- 1. Use a truth table to check whether the statement $(P \text{ AND } Q) \implies R$ is equivalent to the statement $P \implies (Q \implies R)$.
- 2. **PODASIP:** For all integers $a, b \in \mathbb{Z}$, $a \mid b \implies a \leq b$.
- 3. **PODASIP:** For any sets S and T: $(S \cap T = \emptyset)$ AND $(S \cup T = T) \implies S = \emptyset$.
- 4. For each linear diophantine equation below, do the following:
 - (a) Determine whether it has a solution in \mathbb{Z}^2 .
 - (b) Find one solution.
 - (c) Describe the set of all solutions;
 - (d) Describe all solutions in *positive* integers.

$$18x + 5y = 48\tag{1}$$

$$14x + 35y = 93\tag{2}$$

- 5. Show that there are infinitely many primes in \mathbb{Z} of the form 4k+3.
- 6. Describe the chain of reasoning that takes one from basic properties of \mathbb{Z} to the Fundamental Theorem of Arithmetic (aka, Unique Factorization Theorem).
- 7. True/False & Explain: For each statement below, state whether it is true or false and give a convincing reason.
 - (a) $\forall x, y \in \mathbb{Q}$, $\exists z \in \mathbb{Q}$ s.t. x < z < y.
 - (b) $\exists z \in \mathbb{Q} \text{ s.t. } \forall x, y \in \mathbb{Q}, \ x < z < y$
 - (c) $\exists y \in \mathbb{Z} \text{ s.t. } x + y = x \ \forall x \in \mathbb{Z} .$
 - (d) $\exists y \in \mathbb{Z} \text{ s.t. } \forall x \in \mathbb{Z}, \ x + y = 0.$
- 8. Explain what is wrong with the following proof attempt:

We want to show that $a \mid b \text{ AND } b \mid c \implies a \mid c$. Suppose by way of contradiction that the statement was false, so a|b and b|c, but $a \nmid b$. But we see immediately that $3 \mid 6$ and $6 \mid 12$, while $3 \mid 12$, contradiction. Therefore, the original statement must be true.