Numerical Computations - Ex 1, Oct 15, 2020

- 1. Calculate the Taylor series at the expansion point x=0 of the functions $\frac{1}{x-1}$ and $\frac{1}{x^2+1}$, and plot the Taylor polynomials for $n \in \{10, 20, 40\}$ on the interval [-2, 2]. Hint: A partial fraction decomposition of the second function explains the bad behaviour of the harmless looking function.
- 2. Compute and plot interpolation polynomials to $\frac{1}{x^2+1}$ on the interval [-5,5], for $n \in \{10,20,40\}$. Choose uniformly distributed points, and Chebyshev points on [-5,5]: $x_i = 5\cos\frac{(i+0.5)\pi}{n+1}$ for $i=0,\ldots,n$.

Plot the Lagrange interpolation polynomials l_i for both choices of points. Investigate numerically

$$\max_{i \in \{0,\dots,n\}} \max_{x \in [-5,5]} |l_i(x)| \qquad \text{and} \qquad \max_{x \in [-5,5]} \sum_{i=0}^n |l_i(x)|$$

depending on n.

3. Chebyshev polynomials are recursively defined as

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ for $n = 1, 2, ...$

- Plot the first few polynomials on [-1, 1]. What range do you expect?
- Determine the leading coefficient $lc(T_n)$.
- Show that there holds

$$T_n(x) = \cos(n \cos(x))$$
 for $x \in [-1, 1]$

Find all roots of T_n .

• Let q be a polynomial of exact degree n such that $lc(q) = lc(T_n)$. Proof that

$$\max_{x \in [-1,1]} |q(x)| \ge \max_{x \in [-1,1]} |T_n(x)|$$

4. Implement the Aitken-Nevill scheme for polynomial interpolation. Test it for numerical differentiation by extrapolation for $f(x) = \sin(x)$

$$D_f(x,h) := \frac{f(x+h) - f(x)}{h}$$

and

$$D_{f,sym} := \frac{f(x+h) - f(x-h)}{2h}$$

Choose $x = \pi$, and interpolation points $h_i = q^i$ for $i \in \{0, \dots n\}$. Generate convergence plot for the errors $f'(x) - D_f(x, 0)$. Try different refinement ratios $q \in (0, 1)$. How does this effect speed of convergence, and reachable accuracy? Since $\lim_{h\to 0} D_{f,sym}(x,h) = \lim_{h\to 0} D_{f,sym}(x,\sqrt{h})$, try also extrapolation of the function $h \mapsto D_{f,sym}(x,\sqrt{h})$.