Chapter 8

8.1. The expressions for the inputs of the flip-flops are

$$D_2 = Y_2 = \overline{w}y_2 + \overline{y}_1\overline{y}_2$$

$$D_1 = Y_1 = w \oplus y_1 \oplus y_2$$

The output equation is

$$z = y_1 y_2$$

8.2. The excitation table for JK flip-flops is

Present					
state	w = 0		w = 1		Output
y_2y_1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	z
00	1d	0d	1d	1d	0
01	0d	d0	0d	d1	0
10	d0	1d	d1	0d	0
11	d0	d1	d1	d0	1

The expressions for the inputs of the flip-flops are

$$\begin{array}{rcl} J_2 & = & \overline{y}_1 \\ K_2 & = & w \\ J_1 & = & \overline{w}y_2 + w\overline{y}_2 \\ K_1 & = & J_1 \end{array}$$

The output equation is

$$z = y_1 y_2$$

8.3. A possible state table is

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	E	C	0	0
C	Е	D	0	0
D	Е	D	0	1
E	F	В	0	0
F	A	В	0	1

8.4. Verilog code for the solution given in problem 8.3 is

```
module prob8_4 (Clock, Resetn, w, z);
  input Clock, Resetn, w;
  output z;
  reg z;
  reg [3:1] y, Y;
  parameter [3:1] A = 3'b000, B = 3'b001, C = 3'b010, D = 3'b011, E = 3'b100, F = 3'b101;
  // Define the next state and output combinational circuits
  always @(w or y)
     case (y)
        A: if (w) begin
                      Y = B; z = 0;
                   end
            else
                   begin
                      Y = A; z = 0;
                   end
        B: if (w) begin
                      Y = C; z = 0;
                   end
            else
                   begin
                      Y = E; z = 0;
                   end
        C: if (w) begin
                      Y = D; z = 0;
                   end
            else
                   begin
                      Y = E; z = 0;
                   end
        D: if (w) begin
                      Y = D; z = 1;
                   end
            else
                   begin
                      Y = E; z = 0;
                   end
        E: if (w) begin
                      Y = B; z = 0;
                   end
            else
                   begin
                      Y = F; z = 0;
                   end
        F: if (w) begin
                      Y = B; z = 1;
                   end
                   begin
            else
                      Y = A; \quad z = 0;
                   end
        default:
                   begin
                      Y = 3'bxxx; z = 0;
                   end
     endcase
```

```
// Define the sequential block

always @(negedge Resetn or posedge Clock)

if (Resetn == 0) y <= A;

else y <= Y;
```

endmodule

8.5. A minimal state table is

Present state	Next $w = 0$	Output z	
A	A	В	0
В	E	C	0
C	D	C	0
D	A	F	1
E	A	F	0
F	E	C	1

8.6. An initial attempt at deriving a state table may be

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	D	C	0	0
C	D	C	1	0
D	A	E	0	1
Е	D	C	0	0

States B and E are equivalent; hence the minimal state table is

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	D	C	0	0
C	D	C	1	0
D	A	В	0	1

8.7. For Figure 8.51 have (using the straightforward state assignment):

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	0 0 1	010	1
В	0 0 1	0 1 1	101	1
C	010	101	100	0
D	0 1 1	0 0 1	110	1
E	100	101	010	0
F	101	100	0 1 1	0
G	1 1 0	101	110	0

This leads to

$$\begin{array}{rcl} Y_3 & = & \overline{w}y_3 + \overline{y}_1y_2 + wy_1\overline{y}_3 \\ Y_2 & = & wy_3 + w\overline{y}_1\overline{y}_2 + wy_1y_2 + \overline{w}y_1\overline{y}_2\overline{y}_3 \\ Y_1 & = & \overline{y}_3\overline{w} + \overline{y}_1\overline{w} + wy_1\overline{y}_2 \\ z & = & y_1\overline{y}_3 + \overline{y}_2\overline{y}_3 \end{array}$$

For Figure 8.52 have

	Present	Next		
	state	w = 0	w = 1	Output
	y_2y_1	Y_2Y_1	Y_2Y_1	z
A	0 0	0 1	10	1
В	0 1	0 0	1 1	1
С	10	1 1	10	0
F	1 1	10	0 0	0

This leads to

$$\begin{array}{rcl} Y_2 & = & \overline{w}y_2 + \overline{y}_1y_2 + w\overline{y}_2 \\ Y_1 & = & \overline{y}_1\overline{w} + wy_1\overline{y}_2 \\ z & = & \overline{y}_2 \end{array}$$

Clearly, minimizing the number of states leads to a much simpler circuit.

8.8. For Figure 8.55 have (using straightforward state assignment):

	Present		Next stat	e		_
	state	DN=00	01	10	11	Output
	$y_4y_3y_2y_1$	$Y_4Y_3Y_2Y_1$				z
S 1	0000	0000	0010	0001	1	0
S2	0001	0001	0011	0100	_	0
S 3	0010	0010	0101	0110	_	0
S4	0011	$0\ 0\ 0\ 0$	_	_	_	1
S5	0100	0010	_	_	_	1
S 6	0101	0101	0 1 1 1	1000	_	0
S 7	0110	0000	_	_	_	1
S 8	0111	0000	_	_	_	1
S 9	1000	0010	_	_	_	1

The next-state and output expressions are

$$\begin{array}{rcl} Y_4 & = & Dy_3 \\ Y_3 & = & Dy_1 + Dy_2 + Ny_2 + \overline{D}y_3\overline{y}_2y_1 \\ Y_2 & = & N\overline{y}_2 + y_3\overline{y}_1 + \overline{N}\overline{y}_3y_2\overline{y}_1 \\ Y_1 & = & Ny_2 + D\overline{y}_2\overline{y}_1 + \overline{D}\overline{y}_2y_1 \\ z & = & y_4 + y_1y_2 + \overline{y}_1y_3 \end{array}$$

Using the same approach for Figure 8.56 gives

	Present		Next sta	ate		
	state	DN=00	01	10	11	Output
	$y_3y_2y_1$		$Y_3Y_2Y_1$			z
S 1	000	000	010	0 0 1	1	0
S2	0 0 1	001	0 1 1	100	_	0
S 3	010	010	001	0 1 1	_	0
S4	0 1 1	000	_	_	_	1
S5	100	010	_	_	_	1

The next-state and output expressions are:

$$\begin{array}{rcl} Y_3 & = & D\overline{y}_2y_1 \\ Y_2 & = & y_3 + \overline{N}y_2\overline{y}_1 + N\overline{y}_2 \\ Y_1 & = & \overline{D}\overline{y}_2y_1 + Ny_2\overline{y}_1 + D\overline{y}_3\overline{y}_1 \\ z & = & y_3 + y_2y_1 \end{array}$$

These expressions define a circuit that has considerably lower cost that the circuit resulting from Figure 8.55.

8.9. To compare individual bits, let $k=w_1\oplus w_2$. Then, a suitable state table is

Present	Next state		Outp	out z
state	k = 0	k = 1	k = 0	k = 1
A	В	A	0	0
В	C	A	0	0
C	D	A	0	0
D	D	A	1	0

The state-assigned table is

Present	Next State		Output	
state	k = 0	k = 1	k = 0	k = 1
y_2y_1	Y_2Y_1	Y_2Y_1	z	z
00	01	00	0	0
01	10	00	0	0
10	11	00	0	0
11	11	00	1	0

The next-state and output expressions are

$$Y_{2} = \overline{k}y_{1} + \overline{k}y_{2}$$

$$Y_{1} = \overline{k}\overline{y}_{1} + \overline{k}y_{2}$$

$$z = \overline{k}y_{1}y_{2}$$

8.10. Verilog code for the solution given in problem 8.9 is

```
module prob8_10 (Clock, Resetn, w1, w2, z);
  input Clock, Resetn, w1, w2;
  output z;
  reg z;
  reg [2:1] y, Y;
  wire k;
  parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10, D = 2'b11;
  // Define the next state and output combinational circuits
  assign k = w1 \wedge w2;
  always @(k or y)
     case (y)
        A: if (k) begin
                      Y = A; z = 0;
                   end
            else
                   begin
                      Y = B; z = 0;
                   end
        B: if (k)
                   begin
                      Y = A; z = 0;
                   end
            else
                   begin
                      Y = C; z = 0;
                   end
        C: if (k) begin
                      Y = A; z = 0;
            else
                   begin
                      Y = D; z = 0;
                   end
        D: if (k)
                   begin
                      Y = A; z = 0;
                   end
                   begin
            else
                      Y = D; z = 1;
                   end
     endcase
  // Define the sequential block
  always @(negedge Resetn or posedge Clock)
     if (Resetn == 0) y \le A;
     else y \le Y;
```

endmodule

8.11. A possible minimum state table for a Moore-type FSM is

Present	Next	Output	
state	w = 0	w = 1	Z
A	В	С	0
В	D	E	0
C	Е	D	0
D	F	G	0
Е	F	F	0
F	A	A	0
G	A	A	1

8.12. A minimum state table is shown below. We assume that the 3-bit patterns do not overlap.

Present	Next	Next state		
state	w = 0	w = 1	p	
A	В	С	0	
В	D	E	0	
C	Е	D	0	
D	A	F	0	
Е	F	A	0	
F	В	C	1	

8.13. Verilog code for the solution given in problem 8.12 is

```
module prob8_13 (Clock, Resetn, w, p);
  input Clock, Resetn, w;
  output p;
  reg [3:1] y, Y;
  parameter [3:1] A = 3'b000, B = 3'b001, C = 3'b010, D = 3'b011, E = 3'b100, F = 3'b101;
  // Define the next state combinational circuit
  always @(w or y)
     case (y)
        A: if (w) Y = C;
            else
                   Y = B;
        B: if (w)
                   Y = E;
            else
                    Y = D;
        C: if (w)
                   Y = D;
            else
                   Y = E;
        D: if (w)
                   Y = F;
            else
                    Y = A;
        E: if (w)
                   Y = A;
            else
                   Y = F;
        F: if (w)
                   Y = C;
                    Y = B;
            else
        default:
                   Y = 3'bxxx;
     endcase
  // Define the sequential block
  always @(negedge Resetn or posedge Clock)
     if (Resetn == 0) y \le A;
     else y \le Y;
  // Define output
  assign p = (y == F);
endmodule
```

8.14. The timing diagram is

8.15. The state table corresponding to Figure P8.1 is

Present	Next	Output	
state	w = 0	w = 1	z
A	С	D	0
В	В	A	0
C	D	A	0
D	C	В	1

Using one-hot encoding, the state-assigned table is

	Present	Next		
	state	w = 0	w = 1	Output
	$y_4y_3y_2y_1$	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	z
A	0001	0100	1000	0
В	0010	0010	$0\ 0\ 0\ 1$	0
C	0100	1000	$0\ 0\ 0\ 1$	0
D	1000	0100	0010	1

The next-state expressions are

$$\begin{array}{rcl} D_4 & = & Y_4 = \overline{w}y_3 + wy_1 \\ D_3 & = & Y_3 = \overline{w}(y_1 + y_4) \\ D_2 & = & Y_2 = \overline{w}y_2 + wy_4 \\ D_1 & = & Y_1 = w(y_2 + y_1) \end{array}$$

The output is given by $z = y_4$.

- 8.16. The state-assignment given in problem 8.15 can be used, except that the state variable y_1 should be complemented. Thus, the state assignment will be $y_4y_3y_2y_1=0000,0011,0101$, and 1001, for the states A,B,C, and D, respectively. The circuit derived in problem 8.15 can be used, except that the signal for the state variable y_1 should be taken from the \overline{Q} output of flip-flop 1, rather than from its Q output.
- 8.17. The partitioning process gives

$$P_1 = (ABCDEFG)$$

 $P_2 = (ABD)(CEFG)$
 $P_3 = (ABD)(CEG)(F)$
 $P_4 = (ABD)(CEG)(F)$

The minimum state table is

Present	Next state		Output z		
state	w = 0	w = 1	w = 0	w = 1	
A	A	С	0	0	
C	F	C	0	1	
F	C	A	0	1	

8.18. The partitioning process gives

$$P_1 = (ABCDEFG)$$

 $P_2 = (ADG)(BCEF)$
 $P_3 = (AG)(D)(B)(CE)(F)$

$$P_4 = (A)(G)(D)(B)(CE)(F)$$

The minimized state table is

Present	Next state		Outp	out z
state	w = 0	w = 1	w = 0	w = 1
A	В	С	0	0
В	D	_	0	1
C	F	C	0	1
D	В	G	0	0
F	C	D	0	1
G	F	_	0	0

8.19. An implementation for the Moore-type FSM in Figures 8.5.7 and 8.5.6 is given in the solution for problem 8.8. The Mealy-type FSM in Figure 8.58 is described in the form of a state table as

Present	N	ext sta	ate			Outp	out z	
state	DN=00	01	10	11	00	01	10	11
S1	S1	S3	S2	_	0	0	0	1
S2	S2	S 1	S 3	_	0	1	1	_
S3	S3	S2	S 1	_	0	0	1	_

The state-assigned table is

Present		Next s	tate			Out	tput	
state	DN=00	01	10	11	00	01	10	11
$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	Y_2Y_1	Y_2Y_1	z	z	z	z
00	00	10	01	_	0	0	0	-
01	01	00	10	_	0	1	1	_
10	10	01	00	_	0	0	1	_

The next-state and output expressions are

$$Y_{2} = Dy_{1} + \overline{D}y_{2}\overline{N} + N\overline{y}_{2}\overline{y}_{1}$$

$$Y_{1} = Ny_{2} + \overline{D}y_{1}\overline{N} + D\overline{y}_{2}\overline{y}_{1}$$

$$z = Dy_{1} + Dy_{2} + Ny_{1}$$

In this case, choosing the Mealy model results in a simpler circuit.

8.20. Use w as the clock. Then the state table is

Present state	Next state	Output $z_1 z_0$
A	В	0 0
В	C	10
C	D	0 1
D	A	1 1

The state-assigned table is

Present state y_1y_0	Next state Y_1Y_0	Output $z_1 z_0$
0 0	1 0	0 0
1 0	0 1	1 0
0 1	1 1	0 1
1 1	0 0	1 1

The next-state expressions are

$$\begin{array}{rcl} Y_1 & = & \overline{y}_1 \\ Y_2 & = & y_1 \oplus y_2 \end{array}$$

The resulting circuit is

8.21. From the state-assigned table given in the solution to Problem 8.20, the excitation table for JK flip-flops is

Present state y_1y_0	Flip-flo J_1K_1	op inputs J_0K_0	Output $z_1 z_0$
0 0 1 0 0 1 1 1	$\begin{array}{c} 1 \ d \\ d \ 1 \\ 1 \ d \\ d \ 1 \end{array}$	$\begin{array}{c} 0 \ d \\ 1 \ d \\ d \ 0 \\ d \ 1 \end{array}$	0 0 1 0 0 1 1 1

The flip-flop inputs are $J_1=K_1=1$ and $J_2=K_2=y_1.$ The resulting circuit is

8.22. From the state-assigned table given in the solution to Problem 8.20, the excitation table for T flip-flops is

Present state y_1y_0		o-flop outs T_0	Output $z_1 z_0$
0 0	1	0	0 0
1 0	1	1	1 0
0 1	1	0	0 1
1 1	1	1	1 1

The flip-flop inputs are $T_1=1$ and $T_2=y_1$. The resulting circuit is

8.23. The state diagram is

Present	Next	Output	
state	w = 0	w = 1	$z_2 z_1 z_0$
A	A	В	000
В	В	C	0 0 1
C	C	D	010
D	D	E	0 1 1
E	Е	F	100
F	F	A	101

The state-assigned table is

Present	Next state		
state	w = 0	w = 1	Output
$y_2y_1y_0$	Y_2Y	$_{1}Y_{0}$	$z_2 z_1 z_0$
000	000	001	000
001	0 0 1	010	001
010	010	0 1 1	010
0 1 1	0 1 1	100	0 1 1
100	100	101	100
101	101	000	101

The next-state expressions are

$$\begin{array}{rcl} Y_2 & = & \overline{y}_0 y_2 + \overline{w} y_2 + w y_0 y_1 \\ Y_1 & = & \overline{y}_0 y_1 + \overline{w} y_1 + w y_0 \overline{y}_1 \overline{y}_2 \\ Y_0 & = & \overline{w} y_0 + w \overline{y}_0 \end{array}$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.24. Using the state-assigned table given in the solution for problem 8.23, the excitation table for JK flip-flops is

Present			Flip-fl	op inputs			
state		w = 0			w = 1		Outputs
$y_2y_1y_0$	J_2K_2	J_1K_1	J_0K_0	J_2K_2	J_1K_1	J_0K_0	$z_2 z_1 z_0$
000	0 d	0 d	0 d	0 d	0 d	1 d	000
001	0 d	0 d	d 0	0 d	1 d	d 1	001
010	0 d	d 0	0 d	0 d	d 0	1 d	010
011	0 d	d 0	d 0	1 d	d 1	d 1	011
100	d 0	0 d	0 d	$d \ 0$	0 d	1 d	100
101	d 0	0 d	$d \ 0$	d 1	0 d	d 1	101

The expressions for the inputs of the flip-flops are

$$\begin{array}{rcl} J_2 & = & wy_1y_0 \\ K_2 & = & wy_2y_0 \\ J_1 & = & w\overline{y}_2y_0 \\ K_1 & = & wy_0 \\ J_0 & = & w \\ K_0 & = & w \end{array}$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.25. Using the state-assigned table given in the solution for problem 8.23, the excitation table for T flip-flops is

Present	Flip-flo	Flip-flop inputs	
state	w = 0	w = 1	Outputs
$y_2y_1y_0$	$T_2T_1T_0$	$T_2T_1T_0$	$z_2 z_1 z_0$
000	000	001	000
001	000	011	001
010	000	001	010
011	000	111	011
100	000	001	100
101	000	101	101

The expressions for ${\cal T}$ inputs of the flip-flops are

$$T_2 = wy_1y_0 + wy_2y_0$$

$$T_1 = w\overline{y}_2y_0$$

$$T_0 = w$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.26. The state diagram is

Present	Next state		Count
state	w = 0	w = 1	
A	Н	С	0
В	A	D	1
C	В	E	2
D	C	F	3
E	D	G	4
F	E	Н	5
G	F	A	6
Н	G	В	7

The state-assigned table is

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_2y_1y_0$	$Y_2Y_1Y_0$	$Y_2Y_1Y_0$	$z_2 z_1 z_0$
A	000	111	010	000
В	0 0 1	000	0 1 1	0 0 1
C	010	0 0 1	100	010
D	0 1 1	010	101	0 1 1
E	100	0 1 1	110	100
F	101	100	111	101
G	1 1 0	101	$0 \ 0 \ 0$	110
Η	1 1 1	1 1 0	001	111

The next-state expressions (inputs to D flip-flops) are

$$\begin{array}{lll} D_2 &= Y_2 &= w\overline{y}_2y_1 + \overline{w}y_2y_1 + wy_2\overline{y}_1 + \overline{w}y_2y_0 + \overline{y}_2\overline{y}_1\overline{y}_0w \\ D_1 &= Y_1 &= w\overline{y}_1 + \overline{y}_1\overline{y}_0 + \overline{w}y_1y_0 \\ D_0 &= Y_0 &= \overline{y}_0\overline{w} + y_0w \end{array}$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.27. From the state-assigned table given in the solution to problem 8.26, the excitation table for JK flip-flops is

Present		Flip-flop inputs					
state		w = 0			w = 1		Outputs
$y_2y_1y_0$	J_2K_2	J_1K_1	J_0K_0	J_2K_2	J_1K_1	J_0K_0	$z_2 z_1 z_0$
000	1 d	1 d	1 d	0 d	1 d	0 d	000
001	0 d	0 d	d 1	0 d	1 d	d 0	001
010	0 d	d 1	1 d	1 d	d 1	0 d	010
011	0 d	d 0	d 1	1 d	d 1	d 0	011
100	d 1	1 d	1 d	d 0	1 d	0 d	100
101	d 0	0 d	d 1	$d \ 0$	1 d	d 0	101
110	d 0	d 1	1 d	d 1	d 1	0 d	110
111	d 0	$d \ 0$	d 1	d 1	d 1	d 0	111

The expressions for J and K inputs to the three flip-flops are

$$\begin{array}{rcl} J_2 & = & y_1w + \overline{y}_1\overline{y}_0\overline{w} \\ K_2 & = & J_2 \\ J_1 & = & w + \overline{y}_0 \\ K_1 & = & J_1 \\ J_0 & = & \overline{w} \\ K_0 & = & J_0 \end{array}$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.28. From the state-assigned table given in the solution to problem 8.26, the excitation table for T flip-flops is

Present	Flip-flo	p inputs	
state	w = 0	w = 1	Outputs
$y_2y_1y_0$	$T_2T_1T_0$	$T_2T_1T_0$	$z_2 z_1 z_0$
000	111	010	000
001	001	010	001
010	011	110	010
011	001	110	011
100	111	010	100
101	001	010	101
110	011	110	110
111	001	110	111

The expressions for T inputs of the flip-flops are

$$\begin{array}{rcl} T_2 & = & \overline{y}_1 \overline{y}_0 \overline{w} + y_1 w \\ T_1 & = & w + \overline{y}_0 \\ T_0 & = & \overline{w} \end{array}$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.29. The next-state and output expressions are

$$D_1 = Y_1 = w(y_1 + y_2)$$

$$D_2 = Y_2 = w(\overline{y}_1 + \overline{y}_2)$$

$$z = y_1\overline{y}_2$$

The corresponding state-assigned table is

Present	Next state		
state	w = 0	w = 1	Output
y_2y_1	Y_2Y_1	Y_2Y_1	z
0 0	0 0	10	0
0.1	0 0	1 1	1
10	0 0	1 1	0
1 1	0 0	0 1	0

This leads to the state table

Present	Next	Output	
state	w = 0	w = 1	z
A	A	С	0
В	A	D	1
C	A	D	0
D	A	В	0

The circuit produces z=1 whenever the input sequence on w comprises a 0 followed by an even number of 1s.

8.30. The Verilog code based on the style of code in Figure 8.29 is

endmodule

```
module prob8_30 (Clock, Resetn, D, N, z);
  input Clock, Resetn, D, N;
  output z;
  reg [3:1] y, Y;
  wire [1:0] K;
  parameter [3:1] S1 = 3'b000, S2 = 3'b001, S3 = 3'b010, S4 = 3'b011, S5 = 3'b100;
  // Define the next state combinational circuit
  assign K = \{D, N\};
  always @(K or y)
     case (y)
        S1: if (K == 2'b00) Y = S1;
            else if (K == 2'b01) Y = S3;
            else if (K == 2'b10) Y = S2;
            else Y = 3'bxxx;
        S2: if (K == 2'b00) Y = S2;
            else if (K == 2'b01) Y = S4;
            else if (K == 2'b10) Y = S5;
           else Y = 3'bxxx;
        S3: if (K == 2'b00) Y = S3;
           else if (K == 2'b01) Y = S2;
           else if (K == 2'b10) Y = S4;
            else Y = 3'bxxx;
        S4: if (K == 2'b00) Y = S1;
            else Y = 3'bxxx;
        S5: if (K == 2'b00) Y = S3;
           else Y = 3'bxxx;
        default: Y = 3'bxxx;
     endcase
  // Define the sequential block
  always @(negedge Resetn or posedge Clock)
     if (Resetn == 0) y \le S1;
     else y \le Y;
  // Define output
  assign z = (y == S4) | (y == S5);
```

8.31. The Verilog code based on the style of code in Figure 8.34 is

```
module prob8_31 (Clock, Resetn, D, N, z);
  input Clock, Resetn, D, N;
  output z;
  reg [3:1] y;
  wire [1:0] K;
  parameter [3:1] S1 = 3'b000, S2 = 3'b001, S3 = 3'b010, S4 = 3'b011, S5 = 3'b100;
  assign K = \{D, N\};
  // Define the sequential block
  always @(negedge Resetn or posedge Clock)
     if (Resetn == 0) y \le S1;
     else
        case (y)
           S1: if (K == 2'b00) y <= S1;
               else if (K == 2'b01) y <= S3;
               else if (K == 2'b10) y <= S2;
               else y \le 3'bxxx;
           S2: if (K == 2'b00) y <= S2;
               else if (K == 2'b01) y <= S4;
               else if (K == 2'b10) y \leq = S5;
               else y \le 3'bxxx;
           S3: if (K == 2'b00) y <= S3;
               else if (K == 2'b01) y <= S2;
               else if (K == 2'b10) y <= S4;
               else y \le 3'bxxx;
           S4: if (K == 2'b00) y <= S1;
               else y \le 3'bxxx;
           S5: if (K == 2'b00) y <= S3;
               else y \le 3'bxxx;
           default: y \le 3'bxxx;
        endcase
  // Define output
  assign z = (y == S4) | (y == S5);
endmodule
```

8.32. The Verilog code based on the style of code in Figure 8.29 is

```
module prob8_32 (Clock, Resetn, D, N, z);
input Clock, Resetn, D, N;
output z;
reg z;
reg [2:1] y, Y;
wire [1:0] K;
parameter [2:1] S1 = 2'b00, S2 = 2'b01, S3 = 2'b10;
cont'd
```

```
// Define the next state and output combinational circuits
   assign K = \{D, N\};
   always @(K or y)
     case (y)
        S1: if (K == 2'b00)
                                  begin
                                     Y = S1; z = 0;
                                  end
             else if (K == 2'b01)
                                  begin
                                     Y = S3; z = 0;
             else if (K == 2'b10)
                                  begin
                                     Y = S2; z = 0;
                                  end
             else
                                  begin
                                     Y = 2'bxx; z = 1'bx;
                                  end
        S2: if (K == 2'b00)
                                  begin
                                     Y = S2; z = 0;
                                  end
             else if (K == 2'b01)
                                  begin
                                     Y = S1; z = 1;
                                  end
             else if (K == 2'b10)
                                  begin
                                     Y = S3; z = 1;
                                  end
             else
                                  begin
                                     Y = 2'bxx; z = 1'bx;
                                  end
        S3: if (K == 2'b00)
                                  begin
                                     Y = S3; z = 0;
                                  end
             else if (K == 2'b01)
                                  begin
                                     Y = S2; z = 0;
                                  end
             else if (K == 2'b10)
                                  begin
                                     Y = S1; z = 1;
                                  end
             else
                                  begin
                                     Y = 2'bxx; z = 1'bx;
                                  end
        default:
                                  begin
                                     Y = 2'bxx; z = 1'bx;
                                  end
     endcase
   // Define the sequential block
   always @(negedge Resetn or posedge Clock)
     if (Resetn == 0) y \le S1;
     else y \le Y;
endmodule
```

8.33. The Verilog code based on the style of code in Figure 8.34 is

```
module prob8_33 (Clock, Resetn, D, N, z);
  input Clock, Resetn, D, N;
  output z;
  reg [2:1] y;
  wire [1:0] K;
  parameter [2:1] S1 = 2'b00, S2 = 2'b01, S3 = 2'b10;
  assign K = \{D, N\};
  // Define the sequential block
  always @(negedge Resetn or posedge Clock)
     if (Resetn == 0) y \le S1;
     else
        case (y)
           S1: if (K == 2'b00) y <= S1;
               else if (K == 2'b01) y <= S3;
               else if (K == 2'b10) y <= S2;
               else y \le 2'bxx;
           S2: if (K == 2'b00) y \leq S2;
               else if (K == 2'b01) y <= S1;
               else if (K == 2'b10) y <= S3;
               else y \le 2'bxx;
           S3: if (K == 2'b00) y \le S3;
               else if (K == 2'b01) y <= S2;
               else if (K == 2'b10) y <= S1;
               else y \le 2'bxx;
           default: y \le 2'bxx;
        endcase
  // Define output
  assign z = ((y == S2) \& ((K == 2'b01) | (K == 2'b10))) | ((y == S3) \& (K == 2'b10));
```

8.34. Verilog code for the FSM in Figure P8.2 is

```
module prob8_34 (Clock, Resetn, w, z);
  input Clock, Resetn, w;
  output z;
  reg [2:1] y, Y;
  parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10, D = 2'b11;
  // Define the next state combinational circuit
  always @(w or y)
     case (y)
        A: if (w) Y = C;
           else
                   Y = A;
        B: if (w) Y = D;
            else
                   Y = A;
        C: if (w) Y = D;
            else
                   Y = A;
        D: if (w) Y = B;
                   Y = A;
            else
     endcase
  // Define the sequential block
  always @(negedge Resetn or posedge Clock)
     if (Resetn == 0) y \le A;
     else y \le Y;
  // Define output
  assign z = (y == B);
endmodule
```


8.37. To ensure that the device 3 will get serviced the FSM in Figure 8.72 can be modified as follows:

8.39. The required control signals can be generated using the following FSM:

Let $k=w_2+w_1$. Then the next-state transitions can be defined as

	Next	state
Present state	TTCAL	state
state	k = 0	k = 1
A	A	В
В	В	C
C	C	A

Using one-hot encoding, the state-assigned table becomes

Present	Next	state
state	k = 0	k = 1
$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$
001	001	010
010	010	100
100	100	001

The next-state expressions are

$$Y_3 = \overline{k}y_3 + ky_2$$

$$Y_2 = \overline{k}y_2 + ky_1$$

$$Y_1 = \overline{k}y_1 + ky_3$$

The output expressions are

$$\begin{array}{rcl} TEMP_{in} & = & ky_1 \\ TEMP_{out} & = & ky_3 \\ R1_{out} & = & y_2(w_2 \oplus w_1) \\ R1_{in} & = & y_3(w_2 \oplus w_1) \\ R2_{out} & = & y_1\overline{w}_2w_1 + y_2w_2w_1 \\ R2_{in} & = & y_2\overline{w}_2w_1 + y_3w_2w_1 \\ R3_{out} & = & y_1w_2 \\ R3_{in} & = & y_2w_2 \end{array}$$