Step-1

Suppose, we know the values of $c_0 + c_2$, $c_0 - c_2$, $c_1 + c_3$, and $c_1 - c_3$. In order to obtain Fc, we need not calculate c_0 , c_1 , c_2 , and c_3 .

We know the following properties of the imaginary number $i = \sqrt{-1}$.

 $i^1 = i$

 $i^2 = -1$

 $i^3 = -i$

 $i^4 = 1$

We also know that if $0 \le k \le 4$, then $i^{4n+k} = i^k$

Step-2

Therefore, we have the following:

 $i^6 = i^2$

= -1

 $i^9 = i^1$

=i

Step-3

Consider the following:

$$Fc = \begin{bmatrix} c_0 + c_1 + c_2 + c_3 \\ c_0 + ic_1 + i^2c_2 + i^3c_3 \\ c_0 + i^2c_1 + i^4c_2 + i^6c_3 \\ c_0 + i^3c_1 + i^6c_2 + i^9c_3 \end{bmatrix}$$

$$= \begin{vmatrix} c_0 + c_1 + c_2 + c_3 \\ c_0 + ic_1 - 1c_2 - ic_3 \\ c_0 - 1c_1 + c_2 - 1c_3 \\ c_0 - ic_1 - c_2 + ic_3 \end{vmatrix}$$

$$= \begin{bmatrix} (c_0 + c_2) + (c_1 + c_3) \\ (c_0 - c_2) + i(c_1 - c_3) \\ (c_0 + c_2) - (c_1 + c_3) \\ (c_0 - c_2) - i(c_1 - c_3) \end{bmatrix}$$

Step-4

Thus, suppose we have the following relations:

$$c_0 + c_2 = p$$

$$c_0 - c_2 = q$$

$$c_1 + c_3 = r$$

$$c_1 - c_3 = s$$

$$Fc = \begin{bmatrix} p+r \\ q+is \\ p-r \\ q-is \end{bmatrix}$$

Then,