Disciplined Convex Optimization with CVXR

Anqi Fu Bala Narasimhan Stephen Boyd

EE & Statistics Departments

Stanford University

useR! Conference 2018

Convex Optimization

CVXR

Examples

Outline

Convex Optimization

CVXR

Examples

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., M$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

- ▶ Objective and inequality constraints $f_0, ..., f_M$ are convex
- Equality constraints are linear

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., M$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

- ▶ Objective and inequality constraints $f_0, ..., f_M$ are convex
- Equality constraints are linear

Why?

- We can solve convex optimization problems
- ► There are many applications in many fields, including machine learning and statistics

Convex Problems in Statistics

- ► Least squares, nonnegative least squares
- ► Ridge and lasso regression
- ► Isotonic regression
- ► Huber (robust) regression
- ► Logistic regression
- Support vector machine
- Sparse inverse covariance
- Maximum entropy and related problems
- ...and new methods being invented every year!

Domain Specific Languages for Convex Optimization

- Special languages/packages for general convex optimization
- ► CVX, CVXPY, YALMIP, Convex.jl
- Slower than custom code, but extremely flexible and enables fast prototyping

Domain Specific Languages for Convex Optimization

- Special languages/packages for general convex optimization
- CVX, CVXPY, YALMIP, Convex.jl
- Slower than custom code, but extremely flexible and enables fast prototyping

```
from cvxpy import *
beta = Variable(n)
cost = norm(X * beta - y)
prob = Problem(Minimize(cost))
prob.solve()
beta.value
```

Outline

Convex Optimization

CVXR

Examples

CVXR

A modeling language in R for convex optimization

- Connects to many open source solvers
- Uses disciplined convex programming to verify convexity
- ▶ Mixes easily with general R code and other libraries

CVXR

Outline

Convex Optimization

CVXR

Examples

Future Work

Examples

9

Ordinary Least Squares (OLS)

- ▶ minimize $||X\beta y||_2^2$
- ▶ $\beta \in \mathbf{R}^n$ is variable, $X \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^m$ are constants

Ordinary Least Squares (OLS)

- ▶ minimize $||X\beta y||_2^2$
- ▶ $\beta \in \mathbb{R}^n$ is variable, $X \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$ are constants

```
library(CVXR)
beta <- Variable(n)
obj <- sum_squares(y - X %*% beta)
prob <- Problem(Minimize(obj))
result <- solve(prob)
solution$value
solution$getValue(beta)</pre>
```

- ▶ X and y are constants; beta, obj, and prob are S4 objects
- solve method returns a list that includes optimal beta and objective value

Non-Negative Least Squares (NNLS)

▶ minimize $||X\beta - y||_2^2$ subject to $\beta \ge 0$

Non-Negative Least Squares (NNLS)

▶ minimize $||X\beta - y||_2^2$ subject to $\beta \ge 0$

```
constr <- list(beta >= 0)
prob2 <- Problem(Minimize(obj), constr)
result2 <- solve(prob2)
result2$value
result2$getValue(beta)</pre>
```

- Construct new problem with list constr of constraints formed from constants and variables
- Variables, parameters, expressions, and constraints exist outside of any problem

True vs. Estimated Coefficients

True vs. Estimated Coefficients

Fastest Mixing Markov Chain

- lacktriangle Connected graph with vertices $\mathcal{V} = \{1, \dots, n\}$ and edges \mathcal{E}
- ► Each vertex has a self-loop, all edges bidirected
- ► Find Markov chain with fastest mixing rate

Fastest Mixing Markov Chain

- lacktriangle Connected graph with vertices $\mathcal{V} = \{1, \dots, n\}$ and edges \mathcal{E}
- Each vertex has a self-loop, all edges bidirected
- ► Find Markov chain with fastest mixing rate
- ▶ Mixing rate is **monotone** in second largest eigenvalue modulus (SLEM) of transition matrix $P \in \mathbb{R}^{n \times n}$
- ▶ Choose P to minimize SLEM $\mu(P)$, satisfy connectivity

minimize
$$\mu(P) = \lambda_{\max}(P - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top})$$

subject to $P \ge 0$, $P\mathbf{1} = \mathbf{1}$, $P = P^{\top}$
 $P_{ij} = 0$, $(i,j) \notin \mathcal{E}$

Fastest Mixing Markov Chain

```
P <- Variable(n,n)
obj <- Minimize(lambda_max(P - 1/n))
constr <- list(P >= 0, P %*% ones == ones, P == t(P),
+ P[idxs] == 0)
prob <- Problem(obj, constr)
result <- solve(prob)
result$\frac{1}{2}$getValue(P)</pre>
```

- ► lambda_max is the maximum eigenvalue function (can also use spectral norm)
- \triangleright idxs is matrix containing all unconnected vertices (i,j)

Triangle + 1 Edge

Bipartite 2 + 3

17

Outline

Convex Optimization

CVXR

Examples

Future Work

Future Work

- ▶ Flesh out convex functions in library
- Develop more applications and examples
- Add warm start support
- Further speed improvements

Official site: cvxr.rbind.io

CRAN page: CRAN.R-project.org/package=CVXR