Mathématiques et Calcul 2 - Chapitre 1

Groupe de TD numéro 10

2 février 2023

Exercice 1. Droites et plans. Barême indicatif : 2 + 2 + (0.5 + 0.5) On se place dans \mathbb{R}^3 .

- 1. Soient $u_1 = (1, 2, 3)$ et $u_2 = (-1, 0, 1)$. Donner une équation cartésienne du plan vectoriel F_1 engendré par les vecteurs u_1 et u_2 (i.e. $F_1 = \text{Vect}(u_1, u_2)$).
- 2. Soit $v_2 = (7, 4, 1)$. Donner une équation cartésienne pour la droite vectorielle F_2 portée par v_2 (i.e. $F_2 = \text{Vect}(v_2)$).
- 3. Parmis ces affirmations, lesquelles sont vraies ou fausses ? Justifiez votre réponse.
 - a) $F_2 \subset F_1$ (Rappel: $F_2 = \text{Vect}(v_2)$)
 - b) $F_1 \cap F_2 = \{0_{\mathbb{R}^3}\}$

Exercice 2. Déterminants. Barême indicatif: $1 + 2 \times 1.5 + 2 + (0.5 + 0.5)$

1. Calculer les déterminants suivants:

1.
$$\begin{vmatrix} 3 & 2 \\ 1 & -2 \end{vmatrix}$$
 2. $\begin{vmatrix} 1 & 4 & 2 \\ 0 & -3 & 1 \\ 0 & -5 & 0 \end{vmatrix}$ 3. $\begin{vmatrix} 3 & 1 & 5 \\ 1 & 0 & 2 \\ 0 & 2 & -2 \end{vmatrix}$

- 2. Déterminer les réels t pour lesquels la matrice $A_t = \begin{pmatrix} t-2 & 3 & 2 \\ 0 & t+3 & 0 \\ 2 & 5 & t+1 \end{pmatrix}$ est inversible.
- 3. Soit $u_3 = (1, 0, 1)$. En reprenant les vecteurs u_1 et u_2 définis précedemment, calculer $\det(u_1, u_2, u_3)$. Que peut-on dire de la famille (u_1, u_2, u_3) ?

Corrigé

Exercice 1. Droites et plans. Barême indicatif : 1 + 1 + 1 + (1 + 0.5)On se place dans \mathbb{R}^3

1. Soient $u_1 = (1, 2, 3)$ et $u_2 = (-1, 0, 1)$. Donner une équation cartésienne du plan vectoriel F_1 engendré par les vecteurs u_1 et u_2 (i.e. $F_1 = \text{Vect}(u_1, u_2)$).

Correction.

Méthode analytique : Afin de déterminer une équation cartésienne pour F_1 , il faut trouver a, b et c réels tels que

$$F_3 = \{(x, y, z) \in \mathbb{R}^3; ax + by + cz = 0\}$$

Puisqu'on veut que $u_1 = (1, 2, 3)$ et $u_2 = (-1, 0, 1)$ soient dans cet ensemble, il faut que le système suivant soit satisfait:

$$\begin{cases} a\times 1 + b\times 2 + c\times 3 = 0 \\ a\times -1 + b\times 0 + c\times 1 = 0 \end{cases}$$

On utilise la méthode du pivot : le système est équivalent à (L2 \leftarrow L2 + L1)

$$\begin{cases} a \times 1 + b \times 2 + c \times 3 = 0 \\ b \times + c \times 4 = 0 \end{cases}$$

$$\iff \begin{cases} a = c \\ b = -2c \end{cases}$$

On choisit c = 1, ce qui donne l'équation cartésienne

$$F_1 = \{(x, y, z) \in \mathbb{R}^3; x - 2y + z = 0\}$$

Une autre équation cartésienne est

$$F_1 = \{(x, y, z) \in \mathbb{R}^3; 2x - 4y + 2z = 0\}$$

Méthode géométrique : On utilise le produit vectoriel $w = u_1 \wedge u_2$ qui par construction est un vecteur orthogonal à u_1 et u_2 . Ici $u_1 \wedge u_2 = (2, -4, 2)$ d'où

$$F_1 = \{(x, y, z) \in \mathbb{R}^3; w \cdot (x, y, z) = 0\} = \{(x, y, z) \in \mathbb{R}^3; 2x - 4y + 2z = 0\}$$

2. Soit $v_2 = (7, 4, 1)$. Donner une équation cartésienne pour la droite vectorielle F_2 portée par v_2 (i.e. $F_2 = \text{Vect}(v_2)$).

Correction.

Méthode analytique : Afin de déterminer un système d'équation cartésienne pour F_2 , il faut trouver (a, b, c) et (a', b', c'), des vecteurs non colinéaires de \mathbb{R}^3 tels que

$$F_2 = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0 \text{ et } a'x + b'y + c'z = 0\}$$

Une méthode simple consiste à supposer à priori c=0 et a'=0 (auquel cas soit $c'\neq 0$, soit $a\neq 0$ et les vecteurs obtenus sont donc non colinéaires). Comme $v_2=(7,4,1)$ appartient à F_2 , ceci donne d'une part $7\times a+4\times b=0$, soit $a=-\frac{4}{7}b$, et donc on peut prendre b=7 et a=-4; d'autre part $4\times b'+1\times c'=0$, soit $b'=-\frac{1}{4}c'$, et donc on peut prendre c'=4 et b'=-1. On obtient au final

$$F_2 = \{(x, y, z) \in \mathbb{R}^3; -4x + 7y = 0 \text{ et } -y + 4z = 0\}.$$

Méthode géométrique : On peut tout d'abord déterminer un vecteur u orthogonal à v_2 (i.e. tel que $u \cdot v_2 = 0$). Par exemple, u = (4, -7, 0) est orthogonal à v_2 .

On utilise ensuite le produit vectoriel $w = u \wedge v_2$ qui par construction est un vecteur orthogonal à u et v_2 . Ici $u \wedge v_2 = (-7 \times 1 - 0 \times 4, 0 \times 7 - 1 \times 4, 4 \times 4 - (-7) \times 7) = (-7, -4, 65)$, d'où

$$F_2 = \{(x, y, z) \in \mathbb{R}^3; u \cdot (x, y, z) = 0 \text{ et } w \cdot (x, y, z) = 0\}$$
$$= \{(x, y, z) \in \mathbb{R}^3; 4x - 7y = 0 \text{ et } -7x - 4y + 65z = 0\}$$

3. Parmis ces affirmations, lesquelles sont vraies ou fausses? Justifiez votre réponse.

a)
$$F_2 \subset F_1$$
 (Rappel: $F_2 = \text{Vect}(v_2)$)

Correction.

Vrai. Notons que $F_2 = \text{Vect}(v_2)$. Il suffit donc de montrer que $v_2 \in F_1$ pour que cette affirmation soit vraie. A la question 1, nous avons déterminé un système d'équation cartésienne pour F_1

$$F_1 = \{(x, y, z) \in \mathbb{R}^3; 2x - 4y + 2z = 0\}$$

Or $v_2=(7,4,1)$ vérifie bien $2\times 7-4\times 4+2\times 1=0$ donc $v_2\in F_1$. On en déduit que $\lambda v_2\in F_1$ pour tout $\lambda\in\mathbb{R}$ et donc $F_2\subset F_1$.

b)
$$F_1 \cap F_2 = \{0_{\mathbb{R}^3}\}$$

Correction.

Faux. $v_2 \in F_1 \cap F_2$. En utilisant les questions 1 et 2, on détermine un système d'équation cartésienne pour $F_1 \cap F_2$.

$$F_1 \cap F_2 = \{(x, y, z) \in \mathbb{R}^3; 2x - 4y + 2z = 0 \text{ et } -4x + 7y = 0 \text{ et } -y + 4z = 0\}$$

Or $v_2 = (7, 4, 1)$ vérifie bien $2 \times 7 - 4 \times 4 + 2 \times 1 = 0$, $-4 \times 7 + 7 \times 4 = 0$ et $-1 \times 4 + 4 \times 1 = 0$. Donc $v_2 \in F_1 \cap F_2$ et comme $v_2 \neq 0_{\mathbb{R}^3}$, $F_1 \cap F_2 \neq \{0_{\mathbb{R}^3}\}$.

Exercice 2. Déterminants. Barême indicatif : $(3 \times 0.5) + 1 + 1 + (1 + 0.5)$ 1. Calculer les déterminants suivants:

1.
$$\begin{vmatrix} 3 & 2 \\ 1 & -2 \end{vmatrix}$$
 2. $\begin{vmatrix} 1 & 4 & 2 \\ 0 & -3 & 1 \\ 0 & -5 & 0 \end{vmatrix}$ 3. $\begin{vmatrix} 3 & 1 & 5 \\ 1 & 0 & 2 \\ 0 & 2 & -2 \end{vmatrix}$

Correction.

$$\begin{vmatrix} 3 & 2 \\ 1 & -2 \end{vmatrix} = -6 - 2 = -8.$$

En développant par rapport à la première colonne ou à la dernière ligne

$$\begin{vmatrix} 1 & 4 & 2 \\ 0 & -3 & 1 \\ 0 & -5 & 0 \end{vmatrix} = 1 \cdot 5 = 5$$

En remarquant que la dernière colonne C_3 s'écrit $2 \cdot (3,1,0) - (1,0,2)$, on remplace C_3 par $C_3 - 2C_1 + C_2$, le déterminant reste inchangé:

$$\begin{vmatrix} 3 & 1 & 5 \\ 1 & 0 & 2 \\ 0 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 5 - 2 \cdot 3 + 1 \\ 1 & 0 & 2 - 2 \cdot 1 + 1 \\ 0 & 2 & -2 - 2 \cdot 0 + 2 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{vmatrix} = 0$$

2. Déterminer les réels t pour lesquels la matrice $A_t = \begin{pmatrix} t-2 & 3 & 2 \\ 0 & t+3 & 0 \\ 2 & 5 & t+1 \end{pmatrix}$ est inversible.

Correction. Développons par rapport à la deuxième ligne.

$$\begin{vmatrix} t-2 & 3 & 2 \\ 0 & t+3 & 0 \\ 2 & 5 & t+1 \end{vmatrix} = (t+3) \left[(t-2)(t+1) - 4 \right] = (t+3)(t^2 - t - 6).$$

Les valeurs de t qui annulent $\det(A_t)$ sont donc -3 et les racines du polynôme du 2nd degré t^2-t-6 . Le discriminant de ce dernier vaut $1+4\cdot 6=25=5^2$. Ses racines sont

$$t_1 = \frac{1-5}{2} = -2, \quad t_2 = \frac{1+5}{2} = 3.$$

Les valeurs -3, -2 et 3 annulent le déterminant.

3. Soit $u_3 = (1,0,1)$. En reprenant les vecteurs u_1 et u_2 définis précedemment, calculer $\det(u_1,u_2,u_3)$. Que peut-on dire de la famille (u_1,u_2,u_3) ?

Correction.

$$\det(u_1, u_2, u_3) = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 0 & 0 \\ 3 & 1 & 1 \end{vmatrix}$$

Développons par rapport à la deuxième ligne.

$$\det(u_1, u_2, u_3) = -2 \cdot (-1 - 1) = 4 \neq 0$$

On en déduit que la famille (u_1, u_2, u_3) est libre.