		Kages: 6

		•	The state of the s
Reg No.:	Name:	• .	The second of th
<u> </u>			· · · · · · · · · · · · · · · · · · ·

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE COMPREHENSIVE EXAMINATION, MAY 2019

				Convenience Code			`	
Max	. Marks		e nai	ne: COMPREF	1LN	SIVE EXAM (CS))	Duration: 1 Ho
which only ONE is				ons: 50 inswered. Each ques ect. is chosen, it will not	tion w	vill be followed by 4 poss	ible a	nswers of
1.	The ra	adius of convergence	e of t	he series $\sum_{k=1}^{\infty} \frac{(x-1)^k}{k^2}$	$\frac{5)^k}{1}$	S		
	a)	1	b)	2	c)	3	d)	0
2.	Soluti	fon of y''' - y' = 0	is					
	a)	$c_1 + (c_2 + c_3 x)e^x$	b)	$c_1e^x+c_2e^{-x}$	C)	$\epsilon_1+\epsilon_2e^x+\epsilon_3e^{-x}$	d)	$c_1 + (c_2 + c_2 x) \varepsilon$
3.		ss m is attached to two			ving	spring constant k. N	atura	I frequency of the
	a)	$\sqrt{2k/m}$	b)	$\sqrt{3k/m}$	c)	$\sqrt{4 k/m}$	d)	$\sqrt{k/m}$
4.		of weight 100N is to on in the cord is	ied to	o a smooth wall b	уас	ord making an angle	of 30	degree to the wa
	a)	86.6	b)	50	c)	75.5	d)	0
5.		esired features or ch ility for a given task		eristics of the des	ign tl	nat determine its ulti	mate	effectiveness or
	a)	Design Function	b)	Design Constraints	c)	Design analysis	d)	Design Function
6.	In 'Ho	ouse of Quality' the	roof	represents:				
	a)	Relationship between customer and manufacturer	b)	Inter- relationship between technical requirements	c)	Relation between customer and technical requirements	d)	Customer requirements
7.	Lowes	st atmospheric temp	eratu	•				
	a)	Troposphere	b)	Stratosphere	c)	Thermosphere	d)	Mesosphere

Industrial Symbiosis aims at

8.

	a)	zero waste generation	b)	energy efficiency	,	nigh employment generation	,	industrial mechanisation
9.	A 5 ca	m long line is paral	lel to	VP and inclined a	at 30° to	HP. What is its le	ngth i	n the front view?
	a)	4.33 cm	b)	2.5 cm	c) 5	5 cm	d)	2.88 cm
10.		inder is placed on F			ion plan	ne is inclined to V.I	Pand	perpendicular to
	H.P C	utting the solid the	sectio	n gives		•		
	a)	parabola	b)			ectangle	d)	ellipse
	~~			PART B- C	ORE C	OURSES		•
11.	Wh	ich of the followin	g are	tautologies?				
		1. p ∨ ~p	2 . j	p ∧ ~p	3. p V	(q V ~q)	4	$-p \lor (q \land \sim q)$
	a)	1 and 3	b)	3 and 4	c)	2 and 4	d)	1 and 2
12.	G=	{0,1,2,3,4,5} is a g	roup ι	ınder multiplication	on mod	ulo 6. Which are th	e cyc	lic generators
	a)	1, 3, and 5	b)	1 and 5	c)	1, 2, and 3	d)	1, 2, 3, 4. and 5
13.	If A	$A = {\alpha, \mu}$ and $B = {1,$	2,3},v	what is n(AXB)?				
	a)	4	b)	6	c)	5	d)	3
14.		very team has to plyed?	ay 19	games in a round	robin l	eague, totally how	many	matches are to be
	a)	250	b)	300	c)	200	d)	190
15.	Fin	d the complement of	of 2 in	the lattice (S ₆₀ , E) where	e D is Divisor		
	a)	2	b)	15	c)	6	d)	None of these
16.	Cor	verse of $P \rightarrow Q$ is						
	a)	$1P \rightarrow 1Q$	b)	$Q \rightarrow P$	c)	$1Q \rightarrow 1P$	d)	$P \rightarrow Q$
17.	Eve	ry chain is a	lat	tice				·
	a)	distributive	b)	complemented	c)	complete	d)	bounded
18.	Wh	ich of the following	g is no	et efficiently supp	orted by	a singly linked lis	t?	
	a)	Accessing an element in the current position	b)	Insertion after current position	c)	Insertion before current position	d)	Traversing to the position immediately after the current
19.		inorder and preord ectively. What is th					i [a e	position b f d c g]
	a)	b f e c g d a	b)	edbgfca	c)	e d b f g c a	d)	defgbca
20.	Con	sider the following	loop					

for i = 1 to n

T	T
	F
t	J

V1108

Pages: 6 REFERENCE

for j = i + 1 to n

print "Hi"

æ.t						_	_	_	{
The	asymi	ptotic	time	comp	lexity	of a	bove	loor) is

- $O(n^3)$
- $O(n \log n)$ **b**)
- O(n)
- 21. Time complexity of inserting a new node at the middle of a single linked list is
 - $O(\log n)$
- b) O(1)
- $O(n \log n)$
- O(n)
- With only enqueue and dequeue operations, how many queues will you need to implement a stack using queue?
 - a)
- (b) 3

- (d)
- A hash function f defined as f(key)= key mod 7, with linear probing used to resolve collisions. 23. Insert the keys 37,38,72,48,98 and 11 into the table indexed from 0 to 6. What will be the location of 11?
 - a) 3
- (b) 5

- (d) 6
- The following sequence of operations are performed on a stack: 24.

PUSH(10), PUSH(20), POP, PUSH(10), PUSH(20), POP, POP, POP, POP, POP, POP

The sequence of values popped out is:

- 20,10,20,10,20
- 20,20,10,10,20 (b)
- 10,20,20,10,20
- 20,20,10,20,10

Consider the given grammar 25.

 $S \rightarrow AB$

 $A \rightarrow BB/a$

 $B \rightarrow AB/b$

Choose incorrect statement.

- aaab can be a) derived from above grammar.
- bbab can be (b) derived from above grammar.
- abba can be derived from above grammar.
- abbab can be (d) derived from above grammar.
- 26. Let N be an NFA and w be a string. We say that N accepts w. if
 - All computation paths of N on w reach an accept state.
- Exactly one (b) computation path of N on w reaches an accept state.
- No computation c) paths of N on w reach an accept state.
- At least (d) computation paths of Non w reach an accept state.
- 27. Consider the following language, $L = \{w \in \{0, 1\} \mid w \text{ is a palindrome }\}$, Which of the following grammar generates the above language?

 - a) $S \rightarrow 0S0 \mid 1S1 \mid$ (b) $S \rightarrow 0S0S \mid 1S1S$ c) $S \rightarrow 0S0 \mid 1S1 \mid$ (d) $S \rightarrow 0S0 \mid 1S1$

- 0 1
- $0 \mid 1 \mid \epsilon$

28.	A Turing machine that is able to simulate other Turing machines									
	a)	Nested Turing machines	(b)	Universal Turing machine	c)	Counter machine	(d)	Multi-tape Turing Machine		
29.		ile applying pum and fragment it		emma over a regular parts.	langu	age, we consider a	string			
	a)	2	(b)	5	c)	3	(d)	6		
30.		w many states will over the alphabe		ere for the minimum a,b}?	state	DFA that accepts	string	s which ends wi		
	a)	1	(b)	2	c)	3	(d)	4		
31.	Wh	ich of the followi	ng ope	erators is not presen	t in a	ny regular expressi	on?			
	a)	union	(b)	concatenation	c)	Kleene closure	(d)	division		
32.	The	page table conta	ins					-		
	a)	base address of each page in physical memory	(b)	page offset	c)	page size	(d)	none of the mentioned		
33.	Wh	ich of the followi	ng stat	ements are true?						
	I. Sł	hortest remaining	time f	irst scheduling may	cause	starvation				
	II. P	Preemptive schedu	ıling n	nay cause starvation						
	III.	Round robin is be	etter th	an FCFS in terms of	respo	onse time				
•	a)	Ionly	(b)	I and III only	c)	II and III only	(d)	I, II and III		
34.				nitially at 32, find the requests are 98, 37,			requir	ed with FCFS if		
	a)	319	(b)	326	c)	338	(d)	360		
35.	A co	ounting semaphor	e is in	itialized to 4. Then 8	P(wa	it) and 3 V (signal) oper	ations are		
	perf	ormed on the sem	aphore	e. The final value of	the se	maphore is				
	a)	1	(b)	-1	c)	2	(d)	-2		
36.	Simp	plest way of dead	lock re	ecovery is						
	a)	Roll back	(b)	Pre-empt resource		Lock one of the process	` '	Kill the one of the process		
37.		pose that a procest pleted, it goes to t		"Blocked" state wait	ing fo	or some I/O service	e. Whe	en the service is		
) ()		Running state	(b)	Ready state	c)	Suspended state	(d)	Terminated state		
38.	in fix	ked size partition,	the de	gree of multiprogran	nmin	g is bounded by		·· <u>·········</u>		
	•	the number of partitions	(b)	the CPU utilization	c)	the memory size	(d)	all of the mentioned		

					WAR AND	M-15 X	The state of the s
39.	Which of the followi execution?	ng regi	ster automatically ir	icreme	ents its contents du	ring ti	he instruction
	a) Instruction Register(IR)	(b)	Program Counter(PC)	c)	General Purpose register	(d)	Link Register
40.	What is the range of numbers?	actual e	` /	E sing	_	rd for	floating point
	a) -126 to 127	(b)	-127 to 127	c)	-128 to 128	(d)	-126 to 126
41.	The method for upda called	ting the	e main memory as so	on as	a word is removed	l from	the Cache is
	a) write-through	(b)	write-back	c)	protected write	(d)	cache-write
42.	Instruction decoder o	f a CPI	J				
	a) Decodes the instruction and carries out the arithmetic and logical operations	(b)	Decodes the instruction and generates the corresponding control signals.	c)	Decodes and stores the instruction currently being decoded.	(d)	None of the above
43.	The number -112 can	be rep	resented in sign and	magn	itude method (8 bi	t num	ber) as
	a) 00001111	(b)	11110000	c)	00010000	(d)	01110000
44.	A computer uses 32-less capacity of 32KB. East TAG, SET, and OFF:	ch cacl	ne block contains 16	bytes	. Calculate the nun		
45.	a) TAG=18, SET=10, OFFSET=4 Consider the join of a	relatio				(d) S has	TAG=16, SET=8, OFFSET=8 n tuples then the
	maximum and minim	um siz	es of the join respec	tively	are		
	a) m + n and 0	b)	mn and 0	c)	m + n and m – n	d)	mn and m + n
46.	Consider the relation dependencies {{E,F}} What is the key for R	$\rightarrow \{G$			L, M, N) and the se		
•	a) {E,F}	b)	$\{E,F,H\}$	c)	$\{E,F,H,K,L\}$	d)	{E}
17.	If every non-prime at relation will be in	tribute	is fully functionally	depen	dent on the primar	y key,	, then the
	a) BCNF	(b)	2NF	c)	INF	(d)	3NF
18.	Suppose that we have = 1024 bytes. File rec						

- 10 and 3000 a) 3000 and 10 (b) 10 and 300 c) 8 and 3000 (d) 49. What does the following query do? UPDATE student SET marks = marks*1.10; It increases the (b) a) It decreases the It increases the c) It is (d)
 - a) It increases the (b) It decreases the marks of all the students by 10%

 It increases the (c) It increases the marks of all the students by 90% students by 90% students by 10%

 It increases the (d) It is marks of all the syntactically students by 10%
- Amongst the ACID properties of a transaction, the 'Durability' property requires. that the changes made to the database by a successful transaction persist
 - a) Except in case (b) Except in case of c) Except in case (d) Always, even if of an operating a disk crash of a power there is a failure of any kind
