

more: bigdev.de/teaching

Teilbarkeit und Primzahlen

Teilbarkeit und Primzahlen - Teilbarkeit

Die Zahl 4 deilt 12., in Deichen 4/12, da 4.3=12

Dieses Konzept definieren wir jetzt allgemein:

Def. Seien a, b∈ Z.

a heißt Teiler von b :=> = = = 6.

Man schreibt a b.

ü a) 2 6 ? X Ja II Nein, da $2 \cdot 3 = 6$

6) -2 6 2 X Ja II Nein, da -2. -3 = 6

c) 0 6 ? [] Ja X Nein, da 0. +6

d) 3 0 ? X Ja II Nein, da $3 \cdot 0 = 0$

Ü Zeigen Sie: Yae II: a a.

Sei a fext abo beliebig. Dann gilt a. 1=a

Also exestivt ein quit a. q = a (nambid 1) also gilt ala

Teilbarkeit und Primzahlen - Teilermeuge

Die Meuge aller Teiler von 6 ist T(6)={1,2,3,6} Dies definieren wir allgemein:

ii a)
$$T(12) = \{1, 2, 3, 4, 6, 12\}$$

b) $T(36) = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$
c) $T(35) = \{1, 5, 7, 35\}$
d) $T(31) = \{1, 31\}$

Ü Zeigen Sie |T(a)| > 2. Hinweis: 6:1+ 1/a, a/a?

Teilbarkeit und Primzahlen - Primzahlen
Eine Primable ist eine natürliche Zahl z 2, die beine Teiler außer 1 und sich selbst besitzt. Dies Kann man auch so formulieren:
Def. Sei $n \in \mathbb{N}$. n heißt Primzall : \iff $ T(n) = 2$ Die Menge aller Primzahlen bezeichnen wir mit TP .
Ü a) Geben Sie die essten 10 Primzahlen an: P= {2 i 3 ; 5; 7; M; 13; 17; 19; 23; 23}
b) 1st 1 eine Primzahl? II ya X Nein da T(1) = {1} c) 5 ist eine Primzahl, da T(5) = 1:53
$\ddot{\mathbf{u}}$ deigen Sie: $\forall a,b \in \mathbb{N}$: $a/b \iff T(a) \subseteq T(b)$. Seien a,b fest aberbehielig $\exists \text{eige}: a/b \implies T(a) = T(b)$
Gette a/b singe: T(a) = T(b), das gitt gdw. Vc: N. c/a => c/b Sei c fab mit c ET(a) [c/a 1 a/b => c/b=>ceT(b)

Teilbarkeit und Primzahlen - Primfaktorzerlegung

Man hann eine nativ-liche talel > 1 in ihre Primfaktoren ter legen, 2. B. sind die Primfaktorzolegungen (PFZ) von

- $12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3$
- · 30 = 21.5
- · 35 = 5·7
- $25 = 5.5 = 5^2$

Frage: Gelt das immer und ist diese Zerlegung auch eindewtig? -> Hamptsatz der elementaren Eahlenth.

Def. Sei $n \in \mathbb{N} \setminus \{1\}$ and $p_1, ..., p_k \in \mathbb{P}$ wit $n = p_1 ... p_k$.

Dieses Produlct heißt eine **PFZ** von n.

120 = 2.60 = 1.2.30 = 2.2-2-15

= 13.3.5