Recurrent Neural Networks

Holberton

What are Recurrent Neural Networks?

Motivation

- What if patterns of data change over time?
- Internal memory as a distinctive feature
- A passage through time

Applications

Natural language processing

Autonomous driving

Time series

"Predict" the near **future** based on **past** observations

Categories and applications

image captioning

music generation

text classification

automatic translation

Applications

Natural language processing

Autonomous driving

Time series

"Predict" the near **future** based on **past** observations

Challenges of standard RNN

An old problem: backpropagation is used to train RNNs

- It suffers from gradient issues
- Decay of information through time
- Signal gets lost as it travels in time
- Difficult for network to learn

Challenges of standard RNN

Another old problem: exploding gradients

- Unreasonably high weights
- Large gradient errors accumulate
- Network gets unstable

Addressing the challenges

Solution: gated units

- Long Short-Term Memory Unit (LSTM)
- Gated Recurrent Unit (GRU)
- Capable of handling long-term dependencies
- Carry information across time-steps

Information is added or
 removed through
 structures called gates

The role of gates in LSTM

The forget gate

- <u>decide what to keep</u> to keep from prior cell state
- consider current input and previous hidden state

The input gate

- <u>decide what is relevant</u> to update in current cell
- network calculates cell state

The role of gates in LSTM

The **output** gate

- <u>decide what to output</u> from memory cell
- Current state becomes input for next unit

Gated recurrent units

- decide what to output from memory cell
- Current state becomes input for next unit
- Update gate decides what information to pass

Training RNNs

Apply recurrence to each timestep

$$h_t = f_W (h_{t-1}, x_t)$$

cell function previous input yector by W

Training RNNs

Backpropagation through time

Forward pass: process information & generate input for next timestep

 Backward pass: compute gradient of classification loss & adjust

Any questions?

