5.6. The Central Limit Theorem

1. Theorem. Let X_1, \dots, X_n be a random sample of size n from a population X, and suppose that the population X has mean μ and variance σ^2 . Define the sample mean \bar{X} as usual, that is,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n).$$

It is clear that \bar{X} has mean μ and variance σ^2/n . Let W be the standardization of \bar{X} . That is, define

$$W = \frac{X - \mu}{\sigma / \sqrt{n}}.$$

Then W has mean 0 and variance 1. If n is large, then the distribution of W is approximately N(0,1).

* The proof is out of the scope of this course and is omitted.

2. Example. Suppose that X_1, X_2, \dots, X_{90} are independent Exponential(1) distributions. Define the sample sum Y as usual, that is,

$$Y = X_1 + X_2 + \cdots + X_{90}.$$

Then, Y has mean 90 and variance 90. Define W as the standardization of Y. That is,

$$W = \frac{Y - 90}{\sqrt{90}}.$$

Then, $W \approx N(0,1)$.

,

* In fact, since $Y = X_1 + X_2 + \cdots + X_{90}$ and each $X_i \sim Exponential(1)$, we have

$$Y \sim Gamma(90, 1)$$
.

Hence, again, E(Y) = 90, Var(Y) = 90. The standardization of Y is

$$W = \frac{Y - 90}{\sqrt{90}}.$$

Since 90 is (somewhat) large, by the central limit theorem,

$$W = \frac{Y - 90}{\sqrt{90}} \approx N(0, 1).$$

* The pdfs of $W=\frac{Y-90}{\sqrt{90}}$ and N(0,1) are plotted on the next page. You will see that they are indeed close to each other.

MATH 3332, Kennesaw State, Yang

