2021 Advanced Mathematics 1 Paper 1

1. The following is a set of data in ascending order:

If the median and mean of the data are equal, find the value of x. Ans. A [30. Statistics]

A 11

B 10

C 9

D 8

2. A company accepted a renovation job of a hotel. If the job is completed before the deadline, the company will earn a profit of RM 50,000. If the job is delayed, there will be a penalty. The delayed period, corresponding probabilities and penalties are given in Table 1.

Delayed period	< 30 days	31—60 days	61—90 days
Probability	0.15	0.08	0.05
Penalty (RM)	5,000	12,000	20,000

Table 1

Knowing that the job would not be delayed beyond 90 days, find the expected profit of this job after penalty. Ans. A [11. Probabilities]

A Rm 47,290

B RM 37,290

C RM 33,290

D RM 11,290

3. A hospital selects 7 people from 7 doctors and 7 housemen to form a team in an outbreak. If the team can only have at most 4 housemen, how many ways are there to form the team? Ans. D [9. Permutation and Combination]

A 1.225

B 1.716

C 2.940

D 2.941

4. Find the value x, if the inverse of the matrix A = (x + 12 - 64) does not exist. Ans A [7. Matrices and determinants]

A - 4

B-2

C 0

D 2

5. A quadratic equation $2x^2 - 4x + m - 2 = 0$ has two distinct non-zero real roots, find the range of *m*. aAns. A [1. Quadratic equation]

A $(-\infty, 2) \cup (2, 4)$ B $(-\infty, 4)$ C $(4, \infty)$

D(2,4)

6. Given that $f: x \rightarrow x + 2$, $g \circ f: x \rightarrow x^2 + 4x + 8$. Find g(x) Ans. B [12. Functions]

Ax-2

B $x^2 + 4$ C 2x + 8 D $x^2 + 8x + 20$

7. In the expansion of $(2x + 1)^{10}$ in descending powers, determine the coefficient of the eighth term. Ans. C [10. Binomial theorem]

- 8. In an arithmetic progression, the sum of the first four terms is $\frac{17}{3}$ and the tenth is $\frac{31}{6}$. Find the common difference. Ans. D [5. Sequence and series]

- $B = \frac{5}{3}$
- $C = \frac{2}{3}$

- $D = \frac{1}{2}$
- 9. Given that $\underline{u} = \underline{b} \underline{a}$ and $\underline{v} = \underline{c} \underline{b}$, with $\underline{a} = (2\ 1)$, $\underline{b} = (5\ -3)$ and $\underline{c} = (m\ -6)$. If \underline{u} is parallel to \underline{v} , find the value of m. Ans. D [14. Vector]
 - A 9

- B 1 $C_{\frac{11}{4}}$
- D $\frac{29}{4}$
- 10. Find $\sum_{k=10}^{5} k(k-2)$. Ans. C [5. Sequence and series]
 - A 24.050.925
- B 337.965
- C 328.055
- D 327.975

- 11. Find the largest value of $2(\sin\theta\cos^3\theta \sin^3\theta\cos\theta)$. Ans. B [17.Trigonometric functions of any angle]
 - A $\frac{\sqrt{2}}{2}$
- B $\frac{1}{2}$
- C 1

- D $\sqrt{3}$
- 12. A triangle has three sides lengths of 5 cm, 6 cm and 7 cm. Suppose that the largest angle of this triangle is θ , find $cos\theta$. Ans A [18. Solution of triangles.]
 - $A = \frac{1}{r}$

- B $-\frac{1}{5}$ C $\frac{2}{5}\sqrt{6}$
- D $-\frac{2}{5}\sqrt{6}$

- 13. Given that $sinx + cosx = \sqrt{3}sin(\frac{5\pi}{2} x)$, find tanx.
 - Ans. A 1[17. Trigonometric functions of any angle]
 - A $\sqrt{3} 1$
- B $\sqrt{3} + 1$ C $\frac{\sqrt{3}-1}{2}$

- D $\frac{\sqrt{3}+1}{2}$
- 14. Fig.1 shows a cuboid. Given that AB = 10, BC = 6, and RC = 4. K, M are the midpoints of AD, BC respectively and T is a point on SR such that ST : TR = 2 : 3. Find the angle between the plane TKM and the base ABCD.
 - Ans. D [20. Problems in three dimensions]
 - A 30.81°
- B 38.66°
- C 51.34°
- D 53.13°

15. Given that two points P(1, -2) and Q(b, c). P lies on a line l with gradient $\frac{1}{2}$. If l is perpendicular to PQ, find the relation between b and c. Ans. C [23. The straight line]

A c = 2b + 4

 $B \quad c = b \qquad \qquad C \quad c = -2b$

D c = 2b - 4

16. Given that *k* is a constant, find the radius of the circle

 $x^{2} + y^{2} - (2k + 2)x + (2 - 2k)y + 2k^{2} = 0.$ Ans. D [24. The circle]

A 3

B 2 $C \sqrt{3}$

D $\sqrt{2}$

17. Find $(\sqrt{4x^2 + 2x + 1} - 2x - 1)$.

Ans. B[25.Limit and Continuity]

A $-\frac{1}{4}$ B $-\frac{1}{2}$

C 0

D Limit does not exist

18. Given that $y = \sin^2 x$. Find the value of $\frac{dy}{dx}$ when $x = \frac{2\pi}{3}$. Ans. A [26. Differentiation]

A - $\frac{\sqrt{3}}{2}$

B $\frac{\sqrt{3}}{2}$ C $\frac{1}{2}$

 $D - \frac{1}{2}$

19. Find the absolute maximum value and absolute minimum value of

 $f(x) = x^3 - 3x^2 - 9x + 5$ on the close interval [- 2, 2]

Ans B [27. Applications of differentiation]

- A Absolute maximum value=3, absolute minimum value=-17
- B Absolute maximum value=10, absolute minimum value=-17
- C Absolute maximum value=10, absolute minimum value=-22
- D Absolute maximum value=3, absolute minimum value=-22
- 20. Given that the gradient of tangent to the curve y = f(x) at the point (x, y) is

 $x^3 + \frac{2}{x^2} - 2$. If the curve passes through the point (2, 1), find the equation of the curve.

Ans. C [28. Indefinite integrals]

A $y = \frac{1}{4}x^4 - \frac{2}{x} - 2x$

B $y = 3x^2 - \frac{2}{x} - 2x - 6$

C $y = \frac{1}{4}x^4 - \frac{2}{x} - 2x + 2$

D $y = \frac{1}{4}x^4 + \frac{2}{x} - 2x$