ДИПЛОМНАЯ РАБОТА

по специальности: «Математическое обеспечение и администрирование информационных систем»

Жесткова Ирина Анатольевна

«Расчет в среде ANSYS контактного взаимодействия инструмента с обрабатываемой деталью при ультразвуковой обработке»

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

- Целью работы является моделирование и расчет в среде ANSYS контактного взаимодействия инструмента с обрабатываемой деталью при ультразвуковой обработке для повышения эффективности и качества изготовления деталей машиностроения.
- о Для достижения поставленной цели необходимо решить следующие задачи:
- 1. Разработать в среде ANSYS конечно-элементную модель контактного взаимодействия при ультразвуковой обработке инструмента с поверхностью детали при его различной подаче, диаметре и глубине внедрения.
- 2. Разработать программу автоматизации создания входного файла импорта в конечно-элементную среду ANSYS.
- 3. Исследовать в среде ANSYS напряженнодеформированное состояние поверхностного слоя при ультразвуковой обработке различных металлов на примере идеальной модели поверхности и реальной шероховатости.

СХЕМА КОНТАКТНОГО ВЗАИМОДЕЙСТВИ ИНСТРУМЕНТА С ПОВЕРХНОСТЬЮ ДЕТАЛИ ПРИ УЗО

R – радиус инструмента;

Rmax – максимальная высота шероховатости;

h – полная остаточная деформация;

h0 – пластическая деформация основания микропрофиля;

hm – деформация микронеровностей;

 α – перемещение инструмента.

На сторонах 1, 2 и 3 отсутствует течение металла.

МЕТОДИКА РАСЧЕТА В СРЕДЕ ANSYS КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ ИНСТРУМЕНТА С ОБРАБАТЫВАЕМОЙ ДЕТАЛЬЮ ПРИ УЗО

- 1. Запустить режим препроцессора (/prep7);
- 2. задать все точки поверхности детали (команда К для каждой точки);
- 3. задать тип элемента (PLANE182) и физико-математические параметры металла(MPDATA);
- 4. задать точки обрабатывающего инструмента (команда К для каждой точки);
- 5. соединить точки поверхности детали отрезками (команда L для каждой пары точек), а точки сектора дугой (команда LARC) и отрезками;
- 6. создать поверхности по линиям (команда AL);
- 7. задать разбиение линий (команды LSEL, LESIZE);
- 8. разбить объем на конечные элементы (команды ASEL, AMESH);
- 9. создать контактную пару разбить поверхность детали на элементы типа CONTA172, а поверхность инструмента элементами типа TARGE169;
- задать граничные условия для поверхности и перемещение инструмента, привязывая условия к линиям (команда DL);
- 11. сохранить файл этапа нагружения для каждого перемещения инструмента (команда LSWRITE);
- 12. войти в режим решателя (/SOL);
- 13. определить параметры решения (команды ANTYPE, NLGEOM, NSUBST, OUTRES);
- 14. запустить решение для всех этапов перемещения инструмента (команда LSSOLVE).

Графический интерфейс программы автоматизации создания входного файла импорта в конечно-элементную среду ANSYS

Программа написана при помощи QT – кроссплатформенного инструментария разработки ПО на языке программирования C++. Программа автоматически выполняет задачу в части препроцессорной и процессорной подготовки данных для расчета в среде ANSYS

🔃 Создание входного файла для расчетов		
Имя входного файла ogram/Programma/000.inp Обзор		
Коэффициент Пуассона	0.3	
Плотность	7800	кг/(м^3)
Модуль упругости	2.1E11	Па
Перемещение	0.00008	М
Предел текучести	250E6	Па
Начать Отмена		

РЕЗУЛЬТАТ РАБОТЫ ПРОГРАММЫ АВТОМАТИЗАЦИИ СОЗДАНИЯ ВХОДНОГО ФАЙЛА ИМПОРТА В КОНЕЧНО-ЭЛЕМЕНТНУЮ СРЕДУ ANSYS

РЕЗУЛЬТАТ КОНЕЧНО-ЭЛЕМЕНТНОГО МОДЕЛИРОВАНИЯ И РАСЧЕТА В СРЕДЕ ANSYS КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ ИНСТРУМЕНТА С ОБРАБАТЫВАЕМОЙ ДЕТАЛЬЮ ПРИ УЗО

Картина распределения эквивалентных (по Мизесу) напряжений при первом соударении, Па

Картина распределения эквивалентных (по Мизесу) остаточных напряжений после пятого соударения, Па

ИССЛЕДОВАНИЕ ВЕЛИЧИНЫ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ ПРИ УЛЬТРАЗВУКОВОЙ ОБРАБОТКЕ СТАЛИ 45 ПРИ ПОДАЧЕ 0,02 ММ С ИЗМЕНЕНИЕМ ДИАМЕТРА ИНСТРУМЕНТА И ГЛУБИНЫ ЕГО ВНЕДРЕНИЯ

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТВЁРДОСТИ ПОВЕРХНОСТИ ДЕТАЛИ НА ВЕЛИЧИНУ МАКСИМАЛЬНЫХ И ОСТАТОЧНЫХ НАПРЯЖЕНИЙ ПРИ УЛЬТРАЗВУКОВОЙ ОБРАБОТКЕ ДЕТАЛИ

РЕЗУЛЬТАТ РАСЧЕТА В СРЕДЕ ANSYS МОДЕЛИ УЗО С РЕАЛЬНОЙ ШЕРОХОВАТОСТЬЮ, СОЗДАННОЙ ПРОГРАММОЙ АВТОМАТИЗАЦИИ СОЗДАНИЯ ВХОДНОГО ФАЙЛА ИМПОРТА В КОНЕЧНО-ЭЛЕМЕНТНУЮ СРЕДУ

ANSYS

Картина распределения эквивалентных (по Мизесу) напряжений после соударения инструмента с шероховатостью, Па