1

NOMBRE Y APELLIDO:

CARRERA:

CONDICIÓN (R o L):

*Para aprobar el examen, debe estar correctamente resuelto en un 50%, lo que equivale a 50 puntos.

*Quienes hayan regularizado la materia durante el segundo cuatrimestre de 2017 tendrán un puntaje **extra** de acuerdo a la notas de los parciales.

*Los alumnos en Condición Regular no deben resolver el ítem (b) del Ejercicio 1: el puntaje del mismo se les sumará automáticamente por revestir esta condición.

<u>Justificar</u> todas las respuestas. No está permitido el uso de calculadoras o dispositivos electrónicos.

Ejercicio 1. (a) (10 pts.) Describir de manera paramétrica el conjunto solución del sistema homogéneo:

$$\begin{cases} x - 3y + 5z = 0 \\ 2x - 3y + z = 0 \\ -y + 3z = 0 \end{cases}$$

(b) (5 pts.) (solo alumnos libres) Indicar cuál es la MERF asociada al sistema anterior.

Ejercicio 2. (10 pts.) Sea
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -2 \\ 0 & 3 & 0 \end{pmatrix}$$
 la matriz

- (a) Calcular el determinante de A.
- (b) Calcular la inversa de A.

Ejercicio 3. (15 pts.) Sea W el subespacio de \mathbb{R}^4 generado por los vectores

$$(1, 1, 0, 0), (-1, 1, -1, 0), (0, 2, -1, 0), (-1, 3, -2, 0).$$

- Describir W implícitamente.
- Dar una base de W y completarla a una base de \mathbb{R}^4 .

Ejercicio 4. (15 pts.) Definir una transformación lineal $T:\mathbb{R}^3 \to \mathbb{P}^4$ que satisfaga

$$T(1,-1,0) = 0$$
, $T(0,1,-1) = x^2$

- (a) Dar la matriz de T en las bases canónicas $\{(1,0,0),(0,1,0),(0,0,1)\}$ y $\{1,x,x^2,x^3\}$. (\mathbb{P}^4 = polinomios de grado < 4).
- (b) Dar una base de la imagen e indicar la dimensión del núcleo.

Ejercicio 5. (15 pts.) Sea
$$A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
.

- (a) Calcular los autovalores de A.
- (b) Decidir si A es diagonalizable.

Ejercicio 6. (15 pts.)

- (a) Sea S un conjunto LI en un espacio vectorial V. Mostrar que S es una base o existe un vector $v \in V$ tal que $S \cup \{v\}$ es LI.
- (b) Sea $T:V\to W$ un isomorfismo. Probar que la inversa de T es lineal y es un isomorfismo.
- Ejercicio 7. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar o dar un contraejemplo según el caso.
 - (a) Sea A una matriz $n \times n$ invertible, I la matriz identidad. Entonces A+I es invertible o A-I es invertible.
 - (b) Sea V un espacio vectorial y $U\subset V$ un subespacio. Entonces $W=\{v\in V:v\notin U\}\cup\{0\}$ es un subespacio de V.
 - (c) Sean $T, S: V \to V$ dos transformaciones lineales. Si c es un autovalor de T y d es un autovalor de S, entonces c+d es un autovalor de T+S.

Ejercicio	1	2	3	4	5	6	7
Puntaje							

P. Extra	Total