Catalog of Definitions

Section 4: First Examples of Mathematical Proofs.

Definition (p. 40). To say that x is an even number means that there exists an integer k such that x = 2k.

Definition (p. 40). To say that x is an odd number means that there exists an integer k such that x = 2k+1.

Definition (p. 43). To say that x is a rational number means that there exist integers m and n such that $n \neq 0$ and x = m/n.

Definition (p. 44). To say that x is an irrational number means that x is a real number and x is not a rational number.

Definition (p. 45). Let d and x be integers. To say that d divides x means that there exists an integer k such that x = kd.

Definition (p. 47). To say that x is a prime number means that $x \in \mathbb{N}$ and $x \neq 1$ and for each $a \in \mathbb{N}$, for each $b \in \mathbb{N}$, if x = ab, then a = 1 or b = 1.

Definition (p. 51). Let a, b, and m be integers. To say that a is congruent to b modulo m (written $a \equiv b \mod m$) means that m divides b - a.