Planche 3

Questions de cours

Question P0: Définir la dimension d'une grandeur et donner les règles d'homogénéité.

Question P1 : Exprimer à partir d'un schéma le déplacement élémentaire dans l'un des systèmes de coordonnées ; construire le trièdre local associé.

Exercices

Exercice P0: Analyse dimensionnelle - Système mécanique

Lors de l'étude d'un système en mécanique, on trouve l'équation différentielle suivante :

$$\frac{dv}{dt} + \frac{\lambda}{m}v = \frac{kl}{m}\cos\left(\frac{2\alpha}{m}\right)$$

où α est un angle, v est la vitesse du système, m sa masse, λ est liée à une force de frottement proportionnelle à la vitesse $f = -\lambda v$, k est la constante de raideur d'un ressort et l est son allongement.

- 1. Analyser la dimension physique de chaque terme de cette équation différentielle.
- 2. Est-elle homogène? Pourquoi?

Exercice P1: Trajectoire cycloïdale

Lorsqu'un vélo roule sans glisser sur un sol rectiligne, un point M situé à la périphérie d'une de ses roues décrit, dans le référentiel lié au sol, une trajectoire appelée cycloïde.

Nous notons R le rayon de cette roue et C son centre. Initialement, le point M est au contact du sol.

L'origine O du repère est placée en C à l'instant initial, l'axe Ox étant parallèle au sol et orienté dans la direction du mouvement. L'axe Oy est vertical ascendant.

- 1. Représenter le système d'axes, la roue et les points C et M à un instant quelconque, la roue ayant effectué moins d'un demi-tour depuis l'instant initial.
- 2. L'angle θ est mesuré entre la verticale descendante et la direction du vecteur \overrightarrow{CM} . Exprimer les vecteurs \overrightarrow{OC} et \overrightarrow{CM} à un instant quelconque dans la base (\vec{u}_x, \vec{u}_y) .
- 3. Quelles sont en fonction de R et de θ les coordonnées du point M dans le repère $(O, \vec{u}_x, \vec{u}_y)$?
- 4. Calculer en fonction de R, de θ , et de ses dérivées, les composantes de la vitesse et de l'accélération de M dans la base (\vec{u}_x, \vec{u}_y) .
- 5. Déterminer la longueur d'un arc de cycloïde.