Exerciseses chapter 4

Andreas Slåttelid

23/2/2022

Exercise 4.2 + 4.3

In this exercise we are considering a disability insurance, hence $S = \{*, \diamond, \dagger\}$. The contractual information given are: as follows:

```
x <- 30  #age
T <- 35  #length of contract
D <- 20000  #disability pension
r <- 0.03  #intereset rate
premium_yearly <- 2500</pre>
```

Furthermore the transition rates are given by:

```
lambda <- function(t){
    #we do not have any t-dependency
    m12 <- 0.0279
    m13 <- 0.0229
    m11 <- -(m12+m13)
    m21 <- 0
    m23 <- 0.0229
    m22 <- -(m21+m23)
    m31 <- m32 <- m33 <- 0
    L <- matrix(c(m11,m12,m13,m21,m22,m23,m31,m32,m33), nrow=3, byrow=TRUE)
    return(L)
}</pre>
```

We also have the following policy-functions:

$$a_{*}(t) = \begin{cases} 0, & t < 0 \\ -\pi t, & t \in [0, T) \\ -\pi T, & t \ge T \end{cases}$$
$$a_{\diamond}(t) = \begin{cases} 0, & t < 0 \\ Dt, & t \in [0, T) \\ DT, & t \ge T \end{cases}$$

We were asked to calculate $V_j^+(t,A)$ for $j=*,\diamond$ and for t=30. We then get:

$$V_*^+(t,A) = \frac{1}{v(t)} \left[\int_t^T v(s) p_{**}(x+t,x+s) da_*(s) + \int_t^T v(s) p_{*\diamond}(x+t,x+s) da_{\diamond}(s) \right]$$
$$= \frac{1}{v(t)} \left[-\pi \int_t^T v(s) p_{**}(x+t,x+s) ds + D \int_t^T v(s) p_{*\diamond}(x+t,x+s) ds \right]$$

$$V_{\diamond}^{+}(t,A) = \frac{1}{v(t)} \left[\int_{t}^{T} v(s) p_{\diamond \diamond}(x+t,x+s) da_{\diamond}(s) \right]$$
$$= \frac{1}{v(t)} \left[D \int_{t}^{T} v(s) p_{\diamond \diamond}(x+t,x+s) ds \right]$$

We will now use an Euler-scheme to simulate what's going on, and then use a Riemann-sum to compute the integrals:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} f(x_{i}^{*}) \Delta x$$

Where $\Delta x = \frac{b-a}{n}$, which in our case corresponds to: h and $x_i^* \in [x_i, x_{i+1}]$

```
field <- function(t,M){
  return(M%*%lambda(t))
#field(t0, P0)
Euler <- function(t0,P0,h,tn){</pre>
  if(t0==tn){ return(P0)}
  N \leftarrow (tn-t0)/h
  D <- \dim(PO) [1] #qives dimension of man matrix dim = c(m,n)
  #Initial condition at s
  P \leftarrow array(diag(D*(N+1)), dim=c(D,D,N+1))
  #First iteration
  P[,,1] <- P0
  for(n in 1:N){
    P[,,n+1] \leftarrow P[,,n] + h \cdot field(t0 + n \cdot h, P[,,n])
  return(P) #returns array, array(data, dim=c(3,3,2)), this stores 2 3x3 matricies
t0 <- 60
               #start age
PO <- diag(3) #initial start with P(s,s) = I
tn <- 110
              #end age
h <- 1/12
               #step size
N <- (tn-t0)/h #number of steps
sol <- Euler(t0,P0,h,tn) #contains ages transition probs from 60 to 65.
v <- function(t){</pre>
  return(exp(-r*t))
#v(s), but s in [30,35]
v_ages <- sapply(seq(30, 35, by = h), v) #we apply the function v to each element
```

```
\textit{\#sum1} \textit{ where we do not care about the premium until afterwards, we use Riemann-sum.}
s1 <- 0
for (i in 1:(length(v_ages)-1)){
  s1 <- s1 + v_ages[i]*sol[1,1, ][i]*h #survival i.e * -> *
\#sum2: do not care about D=20.000 until afterwards
s2 <- 0
for (i in 1:(length(v_ages)-1)){
  s2 <- s2 + v_ages[i]*sol[1,2,][i]*h #disability i.e * -> dis
#V*(30, A):
V_30_A \leftarrow (1/v(30))*((-1)*premium_yearly*s1 + D*s2)
V_30_A
## [1] -4781.495
#V_[disabeld](30,A):
s3 <- 0
for (i in 1:(length(v_ages)-1)){
 s3 <- s3 + v_ages[i]*sol[2,2,][i]*h #disability i.e dis -> dis
#V_[disabeld](30,A):
V_30_{dis} \leftarrow (1/v(30))*D*s3
V_30_{dis}
```

[1] 88057.1

Exercise 4.4 Term insurance in discrete time

In this exercise we are dealing with a term insurance in discrete time, hence: $S = \{*, \dagger\}$, the contractual information provided:

x <- 50 T <- 10 B <- 200000 r <- 0.025

We are asked to use the equivalence principle to determine the fair premium π , we start of by describing the policy functions:

$$a_*^{Pre}(n) = \begin{cases} -\pi & , n = 0, \dots, T-1 \\ 0 & , else \end{cases}$$
$$a_{*\dagger}^{Post}(n) = \begin{cases} B & , n = 0, \dots, T-1 \\ 0 & , else \end{cases}$$

Furthermore the formula for directe reserves are given by:

$$V_i^+(t,A) = \sum_j \sum_{n \ge t} \frac{v(n)}{v(t)} p_{ij}^x(t,n) a_j^{Pre}(n) + \sum_{k \ne j} \sum_{n \ge t} \frac{v(n+1)}{v(t)} p_{ij}^x(t,n) p_{jk}^x(n,n+1) a_{jk}^{Post}(n)$$

In our case, this translates to:

$$V_*^+(t,A) = -\pi \sum_{n=t}^{T-1} \frac{v(n)}{v(t)} p_{**}^x(t,n) + B \sum_{n=t}^{T-1} \frac{v(n+1)}{v(t)} p_{**}^x(t,n) p_{*\dagger}^x(n,n+1)$$

The equivalence principle states that we should choose π so that $V_*^+(0,A)=0$, giving us:

$$0 = -\pi \sum_{n=0}^{T-1} v(n) p_{**}^{x}(0,n) + B \sum_{n=0}^{T-1} v(n+1) p_{**}^{x}(0,n) p_{*\dagger}^{x}(n,n+1)$$

$$\downarrow \downarrow$$

$$\pi = \frac{B \sum_{n=0}^{T-1} v(n+1) p_{**}^{x}(0,n) p_{*\dagger}^{x}(n,n+1)}{\sum_{n=0}^{T-1} v(n) p_{**}^{x}(0,n)}$$

```
#0: alive, 1:dead
mu01 <- function(u){</pre>
  a < -0.002
  b <- 0.0005
  return(a + b*(u-50))
p_surv <- function(t,s){</pre>
 f <- mu01
  integral <- integrate(f, lower = t, upper = s)$value</pre>
  return(exp((-1)*integral))
}
#discount-factor
v <- function(t){</pre>
  return(exp(-r*t))
}
s1_above <- 0
for (n in 0:(T-1)){
  s1\_above \leftarrow s1\_above + v(n+1)*p\_surv(x, x+n)*(1-p\_surv(x+n,x+n+1))
s2\_below \leftarrow 0
for (n in 0:(T-1)){
  s2_below <- s2_below + v(n)*p_surv(x,x+n)</pre>
above1 <- B*s1_above
below2 <- s2_below
prem <- above1/below2</pre>
prem
```

[1] 852.2476

Exercise 4.5 Permanent disability insurance discrete time

We have the following state space $S = \{*, \diamond, \dagger\}$. Furthermore the contractual information provided is:

```
x <- 45
T <- 20
D <- 12000
r <- 0.03

#discount factor
v <- function(t){
   return(exp(-r*t))
}</pre>
```

i)

In this case we have the following transition rates:

$$\mu_{*\diamond}(t) = 0.0279 \ \mu_{*\dagger}(t) = 0.0229 \ \mu_{\diamond\dagger}(t) = \mu_{*\dagger}(t)$$

```
#1: alive

#2: disabled

#3: dead

m12 <- 0.0279

m13 <- 0.0229

m11 <- -(m12+m13)

m21 <- 0

m23 <- 0.0229

m22 <- -(m21+m23)

m31 <- m32 <- m33 <- 0
```

Since reactivation is not allowed, we can actually solve the transition-probabilites directly. We first start with the survival probability:

$$p_{11}(t,s) = \exp((-1) * 0.0508(s-t))$$

```
p_11 <- function(t,s){
  return(exp(-1*0.0508*(s-t)))
}</pre>
```

We describe the policy functions:

$$a_*^{Pre}(n) = \begin{cases} -\pi & , n = 0, \dots, T-1 \\ 0 & , else \end{cases} \quad a_\diamond^{Pre}(n) = \begin{cases} D & , n = 0, \dots, T-1 \\ 0 & , else \end{cases}$$

And we get the following formula for the reserve:

$$V_*^+(t,A) = \frac{1}{v(t)} \left[-\pi \sum_{n=t}^{T-1} v(n) p_{**}^x(t,n) + D \sum_{n=t}^{T-1} v(n) p_{*\diamond}^x(t,n) \right]$$

Now from the equivalence principle we should have that the premium π should be decided so that $V_*^+(0,A)=0$, this leaves us with:

$$\pi = \frac{D\sum_{n=0}^{T-1} v(n) p_{*\diamond}^{x}(0, n)}{\sum_{n=0}^{T-1} v(n) p_{**}^{x}(0, n)}$$

We can use Kolmogorov's equations to find $p_{*\dagger}$ and $p_{*\diamond}$, as reactivation is not allowed, and $\mu_{\diamond\dagger}(t) = \mu_{*\dagger}(t)$

$$\partial_s p_{13}(t,s) = p_{11}(t,s)\mu_{13}(s) + p_{12}(t,s)\mu_{23}(s)$$

Now, lets introduce the notation: $\hat{\mu}(u) = \mu_{23}(u) = \mu_{13}(u)$, we then have:

$$\partial_s p_{13}(t,s) = [p_{11}(t,s) + p_{12}(t,s)] \hat{\mu}(s), \quad (p_{11} + p_{12} + p_{13} = 1)$$

= $[1 - p_{13}(t,s)] \hat{\mu}(s)$

We can now multiply by (-1), and take the derivative of 1 (which is zero), this gives us:

```
#alive to dead
p_13 <- function(t,s){
  return(1-exp((-1)*m13*(s-t)))
}</pre>
```

Exercise 4.6

Required-libraries

```
list.of.packages <- c("tidyverse", "scales")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)

library(tidyverse)
library(scales)  #nice formatting of plots</pre>
```

We are dealing with an endownment policy, in discrete time, this means that $S = \{*, \dagger\}$, the contractual information provided is:

futhermore the force of mortality is given by:

```
mu <- function(t){
  return(0.0015 + 0.0004*(t-35))
}</pre>
```

discount-factor:

```
v <- function(t){
  return(exp(-r*t))
}</pre>
```

We can also calulate the survival probability:

$$p_{**}(s,t) = \exp\left(-\int_s^t \mu_{*\dagger}(u)du\right)$$

```
p_surv <- function(s,t){
  integral <- 0.0015*(t-s) + 0.0004*((1/2)*(t^2 -s^2) + 35*(s-t))
  return(exp(-integral))
}
p_surv(35,36)</pre>
```

```
## [1] 0.9983014
```

We are asked to calculate the yearly premium π , but first we start by defining the policy functions specified in the contract.

$$a_*^{Pre}(n) = \begin{cases} -\pi & , n = 0, \dots, T - 1 \\ E & , n = T \end{cases} \quad a_{*\dagger}^{Post}(n) = \begin{cases} B & , n = 0, \dots, T - 1 \\ 0 & , else \end{cases}$$

We can now start to calculate the reserves, but we must be aware of what happens at n = T:

$$V_*^+(t,A) = \frac{1}{v(t)} \left[\sum_{n=t}^T v(n) p_{**}(x+t,x+n) a_*^{Pre}(n) + \sum_{n=t}^{T-1} v(n+1) p_{**}(x+t,x+n) p_{*\dagger}(x+n,x+n+1) a_{*\dagger}^{Post}(n) \right]$$

$$= \frac{1}{v(t)} \left[\alpha + \beta \right]$$

Here α corresponds to the first sum, and β corresponds to the second sum:

$$\alpha = \sum_{n=t}^{T-1} v(n) p_{**}(x+t, x+n) (-\pi) + v(T) p_{**}(x+t, x+T) E$$
$$\beta = \sum_{n=t}^{T-1} v(n+1) p_{**}(x+t, x+n) p_{*\dagger}(x+n, x+n+1) B$$

We will now use the equivalence principle, which states that the fair premium π should be such that $V_*(0, A) = 0$, and using this method we end up with:

$$\pi = \frac{v(T)p_{**}(x, x+T)E + B\sum_{n=0}^{T-1} v(n+1)p_{**}(x, x+n)p_{*\dagger}(x+n, x+n+1)}{\sum_{n=0}^{T-1} v(n)p_{**}(x, x+n)}$$

```
res1 <- 0
for (n in 0:(T-1)){
    res1 <- res1 + v(n+1)*p_surv(x, x+n)*(1-p_surv(x+n, x+n+1))
}

res2 <- 0
for (n in 0:(T-1)){
    res2 <- res2 + v(n)*p_surv(x, x+n)
}

above <- B*res1 + v(T)*p_surv(x,x+T)*E #whats above in the premium expression
below <- res2  #whats below in the premium expression

premium_yearly <- above/below
premium_yearly</pre>
```

[1] 4095.413

We now also want the prospective reserves: i.e $V_*^+(t,A)$ for $t=0,\ldots,T$:

```
#Present value of reserve when including premiums.
V_reserve_1 <- function(x=35, E = 125000 , T=25){
    #x: age of insured
    #B: benefit specified in contract
    #T: length of contract

V_star_pre <- NULL
for (t in 0:(T-1)){
    s <- 0
    for (n in t:(T-1)){
        s <- s + (1/v(t))*(-1)*premium_yearly*v(n)*p_surv(t+x, n+x)
    }
    V_star_pre[t+1] <- s + (1/v(t))*v(T)*p_surv(x+t, x+T)*E
}
V_star_pre[T+1] <- E #specified by contract
return(V_star_pre)
}</pre>
```

```
V_{reserve_2} \leftarrow function(x=35, B=250000, T=25){
  #x: age of insured
  #B: benefit specified in contract
  #T: length of contract
  V_star_post <- NULL</pre>
  for (t in 0:(T-1)){
    s <- 0
    for (n in t: (T-1)){
      s \leftarrow s + (1/v(t))*B*v(n+1)*p_surv(x+t, x+n)*(1-p_surv(x+n, x+n+1))
    }
    V_star_post[t+1] <- s</pre>
  }
  V_star_post[T+1] <- 0 #specified by contract</pre>
  return(V_star_post)
}
reserve_total <- V_reserve_1() + V_reserve_2()</pre>
reserve_total
```

```
## [1] 1.091394e-11 3.823145e+03 7.692302e+03 1.161236e+04 1.558847e+04 ## [6] 1.962604e+04 2.373075e+04 2.790862e+04 3.216595e+04 3.650944e+04 ## [11] 4.094613e+04 4.548348e+04 5.012938e+04 5.489218e+04 5.978071e+04 ## [16] 6.480437e+04 6.997309e+04 7.529742e+04 8.078858e+04 8.645848e+04 ## [21] 9.231977e+04 9.838591e+04 1.046712e+05 1.111910e+05 1.179615e+05 ## [26] 1.250000e+05
```


Exercise 4.7 Discrete vs continous time endowment insurance

In this exercise we are considering an endowment insurance, hence $S = \{*, \dagger\}$, the contractual information provided is:

x <- 30 T <- 35 E <- 100000 B <- 200000 r <- 0.035

We start with discrete time, the policy functions are as follows:

$$a_*^{Pre}(n) = \begin{cases} -\pi & , n = 0, \dots, T-1 \\ E & , n = T \end{cases}$$
$$a_{*\dagger}^{Post}(n) = \begin{cases} B & , n = 0, \dots, T-1 \\ 0 & , else \end{cases}$$

Again:

$$V_i^+(t,A) = \sum_{j} \sum_{n > t} \frac{v(n)}{v(t)} p_{ij}^x(t,n) a_j^{Pre}(n) + \sum_{k \neq j} \sum_{n > t} \frac{v(n+1)}{v(t)} p_{ij}^x(t,n) p_{jk}^x(n,n+1) a_{jk}^{Post}(n)$$

Which translates to:

$$V_*^+(t,A) = -\pi \sum_{n=t}^{T-1} \frac{v(n)}{v(t)} p_{**}^x(t,n) + \frac{v(T)}{v(t)} p_{**}^x(t,T) E + B \sum_{n=t}^{T-1} \frac{v(n+1)}{v(t)} p_{**}^x(t,n) p_{*\dagger}^x(n,n+1)$$

We then use the equivalence principle, telling us that the fair premium π should be chosen so that $V_*^+(0,A)=0$:

$$\pi = \frac{v(T)p_{**}^{x}(0,T)E + B\sum_{n=0}^{T-1}v(n+1)p_{**}^{x}(0,n)p_{*\dagger}^{x}(n,n+1)}{\sum_{n=0}^{T-1}v(n)p_{**}^{x}(0,n)}$$

We now discuss the situation in continous time, we then get the following policy functions:

$$a_*(t) = \begin{cases} 0, & t < 0 \\ -\pi t, & t \in [0, T) \\ -\pi T + E, & t \ge T \end{cases} \quad a_{*\dagger}(t) = \begin{cases} B, & t \in [0, T) \\ 0, & else \end{cases}$$

We start off by stating the general formula for reserves in continuous-time:

$$V_i^+(t,A) = \sum_j \frac{v(T)}{v(t)} p_{ij}^x(t,T) \Delta a_j(T) + \sum_j \int_t^T \frac{v(s)}{v(t)} p_{ij}^x(t,s) da_j(s) + \sum_{k \neq j} \int_t^T \frac{v(s)}{v(t)} p_{ij}^x(t,s) \mu_{jk}^x(s) a_{jk}(s) ds$$

Translating this into our situation:

$$V_*^+(t,A) = \frac{v(T)}{v(t)} p_{**}^x(t,T) E - \pi \int_t^T \frac{v(s)}{v(t)} p_{**}^x(t,s) ds + B \int_t^T \frac{v(s)}{v(t)} p_{**}^x(t,s) \mu_{*\dagger}^x(s) ds$$

Now as always, the equivalence principle tells us to chose π such that $V_*^+(0,A)=0$:

$$\pi = \frac{v(T)p_{**}^{x}(0,T)E + B\int_{0}^{T}v(s)p_{**}^{x}(0,s)\mu_{*\dagger}^{x}(s)ds}{\int_{0}^{T}v(s)p_{**}^{x}(0,s)ds}$$

```
#want the map function from purrr:
library(tidyverse)
packageVersion("tidyverse")
## [1] '1.3.1'
#0: alive, 1:dead
mu01 <- function(t){
  a2 < -5*10^{-4}
  b2 <- 7.5858*10^{-5}
  c2 <- 0.087498
  ans \leftarrow a2 + b2*exp(c2*t)
  return(ans)
}
p_surv <- function(t, s){</pre>
  f <- Vectorize(mu01)</pre>
  integral <- integrate(f, lower = t, upper = s)$value</pre>
  ans <- exp(-integral)</pre>
  return(ans)
}
#discount factor
v <- function(t){</pre>
  return(exp(-r*t))
#premium discrete time:
summand_upper <- function(n){</pre>
  v(n+1)*p_surv(x, x + n)*(1- p_surv(x + n, x + n +1))
}
summand_lower <- function(n){</pre>
  v(n)*p_surv(x, x +n)
}
#map_dbl: maps the function summand_upper to the elements 0:(T-1)
sum_upper <- sum(map_dbl(0:(T-1), summand_upper))</pre>
sum_lower <- sum(map_dbl(0:(T-1), summand_lower))</pre>
above_discrete <- v(T)*p_surv(x, x + T)*E + B*sum_upper
below_discrete <- sum_lower</pre>
premium_discrete <- above_discrete/below_discrete</pre>
premium_discrete
```

[1] 2204.58

```
#premium continous time
integrand_upper <- function(s){
   v(s)*p_surv(x, x + s)*mu01(x + s)
}
integrand_lower <- function(s){
   v(s)*p_surv(x, x + s)
}

f1 <- Vectorize(integrand_upper)
f2 <- Vectorize(integrand_lower)

integral_upper <- integrate(f1, lower = 0, upper = T)$value
integral_lower <- integrate(f2, lower = 0, upper = T)$value
above_cont <- v(T)*p_surv(x, x + T)*E + B*integral_upper
below_cont <- integral_lower

premium_cont <- above_cont/below_cont
premium_cont</pre>
```

[1] 2268.052

We then recall what the premiums were in the different cases:

We then recall what the premiums were:

```
premium_discrete
```

```
## [1] 2204.58
premium_cont
```

```
## [1] 2268.052
```