# OptiMUS-0.3: Using LLMs to model and solve optimization problems at scale

Journal version of ICML'24 paper

Ali AhmadiTeshnizi, Wenzhi Gao, Herman Brunborg, Shayan Talaei, Connor Lawless, Madeleine Udell

Stanford CS/MS&E 331

## Automating the modeling bottleneck

Integer programming powers decision-making in operations

• E.g., power system scheduling, medical resource allocation, ...

Expertise barrier [Gurobi '23]:

- 81% of Gurobi users hold advanced degrees
- 49% have formal training in operations research

Small firms, municipalities, NGOs lack modeling expertise

• Leads to missed opportunities in efficiency

Goal: automate modeling to democratize optimization

# Challenges

### Long problem descriptions

Real specs can span dozens of pages → more modeling errors

### Large problem data

• Industrial problems involve massive data tables

### Hallucination

- LLMs invent constraints or API calls
- Hard to detect: code may run but model logic is wrong

### Poor model quality

- Solve time depends on formulation structure
- LLMs rarely exploit modeling tricks used by experts

### Dataset: NLP4LP

355 problems: 289 easy LPs, 65 hard LP/MILPs

• Easy: short text, scalar params

• Hard: long, multi-dimensional

Each instance includes text, LaTeX, code, and solution

Guarded release to prevent leakage

# Components of an integer program

```
maximize c \cdot z
subject to Az \leq b
Some variables must be integral
```

- Parameters: c, A, b
- Clauses: Objective, constraints
- Variables: z

## OptiMUS pipeline



- LLMs at every stage
- Human + solver feedback:
  - Guide iterative LLM corrections and debugging for reliability

Description **Parameters** Clauses Formulation Coding Data Testing Have Feedback?

Made with 💗 at Udell Lab

#### Problem Description

We are trying to figure out where to place a bike rental hub (a place where users park their cars and have bicycles available for rental). We have a set of potential hub locations L, and a set of customers we want to service C. Each customer i has cost COST(i, j) to be serviced by placing a hub at location j. Each hub I costs HUB\_COST(I) to build, and each hub can service at most MAX\_USERS potential customers. Our goal is to minimize the cost of servicing all the customers. Every customer should be serviced.

gurobipy

Random

Analyze



Stanford CS/MS&E 331. Figure by Connor Lawless.

Objective Description 1 model.setObjective(gp.quicksum(HubCost[l] \* HubPlaced[l] for l in L) + gp.quicksum(ServiceCost[i, j] \* Serviced[i, j] for  $Minimize \sum_{l \in L} (HubCost_l \cdot HubPlaced_l) + \sum_{i \in C} \sum_{j \in L} (ServiceC)$ i in C for j in L), qp.GRB.MINIMIZE) **Parameters Generate Code** Confidence: 5/5 Clauses Constraints Formulation 1 → for i in C: model.addConstr(gp.quicksum(Serviced[i, j] for j in L) >= 1  $\sum Serviced[i,j] \geq 1, \quad orall i \in C$ , name=f"customer\_serviced\_{i}") Coding **Generate Code** Confidence: 5/5 Data 1 → for j in range(len(L)): model.addConstr(gp.quicksum(Serviced[i, j] for i in range Testing  $\sum ext{Serviced}_{i,j} \leq ext{MaxUsers} \cdot ext{HubPlaced}_j, \quad orall j \in L$ (len(C))) <= MaxUsers \* HubPlaced[j], name</pre> =f"hub\_service\_capacity\_{j}") **Generate Code** Confidence: 5/5 Have Feedback? 1 → for i in range(len(C)): Made with  $\phi$  at Udell Lab 2 for j in range(len(L)): madal addonatedocameianeti el . Hubblanateil

```
Description
Parameters
Clauses
Formulation
Coding
Data
Testing
```

# Have Feedback? Made with at Udell Lab

#### Full Code

```
2 import json
    import numpy as np
 5 import gurobipy as gp
7 with open("tmpData/sPXhp1SzuK5M8ELe2ddp/data.json", "r") as f:
        data = json.load(f)
10
11 ServiceCost = data["Cost"]
12 L = list(range(data["L"]))
13 MaxUsers = data["MaxUsers"]
14 C = list(range(data["C"]))
15 HubCost = data["HubCost"]
17 # Define model
18 model = gp.Model('model')
20
21 # ===== Define variables ======
22 HubPlaced = model.addVars(len(L), name='HubPlaced', vtype=gp.GRB.BINARY)
23 Serviced = model.addVars(len(C), len(L), name='Serviced', vtype=gp.GRB.BINARY)
25 # ===== Define constraints =====
27 for i in C:
```

#### Results

```
...
Run Successful!
Status: Optimal (2)
Objective Value: 24.0000
Runtime: 0.0122
Iteration Count: 11
Variables:
HubPlaced[0]: 0.0000
HubPlaced[1]: 1.0000
HubPlaced[2]: 1.0000
HubPlaced[3]: 0.0000
HubPlaced[4]: 1.0000
Serviced[0,0]: 0.0000
Serviced[0,1]: 0.0000
Serviced[0,2]: 1.0000
Serviced[0,3]: 0.0000
```

Synthesize Full Code from Clause Codes

Run Code

**Fix Code** 

### Error correction

- Goal: Mitigate hallucinations
  - Typical errors: wrong parameters, redundant constraints, invalid code
- Two correction layers:
  - Reflective prompts: LLM self-checks and revises outputs
  - Confidence-based feedback: uncertain results flagged for user review
- Reflective prompting process:
  - Analyzed errors at every modeling stage
  - Designed targeted reflective prompts for each error type
- Substantially lowers modeling error rates

Are units the same for both sides of this constraint?

$$(p_a+x_a)\cdot d_a\cdot (1+e_a\cdot rac{x_a}{p_a})\leq m_a, orall a\in A$$
?

... Left-hand side (LHS):

- $(p_a+x_a)$  represents the new price for article a, which is in euros (ullet).
- $d_a$  represents the sales forecast (demand) for article a for the next twelve months at the current price, which is in units of the article.
- $(1+e_a\cdot rac{x_a}{p_a})$  is a unitless factor ...

Therefore, the unit of the left-hand side is: euros (€) × units of the article

Right-hand side (RHS):

-  $m_a$  represents the maximum production volume for article a, which is in units of the article (e.g., number of shirts, pants, etc.).

The unit of the right-hand side is: units of the article

... this inconsistency suggests an error in the formulation of Constraint 5. To correct this, we should ... here is the corrected constraint:

$$d_a \cdot (1 + e_a \cdot rac{x_a}{p_a}) \leq m_a, orall a \in A$$

## Identifying special problems



Stanford CS/MS&E 331. Figure by Connor Lawless.

## Structure detection agent

- Goal: Identify and exploit special structures
  - Enhances solver performance and simplifies formulations
- Common structures:
  - Special Ordered Sets (SOS)
  - Indicator and semi-continuous variables
  - Piecewise-linear constraints

### Method:

- Iterates through known structures
- LLM decides whether structure applies, then reformulates

|                                     | LLM           | NL4OPT | NLP4LP       | IndustryOR |
|-------------------------------------|---------------|--------|--------------|------------|
| Methods based on direct prompting   |               |        |              |            |
| Standard                            | GPT-4o        | 47.3%  | 33.2%        | 28.0%      |
| Standard                            | o1            | > 95%  | 68.8%        | 44.0%      |
| Reflexion                           | GPT-4o        | 53.0%  | 42.6%        | _          |
| Methods based on fine-tuning LLMs   |               |        |              |            |
| LLMOPT                              | Qwen1.5-14B   | 93.0%* | 83.8%*       | 46.0%*     |
| ORLM                                | Deepseek-Math | 86.5%* | $72.9\%^{*}$ | 38.0%*     |
| Methods based on agentic frameworks |               |        |              |            |
| CoE                                 | GPT-4o        | 64.2%  | 49.2%        | _          |
| OptiMUS-0.2                         | GPT-4o        | 78.8%  | 68.0%        | _          |
| OptiMUS-0.3                         | GPT-4o        | 86.6%  | 73.7%        | 37.0%      |
| OptiMUS-0.3                         | o1            | _      | 80.6%        | 46.0%      |

### Takeaways:

- Decomposition frameworks out-perform LLMs alone
  - Especially with cheaper models
- Fine-tuning adds a performance increase
  - But OptiMUS is competitive without fine-tuning