PREDIKTIVNO VODENJE NA OSNOVI MODELA

Igor Škrjanc Laboratorij za avtomatiko in kibernetiko Fakulteta za elektrotehniko

Prosojnice za predavanja, november 2022

Kazalo

- Koncept prediktivnega vodenja
- Osnovni principi prediktivnega vodenja
 - Model impulznega odziva
 - Model v obliki odziva na stopnico
 - Model v obliki prenosne funkcije
 - Primer: Izračun predikcije izhodnega signal s pomočjo Diofantske enačbe
 - Model v obliki zapisa v prostoru stani
- Razvoja osnovnega prediktivnega regulatorja
- Prediktivno funkcijski regulator kot metodologija za načrtovanje vodenja
 - Prediktivno funkcijski regulator z modelom prvega reda
 - PFC regulator na osnovi modela v prostoru stanj
 - PFC regulator na osnovi modela v prostoru stanj za referenčni signal rampe
 - Prediktivno vodenje z omejitvami MBPC z omejitvami
 - Simulaciiski primer PFC koncept + PSO
 - Primer mikroomrežia

Koncept prediktivnega vodenja

S stališča možnosti uporabe v industrijskih aplikacijah imajo metode prediktivnega vodenja **pomembne prednosti** pred ostalimi strategijami vodenja:

- primerne so za vodenje procesov z zahtevnejšo dinamiko,
- primerne so za procese z mrtvim časom in neminimalno fazo,
- splošen koncept omogoča vodenje tako univariabilnih kot multivariabilnih procesov,
- omogočajo predkompenzacijo (feedforward) merljivih motenj,
- pri vodenju lahko upoštevamo omejitve v velikosti reguliranega in regulirnega signala ter omejitve v hitrosti sprememb regulirnega signala.
- precejšnja prostost pri načrtovanju, pri čemer gledamo na parametre načrtovanja kot na specifikacije,
- prediktivni regulator lahko vnaprej generira ustrezen regulirni signal, če vnaprej poznamo potek referenčne trajektorije (looking-ahead zmožnost),
- ni eksplicitnega odvajanja (zato šum meritev ne povzroča problemov),
- ni eksplicitnega integriranja (zato ni problema integralskega pobega),
- osnovni princip je lahko razumljiv tudi za neeksperte.

Bistvene slabosti metod prediktivnega vodenja pa so:

- potrebujemo dober dinamični model procesa (konstrukcija modela lahko predstavlja celo do 80% celotnega potrebnega časa pri razvoju neke realne aplikacije prediktivnega vodenja
- vse metode so računsko precej zahtevne, kar lahko postane problematično pri vodenju procesov s hitrejšo dinamiko.

Osnovni principi prediktivnega vodenja

Metodologija prediktivnega vodenja je naslednja (slika 1):

Slika 1: Princip prediktivnega vodenja

Osnovni principi prediktivnega vodenja

- Ob vsakem diskretnem časovnem trenutku k izračunamo **napoved izhodnega signala procesa** $\hat{y}(k+j)$ za določen horizont opazovanja v prihodnosti $(j=N_1,\ldots,N_2)$. Napovedane vrednosti označimo kot $\hat{y}(k+j|k)$ in predstavljajo j-koračno napoved modela
- vrednosti N_1 in N_2 pa označujeta **spodnjo** in **zgornjo vrednost predikcijskega horizonta**. Spodnja in zgornja vrednost predikcijskega horizonta izhodnega signala določata **interval ujemanja** (*coincidence interval*), znotraj katerega želimo doseči ujemanje izhodnega signala s predpisanim obnašanjem. Napoved izhodnega signala procesa izračunamo s pomočjo modela procesa. Napovedane vrednosti pa so seveda odvisne tudi od regulirnega scenarija v prihodnosti $u(k+j|k), j=0,\ldots,N_u-1$, ki ga **nameravamo** uporabiti od trenutka k naprej.
- če želimo ujemanje v eni sami točki, govorimo o horizontu ujemanja
- Definiramo **referenčno trajektorijo** (ang. reference trajectory) r(k+j|k), $j=N_1,\ldots,N_2$, s katero opišemo kako naj se odziv procesa obnaša. Oziroma kako naj doseže referenčno vrednosti w(k) (ang. setpoint trajectory).
- Vektor prihodnjih regulirnih signalov $(u(k+j|k), j=0,\dots,N_u-1)$ izračunamo z **minimizacijo** ustrezne **kriterijske funkcije** tako, da minimiziramo napovedano napako med r(k+j|k) in $\hat{y}(k+j|k), j=N_1,\dots,N_2$. Pri tem pri nekaterih metodah uporabimo **strukturiranje** (ang. structuring) prihodnjih regulirnih signalov, kar bomo opisali kasneje.
- Za vodenje uporabimo samo prvi element u(k|k) optimalnega vektorja regulirnih signalov $u(k+j|k), j=0,\ldots,N_u-1.$
- V naslednjem diskretnem trenutku imamo na voljo nov merjeni izhod procesa in celotni postopek, se ponovi. Ta princip se imenuje strategija pomičnega horizonta (ang. receding horizon strategy).

Osnovni principi prediktivnega vodenja

Osnovno shemo zaprtozančnega sistema vodenja si lahko ogledamo na sliki 2. V idealnem primeru, ko ni motenj in ko se model idealno ujema s procesom, rezultira shema v odprtozančno optimalno vodenje (v praksi je povratna zanka seveda vedno delujoča).

Pri opisani strategiji lahko izluščimo naslednje pomembne elemente prediktivnega vodenja:

- napoved oz. predikcija na osnovi modela procesa,
- generiranje modelno-referenčne trajektorije,
- algoritmizirano računanje regulirnega scenarija.

Slika 2: Shema prediktivnega vodenja

Model impulznega odziva

 Model v obliki impulznega odziva procesa (imenovan tudi utežna funkcija, konvolucijski model ali FIR (ang. Finite Impulse Response) model)

$$y(k) = \sum_{i=1}^{\infty} h_i u(k-i) \approx \sum_{i=1}^{n} h_i u(k-i) = H(q^{-1}) u(k)$$
 (1)

kjer so h vrednosti impluznega odziva procesa v posameznih časovnih trenutkih in $H(q^{-1}) = h_1q^{-1} + h_2q^{-2} + \ldots + h_nq^{-n}, q^{-1}$ pa je operator časovnega zamika $q^{-1}u(k) = u(k-1)$.

- Prednosti modela:
 - ne potrebujemo skoraj nobenega predhodnega znanja o procesu (red procesa), primeren je tudi za procese z zahtevneišo dinamiko. dobimo ga z neparametrično identifikacijo.
 - enostaven izračun j-koračne napovedi izhodnega signala:

$$\hat{y}(k+j) = \sum_{i=1}^{n} h_i u(k+j-i) = H(q^{-1}) u(k+j),$$
(2)

pri čemer upoštevamo, da so u(k+j) poznani. Ker izračun predikcije ne zahteva rekurzije, je enostaven in manj občutljiv za numerične napake.

- Slabosti modela impulznega odziva:
 - neuporaben za nestabilne procese.
 - zahteva veliko število parametrov, ki jih moramo poznati ali oceniti ($n = 30 \div 50$).

Model v obliki odziva na stopnico

 Model v obliki odziva procesa na stopnico (uporabljen pri metodi DMC), imenovan tudi FSR model (ang. Finite Step Response)

$$y(k) = \sum_{i=1}^{\infty} g_i \Delta u(k-i) \approx \sum_{i=1}^{n} g_i \Delta u(k-i) = G(q^{-1})(1-q^{-1})u(k),$$
 (3)

- g_i je vrednost odziva procesa na enotino stopnico v časovnem trenutku i, $\Delta u(k) = u(k) u(k-1)$, n mora biti dovolj velik, da so od n naprej vsi g_i enaki med seboj,
- Napoved za j korakov v prihodnost izračunamo kot:

$$\hat{y}(k+j) = \sum_{i=1}^{n} g_i \Delta u(k+j-i) = G(q^{-1})(1-q^{-1})u(k+j), \tag{4}$$

 Model v obliki odziva na stopnico ima enake prednosti in slabosti kot model v obliki impulznega odziva.

Model predstavimo z diferenčno enačbo:

$$y(k) + a_1 y(k-1) + \ldots + a_{n_a} y(k-n_a) = b_1 u(k-d-1) + \ldots + b_{n_b} u(k-d-n_b)$$
 (5)

ali v obliki:

$$y(k) = \frac{q^{-d}B(q^{-1})}{A(q^{-1})}u(k)$$
 (6)

kjer je d mrtvi čas procesa ($d \ge 0$), polinoma $A(q^{-1})$ in $B(q^{-1})$ pa sta:

$$A(q^{-1}) = 1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}$$

$$B(q^{-1}) = b_1 + q^{-1} + \dots + b_{n_b} q^{-n_b}$$
(7)

• predpostavimo ($\hat{B} = B$, $\hat{A} = A$, $\hat{d} = d$, zato pišemo kar B, A, d),

Izračun predikcije izhodnega signala

$$\hat{y}(k+j) = q^{j} \frac{q^{-d} B(q^{-1})}{A(q^{-1})} u(k)$$
 (8)

če operator premika upoštevamo pri vhodu v proces, dobimo

$$\hat{y}(k+j) = \frac{q^{-d}B(q^{-1})}{A(q^{-1})}u(k+j)
= q^{-d}B(q^{-1})u(k+j) - q(A(q^{-1}) - 1)\hat{y}(k+j-1)$$
(9)

- Pri tem je $q(A(q^{-1})-1)=a_1+a_2q^{-1}+\ldots+a_{n_a}q^{-(n_a-1)}$, ker je $A(q^{-1})$ monični polinom.
- Vse $\hat{y}(k+j)$ za $j \ge 1$ lahko izračunamo rekurzivno po enačbi 10 s pričetkom pri j=1:

$$\hat{y}(k+1) = q^{-d}B(q^{-1})u(k+1) - q\left(A(q^{-1}) - 1\right)\hat{y}(k)$$
(10)

- Gornji prediktor (v paralelni ali simulacijski obliki) zaradi rekurzivnega računanja predikcije akumulira napako pri predikciji.
- Možna izboljšava je uporaba serijsko-paralelnega modela (predikcijskega), kjer predikcijo izhoda modela zamenjamo z izmerjenim izhodom procesa y(k). Če uporabljamo model vodenju, je to smiselno.

• Predikcijo izhodnega signala

$$\hat{y}(k+j) = \frac{q^{-d}B(q^{-1})}{A(q^{-1})}u(k+j)$$

ullet zapišemo tako, da člen ${1\over A(q^{-1})}$ preoblikujemo v zapis vsote polinoma in ostanka

$$\frac{1}{A(q^{-1})} = E_j(q^{-1}) + q^{-j} \frac{F_j(q^{-1})}{A(q^{-1})} \Longrightarrow E_j(q^{-1}) A(q^{-1}) + q^{-j} F_j(q^{-1}) = 1$$
 (11)

Polinoma E_i in F_i dobimo tako, da rešimo Diofantsko enačbo

$$E_j(q^{-1})A(q^{-1}) + q^{-j}F_j(q^{-1}) = 1$$
(12)

- Kakšna morata biti reda the dveh polinomov, da dobimo enačbo, ki nam da enoumno rešitev. Če predpostavimo, da je red polinoma E_j enak n_e in red polinoma F_j enak n_f , potem imamo na levi strani polinom, ki je reda $\max\left((n_e+n_a),(j+n_f)\right)$. Reda n_e in n_f izberemo tako, da velja $n_e+n_a=j+n_f$.
- To pomeni, da imamo $n_e + n_a + 1$ enačb na osnovi katerih moramo izračunati neznane parametre za polinoma E_i in F_i , ki jih je skupaj $n_e + 1 + n_f + 1$.
- Potem velja, da imamo $n_e + n_a + 1$ enačb, na osnovi katerih moramo določiti $n_e + 1 + n_f + 1$ parametrov. Za rešitev mora biti število enačb enako številu parametrov, kar pomeni, da je $n_f = n_a 1$ in $n_e = j 1$.
- To pomeni, da je polinom $E_j(q^{-1})$ stopnje (j-1) in polinom $F_j(q^{-1})$ stopnje (n_a-1) in sta enolično določena z j in $A(q^{-1})$.
- Če sedaj izraz iz enačbe 11 uporabimo v enačbi 10, dobimo

$$\hat{y}(k+j) = q^{-d}E_j(q^{-1})B(q^{-1})u(k+j) + q^{-j}F_j(q^{-1})\frac{q^{-d}B(q^{-1})}{A(q^{-1})}u(k+j)$$
(13)

ullet in če predpostavimo, da lahko merimo izhode procesa in zamenjamo $\hat{y}(k)$ z y(k), dobimo

$$\hat{y}(k+j) = q^{-d}E_j(q^{-1})B(q^{-1})u(k+j) + F_j(q^{-1})y(k)$$
(14)

- Ugotovimo lahko, da za vsak horizont predikcije j lahko izračunamo enolično določena polinoma E_i in F_i , ki določata predikcijo izhodnega signala pri tem horizontu.
- Polinoma lahko določimo tudi z dolgim deljenjem polinomov ali rekurzivnim algoritmom, krje opisan v dodatku. Na tem mestu pa si poglejmo izračun z Diofantsko enačbo na enostavnem primeru.

ullet Predpostavimo, da imamo model procesa, ki ga lahko zapišemo na naslednji način, s prenosno funkcijo v prostoru operatorja premika q

$$G_p(q^{-1}) = \frac{B(q^{-1})}{A(q^{-1})} = \frac{0.2q^{-1} - 0.4q^{-2}}{(1 - 0.5q^{-1})(1 - 0.8q^{-1})}$$
(15)

števec $B(q^{-1})$ je reda $n_b = 2$, imenovalec $A(q^{-1})$ pa tudi $n_a = 2$. Zaradi preglednosti smo čisto zakasnitev d postavili na nič.

- Zapišimo Diofantsko enačbo za horizont j, kjer je red E_j enak $n_e = j-1$ in red F_j enak $n_f = n_a 1$.
- ullet Polinoma E_j in F_j dobimo tako, da rešimo Diofantsko enačbo. Za naš primer dobimo splošno rešitev:

$$\left(e_0 + e_1 q^{-1} + \ldots + e_{j-1} q^{-(j-1)}\right) \left(1 + a_1 q^{-1} + a_2 q^{-2}\right) + q^{-j} \left(f_0 + f_1 q^{-1}\right) = 1$$
 (16)

kjer sta $a_1 = -1.3$ in $a_2 = 0.4$.

ullet Če izvedemo množenje in seštejemo člene z istimi potencami za j=1, dobimo

$$e_0 + (e_0 a_1 + f_0) q^{-1} + (e_0 a_2 + f_1) q^{-2} = 1$$
 (17)

• Kar, po enačenju koeficientov polinoma na levi in desni (konstanta), rezultira v $e_0 = 1$, $f_0 = -a_1 = 1.3$ in $f_1 = -a_2 = -0.4$. To pomeni, da je polinom

$$E_1(q^{-1}) = 1$$

in

$$F_1(q^{-1}) = 1.3 - 0.4 q^{-1}$$

V primeru horizonta j = 2, dobimo

$$e_0 + (e_0a_1 + e_1)q^{-1} + (e_0a_2 + e_1a_1 + f_0)q^{-2} + (e_1a_2 + f_1)q^{-3} = 1$$
(18)

ullet Enačenje koeficientov polinoma da $e_0=1,\,e_1=-e_0a_1=1.3,f_0=-e_0a_2-e_1a_1=1.29$ in $f_1=-e_1a_2=-0.52.$ Polinoma sta enaka

$$E_2(q^{-1}) = 1 + 1.3q^{-1}$$

in

$$F_2(q^{-1}) = 1.29 - 0.52q^{-1}$$

• V primeru horizonta i = 3 pa dobimo

$$E_3(q^{-1}) = 1 + 1.3q^{-1} + 1.29 q^{-2}$$

in

$$F_3(q^{-1}) = 1.157 - 0.516 q^{-1}$$

Ob upoštevanju enačbe 14 dobimo naslednje predikcije za izhod procesa

$$\hat{y}(k+1) = E_1(q^{-1})B(q^{-1})u(k+1) + F_1(q^{-1})y(k)
\hat{y}(k+2) = E_2(q^{-1})B(q^{-1})u(k+2) + F_2(q^{-1})y(k)
\hat{y}(k+3) = E_3(q^{-1})B(q^{-1})u(k+3) + F_3(q^{-1})y(k)$$

Če zapišemo vrednosti za naš primer, dobimo

$$\hat{y}(k+1) = \left(0.2q^{-1} - 0.4q^{-2}\right) u(k+1) + \left(1.3 - 0.4q^{-1}\right) y(k)$$

$$\hat{y}(k+2) = \left(0.2q^{-1} - 0.14q^{-2} - 0.52q^{-3}\right) u(k+2) + \left(1.29 - 0.52q^{-1}\right) y(k)$$

$$\hat{y}(k+3) = \left(0.2q^{-1} - 0.14q^{-2} - 0.26q^{-3} - 0.516q^{-4}\right) u(k+3) + \left(1.157 - 0.516q^{-1}\right) y(k)$$

ali drugače

$$\begin{array}{lcl} \hat{y}(k+1) & = & 0.2u(k) - 0.4u(k-1) + 1.3y(k) - 0.4y(k-1) \\ \hat{y}(k+2) & = & 0.2u(k+1) - 0.14u(k) - 0.52u(k-1) + 1.29y(k) - 0.52y(k-1) \\ \hat{y}(k+3) & = & 0.2u(k+2) - 0.14u(k+1) - 0.26u(k) - 0.516u(k-1) + 1.157y(k) - 0.516y(k-1) \end{array}$$

 oziroma v matrični obliki, kjer ločimo neznane in znane vrednosti vhodega in izhodnega signala

$$\begin{bmatrix} \hat{y}(k+1) \\ \hat{y}(k+2) \\ \hat{y}(k+3) \end{bmatrix} = \begin{bmatrix} 0.2 & 0 & 0 \\ -0.14 & 0.2 & 0 \\ -0.26 & -0.14 & 0.2 \end{bmatrix} \begin{bmatrix} u(k) \\ u(k+1) \\ u(k+2) \end{bmatrix} + \begin{bmatrix} -0.4 \\ -0.52 \\ -0.516 \end{bmatrix} u(k-1) + \begin{bmatrix} 1.3 & -0.4 \\ 1.29 & -0.52 \\ 1.157 & -0.516 \end{bmatrix} \begin{bmatrix} y(k) \\ y(k-1) \end{bmatrix}$$

Zapis predikcije izhodnega signala

$$y^{+} = \underline{Gu}^{+} + \underline{\Gamma u}^{-} + \underline{Fy}^{-}$$

Primer: Izračun predikcije izhodnega signal z deljenjem polinomov

- Izračun predikcije izhodnega signala $\hat{y}(k+j) = q^j \frac{0.2q^{-1} 0.4q^{-2}}{(1 0.5q^{-1})(1 0.8q^{-1})} u(k)$
- delimo polinoma

$$\frac{q^j}{A(q^{-1})}\tag{20}$$

V primeru horizonta j = 1, dobimo

$$\frac{q^1}{A(q^{-1})} = q^1 + \frac{1.3 - 0.4q^{-1}}{A(q^{-1})} \tag{21}$$

• V primeru horizonta j = 2, dobimo

$$\frac{q^2}{A(q^{-1})} = q^2 + 1.3q^1 + \frac{1.29 - 0.52q^{-1}}{A(q^{-1})}$$
 (22)

V primeru horizonta j = 3, dobimo

$$\frac{q^3}{A(q^{-1})} = q^3 + 1.3q^2 + 1.29q^1 + \frac{1.157 - 0.516q^{-1}}{A(q^{-1})}$$
 (23)

Izračun predikcije izhodnega signala

$$\hat{y}(k+3) = \left(q^3 + 1.3q^2 + 1.29q^1 + \frac{1.157 - 0.516q^{-1}}{A(q^{-1})}\right)B(q^{-1})u(k)$$

$$\hat{y}(k+3) = \left(q^3 + 1.3q^2 + 1.29q^1\right)B(q^{-1})u(k) + \left(1.157 - 0.516q^{-1}\right)y(k)$$

Primer: Izračun predikcije izhodnega signal z deljenjem polinomov

$$\hat{y}(k+1) = \left(q^1 + \frac{1.3 - 0.4q^{-1}}{A(q^{-1})}\right) B(q^{-1}) u(k)$$
(26)

$$\hat{y}(k+1) = (q^1) B(q^{-1}) u(k) + (1.3 - 0.4q^{-1}) y(k)$$
(27)

$$\hat{y}(k+1) = (1)B(q^{-1})u(k+1) + (1.3 - 0.4q^{-1})y(k)$$
(28)

$$\hat{y}(k+2) = \left(q^2 + 1.3q^1 + \frac{1.29 - 0.52q^{-1}}{A(q^{-1})}\right)B(q^{-1})u(k)$$
 (29)

$$\hat{y}(k+2) = \left(q^2 + 1.3q^1\right)B(q^{-1})u(k) + \left(1.29 - 0.52q^{-1}\right)y(k)$$
(30)

$$\hat{y}(k+2) = \left(1 + 1.3q^{-1}\right)B(q^{-1})u(k+2) + \left(1.29 - 0.52q^{-1}\right)y(k) \tag{31}$$

$$\hat{y}(k+3) = \left(q^3 + 1.3q^2 + 1.29q^1 + \frac{1.157 - 0.516q^{-1}}{A(q^{-1})}\right)B(q^{-1})u(k)$$
(32)

$$\hat{y}(k+3) = \left(q^3 + 1.3q^2 + 1.29q^1\right)B(q^{-1})u(k) + \left(1.157 - 0.516q^{-1}\right)y(k) \tag{33}$$

$$\hat{y}(k+3) = \left(1 + 1.3q^{-1} + 1.29q^{-2}\right)B(q^{-1})u(k+3) + \left(1.157 - 0.516q^{-1}\right)y(k)$$

Če zapišemo vrednosti za naš primer, dobimo

$$\hat{y}(k+1) = \left(0.2q^{-1} - 0.4q^{-2}\right) u(k+1) + \left(1.3 - 0.4q^{-1}\right) y(k)$$

$$\hat{y}(k+2) = \left(0.2q^{-1} - 0.14q^{-2} - 0.52q^{-3}\right) u(k+2) + \left(1.29 - 0.52q^{-1}\right) y(k)$$

$$\hat{y}(k+3) = \left(0.2q^{-1} - 0.14q^{-2} - 0.26q^{-3} - 0.516q^{-4}\right) u(k+3) + \left(1.157 - 0.516q^{-1}\right) y(k)$$

ali drugače

$$\begin{array}{lcl} \hat{y}(k+1) & = & 0.2u(k) - 0.4u(k-1) + 1.3y(k) - 0.4y(k-1) \\ \hat{y}(k+2) & = & 0.2u(k+1) - 0.14u(k) - 0.52u(k-1) + 1.29y(k) - 0.52y(k-1) \\ \hat{y}(k+3) & = & 0.2u(k+2) - 0.14u(k+1) - 0.26u(k) - 0.516u(k-1) + 1.157y(k) - 0.516y(k-1) \end{array}$$

 oziroma v matrični obliki, kjer ločimo neznane in znane vrednosti vhodega in izhodnega signala

$$\begin{bmatrix} \hat{y}(k+1) \\ \hat{y}(k+2) \\ \hat{y}(k+3) \end{bmatrix} = \begin{bmatrix} 0.2 & 0 & 0 \\ -0.14 & 0.2 & 0 \\ -0.26 & -0.14 & 0.2 \end{bmatrix} \begin{bmatrix} u(k) \\ u(k+1) \\ u(k+2) \end{bmatrix} + \begin{bmatrix} -0.4 \\ -0.52 \\ -0.516 \end{bmatrix} u(k-1) + \begin{bmatrix} 1.3 & -0.4 \\ 1.29 & -0.52 \\ 1.157 & -0.516 \end{bmatrix} \begin{bmatrix} y(k) \\ y(k-1) \end{bmatrix}$$

Zapis predikcije izhodnega signala

$$\underline{y}^+ = \underline{G}\underline{u}^+ + \underline{\Gamma}\underline{u}^- + \underline{F}\underline{y}^-$$

Model z zapisom v prostoru stanj

Model v obliki zapisa v prostoru stanj:

$$\underline{x}(k+1) = \underline{Ax}(k) + \underline{b}u(k) \tag{35}$$

$$y(k) = \underline{c}^T \underline{x}(k), \tag{36}$$

kjer so \underline{x} stanja procesa, \underline{A} sistemska matrika, \underline{b} vhodni vektor in \underline{c}^T izhodni vektor. Ker pri realnih procesih v glavnem ne zasledimo direktnih povezav med vhodom in izhodom procesa, jih v zgornjem zapisu nismo zajeli.

• Predikcijo izhodnega signala izračunamo po enačbi:

$$\hat{\mathbf{y}}(k+j) = \underline{c}^T \underline{\mathbf{x}}(k+j) = \underline{c}^T \left(\underline{A}^j \underline{\mathbf{x}}(k) + \sum_{i=1}^j \underline{A}^{i-1} \underline{b} u(k+j-i) \right)$$
(37)

- Model v tej obliki je uporaben za načrtovanje vodenja multivariabilnih sistemov. Računska zahtevnost je večja in če stanja niso direktno merljiva, moramo uporabiti opazovalnike stanj.
- Z uporabo zapisa v prostoru stanj lahko dobro rešujemo problem vodenja, kjer so referenčni signali različnih polinomskih oblik.

Razvoja osnovnega prediktivnega regulatorja na primeru

- Kriterijska funkcija upošteva odstopanje od napovedi reguliranega signala od želene reference na izbranem časovnem intervalu, ki ga imenujemo interval ujemanja $[N_1, N_2]$.
- Poleg odstopanja reguliranega signala od želene reference pa upošteva kriterijska funkcija še stroške, ki so potrebni za za sledenje referenčno vrednosti, izražajo pa se z odstopanji od regulirnega signala od njegove ustaljene vrednosti v intervalu do horizonta regulirnega signala N_u.

$$J = \sum_{j=N_1}^{N_2} \left(y(k+j) - r(k+j) \right)^2 + \lambda \sum_{j=0}^{N_u} \left(\Delta u(k+j) \right)^2$$
 (38)

Reguliramo proces s prenosno funkcijo

$$G_p(z) = \frac{Y(z)}{U(z)} = \frac{0.4z^{-1}}{1 - 0.6z^{-1}}$$
(39)

• Zahtevamo regulirni zakon v inkrementalni obliki zato pomnožimo prenosno funkcijo z operatorjem $\Delta=1-z^{-1}$ v števcu in imenovalcu in dobimo

$$(1 - 0.6z^{-1})(1 - z^{-1})Y(z) = 0.4z^{-1}\Delta U(z)$$
(40)

oziroma v časovnem prostoru

$$y(k) = 1.6y(k-1) - 0.6y(k-2) + 0.4\Delta u(k-1)$$

Primer: Razvoja osnovnega prediktivnega regulatorja na primeru

- Izbremo parametre $N_1 = 1, N_2 = 3$ in $N_u = 1$. Za ostali del regulirnega signala pri $N_u > 1$ predpostavimo, da so spremembe enake nič.
- Kriterijska funkcija je naslednja

$$J = \sum_{j=1}^{3} \left(y(k+j) - r(k+j) \right)^{2} + \lambda \sum_{j=0}^{1} \left(\Delta u(k+j) \right)^{2}$$
 (42)

kjer je λ parameter, ki uravnava razmerje med kvaliteto vodenja in za to potrebnimi stroški.

Predikcijo dobimo na osnovi deljenja, z rekurzijo ali z uporabo Diofantske enačbe

$$\begin{array}{lcl} \hat{y}(k+1) & = & 1.6y(k) - 0.6y(k-1) + 0.4\Delta u(k) \\ \hat{y}(k+2) & = & 1.6\hat{y}(k+1) - 0.6y(k) + 0.4\Delta u(k+1) = \\ & = & 1.96y(k) - 0.96y(k-1) + 0.4\Delta u(k+1) + 0.64\Delta u(k) \\ \hat{y}(k+3) & = & 1.6\hat{y}(k+2) - 0.6\hat{y}(k+1) + 0.4\Delta u(k+2) = \\ & = & 2.1760y(k) - 1.1760y(k-1) + 0.4\Delta u(k+2) + 0.64\Delta u(k+1) + 0.784\Delta u(k) \end{array}$$

 oziroma v matrični obliki ob upoštevanju dejstva, da se regulirna veličina po intervalu ne spreminja več $(\Delta u(k+2) = 0)$

$$\begin{bmatrix} \hat{y}(k+1) \\ \hat{y}(k+2) \\ \hat{y}(k+3) \end{bmatrix} = \begin{bmatrix} 0.4 & 0 \\ 0.64 & 0.4 \\ 0.7840 & 0.64 \end{bmatrix} \begin{bmatrix} \Delta u(k) \\ \Delta u(k+1) \end{bmatrix} + \begin{bmatrix} 1.6 & -0.6 \\ 1.96 & -0.96 \\ 2.1760 & -1.1760 \end{bmatrix} \begin{bmatrix} y(k) \\ y(k-1) \end{bmatrix}$$
(43)

Primer: Razvoja osnovnega prediktivnega regulatorja na primeru

Skrajšani zapis matrične enačbe za predikcijo izhoda procesa je

$$\underline{y}^+ = \underline{G}\Delta\underline{u}^+ + \underline{F}\underline{y}^-$$

kjer oznake + pomenijo, da gre za signale v prihodnosti (ki so neznani) in oznaka -, da gre za pretekle (znane) vrednosti signalov.

- Če bi imeli sistem, ki bi imel višji red polinoma v števcu prenosne funkcije procesa, bi se na desni strani zgornje enačbe pojavil še izraz $\Gamma\Delta\underline{u}^-$, ki ga bomo zaradi popolnosti pri izpeljavi regulacijske zakonitosti upoštevali. V našem primeru velja $\underline{\Gamma}=\underline{0}$
- Kriterijsko funkcijo 42 lahko zapišemo v obliki

$$J = \left(\underline{y}^{+} - \underline{r}^{+}\right)^{T} \left(\underline{y}^{+} - \underline{r}^{+}\right) + \lambda \Delta \underline{u}^{+T} \Delta \underline{u}^{+} =$$

$$= \left(\underline{G} \Delta \underline{u}^{+} + \underline{\Gamma} \Delta \underline{u}^{-} + \underline{F} \underline{y}^{-} - \underline{r}^{+}\right)^{T} \cdot \left(\underline{G} \Delta \underline{u}^{+} + \underline{\Gamma} \Delta \underline{u}^{-} + \underline{F} \underline{y}^{-} - \underline{r}^{+}\right) + \lambda \Delta \underline{u}^{+T} \Delta \underline{u}^{+}$$

kjer vektor \underline{r}^+ zajema tri prihodnje vrednosti referenčnega signala.

Poiščimo vektor prihodnjih vrednosti regulirnega signala, ki minimizira kriterijsko funkcijo:

$$\frac{\partial J}{\partial \Delta u^{+}} = 2\underline{G}^{T} \left(\underline{G} \Delta \underline{u}^{+} + \underline{\Gamma} \Delta \underline{u}^{-} + \underline{F} \underline{y}^{-} - \underline{r}^{+} \right) + 2\lambda \Delta \underline{u}^{+} = 0$$

iz česar sledi

$$\Delta \underline{u}^{+} = \left(\underline{G}^{T}\underline{G} + \lambda \underline{I}\right)^{-1}\underline{G}^{T}\left(\underline{r}^{+} - \underline{\Gamma}\Delta\underline{u}^{-} + \underline{F}\underline{y}^{-}\right)$$

Primer: Primer razvoja osnovnega prediktivnega regulatorja

- Po vstavitvi matrik \underline{G} in \underline{F} za naš primer ter $\underline{\Gamma}$ (v našem primeru 0) in izbranem $\lambda=0.1$ dobimo rešitev za napoved $\Delta u(k)$ in $\Delta u(k+1)$.
- ullet Za regulacijo uporabimo samo prvo vrstico za spremembo v trenutku opazovanja $\Delta u(k)$, ki je enaka

$$\Delta u(k) = -2.6648y(k) + 1.1485y(k-1) + 0.9374r(k+1) + 0.4390r(k+2) + 0.1400r(k+3)$$

- Ta enačba predstavlja regulirni zakon.
- Opazimo lahko, da ta zakon zahteva poznavanje prihodnjih vrednosti referenčnega signala.
 Če le teh ne poznamo, jih v praksi zamenjamo z njegovo trenutno vrednostjo.
- Splošna značilnost prediktivnega regulatorja in prednosti pred PID regulatojem je v bolj umirjenem regulirnem signalu in v odzivu z manj prenihaja.

Prediktivno funkcijski regulator kot metodologija za načrtovanje vodenja

- Strategija PFC vodenja temelji na uporabi dinamičnega modela procesa za predikcijo izhoda procesa pri določenem horizonu ujemanja
- Cilj pristopa je določiti tak izhod regulatorja, da se pri horizontu ujemanja H ujemata spremembi med predikcijo referenčne vrednosti $y_r(k+H)$ in trenutno vrednostjo izhoda $y_p(k)$ in med predikcijo izhoda modela $y_m(k+H)$ in $y_m(k)$:

$$y_r(k+H) - y_p(k) = y_m(k+H) - y_m(k)$$
 (45)

Slika 3: PFC princip.

 PFC algoritem za proces, ki ga opišemo dinamičnim linearnim modelom prvega reda v zveznem prostoru:

$$Y_m(s) = \frac{K_m}{T_m s + 1} U(s) \tag{46}$$

• Enačbo 46 v diskretnem prostoru zapišemo kot:

$$y_m(k+1) = a_m y_m(k) + b_m u(k)$$
(47)

kjer je $y_m(k)$ izhod modela, u(k) pa vhod v model oziroma proces. Zveza med časovno konstanto in ojačenjem ter parametroma a_m in b_m je sledeča:

$$a_m = e^{-\frac{T_s}{T_m}} \tag{48}$$

$$b_m = K_m(1 - a_m) \tag{49}$$

kjer je T_s čas vzorčenja.

 Za izpeljavo regulacijskega zakona je potrebno podati referenčno trajektorijo zaprtozančnega procesa. Ta je podana v obliki referenčnega modela, ki zagotavlja sledenje referenci w:

$$y_r(k+1) = a_r y_r(k) + b_r w(k)$$
 (50)

 Da zagotovimo sledenje referenci, mora biti ojačenje tega modela enako ena. Na podlagi tega pogoja dobimo vrednost parametra b_r:

$$b_r = (1 - a_r) \tag{51}$$

- Referenčni model definira želeno obnašanje celotnega zaprtozančnega sistema z vidika odnosa med referenco in izhodom procesa.
- Regulacijski zakon je dobljen z rešitvijo enačbe 45. PFC predvideva horizon ujemanja H $(N_1=N_2=H)$ in utežni faktor regulirnega signala $\lambda=0$.
- V horizonu ujemanja naj bi izhod modela procesa sovpadal z referenčnim odzivom. To pomeni, da morata biti spremembi izhoda modela procesa in referenčnega modela od koraka k do koraka k + H enaki (glej sliko sliko 3):

$$\Delta_p = \Delta_m$$

- Kot vidimo, je vodenje na podlagi modela praktično odprtozančno vodenje procesa. Saj optimiramo izhod modela glede na referenčni model.
- Spremembo referenčnega modela lahko zapišemo kot:

$$\Delta_r = y_r(k+H) - y_r(k) \tag{53}$$

- Zaprta zanka je vključena v regulacijski algoritem posredno s tem, da so začetne vrednosti referenčnega modela enake trenutnim vrednostim procesa. Torej, da je izhod referenčnega modela v k-tem trenutku enak izhodu procesa $(y_r(k) = y_p(k))$.
- Spremembo, ki jo napravi izhod procesa, da doseže referenco zapišemo kot:

$$\Delta_p = y_r(k+H) - y_p(k) \tag{54}$$

in spremembo modela procesa kot:

 $v_m(k+1) = a_m v_m(k) + b_m u(k)$

$$\Delta_m = y_m(k+H) - y_m(k) \tag{55}$$

• Izhod modela procesa oziroma referenčnega modela v k-tem koraku za korak k+H dobimo tako, da rešimo slednji sistem enačb:

$$y_m(k+2) = a_m y_m(k+1) + b_m u(k+1) =$$

$$= a_m^2 y_m(k) + a_m b_m u(k) + b_m u(k+1)$$

$$\vdots$$

$$y_m(k+H) = a_m y_m(k+H-1) + b_m u(k+H-1) =$$

$$= a_m^4 y_m(k) + a_m^{4-1} b_m u(k) + a_m^{4-2} b_m u(k+1) + \dots + b_m u(k+H-1)$$

- Pri reševanju optimizacijskega problema predpostavimo konstanten prihodnji regulacijski signal (ang. mean level control).
- ullet To pomeni, da pri optimizaciji ne bomo računali vrednosti vseh vhodov od trenutka k do trenutka k+H.
- Pri nekaterih algoritmih se optimirajo vrednosti regulacijskega signala u za vsak trenutek od k
 do k + H. Vendar se kot izhod regulatorja uporabi le vrednost u(k). Temu principu pravimo
 princip premikajočega horizonta (ang. receding horizon).
- Če upoštevamo predpostavko o konstantnem prihodnjem regulacijskem signalu (u(k)=u(k+1)=...=u(k+H-1)) lahko zapišemo predikcijo za k+H-ti korak iz sistema enačb 56 v naslednji obliki:

$$y_m(k+H) = a_m^H y_m(k) + a_m^{H-1} b_m u(k) + a_m^{H-2} b_m u(k) + \dots + b_m u(k)$$
(57)

• Če upoštevamo, da je $(1+a_m+...+a_m^{H-2}+a_m^{H-1})(1-a_m)=(1-a_m^H)$ se enačba 57 poenostavi v:

$$y_m(k+H) = a_m^H y_m(k) + \frac{b_m}{1 - a_m} (1 - a_m^H) u(k)$$
 (58)

• Podobno enačbo dobimo za predikcijo izhoda referenčnega modela, kjer smo upoštevali konstantno prihodnjo referenco (w(k) = w(k+1) = ... = w(k+H-1)):

$$y_r(k+H) = a_r^H y_r(k) + (1 - a_r^H)w(k)$$
 (59)

• Spremembi Δ_p in Δ_m sedaj zapišemo kot:

$$\Delta_p = a_r^H y_r(k) + (1 - a_r^H) w(k) - y_p(k)$$
(60)

$$\Delta_m = a_m^H y_m(k) + \frac{b_m}{1 - a_m} (1 - a_m^H) u(k) - y_m(k)$$
(61)

• Če sedaj rešimo enačbo 52 ob upoštevanju, da je $y_r(k)=y_p(k)$, dobimo sledeč regulirni zakon:

$$u(k) = \frac{(1 - a_r^H)(w(k) - y_p(k))}{\frac{b_m}{1 - a_m}(1 - a_m^H)} + \frac{y_m(k)}{\frac{b_m}{1 - a_m}}$$
(62)

Ob upoštevanju

$$K_m = \frac{b_m}{(1 - a_m)} \tag{63}$$

in

$$g = \frac{1 - a_r^H}{K_m (1 - a_m^H)} \tag{64}$$

lahko enačbo 62 zapišemo v bolj pregledni obliki kot:

$$u(k) = g(w(k) - y_p(k)) + \frac{1}{K_m} y_m(k)$$
(65)

• Regulacijski zakon (en. 65) lahko ponazorimo z bločno shemo na sliki 4.

Slika 4: Bločna shema regulatorja PFC.

- Za vodenje procesov višjih redov in multivariabilnih procesov razvijemo prediktivni regulator na osnovi modela v prostoru stanj.
- Izpeljava regulacijskega zakona temelji na isti ideji kot pri regulatorju PFC z modelom prvega reda.
- Model procesa v prostoru stanj zapišemo:

$$\underline{x}_{m}(k) = \underline{A}_{m}\underline{x}_{m}(k) + \underline{B}_{m}\underline{u}(k) \tag{66}$$

$$\underline{y}_{m}(k) = \underline{C}_{m}\underline{x}_{m}(k) \tag{67}$$

V prostoru stanj je podan tudi referenčni model:

$$\underline{x}_r(k) = \underline{A}_r \underline{x}_r(k) + \underline{B}_r \underline{w}(k)$$
 (68)

$$\underline{y}_r(k) = \underline{C}_r \underline{x}_r(k) \tag{69}$$

• ker mora imeti referenčni model ojačenje enako ena, morajo matrike $\underline{A}_r, \underline{B}_r$ in \underline{C}_r izpolnjevati naslednji pogoj:

$$\underline{C}_r(\underline{I} - \underline{A}_r)^{-1}\underline{B}_r = \underline{I}$$

 Predikcijo v časovnem trenutku k za H korakov v prihodnosti dobimo podobno kot v primeru regulatorja PFC z modelom prvega reda (konstantni regulirni signal v prihodnosti):

$$\underline{x}_{m}(k+H) = \underline{A}_{m}^{H}\underline{x}_{m}(k) + (\underline{A}_{m}^{H} - \underline{I})(\underline{A}_{m} - \underline{I})^{-1}\underline{B}_{m}\underline{u}(k)$$
(71)

$$\underline{\underline{y}}_{m}(k+H) = \underline{\underline{C}}_{m}\underline{\underline{x}}_{m}(k+H) \tag{72}$$

Podobno zapišemo enačbo za referenčni model:

$$\underline{x}_r(k+H) = \underline{A}_r^H \underline{x}_r(k) + (\underline{A}_r^H - \underline{I})(\underline{A}_r - \underline{I})^{-1} \underline{B}_r \underline{w}(k)$$
(73)

$$\underline{y}_r(k+H) = \underline{C}_r \underline{x}_r(k+H) \tag{74}$$

Ponovno rešimo enačbo 52, kjer je inkrement modela:

$$\Delta_m = \underline{C}_m(\underline{A}_m^H \underline{x}_m(k) + (\underline{A}_m^H - \underline{I})(\underline{A}_m - \underline{I})^{-1} \underline{B}_m \underline{u}(k)) - \underline{y}_m(k)$$
(75)

in inkrement procesa

$$\Delta_p = \underline{C}_r(\underline{A}_r^H \underline{x}_r(k) + (\underline{A}_r^H - \underline{I})(\underline{A}_r - \underline{I})^{-1} \underline{B}_r \underline{w}(k)) - \underline{y}_p(k)$$
(76)

Regulirni zakon dobimo v naslednji obliki:

$$\underline{u}(k) = G_0^{-1}(\underline{y}_r(k+H) + \underline{y}_m(k) - \underline{y}_p(k) - \underline{C}_m\underline{A}_m^H\underline{x}_m(k))$$
(77)

kjer je:

$$\underline{y}_r(k+H) = \underline{C}_r(\underline{A}_r^H \underline{x}_r(k) + (\underline{A}_r^H - \underline{I})(\underline{A}_r - \underline{I})^{-1} \underline{B}_r \underline{w}(k))$$
(78)

• in *G*₀:

$$G_0 = \underline{C}_m (\underline{A}_m^H - \underline{I}) (\underline{A}_m - \underline{I})^{-1} \underline{B}_m \tag{79}$$

• Če izberemo referenčni model tako, da je $\underline{C}_r = \underline{I}$ in $\underline{B}_r = (\underline{I} - \underline{A}_r)$, se regulacijski zakon (enačba 77) poenostavi. Predikcijo referenčnega signala na ta način lahko zapišemo kot:

$$\underline{y}_r(k+H) = \underline{A}_r^H \underline{y}_r(k) + (\underline{I} - \underline{A}_r^H) \underline{w}(k)$$
(80)

• Rešimo enačbo 52 ob upoštevanju $\underline{y}_p(k) = \underline{y}_r(k)$, kjer je:

$$\Delta_m = \underline{C}_m(\underline{A}_m^H \underline{x}_m(k) + (\underline{A}_m^H - \underline{I})(\underline{A}_m - \underline{I})^{-1} \underline{B}_m \underline{u}(k)) - \underline{y}_m(k)$$
(81)

in

$$\Delta_p = \underline{A}_r^H \underline{y}_r(k) + (\underline{I} - \underline{A}_r^H) \underline{w}(k) - \underline{y}_p(k)$$
(82)

Dobimo poenostavljen regulacijski zakon:

$$\underline{u}(k) = \underline{G}(\underline{w}(k) - \underline{y}_{p}(k)) + G_{0}^{-1}\underline{y}_{m}(k) - G_{0}^{-1}\underline{C}_{m}\underline{A}_{m}^{H}\underline{x}_{m}(k)$$
(83)

kjer je:

$$\underline{G} = G_0^{-1} (\underline{I} - \underline{A}_r^H) \tag{84}$$

in G_0 :

$$G_0 = \underline{C}_m (\underline{A}_m^H - \underline{I}) (\underline{A}_m - \underline{I})^{-1} \underline{B}_m \tag{85}$$

- ullet Kot vidimo iz enačbe 77 in 83 regulator obstaja le, če je vrednost izraza G_0 različna od nič
- Izraz G_0 je različen od nič za stabilne, vodljive in spoznavne procese.

PFC regulator na osnovi modela v prostoru stanj za referenčni signal rampe

- Klasični regulatorji so neustrezni za sledenje rampi brez pogreška za proporcionalne tipe procesa. Zaradi zahteve po odprtozančni prenosni funkciji druge vrste (2 pola v koordinatnem izhodišču). To posledično povzroči probleme s stabilnostjo sistema.
- PFC na osnovi modela v prostoru stanj uspešno reši problem sledenja rampi.
- Regulirni signal za proporcionalne procese v primeru sledenja rampi ima obliko rampe

$$u(k+H) = u(k) + H\Delta u(k)$$

- Za določitev regulirnega signala moramo določiti u(k) in $\Delta u(k)$.
- Rešujemo sistem dveh enačb, ki jih dobimo pri dveh horizontih ujemanja H_1 in H_2 .
- Predikcijo v časovnem trenutku k za H korakov v prihodnosti dobimo

$$y_m(k+H) = \underline{C}_m \underline{A}_m^H \underline{x}_m(k) + \Sigma_0(H)u(k) + \Sigma_1(H)\Delta u(k)$$
(86)

(87)

Pri poenostavitvi za

$$\begin{split} &\Sigma_0(H) &= &\underline{C}_m \left(\underline{A}_m^{H-1} + \underline{A}_m^{H-2} + \cdots \underline{I} \right) \underline{B}_m = \underline{C}_m \left(\underline{I} - \underline{A}^H \right) \left(\underline{I} - \underline{A}^H \right)^{-1} \underline{B}_m \\ &\Sigma_1(H) &= &\underline{C}_m \left(\underline{A}_m^{H-2} + 2\underline{A}_m^{H-3} + \cdots + (H-2)\underline{A}_m + (H-1)\underline{I} \right) \underline{B}_m \\ &\Sigma_1(H) &= &\underline{C}_m \left(H\underline{I} - \Sigma_0(H) \right) \left(\underline{I} - \underline{A}^H \right)^{-1} \underline{B}_m \end{split}$$

PFC regulator na osnovi modela v prostoru stanj za referenčni signal rampe

- Pogrešek med referenčno trajektorijo w in izhodom procesa y_p označimo z e.
- ullet PFC regulator vnaša dinamiko, ki zahteva eksponencialno izregulacijo pogreška e(k). To pomeni

$$e(k+H) = a_r^H e(k) \tag{88}$$

kjer je a_r konstanta, ki določa hitrost izregulacije pogreška, $0 < a_r < 1$.

• Vrednost modelne referenčne spremenljivke pri horizontu ujemanja H je enaka, $y_r(k+H)$

$$y_r(k+H) = w(k+H) - a_r^H e(k)$$
 (89)

 Vrednost izhoda procesa pri v trenutku k enako definiramo glede na vrednost reference in pogreška

$$y_p(k) = w(k) - e(k) \tag{90}$$

• Inkrement procesa pri horizontu ujemanja H je definiran kot razlika med $y_r(k+H)$ in vrednostjo izhodnega signala $y_p(k)$

$$\Delta_p(H) = y_r(k+H) - y_p(k) = \left(w(k+H) - a_r^H e(k)\right) - \left(w(k) - e(k)\right) \tag{91}$$

 inkrement procesa je odvisen od prirastka zaradi spremembe reference in eksponencialnega zmanjševanja pogreška med referenco in izhodom

$$\Delta_p(H) = w(k+H) - w(k) + (1 - a_r^H)(w(k) - y_p(k)) = (1 - a_r^H)e(k)$$

PFC regulator na osnovi modela v prostoru stanj za referenčni signal rampe

• Inkrement modela procesa $\Delta_m(H)$ pri horizontu ujemanja H je definiran kot razlika med $y_m(k+H)$ in vrednostjo izhoda modela $y_m(k)$

$$\Delta_m(H) = \underline{C}_m \underline{A}_m^H \underline{x}_m(k) + \Sigma_0(H)u(k) + \Sigma_1(H)\Delta u(k) - y_m(k)$$
(93)

• Zapišimo osnovno enačbo enakosti med inkrementom procesa in model pri horizontu ujemanja H, $\Delta_p(H) = \Delta_m(H)$

$$w(k+H) - w(k) + (1 - a_r^H)(w(k) - y_p(k)) = \underline{C}_m \underline{A}_m^H \underline{x}_m(k) + \Sigma_0(H)u(k) + \Sigma_1(H)\Delta u(k) - y_m(k)$$
 (94)

Če predpostavimo, da imamo referenco rampe, ki jo lahko zapišemo kot

$$w(k+H) = w(k) + H\Delta w \tag{95}$$

Dobimo poenostavljno enakost pri horizontu ujemanja H

$$H\Delta w + (1 - a_r^H)(w(k) - y_p(k)) - \underline{C}_m \underline{A}_m^H \underline{x}_m(k) + y_m(k) = \Sigma_0(H)u(k) + \Sigma_1(H)\Delta u(k)$$

PFC regulator na osnovi modela v prostoru stanj za referenčni signal rampe

- Imamo eno enačbo in dve neznani vrednosti, ki določata regulirni signal, u(k) in $\Delta u(k)$
- Določimo dve enačbi pri dveh (zadosti različnih) horizontih ujemanja H_1 in H_2

$$H_1 \Delta w + (1 - a_r^{H_1}) (w(k) - y_p(k)) - \underline{C}_m \underline{A}_m^{H_1} \underline{x}_m(k) + y_m(k) = \Sigma_0(H_1) u(k) + \Sigma_1(H_1) \Delta u(k)$$
 (97)

$$H_2\Delta w + (1 - a_r^{H_2})(w(k) - y_p(k)) - \underline{C}_m \underline{A}_m^{H_2} \underline{x}_m(k) + y_m(k) = \Sigma_0(H_2)u(k) + \Sigma_1(H_2)\Delta u(k)$$
 (98)

v matrični obliki

Prediktivno vodenje z omejitvami - MBPC z omejitvami

Glavni elementi MBPC so

- prediktivni model procesa
- kriterijska funkcija
- izračun regulacijskega zakona (analitično ali z optimizacijo)
- omejitve

Slika 5: Koncept prediktivnega vodenja na osnovi modela

Prediktivno vodenje z omejitvami - MBPC z omejitvami

MBPC in izračun regulirnega zakona:

- če v sistemu ni omejitev ali jih ne upoštevamo, potem je optimizacijo kriterijske funkcije mogoče izvesti analitično (GPC, DMC, PFC)
- če so v sistemu omejitve, potem rešitev dobimo s pomočjo optimizacije (omejitve izvršnih členov, ekonomiski vidiki navadno rezultirajo v delovanju sistema na mejah omejitev)

Za optimizacijske probleme z omejitvami moramo zagotoviti naslednje:

- kvadratično kriterijsko funkcijo
- eksistenco realne rešitve optimizacijskega problema z omejitvami, ki zadostuje vsem omejitvam
- konveksen prostor kriterijske funkcije z omejitvami, kar omogoča eksistenco enkratne rešitve

Slika 6: Kriterijska funkcija z omejitvami

Prediktivno vodenje z omejitvami - MBPC z omejitvami

 če upoštevamo linearne omejitve, potem lahko prediktivni regulacijski zakon izračunamo z rešitvijo optimizacijskega problema s kvadratičnim programiranjem (QP). QP je optimizacijski problem s kvadratično kriterijsko funkcijo in linearnimi omejitvami in ga lahko rešimo numerično.

$$\min_{\Delta u(k+j)} J = \sum_{j=N_1}^{N_2} \left(y(k+j) - r(k+j) \right)^2 + \lambda \sum_{j=0}^{N_u} \left(\Delta u(k+j) \right)^2$$
 (99)

$$u_{min} \le u(k+j) \le u_{max}, \ j=1,...,N_u$$
 (100)

$$\Delta u_{min} \le \Delta u(k+j) \le \Delta u_{max}, \ j=1,...,N_u$$
 (101)

$$y_{min} \le \hat{y}(k+j) \le y_{max}, \ j=1,...,N_2$$
 (102)

- rešitev zgornjega optimizacijskega problema nam da rešitve $u(k+j), j=1,...,N_u$, kjer je za optimizacijo potrebno dobiti napovedi (predikcijo) izhoda procesa, ki jo dobimo na osnovi modela.
- ullet za časovne trenutke $j>N_u$ predpostavljamo konstanten regulirni signal.
- Matlab primer: PFC in PSO optimizacija.

Prediktivno vodenje z omejitvami - simulacijski primer PFC koncept + PSO

Koncept PFC in PSO optimizacija:

• Predpostavimo eksponencialno izregulacijo regulacijskega pogreška e(k), kjer je $e(k)=w(k)-y_p(k)$. Ob predpostavki konstantne reference w(k) dobimo

$$e(k+H) = a_r^H e(k), \quad 0 < a_r < 1$$
 (103)

kjer je a_r konstanta referenčnega modela.

• Vrednost referenčnega modela pri horizontu ujemanja H je enaka, $y_r(k+H)$

$$y_r(k+H) = w(k+H) - a_r^H e(k)$$
 (104)

• Inkrement procesa pri horizontu ujemanja H je definiran kot razlika med $y_r(k+H)$ in vrednostjo izhodnega signala $y_p(k)$

$$\Delta_p(H) = y_r(k+H) - y_p(k) = (w(k+H) - a_r^H e(k)) - (w(k) - e(k))$$
(105)

• in ob predpostavki w(k) = w(k+H)

$$\Delta_p(H) = \left(1 - a_r^H\right) e(k) \tag{106}$$

• iz osnovne enačbe PFC koncepta ($\Delta_m(H) = \Delta_p(H)$) sledi

$$y_m(k+H) = y_m(k) + (1 - a_r^H) e(k)$$
 (107)

ullet optimalno vodenje dobimo (najhitrejši odzivi ob upoštevanju omejitev), če gre $a_r o 0$

• Optimizacija delovanja mikroomrežja Huatacondo, Čile

Slika 7: Optimizacija delovanja mikroomrežja

• Optimizacija delovanja mikroomrežja Huatacondo, Čile

Slika 8: Optimizacija delovanja mikroomrežja

- **Vhodi**: razpoložljiva moč solarne elektrarne PS, minimalna in maksimalna moč, PS_{min} in PS_{max} , moč veterne elektrarne, PE, minimalna in maksimalna, PE_{min} in PE_{max} , profil uporabniške porabe, PL, poraba vode WC, napetost baterij V_i in tok I_i , nivo vodnih rezervarjev VT_i in stanje dizelskih agregatov BG_i (on/off).
- Izhodi: referenčna moč dizelskih agregatov (PD), invertorska moč PI, binarni signal vodnega napajalnega sistema BP.

Slika 9: Shema delovania mikroomrežia

 Sistem upravljanja z energijo (EMS - Energy Management System) zagotavlja sprotno nastavljene točke za vsako proizvodno enoto in informiranje odjemalcev (mehanizem upravljanja na strani povpraševanja (DSM - Demand System Management))

Slika 10: Sistem upravljanja z energijo (EMS)

Kriterijska funkcija: EMS, ki temelji na MPC, minimizira operativne stroške pri zagotavljanju
potreb po vodi in obremenitvi, ob upoštevanju napovedi vremenskih razmer za dva dni
vnaprej (N = 192, 15-minutni koraki).

$$J = \delta_1 \sum_{j=1}^{N} C(k+j) + \sum_{j=1}^{N} C_s(k+j) + \delta_2 C_{US} \sum_{j=1}^{N} P_{US}(k+j) + C_{Tf} \sum_{j=1}^{N} V_{Tf}(k+j) + C_H(N)$$
 (109)

C je cena goriva za dizelski agregat, C_s je cena start-up procedure za dizelski agregat, P_{US} je cena neporabljene energije, V_{Tf} je cena nedobavljene vode in C_H je penalizacija življenske dobe.

 Omejitve: Izpolnjena mora biti bilanca moči v mikroomrežju in fizične omejitve posameznih moči.

$$P_S(k+j) + P_E(k+j) + P_D(k+j) + P_I(k+j) + P_{US}(k+j) = P_L(k+j) + B_P(k+j)P_P$$
 (110)

 P_S je moč solarne elektrarne, P_E je moč veterne elektrarne, P_D je moč dizelskega agregata, P_I je moč invertorja, P_{US} je neporabljena moč in na strani porabe moči nastopata moč bremena omrežja P_L in moč vodnih črpalk P_p .

Modeliranje sistema: konvencionalnega in obnovljivega dela sistema z linearnimi modeli

Končna opažanja:

- EMS na osnovi MPC izkazuje izboljšano delovanje predvsem zaradi upoštevanja napovedi posameznih dejavnikov.
- Operativni stroški mikroomrežja z uporabo EMS na osnovi MPC so zmanjšani (posebno v primeru posebnih profilov uporabe) v primerjavi z uporabo klasičnih sistemov.
- Prednosti DSM so dosežene tudi s preusmeritvijo potrošnikov v obdobja, ko je na voljo več obnovljivih virov.
- EMS omogoča učinkovito upravljanje oskrbe z vodo z aktivacijo vodne črpalke kot prilagodljive obremenitve, zlasti v obdobjih s presežkom energije.

