Corriente alterna sinusoidal Teoría de Circuitos

Oscar Perpiñán Lamigueiro

- 1 Formas de Onda
- Onda Sinusoidal
- 3 Cálculo Fasorial
- 4 Potencia
- 5 Compensación de reactiva

Forma de Onda

- La salida de los generadores (de tensión o de corriente) son funciones que pueden variar con el tiempo.
- La dependencia funcional u = u(t) o i = i(t) se denomina forma de onda.

Clasificación

Signo de la magnitud

- Unidireccionales
 - Signo constante
 - ▶ El valor puede ser constante (corriente continua) o variable.
- Bidireccionales
 - Signo variable con el tiempo.

Clasificación

Repetición del valor de la magnitud

- Periódicas
 El valor de la magnitud se repite de forma regular.
- No periódicas
 El valor de la magnitud varía de forma arbitraria con el tiempo.

Valores que definen una onda periódica

Período y frecuencia

- Período (*T*): tiempo que tarda en repetirse la función.
- ► Frecuencia (*f*): número de repeticiones por unidad de tiempo.
- $\blacktriangleright f = \frac{1}{7}$

Valores que definen una onda periódica

- ► Valores de pico: $Y_{max} = máx(y(t))$ $Y_{min} = mín(y(t))$
- ▶ Valor pico a pico: $Y_{pp} = |Y_{max} Y_{min}|$

Valores que definen una onda periódica

Valor medio

$$U_m = \frac{1}{T} \int_T u(t) dt \qquad I_m = \frac{1}{T} \int_T i(t) dt$$

Valor eficaz

$$U = \sqrt{\frac{1}{T}} \cdot \int_T u^2(t) dt$$
 $I = \sqrt{\frac{1}{T}} \cdot \int_T i^2(t) dt$

Tren de Pulsos Bidireccional

Tren de Pulsos Unidireccional

Onda Triangular Bidireccional

Onda Triangular Unidireccional

Onda sinusoidal

- Formas de Onda
- Onda Sinusoidal
- 3 Cálculo Fasorial
- 4 Potencia
- 5 Compensación de reactiva

Definición

$$y(t) = Y_{max} \cdot \operatorname{sen}(\omega \cdot t + \theta)$$

- $ightharpoonup Y_{max}$ valor máximo de la onda.
- T: periodo de la onda (segundos)
- $\omega = \frac{2 \cdot \pi}{T}$: pulsación (radianes/segundo)
- \triangleright θ : fase (radianes o grados)

Fase

$$y(t) = Y_{max} \cdot \operatorname{sen}(\omega \cdot t + \theta)$$

- \triangleright θ : fase (radianes o grados)
 - ► Es el argumento de la onda para t=0
 - ► Tomando una onda como referencia, si la fase es 0°, se dice que están en fase con la onda de referencia.
 - ▶ Si la fase es positiva, se dice que la onda adelanta respecto a la referencia.

Señales en Cuadratura

- Cuando el desfase entre dos señales es de 90° ($\theta_I \theta_U = \pi/2$), se dice que están en cuadratura.
- ► El paso por cero de una señal coincide con el paso por el máximo/mínimo de la otra señal.

Valor medio y valor eficaz

Valor medio

$$Y_m = \frac{1}{T} \int_T y(t) dt$$

$$Y_m = \frac{1}{T} \int_T Y_{max} \cdot \operatorname{sen}(\omega \cdot t + \theta) dt = 0$$

Valor eficaz

$$Y = \sqrt{\frac{1}{T} \cdot \int_{T} y^{2}(t) dt}$$

$$Y = \sqrt{\frac{1}{T} \cdot \int_{T} (Y_{max} \cdot \text{sen}(\omega \cdot t + \theta))^{2} dt} = \boxed{\frac{Y_{max}}{\sqrt{2}}}$$

- Formas de Onda
- Onda Sinusoidal
- 3 Cálculo Fasorial
- 4 Potencia
- 5 Compensación de reactiva

Representación fasorial

- ▶ Un fasor es un **número complejo** que representa una señal sinusoidal para simplificar cálculos.
- ► El módulo del fasor es el valor eficaz. El argumento es la fase.
- Descartamos pulsación: no se puede emplear cuando hay frecuencias diferentes en un mismo circuito.

Euler: $\overline{Y} = Y \cdot e^{j\varphi}$

Polar: $\overline{Y} = Y/\varphi$

Binómica : $\overline{Y} = Y \cdot (\cos(\varphi) + j \cdot \sin(\varphi))$

Operaciones con fasores

$$\overline{Y}_{1} = \underbrace{Y_{1} \cos(\varphi_{1})}_{a_{1}} + j \underbrace{Y_{1} \sin(\varphi_{1})}_{b_{2}} = \underbrace{Y_{1}/\varphi_{1}}_{a_{2}}$$

$$\overline{Y}_{2} = \underbrace{Y_{2} \cos(\varphi_{2})}_{a_{2}} + j \underbrace{Y_{2} \sin(\varphi_{2})}_{b_{2}} = \underbrace{Y_{2}/\varphi_{2}}_{a_{2}}$$

Forma binómica:

- ► Suma: $\overline{Y}_1 + \overline{Y}_2 = (a_1 + a_2) + j(b_1 + b_2)$
- ► Resta: $\overline{Y}_1 \overline{Y}_2 = (a_1 a_2) + j(b_1 b_2)$

Forma polar:

- ► Multiplicación: $\overline{Y}_1 \cdot \overline{Y}_2 = (Y_1 \cdot Y_2)/\varphi_1 + \varphi_2$
- División: $\frac{\overline{Y}_1}{\overline{Y}_2} = \frac{Y_1}{Y_2} / \varphi_1 \varphi_2$

Tensión y corriente en notación fasorial

$$u(t) = U_{max} \cdot \text{sen}(\omega t + \theta_U) \rightarrow \overline{U} = U/\underline{\theta_U}$$

 $i(t) = I_{max} \cdot \text{sen}(\omega t + \theta_I) \rightarrow \overline{I} = I/\underline{\theta_I}$

Impedancia: relación entre fasores de tensión y corriente

$$\overline{U} = \overline{Z} \cdot \overline{I}$$

$$\overline{Z} = \frac{\overline{U}}{\overline{I}}$$

$$\overline{Z} = \frac{U}{I} / \theta_U - \theta_I \Rightarrow \begin{cases} Z = \frac{U}{I} \\ \varphi = \theta_U - \theta_I \end{cases}$$

Impedancia Genérica

$$\overline{Z} = Z \underline{/\varphi}$$

$$= Z \cdot (\cos(\varphi) + j \operatorname{sen}(\varphi))$$

$$= R + jX$$

Circuito Resistivo

Un circuito resistivo no desfasa (tensión y corriente en fase).

$$i(t) = I_{max} \cdot \operatorname{sen}(\omega t + \theta_{I})$$

$$u(t) = U_{max} \cdot \operatorname{sen}(\omega t + \theta_{U}) =$$

$$= R \cdot i(t) =$$

$$= R \cdot I_{max} \cdot \operatorname{sen}(\omega t + \theta_{I} + 0)$$

$$= R \cdot I_{max} \cdot \operatorname{sen}(\omega t + \theta_{I} + 0)$$

$$= R \cdot I_{max} \cdot \operatorname{sen}(\omega t + \theta_{I} + 0)$$

Circuito Resistivo

Un circuito resistivo no desfasa (tensión y corriente en fase).

$$Z = \frac{U}{I} = R$$

$$\varphi = \theta_U - \theta_I = 0$$

$$\overline{Z}_R = R/0$$

Circuito Inductivo puro

Un circuito inductivo puro genera señales en cuadratura y retrasa la corriente.

$$i(t) = I_{max} \cdot \operatorname{sen}(\omega t + \theta_I)$$

$$u(t) = U_{max} \cdot \operatorname{sen}(\omega t + \theta_U) =$$

$$= L \cdot \frac{di(t)}{dt} =$$

$$= \omega L \cdot I_{max} \cdot \operatorname{sen}(\omega t + \theta_I + \pi/2)$$

$$= \omega L \cdot I_{max} \cdot \operatorname{sen}(\omega t + \theta_I + \pi/2)$$

Circuito Inductivo puro

Un circuito inductivo puro genera señales en cuadratura y retrasa la corriente.

$$Z = \frac{U}{I} = \omega L$$

$$\varphi = \theta_U - \theta_I = \pi/2$$

$$\overline{Z}_L = j\omega L = \omega L/90^{\circ}$$

Circuito Capacitivo puro

Un circuito capacitivo puro genera señales en cuadratura y adelanta la corriente.

$$i(t) = I_{max} \cdot \operatorname{sen}(\omega t + \theta_{I})$$

$$u(t) = U_{max} \cdot \operatorname{sen}(\omega t + \theta_{U}) =$$

$$= 1/C \cdot \int_{-\infty}^{t} i(\tau) d\tau =$$

$$= \frac{1}{\omega C} \cdot I_{max} \cdot \operatorname{sen}(\omega t + \theta_{I} - \pi/2)$$

$$\begin{cases} U_{max} = \frac{1}{\omega C} \cdot I_{max} \\ \theta_{U} = \theta_{I} - \pi/2 \end{cases}$$

Circuito Capacitivo puro

Un circuito capacitivo puro genera señales en cuadratura y adelanta la corriente.

$$Z = \frac{U}{I} = \frac{1}{\omega C}$$
$$\varphi = \theta_U - \theta_I = -\pi/2$$

$$\overline{Z}_{C} = \frac{1}{j\omega C} = \frac{1}{\omega C} / -90^{\circ}$$

Resumen

Elemento	Impedancia	Módulo	Ángulo
Resistencia	R	R	0
Bobina	$j\omega L$	ωL	90°
Condensador	$1/(j\omega C)$	$1/(\omega C)$	-90°

Circuito RL (inductivo con pérdidas)

Circuito RL (inductivo con pérdidas)

$$+ \bigvee_{\overline{U}_R} - + \bigvee_{\overline{U}_L} -$$

$$\left. egin{array}{ll} \overline{U}_R &= R \overline{I} \\ \overline{U}_L &= j\omega L \overline{I} \end{array} \right\}
ightarrow \quad \overline{U} = \overline{U}_R + \overline{U}_L = \\ &= (R + j\omega L) \overline{I} \end{array}$$

Circuito RL (inductivo con pérdidas)

$$\overline{Z} = R + j\omega L \Rightarrow \boxed{\varphi > 0}$$

$$|Z| = \sqrt{R^2 + (\omega L)^2}$$

$$\varphi = \operatorname{atan} \frac{\omega L}{R}$$

Circuito RC (capacitivo con pérdidas)

Circuito RC (capacitivo con pérdidas)

$$\begin{array}{c|c} \bullet \overline{I} & & \\ + & \overline{U}_R & + & \overline{U}_C \end{array}$$

$$\overline{U}_{R} = R\overline{I}
\overline{U}_{C} = -j\frac{1}{\omega C}\overline{I}$$

$$\rightarrow \overline{U} = \overline{U}_{R} + \overline{U}_{C} = (R - j\frac{1}{\omega C})\overline{I}$$

Circuito RC (capacitivo con pérdidas)

$$\overline{Z} = R - \frac{j}{\omega C} \Rightarrow \boxed{\varphi < 0}$$
$$|Z| = \sqrt{R^2 + \frac{1}{(\omega C)^2}}$$
$$\varphi = -\operatorname{atan} \frac{1}{\omega RC}$$

Circuito RLC serie

$$\begin{array}{c|c} \overline{I} & & & \\ \hline + & & \\ \overline{U}_R & - & + & \\ \hline \overline{U}_L & - & + & \\ \hline U_C & & \\ \end{array}$$

Circuito RLC serie

$$\begin{array}{c|c} \overline{I} & & & \\ + & \overline{U}_R & - & + & \overline{U}_L & - & + & \overline{U}_C \end{array}$$

$$\overline{Z} = R + j(\omega L - \frac{1}{\omega C})$$

$$|Z| = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$$

$$\varphi = \operatorname{atan} \frac{\omega L - \frac{1}{\omega C}}{R}$$

•
$$\varphi > 0 \Rightarrow \omega L > \frac{1}{\omega C}$$
: inductivo
• $\varphi < 0 \Rightarrow \omega L < \frac{1}{\omega C}$: capacitivo

•
$$\varphi < 0 \Rightarrow \omega L < \frac{1}{\omega C}$$
: capacitive

•
$$\varphi = 0 \Rightarrow \omega L = \frac{1}{\omega C}$$
: resistivo (resonancia)

$$u(t) = Z \cdot I_{max} \operatorname{sen}(\omega t + \theta_I + \varphi)$$

Circuito serie general

$$\overline{Z}_{eq} = \sum_{i=1}^{n} \overline{Z}_{i}$$

$$R_{eq} = \sum_{i=1}^{n} R_i \qquad X_{eq} = \sum_{i=1}^{n} X_i$$

Circuito paralelo general

$$\frac{1}{\overline{Z}_{eq}} = \sum_{i=1}^{n} \frac{1}{\overline{Z}}$$

Impedancia y Admitancia

$$\overline{Y} = rac{1}{\overline{Z}}
ightarrow \left\{ egin{array}{l} |\overline{Y}| = rac{1}{|\overline{Z}|} \ arphi_Y = -arphi_Z = -arphi \end{array}
ight.$$

Impedancia y Admitancia

$$\overline{Z} = \frac{1}{G + jB} \to \begin{cases} R = \frac{G}{G^2 + B^2} \\ X = -j\frac{B}{G^2 + B^2} \end{cases}$$

$$\overline{Y} = \frac{1}{R + jX} \rightarrow \begin{cases} G = \frac{R}{R^2 + X^2} \\ B = -j\frac{X}{R^2 + X^2} \end{cases}$$

- Formas de Onda
- Onda Sinusoidal
- Cálculo Fasorial
- 4 Potencia
- 5 Compensación de reactiva

Expresión general

Sea la tensión referencia de fases. Si $\varphi > 0$ (inductivo) la corriente está retrasada respecto de la tensión (*circuito en retraso*).

$$u(t) = U_{max} \cos \omega t$$

$$i(t) = I_{max} \cos(\omega t - \varphi)$$

$$p(t) = u(t) \cdot i(t)$$

Expresión general

$$\begin{split} p(t) &= (\sqrt{2} \cdot U \cdot \cos(\omega t)) \cdot (\sqrt{2} \cdot I \cdot \cos(\omega t - \varphi)) = \\ &= 2 \cdot U \cdot I \cdot \cos(\omega t) \cdot \cos(\omega t - \varphi) = \\ &= UI \cdot (\cos(2\omega t - \varphi) + \cos(\varphi)) = \\ &= UI \cdot (\cos(2\omega t) \cos(\varphi) + \sin(2\omega t) \sin(\varphi) + \cos(\varphi)) \end{split}$$

$$p(t) = UI\cos(\varphi) + UI\cos(\varphi)\cos(2\omega t) + UI\sin(\varphi)\sin(2\omega t)$$

Expresión general

$$p(t) = UI\cos(\varphi) + UI\cos(\varphi)\cos(2\omega t) + UI\sin(\varphi)\sin(2\omega t)$$

$$P = UI\cos\varphi \quad Q = UI\sin\varphi$$

$$p(t) = P \cdot (1 + \cos(2\omega t)) + Q \cdot \sin(2\omega t)$$

Circuito Resistivo

$$P = UI\cos \varphi$$
 $Q = UI \operatorname{sen} \varphi$ $p(t) = P \cdot (1 + \cos(2\omega t)) + Q \cdot \operatorname{sen}(2\omega t)$

$$\varphi = 0 \to \left\{ \begin{array}{l} P = UI = U^2/R = I^2R \\ Q = 0 \end{array} \right.$$

 $p(t) = P \cdot (1 + \cos(2\omega t))$

Circuito Resistivo

- ► Fluctúa al doble de frecuencia.
- Es siempre positiva.

Circuito Inductivo puro

$$P = UI\cos\varphi$$
 $Q = UI\operatorname{sen}\varphi$

$$p(t) = P \cdot (1 + \cos(2\omega t)) + Q \cdot \sin(2\omega t)$$

$$\varphi = \pi/2 \to \begin{cases} P = 0 \\ Q = UI = \frac{U^2}{\omega L} = I^2 \omega L \end{cases}$$
$$p(t) = Q \cdot \text{sen}(2\omega t)$$

Circuito Inductivo puro

- Fluctúa al doble de frecuencia.
- Pasa por los ceros de tensión y corriente.
- Su valor medio es nulo.

Circuito Capacitivo puro

$$P = UI\cos\varphi$$
 $Q = UI\operatorname{sen}\varphi$

 $p(t) = P \cdot (1 + \cos(2\omega t)) + Q \cdot \sin(2\omega t)$

$$\varphi = -\pi/2 \rightarrow \begin{cases} P = 0 \\ Q = -UI = -U^2 \omega C = -\frac{I^2}{\omega C} \end{cases}$$

$$p(t) = Q \cdot \text{sen}(2\omega t)$$

Circuito Capacitivo puro

- ► Fluctúa al doble de frecuencia.
- Pasa por los ceros de tensión y corriente.
- Su valor medio es nulo.

Circuito Inductivo con pérdidas

$$p(t) = P \cdot (1 + \cos(2\omega t)) + Q \cdot \sin(2\omega t)$$

Valor medio positivo, $P = UI \cos \varphi$

Circuito Capacitivo con pérdidas

$$p(t) = P \cdot (1 + \cos(2\omega t)) + Q \cdot \sin(2\omega t)$$

Valor medio positivo, $P = UI \cos \varphi$

Triángulo de Potencias

Potencia Activa [W]

$$P = U \cdot I \cdot \cos(\varphi) = R \cdot I^2$$

Potencia Reactiva [var] $Q = U \cdot I \cdot \operatorname{sen}(\varphi) = X \cdot I^2$

$$\overline{S} = P + jQ = \overline{U} \cdot \overline{I}^*$$

 $\bar{I} = I/-\varphi$

= P + iQ

$$\overline{U} = U \underline{/0}$$

$$\overline{UI}^* = U/\underline{0} \cdot I/\underline{\varphi} = UI/\underline{\varphi}$$
$$= UI(\cos \varphi + j \sin \varphi) =$$
$$= P + jQ$$

$$|S| = U \cdot I$$
 $|S| = \varphi$ $|S| = \psi$ $|S| = \psi$

Potencia de elementos: Resistencia

$$\varphi = 0 \Rightarrow \begin{cases} P_R = RI^2 \\ Q_R = 0 \\ S_R = P_R \end{cases}$$

- Consume potencia activa
- ▶ No consume potencia reactiva

Potencia de elementos: Inductancia

$$\varphi = \pi/2 \Rightarrow \begin{cases} P_L = 0 \\ Q_L = \omega L I^2 \\ \overline{S}_L = \omega L I^2 / \pi/2 \end{cases}$$

- No consume potencia activa
- ightharpoonup Consume potencia reactiva (Q > 0)

Potencia de elementos: Condensador

$$\varphi = -\pi/2 \Rightarrow \begin{cases} P_L = 0 \\ Q_C = -\omega C U^2 \\ \overline{S}_C = \omega C U^2 / -\pi/2 \end{cases}$$

- No consume potencia activa
- ▶ Genera potencia reactiva (Q < 0)

Teorema de Boucherot

► En un circuito con múltiples elementos, la potencia aparente total es la suma de las potencias aparentes individuales.

$$\overline{S} = \sum_{i=1}^{n} \overline{S}_{i}$$

$$P + jQ = \sum_{i=1}^{n} (P_{i} + jQ_{i})$$

La potencia activa (reactiva) total es la suma de las potencias activas (reactivas) individuales.

$$P = \sum_{i=1}^{n} P_i$$
$$Q = \sum_{i=1}^{n} Q_i$$

Medida de potencia

Vatímetro: equipo de medida de 4 terminales (1 par para tensión, 1 par para corriente)

Medida de potencia

Habitualmente se emplea con 3 terminales cortocircuitando terminales con *.

$$W = |V||I|\cos(\varphi_V - \varphi_I) = P_Z$$

- 1 Formas de Onda
- Onda Sinusoidal
- 3 Cálculo Fasorial
- 4 Potencia
- 5 Compensación de reactiva

Factor de potencia

El factor de potencia, $\cos(\varphi)$, representa la aportación de potencia activa dentro de la potencia aparente.

$$P = S\cos\varphi$$

Sean dos sistemas con **misma tensión y potencia activa**, y factores de potencia $\cos \varphi_2 < \cos \varphi_1 \ (Q_2 > Q_1)$

Potencia Aparente

El sistema 2 requiere **mayor potencia aparente** (generador mayor) para alimentar la misma potencia activa.

$$\left(\frac{P}{\cos \varphi_1} = S_1\right) < \left(S_2 = \frac{P}{\cos \varphi_2}\right)$$

Sección de Conductores

El sistema 2 requiere **mayor sección** de cable para transportar la misma potencia activa.

$$\left(\frac{P}{U\cos\varphi_1} = I_1\right) < \left(I_2 = \frac{P}{U\cos\varphi_2}\right)$$

Generación Local de Reactiva

- Comúnmente, el factor de potencia es **inductivo** (máquinas eléctricas industriales).
- La red debe suministrar potencia reactiva inductiva (influye en secciones de líneas y tamaños de generadores)
- Es necesario mejorar **localmente** el factor de potencia. Solución común: utilizar **bancos de condensadores** como suministradores de potencia reactiva.

Compensación de Reactiva con Condensadores

Sea una carga de potencia activa P_z , potencia reactiva Q_z , factor de potencia $\cos \varphi$. Se desea **mejorar el factor de potencia** a $\cos \varphi' > \cos \varphi$.

$$P' = P_z$$

$$Q' = Q_c + Q_z \quad (Q' < Q_z)$$

$$\overline{I}' = \overline{I}_c + \overline{I}_z \quad (I' < I_z)$$

Cálculo de la Capacidad

$$Q_z = P_z \tan \varphi$$

$$Q' = P_z \tan \varphi'$$

$$|Q_c| = Q_z - Q' = P_z (\tan \varphi - \tan \varphi')$$

$$|Q_c| = \omega C U^2 \to \boxed{C = \frac{P_z (\tan \varphi - \tan \varphi')}{\omega U^2}}$$