Procesarea Semnalelor

Laboratorul 10 Serii de timp - Partea 3

1 Forma unei serii de timp

O serie de timp este modelată drept un vector care are atașat și informație temporală. În general, vom spune că avem la momentul t_i o valoare masurată y[i] iar seria de timp completă este notată y și are dimensiune N.

La acest laborator, o serie de timp este formată din trei componente dominante: trend, sezonalitate și caracteristici locale. Aveți un exemplu de astfel de serie de timp în Figura 1.

Figure 1: Vânzările companiei Johnson & Johnson pentru intervalul 1960 - 1980.

2 Ghid Python

Folosiți funcții din numpy sau scipy ca să rezolvați problemele de regresie liniară din acest laborator. Pentru regularizarea cu ℓ_1 folosiți biblioteca $CVXOPT^1$.

3 Exerciții

- 1. Importați din laboratorul anterior codul pentru a genera o serie de timp aleatoare cu cele trei componente ca în Figure 1.
- 2. Generați un model AR cu orizont p pentru seria de timp utilizată anterior.
- 3. Cu modelul anterior ca referință, găsiți un model AR de dimensiune p care să fie sparse (soluția problemei de regresie să conțină valori zero). Utilizați două strategii:
 - o metodă de tip greedy, în care la fiecare pas adăugați câte un regresor suplimentar în soluția modelului AR;
 - o metodă de regularizare ℓ_1 .
- 4. Creați o funcție care primește ca parametru un vector ce conține coeficienții unui polinom și returnează, într-un vector, rădăcinile polinomului. Folosiți tehnica explicată la curs cu matricea companion și folosiți funcții numpy pentru a calcula valorile proprii.
- 5. Verificați dacă modelele AR generate în acest laborator sunt staționare, folosind condiția de staționaritate dată la curs.

¹https://cvxopt.org/examples/mlbook/l1regls.html