

Outline Perkuliahan

- Terminologi Algoritma
- Struktur Dasar Algoritma
- Bentuk Penulisan Algoritma

Definisi

- Algoritma merupakan urutan langkah demi langkah yang terbatas, diskrit, memiliki instruksi yang tidak ambigu untuk memecahkan masalah tertentu
 - Memiliki data input dan diharapkan untuk menghasilkan data output
 - Setiap instruksi dapat dilakukan dalam jumlah waktu yang <u>terbatas</u> dengan cara <u>deterministik</u>

Definisi (2)

- Secara sederhana, algoritma merupakan serangkaian instruksi untuk memecahkan suatu masalah (menyelesaikan pekerjaan)
- Masalah bisa dalam bentuk apapun:
 - Bisnis
 - Dapatkan part dari Vancouver ke Ottawa besok pagi
 - Alokasikan tenaga kerja untuk memaksimalkan keuntungan
 - Hidup
 - Saya lapar. Bagaimana cara memesan pizza?
 - Jelaskan bagaimana cara mengikat tali sepatu pada anak usia 5 tahun

Definisi (3)

- Kita berurusan dengan masalah pengolahan data
- diterjemahkan ke program yang dapat dijalankan pada komputer
- Karena kita hanya bisa <u>input</u>, <u>simpan</u>, <u>proses</u> & <u>output</u> data pada komputer, instruksi dalam algoritma kita akan terbatas pada keempat fungsi ini

Representasi Algoritmik

Input

Get information Get (input command)

Storage

Store information Given/Result

Intermediates/Set

Process

Arithmetic
 Let (assignment command)

Repeat instructions Loop

Branch conditionals

Output

Give information Give (output command)

Representasi Algoritmik (2)

Deskripsi Algoritma

- Pahami masalah sebelum memecahkannya
 - Identifikasi & beri nama setiap Input (Given)
 - Identifikasi & beri nama setiap Output (Result)
 - Tetapkan nama Algoritma (Name)
 - Gabungkan ketiga bagian informasi menjadi sebuah pernyataan resmi (Definition):

Result := Name (Given)

Method

- Setelah deskripsi algoritma telah disiapkan, berikutnya adalah memecahkan masalahnya
- Kita kembangkan serangkaian instruksi (terbatas) yang ketika dijalankan akan melakukan komputasi terhadap Result yang diinginkan dari Given (Method)

Assignment Command

• Syntax

$$X = 5Y + 16$$

Sebelah kiri tanda "=" menunjukkan nama variabel, dan sebelah kanan merupakan nilai atau ekspresi.

Setiap variabel mengacu pada lokasi yang unik dalam memori komputer yang berisi nilai.

Interpretasi

Sebuah assignement dijalankan dalam dua langkah:

- 1-evaluasi ekspresi ditemukan di sisi kanan.
- 2-pengaturan nilai yang dikembalikan dalam sel memori yang sesuai dengan variabel.
- Contoh
 - Let SideSize=15
 - Let Area=SideSize*SideSize

Assignment: Mathematics VS Computer Science

Instruksi berikut adalah sama pada matematika

$$A = B$$

$$B = A$$

Tidak dalam computer science

Let A = B tidak sama dengan Let B = A

Dalam matematika kita mengenal relasi

Sebuah relasi B = A + 1 merupakan pernyataan yang selalu benar setiap saat Pada computer science, kita menggunakan assignment. Kita dapat memiliki:

$$A = 5$$

$$\mathsf{B}=\mathsf{A}+\mathsf{1}$$

$$A = 2$$

Relasi B = A + 1 bernilai benar setelah instruksi kedua dan sebelum instruksi ketiga

Assignment: Mathematics VS Computer Science

Instruksi A = A + 3 bernilai salah pada matematika.

Pada computer science, Let A = A + 3 berarti: nilai A yang baru merupakan penjumlahan antara nilai A yang lama dengan 3.

• Instruksi A + 5 = 3 diperbolehkan dalam matematika.

Let A + 5 = 3 tidak memiliki arti pada computer science karena sebelah kiri "=" haruslah nama variabel

Input Command

Syntax

Get variable

Variabel diperoleh dari Given

Interpretasi

Di sini, user harus memberikan sebuah nilai. Nilai yang diberikan, ditugaskan pada variabel.

Contoh

Get Size_Side

Output Command

Syntax

Give variable

Variabel diperoleh dari Result

Interpretasi

Nilai variabel ditampilkan.

Contoh

Give Area

Tulis algoritma untuk menemukan jumlah dari tiga bilangan yang diberikan

```
NAME
           : SUM3
GIVENS : N1, N2, N3
RESULTS : Total
DEFINITION : Total := SUM3(N1, N2, N3)
METHOD
   Get N1
   Get N2
   Get N3
   Let Total = N1 + N2 + N3
   Give Total
```


 Tulis algoritma untuk menemukan hasil dari operasi pembagian jika diberikan dua bilangan X dan Y

```
NAME : Division

GIVENS : X, Y

RESULTS : Quotient

DEFINITION: Quotient := Division(X, Y)

-----

METHOD :

Get X

Get Y

Let Quotient = X/Y

Give Quotient
```


 Tulis algoritma untuk menemukan hasil penjumlahan dan perkalian dari dua bilangan yang diberikan

```
: SumTimes
NAME
GIVENS
      :Num1, Num2
RESULTS : Total, Product
DEFINITION : Total & Product := SumTimes(Num1, Num2)
METHOD
   Get Num1
   Get Num2
   Let Total = Num1 + Num2
   Let Product = Num1 * Num2
   Give Total
   Give Product
```


Tentukan jumlah dan rata-rata dari tiga bilangan yang diberikan

```
NAME
           :AVG3
           :Num1, Num2, Num3
GIVENS
RESULTS
         :Sum , Average
DEFINITION :Sum & Average := AVG3(Num1, Num2, Num3)
METHOD
   Get Num1
   Get Num2
   Get Num3
   Let Sum = Num1 + Num2 + Num3
   Let Average = Sum /3
   Give Sum
   Give Average
```


Intermediate

- Terkadang dalam sebuah algoritma, kita perlu memiliki variabel untuk menyimpan nilai sementara.
- Ini adalah variabel perantara yang pada Deskripsi Algoritma disebut sebagai Intermediate.

• Tulis algoritma untuk menukar nilai dari dua bilangan

```
NAME
                 : Swap
                 : X, Y
GIVENS
                 : X, Y
RESULTS
INTERMEDIATES : Temp
                 : Swap (X, Y)
DEFINITION
METHOD:
   Get X
   Get Y
   Let Temp = X
   Let X = Y
   Let Y = Temp
   Give X
   Give Y
```


 Tulis algoritma yang menambahkan dua bilangan yang diberikan (X dan Y) dan mengembalikan jumlah tersebut dalam variabel X

```
NAME
                   : AddXY
                   : X, Y
GIVENS
                  : X
RESULTS
INTERMEDIATES
              : None
             : AddXY (X, Y)
DEFINITION
METHOD:
   Get X
   Get Y
   Let X = X + Y
   Give X
```


Summary

Name	Nama formal sebuah algoritma
Given	Nama dari nilai yang diberikan untuk suatu masalah
Result	Nama dari nilai yang dihasilkan dari suatu masalah
Intermediate	Nama dari variabel perantara yang digunakan dalam algoritma
Definition	Definisi formal dari algoritma, menggunakan format Name , Given , dan Result
Method	Rangkaian langkah demi langkah dari instruksi untuk menyelesaikan masalah

Menelusuri Algoritma

- Tujuan menelusuri algoritma adalah untuk memastikan bahwa ia bekerja
- Ini adalah tes yang harus diselesaikan sebelum menulis kode komputer
- Penelusuran meliputi:
 - Mengeksekusi urutan instruksi dengan sampel serangkaian nilai
 - Menghitung nilai dari setiap variabel setelah setiap instruksi dieksekusi
 - Memeriksa hasil yang benar

Menelusuri Algoritma (2)

- Langkah 1: Beri nomor setiap instruksi dalam algoritma
- Langkah 2: Buat tabel
 - Kolom pertama dari tabel menunjukkan instruksi yang telah dieksekusi
 - Kolom selanjutnya berisi daftar semua variabel algoritma (Given, Result, Intermediate)

Menelusuri Algoritma (3)

- Langkah 3: Lengkapi tabel
 - Setiap kolom tabel mewakili variabel
 - Mulai di baris pertama dari algoritma. Identifikasi apa yang akan terjadi pada setiap variabel setelah instruksi dieksekusi
 - Ubah nilai setiap perubahan instruksi dan tinggalkan semua kolom lain kosong

Penelusuran 1

• Telusuri Algoritma 4 menggunakan bilangan 24, 31, dan 35

	METHOD	Line	Num1	Num2	Num3	Sum	Avg
(1)	Get Num1	1	24				
(2)	Get Num2	2		31			
(3)	Get Num3	3			35		
(4)	Let Sum=Num1+Num2+Num3	4				90	
(5)	Let Average=Sum/3	5					30
(6)	Give Sum	6 output 90					
(7)	Give Average	7 output 30					

Penelusuran 2

• Telusuri Algoritma 5 dimana bilangan X dan Y bernilai 25 dan 88

	METHOD	Line	X	Y	Temp
(1)	Get X	1	25		
(2)	Get Y	2		88	
(3)	Let Temp=X	3			25
(4)	Let X=Y	4	88		
(5)	Let Y=Temp	5		25	
(6)	Give X	6 output 88			
(7)	Give Y	7 output 25			

Evaluasi

- 1. Tulis algoritma penjumlahan 5 bilangan. Telusuri algoritma jika diberikan bilangan 1, 3, 5, 7, dan 9.
- 2. Tulis algoritma untuk menghitung rata-rata dari 5 bilangan. Telusuri algoritma jika diberikan bilangan 1, 3, 5, 7, dan 9.
- 3. Tulis algoritma untuk mengalikan 3 bilangan. Telusuri algoritma jika diberikan bilangan 2, 9, dan 6.

Terima Kasih