Asymptotic Notation

- **asymptotic notation** is often used to describe the running times of algorithms
- it is a way of abstracting the actual function that describes the running time of an algorithm

⊖-notation "asymptotically tight bound"

- $\Theta(g(n))$ denotes the set of functions f(n)
- a function f(n) belongs to the set if there exists positive constants c_1,c_2 such that it can be "sandwiched" between $c_1g(n)$ and $c_2g(n)$ for sufficiently large n
 - $\circ \;\;$ "sufficiently large n" can be expressed as "for all $n \geq n_0$ "
- we often abuse notation and say "a function $f(n) = \Theta(g(n))$ " or "... is $\Theta(g(n))$ "
 - \circ we mean $\in \Theta(g(n))$
 - \circ but the abuse is useful because if we write something like $2n^2+\Theta(n)$ it is clear we mean $2n^2+f(n)$ where $f(n)\in\Theta(n)$

O-notation "asymptotic upper bound"

Ω -notation "asymptotic lower bound"

"
$$\Theta = O + \Omega$$
" Theorem

• for any 2 functions f(n),g(n) we have $f(n)=\Theta(g(n))$ if and only if f(n)=O(g(n)) and $f(n)=\Omega(g(n))$