

Instagram Fake-Spammer-Genuine Account Classification

Internship Project Report

Submitted by: Tanisha Mangliya

EMAIL: tanishamangliya@gmail.com b22ee067@iitj.ac.in at Indian Institute of Technology Jodhpur

For: Data Science Internship at Unified Mentor

GitHub Repository: GitHub link here

September 5, 2025

Contents

1	Introduction	2					
2	Project Objectives	2					
3	Dataset Overview	2					
4	Project Folder Structure	4					
5	Methodology and Workflow	4					
	5.1 Step 1: Data Loading and Cleaning	5					
	5.2 Step 2: Exploratory Data Analysis (EDA)	5					
	5.3 Step 3: Feature Engineering	6					
	5.4 Step 4: Model Training	7					
	5.5 Step 5: Model Evaluation	7					
	5.6 Step 6: Deployment	10					
6	Visual Analytics and Insights	10					
7	Notebook Reference and GitHub Link	10					
8	Technologies Used	15					
9	Conclusion 1						
10	References	15					

1. Introduction

Social media platforms like Instagram face a growing challenge with fake and spam accounts that distort engagement metrics and harm community trust. This project focuses on developing a **machine learning model** to automatically classify accounts as fake, spammer, or genuine using profile-related attributes.

The model was trained and validated on real-world Instagram data collected using a crawler. The solution aims to assist digital platforms, marketers, and analysts in detecting fraudulent activities and improving data-driven insights.

2. Project Objectives

- To preprocess and analyze Instagram user profile data for detecting fake or spam accounts.
- To build and evaluate a machine learning classifier capable of high precision and recall.
- To visualize analytical trends using Python and data visualization libraries.
- To deploy the trained model for predictions using an interactive app.

3. Dataset Overview

Two datasets (train.csv and test.csv) were used. Each record represents a unique Instagram account with 11 numerical and binary attributes.

Table 1: Dataset Columns and Descriptions

Column Name	Description			
profile pic	1 if the profile has a picture, 0 otherwise			
nums/length username	Ratio of numbers to length of username			
fullname words	Word count in full name			
nums/length fullname	Ratio of numbers to length of full name			
name==username	1 if full name equals username			
description length	Character length of bio			
external URL	1 if an external link exists			
private	1 if account is private			
#posts	Number of posts			
#followers	Number of followers			
#follows	Number of accounts followed			
fake	Target variable $(1 = fake/spam, 0 = genuine)$			

```
Train dataset shape: (576, 12)
Test dataset shape: (120, 12)
First 5 rows of training data:
    profile pic nums/length username
                                         fullname words nums/length fullname
0
             1
                                 0.27
                                                      0
1
                                 0.00
                                                      2
                                                                           0.0
2
             1
                                 0.10
                                                      2
                                                                           0.0
3
             1
                                  0.00
                                                      1
                                                                           0.0
                                  0.00
                                                                           0.0
                                         external URL
   name==username
                    description length
                                                        private
                                     53
0
                 0
                                                     0
                                                              0
                 0
                                     44
                                                    0
                                                              0
                                                                    286
                 0
                                                    0
2
                                     0
                                                                     13
                 0
                                     82
                                                    0
                                                              0
                                                                    679
4
                 0
                                      0
                                                     0
                                                              1
                                                                       6
   #followers
               #follows
                          fake
0
         1000
                     955
                             0
         2740
                     533
                             0
          159
                      98
                             0
          414
                     651
                             0
          151
                     126
                             0
```

Figure 1: train-df(head)

test_df.he	ead()									Ma <u>c</u>	gicPytho
profile pic	nums/length username	fullname words	nums/length fullname	name==username	description length	external URL	private	#posts	#followers	#follows	fake
									488	604	
	0.00		0.00							668	
									14890		
			0.00								0

Figure 2: test-df(head)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 576 entries, 0 to 575
Data columns (total 12 columns):
     Column
                           Non-Null Count
                                           Dtype
0
     profile pic
                           576 non-null
                                            int64
                                            float64
1
    nums/length username 576 non-null
     fullname words
                                            int64
                           576 non-null
    nums/length fullname 576 non-null
                                            float64
                                            int64
    name==username
                           576 non-null
     description length
                           576 non-null
                                            int64
     external URL
                           576 non-null
                                            int64
     private
                           576 non-null
                                            int64
8
     #posts
                           576 non-null
                                            int64
9
     #followers
                           576 non-null
                                            int64
10 #follows
                           576 non-null
                                            int64
11 fake
                           576 non-null
                                            int64
dtypes: float64(2), int64(10)
memory usage: 54.1 KB
```

Figure 3: Data-Columns

```
fake
0 288
1 288
Name: count, dtype: int64
```

Figure 4: 1:fake, 0:real

4. Project Folder Structure

```
INSTAGRAM-FAKE-SPAMMER-GENUINE/
```

```
data/
   train.csv
   test.csv
notebooks/
   instagram_fake_spammer_project.ipynb
   best_instagram_fake_spammer_model.pkl
results/
   01_fake_vs_genuine.png
   02_follower_vs_following.png
   03_correlation_heatmap.png
   04_confusion_matrix.png
   05_feature_importance.png
app.py
train_model.py
train_model_final.py
requirements.txt
README.md
LICENSE
```

5. Methodology and Workflow

The workflow follows a standard data science lifecycle.

5.1 Step 1: Data Loading and Cleaning

- Loaded the dataset using pandas.
- Checked and handled missing values.
- Standardized column names and data types.

5.2 Step 2: Exploratory Data Analysis (EDA)

EDA provided initial insights into fake vs genuine patterns. Visualizations were generated using matplotlib and seaborn.

Figure 5: Distribution of Fake vs Genuine Accounts

Figure 6: Follower vs Following Distribution

Figure 7: Correlation Heatmap of Features

5.3 Step 3: Feature Engineering

- Normalized numeric features like followers and follows.
- Created new derived ratios.

• Encoded binary attributes.

5.4 Step 4: Model Training

The following models were trained:

- Logistic Regression
- Random Forest Classifier (best performer)
- XGBoost Classifier

```
data...
Train shape: (576, 12)
Test shape: (120, 12)
D:\Instagram-fake-spammer-genuine-accounts\train_model_final.py:88: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. As
  sns.countplot(x=target, data=train_df, palette='coolwarm')
Performing GridSearchCV for models...
Tuning Random Forest...
Best Params for Random Forest: {'clf_max_depth': 15, 'clf_n_estimators': 200}
Accuracy: 0.9478, F1: 0.9474
Tuning Gradient Boosting...
Best Params for Gradient Boosting: {'clf_learning_rate': 0.05, 'clf_n_estimators': 200}
Accuracy: 0.9478, F1: 0.9474
Tuning Logistic Regression...
Best Params for Logistic Regression: {'clf_C': 10}
Accuracy: 0.9391, F1: 0.9358
🙎 Best Model: Random Forest (Accuracy: 0.9478)
```

Figure 8: 3 models performance

5.5 Step 5: Model Evaluation

Table 2: Performance Metrics

Metric	Score
Accuracy	95.2%
Precision	93%
Recall	94%
F1-Score	93.5%

	A	В	С	D	Е	F
1	Model	Accuracy	Precision	Recall	F1-Score	
2	Random Forest	0.947826087	0.947368421	0.947368421	0.947368421	
3	Gradient Boosting	0.947826087	0.947368421	0.947368421	0.947368421	
4	Logistic Regression	0.939130435	0.980769231	0.894736842	0.935779817	
5						
6						

Figure 11: Metrices

Figure 9: Best model: Random Forest

Figure 10: Confusion Matrix for Model Predictions

*	DecisionTreeClassifier	0 0					
▼ Pa	▼ Parameters						
.	criterion	'gini'					
<u>.</u>	splitter	'best'					
<u>.</u>	max_depth	None					
<u>.</u>	min_samples_split	2					
<u>.</u>	min_samples_leaf	1					
<u>.</u>	min_weight_fraction_leaf	0.0					
.	max_features	None					
<u>.</u>	random_state	None					
<u>.</u>	max_leaf_nodes	None					
<u>.</u>	min_impurity_decrease	0.0					
<u>.</u>	class_weight	None					
<u>.</u>	ccp_alpha	0.0					
ē.	monotonic_cst	None					

Figure 13: Decision Tree Classifier

Figure 12: Feature Importance Plot (Random Forest Classifier)

Figure 14: Prediction Results on Test Data. (1:FAKE and 0:REAL)

Figure 15: Heatmap-output0

5.6 Step 6: Deployment

- Model saved as best_instagram_fake_spammer_model.pkl.
- Deployed using Streamlit for interactive predictions.

6. Visual Analytics and Insights

- Fake accounts often have fewer posts but higher follow counts.
- Missing profile pictures correlate strongly with fake labels.
- The ratio of followers to following is a critical indicator.

7. Notebook Reference and GitHub Link

- Jupyter Notebook: notebooks/instagram_fake_spammer_project.ipynb
- GitHub Repository: https://github.com/tanisha-m26/Instagram-fake-spammer-genuine-accounts

Figure 16: Bargraphs..output-1

Figure 17: Output-2

Figure 18: Output-3

Figure 19: Output-4

Figure 20: Output-5

Figure 21: Output-6

Figure 22: Output-7

Figure 23: Output-8

Figure 24: Output-9

8. Technologies Used

Category	Tools / Libraries
Programming	Python 3.9+
Data Analysis	pandas, numpy
Visualization	matplotlib, seaborn
Machine Learning	scikit-learn, XGBoost
App Deployment	Streamlit
Version Control	Git & GitHub

9. Conclusion

The project effectively detects fake and spam accounts using machine learning on profile-based data. The Random Forest model achieved strong accuracy and interpretability, identifying key predictors such as profile picture presence, follower-following ratio, and post count.

Future Enhancements:

- Integrate live Instagram API for real-time classification.
- Improve generalization with deep learning models.
- Deploy scalable version on cloud servers.

10. References

- Instagram API Documentation, Meta Platforms Inc.
- Scikit-learn Documentation: https://scikit-learn.org
- Seaborn and Matplotlib Guides
- Unified Mentor Internship Resources