1. Para cada uma das equações diferenciais, indique a sua ordem e verifique que a função y=y(x) é solução da equação no intervalo I, indicando se se trata de uma solução geral ou de uma solução particular.

a.
$$y'' + y = 0, y(x) = C_1 \sin(x) + C_2 \cos(x), \text{ com } C_1, C_2 \in \mathbb{R}, \text{ em } I = \mathbb{R}$$

b.
$$xy' + y = 2x, y(x) = x - x^{-1}, \text{ em } I = \mathbb{R} \setminus \{0\}$$

2017/2018

c.
$$e^x - y \frac{dy}{dx} = 0, y(x) = \sqrt{2e^x - 1}, \text{ em } I =]\log(\frac{1}{2}), +\infty[$$

d.
$$y' = xy^3, y(x) = \frac{1}{\sqrt{C-x^2}}, \text{ com } C \in \mathbb{R}^+, \text{ em } I =] - \sqrt{C}, \sqrt{C}[$$

2. Usando diferenciação implícita, mostre que cada uma das equações define soluções implícitas da respectiva equação diferencial.

a.
$$x^2 + xy^2 = C$$
, com $C \in \mathbb{R}$, para $2x + y^2 + 2xyy' = 0$

b.
$$\log(y) = xy^2 + C$$
, com $C \in \mathbb{R}$, para $\frac{dy}{dx} = \frac{y^3}{1-2xy^2}$

- 3. Considere a equação diferencial $x^2y' + xy = 1$.
- **a.** Mostre que toda a curva definida por $y(x) = \frac{\log(x) + C}{x}$, com $C \in \mathbb{R}$ é solução da equação em \mathbb{R}^+ .
- **b.** Determine uma solução que satisfaça a condição inicial $y(e^2) = 4$.
- **4.** Considere a equação diferencial xy' y = 1.
- a. Verifique se a equação admite soluções estáveis ou em equilíbrio. Em caso afirmativo, determine-as.
- **b.** Mostre que y(x) = x 1 é uma solução da equação em \mathbb{R} .

- 5. Considere a equação diferencial $\frac{(y')^2}{2} + xy' = y$.
- a. Indique a ordem da equação diferencial.
- **b.** Verifique se a família de funções $y(x) = Cx + \frac{C^2}{2}$, com $C \in \mathbb{R}$, é solução da equação diferencial em \mathbb{R} .
- **c.** Será y(x) = 2x + 2 uma solução da equação diferencial?
- **d.** Verifique que $y(x)=-\frac{x^2}{2}$ é também solução da equação diferencial. Como a designa?
- **6.** Determine a solução geral de cada uma das equações diferenciais lineares, indicando o respectivo domínio de validade.

a.
$$xy + y' = 100x$$

d.
$$xy' + 2y = \sin(x)$$

b.
$$(1+x)y' - 5xy = 0$$

e.
$$y' \sin(x) + y \cos(x) = 1$$

$$\mathbf{c.} \ y' = \sqrt{x}y$$

f.
$$xy' + y = 3x \cos(2x)$$

7. Determine a solução dos problemas de valor inicial definidos por:

a.
$$xy' + x^2y = e^{-x^2/2}$$
, com $y(-1) = 1$, para $x < 0$

b.
$$y'\cos(x) + y\sin(x) = \cos^2(x)$$
, com $y(0) = 2$, para $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

8. Determine a solução geral de cada uma das equações diferenciais de variáveis separáveis, indicando o respectivo domínio de validade.

a.
$$y' = \frac{2x}{1+2y}$$

d.
$$y' = (1 - y)(2 - y)$$

b.
$$x^2y^2y' = 1 + x^2$$

e.
$$y' = \frac{x^2}{y(1+x^3)}$$

c.
$$y' = e^{x-2y}$$

$$\mathbf{f.} \ y' = y \log(x)$$

9. Determine a solução geral de cada uma das equações diferenciais, indicando o respectivo domínio de validade.

a.
$$y' + 3y = x + e^{-2x}$$

d.
$$y' = \cos^2(x)\cos^2(2y)$$

b.
$$y \log(x) - xy' = 0$$

e.
$$(1+x^2)y' + xy = -(1+x^2)^{\frac{5}{2}}$$

c.
$$e^{-y}\sin(x) - y'\cos(x) = 0$$

f.
$$y' = \frac{y \cos(x)}{1 + 2y^2}$$

- 10. A equação de Bernoulli tem a forma $y'+p(x)y=q(x)y^n$, com $n\in\mathbb{N}_0$. Esta equação é linear para n=0 ou n=1. Para outros naturais a sua solução obtém-se efectuando a mudança de variável $z=y^{1-n}$.
- a. Considere $n \in \mathbb{N} \setminus \{1\}$ e $y \neq 0$. Mostre que a mudança de variável sugerida transforma a equação de Bernoulli numa equação diferencial linear de primeira ordem.
- **b.** Usando o método descrito anteriormente, resolva a equação $y' = y + e^{-3x}y^4$.
- 11. Uma equação diferencial na sua forma normal y' = f(x,y) (f é contínua num domínio de \mathbb{R}^2) diz-se homogénea de grau zero se f(tx,ty) = f(x,y), para todo o t real.
- **a.** Mostre que efectuando a mudança de variável y(x) = x u(x) numa equação diferencial homogénea de grau zero, se obtém uma equação diferencial de variáveis separáveis.
- **b.** Usando o método proposto, resolva a equação diferencial $\frac{dy}{dx} = \frac{y^2 + 2xy}{x^2}$.
- 12. O gráfico de uma função diferenciável y=y(x) passa no ponto (0,1). Sabe-se ainda que em cada ponto (x,y) pertencente ao gráfico desta função, a recta tangente é perpendicular à recta que passa pelo ponto e pela origem. Determine a função em causa.
- 13. Use derivação implícita para determinar um campo de direcções cuja curva integral é definida implicitamente pela equação $xe^y + ye^x = 0$.
- **14.** Determine a curva que passa pelo ponto (0,3) e cuja recta tangente tem inclinação $\frac{2x}{x^2}$, no ponto (x,y).

- 15. Segundo as Nações Unidas, a população mundial em 1998 era aproximadamente igual a 5,9 biliões e crescia a uma taxa de 1,33% ao ano. Assumindo um modelo de crescimento exponencial para a população, estime a população mundial no ano de 2023.
- **16.** Suponha que 100 moscas-da-fruta são colocadas num recipiente de acasalamento que, no máximo, suporta 5000 moscas. Supondo que a população cresce exponencialmente a uma taxa de 2% por dia, quanto tempo demorará o recipiente a atingir a sua capacidade máxima?
- 17. Um cientista pretende determinar o tempo de meia-vida de uma certa substância radioactiva. Em 5 dias uma amostra de 10 mg da substância decai para 3,5 mg. Ajude o cientista na sua tarefa.
- 18. O polónio-210 é um elemento radioactivo com uma meia-vida de 140 dias. Suponha que 10 mg desta substância são colocados num recipiente e seja y(t) o número de miligramas da substância após t dias.
- **a.** Formalize o problema de valor inicial de primeira ordem que representa a situação descrita e resolva-o.
- **b.** Quantos miligramas da substância estarão presentes após 10 semanas?
- c. Quanto tempo levará para decair 70% da quantidade inicial?
- 19. Um tecido encontrado numa pirâmide egípcia contém 78,5% do seu carbono-14 original. Sabendo que a meia-vida do carbono-14 é igual a 5730 anos, estime a idade do tecido.
- **20.** Uma pessoa viva tem uma temperatura corporal de $37^{\circ}C$. Após a morte, na primeira hora, a temperatura do corpo desce $1^{\circ}C$. Num ambiente, a temperatura constante de $25^{\circ}C$, um corpo é encontrado a $32^{\circ}C$. Estime há quanto tempo ocorreu a morte.

 ${\bf 21.}~$ Associe a cada equação diferencial a representação gráfica do seu campo de direcções.

a.
$$y' = 2xy$$

c.
$$y' = y$$

b.
$$y' = e^{-y}$$

d.
$$y' = 2xy^2$$

22. Esboce o campo de direcções de cada uma das equações diferenciais e desenhe a solução que satisfaz a condição inicial dada. (*Sugestão:* Recorra a http://www.bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html)

a.
$$\frac{dy}{dx} = 0.02y(10 - y), \ y(0) = 2$$

b.
$$y' = 0.4y(3-x), \ y(0) = 1$$

23. Recorra ao método de Euler para construir uma tabela de valores para a solução aproximada do problema de valor inicial de primeira ordem indicado, considerando o número de passos (n) e o comprimento de passo (h) sugeridos (Sugestão: Recorra a uma folha de cálculo).

a.
$$y' = x + y$$
; $y(0) = 2$; $n = 10$; $h = 0.1$

b.
$$y' = x + y$$
; $y(0) = 2$; $n = 20$; $h = 0.05$

c.
$$y' = \cos(x) + \sin(y)$$
; $y(0) = 5$; $n = 10$; $h = 0.1$

24. Considere o problema de valor inicial de primeira ordem definido por

$$\frac{dy}{dt} = -\frac{1}{2}(y - 72)$$
 e $y(0) = 140$.

- a. Usando o método de Euler, aproxime a solução deste problema de valor inicial de primeira ordem para t=1 e t=2, considerando os comprimentos de passo h=0.1 e h=0.01.
- b. Resolva analiticamente o problema de valor inicial de primeira ordem.
- ${\bf c.}$ Compare os resultados obtidos numericamente com os obtidos a partir da resolução analítica.