МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. Шухова» (БГТУ им. В. Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №19.6

по дисциплине: «Введение в функции»

Выполнил/а: ст. группы ВТ-231 Кисиль Николай Владимирович

Проверили: Черников Сергей Викторович Новожен Никита Викторович **Цель работы:** получение навыков написания функций при решении простых задач. Закрепление навыков разработки алгоритмов разветвляющейся и циклической структуры. Получение навыков формулирования спецификаций к разрабатываемым функциям.

Содержание работы

Задача 1: Напишите функцию abs для вычисления модуля
вещественного числа х
Задача 2: Напишите функцию $max2$, которая возвращает максимальное
значение из двух целочисленных переменных типа <i>int</i> 5
Задача 3: Напишите функцию тах3, которая возвращает максимальное
значение из трёх целочисленных переменных типа <i>int</i>
Задача 4: Напишите функцию getDistance, которая вычисляет
расстояние между двумя точками, заданными целочисленными координатами
(x1, y1), (x2, y2)
Задача 5: Напишите функцию solveX2, которая выводит корни
квадратного уравнения.
Задача 6: Написать функцию isDigit, которая возвращает значение
'истина', если символ x является цифрой, 'ложь' - в противном случае 9
Задача 7: Напишите функцию $swap$, которая принимает две переменные
типа <i>float</i> и обменивает их значения
Задача 8: Напишите функцию $sort2$, которая упорядочивает значения a
и <i>b</i> типа <i>float</i>
Задача 9: Напишите функцию sort3, которая упорядочивает значения
переменных a, b, c типа $float$ таким образом, чтобы: $a \le b \le c$
Задача 10: Написать функцию, которая возвращает значение 'истина'
если можно составить треугольник с целочисленными сторонами $a, b, c (a, b)$
$c \in N$), 'ложь' - в противном случае

Задача 11: Напишите функцию getT riangleT ypeLength, которая
возвращает значение 0 , если треугольник со сторонами $a,\ b,\ c$ является
остроугольным, 1 — если прямоугольным, 2 — тупоугольным, -1 — если
треугольник с такими сторонами не существует
Задача 12 (a): Напишите функцию <i>isP rime</i> , которая возвращает
значение 'истина', если число является простым, иначе – 'ложь'. Без
оптимизации
Задача 12 (б): Напишите функцию isP rime, которая возвращает
значение 'истина', если число является простым, иначе – 'ложь'. С
оптимизацией перебора до \sqrt{N}
Задача 12 (в): Напишите функцию <i>isP rime</i> , которая возвращает
значение 'истина', если число является простым, иначе – 'ложь'. С
оптимизацией перебора до \sqrt{N} и шагом 2
Задача 13: Дано натуральное число <i>п</i> . Получить все совершенные числа,
меньшие <i>п</i>
Задача 14: Найти количество чисел-палиндромов от 1 до <i>n</i>
Задача 15: В шестизначных автобусных билетах найти счастливые 20

Задача 1: Напишите функцию *abs* для вычисления модуля вещественного числа х

Пример тестовых данных:

No	Входные данных	Выходные данные
1	-1	1
2	23	23
3	-3.5	3.5

Спецификация функции fAbs:

- 1. 3aroлово κ float fAbs (float x).
- 2. Назначение: возвращает модуль вещественного числа х

```
float fAbs (const float x) {
   return x < 0 ? -x : x;
}</pre>
```

Задача 2: Напишите функцию *тах*2, которая возвращает максимальное значение из двух целочисленных переменных типа *int*.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	1 2	2
2	1 1	1
3	-12 -2	-2

Спецификация функции max2:

- 1. Заголовок max2 (long long a, long long b).
- 2. Назначение: возвращает максимальное значение из двух целочисленных а и b.

```
long long max2(const long long a, const long long b) {
   return a > b ? a : b;
}
```

Задача 3: Напишите функцию *тах*3, которая возвращает максимальное значение из трёх целочисленных переменных типа *int*.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	1 2 3	3
2	1 1 1	1
3	-12 -2 0	0

Спецификация функции тах3:

- 1. Заголовок long long max3(long long a, long long b, long long c).
- 2. Назначение: возвращает максимальное значение из трех целочисленных а, b и с.

```
long long max3(const long long a, const long long b, const long long c) {
   return max2(max2(a, b), c);
}
```

Задача 4: Напишите функцию getDistance, которая вычисляет расстояние между двумя точками, заданными целочисленными координатами (x1, y1), (x2, y2).

Пример тестовых данных:

No	Входные данных	Выходные данные
1	0 -3 3 1	5
2	0 5 1 3	2.236068
3	-1 -2 -3 0	2.828427

Спецификация функции getDistance:

- 1. 3аголовок double getDistance(int x1, int y1, int x2, int y2).
- 2. Назначение: возвращает расстояние между двумя точками, заданными целочисленными координатами (x1, y1), (x2, y2).

```
double getDistance(const int x1, const int y1, const int x2, const int y2) {
    const int delta_x = x1 - x2;
    const int delta_y = y1 - y2;

    return sqrt(delta_x * delta_x + delta_y * delta_y);
}
```

Задача 5: Напишите функцию *solveX2*, которая выводит корни квадратного уравнения.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	2 1 1	«Корней нет»
2	2 6 4	-2 -1
3	1 2 1	-1

Спецификация функции solveX2:

- 1. Заголовок double solvex2 (int a, int b, int c).
- 2. Назначение: возвращает корни квадратного уравнения

```
void solveX2(const int a, const int b, const int c) {
    SetConsoleOutputCP(CP_UTF8);

    const double D = pow(b, 2) - 4*a*c;
    const double sqrtD = sqrt(D);

    if(D < 0) {
        printf("Корней нет");
    } else if(D == 0) {
        const double x = (-b - sqrtD) / (2 * a);

        printf("%f", x);
    } else {
        const double x1 = (-b - sqrtD) / (2 * a);
        const double x2 = (-b + sqrtD) / (2 * a);

        printf("%f %f", x1, x2);
    }
}
```

Задача 6: Написать функцию isDigit, которая возвращает значение 'истина', если символ x является цифрой, 'ложь' - в противном случае.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	a	0
2	1	1
3	12	1

Спецификация функции isDigit

- 1. Заголовок bool isDigit (char x).
- 2. Назначение: возвращает значение 'истина', если символ x является цифрой, 'ложь' в противном случае.

```
bool isDigit(const char x) {
   return x >= '0' && x <= '9';
}</pre>
```

Задача 7: Напишите функцию *swap*, которая принимает две переменные типа *float* и обменивает их значения.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	1 2	2 1
2	0 0	0 0
3	1.34 -2.134	-2.134 1.34

Спецификация функции swap:

- 1. Заголовок void swap(float *a, float *b).
- 2. Назначение: обменивает значение переменных

```
void swap(float * const a, float * const b) {
   const float temp = *a;
   *a = *b;
   *b = temp;
}
```

Задача 8: Напишите функцию sort2, которая упорядочивает значения a и b типа float.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	1 2	1 2
2	3 0	0 3
3	1.34 -2.134	-2.134 1.34

Спецификация функции sort2:

- 1. Заголовок void sort2(float *a, float *b).
- 2. Назначение: упорядочивает значения a и b

```
void sort2(float * const a, float * const b) {
    if(*a > *b) {
       swap(a, b);
    }
}
```

Задача 9: Напишите функцию sort3, которая упорядочивает значения переменных a,b,c типа float таким образом, чтобы: $a \le b \le c$ Пример тестовых данных:

No	Входные данных	Выходные данные
1	1 3 2	1 2 3
2	0 3 0	0 0 3
3	1.34 -2.134 -1.5	-2.134 -1.5 1.34

Спецификация функции sort3:

- 1. Заголовок void sort3(float *a, float *b, float *c)
- 2. Назначение: упорядочивает значения переменных a, b, c

```
void sort3(float * const a, float * const b, float * const c) {
   sort2(a, b);
   sort2(b, c);
   sort2(a, c);
}
```

Задача 10: Написать функцию, которая возвращает значение 'истина', если можно составить треугольник с целочисленными сторонами a, b, c $(a, b, c \in N)$, 'ложь' - в противном случае.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	3 4 5	1
2	1 2 1	0
3	111	1

Спецификация функции isTrianglePossible:

- 1. Заголовок bool isTrianglePossible(int a, int b, int c).
- 2. Назначение: возвращает значение 'истина', если можно составить треугольник с целочисленными сторонами a, b, c, 'ложь' в противном случае.

```
bool isTrianglePossible(int a, int b, int c) {
    sort3(&a, &b, &c);
    return a + b - c > 0;
}
```

Задача 11: Напишите функцию getT riangleT ypeLength, которая возвращает значение 0, если треугольник со сторонами a, b, c является остроугольным, 1 — если прямоугольным, 2 — тупоугольным, -1 — если треугольник с такими сторонами не существует.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	3 3 3	0
2	3 4 5	1
3	3 3 5	2
4	1 2 1	-1

Спецификация функции getTriangleTypeLength:

- 1. Заголовок int getTriangleTypeLength(int a, int b, int c).
- 2. Назначение: возвращает значение 0, если треугольник со сторонами a, b, c является остроугольным, 1 если прямоугольным, 2 тупоугольным, -1 если треугольник с такими сторонами не существует.

```
int getTriangleTypeLength(int a, int b, int c) {
    sort3(&a, &b, &c);
    if(isTrianglePossible(a, b, c)) {
        if(c * c < a * a + b*b) {
            return 0;
        } else if(c*c == a*a + b*b) {
            return 1;
        } else if(c*c > a*a + b*b) {
            return 2;
        }
    }
    return -1;
}
```

Задача 12 (а): Напишите функцию *isP rime*, которая возвращает значение 'истина', если число является простым, иначе – 'ложь'. Без оптимизации

Пример тестовых данных:

№	Входные данных	Выходные данные
1	3	1
2	4	0
3	2147483647	1

Спецификация функции isPrime:

- 1. Заголовок int isPrime(int n).
- 2. Назначение: возвращает значение 'истина', если число является простым, иначе 'ложь'.

```
int isPrime(const int n) {
    int d = 2;
    while (d < n && n % d != 0) {
        d++;
    }
    return d == n;
}</pre>
```

Задача 12 (б): Напишите функцию isP rime, которая возвращает значение 'истина', если число является простым, иначе — 'ложь'. С оптимизацией перебора до \sqrt{N}

Пример тестовых данных:

No	Входные данных	Выходные данные
1	3	1
2	4	0
3	2147483647	1

Спецификация функции isPrime:

- 1. Заголовок int isPrime (int n).
- 2. Назначение: возвращает значение 'истина', если число является простым, иначе 'ложь'.

```
int isPrime(const int n) {
    int max_d = sqrt(n);
    int d = 2;

while (d <= max_d && n % d != 0) {
        d++;
    }
    return d == max_d + 1 && n != 1;
}</pre>
```

Задача 12 (в): Напишите функцию *isP rime*, которая возвращает значение 'истина', если число является простым, иначе — 'ложь'. С оптимизацией перебора до \sqrt{N} и шагом 2.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	3	1
2	4	0
3	2147483647	1

Спецификация функции isPrime:

- 1. Заголовок int isPrime(int n).
- 2. Назначение: возвращает значение 'истина', если число является простым, иначе 'ложь'.

```
int isPrime(const int n) {
    int max_d = sqrt(n);
    int d = 3;
    int is_prime = !(n == 1 || n % 2 == 0 && n != 2);

    while (d <= max_d && is_prime) {
        is_prime = n % d;
        d += 2;
    }
    return is_prime;
}</pre>
```

Задача 13: Дано натуральное число n. Получить все совершенные числа, меньшие n.

Пример тестовых данных:

$N_{\underline{0}}$	Входные данных	Выходные данные
1	10	6
2	100	6 28
3	10000	6 28 496 8128

Спецификация функции isNumberPerfect:

- 1. Заголовок long long isNumberPerfect(int x).
- 2. Назначение: возвращает значение 'истина', если число является совершенным, иначе 'ложь'.

Спецификация функции printPerfectNumber:

- 1. Заголовок void printPerfectNumber(int n).
- 2. Назначение: выводит все совершенные числа, меньшие n.

```
long long isNumberPerfect(const int x) {
   int sum_dividers = 0;

   for(register size_t i = 1; i < x; i++) {
      if(x % i == 0) {
         sum_dividers += i;
      }
   }
   return sum_dividers == x;
}

void printPerfectNumber(const int n) {
   for(size_t i = 1; i < n; i++) {
      if(isNumberPerfect(i)) {
        printf("%d ", i);
      }
   }
}</pre>
```

Задача 14: Найти количество чисел-палиндромов от 1 до *п*.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	10	9
2	100	18
3	2	1

Спецификация функции isPalindrome:

- 3. Заголовок int isPalindrome(int x).
- 4. Назначение: возвращает значение 'истина', если число является палиндромом, иначе 'ложь'.

Спецификация функции getNumberPalindrome:

- 3. 3aroπobok int getNumberPalindrome(int n).
- 4. Назначение: счет количества палиндромов от 1 до *п*

```
int isPalindrome(const int x) {
   int temp_x = x;
   int reverse = 0;

while (temp_x != 0) {
      reverse = reverse * 10 + temp_x % 10;
      temp_x /= 10;
   }

return reverse == x;

}

int getNumberPalindrome(const int n) {
   int count_palindrome = 0;

for(int i = 1; i < n; i++) {
      if(isPalindrome(i)) {
            count_palindrome++;
      }
   }

   return count_palindrome;
}</pre>
```

Задача 15: В шестизначных автобусных билетах найти счастливые.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	123321	1
2	104311	1
3	112321	0

Спецификация функции sumFirstThreeDigits:

- 5. 3αΓΟΛΟΒΟΚ int sumFirstThreeDigits(int x).
- 6. Назначение: возвращает значение суммы первых 3 цифр числа

Спецификация функции sumLastThreeDigits:

- 5. Заголовок int sumLastThreeDigits(int x).
- 6. Назначение: возвращает значение суммы последних 3 цифр числа

Спецификация функции isLuckyTicket:

- 1. Заголовок int isLuckyTicket(int x).
- 2. Назначение: возвращает значение 'истина', если число является «счастливым», иначе 'ложь'.

3.

```
int sumFirstThreeDigits(const int x) {
    int temp_x = x / 1000;
    int sum = 0;
    for(size_t i = 0; i < 3; i++) {
        sum += temp_x % 10;
        temp_x /= 10;
    }

    return sum;
}

int sumLastThreeDigits(const int x) {
    int temp_x = x % 1000;
    int sum = 0;
    for(size_t i = 0; i < 3; i++) {
        sum += temp_x % 10;
        temp_x /= 10;
    }

    return sum;
}

int isLuckyTicket(const int x) {
    return sumFirstThreeDigits(x) == sumLastThreeDigits(x);
}</pre>
```

Вывод: почили навыки написания функций для решения задач. Получили навыки формулирования спецификаций к разрабатываемым функциям.