旅行

题目描述

Byteotia 由 n 座城市组成。城市之间连有 m 条道路,道路可以双向通行。其中第 i 条道路连接 u_i, v_i 两座城市,通过这条道路需要花费 t_i 个小时。城市和道路都从 1 开始编号。

Byteotia 的计时方法比较奇特,一天共有 K 个小时。我们假定一天的起始时刻是 0 点整。 Byteasar 打算在某天的 0 点整从城市 x 出发,前往城市 y。旅途中只能沿着道路行走,而

不允许原地休息。Byteasar 不在乎自己的旅行花费了多少天,他只希望到达 y 的时刻在一天中尽可能早,即如果在某天的 T 点整 $(0 \le T < K)$ 到达城市 y,他希望使得 T 尽可能小。

为了达到这一目标,Byteasar 的旅行路径中允许多次经过同一条道路,也允许多次经过同一个城市(包括 x,y)。如果多次经过 y,最后一次到达 y 的时刻才算作到达时刻。

Byteasar 可能有多组旅行计划,他想寻求你的帮助。Byteotia 的计时方法也常常改变,所以你需要对每一组 x_j,y_j,K_j 求出最小的 T。

输入格式

第一行包含三个整数 n, m, q。 接下来 m 行,每行三个整数 u_i, v_i, t_i 。 接下来 q 行,每行三个整数 x_i, y_i, K_i 。

输出格式

输出包含 q 行,按顺序表示每个询问的答案。如果不存在 x_i 到 y_i 的路径,输出 NIE。

样例输入

- 6 5 3
- 1 2 3
- 3 4 7
- 4 6 9
- 3 5 1
- 5 6 1
- 1 3 5
- 1 2 4
- 6 3 8

样例输出

NIE

1

0

样例解释

1到3之间没有路径。

若一天有 4 小时,1 到 2 的最优路径为 1 \rightarrow 2 \rightarrow 1 \rightarrow 2,共花费 9 个小时,即 2 天零 1 个小时。

若一天有 8 小时, 6 到 3 的最优路径为 $6 \rightarrow 4 \rightarrow 3$, 共花费 16 个小时, 即 2 天整。

数据规模与约定

编号	n	m	K_{j}	q	备注
1~2			奇数		所有城市都能相互到达
3~4			奇数		
5~6	≤ 4000	≤ 4000	2	≤ 4000	所有 $t_i = 1$
7~9			2		所有 $t_i = 1$
10~12	≤ 300	≤ 300	≤ 300	≤ 300	
13~14	≤ 4000	≤ 4000	≤ 4000	1	
15~16				1	
17~20					

对于 100% 的数据, $n, m, q \le 50000, 1 \le t_i \le 10^9, 2 \le K_j \le 10^9, x_j \ne y_j$ 。两个城市间至多只有一条道路直接相连。一条道路两端不会连接同一个城市。