Методы понижения размерности данных

Поглазов Никита 2024

Введение

Проклятие размерности: данные высокой размерности сложны для анализа, требуют много вычислительных ресурсов и часто содержат шум.

Мотивация

Что такое "проклятие размерности"?

$$S_{square} = 1$$
 $S_{circle} = \pi * (0.5)^2 = \frac{\pi}{4} \approx 0.79$

Гиперсфера и гиперкуб

• Объем гиперсферы стремится к нулю при росте размерности:

$$V_n = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1)} R^n$$

 \cdot Диагональ гиперкуба увеличивается как \sqrt{n} .

Влияние на метрические модели (1)

• Манхэттенское расстояние:

$$d(x^{(i)}, x^{(j)}) = \sum_{k=1}^{n} |x_k^{(i)} - x_k^{(j)}|$$

• Средние расстояния между точками становятся близкими:

$$\lim_{n \to \infty} \frac{d(x^{(i)}, x^{(j)})}{n} = \mu$$

• Сохраняется и для L_2 нормы.

Влияние на метрические модели (2)

Линейная регрессия и мультиколлинеарность

• Решение задачи MSE:

$$(X^T X)\hat{\beta} = X^T y$$

• Матричная ковариация:

$$Cov(X) = \frac{1}{k-1}X^T X$$

 Высокая корреляция между признаками ⇒ нестабильные веса, переобучение.

Влияние на "деревянные" модели

- Сложность выбора оптимального разделения при высокой размерности.
- Деревья склонны к переобучению из-за случайных разбиений.
- · Workaround: Random Subspace Method (Ho)

Влияние на глубокие нейронные сети

- Сверточные сети (CNN) используют локальные взаимосвязи.
- LSTM моделируют временные зависимости, игнорируя пространственные.
- Трансформеры извлекают только значимые зависимости.
- Проблемы: обучение на шуме, сложность оптимизации функционала потерь.

Общее влияние "проклятия размерности"

- Увеличение времени обучения моделей.
- Сложность интерпретации табличных данных.
- · Вероятность обучения на шумовых признаках \Rightarrow переобучение.

Обзор и классификация методов

Два подхода к понижению размерности

Отбор признаков:

- Выбор подмножества исходных признаков.
- Сохранение информации без преобразования данных.

Преобразование признаков:

- Трансформация данных в новое пространство меньшей размерности.
- Сохраняет наиболее значимые свойства данных.

Principal Component Analysis (PCA)

Цель: Сохранить максимальную дисперсию данных.

- Визуализация данных высокой размерности (например, геномика).
- Уменьшение размерности для кластеризации образцов.

Sparse PCA (SPCA)

Отличие от РСА:

- Ограничение на разреженность главных компонент.
- Уменьшает сложность интерпретации данных.

Применение:

• Анализ данных с множеством нерелевантных признаков (например, финансовые индикаторы).

Linear Discriminant Analysis (LDA)

Цель: Максимизация различий между классами.

- Распознавание лиц в биометрии.
- Классификация текстов по категориям.

Canonical Correlation Analysis (CCA)

Цель: Найти коррелирующие компоненты в двух наборах данных. **Пример применения:**

- Связь между анкетными данными и биометрией.
- Исследование двух источников данных для выявления зависимостей.

Kernel PCA (KPCA)

Ключевая идея: *Kernel Trick* для проецирования в нелинейное пространство.

Пример ядерной функции (гауссовское ядро):

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

- Обнаружение сложных текстур на изображениях.
- Биоинформатика: анализ активности молекул.

Kernel PCA (KPCA)

t-SNE

Алгоритм визуализации (!) данных высокой размерности.

Цель: Локальное сохранение расстояний между точками.

Основная идея:

- Перевод данных в вероятностное представление.
- · Минимизация расстояния Кульбака-Лейблера (KL-дивергенция).

- Визуализация эмбеддингов слов или изображений.
- Кластеризация геномных данных.

t-SNE

UMAP (Uniform Manifold Approximation and Projection)

Цель: Сохранение как локальных, так и глобальных структур данных. Основные этапы метода:

- Построение графа соседей данных в исходном пространстве.
- Оптимизация аппроксимации графа в пространстве меньшей размерности.

- Визуализация паттернов активности мозга.
- Анализ биоинформационных данных.

UMAP (Uniform Manifold Approximation and Projection)

AutoEncoders (AEs)

Цель: Нахождение компактных нелинейных представлений данных. Основная структура:

- Кодировщик (encoder): преобразует входные данные в компактное представление.
- Декодировщик (decoder): восстанавливает данные из сжатого представления.

- Удаление шума с изображений.
- Выделение особенностей для классификации.

AutoEncoders (AEs)

Variational AutoEncoders (VAEs)

Расширение автоэнкодеров: генерация данных на основе латентного пространства.

Основная идея:

• Представление латентного пространства в виде вероятностного распределения.

- Генерация новых молекул с заданными свойствами.
- Создание искусственных изображений.

Variational AutoEncoders (VAEs)

Постановка задачи (1)

Дан неразмеченный датасет $X = \{\mathbf{x}_i\}_{i=1}^N$, где $\mathbf{x}_i \in \mathbb{R}^D$. Предполагаем центрированность данных: $\mathbb{E}[\mathbf{x}_i] = 0$.

Матрица ковариации данных:

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^T.$$

Переход в новое пространство меньшей размерности (сжатие):

$$\mathbf{z}_i = \mathbf{B}^T \mathbf{x}_i \in \mathbb{R}^M, \quad M < D,$$

Постановка задачи (2)

Базис $\mathbf{B} = [oldsymbol{b}_1, \dots, oldsymbol{b}_M] \in \mathbb{R}^{D imes M}$ удовлетворяет:

$$\boldsymbol{b}_{i}^{T}\boldsymbol{b}_{j}=\delta_{ij}=\begin{cases}0,&i\neq j,\ 1,&i=j.\end{cases}$$

Восстановление данных:

$$\tilde{\mathbf{x}}_i = \mathbf{B}\mathbf{z}_i$$
.

Пример: 2D ightarrow 1D

Исходный вектор:
$$\mathbf{x}_i \in \mathbb{R}^2$$
, $\mathbf{x}_i = \begin{bmatrix} 5 \\ \frac{1}{100} \end{bmatrix}$. Выбираем базис $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Шаги:

- Координаты в новом базисе: $\mathbf{z}_i = \mathbf{B}^T \mathbf{x}_i = 5$.
- Восстановленный вектор:

$$\tilde{\mathbf{x}}_i = \mathbf{B}\mathbf{z}_i = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
.

Нахождение направления максимальной дисперсии (1)

Цель: Найти направление b_1 , вдоль которого дисперсия данных максимальна.

Дисперсия вдоль первой координаты в новом пространстве:

$$V_{1} := \mathbb{D}[z_{1}] = \frac{1}{N} \sum_{i=1}^{N} z_{1i}^{2} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{b}_{1}^{T} \boldsymbol{x}_{i})^{2} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{b}_{1}^{T} x_{i} x_{i}^{T} \boldsymbol{b}_{1})$$
$$= \boldsymbol{b}_{1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{T} \right) \boldsymbol{b}_{1} = \boldsymbol{b}_{1}^{T} \boldsymbol{\Sigma} \boldsymbol{b}_{1}.$$

Нахождение направления максимальной дисперсии (2)

Задача условной оптимизации:

$$\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^T \boldsymbol{\Sigma} \boldsymbol{b}_1, \quad \text{s.t. } \boldsymbol{b}_1^T \boldsymbol{b}_1 = 1.$$

Функция Лагранжа: $\mathcal{L}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^T \boldsymbol{\Sigma} \boldsymbol{b}_1 - \lambda (\boldsymbol{b}_1^T \boldsymbol{b}_1 - 1).$

Частные производные по b_1 и λ :

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{b}_1} = 2\boldsymbol{\Sigma}\boldsymbol{b}_1 - 2\lambda_1\boldsymbol{b}_1 = 0,$$

$$\frac{\partial \mathcal{L}}{\partial \lambda_1} = -\boldsymbol{b}_1^T\boldsymbol{b}_1 + 1 = 0.$$

Собственные векторы и значения

Получаем:

$$\Sigma \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1, \\ V_1 = \lambda_1.$$

Теперь можем переписать дисперсию V_1 как:

$$V_1 = \boldsymbol{b}_1^T \boldsymbol{\Sigma} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^T \boldsymbol{b}_1 = \lambda_1.$$

Интерпретация:

- · $m{b}_1$: первое направление главной компоненты.
- · λ_1 : дисперсия вдоль направления $oldsymbol{b}_1$.

Остальные компоненты (1)

Для m-й компоненты:

$$\begin{aligned} & \max_{\boldsymbol{b}_m} \boldsymbol{b}_m^T \! \boldsymbol{\Sigma} \boldsymbol{b}_m, \\ & \text{s.t. } \boldsymbol{b}_m^T \boldsymbol{b}_m = 1, \quad \boldsymbol{b}_m^T \boldsymbol{b}_i = 0, \forall i < m. \end{aligned}$$

Функция Лагранжа:

$$\mathcal{L}(\boldsymbol{b}_m, \lambda_m, \boldsymbol{\mu}) = \boldsymbol{b}_m^T \boldsymbol{\Sigma} \boldsymbol{b}_m - \lambda_m (\boldsymbol{b}_m^T \boldsymbol{b}_m - 1) - \sum_{i=1}^{m-1} \mu_i \boldsymbol{b}_m^T \boldsymbol{b}_i.$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{b}_{m}} = 2\boldsymbol{\Sigma}\boldsymbol{b}_{m} - 2\lambda_{m}\boldsymbol{b}_{m} - \sum_{i=1}^{m-1} \mu_{i}\boldsymbol{b}_{i} = 0,$$

$$\frac{\partial \mathcal{L}}{\partial \lambda_{m}} = -\boldsymbol{b}_{m}^{T}\boldsymbol{b}_{m} + 1 = 0, \quad \frac{\partial \mathcal{L}}{\partial \mu_{i}} = -\boldsymbol{b}_{m}^{T}\boldsymbol{b}_{i} = 0, \ \forall i < m.$$

Домножим первое уравнение на $oldsymbol{b}_i^T, j < m$ слева:

Остальные компоненты (2)

$$2\boldsymbol{b}_{j}^{T}\boldsymbol{\Sigma}\boldsymbol{b}_{m}-2\lambda_{m}\boldsymbol{b}_{j}^{T}\boldsymbol{b}_{m}-\sum_{i=1}^{m-1}\mu_{i}\boldsymbol{b}_{j}^{T}\boldsymbol{b}_{i}=0,$$

поскольку $oldsymbol{b}_{j}^{T}oldsymbol{b}_{i}=\delta_{ji}$:

$$2\boldsymbol{b}_j^T \boldsymbol{\Sigma} \boldsymbol{b}_m - \mu_j = 0.$$

 $oldsymbol{\Sigma}$ симметрична, поэтому $oldsymbol{b}_j^T oldsymbol{\Sigma} oldsymbol{b}_m = \left\langle (oldsymbol{b}_j^T oldsymbol{\Sigma})^T, oldsymbol{b}_m
ight
angle = \left\langle oldsymbol{\Sigma} oldsymbol{b}_j, oldsymbol{b}_m
ight
angle = \left\langle \lambda_j oldsymbol{b}_j, oldsymbol{b}_m
ight
angle = \lambda_j \left\langle oldsymbol{b}_j, oldsymbol{b}_m
ight
angle = 0.$ Тогда $\mu_j = 0$. и, аналогично, $\forall j < m \ \mu_j = 0$

Остальные компоненты (3)

Таким образом:

$$\Sigma b_m = \lambda_m b_m,$$

Вновь, ${m b}_m$ - собственный вектор матрицы ковариации ${m \Sigma}$, а λ_m - собственное значение.

Общая дисперсия: $\sum_{i=1}^{N} \lambda_i$.

Объясненная дисперсия первых m главных компонент: $\sum_{i=1}^m \lambda_i$.

Доля объясненной дисперсии: $\frac{\sum_{i=1}^m \lambda_i}{\sum_{i=1}^N \lambda_i}$.

Практические аспекты реализации

Формулы:

$$egin{aligned} oldsymbol{Z} &= \mathbf{B}^T oldsymbol{X}, \ oldsymbol{\tilde{X}} &= \mathbf{B} oldsymbol{Z}, \ oldsymbol{\Sigma} &= rac{1}{N} oldsymbol{X} oldsymbol{X}^T. \end{aligned}$$

Примечание: строки X — признаки, столбцы — объекты.

Постановка задачи (1)

Дан центрированный неразмеченный датасет $X = \{\mathbf{x}_i\}_{i=1}^N$, $\mathbf{x}_i \in \mathbb{R}^D$. Задано:

- Преобразование $\phi:\mathbb{R}^D o \mathbb{H}$, где \mathbb{H} гильбертово пространство.
- Функция (ядро) $k: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}: \quad k(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_{\mathbb{H}}.$

Цель: Найти линейное подпространство в $\mathbb H$ размерности P, минимизирующее расстояние между x_i и их проекцией.

Постановка задачи (2)

Свойства ядерных функций:

- Утверждение: по произвольной функции ϕ можно построить ядро k положительно определенная функция.
- **Teopema Moore-Aronszajn:** По положительно определённому ядру k можно построить ϕ и пространство $\mathbb H$.
- · Матрица Грама $\mathbf{K} \in \mathbb{R}^{N \times N}$:

$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j).$$

Пространство: Пусть $\mathbb{H}=\mathbb{R}^H$, где $H\gg D$ (для конечномерного случая).

Наивный подход

Шаги:

- 1. Вычислить $\{\phi(\mathbf{x}_i)\}_{i=1}^N$.
- 2. Применить РСА к $\{\phi({\bf x}_i)\}_{i=1}^N$.

Проблемы:

- Вычисление $\phi(\mathbf{x}_i)$ дорого.
- ϕ может быть неизвестным.
- Ковариационная матрица размера $H \times H$, где $H \gg D$.

Kernel Trick (1)

Подход: Составим из $\phi(\mathbf{x}_i)$ матрицу Φ ($N \times H$). Матрица ковариации:

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)^T = \frac{1}{N} \mathbf{\Phi}^T \mathbf{\Phi}.$$

Главные компоненты $\omega_p \in \mathbb{H}$:

$$\Sigma \omega_p = \lambda_p \omega_p$$
 для $p = 1, 2, \dots, P$.

Kernel Trick (2)

Подставим Σ :

$$\frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)^T \omega_p = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i) \langle \phi(\mathbf{x}_i), \omega_p \rangle_{\mathbb{H}} = \lambda_p \omega_p.$$

Представление компонент:

$$\omega_p = \sum_{i=1}^{N} \alpha_{p,j} \phi(\mathbf{x}_j), \quad \alpha_{p,j} = \langle \phi(\mathbf{x}_j), \omega_p \rangle_{\mathbb{H}}.$$

Kernel Trick (3)

Подставим это в уравнение для ω_p :

$$\frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_{i}) \langle \phi(\mathbf{x}_{i}), \sum_{j=1}^{N} \alpha_{p,j} \phi(\mathbf{x}_{j}) \rangle_{\mathbb{H}} = \lambda_{p} \sum_{i=1}^{N} \alpha_{p,i} \phi(\mathbf{x}_{i}),
\frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_{i}) \phi(\mathbf{x}_{i})^{T} \sum_{j=1}^{N} \phi(\mathbf{x}_{j}) \alpha_{p,j} = \lambda_{p} \sum_{j=1}^{N} \alpha_{p,j} \phi(\mathbf{x}_{j}),
\frac{1}{N} \Phi^{T} \Phi \Phi^{T} \alpha_{p} = \lambda_{p} \Phi^{T} \alpha_{p},
\Phi^{T} (\Phi \Phi^{T} \alpha_{p} - N \lambda_{p} \alpha_{p}) = 0
\mathbf{K} \alpha_{p} = N \lambda_{p} \alpha_{p}, \quad \mathbf{K} = \Phi \Phi^{T}, \quad K_{ij} = k(\mathbf{x}_{i}, \mathbf{x}_{j}).$$

Проекции на главные компоненты

Проекции на главные компоненты вычисляются **даже без знания** ϕ :

$$\mathbf{z}_{ij} = \langle \phi(\mathbf{x}_i), \omega_j \rangle_{\mathbb{H}} = \boldsymbol{\omega}_j^T \phi(\mathbf{x}_i) = \sum_{k=1}^N \alpha_{j,k} \phi(\mathbf{x}_k)^T \phi(\mathbf{x}_i)$$
$$= \sum_{k=1}^N \alpha_{j,k} k(\mathbf{x}_k, \mathbf{x}_i) = \sum_{k=1}^N \alpha_{j,k} \mathbf{K}_{ki} = \sum_{k=1}^N \alpha_{j,k} \mathbf{K}_{ik} = \mathbf{K}_i \boldsymbol{\alpha}_j.$$

 $\mathbf{Z} = \mathbf{K}\boldsymbol{\alpha}$.

Центрирование образов (1)

Проблема: Образы $\phi(\mathbf{x}_i)$ могут быть нецентрированными, даже если \mathbf{x}_i центрированы.

Коррекция:

$$\tilde{\phi}(\mathbf{x}) = \phi(\mathbf{x}) - \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i).$$

Центрирование образов (2)

Обновление ядра:

$$\tilde{k}(\mathbf{x}, \mathbf{y}) = k(\mathbf{x}, \mathbf{y}) - \frac{1}{N} \sum_{i=1}^{N} (k(\mathbf{x}, \mathbf{x}_i) - k(\mathbf{x}_i, \mathbf{y}))$$
$$+ \frac{1}{N^2} \sum_{i=1}^{N} \sum_{i=1}^{N} k(\mathbf{x}_i, \mathbf{x}_i).$$

Центрированная матрица:

$$\tilde{\mathbf{K}} = \left(\mathbf{E} - \frac{1}{N} \mathbf{1} \mathbf{1}^{T}\right) \mathbf{K} \left(\mathbf{E} - \frac{1}{N} \mathbf{1} \mathbf{1}^{T}\right),$$

где 1 — вектор из единиц.

Детали реализации

Наиболее популярное ядро: Гауссово (RBF):

$$k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right) = \exp\left(-\gamma \|\mathbf{x} - \mathbf{y}\|^2\right).$$

Альтернативные ядра:

- · Полиномиальное: $k(\mathbf{x}, \mathbf{y}) = (\gamma \mathbf{x}^T \mathbf{y} + r)^d$.
- Сигмоидальное: $k(\mathbf{x}, \mathbf{y}) = \tanh(\gamma \mathbf{x}^T \mathbf{y} + r)$.
- · Линейное: $k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$.

AutoEncoders (AEs)

Постановка задачи

Дан неразмеченный датасет $X = \{\mathbf{x}_i\}_{i=1}^N$, где $\mathbf{x}_i \in \mathbb{R}^D$.

Цель: Найти сжатое представление $\mathbf{z}_i \in \mathbb{R}^M$, M < D, такое что восстановленные данные $\tilde{\mathbf{x}}_i$ близки к исходным \mathbf{x}_i .

Подход: Использование нелинейных преобразований, реализованных нейронной сетью.

Архитектура автоэнкодера (1)

Encoder: Нелинейное отображение $f_{\boldsymbol{\theta}}: \mathbb{R}^D \to \mathbb{R}^M$: $\mathbf{z} = f_{\boldsymbol{\theta}}(\mathbf{x})$.

где:

$$f_{\boldsymbol{\theta}} = f_L \circ f_{L-1} \circ \ldots \circ f_1, \quad f_i = \sigma_{\mathsf{E}i}(\mathbf{W}_{\mathsf{E}i}\mathbf{z}_{i-1} + \boldsymbol{b}_{\mathsf{E}i}).$$

Decoder: Восстановление $g_{\phi}: \mathbb{R}^M \to \mathbb{R}^D$:

$$\tilde{\mathbf{x}} = g_{\boldsymbol{\phi}}(\mathbf{z}),$$

где:

$$g_{\phi} = g_L \circ g_{L-1} \circ \ldots \circ g_1, \quad g_i = \sigma_{\mathsf{D}i}(\mathbf{W}_{\mathsf{D}i}\mathbf{z}_{i-1} + \mathbf{b}_{\mathsf{D}i}).$$

Полная архитектура:

$$\mathbf{z} = f_{\boldsymbol{\theta}}(\mathbf{x}),$$

 $\tilde{\mathbf{x}} = q_{\boldsymbol{\phi}}(\mathbf{z}).$

Архитектура автоэнкодера (2)

Обучение автоэнкодера

Функция потерь: ошибка реконструкции (reconstruction error):

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - \tilde{\mathbf{x}}_i\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - g_{\boldsymbol{\phi}}(f_{\boldsymbol{\theta}}(\mathbf{x}_i))\|_2^2.$$

Альтернативная функция потерь: бинарная кросс-энтропия для выхода в $[0,1]^D$:

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{D} \left(x_{ij} \log \tilde{x}_{ij} + (1 - x_{ij}) \log(1 - \tilde{x}_{ij}) \right).$$

Аналогия с РСА

Ошибка реконструкции в РСА:

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - \tilde{\mathbf{x}}_i\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - \mathbf{B}\mathbf{B}^T \mathbf{x}_i\|_2^2.$$

Если:

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{W}_{\mathsf{E}}\mathbf{x}, \quad g_{\boldsymbol{\phi}}(\mathbf{z}) = \mathbf{W}_{\mathsf{D}}\mathbf{z},$$

TO:

$$\mathbf{W}_{\mathsf{E}} = \mathbf{B}^T, \quad \mathbf{W}_{\mathsf{D}} = \mathbf{B},$$

и автоэнкодер эквивалентен РСА.

Variational AutoEncoders (VAEs)

Постановка задачи (1)

Дан неразмеченный датасет $X = \{\mathbf{x}_i\}_{i=1}^N$, где $\mathbf{x}_i \in \mathbb{R}^D$.

Цель:

- Обучить автоэнкодер так, чтобы его скрытое представление $\mathbf{z}_i \in \mathbb{R}^M$ было распределено по заданному распределению.
- · Задать латентное распределение: $p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{E}).$

Построение генеративной модели:

- Способность генерировать объекты $p(\mathbf{z})$, близкие к объектам обучающей выборки X.

Постановка задачи (2)

Интуиция (1)

Идея:

$$\cdot$$
 $f_{m{ heta}}(\mathbf{x}) = m{\psi}_{\mathbf{x}} = (m{\mu}_{\mathbf{x}}, m{\sigma}_{\mathbf{x}}^2)$ — параметры нормального распределения.

$$\cdot \mathbf{z} \sim p(\mathbf{z} \mid \boldsymbol{\psi}_{\mathbf{x}}) = \mathcal{N}(\mathbf{z} \mid \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\sigma}_{\mathbf{x}}^2).$$

•
$$\tilde{\mathbf{x}} = g_{\boldsymbol{\phi}}(\mathbf{z}) \sim p(\mathbf{x} \mid \mathbf{z}).$$

Параметры:

$$\boldsymbol{\mu}_{\mathbf{x}} = \begin{bmatrix} \mu_{\mathbf{x}1} & \mu_{\mathbf{x}2} & \dots & \mu_{\mathbf{x}M} \end{bmatrix}, \boldsymbol{\sigma}_{\mathbf{x}}^2 = \operatorname{diag} \left(\begin{bmatrix} \sigma_{\mathbf{x}1}^2 & \sigma_{\mathbf{x}2}^2 & \dots & \sigma_{\mathbf{x}M}^2 \end{bmatrix} \right).$$

Интуиция (2)

Проблемы:

- 1. **Проблема 1:** модель стремится к $oldsymbol{\sigma}_{oldsymbol{x}}^2 = oldsymbol{0}$, что превращает VAE в AE.
 - Решение: добавить регуляризационный член (какой?):

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \mathsf{L}_{\mathsf{rec}} + \alpha \mathsf{L}_{\mathsf{reg}}.$$

2. Проблема 2: сэмплирование не дифференцируемо.

Правдоподобие $p(\mathbf{x})$

Совместное распределение:

$$p_{\phi}(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}, \mathbf{z} \mid \phi).$$

Правдоподобие данных:

$$L(\phi) = \prod_{i=1}^{N} p_{\phi}(\mathbf{x}_i),$$
$$\log L(\phi) = \sum_{i=1}^{N} \log p_{\phi}(\mathbf{x}_i).$$

Цель: Максимизация правдоподобия:

$$p_{\phi}(\mathbf{x}) = \int_{\mathbf{z}} p_{\phi}(\mathbf{x}, \mathbf{z}) d\mathbf{z} \to \max_{\phi \in \Phi}.$$

Аппроксимация $p(oldsymbol{z} \mid oldsymbol{x})$ (1)

Теорема Байеса:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})} = \frac{p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})}{p(\mathbf{x})}.$$

Распределения:

- $p(\mathbf{x})$: априорное распределение данных.
- $p(\mathbf{z} \mid \mathbf{x})$: распределение энкодера.
- $p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{E})$: априорное распределение латентного пространства.
- $p(\mathbf{x} \mid \mathbf{z}) \ (= \mathcal{N}(\mathbf{x} \mid g_{oldsymbol{\phi}}(\mathbf{z}), c\mathbf{I}))$: распределение декодера.

Аппроксимация $p(\mathbf{z} \mid \mathbf{x})$ (2)

Проблема: $p(\mathbf{z} \mid \mathbf{x})$ имеет сложную форму:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{\mathcal{N}(\mathbf{x} \mid g_{\phi}(\mathbf{z}), c\mathbf{I})\mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{E})}{p(\mathbf{x})}.$$

Workaround: Аппроксимация через простое распределение $q(\mathbf{z})$: $p(\mathbf{z} \mid \mathbf{x}) \approx q(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\sigma}_{\mathbf{x}}^2).$

Вариационное приближение (1)

Цель: Максимизировать правдоподобие $p(\mathbf{x})$:

$$\log p(\mathbf{x}) = \log \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \log \int_{\mathbf{z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$
$$= \log \mathbb{E}_{q(\mathbf{z})} \left[\frac{p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z})}{q(\mathbf{z})} \right].$$

Неравенства Йенсена:

$$g(\mathbb{E}[\xi]) \leq \mathbb{E}[g(\xi)], \quad g(x)$$
 — вогнутая функция, $g(\mathbb{E}[\xi]) \geq \mathbb{E}[g(\xi)], \quad g(x)$ — выпуклая функция.

Вариационное приближение (2)

Применим к log:

$$\log p(\mathbf{x}) = \log \mathbb{E}_{q(\mathbf{z})} \left[\frac{p(\mathbf{z})p(\mathbf{x} \mid \mathbf{z})}{q(\mathbf{z})} \right] \ge \mathbb{E}_{q(\mathbf{z})} \left[\log \frac{p(\mathbf{z})p(\mathbf{x} \mid \mathbf{z})}{q(\mathbf{z})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z})} \left[\log p(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{E}_{q(\mathbf{z})} \left[\log \frac{q(\mathbf{z})}{p(\mathbf{z})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z})} \left[\log p(\mathbf{x} \mid \mathbf{z}) \right] - \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z})),$$

где KL — дивергенция Кульбака-Лейблера.

Итог: Нижняя граница на $\log p(\mathbf{x})$ (Evidence Lower Bound, *ELBO*): $\log p(\mathbf{x}) \geq \mathbb{E}_{q(\mathbf{z})} \left[\log p(\mathbf{x} \mid \mathbf{z})\right] - \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z})) \to \max_{q(\mathbf{z})}.$

Распределение $p(\mathbf{x} \mid \mathbf{z})$

 $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x} \mid g_{\phi}(\mathbf{z}), c\mathbf{I}), c \neq 0$, поэтому матрица ковариации невырождена.

$$p(\mathbf{x} \mid \mathbf{z}) = \frac{1}{(2\pi)^{D/2} |c\mathbf{I}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - g_{\phi}(\mathbf{z}))^{T} (c\mathbf{I})^{-1} (\mathbf{x} - g_{\phi}(\mathbf{z}))\right)$$
$$= \frac{1}{(2\pi)^{D/2} c^{D/2}} \exp\left(-\frac{1}{2c} ||\mathbf{x} - g_{\phi}(\mathbf{z})||_{2}^{2}\right)$$

$$\log(p(\mathbf{x} \mid \mathbf{z})) = -\frac{D}{2}\log(2\pi) - \frac{D}{2}\log(c) - \frac{1}{2c}\|\mathbf{x} - g_{\phi}(\mathbf{z})\|_{2}^{2}$$
$$= \operatorname{const} - \frac{1}{2c}\|\mathbf{x} - g_{\phi}(\mathbf{z})\|_{2}^{2}.$$

Итоговая оптимизация

Оптимизационная задача:

$$\mathbb{E}_{q(\mathbf{z})} \left[\log p(\mathbf{x} \mid \mathbf{z}) \right] - \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z}))$$

$$= -\mathbb{E}_{q(\mathbf{z})} \left[\frac{1}{2c} \|\mathbf{x} - g_{\phi}(\mathbf{z})\|_{2}^{2} \right] - \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z})) \to \max_{q(\mathbf{z})}.$$

Эквивалентная формулировка:

$$\mathbb{E}_{q(\mathbf{z})} \left[\frac{1}{2c} \|\mathbf{x} - g_{\phi}(\mathbf{z})\|_{2}^{2} \right] + \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z})) \to \min_{q(\mathbf{z})}.$$

Вспомним интуицию

Получили то, чего и хотели:

$$\mathsf{L}_{\mathsf{rec}} = \frac{1}{2c} \|\mathbf{x} - g_{\phi}(\mathbf{z})\|_{2}^{2},$$
$$\mathsf{L}_{\mathsf{reg}} = \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z})).$$

Итог: Баланс между реконструкцией данных и отклонением от априорного распределения в латентном пространстве.

Вычисление L_{reg} (1)

$$\begin{aligned} & \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z})) = \mathsf{KL}\left(\mathcal{N}(\mathbf{z} \mid \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\sigma}_{\mathbf{x}}^{2}) \parallel \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{E})\right) \\ &= \mathsf{KL}\left(\prod_{i=1}^{M} \mathcal{N}(z_{i} \mid \boldsymbol{\mu}_{\mathbf{x}i}, \sigma_{\mathbf{x}i}^{2}) \parallel \prod_{i=1}^{M} \mathcal{N}(z_{i} \mid 0, 1)\right) = \mathsf{KL}\left(\prod_{i=1}^{M} q_{i}(\mathbf{z}_{i}) \parallel \prod_{i=1}^{M} p_{i}(\mathbf{z}_{i})\right) \\ &= \int_{\mathbf{z}} \prod_{i=1}^{M} q_{i}(\mathbf{z}_{i}) \log \frac{\prod_{i=1}^{M} q_{i}(\mathbf{z}_{i})}{\prod_{i=1}^{M} p_{i}(\mathbf{z}_{i})} d\mathbf{z} = \int_{\mathbf{z}} \prod_{i=1}^{M} q_{i}(\mathbf{z}_{i}) \left(\sum_{i=1}^{M} \log \frac{q_{i}(\mathbf{z}_{i})}{p_{i}(\mathbf{z}_{i})}\right) d\mathbf{z} \\ &= \sum_{j=1}^{M} \int_{\mathbf{z}} \log \frac{q_{j}(\mathbf{z}_{j})}{p_{j}(\mathbf{z}_{j})} \prod_{i=1}^{M} q_{i}(\mathbf{z}_{i}) d\mathbf{z}_{1} \dots d\mathbf{z}_{M} \\ &= \sum_{i=1}^{M} \left(\left(\int_{\mathbf{z}_{j}} \log \frac{q_{j}(\mathbf{z}_{j})}{p_{j}(\mathbf{z}_{j})} q_{j}(\mathbf{z}_{j}) d\mathbf{z}_{j}\right) \prod_{i \neq j}^{M} \int_{\mathbf{z}_{i}} q_{i}(\mathbf{z}_{i}) d\mathbf{z}_{i}\right) = \dots \end{aligned}$$

Вычисление L_{reg} (2)

$$= \sum_{j=1}^{M} \left(\int_{\mathbf{z}_{j}} \log \frac{q_{j}(\mathbf{z}_{j})}{p_{j}(\mathbf{z}_{j})} q_{j}(\mathbf{z}_{j}) d\mathbf{z}_{j} \right) = \sum_{j=1}^{M} \mathsf{KL}(q_{j}(\mathbf{z}_{j}) \parallel p_{j}(\mathbf{z}_{j}))$$

Для каждой компоненты:

$$\mathsf{KL}(q_j(\mathbf{z}_j) \parallel p_j(\mathbf{z}_j)) = \int_{z_j} \mathcal{N}(z_j \mid \mu_{\mathbf{x}j}, \sigma_{\mathbf{x}j}^2) \log \frac{\mathcal{N}(z_j \mid \mu_{\mathbf{x}j}, \sigma_{\mathbf{x}j}^2)}{\mathcal{N}(z_j \mid 0, 1)} dz_j.$$

$$= \mathbb{E}_{q_j(z_j)} \left[\log \mathcal{N}(z_j \mid \mu_{\mathbf{x}j}, \sigma_{\mathbf{x}j}^2) - \log \mathcal{N}(z_j \mid 0, 1) \right].$$

Распределение \mathcal{N} :

$$\log \mathcal{N}(z_j \mid \mu_{xj}, \sigma_{xj}^2) = -\frac{1}{2} \log(2\pi\sigma_{xj}^2) - \frac{1}{2\sigma_{xj}^2} (z_j - \mu_{xj})^2,$$
$$\log \mathcal{N}(z_j \mid 0, 1) = -\frac{1}{2} \log(2\pi) - \frac{1}{2} z_j^2.$$

Вычисление L_{reg} (3)

Разница логарифмов:

$$\log \mathcal{N}(z_j \mid \mu_{xj}, \sigma_{xj}^2) - \log \mathcal{N}(z_j \mid 0, 1) = -\frac{1}{2} \log(\sigma_{xj}^2) - \frac{1}{2\sigma_{xj}^2} (z_j - \mu_{xj})^2 + \frac{1}{2} z_j^2.$$

Итоговая формула:

$$\begin{aligned} & \mathsf{KL}(q_{j}(\mathbf{z}_{j}) \parallel p_{j}(\mathbf{z}_{j})) = \mathbb{E}_{q_{j}(z_{j})} \left[-\frac{1}{2} \log(\sigma_{\mathbf{x}j}^{2}) - \frac{1}{2\sigma_{\mathbf{x}j}^{2}} (z_{j} - \mu_{\mathbf{x}j})^{2} + \frac{1}{2} z_{j}^{2} \right] \\ & = \mathbb{E}_{q_{j}(z_{j})} \left[-\left(\frac{1}{2} \log(\sigma_{\mathbf{x}j}^{2}) + \frac{\mu_{\mathbf{x}j}^{2}}{2\sigma_{\mathbf{x}j}^{2}} \right) + \left(\frac{1}{2} - \frac{1}{2\sigma_{\mathbf{x}j}^{2}} \right) z_{j}^{2} + \frac{\mu_{\mathbf{x}j}}{\sigma_{\mathbf{x}j}^{2}} z_{j} \right] \\ & = -\left(\frac{1}{2} \log(\sigma_{\mathbf{x}j}^{2}) + \frac{\mu_{\mathbf{x}j}^{2}}{2\sigma_{\mathbf{x}j}^{2}} \right) + \left(\frac{1}{2} - \frac{1}{2\sigma_{\mathbf{x}j}^{2}} \right) \mathbb{E}_{q_{j}(z_{j})} \left[z_{j}^{2} \right] + \frac{\mu_{\mathbf{x}j}}{\sigma_{\mathbf{x}j}^{2}} \mathbb{E}_{q_{j}(z_{j})} \left[z_{j} \right] = \dots \end{aligned}$$

Вычисление L_{reg} (4)

Математические ожидания:

$$\begin{split} & \mathbb{E}_{q_{j}(z_{j})}\left[z_{j}\right] = \mu_{\mathbf{x}j}, \\ & \mathbb{D}_{q_{j}(z_{j})}\left[z_{j}\right] = \mathbb{E}_{q_{j}(z_{j})}\left[z_{j}^{2}\right] - \mu_{\mathbf{x}j}^{2} = \sigma_{\mathbf{x}j}^{2} \quad \Rightarrow \quad \mathbb{E}_{q_{j}(z_{j})}\left[z_{j}^{2}\right] = \sigma_{\mathbf{x}j}^{2} + \mu_{\mathbf{x}j}^{2}. \end{split}$$

Подстановка:

$$\dots = -\frac{1}{2}\log(\sigma_{xj}^2) - \frac{\mu_{xj}^2}{2\sigma_{xj}^2} + \frac{1}{2}\left(1 - \frac{1}{\sigma_{xj}^2}\right)\left(\sigma_{xj}^2 + \mu_{xj}^2\right) + \frac{\mu_{xj}}{\sigma_{xj}^2}\mu_{xj}$$

$$= -\frac{1}{2}\log(\sigma_{xj}^2) - \frac{\mu_{xj}^2}{2\sigma_{xj}^2} + \frac{1}{2}\left(\sigma_{xj}^2 + \mu_{xj}^2 - 1 - \frac{\mu_{xj}^2}{\sigma_{xj}^2}\right) + \frac{\mu_{xj}^2}{\sigma_{xj}^2}$$

$$= -\frac{1}{2}\log(\sigma_{xj}^2) + \frac{1}{2}\sigma_{xj}^2 + \frac{1}{2}\mu_{xj}^2 - \frac{1}{2}$$

$$= \frac{1}{2}\left(\sigma_{xj}^2 + \mu_{xj}^2 - 1 - \log(\sigma_{xj}^2)\right)$$

Функционал потерь

Итоговые формулы:

$$\begin{aligned} \mathsf{L}_{\text{rec}} &= \frac{1}{2c} \|\mathbf{x} - g_{\phi}(\mathbf{z})\|_{2}^{2}, \\ \mathsf{L}_{\text{reg}} &= \sum_{i=1}^{M} \frac{1}{2} \left(\sigma_{\mathbf{x}j}^{2} + \mu_{\mathbf{x}j}^{2} - 1 - \log(\sigma_{\mathbf{x}j}^{2}) \right). \end{aligned}$$

Дополнение: Для L_{rec} также можно использовать кросс-энтропию.

Reparametrization trick

$$\mathbf{z}_{j} \sim \mathcal{N}(\mathbf{z}_{j} \mid \mu_{\mathbf{x}j}, \sigma_{\mathbf{x}j}^{2}) \Leftrightarrow \left\{ egin{array}{ll} oldsymbol{arepsilon}_{j} \sim \mathcal{N}(0, 1), \ \mathbf{z}_{j} = \mu_{\mathbf{x}j} + \sigma_{\mathbf{x}j} oldsymbol{arepsilon}_{j}. \end{array}
ight.$$

Поскольку:

$$p_{\varepsilon}(\varepsilon) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\varepsilon^{2}}{2}\right),$$

$$\varepsilon = \frac{z - \mu_{x}}{\sigma_{x}}, \quad \sigma_{x} > 0,$$

$$\left|\frac{d\varepsilon}{dz}\right| = \frac{1}{\sigma_{x}},$$

$$p_{z}(z) = p_{\varepsilon} \left(\frac{z - \mu_{x}}{\sigma_{x}}\right) \left|\frac{d\varepsilon}{dz}\right| = \frac{1}{\sqrt{2\pi}\sigma_{x}} \exp\left(-\frac{(z - \mu_{x})^{2}}{2\sigma_{x}^{2}}\right).$$

Архитектура VAE

Детали реализации

Проблема: $\forall i \quad 0 < \pmb{\sigma}_{xi}^2 \ll 1$ — маленькие значения могут приводить к ошибкам численных расчетов.

Решение: Использовать логарифмированное значение σ_{xi}^2 : $\log \sigma_{xi}^2 \in \mathbb{R}^M$.

Репараметризация:

$$\boldsymbol{\varepsilon}_{j} \sim \mathcal{N}(0, 1),$$

$$\boldsymbol{z}_{j} = \mu_{\boldsymbol{x}j} + \exp\left(\frac{1}{2}\log \boldsymbol{\sigma}_{\boldsymbol{x}i}^{2}\right) \boldsymbol{\varepsilon}_{j}.$$

Заключение

Сравнительный анализ методов: особенности применения (1)

Ключевые отличия:

- PCA: базовый линейный метод, идеален для анализа небольших и линейных зависимостей. Часто используется для визуализации и как отправная точка в анализе данных.
- **KPCA:** позволяет работать с нелинейной структурой данных, но требует осторожного выбора ядерной функции и гиперпараметров. Идеален для задач распознавания образов и биоинформатики.
- **АЕ:** предоставляет большую гибкость благодаря нейронным сетям. Находит применение в обработке данных и сложных задачах анализа.

Сравнительный анализ методов: особенности применения (2)

• VAE: расширяет автоэнкодеры за счет вероятностной модели, идеально подходит для задач генерации данных и анализа латентных переменных.

Дополнительно:

- Все методы обладают уникальными преимуществами и ограничениями, что делает их подходящими для разных классов задач.
- Выбор метода зависит от структуры данных, целей анализа и доступных вычислительных ресурсов.

Заключение (1)

Современные вызовы: Работа с высокоразмерными данными требует гибких и мощных инструментов.

Основные итоги:

- **Линейные методы** (например, PCA) остаются незаменимыми благодаря своей простоте и эффективности.
- **Нелинейные подходы**, такие как КРСА, открывают возможности работы с более сложными структурами данных.
- **Автоэнкодеры** обеспечивают исключительную гибкость для задач генерации данных и анализа скрытых зависимостей.

Заключение (2)

Рекомендации по выбору:

- Для интерпретируемости и быстродействия линейные методы.
- · Для работы с нелинейными структурами Kernel PCA.
- Для генерации данных автоэнкодеры и их вариации.

Вывод: Методы понижения размерности предоставляют исследователям мощный арсенал для анализа данных, повышая информативность, эффективность и удобство визуализации.