Simplicty and uniqueness of trace of group C^* -algebras Bachelor thesis defense

Malthe Munk Karbo

Advisor: Mikael Rørdam

February 3, 2017

Table of Contents

- 1 Introduction, history and motivation
- 2 An introduction to various topics
 - Group C^* -algebras
 - Amenability
 - Group actions and the Reduced crossed product
 - Dixmier property
- 3 Boundary actions
- \bullet C^* -simplicity using boundary actions

Table of Contents

- 1 Introduction, history and motivation
- 2 An introduction to various topics
 - Group C^* -algebras
 - Amenability
 - Group actions and the Reduced crossed product
 - Dixmier property
- 3 Boundary actions
- $\bigcirc C^*$ -simplicity using boundary actions

• In 1975, Robert T. Powers proved that \mathbb{F}_2 was C^* -simple and that this implied the unique trace property of \mathbb{F}_2 .

- In 1975, Robert T. Powers proved that \mathbb{F}_2 was C^* -simple and that this implied the unique trace property of \mathbb{F}_2 .
- The proof Powers gave was generalised to a larger class of groups Powers groups.

- In 1975, Robert T. Powers proved that \mathbb{F}_2 was C^* -simple and that this implied the unique trace property of \mathbb{F}_2 .
- The proof Powers gave was generalised to a larger class of groups Powers groups.

We want to study a group G by studying group C^* -algebras, for an example by studying $C_r^*(G)$.

- In 1975, Robert T. Powers proved that \mathbb{F}_2 was C^* -simple and that this implied the unique trace property of \mathbb{F}_2 .
- The proof Powers gave was generalised to a larger class of groups Powers groups.

We want to study a group G by studying group C^* -algebras, for an example by studying $C_r^*(G)$.

Was open question if $C_r^*(G)$ simple $\iff C_r^*(G)$ unique trace \iff trivial amenable radical of G.

February 3, 2017

- In 1975, Robert T. Powers proved that \mathbb{F}_2 was C^* -simple and that this implied the unique trace property of \mathbb{F}_2 .
- The proof Powers gave was generalised to a larger class of groups Powers groups.

We want to study a group G by studying group C^* -algebras, for an example by studying $C_r^*(G)$.

Was open question if $C_r^*(G)$ simple \iff $C_r^*(G)$ unique trace \iff trivial amenable radical of G.

Today we see for discrete countable group G:

 $C_r^*(G)$ simple $\implies C_r^*(G)$ unique trace \iff trivial amenable radical of G.

Table of Contents

- 1 Introduction, history and motivation
- 2 An introduction to various topics
 - Group C^* -algebras
 - Amenability
 - Group actions and the Reduced crossed product
 - Dixmier property
- 3 Boundary actions
- $\bigcirc C^*$ -simplicity using boundary actions

We are interested in describing discrete groups G using theory of C^* -algebras. How do we do this?

We are interested in describing discrete groups G using theory of C^* -algebras. How do we do this?

Unitary representations

A unitary representation of a discrete group G is a pair (u, \mathcal{H}) , where \mathcal{H} is a Hilbert space and $u \colon G \to \mathcal{U}(\mathcal{H})$ is a group homomorphism into the group of unitary operators on \mathcal{H} . We use the following notation for unitary representations: $u(g) := u_g, \ g \in G$.

We are interested in describing discrete groups G using theory of C^* -algebras. How do we do this?

Unitary representations

A unitary representation of a discrete group G is a pair (u, \mathcal{H}) , where \mathcal{H} is a Hilbert space and $u \colon G \to \mathcal{U}(\mathcal{H})$ is a group homomorphism into the group of unitary operators on \mathcal{H} . We use the following notation for unitary representations: $u(g) := u_g, \ g \in G$.

Group C^* -algebra

Given a unitary representation (u, \mathcal{H}) of a discrete group G, we define the group C^* -algebra associated to u by $C_u^*(G) := C^*(\{u_g \colon g \in G\}) \subseteq B(\mathcal{H})$, the C^* -subalgebra of $B(\mathcal{H})$ generated by the unitaries $\{u_g\}_{g \in G}$.

An important example

An important example

The pair $(\lambda, \ell^2(G))$, where $\lambda \colon G \to \mathcal{U}(\ell^2(G))$ is defined by

$$(\lambda_g \xi)(s) = \xi(g^{-1}s), \quad s, g \in G, \ \xi \in \ell^2(G),$$

is called the *left-regular representation* of G,

An important example

The pair $(\lambda, \ell^2(G))$, where $\lambda \colon G \to \mathcal{U}(\ell^2(G))$ is defined by

$$(\lambda_g \xi)(s) = \xi(g^{-1}s), \quad s, g \in G, \ \xi \in \ell^2(G),$$

is called the *left-regular representation* of G, and the associated group C^* -algebra,

$$C_r^*(G) := C_\lambda^*(G) \subseteq B(\ell^2(G)),$$

called the reduced group C^* -algebra of G.

The set $\{\delta_g\}_{g\in G}\subseteq \ell^2(G)$, where for $s,g\in G$ we define

$$\delta_s(g) = \begin{cases} 1 & \text{if } s = g \\ 0 & \text{else} \end{cases},$$

is an orthonormal basis for $\ell^2(G)$.

The set $\{\delta_g\}_{g\in G}\subseteq \ell^2(G)$, where for $s,g\in G$ we define

$$\delta_s(g) = \begin{cases} 1 & \text{if } s = g \\ 0 & \text{else} \end{cases},$$

is an orthonormal basis for $\ell^2(G)$.

Lemma

For discrete group G, the map $\tau_0 \colon C_r^*(G) \to \mathbb{C}$ defined by $\tau_0(x) = \langle x \delta_e, \delta_e \rangle$ is a faithful tracial state on $C_r^*(G)$.

The set $\{\delta_g\}_{g\in G}\subseteq \ell^2(G)$, where for $s,g\in G$ we define

$$\delta_s(g) = \begin{cases} 1 & \text{if } s = g \\ 0 & \text{else} \end{cases},$$

is an orthonormal basis for $\ell^2(G)$.

Lemma

For discrete group G, the map $\tau_0 \colon C_r^*(G) \to \mathbb{C}$ defined by $\tau_0(x) = \langle x \delta_e, \delta_e \rangle$ is a faithful tracial state on $C_r^*(G)$.

Definition

For a discrete group G, we say that G is C^* -simple if the reduced group C^* -algebra, $C_r^*(G)$, is simple. We say that G has the *unique trace property* if τ_0 , defined as above, is the only tracial state on $C_r^*(G)$.

Let G be a countable discrete group.

Let G be a countable discrete group.

Definition

A group G is amenable if there exists a finitely additive left-invariant probability measure μ on G.

Let G be a countable discrete group.

Definition

A group G is amenable if there exists a finitely additive left-invariant probability measure μ on G.

Amenability is stable under usual group operations such as passing to subgroups and quotients.

Let G be a countable discrete group.

Definition

A group G is amenable if there exists a finitely additive left-invariant probability measure μ on G.

Amenability is stable under usual group operations such as passing to subgroups and quotients.

Proposition

Any group G has a largest amenable normal subgroup, AR_G , called the *amenable radical* of G.

Let G be a countable discrete group.

Definition

A group G is amenable if there exists a finitely additive left-invariant probability measure μ on G.

Amenability is stable under usual group operations such as passing to subgroups and quotients.

Proposition

Any group G has a largest amenable normal subgroup, AR_G , called the *amenable radical* of G.

Amenability is a strong property to satisfy, and has many consequences.

Group actions and the Reduced crossed product

Let G be a countable discrete group and ${\mathcal A}$ a unital $C^*\text{-algebra}.$

Group actions and the Reduced crossed product

Let G be a countable discrete group and $\mathcal A$ a unital C^* -algebra.

Definition

An action of G on \mathcal{A} is a group homomorphism $\alpha \colon G \to \operatorname{Aut}(\mathcal{A})$ from G to the group of *-automorphism on \mathcal{A} . Abbreviated $G \overset{\alpha}{\curvearrowright} \mathcal{A}$.

Malthe Munk Karbo February 3, 2017

10 / 28

Group actions and the Reduced crossed product

Let G be a countable discrete group and $\mathcal A$ a unital C^* -algebra.

Definition

An action of G on \mathcal{A} is a group homomorphism $\alpha \colon G \to \operatorname{Aut}(\mathcal{A})$ from G to the group of *-automorphism on \mathcal{A} . Abbreviated $G \overset{\alpha}{\curvearrowright} \mathcal{A}$.

Whenever $G \overset{\alpha}{\curvearrowright} \mathcal{A} \leadsto$ we make a C^* -algebra $\mathcal{A} \rtimes_{\alpha,r} G$ which contains \mathcal{A} and $C^*_r(G)$ in a nice way. This C^* -algebra is called the reduced crossed product.

Malthe Munk Karbo February 3, 2017

10 / 28

Let \mathcal{A} be a unital C^* -algebra.

Let $\mathcal A$ be a unital C^* -algebra. For $a\in \mathcal A$ define $D(a):=\mathrm{conv}\left\{uau^*\colon u\in \mathcal U(\mathcal A)\right\}$.

Let $\mathcal A$ be a unital C^* -algebra. For $a\in \mathcal A$ define $D(a):=\mathrm{conv}\left\{uau^*\colon u\in \mathcal U(\mathcal A)\right\}$.

Definition

We say that \mathcal{A} has the Dixmier property if

$$\overline{D(a)} \cap \mathbb{C}1_{\mathcal{A}} \neq \emptyset \quad \forall a \in \mathcal{A}.$$

Let $\mathcal A$ be a unital C^* -algebra. For $a\in \mathcal A$ define $D(a):=\mathrm{conv}\left\{uau^*\colon u\in \mathcal U(\mathcal A)\right\}$.

Definition

We say that A has the Dixmier property if

$$\overline{D(a)} \cap \mathbb{C}1_{\mathcal{A}} \neq \emptyset \quad \forall a \in \mathcal{A}.$$

Lemma

Let \mathcal{A} be a unital C^* -algebra with a tracial state τ . If \mathcal{A} has the Dixmier property, then τ is unique.

Let \mathcal{A} be a unital C^* -algebra. For $a \in \mathcal{A}$ define $D(a) := \operatorname{conv} \{uau^* : u \in \mathcal{U}(\mathcal{A})\}$.

Definition

We say that A has the Dixmier property if

$$\overline{D(a)} \cap \mathbb{C}1_{\mathcal{A}} \neq \emptyset \quad \forall a \in \mathcal{A}.$$

Lemma

Let \mathcal{A} be a unital C^* -algebra with a tracial state τ . If \mathcal{A} has the Dixmier property, then τ is unique.

Proposition

Let \mathcal{A} be a unital C^* -algebra with a faithful tracial state τ . If \mathcal{A} has the Dixmier property, then \mathcal{A} is simple.

Table of Contents

- 1 Introduction, history and motivation
- 2 An introduction to various topics
 - Group C^* -algebras
 - Amenability
 - Group actions and the Reduced crossed product
 - Dixmier property
- Boundary actions
- C*-simplicity using boundary actions

Boundary actions: G-spaces

In the following, let G be a second countable locally compact group and X a compact Hausdorff space.

Boundary actions: G-spaces

In the following, let G be a second countable locally compact group and X a compact Hausdorff space.

Definition

A G-action of G on X is a continuous group homomorphism $\alpha \colon G \to \operatorname{Homeo}(X)$. We write $G \curvearrowright X$ to mean that G acts on X, and as before, we write $\alpha(g)(x) := g.x$ for $x \in X$ and $g \in G$.

Boundary actions: G-spaces

In the following, let G be a second countable locally compact group and X a compact Hausdorff space.

Definition

A G-action of G on X is a continuous group homomorphism $\alpha \colon G \to \operatorname{Homeo}(X)$. We write $G \curvearrowright X$ to mean that G acts on X, and as before, we write $\alpha(g)(x) := g.x$ for $x \in X$ and $g \in G$. A space equipped with a G-action is called a G-space.

Boundary actions: G-spaces

In the following, let G be a second countable locally compact group and X a compact Hausdorff space.

Definition

A G-action of G on X is a continuous group homomorphism $\alpha \colon G \to \operatorname{Homeo}(X)$. We write $G \curvearrowright X$ to mean that G acts on X, and as before, we write $\alpha(g)(x) := g.x$ for $x \in X$ and $g \in G$. A space equipped with a G-action is called a G-space.

 $\operatorname{Prob}(X) = \mathcal{S}(C(X))$ with weak* topology.

Boundary actions: G-spaces

In the following, let G be a second countable locally compact group and X a compact Hausdorff space.

Definition

A G-action of G on X is a continuous group homomorphism $\alpha \colon G \to \operatorname{Homeo}(X)$. We write $G \curvearrowright X$ to mean that G acts on X, and as before, we write $\alpha(g)(x) := g.x$ for $x \in X$ and $g \in G$. A space equipped with a G-action is called a G-space.

 $Prob(X) = \mathcal{S}(C(X))$ with weak* topology.

 \bullet $G \curvearrowright X \leadsto G \curvearrowright C(X)$ by equipping G with discrete topology and defining

$$g.f(x) := f(g^{-1}.x), g \in G, x \in X \text{ and } f \in C(X).$$

Boundary actions: G-spaces

In the following, let G be a second countable locally compact group and X a compact Hausdorff space.

Definition

A G-action of G on X is a continuous group homomorphism $\alpha \colon G \to \operatorname{Homeo}(X)$. We write $G \curvearrowright X$ to mean that G acts on X, and as before, we write $\alpha(g)(x) := g.x$ for $x \in X$ and $g \in G$. A space equipped with a G-action is called a G-space.

 $Prob(X) = \mathcal{S}(C(X))$ with weak* topology.

 \bullet $G \curvearrowright X \leadsto G \curvearrowright C(X)$ by equipping G with discrete topology and defining

$$g.f(x) := f(g^{-1}.x), g \in G, x \in X \text{ and } f \in C(X).$$

2 $G \curvearrowright X \leadsto G \curvearrowright \operatorname{Prob}(X)$ by equipping G with discrete toplogy and defining

$$g.\mu(E) := \mu(g^{-1}.E), \ \mu \in \text{Prob}(X), \ g \in G \text{ and } E \subseteq X \text{ Borel},$$

Boundary actions: Minimal actions

Definition

A G-space X is said to be minimal if every G-orbit is dense in X.

Boundary actions: Minimal actions

Definition

A G-space X is said to be minimal if every G-orbit is dense in X.

Definition

A subset $Y \subseteq X$ of a G-space X is minimal if it is non-empty, closed and G-invariant and a minimal element in the set of non-empty, closed and G-invariant subsets of X.

Boundary actions: Minimal actions

Definition

A G-space X is said to be minimal if every G-orbit is dense in X.

Definition

A subset $Y \subseteq X$ of a G-space X is minimal if it is non-empty, closed and G-invariant and a minimal element in the set of non-empty, closed and G-invariant subsets of X.

An application of Zorn's lemma yields that every compact G-space X has a minimal subspace. Moreover a subset Y is minimal if and only if the action $G \curvearrowright Y$ is minimal

Definition

For a G-space X, the action of G is strongly proximal if for each $\mu \in \text{Prob}(X)$ we have

$$\overline{G.\mu}^{w^*} \cap \{\delta_x \colon x \in X\} \neq \emptyset.$$

Definition

For a G-space X, the action of G is strongly proximal if for each $\mu \in \text{Prob}(X)$ we have

$$\overline{G.\mu}^{w^*} \cap \{\delta_x \colon x \in X\} \neq \emptyset.$$

Definition

If X is a compact G-space, we say that the action $G \cap X$ is a boundary action if it is minimal and strongly proximal. A compact G-space X for which the action is a boundary action is called a G-boundary

There are quite a few different equivalent conditions for a compact G-space X to be a G-boundary.

There are quite a few different equivalent conditions for a compact G-space X to be a G-boundary.

Proposition

For a compact G-space X, TFAE:

- lacksquare X is a G-boundary,
- **②** For every $\nu \in \operatorname{Prob}(X)$ we have $\{\delta_x \colon x \in X\} \subseteq \overline{G.\nu}^{w^*}$ and
- **9** Prob(X) admits no non-trivial closed convex subsets which are G-invariant under the induced action $G \curvearrowright \text{Prob}(X)$.

Malthe Munk Karbo February 3, 2017

16 / 28

There are quite a few different equivalent conditions for a compact G-space X to be a G-boundary.

Proposition

For a compact G-space X, TFAE:

- lacktriangledown X is a G-boundary,
- **②** For every $\nu \in \operatorname{Prob}(X)$ we have $\{\delta_x \colon x \in X\} \subseteq \overline{G.\nu}^{w^*}$ and
- **9** Prob(X) admits no non-trivial closed convex subsets which are G-invariant under the induced action $G \curvearrowright \text{Prob}(X)$.

In laymans terms, a G-boundary is a space such that every G-orbit in Prob(X) becomes a black hole for all the point masses when going to weak* closure.

Malthe Munk Karbo February 3, 2017

16 / 28

It turns out that some of the properties we've seen behave nicely and have certain properties:

It turns out that some of the properties we've seen behave nicely and have certain properties:

ullet The G-boundary property is preserved under quotients,

It turns out that some of the properties we've seen behave nicely and have certain properties:

- The G-boundary property is preserved under quotients,
- Strongly proximality is preserved under taking products,

It turns out that some of the properties we've seen behave nicely and have certain properties:

- ullet The G-boundary property is preserved under quotients,
- Strongly proximality is preserved under taking products,
- If $G \curvearrowright Y$ is minimal and X is a G-boundary, then any continuous G-map $\varphi \colon Y \to X$ will be unique and surjective.

We now proceed to construct a largest G-boundary, in the sense that it has the universal property that every other G-boundary is a quotient of it.

We now proceed to construct a largest G-boundary, in the sense that it has the universal property that every other G-boundary is a quotient of it.

Definition

A compact G-boundary Z is a universal boundary for G if every other G-boundary is a quotient of it.

We now proceed to construct a largest G-boundary, in the sense that it has the universal property that every other G-boundary is a quotient of it.

Definition

A compact G-boundary Z is a universal boundary for G if every other G-boundary is a quotient of it.

remark: Will be unique up to isomorphism.

We now proceed to construct a largest G-boundary, in the sense that it has the universal property that every other G-boundary is a quotient of it.

Definition

A compact G-boundary Z is a $universal\ boundary$ for G if every other G-boundary is a quotient of it.

remark: Will be unique up to isomorphism.

Proposition

There exists a universal boundary of G, called the Furstenburg boundary of G, denoted by $\partial_F G$.

We now proceed to construct a largest G-boundary, in the sense that it has the universal property that every other G-boundary is a quotient of it.

Definition

A compact G-boundary Z is a $universal\ boundary$ for G if every other G-boundary is a quotient of it.

remark: Will be unique up to isomorphism.

Proposition

There exists a universal boundary of G, called the Furstenburg boundary of G, denoted by $\partial_F G$.

The proof is roughly:

We now proceed to construct a largest G-boundary, in the sense that it has the universal property that every other G-boundary is a quotient of it.

Definition

A compact G-boundary Z is a $universal\ boundary$ for G if every other G-boundary is a quotient of it.

remark: Will be unique up to isomorphism.

Proposition

There exists a universal boundary of G, called the Furstenburg boundary of G, denoted by $\partial_F G$.

The proof is roughly:

• There is a bound on the cardinality of every compact G-boundary.

We now proceed to construct a largest G-boundary, in the sense that it has the universal property that every other G-boundary is a quotient of it.

Definition

A compact G-boundary Z is a $universal\ boundary$ for G if every other G-boundary is a quotient of it.

remark: Will be unique up to isomorphism.

Proposition

There exists a universal boundary of G, called the Furstenburg boundary of G, denoted by $\partial_F G$.

The proof is roughly:

- There is a bound on the cardinality of every compact G-boundary.
- ② Index them up to isomorphism by their cardinality and form their product. It will be strongly proximal and compact.

We now proceed to construct a largest G-boundary, in the sense that it has the universal property that every other G-boundary is a quotient of it.

Definition

A compact G-boundary Z is a $universal\ boundary$ for G if every other G-boundary is a quotient of it.

remark: Will be unique up to isomorphism.

Proposition

There exists a universal boundary of G, called the Furstenburg boundary of G, denoted by $\partial_F G$.

The proof is roughly:

- lacktriangle There is a bound on the cardinality of every compact G-boundary.
- ② Index them up to isomorphism by their cardinality and form their product. It will be strongly proximal and compact.
- Our Use Zorn's lemma to pick a minimal subset.

Malthe Munk Karbo February 3, 2017

18 / 28

It turns out that amenability plays a role in how groups act on boundary spaces.

It turns out that amenability plays a role in how groups act on boundary spaces.

Proposition

A closed amenable normal subgroup $N \subseteq G$ of a second countable locally compact group G acts trivially on every compact G-boundary X.

It turns out that amenability plays a role in how groups act on boundary spaces.

Proposition

A closed amenable normal subgroup $N \unlhd G$ of a second countable locally compact group G acts trivially on every compact G-boundary X.

It turns out that amenability plays a role in how groups act on boundary spaces.

Proposition

A closed amenable normal subgroup $N \subseteq G$ of a second countable locally compact group G An amenable normal subgroup $N \subseteq G$ of a countable discrete group G acts trivially on every compact G-boundary X.

It turns out that amenability plays a role in how groups act on boundary spaces.

Proposition

A closed amenable normal subgroup $N \subseteq G$ of a second countable locally compact group G An amenable normal subgroup $N \subseteq G$ of a countable discrete group G acts trivially on every compact G-boundary X.

And more generally we have:

It turns out that amenability plays a role in how groups act on boundary spaces.

Proposition

A closed amenable normal subgroup $N \subseteq G$ of a second countable locally compact group G An amenable normal subgroup $N \subseteq G$ of a countable discrete group G acts trivially on every compact G-boundary X.

And more generally we have:

Proposition (Furman)

For any countable discrete group G with $t \in G$, it holds that $t \in AR_G$ if and only if $t \in \ker(G \cap X)$ for all compact G-boundaries X.

Table of Contents

- 1 Introduction, history and motivation
- 2 An introduction to various topics
 - Group C^* -algebras
 - Amenability
 - Group actions and the Reduced crossed product
 - Dixmier property
- 3 Boundary actions
- \bullet C^* -simplicity using boundary actions

Malthe Munk Karbo February 3, 2017

20 / 28

From now G will be a discrete and countable group and X a compact Hausdorff space.

From now G will be a discrete and countable group and X a compact Hausdorff space. Before continuing onward, we recall:

From now G will be a discrete and countable group and X a compact Hausdorff space. Before continuing onward, we recall:

From now G will be a discrete and countable group and X a compact Hausdorff space. Before continuing onward, we recall:

From now G will be a discrete and countable group and X a compact Hausdorff space. Before continuing onward, we recall:

- \circ $G \curvearrowright X \leadsto G \curvearrowright \operatorname{Prob}(X)$.
- If $G \stackrel{\alpha}{\curvearrowright} C(X)$ we form $C(X) \rtimes_{\alpha,r} G$.

From now G will be a discrete and countable group and X a compact Hausdorff space. Before continuing onward, we recall:

- \circ $G \curvearrowright X \leadsto G \curvearrowright \operatorname{Prob}(X)$.
- **3** If $G \stackrel{\alpha}{\curvearrowright} C(X)$ we form $C(X) \rtimes_{\alpha,r} G$.
- **9** $G \cap \mathcal{S}(C_r^*(G))$ by $t.\varphi(a) = \varphi(\lambda_t a \lambda_t^*), \ \varphi \in \mathcal{S}(C_r^*(G)), \ a \in C_r^*(G)$ and $t \in G$

Some remarks and notation

From now G will be a discrete and countable group and X a compact Hausdorff space. Before continuing onward, we recall:

- $G \curvearrowright X \leadsto G \curvearrowright \operatorname{Prob}(X).$
- **3** If $G \stackrel{\alpha}{\curvearrowright} C(X)$ we form $C(X) \rtimes_{\alpha,r} G$.
- **9** $G \cap \mathcal{S}(C_r^*(G))$ by $t.\varphi(a) = \varphi(\lambda_t a \lambda_t^*), \ \varphi \in \mathcal{S}(C_r^*(G)), \ a \in C_r^*(G)$ and $t \in G$
- **9** $G \curvearrowright X \leadsto G \curvearrowright \mathcal{S}(C(X) \rtimes_r G)$: for $t \in G$ and any state φ define $t \cdot \varphi$ by

$$t.\varphi(a) = \varphi(\lambda_t a \lambda_t^*), \ a \in C(X) \rtimes_r G.$$

Malthe Munk Karbo February 3, 2017

We now start to show some of results mentioned in the beginning.

We now start to show some of results mentioned in the beginning.

Theorem

Let G be a group and $t \in G$. Then $\tau(\lambda_t) = 0$ for all tracial states τ on $C_r^*(G)$ if and only if $t \notin AR_G$.

We now start to show some of results mentioned in the beginning.

Theorem

Let G be a group and $t \in G$. Then $\tau(\lambda_t) = 0$ for all tracial states τ on $C_r^*(G)$ if and only if $t \notin AR_G$.

Corollary

A group G has the unique trace property if and only if it has trivial amenable radical.

We now start to show some of results mentioned in the beginning.

Theorem

Let G be a group and $t \in G$. Then $\tau(\lambda_t) = 0$ for all tracial states τ on $C_r^*(G)$ if and only if $t \notin AR_G$.

Corollary

A group G has the unique trace property if and only if it has trivial amenable radical.

We now start to show some of results mentioned in the beginning.

Theorem

Let G be a group and $t \in G$. Then $\tau(\lambda_t) = 0$ for all tracial states τ on $C_r^*(G)$ if and only if $t \notin AR_G$.

Corollary

A group G has the unique trace property if and only if it has trivial amenable radical.

The proof of this relies on the fact that given a normal amenable subgroup $N \subseteq G$, there is a *-homomorphism $\pi \colon C_r^*(G) \to C_r^*(G/N)$ such that

$$\pi(\lambda_G(t)) = \lambda_{G/N}([t]), \text{ for all } t \in G.$$

We now start to show some of results mentioned in the beginning.

Theorem

Let G be a group and $t \in G$. Then $\tau(\lambda_t) = 0$ for all tracial states τ on $C_r^*(G)$ if and only if $t \notin AR_G$.

Corollary

A group G has the unique trace property if and only if it has trivial amenable radical.

The proof of this relies on the fact that given a normal amenable subgroup $N \subseteq G$, there is a *-homomorphism $\pi \colon C^*_r(G) \to C^*_r(G/N)$ such that

$$\pi(\lambda_G(t)) = \lambda_{G/N}([t]), \text{ for all } t \in G.$$

Using this, one creates a trace τ on $C_r^*(G)$ which is 0 on λ_t for all $t \notin AR_G$.

We now start to show some of results mentioned in the beginning.

Theorem

Let G be a group and $t \in G$. Then $\tau(\lambda_t) = 0$ for all tracial states τ on $C_r^*(G)$ if and only if $t \notin AR_G$.

Corollary

A group G has the unique trace property if and only if it has trivial amenable radical.

We now start to show some of results mentioned in the beginning.

Theorem

Let G be a group and $t \in G$. Then $\tau(\lambda_t) = 0$ for all tracial states τ on $C_r^*(G)$ if and only if $t \notin AR_G$.

Corollary

A group G has the unique trace property if and only if it has trivial amenable radical.

Theorem

Let G be a group and $t \in G$. Then $t \notin AR_G$ if and only if

$$0 \in \overline{\operatorname{conv}} \left\{ \lambda_{sts^{-1}} : s \in G \right\}.$$

Proposition [Matthew Kennedy, Emmanuel Breuillard, Merhdad Kalatar and Narutaka Ozawa, $2014]\,$

A discrete group G is C^* -simple if and only if there is a compact G-boundary X such that the action is free.

Malthe Munk Karbo February 3, 2017

23 / 28

Proposition [Matthew Kennedy, Emmanuel Breuillard, Merhdad Kalatar and Narutaka Ozawa, $2014]\,$

A discrete group G is C^* -simple if and only if there is a compact G-boundary X such that the action is free.

What is this? Why is this interesting?

Malthe Munk Karbo February 3, 2017

23 / 28

Using this, we may prove the following:

Using this, we may prove the following:

Theorem

For a group G TFAE:

Malthe Munk Karbo February 3, 2017

Using this, we may prove the following:

Theorem

For a group G TFAE:

Using this, we may prove the following:

Theorem

For a group G TFAE:

- \bullet $\tau_0 \in \overline{\{s.\varphi \colon s \in G\}}^{w^*}$ for all states φ on $C_r^*(G)$,
- \bullet $\tau_0 \in \overline{\operatorname{conv}}^{w^*} \{ s. \varphi \colon s \in G \} \text{ for all states } \varphi \text{ on } C_r^*(G),$
- \bullet $\omega(1)\tau_0 \in \overline{\operatorname{conv}} \{s.\omega \colon s \in G\} \text{ for all } \omega \in (C_r^*(G))^*,$
- **5** For all $t_1, t_2, \ldots, t_m \in G \setminus \{e\}$, we have

$$0 \in \overline{\operatorname{conv}}^{w^*} \left\{ \lambda_s (\lambda_{t_1} + \lambda_{t_2} + \dots + \lambda_{t_m}) \lambda_s^* \colon s \in G \right\},\,$$

o For all $t_1, t_2, \ldots, t_m \in G \setminus \{e\}$ and $\varepsilon > 0$, there exists $s_1, s_2, \ldots, s_n \in G$ such that

$$\left\|\sum_{k=1}^n \frac{1}{n} \lambda_{s_k t_j s_k^{-1}} \right\| < \varepsilon,$$

for all $1 \leq j \leq m$.

Theorem

Let G be a discrete group and $t \in G$. TFAE:

- **2** there is a boundary action $G \cap X$ such that t acts non-trivially on X;
- $\delta \lambda_t \in \ker(\tau)$ for all tracial states τ on $C_r^*(G)$;

Theorem

Let G be a discrete group and $t \in G$. TFAE:

- $\bullet t \not\in AR_G;$
- ② there is a boundary action $G \cap X$ such that t acts non-trivially on X;
- $\delta \lambda_t \in \ker(\tau)$ for all tracial states τ on $C_r^*(G)$;

Theorem

Let G be a discrete group. TFAE:

- $C_r^*(G)$ has unique tracial state;
- ② G admits a faithful boundary action;
- **4** for all $t \in G \setminus \{e\}$ and all $\varepsilon > 0$, there is $s_1, s_2, \ldots, s_n \in G$ such that

$$\left\| \sum_{j=1}^n \frac{1}{n} \lambda_{s_k t s_k^{-1}} \right\| < \varepsilon.$$

Malthe Munk Karbo February 3, 2017

26 / 28

Theorem

Let G be a discrete group. TFAE:

- 2 G admits a free boundary action;
- \bullet $\tau_0 \in \overline{\{s.\varphi \colon g \in G\}}^{w^*}$, for all states φ on $C_r^*(G)$;
- **1** $\tau_0 \in \overline{\operatorname{conv}}^{w^*} \{ s. \varphi \colon s \in G \}$, for all states φ on $C_r^*(G)$;
- for all $t_1, t_2, \ldots, t_m \in G \setminus \{e\}$ and all $\varepsilon > 0$, there exist $s_1, s_2, \ldots, s_n \in G$ such that

$$\left\|\frac{1}{n}\sum_{j=1}^n \lambda_{s_jt_ks_j^{-1}}\right\|<\varepsilon,$$

for all k = 1, 2, ..., m;

6 $C_r^*(G)$ has the Dixmier property.

26 / 28

Theorem

 $AR_G = \{e_G\} \iff G$ has unique trace property \iff for all $t \in G \setminus \{e\}$ and all $\varepsilon > 0$, there is $s_1, s_2, \ldots, s_n \in G$ such that

$$\left\| \sum_{j=1}^{n} \frac{1}{n} \lambda_{s_k t s_k^{-1}} \right\| < \varepsilon.$$

Theorem

 $AR_G = \{e_G\} \iff G$ has unique trace property \iff for all $t \in G \setminus \{e\}$ and all $\varepsilon > 0$, there is $s_1, s_2, \ldots, s_n \in G$ such that

$$\left\| \sum_{j=1}^n \frac{1}{n} \lambda_{s_k t s_k^{-1}} \right\| < \varepsilon.$$

Theorem

G is C^* -simple \iff for all $t_1, t_2, \ldots, t_m \in G \setminus \{e\}$ and all $\varepsilon > 0$, there exist $s_1, s_2, \ldots, s_n \in G$ such that

$$\left\|\frac{1}{n}\sum_{j=1}^n\lambda_{s_jt_ks_j^{-1}}\right\|<\varepsilon,$$

for all k = 1, 2, ..., m

Theorem

 $AR_G = \{e_G\} \iff G$ has unique trace property \iff for all $t \in G \setminus \{e\}$ and all $\varepsilon > 0$, there is $s_1, s_2, \ldots, s_n \in G$ such that

$$\left\| \sum_{j=1}^n \frac{1}{n} \lambda_{s_k t s_k^{-1}} \right\| < \varepsilon.$$

Theorem

G is C^* -simple \iff for all $t_1, t_2, \ldots, t_m \in G \setminus \{e\}$ and all $\varepsilon > 0$, there exist $s_1, s_2, \ldots, s_n \in G$ such that

$$\left\|\frac{1}{n}\sum_{j=1}^n\lambda_{s_jt_ks_j^{-1}}\right\|<\varepsilon,$$

for all k = 1, 2, ..., m

Thus

 $C_r^*(G)$ simple $\implies C_r^*(G)$ unique trace \iff trivial amenable radical of G.

The end. thanks for listening