PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISH		NDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 98/0781
C11D 3/386, 3/384	A1	(43) International Publication Date: 26 February 1998 (26.02.98
 (21) International Application Number: PCT/USC (22) International Filing Date: 16 August 1996 ((71) Applicant (for all designated States except US): THE TER & GAMBLE COMPANY [US/US]; One P Gamble Plaza, Cincinnati, OH 45202 (US). (72) Inventor; and (75) Inventor/Applicant (for US only): LAPPAS, [GR/BE]; Strombeeklinde 17, B-1853 Strombee (BE). (74) Agents: REED, T., David et al.; The Procter & Company, 5299 Spring Grove Avenue, Cincinn 45217 (US). 	16.08.90 E PROC Procter of	CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.
(54) Title: DETERGENT COMPOSITIONS COMPRISING (57) Abstract The present invention relates to detergent composition an antibody to control the hydrogen peroxyde bleach deactive especially catalase enzyme.	ns comp	O-REDUCTASE ANTIBODY ising a source of hydrogen peroxide, optionally a bleach activator and e to the presence of donor:hydrogen peroxide oxido-reductase enzyments.

THIS PAGE BLANK (USPTO)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BB	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MIN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	15	Iceland	· MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon	•••	Republic of Korea	PL,	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SB	Sweden		
EE	Estonia Estonia	LR	Liberia	SG	Singapore		

1

PCT/US96/13322

DETERGENT COMPOSITIONS COMPRISING OXIDO-REDUCTASE ANTIBODY

Field of the Invention

The present invention relates to detergent compositions comprising an antibody to control the bleach deactivation in the washing process, due to the presence of donor:hydrogen peroxide oxido-reductase enzyme.

Background of the invention

important part of the system which protects An vertebrates against infections by bacteria and viruses is the humoral immune system. Specialised cells present in bone lymphoid tissues marrow. blood, and produce immunoglobulins (antibody) which appear in response to the introduction of micro- or macromolecule foreign to that body and bind the surface of body-foreign structure initiating its destruction. Such a body-foreign molecule is called an antigen. The antibody is directed against the antigenic determinant or hapten of the antigen e.g. an sequence, amino acid parts of oligosaccharides, lipopolysaccharides, polysaccharides, glycoproteins, lipoproteins, lipoteichoinic acids.

The specific antibodes generated in this manner can combine with the antigen which elicited their formation to form an antigen-antibody complex. Antibody molecules have binding sites that are very specific for and complementary to the structural features of the antigen that induced their formation.

This highly specific antigen-antibody recognition and binding has found several applications such as recognition agent, binding agent or carrier agent in various domains such as analytical chemistry, therapeutic treatment, health and beauty care.

EP 479 600, EP 453 097 and EP 450 800 relate to the use of antibodies or fragments thereof for the delivery of active ingredients to a target site. EP 481 701 discloses treatment compositions for topical application containing microcapsules which enclose a beneficial agent at a target location, the microcapsules having an antibody or antibody fragment specific to the target location or a lectin.

WO92/04380 describes reshaped human antibody or reshaped human antibody fragments having specificity for human polymorphic epithelial mucin to be used in the treatment or diagnosis of cancer. The use of Epstein-Barr virus specific polypeptides for the production of antibodies and the diagnostic and treatment of said disease is disclosed in WO94/06470.

Oral compositions comprising antibodies as anti-carie or periodontal diseases treatment have been extensively described in WO95/01155, WO95/00110, WO95/10612, EP 140 498, GB 2 151 923, GB 2 176 400, GB 2 167 299, DE 4324859, US 5 401 723 and EP 280 576.

EP 673 683 and EP 542 309 disclose hair cosmetic compositions containing an antibody to hair or hair

WO 98/07816 PCT/US96/13322

extract, obtained from egg yolk or poultry immunised with the hair or hair extract and a polymer emulsion to provide reduced hair damage, softness, moistened feel and smoothness, said composition being adsorbed only onto a specified part of the hair.

Compositions containing antagonists (tyrphostins or antibodies) against epidermal and transforming growth factors, suitable for use in treatment of acne are described in WO95/24896.

The production of antibodies by hyperimmunisation of mammals such as a cow with a vaccine derived from E. coli bacteria is described in EP 102 831. EP 400 569 discloses a method for preparing vaccine composition for dental caries in nasal drops comprising an antigen produced by integrating a protein antigen-expressing gene into the chromosomal gene of a streptococcus mutants GS-5 strain. WO94/25591 discloses the production of antibodies or functionalised fragments thereof derived from heavy chain immunoglobulins of camelidae.

The use of antibodies in the overall detergency context has been suggested in Unilever Researchprijs "Molecule zoekt partner" 1992 wherein modified antibodies directed to specific stains are proposed to be used in bleaching process.

Detergent compositions include nowadays a complex combination of active ingredients which fulfil certain specific needs: a surfactant system, enzymes providing cleaning and fabric care benefits, bleaching agents, a builder system, suds suppressors, soil-suspending agents, soil-release agents, optical brighteners, softening agents, dispersants, dye transfer inhibition compounds, abrasives, bactericides, perfumes, and their overall performance has indeed improved over the years. Nevertheless, the

consumers' need for better stain and/or soil removal, enhanced whiteness maintenance, improved softness and fabric care, better sanitisation with reduced detergent dosage does still exist.

Current detergent formulations generally include a bleaching system based on hydrogen peroxide or on hydrogen peroxide together with a bleach activator wherein a bleach activator is transformed into the active bleaching species (peroxyacid) by the action of the hydrogen peroxide.

bleach issues in the common of the most One performance analysis of said detergents is the catalytic loss of bleach activity due to donor:hydrogen peroxide oxido-reductase and especially catalase. Donor:hydrogen peroxide oxido-reductase are enzymes produced by microorganisms developed upon soils and stains found on fabrics, dishware and hard surfaces and by the human body and excreted in body fluids. Donor: hydrogen peroxide oxidoreductase enzyme are therefore found in body stains and/or soils found on fabrics, dishes and hard surfaces. These enzymes catalyse the direct conversion of hydrogen peroxide into water, reducing the amount of hydrogen peroxide available in the wash liquor for direct bleaching or for perhydrolysis of the bleach activator into bleaching active peracid.

Therefore, there remains a technical challenge to identify ways to block the catalytic activity of the donor:hydrogen peroxide oxido-reductase enzyme and especially catalase enzyme in order to prevent premature loss of the bleaching active in the wash.

The above need has been met by specific detergent composition including laundry, dishwashing and hard surface cleaning, containing an antibody directed to donor:hydrogen

peroxide oxido-reductase and especially catalase enzyme during the cleaning process.

It has indeed been surprisingly found that antibodies specifically directed to donor:hydrogen peroxide oxidoreductase and especially to catalase enzymes block the enzyme catalytic activity and therefore improve the performance in highly soiled washing conditions. This finding also allows the reduction of the level of bleaching agents in detergent while providing equal cleaning performance. In addition, the environmental profile of such detergent compositions is therefore improved.

Summary of the invention

The present invention relates to detergent compositions comprising a source of hydrogen peroxide, optionally a bleach activator and an antibody to control the hydrogen peroxyde bleach deactivation in the wash due to the presence of donor:hydrogen peroxide oxido-reductase enzyme and especially catalase enzyme.

Detailed description of the invention

The antibody

An essential element of the detergent compositions of the present invention is an antibody.

The immunoglobulins are classified into 5 classes, respectively: IgM, IgG, IgA, IgD and IgE. Preferred types of immunoglobulins are IgG and IgA. Secretory sIgA which are found into human excreted body fluids such as milk, saliva, respiratory and intestinal fluids are especially designed to survive in said secretions, they have enhanced

binding characteristics and are resistant to proteolytic hydrolysis.

The antibody which may be monoclonal or polyclonal or an antibody fragment, may be generated by techniques conventional in the art, for example by using recombinant DNA techniques allowing to produce antibodies variants with new properties: reduced immunogenecity, enhanced affinity, altered size,... Specific binding subunits or antibody fragments may also be used. These may be similarly generated by conventional techniques such as enzymatic digestion by papain or pepsin, or using recombinant DNA techniques. Antibody fragments may also be generated by conventional recombinant DNA techniques.

Heavy and light chains are indeed composed of constant and variable domains. In the organisms producing immunoglobulins in their natural state the constant domains are very important for a number of functions, but for many applications in industrial processes and products their variable domains are sufficient. Consequently many methods have been described to produce antibody fragments.

Antibody fragments which are used may be a Fab, a Fv, a scFv or any other fragment having similar binding properties. Preferred routes to antibodies fragments are through recombinant DNA technology, so that the fragment is expressed by a genetically transformed organism.

Antibodies and antibody fragments produced by recombinant DNA technology do not need to be identical to fragment of antibodies produced in vertebrates, having nevertheless the same binding properties evaluated by their Km, Ki and Kcat. For instance they may include sequences of amino acids and/or glycosylations which differ from those found in antibodies produced in other ways, especially sequences at the end of fragments. Somewhat analogously,

antibody fragments produced through recombinant DNA technology may include extra amino acid sequences at their termini which have no counterpart in antibodies produced in other ways.

A related possibility is that a binding agent for use in this invention is a natural or synthetic polymer which mimics the specific binding activity of a natural antibody's complementary region(s). Such a polymer is for example a polypeptide or a polymer imprinting (Angew. Chem. Int. Ed. Engl. 1995, 34, p1812-1832).

The usual method for the production of antibodies may be adopted in immunising mammals or poultry with the corresponding antigens. As mammals to be immunised, mouses, rabbits, goats, sheep, horses, cows, etc. may be used. The antibody (immunoglobulin fraction) may be separated from the antiserum, the milk or the eggs according to the ordinary antibody purification method including salting-out method, Polson extraction, gel-filtration chromatography, ion-exchange chromatography, affinity chromatography and the like, the salting-out method using ammonium sulfate to produce the precipitates, followed by dialysing the precipitates against physiological saline to obtain the purified precipitates as the antibody.

Plants are also capable of synthesising and assembling every kind of antibody molecule and allow a large scale of production of antibodies as described in Tibtech. Dec 1995, Vol 13, pp 522-527; Plant Mol. Biol., 26, pp 1701-1710, 1994 and Biotechnol. proj. 1991, 7, pp 455-461 and in US patent 5, 202,422. Antibodies can also be produced into microorganisms such as E. coli or S. cerevisiae via biofermentation process as illustrated in EP 667 394.

Techniques for the production of antibody fragments are well known in the literature : Saiki et al. Science 230

1350-54 (1985); Orlandi et al. PNAS USA 86 3833-7 (1989); WO89/09825; EP 368 684; WO 91/08482 and WO94/25591.

Antibodies can be raised against any donor:hydrogen peroxide oxido-reductase of the class EC 1.11.1 covering protein oxidoreductases, Seleno the hemo oxidoreductase and Flavoprotein oxidoreductases and against cytochrome The cytochromes. group includes all intracellular electron transfering heme proteins and includes cytochrome a, b, c and d.

In particular, antibodies are raised against hemo proteins belonging to the EC classification 1.11.1.6 comprising catalase and pseudo catalases being a manganese protein containing Mn(III) in the resting state. Catalase although deriving from different organisms present a high degree of structural similarities and antibodies raised against a specific catalase enzyme have the capacity to bind any catalase from EC.1.11.1.6 providing cross-reactivity.

Said antibodies will be preferably included into the detergent compositions of the present invention at a level of from 10E-6% to 10E+1% by weight of total composition.

The Bleaching agent

The detergent compositions of the present invention include bleaching agents such as hydrogen peroxide, PB1, PB4 and percarbonate with a particle size of 400-800 microns. These bleaching agent components can include one or more oxygen bleaching agents and, depending upon the bleaching agent chosen, one or more bleach activators. When present oxygen bleaching compounds will typically be present at levels of from about 1% to about 25%.

The bleaching agent component for use herein can be any of the bleaching agents useful for detergent compositions including oxygen bleaches as well as others known in the art. The bleaching agent suitable for the present invention can be an activated or non-activated bleaching agent.

One category of oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium meta-chloro perbenzoic acid, 4-nonylamino-4oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, Application U.S. 740,446, Patent European Patent Application 0,133,354 and U.S. Patent 4,412,934. Highly preferred bleaching agents also include 6-nonylamino-6oxoperoxycaproic described acid as in U.S. Patent 4,634,551.

Another category of bleaching agents that can be used encompasses the halogen bleaching agents. Examples of hypohalite bleaching agents, for example, include trichloro acid the sodium isocyanuric and and potassium dichloroisocyanurates and N-chloro and N-bromo alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.

The hydrogen peroxide releasing agents can be used in combination with bleach activators such as tetraacetylethylenediamine (TAED), nonanoyloxybenzene-(NOBS, described in US. 4,412,934), 3,5,sulfonate trimethylhexanoloxybenzenesulfonate (ISONOBS, described in EP 120,591) or pentaacetylglucose (PAG) or Phenolsulfonate N-nonanoyl-6-aminocaproic ester of acid (NACA-OBS, described in WO94/28106), which are perhydrolyzed to form a peracid as the active bleaching species, leading to

improved bleaching effect. Also suitable activators are acylated citrate esters such as disclosed in Copending European Patent Application No. 91870207.7.

including peroxyacids bleaching Useful agents, and comprising bleach activators bleaching systems and peroxygen bleaching compounds for use in detergent compositions according to the invention are described in co-pending applications USSN 08/136,626, our PCT/US95/07823, WO95/27772, WO95/27773, WO95/27774 WO95/27775.

The hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process. Such enzymatic systems are disclosed in EP Patent Application 91202655.6 filed October 9, 1991.

Metal-containing catalysts for use in bleach compositions, include cobalt-containing catalysts such as acetate cobalt(III) salts and manganese-Pentaamine containing catalysts such as those described in EPA 549 271; EPA 549 272; EPA 458 397; US 5,246,621; EPA 458 398; 5,194,416 and US 5,114,611. Bleaching composition comprising a peroxy compound, a manganese-containing bleach catalyst and a chelating agent is described in the patent application No 94870206.3.

Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry

in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached. phthalocyanine Preferred and a photoactivated zinc bleaching process are described in U.S. Patent 4,033,718. Typically, detergent compositions will contain about 0.025% 1.25%, weight, about by sulfonated to of zinc phthalocyanine.

Detergent components

The detergent compositions of the invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the nature of the cleaning operation for which it is to be used.

The detergent compositions according to the invention can be liquid, paste, gels, bars, tablets, powder or granular forms. Granular compositions can also be in "compact " form, the liquid compositions can also be in a "concentrated" form.

The compositions of the invention may for example, be formulated as hard surface cleaner, hand and compositions, dishwashing hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the soaking and/or pretreatment of stained fabrics, rinse added fabric softener compositions.

When formulated as compositions for use in manual dishwashing methods the compositions of the invention preferably contain a surfactant and preferably other detergent compounds selected from organic polymeric

compounds, suds enhancing agents, group II metal ions, solvents, hydrotropes and additional enzymes.

When formulated as compositions suitable for use in a laundry machine washing method, the compositions of the invention preferably contain both a surfactant and a builder compound and additionally one or more detergent components preferably selected from organic polymeric compounds, bleaching agents, additional enzymes, suds suppressors, dispersants, lime-soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors. Laundry compositions can also contain softening agents, as additional detergent components.

The compositions of the invention can also be used as detergent additive products. Such additive products are intended to supplement or boost the performance of conventional detergent compositions preferably comprise up to 50% antibodies by weight of total composition.

If needed the density of the granular laundry detergent compositions herein ranges from 400 to 1200 g/litre, preferably 600 to 950 g/litre of composition measured at 20°C.

The "compact" form of the granular laundry detergent compositions herein is best reflected by density and, in terms of composition, by the amount of inorganic filler salt; inorganic filler salts are conventional ingredients of detergent compositions in powder form; in conventional detergent compositions, the filler salts are present in substantial amounts, typically 17-35% by weight of the total composition.

In the compact compositions, the filler salt is present in amounts not exceeding 15% of the total composition, preferably not exceeding 10%, most preferably not exceeding 5% by weight of the composition.

The inorganic filler salts, such as meant in the present compositions are selected from the alkali and alkaline-earth-metal salts of sulphates and chlorides.

A preferred filler salt is sodium sulphate.

Liquid detergent compositions according to the present invention can also be in a "concentrated form", in such case, the liquid detergent compositions according the present invention will contain a lower amount of water, compared to conventional liquid detergents.

Typically the water content of the concentrated liquid detergent is preferably less than 50%, more preferably less than 40%, most preferably less than 30% by weight of the detergent composition.

Surfactant system

The detergent compositions according to the present invention comprise a surfactant system wherein the surfactant can be selected from nonionic and/or anionic and/or cationic and/or ampholytic and/or zwitterionic and/or semi-polar surfactants.

The surfactant is typically present at a level of from 0.1% to 60% by weight. More preferred levels of incorporation are 1% to 35% by weight, most preferably from 1% to 30% by weight of detergent compositions in accord with the invention.

The surfactant is preferably formulated to be compatible with enzyme components present in the composition. In liquid or gel compositions the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.

Preferred surfactant systems to be used according to the present invention comprise as a surfactant one or more of the nonionic and/or anionic surfactants described herein.

Polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use as the nonionic surfactant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 14 carbon atoms, preferably from about 8 to about 14 carbon atoms, in either a straightchain or branched-chain configuration with the alkylene oxide. In a preferred embodiment, the ethylene oxide is present in an amount equal to from about 2 to about 25 moles, more preferably from about 3 to about 15 moles, of ethylene oxide per mole of alkyl phenol. Commercially available nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates (e.g., alkyl phenol ethoxylates).

The condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use as the nonionic surfactant of the nonionic surfactant systems of the present invention. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms. Preferred are the condensation products of alcohols having an alkyl group containing from about 8 to about 20 carbon atoms, more preferably from about 10 to about 18 carbon atoms, with from about 2 to about 10 moles of ethylene oxide per mole of alcohol. About 2 to about 7 moles of ethylene oxide and most preferably from 2 to 5

moles of ethylene oxide per mole of alcohol are present in said condensation products. Examples of commercially available nonionic surfactants of this type TergitolTM 15-S-9 (the condensation product of C₁₁-C₁₅ linear alcohol with 9 moles ethylene oxide), TergitolTM 24-L-6 NMW (the condensation product of C_{12} - C_{14} primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodolTM 45-9 (the condensation product of C₁₄-C₁₅ linear alcohol with 9 moles of ethylene oxide), Neodol TM 23-3 (the condensation product of C_{12} - C_{13} linear alcohol with 3.0 moles of ethylene oxide), $Neodol^{TM}$ 45-7 (the condensation product of C_{14} - C_{15} linear alcohol with 7 moles of ethylene oxide), NeodolTM 45-5 (the condensation product of C14-C15 linear alcohol with 5 moles of ethylene oxide) marketed by Shell Chemical Company, KyroTM EOB (the condensation product of C_{13} - C_{15} alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company, and Genapol LA 030 or 050 (the condensation product of C12-C₁₄ alcohol with 3 or 5 moles of ethylene oxide) marketed by Hoechst. Preferred range of HLB in these products is from 8-11 and most preferred from 8-10.

Also useful as the nonionic surfactant of the surfactant invention systems of the present are the alkylpolysaccharides disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a

glucose or galactose as opposed to a glucoside or galactoside). The intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.

The preferred alkylpolyglycosides have the formula

$$R^{2}O(C_{n}H_{2n}O)_{t}(glycosyl)_{x}$$

wherein R² is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7. The glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position). The additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.

The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant systems of the present invention. The hydrophobic portion of these compounds will preferably have a molecular weight of from about 1500 to about 1800 and will exhibit water insolubility. The addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of

the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide. Examples of compounds of this type include certain of the commercially-available PlurafacTM LF404 and PluronicTM surfactants, marketed by BASF.

Also suitable for use as the nonionic surfactant of the nonionic surfactant system of the present invention, are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000. Examples of this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.

Preferred for use as the nonionic surfactant of the surfactant systems the of present invention are polyethylene oxide condensates alkyl of phenols, condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide, alkylpolysaccharides, and mixtures thereof. preferred are C₈-C₁₄ alkyl phenol ethoxylates having from 3 15 ethoxy groups and Cg-C18 alcohol ethoxylates to (preferably C_{10} avg.) having from 2 to 10 ethoxy groups, and mixtures thereof.

Highly preferred nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula.

$$R^2 - C - N - Z,$$
 $| | | |$
 $O \cdot R^1$

wherein R^1 is H, or R^1 is C_{1-4} hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R^2 is C_{5-31} hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R^1 is methyl, R^2 is a straight C_{11-15} alkyl or C_{16-18} alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.

Suitable anionic surfactants to be used are linear alkyl benzene sulfonate, alkyl ester sulfonate surfactants including linear esters of C₈-C₂₀ carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO₃ according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329. Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.

The preferred alkyl ester sulfonate surfactant, especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula:

$$R^3$$
 - CH - C - OR^4 SO_3M

wherein R^3 is a C_8 - C_{20} hydrocarbyl, preferably an alkyl, or combination thereof, R^4 is a C_1 - C_6 hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate. Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamine, and triethanolamine. Preferably, R^3 is C_{10} - C_{16} alkyl, and R^4 is methyl, ethyl or isopropyl.

Especially preferred are the methyl ester sulfonates wherein \mathbb{R}^3 is $C_{10}\text{-}C_{16}$ alkyl.

Other suitable anionic surfactants include the alkyl sulfate surfactants which are water soluble salts or acids of the formula ROSO₃M wherein R preferably is a C₁₀-C₂₄. hydrocarbyl, preferably an alkyl or hydroxyalkyl having a $C_{10}-C_{20}$ alkyl component, more preferably a $C_{12}-C_{18}$ alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or ammonium substituted (e.g. methyl-, dimethyl-, trimethyl ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from ethylamine, alkylamines such as diethylamine, mixtures thereof, and the like). triethylamine, and Typically, alkyl chains of C_{12} - C_{16} are preferred for lower wash temperatures (e.g. below about 50°C) and C_{16-18} alkyl chains are preferred for higher wash temperatures (e.g. above about 50°C).

Other anionic surfactants useful for detersive purposes can also be included in the detergent compositions of the present invention. These can include salts (including, for example, sodium, potassium, ammonium, and ammonium salts such as mono-, di- and triethanolamine salts) primary soap, C_8-C_{22} of of secondary alkanesulfonates, C₈-C₂₄ olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, C8-C24 alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and

sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C_{12} - C_{18} monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated diesters), acyl sarcosinates, C6-C12 sulfates alkylpolysaccharides such the sulfates as of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), branched primary alkyl sulfates, and alkyl polyethoxy carboxylates such as those of the formula $RO(CH_2CH_2O)_k-CH_2COO-M+$ wherein R is a C_8-C_{22} alkyl, k is an integer from 1 to 10, and M is a soluble saltforming cation. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil.

Further examples are described in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference). When included therein, the laundry detergent compositions of the present invention typically comprise from about 1% to about 40%, preferably from about 3% to about 20% by weight of such anionic surfactants.

Highly preferred anionic surfactants include alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A)mSO3M wherein R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a $C_{10}-C_{24}$ alkyl component, preferably a $C_{12}-C_{20}$ alkyl or preferably C₁₂-C₁₈ alkyl hydroxyalkyl, more or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.),

ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include methyl-, dimethyl, trimethylammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperdinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the Exemplary surfactants $C_{12}-C_{18}$ like. are polyethoxylate (1.0) sulfate ($C_{12}-C_{18}E(1.0)M$), $C_{12}-C_{18}$ alkyl polyethoxylate (2.25) sulfate (C_{12} - $C_{18}E(2.25)M$), C_{12} - C_{18} alkyl polyethoxylate (3.0) sulfate ($C_{12}-C_{18}E(3.0)M$), and C_{12} - C_{18} alkyl polyethoxylate (4.0) sulfate (C_{12} -C₁₈E(4.0)M), wherein M is conveniently selected from sodium and potassium.

The detergent compositions of the present invention may also contain cationic, ampholytic, zwitterionic, and semipolar surfactants, as well as the nonionic and/or anionic surfactants other than those already described herein.

Cationic detersive surfactants suitable for use in the detergent compositions of the present invention are those having one long-chain hydrocarbyl group. Examples of such cationic surfactants include the ammonium surfactants such as alkyltrimethylammonium halogenides, and those surfactants having the formula :

$$[R^{2}(OR^{3})_{y}][R^{4}(OR^{3})_{y}]_{2}R^{5}N+X-$$

wherein R^2 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain, each R^3 is selected from the group consisting of $-CH_2CH_2-$, $-CH_2CH(CH_3)-$, $-CH_2CH(CH_2OH)-$, $-CH_2CH_2CH_2-$, and mixtures thereof; each R^4 is selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 hydroxyalkyl, benzyl ring structures formed by joining the two R^4 groups, $-CH_2CHOH-CHOHCOR^6CHOHCH_2OH$ wherein R^6 is any hexose or hexose

polymer having a molecular weight less than about 1000, and hydrogen when y is not 0; R^5 is the same as R^4 or is an alkyl chain wherein the total number of carbon atoms of R^2 plus R^5 is not more than about 18; each y is from 0 to about 10 and the sum of the y values is from 0 to about 15; and X is any compatible anion.

Quaternary ammonium surfactant suitable for the present invention has the formula (I):

$$R_1$$
 Q
 R_2
 R_3
 R_4
 R_5
 R_5

Formula I

whereby R1 is a short chainlength alkyl (C6-C10) or alkylamidoalkyl of the formula (II) :

Formula II

y is 2-4, preferably 3.
whereby R2 is H or a C1-C3 alkyl,
whereby x is 0-4, preferably 0-2, most preferably 0,
whereby R3, R4 and R5 are either the same or different and
can be either a short chain alkyl (C1-C3) or alkoxylated
alkyl of the formula III,

whereby X^- is a counterion, preferably a halide, e.g. chloride or methylsulfate.

Formula III

R6 is C_1-C_4 and z is 1 or 2.

Preferred quat ammonium surfactants are those as defined in formula I whereby

 R_1 is C_8 , C_{10} or mixtures thereof, x=0, R_3 , R_4 = CH_3 and R_5 = CH_2CH_2OH .

Highly preferred cationic surfactants are the watersoluble quaternary ammonium compounds useful in the present composition having the formula:

 $R_1R_2R_3R_4N^+X^-$ (i)

wherein R_1 is C_8 - C_{16} alkyl, each of R_2 , R_3 and R_4 is independently C_1 - C_4 alkyl, C_1 - C_4 hydroxy alkyl, benzyl, and - $(C_2H_{40})_xH$ where x has a value from 2 to 5, and X is an anion. Not more than one of R_2 , R_3 or R_4 should be benzyl. The preferred alkyl chain length for R_1 is C_{12} - C_{15} particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat or is derived synthetically by olefin build up or OXO alcohols synthesis. Preferred groups for R_2R_3 and R_4 are methyl and hydroxyethyl groups and the anion X may be selected from halide, methosulphate, acetate and phosphate ions.

Examples of suitable quaternary ammonium compounds of formulae (i) for use herein are :

coconut trimethyl ammonium chloride or bromide;

coconut methyl dihydroxyethyl ammonium chloride or bromide;

decyl triethyl ammonium chloride;

decyl dimethyl hydroxyethyl ammonium chloride or bromide;

 C_{12-15} dimethyl hydroxyethyl ammonium chloride or bromide;

coconut dimethyl hydroxyethyl ammonium chloride or bromide;

myristyl trimethyl ammonium methyl sulphate;

lauryl dimethyl benzyl ammonium chloride or bromide;

lauryl dimethyl (ethenoxy)₄ ammonium chloride or bromide; choline esters (compounds of formula (i) wherein R_1 is

 $CH_2-CH_2-O-C-C_{12-14}$ alkyl and $R_2R_3R_4$ are methyl).

di-alkyl imidazolines [compounds of formula (i)].

Other cationic surfactants useful herein are also described in U.S. Patent 4,228,044, Cambre, issued October 14, 1980 and in European Patent Application EP 000,224.

When included therein, the detergent compositions of the present invention typically comprise from 0.2% to about 25%, preferably from about 1% to about 8% by weight of such cationic surfactants.

Ampholytic surfactants are also suitable for use in the detergent compositions of the present invention. These broadly described as be surfactants can derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched-chain. One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, lines 18-35, for examples of ampholytic surfactants.

When included therein, the detergent compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such ampholytic surfactants.

Zwitterionic surfactants are also suitable for use in detergent compositions. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines,

or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, line 38 through column 22, line 48, for examples of zwitterionic surfactants.

When included therein, the detergent compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such zwitterionic surfactants.

Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.

Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula

0

个

$R^3 (OR^4) \times N (R^5) 2$

wherein R^3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms; R^4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3; and each R^5 is an alkyl or hydroxyalkyl group containing from about 1 to about 3

carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups. The R⁵ groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.

These amine oxide surfactants in particular include C_{10} - C_{18} alkyl dimethyl amine oxides and C_8 - C_{12} alkoxy ethyl dihydroxy ethyl amine oxides.

When included therein, the detergent compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such semi-polar nonionic surfactants.

The detergent composition of the present invention may further comprise a cosurfactant selected from the group of primary or tertiary amines.

Suitable primary amines for use herein include amines according to the formula R_1NH_2 wherein R_1 is a C_6 - C_{12} , preferably C_6 - C_{10} alkyl chain or $R_4X(CH_2)_n$, X is -O-,-C(O)NH- or -NH-, R_4 is a C_6 - C_{12} alkyl chain n is between 1 to 5, preferably 3. R_1 alkyl chains may be straight or branched and may be interrupted with up to 12, preferably less than 5 ethylene oxide moieties.

Preferred amines according to the formula herein above are n-alkyl amines. Suitable amines for use herein may be selected from 1-hexylamine, 1-octylamine, 1-decylamine and laurylamine. Other preferred primary amines include C8-C10 oxypropylamine, octyloxypropylamine, 2-ethylhexyloxypropylamine, lauryl amido propylamine and amido propylamine.

Suitable tertiary amines for use herein include tertiary amines having the formula $R_1R_2R_3N$ wherein R1 and R2 are C_1 - C_8 alkylchains or

$$-(CH_2-CH-O)_{xH}$$

WO 98/07816 PCT/US96/13322

 $\rm R_3$ is either a $\rm C_6-C_{12}$, preferably $\rm C_6-C_{10}$ alkyl chain, or $\rm R_3$ is $\rm R_4X\,(CH_2)_{\,\rm I\! I\! I}$, whereby X is -O-, -C(0)NH- or -NH- $\rm _R_4$ is a $\rm C_4-C_{12}$, n is between 1 to 5, preferably 2-3. $\rm R_5$ is H or $\rm C_1-C_2$ alkyl and x is between 1 to 6 .

 R_3 and R_4 may be linear or branched; R_3 alkyl chains may be interrupted with up to 12, preferably less than 5, ethylene oxide moieties.

Preferred tertiary amines are $R_1R_2R_3N$ where R1 is a C6-C12 alkyl chain, R2 and R3 are C1-C3 alkyl or

$$-(cH_2-cH-O)_xH$$

where R5 is H or CH3 and x = 1-2.

Also preferred are the amidoamines of the formula:

$$R_1 - C - NH - (CH_2) - N - (R_2)_2$$

wherein R_1 is C_6 - C_{12} alkyl; n is 2-4, preferably n is 3; R_2 and R_3 is C_1 - C_4

Most preferred amines of the present invention include 1-hexylamine, 1-octylamine, 1-decylamine, dodecylamine, C8-10oxypropylamine, N coco 1-3diaminopropane, coconutalkyldimethylamine, lauryldimethylamine, lauryl bis(hydroxyethyl)amine, coco bis(hydroxyehtyl)amine, lauryl propoxylated, amine moles octyl amine moles propoxylated, lauryl amidopropyldimethylamine, C8-10 amidopropyldimethylamine and C10 amidopropyldimethylamine. The most preferred amines for use in the compositions herein are 1-hexylamine, 1-octylamine, 1-decylamine, 1dodecylamine. Especially desirable are ndodecyldimethylamine and bishydroxyethylcoconutalkylamine oleylamine times and ethoxylated, 7 lauryl amido propylamine and cocoamido propylamine.

Conventional detergent enzymes

The detergent compositions of the present invention can further comprise one or more enzymes which provide detergent performance and/or fabric care benefits.

Said enzymes include enzymes selected from cellulases, hemicellulases, proteases, gluco-amylases, amylases, xylanases, lipases, phospholipases, esterases, cutinases, keratanases, oxidases, reductases, pectinases, phenoloxidases, lipoxygenases, ligninases, pullulanases, malanases, ß-glucanases, pentosanases, tannases. arabinosidases, hyaluronidase, chondroitinase, laccase or mixtures thereof.

A preferred combination is a detergent composition having cocktail of conventional applicable enzymes like protease, amylase, lipase, cutinase and/or cellulase in conjunction with one or more plant cell wall degrading enzymes.

The cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, which discloses fungal cellulase produced from Humicola insolens. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.

Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800. Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids and a ~43kD endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred

endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No. WO 91/17243. Especially suitable cellulases are the cellulases having color care benefits. Other suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in WO94/21801, Genencor, published September 29, 1994. Examples of such cellulases are cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also WO91/17243.

Said cellulases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.

Other preferred enzymes that can be included in the detergent compositions of the present invention include Suitable lipase enzymes for detergent usage lipases. include those produced by microorganisms of the Pseudomonas such as Pseudomonas stutzeri ATCC group, 19.154, disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive immunological crossreaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P". Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The lipases Netherlands, and Pseudomonas gladioli. ex Especially suitable lipases are lipases such as M1 LipaseR and Lipomax^R (Gist-Brocades) and Lipolase^R and Lipolase Ultra^R(Novo) which have found to be very effective when used in combination with the compositions of the present invention.

Also suitable are cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor).

The lipases and/or cutinases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.

Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis (subtilisin BPN and BPN'). One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, The preparation of this enzyme and hereinafter "Novo". analogous enzymes is described in GB 1,243,784 to Novo. Other suitable proteases include ALCALASE®, DURAZYM® and SAVINASE® from Novo and MAXATASE®, MAXACAL®, PROPERASE® and MAXAPEM® (protein engineered Maxacal) from Gist-Brocades. Proteolytic enzymes also encompass bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, which refers to a modified bacterial serine 1986. protealytic enzyme which is called "Protease A" herein. More preferred is what is called herein "Protease C", which is a variant of an alkaline serine protease from Bacillus in which lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position C is described in EP 274. Protease 90915958:4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein. See also a high pH protease from

Bacillus sp. NCIMB 40338 described in WO 93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo.

In more detail, protease referred to as "Protease D" is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in WO95/10591 in the patent application of C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzymes" having US Serial No. 08/322,677, filed October 13, 1994. suitable for the present invention are proteases described in patent applications EP 251 446 and WO91/06637 and protease BLAP® described in WO91/02792. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.

Amylases (α and/or β) can be included for removal of carbohydrate-based stains. W094/02597, Novo Nordisk A/S published February 03, 1994, describes detergent compositions which incorporate mutant amylases. See also W094/18314, Genencor, published August 18, 1994 and

WO95/10603, Novo Nordisk A/S, published April 20, 1995. Other amylases known for use in detergent compositions include both α - and β -amylases. α -Amylases are known in the art and include those disclosed in US Pat. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341; and British Patent specification no. 1,296,839 (Novo). Other suitable amyla'se are stability-enhanced amylases including Purafact Ox AmR described in WO 94/18314, published August 18, 1994; WO96/05295, Genencor, published February 22, 1996 amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603, published April 95. Examples of commercial α -amylases products are Termamyl®, ,Fungamyl® and Duramyl®, all available from Novo Nordisk A/S Denmark. W095/26397 describes other suitable amylases : α-amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas $^{\otimes}$ α -amylase activity assay. Other amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in WO95/35382.

The above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Said enzymes are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition. The enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc... containing one enzyme) or as mixtures of two or more enzymes (e.g. cogranulates).

Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in

Copending European Patent application 92870018.6 filed on January 31, 1992. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.

A range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques. techniques stabilisation disclosed Enzyme are and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.

Color care benefits

Technologies which provide a type of color care benefit can also be included. Examples of these technologies are metallo catalysts for color maintenance. Such metallo catalysts are described in copending European Patent Application No. 92870181.2.

Builder system

The compositions according to the present invention may further comprise a builder system. Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates,

alkyl- or alkenyl-succinic acid and fatty acids, materials such as ethylenediamine tetraacetate, diethylene triamine pentamethyleneacetate, metal ion sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid. Phosphate builders can also be used herein.

Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B, HS or MAP.

Another suitable inorganic builder material is layered silicate, e.g. SKS-6 (Hoechst). SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na₂Si₂O₅).

Suitable polycarboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. and 821,370. Polycarboxylates containing two 821,369 carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as succinate derivatives well as such carboxymethyloxysuccinates described in British Patent No. lactoxysuccinates described in Netherlands 1,379,241, Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.

Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No.

1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3tetracarboxylates propane 1,1,2,3-propane and tetracarboxylates. Polycarboxylates containing sulfo the substituents include sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent 1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.

Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis, cis, cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane -hexacar-boxylates and and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol. Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.

Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.

Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (SKS-6), and a water-soluble carboxylate chelating agent such as citric acid. preferred builder systems for use in liquid detergent compositionsof the present invention are soaps and polycarboxylates.

A suitable chelant for inclusion in the detergent compositions in accordance with the invention is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted

ammonium salts thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt thereof. Examples of such preferred sodium salts of EDDS include Na₂EDDS and Na₄EDDS. Examples of such preferred magnesium salts of EDDS include MgEDDS and Mg₂EDDS. The magnesium salts are the most preferred for inclusion in compositions in accordance with the invention.

Preferred builder systems include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid.

Other builder materials that can form part of the builder system for use in granular compositions include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amino polyalkylene phosphonates and amino polycarboxylates.

Other suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.

Polymers of this type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.

Detergency builder salts are normally included in amounts of from 5% to 80% by weight of the composition preferably from 10% to 70% and most usually from 30% to 60% by weight.

Suds suppressor

Another optional ingredient is a suds suppressor, exemplified by silicones, and silica-silicone mixtures. Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier. Alternatively the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.

A preferred silicone suds controlling agent disclosed in Bartollota et al. U.S. Patent 3 933 672. Other suppressors particularly useful suds the are selfemulsifying silicone suds suppressors, described in German Patent Application DTOS 2 646 126 published April 28, 1977. An example of such a compound is DC-544, commercially available from Dow Corning, which is a siloxane-glycol copolymer. Especially preferred suds controlling agent are the suds suppressor system comprising a mixture of silicone oils and 2-alkyl-alcanols. Suitable 2-alkyl-alkanols are 2butyl-octanol which are commercially available under the trade name Isofol 12 R.

Such suds suppressor system are described in Copending European Patent application N 92870174.7 filed 10 November, 1992.

Especially preferred silicone suds controlling agents are described in Copending European Patent application $N^{\circ}92201649.8$. Said compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as $Aerosil^R$.

The suds suppressors described above are normally employed at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01% to 1% by weight.

Others

Other components used in detergent compositions may be employed, such as soil-suspending agents, soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and/or encapsulated or non-encapsulated perfumes.

Especially suitable encapsulating materials are water soluble capsules which consist of a matrix of polysaccharide and polyhydroxy compounds such as described in GB 1,464,616.

Other suitable water soluble encapsulating materials comprise dextrins derived from ungelatinized starch acidesters of substituted dicarboxylic acids such as described in US 3,455,838. These acid-ester dextrins are, preferably, prepared from such starches as waxy maize, waxy sorghum, sago, tapioca and potato. Suitable examples of said encapsulating materials include N-Lok manufactured by National Starch. The N-Lok encapsulating material consists of a modified maize starch and glucose. The starch is modified by adding monofunctional substituted groups such as octenyl succinic acid anhydride.

Antiredeposition and soil suspension agents suitable cellulose derivatives herein include such as carboxymethylcellulose methylcellulose, and ' hydroxyethylcellulose, and homoco-polymeric or polycarboxylic acids or their salts. Polymers of this type include the polyacrylates and maleic anhydride-acrylic acid copolymers previously mentioned as builders, as well as copolymers of maleic anhydride with ethylene, methylvinyl

ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.

optical brighteners Preferred are anionic in character, examples of which are disodium 4,4'-bis-(2diethanolamino-4-anilino -s- triazin-6-ylamino) stilbene-2:2' disulphonate, disodium 4, - 4'-bis-(2-morpholino-4anilino-s-triazin-6-ylamino-stilbene-2:2' - disulphonate, 4,4' bis-(2,4-dianilino-s-triazin-6disodium ylamino)stilbene-2:2' - disulphonate, monosodium 4',4'' bis-(2,4-dianilino-s-tri-azin-6 ylamino)stilbene-2sulphonate, disodium 4,4' -bis-(2-anilino-4-(N-methyl-N-2hydroxyethylamino) -s-triazin-6-ylamino) stilbene-2,2' disulphonate, di-sodium 4,4' -bis-(4-phenyl-2,1,3-triazol-2-yl)-stilbene-2,2' disulphonate, di-so-dium 4,4'bis(2anilino-4-(1-methyl-2-hydroxyethylamino)-s-triazin-6ylami-no)stilbene-2,2'disulphonate, sodium 2(stilbyl-4''-(naphtho-1',2':4,5)-1,2,3 - triazole-2''-sulphonate and 4,4'-bis(2-sulphostyryl)biphenyl. Highly preferred brighteners are the specific brighteners of copending European Patent application No. 95201943.8.

Other useful polymeric materials are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about These are used at levels of from 0.20% to 5% more 4000. preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homoco-polymeric or polycarboxylate salts are valuable for improving whiteness maintenance, fabric deposition, ash and cleaning performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.

Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and 4711730 and European Published Patent Application No. 0 272 033. A particular preferred polymer in accordance with EP-A-0 272 033 has the formula

$$(CH_3 (PEG)_{43})_{0.75} (POH)_{0.25} [T-PO)_{2.8} (T-PEG)_{0.4}] T (PO-H)_{0.25} ((PEG)_{43} CH_3)_{0.75}$$

where PEG is $-(OC_2H_4)O-, PO$ is (OC_3H_6O) and T is $(pcOC_6H_4CO)$.

Also very useful are modified polyesters as random terephthalate, dimethyl dimethyl of copolymers sulfoisophthalate, ethylene glycol and 1-2 propane diol, the end groups consisting primarily of sulphobenzoate and secondarily of mono esters of ethylene glycol and/or propane-diol. The target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be endcapped by sulphobenzoate groups. However, some copolymers will be less than fully capped, and therefore their end groups may consist of monoester of ethylene glycol and/or propane 1-2 diol, thereof consist "secondarily" of such species.

The selected polyesters herein contain about 46% by weight of dimethyl terephthalic acid, about 16% by weight of propane -1.2 diol, about 10% by weight ethylene glycol about 13% by weight of dimethyl sulfobenzoic acid and about 15% by weight of sulfoisophthalic acid, and have a molecular weight of about 3.000. The polyesters and their

method of preparation are described in detail in EPA 311 342.

Is is well known in the art that free chlorine in tap water rapidly deactivates the enzymes comprised in detergent compositions. Therefore, using chlorine scavenger such as perborate, ammonium sulfate, sodium sulphite or polyethyleneimine at a level above 0.1% by weight of total composition, in the formulas will provide improved through the wash stability of the detergent enzyme. Compositions comprising chlorine scavenger are described in the European patent application 92870018.6 filed January 31, 1992.

Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described 91/08281 and PCT 90/01815 at p. 4 WO incorporated herein by reference. Chemically, materials comprise polyacrylates having one ethoxy sidechain per every 7-8 acrylate units. The side-chains are of the formula $-(CH_2CH_2O)_m(CH_2)_nCH_3$ wherein m is 2-3 and n is 6-12. The side-chains are ester-linked to the polyacrylate "backbone" to provide a "comb" polymer type structure. The molecular weight can vary, but is typically in the range of 50,000. alkoxylated 2000 about about Such to polycarboxylates can comprise from about 0.05% to about 10%, by weight, of the compositions herein.

Softening agents

Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898 and in USP 5,019,292. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A1 514

276 and EP-B0 011 340 and their combination with mono C12-C14 quaternary ammonium salts are disclosed in EP-B-0 026 527 and EP-B-0 026 528 and di-long-chain amides as disclosed in EP-B-0 242 919. Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP-A-0 299 575 and 0 313 146.

Levels of smectite clay are normally in the range from 2% to 20%, more preferably from 5% to 15% by weight, with the material being added as a dry mixed component to the remainder of the formulation. Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight. These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as molten liquid on to other solid components of the composition.

Dispersants

The detergent composition of the present invention can also contain dispersants: Suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.

Polymers of this type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 1,000 to 100,000.

Especially, copolymer of acrylate and methylacrylate such as the 480N having a molecular weight of 4000, at a level from 0.5-20% by weight of composition can be added in the detergent compositions of the present invention.

The compositions of the invention may contain a lime soap peptiser compound, which has a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6. The lime soap peptiser compound is preferably present at a level from 0% to 20% by weight.

A numerical measure of the effectiveness of a lime soap peptiser is given by the lime soap dispersant power (LSDP) which is determined using the lime soap dispersant test as described in an article by H.C. Borghetty and C.A. Bergman, J. Am. Oil. Chem. Soc., volume 27, pages 88-90, (1950). This lime soap dispersion test method is widely used by practitioners in this art field being referred to, for example, in the following review articles; W.N. Linfield, Surfactant science Series, Volume 7, page 3; W.N. Linfield, Tenside surf. det., volume 27, pages 159-163, (1990); and M.K. Nagarajan, W.F. Masler, Cosmetics and Toiletries, volume 104, pages 71-73, (1989). The LSDP is the % weight ratio of dispersing agent to sodium oleate required to disperse the lime soap deposits formed by 0.025g of sodium oleate in 30ml of water of 333ppm CaCo₃ (Ca:Mg=3:2) equivalent hardness.

Surfactants having good lime soap peptiser capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.

Exemplary surfactants having a LSDP of no more than 8 for use in accord with the present invention include C_{16} - C_{18} dimethyl amine oxide, C_{12} - C_{18} alkyl ethoxysulfates with an average degree of ethoxylation of from 1-5, particularly

 C_{12} - C_{15} alkyl ethoxysulfate surfactant with a degree of ethoxylation of amount 3 (LSDP=4), and the C_{14} - C_{15} ethoxylated alcohols with an average degree of ethoxylation of either 12 (LSDP=6) or 30, sold under the tradenames Lutensol A012 and Lutensol A030 respectively, by BASF GmbH.

Polymeric lime soap peptisers suitable for use herein are described in the article by M.K. Nagarajan, W.F. Masler, to be found in Cosmetics and Toiletries, volume 104, pages 71-73, (1989).

Hydrophobic bleaches such as 4-[N-octanoyl-6-aminohexanoyl]benzene sulfonate, 4-[N-nonanoyl-6-aminohexanoyl]benzene sulfonate, 4-[N-decanoyl-6-aminohexanoyl]benzene sulfonate and mixtures thereof; and nonanoyloxy benzene sulfonate together with hydrophilic / hydrophobic bleach formulations can also be used as lime soap peptisers compounds.

Dye transfer inhibition

The detergent compositions of the present invention can also include compounds for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.

Polymeric dye transfer inhibiting agents

The detergent compositions according to the present invention also comprise from 0.001% to 10 %, preferably from 0.01% to 2%, more preferably from 0.05% to 1% by weight of polymeric dye transfer inhibiting agents. Said polymeric dye transfer inhibiting agents are normally incorporated into detergent compositions in order to inhibit the transfer of dyes from colored fabrics onto fabrics washed therewith. These polymers have the ability

WO 98/07816 PCT/US96/13322

to complex or adsorb the fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash.

Especially suitable polymeric dye transfer inhibiting agents are polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.

Addition of such polymers also enhances the performance of the enzymes according the invention.

a) Polyamine N-oxide polymers

The polyamine N-oxide polymers suitable for use contain units having the following structure formula:

P | (I) A_X | R

wherein P is a polymerisable unit, whereto the R-N-O group can be attached to or wherein the R-N-O group forms part of the polymerisable unit or a combination of both.

A is NC, CO, C, -O-,-S-, -N-; x is O or 1; R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.

The N-O group can be represented by the following general structures :

WO 98/07816 PCT/US96/13322

wherein R1, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.

The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.

Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.

One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.

Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group is attached to the R-group.

Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.

Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein

the nitrogen of the N-O functional group is part of said R group.

Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.

Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is attached to said R groups.

Examples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.

Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.

The amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000. However the amount of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of Noxidation. Preferably, the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000. polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine Noxide and the other monomer type is either an amine N-oxide or not. The amine oxide unit of the polyamine N-oxides has a PKa < 10, preferably PKa < 7, more preferred PKa < 6. The polyamine oxides can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired watersolubility and dye-suspending power.

Typically, the average molecular weight is within the range of 500 to 1000,000; preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.

b) Copolymers of N-vinylpyrrolidone and N-vinylimidazole

The N-vinylimidazole N-vinylpyrrolidone polymers used in the present invention have an average molecular weight range from 5,000-1,000,000, preferably from 5,000-200,000.

Highly preferred polymers for use in detergent compositions according to the present invention comprise a polymer selected from N-vinylimidazole N-vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000.

The average molecular weight range was determined by light scattering as described in Barth H.G. and Mays J.W. Chemical Analysis Vol 113, "Modern Methods of Polymer Characterization".

Highly preferred N-vinylimidazole N-vinylpyrrolidone copolymers have an average molecular weight range from 5,000 to 50,000; more preferably from 8,000 to 30,000; most preferably from 10,000 to 20,000.

The N-vinylimidazole N-vinylpyrrolidone copolymers characterized by having said average molecular weight range provide excellent dye transfer inhibiting properties while not adversely affecting the cleaning performance of detergent compositions formulated therewith.

The N-vinylimidazole N-vinylpyrrolidone copolymer of the present invention has a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4.

c) Polyvinylpyrrolidone

The detergent compositions of the present invention may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000. Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12; polyvinylpyrrolidones known to persons skilled in the detergent field (see for example EP-A-262,897 and EP-A-256,696).

d) Polyvinyloxazolidone :

The detergent compositions of the present invention may also utilize polyvinyloxazolidone as a polymeric dye transfer inhibiting agent. Said polyvinyloxazolidones have an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.

e) Polyvinylimidazole :

The detergent compositions of the present invention may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles have an average about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to

about 50,000, and most preferably from about 5,000 to about 15,000.

f) Cross-linked polymers:

Cross-linked polymers are polymers whose backbone are interconnected to a certain degree; these links can be of chemical or physical nature, possibly with active groups n the backbone or on branches; cross-linked polymers have been described in the Journal of Polymer Science, volume 22, pages 1035-1039.

In one embodiment, the cross-linked polymers are made in such a way that they form a three-dimensional rigid structure, which can entrap dyes in the pores formed by the three-dimensional structure. In another embodiment, the cross-linked polymers entrap the dyes by swelling.

Such cross-linked polymers are described in the copending patent application 94870213.9

Method of washing

The compositions of the invention may be used in essentially any washing or cleaning methods, including soaking methods, pretreatment methods and methods with rinsing steps for which a separate rinse aid composition may be added.

The process described herein comprises contacting fabrics with a laundering solution in the usual manner and exemplified hereunder.

The process of the invention is conveniently carried out in the course of the cleaning process. The method of cleaning is preferably carried out at 5°C to 95°C,

especially between 10°C and 60°C. The pH of the treatment solution is preferably from 7 to 11.

A preferred machine dishwashing method comprises treating soiled articles with an aqueous liquid having dissolved or dispensed therein an effective amount of the machine diswashing or rinsing composition. A conventional effective amount of the machine dishwashing composition means from 8-60 g of product dissolved or dispersed in a wash volume from 3-10 litres.

According to a manual dishwashing method, soiled dishes are contacted with an effective amount of the diswashing composition, typically from 0.5-20g (per 25 dishes being treated). Preferred manual dishwashing methods include the application of a concentrated solution to the surfaces of the dishes or the soaking in large volume of dilute solution of the detergent composition.

The following examples are meant to exemplify compositions of the present invention, but are not necessarily meant to limit or otherwise define the scope of the invention.

In the detergent compositions, the enzymes levels are expressed by pure enzyme by weight of the total composition and unless otherwise specified, the detergent ingredients are expressed by weight of the toal compositions. The abbreviated component identifications therein have the following meanings:

LAS : Sodium linear C_{12} alkyl benzene

sulphonate

TAS : Sodium tallow alkyl sulphate

52

CXYAS : Sodium C_{1X} - C_{1Y} alkyl sulfate

25EY : A C₁₂-C₁₅ predominantly linear primary

alcohol condensed with an average of Y

moles of ethylene oxide

CXYEZ : A C_{1X} - C_{1Y} predominantly linear primary

alcohol condensed with an average of Z

moles of ethylene oxide

XYEZS: C_{1X} - C_{1Y} sodium alkyl sulfate condensed

with an average of Z moles of ethylene

oxide per mole

QAS : $R_2.N^+(CH_3)_2(C_2H_4OH)$ with $R_2 = C_{12}-C_{14}$

soap : Sodium linear alkyl carboxylate derived

from a 80/20 mixture of tallow and

coconut oils.

Nonionic : C₁₃-C₁₅ mixed ethoxylated/propoxylated

fatty alcohol with an average degree of

ethoxylation of 3.8 and an average degree of propoxylation of 4.5 sold under the tradename Plurafac LF404 by

BASF Gmbh.

CFAA : C_{12} - C_{14} alkyl N-methyl glucamide

TFAA : C₁₆-C₁₈ alkyl N-methyl glucamide.

TPKFA : C12-C14 topped whole cut fatty acids.

DEQA : Di-(tallow-oxy-ethyl) dimethyl ammonium

chloride.

SDASA : 1:2 ratio of stearyldimethyl

amine:triple-pressed stearic acid.

Neodol 45-13 : C14-C15 linear primary alcohol

ethoxylate, sold by Shell Chemical CO.

Silicate : Amorphous Sodium Silicate (SiO2:Na2O

ratio = 2.0

NaSKS-6 : Crystalline layered silicate of formula

 δ -Na₂Si₂O₅.

Carbonate : Anhydrous sodium carbonate with a

particle size between 200 μm and 900 μm .

Bicarbonate : Anhydrous sodium bicarbonate with a

particle size between 400 μm and 1200 μm .

STPP : Anhydrous sodium tripolyphosphate

MA/AA : Copolymer of 1:4 maleic/acrylic acid,

average molecular weight about 80,000

PA30 : Polyacrylic acid of average molecular

weight of approximately 8,000.

Terpolymer : Terpolymer of average molecular weight

approx. 7,000, comprising

acrylic:maleic:ethylacrylic acid monomer

units at a weight ratio of 60:20:20

480N : Random copolymer of 3:7

acrylic/methacrylic acid, average

molecular weight about 3,500.

Polyacrylate : Polyacrylate homopolymer with an average

molecular weight of 8,000 sold under the

tradename PA30 by BASF GmbH

Zeolite A : Hydrated Sodium Aluminosilicate of

formula $Na_{12}(AlO_2SiO_2)_{12}$. 27H₂O having a primary particle size in the range from

0.1 to 10 micrometers

Citrate : Tri-sodium citrate dihydrate of activity

86,4% with a particle size distribution

between 425 μ m and 850 μ m.

Citric : Anhydrous citric acid

PB1 : Anhydrous sodium perborate monohydrate

bleach, empirical formula NaBO2.H2O2

PB4 : Anhydrous sodium perborate tetrahydrate

Percarbonate : Anhydrous sodium percarbonate bleach of

empirical formula 2Na₂CO₃.3H₂O₂

TAED : Tetraacetyl ethylene diamine.

NOBS: Nonanoyloxybenzene sulfonate in the form

of the sodium salt.

Photoactivated : Sulfonated zinc phtlocyanine

Bleach encapsulated in dextrin soluble polymer.

PAAC : Pentaamine acetate cobalt(III) salt.

Paraffin : Paraffin oil sold under the tradename

Winog 70 by Wintershall.

Bzp : Benzoyl Peroxide.

Protease : Proteolytic enzyme sold under the

tradename Savinase, Alcalase, Durazym by Novo Nordisk A/S, Maxacal, Maxapem sold by Gist-Brocades and proteases described in patents WO91/06637 and/or WO95/10591

and/or EP 251 446.

Amylase : Amylolytic enzyme sold under the

tradename Purafact Ox Am^R described in WO 94/18314,WO96/05295 sold by Genencor; Termamyl[®], Fungamyl[®] and Duramyl[®], all available from Novo Nordisk A/S and

those described in WO95/26397.

Lipase : Lipolytic enzyme sold under the

tradename Lipolase, Lipolase Ultra by

Novo Nordisk A/S

Cellulase : Cellulytic enzyme sold under the

tradename Carezyme, Celluzyme and/or

Endolase by Novo Nordisk A/S.

Antibody : Commercially available antibody raised

against catalase from the Binding Site

Ltd (UK) PO BOX 4073, Birmingham,

B296AT.

CMC : Sodium carboxymethyl cellulose.

HEDP : 1,1-hydroxyethane diphosphonic acid.

DETPMP : Diethylene triamine penta (methylene

phosphonic acid), marketed by Monsanto

under the Trade name Dequest 2060.

PVNO : Poly(4-vinylpyridine)-N-Oxide.

PVPVI : Poly (4-vinylpyridine)-N-oxide/copolymer

of vinyl-imidazole and vinyl-

pyrrolidone.

Brightener 1 : Disodium 4,4'-bis(2-

sulphostyryl) biphenyl.

Brightener 2 : Disodium 4,4'-bis(4-anilino-6-

morpholino-1.3.5-triazin-2-yl) stilbene-

2:2'-disulfonate.

Silicone : Polydimethylsiloxane foam controller

antifoam with siloxane-oxyalkylene copolymer as

dispersing agent with a ratio of said foam controller to said dispersing agent

of 10:1 to 100:1.

Granular Suds : 12% Silicone/silica, 18% stearyl

Suppressor alcohol,70% starch in granular form

SRP 1 : Sulfobenzoyl end capped esters with

oxyethylene oxy and terephtaloyl

backbone.

SRP 2 : Diethoxylated poly (1,2 propylene

terephtalate) short block polymer.

Sulphate : Anhydrous sodium sulphate.

HMWPEO : High molecular weight polyethylene oxide

PEG : Polyethylene glycol.

BTA : Benzotriazole

Bismuth nitrate : Bismuth nitrate salt

NaDCC : Sodium dichloroisocyanurate

WO 98/07816 57 PCT/US96/13322

Encapsulated perfume particles

: Insoluble fragrance delivery technology utilising zeolite 13x, perfume and a dextrose/glycerin agglomerating binder.

KOH

: 100% Active solution of Potassium

Hydroxide

рН

: Measured as a 1% solution in distilled

water at 20°C.

Example 1

Chickens were injected in the breast muscle with 1 ml of a 1 mg/ml catalase emulsion. The catalase emulsion was prepared with a Freunds complete adjuvants (Freund and McDermott, 1942; Freund 1956) by mixing intensively an equal amount of catalase solution (2 mg/ml) and the Freunds complete adjuvant. The enzyme has been previously heat denaturated (Harlow & Lane, Antibodies, laboratory manual, 1988).

The immunisation scheme was completed with injections using a Freunds uncomplete adjuvant and after 4 weeks, the eggs were collected for one week.

The extraction of the antibodies from the eggs yolks was done according to the Polson extraction method as described in Immunological Investigation 19, 1990, pp 253-258. A catalase solution was prepared (50U to 100U/ml) and incubated with 0.04 g of Polson extract during 30 minutes.

An aliquot of 100 microlitre of this incubated solution was added to a hydrogen peroxide solution. The catalase inactivation was measured in accordance to the Sigma enzymatic assay of catalase, EC 1.11.1.6. No decrease was observed in the hydrogen peroxide concentration demonstrating the complete inactivation of catalase enzyme.

Example 2

The following laundry detergent compositions were prepared in accord with the invention:

	I	II	III	IV	v	VI
LAS	8.0	8.0	8.0	8.0	8.0	8.0
C25E3	3.4	3.4	3.4	3.4	3.4	3.4
QAS	-	0.8	0.8	· ~	0.8	8.0
Zeolite A	18.1	18.1	18.1	18.1	18.1	18.1
Carbonate	13.0	13.0	13.0	27.0	27.0	27.0
Silicate	1.4	1.4	1.4	3.0	3.0	3.0
Sulfate	26.1	26.1	26.1	26.1	26.1	26.1
PB4	9.0	9.0	9.0	9.0	9.0	9.0
TAED	1.5	1.5.	1.5	1.5	1.5	1.5
DETPMP	0.25	0.25	0.25	0.25	0.25	0.25
HEDP	0.3	0.3	0.3	0.3	0.3	0.3
Antibody	10E-2	10E-4	1	10E-6	10E-5	10E-1
Protease	0.0026	0.0026	0.0026	0.0026	0.0026	0.0026
Amylase	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009
MA/AA	0.3	0.3	0.3	0.3	0.3	0.3
CMC	0.2	0.2	0.2	0.2	0.2	0.2
Photoactivated	15	15	15	15	15	15
bleach (ppm)						
Brightener 1	0.09	0.09	0.09	0.09	0.09	0.09
Perfume	0.3	0.3	0.3	0.3	0.3	0.3
Silicone	0.5	0.5	0.5	0.5	0.5	0.5
antifoam						
Misc/minors to	100%					
Density in	850	850	850	850	850	850
g/litre						

Example 3

The following granular laundry detergent compositions of bulk density 750 g/litre were prepared in accord with the invention:

	I	II	III
LAS	5.25	5.61	4.76
TAS	1.25	1.86	1.57
C45AS	-	2.24	3.89
C25AE3S	-	0.76	1.18
C45E7	3.25	-	5.0
C25E3	-	5.5	-
QAS	0.8	2.0	2.0
STPP	19.7	-	~
Zeolite A	-	19.5	19.5
NaSKS-6/citric acid	~	10.6	10.6
(79:21)			
Carbonate	6.1	21.4	21.4
Bicarbonate	-	2.0	2.0
Silicate	6.8	-	-
Sodium sulfate	39.8	-	14.3
PB4	5.0	12.7	2.5
TAED	0.5	3.1	0.25
DETPMP	0.25	0.2	0.2
HEDP	-	0.3	0.3
Antibody	10E-2	10E-4	0.1
Protease	0.0026	0.0005	0.045
Lipase	0.003	0.003	0.003
Cellulase	0.0006	0.0006	0.0006
Amylase	0.0009	0.0009	0.0009
MA/AA	0.8	1.6	1.6
CMC	0.2	0.4	0.4
Photoactivated	15 ppm	27 ppm	27 ppm
bleach (ppm)			
Brightener 1	0.08	0.19	0.19

WO 98/07816	61		PCT/US96/13322
Brightener 2	-	0.04	0.04
Encapsulated perfume	0.3	0.3	0.3
particles			
Silicone antifoam	0.5	2.4	2.4
Minors/misc to 100%			

to do a

•

•

N.

.

.

••

Example 4

The following detergent formulations, according to the present invention were prepared, where I is a phosphorus-containing detergent composition, II is a zeolite-containing detergent composition and III is a compact detergent composition:

	I	II	III
Blown Powder			
STPP	24.0	-	24.0
Zeolite A	-	24.0	-
C45AS	9.0	6.0	13.0
MA/AA	2.0	4.0	2.0
LAS	6.0	8.0	11.0
TAS	2.0	••	-
Silicate	7.0	3.0	3.0
CMC	1.0	1.0	0.5
Brightener 2	0.2	0.2	0.2
Soap	1.0	1.0	1.0
DETPMP	0.4	0.4	0.2
Spray On			
C45E7	2.5	2.5	2.0
C25E3	2.5	2.5	2.0
Silicone antifoam	0.3	0.3	0.3
Perfume	0.3	0.3	0.3
Dry additives			
Carbonate	6.0	13.0	15.0
PB4	18.0	18.0	10.0
PB1	4.0	4.0	0
TAED	3.0	3.0	1.0
Photoactivated	0.02	0.02	0.02
bleach			
Antibody	10E-3	10E-3	10E-2
Protease	0.01	0.01	0.01
Lipase	0.009	0.009	0.009
Amylase	0.002	0.003	0.001

WO 98/07816	63		PCT/US96/13322
Dry mixed sodium	3.0	3.0	5.0
sulfate			
Balance (Moisture &	100.0	100.0	100.0
Miscellaneous)			
Density (q/litre)	630	670	. 670

4 4 3

Example 5

• ()2 •

The following detergent formulations, according to the present invention were prepared:

	I	II	III	IV
LAS .	20.0	14.0	24.0	22.0
QAS	0.7	1.0	-	0.7
TFAA	-	1.0	-	-
C25E5/C45E7	-	2.0	- ·	0.5
C45E3S	-	2.5	-	-
STPP	30.0	18.0	30.0	22.0
Silicate	9.0	5.0	10.0	8.0
Carbonate	13.0	7.5	-	5.0
Bicarbonate	-	7.5	-	-
DETPMP	0.7	1.0	-	-
SRP 1	0.3	0.2	-	0.1
MA/AA	2.0	1.5	2.0	1.0
CMC	0.8	0.4	0.4	0.2
Antibody	10E-2	10E-1	1	1
Protease	0.008	0.01	0.026	0.026
Amylase	0.007	0.004	-	0.002
Lipase	0.004	0.002	0.004	0.002
Cellulase	0.0015	0.0005	**	-
Photoactivated	70ppm	45ppm	-	10ppm
bleach (ppm)				
Brightener 1	0.2	0.2	0.08	0.2
PB1	6.0	2.0	1.0	1.0
NOBS	2.0	1.0	0.5	0.5
Balance	. 100	100	100	100
(Moisture and				
Miscellaneous)				

Example 6

The following detergent formulations, according to the present invention were prepared:

	I	II	III	IV
Blown Powder				
Zeolite A	30.0	22.0	6.0	6.7
Na SkS-6	-	. 🕶 🕝	-	3.3
Polycarboxylate	-	-	-	7.1
Sodium sulfate	19.0	5.0	7.0	-
MA/AA	3.0	3.0	6.0	_
LAS	14.0	12.0	22.0	21.5
C45AS	8.0	7.0	7.0	5.5
Cationic	-	-	-	1.0
Silicate	-	1.0	5.0	11.4
Soap	-	-	2.0	-
Brightener 1	0.2	0.2	0.2	-
Carbonate	8.0	16.0	20.0	10.0
DETPMP	-	0.4	0.4	-
Spray On				
C45E7	1.0	1.0	1.0	3.2
Dry additives				
PVPVI/PVNO	0.5	0.5	0.5	-
Antibody	10E-1	10E-2	10E-2	10E-3
Protease	0.052	0.01	0.01	0.01
Lipase	0.009	0.009	0.009	0.009
Amylase	0.001	0.001	0.001	0.001
Cellulase	0.0002	0.0002	0.0002	0.0002
NOBS	-	6.1	4.5	V 3.2
PB1	1.0	5.0	6.0	3.9
Sodium sulfate	-	6.0	-	to
				balance
Balance (Moisture	100	100	100	
and Miscellaneous)				

Example 7

() ()

The following high density and bleach-containing detergent formulations, according to the present invention were prepared:

	I	II	III
Blown Powder			
Zeolite A	15.0	15.0	15.0
Sodium sulfate	0.0	5.0	0.0
LAS	3.0	3.0	3.0
QAS	-	1.5	1.5
DETPMP	0.4	0.4	0.4
CMC	0.4	0.4	0.4
MA/AA	4.0	2.0	2.0
Agglomerates			
LAS	5.0	5.0	5.0
TAS	2.0	2.0	1.0
Silicate	3.0	3.0	4.0
Zeolite A	8.0	8.0	8.0
Carbonate	8.0	8.0	4.0
Spray On			
Perfume	0.3	0.3	0.3
C45E7	2.0	2.0	2.0
C25E3	2.0	-	-
Dry additives			
Citrate	5.0	-	2.0
Bicarbonate	-	3.0	-
Carbonate	8.0	15.0	10.0
TAED	6.0	2.0	5.0
PB1	14.0	7.0	10.0
Polyethylene oxide of MW	-	-	0.2
5,000,000			
Bentonite clay	-	-	10.0
Antibody	10E-4	10E-2	10E-3
Protease	0.01	0.01	0.01

WO 98/07816	67		PCT/US96/133	22	
	Lipase 0.00	0.009	9 0.009		
	Amylase 0.00	0.005	0.005		
. Ce	llulase 0.00	0.002	0.002		
Silicone a	ntifoam 5.0	5.0	5.0		
Dry additives					
Sodium	sulfate 0.0	3.0	0.0		
Balance (Moisture a	and 100.	0 100.0	100.0		
Miscellaneous)					
Density (g/litre)	850	850	850	••	

•

0 ()

Example 8

The following high density detergent formulations, according to the present invention were prepared:

	I	II
Agglomerate		
C45AS	11.0	14.0
Zeolite A	15.0	6.0
Carbonate	4.0	8.0
MA/AA	4.0	2.0
CMC	0.5	0.5
DETPMP	0.4	0.4
Spray On		
C25E5	5.0	5.0
Perfume	0.5	0.5
Dry Adds		
HEDP	0.5	0.3
SKS 6	13.0	10.0
Citrate	3.0	1.0
TAED	5.0	7.0
Percarbonate	20.0	20.0
SRP 1	0.3	0.3
Antibody	10E-4	10E-5
Protease	0.014	0.014
Lipase	0.009	0.009
Cellulase	0.001	0.001
Amylase	0.005	0.005
Silicone antifoam	5.0	5.0
Brightener 1	0.2	0.2
Brightener 2	0.2	-
Balance (Moisture and	100	100
Miscellaneous)		
Density (g/litre)	850	850

Example 9

The following granular detergent formulations, according to the present invention were prepared:

	I	II	III	IV	v
LAS	21.0	25.0	18.0	18.0	-
Coco C12-14 AS	-	-	-	-	21.9
AE3S	-	-	1.5	1.5	2.3
Decyl dimethyl	-	0.4	0.7	0.7	0.8
hydroxyethyl NH4+Cl					
Nonionic	1.2	-	0.9	0.5	
Coco C12-14 Fatty	-	-	-	-	1.0
Alcohol					
STPP	44.0	25.0	22.5	22.5	22.5
Zeolite A	7.0	10.0	-	-	8.0
MA/AA	***	-	0.9	0.9	-
SRP1	0.3	0.15	0.2	0.1	0.2
CMC	0.3	2.0	0.75	0.4	1.0
Carbonate	17.5	29.3	5.0	13.0	15.0
Silicate	2.0	-	7.6 -	7.9	-
Antibody	10E-1	10E-1	10E-1	10E-3	10E-2
Protease	0.007	0.007	0.007	0.007	0.007
Amylase	-	0.004	0.004	0.004	0.004
Lipase	0.003	0.003	0.003	_	-
Cellulase	-	0.001	0.001	0.001	0.001
NOBS	0.5	0.5	0.5	1.2	1.0
PB1	0.6	0.6	0.6	2.4	1.2
Diethylene triamine	****	-	-	0.7	1.0
penta acetic acid					•
Diethylene triamine	-	-	0.6	-	_
penta methyl					
phosphonic acid					
Mg Sulfate	-	-	0.8	-	-
Photoactivated bleach	45	50	15	45	42
	ppm	ppm	ppm	ppm	ppm
Brightener 1	0.05	-	0.04	0.04	0.04

WO 98/07816 70 PCT/US96/13322

Brightener 2 Water and Minors 0.1 0.3 0.05 0.13 0.13 up to 100%

The following liquid non-aqueous detergent formulation, according to the present invention was prepared:

<u>Liquid Base</u>	
C_{12-15} alkyl ether (EO=3) sulfate Na salt	19.0
CFAA	7.9
C24E5	16.5
N-butoxy propoxy propanol	8.6
Chloride salt of methyl quaternised	2.0
polyethoxylated hexamethylene diamine	
Perfume	0.75
PEG 200	5.4
Acetyl triethyl citrate	10.2
<u>Solids</u>	
Topped palm fernel fatty acid Na salt	5.9
Citrate	2.0
Carbonate	8.0
Percarbonate	10.0
HEDP	1.8
Brightener	0.13
Silicone oil DB-100	0.47
Antibody	E10-2
Enzymes and minors	Up to 100%

•

Granular fabric cleaning compositions which provide "softening through the wash" capability were prepared in accord with the present invention:

	I	II
45AS	-	10.0
LAS	7.6	-
68AS	1.3	-
45E7	4.0	-
25E3	-	5.0
Coco-alkyl-dimethyl hydroxy-	1.4	1.0
ethyl ammonium chloride		
Citrate	5.0	3.0
Na-SKS-6	-	11.0
Zeolite A	15.0	15.0
MA/AA	4.0	4.0
DETPMP	0.4	0.4
PB1	15.0	-
Percarbonate	-	15.0
TAED	5.0	5.0
Smectite clay	10.0	10.0
HMWPEO	-	0.1
Antibody	10E-5	10E-5
Protease	0.02	0.01
Lipase	0.02	0.01
Amylse	0.03	0.005
Cellulase	0.001	· _
Silicate	3.0	5.0
Carbonate	10.0	10.0
Granular suds suppressor	1.0	4.0
CMC	0.2	0.1
Water/minors	Up to	100%

The following compact high density (0.96Kg/l) dishwashing detergent compositions I to VI were prepared in accord with the present invention:

	I	II	III	IV	v	VI
STPP	-	-	49.0	38.0	-	_
Citrate	. 33.0	17.5	-	· -	54.0	25.4
Carbonate	_	17.5	-	20.0	14.0	25.4
Silicate	33.0	14.8	20.4	14.8	14.8	-
Metasilicate	-	2.5	2.5	_	-	
PB1	1.9	9.7	7.8	14.3	7.8	-
PB4	8.6	-	-	_	-	-
Percarbonate	-	_	-	_	-	6.7
Nonionic	1.5	2.0	1.5	1.5	1.5	2.6
TAED	4.8	2.4	2.4	-	2.4	4.0
HEDP	0.8	1.0	0.5	-	-	
DETPMP	0.6	0.6	-	-		~
PAAC	-	-	-	0.2	_	-
BzP	-	-	-	4.4	-	-
Paraffin	0.5	0.5	0.5	0.5	0.5	0.2
Antibody	10E-3	10E-3	10E-2	10E-6	10E-2	10E-1
Protease	0.075	0.05	0.10	0.10	0.08	0.01
Lipase	-	0.001	-	0.005	_	-
Amylase	0.01	0.005	0.015	0.015	0.01	0.0025
BTA	0.3	0.3	0.3	0.3	0.3	-
Bismuth Nitrate	-	0.3	-	-	-	~
PA30	4.0	-	-	_		-
Terpolymer	-	-		4.0	-	<u>.</u>
480N	-	6.0	2.8		_	_
Sulphate	7.1	20.8	8.4	-	0.5	1.0
pH (1% solution)	10.8	11.0	10.9	10.8	10.9	9.6

The following granular dishwashing detergent compositions examples I to IV of bulk density 1.02Kg/L were prepared in accord with the present invention :

•	I	II	III	IV	V	VI
STPP	30.0	30.0	30.0	27.9	34.5	26.7
Carbonate	30.5	30.5	30.5	23.0	30.5	2.80
Silicate	7.4	7.4	7.4	12.0	8.0	20.3
PB1	4.4	4.4	4.4	2.2	4.4	2.2
NaDCC	-	-		2.0	-	1.5
Nonionic	0.75	0.75	0.75	1.9	1.2	0.5
TAED	1.0	1.0	-	-	1.0	-
PAAC	-	-	0.004	-	~	-
BzP	-	1.4	-	-	-	-
Paraffin	0.25	0.25	0.25		••	-
Antibody	10E-3	10E-4	10E-1	1	10E-1	1
Protease	0.05	0.05	0.05	-	0.1	-
Lipase	0.005	-	0.001	-	-	-
Amylase	0.003	0.001	0.01	0.02	0.01	0.015
BTA	0.15	_	0.15	-	-	-
Sulphate	23.9	23.9	23.9	31.4	17.4	-
pH (1% solution)	10.8	10.8	10.8	10.7	10.7	12.3

The following detergent composition tablets of 25g weight were prepared in accord with the present invention by compression of a granular dishwashing detergent composition at a pressure of 13KN/cm² using a standard 12 head rotary press:

•	I	II	III
STPP	-	48.8	47.5
Citrate	26.4	-	-
Carbonate	-	5.0	-
Silicate	26.4	14.8	25.0
Antibody	10E-5	10E-1	10E-3
Protease	0.03	0.075	0.01
Lipase	0.005	-	-
Amylase	0.01	0.005	0.001
PB1	1.6	7.8	-
PB4	6.9	-	11.4
Nonionic	1.2	2.0	1.1
TAED	4.3	2.4	0.8
HEDP	0.7	-	-
DETPMP	0.65	~	-
Paraffin	0.4	0.5	-
BTA	0.2	0.3	-
PA30	3.2	-	-
Sulphate	25.0	14.7	3.2
pH (1% solution)	10.6	10.6	11.0

dī) .

The following liquid hard surface cleaning compositions were prepared in accord with the present invention:

Hydrogen peroxide	7.0
AS	1.7
Dobanol® 91-10	1.6
Dobanol® 23-3	1.1
Lutensol® TO 3	1.5
2-Butyl octanol	0.5
Antibody	10E-3
DETPMP	0.18
Water and minors	Up to 100%
H2SO4 up to pH 4	

4) (4

WO 98/07816 PCT/US96/13322

Example 16

Detergent additives were prepared in accord with the present invention:

	I	II	III
LAS	_	-	5
STPP	30	30	-
Zeolite A	-	-	35
PB1	20	20	15
TAED	10	10	8
Protease	-	-	0.3
Amylase	0.1	-	0.06
Antibody	10E+1	10E+1	10E0

CLAIMS

- 1. A detergent composition comprising a source of hydrogen peroxide characterised in that said detergent composition further comprises a donor:hydrogen peroxide oxidoreductase-directed antibody.
- 2. A detergent composition according to claim 1 wherein said donor:hydrogen peroxide oxido-reductase-directed antibody is comprised at a level of from 10E-6% to 10E+1% by weight of total composition.
- 3. A detergent composition according to claims 1-2 wherein said donor: hydrogen peroxide oxido-reductase is a catalase enzyme.
- 4. A detergent composition according to claims 1-3 further comprising a bleach activator.
- 5. A detergent composition according to any of the preceding claims further comprising one or more components selected from anionic, nonionic, cationic, amphoteric and zwitterionic surfactants, builder component, suds suppressors, soil suspension and anti-redeposition agents, smectite clays and the like.
- 6. A detergent composition according to any of the preceding claims characterised in that the composition is a granular detergent composition containing no more than 15% by weight of inorganic filler salt.
- 7. A detergent composition according to any of the preceding claims characterised in that the composition is a heavy duty liquid composition.

- 8. A detergent composition according to any of the preceding claims further comprising other enzymes providing cleaning performance and/or fabric care benefits.
- 9. A detergent additive comprising a source of hydrogen peroxide characterised in that said detergent additive further comprises a donor:hydrogen peroxide oxidoreductase-directed antibody.
- 10. Use of a donor:hydrogen peroxide oxido-reductase-directed antibody in a detergent composition for controlling the bleach deactivation due to the presence of the donor:hydrogen peroxide oxido-reductase enzyme.

INTERNATIONAL SEARCH REPORT

Interr al Application No PCT/US 96/13322

A. CLASS IPC 6	SIFICATION OF SUBJECT MATTER C11D3/386 C11D3/384		
According	to International Patent Classification (IPC) or to both national cla	assification and IPC	
	os searched		
IPC 6	documentation searched (classification system followed by classification s		
	ation searched other than minimum documentation to the extent the		
Electronic	data base consulted during the international search (name of data h	base and, where practical, search terms useu	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	WO 91 06574 A (NOVO NORDISK A/S 16 May 1991 see page 5, line 13 - page 10, l see claims	•	1,4-8
A	EP 0 298 654 A (HYBRISENS LTD. 11 January 1989 see page 2, line 30 - page 4, li see page 6, line 13 - line 16 see claims) ine 2θ	1,3,8
A	US 5 451 337 A (LIU DON K. K. E 19 September 1995 see column 2, line 5 - column 6, see column 13, line 33 - column 18; claim 1	line 6	1,4-8
	İ	-/	
X Furth	her documents are listed in the continuation of box C.	Patent family members are listed in	in annex.
	regories of cited documents:	"I" later document published after the inte	emational filing date
conside	ent defining the general state of the art which is not cred to be of particular relevance document but published on or after the international	or priority date and not in conflict wit cited to understand the principle or the invention	scory underlying the
filing de "L" documen	iate int which may throw doubts on priority claim(s) or	"X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document	be considered to
which is citation	is cited to establish the publication date of another or other special reason (as specified) and or other special reason (as specified) at referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cannot be considered to involve an inv	claimed invention
other m "P" documen	neans nt published prior to the international filing date but	document is combined with one or mo ments, such combination being obvious in the art.	us to a person skilled
later tha	an the priority date claimed setual completion of the international search	'&' document member of the same patent Date of mailing of the international sea	
	April 1997	1 4. 04. 97	μ στι ττ μ στ
Name and ma	European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Ripswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Serbetsoglou, A	·

1

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCT/US 96/13322

		1/05 96/13322		
Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.				
	Company or ansaring and analysis and abhabition or are recognit honores			
	EP 0 540 784 A (THE PROCTER & GAMBLE CO.) 12 May 1993 see page 9, line 40 - page 12, line 21 see claims 1,2,14-20	1,4-8		
	WO 94 23637 A (THE PROCTER & GAMBLE CO.) 27 October 1994 see page 1 - page 5 see page 11 - page 12 see page 19, line 39	1,4-8		

INTERNATIONAL SEARCH REPORT

information on patent family members

Intern al Application No
PCT/US 96/13322

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9106574 A	16-05-91	AU 6634290 A EP 0494985 A JP 5503507 T	31-05-91 22-07-92 10-06-93
EP 0298654 A	11-01-89	AT 106250 T CA 1307737 A DE 3889783 D DE 3889783 T ES 2056108 T JP 1138461 A	15-06-94 22-09-92 07-07-94 08-09-94 01-10-94 31-05-89
US 5451337 A	19-09-95	AU 2294095 A EP 0763093 A WO 9533040 A	21-12-95 19-03-97 07-12-95
EP 0540784 A	12-05-93	AU 2930492 A CN 1073476 A JP 7501092 T WO 9309224 A US 5610129 A	07-06-93 23-06-93 02-02-95 13-05-93 11-03-97
WO 9423637 A	27-10-94	EP 0692947 A	24-01-96