Computer Graphics

Vector Tools for Graphics

Time for some math

- We're going to review some of the basic mathematical constructs used in computer graphics
 - Scalars
 - Points
 - Vectors
 - Matrices
 - Other stuff (rays, planes, etc.)
- Why?
 - Most of computer graphics is defined in 3D
 - 2D is only a special case
 - Vector analysis and transformations are crucial to 3D graphics

Scalars

- A <u>scalar</u> is a quantity that does not depend on direction
 - In other words, it's just a regular number
 - *i.e.* 7 is a scalar
 - so is 13.5
 - or -4

Points

- A <u>point</u> is a list of n numbers referring to a location in n-Dimension
- The individual components of a point are often referred to as <u>coordinates</u>
 - -i.e. (2, 3, 4) is a point in 3-D space
 - This point's x-coordinate is 2, it's y-coordinate is
 3, and it's z-coordinate is 4

Vectors

- A <u>vector</u> is a list of *n* numbers referring to a direction and magnitude in n-D
- From a data structures perspective, a vector looks exactly the same as a point
 - -i.e. (2, 3, 4) is a vector in 3-D space
 - Vector does not have a fixed position

Rays

- A <u>ray</u> is just a vector with a starting point
 - Ray = (Point, Vector)
- Let a ray be defined by point p and vector d
- The <u>parametric</u> form of a ray expresses it as a function as some scalar t, giving the set of all points the ray passes through:

$$-r(t) = \mathbf{p} + t\mathbf{d}, 0 \le t \le \infty$$

Vectors

- We said that a vector encodes a direction and a magnitude in n-D
 - How does it do this?
- Here are two ways to denote a vector in 2-D:

$$\overrightarrow{\mathbf{V}} = \langle V_x, V_y \rangle$$

$$\mathbf{V} = \left[egin{array}{c} V_x \ V_y \end{array}
ight]$$

Vector Magnitude

 Geometrically, the magnitude of a vector is the Euclidean distance between its start and end points, or more simply, it's length

• Vector magnitude in n-D:

$$||\mathbf{\overset{ o}{V}}|| = \sqrt{\sum_{i=1}^n V_i^2}$$

• Vector magnitude in 2-D:

$$||\overrightarrow{\mathbf{V}}|| = \sqrt{V_x^2 + V_y^2}$$

Normalized Vectors

- Most of the time, we want to deal with normalized, or unit, vectors
- This means that the magnitude of the vector is 1: $||\mathbf{V}|| = 1$
- We can normalize a vector by dividing the vector by its magnitude:

$$\hat{V} = \frac{\hat{V}}{||\mathbf{V}||}$$

Vector Addition

- Vectors are closed under addition
 - Head to tail
 - Vector + Vector = Vector

Vector Addition

Vector Scaling

- Vectors are closed under multiplication with a scalar
 - Scalar * Vector = Vector

Vector Scaling

$$a\mathbf{V} = \left[\begin{array}{c} aV_x \\ aV_y \end{array} \right]$$

Properties of Vector Addition & Scaling

Addition is Commutative

Addition is Associative

Scaling is Commutative and Associative

Scaling and Addition are Distributive

$$\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$$

$$(\mathbf{P} + \mathbf{Q}) + \mathbf{R} = \mathbf{P} + (\mathbf{Q} + \mathbf{R})$$

$$(ab)\mathbf{P} = a(b\mathbf{P})$$

$$a(\vec{\mathbf{P}} + \vec{\mathbf{Q}}) = a\vec{\mathbf{P}} + a\vec{\mathbf{Q}}$$

$$(a+b)\mathbf{P} = a\mathbf{P} + b\mathbf{P}$$

Points and Vectors

- Can define a vector by 2 points
 - Point Point = Vector
- Can define a new point by a point and a vector
 - Point + Vector = Point

Vector Multiplication?

- What does it mean to multiply two vectors?
 - Not uniquely defined
- Two product operations are commonly used:
 - Dot (scalar, inner) product
 - Result is a scalar
 - Cross (vector, outer) product
 - Result is a new vector

Dot Product Application: Lighting

- \overrightarrow{P} \overrightarrow{Q} = $||\overrightarrow{P}||$ $||\overrightarrow{Q}|| \cos(\alpha)$
- So what does this mean if P and Q are normalized?
 - Can get $cos(\alpha)$ for just 3 multiplies and 2 adds (in 3D)
 - Very useful in lighting and shading calculations
 - Example: Lambert's cosine law

Dot Product

$$\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{Q}} = \sum_{i=1}^{n} P_i Q_i = \begin{bmatrix} P_1 & P_2 & \dots & P_n \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \\ \dots \\ Q_n \end{bmatrix}$$

$$\mathbf{\hat{P}} \cdot \mathbf{\hat{Q}} = ||\mathbf{P}|| \, ||\mathbf{Q}|| \, \cos \alpha$$

$$\alpha = \cos^{-1}\left(\frac{\vec{\mathbf{P}} \cdot \vec{\mathbf{Q}}}{||\mathbf{P}|| ||\mathbf{Q}||}\right)$$

Properties of Vector Dot Products

Commutative

Associative with Scaling

Distributive with Addition

$$\vec{P} \cdot \vec{Q} = \vec{Q} \cdot \vec{P}$$

$$(a\mathbf{P}) \cdot \mathbf{Q} = a(\mathbf{P} \cdot \mathbf{Q})$$

$$\vec{P} \cdot (\vec{Q} + \vec{R}) = \vec{P} \cdot \vec{Q} + \vec{P} \cdot \vec{R}$$

$$\mathbf{P} \cdot \mathbf{P} = ||\mathbf{P}||^2$$

$$|\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{Q}}| \le ||\overrightarrow{\mathbf{P}}|| ||\overrightarrow{\mathbf{Q}}||$$

Cross Product

$$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = \det egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{bmatrix}.$$

$$\vec{a} \times \vec{b} = i \begin{bmatrix} a_2 & a_3 \\ b_2 & b_3 \end{bmatrix} - j \begin{bmatrix} a_1 & a_3 \\ b_1 & b_3 \end{bmatrix} + k \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$$
$$= i(a_2b_3 - a_3b_2) - j(a_1b_3 - a_3b_1) + k(a_1b_2 - a_2b_1)$$

Cross Product Application: Normals

- A <u>normal</u> (or <u>surface normal</u>) is a vector that is perpendicular to a surface at a given point
 - This is often used in lighting calculations
- The cross product of 2 orthogonal vectors on the surface is a vector perpendicular to the surface
 - Can use the cross product to compute the normal

Planes

- How can we define a plane?
 - 3 non-linear points
 - A perpendicular vector and an incident point

• n •
$$(x-x_0) = 0$$

ax + by + cz + d = 0

(why?)

Application: Finding the Normal to a Plane

 Given any 3 non-collinear points P1, P2, and P3 in a plane, we can find a normal to the plane:

• $\mathbf{a} = P2 - P1$, $\mathbf{b} = P3 - P1$, $\mathbf{n} = \mathbf{a} \times \mathbf{b}$. The normal on the other

side of the plane is -**n**.

Convexity of Polygons

- Traversing around a <u>convex</u> polygon from one edge to the next
 - either a left turn or a right turn is taken
 - they all must be the same kind of turn
 - all left or all right
- An edge vector points along the edge of the polygon in the direction of travel.

Convexity of Polygons

- Take the cross product of each edge vector with the next forward edge vector.
- If all the cross products point into (or all point out of) the plane, the polygon is convex; otherwise it is not.

Columns and Rows

 In this class, we will generally assume that a list forms a column vector:

$$(a, b, c, d) \Longrightarrow \left[egin{array}{c} a \\ b \\ c \\ d \end{array} \right]$$

 The reason for this will become clear when we talk about matrices

Matrices

- Reminder: A matrix is a rectangular array of numbers
 - An m x n matrix has m rows and n columns
- M_{ij} denotes the entry in the i-th row and j-th column of matrix M
 - These are generally thought of as 1-indexed
 - instead of 0-indexed
 - ▶ Here, M is a 2x5 matrix:

$$\mathbf{M} = \left[egin{array}{ccccc} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} \ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} \end{array}
ight]$$

Matrix Transposes

- The transpose of an m x n matrix is an n x m matrix
 - Denoted M^T

$$-M^{T}_{ij} = M_{ji}$$

Matrix Addition

- Only well defined if the dimensions of the 2 matrices are the same
 - That is, $m_1 = m_2$ and $n_1 = n_2$
 - Here, M and G are both 2 x 5

$$(\mathbf{M} + \mathbf{G})_{ij} = M_{ij} + G_{ij}$$

$$\mathbf{M} + \mathbf{G} = \begin{bmatrix} M_{11} + G_{11} & M_{12} + G_{12} & M_{13} + G_{13} & M_{14} + G_{14} & M_{15} + G_{15} \\ M_{21} + G_{21} & M_{22} + G_{22} & M_{23} + G_{23} & M_{24} + G_{24} & M_{25} + G_{25} \end{bmatrix}$$

Matrix Scaling

- Just like vector scaling
 - Matrix * Scalar = Matrix

$$(a\mathbf{M})_{ij} = aM_{ij}$$

$$a\mathbf{M} = \begin{bmatrix} aM_{11} & aM_{12} & aM_{13} & aM_{14} & aM_{15} \\ aM_{21} & aM_{22} & aM_{23} & aM_{24} & aM_{25} \end{bmatrix}$$

Properties of Matrix Addition and Scaling

Addition is Commutative

$$F + G = G + F$$

Addition is Associative

$$(\mathbf{F} + \mathbf{G}) + \mathbf{H} = \mathbf{F} + (\mathbf{G} + \mathbf{H})$$

Scaling is Associative

$$a(b\mathbf{F}) = (ab)\mathbf{F}$$

Scaling and Addition are Distributive

$$a(\mathbf{F} + \mathbf{G}) = a\mathbf{F} + a\mathbf{G}$$

$$(a+b)\mathbf{F} = a\mathbf{F} + b\mathbf{F}$$

Matrix Multiplication

- Only well defined if the number of columns of the first matrix and the number of rows of the second matrix are the same
 - Matrix * Matrix = Matrix
 - i.e. if F is m x n, and G is n x p, then F*G is m x p
- Let's do an example

$$(\mathbf{FG})_{ij} = \sum_{k=1}^{m} F_{ik} G_{kj}$$

The Identity Matrix

 Defined such that the product of any matrix M and the identity matrix I is M

$$- IM = MI = M$$

 The identity matrix is a square matrix with ones on the diagonal and zeros elsewhere

$$(\mathbf{I}_n)_{ij} = \left\{ \begin{array}{cc} 0 & i \neq j \\ 1 & i = j \end{array} \right.$$

$$\mathbf{I}_3 = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight)$$

Matrix Point Multiplication

- Given a Transformation matrix, e.g., translation matrix with translation along vector [3, 4, 1, 0]
- Where will the point [1, 2, 2, 1] be after the translation?

Coordinate Systems and Frames

- A vector or point has coordinates in an underlying coordinate system.
- In graphics, we may have multiple coordinate systems
 - with origins located anywhere in space.
- We define a coordinate frame as a single point (the origin, \mathcal{O}) with 3 mutually perpendicular <u>unit</u> vectors: **a**, **b**, and **c**.

Coordinate Frames

- A vector \mathbf{v} is represented by $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_{3,})$ such that $\mathbf{v} = \mathbf{v}_1 \mathbf{a} + \mathbf{v}_2 \mathbf{b} + \mathbf{v}_3 \mathbf{c}$.
- A point P is represented by (p_1, p_2, p_{3}) , P $-\mathcal{C} = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$.

Homogeneous Coordinates

- It is useful to represent both points and vectors by the same set of underlying objects, (a, b, c, C).
- A vector has no position, so we represent it as (a, b, c, C)(v₁, v₂, v₃,0)^T.
- A point has an origin (\mathcal{O}), so we represent it by (\mathbf{a} , \mathbf{b} , \mathbf{c} , \mathcal{O})(\mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , $\mathbf{1}$)^T.

Changing to and from Homogeneous Coordinates

- To: if the object is a vector, add a 0 as the 4th coordinate;
 - if it is a point, add a 1.
- From: simply remove the 4th coordinate.
- OpenGL/WebGL uses 4D homogeneous coordinates for all its vertices.
 - If you send it a 3-tuple in the form (x, y, z), it converts it immediately to (x, y, z, 1).
 - If you send it a 2D point (x, y), it first appends a 0 for the z-component and then a 1, to form (x, y, 0, 1).
- All computations are done within OpenGL/WebGL in 4D homogeneous coordinates.

Combinations

- Why? Easy math
- Linear combinations of vectors and points:
 - The difference of 2 points is a vector: the fourth component is 1 1 = 0
 - The sum of a point and a vector is a point: the fourth component is 1 + 0 = 1
 - The sum of 2 vectors is a vector: 0 + 0 = 0
 - A vector multiplied by a scalar is still a vector: a x 0 =0.
 - Linear combinations of vectors are vectors.

Combinations (2)

- The sum of 2 points: $E=a_1 \cdot P_1 + a_2 \cdot P_2$ is a point only if the points are part of an affine combination, so that $a_1 + a_2 = 1$. The sum is a vector only if $a_1 + a_2 = 0$.
- We require this rule to remedy the problem shown at right:

Combinations (3)

- If we form *any* linear combination of two points, say E = fP + gR, when f + g is different from 1, a problem arises if we translate the origin of the coordinate system.
- Suppose the origin is translated by vector u, so that P is altered to P + u and R is translated to R + u.

- If E is a point, it must be translated to $E' = E + \mathbf{u}$.
- But we have E' = fP + gR + (f + g)u, which is not E + u unless f + g = 1.

Point + Vector

- Suppose we add a point A and a vector that has been scaled by a factor t:
 - The result is a point, P = A + tv.
- Now suppose v = B A, the difference of 2 points, then: P = tB + (1-t)A,
 - P is an affine combination of two points, A and B
 - P is always on the line connecting A and B
 - The position of P on line AB is proportional to t

Linear Interpolation of 2 Points

- P = (1-t)A + tB is a linear interpolation (lerp or tween) of 2 points. This is very useful in graphics in many applications,
 - $-P_x$ (t) provides an x value that is fraction t of the way between A_x and B_x . (Likewise P_v , P_z).

```
float Tween (float A, float B, float t)
{
  return A + (B - A) * t; // return float
}
```


Tweening and Animation

- Tweening takes 2 polylines and interpolates between them (using lerp) to make one turn into another (or vice versa).
- We are finding here the point P(t) that is a fraction t of the way along the straight line (not to be drawn) from point A to point B.
- To start, it is easiest if you use 2 polylines with the same number of lines.

Tweening

- We use polylines A and B, each with n points numbered
 0, 1, ..., n-1.
- We form the points P_i(t) = (1-t)A_i + tB_i, for t = 0.0, 0.1, ...,
 1.0 (or any other set of t in [0, 1]), and draw the polyline for P_i.

Use of Tweening in animation

- In films, artists draw only the key frames of an animation sequence (usually the first and last).
 - Tweening is used to generate the in-between frames.

Tweening demo

Practice Questions

- What is the effect of tweening when all of the points A_i in polyline A are the same? How is polyline B distorted in its appearance in each tween?
- Polyline A is a square with vertices (1, 1), (-1, 1), (-1, -1), (1, -1) and polyline B is a wedge with vertices (4, 3), (5, -2), (4, 0), (3, -2). Sketch the shape P(t) for t=-1, -0.5, 0.5, and 1.5.

Other uses of Interpolation

Gourand Shading

Bilinearly interpolate colors at vertices

down and across scan lines

Practice Question

l₁ color [1, 0, 0, 1) red
 l₂ color (0, 1, 0, 1) green
 l₃ color (1, 0, 1, 1) yellow

 α = 0.8, β = 0.4, ϕ =0.6 What is the color of at point I, circled in red?

Answer: (0.84, 0.16, 0.36, 1)

Other uses of Tweening

- We want a smooth curve that passes through or near 3 points (A, B, and C). We expand $((1-t) + t)^2$ and write: $P(t) = (1-t)^2A + 2t(1-t)B + t^2C$
 - This is called the Bezier curve for points A, B, and C.
 - It can be extended to 4 points by expanding
 ((1-t) + t)³ and using each term as the coefficient of a point.

Shapes as Parametric Curves

- For drawing purposes, parametric forms circumvent all of the difficulties of implicit and explicit forms.
- Cardioid, 2 rose curves, Archimedean spiral

Polar Coordinates Parametric Form

• General form: $x = f(\theta)*\cos(\theta)$ $y = f(\theta)*\sin\theta$

- cardioid: $f(\theta) = K^*(1 + \cos(\theta)), 0 \le \theta \le 2\pi$
- rose: $f(\theta) = K^* \cos(n^*\theta)$, $0 \le \theta \le 2n\pi$, where n is number of petals (n odd) or twice the number of petals (n even)
- spirals: Archimedean, $f(\theta) = K\theta$ Logarithmic, $f(\theta) = Ke^{a\theta}$
- K is a scale factor for the curves.

Polar coordinates Parametric Form

-conic sections (ellipse, hyperbola, circle, parabola): $f(\theta) = (1 \pm e \cos \theta)^{-1}$

• e is eccentricity:

1 : parabola;

0 : circle;

between 0 and 1, ellipse;

greater than 1, hyperbola

Back to Graphics...

- The two fundamental sets of tools that come to our aid in graphics are vector analysis and transformations
- We develop methods to describe various geometric objects, and we learn how to convert geometric ideas to numbers.
- This provides a collection of crucial algorithms that we can use in graphics programs.

Easy Problems for Vectors

- Where is the center of the circle through the 3 points?
- What image shape appears on the viewplane, and where?
- Where does the reflection of the cube appear on the shiny cone, and what is the exact shape of the reflection?

Basics of Points and Vectors

 All points and vectors are defined relative to some coordinate system. Shown below are a 2D coordinate system and a right- and a left-handed 3-D coordinate system.

Standard Unit Vectors

- The standard unit vectors in 3D are i = (1,0,0,0), j = (0, 1, 0, 0), and k = (0, 0, 1, 0). k always points in the positive z direction
- In 2D, $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0, 1)$.
- The unit vectors are orthogonal.

Finding a 2D "Perp" Vector

- If vector $\mathbf{a} = (a_x, a_y)$, then the vector perpendicular to \mathbf{a} in the counterclockwise sense is $\mathbf{a}^{\perp} = (-a_y, a_x)$, and in the clockwise sense it is $-\mathbf{a}^{\perp}$.
- In 3D, any vector in the plane perpendicular to a is a "perp" vector.

Matrix Inversion

- After performing a
 Transformation (Translate,
 Rotate, or Scale), how to
 undo this Transformation?
 - Suppose the transformation matrix is A,
 - Apply the inversion, A⁻¹,
 will undo the
 transformation

$$A A^{-1} = A^{-1}A = I$$

https://ncalculators.com/matrix/inverse-matrix.htm

$$A^{-1}=rac{1}{det(A)}adj(A)$$

$$adj(A) = egin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$a_{11} = -hkn + gln + hjo - flo - gjp + fkp$$
 $a_{12} = dkn - cln - djo + blo + cjp - bkp$
 $a_{13} = -dgn + chn + dfo - bho - cfp + bgp$
 $a_{14} = dgj - chj - dfk + bhk + cfl - bgl$
 $a_{21} = hkm - glm - hio + elo + gip - ekp$
 $a_{22} = -dkm + clm + dio - alo - cip + akp$
 $a_{23} = dgm - chm - deo + aho + cep - agp$
 $a_{24} = -dgi + chi + dek - ahk - cel + agl$
 $a_{31} = -hjm + flm + hin - eln - fip + ejp$
 $a_{32} = djm - blm - din + aln + bip - ajp$
 $a_{33} = -dfm + bhm + den - ahn - bep + afp$
 $a_{34} = dfi - bhi - dej + ahj + bel - afl$
 $a_{41} = gjm - fkm - gin + ekn + fio - ejo$
 $a_{42} = -cjm + bkm + cin - akn - bio + ajo$
 $a_{43} = cfm - bgm - cen + agn + beo - afo$
 $a_{44} = -cfi + bgi + cej - agj - bek + afk$

Orthogonal Projections and Distance from a Line

 We are given 2 points A and C and a vector v. The following questions arise:

b).

- How far is C from the line L that passes through A in direction $\overrightarrow{\mathbf{v}}$?
- If we drop a perpendicular onto L from C, where does it hit L?
- How do we decompose a vector $\vec{c} = C A$ into a part along L and a part perpendicular to L?

a).

C
C
A
V
L

 v^{\perp} c K v

Answering the Questions

- We may write $\mathbf{c} = \mathbf{K}\mathbf{v} + \mathbf{M}\mathbf{v}^{\perp}$.
- If we take the dot product of each side with v,
 - we obtain $\mathbf{c} \cdot \mathbf{v} = K\mathbf{v} \cdot \mathbf{v} + M\mathbf{v}^{\perp} \cdot \mathbf{v} = K|\mathbf{v}|^2$,
 - or $K = \mathbf{c} \cdot \mathbf{v} / |\mathbf{v}|^2 = \mathbf{c} \cdot \hat{v} \cdot \hat{v}$. (\hat{v} is the unit vector)
- Likewise, taking the dot product with v[⊥]
 - we obtain $\mathbf{c} \cdot \mathbf{v}^{\perp} = K \mathbf{v} \cdot \mathbf{v}^{\perp} + M \mathbf{v}^{\perp} \cdot \mathbf{v}^{\perp} = M |\mathbf{v}^{\perp}|^2$
 - gives $M = \mathbf{c} \cdot \mathbf{v}^{\perp} / |\mathbf{v}^{\perp}|^2$.
- Answers to the original questions: Mv[⊥], Kv, and both.

Practice Question

- Find the projection of the vector c=<6, 4> onto v=<1,2>
- How far is the point C=(6, 4) from the line that passes through A=(1, 1) and B=(4, 9)?

$$K = \mathbf{c} \cdot \mathbf{v} / |\mathbf{v}|^2$$

$$M = \mathbf{c} \cdot \mathbf{v}^{\perp} / |\mathbf{v}^{\perp}|^2$$

Practice Question

- Find the projection of the vector c=<6, 4> onto v=<1,2>
- How far is the point C=(6, 4) from the line that passes through A=(1, 1) and

$$B=(4, 9)$$
?

$$K = \mathbf{c} \cdot \mathbf{v} / |\mathbf{v}|^2$$

$$M = \mathbf{c} \cdot \mathbf{v}^{\perp} / |\mathbf{v}^{\perp}|^2$$

1)
$$K = c \cdot v / |v|^2$$

$$Kv = \mathbf{c} \cdot \mathbf{v} / |\mathbf{v}|^2 \cdot \mathbf{v} = <6, 4 > \cdot <1, 2 > /5 \cdot <1, 2 > = 14/5 \cdot <1, 2 > = <14/5, 28/5 >$$

2) c=C-A=(6, 4) - (1, 1) = <5, 3>
v=B-A = (4, 9)-(1, 1) = <3, 8>

$$v^{\perp}$$
 = <-8, 3>
 $M \cdot v^{\perp}$ = c · $v^{\perp}/(v^{\perp})^2 \cdot v^{\perp}$ = <5, 3> · <-8, 3>/73 · <-8, 3>
=-31/73 · <-8, 3> = <248/73, -93/73>

Then compute the magnitude of the vector: distance = $\sqrt{(248/73)^2 + (-93/73)^2}$

Reflections

When a billiard ball hits the wall edge of a table.

A reflection occurs when light hits a shiny surface

(below)

Reflections

 When light reflects from a mirror, the angle of reflection must equal the angle of incidence:

$$\theta_1 = \theta_2$$
.

 Vectors and projections allow us to compute the new direction r, in either two-dimensions or three dimensions.

a).

b).

Reflection – dot product

The illustration shows

e = a - m
r = e - m = a - 2m
m =
$$[(a \cdot n)/|n|^2]n = (a \cdot \hat{n}) \cdot \hat{n}$$

$$r = a - 2\left(\frac{a \cdot n}{|n|^2}\right)n$$
$$= a - 2(a \cdot \hat{n}) \cdot \hat{n}$$

b)

Practice Question

Given: a=(4, -2) and surface normal n=(0, 3)
 what is a's reflected light about n?

$$\vec{a} = <4,-2>, \vec{n} = <0,3>$$
 $\hat{n} = <0,1>$
 $\vec{r} = \vec{a} - 2(\vec{a} \cdot \hat{n}) \cdot \hat{n}$
 $= <4,-2> -2(4*0+(-2)*1) \cdot <0,1>$
 $= <4,-2> +4*<0,1>$
 $= <4,-2> +<0,4>$
 $= <4,2>$