

MÉTODOS ESTATÍSTICOS

Testes de Hipóteses Não Paramétricos - Parte 3

Testes à igualdade de duas distribuições

Licenciatura em Engenharia Informática

Departamento de Matemática Escola Superior de Tecnologia de Setúbal Instituto Politécnico de Setúbal 2023-2024

1/47

Engenharia Informática Métodos Estatísticos 2023-2024

Testes de Hipóteses Não Paramétricos:

Teste à igualdade de duas distribuições

- Vamos estudar os testes não paramétricos que habitualmente são usados como alternativa aos testes paramétricos da diferença de médias.
- A vantagem destes testes não paramétricos deve-se ao facto de não ser necessário impor qual a forma da distribuição de cada população (nos testes paramétricos foi sempre imposto que a distribuição era Normal ou pelo menos aproximadamente Normal). Aqui apenas interessa testar se a distribuição pode ser considerada a mesma.

2023-2024

Teste à igualdade de duas distribuições

Suponha que tem duas amostras e pretende verificar se podem ser consideradas provenientes da mesma população, ou seja, pretende testar:

- ullet H_0- As duas amostras são provenientes de populações com a mesma distribuição contra
- H_1 As duas amostras são provenientes de populações com distribuição distinta

Princípios Básicos na Realização dos Testes à igualdade de duas distribuições

- São definidas duas hipóteses:
 - **Hipótese Nula** = H_0 é a hipótese que indica que as duas amostras são provenientes de populações com a mesma distribuição.
 - Hipótese Alternativa = H_1 é a hipótese que se contrapõe à hipótese nula, ou seja, que indica que o que foi colocado na hipótese nula não se verifica (por ser diferente, maior ou menor).
- é definida uma Estatística Teste, que é a base da realização do teste e consiste analisar posições.
- 3 São construídas duas regiões:
 - ightharpoonup Região de Aceitação =RA conjunto de valores para os quais H_0 é admissível.
 - Região de Rejeição ou Região Crítica =RC conjunto de valores para os quais H_0 não é admissível.

Princípios Básicos na Realização dos Testes à igualdade de duas distribuições

- A regra de decisão define as condições de rejeição ou não rejeição da hipótese nula:
 - Se o Valor Observado da Estatística de Teste sob a hipótese H_0 pertencer à Região de Aceitação, então Não se Rejeita H_0
 - Se o Valor Observado da Estatística de Teste sob a hipótese H_0 pertencer à Região Crítica, então Rejeita-se H_0
- **3** Erros de decisão um teste de hipóteses nem sempre conduz a decisões corretas, a análise de uma amostra pode falsear as conclusões quanto à população. Como já vimos, um dos erros é o chamado **Erro de** 1^a **espécie** ou **Nível de significância do teste**:

$$\alpha = P$$
 [rejeitar $H_0 \mid H_0$ verdadeira]

para minimizar este erro fixa-se o seu valor.

• As regiões de aceitação e de rejeição $(RA \ e \ RC)$ são definidas à custa do valor fixado para o nível de significância (α) .

Na prática, em vez de calcular a região crítica (RC) e a região de aceitação (RA), é usual calcular-se o **Valor-p** (ou **p-value**).

Valor-p (ou p-value)

 $\acute{\rm E}$ a probabilidade associada ao valor da estatística de teste, considerando H_0 verdadeira.

• Se o valor-p for pequeno significa que, no caso de H_0 ser verdadeira, estamos perante um evento muito raro, pouco provável de ocorrer, então deve optar-se por rejeitar H_0 .

Portanto, o valor-p também permite tomar decisões:

- ightharpoonup se valor-p $\leq \alpha$, então rejeita-se H_0
- ightharpoonup se valor-p $> \alpha$, então não se rejeita H_0

Engenharia Informática

Teste à igualdade de duas distribuições

- Suponha que tem duas amostras e pretende verificar se podem ser consideradas provenientes da mesma população, ou seja, pretende testar:
 - H_0- As duas amostras são provenientes de populações com a mesma distribuição contra
 - H_1 As duas amostras são provenientes de populações com distribuição distinta

- Os testes não paramétricos que habitualmente são usados como alternativa aos testes paramétricos da diferença de médias são:
 - ► Teste de Wilcoxon para amostras emparelhadas
 - ► Teste de Mann-Whitney para amostras independentes

Objetivo

Testar se duas amostras aleatórias emparelhadas podem ser consideradas provenientes de populações com a mesma distribuição, para tal vamos testar se as duas amostras aleatórias emparelhadas são originárias de populações com igual **mediana**.

- A importância do teste de Wilcoxon advém do facto de ser geralmente considerado como alternativa não paramétrica ao teste t para a diferença de médias (teste de hipóteses paramétrico) quando são consideradas amostras emparelhadas.
- Este é um teste à igualdade de distribuições para duas amostras emparelhadas e baseia-se na posição dos valores observados da variável em estudo, incorporando a amplitude das diferenças existentes entre as duas variáveis.
- Tal como no caso dos testes paramétricos, para construir a estatística de teste é necessário passar para a amostra das diferenças:

$$D_i = Y_i - X_i, \qquad i = 1, \cdots, N$$

onde X_i e Y_i representam os elementos das amostras emparelhadas.

Engenharia Informática Métodos Estatísticos 2023-2024

Objetivo

Testar se duas amostras aleatórias emparelhadas podem ser consideradas provenientes de populações com a mesma distribuição, para tal vamos testar se as duas amostras aleatórias emparelhadas são originárias de populações com igual **mediana**.

Formulação das Hipóteses a Testar:

 H_0- As duas amostras emparelhadas são provenientes de populações com a mesma distribuição vs

 H_1- As duas amostras emparelhadas são provenientes de populações com distribuição distinta

Seja M_D a mediana de D=Y-X onde X e Y representam as populações onde foram recolhidas as amostras emparelhadas, então é possível testar:

Teste bilateral	Teste unilateral direito	Teste unilateral esquerdo
$H_0: M_D = 0$	$H_0: M_D = 0$	$H_0: M_D = 0$
vs	vs	vs
$H_1: M_D \neq 0$	$H_1: M_D > 0$	$H_1: M_D < 0$

Observação: Um dos pressupostos do teste é que as diferenças constituem uma variável contínua de distribuição simétrica em torno da mediana.

Estatística de Teste

Como a hipótese que está a ser testada refere-se à mediana, a estatística de teste tem por base as posições ou ordem dos dados. Sejam T^- e T^+ soma das posições com o sinal "-" e "+", respetivamente. Então

• se o teste é bilateral, a estatística de teste é dada por:

$$T = min\left\{T^{-}, T^{+}\right\}$$

• se o teste é **unilateral direito**, a estatística de teste é dada por:

$$T = T^-$$

• se o teste é unilateral esquerdo, a estatística de teste é dada por:

$$T = T^+$$

A estatística T do teste de Wilcoxon encontra-se tabelada.

Observação: Existem formas alternativas de construção deste teste.

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese ${\cal H}_0$

ullet Considere duas amostras aleatórias emparelhadas de dimensão N:

$$(X_i, Y_i), \qquad i = 1, \cdots, N$$

• Construir a amostra das diferenças desprezando as diferenças de valor 0:

$$D_i = Y_i - X_i, \qquad i = 1, \cdots, n \qquad \text{com } n \leq N$$

- Ordenar os valores absolutos das diferenças, $|D_i|$ e atribuir o valor da posição que ocupa:
 - o menor valor assume a posição 1 e o maior valor a posição n;
 - caso existem empates atribui-se a posição média das posições que lhes correspondiam caso tais empates não existissem.

Engenharia Informática Métodos Estatísticos 2023-2024

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese \mathcal{H}_0

- Associar a cada posição o sinal "-" ou "+", de acordo com o valor da diferença que representa:
 - se a diferença for positiva, então colocar "+";
 - se a diferença for negativa, então colocar "-".
- Calcular:
 - $T_{obs}^{-} = \text{soma das posições com o sinal "-"};$
 - $T_{obs}^{++}=$ soma das posições com o sinal "+".

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕へで

Definição da Região Crítica

Um dos pressupostos deste teste é que a distribuição é simétrica, então, independentemente do tipo de teste (bilateral ou unilateral), pode-se considerar a região crítica como

$$RC = [0, T_{n;\alpha}]$$

Regra de Decisão com base na Região Crítica

- Se $T_{obs} \notin RC$, então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados são provenientes de populações com a mesma distribuição.
- Se $T_{obs} \in RC$, então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados não são provenientes de populações com a mesma distribuição.

Como o R não tem disponível a tabela e seria necessário recorrer a uma tabela em papel, não vamos tomar decisões com recurso à região crítica.

Engenharia Informática Métodos Estatísticos 2023-2024

《□》《圖》《意》《意》。 毫

Cálculo do valor-p

Considerando que H_0 é verdadeira, o valor-p indica a probabilidade do valor observado da estatística de teste ocorrer e, tal como aconteceu na definição da região critica, independentemente do tipo de teste (bilateral ou unilateral), pode-se considerar

$$valor - p = P\left(T \le T_{obs}\right)$$

Regra de Decisão com base no valor-p

- Se valor-p $> \alpha$, então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados são provenientes de populações com a mesma distribuição.
- Se valor-p $\leq \alpha$, então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados não são provenientes de populações com a mesma distribuição.

O valor-p pode ser visto como o menor valor de α (nível de significância) para o qual os dados observados indicam que H_0 deve ser rejeitada.

Engenharia Informática Métodos Estatísticos 2023-2024

Teste de Wilcoxon no R

wilcox.test()

Observação:

- ullet O software R com a função wilcox.test() apenas calcula T_{obs}^+ , mas como:
- A soma das n posições = $T_{obs}^- + T_{obs}^+ \,$ e
- A soma das n posições $= \frac{n \times (n+1)}{2}$ tem-se

$$T_{obs}^{-} = \frac{n \times (n+1)}{2} - T_{obs}^{+}$$

Exemplo 1

Mediu-se a capacidade torácica de 8 indivíduos selecionados aleatoriamente. Esse grupo de indivíduos submeteu-se voluntariamente, durante um mês, a um treino especial que tinha por objetivo o aumento da capacidade torácica. No final do mês de treino, foi medida, de novo, a capacidade torácica. Os resultados de ambas as medições encontram-se na tabela seguinte:

Individuo	1	2	3	4	5	6	7	8
Antes do treino	3.5	3.6	4.1	2.9	3.4	4.2	3.9	4.1
Depois do treino	3.4	3.9	4.5	3.1	3.9	4.4	3.8	4.1

Com base nos dados apresentados, poder-se-á concluir, com um nível de significância de 5% que o treino é eficaz?

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Hipótese a ser testada

- X medida da capacidade torácica antes do treino
- ullet Y- medida da capacidade torácica depois do treino
- amostras aleatórias emparelhadas
- \bullet D = Y X

$$H_0: M_D = 0 \qquad vs \qquad H_1: M_D > 0$$

Dados

- teste unilateral direito
- nível de significância = $\alpha = 0.05$
- Construir uma tabela com a diferença dos valores das amostras:

◆ロト ◆□ ト ◆ 恵 ト ◆ 恵 ・ か Q (*)

X = Antes do treino	$Y = Depois \; do \; treino$	D = Y - X	Sinal	D	Ordem
3.5	3.4	-0.1	_	0.1	$\frac{1+2}{2} = 1.5$
3.6	3.9	0.3	+	0.3	5
4.1	4.5	0.4	+	0.4	6
2.9	3.1	0.2	+	0.2	$\frac{3+4}{2} = 3.5$
3.4	3.9	0.5	+	0.5	7
4.2	4.4	0.2	+	0.2	$\frac{3+4}{2} = 3.5$
3.9	3.8	-0.1	_	0.1	$\frac{1+2}{2} = 1.5$
4.1	4.1	0	0	0	0

- \bullet soma das posições com o sinal "-" = $T_{obs}^- = 1.5 + 1.5 = 3$
- \bullet soma das posições com o sinal "+" = $T_{obs}^+ = 5+6+3.5+3.5=25$
- n = 8 1 = 7 (retirar as diferenças nulas)

◆ロト ◆個ト ◆差ト ◆差ト 差 りへで

usar a função wilcox.test()

e obtém-se

•
$$T_{obs}^+ = V = 25$$

• valor-
$$p = 0.03744$$

Como valor- $p=0.03744 \leq 0.05=\alpha$ então rejeita-se a hipótese H_0

Conclusão: Com base nas amostras e ao nível de significância de 5%, conclui-se que o treino é eficaz, na medida em que contribui para o aumento da capacidade torácica.

- ◆ロ ▶ ◆昼 ▶ ◆昼 ▶ ○ 夏 · かへで

Exemplo 2

Num estudo sobre nutrição pretende-se avaliar uma determinada dieta com base na perda de peso. Num grupo de 10 pessoas analisou-se o peso antes e depois do plano de dieta. Os pesos (em kg) foram os seguintes:

Individuo	1	2	3	4	5	6	7	8	9	10
Antes da dieta	82.7	73.2	84.1	84.1	81.6	78.9	85.6	80.2	84.5	73.8
Depois da dieta	74.5	73.2	79.1	85.6	81.6	79.6	81.5	80.2	86.9	73.8

Com base nos dados apresentados, poder-se-á concluir, com um nível de significância de 5% que dieta é eficaz?

20 / 47

Engenharia Informática Métodos Estatísticos 2023-2024

Hipótese a ser testada

- ullet X- peso, em kg, antes da dieta
- ullet Y- peso, em kg, depois da dieta
- amostras aleatórias emparelhadas
- \bullet D = Y X

$$H_0: M_D = 0 \qquad vs \qquad H_1: M_D < 0$$

Dados

- teste unilateral esquerdo
- nível de significância $= \alpha = 0.05$
- Construir uma tabela com a diferença dos valores das amostras:

$X = Antes \; da \; dieta$	$Y={\sf Depois}\;{\sf da}\;{\sf dieta}$	D = Y - X	Sinal	D	Ordem
82.7	74.5	-8.2	_	8.2	6
73.2	73.2	0	0	0	0
84.1	79.1	-5	_	5	5
84.1	85.6	1.5	+	1.5	2
81.6	81.6	0	0	0	0
78.9	79.6	0.7	+	0.7	1
85.6	81.5	-4.1	_	4.1	4
80.2	80.2	0	0	0	0
84.5	86.9	2.4	+	2.4	3
73.8	73.8	0	0	0	0

- soma das posições com o sinal "-" = $T_{obs}^- = 6 + 5 + 4 = 15$
- soma das posições com o sinal "+" = $T_{obs}^+ = 2 + 1 + 3 = 6$
- n = 10 4 = 6 (retirar as diferenças nulas)

◆ロ → ◆個 → ◆差 → ◆差 → りへで

22 / 47

Engenharia Informática Métodos Estatísticos 2023-2024

usar a função wilcox.test()

e obtém-se

- $T_{obs}^+ = V = 6$
- valor-p = 0.20084

Como valor- $p=0.20084>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base nas amostras e ao nível de significância de 5%, conclui-se que a dieta não parece ser eficaz, na medida em que não parece contribuir para a perda de peso.

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - りQで

Exemplo 3

Com o objetivo de avaliar uma dada disciplina que está dividida em teórica e prática, um professor pediu a um grupo de alunos que realizassem dois testes, um dos testes apenas com a componente teórica e outro teste só com a componente prática. Os resultados encontram-se na tabela seguinte:

Aluno	1	2	3	4	5	6	7	8	9	10
teste teórico	10	12	13	14	11	12.4	15	9.8	12.9	12.9
teste prático	9.8	11.6	12	14	11	13	16	12	13	13.4

Será possível concluir, para um nível de significância de 5%, que não há diferenças nos resultados dos testes?

Hipótese a ser testada

- X − nota no teste teórico
- Y − nota no teste prático
- amostras aleatórias emparelhadas
- \bullet D = Y X

$$H_0: M_D = 0$$
 vs $H_1: M_D \neq 0$

Dados

- teste bilateral
- ullet nível de significância = lpha = 0.05
- Construir uma tabela com a diferença dos valores das amostras:

X = teste teórico	$Y={\sf teste}$ prático	D = Y - X	Sinal	D	Ordem
10	9.8	-0.2	_	0.2	2
12	11.6	-0.4	_	0.4	3
13	12	-1	_	1	$\frac{6+7}{2} = 6.5$
14	14	0	0	0	0
11	11	0	0	0	0
12.4	13	0.6	+	0.6	5
15	16	1	+	1	$\frac{6+7}{2} = 6.5$
9.8	12	2.2	+	2.2	8
12.9	13	0.1	+	0.1	1
12.9	13.4	0.5	+	0.5	4

- soma das posições com o sinal "-" = $T_{obs}^- = 2 + 3 + 6.5 = 11.5$
- \bullet soma das posições com o sinal "+" = $T_{obs}^+ = 5 + 6.5 + 8 + 1 + 4 = 24.5$
- n = 10 2 = 8 (retirar as diferenças nulas)

(ロ) (部) (注) (注) (注) の(で)

26 / 47

Engenharia Informática Métodos Estatísticos 2023-2024

usar a função wilcox.test()

e obtém-se

- $T_{obs}^+ = V = 24.5$
- valor-p = 0.40024

Como valor- $p=0.40024>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base nas amostras e ao nível de significância de 5%, conclui-se que não há diferenças nos resultados dos testes.

◆ロト ◆昼 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q ○

- O Teste de Mann-Whitney (também chamado Teste de Mann-Whitney-Wilcoxon ou Teste de Wilcoxon-Mann-Whitney), é um teste não paramétrico aplicado para duas amostras independentes.
- A importância do teste de Mann-Whitney advém do facto de ser geralmente considerado como alternativa não paramétrica ao teste t para a diferença de médias (teste de hipóteses paramétrico para $\mu_1 \mu_2$) quando são consideradas amostras independentes.
- Este é um teste à igualdade de distribuições para duas amostras independentes e baseia-se na posição dos valores observados da variável em estudo.
- A posição de uma observação é o número de ordem que lhe corresponde considerando a ordenação indistinta das duas amostras independentes envolvidas.

Objetivo

Testar se duas amostras aleatórias <u>independentes</u> podem ser consideradas provenientes de populações com a mesma distribuição, para tal vamos testar se as duas amostras aleatórias independentes são originárias de populações com igual mediana.

Pressupostos do Teste

- As duas amostras de dimensões n e m foram retiradas de forma independente e aleatória das respetivas populações.
- A variável em análise é uma variável aleatória contínua.
- Se do teste resultar que as populações diferem, isso acontece somente em relação às respetivas medianas.

Observação: Para populações simétricas as conclusões que se tiram para as medianas são igualmente válidas para as médias.

Objetivo

Testar se duas amostras aleatórias <u>independentes</u> podem ser consideradas provenientes de populações com a mesma distribuição, para tal vamos testar se as duas amostras aleatórias independentes são originárias de populações com igual mediana.

Formulação das Hipóteses a Testar:

 H_0- As duas amostras independentes são provenientes de populações com a mesma distribuição vs

 $H_{
m 1-}$ As duas amostras independentes são provenientes de populações com distribuição distinta

Seja M_X a mediana da população X e M_Y a mediana da população Y, então é possível testar as seguintes hipóteses:

Teste bilateral	Teste unilateral direito	Teste unilateral esquerdo
$H_0: M_X = M_Y$	$H_0: M_X = M_Y$	$H_0: M_X = M_Y$
vs	vs	vs
$H_1: M_X \neq M_Y$	$H_1: M_X > M_Y$	$H_1 : M_X < M_Y$

Estatística de Teste

Como a hipótese que está a ser testada refere-se à mediana, a estatística de teste tem por base as posições ou ordem dos dados e é dada por

$$U = S_1 - \frac{n \times (n+1)}{2}$$

com

- ullet n a dimensão da amostra referente à população X.
- S_1 a soma das ordens das observações da amostra da população X na amostra conjunta de dimensão n+m

A estatística U do teste de Mann-Whitney encontra-se tabelada.

Observações:

- ullet Nesta definição a escolha da amostra designada por X é arbitrária.
- Existem formas alternativas de construção deste teste. Uma possibilidade é impor que a amostra X seja a de menor dimensão e a estatística de teste $U=min\{U_1,U_2\}$ com $U_1=n\times m+\frac{n\times(n+1)}{2}-S_1$ e $U_2=n\times m-U_1$.

Engenharia Informática Métodos Estatísticos 2023-2024

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese H_0

- Considere as duas amostras aleatórias independentes: X_i com i=1,...,n e Y_i com j=1,...,m.
- Tome-se a amostra conjunta de dimensão n+m, sem fazer diferenciação entre X e Y, e ordenem-se os valores mas sem perder a informação sobre qual das amostras vem cada observação.
- Caso não existam empates, a observação de valor mais baixo recebe a posição 1, a segunda recebe a posição 2 e assim sucessivamente.
- Caso existem empates, ou seja, observações com o mesmo valor, atribui-se às observações empatadas a posição média das posições que lhes correspondiam caso tais empates não existissem.
- Calcular $S_{1_{obs}}$ a soma das ordens das observações da amostra X na amostra conjunta de dimensão n+m.

Definição da Região de Aceitação e de Região Crítica

O cálculo das regiões de aceitação e crítica depende do tipo de teste considerado:

- Teste bilateral:
 - a Região de Aceitação é $RA=\left]U_{n;m;\frac{lpha}{2}},U_{n;m;1-\frac{lpha}{2}}\right[$
 - a Região Crítica é $RC=\left]-\infty,U_{n;m;\frac{\alpha}{2}}\right]\cup\left[U_{n;m;1-\frac{\alpha}{2}},+\infty\right[$
- Teste unilateral direito:
 - a Região de Aceitação é $RA=\left]-\infty,U_{n;m;1-lpha}\right[$
 - a Região Crítica é $RC = [U_{n;m;1-lpha}, +\infty[$
- Teste unilateral esquerdo:
 - a Região de Aceitação é $RA =]U_{n;m;\alpha}, +\infty[$
 - a Região Crítica é $RC =]-\infty, U_{n;m;\alpha}]$

4 L > 4 A P > 4 B > 4 B > 9 V) U(*

Regra de Decisão com base na Região Crítica

- Se $U_{obs} \notin RC$, então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados são provenientes de populações com a mesma distribuição.
- Se $U_{obs} \in RC$, então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados não são provenientes de populações com a mesma distribuição.

Como o R não tem disponível a tabela e seria necessário recorrer a uma tabela em papel, não vamos tomar decisões com recurso à região crítica.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Cálculo do valor-p

O cálculo do valor-p depende do tipo de teste considerado:

- Teste bilateral: valor-p = $2 \times \text{mínimo} \{P(U \le U_{obs}), P(U \ge U_{obs})\}$
- Teste unilateral direito: valor-p = $P\left(U \geq U_{obs}\right)$
- Teste unilateral esquerdo: valor-p = $P\left(U \leq U_{obs}\right)$

Regra de Decisão com base no valor-p

- Se valor-p $> \alpha$, então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados são provenientes de populações com a mesma distribuição.
- Se valor-p $\leq \alpha$, então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados não são provenientes de populações com a mesma distribuição.

O valor-p pode ser visto como o menor valor de α (nível de significância) para o qual os dados observados indicam que H_0 deve ser rejeitada.

Engenharia Informática Métodos Estatísticos 2023-2024

Exemplo 4

Um investigador pretende conhecer o efeito da inalação prolongada de óxido de cádmio. Para o efeito sujeita um grupo de 15 animais de laboratório às inalações e confronta os resultados dos níveis de hemoglobina com os do grupo de controlo (que não foram sujeitos às inalações) constituído por 10 animais. Os resultados apresentam-se na tabela seguinte:

X	14.4	14.2	13.8	16.5	14.1	16.6	15.9	15.6	14.1	15.3
	15.7	16.7	13.7	15.3	14.0					
Y	17.4	16.2	17.1	17.5	15.0	16.0	16.9	15.0	16.3	16.8

Será possível concluir, para um nível de significância de 5%, que a inalação prolongada de óxido de cádmio reduz os níveis de hemoglobina?

4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

Hipótese a ser testada

$$H_0: M_X = M_Y \qquad vs \qquad H_1: M_X < M_Y$$

- M_X- mediana dos valores da hemoglobina dos animais sujeitos à inalação de óxido de cádmio
- ullet M_Y- mediana dos valores da hemoglobina dos animais do grupo de controlo

Dados

- amostras aleatórias independentes
- ullet da população X foi retirada uma amostra de dimensão n=15
- ullet da população Y foi retirada uma amostra de dimensão m=10
- Teste unilateral esquerdo
- nível de significância $= \alpha = 0.05$
- Construir uma tabela com os valores das amostras por ordem crescente:

◆ロト ◆部ト ◆草ト ◆草ト ■ めら○

2023-2024

X	Ordem	Y	Ordem
13.7	1		
13.8	2		
14.0	3		
14.1	$\frac{4+5}{2} = 4.5$		
14.1	$\frac{\frac{4+5}{2} = 4.5}{\frac{4+5}{2} = 4.5}$		
14.2	6		
14.4	7		
		15.0	$\frac{8+9}{2} = 8.5$
		15.0	$\frac{8+9}{2} = 8.5$
15.3	$\frac{10+11}{2} = 10.5$		
15.3	$\frac{10+11}{2} = 10.5$		
15.6	12		
15.7	13		
15.9	14		
		16.0	15
		16.2	16
		16.3	17
16.5	18		
16.6	19		
16.7	20		
		16.8	21
		16.9	22
		17.1	23
		17.4	24
		17.5	25
Total	$S_{1_{obs}} = 145$		

$$U_{obs} = S_{1_{obs}} - \frac{n \times (n+1)}{2} = 145 - \frac{15 \times (15+1)}{2} = 25$$

Engenharia Informática Métodos Estatísticos 2023-2024 38 / 47

R

usar a função wilcox.test()

e obtém-se

- $U_{obs} = W = 25$
- valor-p = 0.0030039

Como valor- $p=0.0030039 \leq 0.05=\alpha$ então rejeita-se a hipótese H_0

Conclusão: Com base nas amostras e ao nível de significância de 5%, conclui-se que a inalação prolongada de óxido de cádmio reduz os níveis de hemoglobina.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Exemplo 5

Na tabela seguinte indicam-se os valores dos Triglicéridos, em g/L, em 10 doentes com enfarte do miocárdio e em 8 indivíduos escolhidos para controlo (que não sofreram enfarte do miocárdio):

Doentes									1.59
Controlo	0.92	1.29	2.81	0.82	4.48	0.71	1.10	0.41	

Será possível concluir, para um nível de significância de 5%, que os indivíduos que sofreram enfarte do miocárdio possuem valores dos Triglicéridos superiores?

40 / 47

Engenharia Informática Métodos Estatísticos 2023-2024

Hipótese a ser testada

$$H_0: M_X = M_Y \qquad vs \qquad H_1: M_X > M_Y$$

- ullet M_X- mediana dos valores dos Triglicéridos dos doentes com enfarte do miocárdio
- \bullet M_Y- mediana dos valores dos indivíduos do grupo de controlo

Dados

- amostras aleatórias independentes
- ullet da população X foi retirada uma amostra de dimensão n=10
- ullet da população Y foi retirada uma amostra de dimensão m=8
- Teste unilateral direito
- nível de significância = $\alpha = 0.05$
- Construir uma tabela com os valores das amostras por ordem crescente:

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

41 / 47

Engenharia Informática Métodos Estatísticos 2023-2024

X	Ordem	Y	Ordem
		0.41	1
0.51	$\frac{2+3}{2} = 2.5$ $\frac{2+3}{2} = 2.5$		
0.51	$\frac{2+3}{2} = 2.5$		
0.52	4		
0.71	$\frac{5+6}{2} = 5.5$	0.71	$\frac{5+6}{2} = 5.5$
		0.82	7
0.88	8		
		0.92	9
0.99	10		
		1.10	11
1.29	$\frac{12+13}{2} = 12.5$	1.29	$\frac{12+13}{2} = 12.5$
1.59	14		
1.62	15		
2.10	16		
		2.81	17
		4.48	18
Total	$S_{1_{obs}} = 90$		

$$U_{obs} = S_{1_{obs}} - \frac{n \times (n+1)}{2} = 90 - \frac{10 \times (10+1)}{2} = 35$$

Engenharia Informática Métod

Métodos Estatísticos 2023-2024

usar a função wilcox.test()

e obtém-se

- $U_{obs} = W = 35$
- valor-p = 0.68774

Como valor- $p=0.68774>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base nas amostras e ao nível de significância de 5%, concluise que os indivíduos que sofreram enfarte do miocárdio não possuem valores dos Triglicéridos superiores.

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - りQで

Exemplo 6

Considere as seguintes amostras relativas à precipitação anual nos distritos de Beja e Évora:

Beja	607.4	809.1	488.8	481.1	592.8	345.4	620.0	407.7	513.3	527.4
Évora	694.5	629.6	676.9	430.3	727.2					

Será possível concluir, para um nível de significância de 5%, que não há diferenças na precipitação anual nestes dois distritos?

Engenharia Informática

Hipótese a ser testada

$$H_0: M_X = M_Y \qquad vs \qquad H_1: M_X \neq M_Y$$

- ullet M_X- mediana da precipitação anual em Beja
- ullet M_Y- mediana da precipitação anual em Évora

Dados

- amostras aleatórias independentes
- ullet da população X foi retirada uma amostra de dimensão n=10
- \bullet da população Y foi retirada uma amostra de dimensão m=5
- Teste bilateral
- nível de significância $= \alpha = 0.05$
- Construir uma tabela com os valores das amostras por ordem crescente:

◆□▶ ◆□▶ ◆■▶ ◆■ ● 夕♀○

2023-2024

45 / 47

Engenharia Informática Métodos Estatísticos

X = Beja	Ordem	Y = Évora	Ordem	
345.4	1			
407.7	2			
		430.3	3	
481.1	4			
488.8	5			
513.3	6			
527.4	7			
592.8	8			
607.4	9			
620.0	10			
		629.6	11	
		676.9	12	
		694.5	13	
		727.2	14	
809.1	15			
Total	$S_{1_{obs}} = 67$			

$$U_{obs} = S_{1_{obs}} - \frac{n \times (n+1)}{2} = 67 - \frac{10 \times (10+1)}{2} = 12$$

Engenharia Informática Métodos Estatísticos 2023

R

usar a função wilcox.test()

e obtém-se

- $U_{obs} = W = 12$
- valor-p = 0.1292

Como valor- $p=0.1292>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base nas amostras e ao nível de significância de 5%, conclui-se que não há diferenças na precipitação anual nestes dois distritos.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕へで