Introductory Lectures on Optimization

General Convex Problem (2)

Hui Qian qianhui@zju.edu.cn

College of Computer Science, Zhejiang University

November 20, 2024

Outline

- Continuity and Differentiability
 - Continuity of Convex Function
 - Differentiability of Convex Function
- 2 Separation Theorems
 - Projection
 - Main Theorems
- 3 Subgradient
 - Definition of Subgradient
 - Properties of Subgradient
 - Rules for Computing
 - Examples
- 4 Reference

Part I Continuity and Differentiability

In this section we will see that the structure of convex functions in the interior of its domain is very simple.

Lemma 16 (Lemma 3.1.2)

Let function f be convex and $x_0 \in \text{int}(\text{dom } f)$. Then f is locally upper bounded at x_0 .

Proof. Let us choose some $\epsilon > 0$ such that $x_0 \pm \epsilon e_i \in \operatorname{int}(\operatorname{dom} f)$, $i = 1 \dots n$, where e_i are the coordinate vectors of \mathbb{R}^n . Denote

$$\Delta = \operatorname{Conv}\{\boldsymbol{x}_0 \pm \epsilon \boldsymbol{e}_i, i = 1 \dots n\}.$$

Let us show that
$$\Delta \supset B_2(\boldsymbol{x}_0, \bar{\epsilon})$$
 with $\bar{\epsilon} = \frac{\epsilon}{\sqrt{n}}$.

Proof. (Continued.) Indeed, consider ($x \in B_2$)

$$\|m{x} = m{x}_0 + \sum_{i=1}^n h_i m{e}_i, \quad ext{and let } \|m{x} - m{x}_0\|_2^2 = \sum_{i=1}^n (h_i)^2 \le ar{\epsilon}^2 = rac{\epsilon^2}{n}.$$

We can assume that $h_i \geq 0$ (otherwise, in the above representation we can choose $-e_i$ instead of e_i). Then

$$eta \equiv \sum_{i=1}^{n} h_i = \langle \mathbf{1}, \ \boldsymbol{h} \rangle \leq \|\mathbf{1}\|_2 \|\boldsymbol{h}\|_2 = \sqrt{n} \sqrt{\sum_{i=1}^{n} (h_i)^2} \leq \epsilon.$$

Proof. (Continued.) Therefore for $\bar{h}_i = \frac{1}{\beta} h_i$, we have

$$x = x_0 + \beta \sum_{i=1}^n \bar{h}_i e_i = x_0 + \frac{\beta}{\epsilon} \sum_{i=1}^n \bar{h}_i \epsilon e_i$$
$$= \left(1 - \frac{\beta}{\epsilon}\right) x_0 + \frac{\beta}{\epsilon} \sum_{i=1}^n \bar{h}_i (x_0 + \epsilon e_i) \in \Delta.$$

Therefore, we have $\Delta \supset B_2(\boldsymbol{x}_0, \bar{\epsilon})$.

Proof. (Continued.) Thus, using Corollary (3.1.2), we obtain

$$M \equiv \max_{\boldsymbol{x} \in B_2(\boldsymbol{x}_0, \bar{\epsilon})} f(\boldsymbol{x}) \leq \max_{\boldsymbol{x} \in \Delta} f(\boldsymbol{x}) = \max_{1 \leq i \leq n} f(\boldsymbol{x}_0 \pm \epsilon \boldsymbol{e}_i).$$

Corollary (3.1.2): Let

$$\Delta = \operatorname{Conv}\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_m\} \equiv \{\boldsymbol{x} = \sum_{i=1}^m \alpha_i \boldsymbol{x}_i | \alpha_i \geq 0, \sum_{i=1}^m \alpha_i = 1\},$$

then $\max_{x \in \Delta} f(x) = \max_{1 \le i \le n} f(x_i)$.

The above result implies continuity of a convex function at any interior point of its domain.

Theorem 17 (Theorem 3.1.8)

Let f be convex and $x_0 \in \text{int}(\text{dom } f)$. Then f is locally Lipschitz continuous at x_0 .

Proof. Let $B_2(\boldsymbol{x}_0, \epsilon) \subset \text{dom } f$ and $\sup\{f(\boldsymbol{x})|\boldsymbol{x} \in B_2(\boldsymbol{x}_0, \epsilon)\} \leq M$ (in view of Lemma 16, M is finite). Consider $\boldsymbol{y} \in B_2(\boldsymbol{x}_0, \epsilon), \boldsymbol{y} \neq \boldsymbol{x}_0$. Denote

$$lpha = rac{1}{\epsilon} \left\| oldsymbol{y} - oldsymbol{x}_0
ight\|, \quad z = oldsymbol{x}_0 + rac{1}{lpha} (oldsymbol{y} - oldsymbol{x}_0).$$

Clearly, $||z - x_0|| = \frac{1}{\alpha} ||y - x_0|| = \epsilon$.

Remark. 构造的 z 没有超出邻域。 y 是 x_0 和 z 的凸组合。

Proof. (Continued.) Therefore $\alpha \leq 1$ and $y = \alpha z + (1 - \alpha)x_0$. Hence,

$$f(\mathbf{y}) \leq \alpha f(z) + (1 - \alpha) f(\mathbf{x}_0)$$

$$= f(\mathbf{x}_0) + \alpha (f(z) - f(\mathbf{x}_0))$$

$$\leq f(\mathbf{x}_0) + \alpha (M - f(\mathbf{x}_0))$$

$$= f(\mathbf{x}_0) + \frac{M - f(\mathbf{x}_0)}{\epsilon} \|\mathbf{y} - \mathbf{x}_0\|.$$

Proof. (Continued.) Further, denote $u = x_0 + \frac{1}{\alpha}(x_0 - y)$. Then $||u - x_0|| = \epsilon$ and $y = x_0 + \alpha(x_0 - u)$. Therefore, in view of Theorem 3.1.1, we have

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}_0) + \alpha(f(\boldsymbol{x}_0) - f(u))$$

$$\ge f(\boldsymbol{x}_0) - \alpha(M - f(\boldsymbol{x}_0))$$

$$= f(\boldsymbol{x}_0) - \frac{M - f(\boldsymbol{x}_0)}{\epsilon} \|\boldsymbol{y} - \boldsymbol{x}_0\|.$$

Thus,
$$|f(y) - f(x_0)| \le \frac{M - f(x_0)}{\epsilon} ||y - x_0||$$
.

The convex functions possess a property, which is very close to differentiability.

Definition 18 (Definition 3.1.3)

Let $x \in \text{dom } f$. We call f differentiable in a direction p at point x if the following limit exists:

$$f'(\boldsymbol{x}; \boldsymbol{p}) = \lim_{a \downarrow 0} \frac{1}{\alpha} [f(\boldsymbol{x} + \alpha \boldsymbol{p}) - f(\boldsymbol{x})]. \tag{5}$$

The value f'(x; p) is called the directional derivative of f at x.

Theorem 19 (Theorem 3.1.9)

Convex function f is differentiable in any direction at any interior point of its domain.

Proof. let $x \in \text{int}(\text{dom } f)$. Consider the function

$$\phi(\alpha) = \frac{1}{\alpha} [f(\boldsymbol{x} + \alpha \boldsymbol{p}) - f(\boldsymbol{x})], \quad \alpha > 0,$$

(prove that ϕ is descending.) Let $\beta \in (0,1]$ and $\alpha \in (0,\epsilon]$, ϵ be small enough to have $x + \epsilon p \in \text{dom } f$. Then

$$f(\boldsymbol{x} + \alpha\beta\boldsymbol{p}) = f((1 - \beta)\boldsymbol{x} + \beta(\boldsymbol{x} + \alpha\boldsymbol{p})) \le (1 - \beta)f(\boldsymbol{x}) + \beta f(\boldsymbol{x} + \alpha\boldsymbol{p}).$$
 (6)

Proof. (Continued.) Therefore,

$$\phi(\alpha\beta) = \frac{1}{\alpha\beta} [f(\boldsymbol{x} + \alpha\beta\boldsymbol{p}) - f(\boldsymbol{x})] \underbrace{\leq}_{\text{by (6)}} \frac{1}{\alpha} [f(\boldsymbol{x} + \alpha\boldsymbol{p}) - f(\boldsymbol{x})] = \phi(\alpha).$$

Thus $\phi(\alpha)$ decreases as $\alpha \downarrow 0$. Let us choose $\gamma > 0$ small enough to have $x - \gamma p \in \text{dom } f$. Then, in view of (3.1.3), we have(see the remark in next page)

$$\phi(\alpha) \ge \frac{1}{\gamma} [f(\boldsymbol{x}) - f(\boldsymbol{x} - \gamma \boldsymbol{p})].$$

Hence, the limit in (5) exists. (Monotonically decreasing and bounded, the limit exists)

Remarks.

In view of (3:1:3), we have

$$f(\boldsymbol{x} + \beta(\boldsymbol{x} - \boldsymbol{y})) - f(\boldsymbol{x}) \ge \beta(f(\boldsymbol{x}) - f(\boldsymbol{y})),$$

$$\frac{1}{\alpha} \left\{ f(\boldsymbol{x} + \beta(\boldsymbol{x} - \boldsymbol{y})) - f(\boldsymbol{x}) \right\} \ge \frac{\beta}{\alpha} (f(\boldsymbol{x}) - f(\boldsymbol{y})).$$

Let $\gamma = \frac{\alpha}{\beta}$ and $\boldsymbol{y} = \boldsymbol{x} - \gamma \boldsymbol{p}$. We obtain

$$\frac{1}{\alpha} \left\{ f(\boldsymbol{x} + \beta \gamma \boldsymbol{p}) - f(\boldsymbol{x}) \right\} \ge \frac{1}{\gamma} (f(\boldsymbol{x}) - f(\boldsymbol{x} - \gamma \boldsymbol{p})).$$

The directional derivative provides us a global lower support of the convex function.

Lemma 20 (Lemma 3.1.3)

Let f be a convex function and $x \in \text{int}(\text{dom } f)$. Then f'(x; p) is a convex function of p, which is homogeneous of degree 1. For any $y \in \text{dom } f$ we have

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + f'(\boldsymbol{x}; \boldsymbol{y} - \boldsymbol{x}). \tag{7}$$

Proof. (Homogeneous:) Indeed, for $p \in \mathbb{R}^n$ $\pi \tau > 0$, we have

$$f'(\boldsymbol{x}; \tau \boldsymbol{p}) = \lim_{\alpha \downarrow 0} \frac{1}{\alpha} [f(\boldsymbol{x} + \tau \alpha \boldsymbol{p}) - f(\boldsymbol{x})]$$

= $\tau \lim_{\beta \downarrow 0} \frac{1}{\beta} [f(\boldsymbol{x} + \beta \boldsymbol{p}) - f(\boldsymbol{x})] = \tau f'(\boldsymbol{x}; \boldsymbol{p}).$

Proof. (Continued.) Further, for any $p_1, p_2 \in \mathbb{R}^n$ and $\beta \in [0, 1]$ we obtain

$$f'(\boldsymbol{x}; \beta \boldsymbol{p}_{1} + (1 - \beta)\boldsymbol{p}_{2}) = \lim_{\alpha \downarrow 0} \frac{1}{\alpha} \left[f(\boldsymbol{x} + \alpha(\beta \boldsymbol{p}_{1} + (1 - \beta)\boldsymbol{p}_{2})) - f(\boldsymbol{x}) \right]$$

$$\leq \lim_{\alpha \downarrow 0} \frac{1}{\alpha} \left\{ \beta \left[f(\boldsymbol{x} + \alpha \boldsymbol{p}_{1}) - f(\boldsymbol{x}) \right] + (1 - \beta) \left[f(\boldsymbol{x} + \alpha \boldsymbol{p}_{2}) - f(\boldsymbol{x}) \right] \right\}$$

$$= \beta f'(\boldsymbol{x}; \boldsymbol{p}_{1}) + (1 - \beta) f'(\boldsymbol{x}; \boldsymbol{p}_{2}).$$

Thus, f'(x; p) is convex in p.

$$f(\mathbf{x} + \alpha(\beta \mathbf{p}_1 + (1 - \beta)\mathbf{p}_2)) - f(\mathbf{x})$$

= $f(\beta \mathbf{x} + (1 - \beta)\mathbf{x} + \alpha(\beta \mathbf{p}_1 + (1 - \beta)\mathbf{p}_2)) - \beta f(\mathbf{x}) - (1 - \beta)f(\mathbf{x})$

Proof. (Continued.) Finally, let $\alpha \in (0,1]$, $\mathbf{y} \in \text{dom } f$, and $\mathbf{y}_{\alpha} = \mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})$. Then in view of Theorem 3.1.1, we have

$$f(\mathbf{y}) = f(\mathbf{y}_{\alpha} + \frac{1}{\alpha}(1 - \alpha)(\mathbf{y}_{\alpha} - \mathbf{x}))$$

$$\geq f(\mathbf{y}_{\alpha}) + \frac{1}{\alpha}(1 - \alpha)[f(\mathbf{y}_{\alpha}) - f(\mathbf{x})],$$

$$= f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) + (1 - \alpha)\left(\frac{1}{\alpha}[f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})]\right),$$

and we get (7) taking the limit in $\alpha \downarrow 0$.

Part II Separation Theorems

Hyperplane

Definition 21 (Definition 3.1.4)

Let Q be a convex set. We say that hyperplane

$$\mathcal{H}(g,\gamma) = \{ \boldsymbol{x} \in \mathbb{R}^n | \langle g, \boldsymbol{x} \rangle = \gamma \}, \ g \neq 0,$$

is supporting to Q if any $x \in Q$ satisfies inequality $\langle g, x \rangle \leq \gamma$.

We say that the hyperplane $\mathcal{H}(g,\gamma)$ separates a point x_0 from Q if

$$\langle g, \mathbf{x} \rangle \le \gamma \le \langle g, \mathbf{x}_0 \rangle.$$
 (8)

for all $x \in Q$. If the second inequality in (8) is strict, we call the separation strict.

Definition 22 (Definition 3.1.5)

Let Q be a closed set and $x_0 \in \mathbb{R}^n$. Denote

$$\pi_Q(\boldsymbol{x}_0) = \operatorname{argmin}\{\|\boldsymbol{x} - \boldsymbol{x}_0\| : \boldsymbol{x} \in Q\}.$$

We call $\pi_Q(x_0)$ the projection of point x_0 onto the set Q.

Theorem 23 (Theorem 3.1.10)

If Q is a convex set, then there exists a unique projection $\pi_Q(x_0)$.

Proof. Indeed, $\pi_Q(\boldsymbol{x}_0) = \operatorname{argmin}\{\phi(\boldsymbol{x})|\boldsymbol{x} \in Q\}$, where the function $\phi(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{x}_0\|^2$ belongs to $\mathcal{S}_{1,1}^{1,1}(\mathbb{R}^n)$. Therefore, $\pi_Q(\boldsymbol{x}_0)$ is unique and well defined in view of Theorem 2.2.6

Remark. It is clear that $\pi_Q(x_0) = x_0$ if and only if $x_0 \in Q$.

Lemma 24 (Lemma 3.1.4)

Let Q be a closed and convex set and $x_0 \notin Q$. Then for any $x \in Q$ we have

$$\langle \pi_Q(\boldsymbol{x}_0) - \boldsymbol{x}_0, \ \boldsymbol{x} - \pi_Q(\boldsymbol{x}_0) \rangle \ge 0. \tag{9}$$

Proof. Note that $\pi_Q(\boldsymbol{x}_0)$ is a solution to the minimization problem $\min_{\boldsymbol{x}\in Q}\phi(\boldsymbol{x})$ with $\phi(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{x}_0\|^2$. Therefore, in view of Theorem 2.2.5 we have

$$\langle \nabla \phi(\pi_Q(\boldsymbol{x}_0)), \ \boldsymbol{x} - \pi_Q(\boldsymbol{x}_0) \rangle \ge 0,$$

for all $x \in Q$. It remains to note that $\nabla \phi(x) = x - x_0$.

定理 2.2.5: 从最小点出发,都是增长方向。

Lemma 25 (Lemma 3.1.5)

For any $x \in Q$ we have

$$\|x - \pi_Q(x_0)\|^2 + \|\pi_Q(x_0) - x_0\|^2 \le \|x - x_0\|^2$$
.

Proof. Indeed, in view of (9) we have

$$\|\boldsymbol{x} - \pi_{Q}(\boldsymbol{x}_{0})\|^{2} - \|\boldsymbol{x} - \boldsymbol{x}_{0}\|^{2} = \langle \boldsymbol{x}_{0} - \pi_{Q}(\boldsymbol{x}_{0}), \ 2\boldsymbol{x} - \pi_{Q}(\boldsymbol{x}_{0}) - \boldsymbol{x}_{0} \rangle$$

$$= \langle \boldsymbol{x}_{0} - \pi_{Q}(\boldsymbol{x}_{0}), \ 2\boldsymbol{x} - 2\pi_{Q}(\boldsymbol{x}_{0}) + \pi_{Q}(\boldsymbol{x}_{0}) - \boldsymbol{x}_{0} \rangle$$

$$\leq - \|\boldsymbol{x}_{0} - \pi_{Q}(\boldsymbol{x}_{0})\|^{2} . (\text{ from } (9))$$

Remark.
$$\langle \boldsymbol{x}_0 - \pi_Q(\boldsymbol{x}_0), \ 2\boldsymbol{x} - 2\pi_Q(\boldsymbol{x}_0) \rangle + \langle \boldsymbol{x}_0 - \pi_Q(\boldsymbol{x}_0), \ \pi_Q(\boldsymbol{x}_0) - \boldsymbol{x}_0 \rangle$$

Theorem 26 (Theorem 3.1.11)

Let Q be a closed convex set and $x_0 \notin Q$. Then there exists a hyperplane $\mathcal{H}(g,\gamma)$, which strictly separates x_0 from Q. Namely, we can take

$$g = x_0 - \pi_Q(x_0) \neq 0, \quad \gamma = \langle x_0 - \pi_Q(x_0), \ \pi_Q(x_0) \rangle.$$

Proof. Indeed, in view of (9), for any $x \in Q$ we have

$$\underbrace{\langle \boldsymbol{x}_{0} - \pi_{Q}(\boldsymbol{x}_{0}), \, \boldsymbol{x} \rangle}_{\langle g, \, \boldsymbol{x} \rangle} \leq \underbrace{\langle \boldsymbol{x}_{0} - \pi_{Q}(\boldsymbol{x}_{0}), \, \pi_{Q}(\boldsymbol{x}_{0}) \rangle}_{\gamma} = \underbrace{\langle \boldsymbol{x}_{0} - \pi_{Q}(\boldsymbol{x}_{0}), \, \boldsymbol{x}_{0} \rangle}_{\langle g, \, \boldsymbol{x}_{0} \rangle} - \|\boldsymbol{x}_{0} - \pi_{Q}(\boldsymbol{x}_{0})\|^{2}$$

$$\leq \underbrace{\langle \boldsymbol{x}_{0} - \pi_{Q}(\boldsymbol{x}_{0}), \, \boldsymbol{x}_{0} \rangle}_{\langle g, \, \boldsymbol{x}_{0} \rangle}$$

$$\psi_Q(\boldsymbol{g}) = \sup\{\langle \boldsymbol{g}, \, \boldsymbol{x} \rangle | \boldsymbol{x} \in Q\}.$$

Let us give an example of an application of the above theorem.

Corollary 27 (Corollary 3.1.3)

Let Q_1 and Q_2 be two closed convex sets.

- II If for any $g \in \text{dom } \psi_{Q_2}$ we have $\psi_{Q_1}(g) \leq \psi_{Q_2}(g)$, then $Q_1 \subseteq Q_2$.
- Let dom $\psi_{Q_1}=$ dom ψ_{Q_2} and for any $\boldsymbol{g}\in$ dom ψ_{Q_1} , we have $\psi_{Q_1}(\boldsymbol{g})=\psi_{Q_2}(\boldsymbol{g})$. Then $Q_1\equiv Q_2$.

Theorem 28 (Theorem 3.1.12)

Let Q be a closed and convex set, and x_0 belong to the boundary of set Q. Then there exists a hyperplane $\mathcal{H}(g,\gamma)$, supporting to Q and passing through x_0 . (Such a vector q is called supporting to Q at x_0)

Proof. Consider a sequence $\{y_k\}$ such that $y_k \neq Q$ and $y_k \rightarrow x_0$. Denote

$$oldsymbol{g}_k = rac{oldsymbol{y}_k - \pi_Q(oldsymbol{y}_k)}{\|oldsymbol{y}_k - \pi_Q(oldsymbol{y}_k)\|}, \ \ \gamma_k = \langle oldsymbol{g}_k, \ \pi_Q(oldsymbol{y}_k)
angle.$$

In view of Theorem 26, for all $x \in Q$ we have

$$\langle \boldsymbol{g}_k, \, \boldsymbol{x} \rangle \leq \gamma_k \leq \langle \boldsymbol{g}_k, \, \boldsymbol{y}_k \rangle.$$
 (10)

Proof. (Continued.)

However, $\|g_k\| = 1$ and the sequence $\{\gamma_k\}$ is bounded:

$$\begin{aligned} |\gamma_k| &= |\langle \boldsymbol{g}_k, \ \pi_Q(\boldsymbol{y}_k) - \boldsymbol{x}_0 \rangle + \langle \boldsymbol{g}_k, \ \boldsymbol{x}_0 \rangle| \\ \text{(Lemma 3.1.5)} &\leq \|\pi_Q(\boldsymbol{y}_k) - \boldsymbol{x}_0\| + \|\boldsymbol{x}_0\| \leq \|\boldsymbol{y}_k - \boldsymbol{x}_0\| + \|\boldsymbol{x}_0\| \,. \end{aligned}$$

Therefore, without loss of generality we can assume that there exist $g^* = \lim_{k \to \infty} g_k$ and $\gamma^* = \lim_{k \to \infty} \gamma_k$. It remains to take the limit in (10).

Remark.

$$\langle \boldsymbol{g}^*, \ \boldsymbol{x} \rangle \leq \gamma^* \leq \langle \boldsymbol{g}^*, \ \boldsymbol{x}_0 \rangle.$$

Rmark. From Lemma 3.1.5, we have

$$\|oldsymbol{x} - \pi_Q(oldsymbol{x}_0)\|^2 + \|\pi_Q(oldsymbol{x}_0) - oldsymbol{x}_0\|^2 \le \|oldsymbol{x} - oldsymbol{x}_0\|^2.$$

That is

$$\|x - \pi_Q(x_0)\|^2 \le \|x - x_0\|^2$$
.

In this context, $x \equiv x_0$ and $x_0 \equiv y_k$. Thus we arrive at

$$\|m{x}_0 - \pi_Q(m{y}_k)\|^2 \leq \|m{x}_0 - m{y}_k\|^2$$
 .

Also

$$\|\pi_Q(y_k) - x_0\| \le \|y_k - x_0\|.$$

Part III Subdifferential and Subgradient

Definition

Definition 29 (Definition 3.1.6)

Let f be a convex function. A vector g is called a subgradient of function f at point $x_0 \in \text{dom } f$ if for any $x \in \text{dom } f$ we have

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}_0) + \langle \boldsymbol{g}, \, \boldsymbol{x} - \boldsymbol{x}_0 \rangle.$$
 (11)

The set of all subgradients of f at x_0 , is called the subdifferential of function f at point x_0 .

The subdifferentiability of a function implies convexity.

Lemma 30 (Lemma 3.1.6)

Let for any $x \in \text{dom } f$ subdifferential $\partial f(x)$ be nonempty. Then f is a convex function.

Proof. Indeed, let $x, y \in \text{dom } f, \alpha \in [0, 1]$. Consider $y_{\alpha} = x + \alpha(y - x)$. Let $g \in \partial f(y_{\alpha})$. Then

$$f(\mathbf{y}) \ge f(\mathbf{y}_{\alpha}) + \langle \mathbf{g}, \ \mathbf{y} - \mathbf{y}_{\alpha} \rangle = f(\mathbf{y}_{\alpha}) + (1 - \alpha)\langle \mathbf{g}, \ \mathbf{y} - \mathbf{x} \rangle,$$

$$f(\mathbf{x}) \ge f(\mathbf{y}_{\alpha}) + \langle \mathbf{g}, \ \mathbf{x} - \mathbf{y}_{\alpha} \rangle = f(\mathbf{y}_{\alpha}) - \alpha \langle \mathbf{g}, \ \mathbf{y} - \mathbf{x} \rangle,$$

Adding these inequalities multiplied by α and $(1 - \alpha)$ respectively, we get

$$\alpha f(\boldsymbol{y}) + (1 - \alpha)f(\boldsymbol{x}) \ge f(\boldsymbol{y}_{\alpha}).$$

Theorem 31 (Theorem 3.1.13)

Let f be closed and convex and $x_0 \in \text{int}(\text{dom } f)$. Then $\partial f(x_0)$ is a nonempty bounded set.

Proof. Note that the point $(f(x_0), x_0)$ belongs to the boundary of epi(f). Hence, in view of Theorem 3.1.12, there exists a hyperplane supporting to epi(f) at $(f(x_0), x_0)$:

$$\langle (-\alpha, \mathbf{d}), (\tau, \mathbf{x}) \rangle \le \langle (-\alpha, \mathbf{d}), (f(\mathbf{x}_0), \mathbf{x}_0) \rangle.$$
That is, $-\alpha \tau + \langle \mathbf{d}, \mathbf{x} \rangle \le -\alpha f(\mathbf{x}_0) + \langle \mathbf{d}, \mathbf{x}_0 \rangle,$ (12)

for all $(\tau, x) \in epi(f)$. Note that we can take

$$\|(-\alpha, \mathbf{d})\|^2 = \|\mathbf{d}\|^2 + \alpha^2 = 1.$$
 (13)

注:可以归一化。

Proof. (Continued.) Since for all $\tau \geq f(x_0)$ the point (τ, x_0) belongs to epi(f), we conclude that $\alpha \geq 0$.

Remark. since
$$-\alpha \tau + \langle \boldsymbol{d}, \boldsymbol{x}_0 \rangle \leq -\alpha f(\boldsymbol{x}_0) + \langle \boldsymbol{d}, \boldsymbol{x}_0 \rangle$$
, we have $-\alpha \tau \leq -\alpha f(\boldsymbol{x}_0)$, that is $\alpha(\tau - f(\boldsymbol{x}_0)) \geq 0$.

Now, we prove $\alpha > 0$: Recall, that a convex function is locally Lipschitz continuous at the interior of its domain (Theorem 17). This means that there exist some $\epsilon > 0$ and M > 0 such that $B_2(\boldsymbol{x}_0, \epsilon) \subseteq \text{dom } f$ and

$$f(\boldsymbol{x}) - f(\boldsymbol{x}_0) \le M \|\boldsymbol{x} - \boldsymbol{x}_0\|.$$

for all $\boldsymbol{x} \in B_2(\boldsymbol{x}_0, \epsilon)$.

Proof. (Continued.) Therefore, in view of (12), for any x from this ball we have

$$\langle \boldsymbol{d}, \, \boldsymbol{x} - \boldsymbol{x}_0 \rangle \le \alpha (f(\boldsymbol{x}) - f(\boldsymbol{x}_0)) \le \alpha M \| \boldsymbol{x} - \boldsymbol{x}_0 \|.$$

Remark. The first inequality comes from the fact that (f(x), x) also belongs to epi(f). We can obtain it from (12).

Choosing $x = x_0 + \epsilon d$ we get $\|d\|^2 \le M\alpha \|d\|$. Thus, in view of the normalizing condition (13) we obtain

$$\alpha \ge \frac{1}{\sqrt{1+M^2}} > 0.$$

Proof. (Continued.)

Prove the non-empty: Choosing $g = d/\alpha$ we get

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_0) + \langle \boldsymbol{g}, \ \boldsymbol{x} - \boldsymbol{x}_0 \rangle.$$

for all $x \in \text{dom } f$.

Prove the bounded: Finally, if $\mathbf{g} \in \partial f(\mathbf{x}_0)$, $\mathbf{g} \neq 0$, then choosing $\mathbf{x} = \mathbf{x}_0 + \epsilon \mathbf{g}/\|\mathbf{g}\|$ we obtain

$$\epsilon \|\boldsymbol{g}\| = \langle \boldsymbol{g}, \ \boldsymbol{x} - \boldsymbol{x}_0 \rangle \le f(\boldsymbol{x}) - f(\boldsymbol{x}_0) \le M \|\boldsymbol{x} - \boldsymbol{x}_0\| = M\epsilon.$$

Thus, $\partial f(x_0)$ is bounded.

Let us show that the conditions of the above theorem cannot be relaxed.

Example 32 (Example 3.1.4)

Consider the function $f(x) = -\sqrt{x}$ with the domain $\{x \in \mathbb{R}^1 | x \ge 0\}$. This function is convex and closed, but the subdifferential does not exist at x = 0.

Remark.

- $\nabla^2 f(x) = \frac{1}{4}x^{-\frac{3}{2}}$. Therefore when $x \ge 0$, it is convex. Since f(x) is continuous, it is closed.
- 2 At $x_0 = 0$, if $-\sqrt{x} \ge 0 + gx$, we have $g \le -\frac{1}{\sqrt{x}}$, $x \ge 0$. Thus, we arrive at $g \le -\infty$. Therefore, subgradient can not be obtained.

Thus, even function is closed and convex, the sub-differential may be empty at non-interior points.

Subgradient and Convexity

Let us deterine an important relation between the subdifferential and the directional derivative of convex function.

Theorem 33 (Theorem 3.1.14)

Let f be a closed convex function. For any $x_0 \in \text{int}(\text{dom } f)$ and $p \in \mathbb{R}^n$ we have

$$f'(\boldsymbol{x}_0; \boldsymbol{p}) = \max\{\langle \boldsymbol{g}, \, \boldsymbol{p} \rangle \big| \boldsymbol{g} \in \partial f(\boldsymbol{x}_0)\}.$$

$$f'(x; p) = \lim_{a\downarrow 0} \frac{1}{\alpha} [f(x + \alpha p) - f(x)].$$

Properties

Theorem 34 (Theorem 3.1.15)

We have $f(x^*) = \min_{x \in \text{dom } f} f(x)$ if and only if

$$0 \in \partial f(\boldsymbol{x}^*).$$

Proof.

Indeed, if $0 \in \partial f(\boldsymbol{x}^*)$, then $f(\boldsymbol{x}) \geq f(\boldsymbol{x}^*) + \langle 0, \ \boldsymbol{x} - \boldsymbol{x}^* \rangle = f(\boldsymbol{x}^*)$ for all $\boldsymbol{x} \in \text{dom } f$.

On the other hand, if $f(x) \ge f(x^*)$ for all $x \in \text{dom } f$, then $0 \in \partial f(x^*)$ in view of Definition 29.

Properties

Theorem 35 (Theorem 3.1.16)

For any $x_0 \in \text{dom } f$, all vectors $g \in \partial f(x_0)$ are supporting to the level set $\mathcal{L}_f(f(x_0))$:

$$\langle \boldsymbol{g}, \ \boldsymbol{x}_0 - \boldsymbol{x} \rangle \geq 0, \quad \forall \boldsymbol{x} \in \mathcal{L}_f(f(\boldsymbol{x}_0)) \equiv \{ \boldsymbol{x} \in \text{dom } f : f(\boldsymbol{x}) \leq f(\boldsymbol{x}_0) \}.$$

Corollary 36 (Corollary 3.1.4)

Let $Q \subseteq \text{dom } f$ be a closed convex set, $\boldsymbol{x}_0 \in Q$ and

$$\boldsymbol{x}^* = \operatorname{argmin}\{f(\boldsymbol{x})| \boldsymbol{x} \in Q\}.$$

Then for any $g \in \partial f(x_0)$ we have $\langle g, x_0 - x^* \rangle \geq 0$.

Lemma 37 (Lemma 3.1.7)

Let f be closed and convex. Assume that it is differentiable on its domain. Then $\partial f(x) = \{\nabla f(x)\}$ for any $x \in \operatorname{int}(\operatorname{dom} f)$.

Lemma 38 (Lemma 3.1.8)

Let function f(y) be closed and convex with dom $f \subseteq \mathbb{R}^m$. Consider a linear operator

$$\mathcal{A}(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{b}: \quad \mathbb{R}^n \to \mathbb{R}^m.$$

Then $\phi(x) = f(\mathcal{A}(x))$ is a closed convex function with domain dom $\phi = \{x \mid \mathcal{A}(x) \in \text{dom } f \}$. For any $x \in \text{int}(\text{dom } \phi)$ we have

$$\partial \phi(\mathbf{x}) = A^{\top} \partial f(\mathcal{A}(\mathbf{x})).$$

Lemma 39 (Lemma 3.1.9)

Let $f_1(x)$ and $f_2(x)$ be closed convex functions and $\alpha_1, \alpha_2 \ge 0$. Then function $f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x)$ is closed and convex and

$$\partial f(\mathbf{x}) = \alpha_1 \partial f_1(\mathbf{x}) + \alpha_2 \partial f_2(\mathbf{x}). \tag{14}$$

for any x from $int(dom f) = int(dom f_1) \cap int(dom f_2)$.

Lemma 40 (Lemma 3.1.10)

Let functions $f_i(x)$, $i = 1 \dots m$ be closed and convex. Then function

$$f(\boldsymbol{x}) = \max_{1 \leq i \leq m} f_i(\boldsymbol{x})$$

is also closed and convex. For any $x \in \operatorname{int}(\operatorname{dom} f) = \bigcap_{i=1}^m \operatorname{int}(\operatorname{dom} f_i)$ we have

$$\partial f(\mathbf{x}) = \text{Conv}\{\partial f_i(\mathbf{x})|i \in I(\mathbf{x})\},$$
(15)

where
$$I(x) = \{i : f_i(x) = f(x)\}.$$

Lemma 41 (Lemma 3.1.11)

Let Δ be a set and $f(x) = \sup\{\phi(y, x) | y \in \Delta\}$. Suppose that for any fixed $y \in \Delta$ the function $\phi(y, x)$ is closed and convex in x. Then f(x) is closed convex.

Moreover, for any x from

$$\operatorname{dom} f = \{ \boldsymbol{x} \in \mathbb{R}^n | \exists \gamma : \phi(\boldsymbol{y}, \boldsymbol{x}) \le \gamma, \ \forall \boldsymbol{y} \in \Delta \}$$

we have

$$\partial f(\boldsymbol{x}) \supseteq \operatorname{Conv}\{\partial \phi_{\boldsymbol{x}}(\boldsymbol{y}, \boldsymbol{x}) | \boldsymbol{y} \in I(\boldsymbol{x})\},$$

where
$$I(x) = \{y | \phi(y, x) = f(x)\}.$$

Theorem 42

Let $\|\cdot\|$ be a vector norm in \mathbb{R}^n , then

$$\partial \|\cdot\| = \left\{ V(\boldsymbol{x}) \triangleq \left\{ \boldsymbol{v} \in \mathbb{R}^n \middle| \langle \boldsymbol{v}, \, \boldsymbol{x} \rangle = \|\boldsymbol{x}\|, \|\boldsymbol{v}\|_* \le 1 \right\} \right\},$$

where $\|\boldsymbol{v}\|_*$ is the dual norm of $\|\cdot\|$, defined as

$$\|\boldsymbol{v}\|_* \triangleq \sup_{\|\boldsymbol{u}\| \leq 1} \langle \boldsymbol{v}, \ \boldsymbol{u} \rangle.$$

Proof.

We prove that $V(x) \subset \partial \|x\|$, and $\partial \|x\| \subset V(x)$. We remark here notation $\|\cdot\|^*$ is the Fenchel conjugate of the norm $\|\cdot\|$, and $\|\cdot\|_*$ is the dual norm of the norm $\|\cdot\|$.

Proof. (Continued.) $(V(\boldsymbol{x}) \subset \partial \|\boldsymbol{x}\|)$

Let $v \in V(x)$, and y be an arbitrary vector. Then

$$\begin{aligned} \|\boldsymbol{x}\| + \langle \boldsymbol{v}, \ \boldsymbol{y} - \boldsymbol{x} \rangle &= \|\boldsymbol{x}\| + \langle \boldsymbol{v}, \ \boldsymbol{y} \rangle - \langle \boldsymbol{v}, \ \boldsymbol{x} \rangle \\ &= \|\boldsymbol{x}\| + \langle \boldsymbol{v}, \ \boldsymbol{y} \rangle - \|\boldsymbol{x}\| \quad \because \boldsymbol{v} \in V(\boldsymbol{x}) \\ &= \langle \boldsymbol{v}, \ \boldsymbol{y} \rangle \\ &\leq \|\boldsymbol{y}\| \cdot \|\boldsymbol{v}\|_* \quad \text{Holder's inequality} \\ &\leq \|\boldsymbol{y}\| \cdot \ \because \boldsymbol{v} \in V(\boldsymbol{x}) \end{aligned}$$

That is $\|y\| \ge \|x\| + \langle v, y - x \rangle$, for any y, which is the definition of sub-gradient of $\|\cdot\|$ and $v \in \partial \|x\|$.

That implies $V(x) \subset \partial ||x||$.

Proof. (Continued.) $(\partial \|x\| \subset V(x))$ Let $v \in \partial \|x\|$. Thus we have

$$\|\boldsymbol{y}\| \ge \|\boldsymbol{x}\| + \langle \boldsymbol{v}, \ \boldsymbol{y} - \boldsymbol{x} \rangle,$$

for any y. That is

$$\left\langle oldsymbol{v}, \ oldsymbol{y}
ight
angle - \|oldsymbol{y}\| \leq \left\langle oldsymbol{v}, \ oldsymbol{x}
ight
angle - \|oldsymbol{x}\|, orall oldsymbol{y}.$$
 $\Rightarrow \sup_{egin{subarray}{c} \|oldsymbol{v}\|^* ext{ Fenchel conjugate} \end{array}} \left\{ \left\langle oldsymbol{v}, \ oldsymbol{x}
ight
angle - \|oldsymbol{x}\|.$

 $\|v\|^*$ is the Fenchel conjugate of norm at the point v, which is the indicator function on the unit ball of dual norm.

Proof. (Continued.) $(\partial \|\mathbf{x}\| \subset V(\mathbf{x}))$

That is

$$\|\boldsymbol{v}\|^* = \begin{cases} 0 & \|\boldsymbol{v}\|_* \le 1, \\ +\infty & \|\boldsymbol{v}\|_* > 1. \end{cases}$$

Since the case $\|v\|_* > 1$ is impossible as $\langle v, x \rangle - \|x\|$ is always finite, we have $\|v\|_* \le 1$. That is

$$0 \le \langle \boldsymbol{v}, \, \boldsymbol{x} \rangle - \|\boldsymbol{x}\|$$

$$\le \|\boldsymbol{x}\| \cdot \|\boldsymbol{v}\|_* - \|\boldsymbol{x}\|$$

$$\le 0. \quad \therefore \|\boldsymbol{v}\|_* \le 1$$

So
$$\langle \boldsymbol{v}, \boldsymbol{x} \rangle = \|\boldsymbol{x}\|$$
. That implies $\partial \|\boldsymbol{x}\| \subset V(\boldsymbol{x})$.

Examples

Example 43 (Example 3.1.5)

$$f(x) = |x|, x \in \mathbb{R}^1.$$

$$f(x) = \max_{1 \le i \le n} x^{(i)}.$$

4
$$f(x) = ||x||$$
.

$$f(x) = ||x||_1 = \sum_{i=1}^n |x^{(i)}|.$$

References I

Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer Science & Business Media, 2013.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. *Foundations and Trends® in Machine Learning*, 8(3-4):231–357, 2015.

Thank You!

Email:qianhui@zju.edu.cn