§4 Условные экстремумы.

Задача на отыскание экстремумов функций многих переменных часто возникает в форме, отличной от только что изученной. Пусть, например, требуется найти на кривой, заданной уравнением $\varphi(x,y)=0$, точку, ближайшую к началу координат. Для решения этой задачи придется определить наименьшее значение функции $w=\sqrt{x^2+y^2}$, где, однако, координаты x,y уже не являются независимыми переменными, а связаны между собой дополнительным условием: они должны удовлетворять уравнению кривой $\varphi(x,y)=0$.

Экстремумы функции $f(x_1, x_2, ..., x_m)$, на аргументы которой наложено $k \ (k < m)$ дополнительных условий

именуемых *уравнениями связи*, называются *условными экстремумами*. В отличие от них экстремумы, рассматривавшиеся ранее (без дополнительных условий), называются *безусловными экстремумами*.

Задача нахождения условного экстремума функции двух переменных ставится так: требуется найти экстремумы функции

$$w = f(x, y), \tag{2}$$

если аргументы х и у связаны дополнительным условием

$$\varphi(x, y) = 0. \tag{3}$$

Наиболее простой способ нахождения условного экстремума заключается в следующем : используя уравнения связи κ переменных выражаем через оставшиеся m-k, сводя тем самым исходную задачу к задаче нахождения безусловного экстремума функции m-k переменных.

Пример 1. Найти условный экстремум функции $f(x, y) = x^2 + y^2$ при условии x + y = 1.

 \blacktriangleright Из уравнения связи имеем y=1-x, следовательно, достаточно найти экстремум функции $f(x,y(x))=x^2+(1-x)^2=2x^2-2x+1$.

 $(2x^2-2x+1)'=4x-2,\ 4x-2=0 \Leftrightarrow x=\frac{1}{2},\$ причем в точке $x=\frac{1}{2}$ производная меняет знак с «—» на «+», значит, в этой точке функция f(x,y(x)) имеет минимум. Согласно уравнению связи, значению $x=\frac{1}{2}$ соответствует $y=\frac{1}{2}$. Следовательно, в точке $\left(\frac{1}{2},\frac{1}{2}\right)$ функция $f(x,y)=x^2+y^2$ достигает условного минимума относительно уравнения связи x+y=1, при этом $f\left(\frac{1}{2},\frac{1}{2}\right)=\frac{1}{2}$ \blacktriangleleft .

. ПРИМЕР 2 Найти экстремумы функции $z=x^2-y^2$ при условии,

что
$$2x-y-3=0$$
.

_▶ Из уравнения связи 2x-y-3=0_выразим y: y=2x-3 и подставим его в выражение для функции $z:_z=x^2-(2x-3)^2$. Мы получили функцию одной переменной – квадратный трёхчлен:

$$z=x^2-(4x^2-12x+9) \Leftrightarrow z=-3(x^2-4x-3) \Leftrightarrow z=-3[(x-2)^2-1],$$

откуда видно, что наибольшее значение функция z принимает при x=2 и это значение равно 3. Из уравнения связи следует, что если x=2, то y=1. Итак, $z_{max}=z(2, 1)=3$.

Замечание 1*. Продемонстрированный в рассмотренных примерах метод нахождения условного экстремума, когда из уравнения связи выражается одна из неизвестных и затем она подставляется в выражение исследуемой функции, в общем случае оказывается слишком громоздким, так как решение уравнения связи относительно одной из переменных или вызывает затруднения, или не имеет однозначного решения и т. д. В таких случаях используют метод неопределённых множителей Лагранжа. При этом задача сводится к отысканию безусловных экстремумов вспомогательной функции функцией Лагранжа.

Для задачи (2)-(3) функция Лагранжа $\Phi = f(x,y) + \lambda \phi(x,y)$, где λ – множитель Лагранжа

Пример 3. Найти условный экстремум функции $f(x, y) = x^2 + y^2$ при условии x + y = 1.

▶ Составим функцию Лагранжа

$$\Phi(x, y; \lambda) = x^2 + y^2 + \lambda(x + y - 1)$$

и найдем ее критические точки из системы уравнений:

$$\begin{cases} \frac{\partial F}{\partial x} \equiv 2x + \lambda = 0, \\ \frac{\partial F}{\partial y} \equiv 2y + \lambda = 0, \\ x + y = 1. \end{cases} \Leftrightarrow \begin{cases} x = -\frac{\lambda}{2}, \\ y = -\frac{\lambda}{2}, \\ -\frac{\lambda}{2} - \frac{\lambda}{2} = 1. \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2}, \\ y = \frac{1}{2}, \\ \lambda = -1. \end{cases}$$

Составим второй дифференциал

$$d^{2}\Phi(x, y; \lambda) = \frac{\partial^{2}\Phi}{\partial x^{2}}(dx)^{2} + 2\frac{\partial^{2}\Phi}{\partial x\partial y}dxdy + \frac{\partial^{2}\Phi}{\partial y^{2}}(dy)^{2} = 2(dx)^{2} + 2(dy)^{2} > 0$$

при $(dx)^2 + (dy)^2 > 0$, следовательно, функция $f(x, y) = x^2 + y^2$ в точке $\left(\frac{1}{2}, \frac{1}{2}\right)$ достигает условного минимума, причем $f\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{1}{2}$.

. **ПРИМЕР 4** Найти экстремумы функции_z = xy_при условии, что_ $x^2 + y^2 = 1$.

► Составим функцию Лагранжа: $\Phi(x, y) = xy + \lambda(x^2 + y^2 - 1)$ и решим систему, состоящую из уравнений $\Phi_x^{'} = 0$, $\Phi_y^{'} = 0$ и уравнения связи:

$$\begin{cases} \Phi'_{x} = 0, \\ \Phi'_{y} = 0, \\ x^{2} + y^{2} = 1, \end{cases} \iff \begin{cases} y + 2\lambda x = 0, \\ x + 2\lambda y = 0, \\ x^{2} + y^{2} = 1. \end{cases}$$

Вычитая из первого уравнения второе, получим уравнение

$$y-x+2\lambda(x-y)=0 \iff (x-y)\cdot(2\lambda-1)=0$$
,

которое распадается на два:

$$x = y$$
 или_ $2\lambda = 1$.

Система также распадается на две:

$$\begin{cases} x = y, \\ x + 2\lambda y = 0, \ \mathbf{u} \end{cases} \begin{cases} 2\lambda = 1, \\ x + 2\lambda y = 0, \\ x^2 + y^2 = 1, \end{cases} \begin{cases} 2\lambda = 1, \\ x + 2\lambda y = 0, \\ x^2 + y^2 = 1. \end{cases}$$

Из первого и третьего уравнений первой системы следует, что $2x^2 = 1 \Leftrightarrow x^2 = \frac{1}{2}$ и поэтому

$$x_1 = -\frac{1}{\sqrt{2}}, x_2 = \frac{1}{\sqrt{2}}$$

и так как $x=y\neq 0$, то из второго уравнения первой системы находим: $\lambda=-\frac{1}{2}$.

Итак при $\lambda = -\frac{1}{2}$ _мы имеем две критические точки: $M_1(-\frac{1}{\sqrt{2}}\,,-\frac{1}{\sqrt{2}}\,)$ и $M_2(\frac{1}{\sqrt{2}}\,,\,\frac{1}{\sqrt{2}}\,)$.

Переходя к решению второй системы, замечаем, что $\lambda = \frac{1}{2}$ и, подставляя это значение λ во второе уравнение, находим: x+y=0, т. е. x=-y. Тогда из последнего уравнения находим: $x_3=-\frac{1}{\sqrt{2}}$, $x_4=\frac{1}{\sqrt{2}}$.

Таким образом, при $\lambda=\frac{1}{2}$ мы получили еще две критические точки: $M_3(-\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}})$ и $M_4(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$.

Исследуем поведение функции z в окрестности критических точек.

Предварительно найдём второй дифференциал функции Лагранжа:

$$d\Phi = ydx + xdy + 2\lambda xdx + 2\lambda ydy,$$

$$d^{2}\Phi = 2dxdy + 2\lambda dx^{2} + 2\lambda dy^{2}.$$
 (*)

Если_ $\lambda = -\frac{1}{2}$,_то $d^2\Phi = 2dxdy - dx^2 - dy^2 \Leftrightarrow d^2\Phi = -(dx - dy)^2$. Однако, *здесь dx и dy* не являются независимыми. Из уравнения связи_ $x^2 + y^2 = 1$ следует, что эти дифференциалы связаны равенством: 2xdx + 2ydy = 0, или:

$$xdx + ydy = 0. (**)$$

Подставляя сюда координаты точки M_1 , находим, что_ $-\frac{1}{\sqrt{2}}dx - \frac{1}{\sqrt{2}}dy = 0 \Leftrightarrow dx = -dy$. А тогда отсюда и из выражения для второго дифференциала функции Лагранжа $(d^2\Phi = -(dx - dy)^2)$ следует: $d^2\Phi = -4dy^2$ и так как dy - независимый дифференциал, а $d^2\Phi < 0$ (при $dy \neq 0$), то в точке M_1 функция z имеет локальный относительный максимум, равный $z(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) = \frac{1}{2}$.

В окрестности точки M_2 (значение λ остаётся прежним) связь дифференциалов та же, что в окрестности точки M_1 поэтому в окрестности M_2 также локальный относительный максимум функции z(x.y): $z(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = \frac{1}{2}$.

Пусть теперь_ $\lambda = \frac{1}{2}$,_тогда из (*):_ $d^2\Phi = 2dxdy + dx^2 + dy^2$ _ $\Leftrightarrow d^2\Phi = (dx + dy)^2$. Из (**) при $x = -\frac{1}{\sqrt{2}}$, $y = \frac{1}{\sqrt{2}}$ следует, что dx = dy, так что в окрестности точки M_3 : $d^2\Phi = 4dy^2 > 0$ _и так как dy — независимый дифференциал, а $d^2\Phi > 0$ (при $dy \neq 0$), то в точке M_3 функция z имеет локальный относительный минимум, равный_ $z(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = -\frac{1}{2}$. Не составляет труда проверить, что и в точке M_4 функция z(x,y) также имеет локальный относительный минимум, причём $z(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) = -\frac{1}{2}$.

Замечание 2*. В общем случае условного экстремума функции $f(x_1, x_2, ..., x_m)$ при k (k < m) дополнительных условиях

функция Лагранжа имеет вид $\Phi = f(x_1, x_2, ..., x_m) + \sum_{i=1}^k \lambda_i \phi_i(x_1, x_2, ..., x_m)$, где $\lambda_1, \lambda_2, ..., \lambda_k$ – множители Лагранжа.

Замечание 3. Заметим, что при нахождении наибольших и наименьших значений функции в замкнутой ограниченной области, задача о нахождении наибольших и наименьших значений на границе области сводится к определению условного экстремума. Уравнением связи будет уравнение границы.