學號:r08942085 系級: 電機四 姓名:陳芃芝

1. (0.5%) 請比較你實作的generative model、logistic regression 的準確率。何者較佳?

	private	public
generative_v1.csv 3 days ago by r08942085 add submission details	0.84363	0.84410
logistic_v1.csv 3 days ago by r08942085 add submission details	0.84915	0.85429

logistic regression在public與private的成績都比generative model佳,雖然分數很接近但logist ic regression的準確率高一些。

2. (0.5%) 請實作特徵標準化(feature normalization)並討論其對於你的模型準確率的影響

Submission and Description	Private Score	Public Score
best_test_v1.csv a few seconds ago by r08942085 add submission details	0.86574	0.87714
best_random_forest_v8.csv 4 days ago by r08942085 add submission details	0.85763	0.87051

上圖的best_test_v2.csv以及best_rangdom_forest_v8.csv皆是使用gradientboostingclassifier,上者為資料未正規化的,下者為有資料更規劃的,然而出來的結果有點不符合我的預期,本來預期正規劃後的成績應該會比較高,因為正歸化後可以減少資料的差異性,但卻有不一樣的結果。

Submission and Description	Private Score	Public Score
logistic_test_v1.csv just now by r08942085	0.30733	0.30307
add submission details		
logistic_v1.csv 3 days ago by r08942085	0.84915	0.85429
add submission details		

但使用logistic regression就有明顯的差異,為正規化的資料使用logistic regression出來的成績只有0.3。

Submission and Description	Private Score	Public Score
generative_test_v1.csv just now by r08942085	0.84412	0.84385
add submission details 💣		
generative_v1.csv 3 days ago by r08942085	0.84363	0.84410
add submission details		

generative model正規劃前與後的差異不大,未正規劃的public score低於有正規化的一些,然private score卻高了一些,不過兩者分數是很接近的。

3. (1%) 請說明你實作的best model, 其訓練方式和準確率為何?

我的best model使用的是scikit-learn的GradientBoostingClassifier(n_estimator=75、max_depth=9、randomstate=0),準確率為private: 0.85763,public: 0.87051。

(圖中的輸出檔案名字取錯了, model是試使用gradientboosting)

best_random_forest_v8.csv	0.85763	0.87051
4 days ago by r08942085		
add submission details		

4. (3%) Refer to math problem

7東花沙 R08942085

1.
$$P(C_k) = \pi_k \quad k = 1, 2 \dots K$$

$$P(x \mid C_k) \quad k = 1, 2 \dots K \quad t = [t_1, t_2 \dots t_k]$$

$$P(x \mid C_k) \quad k = 1, 2 \dots K \quad t = [t_1, t_2 \dots t_k]$$
The probability of one data point:
$$P(x, t) = P(x \mid t) P(t) = (P(x \mid C_k) \pi_k) \left(P(x \mid C_k) \pi_k \right)^{t_k}$$

$$= \prod_{k=1}^{K} \left(P(x \mid C_k) \pi_k \right)^{t_k} \left(P(x \mid C_k) \pi_k \right)^{t_k}$$

$$= \prod_{n=1}^{K} \prod_{k=1}^{K} \left(P(x \mid C_k) \pi_k \right)^{t_k} \left(\prod_{n=1}^{K} \prod_{k=1}^{K} \left(P(x \mid C_k) \pi_k \right) \prod_{n=1}^{K} \prod_{k=1}^{K} \left(P(x \mid C_k) \pi_k \right) \prod_{n=1}^{K} \prod_{k=1}^{K} \left(P(x \mid C_k) \pi_k \right) \prod_{n=1}^{K} \prod_{k=1}^{K} \prod_{n=1}^{K} \left[\log P(x_n \mid C_k) + \log \pi_k \right] \prod_{n=1}^{K} \prod_{k=1}^{K} \prod_{n=1}^{K} \prod_{n=1}^{K}$$

2.
$$\frac{\partial \log(\det z)}{\partial \sigma_{ij}} = e_{j} z^{-1} e_{i}^{T}$$

where $E \in \mathbb{R}$ is a covariance matrix and e_j is a row vector $(e_x : e_3 = [0,0,1,...,0])$

$$\frac{2}{3} \times x^{-1} = Z$$

$$\log \det x^{-1} = \log (\det x)^{-1} = -\log \det x$$

$$\frac{\partial}{\partial X_{ij}} | \log \det X^{-1} = -\frac{\partial}{\partial X_{ij}} | \log \det X = -\frac{1}{\det X} \frac{\partial \det X}{\partial X_{ij}} = -\frac{1}{\det X} adj(X_{ji})$$

$$= -(x^{-1})_{ji} \#$$

3. problem
$$1 \rightarrow P(C_k) = \overline{v}_k$$
, $k = 1, 2 \cdots K$
problem $2 \rightarrow \frac{\partial \log (\det \Sigma)}{\partial \sigma_{ij}} = e_j \Sigma^{-1} e_i^T$

$$P(x \mid C_k) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma) = \mathcal{N}(x \mid M_k, \Sigma)$$

$$P(x \mid C_k, \Sigma)$$

Since Z is positive definite
$$\Rightarrow$$
 Freement $\stackrel{\bullet}{\Sigma}_{n}$ $\stackrel{\bullet}{\Sigma}_{n}$