Wydział WFIIS	Imię i nazwisko 1. Mateusz Kulig 2. Przemysław R		Rok 2021	Grupa 1	Zespół 3		
PRACOWNIA FIZYCZNA WFIIS AGH	Temat: Interferencja fal akustycznych. Nr ćwiczenia 25						
Data wykonania 25.10.2021	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA		

W sprawozdaniu opisaliśmy pomiar wartości prędkości dźwięku w powietrzu wyznaczonego przy pomocy rury Quinckego. Eksperyment wykonaliśmy dla dziewiętnastu różnych częstotliwości fali akustycznej. Pomiarów dokonaliśmy w temperaturze pokojowej, następnie za pomocą odpowiednich zależności, obliczyliśmy prędkość dźwięku dla zera stopni Celsjusza. Korzystając z otrzymanej prędkości obliczyliśmy wartość wykładnika adiabatycznego dla powietrza. Nasze wyniki okazały się zgodne z wartościami tablicowymi.

1. Wstęp teoretyczny

Fala dźwiękowa, to fala podłużna rozchodząca się w ośrodku sprężystym. Każda fala rozchodzi się w ośrodku z pewną prędkością. Dla prędkości fali zachodzi następujący wzór:

$$v = \lambda v, \tag{1}$$

gdzie:

 λ – długość fali,

ν – częstotliwość fali.

Fale dźwiękową można opisać wzorem

$$y = y_0 \sin(kx - \omega t),\tag{2}$$

gdzie:

 $k = 2\pi/\lambda$ – wielkość wektora falowego, gdzie λ – długość fali.

 $\omega = 2\pi/T - \text{częstość fali, gdzie } T - \text{okres fali.}$

 y_m – odchylenie maksymalne, czyli amplituda.

Jeśli dwie fale się spotkają to dochodzi do zjawiska interferencji, czyli nakładania się fal. Interferencja może być zarówno konstruktywna, czyli amplituda fali końcowej wzrośnie, jak i destruktywna, czyli amplituda zmaleje. By zapisać równanie otrzymanej w zjawisku interferencji fali możemy użyć zasady superpozycji, czuli sumowania się fal

$$y = y_1 + y_2. (3)$$

Jeśli fale maja różne amplitudy y_1 i y_2 oraz poruszają się różnymi drogami x_1 i x_2 to za pomocą wzoru (2) możemy zapisać je jako

$$y_1 = y_{m1} \sin(kx_1 - \omega t),$$
 $y_2 = y_{m2} \sin(kx_2 - \omega t).$

Zatem ich złożenie po podstawieniu do wzoru (3) i przekształceniu trygonometrycznym możemy zapisać jako

$$y = y_m \sin(\omega t - \varphi),\tag{4}$$

gdzie we wzorze (4) φ oznacza przesuniecie fazowe, a y_m oznacza amplitudę fali wypadkowej, która zadana jest formułą

$$y_m = \sqrt{y_{m1}^2 + y_{m2}^2 + 2y_{m1}y_{m2}\cos k(x_1 - x_2)}.$$
 (5)

Amplituda ta przyjmuje minimalną wartość wtedy, gdy funkcja cosinus przyjmuje minimalną wartość, to jest

$$\cos k(x_1 - x_2) = -1. ag{6}$$

Równanie (6) jest spełnione gdy

$$x_1 - x_2 = \lambda \left(n - \frac{1}{2} \right), \tag{7}$$

to znaczy gdy różnica dróg, po których biegną fale, jest równa nieparzystej wielokrotności połówek długości fali (n=1,2,3,...). Zatem dla kolejnych wartości n występują kolejne minima amplitudy fali wypadkowej.

Badana przez nas fala dźwiękowa rozchodzi się w powietrzu, zatem możemy zastosować wzór na prędkość dźwięku w gazach

$$v = \sqrt{\frac{\kappa RT}{\mu}},\tag{8}$$

gdzie:

T – temperatura bezwzględna,

R – uniwersalna stała gazowa,

 μ – masa molowa molekuł gazu (dla powietrza 28,97 $\left\lceil \frac{g}{mol} \right\rceil$ [1]),

 κ - wykładnik adiabaty.

Jeśli przekształcimy powyższy wzór otrzymamy

$$v^2T = \frac{\kappa R}{\mu} = const\tag{9}$$

Z formuły (9) wynika, że stosunek iloczynu kwadratu prędkości fali i temperatury bezwzględnej jest stały dla danego gazu. Dzięki temu znając prędkość dźwięku w dowolnej temperaturze, możemy wyznaczyć jego prędkość w każdej innej.

$$v_1 = v_0 \sqrt{\frac{T_0}{T_1}} \to v_0 = v_1 \sqrt{\frac{T_1}{T_0}} \tag{10}$$

Wykładnik adiabaty jest równy stosunkowi ciepła właściwego przy stałym ciśnieniu C_p do ciepła właściwego przy stałej objętości C_v . występuje on w równaniu (8), ponieważ lokalne zgęszczenia i rozrzedzenia gazu w fali dźwiękowej przebiegają w warunkach adiabatycznych. Jedną z metod obliczenia wykładnika adiabaty danego gazu jest pomiar prędkości dźwięku w tymże gazie. Wzór (8) można przekształcić bowiem do postaci

$$\kappa = \frac{v^2 \mu}{RT}.\tag{11}$$

2. Aparatura

W celu wykonania doświadczenia użyliśmy następujących przyrządów:

- Źródło dźwięku Był nim generator mocy o zakresie częstotliwości 20[Hz] 20[kHz].
- Rura Quinckego składa się z dwóch rur, gdzie jedna z nich była unieruchomiona, a drugą można było poruszać za pomocą korbki. Rury te łączyły się przed odbiornikiem, dzięki czemu mogło dojść do interferencji fal.
- Detektor dźwięku był nim mikrofon, który zamieniał drgania cząsteczek powietrza na sygnał cyfrowy i przekazywał dane do oscyloskopu.
- Oscyloskop- śledziliśmy na nim amplitudę fali wypadkowej i za jago pomocą mogliśmy wyłapać momenty w których amplituda fali wypadkowej jest minimalna.
- Linijka- za pomocą linijki mierzyliśmy o ile została wysunięta jedna z rur. Zakres linijki wynosił od 0
 do 0,45 metra a dokładność wynosiła 0,001[m].
- Termometr użyliśmy go, by sprawdzić temperaturę powietrza dla którego mierzyliśmy prędkość dźwięku. Jego dokładność wynosiła 0,5[K].

3. Metodyka doświadczenia

Aby obliczyć prędkość dźwięku, można użyć przyrządu nazywanego powszechnie rurą Quinckego. Przedmiot ten składa się ze źródła dźwięku, które emituje fale dźwiękowe o danej częstotliwości, dwóch rur, z których jedna posiada możliwość wydłużenia za pomocą pokrętła i detektora dźwięku. Rury łączą się w jedną w okolicy źródła i detektora, dzięki czemu może w nich dojść do interferencji fal. Zmieniając różnice dróg jaką muszą przebyć fale natrafiamy na kolejne minima amplitudy i za pomocą wzoru (7) możemy obliczyć długość dali dźwiękowej. Jej częstotliwość natomiast odczytujemy ze źródła dźwięku. Podstawiając wartości częstotliwości i długości fali możemy obliczyć prędkość dźwięku w powietrzu za pomocą formuły (1).

Przeprowadzenie doświadczenia polegało na wyszukaniu minimum amplitudy fali wypadkowej docierającej do oscyloskopu. W eksperymencie użyliśmy fali o częstotliwości od 600 do 1000 [Hz] i od 2000 do 3300 [Hz] z przeskokiem co 100 [Hz]. Następnie, gdy źródło dźwięku zostało już ustawione na odpowiednia częstotliwość, za pomocą korbki zmienialiśmy różnice długości rur, przez które przechodziła fala i tym samym zmienialiśmy amplitudę tejże fali. Obserwując oscyloskop i regulując skale na ekranie zależnie od częstotliwości staraliśmy się wychwycić moment, w którym amplituda ma minimalną wartość. W chwili, gdy obserwowaliśmy minimum na wykresie, odczytywaliśmy na linijce długość, o jaką wydłużyliśmy jedną z rur. Po zakończeniu pomiarów wykonaliśmy wykres, który miał na celu wyłapanie błędu polegającego na przypadkowym pominięciu któregoś z minimów. Wielkości wyznaczyliśmy w temperaturze pokojowej tj. 295,15 K, a każda z częstotliwości posiadała taką samą amplitudę 0,84 [Vpp].

4. Analiza danych

Dane pomiarowe zebraliśmy w poniższej tabeli.

Tab. 1. Tabela odległości dla których następuje minimum interferencyjne w zależności od częstotliwości (zapisane są tylko te odległości, które mieszczą się w zakresie od 0 [cm] do 45 [cm]). W celu przejrzystości danych druga z kolumn przedstawia średnie prędkości obliczone dla każdej częstotliwości.

Lp.	Częstotliwość [Hz]	Odległości dla których następuje minimum [cm]								
1	600	10,9	39,5	-	-	-	-	-	-	_
2	700	9	34,4	-	-	-	-	-	-	-
3	800	7,6	29	-	_	-	-	-	-	-
4	900	7	44,7	-	-	-	-	-	-	-
5	1000	6,5	23,8	41	-	-	-	-	-	-
6	2000	6,4	15	23,7	32,1	40,7	-	-	-	-
7	2100	6	14,3	22,4	30,5	38,7	-	-	-	-
8	2200	5,3	11,5	21	28,5	36,4	44	-	-	-
9	2300	3,7	11,8	19,1	26,5	33,5	41,1	-	-	-
10	2400	3,4	10,7	18,2	25,3	32,4	39,9	-	-	-
11	2500	3,8	10,7	17,6	24,3	30,2	38	45	-	-
12	2600	3,7	10,4	17	23,7	30,2	36,9	43,3	-	-
13	2700	3,6	9,9	16,4	22,5	29,2	35,5	41,8	-	-
14	2800	3,4	9,4	15,6	21,8	27,9	34	40,1	-	1
15	2900	3,1	9	15	20,9	26,8	32,8	38,7	44,7	ı
16	3000	2,7	8,5	12,1	19,9	25,6	31,3	37	42,8	-
17	3100	2,6	8,1	13,5	19	24,6	30,2	35,9	41,2	1
18	3200	2,6	7,9	13	18,6	23,9	29,3	34,7	40	-
19	3300	2,2	7,5	12,6	17,9	23	28,3	33,5	38,8	44

Tab. 2. Tabela różnic odległości między kolejnymi minimami w zależności od częstotliwości. Druga z kolumn przedstawia podwojone średnie długości fali dla każdej częstotliwości.

Lp.	Częstotliwość	Różnice odległości między kolejnymi minimami [cm]							$\overline{\lambda} = 2 *$	$v\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$
	[Hz]	$x_2 - x_1$	$x_3 - x_2$	$x_4 - x_3$	$x_5 - x_4$	$x_6 - x_5$	$x_7 - x_6$	$x_8 - x_7$	$\overline{\Delta x}$ [cm]	ΓSΊ
1	600	28,6	-	1	1	1	-	1	57,2	343,2
2	700	25,4	-	1	1	1	-	1	50,8	355,6
3	800	21,4	-	-	-	-	-	-	42,8	342,4
4	900	37,7	-	1	1	1	-	1	75,4	678,6
5	1000	17,3	17,2	1	1	1	-	1	34,5	345,0
6	2000	8,6	8,7	8,4	8,6	1	-	ı	17,2	343,0
7	2100	8,3	8,1	8,1	8,2	1	-	1	16,4	343,4
8	2200	6,2	9,5	7,5	7,9	7,6	-	1	15,5	340,6
9	2300	8,1	7,3	7,4	7,0	7,6	-	1	15,0	344,1
10	2400	7,3	7,5	7,1	7,1	7,5	-	-	14,6	350,4
11	2500	6,9	6,9	6,7	5,9	7,8	7,0	ı	13,7	343,3
12	2600	6,7	6,6	6,7	6,5	6,7	6,4	ı	13,2	343,2
13	2700	6,3	6,5	6,1	6,7	6,3	6,3	1	12,7	343,8
14	2800	6,0	6,2	6,2	6,1	6,1	6,1	-	12,2	342,5
15	2900	5,9	6,0	5,9	5,9	6,0	5,9	6,0	11,9	344,7
16	3000	5,8	3,6	7,8	5,7	5,7	5,7	5,8	11,5	343,7
17	3100	5,5	5,4	5,5	5,6	5,6	5,7	5,3	11,0	341,9
18	3200	5,3	5,1	5,6	5,3	5,4	5,4	5,3	10,7	341,9
19	3300	5,3	5,1	5,3	5,1	5,3	5,2	5,3	10,5	344,9

Następnym podjętym przez nas krokiem było obliczenie różnicy między kolejnymi działkami, dla których następuje minimum, oraz wyciągnięcie średniej z otrzymanych wyników. Ponieważ każda różnica wynosi połowę długości fali, otrzymane średnie różnic przemnożyliśmy przez 2, by otrzymać czystą lambdę, która zostanie następnie użyta w podstawieniu do wzoru (1) w celu wyznaczenia prędkości fali.

W ten sposób otrzymaliśmy szereg wyników na prędkość dźwięku rozchodzącego się w powietrzu. Zostały one zestawione w drugiej kolumnie powyższej tabeli (Tab. 1.).

Następnie wykonaliśmy wykres zależności prędkości dźwięku od częstotliwości fali. Miał on na celu wyłapanie błędu polegającego na przypadkowym pominięciu któregoś z minimów amplitudy.

Rys. 1. Wykres przedstawiający zależność prędkości od danej częstotliwości.

Rys. 2. Wykres przedstawiający zależność prędkości od danej częstotliwości z odrzuceniem największego z błędów grubych.

Z **Rys.1**. oraz **Rys.2**. można zauważyć iż wyniki o numerach 2, 4 i 10 stanowią w naszych obliczeniach błąd gruby, nie będą one zatem brane pod uwagę w dalszych rozważaniach.

Średnią prędkości z wyłączeniem powyższych trzech jest $v(295,15 \text{ K}) = 343,2 \left[\frac{\text{m}}{\text{s}}\right]$.

Niepewność obliczenia prędkości wyznaczamy za pomocą programu Excel za pomocą funkcji "ODCH.STANDARD.PRÓBKI" i dzielimy przez pierwiastek z liczby pomiarów. Wynosi ona $u_A(v)=1,2$ $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$. Otrzymana na tej podstawie niepewność rozszerzona dla współczynnika rozszerzenia równego 2 wynosi U(v)=2,4 $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$.

Ostatecznie wynik jaki otrzymaliśmy w przeprowadzonym eksperymencie wynosi

$$v(295,15 \text{ K}) = 343,2 \pm 2,4 \left[\frac{\text{m}}{\text{s}}\right].$$

Wartość tablicowa dla suchego powietrza w temperaturze 22 stopni Celsjusza wynosi $v_{tab_22} = 344,6 \left[\frac{\text{m}}{\text{s}}\right]$ [2], to znaczy, że otrzymany wynik mieści się w granicach niepewności dla tejże wartości.

Następnie korzystając z wzoru (10) otrzymujemy prędkość dla temperatury zera stopni Celsjusza

$$v(273,15 \text{ K}) = 330,2 \left[\frac{\text{m}}{\text{s}}\right]$$

Niepewność prędkości w 0 stopni Celsjusza wyznaczamy za pomocą prawa przenoszenia niepewności zastosowanego do wzoru (8) i wynosi ona

$$u(v_0) = \sqrt{\left(\sqrt{\frac{T_1}{T_0}} * u_A(v_1)\right)^2 + \left(\frac{u(T)}{2\sqrt{T_0T_1}}\right)^2} = 1,3 \left[\frac{m}{s}\right]$$

Niepewność rozszerzona o współczynniku rozszerzenia równym 2 wynosi $U(v_0)=2.6$ $\left[\frac{\text{m}}{\text{s}}\right]$. Ostatecznie wartość prędkości dla obliczona dla podanej temperatury wynosi

$$v(273,15 K) = (330,2 \pm 2,6) \left[\frac{m}{s}\right].$$

Wartość tablicowa dla suchego powietrza w temperaturze zera stopni Celsjusza wynosi $v_0=331,5$ $\left[\frac{\rm m}{\rm s}\right][3]$, to znaczy, że otrzymany wynik mieści się w granicach niepewności dla tejże wartości.

Korzystając następnie ze wzoru (11) otrzymujemy, iż wartość wykładnika adiabatycznego dla powietrza w temperaturze 0 stopni Celsjusza wynosi $\kappa=1,392$.

Niepewność wykładnika adiabatycznego liczymy za pomocą prawa przenoszenia niepewności, stosujemy zatem poniższy wzór:

$$u(\kappa) = \sqrt{\left(\frac{2v\mu}{RT} * u(v)\right)^2 + \left(\frac{-v^2\mu}{RT^2} * u(T)\right)^2} = 0.011.$$

Niepewność rozszerzona o współczynniku rozszerzenia równym 2 wynosi $U(\kappa)=0.022$. Ostatecznie wartość współczynnika adiabaty obliczona dla podanej temperatury wynosi

$$\kappa = 1.392 \pm 0.022$$

Otrzymany wynik jest w zgodzie z wartością tablicową równą 1,403[4].

5. Podsumowanie

W wyniku zastosowania rury Quinckego w celu wyznaczenia prędkości dźwięku w powietrzu otrzymaliśmy dla temperatury 295,15 [K] wartość v=343,2 $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$, o niepewności rozszerzonej U(v)=2,4 $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$, która jest zgodna z wartością tablicową w granicach niepewności rozszerzonej $(v_{tab_22}=344,6$ $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$). Dla temperatury 273,15 [K] wartość $v_0=330,2$ $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$, o niepewności rozszerzonej $U(v_0)=2,6$ $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$, która jest zgodna z wartością tablicową (331,5 $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$). Dzięki obliczonej wartości prędkości dźwięku obliczyliśmy wartość wykładnika adiabatycznego $\kappa=1,392$ o niepewności rozszerzonej równej $U(\kappa)=0,022$. Jest to wynik w pełnej zgodzie z wartością tablicową.

6. Literatura

- [1] https://pl.wikipedia.org/wiki/Powietrze -15.11.2021
- [2] https://brainly.in/question/8862772 15.11.2021
- [3] https://en.wikipedia.org/wiki/Speed of sound 15.11.2021
- [4] http://www.fis.agh.edu.pl/~pracownia_fizyczna/cwiczenia/25_opis.pdf 15.11.2021