

WORKSHOP GRATUITO EN ESPAÑOL

NLP de 0 a 100 con Hugging Face

Apúntate en eventbrite

7 SESIONES MARTES (quincenal)
DEL 13/07 AL 5/10 (18-18:40 CET)

Imparten:

- María Grandury
- Manuel Romero
- Omar Sanseviero
- Lewis Tunstall

iSÍGUENOS!

- @ NLP_en_ES
- @ Spain_Al_

Enlaces útiles

@nlp-en-es/nlp-de-cero-a-cien

#nlp-de-cero-a-cien

playlist: NLP de 0 a 100 con

@spain ai

@nlp en es

@company/spainai

@company/nlp-en-es

spain-ai.com

nlp-en-es.org

Sobre Lewis Tunstall @_lewtun

huggingface.co/course/

NLP with Transformers

Plan de ataque

Conceptos básicos

- → la diferencia entre los Transformers encoders y decoders
- → ejemplos populares de decoders
- → diferentes estrategias de "decoding" o generación de textos

Aplicación

- → generación de textos con un GPT-2 español
- → Google Colab link

Encoder-decoder: el transformer original, T5, M2M100, ...

Encoder-based: BERT, DistilBERT, RoBERTa ...

Decoder-based: GPT-1/2/3, CTRL, GPT Neo, GPT-6J-B, ...

Self-attention para encoders y decoders

Un ejemplo famoso

SYSTEM PROMPT
(HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES) The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them — they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that

Una gran variedad de aplicaciones

GitHub Copilot

Una gran variedad de aplicaciones

```
#!/usr/bin/env ts-node

import { fetch } from "fetch-h2";

// Determine whether the sentiment of text is positive

// Use a web service

async function isPositive(text: string): Promise<boolean> {

const response = await fetch(`http://text-processing.com/api/sentiment/`, {

method: "POST",

body: `text=${text}`,

headers: {

"Content-Type": "application/x-www-form-urlencoded",
};

// );

const json = await response.json();

return json.label === "pos";

Posploy

Reploy
```

GitHub Copilot

Google's Meena

¿Cómo generan los decoders el texto?

¿Cómo generan los decoder el texto?

combinar el token
original y la predicción
para producir un
nuevo "prompt"

My

name

el próximo token
más probable
P(is | My name)

¿Cómo generan los decoder el texto?

Estrategias de generación de textos

¿Cómo predice el modelo el siguiente token?

logits del modelo de lenguaje para cada token

distribución de probabilidad sobre el siguiente token w_i $P(y_t = w_i | y_{< t}, \mathbf{x}) = \operatorname{softmax}(z_{t,i})$

Estrategias de generación de textos

¿Cómo predice el modelo el siguiente token?

logits del modelo de lenguaje para cada token

distribución de probabilidad sobre el siguiente token w_i

$$P(y_t = w_i | y_{< t}, \mathbf{x}) = \operatorname{softmax}(z_{t, i})$$

búsqueda de la secuencia global más probable

$$\widehat{\mathbf{y}} = \underset{y_t}{\operatorname{argmax}} P(y_t | y_{< t}, \mathbf{x})$$

- → algoritmos greedy ("greedy search decoding")
- → "beam search" decoding
- "temperatura" y sampling

Los decoders también crean tensores de features

Cada palabra se representa como un vector

Pero las palabras sólo pueden ver las de la izquierda

Masked self-attention oculta los valores de contexto de la derecha

¡Hora de programar!

