Linear Mixed-Effects Models (aka Statistics III)

Bernd Figner

b.figner@psych.ru.nl

Week 7: March 24, 2014

1

Today: A mixed bag

- · Some clarifications, rules of thumb, et al
- Finishing up multilevel perspective (FMF ch. 19)
 - growth-curve models
 - covariance structures
- Project presentations 1: Hannah's project
- · Generalized mixed models: Overview
 - binary data
 - proportions ("summarized binary data")
 - counts
- · glmer example: intertemporal choices

In-Class Exam

- · Multiple-choice format
- Compared to take-home exam, stronger focus on more theoretical aspects
- But practical aspects also relevant (e.g., R syntax, reading/understanding outputs, etc)
- · Relevant content: All materials
 - Classes: slides, example R scripts, ...
 - Mandatory literature/reading

3

Questions regarding home-work or other things?

Some Tips and Clarifications

Unload a specific library

detach("package:nlme", unload=TRUE)

Centering and scaling

- (a) When I said **center** I meant subtracting the mean scale(IV, center = TRUE, scale = FALSE)
- (b) When I said **scale** I meant subtracting the mean AND dividing by the SD!

scale(IV, center = TRUE, scale = TRUE)

5

Rules of thumb

How complex can my model be?

- For each parameter in your model: at least 10-20 observations (rows of data)
- Also depends on how "informative" DV is (e.g., continuous vs. binary)

Random intercepts

- At least 5 different levels necessary, otherwise R cannot estimate variance properly
- What if < 5? (for example 4 different face stimuli)
- → Add as fixed effect

Multilevel Models FMF book chapter 19

7

A Three-Level Hierarchy Level School n School 1 School 2 3 2 Child 2 Child Child Child Child Child Child Child Child 3 Child Child Child Child Child Child Child Child 4 Child Child Child Child Child Child Child Child 5 Child Child Child Child Child Child Child Child 7 Child Child Child Child Child 8 Child

Common Multilevel Procedure

First Step

- Determine dependency of observations in the data
 - "Baseline" model versus "null" model comparison
 - Intraclass correlation coefficient (ICC)
- Determine appropriate random effects structure
 - LRTs for random effects
 - Information criteria (e.g., AIC, BIC, DIC)
- → Data-driven model-selection stage
- → FMF: start with simple model, increase complexity

Second Step

· Use resulting model for inference about fixed effects

9

Two Views

Until last week

- Repeated measures and mixed-model perspective
- → Non-independence assumed based on theoretical reasons and/or study design
- → No reason to test it, we just model it

Multilevel perspective

- · With nested/hierarchical data...
- ...dependence not always clear based on theoretical/ study-design reasons
- Use data to estimate (in)dependence

Ime4 versus nime

nime is predecessor of Ime4 (same developers)

- Ime4: faster, more flexible, bootMer makes bootstrapping easy, ...
- nlme: summary() gives p values; different covariance structures to choose from

Recommendation: Ime4, unless good reasons to use nlme

- Specific covariance structure

11

Multilevel Models FMF book chapter 19

Unfinished Business

- → Covariance Structures
- → Growth-curve models

Covariance Structures

nlme → possible to specify specific covariance structures lme4 → not possible in the same way; often not necessary

Available covariance structures in nlme

- Variance components (aka "independence model")
 - Random effects are independent with similar variances

Diagonal

Random effects are independent with different variances

→ same in Ime4

(1|group) + (0+IV1|group) + (0+IV2|group) etc

• AR(1): First-Order Autoregressive

- Random effects are related with data points closer in time being more similar than those distant in time
- Variances of random effects are similar
- → For example for longitudinal data

→ Not possible in Ime4, but

- not necessarily a problem
- there might be other ways to achieve something similar (but not trivial in any case)

THUS: main reason to use nlme, if you need autoregressive covariance structures!

Unstructured

- Covariances and variances of random effects are "unpredictable"
- I.e., they are estimated from the data
- →That's what Ime4 does by default and is also most common for models with random intercepts and slopes

nlme has more (co)variance options (ARMA, ...)

→ see ?corClasses after loading library nlme

To summarize

- nlme has more options to model specific (co)variance structures than lme4
- for most applications, however, lme4 does fine and has many advantages over nlme
- BUT: for data with autocorrelated residuals and no crossed random effects, it might be worth using nlme

Some related discussion about these issues:

http://stats.stackexchange.com/questions/5344/how-to-choose-nlme-or-lme4-r-library-for-mixed-effects-models

Questions so far?

Next: Growth-curve models

17

Growth-Curve Models

Nothing too special, really...

- Repeated-measures data
- · The effect of time is of interest in itself
- For example
 - How does marriage satisfaction change over time? (FMF)
 - How does postural sway change over time? (Hannah)

_

- Effects of time can be linear, quadratic, cubic (...)
- Same idea as our linear and quadratic predictors in the valuation ratings data! → use poly()

FMF Example: Honeymoon

Happiness as function of relationship (duration) Example data in FMF book chapter: made up!

- Changes in life satisfaction as a function of duration of relationship → "honeymoon phase?"
- · Life satisfaction at time 0, plus after 6, 12, and 18 months
- Some missing data (to demonstrate that mixed models can handle that)
- Data file: Honeymoon Period.dat → on BlackBoard
- Data from only 1 person per couple!

Data structure?

- Like repeated measures
- Each participant contributes 4 data points
- Life satisfaction (0 to 10): At 0, 6, 12, 18 months
- "Person" → pp code with numbers 1 to 123
- Gender: 0/1

Difference to repeated-measures data so far?

· Of main interest: time itself, i.e., changes over time

```
hm1 <- read.delim('Honeymoon Period.dat', header = TRUE)</pre>
> hm1[1:6, 1:3]
  Person Satisfaction_Base Satisfaction_6_Months
                          6
2
       2
                          7
                                                  7
3
       3
                          4
                                                  6
4
       4
                          6
                                                  9
5
       5
                                                  7
                          6
       6
                          5
                                                 10
```

der
0
1
1
0
0
1
_

Wide format!

- Thus, need to change to long format, e.g., using melt()
- Participant code → turn into explicit factor
- · Turn Gender also into explicit factor

Then: check data, e.g., with xyplot()

- I first created an ordered factor with character entries for Time (whether it's baseline, 6, 12, or 18 months)
- Just for the plot, I also created a numeric variant (0, 6, 12, 18)

Evidence for non-linear trends?

scatterplot() from car

- Linear regression line + smoothed line (Loess)
- · Add "jitter" to better see different data points

Without jitter

scatterplot(hm2\$LifeSatisfaction ~
hm2\$num_TimeMonths, smoother = loessLine)

FMF Models: nlme

- · Using first-order autoregressive covariance structure
- Assumption: The closer 2 data points are in time, the more highly correlated
- They go again through all the steps starting with gls()
- Non-standard optimizer, as otherwise some models don't converge

NOTE: I got an error when I try to run their final model

Error in structure(res, levels = lv, names = nm, class = "factor") :
 'names' attribute [323] must be the same length as the vector [0]

→ After turning Time variable into explicitly numeric variable (0, 6, 12, 18), it worked!

Most complex FMF model

Time: linear, quadratic, cubic

polyModel<-lme(Life_Satisfaction ~ poly(Time, 3), data =
restructuredData, random = ~TimelPerson, correlation =
corAR1(0, form = ~TimelPerson), method = "ML", na.action
= na.exclude, control = list(opt="optim"))</pre>

NOTES

- · Time linear and quadratic significant, cubic not significant
- Random slope only for linear, but not quadratic and cubic Time effects!

In Ime4

- · Cannot use autoregressive covariance structure
- Otherwise equivalent model to FMF
 - create first 3 separate predictors for Time linear, quadratic, and cubic using poly() → to be able to use bootMer() or Anova() for p values

```
fmf_poly_lme4 <- lmer(LifeSatisfaction ~
Time_lin + Time_quad + Time_cub + (1 + Time_lin
| Person), data = hm2, REML = FALSE)</pre>
```

Equivalent results

Time linear and quadratic significant, cubic not

Fully Maximal Model?

- Random slopes for linear, quadratic, and cubic Time?
- · Not possible...

number of observations (=438) <= number of random effects (=460) for term (1 + Time_lin + Time_quad + Time_cub | Person); the random-effects parameters and the residual variance (or scale parameter) are probably unidentifiable

Too complex for data

- → Same case as with 1 observation per factor combination (4 data points per participant!)
- → Need to simplify, e.g., remove cubic effect; ...
- → see Barr et al. advice and my BB example R script

End of multi-level part

FMF book chapter: 2 more data sets

- "Labcoat Leni's Real Research:" Lap dancer data
 → Miller et al. (2007).dat
- "Smart Alex's tasks:" Exercise in children
 → Hill et al. (2007).dat → Nice example!

Data are on BlackBoard; as are example scripts how I would analyze those data

 Honeymoon data and my respective example R script: also on BlackBoard

Questions? Comments?

Hannah's Presentation

therafter:
Generalized linear mixed models (GLMMs)
BOLKER/Jaeger

Generalized Linear Mixed Models glmer()

35

- So far: Imer → DV
 - Continuous (more or less)
 - Normally distributed
- · Not all our DVs are like that:
 - Binary data (e.g., SS vs. LL in intertemp. choice)
 → logistic models
 - Proportions (e.g., proportion correct responses);
 summarized binary responses
 - → binomial models
 - Counts (how often does something occur?)
 - → often Poisson models

Generalized Linear Mixed Models Non-normal, i.e., categorical data

- Binary $(0/1) \rightarrow logistic \rightarrow family = binomial$
- Proportions (= summed 0/1) → family = binomial
- Counts → family = Poisson
- [More than 2 categories → multinomial mixed models]

37

ANOVA with such data?

- · Jaeger (2008): VERY BAD IDEA!!
- · yes, even after transformation

Sometimes a bit of a grey zone

- DV: very normal and continuous; no "stacking up" of values at either end of scale
- → Treating it as continuous often ok
- → Try gaussian and generalized model → see which model better predicts data (e.g., plot DV versus fitted)

Bolker et al. (2009)

- → Bolker page: http://glmm.wikidot.com/ and http://glmm.wikidot.com/ faq
- → Not the easiest paper, but touches upon several important aspects
- Ecology/evolution → some translations
 - "Block" → grouping variable (for us: participants)
 - "Covariate" → continuous predictor
 - "Sample size" → number of observations (number of rows in data frame)
- Highlights how challenging GLMMs can be...

39

Challenging GLMM World...

- Different estimation procedures
 - Pseudo-/Penalized Quasilikelihood
 - Laplace approximation
 - Gauss-Hermite quadrature
- Different ways to get p values
 - Wald Z, Wald Chisquare, Wald t, LRT
 - plus Bootstrapping: bootMer() and PBmodcomp()
- GLMMs = active area of research
 - Few established guidelines (e.g., model diagnostics)
 - Less ready-made commands than for other models

Jaeger (2008)

- Using ANOVA for proportions (or even binary responses): still widespread (still today!)
- Can lead to misleading results even after transformations
- Independent observations → generalized linear models: qlm()
- "Grouped errors" → generalized linear mixed-effects models: qlmer() in Ime4

41

glmer()

 How does Ime4 know that it should do a generalized model?

```
glmer(DV ~ IV1 + IV2+ (1 + IV1|group),
family=binomial, data = ..., control =
glmerControl(...)
```

Different families, most typical ones:

- logistic and proportions → binomial
- Counts → poisson

glmer()

 You can also specify different link functions → same as for glm()

```
glmer(DV ~ IV1 + IV2+ (1 + IV1|group),
family=binomial(link = "logit"), data =
..., control = glmerControl(...))
```

43

Non-convergence quite frequent...

Increasing number of iterations

```
glmer(..., control = glmerControl(optCtrl =
list(maxfun = 1000000))
```

- Try different optimizers
 - bobyqa
 - Nelder Mead
 - optimx from package optimx

bobyqa

```
glmer(..., control = glmerControl(optCtrl
= list(maxfun = 1000000), optimizer =
"bobyqa"))
```

· Nelder Mead

```
glmer(..., control = glmerControl(optCtrl
= list(maxfun = 1000000), optimizer =
"Nelder_Mead"))
```

Nelder_Mead AND bobyqa

```
glmer(..., control = glmerControl(optCtrl
= list(maxfun = 1000000), optimizer =
c("Nelder_Mead", "bobyqa"))
```

45

optimx: a bit more complicated

install.packages("optimx")
library(optimx)

· Without increasing number of iterations

```
glmer(..., control =
glmerControl(optimizer = 'optimx',
optCtrl = list(method = 'nlminb')))
```

WITH increasing number of iterations

```
glmer(..., control =
glmerControl(optimizer = 'optimx',
optCtrl = list(method = 'nlminb', maxit =
10000)))
```

Logistic GLMMs

Binary DV (0/1) → "logit transformed"

- http://en.wikipedia.org/wiki/Logit
- Values between 0 and 1 → values from large negative, over zero (logit of 0.5 is 0), to large positive
- Model computations on "logit scale"

Remember (from glm())

- Model output: on "logit scale" (e.g., the intercept)
- Back-transform to the "probability scale" (0 to 1):→ plogis()

NOTE: fitted(model) → on "probability scale"

47

Logistic models: "Less information"

- Binary → less info; compared to continuous DV
- Given same number of observations:
- Less parameters can be fit (compared to Imer)

→ More likely to get non-convergence

- → More often necessary to simplify models
 - Barr et al. (2013) steps
 - More substantial simplification: less fixed-effects (main effects, interactions), ...

How to get p values?

- summary(model) gives p values \rightarrow hooray!
- Do NOT use the p values from the summary statement (= "Wald Z tests") → not precise
- Alternatives
 - bootMer() or PBmodcomp()
 - LRTs using anova() or drop1()
 - Conditional F tests? nope, only for gaussian models
 → Anova(..., test = 'F'); KRmodcomp()
- Recommendation from worst to best: http://glmm.wikidot.com/faq

49

Example DataThe intertemporal choice task

3/24/14

NOW Trial

SS = Sooner Smaller LL = Later Larger

Today 4 Weeks

51

NOT-NOW Trial

SS = Sooner Smaller LL = Later Larger

€ 40.60 € 45.70

2 Weeks 6 Weeks

Task Design

1. Now versus not-now trials

- · Now trials: Immediate SS vs. future LL
 - today vs. 3 days
 - today vs. 14 days
 - today vs. 28 days
- · Notnow trials: Future SS vs. future LL
 - 14 vs. 17 days
 - 14 vs. 28 days
 - 14 vs. 42 days

More impatient if immediate rewards available? present-bias aka immediacy effect aka now effect

53

2. Time Difference (LL – SS)

- 3 days
- 14 days
- 28 days

More impatient if one has to wait longer?

3. Relative differences in amounts 5 different levels of differences

- ~ -20% (catch trials: SS > LL!)
- ~ 5%
- ~ 10%
- · ~ 20%
- ~ 30%
- ~ 50%
- → Exact relative differences vary around these categories ("jitter" to reduce memory effects; rounding errors)
- → Categories for graphs; exact differences for models More patient if one gets more for waiting?

55

4. SS Amount

- Range: € 16 to € 70
- (pseudo)randomly drawn from normal distribution
- · not factorially varied
- not of interest here; varied to avoid memory effects and discourage simple rule-based choice strategy
- should be included in model (nuisance variable)
- "magnitude effect:" more money → more patience

Files on BB

Data

- Raw data: ugly → needs preprocessing
- Preprocessed data → SS choice = 0; LL = 1
 catch trials removed

R scripts

- · pre-processing script
- · script for figures and glmer models

57

Some Figures

DV: 0 = SS choice; 1 = LL choice

→Mean = 'proportion of LL choice"

(1) LL choice as function of relative amount difference and time difference

with(itc4, interaction.plot(rounded_rel_Diff_Amounts,
o_TimeDiff, choice_SSO_LL1))

Show pp variability?

(1) LL choice as function of relative amount difference and participant

xyplot()

xyplot(choice_SS0_LL1 ~ rounded_rel_Diff_Amounts |
pp_code_ITC, groups = pp_code_ITC, data = itc4, type =
c('p', 'r'), auto.key = FALSE)

Use exact relative differences

xyplot(choice_SS0_LL1 ~ rel_Diff_Amounts | pp_code_ITC, groups = pp_code_ITC, data = itc4, type = c('p', 'r'), auto.key = FALSE)

Shows linear relationship in "probability space" (not logit space)

xyplot(choice_SS0_LL1 ~ rel_Diff_Amounts | pp_code_ITC, groups = pp_code_ITC, data = itc4, type = c('p', 'smooth'), auto.key = FALSE)

Not ideal, but a quick'n'dirty solution...

Some Models

Choice as a function of:

- Now/notnow
- Time difference
- · Relative Amount difference
- SS Amount (magnitude effect)
- → Now/notnow ordered factor; all other continuous (center/scale!)
- →All within-subject → random slopes

```
m2_1 <- glmer(choice_SS0_LL1 ~ o_Now_Notnow +
s_TimeDiff + s_SS_Amount + s_rel_Diff_Amounts +
(1 + o_Now_Notnow + s_TimeDiff + s_SS_Amount +
s_rel_Diff_Amounts | f_pp_code_ITC),
family=binomial(link = "logit"), data = itc4)</pre>
```

→ NOT converged!

- → more iterations (10,000,000): still not converged...
- → let's have a look at summary()

67

```
Random effects:
              Name
                                 Variance Std.Dev. Corr
Groups
 f_pp_code_ITC (Intercept)
                                 9.81445 3.1328
              o_Now_Notnow.L
                                 0.04851 0.2203
              s_TimeDiff
                                 0.58522
                                          0.7650
                                                    0.43
                                                          0.46
                                 0.07150
                                         0.2674
                                                    0.20 0.20 -0.38
              s_SS_Amount
                                          1.2583
               s_rel_Diff_Amounts 1.58327
                                                    0.67 0.68 0.26 0.77
Number of obs: 960, groups: f_pp_code_ITC, 32
Fixed effects:
                  Estimate Std. Error z value Pr(>|z|)
                    1.4077
                               0.6284
                                        2.240
                                                0.0251 *
(Intercent)
o_Now_Notnow.L
                    0.1519
                               0.1759
                                        0.864
                                                0.3879
                                      -6.487 8.78e-11 ***
s_TimeDiff
                   -1.3542
                               0.2088
s_SS_Amount
                    0.8760
                               0.1554
                                        5.636 1.74e-08 ***
                               0.3772
                                       6.926 4.34e-12 ***
s_rel_Diff_Amounts 2.6125
```

Next Steps

- Removed now/notnow random slope
 - still not converged
- Removed all random covariance terms
 - still not converged
- Different optimizer (bobyqa)
 - hooray!!
- Go back to first model, using bobyqa
 - no convergence
- Remove now/notnow random slope
 - hooray!! → my final model

69

Diagnostic Plots?

- More complicated than for Imer models
- For today, some links for the interested
- http://stats.stackexchange.com/questions/89991/usepredicted-values-with-or-without-random-part-to-plotresiduals-with-binnedpl
- http://stats.stackexchange.com/questions/63566/ unexpected-residuals-plot-of-mixed-linear-model-using-lmerlme4-package-in-r
- http://stats.stackexchange.com/questions/70783/how-toassess-the-fit-of-a-binomial-glmm-fitted-with-lme4-1-0
- http://www.r-bloggers.com/model-validation-interpreting-residual-plots/
- http://www.sagepub.com/upm-data/38503_Chapter6.pdf

Getting p values

- Anova(..., test = 'F')
 - nope, only for gaussian models
- KRmodcomp()
 - nope, only for gaussian models
- · Possible options
 - bootMer()
 - PBmodcomp()
 - drop1() or anova()

71

Results

All approaches lead to same conclusions

(although p values differ somewhat)

- Now/notnow: not significant
- Time difference: significant
- Relative Amount difference: significant
- SS Amount: significant

On BlackBoard

Course Documents→Data from lab session→Intertemp Choice: Choice Data

Raw Data

- Data: ICT_MixMod_Choices_numlet.csv
- Pre-processing script: ITC_Preprocessing_GIF_SS_LL_Dutch_22March2014.R

Preprocessed Data and script for models

- Data: ICT_stacked_reduced_forBB_22March2014a.csv
- Figures and glmer models: MixMod_ICT_GLMER_ExampleScript_23March2014a.R

73

Not Homework, but...

BlackBoard: Data sets and example scripts FMF book

- · Honeymoon data
- · Lap dancer data: Miller et al. (2007).dat
- Exercise in children: Hill et al. (2007).dat → Nice!

Hannah's data: Body sway (reduced data set!) Our own lab data

- Intertemporal choices: raw and preprocessed, with respective R scripts
- Use them to practice and get more experience!
- If possible, use example scripts only as backup if you get stuck or to compare when you are finished

Basement???

Good luck and have fun with the Take-Home Exam!!