224

ISSN 0033-8486

11 2002

www.webcenter.ru/~iprzhr/

white I spell blackmake the lake before the

BHOMENE

Ученые России:

Becomed Americanolización Education

KNOTERINE SKANDLERINE

PAGENGUAGENSI

Buttylating the state of the st

Тел./факс: (095) 925-9241 -E-mail: iprzhr@online.ru http://www.webcenter.ru/~iprzhr/

Журнал переводится на английский язык и издается компанией Begell House, Inc. под названием TELECOMMUNICATIONS AND RADIO ENGINEERING

УДК 621.396

まずないない ちゅうしゅうこう ちゅうしょう

Эффективность оценок периода следования случайных радиоимпульсов с неизвестной интенсивностью

А.П. Трифонов, М.Б. Беспалова

Выполнен синтез оценок периода следования; методом локально-марковской аппроксимации найдены характеристики оценок.

Estimations of repetition period are synthesized. Characteristics of this estimations are founded by method of local – Marcov approximation.

Последовательности радиоимпульсов широко применяются в радиолокации, навигации и связи [1–3]. В частности, в системах передачи информации в качестве несущего колебания используются последовательности радиоимпульсов вида

$$s_0(t,\theta) = \sum_{k=0}^{N-1} a_{0k} I[(t-k\theta)/\tau] \cos(\omega_0 t + \varphi_{0k}) . \tag{1}$$

где θ — период следования, посредством модуляции которого передается информация; a_{0k} , φ_{0k} . ω_0 . τ — амплитуда, начальная фаза, частота и длительность k -го импульса; I(x) = 1 при $|x| < \frac{1}{2}$ и I(x) = 0 при

 $|x| > \frac{1}{2}$. В [1-3] рассмотрена обработка последовательности (1) радиоимпульсов с неизвестными ампли-

тудами и фазами. Такая модель сигнала описывает последовательность, распространяющуюся в неоднородной среде с постоянными или медленно меняющимися параметрами [4]. Положим здесь, что последовательность (1) распространяется в неоднородной нестационарной среде со случайно флуктуирующими параметрами [4]. В результате прохождения этой среды на вход приемника поступает сигнал

$$s(\theta, \gamma_k) = \sum_{k=0}^{N-1} I[(t - k\theta)/\tau] \xi_k(t), \tag{2}$$

где $\xi_k(t)$ – статистически независимые центрированные случайные стационарные гауссовские процессы, обладающие спектральной плотностью

$$G_k(\omega) = \frac{\gamma_k}{2} \left[I\left(\frac{\omega_0 - \omega}{\Omega}\right) + I\left(\frac{\omega_0 + \omega}{\Omega}\right) \right];$$

 γ_k – интенсивность флуктуаций k-го импульса, а Ω – граничная частота флуктуаций случайных параметров среды распространения. Обычно интенсивности γ_k флуктуаций импульсов последовательности (2) априори неизвестны.

Цель работы – синтез и анализ оценок периода следования случайных радиоимпульсов с неизвестной интенсивностью.

Пусть на интервале времени [0;T] наблюдается реализация $x(t) = s(\theta_0, \gamma_{0k}) + n(t)$ суммы последовательности случайных радиоимпульсов (2) и гауссовского белого шума n(t) с односторонней спектральной плотностью N_0 . В соответствии с методом максимального правдоподобия [1], для получения оценки периода следования надо формировать логарифм функционала отношения правдоподобия (ФОП). Положим, что интервал наблюдения больше длительности всей последовательности (2) так, что $T > N\theta$; скважность последовательности не слишком мала и длительность τ радиоимпульсов последовательности значительно больше времени корреляции процесса $\xi_k(t)$, так что

$$\mu = \frac{\tau \Omega}{2\pi} >> 1. \tag{3}$$

При выполнении (3) и перечисленных условий, используя результаты [1, 5, 6] логарифм ФОП можно записать как

$$L(\theta, \gamma_k) = \frac{1}{N_0} \sum_{k=0}^{N-1} \left[\frac{q_k}{1 + q_k} Y_k(\theta) - N_0 \mu \ln(1 + q_k) \right]. \tag{4}$$

где $q_k = \gamma_k / N_0$, $Y_k \left(\theta\right) = \int\limits_{k\theta - \tau/2}^{k\theta + \tau/2} y^2 \left(t\right) dt$, $y\left(t\right) = \int\limits_{-\infty}^{\infty} x \left(t\right) H\left(t - t\right) dt$ – отклик фильтра с импульсной пере-

ходной функцией H(t) на реализацию наблюдаемых данных x (t). Передаточная функция фильтра $H(\mathrm{i}\omega)$ выбирается из условия $\left|H(\mathrm{i}\omega)\right|^2 = I\left(\frac{\omega_0-\omega}{\Omega}\right) + I\left(\frac{\omega_0+\omega}{\Omega}\right)$.

Рассмотрим вначале структуру алгоритма оценки максимального правдоподобия (ОМП), если неизвестные интенсивности γ_k флуктуации радиоимпульсов последовательности (2) одинаковы:

$$\gamma_0 = \gamma_1 = \dots = \gamma_{N-1} = \gamma; \quad q_0 = q_1 = \dots = q_{N-1} = q.$$
 (5)

Подставляя (5) в (4), для логарифма ФОП имеем

$$L(\theta, \gamma) = \frac{q}{N_0(1+q)} \sum_{k=0}^{N-1} Y_k(\theta) - \mu N \ln(1+q).$$
 (6)

Перепишем (6) в виде

$$L(\theta, \gamma) = \frac{q}{1+q} L_1(\theta) - \mu N \ln(1+q), \tag{7}$$

где

$$L_{1}(\theta) = \frac{1}{N_{0}} \sum_{k=0}^{N-1} Y_{k}(\theta). \tag{8}$$

Очевидно при любых значениях $\gamma > 0$ (q > 0) функция (7) достигает наибольшего максимума в той же точке, что и функция (8). Следовательно, ОМП $\hat{\theta}_1$ периода следования последовательности (2) при выполнении (5) определяется как

$$\hat{\theta}_1 = \arg\sup L_1(\theta). \tag{9}$$

Найдем характеристики оценки (9), полагая, в отличие от (5), что истинные значения γ_{0k} интенсивностей флуктуации радиоимпульсов последовательности (2) могут быть различными. Очевидно, что при различных значениях γ_{0k} оценка (9) не является ОМП. Однако, поскольку при выполнении (5) оценка (9) является ОМП, при различных значениях γ_{0k} для каждого импульса последовательности (2) назовем (9) квазиправдоподобной оценкой (КПО). Для ее расчета представим слагаемые функции (8) в виде суммы сигнальной и шумовой функции [1]:

$$\frac{1}{N_0}Y_k(\theta) = S_k(\theta) + N_k(\theta); \quad S_k(\theta) = \frac{1}{N_0} \langle Y_k(\theta) \rangle, \quad N_k(\theta) = \frac{1}{N_0} \left[Y_k(\theta) - \langle Y_k(\theta) \rangle \right]. \tag{10}; \tag{11}$$

Шумовая функция $N_k\left(\theta\right)$ является реализацией случайного процесса, причем

$$\langle N_k(\theta) \rangle = 0, \quad \langle N_k(\theta_1) N_i(\theta_2) \rangle = 0, \quad i \neq k, \quad \langle N_k(\theta_1) N_k(\theta_2) \rangle = B_k(\theta_1, \theta_2).$$
 (12)

Подставим в (11), (12) реализацию наблюдаемых данных и выполним усреднение при фиксированных значениях γ_{0k} и $heta_0$. Пренебрегая ошибками измерения периода следования порядка времени корреляции флуктуаций параметров среды распространения и, учитывая (3), получаем

$$S_{k}(\theta) = \mu(1+q_{0k}) - |\theta - \theta_{0}| k \mu q_{0k} / \tau, \ B_{k}(\theta_{1}, \theta_{2}) = \mu(1+q_{0k})^{2} - |\theta_{1} - \theta_{2}| k \mu / \tau - \left[\max(\theta_{0}, \theta_{1}, \theta_{2}) - \min(\theta_{0}, \theta_{1}, \theta_{2}) \right] k \mu q_{0k} (2+q_{0k}) / \tau.$$

$$(13)$$

При выводе этих выражений предполагалось, что $\max \left(\left| \theta - \theta_0 \right|, \left| \theta_1 - \theta_0 \right|, \left| \theta_2 - \theta_0 \right|, \left| \theta_2 - \theta_1 \right| \right) < \frac{\tau}{k}$. $k = \overline{1, N-1}$. Поэтому (13) описывают центральные пики сигнальной функции и корреляционной функции шумовой функции [1].

Используя (10), (11), представим (8) как $L_1(\theta) = \tilde{S}_1(\theta) + \tilde{N}_1(\theta)$, где

$$\tilde{S}_{1}\left(\theta\right) = \sum_{k=0}^{N-1} S_{k}\left(\theta\right) = A_{S} - B_{S} \left|\theta - \theta_{0}\right|. \tag{14}$$

Шумовая функция $\tilde{N}_{1}(\theta) = \sum_{k=0}^{N-1} N_{k}(\theta)$ центрирована и обладает корреляционной функцией

$$\tilde{B}_{1}(\theta_{1},\theta_{2}) = \langle \tilde{N}_{1}(\theta_{1})\tilde{N}_{1}(\theta_{2}) \rangle = A_{N} - B_{N} |\theta_{1} - \theta_{2}| - C_{N} \left[\max(\theta_{0},\theta_{1},\theta_{2}) - \min(\theta_{0},\theta_{1},\theta_{2}) \right]. \tag{15}$$

В (14), (15) обозначено

$$A_{S} = \mu \sum_{k=0}^{N-1} (1 + q_{0k}), \quad B_{S} = \mu \sum_{k=0}^{N-1} k q_{0k} / \tau, \quad A_{N} = \mu \sum_{k=0}^{N-1} (1 + q_{0k})^{2}, \quad B_{N} = \mu \sum_{k=0}^{N-1} k / \tau = \mu N(N-1) / 2\tau,$$

$$C_{N} = \mu \sum_{k=0}^{N-1} k q_{0k} (2 + q_{0k}) / \tau, \quad q_{0k} = \gamma_{0k} / N_{0}.$$
(16)

Согласно (14), (15) у сигнальной и корреляционной функций не существует производной по оцениваемому параметру при $\theta = \theta_0 = \theta_1 = \theta_2$. Найти дисперсию оценки периода следования в этом случае можно с помощью метода локально-марковской аппроксимации [7]:

$$D = 13(2B_N + C_N)^2 / 8B_S^4. \tag{17}$$

Полагая, что выполняются условия высокой апостериорной точности [1] и подставляя (16) в (17), для дисперсии КПО (9) получаем

$$D_{1}(\theta) = 13\tau^{2} \left\{ \sum_{k=0}^{N-1} k \left[1 + \left(1 + q_{0k} \right)^{2} \right] \right\}^{2} / 8\mu^{2} \left(\sum_{k=0}^{N-1} k q_{0k} \right)^{4}.$$
(18)

Если истинные значения неизвестных интенсивностей флуктуаций радиоимпульсов во всех периодах последовательности (2) одинаковы, т.е.

$$q_{00} = q_{01} = \dots = q_{0N-1} = q_0, \tag{19}$$

то КПО (9) совпадает с ОМП периода следования. Дисперсию ОМП периода следования получаем, под-

$$D_0(\theta) = 13\tau^2 \left[1 + (1 + q_0)^2 \right]^2 / \left[2\mu^2 q_0^4 N^2 (N - 1)^2 \right]. \tag{20}$$

Сопоставляя (20) с аналогичным выражением для дисперсии ОМП периода следования, полученным в [6] при априори известных одинаковых интенсивностях флуктуации импульсов, видим, что при выполнении (3) априорное незнание интенсивности флуктуаций импульсов асимптотически (с ростом μN) не влияет на точность оценки периода следования.

Найдем теперь ОМП периода следования случайных радиоимпульсов при априори неизвестных различных интенсивностях их флуктуаций. Для того, чтобы исключить влияние неинформативных параметров γ_k , заменим в (4) их неизвестные значения на ОМП [1]. Максимизируя с этой целью логарифм ФОП (4) по γ_k (q_k), имеем

$$L_{2}(\theta) = \sup_{q_{k}} L(\theta, q_{k}) = \sum_{k=0}^{N-1} \left\{ \frac{1}{N_{0}} Y_{k}(\theta) - \mu \left[1 + \ln \left\{ \frac{1}{\mu N_{0}} Y_{k}(\theta) \right\} \right] \right\}$$
 (21)

В результате ОМП $\hat{\theta_2}$ периода следования последовательности (2) определяется по положению наибольшего максимума функционала (21):

$$\hat{\theta}_2 = \arg\sup L_2(\theta). \tag{22}$$

Для расчета характеристик ОМП (22) выразим (21) через функции (11):

$$L_{2}(\theta) = \sum_{k=0}^{N-1} \left\{ S_{k}(\theta) + N_{k}(\theta) - \mu(1 - \ln \mu) - \mu \ln \left[S_{k}(\theta) + N_{k}(\theta) \right] \right\} =$$

$$= \sum_{k=0}^{N-1} \left\{ S_k\left(\theta\right) + N_k\left(\theta\right) - \mu \left[1 - \ln \mu + \ln S_k\left(\theta\right)\right] - \mu \ln \left[1 + N_k\left(\theta\right)/S_k\left(\theta\right)\right] \right\}. \tag{23}$$

Положим, что ОМП (22) обладает высокой апостериорной точностью. Тогда достаточно исследовать поведение функционала (23) в малой окрестности истинного значения периода следования θ_0 , где при выполнении (3) функционал (23) можно приближенно переписать в виде

$$L_{2}(\theta) \cong \sum_{k=0}^{N-1} \left\{ S_{k}(\theta) + N_{k}(\theta) - \mu \left[1 - \ln \mu + \ln S_{k}(\theta) + N_{k}(\theta) / S_{k}(\theta) \right] \right\}. \tag{24}$$

Точность этого приближенного выражения возрастает с увеличением μ , так как при выполнении (3) $\langle N_k^2(\theta_0)\rangle S_k^{-2}(\theta_0) = \frac{1}{\mu} << 1$. Представим (24) в виде суммы сигнальной и шумовой функций [1]:

$$L_2(\theta) = \tilde{S}_2(\theta) + \tilde{N}_2(\theta), \tag{25}$$

где $\tilde{S}_2(\theta) = \sum_{k=0}^{N-1} \left[S_k(\theta) - \mu \ln S_k(\theta) \right] - \mu N (1 - \ln \mu)$, $\tilde{N}_2(\theta) = \sum_{k=0}^{N-1} N_k(\theta) \left[1 - \mu / S_k(\theta) \right]$. В условиях высокой апостериорной точности, когда $\max \left(|\theta - \theta_0|, |\theta_0 - \theta_1|, |\theta_0 - \theta_2|, |\theta_1 - \theta_2| \right) << \tau$, сигнальную $\tilde{S}_2(\theta)$ и корреляционную $\tilde{B}_2(\theta_1, \theta_2) = \langle \tilde{N}_2(\theta_1) \tilde{N}_2(\theta_2) \rangle$ функции шумовой функции $\tilde{N}_2(\theta)$ в (25) можем записать аналогично (14), (15) соответственно. Необходимо лишь в (14), (15) вместо (16) подставить следующие выражения:

$$A_{S} = \mu \sum_{k=0}^{N-1} \left[q_{0k} - \ln \left(1 + q_{0k} \right) \right], \quad B_{S} = \mu \sum_{k=0}^{N-1} k q_{0k}^{2} \left[\tau \left(1 + q_{0k} \right) \right]^{-1}, \quad A_{N} = \mu \sum_{k=0}^{N-1} q_{0k}^{2},$$

$$B_{N} = \mu \sum_{k=0}^{N-1} k q_{0k}^{2} \tau^{-1} \left(1 + q_{0k} \right)^{-2}, \quad C_{N} = \mu \sum_{k=0}^{N-1} k q_{0k}^{3} \left(2 + q_{0k} \right) \tau^{-1} \left(1 + q_{0k} \right)^{-2}.$$
(26)

Подставляя (26) в (17), для дисперсии ОМП периода следования случайных радиоимпульсов с неизвестными различными интенсивностями находим

$$D_{2}(\theta) = 13\tau^{2} \left\{ \sum_{k=0}^{N-1} kq_{0k}^{2} \left[1 + \left(1 + q_{0k} \right)^{2} \right] \left(1 + q_{0k} \right)^{-2} \right\}^{2} / \left\{ 8\mu^{2} \left[\sum_{k=0}^{N-1} kq_{0k}^{2} \left(1 + q_{0k} \right)^{-1} \right]^{4} \right\}.$$
 (27)

Сопоставляя (27) с аналогичным выражением для дисперсии ОМП периода следования, полученным в [6] при априори известных различных интенсивностях флуктуации импульсов, видим, что при выполнении (3) априорное незнание интенсивностей флуктуации радиоимпульсов асимптотически (с ростом μ) не влияет на точность ОМП периода следования.

Проигрыш в точности КПО по сравнению с точностью ОМП можно охарактеризовать отношением дисперсий оценок (9) и (22) $\chi = D_1(\theta)/D_2(\theta)$.

Используя (18) и (27), находим проигрыш

$$\chi = \left\{ \sum_{k=0}^{N-1} k \left[1 + \left(1 + q_{0k} \right)^2 \right] / \sum_{k=0}^{N-1} k q_{0k}^2 \left[1 + \left(1 + q_{0k} \right)^2 \right] \left(1 + q_{0k} \right)^{-2} \right\}^2 \left\{ \sum_{k=0}^{N-1} k q_{0k}^2 \left(1 + q_{0k} \right)^{-1} / \sum_{k=0}^{N-1} k q_{0k} \right\}^4.$$
 (28)

Если выполняется (5), то $\chi=1$, так что алгоритмы (9) и (22) обеспечивают одинаковую точность оценок периода следования случайных радиоимпульсов. Точность оценок (9) и (22) также будет практически одинакова, если $q_{0k} >> 1$ при всех $k=\overline{0.N-1}$. Действительно, как следует из (28), в этом случае $\chi\approx 1$. Однако при умеренных, а тем более при малых различных неизвестных значениях q_{0k} проигрыш в точности оценки (9) по сравнению с оценкой (22) может быть значительным. Так, при $q_{0k} << 1$ (28) несколько упрощается и принимает вид

$$\mathcal{X} \cong \left(\sum_{k=0}^{N-1} k\right)^2 \left(\sum_{k=0}^{N-1} k q_{0k}^2\right)^2 / \left(\sum_{k=0}^{N-1} k q_{0k}\right)^4 = N^2 \left(N-1\right)^2 \left(\sum_{k=0}^{N-1} k q_{0k}^2\right)^2 / 4 \left(\sum_{k=0}^{N-1} k q_{0k}\right)^4 . \tag{29}$$

Используя неравенство Буняковского–Шварца, из (29) получаем, что всегда $\chi \ge 1$. Пусть, например, неизвестная интенсивность флуктуаций случайного импульса убывает обратно пропорционально номеру импульса в последовательности (2). Тогда в (29) надо подставить $q_{0k} = q_0/k$. Полагая N >> 1, находим, что в этом случае $\chi \approx \left(\ln N\right)^2/4$, т. е. возрастает с увеличением числа импульсов последовательности и может достигать значительной величины.

Найденные характеристики оценок позволяют сделать обоснованный выбор между рассмотренными алгоритмами оценки периода следования случайных радиоимпульсов в зависимости от требований, предъявляемых к точности оценок и степени простоты аппаратурной реализации алгоритма.

Работа выполнена при поддержке CRDF и Минобразования РФ (проекты VZ-010-0 и EOO-3.5-5).

Литература

- 1. Куликов Е.И., Трифонов А.П. Оценка параметров сигналов на фоне помех. М.: Сов. радио, 1978.
- 2. Фалькович С.Е., Хомяков Э.Н. Статистическая теория измерительных радиосистем. М.: Радио и связь, 1981.
- 3. Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации. М.: Радио и связь, 1992.
- 4. Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику, ч.П. М.: Наука, 1978.
- 5. Трифонов А.П., Нечаев Е.П., Парфенов В.И. Обнаружение стохастических сигналов с неизвестными параметрами. Воронеж, ВГУ, 1991.
- 6. Трифонов А.П., Беспалова М.Б. Радиотехника, 1998, №1.
- 7. Трифонов А.П., Шинаков Ю.С. Совместное различение сигналов и оценка их параметров на фоне помех. М.: Радио и связь, 1986.

Поступила 1 октября 2002 г.