PSpice Guidance (Additional)

Objectives

- Finding β of a Transistor
- Simulate Frequency Response of a CE Amplifier
- Simulate Frequency Response of a CC Amplifier

Finding β of the transistor (1)

• Input the circuit schematic below.

Finding β of the transistor (2)

- To obtain the family of characteristics in one simulation, pull down the 'Analysis' window, select 'Setup..' check the 'DC sweep' option and input the variable as 'Vce' with the desired range.
- Use the 'Nested sweep' option to set the *base current* steps, IB. Thus for each value of IB (0, 5, 10.....40 <u>u</u>A), VCE is swept from 0 to 10 V.
- Calculate the d.c. current gain, beta (also known as h_{FE}) at $I_c \sim 5$ mA.
 - * The unit 'µA' is represented by 'uA' in PSpice.

Simulate Frequency Response of a CE Amplifier (1)

 Use the PSPICE AC analysis function obtain the gain and phase frequency response for this amplifier from 10Hz to 10 GHz and find the 3dB point.

Simulate Frequency Response of a CE Amplifier (2)

• Input the circuit schematic below.

Simulate Frequency Response of a CE Amplifier (3)

- To provide a power supply to the circuit use the "Battery" source from the *PSPICE* library and set it to a 10V value.
- For a sine wave signal source (used for simulating the Vin), use a Vac= 0.02(V)
- To obtain the gain and phase frequency response plots for this circuit you must run "AC ANALYSIS". To get best results for your plots set the AC Analysis Limits as follows:

Simulate Frequency Response of a CE Amplifier (4)

- Through PSpice simulation, you need to obtain Five curves:
- 1. Vin
- 2. Vout
- 3. $dB(V(Vout/Vin)) = 20log10(Vout/Vin) = A_V (assume Vin = 0.02v)$
- 4. P(V(Vout)) = phase of Vout
- 5. $P(V(V_{in})) = phase of V_{in}$

- Add two markers of 'vphase' to measure the phase of input voltage and output voltage.
- Click 'Simulate'. The plots of phases of input voltage and output voltage are shown at first. Chose 'Add Y Axis' to add Y Axis and chose 'Add Trace' to add other plots.

Simulate Frequency Response of a CE Amplifier (5)

Simulate Frequency Response of a CE Amplifier (6)

• Use 'toggle cursor' to obtain the 3dB points at the curve of voltage gain A_V in dB.

Simulate Frequency Response of a CC Amplifier (1)

 Use the PSPICE AC analysis function obtain the gain and phase frequency response for this amplifier from 10Hz to 10 GHz and find the 3dB point.

• Follow the same procedure as the CE amplifier in the simulation.

Simulate Frequency Response of a CC Amplifier (2)

• Input the circuit schematic below.

Simulate Frequency Response of a CC Amplifier (3)

- For a sine wave signal source (used for simulating the Vin), use a Vac= 1 (V)
- Follow the same procedure like CE amplifier to check 'AC Sweep' and set the 'Analysis' limits.
- Chose 'Add Y Axis' to add Y Axis and chose 'Add Trace' to add other plots.
- Use 'toggle cursor' to obtain the 3dB points at the curve of voltage gain A_V in dB.

Simulate Frequency Response of a CC Amplifier (4)

- Through PSpice simulation, you need to obtain Five curves:
- 1. Vin
- 2. Vout
- 3. $dB(V(V_{out})) = 20log10(V_{out}/V_{in}) = A_v (assume V_{in} = 1v)$
- 4. P(V(Vout)) = phase of Vout
- 5. $P(V(V_{in})) = phase of V_{in}$

Simulate Frequency Response of a CC Amplifier (5)

