University of Southern Denmark

Master Thesis

Classification of terrain based on proprioception sensing for multi-legged walking robot

Author:
Bc. Martin Bulín

Supervisor:
Dr. Tomas Kulvicius

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

in the

Embodied AI & Neurorobotics Lab Faculty of Engineering

April 22, 2016

Declaration of Authorship

I, Bc. Martin Bulín, declare that this thesis titled, "Classification of terrain based on proprioception sensing for multi-legged walking robot" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

 $"Favorite\ quotation."$

Quotation Author

UNIVERSITY OF SOUTHERN DENMARK

Abstract

Faculty of Engineering Embodied AI & Neurorobotics Lab

Master of Science

Classification of terrain based on proprioception sensing for multi-legged walking robot

by Bc. Martin Bulín

The abstract is a concise and accurate summary of the research described in the document. It states the problem, the methods of investigation, and the general conclusions, and should not contain tables, graphs, complex equations, or illustrations. There is a single abstract for the entire work, and it must not exceed 350 words in length....

Acknowledgements

Students may include a brief statement acknowledging the contribution to their research and studies from various sources, including (but not limited to)

Their research supervisor and committee, Funding agencies, Fellow students, and Family.

The acknowledgments and the people to thank go here, don't forget to include your project advisor...

Contents

Al	bstract	iii
1	Introduction 1.1 Motivation and Research Questions	1 1 1 1
2	State of the Art 2.1 Machine Learning and Classification	2 2 2 2 2
3	Master Thesis Objectives 3.1 Motivation for Chosen Methods	3 3
4	Neural Network Implementation 4.1 Structural Elements	4 4 4 5 5
5	Terrain Classification for AMOS II 5.1 Experimental Environment Specification 5.1.1 Hexapod Robot AMOS II 5.1.2 LPZ Robots Simulation 5.2 Virtual Terrains Determination 5.3 Net Input Fixation 5.4 Data Acquisition 5.4.1 Terrain Noise 5.5 Data Processing 5.5.1 Signal Noise	6 6 6 6 7 8 8 8 8 8
	5.6 Training and Classification	8 8
6	Experimental Evaluation 6.1 Discussion	9 10
7	Conclussion 7.1 Future Work	11 11
Bi	ibliography	12

14

A Code Documentation

List of Figures

List of Tables

List of Algorithms and Code Parts

F 1	0.44		1		,
Ð. I	Setting a	, terram groun	a in main.cob)	

Introduction

The thesis must clearly state its theme, hypotheses and/or goals (sometimes called "the research question(s)"), and provide sufficient background information to enable a non-specialist researcher to understand them. It must contain a thorough review of relevant literature, perhaps in a separate chapter.

1-2 pages intro

1.1 Motivation and Research Questions

1 page

1.2 Hypotheses

1/2 page

1.3 Thesis Outline

1/2 page

State of the Art

chapter intro

2.1 Machine Learning and Classification

Machine Learning and Classification in general, different classifiers (SVM, k-NN, RandomForest, Bayes...)

2-3 pages

2.2 Introduction to Neural Networks

neural networks from the beginning, network types, principles its usage for classification

4-5 pages

2.2.1 Pruning Algorithms

based on the paper Pruning Algorithms - A Survey: a summary of what has been already done, principles 1-2 pages

2.3 Terrain Classification for Legged Robots

based on the literature : a summary of what has been already done in terrain classification, summary of different methods (visual, laser, haptic, proprioception, ...)

5-8 pages

Master Thesis Objectives

objectives (goals) 1/2 page

3.1 Motivation for Chosen Methods

motivation for using proprioception sensing motivation for using a neural net as a classifier

1/2 page

Neural Network Implementation

The account of the research should be presented in a manner suitable for the field. It should be complete, systematic, and sufficiently detailed to enable a reader to understand how the data were gathered and how to apply similar methods in another study. Notation and formatting must be consistent throughout the thesis, including units of measure, abbreviations, and the numbering scheme for tables, figures, footnotes, and citations. One or more chapters may consist of material published (or submitted for publication) elsewhere. See "Including Published Material in a Thesis or Dissertation" for details.

chapter intro
overall kitt_nn framework diagram
1 page

4.1 Structural Elements

kitt_net.py, kitt_neuron.py, kitt_synapse.py structure diagram 1-2 pages

4.2 Learning Algorithm

Backpropagation implementation in python algorithm 1-2 pages

4.3 Graphical User Interface

GUI description and its usage printscreen

1 page

4.4 Pruning Algorithm

This is the novelty of the work, detailed description algorithm

2 pages

4.4.1 General Validation

Information on the statistics and form of evaluation

XOR Dataset

evaluation on XOR dataset

MNIST Dataset

evaluation on MNIST dataset further MNIST analysis figures, tables 4-5 pages

Terrain Classification for AMOS II

The account of the research should be presented in a manner suitable for the field. It should be complete, systematic, and sufficiently detailed to enable a reader to understand how the data were gathered and how to apply similar methods in another study. Notation and formatting must be consistent throughout the thesis, including units of measure, abbreviations, and the numbering scheme for tables, figures, footnotes, and citations. One or more chapters may consist of material published (or submitted for publication) elsewhere. See "Including Published Material in a Thesis or Dissertation" for details.

chapter intro 1/2 page

5.1 Experimental Environment Specification

target machine description

3-5 pages

5.1.1 Hexapod Robot AMOS II

hardware, hexapod info

5.1.2 LPZ Robots Simulation

simulation info

5.2 Virtual Terrains Determination

Since the research is based on the simulation only, the goal is to design an authentical virtual environment. For this purpose various terrain types need to be virtually imitated.

Luckily, the **LpzRobots** AMOS II simulation supports some terrain settings. In the main simulation file (main.cpp - see A), a 'rough terrain' substance is being initialized and passed through a handle to a TerrainGround constructor.

Part of Code 5.1: Setting a terrain ground in main.cpp

```
Substance roughterrainSubstance(terrain_roughness, terrain_slip, terrain_hardness, terrain_elasticity);

oodeHandle.substance = roughterrainSubstance;

TerrainGround* terrainground = new TerrainGround(oodeHandle, osgHandle.changeColor(terrain_color), "rough1.ppm", "", 20, 25, terrain_height);
```

As part of code 5.1 shows, the terrain substance is defined by four parameters: roughness, slipperiness, hardness and elasticity.

Besides the substance handle, the TerrainGround constructor takes a few more arguments.

"rough1.ppm": an image in the .ppm format, a lowest common denominator color image file format (*PPM Format Specification*), a terrain segmentation is defined by this image

terrain_color: simulation ground color

20 : walking area x-size

25 : walking area y-size

terrain_height: maximum terrain height

Terrain qualities

All parameters connected with the simulation ground have been listed. Some of them are then picked up and being called *terrain qualities*, as they define a terrain type.

It has been decided to keep the .ppm image fixed and so rough1.ppm is used for every terrain type. Also the walking area size is set to 20x25, which is big enough. The color is variable for different terrain types, however, besides the simulation graphics it does not have any effect on results.

Number of identifiable virtual terrain types is the first parameter to be determined.

2 pages

5.3 Net Input Fixation

Determination of sensors to be used and its transformation into a feature vector

2-3 pages

5.4 Data Acquisition

Description of how the data has been acquired from the simulation and saved as .txt, adding terrain noise

2 pages

5.4.1 Terrain Noise

5.5 Data Processing

Cleaning the data (deleting incomplete ones), adding signal noise, transformation into datasets, splitting into training-validation-testing sets

2-3 pages

5.5.1 Signal Noise

5.6 Training and Classification

Neural net training with several parameters and comparison with training with scikit-neuralnetwork library

2-3 pages

5.6.1 Scikit-neuralnetwork library

brief description of the library and its usage 1/2 pages

5.7 Overall process summary

diagram of the overall work

1 page

Experimental Evaluation

The account of the research should be presented in a manner suitable for the field. It should be complete, systematic, and sufficiently detailed to enable a reader to understand how the data were gathered and how to apply similar methods in another study. Notation and formatting must be consistent throughout the thesis, including units of measure, abbreviations, and the numbering scheme for tables, figures, footnotes, and citations. One or more chapters may consist of material published (or submitted for publication) elsewhere. See "Including Published Material in a Thesis or Dissertation" for details.

evaluation (tables and figures) of classification:

- various terrain noise standard deviation values
- various signal noise standard deviation values
- various sensors on network input (only foot, only angle...)
- various timesteps used as one sample (-> time needed for detection)
- various number of detected terrains as outputs
- various network structures
- various training parameters (epochs, learning rate, batch size...)

evaluation of neural nets as a classifier:

• comparison to other classifiers on the same data, classifiers are ready provided by sknn library

evaluation of proprioception sensing against other methods (visual, haptic, laser...):

• comparison to the results from the literature

evaluation of the pruning algorithm:

- various starting structures, ends up with the same minimal-optimal structure?
- various noise types, same minimal structure?
- speed comparisons of the fully-connected vs. pruned structure
- further analysis:
 - which sensors are redundant/crucial

- which sensors are important for which terrain
- comments on the minimal structure and benefits of having it $10\mbox{-}15$ pages (many figures, tables)

6.1 Discussion

2-3 pages, maybe together with the figures and tables

Conclussion

In this section the student must demonstrate his/her mastery of the field and describe the work's overall contribution to the broader discipline in context. A strong conclusion includes the following:

Conclusions regarding the goals or hypotheses presented in the Introduction, Reflective analysis of the research and its conclusions in light of current knowledge in the field, Comments on the significance and contribution of the research reported, Comments on strengths and limitations of the research, Discussion of any potential applications of the research findings, and A description of possible future research directions, drawing on the work reported. A submission's success in addressing the expectations above is appropriately judged by an expert in the relevant discipline. Students should rely on their research supervisors and committee members for guidance. Doctoral students should also take into account the expectations articulated in the University's "Instructions for Preparing the External Examiner's Report".

2-3 pages

7.1 Future Work

All references:

(Zenker et al., 2013) and (Kesper et al., 2012) and (Xiong, Worgotter, and Manoonpong, 2014) and (Mou and Kleiner, 2010) and (Coyle, 2010) and (Hoepflinger et al., 2010) and (Ahmed, 2015) and (Ordonez et al., 2013) and (Bermudez et al., 2012) and (Reed, 1993) and (Spenneberg and Kirchner, 2007) and (Belter, 2011)

Bibliography

- [Ree93] R. Reed. "Pruning Algorithms A Survey". In: *IEEE Transactions on Neural Networks (Volume:4, Issue: 5)* (Sept. 1993), pp. 740-747. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=248452.
- [SK07] D. Spenneberg and F. Kirchner. The Bio-Inspired SCORPION Robot: Design, Control and Lessons Learned, Climbing and Walking Robots: towards New Applications. ISBN 978-3-902613-16-5, 2007.
- [Coy10] E. Coyle. "Fundamentals and Methods of Terrain Classification Using Proprioceptive Sensors". PhD thesis. Florida State University Tallahassee, 2010.
- [Hoe+10] M. A. Hoepflinger et al. "Haptic terrain classification for legged robots". In: Robotics and Automation (ICRA), IEEE International Conference 3 (May 2010), pp. 2828-2833. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5509309.
- [MK10] W. Mou and A. Kleiner. "Online learning terrain classification for adaptive velocity control". In: Safety Security and Rescue Robotics 26 (July 2010), pp. 1-7. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5981563.
- [Bel11] Dominik Belter. "Gait control of the six-legged robot on a rough terrain using computational intelligence learning and optimization methods". PhD thesis. Poznan University of Technology, Nov. 2011.
- [Ber+12] F. L. G. Bermudez et al. "Performance analysis and terrain classification for a legged robot over rough terrain". In: IEEE/RSJ International Conference on Intelligent Robots and Systems 7 (Dec. 2012). URL: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6386243.
- [Kes+12] P. Kesper et al. "Obstacle-Gap Detection and Terrain Classification of Walking Robots based on a 2D Laser Range Finder". In: Nature-inspired Mobile Robotics (2012), pp. 419-426. URL: http://manoonpong.com/paper/2013/CLAWAR2013_Kesper.pdf.
- [Ord+13] C. Ordonez et al. "Terrain identification for RHex-type robots". In: *Unmanned Systems Technology XV* 17 (May 2013). URL: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1689675.
- [Zen+13] S. Zenker et al. "Visual terrain classification for selecting energy efficient gaits of a hexapod robot". In: *International Conference on Advanced Intelligent Mechatronics* 12 (July 2013),

BIBLIOGRAPHY 13

pp. 577-584. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6584154&tag=1.

- [XWM14] X. Xiong, F. Worgotter, and P. Manoonpong. "Neuromechanical control for hexapedal robot walking on challenging surfaces and surface classification". In: *Robotics and Autonomous Systems* 7 (Aug. 2014), pp. 1777–1790. URL: www.elsevier.com/locate/robot.
- [Ahm15] Mohammed Nour Abdel Gwad Ahmed. "An Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data". PhD thesis. University of Bremen, June 2015.
- [Mis] PPM Format Specification. http://netpbm.sourceforge.net/doc/ppm.html. Updated: 02 November 2013.

Appendix A

Code Documentation

Write your Appendix content here.

Appendices must be limited to supporting material genuinely subsidiary to the main argument of the work. They must only include material that is referred to in the document.

Material suitable for inclusion in appendices includes the following:

Additional details of methodology and/or data Diagrams of specialized equipment developed Copies of questionnaires or surveys used in the research Do not include copies of the Ethics Certificates in the Appendices.