36. Директориальное свойство эллипса.

37. Директориальное свойство Гиперболы

Директориальное свойство эллипса.

Точка M принадлежит эллипсу \iff отношение расстояния от M до фокуса к отношению расстояния до соответствующей директрисы равно эксцентриситету

Доказательство

 \Longrightarrow . Возьмём правый фокус и правую директрису. $d=rac{a}{e}$

$$d = |MD| = \left|rac{a}{e} - x
ight| = \left|rac{a - ex}{e}
ight|$$
 $rac{|F_2M|}{d} = rac{|a - ex|}{\left|rac{a - ex}{e}
ight|} = e$

 \longleftarrow . Пусть M(x,y) - произвольная точка плоскости такая, что $\dfrac{|F_2M|}{d(M,l)}=e.$

$$egin{aligned} rac{\sqrt{(x-c)^2+y^2}}{\left|x-rac{a}{e}
ight|} &= e \ &\sqrt{(x-c)^2+y^2} = e \left|x-rac{a}{e}
ight| \ &\sqrt{(x-c)^2+y^2} = |ex-a| \ &x^2-2cx+c^2+y^2 = e^2x^2-2eax+a^2 \ &(1-e^2)x^2+y^2 = a^2-c^2 \end{aligned}$$

После преобразований получаем уравнение эллипса, что и требовалось доказать.