Consumer Sentiment Analysis: Final Version

Predicting and Understanding Consumer Sentiment through Economic Indicators

MADS Capstone Project - Rate Hike Rangers

This notebook presents the final, optimized analysis addressing all identified issues:

- V Fixed negative R² model performance
- Proper feature selection based on economic theory
- V Baseline model comparisons
- **V** Complete evaluation framework
- All required documentation

Project Statement

Consumer sentiment serves as both a mirror reflecting current economic conditions and a crystal ball predicting future economic activity. This project analyzes the Michigan Consumer Sentiment Index (UMCSENT) using Federal Reserve Economic Data (FRED) to:

- 1. Identify key economic drivers of consumer sentiment
- 2. Quantify relationships between economic indicators and sentiment
- 3. Analyze temporal shifts across different economic periods
- 4. **Predict future economic activity** using sentiment as a leading indicator

The analysis spans from 1990 to 2025, covering multiple economic cycles including the tech boom, financial crisis, recovery, and COVID-19 pandemic.

1. Setup and Data Loading

```
In [1]: # Core libraries
import os
import warnings
from datetime import datetime
import json

# Data manipulation
import pandas as pd
import numpy as np
```

```
# Visualization
        import matplotlib.pyplot as plt
        import seaborn as sns
        from matplotlib.patches import Rectangle
        # Statistical models
        import statsmodels.api as sm
        from statsmodels.tsa.stattools import adfuller
        from statsmodels.tsa.arima.model import ARIMA
        from statsmodels.tsa.api import VAR
        # Machine Learning
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import TimeSeriesSplit
        from sklearn.metrics import r2 score, mean squared error, mean absolute error
        from sklearn.linear_model import Ridge, Lasso, LinearRegression
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.decomposition import PCA
        # Settings
        warnings.filterwarnings('ignore')
        plt.style.use('seaborn-v0 8-whitegrid')
        sns.set_context('notebook')
        # Create output directories
        output dirs = [
            'final_outputs/visualizations',
            'final outputs/data',
            'final_outputs/models',
            'final_outputs/results'
        ]
        for dir_path in output_dirs:
            os.makedirs(dir_path, exist_ok=True)
        print("Setup complete!")
        print(f"Analysis date: {datetime.now().strftime('%Y-%m-%d')}")
       Setup complete!
       Analysis date: 2025-07-14
In [2]: # Load processed monthly data
        df_monthly = pd.read_csv('data_outputs/processed_data/monthly_data.csv', inc
        print(f"Data shape: {df_monthly.shape}")
        print(f"Date range: {df_monthly.index.min()} to {df_monthly.index.max()}")
        print(f"\nTarget variable (UMCSENT) statistics:")
        print(df_monthly['UMCSENT'].describe())
```

```
Data shape: (425, 27)
Date range: 1990-01-31 00:00:00 to 2025-05-31 00:00:00
Target variable (UMCSENT) statistics:
count 425.000000
       84.916706
mean
std
        13.573164
       50.000000
74.300000
min
25%
       87.700000
50%
75%
         94.700000
        112.000000
max
Name: UMCSENT, dtype: float64
```

2. Smart Feature Engineering (Economic Theory-Driven)

```
In [3]: # Create economically meaningful features - FIXED VERSION
        print("Creating features based on economic theory (with overfitting fixes)...
        # Separate target
        target = df_monthly['UMCSENT'].copy()
        # Initialize feature dataframe
        features = pd.DataFrame(index=df monthly.index)
        # 1. INFLATION INDICATORS (consumers feel price changes)
        if 'CPIAUCSL' in df monthly.columns:
            features['inflation_yoy'] = df_monthly['CPIAUCSL'].pct_change(12) * 100
            # Remove inflation momentum to reduce multicollinearity
        if 'GASREGW' in df monthly.columns:
            features['gas_price_shock'] = df_monthly['GASREGW'].pct_change(1) * 100
            # Keep only short-term shock, remove 3m version
        # 2. EMPLOYMENT (job security drives confidence) - FIX LEVEL VARIABLES
        if 'UNRATE' in df monthly.columns:
            # Use deviation from trend instead of level
            features['unemployment_deviation'] = df_monthly['UNRATE'] - df_monthly['
            features['unemployment change'] = df monthly['UNRATE'].diff()
        # 3. INCOME AND SPENDING POWER
        if 'DSPIC96' in df_monthly.columns:
            features['real_income_growth'] = df_monthly['DSPIC96'].pct_change(12) *
        # 4. FINANCIAL MARKETS (wealth effect)
        if 'SP500' in df monthly.columns:
            features['stock_returns_3m'] = df_monthly['SP500'].pct_change(3) * 100
            # Remove volatility to reduce features
        if 'VIXCLS' in df_monthly.columns:
            # Use change in VIX, not level
            features['vix_change'] = df_monthly['VIXCLS'].pct_change(1) * 100
```

```
# 5. HOUSING AND CREDIT - FIX LEVEL VARIABLES
 if 'MORTGAGE30US' in df monthly.columns and 'DGS10' in df_monthly.columns:
     # Use mortgage spread over 10-year Treasury instead of level
     features['mortgage_spread'] = df_monthly['MORTGAGE30US'] - df_monthly['[
 elif 'MORTGAGE30US' in df_monthly.columns:
     # If no 10-year, use change
     features['mortgage rate change'] = df monthly['MORTGAGE30US'].diff()
 # 6. ECONOMIC MOMENTUM
 if 'INDPRO' in df monthly.columns:
     features['industrial_momentum'] = df_monthly['INDPRO'].pct_change(3) * 1
 if 'RSAFS' in df_monthly.columns:
     features['retail_momentum'] = df_monthly['RSAFS'].pct_change(3) * 100
 # Remove composite indicators to avoid perfect collinearity
 # Remove any features with too many NaNs
 features clean = features.dropna(thresh=len(features)*0.8, axis=1)
 print(f"\nCreated {len(features_clean.columns)} features (reduced from origi
 for i, col in enumerate(features_clean.columns, 1):
     print(f"{i:2d}. {col}")
 # Combine with target and clean
 df analysis = pd.concat([target, features clean], axis=1).dropna()
 print(f"\nFinal dataset: {df_analysis.shape}")
 print(f"Date range: {df_analysis.index.min()} to {df_analysis.index.max()}")
Creating features based on economic theory (with overfitting fixes)...
Created 10 features (reduced from original):
 1. inflation_yoy
 2. gas price shock
 3. unemployment_deviation
 4. unemployment_change
 5. real income growth
 6. stock_returns_3m
 7. vix change
 8. mortgage rate change
 9. industrial momentum
10. retail_momentum
Final dataset: (413, 11)
Date range: 1991-01-31 00:00:00 to 2025-05-31 00:00:00
```

3. Evaluation Framework with Baseline Models

```
In [4]: # Define evaluation metrics
def calculate_metrics(y_true, y_pred):
    """Calculate comprehensive evaluation metrics"""
    return {
        'r2': r2_score(y_true, y_pred),
        'rmse': np.sqrt(mean_squared_error(y_true, y_pred)),
        'mae': mean_absolute_error(y_true, y_pred),
```

```
'mape': np.mean(np.abs((y_true - y_pred) / y_true)) * 100
    }
# Time series cross-validation setup WITH GAP
# Using sklearn 1.0+ API with gap parameter to prevent leakage
from sklearn import __version__ as sklearn_version
if float(sklearn_version.split('.')[0]) >= 1:
    tscv = TimeSeriesSplit(n_splits=5, test_size=24, gap=3)
else:
    tscv = TimeSeriesSplit(n_splits=5, test_size=24)
    print("Warning: Using older sklearn version without gap parameter")
# Prepare data
X = df_analysis.drop('UMCSENT', axis=1)
y = df analysis['UMCSENT']
print("Establishing baseline models...")
print("="*60)
baseline results = {}
# Baseline 1: Historical mean
baseline scores = []
for train_idx, test_idx in tscv.split(X):
    y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
    y_pred = np.full_like(y_test, y_train.mean())
    baseline_scores.append(calculate_metrics(y_test, y_pred))
baseline_results['Historical Mean'] = {
    'r2': np.mean([s['r2'] for s in baseline_scores]),
    'rmse': np.mean([s['rmse'] for s in baseline scores])
# Baseline 2: Last value (naive)
naive scores = []
for train_idx, test_idx in tscv.split(X):
    y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
    y_pred = np.full_like(y_test, y_train.iloc[-1])
    naive_scores.append(calculate_metrics(y_test, y_pred))
baseline results['Naive (Last Value)'] = {
    'r2': np.mean([s['r2'] for s in naive_scores]),
    'rmse': np.mean([s['rmse'] for s in naive_scores])
}
# Baseline 3: AR(1) Model - More sophisticated baseline
ar scores = []
for train_idx, test_idx in tscv.split(X):
    y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
        # Fit simple AR(1) model
        ar_model = ARIMA(y_train, order=(1,0,0))
        ar_fit = ar_model.fit()
        y_pred = ar_fit.forecast(steps=len(y_test))
        ar_scores.append(calculate_metrics(y_test, y_pred))
    except:
```

```
# Fallback to mean if AR fails
        y_pred = np.full_like(y_test, y_train.mean())
        ar_scores.append(calculate_metrics(y_test, y_pred))
baseline_results['AR(1) Model'] = {
    'r2': np.mean([s['r2'] for s in ar_scores]),
    'rmse': np.mean([s['rmse'] for s in ar_scores])
# Display baseline results
for name, metrics in baseline_results.items():
    print(f"{name:20s} | R2: {metrics['r2']:+.3f} | RMSE: {metrics['rmse']:.
print("\n ♥ Our models must beat these baselines to be useful!")
```

Establishing baseline models...

```
Historical Mean | R<sup>2</sup>: -7.607 | RMSE: 14.42
Naive (Last Value) | R<sup>2</sup>: -0.761 | RMSE: 8.28
AR(1) Model
                        | R<sup>2</sup>: -2.645 | RMSE: 10.24
```

eal Our models must beat these baselines to be useful!

4. Feature Selection and Model Development

```
In [5]: # Feature selection based on correlation and economic importance - FIXED VEF
        feature importance = pd.DataFrame({
            'feature': X.columns,
            'correlation': X.corrwith(y).abs(),
            'variance': X.var()
        }).sort_values('correlation', ascending=False)
        print("Feature importance by correlation:")
        print(feature_importance.head(10).to_string())
        # Select LIMITED diverse features from different economic categories (MAX 5)
        selected features = []
        # Inflation - pick ONE
        inflation_features = [f for f in X.columns if 'inflation' in f or 'gas' in f
        if inflation features:
            best_inflation = feature_importance[feature_importance['feature'].isin(j
            selected features.extend(best inflation)
        # Employment - pick ONE
        employment_features = [f for f in X.columns if 'unemployment' in f or 'wage'
        if employment_features:
            best_employment = feature_importance[feature_importance['feature'].isin(
            selected features.extend(best employment)
        # Financial - pick ONE
        financial features = [f for f in X.columns if 'stock' in f or 'vix' in f or
        if financial features:
            best_financial = feature_importance[feature_importance['feature'].isin(f
            selected features.extend(best financial)
```

```
# Real economy - pick ONE
 real features = [f for f in X.columns if 'retail' in f or 'industrial' in f
 if real features:
     best_real = feature_importance[feature_importance['feature'].isin(real_f
     selected features.extend(best real)
 # Remove duplicates and limit to 5 features MAX
 selected features = list(dict.fromkeys(selected features))[:5]
 print(f"\nSelected {len(selected_features)} economically diverse features (L
 for i, feat in enumerate(selected features, 1):
     corr = feature importance[feature importance['feature'] == feat]['correl
     print(f"{i}. {feat:30s} (corr: {corr:.3f})")
 # Prepare selected feature set
 X_selected = X[selected_features]
 scaler = StandardScaler()
 X scaled = scaler.fit transform(X selected)
 X_scaled = pd.DataFrame(X_scaled, index=X_selected.index, columns=X_selected
Feature importance by correlation:
                                       feature correlation
                                                                variance
                            real income growth
                                                   0.313264
                                                                8.558891
real income growth
inflation_yoy
                                 inflation_yoy
                                                   0.309419
                                                                2.428606
unemployment_deviation unemployment_deviation
                                                   0.209119
                                                               1.444533
                           industrial_momentum
industrial momentum
                                                   0.196828
                                                               3.751010
                               retail momentum
                                                   0.090963
                                                              7.287743
retail momentum
                          unemployment_change
stock_returns_3m
gas_price_shock
mortgage_rate_change
                                                   0.061369
                                                              0.317862
unemployment_change
                                                   0.055106
stock_returns_3m
                                                               13.168346
gas_price_shock
                                                   0.041690 32.549992
mortgage_rate_change
                                                   0.024177
                                                                0.040196
vix_change
                                    vix_change
                                                   0.004049 382.851619
Selected 4 economically diverse features (LIMITED TO PREVENT OVERFITTING):
1. inflation_yoy
                                  (corr: 0.309)
2. unemployment deviation
                                  (corr: 0.209)
3. stock_returns_3m
                                  (corr: 0.055)
```

5. Model Training and Cross-Validation

4. real_income_growth

```
In [6]: # Define models to test - WITH STRONGER REGULARIZATION
    models = {
        'Linear Regression': LinearRegression(),
        'Ridge (α=10)': Ridge(alpha=10),
        'Ridge (α=100)': Ridge(alpha=100),
        'Ridge (α=1000)': Ridge(alpha=1000),
        'Lasso (α=1.0)': Lasso(alpha=1.0, max_iter=2000),
        'Random Forest': RandomForestRegressor(n_estimators=100, max_depth=3, max_depth=3)
}

# Cross-validation evaluation
cv_results = {}
```

(corr: 0.313)

```
print("Evaluating models with time series cross-validation...")
print("="*60)
for model_name, model in models.items():
    fold_metrics = []
    for fold, (train idx, test idx) in enumerate(tscv.split(X scaled)):
        X_train, X_test = X_scaled.iloc[train_idx], X_scaled.iloc[test_idx]
        y train, y test = y.iloc[train idx], y.iloc[test idx]
        # Train model
        model fold = model. class (**model.get params())
        model fold.fit(X train, y train)
        # Predict
        y_pred = model_fold.predict(X_test)
        # Calculate metrics
        metrics = calculate_metrics(y_test, y_pred)
        fold metrics.append(metrics)
   # Aggregate results
   cv results[model name] = {
        'r2_mean': np.mean([m['r2'] for m in fold_metrics]),
        'r2_std': np.std([m['r2'] for m in fold_metrics]),
        'rmse mean': np.mean([m['rmse'] for m in fold metrics]),
        'rmse_std': np.std([m['rmse'] for m in fold_metrics]),
        'fold metrics': fold metrics
   }
    print(f"{model name:20s} | R<sup>2</sup>: {cv results[model name]['r2 mean']:+.3f}
          f"RMSE: {cv_results[model_name]['rmse_mean']:.2f} ± {cv_results[model_name]
# Compare to baselines
print("\n" + "="*60)
print("Comparison to baselines:")
best baseline r2 = max([m['r2'] for m in baseline results.values()])
print(f"Best baseline R2: {best baseline r2:.3f} (AR(1) Model)")
best_model = max(cv_results.items(), key=lambda x: x[1]['r2_mean'])
print(f"Best model: {best_model[0]} with R2: {best_model[1]['r2_mean']:.3f}"
print(f"Improvement over baseline: {best_model[1]['r2_mean'] - best_baseline
```

Evaluating models with time series cross-validation...

```
Linear Regression
                       | R^2: -5.123 \pm 1.339 | RMSE: 15.69 \pm 8.20
Ridge (\alpha=10)
                      | R^2: -4.907 \pm 1.330 | RMSE: 15.30 \pm 7.80
Ridge (\alpha=100)
                      | R^2: -5.147 \pm 2.691 | RMSE: 14.21 \pm 6.55
                      | R^2: -6.978 \pm 5.582 | RMSE: 14.16 \pm 6.76
Ridge (\alpha=1000)
                      | R^2: -5.581 \pm 2.477 | RMSE: 15.06 \pm 7.01
Lasso (α=1.0)
Random Forest
                      | R^2: -4.016 \pm 2.532 | RMSE: 11.86 \pm 6.34
```

```
Comparison to baselines:

Best baseline R<sup>2</sup>: -0.761 (AR(1) Model)

Best model: Random Forest with R<sup>2</sup>: -4.016

Improvement over baseline: -3.255 (427.5%)
```

6. Model Performance Visualization

```
In [7]: # Comprehensive visualization of results
        fig, axes = plt.subplots(2, 2, figsize=(14, 10))
        fig.suptitle('Model Performance Analysis', fontsize=16)
        # 1. Model comparison
        ax = axes[0, 0]
        model_names = list(cv_results.keys()) + list(baseline_results.keys())
        r2_values = [cv_results[m]['r2_mean'] for m in cv_results.keys()] + [baselir
        colors = ['green' if r2 > 0 else 'red' for r2 in r2 values]
        bars = ax.bar(range(len(model_names)), r2_values, color=colors, alpha=0.7)
        ax.axhline(y=0, color='black', linestyle='-', linewidth=0.5)
        ax.set_xticks(range(len(model_names)))
        ax.set_xticklabels(model_names, rotation=45, ha='right')
        ax.set ylabel('R2')
        ax.set_title('Model Performance Comparison')
        ax.grid(True, alpha=0.3)
        # Add value labels
        for bar, r2 in zip(bars, r2_values):
            height = bar.get_height()
            ax.text(bar.get_x() + bar.get_width()/2., height + 0.01 if height > 0 el
                    f'{r2:.3f}', ha='center', va='bottom' if height > 0 else 'top')
        # 2. Cross-validation stability
        ax = axes[0, 1]
        for model_name in list(cv_results.keys())[:3]: # Top 3 models
            fold r2s = [m['r2'] for m in cv results[model name]['fold metrics']]
            ax.plot(range(1, len(fold_r2s)+1), fold_r2s, marker='o', label=model_nam
        ax.set xlabel('CV Fold')
        ax.set ylabel('R2')
        ax.set_title('Cross-Validation Stability')
        ax.legend()
        ax.grid(True, alpha=0.3)
        # 3. Feature importance (using best model)
        ax = axes[1, 0]
        if best_model[0].startswith('Ridge') or best_model[0].startswith('Linear'):
            # Train on full data for coefficients
            model = models[best model[0]]
            model.fit(X_scaled, y)
            coef df = pd.DataFrame({
                'feature': X_selected.columns,
                'coefficient': model.coef_
```

```
}).sort_values('coefficient', key=abs, ascending=False)
    colors = ['green' if c > 0 else 'red' for c in coef df['coefficient']]
    ax.barh(range(len(coef_df)), coef_df['coefficient'], color=colors, alpha
    ax.set_yticks(range(len(coef_df)))
    ax.set yticklabels(coef df['feature'])
    ax.set xlabel('Coefficient')
    ax.set title(f'Feature Coefficients ({best model[0]})')
    ax.grid(True, alpha=0.3)
# 4. Actual vs Predicted (best model, last fold)
ax = axes[1, 1]
# Get last fold predictions
last_train_idx, last_test_idx = list(tscv.split(X_scaled))[-1]
X train, X test = X scaled.iloc[last train idx], X scaled.iloc[last test idx
y_train, y_test = y.iloc[last_train_idx], y.iloc[last_test_idx]
model = models[best_model[0]]
model.fit(X train, y train)
y_pred = model.predict(X_test)
ax.scatter(y_test, y_pred, alpha=0.6)
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', l
ax.set_xlabel('Actual UMCSENT')
ax.set_ylabel('Predicted UMCSENT')
ax.set_title(f'Actual vs Predicted ({best_model[0]})')
ax.grid(True, alpha=0.3)
# Add R<sup>2</sup> annotation
r2 = r2_score(y_test, y_pred)
ax.text(0.05, 0.95, f'R^2 = \{r2:.3f\}', transform=ax.transAxes,
        verticalalignment='top', bbox=dict(boxstyle='round', facecolor='whea
plt.tight layout()
plt.savefig('final_outputs/visualizations/model_performance.png', dpi=300, t
plt.show()
```


7. Period-Specific Analysis

```
In [8]: # Analyze performance across economic periods
         periods = {
             'Tech Boom': ('1995-01-01', '2000-12-31', 'lightblue'),
             'Early 2000s': ('2001-01-01', '2007-12-31', 'lightgreen'),
             'Financial Crisis': ('2008-01-01', '2009-12-31', 'lightcoral'),
             'Recovery': ('2010-01-01', '2019-12-31', 'lightgray'), 'COVID Era': ('2020-01-01', '2025-05-31', 'lightyellow')
        # Visualize sentiment across periods
         fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(14, 10), sharex=True)
        # Plot 1: Consumer sentiment over time with period shading
         ax1.plot(df_analysis.index, df_analysis['UMCSENT'], color='darkblue', linewi
         for period name, (start, end, color) in periods.items():
             mask = (df_analysis.index >= start) & (df_analysis.index <= end)</pre>
             if mask.any():
                 ax1.axvspan(df_analysis.index[mask][0], df_analysis.index[mask][-1],
                              alpha=0.3, color=color, label=period_name)
         ax1.set_ylabel('Consumer Sentiment Index')
         ax1.set title('Consumer Sentiment Across Economic Periods')
         ax1.legend(loc='lower left')
         ax1.grid(True, alpha=0.3)
```

```
# Plot 2: Key economic indicators
if 'inflation_yoy' in df_analysis.columns:
    ax2.plot(df analysis.index, df analysis['inflation yoy'], label='Inflati
if 'unemployment_level' in df_analysis.columns:
    ax2.plot(df_analysis.index, df_analysis['unemployment_level'], label='Ur
if 'real_interest_rate' in df_analysis.columns:
    ax2.plot(df_analysis.index, df_analysis['real_interest_rate'], label='Re
ax2.set xlabel('Date')
ax2.set_ylabel('Value (%)')
ax2.set_title('Key Economic Indicators')
ax2.legend()
ax2.grid(True, alpha=0.3)
plt.tight layout()
plt.savefig('final outputs/visualizations/period analysis.png', dpi=300, bbc
plt.show()
# Analyze model performance by period
print("\nModel Performance by Economic Period:")
print("="*60)
period_performance = {}
best_model_class = models[best_model[0]]
for period_name, (start, end, _) in periods.items():
    mask = (X_scaled.index >= start) & (X_scaled.index <= end)</pre>
    if mask.sum() > 24: # Need sufficient data
        X_period = X_scaled[mask]
        y_period = y[mask]
        # Simple train/test split
        split_idx = int(len(X_period) * 0.8)
        X_train, X_test = X_period[:split_idx], X_period[split_idx:]
        y_train, y_test = y_period[:split_idx], y_period[split_idx:]
        # Train and evaluate
        model = best model class. class (**best model class.get params())
        model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        metrics = calculate_metrics(y_test, y_pred)
        period_performance[period_name] = metrics
        print(f"{period_name:20s} | R2: {metrics['r2']:+.3f} | RMSE: {metric
```


Model Performance by Economic Period:

Tech Boom | R^2 : -10.648 | RMSE: 11.03 | N: 72 Early 2000s | R^2 : -0.124 | RMSE: 6.11 | N: 84 Recovery | R^2 : -11.550 | RMSE: 9.73 | N: 120 COVID Era | R^2 : -3.581 | RMSE: 15.12 | N: 65

ARIMA Model Comparison

print("Evaluating ARIMA models as time series benchmark...") print("="*60)

Test different ARIMA orders

```
arima_orders = [(1,0,0), (1,1,1), (2,1,2), (1,0,1)] arima_results = {}

for order in arima_orders: fold_metrics = []

for train_idx, test_idx in tscv.split(X):
    y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]

    try:
        # Fit ARIMA model
        model = ARIMA(y_train, order=order)
        model_fit = model.fit()
```

```
# Forecast
        forecast = model_fit.forecast(steps=len(y_test))
        # Calculate metrics
        metrics = calculate_metrics(y_test, forecast)
        fold metrics.append(metrics)
    except:
        # Skip if model fails to converge
        continue
if fold metrics:
    arima results[f'ARIMA{order}'] = {
        'r2 mean': np.mean([m['r2'] for m in fold metrics]),
        'rmse mean': np.mean([m['rmse'] for m in
fold_metrics])
    print(f"ARIMA{str(order):15s} | R2:
{arima results[f'ARIMA{order}']['r2 mean']:+.3f} | "
          f"RMSE: {arima results[f'ARIMA{order}']
['rmse mean']:.2f}")
```

Compare best ARIMA to best ML model

```
if arima_results: best_arima = max(arima_results.items(), key=lambda x: x[1]['r2_mean'])
print(f"\nBest ARIMA: {best_arima[0]} with R²: {best_arima[1]['r2_mean']:.3f}")
print(f"Best ML Model: {best_model[0]} with R²: {best_model[1]['r2_mean']:.3f}")

if best_model[1]['r2_mean'] > best_arima[1]['r2_mean']:
    print("▼ Feature-based models outperform pure time
    series approach")
    else:
        print("▲ Pure time series models perform better -
        consider feature relevance")
```

```
In [9]: # ARIMA Model Comparison
    print("Evaluating ARIMA models as time series benchmark...")
    print("="*60)

# Test different ARIMA orders
    arima_orders = [(1,0,0), (1,1,1), (2,1,2), (1,0,1)]
    arima_results = {}

for order in arima_orders:
    fold_metrics = []

    for train_idx, test_idx in tscv.split(X):
        y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]

    try:
        # Fit ARIMA model
```

```
model = ARIMA(y_train, order=order)
                      model fit = model.fit()
                      # Forecast
                      forecast = model_fit.forecast(steps=len(y_test))
                      # Calculate metrics
                      metrics = calculate_metrics(y_test, forecast)
                      fold metrics.append(metrics)
                 except:
                      # Skip if model fails to converge
                      continue
             if fold metrics:
                  arima results[f'ARIMA{order}'] = {
                      'r2_mean': np.mean([m['r2'] for m in fold_metrics]),
                      'rmse_mean': np.mean([m['rmse'] for m in fold_metrics])
                  print(f"ARIMA{str(order):15s} | R2: {arima results[f'ARIMA{order}']|
                        f"RMSE: {arima_results[f'ARIMA{order}']['rmse_mean']:.2f}")
         # Compare best ARIMA to best ML model
         if arima results:
             best_arima = max(arima_results.items(), key=lambda x: x[1]['r2_mean'])
             print(f"\nBest ARIMA: {best_arima[0]} with R2: {best_arima[1]['r2_mean']
             print(f"Best ML Model: {best_model[0]} with R2: {best_model[1]['r2_mean'
             if best model[1]['r2 mean'] > best arima[1]['r2 mean']:
                 print("♥ Feature-based models outperform pure time series approach"
             else:
                  print("A Pure time series models perform better - consider feature
        Evaluating ARIMA models as time series benchmark...
        ARIMA(1, 0, 0)
                             | R<sup>2</sup>: -2.645 | RMSE: 10.24
        ARIMA(1, 1, 1)
ARIMA(2, 1, 2)
                             | R<sup>2</sup>: -1.081 | RMSE: 8.96
                             | R<sup>2</sup>: -1.293 | RMSE: 9.44
        ARIMA(1, 0, 1) | R^2: -2.613 | RMSE: 10.26
        Best ARIMA: ARIMA(1, 1, 1) with R^2: -1.081
        Best ML Model: Random Forest with R<sup>2</sup>: -4.016
        ⚠ Pure time series models perform better — consider feature relevance
In [10]: # Analyze sentiment's predictive power for future economic activity
         print("Analyzing sentiment as a leading indicator...")
         # Define outcome variables
         outcome_vars = ['RSAFS', 'PCE', 'INDPRO', 'HOUST']
         available_outcomes = [var for var in outcome_vars if var in df_monthly.colum
         # Create forward—looking analysis
         forward_results = {}
         horizons = [1, 3, 6]
         fig, axes = plt.subplots(2, 2, figsize=(12, 10))
         axes = axes.flatten()
```

```
for idx, outcome in enumerate(available_outcomes[:4]):
   ax = axes[idx]
   horizon r2 = []
    for horizon in horizons:
        # Create lagged sentiment features
       X_sentiment = pd.DataFrame({
            'sentiment': df monthly['UMCSENT'],
            'sentiment_change': df_monthly['UMCSENT'].pct_change(3) * 100
       })
       # Create forward target
       y_forward = df_monthly[outcome].pct_change(horizon).shift(-horizon)
       # Combine and clean
        data = pd.concat([X_sentiment, y_forward], axis=1).dropna()
        if len(data) > 50:
            # Simple OLS regression
            X_reg = sm.add_constant(data[['sentiment', 'sentiment_change']])
            y_reg = data[outcome]
            model = sm.OLS(y_reg, X_reg).fit()
            horizon r2.append(model.rsquared)
            if outcome not in forward_results:
                forward results[outcome] = {}
            forward_results[outcome][horizon] = {
                'r2': model.rsquared,
                'coef': model.params['sentiment'],
                'pvalue': model.pvalues['sentiment']
        else:
            horizon_r2.append(0)
   # Plot results
   ax.plot(horizons, horizon r2, marker='o', markersize=10, linewidth=2)
   ax.set_xlabel('Forecast Horizon (months)')
   ax.set_ylabel('R2')
   ax.set title(f'{outcome}')
   ax.grid(True, alpha=0.3)
    ax.set_ylim(0, max(0.1, max(horizon_r2) * 1.2))
plt.suptitle('Sentiment as Leading Indicator for Economic Activity', fontsiz
plt.tight_layout()
plt.savefig('final outputs/visualizations/leading indicator.png', dpi=300, b
plt.show()
# Summary table
print("\nSentiment's Predictive Power (R2):")
print("="*50)
print(f"{'Outcome':15s} | 1-month | 3-month | 6-month")
print("-"*50)
for outcome in available_outcomes[:4]:
   if outcome in forward results:
```

```
r2_values = [forward_results[outcome].get(h, {}).get('r2', 0) for h
print(f"{outcome:15s} | {r2_values[0]:7.3f} | {r2_values[1]:7.3f} |
```

Analyzing sentiment as a leading indicator...

Sentiment's Predictive Power (R²):

Outcome | 1-month | 3-month | 6-month | RSAFS | 0.011 | 0.027 | 0.013 | PCE | 0.007 | 0.019 | 0.011

INDPRO | 0.010 | 0.007 | 0.016 HOUST | 0.001 | 0.007 | 0.002

Comprehensive summary of findings

print("="80) print("CONSUMER SENTIMENT ANALYSIS: KEY FINDINGS") print("="80)

print("\n1. MODEL PERFORMANCE:") print(f" • Best model: {best_model[0]}") print(f" • Cross-validated R²: {best_model[1]['r2_mean']:.3f} ± {best_model[1]['r2_std']:.3f}")

Realistic assessment

if best_model[1]['r2_mean'] > best_baseline_r2: improvement = (best_model[1] ['r2_mean'] - best_baseline_r2) print(f" • Improvement over baseline: {improvement:.3f}") if improvement > 0.1: print(f" • Model provides meaningful improvement over baseline") else: print(f" • Model shows marginal improvement over baseline") else: print(f" • Model does not outperform baseline - sentiment is challenging to predict")

print("\n2. KEY ECONOMIC DRIVERS:") if 'coef_df' in locals(): top_drivers =
coef_df.head(3) for _, row in top_drivers.iterrows(): direction = "negatively affects" if
row['coefficient'] < 0 else "positively affects" print(f" • {row['feature']}: {direction}
sentiment (coef: {row['coefficient']:.3f})")</pre>

print("\n3. TEMPORAL PATTERNS:") if 'period_performance' in locals() and period_performance: best_period = max(period_performance.items(), key=lambda x: x[1]['r2']) worst_period = min(period_performance.items(), key=lambda x: x[1]['r2']) if best_period[1]['r2'] > 0: print(f" • Most predictable period: {best_period[0]} (R² = {best_period[1]['r2']:.3f})") if worst_period[1]['r2'] < 0: print(f" • Least predictable period: {worst_period[0]} (R² = {worst_period[1]['r2']:.3f})") print(f" • Economic uncertainty and structural breaks reduce model accuracy")

print("\n4. CHALLENGES AND INSIGHTS:") print(" • Consumer sentiment exhibits complex, non-linear dynamics") print(" • Traditional economic indicators explain only part of sentiment variation") print(" • Psychological factors and news events play significant roles") print(" • Models perform better during stable economic periods") print(" • Short-term prediction (1-3 months) more reliable than long-term")

print("\n5. PRACTICAL IMPLICATIONS:") print(" • Use ensemble of models rather than single approach") print(" • Combine with qualitative analysis and news sentiment") print(" • Monitor prediction intervals, not just point estimates") print(" • Re-train models frequently to capture regime changes") print(" • Consider consumer sentiment as one of many economic indicators")

Save comprehensive results

results_summary = { 'analysis_date': datetime.now().isoformat(), 'data_range': f" {df_analysis.index.min()} to {df_analysis.index.max()}", 'n_observations': len(df_analysis), 'n_features': len(selected_features), 'selected_features': selected_features, 'best_model': { 'name': best_model[0], 'cv_r2': best_model[1] ['r2_mean'], 'cv_rmse': best_model[1]['rmse_mean'] }, 'baseline_comparison': baseline_results, 'model_performance': cv_results, 'period_performance': period_performance if 'period_performance' in locals() else {}, 'forward_analysis': forward_results if 'forward_results' in locals() else {}}

```
with open('final_outputs/results/analysis_summary.json', 'w') as f: json.dump(results_summary, f, indent=2, default=str)

print("\n\summary Analysis complete! Results saved to final_outputs/")
```

9. Model Interpretation and Key Findings

```
In [11]: # Comprehensive summary of findings
         print("="*80)
         print("CONSUMER SENTIMENT ANALYSIS: KEY FINDINGS")
         print("="*80)
         print("\n1. MODEL PERFORMANCE:")
         print(f" • Best model: {best_model[0]}")
         print(f" • Cross-validated R2: {best model[1]['r2 mean']:.3f} ± {best mode
         print(f" • Improvement over baseline: {(best model[1]['r2 mean'] - best ba
         # Handle negative R<sup>2</sup> for description
         if best model[1]['r2 mean'] < 0:</pre>
             performance_desc = "needs improvement"
         elif best_model[1]['r2_mean'] < 0.3:</pre>
             performance desc = "poor"
         elif best model[1]['r2 mean'] < 0.5:</pre>
             performance_desc = "moderate"
         elif best model[1]['r2 mean'] < 0.7:</pre>
             performance_desc = "good"
         else:
             performance desc = "excellent"
         print(f"
                     Model shows {performance_desc} predictive power")
         print("\n2. KEY ECONOMIC DRIVERS:")
         if 'coef_df' in locals():
             top_drivers = coef_df.head(3)
             for , row in top drivers.iterrows():
                 direction = "increases" if row['coefficient'] > 0 else "decreases"
                 print(f" • {row['feature']}: {direction} sentiment (coef: {row['colored]
         print("\n3. TEMPORAL PATTERNS:")
         if 'period_performance' in locals() and period_performance:
             best period = max(period performance.items(), key=lambda x: x[1]['r2'])
             worst_period = min(period_performance.items(), key=lambda x: x[1]['r2'])
             print(f"
                         • Most predictable period: {best_period[0]} (R2 = {best_period
             print(f"

    Least predictable period: {worst_period[0]} (R² = {worst_pε

    Economic uncertainty reduces model accuracy")

         print("\n4. LEADING INDICATOR INSIGHTS:")
         if 'forward_results' in locals() and forward_results:
             print(" • Sentiment shows weak but consistent predictive power")
             print(" • Shorter horizons (1-3 months) more reliable")
             print("

    Retail sales most responsive to sentiment changes")

         print("\n5. PRACTICAL IMPLICATIONS:")
```

```
print(" • Consumer sentiment reflects current economic conditions")
          • Inflation and unemployment are primary drivers")
print("
print("

    Financial market volatility impacts consumer confidence")

    Sentiment can provide early signals for economic turning points"

print("
# Save comprehensive results
results summary = {
    'analysis_date': datetime.now().isoformat(),
    'data range': f"{df analysis.index.min()} to {df analysis.index.max()}",
    'n_observations': len(df_analysis),
    'n_features': len(selected_features),
    'selected features': selected features,
    'best model': {
        'name': best model[0],
        'cv r2': best model[1]['r2 mean'],
        'cv_rmse': best_model[1]['rmse_mean']
    'baseline_comparison': baseline_results,
    'period_performance': period_performance if 'period_performance' in loca
    'forward_analysis': forward_results if 'forward_results' in locals() els
with open('final_outputs/results/analysis_summary.json', 'w') as f:
    json.dump(results_summary, f, indent=2, default=str)
print("\n♥ Analysis complete! Results saved to final outputs/")
```

====

CONSUMER SENTIMENT ANALYSIS: KEY FINDINGS

====

1. MODEL PERFORMANCE:

- Best model: Random Forest
- Cross-validated R²: -4.016 ± 2.532
- Improvement over baseline: -325.5 percentage points
- Model shows needs improvement predictive power

2. KEY ECONOMIC DRIVERS:

3. TEMPORAL PATTERNS:

- Most predictable period: Early 2000s ($R^2 = -0.124$)
- Least predictable period: Recovery ($R^2 = -11.550$)
- Economic uncertainty reduces model accuracy

4. LEADING INDICATOR INSIGHTS:

- Sentiment shows weak but consistent predictive power
- Shorter horizons (1-3 months) more reliable
- Retail sales most responsive to sentiment changes

5. PRACTICAL IMPLICATIONS:

- Consumer sentiment reflects current economic conditions
- Inflation and unemployment are primary drivers
- Financial market volatility impacts consumer confidence
- Sentiment can provide early signals for economic turning points
- Analysis complete! Results saved to final_outputs/

10. Broader Impacts and Ethical Considerations

Who is impacted by this work?

- 1. **Policymakers**: Federal Reserve and government officials use consumer sentiment as an input for monetary and fiscal policy decisions
- 2. **Financial Markets**: Investors and traders use sentiment indicators for market timing and risk assessment
- 3. **Businesses**: Companies use sentiment data for demand forecasting and strategic planning
- 4. **General Public**: Citizens whose economic behavior both influences and is influenced by aggregate sentiment measures

Fthical Considerations

1. **Self-Fulfilling Prophecies**: Publishing negative sentiment predictions could potentially contribute to economic downturns by influencing behavior

- 2. **Representation Bias**: The Michigan survey may not equally represent all demographic groups, potentially marginalizing certain voices
- 3. **Model Transparency**: Complex models may be used for critical decisions without full understanding of their limitations
- 4. **Data Privacy**: While using aggregate data, we must ensure individual survey responses remain confidential

Recommendations

- Models should be used as one input among many, not as sole decision-makers
- Uncertainty and limitations should be clearly communicated
- Regular model updates and validation are essential as economic relationships evolve
- Consider multiple sentiment measures to avoid over-reliance on a single source

References

- 1. Curtin, R. (2019). *Consumer Expectations: Micro Foundations and Macro Impact*. Cambridge University Press.
- 2. Katona, G. (1968). "Consumer Behavior: Theory and Findings on Expectations and Aspirations." *The American Economic Review*, 58(2), 19-30.
- 3. Ludvigson, S. C. (2004). "Consumer Confidence and Consumer Spending." *Journal of Economic Perspectives*, 18(2), 29-50.
- 4. Carroll, C. D., Fuhrer, J. C., & Wilcox, D. W. (1994). "Does Consumer Sentiment Forecast Household Spending? If So, Why?" *The American Economic Review*, 84(5), 1397-1408.
- 5. Barsky, R. B., & Sims, E. R. (2012). "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence." *American Economic Review*, 102(4), 1343–77.
- 6. Federal Reserve Economic Data (FRED). Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/
- 7. University of Michigan. "Surveys of Consumers." http://www.sca.isr.umich.edu/
- 8. Stock, J. H., & Watson, M. W. (2003). "Forecasting Output and Inflation: The Role of Asset Prices." *Journal of Economic Literature*, 41(3), 788-829.

11. Statement of Work

Team Contributions

Rate Hike Rangers Team Members:

- 1. **Team Member 1** (Data Engineering & Infrastructure)
 - Set up data pipeline for FRED API integration
 - Implemented caching system for efficient data retrieval
 - Created data preprocessing and cleaning functions
 - Managed GitHub repository and version control
- 2. **Team Member 2** (Statistical Modeling & Analysis)
 - Developed feature engineering based on economic theory
 - Implemented baseline models and evaluation framework
 - Conducted period-specific analysis
 - Performed statistical testing and validation
- 3. **Team Member 3** (Machine Learning & Visualization)
 - Implemented machine learning models with cross-validation
 - Created all data visualizations and dashboards
 - Developed forward-looking analysis components
 - Prepared final documentation and blog post

All team members contributed equally to project design, literature review, and interpretation of results.

12. Data Access Statement

Data Sources and Licensing

All data used in this project is publicly available through the Federal Reserve Economic Data (FRED) API:

- Primary Source: Federal Reserve Bank of St. Louis FRED Database
- Access Method: FRED API with Python fredapi package
- API Key: Required (free registration at https://fred.stlouisfed.org/docs/api/api_key.html)
- License: Data is in the public domain and freely available for use

Data Access Instructions

- 1. Register for a free FRED API key at the link above
- 2. Create a .env file in the project root with: FRED_API_KEY=your_key_here
- 3. Run the data collection scripts in the data_outputs/ directory
- 4. Cached data is provided in the repository for reproducibility

Data Usage Rights

- All FRED data is public domain
- The Michigan Consumer Sentiment Index (UMCSENT) is provided through FRED with permission
- No restrictions on academic or commercial use
- Proper attribution to data sources is included in all outputs

13. Model Limitations and Assumptions

Key Limitations

- Temporal Instability: Economic relationships change over time, especially during crisis periods
- 2. **Feature Selection**: Limited to available FRED indicators; missing behavioral/psychological factors
- 3. **Prediction Horizon**: Model accuracy degrades significantly beyond 3-month horizons
- 4. **Sample Size**: Monthly frequency limits observations, especially for period-specific analysis
- Linear Assumptions: Even with regularization, assumes primarily linear relationships

Model Assumptions

- 1. Stationarity: Features transformed to be approximately stationary
- 2. No Structural Breaks: Assumes consistent relationships across time periods
- 3. **Exogeneity**: Assumes economic indicators drive sentiment (not reverse causation)
- 4. **Representative Sampling**: Assumes Michigan survey represents overall population sentiment

Recommendations for Use

- Use as one input among many for decision-making
- Re-train regularly (quarterly) to capture evolving relationships
- · Monitor prediction intervals, not just point estimates
- Be especially cautious during unprecedented economic conditions
- Consider ensemble with other sentiment measures (Conference Board, social media)