光学

1.光程 Δ:

$$\Delta = n r$$

光程
$$\Delta = \Sigma (n_i d_i)$$

2. 光程差 δ

$$\delta = \Delta_2 - \Delta_1$$

光程差 δ 与相差 $\Delta \varphi$ 的关系 $\Delta \varphi = \frac{2\pi}{2} \delta$

$$\Delta \varphi = \frac{2\pi}{\lambda} \delta$$

3. 透镜的等光程性 使用透镜不会产生附加光程差

半波损失

- > 光密 → 光疏无半波损失。
- Y 折射无半波损失。

干涉

杨氏双缝干涉

薄膜干涉

装置,光程差,明暗纹条件,条纹特点及动态分析

§1 杨氏双缝干涉

一. 实验装置

二、明暗纹条件

单色光入射
$$\delta = r_2 - r_1$$

 θ : 位置角

明纹: $\delta \approx d \sin \theta = \pm k\lambda$

$$k = 0,1,2...$$
 相长,光强最强零级、一级... 明纹

暗纹: $\delta \approx d \sin \theta = \pm (2k-1)\lambda/2$

k = 1,2... 相消,光强最弱

一级、二级... 暗纹

 δ 为其它值,光强位于最亮与最暗之间

$$x = D \tan \theta \approx D \sin \theta$$

$$\delta = d \sin \theta = \pm k\lambda$$
$$\delta = d \sin \theta = \pm (2k - 1)\frac{\lambda}{2}$$

明纹中心:
$$x = D \sin \theta = D(\pm \frac{k}{d})\lambda, k = 0,1,2 \cdots$$

$$x = \pm k \frac{D}{d} \lambda$$

暗纹中心:
$$x = D \sin \theta = D[\pm (2k-1)\frac{\lambda}{2d}]$$
 $k=1,2,3...$

$$x = \pm (2k - 1) \frac{D}{2d} \lambda$$

相邻明(暗)纹间的距离

$$\Delta x = (k+1)\frac{D}{d}\lambda - k\frac{D}{d}\lambda$$
$$\Delta x = \frac{D}{d}\lambda$$

- - 条纹等间距排列
- □ 波长 λ 一定, $\Delta x \propto D$, $\Delta x \propto 1/d$,
- \square D,d 一定, $\Delta x \propto \lambda$

四、光强分布:

五、条纹特点

单色光入射 (1) 一系列平行的明暗相间的条纹;

- (2) θ 不太大时条纹等间距;
- (3) 中间级次低;
- (4) $\Delta x \propto \lambda$

$$x = \pm k \frac{D}{d} \lambda$$

零级明纹为白色, 其它亮纹构成彩带,由紫到红, 第二级开始重合

§ 2 薄膜干涉(一)

在薄膜上表面相遇, 发射干涉

$$\delta(e) = 2ne + \frac{\lambda}{2}$$

$$=k\lambda$$
, $k=1,2,3,\cdots$ 明纹

$$=(2k'+1)\frac{\lambda}{2}, k'=0,1,2,\cdots$$
 暗纹

同一厚度 e 对应同一级条纹 —— 等厚条纹

条纹特点:

1. 平行光入射
$$i=0$$
, $\delta(e)=2ne+\frac{\lambda}{2}$

与劈尖棱平行的直线上的各点 e 相同,在一个干涉级上,干涉花样为与劈尖棱平行的等间距的直线条纹

- 等厚条纹
- 2 棱边 e=0 $\delta=\lambda/2$ 暗纹
- 3 相邻明(暗)纹间距 L

$$k$$
 级明纹 $2ne_k + \frac{\lambda}{2} = k\lambda$

$$k+1$$
 级明纹 $2ne_{k+1} + \frac{\lambda}{2} = (k+1)\lambda$

$$e_{k+1} - e_k = \frac{\lambda}{2n}$$

$$e_{k+1} - e_k = \frac{\lambda}{2n}$$

$$L = \frac{e_{k+1} - e_k}{\sin \theta} = \frac{\lambda}{2n \sin \theta}$$

$$L = \frac{\lambda}{2n\theta}$$

L与k 无关,条纹等间距

$$L \propto \lambda$$

$$L \propto \frac{1}{\theta}$$
 $\theta \uparrow$, $L \downarrow$ 条纹变密

$$L \propto \frac{1}{n}$$
 n 增大条纹变密

§3薄膜干涉(二)牛顿环干涉

1. 装置

2. 明暗环公式

垂直入射 i=0, 反射光中观察花纹

$$\delta = 2e + \frac{\lambda}{2}$$

 $=k\lambda$, $k=1,2,3,\cdots$ 明纹

O处,e=0,暗斑

厚度相同的点构成环形 ——牛顿环

3. 明暗环半径(反射光中)

$$r^2 = R^2 - (R - e)^2 \approx 2R e$$

暗环:
$$\delta = 2e + \frac{\lambda}{2} = (2k+1)\frac{\lambda}{2}$$

$$e = k \frac{\lambda}{2}$$

$$e = k\frac{\lambda}{2} \qquad \qquad r^2 = 2Rk\frac{\lambda}{2}$$

⇒ 第
$$k$$
个暗环半径 $r_k = \sqrt{kR\lambda}$

明环
$$\delta = 2e + \frac{\lambda}{2} = k\lambda$$
 $e = (k - \frac{1}{2})\frac{\lambda}{2}$ $(k = 1, 2, ...)$

⇒第
$$k$$
 个明环半径 $r_k = \sqrt{\frac{(2k-1)R\lambda}{2}}$

4. 干涉条纹特点

$$\delta = 2e + \frac{\lambda}{2}$$

№ 花纹为以触点O为圆心的明暗相间的圆,从中心向外干涉级次越来越高

№条纹内疏外密

相邻明(暗)环半径差

$$\Delta r = r_{k+1} - r_k = \frac{e_{k+1} - e_k}{\tan \theta_k} \approx \frac{\lambda}{2\theta_k}$$

₱ 凸透镜上移,条纹缩进

▶白光入射,同一级条纹,红色在外圈,紫色在内圈

例: 使平行光入射如图所示的装置上来观察等厚条纹。试画 出反射光的干涉条纹,并标出条纹的级次(只画暗纹)。

柱面镜

$$\delta = 2t + \frac{\lambda}{2}$$

空气膜边缘是暗纹 中央为亮纹

有5条暗环

中央为暗线,k=0两侧各有5条暗纹。

光的衍射

§1单缝的夫琅禾费衍射、半波带法

一。装置

二、半波带法

三、明暗纹条件

$$a \sin \theta = 0$$
 — 中央明纹(中心)

$$a\sin\theta=\pm(2k'+1)\frac{\lambda}{2}$$
, $k'=1,2,3\cdots$ 明纹中心(近似)

$$a \sin \theta = \pm k\lambda$$
, $k = 1,2,3$ ··· 一暗纹(中心)

若 $a \sin \theta$ 不是半波长的整数倍,亮度介于最明和最暗之间。

四、光强分布

$$I_1 = 4.7 \% I_0$$

$$I_2 = 1.7 \% I_0$$

$$I_3 = 0.8 \% I_0$$

五.条纹宽度

1. 角宽度

某一亮纹的角宽度 为该亮纹两侧两相邻 暗纹中心对透镜光心 所张的角度。

k 级明纹角宽度

对k级暗纹

$$a \sin \theta_k = \pm k\lambda$$

$$\sin \theta_k \approx \theta_k$$

$$\theta_k = \frac{k\lambda}{a}$$

故
$$k$$
 级明纹角宽度 $\Delta \theta_k = \theta_{k+1} - \theta_k = \frac{(k+1)\lambda}{a} - \frac{k\lambda}{a} = \frac{\lambda}{a}$

中央明纹角宽度

$$\Delta \theta_0 = \theta_{+1} - \theta_{-1} = \frac{\lambda}{a} - \left(-\frac{\lambda}{a}\right) = \frac{2\lambda}{a}$$

中央明纹半角宽度

$$\Delta \theta_{*} = \frac{\lambda}{a}$$

2 亮纹的线宽度

中央亮纹
$$\Delta x_0 = 2f \tan \theta_+ = 2f \theta_+ = 2f \frac{\lambda}{a}$$

$$\Delta x_0 \propto \frac{\lambda}{a}$$
 ——衍射反比定律

其它次极大

$$\Delta x = f \Delta \theta$$
$$= f \frac{\lambda}{a}$$

讨论:

$$\theta_k = \frac{k\lambda}{a}$$
 $\Delta \theta_{\sharp} = \frac{\lambda}{a}$
 $\Delta x = f \frac{\lambda}{a}$

> 波长对条纹宽度的影响

缝宽a一定, λ ↑, Δ θ_{+} ↑, Δ $x \sim \lambda$, 波长越长,条纹宽度越宽.

後宽变化对条纹的影响

∴ 几何光学是波动光学在 $\lambda h \rightarrow 0$ 时的极限情形.

台光入射单缝中央 白色明纹

两侧 对称彩带,由紫到红

§3 光栅衍射

一、光栅

1. 光栅 —大量等宽等间距的平行狭缝(或反射面)构成的光学元件。

2. 种类:

3. 光栅常数

- a 是透光(或反光)部分的宽度
- b 是不透光(或不反光)部分的宽度

光栅常数 d 与缝数/cm (刻痕/cm)成倒数关系

二、光栅衍射

1 装置与光路

多光束干涉+单缝衍射

$$d\sin\theta = \pm k\lambda$$

$$k = 0,1,2...$$

P为明纹(主极大)

3.光强曲线

相邻主极大之间分布着 (N-1) 个极小,(N-2) 次极大

4.条纹特点:

几乎黑的背景上的 又细、又亮条纹

$$I=NI_0$$

缝数 N 很大

5. 缺级

当多缝光束干涉的主极大恰好与单缝衍射的极小位置重合时,该极主极大将在屏幕上消失的现象。

$$\begin{cases} a \sin \theta = \pm k'\lambda & k'=1,2... & \text{单缝衍射极小} \\ (a+b)\sin \theta = d \sin \theta = \pm k\lambda & k=0, 1, 2... & \text{多光束干涉} \\ & \pm k = \pm \frac{a+b}{a}k' = \pm \frac{d}{a}k' & k'=1,2... & \text{缺级条件} \end{cases}$$

6. 衍射图样特点

- ∀ P₀处为明纹,两侧出现明暗相间的花纹。
- \forall 明纹亮、细锐,亮度随N的增大而增大
- $\forall I = N^2 I_0$ $N \uparrow \rightarrow$ 明纹越细且条纹明暗对比越强。

7. 衍射光谱

$$d \sin \theta = \pm k\lambda \qquad \qquad \sin \theta \propto \lambda$$

白光入射, k=0 白色 $k \neq 0$ 两侧按波长顺序排列 由中心向外形成紫到红的彩色光谱

光谱中有部分谱线重叠

光的偏振

1. 光的偏振状态

干涉、 衍射 —— 光是波动

偏振 —— 光是横波

光是横波, \vec{E} 的方向与光的传播方向垂直。

非偏振光 (自然光)

完全偏振光

线偏振光 椭圆偏振光 圆偏振光

部分偏振光 天光、湖光

2. 马吕斯定律

条件: 线偏振光入射到检偏器上(不考虑吸收)

结论: 透射光强为 $I = I_0 \cos^2 \alpha$

 I_0 : 入射光的强度

α: 起偏器和检偏器偏振化方向间的夹角

即入射光的光矢量振动方向和检偏器偏振化方向间的夹角

$$A = A_0 \cos lpha \qquad I = I_0 \cos^2 lpha$$
 $lpha = 0$ 或 π 时, $I_{ ext{max}} = I_0$ $lpha = rac{\pi}{2}$ 或 $rac{3}{2}\pi \qquad I_{ ext{min}} = 0$ $lpha$ 为其它值, $0 < I < I_0$

3. 反射和折射时光的偏振

布儒斯特角

 $i=i_0$ 时,反射光为光振动面垂直入射面的线偏振光。

 i_0 一 布儒斯特角 (起偏角)。此时 $r + i_0 = 90^{\circ}$

$$n_1 \sin i_0 = n_2 \sin r = n_2 \cos i_0$$

$$\tan i_0 = \frac{\sin i_0}{\cos i_0} = \frac{n_2}{n_1} = n_{21}$$

$$\tan i_0 = n_{21}$$

例:如图所示, S_1 和 S_2 为两个同相的相干点光源,从 S_1 和 S_2 到观察点P的距离相等,即 S_1 P= S_2 P.光束1和2分别穿过折射率为 n_1 和 n_2 、厚度皆为t的透明薄片,它们的光程差为___.

解: 由两个光源发出的光到达P点的光程为

$$\Delta_1 = S_1 P - t + n_1 t = S_1 P + (n_1 - 1) t$$

$$\Delta_2 = S_2 P - t + n_2 t = S_2 P + (n_2 - 1) t$$

故光程差为

$$\delta = \Delta_2 - \Delta_1 = (n_2 - n_1) t$$

例:某元素的特征光谱中含有波长分别为 λ_1 =450 nm 和 λ_2 =750 nm (1 nm=10⁻⁹ m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 λ_2 的谱线的级数将是

解: 由光栅方程得

$$k_1 \lambda_1 = k_2 \lambda_2 \qquad 3k_1 = 5k_2$$

$$k_1 = \frac{5}{3}k_2$$

答案: D

例:检验滚珠大小的干涉装置示意如图(a). S为光源,L为会聚透镜,M为半透半反镜. 在平晶 T_1 、 T_2 之间放置A、B、C三个滚珠,其中A为标准件,直径为 d_0 . 用波长为 λ 的单色光垂直照射平晶,在 M 上方观察时观察到等厚条纹如图(b)所示. 轻压 C端,条纹间距变大,则B珠的直径 d_1 、C 珠的直径 d_2 与 d_0 的关系分别为:

(A)
$$d_1 = d_0 + \lambda$$
, $d_2 = d_0 + 3\lambda$.

(B)
$$d_1 = d_0 - \lambda$$
, $d_2 = d_0 - 3\lambda$.

(C)
$$d_1 = d_0 + \lambda / 2$$
, $d_2 = d_0 + 3\lambda / 2$.

(D)
$$d_1 = d_0 - \lambda/2$$
, $d_2 = d_0 - 3\lambda/2$.

答案: (C)

例: 折射率为 n_1 =1.51的玻璃上覆盖着一层厚度均匀的介质膜,膜的折射率为 n_2 =1.36。用多种颜色的单色光垂直照射到介质膜。发现当波长为 λ_1 =512nm时反射光中出现干涉极小; 当波长为 λ_2 =640nm时反射光中出现干涉极大。则介质膜的厚度为_____。

解:
$$\delta(e) = 2n_2 e = (2k_1 + 1)\frac{\lambda_1}{2} = k_2 \lambda_2$$

$$(2k_1 + 1)\frac{512}{2} = k_2 640 \qquad k_1 = k_2 = 2$$

解得: e = 471 nm