Assignment 3 2023-April Session-04-10-2023-shift:2-1-15

EE24BTECH11049 Patnam Shariq Faraz Muhammed

MCQ

1)	If the coefficients of x and x^2 in $(1+x)^p$ $(1-x)^q$ are 4 and -5 respectively, then $2p+3q$ is equal to					
	2p + 3q is equal to			(2023-Apr)		
	a) 60	b) 63	c) 66	d) 69		
2)		ad $B = \{8, 9, 12\}$. The $(b_2) \in (A \times B, A \times B)$:		ements in the relation divides b_1 } is (2023-Apr)		
	a) 18	b) 24	c) 12	d) 36		
3)		f the point $P(1,2,6)$ 1) and $C(0,5,1)$ be Q		ing through the points $(\beta^2 + \gamma^2)$ is equal to		

4) The statement $\sim [p \lor (\sim (p \land q))]$ is equivalent to

b) 76

(2023-Apr)

(2023-Apr)

d) 65

1

a)
$$(\sim (p \land q)) \land q$$
 b) $\sim (p \lor q)$ c) $\sim (p \land q)$ d) $(p \land q) \land (\sim)$

c) 62

 $S = \left\{ x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) : 9^{1 - \tan^2 x} + 9^{\tan^2 x} = 10 \right\} \text{ and } b = \sum_{x \in S} \tan^2 \left(\frac{x}{3} \right),$

then $\frac{1}{6}(\beta - 14)^2$ is equal to

a) 70

5) let

(2023-Apr)

- a) 16
- b) 32

c) 8

- d) 64
- 6) If the points **P** and **Q** are respectively the circumcenter and the orthocentre of a $\triangle ABC$, the $\overline{PA} + \overline{PB} + \overline{PC}$ is equal to

(2023-Apr)

a) $2\overline{\mathbf{OP}}$

b) $\overline{\mathbf{QP}}$

c) $2\overline{PQ}$

 $d) \overline{PQ}$

7) Let **A** be the point (1,2) and **B** be any point on the curve $x^2 + y^2 = 16$. **f** the centre of the locus of the point P, which divides the line segment AB in the ratio 3:2 is the point $C(\alpha, \beta)$ then the length of the line segment AC is

(2023-Apr)

a) $\frac{6\sqrt{5}}{5}$

b) $\frac{2\sqrt{5}}{5}$ c) $\frac{3\sqrt{5}}{5}$

d) $\frac{4\sqrt{5}}{5}$

8) Let m be the mean and σ be the standard deviation of the distribution

x_i	0	1	2	3	4	5
f_i	k + 2	2 <i>k</i>	$k^2 - 1$	$k^2 - 1$	$k^2 + 1$	k-3

where $\sum f_i = 62$. If [x] denotes the greatest integer $\leq x$, then $\left[\mu^2 + \sigma^2\right]$ is equal to (2023-Apr)

(2023-Apr)

d) 9

d) 223

wh	which they can be transported, is						
				(2023-Apr	.)		
a) 1	120	b) 560	c) 3360	d) 1680			
11) If							
		$A = \frac{1}{5!6!7!}$	(5! 6! 7! 6! 7! 8! 7! 8! 9!),				
the	$\left \operatorname{adj}\left(\operatorname{adj}\left(2A\right)\right)\right $	is equal to		/			
				(2023-Apı	.)		
a) 2	216	b) 2 ⁸	c) 2 ¹²	d) 2 ²⁰			
12) Let wh	the number (22 en divided by 7.	$(2022)^{2022} + (2022)^{22}$ leave Then $(\alpha^2 + \beta^2)$ is equ	the remainder α whulat to	en divided by 3 and	β		
	•	(,) 1		(2023-Apr)		
a) 1	13	b) 20	c) 10	d) 5			
13) let							
$g(x) = f(x) + f(1 - x)$ and $f^{n}(x) > 0, x \in (0, 1)$.							
If g is decreasing in the interval $(0, \alpha)$ and increasing in the interval $(\alpha, 1)$, then							
$\tan^{-1}(2\alpha) + \tan^{-1}\left(\frac{\alpha+1}{\alpha}\right)$							
is e	equal to			(2022 A			
				(2023-Apr)		
a) =	$\frac{5\pi}{4}$	b) π	c) $\frac{3\pi}{4}$	d) $\frac{3\pi}{2}$			
14) For	$\alpha, \beta, \gamma, \delta \in \mathbf{N}$, if						
$\int \left(\left(\frac{x}{e} \right)^{2x} + \left(\frac{e}{x} \right)^{2x} \right) \log_e x dx = \frac{1}{\alpha} \left(\frac{x}{e} \right)^{\beta x} - \frac{1}{\gamma} \left(\frac{e}{x} \right)^{\delta x} + C, \text{ where } e = \sum_{n=0}^{\infty} \frac{1}{n!}$							

c) 6

c) 226

10) Eight persons are to be transported from city A to city B in three cars different makes. If each car can accommodate at most three persons, then the number of ways, in

b) 7

b) 227

9) If $S_n = 4 + 11 + 21 + 34 + 50 + \dots$ to *n* terms, then $\frac{1}{60}(S_{29} - S_9)$

a) 8

a) 220

and C is constant of integration, then $\alpha + 2\beta + 3\gamma - 4\delta$ is equal to

(2023-Apr)

a) 4

b) -4

c) -8

d) 1

15) Let f be a continuous function satisfying

$$\int_0^{t^2} \left(f(x) + x^2 \right) dx = \frac{4}{3} t^3, \forall t > 0.$$

Then $f\left(\frac{\pi^2}{4}\right)$ is equal to

(2023-Apr)

a)
$$-\pi^2 \left(1 + \frac{\pi^2}{16}\right)$$
 b) $\pi \left(1 - \frac{\pi^3}{16}\right)$ c) $-\pi \left(1 + \frac{\pi^3}{16}\right)$ d) $\pi^2 \left(1 - \frac{\pi^3}{16}\right)$