Orthogonal Time Frequency Space (OTFS) modulation

OTES - Motivation

- extremely ligh data rates, in high mobility occurrors.
- The mobile velocities can be expto 400-500 km/hr.
- The a high-mobility scenario, the Wireless channel is doubly-selective

> Frighteney and Time relective

- (i) Frequency selectivity
 - Course distortion in Time domain
 - Results in inter-symbol interference (ISI)
- (ii) Time relectivity.
 - Causes frequency shift in Frequency domain
 - Arises from Doppur shifts due to mobility
 - Resulto in inter-covorier interference (ICI)

OFOM Disadvantage

DFDM bound opterm are resident to ISI. However, tray experience severe performance degradations due to ICI, in shigh mobility (Doppler) occasios.

Frequency JECI

How to overcome this challenge?
- This is achieved via OTFS !!!

OTFS

domain, rather than in the time frequency (TF) domain such as OFDM, FBMC.

26 and 36 Waveform

0 TDMA (29)

- Pulsis localized in time
- Low PAPR (peak to awarage power)
- @ COMA (36)
 - spread both in time and frequency
 - Resillent to nourous bound interference

49 monoform

- 0 OFDM (49)
 - Pulses localized in frequency
 - Orthogonality of basis functions

Disadvantages of 26, 36, 46

- O Disadvantages of TDMA
 - Complex equalization
- @ Disadvantages of OFDM
 - out of band (00B) radiation
 - High PAPR
- @ Disadvantages of CDMA
 - Limited number of orthogonal codes

OTFS Advantage

offs warform is simultanously

- localized in time, like in TDMA localized in frequency, like in OFDM
- and Spread spectrum, like CDMA

COMA

OTTS combines all

DD Domain proportion OTFS has two key aspects. - Modeling the winders channel in the DD domain - Placement of information symbols in the DD domains · (OTFS modulation) Time Fraquency Conventional Representation Time Delay OTF-domain &(t,f) and TD-domain &(t,t) representations of the channels vary with time. @ This makes channel estimation and processing difficult How to overcome this problem? - Via DD-domain representation h (T, V). DD - domain Representation - Delay Dappler DD domain channel is time-invariant for a much longer deviation, since velocity, distance and reflectivity gown of the reflectors remain approximately constant. Channel Estimation | becomes lasier Time-frequency Representation Doppler-Delay Representation Time-Delay Representation

* Not compact * Difficult to track * Very compact representation * channel is comtant

Fig. Response of a 300HZ Doppler channel

OTFS Wareform

- OTTS Waveform is a Sequence of pulso, svenly spaced in time. Each pulse is multiplied by a Complex phase, and the phases one rotating in IQ plane.
- O Locally, it boks like a pulse, Globally it behaves like a tone. In addition, it is spread spectrum.

OTES Waveform Proportion

- Delay wordinate of the DD -domain pulse specifies the time displacement of the pulse train
- Delay risolution At of the pulse is inversely proportional to the
- 1 Dopple wordinate of the publi specifies the frequency of the tone.
- O Doppler resolution A & of this pulse is inversely proportional to the duration of the pulse train.

OTFS Key Advantage

OTFS removes fading!

(i) No superposition between multipates components in DD-domain!

- Comider trammission of time-domain impulse.
- tack of the reflected schoes arrives at the veceiver at a delayed time (multipath effect) and possibly also shifted in frequency (Doppler effect)
- Amplitude of the middle echo changes due to the superposition of signals, sharing the same delay but differing in doppler
- Time-domain pulse is unable to reparate reflectors along Doppler.

- Cornider a frequency domain impulse, echoes at frapage specific frequency which correspond to the Doppler shifts induced by the various reflectors
- Amplitude of the middle econo changes due to Supurposition of signals, sharing the same doppler but differing in delay.

- Frequency-domain pull is unable to reparate

- Transmitting a localized. OTFS pulse in the delay-
- Ecross appear at specific delay dapper displacements, which corresponds to the delay and dapper shifts introduced by the various reflectors.
- OTFS Channel Symbol Coupling is a two dimensional convolutions between the delay-doppler impulse response and the transmitted symbols.
- Thus, if Chosen properly, there is NO FADING