TAUTOLOGY INNOVATION SCHOOL

K-Nearest Neighbors

Introduction

What is KNN?

Pros & Cons

Data for KNN

Real World Application

What is KNN?

regression

k Nearest Neighbors (KNN) เป็นหนึ่งใน algorithm ประเภท

supervised learning ที่ใช้สำหรับแก้ปัญหา classification โดยมี

หลักการทำงานค<mark>ือ การระบุประเภทของข้อมูลตัวที่สนใจ</mark>โดยพิจารณา

ข้อมูลเพื่อนบ้านที่ใกล้ที่สุด k ตัว

What is KNN?

What is KNN?

Introduction

What is KNN?

Pros & Cons

Data for KNN

Real World Application

Data for KNN

ตัวอย่างของข้อมูลที่เหมาะกับ KNN

Data for KNN

ตัวอย่างของข้อมูลที่เหมาะกับ KNN

Data for KNN

ตัวอย่างของข้อมูลที่ไม่เหมาะกับ KNN

Introduction

What is KNN?

Data for KNN

Pros & Cons

Real World
Application

Pros & Cons

LR + LOR + NN + DL => มันพิวารณา ด. สาดัญของ feetore ได้ (ผ่าน พ)

(T+RT =) Langiagn feat

no date dudon, note teature 1802 9 2 Tonaduson

ข้อดี

• เป็น algorithm ที่เรียบง่าย & ง่ายต่อการทำความเข้าใจ

ข้อเสีย

TEU fecture TITED => M

ข้อจำกัด

• การเลือกค่า k

• Curse of dimensionality (on feature 1812= model 2= 11)

Introduction

Real World Application

อ้างอิง : [2000, Sarkar & Leong] Application of K-nearest neighbors algorithm on breast cancer diagnosis problem

การจำแนกผู้ป่วยโรคมะเร็งเต้านม

โดยใช้พิจารณาจาก id ของผู้ป่วย ความ สม่ำเสมอของรูปร่างเซลล์ ความสม่ำเสมอ ของขนาดเซลล์ ความหนาของก้อนเนื้อ เป็นต้น ซึ่งเป็นข้อมูลผู้ป่วยมะเร็งเต้านม ของ Wisconsin-Madison

Real World Application

จำแนกตัวเลข 0-9 จากลายมือ

โดยพิจารณาจากรูปภาพการเขียน ตัวเลข 0-9 ของผู้เขียน 750 คน

อ้างอิง : [2014, Babu et al.] Handwritten Digit Recognition Using K-Nearest Neighbour Classifier

Introduction

K-Nearest Neighbors

KNN

KNN เป็นหนึ่งใน algorithm ประเภท supervised learning

Concept of Supervised Learning

Data ⇒ **Model** ⇒ **Prediction**

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Assumption

No Missing Features

(fecture osinura osinina)

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Real Face of the Model

KNN คือ การจำแนกประเภทของข้อมูล โดยใช้ความคล้ายคลึงกันของคุณลักษณะ (feature similarity) ในการจำแนก

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

How to Create Model (Math)

- Calculation Example
- How to Choose K

 $K = \sqrt{\eta}$

- ☐ Step 1: เลือก K
- ☐ Step 2 : วัดระยะห่างระหว่างข้อมูลของแต่ละ sample
- ☐ Step 3 : เรียงลำดับระยะทางที่ได้จากขั้นตอนที่ 2 จากน้อยไปมาก
- ☐ Step 4: หาผลลัพธ์จากเพื่อนบ้านที่ใกล้ที่สุด K ค่า และทำการ

Majority Vote

(บัเนยาหุมๆ แต่)

ตัวอย่างการคำนวณ KNN

weight	temperature	covid-19
45	39.9	yes
51	36.5	no
60	36.6	no
42	38.7	yes
44	36.5	yes

ตารางแสดงผู้ป่วยโรค covid-19

⊻ Step 1: เลือก K

☑ Step 2 : วัดระยะห่างระหว่างข้อมูลของแต่ละ sample

	weig	ht = 4	18	
ten	npera	ture	= 37.0)

1		
	1	
_	工	

2

3

4

5

	Weight (kg)	Temperature (°C)	covid-19
	45	39.9	yes
	51	36.5	no
	60	36.6	no
	42	38.7	yes
\	44	36.5	yes

Distance	ı
4.17	
3.04	
12	
6.23	
4.03	
	4.17 3.04 12 6.23

weight = 48 temperature = 37.0

$$I_{29=41717} = 41 = \sqrt{(48-45)^{2} + (37.0-39.9)^{2}}$$

$$= \sqrt{3^{2} + (-2.9)^{2}}$$

$$= \sqrt{9+8.41} = \sqrt{17.41}$$

$$I_{2} = \sqrt{(48-51)^{2} + (37-36.5)^{2}}$$

$$= \sqrt{(-3)^{2} + (0.5)^{2}} = \sqrt{9.25}$$

☑ Step 3 : เรียงลำดับระยะทางที่ได้จากขั้นตอนที่ 2 จากน้อยไปมาก

Distance
4.17
3.04
12
6.23
4.03

Distance
3.04
4.03
4.17
6.23
12

☑ Step 3 : เรียงลำดับระยะทางที่ได้จากขั้นตอนที่ 2 จากน้อยไปมาก

Weight (kg)	Temperature (°C)	covid-19		Distance	
45	39.9	yes		4.17	
51	36.5	no		3.04	
60	36.6	no		12	
42	38.7	yes		6.23	
44	36.5	yes	111111111111111111111111111111111111111	4.03	

Weight (kg)	Temperature (°C)	covid-19	Distance
51	36.5	no	3.04
44	36.5	yes	4.03
45	39.9	yes	4.17
42	38.7	yes	6.23
60	36.6	no	12

☑ Step 4 : หาผลลัพธ์จากเพื่อนบ้านที่ใกล้ที่สุด K ค่า และทำการ Majority

Vote

Weight (kg)	Temperature (°C)	covid-19	 Distance	
51	36.5	no	3.04	
44	36.5	yes	4.03	
45	39.9	yes	4.17	
42	38.7	yes	6.23	
60	36.6	no	12	

K = 3

✓ Step 4 : หาผลลัพธ์จากเพื่อนบ้านที่ใกล้ที่สุด K ค่า และทำการ Majority Vote

How to Create Model (Math)

How to Choose K

deteset -> train

How to Choose K

How to Create Model (Math)

- **✓•** Calculation Example
- **✓・** How to Choose K

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

How to Create Model (Code)

ตัวอย่าง Code สำหรับ Classification Tree

weight	temperature	covid-19
45	39.9	yes
51	36.5	no
60	36.6	no
42	38.7	yes
44	36.5	yes

ตารางแสดงผู้ป่วยโรค covid-19

How to Create Model (Code)

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 45 & 39.9 \\ 51 & 36.5 \\ 60 & 36.6 \\ 42 & 38.7 \\ 44 & 36.5 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} yes \\ no \\ no \\ yes \\ yes \end{bmatrix}$$

```
1 clf = KNeighborsClassifier(n_neighbors=3)
```

2 clf.fit(X, y)

KNeighborsClassifier(n_neighbors=3)

How to Create Model (Code)

Code for this section

Open File

Model Creation.ipynb

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

- Elbow Method
- Cross Validation

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

K-Nearest Neighbors

ТАUT ÖLOGY

Prediction

KNN คือ การจำแนกประเภทของข้อมูล โดยใช้ความคล้ายคลึงกันของคุณลักษณะ (feature similarity) ในการจำแนก

Prediction

1-Sample

Multi-Sample

Code

1-Sample

ตัวอย่างการคำนวณ $\widehat{oldsymbol{\gamma}}$

weight	temperature	
44	37.0	

$\widehat{m{y}}$	
?	

Déros Deros Deros

1-Sample

weight = 44 temperature = 37.0

	Weight (kg)	Temperature (°C)	covid-19		Distance	
I	44	36.5	yes		0.5	
	42	38.7	yes		2.62	i K
i	45	39.9	yes		3.07	
	51	36.5	no		7.02	
	60	36.6	no	ju	16.01	

(= **3**

1-Sample

weight	temperature	
44	38.0	

$\widehat{\mathbf{y}}$	
yes	

Prediction

Multi-Sample

Code

<u>ตัวอย่างการคำนวณ $\hat{\mathbf{y}}$ </u>

weight	temperature	
44	37.0	
49	38.0	
45	37.2	
52	38.7	

$\widehat{\mathbf{y}}$
?
?
?
?

weight = 44 temperature = 37.0

Weight (kg)	Temperature (°C)	covid-19		Distance
44	36.5	yes		0.5
42	38.7	yes		2.62
45	39.9	yes		3.07
51	36.5	no		7.02
60	36.6	no	je en.	16.01

K = 3

weight	temperature
44	37.0
49	38.0
45	37.2
52	38.7

ŷ
yes
?
?
?

weight = 49 temperature = 38.0

Weight (kg)	Temperature (°C)	covid-19		Distance
51	36.5	no		2.5
45	39.9	yes		4.43
44	36.5	yes		5.22
42	38.7	yes		7.03
60	36.6	no	ji en.	11.09

K = 3

weight	temperature
44	37.0
49	38.0
45	37.2
52	38.7

58

ŷ	
yes	
yes	
?	
?	

weight	temperature
44	37.0
49	38.0
45	37.2
52	38.7

$\hat{\mathbf{y}}$
yes
yes
no
no

Prediction

ตัวอย่าง code สำหรับการคำนวณ $\hat{\mathbf{y}}$

weight	temperature
44	38.0
49	37.0
45	37.2
52	38.7

$\widehat{\mathbf{y}}$
?
?
?
?

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 44 & 38.0 \\ 49 & 37.0 \\ 45 & 37.2 \\ 52 & 38.7 \end{bmatrix}$$

1 clf.predict(X)

array(['yes', 'yes', 'no', 'no'], dtype=object)

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

weight	temperature
44	38.0
49	37.0
45	37.2
52	38.7

$\hat{\mathbf{y}}$	
yes	
yes	
no	
no	

Code for this section

Open File

Model Creation.ipynb

Prediction

K-Nearest Neighbors

Al in Diagnosing Alzheimer's

- Abstract
- Why this project important?
- Who this project for?
- Alzheimer Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อวินิจฉัยโรคอัลไซเมอร์ โดยพิจารณาจากภาพ MRI ของสมอง

Why this project important?

- สามารถสร้างระบบสำหรับตรวจโรคอัลไซเมอร์ ที่ทำงานได้ตลอด 24 ชั่วโมง
- สามารถนำไปต่อยอดกับการวินิจฉัยโรคอื่น ๆ
- สามารถใช้เป็นพื้นฐานสำหรับการแพทย์
 ทางไกล
- สามารถนำไปประยุกต์ใช้กับงานที่มีลักษณะ ใกล้เคียงกันได้ เช่น การตรวจจับอาวุธใน สนามบิน

Who this project is for?

- 🛨 ผู้บริหารโรงพยาบาล
- → บุคลากรทางการแพทย์
- 🛨 นักวิเคราะห์ข้อมูล

Alzheimer Dataset

https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4class-of-images

Alzheimer Dataset

Feature

Target

• การเป็นโรคอัลไซเมอร์ (1 = เป็น, 0 = ไม่เป็น)

What we learn from this project?


```
1 classes = ['MildDemented', 'ModerateDemented', 'NonDemented', 'VeryMildDemented']
```

```
width = 176
   height = 208
   X = np.empty([0, width*height])
   y = np.empty([0, 1])
   for _class in tqdm(classes):
       img path = glob('dataset/' + class + '/*')
       for path in tqdm(img_path):
           img = Image.open(path)
10
           img = img.resize([width, height])
11
12
           img = np.array(img)
13
           img = img.reshape(1, -1)
14
           X = np.vstack([X, img])
15
           if class == 'NonDemented':
                y = np.vstack([y, False])
16
17
           else:
               y = np.vstack([y, True])
18
```


\mathbf{x}_1	x ₂	x ₃		X ₃₆₆₀₈
0.0	0.0	0.0		0.0
0.0	0.0	0.0	•••	0.0
0.0	0.0	0.0	•••	0.0
:	÷	:	٠.	:
0.0	0.0	0.0	•••	0.0

y	
1.0	
1.0	
1.0	
÷	
1.0	

X

y


```
columns = [f'pixel_{i}' for i in range(width*height)]

data = pd.DataFrame(X, columns=columns)
data['label'] = y

data.to_csv('alzheimer_dataset.csv', index=False)
```


Read Data

data = pd.read_csv('../image_to_csv/alzheimer_dataset.csv')

3 data

7 label
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
1.0
1.0
0 1.0
0 1.0
0.0

5121 rows × 36609 columns

Data Preparation

File

K-Nearest Neighbors

