

Universidade do Minho

Departamento de Produção e Sistemas Engenharia de Sistemas

O Armazém de Paletes

2017 / 2018

Versão 1.3 / 20180511

1 Contextualização do problema

Considere um armazém dedicado à guarda de paletes. Uma palete é caracterizada por um conjunto de características: largura X, profundidade Y, altura Z e utilização anual W. A Figura 1 ilustra a forma típica de uma palete a considerar neste projeto.

Figura 1: Dimensões de uma palete.

A palete (o seu conteúdo) é colocada numa posição de um nível (ou alvéolo) de uma RACK que tem uma dada largura L, profundidade Y (simples - idêntica à das paletes), e uma altura A (configurável na Fase II e na Fase III).

Restrições:

3X<=L (no caso de palete industrial)

4X<=L (no caso de europalete)

 $Z \le A$

Ao longo deste projeto, considere que o armazém tem diferentes configurações, resultando em diferentes problemas de otimização, mas sempre com capacidade suficiente para armazenar a totalidade de paletes existentes em cada situação. Iremos estudar diferentes dimensões para o número de paletes: 6, 60, 500 e 3000 paletes.

A Unidade de Medida (UM) a considerar no projeto é o "metro linear" que se mede em função da medida X das paletes que é necessário armazenar, e da medida A (altura) dos níveis das RACKS.

O projeto é caracterizado por diferentes fases de complexidade crescente, que os grupos dever resolver e analisar os resultados alcançados.

Alinhamento_1	RACK_1	RACK_2	RACK_3	RACK_4	RACK_5	RACK_6	RACK_7	RACK_8	RACK_9	RACK_10	RACK_11	RACK_12	RACK_13	RACK_14	RACK_15	85
25																
18																
15																
12																
9																
6																
4																
2																
1																
PORTA	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61

Figura 2: Dimensões de um alinhamento com 15 RACKs com 9 níveis cada.

Figura 3: Dimensões de uma RACKs com 9 níveis / alvéolos.

Figura 4: Dimensões de um nível / alvéolo.

Figura 5: Detalhe das três posições num nível / alvéolo.

Alinhamento_1	RACK_1	RACK_2	RACK_3	RACK_4	RACK_5	RACK_6	RACK_7	RACK_8	RACK_9	RACK_10	RACK_11	RACK_12	RACK_13	RACK_14	RACK_15
PORTA	1					CORREDO	R 1								
Alinhamento_2	RACK_30	RACK_29	RACK_28	RACK_27	RACK_26	RACK_25	RACK_24	RACK_23	RACK_22	RACK_21	RACK_20	RACK_19	RACK_18	RACK_17	RACK_16
Alinhamento_3	RACK_31	RACK_32	RACK_33	RACK_34	RACK_35	RACK_36	RACK_37	RACK_38	RACK_39	RACK_40	RACK_41	RACK_42	RACK_43	RACK_44	RACK_45
	4					CORREDO	R 2								
Alinhamento_4	RACK_60	RACK_59	RACK_58	RACK_57	RACK_56	RACK_55	RACK_54	RACK_53	RACK_52	RACK_51	RACK_50	RACK_49	RACK_48	RACK_47	RACK_46
Alinhamento_5	RACK_61	RACK_62	RACK_63	RACK_64	RACK_65	RACK_66	RACK_67	RACK_68	RACK_69	RACK_70	RACK_71	RACK_72	RACK_73	RACK_74	RACK_75
	8					CORREDO	R 3								
Alinhamento_6	RACK_90	RACK_89	RACK_88	RACK_87	RACK_86	RACK_85	RACK_84	RACK_83	RACK_82	RACK_81	RACK_80	RACK_79	RACK_78	RACK_77	RACK_76

Figura 6: Vista superior de um conjunto de 3 corredores com 6 alinhamentos de RACKs.

1.1 Imagens de um Armazém real

As imagens apresentadas nesta secção foram obtidas do site:

https://www.mecalux.pt/

Para informação adicional, consultar os links:

https://www.mecalux.pt/estantes-paletizacao/estantes-paletizacao-convencional

https://www.camcode.com/asset-tags/what-is-warehouse-racking/

http://www.aalhysterforklifts.com.au/index.php/about/blog/C43/P10

http://www.erfed.org/bulletins

Norma: En-15620

https://pt.scribd.com/doc/73639994/En-15620-Steel-Static-Storage-Systems-Adjustable-Pallet-Racking-Tolerances-Deformations-and-Clearances

https://www.multiprofiel.nl/wp-content/upload//KIMER_USE-AND-MAINTENANCE-GUIDE-PALLET-RACKING.pdf

https://www.akequipment.com/warehouse-design-what-way-to-layout-pallet-rack/

https://www.youtube.com/watch?v=s8VvfZiUawM

https://www.youtube.com/watch?v=sU-t4mbq 2o&t=11s

https://www.youtube.com/watch?v=bzZzhOKEMOs

No armazém A é combinado o sistema compacto semiautomático Pallet Shuttle com estantes convencionais

O armazém B composto por 20 alinhamentos de estantes de paletização convencional de 130 m de comprimento

Armazém B composto por estantes de paletização convencional com a capacidade total de 19.503 paletes

1.2 Dimensões da base da palete - estrado de madeira

Em termos de estrado / base de madeira para constituição de uma palete com os produtos do cliente há várias medidas disponíveis. Neste projeto iremos considerar dois tipos de palete que diferem essencialmente na medida X (largura da palete): palete industrial (ou americana) e palete europeia (ou europalete).

As medidas a considerar neste projeto são as seguintes:

Palete Industrial (ou americana)

Dimensões exteriores largura: 1000 mm

Dimensões exteriores largura: 1200 mm

Dimensões exteriores altura: 144 mm

Capacidade de carga dinâmica: 1000 kg

Palete Europeia (ou Europalete)

Dimensões exteriores largura: 800 mm

Dimensões exteriores largura: 1200 mm

Dimensões exteriores altura: 144 mm

Capacidade de carga dinâmica: 1500 kg

As imagens e a informação foram recolhidas do site: http://www.rotom.pt/

Para informações adicionais sobre alternativas para acondicionamento de produtos e cargas,

consultar: http://www.rotom.pt/produtos/ ou

https://www.logismarket.pt/paletes/1584341-cf.html

1.3 Dados numéricos do problema real

Na Tabela seguinte consta informação sobre a quantidade de paletes que é necessário "arrumar" no armazém, pelo que deverão ser criados as posições e as devidas alturas dos níveis necessários e correspondentes RACK.

Tipo	Altura	Qt	Tipo	Altura	Qt
1	14	54	1	14	2
2	20	76	2	20	4
3	22	2	3	30	4
4	23	2	4	40	3
5	27	6	5	42	2
6	28	6	6	60	8
7	30	11	7	90	24
8	40	51			47
9	42	1			
10	60	174			
11	64	1			
12	64,2	1			
13	80	16	422	Palete 1200x1000	
14	90	17	47	Palete 1200x800	
15	96	2	469	Total	
16	100	2			
		422			

Tipo	Altura	Qt	Tipo	Altura	Qt
1	14	54	1	14	2
2	20	76	2	20	4
3	22	2	3	30	4
4	23	2	4	40	3
5	27	6	5	42	2
6	28	6	6	60	8
7	30	11	7	90	24
8	40	51			47
9	42	1			
10	60	174			
11	64	1			
12	64,2	1			
13	80	16		422 Palete 1200x1000	
14	90	17		47 Palete 1000x800	
15	96	2		469 Total	
16	100	2			
		422			

NOTA:

Os grupos deverão estabelecer as considerações que forem necessárias para a fundamentação do seu modelo, utilizando informação comercial disponível no mercado relativamente às RACKS disponíveis no mercado.

KPIs do projeto:

- I) Área de armazenamento: L*A das RACKs instaladas.
- II) Altura do estrado da palete
- III) outros elementos a definir.

2 Fase I – Problema de Afetação

Neste problema pretende-se que seja minimizado a área de armazenamento disponível no armazém para a recolha de paletes, considerando que cada palete é armazenado numa posição do armazém, e cada posição só pode armazenar uma palete. A Figura 7 ilustra o armazenamento no alvéolo de uma única palete.

Figura 7: RACKs só com uma palete por nível / alvéolo.

Consideremos o layouts para o armazém de paletes com formato em U.

Nesta fase é ignorada a altura da palete, assumindo que a altura do nível na RACK é suficiente para armazenar qualquer palete, isto é, é igual ou maior que a altura da palete mais "alta". A profundidade da RACK coincide com medida Y das paletes.

2.1 Layout do Armazém

O layout de um armazém é a forma como as áreas de armazenagem de um armazém estão organizadas, de forma a utilizar todo o espaço existente da melhor forma possível, providenciar uma movimentação eficiente dos materiais, minimizar os custos de armazenagem quando são satisfeitos os níveis de exigência, providenciar flexibilidade e facilitar a arrumação. Com isto é necessário fazer uma verificação da coordenação entre os vários operadores, equipamentos e espaço.

O layout ideal é aquele que procura minimizar a distância total percorrida pelos operadores e assim reduzir o custo associado à movimentação de paletes.

Por forma a reduzir a distância em cada deslocação, é necessário aproximar as áreas com maior interação, para assim os colaboradores operarem de uma forma mais eficiente, reduzindo os custos associados a esta distância.

Podemos classificar o layout de um armazém segundo dois tipos de fluxos, o fluxo direcionado (ou fluxo em linha reta) e o fluxo quebrado (ou fluxo em forma de U). Neste projeto iremos considerar o fluxo quebrado, isto é, consideramos a existência de uma porta na extremidade do armazém, por onde é efetuada a entrada e saída da palete.

2.2 Alocação dos artigos a uma posição no armazém

O objetivo do problema é modelar e obter uma solução que faça a afetação das paletes às posições existentes nos níveis (alvéolos) das RACKs do armazém de forma a minimizar a área de armazenamento disponível. Caso seja considerada uma medida de utilização das paletes, deverá ser proposto o posicionamento do alvéolo dentro do armazém. Uma correta alocação das paletes e das respetivos posições / RACKS dentro do armazém proporciona a redução das distâncias percorridas pelos operadores e consequentemente a redução do tempo de movimentação das mesmas.

2.2.1 Formato em U

Considera-se que o armazém linear tem o layout indicado na Figura 8, que ilustra 30 RACKs posicionadas de acordo com a numeração apresentada na Figura 8.

Figura 8: Armazém em Formato de U.

3 Fase II – (Variante) Problema de Afetação Generalizado (Binário)

Na Fase II pretende-se estudar o armazenamento das paletes, considerando que é possível colocar em cada nível (alvéolo) de cada RACK de armazenamento mais do que uma palete, respeitando a largura disponível (L) em cada RACK. A Figura 9 ilustra um nível (alvéolo) de uma RACK com três paletes.

Figura 9: Nível de uma RACK com três paletes.

Considere que cada largura (L) de cada RACK é fixa e igual a 3200 mm, e que permite a armazenagem de quatro europaletes (800x1200). Com esta dimensão só é possível armazenar três paletes de dimensões 1000x1200.

3.1 Layout do Armazém

3.1.1 Formato em U

Considera-se que o armazém linear tem o layout indicado na Figura 6, que ilustra 30 posições de armazenamento.

Figura 6: Armazém em Formato de U.

4 Fase III – Problema de Afetação e Layout de Armazém

Na Fase III pretende-se estudar o armazenamento das paletes, considerando que é possível colocar em cada nível (alvéolo) de cada RACK de armazenamento mais do que uma palete, respeitando a largura disponível (L) em cada RACK. A Figura 9 ilustra um nível (alvéolo) de uma RACK com três paletes.

Figura 9: Nível de uma RACK com três paletes.

Considere que cada largura (L) de cada RACK é fixa e igual a 3200 mm, e que permite a armazenagem de quatro europaletes (800x1200). Com esta dimensão só é possível armazenar três paletes de dimensões 1000x1200.

Considere que se pretende minimizar o "espaço vazio" por cima de cada palete. O nivelamento da altura das paletes dispostas no mesmo nível (alvéolo) de cada RACK permitirá ocupar menor volumetria global do armazenamento.

Compare a solução obtida nesta com a solução obtida na fase anterior.

4.1 Layout do Armazém

4.1.1 Formato em U

Considera-se que o armazém linear tem o layout indicado na Figura 6, que ilustra 30 posições de armazenamento.

Figura 6: Armazém em Formato de U.