情報セキュリティ

情報科学の世界II 2019年度 只木 進一(理工学部)

セキュリティインシデントは他 人事ではない

- −個人情報の漏えい
 - 民間企業の顧客情報の漏えい
 - 一公的機関からの個人情報漏えい
 - ▶特定個人情報:マイナンバー
- 信用してアクセスしたサービス
 - ●乗っ取られていて、不正プログラムを押し込まれる

セキュリティインシデントは他 人事ではない

- ■個人のPCやスマートフォーンからの情報漏えい
 - ■自分の情報だけでなく、他人の情報
- ▶様々なサービスのID
 - ●乗っ取り、なりすまし
- ■自分のデバイスが、攻撃の足場に使われる

情報セキュリティ10大脅威(ICT threats)2019

順位	個人	組織
1	クレジットカード情報の不正利用	標的型攻撃による情報流出
2	フィッシングによる個人情報等の 詐取	ビジネスメール詐欺による被害
3	不正アプリによるスマートフォン 利用者の被害	ランサムウェアによる被害
4	メールやSNSを使った脅迫・詐欺の 手口による金銭要求	サプライチェーンの弱点を悪用し た攻撃の高まり
5	ネット上の誹謗・中傷・デマ	内部不正による情報漏えい

個人情報漏洩事案

- 2017/6/20 佐賀銀行
 - ─ 行員が窃盗。共犯者へ大口顧客情報(169人)を漏えい
- 2016 佐賀県教育委員会
 - ▶ 1万人の生徒の住所、氏名、電話番号、成績など
 - 県内の少年、高校生が関与
- ▶ 2015/5/28 日本年金機構
 - 標的型攻撃
 - 150万件以上の個人情報漏えい

- 2014/7/9 ベネッセ

- 760万件の顧客情報を漏洩
- →子供と保護者の氏名、住所、生年月日など
- ▶システムを委託していた系列会社へ派遣 されていた社員が持ち出し

- 2014/4/18 東京医科大学

- 脳神経外科手術 33例
- 氏名、性別、生年月日、検査データ
- →職員がUSBで持ち出し、紛失

- → Play Station Networkの顧客情報7700万件流出
- 住所、ログインID、パスワード、購入履 歴など
- →サーバーの脆弱性を突かれ、不正アクセ スを受ける

個人情報・プライバシーとその 管理

- ■個人情報:生存している個人を特定する情報
 - ■氏名や住所は重要な要素だが、それだけではない
 - −個人の属性から特定できる場合がある
 - ▶職業、出身大学、電話番号などの組合わせ

■プライバシー

- −以下の三つの要件を満たす
 - ■個人の私的生活の事実
 - −公知でないもの
 - −公開を望まない
- →要するに、本人の属性に関する知られたくないもの

プライバシーの例

- 図書館は利用者の秘密を守る
 - ─何を読んだか、借りたか
 - →図書館の自由に関する宣言
- →購買履歴
- 病歴、投薬履歴
- 友人関係

情報セキュリティの構成要素

- 機密性: confidentiality
 - ▶秘密であること
 - →制限された人だけが利用できる
- ─完全性: integrity
 - ▶正式で正しいものであること
- ■可用性: availability
 - 必要なときに利用できること

- 三つの要素のバランスが重要
 - ▶情報システムとしてのバランス
 - ▶システムの目的に合致しているか
 - ▶情報システムの運用の観点
 - システムとして運用できるのか
 - ▶費用と効用の評価
- ─公開情報にもセキュリティがある
- ▶情報システムは手段に過ぎない

情報セキュリティの対策

- 問題が発生しないための対策
 - 不正通信が起こらないように
 - ■ウィルスが入り込まないように
 - 不正侵入が起こらないように
- →問題の発生を想定した対策
 - 不正通信の確認と遮断の方法
 - ▶重要情報の暗号化
 - ▶重要情報の分散

- 問題が発生した後の対策
 - 緊急退避
 - ▶連絡・通報・責任体制
 - →影響範囲の迅速な確認方法
 - →適切な公表
- 問題の再発を防ぐ対策
 - ▶原因の究明と対策
 - リスクとコストの再評価

技術的対策:通信路の対策

- ネットワークの分離
 - ■重要情報を持つネットワークを切り離す
- Firewall
 - ■送受信元、サービスで通信を制限
- IDP(Intrusion Detection System)
 - 侵入の兆候を検知して遮断

ネットワークの構成例

技術的対策:ウィルス対策

- 一通信路
 - ■ウィルス付メールの遮断
 - →不正なWebサイトへ誘導するメール遮断
 - 不正な活動の検知と遮断
- クライアント
 - ■ファイルのフィルタリング
 - 不正な活動の検知と遮断

技術的対策:重要情報の送受信 を暗号化

- 一認証
- Webでの重要情報送受信
 - **HTTPS**
- 無線通信

技術的対策:本人確認

- ユーザー名とパスワードによる認証
- 多要素認証
 - ─持っているもの:ICカードなど
 - 持っているものに一時的なパスワードを 送信
- 生体認証
 - 指紋、虹彩、静脈
- 一証跡管理

技術的対策:証明書

- →サーバ証明書
 - ■通信先が真正であること
 - -SSL証明書
- → クライアント証明書
 - クライアントが予め登録されていること

非技術的対策

- 教育・研修
 - ▶情報セキュリティの重要性
 - →対策の必要性
- 一訓練
 - インシデント発生時の対応
- 体制整備

個人としての安全対策: Webの利用

- ■重要情報をできるだけ送らない
 - →正しいサイトであることの確認:証明書
 - 一暗号化
 - ▶本当に必要なのか
- 不正サイトからの攻撃を防ぐ
 - 不要なサイトへアクセスしない
 - 見ただけでウィルスダウンロードの危険 性

個人としての安全対策: ウィルス対策

- ■ウィルス対策ソフトの導入
 - ■ウィルスパターンの更新
 - −定期的な全体スキャン
- ▶危険なメール
 - ■知らない人からの「緊急」「重要」メール
 - 送信元のアドレスがおかしい
 - リンク先のアドレスがおかしい

個人としての安全対策: パスワードの管理

- 重要なサービスのパスワードを他の サービスと共有しない
 - 大学のメールアドレスとパスワードの組 を外部サービスで使わない
- 他人に教えない
- ─危ないと思ったら変更する

個人としての安全対策: データを失わない

- バックアップをする
 - CDTBD
 - →USB接続のポータブルHD
 - ■クラウドストレージ

何か変だと思ったら

- ─総合情報基盤センターに相談する
- ▶チュータに相談する
- ●警察に相談する