Homework Assignment 2

Due Wednesday April 11

- 1. Expand each vector \mathbf{u} in terms of the orthogonal basis $e_1 = (2, 1, 3)$, $e_2 = (1, -2, 0)$, $e_3 = (6, 3, -5)$.
 - $\mathbf{u} = (9, -2, 4)$
 - $\mathbf{u} = (0, 1, 5)$
 - $\mathbf{u} = (0, 5, 0)$
 - $\mathbf{u} = (1, 0, 0)$
 - $\mathbf{u} = (3, -1, 1)$
 - $\mathbf{u} = (1, 2, 3)$
- 2. Expand each of the **u** vectors in Exercise 1 in terms of the orthonormal basis $\hat{e_1}$, $\hat{e_2}$, $\hat{e_3}$ of R^3 , where $\hat{e_1}$, $\hat{e_2}$, $\hat{e_3}$ are normalized versions of e_1 , e_2 , e_3 given in Exercise 1.
- 3. In each case use the Gram-Schmidt process to obtain an orthonormal set from the given linearly independent set.
 - (a) (4,0), (2,1)
 - (b) (1,-2), (3,4)
 - (c) (1,1,0), (2,-1,1), (1,0,3)
 - (d) (1,1,1), (2,0,-1)
 - (e) (1,1,1), (1,0,1), (1,1,0)
- 4. In \mathbb{R}^5 find the best approximation to the given **u** vector within $span(e_1, e_2, e_3)$,

$$e_1 = \frac{1}{\sqrt{5}}(1, 0, 2, 0, 0), \quad e_2 = \frac{1}{\sqrt{6}}(2, 0, -1, 0, 1), \quad e_3 = (0, 0, 0, 1, 0)$$

and the norm of the error vector.

- (3, -2, 0, 0, 5)
- (3,0,1,4,1)
- (0, 2, 0, 0, 0)

5. In \mathbb{R}^4 , let

$$e_1 = \frac{1}{\sqrt{3}}(1, 1, 0, -1),$$
 $e_2 = \frac{1}{\sqrt{3}}(1, -1, -1, 0),$ $e_3 = \frac{1}{\sqrt{3}}(1, 0, 1, 1),$ $e_4 = \frac{1}{\sqrt{3}}(0, 1, -1, 1)$

Find the best approximation to $\mathbf{u}=(4,-2,1,6)$ within $span\{e_1\}$, $span\{e_1,e_2\}$, $span\{e_1,e_2,e_3\}$, and $span\{e_1,e_2,e_3,e_4\}$ and in each case compute the norm of the error vector.

6. Prove the Bessel inequality in \mathbb{R}^n . Let $\{e_1, e_2, \dots, e_k\}$ be orthogonormal set prove:

$$\sum_{i=1}^k (\mathbf{u}, e_i) \le \|\mathbf{u}\|^2$$