Lab Report 6

Name: Sricharan Vinoth Kumar

Roll no: 2024112022

Group no: 10

Experiment 1:-

• Objective:

To create a S-R Latch using NOR gates and observe its function.

- Electronic Components Required:
 - o 7402 2-input NOR gate IC
 - o Digital Test Kit
- Reference Circuit:-

• Procedure:-

- 1. Ensure that the input pins IP1-12 and output LEDs LG1-12 and LR1-12 are working.
- 2. Using a 2-input NOR gate IC, assemble an SR latch as shown in the circuit diagram.
- 3. Apply all possible inputs of R and S to the latch and observe the outputs in each case.
- 4. Tabulate the observations and verify the function of the S-R latch.

Observation:-

Function table of the circuit,

S	R	Q(t+1)
0	0	Q(t) (Memory state)
0	1	0 (Reset)
1	0	1 (Set)
1	1	Forbidden

• Conclusion:-

An S-R latch using NOR gates has been assembled and its function has been observed.

• <u>TinkerCAD Simulation:</u>-

https://www.tinkercad.com/things/5X1xLI4e2QS-dsm-lab-6-exp-1?sharecode=LkADH9MJCZeNb d3srh3YiamyXwN9jUDJuAE9Fspz9Q

Experiment 2:-

• Objective:-

To create a J-K Flip Flop and observe its function.

• Electronic Components Required:-

- 1. 7420 4-input NAND gate IC
- 2. 7400 2-input NAND gate IC
- 3. 7402 2-input NOR gate IC
- 4. Digital Test Kit

• Reference Circuit:-

• Procedure:-

- 1. Ensure that the input pins IP1-12 and output LEDs LG1-12 and LR1-12 are working.
- 2. Set the CLOCK of the kit to SLOW mode or Manual mode.
- 3. Using the above-mentioned ICs, assemble the circuit as per the given circuit diagram.
- 4. Apply all possible combinations of J and K and observe the outputs.
- 5. Tabulate the observations and verify the function of the J-K Flip flop.

• Observation:-

Observed characteristic table of the circuit,

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

• Conclusion:-

A J-K Flip flop has been assembled and its function has been observed.

• TinkerCAD Simulation:-

https://www.tinkercad.com/things/cCOD9E9mK0A-dsm-lab-6-exp-2?sharecode=zkHdzxTSTKf0m-

X_W_gAmhNmPn6RYiz2QeUedzCtbU

Experiment 3:-

• Objective:-

To design a 4 – bit binary counter using Arduino

- Electronic Components Required:
 - o Arduino Uno
 - o Digital Test Kit
- Reference Circuit:-

• Procedure:-

- 1. Connect the Arduino to 4 output LEDs as per the given circuit diagrams.
- 2. Write a program to oscillate the output level of the pins, such that each pin has twice the time period of its adjacent pin.
- 3. Upload the code and observe the output

Observation:-

```
Code of the program,
#include "Timer.h"
Timer t;
int pin1 = 7;
int pin2 = 6;
int pin3 = 5;
int pin4 = 4;
void setup() {
  pinMode(pin1, OUTPUT);
  pinMode(pin2, OUTPUT);
  pinMode(pin3, OUTPUT);
  pinMode(pin4, OUTPUT);
  t.oscillate(pin1, 8000, LOW);
  t.oscillate(pin2, 4000, LOW);
  t.oscillate(pin3, 2000, LOW);
  t.oscillate(pin4, 1000, LOW);
}
void loop() {
  t.update();
}
```

• Conclusion:-

A 4-bit counter has been successfully assembled using the Arduino.

• TinkerCAD Simulation:-

TinkerCAD does not support the Timer.h library used in the program.

Therefore, the code used in the simulation is different. But the basic idea is the same.

https://www.tinkercad.com/things/ca3EYNGTRjL-dsm-lab-6-exp-3?sharecode=EKSB2RT2Bv1hWBuRSv4DTtsvnatSO2Al-Q6kosErUPE