Introduction to Audio and Music Engineering

Lecture 16

Topics:

- Tone and frequency spectra
- Filtering and frequency content of signals
- RC Low-pass and high-pass filters
- RLC Band pass filters
- Filter banks and Graphic Equalizers

Tone?

- The quality or character of sound
- The characteristic quality or timbre of a particular instrument or voice.
- The character or quality of a musical sound or voice as distinct from its pitch and intensity.

```
Frequency → pitch

Sound pressure level → intensity (loudness)

Attack, Spectrum, Spectral evolution → tone (timbre)
```

Tone is related to the <u>spectrum</u> of a waveform.

The <u>spectrum</u> is a display of the frequency content of a waveform.

If the overtones are at integer multiples of the fundamental they are called <u>harmonics</u>, e.g., $2f_0 \rightarrow 2^{nd}$ harmonic, etc.

Most musical sounds have harmonic (or nearly so) overtones.

Back to circuits ...

Applying a filter to alter tone ...

Examples ...

1st order RC low-pass and high-pass filters

Matlab Simulation

Begin with harmonic overtone series.

Equal amplitude sine waves at integer multiples of f_0

High Pass

Low Pass

Band Pass Filters

Voltage divider: R & L//C

$$\mathbf{v}_{out} = \mathbf{v}_{in} \frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2}$$

$$\frac{1}{2} \circ V_{\text{out}}$$

$$L//C = \frac{j\omega L \cdot \frac{1}{j\omega C}}{j\omega L + \frac{1}{j\omega C}} = \frac{j\omega L}{1 - \omega^2 LC}$$

$$v_{out} = v_{in} \frac{\frac{j\omega L}{1 - \omega^2 LC}}{R + \frac{j\omega L}{1 - \omega^2 LC}}$$

$$v_{out} = v_{in} \frac{\frac{\omega}{\omega_0} Q}{\left[\left(1 - \frac{\omega^2}{\omega_0^2} \right)^2 + \frac{\omega^2}{\omega_0^2} Q^2 \right]^{1/2}} \qquad \omega_0 = \frac{1}{(LC)^{1/2}}$$
$$Q = \frac{\omega_0 L}{R}$$

Graphic Equalizer

Bank of bandpass filters ...

 $Q = 1/\sqrt{2} = 0.707 \rightarrow Butterworth Bandpass (2nd order)$

Fletcher Munson - hearing response

It's OK if the filter response decreases a bit (≈ -3 dB) at high frequencies because human hearing sensitivity increases (≈ +20 dB).

Octave filters (Constant "Q")

Center frequencies increase by octaves (x2):

$$f_{n+1} = 2f_n$$

Fractional bandwidth is fixed:

$$\Delta f_n/f_n = Q^{-1}$$

Filter Performance ...

Tradeoff between ripple and frequency selectivity ...

10-Band Graphic EQ Demonstration using Matlab/Simulink

fc = [31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000] Hz

