# 16 BIT MICROPROCESSOR 8086

#### MICROPROCESSORS:

- FETCH
- DECODES
- EXECUTES

#### MICROPROCESSORS

- PROGRAMMABLE
- MULTIPORPOSE
- CLOCK DRIVEN
- REGISTER BASED

# FEATURES OF 8086 MICROPROCESSOR

- □ 16 bit microprocessor(data),
- □ 40 pin ,DIP(Dual in line package)
- □ 20 bit address lines i.e 2^20=1MB memory addressed.

- □ 1MB =1000KB(decimal)
- □ 1MB=1024KB(Binary)
- □ No. of address lines =n
- $\square$  No. of addresses = N
- $N=2^n$



- Uses the concept of **segmented memory**. **8086 able to address a memory capacity of 1** megabyte and it is byte organized. This 1 megabyte memory is divided into 16 logical segments. Each segment contains 64 kbytes of memory.
- $2^16=2^10x2^6=2^6xKB=64KB$



- 8 BITS (BYTE), 16 BITS(WORD), 32 BIT(DOUBLE WORD) (indirectly)
- Arithmetic operation on 8 bit or 16 bit signed or unsigned data including multiplication and division.
- □ 8086 supports 2 modes of operation
  - a. Minimum mode(single processor)
  - b. Maximum mode.(multiple processors
  - Operate in single processor or multiprocessor(8087)
- ☐ It has multiplexed address and data bus AD0-AD15 & A16-A19
- It requires single phase clock with 33% duty cycle to provide internal timing.
- Pre fetches up to 6 instruction bytes from memory and queues them in order to speed up the processing.



- □ 1s –Time period
- □ Logic 1 -.33s
- □ Logic 0-.67s
- Duty cycle=Ton(Logic 1)/Total TP



# **MEMORY SIZE**

| $\begin{array}{c} 2^{1} \rightarrow 2B \\ 2^{2} \rightarrow 4B \\ 2^{3} \rightarrow 8B \\ 2^{4} \rightarrow 16B \end{array}$ | 210 - 1024B -> 1Kb<br>220 - 1 Mega Byte -> 1MB<br>230 - 1 Olega " -> 1CAB<br>240-1 Tela " -> 1TE |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 25 \rightarrow 32B \\ 26 \rightarrow 64B \end{array}$                                                      |                                                                                                  |
| $\begin{array}{c} 27 - )128B \\ 28 - )256B \\ 29 - )512B \end{array}$                                                        |                                                                                                  |
|                                                                                                                              | Law                                                                                              |

- □ 3 memories:
  - RAM (storing data, modify it)
  - ROM (instructions)
  - I/O (external memories)

#### BUSES:

Bunch of wires

Address 20 bit

Data 16 bit

Control (status signals, flags)

#### Microprocessor

## **FUNCTIONAL BLOCKS**

Computational Unit: performs arithmetic and logic operations

Various conditions of the results are stored as status bits called flags in flag register

**Internal storage of data** 



Generates control signals for internal and external operations of the microprocessor

**Control Bus** 

instructions; Decodes sends information to the timing and control unit

#### INTEL 8086 - PIN DIAGRAM



 $\stackrel{\rightharpoonup}{\rightarrow}$ 





口 10

12

15

16

17

20

AD5 11

AD2 4

AD4

AD6

AD3

AD1

AD0

IMN

INTR

GND

CLK [

#### **Address Latch Enable:**

MIN MODE

MAX MODE

RQ/GT0 (HOLD)

RQ/GT1 (HLDA)

(WR)

(M/IO)

(DT/R)

(DEN)

(ALE)

(INTA)

LOCK

<u>52</u>

<u>51</u>

50

QS0

QS1 TEST

READY

RESET

29 🔲

27 |

26 🗆

25

24

22

28

When high, multiplexed address/data bus contains address information.



MODE MODE

MIN

MAX

Non - maskable interrupt(which cannot be ignored)

positive edge triggered input

> Interrupt request(high

level-triggere d, maskable interrupt request signal)



Interrupt acknowledge

(Low active output in response to INTR)



# Direct Memory Access

Hold(Active high i/p signal From DMA controller to processor for control on system buses)

**Hold** acknowledge(signal by the processor to the bus master requesting the control of the bus through HOLD.

Acknowledge is asserted high, when the processor accepts HOLD.)

**S6**: Logic 0.

S5: Indicates condition of IF flag bits.

S4-S3: Indicate which segment is accessed during current bus cycle:

| S4 | S3 | Function           |
|----|----|--------------------|
| 0  | 0  | Extra segment      |
| 0  | 1  | Stack segment      |
| 1  | 0  | Code or no segment |
| 1  | 1  | Data segment       |



Address bits A<sub>19</sub> –

A<sub>16</sub> & Status bits S<sub>6</sub>

| BHE | $A_0$ | Indication                         |
|-----|-------|------------------------------------|
| 0   | 0     | Whole word                         |
| 0   | 1     | Upper byte from or to odd address  |
| 1   | 0     | Lower byte from or to even address |
| 1   | 1     | None                               |





TEST(Pin No. 23)

-This i/p is examined by 8086 wait instruction

-If TEST i/p  $\square$  low - $\square$  execution continued -- $\square$  if not then processor enter /wait in idle state

#### Ready (pin no-22)

-When high--□ carry out it normal operation

-When low -□ freezes it's bus & enters a wait state

8



## Min/Max mode

Minimum Mode: +5V

Maximum Mode: 0V

**Minimum Mode Pins** 

Maximum Mode Pins

## MINIMUM MODE- PIN DETAILS



## MAXIMUM MODE - PIN DETAILS

|      | 13 |    | ~ ~     |    |   |            |
|------|----|----|---------|----|---|------------|
| GND  |    | 1  | $\circ$ | 40 |   | VCC        |
| AD14 |    | 2  |         | 39 | 3 | AD15       |
| AD13 |    | 3  |         | 38 |   | A16/S3     |
| AD12 |    | 4  |         | 37 |   | A17/S4     |
| AD11 |    | 5  |         | 36 |   | A18/S5     |
| AD10 |    | 6  |         | 35 |   | A19/S6     |
| AD9  |    | 7  | 0000    | 34 |   | BHE/S7     |
| AD8  |    | 8  | 8086    | 33 |   | MN/MX      |
| AD7  |    | 9  | CPU     | 32 |   | RD         |
| AD6  |    | 10 |         | 31 |   | RQ/GTO     |
| AD5  |    | 11 |         | 30 |   | RQ/GT1     |
| AD4  | 口  | 12 |         | 29 |   | LOCK       |
| AD3  | q  | 13 |         | 28 | ] | <u>52</u>  |
| AD2  | 口  | 14 |         | 27 |   | <b>S</b> 1 |
| AD1  | 口  | 15 |         | 26 |   | 50         |
| AD0  | 口  | 16 |         | 25 |   | QS0        |
| NMI  | 口  | 17 |         | 24 |   | QS1        |
| INTR | q  | 18 |         | 23 | 3 | TEST       |
| CLK  | q  | 19 |         | 22 |   | READY      |
| GND  |    | 20 |         | 21 |   | RESET      |

| C                | C           | C                  |
|------------------|-------------|--------------------|
| J <sub>0</sub> , | <b>J</b> 1/ | $\boldsymbol{J}_2$ |

Status signals; used by the 8086 bus controller to generate bus timing and control signals. These are decoded as shown.

| Status Signal               |                           | nal              | Machine Cycle         |  |  |
|-----------------------------|---------------------------|------------------|-----------------------|--|--|
| $\overline{\mathbf{S}}_{2}$ | $\overline{\mathbf{S}}_1$ | $\overline{S}_0$ | Machine Cycle         |  |  |
| 0                           | , 0                       | 0                | Interrupt acknowledge |  |  |
| 0                           | 0                         | 1                | Read I/O port         |  |  |
| 0                           | 1                         | 0                | Write I/O port        |  |  |
| 0                           | 1                         | 1                | Halt                  |  |  |
| 1                           | 0                         | 0                | Code access           |  |  |
| 1                           | 0                         | 1                | Read memory           |  |  |
| 1                           | 1                         | 0                | Write memory          |  |  |
| 1                           | 1                         | 1                | Passive/Inactive      |  |  |

2

| GND   AD14   AD13   AD12   AD11   AD10   AD9   AD8   AD7   AD6   A | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8086<br>8 CPU<br>9 | 40 VCC 39 AD15 38 A16/S3 37 A17/S4 36 A18/S5 35 A19/S6 34 BHE/S7 33 MN/MX 32 RD 31 RQ/GTO                                                    | $\frac{RQ/GT_0}{RQ/GT_1} \qquad \begin{array}{c} \text{(Bus Request/ Bus Grant)} \text{ These pins are bidirectional.} \\ \text{The request on } \overline{GT_0} \text{ will have higher priority than } \overline{GT_1} \end{array}$                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AD5   AD4   AD3   AD2   AD1   AD0   AD0   AD1   AD0   AD1    | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19    | 30   RO/GT1 29   LOCK 28   \$\overline{52}\$ 27   \$\overline{51}\$ 26   \$\overline{50}\$ 25   QS0 24   QS1 23   TEST 22   READY 21   RESET | LOCK  An output signal activated by the LOCK instruction.  Remains active until the completion of instruction prefixed by LOCK.  The 8086 output low on the LOCK pin executing an instruction prefixed by prevent other bus masters from gaining cont the system bus. |

## MAXIMUM MODE - PIN DETAILS



| $\overline{QS_0}$ , $\overline{QS_1}$ | (Queue Status) The processor provides the stat of queue in these lines.                         |
|---------------------------------------|-------------------------------------------------------------------------------------------------|
|                                       | The queue status can be used by external device track the internal status of the queue in 8086. |
|                                       | The output on QS <sub>0</sub> and QS <sub>1</sub> can be interpreted shown in the table.        |

| Queue  | status |                                    |  |  |  |
|--------|--------|------------------------------------|--|--|--|
| $QS_1$ | $QS_0$ | Queue operation                    |  |  |  |
| 0      | 0      | No operation                       |  |  |  |
| 0      | 1      | First byte of an opcode from queue |  |  |  |
| 1      | 0      | Empty the queue                    |  |  |  |
| 1      | 1      | Subsequent byte from queue         |  |  |  |