EE 254

Electronic Instrumentation

Dr. Tharindu Weerakoon

Dept. of Electrical and Electronic Engineering

Faculty of Engineering, University of Peradeniya

Content (Brief)

2. Op-Amp Applications

- ** Linear Applications
 - Inverting amplifiers
 - Noninverting amplifiers
 - Differential amplifiers
 - Summing amplifiers
 - Integrators
 - Differentiators
 - Low/ High pass filters
 - Instrumentational amplifiers

- ** Nonlinear Applications
 - Precision rectifiers
 - Peak detectors
 - Schmitt-trigger comparator
 - Logarithmic amplifiers

Linear Application (Discussed)

1 Inverting Amplifier

2 Non-Inverting Amplifier

Mathematical Integrator

Specification
Specification
Definite
Integral

Signification of the second of the second

Generalized Inverting Amplifier

- $\$ Let's set Z_1 as a resistor and Z_2 to a capacitor.
- The impedances are then $Z_1 = R_1$ and $Z_2 = 1/sC_2$, where s again is the complex frequency

$$v_O = -\frac{Z_2}{Z_1} v_I = \frac{-1}{s R_1 C_2} v_I$$

Generalized Inverting Amplifier

$$v_O = -\frac{Z_2}{Z_1} v_I = \frac{-1}{s R_1 C_2} v_I$$

If V_C is the voltage across the capacitor at t = 0, the output voltage

$$v_O = V_C - \frac{1}{R_1 C_2} \int_0^t v_I(t') dt'$$

In many applications, a **transistor switch** needs to be added in parallel with the capacitor to periodically **set the capacitor voltage to zero**.

Ex.01: Integrator

Consider the integrator shown in Figure. Assume that voltage V_C across the capacitor is **zero** at t=0. A step input voltage of $v_I=-1\,V$ is applied at t=0. Determine the time constant required such that the output reaches $+10\,V$ at $t=1\,ms$.

Ex.01: Integrator

Solution:

The output voltage of the integrator

$$v_{O} = V_{C} - \frac{1}{R_{1}C_{2}} \int_{0}^{t} v_{I}(t')dt'$$

Given that $V_C = 0$ at t = 0. $v_I = -1 V$, at t = 0. The expected output voltage is $v_O = +10 V$ at t = 1 ms.

Then,
$$v_0 = -\frac{1}{R_1 C_2} \int_0^t (-1) dt' = \frac{1}{R_1 C_2} t' \Big|_0^t = \frac{t}{R_1 C_2}$$

At
$$t = 1 ms$$
 $10 = \frac{10^{-3}}{R_1 C_2}$

Which means the time constant is $R_1C_2 = 0.1 ms$

Op-Amp Saturation

- The output of the integrator cannot rise indefinitely as the output will be limited.
- \$\text{\text{The output of the op amp integrator will be limited by supply voltage.}}\]
- Mhen designing one of these circuits, it ov may be necessary to limit the gain increase the supply voltage to accommodate the likely output voltage swings.

Integrator Reset Capability

It is sometimes necessary to reset the integrator to zero.

Different Analog Integrators

The basic inverting analog integrator consists of an op-amp with a capacitor in its feedback path.

$$V_{out} = -\frac{1}{RC} \int V_{IN} dt$$

Different Analog Integrators

Adding a large resistor in parallel with the feedback capacitor limits the DC gain and results in a practical integrator.

Different Analog Integrators

Non-inverting integrator

A non-inverting integrator based on a difference amplifier op amp configuration can ensure the output phase matches that of the input.

Common Integrator Applications

Using dual integrators, a designer can produce acceleration, velocity, and displacement readouts from an accelerometer.

18

\$

A differentiator circuit is one in which the voltage output is directly proportional to the rate of change of the input voltage with respect to time.

Generalized Inverting Amplifier

The impedances are $Z_1 = 1/sC_1$ and $Z_2 = R_2$

Voltage transfer function

$$\frac{v_O}{v_I} = -\frac{Z_2}{Z_1} = -sR_2C_1$$

Output voltage

$$v_O = -sR_2C_1v_I$$

$$v_O(t) = -R_2 C_1 \frac{dv_I(t)}{dt}$$