Gate-ASSIGNMENT-2

1

EE24BTECH11043 - Murra Rajesh Kumar Reddy

1)	A single-stage gas turbine operates with an axial absolute flow at the entry and exit from the stage.
	The absolute flow angle at the nozzle exit is 70°. The turbine stage generates a specific work of
	288kJ/kg when operating with a mean blade speed of $440m/s$. The absolute velocity at the rotor
	entry is

- a) 275.5m/s
- b) 551.5m/s
- c) 1103.0m/s
- d) 1654.5*m*/*s*
- 2) An axial compressor operates such that is has an inlet and an exit total temparature of 300K and 430K, respectiely. The isentropic efficiency of the compressor is 85%. If the ratio of specific heats is 1.4, then the total pressure ratio across the compressor is ______.
- 3) The maximum value of coefficient of lift (C_1) for a 2D circular cylinder, provided at least one stagnation point lies on the cylinder surface, is predicted by the potential flow theory to be
 - a) $\pi/2$
 - b) π
 - c) 2π
 - d) 4π
- 4) The nozzle AB, as shown below, leading to the test section of a low seed subsonic wind tunnel, has a contraction ratio of 10:1. The pressure difference across the nozzle is maintained at $1000N/m^2$ and the density of air is $1.23kg/m^3$. Assuming one-dimensional, steady, inviscid flow, the velocity in the test section as measured at point B is m/s.

- 5) The rate of change of moment coefficient with respect to the angle of attack, $\frac{dC_m}{d\alpha}$, at half chord point of a thin airfoil, as per approximations from the thin airfoil theory is
 - a) $\pi^2/16$
 - b) $\pi^2/12$
 - c) $\pi^2/8$
 - d) $\pi/2$
- 6) A gaseous mixture of air and fuel enters a constant area combustion chamber at a velocity of 100m/s and at a static temparature of 300K. The heat release due to combustion is 100J/kgK. The total temparature of air-fuel mixture after combustion is $___K$.
- 7) Consider 1-D, steady, inviscid, compressible flow through a convergent nozzle. The total temparature and total pressure are T_o , P_o respectively. The flow through the nozzle is choked with a mass flow

rate of m_o . If the total temparature is increased to $4T_o$, with total pressure remaining unchanged, then the mass flow rate through the nozzle

- a) remains unchanged.
- b) becomes half of \dot{m}_o .
- c) becomes twice of \dot{m}_o .
- d) becomes four times of \dot{m}_o .
- 8) Consider a second order linear ordinary differential equation $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 0$, with the boundary conditions y(0); $\frac{dy}{dx}\Big|_{x=0} = 1$. The value of y at x = 1 is
 - a) 0
 - b) 1
 - c) *e*
 - d) e^2
- 9) Consider the following system of lineal equatins:

$$2x - y + z = 1$$

$$3x - 3y + 4z = 6$$

$$x - 2y + 3z = 4$$

This system of linear equation has

- a) no solution.
- b) one solution.
- c) two solutions.
- d) three solutions.
- 10) A bar made of linear elastic isotropic material is fixed at one end and subjected to an axial force of 1kN at the other end. The cross-sectional area of the bar is $100mm^2$, length is 100mm and the Young's Modulus is $1 \times 10^5 N/mm^2$. The strain energy stored in the bar is Nmm.
- 11) A cantilever beam-spring system is shown in the figure, The beam is made with a material of Young's modulus $1 \times 10^5 N/mm^2$ and geometry such that its moment of inertia is $100mm^4$ and length l=100 mm. It is supported by a spring of stiffness K=30N/mm and subjected to a load of P=100N at the point 'B'. The deflection at the point 'B' due to the load P is ____mm.

- 12) Determne the correctness or otherwise of the following statements, [a] and [r],
 - [a]: Ribs, used in airplane wings, increase the column buckling strength of the longitudinal stiffners.
 - [r]: Ribs distribute concentrated loads into the structure and redistribute stresses around discontinuities.
 - a) Both [a] and (r) are true and [r] is the correct reason for [a]
 - b) Both [a] and [r] are ture but [r] is not the correct reason for [a]
 - c) Both [a] and [r] are false
 - d) [a] is true but [r] is false