# Régression pénalisée

masedki.github.io

1<sup>er</sup> décembre 2021

#### Sélection de variables en régression linéaire

Méthodes pas à pas Critères d'information Méthodes de régularisation, contraction de coefficients ou shrinkage

#### Classification

Régression logistique Sélection de variables en régression logistique

# Sélection de variables en régression linéaire

# Régression linéaire : rappel

- ▶ Une approche simple pour faire de l'apprentissage supervisé. Elle suppose que Y dépend linéairement de  $X_1, \ldots X_p$
- Les vraies fonctions de régression ne sont jamais linéaires



Même si cela semble trop simple, la régression linéaire est extrêmement utile à la fois conceptuellement et en pratique.

# Le cas de régression linéaire simple

On pose un modèle de la forme

$$Y = \beta_0 + \beta_1 X + \varepsilon,$$

où  $\beta_0$ ,  $\beta_1$  inconnus sont ordonnée à l'origine (intercept) et pente (slope). Ce sont les *coefficients* du modèle

Etant estimés ces coefficients par  $\widehat{\beta_0}$  et  $\widehat{\beta_1}$ , on prédit ysachant x avec

$$\widehat{y} = \widehat{\beta_0} + \widehat{\beta_1} x,$$



# Régression linéaire multiple

▶ Notre modèle

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon$$

- On interprète  $\beta_j$  comme l'effet moyen sur Y d'un accroissement de  $X_j$  d'une unité lorsque tous les autres prédicteurs sont fixés.
- On ne peut faire aucune affirmation en terme de causalité.

Exemple. Y = serum  $triglycerides \ mg/dl$ ,  $A = age \ in \ years \ et \ B \ body-mass$  $index, \ kg/m^2$ .

$$\hat{Y} = -247.25 + 3.5A + 9.3B$$
. Comment s'interprète 9.3?

# Interpréter les coefficients de régression

- Le scenario idéal lorsque les prédicteurs sont indépendants, et le design équilibré
  - chaque coeff peut être estimé et testé séparément
  - interprétation de gauche est OK
- La corrélation entre  $X_j$  pose des problèmes
  - la variance des estimateurs s'accroit
  - l'interprétation devient hasardeuse (lorsque  $X_j$  change, tout change!)



# Estimation et prédiction pour la régression multiple

ightharpoonup À partir d'estimation des coef  $\widehat{\beta_0}$ ,  $\widehat{\beta_1}$ , ...,  $\widehat{\beta_p}$ , on peut prédire avec

$$\widehat{y} = \widehat{\beta_0} + \widehat{\beta_1} x_1 + \dots + \widehat{\beta_p} x_p$$

- Comme en dimension 1, on estime les  $\beta$  en minimisant la somme des carrées résiduelle. Formule théorique qui dépend d'une inversion de matrice produit.  $\rightarrow$  utiliser un logiciel de statistique
- ▶ De même,  $SE(\beta_j)$  pour chaque coefficient, t-test de nullité, test de Fisher,...



# Résultats pour les données triglycérides

|           | Coeff   | Std.Err | t-stat | <i>p</i> -value |
|-----------|---------|---------|--------|-----------------|
| Intercept | -247.25 | 21.24   | -11.64 | <2e-16          |
| BMI       | 9.30    | 0.90    | 10.32  | < 2e-16         |
| age       | 3.50    | 0.19    | 18.69  | <2e-16          |

|                | Corré | lations | 5    |
|----------------|-------|---------|------|
|                | TG    | BMI     | age  |
| TG             | 1.00  | 0.56    | 0.73 |
| $\mathtt{BMI}$ |       | 1.00    | 0.34 |
| age            |       |         | 1.00 |

### Quelques rappels

#### On note

- ▶ La somme des carrés totale SST = SYY =  $\sum_{i=1}^{n} (y_i \bar{y})^2$
- La somme des carrés résiduelle RSS =  $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$ , où

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \quad \hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

La somme des carrés expliquée par la régression  $SSreg = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$ 

# Des questions importantes

- 1. Y a t-il au moins un des  $X_j$  utile pour prédire Y?
- 2. Sont-ils vraiment tous utiles?
- 3. Comment le modèle s'ajuste aux données?
- 4. Avec une nouvelle valeur de X, quelle réponse doit-on prédire? Précision de la prédiction?

# Des questions importantes

- 1. Y a t-il au moins un des  $X_j$  utile pour prédire Y?
- 2. Sont-ils vraiment tous utiles?
- 3. Comment le modèle s'ajuste aux données?
- 4. Avec une nouvelle valeur de X, quelle réponse doit-on prédire? Précision de la prédiction?

Pour la première question, on utilise la F-statistique

$$F = \frac{(SST - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

| Quantité         | Valeur |
|------------------|--------|
| Residual Std.Err | 50.34  |
| $R^2$            | 0.63   |
| F-stat           | 343.7  |

### Des questions importantes

- 1. Y a t-il au moins un des  $X_j$  utile pour prédire Y?
- 2. Sont-ils vraiment tous utiles?
- 3. Comment le modèle s'ajuste aux données?
- 4. Avec une nouvelle valeur de X, quelle réponse doit-on prédire? Précision de la prédiction?

- Choix de co-variables :
   approche complète
   Comparer les modèles
   linéaires avec tous les
   sous-ensembles possibles de
   co-variables
- Souvent  $2^p$  trop grand  $(\log_{10}(2^{40}) \approx 12.0)$  On utilise une méthode que ne parcourt que certains sous-ensembles. Deux approches standard Sélections progressive, ou rétrograde
- Nécessite de répondre à la question suivante pour effectuer la comparaison.

#### Choix de co-variables

# Méthode progressive (forward)

- 1. Commencer par le modèle nul (à zéro co-variables)
- Ajuster les p régressions linéaires simples et ajouter au modèle nul la co-variable qui à le plus petit RSS
- 3. Ajouter à ce modèle à une co-variable la co-variable qui fait baisser le plus le RSS
- 4. Continuer jusqu'à un critère d'arrêt (par exemple sur la *p*-value du *t*-test)

# Méthode rétrograde (backward)

- 1. Commencer par le modèle avec tous les co-variables
- 2. Supprimer la variable avec la plus grande *p*-value —i.e., la co-variable la moins significative pour le modèle
- 3. Ré-ajuster le modèle, et enlever de nouveau la co-variable de plus grande *p*-value
- 4. Continuer jusqu'à un critère d'arrêt (par exemple portant sur la valeur de la *p*-value de la co-variable que l'on enlèverait)

#### Choix de co-variables

- Critère plus systématique pour choisir le modèle « optimal » dans ceux que l'on parcourt
- ▶ Avec  $C_p$  de Mallows, Akaike information criterion (AIC), Bayesian information criterion (BIC),  $R^2$  ajusté et validation croisée (CV)

### Évaluer un sous ensembles de covariables

On supposera dans la suite que nous avons m covariables au total et on entend par modèle un sous-ensemble de ces covariables de taille p.

# Évaluer un sous ensembles de covariables

On supposera dans la suite que nous avons m covariables au total et on entend par modèle un sous-ensemble de ces covariables de taille p.

#### Rappelons que

$$R^2 = \frac{\text{SSreg}}{\text{SST}} = 1 - \frac{\text{RSS}}{\text{SST}}$$

et

$$R_{\mathrm{adj}}^2 == 1 - \frac{\mathrm{RSS} \, / (n-p-1)}{\mathrm{SST} \, / (n-1)}$$

où p est le nombre de variables du modèle.

ightharpoonup On sélectionne le modèle avec le  $R^2_{\rm adj}$  le plus élevé, cela revient à choisir le sous-ensemble de variables qui minimise

$$S^2 = \frac{\text{RSS}}{n - p - 1}$$

où p est le nombre de variables du modèle.



# Choix basé sur $R_{\rm adj}^2$

- ▶ Souvent le choix basé sur  $R_{\rm adj}^2$  montre un phénomène de over-fitting.
- ▶ Supposons que la valeur maximale de  $R_{\rm adj}^2 = 0.692$  pour un sous-ensemble p=10 de covariables,  $R_{\rm adj}^2 = 0.691$  pour p=9 et  $R_{\rm adj}^2 = 0.541$  pour un sous-ensemble de p=8 covariables.
- ▶ Il est clairement préférable de choisir le modèle à p = 10 covariables.

# Choix basé sur $R_{\rm adj}^2$

- ▶ Souvent le choix basé sur  $R_{\rm adj}^2$  montre un phénomène de over-fitting.
- ▶ Supposons que la valeur maximale de  $R_{\rm adj}^2 = 0.692$  pour un sous-ensemble p=10 de covariables,  $R_{\rm adj}^2 = 0.691$  pour p=9 et  $R_{\rm adj}^2 = 0.541$  pour un sous-ensemble de p=8 covariables.
- le le st clairement préférable de choisir le modèle à p=10 covariables.

On va faire appel à un critère(s) basé(s) sur la vraisemblance.

#### La vraisemblance

Rappelons que d'après les hypothèses du modèle linéaire

$$Y_i \mid x_{i1}, \dots, x_{ip} \sim \mathcal{N}(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}, \sigma^2).$$

 $\operatorname{Et}$ 

$$f(y_i \mid x_{i1}, \dots, x_{ip}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{\left(y_i - \left\{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}\right\}\right)^2}{2\sigma^2}\right]$$

#### La vraisemblance

Rappelons que d'après les hypothèses du modèle linéaire

$$Y_i \mid x_{i1}, \dots, x_{ip} \sim \mathcal{N}(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}, \sigma^2).$$

 $\operatorname{Et}$ 

$$f(y_i \mid x_{i1}, \dots, x_{ip}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{\left(y_i - \left\{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}\right\}\right)^2}{2\sigma^2}\right]$$

► Écrire la vraisemblance

$$L(\beta_0, \beta_1, \dots, \beta_p, \sigma^2; y_1, \dots, y_n)$$

► Écrire la log-vraisemblance

$$\ell(\beta_0, \beta_1, \dots, \beta_p, \sigma^2; y_1, \dots, y_n)$$



# Mesurer l'ajustement ou l'adéquation du modèle

L'estimateur par maximum de vraisemblance de  $\sigma^2$  est donné par

$$\hat{\sigma}_{\text{MLE}}^2 = \frac{\text{RSS}}{n}.$$

$$\ell(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p, \hat{\sigma}_{\text{MLE}}^2; y_1, \dots, y_n) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln\left(\frac{\text{RSS}}{n}\right) - \frac{n}{2}$$

#### Critère d'information

Un critère d'information est une quantité qui réalise un compromis entre l'ajustement aux données (la vraisemblance par exemple) et la complexité du modèle.

#### Donc

- ▶ On peut chercher le modèle qui **maximise** 
  - Ajustement Pénalité
- ▶ On peut chercher le modèle qui **minimise** 
  - $Ajustement + P\'{e}nalit\'{e}$

# Critère d'information $C_p$ de Mallows

Le critère d'information noté  $C_p$  de Mallows associé au modèle à p covariables est donné par

$$C_p = \frac{\mathrm{RSS}_p}{S^2} + 2p - n$$

où  ${\rm RSS}_p$  est la somme des carrés des résidus du modèle en question et  $S^2$  est l'estimateur de  $\sigma^2$  dans le modèle complet.

#### Critère d'information AIC

Le critère d'information noté AIC (Akaike's Information Criterion) associé à un modèle à p covariables est donné par

$$AIC = -2\ell(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p, \hat{\sigma}_{MLE}^2; y_1, \dots, y_n) + 2K$$

où K = p + 2 est nombre de paramètre du modèle.

On peut montrer que

$$AIC = n \log \hat{\sigma}_{\text{MLE}}^2 + 2p + \text{const.}$$

Ce critère est préférable pour la *prédiction*.

#### Critère d'information BIC

Le critère d'information noté BIC (Bayesian Information Criterion) associé à un modèle à p covariables est donné par

BIC = 
$$-2\ell(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p, \hat{\sigma}_{\text{MLE}}^2; y_1, \dots, y_n) + K \ln(n)$$

où K = p + 2 est nombre de paramètre du modèle.

- ▶ Ce critère possède de bonnes propriétés théoriques.
- ► Ce critère est préférable pour *l'explication*.

#### Sélection de modèle

L'idée de chercher le modèle (un sous-ensemble de covariables) qui minimise un des trois critères précédents.

Comment procéder?

#### Sélection de modèle

L'idée de chercher le modèle (un sous-ensemble de covariables) qui minimise un des trois critères précédents.

Comment procéder?

Recherche exhaustive : calculer la valeur du critère pour chaque modèle.

#### Sélection de modèle

L'idée de chercher le modèle (un sous-ensemble de covariables) qui minimise un des trois critères précédents.

Comment procéder?

Recherche exhaustive : calculer la valeur du critère pour chaque modèle.

Problème combinatoire :  $2^{\text{le nombre de covariables}}$  modèles en compétition!!

#### Sélection de modèle en forward

Le modèle de départ de la procédure de sélection forward est le modèle avec la constante seulement. La procédure consiste à

- 1. Ajouter séparément chaque variable au modèle actuel et calculer le critère d'intérêt (BIC, AIC, ou  $C_p$ ).
- 2. Si aucun des nouveaux modèles n'améliore le critère, alors : stop.
- 3. Mettre à jour le modèle en incluant la covariable qui apporte la meilleure amélioration au sens du critère. Aller à 1.

#### Sélection de modèle backward

Le point de départ de la procédure d'élimination backward est le modèle complet incluant toutes les covariables. La procédure consiste à

- 1. Si aucune élimination d'une covariable n'améliore le critère alors : stop.
- 2. Mettre à jour le modèle en éliminant la covariable qui réalise la meilleure amélioration du critère. Aller à 1.

### Données cancer de la prostate

| lcavol         | log(cancer volume)                       |  |
|----------------|------------------------------------------|--|
| lweight        | log(prostate weight)                     |  |
| $\mathbf{age}$ | age                                      |  |
| lbph           | log(benign prostatic hyperplasia amount) |  |
| $\mathbf{svi}$ | seminal vesicle invasion                 |  |
| lcp            | log(capsular penetration)                |  |
| gleason        | Gleason score                            |  |
| pgg45          | percentage Gleason scores 4 or 5         |  |
| lpsa           | log(prostate specific antigen)           |  |

Stamey, T.A., Kabalin, J.N., McNeal, J.E., Johnstone, I.M., Freiha, F., Redwine, E.A. and Yang, N. (1989). Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate: II. radical prostatectomy treated patients, Journal of Urology 141(5), 1076–1083.

# Comparaison de ces critères

- ightharpoonup Je déconseille le  $\mathbb{R}^2$  ajusté.
- $ightharpoonup C_p$  et AIC sont des critères qui réalisent un compris biais-variance. Ils sont donc indiqués pour choisir un modèle que l'on souhaite utiliser pour prédire.
- ▶ BIC pénalise plus les modèles de grandes dimensions. C'est le seul critère à être consistent (i.e., à fournir un estimateur qui converge lorsque  $n \to \infty$ )
- ▶ BIC étant plus sélectif, on doit le préférer si l'on souhaite un modèle explicatif.
- Lorsque la taille de la base d'apprentissage est grande, préférer BIC (AIC fournit des modèles de trop grandes dimensions)

### Sélection de variables : quelques remarques

#### Interprétabilité

- ➤ Si le vrai modèle ne contient que quelques variables liées à la response ~ les algorithmes de sélection peuvent retrouver les prédicteurs pertinents.
- Si le vrai modèle contient beaucoup de variables trés corrélées → les variables sélectionnées seront difficiles à interpréter.

#### Limites liées à la stabilité

En présence de prédicteurs très corrélés ou lorsque n < p, de petites perturbations des données peuvent provoquer de grandes différences entre les ensembles de variables sélectionnées.

# Méthode de shrinkage

#### Régression ridge et Lasso

- Les méthodes précédentes de choix de sous-ensembles utilisent les moindres carrés pour ajuster chacun des modèles en compétition.
- ▶ Alternativement, on peut ajuster un modèle contenant toutes les p covariables en utilisant une technique que *contraint* ou *régularise* les estimations des coefficients, ou de façon équivalente, pousse les coefficients vers 0.
- ▶ Il n'est pas évidant de comprendre pourquoi de telles contraintes vont améliorer l'ajustement, mais il se trouve qu'elles réduisent la variance de l'estimation des coefficients.

# Régression ridge

▶ Rappelons que la procédure d'ajustement par moindres carrés estime les coefficients  $\beta_0, \beta_1, \ldots, \beta_p$  en minimisant

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2.$$

 En revanche, la régression ridge estime les coefficients en minimisant

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = \text{RSS}(\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} \beta_j^2,$$

où  $\lambda$  est un paramètre de réglage, à déterminer par ailleurs.

# Régression ridge (suite)

- ▶ Comme les moindres carrés, la régression ridge cherche des estimations des coefficients qui s'ajustent sur les données, donc à rendre  $RSS(\beta)$  petit.
- ▶ Cependant, le second terme  $\lambda \sum_{j=1}^{p} \beta_{j}^{2}$ , appelé *pénalité ridge* est petit lorsque les  $\beta_{j}$  sont proches de 0, et tire donc les estimations vers ce point.
- $\blacktriangleright$  Le paramètre de réglage  $\lambda$  sert à contrôler l'impact de cette pénalité sur l'estimation.
- ightharpoonup Choisir une bonne valeur de  $\lambda$  est critique pour construire un modèle acceptable. On utilise la validation croisée.

# Exemple jeu de données n = 1000 et p = 5000



# Régression ridge : normaliser les prédicteurs

- La méthode des moindres carrés standard est insensible à la normalisation des prédicteurs : si l'on multiplie  $X_j$  par c, le coefficient sera remplacé par  $\hat{\beta}_j/c$ .
- ► En revanche, la régression ridge peut changer *substantiellement* lorsque l'on multiplie un prédicteur par une constante, à cause de la norme quadratique dans le terme de pénalité.
- ➤ C'est pourquoi il est vivement recommander de toujours standardiser les prédicteurs (marginalement) avant d'utiliser la régression ridge.

# Pour la régression ridge?

#### Compromis biais-variance



Données simulées :  $n=50,\,p=45,\,$ tous de coefficients non nuls. Biais au carré (en noir), variance (en vert) et erreur de test quadratique (en violet) pour la régression ridge.

Droite horizontale: erreur minimale.

- La régression ridge a un inconvénient évident : contrairement à la sélection de variable, la régression ridge inclut tous les prédicteurs dans le modèle final.
- ▶ Le Lasso est une alternative relativement récente qui répond à cette critique. On minimise en fait

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \left| \beta_j \right| = \text{RSS}(\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} \left| \beta_j \right|,$$

 $\blacktriangleright$  On parle de pénalité  $\ell^1$  au lieu de pénalité  $\ell^2$  (ou quadratique)

# Le Lasso (suite)

- ➤ Comme pour la régression ridge, le Lasso tire les estimations des coefficients vers 0.
- ▶ Cependant, dans le cas du Lasso, la pénalité  $\ell^1$  a pour effet de forcer certains coefficients à s'annuler lorsque  $\lambda$  est suffisamment grand.
- ▶ Donc, le Lasso permet de faire de la *sélection de variable*.
- ▶ On parle de modèle creux (sparse), c'est-à-dire de modèles qui n'impliquent qu'un sous ensemble des variables.
- ightharpoonup Comme pour la régression ridge, choisir une bonne valeur de  $\lambda$  est critique. Procéder par validation ou validation croisée.

## Exemple : n = 1000 et p = 5000



# Qu'est qui fait marcher le Lasso?

Avec les multiplicateurs de Lagrange, on peut voir

La régression ridge comme

minimise 
$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2$$
 sous la contrainte  $\sum_{j=1}^p \beta_j^2 \le s$ 

▶ Le Lasso comme

minimise 
$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2$$
 sous la contrainte  $\sum_{j=1}^p \left|\beta_j\right| \leq s$ 

# Le Lasso en image



# Comparaison du Lasso et de la régression ridge



À gauche, biais au carré (noir), variance (en vert) et erreur quadratique de test (violet) pour le Lasso sur données simulées.

À droite, comparaison du biais au carré, de la variance et de l'erreur de test quadratique pour le Lasso (traits plains) et la régression ridge (pointillés)

# Comparaison du Lasso et de la régression ridge (suite)



À gauche, biais au carré (noir), variance (en vert) et erreur quadratique de test (violet) pour le Lasso sur données simulées (où seulement deux prédicteurs sont influents).

À droite, comparaison du biais au carré, de la variance et de l'erreur de test quadratique pour le Lasso (traits plains) et la régression ridge (pointillés)

#### Conclusions

- ► Ces deux exemples montrent qu'il n'y a pas de meilleur choix universel entre la régression ridge et le Lasso.
- ▶ En général, on s'attend à ce que le Lasso se comporte mieux lorsque la réponse est une fonction d'un nombre relativement faible de prédicteurs.
- Cependant, le nombre de prédicteurs reliés à la réponse n'est jamais connu a priori dans des cas concrets.
- ▶ Une technique comme la validation croisée permet de déterminer quelle est la meilleure approche.

# Choisir le paramètre de réglage $\lambda$

- Comme pour les méthodes du début, la régression ridge et le Lasso doivent être calibré pour déterminer le meilleur modèle.
- ightharpoonup C'est-à-dire qu'il faut une méthode qui choisisse une valeur du paramètre de réglage  $\lambda$ , ou de la contrainte s.
- La validation croisée fournit une façon simple d'attaquer ce problème. On fixe une grille de valeurs de  $\lambda$  possible et sur cette grille, on estime l'erreur de test par validation croisée.
- $\triangleright$  On choisit alors la valeurs de  $\lambda$  pour laquelle cette estimation de l'erreur de test est la plus faible.
- ightharpoonup Enfin, le modèle est ré-ajusté pour utiliser toutes les observations de la base d'entrainement avec la valeur de  $\lambda$  précédemment obtenue.

#### Le zoo des méthodes lasso I

► The eslationet Zou et Hastie 2005 vise à activer les variables corrélées simultanément

$$\widehat{\boldsymbol{\beta}}^{\text{e-net}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2} \mathrm{RSS} \big( \boldsymbol{\beta} \big) + \lambda \big( \alpha \| \boldsymbol{\beta} \|_1 + (1 - \alpha) \| \boldsymbol{\beta} \|_2 \big) \right\}$$

► Adaptive/Weighted-Lasso pondère chaque composante du vecteur de coefficients

$$\widehat{\boldsymbol{\beta}}^{\text{lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2} \text{RSS} \big( \boldsymbol{\beta} \big) + \lambda \| \mathbf{w} \circ \boldsymbol{\beta} \|_1 \right\}.$$

#### Le zoo des méthodes lasso II

► Group-Lasso Yuan and Lin 2006 vise à activer les variables par groupes

$$\widehat{\boldsymbol{\beta}}^{\text{group}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2} \text{RSS}(\boldsymbol{\beta}) + \lambda \sum_{k=1}^K w_k \|\boldsymbol{\beta}_{\mathcal{G}_k}\|_1 \right\}$$

➤ Cooperative-Lasso Chiquet et al. 2010 vise à activer les variables par groupes de même signe

$$\widehat{\boldsymbol{\beta}}^{\text{coop}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2} \mathrm{RSS}(\boldsymbol{\beta}) + \lambda \sum_{k=1}^K w_k \left( \|\boldsymbol{\beta}_{\mathcal{G}_k}^+\|_1 + \|\boldsymbol{\beta}_{\mathcal{G}_k}^-\|_1 \right) \right\}$$

#### Bilan

- Les méthodes de sélection de modèles sont essentielles pour l'analyse de données, et l'apprentissage statistique, en particulier avec de gros jeu de données contenant de nombreux prédicteurs.
- ▶ Les questions de recherches qui donnent des solutions creuses (parcimonieuses, ou sparses), comme le Lasso, sont d'actualité.

# Classification

# Régression logistique

Notons  $p(X) = \mathbb{P}(Y = 1|X)$  et considérons un seul prédicteur X. La régression logistique pose

$$p(X) = \frac{exp(\beta_0 + \beta_1 X)}{1 + exp(\beta_0 + \beta_1 X)}$$

qui est toujours entre 0 et 1! On a alors

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

(transformation logit)

Estimation par maximum de vraisemblance La vraisemblance

$$L(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} [1-p(x_i)]$$

que l'on maximise pour obtenir  $\beta_0$  et  $\beta_1$  (Ordinateur) La plupart des logiciels de statistique le font (glm de R par exemple)

# Régression logisitque à plusieurs co-variables

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

#### Exemple: maladie cardiaque en Afrique du Sud

- ▶ 160 cas d'infarctus du myocarde (MI) et 302 cas de contrôle (homme entre 15-64 ans), de la province de Cap-Occidental en Afrique du Sud, au début des années 80
- $\blacktriangleright$  Prévalence très élevée dans cette région : 5.1 %
- ▶ Mesure de 7 prédicteurs (facteurs de risque), montrés dans la page suivante
- Le but est d'identifier l'influence et la force relative des facteurs de risque
- ▶ Cette étude fait partie d'un programme de santé publique dont le but était de sensibiliser la population sur une régime plus équilibré



orange: MI bleu: contrôle famhist: 1 si antécédents familiaux

# Exemple (suite)

```
> heartfit <- glm(chd ~ .,data=heart ,family=binomial)</pre>
> summary(heartfit)
Call:
glm(formula = chd ~ ., family = binomial, data = heart)
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.1295997 0.9641558 -4.283 1.84e-05 ***
sbp
            0.0057607 0.0056326 1.023 0.30643
tobacco 0.0795256 0.0262150 3.034 0.00242 **
   0.1847793 0.0574115 3.219 0.00129 **
1d1
famhistPresent 0.9391855 0.2248691 4.177 2.96e-05 ***
obesity -0.0345434 0.0291053 -1.187 0.23529
alcohol 0.0006065 0.0044550 0.136 0.89171
            0.0425412  0.0101749  4.181  2.90e-05 ***
age
___
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 596.11 on 461 degrees of freedom = > 4 = > = < <
```

# Échantillonnage du contrôle et régression logistique

- ▶ Dans les données d'Afrique du Sud, il y a 160 MI et 302 contrôle  $\tilde{\pi} = 0.35$  des cas. Cependant, la prévalence des MI dans la région est de  $\pi = 0.05$ .
- ▶ Ce biais d'échantillonnage permet d'estimer les  $\beta_j$ ,  $j \neq 0$ , avec plus de précision (si modèle correct). Mais l'estimation de  $\beta_0$  doit être corrigée.
- ▶ Une simple transformation permet de le faire :

$$\widehat{\beta_0}^* = \widehat{\beta_0} + \log\left(\frac{\pi}{1-\pi}\right) - \log\left(\frac{\widetilde{\pi}}{1-\widetilde{\pi}}\right)$$

➤ Souvent, les cas pathologiques sont rares et on les prend tous. On peut sur-échantillonner jusqu'à 5 fois plus que les cas témoins. Au delà, peu de gain dans la variance d'erreur d'échantillonnage.

# Gain de variance par biais d'échantillonnage de données binaires



Au delà d'un facteur 5 de sur-représentation des cas pathologiques, le gain n'est plus intéressant.

# Régression logistique à plus de deux modalités

Jusqu'à maintenant, nous avons discuté de régression logistique pour expliquer un Y à deux modalités. Il est facile de généraliser à plus de deux classes. Une possibilité (utilisée dans la bibliothèque  ${\tt glmnet}$  de R) est la forme symétrique

$$\mathbb{P}(Y = k | X) = \frac{\exp(\beta_{0k} + \beta_{1k} X_1 + \dots + \beta_{pk} X_p)}{\sum_{\ell=1}^{K} \exp(\beta_{0\ell} + \beta_{1\ell} X_1 + \dots + \beta_{p\ell} X_p)}$$

Il y a donc une fonction linéaire par classe ou modalité. En fait, ce modèle est sur-paramétré, et comme dans le cas de 2 classes, on peut supprimer l'une des fonctions linéaires et seules (K-1) sont utiles. Le vérifier! La régression logistique multi-classe porte plusieurs noms. On parle parfois de régression multinomiale.

#### Sélection de modèles

Revenons à l'expression

$$\underset{(\beta_0, \beta) \in \mathbb{R}^{p+1}}{\text{minimiser}} \left\{ -\frac{1}{N} \ell(\beta_0, \beta) + \lambda P_{\alpha}(\beta) \right\}$$

- ▶  $\ell(\beta_0, \beta) = \frac{1}{2\sigma^2} ||y \beta_0 \mathbf{1} X\beta||_2^2 + c$  pour une régression linéaire multiple.
- ▶ Dans le cas d'une régression logistique

$$\ell(\beta_0, \boldsymbol{\beta}) = \sum_{i=1}^{N} \left\{ y_i (\beta_0 + \boldsymbol{\beta}' x_i) - \log \left( 1 + e^{\beta_0 + \boldsymbol{\beta}' x_i} \right) \right\}$$

La terme de régularisation (de pénalité)

$$P_{\alpha}(\boldsymbol{\beta}) = \alpha \|\boldsymbol{\beta}\|_{1} + (1 - \alpha) \|\boldsymbol{\beta}\|_{2}$$

Lasso si  $(\alpha = 1)$  ridge si  $\alpha = 1$ .

## Deux exemples en grande dimension

#### Allons faire des testes sous R

- ▶ Jeu de données leukemia du package spikeslab : les gênes exprimés différentiellement exprimés pour les deux types de leucémie Acute Myeloblastic Leukemia et Acute Lymphoblastic Leukemia. n=72 et p=3571.
- ▶ Jeu de données nki du package BreastCancerNKI de bioconductor : déterminer les gênes exprimés sous la condition estrogen receptor status actif. n=337 et p=24481