

# Chapter 2

Introduction to Number Theory

### Outline

- Divisibility and the division algorithm
- The Euclidean algorithm
  - Greatest Common Divisor
- Modular arithmetic
  - The modulus
  - Properties of congruences
  - Modular arithmetic operations
  - Properties of modular arithmetic
  - Euclidean algorithm revisited
  - The extended Euclidean algorithm
- Prime numbers

- Fermat's Theorem
- Euler's totient function
- Euler's Theorem
- Testing for primality
- The Chinese Remainder Theorem
- Discrete logarithms
  - Powers of an integer, modulo n
  - Logarithms for modular arithmetic
  - Calculation of discrete logarithms

### Divisibility

- We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers
- b divides a if there is no remainder on division
- The notation b | a is commonly used to mean b divides a
- If b | a we say that b is a divisor of a

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24 13 | 182; - 5 | 30; 17 | 289; - 3 | 33; 17 | 0

## Properties of Divisibility

- If  $a \mid 1$ , then  $a = \pm 1$
- If  $a \mid b$  and  $b \mid a$ , then  $a = \pm b$
- Any  $b \neq 0$ , b | 0
- If a | b and b | c, then a | c

If b | g and b | h, then b | (mg + nh) for arbitrary integers m and n

## Properties of Divisibility

- To see this last point, note that:
  - If  $b \mid g$ , then g is of the form  $g = b * g_1$  for some integer  $g_1$
  - If  $b \mid h$ , then h is of the form  $h = b * h_1$  for some integer  $h_1$
- So:
  - $mg + nh = mbg_1 + nbh_1 = b * (mg_1 + nh_1)$ and therefore b divides mg + nh

```
b = 7; g = 14; h = 63; m = 3; n = 2
7 | 14 and 7 | 63.
To show 7 (3 * 14 + 2 * 63),
we have (3 * 14 + 2 * 63) = 7(3 * 2 + 2 * 9),
and it is obvious that 7 | (7(3 * 2 + 2 * 9)).
```

# Division Algorithm

 Given any positive integer n and any nonnegative integer a, if we divide a by n we get an integer quotient q and an integer remainder r that obey the following

relationship:

$$a = q \times n + r$$
  
where:

- 0 ≤ r < n
- $q = \lfloor a/n \rfloor$





Figure 4.1 The Relationship a = qn + r,  $0 \le r < n$ 

# Euclidean Algorithm



- Procedure for determining the greatest common divisor of two positive integers
- Two integers are relatively prime if their only common positive integer factor is 1

# Greatest Common Divisor (GCD)

- The greatest common divisor of a and b is the largest integer that divides both a and b
- We can use the notation gcd(a,b) to mean the greatest common divisor of a and b
- We also define gcd(o,o) = o
- Positive integer c is said to be the gcd of a and b if:
  - c is a divisor of a and b
  - Any divisor of a and b is a divisor of c
- An equivalent definition is:

$$gcd(a,b) = max[k, such that k | a and k | b]$$

### 

- Because we require that the greatest common divisor be positive, gcd(a,b) = gcd(a,-b) = gcd(-a,b) = gcd(-a,-b)
- In general, gcd(a,b) = gcd(|a|, |b|)

$$gcd(60, 24) = gcd(60, -24) = 12$$

Also, because all nonzero integers divide o: gcd(a,o) = |a|

- We stated that two integers a and b are relatively prime if their only common positive integer factor is 1;
- $\Rightarrow$  a and b are relatively prime if gcd(a,b) = 1

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

### Methods to Compute GCD

- GCD is computed using different methods
  - 1. Division
  - 2. Modulus
  - 3. Subtraction based
- Comparison
  - Division and Modulus are very similar, they take less steps, but steps are more complex compared with subtraction.
  - Subtraction is easy but takes larger number of steps.

# Compute GCD using Division

// Compute GCD (a | b )
// using division



Example: GCD (710, 310)=10



Figure 2.3 Euclidean Algorithm Example: gcd(710, 310)

Figure 2.2 Euclidean Algorithm

### Another Example: GCD using Division

GCD (1160718174, 316258250) = 1078

| Dividend          | Divisor           | Quotient     | Remainder         |
|-------------------|-------------------|--------------|-------------------|
| a = 1160718174    | b = 316258250     | $q_1 = 3$    | $r_1 = 211943424$ |
| b = 316258250     | $r_1 = 211943424$ | $q_2 = 1$    | $r_2 = 104314826$ |
| $r_1 = 211943424$ | $r_2 = 104314826$ | $q_3 = 2$    | $r_3 = 3313772$   |
| $r_2 = 104314826$ | $r_3 = 3313772$   | $q_4 = 31$   | $r_4 = 1587894$   |
| $r_3 = 3313772$   | $r_4 = 1587894$   | $q_5 = 2$    | $r_5 = 137984$    |
| $r_4 = 1587894$   | $r_5 = 137984$    | $q_6 = 11$   | $r_6 = 70070$     |
| $r_5 = 137984$    | $r_6 = 70070$     | $q_7 = 1$    | $r_7 = 67914$     |
| $r_6 = 70070$     | $r_7 = 67914$     | $q_8 = 1$    | $r_8 = 2156$      |
| $r_7 = 67914$     | $r_8 = 2156$      | $q_9 = 31$   | $r_9 = 1078$      |
| $r_8 = 2156$      | $r_9 = 1078$      | $q_{10} = 2$ | $r_{10} = 0$      |

# Compute GCD using Modulus

```
// Compute GCD (a, b)
// using modulus operation
if (b > a) {
 temp=a;
 a=b;
  b=temp;
while (r != 0) {
 // a = b * k + r
 r = a \% b;
 a = b;
 b = r;
GCD = a;
```

GCD (710, 310)=10

| a   | b   | r= a mod b |
|-----|-----|------------|
| 710 | 310 | 90         |
| 310 | 90  | 40         |
| 90  | 40  | 10         |
| 40  | 10  | 0          |

### Compute GCD using Subtraction

```
// Compute GCD (a, b)
// using modulus operation
while (a != b) {
  if (a < b)
    b = b - a;
 else
    a = a - b;
GCD = a;
```

Example: GCD (710, 310)=10

| a   | b    | a-b |
|-----|------|-----|
| 710 | 310  | 400 |
| 400 | 310  | 90  |
| 90  | 310  | 220 |
| 90  | 220  | 130 |
| 90  | 130  | 40  |
| 90  | 40   | 50  |
| 50  | 40   | 10  |
| 10  | 40   | 30  |
| 10  | 30   | 20  |
| 10  | 20   | 10  |
| 10  | 10 🕊 | 0   |

### Modular Arithmetic

- The modulus
  - If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n; the integer n is called the modulus
  - Thus, for any integer a:

$$a = qn + r$$
  $0 \le r < n; q = \lfloor a/n \rfloor$ 

$$a = \lfloor a/n \rfloor * n + (a \mod n)$$

 $\lfloor x \rfloor$ : floor operation is the largest integer less than or equal to x

- Examples of floor operation
  - \[ \( \( \) \) = 2.0
  - [-2.3] = -3
- Example of modulus:
  - 11 mod 7 = 4

### Examples of Modulus Operations (for positive

#### and negative values)

To compute modulus of positive/negative numbers apply:

$$a = \lfloor a/n \rfloor \times n + (a \mod n)$$

|   | Example           | Explanation                                                                                                                   |
|---|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
|   | 11 (mod 7) = 4    | $11 = \lfloor 11/7 \rfloor \times 7 + (11 \mod 7)$<br>$11 = 1 \times 7 + (11 \mod 7)$<br>$11 = 7 + (11 \mod 7)$               |
| _ | -11 (mod 7) = 3   | $-11 = \lfloor -11/7 \rfloor \times 7 + (-11 \mod 7)$<br>$-11 = -2 \times 7 + (-11 \mod 7)$<br>$-11 = -14 + (-11 \mod 7)$     |
| l | 11 (mod -7) = -3  | $11 = \lfloor 11/-7 \rfloor \times -7 + (11 \mod -7)$<br>$11 = -2 \times -7 + (11 \mod -7)$<br>$11 = 14 + (11 \mod -7)$       |
|   | -11 (mod -7) = -4 | $-11 = \lfloor -11/-7 \rfloor \times -7 + (-11 \mod -7)$<br>$-11 = 1 \times -7 + (-11 \mod -7)$<br>$-11 = -7 + (-11 \mod -7)$ |

In general, *n* should be positive

### Modular Arithmetic

- Congruent modulo n
  - Two integers a and b are said to be congruent modulo n if (a mod n) = (b mod n)
  - This is written as  $a \equiv b \pmod{n}$
  - Note that if  $a = o \pmod{n}$ , then  $n \mid a$

$$73 \equiv 4 \pmod{23};$$
  $21 \equiv -9 \pmod{10}$ 

# Properties of Congruences

Congruences have the following properties:

```
1. a \equiv b \pmod{n} if n \mid (a - b)

2. a \equiv b \pmod{n} implies b \equiv a \pmod{n}

3. a \equiv b \pmod{n} and b \equiv c \pmod{n} imply a \equiv c \pmod{n}
```

- To demonstrate the first point, if  $n \mid (a b)$ , then (a b) = kn for some k
  - So we can write a = b + kn
  - Therefore,  $(a \mod n) = (remainder when <math>b + kn$  is divided by  $n) = (remainder when b is divided by <math>n) = (b \mod n)$

```
23 \equiv 8 \pmod{5} because 23 - 8 = 15 = 5 * 3
- 11 \equiv 5 \pmod{8} because - 11 - 5 = -16 = 8 * (-2)
81 \equiv 0 \pmod{27} because 81 - 0 = 81 = 27 * 3
```

### Modular Arithmetic

- Modular arithmetic exhibits the following properties:
  - 1.  $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
  - 2.  $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
  - 3.  $[(a \mod n) * (b \mod n)] \mod n = (a * b) \mod n$
- We demonstrate the first property:
  - Define  $(a \mod n) = r_a$  and  $(b \mod n) = r_b$ . Then we can write
    - $a = r_a + jn$  for some integer j
    - $b = r_b + kn$  for some integer k
  - Then:

(a + b) mod n = 
$$(r_a + jn + r_b + kn)$$
 mod n  
=  $(r_a + r_b + (k + j)n)$  mod n  
=  $(r_a + r_b)$  mod n  
=  $[(a \text{ mod } n) + (b \text{ mod } n)]$  mod n

# Advantage of modular arithmetic

 The main advantage of modular arithmetic (properties) is to simplify evaluating large number in multiplication and addition operations. Consider the following example.

# Examples of Remaining Properties:

Examples of the three remaining properties:

```
11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5
```

# Exponentiation and Modulus

 Exponentiation is performed by repeated multiplication, as in ordinary arithmetic

```
To find 11^7 \mod 13, we can proceed as follows:

11^2 = 121 \equiv 4 \pmod{13}

11^4 = (11^2)^2 \equiv 4^2 \equiv 3 \pmod{13}

11^7 \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2 \pmod{13}
```

```
Compute: 101^{1001} \mod 7

3 \equiv 101 \mod 7

3^{1000} = [[3^{10}]^{10}]^{10} \mod 7

= [4^{10}]^{10} \mod 7

= 4^{10} \mod 7

= 4

3^{1001} = 4 * 3 \mod 7 = 5
```

Compute: 100,001<sup>100,001</sup> mod 19

Answer: 16

Compute: 1234<sup>2002</sup> mod 11

Answer: 4

### Addition Modulo 8

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 |
| 7 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

### Multiplication Modulo 8

| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 |
| 3 | 0 | 3 | 6 | 1 | 4 | 7 | 2 | 5 |
| 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
| 5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 |
| 6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 |
| 7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |

#### Additive and Multiplicative Inverse Modulo 8

#### additive inverse or negative (-w):

x is negative of y if  $(x + y) \mod 8 = 0$ 

# Multiplicative inverse (w<sup>-1</sup>): x is multiplicative invers of y if (x x y) mod 8 = 1

| w | <i>−w</i> | $w^{-1}$ |
|---|-----------|----------|
| 0 | 0         | _        |
| 1 | 7         | 1        |
| 2 | 6         | <u></u>  |
| 3 | 5         | 3        |
| 4 | 4         |          |
| 5 | 3         | 5        |
| 6 | 2         | <u> </u> |
| 7 | 1         | 7        |

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 |
| 7 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 |
| 3 | 0 | 3 | 6 | 1 | 4 | 7 | 2 | 5 |
| 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
| 5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 |
| 6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 |
| 7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |

# Why Inverses are Important in Cryptography

- Inverse supports decryption calculations.
- Consider the following example.
- We desire to encrypt message (M=11), key (K=12) and produce cipher (c). We will use (mod 17) function.

|            | Example of Modulo Addition          | Example of Modulo Multiplication                   |
|------------|-------------------------------------|----------------------------------------------------|
| Encryption | C=(K+M) mod 17                      | C=(K×M) mod 17                                     |
| M          | 11                                  | 11                                                 |
| K          | 12                                  | 12                                                 |
| Inverse    | -K = 5                              | K <sup>-1</sup> =10                                |
| Encryption | $C=(K+M) \mod 17 = 6$               | C=(K×M) mod 17 = 13                                |
| Decryption | $M=(-K+C) = (5+6) \mod 17 = 11 = M$ | $M=(K^{-1}\times C) = (10\times13) \mod 17 = 11=M$ |

# Integers in Z<sub>n</sub>

- Define the set  $Z_n$  as the set of nonnegative integers less than n:  $Z_n = \{0, 1, ..., (n-1)\}$
- This is referred to as the set of residues, or residue classes (mod n). Z<sub>n</sub> represents residue classes.
- We can label the residue classes (mod n) as [0], [1], [2], ..., [n-1], where  $[r] = \{a: a \text{ is an integer}, a \equiv r \pmod{n}\}$
- $Z_4 = \{[0], [1], [2], [3]\}$

```
The residue classes (mod 4) are [0] = \{\dots, -16, -12, -8, -4, 0, 4, 8, 12, 16, \dots\}[1] = \{\dots, -15, -11, -7, -3, 1, 5, 9, 13, 17, \dots\}[2] = \{\dots, -14, -10, -6, -2, 2, 6, 10, 14, 18, \dots\}[3] = \{\dots, -13, -9, -5, -1, 3, 7, 11, 15, 19, \dots\}
```

#### Properties of Modular Arithmetic for Integers in Z<sub>n</sub>

| Property              | Expression                                                                         |
|-----------------------|------------------------------------------------------------------------------------|
| Commutative Laws      | $(w+x) \bmod n = (x+w) \bmod n$                                                    |
|                       | $(w \times x) \bmod n = (x \times w) \bmod n$                                      |
| Associative Laws      | $[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$                                            |
| Associative Laws      | $[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$                |
| Distributive Law      | $[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$                 |
| Identities            | $(0+w) \bmod n = w \bmod n$                                                        |
| Identities            | $(1 \times w) \bmod n = w \bmod n$                                                 |
| Additive Inverse (–w) | For each $w \in \mathbb{Z}_n$ , there exists a z such that $w + z \equiv 0 \mod n$ |

### More Number Theory

- This is a start of a new chapter in the text book.
- But was merged here to continue number theory discussion.

### Prime Numbers

- Prime numbers only have divisors of 1 and itself (i.e. ±1 and ± p )
  - They cannot be written as a product of other numbers
- Prime numbers are central to number theory
- Prime factorization theorem (or unique factorization theorem or the fundamental theorem of arithmetic):
   Any integer a > 1 can be factored in a unique way as

$$a = (p_1)^{a_1} * (p_2)^{a_2} * \dots * (p_t)^{a_t}$$
 where:

- $p1 < p2 < ... < p_t$  are prime numbers and
- each  $a_i$  is a positive integer

#### Primes Under 2000

| 2  | 101 | 211 | 307 | 401 | 503 | 601 | 701 | 809 | 907 | 1009 | 1103 | 1201 | 1301 | 1409 | 1511 | 1601 | 1709 | 1801 | 1901 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|
| 3  | 103 | 223 | 311 | 409 | 509 | 607 | 709 | 811 | 911 | 1013 | 1109 | 1213 | 1303 | 1423 | 1523 | 1607 | 1721 | 1811 | 1907 |
| 5  | 107 | 227 | 313 | 419 | 521 | 613 | 719 | 821 | 919 | 1019 | 1117 | 1217 | 1307 | 1427 | 1531 | 1609 | 1723 | 1823 | 1913 |
| 7  | 109 | 229 | 317 | 421 | 523 | 617 | 727 | 823 | 929 | 1021 | 1123 | 1223 | 1319 | 1429 | 1543 | 1613 | 1733 | 1831 | 1931 |
| 11 | 113 | 233 | 331 | 431 | 541 | 619 | 733 | 827 | 937 | 1031 | 1129 | 1229 | 1321 | 1433 | 1549 | 1619 | 1741 | 1847 | 1933 |
| 13 | 127 | 239 | 337 | 433 | 547 | 631 | 739 | 829 | 941 | 1033 | 1151 | 1231 | 1327 | 1439 | 1553 | 1621 | 1747 | 1861 | 1949 |
| 17 | 131 | 241 | 347 | 439 | 557 | 641 | 743 | 839 | 947 | 1039 | 1153 | 1237 | 1361 | 1447 | 1559 | 1627 | 1753 | 1867 | 1951 |
| 19 | 137 | 251 | 349 | 443 | 563 | 643 | 751 | 853 | 953 | 1049 | 1163 | 1249 | 1367 | 1451 | 1567 | 1637 | 1759 | 1871 | 1973 |
| 23 | 139 | 257 | 353 | 449 | 569 | 647 | 757 | 857 | 967 | 1051 | 1171 | 1259 | 1373 | 1453 | 1571 | 1657 | 1777 | 1873 | 1979 |
| 29 | 149 | 263 | 359 | 457 | 571 | 653 | 761 | 859 | 971 | 1061 | 1181 | 1277 | 1381 | 1459 | 1579 | 1663 | 1783 | 1877 | 1987 |
| 31 | 151 | 269 | 367 | 461 | 577 | 659 | 769 | 863 | 977 | 1063 | 1187 | 1279 | 1399 | 1471 | 1583 | 1667 | 1787 | 1879 | 1993 |
| 37 | 157 | 271 | 373 | 463 | 587 | 661 | 773 | 877 | 983 | 1069 | 1193 | 1283 |      | 1481 | 1597 | 1669 | 1789 | 1889 | 1997 |
| 41 | 163 | 277 | 379 | 467 | 593 | 673 | 787 | 881 | 991 | 1087 |      | 1289 |      | 1483 |      | 1693 |      |      | 1999 |
| 43 | 167 | 281 | 383 | 479 | 599 | 677 | 797 | 883 | 997 | 1091 |      | 1291 |      | 1487 |      | 1697 |      |      |      |
| 47 | 173 | 283 | 389 | 487 |     | 683 |     | 887 |     | 1093 |      | 1297 |      | 1489 |      | 1699 |      |      |      |
| 53 | 179 | 293 | 397 | 491 |     | 691 |     |     |     | 1097 |      |      |      | 1493 |      |      |      |      |      |
| 59 | 181 |     |     | 499 |     |     |     |     |     |      |      |      |      | 1499 |      |      |      |      |      |
| 61 | 191 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 67 | 193 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 71 | 197 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 73 | 199 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 79 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 83 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 89 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 97 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |

### Fermat's Theorem

States the following:

If p is prime and a is:

- a positive integer
- not divisible by  $p ( \rightarrow a \pmod{p} \neq 0)$

```
then a^{p-1} \equiv 1 \pmod{p}
```

And  $a^{p-1} \pmod{p} \equiv 1$ 



• If p is prime and a is a positive integer then

$$a^p \equiv a \pmod{p}$$

 $a^p \pmod{p} \equiv a$ 

#### Example:

$$a^{p-1} \equiv 1 \pmod{p}$$
  
 $8^2 = 64 \equiv 1 \pmod{3}$ 

$$a^p \equiv a \pmod{p}$$
  
 $8^3 = 512 \equiv 8 \pmod{3}$   
 $\equiv 2 \pmod{3}$ 

## Euler's Totient Function: Ø (n)

- Euler's Totient function ø (n ) defined as:
  - the number of positive integers less than n and relatively prime to n.
  - By convention:  $\emptyset(1) = 1$
  - If p is a prime number:  $\emptyset$  (p) = p-1
- Example:
  - $\emptyset(35) = 24$ , why?
  - Positive integers less than 35 and relatively prime to 35: 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34
  - Hint: 35=5\*7. So, 5 (and 5x) and 7 (and 7x) should be excluded from Ø(35).

### ø (n ) and Prime numbers

- Assume:
  - p and q are prime number
  - $n = p \times q$
- Then:
  - $\emptyset$  (p)= p-1
  - $\emptyset$  (q)= q-1
  - $\emptyset$   $(n) = \emptyset$   $(p) \times \emptyset$   $(q) = (p-1) \times (q-1)$
  - Note: if p=q, then:  $\emptyset(n)=(p-1)\times p$
- Example:
  - $\emptyset$  (35)=  $\emptyset$  (5)  $\times$   $\emptyset$  (7) = (5-1)  $\times$  (7-1) = 24
  - $\emptyset$  (25)= (5-1)  $\times$  5 = 20

### Some Values of Euler's Totient Function $\emptyset(n)$

| n  | $\phi(n)$ |
|----|-----------|
| 1  | 1         |
| 2  | 1         |
| 3  | 2         |
| 4  | 2         |
| 5  | 4         |
| 6  | 2         |
| 7  | 6         |
| 8  | 4         |
| 9  | 6         |
| 10 | 4         |

| n  | $\phi(n)$ |
|----|-----------|
| 11 | 10        |
| 12 | 4         |
| 13 | 12        |
| 14 | 6         |
| 15 | 8         |
| 16 | 8         |
| 17 | 16        |
| 18 | 6         |
| 19 | 18        |
| 20 | 8         |
|    |           |

| n  | φ( <i>n</i> ) |
|----|---------------|
| 21 | 12            |
| 22 | 10            |
| 23 | 22            |
| 24 | 8             |
| 25 | 20            |
| 26 | 12            |
| 27 | 18            |
| 28 | 12            |
| 29 | 28            |
| 30 | 8             |

# General Formula to Compute $\emptyset(n)$ for any n

If  $n=p_1^{e_1}\dots p_k^{e_k},$  where  $p_i$  are primes and  $e_i>0,$  then

$$\phi(n) = n \left(1 - rac{1}{p_1}
ight) \left(1 - rac{1}{p_2}
ight) \cdots \left(1 - rac{1}{p_k}
ight)$$

• Examples:

$$\phi(900) = 900 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 240$$

$$\phi(25) = 25 \left(1 - \frac{1}{5}\right) = 20$$

# Euler's Theorem

States that for every a and n that are relatively prime:

$$a^{\varnothing(n)} \equiv 1 \pmod{n}$$

$$a^{\varnothing(n)} \pmod{n} \equiv 1$$

An alternative form is:

$$a^{\emptyset(n)+1} \equiv a(\bmod n)$$

$$a^{\emptyset(n)+1} \pmod{n} \equiv a$$

### Example:

- a=3, n=10
  - $\rightarrow$   $\phi(10)=4$
- $a^{\emptyset(n)} = 3^4 = 81 \pmod{10} \equiv 1$

• 
$$a^{\emptyset(n)+1} = 3^5 = 243 \pmod{10} \equiv 3$$

# Fermat's Theorem vs. Euler's Theorem

|           | Fermat                                                                                 | Euler                             |
|-----------|----------------------------------------------------------------------------------------|-----------------------------------|
| Condition | <ul> <li>p is prime</li> <li>a is a positive integer</li> <li>a (mod p) ≠ 0</li> </ul> | a and n that are relatively prime |
| Formula   | $a^{p-1} \pmod{p} = 1$                                                                 | $a^{g(n)} \pmod{n} = 1$           |

Fermat theorem is a special case of Euler theorem:

Euler theorem when n is a prime number = Fermat theorem

- n is a prime number  $\rightarrow \emptyset(n)=n-1$
- Euler=  $a^{g(n)} \pmod{n} = a^{n-1} \pmod{n} = 1$
- Fermat:  $a^{n-1} \pmod{n} = 1$

# Testing for Primality

For many cryptographic algorithms, it is necessary to select large prime number.

### **Example Algorithms:**

- Miller-Rabin Algorithm
  - It tells if a number is probably a prime.
- AKS Algorithm
  - Prior to 2002 there was no known method of efficiently proving the primality of very large numbers. Algorithms produce probabilistic result
  - In 2002 Agrawal, Kayal, and Saxena developed an algorithm that efficiently determines whether a given large number is prime
    - Known as the AKS algorithm
    - Does not appear to be as efficient as the Miller-Rabin algorithm.



We will study this algorithm.

We present two versions:

- Simplified (one iteration): this is the one we will use in our course.
- Full version (multiple iterations)

# Miller-Rabin Test: full version

#### **Full Version**

```
Output:

"composite" if n is found to be composite

"probably prime" otherwise

Compute m and k such that: n-1 = m × 2<sup>k</sup>

LOOP: repeat R times:

pick a random integer a in the range [2, n − 2]

T ← a m mod n

if T = 1 or T = n − 1 then

continue LOOP

repeat k − 1 times:

T ← T² mod n

if T = n − 1 then

continue LOOP

return "composite"

return "probably prime"
```

Input: n, R

This the full version of Miller-Rabin Test.

The main differences between full and simple:

- Full is repeated R times (simplified runs one iteration)
  - R determines the accuracy of the test.
  - Larger R produces more accurate result.
- "probably prime" output is produced when all options are cases are tested.

### Simple Version: R=1

```
Test(n):
           Inputs: n
           Output: composite, (probably) a prime
Compute m and k such that: n-1 = m \times 2^k
     If k=1, n is (probably) prime
Select 1 < a < n
           typically a=2 (for easy calculations)
Set: T = a^m \pmod{n}
For (j=0; j \le k-1; j++) {
          T = T^2 \pmod{n}
           If (T == 1) return composite
           If (T== -1) return (probably) prime
          // Note: -1 \equiv (n-1) \pmod{n}
return composite
```

# Miller-Rabin Test (simple)

```
Test(n):
        Inputs: n
        Output: composite, (probably) a prime
Compute m and k such that: n-1 = m \times 2^k
   If k=1, n is (probably) prime
Select 1 < a < n
       typically a=2 (for easy calculations)
Set: T = a^m \pmod{n}
For (j=0; j \le k-1; j++) {
       T = T^2 \pmod{n}
       If (T == 1) return composite
       If (T==(n-1)) return (probably) prime
       // Note: -1 \equiv (n-1) \pmod{n}
return composite
```

# Examples: a=2 (for all test)

| n   | n-1=m*2k              | m  | k | Analysis: pick a=2 to evaluate T= a <sup>m</sup> mod n                                                                                                                                    |
|-----|-----------------------|----|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 61  | 60=15 ×2 <sup>2</sup> | 15 | 2 | $T=2^{15} \pmod{61} \equiv 11 \pmod{61}$<br>$j=0$ : $T^2=(11)^2 \pmod{61} = 60 \pmod{61} = -1$<br>61 is probably a prime                                                                  |
| 53  | 52=13×2 <sup>2</sup>  | 13 | 2 | $T=2^{13} \pmod{53} = 30$<br>$j=0$ : $T^2=(30)^2 \pmod{53} \equiv 52 \pmod{53} = -1$<br>53 is probably a prime                                                                            |
| 27  | 26=13×2 <sup>1</sup>  | 13 | 1 | <b>K=1</b> → <b>n</b> is (probably) a prime Wrong prediction! 27=3×9 (liar)                                                                                                               |
| 29  | 28=7×2 <sup>2</sup>   | 7  | 2 | $T=2^7 \pmod{29} = 12$<br>$T^2=(12)^2 \pmod{29} \equiv 28 \pmod{29} = -1$<br>29 is probably a prime                                                                                       |
| 561 | 560=35×2 <sup>4</sup> | 35 | 4 | $T=2^{35} \mod 561$ = 263<br>$j=0$ : $T^2=(263)^2 \pmod 561$ = 166<br>$j=1$ : $T^4=(166)^2 \pmod 561$ = 67<br>$j=2$ : $T^8=(67)^2 \pmod 561$ = 1<br>→ n is composite number (561=3×11×17) |

# Examples: a = 2, 3, 5 (and more)

| n      | n-1=m*2k                                          | m       | k    | Analysis                                                                                                                                                                   |
|--------|---------------------------------------------------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 221    | 220=55×2 <sup>2</sup>                             | 55      | 2    | a=5 T=5 <sup>55</sup> mod 221 = 112 j=0: T <sup>2</sup> = (112) <sup>2</sup> mod 221 = 168 j=1: T <sup>4</sup> = (168) <sup>2</sup> mod 221 = 157  → n is composite number |
| That   | 221 is composi                                    | te      |      | $a=3$ $T=3^{55} \mod 221 = 198$ $j=0: T^2=(198)^2 \mod 221 = 87$ $j=1: T^4=(87)^2 \mod 221 = 55$ → n is composite number                                                   |
| In fac | 74 is a liar!<br>ct, the following<br>7, 174, 200 | are lia | ars: | $a=2$ $T=2^{55} \mod 221 = 128$ $j=0: T^2=(128)^2 \mod 221 = 30$ $j=1: T^4=(30)^2 \mod 221 = 16$ → n is composite number                                                   |
|        |                                                   |         |      | a=174 T=174 <sup>55</sup> mod 221 = 47 j=0: T <sup>2</sup> = (47) <sup>2</sup> mod 221 = 220  → n is probably a prime (liar)                                               |

# Chinese Remainder Theorem (CRT)

- Believed to have been discovered by the Chinese mathematician Sun-Tsu in around 100 A.D.
- One of the most useful results of number theory
- Says it is possible to reconstruct integers in a certain range from their residues modulo a set of pairwise relatively prime moduli
- Can be stated in several ways

Provides a way to manipulate (potentially very large) numbers mod M in terms of tuples of smaller numbers

- This can be useful when M is 150 digits or more
- However, it is necessary to know beforehand the factorization of *M*



## CRT

- Let:
  - $n_1, n_2, ..., n_k$  be pairwise relatively prime integers
  - $M = n_1 \times n_2 \times ... \times n_k$
  - $M_i = M/n_i$
- If  $a_1, a_2, ..., a_k$  are any integers, then there exists **x** modulu M that satisfies system of linear congruencies:

```
x \equiv a_1 \pmod{n_1}

x \equiv a_2 \pmod{n_2}

...

x \equiv a_k \pmod{n_k}
```

Given a system of linear congruencies, CRT solves **X** 

where x (and y's) are computed as:

$$x \equiv a_1 M_1 y_1 + a_2 M_2 y_2 + ... + a_k M_k y_k$$
 (mod M)  
 $M_i y_i \equiv 1 \pmod{n_i}$ 

# **CRT Example**

- Solve linear congruencies using CRT (Find x?):
  - $x \equiv 1 \pmod{5}$
  - $x \equiv 2 \pmod{6}$
  - $x \equiv 3 \pmod{7}$
- First:  $M=5 \times 6 \times 7 = 210$
- Second: calculate Mi's and yi's, see table.
- To calculate y<sub>i</sub> use:
  - $M_i y_i \equiv 1 \pmod{n_i}$
- $\mathbf{x} = a_1 \, \mathbf{M}_1 \, \mathbf{y}_1 + a_2 \, \mathbf{M}_2 \, \mathbf{y}_2 + a_3 \, \mathbf{M}_3 \, \mathbf{y}_3 \, \text{mod 210}$  $= 1 \, (42) \, (3) + 2 \, (35) \, (5) + 3 \, (30) \, (4) \, \text{mod 210}$ 
  - = 836 mod 210
  - = 206 mod 210

| n <sub>i</sub>     | a <sub>i</sub>     | M <sub>i</sub>          | y <sub>i</sub>                                 |
|--------------------|--------------------|-------------------------|------------------------------------------------|
| n <sub>1</sub> = 5 | a <sub>1</sub> = 1 | $M_1 = 6 \times 7 = 42$ | $42 \times y_1 \equiv 1 \pmod{5}$<br>$y_1 = 3$ |
| n <sub>2</sub> =6  | a <sub>2</sub> =2  | M <sub>2</sub> =5×7=35  | $35 \times y_2 \equiv 1 \pmod{6}$<br>$y_2 = 5$ |
| n <sub>3</sub> =7  | a <sub>3</sub> =3  | M <sub>3</sub> =5×6=30  | $30 \times y_3 \equiv 1 \pmod{7}$<br>$y_3 = 4$ |

# CRT Example (2)

- Solve linear congruencies using CRT (Find x?):
  - $x \equiv 1 \pmod{7}$
  - $x \equiv 8 \pmod{11}$
- First:  $M=7 \times 11 = 77$
- Second: calculate Mi's and yi's, see table.
- To calculate y<sub>i</sub> use:
  - $M_i y_i \equiv 1 \pmod{n_i}$
- $\mathbf{x} = a_1 \, \mathbf{M}_1 \, \mathbf{y}_1 + a_2 \, \mathbf{M}_2 \, \mathbf{y}_2 \pmod{M}$  $= 1 \, (11) \, (2) + 8 \, (7) \, (8) \pmod{77}$  $= 8 \, \pmod{77}$

| n <sub>i</sub>     | a <sub>i</sub>     | M <sub>i</sub>      | y <sub>i</sub>                                 |
|--------------------|--------------------|---------------------|------------------------------------------------|
| n <sub>1</sub> = 7 | a <sub>1</sub> = 1 | M <sub>1</sub> = 11 | $11 \times y_1 \equiv 1 \pmod{7}$ $y_1 = 2$    |
| n <sub>2</sub> =11 | a <sub>2</sub> =8  | M <sub>2</sub> =7   | $7 \times y_2 \equiv 1 \pmod{11}$<br>$y_2 = 8$ |

### The powers of an Integer, Modulo p: Primitive Roots

- a is **primitive root** for p then:  $a, a^2, ..., a^{p-1}$  are distinct (mod p)
- In the following example, 3 is a primitive root of modulo 7.
- This is because 3<sup>k</sup> mod 7 generates numbers: 1..6, as shown below.
- In following slide, 2, 3, 10, 13, 14 and 15 are primitive roots to prime number 19.

$$3^{1} = 3 = 3^{0} \times 3 \equiv 1 \times 3 = 3 \equiv 3 \pmod{7}$$
 $3^{2} = 9 = 3^{1} \times 3 \equiv 3 \times 3 = 9 \equiv 2 \pmod{7}$ 
 $3^{3} = 27 = 3^{2} \times 3 \equiv 2 \times 3 = 6 \equiv 6 \pmod{7}$ 
 $3^{4} = 81 = 3^{3} \times 3 \equiv 6 \times 3 = 18 \equiv 4 \pmod{7}$ 
 $3^{5} = 243 = 3^{4} \times 3 \equiv 4 \times 3 = 12 \equiv 5 \pmod{7}$ 
 $3^{6} = 729 = 3^{5} \times 3 \equiv 5 \times 3 = 15 \equiv 1 \pmod{7}$ 
 $3^{7} = 2187 = 3^{6} \times 3 \equiv 1 \times 3 = 3 \equiv 3 \pmod{7}$ 

### Powers of Integers, Modulo 19

| a  | $a^2$ | $a^3$ | $a^4$ | $a^5$ | $a^6$ | $a^7$ | a <sup>8</sup> | $a^9$ | a <sup>10</sup> | $a^{11}$ | a <sup>12</sup> | a <sup>13</sup> | a <sup>14</sup> | a <sup>15</sup> | a <sup>16</sup> | a <sup>17</sup> | a <sup>18</sup> |
|----|-------|-------|-------|-------|-------|-------|----------------|-------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1  | 1     | 1     | 1     | 1     | 1     | 1     | 1              | 1     | 1               | 1        | 1               | 1               | 1               | 1               | 1               | 1               | 1               |
| 2  | 4     | 8     | 16    | 13    | 7     | 14    | 9              | 18    | 17              | 15       | 11              | 3               | 6               | 12              | 5               | 10              | 1               |
| 3  | 9     | 8     | 5     | 15    | 7     | 2     | 6              | 18    | 16              | 10       | 11              | 14              | 4               | 12              | 17              | 13              | 1               |
| 4  | 16    | 7     | 9     | 17    | 11    | 6     | 5              | 1     | 4               | 16       | 7               | 9               | 17              | 11              | 6               | 5               | 1               |
| 5  | 6     | 11    | 17    | 9     | 7     | 16    | 4              | 1     | 5               | 6        | 11              | 17              | 9               | 7               | 16              | 4               | 1               |
| 6  | 17    | 7     | 4     | 5     | 11    | 9     | 16             | 1     | 6               | 17       | 7               | 4               | 5               | 11              | 9               | 16              | 1               |
| 7  | 11    | 1     | 7     | 11    | 1     | 7     | 11             | 1     | 7               | 11       | 1               | 7               | 11              | 1               | 7               | 11              | 1               |
| 8  | 7     | 18    | 11    | 12    | 1     | 8     | 7              | 18    | 11              | 12       | 1               | 8               | 7               | 18              | 11              | 12              | 1               |
| 9  | 5     | 7     | 6     | 16    | 11    | 4     | 17             | 1     | 9               | 5        | 7               | 6               | 16              | 11              | 4               | 17              | 1               |
| 10 | 5     | 12    | 6     | 3     | 11    | 15    | 17             | 18    | 9               | 14       | 7               | 13              | 16              | 8               | 4               | 2               | 1               |
| 11 | 7     | 1     | 11    | 7     | 1     | 11    | 7              | 1     | 11              | 7        | 1               | 11              | 7               | 1               | 11              | 7               | 1               |
| 12 | 11    | 18    | 7     | 8     | 1     | 12    | 11             | 18    | 7               | 8        | 1               | 12              | 11              | 18              | 7               | 8               | 1               |
| 13 | 17    | 12    | 4     | 14    | 11    | 10    | 16             | 18    | 6               | 2        | 7               | 15              | 5               | 8               | 9               | 3               | 1               |
| 14 | 6     | 8     | 17    | 10    | 7     | 3     | 4              | 18    | 5               | 13       | 11              | 2               | 9               | 12              | 16              | 15              | 1               |
| 15 | 16    | 12    | 9     | 2     | 11    | 13    | 5              | 18    | 4               | 3        | 7               | 10              | 17              | 8               | 6               | 14              | 1               |
| 16 | 9     | 11    | 5     | 4     | 7     | 17    | 6              | 1     | 16              | 9        | 11              | 5               | 4               | 7               | 17              | 6               | 1               |
| 17 | 4     | 11    | 16    | 6     | 7     | 5     | 9              | 1     | 17              | 4        | 11              | 16              | 6               | 7               | 5               | 9               | 1               |
| 18 | 1     | 18    | 1     | 18    | 1     | 18    | 1              | 18    | 1               | 18       | 1               | 18              | 1               | 18              | 1               | 18              | 1               |

# Discrete Logarithm

- Let  $b \equiv a^i \pmod{p}$  where  $0 \le i \le (p-1)$ 
  - i is referred to as discrete logarithm of the number b for the base  $a \pmod{p}$ .
- We denote:  $i = dlog_{a,p}(b)$
- Example: consider  $b \equiv 2^i \pmod{19}$   $\rightarrow i = \text{dlog}_{2,19}(b)$
- $2 \equiv 2^1 \pmod{19} \rightarrow 1 = \text{dlog}_{2.19}(2)$
- $4 \equiv 2^2 \pmod{19}$   $\Rightarrow 2 = \text{dlog}_{2,19}(4)$
- $8 \equiv 2^3 \pmod{19} \implies 3 = d\log_{2.19}(8)$
- $16 \equiv 2^4 \pmod{19} \rightarrow 4 = \text{dlog}_{2.19}(16)$ 
  - $13 \equiv 2^5 \pmod{19} \rightarrow 5 = \text{dlog}_{2,19}(13)$

### (a) Discrete logarithms to the base 2, modulo 19

| b                | 1  | 2 | 3  | 4 | 5  | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|------------------|----|---|----|---|----|----|---|---|---|----|----|----|----|----|----|----|----|----|
| $\log_{2,19}(a)$ | 18 | 1 | 13 | 2 | 16 | 14 | 6 | 3 | 8 | 17 | 12 | 15 | 5  | 7  | 11 | 4  | 10 | 9  |

### Table 2.8

### Tables of Discrete Logarithms, Modulo 19

### (a) Discrete logarithms to the base 2, modulo 19

| а                |   | 1  | 2 | 3  | 4 | 5  | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|------------------|---|----|---|----|---|----|----|---|---|---|----|----|----|----|----|----|----|----|----|
| $\log_{2,19}(a)$ | ) | 18 | 1 | 13 | 2 | 16 | 14 | 6 | 3 | 8 | 17 | 12 | 15 | 5  | 7  | 11 | 4  | 10 | 9  |

#### (b) Discrete logarithms to the base 3, modulo 19

| a                | 1  | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|------------------|----|---|---|----|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
| $\log_{3,19}(a)$ | 18 | 7 | 1 | 14 | 4 | 8 | 6 | 3 | 2 | 11 | 12 | 15 | 17 | 13 | 5  | 10 | 16 | 9  |

#### (c) Discrete logarithms to the base 10, modulo 19

| a                 | 1  | 2  | 3 | 4  | 5 | 6 | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|-------------------|----|----|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| $\log_{10,19}(a)$ | 18 | 17 | 5 | 16 | 2 | 4 | 12 | 15 | 10 | 1  | 6  | 3  | 13 | 11 | 7  | 14 | 8  | 9  |

### (d) Discrete logarithms to the base 13, modulo 19

| a                 | 1  | 2  | 3  | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|-------------------|----|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| $\log_{13,19}(a)$ | 18 | 11 | 17 | 4 | 14 | 10 | 12 | 15 | 16 | 7  | 6  | 3  | 1  | 5  | 13 | 8  | 2  | 9  |

#### (e) Discrete logarithms to the base 14, modulo 19

| 46 | a                 | 1  | 2  | 3 | 4 | 5  | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|----|-------------------|----|----|---|---|----|---|---|---|----|----|----|----|----|----|----|----|----|----|
|    | $\log_{14,19}(a)$ | 18 | 13 | 7 | 8 | 10 | 2 | 6 | 3 | 14 | 5  | 12 | 15 | 11 | 1  | 17 | 16 | 4  | 9  |

#### (f) Discrete logarithms to the base 15, modulo 19

| a                 | 1  | 2 | 3  | 4  | 5 | 6  | 7  | 8  | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|-------------------|----|---|----|----|---|----|----|----|---|----|----|----|----|----|----|----|----|----|
| $\log_{15,19}(a)$ | 18 | 5 | 11 | 10 | 8 | 16 | 12 | 15 | 4 | 13 | 6  | 3  | 7  | 17 | 1  | 2  | 14 | 9  |

(This table can be found on page 60 in the textbook)

# Summary

- Divisibility and the division algorithm
- The Euclidean algorithm
  - Greatest Common Divisor
  - Finding the Greatest Common Divisor



- Modular arithmetic
  - The modulus
  - Properties of congruences
  - Modular arithmetic operations
  - Properties of modular arithmetic
  - Euclidean algorithm revisited
  - The extended Euclidean algorithm
- Prime numbers

- Fermat's Theorem
- Euler's totient function
- Euler's Theorem
- Testing for primality
  - Miller-Rabin algorithm
  - A deterministic primality algorithm
  - Distribution of primes
- The Chinese Remainder Theorem
- Discrete logarithms
  - Powers of an integer, modulo n
  - Logarithms for modular arithmetic
  - Calculation of discrete logarithms