デジタル信号処理の基礎-例題と Python による図で説く-

共立出版

正誤情報

最終更新: 2019年1月15日

	I	I	
ページ	行数, 図・表・式番号	誤	正
17	1 行目	時刻 0 のときだけ値 1 をとり, そのほかのすべて時刻	時刻 0 のときだけ値 1 をとり, そのほかのすべての時刻
43	11 行目	再帰方程式 (3.3) はつぎのよ うに	再帰方程式 (3.4) はつぎのよ うに
		$x[n]$ $\downarrow b$ $\downarrow a$ $\downarrow a$ $\downarrow a$ $\downarrow a$ $\downarrow a$	$x[n] \xrightarrow{b} \xrightarrow{b} y[n]$ $a \xrightarrow{q^1}$ $a \xrightarrow{q^1}$
44	図 3.19 (c)	(c)	(c)
45	下から7行目	入力を x[n] とし出力を y[n] と する	入力を x[n] とし出力を p[n] と する
67	図 5.2	$f(x_k) \Delta x$ $x_0 = a \qquad x_k = k\Delta x \qquad x_n = b$	$f(x_k) \Delta x$ $x_0 = a$ $x_k = a + k\Delta x$ $x_n = b$
71	下から9行目	信号処理では、(5.5) とともに その補足条件も成り立つとして 話をすすめるのがふつうである。 そのときには、フーリエ変換の 反転公式により、連続時間非周 期信号 x(t) とその逆フーリエ変 換が 1 対 1 に対応する。	ところが、信号処理でよく出てくるディリクレ関数 $\frac{\sin x}{x}$ は (5.5) を満たさない. しかし、 $\frac{\sin x}{x}$ のような 2 乗可積分 * とよばれる関数に対しても、適切な距離を導入し、区間が有限な積分の極限を考えることが知られている。ことによりフーリエ変換を定義できることが知られている。さらに、それらの関数とフーリエ変換には $1:1$ の対応がある.

ページ	行数, 図・表・式番号	誤	正
			$\int_{-\infty}^{\infty} \left f(x) \right ^2 dx < \infty \text{ obs } f(x) \text{ is}$
71	脚注追加		2乗可積分とよばれる.
77	3 行目	$\cdots = \sum_{n=-\infty}^{\infty} (ae^{-j\omega})^n = \cdots$	$\cdots = \sum_{n=0}^{\infty} \left(a e^{-j\omega} \right)^n = \cdots$
88	下から5行目	$= x[0] + x[1] + x[2]$ $\cdots + x[N-1],$	$= x[0] + x[1] + x[2] + \dots + x[N-1],$
89	下から5行目	$f(u) = a_0 + a_2 u^2 + a_4 u^4$ $\cdots + a_{N-2} u^{N-2} + \cdots$	$f(u) = a_0 + a_2 u^2 + a_4 u^4 + \dots + a_{N-2} u^{N-2} + \dots$
100	9 行目	$\sum_{n=-\infty}^{-1} \frac{a_n}{x^n} + \sum_{n=0}^{\infty} a_n x^n$	$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} \frac{b_n}{x^n}$
115	下から3行目	システムは因果であることから、 z 変換の収束領域の特徴 3 より、	システムが因果であることの 定義から,
		$H(z) = \frac{Y(z)}{X(z)}$	$H(z) = \frac{Y(z)}{X(z)}$
116	5 行目	$=\frac{30-2z^{-1}}{6-5z^{-1}+z^{-2}}=\cdots$	$=\frac{30-12z^{-1}}{6-5z^{-1}+z^{-2}}=\cdots$
116	6 行目	インパルス応答は右側系列で なければない.	インパルス応答は右側系列で なければならない.

ページ	行数, 図・表・式番号	誤	正
136	8 行目	第5章で述べたように、絶対積分可能でない関数 $x(t)$ はフーリエ変換は、同じきない、ラプラス変換は、にうな変換が、にいる。 なり、指数関数を対すのような $x(t)$ に、指数関数を対すのといる。 なり、ないのラプラス変換(s は複次 $x(t)$ のラプラス変換(s は複次 $x(t)$ のラプラス変換($x(t)$ $e^{-s\tau}$ $d\tau$ $=\int_{-\infty}^{\infty}x(\tau)e^{-(\sigma+j\omega)\tau}d\tau$ $=\int_{-\infty}^{\infty}x(\tau)e^{-\sigma\tau}$ のフーリエ変換!であることがわかる。その意換はフーリエ変換はがあることがわかる。その意換はフーリエ変換はがある。 その意力の意とがわかる。 その意力の意力の意力の意力の意力の意力の意力の意力の意力の意力の意力の意力の意力の	第5章で述べたように、絶対積分でない関数 $x(t)$ 、すなわち (5.5) を満たさない関数は、一般にはフーリエ変換をもして割に対しる。 (x) に対したなるにつれて急激に対しる。 (x) に減衰し (x) にがけた (x) にがきくなるに近がけた (x) に減衰しのであれば、かっかけた (x) をであれば、が絶対であれば、がきる。 関数 (x) ののであれば、 (x) をであれば、 (x) をであれば、 (x) をであり、 (x) をであれば、 (x) のので、 (x) をであれば、 (x) のので、 (x) をであれば、 (x) のので、 (x) をであれば、 (x) のので、 (x) を変換はであれば、 (x) のの意味で、 (x) の意味で、 (x) の。 (x) の意味で、 (x) の。 $(x$
142	下から 10 行目	が発散するので,フーリエ変 換の存在条件(5.5)が満た されず,本来の意味での	が発散するので(5.5) が満 たされず,また,本来の意味 での
151	下から4行目	$\Omega_s = \frac{2\pi}{T_s} = \frac{2\pi f_s}{f_s}$ であるので,	$\Omega_s = \frac{2\pi}{T_s} = 2\pi f_s \ \text{\ref{T}} \ $
186	3 行目	また, ω_0 は	また, ω_c は
190	図 Ex.1 (3)	$ \begin{array}{c c} 1 & x[2n] \\ \hline 0 & n \end{array} $	$ \begin{array}{ccc} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $

ページ	行数, 図・表・式番号	誤	正
191	図 Ex.7	0.250 0.125 0.000 -5 0 5 10 15	h[n] 1.00 0.50 0.25 0.00 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
		$(1) \ a_0 = \frac{1}{2} \cdot \frac{2}{2\pi} \int_0^{2\pi} t dt$	$(1) \ a_0 = \frac{2}{2\pi} \int_0^{2\pi} t dt$
193	下から1行目	$= \frac{1}{2\pi} \left[\frac{t^2}{2} \right]_0^{2\pi} = \pi.$	$= \frac{1}{\pi} \left[\frac{t^2}{2} \right]_0^{2\pi} = 2\pi.$
194	7 行目	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{1}{k} \sin(kt)$.	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{2}{k} \sin(kt)$.
194	8 行目	$a_0 = \frac{1}{2} \cdot \frac{2}{T} \int_0^T t dt = \frac{1}{T} \left[\frac{t^2}{2} \right]_0^T = \frac{T}{2}.$	$a_0 = \frac{2}{T} \int_0^T t dt = \frac{2}{T} \left[\frac{t^2}{2} \right]_0^T = T.$
		$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$	$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$
		$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$	$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$
194	10 行目	$-\frac{2\pi}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$	$-\frac{2T}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$
194	11 行目	$= \frac{2T}{2\pi kT} \int_0^T \cos\left(\frac{2\pi k}{T}t\right) dt = 0.$	$= \frac{2T}{2\pi kT} \left[\cos \left(\frac{2\pi k}{T} t \right) \right]_0^T = 0.$