Multiagent Learning and Equilibrium in Pricing Games

Katerina Papadaki

Joint work with:

Bernhard von Stengel, Galit Ashkenazi-Golan Edward Plumb, Sahar Jahani

Department of Mathematics

London School of Economics

Overview

This is work in progress

- Aim of this study
- Pricing game
- Learning framework
- Learning environment
- Some initial results
- Conclusion and continuation

Aim the of study

- To explore larger games with machine learning
- We consider a duopoly game (2 firms) with demand inertia (price this period affects demand next period).
- We use this base game to develop a *learning framework* that we can apply to other games.

Pricing game

Duopoly with demand inertia: multistage pricing game.

• This was analysed theoretically by Selten (oligopoly version):

R. Selten (1965), Game-theoretic analysis of an oligopolic model with buyers' interia. [German] Zeitsch. gesammte Staatswiss. 21, 301–304

One of the first subgame perfect equilibriums computed (by Selten in 1965).

• Keser (1993) used this game in an experimental study where she run a tournament between game theorists.

C. Keser (1993), Some results of experimental duopoly markets with demand inertia. Journal of Industrial Economics 41, 133–151

1992 PhD thesis: Springer Lecture Notes Econ. Math. Systems 391

Duopoly game with demand inertia

The game is played between two producing firms with costs and.

The demand potential of 400 is split as between the two firms.

At each period firm

- chooses price
- sells units
- gets profit

Optimal myopic price:

Example: , ,

Then myopic prices are

And profits are and

Duopoly game with demand inertia

, ,

Units sold = , profit =

Optimal myopic price:

Played over 25 periods:

)/2

)/2

Myopic policy - cooperative solution

Myopic price:

Total profits:

156K

109K

Demands and prices converge to:

, ,

,

Subgame Perfect Equilibrium

Computed via backward Induction.

Total profits:

137K

61K

, ,

Keser's tournament

Each participant submitted a strategy in the form of a *flow chart* both for low cost and high cost firms.

First round 45 participants submitted:

- strategies were played against each other
- cumulative payoffs ranked and sent to participants as feedback

Second round 34 participants

Evolutionary dynamics:

- Keser applied replicator dynamics to 34x34 matrix
- Eliminated most strategies
- Leaving 4x4 with positive probability.
- We look at this mixed equilibrium later.

	H_1		\boldsymbol{H}_n
L_1		$oldsymbol{P}_{12}^H \ oldsymbol{P}_{12}^L$	
L_2			
L_n			

Learning framework

Base game: Duopoly pricing game with demand inertia played over 25 periods.

 Suppose we have agents, where each agent has one strategy for low cost and one for high cost firms.

Population game: An, bimatrix game (low cost firm vs high cost firm) between these strategies.

Agent has strategy for low cost firms and for high cost firms.

		$oldsymbol{H}_1$	$oldsymbol{H}_2$	\boldsymbol{H}_n
	L_1		$oldsymbol{P}_{12}^H \ oldsymbol{P}_{12}^L$	
Population game	L_2			
	L_n			

Learning framework

Suppose we have already trained agents and added their strategies to the population game.

Agent: is a function that maps data from the current period (and possibly previous periods) to the current price.

- We want to train the next agent (against these agents).
- We compute a mixed equilibrium of the existing strategies of the population game.
- We train the next agent against this mixed equilibrium: agent is trained by repeatedly meeting another random agent, drawn from the mixed equilibrium
- Learning environment constant but random.
- If the newly trained agent produces payoffs equilibrium payoffs, we add the agent to the population game:
 - new entrant has payoffs against each existing strategy
 - defines a bimatrix game and computes a new equilibrium as next learning environment

Example of the learning framework

103

The new agent is trained

- as a low cost agent against (0.05,0.03,0.58,0.34) to produce
- as a high cost agent against (0.02,0.01,0.67,0.30) to produce

- We would then test against a, b, c, d, e
- And test against A, B, C, D, E
- And this will add a row and a column to the bimatrix game.

Example of the learning framework

How do we decide if we are keeping new row () or new column ()?

		0.3	0.3	0.4	
		H_1	$oldsymbol{H_2}$	H_3	$oxed{oldsymbol{H_4}}$
0.5	L_1		$oldsymbol{P}_{12}^H \ oldsymbol{P}_{12}^L$		1
0.4	L_2				1 2
0.1	$oldsymbol{L_3}$				2 3
	L_4	3	2	1	3

New agent trained against shown mixed equilibrium:

- New row () and column () added
- against equilibrium

1.5

• against equilibrium

1.6

• In poth cases beats the equilibrium so we add both and to the population game.

Learning framework

Which equilibrium?

- Equilibriums are found by Lemke's algorithm (mimics the Harsanyi-Selten tracing procedure)
- Finds an odd number of equilibria.
- Out of which are positive index equilibria (for dynamic stability).

Typically the algorithm finds equilibria with small support.

Learning framework - advantages

It is **modular** rather than a huge simulation:

- the base game (pricing game)
 - is complex (too complex?) as an interesting learning scenario
 - allows competition and cooperation
 - potentially has "hand-made" good strategies
 - can be replaced by another game
- the population game . . . uses game theory
 - provides via equilibria a "stable" learning environment
 - has typically mixed, non-unique equilibria
 - allows different equilibrium concepts (mixed, evolutionary)

⇒ can independently investigate different aspects

Learning environment

```
Agent: the agent we are training (assume low cost):

Adversary: the adversary we are training against (high cost):

, = demand potential of agent/adversary at beginning of period
, = price set of agent /adversary at period
```

, , ,

Learning environment

We model this as a Partially Observable Markov Decision Process (POMDP):

```
State: , , )
Action:
Observation:
Transition: , )
Immediate reward: = = profit from period
State value function:
State-action value function:
```

Learning environment

We use Q-learning:

For each episode (episode is a 25 period pricing game)

For

Agent is in state, and picks action as follows:

prob

prob 1-

Then receives payoff, observes, moves to state and updates as follows:

where is the learning rate.

Some initial Results

- Train (C132,C95) / Test C132
- Train (C132,C95) / Test C95

C132 = constant price 132 C95 = constant price 95

Training against: (0.5,0.5) of (C132,C95)

While training, we play against C132 and C95

TC132 = train/play against C132
TC95 = train/play against C95

Payoff (000's) over rounds

Some initial Results

\$132 = sophisticated strategy starts at 132\$125 = sophisticated strategy starts at 125

Training against: (0.5,0.5) of (\$132,\$125)

While training, we play against \$132 and \$125

- Train (S132, S125) / Test S132
- Train (S132, S125) / Test S125

Some initial Results

Train (\$132,\$125) / Test \$132Train \$132/ Test \$132

Train (S132,S125) / Test S125Train S125 / Test S125

Conclusion and continuation

- Distinguishes between very different simple strategies.
- Complex strategies? Train longer?

- Include more memory in the state.
- Exploration probability depend on number of visits to a state.
- Q-table already too big.
- Q-table needs to be replaced by a neural network (deep Q-learning).
- Other RL methods such as policy gradient.

Thank you

Some initial Results

Agent training against (0.5, 0.5) of (C132, C95)


```
C132 = constant price 132
C95 = constant price 95
```

```
Training against: (0.5,0.5) of (C132,C95)
```

While training, we play against C132 and C95

```
TC132 = train/play against C132
TC95 = train/play against C95
```

Some initial Results

Training agents using Q-learning:

Round = 500,000 episodes 1132 = starts at 132 and imitates opponents price G132 = complicated strategy that starts at the price of 132

Training against: (0.5,0.5) of (1132,G132)

While training, we play against 1132 and G132

Policy gradient

lr = 0.0001

Aadversary's strategy	low, agent's payoff	low, adversary's payoff	high, agent's payoff	high, adversary's payoff
myopic	176443	50539	118022	95734
constant 132	276049	-25963	207197	-13449
constant 95	117703	52607	66850	98427
guess	118905	95285	86611	131345

Ir = 0.0005

Aadversary's strategy	low, agent's payoff	low, adversary's payoff	high, agent's payoff	high, adversary's payoff
myopic	176099	51548	118321	94330
constant 132	276049	-25963	186477	17177
constant 95	111855	54384	59063	110050
guess	132293	85868	88671	133895

low cost/ high cost	mixed agent	lr=0.00005 / myopic	lr=0.00005 / const 96	lr=0.00005 / guess
low	myopic/ const 95/ guess	173423	94059	116460
high	myopic/ const 95/ guess	115274	47784	76926

Example of a mixed equilibrium

	H_1	$oldsymbol{H}_2$	\boldsymbol{H}_n
L_1		$oldsymbol{P}_{12}^H \ oldsymbol{P}_{12}^L$	
$oldsymbol{L_2}$			
L_n			

	_	0.3	0.3	0.4	
		$ H_1 $	$oldsymbol{H}_2$	H_3	$oldsymbol{H_4}$
0.5	L_1		$oldsymbol{P}_{12}^H \ oldsymbol{P}_{12}^L$		1
0.4	L_2		12		2
0.1	L_3				2 3
	L_4	3	2	1	3

New agent trained against shown mixed equilibrium:

- New row and column added
- against equilibrium

1.5

1.9

against equilibrium1.6

_

1.1

 In both cases beats the equilibrium so we add both and to the population game.