Homework #11 MATH270

Luke Tollefson

Friday, May 3rd

1.	Suppose that $A \subseteq B \subseteq C$, $A \approx C$, and C is countable. Is $A \approx B$?
	<i>Proof.</i> Yes. If C is finite, then $ A \leq B \leq C $. But since $A \approx C$, then $ A = C $. This would force B to be equal cardinality as A and C , hence $ A = B $, or $A \approx B$. If C were to be countable infinite then $C \approx \mathbb{N}$. We also know $A \approx C$, which lets us conclude $A \approx \mathbb{N}$. Since $A \subseteq B \subseteq C$, $A \approx C$, we know $ A \leq B \leq C $. From the just previous conclusion we find $ \mathbb{N} \leq B \leq \mathbb{N} $. This forces B to have the same cardinality as \mathbb{N} , hence $B \approx \mathbb{N}$. Therefore $A \approx B$.
2.	Prove that set A is uncountable if there is an injective function $f:(0,1)\to A$.
	<i>Proof.</i> Since there is an injective function $f:(0,1)\to A$, we know the cardinalty of $(0,1)$ is less than or equal to A . Hence, since $(0,1)$ is uncountable (because it is an interval over \mathbb{R}), A must be uncountable.
3.	Let X and Y be two nonempty finite sets. Let $F(X,Y)$ denote the set of all function from X to Y . Is this set finite, countably infinite, or uncountable?
	<i>Proof.</i> There are a finite number of functions. For every element in X , it can be sent to any element in Y . Hence, every element in X has $ Y $ possibles. Therefore there would be $ Y ^{ X }$ potential functions. This number would be finite as both X and Y are finite.
4.	Prove that the set of all irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is uncountable.
	<i>Proof.</i> Assume that $\mathbb{R} \setminus \mathbb{Q}$ is countable. We know \mathbb{Q} is countable. This would imply $(\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q} = \mathbb{R}$ is countable. This is false however, so $\mathbb{R} \setminus \mathbb{Q}$ must be uncountable.
5.	Prove that if $A \approx B$ then $\mathscr{P}(A) \approx \mathscr{P}(B)$.
	Proof. Since $A \approx B$, then $ A = B $. Therefore have an bijective function $f: A \to B$, where $f(a) = b$. We can construct another function $F: \mathcal{P}(A) \to \mathcal{P}(B)$, where $F(A_0) = \{f(a): a \in A_0\}$. We can show function F is injective. If $F(A_1) = F(A_2)$, then $\{f(a_1): a_1 \in A_1\} = \{f(a_2): a_2 \in A_2\}$. Since f is a bijection, that would imply $\{a_1: a_1 \in A_1\} = \{a_2: a_2 \in A_2\}$, or $A_1 = A_2$. This shows that F is injective, since the same argument could be shown for $F: \mathcal{P}(B) \to \mathcal{P}(A)$ we have an injection both ways. Hence $\mathcal{P}(A) \approx \mathcal{P}(B)$.

 $\Phi = \vec{E} \cdot \vec{A}$