Федеральное государственное бюджетное образовательное учреждение высшего образования Саратовский государственный технический университет имени Гагарина Ю. А.

Институт прикладных информационных технологий и коммуникаций

Отчет по практической работе №2 «Системы уравнений»

по курсу «Организация, управление, планирование и прогнозирование научных исследований»

Выполнили студенты группы мИФСТ-11: Селютин А.Д, Большелапов М.А, Зайцев Е.П.

Проверил: Кушников В.А.

Моделируемые переменные и возмущения

Исследуемые показатели

На основе выбранных ранее 15 параметрах из ГОСТ Р ИСО/МЭК 9126-2001, таких как:

- L₁(t) надежность (reliability);
- L₂(t) практичность (usability);
- L₃(t) эффективность (efficiency);
- L₄(t) сопровождаемость (faintainability);
- L₅(t) защищенность (security);
- $L_6(t)$ согласованность системы в целом (cofpliance);
- $L_7(t)$ завершенность (faturity);
- L₈(t) анализируемость (analysability);
- L₉(t) изменяемость (changeability);
- $L_{10}(t)$ стабильность (stability);
- $L_{11}(t)$ тестируемость (testability);
- $L_{12}(t)$ простота установки (installability);
- $L_{13}(t)$ устойчивость к ошибкам (faulttolerance);
- L₁₄(t) восстанавливаемость (recoverability);
- $L_{15}(t)$ понятность (understandability).

Будет производиться построение системы зависимостей.

Возмущения

Результаты комплекса мероприятий, необходимых для подержания требуемого уровня качества у программного обеспечения интеллектуальных систем, показывают, что в качестве возмущений (внешних факторов) в модели целесообразно использовать следующие показатели:

- q₁(t) опыт разработчиков программного комплекса;
- q₂(t) опыт работы эксплуатационного персонала;

- q₃(t) трудоемкость разработки программного обеспечения;
- q₄(t) курс рубля по отношению к доллару и евро, соответственно;
- $q_5(t)$ деловая репутация организации, в которой осуществляется эксплуатация программного комплекса.

Граф причинно-следственных связей

Граф причинно-следственных связей между моделируемыми переменными $L_i(t), i = \overline{1,15}$ и факторами внешней среды $q_i(t), i = \overline{1,5}$ формируется с разбитием на отдельные подграфы $G_{m_i}, i = \overline{1,15},$ каждый из которых используется при формировании соответствующего нелинейного дифференциального уравнения.

Матрица инцидентностей графа представляет собой матрицу A(|L+q|) размером 15 х 20 по числу моделируемых переменных $L_i(t), i=\overline{1,15}$ и возмущений $q_i(t), i=\overline{1,5}$.

Значения элементов этой матрицы определяются следующими выражениями:

- 1. $\forall i \leq 20, \forall j \leq 20 \ a_{ij} = +1,$ если увеличение значения переменной $L_i(t), i = \overline{1,15}$ или фактора внешней среды $q_i(t), i = \overline{1,5}$ приводит к увеличению переменной $L_i(t), i = \overline{1,15}$ или фактора внешней среды $q_i(t), i = \overline{1,5}$.
- 2. $\forall i \leq 20, \forall j \leq 20 \ a_{ij} = -1,$ если увеличение значения переменной $L_i(t), i = \overline{1,15}$ или фактора внешней среды $q_i(t), i = \overline{1,5}$ приводит к уменьшению переменной $L_i(t), i = \overline{1,15}$ или фактора внешней среды $q_i(t), i = \overline{1,5}$.
- 3. При отсутствии связи между указанными переменными и факторами $a_{ij} = 0$.

Связи графа (подграфы) причинно-следственных связей, определяющие взаимосвязи между переменными формируемой системы, приведены в

таблице 1. По горизонтали указаны исследуемые переменные, по вертикали зависимости ранее описанных переменных от других.

Значения элементов таблицы выбраны в соответствии с мнением экспертов о релевантности причинно-следственных связей, влияющих на моделируемую переменную. Эти значения могут быть изменены при внедрении разрабатываемого математического обеспечения для требуемого уровня качества программного обеспечения интеллектуальных систем на конкретном предприятии.

Таблица 1 — Матрица графа причинно-следственных связей, определяющий зависимости, влияющие на исследуемые показатели $L_i(t)$

	\mathbf{L}_1	L_2	L ₃	L ₄	L ₅	L_6	\mathbf{L}_{7}	L ₈	L ₉	L ₁₀	L_{11}	L_{12}	L ₁₃	L ₁₄	L ₁₅
L_1	0	0	0	1	1	1	0	0	0	1	0	0	1	1	0
L_2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
L ₃	0	1	0	0	0	1	0	0	1	0	0	1	1	0	1
L ₄	0	0	0	0	0	1	1	1	-1	0	1	1	1	0	1
L ₅	1	0	1	1	0	0	0	-1	-1	0	-1	0	1	0	0
L ₆	1	0	1	1	1	0	1	1	1	1	1	0	1	0	1
\mathbf{L}_7	1	0	1	1	1	1	0	1	-1	0	-1	0	0	1	0
L_8	0	0	0	1	1	1	0	0	-1	0	1	0	0	0	1
L9	0	0	0	-1	-1	-1	-1	-1	0	-1	0	-1	0	0	1
L ₁₀	1	0	1	1	1	0	0	0	-1	0	1	0	1	1	0
L ₁₁	0	0	0	1	1	0	0	1	0	1	0	0	0	0	1
L ₁₂	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0
L ₁₃	1	1	1	0	1	0	1	1	0	1	1	0	0	1	0
L_{14}	1	1	1	1	0	0	1	0	0	1	0	0	1	0	0
L ₁₅	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0
q ₁	1	0	0	0	1	1	0	0	1	0	1	1	1	0	1
q 2	1	1	1	1	1	0	0	0	0	1	0	1	1	1	1
q3	-1	0	0	0	1	1	1	1	1	0	1	1	0	1	-1
q ₄	0	-1	0	0	0	0	1	0	1	0	0	0	-1	0	0
q 5	0	1	-1	0	0	0	0	0	0	1	0	1	0	-1	1

Формирование системы дифференциальных уравнений

При формировании дифференциальных уравнений системной динамики, описывающих изменение моделируемых переменных первоначально строится граф причинно-следственных связей, каждой вершине которого ставятся в соответствие дифференциальные уравнения в виде выражений

$$\frac{dL_i(t)}{dt} = f_i(\vec{L}, \vec{q}, t), i = \overline{1, n}$$

Рассмотрим процедуру формирования уравнений системной динамики, характеризующих качество программного обеспечения.

Дифференциальное уравнение, характеризующее изменение уровня исследуемых показателей как строки матрицы графа причинно-следственных связей A(|L+q|) в общем виде будет иметь форму:

$$\frac{dL_i(t)}{dt} = \frac{1}{L_i^*} (B_i(t) - D_i(t)),$$

где $B_i(t)$ — результат произведения факторов, влияющих на темп увеличения исследуемой переменной, а $D_i(t)$ — результат произведения факторов, влияющих на темп уменьшения исследуемой переменной.

Нормировка выполняется с помощью множителя $^1/_{L_i}$ *, где $^1/_{L_i}$ *, где $^1/_{L_i}$ * максимальное значение уровня функциональных возможностей рассматриваемого программного обеспечения в выбранной числовой шкале измерений.

Ниже в таблице 2 представлены описания дифференциальных уравнений для каждой исследуемой переменной, а также изображения соответствующих подграфов, характеризующих причинно-следственные связи, влияющие на величину переменной.

Таблица 2 – Система уравнений и подграфов исследуемых переменных $L_i(t)$

Переменная	Изображение подграфа	Дифференциальное уравнение переменной
L ₁ (t) - надежность (reliability)	41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 3 1 2 3 4 5 4 4 4 4 4 4 4 4	$\frac{dL_{1}(t)}{dt} = \frac{1}{L_{1}^{*}} \left((f_{1}(L_{5}(t)) \cdot f_{2}(L_{6}(t)) \cdot f_{3}(L_{7}(t)) \right)$ $\cdot f_{4}(L_{10}(t)) \cdot f_{5}(L_{13}(t)) \cdot f_{6}(L_{14}(t)))$ $\cdot (q_{1}(t) + q_{2}(t)) - (q_{3}(t))).$
L ₂ (t) - практичность (usability)	д ₂ — — — — — — — — — — — — — — — — — — —	$\frac{dL_{2}(t)}{dt} = \frac{1}{L_{2}^{*}} \left((f_{7}(L_{3}(t)) \cdot f_{8}(L_{12}(t)) \cdot f_{9}(L_{13}(t)) \right)$ $\cdot f_{10}(L_{14}(t)) \cdot f_{11}(L_{15}(t))$ $\cdot (q_{2}(t) + q_{5}(t)) - (q_{4}(t)).$

