CLASE 9 - 30/10/23 - Protocolo ATM

- Modo de Transferencia Asincrónico
- Resultado de nuevas necesidades de tráfico. Distintos tamaños de trama en los protocolos entonces el router no puede predecir nada.
- o Permiten velocidades binarias hasta 15 TB (por segundo) sin problemas.
- La PDU es la celda o célula, son de tamaño fijo y pequeñas (53 b = 5 header/encabezado + 48 de info/payload).
- o Protocolo de capa 2.
- Permiten transportar todo tipo de servicio (voz, video, datos, combinaciones).
- Usa capas de adaptación AAL para integrar servicios.
- o Permite conmutación rápida con muy bajos retardos.
- o Reducción de funcionalidades en los nodos y delegación de funciones a los extremos.
- Protocolo orientado a la conexión.
- o Normalizado por la UIT y por el Forum ATM.
- o Cuando no hay nada transmitiendo, transmite celdas vacías.
- Entran flujos digitales a distintas velocidades en el módulo ATM y sale un flujo a una velocidad.
- Características:
 - Utiliza celdas (tamaño fijo)
 - Servicio orientado a conexión
 - o Tecnología WAN utilizada también en LANe, a diferencia de X.25 o FR.

Celda ATM

Tamaño fijo: procesamiento sencillo.

Tamaño pequeño: menor retardo, memorias más pequeñas.

- <u>Encabezamiento</u>: información de enrutamiento y prioridad.
 Identificación de celdas de un mismo camino.
- <u>Carga</u>: video, voz o datos (transparente de extremo a extremo).

Sincronismo

- Lo que tiene de **sincrónico** ATM es que las celdas se transportan sobre canales sincrónicos.
- Asincrónico por:
 - No están sincronizadas con respecto a ningún usuario.
 - Las posiciones en el flujo se asignan por demanda (tráfico por ráfagas).

Caminos y canales virtuales

- VC (Canal Virtual): fuente con uno o más destinos.
- <u>VP</u> (Camino Virtual): VC con los mismos destinos. Agrupa VC en una misma unidad facilitando la gestión y la conmutación.
- <u>Identificadores</u>: los VPI no se pueden repetir. Los VCI se pueden repetir pero no dentro de un mismo VP.

Arquitectura ATM pura

- El <u>conmutador</u> se conecta a las estaciones igual que un conmutador Ethernet (switch).
- Cada <u>estación</u> utiliza un Identificador de Camino Virtual (VPI) y un Identificador de Circuito o Canal Virtual (VCI).
- El sistema necesita construirse desde la base, las redes LAN existentes no pueden adaptarse en una ATM pura.

Arquitectura de protocolos ATM

Planos de operación:

- <u>De usuario</u>: transferencia de info usuario y controles asociados (de flujo y errores).
- <u>De control</u>: controles de llamada y de conexión.
- De gestión:
 - o De plano: coordinación entre planos
 - o De capa: recursos y parámetros de protocolos.

Capas y subcapas de ATM

Funciones de las Capas y Subcapas de ATM:

- Convergencia: independiza la pila de protocolos que está debajo de ella, de las capas superiores. Identifica los mensajes, recupera la señal de clock.
- Segmentación y reensamblaje: segmentar la información de las capas superiores. Permite manejar cuadros de mayor longitud que las celdas. Adapta la info a los 48 bytes, acorde a la clase de servicio que se trate. Reensamblado.
- **ATM:** multiplexión. Armado de celdas. Introducción y extracción del header. Control de congestiones y ruteos (flujo) en UNI.
- Convergencia de tx: independiza la velocidad del flujo de celdas de la interfaz física. Todos los distintos tipos de datos van por el mismo canal.
- Medio físico: controla las funciones que dependen del medio físico, tipos de cable, conectores, etc. Funciones de bit. Basada en SDH.

Clases de servicios ATM (del más caro al más barato)

(del mas sare armas sare)					
Servicio	Velocidad	Acrónimo	Ejemplo		
De tiempo real	Constante	CBR constant bit rate	Circuito E1		
	Variable	Rt-VBR variable bit rate	Videoconferencia		
De tiempo no real	Variable	Nrt-VBR no real-time	Correo electrónico		
			Multimedia		
	Disponible	ABR available bit rate	Consultas web		

		Tx ráfagas con
		conocimiento de AB
No especificada	UBR (la que más se	FTP 2do plano
	ofrece hoy)	IP (best effort)

Capas AAL según requerimientos de servicios

Requerimiento	Clase A	Clase B	Clase C	Clase D
Tiempo entre	Requerido (sensible a demoras)		No requerido (no sensible a	
fuente y destino	Rt		demoras)	
		Nrt		Irt
Bit rate	Constante	Variable		
	CBR	rt-VBR	nrt-VBR	
Modo de	Orientado a la conexión			No orientado a la
conexión				conexión

- AAL 1: audio y video sin compresión.
- AAL 2: video comprimido.
- AAL 3 / AAL 4: datos en general.
- AAL 5: servicio con menor overhead y mejor detección de errores (emulación LAN, FR, ATM, IP sobre ATM).

Encabezamiento de celda

- → UNI: interfase red-usuario.
- → NNI: interfase red-red.
- → GFC: control de flujo genérico.
- → PT: tipo de carga útil (de usuario o de gestión de red/mantenimiento).
- → CLP: prioridad de pérdida de celda (0=alta, 1=puede descartar la red).
- → HEC: control de errores de cabecera (detección y a veces corrección error simple usando un polimonio).

<u>Mapeo de celdas ATM</u>: forma en que las celdas son introducidas en contenedores normalizados:

- SDH: jerarquía digital sincrónica (visto en comunicaciones)
- PDH : jerarquía digital casi sincrónica (visto en comunicaciones)
- Estructura de celdas

Comparación de tecnologías

Comparación de tecnor	Frame relay	ATM
Niveles de protocolos	•	Medio físico, ATM, AAL
	OSI	
Vel bin máx	2 Mbps o más	622 Mbps y más
Control de errores	Nodos intermedios rtx.	Solo de extremo a extremo hay
	Extremos detectan. Capas	control de header de celda (detecta
	superiores corrigen.	y puede corregir a veces). Capas
	LAP-F y LAP-D (HDLC)	superiores corrigen.
Soporte comunicación	ISDN	B-ISDN
	Mejor calidad	Alta calidad
PDU	Cuadro	Celda o célula
Longitud de la PDU	Grande y variable (1600/4096	Pequeña y fija (53 B)
	В)	
Tipo de tráfico más	Ráfagas (LAN), voz	Info en tiempo real, voz, video,
adecuado		videoconf
Tipo de servicio	A la conexión	A la conexión
Conmutación	Por software (menor	Por hardware (menor retardo)
	procesamiento)	
Multiplexación e	vc	VP (camino virtual)
identificadores		VC
	DLCI	
		VPI y VCI
Eficiencia	Asignación por demanda	Asignación por demanda

MTU (Unidad de Transferencia Máxima de una red)

- ✓ Tamaño máximo del campo de datos de la PDU de una red.
- ✓ Ethernet: 1500 B → pueden ser menos
- ✓ FDDI: 4770 B → pueden ser menos
- ✓ Token bus: 8182 B → pueden ser menos
- ✓ Token ring: 65535 B → pueden ser menos
- \checkmark X.25: 128 B (N3) → pueden ser menos
- ✓ Frame Relay: 4090 B
- ✓ ATM: 48 B \rightarrow son siempre 48

LAN sobre ATM

- LANE define cómo deben interactuar redes LAN a través de ATM.
- Permite que aplicaciones diseñadas para operar en una red LAN permanezcan sin cambios cuando se introduce ATM en la red.

Elementos de una LAN Emulada

- > Se compone de un grupo de <u>clientes</u> (LEC) y un grupo de <u>servidores</u>.
- ➤ En una red ATM puede haber varias ELANs. Cada ELAN es como una VLAN virtual en la red ATM porque hay independencia lógica.
- > El tráfico sólo se distribuye entre sus miembros. Para hablar entre ELANs se requiere un router.

IP clásico sobre ATM

El objetivo es establecer como deben manejarse las subredes del protocolo IP a través de redes ATM.

De esta forma la red ATM se comporta como una LAN pero se efectúan los direccionamientos de acuerdo a direcciones IP.

