# **Project: Forecasting Sales**

## Step 1: Plan Your Analysis

1. Does the dataset meet the criteria of a time series dataset?

In order for a dataset to meet the criteria of a time series dataset the dataset have the following characteristics:

- The dataset series is spread over a continuous time interval this dataset meets this characteristic given the data are spread over the period from Jan 2008 through September 2013
- b. The dataset has sequential measurement across the interval this dataset shows monthly sales across the entire interval
- c. The dataset has equal spacing between every two consecutive measurements this dataset has a one-month time interval between every measurement
- d. Every time unit within the interval has at most one datapoint this dataset has monthly sales data present for every month
- 2. Which records should be used as the holdout sample?

Since we were asked to forecast the next four months of sales we will withhold the following four months' data as the sample:

- a. June 2013
- b. July 2013
- c. August 2013
- d. September 2013

## Step 2: Determine Trend, Seasonal, and Error components

- 1. What are the trend, seasonality, and error of the time series?
  - a. Seasonal plots show peaks and valleys for seasonality with a gradual increase over time indicating use of a multiplicative component.
  - b. Trend plot shows a linear relationship and therefore this will indicate an additive component being utilized.
  - c. Given that the remainder (error) plot shows a significant amount of variation over time a multiplicative component will be used.



Figure 1: Trend, Seasonal and Error Plots

# Step 3: Build your Models

- 1. What are the model terms for ETS? Explain why you chose those terms.
  - a. Describe the in-sample errors. Use at least RMSE and MASE when examining results

The terms for the ETS model are M,A,M as describe above given the associated decomposition plot. Additionally, a dampened and non-dampened ETS model with a 4-period holdout sample was created.

#### ETS (M,A,M) non-Dampened



Figure 2: ETS (M,A,M) Non-Dampened

## In-sample error measures:

| ME           | RMSE          | MAE          | MPE        | MAPE       | MASE     | ACF1      |
|--------------|---------------|--------------|------------|------------|----------|-----------|
| 2818.2731122 | 32992.7261011 | 25546.503798 | -0.3778444 | 10.9094683 | 0.372685 | 0.0661496 |

#### Information criteria:

| AIC       | AICc      | BIC       |
|-----------|-----------|-----------|
| 1639.7367 | 1652.7579 | 1676.7012 |

Figure 3: Sample Errors Non-Dampened ETS (M,A,M)

### Actual and Forecast Values:

| Actu  | al ETS_ | _VideoDemand_ | _MAM   |
|-------|---------|---------------|--------|
| 27100 | 00      | 248063        | .01908 |
| 32900 | 00      | 351306.       | 93837  |
| 40100 | 00      | 471888        | 58168  |
| 55300 | 00      | 67915         | 4.7895 |

## Accuracy Measures:

| Model               | ME        | RMSE     | MAE      | MPE     | MAPE    | MASE   | NA |
|---------------------|-----------|----------|----------|---------|---------|--------|----|
| ETS_VideoDemand_MAM | -49103.33 | 74101.16 | 60571.82 | -9.7018 | 13.9337 | 1.0066 | NA |

Figure 4: Actual vs. Forecasted (non-dampened)

The non-dampened ETS (M,A,M) model gives us an AIC of 1639.7, RMSE (root mean squared error) of 74101.16, and a MASE (mean average scaled error) of 1.01.

## ETS (M,A,M) Dampened



Figure 5:ETS (M,A,M) Dampened

## In-sample error measures:

| ME          | RMSE          | MAE           | MPE       | MAPE       | MASE      | ACF1      |
|-------------|---------------|---------------|-----------|------------|-----------|-----------|
| 5597.130809 | 33153.5267713 | 25194.3638912 | 0.1087234 | 10.3793021 | 0.3675478 | 0.0456277 |

## Information criteria:



Figure 6: Sample Errors Dampened ETS (M,A,M)

#### Actual and Forecast Values:

| Actual | ETS_VideoDemand_MAM_damp |
|--------|--------------------------|
| 271000 | 255966.17855             |
| 329000 | 350001.90227             |
| 401000 | 456886.11249             |
| 553000 | 656414.09775             |

#### Accuracy Measures:

| Model                    | ME        | RMSE     | MAE      | MPE     | MAPE    | MASE   | NA |
|--------------------------|-----------|----------|----------|---------|---------|--------|----|
| ETS_VideoDemand_MAM_damp | -41317.07 | 60176.47 | 48833.98 | -8.3683 | 11.1421 | 0.8116 | NA |

Figure 7: Actual vs. Forecasted (dampened)

The dampened ETS (M,A,M) model gives us an AIC of 1639.5, RMSE (root mean squared error) of 60176.5, and a MASE (mean absolute scaled error) of .817

Comparing the forecast values and accuracy measures from both the dampened ETS model and the non-dampened ETS model we see that the dampened model gives better accuracy against the holdout sample. In particular, given a lower mean absolute scaled error when we measure performance against the holdout sample for the dampened ETS of .8116 versus 1.0066 of the non-dampened model we should choose the ETS (M,A,M) Dampened model.



Figure 8: Alteryx ETS Model Workflow

2. What are the model terms for ARIMA? Explain why you chose those terms. Graph the Auto-Correlation Function (ACF) and Partial Autocorrelation Function Plots (PACF) for

the time series and seasonal component and use these graphs to justify choosing your model terms.

We know form our initial time series plot in figure 1 that the series is not stationary. The ACF and PACF plots are shown below are without differencing. We can see the time series and seasonal component's ACF shows high correlation and the PACF shows a significant lag at period 13. This is due to a seasonal effect



Figure 9: ACF/PACF no differencing plots

Next a seasonal difference is taken and the results shown below. We see in the time series plot that the series is still not stationary. And again, there is high correlation in the ACF plot, but this time we see that the high correlation in the PACF plot is gone.



Figure 10: Seasonal difference time series plot



Figure 11: ACF/PACF seasonal differencing plots

Continuing on, we complete a seasonal first difference. The ACF plot no longer shows the strong correlation and all the significant lags are smoothened and we see a stationary time series plot. There will be no further need for differencing.



Figure 12: ACF/PACF seasonal first difference plots



Figure 13: Seasonal first difference time series plot

Given the ARIMA model ARIMA(p,d,q)(P,D,Q)m, we should follow 0, 1, 1 for the non-seasonal components and 0, 1, 0 for the seasonal components with 12 periods giving us the following notation ARIMA (0,1,1)(0,1,0)12 due to lag -1 being negative.

a. Describe the in-sample errors. Use at least RMSE and MASE when examining results

The Root Mean Squared Error of the model is 36761.53 and the Mean Absolute Squared Error is .3646 and is at an acceptable level being less than one.

## In-sample error measures:



Figure 14: Measure of in-sample errors

b. Regraph ACF and PACF for both the Time Series and Seasonal Difference and include these graphs in your answer.

# Plots



Figure 15: ACF/PACF of ARIMA model

## Step 4: Forecast

| Actual | Actual and Forecast Values: |                |  |  |  |
|--------|-----------------------------|----------------|--|--|--|
| Actual | Video_ARIMA                 | Video_ETS_damp |  |  |  |
| 271000 | 263228.48013                | 255966.17855   |  |  |  |
| 329000 | 316228.48013                | 350001.90227   |  |  |  |
| 401000 | 372228.48013                | 456886.11249   |  |  |  |
| 553000 | 493228.48013                | 656414.09775   |  |  |  |

### Accuracy Measures:

| Model          | ME        | RMSE     | MAE      | MPE     | MAPE    | MASE   | NA |
|----------------|-----------|----------|----------|---------|---------|--------|----|
| Video_ARIMA    | 27271.52  | 33999.79 | 27271.52 | 6.1833  | 6.1833  | 0.4532 | NA |
| Video_ETS_damp | -41317.07 | 60176.47 | 48833.98 | -8.3683 | 11.1421 | 0.8116 | NA |

Figure 16: Model Comparison (In-sample errors and accuracy measures)

- Which model did you choose? Justify your answer by showing: in-sample error
  measurements and forecast error measurements against the holdout sample.
  Given the model comparison above, I chose to the ARIMA (0,1,1)(0,1,0)12 model over
  the dampened ETS model. The ARIMA model gave higher accuracy predicting monthly
  sales for the holdout samples. It also had a lower RMSE and a MASE that was much
  lower than the ETS model.
- 2. What is the forecast for the next four periods? Graph the results using 95% and 80% confidence intervals.

The table below represents the forecast for the next four periods including the 95% and 80% confidence intervals. Also included is a zoomed in version of the forecast including confidence intervals.

| Period 🔽 | Sub_Period 🔽 | forecast 💌 | forecast_high_95 | forecast_high_80 < | forecast_low_80 < | forecast_low_95 |
|----------|--------------|------------|------------------|--------------------|-------------------|-----------------|
| 6        | 10           | 754854.5   | 834046.2159      | 806635.166         | 703073.7541       | 675662.7041     |
| 6        | 11           | 785854.5   | 879377.7531      | 847006.0545        | 724702.8656       | 692331.167      |
| 6        | 12           | 684854.5   | 790787.8282      | 754120.5664        | 615588.3537       | 578921.0919     |
| 7        | 1            | 687854.5   | 804889.2866      | 764379.4199        | 611329.5002       | 570819.6335     |

Figure 17: Forecast Table next four periods



Figure 18: Forecast Graphic next four periods

#### Workflows:



Figure 19: Complete Workflow



Figure 20: ETS Workflow