

Sumário

O1

02

O3

Introdução

O que é um índice? O que é um fundo de índice? Metodologia

Como formular o problema?

Como implementar um

backtest?

Resultados

O que é um índice?

- Índice é um número que representa o valor agragado de um grupo de itens.
- Índices financeiros são medidas formadas por um conjunto de ativos que capturam o valor de um dado mercado ou de um segmento de um mercado

Exemplos de índices financeiros:

- Ibovespa
 - Composto pelas empresas da B3 que representam 80% das negociações da → bolsa
- S&P500
 - Composto pelas 500 maiores empresas listadas na bolsa americana
- CAC40
 - Composto pelas 40 maiores empresas listadas na bolsa de Paris

Índices da B3

IBOV ^D ∘	128184.91	+0.679 +853.79
IBXX ^D ∘ IBXX	53868.79	+0.669
IBXL ^D ∘	21226.93	+0.629
IBRA ^D *	5039.11	+0.709
IGCX ^D •	20076.37	+0.799 +157.2
ITAG D *	28433.76	+0.679 +188.0
IGNM ^D ∘	3875.05	+1.289

Dados em tempo real

Você está visualizando a composição do Índice:		IBOV		~	
Nome	Valor	Variação	Var%	Abertura	Máx
IBOVESPA					
ENEVA ON NM	12.95 ^D	0.26	2.05%	12.69	12.95
GRUPO NATURAON NM	16.93 ^D	0.44	2.67%	16.47	17.02
MRV ON NM	9.59 ^D	-0.08	-0.83%	9.73	9.77
SUZANO S.A. ON NM	51.76 D	-2.02	-3.76%	53.40	53.87
AMBEV S/A ON	14.08 ^D	0.39	2.85%	13.69	14.08
DEXCO ON NM	7.43 ^D	0.17	2.34%	7.31	7.48
BRF SA ON NM	15.18 ^D	0.52	3.55%	14.60	15.18
IRBBRASIL REON NM	53.63 ^D	3.13	6.20%	50.74	53.63
DIMO C A ON NIA	חדד ככ	0.42	A E70/	22 02	22.40

Imagem retirada de https://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/cotacoes/indices.htm Acesso em 02/12/2023

O que é um fundo de índice?

Por que pensar em um fundo de índice?

- Índices são instrumentos financeiros não "investíveis".
- Possibilidade de se expor a todo um mercado sem possuir um grande número de ações

- Um fundo de índice é uma carteira de investimentos cujo objetivo é replicar o comportamento de um índice específico.
- Ao problema de replica o índice, dá-se o nome de index tracking problem

Fundos de Índices (ETFs) da B3

Imagem retirada de https://www.b3.com.br/pt_br/produtos-e-servicos/negociacao/renda-variavel/etf/renda-variavel/etfs-listados/
Acesso em 02/12/2023

Como replicar um índice?

Primeiro passo: o que será replicado?

Preço? Retorno? Log-preço? Logretorno?

Replicação completa: por que não comprar todos os ativos que compoem o índice?

 Modelo base para replicação do retorno de um índice:

$$\min_{\mathbf{x}} TE(\mathbf{x}, \mathbf{y}, \mathbf{R})$$

$$s. a: \sum_{i} x_{i} = 1$$

$$x_{i} \ge 0 \ \forall i$$

Onde x é o velor de alocaçãoes, R é a matriz de retornos dos ativos que compõem o índice, y é o vetor de retornos do índice e TE() é um tracking error a ser minimizado.

Tracking error: Downside Risk

$$DR(x) = \left| \left| (y - R'x)^{+} \right| \right|_{1}^{1}$$

- Variável de decisão $\boldsymbol{\theta}$
- Restrições (2) e (4)

Penalização por custos de transação

- Variável de decisão **c**
- Restrições (1), (6) e (7)
- Hiperparâmetro de penalização λ

Esparsidade: não utilizar todos os ativos

- Variável indicadora de decisão *I*
- Restrições (3), (5) e (9)
- Hiperparâmetro k como o número de ativos

Modelo final implementado

$$\min_{x_t, \theta, c, I} \sum_{t=T-j}^{T} \theta_t + \lambda \sum_{i=1}^{N} c_i$$

$$x_{i,t}, c_i \ge 0 \tag{1}$$

$$\theta_t \ge 0$$
 (2)

$$I_t \in \{0,1\} \tag{3}$$

$$\theta_t \ge y_t - x_t' R_t \tag{4}$$

$$x_{i,t} \le I_i \tag{5}$$

$$c_i \ge x_{i,t} W_t - x_{i,t-1} W_t$$
 (6)

$$c_i \ge -(x_{i,t}W_t - x_{i,t-1}W_t)$$
 (7)

$$\sum_{i=1}^{N} x_{i,t} = 1 \tag{8}$$

$$\sum_{i=1}^{N} I_i \le k \tag{9}$$

Tracking error: Downside Risk

$$DR(x) = \left| \left| (y - R'x)^{+} \right| \right|_{1}^{1}$$

- Variável de decisão *\theta*
- Restrições (2) e (4)

Penalização por custos de transação

- Variável de decisão **c**
- Restrições (1), (6) e (7)
- Hiperparâmetro de penalização λ

Esparsidade: não utilizar todos os ativos

- Variável indicadora de decisão I
- Restrições (3), (5) e (9)
- Hiperparâmetro k como o número de ativos

Modelo final implementado

$$\min_{x_t, \theta, c, I} \sum_{t=T-j}^{T} \theta_t + \lambda \sum_{i=1}^{N} c_i$$

$$x_{i,t}, c_i \ge 0 \tag{1}$$

$$\theta_t \ge 0$$
 (2)

$$I_t \in \{0,1\} \tag{3}$$

$$\theta_t \ge y_t - x_t' R_t \tag{4}$$

$$x_{i,t} \le I_i \tag{5}$$

$$c_i \ge x_{i,t} W_t - x_{i,t-1} W_t$$
 (6)

$$c_i \ge -(x_{i,t}W_t - x_{i,t-1}W_t)$$
 (7)

$$\sum_{i=1}^{N} x_{i,t} = 1 \tag{8}$$

$$\sum_{i=1}^{N} I_i \le k \tag{9}$$

Tracking error: Downside Risk

$$DR(x) = \left| \left| (y - R'x)^{+} \right| \right|_{1}^{1}$$

- Variável de decisão $\boldsymbol{\theta}$
- Restrições (2) e (4)

Penalização por custos de transação

- Variável de decisão **c**
- Restrições (1), (6) e (7)
- Hiperparâmetro de penalização λ

Esparsidade: não utilizar todos os ativos

- Variável indicadora de decisão I
- Restrições (3), (5) e (9)
- Hiperparâmetro k como o número de ativos

Modelo final implementado

$$\min_{x_t, \theta, c, I} \sum_{t=T-j}^{T} \theta_t + \lambda \sum_{i=1}^{N} c_i$$

$$x_{i,t}, c_i \ge 0 \tag{1}$$

$$\theta_t \ge 0$$
 (2)

$$I_t \in \{0,1\} \tag{3}$$

$$\theta_t \ge y_t - x_t' R_t \tag{4}$$

$$x_{i,t} \le I_i \tag{5}$$

$$c_i \ge x_{i,t} W_t - x_{i,t-1} W_t$$
 (6)

$$c_i \ge -(x_{i,t}W_t - x_{i,t-1}W_t)$$
 (7)

$$\sum_{i=1}^{N} x_{i,t} = 1 \tag{8}$$

$$\sum_{i=1}^{N} I_i \le k \tag{9}$$

Tracking error: Downside Risk

$$DR(x) = \left| \left| (y - R'x)^{+} \right| \right|_{1}^{1}$$

- Variável de decisão $\boldsymbol{\theta}$
- Restrições (2) e (4)

Penalização por custos de transação

- Variável de decisão **c**
- Restrições (1), (6) e (7)
- Hiperparâmetro de penalização λ

Esparsidade: não utilizar todos os ativos

- Variável indicadora de decisão I
- Restrições (3), (5) e (9)
- Hiperparâmetro k como o número de ativos

Modelo final implementado

$$\min_{x_t, \theta, c, \mathbf{I}} \sum_{t=T-j}^{T} \theta_t + \lambda \sum_{i=1}^{N} c_i$$

$$x_{i,t}, c_i \ge 0 \tag{1}$$

$$\theta_t \ge 0$$
 (2)

$$I_t \in \{0,1\} \tag{3}$$

$$\theta_t \ge y_t - x_t' R_t \tag{4}$$

$$x_{i,t} \le I_i \tag{5}$$

$$c_i \ge x_{i,t} W_t - x_{i,t-1} W_t \tag{6}$$

$$c_i \ge -(x_{i,t}W_t - x_{i,t-1}W_t)$$
 (7)

$$\sum_{i=1}^{N} x_{i,t} = 1 \tag{8}$$

$$\sum_{i=1}^{N} I_i \le k \tag{9}$$

Tracking error: Downside Risk

$$DR(x) = \left| \left| (y - R'x)^{+} \right| \right|_{1}^{1}$$

- Variável de decisão $\boldsymbol{\theta}$
- Restrições (2) e (4)

Penalização por custos de transação

- Variável de decisão **c**
- Restrições (1), (6) e (7)
- Hiperparâmetro de penalização λ

Esparsidade: não utilizar todos os ativos

- Variável indicadora de decisão I
- Restrições (3), (5) e (9)
- Hiperparâmetro k como o número de ativos

Modelo final implementado

$$\min_{x_t, \theta, c, I} \sum_{t=T-j}^{T} \theta_t + \lambda \sum_{i=1}^{N} c_i$$

$$x_{i,t}, c_i \ge 0 \tag{1}$$

$$\theta_t \ge 0$$
 (2)

$$I_t \in \{0,1\} \tag{3}$$

$$\theta_t \ge y_t - x_t' R_t \tag{4}$$

$$x_{i,t} \le I_i \tag{5}$$

$$c_i \ge x_{i,t} W_t - x_{i,t-1} W_t$$
 (6)

$$c_i \ge -(x_{i,t}W_t - x_{i,t-1}W_t)$$
 (7)

$$\sum_{i=1}^{N} x_{i,t} = 1 \tag{8}$$

$$\sum_{i=1}^{N} I_i \le k \tag{9}$$

- Ideia base do backtest:
 - Otimizar com dados até T
 - Alocar de T para T + 1
 - Próximo passo

```
T' \leftarrow tamanho da série de índice
H ← horizonte de backtest
T \leftarrow T' - H
\mathbf{v} \leftarrow \text{s\'erie de retornos do índice}
R \leftarrow matrix de séries de retornos dos ativos
W \leftarrow \{10000\} riqueza inicial
Para cada h em H, faça
                     ← retornos do índice de T – j até T
     y_T
                     ← retorno do índice de T para T + 1
     y_{T+1}
                      ← retornos dos ativos de T – j até T
     R_T
                      \leftarrow retornos dos ativos de T para T + 1
     \mathbf{R}_{T+1}
                      \leftarrow otimizacao_tracking_portfolio(y_T, R_T, j, k, \lambda)
     W_{T+1}^{bruto}
                      \leftarrow W_{T}(1+(\boldsymbol{x_{T}^{opt}})'R_{T+1})
     turnover_{T+1} \leftarrow \left| W_{T+1}^{bruto} - W_{T} \right|
                      \leftarrow 0.01 turnover_{T+1}
     custo
                     \leftarrow W_{T+1}^{bruto} - custo
    W_{T+1}
                     \leftarrow x_T^{opt} W_{T+1}
                      \leftarrow T + 1
fim para
```

- Ideia base do *backtest*:
 - Otimizar com dados até T
 - Alocar de T para T + 1
 - Próximo passo

```
T' \leftarrow tamanho da série de índice
H ← horizonte de backtest
T \leftarrow T' - H
\mathbf{v} \leftarrow \text{s\'erie de retornos do índice}
R \leftarrow matrix de séries de retornos dos ativos
W \leftarrow \{10000\} riqueza inicial
Para cada h em H, faça
                     ← retornos do índice de T – j até T
     y_T
                     ← retorno do índice de T para T + 1
     y_{T+1}
                      ← retornos dos ativos de T – j até T
     R_T
                      ← retornos dos ativos de T para T + 1
     \mathbf{R}_{T+1}
                     \leftarrow otimizacao_tracking_portfolio(y_T, R_T, j, k, \lambda)
     W_{T+1}^{bruto}
                     \leftarrow W_{T}(1+(\boldsymbol{x_{T}^{opt}})'R_{T+1})
     turnover_{T+1} \leftarrow \left| W_{T+1}^{bruto} - W_{T} \right|
                     \leftarrow 0.01 turnover_{T+1}
     custo
                     \leftarrow W_{T+1}^{bruto} - custo
    W_{T+1}
                     \leftarrow x_T^{opt} W_{T+1}
                      \leftarrow T + 1
fim para
```

- Ideia base do backtest:
 - Otimizar com dados até T
 - Alocar de T para T + 1
 - Próximo passo

```
T' \leftarrow tamanho da série de índice
H ← horizonte de backtest
T \leftarrow T' - H
\mathbf{v} \leftarrow \text{s\'erie de retornos do índice}
R \leftarrow matrix de séries de retornos dos ativos
W \leftarrow \{10000\} riqueza inicial
Para cada h em H, faça
                      ← retornos do índice de T – j até T
     y_T
                      ← retorno do índice de T para T + 1
     y_{T+1}
                      ← retornos dos ativos de T – j até T
     R_T
     R_{T+1}
                      ← retornos dos ativos de T para T + 1
                      \leftarrow otimizacao_tracking_portfolio(y_T, R_T, j, k, \lambda)
     W_{T+1}^{bruto}
                      \leftarrow W_{T}(1+(\boldsymbol{x_{T}^{opt}})'\mathbf{R_{T+1}})
     turnover_{T+1} \leftarrow \left| W_{T+1}^{bruto} - W_{T} \right|
                      \leftarrow 0.01 turnover_{T+1}
     custo
                      \leftarrow W_{T+1}^{bruto} - custo
    W_{T+1}
                      \leftarrow \boldsymbol{x_T^{opt}} \mathbb{W}_{T+1}
                      \leftarrow T \pm 1
fim para
```

- Ideia base do backtest:
 - Otimizar com dados até T
 - Alocar de T para T + 1
 - Próximo passo

```
T' \leftarrow tamanho da série de índice
H ← horizonte de backtest
T \leftarrow T' - H
\mathbf{v} \leftarrow \text{s\'erie de retornos do índice}
R \leftarrow matrix de séries de retornos dos ativos
W \leftarrow \{10000\} riqueza inicial
Para cada h em H, faça
                      ← retornos do índice de T – j até T
     y_T
                      ← retorno do índice de T para T + 1
     y_{T+1}
                      ← retornos dos ativos de T – j até T
     R_T
                       \leftarrow retornos dos ativos de T para T + 1
     \mathbf{R}_{T+1}
                      \leftarrow otimizacao_tracking_portfolio(y_T, R_T, j, k, \lambda)
     W_{T+1}^{bruto}
                      \leftarrow W_{T}(1+(\boldsymbol{x_{T}^{opt}})'R_{T+1})
     turnover_{T+1} \leftarrow \left| W_{T+1}^{bruto} - W_{T} \right|
                      \leftarrow 0.01 turnover_{T+1}
     custo
                      \leftarrow W_{T+1}^{bruto} - custo
    W_{T+1}
                      \leftarrow \boldsymbol{x_{r}^{opt}} \mathbb{W}_{T+1}
                       \leftarrow T + 1
fim para
```

- Ideia base do *backtest*:
 - Otimizar com dados até T
 - Alocar de T para T + 1
 - Próximo passo
- Escolha de hiperparametros:
 - Combinação que minimize o erro fora da amostra entre o retorno da carteira e do índice

```
T' ← tamanho da série de índice
H \leftarrow horizonte de backtest
T \leftarrow T' - H
\mathbf{v} \leftarrow \text{s\'erie de retornos do índice}
R \leftarrow matrix de séries de retornos dos ativos
W \leftarrow \{10000\} riqueza inicial
Para cada h em H, faça
                     ← retornos do índice de T – j até T
     y_T
                      ← retorno do índice de T para T + 1
                      \leftarrow retornos dos ativos de T - j até T
     R_T
                      \leftarrow retornos dos ativos de T para T + 1
     \mathbf{R}_{T+1}
                      \leftarrow otimizacao_tracking_portfolio(y_T, R_T, j, k, \lambda)
     W_{T+1}^{bruto}
                      \leftarrow W_{T}(1+(\boldsymbol{x_{T}^{opt}})'R_{T+1})
     turnover_{T+1} \leftarrow \left| W_{T+1}^{bruto} - W_{T} \right|
                      \leftarrow 0.01 turnover_{T+1}
     custo
                      \leftarrow W_{T+1}^{bruto} - custo
    W_{T+1}
                      \leftarrow x_T^{opt} W_{T+1}
                      \leftarrow T + 1
fim para
```


Melhor combinação de hiperparâmetros

Erro (× 10 ⁻⁶) *	J	k	λ	Erro (× 10 ⁻⁶) *	J	k	λ
11.486	30	38	0.0	0.7959	200	30	0.0001
0.2674	200	38	0.0	12.156	30	30	0.5
118.669	30	38	0.0001	0.7959	200	30	0.5
118.669	200	38	0.0001	96.765	30	10	0.0
118.669	30	38	0.5	26.486	200	10	0.0
118.669	200	38	0.5	53.888	30	10	0.0001
26.243	30	30	0.0	28.884	200	10	0.0001
0.4001	200	30	0.0	53.888	30	10	0.5
12.156	30	30	0.0001	28.884	200	10	0.5

^{*} Erro fora da amostra entre o retorno da carteira e o retorno do índice

Melhor modelo

Variando λ com k e j fixos

Variando λ com k e j fixos

Variando k com λ e j fixos

Conclusões

- Esparsidade dificulta o acompanhamento do índice, mas não o inviabiliza
- Penalização nos custos de transação também dificulta o acompanhamento do índice
 - Em especial, a evolução monetária da carteira
- Não basta avaliar os retornos diários, é essencial avaliar a evolução monetária
 - o Considerando custos de transação, deve ser necessário bater o índice e não apenas replicá-lo.
- Turnovers não variaram muito com o aumento da penalização

Referências

[1] BENIDIS, Konstantinos et al. Optimization methods for financial index tracking: From theory to practice. Foundations and Trends® in Optimization, v. 3, n. 3, p. 171-279, 2018.