Kernel Stein Tests for Multiple Model Comparison

Makoto Yamada^{2,3} Bernhard Schölkopf¹ Jen Ning Lim¹ Wittawat Jitkrittum¹

¹Max Planck Institute for Intelligent Systems ²Kyoto University ³RIKEN AIP

Summary

- Given: l candidate models $\mathcal{M} = \{P_1, \dots, P_l\}$ and n samples $\{\mathbf{y}_i\}_{i=1}^n \sim R$ from unknown data distribution R. In \mathbb{R}^d .
- Goal: For each model $P_i \in \mathcal{M}$, determine if it (the model) is worse that the best candidate model P_J in \mathcal{M} .

• Contribution:

- -Proposed two methods for constructing non-parametric tests for multiple model comparison.
- 1. Mult: The dataset is split into two independent portions for selection (i.e., determining $P_{\widehat{i}}$) and testing.
- 2. PSI: The same dataset is used for selection and testing.
- -When l=2, PSI has provably higher true positive rate (TPR) than Mult.
- -Both methods control false positive rate (FPR).

Multiple Model Comparison

- ullet Test $H_{0,i}:D(P_i,R)\leq D(P_J,R)$ v.s. $H_{1,i}:D(P_i,R)>D(P_J,R)$ where P_J is the best candidate model in \mathcal{M} .
- ullet For each model P_i , we either have samples $\{\mathbf{x}_j\}_{j=1}^n \sim P_i$ (D=MMD) or have the log density $\log p_i(x)$ (D = KSD).
- Problem: P_I is unknown.
- Idea: Estimate \widehat{J} from data. We choose $P_{\widehat{I}} \in \operatorname{argmin}_{P_i \in \mathcal{M}} \widehat{D}(P_i, R)$.
- Proposal: Consider hypotheses conditioned on the selection
- $-H_{0,i}^J:D(P_i,R)\leq D(P_{\widehat{I}},R)\mid P_{\widehat{I}}$ is the best,
- $-H_{1,i}^J:D(P_i,R)>D(P_{\widehat{I}},R)\mid P_{\widehat{I}}$ is the best.
- Conditional null hypothesis valid post selection \Longrightarrow tests that account for selection bias.

False and True Positive Rates

- We use false positive rate (FPR) and true positive rate (TPR) to measure the performance of our algorithm.
- True positive rate (TPR) is the proportion of models correctly designated as worse than the best P_J .
- False positive rate (FPR) is the proportion of models incorrectly designated as worse than the best P_J .
- A good test has high TPR and low FPR.

Test Statistic

Our test statistic is $\widehat{S}:=\sqrt{n}[\widehat{D}(P_i,R)-\widehat{D}(P_{\widehat{I}},R)]$ where \widehat{D} is an unbiased estimator of KSD or MMD.

- Before selection, \widehat{S} is normally distributed as $n \to \infty$.
- ullet **After selection**, \widehat{S} under the <u>conditional null</u> is asymptotically:
- Normal if the data are split into two independent portions: one for selection and the other for inference.
- -Truncated normal if the full dataset is used for both selection and testing, by the polyhedral lemma of Lee et. al. 2016.
- ullet For all $i=1,\ldots,l$, reject $H_{0,i}$ if $\widehat{S}>(1-lpha)$ -quantile of the distribution of \hat{S} after selection.
- Reject $H_{0,i} \implies \mathsf{Model}\ P_i$ is worse than the best $P_{\widehat{I}}$.
- ullet This asymptotically controls the type-I error(and FPR) at α . \checkmark

Theoretical Result

Theorem: Let P_1, P_2 be two candidate models, and R be a data generating distribution. Assume that P_1, P_2 and R are distinct. Given $\alpha \in [0, \frac{1}{2}]$ and split proportion $\rho \in (0, 1)$ for Mult so that $(1-\rho)n$ samples are used for selecting $P_{\widehat{I}}$ and ρn samples for testing, for all $n \gg N = \left(\frac{\sigma\Phi^{-1}(1-\frac{\alpha}{2})}{\mu(1-\sqrt{\rho})}\right)^2$, we have

$$\text{TPR}_{PSI} \gtrsim \text{TPR}_{Mult}$$
.

- ✓ PSI can yield higher TPR than Mult.
- \checkmark Holds for both D = MMD and D = KSD.

Lemma: Define the selective type-I error for the i^{th} model to be

$$s(i,\widehat{J}) := \mathbb{P}(\text{reject } H_{0,i}^{\widehat{J}} \mid H_{0,i}^{\widehat{J}} \text{ is true}, P_{\widehat{J}} \text{ is selected}).$$

If $s(i, \widehat{J}) \leq \alpha$ for all $i, \widehat{J} \in \{1, \dots, l\}$, then

$$FPR \leq \alpha$$
.

✓ Both of our test controls provably controls FPR.

Mixture of CelebA (D = MMD)

Task: If the true distribution is composed of 50% smile and 50% nonsmile (images), which of the following models are the closest?

- (c) Real: Smile 40%, No-smile 60%. $\frac{8}{5}_{0.50}$ 100 FID
- (d) Real: Smile 51%, No-smile 49%.
- (e) Real: Smile 52%, No-smile 48%.

Results:

- Ranking by $FID \implies$ noisy selection. $\sharp_{0.75}$
- Testing indicates that (d) and (e) are the best.
- Performance of PSI and Mult similar.

Chicago Crime (D = KSD)

Task: Best model for representing the crime activity in Chicago?

Results:

- \bullet Ranking by KSD \Longrightarrow (c) and (e) are selected.
- Likelihood Negative Log (NLL) favors the most complex model (e).
- PSI has higher rejection rate than Mult.

