```
#Importing packages:
import numpy as np
import pandas as pd
import matplotlib as pyplot
import seaborn as sns

#Importing CSV file:
df=pd.read_csv("/content/Diwali Sales Data.csv",encoding='unicode_escape')
df
```

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	Sta
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharash
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Prad€
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Prad€
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnata
4	1000588	Joni	P00057942	М	26-35	28	1	Guja
11246	1000695	Manning	P00296942	М	18-25	19	1	Maharash
11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Harya
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madr Prade
11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnata
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharash
11251 rows × 15 columns								
%								
4								-

df.head()

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Occupat:
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthc
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	G
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automo
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Construct
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	Fo Process

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11251 entries, 0 to 11250 Data columns (total 15 columns): Non-Null Count Dtype # Column --------0 User_ID 11251 non-null int64 11251 non-null object Cust_name 1 Product_ID 11251 non-null object Gender 11251 non-null object Age Group 11251 non-null object

 5
 Age
 11251 non-null int64

 6
 Marital_Status
 11251 non-null int64

 7
 State
 11251 non-null object

 8
 Zone
 11251 non-null object

 9
 Occupation
 11251 non-null object

 10
 Product_Category
 11251 non-null object

```
11 Orders
                          11251 non-null int64
      12 Amount
                            11239 non-null float64
                           0 non-null
      13 Status
                                             float64
     14 unnamed1
                            0 non-null
                                             float64
     dtypes: float64(3), int64(4), object(8)
     memory usage: 1.3+ MB
df.columns
     Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
            'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category', 'Orders', 'Amount', 'Status', 'unnamed1'],
           dtype='object')
#dropping unnecessary columns:
df.drop(['Status', 'unnamed1'],axis=1,inplace=True)
#check for null values:
df.isna().sum()
     User_ID
     Cust_name
     Product_ID
     Gender
     Age Group
     Age
     Marital_Status
                          0
     State
     Zone
     Occupation
                          0
     Product_Category
                          0
     Orders
     dtype: int64
df.shape
     (11251, 13)
#drop null values from data
df.dropna(inplace=True)
df.isna().sum()
     User_ID
     {\sf Cust\_name}
     Product ID
     Gender
     Age Group
     Age
     Marital_Status
     State
     Zone
     Occupation
                         0
     Product_Category
     Orders
                         0
     Amount
     dtype: int64
df['Amount']=df['Amount'].astype('int')
df['Amount'].dtype
     dtype('int64')
#Exploratory Data Analysis:
# plotting a bar chart for gender and its count:
ax=sns.countplot(x='Gender',data=df)
for bars in ax.containers:
    ax.bar_label(bars)
```


plotting a bar chart for gender vs total amount

sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Gender',y= 'Amount' ,data = sales_gen)

<Axes: xlabel='Gender', ylabel='Amount'>

 $\ensuremath{\mathrm{\#From}}$ above graphs we can see that most of the buyers are females

```
#Age Group:
#plotting graph between age groups and its count:
ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```


Total Amount vs Age Group
sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Age Group',y= 'Amount', data = sales_age)

<Axes: xlabel='Age Group', ylabel='Amount'>

#From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

df.columns

#State:

Total number of Orders from top 10 states

```
sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders')
```

```
<Axes: xlabel='State', ylabel='Orders'>
5000
```

Total amount spend from top 10 states

```
sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount')
```


#From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

```
#Martial Status:
#Plotting bar chart between martial status and total counts
ax = sns.countplot(x = 'Marital_Status',data=df)
sns.set(rc={'figure.figsize':(5,5)})
for bars in ax.containers:
    ax.bar_label(bars)
```



```
#graph between martial status and total amount spend
sales_status = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_status, x = 'Marital_Status',y= 'Amount', hue='Gender')
```

<Axes: xlabel='Marital_Status', ylabel='Amount'>

#From above graphs we can see that most of the buyers are married women

#Occupation: #Plotting a Graph between Occupation and its count sns.set(rc={'figure.figsize':(20,5)}) ax = sns.countplot(x = 'Occupation',data=df) for bars in ax.containers: ax.bar_label(bars)


```
#Plotting a chart between Occupation and the total amount in each
sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')
```

#From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

```
#Product Category:
#plotting a graph between product categories and its count:
sns.set(rc={'figure.figsize':(25,5)})
ax = sns.countplot(x = 'Product_Category',data=df)
for bars in ax.containers:
    ax.bar_label(bars)
```


#Plotting a chart between product category and total amount:
sales_state = df.groupby(['Product_Category'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_Category',y= 'Amount')

#checking the top selling products based on product_id
sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales state, x = 'Product ID',y= 'Orders')

#Insights from EDA:

#The maximum sales are done by married women aged between 26-35 years from States UP, Maharastra and Karnataka working in IT, Healthcare and #and are more likely to buy products from food, clothing and Electronics category.