

21415

17349

3 Hours/100 Marks

Seat No.				

- **Instructions**: (1) **All** questions are **compulsory**.
 - (2) Figures to the **right** indicate **full** marks.
 - (3) **Use** of non-programmable Electronic Pocket Calculator is **permissible**.
 - (4) Mobile Phone, Pager and any other Electronic Communication devices are **not permissible** in Examination Hall.

MARKS

1. Attempt any ten:

- 20
- a) Find slopes of tangent and normal to the curve $x^2 + y^2 = 25$ at (-3, 4). 2
- b) Divide 80 into two parts such that their product is maximum. 2
- c) Evaluate $\int \frac{dx}{(x+1)(x+3)}$. 2
- d) Evaluate $\int (x+1)^2 dx$. 2
- e) Evaluate $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$. 2
- f) Evaluate $\int_{-2x+3}^{4} \frac{dx}{2x+3}$ 2
- g) Find order and degree of the differential equation $\frac{d^2y}{dx^2} = \sqrt[3]{1 + \frac{dy}{dx}}$. 2
- h) Solve $(1 + x^2)dy (1 + y^2)dx = 0$. 2
- i) From a pack of 52 cards one is drawn at random. Find the probability of getting a King.
- j) Two unbiased coins are tossed. What is the probability of getting a head and a tail?
- k) If two unbiased dice are rolled, what is the probability that sum is equal to 9? 2
- I) Find area under the curve $y = x^3$ from x = 1 to x = 3. 2

P.T.O.

2

2

MARKS

2. Attempt any four:

16

a) Find equation of tangent to the curve $x = \frac{1}{t}$, $y = t - \frac{1}{t}$ when t = 2.

4

4

b) The equation of tangent at the point (2, 3) on the curve y = ax³ + b is y = 4x - 5. Find a and b.
c) A metal wire 100 cm long is bent to form a rectangle. Find its dimensions

4

4

when its area is maximum.

4

d) Show that the radius of curvature at any point on the circle $x^2 + y^2 = 16$ is 4.

4

e) Evaluate $\int \frac{dx}{x(1+\log x) (2+\log x)}.$

4

f) Evaluate $\int \frac{xdx}{(1+\cos 2x)}$.

3. Attempt any four:

16

a) Evaluate ∫sec³ x dx.

4

b) Evaluate $\int_0^{\pi/2} \frac{\cos x}{4 - \sin^2 x} dx$.

4

c) Evaluate $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$.

4

4

d) Evaluate $\int_0^{\pi/2} \log(\tan x) dx$.

4

e) Find area of the circle $x^2 + y^2 = 25$ using definite integration. f) Find by integration area between the curves y = x and $y = x^2$.

4

4. Attempt any four:

16

a) Evaluate $\int_0^{\pi/2} \frac{dx}{1 + \sqrt[n]{\cot x}} \ .$

4

b) Evaluate $\int_{1}^{4} \frac{\sqrt[3]{g-x}}{\sqrt[3]{q-x} + \sqrt[3]{x+4}} dx$.

4

MARKS

16

16

4

c) Evaluate
$$\int_{0}^{1} x^{3} \tan^{-1} x \, dx$$
.

d) Evaluate
$$\int_0^{\pi/2} \log(\sin x) dx$$
.

e) Evaluate
$$\int_{-1}^{1} \frac{x + x^2}{1 + x^2} dx$$
.

f) Evaluate
$$\int_0^1 \frac{dx}{x^2 - x + 1}$$
.

5. Attempt any four:

a) Form the differential equation whose solution is
$$y = e^{m \tan^{-1} x}$$
.

b) Solve xy
$$\log = y \, dx + (1 + x^2) dy = 0$$
.

c) Solve
$$(4x + y^2) \frac{dy}{dx} = 1$$
.

d) Solve
$$\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$$
, given $y = 2$ when $x = 1$.

e) Solve
$$(x^2 + 6xy - y^2)dx + (3x^2 - 2xy + y^2)dy = 0$$
.

f) Solve
$$(1 + x^2) \frac{dy}{dx} + y = e^{\tan^{-1}x}$$
.

6. Attempt any four:

a) A box contains 7 red, 5 white and 8 green balls identical in all respect except colour. One ball is drawn at random, find the probability that it is not white.

b) A problem of mathematics is given to three students A, B, C whose chances of solving it are $\frac{1}{3}$, $\frac{3}{4}$ and $\frac{1}{4}$ resp.

What is the probability that

- 1) The problem will be solved?
- 2) The problem will be solved by each of them?

MARKS

4

4

c) Given
$$P(A) = \frac{1}{2}$$
, $P(B') = P(A \cup B) = \frac{2}{3}$. Find $P(A' \cap B')$.

- d) Assuming that 2 in 10 industrial accidents are due to fatigue find the probability that exactly 2 out of 8 accidents will be due to fatigue.
- e) If a random variable has Poisson's distribution P(2) = P(3), find P(5).
- f) The mean weight of 500 students at a certain college is 50 kg and S.D. is 6 kg. Assuming the weights are normally distributed find the no. of students weighing between 40 kg and 50 kg A (1.67) = 0.4525.
