

# **Linear Classification**

Rina BUOY, PhD



ChatGPT 4.0

# Disclaimer

#### **Adopted from**



https://introml.mit.edu/fall24

# Outline

- Recap, classification setup
- Linear classifiers
  - Separator, normal vector, and separability
- Linear logistic classifiers
  - Motivation, sigmoid, and negative log-likelihood loss
- Multi-class classifiers
  - One-hot encoding, softmax, and cross-entropy

#### Recap:

Learning algorithm Data Hypothesis class Hyperparameters Objective (loss) functions Regularization Compute/optimize/ train



### Classification Setup





# Linear Regression from Probability Perspective



a

# Maximum Log-Likelihood

$$\hat{\theta} = \operatorname{argmax}_{\theta} \log p(\mathcal{D} \mid \theta)$$

# Maximum Log-Likelihood

$$\hat{ heta} = \operatorname{argmax}_{ heta} \log p(\mathcal{D} \mid heta)$$

$$egin{aligned} l( heta) &:= \log p(\mathcal{D} \mid heta) \ &= \log \left(\prod_{i=1}^N p(y_i \mid \mathbf{x}_i, heta)
ight) \ &= \sum_{i=1}^N \log p(y_i \mid \mathbf{x}_i, heta) \end{aligned}$$

# Negative Log-Likelihood

$$\mathrm{NLL}( heta) = -\sum_{i=1}^N \log p(y_i \mid \mathbf{x}_i, heta)$$

# Negative Log-Likelihood

$$\begin{aligned} \text{NLL}(\theta) &= -\sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \theta) \\ &= -\sum_{i=1}^{N} \log \left[ \left( \frac{1}{2\pi\sigma^2} \right)^{\frac{1}{2}} \exp \left( -\frac{1}{2\sigma^2} (y_i - \beta^T \mathbf{x}_i)^2 \right) \right] \\ &= -\sum_{i=1}^{N} \frac{1}{2} \log \left( \frac{1}{2\pi\sigma^2} \right) - \frac{1}{2\sigma^2} (y_i - \beta^T \mathbf{x}_i)^2 \\ &= -\frac{N}{2} \log \left( \frac{1}{2\pi\sigma^2} \right) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \beta^T \mathbf{x}_i)^2 \\ &= -\frac{N}{2} \log \left( \frac{1}{2\pi\sigma^2} \right) - \frac{1}{2\sigma^2} \text{RSS}(\beta) \end{aligned}$$

# **Optimal Parameters**

$$\frac{\partial NLL}{\partial \beta} = 0$$

$$\hat{\beta}_{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

# Maximum Likelihood Formulation

- 1. Choose a suitable probability distribution  $Pr(\mathbf{y}|\boldsymbol{\theta})$  that is defined over the domain of the predictions  $\mathbf{y}$  and has distribution parameters  $\boldsymbol{\theta}$ .
- 2. Set the machine learning model  $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$  to predict one or more of these parameters so  $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$  and  $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])$ .
- 3. To train the model, find the network parameters  $\hat{\phi}$  that minimize the negative log-likelihood loss function over the training dataset pairs  $\{\mathbf{x}_i, \mathbf{y}_i\}$ :

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[ L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[ -\sum_{i=1}^{I} \log \left[ Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]. \tag{5.7}$$

# Outline

- Recap, classification setup
- Linear classifiers
  - Separator, normal vector, and separability
- Linear logistic classifiers
  - Motivation, sigmoid, and negative log-likelihood loss
- Multi-class classifiers
  - One-hot encoding, softmax, and cross-entropy

## (vanilla, sign-based, binary) Linear Classifier

- Each data point:
  - features  $[x_1, x_2, \dots x_d]$
  - label  $y \in \{\text{positive, negative}\}\ (\text{or } \{\text{dog, cat}\}, \{\text{pizza, not pizza}\}, \{+1, 0\})$
- A (vanilla, sign-based, binary) linear classifier is parameterized by  $[\theta_1, \theta_2, \dots, \theta_d, \theta_0]$
- To *use* a given classifier make prediction:
  - do linear combination:  $z = (\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_d x_d) + \theta_0$
  - predict positive label if z > 0, otherwise, negative label.

View of the feature space (x<sub>1</sub> and x<sub>2</sub>) and decision helper (z)  $z = \theta_1 x_1 + \theta_2 x_2 + \theta_0$ 















Toggle z=0 Surface

- Now let's try to *learn* a linear classifier
- $oldsymbol{\mathcal{L}}_{01}(g,a) = \left\{egin{array}{ll} 0 & ext{if guess} = ext{actual} \ 1 & ext{otherwise} \end{array}
  ight.$
- Combined with the linear classifier hypothesis:

$$\mathcal{L}_{01}(x^{(i)}, y^{(i)}; heta, heta_0) = \left\{egin{array}{ll} 0 & ext{if sign}\left( heta^ op x^{(i)} + heta_0
ight) = y^{(i)} \ 1 & ext{otherwise} \end{array}
ight.$$

- Very intuitive, and easy to evaluate
  - Induced concept: separability
- Very hard to optimize (NP-hard) 🥹
  - "Flat" almost everywhere (zero gradient)
  - "Jumps" elsewhere (no gradient)

Demo dataset







Try to draw the separator and normal vector given by  $(\theta_1 = -1, \text{ and } \theta_2 = 1)$  on the 2D plot, and make sense of the loss given in the 3D plot.

# Outline

- Recap, classification setup
- Linear classifiers
  - Separator, normal vector, and separability
- Linear logistic classifiers
  - Motivation, sigmoid, and negative log-likelihood loss
- Multi-class classifiers
  - One-hot encoding, softmax, and cross-entropy

### Linear Logistic Classifier

- Mainly motivated to address the gradient issue in *learning* a "vanilla" linear classifier
  - The gradient issue is caused by both the 0/1 loss, and the sign functions nested in.

$$\mathcal{L}_{01}(x^{(i)}, y^{(i)}; heta, heta_0) = \left\{egin{array}{ll} 0 & ext{if sign}\left( heta^ op x^{(i)} + heta_0
ight) = y^{(i)} \ 1 & ext{otherwise} \end{array}
ight.$$

- But has nice probabilistic interpretation too.
- As before, let's first look at how to make prediction with a *given* linear logistic classifier

## (Binary) Linear Logistic Classifier

- Each data point:
  - features  $[x_1, x_2, \dots x_d]$
  - label  $y \in \{\text{positive, negative}\}$



- A (binary) linear **logistic** classifier is parameterized by  $[\theta_1, \theta_2, \dots, \theta_d, \theta_0]$
- To *use* a given classifier make prediction:
  - do linear combination:  $z = (\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_d x_d) + \theta_0$
  - predict positive label if

$$\sigma(z) = \sigma\left( heta^ op x + heta_0
ight) = rac{1}{1+e^{-z}} \ = rac{1}{1+e^{-( heta^ op x + heta_0)}} \ > 0.5$$

otherwise, negative label.

Sigmoid: a smooth step function

$$\sigma(z) = \sigma\left( heta^ op x + heta_0
ight) = rac{1}{1 + e^{-( heta^ op x + heta_0)}}$$

- "sandwiched" between 0 and 1 vertically (never 0 or 1 mathematically)
- $\theta$ ,  $\theta_0$  can flip, squeeze, expand, shift *horizontally*
- $\sigma(\cdot)$  interpreted as the *probability | confidence* that feature x has positive label. Predict positive if

$$\sigma(z) = \sigma\left( heta^ op x + heta_0
ight) \, > 0.5$$

 monotonic, very nice/elegant gradient (see recitation/hw)



$$\sigma(z) = \sigma\left( heta^ op x + heta_0
ight) = rac{1}{1 + e^{-( heta^ op x + heta_0)}}$$
 Probability

$$\theta^{\top}x + \theta_0$$
 Logit or log odd  $\log(\frac{p}{1-p})$ 

$$\frac{p}{1-p}$$
 Odd ratio

If the probability of rain is 0.5, the odd ratio of rain to no rain is 1 and the log odd is 0.

e.g. suppose, wanna predict whether to bike to school. with **given** parameters, how do I make prediction?

1 feature: 
$$g(x) = \sigma (\theta x + \theta_0)$$
 
$$= \frac{1}{1 + \exp \{-(\theta x + \theta_0)\}}$$





2 features: 
$$g(x) = \sigma \left( \theta^{\top} x + \theta_0 \right)$$
 
$$= \frac{1}{1 + \exp \left\{ - \left( \theta^{\top} x + \theta_0 \right) \right\}}$$





### Learning a logistic regression classifier



$$g(x) = \sigma \left( heta x + heta_0 
ight)$$



• Let the labels  $y \in \{+1,0\}$ 

$$\mathcal{L}_{\mathrm{nll}}$$
 (guess, actual)

$$= -[ \text{actual } \cdot \log( \text{guess }) + (1 - \text{actual }) \cdot \log(1 - \text{guess }) ]$$

$$=-\left[y^{(i)}\log g^{(i)}+\left(1-y^{(i)}
ight)\log\left(1-g^{(i)}
ight)
ight]$$



If 
$$y^{(i)}=1$$

training data: 

Temperature (C)

$$g(x) = \sigma \left( heta x + heta_0 
ight)$$



 $\mathcal{L}_{ ext{nll}}$  ( guess, actual )

$$=-\left[y^{(i)}\log g^{(i)}+\left(1-y^{(i)}
ight)\log\left(1-g^{(i)}
ight)
ight]$$



If 
$$y^{(i)}=0$$

training data:

 $g(x) = \sigma \left(\theta x + \theta_0\right)$ 

Temperature (C)

Temperature (C)

Temperature (C)

g 0.5





### Logistic Regression

• Minimize using negative-log-likelihood loss:

$$J_{lr} = rac{1}{n} \sum_{i=1}^n \mathcal{L}_{ ext{nll}} \, \left( \sigma \left( heta^ op x^{(i)} + heta_0 
ight), y^{(i)} 
ight)$$

- Convex, differentiable with **nice** (elegant) gradients
- Doesn't have a closed-form solution
- Can still run gradient descent
- But, a gotcha: when training data is linearly separable



$$g(x) = \sigma\left( heta^T x + heta_0
ight)$$





http://www.statistics4u.com/fundstat\_eng/cc\_data\_structure.html

### Regularized Logistic Regression

$$\mathrm{J}\left( heta, heta_0
ight) = \left(rac{1}{n} \sum_{i=1}^n \mathcal{L}_{\mathrm{nll}}\left(\sigma\left( heta^ op x^{(i)} + heta_0
ight), y^{(i)}
ight)
ight) + \lambda \| heta\|^2$$

- $\lambda \geq 0$
- No regularizing  $\theta_0$  (think: why?)
- Penalizes being overly certain
- Objective is still differentiable and convex (gradient descent)







### L1 Regularization

Cost = 
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

### L2 Regularization

Cost = 
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2$$
Loss function Regularization
Term

# Outline

- Recap, classification setup
- Linear classifiers
  - Separator, normal vector, and separability
- Linear logistic classifiers
  - Motivation, sigmoid, and negative log-likelihood loss
- Multi-class classifiers
  - One-hot encoding, softmax, and cross-entropy

#### One-hot labels

- Generalizes from binary labels
- Suppose K classes





(image adapted from Phillip Isola)

#### Softmax

- Generalizes sigmoid
- Applied on z element-wise

Two classes

$$z = heta^ op x + heta_0$$

scalar

$$g = \sigma(z) = rac{1}{1 + \exp(-z)}$$
 $ightharpoonup scalar$ 

K classes

$$z = heta^ op x + heta_0$$

K-by-1 Vector

$$g = \operatorname{softmax}(z) = \left[egin{array}{c} \exp{(z_1)} \ \sum_i \exp{(z_i)} \ dots \ \exp{(z_K)} \ / \sum_i \exp{(z_i)} \ \end{array}
ight]$$
  $K ext{-by-1 Vector}$ 

## Negative log-likelihood multi-class loss

- Generalizes negative log likelihood loss
- Also known as cross-entropy

Two classes

$$\mathcal{L}_{ ext{nll}}( ext{g}, ext{y}) = -\left(y\log g + (1-y)\log\left(1-g
ight)
ight)$$

- Appears as sum of two terms
- Only one term "activates" for a single data point

K classes

$$\mathcal{L}_{ ext{nllm}}( ext{g}, ext{y}) = -\sum_{ ext{k}=1}^{ ext{K}} ext{y}_{ ext{k}} \cdot \log\left( ext{g}_{ ext{k}}
ight)$$

- Appears as sum of *K* terms
- Only one term "activates" for a single data point



(image adapted from Phillip Isola)

0

 $current \ prediction$   $g = \operatorname{softmax}(\cdot)$ 

true label y

$$\begin{split} & loss \, \mathcal{L}_{nllm}(g,y) = \\ & - \sum_{k=1}^{K} y_k \cdot \log{(g_k)} \end{split}$$





 $[0,0,1,0,0,0,0,0,\dots]$ 

#### Classification

Image classification played a pivotal role in kicking off the current wave of AI enthusiasm





### Summary

- Classification: a supervised learning problem, similar to regression, but where the output/label is in a discrete set.
- Binary classification: only two possible label values.
- Linear binary classification: think of  $\theta$  and  $\theta_0$  as defining a d-1 dimensional hyperplane that **cuts** the d-dimensional feature space into two half-spaces.
- 0-1 loss: a natural loss function for classification, BUT, hard to optimize.
- Sigmoid function: motivation and properties.
- Negative-log-likelihood loss: smoother and has nice probabilistic motivations. We can optimize via (S)GD.
- Regularization is still important.
- The generalization to multi-class via (one-hot encoding, and softmax mechanism)
- Other ways to generalize to multi-class (see hw/lab)