Examenul de bacalaureat național 2014 Proba E. c) Matematică M tehnologic

Barem de evaluare și de notare

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte) 2p **3p** 2x-3 = x+1**3p** 2p 3. 2p $x_1 = -2$ și $x_2 = 2$, care verifică ecuația **3p** 4. $\cdot 120 = 12$ **3p** 100 După scumpire prețul imprimantei este 120+12=132 de lei 2p AB = 3, BC = 4 si AC = 53p $P_{\Delta ABC} = 3 + 4 + 5 = 12$ 2p 6. **3p**

SUBIECTUL al II-lea (30 de puncte)

	, <u> </u>	
1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} =$	2p
	$=1 \cdot 0 - 1 \cdot 2 = -2$	3 p
b)	$A+B=\begin{pmatrix}b+1&b+2\\1&1\end{pmatrix},\ AB=\begin{pmatrix}b&b+2\\b&b\end{pmatrix},\ AB+C=\begin{pmatrix}b+1&b+2\\b&b\end{pmatrix}$	3p
	$ \begin{pmatrix} b+1 & b+2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} b+1 & b+2 \\ b & b \end{pmatrix} \Leftrightarrow b=1 $	2p
c)	$\det(B+2C) = \begin{vmatrix} b+2 & b \\ 0 & 1 \end{vmatrix} = b+2$	3 p
	$\det B = b \Rightarrow \det B - \det A = b + 2 \Rightarrow \det (B + 2C) = \det B - \det A \text{ pentru orice număr real } b$	2 p
2.a)	$f(1) = 1^3 - 4 \cdot 1^2 + 1 + 2 =$	3p
	=1-4+3=0	2p
b)	Câtul este $X^2 - 3X - 2$	3p
	Restul este 0	2p
c)	$x_1 + x_2 + x_3 = 4$, $x_1x_2 + x_2x_3 + x_1x_3 = 1$, $x_1x_2x_3 = -2$	3 p
	$\left(x_1 + x_2 + x_3\right) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = \frac{\left(x_1 + x_2 + x_3\right) \left(x_1 x_2 + x_2 x_3 + x_1 x_3\right)}{x_1 x_2 x_3} = -2$	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left(x^2 - \ln x \right) =$	2p
	$=1^2 - \ln 1 = 1$	3 p
b)	$f'(x) = \left(x^2 - \ln x\right)' =$	2p
	$= (x^2)' - (\ln x)' = 2x - \frac{1}{x}, \ x \in (0, +\infty)$	3p
c)	$f''(x) = \left(2x\right)' - \left(\frac{1}{x}\right)' =$	2p
	= $2 + \frac{1}{x^2} > 0$ pentru orice $x \in (0, +\infty)$, deci funcția f este convexă pe intervalul $(0, +\infty)$	3р
2.a)	$\int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{1} =$	3p
	$=\frac{1}{3}-0=\frac{1}{3}$	2p
b)	$\mathcal{A} = \int_{0}^{1} \left \frac{x^{2}}{x+1} \right dx = \int_{0}^{1} \frac{x^{2}}{x+1} dx = \int_{0}^{1} \left(x - 1 + \frac{1}{x+1} \right) dx =$	3р
	$= \left(\frac{x^2}{2} - x + \ln(x+1)\right) \Big _{0}^{1} = \ln 2 - \frac{1}{2}$	2p
c)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$	2p
	$F'(x) = \frac{x^2}{x+1} \ge 0$ pentru orice $x \in (-1, +\infty)$, deci funcția F este crescătore pe $(-1, +\infty)$	3p