

Outline

I - Problem

II - Methodology

III - Evaluation

Paper Contribution

Devise a black-box adversarial attack that is simple but effective for image classifiers.

Adversarial attack

Adversarial attack is a machine learning technique attempting to fool models by supplying corrupted input.

4

Adversarial attack

By inserting a small noise to the original input, which is undetectable to humans, a different output is produced by the network.

"pig"

+ 0.005 x

"airliner"

Why is adversarial attack important?

(White image was possibly taken as open space.)

Definition: Adversarial example

1. Distance between input image x and perturbed image x' in \mathbb{R}^n is sufficiently small (distance metric).

2. N(x) := N(x'), where $N: \mathbb{R}^n \to \mathbb{C}_m$ is classification into m classes

Blackbox

Attack done without knowing the internal structure of the model, which can only utilize the output as feedback, is called a **blackbox attack**.

Approach: simple & effective

Simple: search-based

Effective:

- High attack success rate
- Small number of queries → hierarchical grouping
- Small distortion from original input

Approach: design

Feedback-directed fuzzing:

*Mutate pixels to find adversarial inputs

Iterative refinement:

*Refinement to reduce L-distance of an adversarial input

Query reduction:

*Hierarchical grouping for simultaneous fuzzing

Methodology

Main Algorithm

Improvements - Refinement

Improvements - Grouping

- 1. Introduce 2D illustration (Fig 1)
- 2. Explain what is adversarial in the context $(x_0 => x'_0)$
- 3. Main algorithm (Binary)
 - A. Exploratory step + choosing upper or lower bound
 - B. For linear case, no iteration is needed.
 - C. For non-linear case, the process is iterated to approximate. (The iterative result still stays inside the boundary of B(x, d)
- 4. Multiclass
 - A. Multi class is combinations of binary

Algorithm: Before we go in...

- 1. Input
- 2. Mutation / Modification
- 3. Classifier
- 4. Adversarial
- 5. Distortion Boundary

Simplified in illustration

Algorithm: Simple to Generalization

Algorithm: Basis - linear binary

- Classification Boundary f(input) = 0
- Fuzz between upper bound and lower bound

Algorithm: Basis - linear binary

Algorithm: Basis - linear binary

- Classification Boundary f(input) = 0
- Fuzz between upper bound and lower bound

Algorithm: Approximation - nonlinear binary

- Same step as linear (Approximated)
- Need for iteration (Minimum not guaranteed)
- 3. Still within original boundary

Algorithm: Approximation - nonlinear binary

- Same step as linear (Approximated)
- Need for iteration (Minimum not guaranteed)
- 3. Still within original boundary

Algorithm: Multiclass - linear multiclass

1. Crossing one classifier is enough

2. Change in classifier function

Classifier(f(input))

to

Classifier(f1(i), f2(i), ...)

Determined relative to each classes.

Algorithm: Changing classifiers targets

- nonlinear multiclass

1. Finalized generalization

Changing class targetLock on to the most probable class

Sum-up:

- Compare fitness at boundaries
- Choose closer one to adversarial
- Iterate until adversarial (within original boundary)

Algorithm: Back to practical (from simple example)

Illustration shows only for 2-pixel grayscale image.

(Two axis of modification)

This is the general form for \mathbf{n} -pixel images with \mathbf{j} classes. (\mathbf{k} iterations)

Core of the algorithm

```
repeat

// for the classifier j that is most probable

r := \arg\min_{j} g_{ij}(\mathbf{x}_k)

\mathbf{x}_{k+1} := \operatorname{ApproxMin}(\mathbf{x}_k, g_{ir}, (I_1, ..., I_n))

k := k+1

until \mathcal{N}_f(\mathbf{x}) \neq \mathcal{N}_f(\mathbf{x}_k), or k = \operatorname{MaxNum}
```

'i' here is for current class and isn't related to the 'i' in the code on the right I_n is range pixel can change in i.e, [lower, upper]

Function ApproxMin($\mathbf{x}, f, (I_1, ..., I_n)$) is

$$\mathbf{x}' := (0, ..., 0)$$

foreach $1 \le i \le n$ do

$$\begin{vmatrix} \mathbf{if} \ f(\mathbf{x}[u_i/x_i]) > f(\mathbf{x}[l_i/x_i]) \ \mathbf{x}' := \mathbf{x}'[l_i/x_i'] \end{vmatrix}$$
else

$$\begin{vmatrix} \mathbf{x}' := \mathbf{x}'[u_i/x_i'] \ \mathbf{x}' := \mathbf{x}'[u_i/x_i'] \end{vmatrix}$$

return x'

Why: We want the adversarial attack to be subtle, meaning the adversarial examples are close to the original input.

How: Keep trying to reduce the step size while the output is still misclassified.

(Note that we use L∞ distance: Similarity is measured by the maximum difference of pixel value)

Algorithm 3: DeepSearch with iterative refinement.

```
Input: input \mathbf{x} \in \mathbb{R}^n, adversarial input \mathbf{x}' \in \mathcal{B}(\mathbf{x}, d) (d \in \mathbb{R}),
                function f: \mathbb{R}^n \to \mathbb{R}^m
    Output: an adversarial input \mathbf{x}'' \in \mathcal{B}(\mathbf{x}, d') (d' \leq d)
1 Function DS-Refinement (x, x', f) is
           repeat
                  d := ||\mathbf{x} - \mathbf{x}'||_{L_{\infty}}
 3
                  apply bisect search to find the smallest distance d' \leq d such
                    that input PROJ(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}') is an adversarial example.
                  choose an \mathbf{x}_{new} \in \mathcal{B}(\mathbf{x}, d'), from which to start a new search,
                    e.g. \mathbf{x}_{new} = \text{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}').
                  if f is binary then
                        \mathbf{x}'' := DS-Binary(\mathbf{x}, \mathbf{x}_{new}, f, d')
                  else
                        \mathbf{x}'' := \mathsf{DS-Multiclass}(\mathbf{x}, \mathbf{x}_{new}, f, d')
                  if x" is an adversarial example then
10
                        \mathbf{x}' := \mathbf{x}''
11
                  else
12
                        \mathbf{x}' := \operatorname{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}')
13
           until x" is not an adversarial example
14
           return \mathbf{x}' and d'
15
```

Start

Algorithm 3: DeepSearch with iterative refinement.

```
Input: input \mathbf{x} \in \mathbb{R}^n, adversarial input \mathbf{x}' \in \mathcal{B}(\mathbf{x}, d) (d \in \mathbb{R}),
                function f: \mathbb{R}^n \to \mathbb{R}^m
    Output: an adversarial input \mathbf{x}'' \in \mathcal{B}(\mathbf{x}, d') (d' \leq d)
1 Function DS-Refinement (x, x', f) is
           repeat
                  d := ||\mathbf{x} - \mathbf{x}'||_{L_{\infty}}
                  apply bisect search to find the smallest distance d' \leq d such
                    that input PROJ(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}') is an adversarial example.
                  choose an \mathbf{x}_{new} \in \mathcal{B}(\mathbf{x}, d'), from which to start a new search,
                    e.g. \mathbf{x}_{new} = \text{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}').
                  if f is binary then
                        \mathbf{x}'' := DS-Binary(\mathbf{x}, \mathbf{x}_{new}, f, d')
                  else
                        \mathbf{x}'' := \mathsf{DS-Multiclass}(\mathbf{x}, \mathbf{x}_{new}, f, d')
                  if x" is an adversarial example then
10
                        \mathbf{x}' := \mathbf{x}''
11
                  else
12
                        \mathbf{x}' := \operatorname{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}')
13
           until x" is not an adversarial example
14
           return \mathbf{x}' and d'
15
```

Refine

Algorithm 3: DeepSearch with iterative refinement.

```
Input: input \mathbf{x} \in \mathbb{R}^n, adversarial input \mathbf{x}' \in \mathcal{B}(\mathbf{x}, d) (d \in \mathbb{R}),
                function f: \mathbb{R}^n \to \mathbb{R}^m
    Output: an adversarial input \mathbf{x}'' \in \mathcal{B}(\mathbf{x}, d') (d' \leq d)
1 Function DS-Refinement (x, x', f) is
           repeat
                  d := ||\mathbf{x} - \mathbf{x}'||_{L_{\infty}}
                  apply bisect search to find the smallest distance d' \leq d such
                    that input PROJ(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}') is an adversarial example.
                  choose an \mathbf{x}_{new} \in \mathcal{B}(\mathbf{x}, d'), from which to start a new search,
                    e.g. \mathbf{x}_{new} = \text{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}').
                  if f is binary then
                         \mathbf{x}'' := DS-Binary(\mathbf{x}, \mathbf{x}_{new}, f, d')
                        \mathbf{x}'' := \mathsf{DS-Multiclass}(\mathbf{x}, \mathbf{x}_{new}, f, d')
                  if x" is an adversarial example then
10
                         \mathbf{x}' := \mathbf{x}''
11
                  else
12
                         \mathbf{x}' := \operatorname{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}')
13
           until x" is not an adversarial example
14
           return \mathbf{x}' and d'
15
```


Algorithm 3: DeepSearch with iterative refinement.

```
Input: input \mathbf{x} \in \mathbb{R}^n, adversarial input \mathbf{x}' \in \mathcal{B}(\mathbf{x}, d) (d \in \mathbb{R}),
                function f: \mathbb{R}^n \to \mathbb{R}^m
    Output: an adversarial input \mathbf{x}'' \in \mathcal{B}(\mathbf{x}, d') (d' \leq d)
1 Function DS-Refinement (x, x', f) is
           repeat
                  d := ||\mathbf{x} - \mathbf{x}'||_{L_{\infty}}
                  apply bisect search to find the smallest distance d' \leq d such
                    that input PROJ(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}') is an adversarial example.
                  choose an \mathbf{x}_{new} \in \mathcal{B}(\mathbf{x}, d'), from which to start a new search,
                    e.g. \mathbf{x}_{new} = \text{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}').
                  if f is binary then
                        \mathbf{x}'' := DS-Binary(\mathbf{x}, \mathbf{x}_{new}, f, d')
                  else
                        \mathbf{x}'' := \mathsf{DS-Multiclass}(\mathbf{x}, \mathbf{x}_{new}, f, d')
                  if x" is an adversarial example then
10
                        \mathbf{x}' := \mathbf{x}''
11
                  else
12
                        \mathbf{x}' := \operatorname{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}')
13
           until x" is not an adversarial example
14
           return \mathbf{x}' and d'
15
```

Refine

Algorithm 3: DeepSearch with iterative refinement.

```
Input: input \mathbf{x} \in \mathbb{R}^n, adversarial input \mathbf{x}' \in \mathcal{B}(\mathbf{x}, d) (d \in \mathbb{R}),
                function f: \mathbb{R}^n \to \mathbb{R}^m
    Output: an adversarial input \mathbf{x}'' \in \mathcal{B}(\mathbf{x}, d') (d' \leq d)
1 Function DS-Refinement (x, x', f) is
           repeat
                  d := ||\mathbf{x} - \mathbf{x}'||_{L_{\infty}}
                  apply bisect search to find the smallest distance d' \leq d such
                    that input PROJ(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}') is an adversarial example.
                  choose an \mathbf{x}_{new} \in \mathcal{B}(\mathbf{x}, d'), from which to start a new search,
                    e.g. \mathbf{x}_{new} = \text{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}').
                 if f is binary then
                         \mathbf{x}'' := DS-Binary(\mathbf{x}, \mathbf{x}_{new}, f, d')
                        \mathbf{x}'' := \mathsf{DS-Multiclass}(\mathbf{x}, \mathbf{x}_{new}, f, d')
                  if x" is an adversarial example then
10
                         \mathbf{x}' := \mathbf{x}''
11
                  else
12
                         \mathbf{x}' := \operatorname{Proj}(\mathcal{B}(\mathbf{x}, d'), \mathbf{x}')
13
           until x" is not an adversarial example
14
           return \mathbf{x}' and d'
15
```

Search

Refinement: Bisect search (binary search)

DeepSearch

- Divide pixels of an input image in groups
- Mutate all pixels of a group in the same direction

Why? To reduce # of queries \rightarrow 1 query/group

1. Initial grouping \rightarrow n/k² groups (k x k)

```
Function DS-Hierarchy(\mathbf{x}, \mathbf{x}_{init}, f, k, m) is

\mathcal{G} := \text{Initial-Group}(\{1, ..., n\}, k) \text{ and } \mathbf{x}' := \mathbf{x}_{init}

repeat

\mathbf{x}' := \text{DeepSearch}(\mathbf{x}, \mathbf{x}', f, d, \mathcal{G})

if 1 < k/m \text{ then}

\mathcal{G} := \text{Divide-Group}(\mathcal{G}, m)

\mathbf{x} := k/m

until \mathcal{N}_f(\mathbf{x}) \neq \mathcal{N}_f(\mathbf{x}'), or reached query budget L

return \mathbf{x}'
```

2. Fuzzing → mutate all pixels in a group in the same direction

```
Function DS-Hierarchy(\mathbf{x}, \mathbf{x}_{init}, f, k, m) is

\mathcal{G} := \text{Initial-Group}(\{1, ..., n\}, k) \text{ and } \mathbf{x}' := \mathbf{x}_{init}

repeat

\mathbf{x}' := \text{DeepSearch}(\mathbf{x}, \mathbf{x}', f, d, \mathcal{G})

if 1 < k/m then

\mathcal{G} := \text{Divide-Group}(\mathcal{G}, m)

\mathbf{x} := k/m

until \mathcal{N}_f(\mathbf{x}) \neq \mathcal{N}_f(\mathbf{x}'), or reached query budget L

return \mathbf{x}'
```

3. Group splitting \rightarrow if no adversarial examples then (k/m x k/m)

```
Function DS-Hierarchy(\mathbf{x}, \mathbf{x}_{init}, f, k, m) is

\mathcal{G} := \text{Initial-Group}(\{1, ..., n\}, k) \text{ and } \mathbf{x}' := \mathbf{x}_{init}

repeat

\mathbf{x}' := \text{DeepSearch}(\mathbf{x}, \mathbf{x}', f, d, \mathcal{G})

if 1 < k/m \text{ then}

\mathcal{G} := \text{Divide-Group}(\mathcal{G}, m)

\mathbf{x}' := k/m

until \mathcal{N}_f(\mathbf{x}) \neq \mathcal{N}_f(\mathbf{x}'), or reached query budget L

return \mathbf{x}'
```


Experimental Evaluation

- Is DeepSearch effective in finding adversarial examples?
- Is DeepSearch effective in finding adversarial examples with low distortion?
- Is DeepSearch a query-efficient blackbox attack?
- Is the hierarchical grouping of DeepSearch effective in improving query efficiency?

Evaluation Setup

Datasets and network models

- Datasets: SVHN, CIFAR-10, ImageNet
- Networks: ResNet w32-10(SVHN, CIFAR-10), Inception v3(ImageNet)

Existing approaches

- NES attack (QL-NES)
- The Bandits attack
- the Simple BlackBox Attack (SimBA)
- Parsimonious blackbox attack

Metrics

- Success rate
 - Percentage of inputs for which effective adversarial examples are found
- Average distortion rate
 - Distance between original and adversarial input
- Average number of queries
 - Number of queries made to the network (because making queries might be costly, efficient approach should make less queries)

Results

Table 1: Results on SVHN networks.

Attack	Success rate	Avg. L_{∞}	Avg. L_2	Avg. queries	Med. queries		
Undefended network							
QL-NES	62.4%	2.58%	1.80%	2157	1700		
Bandits	99.2%	3.43%	2.69%	762	573		
SimBA	84.7%	4.65%	3.47%	1675	1430		
Parsimonious	100%	4.59%	7.63%	337	231		
DeepSearch	100%	1.89%	3.17%	229	196		
Defended network							
QL-NES	40.5%	4.10%	4.19%	5574	3900		
Bandits	55.3%	4.38%	4.74%	2819	944		
SimBA	65.9%	4.96%	3.95%	2687	2633		
Parsimonious	78.9%	4.86%	8.08%	2174	423.5		
DeepSearch	83.1%	3.35%	5.58%	1808	458		

Table 2: Results on CIFAR-10 networks.

Attack	Success rate	Avg. L_{∞}	Avg. L_2	Avg. queries	Med. queries		
Undefended network							
QL-NES	52.8%	1.24%	0.99%	1360	1100		
Bandits	92.6%	2.66%	2.34%	838	616		
SimBA	71.6%	3.36%	2.19%	1311	1150		
Parsimonious	100%	3.36%	6.36%	339	238.5		
DeepSearch	100%	1.64%	3.08%	247	196		
Defended network							
QL-NES	30.1%	2.71%	3.09%	4408	3200		
Bandits	39.2%	2.95%	4.39%	2952	1176		
SimBA	41.2%	3.46%	4.50%	2425	2424		
Parsimonious	47.4%	3.45%	6.61%	1228	366		
DeepSearch	47.7%	$\boldsymbol{2.48\%}$	$\boldsymbol{4.70\%}$	963	196		

Results

Table 3: Results on ImageNet undefended network.

Attack	Success rate	Avg. L_{∞}	Avg. L_2	Avg. queries	Med. queries
QL-NES	90.3%	1.83%	1.75%	2300	1800
Bandits	92.1%	2.15%	2.61%	930	496
SimBA	61%	3.15%	0.67%	4379	4103
Parsimonious	98.3%	3.16%	6.35%	660	241
DeepSearch	99.3%	1.50%	3.05%	561	196

Results

Table 4: Query reduction for SVHN and CIFAR-10. For each dataset, success rate (resp. average queries) is shown in the first (resp. second) row.

Dataset	1	2×2	4×4	8×8	16×16		
Undefended network							
SVHN	100%	100%	100%	100%	100%		
	742	300	229	238	242		
CIFAR-10	100%	100%	100%	100%	100%		
	462	301	247	255	259		
Defended network							
SVHN	81.3%	82.4%	83.1%	83.6%	83.9%		
	3143	2292	1808	1565	1591		
CIFAR-10	47.7%	47.4%	47.7%	47.6%	47.6%		
	2292	1156	963	935	946		

Table 5: Query reduction for ImageNet. Success rate (resp. average queries) is shown in the first (resp. second) row.

Dataset	8×8	16×16	32×32	64×64	128×128
ImageNet	99.1%	99.1%	99.1%	99.4%	99.4%
	765	580	533	554	580

Possible threats to validity

- Datasets and networks models
- Existing Approaches
- Fairness of comparison

Some comments

Pros:

- Simple
- Effective

Cons

- 'Block' grouping
- Requires probability output
- Non targeted attack

