04.04.2022

7В клас

Тема: Коло, вписане в трикутник. Коло, описане навколо трикутника. Розв'язування задач

1. Повторимо теоретичний матеріал:

Коло називається вписаним у трикутник, якщо воно дотикається до кожної сторони трикутника.

Теорема: В будь-який трикутник можна вписати коло і тільки одне.

Наслідок: Центр кола, вписаного в трикутник, - це точка перетину його бісектрис.

Коло називається <u>описаним</u> навколо трикутника, якщо воно проходить через всі його вершини.

Теорема: Навколо будь-якого трикутника можна описати коло і до того ж тільки одне.

Наслідок: Центр кола, описаного навколо трикутника, - це точка перетину серединних перпендикулярів його сторін.

2. Запишіть розв'язання задач в зошиті:

<u>Задача 1</u>

∆АВС – рівнобедрений.

Знайдіть $\angle AOC$, якщо $\angle ABC=40^{\circ}$

Розв'язання:

Центр описаного кола лежить на перетині серединних перпендикулярів.

∆АВС – рівнобедрений, ВК – висота і бісектриса.

$$\angle ABC=40^{0}$$

ΔΑΟВ – рівнобедрений, кути при основі рівні

$$\angle OBC = \angle OCB = 20^{0}$$

$$\angle BOC = 180^{0} - (20^{0} + 20^{0}) = 140^{0}$$

$$\angle KOC = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

Відповідь: ∠АОС=800

Задача 2

$$\triangle ABC$$
, $\angle C = 90^{\circ}$, $\angle C = 30^{\circ}$.

Радіус описаного кола дорівнює 8 см.

Знайти ВС.

Розв'язання:

Центр описаного кола навколо прямокутного трикутника лежить на середині гіпотенузи.

 ΔABC – прямокутний, $\angle C = 90^{\circ}$.

Катет, що лежить проти кута 30^{0} дорівнює половині гіпотенузи.

$$BC = \frac{1}{2}AB = \frac{1}{2} \cdot 16 = 8 \text{ cm}$$

<u>Відповідь</u>: ВС=8см

Задача 3

Доведіть, що коли центри описаного і вписаного кола збігаються, то цей трикутник рівносторонній.

Доведення:

Центр вписаного кола лежить на перетині бісектрис кутів

Центр описаного кола лежить на перетині серединних перпендикулярів.

Якщо центри кіл збігаються, це значить, що бісектриси і серединні перпендикуляри також збігаються.

А це можливо при умові, що ΔABC – рівносторонній.

Домашнє завдання:

Параграф 19 – повторити. Стор. 148, №10, 12(1) – письмово в зошиті.

Відправити на Human або електронну пошту smartolenka@gmail.com