Polynomials; Minimal Polynomial

k a field (= R, C)

Definition !! A polynomial overk is a formal expression

 $f(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_n + a_0$ (a; ϵk) $a_n (\neq 0)$ is the leading coefficient n = deg(f) degree of f. f(t) is movinc if $a_n = 1$

Examples 1.2 (1) By convention, $deg(0) = -\infty$ (7) If $a_0 = 0$ then $deg(a_0) = 0$ (scalar polynomial) (3) $deg(3\xi - z) = 1$ (linear polynomial) (4) $deg(5\xi^2 + 3\xi - 1) = 2$ (quadratic)

Fundamental Property of Degree:

 $deg(fg) = degf + degg \qquad \forall f, g \in k[\in]$ all pel-, over k $(e,g) (x^2+1)(x^3-3) = x^2+3+\cdots \qquad \text{in vor. } t$

Theorem 1.3 (Division Algorithms) het f, gek [+] with g to

Then f = qg + r for some $q \in k[t]$ and $r \in k[t]$ (sundender) with either r = 0 or deg $r \in deg g$

Definition 1.4 A polynomial pe K(E) is irreducible (over k) ef p=fg implies for g is a scalar.

Examples 1.5 (1) all tenear polynomials are irreducible.

(2) {2+1 over 1R is irreducible over C

(3) {2+1=(+-i)(+i) not irreducible over C

Theorem 1.6 (Unique Tactorisation) het fek[t]. Then

(unique factorisation.) f = kp,, p2, ..., pn

where kek and p.,..., pr are irreducible polynomials over

One can prove that
all irreducible polynomials over C are linear (deg=1)

— 1/— over R'are of deg 1 or 2.

Theorem 1.7 (FTA: Trundamental Theorem of Algebra)

Let $f \in C[f]$. Then f is the product of linear polynomials:

f(t)=k((-7,)(t-2,)---(t-2,)

where $R \in \mathbb{C}$ and λ ; (roots of $f(\epsilon)$)

Theorem 1.9 Let f & R[E]. Then

f = kp,(t) -- - pm(t)

where $k \in \mathbb{R}$ and $p_i(\epsilon) \in \mathbb{R} L^{\epsilon} J$ of degree for 2. and irreducible and monic

Everywhere A is a square matrixe or tenear operator. Definition 2.1 The characteristic polynomial of A is $\Delta(E) = \Delta_A(E) = det(EI_n - A)$ (= $det(A - EI_n)$) note: $\Delta(t)$ is always monie ($\Delta(t) = t^n t \cdots$)

Escample 2.2 A=[1 3] then $\Delta_A(t)=(^2-36+2=(6-1)(6-2)$ note: that $\Delta_A(E) = A^2 - 3 \cdot A + 2 \cdot I_2 = (A - I_2)(A - 2I_2) = 0_{4x4}$

Theorem 2-3 (Cayley-Hamilton) $\Delta_A(A) = 0 \quad \forall A$

Definition 2.4 The minimal polynomial of A is the monic polynomial $m(t) = m_A(t)$ of lowest degree s.f. m(A) = 0

Exercise 2.5 $M_{\Lambda}(t)=(t-\lambda)'$ (roleg=1) \Leftrightarrow) $A=\lambda\cdot I_n=[\lambda', \lambda_n]$ (Nek)

note: m(t) exists (as $\Delta_A(A) = 0$).

and deg mact) < deg DA(t) = n = size of A.