

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 3, 2016 Электронный журнал,

Электронный журнал, per. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

 $http://www.math.spbu.ru/diffjournal\\ e-mail:jodiff@mail.ru$

Динамические системы на многообразиях

УДК 517

Липшицево отслеживание в кусочно-линейных отображениях

С. Ю. Пилюгин, А. А. Родионова¹

Математико-механический факультет Санкт-Петербургского государственного университета

Россия, 198504, Санкт-Петербург, Университетский пр., д. 28 e-mail: sp@sp1196.spb.edu, a.a.rodionova@gmail.com

Аннотация

Рассматривается непрерывное отображение f евклидова пространства \mathbb{R}^n , которое являтся линейным и гиперболическим на некотором семействе множеств G_l с непересекающимися внутренностями.

Изучаются конечные псевдотраектории отображения f, достаточно длинные блоки которых принадлежат множествам G_l , в то время как блоки, не принадлежащие множествам G_l , имеют ограниченную длину.

Получены достаточные условия, при которых такие конечные псевдотраектории липшицево отслеживаются точными траекториями отображения f (и при этом константа Липшица не зависит от суммарной длины псевдотраектории). Принципиально новым является введенный в статье аналог условия трансверсальности.

Ключевые слова Динамическая система, отслеживание, гиперболичность, трансверсальность

 $^{^1}$ Исследования первого автора поддержаны РФФИ (грант 15-01-03797а) и НИР СПбГУ 6.38.223.2014 "Устойчивость динамических систем относительно возмущений и применения к исследованию прикладных задач".

Abstract

We study a continuous mapping f of the Euclidean space \mathbb{R}^n that is linear and hyperbolic on a family of sets G_l with disjoint interiors.

We study finite pseudotrajectories of the mapping f such that their long enough blocks belong to the sets G_l while their blocks not belonging to G_l are of bounded length.

We obtain sufficient conditions under which such pseudotrajectories are Lipschitz shadowed by exact trajectories of the mapping f (and the Lipschitz constant does not depend on the total length of the pseudotrajectory).

The principal novelty is the introduced analog of the transversality condition.

Keywords Dynamical system, shadowing, hyperbolicity, transversality

1. Введение

Теория отслеживания приближенных траекторий (псевдотраекторий) является в настоящее время одной из интенсивно развивающихся областей глобальной теории динамических систем.

Основные результаты, полученные в этой теории к концу 20 века, детально изложены в монографиях [1, 2]; многие недавние результаты отражены в обзорной статье первого автора [3].

Особую роль в теории играет так называемое липшицево отслеживание. Это свойство означает, что существует точная траектория, расстояние которой до отслеживаемой псевдотраектории оценивается линейно через пошаговую ошибку псевдотраектории (см. точное определение в п. 2).

Анализ первых классических результатов об отслеживании в окрестности гиперболического множества диффеоморфизма, принадлежащих Д. В. Аносову[4] и Р. Боуэну [5], показывает, что в их случае отслеживание липшицево. В дальнейшем было показано, что свойством липшицева отслеживания обладает и любой структурно устойчивый диффеоморфизм (см. книгу [6]).

Сравнительно недавно первый автор и С. Б. Тихомиров показали, что в случае диффеоморфизма гладкого замкнутого многообразия липшицево отслеживание равносильно структурной устойчивости [7].

В данной заметке мы получаем достаточные условия, при которых отображение евклидова пространства в себя обладает неким вариантом свойства липшицева отслеживания для конечных псевдотраекторий. Предполагается, что в пространстве выделено семейство областей, на которых отображение является линейным и гиперболическим. Рассматриваются конечные псевдо-

траектории, все точки которых (за исключением некоторых фрагментов ограниченной длины) лежат в этих областях. Основная новизна состоит в условии, которым заменяется стандартное для теории структурной устойчивости условие трансверсальности устойчивых и неустойчивых многообразий (см. Условие 2 в п. 2).

Первоначальный вариант основной теоремы заметки содержится в препринте [8].

2. Основные определения и вспомогательные утверждения

Дадим вначале основные определения для случая отображения метрического пространства в себя.

Пусть (M, dist) – метрическое пространство; рассмотрим отображение $f: M \to M$ и порождаемую им полудинамическую систему (как обычно, мы отождествляем эту систему с отображением f). Последовательность точек $\pi = \{p_k \in M; k \in \mathbb{Z}\}$ называется траекторией f, если

$$p_{k+1} = f(p_k), \quad k \in \mathbb{Z}.$$

Фиксируем d > 0. Будем говорить, что последовательность

$$\xi = \{x_k \in M : k \in \mathbb{Z}\}$$

является d-псевдотраекторией f, если

$$\operatorname{dist}(x_{k+1}, f(x_k)) \le d, \quad k \in \mathbb{Z}.$$
 (1)

Стандартное свойство отслеживания для системы f означает, что по любому $\varepsilon>0$ мы можем найти такое d>0, что для любой d-псевдотраектории $\xi=\{x_k\}$ системы f мы можем найти такую ее траекторию $\pi=\{p_k\}$, что выполнены неравенства

$$\operatorname{dist}(x_k, p_k) \le \varepsilon, \quad k \in \mathbb{Z}.$$
 (2)

Наконец, мы будем говорить, что система f обладает липшицевым свойством отслеживания, если существуют такие константы $\mathcal{L}, d_0 > 0$, что для любой d-псевдотраектории ξ системы f с $d \leq d_0$ существует траектория π , удовлетворяющая неравенствам (2) с $\varepsilon = \mathcal{L}d$.

Рассмотрим теперь липшицево отображение $f: \mathbb{R}^n \to \mathbb{R}^n$ с константой Липшица L_0 (не ограничивая общности, будем считать, что $L_0 \geq 1$), для которого существует семейство множеств $G_l \subset \mathbb{R}^n, l \in \Lambda$, с непересекающимися внутренностями, для которых выполнены следующие условия.

Во-первых, для любого $l \in \Lambda$ мы фиксируем дополнительные ортогональные линейные подпространства S_l and U_l пространства \mathbb{R}^n (обозначая их размерности s_l и u_l) с координатами $\xi \in S_l$ и $\eta \in U_l$ и обозначаем

$$N(\Delta, p) := \{ p + (\xi, \eta) : |\xi|, |\eta| \le \Delta \}$$

для точки $p \in G_l$ и числа $\Delta > 0$.

Пусть

$$H_l(\Delta) = \{p : N(\Delta, p) \subset G_l\}.$$

Условие 1. Существует такая константа $\lambda \in (0,1)$, что выполнено следующее. Для любого индекса $l \in \Lambda$ существуют такие матрицы A_l и B_l размера, соответственно, $s_l \times s_l$ и $u_l \times u_l$, что

$$||A_l|| \le \lambda \quad \text{и} \quad ||(B_l)^{-1}|| \le \lambda \tag{3}$$

и если $p \in H_l(\Delta)$ при некотором $\Delta > 0$ (так что $p+(\xi, \eta) \in G_l$ при $|\xi|, |\eta| \leq \Delta$), то

$$f(p + (\xi, \eta)) = f(p) + (A_l \xi, B_l \eta).$$
 (4)

Замечание 1. Мы накладываем такие простые условия на отображение f для того, чтобы сделать доказательства максимально прозрачными (конечно, наш основной результат остается верным и при более общих условиях гиперболического поведения отображения f на множествх G_l).

Отметим, прежде всего, что следующее утверждение доказывается стандартными методами (например, достаточно рассмотреть образы под действием отображения f параллелепипедов $N(L_1d,x_j),\ 0 \le j < m$).

Лемма 1. Пусть

$$L_1 = \frac{1}{1 - \lambda}.\tag{5}$$

Если конечная последовательность $\{x_k: 0 \leq k \leq m\}$, где m>0, является конечной д-псевдотраекторией отображения f (это означает, что неравенства (1) выполнены для $0 \leq k \leq m-1$), для которой существует такой индекс $l \in \Lambda$, что

$$x_j \subset H_l(L_1d), \quad 0 \le j < m,$$

то существует такая точка у, что

$$f^{j}(y) \in N(L_{1}d, x_{j}), \quad 0 \le j \le m. \tag{6}$$

Теперь мы определим геометрические объекты, которые играют важную роль в дальнейшем.

Рассмотрим точку $p \in G_l$, $l \in \Lambda$, и введем координаты (ξ, η) так, чтобы точка p была началом координат, а координатные подпространства были, соответственно, параллельны S_l и U_l .

Фиксируем числа $\Delta_1, \Delta_2 > 0$. Рассмотрим непрерывную функцию $\Xi(\eta)$, которая отображает

$$\{\eta: \eta \in U_l, |\eta| \le \Delta_1\}$$

в S_l и удовлетворяет неравенству

$$|\Xi(\eta)| \leq \Delta_2, \quad |\eta| \leq \Delta_1.$$

Пусть D – график $\Xi(\eta)$. Обозначим через $\mathcal{D}(\Delta_1, \Delta_2, p)$ множество таких дисков D.

Следующая лемма геометрически очевидна.

Лемма 2. Если $p \in H_l(\Delta)$, $f(p) \in G_l$ и $D \in \mathcal{D}(\Delta_1, \Delta_2, p)$, где $\Delta_1, \Delta_2 \leq \Delta$, то образ f(D) содержит такой диск D^* , что $D^* \in \mathcal{D}(\Delta_1/\lambda, \lambda \Delta_2, f(p))$.

Замечание 2. Легко видеть, что при доказательстве основного результата мы ссылаемся на утверждения лемм 1 и 2 (липшицево отслеживание в множествах G_l с константой L_1 и свойства образов дисков), комбинируя их с аналогом "условия трансверсальности" при переходе от одного из множеств к другому, сформулированным в Условии 2. Предположение о линейности f в множествах G_l просто позволяет нам сделать утверждения лемм 1 и 2 очевидными.

Условие 2. Для любого натурального числа v существуют числа $K \ge L_0 + 1$ и $\delta_0 > 0$, зависящие от v и обладающие следующими свойствами. Если

$$L_2 = L_0^{v-1} + L_0^{v-2} + \dots + L_0 + L_1 + 1,$$

 $d \leq \delta_0$ и существуют такие три точки p,q,r и натуральное число $w \in [1,v],$ что

- (2.1) $p \in G_l$ и $f^w(p) \in G_m$ для некоторых $l, m \in \Lambda$ с $l \neq m$;
- (2.2) $q \in H_l(Kd)$ и $r \in H_m(Kd)$;

- $(2.3) |p-q| \le L_1 d \text{ if } |f^w(p)-r| \le L_2 d;$
- $(2.4) D \in \mathcal{D}(Kd, d, q),$

то образ $f^w(D)$ содержит такой диск D^* , что $D^* \in \mathcal{D}(d,Kd,r)$.

Замечание 3. 1. Сформулированное выше условие применяется в ситуации, когда точки p и $f^w(p)$ принадлежат различным множествам G_l и G_m и нам ничего не известно о положении точек $f(p), \ldots, f^{w-1}(p)$; в некотором смысле, это условие означает, что образ $f^v(D)$ диска $D \in \mathcal{D}(Kd, d, q)$ "равномерно трансверсален" к "усточивому подпространству" отображения f в точке f, которая достаточно близка к точке $f^v(p)$.

2. Условие 2 существенно изменено по сравнению с соответствующим условием, сформулированным в препринте [8].

3. Основная теорема

В этом пункте мы доказываем следующую условную теорему о липшицевом отслеживании для отображения f, удовлетворяющего Условиям 1 и 2.

В теореме рассматриваются конечные d-псевдотраектории

$$X = \{x_k : T_0 \le k \le T_1\}$$

отображения f, у которых лишь сегменты ограниченной фиксированным числом v длины не принадлежат множествам G_l , в то время как дополнительные длиные сегменты лежат в множествах G_l .

Показано, что существуют такие δ_0 и \mathcal{L} , что любая конечная d-псевдотраектория такого вида с $d \leq \delta_0$ $\mathcal{L}d$ -отслеживается фрагментом точной траектории отображения f. При этом числа δ_0 и \mathcal{L} зависят только от свойств отображения f и от числа v и не зависят от длины псевдотраектории. Легко понять, что если фазовое пространство динамической системы локально компактно, то такое "конечное липшицево свойство отслеживания" влечет липшицево свойство отслеживания, определенное в п. 1 (см., например, доказательство леммы 1.1.1 в книге [1]).

Теорема. Предположим, что отображение f удовлетворяет Условиям 1 и 2. Пусть $X = \{x_k : T_0 \le k \le T_1\}$ — конечная d-псевдотраектория f.

Предположим, кроме того, что существуют такие (не обязательно различные) индексы $l_0, l_1, \ldots, l_t \in \Lambda$ с $l_{i+1} \neq l_i$, натуральное число v и целые числа

$$T_0 = m_0 < n_0 < m_1 < n_1 < m_2 < n_2 < \dots < m_t < n_t = T_1,$$

где $m_{j+1} - n_j \leq v, \ j = 0, \dots, t-1$, обладающие следующими свойствами (где число K = K(v) взято из Условия 2):

(a)
$$x_k \in H_{l_i}(K_1 d), \quad m_j \le k \le n_j, \ j = 0, \dots, t,$$
 (7)

 $\epsilon \partial e K_1 = K + L_1;$

(b) существует положительное число $\mu,\ \partial$ ля которого верны неравенства

$$\mu_j := n_j - m_j \ge \mu, \quad j = 0, \dots, t,$$
 (8)

u

$$\lambda^{\mu}K < 1; \tag{9}$$

 $\Pi ycmb$

$$\mathcal{L} = L_0^{v-1}(L_1 + 2K) + L_0^{v-2} + \dots + L_0 + 1. \tag{10}$$

Если $d \leq \delta_0$, где число $\delta_0 = \delta_0(v)$ взято из Условия 2, то существует такая точка z, что

$$|f^k(z) - x_k| \le \mathcal{L}d, \quad k = T_0, \dots, T_1. \tag{11}$$

Замечание 4. Отметим, что в условиях теоремы не исключается случай, когда псевдотраектория возвращается в некоторые из множеств G_l больше одного раза.

В приводимом ниже доказательстве используется следующая лемма, являющаяся прямым следствием леммы 2.

Лемма 3. Пусть отображение f удовлетворяет Условиям 1 и 2.

 $\Pi ped no no жим, что для числа <math>d>0$ и множества G_l существуют такие точка у и числа m< n, что

$$N(Kd, f^k(y)) \subset G_l, \quad m \le k \le n, \tag{12}$$

u

$$\lambda^{(n-m)}K < 1. \tag{13}$$

Тогда любой диск $D \in \mathcal{D}(d,Kd,f^m(y))$ содержит такое подмножество $D' \subset D$, что

$$f^k(D') \subset N(Kd, f^k(y)), \quad m \le k \le n, \tag{14}$$

 $u f^n(D')$ содержит диск $D^* \in \mathcal{D}(Kd, d, f^n(y)).$

Перейдем к доказательству теоремы.

Фиксируем $d \leq \delta_0$. Условие (a) позволяет нам применить лемму 1 к любому фрагменту

$$\{x_k: m_j \le k \le n_j\}, \quad j = 0, \dots, t,$$

псевдотраектории X и найти такие точки $y_j, j = 0, \ldots, t$, что

$$f^k(y_j) \in N(L_1 d, x_{m_j + k}), \quad 0 \le k \le \mu_j.$$
 (15)

Из условия (7) следует, что аналоги включений (12) из леммы 3 выполнены для точек y_i :

$$N(Kd, f^k(y_i)) \subset G_{l_i}, \quad 0 \le k \le \mu_i, \ j = 0, \dots, t.$$
 (16)

Так как $\mu_0 = n_0 - m_0 \ge \mu$ (см. (8)), из (9) следует, что условие (13) леммы 3 выполнено для $y = y_0$ и $m = \mu_0$.

Введем координаты (ξ, η) так, чтобы координатные подпространства были параллельны S_{l_0} и U_{l_0} , а точка y_0 была бы началом координат.

Положим

$$D_{0,0} = \{(0,\eta): |\eta| \le d\}.$$

Ясно, что $D_{0,0} \in \mathcal{D}(d, Kd, y_0)$.

Применяя лемму 3, найдем такое подмножество D_0 диска $D_{0,0}$, что выполнены аналоги включений (14), т.е.,

$$f^{k}(D_{0}) \subset N(Kd, f^{k}(y_{0})), \quad 0 \leq k \leq \mu_{0},$$

и $f^{\mu_0}(D_0)$ содержит диск $D_0^* \in \mathcal{D}(Kd, d, f^{\mu_0}(y_0)).$

Обозначим $p=x_{n_0},\ q=f^{\mu_0}(y_0)$ и $r=y_1$. Из включений (15) (с j=0 и $k=n_0$) следует, что

$$|p - q| = |x_{n_0} - f^{\mu_0}(y_0)| = |x_{n_0} - f^{n_0}(y_0)| \le L_1 d. \tag{17}$$

Пусть $w = m_1 - n_0$. Так как X - d-псевдотраектория,

$$|f^{w}(p) - x_{m_{1}}| = |f^{w}(x_{n_{0}}) - x_{n_{0}+v}| \le$$

$$\le |f^{w}(x_{n_{0}}) - f^{w-1}(x_{n_{0}+1})| + |f^{w-1}(x_{n_{0}+1}) - f^{w-2}(x_{n_{0}+2})| +$$

$$+|f(x_{n_{0}+w-1}) - x_{n_{0}+w}| \le (L_{0}^{w-1} + \dots + L_{0} + 1)d$$

(напомним, что L_0 – константа Липшица отображения f).

По условию теоремы, $w \leq v$. Оценим

$$|f^w(p) - r| \le |f^w(p) - x_{m_1}| + |x_{m_1} - y_1| \le$$

$$\leq (L_0^{w-1} + \dots + L_0 + L_1 + 1)d \leq L_2d \tag{18}$$

(мы снова учитываем включения (15) при оценке слагаемого $|x_{m_1}-y_1|$).

Из Условия 2 и оценок (17) и (18) следует, что $f^w(D_0^*)$ содержит диск $D_{1,0}\in\mathcal{D}(d,Kd,y_1).$

Продолжая этот процесс, найдем подмножество $D_1 \subset D_{1,0}$, обладающее свойствами, аналогичными свойствам D_0 , затем подмножество $D_2 \subset D_{2,0}$, и так далее.

Таким образом, мы строим такие множества $D_j, j = 0, \dots, t$, что

$$D_{j+1} \subset f^{\mu_j + w_j}(D_j), \quad j = 0, \dots, t - 1,$$

где $w_j = m_{j+1} - n_j$, и

$$f^k(D_i) \subset N(Kd, f^k(y_i)), \quad 0 \le k \le \mu_i, \ j = 0, \dots, t.$$
 (19)

Из двух последних соотношений вытекают включения

$$f^{-m_{j+1}}(D_{j+1}) \subset f^{-m_j}(D_j), \quad j = 0, \dots, t-1.$$

Следовательно, для любой точки $\widetilde{z} \in f^{-m_t}(D_t) \subset D_0$ верны включения

$$f^{m_j}(\widetilde{z}) \in D_j, \quad j = 0, \dots, t.$$

Фиксируем точку $z \in f^{-m_t}(D_t)$.

Из включений (19) и оценок (15) следует, что

$$|f^k(z) - x_k| \le (L_1 + 2K)d < \mathcal{L}d, \quad m_j \le k \le n_j, \ j = 0, \dots, t.$$
 (20)

Нам остается только оценить величины $|f^k(z)-x_k|$ при $k=n_j+1,\ldots,n_j+w_j-1$ (напомним, что $w_j=m_{j+1}-n_j\leq v$).

Положим $z'=f^{n_j}(z)$ и $k=n_j+t,\ 1\leq t\leq w_j-1.$ Из включений (15) следует, что если t=1, то

$$|f^{k}(z) - x_{k}| = |f(z') - x_{n_{j}+1}| \le |f(z') - f(x_{n_{j}})| + |f(x_{n_{j}}) - x_{n_{j}+1}| \le$$

$$\le L_{0}(L_{1} + 2K)d + d = (L_{0}(L_{1} + 2K) + 1)d;$$

если t=2, то

$$|f^{k}(z) - x_{k}| = |f^{2}(z') - x_{n_{j}+2}| \le |f^{2}(z') - f(x_{n_{j}+1})| + |f(x_{n_{j}+1}) - x_{n_{j}+2}| \le (L_{0}^{2}(L_{1} + 2K) + L_{0} + 1)d,$$

ит. д.

Продолжая этот процесс, мы получим искомую оценку (11). Теорема доказана. \square

Одно из возможных применений доказанного результата приведено в препринте [8].

Там он использован для доказательства существования гомеоморфизма отрезка, обладающего липшицевым свойством отслеживания и имеющего неизолированную неподвижную точку (отметим, что, как вытекает из основного результата статьи [7], такое невозможно в случае диффеоморфизма гладкого замкнутого многообразия).

Литература

- 1. Pilyugin S.Yu. Shadowing in dynamical systems. Lecture Notes in Mathematics, **1706**, Berlin, Springer, 1999. 271 p.
- 2. Palmer K. Shadowing in dynamical systems. Theory and applications. Dordrecht, Kluwer, 2000. 299 p.
- 3. Pilyugin S.Yu. Theory of pseudo-orbit shadowing in dynamical systems. Differential Equations, 2011, (47):1929-1938.
- 4. Аносов Д.В. Об одном классе инвариантных множеств гладких динамических систем. Труды 5й межд. конф. по нелинейным колебаниям, Киев, 1970; 39-45.
- 5. Bowen R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, **470**, Berlin, Springer, 1975. 162 p.
- 6. Pilyugin S.Yu. The space of dynamical systems with the C^0 topology. Lecture Notes in Mathematics, **1571**, Berlin, Springer, 1994. 188 p.
- 7. Pilyugin S.Yu., Tikhomirov S.B. Lipschitz shadowing implies structural stability. Nonlinearity, 2010; (23):2509-2515.
- 8. Petrov A., Pilyugin S. Nonsmooth mappings with Lipschitz shadowing. 2015. Available at: arXiv:1510.03074 [math.DS].