

PRÉ-RELATÓRIO DE ELETRÔNICA 1

Laboratório 2 - Retificadores de Meia Onda

Franciellen Thurler Freire Allemão Sergio Pedro Rodrigues Oliveira Victor Hugo Queiroz

27 outubro 2023

SUMÁRIO

1	OBJETIVO	1
_	PREPARATÓRIO 2.1 Retificador de meia onda sem capacitor na saída	2
	2.2 Retificador de meia onda com capacitor na saída	5
3	BIBLIOGRAFIA	6

LISTA DE FIGURAS

1	Circuito com resistor (R_L) de 47 K	2
	Gráfico da tensão de entrada e saída do circuito com resistor (R_L) de $47K$	
3	Circuito com resistor (R_L) de $4,7K$	3
4	Gráfico da tensão de entrada e saída do circuito com resistor (R_L) de 4,7 K	3

1 OBJETIVO

Familiarizar-se com as aplicações básicas dos diodos de junção. Especificamente implementar e obter resultados experimentais do retificador de meia onda com e sem capacitor de saída.

2 PREPARATÓRIO

2.1 Retificador de meia onda sem capacitor na saída

i. Tensões de entrada e saída comparar com as simulações.

Figure 1: Circuito com resistor (R_L) de 47K.

Figure 2: Gráfico da tensão de entrada e saída do circuito com resistor (R_L) de 47K.

Figure 3: Circuito com resistor (R_L) de 4,7K.

Figure 4: Gráfico da tensão de entrada e saída do circuito com resistor (R_L) de 4,7K.

ii. Cálculo da tensão média na saída.

$$V_{M\acute{e}d} = (V_M - V_K) \cdot (0,318) \tag{1}$$

$$V_{M\acute{e}d} = (21, 21 - 0, 70) \cdot (0, 318) \tag{2}$$

$$V_{M\acute{e}d} = 6,52V \tag{3}$$

- iii. Cálculo da potência média de deverá dissipar a resistência da saída nos casos:
- 1. $R_L = 4.7k\Omega$
- 2. $R_L = 47k\Omega$
- iv. Qual é a tensão de pico inversa (PIV) suportada pelo diodo 1N4148, indicada pelo fabricante?

A tensão de pico inversa do diodo (PIV ou PRV - Peak Reverse Voltage) é de grande importância nos projetos de retificação. Esta é a tensão máxima nominal do diodo que não deve ser ultrapassada na região de polarização reversa.

Segundo o fabricante (Anexo 1) a tensão de pico inversa (PIV ou PRV) do diodo 1N4148 é de 100V.

2.2 Retificador de meia onda com capacitor na saída

- i. Pesquisar como aproximar e calcular o valor de tensão pico-a-pico da ondulação (Ripple), em função de:
- Tensão de pico de entrada (V_m) ;
- Resistencia de saída (R_L) ;
- Capacitor de saída (C_L) .
- ii. Cálculo o valor númerico da ondulação de pico-a-pico, nos casos $R_L=4.7k\Omega$ e $R_L=47k\Omega$. Comparar com os valores simulados no LTSpice.

3 BIBLIOGRAFIA