THE UNIVERSITY of York

Lattice Coding and its Applications in Communications

Alister Burr

University of York

alister.burr@york.ac.uk

- Introduction to lattices
 - Definition; Sphere packings; Basis vectors; Matrix description
- Codes and lattice codes
 - Shaping region; Nested lattices
- Lattice constructions
 - Construction A/D, LDLC codes; construction from Gaussian/Eisenstein integers
- Lattice encoding and decoding
 - Problems of shaping; LDLC decoding; Construction A decoding
- Lattices in multi-user networks: Compute and forward

- A lattice is defined as:
 - the (infinite) set of points in an n-dimensional space given by all linear combinations with integer coefficients of a basis set of up to n linearly independent vectors
- It can be defined in terms of a generator matrix G, whose columns are the basis vectors:

- A sphere packing is an arrangement of nonoverlapping hyperspheres of equal radius in Ndimensional space
- We are often interested in the *packing density* η or δ_n of a packing
 - the proportion of space occupied by spheres
- Dense sphere packings are often lattice packings
 - have sphere centres on lattices

Dimensions	Lattice	Packing density	Kissing number
2	Hexagonal	$\frac{1}{6}\pi\sqrt{3}$ =0.91	6
3	BCC/FCC/HCP	$\frac{1}{6}\pi\sqrt{2}=0.74$	12
4	D4	$\frac{1}{16}\pi^2 = 0.62$	24
8	E8	$\frac{1}{384}\pi^4 = 0.25$	240
24	E24 (Leech)	$\frac{\pi^{12}}{12!} = 0.0019$	196 560

- The **Voronoi region** of a lattice point is the region of the *N*-dimensional space closer to that point than to all other lattice points
- Voronoi region of red point shown shaded

- Introduction to lattices
- Codes and lattice codes
 - Shaping region
 - Nested lattices
- Lattice constructions
- Lattice encoding and decoding
- Lattices in multi-user networks: Compute and forward

- i.e. *forward error-correcting* (FEC) codes
- A code is a finite set of codewords of length n
 - Code contains M codewords encodes log₂(M) bits
- where a codeword is a sequence of n symbols, usually drawn from a finite alphabet of size q
 - we will often assume the alphabet is a Galois field (\mathbb{F}_q or GF(q)) or a ring ($\mathcal{R}(q)$)
- In a communication system the codewords must be translated into signals of length nT
 - representing the variation in time of some quantity,
 such as electromagnetic field strength
- Each code symbol is typically modulated to some specific real or complex value of this variable

Message:

Encode

Codeword:

Modulate

Signal:

01111001

13212302

Geometric model

 Each coded signal can then be represented as a point in *N*-D *signal space*

- where modulated values of symbols provide the *n* coordinate values
- Code is represented by ensemble of points in signal space
- Noise on channel equivalent to vector z in signal space
- Decoder chooses closest point
- Error probability determined by minimum Euclidean distance between signal space points

- A lattice code is then defined by the (finite) set of lattice points within a certain region
 - the shaping region
 - ideally a hypersphere centred on the origin
 - this limits the maximum signal energy of the codewords
- Lattice may be offset by adding some vector

Minimum Euclidean distance

If the lattice is viewed as a sphere packing, then the minimum Euclidean distance must be twice the sphere radius

 Signal power S proportional to radius² of shaping region

- The greater the packing density, the greater M for given signal power
- Radius² of packed spheres proportional to maximum noise power

Maximum signalling rate

- Hence for low error probability, noise power $N \leq r_S^2$
- Radius of signal space at receiver containing signal plus noise is

$$\sqrt{S+N}$$

- Volume of n-D sphere of radius r is $V_n r^n$
- Hence max. no. of codewords in code

$$M \le \frac{V_n (S+N)^{n/2}}{V_N r_S^{N/2}} \le \left(\frac{S+N}{N}\right)^{n/2}$$
$$\frac{\log_2 M}{n} \le \frac{1}{2} \log_2 \left(1 + \frac{S}{N}\right)$$

- Define fine lattice Λ_{C} for the code
 - plus a *coarse lattice* Λ_S which is a sub-lattice of Λ_C
- Then use a Voronoi region V_S of the coarse lattice as the shaping region
- Modulo- Λ_{S} operation
 - for any point $P \notin V_S$ find $P (\lambda \in \Lambda_S) \in V_S$

Complex signals

- Wireless signals consist of a sine wave carrier at the transmission frequency (MHz – GHz)
- Sine waves can be modulated in both amplitude and phase
 - hence the signal corresponding to each modulated symbol is 2-D
 - also conveniently represented as a complex value
 - typically represented on a *phasor* diagram
- Hence wireless signals can be represented in 2n dimensions
 - or *n* complex dimensions

- Introduction to lattices
- Codes and lattice codes
- Lattice constructions
 - Constructions A and D,
 - LDLC codes
 - Construction from Gaussian and Eisenstein integers
- Lattice encoding and decoding
- Lattices in multi-user networks: Compute and forward

THE UNIVERSITY Of York Constructions based on FEC codes

- For practical purposes in communications, we require lattices in very large numbers of dimensions
 - typically 1000, 10 000, 100 000...
- Lattices of this sort of dimension most easily constructed using FEC codes such as LDPC and turbocodes
- Most common constructions encountered are called Constructions A and D (Conway and Sloane)
 - Construction A based on a single code
 - Construction D is multilevel, based on a nested sequence of codes

- Start with a q-ary linear code C with generator matrix \mathbf{G}_C
- The set of vectors λ such that $\lambda \mod_q$ is a codeword of \mathcal{C} form a Construction A lattice from \mathcal{C} :

$$\Lambda = \left\{ \lambda : \lambda \, \operatorname{mod}_{q} \in \mathcal{C} \right\}$$

Alternatively we can write:

$$\Lambda = q^{\mathbb{Z}^n} + \mathcal{C}$$

The generator matrix of the lattice:

$$\mathbf{G} = \begin{bmatrix} \mathbf{G} & \mathbf{0} \\ \mathbf{G}_{C} & q \mathbf{I}_{n-k} \end{bmatrix}$$

Note that minimum distance is limited by q

Construction D

- Let $C_0 \subseteq C_1 \subseteq C_2 \subseteq C_a$ be a family of linear binary codes
 - where C_0 is the (n, n) code and C_ℓ is an (n, k_ℓ) code
- Then the lattice is defined by:

$$\Lambda = \left\{ \lambda : \lambda = \mathbf{z} + \sum_{l=1}^{a} \sum_{j=1}^{k_l} d_j^l \frac{\mathbf{c}_{j,l}}{2^{l-1}} \right\}$$

■ where $\mathbf{z} \in 2\mathbb{Z}^n$, $\mathbf{c}_{j,\ell}$ is the j^{th} basis codeword of \mathcal{C}_{ℓ} , and $d_j^{\ell} \in \{0,1\}$ denotes the j^{th} data bit for the ℓ^{th} code

Low density lattice codes

- Uses the principle of LDPC codes:
 - Define generator matrix such that its inverse H = G⁻¹ is sparse
 - Then decode using sum-product algorithm (message passing) as in LDPC decoder
- However elements of H and G are reals (or complex) rather than binary
 - Messages are no longer simple log-likelihood ratios
- Ideally use nested lattice code
 - i.e. shaping region is Voronoi region of a coarse lattice

Gaussian and Eisenstein integers

- Construction A/D and LDLC result in real lattices
 - can exploit Gaussian/Eisenstein integers to construct complex lattices
- Gaussian and Eisenstein integers form the algebraic equivalent in complex domain of the ring of integers
- Can construct complex constellations from them which form complex lattices

Gaussian Integers

 Gaussian integers are the set of complex numbers with integer real and imaginary parts, denoted

$$\mathbb{Z}\left[\mathfrak{i}\right] = a + b\mathfrak{i}, a, b \in \mathbb{Z}$$

- They form a ring on ordinary complex arithmetic
- Hence operations in the ring exactly mirror operations in signal space
- Also form a lattice

Nested lattice of Gaussian integers

■ Consider *fine* and *coarse* lattices, Λ_f and Λ_c , both based on Gaussian integers

$$\Lambda_c \subset \Lambda_f$$

- Here we assume that each point in the coarse lattice is a point in the fine multiplied by some Gaussian integer q
 - i.e. the coarse is a scaled and rotated version of the fine
 - and the fine is just the Gaussian integers
- We then define our constellation as consisting of those Gaussian integers which fall in the Voronoi region of the coarse lattice

7 May, 2016

- **e.g.** q = 2 + i
- Blue points are fine lattice
- Red points are coarse lattice
- Fundamental region $V_c(0)$ is region closer to origin than any other coarse lattice point
- Hence constellation is green points, inc origin

Boundary points

- The fundamental region is surrounded by regions corresponding to q, qi, -q and -qi
- We treat the boundaries of the latter two as belonging to the fundamental region
 - use this to allocate certain boundary points to constellation
- This also leads to an alternative definition of the fundamental region:

$$= \left\{ \begin{array}{l} \lambda \in \mathbb{C} : \left(-\frac{\left|q\right|^{2}}{2} \leq \Re\left[\lambda\right] \Re\left[q\right] + \Im\left[\lambda\right] \Im\left[q\right] < \frac{\left|q\right|^{2}}{2} \right) \\ \& \left(-\frac{\left|q\right|^{2}}{2} \leq -\Re\left[\lambda\right] \Im\left[q\right] + \Im\left[\lambda\right] \Re\left[q\right] < \frac{\left|q\right|^{2}}{2} \right) \end{array} \right\}$$

- We can establish isomorphisms between these constellations and either fields or rings
- An isomorphism is a one-to-one (or *bijective*, and hence invertible) mapping between the constellation \mathcal{C} and the ring \mathcal{R} $\lambda = \mathcal{M}(s), \lambda \in \mathcal{C}, s \in \mathcal{R}$ $s = \mathcal{M}^{-1}(\lambda), \lambda \in \mathcal{C}, s \in \mathcal{R}$
- such that the operations on the ring are equivalent to those on the constellation

$$\mathcal{M}\left(s_{1}\otimes s_{2}\right) = \mathcal{M}\left(s_{1}\right)\mathcal{M}\left(s_{2}\right) \quad \mathcal{M}\left(s_{1}\oplus s_{2}\right) = \mathcal{M}\left(s_{1}\right) + \mathcal{M}\left(s_{2}\right)$$

- It turns out that if *q* is a *Gaussian prime*, then the constellation is isomorphic to a field, otherwise it is isomorphic to a ring
- Size of field/ring is $|q|^2$

Lattice construction

- This isomorphism can be used to construct a complex lattice from a code based on the field or ring
 - in a manner equivalent to Construction A

$$\Lambda = \left\{ \lambda : \lambda = \mathbf{z} + \mathcal{M} \left(\mathbf{c} \right), \mathbf{z} \in q^{\mathbb{Z}} \left[i \right]^{n}, \mathbf{c} \in \mathcal{C} \left(\mathbb{F}_{\left| q \right|^{2}} \right) \right\}$$

- \blacksquare that is, we encode a data sequence in the field \mathbb{F}_q using the code \mathcal{C} (over $^{\mathbb{F}}_{|_q|^2}$)
- then map the resulting symbols to the complex constellation using the mapping based on the isomorphism
- then combine with a lattice of Gaussian integers scaled by q

Eisenstein integers

- Set of complex values with similar properties to Gaussian integers
- Hexagonal structure may result in denser lattices
- Note:

$$\omega = \frac{1 + i\sqrt{3}}{2} = e^{2\pi i/3}$$

- Introduction to lattices
- Codes and lattice codes
- Lattice constructions
- Lattice encoding and decoding
 - Problems of shaping
 - Construction A/D decoding
 - LDLC decoding
- Lattices in multi-user networks: Compute and forward

- Ideally the shaping region should be as close as possible to a hypersphere
 - provides shaping gain up to 1.5 dB compared to hypercube shaping
- Nested lattice shaping gives a good approximation to this
- First multiply data vector by generator matrix
 - this may generate region of lattice of arbitrary shape
- Then apply modulo-lattice operation:
 - decode to coarse lattice, and subtract resulting coarse lattice vector

- In practice this decoding operation may be difficult
 - may use hypercube shaping as simpler alternative

Construction A decoding

- Generally can be carried out with decoder for underlying code C
- Applying mod_q operation regenerates codeword of C
 - then decode this codeword
 - can then recover specific point in \mathbb{Z}^n
- Note that in practice we use non-binary codes (q > 2)
 - because q = 2 limits minimum distance and hence coding gain
- Typically use LDPC or turbocodes to achieve good performance
 - hence need non-binary sum-product or BCJR decoder
 - messages are probability distribution of q symbol values

Construction D decoding

- Use multilevel decoding approach based on component codes
 - decode codes C_a , C_{a-1} , ... C_1 in succession
- Component codes may usually be binary
- May require iterative approach
 - c.f. multilevel coded modulation

- Code structure designed for sum-product decoding, cf LDPC
 - using factor graph
- However symbol values are now continuous variables (reals)
 - hence messages should be probability density functions
 - requires compact means of representing PDF in decoder
- May use Fourier or Karhunen-Loeve basis representation
 - or Gaussian mixture model

- Introduction to lattices
- Codes and lattice codes
- Lattice constructions
- Lattice encoding and decoding
- Lattices in multi-user networks
 - Wireless physical-layer network coding
 - Compute and forward

THE UNIVERSITY of York Physical layer in multi-user networks

- signals from elsewhere in network treated as harmful interference
- however they may carry related information that can be exploited

Two-way relay channel

Two terminals want to exchange data via a relay:

Conventionally this would require 4 time-slots:

13th February 2012

- We can do better using Wireless Physical-layer Network Coding
 - using two phases
- Assume both sources transmit BPSK:
 - map data symbol '1' to signal +1;'0' to -1
- At relay, map signals +2 and -2 to '0'; 0 to '1'

а	b	a+b	a⊕b
0	0	-2	0
0	1	0	1
1	0	0	1
1	1	+2	0

A general network model

- Model a network with P layers of relays
- In general all nodes in a layer transmit simultaneously
- Each relay decodes a (linear) function of symbols from previous layer $s_{1}^{(p)} = a_{11} s_{1}^{(p-1)} + a_{21} s_{2}^{(p-1)} + \cdots + a_{11} s_{1}^{(p-1)} = \mathbf{a}_{11} \mathbf{s}_{1}^{(p-1)}$
- based on the combined signals they receive
- Destination extracts symbol it is interested in from outputs of functions
- Lattices provide useful signal sets

Network coding model of network

■ We can relate the $s^{(p-1)}: s_1^{(p-1)}$ vector of outputs of each layer to its inputs via the matrix **A**:

$$\mathbf{s}^{(p)} = \mathbf{A}^{(p)} \mathbf{s}^{(p-1)}$$

We can combine these in cascade, so that:

$$\mathbf{s}^{(p)} = \mathbf{A}^{(p)} \mathbf{A}^{(p-1)} \cdots \mathbf{A}^{(1)} \mathbf{s}$$

We can write this as a single matrix relating the vector of symbol s^D at relays connected to the destination:

$$\mathbf{s}^{D} = \mathbf{B} \mathbf{s}$$

 We assume that the destination can (in principle) decode all symbols in its connection set

Lattice signal sets

 h_{B}

 h_{A}

 S_B

- Consider relay receiving from two sources via channel h_A , h_B
- Sources transmit codewords \mathbf{c}_A , \mathbf{c}_B from the same fine lattice Λ_C
- Received signal at relay is then:

$$\mathbf{x} = h_A \mathbf{c}_A + h_B \mathbf{c}_B + \mathbf{w}$$

- Now the sum of any integer multiples of two lattice points is another lattice point
 - hence if h_A , h_B were integers we could decode at the relay using the same lattice decoder
- Key idea is to scale received signal by scaling factor α so that αh_A and αh_B are approximately integers

Optimum approximation

■ Then:

$$\alpha \mathbf{x} = \alpha h_A \mathbf{c}_A + \alpha h_B \mathbf{c}_B + \alpha \mathbf{w} \approx a_A \mathbf{c}_A + a_B \mathbf{c}_B$$

- where a_A and a_B are integers
- Approximation error is:

$$(\alpha h_A - a_A) \mathbf{c}_A + (\alpha h_B - a_B) \mathbf{c}_B + \alpha \mathbf{w}$$

• We can minimise this by choosing α :

$$\alpha_{\text{MMSE}} = \frac{P \sum_{i} h_{i} a_{i}}{N + P \sum_{i} |h_{i}|^{2}}$$

- where *P* is signal power
- Also need to choose a_A and a_B
 - could choose such that $a_A/a_B = h_A/h_B$
 - but might require large α , and hence increase noise

- $h_A = 0.55$; $h_B = 1.0$
- Choose:

$$a_A = 1$$
; $a_B = 2$; $\alpha = 1.95$

- Blue points are received signal
- Red are approximated lattice

Modulo-Λ operation

- Sum of two points from a lattice code may in general result in point outside shaping region
- Hence we apply modulo-lattice operation
 - returns a point in the original lattice code
 - so we can use the same decoder to recover sum point
- For lattice constellations isomorphic with field this operation can always be inverted

- Lattices can be extensively used in communications
 - especially for *lattice coding*
- Can be shown to achieve capacity, as lattice dimension tends to infinity
- Practical lattice constructions are based on FEC codes
 - can provide high dimension lattices
 - with practical decoding algorithms
- For wireless channels use complex lattice constellations based on Gaussian/Eisenstein integers
- Important application is compute and forward
 - applies to relay networks

More lattice applications

- Lattice quantisation:
 - quantising signals to lattice points in high dimension can reduce mean square error
 - Applying modulo-lattice operation also allows Wyner-Ziv compression of correlated sources
- Lattice reduction aided MIMO detection
 - MIMO channel may distort received signal:
 - LRA treats as a different lattice

Bibliography

- John Conway and Neil J. A. Sloane "Sphere Packings, Lattices and Groups", Springer, 1999, ISBN 978-1-4757-6568-7
- Uri Erez, Shlomo Shamai (Shitz), and Ram Zamir "Achieving 1/2 log(1 + SNR) on the AWGN channel with lattice encoding and decoding",
 IEEE Trans. Inf. Theory, 50(10):2293–2314, October 2004.
- Ram Zamir "Lattice Coding for Signals and Networks A Structured Coding Approach to Quantization, Modulation and Multiuser Information Theory" Cambridge University Press, 2014, ISBN: 9780521766982
- Naftali Sommer, Meir Feder, and Ofir Shalvi "Low-density lattice codes", *IEEE Trans. Inf. Theory*, *54*(*4*):1561–1585, *April* 2008.
- Bobak Nazer and Michael Gastpar "Compute-and-forward: Harnessing interference through structured codes", *IEEE Trans. Inf. Theory*, 57(10):6463–6486, Oct 2011.