# Assignment 4

# Table of contents

| restatapi                   | 2  |
|-----------------------------|----|
| Toc. eurostat               | 2  |
| GDP NUTS 3                  | 2  |
| Population demo_r_pjanaggr3 | 4  |
| Oppgave 1                   | 4  |
| Oppgave 2                   | 4  |
| Oppgave 3                   | 5  |
| Oppgave 4                   | 5  |
| Oppgave 5                   | 5  |
| Oppgave 6                   | 5  |
| Oppgave 7                   | 6  |
| Oppgave 8                   | 6  |
| Oppgave 9                   | 6  |
| Oppgave 10                  | 7  |
| Oppgave 11                  | 7  |
| Oppgave 12                  | 7  |
| Oppgave 13                  | 8  |
| Oppgave 14                  | 9  |
| Oppgave 15                  | 9  |
| Oppgave 16                  | 9  |
| Oppgave 17                  | 10 |
| Oppgave 18                  | 11 |
| Oppgave 19                  | 12 |
| Oppgave 20                  | 12 |
| Oppgave 21                  | 12 |
| Oppgave 22                  | 12 |
|                             | 12 |
| Oppgave 24                  | 13 |
|                             | 15 |

| Oppgave 26   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 16 |
|--------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----|
| Oppgave 27   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 17 |
| Oppgave 28   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 17 |
| Oppgave $30$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 19 |
| Oppgave 31   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 20 |
| Oppgave 32   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 22 |
| Oppgave $33$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 22 |
| Oppgave $34$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 23 |
| Oppgave 35   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 24 |
| Oppgave 36   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 24 |
| Oppgave 37   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 24 |
| Oppgave $38$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 24 |
| Oppgave 39   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 25 |
| Oppgave 40   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 25 |
| Oppgave 41   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 25 |
| Oppgave 42   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 25 |
| Oppgave 43   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 26 |
| Oppgave 44   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 26 |

#### restatapi

#### Toc. eurostat

Vi starter med å hente innholsfortegnelsen fra eurostat. Vi henter innholdsfortegnelsen i rent tekst format. Innholdsfortegnelsen gir vi navnet toc\_txt.

#### **GDP NUTS 3**

Vi søker i toc\_txt etter tabeller med GDP på nivå NUTS 3 vha. funksjonen str\_detect(). Denne funksjonen skiller mellom store og små bokstaver. Siden vi ikke vet hvilken skrivemåte som er brukt for gdp og NUTS 3 benytter vi regex for å matche både små og store bokstaver. Vi benytter filter() for å finne de tabellene vi ønsker. Vi benytter select() for å velge ut kolonnene title og code som vi ønsker å se på. Vi benytter flextable() for å vise tabellen. Vi benytter til slutt autofit() for å tilpasse tabellen til siden. Detaljer om regex finner dere i Slides: Strings and regular expressions og i r4ds ed. 1 chp. 14.

Vi ønsker å finne tabellbeskrivelser som både inneholder gdp og nuts 3. Trikset for enkelt å få dette til er å ha AND (&) utenfor str\_detect(). Det går an å få til en AND inne i en regexp, men dette kan fort bli kronglete og komplisert.

Vi finner fire tabeller listet i toc\_txt.

| title                                                                                        | code                  |
|----------------------------------------------------------------------------------------------|-----------------------|
| Average annual population to calculate regional GD data (thousand persons) by NUTS 3 regions | P<br>nama_10r_3popgdp |
| Gross domestic product (GDP) at current market prices by NUTS 3 regions                      | nama_10r_3gdp         |
| European Union trade mark (EUTM) applications per billion GDP by NUTS 3 regions              | $ipr\_ta\_gdpr$       |
| Community design (CD) applications per billion GDP by NUTS 3 regions                         | ipr_da_gdpr           |

Vi velger å benytte tabellen med kode nama\_10r\_3gdp som har forklarende tekst «Gross domestic product (GDP) at current market prices by NUTS 3 regions». Vi henter «Data Structure Definition» for å finne hva som finnes i dette datasettet. Informasjonen benyttes for å definer «filters» for spørringen mot eurostat.

MERK! Merk bruken av nuts\_level = "3" i filters for å få data på NUTS 3 nivå. Denne parameteren var ikke så lett å finne.

Vi laster så ned «Data Structure Definition (DSD)» for tabellen med code nama\_10r\_3gdp.

| concept | code      | name                                                                                                           |
|---------|-----------|----------------------------------------------------------------------------------------------------------------|
| freq    | A         | Annual                                                                                                         |
| unit    | MIO_EUR   | Million euro                                                                                                   |
| unit    | EUR_HAB   | Euro per inhabitant                                                                                            |
| unit    | EUR_HAB_  | Euro per inhabitant in percentage of the EU27 (from 2020) average                                              |
| unit    | MIO_NAC   | Million units of national currency                                                                             |
| unit    | MIO_PPS_E | Million purchasing power standards (PPS, EU27 2020 from 2020)                                                  |
| unit    | PPS_EU27_ | Purchasing power standard (PPS, EU27 from 2020),<br>2020 HAB<br>per inhabitant                                 |
| unit    | PPS_HAB_I | Purchasing power standard (PPS, EU27 from 2020), EU27_i2020itant in percentage of the EU27 (from 2020) average |
| geo     | EU27_2020 | European Union - 27 countries (from 2020)                                                                      |

| concept | code  | name                                                        |
|---------|-------|-------------------------------------------------------------|
| geo     | BE    | Belgium                                                     |
| geo     | BE1   | Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest |
| geo     | BE10  | Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest |
| geo     | BE100 | Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad           |
| geo     | BE2   | Vlaams Gewest                                               |
| geo     | BE21  | Prov. Antwerpen                                             |

Utfra kodene i dsd\_gdpkan vi da formulere følgende spørring mot Eurostat:

Vi velger å benytte MIO\_PPS\_EU27\_2020 som mål på GNP. Dette er GNP i løpende priser (million Euro). Det kunne vært aktuelt å benytte PPS\_EU27\_2020\_HAB som skal være GNP målt i konstant kjøpekraft. Det synes imidlertid som om PPS\_EU27\_2020\_HAB har urimelige/åpenbart feil verdier for en del regioner.

#### Population demo\_r\_pjanaggr3

#### Oppgave 1

Søk i toc\_txt for tabeller med population og NUTS 3. Pass på at dere dekker både population og Population og ulike skrivemåter for NUTS 3.

#### Oppgave 2

- i. Finn koden for tabellen med forklarende tekst «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions».
- ii. Last ned Data Structure Definition (DSD) for denne tabellen.
- iii. Bruk opplysningene i DSD for å formulere en spørring mot Eurostat og last ned dataene. Gi dataene lastet ned samme navn som Eurostat sin kode for tabellen. Vi er bare interessert i totalbefolkning og ignorerer derfor både kjønn og alder. Vi ønsker data for årene 2000-2020.
- iv. Bruk filter(str\_length(geo) == 5) for å begrense datasettet til NUTS3 regioner. Vi vil gjøre vår egen aggregering.
- v. Hent data for landene:

Hent ned befolkningsdata fra tabellen som har teksten «Population on 1 January by broad age group, sex and NUTS 3 region». Gi også her dataene samme navn som tabell-koden hos Eurostat. Igjen vil vi ikke skille på kjønn eller alder.

#### Oppgave 4

Bruk setdiff() for å finne NUTS3 soner som inngår i «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions», men ikke i «Population on 1 January by broad age group, sex and NUTS 3 region».

```
[1] "DKZZZ" "ESZZZ" "ITG2D" "ITG2E" "ITG2F" "ITG2G" "ITG2H" "ITZZZ" "NLZZZ" [10] "ND020" "ND074" "ND081" "ND082" "ND091" "ND092" "ND0A1" "ND0A2" "ND0A3" [19] "ND0B2" "NDZZZ"
```

#### Oppgave 5

Bruk setdiff() for å finne NUTS3 soner som inngår i «Population on 1 January by broad age group, sex and NUTS 3 region», men ikke i «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions».

```
[1] "BE221" "BE222" "BE321" "BE322" "BE324" "BE325" "BE326" "BE327" "FRXXX" [10] "ITG25" "ITG26" "ITG27" "ITG28" "ITG29" "ITG2A" "ITG2B" "ITG2C" "N0011" [19] "N0012" "N0021" "N0022" "N0031" "N0032" "N0033" "N0034" "N0041" "N0042" [28] "N0043" "N0051" "N0052" "N0053" "N0061" "N0062" "N0073"
```

#### Oppgave 6

Gjør en full\_join() av de to populasjonstabellene. Gi resultatet navnet full\_pop\_nuts3.

Et alternativ som kanskje er mer «clean», er å plukke ut de variablene vi trenger før full\_join().

Bruk setdiff() for å sjekke sonene i full\_pop\_nuts3 mot dem vi har i GDP tabellen.

```
[1] "BE221" "BE222" "BE321" "BE322" "BE324" "BE325" "BE326" "BE327" "FRXXX" [10] "ITG25" "ITG26" "ITG27" "ITG28" "ITG29" "ITG2A" "ITG2B" "ITG2C" "N0011" [19] "N0012" "N0021" "N0022" "N0031" "N0032" "N0033" "N0034" "N0041" "N0042" [28] "N0043" "N0051" "N0052" "N0053" "N0061" "N0062" "N0073"
```

#### Oppgave 8

Bruk setdiff() for å sjekke sonene i GDP tabellen mot dem vi har i full\_pop\_nuts3.

```
[1] "ATZZZ" "BEZZZ" "FIZZZ" "FRZZZ" "PTZZZ" "SEZZZ"
```

#### Oppgave 9

Fjern \*\*ZZZ sonene fra nama\_10r\_3gdp.

```
geo time pop.x pop.y
 1: NO053 2014 261458
2: N0060 2014 441193 443090
3: NO061 2014 306067
4: NO053 2015 263736
5: NO060 2015
                   NA 447910
6: NO061 2015 310093
                          NA
7: NO053 2016 265151
                          NA
8: NO060 2016 449457 452090
9: NO061 2016 313105
10: NO053 2017 266274
11: NO060 2017 454596 457000
12: NO061 2017 317363
                          NA
13: NO053 2018 266858
14: NO060 2018 458742 460170
15: NO061 2018 320884
16: NO053 2019 267420
17: NO060 2019 462032 465910
18: NO053 2020 267642
19: NO060 2020 465136 469910
```

Lag en ny variabel pop i full\_pop\_nuts3 ut fra diskusjonen ovenfor. Dropp deretter variablene pop.x og pop.y.

#### Oppgave 11

Undersøk om vi har noen NUTS 3 soner med pop lik 0. Hvis det er noen så rekod disse til NA

Her fant vi at det er 117 hvor antallet er 0

ag\_comment: Ok løsning, men mutate\_at() er på veg ut. Jeg vil foreslå en enkel ifelse().

Her har vi endret alle 0 verdiene i kollonne pop til NA verdi, så kontrollerer vi at vi ikke har flere 0 verdier

#### Oppgave 12

Utfør en left\_join() der populasjonsdata blir lagt til datasettet som innholder GDP-data. Gi resultatet navnet eu\_data.

Her ser vi at vi ikke har likt som i oppgavesettet, men vi finner ikke hvor feilen ligger. Avviket er 123. Vi ser også i oppgave 12 at disse tallene kommer opp som NA verdier.

```
# A tibble: 16 x 2
country Antall
<chr> 1 AT 36
2 BE 45
3 CH 26
```

| 4  | DE         | 401 |
|----|------------|-----|
| 5  | DK         | 12  |
| 6  | EL         | 52  |
| 7  | ES         | 60  |
| 8  | FΙ         | 20  |
| 9  | FR         | 102 |
| 10 | ΙE         | 8   |
| 11 | IT         | 108 |
| 12 | NL         | 41  |
| 13 | NO         | 13  |
| 14 | ${\tt PL}$ | 73  |
| 15 | PT         | 26  |
| 16 | SE         | 22  |
|    |            |     |

| geo              | time             | gdp               | pop             |
|------------------|------------------|-------------------|-----------------|
| Length: 21282    | Length:21282     | Min. $:4.539e+07$ | Min. : 8400     |
| Class :character | Class :character | 1st Qu.:2.906e+09 | 1st Qu.: 132899 |
| Mode :character  | Mode :character  | Median :5.293e+09 | Median : 241464 |
|                  |                  | Mean :9.972e+09   | Mean : 373445   |
|                  |                  | 3rd Qu.:1.030e+10 | 3rd Qu.: 441000 |
|                  |                  | Max. :2.606e+11   | Max. :6747068   |
|                  |                  |                   | NA's :233       |

country
Length:21282
Class :character
Mode :character

### Oppgave 13

Beregn gdp\_per\_capita for hver NUTS3 region for årene 2000-2020. Avrund til 2 desimaler.

Avrunder til to desimaler.

Sjekker summary gdp\_per\_capita.

gdp\_per\_capita
Min. : 3359
1st Qu.: 18277

Median : 23258 Mean : 25291 3rd Qu.: 29392 Max. :177583 NA's :233

#### Oppgave 14

Bruk case\_when() for å legge til variabelen country\_name før vi går videre. Østerrike for AT, Belgia for BE etc..

#### Oppgave 15

Lag de tre variablene NUTS2, NUTS1 og NUTSc fra NUTS3. Dette gjøres enklest vha. mutate() og str\_sub(). Bruker også select() for å få variablene i rekkefølgen: country\_name, country, year, NUTS3, NUTS2, NUTS1, NUTSc, gdp, pop, gdp\_per\_capita. NUTSc er vår egen «oppfinnelse» og angir land (to første karakterer i NUTS kode).

#### Oppgave 16

Bruk koden nedenfor til å beregne Gini-koeffisienter på NUTS2 nivå. Beregn også populasjonen og gdp på NUTS2 nivå. Bruk de to siste for å regne ut gdp\_per\_capita for hvert NUTS2 område. Finn også antall NUTS3 regioner som finnes i hver NUTS2 region. Gi denne variabelen navnet num\_nuts3. Det er viktig at dere beregner Gini-koeffisient før dere aggregerer populasjon og GDP. Resultatet legger dere i en tibble kalt gini\_NUTS2.

| country_name     | country          | NUTS2            | year             |
|------------------|------------------|------------------|------------------|
| Length:4413      | Length:4413      | Length:4413      | Length:4413      |
| Class :character | Class :character | Class :character | Class :character |
| Mode :character  | Mode :character  | Mode :character  | Mode :character  |

| pop      |         | go      | dp          | gdp_per | c_capita | num_nu   | ts3   |
|----------|---------|---------|-------------|---------|----------|----------|-------|
| Min. :   | 0       | Min.    | :4.539e+07  | Min.    | : 3359   | Min. :   | 1.000 |
| 1st Qu.: | 588044  | 1st Qu  | :1.401e+10  | 1st Qu. | :19725   | 1st Qu.: | 2.000 |
| Median : | 1344629 | Median  | :3.272e+10  | Median  | :25070   | Median : | 4.000 |
| Mean :   | 1781248 | Mean    | :4.809e+10  | Mean    | : Inf    | Mean :   | 4.823 |
| 3rd Qu.: | 2319035 | 3rd Qu. | .:6.056e+10 | 3rd Qu. | :32278   | 3rd Qu.: | 6.000 |

Max. :12291557 Max. :6.996e+11 Max. : Inf Max. :23.000

gini\_nuts2
Min. :0.0000
1st Qu.:0.0596
Median :0.1016
Mean :0.1197
3rd Qu.:0.1603
Max. :0.4550
NA's :923

Vi ser at vi har et spenn i Gini-koeffisienten på NUTS2 nivå fra 0.00 til 0.45. Vi har også 800 NAs som stammer fra de 110 NA-ene vi har i pop. Vi ser også at antall NUTS3 i NUTS2 regioner spenner fra 1 til 23.

Sjekker obs. med Gini avrundet til 0,0000.

#### # A tibble: 5 x 8

|   | country     | NUTS2       | year        | pop         | gdp         | gdp_per_capita | num_nuts3   | gini_nuts2  |
|---|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|
|   | <chr></chr> | <chr></chr> | <chr></chr> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>    | <int></int> | <dbl></dbl> |
| 1 | AT          | AT34        | 2002        | 352574      | 9450050000  | 26803.         | 2           | 0.000358    |
| 2 | ES          | ES43        | 2001        | 1059011     | 12749280000 | 12039.         | 2           | 0.000917    |
| 3 | ES          | ES43        | 2006        | 1074937     | 17609920000 | 16382.         | 2           | 0.000850    |
| 4 | IT          | ITF5        | 2006        | 589480      | 11135870000 | 18891.         | 2           | 0.0000134   |
| 5 | PL          | PL43        | 2011        | 1010700     | 14215740000 | 14065.         | 2           | 0.000745    |

### Oppgave 17

| country_name     | country          | NUTS1            | year             |
|------------------|------------------|------------------|------------------|
| Length: 1765     | Length: 1765     | Length: 1765     | Length: 1765     |
| Class :character | Class :character | Class :character | Class :character |
| Mode :character  | Mode :character  | Mode :character  | Mode :character  |

| pop      |         | go     | dp          | gdp_per | r_capita | num_r   | nuts3   |
|----------|---------|--------|-------------|---------|----------|---------|---------|
| Min. :   | 0       | Min.   | :4.539e+07  | Min.    | : 6423   | Min.    | : 1.00  |
| 1st Qu.: | 1722247 | 1st Qu | .:4.074e+10 | 1st Qu  | .:20511  | 1st Qu  | .: 5.00 |
| Median : | 3660852 | Median | :8.659e+10  | Median  | :26424   | Median  | : 8.00  |
| Mean :   | 4453624 | Mean   | :1.202e+11  | Mean    | : Inf    | Mean    | :12.06  |
| 3rd Qu.: | 5866219 | 3rd Qu | .:1.499e+11 | 3rd Qu  | .:35154  | 3rd Qu. | :15.00  |

Max. :18064692 Max. :6.996e+11 Max. : Inf Max. :96.00

gini\_nuts1

Min. :0.0205 1st Qu.:0.0841 Median :0.1264 Mean :0.1340 3rd Qu.:0.1681 Max. :0.3912 NA's :364

#### Oppgave 18

country\_name country NUTSc year
Length:312 Length:312 Length:312 Length:312

pop gdp gdp\_per\_capita num\_nuts3 Min. : 3525494 Min. :9.547e+10 Min. : 8859 Min. : 6.00 1st Qu.: 7995331 1st Qu.:2.108e+11 1st Qu.:23525 1st Qu.: 22.00 Median :10558176 Median :3.123e+11 Median :28395 Median : 41.00 Mean :25194380 :6.802e+11 :29173 Mean : 68.21 Mean Mean 3rd Qu.:43474746 3rd Qu.:1.011e+12 3rd Qu.:34344 3rd Qu.: 73.00 :3.147e+12 :61796 Max. :401.00 Max. :83166711 Max. Max.

gini\_nutsc

Min. :0.1129 1st Qu.:0.1440 Median :0.1696 Mean :0.1760 3rd Qu.:0.2006

Max. :0.3843

Oppgave 20

Oppgave 21

Oppgave 22

# Oppgave 23

Lag et lineplot i g<br/>gplot som viser utviklingen i Gini-koeffisient på nasjonsnivå for de 16<br/> landene vi har med. Husk argumentet group =.



| country_name | gini_nutsc |
|--------------|------------|
| Irland       | 0.3842526  |
| Polen        | 0.2356700  |
| Frankrike    | 0.2059513  |
| Hellas       | 0.2037289  |
| Tyskland     | 0.2019286  |
| Belgia       | 0.1961939  |

| country_name | gini_nutsc |
|--------------|------------|
| Italia       | 0.1852001  |
| Danmark      | 0.1654875  |
| Nederland    | 0.1585346  |
| Norge        | 0.1513034  |
| Spania       | 0.1401269  |
| Sverige      | 0.1326921  |
| Portugal     | 0.1236290  |
| Østerrike    | 0.1227349  |
| Finland      | 0.1226160  |

| country_name | year | NUTS2 | gini_nuts2 |
|--------------|------|-------|------------|
| Irland       | 2020 | IE04  | 0.32381271 |
| Irland       | 2020 | IE05  | 0.38394801 |
| Irland       | 2020 | IE06  | 0.43667974 |
| Irland       | 2019 | IE04  | 0.17540553 |
| Irland       | 2019 | IE05  | 0.27386949 |
| Irland       | 2019 | IE06  | 0.39881854 |
| Irland       | 2018 | IE04  | 0.16908587 |
| Irland       | 2018 | IE05  | 0.33364852 |
| Irland       | 2018 | IE06  | 0.38049943 |
| Irland       | 2017 | IE04  | 0.15128465 |
| Irland       | 2017 | IE05  |            |
| Irland       | 2017 | IE06  | 0.37038485 |
| Irland       | 2016 | IE04  | 0.20793713 |
| Irland       | 2016 | IE05  |            |
| Irland       | 2016 | IE06  | 0.35564750 |

| country_name | year | NUTS2 | gini_nuts2 |
|--------------|------|-------|------------|
| Irland       | 2015 | IE04  | 0.20644955 |
| Irland       | 2015 | IE05  |            |
| Irland       | 2015 | IE06  | 0.33868434 |
| Irland       | 2014 | IE04  | 0.21429267 |
| Irland       | 2014 | IE05  | 0.21391715 |
| Irland       | 2014 | IE06  | 0.39260099 |
| Irland       | 2013 | IE04  | 0.17296761 |
| Irland       | 2013 | IE05  | 0.16461776 |
| Irland       | 2013 | IE06  | 0.38504767 |
| Irland       | 2012 | IE04  | 0.19374811 |
| Irland       | 2012 | IE05  | 0.24498225 |
| Irland       | 2012 | IE06  | 0.35530299 |
| Irland       | 2011 | IE04  | 0.17174132 |
| Irland       | 2011 | IE05  | 0.24429047 |
| Irland       | 2011 | IE06  | 0.34423904 |
| Irland       | 2010 | IE04  | 0.16571209 |
| Irland       | 2010 | IE05  | 0.19852714 |
| Irland       | 2010 | IE06  | 0.32317344 |
| Irland       | 2009 | IE04  | 0.12750704 |
| Irland       | 2009 | IE05  | 0.19583203 |
| Irland       | 2009 | IE06  | 0.26782868 |
| Irland       | 2008 | IE04  | 0.09187481 |
| Irland       | 2008 | IE05  | 0.13684591 |
| Irland       | 2008 | IE06  | 0.26258760 |
| Irland       | 2007 | IE04  | 0.07999634 |
| Irland       | 2007 | IE05  | 0.15286464 |
| Irland       | 2007 | IE06  | 0.23501257 |

| country_name | year | NUTS2 | gini_nuts2 |
|--------------|------|-------|------------|
| Irland       | 2006 | IE04  | 0.06434473 |
| Irland       | 2006 | IE05  | 0.15216102 |
| Irland       | 2006 | IE06  | 0.22348127 |
| Irland       | 2005 | IE04  | 0.07961666 |
| Irland       | 2005 | IE05  | 0.15701288 |
| Irland       | 2005 | IE06  | 0.25673009 |
| Irland       | 2004 | IE04  | 0.08109590 |
| Irland       | 2004 | IE05  | 0.14181866 |
| Irland       | 2004 | IE06  | 0.22757402 |
| Irland       | 2003 | IE04  | 0.03032893 |
| Irland       | 2003 | IE05  | 0.15978363 |
| Irland       | 2003 | IE06  | 0.22778549 |
| Irland       | 2002 | IE04  | 0.06318606 |
| Irland       | 2002 | IE05  | 0.23133080 |
| Irland       | 2002 | IE06  | 0.21019029 |
| Irland       | 2001 | IE04  | 0.12956185 |
| Irland       | 2001 | IE05  | 0.17157285 |
| Irland       | 2001 | IE06  | 0.27125526 |
| Irland       | 2000 | IE04  | 0.12312552 |
| Irland       | 2000 | IE05  | 0.14272672 |
| Irland       | 2000 | IE06  | 0.24578635 |

Oppgave 25

Lag et line-plot som viser utviklingen i Gini-koeffisientene for NUTS2 regionene i Spania.





Det er større fordeling av verdiskapning i NUTS1-regionene enn NUTS2.

### Oppgave 28



Vi ser at korona kom i 2020 som medførte at GDP falt betraktelig dette året.

### Oppgave 29

Lag et line-plot som viser utviklingen i Gini-koeffisient for NUTS2 regionene i Tyskland.



Figure 1: Line-plot som viser utviklingen i Gini-koeffisient for NUTS2 regionene i Tyskland. Det generelle bildet synes å være en svakt synkende tendens, men området med høyest gini har en økende tendens.



Ikke like mye spredning i NUTS1-regionene.

Oppgave 31



| NUTS2 | gini_nuts2 |
|-------|------------|
| FR10  | 0.33372167 |
| FRJ2  | 0.16991355 |
| FRK2  | 0.15555702 |
| FRE1  | 0.12387708 |
| FRF2  | 0.12232861 |
| FRM0  | 0.12162306 |
| FRI1  | 0.11044726 |
| FRK1  | 0.11005305 |
| FRD2  | 0.10996150 |
| FRC1  | 0.10618012 |
| FRL0  | 0.09979288 |
| FRG0  | 0.08927537 |
| FRF1  | 0.08902390 |

| NUTS2 | gini_nuts2 |
|-------|------------|
| FRI2  | 0.08564887 |
| FRH0  | 0.08486201 |
| FRJ1  | 0.08255820 |
| FRC2  | 0.07309852 |
| FRB0  | 0.06609860 |
| FRD1  | 0.06139475 |
| FRE2  | 0.05704883 |
| FRI3  | 0.04934755 |
| FRF3  | 0.04375468 |
| FRY1  |            |
| FRY2  |            |
| FRY3  |            |
| FRY4  |            |
| FRY5  |            |
| FRZZ  |            |



Oppgave 33

Vi ser at for Frankrike er det en region (FR1) som har klart større forskjeller mht. verdistgning enn de andre. Sjekk denne regionen nærmere.



Oppgave 34

Vis utviklingen i gdp\_per\_capita for NUTS3 sonene i FR1.

<code>`geom\_smooth()`</code> using method = 'loess' and formula = 'y  $\sim$  x'



Hva ser ut til å være årsaken til den høye Gini-koeffisienten for FR1?

Det er to soner i NUTS3 som har mer enn dobbel så høy GDP per capita som de resterende. Dette gjør Gini-koeffisienten høy.

#### Oppgave 36

#### Oppgave 37

#### Oppgave 38

Hent ut koeffisientene fra de 173 modellene og legg resultatet i variabelen mod\_coeff. Gjør dette ved å «mappe» funksjonen coeff() på list\_column modell. (Hint: Husk at hvis vi ønsker en dataframe så må \_df varianten av map.)

# Oppgave 40



# Oppgave 41

Hvor mange av de 173 regrersjonskoeffisientene for diff\_gdp\_per\_capita er positive?

[1] 105

# Oppgave 42

Finn mean av de 173 koeffisientene beregnet for diff\_gdp\_per\_capita.

[1] 1.571215e-06

One Sample t-test

Utfør en enkel t-test for å teste om diff\_gdp\_per\_capita er signifikant større enn 0.

```
data: NUTS2_diff$mod_coeff$diff_gdp_per_capita
t = 2.3441, df = 172, p-value = 0.02022
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
   2.481486e-07 2.894282e-06
sample estimates:
   mean of x
1.571215e-06
```

T-test viser at diff\_gdp\_per\_capita er signifikant større enn 0.

#### Oppgave 44

Bruk funksjonen plm() fra pakken plm til å utføre en panel-regresjon på dataene. For argumentet index kan dere bruke index = c("NUTS2", "year"). Bruk samme enkle modell som ovenfor dvs. diff\_gini\_nuts2 ~ diff\_gdp\_per\_capita. Putt resultatet av regresjonen i et objekt p\_mod.

Her forsøker vi å unneste NUTS2\_diff for at plm() skal finne year.

Her forsøker vi å bruke plm(), men får feilmelding ang. "not subsettable".

Her har vi forsøkt andre metoder, men til ingen hell.

ag\_comment: Gode forslag, men problemet var altså plm() som ikke likte list-columns.