EECS 16A Designing Information Devices and Systems I Discussion 7A

1. Ohm's Law With Noise

We are trying to measure the resistance of a black box. We apply various i_{test} currents and measure the ouput voltage v_{test} . Sometimes, we are quite fortunate to get nice numbers. Oftentimes, our measurement tools are a little bit noisy, and the values we get out of them are not accurate. However, if the noise is completely random, then the effect of it can be averaged out over many samples. So we repeat our test many times:

Test	i _{test} (mA)	$v_{\text{test}}(V)$
1	10	21
2	3	7
3	-1	-2
4	5	8
5	-8	-15
6	-5	-11

(a) Plot the measured voltage as a function of the current.

(b) Suppose we stack the currents and voltages to get
$$\vec{I} = \begin{bmatrix} 10 \\ 3 \\ -1 \\ 5 \\ -8 \\ -5 \end{bmatrix}$$
 and $\vec{V} = \begin{bmatrix} 21 \\ 7 \\ -2 \\ 8 \\ -15 \\ -11 \end{bmatrix}$. Is there a unique

solution for R? What conditions must \vec{I} and \vec{V} satisfy in order for us to solve for R uniquely?

(c) Ideally, we would like to find R such that $\vec{V} = \vec{I}R$. If we cannot do this, we'd like to find a value of R that is the *best* solution possible, in the sense that $\vec{I}R$ is as "close" to \vec{V} as possible. We are defining the sum of squared errors as a **cost function**. In this case the cost function for any value of R quantifies the difference between each component of \vec{V} (i.e. v_j) and each component of $\vec{I}R$ (i.e. i_jR) and sum up the squares of these "differences" as follows:

$$cost(R) = \sum_{i=1}^{6} (v_j - i_j R)^2$$

Do you think this is a good cost function? Why or why not?

(d) Show that you can also express the above cost function in vector form, that is,

$$cost(R) = \left\langle (\vec{V} - \vec{I}R), (\vec{V} - \vec{I}R) \right\rangle$$

Hint: $\langle \vec{a}, \vec{b} \rangle = \vec{a}^T \vec{b} = \sum_i a_i b_i$

(e) Find \hat{R} , which is defined as the optimal value of R that minimizes cost(R).

Hint: Use calculus. The optimal \hat{R} makes $\frac{d\cos(\hat{R})}{dR} = 0$

- (f) On your original *IV* plot, also plot the line $v_{test} = \hat{R}i_{test}$. Can you visually see why this line "fits" the data well? How well would we have done if we had guessed $R = 3 \,\mathrm{k}\Omega$? What about $R = 1 \,\mathrm{k}\Omega$? Calculate the cost functions for each of these choices of R to validate your answer.
- (g) Now, suppose that we add a new data point: $i_7 = 2 \,\text{mA}$, $v_7 = 4 \,\text{V}$. Will \hat{R} increase, decrease, or remain the same? Why? What does that say about the line $v_{test} = \hat{R}i_{test}$?

2. Orthonormal Matrices and Projections

An orthonormal matrix, **A**, is a matrix whose columns, \vec{a}_i , are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_j \rangle = 0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|^2 = \langle \vec{a}_i, \vec{a}_i \rangle = 1$.
- (a) Suppose that the matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ has linearly independent columns. The vector \vec{y} in \mathbb{R}^N is not in the subspace spanned by the columns of \mathbf{A} . What is the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} ?
- (b) Show if $\mathbf{A} \in \mathbb{R}^{N \times N}$ is an orthonormal matrix then the columns, \vec{a}_i , form a basis for \mathbb{R}^N .
- (c) When $\mathbf{A} \in \mathbb{R}^{N \times M}$ and $N \geq M$ (i.e. tall matrices), show that if the matrix is orthonormal, then $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{M \times M}$.
- (d) Again, suppose $\mathbf{A} \in \mathbb{R}^{N \times M}$ where $N \geq M$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} is now $\mathbf{A}\mathbf{A}^T\vec{y}$.

(e) Given $\mathbf{A} \in \mathbb{R}^{N \times M} = \begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ and the columns of \mathbf{A} are orthonormal, find the least squares solution to $\mathbf{A}\hat{\vec{x}} = \vec{y}$ where $\vec{y} = \begin{bmatrix} 5 & 12 & 7 & 8 \end{bmatrix}^T$.