Clustering Multidisciplinary Chemical Papers To Provide New Tools for Research Management and Trends. Application to Coal and Organic Matter Oxidation

HENRI DOU,* PARINA HASSANALY, LUC QUONIAM, and JACKY KISTER

Centre de Recherche Rétrospective de Marseille, UA126 CNRS, Centre de St Jérome, 13397 Marseille Cédex 13, France

Received June 10, 1988

Chemistry is unique in that it is one of the largest scientific areas covered by one of the most pertinent databases, *Chemical Abstracts*. This unique database provides the information scientist with more than 20 years of materials available online. This prompts us to study and to develop new methods and automatic tools to picture the multidisciplinary relationships existing between various research areas. This paper shows how these tools can be used in science management. They allow us to follow the trends in these areas over many years and, depending on the type of relationship networks, to class the subjects among various categories describing the practices and behavior of the people concerned with this subject analysis.

INTRODUCTION

The Chemical Abstracts sections reflect the subject coverage of chemistry by this publisher. Thirty sections were used in the beginning (1907). With the advent of online services, the placement of each paper in a Chemical Abstracts section led in fact to section numbers becoming primary and secondary subject codes assigned to each paper.

For the period 1982 to date, 80 sections (see the list in the Appendix) are used. Thus, the identification of subject areas, or rather the degree of their specificity, depends on the *Chemical Abstracts* approach to the grouping of related subjects, somewhat arbitrarily chosen and specifically designed for that publication. Papers analyzed by a Chemical Abstracts Service indexer are assigned to these sections according to the following rules:¹⁻³ one primary section, with or without subsections, describes the main subject of the paper; one or several cross-reference sections describe other areas of concern; a paper must always have a primary section, but cross-reference sections are not obligatory.

The following example shows one reference obtained from the *Chemical Abstracts* bibliographic database (host ORBIT INFORMATION TECHNOLOGIES⁴). The fields of the reference are indented to provide their meaning to the reader. In this paper, we will be concerned with the Category Code field (CC) that contains the *Chemical Abstracts* sections. From 1982 to date, these sections did not change, and the indexing practices remain constant.

AN	CA05-85846(10)
TI	vacuum microbalance studies on the combustion of Saraji coal
AU	Adams, K. E.; Glasson, D. R.; Jayawe-
SO	era, S. A. A. Thermochim. Acta (THACAS), V 103
30	(1), p 157–62, 1986, ISSN 00406031
OS	Plymouth Polytech., Dep. Environ. Sc i.,
	Plymouth/Devon, UK, PL4 8AA
DT	J (Journal)
CC	SEC67-3: SEC51: SEC66

To the author's knowledge, the *Chemical Abstracts* sections have been extensively used for bibliography purposes only.^{5,6} They have not been statistically analyzed to provide information on the structure of various research networks. Most of these studies have been performed with cooccurrence of terms or cocitations.

MATERIALS AND METHODS

Materials. The materials that will be used are retrieved from the *Chemical Abstracts* database. The reference list is stored on a microcomputer IBM compatible, XT or AT, HDU 20 Mo. The references are obtained by questioning the database on a particular question. This means that any subject can be analyzed; the only limit is the capability of the host to provide the means (software quality) to select the right information from the *Chemical Abstracts* database.

In our case, we decided to analyze the following subjects: coal and lignite oxidation; and organic matter oxidation, including coal and lignite. The following listing shows the history of the search.

```
SS 1:
          ORGANIC (W) MATTER (4556)
 SS 2:
          ALL KEROGEN # # # (708)
SS 3:
          ASPHALTENES (1203)
 SS 4:
          ALL COAL# (30610)
 SS 5:
          ALL LIGNITE# (1650)
 SS 6:
          ALL TAR # (4995)
          ALL HEAVY (W) PETROLEUM
 SS 7:
            (W) PRODUCT# (34)
 SS 8:
          ALL WOOD# (10453)
SS 9:
          ALL POLYMER # (117575)
SS 10:
          ALL TURF# (239)
SS 11:
          1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7
            OR 8 OR 9 OR 10 (164518)
SS 12:
          ALL OX # DAT: (49664)
SS 13:
          ALL OX#DIZ: (9023)
SS 14:
          ALL OX # DIS: (31)
SS 15:
          12 OR 13 OR 1 (56795)
SS 16:
          ALL OXIDTN (0)
SS 17:
          ALL OXIDN (63287)
SS 18:
          15 OR 17 (83962)
SS 19:
          18 AND 11 (5267)
SS 20:
          19 AND 82-82 (729)
SS 21:
          19 AND 83-83 (834)
SS 22:
          19 AND 84-84 (848)
SS 23:
          19 AND 85-85 (885)
SS 24:
          19 AND 86-86 (838)
          19 AND 87-87 (722)
SS 25:
SS 26:
          19 AND 88-88 (38)
SS 27:
          26 OR 25 (760)
SS 28:
          (4 OR 5) AND 18 AND 87-88 (189)
```

To be able to follow the latest developments in these subjects,

Figure 1. Comparison of the scientific production of coal (A) and organic matter (B) oxidation from 1982 to 1988 (April 21).

we chose to work with years 1987 and 1988. Figure 1 shows the trend in oxidation of organic matter, coal, or lignite. The past two years show fewer references than the others because of the time gap between paper publications and their further appearance in *Chemical Abstracts*.

Methods. The method used for the analysis requires a variety of software that analyze automatically the CC field of each of the two preceding files. The sizes of the two files are 189 references for coal and lignite oxidation and 760 references for organic matter oxidation.

This analysis proceeds in several steps:⁷ (i) verification of the downloaded files to see if all the CC fields are really present; (ii) extraction of the CC field to obtain a new file such

CC	SEC51-1; SEC80
CC	SEC80
CC	SEC22; SEC51
CC	SEC61; SEC51
CC	SEC22
CC	SEC72-4; SEC51; SEC80
CC	SEC51-5; SEC79
CC	SEC51-2; SEC70; SEC80
CC	SEC22-7; SEC51

and (iii) transformation of the above file to get (1) a file containing all the primary sections without their subsections

Table I. Pairs and Frequencies

pair	frequency	pair	frequency
51-80	3	51-72	1
51-22	2	51-79	1
51-61	1	72-80	1
51-70	1		

and (2) a file containing all the fields with more than one section and without subsections.

- (1) The file containing all the primary sections without their subsections allows one to obtain the graph of the main research poles of the subject. These poles will be represented on a chessboard, where section 1 is at the upper left and section 80 at the lower right. The frequency of a primary section is proportional to the height of the cylinder drawn on the chessboard. Figure 2 shows the background of this representation.
- (2) The file containing all the fields with more than one section and without subsections will be used to calculate all the section pairs appearing in each field. For instance

will lead to pairs 72-51, 72-80, and 51-80. These pairs are representative of potential ties existing between themes 7i and 51, etc.

This process is used for all fields present, and all pairs are cumulated and sorted. For instance, from the above example Table I shows the pairs and frequencies obtained. Once the list of pairs and frequencies is obtained, it is very easy to draw from this table the pluridisciplinary network of themes and its main backbone. Figure 3 shows the network derived from Table I. In this network, the main backbone is 22–51–80, and the subsidiary bonds are 51–61 and 51–70. Poles 51, 80, and 72 are the nodes of the network. We will see that the shape of the network, the node numbers, and the number of clusters according to the frequency threshold used are significant of the research practice of the subject analyzed.

MAIN RESEARCH POLES IN COAL-LIGNITE AND ORGANIC MATTER ANALYZING

Coal and Lignite. Figure 4 represents the main research poles in the field of coal-lignite oxidation. In this figure a unique section (51 Fossil Fuels; Derivatives; and Related

Figure 2. Localization of the main research poles according to their frequency and Chemical Abstracts numbers.

Figure 3. Example of a research network.

51 fossil fuels; derivatives; and related products

Figure 4. Main research poles of coal oxidation.

Pole principal 51 51 fossil fuels; derivatives; and related products

Figure 5. Main research poles of organic matter oxidation.

Products) is overwhelming. This is trivial, since coal and lignite are fossil fuels that are present in section 51. But the lack of other primary sections shows the little concern of coal and lignite in other research areas. This emphasizes the high degree of isolation of this research in the chemical field.

Organic Matter Oxidation, Including Coal and Lignite. Figure 5 represents the main research poles in this field. Because of the query used, section 51 is important, as is section 35 (Chemistry of Synthetic High Polymers). But this also emphasizes that other primary sections are largely concerned with this research. This shows that the subject analyzed is less isolated than coal and lignite oxidation among the chemistry subjects described by the Chemical Abstracts sections.

MULTIDISCIPLINARY NETWORK

Oxidation of Coal and Lignite. This network is shown in Figure 6. It shows almost no reticulation and is a perfect representation of a star-type network. This indicates research almost exclusively focused on coal and lignite, with no participation or concern with other areas of chemistry.

The fact that this network has no reticulation reinforces the results obtained when the main research poles were examined. Specialists in the field can surely find other applications of

Figure 6. Coal oxidation.

Figure 7. Organic matter oxidation.

the shape of the network. This can be explained in two ways: (1) researchers' habits, i.e., they do not use the techniques and know-how of other disciplines; (2) the impossibility of applying coal or lignite oxidation techniques to other areas.

Oxidation of Organic Matter Including Coal. This network has been drawn in Figure 7. Its pattern is very different from the preceding one. Two main parts must be considered. The first one is focused on section 51 and exhibits only two bonds at low frequency with the second part of the network. The second part is well reticulated, with various connections between different areas of research. This is a good example of a different network shape. This shape indicates a good flux of exchanges between various chemical fields, which surely implies innovative transfers and good relationships between different research groups.

These two patterns are often encountered in scientific papers analysis in pure or mixed forms. They can be used to compare different sets of references, since they give a pattern unique for each set. This "fingerprint" is a different approach to the ways in which the fluxes of production and information are exchanged in a scientific or technical field.

OTHER EXAMPLES OF NETWORKS

To indicate the possibilities of this method, we will briefly show three more applications: the study of French oceanog-

Figure 8. French chemical oceanography from 1982 to April 1988.

raphy from 1982 to date, the study of the research pattern in the universities and research centers located in Marseille (France) for 1986 using *Chemical Abstracts*, and the study of physics in universities and research centers in Marseille using the database INSPEC for 1985.

French Chemical Oceanography. The starting materials have been selected by using various concepts large enough to retrieve from the *Chemical Abstracts* database a set of references that will be a good pattern of French oceanography. For the period extending from 1982 to date, 989 references have been selected.

Figure 8 represents the network of this area of research, using the same technique as above. The network is for part of it (the higher frequencies) of the star type. Reticulation begins to occur at a lower frequency threshold. This reticulation concerns "biochemical oceanography". Discussion with specialists in the field confirms the difficulty of this theme's emergence in French chemical oceanography official bodies.

Chemistry at Marseille in 1986. The same technique has been used to draw the network and to determine the main research poles. The references have been selected by using a limitation by town and date. The network, at high and low frequencies, exhibits various clusters that are not related to each other. The first one is related to life sciences chemistry. The second deals with thermodynamic chemistry and the third with inorganic and surface chemistry. It is easy to see that when the frequency threshold decreases, new clusters and bonds appear. This reveals new clusters such as marine chemistry and organometallic chemistry. All the results are indicated in Figure 9.

It is interesting to note that this network condenses 556 references and indicates at a glance the structure of the chemical research at Marseille and the relative proportion of the scientific production.

In this study, we can see that various directions of research are examined all together and the different clusters emerge. These clusters, depending on the frequencies at which they bond (or do not bond), are a good indication of the fluxes of exchanges in the geographic area analyzed.

Physics at Marseille in 1985. The INSPEC classification (see the Appendix) was used to analyze the structure of the network of physics at Marseille in 1985. The file size was 356 papers. From Figure 10, it is easy to see that three clusters emerge: optic and optoelectronic, theoretical physics, and astronomy. This example shows that the method is general and can be applied to all databases that provide in their references meaningful codes, such as WPI, WPIL (Derwent codes), BIOSIS (Biocodes), Management, and Predicast.

CONCLUSION

The automatic analysis of *Chemical Abstracts* sections, using downloaded data, is a strong and powerful tool to picture the research activities of a field. Since all *Chemical Abstracts* references give sections, all the subjects leading to references

Figure 9. Chemistry in Marseille (source: Chemical Abstracts 1986).

Figure 10. Physics in Marseille (source: INSPEC database 1985).

in this database can be worked out with this method. Since the network shapes can be very different (star, reticulated, with various clusters, mixed) and since the shape also depends on the frequency threshold used, indicators can be derived from such a study.

The comparison of networks obtained from year to year, using the same query, is a good way to picture research trends and to evaluate the degree of multidisciplinarity and exchanges.

The comparison with the network obtained when the oxidation of organic matter was analyzed suggests that oxidation of coal and lignite stands alone, as a subject by itself, different

Cellulose, Lignin, Paper, and Other Wood Prod-

Industrial Organic Chemicals, Leather, Fats, and

Fossil Fuels, Derivatives, and Related Products

Electrochemical, Radiational, and Thermal En-

Classical quantum physics; mechanics and fields

Statistical physics and thermodynamics A05

Measurement science, general laboratory tech-

Specific instrumentation and techniques of general

Physics of Elementary particles and fields A10

Specific theories and interaction models; particle

Properties of specific particles and resonances A14

General theory of fields and particles A11

Specific reactions and phenomenology A13

niques, and instrumentation systems A06

Relativity and gravitation A04

use in physics A07

systematics A12

Mineralogical and Geological Chemistry

Coating, Inks, and Related Products

Surface-Active Agents and Detergents

Apparatus and Plant Equipment

Unit Operations and Processes

Industrial Inorganic Chemicals

Propellants and Explosives

ergy Technology

Extractive Metallurgy

Ferrous Metals and Alloys

Industrial Carbohydrates

42

43

44

45

46

47

48

49

50

51

52

53

54

55

04

05

06

07

08

09

10

11

12

13

from the techniques and research developed during the study of the oxidation of other chemical compounds.

All these possibilities suggest that these networks may be used in research policy and management and also by individuals who wish to examine the place of their work among the scientific production dealing with their research subject.

Other clustering techniques such as citation counts⁸ and co-word analysis^{9,10} have been developed during recent years. These methods, which also lead to scientific networks, are generally more difficult to use and necessitate larger com-

We believe that because of their simplicity the use of networks grounded on scientific codes is a valuable tool that quickly obtains key information from various databases.¹¹

ACKNOWLEDGMENT

We thank the DBMIST and ORBIT INFORMATION TECHNOLOGIES for their help. This work has been made un in

pounds

Carbohydrates

Alkaloids

Steroids

Textiles

Terpenes and Terpenoids

Amino Acids, Peptides, and Proteins Chemistry of Synthetic High Polymers

Plastics Manufacture and Processing

and Photographic Sensitizers

Synthetic Elastomers and Natural Rubber

Plastics Fabrication and Uses

Physical Properties of Synthetic High Polymers

Dyes, Organic Pigments, Fluorescent Brighteners,

30

31

32

33

34

35

36

37

38

39

40

41

we thank the DBMIST and ORBIT INFORMATION		22	1 circus iviciais and Anoys
FECHNOLOGIES for their help. This work has been made		56	Nonferrous Metals and Alloys
ander the French PARUSI program to increase research in		57	Ceramics
	on sciences in France.	58	Cement, Concrete, and Related Building Mate-
			rials
	APPENDIX	59	Air Pollution and Industrial Hygiene
List of	Chemical Abstracts Sections	60	Waste Treatment and Disposal
list of	Pharmacology	61	Water
2	Mammalian Hormones	62	Essential Oils and Cosmetics
3	Biochemical Genetics	63	Pharmaceuticals
4		64	Pharmaceutical Analysis
5	Toxicology Agrochemical Bioregulators	65	General Physical Chemistry
6	General Biochemistry	66	Surface Chemistry and Colloids
7	Enzymes	67	Catalysis, Reaction Kinetics, and Inorganic Re-
8	Radiation Biochemistry		action Mechanisms
9	Biochemical Methods	68	Phase Equilibrium, Chemical Equilibriums, and
10	Microbial Biochemistry		Solutions
11	Plant Biochemistry	69	Thermodynamics, Thermochemistry, and Thermal
12	Nonmammalian Biochemistry		Properties
13	Mammalian Biochemistry	70	Nuclear Phenomena
14	Mammalian Pathological Biochemistry	71	Nuclear Technology
15	Immunochemistry	72	Electrochemistry
16	Fermentation and Bioindustrial Chemistry	73	Optical, Electron, and Mass Spectroscopy and
17	Food and Feed Chemistry		Other Related Properties
18	Animal Nutrition	74	Radiation Chemistry, Photochemistry, and Pho-
19	Fertilizers, Soils, and Plant Nutrition		tographic and Other Reprographic Processes
20	History, Education, and Documentation	75	Crystallography and Liquid Crystals
21	General Organic Chemistry	76	Electric Phenomena
22	Physical Organic Chemistry	77	Magnetic Phenomena
23	Aliphatic Compounds	78	Inorganic Chemicals and Reactions
24	Alicyclic Compounds	79	Inorganic Analytical Chemistry
25	Benzene, Its Derivatives, and Condensed Benzenoid Compounds	80	Organic Analytical Chemistry
26	Biomolecules and Their Synthetic Analogs	INSPI	EC Classification
20 27	Heterocyclic compounds (One Hetero Atom)	01	Physics, General A00
28	Heterocyclic Compounds (More Than One	02	Communication, education, history and philoso-
20	Hetero Atom)		phy A01
29	Organometallic and Organometalloidal Com-	03	Mathematical methods in physics A02
47	organometanic and organometanoidal com-	04	Classical quantum physics: mechanics and fields

14	Nuclear Physics A20	58	Cross-Disciplinary Physics and Related Areas of
15	Nuclear structure A21		Science and technology A80
16	Radioactivity and electromagnetic transitions A23	59	Materials science A81
17	Nuclear reactions and scattering: general A24	60	Physical chemistry A82
18	Nuclear reactions and scattering: specific reac-	61	Energy research and environmental science A86
	tions A25	62	Biophysics, medical physics, and biomedical en-
19	Properties of specific nuclei listed by mass ranges		gineering A87
	A27	63	Geophysics, Astronomy and Astrophysics A90
20	Nuclear engineering and nuclear power studies	64	Solid Earth geophysics A91
	A28	65	Hydrospheric and atmospheric geophysics A92
21	Experimental methods and instrumentation for	66	Geophysical observations, instrumentation, and
	elementary particle and nuclear physics A29		techniques A93
22	Atomic and Molecular Physics A30	67	Aeronomy and space physics A94
23	Theory of atoms and molecules A31	68	Fundamental astronomy and astrophysics, in-
24	Atomic spectra and interactions with photons A32		strumentation and techniques and astronomical
25	Molecular spectra and interactions with photons		observations A95
	A33	69	Solar system A96
26	Atomic and molecular collision processes and in-	70	Stars A97
	teractions A34	71	Stellar systems; galactic and extragalactic objects
27	Properties of atoms and molecules; instruments		and systems; The Universes A98
	and techniques A35	72	Electrical. General topics, Engineering Mathe-
28	Studies of special atoms and molecules A36	, 2	matics and Materials Science B00
29	Classical Areas of Phenomenology A40	73	General electrical engineering topics B01
30	Electricity and magnetism; fields and charged	74	Engineering mathematics and mathematical
50	particles A41	7 -	techniques B02
31	Optics A42	75	Materials science for electrical and electronic
32	Acoustics A43	7.5	engineering B05
33	Heat flow, thermal and thermodynamic processes	76	Electrical. Circuit theory and Circuits B10
33	A44	77	Circuit theory B11
34	Mechanics, elasticity, rheology A46	78	Electronic circuits B12
35	Fluid dynamics A47	79	Microwave technology B13
36	Fluids, Plasmas and Electric Discharges A50	80	Electrical, Components, Electron Devices and
37	Kinetic and transport theory of fluids; physical	00	Materials B20
31	properties of gases A51	81	Passive circuit components, cables, switches and
38	The physics of plasmas and electricity discharges	01	connectors B21
30	A52	82	Printed circuits, thin film, thick film and hybrid
39	Condensed Matter: structure, thermal and me-	02	integrated circuits B22
39	chanical properties A60	83	Electron tubes B23
40	Structure of liquids and solids; crystallography	84	Semiconductor materials and devices B25
70	A61	85	Dielectric materials and devices B28
41	Mechanical and acoustic properties of condensed	86	Electrical. Magnetic and Superconducting Ma-
71	matter A62	00	terials and devices B30
42	Lattice dynamics and crystal statistics A63	87	Electrical. Magnetic materials and devices B31
43	Equations of state, phase equilibria, and phase	88	Electrical. Superconducting materials and devices
175	transition A64	00	B32
44	Thermal properties of condensed matter A65	89	Optical Materials and Applications, Electro-optics
45	Transport properties of condensed matter (non-	0,	and Optoelectronics B4
1.5	electronic) A66	90	Optical materials and devices B41
46	Quantum fluids and solids; liquid and solid helium	91	Optoelectric materials and devices B42
10	A67	92	Lasers and masers B43
47	Surfaces and interfaces; thin films and whiskers	93	Electromagnetic Fields B50
• /	A68	94	Electric magnetic fields B51
48	Condensed Matter: Electronic Structure, Elec-	95	Electromagnetic waves, antennas and propagation
	trical, Magnetic and Optical Properties A70		B52
49	Electron states A71	96	Communications B60
50	Electronic transport in condensed matter A72	97	Information and communication theory B61
51	Electronic structure and electrical properties of	98	Telecommunication B62
	surfaces, interfaces, and thin films A73	99	Radar and radionavigation B63
52	Superconductivity A74	100	Radio, television and audio A64
53	Magnetic properties and materials A75	101	Electricals, Instrumentations and Special Appli-
54	Magnetic resonances and relaxation in condensed		cations B70
	matter; Mössbauer effect A76	102	Measurement science B71
55	Dielectric properties and materials A77	103	Measurement equipment and instrumentation
56	Optical properties, condensed matter spectroscopy		systems B72
	and other interactions of matter with particles	104	Measurement of specific variables B73
	and radiation A78	105	Elementary particle and nuclear instrumentation
57	Electron and ion emission by liquids and solids;		B74
	impact phenomena A79	106	Medical Physics and biomedical engineering B75

107 108 109	Aerospace facilities and techniques B76 Earth sciences B77 Sonics and ultrasonics B78	136 137 138	Analogue and digital computers and systems C54 Computer peripheral equipment C55 Computer Software C60
110	Electrical. Power Systems and Applications B80	139	Software techniques and systems C61
111	Electrical. Power networks and systems B81	140	Computer Applications C70
112 113	Electrical. Generating stations and plants B82 Power apparatus and electric machines B83	141	Computer applications. Administrative data processing C71
114	Direct energy conversion and energy storage B84	142	Computer applications. Information science and
115	Electrical. Power utilisation B85		documentation C72
116	Electrical. Industrial application of power B86	143	Computer applications. Natural sciences C73
117	Computer and Control. General and Manage-	144	Computer applications. Engineering C74
	ment Topics C00	145	Other computer applications C75
118	General control topics C01		•
119	General computer topics C02		BIBLIOGRAPHY
120	Management topics C03	(1) Diale	T. Oller M. D. Demess O. D. Chemical Abstracts
121	Computer and Control. Systems and Control Theory C10	An II	man, J. T.; O'Hara, M. P.; Ramsay, O. B. Chemical Abstracts. ntroduction to Its Effective Use; ACS Audio Course No. 52; rican Chemical Society: Washington, DC.
122	Systems and control theory. Mathematical techniques C11	Abst	ect coverage and arrangement of abstracts by sections in Chemical racts. Editor American Chemical Society, 1982. chiro, K. Changes in sections of Chemical Abstracts. Shikoku
123	Systems theory and cybernetics C12		inkaiho 1982, 33, 2–6.
124	Control theory C13	(4) Orbit	Information Technologies is a Pergamon Infoline Co., which
125	Computer and Control. Control Technology C30	offers bases	s online most of the largest scientific databases and patent data-
126	Control and measurement of specific variables C31	(5) Inge Subje	Berg, H. Subject compatibility between Chemical Abstracts ect sections and search profiles used for computerized information
127	Control equipment and instrumentation C32		eval. J. Chem. Doc. 1972, 12, 110-113. son, J. S. Replacement of an in-house current awareness bulletin
128	Control application C33	by Cl	hemical Abstracts Section Groupings. J. Chem. Inf. Comput. Sci.
129	Numerical Analysis and Theoretical Computer Topics C40	(7) Dou,	, 15, 169-172. H.; Hassanaly, P. Mapping the Scientific network of patent and patent documents from chemical abstracts for a fast scientometric
130	Numerical analysis C41		sis. World Pat. Inf. 1988, 2.
131	Computer metatheory and switching theory C42	(8) Ganz	, C. Bibliometric models for international Science and Technology.
132	Computer Hardware C50		Fr. Bibl. 1987, 2, 2.
133	Computer Hardware. Circuits and devices C51		n, M. C.; Courtial, J.; Turner, W.; Bauin, S. Problematic networks: troduction to C-word analysis. <i>Inf. Sci. Soc.</i> 1983, 191.
134	Computer Hardware. Logic design and digital techniques C52	(10) Turn form	er, W. A.; Chartron, B.; Laville, F.; Michelet, B. Packaging in- ation for peer review: new co-word analysis techniques. <i>Sciento</i> -
135	Computer Hardware. Storage devices and techniques C53	(11) Jakol	ics (submitted for publication). biak, F. Maitriser l'information critique. Les editions d'org- ution; 1988; ISBN 2708108743.

Representation and Matching of Chemical Structures by a Prolog Program

JOSEPH L. ARMSTRONG[‡] and D. BRYNN HIBBERT*

Department of Analytical Chemistry, University of New South Wales, P.O. Box 1, Kensington, NSW 2033, Australia

Received September 8, 1988

A notation for describing chemical structures based on the connectivity of entities in the structure is presented in a Prolog program. Following simple rules the chemical structure is encoded as a Prolog data structure that is called the symbolic name (s-name) of the structure. An algorithm to decide if two different encodings of the same structure represent the same chemical can be used as the basis of a decision procedure to determine if an unknown chemical already exists in a large data base of s-name encoded chemical structures. A transformation on the s-name, the generic or g-name, is described that makes searching in a large data base of unknown chemicals very efficient. The s-name notation has the property that the level of abstraction used in the description may be changed, with common substructures named and descriptions nested to any level. The 35 isomers of C_9H_{20} are used as an example of this method.

INTRODUCTION

The traditional method of finding out about an unknown structure is to transform the structure into a unique name and look up this name in a chemical data base such as *Chemical Abstracts*. The fact that a structure can be converted into a unique name (which is an alphabetic string) means that the

*Author to whom correspondence should be addressed.

abstracts can be ordered with respect to this name. The method breaks down if the name is not unique (i.e., we assume that applying the standard naming rules to a given structure results in a unique name—expressed another way we assume that a given name has exactly one derivation using the rules of naming). There are no correctness proofs for the naming rules. Conventional methods of naming chemicals are complex and error prone. As structures become large and more complex, the corresponding systematic names become more and more difficult to understand. This problem led Silk¹ in 1981

¹Present address: Computer Science Laboratory, Ericsson Telecom, Stockholm, Sweden S-126 25.