L1 – 3.1/3.2 Reciprocal of Linear and Quadratic Functions MHF4U

Part 1: Analyze the Reciprocal of a Linear Function

Example 1:

a) Draw the horizontal and vertical asymptotes for the reciprocal function and state what they are

HA:
$$y = 0$$

VA: $x = -2$

b) What graphical characteristic in the reciprocal function does the zero (x-int) of the original function correspond to?

The vertical asymptote of the reciprocal function passes through the x-intercept of the linear function.

c) When the original function is increasing, what is happening to the reciprocal function?

It is DECREASING

d) What are the y-coordinates of the points of intersection?

1 and -1. This is because the reciprocal of each of those does not change their value.

e) Label a point on the graph of both functions at x = 2. What do you notice about the y values of each point?

The y-value of the reciprocal function is the reciprocal of the y-value of the linear function

Part 2: Analyze the Reciprocal of a Quadratic Function

Example 2:

a) Draw the horizontal and vertical asymptotes for the reciprocal function and state what they are

VA:
$$x = 2$$
 and $x = -2$
HA: $y = 0$

b) What graphical characteristic in the reciprocal function do the zeros (x-int) of the original function correspond to?

The vertical asymptotes of the reciprocal function pass through the x-intercepts of the quadratic.

c) When the original function is decreasing, what is happening to the reciprocal function?

It is INCREASING

d) What are the *y*-coordinates of the points of intersection?

1 and -1

f) Label the local min or max point on each function. What do you notice about them?

They have the same x-coordinate which is exactly half way between the vertical asymptotes.

The quadratic has a local min but the reciprocal has a local max.

Properties of Reciprocal Functions

- All the y-coordinates of the reciprocal function are the reciprocals of the y-coordinates of the original function
- The graph of the reciprocal function has a vertical asymptote at the x-intercepts (zeros) of the original
 - \circ This is because it makes the denominator of the reciprocal = 0
- y = 0 will always be a horizontal asymptote
- The reciprocal function has the same positive/negative intervals as the original function
- Intervals of increase on the original function are intervals of decrease on the reciprocal
- Intervals of decrease on the original function are intervals of increase on the reciprocal
- If 1 is in the range of the original function, this is where the functions will intersect
- If the original function has a local min point, the reciprocal will have a local max at the same x-value (and vice versa)

Part 3: Graphing Reciprocal Functions

Process:

- Find key features of the function in the denominator and graph it using a table of values
- Create a table of values for the reciprocal function by keeping the same x values but using the reciprocal of all y values
- Draw vertical asymptotes at any point that is a zero of the original linear/quadratic function
 - o Reciprocal of 0 is undefined
- If the numerator is something other than 1, multiply the γ-values by this stretch factor

Example 3: Graph each of the following reciprocal functions. Start by graphing the function in the denominator.

a)
$$y = \frac{1}{2x-1}$$

$$y = 2x - 1$$

$$x - int: (\frac{1}{2}, 0)$$

$$x - 2 - 5$$

$$-1 - 3$$

$$0 - 1$$

$$0.5 0$$

$$1 1 1$$

$$2 3$$

3

5

x	$\frac{1}{y}$
-2	-0.2
-1	-0.33
0	-1
0.5	undefined
1	1
2	0.33
3	0.2

b)
$$y = \frac{1}{x^2 - 2x - 15} = \frac{1}{(x - 5)(x + 3)}$$

$$y = x^{2} - 2x - 15$$

$$x^{2} - 2x - 15$$

$$= (x - 5)(x + 3)$$

$$x - int: (5,0) \text{ and } (-3,0)$$

$$x - vertex = -\frac{b}{2a} = -\frac{-2}{2(1)} = 1$$

	\boldsymbol{x}	y
	-5	20
Include x-int	-3	0
	-1	-12
Center the vertex	1	-16
	3	-12
Include x-int	5	0
	7	2.0

$y = \frac{1}{x^2 - 2x - 15}$
$\frac{1}{x^2-2x-15}$
$=\frac{1}{(x-5)(x+3)}$
VA: x = 5 and x = -3
HA: y = 0

\boldsymbol{x}	1
	\overline{y}
-5	0.05
-3	undefined
-1	-0.08
1	-0.0625
3	-0.08
5	undefined
7	0.05

c)
$$y = \frac{1}{x^2 + 4}$$

$$y=x^2+4$$

x - int:

$$x^2 + 4 \neq 0$$

$$\therefore no \ x - int$$

x-vert:

$$x = -\frac{b}{2a} = -\frac{0}{2(1)} = 0$$

a. –	1	
y	_	$\overline{x^2+4}$

VA: none

$$HA: y = 0$$

	-3	13
	-2	8
	-1	5
Center the vertex	0	4
	1	5
	2	8
	3	13

x	1_
	y
-3	0.08
-2	0.125
-1	0.2
0	0.25
1	0.2
2	0.125
3	0.08

d)
$$y = \frac{2}{x^2 - 6x + 9} = 2\left[\frac{1}{(x - 3)^2}\right]$$

$$y = x^2 - 6x + 9$$
$$x^2 - 6x + 9$$

$$= (x-3)^2$$

$$x - int: (3,0)$$

$$x - vertex = 3$$

	0	9
	1	4
	2	1
-	3	0
•	4	1
	5	4
	6	9

Center the vertex

$$y=\frac{2}{x^2-6x+9}$$

$$\frac{2}{x^2 - 6x + 9}$$

$$=2\left[\frac{1}{(x-3)^2}\right]$$

$$VA: x = 3$$

$$HA: y = 0$$

x	2
	y
0	0.22
1	0.5
2	2
3	undefined
4	2
5	0.5
6	0.22

