Recommender Systems

Sixtus Dakurah

Outline

Content-Based Recommender Systems

Setup

Example

Pros & Cons

Collaborative Filtering

Setup

Low Dimensional Matrix Factorization

Neural Collaborative Filtering

Motivation

NCF - Setup

NCF - General Framework

Learning Parameters & GMF as a Special case of NCF

NeuMF

NeuMF

NeuMF Performance

Outline

Content-Based Recommender Systems

Setup

Example

Pros & Cons

Collaborative Filtering

Setup

Low Dimensional Matrix Factorization

Neural Collaborative Filtering

Motivation

NCF - Setup

NCF - General Framework

Learning Parameters & GMF as a Special case of NCF

NeuMF

NeuMF

NeuMF Performance

Content-Based Recommender Systems

- (1) Setup
 - Given a Bucket of items X
 - Create an Item Profile
 - ▶ Profile is a vector of features for a given item
 - Example: Movie {genre, actors, year, etc}
 - ► A User takes an item from the bucket X
 - Create a User Profile based on the selected items
 - Usually a vector with the same length as the item profile
- (2) Goal:
 - Recommend Items whose vectors are most similar to the User vector

Content-Based Recommender Systems - Example

Consider this Items (M) profile

	Genre 1	Genre 2	Actor A	Actor B	Rating
Movie 1	0	1	1	0	2
Movie 2	1	0	1	1	4

ightharpoonup Also consider this Users profile $(U)^1$

	Genre 1	Genre 2	Actor A	Actor B	Rating
User 1	0.5	0.001	0.3	0	2
User 2	0.2	0	1	0	1

To recommend an item given a user profile u, we recommend the one with the highest similarity measure S(u, m)

¹This could be an aggregate of items the user has rated

Content-Based Recommender Systems - Pros & Cons

Pros

- No cold-start or sparsity problems
- Provide added information of recommended items
- ► Able to recommend new and unpopular items

Cons

- Feature engineering could be difficult
- Recommendation for new users can get off to a slow start
- Never recommends items outside of the users current profile.

Outline

Content-Based Recommender Systems

Setup

Example

Pros & Cons

Collaborative Filtering

Setup

Low Dimensional Matrix Factorization

Neural Collaborative Filtering

Motivation

NCF - Setup

NCF - General Framework

Learning Parameters & GMF as a Special case of NCF

NeuMF

NeuMF

NeuMF Performance

Collaborative Filtering - Setup

- (1) Upshot
 - ► The main drive is incorporate the similarity in preferences between/among users
 - Does not rely on item or user specific attributes
- (2) Setup
 - Given a set of users U
 - A set of items M
 - Let P be a (training)set of observed real valued preferences $p_{u,m}^{3}$ for some user(u)-item(m) pair
- (3) Goal:
 - Predict unobserved preferences
 - ► That's, test set Q with pairs (u, m) not in P
- (4) This is generally posed as a matrix completion problem⁴

³e.g. click/view count, item rating

⁴Other methods used to achieve this goal are KNN, Naive Bayes → 📱 🗸 🤉 🕞 👂

Low Dimensional Matrix Factorization - Approaches

- (1) Eigen Value Decomposition (EVD)
 - This works for symmetric matrices
- (2) Singular Value Decomposition
 - Generalizes EVD to asymmetric(rectangular) matrices
 - How SVD works
 - Decompose the preference matrix P into two lower dimensional matrices:

$$P_{U\times M} = A\Sigma B^T$$

- $ightharpoonup A_{U\times K}$ is a matrix that represents the users latent features
- \triangleright $B_{M\times K}$ is a matrix that represents the items latent features
- $\triangleright \Sigma_{K \times K}$ is a diagonal matrix that measures the strength of association between users latent features and the items latent features⁵

Low Dimensional Matrix Factorization - Approaches

- To make a recommendation for a given user u:
 - Pick the user latent feature vector from A, denoted as $A_{(u,\cdot)}$
 - Choose an appropriate similarity measure S
 - Find the similarity $S(A_{(u,)}, B_{(m,)})$ for all items m in B
 - Recommend the item(s) to the user with the highest similarity measures
- Pros & Cons Pros
 - Low space usage
 - Makes use of correlation among features
 - No explicit feature selection
 - needed

Cons

- SVD does not work well for very sparse preference matrix
- SVD does not in fact. make predictions for unrated entries!
- ▶ Note: the above method describes a User-Item collaborative filtering. Variants such as User-User and Item-Item collaborative filtering exist and follow similar procedures

Outline

Content-Based Recommender Systems

Setup

Example

Pros & Cons

Collaborative Filtering

Setup

Low Dimensional Matrix Factorization

Neural Collaborative Filtering

Motivation

NCF - Setup

NCF - General Framework

Learning Parameters & GMF as a Special case of NCF

NeuMF

NeuMF

NeuMF Performance

Consider the User-Item interaction⁶ matrix

	m_1	m_2	<i>m</i> ₃	<i>m</i> ₄	<i>m</i> ₅
u_1	1	1	1	0	1
<i>u</i> ₂	0	1	1	0	0
и3	0	1	1	1	0

- Let $S\{u, m\}$ denotes the similarity between user u and item m.
- We can easily see that $S\{u_2, u_3\}(0.8) > S\{u_1, u_2\}(0.75) > S\{u_1, u_3\}(0.5)$ using Jaccard similarity⁷

⁶Anv preference matrix can be converted into an interaction matrix

- If we let P_i be the entry in a reconstructed interaction matrix using the cosine measure(I used Jaccard above because it's easy to illustrate)
- ▶ If we map the users unto a two-dimensional latent space, we get

Figure: User Latent Mapping

► Assume we add a fourth user to the interaction

	m_1	m_2	<i>m</i> ₃	m_4	m_5
u_1	1	1	1	0	1
<i>u</i> ₂	0	1	1	0	0
из	0	1	1	1	0
И4	1	0	1	1	1

▶ We observe that $S\{u_1, u_4\}(0.6) > S\{u_3, u_4\}(0.4) > S\{u_2, u_4\}(0.2)$ using Jaccard similarity

▶ The new two-dimensional user latent space mapping will now be

Figure: User Latent Mapping

Placing P_4 close to P_1 keeps it far away from P_3 whiles overestimating it's closeness to P_2 . Therein lies the limitation of "simple inner product"!

NCF - Setup

- (1) Switching notations a little bit to match that of the paper
 - Let $Y \in R^{M \times N}$ be the user-item interaction matrix, with 0, 1 entries
 - ▶ Let $P \in R^{MxK}$ be the user latent feature space
 - Let $Q \in R^{N \times K}$ be the item latent feature space⁸
 - Let y_{ui} and \hat{y}_{ui} denotes the observed and estimated entry entry for a given user-item interaction matrix
- (2) Under matrix factorization

$$\hat{y}_{ui} = f(\mu, i | p_{\mu}, q_i) = \sum_{k=1}^{K} p_{uk} q_{ik}$$

(3) The proposed method to improve on this linear model is using MLP to introduce non-linearities

NCF - General Framework

Figure: NCF Framework - Source: paper

Learning Parameters & GMF as a Special case of NCF

- (1) If we define $L(y_{ui}, \hat{y}_{ui})$ to be the loss function, we can apply the usual optimization techniques to minimize this loss.
- (2) It's also easy to see that Generalized Matrix Factorization is a special case of NCF. Consider the graph below:

Figure: GMF as a NCF Framework

Introducing additional non-linearities

- In an attempt to introduce additional non-linearities, the final model proposed, NeuMF, that merges a MLP module to a GMF layer.
- (2) How?
 - Train a GMF model using the frame illustrated above
 - Reconstruct the user and item latent feature space
 - Train a NCF using any combination of hidden layers
 - ▶ Also reconstruct the user and item latent feature space
 - Now concatenate⁹ these four latent features to obtain a new user and item latent feature space

Introducing additional non-linearities

(1) The NeuMF framework is as illustrated below

Figure: Merge of GMF and NCF

NeuMF Performance

- (1) Using leave-one-out cross validation 10, the paper evaluates NeuMF and other models
- (2) Two evaluation metrics were considered
 - Hit Ratio @ 10
 - Normalized Discounted Cumulative Gain (NDCG) @ 10

Hit Ratio @ k

- The hit ratio for a single user is determined as follows
- (i) Find all rated(positive interactions) in the users history
- (ii) Leave one out and feed all other items to the recommender
 - Ask the recommender to recommend the top-k items
 - ▶ If the left out item is in the recommended k¹¹, that is a hit
 - ▶ To get the hit rate for the entire system, take the total hits over the number of users

¹⁰The last interaction of each user is held out for evaluation

¹¹k is chosen taking into consideration, the sparsity of the interaction matrix 21/21