TD ACCQ 201

Julien Béguinot, Duong Hieu Phan

Télécom Paris

1 Reminder

Theorem 1 (Unicity). Let p be a prime number and d > 0. There exist a unique (up to isomorphism) finite field K of cardinality $q = p^d$ denoted \mathbb{F}_q in the sequel. It is termed the **Galois Field** of order q.

Theorem 2. \mathbb{F}_q is isomorphic to the splitting field of $X^q - X$ over \mathbb{Z}_p .

Definition 1. A field K is said to be prime if it does not contain any field different from itself. The prime subfield of a field K is the intersection of all the subfield of K.

Theorem 3. • \mathbb{Q} is a prime field.

• For any prime p, \mathbb{F}_p is a prime field.

Theorem 4. Let K be a field, c its characteristic and P its prime subfield.

- If c = 0, P is isomorphic to \mathbb{Q}
- If $c \neq 0$, then c is prime and P is isomorphic to \mathbb{F}_c .

Theorem 5. Let $q = p^d$, $a \in \mathbb{F}_q$ and μ_a its minimal polynomial. Then,

- μ_a is irreducible over \mathbb{F}_p
- $\deg \mu_a \leqslant d$
- If a is a root of $P \in \mathbb{F}_p[X]$, then $\mu_a|P$. In particular $\mu_a|X^{p^d} X$
- μ_a is the minimal polynomial of all a^{p^i} for $1 \leqslant i \leqslant d$
- . In particular the product of all disctinct minimal polynomial of element of \mathbb{F}_q is $X^q X$.

Theorem 6. Let $q = p^d$, $a \in \mathbb{F}_q$. Let r be the smallest integer such that

$$a^{p^r} = a$$

i.e. the smallest r such that $p^r \equiv 1 \mod \operatorname{ord}(a)$. Then r|d and the minimal polynomial of a over \mathbb{F}_p is

$$\mu_a = \prod_{i=0}^{r-1} (X - a^{p^i}).$$

Definition 2 (Cyclotomic Coset). The cyclotomic coset of i modulo $p^d - 1$ is

$$C(i) \triangleq \{i, pi, \dots p^{r-1}i\}$$

where r is the smallest integer such that $p^r = \text{mod } p^d - 1$. By the previous theorems we can then derive all the minimal polynomials of a finite field using the cyclotomic cossets. If α is a primitive element in \mathbb{F}_q then

$$\mu_{a^i} = \prod_{s \in C(i)} X - \alpha^s.$$

2 TD ACCQ 201

Example 1. Let α be a root of $P(X) = X^3 + X + 1 \in \mathbb{F}_2[X]$. And \mathbb{F}_8 the coresponding field extension. The cyclotomic cossets are $\{0\}, \{1, 2, 4\}$ and $\{3, 5, 6\}$. The conjugates elements corresponding to each class are $\{1\}, \{\alpha, \alpha^2, \alpha^4\}$ and $\{\alpha^3, \alpha^5, \alpha^6\}$. The minimal polynomials are $X + 1, X^3 + X + 1$ and $X^3 + X^2 + 1$.

Definition 3. Let \mathbb{F}_q be a finite field and α a primitive element in \mathbb{F}_q then $\mathbb{F}_q^* = \{1, \alpha, \dots, \alpha^{q-2}\}$ so we can define a logarithm in base α

$$\log_{\alpha} : x \in \mathbb{F}_q^* \mapsto i \in \{0, \dots, q - 2\}$$

such that $\alpha^{\log_{\alpha}(x)} = x$. The value of the logarithm can be stored in a look-up table to speed up computations.

Theorem 7 (Froebenius Mapping).

Froeb:
$$x \in \mathbb{F}_{p^n} \mapsto x^p \in \mathbb{F}_{p^n}$$

is an automorphism of order n. Further Froeb(x)=x if and only if $x\in\mathbb{F}_p$.

2 Exercices

Exercice 1 (Construction of \mathbb{F}_9). Construct \mathbb{F}_9 as an extension of \mathbb{F}_3 explicitly in two ways:

- Consider $P = X^2 + X + 2 \in \mathbb{F}_3[X]$.
- Consider $Q = X^2 + 1 \in \mathbb{F}_3[X]$.

Can you explicit the isomorphism between these constructions of \mathbb{F}_3 ? Find all the minimal polynomials of elements of \mathbb{F}_9 . Give the factorisation of $X^9 - X$ as a product of irreducible polynomial in \mathbb{F}_3 .

Solution 1. First P is an irreducible polynomial in $\mathbb{F}_3[X]$. Indeed if it was not then it would split as a product of two polynomials of degree 1. But then P would have a root in $\mathbb{F}_3[X]$ which is not the case (by computing explictely P(x) for x = 0, 1, 2). Let α be a root of P we obtain \mathbb{F}_9 by adjoining α to \mathbb{F}_3 . It turns out that α is a primitive element of \mathbb{F}_9 so we can obtain \mathbb{F}_9^* as

$$\langle \alpha \rangle = \{ \alpha^0 = 1, \alpha^1, \alpha^2 = 2\alpha + 1, \alpha^3 = 2\alpha + 2, \alpha^4 = 2, \alpha^5 = 2\alpha, \alpha^6 = \alpha + 2, \alpha^7 = \alpha + 1 \}.$$

Q is also irreducible in $\mathbb{F}_3[X]$ so we can also obtain \mathbb{F}_9 by considering a root β of Q. In this construction we have $\langle \beta \rangle = \{\alpha^0 = 1, \alpha^1, \alpha^2 = 2, \beta^3 = 2\beta\}$ so β is not a primitive element in \mathbb{F}_9 . Though we know that \mathbb{F}_9^* is cyclic so there must be a primitive element in the field. Because this cyclic group has $\varphi(8) = 4$ generators any other element must be a generator. We obtain a primitive element with $\gamma = \beta + 1$ for instance. Then we have

$$\langle \gamma \rangle = \{ \gamma^0 = 1, \gamma = \beta + 1, \gamma^2 = 2\beta, \gamma^3 = 2\beta + 1, \gamma^4 = 2, \gamma^5 = 2\beta + 2, \gamma^6 = \beta, \gamma^7 = \beta + 2 \}.$$

. From the two construction we can check directly that the isomorphism between the two field conbstruction is given by

$$\theta(a\alpha + b) = a\gamma + b$$

The factorization and the minimal polynomials are given by the cyclotomic cosets $\{0\}, \{1, 3\}, \{2, 6\}, \{4\}, \{5, 7\}$. Which yields respectively $X + 2, X^2 + 2X + 2, X^2 + 1, X + 1, X^2 + X + 2$. In particular,

$$X^9 - X = X(X+2)(X^2+2X+2)(X^2+1)(X+1)(X^2+X+2)$$

Exercice 2. Construct explicitly \mathbb{F}_{16} with $X^4 + X + 1$.

Solution 2. Like previous exercice.

Exercice 3 (Trace and Norm). Let $K \subseteq L$ be a finite field extension. Let $x \in L$ and

$$m_x: y \in L \mapsto xy \in L$$
.

Show that m_x is a K-endomorphism of L. The trace of x is defined as

$$\operatorname{Tr}_{L/K}(x) \triangleq \operatorname{Tr}(m_x).$$

Show that the trace if a K-linear form over L. The norm of x is defined as the determinant of m_x i.e.

$$N_{L/K}(x) \triangleq \det(m_x).$$

Further show that if $x \in K$ then $\operatorname{Tr}_{L/K}(x) = [L:K]x$ and $\operatorname{N}_{L/K}(x) = x^{[L:K]}$. Show that $\operatorname{Tr}_{\mathbb{C}/\mathbb{R}}(z) = z + \bar{z}$ and $\operatorname{N}_{\mathbb{C}/\mathbb{R}}(z) = z\bar{z}$. Show that

$$\operatorname{Tr}_{\mathbb{F}_{p^m}/\mathbb{F}_p}(x) = x^p + x^{p^2} + \ldots + x^{q^{m-1}}$$
 (1)

and

$$N_{\mathbb{F}_{p^m}/\mathbb{F}_p}(x) = x^p x^{p^2} \dots x^{q^{m-1}}.$$
 (2)

Solution 3. The first and second questions are clear. For the last point you can observe that in any basis of L as K vectorial space of dimension [L:K] then $m_x=\operatorname{diag}(x,\ldots,x)$ hence the result. The expression of the trace of a complex over the reals is obtained by consodering $\mathbb C$ as a $\mathbb R$ -vectorial space with basis (1,i). We now prove the last two points. Let α be a primitive element of the field. Then the minimal polynomial of α is equal to the charachteristic polynomial of the endomorphism m_α . Let $\xi_\alpha = \prod (X-\lambda_i) = \prod (X-\alpha^{p^i})$. In particular the trace is the sum of the roots of the charachteristic polynomials and the norm if the product of the roots. Now if $x=Q(\alpha)$ for some polynomial Q then $m_x=Q(m_\alpha)$. And the characteristic polynomial of m_x is $\xi_x=\prod (X-Q(\lambda_i))$. But since the Frobenius is linear we can commute Q and the iterated froebenius and we have $\xi_x=\prod \left(X-Q(\alpha)^{p^i}\right)=\prod \left(X-x^{p^i}\right)$. This exactly proves the last two points.