I Geometrische Algorithmen

1 Bewegungsplanung bei unvollständiger Information

1.1 Ausweg aus einem Labvrinth

1.1.1 Pledge-Strategie

Input: polygonales Labyrinth L, Roboter R, Drehwinkel $\varphi \in \mathbb{R}$ Output: Ausweg aus Labyrinth falls möglich, ansonsten Endlosschleife

· While $R \in L$ gehe vorwärts, bis $R \notin L$ oder Wandkontakt gehe links der Wand, bis $R \notin L \text{ oder } \varphi = 0$

1.2 Zum Ziel in unbekannter Umgebung

1.2.1 Wanze (Bug)

- P_1,\dots,P_n disj. einf. zsh. endl. poly. Gebiete aus \mathbb{R}^2
- $\mathbf{s}, \mathbf{z} \in \mathbb{R}^2 \setminus \bigcup_{i=1}^n P_i$ R Roboter mit Position \mathbf{r}
- · While $\mathbf{r} \neq \mathbf{z}$ laufe in Richtung ${f z}$ bis ${f r}={f z}$ oder $\exists i : r \in P_i$ If $\mathbf{r} \neq \mathbf{z}$ umlaufe P_i und suche ein $\mathbf{q} \in \arg\min_{\mathbf{x} \in P_i} ||\mathbf{x} - \mathbf{z}||_2$ gehe zu \mathbf{q}

terminiert.

Universales Steuerwort: Führt für alle Startpunkte zum geg. Ziel. (ungültige Befehle werden ignoriert)

1.3 Behälterproblem (bin packing)

Maximale Füllmenge h, verteile Zahlenmenge auf möglichst wenige Behälter. NP-hart.

First fit ·

 $\begin{array}{c} \cdot B_1, \dots, B_m \leftarrow \emptyset \\ \cdot \text{ For } i = 1, \dots, m \\ \text{ Bestimme kleinstes j mit} \end{array}$ $\begin{array}{l} b_i + \sum_{b \in B_j} b \leq h \\ \text{Füge } b_i \text{ zu } B_j \text{ hinzu} \end{array}$

2-kompetitiv

Falls $k_A \leq a + c k_{min}$ für alle Eingaben, heißt A c-kompetitiv.

- Wähle Erkundungstiefen $f_i > 0$ für $i \in \mathbb{N}$
- · For i := 1 to ∞ (stoppe, wenn Tür gefunden) gehe f_i Meter die Wand entlang und zurück wechsle Laufrichtung

Legt $L=2\sum_{i=0}^n f_i+d$ zurück $(oder^{n+1})$ $L \in \Theta(n^2) = \Theta(d^2)$ Bestmöglich: 9-kompetetitiv (z.B. für $f_i = 2^i$)

1.4 Sternsuche

Gleich Türsuche, nur mit mehr als zwei Wänden (Halbgeraden). Bestmöglich: Für $f_i=(\frac{m}{m-1})^i$ ist Sternsuche c-kompetitiv mit $c:=2m(\frac{m}{m-1})^{m-1}+1<2me+1$

1.5 Suche in Polygonen

Roboter R sucht Weg in polygonalem Gebiet P mit n Ecken von \mathbf{s} nach \mathbf{z} .

Weglängen: gefunden: l, kürzest: d Strategie existiert mit $\frac{i}{d} \in O(n)$ Baum der kürzesten Wege (BkW) (Blätter sind Polygonecken)

2 Konvexe Hüllen

2.1 Dualität

$$\mathbf{x} := \begin{bmatrix} 1 \\ \bar{\mathbf{x}} \end{bmatrix}, \bar{\mathbf{x}} \in \mathbb{R}^d$$

bilden affinen Raum A^d .

$$\mathbf{u}^t\mathbf{x} := \left[\begin{array}{ccc} u_0 & u_1 & \dots & u_d \end{array} \right] \cdot \left[\begin{array}{c} 1 \\ x_1 \\ \vdots & x_d \end{array} \right] \geq 0$$

 ${\tt u}$ bezeichnet Halbraum und ${\tt x}$ einen seiner Punkte normiert $u_0 = 1$. \mathbf{u}^* ist Halbraum zu \mathbf{u} . $\mathbf{x} \in \mathbf{u}^* \Leftrightarrow \mathbf{u} \in \mathbf{x}^* \text{ (Dualität)}$

2.2 Konvexe Mengen

Verbindungsstrecke

 $\mathbf{x} := \mathbf{a}(1-t) + \mathbf{b}t, \quad t \in [0,1] \text{ wird}$ genannt ab.

 $M\subset A$ ist konvexwenn sie zu je zwei ihrer Punkte auch die Verbingungsstrecke enthält. Konvexe Hülle [M] von M ist Schnitt aller konvexen Obermengen.

Ist $M \subset A$ bilden alle Halbräume, die M enthalten, eine konvexe Menge im Dualraum.

Ist $M^* \subset A^*$ eine Halbraummenge, bilden alle Punkte, die in allen $m^* \in M^*$ enthalten sind, eine konvexe Menge im Primalraum A.

2.3 Konvexe Polyeder *P*

ist Schnitt endlich vieler Halbräume.

Rand ∂P ; Facetten darauf. Jede Facectte liegt auf Rand eines Halbraums (FHR)

P ist konvexe Hülle seiner Eckenmenge

Ist P ein konvexes Polyeder mit den Ecken $\mathbf{p}_1, \dots, \mathbf{p}_e$ und den FHRen $\mathbf{u}_1^*,\dots,\mathbf{u}_f^*$, hat die Menge $U^*:=\{\mathbf{u}^*|\mathbf{u}^*\supset P\}\subset A^*$ die Ecken $\mathbf{w}_1^*,\dots,\mathbf{w}_f^*$ und die FHRe $\mathbf{p}_1,\dots,\mathbf{p}_e.$ Dual ausgedrückt heißt

das, dass die Menge $U := \{\mathbf{u} | \mathbf{u}^* \supset P\} \subset A$ die Ecken \mathbf{w}_i

und die FHRe \mathbf{p}_i^* hat.

Polyeder P und $U\subset A$ heißen dual zueinander.

2.4 Euler: Knoten, Kanten, Facetten

v Knoten, e Kanten, f Seiten Eulers Formel: v - e + f = 2

2.5 Datenstruktur für Netze

Für jede Ecke **p**:

- · Koordinaten von **p**
- \cdot Liste von Zeigerpaaren: die ersten Zeiger im Gegenuhrzeigersinn auf alle Nachbarn von ${\bf p}$

Sind $\mathbf{p}, \mathbf{q}, \mathbf{r}$ im GUS geordnete Nachbarn einer Facette und weist der 1. Zeiger eines Paares auf q, zeigt der 2. Zeiger indirekt auf r. Er weist auf das Zeigerpaar von q

2.6 Konvexe Hülle

 $\mathit{Input:}\ P := (\mathbf{p}_1, \dots, \mathbf{p}_n) \subset A^3$ Output: [P]

- 1. Verschiebe P sodass Ursprung in P liegt
- 2. $U_4 \leftarrow \mathbf{p}_1^* \cap ... \cap \mathbf{p}_4^*$
- 3. For i = 5, ..., n
 - (falls $U_4 \subset \mathbf{p}_i^*$, markiere \mathbf{p}_i als gelöscht
 - · sonst verknüpfe p_i bidirektional mit einem Knoten von $U_4 \notin \mathbf{p}_i^*$
- 4. For $i=5,\ldots,n$
 - $V_i \leftarrow U_{i-1} \cap \mathbf{p}_i^*$
- 5. Dualisiere, verschiebe und gib $\bigcap_{\mathbf{u}\in U}\mathbf{u}^*-\mathbf{v}$ aus

3 Distanzprobleme 3.1 Voronoi-Gebiet

eines der Punkte \mathbf{p}_i ist eines der 1 dinkte \mathbf{p}_i ist $V_i = \{\mathbf{x} \in \mathbb{R}^2 | \forall j = 1, \dots, n: \|\mathbf{x} - \mathbf{p}_i\|_2 \le \|\mathbf{x} - \mathbf{p}_j\|_2\}$ V_i ist konvex da Schnitt der Halbebenen.

Voroni-Kreis (Punkte des Schnitts von drei Voronoi-Gebieten) ist leer.

3.2 Delaunay-Triangulierung

Delaunay-Triangulierung ${\cal D}(P)$ einer Punktemenge P hat Kantenmenge $\{\mathbf{p}_i\mathbf{p}_j|V_i\cap V_j \text{ ist }$ Kante des Voronoi-Diagramms V(P).

Ist der zu V(P) duale Graph. Die Gebiete von D(P) sind disjunkte Dreiecke und zerlegen die konvexe Hülle [P]

3.2.1 Eigenschaften

- 1. Umkreise der Dreiecke sind
- $2. \ Paraboloid\mbox{-}Eigenschaft:$

Sei
$$Z(x, y) = x^2 + y^2$$
.

Projiziert man den unteren Teil der konvexen Hülle $[\{egin{pmatrix} \mathbf{p}_i \ Z(\mathbf{p}_i) \end{pmatrix}|i=1,\ldots,n\}]$ orthogonal auf die xy-Ebene, erhält man D(P)

- · D(P) kann mit Konvexe Hülle und mittlerem Aufwand $O(n \log n)$ berechnet Werden
- Kanten einer Triangulierung von Q sind konvex (Tal) oder konkav (Berg), ersetze sukzessiv in konkave durch konvexe Kanten
- 3. Winkeleigenschaft: Der kleinste Winkel in jedem Viereck ist größer bei DT als bei jeder anderen Triangulierung
- 4. jeder Punkt \mathbf{p}_i ist mit nächstem Nachabarn durch Kante in D(P) verbunden \rightarrow nächste Nachbarn aller p_i können in O(n) bestimmt werden

- 5. minimale Spannbäume von P liegen auf D(P) (findbar mit Kruskal (greedy))
- 6. Rundweg um minimalen Spannbaum ist 2-kompetitiv zu kürzestem Rundweg.

II Unterteilungsalgorithmen

4 Stationäre Unterteilung für Kurven

5 bla

Das Symbol $\gamma(x, y) := \sum \gamma_{ij} x^i y^j$

III Graphen-Algorithmen

6 Flussmaximierung

Flussnetzwerk F := (G = $(V,E), q \in V, s \in V, k : V^2 \to \mathbb{R}_{>0})$ Graph zusammenhängend (für jeden Knoten ex. Weg von q zu s), $|E| \ge |V| - 1$ Fluss $f: V^2 \to \mathbb{R}$ mit

- $\begin{array}{ll} (1) & f \leq k \\ (2) & \forall x,y \in V: f(x,y) = -f(y,x) \\ (3) & \forall x \in V \setminus \{q,s\}: \sum f(x,V) := \\ & \sum_{y \in V} f(x,y) = 0 \end{array}$

Residual graph $G_f \coloneqq (V, E_f \coloneqq$ $\{e \in V^2 | f(e) < \mathring{k(e)}\})$ Residualnetz $F_f := (G_f,q,s,k_f := k-f)$

6.1 Methoden

6.1.1 Ford-Fulkerson (naiv)

solange es einen Weg $q \leadsto s$ in G_f gibt, erhöhe f maximal über diesen Weg.

6.1.2 Edmonds-Karp

=FF, erhöhen immer längs eines kürzesten Pfades in G_f

6.1.3 Präfluss-Pusch

Push(x,y)

- $\cdot \ d \leftarrow \min\{\ddot{\mathbf{u}}(x), k_f(x,y)\}$
- $\cdot \ f(x,y) \mathrel{+}{=} d$
- $\ddot{\mathbf{u}}(x) = d$
- $\ddot{\mathbf{u}}(y) += d$

Pushbar(x,y)

- $\begin{array}{l} \cdot \ x \in V \setminus \{q,s\} \\ \cdot \ \mathrm{und} \ h(x) h(y) = 1 \end{array}$
- · und $\ddot{\mathbf{u}}(x) > 0$
- \cdot und $(x,y) \in E_f$

Lift(x) ·

 $h(x) \leftarrow 1 + \min_{(x,\,y) \in E_f} h(y)$

- $\begin{array}{l} \textbf{Liftbar(x)} \\ \cdot \ x \in V \setminus \{q,s\} \\ \cdot \ \ddot{\mathbf{u}}(x) > 0 \end{array}$
- $\cdot \ h(x) \leq \min_{(x,y) \in E_f} h(x)$

Präfluss-Push:

- $\cdot \text{ for all } x,y \in V$
- · h(x) ← if x = q then |V| else 0
- $f(x,y) \leftarrow \text{if } x = 0$
 - q then k(x, y) else 0
- solange es eine erlaubte Push oder Lift-Operation gibt, führe beliebige aus

6.1.4 An-Die-Spitze Leere(x) while $\ddot{\mathbf{u}}(x) > 0$ $\text{if } i_x \leq Grad(x) \\$ if $\operatorname{pushbar}(x,n_x(i_x))$: $\operatorname{push}(x,n_x(i_x))$ sonst: $i_x += 1$

List Liste aller $x \in V \setminus \{q,s\}$ mit x vor y falls pushbar(x,y) $n_x(i) \quad (1 \le i \le Grad(x)) \text{ sind }$ Nachbarn von x (auch Gegenrichtung) i_x ist Zähler (alle $n_x(i)$ mit $i \leq i_x$ nicht pushbar)

An die Spitze · Initialisiere f und h wie bei *Präfluss-Push*

- $\cdot \ \forall x \in V: i_x \leftarrow 1$
- \cdot Generiere L

else

Lift(x)

 $i_x \leftarrow 1$

- $x \leftarrow \text{Kopf}(L)$
- · while $x \neq NIL$ $h_{alt} \leftarrow h(x)$ Leere(x)
 - Falls $h_{\,a\,l\,t} < h(x),$ setze x an Spitze von L
 - $x \leftarrow \text{Nachfolger von x in L}$

7 Zuordnungsprobleme 7.1 Paaren in bipartiten Graphen

Paare · Input: Bipartiter Graph $(L\dot{\cup}R,E)$

- $V \leftarrow L \cup R \cup \{q, s\}$
- $\cdot \ \hat{E} \leftarrow (q,L) \cup \{(x,y) \subset L \times R \mid$ $\langle x, y \rangle \in E \} \cup (R, s)$ · for all $(x, y) \in V^2$
- $k(x,y) \leftarrow 1 \text{ if } (x,y) \in \hat{E} \text{ else } 0$ f ←
- FordFulkerson $((V, \hat{E}), q, s, k)$ $P \leftarrow \{\langle x, y \rangle \in E \mid f(x, y) = 1\}$

7.2 Paaren in allgemeinen Graphen

Alternierender Weg ist maximal, wenn er nicht Teil eines längeren alternierenden Weges ist.

→ Maximale Paarung kann durch sukzessive Vergrößerung gefunden werden

7.3 Berechnung vergrößender Wege

 $\begin{tabular}{ll} \textbf{Vergr\"{o}Bernder Weg} & \cdot & Input: G \\ \end{tabular}$ und P, Output: Vergrößernder Weg für P

- · $h(x) \leftarrow 0$ wenn x frei, -1 wenn x gebunden
- Solange kein vergrößernder Pfad gefunden und gibt unutersuchte Kante $\langle x, y \rangle$ mit $h(x) \in 2\mathbb{N}_0$
- $\cdot \text{ if } h(y) = -1$
- unwichtig

7.4 Maximal gewichtete Paarungen

Berechnung möglich in $O(|V|^3)$ bzw. $O(|V| \cdot |E| \log |V|)$

8 Minimale Schnitte

 $\cdot \ \bar{G} := (V, \bar{E}), \bar{E} := \{(x, y) | \langle y, x \rangle = \}$ $\begin{array}{c} \langle x,y\rangle \in E \} \\ \cdot \ k: V^2 \to \mathbb{R}_{\geq 0}, k(x,y) := \end{array}$ if $(\langle x,y\rangle \in$ E) then $\gamma(\langle x,y\rangle)$ else 0 $x, z \in V$ beliebig Berechne maximalen Fluss $\to A := \{ y \mid \exists \text{ Pfad } x \leadsto y \text{ in } \bar{G}_f \}$ und $B := V \setminus A$ bilden minimalen xz-Schnitt $(x \in A, z \in B)$ Gewicht des Schnitts = Wert des

kleinster xz-Schnitt in G lässt sich mit Flussmaximierung in $O(|V|^4)$ berechnen (es existieren Algorithmen in

 $O(|V|^2 \log |V| + |V||E|))$

8.1 Zufällige Kontraktion

ggf. todo

 $Monte ext{-}Carlo ext{-}Algorithmus =$ stochastischer Algorithmus, kann falsche Ergebnisse Liefern Las-Vegas-Algorithmus = stoch.Algo., immer richtig

8.2 Rekursive Kontraktion

IV Optimierungsalgorithmen

9 Kleinste Kugeln

Für jede Punktmenge P ist die kleinste Kugel $K(P) \supset P$ eindeutig.

9.1 Algorithmus von Welzl

K(P,R) ist Kugel die P enthält und R auf der Oberfläche hat

Welzl · Input: $P, R \subset \mathbb{R}^d$, K(P,R) exist., P,R endlich $\cdot \text{ if } P = \emptyset \text{ or } |R| = d + 1$

 $C \leftarrow K(R)$ else wähle $\mathbf{p} \in P$ zufällig $\mathbf{C} \leftarrow \mathrm{Welzl}(P \setminus \{\mathbf{p}\}, R)$ if $\mathbf{p} \notin C$ $C \leftarrow \mathrm{Welzl}(P \setminus \{\mathbf{p}\}, R \cup \{\mathbf{p}\})$ · Gib C aus

10 Lineare **Programmierung** 10.1 Lineare Programme

LP ist

$$z(\mathbf{x}) := \mathbf{z}\mathbf{x} = \max!$$

$$A\mathbf{x} \geq \mathbf{a}$$
,

wobei $\mathbf{z}, \mathbf{x} \in \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, \mathbf{a} \in \mathbb{R}^n$, und $\mathbf{z}\mathbf{x} := \mathbf{z}^t\mathbf{x}$

d ist die Dimension des linearen Programms.

Die Ungleichungen $A\mathbf{x} > \mathbf{a}$ repräsentieren den Schnitt S von n Halbräumen, der Simplex genannt

Die Punkte $\mathbf{x} \in S$ heißen zulässig. Die Ecken von S liegen je auf d Hyperebenen (d Gleichungen des Gleichungssystems).

Simplexalgorithmus: Iterativ Ecken entlang gehen, bis z maximal.

10.2 Flussmaximierung als

maximiere Summe der ausgehenden Flüsse aus der Quelle. Gleichungen zur Flusserhaltung (je eingehende Kanten - ausgehende $Kanten = 0 \ (\ge und \le))$ Gleichungen zur Kapazitätsbeschränkung (Fluss \geq

0 und (Kapazität - Fluss) ≥ 0)

10.3 Kürzester Weg als LP Suche Weg $1 \rightsquigarrow 2$

$$\sum_{(i,j)\in E} x_{ij} \gamma_{ij} = \min!$$

$$x_{ij} \geq 0, (i,j) \in E$$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & i = 1 \\ -1 & i = 2 \\ 0 & sonst \end{cases}$$

(Ausgehende Kanten = Eingehende Kanten außer für $i \neq 1, 2$) negative Kreise \Rightarrow keine endliche Lösung. Erzwingbar durch $x_{ij} \leq 1, (i,j) \in E\ (?)$

10.4 ggf. todo 10.5 Simplexalgorithmus

 $\mathbf{y}(\mathbf{x}) = A\mathbf{x}$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n.$$

wobe
in=d+1 und $x_n=1$ Hyperebene
n $H_i:y_i(\mathbf{x})=0$ Gegeben: $A=[a_{ij}]_{i,j=1,1}^{m,n}$

Gesucht: $B = [b_{ij}]_{i,j=1,1}^{m,n}$ r=Pivotzeile, s=Pivotspalte

Austausch ·

- $b_{rs} \leftarrow \frac{1}{a_{rs}}$ $b_{rj} \leftarrow -\frac{a_{rj}}{a_{rs}}$ (Pivotzeile, $j \neq s$)
- $\begin{array}{l} \cdot \ b_{is} \leftarrow \frac{a_{is}^{irs}}{a_{rs}} (\text{Pivotspalte}, \ i \neq r) \\ \cdot \ b_{ij} \leftarrow a_{ij} \frac{a_{is}a_{rj}}{a_{rs}} \ (i \neq r, j \neq s) \end{array}$

10.6 Normalform

Jedes lin. Programm kann auf die Form

$$\mathbf{z}\mathbf{x} = \max!$$

$$A\mathbf{x} \ge 0$$

mit $\mathbf{x} = [x_1 \dots x_d \ 1]^t$ kann auf die

$$[\mathbf{c}^t c]\mathbf{y} = \max!$$

 $\mathbf{y} \ge 0$

$$[B\mathbf{b}]\mathbf{y} \ge 0$$

mit $\mathbf{y} := [y_1 \dots y_d \ 1]^t$ gebracht werden. Notation:

$$y_{d+1} = \begin{bmatrix} x_{0...d} & 1 \\ \vdots & B & \mathbf{b} \\ y_m = \\ z = \boxed{\mathbf{c}^t & c} = \max!$$

 $\mathbf{b} \geq 0$, sonst Simplex leer.

10.7 Simplexalgorithmus

Simplex · Input: \bar{A} Normalformmatrix eines lin.

Progr.
$$\bar{A} := \begin{bmatrix} A & \mathbf{a} \\ \mathbf{c}^t & c \end{bmatrix}$$

- · Solange ein $c_s > 0$
 - Falls alle $a_{is} \ge 0$ gib $c \leftarrow \infty$ aus Ende

sonst

bestimme r so, dass

$$\frac{a_r}{a_{rs}} = \max_{a_{is} < 0} \frac{a_i}{a_{is}}$$

 $\bar{A} \leftarrow \text{Austausch}(\bar{A}, r, s)$ · Gib \bar{A} aus

Die Lösung ist dann, dass alle y_i die oben an der Tabelle stehen = 0

Util

 $\cdot \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \sphericalangle (\mathbf{a}, \mathbf{b})$

Laufzeiten

ı	Kapi-	Name	Laufzeit
ı	tel		
ı	1.1	Pledge	
ı	1.2	Wanze	
ı		(Bug)	
ı	2.6	Konvexe	erw: $O(n \log n)$,
ı	Ziel-	Hülle	max: $O(n^2)$
ı	suche		
ı	6	Ford-	O(E *W) (k Wert
ı	Flüs-	Fulkerso	eines max. Flusses)
ı	se		_
ı	6	Edmonds	$O(E ^2 * V)$
ı	Flüs-	Karp	
ı	se		
ı	6	Präfluss-	$O(V ^2 * E)$
ı	Flüs-	Push	
ı	se		_
ı	6	An-Die-	$O(V ^3)$
ı	Flüs-	Spitze	
ı	se		
ı	7	Paare	$O(E \cdot$
ı			$min\{ L , R \})$
ı	7	_	$O(V \cdot E)$
ı		ßernder	
Į		Weg	
ı	8.3		$O(V ^2 \log V)$
		Schnitt	richtig mit

 $P \in \Theta(1/\log|V|)$

Welzl mittl: O(n)

Simplex erw: $O(n^2d)$, max:

langsamer als

Innere polyn.; in praxis fast

Punkte so gut wie Simplex

 $\Omega(n^{d/2})$

Ellipsoid polyn.; in praxis

Simplex

Seidel $O(\bar{d}^3d! + dnd!)$

9

10

10

10

10.5