* Exercice 1 (Cours)

Rappeler et prouver le résultat concernant les séries produit de Cauchy.

* Exercice 2 (Cours)

Rappeler et prouver la propriété multiplicative de l'exponentielle.

* Exercice 3 (Cours)

Rappeler et prouver la propriété concernant la dérivabilité de l'exponentielle.

* Exercice 4

Soit $q \in \mathbb{C}$ tel que |q| < 1. La famille

$$(q^{|k|})_{k\in\mathbb{Z}}$$

est-elle sommable? Quelle est sa somme?

* EXERCICE 5

Déterminer si les familles suivantes sont sommables, et si oui, déterminer leur somme.

a)
$$\left(\frac{1}{x^2}\right)_{x \in \mathbb{Q} \cap [1, +\infty[}$$
 b) $(a_{n,p})_{(n,p) \in \mathbb{N}^2}$ avec $a_{n,p} = \frac{1}{n^2 - p^2}$ si $n \neq p$ et $a_{n,n} = 0$

* Exercice 6

Soient $(a, b) \in \mathbb{C}^2$ tels que |a| < 1, |b| < 1 et $a \neq b$.

1. Prouver que

$$\frac{1}{(1-a)(1-b)} = \sum_{n=0}^{+\infty} \frac{a^{n+1} - b^{n+1}}{a-b}.$$

2. Prouver que

$$\frac{1}{(1-a)^2} = \sum_{n=0}^{+\infty} (n+1)a^n.$$

* Exercice 7

Pour $n \geq 0$, on pose

$$w_n = 2^{-n} \sum_{k=0}^n \frac{4^k}{k!}.$$

- 1. Montrer que la série de terme général w_n converge.
- 2. Calculer sa somme en utilisant le produit d'une série géométrique par une autre série classique.

* EXERCICE 8

Démontrer l'existence de la somme suivante et la calculer.

$$S = \sum_{(p,q) \in \mathbb{N} \times \mathbb{N}^*} \frac{1}{(p+q^2)(p+q^2+1)}.$$

* Exercice 9

Démontrer l'existence de la somme suivante et la calculer.

$$R = \sum_{n=0}^{+\infty} \sum_{k=n}^{+\infty} \frac{1}{k!}.$$

* Exercice 10

Soit $x \in]-1,1[$.

- 1. Démontrer que la famille $(x^{kl})_{(k,l)\in(\mathbb{N}^*)^2}$ est sommable.
- 2. En déduire que

$$\sum_{k=1}^{+\infty} \frac{x^k}{1 - x^k} = \sum_{n=1}^{+\infty} d(n)x^n$$

où d(n) est le nombre de diviseurs positifs de n.

* Exercice 11

On pose, pour $(m, n) \in \mathbb{N}^* \times \mathbb{N}^*$,

$$a_{m,n} = \frac{1}{(m+n)^{\alpha}}$$

où $\alpha \in \mathbb{R}$ est un paramètre donné. Étudier la sommabilité de la famille $(a_{m,n})_{(m,n)\in\mathbb{N}^*\times\mathbb{N}^*}$.

* EXERCICE 12

Soit $(a_p)_{p\geq 1}$ une suite de nombres complexes telle que la série $\sum_p a_p$ est absolument convergente. On pose $I=\mathbb{N}^*\times\mathbb{N}^*$ et pour $(n,p)\in I$, on pose

$$u_{n,p} = \frac{p}{n(n+1)} a_p$$
 si $p \le n$, $u_{n,p} = 0$ sinon.

Démontrer que la famille $(u_{n,p})_{(n,p)\in I}$ est sommable et calculer sa somme.