Kuliah 3

Dasar Multimedia
Indrabayu
Laboratory of Artificial Intelligence

Digital Multimedia

- Yaitu yg mengintegrasikan beberapa hal berikut:
 - Teks
 - Grafik
 - Gambar diam dan bergerak
 - Grafik bergerak → Animasi
 - Suara
 - Media lainnya yg informasinya dapat ditampilkan, disimpan, ditransmisikan dan diproses secara digital.

Digital Multimedia (samb.)

Jenis Informasi Multimedia

- Teks

- Grafik

Gambar diam

– Gambar bergerak (video)

Grafik bergerak → Animasi

- Suara, baik musik maupun vocal

Interseksi antara:

Representasi ke digital

- Step digitalisasi:
 - Analog
 - Waktu diskrit
 - Digital
- Kenapa digital?
 - Representasi universal
 - Lebih tahan (robust) terhadap error, kelapukan, distorsi, noise

Audio

- Suara dihasilkan dari variasi tekanan di udara.
 - Sifatnya analog
 - Pada setiap waktu mempunyai nilai
- Jaringan komputer bekerja secara digital.
 - Konversi analog ke digital
 - Dilakukan sampling, kuantisasi dan coding

Audio (sampling)

- Besarnya laju sampling menentukan banyaknya waktu diskrit yg diperoleh.
- > sampling → > kualitas

a. Original Analog Waveform

b. Sampling Rate N

Audio(sampling)

- Berikut jika laju sampling dikurangi setengahnya.
- Nyquist theorems (fs \geq 2 x f. response)

a. Original Analog Waveform

c. Sampling Rate N/2

Audio (sampling)

Laju sampling ¼ kali dari yg pertama

a. Original Analog Waveform

d. Sampling Rate N/4

Audio (sampling)

Figure 4.2: Sampling a Continuous Signal

Audio (Sampling)

- Dari sini terlihat makin kecil laju sampling, makin kurang kualitas.
- Kenapa tidak dengan rate setinggi2nya?
 - Butuh storage yang besar
 - Cost dan kompleksitas dari hardware
 - Idealnya adalah sampling optimum

Audio (Sampling)

Examples of Sampling

Audio (jumlah kuantisasi)

Sampel bernilai diskrit

- Ada berapa nilai yg dimungkinkan?
 - Ukuran sampel
 - Umumnya 256 nilai utk 8 bit

Audio (jumlah kuantisasi)

Figure 4.3: Quantisation of Samples

Audio (jumlah kuantisasi)

Ukuran kuantisasi

- Dengan kuantisasi maka error dapat terjadi. Mis: 28.3 dibulatkan 28
- Semakin sedikit ukuran sampel kuantisasi maka semakin besar error yg dapat terjadi.
- Kalo begitu kenapa tdk gunakan ukuran kuantisasi dgn range yg besar?
 - Ukuran storage jd besar
 - Komplesitas hardware analog to digital

Ukuran kuantisasi

Examples of Quantizaion

2 bits / pixel

Keuntungan Digital

- Beberapa jenis media dapat disimpan pada storage yang sama.
- Berbagai jenis informasi juga dapat ditransmisikan pada kanal atau jaringan digital yang sama.
- Dimungkinkannya pemrosesan dan manipulasi data/informasi dgn komputer sehingga:
 - Editing
 - Perbaikan kualitas
 - Recognition
 - Compression

Kekurangan Digital

- Distorsi yang terjadi di kuantisasi
- Distorsi yang terjadi pada proses sampling (aliasing)
- Butuh storage yang besar untuk sampling yang besar

selesai