Indian Institute of Technology Guwahati Probability Theory and Stochastic Processes (MA225) Problem Set 04

1. Check weather the following functions are CDFs of 2-dim random vector or not.

(a)
$$F(x, y) = \begin{cases} 1 & \text{if } x + 2y \ge 1 \\ 0 & \text{if } x + 2y < 1. \end{cases}$$

(b) $F(x, y) = \begin{cases} 0 & \text{if } x < 0 \text{ or } x + y < 1 \text{ or } y < 0 \\ 1 & \text{otherwise.} \end{cases}$

- 2. Let $F(\cdot, \cdot)$ be the CDFs of a two-dimensional random vector (X, Y), and let $F_1(\cdot)$ and $F_2(\cdot)$, respectively, be the marginal CDFs of X and Y. Define $U(x, y) = \min\{F_1(x), F_2(y)\}$ and $L(x, y) = \max\{F_1(x) + F_2(y) 1, 0\}$. Prove the followings.
 - (a) $L(x, y) \le F(x, y) \le U(x, y)$.
 - (b) L(x, y) and U(x, y) are CDFs of 2-dimensional random vector.
 - (c) The marginal distributions of $L(\cdot,\cdot)$ and $U(\cdot,\cdot)$ are same as that of $F(\cdot,\cdot)$.
- 3. Let the random variable X have CDF $F_1(\cdot)$ and let Y = g(X) have distribution function $F_2(\cdot)$, where $g(\cdot)$ is some function. Prove that
 - (a) If $g(\cdot)$ is increasing, $F_{X,Y}(x, y) = \min\{F_1(x), F_2(y)\}.$
 - (b) If $g(\cdot)$ is decreasing, $F_{X,Y}(x, y) = \max\{F_1(x) + F_2(y) 1, 0\}$.
- 4. Consider the following joint PMF of the random vector (X, Y).

x y	1	2	3	4
4	0.08	0.11	0.09	0.03
5	0.04	0.11 0.12 0.06	0.21	0.05
6	0.09	0.06	0.08	0.04

- (a) Find the probabilities P(X+Y<8), P(X+Y>7), $P(XY\le14)$.
- (b) Find the Corr(X, Y)
- 5. For the bivariate negative binomial distribution, the PMF is given by

$$f_{X,Y}(x, y) = \begin{cases} \frac{(x+y+k-1)!}{x!y!(k-1)!} \theta_1^x \theta_2^y (1-\theta_1-\theta_2)^k & \text{if } x \in \{0, 1, 2, \ldots\}, y \in \{0, 1, 2, \ldots\} \\ 0 & \text{otherwise,} \end{cases}$$

k is a positive integer, $0 < \theta_1 < 1$, $0 < \theta_2 < 1$, and $0 < \theta_1 + \theta_2 < 1$. Find both the marginal distributions.

- 6. Three balls are randomly placed in three empty boxes B_1 , B_2 , and B_3 . Let N denote the total number of boxes which are occupied and let X_i denote the number of balls in the box B_i , i = 1, 2, 3.
 - (a) Find the joint PMF of (N, X_1) .
 - (b) Find the joint PMF of (X_1, X_2) .
 - (c) Find the marginal distributions of N and X_2 .
 - (d) Find the marginal PMF of X_1 from the joint PMF of (X_1, X_2) .
- 7. Let X_1, \ldots, X_n be *i.i.d.* random variables with mean μ and variance σ^2 . Then $E(\overline{X}) = \mu$, $Var(\overline{X}) = \frac{\sigma^2}{n}$, and $Cov(\overline{X}, X_i \overline{X}) = 0$ for all $i = 1, 2, \ldots, n$, where $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

- 8. Suppose that X_1, \ldots, X_n are independent and identically distributed random variables such that $P(X_i = 0) = 1 p = 1 P(X_i = 1), i = 1, \ldots, n$, for some $p \in (0, 1)$. Let X be the number of X_1, \ldots, X_n that are as large as X_1 . Find the PMF of X.
- 9. For the bivariate beta random vector (X, Y) having PDF

$$f_{X,Y}(x,y) = \begin{cases} \frac{\Gamma(\theta_1 + \theta_2 + \theta_3)}{\Gamma(\theta_1)\Gamma(\theta_2)\Gamma(\theta_3)} x^{\theta_1 - 1} y^{\theta_2 - 1} (1 - x - y)^{\theta_3 - 1} & \text{if } x > 0, \ y > 0, \ x + y < 1 \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta_i > 0$, i = 1, 2, 3. Find both the marginal PDFs.

10. The joint PDF of (X, Y) is given by

$$f_{X,Y}(x, y) = \begin{cases} 4xy & \text{if } 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the marginal PDFs of X and Y.
- (b) Verify whether X and Y are independent.
- (c) Find $P(\{0 < X < 0.5, 0.25 < Y < 1\})$ and $P(\{X + Y < 1\})$.
- 11. Let $X = (X_1, X_2, X_3)$ be a random vector with joint PDF

$$f_{X_1,X_2,X_3}(x_1,x_2,x_3) = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)} \left(1 + x_1 x_2 x_3 e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)}\right) \qquad \text{if } (x_1,x_2,x_3) \in \mathbb{R}^3$$

- (a) Are X_1 , X_2 , and X_3 independent?
- (b) Are X_1 , X_2 , and X_3 pairwise independent?
- 12. Let X and Y be jointly distributed random variables with E(X) = E(Y) = 0, $E(X^2) = E(Y^2) = 2$, and Corr(X, Y) = 1/3. Find $Corr(\frac{X}{3} + \frac{2Y}{3}, \frac{2X}{3} + \frac{Y}{3})$.
- 13. Suppose that the random vector (X, Y) is uniformly distributed over the region $A = \{(x, y) : 0 < x < y < 1\}$. Find Cov(X, Y).