

Lab05 - URDF

MTRN4231 - UNSW School of Mechanical and Manufacturing Engineering

Introduction

In this lab, you will learn how to create your own robot model based off a simple end effector. This robot model can then be visualised using RViz and controlled via a ROS2 node.

Task 1 - Understand the description package

 $Read\ through\ the\ {\tt pizza_cutter_description}\ directory\ and\ understand\ the\ package\ structure.$

- launch folder contains launch files that spin-up nodes and processes.
- mesh folder contains STL files that describe the topology of a physical component.
- rviz folder contains RViz config settings i.e. the layout of the RViz window and tools used.
- urdf folder contains XML descriptions/models of the robot.
- Note that package.xml, CMakeLists.txt, and *.launch.py have been minimally done for you.

Task 2 - Model a pizza cutter with URDF

Write a urdf file to describe a simple pizza cutter in pizza_cutter_description.

The pizza cutter should have the following links:

- pizza_cutter_handle
- pizza_cutter_blade

The pizza cutter should have the following joints:

• cutting_joint (continuous joint) between pizza_cutter_handle and pizza_cutter_blade

After building and sourcing, the launch command is:

ros2 launch pizza_cutter_description display.launch.py

URDF XML joints doc

URDF XML links doc

Task 3 - Setup RViz configuration

Launching pizza_cutter_description should open a new RViz window. Configure RViz so that the URDF can be viewed.

\Global Options > Fixed Frame" should be set to pizza_cutter_handle.

Add the RobotModel plugin and edit the Description Topic to view the /robot_description topic.

The TF plugin can optionally be added to view the transform frames.

Save the config as pizza_cutter_description/rviz/pizza_cutter.rviz. Your final RViz configuration may look like below:

Task 4 - Control the URDF via GUI

Check that the URDF joints can be controlled with joint_state_publisher_gui by changing the joint values in the following GUI:

You should be able to see the URDF joints updating in RViz.

Note that joint_state_publisher or joint_state_publisher_gui is required in the launch file but only the latter will create a GUI.

Task 5 - Control the URDF via publishing

Enable controllable URDF joints by adding desired joint names to the source_list parameter of the joint_state_publisher node (in the launch file). This will create a topic with the same name as the joint e.g. /cutting_joint:

parameters=[{'robot_description' : xacro_raw_description, 'source_list': ['cutting_joint']}]

Source list allows URDF to listen to topics for joint state value changes.

Control the URDF by publishing to /cutting_joint which has the JointState message type:

ros2 topic pub --once /cutting_joint sensor_msgs/JointState "{name: ['cutting_joint'], position: [2.5]}"
Debug that the message was successfully received by listening to the topic (or by watching RViz):

ros2 topic echo /cutting_joint

Task 6 - Visualise the UR5e

Visualise just the robot arm by running:

ros2 launch ur_description view_ur.launch.py ur_type:=ur5e

You should be able to see and control the UR5e:

Note that the UR5e description package is already installed.

Task 7 - Attach the end effector to UR5e

Create a new package called ur_with_pizza_cutter_description which contains a ur_with_pizza_cutter.xacro file which attaches pizza_cutter to ur_robot. The attachment should be a fixed joint between an appropriate link on the end effector to the tool0 link from the arm.

urdf or xacro files can be included into xacro files. Inclusion is a simple copy-and-paste of the file's contents into the inclusion line - and can be done like so:

<xacro:include filename="\$(find package_name)/urdf/example.urdf">

After building and sourcing, the launch command for the UR5e robot with the pizza cutter is:

ros2 launch ur_with_pizza_cutter_description display.launch.py

Extensions

- Apply the steps in this lab (and read the documentation) to visualise your own custom end effector with the UR5e.
- Look through the claw_example packages for an in-depth and commented example of another (more complex) end-effector.
- This URDF was obtained by using Solidworks URDF Exporter however still needed edits to correct the links and joints.