Lecture 11

State Space Control

- $\bullet \quad x_{m+1} = Ax_m + Bu_m$
- $y_m = Cx_m$
 - No noise
 - Controllable
 - Observable
- Full state feedback control

- $u_m = -kx_m$
- $\bullet \ x_{m+1} = Ax_m BKx_m$
- $\bullet = (A BK|x_m)$
- $\bullet~$ We get to pick the value of K
- $x_m = 0$

- $\bullet \quad x_{m+1} = A * 0 KB0$
- $x_{m+1} = (A BK)x_m$
- $||x_{m+1}|| = ||(A BK)x_m||$
- $||x_{m+1}|| <= ||A BK||||x_m||$

Control Example

- $\bullet \ y'' + y' + y = u$
- $x_{m+!} = Ax_m$
- Want to control to y*
- $u = K(x^* x)$

Observer

• Estimates the current state

- Model means that you know A, B, C
- $\bullet \ \widetilde{x_{m+1}} = A\widetilde{x_m} + Bu_m$
- As long as you know X_0
- $\widetilde{x_0} = x_0$
- $\widetilde{x_1} = Ax_m + Bu_m$
- This is open loop control

Construct an observer

- Control observation error to zero
- $\widetilde{x_{m+1}} = A\widetilde{x_m} + Bu_m + L(y_m \widetilde{y_m})$

Plant

$$\bullet \quad x_{m+1} = Ax_m + Bu_m$$

•
$$y_m = Cx_m$$

Model

•
$$\widetilde{x_{m+1}} = A\widetilde{x_m} + Bu_m + L(y_m - \widetilde{y_m})$$

•
$$\widetilde{y_m} = C\widetilde{x_m}$$

Error Analysis

$$\bullet \quad x_{m+1} - \widetilde{x_{m+1}}$$

•
$$Ax_m = Bu_m - A\widetilde{x_m} - Bu_m - L(y_m - \widetilde{y_m}) - cx_m + c\widetilde{x_m}$$

•
$$= (A - Lc)(x_m - \widetilde{x_m})$$

- Pick L so poles are in the unit circle
- (A Bk) = luneberg observer