TEST REPORT

REPORT NUMBER: B19W50551-SAR_REV3

ON

Type of Equipment: Smart POS System

Type of Designation: T6800

Manufacturer: Shanghai Sunmi Technology Co.,Ltd.

FCC ID: 2AH25T6800

ACCORDING TO

IEEE C95.1-2005 IEEE 1528-2013

Chongqing Academy of Information and Communication Technology

Month date, year

Nov, 18, 2019

Signature

Zhang Yan

Director

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of Chongqing Academy of Information and Communications Technology.

Chongqing Academy of Information and Communications Technology

Report No.:B19W50551-SAR_REV3

Revision Version

Report Number	Revision	Date	Memo
B19W50551-SAR	00	2019-10-25	Initial creation of test report
B19W50551-SAR_REV1	01	2019-11-11	Modify operation model(s)
DIOWEGET CAD DEVO	02	2010 11 14	Modify Simultaneous TX SAR
B19W50551-SAR_REV2	02	2019-11-14	Considerations
B19W50551-SAR_REV3	03	2019-11-18	Modify Sensor Power SAR results

CONTENTS

1.	TEST LABORATORY	5
1.1.	TESTING LOCATION	5
1.2.	TESTING ENVIRONMENT	5
1.3.	PROJECT DATA	5
1.4.	SIGNATURE	5
2.	STATEMENT OF COMPLIANCE	6
3.	CLIENT INFORMATION	7
3.1.	APPLICANT INFORMATION	7
3.2.	MANUFACTURER INFORMATION	7
4.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1.	ABOUT EUT	8
4.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	10
4.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	10
5.	REFERENCE DOCUMENTS	11
5.1.	APPLICABLE LIMIT REGULATIONS	11
5.2.	APPLICABLE MEASUREMENT STANDARDS	11
6.	SPECIFIC ABSORPTION RATE (SAR)	12
6.6.1.		
	INTRODUCTION	12
6.1.6.2.	INTRODUCTION	12 12
6.1.6.2.	INTRODUCTION	12 12
6.1.6.2.7.7.1.7.2.	INTRODUCTION	12 12 13 14
6.1.6.2.7.7.1.7.2.	INTRODUCTION	12 13 13 14
6.1.6.2.7.7.1.7.2.	INTRODUCTION	12 13 13 14
6.1.6.2.7.7.1.7.2.7.3.7.4.	INTRODUCTION	12 13 13 14 15

8.2.	DUT SETUP PHOTOS	20
9. TIS	SSUE SIMULATING LIQUIDS	26
9.1.	EQUIVALENT TISSUES	26
9.2.	DIELECTRIC PERFORMANCE	27
10.	SYSTEM VALIDATION	29
10.1.	SYSTEM VALIDATION	29
10.2.	SYSTEM SETUP	29
11.	MEASUREMENT PROCEDURES	31
11.1.	TESTS TO BE PERFORMED	31
11.2.	MEASUREMENT PROCEDURE	32
11.3.	SAR MEASUREMENT FOR WCDMA	33
11.4.	SAR MEASUREMENT FOR LTE	33
11.5.	POWER DRIFT	34
12.	AREA SCAN BASED 1-G SAR	35
12.1.	REQUIREMENT OF KDB	35
12.2.	FAST SAR ALGORITHMS	35
13.	CONDUCTED OUTPUT POWER	36
13.1.	CDMA MEASUREMENT RESULT	36
13.2.	WCDMA MEASUREMENT RESULT	37
13.3.	LTE MEASUREMENT RESULT	39
13.4.	BT MEASUREMENT RESULT	59
14.	SIMULTANEOUS TX SAR CONSIDERATIONS	60
14.1.	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	60
14.2.	SIMULTANEOUS MULTI-BAND TRANSMISSION	60
15.	SAR TEST RESULT	61
15.1.	FULL POWER SAR RESULTS	61
15.2.	SENSOR POWER SAR RESULTS	67
15.3.	SAR MEASUREMENT VARIABILITY	73

16.	SAR REDUCTION FUNCTION VALIDATION PROCEDURE	74
16.1.	POWER REDUCTION FOR PROXIMITY SENSOR	74
16.1.1.	REFERENCE DOCUMENT	74
16.1.2.	PROCEDURES FOR DETERMINING PROXIMITY SENSOR TRIGGERING DISTANCES	74
16.1.3.	PROCEDURES FOR DETERMINING ANTENNA AND PROXIMITY SENSOR COVERAGE	75
16.1.4.	PROXIMITY SENSOR STATUS TABLE OF TRIGGER DISTANCE	77
16.1.5.	TILT ANGLE INFLUENCES TO PROXIMITY SENSOR TRIGGERING	79
16.1.6.	POWER REDUCTION PER AIR-INTERFACE	80
16.1.7.	PROXIMITY SENSOR COVERAGE AREA	82
16.MEA	SUREMENT UNCERTAINTY	83
17.MAIN	N TEST INSTRUMENTS	85
END	OF REPORT BODY	85
ANNEX	A. ANNEX A.GRAPH RESULTS	86
ANNEX	B. SYSTEM VALIDATION RESULTS	. 100
ANNEX	C. SYSTEM VALIDATION RESULTS	. 103

1. Test Laboratory

1.1. Testing Location

Company Name:	Chongqing Academy of Information and Communications Technology
Address:	No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China
Postal Code:	401336
Telephone:	0086-23-88069965
Fax:	0086-23-88608777
FCC Registration Number:	CN1239

1.2. Testing Environment

Normal Temperature:	15-35℃
Relative Humidity:	20-75%
Ambient noise & Reflection:	< 0.012 W/kg

1.3. Project Data

Testing Start Date:	2019-10-15
Testing End Date:	2019-10-21

1.4. Signature

Fu Bohao
(Prepared this test report)

Wang Lili
(Reviewed this test report)

Zhang Yan
Director of the laboratory

Date

2019-11-18

Date

Date

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

(Approved this test report)

2. Statement of Compliance

The maximum results of Specific Absorption Rate(SAR) found during testing for **T6800** are as follows (with expanded uncertainty 22.4%)

Table 2.1: Max. SAR Reported (1g)

Band	Position	SAR 1g (W/Kg)
CDMA 2000	Body(5mm)	1.215
WCDMA Band 2	Body(5mm)	1.189
WCDMA Band 4	Body(5mm)	0.542
LTE Band 7	Body(5mm)	0.763
LTE Band 25	Body(5mm)	1.105
LTE Band 41	Body(5mm)	0.657
LTE Band 66	Body(5mm)	0.868

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the IEEE C95.1–2005.

The maximum SAR value is obtained at the case of (Table 2.1), and the values are: 1.215 W/Kg (1g).

Table 2.2: Max. SAR Reported (1g)

Band	Position	SAR 1g (W/Kg)
CDMA 2000	Body(0mm)	0.829
WCDMA Band 2	Body(0mm)	0.518
WCDMA Band 4	Body(0mm)	0.449
LTE Band 7	Body(0mm)	1.209
LTE Band 25	Body(0mm)	0.622
LTE Band 41	Body(0mm)	0.881
LTE Band 66	Body(0mm)	0.617

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the IEEE C95.1–2005.

The maximum SAR value is obtained at the case of (Table 2.2), and the values are: 1.209 W/Kg (1g).

Note: LTE Band4 not tested due to testing of LTE Band 66. LTE Band2 not tested due to testing of LTE Band 25.

3. Client Information

3.1. Applicant Information

Company Name:	Shanghai Sunmi Technology Co.,Ltd.
Address /Post:	Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai, China
Telephone:	18721763396
Fax:	
Email:	zhangwentang@sunmi.com
Contact Person:	zhangwentang

3.2. Manufacturer Information

Company Name:	Shanghai Sunmi Technology Co.,Ltd.
Address /Post:	Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai, China
Telephone:	18721763396
Fax:	
Email:	zhangwentang@sunmi.com
Contact Person:	zhangwentang

4. Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1. About EUT

Description:	Smart POS System
Model name:	T6800
GSM Frequency Band	GSM850/ GSM900/ GSM1800/ GSM1900
CDMA 2000 Frequency Band	BC0/BC1
UTMS Frequency Band	Band 1/2/4/5/6/8
LTE Frequency Band	Band 1/2/3/4/5/7/9/12/17/18/19/25/26/38/41/66
BLE/BT	BT4.2/BLE
WiFi	2.4G/5G
Test device Production information:	Production unit
Voice mode	Not Support
Device type:	Portable device
Antenna type:	Inner antenna
Accessories/Body-worn configurations:	N/A
Hotspot mode:	N/A
Dimensions:	15.8cm×7.5cmx2.3cm

Picture 4-1: EUT Photo

4.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
S2	1D98VCLGAA00085	V1	SP2186_769P2LITEL A_patchbuild_201908081 65756_DCC	2019-10-15
S3	1D98VCLGAA004B V		SP2186_769P2LITEL A_patchbuild_201908081 65756_DCC	2019-10-15

^{*}EUT ID: is used to identify the test sample in the lab internally.

4.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer	
B1	N/A	N/A	N/A	N/A	

^{*}AE ID: is used to identify the test sample in the lab internally.

5. Reference Documents

5.1. Applicable Limit Regulations

IEEE C95.1–2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue , 4.0 W/kg as averaged over any 10g tissue for portable devices.

5.2. Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB941225 D06 Hotspot Mode SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

NOTE: KDB is not in A2LA Scope List.

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled,based on a person's awareness and abilityto exercise control over his or her exposure.In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. SAR MEASUREMENT SETUP

7.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture 7-1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (St äubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and theDASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: EX3DV4

Frequency 750MHz — 6GHz

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: $\pm 0.2 \text{ dB}$

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm
Body Diameter: 12 mm
Tip Diameter: 2.5mm
Tip-Center: 1 mm

Application: SAR Dosimetry Testing

Compliance tests of mobile phones Dosimetry in strong gradient fields

Picture 7-2 Near-field Probe

Picture 7-3 E-field Probe

7.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if thefrequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm²..

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

7.4. Other Test Equipment

7.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Picture 7-4: DAE

7.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90) type from St äubli SA (France). For the 6-axis controller system, the robot controller version from St äubli is used. The St äubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- ➤ High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- ➤ Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture 7-5: DASY 5

7.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture 7-6: Server for DASY 5

7.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP).

Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM

material having the following dielectric parameters:

relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The

amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Chongqing Academy of Information and Communications Technology

Report No.:B19W50551-SAR_REV3

Picture 7-7: Device Holder

Picture 7-8: Laptop Extension Kit

7.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: $2 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

Picture 7-9: SAM Twin Phantom

8. Position of the wireless device in relation to the phantom

8.1. Generic device

For a device that can not be categorized as any of the other specific device types, it shall be considered to be a generic device;

The SAR evaluation shall be performed for all surfaces of the DUT that are accessible during intended use, as indicated in Picture 8-1. The separation distance in testing shall correspond to the intended use distance as specified in the user instructions provided by the manufacturer. If the intended use is not specified, all surfaces of the DUT shall be tested directly against the flat phantom.

The surface of the generic device (or the surface of the carry accessory holding the DUT) pointing towards the flat phantom shall be parallel to the surface of the phantom.

Picture 8-1 Test positions for Generic device

8.2. DUT Setup Photos

Picture 8-2: Specific Absorption Rate Test Layout

Test positions for body:

According to the antenna position, the Body SAR is tested at the following 5 test positions all with same distance between the EUT and the phantom bottom:

Picture 8-3: Toward Phantom (17mm)

Picture 8-4: Toward Ground (34mm)

Picture 8-5: Toward Left (5mm)

Picture 8-6: Toward Right (9mm)

Picture 8-8: Toward Bottom (24mm)

Picture 8-9: Toward Phantom (0mm)

Picture 8-10: Toward Ground (0mm)

Picture 8-11: Toward Left (0mm)

Picture 8-12: Toward Right (0mm)

Picture 8-13: Toward Bottom (0mm)

9. Tissue Simulating Liquids

9.1. Equivalent Tissues

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 3 and 4 shows the detail solution. The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Table 9.1. Composition of the Head Tissue Equivalent Matter

Tuble 3.1. Composition of the Head Hisbue Equivalent Matter								
Frequency (MHz)	1750	1900	2600					
Ingredients (% by weight)								
Water	55.242	54.89	58.23					
Sugar	1	/	1					
Salt	0.306	0.18	0.07					
Preventol	1	/	/					
Cellulose	1	/	/					
ClycolMonobutyl	44.452	44.93	41.7					
Dielectric Parameters Target Value	f=1750MHz ε=40.8 σ=1.37	f=1950 MHz ε=40.0 σ=1.40	f=2600 MHz ε=39.0 σ=1.96					

Table 9.2. Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	±5% Range	Permittivity (ε)	±5% Range
1750	Head	1.37	1.30~1.44	40.8	38.1~42.1
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
2600	Head	1.96	1.86~2.06	39.0	37.05~40.95

9.2. Dielectric Performance

Table 9.3: Dielectric Performance of Head Tissue Simulating Liquid

Measurement Value								
Liquid Te	Liquid Temperature: 22.5°C							
Туре	Type Frequency Permittivity ε Drift (%) Conductivity σ		Drift (%)	Test Date				
Head	1750	41.61	1.99%	1.362	-0.58%	2019-10-15		
Head	1900	38.57	-3.58%	1.445	3.21%	2019-10-17		
Head	2600	39.67	1.72%	1.996	1.84%	2019-10-21		

Picture9-1:Liquid depth in the Flat Phantom (1800/1900 MHz Head)

Picture 9-2: Liquid depth in the Flat Phantom (2600 MHz Head)

10. System Validation

10.1. System Validation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performace check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

10.2. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 10-1 System Setup for System Evaluation

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected. The results are normalized to 1 W input power.

Picture 10-2 Photo of Dipole Setup

Table 10.1: System Validation of Head

Verification Results							
Input power level: 1W							
	Target va	Target value (W/kg) Meas		alue (W/kg)	Deviation		
Frequency	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	Test date
1750MHz	37.6	20.1	36.88	19.6	-1.91%	-2.49%	2019-10-15
1900 MHz	39.8	20.7	40.4	20.72	1.51%	0.10%	2019-10-17
2600 MHz	52.5	24.8	56	24.56	6.67%	-0.97%	2019-10-21

11. Measurement Procedures

11.1. Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 19

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and

configurations and modes shall be tested for all of the above test conditions.

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies,

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Chongqing Academy of Information and Communications Technology

Report No.:B19W50551-SAR_REV3

Picture 11-1Block diagram of the tests to be performed

11.2. Measurement procedure

The following procedure shall be performed for each of the test conditions (see Picture 19) described in 11.1:

- a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of

better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX:0086-23-88608777

mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and ± 0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5 °. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed. c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;

d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be (24 / f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5 °. If this cannot be achieved an additional uncertainty evaluation is needed.

e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

11.3. SAR Measurement for WCDMA

SAR tests for WCDMA are performed with a base station simulator, CMW 500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

11.4. SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, CMW 500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

the CMW 500.

11.5. Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 15 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

12. Area Scan Based 1-g SAR

12.1. Requirement of KDB

According to the KDB447498D01v05, when the implementation is based the specific polynomial it algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SARis≤1.2W/kg, a zoom scan measurement is not required provided it is also not needed For any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between is

tinctive peak sand scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements ,peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-gSAR is within 3% of the zoom scan 1-g SAR (See Annex A). When all the SAR

results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g

SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

12.2. Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empiricall determined by analyzing a large number of phones.

The MOTOROLAFASTSAR was developed and validated by the MOTOROLA Research Group in

Ft .Lauderdale.

In the initial study, an approximation algorithm based on Linearf it was developed. The accuracy of the algorithm has been demonstrated across abroad frequency range(136-2450 MHz)andforboth1-gand 10-g

averaged SAR using a sample of 264SARmeasurementsfrom55 wireless handsets. For the sample size

studied, the root-mean-squared errors of the algorithmare 1.2% and 5.8% for 1-g and 10-g averaged SAR,

respectively. The paper describing the algorith min detail is expected to be published in August 2004 within

the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomia lf it where

by the frequency validity was extended to cover the range 30-6000MHz.Detailsof this study can be

found in the BEMS2007 Proceedings.

Both algorithms are implemented in DASY software.

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Tel: 0086-23-88069965

13. Conducted Output Power

13.1. CDMA Measurement result

Table 13.1: The conducted Power for CDMA 2000 Sensor close

			CDMA	2000		
Band	Model	Radio Config	Data Rate	Turn up	Channel	CDMA 2000 result(dBm)
					25	23.48
BC1	1xRTT	RC1	SO55	23.0±1	600	23.49
					1175	23.42

Table 13.2: The conducted Power for CDMA 2000 Sensor Open

			CDMA	2000		
Band	Model	Radio Config	Data Rate	Turn up	Channel	CDMA 2000 result(dBm)
					25	8.39
BC1	1xRTT	RC1	SO55	8.0±1	600	8.53
					1175	8.42

13.2. WCDMA Measurement result

Table 13.3: The conducted Power for WCDMA Sensor close

	band		WCDI	MA BAND II result	(dBm)
Item	ADEON	Turn up	9262	9400	9538
	ARFCN		(1852.4MHz)	(1880MHz)	(1907.6MHz)
WCDMA	\	23.5±1	23.97	23.87	23.75
	1	22.0±1	22.74	22.53	22.33
HSDPA	2	22.0±1	22.54	22.49	22.5
ПОДРА	3	22.0±1	22.20	22.04	21.94
	4	22.0±1	22.32	22.14	22.01
	1	22.0±1	22.10	22.14	22.1
	2	22.0±1	21.65	21.48	21.44
HSUPA	3	22.0±1	21.64	21.62	21.37
	4	22.0±1	22.45	22.32	22.28
	5	22.0 ± 1	22.25	22.22	22.17
	band		WCDN	/IA BAND IV resul	t(dBm)
Item	ARFCN	Turn up	1312	1413	1513
	ARFON		(1712.4MHz)	(1732.6MHz)	(1752.6MHz)
WCDMA	\	23.0 ± 1	23.57	23.72	23.55
	1	22.0 ± 1	22.32	22.48	22.23
HSDPA	2	22.0 ± 1	22.12	22.40	22.29
ПОДРА	3	22.0±1	21.85	21.99	21.84
	4	22.0±1	21.95	22.02	21.84
	1	22.0±1	21.75	21.99	21.87
	2	22.0±1	21.22	21.40	21.18
HSUPA	3	22.0±1	21.22	21.45	21.22
	4	22.0±1	22.15	22.22	22.1
	5	22.0±1	21.86	22.05	21.93

Table 13.4: The conducted Power for WCDMA Sensor open

	band	Turn up	WCDI	MA BAND II result	(dBm)
Item	ADEON		9262	9400	9538
	ARFCN		(1852.4MHz)	(1880MHz)	(1907.6MHz)
WCDMA	\	12.5±1	13.20	13.09	12.85
	1	12.0±1	12.32	12.48	12.23
HSDPA	2	12.0±1	12.12	12.40	12.29
	3	12.0±1	11.85	11.99	11.84
	4	12.0±1	11.95	12.02	11.84
	1	12.0±1	11.75	11.99	11.87
	2	12.0±1	11.22	11.40	11.18
HSUPA	3	12.0±1	11.22	11.45	11.22
	4	12.0±1	12.15	12.22	12.10
	5	12.0±1	11.86	12.05	11.93
	band	Turn up	WCDN	MA BAND IV resul	t(dBm)
Item	ARFCN		1312	1413	1513
	ARFON		(1712.4MHz)	(1732.6MHz)	(1752.6MHz)
WCDMA	\	12.5±1	12.69	13.16	13.11
	1	12.0±1	12.74	12.53	12.33
HSDPA	2	12.0±1	12.54	12.49	12.5
ПОДРА	3	12.0±1	12.20	12.04	11.94
	4	12.0±1	12.32	12.14	12.01
	1	12.0±1	12.10	12.14	12.1
	2	12.0±1	11.65	11.48	11.44
HSUPA	3	12.0±1	11.64	11.62	11.37
	4	12.0±1	12.45	12.32	12.28
	5	12.0±1	12.25	12.22	12.17

13.3. LTE Measurement result

Table 13.5: The conducted Power for LTE Sensor close

		141		Band 7	r for LTE Sensor C		
				Turn up	Actua	l output power(d	dBm)
5		RB	RB		Channel	Channel	Channel
Bandwidth	Mode	Size	Offset		20775	21100	21425
					2502.5MHz	2535MHz	2567.5MHz
		1	0	22.5±1	22.79	22.63	22.68
		1	13	22.5±1	22.81	22.89	22.66
		1	24	22.5±1	22.67	22.61	22.58
	QPSK	12	0	22.0±1	21.92	21.77	21.78
		12	6	22.0±1	21.79	21.75	21.77
		12	13	22.0±1	21.86	21.79	21.74
5MHz		25	0	22.0±1	21.88	21.80	21.72
SIVIDZ		1	0	22.0±1	21.52	21.34	21.16
		1	13	22.0±1	21.49	21.43	21.61
		1	24	22.0±1	21.34	21.27	21.42
	16QAM	12	0	20.0 ± 1	20.68	20.68	20.68
		12	6	20.0 ± 1	20.81	20.82	20.88
		12	13	20.0 ± 1	20.80	20.60	20.76
		25	0	20.0 ± 1	20.75	20.80	20.82
				Turn up	Actual output power(dBm)		
Bandwidth	Mode	RB	RB		Channel	Channel	Channel
Dariuwiuiii	Mode	Size	Offset		20800	21100	21400
					2505MHz	2535MHz	2565MHz
		1	0	22.5±1	22.94	22.88	22.75
		1	25	22.5±1	22.79	22.87	22.98
		1	49	22.5±1	22.89	22.89	22.99
	QPSK	25	0	22.0±1	21.93	21.93	21.83
		25	13	22.0±1	21.92	21.96	21.98
		25	25	22.0±1	21.94	21.94	21.94
10MHz		50	0	22.0 ± 1	21.84	21.95	21.82
TOWN 12		1	0	22.0 ± 1	21.70	21.51	21.54
		1	25	22.0 ± 1	21.64	21.64	21.74
		1	49	22.0 ± 1	21.65	21.64	21.75
	16QAM	25	0	20.0 ± 1	20.85	20.82	20.75
		25	13	20.0 ± 1	20.84	20.84	21.01
		25	25	20.0 ± 1	20.70	20.83	20.96
		50	0	20.0±1	20.87	20.82	20.87

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336

FAX:0086-23-88608777

					Leport No D19 VV		
				Turn up		al output power(1
Bandwidth	Mode	RB	RB		Channel	Channel	Channel
Danawian	IVIOGO	Size	Offset		20825	21100	21375
					2507.5MHz	2535MHz	2562.5MHz
		1	0	22.5±1	22.76	22.89	22.63
		1	38	22.5±1	22.67	22.93	22.52
		1	74	22.5±1	22.74	22.94	22.70
	QPSK	36	0	22.0 ± 1	21.92	21.83	21.94
		36	18	22.0 ± 1	21.86	21.98	21.89
		36	39	22.0 ± 1	21.92	21.99	22.00
15MHz		75	0	22.0 ± 1	21.82	21.87	21.86
IOIVITZ		1	0	22.0 ± 1	21.68	21.36	21.60
		1	38	22.0±1	21.60	21.05	21.52
		1	74	22.0±1	21.68	21.03	21.58
	16QAM	36	0	20.0±1	20.67	20.72	20.73
		36	18	20.0±1	20.80	20.75	20.78
		36	39	20.0±1	20.92	20.78	20.90
		75	0	20.0±1	20.85	20.86	20.79
				Turn up	Actua	al output power(dBm)
Bandwidth	Mode	RB	RB		Channel	Channel	Channel
Dariuwiutii	Wode	Size	Offset		20850	21100	21350
					2510MHz	2535MHz	2560MHz
		1	0	22.5±1	23.02	22.80	22.94
		1	50	22.5±1	23.05	23.07	22.92
		1	99	22.5±1	22.91	22.90	22.94
	QPSK	50	0	21.5±1	21.94	21.88	21.97
		50	25	21.5±1	22.04	21.95	21.93
		50	50	21.5±1	21.99	22.01	21.98
20MHz		100	0	21.5±1	21.94	21.91	21.98
ZUIVIITIZ		1	0	22.0±1	21.73	21.41	21.56
,		1	50	22.0±1	21.84	21.54	21.72
		1	99	22.0±1	21.55	21.69	21.65
	16QAM	50	0	20.0±1	20.87	20.88	20.79
		50	25	20.0±1	20.82	20.97	20.73
		50	50	20.0±1	20.79	21.04	20.70

				Band 25	<u> </u>		
				Turn up	Actua	al output power(dBm)
Bandwidth	Mode	RB Size	RB Offset		Channel 26047 1850.7MHz	Channel 26365 1882.5MHz	Channel 26683 1914.3MHz
		1	0	22.0±1	21.83	22.19	22.17
		1	2	22.0±1	21.93	22.35	21.99
		1	5	22.0±1	21.91	22.23	21.92
	QPSK	3	0	22.0±1	22.09	22.32	22.40
	4.511	3	1	22.0±1	22.07	22.24	22.40
		3	2	22.0±1	22.00	22.40	22.18
		6	0	21.0±1	20.97	21.22	21.21
1.4MHz		1	0	21.0±1	20.23	20.95	20.69
		1	2	21.0±1	20.54	21.08	20.74
		1	5	21.0±1	21.04	20.78	20.63
	16QAM	3	0	21.0±1	20.76	21.03	21.46
		3	1	21.0±1	20.80	21.03	21.32
		3	2	21.0±1	20.77	21.10	20.99
		6	0	20.0±1	19.32	20.00	20.06
				Turn up	Actua	al output power(dBm)
D 1 1 10		RB	RB		Channel	Channel	Channel
Bandwidth	Mode	Size	Offset		26055	26365	26675
					1851.5MHz	1882.5MHz	1913.5MHz
		1	0	22.0±1	21.86	22.19	22.25
		1	8	22.0±1	21.88	22.31	22.52
		1	14	22.0±1	22.05	22.16	22.42
	QPSK	8	0	22.0±1	21.08	21.26	21.44
		8	4	22.0±1	21.03	21.25	21.43
		8	7	22.0±1	21.15	21.36	21.31
		15	0	21.0±1	20.96	21.22	21.37
		1	0	21.0±1	20.44	20.83	20.70
3MHz		1	8	21.0±1	20.73	20.89	21.06
		1	15	21.0±1	21.12	20.69	20.78
	16QAM	8	0	20.0±1	19.99	20.41	20.35
		8	4	20.0±1	19.95	20.29	20.48
		8	7	20.0±1	20.06	20.31	20.44
		15	0	20.0±1	19.85	20.32	20.42

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Report No.:B19W50551-SAR_REV3

Bandwidth Mode RB Size Offset Size Offset Channel 26066 26365 1882.5MHz 1912.5MHz 26066 1882.5MHz 22.44 22.44 22.24 22.32 22.16 22.44 22.24 22.32 22.16 22.44 22.24 22.32 22.16 22.44 22.24 22.32 22.16 22.44 22.24 22.32 22.16 22.44 22.24 22.32 22.16 22.44 22.24 22.32 22.16 22.32 22.16 22.32 22.16 22.32 22.16 22.44 22.24 22.32 22.16 22.32 22.16 22.32 22.16 22.32 22.16 22.32 22.16 22.32 22.16 22.32 22.16 22.10 22.09 22.10						Actual output power(dBm)			
Bandwidth Mode Size Offset			DD	DD	Turn up			, , , , , , , , , , , , , , , , , , ,	
Name	Bandwidth	Mode							
Amount of the control of th			Size	Offset					
MHZ APSK 1					20.0 4				
AMHZ APSKI APS									
A PSK							22.16	22.44	
SMHz 12									
Temporary		QPSK	12			21.02	21.30	21.35	
Temporary			12			21.07	21.25	21.30	
Total Parish			12	13	21.0±1	20.99	21.30	21.21	
Turn up	5MH ₇		25	0	20.0±1	20.99	21.24	21.22	
Harmonian	JIVII IZ		1	0	20.0±1	20.54	20.87	21.34	
Hamilton			1	13	20.0±1	20.59	20.84	21.12	
Temperature			1	24	20.0±1	20.64	20.85	20.68	
Harmonia		16QAM	12	0	20.0±1	19.76	20.01	20.17	
Bandwidth Mode RB Size Offset Turn up Actual output power(dBm) Channel 26090 1855MHz 1882.5MHz 1910MHz			12	6	20.0±1	19.74	20.06	20.16	
Bandwidth Mode RB Size Offset Turn up Channel 26090 26365 26640 1855MHz 1882.5MHz 1910MHz			12	13	20.0±1	19.61	20.03	20.06	
Bandwidth Mode RB Size Offset Channel 26090 26365 1882.5MHz 1910MHz			25	0	20.0±1	20.01	20.25	20.21	
Bandwidth Mode Size Offset 26090 1855MHz 26365 26365 1882.5MHz 26640 1910MHz 10MHz Image: Control of the property of the propert					Turn up	Actua	l output power(d	dBm)	
Size Offset 26090 26365 26640 1855MHz 1882.5MHz 1910MHz	Bandwidth	Mode	RB	RB		Channel	Channel	Channel	
10MHz 1	Barrawian	Wiede	Size	Offset		26090	26365	26640	
10MHz QPSK QPSK 1 25 22.0±1 22.07 22.22 22.40 1 49 22.0±1 22.07 22.34 22.38 25 0 21.0±1 21.12 21.24 21.35 25 13 21.0±1 21.13 21.27 21.39 25 25 25 21.0±1 21.11 21.24 21.24 50 0 21.0±1 21.05 21.17 21.25 1 0 20.0±1 20.76 20.93 20.74 1 25 20.0±1 20.90 20.97 20.74 1 49 20.0±1 20.83 21.05 21.00 16QAM 25 0 20.0±1 20.83 21.05 21.00 25 13 20.0±1 20.99 20.23 20.36 25 13 20.0±1 20.09 20.23 20.33 25 25 25 20.0±1 20.09 20.25 20.27						1855MHz	1882.5MHz	1910MHz	
1 49 22.0±1 22.07 22.34 22.38 25 0 21.0±1 21.12 21.24 21.35 25 13 21.0±1 21.13 21.27 21.39 25 25 25 21.0±1 21.11 21.24 21.24 50 0 21.0±1 21.05 21.17 21.25 1 0 20.0±1 20.76 20.93 20.74 1 25 20.0±1 20.90 20.97 20.74 1 49 20.0±1 20.83 21.05 21.00 16QAM 25 0 20.0±1 19.95 20.23 20.36 25 13 20.0±1 20.09 20.23 20.33 25 25 25 20.0±1 20.09 20.25 20.27			1	0	22.0±1	22.08	22.31	22.25	
10MHz QPSK 25 0 21.0±1 21.12 21.24 21.35 25 13 21.0±1 21.13 21.27 21.39 25 25 25 21.0±1 21.11 21.24 21.24 21.24 21.25 1 0 20.0±1 20.0±1 20.76 20.93 20.74 1 49 20.0±1 20.83 21.05 21.05 21.00 25 13 20.0±1 19.95 20.23 20.36 25 25 25 20.0±1 20.09 20.27			1	25	22.0±1	22.07	22.22	22.40	
10MHz $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	49	22.0±1	22.07	22.34	22.38	
10MHz $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QPSK	25	0	21.0±1	21.12	21.24	21.35	
10MHz 50 0 21.0±1 21.05 21.17 21.25 1 0 20.0±1 20.76 20.93 20.74 1 25 20.0±1 20.90 20.97 20.74 1 49 20.0±1 20.83 21.05 21.00 21.00 20.0±1 20.83 21.05 21.00 20.36 25 13 20.0±1 20.09 20.23 20.33 25 25 20.0±1 20.05 20.05 20.25 20.27			25	13	21.0±1	21.13	21.27	21.39	
10MHz $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			25	25	21.0±1	21.11	21.24	21.24	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10111-		50	0	21.0±1	21.05	21.17	21.25	
1 49 20.0 ± 1 20.83 21.05 21.00 20.0 ±1 19.95 20.23 20.36 25 13 20.0 ± 1 20.09 20.23 20.33 25 25 25 20.0 ±1 20.05 20.25 20.27	TOWNE		1	0	20.0±1	20.76	20.93	20.74	
16QAM $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	25	20.0±1	20.90	20.97	20.74	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	49	20.0±1	20.83	21.05	21.00	
25 25 20.0±1 20.05 20.25 20.27		16QAM			20.0±1	19.95	20.23	20.36	
25 25 25 25 25 25 25 25 25 25 25 25 25 2		16QAM	25	U					
50 0 20.0±1 19.89 20.06 20.19		16QAM						20.33	
		16QAM	25	13	20.0±1	20.09	20.23		

Address: No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China, 401336 FAX:0086-23-88608777

Tel: 0086-23-88069965

15MHz 1		Mode			i urn up		· · · · · · · · · · · · · · · · · · ·	,
Size Offset 26115 26365 26615 1857.5MHz 1882.5MHz 1907.5M		Mode				Channel	I Channel	Channel
Size Offset 26115 26365 26615 1857.5MHz 1882.5MHz 1907.5M			Size	Offset				
1 0 22.0±1 22.14 22.22 22.49 1 38 22.0±1 22.05 22.34 22.46 1 74 22.0±1 21.82 22.24 22.15 36 0 21.0±1 21.17 21.25 21.43 36 18 21.0±1 21.18 21.24 21.40 36 39 21.0±1 21.15 21.29 21.29 75 0 21.0±1 21.16 21.23 21.17 1 0 21.0±1 20.76 20.84 21.01 1 38 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.24 20.87 20.46 36 0 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm)	15MHz							
1 38 22.0±1 22.05 22.34 22.46 1 74 22.0±1 21.82 22.24 22.15 36 0 21.0±1 21.17 21.25 21.43 36 18 21.0±1 21.18 21.24 21.40 36 39 21.0±1 21.15 21.29 21.29 75 0 21.0±1 21.16 21.23 21.17 1 0 21.0±1 20.76 20.84 21.01 1 38 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.29 20.94 20.53 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.02 20.16 20.44 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm)	15MHz					1857.5MHz	1882.5MHz	1907.5MHz
1 74 22.0±1 21.82 22.24 22.15 36 0 21.0±1 21.17 21.25 21.43 36 18 21.0±1 21.18 21.24 21.40 36 39 21.0±1 21.15 21.29 21.29 75 0 21.0±1 21.16 21.23 21.17 1 0 21.0±1 20.76 20.84 21.01 1 38 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.24 20.87 20.46 36 0 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.02 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm)	15MHz		1	0	22.0±1	22.14	22.22	22.49
15MHz QPSK 36 0 21.0±1 21.17 21.25 21.43 36 18 21.0±1 21.18 21.24 21.40 36 39 21.0±1 21.15 21.29 21.29 75 0 21.0±1 21.16 21.23 21.17 1 0 21.0±1 20.76 20.84 21.01 1 38 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.24 20.87 20.46 36 18 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) Channel	15MHz			38	22.0±1	22.05	22.34	22.46
15MHz 36	15MHz		1	74	22.0±1	21.82	22.24	22.15
15MHz 36 39 21.0±1 21.15 21.29 21.29 75 0 21.0±1 21.16 21.23 21.17 1 0 21.0±1 20.76 20.84 21.01 1 38 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.24 20.87 20.46 36 0 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) RB RB RB Chappel Chappel Chappel	15MHz	QPSK	36	0	21.0±1	21.17	21.25	21.43
15MHz 1 0 21.0±1 20.76 20.84 21.01 1 38 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.24 20.87 20.46 36 0 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) RB RB RB Channel Channel Channel	15MHz		36	18	21.0±1	21.18	21.24	21.40
15MHz 1 0 21.0±1 20.76 20.84 21.01 1 38 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.24 20.87 20.46 36 0 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) RB RB RB Channel Channel Channel	15MHz		36	39	21.0±1	21.15	21.29	21.29
1 0 21.0±1 20.76 20.84 21.01 1 38 21.0±1 21.29 20.94 20.53 1 74 21.0±1 21.24 20.87 20.46 36 0 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) RB RB RB Channel Channel Channel	IOIVIDZ		75	0	21.0±1	21.16	21.23	21.17
1 74 21.0±1 21.24 20.87 20.46 36 0 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) Channel Channel Channel Channel Channel			1	0	21.0±1	20.76	20.84	21.01
16QAM 36 0 20.0±1 20.02 20.16 20.44 36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) Channel Channel Channel Channel Channel			1	38	21.0±1	21.29	20.94	20.53
36 18 20.0±1 20.01 20.16 20.32 36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) Channel Channel Channel Channel Channel			1	74	21.0±1	21.24	20.87	20.46
36 39 20.0±1 19.98 20.22 20.26 75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) RB RB Channel Channel Channel Channel	16QAM	36	0	20.0±1	20.02	20.16	20.44	
75 0 20.0±1 20.09 20.14 20.19 Turn up Actual output power(dBm) RB RB Channel Channel Channel Channel		36	18	20.0±1	20.01	20.16	20.32	
Turn up Actual output power(dBm) RB RB Channel Channel Channel Channel			36	39	20.0±1	19.98	20.22	20.26
RB RB Channel Channel Channel			75	0	20.0±1	20.09	20.14	20.19
RB RB Channel Channel Channel					Turn up	Actua	al output power(d	dBm)
Development Made 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1	ما الله المارية	Mada	RB	RB		Channel	Channel	Channel
Bandwidth Mode Size Offset 26140 26365 26590	andwidth	ivioae	Size	Offset		26140	26365	26590
1860MHz 1882.5MHz 1905MH						1860MHz	1882.5MHz	1905MHz
1 0 22.0±1 21.86 22.20 22.19			1	0	22.0±1	21.86	22.20	22.19
1 50 22.0±1 22.32 22.35 22.43			1	50	22.0±1	22.32	22.35	22.43
1 99 22.0±1 22.24 22.33 22.31			1	99	22.0±1	22.24	22.33	22.31
QPSK 50 0 22.0±1 21.22 21.24 21.37		QPSK	50	0	22.0±1	21.22	21.24	21.37
50 25 22.0±1 21.14 21.39 21.37			50	25	22.0±1	21.14	21.39	21.37
50 50 22.0±1 21.10 21.29 21.27			50	50	22.0±1	21.10	21.29	21.27
100 0 22.0±1 21.17 21.23 21.30	001411		100	0	22.0±1	21.17	21.23	21.30
20MHz 1 0 21.0±1 20.66 20.97 21.06	20MHz		1	0	21.0±1	20.66	20.97	21.06
1 50 21.0±1 20.77 20.89 21.01			1	50	21.0±1	20.77	20.89	21.01
1 99 21.0±1 21.39 20.73 20.96			1	99	21.0±1	21.39	20.73	20.96
16QAM 50 0 20.0±1 20.05 20.18 20.41		16QAM	50		20.0±1	20.05	20.18	20.41
50 25 20.0±1 20.07 20.19 20.41			50	25	20.0±1	20.07	20.19	20.41
50 50 20.0±1 20.05 20.14 20.22					20.0±1	20.05	20.14	20.22
100 0 20.0±1 20.10 20.15 20.22						20.10	20.15	20.22

Band 41										
				Turn up		Actual output power(dBm)				
Dond		DD	DD		Channel	Channel	Channel	Channel	Channel	
Band	Mode	RB	RB		39675	40148	40620	41093	41565	
width		Size	Offset		2498.5M	2545.8M	2593MH	2640.3M	2687.5	
					Hz	Hz	Z	Hz	MHz	
		1	0	22.5±1	22.45	22.48	22.73	22.76	22.18	
		1	13	22.5 \pm 1	22.55	22.36	22.80	22.53	22.42	
		1	24	22.5±1	22.47	22.53	22.76	22.72	22.34	
	QPSK	12	0	21.0±1	21.56	21.47	21.85	21.70	21.31	
		12	6	21.0±1	21.70	21.38	21.85	21.87	21.47	
		12	13	21.0±1	21.61	21.73	21.83	21.96	21.17	
ENALL-		25	0	21.0±1	21.55	21.70	21.87	21.78	21.47	
5MHz		1	0	21.0±1	21.26	21.25	21.39	21.55	21.02	
		1	13	21.0±1	21.35	21.35	21.56	21.45	20.98	
		1	24	21.0±1	21.19	21.03	21.49	21.51	20.80	
	16QAM	12	0	20.0±1	20.72	20.89	20.63	20.76	20.36	
		12	6	20.0±1	20.59	20.94	20.88	20.60	20.24	
		12	13	20.0±1	20.68	20.95	21.06	20.81	20.39	
		25	0	20.0±1	20.83	20.74	20.65	20.88	20.37	
				Turn up		Actual	output powe	r(dBm)		
Band		RB	RB		Channel	Channel	Channel	Channel	Channel	
width	Mode	Size	Offset		39700	40160	40620	41080	41540	
widti		SIZE	Oliset		2501MH	2547MH	2593MH	2639MH	2685MH	
					Z	Z	Z	Z	Z	
		1	0	22.5±1	22.55	22.49	22.84	22.91	22.48	
		1	13	22.5±1	22.65	22.34	22.89	22.88	22.36	
		1	24	22.5 \pm 1	22.56	22.48	23.02	22.93	22.53	
	QPSK	12	0	21.0 ± 1	21.64	21.47	21.60	21.55	21.47	
		12	6	21.0±1	21.56	21.53	21.75	21.69	21.38	
		12	13	21.0±1	21.73	21.49	21.80	21.87	21.41	
10MH		25	0	21.0±1	21.70	21.47	21.85	21.39	21.43	
Z		1	0	21.0±1	21.25	20.87	21.48	21.56	21.21	
		1	13	21.0±1	21.35	21.30	21.64	21.49	21.06	
		1	24	21.0±1	21.19	21.06	21.46	20.63	21.44	
	16QAM	12	0	20.0±1	20.49	20.55	20.89	20.88	20.61	
		12	6	20.0±1	20.45	20.51	20.94	21.06	20.26	
		12	13	20.0±1	20.78	20.51	20.95	20.65	20.64	
		25	0	20.0±1	20.45	20.44	20.74	20.22	20.26	

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Tel: 0086-23-88069965

				T	Kepoi	rt No.:B19V			
				Turn up	01 1	T	output powe	, <u> </u>	0
Band		RB	RB		Channel	Channel	Channel	Channel	Channel
width	Mode	Size	Offset		39725	40173	40620	41068	41515
					2503.5M	2548.3M	2593MH	2637.8M	2682.5
			_		Hz	Hz	Z	Hz	MHz
		1	0	22.5±1	22.31	22.14	22.76	22.47	22.43
		1	13	22.5±1	22.45	22.57	22.53	22.18	22.13
		1	24	22.5±1	22.40	22.76	22.72	22.22	22.36
	QPSK	12	0	21.0±1	21.48	21.85	21.70	21.55	21.46
		12	6	21.0±1	21.44	21.85	21.87	21.33	21.36
		12	13	21.0±1	21.46	21.83	21.96	21.39	21.42
15MH		25	0	21.0±1	21.55	21.87	21.78	21.30	21.36
Z		1	0	21.0±1	21.33	21.39	21.55	20.95	21.08
		1	13	$21.0\!\pm\!1$	21.06	21.56	21.45	21.25	20.97
		1	24	21.0±1	21.09	21.49	21.51	21.08	21.17
	16QAM	12	0	20.0±1	20.41	20.63	20.76	20.29	20.37
		12	6	20.0±1	20.36	20.88	20.60	20.15	20.26
		12	13	20.0±1	20.46	21.06	20.81	20.30	20.24
		25	0	20.0±1	20.52	20.65	20.88	20.30	20.41
				Turn up		Actual o	output powe	r(dBm)	
Dond		חח	DD		Channel	Channel	Channel	Channel	Channel
Band	Mode	RB	RB		39750	40185	40620	41055	41490
width		Size	Offset		2506MH	2549.5M	2593MH	2636.5M	2680MH
					z	Hz	Z	Hz	z
		1	0	22.5±1	22.49	22.14	22.59	22.76	22.47
		1	13	22.5±1	22.34	22.57	22.81	22.53	22.18
		1	24	22.5±1	22.48	22.76	22.69	22.72	22.22
	QPSK	12	0	21.5±1	21.47	21.85	21.62	21.70	21.55
		12	6	21.5±1	21.53	21.85	21.79	21.87	21.33
		12	13	21.5±1	21.49	21.36	21.96	21.96	21.39
20MH		25	0	21.5±1	21.47	21.08	21.67	21.78	21.30
z		1	0	21.0±1	20.87	20.97	21.42	21.55	20.95
		1	13	21.0±1	21.30	21.17	21.61	21.45	21.25
		1	24	21.0±1	21.06	20.37	21.49	21.51	21.08
	16QAM	12	0	20.0±1	20.55	20.26	20.72	20.76	20.29
		12	6	20.0±1	20.51	20.24	20.67	20.60	20.15
		12	13	20.0±1	20.51	20.41	20.69	20.81	20.30
		25	0	20.0±1	20.44	20.32	20.76	20.88	20.30
									_5.00

Bandwidth Mode RB Size Offset Channel Channel 131979 132322 132665 1814.3MHz					Band 66	Sport 1 (011213) (_	
Bandwidth Mode Size Offset					Turn up	Actua	al output power(dBm)
1.4MHz 1.5	Bandwidth	Mode				131979	132322	132665
1 2 22.0±1 22.68 22.55 21.94 1 5 22.0±1 22.68 22.61 21.80 3 0 22.0±1 22.72 22.83 22.61 21.80 3 1 22.0±1 22.72 22.83 22.64 21.90 6 0 21.0±1 21.83 21.53 20.60 6 0 21.0±1 21.83 21.53 20.60 1 0 21.0±1 21.83 21.53 20.60 1 1 2 21.0±1 21.99 21.04 20.53 1 1 2 21.0±1 21.09 21.04 20.53 1 1 5 21.0±1 21.06 20.58 20.01 3 0 21.0±1 21.87 21.70 20.47 3 1 21.0±1 21.87 21.70 20.47 3 1 21.0±1 21.87 21.70 20.47 3 2 21.0±1 21.87 21.70 20.47 3 1 21.0±1 20.52 20.61 19.91 Turn up Actual output power(dBm) Channel 131987 132322 132657 1851.5MHz 1882.5MHz 1913.5MHz 1 8 22.0±1 22.96 22.62 21.88 1 1 44 22.0±1 22.96 22.62 21.88 1 1 14 22.0±1 22.44 22.78 21.67 2 18 4 21.0±1 21.89 21.68 20.82 8 7 21.0±1 21.89 21.68 20.82 8 7 21.0±1 21.89 21.68 20.82 8 7 21.0±1 21.89 21.68 20.82 8 7 21.0±1 21.89 21.68 20.82 3 MHz 16QAM 8 4 21.0±1 21.89 21.68 20.82 1 1 8 21.0±1 21.89 21.68 20.82 1 1 8 21.0±1 21.89 21.68 20.82 1 1 8 21.0±1 21.89 21.68 20.82 8 7 21.0±1 21.89 21.68 20.82 1 1 8 21.0±1 21.89 21.68 20.82 1 1 8 21.0±1 21.89 21.68 20.82 1 1 8 21.0±1 21.89 21.68 20.82 1 1 8 21.0±1 21.89 21.68 20.82 1 1 8 21.0±1 21.89 21.68 20.82 8 7 21.0±1 21.89 21.68 20.82 8 7 21.0±1 21.89 21.68 20.82 1 1 15 21.0±1 21.85 21.65 20.77 15 0 21.0±1 21.85 21.65 20.77 15 0 21.0±1 21.85 21.65 20.77 15 0 21.0±1 21.85 21.65 20.77 16 0 21.0±1 21.89 21.68 20.82 1 1 15 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.0±1 20.68 20.55 19.58			4		00.0.1.4			
1.4MHz 1.4MHz								
AMHZ QPSK 3 0 22.0±1 22.72 22.83 22.06 3 1 22.0±1 22.78 22.83 22.06 3 2 22.0±1 22.78 22.84 21.90 6 0 21.0±1 21.83 20.80 20.73 1 0 21.0±1 21.83 20.80 20.73 1 1 2 21.0±1 21.99 21.04 20.53 1 1 5 21.0±1 21.99 21.04 20.53 1 1 5 21.0±1 21.86 20.58 20.01 3 1 21.0±1 21.87 21.70 20.47 3 2 21.0±1 21.87 21.70 20.47 3 2 21.0±1 20.52 20.61 19.91 Bandwidth Mode RB RB RB Size Offset Turn up Actual output power(dBm) Channel 131987 132322 19.25 1851.5MHz 1882.5MHz 1913.5MHz RB Size 1 0 22.0±1 22.96 22.62 21.88 1 1 0 22.0±1 22.60 22.54 21.86 1 1 14 22.0±1 22.44 22.78 21.67 1 1 14 22.0±1 21.82 21.89 20.71 3 MHz AMHZ AMH								
1.4MHz 1.4MHz		0.0014						
1.4MHz 1.4MHz		QPSK						
1.4MHz 1.4MHz								
1.4MHz 16QAM								
1	1.4MHz							
1								
Bandwidth Size Si								
Bandwidth Mode RB RB Size Offset Turn up Actual output power(dBm)		460444						
Bandwidth Mode RB RB Size Offset Turn up Actual output power(dBm)		16QAM						
Bandwidth Mode RB RB Size Offset Turn up Actual output power(dBm) RB RB Size Offset Turn up Actual output power(dBm) Channel 131987 132322 132657 1851.5MHz 1882.5MHz 1913.5MHz 10 22.0±1 22.96 22.62 21.88 1 1 8 22.0±1 22.60 22.54 21.86 1 14 22.0±1 22.44 22.78 21.67 8 0 21.0±1 21.82 21.89 20.71 8 4 21.0±1 21.82 21.89 20.71 8 7 21.0±1 21.85 21.65 20.77 15 0 21.0±1 21.85 21.65 20.77 15 0 21.0±1 21.84 21.69 20.76 3MHz 16QAM 10 21.0±1 21.56 21.45 20.26 1 1 8 21.0±1 21.77 21.66 20.73 1 15 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.00 20.60 19.99 8 4 20.0±1 20.68 20.55 19.58 8 7 20.0±1 20.68 20.55 19.58								
Bandwidth Mode RB RB Offset Size Offset Size Turn up Channel Channel 131987 132322 132657 1851.5MHz 1882.5MHz 1913.5MHz								
Bandwidth Mode RB Size RB Offset Channel 131987 132322 132657 1851.5MHz Channel 131987 132322 132657 1913.5MHz A Description of the product of the			6	0				
Bandwidth Mode Size Offset 131987 1851.5MHz 132322 1882.5MHz 132657 1913.5MHz 1 0 22.0±1 22.96 22.62 21.88 1 8 22.0±1 22.60 22.54 21.86 1 14 22.0±1 22.44 22.78 21.67 8 0 21.0±1 21.82 21.89 20.71 8 4 21.0±1 21.89 21.68 20.82 8 7 21.0±1 21.85 21.65 20.77 15 0 21.0±1 21.84 21.69 20.76 3MHz 1 0 21.0±1 21.56 21.45 20.26 1 8 21.0±1 21.77 21.66 20.73 1 15 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.00 20.60 19.99 16QAM 8 4 20.0±1 20.68 20.55 1			-	20	i urn up			
1851.5MHz	Bandwidth	Mode						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Size	Offset				
$ \begin{tabular}{c ccccccccccccccccccccccccccccccccccc$			1	0	22.0±1			
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
3MHz $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QPSK	8	0	21.0±1	21.82	21.89	20.71
3MHz $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8	4	21.0±1	21.89	21.68	20.82
3MHz $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8	7	21.0 ± 1	21.85	21.65	20.77
1 8 21.0±1 21.77 21.66 20.73 1 15 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.00 20.60 19.99 8 4 20.0±1 20.68 20.55 19.58 8 7 20.0±1 20.84 20.53 19.52			15	0	21.0±1	21.84	21.69	20.76
1 15 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.00 20.60 19.99 8 4 20.0±1 20.68 20.55 19.58 8 7 20.0±1 20.84 20.53 19.52	3MHz		1	0	21.0±1	21.56	21.45	20.26
1 15 21.0±1 21.95 21.32 19.67 8 0 20.5±1 21.00 20.60 19.99 8 4 20.0±1 20.68 20.55 19.58 8 7 20.0±1 20.84 20.53 19.52			1	8	21.0±1	21.77	21.66	20.73
16QAM			1		21.0±1	21.95	21.32	19.67
16QAM 8 4 20.0 ± 1 20.68 20.55 19.58 8 7 20.0 ± 1 20.84 20.53 19.52								
8 / 20.04 20.55 19.52		16QAM						
15 0 20.0+1 20.96 20.77 40.77			8	7	20.0±1	20.84	20.53	19.52
13 0 20.0±1 20.00 20.11 19.11			15	0	20.0±1	20.86	20.77	19.77

Address: No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China, 401336

FAX:0086-23-88608777

Tel: 0086-23-88069965

Report No.:B19W50551-SAR_REV3

				Turn up	Actua	al output power(d	
		RB	RB	- "F	Channel	Channel	Channel
Bandwidth	Mode	Size	Offset		131997	132322	132647
					1852.5MHz	1882.5MHz	1912.5MHz
		1	0	22.0±1	22.63	22.57	21.42
		1	13	22.0±1	22.78	22.65	21.94
		1	24	22.0±1	22.67	22.50	21.70
	QPSK	12	0	22.0±1	22.58	22.61	21.88
		12	6	22.0±1	22.72	22.82	22.07
		12	13	22.0±1	22.74	22.63	21.90
5MHz		25	0	21.0±1	21.80	21.51	20.64
SIVIFIZ		1	0	21.0±1	21.67	21.53	20.44
		1	13	21.0±1	21.76	21.71	20.82
		1	24	21.0±1	21.66	21.43	20.52
	16QAM	12	0	21.0±1	21.64	21.54	20.64
		12	6	21.0±1	21.65	21.89	21.12
		12	13	21.0±1	21.66	21.65	20.82
		25	0	$20.0\!\pm\!1$	20.70	20.46	19.61
				Turn up	Actua	al output power(d	dBm)
Bandwidth	Mode	RB	RB		Channel	Channel	Channel
		Size	Offset		132022	132322	132622
					1855MHz	1882.5MHz	1910MHz
		1	0	22.0±1	22.66	22.81	22.22
		1	25	22.0±1	22.82	22.75	22.05
		1	49	22.0±1	22.72	22.41	21.66
	QPSK	25	0	21.0±1	21.83	21.80	21.14
		25	13	21.0±1	21.71	21.83	20.87
		25	25	21.0±1	21.77	21.10	20.68
400411-		50	0	21.0±1	21.90	21.54	20.88
10MHz		1	0	21.0±1	21.62	21.80	21.24
		1	25	21.0±1	21.80	21.76	21.03
		1	49	21.0±1	21.61	21.34	20.53
	16QAM	25	0	20.0±1	20.79	20.72	20.15
		25	13	20.0±1	20.64	20.80	19.94
		25	25	20.0±1	20.79	20.12	19.56
		23					

Address: No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China, 401336

FAX:0086-23-88608777

					A otuc		
				Turn up		al output power(d	•
Bandwidth	Mode	RB	RB		Channel	Channel	Channel
		Size	Offset		132047	132322	132597
					1857.5MHz	1882.5MHz	1907.5MHz
		1	0	22.0±1	22.77	22.64	21.79
		1	38	22.0±1	22.63	22.84	21.87
		1	74	22.0±1	22.45	22.75	21.69
	QPSK	36	0	21.0±1	21.85	21.79	20.76
		36	18	21.0±1	21.88	21.68	20.82
		36	39	21.0 ± 1	21.87	21.67	20.77
15MHz		75	0	21.0±1	21.84	21.68	20.79
IOIVITZ		1	0	21.0±1	21.57	21.53	20.70
		1	38	21.0±1	21.61	21.85	20.79
		1	74	21.0 ± 1	21.34	21.79	20.56
	16QAM	36	0	20.0±1	20.91	20.71	19.71
		36	18	20.0 ± 1	20.83	20.65	19.89
		36	39	20.0 ± 1	20.89	20.57	19.65
		75	0	20.0±1	20.74	20.64	19.57
				Turn up	Actua	al output power(d	dBm)
Bandwidth	Mode	RB	RB		Channel	Channel	Channel
Dariuwiuiri	ivioue	Size	Offset		132072	132322	132572
					1860MHz	1882.5MHz	1905MHz
		1	0	22.0 ± 1	22.75	22.77	22.16
		1	50	22.0 ± 1	22.84	22.85	22.01
		1	99	22.0 ± 1	22.76	22.38	21.65
	QPSK	50	0	22.0 ± 1	21.82	21.82	21.15
		50	25	22.0 ± 1	21.70	21.85	20.88
		50	50	22.0±1	21.73	21.60	20.69
201411-		100	0	22.0±1	21.90	21.55	20.90
20MHz		1	0	21.0±1	21.55	21.66	21.07
		1	50	21.0±1	21.82	21.86	20.93
		1	99	21.0±1	21.65	21.42	20.52
	16QAM	50	0	20.0±1	20.88	20.74	20.10
		50	25	20.0±1	20.65	20.82	19.95
		50	50	20.0±1	20.75	20.50	19.57
		100	0	20.0±1	20.80	20.51	19.68
l		·	l		I.	<u> </u>	

Table 13.6: The conducted Power for LTE Sensor open

			1auic 13.0		ed Power for LTF	2 Schsor Open	
				Band 7			
					Actual outpu	t power(dBm)	
Bandwidth	Mode	RB	RB	Turn up	Channel	Channel	Channel
Baridwidti	ivioue	Size	Offset		20775	21100	21425
					2502.5MHz	2535MHz	2567.5MHz
		1	0	5.7±1	7.35	6.93	5.73
		1	13	5.8±1	7.63	7.23	5.80
		1	24	7.0±1	7.54	7.35	6.21
	QPSK	12	0	6.7±1	7.65	7.13	5.73
		12	6	6.6±1	7.38	7.05	5.69
		12	13	7.0±1	7.89	7.26	6.05
5MHz		25	0	6.9±1	7.43	7.32	5.92
SIVIEZ		1	0	7.0±1	7.12	7.09	6.54
		1	13	7.0±1	7.21	7.15	6.48
		1	24	7.0±1	7.32	7.42	6.83
	16QAM	12	0	6.0±1	6.97	6.59	5.05
		12	6	6.4±1	7.22	6.88	5.41
		12	13	6.3±1	7.24	6.79	5.32
		25	0	6.3±1	7.06	6.82	5.35
					Actual outpu	t power(dBm)	
Bandwidth	Mode	RB	RB	Turn up	Channel	Channel	Channel
Baridwidti	IVIOGE	Size	Offset		20800	21100	21400
					2505MHz	2535MHz	2565MHz
		1	0	6.9±1	7.15	6.73	5.94
		1	25	7.0±1	7.17	7.10	6.13
		1	49	7.0±1	6.83	7.05	6.25
	QPSK	25	0	6.0±1.0	6.34	6.52	5.05
		25	13	6.0±1.0	6.42	6.64	5.06
		25	25	5.3±1	6.83	7.17	5.34
10MHz		50	0	6.0±1	6.96	6.70	5.12
TOWNIZ		1	0	6.5±1	7.23	5.63	5.98
		1	25	7.0±1	7.31	6.71	6.03
		1	49	6.0±1	6.43	6.23	6.06
	16QAM	25	0	6.6±1	7.41	6.32	5.81
		25	13	6.6±1	7.58	6.73	5.92
		25	25	6.6±1	7.53	6.56	5.95
		50	0	6.5±1	7.44	6.62	5.97

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

							I-SAR_REV3
						t power(dBm)	
Bandwidth	Mode	RB	RB	Turn up	Channel	Channel	Channel
		Size	Offset		20825	21100	21375
					2507.5MHz	2535MHz	2562.5MHz
		1	0	7.0±1	7.35	6.83	6.05
		1	38	7.0±1	7.33	6.93	6.03
		1	74	6.0±1	6.82	6.71	5.93
	QPSK	36	0	6.3±1	7.23	6.68	5.73
		36	18	6.4±1	7.33	6.49	5.58
		36	39	6.1±1	6.42	7.05	5.21
4 EN 41 I-		75	0	6.1±1	6.39	7.05	5.24
15MHz		1	0	6.5±1	7.21	7.05	5.51
		1	38	6.2±1	6.55	7.12	5.43
		1	74	6.0±1	5.72	6.81	5.25
	16QAM	36	0	6.2±1	7.15	6.21	5.98
		36	18	6.0±1	6.99	6.92	5.05
		36	39	6.2±1	7.02	6.93	5.36
		75	0	6.0±1	6.89	6.88	5.06
				Turn up	Actual	output power(dBm)
	Mada	RB	RB		Channel	Channel	Channel
Bandwidth	Mode	Size	Offset		20850	21100	21350
					2510MHz	2535MHz	2560MHz
		1	0	7.0±1	6.83	7.51	6.92
		1	50	7.0±1	6.61	7.06	6.58
		1	99	7.0±1	6.50	6.75	6.49
		50	0	6.0±1	6.83	6.89	5.27
		50	25	6.0±1	6.87	6.32	5.35
		50	50	6.0±1	6.72	6.79	5.49
		100	0	6.0±1	5.89	6.82	5.01
		1	0	6.0±1	6.78	6.21	6.22
		1	50	6.0±1	6.29	6.81	5.78
		1	99	6.0±1	5.85	6.32	5.92
			<u> </u>		0.70	F 00	5.02
	16QAM	50	0	6.0 ± 1	6.79	5.99	5.03
	16QAM	50 50	25	6.0±1 5.2±1	6.79	6.72	4.68
	16QAM						

			Ва	and 25			
				Turn	Actual	output power(d	Bm)
Bandwidth	Mode	RB Size	RB Offset	ир	Channel 26047 1850.7MHz	Channel 26365 1882.5MHz	Channel 26683 1914.3M Hz
		1	0	13.5±1	13.53	13.47	13.07
		1	2	13.5±1	13.70	13.61	13.21
		1	5	13.5±1	13.53	13.51	12.95
	QPSK	3	0	13.5±1	13.54	13.57	13.25
		3	1	13.5±1	13.59	13.62	13.33
		3	2	13.5±1	13.66	13.51	13.23
1.4MHz		6	0	12.5±1	12.68	12.64	12.32
1.4IVIDZ		1	0	12.5±1	12.57	12.38	12.49
		1	2	12.5±1	12.76	12.45	12.48
		1	5	12.5±1	12.77	12.38	12.28
	16QAM	3	0	12.5±1	12.66	12.48	12.32
		3	1	12.5±1	12.77	12.79	12.44
		3	2	12.5±1	12.82	12.56	12.24
		6	0	12.0±1	12.51	11.86	11.80
				Turn	Actual	output power(d	Bm)
Bandwidth	Mode	RB Size	RB Offset	up	Channel 26055 1851.5MHz	Channel 26365 1882.5MHz	Channel 26675 1913.5M Hz
		1	0	13.5±1	13.76	13.61	13.75
		1	8	13.5±1	13.82	13.58	13.51
		1	14	13.5±1	13.92	13.48	13.24
	QPSK	8	0	12.5±1	12.66	12.63	12.27
		8	4	12.5±1	12.75	12.67	12.26
		8	7	12.5±1	12.83	12.58	12.13
2004		15	0	12.5±1	12.84	12.62	12.17
3MHz		1	0	12.5±1	12.66	12.65	12.88
		1	8	12.5±1	12.58	12.61	12.56
		1	15	12.5±1	12.89	12.70	12.67
	16QAM	8	0	12.5±1	12.33	12.22	12.32
		8	4	12.5±1	11.92	12.02	12.26
		8	7	12.5±1	12.53	12.54	12.09
		15	0	12.0±1	12.56	12.28	11.35

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Tel: 0086-23-88069965

Report No.:B19W50551-SAR_REV3

				Turn	Actual	output power(dl	
Bandwidth	Mode	RB Size	RB Offset	up	Channel 26065 1852.5MHz	Channel 26365 1882.5MHz	Channel 26665 1912.5M Hz
		1	0	13.5±1	13.95	13.81	13.45
		1	13	13.5±1	14.13	13.81	13.16
		1	24	13.5±1	14.21	14.06	13.18
	QPSK	12	0	12.5±1	12.86	12.65	12.28
		12	6	12.5±1	12.88	12.73	12.16
		12	13	12.5±1	12.94	12.54	12.09
5N41-		25	0	12.5±1	12.78	12.64	12.15
5MHz		1	0	12.5±1	12.99	12.94	13.31
		1	13	12.5±1	13.26	12.82	12.68
		1	24	12.5±1	13.25	13.06	12.61
	16QAM	12	0	12.0±1	12.75	11.79	12.26
		12	6	12.0±1	12.78	11.85	11.34
		12	13	12.0±1	12.93	11.74	11.25
		25	0	12.0±1	12.80	12.54	11.37
				Turn	Actual	output power(dl	Bm)
1							
Randwidth	Mode	RB	RB	up	Channel	Channel	Channel
Bandwidth	Mode	RB Size	RB Offset	up	Channel 26090	Channel 26365	Channel 26640
Bandwidth	Mode				26090 1855MHz	26365 1882.5MHz	
Bandwidth	Mode			13.5±1	26090	26365	26640
Bandwidth	Mode	Size	Offset	13.5±1 13.5±1	26090 1855MHz	26365 1882.5MHz	26640 1910MHz
Bandwidth	Mode	Size 1	Offset 0	13.5±1 13.5±1 13.5±1	26090 1855MHz 13.13	26365 1882.5MHz 13.23	26640 1910MHz 12.48
Bandwidth	Mode QPSK	Size 1 1	Offset 0 25	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1	26090 1855MHz 13.13 13.43	26365 1882.5MHz 13.23 13.41	26640 1910MHz 12.48 13.65
Bandwidth		Size 1 1 1	Offset 0 25 49	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1 13.0 ± 1	26090 1855MHz 13.13 13.43 13.43	26365 1882.5MHz 13.23 13.41 13.44	26640 1910MHz 12.48 13.65 12.68
Bandwidth		Size 1 1 1 25	0 25 49	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1	26090 1855MHz 13.13 13.43 13.43 12.68	26365 1882.5MHz 13.23 13.41 13.44 12.54	26640 1910MHz 12.48 13.65 12.68 12.77
		Size 1 1 1 25 25	Offset 0 25 49 0 13	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 12.5 ± 1	26090 1855MHz 13.13 13.43 13.43 12.68 12.84	26365 1882.5MHz 13.23 13.41 13.44 12.54 12.68	26640 1910MHz 12.48 13.65 12.68 12.77 12.50
Bandwidth 10MHz		Size 1 1 1 25 25 25	Offset 0 25 49 0 13 25	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1	26090 1855MHz 13.13 13.43 13.43 12.68 12.84 12.72	26365 1882.5MHz 13.23 13.41 13.44 12.54 12.68 12.64	26640 1910MHz 12.48 13.65 12.68 12.77 12.50 12.38
		Size 1 1 1 25 25 25 50	Offset 0 25 49 0 13 25 0 0 25	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 12.5 ± 1 12.5 ± 1 12.5 ± 1	26090 1855MHz 13.13 13.43 13.43 12.68 12.84 12.72 12.56	26365 1882.5MHz 13.23 13.41 13.44 12.54 12.68 12.64 12.36	26640 1910MHz 12.48 13.65 12.68 12.77 12.50 12.38 12.54
		Size 1 1 1 25 25 25 50 1	0 25 49 0 13 25 0	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 12.5 ± 1 12.5 ± 1 12.5 ± 1 12.5 ± 1	26090 1855MHz 13.13 13.43 13.43 12.68 12.84 12.72 12.56 12.23	26365 1882.5MHz 13.23 13.41 13.44 12.54 12.68 12.64 12.36 12.08	26640 1910MHz 12.48 13.65 12.68 12.77 12.50 12.38 12.54 13.17
	QPSK	Size 1 1 1 25 25 25 50 1 1	Offset 0 25 49 0 13 25 0 0 25	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 12.5 ± 1 12.5 ± 1 12.5 ± 1	26090 1855MHz 13.13 13.43 13.43 12.68 12.84 12.72 12.56 12.23 12.82	26365 1882.5MHz 13.23 13.41 13.44 12.54 12.68 12.64 12.36 12.08 12.59	26640 1910MHz 12.48 13.65 12.68 12.77 12.50 12.38 12.54 13.17
		Size 1 1 1 25 25 25 50 1 1 1	Offset 0 25 49 0 13 25 0 0 25 49	13.5 ± 1 13.5 ± 1 13.5 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 12.5 ± 1 12.5 ± 1 12.5 ± 1 12.5 ± 1	26090 1855MHz 13.13 13.43 13.43 12.68 12.84 12.72 12.56 12.23 12.82 12.38	26365 1882.5MHz 13.23 13.41 13.44 12.54 12.68 12.64 12.36 12.08 12.59 12.68	26640 1910MHz 12.48 13.65 12.68 12.77 12.50 12.38 12.54 13.17 13.22 12.18
	QPSK	Size 1 1 1 25 25 25 50 1 1 1 25	Offset 0 25 49 0 13 25 0 0 25 49 0	$\begin{array}{c} 13.5 \pm 1 \\ 13.5 \pm 1 \\ 13.5 \pm 1 \\ 13.0 \pm 1 \\ 13.0 \pm 1 \\ 13.0 \pm 1 \\ 12.5 \pm 1 \\ 12.0 \pm 1 \\ \end{array}$	26090 1855MHz 13.13 13.43 13.43 12.68 12.84 12.72 12.56 12.23 12.82 12.82 12.38 12.63	26365 1882.5MHz 13.23 13.41 13.44 12.54 12.68 12.64 12.36 12.08 12.59 12.68 12.41	26640 1910MHz 12.48 13.65 12.68 12.77 12.50 12.38 12.54 13.17 13.22 12.18

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

				Turn	Actual	output power(d	
				up	Actual	Jaipai power(u	Channel
Bandwidth	Mode	RB	RB	up	Channel	Channel	
Danuwium	Mode	Size	Offset		26115	26365	26615
					1857.5MHz	1882.5MHz	1907.5M
							Hz
		1	0	13.5±1	13.35	12.34	14.25
		1	38	13.5±1	13.77	12.38	14.12
		1	74	13.5±1	13.46	12.37	13.26
	QPSK	36	0	12.5±1	12.58	12.26	12.92
		36	18	12.5±1	12.53	12.34	13.02
		36	39	12.5±1	12.46	12.35	12.48
15MHz		75	0	12.5±1	12.50	12.28	12.59
TOWN IZ		1	0	12.5±1	12.87	12.25	13.81
		1	38	12.5±1	12.68	12.29	13.21
		1	74	12.5±1	12.58	12.35	12.36
	16QAM	36	0	12.0±1	11.82	12.37	12.31
		36	18	12.0±1	12.39	12.39	12.16
		36	39	12.0±1	12.38	12.34	12.25
		75	0	12.0±1	12.41	12.35	12.20
				Turn	Actual	output power(d	Bm)
5 1 1 1		RB	RB	up	Channel	Channel	Channel
Bandwidth	Mode	Size	Offset		26140	26365	26590
					1860MHz	1882.5MHz	1905MHz
		1	0	13.5±1	12.64	12.62	12.96
		1	50	13.5±1	12.79	12.51	12.71
		1	99	13.5±1	12.68	12.43	13.15
	QPSK	50	0	13.0±1	12.76	12.51	12.72
		50	25	13.0±1	12.79	12.42	12.83
		50	50	13.0±1	12.70	12.75	12.82
		100	0	12.5±1	12.79	12.43	12.76
20MHz		1	0	12.5±1	12.59	12.54	12.85
		1	50	12.0±1	12.77	12.32	13.00
		1	99	12.0±1	12.67	12.40	12.92
	16QAM	50	0	12.5±1	13.42	13.30	13.43
	1.000, (10)	50	25	12.5±1	13.49	13.31	13.16
		50	50	12.5±1	13.54	13.35	13.05
		100	0	12.5±1	13.47	13.28	12.89
		100	U	12.3 1	13.47	13.20	12.03

					Band 4	.1				
				Tur	n up		Actual c	output pow	er(dBm)	
		RB	RB	Channel	Channel	Channe	Channe	Channe	Channe	Channe
Bandwid	Mode	Siz	Offse	First/sec	Third/fou	1 39675	140148	I 40620	I 41093	I 41565
th		е	t	ond	rth/fifth	2498.5	2545.8	2593	2640.3	2687.5
						MHz	MHz	MHz	MHz	MHz
		1	0	7.0±1	4.5±1	7.77	7.01	5.33	4.06	4.48
		1	13	7.0±1	4.5±1	6.67	7.08	5.41	4.32	4.44
		1	24	7.0±1	4.5±1	6.99	6.90	5.32	3.99	4.16
	QPSK	12	0	7.0±1	4.5±1	7.32	7.03	5.37	4.21	4.17
		12	6	6.5±1	4.5±1	5.85	7.09	5.31	4.19	3.97
		12	13	7.0±1	4.5±1	5.74	6.96	5.12	4.05	4.14
		25	0	6.5±1	4.5±1	5.88	6.97	5.20	4.06	4.04
5MHz		1	0	7.0±1	4.2±1	7.04	6.44	4.61	3.29	4.95
		1	13	7.0±1	4.3±1	6.85	6.33	4.41	3.33	4.77
	1001	1	24	7.0±1	4.0±1	6.23	6.31	4.40	3.01	4.03
	16QA	12	0	7.0±1	4.6±1	6.32	7.43	5.37	3.67	4.11
	M	12	6	6.5±1	4.8±1	6.49	7.17	4.99	3.82	4.14
		12	13	6.6±1	4.8±1	5.93	7.52	5.21	3.83	4.10
		25	0	6.5±1	4.8±1	6.09	7.48	4.71	3.99	4.04
				Turi	n up		Actual c	utput pow	er(dBm)	
Bandwid		RB	RB	Channel	Channel	Channe	Channe	Channe	Channe	Channe
th	Mode	Siz	Offse	First/sec	Third/fou	I 39700	I 40160	I 40620	I 41080	I 41540
uı		е	t	ond	rth/fifth	2501M	2547M	2593M	2639M	2685M
						Hz	Hz	Hz	Hz	Hz
		1	0	7.0±1	5.0±1	7.74	6.40	5.47	4.59	4.20
		1	13	7.0±1	5.0±1	7.04	6.83	5.07	4.05	4.25
		1	24	7.0±1	3.7±1	6.88	6.16	5.15	4.25	3.72
	QPSK	12	0	6.5±1	5.0±1	5.93	7.41	5.01	4.06	4.39
		12	6	7.0±1	5.0±1	6.02	7.51	5.14	4.05	4.28
		12	13	6.5±1	5.0±1	5.85	6.75	5.12	4.34	4.18
10MHz		25	0	6.5±1	5.0±1	5.54	6.88	5.13	4.21	4.08
1 OIVII 12		1	0	7.0±1	5.0±1	6.30	7.61	5.43	4.20	4.32
		1	13	7.0±1	5.0±1	6.21	7.52	5.64	4.89	4.37
	16QA	1	24	7.0±1	4.9±1	6.06	8.21	5.53	3.91	4.02
	M	12	0	7.0±1	5.0±1	7.34	6.78	5.33	4.18	4.25
	IVI	12	6	7.0±1	5.0±1	6.04	7.32	5.05	4.12	4.01
		12	13	6.5±1	4.8±1	5.57	7.29	5.06	3.84	4.52
		25	0	6.5±1	4.7±1	5.53	7.41	5.25	3.78	4.10

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

				Tur	n up	Keport No		utput pow		
		RB	RB	Channel	Channel	Channe	Channe	Channe	Channe	Channe
Bandwid	Mode	Siz	Offse	First/sec	Third/fou	I 39725	I 40173	I 40620	I 41068	I 41515
th	Wood	e	t	ond	rth/fifth	2503.5	2548.3	2593M	2637.8	2682.5
				ona	10711101	MHz	MHz	Hz	MHz	MHz
		1	0	7.0±1	5.0±1	6.91	6.47	5.40	4.39	4.41
		1	13	7.0±1	5.0±1	6.95	7.03	5.02	4.32	4.23
		1	24	7.0±1	5.0±1	6.65	5.99	5.38	4.22	4.01
	QPSK	12	0	7.0±1	5.0±1	7.22	6.77	5.46	4.31	4.48
		12	6	6.8±1	5.0±1	5.83	7.38	5.10	4.09	4.40
		12	13	6.7±1	5.0±1	5.72	6.46	4.92	4.33	4.35
		25	0	65±1	5.0±1	5.66	6.32	4.82	4.44	4.31
15MHz		1	0	6.0±1	5.0±1	6.70	5.87	4.15	4.73	4.98
		1	13	6.0±1	4.0±1	5.60	6.41	4.72	3.45	4.25
	4004	1	24	6.0±1	5.0±1	6.16	5.57	5.23	4.02	4.18
	16QA	12	0	7.0±1	4.8±1	6.03	7.49	5.07	3.84	4.23
	М	12	6	6.6±1	4.9±1	5.62	7.51	5.08	3.98	4.09
		12	13	6.4±1	4.9±1	5.44	7.32	5.28	3.99	4.30
		25	0	6.2±1	4.9±1	5.28	7.03	5.12	4.01	4.24
				Turi	n up		Actual o	utput pow	er(dBm)	
Bandwid		RB	RB	Channel	Channel	Channe	Channe	Channe	Channe	Channe
Bandwid	Mode	RB Siz	RB Offse	Channel First/sec	Channel Third/fou	Channe I 39750	Channe I 40185	Channe I 40620	Channe I 41055	Channe I 41490
Bandwid th	Mode									
1	Mode	Siz	Offse	First/sec	Third/fou	l 39750	l 40185	I 40620	I 41055	l 41490
1	Mode	Siz	Offse	First/sec	Third/fou	l 39750 2506M	l 40185 2549.5	I 40620 2593M	I 41055 2636.5	l 41490 2680M
1	Mode	Siz e	Offse t	First/sec ond	Third/fou rth/fifth	I 39750 2506M Hz	I 40185 2549.5 MHz	I 40620 2593M Hz	I 41055 2636.5 MHz	l 41490 2680M Hz
1		Siz e 1 1	Offse t	First/sec ond	Third/fou rth/fifth	I 39750 2506M Hz 6.84	I 40185 2549.5 MHz 6.63	I 40620 2593M Hz 5.25	I 41055 2636.5 MHz 4.16	I 41490 2680M Hz 4.04
1	Mode	Siz e 1	Offse t 0 13	First/sec ond 7.0±1 7.0±1	Third/fou rth/fifth 5.0±1 5.0±1	I 39750 2506M Hz 6.84 7.06	I 40185 2549.5 MHz 6.63 6.77	I 40620 2593M Hz 5.25 5.07	I 41055 2636.5 MHz 4.16 4.21	1 41490 2680M Hz 4.04 4.19
1		Siz e 1 1	Offse t 0 13 24	7.0±1 7.0±1 7.0±1	Third/fou rth/fifth 5.0 ± 1 5.0 ± 1 4.2 ± 1	I 39750 2506M Hz 6.84 7.06 6.17	I 40185 2549.5 MHz 6.63 6.77 7.49	I 40620 2593M Hz 5.25 5.07 5.10	1 41055 2636.5 MHz 4.16 4.21 3.96	1 41490 2680M Hz 4.04 4.19 3.70
1		Siz e 1 1 1 12	Offse t 0 13 24 0	7.0±1 7.0±1 7.0±1 7.0±1 7.0±1	Third/fou rth/fifth 5.0±1 5.0±1 4.2±1 5.0±1	1 39750 2506M Hz 6.84 7.06 6.17 7.22	I 40185 2549.5 MHz 6.63 6.77 7.49 7.19	1 40620 2593M Hz 5.25 5.07 5.10 5.45	1 41055 2636.5 MHz 4.16 4.21 3.96 4.52	1 41490 2680M Hz 4.04 4.19 3.70 4.28
th		Siz e 1 1 1 12 12	Offse t 0 13 24 0 6	7.0±1 7.0±1 7.0±1 7.0±1 6.0±1	Third/fou rth/fifth 5.0±1 5.0±1 4.2±1 5.0±1 5.0±1	1 39750 2506M Hz 6.84 7.06 6.17 7.22 5.74	I 40185 2549.5 MHz 6.63 6.77 7.49 7.19 6.86	1 40620 2593M Hz 5.25 5.07 5.10 5.45 5.15	1 41055 2636.5 MHz 4.16 4.21 3.96 4.52 4.05	1 41490 2680M Hz 4.04 4.19 3.70 4.28 4.42
		Siz e 1 1 1 1 12 12 12	Offse t 0 13 24 0 6 13	7.0±1 7.0±1 7.0±1 7.0±1 6.0±1 6.0±1	Third/fou rth/fifth 5.0±1 5.0±1 4.2±1 5.0±1 5.0±1 5.7±1	1 39750 2506M Hz 6.84 7.06 6.17 7.22 5.74 5.64	I 40185 2549.5 MHz 6.63 6.77 7.49 7.19 6.86 6.35	1 40620 2593M Hz 5.25 5.07 5.10 5.45 5.15 4.73	1 41055 2636.5 MHz 4.16 4.21 3.96 4.52 4.05 6.59	1 41490 2680M Hz 4.04 4.19 3.70 4.28 4.42 4.06
th		Siz e 1 1 1 1 12 12 12 12 11 11 11 11 11 11	Offse t 0 13 24 0 6 13 0	First/sec ond 7.0±1 7.0±1 7.0±1 7.0±1 6.0±1 6.0±1 6.0±1	Third/fou rth/fifth 5.0 ± 1 5.0 ± 1 4.2 ± 1 5.0 ± 1 5.0 ± 1 5.0 ± 1 5.7 ± 1 5.3 ± 1	1 39750 2506M Hz 6.84 7.06 6.17 7.22 5.74 5.64 5.46	I 40185 2549.5 MHz 6.63 6.77 7.49 7.19 6.86 6.35 5.89	1 40620 2593M Hz 5.25 5.07 5.10 5.45 5.15 4.73	1 41055 2636.5 MHz 4.16 4.21 3.96 4.52 4.05 6.59 6.03	1 41490 2680M Hz 4.04 4.19 3.70 4.28 4.42 4.06 4.01
th	QPSK	Siz e 1 1 1 12 12 12 25 1 1	Offse t 0 13 24 0 6 13 0	7.0±1 7.0±1 7.0±1 7.0±1 6.0±1 6.0±1 6.0±1 6.0±1	Third/fou rth/fifth 5.0 ± 1 5.0 ± 1 4.2 ± 1 5.0 ± 1 5.0 ± 1 5.7 ± 1 5.3 ± 1 4.0 ± 1	1 39750 2506M Hz 6.84 7.06 6.17 7.22 5.74 5.64 5.46 6.59	I 40185 2549.5 MHz 6.63 6.77 7.49 7.19 6.86 6.35 5.89 5.86	1 40620 2593M Hz 5.25 5.07 5.10 5.45 5.15 4.73 4.32 4.25	I 41055 2636.5 MHz 4.16 4.21 3.96 4.52 4.05 6.59 6.03 4.77	1 41490 2680M Hz 4.04 4.19 3.70 4.28 4.42 4.06 4.01 4.89 4.33 4.08
th	QPSK 16QA	Siz e 1 1 1 12 12 12 25 1 1 1 12	Offse t 0 13 24 0 6 13 0 13 24 0 0	First/sec ond 7.0±1 7.0±1 7.0±1 7.0±1 6.0±1 6.0±1 6.0±1 6.0±1 6.0±1	Third/fou rth/fifth 5.0 ± 1 5.0 ± 1 4.2 ± 1 5.0 ± 1 5.0 ± 1 5.0 ± 1 5.7 ± 1 5.3 ± 1 4.0 ± 1	I 39750 2506M Hz 6.84 7.06 6.17 7.22 5.74 5.64 5.46 6.59 5.49	I 40185 2549.5 MHz 6.63 6.77 7.49 7.19 6.86 6.35 5.89 5.86 6.38	1 40620 2593M Hz 5.25 5.07 5.10 5.45 5.15 4.73 4.32 4.25 4.72	I 41055 2636.5 MHz 4.16 4.21 3.96 4.52 4.05 6.59 6.03 4.77 4.01	1 41490 2680M Hz 4.04 4.19 3.70 4.28 4.42 4.06 4.01 4.89 4.33
th	QPSK	Siz e 1 1 1 12 12 12 25 1 1 1 12	Offse t 0 13 24 0 6 13 0 13 24 0 6 6	First/sec ond 7.0±1 7.0±1 7.0±1 7.0±1 6.0±1 6.0±1 6.0±1 6.0±1 7.0±1 6.0±1 6.0±1 6.0±1	Third/fou rth/fifth 5.0 ± 1 5.0 ± 1 4.2 ± 1 5.0 ± 1 5.0 ± 1 5.0 ± 1 5.7 ± 1 5.3 ± 1 4.0 ± 1 4.0 ± 1 4.0 ± 1 3.9 ± 1 3.9 ± 1	I 39750 2506M Hz 6.84 7.06 6.17 7.22 5.74 5.64 5.46 6.59 5.49 6.21 6.01 5.23	I 40185 2549.5 MHz 6.63 6.77 7.49 7.19 6.86 6.35 5.89 5.86 6.38 5.48 7.33 6.99	I 40620 2593M Hz 5.25 5.07 5.10 5.45 5.15 4.73 4.32 4.25 4.72 5.19 5.11 5.08	I 41055 2636.5 MHz 4.16 4.21 3.96 4.52 4.05 6.59 6.03 4.77 4.01 4.05	1 41490 2680M Hz 4.04 4.19 3.70 4.28 4.42 4.06 4.01 4.89 4.33 4.08 4.25 4.11
th	QPSK 16QA	Siz e 1 1 1 12 12 12 25 1 1 1 12	Offse t 0 13 24 0 6 13 0 13 24 0 0	First/sec ond 7.0±1 7.0±1 7.0±1 7.0±1 6.0±1 6.0±1 6.0±1 6.0±1 7.0±1 7.0±1	Third/fou rth/fifth 5.0 ± 1 5.0 ± 1 4.2 ± 1 5.0 ± 1 5.0 ± 1 5.7 ± 1 5.3 ± 1 4.0 ± 1 4.0 ± 1 4.0 ± 1 3.9 ± 1	I 39750 2506M Hz 6.84 7.06 6.17 7.22 5.74 5.64 5.46 6.59 5.49 6.21 6.01	I 40185 2549.5 MHz 6.63 6.77 7.49 7.19 6.86 6.35 5.89 5.86 6.38 5.48 7.33	I 40620 2593M Hz 5.25 5.07 5.10 5.45 4.73 4.32 4.25 4.72 5.19 5.11	I 41055 2636.5 MHz 4.16 4.21 3.96 4.52 4.05 6.59 6.03 4.77 4.01 4.05 3.98	1 41490 2680M Hz 4.04 4.19 3.70 4.28 4.42 4.06 4.01 4.89 4.33 4.08 4.25

				Band 66			
				Turn up	Actua	I output power	(dBm)
Daniel del de	NAI -	RB	RB		Channel	Channel	Channel
Bandwidth	Mode	Size	Offset		131979	132322	132665
					1850.7MHz	1882.5MHz	1914.3MHz
		1	0	13.0±1	12.93	13.51	12.80
		1	2	13.0±1	13.15	13.37	12.88
		1	5	13.0±1	13.05	13.46	12.71
	QPSK	3	0	13.0±1	12.95	13.33	12.88
		3	1	13.0±1	13.05	13.34	12.84
		3	2	13.0±1	13.02	13.35	12.86
4 4141-		6	0	13.0±1	12.3	13.40	12.63
1.4MHz		1	0	13.0±1	12.25	13.27	12.66
		1	2	13.0±1	12.57	13.51	12.64
		1	5	13.0±1	12.39	13.38	12.58
	16QAM	3	0	13.0±1	12.33	13.27	12.73
		3	1	13.0±1	12.34	13.22	12.70
		3	2	13.0±1	12.25	13.36	12.65
		6	0	13.0±1	12.32	13.41	12.53
				Turn up	Actua	l output power	(dBm)
Dondwidth	Mode	RB	RB		Channel	Channel	Channel
Bandwidth	Mode	Size	Offset		131987	132322	132657
					1851.5MHz	1882.5MHz	1913.5MHz
		1	0	13.0±1	13.15	13.33	12.93
		1	8	13.0±1	13.12	13.25	12.80
		1	14	13.0±1	13.05	13.43	12.83
	QPSK	8	0	13.0±1	12.35	13.25	12.88
		8	4	13.0±1	12.60	13.38	12.69
		8	7	13.0±1	12.55	13.41	12.70
		15	0	13.0±1	12.49	13.33	12.76
3MHz		1	0	13.0±1	12.73	13.68	13.59
SIVII 12		1	8	13.0±1	12.74	13.75	13.40
		1	15	13.0±1	12.61	13.88	13.27
		8	0	13.0±1	12.37	13.39	12.98
	16QAM	8	4	13.0±1	12.40	13.45	12.75
		8	7	13.0±1	12.50	13.47	12.92
		15	0	13.0±1	12.42	13.44	12.80

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Tel: 0086-23-88069965

Report No.:B19W50551-SAR_REV3

				Turn up	Δctua	l output power	
		RB	RB	ruiii up	Channel	Channel	Channel
Bandwidth	Mode	Size	Offset		131997	132322	132647
		Size	Oliset		1852.5MHz	1882.5MHz	1912.5MHz
		1	0	13.0±1	13.01	13.16	12.99
		1	13	13.0±1	13.09	13.23	13.05
		1	24	13.0±1	13.05	13.34	12.87
	QPSK	12	0	13.0±1	12.53	13.21	12.75
	QI OIX	12	6	13.0±1	12.46	13.17	12.78
		12	13	13.0±1	12.71	13.29	12.76
		25	0	13.0±1	12.56	13.33	12.81
5MHz		1	0	13.0±1	12.88	13.72	12.99
		1	13	13.0±1	13.13	13.63	12.78
		1	24	13.0±1	13.16	13.56	12.85
	16QAM	12	0	13.0±1	12.45	13.29	12.73
	10071111	12	6	13.0±1	12.71	13.36	12.76
		12	13	13.0±1	12.64	13.35	12.79
		25	0	13.0±1	12.41	13.31	12.83
				Turn up			
				i uiii up	Actua	i output power	(ubiii)
5		RB	RB	rum up		l output power Channel	
Bandwidth	Mode	RB Size	RB Offset	rum up	Channel 132022	Channel 132322	Channel 132622
Bandwidth	Mode			тапт ар	Channel	Channel	Channel
Bandwidth	Mode			13.0±1	Channel 132022	Channel 132322	Channel 132622
Bandwidth	Mode	Size	Offset		Channel 132022 1855MHz	Channel 132322 1882.5MHz	Channel 132622 1910MHz
Bandwidth	Mode	Size 1	Offset 0	13.0±1	Channel 132022 1855MHz 12.91	Channel 132322 1882.5MHz 13.15	Channel 132622 1910MHz 12.87
Bandwidth	Mode QPSK	Size 1 1	Offset 0 25	13.0±1 13.0±1	Channel 132022 1855MHz 12.91 13.15	Channel 132322 1882.5MHz 13.15	Channel 132622 1910MHz 12.87
Bandwidth		Size 1 1 1	Offset 0 25 49	13.0±1 13.0±1 13.0±1	Channel 132022 1855MHz 12.91 13.15 12.84	Channel 132322 1882.5MHz 13.15 13.22 13.37	Channel 132622 1910MHz 12.87 13.12 13.02
Bandwidth		Size 1 1 1 25	Offset 0 25 49 0	13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1	Channel 132022 1855MHz 12.91 13.15 12.84 12.60	Channel 132322 1882.5MHz 13.15 13.22 13.37 12.88	Channel 132622 1910MHz 12.87 13.12 13.02 12.63
		Size 1 1 1 25 25	Offset 0 25 49 0 13	13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1	Channel 132022 1855MHz 12.91 13.15 12.84 12.60 12.70	Channel 132322 1882.5MHz 13.15 13.22 13.37 12.88 12.95	Channel 132622 1910MHz 12.87 13.12 13.02 12.63 12.66
Bandwidth 10MHz		Size 1 1 1 25 25 25	Offset 0 25 49 0 13 25	13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1	Channel 132022 1855MHz 12.91 13.15 12.84 12.60 12.70	Channel 132322 1882.5MHz 13.15 13.22 13.37 12.88 12.95 13.20	Channel 132622 1910MHz 12.87 13.12 13.02 12.63 12.66
		Size 1 1 1 25 25 25 50	Offset 0 25 49 0 13 25 0	13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1	Channel 132022 1855MHz 12.91 13.15 12.84 12.60 12.70 12.85 12.60	Channel 132322 1882.5MHz 13.15 13.22 13.37 12.88 12.95 13.20	Channel 132622 1910MHz 12.87 13.12 13.02 12.63 12.66 12.60
		Size 1 1 1 25 25 25 50 1	Offset 0 25 49 0 13 25 0 0	13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1	Channel 132022 1855MHz 12.91 13.15 12.84 12.60 12.70 12.85 12.60	Channel 132322 1882.5MHz 13.15 13.22 13.37 12.88 12.95 13.20 13.10	Channel 132622 1910MHz 12.87 13.12 13.02 12.63 12.66 12.60 12.59
		Size 1 1 1 25 25 25 50 1	Offset 0 25 49 0 13 25 0 0 25	13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1 13.0 ± 1	Channel 132022 1855MHz 12.91 13.15 12.84 12.60 12.70 12.85 12.60 12.71 12.78	Channel 132322 1882.5MHz 13.15 13.22 13.37 12.88 12.95 13.20 13.10 13.08 13.85	Channel 132622 1910MHz 12.87 13.12 13.02 12.63 12.66 12.60 12.59 13.03 13.45
	QPSK	Size 1 1 1 25 25 25 50 1 1	Offset 0 25 49 0 13 25 0 0 25 49	13.0 ± 1	Channel 132022 1855MHz 12.91 13.15 12.84 12.60 12.70 12.85 12.60 12.01 12.78 12.87	Channel 132322 1882.5MHz 13.15 13.22 13.37 12.88 12.95 13.20 13.10 13.08 13.85 13.77	Channel 132622 1910MHz 12.87 13.12 13.02 12.63 12.66 12.60 12.59 13.03 13.45 12.78
	QPSK	Size 1 1 1 25 25 25 50 1 1 1 25	Offset 0 25 49 0 13 25 0 0 25 49 0	13.0 ± 1	Channel 132022 1855MHz 12.91 13.15 12.84 12.60 12.70 12.85 12.60 12.01 12.78 12.87 12.63	Channel 132322 1882.5MHz 13.15 13.22 13.37 12.88 12.95 13.20 13.10 13.08 13.85 13.77 12.93	Channel 132622 1910MHz 12.87 13.12 13.02 12.63 12.66 12.60 12.59 13.03 13.45 12.78 12.70

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Tel: 0086-23-88069965

				Turn up	eport No.:B19	l output power	
		RB	RB	rum up	Channel		Channel
Bandwidth	Mode					Channel	
Bandwidth		Size	Offset		132047	132322	132597
		_			1857.5MHz	1882.5MHz	1907.5MHz
		1	0	13.0±1	13.07	13.40	13.02
		1	38	13.0±1	13.03	13.46	12.93
		1	74	13.0±1	12.94	13.38	12.62
	QPSK	36	0	13.0±1	12.73	12.71	12.72
		36	18	13.0±1	12.72	13.01	12.75
		36	39	13.0±1	12.88	13.36	12.67
15MHz		75	0	13.0±1	12.85	13.20	12.62
1 SIVII 12		1	0	13.0±1	12.77	13.36	13.28
		1	38	13.0 ± 1	12.83	13.92	13.07
		1	74	13.0 ± 1	12.66	13.75	12.93
	16QAM	36	0	13.0±1	12.87	12.88	12.67
		36	18	13.0±1	12.83	13.31	12.51
		36	39	13.0±1	12.75	13.26	12.62
		75	0	13.0±1	12.60	13.11	12.66
				Turn up	Actua	l output power	(dBm)
Dondwidth	Mode	RB	RB		Channel	Channel	Channel
Bandwidth	iviode	Size	Offset		132072	132322	132572
					1860MHz	1882.5MHz	1905MHz
		1	0	13.5±1	12.88	13.20	12.95
		1	50	13.5±1	13.05	13.45	12.88
		1	99	13.5±1	12.89	13.58	12.75
	QPSK	50	0	13.0±1	12.56	12.76	12.69
		50	25	13.0±1	12.53	12.95	12.67
		50	50	13.0±1	12.48	13.13	12.53
001411		100	0	13.0±1	12.45	13.06	12.46
20MHz		1	0	13.0±1	13.05	12.25	13.13
		1	50	13.0±1	13.21	13.49	12.79
	1		99	13.0±1	12.83	13.23	12.73
		1	00				
	16QAM	50	0	13.0±1	12.49	12.59	12.51
	16QAM	50	0	13.0±1 13.0±1	12.49 12.53	12.59 12.95	12.51 12.45
	16QAM						

13.4. BT Measurement result

Mode	Tune-up	Conducted
	(dBm)	Power(dBm)
DH1	8.0	7.05
2DH1	6.0	5.35
3DH1	6.0	5.35

BLE

	Tungun	Cor	nducted Power(d	dBm)
Mode	Tune-up	Channel	Channel	Channel
	(dBm)	0(2402MHz)	19(2440MHz)	39(2480MHz)
BLE	3.0	-2.64	-2.92	-3.97

14. Simultaneous TX SAR Considerations

14.1.Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5}$$
. (Max Power of chananel,mW)
Min.Separation Distance,mm

Mode	Engage av (MHz)	Max.Tune-up Power	Separation	Estimated SAR
Mode	Frequency(MHz)	(dBm)	Distance(mm)	1g(W/kg)
Bluetooth-Body	2480	8.0	10	0.208

14.2. Simultaneous multi-band transmission

For the DUT, LTE, WCDMA,CDMA 2000 and GSM modules sharing a single antenna, so these four modules can't transmit signal simultaneously.

So we can get following combination that can transmit signal simultaneously.

GSM and BT;

WCDMA and BT;

CDMA 2000 and BT;

LTE and BT;

LTE, WCDMA,CDMA 2000

According to full power the value of SAR, The maximum LTE/WCDMA/CDMA 2000 value is 1.215 W/Kg, The maximum BT value is 0.208 W/Kg, 1.215W/Kg+0.208W/Kg=1.423W/Kg are less than 1.6W/Kg. So no simultaneous multi-band transmission test is required.

According to sensor power the value of SAR, The maximum LTE/WCDMA/CDMA 2000 value is 1.209 W/Kg, The maximum BT value is 0.208 W/Kg, 1.209W/Kg+0.208W/Kg=1.417W/Kg are less than 1.6W/Kg. So no simultaneous multi-band transmission test is required.

15. SAR Test Result

15.1. Full Power SAR results

Table 15.1: SAR Values(CDMA 2000-Body)

Frequ	ency					Measured	Maximum		Measured	Reported	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	600	CDMA	BC1	Phantom	17	23.49	24	1.125	0.535	0.602	-0.12
1880	600	CDMA	BC1	Ground	34	23.49	24	1.125	0.164	0.184	0.07
1880	600	CDMA	BC1	Left	5	23.49	24	1.125	1.02	1.147	0.00
1880	600	CDMA	BC1	Right	9	23.49	24	1.125	0.174	0.196	0.19
1880	600	CDMA	BC1	Bottom	24	23.49	24	1.125	0.284	0.319	-0.18
1908.8	1175	CDMA	BC1	Left	5	23.42	24	1.143	0.870	0.994	0.01
1851.3	25	CDMA	BC1	Left	5	23.48	24	1.127	0.798	0.900	0.00
						Retest					
1880	600	CDMA	BC1	Left	5	23.49	24	1.125	1.08	1.215	-0.05

Report No.:B19W50551-SAR_REV3

Table 15.2: SAR Values(WCDMA Band 2-Body)

Freque	ency					Measured	Maximum		Measured	Reported	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	9400	Band 2	RMC	Phantom	17	23.87	24.5	1.156	0.334	0.386	-0.17
1880	9400	Band 2	RMC	Ground	34	23.87	24.5	1.156	0.130	0.150	0.00
1880	9400	Band 2	RMC	Left	5	23.87	24.5	1.156	0.934	1.080	-0.16
1880	9400	Band 2	RMC	Right	9	23.87	24.5	1.156	0.175	0.202	0.01
1880	9400	Band 2	RMC	Bottom	24	23.87	24.5	1.156	0.274	0.317	0.07
1907.6	9538	Band 2	RMC	Left	5	23.75	24.5	1.188	1.000	1.189	-0.03
1852.4	9262	Band 2	RMC	Left	5	23.97	24.5	1.129	0.962	1.087	0.16
					R	etest					
1907.6	9538	Band 2	RMC	Left	5	23.75	24.5	1.188	0.998	1.186	0.13

Table 15.3: SAR Values (WCDMA Band 4-Body)

_					D1111 (W1)	ics (VCD					
Freque MHz	ency Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1732.6	1413	Band 4	RMC	Phantom	17	23.72	24	1.066	0.288	0.307	0.05
1732.6	1413	Band 4	RMC	Ground	34	23.72	24	1.066	0.0641	0.068	-0.1
1732.6	1413	Band 4	RMC	Left	5	23.72	24	1.066	0.375	0.400	0.09
1732.6	1413	Band 4	RMC	Right	9	23.72	24	1.066	0.116	0.124	0.02
1732.6	1413	Band 4	RMC	Bottom	24	23.72	24	1.066	0.277	0.295	0.15
1752.6	1513	Band 4	RMC	Left	5	23.55	24	1.109	0.489	0.542	0.01
1712.4	1312	Band 4	RMC	Left	5	23.57	24	1.104	0.344	0.380	0.16

Table 15.4: SAR Values (LTE Band 7-Body)

Frequ	uency					Measured	Maximum		Manager	Demonted	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Drift (dB)
2535	21100	Band 7	1RB 50offset	Phantom	17	23.07	23.5	1.104	0.320	0.353	-0.08
2535	21100	Band 7	1RB 50offset	Ground	34	23.07	23.5	1.104	0.112	0.124	0.04
2535	21100	Band 7	1RB 50offset	Left	5	23.07	23.5	1.104	0.671	0.741	-0.09
2535	21100	Band 7	1RB 50offset	Right	9	23.07	23.5	1.104	0.383	0.423	-0.05
2535	21100	Band 7	1RB 50offset	Bottom	24	23.07	23.5	1.104	0.205	0.226	0.14
2560	21350	Band 7	1RB 50offset	Left	5	22.92	23.5	1.142	0.635	0.726	-0.07
2510	20850	Band 7	1RB 50offset	Left	5	23.05	23.5	1.109	0.604	0.670	-0.12
2510	20850	Band 7	50RB 25offset	Phantom	17	22.04	22.5	1.111	0.247	0.275	0.02
2510	20850	Band 7	50RB 25offset	Ground	34	22.04	22.5	1.111	0.0871	0.097	-0.05
2510	20850	Band 7	50RB 25offset	Left	5	22.04	22.5	1.111	0.610	0.678	-0.14
2510	20850	Band 7	50RB 25offset	Right	9	22.04	22.5	1.111	0.249	0.277	-0.05
2510	20850	Band 7	50RB 25offset	Bottom	24	22.04	22.5	1.111	0.148	0.165	0.06
2535	21100	Band 7	50RB 25offset	Left	5	21.95	22.5	1.135	0.663	0.753	0.09
2560	21350	Band 7	50RB 25offset	Left	5	21.93	22.5	1.140	0.669	0.763	0.14

Table 15.5: SAR Values (LTE Band 25-Body)

Frequ	iency					Measured	Maximum		Measured	Reported	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1905	26590	Band 25	1RB 50offset	Phantom	17	22.43	23	1.14	0.322	0.367	0.12
1905	26590	Band 25	1RB 50offset	Ground	34	22.43	23	1.14	0.100	0.114	-0.17
1905	26590	Band 25	1RB 50offset	Left	5	22.43	23	1.14	0.790	0.901	0.17
1905	26590	Band 25	1RB 50offset	Right	9	22.43	23	1.14	0.137	0.156	-0.1
1905	26590	Band 25	1RB 50offset	Bottom	24	22.43	23	1.14	0.167	0.190	0.02
1882.5	26365	Band 25	1RB 50offset	Left	5	22.35	23	1.161	0.747	0.868	0.07
1860	26140	Band 25	1RB 50offset	Left	5	22.32	23	1.169	0.730	0.854	0.06
1882.5	26365	Band 25	50RB 25offset	Phantom	17	21.39	23	1.448	0.328	0.475	0.01
1882.5	26365	Band 25	50RB 25offset	Ground	34	21.39	23	1.448	0.0933	0.135	0.05
1882.5	26365	Band 25	50RB 25offset	Left	5	21.39	23	1.448	0.732	1.061	0.16
1882.5	26365	Band 25	50RB 25offset	Right	9	21.39	23	1.448	0.125	0.181	0.04
1882.5	26365	Band 25	50RB 25offset	Bottom	24	21.39	23	1.448	0.168	0.243	0.02
1905	26590	Band 25	50RB 25offset	Left	5	21.37	23	1.455	0.759	1.105	0.17
1860	26140	Band 25	50RB 25offset	Left	5	21.14	23	1.534	0.702	1.077	0.09

Report No.:B19W50551-SAR_REV3

Table 15.6: SAR Values (LTE Band 41-Body)

Eroni	ionov.			13.0			Maximum				
Frequ MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Measured average power (dBm)	allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
2593	40620	Band 41	1RB 50offset	Phantom	17	22.81	23.5	1.172	0.0991	0.116	0.15
2593	40620	Band 41	1RB 50offset	Ground	34	22.81	23.5	1.172	0.0497	0.058	0.01
2593	40620	Band 41	1RB 50offset	Left	5	22.81	23.5	1.172	0.309	0.362	0.03
2593	40620	Band 41	1RB 50offset	Right	9	22.81	23.5	1.172	0.112	0.131	-0.18
2593	40620	Band 41	1RB 50offset	Bottom	24	22.81	23.5	1.172	0.0941	0.110	0.12
2506	39750	Band 41	1RB 50offset	Left	5	22.34	23.5	1.306	0.232	0.303	-0.17
2680	41490	Band 41	1RB 50offset	Left	5	22.18	23.5	1.355	0.485	0.657	-0.13
2549.5	40185	Band 41	1RB 50offset	Left	5	22.57	23.5	1.239	0.333	0.413	-0.03
2636.5	41055	Band 41	1RB 50offset	Left	5	22.53	23.5	1.250	0.377	0.471	-0.19
2593	40620	Band 41	50RB 50offset	Phantom	17	21.96	22.5	1.132	0.0764	0.087	0.08
2593	40620	Band 41	50RB 50offset	Ground	34	21.96	22.5	1.132	0.0379	0.043	-0.06
2593	40620	Band 41	50RB 50offset	Left	5	21.96	22.5	1.132	0.255	0.289	-0.06
2593	40620	Band 41	50RB 50offset	Right	9	21.96	22.5	1.132	0.0931	0.105	0.02
2593	40620	Band 41	50RB 50offset	Bottom	24	21.96	22.5	1.132	0.0742	0.084	0.06
2506	39750	Band 41	50RB 50offset	Left	5	21.49	22.5	1.261	0.253	0.319	0.07
2680	41490	Band 41	50RB 50offset	Left	5	21.39	22.5	1.291	0.366	0.473	0.10
2549.5	40185	Band 41	50RB 50offset	Left	5	21.36	22.5	1.300	0.266	0.346	-0.02
2636.5	41055	Band 41	50RB 50offset	Left	5	21.93	22.5	1.140	0.306	0.349	-0.02

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Table 15.7: SAR Values (LTE Band 66-Body)

Eroc	quency					Measured	Maximum				
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1745	132322	Band 66	1RB 50offset	Phantom	17	22.85	23	1.035	0.297	0.307	0.01
1745	132322	Band 66	1RB 50offset	Ground	34	22.85	23	1.035	0.0869	0.090	0.17
1745	132322	Band 66	1RB 50offset	Left	5	22.85	23	1.035	0.408	0.422	0.01
1745	132322	Band 66	1RB 50offset	Right	9	22.85	23	1.035	0.131	0.136	-0.04
1745	132322	Band 66	1RB 50offset	Bottom	24	22.85	23	1.035	0.175	0.181	0.07
1770	132572	Band 66	1RB 50offset	Left	5	22.01	23	1.256	0.691	0.868	-0.05
1720	132072	Band 66	1RB 50offset	Left	5	22.84	23	1.038	0.386	0.400	-0.01
1745	132322	Band 66	50RB 25offset	Phantom	17	21.85	23	1.303	0.294	0.383	-0.03
1745	132322	Band 66	50RB 25offset	Ground	34	21.85	23	1.303	0.0793	0.103	0.14
1745	132322	Band 66	50RB 25offset	Left	5	21.85	23	1.303	0.444	0.579	0.03
1745	132322	Band 66	50RB 25offset	Right	9	21.85	23	1.303	0.0993	0.129	0.01
1745	132322	Band 66	50RB 25offset	Bottom	24	21.85	23	1.303	0.169	0.220	0.11
1770	132572	Band 66	50RB 25offset	Left	5	20.88	23	1.629	0.528	0.860	-0.00
1720	132072	Band 66	50RB 25offset	Left	5	21.70	23	1.349	0.306	0.413	0.02
1745	132322	Band 66	12RB 6offset	Left	5	22.82	23	1.042	0.376	0.392	-0.10

15.2. Sensor Power SAR results

Table 15.8: SAR Values (CDMA 2000-Body)

Frequ	uency		Servic			Measure	Maximu		Measure		
MHz	Ch.	Mode /Band	e /Head set	Test Position	Spacin g (mm)	d average power (dBm)	m allowed Power (dBm)	Scalin g factor	d SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Powe r Drift (dB)
1880	600	CDMA	BC1	Phantom	0	8.53	9	1.114	0.562	0.626	0.12
1880	600	CDMA	BC1	Ground	0	8.53	9	1.114	0.706	0.787	0.16
1880	600	CDMA	BC1	Left	0	8.53	9	1.114	0.439	0.489	-0.03
1880	600	CDMA	BC1	Right	0	8.53	9	1.114	0.108	0.120	-0.00
1880	600	CDMA	BC1	Bottom	0	8.53	9	1.114	0.508	0.566	-0.11
1908.8	1175	CDMA	BC1	Ground	0	8.42	9	1.143	0.725	0.829	0.12
1851.3	25	CDMA	BC1	Ground	0	8.39	9	1.151	0.656	0.755	0.07

Table 15.9: SAR Values (WCDMA Band2-Body)

Freque	ency					Measured	Maximum		Measured	Reported	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	9400	Band 2	RMC	Phantom	0	13.09	13.5	1.099	0.305	0.335	0.19
1880	9400	Band 2	RMC	Ground	0	13.09	13.5	1.099	0.430	0.473	-0.03
1880	9400	Band 2	RMC	Left	0	13.09	13.5	1.099	0.066	0.073	0.13
1880	9400	Band 2	RMC	Right	0	13.09	13.5	1.099	0.249	0.274	0.10
1880	9400	Band 2	RMC	Bottom	0	13.09	13.5	1.099	0.425	0.467	0.17
1907.6	9538	Band 2	RMC	Ground	0	12.85	13.5	1.161	0.446	0.518	0.18
1852.4	9262	Band 2	RMC	Ground	0	13.2	13.5	1.071	0.409	0.438	-0.00

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Report No.:B19W50551-SAR_REV3

Table 15.10: SAR Values (WCDMA Band4-Body)

Frequency						Measured	Maximum		Measured	Popertod	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Drift (dB)
1732.6	1413	Band 4	RMC	Phantom	0	13.16	13.5	1.081	0.238	0.257	0.19
1732.6	1413	Band 4	RMC	Ground	0	13.16	13.5	1.081	0.402	0.435	0.10
1732.6	1413	Band 4	RMC	Left	0	13.16	13.5	1.081	0.036	0.039	0.10
1732.6	1413	Band 4	RMC	Right	0	13.16	13.5	1.081	0.212	0.229	0.11
1732.6	1413	Band 4	RMC	Bottom	0	13.16	13.5	1.081	0.401	0.434	0.13
1752.6	1513	Band 4	RMC	Ground	0	13.11	13.5	1.205	0.410	0.449	-0.00
1712.4	1312	Band 4	RMC	Ground	0	12.69	13.5	1.093	0.305	0.368	0.10

Report No.:B19W50551-SAR_REV3

Table 15.11: SAR Values (LTE Band7-Body)

Freq	uency					Measured	Maximum		Measured	Banartad	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Drift (dB)
2535	21100	Band 7	1RB 0offset	Phantom	0	7.51	8.0	1.119	0.366	0.410	-0.07
2535	21100	Band 7	1RB 0offset	Ground	0	7.51	8.0	1.119	1.080	1.209	-0.12
2535	21100	Band 7	1RB 0offset	Left	0	7.51	8.0	1.119	0.186	0.208	0.11
2535	21100	Band 7	1RB 0offset	Right	0	7.51	8.0	1.119	0.181	0.203	0.11
2535	21100	Band 7	1RB 0offset	Bottom	0	7.51	8.0	1.119	0.379	0.424	0.14
2560	21350	Band 7	1RB 0offset	Ground	0	6.92	8.0	1.282	0.943	1.209	0.13
2510	20850	Band 7	1RB 0offset	Ground	0	6.83	8.0	1.309	0.791	1.036	0.15
2535	21100	Band 7	50RB 0offset	Phantom	0	6.89	7.0	1.026	0.279	0.286	0.05
2535	21100	Band 7	50RB 0offset	Ground	0	6.89	7.0	1.026	0.748	0.767	-0.14
2535	21100	Band 7	50RB 0offset	Left	0	6.89	7.0	1.026	0.147	0.151	0.12
2535	21100	Band 7	50RB 0offset	Right	0	6.89	7.0	1.026	0.139	0.143	0.19
2535	21100	Band 7	50RB 0offset	Bottom	0	6.89	7.0	1.026	0.308	0.316	0.17
2560	21350	Band 7	50RB 0offset	Ground	0	5.27	7.0	1.489	0.708	1.054	-0.17
2510	20850	Band 7	50RB 0offset	Ground	0	6.83	7.0	1.040	0.828	0.861	-0.05

Report No.:B19W50551-SAR_REV3

Table 15.12: SAR Values (LTE Band25-Body)

Frequency			-		1	Measured	Maximum				
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1905	26590	Band 25	1RB 99offset	Phantom	0	13.15	14.5	1.365	0.323	0.441	0.19
1905	26590	Band 25	1RB 99offset	Ground	0	13.15	14.5	1.365	0.369	0.504	0.01
1905	26590	Band 25	1RB 99offset	Left	0	13.15	14.5	1.365	0.237	0.323	-0.08
1905	26590	Band 25	1RB 99offset	Right	0	13.15	14.5	1.365	0.054	0.074	0.12
1905	26590	Band 25	1RB 99offset	Bottom	0	13.15	14.5	1.365	0.253	0.345	0.02
1882.5	26365	Band 25	1RB 99offset	Ground	0	12.43	14.5	1.611	0.386	0.622	0.14
1860	26140	Band 25	1RB 99offset	Ground	0	12.68	14.5	1.521	0.361	0.549	-0.15
1907.5	26615	Band 25	1RB 0offset	Ground	0	14.25	14.5	1.059	0.420	0.445	0.13
1905	26590	Band 25	50RB 25offset	Phantom	0	12.83	14	1.309	0.363	0.475	0.15
1905	26590	Band 25	50RB 25offset	Ground	0	12.83	14	1.309	0.395	0.517	0.13
1905	26590	Band 25	50RB 25offset	Left	0	12.83	14	1.309	0.264	0.346	0.13
1905	26590	Band 25	50RB 25offset	Right	0	12.83	14	1.309	0.055	0.072	-0.10
1905	26590	Band 25	50RB 25offset	Bottom	0	12.83	14	1.309	0.235	0.308	0.10
1882.5	26365	Band 25	50RB 25offset	Ground	0	12.42	14	1.439	0.322	0.463	0.15
1860	26140	Band 25	50RB 25offset	Ground	0	12.79	14	1.321	0.319	0.421	0.17
1850.7	26047	Band 25	3RB 2offset	Ground	0	13.66	14	1.081	0.339	0.367	-0.06

Report No.:B19W50551-SAR_REV3

Table 15.13: SAR Values (LTE Band41-Body)

Frequency						Measured	Maximum				
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
2549.5	40185	Band 41	1RB 99offset	Toward Phantom	0	7.49	8	1.124	0.142	0.160	0.11
2549.5	40185	Band 41	1RB 99offset	Toward Ground	0	7.49	8	1.124	0.406	0.457	0.10
2549.5	40185	Band 41	1RB 99offset	Toward Left	0	7.49	8	1.124	0.084	0.094	0.19
2549.5	40185	Band 41	1RB 99offset	Toward Right	0	7.49	8	1.124	0.064	0.072	0.15
2549.5	40185	Band 41	1RB 99offset	Bottom	0	7.49	8	1.124	0.180	0.202	0.14
2506	39750	Band 41	1RB 99offset	Toward Ground	0	6.17	8	1.524	0.360	0.549	0.06
2593	40620	Band 41	1RB 99offset	Toward Ground	0	5.10	5.2	1.023	0.388	0.397	0.18
2636.5	41055	Band 41	1RB 99offset	Toward Ground	0	3.96	5.2	1.330	0.434	0.577	-0.18
2680	41490	Band 41	1RB 99offset	Toward Ground	0	3.70	5.2	1.412	0.610	0.862	0.13
2506	39750	Band 41	50RB 0offset	Toward Phantom	0	7.22	8	1.197	0.128	0.153	0.13
2506	39750	Band 41	50RB 0offset	Toward Ground	0	7.22	8	1.197	0.274	0.328	0.10
2506	39750	Band 41	50RB 0offset	Toward Left	0	7.22	8	1.197	0.066	0.079	0.10
2506	39750	Band 41	50RB 0offset	Toward Right	0	7.22	8	1.197	0.071	0.085	0.11
2506	39750	Band 41	50RB 0offset	Bottom	0	7.22	8	1.197	0.121	0.145	0.17
2549.5	40185	Band 41	50RB 0offset	Toward Ground	0	7.19	8	1.205	0.405	0.488	0.13
2593	40620	Band 41	50RB 0offset	Toward Ground	0	5.45	6	1.135	0.408	0.463	0.01
2636.5	41055	Band 41	50RB 0offset	Toward Ground	0	4.52	6	1.406	0.455	0.640	0.16
2680	41490	Band 41	50RB 0offset	Toward Ground	0	4.28	6	1.486	0.593	0.881	-0.13

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Table 15.14: SAR Values (LTE Band66-Body)

Fred	quency					Measured	Maximum				
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	average power (dBm)	allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1745	132322	Band 66	1RB 99offset	Toward Phantom	0	13.58	14.5	1.236	0.276	0.314	0.18
1745	132322	Band 66	1RB 99offset	Toward Ground	0	13.58	14.5	1.236	0.371	0.459	-0.10
1745	132322	Band 66	1RB 99offset	Toward Left	0	13.58	14.5	1.236	0.231	0.286	-0.14
1745	132322	Band 66	1RB 99offset	Toward Right	0	13.58	14.5	1.236	0.040	0.049	0.15
1745	132322	Band 66	1RB 99offset	Bottom	0	13.58	14.5	1.236	0.445	0.55	-0.15
1720	132072	Band 66	1RB 99offset	Bottom	0	12.89	14.5	1.449	0.349	0.506	0.10
1770	132572	Band 66	1RB 99offset	Bottom	0	12.75	14.5	1.496	0.381	0.570	0.10
1745	132322	Band 66	50RB 50offset	Toward Phantom	0	13.13	14	1.222	0.246	0.301	0.13
1745	132322	Band 66	50RB 50offset	Toward Ground	0	13.13	14	1.222	0.391	0.478	0.12
1745	132322	Band 66	50RB 50offset	Toward Left	0	13.13	14	1.222	0.225	0.275	-0.03
1745	132322	Band 66	50RB 50offset	Toward Right	0	13.13	14	1.222	0.036	0.044	0.17
1745	132322	Band 66	50RB 50offset	Bottom	0	13.13	14	1.222	0.439	0.536	-0.13
1720	132072	Band 66	50RB 50offset	Bottom	0	12.48	14	1.419	0.319	0.453	0.19
1770	132572	Band 66	50RB 50offset	Bottom	0	12.53	14	1.403	0.440	0.617	0.18

15.3. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.15 SAR Measurement Variability for Body (1g)

Frequency		Mode	Test	Spacing	Original SAR	First Repeated	The
MHz	Ch.	/band	Position (mm)	(W/kg)	SAR (W/kg)	Ratio	
1880	600	CDMA BC1	Toward Left	5	1.02	1.08	1.06
1907.6	9538	Band 2	Toward Left	5	1.00	0.998	1.002

16. SAR Reduction Function Validation Procedure

16.1. Power Reduction for Proximity Sensor

16.1.1. Reference Document

A proximity sensor for power reduction is implemented in this device to address RF exposure compliance when the cellular antenna is positioned close to the user's body. The sensor's mechanical structure is designed to fit within the enclosure design used in this device and also extended around the edge and top of the antenna element in order to optimize sensitivity in these orientations. This design combines the antenna printed directly on a plastic part and proximity sensor FPC (Flexible Printed Circuit) bonded together into one piece. According to KDB 616217 D04 SAR for laptop and tablets v01r02

16.1.2. Procedures for Determining Proximity Sensor Triggering Distances

The following procedures should be applied to determine proximity sensor triggering distances for the back surface and individual edges of a tablet. Conducted power is monitored qualitatively to identify the general triggering characteristics and recorded quantitatively, versus spacing, as required by the procedures. Unless there is built-in test software that reports the triggering conditions and enables the power levels to be confirmed separately, monitoring of conducted power during the triggering tests typically requires internal access to the antenna ports inside the tablet, which may interfere with the triggering tests.

- (1) The relevant transmitter should be set to operate at its normal maximum output power.
- (2) The entire back surface or edge of the tablet is positioned below a flat phantom filled with the required tissue-equivalent medium, and positioned at least 20 mm further than the distance that triggers power reduction.
- (3) It should be ensured that the cables required for power measurements are not interfering with the proximity sensor. Cable losses should be properly compensated to report the measured power results.
- (4) The back surface or edge is moved toward the phantom in 3 mm steps until the sensor triggers.
- (5) The back surface or edge is then moved back (further away) from the phantom by at least 5 mm or until maximum output power is returned to the normal maximum level.
- (6) The back surface or edge is again moved toward the phantom, but in 1 mm steps, until it is at least 5 mm past the triggering point or touching the phantom. If 1 mm resolution is not suitable for the sensor triggering sensitivity, a KDB inquiry should be submitted to determine alternative test configurations.
- (7) If the tablet is not touching the phantom, it is moved in 3 mm steps until it touches the phantom to confirm that the sensor remains triggered and the maximum power stays reduced.
- (8) The process is then reversed by moving the tablet away from the phantom according to steps 4) to 7), to determine triggering release, until it is at least 10 mm beyond the point that triggers the return of normal maximum power.

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Chongqing Academy of Information and Communications Technology

Report No.:B19W50551-SAR_REV3

- (9) The measured output power within ± 5 mm of the triggering points, or until the tablet is touching the phantom, for movements to and from the phantom should be tabulated in the SAR report.
- (10) If the sensor design and implementation allow additional variations for triggering distance tolerances, multiple samples should be tested to determine the most conservative distance required for SAR evaluation.
- (11) To ensure all production units are compliant, it is generally necessary to reduce the triggering distance determined from the triggering tests by 1 mm, or more if it is necessary, and use the smallest distance for movements to and from the phantom, minus 1 mm, as the sensor triggering distance for determining the SAR measurement distance.

16.1.3. Procedures for Determining Antenna and Proximity Sensor Coverage

The sensing regions are usually limited to areas near the sensor element. If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. The following are used to determine if additional SAR measurements may be necessary due to sensor and antenna offset. 25 These procedures do not apply and are not required for configurations where the antenna and sensor are collocated and the peak SAR location is overlapping with the sensor.

- (1) The back surface or edge of the tablet is positioned at a test separation distance less than or equal to the distance required for back surface or edge triggering, with both the antenna and sensor pad located at least 20 mm laterally outside the edge (boundary) of the phantom, along the direction of maximum antenna and sensor offset. For the back surface, if the direction of maximum offset is not aligned with the tablet coordinates (physical edges) the tablet test position would not be aligned with the phantom coordinates (orientations). Each applicable tablet edge should be positioned perpendicularly to the phantom to determine sensor coverage. For antennas and/or sensors located near the corner of a tablet, both adjacent edges must be considered.
- (2) The similar sequence of steps applied to determine sensor triggering distance in section 6.2 are used to verify back surface and edge sensor coverage by moving the tablet (sensor and antenna) horizontally toward the phantom while maintaining the same vertical separation between the back surface or edge and the phantom.
- (3) After the exact location where triggering of power reduction is determined, with respect to the sensor and antenna, the tablet movement should be continued, in 3 mm increments, until both the sensor and antenna(s) are fully under the phantom and at least 20 mm inside the phantom edge.
- (4) The process is then repeated from the opposite direction, starting at the other end of the maximum antenna and sensor offset, by rotating the tablet 180° along the vertical axis.
- (5) The triggering points should be documented graphically, with the antenna and sensor clearly identified, along with all relevant dimensions.
- (6) If the subsequently measured peak SAR location for the antenna is not between the triggering

 Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336

 Tel: 0086-23-88069965

 FAX:0086-23-88608777

Chongqing Academy of Information and Communications Technology

Report No.:B19W50551-SAR_REV3

points, established by the sensor coverage tests from opposite ends of the antenna and sensor, additional SAR tests may be required for conditions where only part of the back surface or edge of a tablet corresponding to the antenna is in proximity to the user and the sensor may not be triggering as desired. A KDB inquiry must be submitted by the test lab to determine if additional tests are required and the proper test configurations to use for testing. This may include situations where the sensor coverage region is too small for the antenna, the sensor is located too far away from the antenna, the sensor location is insufficient to cover multiple antennas or the antenna is at the corner of a tablet etc.

16.1.4. Proximity Sensor Status Table of Trigger Distance

As per the KDB 616217 D04 SAR for laptop and tablets v01r02, section 6.2, the following procedure is used to determine the triggering distances.

Proximity Sensor Status Table when DUT is moving towards the phantom

Distance to the	Proximity Sensor	Proximity	Proximity	Proximity	Proximity
DUT (mm)	Status -Phantom	Sensor Status	Sensor Status	Sensor Status	Sensor Status
40	0FF	0FF	0FF	0FF	0FF
39	0FF	0FF	0FF	0FF	0FF
38	0FF	0FF	0FF	0FF	0FF
37	0FF	0FF	0FF	0FF	0FF
36	0FF	0FF	0FF	0FF	0FF
35	0FF	ON	0FF	0FF	0FF
34	0FF	ON	0FF	0FF	0FF
33	0FF	ON	0FF	0FF	0FF
32	0FF	ON	0FF	0FF	0FF
31	0FF	ON	0FF	0FF	0FF
30	0FF	ON	0FF	0FF	0FF
29	0FF	ON	0FF	0FF	0FF
28	0FF	ON	0FF	0FF	0FF
27	0FF	ON	0FF	0FF	0FF
26	0FF	ON	0FF	0FF	0FF
25	0FF	ON	0FF	0FF	ON
24	0FF	ON	OFF	OFF	ON
23	0FF	ON	OFF	OFF	ON
22	0FF	ON	OFF	OFF	ON
21	0FF	ON	OFF	OFF	ON
20	0FF	ON	OFF	OFF	ON
19	0FF	ON	OFF	0FF	ON
18	ON	ON	OFF	0FF	ON
17	ON	ON	OFF	OFF	ON
16	ON	ON	OFF	OFF	ON
15	ON	ON	OFF	OFF	ON
14	ON	ON	OFF	OFF	ON
13	ON	ON	0FF	0FF	ON
12	ON	ON	0FF	0FF	ON
11	ON	ON	0FF	0FF	ON
10	ON	ON	0FF	ON	ON
9	ON	ON	0FF	ON	ON
8	ON	ON	0FF	ON	ON
7	ON	ON	0FF	ON	ON
6	ON	ON	ON	ON	ON
5	ON	ON	ON	ON	ON
4	ON	ON	ON	ON	ON
3	ON	ON	ON	ON	ON
2	ON	ON	ON	ON	ON
1	ON	ON	ON	ON	ON
0	ON	ON	ON	ON	ON

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Tel: 0086-23-88069965

Proximity Sensor Status Table when DUT is moving away the phantom

Distance to the	Proximity Sensor	Proximity	Proximity	Proximity	Proximity
DUT (mm)	Status -Phantom	Sensor Status	Sensor Status	Sensor Status	Sensor Status
40	0FF	OFF	0FF	0FF	OFF
39	OFF	OFF	0FF	0FF	OFF
38	0FF	0FF	0FF	0FF	0FF
37	0FF	OFF	0FF	0FF	0FF
36	OFF	OFF	0FF	0FF	0FF
35	0FF	ON	0FF	0FF	0FF
34	0FF	ON	0FF	0FF	0FF
33	0FF	ON	0FF	0FF	0FF
32	0FF	ON	0FF	0FF	0FF
31	0FF	ON	0FF	0FF	0FF
30	0FF	ON	0FF	0FF	0FF
29	0FF	ON	0FF	0FF	0FF
28	0FF	ON	0FF	0FF	0FF
27	0FF	ON	0FF	0FF	0FF
26	0FF	ON	0FF	0FF	0FF
25	0FF	ON	0FF	0FF	ON
24	0FF	ON	0FF	0FF	ON
23	0FF	ON	0FF	0FF	ON
22	0FF	ON	0FF	0FF	ON
21	0FF	ON	0FF	0FF	ON
20	0FF	ON	0FF	0FF	ON
19	0FF	ON	0FF	0FF	ON
18	ON	ON	0FF	0FF	ON
17	ON	ON	0FF	0FF	ON
16	ON	ON	0FF	0FF	ON
15	ON	ON	0FF	0FF	ON
14	ON	ON	0FF	0FF	ON
13	ON	ON	0FF	0FF	ON
12	ON	ON	0FF	0FF	ON
11	ON	ON	0FF	0FF	ON
10	ON	ON	0FF	ON	ON
9	ON	ON	0FF	ON	ON
8	ON	ON	0FF	ON	ON
7	ON	ON	0FF	ON	ON
6	ON	ON	ON	ON	ON
5	ON	ON	ON	ON	ON
4	ON	ON	ON	ON	ON
3	ON	ON	ON	ON	ON
2	ON	ON	ON	ON	ON
1	ON	ON	ON	ON	ON
0	ON	ON	ON	ON	ON

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

16.1.5. Tilt Angle Influences to Proximity Sensor Triggering

As per the KDB 616217 D04 SAR for laptop and tablets v01r02, section 6.4, the following procedure is used to determine the tilt angle influences to proximity sensor triggering.

Distance to the DUT (mm)	Proximity Sensor Status 0° to +45°	Proximity Sensor Status 0° to -45°
15	ON	ON
14	QN	CN
13	ON	ON
12	CN	OΝ
11	CN	ON
10	ON	CN
9	ON	ON
8	ON	ON
7	ON	OΝ
6	OΝ	ON
5	OΝ	ON
4	ON .	QΝ
3	CN CN	ON
2	ON .	QΝ
1	ON	ON
0	ON	CN

16.1.6. Power Reduction per Air-interface

The following graphs show the power level and the distance from the DUT to the flat phantom for the Phantom, Ground, Left, Right, Bottom.

Phantom

Ground

Left

Right

Bottom

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 FAX:0086-23-88608777

Tel: 0086-23-88069965

According to KDB 616217 D04, Proximity Sensor Coverage Area of not request when the antenna and sensor are collocated and the peak SAR location is overlapping with the sensor.

16.Measurement Uncertainty

Measurement uncertainty evaluation for SAR test

	TVICUSUI C	ment une	ci tuiiit	Cvaraat	ion for SA	IX test		
Error Description	Unc.	Prob.	Div.	ci	c_{i}	Std.Unc.	Std.Unc.	V_{i}
	value,	Dist.		1g	10g	±%,1g	±%,10g	Veff
	<u>±</u> %							
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞

Measurement uncertainty evaluation for system validation

Error Description	Unc.	Prob.	Div.	Ci	Ci	Std.Unc.	Std.Unc.	Vi
	value,	Dist.		1g	10g	±%,1g	±%,10g	Veff
	±%							
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	√3	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	√3	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	√3	1	1	0.5	0.5	∞
Linearity	0.6	R	√3	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	√3	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	√3	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	√3	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	√3	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	√3	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Combined Std Uncontribute						+11 20/	+10.00%	387
Combined Std Uncertainty			1			±11.2%	±10.9%	36/
Expanded Std Uncertainty						±22.4%	±21.8%	

17.MAIN TEST INSTRUMENTS

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Probe	EX3DV4	3844	2019-05-25	2020-05-24
02	DAE	DAE4	797	2019-08-22	2020-08-21
03	Power Meter	N1914A	MY50001660	2019-03-02	2020-03-01
04	Radio Communication Analyzer	CMW500	164483	2019-03-02	2020-03-01
05	Signal Generator	N5181A	MY50143363	2019-03-02	2020-03-01
06	Power Sensor	E8481H	MY51020011	2019-03-02	2020-03-01
07	Power Amplifier	ZHL	QA1202003	2019-03-02	2020-03-01
08	Attenuator	8491A	MY39267989	2019-03-02	2020-03-01
09	Probe kit	85070E	3G-S-00139	NA	NA
10	Network Analyzer	E5071C	US39175666	С	2020-03-01
11	D1750V2	dipole	1063	2019-01-18	2020-01-17
12	D1900V2	dipole	5d153	2019-01-18	2020-01-17
13	D2600V2	dipole	1045	2019-01-17	2020-01-16

END OF REPORT BODY

ANNEX A. ANNEX A.GRAPH RESULTS

CDMA 2000 Body Toward Left Middle

Date/Time: 2019/10/17 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.425 \text{ S/m}$; $\epsilon r = 38.664$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CDMA 2000; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.07, 8.07, 8.07)

Middle Left CDMA BC1 5mm/Area Scan (4x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 1.07 W/kg

Middle Left CDMA BC1 5mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.52 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.572 W/kg

Maximum value of SAR (measured) = 1.20 W/kg

Fig.1 CDMA BC1 Left Mode Middle

WCDMA Band 2 Body Toward Left High

Date/Time: 2019/10/17 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.453$ S/m; $\epsilon r = 38.532$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band2; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.07, 8.07, 8.07)

High Left WCDMA Band II/Area Scan (4x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.07 W/kg

High Left WCDMA Band II/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 20.47 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.534 W/kg

Maximum value of SAR (measured) = 1.11 W/kg

Fig.2 WCDMA Band 2 Left Mode High

WCDMA Band 4 Body Toward Left High

Date/Time: 2019/10/15 Electronics: DAE4 Sn797 Medium: Head 1750MHz

Medium parameters used: f = 1753 MHz; $\sigma = 1.364$ S/m; $\epsilon r = 41.596$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band 4; Frequency: 1752.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.5, 8.5, 8.5)

High Left WCDMA Band 4 5mm/Area Scan (4x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.550 W/kg

High Left WCDMA Band 4 5mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.01 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.895 W/kg

SAR(1 g) = 0.489 W/kg; SAR(10 g) = 0.289 W/kgMaximum value of SAR (measured) = 0.539 W/kg

Fig.3 WCDMA Band 4 Left Mode High

LTE Band 7 Body Toward Left High

Date/Time: 2019/10/21 Electronics: DAE4 Sn797 Medium: Head 2600MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.95 \text{ S/m}$; $\epsilon r = 39.796$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(7.4, 7.4, 7.4)

High Left LTE Band 7 50RB@25 5mm/Area Scan (5x16x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.641 W/kg

High Left LTE Band 7 50RB@25 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.78 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.669 W/kg; SAR(10 g) = 0.325 W/kgMaximum value of SAR (measured) = 0.746 W/kg

Fig.4 LTE Band 7 Left Mode High

LTE Band 25 Body Toward Left High

Date/Time: 2019/10/17 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used: f = 1905 MHz; $\sigma = 1.45$ S/m; $\epsilon r = 38.544$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: LTE Band 25; Frequency: 1905 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.07, 8.07, 8.07)

High Left LTE Band 25 50RB@25 5mm 2/Area Scan (4x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.763 W/kg

High Left LTE Band 25 50RB@25 5mm 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.19 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.759 W/kg; SAR(10 g) = 0.406 W/kgMaximum value of SAR (measured) = 0.839 W/kg

Fig.5 LTE Band 25 Left Mode High

LTE Band 41 Body Toward Left High

Date/Time: 2019/10/21 Electronics: DAE4 Sn797 Medium: Head 2600MHz

Medium parameters used: f = 2680 MHz; $\sigma = 2.086 \text{ S/m}$; $\epsilon r = 39.42$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System:LTE Band 41; Frequency: 2680 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(7.4, 7.4, 7.4)

High Left LTE Band 41 1RB@50 5mm/Area Scan (5x16x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.500 W/kg

High Left LTE Band 41 1RB@50 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.63 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.234 W/kg

Maximum value of SAR (measured) = 0.545 W/kg

Fig.6 LTE Band 41 Left Mode High

LTE Band 66 Body Toward Left High

Date/Time: 2019/10/15 Electronics: DAE4 Sn797 Medium: Head 1750MHz

Medium parameters used: f = 1770 MHz; $\sigma = 1.38 \text{ S/m}$; $\epsilon r = 41.507$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: LTE Band 66; Frequency: 1770 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.5, 8.5, 8.5)

High Left LTE Band 66 1RB@50/Area Scan (4x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.749 W/kg

High Left LTE Band 66 1RB@50/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.26 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.691 W/kg; SAR(10 g) = 0.384 W/kg

Maximum value of SAR (measured) = 0.754 W/kg

Fig.7 LTE Band 66 Left Mode High

CDMA 2000 Body Toward Ground High

Date/Time: 2019/10/17 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used: f = 1909 MHz; $\sigma = 1.455$ S/m; $\epsilon r = 38.527$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CDMA 2000; Frequency: 1908.8 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.07, 8.07, 8.07)

High Toward Ground CDMA BC1/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.757 W/kg

High Toward Ground CDMA BC1/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.627 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.725 W/kg; SAR(10 g) = 0.408 W/kg

Maximum value of SAR (measured) = 0.760 W/kg

Fig.8 CDMA BC1 Ground Mode High

WCDMA Band 2 Body Toward Ground High

Date/Time: 2019/10/17 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.453$ S/m; $\epsilon r = 38.532$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band2; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.07, 8.07, 8.07)

High Toward Ground WCDMA Band II/Area Scan (8x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.462 W/kg

High Toward Ground WCDMA Band II/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.515 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.883 W/kg

SAR(1 g) = 0.446 W/kg; SAR(10 g) = 0.250 W/kgMaximum value of SAR (measured) = 0.472 W/kg

Fig.9 WCDMA Band 2 Ground Mode High

WCDMA Band 4 Body Toward Ground High

Date/Time: 2019/10/15 Electronics: DAE4 Sn797 Medium: Head 1750MHz

Medium parameters used: f = 1753 MHz; $\sigma = 1.364$ S/m; $\epsilon r = 41.596$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band4; Frequency: 1752.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.5, 8.5, 8.5)

High Toward Ground WCDMA Band 4/Area Scan (8x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.387 W/kg

High Toward Ground WCDMA Band 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.403 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.788 W/kg

SAR(1 g) = 0.410 W/kg; SAR(10 g) = 0.234 W/kgMaximum value of SAR (measured) = 0.445 W/kg

Fig.10 WCDMA Band 4 Ground Mode High

LTE Band 7 Body Toward Ground Middle

Date/Time: 2019/10/21 Electronics: DAE4 Sn797 Medium: Head 2600MHz

Medium parameters used: f = 2535 MHz; $\sigma = 1.921$ S/m; $\epsilon r = 39.894$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(7.48, 7.48, 7.48)

Middle Toward Ground LTE Band 7 1RB@0/Area Scan (10x16x1): Measurement grid:

dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.09 W/kg

Middle Toward Ground LTE Band 7 1RB@0/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.373 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 2.99 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.407 W/kgMaximum value of SAR (measured) = 1.09 W/kg

Fig.11 LTE Band 7 Ground Mode High

LTE Band 25 Body Toward Ground Middle

Date/Time: 2019/10/17 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.427$ S/m; $\epsilon r = 38.651$; $\rho =$

1000 kg/m3

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: LTE Band 25; Frequency: 1882.5 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.07, 8.07, 8.07)

Middle Toward Ground LTE Band 25 1RB@99/Area Scan (8x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.408 W/kg

Middle Toward Ground LTE Band 25 1RB@99/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.964 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.752 W/kg

SAR(1 g) = 0.386 W/kg; SAR(10 g) = 0.221 W/kg

Maximum value of SAR (measured) = 0.415 W/kg

Fig.12 LTE Band 25 Ground Mode Middle

LTE Band 41 Body Toward Ground High

Date/Time: 2019/10/21 Electronics: DAE4 Sn797 Medium: Head 2600MHz

Medium parameters used: f = 2680 MHz; $\sigma = 2.086 \text{ S/m}$; $\epsilon r = 39.42$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: LTE Band 41; Frequency: 2680 MHz; Duty Cycle: 1:1.59

Probe: EX3DV4 - SN3844ConvF(7.4, 7.4, 7.4)

High Toward Ground LTE Band 41 50RB@0/Area Scan (10x16x1): Measurement grid:

dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.504 W/kg

High Toward Ground LTE Band 41 50RB@0/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.394 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 0.593 W/kg; SAR(10 g) = 0.209 W/kg Maximum value of SAR (measured) = 0.708 W/kg

Fig.13 LTE Band 41 Ground Mode High

LTE Band 66 Body Toward Bottom Middle

Date/Time: 2019/10/15 Electronics: DAE4 Sn797 Medium: Head 1750MHz

Medium parameters used: f = 1770 MHz; $\sigma = 1.38 \text{ S/m}$; $\epsilon r = 41.507$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: LTE Band 66; Frequency: 1770 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.5, 8.5, 8.5);

Middle Bottom nd 66 50RB@50/Area Scan (8x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.352 W/kg

Middle Bottom LTE Band 66 50RB@50/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.353 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.856 W/kg

SAR(1 g) = 0.440 W/kg; SAR(10 g) = 0.221 W/kg

Maximum value of SAR (measured) = 0.505 W/kg

Fig.14 LTE Band 66 Ground Mode Middle

ANNEX B. SYSTEM VALIDATION RESULTS

System 1750MHz

Date/Time: 2019/10/15 Electronics: DAE4 Sn797 Medium: Head 1750MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.362 \text{ S/m}$; $\epsilon r = 41.611$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3844ConvF(8.5, 8.5, 8.5); Calibrated: 2019/5/25

System Head 1750MHz/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 9.80 W/kg

System Head 1750MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 72.89 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.22 W/kg; SAR(10 g) = 4.9 W/kgMaximum value of SAR (measured) = 10.4 W/kg

System 1900MHz

Date/Time: 2019/10/17 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.445 \text{ S/m}$; $\epsilon r = 38.569$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3844ConvF(8.07, 8.07, 8.07); Calibrated: 2019/5/25

System Head 1900MHz/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 8.61 W/kg

System Head 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 73.66 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.18 W/kgMaximum value of SAR (measured) = 11.3 W/kg

System 2600MHz

Date/Time: 2019/10/21 Electronics: DAE4 Sn797 Medium: Head 2600MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.996 \text{ S/m}$; $\epsilon r = 39.673$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3844ConvF(7.4, 7.4, 7.4); Calibrated: 2019/5/25

System Head 2600MHz/Area Scan (6x9x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 16.0 W/kg

System Head 2600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.15 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 15.9 W/kg

ANNEX C. SYSTEM VALIDATION RESULTS

Client : CA	TR(Chongqing)		Certificate No: Z19-60274					
CALIBRATION	CERTIFICA	TE						
Object	DAE4	- SN: 797						
Calibration Procedure(s)	FF-Z1 Calibra	FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx)						
Calibration date:	Augus	t 22, 2019						
pages and are part of the	e certificate. en conducted in ed (M&TE critical)	the closed laboratory f	onfidence probability are given on the following facility: environment temperature(22±3)°C and an artificate No.) Scheduled Calibration					
Process Calibrator 753	1971018	24-Jun-19 (CTTL, No.J1	19X05126) Jun-20					
	Name	Function	Signature					
Calibrated by:	Yu Zongying	SAR Test Enginee	^ /					
Reviewed by:	Lin Hao	SAR Test Engineer	林光					
Approved by:	Qi Dianyuan	SAR Project Leade	er 200					
This calibration certificate	shall not be repro	duced except in full withou	Issued: August 24, 2019 out written approval of the laboratory					

Certificate No: Z19-60274

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com
Http://www.chinattl.com

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60274

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	z
High Range	403.879 ± 0.15% (k=2)	404.134 ± 0.15% (k=2)	403.854 ± 0.15% (k=2)
Low Range	3.95921 ± 0.7% (k=2)	3.96839 ± 0.7% (k=2)	3.97981 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	43.5° ± 1 °
---	-------------

Certificate No: Z19-60274

CATR(Chongqing) Certificate No: Z19-60145 **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3844 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: May 25, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date(Calibrated by, Certificate No.) ID# Scheduled Calibration Power Meter NRP2 101919 20-Jun-18 (CTTL, No.J18X05032) Jun-19 Power sensor NRP-Z91 101547 20-Jun-18 (CTTL, No.J18X05032) Jun-19 Power sensor NRP-Z91 101548 20-Jun-18 (CTTL, No.J18X05032) Jun-19 Reference10dBAttenuator 18N50W-10dB 09-Feb-18(CTTL, No.J18X01133) Feb-20 Reference20dBAttenuator 18N50W-20dB 09-Feb-18(CTTL, No.J18X01132) Feb-20 Reference Probe EX3DV4 SN 7514 27-Aug-18(SPEAG,No.EX3-7514_Aug18/2) Aug-19 SN 1555 20-Aug-18(SPEAG, No.DAE4-1555_Aug18) Aug -19 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGeneratorMG3700A 6201052605 21-Jun-18 (CTTL, No.J18X05033) Jun-19 Network Analyzer E5071C MY46110673 24-Jan-19 (CTTL, No.J19X00547) Jan -20 Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 27, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z19-60145

Page 1 of 11

Chongqing Academy of Information and Communications Technology

Report No.:B19W50551-SAR_REV3

Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hittp://www.chinattl.com

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature
 Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on
 power measurements for f >800MHz. The same setups are used for assessment of the parameters
 applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given.
 These parameters are used in DASY4 software to improve probe accuracy close to the boundary.
 The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to
 that given for ConvF, A frequency dependent ConvF is used in DASY version 4.4 and higher which
 allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-60145

Page 2 of 11

Probe EX3DV4

SN: 3844

Calibrated: May 25, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-60145

Page 3 of 11

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3844

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²)^	0.48	0.41	0.19	±10.0%
DCP(mV) ^a	103.8	103.4	98.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	cw	X	0.0	0.0	1.0	0.00	166.2	±2.4%
		Y	0.0	0.0	1.0		147.6	
		Z	0.0	0.0	1.0		86.9	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60145

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3844

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.75	9.75	9.75	0.24	0.89	±12.1%
835	41.5	0.90	9.35	9.35	9.35	0.12	1.43	±12.1%
900	41.5	0.97	9.32	9.32	9.32	0.21	1.05	±12.1%
1750	40.1	1.37	8.50	8.50	8.50	0.24	1.01	±12.1%
1900	40.0	1.40	8.07	8.07	8.07	0.23	1.04	±12.1%
2000	40.0	1.40	8.01	8.01	8.01	0.24	1.10	±12.1%
2300	39.5	1.67	7.80	7.80	7.80	0.49	0.77	±12.1%
2450	39.2	1.80	7.48	7.48	7.48	0.63	0.69	±12.1%
2600	39.0	1.96	7.40	7.40	7.40	0.67	0.68	±12.1%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60145

Page 5 of 11

FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3844

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.92	9.92	9.92	0.40	0.80	±12.1%
835	55.2	0.97	9.51	9.51	9.51	0.19	1.38	±12.1%
900	55.0	1.05	9.51	9.51	9.51	0.24	1.11	±12.1%
1750	53.4	1.49	8.16	8.16	8.16	0.22	1.15	±12.1%
1900	53.3	1.52	7.91	7.91	7.91	0.23	1.13	±12.1%
2000	53.3	1.52	7.85	7.85	7.85	0.21	1.20	±12.1%
2300	52.9	1.81	7.71	7.71	7.71	0.55	0.83	±12.1%
2450	52.7	1.95	7.63	7.63	7.63	0.67	0.73	±12.1%
2600	52.5	2.16	7.48	7.48	7.48	0.68	0.71	±12.1%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60145

Page 6 of 11

f At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z19-60145

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Certificate No: Z19-60145

Page 8 of 11

40

analytical

measured

Deviation from Isotropy in Liquid

Certificate No: Z19-60145

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3844

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	26.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z19-60145

Page 11 of 11

Client CATR	(Chongqing)	Certificate No: Z19	-60003
CALIBRATION C	ERTIFICAT	E	
Object	D1750	V2 - SN: 1063	
Calibration Procedure(s)		-003-01 tion Procedures for dipole validation kits	
Calibration date:	Januar	y 18, 2019	
pages and are part of the ce	ertificate.	the uncertainties with confidence probability a the closed laboratory facility: environment or calibration)	
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Power sensor NRV-Z5	100596	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Reference Probe EX3DV4	SN 7433	12-Nov-18(CTTL-SPEAG,No.Z18-60401)	Nov-19
DAE4	SN 1556	20-Aug-18(SPEAG,No.DAE4-1556_Aug18)	Aug-19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19
	Name	Function	Signature
		11(5)(15K-5)(1	oignotore.
Calibrated by:	Zhao Jing	SAR Test Engineer	数型
Calibrated by:	Zhao Jing Lin Hao	SAR Test Engineer SAR Test Engineer	数数
2011 SEC01010 SEC	Accepted		林龙

Certificate No: Z19-60003

Page 1 of 8

Chongqing Academy of Information and Communications Technology

Report No.:B19W50551-SAR_REV3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60003

Page 2 of 8

| Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China | Tel: +86-10-62304633-2079 | Fax: +86-10-62304633-2504 | http://www.chinattl.cn | http://www.chinattl.cn |

Measurement Conditions

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.6 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.1 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.45 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	999	-

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.5 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	4.95 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.1 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60003

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9Ω- 0.73 jΩ
Return Loss	- 37.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.4Ω+ 1.52 jΩ	
Return Loss	- 27.8 dB	

General Antenna Parameters and Design

A DESCRIPTION OF THE RESERVE OF THE PARTY OF	
Electrical Delay (one direction)	1.088 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z19-60003

Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 01.17.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1063

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f=1750 MHz; $\sigma=1.33$ S/m; $\epsilon_r=41.28$; $\rho=1000$ kg/m3 Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(8.06, 8.06, 8.06) @ 1750 MHz; Calibrated: 11/12/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.63 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.95 W/kg

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Certificate No: Z19-60003

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60003

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 01.17.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1063

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.447 S/m; ϵ_r = 54.29; ρ = 1000 kg/m3

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.8, 7.8, 7.8) @ 1750 MHz; Calibrated: 11/12/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.38 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.41 W/kg; SAR(10 g) = 4.95 W/kg

Maximum value of SAR (measured) = 14.7 W/kg

Certificate No: Z19-60003

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60003

Page 8 of 8

	R(Chongqing		19-60004
CALIBRATION C	ERTIFICAT	E	
Object	D1900	V2 - SN: 5d153	
Calibration Procedure(s)	EE 744	-003-01	
	SELECTION OF	tion Procedures for dipole validation kits	
Calibration date:		y 18, 2019	
	ventual	y 10, 2010	
measurements(SI). The me pages and are part of the ce	asurements and	traceability to national standards, which re- the uncertainties with confidence probability	alize the physical units of are given on the followin
All calibrations have been humidity<70%.	conducted in	the closed laboratory facility: environment	temperature(22±3)℃ and
Calibration Equipment used	(M&TE critical for	or calibration)	
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Power sensor NRV-Z5	100596	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Reference Probe EX3DV4	SN 7433	12-Nov-18(CTTL-SPEAG,No.Z18-60401)	Nov-19
DAE4	SN 1556	20-Aug-18(SPEAG,No.DAE4-1556_Aug18)	Aug-19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	100
Reviewed by:	Lin Hao	SAR Test Engineer	THATE
Commence of the co	Qi Dianyuan	SAR Project Leader	. 0
Approved by:	di Didity dan	- attropact condo	200

Certificate No: Z19-60004

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Betjing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

lossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60004

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn http://www.chinattl.cn

Measurement Conditions

ASY system configuration, as far as	not given on page 1.	
DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

he following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		****

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 18.7 % (k=2)

Body TSL parameters The following parameters a

he following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.5 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60004

Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8Ω+ 3.60jΩ
Return Loss	- 26.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.2Ω+ 5.71jΩ	
Return Loss	- 24.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.062 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z19-60004

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 01.17.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d153

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.425 S/m; ϵ_r = 41.19; ρ = 1000 kg/m3

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.76, 7.76, 7.76) @ 1900 MHz; Calibrated: 11/12/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.8 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

Certificate No: Z19-60004

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60004

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 01.17.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d153

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.523 S/m; ϵ_r = 53.88; ρ = 1000 kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.6, 7.6, 7.6) @ 1900 MHz; Calibrated: 11/12/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.12 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (measured) = 16.0 W/kg

0 dB = 16.0 W/kg = 12.04 dBW/kg

Certificate No: Z19-60004

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60004

Page 8 of 8

Client CATR(Chongqing) Certificate No: Z19-60008

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1045

Calibration Procedure(s) FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: January 17, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Power sensor NRV-Z5	100596	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Reference Probe EX3DV4	SN 7433	12-Nov-18(CTTL-SPEAG,No.Z18-60401)	Nov-19
DAE4	SN 1556	20-Aug-18(SPEAG,No.DAE4-1556_Aug18)	Aug-19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
Network Analyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	是直
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	na

Issued: January 19, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60008 Page 1 of 8

Chongqing Academy of Information and Communications Technology				
	Report No.:B19W50551-SAR_REV3			

Chongqing Academy of Information and Communications Technology

Report No.:B19W50551-SAR_REV3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60008

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY52	52.10.2.1495
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2600 MHz ± 1 MHz	
	Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	1.98 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.9 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.0 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	2.14 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.99 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.1 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60008

Page 3 of 8

Appendix(Additional assessments outside the scope of CNAS L0570)

http://www.chinattl.cn

Antenna Parameters with Head TSL

E-mail: cttl@chinattl.com

Impedance, transformed to feed point	46.8Ω- 6.63jΩ	
Return Loss	- 22.4dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.6Ω- 5.15jΩ	
Return Loss	- 23.0dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.017 ns	٦
		_

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
17.	200-200-200-

Certificate No: Z19-60008

Page 4 of 8

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1045

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.982$ S/m; $\varepsilon_r = 40.16$; $\rho = 1000$ kg/m3

Phantom section: Center Section

DASY5 Configuration:

 Probe: EX3DV4 - SN7433; ConvF(7.03, 7.03, 7.03) @ 2600 MHz; Calibrated: 11/12/2018

Date: 01.16.2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 104.5 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.48 W/kg

Maximum value of SAR (measured) = 24.0 W/kg

0 dB = 24.0 W/kg = 13.80 dBW/kg

Certificate No: Z19-60008

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60008 Page 6 of 8

Add: No.51 Xuryuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1045
Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 2.136$ S/m; $\epsilon_r = 52.85$; $\rho = 1000$ kg/m3

Phantom section: Right Section

DASY5 Configuration:

 Probe: EX3DV4 - SN7433; ConvF(7.08, 7.08, 7.08) @ 2600 MHz; Calibrated: 11/12/2018

Date: 01.16.2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.66 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 5.99 W/kg

Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Certificate No: Z19-60008 Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60008

Page 8 of 8

END OF REPORT