H15 数学選択 0.1

 $|D|(1)(p) = \mathcal{P} \subset J \subsetneq R$ なる R のイデアル J を任意にとる. PID であるから J = (d) とかける. $R \neq (d)$ より d は単元ではない. p = dk なる $k \in R$ が存在する. p は既約元であるから d,k のいずれかは単元である, よってkは単元. このとき(d) = (p)となるからPは極大イデアル.

(2) (a) Z は Euclid 整域であるから PID

 $I \subset \mathbb{Z}$ について d を I に属す最小の正整数とする. $a \in I$ について a = qd + r $(0 \le r < d)$ となる q, r が 存在する. $a-qd \in I$ より $r \in I$. d の最小性から r=0 である. よって $a \in (d)$ より I=(d) である.

 $(b)\mathbb{F}_p$ は体であるから, $\mathbb{F}_p[x]$ は体上の 1 変数多項式環だから PID

 $I \subset \mathbb{F}_p[x]$ について f(x) を I に属す次数最小の多項式のうちの一つとする. $g(x) \in I$ について g(x) = f(x)q(x) + r(x) $(0 \le \deg r(x) < \deg f(x))$ とできる. g(x) - f(x)q(x) = r(x) より $r(x) \in I$ である から r(x) = 0 である. よって I = (f(x)) である.

(c) \mathbb{Z} は体でないから $\mathbb{Z}[x]$ は PID でない.

I=(2,x) を考えると 2f(x)+xq(x)=1 なら 2f(0)=1 となり矛盾. よって $I\neq\mathbb{Z}[x]$ である. I=(a(x))とすると x = a(x) f(x) とできるが x は既約元であるから f(x) は単元である。 よって $f(x) = \pm 1$ であるが このとき $a(x) = \pm x$ となり $2 \notin (a(x))$ となるから矛盾. よって PID でない. 一般に K[x] が PID \Leftrightarrow K が体.

 $\boxed{ ext{E} }$ (1)1 列目のベクトルの選び方が p^2-1 通り,正則になるためには 2 列目が 1 列目の定数倍でなければ よいから $p^2 - p$ 通り. よって $|G| = (p^2 - 1)(p^2 - p)$ 通り.

 $(2)(x-\alpha)(x-\beta)$ と書ける多項式の数を考える.異なる α,β を選ぶ場合は p(p-1)/2 通り. $\alpha=\beta$ を選ぶ 場合はp 通り. よってp(p-1)/2+p=p(p+1)/2 通り. モニックな多項式の総数は p^2 通りであるから既約 なモニック多項式の総数は $p^2 - p(p+1)/2 = p(p-1)/2$ 通り.

$$(3)A = \begin{pmatrix} 0 & 1 \\ -b & a \end{pmatrix}$$
 とすれば固有多項式は $\det(xI - A) = x^2 + ax + b$ である. $B = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ とする. $BA = \begin{pmatrix} -by & x + ay \\ -bw & z + aw \end{pmatrix} = \begin{pmatrix} z & w \\ -bx + az & -by + aw \end{pmatrix} = AB$ なら $z = -by, w = x + ay$ である. 逆に

る.
$$BA = \begin{pmatrix} -by & x + ay \\ -bw & z + aw \end{pmatrix} = \begin{pmatrix} z & w \\ -bx + az & -by + aw \end{pmatrix} = AB$$
 なら $z = -by, w = x + ay$ である. 逆に

z=-by, w=x+ay なら BA=AB である。B は正則であるから $egin{pmatrix} x \ z \end{pmatrix}=kegin{pmatrix} y \ w \end{pmatrix}$ となる $k\in\mathbb{F}_p$ が存在しな

い. 存在するとき, -by = z = kw = kky + kay より $y(k^2 + ak + b) = 0$ となる. $x^2 + ax + b$ が既約であるか ら $k^2 + ak + b = 0$ となる k は存在しない. よって y = 0 である.

以上より $y \neq 0$ 以外の (x,y) 毎に AB = BA を満たす B が存在する. したがって $|C(A)| = p^2 - 1$ である.

一般に次が成り立つ. K を体として $A \in M_n(K)$ とする. A の最小多項式が n 次なら $C_{M_n(K)}(A) = K[A]$ である. さらに A が既約なら K[A] は体である.

前半の主張は単因子論を用いて $\{v,Av,\cdots,A^{n-1}v\}$ が K^n の基底となる事を示して, $Bv=f\cdot v$ とすれ

ば Bu=f(A)u $(u\in K^n)$ となることを示す。後半の主張は $\varphi\colon K[x]\to M_n(K); f(x)\mapsto f(A)$ とすれば $K[x]/(p(x))\cong K[A]$ となり p(x) が既約なら K[x]/(p(x)) は体であるから K[A] も体である。 (p(x) は最小 多項式)

つまり (3) の答えは $|K[A]^{\times}| = p^2 - 1$ である.

(4) $A\in GL_2(\mathbb{F}_p)$ の固有多項式が既約な x^2+ax+b だとする.A は固有ベクトルを持たないから $0\neq v\in \mathbb{F}_p^2$ について $\{v,Av\}$ は基底となる.この基底に関して A の表現行列は $\begin{pmatrix} 0 & -b \\ 1 & -a \end{pmatrix}$ である.よって固有多項式が x^2+ax+b であるような行列は全て共役である.よって既約な固有方程式を持つ行列が含まれる共役類は既 約な方程式の数に等しい.すなわち p(p-1)/2 通り.

可約な場合はジョルダン標準形と共役である.ジョルダン標準形の形は $\begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}$, $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$, $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ のいずれかである.これらの異なる共役類の数は $(p-1)+(p-1)+((p-1)^2-(p-1))/2=(p+2)(p-1)/2$ である.

以上より共役類の数は $p(p-1)/2 + (p+2)(p-1)/2 = p^2 - 1$ である.