MAE5009: Continuum Mechanics B

Assignment 06: Fluid Statics

Due December 17, 2021

As shown below, a cylinder of diameter 122 mm and length 200 mm is placed inside
a concentric long pipe of diameter 125 mm. An oil film is introduced in the gap
between the pipe and the cylinder. What force is necessary to move the cylinder at a
velocity of 1 m/s? Assume that the kinematic viscosity of oil is 3 × 10⁻⁵ m²/s and the
specific gravity is 0.9.

Solution:

As we can know, the cyliner is affected by pulling force and shear stress and the force is balance.

So,

$$F = \tau \cdot A \implies 7 = \overline{A} = U \frac{U}{h} \implies F = u \frac{AU}{h}$$

 $A = \pi d \cdot l = 0.02447 m^{2}$
 $P = S \cdot P_{w} = 900 \text{ kg/m}^{3}$
 $V = 3 \times 10^{-5} \text{ m}^{2}/\text{s}$
 $U = P \cdot V = 2.7 \times 10^{-2} \text{ kg/ms}$
 $h = \frac{dp \cdot dc}{2} = 1.5 \times 10^{-3} \text{ m}$
 $F = u \frac{AU}{h} = 1.38 \text{ N}$

2. What is the water pressure on the sea bottom at a depth of 6500 m? The specific gravity of sea water is assumed to be 1.03.

$$P_b = Pgh + P_o$$
 => So, $P_b = Pgh + P_o$
 $P = S \cdot P_w = 1030 \, kg/m^3$ = 65. 712325 MPa
 $S = 9.8 \, m/s^2$
 $S = 101325 \, Pa$

3. Obtain the pressure difference $p_1 - p_2$:

Solution:

Let the pressure at the interface in the left be
$$P_0$$
, then: In the left side: $P_0 = P_1 + Pg(H_2 + H)$
In the right side: $P_0 = P_2 + Pg(H_1 + H_2) + PgH$
So, $P_1 + Pg(H_2 + H) = P_2 + Pg(H_1 + H_2) + PgH$
then, $P_1 - P_2 = Pg(H_1 - H) + PgH$

$$= PgH_1 + PgH - PgH$$

A rectangle gate with width of 3 m is placed under the water, as shown below. The
gate is hinged at the top. Determine the force F needed to just lift the gate.

Solution:

Let the hinge point be origin, the Y axial be parallel with the gate and X axial on the paper.

The force of one element is: $dP = PghdA = Pg(1 + ysin(30°))dy \times 3m$ The overall force is: $P = \int_0^2 dP = 9P9 = 88.2kN$ The force center D at: $Py_D = \int_A ydP = 10Pg$. So, $y_D = \frac{f_0}{g}m$ According to the equilibrium of moment: $F \cos 30° \times 2m = Py_D$ So, $F = \frac{\sqrt{3}}{3} Py_D = 56.58 kN$ 5. A circular shape water gate is shown as below, $\alpha = 45^{\circ}$, the water depth h = 3.0 m. determine the overall hydrostatic force acting on unit gate width and its direction.

Solution:

$$P_{x} = Pgh \frac{h}{2} \times Im = 44100N$$
The radius of this circle is $r = \frac{h}{\sin x} = J \ge h$

$$So, V_{p} = h(Y - r\cos 45^{\circ}) - (\frac{1}{8}\pi Y^{2} - \frac{1}{2}h r(\cos 4x^{\circ}) \times Im$$

$$= (J \ge -\frac{1}{2} - \frac{\pi}{4})h^{2} \times Im = J. IS9 m^{3}$$

$$P_{y} = \int P_{x}^{2} + P_{y}^{2}$$

The overall force:
$$P = \int P_x^2 + P_y^2 = 45540.03 N$$

The direction: $Q = \tan^{-1}(\frac{Py}{P_x}) = 14.45^\circ$