### **Data Glacier Data Scientist Internship**

Batch: LISUM23: LISUM39

Week8: Deliverables

**Project: Bank Customer Segmentation** 

**Group name: Apple Analytics** 

Name: Madoka Fujii

Email address: <a href="mailto:mdkfji@gmail.com">mdkfji@gmail.com</a>

**Country: United States** 

Company: Omdena

**Specialization: Data Analytics** 

#### **Problem Description:**

XYZ Bank plans to enhance its marketing campaign as Christmas offers for its customers. However, instead of offering the same deal to all customers as generic, the bank wants to provide personalized offers to specific customer groups to fit their preferences. Identifying customer categories manually would be inefficient and fail to uncover hidden patterns in the data that could inform better segmentation. To address this, the bank has sought the assistance of ABC Analytics. Additionally, the bank has specified that customer segmentation should result in no more than 5 groups to ensure the campaign's efficiency.

#### **Data Understanding:**

The dataset includes various information for the bank customers. For segmentation analysis, we need to identify the specific groups with specific characteristics. To find the uniquenesses, unsupervised learning algorithms such as clustering are the best way to analyze.

# What type of data have you got for analysis?

-The shape: 1000000 rows × 48 columns

| Column Name     | Description                                                                                                                                 |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| fecha_dato      | The table is partitioned for this column                                                                                                    |  |
| ncodpers        | Customer code                                                                                                                               |  |
| ind_empleado    | Employee index: A active, B ex employed, F filial, N not employee, P pasive                                                                 |  |
| pais_residencia | Customer's Country residence                                                                                                                |  |
| sexo            | Customer's sex                                                                                                                              |  |
| age             | Age                                                                                                                                         |  |
| fecha_alta      | The date in which the customer became as the first holder of a contract in the bank                                                         |  |
| ind_nuevo       | New customer Index. 1 if the customer registered in the last 6 months.                                                                      |  |
| antiguedad      | Customer seniority (in months)                                                                                                              |  |
| indrel          | 1 (First/Primary), 99 (Primary customer during the month but not at the end of the month)                                                   |  |
| ult_fec_cli_1t  | Last date as primary customer (if he isn't at the end of the month)                                                                         |  |
| indrel_1mes     | Customer type at the beginning of the month ,1 (First/Primary customer), 2 (co-owner ),P (Potential),3 (former primary), 4(former co-owner) |  |
| tiprel_1mes     | Customer relation type at the beginning of the month, A (active), I (inactive), P (former customer),R (Potential)                           |  |
| indresi         | Residence index (S (Yes) or N (No) if the residence country is the same than the bank country)                                              |  |
| indext          | Foreigner index (S (Yes) or N (No) if the customer's birth country is different than the bank country)                                      |  |
| conyuemp        | Spouse index. 1 if the customer is spouse of an employee                                                                                    |  |
| canal_entrada   | channel used by the customer to join                                                                                                        |  |
| indfall         | Deceased index. N/S                                                                                                                         |  |

| tipodom               | Addres type. 1, primary address                           |  |
|-----------------------|-----------------------------------------------------------|--|
| cod_prov              | Province code (customer's address)                        |  |
| nomprov               | Province name                                             |  |
| ind_actividad_cliente | Activity index (1, active customer; 0, inactive customer) |  |
| renta                 | Gross income of the household                             |  |
| ind_ahor_fin_ult1     | Saving Account                                            |  |
| ind_aval_fin_ult1     | Guarantees                                                |  |
| ind_cco_fin_ult1      | Current Accounts                                          |  |
| ind_cder_fin_ult1     | Derivada Account                                          |  |
| ind_cno_fin_ult1      | Payroll Account                                           |  |
| ind_ctju_fin_ult1     | Junior Account                                            |  |
| ind_ctma_fin_ult1     | Más particular Account                                    |  |
| ind_ctop_fin_ult1     | particular Account                                        |  |
| ind_ctpp_fin_ult1     | particular Plus Account                                   |  |
| ind_deco_fin_ult1     | Short-term deposits                                       |  |
| ind_deme_fin_ult1     | Medium-term deposits                                      |  |
| ind_dela_fin_ult1     | Long-term deposits                                        |  |
| ind_ecue_fin_ult1     | e-account                                                 |  |
| ind_fond_fin_ult1     | Funds                                                     |  |
| ind_hip_fin_ult1      | Mortgage                                                  |  |
| ind_plan_fin_ult1     | Pensions                                                  |  |
| ind_pres_fin_ult1     | Loans                                                     |  |

| ind_reca_fin_ult1 | Taxes        |
|-------------------|--------------|
| ind_tjcr_fin_ult1 | Credit Card  |
| ind_valo_fin_ult1 | Securities   |
| ind_viv_fin_ult1  | Home Account |
| ind_nomina_ult1   | Payroll      |
| ind_nom_pens_ult1 | Pensions     |
| ind_recibo_ult1   | Direct Debit |

## -Data type in original

12 indrel\_1mes

| # Col  | umn          | Non-Null Count [   | Otype      |
|--------|--------------|--------------------|------------|
|        |              |                    |            |
| 0 Uni  | named: 0     | 1000000 non-ทเ     | ıll int64  |
| 1 fec  | ha_dato      | 1000000 non-nul    | l object   |
| 2 ncc  | odpers       | 1000000 non-null   | int64      |
| 3 ind  | _empleado    | 989218 non-nu      | ıll object |
| 4 pai  | s_residencia | 989218 non-nul     | ll object  |
| 5 sex  | o 9          | 989214 non-null ob | ject       |
| 6 age  | . 1          | 000000 non-null ob | oject      |
| 7 fec  | ha_alta      | 989218 non-null    | object     |
| 8 ind  | _nuevo       | 989218 non-null    | float64    |
| 9 ant  | iguedad      | 1000000 non-nul    | l object   |
| 10 inc | drel         | 989218 non-null fl | oat64      |
| 11 ult | _fec_cli_1t  | 1101 non-null      | object     |

989218 non-null float64

- 13 tiprel\_1mes 989218 non-null object
- 14 indresi 989218 non-null object
- 15 indext 989218 non-null object
- 16 conyuemp 178 non-null object
- 17 canal entrada 989139 non-null object
- 18 indfall 989218 non-null object
- 19 tipodom 989218 non-null float64
- 20 cod prov 982266 non-null float64
- 21 nomprov 982266 non-null object
- 22 ind\_actividad\_cliente 989218 non-null float64
- 23 renta 824817 non-null float64
- 24 ind\_ahor\_fin\_ult1 1000000 non-null int64
- 25 ind aval fin ult1 1000000 non-null int64
- 26 ind cco fin ult1 1000000 non-null int64
- 27 ind\_cder\_fin\_ult1 1000000 non-null int64
- 28 ind\_cno\_fin\_ult1 1000000 non-null int64
- 29 ind\_ctju\_fin\_ult1 1000000 non-null int64
- 30 ind\_ctma\_fin\_ult1 1000000 non-null int64
- 31 ind ctop fin ult1 1000000 non-null int64
- 32 ind ctpp fin ult1 1000000 non-null int64
- 33 ind deco fin ult1 1000000 non-null int64
- 34 ind deme fin ult1 1000000 non-null int64
- 35 ind\_dela\_fin\_ult1 1000000 non-null int64
- 36 ind\_ecue\_fin\_ult1 1000000 non-null int64

- 37 ind\_fond\_fin\_ult1 1000000 non-null int64
- 38 ind\_hip\_fin\_ult1 1000000 non-null int64
- 39 ind plan fin ult1 1000000 non-null int64
- 40 ind pres fin ult1 1000000 non-null int64
- 41 ind\_reca\_fin\_ult1 1000000 non-null int64
- 42 ind\_tjcr\_fin\_ult1 1000000 non-null int64
- 43 ind\_valo\_fin\_ult1 1000000 non-null int64
- 44 ind\_viv\_fin\_ult1 1000000 non-null int64
- 45 ind\_nomina\_ult1 994598 non-null float64
- 46 ind\_nom\_pens\_ult1 994598 non-null float64
- 47 ind\_recibo\_ult1 1000000 non-null int64

dtypes: float64(9), int64(24), object(15)

# What are the problems in the data ( number of NA values, outliers , skewed etc)

-The dataset has a lot of missing data (2,371,207 missing datas) as below.

|    | Column_Name           | aggregate | percent  |
|----|-----------------------|-----------|----------|
| 0  | conyuemp              | 999822    | 0.999822 |
| 1  | ult_fec_cli_1t        | 998899    | 0.998899 |
| 2  | renta                 | 175183    | 0.175183 |
| 3  | nomprov               | 17734     | 0.017734 |
| 4  | cod_prov              | 17734     | 0.017734 |
| 5  | canal_entrada         | 10861     | 0.010861 |
| 6  | sexo                  | 10786     | 0.010786 |
| 7  | indresi               | 10782     | 0.010782 |
| 8  | ind_actividad_cliente | 10782     | 0.010782 |
| 9  | tipodom               | 10782     | 0.010782 |
| 10 | indfall               | 10782     | 0.010782 |
| 11 | indext                | 10782     | 0.010782 |
| 12 | tiprel_1mes           | 10782     | 0.010782 |
| 13 | indrel_1mes           | 10782     | 0.010782 |
| 14 | indrel                | 10782     | 0.010782 |
| 15 | ind_nuevo             | 10782     | 0.010782 |
| 16 | fecha_alta            | 10782     | 0.010782 |
| 17 | pais_residencia       | 10782     | 0.010782 |
| 18 | ind_empleado          | 10782     | 0.010782 |
| 19 | ind_nomina_ult1       | 5402      | 0.005402 |
| 20 | ind_nom_pens_ult1     | 5402      | 0.005402 |
| 21 | ind_pres_fin_ult1     | 0         | 0.000000 |
| 22 | ind_fond_fin_ult1     | 0         | 0.000000 |
| 23 | ind_ecue_fin_ult1     | 0         | 0.000000 |
| 24 | ind_hip_fin_ult1      | 0         | 0.000000 |
|    |                       |           |          |

# -Outliers



Regarding renta(Gross income of the household), there are so many outliers.



### -Skewness

Regarding cod\_prov(Province code (customer's address)), the median and the mean are around 27-28 and most of them were located to this bin.



Regarding renta(Gross income of the household), the median and the mean are skewed to right.



What approaches you are trying to apply on your data set to overcome problems like NA value, outlier etc and why?

-NA value: Future Engineering, Imputing method using mean, median, and mode, etc.. If there are too many NA values in a variable, then dropping the column itself may be the best method because assuming missing data cannot be predictable.

Additionally, using the algorithm is good for missing data treatment such as KNN imputation and MICE(Multiple Imputation by Chained Equations)

-Outliers: May apply to omit them. Depending on the case.

Identify based IQR, Zscore, and anomaly detection models such as Isolation Forest and OBSCAN.

If the outlier indicates significant characteristics, we apply robust scaling (log) and omit specific upper/ lower limits.

-**Skewness**: In this case, there are many like one hot encoding and categoricals. And we apply the cluster method. Adjusting skewness like normalization may not good idea.

#### Project life cycle along with deadline:

| Project weeks | Deadline     | Lifecycle                                    |
|---------------|--------------|----------------------------------------------|
| Week7         | Dec 19, 2024 | Problem statement, Pre-process               |
| Week8         | Dec 26, 2024 | Data process, understanding                  |
| Week9         | Jan 02, 2025 | Data Cleaning, Merge, Review                 |
| Week10        | Jan 09, 2025 | EDA, Final recommendation                    |
| Week11        | Jan 16, 2025 | EDA presentation for business users          |
| Week12        | Jan 23, 2025 | Model Selection and Model Building/Dashboard |
| Week13        | Jan 30, 2025 | Final Project Report and Code                |

## Tabular data details: forecasting case study.xlsx:

| Total number of observations | 1218  |
|------------------------------|-------|
| Total number of files        | 1     |
| Total number of features     | 12    |
| Base format of the file      | .xlsx |
| Size of the data             | 80KB  |