

# Lecture 12: Text Catergorization



#### Xu Ruifeng

Harbin Institute of Technology, Shenzhen

#### **Last Time**

- Chomsky Hierarchy and Grammar
- Parsing Approaches for Context-Free Grammar (CFG)
- Probabilistic Context-Free Grammar (PCFG)
- Lexicalized PCFG
- Dependency Parsing
- Parsing Resources

## Today's Class

- Text Categorization: Background
- Document Representation
- Feature Selection
- Feature Generation
- Text Categorization Algorithms
  - Rocchio
  - Bayesian
  - K-Nearest Neighbour
  - CNN and RCNN
- Text Categorization Evaluation

#### Introduction

 Purpose: classification of natural language texts into a set of predefined labels.

Save 15% on Supplements
Everyday!!
Join our Nutritional Supplement
Discount Program and take 15%
Off Supplement Shelf prices every
day of the year.
Quick, easy sign-up & start saving
immediately.

spam? Or legitimate?

# Topic Classification/ Webpage Categorization

#### 娱乐 . 体育

- 2010娱乐年终盘点 娱乐攻略演艺市场抢钱行动盘点 施瓦辛格今日卸任美加州州长 💷 16卫视跨年视频汇总 滨崎步已在美国小教堂完婚 黄子华细数娱乐圈而泪史 图集: 李玉刚反串美女 钟楚红精神 罗志祥贺好友大婚 言承旭重金送礼宠女友 威廉王子大婚带来商机
- NBA-8时视频播勇士-魔术 10时直播火箭-掘金 💷 视频 AC米兰官方宣布卡萨诺加盟 国米4年合约签下未来磐石 权威俱乐部教练排名:穆帅居首 拜仁签约巴西天才新星 韦迪:中国足球改变需十年 恒大接洽国安亚冠死敌锋将 李霄鹏:大羽该退役帮女足 韩鹏:保证2010中超最干净 CBA江苏签前国王悍将 达喀尔中国车手退赛 更多新闻>>

#### 社会

• 民警接力资助被害人3名孤儿 保姆乘飞机返回偷金条 妈妈照顾脑瘫女儿20年 窃贼赴派出所报案称遇劫(图) 孕妇节食减肥致孩子患病 男生不满女友转学将其捅死 业主堵路抗议涨停车费 肇事司机疑送医途中弃伤者

#### 篮球 - NBA





- 月最佳教练: 热火创最佳战绩 老辣马刺旧貌换新颜 a5.55
- 月最佳新秀: 给力芬强势当选 沃尔不敌纽约新人王 05.47
- 易建联伤愈参加完整训练课 桑德斯:他还有些生锈 05:35
- 周最佳球员: 韦德当仁不让揽最佳 掘金老枪抢风头 04:44
- 官方实力榜:马刺重登榜首热火次席湖人仅列第701:28
- •阿联满腔热血遭兜头冷水 教练不清楚自己明白吗? 13.23

#### 国际足坛

#### 李宁iRUN社区送积分



- 西甲-迪马利亚造点球C罗拔头筹 皇马半场2-1领先 05.48
- 国米官方宣布国脚铁卫加盟 未来磐石签约至2015年 21:50
- · AC米兰官方宣布卡萨诺加盟 金童首秀后终入圣西罗 20:44
- 穆里尼奥: 伊瓜因必须手术 有人自命不凡害了皇马 57:23
- 英紹䜣10年最强11人阵容: 欧文+亨利 曼联五巨头 05:31
- 卡卡时隔239天正式回归皇马 穆帅: 卡卡踢15分钟 04:28

#### 国内足坛

#### 李宁iRUN社区送积分



- 伊万: 鲁能1点优势值得各队学习 气质难用金钱解决
- 鲁能: 李金羽退役一事尚在研究 伊万将定大羽去留
- 谢菲联整体转让已成定局 姚夏落泪: 两年不碰足球 04:15
- 热身塞-蒿俊闵闪电战核心导逆转 国足3比2伊拉克
- 微博专题-挽留永远的29号 李金羽成1个时代的印记 18.27

#### 综合体育



李宁iRUN社区送积分



• 卢宁军退出2011达喀尔拉力赛 1公里未跑遗憾告退 22:28

### Categorization

#### Given:

- A description of an instance,  $x \in X$ , where X is the *instance language* or *instance space*.
- A fixed set of categories:

$$C = \{c_1, c_2, ...c_n\}$$

- Determine:
  - The category of x:  $c(x) \in C$ , where c(x) is a categorization function whose domain is X and whose range is C.

# **Examples of Text Categorization**

- LABELS=BINARY
  - "spam" / "not spam"
- LABELS=TOPICS
  - "finance" / "sports" / "asia"
- LABELS=OPINION
  - "positive" / "negative" / "neutral"
- LABELS=AUTHOR
  - "Shakespeare" / "Marlowe" / "Ben Jonson"
  - The Federalist papers

## Cost of Manual Text Categorization

#### Yahoo!

- 200 (?) people for manual labeling of Web pages
- using a hierarchy of 500,000 categories
- MEDLINE (National Library of Medicine)
  - \$2 million/year for manual indexing of journal articles
  - using MEdical Subject Headings (18,000 categories)
- Mayo Clinic
  - \$1.4 million annually for coding patient-record events
  - using the International Classification of Diseases (ICD) for billing insurance companies
- US Census Bureau decennial census (1990: 22 million responses)
  - 232 industry categories and 504 occupation categories
  - \$15 million if fully done by hand

## What does it take to compete?

- Suppose you were starting a web search company, what would it take to compete with established engines?
  - You need to be able to establish a competing hierarchy fast.
  - You will need a relatively cheap solution
- Humans can encode knowledge of what constitutes membership in a category.
- This encoding can then be automatically applied by a machine to categorize new examples

## Classification types

- Document Membership
  - Single Label
  - Multiple Labels
  - Binary
- Hard vs Ranking Classifiers
  - Hard = Decisive!
  - Ranking = Probabilistic

## Supervised vs. Unsupervised

- Supervised Learning
  - Training classifier based on set of labeled documents
  - Training set vs. Test set
- Unsupervised Learning
  - No labeled examples
  - The system tries to cluster documents based on some heuristics & distance measures

# Framework of a Text Categorizer



### **Document Representation**

 The idea is to process the natural language text in a document and transform into a vector



- Document Representation is a vector of term weights
- Each term represents specific information about the original document. Terms are sometimes referred to as features
- Each term usually has an associated weight which represents its contribution to the document

#### **Terms**

- Simplest approach: a term is a word
  - Bag of Words
- Preprocessing
  - Stop word removal ("a","the","of","and")
  - Stemming ("stemming","stemmed","stemmer")
- Ignore word order
- Sophisticated Approaches
- Higher Order statistics
- Phrases (how to define?)
  - Syntactically according to grammar (Noun phrases)
  - Statistically strongly occurring patterns of words

## Weights

Term frequency

$$tf(t_k) = \sum_{i} \frac{n_k}{n_i}$$

- Tf-IDF
  - The more often the term appears in a document, the more the representative is it of the document.
  - The more documents the term appears in the less discriminating it is.

$$tf.idf(t_k) = tf(t_k).idf(t_k) \quad idf(t_k) = \log(\frac{N_i}{N_k})$$

- Normalized TF-IDF
  - Normalize the tf.idf values to the range[0,1]

$$w(t_k) = \frac{tf.idf(t_k)}{\sqrt{\sum_{s=1} (tf.idf(t_s))^2}}$$

## **Dimensionality Reduction**

- There are many terms
  - Many learning algorithms don't deal with extremely high dimensions
  - Over fitting problem
  - Not all terms are equally effective
- Dimensionality Reduction Feature Selection
  - Idea: find a more efficient document representation, with much fewer dimensions, with a minimal loss of effectiveness (accuracy).
- Local vs. Global Policies
  - Local Policy: For each category, find the best terms.
  - Global Policy: Given all the categories find the best terms.

## Term Filtering

- A simple filtering can be done by ignoring rare terms
- Remove terms that occur in less that n documents
  - Experiments has shown a good performance
    - Dimensionality reduction factor of 10 without loss in accuracy.
    - Dimensionality reduction factor of 100 with small loss in accuracy.

#### Term Selection

 Out of original set of terms, t, find a much smaller subset, t', that yields high-test effectiveness (accuracy).

#### Examples

- Chi Square
- Mutual Information
- Information Gain
- Information Ratio
- Odd Ratio

#### **Feature Generation**

- Term Clustering
  - Unsupervised
  - Supervised
  - Distributional clustering
- Latent Semantic Indexing
- Explicit Semantic Indexing

# Latent Semantic Indexing (LSI)

- Words by themselves are not a good measure.
  - Synonyms (car, automobile)
  - Polysemous (Apple, Jaguar)
- LSI: a method for inferring the contextual similarity of terms
  - Finds the best m uncorrelated terms that best describe the original n terms.
  - Uncover latent information (synonyms)

## **Explicit Semantic Analysis**

Expand the terms using concept space (e.g. Wikipedia)

Bag of Words

American politics

Explicit Semantic Analysis

Democrats,
Republicans,
abortion, taxes,
homosexuality,
guns, etc

Wikipedia:Car, Wikipedia:Automobile , Wikipedia:BMW, Wikipedia:Railway, etc

# More Discussions on Feature Selection and Generation

- Finding appropriate feature set for specific categorization task
  - Granularity
    - Chinese character / Chinese Word
    - Punctuation
    - Pattern
  - Specific task
    - "The Dream of the Red Chamber" Cao Xueqin or Gao Er
      - Use stopwords
    - Sentiment Analysis
      - Sentiment oriented words
      - Sentiment words

# Rule-based Approach to Text Categorization

#### Text in a Web Page

"Saeco revolutionized *espresso* brewing a decade ago by introducing Saeco SuperAutomatic *machines*, which go from bean to *coffee* at the touch of a button. The all-new Saeco Vienna Super-Automatic home coffee and *cappucino machine* combines top quality with low price!"

#### Rules

- Rule 1.
   (espresso or coffee or cappucino) and machine\* → Coffee Maker
- Rule 2.
   automat\* and answering and machine\* → Phone
- Rule ...

# Expert System for Text Categorization (late 1980s)





- Experience has shown
  - too time consuming
  - too difficult
  - inconsistency issues (as the rule set gets large)

# Replace Knowledge Engineering with a Statistical Learner

#### DTree induction for text categorization (since 1994)



# Knowledge Engineering vs. Statistical Learning

- For US Census Bureau Decennial Census 1990
  - 232 industry categories and 504 occupation categories
  - \$15 million if fully done by hand
- Define classification rules manually:
  - Expert System AIOCS
  - Development time: 192 person-months (2 people, 8 years)
  - Accuracy = 47%
- Learn classification function
  - Nearest Neighbor classification (Creecy '92: 1-NN)
  - Development time: 4 person-months (Thinking Machine)
  - Accuracy = 60%

# Using Relevance Feedback (Rocchio)

- Relevance feedback methods can be adapted for text categorization.
- Use standard TF/IDF weighted vectors to represent text documents (normalized by maximum term frequency).
- For each category, compute a prototype vector by summing the vectors of the training documents in the category.
- Assign test documents to the category with the closest prototype vector based on cosine similarity

# Rocchio Text Categorization Algorithm (Training)

```
Assume the set of categories is \{c_1, c_2, ... c_n\}
For i from 1 to n let \mathbf{p}_i = <0, 0, ..., 0> (init. prototype vectors)
For each training example < x, c(x) > \in D
Let \mathbf{d} be the frequency normalized TF/IDF term vector for doc x
Let i = j: (c_j = c(x))
(sum all the document vectors in c_i to get \mathbf{p}_i)
Let \mathbf{p}_i = \mathbf{p}_i + \mathbf{d}
```

# Rocchio Text Categorization Algorithm (Test)

```
Given test document x
Let d be the TF/IDF weighted term vector for x
Let m = -2 (init. maximum cosSim)
For i from 1 to n:
   (compute similarity to prototype vector)
   Let s = \cos Sim(\mathbf{d}, \mathbf{p}_i)
   if s > m
      let m = s
      let r = c_i (update most similar class prototype)
Return class r
```

# Illustration of Rocchio Text Categorization



# Rocchio Anomoly

 Prototype models have problems with polymorphic (disjunctive) categories



## Rocchio Properties

- Does not guarantee a consistent hypothesis.
- Forms a simple generalization of the examples in each class (a prototype).
- Prototype vector does not need to be averaged or otherwise normalized for length since cosine similarity is insensitive to vector length.
- Classification is based on similarity to class prototypes.

## Bayesian Methods

- Learning and classification methods based on probability theory (see spelling / POS)
- Bayes theorem plays a critical role
- Build a generative model that approximates how data is produced
- Uses *prior* probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

### **Bayesian Categorization**

• Determine category of  $x_k$  by determining for each  $y_i$ 

$$P(Y = y_i | X = x_k) = \frac{P(Y = y_i)P(X = x_k | Y = y_i)}{P(X = x_k)}$$

•  $P(X=x_k)$  can be determined since categories are complete and disjoint.

$$\sum_{i=1}^{m} P(Y = y_i \mid X = x_k) = \sum_{i=1}^{m} \frac{P(Y = y_i)P(X = x_k \mid Y = y_i)}{P(X = x_k)} = 1$$

$$P(X = x_k) = \sum_{i=1}^{m} P(Y = y_i) P(X = x_k | Y = y_i)$$

- Need to know:
  - Priors:  $P(Y=y_i)$
  - Conditionals:  $P(X=x_k \mid Y=y_i)$
- $P(Y=y_i)$  are easily estimated from data.
  - If  $n_i$  of the examples in D are in  $y_i$  then  $P(Y=y_i) = n_i / |D|$
- Too many possible instances (e.g.  $2^n$  for binary features) to estimate all  $P(X=x_k \mid Y=y_i)$ .
- Still need to make some sort of independence assumptions about the features to make learning tractable.

#### Generative Probabilistic Models

- Assume a simple (usually unrealistic) probabilistic method by which the data was generated.
- For categorization, each category has a different parameterized generative model that characterizes that category.
- Training: Use the data for each category to estimate the parameters of the generative model for that category.
  - Maximum Likelihood Estimation (MLE): Set parameters to maximize the probability that the model produced the given training data.
  - If  $M_{\lambda}$  denotes a model with parameter values  $\lambda$  and  $D_k$  is the training data for the kth class, find model parameters for class k ( $\lambda_k$ ) that maximize the likelihood of  $D_k$ :

$$\lambda_k = \underset{\lambda}{\operatorname{argmax}} P(D_k \mid M_{\lambda})$$

• Testing: Use Bayesian analysis to determine the category model that most likely generated a specific test instance.

# Text Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D

For each category  $c_i \in C$ 

Let  $D_i$  be the subset of documents in D in category  $c_i$  $P(c_i) = |D_i| / |D|$ 

Let  $T_i$  be the concatenation of all the documents in  $D_i$ Let  $n_i$  be the total number of word occurrences in  $T_i$ 

For each word  $w_i \in V$ 

Let  $n_{ij}$  be the number of occurrences of  $w_j$  in  $T_i$ Let  $P(w_j \mid c_i) = (n_{ij} + 1) / (n_i + |V|)$ 

# Text Naïve Bayes Algorithm (Test)

Given a test document *X*Let *n* be the number of word occurrences in *X*Return the category:

$$\underset{c_i \in C}{\operatorname{argmax}} P(c_i) \prod_{i=1}^n P(a_i \mid c_i)$$

where  $a_i$  is the word occurring the *i*th position in X

### Naive Bayes Is Not So Naive

- Naïve Bayes: First and Second place in KDD-CUP 97 competition, among 16 (then) state of the art algorithms
  - Robust to Irrelevant Features
  - Irrelevant Features cancel each other without affecting results
  - Instead Decision Trees & Nearest-Neighbor methods can heavily suffer from this.
- Very good in Domains with many <u>equally</u> <u>important</u> features
  - Decision Trees suffer from fragmentation in such cases – especially if little data
- A good dependable baseline for text classification (but not the best)!

- Optimal if the Independence Assumptions hold:
  - If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- Very Fast:
  - Learning with one pass over the data; testing linear in the number of attributes, and document collection size
- Low Storage requirements
- Handles Missing Values

### Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Initially by Fix and Hodges (1951)
- Theoretical error bound analysis by Duda & Hart (1957)
- Testing instance *x*:
  - Compute similarity between x and all examples in D.
  - Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
  - Case-based Memory-based Lazy learning

# 1-Nearest Neighbor

#### 1-NN: assign "x" (new point) to the class of it nearest neighbor



# K-Nearest Neighbor using a *majority* voting scheme

#### K-Nearest Neighbor using a majority voting scheme



## Category Scoring for Weighted-Sum

 The score for a category is the sum of the similarity scores between the point to be classified and all of its k-neighbors that belong to the given category.

• To restate: 
$$score(c \mid x) = \sum_{d \in kNN \text{ of } x} sim(x,d) I(d,c)$$

where x is the new point; c is a class (e.g. black or white);

d is a classified point among the k-nearest neighbors of x;

sim(x,d) is the similarity between x and d; I(d,c) = 1 iff point d belongs to class c; I(d,c) = 0 otherwise.

# kNN for Text Categorization (Yang, SIGIR-1994)

- Represent documents as points (vectors).
- Define a similarity measure for pairwise documents.
- Tune parameter k for optimizing classification effectiveness.
- Choose a voting scheme (e.g., weighted sum) for scoring categories
- Threshold on the scores for classification decisions.

# K Nearest Neighbor for Text

#### **Training:**

For each each training example  $\langle x, c(x) \rangle \in D$ Compute the corresponding TF-IDF vector,  $\mathbf{d}_x$ , for document x

#### Test instance y:

Compute TF-IDF vector **d** for document y

For each  $\langle x, c(x) \rangle \in D$ 

Let  $s_x = \cos \operatorname{Sim}(\mathbf{d}, \mathbf{d}_x)$ 

Sort examples, x, in D by decreasing value of  $s_x$ 

Let N be the first k examples in D. (get most similar neighbors)

Return the majority class of examples in N

### Thresholding for Classification Decisions

- Alternative thresholding strategies:
  - Rcut: For each document to be categorized, rank candidate categories by score, and assign YES to the top-m categories (where m is some fixed number).
  - Pcut: Applies only when we have a whole batch of documents to be categorized. Make the category assignments proportional to the category distribution in the training set (i.e. if 1/4<sup>th</sup> of the training documents were in the category "Coffee Maker" then we will assign 1/4<sup>th</sup> of the documents in this batch to the "Coffee Maker" category).
  - Scut: For each category, choose a threshold score (empirically). Any document with a category score that surpasses its respective threshold will be predicted to be a member of that category.

## Similarity Measures

Cosine similarity

$$\cos(\vec{x}, \vec{y}) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \times \sqrt{\sum_{i} y_{i}^{2}}}$$

- Simplest for continuous *m*-dimensional instance space is *Euclidian distance*
- Simplest for *m*-dimensional binary instance space is *Hamming distance* (number of feature values that differ)
- Kullback-Leibler distance (distance between two probability distributions)
- For text, cosine similarity of TF-IDF weighted vectors is typically most effective

### Key Components in kNN

- Functional definition of "similarity"
  - e.g. cos, Euclidean, kernel functions, ...
- How many neighbors do we consider?
  - Value of k determined empirically (see methodology section)
- Does each neighbor get the same weight?
  - Weighted-sum or not
- All categories in neighborhood? Most frequent only? How do we make the final decision?
  - Rcut, Pcut, or Scut

#### Pros of kNN

- Simple and effective (among top-5 in benchmark evaluations)
  - Non-linear classifier (vs linear)
  - Local estimation (vs global)
  - Non-parametric (very few assumptions about data)
  - Reasonable similarity measures (borrowed from IR)
- Computation (time & space) linear to the size of training data
- Low cost for frequent re-training, i.e., when categories and training documents need to be updated (common in Web environment and ecommerce applications)

#### Cons of kNN

- Online response is typically slower than eager learning algorithms
  - Trade-off between off-line training cost and online search cost
- Scores are not normalized (probabilities)
  - Comparing directly to and combining with scores of other classifiers is an open problem
- Output not good in explaining why a category is relevant
  - Compared to DTree, for example (take this with a grain of salt).

### SVM and Hyperplane

- A learning algorithm for classification
  - General for any classification problem (text classification as one example)
- invented by V. Vapnik and his co-workers in 1970s in Russia and became known to the West in 1992
- Binary classification
- Maximizes the margin between the two different classes
- Rigorous theoretical foundation,
  - More accurately than most other methods in applications, especially for high dimensional data.
  - It is perhaps the best classifier for text classification.

### SVM and Hyperplane: Basic concepts

Let the set of training examples D be

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\},\$$

where  $\mathbf{x}_i = (x_1, x_2, ..., x_n)$  is an **input vector** in a real-valued space  $X \subseteq R^n$  and  $y_i$  is its **class label** (output value),  $y_i \in \{1, -1\}$ .

1: positive class and -1: negative class.

 SVM finds a linear function of the form (w: weight vector, b: bias)

$$f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$$

$$y_i = \begin{cases} 1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 0 \\ -1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b < 0 \end{cases}$$

### SVM and Hyperplane

 The hyperplane that separates positive and negative training data is

$$\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$$

- It is also called the decision boundary (surface).
- So many possible hyperplanes, which one to choose?





# SVM and Hyperplane: Maximal margin hyperplane

- SVM looks for the separating hyperplane with the largest margin.
- Machine learning theory says this hyperplane minimizes the error bound



### More Approaches to Text Categorization

- Regression based on Least Squares Fit (1991)
- Nearest Neighbor Classification (1992)
- Bayesian Probabilistic Models (1992)
- Symbolic Rule Induction (1994)
- Neural Networks (1995)
- Rocchio approach (traditional IR, 1996)
- Support Vector Machines (1997)
- Boosting or Bagging (1997)
- Hierarchical Language Modeling (1998)
- First-Order-Logic Rule Induction (1999)
- Maximum Entropy (1999)
- Hidden Markov Models (1999)
- Error-Correcting Output Coding (1999)

# CNN for Text Categorization (Kim EMNLP-2014)

The model architecture for text categorization is shown below:



### Embedding layer

Let  $x_i \in \mathbb{R}^k$  be the k-dimensional word vector corresponding to the i-th word in the sentence. A sentence of length n (padded where necessary) is represented as:

## Convolutional layer

A convolution operation involves a filter  $w \in \mathbb{R}^{hk}$ , which is applied to a window of h words to produce a new feature. For example, a feature  $c_i$  is generated from a window of words  $x_{i:i+h-1}$  by:



# Pooling layer

This filter is applied to each possible window of words in the sentence  $\{x_{1:h}, x_{2:h+1}, \ldots, x_{n-h+1:n}\}$  to produce a feature map:

$$c = [c_1, c_2, \cdots, c_{n-h+1}]$$

Then apply a max-overtime pooling operation over the feature map and take the maximum value:

$$c^ = max\{c\}$$



### Regularization

Given the penultimate layer  $z = [c_1, ..., c_m]$ , for output unit y in forward propagation, dropout uses:

$$y = w \cdot (z \circ r) + b$$

At test time, the learned weight vectors are scaled by p such that w<sup>^</sup> = pw, and w<sup>^</sup> is used (without dropout) to score unseen sentences.

Additionally constrain  $I_2$ -norms of the weight vectors by rescaling w to have  $||w||_2 = s$  whenever  $||w||_2 > s$  after a gradient descent step.

Bert: Pre-training of deep bidirectional transformers for language understanding (*Devlin et al., HLT-NAACL 2018*)

#### Transformer

- Multi-headed self attention
  - Models context
- Feed-forward layers
  - Computes non-linear hierarchical features
- Layer norm and residuals
  - Makes training deep networks healthy
- Positional embeddings
  - Allows model to learn relative positioning



Bert: Pre-training of deep bidirectional transformers for language understanding (*Devlin et al., HLT-NAACL 2018*)

- Pretraining: Masked LM + Next Sentence Prediction
- Finetuning: Other NLP tasks



How to Fine-Tune BERT for Text Classification? (Sun et al., CCL 2018)

- The top layer of BERT is more useful for text classification
- With an appropriate layer-wise decreasing learning rate,
   BERT can overcome the catastrophic forgetting problem
- Within-task and in-domain further pre-training can significantly boost its performance
- A preceding multi-task fine-tuning is also helpful to the single-task fine-tuning, but its benefit is smaller than further pre-training
- BERT can improve the task with small-size data

# RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., ICLR 2019)

Improved masking and pre-training data slightly

Trained BERT for more epochs and/or on more data

- Showed that more epochs alone helps, even on same data
- More data also helps

## Voting

#### Bagging

- Train K classifiers using one classification method using K different training sets
- Run the K classifiers on test sample
- Assign the test sample the label that has most votes

#### Boosting

- Train the K classifier in such a serial mode that the (i+1)-th classifier can correctly classify the those training samples that cannot be correctly classified by the i-th classifier
- AdaBoost

#### **Evaluation Metrics**

|            | Correct=Y | Correct=N |
|------------|-----------|-----------|
| Assigned=Y | a         | b         |
| Assigned=N | С         | d         |

- Accuracy = (a+d)/(a+b+c+d)
- Precision = a/(a+b)
- Recall= a/(a+c)
- F-Measure = 2\*Precision\*Recall/(Precision+Recall)
- Micro/Macro Averaging
- Breakeven (When Precision=Recall)

#### **Evaluation Metrics:**

- How to combine P/R from 3 classes
- Macro-averaging:
  - compute the performance for each class, and then average over classes
- Micro-averaging:
  - collect decisions for all classes into one confusion matrix
  - compute precision and recall from that table.

# **Evaluation Metrics:** Macro-averaging and Micro-averaging

| Cl  | ass 1: | Urgen |
|-----|--------|-------|
|     | true   | true  |
|     | urgent | not   |
| tam |        |       |

system urgent system 340 not

precision = 
$$\frac{8}{8+11}$$
 = .42

#### Class 2: Normal

|                  | true   | true |
|------------------|--------|------|
|                  | normal | not  |
| system<br>normal | 60     | 55   |
| system<br>not    | 40     | 212  |

precision = 
$$\frac{60}{60+55}$$
 = .52

 $\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$ 

#### Class 3: Spam

|                | true | true |
|----------------|------|------|
|                | spam | not  |
| system<br>spam | 200  | 33   |
| system<br>not  | 51   | 83   |

precision = 
$$\frac{200}{200+33}$$
 = .8

#### **Pooled**

precision = 
$$\frac{8}{8+11}$$
 = .42 precision =  $\frac{60}{60+55}$  = .52 precision =  $\frac{200}{200+33}$  = .86 microaverage precision =  $\frac{268}{268+99}$  = .73

#### N-Fold Cross-Validation

- Ideally, test and training sets are independent on each trial.
  - But this would require too much labeled data.
- Partition data into N equal-sized disjoint segments.
- Run N trials, each time using a different segment of the data for testing, and training on the remaining N-1 segments.
- This way, at least test-sets are independent.
- Report average classification accuracy over the N trials.
- Typically, N = 10.

#### Learning Curves

- In practice, labeled data is usually rare and expensive.
- Would like to know how performance varies with the number of training instances.
- Learning curves plot classification accuracy on independent test data (Y axis) versus number of training examples (X axis).

### **N-Fold Learning Curves**

- Want learning curves averaged over multiple trials.
- Use N-fold cross validation to generate N full training and test sets.
- For each trial, train on increasing fractions of the training set, measuring accuracy on the test data for each point on the desired learning curve.

# Sample Learning Curve



#### The Next Lecture

Lecture 13Text Clustering