BPF with Loading

- □ Brief Review
 - Parallel Resonance
- □BPF with Source and Load (similar to lab project 2)
 - Analysis (assumes Q>=10)
 - □ fp,Qp,BW, voltage gain
 - Simulation verification and interpretation
 - Low frequency "tail" explanation
- □ BPF with Source and Load In class problem
 - Same circuit as above with matched impedances

M

Electrical Engineering Technology

Parallel Resonance – Review/Summary

General Parallel R-L-C Circuit

Converted to parallel equivalent

Simplified (Q>=10)

General circuit

TABLE 21.2

Parallel resonant circuit ($f_s = 1/(2\pi\sqrt{LC})$).

	Any Q_l	$Q_l \ge 10$	$Q_1 \geq 10, R_s \gg Q_l^2 R_l$
f_p	$f_s\sqrt{1-\frac{R_l^2C}{L}}$	f_s	f_s
f_m	$f_s \sqrt{1 - \frac{1}{4} \left[\frac{R_l^2 C}{L} \right]}$	fs	f_s
Z_{T_p}	$R_s \ R_p = R_s \ \left(\frac{R_l^2 + X_L^2}{R_l} \right)$	$R_s \parallel Q_l^2 R_l$	$Q_I^2 R_I$
Z_{T_m}	$R_s \ \mathbf{Z}_{R-L} \ \mathbf{Z}_C$	$R_s \parallel Q_l^2 R_l$	$Q_l^2 R_l$
Q_p	$\frac{Z_{T_p}}{X_{L_p}} = \frac{Z_{T_p}}{X_C}$	$\frac{Z_{T_p}}{X_L} = \frac{Z_{T_p}}{X_C}$	Q_l
BW	$\frac{f_P}{Q_P}$ or $\frac{f_m}{Q_P}$	$\frac{f_p}{Q_p} = \frac{f_s}{Q_p}$	$\frac{f_p}{Q_l} = \frac{f_s}{Q_l}$
I_L, I_C	Network analysis	$I_L = I_C = Q_l I_T$	$I_L = I_C = Q_l I_T$

 $V_p(f)$

Parallel Resonance – Focus on Q>=10

Simplified Circuit (Q>=10)

TABLE 21.2

Parallel resonant circuit $(f_s = 1/(2\pi\sqrt{LC}))$.

Any Q_l	$Q_l \ge 10$	$Q_1 \geq 10, R_s \gg Q_l^2 R_l$
$f_s \sqrt{1 - \frac{R_l^2 C}{L}}$	f_s	f_s
$f_m = f_s \sqrt{1 - \frac{1}{4} \left[\frac{R_I^2 C}{L} \right]}$	f _s	f_s
$Z_{T_p} R_s \ R_p = R_s \ \left(\frac{R_l^2 + X_L^2}{R_l} \right)$	$R_s \parallel Q_l^2 R_l$	$Q_l^2 R_l$
$Z_{T_{n}}$ $R_{s} \parallel \mathbf{Z}_{R-L} \parallel \mathbf{Z}_{C}$	$R_s \parallel Q_l^2 R_l$	$Q_l^2 R_l$
$Q_p \qquad \qquad \frac{Z_{T_p}}{X_{L_p}} = \frac{Z_{T_p}}{X_C}$	$\frac{Z_{T_p}}{X_L} = \frac{Z_{T_p}}{X_C}$	\mathcal{Q}_l
$\frac{f_P}{Q_P}$ or $\frac{f_m}{Q_P}$	$\frac{f_p}{Q_p} = \frac{f_s}{Q_p}$	$\frac{f_p}{Q_l} = \frac{f_s}{Q_l}$
I _L , I _C Network analysis	$I_L = I_C = Q_l I_T$	$I_L = I_C = Q_l I_T$

BPF with Source and Load (Analysis)

From the chart (Q>=10):

$$f_p = f_s = \frac{1}{2\pi\sqrt{2c}}$$
 Defined below, at resonance (XL=Xc)

For this circuit becomes:

$$R_s' // Q_L^2 R_L // R_{LOAD}$$

$$Q_L = \frac{\times_L}{R_L}$$

From the chart (Q>=10):

$$Q_p = \frac{|\vec{z}_{Tp}|}{|\vec{z}_{L}|} = \frac{|\vec{z}_{Tp}|}{|\vec{z}_{C}|}$$

Also at resonance

For this circuit (at resonance):

BPF with Source and Load (Analysis)

Using the Q>=10 equivalent circuit:

Substituting for IT:

Therefore, we have:

at resonance

BPF with Source and Load (Example)

But the inductor Q is:

$$Q_{L} = \frac{X_{L}}{R_{L}} = \frac{2\pi f L}{R_{L}} = \frac{2\pi$$

$$Q_L = 39.9$$

So **ZTP** becomes:

$$\vec{z}_{Tp} = \frac{1000 - 1/(39.9)^2 (10 - 1)}{20 k_n}$$

$$= 898.6 - 1$$

And the (loaded) circuit Q is:

$$Q_{\rho} = |\overline{Z_{T\rho}}| = 898.6_{\sim}$$

 $X_{L} = 398.8_{\sim}$
 $= 2.25$

Note – Our assumption of Q>=10 is **NOT satisfied**, we'll check our results via simulation soon

BPF with Source and Load (Example)

Calculating the BW and voltage gain:

In dB (taking 20log10(Vo/Vi)):

On to simulation to check our work...

BPF with Source and Load (Simulation)

$$Qp = \frac{fp}{BW} = \frac{20.08kHz}{8.92kHz} = 2.25$$

BPF with Source and Load (Simulation in dB)

Interpreting:

$$fp = 20.06 \text{ kHz}, Vo/Vi = -0.93dB$$

$$BW \sim f2 - f1 = 8.64 \text{ kHz}$$

$$Qp = fp/BW = 2.32$$

Explain:

-40dB voltage gain at low frequencies vs, continuing decline in voltage gain at high frequencies

Compared to (calculations)

fp = 19.96 kHz, Vo/Vi = 0.899 (or -0.92dB)

BW = 8.87 kHz, Qp = 2.25

BPF with Source and Load - ICP

Find:

- a) fp (resonant frequency)
- b) Qp (circuit Q or "loaded" Q)
- c) Bandwidth
- d) Vo/Vi (voltage gain at resonance)