Problema 1: Energy Efficient Coverage Path Planning with Drones

Minimum Energy Path Planning (MEPP) Problem

O problema consiste em otimizar a rota de cobertura de um drone em um campo agrícola, levando em consideração quatro fatores que são: a elevação do terreno, os obstáculos, a amplitude das mudanças de direção feitas ao longo do caminho.

MODARES, Jalil et al. UB-ANC planner: Energy efficient coverage path planning with multiple drones. In: **2017 IEEE** international conference on robotics and automation (ICRA). IEEE, 2017. p. 6182-6189

- A área a ser coberta pelo drone é representada como um **grid** (conjunto de células, ou nós).
- Esse grid é representada como um grafo G(V, E), onde V é o **conjunto de nós** e E é o **conjunto de arestas**. $e_{ij} \in E$ denota uma aresta entre os nós i e j.
- Além disso, pode haver um conjunto de obstáculos K tal que K⊂V. Também assume-se que o drone sempre atravessa células adjacentes, portanto, o grafo será formado apenas por arestas entre células adjacentes.

- O problema consiste em encontrar o melhor plano de voo para um drone sobrevoar um campo (de cultivo). Ou seja, pretende-se calcular a rota ótima, tendo em conta que o campo precisa ser coberto inteiramente.
- Cada nó deve ser visitado exatamente uma única vez.
- O custo (energia) é proporcional à distância percorrida.

Cell size: 10m x 10m 20m x 20m

	١,		`		1/		
113	114	115	116	117	118	119	12
105	106	107	108	109	110	111	11
97	98	99	100	101	102	103	10
89	90	91	92	93	94	95	96
81	82	83	84	85	86	87	88
73	74	75	76	77	78	79	80
65	66	67	68	69	70	71	72
57	58	59	60	61	62	63	64
49	50	51	52	53	54	55	56
41	42	43	44	45	46	47	48
33	34	35	36	37	38	39	4(
25	26	27	28	29	30	31	32
17	18	19	20	21	22	23	24
9	10	11	12	13	14	15	10
1	2	3	4	5	6	7	8

V' = V - K

Rota: $1 \rightarrow 5 \rightarrow 2 \rightarrow 7 \rightarrow 8 \rightarrow 3 \rightarrow 1$

Para determinar o custo (distância) da rota, primeiro determinar o grafo de caminhos mínimos aplicando o algoritmo de **Floyd-Warshall**.

Caminho mínimo de 3 para 1: $3 \to 2 \to 1$, d(3,1) = d(3,2) + d(2,1)

Caminho mínimo de 5 para 7: $5 \rightarrow 2 \rightarrow 7$, d(5,7) = d(5,2) + d(2,7)

$$d(5,6) = d(7,6) = \infty$$

Modelo Matemático

V : conjunto de pontos (células)

K : conjunto de obstáculos

V' = V - K: conjunto de pontos a serem cobertos.

 (α_i, β_i) : coordenadas do ponto $i \in V$.

 c_{ij} = custo para atravessar a aresta e_{ij} , $i, j \in V$.

 q_{ijk} = custo associado a uma mudança de direção (ângulo \widehat{ijk}). a = ponto de partida.

Variável de Decisão:

$$x_{ij} = \begin{cases} 1, & \text{se o drone passa pela aresta } e_{ij} \\ 0, & \text{caso contrário} \end{cases}$$

Modelo Matemático

$$\min \sum_{i \in V'} \sum_{\substack{j \in V' \\ j \neq i}} c_{ij} x_{ij} + \sum_{i \in V'} \sum_{\substack{j \in V' \\ j \neq i, a}} \sum_{\substack{k \in V' \\ k \neq j}} q_{ijk} x_{ij} x_{jk}$$

O consumo de energia de um drone depende da **distância** que ele percorre e da quantidade de **conversões** realizadas.

$$s. a: \sum_{\substack{i \in V' \\ i \neq j}} x_{ij} = 1, \quad \forall i \in V'$$

$$\sum_{\substack{j \in V' \\ j \neq i}} x_{ij} = 1, \quad \forall i \in V'$$

$$u_i - u_j + |V'| x_{ij} \leq |V'| - 1, \quad \forall i, j \in V' - \{a\}, \quad i \neq j$$

$$u_i \geq 0, \ \forall i \in V'$$

$$x_{ij} \in \{0,1\}, \ \forall i, j \in V'$$

Consumo de Energia no vôo de um drone

$$c_{ij} = \begin{cases} \lambda \sqrt{(\alpha_i - \alpha_j)^2 + (\beta_i - \beta_j)^2}, & \text{if } e_{ij} \in \mathscr{E} \\ \infty, & \text{otherwise.} \end{cases} \quad \lambda = 0.1164 \text{ kJ/m}$$

$$\lambda = 0.1164 \text{ kJ/m}$$

$$r = (\alpha_i - \alpha_j)^2 + (\beta_i - \beta_j)^2,$$

$$s = (\alpha_j - \alpha_k)^2 + (\beta_j - \beta_k)^2, \text{ and }$$

$$t = (\alpha_k - \alpha_i)^2 + (\beta_k - \beta_i)^2$$

$$\theta_{ijk} = \pi - cos^{-1} \left[\frac{(r+s-t)}{\sqrt{4rs}} \right]$$
 radians.

$$q_{ijk} = \begin{cases} \gamma \frac{180}{\pi} \theta_{ijk}, & \text{if } e_{ij}, e_{jk} \in \mathscr{E} \\ \infty, & \text{otherwise.} \end{cases} \quad \gamma = 0.0173 \text{ kJ/deg}$$

$$\gamma = 0.0173 \text{ kJ/deg}$$

Referencias:

■ MODARES, Jalil et al. *UB-ANC planner: Energy efficient coverage path planning with multiple drones*. In: **2017 IEEE international conference on robotics and automation (ICRA)**. IEEE, 2017. p. 6182-6189.

https://ieeexplore.ieee.org/abstract/document/7989732

■ PIMENTEL, Sérgio Bairos. *Drone Route Optimization using Constrained Based Local Search*. 2018. **Tese de Doutorado**. https://run.unl.pt/handle/10362/59500

■ Modelo Matemático

$$\begin{aligned} & Min \ \sum_{i \in V'} \sum_{j \in V'} c_{ij} x_{ij} + \sum_{i \in V'} \sum_{j \in V'} \sum_{k \in V'} q_{ijk} x_{ij} x_{jk} \\ & s. a. \ \sum_{i \in V'} x_{ij} = 1, \qquad \forall j \in V' \\ & \sum_{j \in V'} x_{ij} = 1, \qquad \forall i \in V' \\ & \sum_{j \neq i} x_{ij} = 1, \qquad \forall i \in V' \\ & u_i - u_j + |V'| x_{ij} \leq |V'| - 1, \qquad \forall i, j \in V' - \{a\}, \qquad i \neq j \\ & u_i \geq 0, \ \forall i \in V' \\ & x_{ij} \in \{0,1\}, \ \forall i, j \in V' \end{aligned}$$

Linearização

- Se na função objetivo ou numa restrição de um modelo existe uma expressão que é produto de duas variáveis de decisão (exemplo, x.y) tem-se um modelo não-linear.
- O modelo pode ser linearizado.
- **Caso 1**: $x \ge 0$ e $y \in \{0,1\}$

Substituir o produto x.y por uma variável $u \ge 0$ (u = x.y) e adicionar as seguintes restrições no modelo:

- $u \leq M.y$,
- *u* ≤ *x*
- $u \ge x M(1 y)$
- *u* ≥ 0

M é limitante superior de x (i.e. $x \le M$)

Linearização

- Se na *função objetivo* ou numa *restrição* de um modelo existe uma expressão que é produto de duas variáveis de decisão (exemplo, *x.y*) tem-se um **modelo não-linear**.
- O modelo pode ser linearizado.
- **Caso 1**: $x \ge 0$ e $y \in \{0,1\}$

Substituir o produto x.y por uma variável $u \ge 0$ (u = x.y) e adicionar as seguintes restrições no modelo:

•
$$u \leq M.y$$
,

•
$$u \ge x - M(1 - y)$$

$$u = x.y$$

Casos:

Se
$$y = 0 \implies u = 0$$

Se
$$y = 1 \implies u = x$$

M é limitante superior de x (i.e. $x \le M$)

Linearização

Caso 2: $x \in y \in \{0,1\}$

Substituir o produto x.y por uma variável binária u (u = x.y) e adicionar as seguintes restrições no modelo:

- *u* ≤ *x*
- *u* ≤ *y*
- $u \ge x + y 1$
- $u \in \{0,1\}$

$$u = x.y$$

Casos:
Se $x = 1, y = 1 \implies u = 1$
Se $x = 1, y = 0 \implies u = 0$
Se $x = 0, y = 1 \implies u = 0$
Se $x = 0, y = 0 \implies u = 0$

Modelo Lineal

Por se tratarem de variáveis binárias, a linearização é simples. Basta substituir $y_{ijk} = x_{ij}x_{jk}$

$$f = \min \sum_{i \in V'} \sum_{\substack{j \in V' \\ j \neq i}} c_{ij} x_{ij} + \sum_{i \in V'} \sum_{\substack{j \in V' \\ j \neq i, a}} \sum_{\substack{k \in V' \\ k \neq j}} q_{ijk} y_{ijk}$$

s.a:

$$\sum_{\substack{i \in V' \\ j \neq i}} x_{ij} = 1, \forall j \in V'$$

$$\sum_{\substack{j \in V' \\ j \neq i}} x_{ij} = 1, \forall i \in V'$$

$$u_i - u_j + ||V'||x_{ij} \leq ||V'|| - 1, \forall i, j \in V' \setminus \{a\}$$

$$u_i \geq 0, \forall i \in V'$$

$$x_{ij} \in 0, 1, \forall i, j \in V'$$

$$y_{ijk} \leq x_{ij}, \forall i, j, k \in V' \setminus \{a\}$$

$$y_{ijk} \leq x_{jk}, \forall i, j, k \in V' \setminus \{a\}$$

$$y_{ijk} \geq x_{ij} + x_{jk} - 1, \forall i, j \in V'$$

Problema 2: Energy Efficient Coverage Path Planning with Drones

Considerar a capacidade dos drones.

O campo deve ser coberto utilizando mais de um drone (ou, um drone tem que fazer várias viagens).

■ Determinar as rotas para cada viagem (modelo similar ao

problema de roteamento de veículos).

 Os drones devem visitar aproximadamente o mesmo número de pontos.

O problema consiste em fazer entregas a *n* clientes utilizando uma **frota de veículos** que partem de um **depósito**.

O objetivo é determinar a rota dos veículos para fazer as entregas tal que a distância total percorrida pelos veículos seja mínima.

- Cada cliente i possui uma demanda q_i .
- Cada veículo possui uma capacidade *Q*.
- Cada cliente é visitado uma única vez.
- Respeitar a capacidade do veículo.
- Os veículos devem retornar ao depósito.

Modelagem:

- Considere os seguintes parâmetros de entrada:
- $V = \{0,1,2,...,n\}$: Conjunto de pontos (depósito e consumidores);
- c_{ij} : Custo de ligação entre os elementos i e j de V;
- q_k : Demanda do consumidor k. No caso do depósito, tem-se $q_0 = 0$;
- Q : Capacidade de cada veículos;

Variáveis de decisão:

$$x_{ij} = \begin{cases} 1, & \text{se o arco } (i, j) \text{ \'e usado} \\ 0, & \text{caso contr\'ario} \end{cases}$$

 f_{ij} = quantidade de fluxo enviada de i para j

$$Min \sum_{i=0}^{n} \sum_{j=0}^{n} c_{ij} x_{ij}$$

(1)
$$\sum_{i=0}^{n} x_{ik} = 1, \quad \forall k = 1, ..., n$$

(2)
$$\sum_{j=0}^{n} x_{kj} = 1, \quad \forall k = 1, ..., n$$

(3)
$$\sum_{j=1}^{n} x_{0j} = \sum_{i=1}^{n} x_{i0}$$

(4)
$$\sum_{i=0}^{n} f_{ik} - \sum_{j=0}^{n} f_{kj} = q_k, \quad \forall k = 1, ..., n$$

(5)
$$f_{ij} \leq Q.x_{ij} \quad \forall i, j = 0,...,n$$

 $x_{ij} \in \{0,1\}; f_{ij} \geq 0 \quad \forall i, j = 0,...,n$