# Machine Learning (CE 40717) Fall 2024

#### Ali Sharifi-Zarchi

CE Department Sharif University of Technology

September 23, 2024





- 1 Introduction
- 2 Bagging
- 3 Random Forest
- 4 Boosting
- 6 AdaBoost
- **6** Comparison
- References



Introduction

- Condorcet's jury theorem Ensemble learning Ensemble methods
- 2 Bagging
- 3 Random Forest
- 4 Boosting
- 6 AdaBoost
- **6** Comparison



1 Introduction

Introduction

Condorcet's jury theorem

Ensemble learning
Ensemble methods

- 2 Bagging
- 3 Random Fores
- 4 Boosting
- 6 AdaBoost
- **6** Comparison





# Condorcet's jury theorem

Introduction

- N voters wish to reach a decision by majority vote.
- Each voter has an independent probability
   p of voting for the correct decision.
- Majority votes for the correct decision with probability *M*.
- If p > 0.5 and  $N \to \infty$ , then  $M \to 1$ 
  - How?



Adopted from Wikipedia



September 23, 2024

1 Introduction

Introduction

- Condorcet's jury theorem
- Ensemble learning

Ensemble method

- 2 Bagging
- 3 Random Fores
- 4 Boosting
- 5 AdaBoost
- **6** Comparison



6 / 70

## Strong vs. weak Learners

- **Strong learner:** we seek to produce one classifier for which the classification error can be made arbitrarily small.
  - So far we were looking for such methods.
- **Weak learner:** a classifier which is just better than random guessing (for now this will be our only expectation).



#### Basic idea

- Certain weak learners do well in modeling one aspect of the data, while others do well in modeling another.
- Learn several simple models and combine their outputs to produce the final decision.
- A composite prediction where the final accuracy is better than the accuracy of individual models.



Adopted from [4]

Introduction

- Condorcet's jury theorem Ensemble learning
- Ensemble methods
- 2 Bagging
- 3 Random Fores
- 4 Boosting
- 6 AdaBoost
- **6** Comparison



#### **Ensemble Methods**



- Weak learners are generated in **parallel**.
  - Basic motivation is to use independence between the learners.

- Weak learners are generated **consecutively**.
- Basic motivation is to use dependence between the base learners.



#### What we talk about

- Weak or simple learners
  - Low variance: they don't usually overfit
  - **High bias**: they can't learn complex functions
- Bagging (parallel): To decrease the variance
  - Random Forest
- **Boosting** (sequential): To decrease the bias (enhance their capabilities)
  - AdaBoost



- Introduction
- 2 Bagging
  Basic idea & algorithm

Decision tree (quick review)

- 3 Random Fores
- 4 Boosting
- 6 AdaBoost
- 6 Comparisor
- 7 References



- 2 Bagging Basic idea & algorithm Decision tree (quick review)



#### Basic idea

- Bagging = Bootstrap aggregating
- It uses bootstrap resampling to generate different training datasets from the original training dataset.
  - · Samples training data uniformly at random with replacement.
- On the training datasets, it trains different weak learners.
- During testing, it **aggregates** the weak learners by uniform averaging or majority voting.
  - Works best with unstable models (high variance models). Why?



## Basic idea, Cont.



Adopted from GeeksForGeeks



15 / 70

## Algorithm

## **Algorithm 1** Bagging

- 1: **Input:** M (required ensemble size),  $D = \{(\mathbf{x}^{(1)}, \mathbf{v}^{(1)}), \dots, (\mathbf{x}^{(N)}, \mathbf{v}^{(N)})\}$  (training set)
- 2: **for** t = 1 to M **do**
- Build a dataset  $D_t$  by sampling N items randomly with replacement from D 3: ▶ Bootstrap resampling: like rolling N-face dice N times
- Train a model  $h_t$  using  $D_t$  and add it to the ensemble 4:
- 5: end for
- 6:  $H(x) = \operatorname{sign}\left(\sum_{t=1}^{M} h_t(x)\right)$ 
  - > Aggregate models by voting for classification or by averaging for regression

- 1 Introduction
- 2 Bagging Basic idea & algorithm Decision tree (quick review)
- 3 Random Fores
- 4 Boosting
- 6 AdaBoost
- 6 Comparison
- 7 References



#### Structure

- **Terminal nodes** (leaves) represent target variable.
- Each internal node denotes a test on an attribute.



| Outlook  | Temperature | Humidity | Wind   | Played football(yes/no |
|----------|-------------|----------|--------|------------------------|
| Sunny    | Hot         | High     | Weak   | No                     |
| Sunny    | Hot         | High     | Strong | No                     |
| Overcast | Hot         | High     | Weak   | Yes                    |
| Rain     | Mild        | High     | Weak   | Yes                    |
| Rain     | Cool        | Normal   | Weak   | Yes                    |
| Rain     | Cool        | Normal   | Strong | No                     |
| Overcast | Cool        | Normal   | Strong | Yes                    |
| Sunny    | Mild        | High     | Weak   | No                     |
| Sunny    | Cool        | Normal   | Weak   | Yes                    |
| Rain     | Mild        | Normal   | Weak   | Yes                    |
| Sunny    | Mild        | Normal   | Strong | Yes                    |
| Overcast | Mild        | High     | Strong | Yes                    |
| Overcast | Hot         | Normal   | Weak   | Yes                    |
| Rain     | Mild        | High     | Strong | No                     |

Adopted from Medium



## Learning

- Learning an optimal decision tree is NP-Complete.
  - Instead, we use a **greedy search** based on a heuristic.
  - We can't guarantee to return the globally-optimal decision tree.
- The most common strategy for DT learning is a greedy top-down approach.
- Tree is constructed by splitting samples into subsets based on an **attribute value test** in a recursive manner.

# Algorithm

## **Algorithm 2** Constructing DT

```
1: procedure FINDTREE(S, A)
                                                                  \triangleright Input: S (samples), A (attributes)
        if A is empty or all labels in S are the same then
            status ← leaf
 3:
            class \leftarrow most common class in S
 4:
        else
 5:
            status ← internal
 6:
            a \leftarrow \text{bestAttribute}(S, A)
                                                                              ➤ The attribute value test
            LeftNode \leftarrow FindTree(S(a = 1), A \setminus \{a\})
 8:
 9:
            RightNode \leftarrow FindTree(S(a = 0), A \setminus \{a\})
        end if
10:
11: end procedure
```

## Which attribute is the best?

• **Entropy** measures the uncertainty in a specific distribution.

$$H(X) = -\sum_{x_i \in x} P(x_i) \log P(x_i)$$

• Information Gain (IG)

$$Gain(S, A) = H_S(Y) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H_{S_v}(Y)$$

A: variable used to split samples

Y: target variable

S: samples



Adopted from Wikipedia

## Example



Gain(S, Humidity) = 0.940 - (7/14)0.985 - (7/14)0.592 = 0.151

Gain(S, Humidity) = 0.940 - (8/14)0.811 - (6/14)1.0 = 0.48



- Introduction
- 2 Bagging
- 3 Random Forest
- 4 Boosting
- 6 AdaBoost
- **6** Comparison
- References



23 / 70

# Bagging on decision trees?

Why decision trees?

- Interpretable
- Robust to outliers
- Low bias
- High variance



Adopted from [4]

#### Perfect candidates

- Why are **DTs** perfect candidates for ensembles?
  - Consider averaging many (nearly) **unbiased** tree estimators.
  - Bias remains similar, but variance is reduced.
- Remember Bagging?
  - Train many trees on bootstrapped data, then average the outputs.



# Algorithm

### Algorithm 3 Random Forest

- 1: **Input:** *T* (number of trees), *m* (number of variables used to split each node)
- 2: **for** t = 1 to T **do**
- 3: Draw a bootstrap dataset
- 4: Learn a tree on this dataset
  - ightharpoonup Select  $m{m}$  features randomly out of  $m{d}$  features as candidates before splitting
- 5: end for
- 6: Output:

 $ightharpoonup Usually: m \le \sqrt{d}$ 

- 7: Regression: average of the outputs
- 8: Classification: majority voting



on Bagging **Random Forest** Boosting AdaBoost Comparison References

## Example



Strong learner (random forest)

Adopted from [4]



- 1 Introduction
- 2 Bagging
- 3 Random Fores
- 4 Boosting

  Motivation & basic idea

  Algorithm
- 6 AdaBoos
- **6** Comparison
- References



28 / 70

- Introduction
- 2 Bagging
- 3 Random Fores
- 4 Boosting Motivation & basic idea Algorithm
- **6** AdaBoos
- 6 Comparisor
- 7 References



# Problems with bagging

- Bagging created a diversity of **weak learners** by creating random datasets.
  - Examples: Decision stumps (shallow decision trees), Logistic regression, ...
- Did we have full control over the usefulness of the weak learners?
  - The **diversity** or **complementarity** of the weak learners is not controlled in any way, it is left to chance and to the instability of the models.



#### Basic idea

- We would expect a better performance if the weak learners also complemented each other.
  - They would have "expertise" on different subsets of the dataset.
  - So they would work better on different subsets.
- The basic idea of boosting is to generate a **series** of weak learners which complement each other.
  - For this, we will force each learner to focus on the mistakes of the previous learner.



## Basic idea, Cont.



Adopted from GeeksForGeeks



- Introduction
- 2 Bagging
- 3 Random Fores
- 4 Boosting
  Motivation & basic idea
  Algorithm
- 6 AdaBoos
- 6 Comparison
- 7 References



33 / 70

# Algorithm

- Try to combine many simple weak classifiers (in sequence) to find a single strong classifier.
  - Each component is a simple binary ±1 classifier
  - Voted combinations of component classifiers

$$H_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \boldsymbol{\theta}_1) + \dots + \alpha_m h(\mathbf{x}; \boldsymbol{\theta}_m)$$

• To simplify notations:  $h(x; \theta_i) = h_i(x)$ 

$$H_m(\mathbf{x}) = \alpha_1 h_1(\mathbf{x}) + \dots + \alpha_m h_m(\mathbf{x})$$

• **Prediction**:  $\hat{y} = \text{sign}(H_m(x))$ 



# Candidate for $h_i(x)$

## Decision stumps

 Each classifier is based on a single feature of x (e.g., x<sub>k</sub>):

$$h(\mathbf{x}; \boldsymbol{\theta}) = \operatorname{sign}(w_1 \mathbf{x}_k - w_0)$$
$$\boldsymbol{\theta} = \{k, w_1, w_0\}$$



Adopted from [4]

35 / 70

- Introduction
- 2 Bagging
- 3 Random Fores
- 4 Boosting
- **5** AdaBoost
  - Basic idea & example
  - Algorithm
  - Loss function
  - Summary & example
  - Properties



- Introduction
- 2 Bagging
- 3 Random Forest
- 4 Boosting
- 6 AdaBoost Basic idea & example
  - Algorithm
    Loss function
    Summary & example





#### Basic idea

- Sequential production of classifiers
  - Iteratively add the classifier whose addition will be most helpful.
- Represent the important of each sample by assigning weights to them.
  - Correct classification  $\implies$  smaller weights
  - Misclassified samples ⇒ larger weights
- Each classifier is **dependent** on the previous ones.
  - Focuses on the **previous ones' error**.



#### Example



# Example, Cont.





## Example, Cont.



Adopted from [4]



n Bagging Random Forest Boosting **AdaBoost** Comparison References

## Example, Cont.



Strong learner

Adopted from [4]



## Example, Cont.



Adopted from [4]

- Introduction
- 2 Bagging
- 3 Random Fores
- 4 Boosting
- **5** AdaBoost

Basic idea & example

### Algorithm

Loss function
Summary & example
Properties



### Algorithm

#### **Algorithm 4** AdaBoost

1: Initialize data weight  $w_1^{(i)} = \frac{1}{N}$  for all N samples

2: **for** 
$$m = 1$$
 to  $M$  **do**

3: 
$$J_m = \sum_{i=1}^N w_m^{(i)} \times I(y^{(i)} \neq h_m(\mathbf{x}^{(i)}))$$

 $\triangleright$  Find  $h_m(\mathbf{x})$  by minimizing the weighted error

3: 
$$J_{m} = \sum_{i=1}^{N} w_{m}^{(i)} \times I(y^{(i)} \neq h_{m}(\mathbf{x}^{(i)}))$$
4: 
$$\epsilon_{m} = \frac{\sum_{i=1}^{N} w_{m}^{(i)} \times I(y^{(i)} \neq h_{m}(\mathbf{x}^{(i)}))}{\sum_{i=1}^{N} w_{m}^{(i)}}$$

 $\triangleright$  Find the weighted error of  $h_m(x)$ 

5: 
$$\alpha_{m} = \ln \left( \frac{1 - \epsilon_{m}}{\epsilon_{m}} \right)$$
6: 
$$w_{m+1}^{(i)} = w_{m}^{(i)} e^{\alpha_{m} I(y^{(i)} \neq h_{m}(\mathbf{x}^{(i)}))}$$

> Assign votes based on the error

6: 
$$w_{m+1}^{(i)} = w_m^{(i)} e^{\alpha_m I(y^{(i)} \neq h_m(\mathbf{x}^{(i)}))}$$

> Update normalized weights

7: end for

8: Combined classifier:  $\hat{y} = \text{sign}(H_M(\mathbf{x})), H_M(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})$ 

#### Notations & conditions

- $w_m^{(i)}$ : weighting coefficient of data point *i* in iteration *m*
- $\alpha_m$ : weighting coefficient of *m*-th base classifier in the final ensemble
  - $\epsilon_m$ : weighted error rate of *m*-th classifier

- Only when  $h_m(x)$  with  $\epsilon_m < 0.5$  (better than chance) is found, boosting continues.
  - Condorcet's jury theorem?

- 1 Introduction
- 2 Bagging
- 3 Random Fores
- 4 Boosting
- **5** AdaBoost

Basic idea & example

Algorithn

Loss function

Summary & example

Comporison



#### Loss function

- We need a loss function for the combination
  - To Determine the new component,  $h(x; \theta)$
  - And how many votes it should receive,  $\alpha$

$$H_m(\mathbf{x}) = \alpha_1 h_1(\mathbf{x}) + \dots + \alpha_m h_m(\mathbf{x})$$

- Many options for the loss function
  - AdaBoost is equivalent to using the following **exponential loss**

$$\operatorname{Loss}(y,\hat{y}) = e^{-y \times H_m(x)}$$

$$\hat{y} = \text{sign}(H_m(\mathbf{x}))$$



# Why the exponential loss?

- Differentiable approximation (bound) of the 0/1 loss
  - Easy to optimize
  - Optimizing an upper bound on classification error.



#### Calculations

• Consider adding the *m*-th component:

$$H_m(\mathbf{x}) = \frac{1}{2} [\alpha_1 h_1(\mathbf{x}) + \dots, + \alpha_m h_m(\mathbf{x})]$$

For a cleaner form later

$$E = \sum_{i=1}^{N} e^{-y^{(i)} H_m(\mathbf{x}^{(i)})} = \sum_{i=1}^{N} e^{-y^{(i)} [H_{m-1}(\mathbf{x}^{(i)}) + \frac{1}{2} \alpha_m h_m(\mathbf{x}^{(i)})]}$$

$$= \sum_{i=1}^{N} e^{-y^{(i)} H_{m-1}(\mathbf{x}^{(i)})} e^{-\frac{1}{2} \alpha_m y^{(i)} h_m(\mathbf{x}^{(i)})} = \sum_{i=1}^{N} \underbrace{w_m^{(i)}}_{e^{-y^{(i)} H_{m-1}(\mathbf{x}^{(i)})}} e^{-\frac{1}{2} \alpha_m y^{(i)} h_m(\mathbf{x}^{(i)})}$$

Suppose it is fixed at stage *m* 

Should be optimized at stage m by seeking  $h_m(x)$  and  $\alpha_m$ 

# Weighted exponential loss

$$E = \sum_{i=1}^{N} w_m^{(i)} e^{-\frac{1}{2}\alpha_m y^{(i)} h_m(\mathbf{x}^{(i)})}$$

- Sequentially adds a new component trained on reweighted training samples.
- $w_m^{(i)}$ : history of classification of  $x^{(i)}$  by  $H_{m-1}$ 
  - Loss weighted towards mistakes
- Iteration *m* optimization:
  - Choose the new component,  $h_m = h(x; \theta_m)$
  - And the vote that optimizes the weighted exponential loss,  $\alpha_m$ .



# Minimizing loss: finding $h_m$

$$E = \sum_{i=1}^{N} w_{m}^{(i)} e^{-\frac{1}{2}\alpha_{m} y^{(i)} h_{m}(\mathbf{x}^{(i)})}$$

$$= e^{\frac{-\alpha_{m}}{2}} \left( \sum_{y^{(i)} = h_{m}(\mathbf{x}^{(i)})} w_{m}^{(i)} \right) + e^{\frac{\alpha_{m}}{2}} \left( \sum_{y^{(i)} \neq h_{m}(\mathbf{x}^{(i)})} w_{m}^{(i)} \right)$$

$$= (e^{\frac{\alpha_{m}}{2}} - e^{\frac{-\alpha_{m}}{2}}) \left( \sum_{y^{(i)} \neq h_{m}(\mathbf{x}^{(i)})} w_{m}^{(i)} \right) + e^{\frac{-\alpha_{m}}{2}} \left( \sum_{i=1}^{N} w_{m}^{(i)} \right)$$

$$J_{m} = \sum_{i=1}^{N} w_{m}^{(i)} \times I \left( y^{(i)} \neq h_{m}(\mathbf{x}^{(i)}) \right)$$

Find  $h_m(x)$  that minimizes  $J_m$ 

0000000**00000000**00000000000

# Minimizing loss: finding $\alpha_m$

$$\begin{split} \frac{\partial E}{\partial \alpha_m} &= 0 \\ \implies \frac{1}{2} (e^{\frac{\alpha_m}{2}} + e^{\frac{-\alpha_m}{2}}) \left( \sum_{y^{(i)} \neq h_m(\mathbf{x}^{(i)})} w_m^{(i)} \right) - \frac{1}{2} e^{\frac{-\alpha_m}{2}} \left( \sum_{i=1}^N w_m^{(i)} \right) = 0 \\ \implies \frac{e^{\frac{-\alpha_m}{2}}}{(e^{\frac{\alpha_m}{2}} + e^{\frac{-\alpha_m}{2}})} &= \frac{\sum_{y^{(i)} \neq h_m(\mathbf{x}^{(i)})} w_m^{(i)}}{\sum_{i=1}^N w_m^{(i)}} \end{split}$$

$$\epsilon_m = \frac{\sum_{i=1}^{N} w_m^{(i)} I\left(y^{(i)} \neq h_m(\boldsymbol{x}^{(i)})\right)}{\sum_{i=1}^{N} w_m^{(i)}}, \qquad \alpha_m = \ln\left(\frac{1 - \epsilon_m}{\epsilon_m}\right)$$



# Updating weights

• Updating weights in AdaBoost algorithm:

$$w_i^{m+1} = w_i^m e^{-\frac{1}{2}\alpha_m y^{(i)} h_m(\mathbf{x}^{(i)})}$$

$$\xrightarrow{y^{(i)}h_m(\mathbf{x}^{(i)})=1-2I(y^{(i)}\neq h_m(\mathbf{x}^{(i)}))} w_i^{m+1} = w_i^m e^{-\frac{1}{2}\alpha_m} e^{\alpha_m I(y^{(i)}\neq h_m(\mathbf{x}^{(i)}))}$$

Independent of i and can be ignored

$$\implies w_i^{m+1} = w_i^m e^{\alpha_m I\left(y^{(i)} \neq h_m(\boldsymbol{x}^{(i)})\right)}$$



- Introduction
- 2 Bagging
- 3 Random Fores
- 4 Boosting
- **5** AdaBoost

Basic idea & example

Algorithm

Loss function

Summary & example

Properties



### Summary

#### Algorithm 5 AdaBoost Summary

- 1: **for** i = 1 to N **do**
- 2: Initialize the data weight  $w_1^{(i)} = \frac{1}{N}$
- 3: end for
- 4: **for** m = 1 to M **do**
- 5: Find a classifier  $h_m(x)$  by minimzing the weighted error function
- 6: Find the normalized weighted error of  $h_m(\mathbf{x})$  as  $\epsilon_m$
- 7: Compute the new component weight as  $\alpha_m$
- 8: Update example weights for the next iteration  $w_{m+1}^{(i)}$
- 9: end for
- 10: Combined classifier  $\hat{y} = \text{sign}(H_M(\mathbf{x}))$  where  $H_M(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})$



### Example







Bagging Random Forest Boosting **AdaBoost** Comparison References

# Example, Cont.





- Introduction
- 2 Bagging
- 3 Random Fores
- 4 Boosting
- **5** AdaBoost

Basic idea & example Algorithm Loss function

**Properties** 



## Exponential loss properties

• In each boosting iteration, assuming we can find  $h(x; \hat{\theta}_m)$  whose weighted error is better than chance.

$$H_m(x) = \frac{1}{2} [\hat{\alpha}_1 h(\boldsymbol{x}; \hat{\boldsymbol{\theta}}_1) + \dots + \hat{\alpha}_m h(\boldsymbol{x}; \hat{\boldsymbol{\theta}}_m)]$$

• Thus, **lower exponential loss** over training data is guaranteed.



Adopted from [6]



# Training error properties

Boosting iterations typically **decrease** the **training error** of  $H_m(\mathbf{x})$  over training examples.



Adopted from [6]



# Training error properties, Cont.

• Training error has to go down exponentially fast if the weighted error of each  $h_m$  is strictly better than chance (i.e.,  $\epsilon_m < 0.5$ )

$$E_{\text{train}}(H_M) \le \prod_{m=1}^{M} 2\sqrt{\epsilon_m(1-\epsilon_m)}$$



Adopted from [6]



# Weighted error properties

 Weighted error of each new component classifier tends to increase as a function of boosting iterations.

$$\epsilon_{m} = \frac{\sum_{i=1}^{N} w_{m}^{(i)} I(y^{(i)} \neq h_{m}(\mathbf{x}^{(i)}))}{\sum_{i=1}^{N} w_{m}^{(i)}}$$



Adopted from [6]



### Test error properties

- **Test error** can still **decrease** after training error is flat (even zero).
- But, is it robust to overfitting?
  - May easily overfit in the presence of labeling noise or overlap of classes.





Adopted from [6]

Adopted from [3]

# Typical behavior

- Exponential loss goes strictly down.
- Training error of H goes down.
- Weighted error  $\epsilon_m$  goes  $\mathbf{up} \implies \text{votes } \alpha_m$  go  $\mathbf{down}$ .
- Test error decreases even after a flat training error.



•0

- Introduction

- **6** Comparison



Bagging Random Forest Boosting AdaBoost **Comparison** References

# Bagging vs. Boosting

|                     | Bagging                             | Boosting                                     |
|---------------------|-------------------------------------|----------------------------------------------|
| Training Strategy   | Parallel training                   | Sequential training                          |
| Data Sampling       | Bootstrapping<br>(random subsets)   | Weighted<br>(by instance importance)         |
| Learners Dependency | Independent                         | Dependent<br>(on the previous models)        |
| Learner Weighting   | Equal weights                       | Varying weights<br>(based on importance)     |
| Tolerance to Noise  | More robust<br>(due to aggregation) | More sensitive<br>(may overfit to noise)     |
| Properties          | Reduces bias                        | Reduces bias and variance<br>(focus on bias) |



- Introduction
- 2 Bagging
- 3 Random Forest
- 4 Boosting
- 6 AdaBoost
- **6** Comparison
- References



#### Contributions

- This slide has been prepared thanks to:
  - · Nikan Vasei
  - · Mahan Bayhaghi



- [1] C. M., *Pattern Recognition and Machine Learning*. Information Science and Statistics, New York, NY: Springer, 1 ed., Aug. 2006.
- [2] M. Soleymani Baghshah, "Machine learning." Lecture slides.
- [3] R. E. Schapire, "The boosting approach to machine learning: An overview," *Nonlinear estimation and classification*, pp. 149–171, 2003.
- [4] L. Serrano, Grokking machine learning.New York, NY: Manning Publications, Jan. 2022.
- [5] T. Mitchell, Machine Learning. McGraw-Hill series in computer science, New York, NY: McGraw-Hill Professional, Mar. 1997.
- [6] T. Jaakkola, "Machine learning course slides." Lecture slides.

