

11 Publication number:

0 347 365 A2

(12)

EUROPEAN PATENT APPLICATION

2 Application number: 89710057.4

2 Date of filing: 13.06.89

(a) Int. Cl.4: C 12 N 7/00

C 12 N 15/00, C 07 K 15/04, G 01 N 33/569, A 61 K 39/21, A 61 K 39/395, C 12 N 5/00

30 Priority: 14.06.88 DE 3820223

43 Date of publication of application: 20.12.89 Bulletin 89/51

Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI NL SE

 Applicant: DIAGEN Institut für molekularbiologische Diagnostik GmbH Niederheider Strasse 3 D-4000 Düsseldorf 13 (DE)

CHEMOTHERAPEUTISCHES FORSCHUNGSINSTITUT GEORG-SPEYER-HAUS Paul-Ehrlich-Strasse 42-44 D-6000 Frankfurt/Main (DE)

② Inventor: Henco, Karsten, Dr. 23 Schlickumer Weg D-4806 Erkrath 2 (DE)

> von Briesen, Hagen 31 Ringstrasse D-6242 Kronberg (DE)

Immelmann, Andreas, Dr. 158 Vennstrasse D-4000 Düsseldorf 12 (DE)

Kühnel, Herbert, Dr. 7 Mainstrasse D-6073 Egelsbach (DE)

Dietrich, Ursula, Dr. 6 Gehspitz D-6236 Eschborn (DE)

Rübsamen-Waigmann, Helga, Prof. Dr. 113 Königsteiner Strasse D-6232 Bad Soden/Taunus (DE)

Adamski, Michalina 22 Bickenbacher Weg D-6000 Frankfurt 71 (DE)

(74) Representative: Werner, Hans-Karsten, Dr. et al Deichmannhaus am Hauptbahnhof D-5000 Köln 1 (DE)

(4) HIV-2 virus variants.

(a) HIV-2 virus variants, namely virus HIV D194 and virus HIV D205, which can be cloned from the corresponding virus isolate HIV D194 (ECACC V 87122303) or from the infected cell line HUT 194 (ECACC V 87122306) or from the virus isolate HIV D205 (ECACC V 87122304), respectively, and their RNA or RNA-fragments and DNA and DNA-fragments derived therefrom and/or proteins and the use thereof for diagnostics and therapy.

Fig. 2

Description

10

15

20

25

30

35

40

45

50

55

60

HIV-2 VIRUS VARIANTS

The present invention relates to HIV-2 virus variants, namely Virus HIV D194 and HIV D205 that may be cloned from the corresponding virus isolate HIV D194 (ECACC V 87122303) or from the infected cell line HUT 194 (ECACC V 87122306) and from the virus isolate HIV D205 (ECACC V 87122304), respectively, and to the RNA or RNA-fragments and derived therefrom DNA and DNA-fragments and/or proteins and the use thereof for diagnostics and therapy.

"Molecular cloning of two West African human immuno-deficiency virus type 2 isolates which replicate well on macrophages: a Gambian isolate from a case of neurologic aquired immunodeficiency syndrome, and a highly divergent Ghanesian isolate" (Kühnel, H., v. Briesen, H., Dietrich, U., Adamski, M., Mix, D., Biesert, L. Kreutz, R., Immelmann, A., Henco, K., Meichsner, Ch., Andreesen, R., Gelderblom, H. & Rübsamen-Waigmann, H., 1989, Proc. Natl. Acad. Sci. 86, 4, 2383-2387.

In diagnostics, two criteria are demanded to be met, namely specifity and sensitivity for the antigen to be detected. In the diagnostics of AIDS the demand for specifity can certainly be complied with by using the isolates HTLV-III_B and LAV-2 (Guyader, M. et al., "Nature" 326, 1987, 662-669) in order to delimit HIV infections from other infections and, thus, to make a rough assignment into the classes of "HIV-2-related infections" or "HIV-1-related infections". However, a problem is constituted by the sensitivity of the diagnosis. In the range of the so-called seroconversion, i.e. the initial occurrence of the antibody in the infected person, a reduction in sensitivity implies an increase in the number of "falsely negative" test results. Accordingly, it is one main goal to shorten the period between an infection and the detectability of this infection as much as possible by improving the test sensitivity.

A decreased cross reactivity, in the practice of the widely employed ELISA diagnostics, is manifested, for example, in a reduced sensitivity. Thus, the use of the described HIV-1 isolate means about an average reduction of the test sensitivity against HIV-2 sera by the factor of 100 to 1000, whereas the isolate HTLV-III_B enables almost no detection to be accomplished anymore.

A disastrous principle of the diseases caused by HIV resides in the fact that there is not only one type of each of HIV-1 and HIV-2 virus phenotypes and genotypes. What is to be premised is rather a large group of related viruses, possible even populations which by no way are strictly separated from each other but continuously penetrate one another and undergo some evolutionary development to a more and more increasing divergence, while at the same time they begin by recombination events to exchange between each other parts of the genom. Thus, the existing HIV species form a broad continuous population level in which there are no narrowly delimited subpopulations of one virus variant. There is rather to presumed that a continuum exists which is subject to permanent fluctuations with time.

The classified virus variants HIV-1 and HIV-2 are representatives of the diffusely delimited subpopulations having a relative low degree of relationship, which is manifested by only a partial cross reactivity. On the other hand, there are variants of the HIV-1 group (Rübsamen-Waigmann, H. et al., "AIDS-Forschung" 10, 1987, 572-575; Rübsamen-Waigmann, H. et al., J. Med. Virol. 19, 1986, 335-344; v. Briesen, H. et al., J. Med. Virol. 23, 1987, 51-66), which do significantly stronger cross-react with HIV-2 than the first characterized HIV-1 isolate itself (Hahn, B. et al., "Nature" 312, 1984, 166-169). A commercial product consisting of such an isolate diagnoses distinctly more sera as being HIV-2 positive than does the described standard isolate HTLV-III_B.

An ideal diagnostic or therapeutic product should contain at least one representative from the populations as significantly biologically distinguished from one another.

HIV-1 viruses in a multitude of highly polymorphic genetic mutants may cause different diseases such as ARC, LAS, AIDS and encephalopathies (ARC: AIDS-related complex, LAS: lymphadenopathy syndrome, AIDS: acquired immune deficiency syndrom). Cloned virus variants are distinguished in sequence and restriction pattern, even if they have been isolated at the same time, at the same place and even from the same patient (Rübsamen, H. et al., 1986). It could be shown that virus variants of the HIV-1 type are distinguished in some virus antigens up to about 15%. HIV-2's are even different in more than 40% of the aminoacids in some antigens, substitutions, insertions and deletions having been considered (Guyader, M. et al., 1987; Rabson, A.B. & Martin, M.A. "Cell" 40, 1985, 477-480).

The present invention provides two variants of the HIV-2 virus. One variant was isolated from a clinically asymptomatic patient, and one variant was isolated from a patient suffering from terminal so-called neuro-AIDS. The virus isolates proved to be diagnostic agents, relative to DNA/RNA as well as relative to the virus antigens, for serologically and directly identifying infections by the type HIV-2 in the pre-AIDS and AIDS stages.

The virus isolates according to the invention comprise viruses and proviruses, the characteristics of which are identical to those of the disclosed restriction map and the sequence of the cloned partial regions (Figures, 2-8). Moreover, the virus isolates comprise variants which are distinguished from the viruses and proviruses described above in that they are different in their nucleotide sequences from the above-described viruses only by up to 5%, and preferably by 2%, particularly preferred by 1%.

The virus variants according to the invention may cause lymphadenopathies (further designated as LAS/AIDS) or serious neurological disorders (encephalopathies). Claimed according to the invention are also expression products of said virus variants, and more particularly antigens, preferably in accumulated or pur

form, and processes for producing said expression products in full or in parts or in combinations of the parts. The expression products are intend d to include all polypeptides in glycosylated and or meristylated forms which have been coded on the positive or negative strand of the cloned RNA or DNA.

A further preferred embodiment consists of cloned DNA sequences capable of hybridizing with genomic RNA and DNA of the virus variants. Claimed according to the invention are stable gen probes containing such DNA sequences which are suitable for the detection of hybridization of those and other HIV variants or related viruses or DNA proviruses in samples to be investigated, more particularly biological or semi-synthetic samples.

5

10

15

20

25

30

40

45

50

55

60

65

A further preferred embodiment of the invention is comprised by virus variants the RNA/DNA of which or respective fragments will hybridize to the virus variants according to the invention under stringent conditions, more particularly c-DNA, genomic DNA, recombinat DNA, synthetic DNA or fragments thereof. These are understood to include variants or fragments which exhibit deletions and insertions in comparison to the virus variants according to the invention.

Stringent conditions of hybridization and washing are meant to be understood as those conditions which ensue by way of experiment or calculation if the melting point of the 100% homologous nucleic acid complexes in conditions of hybridization and washing will be fallen below by not more than 5 °C under the buffer conditions employed.

Also claimed according to the invention are cloned synthetic gen probes which may be derived from the above-described virus variants and can be augmented in vector systems in eukaryotes or prokaryotes. The described cloned DNA fragments are suitable for hybridization with complementary nucleic acids (DNA/RNA) for the purpose of diagnostic detection of the virus variants. The diagnostic tests according to the invention are carried out by using DNA or RNA probes. The probes are radioactive or have been labelled with fluorescent bio- or chemiluminescent groups or enzymes or are specifically detectable with enzymes via coupled reaction systems. The hybridizations may be effected in a homogeneous phase of a solution or in a heterogeneous phase with solid-immobilized nucleic acids, while the solid may be a membrane, particle, cell or tissue, so that the hybridization may also be effected in situ.

From the virus isolates claimed according to the invention, the corresponding DNA sequences (Figure 2) may be cloned in E. coli bacteria by establishing a genomic lambda-gen bank, starting from the DNA of the lymphocytes infected with the virus isolate. The desired clones are obtained by carrying out a plaque-screening with STLV-III sequences of the gag-pol range. In a more specifical way, there may be used as a probe a DNA derived from the published sequence HIV-2 ROD (Guyader, M. et al., "Nature" 326, 1987, 662-669), or a DNA probe derived from the partial sequences of the isolates HIV-2 D194 and HIV-2 D205 according to the invention. Thus from Figure 3 a probe may be derived which under stringent conditions will hybridize only with variants of the type HIV-2 D194, however not with variants of the type HIV-2 ROD.

The diagnostic method based on the use of the viruses claimed according to the invention comprises the following steps: Extraction of RNA or DNA from biological samples, possibly enzymatic processing by restriction enzymes, separation by gel electrophoresis and/or direct blot methods for nucleic acid-binding carriers, and subsequent hybridization with parts of the cloned fragments of the claimed viruses. Hybridizations may also be directly carried out in chemically treated cells or tissues. Therein the origin of the tissues or liquids is insignificant.

Specifically, a process for the in vitro detection of antibodies against expression products of the viruses of the present invention is characterized in that the expression products or parts thereof of the viruses are detected by means of immunological methods. The process is characterized in that the expression products are proteins, peptides or parts thereof which have been coded within the meaning of an open reading frame on the DNA of the proviral partial sequences as characterized in claim 1 and are prepared by synthetic or biosynthetic processes.

The process is further characterized in that previously a definite amount or a combination of expression products or parts thereof are fixed on microtiter plates, whereupon subsequently biological samples, diluted or undiluted, are contacted with the coated microtiter plates and after incubation and sequential washing steps can be identified by means of a detecting reagent or of labelled anti-HIV antibodies.

Alternatively, filter strips and plastic strips or rods are used instead of microtiter plates, wherein the expression products of the viruses have been fixed at respective specific positions by isolated application of the different antigens.

The expression products or parts thereof can also be separated by gel electrophoresis and then transferred by blotting whereupon incubation with anti-HIV antibodies and the detection thereof are effected. Detection is effected on solid phase carriers to which the antigen determinants have been bonded, with the solid phase carrier consisting of particles.

Expression products can be virus antigens derived from in vitro-infected cells, said antigens being contacted with biological test materials as antigens bonded to fixed cells, and that the subsequent antibody bonding can be determined with immunological detection reagents by means of an apparatus, for example with a cytofluorimeter, or visually.

The antigens can be determined by competitive ELISA. HIV-related nucleic acids (DNA and RNA) can be detected in biological samples, cells and in isolated form by using the nucleic acids according to the present invention.

Expression products can be supplemented by materials which are related to other HIV variants, which,

however, are distinguished in their biological properties from the materials of the isolates of the present invention.

For diagnostic and therapeutic goals the described DNA segments may also be employed for expressing coded antigens, parts thereof or combinations thereof with ali n antigens. Therein the DNA segments under aimed control of regulation sequences are introduced into pro-or eukaryotic target cells, tissues or multiple-cell organisms to stimulate these to produce the accordingly coded antigens, parts thereof or combinations thereof with alien antigens. Antigens can be detected via the reaction with Anti-HIV-2 antibodies, more particularly from the sera of the respective patients. Antigens having longer open reading frames (> 50 amino acids) lend themselves as well those which are subject to splicing processes on the RNA level and are only thus composed to form the longer open reading frames.

According to the invention further claimed are polypeptides originating from the cloned virus variants according to the invention to detect such antigens in the material under investigation which contain similar antigen determinants and thereby do immunologically cross-react. This is particularly suitable for the diagnosis of AIDS and pre-AIDS of virus carriers or asymptomatic virus carriers or virus products, respectively, which are derived from blood. Also the serological detection of the antibodies directed against these antigenic polypeptides as expression products of the viruses claimed according to the invention becomes possible by employing conventional systems such as ELISA. The immunogenic polypeptides may be used as protective polypeptides as vaccines to cause protection against AIDS infections.

The polypeptides according to the invention are understood to include fragents which are intentionally obtained by means of gen-technological methods, starting from longer open reading farmes as well as those obtained by proteolytic enzymes in the production bacterial starins or in vitro by the use of proteases.

The virus isolates according to the invention and the products derived therefor may be combined with other isolates of the partial population HIV-2 in test systems, that is with those which are as far remote as possible in the described population level such as for example, the isolate HIV-2 ROD (Guyader, M. et al., 1987). Thereby it becomes possible sensitively to detect also populations of remote relationship in one test.

The virus variants according to the invention are highly different from the spectrum of the HIV-1 variants and have a closer molecular relationship to the HIV-2 virus described by Guyader, although they are distinguished therefrom to a significant extent (Figure 1, Figure 2, Figure 3). Also the biological properties are clearly distinguished from the described HIV-2 isolate. Thus, the variants according to the invention, for the effective in vitro replication, prefer cells which are derived from myeloidic lines. On the contrary, the virus poorly reproduces itself on lymphocytic lines. This quality especially refers to HIV-D194.

The virus HIV D194 according to the invention exclusively caused encephalopathic symptoms in the infected patient, due to which the patient also deceased after an extremely short time and after a fulminant progress of the disease. Samples of the viruses claimed according to the invention have been deposited in the forms of their isolates at the European Collection of Animal Cell Cultures under the designations HIV D194 (Accession No. V 87122303) and HIV D205 (V 87122304), respectively, according to the Budapest Treaty.

A cell line infected with the virus isolate HIV D194 has been deposited under the designation HUT 194 (ECACC V 87122306) at the above-identified Deposit.

Figure 1 shows the deviation of the proteins p24 and gp41 from lambda D194 and HIV-2 ROD 27/35 in its nucleotide sequence and amino acid sequence (Guyader, M. et al., 1987, Nature 326, pages 662 - 669).

Figure 2 shows the restriction maps of the virus isolates according to the invention in comparison to known HIV sequences.

Figure 3 shows a comparative section of a sequence between HIV-2 ROD (Guyader, M. et al., 1987) and HIV-2 D194, which demonstrates the significant divergence of the variant HIV-2 D194 according to the invention in a coding range of the envelope protein gp120.

The section of the sequence shows a range of the gp120 region in comparison to the nucleotide sequence and the corresponding amino acid sequence in the single letter notation between HIV-2 D194 and HIV-2 ROD (Guyader, M. et al., 1987). The indication of the position refers to HIV-2 ROD. (-) symbolizes deletions/insertions. (.) symbolizes identical nucleotides.

Figure 4 shows a nucleotide sequence, characterizing the clone HIV-D194. Nucleotide positions designated as N or O could not be unambiguously derived from the gel pattern. The sequence starts with R/U5 region the LTR and ends with U5 region. The sequence shown is derived from subclone L10 (see restriction map). This clone differs from others derived from the same patient/blood sample by around 1 % in the nucleotide sequence as it was determined by comparison with 5kb homologous sequences derived from clone HIV-194,5.

Figure 5 shows the partial nucleotide sequences of HIV-D205 (corresponding to clone HIV-2 A7.1 of Figure 2).

Figure 6 shows the sequence homology between HIV-D194 and HIV-2 ROD in (%), separately for the functional elements.

Figure 7 shows the sequence homology of HIV-2 D205,7 compared to the HIV/SIV group (gene level; nt/aa).

Figure 8 shows a nucleotide sequence comparison of HIV-2 D205 with HIV and SIV strains (in % homology).

Figure 9 shows the correspondence of the op n reading frames with functionally known antiviral antigens.

4

35

40

45

50

55

60

Figure 10 shows the primer mediated constructions which are inserted as corresponding restriction fragments into the appropriate vectors.

Experimental results and characteristics of HIV-D194 and HIV-D205 are described in Kühnel, H. et al. (1989) Proc. Natl. Acad. Sci. 86, 4, 2383-2387.

The sequence of HIV-D194 shows a lot of so-called "open reading frames" as the fragments of HIV-D205 do. Most of these reading frames can be related to in vivo expressed proteins/antigens by comparison of homologies to previously described HIV-viruses, by comparison of Western blots performed with HIV-D194 and HIV-D205 antigens derived from infected HUT78 or U937 cells and by probing with sera from the corresponding patients and reference sera. Figure 9 shows the correspondence of the open reading frames (numbers refer to Figure 4 and 5) with functionally known antiviral antigens.

Other open reading frames are not identified on the level of their expressed antigens defined by function or antibody staining on Western Blot. However, they can be expressed under some circumstances in vivo. Other leading frames, even short ones, can be expressed as well in a way difficult to predict solely on the basis of nucleic acid sequencing data because of splicing processes.

Antigenic determinants on expressed proteins as they are important for the biological function, for target antigens in diagnostics or for immunization are spread all over the expressed linear protein sequence. Parts of these sequences can have more general antigenic properties than others as can be shown by peptide screening/mapping for antigenic sites. These sites can be expressed as single epitopes or as continuous polypeptide or in a version of in vitro or synthetically spliced antigens. Antigenicity of the expressed products can be demonstrated by antigen fixation and blotting in the Western Blot assay. Constructions for antigen expression in <u>E. coli</u> can be done by using conventional techniques using synthetic genes, restriction fragments from cloned viral genome segments, trimming products thereof by using exonuclease or DNase I or by using sequence specific synthetic primers (Figure 10) defining the desired 5' and 3' end of the fragment to be expressed together with appropriate restriction sites. These restriction sites can easily be used for ligation into a panel of expression vectors of different organisms like those derived from PLc24 (Remault et al. 1981 Gene 15, 81-83) with multicloning sites (pEX).

The expressed antigens were shown to specifically react with patients' sera. The p27(24) from gag of HIV-D205 react very sensitively with both typical HIV-1 sera and typical HIV-2 sera (see Kühnel et al). The antigenic sequence corresponding to the region shown in Figure 3 is highly specific for this particular subfamily of HIV-variants.

EXAMPLE 1

Cloned subfragments such as the Kpn-Kpn fragment comprising the gag-pol region of HIV-D194 are used as probes for HIV-2 type and SIV type sequences by hybridizing under conditions 30-40° C less in hybridization and washing conditions appropriate for homologous sequences.

HIV-1 sequences do not show up in blot and in situ hybridization unambiguously, although this region contains the p24/27 coding region which heavily cross-reacts with anti HIV-1 sera. A nucleic acid probe such as shown in and corresponding to Figure 3, however, highly specifically detects the specific subfamily of HIV-D194 compared to all other known HIV isolates. This is shown by in situ hybridization using run-off RNA of this particular region.

Claims

- 1. A virus isolate HIV D194 (ECACC V 87122303) and a virus isolate HIV D205 (ECACC V 87122304).
- 2. DNA of the proviral partial sequences according to the following restriction endonuclease section-site characteristics, within the scope of the possible and conventional variation of errors, formed in establishing restriction maps.

65

60

5

10

15

20

25

30

35

40

45

50

- 3. cDNA and -fragments of the virus isolates according to claim 1.
- 4. Viral RNA and its fragments from virus isolates according to claim 1.
- 5. Recombinant DNA containing DNA pieces, starting from the virus isolates according to claim 1.
- 6. DNA or RNA of the virus isolates according to any one of the claims 1 to 4, wherein the DNA or RNA is present as hybride with complementary labelled DNA or RNA strands.
- 7. DNA according to any one of the claims 1 to 5, characterized in that it is complementary to viral DNA or parts thereof.
- 8. Nucleic acid strands in a modified or unmodified form which under stringent conditions hybridize with nucleic acids according to claims 2 to 7, and more specifically those nucleic acids which correspond to the highly variable regions of the HIV genom, more particularly in the range of the region coding the envelope protein.
 - 9. Expression products of the virus isolates according to claim 1.
- 10. Expression products according to claim 1, characterized in that the proteins, peptides or fragments have been coded within the meaning of an open reading frame on the DNA according to claim 2.
- 11. A process for the <u>in vitro</u> detection of antibodies against expression products of the viruses according to claim 1, characterized in that the expression products or parts thereof of the viruses are detected by means of immunological methods.
- 12. The process according to claim 11, characterized in that the expression products are proteins,

50

55

60

peptides or parts thereof which have been codes within the meaning of an open reading frame on the DNA according to claim 2 and are prepared by synthetic or biosynthetic processes.

- 13. The process according to claims 11 or 12, characterized in that previously a definite amount or a combination of expression products or parts thereof are fixed on microtiter plates, whereupon subsequently biological samples, dilut d or undiluted, are contacted with the coated microtiter plates and aft r incubation and sequential washing steps can be identified by means of a det cting reagent or of labelled anti-HIV antibodies.
- 14. The process according to one of claims 11 to 13, characterized in that filter strips and plastic strips or rods are used instead of microtiter plates, wherein the expression products of the viruses have been fixed at respective specific positions by isolated application of the different antigens.
- 15. The process according to claim 14, characterized in that the expression products or parts thereof are separated by gel electrophoresis and then transferred by blotting whereupon incubation with anti-HIV antibodies and the detection thereof are effected.
- 16. the process according to any one of claims 11 to 15, characterized in that the detection is effected on solid phase carriers to which the antigen determinants have been bonded, the solid phase carrier consisting of particles.
- 17. The process according to any one of claims 11 to 16, characterized in that the expression products are virus antigens derived from in vitro-infected cells, said antigens being contacted with biological test materials as antigens bonded to fixed cells, and that the subsequent antibody bonding can be determined with immunological detection reagents by means of an apparatus, for example with a cytofluorimeter, or visually.
- 18. The process according to one of claims 11 to 17, characterized in that the antigens are determined by competitive ELISA.
- 19. A process for detecting HIV-related nucleic acids (DNA and RNA) in biological samples, cells and in isolated form by using the nucleic acids according to claims 2 to 7.
- 20. The process according to any one of claims 11 to 19, characterized in that the expression products are supplemented by materials which are related to other HIV variants, which, however, are distinguished in their biological properties from the materials of the isolates according to claim 1.
- 21. Immunogenic composition, containing expressing products such as antigens, codes by the viruses of the virus isolates according to claim 1.
- 22. The immunogenic composition according to claim 21, characterized in that one antigen constitutes part of the total membrane antigen or is the total membrane antigen or a derivative thereof or a mixture of parts of the membrane antigens.
- 23. Antibodies, and more specifically monoclonal antibodies, against expression products of the virus isolates according to claim 1.
- 24. Cells which have been transformed with nucleic acids according to any one of claims 2 to 7.
- 25. Cells which have been infected with virus isolates according to claim 1.
- 26. Cell line HUT 194 (ECACC V 87122306).

55

5

10

15

20

25

30

35

40

45

50

60

Deviation of p24 and gp41 from lambda D194 and HIV-2 ROD 27/35*

	Nucleotide Sequence	Amino Acid Sequence
gp41	about 15%	about 21%
p24	about 13%	about 8%

Fig. 1

^{*} M.Guyader et al. 1987, Nature 326, 662-669

Fig. 2

Figure 3

6402 /

Н L F E к HIV2 ROD GAT GTC TGG CAT CTA TTC GAG ACA TCA ATA AAA CCA TGT HIV2 D194 AGAT F Ε s С R L Т I к P К HIV2 ROD GTC AAA CTA ACA CCT TTA TGT GTA GCA ATG AAA TGC AGC HIV2 D194G T.G ..G ..C C..G ..GT ..T ---K L T P L С V A М N С s E s s T G N N T т s K HIVZ ROD AGC ACA GAG AGC AGC ACA GGG AAC AAC ACA ACC TCA AAG HIV2 D194 --- --- --- --- --- ..T .T. ..T ...

E s T s T T T T T P Q HIV2 ROD AGC ACA AGC ACA ACC ACA ACC ACA CCC ACA GAC CAG GAG HIV2 D194 --- --- G.G ..T ... G.G ... C.G AGT C.. CCA A.C ATT т S P P T G T Α

s

T

N

I

ľ s E Α HIV2 ROD CAA GAG ATA AGT GAG GAT ACT CCA TGC GCA CGC GCA GAC HIV2 D194 AC. ATA ... GA. ..A A.. T.. A.C ..T AT. G.. .AC .GC I I D E N S T C I G D G.

The section of the sequence shows a range of the gp120 region in comparison to the nucleotide sequence and the corresponding amino acid sequence in the single letter notation between HIV-2 D194 and HIV-2 ROD (Guyader, M. et al., 1987). The indication of the position refers to HIV-2 ROD. (-) symbolizes deletions/insertions. (.) symbolizes identical nucleotides.

Sheet 1

This nucleotide sequence characterizes the clone HIV-D194. Nucleotide positions designated as N or O could not be unambiguously derived from the gel pattern. The sequence starts with the R/U5 region the LTR and ends with the U5 region.

20 30 40 50 60 10 20 30 GCCTGGGAG GTTCTCCCA GCACTAGCAG
10 COCCE COCEGATIGA CCCCTCGGAG GTTCTCTCCA GCACIAGCAG
10 20 30 40 10 CONTROL OF THE PROPERTY OF THE
70 80 90 100 TIU 70 80 90 TOO TEGGCAGACG GTAGAGCCTG GCTAGACTCT CACCAGTGCT TGGCCGGCAC TGGGCAGACG
70 CCTGTTCCCT GCTAGACTCT CACCAGTGCT TGGCCGGCAC TOTAGACTCT
GTAGAGCCTG GGTGTTCCCT GCTAGACTCT 150 160 170 180 130 140 150 160 CCAGTTAGAA GCAAGTTAAG
130 140 150 CCEGITAGAA GCAAGITAAG
GCTCCACGCT TGCTTGCTTA AACTOO 220 230 240 190 200 210 220 230 240 190 ACTCCCCCCC TGGTCATTCG GTGTTCATCT GAGTAACAAG
190 200 ACTCCCCCC TGGTCATTCG GTGTTCATCT GAGTAACAAG
190 200 210 220 230 TGTGTGTTCC CATCTCCT AGTCGCCGCC TGGTCATTCG GTGTTCATCT GAGTAACAAG
TGTGTGTTCC CATCTCTCC1 AGTCCCCTT 250 260 270 280 290 300 250 TCCCGCTTT GAGAATCCAA GGCAGGAAAA TCCCTAGCAG
250 260 270 280 290 250 260 270 280 290 ACCCTGGTCT GTTAGGACCC TTCCCGCTTT GAGAATCCAA GGCAGGAAAA TCCCTAGCAG
ACCCTGGTCT GTTAGGACCC TICCCGCTT CANADAC 350 360 360 310 320 330 340 350 360 360 310 320 320 320 ACTGAGAAGC CCTGGAACAC GGCTGAGTGA
310 320 330 CTGAGARG CCTGGAACAC GGCTGAGTGA
310 320 330 340 350 GCTGAGTGA GTTGGCGCCC GAACAGGGAC TTGAAAGAGG ACTGAGAAGC CCTGGAACAC GGCTGAGTGA
GTTGGCGCCC GAACAGGGAC FICHLISTS 370 380 390 400 410 420 370 380 390 CCTAGAAAAG CGCGGGCCGA
370 380 ACCACG ACGGAGTGCT CCTAGAAAAG CGCGGGCCCGA
AGGCAGTAAG GGCGGCAGGA AGALLATA
440 450 460 GTAAGTACCT
430 440 450 460 470 GGTACCGAAG CGGCGTGTGG AGCGGGAGTG AAAGAGGCCT CCGGGTGAAG GTAAGTACCT
520 530 540
. 490 500 STATECTACC TITAGACAGG TAGAAGATIG
GGTACCGAAG CGGCGTGTGG AGCGGGAGTG AAAGAGGCCT GGGAAGAGGGGAGTG AAAGAGGCCT GGGAAGAGGGGAGTG AAAGAGGCCT GGGAAGAGATTG ACACCGAAAA CTGTAGCCAG AAAAGGCTTG TTATCCTACC TTTAGACAGG TAGAAGATTG ACACCGAAAA CTGTAGCCAG AAAAGGCTTG TTATCCTACC TTTAGACAGG TAGAAGATTG
ACACCGAAAA CTGTAGCCAG AAAAGGGTTU 500 500 600 500 500 500 500 600 500 500
550 560 570 580 TGGGAGATGG GCGCGAGAAA CTCCGTCTTG AGAGGGAAAA AAGCAGACGA ATTAGAAAAA
TGGGAGATGG GGGGGAGATGG GGGGGAGATGG GGGGAGATGG GGGGAGATGG GGGGGAGATGG GGGGAGATGG GGGGAGATGG GGGGAGATGG GGGGAGATGG
TGGGAGATGG GCGCCANALLANGA TACAGGTTAA AACATGTTGT GTGGGCAGCG
amma command confictable and community
720
670 680 690 700 710 ACACATTCEG ATTGGCAGA AGCTTGCCAA AATCAAAAGA AGGTTGCCAA
AATGAATTAG ACAGALICEG AIIGECACHE
730 740 750 760 770 780
730 740 750 760 AAGATTTTAGA ACCATTAGTA CCAACAGGGT CAGAAAATTT AAAAAGCCTT
AAGATTCTTA AAGTTTTAGA ACCATTAGTA GOLZIO
790 800 810 820 830 840
mmy ATT CCG TCTCCGTCAT TIGGIGGIG
890 900
850 860 870 880 CAGGAACTGC AGAGAAAATG
GAAGCAAAGA AACTAGCACA GAGACATCIA GIGGCAGAAA CHOOLAGA
950 950
910 920 930 940 CCAAATATAA GTAGACCAAC AGCACCACCT AGTGGGAAAG GGAGGAAACT TCCCCGTGCA
CCVVVIATVY GINGUCCUUG MAGNILIN
970 980 990 1000 1010 1020
970 980 990 1000 CGAACTCTAA ATGCTTGGGT ACAGGCAGGC GGCAACTATA TCCATGTGCC GCTGAGCCC CGAACTCTAA ATGCTTGGGT
1050 1050 1070 1080
1030 1040 1050 1060 2070 AGAINGTAGTA GAGGAAAAGA AGTTCGGGGC AGAAGTAGTG CCAGGATTTC AGGCACTCTC
1090 1100 1110 1120 1130 1140
1090 1100 1110 1120 1200 AGAAGGCTGC ACGCCCTATG ATATCAATCA AATGCTTAAT TGTGTGGGCG ATCACCAAGC

1150	1160	1170	1180	1190	1200
AGCTATGCAA	ATAATCAGAG	AAATTATTAA	TGAGGAAGCA	GCAGATTGGG	ATGCGCAGCA
1210	1220	1230	1240	1250	
CCCAATACCA	GGCCCCTTAC	CAGCAGGGCA	GCTTAGAGAC	CCAAGGGGGT	
1270	1280	1290	1300	1310	1320
AGGAACAACA	AGCACAGTAG	ATGAACAGAT	CCAGTGGATG	TATAGGCAAC	CAAATCCCGT
1330	1340	1350	1360	1370	1380
GCCGGTAGGG	AACATCTACA	GGAGATGGAT	CCAGATAGGG	CTACAGAAAT	GTGTCAGGAT
GTACAACCCA	ACTAACATCT	TAGATGTGAA	GCAGGGACCA	1430 Alaglatogt	TCCAGAGCTA
1450 TGTAGACAGA	TTCTACAAAA	GCCTAAGGGC	AGAACAAACA	1490 GACCCGGCTG	IMMERICAL
1510	1520	1530	1540	1550	1560
GATGACCCAA	ACGCTGCTAA	TACAGAATGC	CAACCCAGAC	TGCAAGTTAG	TATTAAAAGG
1570	1580	1590	1600	1610	1620
ACTAGGGATG	AATCCCACCC	TAGAGGAGAT	GCTGACTGCC	TGCCAGGGAG	TAGGCGGACC
1630	1640	1650	1660	1670	1680
AAGCCAGAAA	GCCAGACTAA	TGGCTGAAGC	CCTAAAGGAG	GCTTTGACGC	CAGCCCCTAT
1690	1700	1710	1720	1730	1740
CCCATTTGCA	GCAGCCCAAC	AAAGAAGGGC	AATTAGGTGT	TGGAATTGTG	GAAAGGAGGG
1750	1760	1770	1780	1790	1800
ACACTCGGCG	AAACAGTGCC	GAGCACCCAG	AAGACAGGGC	TGCTGGAAGT	GTGGCAAGTC
1810	1820	1830	1840	1850	1860
AGGACACATC	ATGGCAAACT	GCCCGGAAAG	ACAGGCAGGT	TTTTTAGGGA	TGGGCCCACG
1870	1880	1890	1900	1910	1920
GGGAAAGCAG	CCCCGCAACT	TCCCCGCGGC	CCAAGCTCCT	CAGGGGCTGA	TACCAACAGC
1930	1940	1950	1960	1970	1980
ACCCCCAATA	GATCCAGCAG	TGGACCTGTT	GGAGAAATAT	ATGCAGCAAG	GGAGAAAGCA
1990	2000	2010	2020	2030	2040
GAGAGAGCAG	AGGGAGAGAC	CATACAAGGA	CGTGACGGAG	GACTTACTGC	ACCTCGAGCA
2050	2060	2070	2080	2090	2100
GGGAGAGACG	CCCCACAGAG	GGGČGACAGA	GGACTTGCTA	CACCTCAATT	CTCTCTTTGG
	2120 TAGTCACAGC			2150 TAGAAGTCTT	2160 ACTAGACACA
			2200 GAGTTAGGGG	2210 ACAATTACAC	
2230	2240	2250	2260	2270	2260
GTGGGGGGAA	TAGGGGGATT	CATAAATACC	AAAGAATATA	AAAATGTAGA	AATAAAGGTA
2290 CTAAATAAAA			2320 ACAGGAGATA	2330 CCCCAATCAA	2340 CATTTTTGGC

AGRAATATTC	2360 TGGCAACCTT	MCCCHICICH	11,22,001		2400 GTTAGACCCA
ATARAGTAA	2420 CATTGAAGCC	AGGGAAAGAT	CCACCAACCC	10.11.0.1.1	
аланалала	2480 TAGAAGCACT	AAAAGAAATT	1616Hwarm	1 COMMISSION	
GARGARGCAC	2540 CTCCAACTAA	TCCTTATAAT	ACCCCCACAT	1100:22	
AAGAACAAAT	2600 GGAGAATGCT	WALL CALLET	Meneral.		
ACAGAAATTC	2660 AGCTAGGAAT	TCCACACCCG	GCAGGATTAG	CCMmme	
GTACTAGATG	2720 TAGGGGATGC	CTACTTTTCC	ATACCACIAC	F. G. DIGITLE	
ACTGCATTTA	2780 CCCTACCATC	AGTAAACAAT	GCAGAGCCAG	b-Www.	102111111
GTCTTACCAC	2840 AAGGATGGAA	AGGATCACCA	GCHAICIIIC	A	
TTAGAACCTT	2900 TCAGAAAAGC	AAACCCAGAC	GTCATTCICA	ICCANINCAL	001.20
TTAATAGCTA	2960 GTGACAGGAC	GGGTTTAGAG	CATGACAAAG	1701001001	
CTTCTGAATG	3020 GCCTAGGGTT	CTCTACCCCA	GATGAGAAGT	I CCMMercor.	33313
CAATGGATGG	3060 GCTATGAATT	GTGGCCRACT	WHWIGGHAM	1000	
3130 CAGAAAGAA	3140 A TATGGACAG	3150 CAATGACATO	316 CAAAAACTA	3170 TAGGAGTTT	3180 GAACTGGGCG
GCGCAGATCT	3200 ATCCAGGGAT	AAAAACCAAG	CATTTATGTA	AATTGATTAG	EGGRESARIG
3250 ACACTCACAC	3260 ; AGGAAGTACA	3270 GTGGACAGAG	3280 TTAGCAGAGO	3290 CAGAACTAGA	3300 AGAAAACAAA
3310 ATTATCTTA	3320 GTCAGGAACA	3330 AGAGGGATCO	3340 TACTATCAGO	3350 RAGAAGAK	3360 ACTAGAAGCA
acagtcatc	oocc A <u>AAAGCCAAG</u> A	cAATCAGTGC	34.00 GCATACAAAA	3410 TACACCAGGO	0 2420 AGAGAGGETT
3430 CTAAAAGTA	3440 GAAAGTATG	3450 GAAGATAAA	3460 A AATACTCAT	3470 CCAATGGGG	3480 CAGACTACTA
3490 GCACAAGTA	3500 3 TCCAAAAAA	3510 r Aggaaaggai	3520 A GCACTGGTC	3.530 A TTTGGGGAC	3540 AGTGCCAAAA

Fig. 4

Sheet 4

3550	3560	3570	3580	3590	3600
TTTCACCTAC	CGGTAGAGAG	AGACACCTGG	GAGCAATGGT	GGGATAACTA	CTGGCAAGTA
3610	3620	3630	3640	3650	3660
ACATGGGTCC	CAGAGTGGGA	CTTCGTATCT	ACCCCACCAC	TGGTCAGGTT	GACATTTAAC
3670	3680	3690	3700	3710	3720
TTGGTAGGAG	ATCCTATACC	AGGCACAGAG	ACCTTTTACA	CAGATGGATC	ATGCAATAGA
3730	3740	3750	3760	3770	3780
CAGTCAAAAG	AAGGAAAAGC	AGGATATGTA	ACAGATAGAG	GGAGAGACAG	GGTAAGAGTA
3790	3800	3810	3620	3830	3840
TTAGAGCAAA	CATCCAATCA	GCAAGCAGAA	CTAGAAGCCT	TTGCGATGGC	ACTGGCAGAC
3850	3260	3870	3880	3890	3900
TCAGGTCCCA	AGGTTAATAT	CATAGTAGAC	TCACAGTATG	TAATGGGGAT	AGTAGCAGGC
3910	3920	0595	3940	3950	0960
CAACCAACAG	AGTCAGAAAA	ATDATAGAT	AACCAAATCA	TTGAGGACAT	AAADAATAD
3970	3980	3990	4000	4010	4020
GAAGCAGTCT	ATGTTGCATG	GGTCCCAGCC	CATAAAGGCA	TAGGAGGAAA	CCAGGAAGTA
	4040 TAAGTCAGGG				
4090	4100	4110	4120	4130	4140
CAAGAAGAAC	ACGAAAAATA	TCATAGCAAT	ATAAAAGAAC	TAACCCATAA	ATTTGGAATA
4150	4160	4170	4180	4190	4200
CCCCAACTAG	TGGCAAGACA	GATAGTAAAC	ACATGTGCCC	AATGCCAACA	GAAAGGAGAA
4210	4220	4230	4240	4250	4260
GCCATACATG	GGCAAGTAAA	TGCAGAAATA	GGCGTTTGGC	AAATGGACTG	CACACACTTA
4270	4280	4290	4300	4310	4320
GAAGGAAAA	TCATTATAGT	AGCAGTGCAT	GTTGCAAGTG	GATTCATAGA	AGCAGAAGTC
4330	4340	4350	4360	4370	4380
ATCCCACAGG	AATCAGGAAG	GCAGACAGCA	CTCTTCCTAT	TAAAACTGGC	CAGTAGGTGG
CCARTARCEC	4400 ACTTGCACAC	AGACAATGGC	CCCAACTTCA	CTTCACAGGA	AGTGAAGATG
GTGGCATGGT	4460 GGATAGGTAT	AGAGCAATCC	TTTGGAGTAC	CTTACAATCC	
	AAGCAATGAA		AAAAATCAGA	TAAGTAGAAT	4560 TAGAGAACAG
4570 GCAAATACAA	4580 TAGAAACAAT				
	4.640 GGGATATGAC	4.650 CCCAGCAGAA			
4690	4700	4710	4720	4730	4740
GAAATACAAT	TGCTCCAAAG	AAAAAATTCA	AATTTTAAAA	AATTCCAGGT	CTATTACAGA

			4720	4790 TGTGGAAGGG	4800
4750	4760	4770	4760 4760 4760	TGTGGAAGGG	AGACGGAGCA
	7 T T D (=1 ") (= 1 L*	CVVVVCCC*100-			
4810	4820	4830	GTAGTACCAA	CAAGGAAGGC	CAAGATTATC
	S CCTS GGGGC	COMCATAGOS	CTITOTITO		
				4010	- 52U
4870	4830	7600m0.com	AGTAGTTCCC	ACCTGGAGGG	TGCCAGGGAG
AGGGACTATG	CAGGAAGGCA	AGAACIGGAI	11021102		
			1000	707D	4950
4930	4940	mmcmca AGCA	CCTGAAGTAC	AGAACAAAAG	ACTTAGAGGA
GATGGAGAGG	TGGCATAGCC	TIGICARGON		AGAACAAAAG	
1	E000	5010	5020	5030 TGGACTTGCA	5040
4990	2000 2000	ACARGGTAGG	ATGGGCATGG	TGGACTTGCA	GCAGGGTAAT
GGTGCGCTAT	GTTCCCCATC	Acta le care a			5100
	5060	5070	5080	5090 TATTGGAACC	5100
5050	#22C2C3C3	GTCATCTAGA	GATACAGGCA	TATTGGAACC	TAACACCAGA
ATTCCCACTA	CARGGAGAAA	G10111 01111			E760
6310	5120	5130	5140	5150 TATACAGAAA	249272222
5110	CTCTCCTCTC	ATTCAGTAAG	GTTAACCTGG	TATACAGAAA	AGIICIGGAC
AAAGGA166	C1C1CC1010				5220
E170	5180	5190	5200	5210 ACTTATTTCT	CTTCCTTAC
2 C 2 TC TT 2 C C	CCAGACTGTG	CAGACTCCCT	AATACACAGC	ACTIATITUT	CTTGCTTTAC
ACATGITACC	CCACHOLOLO				5290
E220	5240	5250	5260	52/0	5280 GCAACTACCC
5230 5230	CT22C22GAGAG	CCATCAGAGO	GGAAAAGTT	A TIGICCIGCI	GCAACTACCC
				. 6770	5340
5290	5300	5310	5320	CCCCTAGTGG	5340 TAGTGCAACA
CCARGCTCAT	· AAAGCACAGG	TACCATCAC.	LICAMINECE	•	
COMMODE				5 5390	5400 ACCATTGGAG
5350	5360	537	5380	, wccycaacac	ACCATTGGAG
A A A T G G C A G A	L CCCCAGAGAA	AGGGTGCCG	C CAGOITATION	-	
				5450	5460
5410	5420	543	0 244°	CREGGAGGC	GTGAACCATC
A CCCCTTCG	A GTGGCTAGA	AGGACTALA	G Wiggerram.		
				n 5510	j 552.⊍
547	5460	549	0 222CCTCCT	c cccatatic	G CATGATGAAC
TGCCCCGAG	A GCTCATTTT	CAGGTGIGG	C WWWGGIGGI	• •	
•				5.57	ი 5580
5 53	0 5541	555	0.00 0.0000000000000000000000000000000	C CL TGCA	G AAAGCTGTGT
AAGGGATGT	C AACAAGTTA	C ACAAAGTAT	A GAINIIIGI	G Q.	
				- E69	0 5640 G GGAGGATGGA
559	0 560	0 567	562	200000000	c ccaccatega
ATATACATT	T CAAGAAGGG	G AGCACATE	C 16666HGHG		
				5.60	Δ 57.00
565	o 566	0 567	70 558	ያር	G CACCAACAGA
GACCAGGAC	C TCCCCCTCC	T CCCCCTCC!	G GTCTAGTC	M MIGHETCH	
				10 575	57.60
571	.0 572	0 57	30 27.50mbC0	C ACTACCTGG	G TAATAGAAAC
GTTTCCCCC	A GAAGATGGG	A CCCCACGG	AC MCMCCING	JO ROZMOGIO	G TAATAGAAAC
				521	n 5820
577	578	U 336000003	ጋር አግ አርኔጥጥጥር	AT CCCTGCTTG	C TAATIGCTCT
TCTGAAGGA	la atcaaggaa	G ANGULTIA	DU UCUITITA		
			m:n E.O.	so 587	70 5880
58:	584	יסכ רא האמאמיניה או	GA CACCCTTG	AA GGAGCCAG?	G AGCTCATTAG
	90 590	10 59	10 59	20 593	5940
5.83	90 CC3CCCCT(T TOGTGOAC	AT CAGAGOGG	GA TGTGACCG	CAAGAAAGGG
AGTCCTAC	A CONGCCCI	, 100100iio			-

Fig. 4

Sheet 6

-	•				
CCAAACAAGG	AGAAGAGCTC	CTTGCCCAGC	TGCACCGACC		TGCACTAACT
6010	6020	6030	6040	6050	0000
CATGCTATTG	TAAGCAGTGC	AGTTACCATT	GCCAGCTGTG	TTTCTTGAAA	DDDDDDA44
6070	6080	6090	6100	6110	6120
GGATATGGTA	TGCGCGACAG	GGCAGACGAA	GAAGGACTCC	AAGAAAAACT	AAGACTCATC
CGCCTCCTGC	ATCAGATAAG	TAAGTATEGA	GCCTGGTAGG		ligilaccur
TTTATTAACT	AGTGCTTGCT	TAATATATIG	CAAACAATAT		TCIAIGGCAI
ACCCGCGTGG	AGAAATGCAT	CTATTCCCCT	ATTTTGTGCA	6290 ACCAAAAATA	Cricianion
GGGGACCAIC	CAGTGCTTGC	CAGACAATGA	TGATTATCAG	6350 GAAATAACCT	THAMICICAC
AGAAGCTTTT	GATGCATGGG	ATAATACAGT	AACAGAACAA	6410 GCAATAGAAG	Algicidend
6430	6440	6450	6460	6470	6480
ACTGTTTGAG	ACATCAATAA	AACCATGTGT	CAAGTTGACG	CCCCTATGIG	TGGCGATGAA
6490	6500	6510	6520	6530	6540
TTGTAATATA	ACTTCAGGGA	CTACCGCGAC	CCCGAGTCCA	CCAAACATTA	CAATAATAGA
6550	6560	6570	6580	6590	6600
TGAAAATTCT	ACCTGTATAG	GCGACAACAA	CTGCACAGGA	TTAGGGAAAG	AAGAGGTGGT
6610	6620	6630	6640	6650	6660
TGAGTGTGAG	TTCAATATGA	CGGGGCTAGA	ACAAGATAAG	AAAAGGAAGT	ATAATGACGC
6670	6680	6690	6700	6710	6720
ATGGTACTCA	AGAGATGTGG	TTTGTGACAA	GACAAACGGA	ACAGGCACAT	GTTACATGAG
6730	6740	6750	6760	6770	6780
ACATTGCAAC	ACATCAGTCA	TCAAAGAGTC	ATGTGACAAG	CACTATTGGG	ATGCTATGAA
6790	6800	6810	6820	6830	6840
GTTTAGATAC	TGTGCACCAC	CGGGTTTTGC	CCTACTAAGA	TGCAATGATA	CCAACTATTC
6850	6860	6870	6380	6890	0900
AGGCTTTGAA	CCTAAGTGCT	CTAAAGTAGT	AGCTGCTTCA	TGCACAAGGA	TGATGGAAAC
6910	6920	6930	6940	6950	6960
GCAAACTTCT	ACTIGGTTIG	GCTTTAATGG	CACTAGAGCA	GOAOATAGAA	CATATATCTA
6970	6980	6990	7000	7010	7020
TTGGCATGGT	AAOGATAATA	GGACTATCAT	TAGCTT <u>AAA</u> C	AOGTATTATA	ATCTCACAAT
7030	7040	7050	7060	7070	7080
GCATTGTAAG	AGACCAGGAA	ATAAGACAGT	TGTACCAATA	ACACTTATGT	CAGGGCGAAG
7090	7100	7110	7120	7130	7140
GTTTCACTCT	CGGCCAGTCT	ACAACAAAA	ACCTGGGCAG	GCATGGTGTT	GGTTTCAAGG

Sheet 7

CAACTGGATA	GAAGCCATGC	GGGAGGTGAA	GCAAACCCTT	7190 GCAAAACATC	CCAGGTACGG
7210 AGGAACAAAT	7220 GATACAGGAA	7230 AAATTAACTT	7240 TACGAAGCCA	7250 GGAATAGGTT	7260 CAGACCCAGA
7270 AGTGACATAC	7280 ATGTGGACTA	7290 ACTGCAGAGG	7300 AGAATTTCTC	7310 TACTGTAATA	7320 TGACTTGGTT
	GTAGAAAATA	AGACGAACCA	AACACACGGC	AACTATGCGC	CATGCCATAT
AAGGCAGATA	ATTAACACCT	GGCATAAGGT	AGGGACAAAT	7430 GTATATTTGC	CTCCTAGGGA
7450 AGGGGAGTTG	ACCTGCAATT	CAACAGTAAC	CAGCATAATT	7490 GCTAACATIG	ACTUAGRIGG
	AACATTACCT	TTAGTGCAGA	AGTGGCAGAA	7550 CIGTACCGAT	INGANITUGG
GGACTACAAA	TTGATAGAAG	TAACACCAAT	TCCGTTCGCA	7610 CCTACAAAAG	ACAMMAGAIN
TTCCTCGGCT	CCAGTGAGGA	ACAAAAGAGG	TGIGIICGIG	CINCOCIT -	TGGGTTTTCT
CGCAGCAGCA	GGTTCTGCAA	TGGGCGGCNC	GICCIIGACG	7730 CTGTCGGCTC	
7750 TTTACTGGCC	7760 GGGATAGTGC	AGCAACAGCA	MCMGCIGIIG	0,100204241	7800 AGAGACAACA
7810 AGAAATGTTG	7820 CGATTGACCG	7830 TCTGGGGAAC	7840 GAAAATCTC	CAGGÇAAGAG	7860 TCACTGCTAT
CGAGAAATAC	TTAAAGGACC	AGGCACAGCT	7900 AAATTCATGG	GGATGTGCGT	7920 TTAGGCAGGT
7930 CTGCCACACT	ACTGTACCAT	GGGTAAATGA	CICCITAACA	CCIGACIGGA	7980 ACAATATGAC
7990 ATGGCAGGAA	TGGGAAAAAC	GAGTCCACTA	CCTHGAGGCA	MINICACIO	0403 ADATTTAGA
050\$ ACAGGCACAA	8060 ATTCAACAA	8070 AAAAGAATAT	8080 GTATGAACTA	8090 CAAAAACTAA	8100 ATAGCTGGGA
			9140	8150	8160 ATGGAGTTA
		0107	5200	8210	0228 PATTAAGTAGT
		0.557	. 5260	8270	0828 ADCAGATCA
			8320	8330	8340 CCGGAGACGA

8350	8360	8370	6380	8390	8400
CAGTGGTTTC	GGCTTGTGGC	CTTGGCCACI		CAATTCCTGA	
8410			8440	8450	
GACTCGCCTC	TTGACCGGGC	TATACAACAG	CTGCAGGGGC	TTACTATCCA	AGAACTCCCC
8470				8510	
GACCCGCCGA	CTGATCTCCC	AGAGTCTAAC	AGCAATCAGG	GACTGGCTGA	GACTTAAGGC
8530					
GGCCTACCTG	CAATATGGGT	GCGAGTGGAT	CCAAGAAGCG	TTCCGAGCAT	TCGCAAGGAC
8590					
TGCGAGAGAG	ACTATTGCGG	GCGCGTGGAG	GGGGTTATGT	GAAGCAGCGC	AACGCATCGG
8650				8690	
GAGGGGAATC	CTCGCAGTCC	CAAGAAGGAT	,	CCACAAATCC	CCCTCCTCTC
8710					
AGGGACAGCA	GTATCAGCAG	GGAGAGTTCA		ATGGAGAACC	CCAGCAGCAA
8770				8810	
TAGGGCAGAA	AAATTCATAT			TGTAGATTCT	GATGATGATG
8830			8860	8870	
ACCTAGTGGG	AGTTCCTGTT	ATGCCAAGAG	TACCGCTGAG	AGAAATGACC	TATAAACTGG
8890					
		ATAAAAGAAA	AAGGAGGACT	GGAAGGGATA	TTTTACAGTA
8950	8960	8970	8980	8990	9000
				GGAAGGGATA	ATACCAGATT
9010	9020	9030	9040	9050	9060
				GTACTTCGGG	TGGCTGTGGA
9070	9080	9090	9100	9110	9120
				AGAGACCAAC	
9130	9140	9150	9160	9170	9180
				GACACTAGTT	
9190	9200	9210	9220	9230	9240
			TCATTCTGCA	CCCAGAAGAA	TTTGGGCACA
9250	9260	9270	9280	9290	9300
		GAGTGGAAGG	CAAAACTGAA	AGCAAGAGGG	ATACCATATA
9310	9320	9330	9340	9350	9360
				TAGCTACTAA	GAACAGCTGA
9370	9380	9390	9400	9410	9420
GHCTGCHGGG	ACTITCCAGA	AGGGCTGTA	ACCAAGGGAG	GGACATGGGA	GGAGCTGGTG
9430	9440	9450	9460	9470	
	TCATATTCTC	TGTATAAATG	TACCCGCTTC	TTGCATTGTA	TTC

Partial nucleotide sequences of HIV-D205 (corresponding to clone HIV-2 A7.1 of Fig. 2);

HIV-D205; corresponding to pos. 8942-9255 in HIV-2 ROD; homology 71.6 %

10	20	30	40	50	60
TGGAAGGGAT	GTATTATAGT	GAGAGAAGAC	ACAGAATATT	AGACACATAT	TTTGAGAATG
70	80	90	100	110	120
AAGAAGGCAT	TGTGTCTGGC	TGGCAAAACT	ATACTCATGG	GCCAGGGATA	AGGCATCCCA
130	140		160	170	180
AATACTTTGG	TTGGCTGTGG		CAGTAGAGGT	GCCAGCAGCG	ACCCGAGAGG
190	200	210	220	230	240
AGGAGGAAAC	CCATTGCCTA	ATGCACCCGG	CACAGATCTC	CTCATGGGAT	GACATCCATG
250	260	270	280	290	300
GGGAGACTCT	TATCTGGCAG	TTTGATTCCC	TCCTGGCATA	TGATTATGTG	GCTTTCAATA
310 GGTTTCCAGA	AGAGTTT			:	

HIV-D205, corresponding to position 718-2510 in HIV-2ROD; homology 78.6 %

60	50	40	30	20	
TTAAAAAGCC	GTCAGAAAAT	TACCAACAGG	GCTCCATTAG	TAAAGTCTTA	AAAAAATTCT
				80 CGTCTGCGTC	
72210114110110	110110111111010	1001100011011			
180	170	160	150	140	130
ATGCCAGCTA	CACAGAAAAA	TAGCGGCGGA	CAGAGACATC	AAAGATAGCA	AGGAAGCAAA
240	230	220	210	200	190
				AACAGCACCA	
300	290	280	270	260	250
				CCTGCCGCTA	
360	350	340	330	320	310
GGATGCACCC	ACTATCAGAA	GATTTCAGGC	GTAGTACCAG	CGGGGCAGAA	AAAAGAAGTT
420	410	400	390	380	370
ЛТССАЛАТТА	TCAGGCAGCC	TAGGAGAACA	CTAAATTGTG	AAATCAGATG	CTTATGATAT
480	470	460	450	440	430
				AATCAATGAG	

540		520	510	500	490
ACCACCAGCA		GAGGGTCAGA	AGGGACCCAA	AGGACAACTT	CAATGCCGGC
600		580	570	560	550
GTGGGAAACA		GGGCCCAAAA	TGGATGTACA	ACAGATACAG	CAGTAGAGGA
		640 AGAAATGTGT	630 TTAGGATTGC	620 ATGGATTCAA	610 TTTATAGAAG
	710	700	690	680	670
	AAGCTATGTA	AGCCCTTCCA	GGACCAAAGG	CATAAAGCAG	ACATATTAGA
780	770	760	750	740	730
ACACAAACAC	AAATTGGATG	CAGCAGTGAA	CAAACAGACC	ACGGGCAGAA	ACAAAAGCTT
	830	820	810	800	790
	TAAGGGCTTG	AGTTAGTGCT	CCAGATTGCA	GAATGCTAAC	TGCTGATTCA
	890	880	870	860	850
	AGGCCCAGGG	AAGGGATAGG	ACGGCCTGCC	GGAAATGCTA	CCACCTTAGA
960	950	940	930	920	910
TTTGCTGCCG	ACCCATACCG	TAACACCTGC	AAAGAGGCCC	CGAAGCCTTA	GGCTAATGGC
1020	1010	1000	990	980	970
AAACAGGGAC	GAACTGTGGC	TGACATGCTG	AGAGGGACAG	AGCAGGGAAG	TTCAACAAAA
1080	1070	1060	1050	1040	1030
GGAAAAACAG	CTGGAAATGT	GACAGGGATG	GCCCCTAGAA	GCAATGCAGG	ACACAGCCAG
1140	1130	1120	1110	1100	1090
GGACCCTGGG	TTTAGGGTTA	AGGCGGGTTT	CCAGAAAGAC	GTCAAAATGC	GACACATCAT
. 1200		1180	1170	1160	1150
CCATCTGCAC		AAGTGCCTCA	CCCATGACCC	TCGCAACTTC	GAAAGAAGCC
1260	1250	1240	1230	1220	1210
GCGCCCCTG	GACACCATCT	CTCGGGGGC	GGCATGACAC	CCCAGCAGAG	CCCCGATGAA
1320	1310	1300	1290	1280	1270
CAGAGAGAGA	GGGGAGACAA	ACATGCAGAT	CTGAAAAGTT	AGTGGAGATG	CAGATCCAGC
1380	1370	1360	1350	1340	1330
TCTCTCTTTG	GCACCTCAAT	AGGATTTGCT	GAGGTGACAG	ACCCTACAAG	GCCGAGAGAG
1440	1430	1420	1410	1400	1390
TACTAGACAC	GTAGAAGTAT	GGGTCAGTCA	CATGTATCGA	GTAGTCAAAG	GAGAAGACCA
CCCCAAAAAT	1490 AGCAATTACA	AGAATTAGGT		1460 GACTCAATAG	1450 AGGAGTTGAC
1560	1550	1540	1530	1520	1510
AAATAGAAGT	AAAGATGTAG	CAAAGAATAC	TCATAAATAC	ATAGGAGGGT	AGTAGGAGGG
1620	1610	1600	1590	1580	1570
ACATTTTTGG	ACCCCAATAA	GACAGGAGAT	CAACTATAAT	AGAGTAAGGG	AGTGGGAAAA

1630 1640 1650 1660 1670 1680 CAGAAATATT TTAAATACCT TGGGCATGAC TTTAAATTTC CCAGTGGCAA AGGTAGAACC 1690 1700 1710 1720 1730 1740 AGTAAAAGTT GAGTTAAAAC CTGGAAAAGA TGGGCCAAAG ATCAGACAAT GGCCTCTATC 1750 1760 1770 1780 1790 CAGGGAAAAG ATACTAGCCC TCAAAGAAAT CTGTGAAAAA ATGGAAAAGG

HIV-D205, corresponding to position 2877-7293 in HIV-2ROD; homology 75.1 %.

10 AGGTATTAGA	20 TCCTTTTAGA	30 AAGGCCAACA	40 GCGATGTCAT	50 TATAATTCAG	60 TACATGGATG
70 ACATCCTTAI	80 AGCAAGTGAC	90 AGAAGTGATC	100 TGGAGCACGA	110 CAGGGTAGTG	120 TCCCAACTAA
130 AAGAGTTATT	140 AAATGACATG	150 GGATTCTCTA	160 CCCCAGAAGA	170 AAAGTTCCAA	180 AAAGACCCTC
190 CGTTCAAATG	GATGGGTTAT	GAGCTCTGGC	CAAAAAAGTG	230 GAAACTGCAA	240 AAAATACAAC
	AGAAGTTTGG		CAATTCAAAA	ACTGGTAGGA	
	ACTCTTTCCT	GGAATTAAGA	CAAGGCACAT	350 ATGCAAACTA	ATTAGGGGAA
AGATGACCCT	AACAGAAGAA	GTACAGTGGA	CAGAACTAGC	410 AGAAGCAGAG	CTACAGGAGA
430 ATAAAATCAT	440 CTTAGAACAG	450 GAACAAGAAG	460 GATCCTACTA	470 CAAGGAAAGG	480 GTACCGCTAG
	ACAGAAAAAC		AGTGGACATA	530 CAAAATTCAT	540 CAGGGAAATA
AAGTCCTAAA		TATGCAAAGG	TTAAAAACAC	GCACACCAAC	
610 TACTGGCACA	620 TGTAGTTCAG	AAAATAGGCA	AAGAAGCCCT	650 AGTCATCTGG	GGAGAGATAC
670 CAGTGTTCCA		GAAAGAGAGA	CATGGGACCA	710 GTGGTGGACA	GATTACTGGC
AAGTAACCTG	GATCCCAGAG	TGGGACTTTG	TCTCGACCCC	770 ACCATTAATA	AGACTAGCCT
790 ACAACCTAGT	800 CAAAGACCCC	810 CTAGAAGGGA	820 GAGAAACCTA	830 CTACACAGAT	840 GGGTCCTGCA

900	890	880	870	860	850
GATAAGGTTA	CAGGGGAAAA	ATGTCACTGA	AAAGCAGGAT	AAAGGAAGGA	ATAGAACCTC
960	950	940	930	920	910
TTAGCATTAA	AGCATTTGCA	CAGAACTTGA	AACCAACAAG	ACAGACAACA	AAGTGTTAGA
1020	1010	1000	990	980	970
GGAATAATAG	ATATGTCATG	TAGATTCACA	AACATCATAG	ACCACAAGTT	CAGACTCAGA
1080	1070	1060	1050	1040	1030
GAAATGATCA	AATAATTGAA	TAGTAGCAAA	GAATCACCAA	AACAGAAACA	CTGCACAGCC
GGTAATCAGG	1130 GGGACTGGGT	CAGCTCACAA	GGATGGGTAC	AGTATATGTA	AAAAAGAGGC
1200	1190	1180	1170	1160	1150
AAAATAGAAC	GTTCCTAGAA	GACAGGTCTT	CAAGGAATCA	CCTAGTAAGT	AAGTAGACCA
CATAAATTCG	1250 AGAACTGGTC	GCAATGTAAA	AAATATCATG	AGAGCATGAA	CAGCCCAGGA
1320	1310	1300	1290	1280	1270
CAACAAAAAG	TGATAAATGC	TAAATTCCTG	AAACAGATAG	ATTAGTGGCA	GAATTCCACA
1380	1370	1360	1350	1340	1330
GACTGTACAC	ATGGCAGATG	ACCTAGGGAC	GTAAATGCAG	TCATGGACAG	GGGAAGCTAT
1440	1430	1420	1410	1400	1390
ATAGAAGCAG	CAGTGGGTTT	TCCATGTAGC	ATAGTGGCAG	AAAAATTATA	ATTTAGAAGG
1500	1490	1480	1470	1460	1450
TTGGCCAGCA	CCTACTAAAG	CAGCTCTCTT	GGAAGACAGA	CCAAGAGACA	AGGTAATACC
1560	1550	1540	1530	1520	GATGGCCTAT
CCAAGTGTAA	CTTCACCTCA	ACGGTGCCAA	CACACAGACA	CACACACCTA	
1620	1610	1600	1590	1580	1570
AACCCACAAA	AGTACCCTAT	AAACTTTTGG	GGAATAGAAC	CTGGTGGGTA	AGATGGTAGC
1680	1670	1660	1650	1640	1630
AGACTCAGAG	TCAAATAGAC	ACCTGAAAA	ATGAACCATC	AGTGGAAGCA	GTCAAGGAGT
1740	1730	1720	1710	1700	1690
AATTTTAAAA	TCACTGCATG	TAATGGCAAC	ACAGTTGTAC	ATCAATAGAG	ACCAAGCAGT
1800	1790	1780	1770	1760	1750
ATAACCACAG	AGTTAACATG	CAGAAAGACT	ATGACCCCTG	AATAGGGGAT	GAAGGGGAGG
1860	1850	1840	1830	1820	1810
CAGGTCTATI	TCAAAATTTC	ATTTAAAATT	CAAGCAAAA	ACAGTTCTTC	AGCAAGAAAT
1920	1910	1900	1890	1880	1870
AAAGGGGAAG	ACTATTGTGG	GACCTGGTGA	CTCTGGAAGG	CAGAGATCAA	ACAGAGAAGG
1980	1970	1960	1950	1940	1930
AAAGCAAAA	ACCCAGGAGA	TCAAAGTAGT	GGGACAGAAA	CATAAAGGTA	GAGCAGTCAT

	- · ·							
		2000		2010		2020	2030	2040
15	990	CTATICG AGGA	GG	AAAAGGAT	TGG	ATTGTAG	TGCCGACATG	GAGGATACCA
TTATAAGO	3CA	CINIGGRAGA						
		2000		2070		2080	2090	2100
20	050	2060		2070	330	ጥንጥርጥጥA	AGTATAGAAC	AGGAGAGTTG
GGCAGGC	rag	AGAGATGGCA	CA	GTCTGALL	AAG	INICIAN	AGTATAGAAC	
						2240	2150	2160
2	110	2120)	2130		2140	CTTGGTGGAC	TTGCAGTAGA
CAACAGG	TCT	CTTATGTCCC	: TC	ACCACAAG	GIF	GGWIGGG	01100	
CILITATI				_		2200	2210 AAGGATATTG	2220
2	170	2180)	2190		2200	2210 22000	CAACCTAACC
አመን አመልጥ	TTC	CCCTAAACAA	A AG	GAGCATGG	CT	GAAGTCC	AAGGATATIG	GAACCTAACC
AIMMIN							2270	2280
າ	230	2240)	2250)	2260	2270	2280 GAGGAACTTT
201213	250	CATTCTTGAC	CI	CCTATGCT	GT	\AGACTAA	CATGGTATGA	GAGGAACTTT
CCAGAAA	ى	GNIICIIC						2240
_	200	2300	o.	2310)	2320	2330	2340 TTTCTCTTGC
2	290	maa ca corci	ነ ነ	TGGCAGAC	CA	GCTACTGC	ATGGGTCTTA	TTTCTCTTGC
TATACAG	ATG	TAACACCIG		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
_		226	^	2370)	2380	2390	2400 CTACTGCAAC
2	350	236		C > C C C > T C	, AG	GGGAGAAA	AGATATTGTC	CTACTGCAAC
TTTTCAG	CCA	ATGAAGTAA	دی ی	AGMGCCMIC	, AO	000		CTACTGCAAC
					_	2440	2450	2460
2	410	242	0	2430	, a.c.	നസമ C മ ദേസ	TTCTAGCCCT	AAGGGTCGTA
TATCCAT	CAG	CTCACGAAG	GG	CAGGTACCE	A AG	CIIACACI		AAGGGTCGTA
					_	2500	2510	2520
2	470	248	0	2490	0	2500 #2203.003	CGAAACAGCO	ACGAAGAAAC
CAGGAAC	GAA	AAAATGGAT	CC	CAGGGAGAG	טא ט	10ccrcc.		
					_	25.66	2570	2580 A GGGTAGCGGT
2	2530	254	0	2550	0	2560	237C	GGGTAGCGGT
AGTAGG	AGAA	GCATTCGCT	T G	GCTAGAAA(G AA	CAATAACA	GAGCICAACA	A GGGTAGCGGT
							2621	2640
	2590	260	0	261	0	2620	2031	2640 CATACTGGCG
CAACCA	TTTC	CCCCGAGAA	CI	${f TATTTTCC}.$	A = GC	TCTGGCMG	AGGICIICO	
CARCCA							2.0	2700
	2650	266	50	267	0	2680	269	2700 C TAATGCAGAA
	2020	GGCATGTCA	AAT	TAGCTATA	C C	LAATATAG	A TACTTGTTG	C TAATGCAGAA
: TGAGGA	ACAC	GGCHIGIG					_	0760
	~~~ (	273	20	273	0	2740	275	0 2760
	2 / I \	n crccacra	רא כ	AAAGGGCT	G T	AGGTGCCT	G CAGGAGGGC	C ATGGGCCAGG
AGCAAT	GII	GIGCACIA:			_			
			- 0	279	0	280	0 281	O 2820
	2/7	2 / C	ייט דר ר	יייירריייררייירי מיייררייירי	C TO	CCCCAGG	C CTGGCCTAA	T GGCAGAAGCA
GGGATN	GAG	TCAGGACC.	100	10010010				
		••		205	50	286	0 287	0 2880 2 20 CTGGATA
	283	28	4 U	202		CACAAGA	G AACCGTGGG	A AGAGTGGATA
GCCCCA	GAG	A TCCCTCCA	GA C	AACGAGAA	1C C	CACALLIOII	<b></b>	A AGAGTGGATA
						202	n 293	0 2940
	289	0 29	00	291	10	ፈረ <u>ደ</u> ጋል ል የመመስ	C አጥጥጥጥር እጥር	C TCGCTTGCTA
GGGGAG	ATC	C TGGAGGAA	AT A	AAAGCAAGA	AA G	CCTTWWW	Chillonic	C TCGCTTGCTA
						200	0 290	in 3000
	295	0 29	60	297	/0	298	0 CCCWTCC20	G AGCAGGAGAG
ACTGCC	CTT	G GTAACTTT	TA	CTACAGTAC	Ω ی	ATGGAGAT	A CCCIIGONG	G AGCAGGAGAG
						201	0 305	3060
	301	0 30	20	303	30	304		TCAACACTCA
ርጥር እጥገ	raaa	A TCCTCCAA	CG 2	AGCNCTCT	TC C	TCCACTTC	A GAGCCGGI	TG TCAACACTCA
-1								10 3120
	307	0 30	08	309	90	310	313	CO TTA AGGCATG
አረረአጥር	ייטט מממת	C AATCAGGG	GG	AGGAAATC	CT C	TCTCAACT	A TACCGCCC	CC TTAAGGCATG
AGGAT.								

3130 CGATAATACA	3140 TGCTACTGTA			3170 CAGCTTTGTT	
3190 GGGTCTTGGG	3200 ATATGTTATG				
3250 TGCACCTTCT	3260 GCACCAGACA				
3310 CTCCTGCTTA	3320 TAGGTATCAG				
3370 ATACCCGCAT	3380 GGAGGAACGC		3400 CTCATTTGTG		
3430 TGGGGAACTG	3440 TACAGTGTCT				
3490 ACAGAGGCTT	3500 TTGATGCATG				
3550 AGACTCTTTG	3560 AAACCTCCAT				
3610 AACTGTAGTA	3620 AAACCGAAAC	3630 AAACCCAGGG	3640 AATGCCAGTA		
3670 ACTACCACCT	3680 CTCGTGGGCT	3690 GAAAACGATT			
3730 AGCTGCACAG	3740 GACTAGGAGA	3750 AGAGGAAATA			
3790 AGAAGAGATG	3800 AGCTAAAACA	3810 ATATAAAGAC			3840 AGAGTGTAAT
3850 AATACCAGGA	3860 AGTAATACCA	3870 GCAGTGCTAT		3890 GCAACACAAC	3900 AATTATCAA
3910 GAGTCATGTG	3920 ACAAACATTA	3930 TTGGGACAGC	3940 TTAAGGTTTA	3950 GGTATTGTGC	3960 TCCCCCGGGG
3970 TTTTTTCTAC	3980 TAAGATGTAA	3990 TGATACCAAC	4000 TATTCAGGCT		4020 CTGCAGTAAG
4030 GTAGTAGCGT	4040 CCTCCTGCAC	4050 AAGAATGATG	4060 GAAACACAGT	4070 CCTCTACATG	4080 GTTTGGCTTC
4090 AATGGTACAA	4100 GGGCAGAGAA	4110 CAGGACATAT		4130 ATGAAAAAGA	4140 CAATAGGACC
· 4150 ATCATAAGCT	4160 TAAATACATA	4170 CTATAATTTG		4190 GTAAGAGGCC	
4210 ACGGTTGTAC	4220 CAATAAGAAC	4230 CGTGTCAGGA			4260 TATCAATAAG

4270 4280 4290 4300 4310 4320
AGACCCAGAC AAGCTTGGTG CTGGTTTAAG GGAAACTGGA CAGAAGCCAT AAAGGAGGTG

4330 4340 4350 4360 4370 4380
AAAAGGACCA TCATAAAACA TCCCAGGTAT AAAGGAGGTG CAAAAAATAT CACAAGCGTA

4390 4400 4410
AAGTTAGTAT CAGAACATGG AAAAGGTTCA GATC

Fig. 6

Sequence homology between HIV-D194 and HIV-2ROD in (%), separately for the functional elements.

The env region is not included because of the very much unrelated internal region shown in Fig. 3).

(nt ho = nucleotide homology, AA ho = amino acid homology)

	Position	nt ho	AA ho
R	1-173	96.0	
บร	174-299	94.4	
5'-untransl.	300-545	93.5	
gag	546-2114	88.1	89.1
pol	1829-4939	88.7	89.6
vif	4869-5516	88.7	82.9
vpx	5344-5682	86.7	89.4
vpr .	5682-5999	83.0	74.5
tat ex 1 '	5845-6140	84.5	73.5
rev ex 1	6071-6140	87.1	82.6
tat ex 2	8307-8403	80.4	75.0
rev ex 2	8307-8539	78.5	70.0
nef	8557-9327	82.6	73.9
<b>U</b> 3	8942-9496	85.4	

Fig. 7

Sequence homology of HIV- $2_{0205,7}$  compared to the HIV/SIV group (gene level; nt / aa)

HIV-2D205,7	7505,7						
auab	position	HIV-2ROD	HIV-2NIHZ	HIV-2D194	SIVMAC	SIVAGM	HIV-1BRU
gag	720-1826	80.5 / 85.6					
gag	1860-2114	83.1 / 77.6					
lod	1859-2510	80.2 / 72.5					
lod	2877-4948	78.3 / 83.5					
protease	2084-2381	84.0 / 81.0	83.0 / 84.8	84.8 / 86.8	76.3 / 83.8	57.8 / 47.1	60.4 / 48.5
vif	4869-5516	72.0 / 68.5	6.79 / 6.07	72.4 / 66.5	71.8 / 60.6	53.8 / 34.7	47.9 / 33.0
xdv	5344-5682	76.1 / 74.1	73.5 / 68.1	74.6 / 77.9	75.2 / 77.0	50.8 / 34.7	
vpr	5682-5999	78.8 / 69.8	77.7 / 69.8	74.2 / 59.4′	78.3 / 76.4		51.9 / 47.3
tatex1	5845-6140	78.4 / 66.3	79.1 / 68.4	74.7 / 63.3	81.1 / 66.3	33.1 / 38.1	33.6 / 34.0
revex1	6071-6140	67.1 / 61.9	6.09 / 9.89	67.1 / 52.2	70.3 / 60.9	45.5 / 28.6	38.2 / 40.4
nef	8557-9255	72.1 / 69.5	-				
env	6147-7293	70.0 / 67 0					

Fig. 8

Nucleotide sequence comparison of HIV-2_{D205} with HIV and SIV strains (in % homology)

HIV-2 _{D205}						
position	HIV-2ROD	HIV-2NIHZ	HIV-2 _{NIHZ} HIV-2 _{D194} SIV _{MAC}	SIVMAC	SIVAGM	HIV-1BRU
8942-9255	71.6	77.0	68.8	66.4	56.3	54.7
718-1825	80.5	80.8	80.3	79.1	65.1	63.8
1859-2510	80.2	74.6	75.0	78.8	55.6	56.9
2877-7293	75.1	74.8	75.4	74.0	58.0	54.6
Total	75.9	75.9	75.9	75.0	58.9	56.4

# THIS PAGE BLANK (USPTO)



Europäisches Pat ntamt European Patent Office Office européen des brev ts



11 Publication number:

0 347 365 A3

(12)

# EUROPEAN PATENT APPLICATION

(2) Application number: 89710057.4

② Date of filing: 13.06.89

(i) Int. Cl.5: C12N 7/00, C12N 15/00, C07K 15/04, G01N 33/569, A61K 39/21, A61K 39/395, C12N 5/00

Priority: 14.06.88 DE 3820223

② Date of publication of application: 20.12.89 Bulletin 89/51

Designated Contracting States: AT BE CH DE ES FR GB GR IT LI NL SE

- Date of deferred publication of the search report: 02.10.91 Bulletin 91/40
- Applicant: DIAGEN Institut für molekularbiologische Diagnostik GmbH Niederheider Strasse 3 W-4000 Düsseldorf 13(DE)

Applicant: CHEMOTHERAPEUTISCHES FORSCHUNGSINSTITUT GEORG-SPEYER-HAUS Paul-Ehrlich-Strasse 42-44 W-6000 Frankfurt/Main(DE)

② Inventor: Henco, Karsten, Dr. 23 Schlickumer Weg W-4006 Erkrath 2(DE)

Inventor: von Briesen, Hagen

31 Ringstrasse

W-6242 Kronberg(DE)

Inventor: Immelmann, Andreas, Dr.

158 Vennstrasse

W-4000 Düsseldorf 12(DE)

Inventor: Kühnel, Herbert, Dr.

7 Mainstrasse

W-6073 Egelsbach(DE)

Inventor: Dietrich, Ursula, Dr.

6 Gehspitz

W-6236 Eschborn(DE)

Inventor: Rübsamen-Waigmann, Helga, Prof.

113 Königsteiner Strasse

W-6232 Bad Soden/Taunus(DE)

Inventor: Adamski, Michalina

22 Bickenbacher Weg

W-6000 Frankfurt 71(DE)

(4) Representative: Werner, Hans-Karsten, Dr. et

Deichmannhaus am Hauptbahnhof W-5000 Köln 1(DE)

(4) HIV-2 virus variants.

괍

(F) HIV-2 virus variants, namely virus HIV D194 and virus HIV D205, which can be cloned from the corresponding virus isolate HIV D194 (ECACC V 87122303) or from the infected cell line HUT 194 (ECACC V 87122306) or from the virus isolate HIV D205 (ECACC V 87122304), respectively, and their RNA or RNA-fragments and DNA and DNA-fragments derived therefrom and/or proteins and the use thereof for diagnostics and therapy.

Rank Xerox (UK) Business Services

_0347365A3_I

# EUROPEAN SEARCH REPORT

Application Number

EP 89 71 0057

D	OCUMENTS CONSID	ERED TO BE RELEV	ANT	
Category	Citation of document with in	idication, where appropriate, t passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI.5)
×	EP-A-0 269 520 (INSTITUT F * The whole document *  NATURE, vol. 328, 6th August ARYA et al.: "New human and viruses process functional tran	– – t 1987, pages 548-550; S.K. l simian HIV-related retro-	9,10,21	C 12 N 7/00 C 12 N 15/00 C 07 K 15/04 G 01 N 33/569 A 61 K 39/21 A 61 K 39/395
P.X	* The whole article *  EP-A-0 327 801 (DEUTSCHI GmbH)  * The whole document *		9,10, 21-23	C 12 N 5/00
P,X	WO-A-8 909 815 (RESEARCINC.) * The whole document *	CH CORP. TECHNOLOGIES,	9,10, 21-23	,
P,X	2383-2387; H. KÜHNEL et al. West African human immuno	deficiency virus type 2 isolates ages: A Gambian isolate, from uired immunodeficiency syn-	1-26	TECHNICAL FIELDS SEARCHED (Int. CI.5)  C 12 N C 07 K
	The present search report has t	peen drawn up for all claims		
	Place of search	Date of completion of search		Examiner
	The Hague	07 February 91		CUPIDO M.
	CATEGORY OF CITED DOCI X: particularly relevant if taken alone Y: particularly relevant if combined wire document of the same catagory A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the in	th another D: 6	he filing date locument cited locument cited	ocument, but published on, or after in the application for other reasons ame patent family, corresponding