(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-268038

(43)公開日 平成7年(1995)10月17日

(51) Int.Cl. 6	識別記号	庁内整理番号	FΙ		技術表示箇所
C08F 230/02	MNS				•
A 6 1 K 31/80	ACB				
A61L 33/00	С			•	
C 0 8 F 222/06	MLU				

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出願番号 特願平6-63546 (71)出願人 000004341 日本油脂株式会社 東京都渋谷区恵比寿四丁目20番 3 号 (72)発明者 門磨 義仁 茨城県土浦市真鍋2-8-25 (72)発明者 太田 俊彦 埼玉県八潮市八条2797-1-103 (74)代理人 弁理土 酒井 - (夕1名)

(54) 【発明の名称】 ホスホリルコリン基又はその誘導体基含有共重合体、その製造法及び抗血栓性材料

(57)【要約】

【構成】式化1 (R¹、R²、R³; H、C1~C6のアルキル基、(R¹~R³は相互に連結して環構造を形成しても良い)。R⁴; H、CH3、A; C1~C20の脂肪族炭化水素基、C4~C20の脂環式炭化水素基、芳香族炭化水素基又は複素環式炭化水素基)の構造単位と、式化2の構造単位とを鎖中に有する、分子量1000~500000のホスホリルコリン基又はその誘導体基含有共重合体、その製造法及び該共重合体を含む抗血栓性材料。

等の生体成分の吸着を抑制し、抗血栓性材料、カテーテル、人工臓器、眼内レンズ及びコンタクトレンズ等の各種医療材料等に利用可能である。前記抗血栓性材料は、 汎用材料等に優れた抗血栓性を付与し、長期間その性質 を維持させることができる。

【化1】

$$\begin{array}{c} R^{\bullet} \\ +CH_{z}-C + O \\ A-O-P-O-CH_{z}CH_{z}-N^{+} \\ R^{z} \\ R^{s} \end{array}$$

[化2]

【効果】前記共重合体は、血小板、タンパク質及び脂質

【特許請求の範囲】

【請求項1】 下記式化1(式中R¹、R²及びR³は同一若しくは異なる基であって、水素原子又は炭素数1~6のアルキル基を示す(但しR¹~R³は相互に連結して環構造を形成しても良い)。R⁴は水素原子又はメチル基を示し、Aは炭素数1~20の脂肪族炭化水素基、炭素数4~20の脂環式炭化水素基、芳香族炭化水素基又は複素環式炭化水素基を示す。)で表わされる繰り返し構造単位と、下記式化2で表わされる繰り返し構造単位とを鎖中に有する、分子量1000~50000のホ 10スホリルコリン基又はその誘導体基含有共重合体。

【化1】

【化2】

【請求項2】 下記一般式化3(式中R¹、R²及びR³ は同一若しくは異なる基であって、水素原子又は炭素数1~6のアルキル基を示す(但しR¹~R³ は相互に連結して環構造を形成しても良い)。R⁴ は水素原子又はメチル基を示し、A は炭素数1~20の脂肪族炭化水素基、炭素数4~20の脂環式炭化水素基、芳香族炭化水素基又は複素環式炭化水素基を示す。)で表わされるホスホリルコリン誘導体と、無水マレイン酸とを含む共重合原料をラジカル重合させることを特徴とする請求項1記載のホスホリルコリン基又はその誘導体基含有共重合体の製造法。

【化3】

$$CH_{2} = C - (A) - O - P - O - CH_{2} CH_{2} - N^{+} - R^{2}$$

$$R^{2}$$

$$R^{3}$$

【請求項3】 請求項1記載のホスホリルコリン基又は その誘導体基含有共重合体を含有することを特徴とする 抗血栓性材料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、優れた抗血栓性等を有し、人工臓器、パイオセンサー、コンタクトレンズ等の 医療材料に利用可能な新規なホスホリルコリン基又はその誘導体基含有共重合体、その製造法及び該ホスホリルコリン基又はその誘導体基含有共重合体を含む抗血栓性 材料に関する。

[0002]

【従来の技術】従来よりホスホリルコリン骨格を有する 50

リン脂質が、生体由来の化合物であり、生体の重要な構成要素として、代謝等の生命活動に不可欠な役割を果たしていることは知られている。またこのようなホスホリルコリン骨格を有する化合物は、生体内に存在する物質との親和性が良く、タンパク質吸着抑制及び抗血栓性等に効果があることも知られている(生体材料 11,36(1993))。

【0003】一方ポリエチレンテレフタレート製の人工血管は、使用開始時点における血管表面へのリン脂質の付着が、生体適合に関与していると推定されている(J. Biomed. Mater. Res., 10.759(1976))。

【0004】最近ではメタクリル基とホスホリルコリン 骨格とを有する単量体と、ヒドロキシエチル(メタ)アクリレートとを共重合させて得られる共重合体が、血小板を粘着し、血小板の形態変化を抑制することが知られている。しかし、このような共重合体は吸水性が大きく、ハイドロゲル構造となりやすいため、ハイドロゲル構造となった共重合体の機械的性質は低下するという欠点がある(高分子論文集40,785(1983))。従ってこのような共重合体は、常温で柔軟な被膜を作ることが難しく、汎用の材料表面を該共重合体により被覆する場合、強固な被覆ができないという欠点がある。

【0005】また前記メタクリル基とホスホリルコリン骨格とを有する単量体を単独重合させた重合体は、ガラスや無機材料等の疎水性表面との親和性が低く、しかも容易にハイドロゲル構造となるため、該重合体の被膜を形成する場合、前記材料表面上での形成は困難である。 【0006】従って、汎用の材料表面へ抗血栓性等を付与することができ、更に汎用の材料表面への被覆や汎用の材料に混合することが可能なホスホリルコリン骨格を有する共重合体は知られていないのが実状である。

[0007]

【発明が解決しようとする課題】本発明の目的は、優れた抗血栓性等を有し、汎用の材料表面への被覆等が容易であり、カテーテル、人工臓器、眼内レンズ及びコンタクトレンズ等の各種医療材料に利用可能な新規なホスホリルコリン基又はその誘導体基含有共重合体及びその製造法を提供することにある。

[0008] 本発明の他の目的は、汎用の材料表面に強固な被膜を形成することができ、優れた抗血栓性を有する人工血管等を形成することが可能な抗血栓性材料を提供することにある。

[0009]

【課題を解決するための手段】本発明によれば、下記式化4(式中R¹、R²及びR³は同一若しくは異なる基であって、水素原子又は炭素数1~6のアルキル基を示す(但しR¹~R³は相互に連結して環構造を形成しても良い)。R⁴は水素原子又はメチル基を示し、Aは炭素数1~20の脂肪族炭化水素基、炭素数4~20の脂環式炭化水素基、芳香族炭化水素基又は複素環式炭化水素基

を示す。)で表わされる繰り返し構造単位(以下構造単位 I と称す)と、下記式化5で表わされる繰り返し構造単位 (以下構造単位IIと称す)とを鎖中に有する、分子量1000~50000のホスホリルコリン基又はその誘導体基合有共重合体が提供される。

[0010]

【化4】

[0011]

【化5】

【0012】また本発明によれば、下記一般式化6(式中R¹~R⁴及びAは前記式化4と同様である)で表わされるホスホリルコリン誘導体(以下ホスホリルコリン誘導体IIIと称す)と、無水マレイン酸とを含む共重合原料をラジカル重合させることを特徴とする前記ホスホリルコリン基又はその誘導体基含有共重合体の製造法が提供される。

[0013]

$$[\{k \in C] \\ CH_z = C - (A) - O - P - O - CH_z CH_z - N^+ - R^2 - R^2 - CH_z - N^+ - CH_z - CH_$$

[0014] 更に本発明によれば、前記ホスホリルコリン基又はその誘導体基含有共重合体を含有することを特徴とする抗血栓性材料が提供される。

【0015】以下、本発明を更に詳細に説明する。

【0016】本発明のホスホリルコリン基又はその誘導体基含有共重合体(以下、共重合体Aと称す)は、前記式化4で表わされる構造単位Iと前記式化5で表わされる構造単位IIとを鎖中に有し、分子量1000~50000の大重合体である。前記構造単位Iにおいて、R¹、R²及びR³の炭素数が7以上、Aの炭素数が21以上の場合製造が困難である。また共重合体Aを構成する前記構造単位I、構造単位II等の結合は、ランダムでもブロックでもよく、この際2種以上の構造単位Iを有していても良い。【0017】本発明の共重合体Aにおいて、前記構造単位Iの具体的例としては、下記式化7で表わさせる繰り返し構造単位等を好ましく挙げることができる。

[0018]

【化7】

【0019】本発明の共重合体Aにおいて、前記構造単位Iの含有割合は、共重合体A全体に対して5~70モル%、特に10~60モル%であるのが好ましい。構造単位Iの含有割合が5モル%未満の場合には、得られる共重合体Aに、所望の生体親和性を付与することが困難であり、また70モル%を超えると、機械的強度が低下し、被膜等の形成が困難になるので好ましくない。一方前記構造単位IIの含有割合は、共重合体Aに対して30~95モル%、特に40~90モル%であるのが好ましい。更に必要に応じて、前記構造単位I及び/又は構造単位IIと結合可能な他の構造単位を含有していても良い。他の構造単位の含有割合は、共重合体全体に対して50モル%以下、特に30モル%以下であるのが望ましい。

【0020】本発明の共重合体Aの製造法では、前記一般式化6で表わされるホスホリルコリン誘導体IIIと無

水マレイン酸とを含む共重合原料をラジカル重合させる。

[0021] 前記ホスホリルコリン誘導体IIIとしては、具体的には例えば2ープロペニルーホスホリルコリン、2ーメチルー2ープロペニルーホスホリルコリン、2,2ージメチルー3ープテニルーホスホリルコリン、2,2ージメチルー3ープテニルーホスホリルコリン、1ーフェニルー2ープロペニルーホスホリルコリン、2ープロペニルオキシー2'ー(トリエチルアンモニオ)エチルリン酸、2ープロペニルオキシー2'ーアンモニオエチ 10ルリン酸等を挙げることができ、反応に際しては単独若しくは混合物として用いることができる。

[0022] 前記ホスホリルコリン誘導体IIIを調製するには、例えば2-プロペン-1オールと2-クロロー2オキソ-1,3,2-ジオキサホスホランとを、窒素を吹き込みながら反応させた後、更にトリエチルアミンを加えて、10~50℃で、約24時間反応させる方法等により目的物を得ることができる。

[0023] 前記ホスホリルコリン誘導体IIIの配合割合は、共重合原料全量に対し5~70モル%が好ましく、特に10~60モル%が望ましい。また無水マレイン酸の配合割合は、共重合原料全量に対し30~95モル%が好ましく、特に40~90モル%が望ましい。

[0024]本発明の製造法では、前記ホスホリルコリン誘導体III、無水マレイン酸の他に、共重合原料成分として、更に必要に応じて共重合可能な他の原料成分を配合することができる。具体的には、例えばアクリル酸、メタクリル酸、イタコン酸、マレイン酸、これらのエステル、これらの1価又は2価の金属塩、これらのアンモニウム塩及びこれらの有機アミン塩;スチレン、メ30チルスチレン等の芳香族ピニル化合物;塩化ピニル等のハロゲン化ピニル化合物;酢酸ピニル;アクリロニトリル;アクリルアミド等を挙げることができる。前記共重合可能な他の原料成分の配合割合は、共重合原料全量に対して50モル%以下が好ましい。

【0025】前記ラジカル重合は、例えばベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、tーブチルパーオキサイド等の有機過酸化物;アゾビスイソブチルニトリル等のアゾ化合物等のラジカル重合開始剤の存在下、塊状重合、溶液重合させる方法等により行 40うことができる。この際反応温度は40~90℃が好ましく、特に50~75℃が望ましい。また反応時間は5~24時間が好ましい。

[0026] 前記溶液重合に用いる溶媒としては、例えばペンゼン、トルエン等の芳香族炭化水素; n-ヘキサン等の脂肪族炭化水素; エーテル類; クロロホルム等のハロゲン化炭化水素等を挙げることができる。

[0027] 本発明の製造法では、前記ラジカル重合を、無溶媒で行う場合、分子量の高い共重合体Aが得られ、一方溶媒を多く使用すれば低分子量の共重合体Aを 50

得ることができる。

[0028] 前記ラジカル重合反応終了後、得られた反応液を例えば冷アセトン、エーテル等の溶媒中に滴下し、減圧下又は常圧で溶媒を留去する方法等により、目的の共重合体Aを得ることができる。また得られた共重合体Aを吸引濾過して乾燥させる方法等により容易に精製することもできる。

【0029】このようにして得られる共重合体Aは、血小板、タンパク質及び脂質等、生体成分の吸着を抑制し、抗血栓性や生体による異物認識が著しく軽減するため、それ自体を単独又は従来の汎用材料と混合して使用することにより、人工血管、カテーテル、人工臓器、眼内レンズ、コンタクトレンズ等生体との接触が避けられない各種医療材料等として利用することができる。

【0030】本発明の抗血栓性材料は、前記共重合体Aを含有しており、その含有量は20~100重量%が好ましく、特に40~100重量%が望ましい。20重量%未満の場合には、所望の抗血栓性が得られないので好ましくない。

【0031】本発明の抗血栓性材料には、前記共重合体 Aの他に、更にポリ塩化ビニル、ポリプロピレン、ポリ エステル等の従来の汎用材料を含有させることもでき る。このような汎用材料とのプレンド物の場合、汎用材 料の性質を大きく変化させることなく、抗血栓性材料と して使用できる。

[0032] 本発明の抗血栓性材料を使用するには、例えば抗血栓性材料を溶媒に溶解し、得られた溶液を汎用材料の表面に塗布、吹き付け又は該溶液に汎用材料を浸漬させた後、汎用材料の表面上の溶媒を揮発させる方法等により汎用材料表面上に抗血栓性材料被膜を形成する方法等により、汎用材料に抗血栓性を付与することができる。この際形成する被膜の膜厚は5μm以上が好ましい。

[0033]

【発明の効果】本発明のホスホリルコリン基又はその誘導体基含有共重合体は、マレイン酸骨格とホスホリルコリン骨格とを有する新規な物質であり、血小板、タンパク質及び脂質等の生体成分の吸着を抑制するので、人工血管等の抗血栓性材料、更にカテーテル、人工臓器、眼内レンズ及びコンタクトレンズ等の各種医療材料等に利用可能である。また本発明の製造法では、このような新規なホスホリルコリン基又はその誘導体基含有共重合体を容易に得ることができる。一方本発明の抗血栓性材料は、汎用材料等に優れた抗血栓性を付与することができ、また長期間その性質を維持させることができる。

[0034]

【実施例】以下本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらに限定されるものではない。

[0035]

【合成例1】窒素ガス吹き込み口、滴下ロート、マグネ チックスターラを備えた300mlの3つロフラスコ に、2-プロペン-1-オール8.71gと脱水テトラ ヒドロフラン(以下脱水THFと称す)50mlとを仕 込み、ドライアイス/メタノールを用いて-5℃に冷却 した。次いで窒素ガスを吹き込みながら2-クロロ-2 -オキソー1, 3, 2-ジオキサホスホラン20.8g を滴下し、塩化水素ガスが反応系から出なくなるまで (1~2日) 室温で反応させた。反応終了後、エパポレ ーターを用いて溶媒その他を留去し、無色粘稠物を得 た。得られた無色粘稠物を再び脱水THF50mlに溶 解し、密栓付の耐圧容器に移した後、脱水THF50m 1に溶解させ、トリメチルアミン16.9gを素早く加 えた。該耐圧容器を密栓した後、40℃、24時間振と うさせ、結晶を生成させた。得られた結晶をドライボッ クス中で濾過、洗浄した後、乾燥させ、2-プロペニル -ホスホリルコリンの白色結晶20.8gを得た。

[0036]

【合成例2】2ープロペン-1-オールの代わりに9-

デセン-1-オール23.4gを使用した以外は、合成 20 NMRスペクトル (溶媒; 重水素化クロロホルム、

内部標準; トリメチルシラン)

[0037] 【実施例1】共重合原料として合成例1で調製した2-プロペニルーホスホリルコリン22.3g(0.1モ ル) と、無水マレイン酸9.8g(0.1モル)と、ラ ジカル重合開始剤としてベンゾイルパーオキサイド 0. 6g(単量体総量の0.2重量%)と、溶媒としてトル エン64gとを、アンプル管内に入れて脱気した後、ア ンプルを封管し、65℃、20時間反応させた。反応終 了後、反応液を冷却させてからアセトン中に滴下し、白 色粘着性液体11.14gを得た。収率は34.7%で

色結晶31.2gを得た。

例1と同様にして9-デセニルーホスホリルコリンの白

あった。またゲルパーミエーションクロマトグラフィー による数平均分子量は3100であった。また元素分析 の結果から構造単位I及び構造単位IIに相当する構造単 位の含有割合は、略等モルであった。以下に得られた生 成物のNMRスペクトル及びIRスペクトルの測定結果

を示す。

[0038]

2-プロペニルーホスホリルコリン末端の二重結合に由来する 5. 10~5. 4 Oppm (m.2H -C=CH₂), 5. 65~6. 1 8 ppm (m.1H -CH=C) が消失し、主鎮に該当する1.22~1.65ppm (m,5H CH-CH,-CH-CH) が新たに生成しており、側鎖を表わす

3. 25ppm (s.9H -N+(CH,),)

3. 77~4. 0 3 ppm (m, 2H -C-CH2-N*)

0 4.41~5.08ppm (m,4H -CH2-0PO-CH2) ٥-

は不変であった.

【0039】 I Rスペクトル(試料調整; 臭化カリウム 錠剤法)

 $1730 \text{ cm}^{-1} \text{ (st, C=0)}$

1715 c m-1 (unst, C=

0)

9 7 0 c m^{-1} (unst.C-0-C) 1 2 2 0 c m^{-1} (st.P=0)

1 0 6 0 c m-1 (st,P-0-C)

[0040]

【実施例2~6】表1に示す各共重合原料、重合開始剤 を、表1に示す配合割合で用いた以外は、実施例1と同 様にして共重合体を調製した。得られた共重合体の25 ℃における性状、数平均分子量、収量及び収率を表1に 示す。

[0041]

【表1】

10

Γ			6 体 夏 科		重合開始刻	性状	数平均分子量	攻 垂	包 珲
\perp		ホスホリルコリン野選体(もぶ)	無水マレイン酸(もば)	位の早量体(もば)	(重量%)			(g)	(%)
	2	_ ,, _, _, ,, _ ,,		-	BPO #1	进明粘着性技体	4200	11.28	35.15
		(50)	(50)		(1.0)				
戾	9	ターデセニルホスホリルコリン			BPO	白色ゴム状図体	5700	16.08	38. 37
1	L	(50)	. (50)		(1.0)				
1	4	2ープロペニルホスホリルコリン		スチレン	BPO	白色固体	8100	6.97	26, 15
塩		(25)	(40)	(35)	(2.0)				
	5	2ープロペニルホスホリルコリン		-	AIBN-2	乳白色粘着	6300	13.64	93, 28
ł		(30)	(40)	1	(2.0)	性放体			
例		ターデセニルホスホリルコリン							
		(30)		(
l	6	ターデセニルホスホリルコリン		スチレン	BPO	白色語体	9400	9, 77	23.33
<u>L</u>		(30)	(40)	(40)	(3.0)				

- *1 BPO: ベンゾイルパーオキサイド
- *2 AIBN: N, N-アゾピスイソブチルニトリル

【0042】また以下にNMRスペクトルの測定結果を

ることが判った。

示す。この結果より、共重合反応によりビニル結合の二

[0043]

重結合は開裂したが、ホスホリルコリン骨格は不変であ

【化9】

NMRスペクトル (溶媒;重水素化クロロホルム、

内部標準;トリメチルシラン)

2-プロペニルーホスホリルコリン又は9-デセニルホスホリルコリン

末端の二重結合に由来する

5. 10~5. 4 Oppm (m,2H -C=CH₂). 5. 65~6. 1 8ppm (m,1H -CH=C)

が消失し、主義に該当する1.22~1.65ppm (m,5H CH-CHz-CH-CH)

が新たに生成しており、側鎖を表わす

3. 25ppm

(s,9H -N+(CH,),)

3, 77~4, 05ppm (m,2H -C-CH2-N+)

は不変であった。

30

[0044]

【実施例 $7\sim12$ 】実施例 $1\sim6$ で調製した共重合体を、それぞれ別にクロロホルムに溶解し、0.1重量%溶液を調製した。これらの溶液にガラスビーズ(直径 $200\sim600\,\mu$ m)を 10 分間浸漬した後、ビーズを濾別して溶媒を留去し、ポリマー被覆ガラスビーズを調製した。

【0045】それぞれのポリマー被覆ガラスビーズ0.52gを、長さ10cm、内径3mmの別々のガラス管に最密充填してカラムを作成した。次いで、うさぎの新鮮血を遠心分離して得られた血小板 1×10^8 個/mlを含有する血小板多血漿6mlに対して、1mol/lの塩化カルシウム溶液 120μ lを加えた溶液を、流速0.25ml/分の条件で、前記各々のカラム内を20分間通過させた。カラムより流出してくる血小板を液中微粒子計数器(コールターエレクトロニクス社製、商品名「コールターカウンター」)で測定し、血小板粘着率を以下の式にて計算した。結果を表2に示す。

血小板粘着率(%)=〔(カラムに導入した血小板総数 50

- 流出血小板総数)/カラムに導入した血小板総数〕×100

また前記実施例1~6で調製した共重合体を0.1重量%含むクロロホルム溶液をそれぞれガラス板上に塗布し、溶媒を揮発させた後、その表面を全反射型赤外吸収スペクトル測定装置を用いて測定した。その結果実施例1と同様なホスホリルコリン基を示す吸収が認められた。測定終了後、ガラス表面を数回メタノールで洗浄し、再び全反射型赤外吸収スペクトル測定装置で表面を測定した。結果を表2に示す。

[0046]

【比較例 $1 \sim 3$ 】 2 -プロペニルーホスホリルコリンの代わりに 2 -メタクリロイルオキシエチルホスホリルコリン3.5 g(15 モル%)を、無水マレイン酸の代わりにブチルメタクリレート 12.1 g(85 モル%)を用いた以外は、実施例 1 と同様にして得られた共重合体(以下共重合体 X と称す)(比較例 1)又はヒドロキシエチルメタクリレートの単独重合体(以下PHEMAと称す)(比較例 2)を、実施例 $1 \sim 6$ で調製した共重合

測定した。結果を表2に示す。

体の代わりに用いるか、若しくは共重合体を用いない以 外は、実施例7~12と同様にガラスピーズ及びガラス

[0047]

板を処理して血小板粘着率及び再赤外吸収スペクトルを

【表 2	}
(%)	再赤

Г		共重合体種類	血小板粘着率(%)	再赤外吸収スペクトル
囡	7	実施例1	18.4	0
	8	実施例2	19.8	
旭	9	実施倒3	16.6	0
П	10	実施例4	23.7	0
133	11	実施例5	18.8	0
	12	実施例6	22.4	0
囲	1	共宜合体X	20.2	×
轍	2	PHEMA *	30.4	0
何	3	ガラスピーズのまま	39.2	-

*;ヒドロキシエチルメタクリレート単独重合体

〇;スペクトルが認められた ×;認められず

20

30