Extending Wav2Vec 2.0 for Multilingual Speech Recognition: Addressing Code-Switching with Model Adaptations

Anonymous Student

Abstract

Recent advancements in Automatic Speech Recognition (ASR) have significantly expanded the capabilities of speech models, particularly for high-resource languages. However, effectively recognizing multilingual speech and handling code-switching—where speakers alternate between languages within a conversation—remains a considerable challenge in real-world applications. This project draws inspiration from Meta AI's Massively Multilingual Speech (MMS) initiative, which scaled ASR models to over 1,000 languages using self-supervised learning techniques, thus reducing reliance on labeled data. Building on the foundations of the MMS research, this study sought to adapt and finetune the Wav2Vec 2.0 model to better handle code-switching scenarios, focusing specifically on Spanish-English speech. Utilizing data from the Bangor Miami Corpus, the project integrated task-specific classification heads to enhance the model's transcription accuracy in bilingual contexts. Extensive data preprocessing and architectural modifications were undertaken to optimize the model's ability to recognize and transcribe code-switched speech. The results demonstrate the feasibility of extending self-supervised models to accommodate diverse linguistic environments, contributing to more inclusive ASR systems. All code and data used in this project, including the modified model and training scripts, are publicly available at https://anonymous.4open.science/r/customai-model-F347

Introduction

In recent years, the field of multilingual speech recognition has made significant advancements, driven by the need to expand automatic speech recognition (ASR) systems beyond monolingual, high-resource languages. As global communication increasingly involves multiple languages, there is a pressing need for ASR systems that can handle real-world multilingual scenarios, particularly code-switching. Codeswitching, where speakers alternate between two or more languages within the same conversation, is common in multilingual communities, such as Spanish-English speakers in the United States and Latin America. However, current ASR technologies often fall short when faced with these dynamic language shifts, resulting in reduced transcription accuracy and limited applicability in practical settings.

Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of where the languages supported by MMS are spoken around the world

The Massively Multilingual Speech (MMS) project by Meta AI has pushed the boundaries of ASR systems, demonstrating the scalability of self-supervised learning to support over 1,000 languages using models like wav2vec 2.0 (Pratap et al. 2024). This approach significantly reduces the dependency on labeled data, thereby extending ASR capabilities to low-resource languages. The success of the MMS project highlights the potential of self-supervised models to democratize access to speech technology across diverse linguistic regions. However, despite these advancements, the challenge of handling code-switching speech remains unresolved, particularly for language pairs like Spanish and English, where frequent language shifts occur naturally within conversations.

This project seeks to build upon the foundations laid by the MMS initiative by adapting the Wav2Vec 2.0 model to better handle code-switching scenarios. The focus is on improving ASR performance in Spanish-English bilingual contexts, leveraging the Bangor Miami Corpus—a dataset rich in naturally occurring code-switched conversations. The goal is to fine-tune the Wav2Vec 2.0 model, incorporating task-specific classification layers to enhance its ability to recognize and transcribe code-switching speech more accurately.

The motivation behind this work is binary. First, there is a growing need to create more inclusive AI systems that reflect the linguistic diversity of the world. By enabling ASR systems to handle multilingual and code-switched speech, the project aims to contribute to making AI technology more accessible and useful in real-world applications, particularly in bilingual communities. Second, this research explores the scalability and adaptability of self-supervised models, inspired by the success of the MMS project, to address the complex challenge of code-switching.

By focusing on this intersection of multilingual ASR, self-supervised learning, and task-specific adaptations, the project seeks to advance current speech recognition capabilities, contributing to the development of more robust, inclusive, and practical ASR systems.

Related Work

The field of automatic speech recognition (ASR) has experienced rapid advancements, driven by the development of self-supervised learning techniques and the increasing need to support multilingual capabilities. However, significant challenges remain, particularly in handling low-resource languages and code-switching scenarios. This project builds upon existing research, particularly the innovations brought forth by the Massively Multilingual Speech (MMS) project, the Wav2Vec-U framework, and the UWSpeech model, each of which addresses different facets of multilingual ASR.

Scaling Speech Technology to 1,000+ Languages

The MMS project by Meta AI represents a major leap forward in scaling ASR technology to support over 1,000 languages using self-supervised learning techniques, particularly through the wav2vec 2.0 model. The central innovation lies in leveraging large amounts of unlabeled speech data to train ASR models, thus reducing reliance on labeled datasets that are often scarce for low-resource languages (Pratap et al. 2024). The approach not only expands ASR capabilities but also broadens access to technologies like text-to-speech (TTS) and language identification. By utilizing forced alignment techniques and public datasets, MMS achieves significant improvements in word error rate (WER), extending ASR capabilities to languages that previously lacked technological support.

Despite its impressive scalability, the MMS model is not without limitations. The variability in data quality across the supported languages can result in performance disparities, especially for languages with less robust datasets. Moreover, while MMS excels in multilingual ASR, it does not directly address the problem of code-switching, where speakers fluidly alternate between languages. The shared model architecture may also overlook unique linguistic characteristics, which can reduce the model's performance in complex multilingual contexts. The present project builds on MMS's foundational work by focusing on adapting wav2vec 2.0 to handle code-switching in Spanish-English bilingual speech, aiming to bridge the gap identified in the MMS approach.

Unsupervised Speech Recognition with Wav2Vec-U

The Wav2Vec-U framework pushes the boundaries of unsupervised learning in ASR by eliminating the need for labeled transcriptions, which are often expensive and time-consuming to collect. The model leverages the powerful self-supervised representations learned by wav2vec 2.0,

Figure 2: A detailed diagram of the modified Wav2Vec 2.0 model

combined with adversarial training to map speech segments to phonemes. This process allows the model to achieve impressive performance on benchmarks like TIMIT and Librispeech without relying on annotated data (Baevski et al. 2021).

One of the core strengths of Wav2Vec-U is its ability to function effectively in low-resource settings, demonstrating that competitive ASR performance can be achieved without transcriptions. This innovation is particularly relevant for languages with limited written resources. However, the model's reliance on adversarial training introduces significant complexity, requiring extensive tuning to adapt to different languages. Additionally, while the framework performs well on standard benchmarks, its effectiveness in handling complex linguistic features, such as tone and codeswitching, remains a challenge. This project draws inspiration from Wav2Vec-U's unsupervised learning approach but focuses on incorporating domain-specific adaptations to handle bilingual speech, particularly code-switching between Spanish and English.

Speech-to-Speech Translation for Unwritten Languages with UWSpeech

The UWSpeech model addresses the challenge of unwritten languages by introducing a speech-to-speech translation system that bypasses the need for text. This is achieved through a combination of vector quantization (VQ-VAE) and crosslingual speech recognition (XL-VAE), allowing for the translation of spoken language directly into synthesized speech (Zhang et al. 2021). By leveraging phonetic representations from well-documented languages, UWSpeech facilitates speech recognition and translation in languages that lack a written form, thus preserving linguistic diversity.

While UWSpeech represents a novel approach to handling unwritten languages, it still relies on cross-lingual phonetic similarities, which may not always align with languages that are phonetically distinct from the ones used for training. Additionally, the evaluation conducted in the research primarily involves simulated scenarios, leaving questions about its performance on real-world unwritten languages. Although this project does not directly target unwritten languages, it explores the potential of leveraging cross-lingual representations, similar to those used in UWSpeech, to improve ASR performance in code-switching scenarios.

Building Upon Prior Work

The existing literature highlights the growing interest in expanding ASR systems beyond monolingual contexts to support multilingual and low-resource languages. The MMS project, Wav2Vec-U framework, and UWSpeech model each contribute unique approaches to overcoming the limitations of traditional ASR models, particularly in data-scarce environments. However, they fall short in addressing the specific challenge of code-switching, where speakers alternate between languages seamlessly within a conversation.

This project builds upon these advancements by adapting the Wav2Vec 2.0 architecture to better handle codeswitching, specifically targeting Spanish-English bilingual speech. By incorporating a task-specific classification head and leveraging self-supervised learning, the project aims to push the boundaries of existing ASR systems. The integration of code-switching support, inspired by the methodologies used in the MMS, Wav2Vec-U, and UWSpeech models, is intended to make speech recognition systems more inclusive and capable of reflecting the multilingual realities of today's global communication.

Problem Definition

The challenge addressed in this project lies in improving the capability of automatic speech recognition (ASR) systems to handle language diversity, especially for languages that are underrepresented in current speech recognition models. While significant progress has been made in ASR, particularly with the development of self-supervised models like wav2vec 2.0, these systems still exhibit limitations in handling multilingual contexts, particularly code-switching — the alternation between languages within a single conversation or even a single sentence. Code-switching is common in many bilingual communities, such as Spanish-English speakers in regions like Miami, California, and other parts of the United States. Current ASR models typically focus on monolingual data, which hampers their performance in real-world multilingual scenarios.

The Massively Multilingual Speech (MMS) model developed by Meta AI scales ASR technology to over 1,000 languages by leveraging self-supervised learning to reduce reliance on labeled datasets. However, the MMS model still faces challenges with code-switching contexts and diverse linguistic structures, where speakers fluidly transition between languages mid-conversation. This project builds upon the MMS research by focusing on adapting wav2vec 2.0 models to improve ASR performance for bilingual contexts, particularly Spanish-English speech.

The key technical challenge addressed here is enhancing the model's ability to accurately recognize and transcribe code-switching speech. This involves modifying the existing wav2vec 2.0 model to include task-specific adaptations that better handle the complexities of multilingual audio input. By leveraging task-specific classification layers, this project aims to enable the model to distinguish between languages and adapt to fluid language shifts, which existing systems struggle to achieve.

In summary, the primary problem is to extend the capa-

bilities of current ASR systems to effectively process codeswitching speech without sacrificing accuracy. This project aims to develop a solution that adapts existing models to handle the complexities of bilingual speech data, thereby improving the inclusivity and real-world applicability of ASR systems for multilingual communities.

Methodology

The primary focus of this project is to explore the capabilities of the Wav2Vec 2.0 model for automatic speech recognition (ASR) in multilingual environments. The overarching goal was to enhance the model's ability to recognize and transcribe speech with higher accuracy by incorporating a classification head for specific tasks. The project drew inspiration from the Massively Multilingual Speech (MMS) model developed by Meta AI, which demonstrated success in scaling ASR for over 1,000 languages using self-supervised learning techniques. This project aimed to adapt similar techniques to explore improvements in multilingual speech recognition, specifically focusing on Spanish-English code-switching data.

Model Selection and Architecture

The foundational model chosen for this project is Wav2Vec 2.0, a self-supervised learning model that pre-trains on large amounts of unlabeled speech data. The model uses a combination of convolutional layers and transformer blocks to extract high-level features from raw audio inputs. The original Wav2Vec 2.0 model was enhanced by adding a custom classification head, allowing it to not only transcribe speech but also perform additional tasks, such as language detection or code-switching recognition. This was achieved by modifying the architecture to include task-specific classification layers.

The modifications involved altering the Wav2Vec 2.0 configuration to include a new parameter, num_classes, which controls the number of output classes for the classification head. This required adjustments to the model configuration file and the addition of a custom classification layer on top of the pre-trained encoder. The configuration changes ensured that the model could handle multi-task outputs while maintaining the original speech recognition capabilities.

Dataset and Preprocessing

Two datasets were considered for this project:

- Spanish-English Code-Switching Data: The initial focus
 was on leveraging bilingual datasets, such as the Bangor
 Miami corpus, which contain naturally occurring codeswitching conversations. However, due to computational
 constraints, this dataset was used selectively to test the
 model's ability to recognize code-switching patterns.
- LibriSpeech Dataset: To evaluate the model's performance on high-quality, monolingual speech data, the LibriSpeech dataset was used for fine-tuning. This dataset provided a robust benchmark for testing the modifications made to the Wav2Vec 2.0 model.

The preprocessing pipeline involved converting audio files (in .wav format) into input features that the Wav2Vec 2.0 model could process. The audio data was loaded using torchaudio, and transcriptions were extracted from corresponding .cha files. To optimize the training process and reduce GPU memory usage, the audio inputs were truncated to a maximum length of 15 seconds. This helped address the memory limitations encountered during training on large datasets.

Training Setup and Hyperparameters

The model was trained and fine-tuned using Hugging Face's transformers library within a Google Colab Pro+ environment, leveraging the NVIDIA A100 GPU. Due to resource limitations, the training was restricted to a smaller subset of the dataset to prevent GPU memory overflow. The training setup was as follows:

• Learning Rate: 2e-5

Batch Size: 4 (adjusted to fit within the available GPU memory)

• Number of Epochs: 3

· Optimizer: AdamW with weight decay

 Mixed Precision Training: Enabled using the fp16=True flag to reduce memory usage

 Evaluation Strategy: Set to evaluate the model at each epoch, although evaluation was limited to conserve resources.

To manage GPU memory effectively, a number of techniques were employed, including gradient checkpointing and dynamic padding. The training script used the Hugging Face Trainer API, which simplified the process of loading data, training, and evaluating the model.

Evaluation Metrics

The evaluation of the model's performance was based on standard ASR metrics:

- Word Error Rate (WER): A primary metric for ASR, measuring the number of substitutions, deletions, and insertions required to match the model output with the ground truth.
- Character Error Rate (CER): Useful for detecting smaller transcription errors, especially in cases where language mixing occurs.
- Classification Accuracy: For models with the additional classification head, accuracy was calculated to assess the effectiveness of the task-specific layers.

The evaluation process involved running the trained model on a validation set to check for overfitting and ensure that the model generalized well to unseen data.

Summary of Methodology

The project leveraged the power of the Wav2Vec 2.0 architecture with modifications aimed at enhancing multilingual speech recognition capabilities. By adding a custom classification head and optimizing the training setup, the project

aimed to improve the model's ability to handle diverse linguistic inputs, particularly in environments where codeswitching is common. Despite challenges with resource limitations, the methodological approach laid the groundwork for further improvements in ASR for low-resource and multilingual settings.

Experimental Results

The goal of this project was to fine-tune the Wav2Vec 2.0 model, enhanced with a custom task-specific classification head, on multilingual data to assess its capabilities in handling Spanish-English code-switching. The initial plan involved using both the Bangor Miami Corpus (for bilingual data) and the LibriSpeech dataset (for high-quality monolingual data) to evaluate the model's effectiveness in recognizing and transcribing speech with mixed linguistic inputs.

Dataset Preparation and Initial Tests

The preprocessing phase successfully converted the raw wav audio files into input features compatible with the Wav2Vec 2.0 model. Using torchaudio, audio files were loaded, and corresponding transcriptions from .cha files were extracted. To optimize memory usage, inputs were truncated to a maximum audio length of 15 seconds, with padding applied to ensure uniform input sizes, thus improving batch processing efficiency.

A small subset of the dataset was initially used to verify the data loading and preprocessing pipeline. These tests confirmed that the processor and custom classification head were integrated correctly. The data was successfully loaded into the Hugging Face Dataset format, enabling training using the Trainer API.

Challenges with Resource Limitations

Despite successful data preparation and model integration, significant challenges were encountered during training. The project was run on Google Colab Pro+, leveraging NVIDIA A100 GPUs. However, even with access to high-end GPUs and additional RAM, the model quickly exhausted the available memory during training. Efforts to mitigate this issue included reducing the batch size, limiting audio input length, enabling mixed precision training (fp16=True), and employing gradient checkpointing.

Even with these optimizations, attempts to train on a meaningful subset of the dataset resulted in out-of-memory errors. Specifically, attempts to allocate over 30 GB of GPU memory were consistently unsuccessful, highlighting the resource limitations inherent in training complex models on extensive datasets.

Outcomes and Analysis

Due to resource constraints, full training of the model could not be completed. However, partial training runs on a limited subset demonstrated that the modified Wav2Vec 2.0 model was capable of converging on smaller datasets. The model's loss decreased steadily during initial training, suggesting that the integration of the classification head was functioning as intended. Had the training been completed, the evaluation would have focused on the following metrics:

- Word Error Rate (WER) and Character Error Rate (CER) to evaluate ASR accuracy.
- Classification Accuracy for the task-specific head to determine how well the model could distinguish between different language segments or code-switched inputs.

While the resource limitations prevented a comprehensive evaluation, the partial results demonstrated the potential for extending Wav2Vec 2.0 to handle multilingual and code-switched speech more effectively.

Conclusion and Future Directions

This project aimed to enhance the Wav2Vec 2.0 model to better handle multilingual speech recognition, specifically focusing on the challenge of recognizing Spanish-English code-switching. Leveraging the methodologies explored in the Massively Multilingual Speech (MMS) research, the project integrated task-specific classification heads tailored for multilingual speech data. This modification was intended to improve the model's ability to differentiate between languages and transcribe code-switched speech more accurately.

Despite extensive efforts in data preparation, model customization, and leveraging resources such as Google Colab Pro+, the project faced significant hardware constraints. The model consistently encountered out-of-memory errors during training, even with access to powerful GPUs. Although partial training with a limited subset demonstrated promising results, the resource limitations ultimately prevented full-scale training and evaluation.

Kev Findings

- Data Preparation: The project successfully converted raw audio files and transcriptions into a format suitable for the Wav2Vec 2.0 model. This included audio preprocessing, feature extraction, and tokenization of transcriptions. The integration of Spanish-English bilingual data demonstrated the potential for handling code-switched inputs.
- Model Modification: The addition of a task-specific classification head to the Wav2Vec 2.0 model was successfully implemented. Initial tests showed that the model could learn from small subsets of the data, indicating that the modifications were technically feasible.
- Resource Limitations: The primary challenge encountered was the lack of sufficient computational resources for full-scale model training. Despite optimizations such as reducing batch sizes, enabling mixed precision (fp16), and limiting audio input length, the model continued to exceed the available GPU memory.

Future Directions

While the full training and evaluation of the model were not feasible within the current constraints, the project has laid the groundwork for future work. Several potential directions can be explored:

- Cloud-Based Training: To overcome the GPU memory limitations encountered in this project, future efforts could involve using more powerful cloud-based GPUs or distributed training solutions on platforms like AWS, Azure, or Google Cloud. These platforms offer access to multi-GPU setups, which could enable the training of large models like Wav2Vec 2.0 on extensive datasets.
- Model Optimization: Further optimization of the model could be achieved by exploring techniques such as model pruning, quantization, or distillation to reduce the memory footprint. This would allow for more efficient training on available hardware while maintaining model performance.
- Data Augmentation: To improve the model's ability to handle code-switching, incorporating additional codeswitched datasets or using data augmentation techniques could enhance the robustness of the model. This would help generalize its performance to diverse multilingual contexts.
- Transfer Learning: An alternative approach could involve leveraging pre-trained models from the MMS project or other multilingual ASR systems. Fine-tuning these models on a smaller, domain-specific dataset might yield better performance with limited computational resources.
- Deployment for Real-World Use: Once the model is fully trained, exploring its deployment in real-world applications, such as multilingual customer service chatbots or transcription services, could provide practical value. The ability to handle bilingual conversations seamlessly would be highly beneficial in regions where codeswitching is prevalent.

In conclusion, while the project faced challenges in fully realizing its objectives, it has laid the foundation for future research into multilingual ASR systems capable of handling code-switching. With improved computational resources and further optimizations, the approaches explored in this project could contribute to making speech recognition systems more inclusive and effective in multilingual settings.

References

[Baevski et al. 2021] Baevski, A.; Hsu, W.-N.; CONNEAU, A.; and Auli, M. 2021. Unsupervised speech recognition. In Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., *Advances in Neural Information Processing Systems*, 27826–27839. Curran Associates, Inc.

[Pratap et al. 2024] Pratap, V.; Tjandra, A.; Shi, B.; Tomasello, P.; Babu, A.; Kundu, S.; Elkahky, A.; Ni, Z.; Vyas, A.; Fazel-Zarandi, M.; Baevski, A.; Adi, Y.; Zhang, X.; Hsu, W.-N.; Conneau, A.; and Auli, M. 2024. Scaling speech technology to 1,000+ languages. *Journal of Machine Learning Research* 25(97):1–52.

[Zhang et al. 2021] Zhang, C.; Tan, X.; Ren, Y.; Qin, T.; Zhang, K.; and Liu, T.-Y. 2021. Uwspeech: Speech to speech translation for unwritten languages. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, 14319–14327.