Contents

- 1. Import Data from Module
- 2. Analyzing Individual Feature Patterns using Visualization
- 3. Descriptive Statistical Analysis
- 4. Basics of Grouping
- 5. Correlation and Causation
- 6. ANOVA

What are the main characteristics that have the most impact on the car price?

1. Import Data from Module 2

Setup

Import libraries:

```
In [1]: #install specific version of libraries used in lab
#! mamba install pandas==1.3.3
#! mamba install numpy=1.21.2
#! mamba install scipy=1.7.1-y
#! mamba install seaborn=0.9.0-y
```

```
In [2]: import pandas as pd
import numpy as np
```

Load the data and store it in dataframe df:

This dataset was hosted on IBM Cloud object. Click HERE for free storage.

```
In [3]: path='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/labs/Da
df = pd.read_csv(path)
df.head()
```

Out[3]:	5	symboling	normalized- losses	make	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length	•••	compression- ratio	horsepower	peak- rpm	city- mpg	hiç
	0	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148		9.0	111.0	5000.0	21	
	1	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148		9.0	111.0	5000.0	21	
	2	1	122	alfa- romero	std	two	hatchback	rwd	front	94.5	0.822681		9.0	154.0	5000.0	19	
	3	2	164	audi	std	four	sedan	fwd	front	99.8	0.848630		10.0	102.0	5500.0	24	
	4	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630		8.0	115.0	5500.0	18	

5 rows × 29 columns

2. Analyzing Individual Feature Patterns Using Visualization

To install Seaborn we use pip, the Python package manager.

Import visualization packages "Matplotlib" and "Seaborn". Don't forget about "%matplotlib inline" to plot in a Jupyter notebook.

```
In [4]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

How to choose the right visualization method?

When visualizing individual variables, it is important to first understand what type of variable you are dealing with. This will help us find the right visualization method for that variable.

In [5]: # list the data types for each column print(df.dtypes) symboling int64 normalized-losses int64 make obiect aspiration object num-of-doors object body-style object object drive-wheels object engine-location wheel-base float64 length float64 width float64 height float64 curb-weight int64 engine-type object num-of-cylinders object engine-size int64 fuel-system object bore float64 stroke float64 compression-ratio float64 horsepower float64 peak-rpm float64 city-mpg int64 highway-mpg int64 price float64 city-L/100km float64 horsepower-binned object diesel int64 int64 gas dtype: object

What is the data type of the column "peak-rpm"?

```
In [6]: # Write your code below and press Shift+Enter to execute
print(df["peak-rpm"].dtypes)
```

float64

For example, we can calculate the correlation between variables of type "int64" or "float64" using the method "corr":

In [7]: df.corr()

Out[7]:

	symboling	normalized- losses	wheel- base	length	width	height	curb- weight	engine- size	bore	stroke	compression- ratio	horsepower
symboling	1.000000	0.466264	-0.535987	-0.365404	-0.242423	-0.550160	-0.233118	-0.110581	-0.140019	-0.008245	-0.182196	0.075819
normalized- losses	0.466264	1.000000	-0.056661	0.019424	0.086802	-0.373737	0.099404	0.112360	-0.029862	0.055563	-0.114713	0.217299
wheel-base	-0.535987	-0.056661	1.000000	0.876024	0.814507	0.590742	0.782097	0.572027	0.493244	0.158502	0.250313	0.371147
length	-0.365404	0.019424	0.876024	1.000000	0.857170	0.492063	0.880665	0.685025	0.608971	0.124139	0.159733	0.579821
width	-0.242423	0.086802	0.814507	0.857170	1.000000	0.306002	0.866201	0.729436	0.544885	0.188829	0.189867	0.615077
height	-0.550160	-0.373737	0.590742	0.492063	0.306002	1.000000	0.307581	0.074694	0.180449	-0.062704	0.259737	-0.087027
curb-weight	-0.233118	0.099404	0.782097	0.880665	0.866201	0.307581	1.000000	0.849072	0.644060	0.167562	0.156433	0.757976
engine-size	-0.110581	0.112360	0.572027	0.685025	0.729436	0.074694	0.849072	1.000000	0.572609	0.209523	0.028889	0.822676
bore	-0.140019	-0.029862	0.493244	0.608971	0.544885	0.180449	0.644060	0.572609	1.000000	-0.055390	0.001263	0.566936
stroke	-0.008245	0.055563	0.158502	0.124139	0.188829	-0.062704	0.167562	0.209523	-0.055390	1.000000	0.187923	0.098462
compression- ratio	-0.182196	-0.114713	0.250313	0.159733	0.189867	0.259737	0.156433	0.028889	0.001263	0.187923	1.000000	-0.214514
horsepower	0.075819	0.217299	0.371147	0.579821	0.615077	-0.087027	0.757976	0.822676	0.566936	0.098462	-0.214514	1.000000
peak-rpm	0.279740	0.239543	-0.360305	-0.285970	-0.245800	-0.309974	-0.279361	-0.256733	-0.267392	-0.065713	-0.435780	0.107885
city-mpg	-0.035527	-0.225016	-0.470606	-0.665192	-0.633531	-0.049800	-0.749543	-0.650546	-0.582027	-0.034696	0.331425	-0.822214
highway- mpg	0.036233	-0.181877	-0.543304	-0.698142	-0.680635	-0.104812	-0.794889	-0.679571	-0.591309	-0.035201	0.268465	-0.804575
price	-0.082391	0.133999	0.584642	0.690628	0.751265	0.135486	0.834415	0.872335	0.543155	0.082310	0.071107	0.809575
city-L/100km	0.066171	0.238567	0.476153	0.657373	0.673363	0.003811	0.785353	0.745059	0.554610	0.037300	-0.299372	0.889488
diesel	-0.196735	-0.101546	0.307237	0.211187	0.244356	0.281578	0.221046	0.070779	0.054458	0.241303	0.985231	-0.169053
gas	0.196735	0.101546	-0.307237	-0.211187	-0.244356	-0.281578	-0.221046	-0.070779	-0.054458	-0.241303	-0.985231	0.169053

The diagonal elements are always one; we will study correlation more precisely Pearson correlation in-depth at the end of the notebook.

Find the correlation between the following columns: bore, stroke, compression-ratio, and horsepower.

1.000000

Hint: if you would like to select those columns, use the following syntax: df[['bore', 'stroke', 'compression-ratio', 'horsepower']]

```
In [8]: # Write your code below and press Shift+Enter to execute
df[['bore','stroke','compression-ratio','horsepower']].corr()
```

-0.214514

Out[8]:		bore	stroke	compression-ratio	horsepower
	bore	1.000000	-0.055390	0.001263	0.566936
	stroke	-0.055390	1.000000	0.187923	0.098462

horsepower 0.566936 0.098462 -0.214514 1.000000

Continuous Numerical Variables:

compression-ratio 0.001263 0.187923

Continuous numerical variables are variables that may contain any value within some range. They can be of type "int64" or "float64". A great way to visualize these variables is by using scatterplots with fitted lines.

In order to start understanding the (linear) relationship between an individual variable and the price, we can use "regplot" which plots the scatterplot plus the fitted regression line for the data.

Let's see several examples of different linear relationships:

Positive Linear Relationship </h4>

Let's find the scatterplot of "engine-size" and "price".

```
In [9]: # Engine size as potential predictor variable of price
sns.regplot(x="engine-size", y="price", data=df)
```

plt.ylim(0,)

Out[9]: (0.0, 56151.71099539631)

As the engine-size goes up, the price goes up: this indicates a positive direct correlation between these two variables. Engine size seems like a pretty good predictor of price since the regression line is almost a perfect diagonal line.

We can examine the correlation between 'engine-size' and 'price' and see that it's approximately 0.87.

```
In [10]: df[["engine-size", "price"]].corr()
```

Out[10]:		engine-size	price
	engine-size	1.000000	0.872335
	price	0.872335	1.000000

Highway mpg is a potential predictor variable of price. Let's find the scatterplot of "highway-mpg" and "price".

```
In [11]: sns.regplot(x="highway-mpg", y="price", data=df)
Out[11]: <AxesSubplot:xlabel='highway-mpg', ylabel='price'>
```


As highway-mpg goes up, the price goes down: this indicates an inverse/negative relationship between these two variables. Highway mpg could potentially be a predictor of price.

We can examine the correlation between 'highway-mpg' and 'price' and see it's approximately -0.704.

In [12]:	<pre>df[['highway-mpg', 'price']].corr()</pre>					
Out[12]:		highway-mpg	price			
	highway-mpg	1.000000	-0.704692			
	price	-0.704692	1.000000			

Weak Linear Relationship

Let's see if "peak-rpm" is a predictor variable of "price".

```
In [13]: sns.regplot(x="peak-rpm", y="price", data=df)
Out[13]: <AxesSubplot:xlabel='peak-rpm', ylabel='price'>
```


Peak rpm does not seem like a good predictor of the price at all since the regression line is close to horizontal. Also, the data points are very scattered and far from the fitted line, showing lots of variability. Therefore, it's not a reliable variable.

We can examine the correlation between 'peak-rpm' and 'price' and see it's approximately -0.101616.

Find the correlation between x="stroke" and y="price".

Hint: if you would like to select those columns, use the following syntax: df[["stroke","price"]].

```
In [15]: # Write your code below
df[["stroke","price"]].corr()
```

```
        Stroke
        price

        stroke
        1.00000
        0.08231

        price
        0.08231
        1.00000
```

Given the correlation results between "price" and "stroke", do you expect a linear relationship?

Verify your results using the function "regplot()".

```
In [16]: # Write your code below and press Shift+Enter to execute
sns.regplot(x="price", y="stroke", data=df)
```

Out[16]: <AxesSubplot:xlabel='price', ylabel='stroke'>

Categorical Variables

These are variables that describe a 'characteristic' of a data unit, and are selected from a small group of categories. The categorical variables can have the type "object" or "int64". A good way to visualize categorical variables is by using boxplots.

Let's look at the relationship between "body-style" and "price".

```
In [17]: sns.boxplot(x="body-style", y="price", data=df)
Out[17]: <AxesSubplot:xlabel='body-style', ylabel='price'>
```


We see that the distributions of price between the different body-style categories have a significant overlap, so body-style would not be a good predictor of price. Let's examine engine "engine-location" and "price":

```
In [18]: sns.boxplot(x="engine-location", y="price", data=df)
Out[18]: <AxesSubplot:xlabel='engine-location', ylabel='price'>
```


Here we see that the distribution of price between these two engine-location categories, front and rear, are distinct enough to take engine-location as a potential good predictor of price.

Let's examine "drive-wheels" and "price".

```
In [19]: # drive-wheels
sns.boxplot(x="drive-wheels", y="price", data=df)
Out[19]: <AxesSubplot:xlabel='drive-wheels', ylabel='price'>
```


Here we see that the distribution of price between the different drive-wheels categories differs. As such, drive-wheels could potentially be a predictor of price.

3. Descriptive Statistical Analysis

Let's first take a look at the variables by utilizing a description method.

The **describe** function automatically computes basic statistics for all continuous variables. Any NaN values are automatically skipped in these statistics.

This will show:

- the count of that variable
- the mean
- the standard deviation (std)
- the minimum value
- the IQR (Interquartile Range: 25%, 50% and 75%)
- the maximum value

We can apply the method "describe" as follows:

In [20]:	df.des	scribe()											
Out[20]:		symboling	normalized- losses	wheel- base	length	width	height	curb- weight	engine- size	bore	stroke	compression- ratio	horsep
	count	201.000000	201.00000	201.000000	201.000000	201.000000	201.000000	201.000000	201.000000	201.000000	197.000000	201.000000	201.00
	mean	0.840796	122.00000	98.797015	0.837102	0.915126	53.766667	2555.666667	126.875622	3.330692	3.256904	10.164279	103.40
	std	1.254802	31.99625	6.066366	0.059213	0.029187	2.447822	517.296727	41.546834	0.268072	0.319256	4.004965	37.36
	min	-2.000000	65.00000	86.600000	0.678039	0.837500	47.800000	1488.000000	61.000000	2.540000	2.070000	7.000000	48.00
	25%	0.000000	101.00000	94.500000	0.801538	0.890278	52.000000	2169.000000	98.000000	3.150000	3.110000	8.600000	70.00
	50%	1.000000	122.00000	97.000000	0.832292	0.909722	54.100000	2414.000000	120.000000	3.310000	3.290000	9.000000	95.00
	75%	2.000000	137.00000	102.400000	0.881788	0.925000	55.500000	2926.000000	141.000000	3.580000	3.410000	9.400000	116.00
	max	3.000000	256.00000	120.900000	1.000000	1.000000	59.800000	4066.000000	326.000000	3.940000	4.170000	23.000000	262.00
4													•

The default setting of "describe" skips variables of type object. We can apply the method "describe" on the variables of type 'object' as follows:

In [21]:	df.des	df.describe(include=['object'])												
Out[21]:		make	aspiration	num-of- doors	body- style	drive- wheels	engine-location	engine-type	num-of-cylinders	fuel-system	horsepower-binned			
	count	201	201	201	201	201	201	201	201	201	200			
	unique	22	2	2	5	3	2	6	7	8	3			
	top	toyota	std	four	sedan	fwd	front	ohc	four	mpfi	Low			
	freq	32	165	115	94	118	198	145	157	92	115			

Value Counts

Value counts is a good way of understanding how many units of each characteristic/variable we have. We can apply the "value_counts" method on the column "drive-wheels". Don't forget the method "value_counts" only works on pandas series, not pandas dataframes. As a result, we only

```
df['drive-wheels'].value_counts()
In [22]:
                 118
          fwd
Out[22]:
                  75
          rwd
          4wd
          Name: drive-wheels, dtype: int64
          We can convert the series to a dataframe as follows:
          df['drive-wheels'].value counts().to frame()
In [23]:
Out[23]:
               drive-wheels
          fwd
                       118
                        75
          rwd
                         8
          4wd
          Let's repeat the above steps but save the results to the dataframe "drive_wheels_counts" and rename the column 'drive-wheels' to 'value_counts'.
          drive wheels counts = df['drive-wheels'].value counts().to frame()
In [24]:
          drive wheels counts.rename(columns={'drive-wheels': 'value counts'}, inplace=True)
          drive wheels counts
Out[24]:
               value_counts
                       118
          fwd
                        75
          rwd
                         8
          4wd
          Now let's rename the index to 'drive-wheels':
          drive_wheels_counts.index.name = 'drive-wheels'
In [25]:
          drive_wheels_counts
```

include one bracket df['drive-wheels'], not two brackets df[['drive-wheels']].

```
        Out[25]:
        value_counts

        drive-wheels
        fwd
        118

        rwd
        75

        4wd
        8
```

We can repeat the above process for the variable 'engine-location'.

After examining the value counts of the engine location, we see that engine location would not be a good predictor variable for the price. This is because we only have three cars with a rear engine and 198 with an engine in the front, so this result is skewed. Thus, we are not able to draw any conclusions about the engine location.

4. Basics of Grouping

The "groupby" method groups data by different categories. The data is grouped based on one or several variables, and analysis is performed on the individual groups.

For example, let's group by the variable "drive-wheels". We see that there are 3 different categories of drive wheels.

```
In [27]: df['drive-wheels'].unique()
```

```
Out[27]: array(['rwd', 'fwd', '4wd'], dtype=object)
```

If we want to know, on average, which type of drive wheel is most valuable, we can group "drive-wheels" and then average them.

We can select the columns 'drive-wheels', 'body-style' and 'price', then assign it to the variable "df_group_one".

```
In [28]: df_group_one = df[['drive-wheels','body-style','price']]
```

We can then calculate the average price for each of the different categories of data.

```
In [29]: # grouping results
    df_group_one = df_group_one.groupby(['drive-wheels'],as_index=False).mean()
    df_group_one
```

Out[29]:		drive-wheels	price
	0	4wd	10241.000000
	1	fwd	9244.779661
	2	rwd	19757.613333

From our data, it seems rear-wheel drive vehicles are, on average, the most expensive, while 4-wheel and front-wheel are approximately the same in price.

You can also group by multiple variables. For example, let's group by both 'drive-wheels' and 'body-style'. This groups the dataframe by the unique combination of 'drive-wheels' and 'body-style'. We can store the results in the variable 'grouped_test1'.

```
# grouping results
df_gptest = df[['drive-wheels','body-style','price']]
grouped_test1 = df_gptest.groupby(['drive-wheels','body-style'],as_index=False).mean()
grouped_test1
```

Out[30]:		drive-wheels	body-style	price
	0	4wd	hatchback	7603.000000
	1	4wd	sedan	12647.333333
	2	4wd	wagon	9095.750000
	3	fwd	convertible	11595.000000
	4	fwd	hardtop	8249.000000
	5	fwd	hatchback	8396.387755
	6	fwd	sedan	9811.800000
	7	fwd	wagon	9997.333333
	8	rwd	convertible	23949.600000
	9	rwd	hardtop	24202.714286
	10	rwd	hatchback	14337.777778
	11	rwd	sedan	21711.833333
	12	rwd	wagon	16994.222222

This grouped data is much easier to visualize when it is made into a pivot table. A pivot table is like an Excel spreadsheet, with one variable along the column and another along the row. We can convert the dataframe to a pivot table using the method "pivot" to create a pivot table from the groups.

In this case, we will leave the drive-wheels variable as the rows of the table, and pivot body-style to become the columns of the table:

```
In [31]: grouped_pivot = grouped_test1.pivot(index='drive-wheels',columns='body-style')
    grouped_pivot
```

Out[31]: price body-style convertible hardtop hatchback sedan wagon drive-wheels

4wd	NaN	NaN	7603.000000	12647.333333	9095.750000
fwd	11595.0	8249.000000	8396.387755	9811.800000	9997.333333
rwd	23949.6	24202.714286	14337.777778	21711.833333	16994.222222

Often, we won't have data for some of the pivot cells. We can fill these missing cells with the value 0, but any other value could potentially be used as well. It should be mentioned that missing data is quite a complex subject and is an entire course on its own.

```
In [32]: grouped_pivot = grouped_pivot.fillna(0) #fill missing values with 0
grouped_pivot
```

Out[32]: price

body-style	convertible	hardtop	hatchback	sedan	wagon
drive-wheels					
4wd	0.0	0.000000	7603.000000	12647.333333	9095.750000
fwd	11595.0	8249.000000	8396.387755	9811.800000	9997.333333
rwd	23949.6	24202.714286	14337.777778	21711.833333	16994.222222

Use the "groupby" function to find the average "price" of each car based on "body-style".

</div>

```
In [33]: # Write your code below and press Shift+Enter to execute
    df_gptest2 = df[['body-style','price']]
    grouped_test_bodystyle = df_gptest2.groupby(['body-style'],as_index= False).mean()
    grouped_test_bodystyle
```

Out[33]:		body-style	price
	0	convertible	21890.500000
	1	hardtop	22208.500000
	2	hatchback	9957.441176
	3	sedan	14459.755319
	4	wagon	12371.960000

If you did not import "pyplot", let's do it again.

```
In [34]: import matplotlib.pyplot as plt
%matplotlib inline
```

Variables: Drive Wheels and Body Style vs. Price

Let's use a heat map to visualize the relationship between Body Style vs Price.

```
In [35]: #use the grouped results
plt.pcolor(grouped_pivot, cmap='RdBu')
plt.colorbar()
plt.show()
```


The heatmap plots the target variable (price) proportional to colour with respect to the variables 'drive-wheel' and 'body-style' on the vertical and horizontal axis, respectively. This allows us to visualize how the price is related to 'drive-wheel' and 'body-style'.

The default labels convey no useful information to us. Let's change that:

```
In [36]: fig, ax = plt.subplots()
   im = ax.pcolor(grouped_pivot, cmap='RdBu')

#Label names
   row_labels = grouped_pivot.columns.levels[1]
   col_labels = grouped_pivot.index

#move ticks and labels to the center
   ax.set_xticks(np.arange(grouped_pivot.shape[1]) + 0.5, minor=False)
   ax.set_yticks(np.arange(grouped_pivot.shape[0]) + 0.5, minor=False)

#insert labels
   ax.set_xticklabels(row_labels, minor=False)
   ax.set_yticklabels(col_labels, minor=False)

#rotate label if too long
   plt.xticks(rotation=90)

fig.colorbar(im)
   plt.show()
```


Visualization is very important in data science, and Python visualization packages provide great freedom. We will go more in-depth in a separate Python visualizations course.

The main question we want to answer in this module is, "What are the main characteristics which have the most impact on the car price?".

To get a better measure of the important characteristics, we look at the correlation of these variables with the car price. In other words: how is the car price dependent on this variable?

5. Correlation and Causation

Correlation: a measure of the extent of interdependence between variables.

Causation: the relationship between cause and effect between two variables.

It is important to know the difference between these two. Correlation does not imply causation. Determining correlation is much simpler the determining causation as causation may require independent experimentation.

Pearson Correlation

The Pearson Correlation measures the linear dependence between two variables X and Y.

The resulting coefficient is a value between -1 and 1 inclusive, where:

- 1: Perfect positive linear correlation.
- **0**: No linear correlation, the two variables most likely do not affect each other.
- -1: Perfect negative linear correlation.

Pearson Correlation is the default method of the function "corr". Like before, we can calculate the Pearson Correlation of the of the 'int64' or 'float64' variables.

In [37]: df.corr()

_		-			-	
\cap	114		\supset	7	- 1	0
\cup	иι		_	/	- 1	۰

:		symboling	normalized- losses	wheel- base	length	width	height	curb- weight	engine- size	bore	stroke	compression- ratio	horsepow
	symboling	1.000000	0.466264	-0.535987	-0.365404	-0.242423	-0.550160	-0.233118	-0.110581	-0.140019	-0.008245	-0.182196	0.07581
	normalized- losses	0.466264	1.000000	-0.056661	0.019424	0.086802	-0.373737	0.099404	0.112360	-0.029862	0.055563	-0.114713	0.21729
	wheel-base	-0.535987	-0.056661	1.000000	0.876024	0.814507	0.590742	0.782097	0.572027	0.493244	0.158502	0.250313	0.37114
	length	-0.365404	0.019424	0.876024	1.000000	0.857170	0.492063	0.880665	0.685025	0.608971	0.124139	0.159733	0.57982
	width	-0.242423	0.086802	0.814507	0.857170	1.000000	0.306002	0.866201	0.729436	0.544885	0.188829	0.189867	0.61507
	height	-0.550160	-0.373737	0.590742	0.492063	0.306002	1.000000	0.307581	0.074694	0.180449	-0.062704	0.259737	-0.08702
	curb-weight	-0.233118	0.099404	0.782097	0.880665	0.866201	0.307581	1.000000	0.849072	0.644060	0.167562	0.156433	0.75797
	engine-size	-0.110581	0.112360	0.572027	0.685025	0.729436	0.074694	0.849072	1.000000	0.572609	0.209523	0.028889	0.82267
	bore	-0.140019	-0.029862	0.493244	0.608971	0.544885	0.180449	0.644060	0.572609	1.000000	-0.055390	0.001263	0.56693
	stroke	-0.008245	0.055563	0.158502	0.124139	0.188829	-0.062704	0.167562	0.209523	-0.055390	1.000000	0.187923	0.09846
	compression- ratio	-0.182196	-0.114713	0.250313	0.159733	0.189867	0.259737	0.156433	0.028889	0.001263	0.187923	1.000000	-0.21451
	horsepower	0.075819	0.217299	0.371147	0.579821	0.615077	-0.087027	0.757976	0.822676	0.566936	0.098462	-0.214514	1.00000
	peak-rpm	0.279740	0.239543	-0.360305	-0.285970	-0.245800	-0.309974	-0.279361	-0.256733	-0.267392	-0.065713	-0.435780	0.10788
	city-mpg	-0.035527	-0.225016	-0.470606	-0.665192	-0.633531	-0.049800	-0.749543	-0.650546	-0.582027	-0.034696	0.331425	-0.82221
	highway- mpg	0.036233	-0.181877	-0.543304	-0.698142	-0.680635	-0.104812	-0.794889	-0.679571	-0.591309	-0.035201	0.268465	-0.80457
	price	-0.082391	0.133999	0.584642	0.690628	0.751265	0.135486	0.834415	0.872335	0.543155	0.082310	0.071107	0.80957
	city-L/100km	0.066171	0.238567	0.476153	0.657373	0.673363	0.003811	0.785353	0.745059	0.554610	0.037300	-0.299372	0.88948
	diesel	-0.196735	-0.101546	0.307237	0.211187	0.244356	0.281578	0.221046	0.070779	0.054458	0.241303	0.985231	-0.16905
	gas	0.196735	0.101546	-0.307237	-0.211187	-0.244356	-0.281578	-0.221046	-0.070779	-0.054458	-0.241303	-0.985231	0.16905

P-value

What is this P-value? The P-value is the probability value that the correlation between these two variables is statistically significant. Normally, we choose a significance level of 0.05, which means that we are 95% confident that the correlation between the variables is significant.

By convention, when the

- p-value is < 0.001: we say there is strong evidence that the correlation is significant.
- the p-value is < 0.05: there is moderate evidence that the correlation is significant.
- the p-value is < 0.1: there is weak evidence that the correlation is significant.
- the p-value is > 0.1: there is no evidence that the correlation is significant.

We can obtain this information using "stats" module in the "scipy" library.

```
In [38]: from scipy import stats
```

Wheel-Base vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'wheel-base' and 'price'.

```
In [39]: pearson_coef, p_value = stats.pearsonr(df['wheel-base'], df['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_value)
```

The Pearson Correlation Coefficient is 0.584641822265508 with a P-value of P = 8.076488270733218e-20

Conclusion:

Since the p-value is < 0.001, the correlation between wheel-base and price is statistically significant, although the linear relationship isn't extremely strong (~ 0.585).

Horsepower vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'horsepower' and 'price'.

```
In [40]: pearson_coef, p_value = stats.pearsonr(df['horsepower'], df['price'])
```

```
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value)
```

The Pearson Correlation Coefficient is 0.809574567003656 with a P-value of P = 6.369057428259557e-48

Conclusion:

Since the p-value is < 0.001, the correlation between horsepower and price is statistically significant, and the linear relationship is quite strong (~ 0.809 , close to 1).

Length vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'length' and 'price'.

```
In [41]: pearson_coef, p_value = stats.pearsonr(df['length'], df['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value)
```

The Pearson Correlation Coefficient is 0.690628380448364 with a P-value of P = 8.016477466158986e-30

Conclusion:

Since the p-value is < 0.001, the correlation between length and price is statistically significant, and the linear relationship is moderately strong (~ 0.691).

Width vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'width' and 'price':

```
In [42]: pearson_coef, p_value = stats.pearsonr(df['width'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_value )
```

The Pearson Correlation Coefficient is 0.7512653440522674 with a P-value of P = 9.200335510481516e-38

Conclusion:

Since the p-value is < 0.001, the correlation between width and price is statistically significant, and the linear relationship is quite strong (~ 0.751).

Curb-Weight vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'curb-weight' and 'price':

```
In [43]: pearson_coef, p_value = stats.pearsonr(df['curb-weight'], df['price'])
    print( "The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value)
```

The Pearson Correlation Coefficient is 0.8344145257702845 with a P-value of P = 2.189577238893816e-53

Conclusion:

Since the p-value is < 0.001, the correlation between curb-weight and price is statistically significant, and the linear relationship is quite strong (~ 0.834).

Engine-Size vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'engine-size' and 'price':

```
In [44]: pearson_coef, p_value = stats.pearsonr(df['engine-size'], df['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_value)
```

The Pearson Correlation Coefficient is 0.8723351674455186 with a P-value of P = 9.265491622197335e-64

Conclusion:

Since the p-value is < 0.001, the correlation between engine-size and price is statistically significant, and the linear relationship is very strong (~ 0.872).

Bore vs. Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'bore' and 'price':

```
In [45]: pearson_coef, p_value = stats.pearsonr(df['bore'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value )
```

The Pearson Correlation Coefficient is 0.5431553832626602 with a P-value of P = 8.049189483935489e-17

Conclusion:

Since the p-value is < 0.001, the correlation between bore and price is statistically significant, but the linear relationship is only moderate (~ 0.521).

We can relate the process for each 'city-mpg' and 'highway-mpg':

City-mpg vs. Price

```
In [46]: pearson_coef, p_value = stats.pearsonr(df['city-mpg'], df['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value)
```

The Pearson Correlation Coefficient is -0.6865710067844677 with a P-value of P = 2.321132065567674e-29

Conclusion:

Since the p-value is < 0.001, the correlation between city-mpg and price is statistically significant, and the coefficient of about -0.687 shows that the relationship is negative and moderately strong.

Highway-mpg vs. Price

```
In [47]: pearson_coef, p_value = stats.pearsonr(df['highway-mpg'], df['price'])
    print( "The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value )
```

The Pearson Correlation Coefficient is -0.704692265058953 with a P-value of P = 1.7495471144476358e-31

Conclusion:

Since the p-value is < 0.001, the correlation between highway-mpg and price is statistically significant, and the coefficient of about -0.705 shows that the relationship is negative and moderately strong.

6. ANOVA

ANOVA: Analysis of Variance

The Analysis of Variance (ANOVA) is a statistical method used to test whether there are significant differences between the means of two or more groups. ANOVA returns two parameters:

F-test score: ANOVA assumes the means of all groups are the same, calculates how much the actual means deviate from the assumption, and reports it as the F-test score. A larger score means there is a larger difference between the means.

P-value: P-value tells how statistically significant our calculated score value is.

If our price variable is strongly correlated with the variable we are analyzing, we expect ANOVA to return a sizeable F-test score and a small p-value.

Drive Wheels

Since ANOVA analyzes the difference between different groups of the same variable, the groupby function will come in handy. Because the ANOVA algorithm averages the data automatically, we do not need to take the average before hand.

To see if different types of 'drive-wheels' impact 'price', we group the data.

```
In [48]: grouped_test2=df_gptest[['drive-wheels', 'price']].groupby(['drive-wheels'])
grouped_test2.head(2)
```

Out[48]:		drive-wheels	price
	0	rwd	13495.0
	1	rwd	16500.0
	3	fwd	13950.0
	4	4wd	17450.0
	5	fwd	15250.0

7603.0

136

```
In [49]: df_gptest
```

Out[49]:		drive-wheels	body-style	price
	0	rwd	convertible	13495.0
	1	rwd	convertible	16500.0
	2	rwd	hatchback	16500.0
	3	fwd	sedan	13950.0
	4	4wd	sedan	17450.0
	•••			
	196	rwd	sedan	16845.0
	197	rwd	sedan	19045.0
	198	rwd	sedan	21485.0
	199	rwd	sedan	22470.0
	200	rwd	sedan	22625.0

201 rows × 3 columns

We can obtain the values of the method group using the method "get_group".

```
grouped_test2.get_group('4wd')['price']
                17450.0
Out[50]:
                 7603.0
         136
         140
                 9233.0
         141
                11259.0
         144
                 8013.0
         145
                11694.0
         150
                 7898.0
         151
                 8778.0
         Name: price, dtype: float64
```

We can use the function 'f_oneway' in the module 'stats' to obtain the **F-test score** and **P-value**.

```
In [51]: # ANOVA
f_val, p_val = stats.f_oneway(grouped_test2.get_group('fwd')['price'], grouped_test2.get_group('rwd')['price'], grouped_test2.get_group('rwd')['price'], grouped_test2.get_group('rwd')['price']
```

```
print( "ANOVA results: F=", f_val, ", P =", p_val)
```

ANOVA results: F = 67.95406500780399, P = 3.3945443577151245e-23

This is a great result with a large F-test score showing a strong correlation and a P-value of almost 0 implying almost certain statistical significance. But does this mean all three tested groups are all this highly correlated?

Let's examine them separately.

fwd and rwd

```
In [52]: f_val, p_val = stats.f_oneway(grouped_test2.get_group('fwd')['price'], grouped_test2.get_group('rwd')['price'])
    print( "ANOVA results: F=", f_val, ", P =", p_val )
    ANOVA results: F= 130.5533160959111 , P = 2.2355306355677845e-23
```

Let's examine the other groups.

4wd and rwd

```
In [53]: f_val, p_val = stats.f_oneway(grouped_test2.get_group('4wd')['price'], grouped_test2.get_group('rwd')['price'])
print( "ANOVA results: F=", f_val, ", P =", p_val)
ANOVA results: F= 8.580681368924756 , P = 0.004411492211225333
```

4wd and fwd

```
In [54]: f_val, p_val = stats.f_oneway(grouped_test2.get_group('4wd')['price'], grouped_test2.get_group('fwd')['price'])
print("ANOVA results: F=", f_val, ", P =", p_val)
```

ANOVA results: F= 0.665465750252303 , P = 0.41620116697845666

Conclusion: Important Variables

We now have a better idea of what our data looks like and which variables are important to take into account when predicting the car price. We have narrowed it down to the following variables:

Continuous numerical variables:

- Length
- Width
- Curb-weight
- Engine-size
- Horsepower
- City-mpg
- Highway-mpg
- Wheel-base
- Bore

Categorical variables:

• Drive-wheels

As we now move into building machine learning models to automate our analysis, feeding the model with variables that meaningfully affect our target variable will improve our model's prediction performance.