomorphism is a quandle **isomorphism**.

Definition

- If (Q, \triangleright) and (R, \triangleright_1) are quandles, a **quandle homomorphism** $f : Q \to R$ is a function satisfying $f(a \triangleright b) = f(a) \triangleright_1 f(b)$ for every $a, b \in Q$.
- A bijective quandle homomorphism is a quandle **isomorphism**.
- A quandle isomorphism with equal domain and codomain is a quandle automorphism.

Definition

- If (Q, \triangleright) and (R, \triangleright_1) are quandles, a **quandle homomorphism** $f: Q \to R$ is a function satisfying $f(a \triangleright b) = f(a) \triangleright_1 f(b)$ for every $a, b \in Q$.
- A bijective quandle homomorphism is a quandle **isomorphism**.
- A quandle isomorphism with equal domain and codomain is a quandle automorphism.
- The quandle automorphisms form the **automorphism group**, Aut(Q).

Definition

- If (Q, \triangleright) and (R, \triangleright_1) are quandles, a **quandle homomorphism** $f : Q \to R$ is a function satisfying $f(a \triangleright b) = f(a) \triangleright_1 f(b)$ for every $a, b \in Q$.
- A bijective quandle homomorphism is a quandle **isomorphism**.
- A quandle isomorphism with equal domain and codomain is a quandle automorphism.
- The quandle automorphisms form the **automorphism group**, Aut(Q).

Definition

Given a quandle Q and an element $y \in Q$, the **symmetry** at y is the automorphism of Q of the form $S_y : x \mapsto x \triangleright y$.

The inner automorphism group of Q is $Inn(Q) = \langle \{S_q \mid q \in Q\} \rangle$. Note that $Inn(Q) \leq Aut(Q)$?.

In fact, if $Q' \leq Q$, Inn(Q) acts on Q' by functional application. This action also induces an action on the subquandle lattice.

Multiplication Tables For Finite Subquandles

Example

The Tait quandle (T_3, \triangleright) with underlying set $\{1, 2, 3\}$ has operation multiplication table

\triangleright	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Subquotient Theorem

Theorem

Suppose $Q' \preccurlyeq Q$. Then, $\operatorname{Inn}(Q')$ is a subquotient of $\operatorname{Inn}(Q)$. That is, there is some subgroup $S_{Q'} \leq \operatorname{Inn}(Q)$ and some normal subgroup $K_{Q'} \leq S_{Q'}$, such that $\operatorname{Inn}(Q') \cong S_{Q'}/K_{Q'}$.

Subquotient Theorem

Theorem

Suppose $Q' \preceq Q$. Then, $\operatorname{Inn}(Q')$ is a subquotient of $\operatorname{Inn}(Q)$. That is, there is some subgroup $S_{Q'} \leq \operatorname{Inn}(Q)$ and some normal subgroup $K_{Q'} \leq S_{Q'}$, such that $\operatorname{Inn}(Q') \cong S_{Q'}/K_{Q'}$.

Proof.

Define $S_{Q'} = \langle S_x \mid x \in Q' \rangle \leq \operatorname{Inn}(Q)$. Note that $\tau : S_{Q'} \to \operatorname{Inn}(Q')$ via $\tau(f) = f|_{Q'}$ is a well-defined surjective homomorphism with image $\operatorname{Inn}(Q')$. Hence, $\operatorname{Inn}(Q') \cong S_{Q'} / \ker(\tau)$.

Complemented Subquandle Lattices

Definition

The set of subquandles of any quandle Q under inclusion forms a lattice ?, which we denote as $\mathcal{L}(Q)$.

Complemented Subquandle Lattices

Definition

The set of subquandles of any quandle Q under inclusion forms a lattice ?, which we denote as $\mathcal{L}(Q)$.

Definition

Given two subquandles $Q_1, Q_2 \leq Q$, their **meet** is $Q_1 \wedge Q_2 = Q_1 \cap Q_2$ and their **join** is $Q_1 \vee Q_2 = \langle \langle Q_1 \cup Q_2 \rangle \rangle$.

Complemented Subquandle Lattices

Definition

The set of subquandles of any quandle Q under inclusion forms a lattice ?, which we denote as $\mathcal{L}(Q)$.

Definition

Given two subquandles $Q_1, Q_2 \leq Q$, their **meet** is $Q_1 \wedge Q_2 = Q_1 \cap Q_2$ and their **join** is $Q_1 \vee Q_2 = \langle \langle Q_1 \cup Q_2 \rangle \rangle$.

Definition

A subquandle $Q_1 \preccurlyeq Q$ is **complemented** in Q if there is some $Q_2 \preccurlyeq Q$ such that $Q_1 \land Q_2 = \emptyset$, and $Q_1 \lor Q_2 = Q$. The subquandle lattice $\mathcal{L}(Q)$ is complemented if every subquandle is complemented.

Saki And Kiani's Paper

Saki and Kiani ? showed that the subrack lattice of a finite rack is complemented. Since quandles are racks, this holds for quandles as a corollary.

Corollary

The subquandle lattice of every finite quandle is complemented.

Saki And Kiani's Paper

Saki and Kiani ? showed that the subrack lattice of a finite rack is complemented. Since quandles are racks, this holds for quandles as a corollary.

Corollary

The subquandle lattice of every finite quandle is complemented.

Theorem (Saki and Kiani)

Consider the quandle \mathbb{Q} with the dihedral structure, $x \rhd^* y = 2x - y$, $\forall x, y \in \mathbb{Q}$. The subquandle $\{0\}$ is not complemented.

Ind-finite Quandles

Definition

A nonempty quandle Q is **ind-finite** if there is a family of finite subquandles $\{Q_i\}_{i\in\mathcal{I}}$ indexed by a directed set \mathcal{I} such that each $Q_i \preccurlyeq Q$, $|Q_i| < \infty$, $Q_i \prec Q_{i+1}$, and $Q = \bigcup_{i\in\mathcal{I}} Q_i$.

Ind-finite Quandles

Definition

A nonempty quandle Q is **ind-finite** if there is a family of finite subquandles $\{Q_i\}_{i\in\mathcal{I}}$ indexed by a directed set \mathcal{I} such that each $Q_i \preccurlyeq Q$, $|Q_i| < \infty$, $Q_i \prec Q_{i+1}$, and $Q = \bigcup_{i\in\mathcal{I}} Q_i$.

Lemma

Suppose Q is a quandle. Then, Q is ind-finite if and only if every finitely generated subquandle of Q is finite.

Ind-finite Quandles

Definition

A nonempty quandle Q is **ind-finite** if there is a family of finite subquandles $\{Q_i\}_{i\in\mathcal{I}}$ indexed by a directed set \mathcal{I} such that each $Q_i \preccurlyeq Q$, $|Q_i| < \infty$, $Q_i \prec Q_{i+1}$, and $Q = \bigcup_{i\in\mathcal{I}} Q_i$.

Lemma

Suppose Q is a quandle. Then, Q is ind-finite if and only if every finitely generated subquandle of Q is finite.

Example

Let the quandle operation \triangleright^* be given by $x \triangleright^* y = 2x - y$.

- Neither $(\mathbb{Q}, \triangleright^*)$ nor $(\mathbb{Q}/\mathbb{Z}, \triangleright^*)$ has a complemented sublattice.
- $(\mathbb{Q}/\mathbb{Z}, \triangleright^*)$ is ind-finite but $(\mathbb{Q}, \triangleright^*)$ is not.

Strongly Complemented Subquandles

Definition

A subquandle $Q' \leq Q$ is **strongly complemented** if $Q \setminus Q' \leq Q$.

Example

In the quandle Q represented by the matrix

$$M_Q = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 2 \\ 2 & 3 & 3 \end{bmatrix}.$$

The subquandles

$$\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}, [1]$$

are strongly complemented.

Semidisjoint Union

Definition (Ehrman et al.)

Given a sequence of quandles Q_1, \ldots, Q_n and a $n \times n$ matrix of group homomorphisms $(M)_{ij} = g_{ij}$:, Ehrman et al. ? defined the **semidisjoint union** as follows:

$$\#(Q_1,\ldots,Q_n,M)=\Big(\coprod_{i=1}^nQ_i,\rhd\Big).$$

Semidisjoint Union

Definition (Ehrman et al.)

Given a sequence of quandles Q_1, \ldots, Q_n and a $n \times n$ matrix of group homomorphisms $(M)_{ij} = g_{ij}$:, Ehrman et al. ? defined the **semidisjoint union** as follows:

$$\#(Q_1,\ldots,Q_n,M)=\Big(\coprod_{i=1}^nQ_i,\rhd\Big).$$

- Each entry of the matrix $g_{ij}: \operatorname{Adconj}(Q_i) \to \operatorname{Aut}(Q_j)$ is a group homomorphism.
- \triangleright is defined as $x \triangleright y = x \cdot g_{ij}(|y|_{Q_i})$ for $x \in Q_i$ and $y \in Q_j$.
- Note that we are not guaranteed that the semidisjoint union is a quandle. If the matrix *M* gives rise to a quandle, it is called a **mesh**.
- Ehrman et al. provided a necessary and sufficient condition for M to be a mesh.

Orbit Decomposition Theorem

Theorem (Ehrman et al.)

Let Q be a quandle, and let Q_1, \ldots, Q_n be its orbits under the inner automorphism group. Then we can construct a mesh M such that

$$Q = \#(Q_1, \ldots, Q_n, M).$$

Orbit Decomposition Theorem

Theorem (Ehrman et al.)

Let Q be a quandle, and let Q_1, \ldots, Q_n be its orbits under the inner automorphism group. Then we can construct a mesh M such that

$$Q = \#(Q_1, \ldots, Q_n, M).$$

• Note that the orbits need not be connected. Hence the orbits themselves may be decomposable via the previous theorem.

Two Actions

- We've shown how Inn(Q) acts on Q by functional application.
- This action allows us to construct an action of Inn(Q) upon $\mathcal{L}(Q)$.

Definition

The action of Inn(Q) on Q' is also given by functional application, denoted $Q' \cdot Inn(Q)$.

The action of $\operatorname{Inn}(Q)$ upon $\mathcal{L}(Q)$ is defined $Q'\sigma=\sigma(Q')$ for all $Q'\in\mathcal{L}(Q)$, and for all $\sigma\in\operatorname{Inn}(Q)$. The orbit of Q' under this action is denoted by $[Q']\cdot\operatorname{Inn}(Q)=\{Q'\sigma:\sigma\in\operatorname{Inn}(Q)\}.$

Strongly Complemented Classification

Using both of these group actions, we managed to classify strongly complemented subquandles using the following theorem:

Theorem

Let Q be a quandle, and let $Q' \leq Q$. Denote the subquandle lattice of Q by $\mathcal{L}(Q)$. The following are equivalent:

- $Q \setminus Q' \preccurlyeq Q$,
- Q' is a union of orbits under the action of Inn(Q) on Q,
- Q' is a fixed point of the action of Inn(Q) on $\mathcal{L}(Q)$,
- $Q = \#(Q', Q \setminus Q', M)$ for a mesh M as constructed in the orbit decomposition theorem of Ehrman et al.

Lemma (1)

Let $Q'' \preccurlyeq Q' \preccurlyeq Q$ such that Q'' is strongly complemented within Q', and Q' is strongly complemented within Q. Then for any $\gamma \in \text{Inn}(Q)$, $Q''\gamma$ is strongly complemented within Q'.

Lemma (1)

Let $Q'' \preccurlyeq Q' \preccurlyeq Q$ such that Q'' is strongly complemented within Q', and Q' is strongly complemented within Q. Then for any $\gamma \in \text{Inn}(Q)$, $Q''\gamma$ is strongly complemented within Q'.

Lemma (2)

Let $Q'' \preccurlyeq Q' \preccurlyeq Q$ be as in Lemma (1). Then for all $\sigma \in \text{Inn}(Q)$, there exists some $\sigma' \in \langle S(Q \setminus Q') \rangle$ such that $Q''\sigma = Q''\sigma'$.

Proof.

- Suppose $\sigma = S_{x_1}^{\epsilon_1} \dots S_{x_n}^{\epsilon_n}$ for each $x_j \in Q$, $\epsilon_j \in \{-1, 1\}$.
- Suppose $\exists x_i \in Q'$ whose symmetry appears in σ which we cannot remove without changing the action.
- By Lemma 1, Q'' acted upon by the string of σ up until x_i , denote it by γ , is strongly complemented in Q'.

Proof (continued).

- ullet Since $x_i \in Q'$, $S_{x_i}|_{Q'}$ acts the same upon Q' as S_{x_i}
- Then, $Q''\gamma S_{x_i} = Q''\gamma$ by the equivalence theorem. Hence, removing S_{x_i} won't change anything, so there never was a counterexample.
- Thus, we can construct σ' by removing symmetries represented by elements in Q'.

Lemma (3)

Suppose that Q'' is strongly complemented within Q, while $Q'' \leq Q' \leq Q$. Then, Q'' is strongly complemented within Q'.

Theorem

Suppose Q is a quandle, with subquandles $Q'' \preccurlyeq Q' \preccurlyeq Q$, such that Q'' is strongly complemented within Q', while Q' is strongly complemented within Q. Then Q'' is complemented within Q by the subquandle $Q \setminus Q'' \cdot \operatorname{Inn}(Q)$.

Theorem

Suppose Q is a quandle, with subquandles $Q'' \preccurlyeq Q' \preccurlyeq Q$, such that Q'' is strongly complemented within Q', while Q' is strongly complemented within Q. Then Q'' is complemented within Q by the subquandle $Q \setminus Q'' \cdot \operatorname{Inn}(Q)$.

Proof.

- By Lemma 3 and the equivalence theorem, Q'' is strongly complemented within $Q'' \cdot \text{Inn}(Q)$, which in turn is strongly complemented within Q.
- $Q'' \wedge Q \setminus Q'' \cdot \operatorname{Inn}(Q) = \emptyset$
- Using Lemmas 2 and 1, we show that $Q'' \cdot \operatorname{Inn}(Q) \subset Q'' \vee Q \setminus Q'' \cdot \operatorname{Inn}(Q)$, hence $Q'' \vee Q \setminus Q'' \cdot \operatorname{Inn}(Q) = Q$.
- Hence Q'' has $Q \setminus Q'' \cdot \operatorname{Inn}(Q)$ as a complement.

We consider the dual to ind-finite quandles:

- We consider the dual to ind-finite quandles:
- ② A quandle *Q* is *profinite* it is the inverse limit of an inverse system composed of a family of finite quandles and their morphisms.

- We consider the dual to ind-finite quandles:
- ② A quandle *Q* is *profinite* it is the inverse limit of an inverse system composed of a family of finite quandles and their morphisms.
 - ▶ Proved profinite quandles are quandles under coordinatewise operations.

- We consider the dual to ind-finite quandles:
- ② A quandle *Q* is *profinite* it is the inverse limit of an inverse system composed of a family of finite quandles and their morphisms.
 - Proved profinite quandles are quandles under coordinatewise operations.
 - ▶ Proved profinite abelian groups are profinite Takasaki quandles $(x \triangleright y = 2y x)$ under coordinatewise operations.

- We consider the dual to ind-finite quandles:
- ② A quandle Q is *profinite* it is the inverse limit of an inverse system composed of a family of finite quandles and their morphisms.
 - Proved profinite quandles are quandles under coordinatewise operations.
 - ▶ Proved profinite abelian groups are profinite Takasaki quandles $(x \triangleright y = 2y x)$ under coordinatewise operations.
- Are the subquandle lattices of profinite quandles complemented?

Acknowledgments

We would like to thank Dr. David Yetter for his mentorship and support, as well as Dr. Marianne Korten, Dr. Kim Klinger-Logan, and Kansas State University for making this research experience possible.

This research was conducted under the support of NSF grant DMS-1659123.

References

- David, Joyce. "A classifying invariant of knots, the knot quandle." *Journal of Pure and Applied Algebra*, vol. 23, pp. 37-65, 1982.
- G. Ehrman, A. Gurpinar, M. Thibault, D.N. Yetter. "Toward a classification of finite quandles." *Journal of Knot Theory and Its Ramifications*, vol. 17, pp. 511-520, 2008.
- A. Saki and D. Kiani, "Complemented Lattices of Subracks." *Journal of Algebraic Combinatorics*, vol. 53, pp. 455-468, 2021.

Questions?