SOLUTION FOR "AN INTRODUCTION TO AUTOMORPHIC REPRESENTATION"

SEEWOO LEE

ABSTRACT. This is a solution for the exercises in J. Getz and H. Hahn's book $An\ Introduction\ to\ Automorphic\ Representation\ with\ a\ view\ toward\ Trace\ Formulae.$

1. Chapter 1

Problem 1.1 *** By Yoneda lemma, the morphism $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ of affine schemes corresponds to the k-algebra morphism $\phi: A \to B$. This induces a map on the underlying topological spaces by sending a prime ideal $\mathfrak{p} \subset B$ to $\phi^{-1}(\mathfrak{p}) \subset A$, which is also prime.

Problem 1.2 ***

Problem 1.3 By Yoneda lemma, we have

$$\operatorname{Mor}(\operatorname{Spec}(B),\operatorname{Spec}(A)) \simeq \operatorname{Nat}(h^B,h^A) \simeq h^B(A) = \operatorname{Hom}_k(A,B)$$

which gives an equivalence between $\mathbf{AffSch}_k^{\mathrm{op}}$ and \mathbf{Alg}_k .

Problem 1.4 • Nonreduced: Spec($\mathbb{C}[x]/(x^2)$)

• Reducible: $\operatorname{Spec}(\mathbb{C}[x,y]/(x,y))$

• Reduced and irreducible (i.e. integral): $\operatorname{Spec}(\mathbb{C}[x])$

Problem 1.5 We can assume that $Y = \operatorname{Spec}(A)$ and $X = \operatorname{Spec}(A/I)$ for some k-algebra A and an ideal I of A. Then it is enough to show that the map $\operatorname{Hom}(A/I,R) \to \operatorname{Hom}(A,R)$, given by composing with the natural map $\pi: A \to A/I$, is injective. This follows from the surjectivity of π .

Problem 1.6 Let $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B), Z = \operatorname{Spec}(C)$. Then the statement is equivalent to

$$\operatorname{Hom}(A \otimes_B C, R) \simeq \operatorname{Hom}(A, R) \times_{\operatorname{Hom}(B, R)} \operatorname{Hom}(C, R).$$

We can define a bijection as follows. First, consider the following commutative diagram:

$$\begin{array}{ccc}
A & \xrightarrow{\iota_A} & A \otimes_B C \\
 & & & & \iota_C \\
 & & & & & \iota_C \\
 & & & & & & & C
\end{array}$$

Using the maps above, we define a map from LHS to RHS as $\phi \mapsto (\phi \iota_A, \phi \iota_C)$. Since $\iota_A \alpha = \iota_C \gamma$, we have $\phi \iota_A \alpha = \phi \iota_C \gamma$ and the map is well-defined. For the other direction, for given $(f,g): A \times C \to R$ with $f\alpha = g\gamma$, universal property of the tensor product gives a unique map $\phi: A \otimes_B C \to R$ with $f = \phi \iota_A$ and $g = \phi \iota_C$. We can check that these maps are inverses for each other.

Problem 1.7 ***

Problem 1.8 *** We define an \mathbb{R} -algebra A as

$$A = \mathbb{R}[(x_{ij}, y_{ij})_{1 \le i, j \le n}]/I$$

where I is an ideal generated by elements of the form

$$\left(\sum_{k=1}^{n} (x_{ik}^{2} + y_{ik}^{2})\right) - 1,$$

$$\sum_{k=1}^{n} (x_{ik}x_{jk} - y_{ik}y_{jk}), \quad i \neq j$$

$$\sum_{k=1}^{n} (x_{ij}y_{jk} + y_{ik}x_{jk}), \quad i \neq j$$

for $1 \le i, j \le n$. Then we can identify $U_n(R)$ with Hom(A, R) as follows: for given $\phi: A \to R$, let $\alpha_{ij} = \phi(x_{ij})$ and $\beta_{ij} = \phi(y_{ij})$. Then a matrix $g = (g_{ij})_{1 \le i,j \le n}$ with $g_{ij} = 1 \otimes \alpha_{ij} + \sqrt{-1} \otimes \beta_{ij}$ becomes an element of $U_n(R)$ by the relations of x_{ij} and y_{ij} s defined by the ideal I. Similarly, for given $g = (g_{ij}) \in U_n(R)$, we can write $g_{ij} = (a_{ij} + \sqrt{-1}b_{ij}) \otimes r_{ij} = 1 \otimes a_{ij}r_{ij} + \sqrt{-1} \otimes b_{ij}r_{ij}$ and we have a corresponding map $\phi: A \to R$ sending x_{ij} to $a_{ij}r_{ij}$ and y_{ij} to $b_{ij}r_{ij}$.

The group $U_n(\mathbb{R})$ is a compact group (as a topological subgroup of $GL_n(\mathbb{C})$) since it is closed (it is an inverse image of point I of a continuous map $g \to g \overline{g}^t$) and bounded (each row and column vectors have norm 1).

At last, NOT FINISHED

Problem 1.9 Consider the following short exact sequence:

$$0 \to \ker(\epsilon)/\ker(\epsilon)^2 \to \mathcal{O}(G)/\ker(\epsilon)^2 \to k \to 0.$$

The map $O(G)/\ker(\epsilon)^2 \to k$ is defined as a composition of the natural map $\mathcal{O}(G)/\ker(\epsilon)^2 \to \mathcal{O}(G)/\ker(\epsilon)$ followed by ϵ . Then we have a section $k \to \mathcal{O}(G)/\ker(\epsilon)$ which is the composition $k \to \mathcal{O}(G) \to \mathcal{O}(G)/\ker(\epsilon)^2$ and the above sequence splits.

Problem 1.10 Let $g = (g_{ij}) \in GL_n(R)$ and $J = (\alpha_{ij}) \in GL_n(k)$. Then $g^t J g = J$ is equivalent to

$$\sum_{k,l=1}^{n} \alpha_{kl} g_{ki} g_{lj} = \alpha_{ij}$$

for all $1 \le i, j \le n$. Hence G is an affine algebraic group with a coordinate ring

$$A = k[(X_{ij})_{1 \le i, j \le n}] / \left(\sum_{k,l=1}^{n} \alpha_{kl} X_{ki} X_{lj} - \alpha_{ij}, 1 \le i, j \le n \right).$$

Since Lie $G = \ker(G(k[t]/t^2) \to G(k))$, the elements of Lie G have a form of I + tXfor some $X \in M_n(k)$. Then the defining equation $g^t J g = J$ is equivalent to

$$(I+tX)^t J(I+tX) = J \Leftrightarrow J+tX^t J+tJX+t^2 X^t JX = J+t(X^t J+JX) = J,$$

(here every elements are in $GL_n(k[t]/t^2)$) so we should have $X^tJ + JX = 0$. In other words, we have a map

$$\text{Lie } G \xrightarrow{\sim} \{X \in \mathfrak{gl}_n(k) : X^t J + JX\}, \quad I + tX \to X.$$

Problem 1.11 ***

Problem 1.12 ***

Problem 1.13 Using the equivalence of Spl_k and RRD, it is enough to check that the dual of the root datum of GL_n is isomorphic to itself in **RRD**. Recall that the root datum of GL_n with torus T of diagonal elements is given as follows: (Example 1.12)

- $X^*(T) = \{\alpha_{k_1,\dots,k_n} : \operatorname{diag}(t_1,\dots,t_n) \mapsto \prod_{1 \leq j \leq n} t_j^{k_j}, k_1,\dots,k_n \in \mathbb{Z}\} \simeq \mathbb{Z}^n$ $X_*(T) = \{\beta_{k_1,\dots,k_n} : t \mapsto \operatorname{diag}(t^{k_1},\dots,t^{k_n}), t_1,\dots,t_n \in \mathbb{Z}\} \simeq \mathbb{Z}^n$ $\Phi(\operatorname{GL}_n,T) = \{e_{ij}, 1 \leq i \neq j \leq n\}, e_{ij}(\operatorname{diag}(t_1,\dots,t_n)) = t_it_j^{-1}$

- $\Phi^{\vee}(GL_n, T) = \{e_{ij}, 1 \leq i \neq j \leq n\}, e_{ij}^{\vee}(t) = diag(1, \dots, t, \dots, t^{-1}, \dots, 1)$ (t in the *i*-th entry, t^{-1} in the *j*-th entry, 1 for other entries)

Then we define a map $f: X_*(T) \to X^*(T)$ and $\iota: \Phi(GL_n, T) \to \Phi^{\vee}(GL_n, T)$ as

$$f(\beta_{k_1,\dots,k_n}) = \alpha_{k_1,\dots,k_n}, \quad \iota(e_{ij}) = e_{ij}^{\vee}.$$

and define $f^{\vee}: X^*(T) \to X_*(T)$ and $\iota^{\vee}: \Phi^{\vee}(\mathrm{GL}_n, T) \to \Phi(\mathrm{GL}_n, T)$ similarly. Then these maps are inverse to each other and gives an isomorphism between two root data

$$(X^*(T), X_*(T), \Phi(\operatorname{GL}_n, T), \Phi^{\vee}(\operatorname{GL}_n, T)) \simeq (X_*(T), X^*(T), \Phi^{\vee}(\operatorname{GL}_n, T), \Phi(\operatorname{GL}_n, T))$$

(they are central isogenies) so we get $\widehat{\operatorname{GL}}_n = \operatorname{GL}_{n\mathbb{C}}$.

Problem 1.14 ***

Problem 1.15 ***

2. Chapter 2

Problem 2.1 ***

Problem 2.2 ***

Problem 2.3 It is compact since it is an intersection of closed subset G(F) of $GL_n(F)$ ($G \hookrightarrow GL_n$ is closed immersion) and intersection of closed set with compact set is again compact. Openness follows from continuity of $G(F) \hookrightarrow GL_n(F)$: $\rho(G(F)) \cap K$ is an inverse image of K under $G(F) \hookrightarrow GL_n(F)$.

Problem 2.4 ***

Problem 2.5 Using the anti-equivalence of category \mathbf{AffSch}_k and \mathbf{Alg}_k , we can reformulate the situation in terms of algebra as follows. Let $A = \mathcal{O}(Y)$ be \mathfrak{o} -algebra and $A_F := A \otimes_{\mathfrak{o}} F$. Let $X = \operatorname{Spec}(A_F/I)$ and \mathcal{X} be schematic closure of X in Y, so that $\mathcal{O}(\mathcal{X}) = \operatorname{Im}(\pi^I \iota)$ where $\iota : A \hookrightarrow A_F$ and $\pi^I : A_F \twoheadrightarrow A_F/I$. Let $\mathcal{Z} = \operatorname{Spec} A/J$ (we have closed immersion $\mathcal{Z} \hookrightarrow \mathcal{Y}$), and we assume that the map on generic fibre, which corresponds to $A_F \twoheadrightarrow (A/J)_F$, induces an isomorphism $A_F/I = \mathcal{O}(X) \simeq \mathcal{O}(\mathcal{Z}) = (A/J)_F$. This means that there exists an isomorphism $\phi : A_F/I \to (A/J)_F$ such that the following diagram commutes:

Now our goal is to show that there exists a unique map

$$f: \mathcal{O}(\mathcal{X}) = \operatorname{Im}(\pi^I \iota) \to \mathcal{O}(\mathcal{Z}) = A/J$$

such that the following diagram commutes:

$$A/J$$

$$f \uparrow \qquad \qquad \pi^{J}$$

$$\operatorname{Im}(\pi^{I}\iota) \underset{\pi^{I}\iota}{\longleftarrow} A$$

The only way to define f that the above diagram commutes is following: for $x \in \text{Im}(\pi^I\iota)$, choose $a \in A$ with $x = \pi^I\iota(a)$ and define $f(x) := \pi^J(a)$. Then we only need to show that the map is well-defined regardless of the choice of a. Let $a_1, a_2 \in A$ such that $\pi^I\iota(a_1) = \pi^I\iota(a_2) = x$. Since $\iota^J: A/J \hookrightarrow (A/J)_F$ is an injection, it is enough to show that $\iota^J\pi^J(a_1) = \iota^J\pi^J(a_2)$. By the commutativity of the following diagram

$$A/J \overset{\pi^J}{\longleftarrow} A$$

$$\iota^J \downarrow \qquad \qquad \downarrow^{\iota}$$

$$(A/J)_F \overset{\pi_F^J}{\longleftarrow} A_F$$

we have $\iota^J \pi^J = \pi_F^J \iota = \phi \pi^I \iota$, and this proves

$$\iota^{J} \pi^{J}(a_{1}) = \phi \pi^{I} \iota(a_{1}) = \phi(x) = \phi \pi^{I} \iota(a_{2}) = \iota^{J} \pi^{J}(a_{2}),$$

i.e. the map is well-defined.

Problem 2.6 ***

Problem 2.7 ***

Problem 2.8 Note that the coordinate ring of $GL_{n,\mathbb{O}}$ is

$$B = \mathcal{O}(\mathrm{GL}_{n,\mathbb{Q}}) = \mathbb{Q}[x_{ij}, y]_{1 \le i, j \le n} / (\det(x_{ij})y - 1).$$

To show that \mathcal{G} is a model of $GL_{n,\mathbb{Q}}$ over \mathbb{Z} , we need to show that $A \hookrightarrow B$ and $A \otimes_{\mathbb{Z}} \mathbb{Q} \simeq B$. Latter isomorphism easily follows from

$$A \otimes \mathbb{Q} = \mathbb{Q}[x_{ij}, t_{ij}, y]/(\det(x_{ij})y - 1, \{x_{ij} - \delta_{ij} - mt_{ij}\}) \simeq B$$

since we can invert m > 1 in \mathbb{Q} and get an isomorphism $A \otimes \mathbb{Q} \to B$ via $t_{ij} \mapsto (1 - x_{ij})/m$. Shoing $A \hookrightarrow B \simeq A \otimes_{\mathbb{Z}} \mathbb{Q}$ is equivalent to showing that A is a torsion-free \mathbb{Z} -module. Assume that we have $z \in \mathbb{Z}[x_{ij}, t_{ij}, y]$ and $0 \neq a \in \mathbb{Z}$ such that az = 0 in A. Then there exists $\alpha, \beta_{ij} \in \mathbb{Z}$ for $1 \leq i, j \leq n$ s.t.

$$az = \alpha(\det(x_{ij})y - 1) + \sum_{ij} \beta_{ij}(x_{ij} - \delta_{ij} - mt_{ij})$$

$$\Leftrightarrow z = \frac{\alpha}{a} \det(x_{ij})y + \sum_{ij} \frac{\beta_{ij}}{a} x_{ij} - \sum_{ij} \frac{m\beta_{ij}}{a} t_{ij} - \frac{\alpha + \sum_{i} \beta_{ii}}{a}$$

which implies $a|\alpha$ and $a|\beta_{ij}$, i.e. z=0 in A. Hence \mathcal{G} is a model of $\mathrm{GL}_{n,\mathbb{Q}}$ over \mathbb{Z} . The set of \mathbb{Z} -points $\mathcal{G}(\mathbb{Z}) = \mathrm{Hom}(A,\mathbb{Z})$ can be identified with the set via map

$$\operatorname{Hom}(A,\mathbb{Z}) \to \{g \in \operatorname{GL}_n(\mathbb{Z}) : g \equiv I_n \pmod{m\operatorname{M}_n(\mathbb{Z})}\}\$$

$$\phi \mapsto (g_{ij} = \phi(x_{ij}))$$

since $\phi(x_{ij}) = \delta_{ij} + m\phi(t_{ij}) \Rightarrow g - I_n \in mM_n(\mathbb{Z}).$

Problem 2.9 *** It is not hard to prove that if Z_1, Z_2 are dense subsets of a topological space Y_1, Y_2 respectively, then $Z_1 \times Z_2$ is dense in $Y_1 \times Y_2$. Combining with Exercise 1.6 and Theorem 2.2.1 (b), we get the desired results for both weak and strong approximation.

NOT FINISHED

Problem 2.10 By Exercise 2.7 and 2.9, $M_n \simeq \mathbb{G}_a^{n^2}$ admits weak approximation over F. With embedding $GL_n \hookrightarrow M_n$ with $GL_n(F) = M_n(F) \cap GL_n(F_S) \subset M_n(F_S)$, we also have $GL_n(F)$ dense in $GL_n(F_S)$.

Problem 2.11 ***

Problem 2.12 ***

Problem 2.13 ***

Problem 2.14 ***

Problem 2.15 ***

Problem 2.16 ***

Problem 2.17 ***

Problem 2.18 ***

Problem 2.19 Let $N = p_1^{e_1} \cdots p_r^{e_r}$ be a prime factorization of N. Define $K_N \leq \operatorname{GL}_n(\mathbb{A}_{\mathbb{O}}^{\infty})$ as

$$K_N = \prod_{i=1}^r (I_n + p_i^{e_i} \mathcal{M}_n(\mathbb{Z}_{p_i})) \times \prod_{n \neq p_i} \mathrm{GL}_n(\mathbb{Z}_p).$$

Then K_N is an open compact subgroup of $\mathrm{GL}_n(\mathbb{A}_{\mathbb{Q}}^{\infty})$ such that $K_N \cap \mathrm{GL}_n(\mathbb{Q}) = \Gamma(N)$.

 (\Rightarrow) Let H be a congruence subgroup of $\mathrm{GL}_n(\mathbb{Q})$, which means that there exists an open compact subgroup $K_H \leq \mathrm{GL}_n(\mathbb{A}_\mathbb{Q}^\infty)$ such that $H = K_H \cap \mathrm{GL}_n(\mathbb{Q})$. Then we can find an open compact neighborhood $U \leq K_H$ of I_n which has a form of

$$U = \prod_{p \in S} (I_n + p^{e_p} \mathcal{M}_n(\mathbb{Z}_p)) \times \prod_{p \notin S} \mathrm{GL}_n(\mathbb{Z}_p)$$

for some finite set of primes S (Note that $\{I_n + p^k \mathcal{M}_n(\mathbb{Z}_p)\}_{k \geq 1}$ is a decreasing sequence of open compact neighborhoods of I_n , which is also a subgroup of $\mathrm{GL}_n(\mathbb{Z}_p)$). Then $U = K_N$ for $N = \prod_{p \in S} p^{e_p}$, i.e. U is also an open compact subgroup of $\mathrm{GL}_n(\mathbb{A}_\mathbb{Q}^\infty)$, and it is a finite index subgroup of K_H since K_H is open and compact (consider all the cosets of K_N in K_H , which are all homeomorphic to K_N). Then $[H:\Gamma(N)] = [K_H:K_N]$ implies that H contains $\Gamma(N)$ as a finite index subgroup. (\Leftarrow) Let H be a subgroup of $\mathrm{GL}_n(\mathbb{Q})$ contains $\Gamma(N)$ with $[H:\Gamma(N)] < \infty$. Let K_H be an image of H in $\mathrm{GL}_n(\mathbb{A}_\mathbb{Q}^\infty)$ under the diagonal embedding $\mathrm{GL}_n(\mathbb{Q}) \hookrightarrow \mathrm{GL}_n(\mathbb{A}_\mathbb{Q}^\infty)$ so that $K_H \cap \mathrm{GL}_n(\mathbb{Q}) = H$. Then K_H contains K_N and $[K_H:K_N] = [H:\Gamma(N)]$, so K_N is a finite index subgroup of K_H . for coset representatives g_1, g_2, \ldots, g_t of K_H/K_N , $K_H = \cup_{j=1}^t g_j K_N$ and by openness (resp. compactness) of K_N , K_H is also open (resp. compact) subgroup.