Sicherheit in der IT-Infrastruktur

Beispiele aus der Praxis, Ausfallsicherheit, Backups, Verschlüsselung

Timo Schindler

14.03.2019

OTH Regensburg

Inhalt

- 1. Einführung: Backup
- 2. Backupinfrastruktur in der Praxis
- 3. Grundlagen: Verschlüsselung und Signierung
- 4. Verschlüsselung und Signierung in der Praxis
- 5. Zusammenfassung

Einführung: Backup

Über Mich

Timo Schindler OTH Regensburg

- Promotion: IT Security & Machine Learning
- Server- und Storage-Systeme
- Virtualisierungs-Infrastruktur
- Sysadmin mit Leidenschaft

Zentralisierung als Lösung?

- In Zeiten von Cloud: Services wandern in die Rechenzentren
- Zentraler Zugriff für alle Benutzer
- Zentraler Schwachpunkt
- Vertrauen in Administratoren
- Sicherheit an Zentraler Stelle wichtiger den je!

Bild: https://fsfe.org/activities/nocloud

Warum Backup?

Gründe für Backups sehr divers. Datenverlust durch:

- Versehentliches Löschen
- Unberechtigte Veränderung durch Dritte
- Technischer Systemausfall
- Diebstahl, Sabotage, Betrug
- Katastrophen (Brand, Wasserschaden)
- Angriffe (z.B. Ransomware)

Backupmechanismen und -maßnahmen unterscheiden sich dadurch erheblich.

Schutzziele der Informationssicherheit

Allgemeine Schutzziele

Vertraulichkeit

Lesen nur durch autorisierte Benutzer

Integrität

Keine unbemerkte Veränderung

Verfügbarkeit

Verhinderung von Systemausfällen Weiter Schutzziele

Authentizität

Echtheit bzw. Überprüfbarkeit eines Objektes

Verbindlichkeit

Kein unzulässiges Abstreiten von Aktionen

Zurechenbarkeit

Zuordnung einer Aktion auf Benutzer

Schutzziele können nur durch Zusammenspiel aus Hard- und Software erreicht werden.

Tier 1 - Die Holzklasse

- Keine Redundanz
- Jährliche Ausfallzeit 28,8 Stunden
- 99,67 % Verfügbarkeit
- Wartung im Betrieb nicht möglich
- Nur ein Versorgungsweg für Kälte- und Energieverteilung

Tier 2 - Einfache Redundanz im Rechenzentrum

- Redundanz nur in Versorgungsweg
- Jährliche Ausfallzeit 22 Stunden
- 99,75 % Verfügbarkeit
- Wartung im Betrieb bedingt möglich
- Redundanter Versorgungsweg für Kälte- und Energieverteilung

Tier 3 - Fehlertoleranz möglich

- Redundanz in Versorgung
- Server mehrfach vorhanden
- Jährliche Ausfallzeit 1,6 Stunden
- 99,98 % Verfügbarkeit
- Wartung im Betrieb möglich
- Redundanter Versorgungsweg für Kälte- und Energieverteilung

8

Tier 4 - Die Masterclass

- Komplette doppelte Redundanz
- Server mehrfach vorhanden
- Jährliche Ausfallzeit 0,8 Stunden
- 99,991 % Verfügbarkeit
- Wartung im Betrieb möglich
- Mehrfach redundanter Versorgungsweg für Kälte- und Energieverteilung

DTPA 0,8 h

RAID ist kein Backup!

- Daten werden auf mehrere Festplatten verteilt
- Relative Ausfallsicherheit von Festplatten
- Problem bei Systematischen Fehlern
- Problem bei bestimmten RAID-Leveln
- RAID ist unverzichtbar, aber kein Backup!

 $Bild:\ https://de.wikipedia.org/wiki/RAID$

RAID ja, aber welche Konfiguration?

RAID 6 oder 60

- Bis zu zwei Festplatten können ausfallen
- Bei der Wiederherstellung von Festplatten oft Ausfall weiterer Platte
- Gutes Preis/Leistungs-Verhältnis

Bild: https://de.wikipedia.org/wiki/RAID

Noch besser: RAID Z2

Zettabyte File System

- Spezielles Filesystem
- Als Software-RAID umgesetzt
- Ausfallsicherheit wie RAID 6
- Reparatur von Files durch Hashes
- Möglich: Deduplizierung & Kompression
- Möglich: Verschlüsselung & Caching

Signaturen und Hashing Algorithmen

- Einwegfunktion
- Hash immer gleiche Größe
- Gleiche Datei erzeugt gleichen Hash
- Minimale Änderungen erzeugen völlig unterschiedlichen Hash
- Kryptographische Sicherheit

Spezialfall: Revisionssichere Archivierung

- Schutz vor Manipulation
- Schutz vor nachträglicher Änderung
- Wird oft durch kryptografische Signaturen sichergestellt
- Zertifizierte Systeme sehr teuer
- Nötig für Compliance, Finanz- und Gesundheitsdaten

Verschlüsselung

- Backups: Beliebtes Ziel für Datenmanipulation und -diebstahl
- Backups: Oft nachlässige Sicherheit
- Verschlüsselung macht Backup unbequem
- Eigener Infrastruktur sollte nicht vertraut werden
- Transportverschlüsselung nicht vergessen

Vertraue keinem Backup!

Niemals!

- Backups prüfen
- Ernstfall simulieren
- Mehrstufige Backups
- Nochmal Backups prüfen!

Bild: https://mail.gnome.org/archives/deja-dup-list/2012-November

Notfallplan

- Ausfälle passieren...
- ...zu unmöglichsten Zeiten
- Notfallplan aufstellen
- Infrastruktur funktioniert nicht
- Dauer?
- Ist diese Zeit vertretbar?

Bild: www.dilbert.com

Backupinfrastruktur in der Praxis

Struktur der OTH Regensburg

- 12000 Studierende
- 850 Mitarbeiter
- 1 Petabyte an Speicher
- 3 Serverräume
- Datenspeicherung >50 Jahre
- Voll redundante Systeme (Tier 2-3)
- Sehr gut aufgestellte Backup-Infrastruktur und Notfallpläne

 $Bild: \ https://de.wikipedia.org/wiki/Ostbayerische_Technische_Hochschule$

Problem: Redundante Klimatechnik

Redundanz \neq **Redundanz**

- Zentrale Kälteanlage an der Hochschule
- Redundant ausgelegte Kälteanlage
- Redundanter Wärmetauscher
- Beide an Kälteanlage angeschlossen
- Pumpenausfall führte zu Ausfall aller Wärmetauscher
- Notabschaltung eines Serverraums nötig

Problem: Stromausfälle

- Ausfall durch USV gepuffert
- Reale Pufferzeit

 Angegebene Pufferzeit
- Längerfristige Pufferung durch Diesel
- Regelmäßige Wartung
- Immer echte Tests! Regelmäßig

Bild: https://de.wikipedia.org/wiki/Unterbrechungsfreie_Stromversorgung

Unbeabsichtigte Änderung/Löschung

- Unbeabsichtigte Änderungen passieren
- Fallen oft Jahre nicht auf
- Funktion zur Wiederherstellung an User
- Gibt auch Sicherheit
- Die Backupfunktion kann ausfallen

Problem: Mehrstufige Backups

- Wiederherstellung von Windows war nicht möglich
- Fehler ist erst Monate später aufgefallen
- Keine Datensicherung vorhanden
- zweite Stufe (LUN-Snapshot)
- Wiederherstellung aufwändig aber möglich

Problem: Festplattenausfall

- Konfiguration: RAID 60 mit zwei Hot-Spare Platten
- Festplattenausfall
- Hot-Spare Sicherung: Zweite HDD defekt
- Festplattentausch innerhalb von 4 h
- Hot-Spare Konfiguration überprüft

Deduplizierung und Kompression sind deine Freunde

- Deduplizierung: Doppelte Dateien einmal ablegen
- Kompression: Dateien komprimieren
- Besonders effizient bei Snapshots
- Extreme Einsparung möglich
- Brutto-Speicherplatz steigt
- Beispiel OTH: 45,95 %

Problem: Speicherung über 50 Jahre

- Kein Hersteller garantiert >10 Jahre
- Migration über Jahre hinweg auf jeweils neues System
- Standortunabhängigkeit
- Desasterrecovery schwer
- Retention Lock muss fortgeführt werden

Problem: Fehler entdecken

- Fehler passieren immer
- Nur bei Erkennung Reaktion möglich
- Schon bei wenig System schnell unübersichtlich
- Empfehlung: check_mk

Problem: Single Point of Failure

Bild: https://de.wikipedia.org/wiki/Single_Point_of_Failure

Problem: Single Point of Failure

Bild: https://de.wikipedia.org/wiki/Single_Point_of_Failure

Problem: Single Point of Failure

Bild: https://de.wikipedia.org/wiki/Single_Point_of_Failure

Problem: Netzwerkverteilung

- Klimatechnik auch bei Netzwerkknotenpunkten
- Ringkonfiguration wegen Bauarbeiten
- SPOF zwischen Rechenzentren minimieren

Problem: Angriffe

- Abhärtung der Systeme
- Schulung der Mitarbeiter
- Anderen Servern sollte nicht vertraut werden
- Beispiel: OpenVAS
- Beispiel: Logmanagement
- Allgemein: Extrem schwer, alle Angriffe abzuhalten

Reaktionszeiten

- Ausfälle passieren!
- Wie ist die Reaktionszeit?
- Bei kritischen Systemen: Externer Service
- Wie schnell kann Ersatz bestellt werden?
- Eventuell: Vorhalten bestimmter Komponenten

Grundlagen: Verschlüsselung und

Signierung

Warum Verschlüsselung?

- Firmenumfeld und Privat: Immer schützenswerte Daten!
- Verschlüsselung schafft vertrauen
- Vertrauen unabhängig von einzelnen
- Verschlüsselung teilweise gesetzlich gefordert
- Am besten: Allgegenwärtig und immer!
- Aber: Verschlüsselung auch unbequem

Symmetrische Verschlüsselung

- Ein gemeinsames Geheimnis
- Effiziente Implementierung
- Problem des Schlüsselaustausches
- Beispiele: AES oder Blowfish

Bild: https://de.wikipedia.org/wiki/Symmetrisches_Kryptosystem

Asymmetrische Verschlüsselung

- Ein Schlüsselpaar
- Erster Teil: Nur Verschlüsseln
- Zweiter Teil: Nur Entschlüsseln
- Key zum Verschlüsseln öffentlich
- Key zum Entschlüsseln geheim
- Rechenintensiv
- Beispiele: RSA, Elliptic Curve Cryptography (ECC)

 $Bild:\ https://de.wikipedia.org/wiki/Asymmetrisches_Kryptosystem$

Transportverschlüsselung

- 1. Verschlüsselte Verbindung
- 2. Authentizität.
- Kombination aus Symmetrischer und Asymmetrischer-Verschlüsselung
- Zertifikatsketten sorgen für Authentizität
- TLS ist nicht gleich TLS

Festplattenverschlüsselung

- Extrem wichtig bei mobilen Geräten
- Auch wichtig für Cloud-Speicher
- Meist AES = Schnelle Implementation
- Komplex bei Aufsetzen und starten
- Wichtig für Datenschutz bei Diebstahl

Signaturalgorithmen

- Basiert meist auf Asymmetrischen Kryptographiesystemen
- Integrität elektronischer Information gesichert
- Zeitstempel kryptographisch gesichert
- Wichtig für Compliance
- Unverzichtbar bei Revisionssicherheit

Email-Verschlüsselung: PGP und S/MIME

- Email nur Transportverschlüsselt
- Ansonsten: Postkarte
- Absender kann ohne weiteres gefälscht werden
- Mögliche Methoden: PGP und S/MIME

Verschlüsselung und Signierung

in der Praxis

Summary

Bild: Screenshot - https://www.ssllabs.com/ssltest

Bild: Screenshot Chrome

Bild: Screenshot Firefox

Tipps

- Nogo: Website ohne TLS
- TLS ist kein Hexenwerk mehr
- Kostenlose Zertifikate: letsencrypt.org
- Gute Verschlüsselung: cipherli.st
- Stichwort: TLS 1.3 vs. eTLS

Email-Verschlüsselung in der Praxis

- pEp: Pretty Easy Privacy
- Standard Verschlüsselugnsverfahren
- Einfach umgesetzt
- Outlook, Thunderbird, Android, iOS
- www.pep.security

Ausflug: Whatsapp und Co

- Messenger praktisch für schnelle Kommunikation
- WhatsApp Ende-zu-Ende verschlüsselt
- Verwendet Signal-Protokoll
- Metadaten unverschlüsselt
- Backups unverschlüsselt
- Bessere Alternativen möglich
- Beispiel: Signal

Zusammenfassung

Zusammenfassung

- Backups sind kein einfaches Thema
- Verschlüsselung noch weniger
- Viel zu beachten
- Aber: Einfache Backups besser als Keine
- Gute Vorbereitung Hilft im Fehlerfall

Kontakt

Timo Schindler timo.schindler@oth-regensburg.de