

Support Vector Machine

Vector Dot Product

Classify (+) and (-)

Which Hyperplane?

Optimal Solution

Vector Dot Product

Optimal Solution

Support Vector Machine

Memory efficient

Used for classification in a higher dimension

Slow calculation time

Maximal Margin Classifier

- We want to find a separating hyperplane
- Once we find candidates for the hyperplane, we try to maximize the margin, the normal distance from borderline points
 - Only Support Vectors matter

2 Dimensional Example

The data points will be separated by a line

$$y = mx + b$$

Tweak parameters to find best line of separation

What if...

Which one is better

Margins

- Cost function to penalize for errors
- Hard margins vs.
 Soft margins

Non-separable training sets

Use linear separation, but admit training errors.

Hard Margins

- > High penalty value
- The hyperplane can be dictated by a single outlier

Soft Margins

- Used in non-linearly separable datasets
- Allow for misclassification
- Can account for "dirty" boundaries

Hyper-Parameters

C Penalty

C Penalty

Kernels

- You cannot linearly divide the 2 classes on the xy plane at right
- Introduce new feature, $z = x^2 + y^2$ (radial kernel)
- Map 2 dimensional data onto 3 dimensional data. Now a hyperplane is easy to find.

(Imagine slicing a cone!)

Kernels

Gamma y

(Gaussian) Radial Basis Function (RBF)

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i K(x, x_i) = \sum_{i=1}^{N} \alpha_i y_i \exp(-\gamma ||x - x_i||^2)$$

(Gaussian) Radial Basis Function (RBF)

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i K(x, x_i) = \sum_{i=1}^{N} \alpha_i y_i \exp(-|y| ||x - x_i||^2)$$

C and **G**amma

Gamma

High Bias Low Variance

 \mathbf{C}

Low Bias High Variance

Demo: Classification of Iris Species

Find the best parameters

Grid Search

Optimize

Random Search

Bayesian Optimization

Find the best parameters: Grid-Search

Coming Up

Your problem set: Project part B

Next week: Logistic Regression and Decision Trees

