COMP110: Principles of Computing

2: Basic Principles for Computation

Learning outcomes

By the end of this week's sessions, you should be able to:

- Use binary, decimal and hexadecimal notation to represent and operate on numerical values
- Explain the basic architecture of a computer
- Distinguish the most common programming languages and paradigms in use today

Research journal

Research journal

- Read some seminal papers in computing (listed on the assignment brief)
- ► Choose one of them
- Research how this paper has influenced the field of computing
- ▶ Write up your findings
 - Maximum 1500 words
 - With reference to appropriate academic sources

Marking rubric

See assignment brief on LearningSpace/GitHub

Timeline

- ▶ Peer review in week 11 (4th December)
- ▶ Deadline shortly after (check MyFalmouth)
- ► Finding and reading academic papers takes time and effort don't leave it until the last minute!

Binary notation

How we write numbers

- We write numbers in base 10
- ▶ We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)
 - $(6 \times 1000) + (3 \times 100) + (9 \times 10) + (7)$
 - $(6 \times 10^3) + (3 \times 10^2) + (9 \times 10^1) + (7 \times 10^0)$
 - Thousands Hundreds Tens Units

Binary

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 **digits**: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$(1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (0 \times 2^4)$$

+ $(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$
= $2^7 + 2^3 + 2^1 + 2^0$
= $128 + 8 + 2 + 1$ (base 10)
= 139 (base 10)

Converting to binary

https://www.youtube.com/watch?v=OezK_zTyvAQ

Bits, bytes and words

- ► A **bit** is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - 32-bit CPU: 32 bits = 1 word
 - 64-bit CPU: 64 bits = 1 word
- An *n*-bit word can store a number between 0 and $2^n 1$
 - $ightharpoonup 2^{16} 1 = 65,535$
 - $ightharpoonup 2^{32} 1 = 4,294,967,295$
 - $2^{64} 1 = 18,446,744,073,709,551,615$

Addition with carry

In base 10:

Addition with carry

In base 2:

Modular arithmetic

- ► Arithmetic modulo N
- Numbers "wrap around" between 0 and N − 1
- ► E.g. modulo 16:
 - ▶ 14 + 7 = 5
 - ► 4 7 = 13

2's complement

- ▶ How can we represent negative numbers in binary?
- ► Represent them modulo 2ⁿ (for *n* bits)
- ▶ I.e. represent -a as $2^n a$
- ▶ Instead of an *n*-bit number ranging from 0 to $2^n 1$, it ranges from -2^{n-1} to $+2^{n-1} 1$
- \blacktriangleright E.g. 16-bit number ranges from -32768 to +32767
- Note that the left-most bit can be interpreted as a sign bit: 1 if negative, 0 if positive or zero

Converting to 2's complement

- Convert the absolute value to binary
- ▶ Invert all the bits (i.e. change $0 \leftrightarrow 1$)
- ► Add 1
- ► (This is equivalent to subtracting the number from 2ⁿ... why?)
- This is also the process for converting back from 2's complement, i.e. doing it twice should give the original number

Why 2's complement?

- Allows all addition and subtraction to be carried out modulo 2ⁿ without caring whether numbers are positive or negative
- ▶ In fact, subtraction can just be done as addition
- ▶ I.e. a b is the same as a + (-b), where a and -b are just n-bit numbers

Exercise Sheet i

Due next Tuesday!

Turing machines

Turing machines

- Introduced in 1936 by Alan Turing
- ► Theoretical model of a "computer"
 - I.e. a machine that carries out computations (calculations)

Turing machine

- ► Has a finite number of states
- ► Has an infinite tape
- Each space on the tape holds a symbol from a finite alphabet
- ► Has a tape head pointing at one space on the tape
- ► Has a transition table which, given:
 - The current state
 - The symbol under the tape head

specifies:

- A new state
- A new symbol to write to the tape, overwriting the current symbol
- Where to move the tape head: one space to the left, or one space to the right

Activity

- ▶ In groups of 2-3
- ► Line up 5-10 chocolates of different colours this is your **tape**
- ▶ Put your **red** lolly under the **leftmost** chocolate
- Repeatedly apply the rules on the next slide
- What computation does this machine perform?

lolly	chocolate	lolly	chocolate	direction
Red	Blank	Orange	Blank	\rightarrow
Red	Milk	Red	Milk	\leftarrow
Red	Dark	Red	Dark	\leftarrow
Orange	Blank	Yellow	Dark	\leftarrow
Orange	Milk	Yellow	Dark	\rightarrow
Orange	Dark	Orange	Milk	\rightarrow
Yellow	Blank	Stop	Blank	\rightarrow
Yellow	Milk	Yellow	Milk	\leftarrow
Yellow	Dark	Yellow	Dark	\leftarrow

New

New

Move

Current

Current

The Church-Turing Thesis

- If a calculation can be carried out by a mechanical process at all, then it can be carried out by a Turing machine
- I.e. a Turing machine is the most "powerful" computer possible, in terms of what is possible or impossible to compute
- ► A machine, language or system is **Turing complete** if it can simulate a Turing machine

Worksheet A review