Capitolo 1

Algoritmo di decisione di Frammenti Binding

Nella sezione ??, sono stati esaminati i teoremi di Gödel e Church, mentre nella sezione ?? sono state viste alcune delle loro conseguenze. La logica del primo ordine è intrinsecamente indecidibile; tuttavia, è possibile identificare alcuni suoi Frammenti sintattici che risultano decidibili. Si pensi ad esempio ai risultati di Herbrand citati nella sezione ??. Se una formula non contiene funzioni ed è universalmente quantificata allora l'universo di Herbrand è finito e vi sono un numero finito di possibili instanziazioni ground. In questo caso determinare la soddisfacibilità di una formula di questo tipo è riducibie al problema della soddisfacibilità proposizionale che è notoriamente decidibile. In letteratura questo frammento è noto come Bernays-Schönfinkel Fragment. Altre esempi di frammenti decidibili sono il Monadic Fragment, il Two-variable Fragment, Unary negation fragment e il Guarded Fragment. In questo capitolo verrà descritta una famiglia di frammenti relativamente recente chiamata Binding Fragments [?] [?].

1.1 Tassonomia dei Frammenti Binding

Si dice che una formula del primo ordine appartiene alla classe $Boolean\ Binding\ (BB)$ se generata dalla seguente grammatica:

$$\varphi := \top \mid \bot \mid (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid \wp(\psi)$$
$$\psi := \rho \mid (\psi \lor \psi) \mid (\psi \land \psi)$$

Dove \wp è un prefisso di quantificatori e ρ è una combinazione booleana di letterali che hanno come argomento tutti la stessa lista di termini. Una formula di questo tipo verrà chiamata con il nome τ -Binding, dove τ indica la lista di termini comune. Ad esempio sono $(f_1(x_1), f_2)$ -Binding le formule: $p_1(f_1(x_1), f_2), p_1(f_1(x_1), f_2) \vee \neg p_3(f_1(x_1), f_2)$. Per semplicità di scrittura è possibile omettere la lista di termini comune e posizionarla in notazione postfissa:

$$p_1(f_1(x_1), f_2) \vee \neg p_3(f_1(x_1), f_2)$$
 diventa $(p_1 \vee \neg p_3)(f_1(x_1), f_2)$

Con \mathcal{B}^{τ} verrà indicato l'insieme di tutte le formule τ -Binding. Si definisce la funzione $term : \mathcal{B}^{\tau} \to T^n$ che associa ogni τ -Binding alla sua lista di termini comune τ . Ad esempio $term((p_1 \vee \neg p_3)(f_1(x_1), f_2)) = (f_1(x_1), f_2)$. Verranno chiamati impropriamente τ -Binding anche formule universalmente quantificate

la cui matrice è un τ -Binding. In questo caso ci si riferisce esclusivamente alla matrice della formula eliminando i quantificatori.

I frammenti Binding possono essere ottenuti restringendo le regole di ψ :

- Il frammento One Binding (1B) viene ottenuto restringendo la seconda formula a $\psi := \rho$
- Il frammento Conjunctive Binding (CB o \land B) viene ottenuto restringendo la seconda formula a $\psi := \rho \mid (\psi \land \psi)$
- Il frammento Disjunctive Binding (DB o \vee B) viene ottenuto restringendo la seconda formula a $\psi := \rho \mid (\psi \vee \psi)$

Un'istanza particolare del frammento 1B è quando la formula non contiene quantificatori esistenziali. Una formula 1B con soli prefissi universali viene detta del frammento Universal One Binding $(\forall 1B)$.

1.2 Soddisfacibilità dei frammenti Binding

In questa sezione verrà analizzato il problema della soddisfacibilità dei frammenti binding. In particolare verrà descritto l'algoritmo di decisione per i frammenti 1B e CB che è il soggetto principale dello studio di questa tesi.

Data una formula del frammento 1B è facile osservare che il processo di skolemizzazione converte la formula in formato $\forall 1B$. Se si applica la stessa procedura ad una formula CB, le sottoformule generate dalla regola ψ saranno del tipo: $\wp(\rho_1 \wedge ... \wedge \rho_n)$ con \wp un prefisso universale e $(\rho_1 \wedge ... \wedge \rho_n)$ τ -Binding. In questo caso è possibile distribuire il ' \forall ' sui vari τ -Binding e si ottiene così una formula equisoddisfacibile in formato $\forall 1B$. Questo consente di concentrarsi sullo studio del frammento $\forall 1B$ per la risoluzione del problema della soddisfacibilità dei frammenti 1B e CB.

Teorema: Decidibilità dei frammenti 1B e CB 1.2.1. I frammenti 1B e CB sono frammenti decidibili del primo ordine.

Una dimostrazione dettagliata di questo teorema può essere trovata nell'articolo [?]. Si può osservare che il processo di clausificazione del primo ordine porta alla generazione di una formula equisoddisfacibile che rispetta il formato DB. Ne consegue immediatamente per il teorema di Church:

Teorema: Indecidibilità del frammento Disjunctive Binding 1.2.2. Il frammento DB è un frammento indecidibile del primo ordine.

Dimostrazione. Per assurdo Esiste un algoritmo di decisione totale S per formule del frammento DB. Data una qualunque formula φ è possibile trasformarla in una equisoddisfacibile in formato CNF. Se si distribuisce il quantificatore universale sulle clausole si ottiene una formula φ' che rispetta i requisiti sintattici del frammento DB. S è quindi una procedura di decisione totale per tutta la logica del primo ordine ma ciò è in contraddizione con il teorema di Church.

Prima di descrivere l'algoritmo bisogna introdurre tre nuovi concetti: L'Unificazione per τ -Binding, Implicante di una formula del primo ordine e la conversione booleana di un τ -Binding. Data una formula del primo ordine φ per Implicante di φ si intende la conversione del primo ordine di un implicante della 'struttura proposizionale esterna'. ad esempio la formula $\forall x_1(p_1(x_1) \lor p_2(x_1)) \land (p_1(f_1) \lor \exists x_2(p_3(x_2))) \land \neg p_1(f_1) \land \exists x_2(p_3(x_2))$ ha la seguente struttura booleana $s_1 \land (s_2 \lor s_3) \land \neg s_2 \land s_3$. Un implicante (e anche il solo) di questa formula è l'insieme $\{s_1, s_3\}$ che ri-convertito nel primo ordine diventa l'insieme $\{\forall x_1(p_1(x_1) \lor p_2(x_1)), \exists x_2(p_3(x_2))\}$. In questo caso è stata creata implicitamente una funzione biettiva tra costanti proposizionali e formule del primo ordine:

- $s_1 \rightleftharpoons \forall x_1(p_1(x_1) \lor p_2(x_1))$
- $s_2 \rightleftharpoons p_1(f_1)$

```
• s_3 \rightleftharpoons \exists x_2(p_3(x_2))
```

Un τ_1 -Biding e un τ_2 -Biding sono detti unificabili se e solo se l'insieme congiunto di tutti i loro letterali è unificabile. Si può anche dire che sono unificabili sse le due liste τ_1 e τ_2 hanno la stessa lunghezza n e dato un qualunque predicato p n-ario $p(\tau_1)$ e $p(\tau_2)$ sono unificabili. Un insieme di τ -Biding è unificabile sse esiste una sostituzione che unifica a due a due tutti gli elementi dell'insieme. Dato un τ -Binding ϕ la sua conversione booleana $bool(\phi)$ è una formula proposizionale che si ottiene da ϕ mantenendo la sua struttura proposizionale, eliminando gli argomenti dai letterali e convertendo i simboli di predicato in simboli di costante con lo stesso indice. Ad esempio il τ -Binding $((p_1 \wedge p_4) \vee p_2 \vee \neg p_4)(\tau)$ viene convertito nella seguente formula proposizionale $(s_1 \wedge s_4) \vee s_2 \vee \neg s_4$.

A questo punto è possibile enunciare il teorema di caratterizzazione della soddisfacibilità del frammento $\forall 1B$.

Teorema: Caratterizzazione della soddisfacibilità per il frammento $\forall 1B$ 1.2.3. Data una formula φ del frammento $\forall 1B$, φ è soddisfacibile se e solo se:

Esiste un implicante I dove: per ogni sottoinsieme $U \subseteq I$ di τ -Binding, se $U = \{\gamma_1, ..., \gamma_n\}$ è unificabile allora la formula proposizionale $bool(\gamma_1) \wedge ... \wedge bool(\gamma_n)$ è soddisfacibile.

Dal teorema appena descritto si estrapola intuitivamente l'algoritmo per la soddisfacibilità delle formule del frammento:

Algorithm 1: Algoritmo per la soddisfacibilità del frammento ∀1B

L'idea di base del teorema è che data una formula φ del frammento $\forall 1B$, se esiste un modello \mathcal{M} di φ , allora esiste anche qualche implicante I di φ soddisfatto dal modello. Il modello soddisfa quindi la congiunzione degli elementi di I: $\mathcal{M} \models \phi_1 \land \dots \land \phi_n$. Ogni ϕ_i è un particolare τ -Binding e la congiunzione è ancora una formula del frammento $\forall 1B$. Se la congiunzione di tutti i ϕ_i è insoddisfacibile allora esisterà un sottoinsieme U di I che contiene una contraddizione. Presi tutti i sottoinsiemi $\{\gamma\}$ di ordine 1 di I. Se γ è insoddisfacibile, allora contiene una contraddizione al suo interno, ma allora visto che tutti i letterali al suo interno hanno la stessa lista di termini, il problema di determinare se γ è soddisfacibile si riduce al problema di determinare se $bool(\gamma)$ è soddisfacibile. Presi adesso tutti i sottoinsiemi $\{\gamma_1, \gamma_2\}$ di ordine 2 di I, se $\gamma_1 \land \gamma_2$ è insoddisfacibile, allora o uno tra γ_1 e γ_2 contiene una contraddizione al suo interno oppure si contraddicono a vicenda. In questo caso visto che due letterali non possono contraddirsi se non sono unificabili e visto che γ_1 e γ_2 sono τ -Binding universalmente quantificati, γ_1 e γ_2 devono essere per forza unificabili. Anche qui il problema si riduce al problema di determinare se $bool(\gamma_1) \land bool(\gamma_2)$ è soddisfacibile o anche se $bool(\gamma_1^{\sigma} \land \gamma_2^{\sigma})$ è soddisfacibile, dove σ è l'unificatore di γ_1 e γ_2 . Questo discorso si può generalizzare e arrivare alla conclusione che se $\phi_1 \land \dots \land \phi_n$ è insoddisfacibile, allora contiene un sottoinsieme di τ -Binding unificabile e insoddisfacibile.

I prossimi capitoli si concentreranno sullo studio dei dettagli tecnici per l'implementazione di questo algoritmo, con annesse osservazioni sulle sfide implementative e una analisi dei risultati sperimentali ottenuti.