

Caractérisation et classification des îlots urbains

Projet GeOpenSim

Contexte

Objectifs

- Créer une BD des tissus urbains
- Extraire des connaissances sur ces tissus
- => Caractériser la morphologie de ces tissus et leur évolution afin de la simuler

Questions:

Quelle connaissance peut-on extraire?

Comment extraire cette connaissance?

=> Problème de fouille de données

Classification et extraction de connaissances

Méthode en 5 étapes

- Etape 1 : Typologie des tissus urbains
- Etape 2 : Construction des îlots urbains
- Etape 3 : Calcul des mesures utiles pour caractériser un îlot
- Etape 4 : Classification des îlots et validation
- Etape 5 : Application sur des BD historiques
- => Règles de caractérisation des îlots
- => Règles sur leurs évolutions

Etape 1 - Typologie en 9 classes thématiques

(4) Habitat mixte

(2) Habitat individuel

(6) Emprise spécialisée

(5) Tissu mixte (activités + habitat)

(3) Habitat collectif

(7) Emprise spécialisée peu batie

+ (8) réseau ferré / routier

+ (9) hydrographie

Etape 2/3 – îlots et mesures

Bâtiment :

Surface, longeur (L), largeur (l) élongation (l/L), convexité ...

• Îlot :

- Nombre de bâtiments
- Surface bâtie
- Densité

Distances entre les bâtiment / entre les bâtiments et la route, ...

Méthode supervisée :

Apprentissage du modèle :

- Modèle de type arbre de décision
- Règles de la forme :

```
« Si densité > 0,05 et plus de 80% de bâtiments tels que aire < 185m² Alors classe_îlot = habitat individuel »
```


Verrous pour la fouille de données:

- Intuitivement :
 - Habitat individuel si beaucoup de petits bâtiments
 - Habitat collectif si beaucoup de grands bâtiments allongés

Questions :

- « petits », « grands » : quelles superficies ?
- Habitat mixte / individuel : à partir de combien de grands bâtiments ? Ou à partir de quelle proportion de grands bâtiments ?

Contributions en fouilles de données relationnelles :

- Contexte relationnel :
 - Association un-à-plusieurs entre un îlot et ses bâtiments
- Nouvelles techniques de propositionalisation :
 - Apprendre à la fois un seuil sur un attribut numérique des bâtiments et sur le nombre de tels bâtiments : cardinalisation
 - Apprendre une proportion : quantiles

Etape 4 – Validation

Quantitative :

- Construction d'un modèle à partir de données d'entraînement
- Test sur d'autres ensembles d'îlots étiquetés

Qualitative :

- Application du modèle à des données non étiquetées et validation visuelle par l'expert
- Production de règles explicites

Etape 4 – Résultats

+ tests sur l'apprentissage

Etape 4 – Résultats

Classification 2002

93 % de classement

Etape 4 – Résultats

Extraction de connaissance : îlot

- Exemple de règle produite :
 - Si densité > 0.045
 et au moins 40% des bâtiments ont des aires <= 200
 et au moins 90% des bâtiments ont des aires <= 300
 et au moins 45% des bâtiments ont des élongations > 0.6901
 - Alors Habitat Individuel (76.0/2.0)

Etape 4 – Résultats

Extraction de connaissance : îlot

Etape 5 – BD historique

Méthodologie :

- Construire un modèle à partir de tous les îlots de 2008 (4 zones)
- Prédire la classe de tous les îlots de toutes les années antérieures
- Taux d'îlots correctement classés :

2002	93%
1989	88%
1976	82%
1966	84%
1956	81%

Conclusions et perspectives

- Méthode générique pour classer et construire une BD des tissus urbains à partir de données vectorielles
- Extraction de connaissances sur les îlots et leur évolution
 - => utilisables pour définir des seuils dans les simulations

MAIS

- À appliquer sur d'autres zones urbaines, d'autres bases de données historiques,
- Nécessité d'ajouter d'autres mesures (relations spatiales, formes végétales, ...)
- Influence de la taille des îlots

ET

Possibilité d'utiliser ces connaissances dans d'autres contextes