פתרון לממ"ן 11 – סמסטר 20121ג אלגברה לינארית 1 - 20109

שאלה 1

 $: \mathbf{Z}_{\shortparallel}$ נפתור את המערכת הבאה, מעל

$$\begin{cases} (3a^2 - b)x - 2y = 10\\ by = 2 \end{cases}$$

רואים מיד שאם $\underline{b=0}$, מתקבלת סתירה (0=2) בשורה השנייה, ולכן אין פתרון למערכת. $\underline{b=0}$, נניח בהמשך ש- $b\neq 0$, נדרג את מטריצת המקדמים של המערכת הנתונה :

$$\begin{pmatrix} 3a^2 - b & -2 & 10 \\ 0 & b & 2 \end{pmatrix} \xrightarrow{R_2 \to \frac{1}{b}R_2} \begin{pmatrix} 3a^2 - b & -2 & 10 \\ 0 & 1 & \frac{2}{b} \end{pmatrix} = B$$

- , איברים פותחים. לכן כל המשתנים קשורים, B מדורגת B מדורגת לכן כל המשתנים פותחים. לכן כל המשתנים קשורים, .1 במילים אחרות, יש פתרון יחיד למערכת.
 - B : B אם $a^2 b = 0$ אם .2

$$B = \begin{pmatrix} 0 & -2 & | & 10 \\ 0 & 1 & | & \frac{2}{b} \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 0 & 1 & | & \frac{2}{b} \\ 0 & -2 & | & 10 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 0 & 1 & | & \frac{2}{b} \\ 0 & 0 & | & 10 + \frac{4}{b} \end{pmatrix}$$

ויש יותר מפתרון אחד אם ורק אם $0=\frac{4}{b}=0$ או $10+\frac{4}{b}=0$ מה ששקול ל- $\frac{b=4}{b}$. נציב 0. $a^2=4$ ומתקבל $a^2=5$, מה ששקול ל- $a^2=5$ (כי $a^2=4$) את הערך הזה בתנאי $a^2=b=0$ ומתקבל $a^2=b=0$, מה ששקול ל- a=1 ש יותר מראה ש- a=1 או a=1 או a=1 ש יותר a=1 וגות a=1 וגות הפתרונות היא a=1 במקרים האלה, קבוצת הפתרונות היא a=1 במקרים הפתרונות למערכת הנתונה. יש 11 אפשרויות עבור הפרמטר a=1, לכן בכל אחד מהמקרים יש 11 פתרונות למערכת הנתונה.

שאלה 2

א. נשתמש בשיטת גאוס כדי לפתור את המערכת הנתונה:

$$\begin{cases} 2y + 2z - 2w = 0 \\ x - z - 3w = 0 \end{cases}$$
$$2x + 3y + z + w = 0$$
$$-2x + y + 3z - 2w = 0$$

נחליף את שתי המשוואות הראשונות ונדרג את המטריצה המצומצמת של המערכת הומוגנית שהתקבלה.

: R מעל.

$$A = \begin{pmatrix} 1 & 0 & -1 & -3 \\ 0 & 2 & 2 & -2 \\ 2 & 3 & 1 & 1 \\ -2 & 1 & 3 & -2 \end{pmatrix} \xrightarrow{R_2 \to \frac{1}{2}R_2} \begin{pmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & 3 & 3 & 7 \\ 0 & 1 & 1 & -8 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 3R_2} \begin{pmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & -7 \end{pmatrix}$$

$$\xrightarrow{R_3 \to 0.1R_3} \begin{pmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -7 \end{pmatrix} \xrightarrow{R_1 \to R_1 + 3R_3} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B$$

x,y,w שהם קשורים, משתנים משתנים לכן פותחים, איברים איברים שהב 3 יש איברים שהב מטריצה הקנונית

. w=0 ו- y=-z=-a , x=z=a ויוצא כי z=a ויוצא כי z=a

לפיכך, הפתרון הכללי הוא $a \in \mathbf{R}$, (a, -a, a, 0) הוא הפתרון הכללי היא

$$S = \{(a, -a, a, 0) \mid a \in \mathbf{R}\}$$

2. מעל :Z

$$A = \begin{pmatrix} 1 & 0 & -1 & -3 \\ 0 & 2 & 2 & -2 \\ 2 & 3 & 1 & 1 \\ -2 & 1 & 3 & -2 \end{pmatrix} \xrightarrow{R_2 \to 3R_2 \atop R_3 \to R_3 - 2R_1} \begin{pmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & 3 & 3 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 3R_2} \xrightarrow{R_4 \to R_4 + 2R_1} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 \end{pmatrix} \xrightarrow{R_1 \to R_1 + 3R_3} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B$$

לפי אותו שיקול כמו במקרה הקודם יוצא שיש משתנה חופשי ולכן 5 פתרונות, כאשר $S = \{(a,4a,a,0) \,|\, a \in \mathbf{Z}_5\}$ קבוצת הפתרונות היא

ב. נפתור את המערכת:

(*)
$$\begin{cases} x^2 + y^2 + z^2 = 6\\ x^2 - y^2 + 2z^2 = 2\\ 2x^2 + y^2 - z^2 = 3 \end{cases}$$

מערכת זו אינה לינארית. נגדיר משתני עזר: $X=x^2$, $Y=y^2$, $Z=z^2$: מערכת גדיר משתני נגדיר משתני עזר

.(**)
$$\begin{cases} X+Y+Z=6 \\ X-Y+2Z=2 \\ 2X+Y-Z=3 \end{cases}$$
 : כך:

: המערכת (**) הינה לינארית, נדרג את מטריצת המקדמים שלה

$$\begin{pmatrix}
1 & 1 & 1 & | & 6 \\
1 & -1 & 2 & | & 2 \\
2 & 1 & -1 & | & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & | & 6 \\
0 & -2 & 1 & | & -4 \\
0 & -1 & -3 & | & -9
\end{pmatrix}
\rightarrow \cdots
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & | & 1 \\
0 & 1 & 0 & | & 3 \\
0 & 0 & 1 & | & 2
\end{pmatrix}$$

(1,3,2) והוא (**) מערכת יחיד למערכת (**) והוא

נובע מכך ש-2 ב 1-1 ולכן ש $z^2=2$, $y^2=3$, $x^2=1$ נובע מכך ש-1

$$z = \pm \sqrt{2}$$
 , $y = \pm \sqrt{3}$, $x = \pm 1$

$$(1,\sqrt{3},\sqrt{2}), (1,-\sqrt{3},\sqrt{2}), (1,\sqrt{3},-\sqrt{2}), (1,-\sqrt{3},-\sqrt{2}), (-1,\sqrt{3},\sqrt{2}), (-1,\sqrt{3},-\sqrt{2}), (-1,-\sqrt{3},-\sqrt{2}), (-1$$

שאלה 3

פתור את המערכת הנתונה עייי דרוג של מטריצת המקדמים:

$$\begin{pmatrix} 1 & -k & 1-k & 2 \\ k & -4 & -6 & k^2 + 2k - 9 \\ k - 2 & 2k - 4 & 3k - 8 & k^2 + 2k - 12 \end{pmatrix} \xrightarrow{R_2 \to R_2 - kR_1} \begin{pmatrix} 1 & -k & 1-k & 2 \\ 0 & k^2 - 4 & k^2 - k - 6 & k^2 - 9 \\ 0 & k^2 - 4 & k^2 - 6 & k^2 - 8 \end{pmatrix}$$

יש פתרון יחיד אם ורק אם כל המשתנים קשורים, כלומר אם ורק אם יש 3 איברים פותחים. לפיכך, נדון במספר מקרים.

אז יש פתרון יחיד. $k \neq \pm 2,0$

. ולכן אין פתרון
$$C = \begin{pmatrix} 1 & \mp 2 & 1 \mp 2 & 2 \\ 0 & 0 & -2 & -4 \\ 0 & 0 & \pm 2 & 1 \end{pmatrix} \xrightarrow{R_3 \to R_3 \pm R_2} \begin{pmatrix} 1 & \mp 2 & 1 \mp 2 & 2 \\ 0 & 0 & -2 & -4 \\ 0 & 0 & 0 & \neq 0 \end{pmatrix}$$
 ולכן אין פתרון.

. יש שורת סתירה ולכן שוב אין פתרון.
$$C = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & -4 & -6 & -8 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 אם $k=0$ אם $k=0$

שאלה 4

, $\lambda_1{\bf v}_1+\lambda_2{\bf v}_2+\lambda_3{\bf v}_3={\bf 0}$ א. הקבוצה A בלתי תלויה לינארית אם ורק אם כל שוויון . $\lambda_1=\lambda_2=\lambda_3=0$ באשר ג $\lambda_1,\lambda_2,\lambda_3$ מספרים ממשיים, גורר ש

אם כן, נניח שמתקיים הנתונים אם בור . $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = \underline{0}$ הנתונים שמתקיים : $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ הווקטורים הווקטורים הנתונים שמתקיים הנתונים שמתקיים הנתונים עבור

$$\lambda_1(2\alpha\mathbf{u}_2 + \mathbf{u}_4) + \lambda_2(\mathbf{u}_3 + \alpha\mathbf{u}_4) + \lambda_3(\alpha\mathbf{u}_1 + \alpha\mathbf{u}_2 + \alpha\mathbf{u}_4) = \mathbf{0}$$

$$\alpha\lambda_3\mathbf{u}_1 + (2\alpha\lambda_1 + \alpha\lambda_3)\mathbf{u}_2 + \lambda_2\mathbf{u}_3 + (\lambda_1 + \alpha\lambda_2 + \alpha\lambda_3)\mathbf{u}_4 = \mathbf{0}$$
 כלומר

 \cdot 0 -טווים אחרון שווים ל-U בלתי תלויה לינארית, לכן כל המקדמים בשוויון האחרון שווים ל-

(*)
$$\begin{cases} \alpha \lambda_3 = 0 & (1) \\ 2\alpha \lambda_1 + \alpha \lambda_3 = 0 & (2) \\ \lambda_2 = 0 & (3) \\ \lambda_1 + \alpha \lambda_2 + \alpha \lambda_3 = 0 & (4) \end{cases}$$

. $\lambda_1,\lambda_2,\lambda_3$ הם הנעלמים הנעלמית כאשר זו מערכת הומוגנית מערכת

נציב את (1) ו- (3) ב- (4) ויוצא מיד $\lambda_1=0,\lambda_2=0$ ו- $\lambda_1=0,\lambda_2=0$ ויוצא מיד (4) ב-(5) מראה שהשוויון (2) מתקיים. נובע מכך שהמערכת (*) שקולה למערכת

$$\begin{cases}
\lambda_1 = 0 \\
\lambda_2 = 0 \\
\alpha \lambda_3 = 0
\end{cases}$$

: נבחין בין 2 מקרים

אם A בלתי ולכן הקבוצה בלבד ולכן הטריוויאלי ולכן יש הפתרון בלתי לג
ו $\alpha \neq 0$ אז בהכרח בלתי לינארית.

אם אינסוף פתרונות למערכת ולכן $\alpha\lambda_{\!_3}=0$ עבור למערכת אינסוף פתרונות השויון , $\alpha=0$ אם α

- ב. \mathbf{u}_3 , \mathbf{u}_4 מתקבל \mathbf{u}_3 , \mathbf{u}_4 מכיוון שהווקטורים בי. $\mathbf{v}_3=\mathbf{0}$, $\mathbf{v}_2=\mathbf{u}_3$, $\mathbf{v}_1=\mathbf{u}_4$ מתקבל , $\alpha=0$ ב. \mathbf{v}_1 יור ביטא את את בינארי של את בינארי של ינארי של ינארי של ינארי של יע
 - ${f v}_i$ כי כל ${f R}^5$ תהיה בסיס של ${f R}^5$ כי כל ${f v}_i$ כי כך ש- ${f v}_i$ כי כל ${f v}_i$ אניתן לצרף אחד מהווקטורים ${f v}_i$ כך ש- ${f v}_i$ חקבוצה ${f U}\cup\{{f v}_i\}=A=\{{f u}_1,{f u}_2,{f u}_3,{f u}_4,{f v}_i\}$ הוא צרוף לינארי של ה- ${f R}^5$ ולכן לכל של בסיס של ${f R}^5$

שאלה 5

 \mathbf{R}^n -יהיו $\underline{a}_1,\underline{a}_2,\ldots,\underline{a}_m,\underline{b}$ יהיו

 $x_1\underline{a}_1+\ldots+x_m\underline{a}_m=\underline{b}$ (1) א. וכי למשוואה $m\geq n$ יש פתרון יחיד היט א. $c_1\underline{a}_1+\ldots+c_m\underline{a}_m=\underline{b}$ (2) אז מתקיים

נוכיח את הטענה הבאה:

 $A=\left\{ \underline{a}_1,...,\underline{a}_m
ight\}$ אז הקבוצה אם פתרון יחיד אם $x_1\underline{a}_1+...+x_m\underline{a}_m=\underline{b}$ שענה: אם למשוואה בלתי תלויה לינארית.

. $\lambda_1 \underline{a}_1 + \ldots + \lambda_m \underline{a}_m = \underline{0}$ (3) : מספרים ממשיים שמקיימים $\lambda_1, \ldots, \lambda_m$ הוכחה $(c_1 + \lambda_1)a_1 + (c_2 + \lambda_2)\underline{a}_2 + \ldots + (c_m + \lambda_m)\underline{a}_m = \underline{b}$ נחבר את המשוואות (2) ו-(3) ומתקבל (1) נובע כי לכל $c_i + \lambda_i = c_i$ מתקיים $1 \leq i \leq m$, ולכן נובע כי לכל $a_i + \lambda_i = c_i$ מהיחידות של הפתרון למערכת (1) נובע a_1, \ldots, a_m בלתי תלויים לינארית. $\lambda_i = 0$

מספר וקטורים בקבוצה בלתי תלויה לינארית של ${\bf R}^n$ שווה לכל היותר n (משפט 2.6.7), לכן מספר וקטורים בקבוצה בלתי תלויה m=n מתקבל ש- $m \leq n$ בלתי תלויה $m \leq n$ משפט $m \in n$ (משפט n וקטורים, קבוצה זו בסיס של n (משפט 2.7.8).

 $x_1\underline{a}_1+\ldots+x_m\underline{a}_m=\underline{c}$ נניח ש- $\underline{c}\in\mathbf{R}^n$ ושלכל שב תרון למשוואה $\underline{c}\in\mathbf{R}^n$

 \mathbf{R}^n -נוכיח שהקבוצה $\left\{ \, \underline{a}_1, ..., \underline{a}_m
ight\}$ היא בסיס ל

מההנחה נובע שכל וקטור A הוא צרוף לינארי של וקטורי $C \in \mathbf{R}^n$ פורשת את מההנחה נובע שכל וקטור $m \geq n$ קווחד מכילה לפחות $m \geq n$ ויחד עם פורשת מכילה פורשת מכילה לפחות משפט 2.7.3), לכן $m \geq n$ ויחד עם $m \geq n$ ההנחה מתקבל ש- $m \geq n$ מכיוון שקבוצה פורשת של $m \geq n$ בת $m \geq n$ וקטורים היא בלתי תלויה לינארית, יוצא שהקבוצה $m \geq n$ בסיס של $m \geq n$

ג. נוכיח שאם למשוואה $\{\underline{a}_1,\dots,\underline{a}_m\}$ יש פתרון ואם הקבוצה $x_1\underline{a}_1+\dots+x_m\underline{a}_m=\underline{b}$ בלתי נוכיח שאם למשוואה לינארית, אז הפתרון הוא יחיד.

נניח כי למשוואה (1) יש פתרון ושהקבוצה A בלתי תלויה לינארית. נוכיח, דרך השלילה, כי $d_1,d_2,...,d_n$ ו- $(c_1,c_2,...,c_n)$ שני פתרונות שונים של (1). אז קיים : $c_i\neq d_i$, $1\leq i\leq n$, i

$$d_1\underline{a}_1 + \ldots + d_m\underline{a}_m = \underline{b}$$
 (5) $c_1\underline{a}_1 + \ldots + c_m\underline{a}_m = \underline{b}$ (4)

נחסיר את (5) מ- (4) ומתקבל:

$$(c_1 - d_1)a_1 + \dots + (c_i - d_i)a_i + \dots + (c_m - d_m)a_m = 0$$

. אפס. שונה שונה של הקטורי A ששווה ל-0 ובה המקדם ה-i, לפחות, שונה מאפס.

. לינארית, מה שסותר את ההנחה ש-A בלתי תלויה לינארית, מה שסותר את ההנחה לינארית לינארית

נובע מכך שההנחה שיש יותר מפתרון אחד לא נכונה, כלומר קיים פתרון יחיד למשוואה (1).