

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE EXAMINATION, 2012

MATHEMATICS - ORDINARY LEVEL

	PAPER 1 (300 marks)
FRID	AY, 8 JUNE – AFTERNOON, 2:00 to 4:30
	Attempt SIX QUESTIONS (50 marks each).
WARNING:	Marks will be lost if all necessary work is not clearly shown.
	Answers should include the appropriate units of measurement, where relevant.

- 1. (a) When Katie had travelled 140 km, she had completed $\frac{4}{9}$ of her journey. Find the length of her journey.
 - **(b)** Robert's electricity bill gave the following data:

Unit type	Present reading	Previous reading	Unit price
Day rate	35 087	34 537	€0.1506
Night rate	17213	16 853	€0.0745

(i) Calculate the total cost of the units used.

Robert also pays a standing charge of $\in 24.89$ and a levy of $\in 5.46$. VAT at the rate of 13.5% is charged on all amounts.

- (ii) Calculate the total amount of Robert's electricity bill.
- (c) A retailer bought 40 toys at €24.75 each.

 He sold 10 of the toys at €33.88 each and sold the remaining 30 toys at a reduced price. His total sales amounted to €1270.
 - (i) Write his total profit on the transaction as a percentage of his cost. Give your answer correct to one decimal place.
 - (ii) Find the reduced selling price of each of the remaining 30 toys.
- 2. (a) Solve for x and y

$$x - y = 4$$

$$2x + y = 5.$$

- **(b)** Let $f(x) = x^3 + 2x^2 x 2$.
 - (i) Show, by division, that x 1 is a factor of f(x).
 - (ii) Hence, or otherwise, find the other factors of f(x).
- (c) Let $g(x) = \frac{1}{x^2} \frac{1}{2x}$ and $h(x) = 1 \frac{2}{x}$, where $x \neq 0$ and $x \in \mathbb{R}$.
 - (i) Show that h(x) = -2x[g(x)].
 - (ii) Find the values of x for which g(x) = h(x).

- 3. (a) Given that (t-1)x = 2-5t, find the value of x when t = 7.
 - **(b) (i)** Solve for x and y

$$x - y + 5 = 0$$
$$x^2 + y^2 = 17.$$

- (ii) Which solution gives the lesser value of x-2y? Write down this value.
- (c) (i) Simplify $\left(\sqrt{x} \frac{2}{\sqrt{x}}\right)\left(\sqrt{x} + \frac{2}{\sqrt{x}}\right)$, where x > 0 and $x \in \mathbb{R}$.
 - (ii) Hence, solve $\left(\sqrt{x} \frac{2}{\sqrt{x}}\right)\left(\sqrt{x} + \frac{2}{\sqrt{x}}\right) = 3$, where x > 0.
 - (iii) Verify your solution.
- **4.** (a) Given that 6-4i+3u=5i, where $i^2=-1$,
 - (i) find u,
 - (ii) plot *u* on an Argand diagram.
 - **(b)** Let z = 1 + i.
 - (i) Find |z|.
 - (ii) Show that $z^2 + \overline{z}^2 = 0$, where \overline{z} is the complex conjugate of z.
 - (iii) Verify that $\frac{1+5i}{3+2i} = z$.
 - (c) Let w = 3 + 4i.

Find the real numbers *k* and *t* such that

$$w^2 - (k+t)w + t = 0.$$

5. (a) The n^{th} term of a sequence is $T_n = \frac{2n-1}{n+1}$.

Find the sum of the second and third terms of the sequence.

- **(b)** The first term of an arithmetic series is 2 and the eighth term is 30.
 - (i) Find T_3 , the third term of the series.
 - (ii) Find S_{10} , the sum of the first ten terms of the series.
- (c) The n^{th} term of a series is $T_n = \frac{2}{3^{n+1}}$.
 - (i) Write, in terms of n, an expression for T_{n-1} , the $(n-1)^{st}$ term.
 - (ii) Prove that the series is geometric.
 - (iii) Show that $S_9 = \frac{1}{3} \frac{1}{3^{10}}$, where S_9 is the sum of the first nine terms of the series.
- 6. **(a)** Let h(x) = ax + b, where $x \in \mathbb{R}$. Given that h(0) = 3 and h(2) = -5, find the value of a and the value of b.
 - **(b)** The diagram shows part of the graph of a function f.

Use the graph to estimate

- (i) the values of x for which f(x) = 0,
- (ii) the values of x for which f'(x) = 0, where f'(x) is the derivative of f(x),
- (iii) the range of values of x for which f'(x) < 0.
- (c) Let $g(x) = x(3x^2 9)$, where $x \in \mathbb{R}$.
 - (i) Find g'(x), the derivative of g(x).
 - (ii) Find the co-ordinates of the local maximum point and of the local minimum point of the curve y = g(x).
 - (iii) Draw the graph of the function g'(x), the derivative of g(x), in the domain $-2 \le x \le 2$.

- 7. (a) Differentiate $y = 6x x^2 5x^4$ with respect to x.
 - **(b)** (i) Differentiate $y = (3x^2 + 2)(x^3 x)$ with respect to x.
 - (ii) Given that $y = (x^3 2x^2 + 4)^5$, find the value of $\frac{dy}{dx}$ when x = -1.
 - (c) A ball is thrown vertically down from the top of a high building. The distance, *s* metres, the ball falls is given by

$$s = 3t + 5t^2$$

where *t* is the time in seconds from the instant the ball is thrown.

- (i) Find the speed of the ball after 3 seconds.
- (ii) Find the time t when the ball is falling at a speed of 23 ms⁻¹.
- (iii) The ball hits the ground at a speed of 38 ms⁻¹. How high is the building?
- 8. (a) Let g(x) = k(1-x), where $x \in \mathbb{R}$. Given that g(-5) = 20, find the value of k.
 - **(b)** Let $f(x) = \frac{5+x^2}{2-x}$, where $x \in \mathbb{R}$ and $x \neq 2$.
 - (i) Find f(5).
 - (ii) Find f'(x), the derivative of f(x).
 - (iii) Show that f'(x) = 0 at x = -1.
 - (c) Let $h(x) = 5 + 3x x^2$, where $x \in \mathbb{R}$.
 - (i) Find the co-ordinates of the point P at which the curve y = h(x) cuts the y-axis.
 - (ii) Find the equation of the tangent to the curve y = h(x) at P.
 - (iii) The tangent to the curve y = h(x) at x = t is perpendicular to the tangent at P. Find the value of t.

Blank Page

Blank Page

Blank Page