Please make a frequency table and a dot plot from the following (unsorted) data.

| 57 | 52 | 58 | 54 | 58 | 55 |
|----|----|----|----|----|----|
| 55 | 51 | 52 | 57 | 52 | 52 |
| 57 | 55 | 52 | 58 | 53 | 55 |
| 55 | 58 | 52 | 53 | 57 | 55 |
|    |    |    |    |    |    |

A continuous random variable was measured 100 times. The resulting frequency distribution is shown below.

| class   | frequency |  |  |  |  |
|---------|-----------|--|--|--|--|
| 15–15.5 | 14        |  |  |  |  |
| 15.5–16 | 29        |  |  |  |  |
| 16-16.5 | 20        |  |  |  |  |
| 16.5–17 | 14        |  |  |  |  |
| 17–17.5 | 12        |  |  |  |  |
| 17.5–18 | 6         |  |  |  |  |
| 18–18.5 | 2         |  |  |  |  |
| 18.5–19 | 1         |  |  |  |  |
| 19–19.5 | 2         |  |  |  |  |
|         |           |  |  |  |  |

- (a) Describe the overall shape of the distribution. (symmetric mound, skew left, skew right, uniform, or bimodal)
- (b) Estimate the range of the distribution (range = max-min).
- (c) What percent of the measurements are less than 18?
- (d) What percent of the measurements are less than 15.5?
- (e) What percent of the measurements are between 15.5 and 18?
- (f) What percent of the measurements are within 0.25 of 16.25? In other words, what percent of measurements satisfy |x 16.25| < 0.25?
- (g) Of the measurements less than 18, what percent are less than 15.5?
- (h) Estimate the value of the 77th percentile. In other words, determine a value such that 77% of the measurements are less than or equal to it.

.image

#### 3. Problem

A continuous random variable was measured 500 times. The resulting histogram is shown below.

# Histogram of data



- (a) Describe the overall shape of the distribution. (symmetric mound, skew left, skew right, uniform, or bimodal)
- (b) Estimate the range of the distribution (range = max-min).
- (c) What percent of the measurements are greater than 70?
- (d) What percent of the measurements are greater than 110?
- (e) What percent of the measurements are between 70 and 110?
- (f) What percent of the measurements are within 5 from 115? In other words, what percent of measurements satisfy  $|x 115| \le 5$ ?
- (g) Of the measurements greater than 70, what percent are greater than 110?
- (h) Estimate the value of the 69.8th percentile. In other words, determine a value such that 69.8% of the measurements are less than or equal to it.

A continuous random variable X was measured 40 times. The sorted measurements are shown below.

| 80.04 | 80.14 | 80.18 | 80.19 | 80.19 | 80.19 | 80.2  | 80.37 | 80.57 | 80.57 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 80.59 | 80.65 | 80.67 | 80.71 | 81.17 | 81.2  | 81.22 | 81.26 | 81.39 | 81.42 |
| 81.56 | 81.63 | 81.64 | 81.8  | 81.81 | 82.37 | 82.45 | 82.46 | 82.58 | 83    |
| 83.45 | 83.47 | 83.5  | 83.88 | 84.64 | 84.83 | 85.42 | 86.99 | 86.99 | 88.13 |

The total of the measurements is 3285.52.

- (a) Determine the percentile rank of the measurement 83. In other words, determine what percent of data are less than or equal to 83.
- (b) Determine the measurement corresponding to a percentile rank of 0.125. In other words, determine *x* such that 12.5% of the data are less than or equal to *x*.
- (c) Determine the mean of the measurements.
- (d) Determine the median of the measurements.

Three random variables (F, G, and H) were measured 1000 times each. The resulting histograms show the three distributions.







- (a) Which distribution has the highest mean? (F, G, or H)
- (b) Which distribution has the lowest mean? (F, G, or H)
- (c) Which distribution has the largest standard deviation? (F, G, or H)
- (d) Which distribution has the smallest standard deviation? (F, G, or H)

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$