Lecture 12: Ensemble methods

Combining models (Ensembling)

- Construct a set of base models (learners) from given training set and aggregates the outputs into a single meta-model (ensemble)
 - Classification via (weighted) majority vote
 - Regression vis (weighted) averaging
 - More generally: meta-model = f(base model)
- Recall bias-variance trade-off:
 - $\circ \ E[l(y,\hat{f}(x_0))] = (E[y] E[\hat{f}])^2 + Var[\hat{f}] + Var[y]$
 - o Averaging k independent and identically distributed predictions **reduces variance**: $Var[\hat{f}_{avg}] = \frac{1}{k} Var[\hat{f}]$
- Three methods:
 - Bagging and random forests
 - Boosting
 - Stacking

Bagging (bootstrap aggregating)

- Method: construct "near-indendent" datasets via sampling with replacement
 - \circ Generate k datasets, each size n
 - Build base classifiers on each constructed dataset
 - Aggregate predictions via voting / averaging
- Bagging example: Random Forest
 - Select random subset of l of the m features
 - Train decision tree on bootstrap sample using the l feature
 - Works extremely well in many practical settings
- Reflections
 - Simple method based on sampling and voting
 - Possibility to parallelise computation of individual base classifiers
 - Highly effective over noisy datasets
 - Performance is often significantly better than (simple) base classifiers, never substantially worse
 - Improve unstable classifiers by reducing variance

Using out-of-sample data

- ullet For each round, a particular sample has probability of $(1-rac{1}{n})$ of not being selected
 - \circ Probability of being left out is $(1-\frac{1}{n})^n$
 - $\circ~$ For large n, $e^{-1}pprox 0.368$
 - \circ On average, only 63.2% of data included per bootstrap sample
- Can use this for independent error estimate of ensemble
 - OOB (Out-Of-Bag) Error
 - Safe like CV, but on overlapping sub0samples
 - \circ Evaluate each base classifier on its out-of-sample 36.8%
 - \circ Average these evaluation \to Evaluation of ensemble

Boosting

- Intuition:
 - Focus attention of base classifiers on examples "hard to classify"
- Method: iteratively change the distribution on examples to reflect performance of the classifier on the previous iteration
 - \circ Start with each training instance having 1/n probability of being included in the sample
 - \circ Over k iterations, train a classifier and **update the weight of each instance** according to classifier's ability to classify it
 - Misclassified -> give more weight to that instance
 - Combine the base classifiers via weighted voting

Adaboost

- 1. Initialise example distribution $P_1(i)=1/n$
- 2. For c = 1...k
 - 1. Train base classifier A_c on sample with replacement from P_c
 - 2. Set (classifier) confidence $\alpha_c=rac{1}{2}\ln(rac{1-\epsilon_c}{\epsilon_c})$ for classifier's error rate ϵ_c
 - 3. Update example distribution to be normalised of:
 - $lacksquare P_{c+1}(i) \propto P_c(i) imes \exp(-lpha_c)$ if $A_c(i) = y_i$ (correct prediction)
 - $P_{c+1}(i) \propto P_c(i) \times \exp(\alpha_c)$ if otherwise (wrong prediction)
 - 4. Classify as majority vote weighted by confidences $rg \max_y \Sigma_{c=1}^k lpha_t \delta(A_c(x) = y)$
- ullet Technically: Reinitialise example distribution whenever $\epsilon_c>0.5$
- Base learners: often decision stumps or trees, anything "weak"
- Reflections
 - Method based on iterative sampling and weighted voting
 - More computationally expansive than bagging
 - The method has guaranteed performance in the form of error bounds over the training data
 - o In practical applications, boosting can overfit
 - (Can do hybrid of bagging and boosting, but if using too many base classifiers
 -> overfit)

Bagging v.s. Boosting

- Bagging
 - Parallel sampling
 - o Minimise variance
 - Simple voting
 - Classification or regression
 - Not prone to overfitting
- Boosting
 - Iterative sampling
 - Target "hard" instances
 - Weighted voting
 - Classification or regression

Prone to overfitting (unless base learners are simple)

Stacking

- Intuition: "smooth" errors over a range of algorithms with different biases
- Method: train a meta-model over the outputs of the base learners
 - Train base- and meta-learners using CV
 - o Simple meta-classifier: logistic regression
- Generalisation of bagging and boosting
- · Reflections:
 - Compare this to ANNs and basis expansion
 - Mathematically simple but computationally expansive method
 - Able to combine heterogeneous classifiers with varying performance
 - With care, stacking results in as good or better results than the best of the base classifier

Lecture 13: Multi-armed bandits

Stochastic multi-armed bandits

- · Learn to take actions
 - Receive only indirect supervision in the form of rewards
 - o Only observe rewards for actions taken
 - Simplest setting with an explore-exploit trade-off

Exploration v.s. Exploitation

- "Multi-armed" bandit (MAB)
 - Simplest setting for balancing exploration, exploitation
 - Same family of ML tasks as reinforcement learning
- Numerous applications
 - Online advertising
 - Stochastic search in games
 - Adaptive A/B testing
 - o ...

Stochastic MAB setting

- Possible actions $\{1,...,k\}$ called "arms"
 - \circ Arm i has distribution P_i on bounded rewards with mean μ_i
- In round t=1..T
 - \circ Play action $i_t \in \{1,...,k\}$ (possibly randomly)
 - \circ Receive reward $X_{i_*}(t) \sim P_{i_*}$
- Goal: miniise cumulative regret
 - $\circ \ \mu^*T \Sigma_{t=1}^T E[X_{i_t}(t)]$
 - $\circ \;\;$ Where $\mu^* = \max_i \mu_i$

Greedy

- At round t
 - Estimate value of each arm i as average reward observed

$$lacksquare Q_{t-1}(i) = rac{\sum_{s=1}^{t-1} X_i(s) I(i_s=i)}{\sum_{s=1}^{t-1} I(i_s=i)}$$
 , if $\sum_{s=1}^{t-1} I[i_s=i] > 0$

- $Q_{t-1}(i) = Q_0$, otherwise
- Init constant: $Q_0(i) = Q_0$ used until arm i has been pulled
- Exploit

$$lack i_t \in rg \max_{i \leq i \leq k} Q_{t-1}(i)$$

Tie breaking randomly

ϵ -Greedy

- At round t
 - \circ Estimate value of each arm i as average reward observed

$$lacksquare Q_{t-1}(i) = rac{\Sigma_{s=1}^{t-1} X_i(s) I(i_s=i)}{\Sigma_{s=1}^{t-1} I(i_s=i)}$$
 , if $\Sigma_{s=1}^{t-1} I[i_s=i] > 0$

- $ullet Q_{t-1}(i) = Q_0$, otherwise
- Init constant: $Q_0(i) = Q_0$ used until arm i has been pulled
- Exploit

$$lack i_t \in rg \max_{i \leq i \leq k} Q_{t-1}(i)$$
 w.p. $1 - \epsilon$

$$ullet i_t \in \mathsf{Unif}(\{1,...,k\})$$
 w.p. ϵ

- Tie breaking randomly
- Hyperparameter ϵ controls exploration v.s. exploitation
- · Does better long-term (than Greedy) by exploring
- Pessimism v.s. Optimism:
 - \circ Pessimism: Init Q's below observable reward -> Only try one arm (E.g. $Q_0=-10$)
 - o Optimism: Init Q's above observable rewards -> Explore arms at least once (E.g. $Q_0 = 10$)
 - Middle-ground init Q -> Explore arms at most once
 - Pure greedy never **explores** an arm more than once
- Limitations:
 - Exploration and exploitation are too distinct
 - Exploration actions completely blind to promising arms
 - Initialisation tricks only help with "cold start"
 - Exploitation is blind to confidence of estimates

Upper Confidence Bound (UCB)

- At round t
 - \circ Estimate value of each arm i as average reward observed

$$ullet$$
 $Q_{t-1}(i)=\hat{\mu}_{t-1}(i)+\sqrt{rac{2\log(t)}{N_{t-1}(i)}}$, if $\Sigma_{s=1}^{t-1}I[i_s=i]>0$

- $Q_{t-1}(i) = Q_0$, otherwise

Init constant:
$$Q_0(i)=Q_0$$
 used until arm i has been pulled
$$\circ \ \hat{\mu}_{t-1}(i)=\frac{\sum_{s=1}^{t-1}X_i(s)I(i_s=i)}{\sum_{s=1}^{t-1}I(i_s=i)}$$

$$\circ \ N_{t-1}(i)=\sum_{s=1}^{t-1}I[i_s=i]$$

$$\circ \ \ N_{t-1}(i) = \Sigma_{s=1}^{t-1} I[i_s = i]$$

Exploit

$$lack i_t \in rg \max_{i < i < k} Q_{t-1}(i)$$

- Tie breaking randomly
- (upper bound for **explore** boost)
- \circ Addresses several limitation of ϵ -Greedy
- o Can "pause" in a bad arm for a while, but eventually find best
- o Results:
 - lacktriangle Quickly overtakes the ϵ -Greedy approaches
 - Continues to outspace on per round rewards for some time
 - More striking when viewed as mean cumulative rewards
- o Notes:
 - Theoretical **regret bounds**, optimal up to multiplicative constant
 - lacktriangledown Tunable ho>0 exploration hyperparam, can replace "2"
 - Captures different ϵ rates & bounded rewards outside [0,1]
 - Many variations e.g. different confidence bounds