1)
$$b^{x} = b^{y}$$
 if and only if $x = y$
2) $\log_{b} x = \log_{b} y$ if and only if $x = y$
3) $b^{\log_{b} x} = x$ $(x > 0)$
4) $\log_{b} b^{x} = x$.

1) and 2) are true because exponential 6 and log X are one-to one functions. so different inputs give different outputs.

Solve the following exponential equations:
a)
$$3^{\times} = 81$$

Since exponential function is one-to-one, x = 4

b)
$$5^{7-x} = 125^{-x}$$

 $5^{7-x} = 5^{-3}$
 $\Rightarrow 7-x=3$
 $\Rightarrow x=4$

(e)
$$\left(\frac{1}{2}\right)^{4y} = 16$$

$$\frac{Soh}{2}$$
, $\left(\frac{1}{2}\right)^{4}y = 16$

$$\Rightarrow (2^{-1})^{4}y = 16$$

$$\Rightarrow 2^{-4}y = 2^{4}$$

$$\Rightarrow -4y = 4$$

$$\Rightarrow y = -1$$

Exercise

Solve (a)
$$2^{X-1}=8$$

$$(b)$$
 $\left(\frac{1}{3}\right)^{6} = 27$

Solve the following: $5^{3}X = 6$

Taking natural log on both bides: $ln(5^{-3x}) = ln 16$

Note: You can take take common log. if you wish.

$$4^{3x+2} = 71$$

$$55 \qquad 4^{3x+2} = 71$$

Taking natural log on both sids

$$\ln (4^{3x+2}) = \ln 7$$

 $\Rightarrow (3x+2) \ln (4) = \ln 7$
 $\Rightarrow 3x+2 = \ln 71$
 $\ln 4$

$$\Rightarrow 3x = \frac{\ln 71}{\ln 4} - 2$$

$$\Rightarrow x = \frac{\ln 71}{\ln 4} - 2$$

$$\frac{\ln 71}{3}$$

Solve the following.

$$4e^{x^2} = 64$$

 $= > e^{x^2} = 64$
 $= > e^{x^2} = 16$
 $\Rightarrow ln(e^{x^2}) = ln(16)$
 $= > x^2 ln(e) = ln(16)$
 $= > x^2 \cdot 1 = ln(16)$

Solve the following
$$e^{2x} - 4e^{x} + 8 = 0$$

$$e^{8x} - 4e^{x} + 8 = 0$$

Then,
$$u^2 - 4u + 3 = 0$$

$$=$$
 $(u-3)(u-1)=0$

$$\Rightarrow e^{\times}=3 \text{ or } e^{\times}=1$$

49
$$e^{x} = 3$$
, then

 $e^{x} = 1$, then

$$=$$
 $|\chi = \ln 3$

Exercie

hogosothmic Equations

Solve
$$\log_4(2x-3) = \log_4(x) + \log_4(x-2)$$
.

Siln.
$$\log_4(2x-3) = \log_4(x(x-2))$$
Since \log_4 is one-to one,
$$2x-3 = x(x-2)$$

$$=) 2x - 3 = x^2 - 2x$$

$$\Rightarrow x^2 - 4x + 3 = 0$$

=>
$$(x-3)(x-1)=0$$

=> $x=3$ or $x=1$.

Recall that domain of
$$\log_4$$
 is $(0, \infty)$.

If $x = 1$, then $\log_4(x-2)$ is not defined.

Thus $x = 3$.

Solve
$$ln(x+8) = ln(x) + ln(x+3)$$
.

Solve
$$\log_{3}(9x) - \log_{3}(x-8) = 4$$
 $\log_{3}(9x) - \log_{3}(x-8) = 4$
 $\log_{3}(\frac{9x}{x-8}) = 4$
 $\log_{3}(x-8) = 4$

Solve
$$\log_2(4x) - \log_2(2) = 2$$
.

Word Problems Carbon Dating:

Scientists say we humans are 200,000 years old How did they estimate that number? They estimate how much parbon-14 or an organism has in its body when it is alive. Then they measure how much carbon-14 is left certime of discovery. Then since earbon-14 decays at exponential rate, they can estimate the age of the fossil.

The number of grams of carbon-14 based on hadivactive decay of the isotope is given by $A = A_0 e^{-0.000124t}$

where Ao is the intial grans of corbon-14 and A is the current amount in grams.

Assume that aimals have approx. 1000 mg of carbon - 14 in their bodies when they are alive. of a forsil has 200 mg of carbon 14, how old 80hr. We have A = 1000 mg

A - 200 mg

200 ng =
$$1000$$
 mg e $-0.000124t$
=> $e^{-0.000124t} = 0.2$
=> $-0.000124t = ln(0.2)$
=> $t = ln(0.2)$
 0.000124
=> $t \sim 12.00022$

The forsil is approx 13,000 years old.

Problem:

You save \$ 1000 from a summer job and put it in a c) earning 5% compounding continuously. How many years will it take for your money to double?

$$A = Pe^{rt}$$

Here, $P = 1000$

or,
$$2 = e^{0.05 + 1}$$

or, $\ln(2) = \ln(e^{0.05 + 1})$

or,
$$t = \frac{\ln 2}{0.05}$$

$$\approx 13.8629$$

It will take almost 14 years to double.

If \$7500 is invested in a savings account earning 5% interest compounded quaterly, how many years will pas until there is \$20,000.

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Hore,
$$P = 7500$$

 $r = 5\% = 0.05$
 $n = 4$ (quaterly)
 $A = 20000$
 $t = 9$

$$80,$$
 $20000 = 7500 \left(1 + 0.05\right) 4t$

$$\frac{02}{7500}$$
 = $(1.0125)^{4t}$ $\frac{8}{3}$ = $(1.0125)^{4t}$

Taking natural log on both sides, $ln\left(\frac{8}{3}\right) = 4t ln\left(1.0125\right)$

or,
$$t = \frac{\ln(8/3)}{4 \ln(1.0125)}$$

It will take almost 20 years.