

Lecture

Ai aims to make a machine that ...

Thinking Humanly

- Machine that minics how human think
- And thus acts like humans

Thinking Rationally

- Machine thinks logically or systematically
- thus acting in the best possible way.

Acting Humanly

- Machine acts like humans

Acting Pationally

- Machine acts to achive

best outcome

best decision

- Jukligent Agents -

Interaction: Agent and Environment

Agent interact with environments through Sensors and Advotors

> Environment

Fully Observable (i) one observation will get all action in the environment (afterp to infer from what agent can observe.)

Simple flex Agent

- Rectangles to denote the current internal state of the agent's decision process.
- Ovals represent the background information.

example

 $\textbf{function} \ \textbf{Reflex-Vacuum-Agent}([location, status]) \ \textbf{returns} \ \textbf{an action}$

 $\textbf{if} \ status = Dirty \ \textbf{then return} \ Suck$

else if location = A then return Right

else if location = B then return Left

> Simple flex Agent in the two-location vacuum environment

> State: A representation of a system

Agent States Sa

- > Into of the onvironment inside the agent.
 - 1) Only contain what necessary
 - 2) "Sometimes" $O_{t} = S_{t}^{n}$

Environment States Se

- > Data in the environment
 - $(1) S_{t}^{e} \neq O_{t}$
 - 2.) St usually has too many things

Model-based reflex agent

MCWOL,

1 (one)

 A_0 Action to S_0^A (state) $\longrightarrow S_1^A$

Model-based reflex agent

example

 $\textbf{function} \ \ \textbf{MODEL-BASED-REFLEX-AGENT} (\textit{percept}) \ \textbf{returns} \ \text{an action}$

persistent: state, the agent's current conception of the world state

transition_model, a description of how the next state depends on the current state and action

sensor_model, a description of how the current world state is reflected in the agent's percepts

rules, a set of condition—action rules

action, the most recent action, initially none

 $state \leftarrow \texttt{UPDATE-STATE}(state, action, percept, transition_model, sensor_model)$

 $rule \leftarrow \texttt{RULE-MATCH}(state, rules)$

 $action \leftarrow rule. Action$

return action

> A model-based reflex agent.

- > keep track of the current state of the world, using an internal model.
 - > Chooses an action in the same as the reflex agent.

Model - based, utility-based agent

- > Model based, utility based agent along with utility function preferences among states of the world.
 - > Chooses the action that looks to the best expected utility.
 - > weighted by the probability of the outcome.

Model - based, utility-based agent

Time	Agent	Environment
(zero)	S ^A ○ ←	S ^e
	S ^A	
		-loop
	$A_1 \rightarrow S_1$	
	' score	Scare = out come
	J	
	1 '11	S ₁