تَمَارِينَ وَحَلُولَ فِي الْمَعَادَلَاتُ النَّفَاضِلِيةُ - سلسلةُ 1-

: 1 ယုံနှင့်

 $y(0){=}4$: عدد حل المعادلة التفاضلية : y'+4 y=0 الذي يحقق الشرط البدئي

حل النمرين 1:

$$y'=-rac{4}{3}y$$
 : هذه المعادلة تكتب على الشكل التالي

$$y = y(0)e^{-\frac{4}{3}x}$$
 : إذن الحل الذي يحقق الشروط البدئية هو

$$y = e^{-\frac{4}{3}x}$$
 : أي

<u>: 2 ໝຸເຮັ</u>

$$(E): y'' + 2y = 0$$
: نعتبر المعادلة التفاضلية

(E) حل المعادلة

$$h\left(0\right)=1$$
 و $\left(\mathrm{E}\right)$ و $h\left(0\right)=1$

و
$$h'(0)=-2$$
 و $h'(0)=-2$ و $h'(0)=-2$

<u> حل النمرين 2 :</u>

<u>-1 حل المعادلة</u>

$$y^{''}+\left(\sqrt{2}\right)^2y=0$$
 : المعادلة (E) تكتب على الشكل التالي

إذن حلول العادلة (E) هي الدوال المعرفة على (E) بما يلي :

$$eta\in\mathbb{R}$$
 و $lpha\in\mathbb{R}$ و $lpha\in\mathbb{R}$ و $lpha\cos\sqrt{2}\,x+\beta\sin\sqrt{2}\,x$

<u>:</u> f تحديد الدالة

$$(E)$$
 حل للمعادلة h : لدينا

$$\mathbb{R}$$
 من β و β من

$$\forall x \in \mathbb{R}$$
 $h(x) = \alpha \cos \sqrt{2} x + \beta \sin \sqrt{2} x$:

$$\forall x \in \mathbb{R}$$
 $h'(x) = -\alpha \sqrt{2} \sin \sqrt{2} x + \beta \sqrt{2} \cos \sqrt{2} x$: ومنه

$$h^{'}(0){=}{-}2$$
 وبما أن $1:h(0){=}1$

$$\begin{cases} \alpha \cos 0 + \beta \sin 0 = 1 \\ -\alpha \sqrt{2} \sin 0 + \beta \sqrt{2} \cos 0 = -2 \end{cases}$$
 : فإن

$$\begin{cases} \alpha = 1 \\ \beta = -\sqrt{2} \end{cases} : \beta$$

إذن : h هي الدالة المعرفة على \mathbb{R} بما يلي :

$$h: x \rightarrow \cos\sqrt{2}x - \sqrt{2}\sin\sqrt{2}x$$

: 3 **w**

$$(E): y'' - 4y = 4e^{2x}:$$
 نعتبر المعادلة التفاضلية

$$y''-4y=0$$
 اعط جميع حلول المعادلة

(E) حل المعرفة بما يلي
$$f(x) = x e^{2x}$$
 حل المعرفة بما يلي -2

$$(E)$$
 استنتج جميع حلول المعادلة

<u> حل النمرين 3 :</u>

<u>: y''-4 y=0 حلول المعادلة</u>

$$y''-2^2y=0$$
 المعادلة $y''-4y=0$ تكتب على الشكل

$$x \to \alpha e^{2x} + \beta e^{-2x}$$
 : ين حلول هذه المعادلة هي الدوال المعرفة على $\mathbb R$ بما يلي

 $\beta \in \mathbb{R}$ و $\alpha \in \mathbb{R}$: حيث

2- اثبات النتيجة المطلوبة:

 \mathbb{R} اليكن x عنصرا من

$$f(x)=xe^{2x}$$
 : لدينا

$$f'(x) = e^{2x} + 2xe^{2x}$$
 : each of the end of the e

$$f''(x)=2e^{2x}+2e^{2x}+4xe^{2x}$$
 : each

$$f''(x) = 4e^{2x} + 4xe^{2x}$$
 : $\frac{1}{2}$

$$f''(x) = 4e^{2x} + 4f(x)$$
 : إذن

$$f''(x) - 4 f(x) = 4 e^{2x}$$
 : $\frac{1}{2}$

(E) عني أن f حل للمعادلة

<u>3- الاستنتاج:</u>

(E) * ليكن y حلا للمعادلة

$$y'' - 4y = 4e^{2x}$$
: لدينا

$$f''(x)=-4$$
 ولدينا من جهة أخرى : $f''(x)=-4$ ولدينا من جهة أخرى

مَارِينَ وَحَلُولُ فِي الْمُعَادِلَاتُ النَّفَاضِلِيةِ - سَلْسُلَّهُ 1 -

$$(y''-4y)-(f''(x)-4f(x))=0$$
 : ومنه

$$(y''-f''(x))-4(y-f(x))=0$$
 : أي

$$y''-4y=0$$
 ليكن: $y-f$ حل للمعادلة التفاضلية

v''-4 والنفاضلية y-f حلا للمعادلة التفاضلية y-f

$$y'' - f''(x) - 4(y - f(x)) = 0$$
 : لدينا

$$y''-4y=f''(x)-4f(x)$$
 : أي

$$y'' - 4y = 4e^{2x}$$
 : أي

 $y^{''}-4$ y=0 اذا وفقط إذا كان y-f علا للمعادلة التفاضلية y=0 إذا وفقط إذا كان ويالتالي فإنه يكون y

$$y - f(x) = \alpha e^{2x} + \beta e^{-2x}$$
 : أي

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

$$y = f(x) + \alpha e^{2x} + \beta e^{-2x}$$
 : وهذا يعني أن

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

أي أن جميع حلول المعادلة (E) هي الدوال المعرفة على $\mathbb R$ بمل يلي :

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$ و $x \to x e^{2x} + \alpha e^{2x} + \beta e^{-2x}$

<u>: 4 ယ၂နှံ</u>

$$(1): y'' = 4y: 1$$
 نعتبر المعادلة التفاضلية:

- 1- حل المعادلة التفاضلية. (1)
- (2): $y'' 4y = x^2 + 2x$: نعتبر المعادلة التفاضلية : -2

.(2) حل المعادلة التفاضلية
$$g(x) = -\frac{1}{4} \left(x^2 + 2x + \frac{1}{2} \right)$$
 حل المعادلة التفاضلية (2).

بين أن f حل للمعادلة التفاضلية (2) إذا وفقط إذا كانت (f-g) حلا للمعادلة التفاضلية (1) ثم استنتج حلول المعادلة التفاضلية (2).

خل النمرين 4:

1- حل المعادلة التفاضلية (1) :

$$y''-2^2y=0$$
 المعادلة (1) تكتب على الشكل

$$x \rightarrow \alpha e^{2x} + \beta e^{-2x}$$
 : إذن حلول المعادلة (1) هي الدوال المعرفة على $\mathbb R$ بما يلي

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

<u>: (2) حل للمعادلة (2 على الدالة (2 على 1</u>

$$\forall x \in \mathbb{R}$$
 $g(x) = -\frac{1}{4}\left(x^2 + 2x + \frac{1}{2}\right)$: لدينا

$$\forall x \in \mathbb{R} \qquad g'(x) = -\frac{1}{4}(2x+2) \qquad g'(x) = -\frac{1}{4}(2x+2)$$

$$\forall x \in \mathbb{R} \qquad g''(x) = -\frac{1}{2} \qquad \qquad \mathbf{g}$$

$$\forall x \in \mathbb{R}$$
 $g''(x) - 4g(x) = -\frac{1}{2} - 4\left(-\frac{1}{4}\left(x^2 + 2x + \frac{1}{2}\right)\right)$: ومنه

$$\forall x \in \mathbb{R}$$
 $g''(x) - 4g(x) = x^2 + 2x$: أي

إذن: و حل للمعادلة التفاضلية (2).

أ) اثبات التكافؤ المطلوب:

: (2) ليكن f حلا للمعادلة التفاضلية f

$$f''(x)-4f(x)=x^2+2x$$
 : لدينا

$$\forall x \in \mathbb{R}$$
 : حيث

$$g''(x)-4g(x)=x^2+2x$$
 : وبما أن

$$f''(x)-g''(x)-4(f(x)-g(x))=0$$
 : فإن

$$(f''(x)-g''(x))-4(f(x)-g(x))=0$$
 : أي

$$(1)$$
 حل للمعادلة التفاضلية $f-g$

: (1) حلا للمعادلة التفاضلية f-g * ليكن

$$(f^{''}(x)-g^{''}(x))-4(f(x)-g(x))=0$$
 : لدينا

$$f''(x)-4f(x)=g''(x)-4g(x)$$
 : $\partial_{x} f''(x)=\partial_{x} f''(x)$

$$g''(x) - 4g(x) = x^2 + 2x$$
: equal it

$$f''(x) - 4 f(x) x^2 + 2 x$$
: فإن

(2) حل للمعادلة
$$f$$
: إذن

وبالتالي فإن f = f حلا للمعادلة التفاضلية (2) إذا وفقط إذا كان f = g حلا للمعادلة التفاضلية (1).

الإستنتاج:

$$(2)$$
 حلا للمعادلة f

$$(1)$$
 حل للمعادلة $f-g$: لدينا

عَارِينَ وَحَلُولُ فِي الْمُعَادِلَاتُ النَّفَاضِلِيةِ - سَلْسُلَّةُ 1 -

: هي من بين الدوال المعرفة على \mathbb{R} بما يلي أي أن f-g

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$ و $\alpha \in \mathbb{R}$ و $f(x) - g(x) = \alpha e^{2x} + \beta e^{-2x}$

وهذا يعني أن حلول المعادلة (2) هي الدوال المعرفة على ١ بما يلي :

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$ و $\alpha \in \mathbb{R}$ و $\alpha \in \mathbb{R}$ و $\alpha \in \mathbb{R}$ و $\alpha \in \mathbb{R}$

: 5 **cupš**

$$(E): y'' - y = 1 - x - x^2$$
 : نعتبر المعادلة التفاضلية

: المعرفة بx المعرفة ب f_0 المعرفة بالمعرفة بالمعرفة

علما أن الدالة g تكون حلا للمعادلة (E) علما أن الدالة $y^{''}-y=0$ تكون حلا للمعادلة -2

$$y''-y=0$$
 خلا للمعادلة $g-f_0$ حلا للمعادلة (E)

حل النمرين 5 :

<u>: c و b و a عداد</u> 1

$$\Leftrightarrow \forall x \in \mathbb{R}$$
 $2a - (ax^2 + bx + c) = 1 - x - x^2$

$$\Leftrightarrow$$
 $a=-1$ $b=-1$ $a=-c=1$

$$\Leftrightarrow$$
 $a=1$ $b=1$ $c=1$

 $c\!=\!1$ و $b\!=\!1$ و $a\!=\!1$ و نكون الدالة f_0 علا للمعادلة f_0 إذا وفقط إذا كانت

y'' - y = 0 حل المعادلة التفاضلية -2

$$x
ightarrow lpha \, \mathrm{e}^x + eta \, \mathrm{e}^{-x}$$
 : حلول المعادلة التفاضلية $y^{''} - y = 0$ هي الدوال المعرفة على

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

استنتاج حلول (E):

$$(E)$$
 ليكن g حلا للمعادلة

$$y''-y=0$$
 حل للمعادلة التفاضلية $g-f_0$: لدينا

$$(g-f_0)(x)=\alpha e^x+\beta e^{-x}$$
 : اي أنه لكل x من $\mathbb R$ من

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$ = حيث

$$x \to f_0(x) + \alpha e^x + \beta e^{-x}$$
 : ين حلول المعادلة التفاضلية (E) هي الدوال المعرفة على

$$x \to x^2 + x + 1 + \alpha e^x + \beta e^{-x}$$
 : أي

$$eta$$
 و $lpha$

: 6 **w**

$$f(x)=x(x-1)^2\mathrm{e}^{2x}$$
 : نعتبر المعادلة العددية f لمتغير حقيقي حيث

(e):
$$y'' - 4y = 0$$
: أ) حل المعادلة التفاضلية -1

$$(E)$$
 تحقق من أن الدالة f حل للمعادلة التفاضلية

$$y'' - 4y = 2x(6x-5)e^{2x}$$

تَمَارِينَ وَحَلُولُ فِي الْمُعَادِلَاتُ النَّفَاضِلِيةَ - سَلْسُلَّةُ 1 -

(e) حل للمعادلة
$$y-f$$
 يكافىء و حل للمعادلة (E) بين أن y حل للمعادلة

د) استنتج حلول المعادلة (E)

$$\lim_{x \to -\infty} x^3 e^{2x} = 0$$
 بين أن (-2

$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to -\infty} f(x)$ المسب (ب

$$\mathbb{R}$$
 من أجل كل x من أجل أدرس إشارة $f'(x)$ من أجل أ

$$f$$
 اعط جدول تغيرات الدالة

$$\left(\mathrm{O}\,,\dot{\mathrm{i}}\,,\dot{\mathrm{j}}
ight)$$
 المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد ممنظم الدالة f

$$(C)$$
 أدرس الفروع اللانهائية للمنحنى

$$\mathbf{O}$$
 في \mathbf{O} أدرس تقعر المنحنى \mathbf{C} واعط معادلة لمماس المنحنى

حل النمرين 6:

<u>: (e) حل المعادلة (1</u>

$$y''-2^2y=0$$
 المعادلة (e) تكتب على الشكل

$$x \to \alpha e^{2x} + \beta e^{-2x}$$
 : ين حلول المعادلة (e) هي الدوال المعرفة على إذن حلول المعادلة

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

<u>: (E) حل للمعادلة f</u>

$$\mathbb{R}$$
 اليكن x عنصرا من

$$f(x)=x(x-1)^2e^{2x}=(x^3-2x^2+x)e^{2x}$$
 : لدينا

$$f'(x) = (3x^2 - 4x + 1)e^{2x} + 2(x^3 - 2x^2 + x)e^{2x}$$
$$= (2x^3 - x^2 - 2x + 1)e^{2x}$$

$$f''(x) = (6x^2 - 2x - 2)e^{2x} + 2(2x^3 - x^2 - 2x + 1)e^{2x}$$
$$= (4x^3 + 4x^2 - 6x)e^{2x}$$

$$f''(x)-4f(x)=(4x^3+4x^2-6x)e^{2x}-4(x^3-2x^2+x)e^{2x}$$
 : ومنه $f''(x)-4f(x)=2x(6x-5)e^{2x}$: أي $f''(x)-4f(x)=2x(6x-5)e^{2x}$: إذن f حل للمعادلة التفاضلية (E)

ج) اثبات التكافئ المطلوب:

(E) لا المعادلة التفاضلية
$$y''-4$$
 $y=2$ x $(6x-5)$ e^{2x} : لدينا (E) لا المعادلة (E) على المعادلة (E) على المعادلة (E) غلي (E) على المعادلة (E) غلي (E) على المعادلة (E) على المعادلة (E) على المعادلة التفاضلية (E)

(e) ليكن
$$y-f$$
 حلا للمعادلة التفاضلية $y-f$

$$(y''-f''(x))-4(y-f(x))=0$$
 : لدينا

$$y'' - f''(x) - 4y + 4f(x) = 0$$
 : 0

$$y'' - 4y = f'' - 4f(x)$$
:

$$f''-4 f(x)=2x(6x-5)e^{2x}$$
: وبما أن

$$y''-4y=2x(6x-5)e^{2x}$$
: فإن

$$(E)$$
 حل للمعادلة التفاضلية y

د) استنتاج حلول المعادلة (E)

$$(E)$$
 ليكن V حلا للمعادلة

(e) حل للمعادلة
$$y-f$$
: لينا

$$y-f(x)=\alpha e^{2x}+\beta e^{-2x}$$
 : أي

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

$$y = f(x) + \alpha e^{2x} + \beta e^{-2x}$$
 : ومنه

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

$$y = x(x-1)^2 e^{2x} + \alpha e^{2x} + \beta e^{-2x}$$
 : أي

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حيث

إذن حلول المعادلة
$$(E)$$
 هي الدوال المعرفة على (E) بما يلي :

$$\beta \in \mathbb{R}$$
 و $\alpha \in \mathbb{R}$: حیث $x \to x(x-1)^2 e^{2x} + \alpha e^{2x} + \beta e^{-2x}$

2- أ) اثبات المتساوية:

$$\mathbb{R}$$
* عنصرا من x

$$x^{3}e^{2x} = -e^{\ln(-x^{3}e^{2x})}$$
 : الدينا
$$= -e^{\ln(-x)^{3}+2x}$$
$$= -e^{3\ln(-x)+2x}$$
$$= e^{x\left[-3\frac{\ln(-x)}{-x}+2\right]}$$

$$\lim_{x\to -\infty} \frac{\ln(-x)}{-x} = 0$$
: بما أن

$$\lim_{x \to -\infty} x \left[-3 \frac{\ln(-x)}{-x} + 2 \right] = -\infty :$$
فإن

$$\lim_{x\to-\infty}x^3e^{2x}=0$$
 إذن :

ب) حساب النهايتين المطلوبتين:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^3 - 2x^2 + x) e^{2x} :$$

$$= \lim_{x \to -\infty} (x^3 e^{2x} - 2x^2 e^{2x} + x e^{2x})$$

$$= 0$$

$$\lim_{x \to -\infty} 2x^2 e^{2x} = \lim_{x \to -\infty} 2(x e^x)^2 = 0$$
 و
$$\lim_{x \to -\infty} x^3 e^{2x} = 0$$
 لأن:

$$\lim_{x \to -\infty} x e^{2x} = \lim_{x \to -\infty} \frac{1}{2} 2 x e^{2x} = 0$$
 و

مَارِينُ وَحَلُولُ فِي المُعادِرَاتُ النَّفَاضِلِيةِ - سَلْسُلَّهُ 1 -

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x(x-1)^2 e^{2x} :$$

$$= +\infty$$

$$\lim_{x \to +\infty} e^{2x} = +\infty$$
 و $\lim_{x \to +\infty} x(x-1)^2 = +\infty$: $\forall x \in \mathbb{R}$

f'(x) دراسة إشارة (f'(x)

$$\mathbb{R}$$
 الدالة f قابلة للاشتقاق على

$$\mathbb{R}$$
 اليكن x عنصرا من

$$f'(x) = (x-1)^2 e^{2x} + 2x(x-1) e^{2x} + 2x(x-1)^2 e^{2x} :$$

$$= (x-1)e^{2x}[(x-1)+2x+2x(x-1)]$$

$$= 2(x-1)(x+1)\left(x-\frac{1}{2}\right)e^{2x}$$

x	$-\infty$ $+\infty$	-1		$\frac{1}{2}$		1	
$\overline{x-1}$	-		-		-	\(\)	+
$\overline{x+1}$	-	0	+		+		+
$x-\frac{1}{2}$	-		-		+		+
f'(x)	-	0	+	O O	-		+

ب) جدول تغيرات الدالة <u>f</u>

$$F(-1) = -\frac{4}{e^2}$$

$$f\left(\frac{1}{2}\right) = \frac{e}{8}$$

$$f(1)=0$$

4- أ) الفروع اللانهائية:

$$\lim_{x\to-\infty} f(x)=0$$
 : لدينا *

(C) إذن محور الأفاصيل هو مستقيم مقارب للمنحنى

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$
 و $\lim_{x \to +\infty} f(x) = +\infty$: لدينا *

إذن (C) يقبل فرعا شلجميا اتجاهه محور الأراتيب.

ب) دراسة تقعر المنحنى (C):

 \mathbb{R} ایکن x عنصرا من

$$f''(x) = (4x^3 + 4x^2 - 6x)e^{2x}$$

$$= 2x(2x^2 + 2x - 3)e^{2x}$$

$$= 4x\left(x + \frac{1 + \sqrt{7}}{2}\right)\left(x + \frac{1 - \sqrt{7}}{2}\right)e^{2x}$$

$$\left[\frac{-1-\sqrt{7}}{2},0\right]$$
 إذن $\left(\frac{1}{2},0\right]$ محدب في المجال $\left(\frac{1}{2},+\infty\right]$ محدب أي المجال $\left(\frac{1}{2},0\right)$

$$\left[-\infty, \frac{-1-\sqrt{7}}{2}\right]$$
و (C) غير محدب في المجال $\left[0, \frac{-1+\sqrt{7}}{2}\right]$

معادلة المماس في النقطة 0:

معادلة المماس عند النقطة О هي:

$$y-f(0)=f'(0)(x-0)$$

$$f^{'}(0){=}1$$
 و بما أن $f^{'}(0){=}0$ و بما أن

$$y=x$$
 : فإن معادلة المماس هي

ب) رسم المنحنى (C):

TAVJIHPRO

: 1 ယ်ပန်

(
$$\dot{y}' - 6\dot{y}' + 8\dot{y} = 0$$
: حل المعادلة التفاضلية : -1 حل المعادلة التفاضلية : -2 حل المعادلة التفاضلية : -1

(ن 1,5)
$$y'(0)=3$$
 و $y(0)=1$: حدد الدالة التي تحقق $y(0)=1$

حل النمرين 1:

حلول هذه المعادلة هي الدوال:

$$y: x \rightarrow a e^{4x} + b^2 x$$

 $(a,b)\in\mathbb{R}$: حيث

<u>. y'(0)=3 و y(0)=1 حديد الحل الذي يحقق 2</u>

$$\begin{cases} a+b=1\\ 4a+2b=3 \end{cases} \Leftrightarrow \begin{cases} y(0)=1\\ y'(0)=3 \end{cases}$$
: Let

$$\Leftrightarrow a = \frac{1}{2} \qquad b = \frac{1}{2}$$

$$y'(0)$$
=3 و $y(0)$ =1 و يحقق $y(0)$

$$x \to \frac{1}{2} e^{4x} + \frac{1}{2} e^{2x}$$

: 2 **w**

$$4y'' + 4y' + y = e^{-x}$$
 : نعتبر المعادلة التفاضلية

$$g(x) = e^{-x}$$
: لتكن g الدالة العددية المعرفة على \mathbb{R} بما يلى والدالة العددية المعرفة على

$$(ن)$$
 . (E) حل للمعادلة g الدالة g

$$(\dot{0})$$
 . (E) استنتج حلول المعادلة التفاضلية

حل النمرين 2:

<u>: (E) حل للمعادلة (g) 1</u>

$$4g^{''}(x)+4g^{'}(x)+g(x)=e^{-x}$$
 : \mathbb{R} من x من أنه لكل من أنه لكل عن الم

<u>-2 حلول المعادلة التفاضلية</u>

$$4y'' + 4y' + y = e^{-x}$$
 : نعتبر المعادلة التفاضلية

$$4r^2+4r+1=0$$
 : هي المعادلة الميزة لهذه المعادلة الميزة المعادلة الميزة المعادلة ا

$$r=-rac{1}{2}$$
 : وهذه المعادلة تقبل حلا وحيدا هو

و بالتالي فإن حلول المعادلة التفاضلية
$$y'' + 4y' + y = e^{-x}$$
 هي الدوال :

و معدان حقیقیان
$$x \rightarrow (ax+b)e^{-\frac{1}{2}x}$$

$$(E)$$
 وبما أن الدالة g هي حل خاص للمعادلة

$$(a,b)\in\mathbb{R}^2$$
 : حيث $x o (ax+b)\mathrm{e}^{-rac{1}{2}x} + e^{-x}$: فإن حلول المعادلة

: 3 ing

(
$$\dot{y}'' + 2y' - 3y = 0$$
 : $\dot{y}'' + 2y' - 3y = 0$

(1) .
$$y'' + 2y' - 3y = -3e^{-2x}$$
 : azir lizable lizable i zir.

(1) حل للمعادلة
$$u(x)=e^x+e^{-2x}$$
 : بحيث $u(x)=e^x+e^{-2x}$ حل للمعادلة (1)

$$(0,5)$$
 حدد الحل العام للمعادلة (1). $(5,0)$

حل النمرين 3:

$$y'' + 2y' - 3y = 0$$
 حل المعادلة التفاضلية -1

$$r_2 = -3$$
 و $r_1 = 1$: لها حلان هما $r^2 + 2r - 3$ و المعادلة المميزة

إذن حلول المعادلة التفاضلية المقترحة هي الدوال:

حيث
$$a$$
 عددان حقيقيان $x \rightarrow a e^{-3x} + b e^{x}$

(1) حل للمعادلة U الدالة U التحقق من أن الدالة U

 $: \mathbb{R}$ من x عن نه لکل تحقق من أنه لکل

$$u''(x)+2u'(x)-3u(x)=-3e^{-2x}$$

ب) تحديد الحل العام للمعادلة (1) :

حلول المعادلة (1) هي الدوال:

$$x \rightarrow a e^{-3x} + b e^{x} + e^{x} + e^{-2x}$$

 $x \to a e^{-3x} + e^{-2x} + c e^{x}$ أي الدوال

 $(a,c)\in\mathbb{R}$ حيث

: 4 ယုံနှင့်

(
$$\dot{y}'' - 5y' + 6y = 0$$
 : $\dot{y}'' - 5y' + 6y = 0$

$$(E): y'' - 5y' + 6y = e^{2x}$$
 نعتبر المعادلة التفاضلية -2

(ن 1) . (E) حل للمعادلة
$$y = -x e^{2x}$$
 بين أن

(ن 1) .
$$y'(0)=0$$
 و $y(0)=2$: الذي يحقق (E) الذي يحقق المعادلة (E) أوجد حل المعادلة

حل النمرين 4:

$$y'' - 5y' + 6y = 0$$
 حل المعادلة التفاضلية

حلول هذه المعادلة التفاضلية هي الدوال:

$$x \rightarrow a e^{2x} + b e^{3x}$$

$$(a,b)\in\mathbb{R}^2$$
 : حيث

$\underline{:} (E)$ هي حل للمعادلة $g: x \rightarrow -x e^{2x}$ النبين أن الدالة $g: x \rightarrow -x e^{2x}$

$$g''(x)-5g'(x)+6g(x)=e^{2x}$$

$$y'(0)=0$$
 و $y(0)=2$ الذي يحقق $y(0)=2$ الذي يحقق $y'(0)=0$

حلول المعادلة التفاضلية (E) هي الدوال:

$$y: x \to a e^{2x} + b e^{3x} - x e^{2x}$$

$$(a,b)\in\mathbb{R}^2$$
 : حيث $y:x\rightarrow (a-x)e^{2x}+be^{3x}$: أي الدوال

عَارِينَ وَحَلُولُ فِي الْمُعَادِلَاتُ النَّفَاضِلِيةَ - سَلْسُلَّهُ 2 -

$$\begin{cases} y(0)=2\\ y'(0)=0 \end{cases} \Leftrightarrow \begin{cases} a+b=2\\ -1+2a+3b=0 \end{cases}$$
: element of the ele

$$(y'(x) = -e^{2x} + 2(a-x)e^{2x} + 3be^{3x})$$

$$\Leftrightarrow a = 5 \qquad b = -3$$

ية :
$$y'(0)=0$$
 و $y(0)=2$ هو الدالة $x \to (5-x) e^{2x} - 3 e^{3x}$

: 5 **ὑμϭ**

$$(E): y'' - 4y' + 3y = 9x^2 - 24x:$$
نعتبر المعادلة التفاضلية التالية

المعادلة الحدودية g المعرفة على $\mathbb R$ بما يلي :

$$g(x)=ax^2+bx+c$$

حيث a و b و b أعداد حقيقية.

(
$$\dot{0}$$
 1) . (E'): $y'' - 4y' + 3y = 0$: a little little

$$(0,5)$$
 . (E) استنتج حلول المعادلة التفاضلية

<u> حل النمرين 5 :</u>

<u>: د تحدید a و a و 1</u>

 \mathbb{R} من \mathbb{R} عكل للمعادلة (E) إذا وفقط إذا كان لكل g من

$$g''(x)-4g'(x)+3g(x)=9x^2-24x$$

$$3ax^2 + (3b-8a)x + 2a-4b+3c=9x^2-24x$$
 : 0

$$\begin{cases} 3a=9 \\ 3b-8a=-24 \\ 2a-4b+3c=0 \end{cases}$$

$$c=-2$$
 و $b=0$ و $a=3$:

$$\mathbb{R}$$
 من $g(x)=3x^2-2$ اذن:

(E') الحل العام للمعادلة التفاضلية -2

بين أن هذا الحل العام هو:

$$y(x) = a e^x + b e^{3x}$$

$$(a,b)\in\mathbb{R}^2$$
 : حيث

<u>: (E) استنتاج حلول المعادلة</u>

حلول المعادلة التفاضلية (E) هي الدوال :

$$y: x \to a e^x + b e^{3x} + 3 x^2 - 2$$

$$(a,b) \in \mathbb{R}^2$$
 : حيث

: 6 <u>wy</u>ś

نعتبر المعادلة التفاضلية (E) بحيث:

(E):
$$y''-3y'+2y=2x^2-12x+3$$

(ن 1) . (E) عدد حدودية من الدرجة الثانية تكون حلا للمعادلة التفاضلية

(ن 1) . (E) حل المعادلة التفاضلية

حل النمرين 6:

1- تحديد حدودية من الدرجة الثانية تكون حلا للمعادلة (E) :

$$g(x)=ax^2+bx+c$$

واتبع نفس الطريقة التي سلكتها في جواب السؤال -1- من التمرين السابق (تمرين 5) وستجد أن :

$$c=-4$$
 $b=-3$ $a=1$

$$g(x)=x^2-3x-4$$
 : إذن

<u>-2 حل المعادلة التفاضلية</u>

حلول المعادلة التفاضلية (E) هي الدوال :

$$x \rightarrow a e^{x} + b e^{2x} + x^{2} - 3x - 4$$

$$(a,b)\in\mathbb{R}^2$$
 : حيث

: 7 ins

نعتبر المعادلة التفاضلية (E) بحيث:

(E):
$$y'' - y' - 2y = -10\cos x$$

$$(\dot{0} 1) \cdot y'' - y' - 2y = 0$$
 all Lasell Lasell Lasell

 $g(x)=3\cos x+\sin x$: الدالة العددية لمتغير حقيقي حيث و الدالة العددية المتغير

($^{\circ}$ ($^{\circ}$). ($^{\circ}$ استنتج حلول المعادلة $^{\circ}$ على المعادلة ($^{\circ}$). ($^{\circ}$ المعادلة ($^{\circ}$).

حل النمرين 7:

بين أن حلول المعادلة التفاضلية y'' - y' - 2y = 0 هي الدوال :

$$x \rightarrow \alpha e^{2x} + \beta e^{-x}$$

 $(\alpha,\beta)\in\mathbb{R}^2$: حيث

(E) هي حل للمعادلة g البين أن g المعادلة * -2

$$\forall x \in \mathbb{R}$$
 $g''(x)-g'(x)-2g(x)=-10\cos x$: تحقق من أن

* استنتاج حلول المعادلة

حلول المعادلة (E) هي الدوال :

$$x \rightarrow \alpha e^{2x} + \beta e^{-x} + 3\cos x + \sin x$$

 $(\alpha,\beta)\in\mathbb{R}^2$: حيث

: 8 ing

1- حدد حلا خاصا للمعادلة (E) . (E)

(ن 1,5) . y'(0) و y(0) و y(0) الذي يحقق (E) الذي يحقق (E) عدد حل المعادلة

حل النمرين 8:

<u>- تحديد حل خاص للمعادلة (E)</u>

(E):
$$y'' + 2y' + y = 2e^{-x}$$
 بما أن الطرف الثاني للمعادلة

$$e^{wx}$$
 الذي هو على الشكل $2e^{-x}$

فإننا سنبحث عن حل خاص من النوع:

$$y_0: x \rightarrow (ax^2 = bx + c)e^{-x}$$

اتبع نفس الخطوات التي سلكناها في الجواب على السؤال -2- من التمرين رقم 2 لتجد أن :

$$\mathbb{R}$$
من $y_0(x) = x^2 e^{-x}$

y'(0)=1 و y(0)=1 عديد الحل y بحيث y(0)=1

* بين أو Y أن حلول المعادلة Y هي الدوال :

$$x \rightarrow (\alpha x + \beta)e^{-x} + x^2e^{-x}$$

$$(\alpha,\beta)\in\mathbb{R}^2$$
 : حيث

 \mathbb{R} بين أن الحل y الذي يحقق y(0)=1 و y(0)=1 هو الدالة y المعرفة على * $y(x)=(2\,x+1)\,\mathrm{e}^{-x}+x^2\,\mathrm{e}^{-x}$

: 9 **ເ**

 $\mathbf{n} \in \mathbb{N}^*$ نعتبر المعادلة التفاضلية : $y'' + n^2 y = n(n-1)\sin^{n-2}(x)$ عيث نعتبر المعادلة التفاضلية

(ن 1) . $y'' + n^2 y = 0$ حدد بدلالة n حلول المعادلة التفاضلية -1

تَمَارِينَ وَحَلُولُ فِي الْمُعَادِلَاتُ النَّفَاضِلِيةَ - سَلْسُلَّهُ 2 -

(ن 1).(1) حل للمعادلة
$$u(x)=\sin^n(x)$$
 حيث $u(x)=\sin^n(x)$ حل المعادلة (1 ن -2

(ن 1,5) .
$$y'(0) = -n$$
 و $y(0) = 1$: بحيث (1) بحيث $y(0) = -n$ و حدد الحل $y(0) = -n$

حل النمرين 8:

$$r^2+n^2=0$$
 : المعادلة المعا

$$r_2 = -in$$
 و $r_1 = in$: وحلا هذه المعادلة هما

إذن حلول المعادلة التفاضلية
$$y''+n^2y=0$$
 هي الدوال :

$$x \rightarrow a \cos(nx) = b \sin(nx)$$

$$(a,b) \in \mathbb{R}^2$$
 : حيث

$\underline{\cdot}$ (1) حل للمعادلة $\underline{U}: x \rightarrow \sin^n(x)$ حل المعادلة (1)

 \mathbb{R} من x لدينا لكل

$$U'(x) = n \cos x \sin^{n-1}(x)$$

$$U''(x) = n(-\sin .\sin^{n-1}(x) + \cos x. (n-1)\cos x (n-1)\cos x \sin^{n-2}(x))$$

$$= n(-\sin^{n}(x) + (n-1)\cos^{2} x \sin^{n-2}(x))$$

$$= n(-\sin^{n}(x) + (n-1)(1-\sin^{2} x)\sin^{n-2}(x))$$

$$= n(-\sin^{n}(x) + (n-1)\sin^{n-2}(x) - (n-1)\sin^{x}(x))$$

$$= n(-n\sin^{n}(x) + (n-1)\sin^{(n-2)}(x))$$

 \mathbb{R} من \mathbb{R} لدينا

$$U''(x)+n^{2}U(x)=n(-\sin^{n}(x)+(n-1)\sin^{n-2}(x))+n^{2}\sin^{n}(x)$$

$$=-n^{2}\sin^{n}(x)+n(n-1)\sin^{n-2}(x)+n^{2}\sin^{n}(x)$$

$$=n(n-1)\sin^{n-2}(x)$$

(1) هي بالفعل حل للمعادلة U

$$y'(0) = -n$$
 و $y(0) = 1$ و الذي يحقق $y(0) = -n$ و يحديد الحل $y(0) = -n$

من نتيجتي السؤالين -1- و -2-أ نستنتج أن حلول المعادلة (1) هي الدوال y المعرفة على y بما يلي : $y(x) = a\cos x (nx) + b\sin (nx) + \sin^n (x)$

 $(a,b)\in\mathbb{R}^2$: حيث

$$y^{'}(0)$$
=- n و $y(0)$ =1

$$a\cos 0 + b\sin 0 = \sin^n(0) = 1$$
: فإن

 $-na\sin 0 + nb\cos 0 + n\cos\sin^{n-1} 0 = -n$

$$nb = -n$$
 و $a = 1$

$$b=-1$$
 و $a=1$:

يان حل المعادلة
$$y'(0)=-n$$
 و $y(0)=1$ هو الدالة : $x \to \cos(nx) - \sin(nx) + \sin^n(x)$