Graph Theory HW5

許博翔 B10902085

Teammate: 黃芊禕 B10902029

November 28, 2023

Problem 1.

 (\Rightarrow) :

Lemma 1: Let G be a graph, and G_1, G_2 be induced subgraph of G such that $V(G_1), V(G_2)$ is a partition of V(G). Then $q(G) \leq q(G_1) + q(G_2)$.

Proof: $q(G_1) + q(G_2)$ is the total number of odd components of G_1 and G_2 , which is the number of odd components after removing all edges between $V(G_1)$ and $V(G_2)$ in G. Let G be an odd component of G. It will be decomposed into several components (denote this set of components as D_C) after removing all edges between $V(G_1)$ and $V(G_2)$, since the sum of several even numbers is even, there should be at least one component in D_C whose size is odd.

 $\Rightarrow q(G) = \sum_{C \text{ is an odd component in } G} 1 \leq \sum_{C \text{ is an odd component in } G} \text{the number of odd components in } D_C = q(G_1) + q(G_2), \text{ which finishes the proof of Lemma 1.}$

Suppose that G has a matching M covering all but at most k vertices. Let U denote the induced subgraph of G of the set of vertices that are not covered by M, and $H := G \setminus U$.

By the definition, $|U| \leq k$.

By Tutte's theorem, $\forall T \subseteq V(H), q(H \setminus T) \leq |T|.$ (1)

$$\Rightarrow \forall S \subseteq V(G), \text{ let } T := S \cap H, \ q(G \setminus S) = q((H \cup U) \setminus S) = q((H \setminus S) \cup (U \setminus S)) = q((H \setminus T) \cup (U \setminus S)) \stackrel{\text{Lemma 1}}{\leq} q(H \setminus T) + q(U \setminus S) \stackrel{\text{(1)}}{\leq} |T| + q(U \setminus S) \stackrel{U \setminus S \text{ has at most } |U| \text{ components}}{\leq} |T| + |U| \leq |T| + k = |S \setminus U| + k \leq |S| + k.$$

Suppose that $\forall S \subseteq V(G)$, there is $q(G \setminus S) \leq |S| + k$.

Let *H* be a graph where $V(H) = V(G) \cup \{v_1, v_2, ..., v_k\} \ (v_1, v_2, ..., v_k \notin V(G), \text{ and } E(H) = E(G) \cup \{v_i v_j | 1 \le i < j \le k\} \cup \{u v_i | u \in V(G), 1 \le i \le k\}.$ Let $T \subseteq V(H)$, and $S = T \setminus \{v_1, v_2, ..., v_k\}.$

Case 1: $\{v_1, v_2, ..., v_k\} \subseteq T$.

$$q(H \setminus T) = q(G \setminus S) \le |S| + k = |T|.$$

Case 2: $\exists i \text{ s.t. } v_i \notin T$.

Since v_i connects to all vertices in H by definition, it connects to all vertices in $H \setminus T$, which implies $q(H \setminus T) \le 1 \le |T|$.

Therefore, $q(H \setminus T) \leq T$ always holds.

By Tutte's theorem, \exists a perfect matching M of H.

Let $M' = M \cap G$, and we can see that a vertex u is not covered by M' in $G \iff u$ matches to v_i in M for some i.

Since there is at most k vertices in G matches to $\{v_1, v_2, \ldots, v_k\}$ in M, in M' there is at most k vertices in G that are not covered, which finishes the proof.

Problem 4. By section 6.2, the vertices and the edges on the football form a planar graph.

Suppose that it contains a pentagons, b hexagons, v vertices, e edges.

By proposition 6.10, 2e = 5a + 6b.

By Euler's formula, $v - e + a + b = 2 \Rightarrow 6v - 6e + 6a + 6b = 12$.

By handshake lemma, 3v = 2e since it's a 3-regular graph.

$$6a + 6b - 2e = 4e - 6e + 6a + 6b = 6v - 6e + 6a + 6b = 12.$$

$$\Rightarrow 6a + 6b - (5a + 6b) = 12.$$

$$\Rightarrow a = 12.$$

 \therefore there are 12 pentagons.

Problem 5.

(a) If a graph is planar, we can draw it on a plane without crossing edges, and then scale the graph so that it can be put in the unit square $\{(x,y)|0 < x < 1, 0 < y < 1\}$.

Author: 許博翔 B10902085 Teammate: 黃芊禕 B10902029 Since it does not have crossing edges, after setting (0, y) = (1, y), (x, 0) = (x, 1), it still doesn't contain crossing edges. Therefore, it is toroidal.

: every planar graph is toroidal.

(b) We can draw K_7 like the following: (the points marked with the same letter are the same)

(c) Suppose the opposition that K_8 is toroidal.

$$v =$$
the number of vertices in $K_8 = 8$, $e =$ the number of edges in $K_8 = {8 \choose 2} = 28$.

If the boundary of a face contains a cycle, then the length of the cycle ≥ 3 .

Otherwise, G must be a tree (but K_8 is not).

So for all faces f, $l(f) \geq 3$.

Since each edge is counted exactly twice in the sum $\sum l(f_i)$, there is $2e = \sum l(f_i) \geq 3f$.

$$v-e+f \le v-e+\frac{2}{3}e=8-28+\frac{56}{3}=-\frac{4}{3}<0$$
, which contradicts to $v-e+f=0$ required in a toroidal graph.

Therefore, K_8 is not toroidal.

Author: 許博翔 B10902085 Teammate: 黃芊禕 B10902029