Suite de polygones

Il s'agit ici d'étudier une suite de polygones à l'aide de déterminants classiques, et de montrer qu'elle converge vers l'isobarycentre du polygone de départ.

Lemme 1 (Déterminant circulant). Soient $n \in \mathbb{N}^*$ et $a_1, \dots, a_n \in \mathbb{C}$. On pose $\omega = e^{\frac{2i\pi}{n}}$. Alors

[**GOU21**] p. 153

$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{vmatrix} = \prod_{j=0}^{n-1} P(\omega^j)$$

où
$$P = \sum_{k=0}^{n-1} a_k X^k$$
.

Démonstration. On définit

$$A = \begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}) \text{ et } \Omega = (\omega^{(i-1)(j-1)})_{i,j \in \llbracket 1,n \rrbracket} \in \mathcal{M}_n(\mathbb{C})$$

Pour $i \ge 2$, la i-ième ligne de A est

$$\begin{pmatrix} a_{n-i+1} & \dots & a_{n-1} & a_0 & \dots & a_{n-i-2} \end{pmatrix}$$

Si on multiplie cette ligne par la j-ième colonne de Ω , on obtient le coefficient

$$\begin{split} &a_{n-i+1} + a_{n-i+2}\omega^{j-1} + \dots + a_0\omega^{(j-1)(i-1)} + a_1\omega^{(j-1)i} + \dots + a_{n-i-2}\omega^{(j-1)(n-1)} \\ &= \omega^{(j-1)(i-1)} (a_0 + a_1\omega^{j-1} + \dots + a_{n-1}\omega^{(j-1)(n-1)}) \\ &= \omega^{(j-1)(i-1)} P(\omega^{j-1}) \end{split}$$

et c'est encore vrai pour i=1 puisque $\omega^0=1$. Donc la j-ième colonne de $A\Omega$ est égale à la j-ième colonne de Ω multipliée par $P(\omega^{j-1})$. Ceci entraîne que

$$\det(A)\det(\Omega) = \det(A\Omega) = P(1)P(\omega) \dots P(\omega^{n-1})\det(\Omega)$$

et le déterminant $\det(\Omega)$ est non nul (en tant que déterminant de Vandermonde à paramètres deux-à-deux distincts). D'où :

$$\det(A) = P(1)P(\omega) \dots P(\omega^{n-1})$$

Théorème 2 (Suite de polygones). Soit P_0 un polygone dont les sommets sont $\{z_{0,1}, \ldots, z_{0,n}\}$. On définit la suite de polygones (P_k) par récurrence en disant que, pour tout $k \in \mathbb{N}^*$, les sommets de P_{k+1} sont les milieux des arêtes de P_k .

Alors la suite (P_k) converge vers l'isobarycentre de P_0 .

Démonstration. On identifie P_k au vecteur colonne $Z_k = \begin{pmatrix} z_{k,1} \\ \vdots \\ z_{k,n} \end{pmatrix} \in \mathbb{C}^n$. Il s'agit de montrer que la

suite (Z_k) converge vers $\begin{pmatrix} g \\ \vdots \\ g \end{pmatrix}$ où g désigne l'isobarycentre de P_0 .

En utilisant la notation matricielle, la relation de récurrence s'écrit

$$\forall k \in \mathbb{N}, Z_{k+1} = \begin{pmatrix} \frac{z_{k,1} + z_{k,2}}{2} \\ \vdots \\ \frac{z_{k,n} + z_{k,1}}{2} \end{pmatrix} = AZ_k \text{ où } A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \dots & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \dots & 0 & \frac{1}{2} \end{pmatrix}$$

Par une récurrence immédiate (c'est une suite géométrique), on a donc $\forall k \in \mathbb{N}, Z_k = A^k Z_0$. Il suffit donc de montrer que (A^k) converge dans $\mathcal{M}_n(\mathbb{C})$ (muni d'une norme quelconque par équivalence des normes en dimension finie).

Pour cela, étudions les valeurs propres de *A* :

$$\chi_A = \det(A - XI_n) = \begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{vmatrix}$$

avec $a_0 = \frac{1}{2} - X$, $a_1 = \frac{1}{2}$ et $\forall i > 2$, $a_i = 0$. On reconnaît le déterminant circulant du Lemme 1 et en

posant $P(Y) = \sum_{k=0}^{n-1} a_k Y^k$ et $\omega = e^{\frac{2i\pi}{n}}$, la formule du déterminant circulant nous donne :

$$\chi_A = \prod_{j=1}^n P(\omega^j) = \prod_{j=1}^n \left(\sum_{k=0}^{n-1} a_k \omega^{kj} \right) = \prod_{j=1}^n \left(\frac{1}{2} - X + \frac{1}{2} \omega^j \right) = \prod_{j=1}^n (\lambda_j - X)$$

où $\lambda_j = \frac{1+\omega^j}{2}$. Et comme $\lambda_i = \lambda_j \iff i = j$, le polynôme χ_A est scindé à racines simples. Donc $\exists Q \in \operatorname{GL}_n(\mathbb{C})$ telle que $A = QDQ^{-1}$ et $D = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$. Or pour $j \neq n$,

$$|\lambda_j| = \left| \frac{1 + \omega^j}{2} \right| = \left| e^{\frac{ij\pi}{n}} \frac{e^{\frac{ij\pi}{n}} + e^{-\frac{ij\pi}{n}}}{2} \right| = \left| \cos\left(\frac{\pi j}{n}\right) \right| < 1$$

Ainsi, $\lambda_j^k \longrightarrow 0$ si j < n, donc la suite (A^k) converge dans $\mathcal{M}_n(\mathbb{C})$ vers la matrice $B = Q \operatorname{Diag}(0, \dots, 0, 1)Q^{-1}$ par continuité de l'application $M \mapsto QMQ^{-1}$.

On pose donc $X = BZ_0$, de sorte que la suite (Z_k) converge vers X. Par continuité de $M \mapsto AM$, la limite X vérifie forcément X = AX ie. X est vecteur propre de A associé à la valeur propre 1. Or

l'espace propre de A associé à la valeur propre 1 contient le vecteur $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ et est de dimension 1

(car χ_A possède n racines distinctes), donc il est engendré par ce vecteur. Ainsi, il existe $a \in \mathbb{C}$ tel que $X = \begin{pmatrix} a \\ \vdots \\ a \end{pmatrix}$ ie. (Z_k) converge vers le point d'affixe a.

Enfin, on remarque que si g est l'isobarycentre de P_0 , il est aussi égal à celui de P_k pour tout k (que l'on note g_k) car pour tout $k \ge 1$:

$$g_k = \frac{1}{n} \sum_{i=1}^n z_{k,i} = \frac{1}{n} \sum_{i=1}^n \frac{z_{k-1,i} + z_{k-1,i+1}}{2} = \frac{1}{n} \sum_{i=1}^n z_{k-1,i} = g_{k-1}$$

(en considérant les indices i modulo n). Or, la suite (Z_k) converge vers $\begin{pmatrix} a \\ \vdots \\ a \end{pmatrix}$, et la fonction φ qui à n points du plan associe son isobarycentre est continue. Donc,

$$g_k = \varphi(Z_k) \longrightarrow \varphi(a, ..., a) = a$$

et comme pour tout k, $g_k = g$, on a bien g = a.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.