1)

#14

- a) $\forall x \in \mathbb{Q}, x^3 \in \mathbb{Q}$
- b) True.

Suppose x is any particular but arbitrarily chosen rational number.

By definition of rational number, $x = \frac{a}{b}$, where a and b are some integers such that $b \neq 0$.

By substitution, $x^3 = \left(\frac{a}{b}\right)^3 = \frac{a.a.a}{b.b.b} = \frac{a^3}{b^3}$, where both a^3 and b^3 are integers since integers are closed under multiplication of integers and

since b \neq 0, then by zero product property, b³ \neq 0

Since both a^3 and b^3 are integers and $b^3 \neq 0$,

 \therefore x³ is a rational number.

#18

If r and s are any two rational numbers, then $\frac{r+s}{2}$ is rational.

TRUE

Suppose r and s are any two particular but arbitrarily chosen rational numbers.

By definition of rational number, $r = \frac{a}{b}$ and $s = \frac{c}{d}$, where a, b, c, and d are some integers such that $b \neq 0$ and $d \neq 0$.

$$\frac{r+s}{2} = \frac{\frac{a}{b} + \frac{c}{d}}{2}, by substitution$$

$$= \frac{\frac{d}{d} \cdot \frac{a}{b} + \frac{b}{b} \cdot \frac{c}{d}}{2}, by multiplicative identity$$

$$= \frac{\frac{ad}{db} + \frac{bc}{bd}}{2}, by algebra$$

$$= \frac{\frac{ad}{bd} + \frac{bc}{bd}}{2}, by commutativity$$

$$= \frac{\frac{ad+bc}{bd}}{2}, by algebra$$

$$= \frac{ad+bc}{2bd}, by algebra$$

By zero product property, $bd \neq 0$.

Let q = 2bd, where q is an integer as integers are closed under multiplication of integers and p = ad+bc, where p is an integer as integers are closed under multiplication and addition of integers.

 $\frac{r+s}{2} = \frac{p}{q}$, where p and q are integers

By definition of a rational number,

 $\therefore \frac{r+s}{2}$ is a rational number.

2)

#32

< ×	Suppose on and I are any particular but arbitrarily chosen odd integers for R a Polymonial P(r) where x is any real number and $P(x) = (x-x)(x-x)$
	By def of odd integery $g_1 = 2k+1$ $g = 2m+1$ for some integers $k \leq m$.
	P(x) = (x - 2) (x - 2)
	$= x^2 - (x+8)x + 948$, by Algebra
	= χ^2 = $(2k+1+2m+1) \times + (2k+1)(2m+1)$, By substitution
	= $x^2 - (2k+2m+2) \times + 4km + 2k + 2m + 1$, by Algebra
	$= x^2 - (2(k+m+1))x + 2(2km+k+m)+1 $ By Factoring out 2
	Lat t= k+m+/ & n = 2km + k+m
	then smu, k,m,1,2 are interes &
	integers are closed under multiplication L. addition.
	Hence, t & n are where
-	$(2(0)+1) x^2 - (2t)x + (2n+1)$, by whotherem
7.	by definition of odd, coefficient of x2 &
	constant coefficient are odd.
.^.	By sefinition of even, coefficial of x is even.

\$	Suppose 91 and 8 are any obstitute but arbitrarily thosen even integers for R a Polynamial P(x) $= (x-9)(x-3)$
	By def of old integer on = 2k s = 2m for some integer k & m.
	P(x) = (x-5) (x =3) = x ² - (x+8) x + 54 , by Algebra
	= χ^2 = $(2k+2m) \times + (2k)(2m)$, By substitution = χ^2 = $(2k+2m) \times + 4km$, By Algebra
	$= x^2 - (2(e+m))x + 2(2km)$ By Factowing out 2
	Let t=k+m & n=2km then snu, k,m, 2 are interes & integers and closed under multiplication b. addition. Hence, t & n are integers
=	$=(2(0)+1)x^2-(2t)x+(2n)$, by substitution
7.	by definition of odd, coefficient of xe is odd
.^.	By seforition of even, coefficient of x and the constant are even.

Suppose 91 and 8 are any sparticular but arbitrarily chosen integers for k a Polymonial P(x) where x is any real number and P(x) = (x-y)(x-z), such that x is odd x is even By def of old integer n = 2k+1 for some interes 1 = 2m kdm. P(x) = (x-n)(x-3) $= \times^2 - (91+8) \times + 948$, by Algebra = χ^2 - (2k+1+2m) x + (2k+1)(2m) , By substitution = $x^2 - (2k+2m+1)x + 4km + 2m$ by Algebra = $x^2 - (2(k+m)+1)x + 2(2em+m)$, By Findborns out 2 Let t= k+m & n = 2km + m then smu, k, m, 2 one sites & integers are closed under multiplication Laddition. Hence, t & n are where $=(2(0+1) \times^2 - (2t+1) \times + (2n)$, by whothtustim i. By definition of odd, coefficient of x2 & coefficient of x are odd By selevition of even, another cofficent is even. (b) 1283 is an odd integer and 255 is also an odd integu. However, in all 3 possible call ig odd-even coffirmt, sisused in (a) above does not include a conclusion where both consent coefficit & coefficient of linear variable x of all odd at the Jame time / in the same one. Hence, # it is not possible to Uparet x2-1253x + 255 as a product of 2 polynamils, some that is not possible in any case

of bured above in (a).

#36

The given proof just randomly chooses 2 rational numbers that work perfectly to give a rational number on addition, but doesn't generalize the case to all rational numbers which was asked in the statement initially. We are supposed to choose 2 particular but arbitrarily chosen rational numbers and not any two specific numbers. A proof should be universal, that is, it should hold for all possible values of r and s.