IGEE-UMBB

EE 174: Recitations set 2

1. Which of the following is a vector space?

a)
$$S = \{(x, y, z, w)/x + y - z + w = 0\}$$

b)
$$S = \{ae^x + be^{-x}/a, b \text{ real }\}$$

c)
$$S = \{(x, y, z)/x + y + z = 1\}$$

d)
$$S = \{f: R \to R / \frac{d^2f}{dx^2} + f = 0 \}$$

2. Let $v \neq \theta$ be a vector of the vector space $V(\mathcal{F})$; Show that:

(a)
$$0v = \theta$$

b)
$$\alpha v = \theta$$
 if and only if $\alpha = 0$

c)
$$\alpha v = \beta v$$
 if and only if $\alpha = \beta$

- 3. Let $V(\mathcal{R})$ be the space of real-valued functions
 - a) Is the set U of even real-valued functions a subspace?
 - b) Is the set W of odd real-valued functions a subspace?
 - c) From the fact that $f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) f(-x)]$, what can you conclude on the relationship between $V(\mathcal{R})$, U and W?
- **4.** Consider again $S = \{(x, y, z)/x + y + z = 1\}$
 - a) Is S a subpace of \mathbb{R}^3 ?
 - b) Suppose we define on S the following binary operations:

$$(x_1,y_1,z_1) + (x_2,y_2,z_2) = (x_1 + x_2 - 1,y_1 + y_2,z_1 + z_2)$$
 and $\alpha(x,y,z) = (\alpha x - \alpha + 1,\alpha y,\alpha z)$; Is S a vector space?

- c) Comment your result.
- **5**. Let S, T be subspaces of $V(\mathcal{F})$
 - a) Are \overline{S} and \overline{T} subspaces of $V(\mathcal{F})$?
 - **b)** Show that a necessary condition for $S \cup T$ to be a subspace is that one is contained in the other.

Hint: Use contradiction to show that if the condition is not satisfied, $S \cup T$ is not closed under addition.