

Waves & Optics

A-level overview

<u>isaacphysics.org</u> <u>https://isaacphysics.org/pages/remote_learning</u>

Basic wave properties

A transverse wave transmits energy in a direction perpendicular to the oscillations.

Practice with wave formulae

$$c = f \lambda$$

$$f = 1/T$$

$$f = 1/T$$
 $c^2 = T / \rho$

- What is the frequency of light with wavelength 630nm?
- What is the time period of 'treble A' at 440Hz?

When the 'treble A' is played on a violin string, the wavelength on the string is 0.65m. If $r = 6.5 \times 10^{-4}$ kg/m, what will the tension be?

Phase difference

Phase difference of 0° means constructive interference Phase difference of 180° means destructive interference

Phase and Path Difference

Phase difference =
$$\frac{\text{Path difference}}{\lambda} \times 360^{\circ}$$

Wavelength	Path difference	Phase difference (give answer between 0° and 360°)
50cm	20cm	
50cm	75cm	
650nm		90°
36m		30°
6.500mm	94.25mm	

Path Difference

Phase difference of 0° means constructive interference Phase difference of 180° means destructive interference

Interference formulae

Double slit – spacing s

Grating – spacing of adjacent slits s

Single slit – width s

$$y = \lambda D / s$$

 $n \lambda = s \sin \theta$

Practice with interference formulae

$$y = \lambda D/s$$

 $n \lambda = s \sin \theta$

Wavelength λ	Separation of sources s	Distance to screen D	Order of interference n	Fringe Spacing y	Angle to axis θ
480nm	0.020mm	2.50			
650nm		1.50		10cm	
500nm	1.25x10 ⁻⁶ m		1		
	1.25x10 ⁻⁶ m		2		60°

- 1. What is the separation of sources in a diffraction grating with 600 lines/mm?
- 2. How many bright fringes will there be each side of the axis when 660nm light is shone through a grating with 120 lines/mm?

Standing wave

A N A

Two travelling waves in opposite directions with the same frequency make a standing wave.

Antinodes A (green line) = bright part are half a wavelength apart Nodes N (purple line) = dark part are quarter of a wavelength from antinodes Nodes are not totally 'dark' unless the two waves have equal amplitude.

Travelling & Standing waves

All points have same amplitude, All points (within 1 cycle) have different phase All points (within half cycle) have same phase,

All points have different amplitudes
Places of max amplitude = Antinodes
Places of zero amplitude = Nodes

Questions on reflected wave interference

1. What is the spacing between 'dark' points when 5.2cm microwaves reflect off a metal surface?

2. Radio waves of frequency 1GHz reflect off a surface. How far apart are the 'bright' and 'dark' points?

3. Why might the 'dark' points not be completely dark?

Modes

For each, label nodes N and antinodes A, then write wavelength in terms of length *L*Then write frequency in terms of length and wave speed

The Fundamental Formula

For a wave on a string $c^2 = T/\rho$. Using your result from the previous page where a string fixed at both ends had a longest wavelength of 2L, give a formula for the frequency of the fundamental mode of vibration.

Refraction

Calculate the angle of incidence needed from air to glass (n=1.52) to give an angle of reflection of 22°.

Total Internal Reflection

1. Calculate the critical angle for light passing from water (n=1.33) to air.

2. Calculate the critical angle for light passing from glass (n=1.52) to water.

Dispersion

Modal dispersion

Links

A Level Topic Revision

https://isaacphysics.org/pages/
a_level_topic_index#a_level_revision

Consolidation Programme

https://isaacphysics.org/pages/ summer_programmes_2021