In [25]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [38]:

df = pd.read_csv('/home/joseph/Desktop/ml lab/lab1/dataset/Melbourne_housing_FULL.c
df.head(20)

Out[38]:

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	Pos
0	Abbotsford	68 Studley St	2	h	NaN	SS	Jellis	3/09/2016	2.5	:
1	Abbotsford	85 Turner St	2	h	1480000.0	S	Biggin	3/12/2016	2.5	;
2	Abbotsford	25 Bloomburg St	2	h	1035000.0	S	Biggin	4/02/2016	2.5	;
3	Abbotsford	18/659 Victoria St	3	u	NaN	VB	Rounds	4/02/2016	2.5	:
4	Abbotsford	5 Charles St	3	h	1465000.0	SP	Biggin	4/03/2017	2.5	:
5	Abbotsford	40 Federation La	3	h	850000.0	PI	Biggin	4/03/2017	2.5	:
6	Abbotsford	55a Park St	4	h	1600000.0	VB	Nelson	4/06/2016	2.5	:
7	Abbotsford	16 Maugie St	4	h	NaN	SN	Nelson	6/08/2016	2.5	:
8	Abbotsford	53 Turner St	2	h	NaN	S	Biggin	6/08/2016	2.5	:
9	Abbotsford	99 Turner St	2	h	NaN	S	Collins	6/08/2016	2.5	:
10	Abbotsford	129 Charles St	2	h	941000.0	S	Jellis	7/05/2016	2.5	:
11	Abbotsford	124 Yarra St	3	h	1876000.0	S	Nelson	7/05/2016	2.5	:
12	Abbotsford	121/56 Nicholson St	2	u	NaN	PI	Biggin	7/11/2016	2.5	:
13	Abbotsford	17 Raphael St	4	h	NaN	W	Biggin	7/11/2016	2.5	:
14	Abbotsford	98 Charles St	2	h	1636000.0	S	Nelson	8/10/2016	2.5	:
15	Abbotsford	217 Langridge St	3	h	1000000.0	S	Jellis	8/10/2016	2.5	:
16	Abbotsford	18a Mollison St	2	t	745000.0	S	Jellis	8/10/2016	2.5	:
17	Abbotsford	6/241 Nicholson St	1	u	300000.0	S	Biggin	8/10/2016	2.5	:
18	Abbotsford	10 Valiant St	2	h	1097000.0	S	Biggin	8/10/2016	2.5	:
19	Abbotsford	403/609 Victoria St	2	u	542000.0	S	Dingle	8/10/2016	2.5	;

20 rows × 21 columns

Finding Unique Values

In [117]:

```
uniqueCounts = df.nunique();
print("Unique count across columns:")
print(uniqueCounts);
```

Unique count across columns: Suburb 351 Address 34009 Rooms 12 Type 3 Price 2872 Method 9 388 SellerG Date 78 Distance 216 212 Postcode Bedroom2 16 12 Bathroom 16 Car Landsize 1685 BuildingArea 741 YearBuilt 161 CouncilArea 34 13403 Lattitude 14525 Longtitude Regionname 9 343 Propertycount dtype: int64

Finding total number of null values

In [40]:

```
df.isnull().sum()
```

Out[40]:

Suburb	0
Address	0
Rooms	0
Туре	0
Price	7610
Method	0
SellerG	0
Date	0
Distance	1
Postcode	1
Bedroom2	8217
Bathroom	8226
Car	8728
Landsize	11810
BuildingArea	21115
YearBuilt	19306
CouncilArea	3
Lattitude	7976
Longtitude	7976
Regionname	3
Propertycount	3
dtype: int64	

Handling missing values using mean

In [41]:

```
df['Price'].fillna(value = df.Price.mean(), inplace = True)
df['Distance'].fillna(value = df.Distance.mean(), inplace = True)
df['Postcode'].fillna(value = df.Postcode.mean(), inplace = True)
df['Bedroom2'].fillna(value = df.Bedroom2.mean(), inplace = True)
df['Bathroom'].fillna(value = df.Bathroom.mean(), inplace = True)
df['Car'].fillna(value = df.Car.mean(), inplace = True)
df['Landsize'].fillna(value = df.Landsize.mean(), inplace = True)
df['Bedroom2'].fillna(value = df.Bedroom2.mean(), inplace = True)
df['YearBuilt'].fillna(value = df.YearBuilt.mean(), inplace = True)
df['Lattitude'].fillna(value = df.Lattitude.mean(), inplace = True)
df['Longtitude'].fillna(value = df.Longtitude.mean(), inplace = True)
df['Propertycount'].fillna(value = df.Propertycount.mean(), inplace = True)
df['BuildingArea'].fillna(value = df.BuildingArea.mean(), inplace = True)
```

In [42]:

<pre>df.isnull().sum()</pre>	
------------------------------	--

Out[42]:

Suburb	0
Address	0
Rooms	0
Type	0
Price	0
Method	0
SellerG	0
Date	0
Distance	0
Postcode	0
Bedroom2	0
Bathroom	0
Car	0
Landsize	0
BuildingArea	0
YearBuilt	0
CouncilArea	3
Lattitude	0
Longtitude	0
Regionname	3
Propertycount	0
dtype: int64	

In [43]:

```
df = df.fillna(0)
```

In [118]:

df

Out[118]:

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	Postc
0	Abbotsford	68 Studley St	2	0	1.182301e- 16	SS	Jellis	3/09/2016	-1.279322	30(
1	Abbotsford	85 Turner St	2	0	7.579011e- 01	S	Biggin	3/12/2016	-1.279322	30(
2	Abbotsford	25 Bloomburg St	2	0	-2.675473e- 02	S	Biggin	4/02/2016	-1.279322	30(
3	Abbotsford	18/659 Victoria St	3	2	1.182301e- 16	VB	Rounds	4/02/2016	-1.279322	30(
4	Abbotsford	5 Charles St	3	0	7.314521e- 01	SP	Biggin	4/03/2017	-1.279322	30(
										,

Price before Scaling - Right skewed

In [47]:

```
import seaborn as sb
from matplotlib import pyplot as plt
sb.distplot(df['Price'],kde = False)
plt.show()
```


Distance before Scaling - Right skewed

In [62]:

```
import seaborn as sb
from matplotlib import pyplot as plt
sb.distplot(df['Distance'],kde = False)
plt.show()
```


Standard Scaler

In [120]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
```

```
In [121]:
```

```
df[['Price', 'Distance', 'Landsize', 'Propertycount']] = scaler.fit_transform(df[['Pri
```

After Scaling

In [68]:

```
import seaborn as sb
from matplotlib import pyplot as plt
sb.distplot(df['Price'],kde = False)
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/se aborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your co de to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

In [122]:

```
import seaborn as sb
from matplotlib import pyplot as plt
sb.distplot(df['Distance'],kde = False)
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/se aborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your co de to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

In [123]:

df

Out[123]:

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	D
0	Abbotsford	68 Studley St	2	0	1.157840e- 16	SS	Jellis	3/09/2016	-1
1	Abbotsford	85 Turner St	2	0	7.579011e- 01	S	Biggin	3/12/2016	-1
2	Abbotsford	25 Bloomburg St	2	0	-2.675473e- 02	S	Biggin	4/02/2016	-1
3	Abbotsford	18/659 Victoria St	3	2	1.157840e- 16	VB	Rounds	4/02/2016	-1
4	Abbotsford	5 Charles St	3	0	7.314521e- 01	SP	Biggin	4/03/2017	-1
34852	Yarraville	13 Burns St	4	0	7.579011e- 01	PI	Jas	24/02/2018	-0
34853	Yarraville	29A Murray St	2	0	-2.859557e- 01	SP	Sweeney	24/02/2018	-0
34854	Yarraville	147A Severn St	2	1	-6.086344e- 01	S	Jas	24/02/2018	-0
34855	Yarraville	12/37 Stephen St	3	0	1.583888e- 01	SP	hockingstuart	24/02/2018	-0
34856	Yarraville	3 Tarrengower St	2	0	-5.320380e- 02	PI	RW	24/02/2018	-0

34857 rows × 21 columns

KNN

In [71]:

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt

In [88]:

```
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
df['Type']= label_encoder.fit_transform(df['Type'])
```

In [89]:

df

Out[89]:

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	D
0	Abbotsford	68 Studley St	2	0	1.182301e- 16	SS	Jellis	3/09/2016	-1
1	Abbotsford	85 Turner St	2	0	7.579011e- 01	S	Biggin	3/12/2016	-1
2	Abbotsford	25 Bloomburg St	2	0	-2.675473e- 02	S	Biggin	4/02/2016	-1
3	Abbotsford	18/659 Victoria St	3	2	1.182301e- 16	VB	Rounds	4/02/2016	-1
4	Abbotsford	5 Charles St	3	0	7.314521e- 01	SP	Biggin	4/03/2017	-1
34852	Yarraville	13 Burns St	4	0	7.579011e- 01	PI	Jas	24/02/2018	-0
34853	Yarraville	29A Murray St	2	0	-2.859557e- 01	SP	Sweeney	24/02/2018	-0
34854	Yarraville	147A Severn St	2	1	-6.086344e- 01	S	Jas	24/02/2018	-0
34855	Yarraville	12/37 Stephen St	3	0	1.583888e- 01	SP	hockingstuart	24/02/2018	-0
34856	Yarraville	3 Tarrengower St	2	0	-5.320380e- 02	PI	RW	24/02/2018	-0
34857 r	34857 rows × 21 columns								
4									•

Type column is classified with the dataset

In [90]:

```
y = df ['Type'].values
X = df.drop('Address', axis = 1)
X = X.drop('CouncilArea', axis = 1)
X = X.drop('Regionname', axis = 1)
X = X.drop('Suburb', axis = 1)
X = X.drop('SellerG', axis = 1)
X = X.drop('Method', axis = 1)
X = X.drop('Type', axis = 1)
X = X.drop('Date', axis = 1)
# Separating the dependent and independent variable
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta)
```

In [73]:

X train.info

Out[73]:

```
<bound method DataFrame.info of</pre>
                                        Rooms
                                                      Price Distance
Postcode
         Bedroom2 Bathroom
                                    Car
             8.284320e-01
20967
                            0.385209
                                         3165.0
                                                 4.000000
                                                           2.000000
                                                                      2.
000000
              1.718884e+00 0.385209
26014
                                         3188.0
                                                 4.000000
                                                           2.000000
                                                                      2.
000000
                                                           1.000000
           4 -8.025942e-01 1.386874
                                         3064.0
                                                 4.000000
                                                                      0.
20468
000000
           2 -3.617763e-01 -0.100893
                                                2.000000
                                                                      1.
19303
                                         3186.0
                                                           1.000000
000000
           2 -1.199330e+00 -1.235131
                                         3000.0
                                                3.084647
                                                            1.624798
                                                                      1.
6672
728845
. . .
           3 -8.643088e-01 1.990819
                                         3175.0
                                                 3.000000
                                                                      1.
16850
                                                            1.000000
000000
             1.182301e-16 -0.557534
6265
                                         3144.0
                                                3.084647
                                                           1.624798
                                                                      1.
728845
                                                                      2.
11284
           4 -4.922584e-01 0.178984
                                         3060.0
                                                 4.000000
                                                            2.000000
000000
860
           5 2.115620e+00 -0.218736
                                         3103.0
                                                 5.000000
                                                           3.000000
                                                                      2.
000000
15795
              1.182301e-16 0.886042
                                         3132.0
                                                 5.000000
                                                           2.000000
000000
           Landsize BuildingArea
                                      YearBuilt Lattitude
                                                             Longtitude
20967
       1.968445e-02 1.128113e-16
                                    1965.289885 -37.906090
                                                             145.055100
26014
       2.475020e-02 7.836618e-02
                                    1920.000000 -37.938000
                                                             145.013570
20468
       1.715157e-02 -1.994774e-01
                                    1990.000000 -37.611140
                                                             144.936830
19303 -1.786037e-01 -1.994774e-01
                                    1960.000000 -37.895690
                                                             144.998810
6672
       1.237085e-17 1.128113e-16
                                    1965.289885 -37.810634
                                                             145.001851
. . .
16850
       7.830248e-02
                     1.128113e-16
                                    1965.289885 -37.979380
                                                             145.230350
6265
       1.237085e-17
                     1.128113e-16
                                    1965.289885 -37.810634
                                                             145.001851
11284
       1.932261e-02
                     1.128113e-16
                                    1965.289885 -37.708900
                                                             144.969500
                                    2006.000000 -37.806100
860
       2.316139e-03
                     7.769443e-01
                                                             145.080100
15795
       6.021050e-02
                    3.165178e-01
                                    2010.000000 -37.825190
                                                             145.197710
       Propertycount
20967
            0.766991
26014
           -0.478538
20468
            1.792549
19303
            0.678912
6672
            2.241075
16850
            0.750053
6265
           -0.654471
11284
           -0.565262
860
           -0.427046
15795
           -0.158517
[27885 rows x 13 columns]>
```

In [74]:

```
X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[74]:
((27885, 13), (6972, 13), (27885,), (6972,))
```

Minkowski Distance

In [91]:

```
K = []
training = []
test = []
scores = {}

for k in range(2, 6):
    clf = KNeighborsClassifier(n_neighbors = k)
    clf.fit(X_train, y_train)

    training_score = clf.score(X_train, y_train)
    test_score = clf.score(X_test, y_test)
    K.append(k)

training.append(training_score)
test.append(test_score)
scores[k] = [training_score, test_score]
```

In [92]:

```
print("Accuracy Scores")
for keys, values in scores.items():
    print(keys, ':', values)
```

Accuracy Scores

```
2 : [0.8942442173211403, 0.7923121055651177]
3 : [0.8874305181997489, 0.8040734366035571]
4 : [0.8705038551192398, 0.8003442340791739]
5 : [0.8639770485924332, 0.8052208835341366]
```

In [93]:

```
ax = sns.stripplot(K, training);
ax.set(xlabel ='values of k', ylabel ='Training Score')
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/se aborn/_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional arg ument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

In [94]:

```
ax = sns.stripplot(K, test);
ax.set(xlabel ='values of k', ylabel ='Test Score')
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/se aborn/_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional arg ument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [95]:

```
plt.scatter(K, training, color ='k')
plt.scatter(K, test, color ='g')
plt.show()
# For overlapping scatter plots
```


In [96]:

```
y_pred = clf.predict(X_test)

from sklearn import metrics
# Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.8052208835341366

In [99]:

```
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

color = 'black'
matrix = plot_confusion_matrix(clf, X_test, y_test, cmap=plt.cm.Blues)
matrix.ax_.set_title('Confusion Matrix', color=color)
plt.xlabel('Predicted Label', color=color)
plt.ylabel('True Label', color=color)
plt.gcf().axes[0].tick_params(colors=color)
plt.gcf().axes[1].tick_params(colors=color)
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/sk learn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estim ator.

warnings.warn(msg, category=FutureWarning)

we	can	ınter	<pre>that precision</pre>	recall	f1-score	support
		0	0.86	0.92	0.89	4748
		1	0.39	0.30	0.34	733
		2	0.78	0.68	0.73	1491
а	accur	acy			0.81	6972

In [116]:

```
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0	0.86	0.92	0.89	4748
1	0.39	0.30	0.34	733
2	0.78	0.68	0.73	1491
accuracy			0.81	6972
macro avg	0.68	0.64	0.65	6972
weighted avg	0.79	0.81	0.80	6972

Manhattan distance

In [100]:

```
K = []
training = []
test = []
scores = {}

for k in range(2, 6):
    clf = KNeighborsClassifier(n_neighbors = k, p = 1)
    clf.fit(X_train, y_train)

    training_score = clf.score(X_train, y_train)
    test_score = clf.score(X_test, y_test)
    K.append(k)

    training.append(training_score)
    test.append(test_score)
    scores[k] = [training_score, test_score]
```

In [101]:

```
print("Accuracy Scores")
for keys, values in scores.items():
    print(keys, ':', values)
```

Accuracy Scores

```
2 : [0.8955710955710956, 0.7933161216293746]
3 : [0.8896897973821051, 0.8079460699942628]
4 : [0.8731576116191501, 0.8102409638554217]
5 : [0.8675273444504213, 0.8148307515777395]
```

In [102]:

```
ax = sns.stripplot(K, training);
ax.set(xlabel ='values of k', ylabel ='Training Score')
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/se aborn/_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional arg ument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [103]:

```
ax = sns.stripplot(K, test);
ax.set(xlabel ='values of k', ylabel ='Test Score')
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/se aborn/_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional arg ument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [104]:

```
plt.scatter(K, training, color ='k')
plt.scatter(K, test, color ='g')
plt.show()
# For overlapping scatter plots
```


In [105]:

```
y_pred = clf.predict(X_test)

from sklearn import metrics
# Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.8148307515777395

In [106]:

```
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

color = 'black'
matrix = plot_confusion_matrix(clf, X_test, y_test, cmap=plt.cm.Blues)
matrix.ax_.set_title('Confusion Matrix', color=color)
plt.xlabel('Predicted Label', color=color)
plt.ylabel('True Label', color=color)
plt.gcf().axes[0].tick_params(colors=color)
plt.gcf().axes[1].tick_params(colors=color)
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/sk learn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estim ator.

warnings.warn(msg, category=FutureWarning)

In [107]:

```
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0 1 2	0.86 0.42 0.80	0.93 0.31 0.71	0.89 0.36 0.75	4748 733 1491
accuracy macro avg weighted avg	0.69 0.80	0.65 0.81	0.81 0.67 0.81	6972 6972 6972

We can infer that

precision recall f1-score support

0	0.86	0.93	0.89	4748
1	0.42	0.31	0.36	733
2	0.80	0.71	0.75	1491
accuracy			0.81	6972

Euclidean Distance

In [108]:

```
K = []
training = []
test = []
scores = {}

for k in range(2, 6):
    clf = KNeighborsClassifier(n_neighbors = k, p = 2)
    clf.fit(X_train, y_train)

    training_score = clf.score(X_train, y_train)
    test_score = clf.score(X_test, y_test)
    K.append(k)

training.append(training_score)
    test.append(test_score)
    scores[k] = [training_score, test_score]
```

In [109]:

```
print("Accuracy Scores")
for keys, values in scores.items():
    print(keys, ':', values)
```

Accuracy Scores

```
2 : [0.8942442173211403, 0.7923121055651177]
3 : [0.8874305181997489, 0.8040734366035571]
4 : [0.8705038551192398, 0.8003442340791739]
5 : [0.8639770485924332, 0.8052208835341366]
```

In [110]:

```
ax = sns.stripplot(K, training);
ax.set(xlabel ='values of k', ylabel ='Training Score')
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/se aborn/_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [111]:

```
ax = sns.stripplot(K, test);
ax.set(xlabel ='values of k', ylabel ='Test Score')
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/se aborn/_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional arg ument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [112]:

```
plt.scatter(K, training, color ='k')
plt.scatter(K, test, color ='g')
plt.show()
# For overlapping scatter plots
```


In [113]:

```
y_pred = clf.predict(X_test)

from sklearn import metrics
# Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.8052208835341366

In [114]:

```
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix

color = 'black'
matrix = plot_confusion_matrix(clf, X_test, y_test, cmap=plt.cm.Blues)
matrix.ax_.set_title('Confusion Matrix', color=color)
plt.xlabel('Predicted Label', color=color)
plt.ylabel('True Label', color=color)
plt.gcf().axes[0].tick_params(colors=color)
plt.gcf().axes[1].tick_params(colors=color)
plt.show()
```

/home/joseph/Desktop/ml lab/lab1/mlenv/lib/python3.10/site-packages/sk learn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estim ator.

warnings.warn(msg, category=FutureWarning)

In [115]:

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0 1 2	0.86 0.39 0.78	0.92 0.30 0.68	0.89 0.34 0.73	4748 733 1491
_	0.76	0.00		
accuracy	0.60	0.64	0.81	6972
macro avg weighted avg	0.68 0.79	0.64 0.81	0.65 0.80	6972 6972

We can infer that

	precision	recall	f1-score	support
Θ	0.86	0.92	0.89	4748
1	0.39	0.30	0.34	733
2	0.78	0.68	0.73	1491
accuracy			0.81	6972

In []: