Daniel Oberski

Department of methodology and statistics

doberski@uvt.nl lavaan.survev

Journal of Statistical Software

March 2014, Volume 57, Issue 1.

http://www.jstatsoft.org/

lavaan.survey: An R Package for Complex Survey
Analysis of Structural Equation Models

What is "complex" about a sample survey?

1. Clustering

2. Stratification

3. Weighting

Why account for complex sampling in structural equation modeling?

- Clustering, stratification, and weighting all affect the standard errors.
- Weighting affects the point estimates;

(Skinner, Holt & Smith 1989; Pfefferman 1993; Muthén & Satorra 1995; Asparouhov 2005; Asparouhov, & Muthén 2005; Stapleton 2006; Asparouhov & Muthén 2007; Fuller 2009; Bollen, Tueller, & Oberski 2013)

Input:

- 1. A lavaan fit object (SEM analysis)
- 2. A survey design object (complex sample design)

Output:

A lavaan fit object (SEM analysis), accounting for the complex sample design

Input:

- 1. A lavaan fit object (SEM analysis)
- 2. A survey design object (complex sample design)

Output:

A lavaan fit object (SEM analysis), accounting for the complex sample design

Example call:

lavaan.survey(lavaan.fit, survey.design)

How to fit a structural equation model accounting for complex sampling using lavaan.survey in 3 steps:

- **1 Fit** the SEM using lavaan as you normally would → lavaan fit object;
- **Define** the complex sampling design to the survey package
 - → svydesign or svrepdesign object;
- **3 Call** lavaan. survey with the two objects obtained in (1) and (2).
 - \rightarrow corrected lavaan fit object.

Afterwards, usual lavaan apparatus available.

Example complex sample SEM analysis from the literature

Ferla, Valcke & Cai (2009). Academic self-efficacy and academic self-concept: Reconsidering structural relationships. Learning and Individual Differences, 19 (4).

doberski@uvt.nl lavaan.survev

doberski@uvt.nl lavaan.survey

PISA data in the lavaan.survey package

```
load("pisa.be.2003.rda")
```

3 0.958

```
> head(pisa.be.2003, 5)[,1:20]
 PV1MATH1 PV1MATH2 PV1MATH3 PV1MATH4 ST31Q01 ST31Q02 ST31Q03 ST31Q04
    1.160
              1.26
                       1.19
                              1.190
    1.293
              1.27
                       1.22
                              1,247
    1.383
           1.44
                   1.37 1.347
    0.965
           1.02
                   1.10
                              0.979
    1.375
              1.44
                       1.31
                              1.471
 ST31Q05 ST31Q06 ST31Q07 ST31Q08 ST32Q02 ST32Q04 ST32Q06 ST32Q07
                                              3
                               3
                                                             3
3
4
 ST32Q09
          ESCS male school.type
       3 1.221
       4 1.899
       2 0.884
       3 1.305
```

Belgium is a complex country.

In addition to the observed variables, the raw data also contain 80 replicate weights generated by "balanced-repeated replication" (BRR)

> pisa.be.2003[sample(1:8796), 21:101]

	W_FSTUWT	W_FSTR1	W_FSTR2	W_FSTR3	 W_FSTR80
2988	1.12	1.64	0.57	1.70	 0.528
8666	11.90	17.84	5.95	5.95	 5.948
290	16.89	25.33	8.44	8.44	 25.333
3505	14.80	8.25	7.90	20.67	 8.206
4289	22.70	32.40	10.87	10.80	 11.755
2352	13.09	20.62	6.26	18.79	 6.301

doberski@uvt.nl lavaan.survev

model.pisa <- "

Step 1: Fitting the model with lavaan

Step 2: Letting survey know about the replicate weight design

More information on defining complex sampling objects:

Lumley (2004). Complex Surveys: A Guide to Analysis using R. New York: Wiley.

Thomas Lumley's website with **tutorials**: http://r-survey.r-forge.r-project.org/survey/index.html

Complex survey SEM

```
fit.surv <-
lavaan.survey(lavaan.fit=fit, survey.design=des.rep)</pre>
```

Point and standard error estimates using robust ML with and without correction for the sampling design using BRR replicate weights.

	Estimate		s.e.		
	Naive	PML	Naive	PML	creff
$\overline{\texttt{neg.selfconcept} \sim \texttt{neg.efficacy}}$	-0.021	-0.050	0.032	0.046	1.415
${ t neg.efficacy} \sim { t neg.selfconcept}$	0.568	0.609	0.046	0.065	1.421
neg.efficacy \sim school.type	0.530	0.518	0.022	0.022	1.009
$\mathtt{math} \sim neg.selfconcept$	-0.179	-0.177	0.015	0.021	1.362
$ exttt{math} \sim neg.efficacy$	-0.239	-0.237	0.015	0.018	1.216
${\tt math} \sim {\sf school.type}$	-0.606	-0.596	0.019	0.035	1.858

Conclusions

doberski@uvt.nl lavaan.survey

Conclusions

- When there are clusters, strata, and/or weights, you should usually adjust the SEM analysis for them;
- Especially important for correct **standard errors** and **model fit statistics**.
- lavaan.survey leverages the power of the lavaan and survey packages to let you do this.
- Future: categorical data.

doberski@uvt.nl

http://daob.nl

Thank you for your attention! Denmark United Szczecin Germany Prague Czech Republio Munich France Italy

Oberski, D.L. (2014). lavaan.survey: An R Package for Complex Survey Analysis of Structural Equation Models. *Journal of Statistical Software*, 57 (1). http://www.jstatsoft.org/v57/i01

Appendix*

Appendix

Specifying regression relations in lavaan

Dependent variable	"regressed on"	independent variables
selfconcept	~	efficacy + ESCS + male
efficacy	~	<pre>selfconcept + school.type + ESCS + male</pre>
math	~	<pre>selfconcept + efficacy + school.type + ESCS + male</pre>

PISA data: Math self-concept (ST32Q02,4,6,7,9)

Math self-concept (n = 5, $\alpha = 88.6$)

The PISA math self-concept items assess what Eccles and Wigfield (1995) identified as the ability component of subject-specific self-concept beliefs (as opposed to the affective/motivational component).

Thinking about studying Mathematics: to what extent do you agree with the following statements?

- 1. I am just not good at Mathematics
- 2. I get good marks in Mathematics
- 3. I learn Mathematics quickly.
- 4. I have always believed that Mathematics is one of my best subjects
- 5. In my Mathematics class, I understand even the most difficult work.

Items are rated on a 4 point Likert scale ranging from (1) "Strongly agree" to (4) "Strongly disagree"

```
neg.selfconcept =~ ST32Q02 + ST32Q04 + ST32Q06 + ST32Q07 + ST32Q09
```

Latent variable

```
neg.selfconcept =~ ST32Q02 + ST32Q04 + ST32Q07 + ST32Q09
```

```
Latent variable "measured by"

neg.selfconcept =~ ST32Q02 + ST32Q04 +
ST32Q06 + ST32Q07 +
ST32Q09
```

```
Latent variable "measured by" obs. variables

neg.selfconcept =~ ST32Q02 + ST32Q04 + ST32Q06 + ST32Q07 + ST32Q09
```

PISA data: math self-efficicacy (ST31Q01--08)

Math self-efficacy (n = 8, $\alpha = 81.6$)

The PISA math self-efficacy scale was developed according to Bandura's (1997) guidelines regarding the specificity of self-efficacy beliefs assessment and their correspondence with criterial tasks.

How confident do you feel about having to do the following Mathematics tasks?

- Using a train timetable to work out how long it would take to get from one place to another
- 2. Calculating how much cheaper a TV would be after a 30% discount.
- Calculating how many square metres of tiles you need to cover a floor.
- 4. Understanding graphs presented in newspapers
- 5. Solving an equation like 3x + 5 = 17
- Finding the actual distance between two places on a map with a 1:10.000 scale.
- 7. Solving an equation like 2(x+3) = (x+3)(x-3)
- 8. Calculating the petrol consumption rate of a car.

Items are rated on a 4 point Likert scale ranging from (1) "Very confident" to (4) "Not at all confident"

Measurement model for self-efficacy

```
neg.efficacy =~ ST31Q01 + ST31Q02 + ST31Q03 +

ST31Q04 + ST31Q05 + ST31Q06 +

ST31Q07 + ST31Q08
```

[1/3] PISA sampling design: clustering

- Target population in each country: 15-year-old students attending educational institutions in grades 7+;
- Minimum of 150 schools selected/country;
- Within each participating school, (usually 35) students randomly selected with equal probability;
- Total sample size at least 4,500+ students.
- Other complications (with sampling):
 - Getting a population frame
 - School nonresponse
 - Student nonresponse
 - Small schools (< 35 students): representation vs. costs
 - · Countries with few schools

[2/3] PISA sampling design: stratification

- Before sampling, schools **stratified** in the sampling frame;
- Schools classified into "like" groups, for purpose:
 - improve efficiency of the sample design;
 - disproportionate sample allocations to specific groups of schools, e.g. states, provinces, or other regions;
 - ensure all parts of population included in the sample;
 - representation of specific groups in sample.

PISA sampling: stratification in Belgium

- Region × Public/private education → 23 strata
- Then sampling within stratum with probability proportional to:
 - (Flanders) ISCED; Retention Rate; Vocational/Special Education; Percentage of Girls;
 - (French Community) National/International School;
 Retention Rate; Vocational-Special Education/Other;

• (German Community) Public/Private.

[3/3] Weighting

$$w_{ij} = w_{1i}w_{2ij}f_{1i}f_{2ij}t_{1i}$$

 w_{1i} : Base weight for school i;

 w_{2ii} : Base weight for student *j* in school *i*;

 f_{2ii}, f_{1i} : Nonresponse factor for student and school nonparticipation;

 t_{1i} : Weight trimming factor.

doberski@uvt.nl lavaan.survev

Weighting

$$w_{ij} = w_i^{\text{brr}} w_{1i} w_{2ij} f_{1i} f_{2ij} t_{1i}$$

 w_{1i} : Base weight for school i;

 w_{2ij} : Base weight for student j in school i;

 f_{2ij} , f_{1i} : Nonresponse factor for student and school nonparticipation;

 t_{1i} : Weight trimming factor.

 $w_{ij}^{\rm brr}$: "Balanced-repeated replication" weight (80 replications per case) created by the WesVar software

Balanced-repeated replication (BRR), Fay's $\rho=0.5$

Balanced-repeated replication (BRR), Fay's $\rho=0.5$

Balanced-repeated replication (BRR), Fay's $\rho=0.5$

Structural parameter estimates and standard errors taking nonnormality into account

	Estimate	Std.err	Z-value	P(> z)
Regressions:				
neg.selfconcept	~			
neg.efficacy	-0.021	0.032	-0.657	0.511
ESCS	-0.062	0.018	-3.381	0.001
male	-0.389	0.027	-14.607	0.000
<pre>neg.efficacy ~</pre>				
neg.selfcncpt	0.568	0.046	12.354	0.000
school.type	0.530	0.022	24.331	0.000
ESCS	-0.252	0.016	-16.199	0.000
male	-0.360	0.031	-11.668	0.000
math ~				
neg.selfcncpt	-0.179	0.015	-11.644	0.000
neg.efficacy	-0.239	0.015	-16.413	0.000
school.type	-0.606	0.019	-32.154	0.000
ESCS	0.312	0.014	22.511	0.000
male	0.009	0.024	0.375	0.708

Model fit taking nonnormality into account

	Used	Total
Number of observations	7785	8796
Estimator	ML	Robust
Minimum Function Test Statistic	8088.256	7275.544
Degrees of freedom	158	158
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.112
for the Satorra-Bentler correction		
Comparative Fit Index (CFI)	0.921	0.921
Tucker-Lewis Index (TLI)	0.907	0.907
RMSEA	0.080	0.076
P-value RMSEA <= 0.05	0.000	0.000
SRMR	0.056	0.056
JILING	0.056	0.056

Complex survey SEM: fit measures

Number of observations	7785	
Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor for the Satorra-Bentler correction	ML 8187.514 158 0.000	Robust 5642.873 158 0.000 1.451
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) RMSEA P-value RMSEA <= 0.05	0.921 0.906 0.081 0.000	0.894 0.875 0.067 0.000
SRMR	0.058	0.000