Topics: Normal distribution, Functions of Random Variables

- 1. The time required for servicing transmissions is normally distributed with μ = 45 minutes and σ = 8 minutes. The service manager plans to have work begin on the transmission of a customer's car 10 minutes after the car is dropped off and the customer is told that the car will be ready within 1 hour from drop-off. What is the probability that the service manager cannot meet his commitment?
 - A. 0.3875
 - B. 0.2676
 - C. 0.5
 - D. 0.6987

```
P(X>50) = 1 - P(X < 50)
Z = (50-45)/8 = 0.625
Therefore, 0.267
```

Option B is the Answer

- 2. The current age (in years) of 400 clerical employees at an insurance claims processing center is normally distributed with mean μ = 38 and Standard deviation σ =6. For each statement below, please specify True/False. If false, briefly explain why.
 - A. More employees at the processing center are older than 44 than between 38 and 44.

Ans is False

Solution.

68% of the data falls within standard deviation of the mean.

B. A training program for employees under the age of 30 at the center would be expected to attract about 36 employees.

Ans is True

Solution,

Probability of people less than 30 is (30-38)/6 = 0.09 or 9% Therefore, 0.09 * 400 employees = 36 3. If $X_1 \sim N(\mu, \sigma^2)$ and $X_2 \sim N(\mu, \sigma^2)$ are *iid* normal random variables, then what is the difference between 2 X_1 and $X_1 + X_2$? Discuss both their distributions and parameters.

X = N (
$$\mu$$
1, σ 1^2)
Therefore,
2X1 = N (2 u,4 σ ^2)
X1 + x2 = N (μ + μ , σ ^2 + σ ^2) = N (2 u, 2 σ ^2)
2X1-(X1+X2) = N (4μ ,6 σ ^2)

- 4. Let $X \sim N(100, 20^2)$. Find two values, a and b, symmetric about the mean, such that the probability of the random variable taking a value between them is 0.99.
 - A. 90.5, 105.9
 - B. 80.2, 119.8
 - C. 22, 78
 - D. 48.5, 151.5
 - E. 90.1, 109.9

Probability of getting value between a and b is 0.99 Probability of not getting value between a and b is 1-0.99=0.01 Therefore, probability of left side of a = -0.005 Probability of right side of b = +0.005

$$Z = (X - \mu) / SD$$

$$X = Z * SD + \mu$$

$$a = (2.58) * 20 + 100 = 151.5$$

$$b = (-2.58) * 20 + 100 = 48.5$$
A. Therefore, answer is Option D 48.5, 151.5

- 5. Consider a company that has two different divisions. The annual profits from the two divisions are independent and have distributions $Profit_1 \sim N(5, 3^2)$ and $Profit_2 \sim N(7, 4^2)$ respectively. Both the profits are in \$ Million. Answer the following questions about the total profit of the company in Rupees. Assume that \$1 = Rs. 45
 - A. Specify a Rupee range (centered on the mean) such that it contains 95% probability for the annual profit of the company.

- B. Specify the 5th percentile of profit (in Rupees) for the company
- C. Which of the two divisions has a larger probability of making a loss in a given year?

Ans:-

- A) 95% of the data falls within two standard deviation of the mean. (540-450, 540+450)=> (90,990)
- B) 5th percentile is 202.5 million rupees
- C) Z=(X- μ)/ σ => (0-5)/3 => -1.66=0.0485. Division2 has a higher probability of making a loss.