Berlin Firms Comparison

Load required libraries ————————————————————————————————————
$library(tidyverse)\ library(gt)\ library(scales)$
Load data ———————
$df <- \ readRDS("/workspaces/rct25/data/generated/Orbis_Berlin_Data/orbis_panel_berlin.rds")$
Ensure df is a data.frame —
stopifnot(is.data.frame(df))
Prepare data ————
$\label{eq:continuous} $$df <-df \%>\% filter(city_native == "Berlin") \%>\% mutate(total_assets = toas, equity_ratio = shfd / toas, log_total_assets = log1p(toas), group = if_else(postcode == 10437, "Postal Code 10437", "Other Berlin Firms")) \%>\% filter(!is.na(total_assets), !is.na(equity_ratio))$
Count original sample size ————————————————————————————————————
$n_total_original <- nrow(df)$
Clean data: remove very small total assets —
df <- df %>% filter(total_assets >= 1000) n_removed_assets <- n_total_original - nrow(df)
Summary statistics —
$summary_stats <- df \%>\% \ group_by(group) \%>\% \ summarise(\ Mean_Total_Assets = mean(total_assets, na.rm = TRUE), \ SD_Total_Assets = sd(total_assets, na.rm = TRUE), \ Mean_Equity_Ratio = mean(equity_ratio, na.rm = TRUE), \ Median_Equity_Ratio = median(equity_ratio, na.rm = TRUE), \ SD_Equity_Ratio = sd(equity_ratio, na.rm = TRUE), \ n = n(), \ .groups = "drop")$
Extract values explicitly by group ————————————————————————————————————
get_stat <- function(var, group_name) summary_stats %>% filter(group == group_name) %>% pull({{ var }}})
mean_total_assets_10437 <- get_stat(Mean_Total_Assets, "Postal Code 10437") mean_total_assets_othe <- get_stat(Mean_Total_Assets, "Other Berlin Firms")

mean_equity_ratio_10437 <- get_stat(Mean_Equity_Ratio, "Postal Code 10437") mean_equity_ratio_other <- get_stat(Mean_Equity_Ratio, "Other Berlin Firms")

median_equity_ratio_10437 <- get_stat(Median_Equity_Ratio, "Postal Code 10437") median_equity_ratio_other <- get_stat(Median_Equity_Ratio, "Other Berlin Firms")

sd_equity_ratio_10437 <- get_stat(SD_Equity_Ratio, "Postal Code 10437") sd_equity_ratio_other <- get_stat(SD_Equity_Ratio, "Other Berlin Firms")

sd_total_assets_10437 <- get_stat(SD_Total_Assets, "Postal Code 10437") sd_total_assets_other <- get_stat(SD_Total_Assets, "Other Berlin Firms")

n_10437 <- get_stat(n, "Postal Code 10437") n_other <- get_stat(n, "Other Berlin Firms")

Statistical tests -

t_total_assets <- t.test(total_assets ~ group, data = df, var.equal = FALSE) t_equity_ratio <- t.test(equity_ratio ~ group, data = df, var.equal = FALSE) t_sd_equity_ratio <- t.test(dfequity_ratio[df group == "Postal Code 10437"], dfequity_ratio[df group != "Postal Code 10437"], var.equal = FALSE) t_sd_total_assets <- t.test(dftotal_assets[df group == "Postal Code 10437"], dftotal_assets[df group != "Postal Code 10437"], var.equal = FALSE) t_median_equity_ratio <- wilcox.test(equity_ratio ~ group, data = df)

Create results table -

results_table <- tibble(Postal Code 10437 = c(mean_total_assets_10437, sd_total_assets_10437, mean_equity_ratio_10437, median_equity_ratio_10437, sd_equity_ratio_10437, n_10437), 0ther Berlin Firms = c(mean_total_assets_other, sd_total_assets_other, mean_equity_ratio_other, meadian_equity_ratio_other, sd_equity_ratio_other, n_other), Difference = c(mean_total_assets_10437 - mean_total_assets_other, sd_total_assets_10437 - mean_equity_ratio_other, median_equity_ratio_10437 - mean_equity_ratio_other, median_equity_ratio_other, sd_equity_ratio_10437 - sd_equity_ratio_other, NA), P-Value = c(t_total_assetsp.value, t_sd_total_assetsp.value, t_equity_ratiop.value, t_median_equity_ratiop.value, NA), Significance = c(case_when(t_total_assetsp.value < 0.01 ~ "", t_total_assetsp.value < 0.05 " * *", t_total_assetsp.value < 0.1 ~ "", TRUE ~ ""), case_when(t_sd_total_assetsp.value < 0.01 "*", TRUE ~ ""), case_when(t_equity_ratiop.value < 0.1 ~ "", TRUE ~ ""), case_when(t_equity_ratiop.value < 0.1 ~ "", TRUE ~ ""), case_when(t_median_equity_ratiop.value < 0.1 ~ "", TRUE ~ ""), case_when(t_median_equity_ratiop.value < 0.01 " * * * ", t_median_equity_ratiop.value < 0.05 ~ "", t_median_equity_ratiop.value < 0.01 " * * * ", t_sd_equity_ratiop.value < 0.01 ~ "", TRUE ~ ""), case_when(t_sd_equity_ratiop.value < 0.01 ~ ""*, t_sd_equity_ratiop.value < 0.01 ~ "", TRUE ~ ""), case_when(t_sd_equity_ratiop.value < 0.01 ~ ""*, t_sd_equity_ratiop.value < 0.01 ~ "", TRUE ~ ""), TRUE ~ ""), case_when(t_sd_equity_ratiop.value < 0.01 ~ ""*, t_sd_equity_ratiop.value < 0.01 ~ "", TRUE ~ ""), TRUE ~ "", T

Format results -

results_table_formatted <- results_table %>% mutate(rowname = c("Total Assets (Mean)", "Total Assets (SD)", "Equity Ratio (Mean)", "Equity Ratio (Median)", "Equity Ratio (SD)", "Number of Firms (N)"), Postal Code 10437 = case_when(str_detect(rowname, "Equity") ~ formatC(100 * as.numeric(Postal Code 10437), format = "f", digits = 2, big.mark = ".", decimal.mark = ",") %>% paste0("%"), str_detect(rowname, "Total|Firms") ~ format(round(as.numeric(Postal Code 10437), 0), big.mark = ".", decimal.mark = ",", scientific = FALSE), TRUE ~ as.character(Postal Code 10437)), Other Berlin Firms = case_when(str_detect(rowname, "Equity") ~ formatC(100 * as.numeric(Other Berlin Firms), format = "f", digits = 2, big.mark = ".", decimal.mark = ",") %>% paste0("%"), str_detect(rowname, "Total|Firms") ~ format(round(as.numeric(Other Berlin Firms), 0), big.mark = ".", decimal.mark = ",", scientific = FALSE), TRUE ~ as.character(Other Berlin Firms)), Difference = case_when(str_detect(rowname, "Equity") ~ formatC(100 * as.numeric(Difference), format = "f", digits = 2, big.mark = ".", decimal.mark = ",") %>% paste0("%"), str_detect(rowname, "Total|Firms") ~

Create gt table -

gt_table <- results_table_formatted %>% gt(rowname_col = "rowname") %>% tab_header(title = "Comparison of Firms in Postal Code 10437 vs. Other Berlin Firms", subtitle = "Total Assets and Equity Ratios (Most Recent Year)") %>% cols_label(Postal Code 10437 = "Postal Code 10437", Other Berlin Firms = "Other Berlin Firms", Difference = "Difference", P-Value = "P-Value", Significance = "Signif.") %>% cols_align(align = "center") %>% tab_source_note(source_note = paste0("Note: Total assets in EUR. Equity ratio = Equity / Total Assets.", "P-values from Welch's t-test (means, SDs) and Wilcoxon rank-sum test (medians).", "Significance levels: * p<0.1, ** p<0.05, *** p<0.01.", "N = number of firms per group. All p-values <0.001 reported as <0.001.", "Sample restricted to Berlin firms with total assets

geq 1,000 EUR (", n_removed_assets, " excluded)."))