Aula

Algoritmos para modelagem de distribuição de espécies

Professor: MsC Thiago Cavalcante¹

Disciplina: Tópicos Avançados II: Modelagem de Nicho Ecológico – Teoria e Prática Profa. Responsável: Dra. Luisa M. Diele-Viegas

¹thiagocav.ferreira@gmail.com, +55 (82) 988224704; Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, 69067-375, Manaus, Amazonas, Brazil.

Atividades extra-classe

Os dados de ocorrência de *Lagothrix flavicauda* para o exercício são provenientes de Cavalcante *et al* (Em revisão):

Cavalcante, T., Barnett, A. A., doninck, J. V., & Tuomisto, H. (Em revisão). Modelling 21st century refugia and impact of climate change on Amazonia's largest primates. *Journal of Biogeography*.

Maiores detalhes podem ser encontrados no arquivo PDF de metadados no diretório principal do repositório compartilhado.

Exercício 1.

Atividades.

Rodar os três scripts disponibilizados alterando as variáveis utilizadas em cada algoritmo (obs.: alterar a quantidade e a identidade das variáveis). No *RasterStack* disponibilizado para o Peru (diretório /data), estão disponíveis 19 variáveis bioclimáticas.

Detalhes sobre as variáveis bioclimáticas estão disponíveis em:

https://www.worldclim.org/data/bioclim.html

https://www.worldclim.org/data/worldclim21.html

A ideia do exercício é explorar como a escolha das variáveis afeta as previsões finais dos diferentes modelos/algoritmos.

Dicas/sugestões.

- Utilizar o objeto myExpl para escolher as variáveis no exercício com as abordagens de envelope;
- No método de distância, as variáveis são selecionadas escolhendo as colunas por número no *dataframe* (e.g., o script original usa as variáveis das colunas 4, 5, 6 e 7);
- Nos métodos de regressão, é preciso alterar as colunas quando construindo os modelos, assim como quando construindo os plots das curvas de respostas.

Desafio.

Atividades.

Rodar os três scripts (ou replicar somente o de modelos lineares) utilizando os dados de outra espécie disponibilizados no diretório /data. Esses dados são de uma planta endêmica do Peru, Puya raimondii, mais conhecida como a rainha dos Andes:

Figure 1. A maior bromelídea do mundo, Puya raimondii.

Créditos da foto:

https://www.perunorth.com/news/2016/4/12/puya-raimondii-pineapple-meets-triffid

Dicas/sugestões.

- Será preciso extrair as variáveis ambientais nas localidades de ocorrência da espécie;
- Função extract do pacote raster (??raster::extract).