Cynthia Rudin

Machine Learning Course, Duke

```
Example 1: [ 5 3 120 12 1 0 ..... ]

Example 2: [ 0 0 89 5 1 1 ..... ]

Example 3: [ 1 0 20 0 0 1 ..... ]

:
```

Features, called x

```
Example 1: [ 5 3 120 12 1 0 ..... ] -1 Example 2: [ 0 0 89 5 1 1 ..... ] 1 Example 3: [ 1 0 20 0 0 1 ..... ] -1 : : : Labels, y
```


Predicted Labels, ŷ

1

Confusion Matrix

	y=+1	y=-1
ŷ=1	723	15
ŷ=-1	72	409

Confusion Matrix

	y=+1	y=-1
ŷ=1	723	15
ŷ=-1	72	409

	y=+1	y=-1
ŷ=1	TP	FP (Type I)
ŷ=-1	FN (Type II)	TN

Misclassification error

$$\frac{\text{FP+FN}}{n}$$

Misclassification error

$$\frac{\text{FP+FN}}{n} = \frac{1}{n} \sum_{i=1}^{n} 1_{[y_i \neq \hat{y}_i]}$$

	y=+1	y=-1
ŷ=1	ТР	FP
ŷ=-1	FN	TN

True Positive Rate (TPR), Sensitivity, Recall

$$\frac{\text{TP}}{\text{\#Pos}} = \frac{\sum_{i}^{n} 1_{[y_i = \hat{y}_i \text{ and } y_i = 1]}}{\sum_{i}^{n} 1_{[y_i = 1]}}$$

	y=+1	L	y=-1	
ŷ=1	TP		FP	
ŷ=-1	FN		TN	

• True Negative Rate (TNR), Specificity

$$\frac{\text{TN}}{\text{#Neg}} = \frac{\sum_{i}^{n} 1_{[y_i = \hat{y}_i \text{ and } y_i = -1]}}{\sum_{i}^{n} 1_{[y_i = -1]}}$$

	y=+1	y=-1
ŷ=1	TP	FP
ŷ=-1	FN	TN

False Positive Rate (FPR)

$$\frac{\text{FP}}{\text{#Neg}} = \frac{\sum_{i}^{n} 1_{[y_i \neq \hat{y}_i \text{ and } y_i = -1]}}{\sum_{i}^{n} 1_{[y_i = -1]}}$$

	y=+1	y=-1
ŷ=1	TP	FP
ŷ=-1	FN	TN

Precision

$$\frac{\text{TP}}{\text{\# predicted positive}} = \frac{\sum_{i=1}^{n} 1_{[y_i = \hat{y}_i \text{ and } y_i = 1]}}{\sum_{i=1}^{n} 1_{[\hat{y}_i = 1]}}$$

	y=+1	y=-1
ŷ=1 (TP	FP
ŷ=-1	FN	TN

• F1-score

$$F1 = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Precision

	y=+1	y=-1
ŷ=1	TP	FP
ŷ=-1	FN	TN

Recall

	y=+1	y=-1
ŷ=1	TP	FP
ŷ=-1	FN	TN

ROC Curves, Part I

Cynthia Rudin

Machine Learning Course, Duke

- Started during WWII for analyzing radar signals.
- For a particular False Positive Rate (FPR), what is the True Positive Rate (TPR)?
- FPR = number of negatives that were classified by the ML algorithm as positives / total number of negatives
- TPR = number of positives that were classified by the ML algorithm as positives / total number of positives

- TPR = 7/11
- FPR = 3/12

- TPR = 3/11
- FPR = 2/12

- TPR = 10/11
- FPR = 7/12

- TPR = 1/11
- FPR = 0/12

Evaluation

Many ways to evaluate a model:

- Confusion matrix (TP, TN, FP, FN)
- Accuracy / misclassification error
- Precision, Recall, F1-score
- ROC curves, AUC/AUROC