UNIVERSIDAD DEL VALLE DE GUATEMALA CAMPUS CENTRAL FACULTAD DE INGENIERÍA

Iniciativa Académica de Inteligencia Artificial

1 Identificación

Curso: CC3085 – Inteligencia Artificial Créditos: 5

Ciclo: Primero Requisitos: Algoritmos y Estructuras de Datos

Año: 2025 Lógica Matemática

Probabilidad, Álgebra Lineal

Profesor: Alan Reyes–Figueroa **Horario:** Lunes y miércoles – 17:20-19:45

Email: agreyes **Sala:** CIT-401 y CIT-543

Sitio Web del Curso:

• https://pfafner.github.io/ia2025

Office Hours:

• Por solicitud del estudiante, o pueden enviar sus dudas por correo electrónico.

2 Descripción

Este es un curso introductorio a la inteligencia artificial (IA), la cual es una disciplina que mezcla mucha ramas del conocimiento, como programación, estadística y probabilidad, neurociencia, visión, lenguaje y robótica, entre otros. Esta disciplina permite al estudiante adquirir conocimientos sobre los fundamentos de la inteligencia artificial, así como la aplicabilidad de múltiples métodos y técnicas para resolver problemas mediante el uso de agentes inteligentes.

Inicialmente se hace un estudio de los conceptos y fundamentos de la IA, así como el desarrollo histórico de la disciplina. Se revisan el estado del arte y temas éticos generales. Además, se introducen los agentes inteligentes, así como los ambientes y estados en que se desarrollan.

En la primera parte del curso, se estudia la teoría del aprendizaje automático, y métodos de aprendizaje estadístico, tanto de clasificación como de regresión. así como las métricas y formas de medición de desempeño más comunes. Se estudian las redes neuronales artificiales, y elementos de aprendizaje profundo y aprendizaje por refuerzo.

Luego el curso se dedica al desarrollo de técnicas para resolver problemas, principalmente los métodos de búsqueda BFS y DFS, así como el desarrollo de heurísticas de búsqueda, backtracking, y otros métodos, como el A^* . Se estudian problemas de restricción y juegos y búsqueda adversaria, entre ellas diferentes estrategias como el $\alpha-\beta$ prunning, entre otros, así como agentes y modelos basados en reglas lógicas, sistemas expertos y heurísticas de planificación.

En la parte final del curso se estudian modelos de cuantificación de incertidumbre, en donde se introducen razonamiento probabilístico, y se estudian los modelos ocultos de Markov, y las redes bayesianas. Si el tiempo lo permite se hace una introducción al aprendizaje por refuerzo.

3 Competencias a Desarrollar

Competencias genéricas

- 1. Piensa de forma crítica y analítica.
- 2. Resuelve problemas de forma efectiva.
- 3. Desarrolla habilidades de investigación y habilidades de comunicación científica a través de seminarios y presentaciones ante sus colegas.

Competencias específicas

- 1.1 Identifica los aspectos fundamentales en el campo de la inteligencia artificial, para tener una visión global de los orígenes y motivaciones de ésta área.
- 1.2 Distingue el concepto de agentes inteligentes como aspecto central de la inteligencia artificial.
- 1.3 Comprende y conoce la terminología común en las áreas de inteligencia artificial y aprendizaje automático, y redes neuronales.
- 2.1 Evalúa correctamente ambientes de problemas para determinar el acercamiento más adecuado para el desarrollo de agentes, tomando en consideración limitantes de tiempo y espacio computacional.
- 2.2 Construye agentes inteligentes para resolver eficientemente problemas computacionales clásicos (búsqueda, inferencia probabilística, aprendizaje, planificación, juegos, optimización, entre otros.
- 2.3 Utiliza un enfoque global para resolver problemas. Utiliza herramientas auxiliares en su solución, como matemática, estadística y probabilidad, lógica y algoritmos.
- 3.1 Desarrolla todas las etapas de un proyecto aplicado donde se realiza una implementación de métodos inteligentes.
- 3.2 Escribe un reporte técnico sobre la solución de un problema en inteligencia artificial. Concreta un análisis riguroso y conclusiones importantes.
- 3.3 Comunica de manera efectiva, en forma escrita, oral y visual, los resultados de su investigación.

4 Metodología Enseñanza Aprendizaje

El curso se desarrollará durante diecinueve semanas, con cuatro períodos semanales de cuarenta y cinco minutos para desenvolvimiento de la teoría, la resolución de ejemplos y problemas, comunicación didáctica y discusión. Se promoverá el trabajo colaborativo de los estudiantes por medio de listas de ejercicios.

El resto del curso promoverá la revisión bibliográfica y el auto aprendizaje a través de la solución de los ejercicios del texto, y problemas adicionales, y el desarrollo de una monografía. Se espera que el estudiante desarrolle su trabajo en grupo o individualmente, y que participe activamente y en forma colaborativa durante todo el curso.

5 Contenido

1. Conceptos básicos: Definición de inteligencia artificial. Historia, terminología, aplicaciones. Agentes inteligentes: ambientes, tipos de ambientes y de agentes. Espacios de estados. Solución automática de problemas. Ventajas y consideraciones éticas.

- 2. Aprendizaje automática: Modelos de clasificación binaria y multiclase. Algoritmos de clustering. Modelos de regresión lineal ordinaria y multivariada. Métricas de evaluación. Tips para un buen diseño de modelos.
- 3. Búsqueda local: Algoritmos de búsqueda: BFS, DFS. Estrategias de búsqueda: uninformadas, informadas, heurísticas, backtracking. Algoritmo A^* . Problemas con restricciones.
 - Búsqueda adversaria. Juegos: Juegos de dos jugadores, reducción de complejidad, Teoría de juegos: Estrategias dominantes, estrategias mixtas. $\alpha \beta$ *Prunning*.
- 4. Sistemas expertos: Lógica proposicional y lógica de primer orden. Modelos. Planificación: búsqueda progresiva, búsqueda regresiva. Planificación e incertidumbre.
- Probabilidad: Conceptos básicos. Dependencia e independencia. Regla de Bayes. Redes Bayesianas. Dependencia condicional, separación. Inferencia probabilística. Muestreo de Gibbs. Modelos ocultos de Markov y filtros.
- 6. Aprendizaje por refuerzo. Ecuaciones de Bellman. Q-learning, definición de políticas.

6 Bibliografía

Textos:

- Stuart Russell y Peter Norvig (2021). Artificial Intelligence: A Modern Approach, Pearson. 4a. edición.
- Wolfgang Ertel. (2018). Introduction to Artificial Intelligence, Springer, 2a. edición.

Referencias adicionales:

- El-Ghazali Talbi (2009). Metaheuristics: From Design to Implementation. Wiley.
- S. Luke (2013). Essential of Metaheuristics.
- A. E. Eiben, J. E. Smith (2003). Introduction to Evolutionary Computing. Springer.
- T. Bäck (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press.
- M. Mitchell (1999). An Introduction to Genetic Algorithms. MIT Press.
- C. Bishop (2000). Pattern Recognition and Machine Learning. Springer
- T. Hastie, R. Tibshirani, J. Friedman (2013). The Elements of Statistical Learning. Springer.
- Daphne Koller, Nir Friedman (2012). Probabilistic Graphical Models. MIT Press.
- K. Murphy (2012). Machine Learning: a Probabilistic Perspective. MIT Press.
- Richard Sutton, Andrew Barto (2018). Reinforcement Learning: an Introduction. MIT Press, 2a. edición.

7 Actividades de evaluación

Actividad	Cantidad aproximada	Porcentaje
Tareas y Labs	4	20%
Proyectos	4	80%

8 Cronograma

Semana	Tópico	Fecha	Actividades
1	Introducción y motivación al curso. Historia de la IA.	13-17 enero	
	Áreas. Diferencias con la inteligencia humana.		
2	Espacio de configuraciones. Espacio de estados.	20-24 enero	
	Agentes. Clasificación y tipos de agentes.		
3	Algoritmos de aprendizaje automático. Métodos de	27-31 enero	
	agrupamiento. Métricas de evaluación.		
4	Algoritmos de clasificación binaria: Naïve Bayes,	03-07 febrero	
	SVM. Árboles y Random forests. Bagging y Boosting.		
5	Métricas de evaluación. Redes neuronales. Tips para	10-14 febrero	
	un buen entrenamiento y desempeño de modelos.		
6	El modelo de regresión ordinaria (OLS). Gráficos de	17-21 febrero	
	diagnóstico. Pruebas de hipótesis. Regularización.		
7	Búsqueda no informada: Búsqueda en grafos, DFS, BFS.	24-28 febrero	
	Búsqueda sensible al costo. Análisis de desempeño.		
8	Búsqueda informada y heurísticas: Greedy, algoritmo	03-07 marzo	
	A^st y weighted A^st . Comparación de métodos.		
9	Revisión del primer proyecto.	10-14 marzo	Proyecto 1
10	Búsqueda adversaria: Juegos de dos o más jugadores.	17-21 marzo	
	Estrategia minimax, estrategia expectimax.		
11	Estrategia expectiminimax. α y β prunning.	24-28 marzo	
	Comparación de métodos.		
12	Diseño de juegos y búsqueda inteligente.	31 marzo-04 abril	
	Ejemplos y aplicaciones.		
13	Revisión del segundo proyecto.	07-11 abril	Proyecto 2
	Semana Santa	14-18 abril	
14	Planificación bajo incertidumbre. Repaso de probabilidad.	21-25 abril	
14	Probabilidad condicional. Regla de Bayes.	21-23 abrii	
15 16	Distribuciones y ejercicios de simulación.	28 abril-02 mayo	
	Distribuciones y ejercicios de simulación. Distribuciones multivariadas: conjunta y marginal.	20 abrii-02 iliayo	
	Revisión del tercer proyecto.	05-09 mayo	Proyecto 3
10	Nevision der tercer proyecto.	05-09 mayo	Froyecto 3
17	Cadenas de Markov. Ejemplos.	12-16 mayo	
	Modelos ocultos de Markov (HDD). Tipos. Algoritmo recursivo.	•	
18	Filtros de partículas. Ejemplos y aplicaciones.	19-23 mayo	
19	Introducción al aprendizaje reforzado: recompensas,	26-30 mayo	
	políticas. Ecuaciones de Bellman. <i>Q-learning</i> .	-	
20	Presentación del proyecto final.	02-06 junio	Proyecto 4