Modifying Velocity and Force Vectors to Accommodate Berry Phases

ROBERT MCKAY

15 March 2017

Introduction

We will examine two modified equations (velocity and force) which is attributed to the addition of a Berry phase. We will then make these equations linearly independent from each other.

Calculations

We begin by the original, unadulterated equations:

$$\partial_t \vec{r} = \nabla_{\vec{k}} \varepsilon$$

$$\partial_t \vec{k} = q\vec{E} + q(\frac{\partial \vec{r}}{\partial t} \times \vec{B})$$

However, when we consider a Berry phase in momentum, the velocity equation must be adjusted accordingly to properly account for motion properly. We thence have...

$$\partial_t \vec{r} = \nabla_{\vec{k}} \varepsilon + \frac{\partial \vec{k}}{\partial t} \times \vec{\Omega} \tag{1}$$

$$\partial_t \vec{k} = -q \nabla_{\vec{r}} \phi + q (\frac{\partial \vec{r}}{\partial t} \times \vec{B}) \tag{2}$$

We will now make equations (1) and (2) linearly independent from each other. We start by taking the cross product of $\vec{\Omega}$ on both sides of (2).

$$\partial_t \vec{k} \times \vec{\Omega} = -q(\nabla_{\vec{r}}\phi) \times \vec{\Omega} + q(\frac{\partial \vec{r}}{\partial t} \times \vec{B}) \times \vec{\Omega}$$

We will proceed by using the vectorial property which states $(\vec{a} \times \vec{b}) \times \vec{c} = -\vec{a}(\vec{c} \cdot \vec{b}) + \vec{b}(\vec{c} \cdot \vec{a})$. We now get:

$$\partial_t \vec{k} \times \vec{\Omega} = -q(\nabla_{\vec{r}}\phi) \times \vec{\Omega} - q\frac{\partial \vec{r}}{\partial t}(\vec{\Omega} \cdot \vec{B}) + q\vec{B}(\vec{\Omega} \cdot \frac{\partial \vec{r}}{\partial t})$$
 (3)

We will now try to simplify $\vec{\Omega} \cdot \frac{\partial \vec{r}}{\partial t}$. To do so, we recognize the property that $\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$. Taking advantage of this vector identity, we take the dot product of $\vec{\Omega}$ on both sides of Equation (1).

$$\vec{\Omega} \cdot \frac{\partial \vec{r}}{\partial t} = \vec{\Omega} \cdot (\nabla_{\vec{k}} \varepsilon) + \vec{\Omega} \cdot (\frac{\partial \vec{k}}{\partial t} \times \vec{\Omega})$$

 \Rightarrow

$$\vec{\Omega} \cdot \frac{\partial \vec{r}}{\partial t} = \vec{\Omega} \cdot (\nabla_{\vec{k}} \varepsilon) \tag{4}$$

We now plug in Equation (4) into Equation (3) for $\vec{\Omega} \cdot \frac{\partial \vec{r}}{\partial t}$. The results is:

$$\partial_t \vec{k} \times \vec{\Omega} = -q(\nabla_{\vec{r}}\phi) \times \vec{\Omega} - q \frac{\partial \vec{r}}{\partial t} (\vec{\Omega} \cdot \vec{B}) + q \vec{B} (\vec{\Omega} \cdot (\nabla_{\vec{k}}\varepsilon))$$

We now plug in this result to Equation (1) and rearrange to solve for $\frac{\partial \vec{r}}{\partial t}$:

$$\begin{split} \frac{\partial \vec{r}}{\partial t} &= \nabla_{\vec{k}} \varepsilon - q(\nabla_{\vec{r}} \phi) \times \vec{\Omega} - q \frac{\partial \vec{r}}{\partial t} (\vec{\Omega} \cdot \vec{B}) + q \vec{B} (\vec{\Omega} \cdot (\nabla_{\vec{k}} \varepsilon)) \\ &\Rightarrow \\ \frac{\partial \vec{r}}{\partial t} + q \frac{\partial \vec{r}}{\partial t} (\vec{\Omega} \cdot \vec{B}) &= \nabla_{\vec{k}} \varepsilon - q(\nabla_{\vec{r}} \phi) \times \vec{\Omega} + q \vec{B} (\vec{\Omega} \cdot (\nabla_{\vec{k}} \varepsilon)) \\ &\Rightarrow \\ \partial \vec{r} \end{split}$$

$$\frac{\partial \vec{r}}{\partial t}(1 + q(\vec{\Omega} \cdot \vec{B})) = \nabla_{\vec{k}}\varepsilon - q(\nabla_{\vec{r}}\phi) \times \vec{\Omega} + q\vec{B}(\vec{\Omega} \cdot (\nabla_{\vec{k}}\varepsilon))$$

 $\frac{\partial \vec{r}}{\partial t} = \frac{\nabla_{\vec{k}} \varepsilon - q(\nabla_{\vec{r}} \phi) \times \vec{\Omega} + q \vec{B}(\vec{\Omega} \cdot (\nabla_{\vec{k}} \varepsilon))}{1 + q(\vec{\Omega} \cdot \vec{B})}$ (5)

This finally provides to us the uncoupled solution (Equation (5)) to the velocity vector. As a check, we see we retain the unmodified version from the beginning, if we let $\vec{\Omega} = 0$. We now proceed to uncoupling Equation (2). With a definitive expression for $\frac{\partial \vec{r}}{\partial t}$, we can directly plug this into (2). We get:

$$\partial_t \vec{k} = q\vec{E} + q\left(\frac{\nabla_{\vec{k}}\varepsilon - q(\nabla_{\vec{r}}\phi) \times \vec{\Omega} + q\vec{B}(\vec{\Omega} \cdot (\nabla_{\vec{k}}\varepsilon))}{1 + q(\vec{\Omega} \cdot \vec{B})} \times \vec{B}\right)$$

$$\frac{\partial \vec{k}}{\partial t} = -q\nabla_{\vec{r}}\phi + q(\frac{(\nabla_{\vec{k}}\varepsilon) \times \vec{B} - q((\nabla_{\vec{r}}\phi) \times \vec{\Omega}) \times \vec{B}}{1 + q(\vec{\Omega} \cdot \vec{B})})$$

We again utilize the vectorial properties of the triple product.

$$\frac{\partial \vec{k}}{\partial t} = -q\nabla_{\vec{r}}\phi + q(\frac{(\nabla_{\vec{k}}\varepsilon) \times \vec{B} + q(\nabla_{\vec{r}}\phi)(\vec{B} \cdot \vec{\Omega}) - q\vec{\Omega}((\nabla_{\vec{r}}\phi) \cdot \vec{B})}{1 + q(\vec{\Omega} \cdot \vec{B})})$$

$$\frac{\partial \vec{k}}{\partial t} = \frac{-q\nabla_{\vec{r}}\phi - q^2\nabla_{\vec{r}}\phi(\vec{\Omega}\cdot\vec{B}) + (q\nabla_{\vec{k}}\varepsilon)\times\vec{B} + q^2(\nabla_{\vec{r}}\phi)(\vec{B}\cdot\vec{\Omega}) - q^2\vec{\Omega}((\nabla_{\vec{r}}\phi)\cdot\vec{B})}{1 + q(\vec{\Omega}\cdot\vec{B})}$$

$$\frac{\partial \vec{k}}{\partial t} = \frac{-q\nabla_{\vec{r}}\phi + q(\nabla_{\vec{k}}\varepsilon) \times \vec{B} - q^2\vec{\Omega}((\nabla_{\vec{r}}\phi) \cdot \vec{B})}{1 + q(\vec{\Omega} \cdot \vec{B})}$$
(6)

As a final check, if we let $\vec{\Omega} = 0$, we get back the same result as the original force vector, as expected.