PATENT ABSTRACTS OF JAPAN

(11) Publication number:

08-136439

(43)Date of publication of application: 31.05.1996

(51)Int.CI.

GO1N 15/14 GO1N 15/02

(21)Application number: 06-271453

(71)Applicant: TOA MEDICAL ELECTRONICS CO

LTD

(22)Date of filing:

04.11.1994

(72)Inventor: KOSAKA TOKIHIRO

(54) GRAIN IMAGE ANALYSIS DEVICE

(57)Abstract:

PURPOSE: To detect the peripheral length and circularity of each grain image other than the size of each grain by letting the device be equipped with a sheath flow cell, a light irradiating means, a photographing means, an image analysis means, and with a display means, which convert the flow of the suspension of grains into a flow enclosed by sheath liquid.

CONSTITUTION: The suspension of grains taken in a charging line 3 is led to a flow cell 5 with a sheath syringe 4 operated, and extruded out of the tip end of a sample nozzle. Simultaneously, sheath solution is also fed to the flow cell from a sheath liquid bottle 6, and the static image of each grain is photographed by a video camera 10 via an objective lens 9 by irradiating pulse light to the suspension of grains squeezed in a flat form. A photographing area depends on both the image forming multiplying power and size of the camera 10 against its light receiving surface, and the magnifying power of the

lens 9 is so designed as to be selected or capable of being switched during measurement. Image signals from the camera 10 are processed by an image processing means 11, and indicated on a monitor television 12.

LEGAL STATUS

[Date of request for examination]

03.08.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3411112

[Date of registration]

20.03.2003

[Number of appeal against examiner's decision

of rejection]

- * [Date of requesting appeal against examiner's decision of rejection]
- [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-136439

(43)公開日 平成8年(1996)5月31日

(51) Int.Cl. ⁶	i	別記号	庁内整理番号	FI	技術表示箇所
G01N 1	5/14	D			
		K			
19	5/02	В			

審査請求 未請求 請求項の数9 OL (全 12 頁)

(21)出願番号	特顧平6-271453	(71)出顧人	390014960 東亜医用電子株式会社
(22)出顧日	平成6年(1994)11月4日		兵庫県神戸市中央区港島中町7丁目2番1 号
		(72)発明者	小坂 時弘 神戸市中央区港島中町7丁目2番1号 東 亜医用電子株式会社内
		(74)代理人	力理士 野河 信太郎
	•	- 1	

(54) 【発明の名称】 粒子画像分析装置

(57)【要約】

【構成】 粒子懸濁液の流れをシース液で取り囲んで細いあるいは偏平な流れに変換するシースフローセルと、変換された懸濁液流に対して光を照射する光照射手段と、照射された粒子を撮像する撮像手段と、撮像された粒子像を解析する画像解析手段と、表示手段とを備え、画像解析手段は、撮像された各粒子像の面積および周囲長についての粒子データを測定し、その粒子データから粒子の粒径と円形度を算出する算出手段と、粒径による粒度頻度データに基づいてヒストグラムを作成すると共に粒径と円形度とに対応する2つのバラメータによる2次元スキャッタグラムを作成して表示手段にそれぞれ表示する図表作成手段と、撮像された各粒子像を格納する記憶手段と、記憶手段に格納された各粒子像を表示手段に一括表示する粒子像呼出手段とからなる。

【効果】 粒子の大きさ (円相当径) だけでなく、粒子像の周囲長や円形度の情報も求められる。また、撮像、記憶した粒子像を、測定後に表示手段に一括表示できるので、粒子の形態や凝集状態を容易に確認することができる。

【特許請求の範囲】

【請求項1】 粒子懸濁液の流れをシース液で取り囲んだ流れに変換するシースフローセルと、変換された懸稠液流に対して光を照射する光照射手段と、照射された粒子を撮像する撮像手段と、撮像された粒子像を解析する画像解析手段と、表示手段とを備え、画像解析手段は、撮像された各粒子像の面積および周囲長についての粒子データを測定し、その粒子データから粒子の粒径と円形度を算出する算出手段と、粒径による粒度頻度データに基づいてヒストグラムを作成すると共に粒径と円形度とに対応する2つのパラメータによる2次元スキャッタグラムを作成して表示手段にそれぞれ表示する図表作成手段と、撮像された各粒子像を格納する記憶手段と、記憶手段に格納された各粒子像を表示手段に一括表示する粒子像呼出手段とからなることを特徴とする粒子画像分析装置、

1

【請求項2】 画像解析手段が、個々の粒子の円形度から円形度頻度データおよび/又は円形度の平均値と標準 偏差を算出して表示手段に表示する演算手段をさらに備えてなる請求項1記載の粒子画像分析装置。

【請求項3】 粒子懸濁液の特性に応じて、シース液の種類を選択し、シースフローセルに供給する供給手段および/又は粒子を予め染色するための染色手段をさらに備えてなる請求項1記載の粒子画像分析装置。

【請求項4】 シースフローセルが、粒子懸濁液を偏平な流れに変換すると共に、振像手段が粒子懸濁液流の偏平な面を撮像することを特徴とする請求項1記載の粒子画像分析装置。

【請求項5】 算出手段および図表作成手段は、撮像手段から得られる撮像画面について、撮像画面の端にかかっている粒子像を無視し、粒度頻度データを円相当径の大きさに応じて補正することを特徴とする請求項1記載の粒子画像分析装置。

【請求項6】 撮像手段は撮像倍率を選択する手段を有し、それぞれの撮像倍率での粒径測定範囲に違いを持たせるとともに、各倍率の粒径測定範囲が互に部分的にオーバーラップするようにしたことを特徴とする請求項1 記載の粒子画像分析装置。

【請求項7】 算出手段は、複数種類の撮像倍率で撮像された粒子像から、それぞれ粒度頻度データを算出し、それぞれの撮像倍率での試料分析量の違いにより粒度頻度データを補正し、さらにそれぞれの撮像倍率での粒度頻度データを加重平均法によって滑らかにつなぎ合わせることを特徴とする請求項6記載の粒子画像分析装置。

【請求項8】 画像解析手段は、一括表示された各粒子像に対して単一の粒子であるか、複数個凝集した凝集粒子であるかを識別する入力手段と、識別された単一の粒子と凝集粒子の数の比を算出して表示手段に表示する手段とをさらに備えたことを特徴とする請求項1記載の粒子画像分析装置。

【請求項9】 画像解析手段は、一括表示された各粒子像に対して単一の粒子であるか、複数個凝集した凝集粒子であるかを識別する入力手段をさらに備え、算出手段は、単一の粒子として識別された粒子像だけを対象にして円相当径と円形度を算出することを特徴とする請求項1記載の粒子画像分析装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は液中の粒子を撮像し、 その粒子像を記憶、表示するとともに、粒子像を画像解 析することによって、粒子の大きさや形状に関する情報 を求める粒子画像分析装置に関する。

[0002]

【従来の技術】ファインセラミックス粒子、顔料、化粧品用バウダー等の粉体の品質を管理する上で、粒子の粒径を測定、管理することは非常に重要である。その測定装置として、古くから液相沈降法、電気的検知帯法(クールター法)による測定装置があり、最近ではレーザ回析散乱法による測定装置が広く使用されている。

20 [0003]

【発明が解決しようとする課題】しかしながら、上記のいづれの方式による測定装置においても、その測定精度(正確度)は、いまだに満足できるものではない。特に、対象とする粒子が偏平であったり細長い形をしている場合には、測定方法の違いによって、求められる粒径は大きく異なることがある。また、一般的に微小な粒子は測定中に凝集しやすく、その場合にも正確な粒度分布を求めることができない。また、粒子の球形度(円形度)や凝集度合い等に関する情報を、上記従来の粒度分布測定装置で得ることは困難である。

【0004】懸濁液中の粒子の内、大きい粒子のほうが小さい粒子に比べて速く沈降するので、粒子濃度は時間的、空間的に変化する。この変化を光の透過量で検知して粒度分布を求める方法が、沈降法として代表的な液相沈降光透過法である。との沈降法では、同じ体積と密度の粒子でも、その粒子の形状が異なると沈降速度は異なる。また、粒子どうしが凝集していると、その凝集粒子は速く沈降する。

【0005】電気的検知帯法による装置は、電解液に浮遊させた粒子が小さな穴を通過する時の電気抵抗の変化を検出するものであり、1個1個の粒子の体積相当径が形状にほとんど影響されずに測定できる。逆に言えば、電気的検知帯法では、粒子の形状に関する情報を得るととは困難である。また、粒子の大きさと比較して電気的検知領域がかなり広いので、粒子どうしが近接あるいは凝集していると、正確な粒度分布を求めることができない。

【0006】最近広く使用されているレーザ回析散乱法の装置は、浮遊している粒子群にレーザ光を照射して得られる回析光/散乱光強度の角度分布情報から、ミー散

乱理論に基づいて粒径分布を推定、算出するものであ る。この装置では粒度が未知の試料や屈折率が同じ粒子 の混合試料でも、粒径が0.1μmから数百μmまでの 粒子に対し、1回の測定で再現性のある粒度分布が得ら れるという利点がある。

【0007】しかし、この方式の装置には次に挙げるよ うな問題点がある。

- 1)粒子による散乱光強度は、形状、屈折率、表面状態 等の違いによる影響を大きく受け、正確な粒度分布を求 めるのは難しい。
- 2) 測定する粒子の正確な屈折率を入力する必要がある が、粒子の表面が酸化していたり、不純物が混ざってい ることがあり、文献値を入力しても正しく粒度分布が求 められないことがある。

【0008】3)粒子が球形で表面が滑らかであり凝集 していないという仮定のもとに、多数の粒子による回析 光/散乱光強度分布についての連立方程式を解いて粒度 分布を推定する。その仮定を満足しない粒子に対して は、その連立方程式が満足に解けないことがあり、独自 の補正を行っている。

4) 上記のような独自の補正のために、機種間の測定結 果に大きな差が生じることがある。

以上のように、従来の粒度分布測定装置では、粒子の形 状や凝集の影響を大きく受け、正確な粒度分布を求める のは難しい。また、粒子の形状や凝集度合いに関する情 報を得ることも困難である。

【0009】粒子の形状を測定する方法としては、顕微 鏡と画像処理装置を組み合わせる方法がある。しかし、 工業用の粉体は、粉砕して作られた粒子が多く、そのよ うな粉体では、ひとつの試料でも各粒子の大きさが著し 30 く異なり、スライドグラス上の粒子の全てにピントを合 わすことはできない。すなわち、小さな粒子に対してビ ントを合わすと大きな粒子に対してピントが合わなくな る。大きな粒子に対してピントを合わすと小さな粒子に 対してピントが合わなくなる。従って、この顕微鏡方式 は、粒子の大きさが揃っている場合にしか利用できない 方法である。

【0010】また、この顕微鏡方式で何千個もの粒子像 を解析しようとすると、撮像する視野を変更するために スライドグラスを少しずつ移動させて何百枚も画像を取 40 り込んで解析する必要があり、手間と時間がかかる。と のような理由で、工業用粉体に対しては、粒子像から粒 子の大きさや形状を測定することはあまり行われていな いのが現状である。

[0011]

【課題を解決するための手段】この発明は、粒子懸濁液 の流れをシース液で取り囲んだ流れに変換するシースフ ローセルと、変換された懸濁液流に対して光を照射する 光照射手段と、照射された粒子を撮像する撮像手段と、

とを備え、画像解析手段は、撮像された各粒子像の面積 および周囲長についての粒子データを測定し、その粒子 データから粒子の粒径と円形度を算出する算出手段と、 粒径による粒度頻度データに基づいてヒストグラムを作 成すると共に粒径と円形度とに対応する2つのパラメー タによる2次元スキャッタグラムを作成して表示手段に それぞれ表示する図表作成手段と、撮像された各粒子像 を格納する記憶手段と、記憶手段に格納された各粒子像 を表示手段に一括表示する粒子像呼出手段とからなると 10 とを特徴とする粒子画像分析装置を提供するものであ

【0012】この発明の装置の分析対象は、ファインセ ラミックス、顔料、化粧品用パウダーのような無機物の 粉体および食品添加物のような有機物の粉体を含むもの であり、予め染料や標識試薬によって染色処理された粒 子であってもよい。

【0013】シースフローセルは、粒子を含む試料液、 すなわち、粒子懸濁液の流れをシース液で包んで流すと とにより流体力学的効果によって、細いあるいは偏平な 20 流れに変換することができるセルであり、これには、従 来公知のものを用いることができる。

【0014】なお、シースフローセルに供給されるシー ス液については、粒子懸凋液の性質(粒子や溶媒の性 質〉に対応してその種類を選択することが好ましい。光 照射手段には、パルス発光するストロボやレーザ光源を 用いることが好ましい。連続的に発光する光源を用いる こともできるが、この場合には、撮像手段にシャッター を設ける必要がある。 振像手段には、一般的な2次元画 像を撮像するビデオカメラを用いることができる。

【0015】光照射手段と撮像手段とはシースフローセ ルを挟んで配置され、シースフローセルにおいて粒子懸 濁液が偏平な流れに変換される場合、光照射手段は、粒 子懸濁流の偏平な一面に直交して光を照射し、撮像手段 はその光軸上に配置されることが好ましい。

【0016】画像解析手段は、1/30秒ごとの撮像画 面を実時間で処理できるパイプライン処理方式の画像処 理回路、ならびにCPU、ROM、RAMおよび1/O ポートからなるマイクロコンピュータを備えることが好 ましい。表示手段には、例えば、CRTや液晶ディスプ レイを用いることができる。

[0017]

【作用】シースフローセルは、粒子懸濁液の流れをシー ス液で取り囲み、細いあるいは偏平な流れに変換し、光 照射手段は、変換された懸濁液流に対して光を照射し、 撮像手段は、光照射された粒子を撮像する。画像解析手 段は、撮像された粒子像を解析して解析結果を粒子像と 共に表示手段に表示する。

【0018】つまり、画像解析手段においては、算出手 段が、撮像された各粒子像の面積および周囲長について 撮像された粒子像を解析する画像解析手段と、表示手段 50 の粒子データを算出し、そのデータから粒径と円形度を

算出し、図表作成手段が、粒径による粒度頻度データに 基づいてヒストグラムを作成すると共に、粒径と円形度 とに対応する2つのパラメータによる2次元スキャッタ グラムを作成してそれらを表示手段に表示する。

【0019】一方、記憶手段は、撮像された各粒子像を 格納し、粒子像呼出手段は、記憶手段に格納された各粒 子像を表示手段に一括表示する。つまり、この粒子分析 装置では、撮像された各粒子像から粒子の大きさや周囲 長を求め、また、実際の粒子の形態や凝集状態を一括表 示される粒子像で確認することができる。

【0020】具体的には、粒子懸濁液を透明なフローセ ルに導き、その懸濁液を細い又は偏平な流れにする。そ の流れに対して光照射することによって、流れの中の粒 子をビデオカメラで撮像する。撮像された各粒子像の投 影面積と周囲長を算出し、次に粒径と円形度を算出す る。さらに、粒径による粒度ヒストグラムおよび粒径と 円形度の2次元スキャッタグラムを作成する。この2次 元スキャッタグラムと実際の粒子像を評価、確認すると とによって、粒子の円形度や凝集度合いに関する情報を 得ることができる。

[0021]

【実施例】この発明のフロー方式粒子画像分析装置の例 を図1および図2に示す。これらの図において、まず粒 子懸濁液はダイヤフラムポンプ等の吸引手段(図示して いない) によって吸引ピペット1から吸引され、サンプ ルフィルター2を通りフローセル5の上部の試料チャー ジングライン3へ引き込まれる。サンプルフィルター2 によって、懸濁液中の粗大な粒子やどみが取り除かれ、 流路の細い(狭い)フローセル5が詰まらないようにし ている。またこのサンプルフィルタ2は、粗大な凝集塊 30 をほぐす効果も持っている。

【0022】測定する粒子が半透明状の場合には、その 粒子に対して適当な染色を施すのが好ましい。図1には 図示していないが、装置内に染色液ボトルを設け、吸引 した試料をその染色液で染色するための反応チャンバー を付加してもよい。

【0023】チャージングライン3に引き込まれた粒子 懸濁液は、シースシリンジ4を動作させることによって フローセル5 に導かれ、サンブルノズル5 a の先端から 懸濁液が少しずつ押し出される。それと同時にシース液 40 もシース液ボトル6からシース液チャンバー7を介して フローセル5に送り込まれ、粒子懸濁液はそのシース液 で取り囲まれ、図2に示すように、液体力学的に懸濁液 流は偏平に絞られてフローセル5の内を流れ、廃液チャ ンバー14を介して排出される。このように偏平に絞ら れた懸濁液流に対して、ストロボ8からパルス光を1/ 30秒ごとに周期的に照射することによって、1/30 秒ごとに粒子の静止画像が対物レンズ9を介してビデオ カメラ10で撮像される。

重)に応じて最適なものを選べばよい。また、懸濁液の 流れを確実に偏平にあるいは細く絞り込むため懸濁液の 特性に応じて、例えば溶媒の粘度や比重に応じて、シー ス液の粘度や比重を変更するのが好ましい。図1には図 示していないが、複数種類のシース液ボトルを設け、測 定する試料に応じて使用するシース液の種類を容易に切

り換えられるような機構を付加してもよい。

再現性が良い。

【0025】懸濁液流の偏平な面をビデオカメラ10で 振像すれば、ビデオカメラ10の撮像エリア全体に渡っ 10 て粒子像を捉えることができ、1回の撮像で多数の粒子 を撮像できる。また、撮像される粒子の重心とビデオカ メラ10の撮像面との距離をほぼ一定にすることができ るので、粒子の大きさに関わらず常にピントの合った粒 子像が得られる。さらに、流体力学的な効果によって、 偏平な粒子や細長い粒子の向きが揃いやすく、粒子像を 解折して得られる特徴パラメータは、ばらつきが小さく

【0026】複数回のバルス光照射によって撮像される 粒子像の数は、懸濁液流を偏平にした場合には、ビデオ 20 カメラ10の撮像エリアの面積、試料流の厚み、粒子懸 濁液の単位体積当たりの粒子数、および撮像回数(フレ ーム数)によって決まる。例えば、撮像エリアを200 ×200 μm、試料流の厚みを5 μm、粒子濃度を10 000個/µ1、撮像フレーム数を1800(撮像時間 を60秒)とした時に撮像される粒子数は3600個と なる。

【0027】撮像エリアの面積は、ビデオカメラ10の 受光面に対する結像倍率とそのサイズによって決まる。 対物レンズ9の倍率を大きくすれば撮像エリアが小さく なるが、小さな粒子まで大きく撮像できる。対物レンズ 9の倍率を小さくすれば撮像エリアが大きくなり、大き な粒子を撮像するのに適している。この装置では、対物 レンズ9の倍率を選択あるいは測定途中に切り換えでき るようにしており(図示していない)、粒径の測定レン ジを広くしている。

【0028】ビデオカメラ10からの画像信号は、画像 処理装置11で処理され、モニターテレビ12に表示さ れる。13は各種の操作等を行うためのキーボード(又 はマウス)である。

【0029】1/30秒ごとの粒子撮像画面に対する画 像処理の手順を図5に示す。画像信号は、画像処理装置 11に取り込まれてA/D変換され、画像データとして 取り込まれる(ステップS1)。まず懸濁液流に対する 照射光の強度むら (シェーディング) を補正するための バックグランド補正が行われる(ステップS2)。

【0030】具体的には、粒子がフローセル5を通過し ていない時に光照射して得られる画像データを、測定前 にあらかじめ取り込んでおき、その画像データと実際の 粒子撮像画面の画像データとを比較演算することであ

【0024】粒子を懸濁する溶媒は粒子特性(粒径や比 50 り、画像処理として一般的によく知られた処理である。

次に、粒子像の輪郭を的確に抽出するための前処理とし て輪郭強調処理を行う(ステップS3)。具体的には、 一般的によく知られたラブラシアン強調処理を行う。

【0031】次に、画像データをある適当なスレシホー ルドレベルで2値化する (ステップS4)。次に、2値 化された粒子像に対してエッジ点かどうかを判定すると ともに、着目しているエッジ点に対して隣合うエッジ点 がどの方向にあるかの情報、すなわちチェインコードを 生成する(ステップS5)。次に、このチェインコード を参照しながら粒子像のエッジトレースを行い、各粒子 10 像の総画素数、総エッジ数、斜めエッジ数を求める(ス テップS6)。

【0032】高性能のパイプライン処理可能な画像処理 装置を使用すれば、以上の画像処理を、1/30秒ごと*

面積S=総画素数-(総エッジ数×0.5)-1……(1)

周囲長L=(総エッジ数-斜めエッジ数)+(斜めエッジ数×√2)……(2)

【0035】次に、上記面積Sと周囲長Lを用いて円相 当径と円形度を求める(ステップS9)。厳密に言う と、縦横線と斜め45°の線で粒子像の輪郭を表わす と、上式で求められる周囲長しは丸い粒子像の場合、 1.05倍程度長くなり、円形度を求める際に少し補正 が必要となる。円形当径とは、粒子像の投影面積と同じ※

[0036] 円相当径=(粒子投影像面積値 $/\pi$) $^{1/3}\times2$ $^{1/3}\times2$ 円形度=(粒子像と同じ投影面積値を持つ円の周囲長)/粒子投影像の周囲長)(4)

【0037】各粒子像の円相当径が求められれば、次に その値をもとにして粒度頻度データを作成する(ステッ プS 10)。工業用の粉体は多種多様で粒径も非常に広 い範囲に渡っている。従って、一般的に粒径はLOG 度頻度データを求める。

【0038】ところで、粒子撮像画面(フレーム)にお いて、画面の端にかかる粒子像からは正しくその粒子の 円相当径や円形度を求めることはできない。従って、画 面の端にかかって写っている粒子像は無視する必要があ る。図3に示すように、大きな粒子像ほど画面の端にか かる確率が高いことは明らかであり、画像処理法で粒度 分布を正しく求めるにはこのことを考慮しなければなら ない。そして、粒子像の大きさに応じてその頻度値を補★

撮像エリア Y方向サイズ-d) } ……(5)

となる。ビデオカメラの撮像エリアと画像処理対象エリ アが異なる場合には、上記撮像エリアを画像処理対象エ リアに置き換えて算出する。

【0041】粒度頻度データは、まずそれぞれの撮像倍 率で撮像された粒子像に対して独立に求める。それぞれ の撮像倍率での粒径測定範囲は異なり、例えば図6に示 すように、高倍率撮像での粒径測定範囲を1~30μ m、低倍率撮像での粒径測定範囲を15~300 µmと している。この例では、15~30μmの範囲をオーバ 50 る。

* に撮像される画面に対してリアルタイムに処理すること ができる。この装置では、ある倍率で撮像される複数の 画面に対して上記画像処理を繰り返し行い、次に異なる 撮像倍率に切り換えて撮像し、同様の画像処理を行う。 また、撮像されたフレームから粒子像の切り出しを行 い、切り出した粒子像を画像処理装置11の画像メモリ に格納する(ステップS7)。

【0033】撮像が終了すると(ステップS8)、各粒 子像に対して求められた総画素数、総エッジ数、斜めエ ッジ数から、まず下記の式によって各粒子像の投影面積 Sと周囲長しを求める。

【0034】図10に示すように、2値画像の周囲のエ ッジの中心を結んでできる枠内の面積Sおよび枠の長さ (周期長し)は、1画素当たりの面積を1とした場合、

※面積を持つ円を想定し、その円の直径のことであり、式 (3)で表される。円形度とは、例えば式(4)で定義 される値であり、粒子像が円形の時に円形度は1にな 20 り、粒子像が細長くなればなるほど円形度は小さい値に なる。

★正する。

【0039】ビデオカメラ10の撮像エリアに対して粒 子像が十分小さい場合には、画面の端にかからない粒子 像の重心の存在エリアは、ほぼ撮像エリアと同じであ (対数)変換し、LOG変換した値を等分割した上で粒 30 る。粒子像が大きい場合ほど、画面の端にかからない粒 子像の重心の存在エリアは、撮像エリアに対して大きく

> 【0040】すなわち、大きな粒子ほど実質の試料分析 量が減ることになり、大きな粒子ほど相対的に頻度が小 さくなる。試料分析量は、画面の端にかからない粒子像 の重心の存在エリアの面積に比例する。従って、円相当 径が $d\sim(d+\Delta d)$ の粒子頻度データは、式(5)で 補正すればよい。つまり、頻度補正係数は、

(ビデオカメラの撮像エリアの面積) / { (撮像エリアX方向サイズ-d) × (

ーラップさせている。

【0042】図6の例は、粒径が15~30μmの範囲 を越えて大きくばらついている粒子の例であり、高倍率 撮像と低倍率撮像でのそれぞれの粒度頻度データをつな き合わせる必要がある。そのためには、まずそれぞれの 撮像倍率での試料分析量の比に応じて、次式のような頻 度補正を行う必要がある。低撮像倍率では撮像エリアが 広いので、一般的に試料分析量を多くすることができ

(高倍率撮像での頻度値) × (低倍率撮像での試料分析量) / (高倍率撮像での試料分析量)

なお、試料分析量は、

(撮像面積)×(粒子懸濁液流の厚み)×(撮像フレーム数)

で求めることができる。

【0043】上記のような試料分析量の違いによる頻度 補正を行っても、必ずしもそれぞれの頻度データによる 頻度分布曲線が滑らかにつながらず、つなぎめで段差が 生じることがある。その最も大きな原因は、粒子懸濁液 10 の粒子濃度が薄い場合に、摄像された粒子数が少なく て、図6の破線で示すように頻度分布曲線が大きくがた つく場合である。

【0044】他の原因として、対物レンズあるいは投影レンズの倍率が仕様通りの値になっていないために、高倍率撮像と低倍率撮像での真の試料分析量が予測とは異なり、上記試料分析量の違いによる頻度補正が正確でなくなる場合である。ただし、この撮像倍率が不正確であることによる段差の原因は、あらかじめ測定装置1台ごとに撮像倍率を校正することによって解決することができる。 この装置では、異なる撮像倍率での粒径測定範囲を一部オーバーラップさせ、そのオーバーラップ測定範囲において、それぞれの撮像倍率での頻度値を加重平均するようにしている。

[0045]オーバーラップ測定範囲の上限に近いほど低倍率撮像での頻度値に大きな重みを付け、下限に近いほど高倍率撮像での頻度値に大きな重みを付けて加重平均する。このような加重平均法による頻度補正をすることによって、撮像粒子数が少ない場合でも、異なる撮像倍率での頻度分布データを滑らかにつなぎ合わせることができる。例えば、高倍率撮像と低倍率撮像でのオーバーラップ範囲を $15\sim30\mu$ mとした場合、そのオーバーラップ範囲内の粒径 $d\sim d+\Delta d(\mu m)$ の粒子頻度値 f(d) は、次式で算出する。

【0046】f(d)=高倍率撮像頻度値(d)×(l-(d-15)/(30-15))+低倍率撮像頻度値(d)×(l-(30-d)/(30-15))

以上のようにして求められた粒度頻度データを用いて、 さらに累積粒度データを求める。例えば、個数基準の累 積粒度データ(%)は、次式で算出する。

粒度 d における累積粒度 (d) = (粒径 d 以下の粒子 数) × 1 0 0 / (全粒子数)

【0047】次に、円相当径と円形度の2つのパラメータによる2次元スキャッタ頻度データを求める(ステップS11)。この場合にも、まず高倍率撮像と低倍率撮像のそれぞれに対して2次元頻度データを求める。次に、粒度頻度データの補正処理と同様に、粒子像の大きさの違いによる頻度補正、異なる撮像倍率での試料分析量の違いによる頻度補正を行う。さらに、異なる撮像倍率でのオーバーラップ測定範囲での2次元頻度補正を、

10

前記粒度頻度データのつなぎ合わせの時と同様に行う。 【0048】上記のようにして求められた粒度頻度データ、累積粒度データ、および円相当径と円形度の2次元頻度データを用いて、さらに平均粒径、粒径の標準偏差、モード径、10%径、50%径、90%径、平均円形度、円形度標準偏差等を算出する(ステップS12)。

【0049】モード径とは、粒度頻度値が最大であると ころの粒径のことを指す。10%径、50%径、90% 径は、累積粒度データの値がそれぞれ10、50、90% の値になるところの粒径のことを指す。すなわち、50%径とは、粒径の中心値のことであり、メジアン径と も言う。

【0050】以上のようにして求められた頻度データおよび解析結果から、図7、図8に示すような粒度ヒストグラム、円相当径と円形度の2次元スキャッタグラム、および平均粒径や50%径等の解析結果を表示する(ステップS13)。図7では、横軸をLOG変換した円相当径、縦軸を頻度%と累積%の2つの意味に割当て、累積粒度分布曲線の表示も同時に表示している。図8に示すスキャッタグラム表示では、横軸をLOG変換した円相当径、縦軸を円形度としており、各分割点(ドット)の色を2次元頻度値に応じて変えるようにしている。

【0051】この装置では、上記のように撮像した粒子像から円相当径や円形度を求めるだけでなく、撮像した粒子像を記憶しておき、測定後に大きさ別にクラス分けして図4に示すように、一括表示する機能も有している。もっとも、画像を記憶する画像メモリの容量に制限があるので、撮像された全ての粒子像を記憶、表示するわけではない。撮像された粒子像を一括表示できる機能を有しているので、粒子の形態や凝集状態を直接使用者が確認することができる。

【0052】粒子どうし凝集することが重要な意味を持つような場合には、図4に示す各枠内の粒子像について、一次(単独)粒子像か、2個凝集粒子像か、3個凝集粒子像か、高次凝集塊か、あるいは対象外の粒子かを、使用者が指定しキーボード13を用いて入力する。その指定結果をもとにして、凝集している粒子の数の比率を自動的に計算することができる。もし、一括表示された粒子像の中に凝集粒子像が全く無い場合には、上記2次元スキャッタグラムでの円形度算出値は、真に粒子の円形度を表していると考えてよい。

【0053】また、上記指定結果をもとにして、一次粒子像だけを対象にして画像解析し直すこともできる。記憶できる粒子像の数に限りがあるので、再現性の良い解析結果が得られない場合もあるが、対象外の粒子(ごみ等)や凝集粒子を除いて解析するので、より正確な粒度分布、円形度が求められる。

【0054】また、一括表示された粒子像により、使用 50 者が、測定した粒子が球形であることを確認した場合に は、凝集しやすい粒子でも円形度が1に近い粒子だけに限定して粒度解析しなおせば、より正確な粒度分布が求められる。また、粒子が球形である場合には、図9に示すように、円相当径と円形度による2次元スキャッタグラムにおいて、凝集粒子が分布していると考えられる領域を推定することもできる。

【0055】図9の例では、点線で囲んだ枠内に分布する粒子は、凝集粒子と推定している。粒径の揃っている球形の粒子が2個凝集あるいは3個凝集した場合の粒子像では、その投影面積は大きく、円相当径は約√2倍あ 10 るいは√3倍になり、円形度は0.9以下と小さくなる。点線で囲った枠内の粒子数を計算すれば、粒子凝集度合いに関する指標を求めることができる。

【0056】この装置では、図9の例のように円相当径と円形度による2次元スキャッタグラムにおいてある2次元領域を設定し、その領域内あるいは領域外の粒子のデータだけに限定して粒度解析、円形度解析させることもできる。このような機能を利用することによって、どみや凝集粒子を除いての粒度分布や平均円形度を求める、あるいは凝集している粒子数の比率を推定するとい20ったことが可能になる。このような2次元領域は、測定する試料の種類ごとに、使用者がキーボード13やマウスを使って任意に設定、変更できる。

【0057】以上のように、このフロー方式粒子画像分析装置では、粒子像を使用者が直接目で確認できることはもちろんのこと、従来の電気的検知帯法やレーザ解析散乱法の測定装置では得られなかった定量的な情報、すなわち円形度や凝集度合い等の新規の情報が得られる。また、円相当径と円形度の2次元スキャッタグラムによって、試料中のどみや凝集粒子の分布領域を推定することができ、その領域内のデータを除外して粒度解析すれば、より正確な粒度分布が求められる。

[0058]

【発明の効果】との発明は、次のような効果を奏する。 1. 粒子像を画像解析することによって、粒子の大きさ (円相当径)だけでなく、粒子像の周囲長や円形度の情報も求められる。

2. 粒子懸濁液の流れを、シース液によって流体力学的 に細い又は偏平な流れにするので、粒子の大きさに関わ らず、粒子の重心の通過する位置は、撮像方向に対して ほとんど変動しないため、常にピントの合った粒子像が 撮像され、従来の顕微鏡画像処理法より信頼性の高い測 定結果が得られる。

【0059】3、粒子懸濁液流を流体力学的に細い又は 偏平な試料流にするので、偏平な粒子や細長い粒子の向 きが揃いやすく、粒子像から求められる円相当径や円形 度のばらつきは小さく再現性が良い。 12

4. 撮像、記憶した粒子像を、測定後に表示手段に一括表示できるので、粒子の形態や凝集状態を容易に確認することができる。

【0060】5. 撮像、記憶した粒子像により、粒子が 凝集しているかどうかを使用者が目視で識別分類でき、 凝集している粒子の比率を求めることができる。

6. 粒子像一括表示により粒子が球形であることが確認 された場合には、凝集しやすい粒子でも、円形度が1に 近い粒子のデータだけに限定して粒度解析すれば、より 正確な粒度分布が求められる。

7. 粒子像一括表示により粒子が球形であることが確認された場合には、円相当径と円形度の2次元スキャッタグラムから粒子凝集度合いに関する指標を得ることができる。

【図面の簡単な説明】

【図1】実施例の構成説明図である。

【図2】図1の要部拡大断面図である。

【図3】粒子撮像画面の例を示す説明図である。

【図4】モニターテレビの表示画像の例を示す説明図である。

【図5】実施例の処理手順を示すフローチャートであ ス

【図6】撮像倍率の異なるデータから合成したヒストグラムである。

【図7】粒度分布および累積粒度分布の表示例を示す説 明図である。

【図8】スキャッタグラムの表示例を示す説明図である。

【図9】スキャッタグラムにおける領域設定例を示す説) 明図である。

【図10】粒子の撮影面積と周囲長の算出を示す説明図である。

【符号の説明】

- 1 吸引ピペット
- 2 サンブルフィルター
- 3 試料チャージングライン
- 4 シースシリンジ
- 5 フローセル
- 6 シース液ボトル
- 40 7 シース液チャンパー
 - 8 ストロボ
 - 9 対物レンズ
 - 10 ビデオカメラ
 - 11 画像処理装置
 - 12 モニターテレビ
 - 13 キーボード

【図5】

[図6]

【図7】

[図8]

[図9]

【図10】

