Deep learning -- Convolutional Neural Network (CNN)

Junjie Cao @ DLUT Spring 2018

Why CNN for Image?

[Zeiler, M. D., *ECCV 2014*]

Can the network be simplified by considering the properties of images?

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

The same patterns appear in different regions.

Why CNN for Image

 Subsampling the pixels will not change the object bird

We can subsample the pixels to make image smaller

Three Steps for Deep Learning

Deep Learning is so simple

Can repeat many times

Property 1

Some patterns are much smaller than the whole image

Property 2

The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Flatten

Can

repeat

many

times

A bit of history: LeNet-5

• Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

A bit of history: AlexNet

• ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Segmentation

Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

[Toshev, Szegedy 2014]

[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.

No errors

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

Minor errors

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

Somewhat related

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Image Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

All images are CC0 Public domain:

https://pixabav.com/en/luggage-antique-cat-1643010/ https://pixabav.com/en/teddv-plush-bears-cute-teddv-bear-1623436 https://pixabav.com/en/surf-wave-summer-sport-litoral-1668716/ https://pixabav.com/en/woman-female-model-portrait-adult-983967/ https://pixabav.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

1	0	0	0	0	1
0	~	0	0	~	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Those are the network parameters to be learned.

1	-1	-1
-1	1	-1
-1	-1	1
_1	1	_1

Filter 1
Matrix

Filter 2
Matrix

Property 1 Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

3

-1

1	-1	-1
-1	1	-1
-1	-1	1

Filter

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

6 x 6 image

We set stride=1 below

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

CNN – Zero Padding

1	-1	-1
-1	1	-1
-1	-1	1

Filter

0	0	0						
0	1	0	0	0	0	1		
0	0	1	0	0	1	0		
	0	0	1	1	0	0		
	1	0	0	0	1	0		
	0	1	0	0	1	0	0	
	0	0	1	0	1	0	0	
		6 \	ima	0	0	0		
6 x 6 ima ge								_

You will get another 6 x 6 images in this way

CNN – Colorful image

• 2d convolution => 3d convolution

0	0	-1	1	-1	-1	1	-1	-1
-1	1	-1	0	0	-1	3	1	-1
-1	-1	1	-1	-1	1	2	0	0

1	-1	2	-3
-2	1	0	-3
-2	-3	0	1

-2

-2

Filter 1

1						
	1	0	0	0	0	1
	0	_	0	0	1	0
	0	0	1	1	0	0
	~	0	0	0	1	0
	0	1	0	0	1	0
	0	0	1	0	1	0

Examples time:

- Input volume: 32x32x3
- 10 5x5 filters with stride 1, pad 2

Output volume size: ?

$$(32+2*2-5)/1+1 = 32$$
 spatially, so $32x32x10$

Examples time:

- Input volume: 32x32x3
- 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

```
each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760
```

Common settings:

Summary. To summarize, the Conv Layer:

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

- K = (powers of 2, e.g. 32, 64, 128, 512)
 - F = 3, S = 1, P = 1
 - F = 5, S = 1, P = 2
 - F = 5, S = 2, P = ? (whatever fits)
 - F = 1, S = 1, P = 0
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - \circ $H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

(btw, 1x1 convolution layers make perfect sense)

The brain/neuron view of CONV Layer

It's just a neuron with local connectivity...

1 number:

a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product)

The brain/neuron view of CONV Layer

- An activation map is a 28x28 sheet of neuron outputs:
 - 1. Each is connected to a small region in the input
 - 2. All of them share parameters
- "5x5 filter" -> "5x5 receptive field for each neuron"

The brain/neuron view of CONV Layer

- E.g. with 5 filters,
- CONV layer consists of neurons arranged in a 3D grid (28x28x5)
- There will be 5 different neurons all looking at the same region in the input volume

Reminder: Fully Connected Layer

- 32x32x3 image -> stretch to 3072 x 1
- Each neuron looks at the full input volume

Convolution v.s. Fully Connected

Fully-connected

CNN – Max Pooling

CNN – Max Pooling

The whole CNN

Can repeat many times

Convolution

Max Pooling

Convolution

Max Pooling

The number of the channel is the number of filters

The whole CNN

cat dog Convolution Max Pooling A new image **Fully Connected** Feedforward Convolution network Max Pooling A new image Flatten

Convolutional Neural Network

Learning: Nothing special, just gradient descent

CNN in Keras

Only modified the *network structure* and *input* format (vector -> 3-D tensor)

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

Deep Style

A Neural Algorithm of Artistic Style https://arxiv.org/abs/1508.06576

More Application: Playing Go

Black: 1

white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better.

More Application: Playing Go

Why CNN for playing Go?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

• The same patterns appear in different regions.

Why CNN for playing Go?

Subsampling the pixels will not change the object

Neural network architecture. The input to the policy network is a $\underline{19 \times 19 \times 48}$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves *k* filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

Alpha Go does not use Max Pooling

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M - (FC-RELU)*K, SOFTMAX

where N is usually up to \sim 5, M is large, $0 \le K \le 2$.

 but recent advances such as ResNet/GoogLeNet challenge this paradigm

Thanks