Technical Summary: COMSYS 5 Competition

Task A: Gender Classification

Objective: Classify facial images into male or female categories under significant class imbalance.

Data Exploration

• Strong class imbalance: Male >> Female.

Preprocessing

- Resize to 224x224
- Random Horizontal Flip
- Random Rotation (±10°)
- Color Jittering: brightness, contrast, saturation
- Normalization with ImageNet mean and std

Model Architecture

• Backbone: Pretrained ResNet18

• Final FC layer modified for binary classification

Training Setup

• Loss: CrossEntropyLoss

• Optimizer: Adam (lr = 0.0003)

• Scheduler: StepLR

• Class Balancing: WeightedRandomSampler based on training targets

Evaluation Metrics

Metric	Value
Accuracy	94.5%
Precision	0.94
Recall	0.94
F1-Score	0.94

Detailed report via sklearn.metrics.classification_report

Tools and Libraries

- PyTorch
- \bullet torchvision
- numpy
- \bullet scikit-learn
- tqdm

Task B: Face Recognition Under Distorted Conditions

Objective: Build a face recognition model that performs accurately under distortions (blur, fog, lowlight, noise, etc.).

Dataset Structure

```
Task_B/
train/
  person_1/
     distortion/
val/
  person_1/
     distortion/
test/
```

Model Architecture

- Backbone: ResNet18
- Embedding Dimension: 512
- Losses:
 - ArcFace Loss for angular margin separation
 - Contrastive Loss using triplet sampling

Training Strategy

- Normalized 512-d embeddings
- ArcFace and Contrastive Loss combined for robust training

Evaluation Results

Distortion Type	Accuracy	F1 Score
Clean	97.2%	0.965
Blur	95.6%	0.950
Fog	93.1%	0.925
Lowlight	92.4%	0.915
Noise	94.3%	0.935
Sunny (Hard)	86.1%	0.855

Tools and Libraries

- PyTorch
- \bullet torchvision
- matplotlib
- numpy

Future Work

- Explore Vision Transformers for embeddings
- Adaptive ArcFace margin strategies
- Domain adaptation for generalization

Author

Sajjad Ahmed

License

MIT License