Álgebra Linear - Lista de Exercícios 7

Iara Cristina Mescua Castro

28 de novembro de 2021

1. Se AB=0, as colunas de B estão em qual espaço fundamental de A? E as linhas de A estão em qual espaço fundamental de B? É possível que A e B sejam 3×3 e com posto 2?

Resolução:

Já que AB = 0, então:

$$\begin{bmatrix} L_1 & \cdots & \cdots \\ L_2 & \cdots & \cdots \\ \vdots & \vdots & \vdots \\ L_n & \cdots & \cdots \end{bmatrix} \begin{bmatrix} C_1 & C_2 & \cdots & C_p \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} L_1C_1 & L_1C_2 & \cdots & L_1C_p \\ L_2C_1 & L_2C_2 & \cdots & L_2C_p \\ \vdots & \vdots & \vdots & \vdots \\ L_nC_1 & L_nC_2 & \cdots & L_nC_p \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Com isso, se pegarmos a primeira coluna da matriz resultante: $\begin{bmatrix} L_1C_1\\ L_2C_1\\ \vdots\\ L_nC_1 \end{bmatrix}$

É o mesmo que AC_1 , e é igual a 0. Sendo assim, C_1 faz parte do núcleo de A. Ao analisar todas as colunas, teremos AC_2 , AC_3 , até AC_p e já que todas são iguais a 0, podemos concluir que as colunas de B fazem parte de N(A).

Analogamente, se calcularmos a transposta de AB=0, que é $B^TA^T=0$, e repetindo o mesmo processo, teremos que as colunas de B (que agora são as linhas), vezes as linhas de A (que agora são colunas), são iguais a 0. Então ao ver as colunas da matriz resultante, podemos concluir que as linhas de A fazem parte de $N(B^T)$. Representando essa situação:

$$\begin{bmatrix} C_1 & \cdots & \cdots \\ C_2 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ C_p & \cdots & \cdots \end{bmatrix} \begin{bmatrix} L_1 & L_2 & \cdots & L_n \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} C_1L_1 & C_1P_2 & \cdots & C_1L_n \\ C_2L_1 & C_2P_2 & \cdots & C_2L_n \\ \vdots & \vdots & \vdots & \vdots \\ C_pL_1 & C_pL_2 & \cdots & C_nL_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

2. Se Ax = b e $A^Ty = 0$, temos $y^Tx = 0$ ou $y^Tb = 0$?

Resolução:

Fazendo a transposta da equação Ax = b, teremos:

$$x^T A^T = b^T$$

Multiplicando a equação por y:

$$x^T A^T \cdot y = b^T \cdot y$$

$$x^T(A^Ty) = b^Ty$$

Sabendo que $A^Ty = 0$:

$$0 = b^T i$$

Calculando a transposta da equação, confirmamos que: $y^Tb = 0$

3. O sistema abaixo não tem solução:

$$\begin{cases} x + 2y + 2z = 5 \\ 2x + 2y + 3z = 5 \\ 3x + 4y + 5z = 9 \end{cases}$$

Ache números y_1, y_2, y_3 para multiplicar as equações acima para que elas somem 0 = 1. Em qual espaço fundamental o vetor y pertence? Verifique que $y^Tb = 1$. O caso acima é típico e conhecido como a Alternativa de Fredholm: ou Ax = b ou $A^Ty = 0$ com $y^Tb = 1$.

1

Resolução:

Supondo que $y_1 = 1$, $y_2 = 1$ e $y_3 = -1$, multiplicando as equações acima e depois somando:

$$\begin{cases} x + 2y + 2z = 5(1) \\ 2x + 2y + 3z = 5(1) \\ 3x + 4y + 5z = 9(-1) \end{cases}$$

$$\begin{cases} x + 2y + 2z = 5 \\ 2x + 2y + 3z = 5 \\ -3x - 4y - 5z = -9 \end{cases}$$

$$(x + 2x - 3x) + (2y + 2y - 4y) + (2z + 3z - 5z) = 5 + 5 - 9$$

y = (1, 1, -1) está no espaço nulo a esquerda, $N(A^T)$, pois:

$$A^T \cdot y = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 1 + 3 \cdot (-1) \\ 2 \cdot 1 + 2 \cdot 1 + 4 \cdot (-1) \\ 2 \cdot 1 + 3 \cdot 1 + 5 \cdot (-1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$y^T \cdot b = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \\ -9 \end{bmatrix} = \begin{bmatrix} 1 \cdot 5 + 1 \cdot 5 - 1 \cdot -9 \end{bmatrix} = 1$$

4. Mostre que se $A^TAx = 0$, então Ax = 0. O oposto é obviamente verdade e então temos $N(A^TA) = N(A)$.

Resolução:

Se $A^T A x = 0$, então multiplicando por x^T :

$$x^T A^T \cdot Ax = 0$$

Sabendo que $x^T A^T$ é o mesmo que $(Ax)^T$, então:

$$(Ax)^{T} \cdot (Ax) = 0$$
$$||Ax||^{2} = 0$$
$$Ax = 0$$

5. Seja A uma matriz 3×4 e B uma 4×5 tais que AB = 0. Mostre que $C(B) \subset N(A)$. Além disso, mostre que posto(A) + posto $(B) \leq 4$.

Resolução:

Para provar que $C(B) \subset N(A)$: Seja c_b o conjunto de 5 matrizes 4×1 que são colunas de B, e $c_b \subset C(B)$. A partir de AB = 0, teremos:

Sendo assim, $L_i \cdot c_b = 0 \Rightarrow A \cdot c_b = 0$, sendo L_i as linhas de A e por isso o espaço de colunas de B está contido no espaço nulo de A, ou seja, $C(B) \subset N(A)$. E isso implica que $posto(B) = dim(col(B)) \le dimN(A)$. Pelo teorema do Posto-Nulidade:

$$posto(B) + posto(A) < dim N(A) + posto(A) = n$$

Neste caso, n = 4, então: posto(A) + posto(B) < 4.

- 6. Sejam $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ vetores não-zeros de \mathbb{R}^2 .
 - (a) Quais são as condições sobre esses vetores para que cada um possa ser, respectivamente, base dos espaços $C(A^T)$, N(A), C(A) e $N(A^T)$ para uma dada matriz A que seja 2×2 . Dica: cada espaço fundamental vai ter somente um desses vetores como base.

Resolução

Há ortogonalidade entre a base de C(A) e N(A) e entre $N(A^T)$ e $C(A^T)$. Então: $b \cdot c = 0$ e $a \cdot d = 0$

2

(b) Qual seria uma matriz A possível?

Resolução:

Desde que A seja uma matriz de posto 1, pois as bases são vetores não-zeros, então A pode ser:

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$$

- 7. Ache S^{\perp} para os seguintes conjuntos:
 - (a) $S = \{0\}$
 - (b) $S = span\{[1, 1, 1]\}$
 - (c) $S = span\{[1, 1, 1], [1, 1, -1]\}$
 - (d) $S = \{[1, 5, 1], [2, 2, 2]\}$. Note que S não é um subespaço, mas S^{\perp} é.

Resolução:

(a)
$$S^T = E$$

(b)
$$S^T = span\{(1,0,-1),(0,1,-1)\}$$

Explicação:
 $DimS = 1$
 $DimS^{\perp} = 3 - 1 = 2$
 $(a,b,c) \in S^{\perp} \iff (a,b,c)^{\perp}(1,1,1) = 0$
 $a+b+c=0 \Rightarrow c=-a-b$
 $(a,b,c) = (a,b,-a-b) = a(1,0,-1) + b(0,1,-1)$

(c)
$$S^T = span\{(1, -1, 0)\}$$

Explicação:
 $(a, b, c) \in S^{\perp} \Rightarrow$
 $(a, b, c)^{\perp}(1, 1, 1) = 0$
 $(a, b, c)^{\perp}(1, 1, -1) = 0$
 $a + b + c = 0$
 $a + b - c = 0$
 $a + b = 0$
 $b = -a e c = 0$
 $(a, b, c) = (a, -a, 0) = a(1, -1, 0)$

- (d) S^T está no espaço nulo de $\mathbf{A} = \begin{bmatrix} 1 & 5 & 1 \\ 2 & 2 & 2 \end{bmatrix}$, então é formado por (-1,0,1)
- 8. Seja A uma matriz 4×3 formada pela primeiras 3 colunas da matriz identidade 4×4 . Projeta o vetor b = [1, 2, 3, 4] no espaço coluna de A. Ache a matriz de projeção P.

3

Resolução:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} A^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$(A^{T}A)^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Quando há projeção em C(A): $P = A(A^TA)^{-1}A^T$, então:

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = A \cdot I \cdot A^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Projetando o vetor b:

$$p = Pb = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$$

9. Se $P^2 = P$, mostre que $(I - P)^2 = I - P$. Para a matriz P do exercício anterior, em qual subespaço a matriz I - P projeta?

Resolução:

$$(I-P)^2 = (I-P)(I-P) = I-PI-PI+P^2 = I-P-P+P^2$$
,
Substituindo $P^2 = P$, obtemos:
 $= I-P \cancel{P} \cancel{P} = I-P$

A partir de:

$$(P\vec{x}) \cdot ((I-P)\vec{x})$$

$$(P\vec{x})^T \cdot (I-P)\vec{x} = \vec{x}^T P^T (I-P)\vec{x}$$
Visto que $P^T = P$ pois é simétrica:
$$\vec{x}^T P (I-P)\vec{x}$$

$$\vec{x}^T (P-P^2)\vec{x}$$
Visto que $P^2 = P$:
$$\vec{x}^T (P-P)\vec{x}$$

$$\vec{x}^T (P-P)\vec{x}$$

$$\vec{x}^T 0\vec{x} = 0$$

O produto entre $(P\vec{x})^T$ e $(I-P)\vec{x}$ é 0, então espera-se ortogonalidade entre $P\vec{x}$ e $(I-P)\vec{x}$. $P\vec{x}$ está em C(P), enquanto $(I-P)\vec{x}$ está em $N(P^T)$. Por isso a matriz (I-P) projeta no espaço nulo a esquerda.