Assignment – Your own window Functions BY RANDY LEON

- 1. Find a dataset that includes a time series (e.g. end of day stock prices for several instruments).
- 2. Use window functions to calculate year to date and six day moving averages.
- 3. Present your code in a three to five minute presentation.
- 4. You may work in a small team on this assignment.

STEP ONE: Find a dataset that includes a time series (e.g. end of day stock prices for several instruments).

I chose a dataset I found on Kaggle.com, the historical stock price for \$TSLA (Tesla Stock, since it IPO'd up until 2017-03-17.

4	Date date □	Open numeric △	High numeric	Low numeric	Close numeric	Volume (in Thousands) numeric □	Adjusted Close numeric
1	2010-06-29	19	25	17.540001	23.889999	18766.3	23.889999
2	2010-06-30	25.790001	30.42	23.299999	23.83	17187.1	23.83
3	2010-07-01	25	25.92	20.27	21.959999	8218.8	21.959999
4	2010-07-02	23	23.1	18.709999	19.200001	5139.8	19.200001
5	2010-07-06	20	20	15.83	16.110001	6866.9	16.110001
6	2010-07-07	16.4	16.629999	14.98	15.8	6921.7	15.8
7	2010-07-08	16.139999	17.52	15.57	17.459999	7711.4	17.459999
8	2010-07-09	17.58	17.9	16.549999	17.4	4050.6	17.4
9	2010-07-12	17.950001	18.07	17	17.049999	2202.5	17.049999
10	2010-07-13	17.389999	18.639999	16.9	18.139999	2680.1	18.139999
11	2010-07-14	17.940001	20.15	17.76	19.84	4195.2	19.84
12	2010-07-15	19.940001	21.5	19	19.889999	3739.8	19.889999
13	2010-07-16	20.700001	21.299999	20.049999	20.639999	2621.3	20.639999
14	2010-07-19	21.370001	22.25	20.92	21.91	2486.5	21.91
15	2010-07-20	21.85	21.85	20.049999	20.299999	1825.3	20.299999
16	2010-07-21	20.66	20.9	19.5	20.219999	1252.5	20.219999

STEP TWO: Use window functions to calculate year to date and six day moving averages.

4195.2

3730.8

2010-07.

2010-07

17.940001

10 0/1001

20.15

21.5

17.76

19.84

10 880000

SIX DAY MOVING AVERAGE, CODE AND SCREENSHOT

10 880000

17.3999997142857143

17 030000/28571/286

YEAR TO DATE MOVING AVERAGE, CODE AND SCREENSHOTS

₩.	Stocks/postgres@PostgreSQL 11					
Quer	y Editor Query History	Data O	Data Output			
30 31	<pre>select EXTRACT(YEAR FROM "Date"), ROUND("Adjusted Close",2),</pre>	4	date_part double precision □	round numeric	adjusted_close_yearly_avg numeric	
32	AVG ("Adjusted Close") OVER(1	2010	23.89	23.3418461538461538	
33	PARTITION BY EXTRACT(YEAR FROM "Date")	2	2010	23.83	23.3418461538461538	
34	ORDER BY EXTRACT(YEAR FROM "Date"))	3	2010	21.96	23.3418461538461538	
35 36	AS Adjusted_Close_Yearly_AVG FROM public."StockA";	4	2010	19.20	23.3418461538461538	
37	Their pastrer seeding,	5	2010	16.11	23.3418461538461538	
38		6	2010	15.80	23.3418461538461538	
39	I WAS ABLE TO CALCULATE THIS, HOWEVER, I TRIED	7	2010	17.46	23.3418461538461538	
40 41	HAVING IT SO ONLY DISTINCT YEARS CAME UP.	8	2010	17.40	23.3418461538461538	
42		9	2010	17.05	23.3418461538461538	
43	AS YOU WILL SEE IN SUBSEQUENT SCREENSHOTS, I WAS	10	2010	18.14	23.3418461538461538	
44	ABLE TO CALCULATE THE ADJUSTED CLOSING PRICE FOR	11	2010	19.84	23.3418461538461538	
45 46	EACH YEAR FOR \$TSLA.	12	2010	19.89	23.3418461538461538	
47	LACII ILAK I OK ŞIJLA.		2010	20.64	23.3418461538461538	
48			2010	21.91	23.3418461538461538	
49			2010	20.30	23.3418461538461538	
50		16	2010	20.22	23.3418461538461538	

YEAR TO DATE MOVING AVERAGE, CODE AND SCREENSHOTS CONT.

Data O	utput			
	date_part double precision □	round numeric	adjusted_close_yearly_avg numeric	
126	2010	25.55	23.3418461538461538	
127	2010	26.41	23.3418461538461538	
128	2010	27.73	23.3418461538461538	
129	2010	26.50	23.3418461538461538	
130	2010	26.63	23.3418461538461538	
131	2011	26.62	26.8047618611111111	
132	2011	26.67	26.8047618611111111	
133	2011	26.83	26.8047618611111111	
134	2011	27.88	26.8047618611111111	
135	2011	28.24	26.8047618611111111	
136	2011	28.45	26.8047618611111111	
137	2011	26.96	26.8047618611111111	
138	2011	26.96	26.8047618611111111	
139	2011	26.22	26.8047618611111111	
140	2011	25.75	26.8047618611111111	
141	2011	25.64	26.8047618611111111	

Data Output				
4	date_part double precision	round numeric	adjusted_close_yearly_avg numeric	
624	2012	34.59	31.1686000360000000	
625	2012	34.61	31.1686000360000000	
626	2012	34.43	31.1686000360000000	
627	2012	34.00	31.1686000360000000	
628	2012	34.28	31.1686000360000000	
629	2012	33.59	31.1686000360000000	
630	2012	33.69	31.1686000360000000	
631	2012	33.22	31.1686000360000000	
632	2012	33.87	31.1686000360000000	
633	2013	35.36	104.4012297261904762	
634	2013	34.77	104.4012297261904762	
635	2013	34.40	104.4012297261904762	
636	2013	34.34	104.4012297261904762	
637	2013	33.68	104.4012297261904762	
638	2013	33.64	104.4012297261904762	
639	2013	33 53	104 4012297261904762	