upel.agh.edu.pl

TM1: Instrukcja (charakterystyki tranzystorów)

7 — 9 minut

I Przygotowanie stanowiska do zajęć

- Sprawdzić czy na stanowisku znajduje się kompletny zestaw laboratoryjny (zgodnie z listą naklejoną na stołach).
- 2. Ustawić zasilacze w trybie "Independent", dzięki czemu kanały będą pracować niezależnie
- 3. Ustawić napięcie na pierwszym i drugim kanale zasilacza na 10 V.
- 4. Ustawić **ograniczenia prądowe na obu kanałach na 0,01 A**. Trzeba to zrobić w stanie zwarcia dla każdego z kanałów z osobna.
- Zmierzyć i zanotować wartości wszystkich rezystorów z części tranzystorowej panelu

II Tranzystor bipolarny npn

Zmontować poniższy układ do pomiaru parametru β tranzystora przedstawiony na rysunku 1. Należy założyć następujące parametry: U_1 = 10 V, U_2 = 10 V, R_B = 100 k Ω i R_C = 100 Ω . Na podstawie pomiaru napięcia (z dokładnością 0,01V) na rezystorze R_B i R_C , obliczyć współczynnik β tranzystora. Oczywiście konieczne jest tu też uwzględnienie rzeczywistej (zmierzonej)

30.05.2018, 11:41

wartości rezystancji obu rezystorów. Pomiary wraz z obliczoną wartością współczynnika należy przesłać przez formularz Współczynnik beta tranzystora.

Rys 1. Układ do pomiaru parametru β tranzystora

UWAGA Przy wpinaniu tranzystora do gniazda na płytce należy sprawdzić czy kolejność jego wyprowadzeń zgadza się z oznaczeniami na płytce. Można to zrobić posiłkując się notą katalogową tranzystora (jego oznaczenie można znaleźć na obudowie).

DO SPRAWOZDANIA

W sprawozdaniu należy umieścić:

- Tabelę zawierającą zmierzone wartości wraz z obliczoną wartością współczynnika B tranzystora
- Porównanie wartości obliczonej z tą deklarowaną przez producenta w notach katalogowych

UWAGA Przy poniższych pomiarach należy ustawiać napięcia na zasilaczach na wartości możliwie bliskie zadanym, jednakże nie należy się tych wartości trzymać ściśle. Jeżeli zamiast wynikającej z programu wartości napięcia: 1,50 V, zostanie ustawiona wartość 1,34 V, to jest to również poprawnie, należy tylko ten fakt uwzględnić w obliczeniach.

Korzystając ze schematu z rysunku 1, zmieniając napięcie U_1 , od 0 V do 10 V, z krokiem 0,5V, dokonać pomiaru (z dokładnością 0,01 V) napięcia U_1 oraz napięcia na R_B , a następnie wyznaczyć na podstawie pomiarów i obliczeń charakterystykę $I_B = f(U_{BE})$. Pomiary przesłać przez formularz Charakterystyka Ib = $f(U_{BE})$ tranzystora bipolarnego.

DO SPRAWOZDANIA

W sprawozdaniu należy umieścić:

- Tabelę zawierającą zmierzone wartości wraz z obliczonymi wartościami koniecznymi do narysowania charakterystyki I_B = f(U_{BE}).
- Wykres zawierający charakterystykę zmierzoną oraz
 zasymulowaną za pomocą LtSpice (lub innnego podobnego
 programu). Należy pamiętać o ustawieniu w programie parametru
 β tranzystora zgodnego z tym który wcześniej zmierzyliśmy
- Słowne porównanie zmierzonej charakterystyki z tą
 zasymulowaną. Czy otrzymaliśmy wyniki zgodne z oczekiwaniami?
 Kolejnym krokiem będzie wyznaczenie charakterystyki I_C = f(U_{CE})
 tranzystora. Korzystając z powyższego schematu, ustawić napięcie
 U₁ na wartość 3 V, następnie zmieniając napięcie U₂ od 0 do 10 V

z krokiem równym 0,2 V dla zmian U_2 od 0 do 2 V, oraz z krokiem 0,5 V, dla zmian U_2 od 2 do 10 V dokonać pomiaru (z dokładnością 0,01 V) napięcia U_2 i odpowiadającemu mu napięcia na rezystorze R_C . Na podstawie pomiarów obliczyć i wyznaczyć rodzinę charakterystyk $I_C = f(U_{CE})$. Następnie całą procedurę z punktu powyżej należy powtórzyć dwa razy, odpowiednio dla napięcia U_1 zwiększonego do wartości 6 V, a następnie do wartości 9 V. Pomiary należy zamieścić w formularzach:

- Charakterystyka Ic=f(Uce) dla 3V
- Charakterystyka Ic=f(Uce) dla 6V
- Charakterystyka Ic=f(Uce) dla 9V

DO SPRAWOZDANIA

W sprawozdaniu należy umieścić:

- Tabelę zawierającą zmierzone wartości wraz z obliczonymi wartościami koniecznymi do narysowania charakterystyki I_C=f(U_{CE}) dla trzech wartości napięcia U₁.
- Wykres zawierający tzw. rodzinę charakterystyk zmierzonych (oddzielna linia dla każdej z trzech wartości napięcia U₁)
- Zasymulowaną rodzinę charakterystyk w celu porównania jej ze zmierzoną należy umieścić na tym samym wykresie
- Słowne porównanie zmierzonej charakterystyki z tą zasymulowaną. Czy otrzymaliśmy wyniki zgodne z oczekiwaniami?

III Tranzystor polowy J-FET z kanałem typu n

Zmontować układ zgodnie ze schematem przedstawionym na rysunku 2. Założyć wartości rezystorów R_G = 1 k Ω , R_D = 100 Ω .

Napięcie U₂ będzie mieć wartość 10 V, natomiast napięcie U₁ będziemy zmieniać od 0 do 5 V w celu zmierzenia charakterystyki. Rezystancje i napięcia należy oczywiście zmierzyć, i tę wartość traktować jako rzeczywistą w obliczeniach i symulacjach.

UWAGA Proszę zwrócić uwagę na biegunowość U₁ i U₂. (Zasilacze muszą pracować w trybie niezależnym). Przy wpinaniu tranzystora do gniazda na płytce należy sprawdzić czy kolejność jego wyprowadzeń zgadza się z oznaczeniami na płytce. Można to zrobić posiłkując się notą katalogową tranzystora (jego oznaczenie można znaleźć na obudowie).

Rys 2. Układ do pomiaru charakterystyki $I_D = F(U_{GS})$

UWAGA Przy poniższych pomiarach należy ustawiać napięcia na zasilaczach na wartości możliwie bliskie zadanym, jednakże nie należy się tych wartości trzymać ściśle. Na przykład jeśli zamiast wynikającej z instrukcji wartości napięcia: 1,50 V, zostanie ustawiona wartość 1,34 V, to jest to również poprawnie, należy tylko ten fakt uwzględnić w obliczeniach. Wszystkie pomiary podobnie jak w ćwiczeniu z tranzystorem bipolarnym należy

wykonać z dokładnością 0,01 V.

Zmierzymy teraz charakterystykę I_D = $f(U_{GS})$ tranzytora polowego. Rozpoczynając pomiary napięcie U_2 należy ustawić na wartość 10 V, U_1 na wartość 0 V. Zmierzyć wartość napięcia na rezystorze R_D . Następnie zmieniać wartość napięcia U_1 z krokiem 0,2 V aż do wartości 5 V. Dla każdej ustawionej wartości U_1 zmierzyć odpowiadające temu napięcie na rezystorze R_D by później móc obliczyć prąd drenu. Dodatkowo za każdym razem trzeba zmierzyć napięcie U_{GS} . Wyniki pomiarów należy przesłać przez formularz Charakterystyka I_1 = I_2 = I_3 = I_4 = $I_$

DO SPRAWOZDANIA

W sprawozdaniu należy umieścić:

- Tabelę zawierającą zmierzone wartości wraz z obliczonymi wartościami koniecznymi do narysowania charakterystyki I_D=f(U_{GS}).
- Wykres zawierający charakterystykę zmierzoną oraz zasymulowaną.
- Na wykresie należy zaznaczyć: prąd I_{DSS} nasycenia drenu przy zerowym napięciu U_{GS} oraz napięcie odcięcia U_{GS0}.
- Słowne porównanie zmierzonej charakterystyki z tą zasymulowaną. Czy otrzymaliśmy wyniki zgodne z oczekiwaniami?

VI Uporządkowanie stanowiska po zajęciach

Po skończonych zajęciach należy po sobie uporządkować stanowisko. Wszystkie kable (z wyjątkiem kabli wkręcanych do gniazd zaciskowych płytki laboratoryjnej) należy schludnie zwinąć i

umieścić w pudełku.

Rys 3. Przewody należy zwinąć i schować do pudełka.

Ostatnia modyfikacja: czwartek, 17 maj 2018, 17:38

7 z 7