Licence Tronc commun Mécanique du solide Feuille N6

Exercice 1

Déterminer la matrice d'inertie de la barre AB de longueur L de masse m dans le repère $R_1(O, \overrightarrow{x}_1, \overrightarrow{y}_1, \overrightarrow{z}_1)$ en rotation par rapport au repère fixe $R_0(O, \overrightarrow{x}_0, \overrightarrow{y}_0, \overrightarrow{z}_0)$.

En déduire la matrice d'inertie dans le repère R_0 .

Exercice 2

Déterminer le centre d'inertie des corps solides homogènes suivants :

- 1. Un demi-cercle matériel de rayon R;
- 2. Un demi disque matériel de rayon R;
- 3. Une demi sphère matérielle creuse de rayon R;
- 4. Une demi sphère matérielle pleine de rayon R.

Figure 1: Figure d'étude

Exercice 3

Une barre homogène de longueur OM=L, de centre G est en mouvement dans un repère orthonormé fixe R_0 $(O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$. On défini deux repères R_1 et R_2 tel que :

 $R_1(O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ repère mobile tel que : $\overrightarrow{z_0} \equiv \overrightarrow{z_1}$ et $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1})$; $R_2(O, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ repère mobile tel que : $\overrightarrow{y_1} \equiv \overrightarrow{y_2}$ et $\alpha = (\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{z_1}, \overrightarrow{z_2})$;

On prendra R_1 comme repère de projection et comme repère relatif.

Déterminer :

- 1. La vitesse de rotation instantanée $\overrightarrow{\Omega_2^0}$ du repère R_2 par rapport à R_0 ; $(1,5\,pts)$
- 2. La vitesse $\overrightarrow{V^0\left(M\right)}$ et l'accélération $\overrightarrow{\gamma^0\left(M\right)}$ par dérivation; $(2\,pts)$
- 3. La vitesse $\overrightarrow{V^0\left(G\right)}$ et l'accélération $\overrightarrow{\gamma^0\left(G\right)}$ par composition de mouvement; $(2\,pts)$
- 4. Le moment cinétique $\overrightarrow{\mu^0(O)}$ au point O exprimé dans R_1 ; $(1,5\,pts)$
- 5. Le moment dynamique $\overrightarrow{\delta^0\left(O\right)}$ au point O exprimé dans R_1 ; $(1,5\,pts)$
- 6. L'énergie cinétique de la barre. (1, 5 pts)

Figure 2: Figure d'étude 1