1 Généralités sur les variables aléatoires discrètes

- ▶ Pour X v.a.à valeurs entières $X(\Omega) \subseteq \mathbb{Z}$: probabilités élémentaires $\mathbb{P}(X = k) = p_k$.
- ▶ Probabilité d'un événement $\mathbb{P}{X \in A} = \sum_{k \in A} p_k$,
- ▶ Fonction de répartition (définie sur \mathbb{R} par) $\forall N$: $F_X(N) \stackrel{\text{(def)}}{=} \mathbb{P}(X \leqslant N) = \sum_{k \leqslant N} p_k$
- ▶ Espérance : moyenne (des valeurs) de X (pondérée par ses proba élémentaires) : $\mathbb{E}[X] = \sum_{k \in X(\Omega)} kp_k$
- ▶ Variance
 - Définition $Var(X) = \mathbb{E}[(X \mathbb{E}[X])^2]$
 - ► König-Huygens (Orthographe!) $Var(X) = \mathbb{E}[X^2] \mathbb{E}[X]$) et l'astuce de calcul : $\mathbb{E}[X^2] = \mathbb{E}[X(X-1)] + \mathbb{E}[X]$.
- ▶ Définition sous réserve Si $X(\Omega)$ est infini $(p. ex. X(\Omega) = \mathbb{N})$, alors $\mathbb{E}[X]$ et $\mathrm{Var}(X)$ sont définies sous réserve de convergence absolue des séries $\sum_{k=0}^{\infty} kp_k$, $\sum_{k=0}^{\infty} k^2p_k$ (Moments d'ordre 1 et 2)

2 Lois discrètes usuelles au programme d'Ece

Le processus de Bernoulli

- ▶ Il décrit la répétition d'une épreuve de Bernoulli à 2 issues : Échec / Succès
- ▶ modélisée par des v.a. indépendantes et identiquement distribuées $\epsilon_1 \dots \epsilon_n \hookrightarrow \mathcal{B}(p)$.
- Résultat codé par une suite de **bit** (chiffres binaires 0 ou 1) (exemple : 0010011101)

Définitions associées

- Le coefficient binomial $\binom{n}{k}$ dénombre ces suites pour longueur =n , nb. de succès =k
- Loi binomiale $\mathcal{B}(n,p)$: modélise le nombre de succès après cette répétition. (ici : 5)
- Loi géométrique G(p): rang d'apparition du 1^{er} succès (répétition infinie). (ici : 3)

Sommes et séries usuelles en probabilités

- Formule du binôme et dérivées $\forall a, b \in \mathbb{R}, n \in \mathbb{N}, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- ightharpoonup Série géométrique et dérivées Les séries suivantes convergent ssi~|q|<1, et l'on a alors :

$$\sum_{k=0}^{+\infty} q^k = \frac{1}{1-q} \qquad \sum_{k=1}^{+\infty} kq^{k-1} = \frac{1}{(1-q)^2} \qquad \sum_{k=2}^{+\infty} k(k-1)q^{k-2} = \frac{2}{(1-q)^3}$$

▶ Définitions de l'exponentielle Pour $\lambda \in \mathbb{R}$ (convergence $\forall \lambda$)

$$\exp(\lambda) = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!}$$
 $\exp(\lambda) = \lim_{n \to \infty} \left(1 + \frac{\lambda}{n}\right)^n.$

Loi		Paramètres		Proba $\mathbb{P}(X=k)$	Espérance $\mathbb{E}[X]$	Variance $Var(X)$
de Bernoulli	$\mathcal{B}(p)$	0	k = 0, 1	q, p	p	pq
Uniforme	$\mathcal{U}\{a:b\}$	$a \leqslant b \in \mathbb{Z}$	$a \leqslant k \leqslant b$	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Binomiale	$\mathcal{B}(n,p)$	$n \in \mathbb{N}, p$	$0 \leqslant k \leqslant n$	$\binom{n}{k} p^k q^{n-k}$	np	npq
Géométrique	$\mathcal{G}(p)$	0	$k \geqslant 1$	pq^{k-1}	$\frac{1}{p}$	$\frac{q}{p^2}$
de Poisson	$\mathcal{P}(\lambda)$	$\lambda > 0$	$k \geqslant 0$	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ

FIGURE 1 – Lois discrètes au programme d'ECE

Interprétation de $\mathcal{P}(\lambda)$: approximation des événements rares

Si N est grand, et p petit, avec $\lambda = pN$ « raisonnable », alors $\mathcal{B}(N,p) \sim \mathcal{P}(\lambda)$ (Semestre 2 : c'est un phénomène de convergence en loi , noté :)

$$\mathcal{B}\left(N, \frac{\lambda}{N}\right) \stackrel{\mathcal{L}}{\to} \mathcal{P}(\lambda) \quad \text{pour } N \to \infty$$