If  $C \subseteq \mathbb{R}^n$  is a non-empty polyhedral cone, then

$$C = \{ x \in \mathbb{R}^n \colon Ax \le 0 \} \quad , \tag{1.7}$$

for some matrix  $A \in \mathbb{R}^{m \times n}$ , where  $m \in \mathbb{Z}_{\geq 0}$ . Vice-versa, any set C with a description as in (1.7) is a polyhedral cone.

Proof

Any set  $C = \{x \in \mathbb{R}^n : Ax \neq 0\}$  clearly is a polyhedral cone.

$$A(\lambda x) = \lambda \underbrace{Ax}_{\leq 0} \leq 0$$

Conversely, let C = 1R" be a polyhedral cone.

C is polyhedron => (= 
$$\{x \in \mathbb{R}^n : Ax \leq b\}$$
)

who assume that all inequalities Ax = b are non-redundant.



We will show: b = 0

Assume by sake of contradiction that I inequality atx = B in Ax = 6 with B>0.

$$a^{T}x \leq \beta$$
 is not redundant  $\Rightarrow \exists y \in C$  s.t.  $a^{T}y = \beta$   
 $C$  is a cone  $\Rightarrow 2y \in C \Rightarrow a^{T}(2y) \leq \beta$ 

If  $C \subseteq \mathbb{R}^n$  is a polyhedral cone, then

$$C = \left\{ \sum_{i=1}^{k} \lambda_i x_i \colon \lambda_i \ge 0 \ \forall i \in [k] \right\} , \qquad (1.8)$$

for some finite set of points  $x_1, \ldots, x_k \in \mathbb{R}^n$ . The points  $x_1, \ldots, x_k$  are called a *set of generators* of C. Vice-versa, any set C as described in (1.8) is a polyhedral cone.

See problem sets for proof.



## **Proposition 1.38**

Let  $P \subseteq \mathbb{R}^n$  be a polyhedron. Then

$$P = Q + C ,$$

where  $Q \subseteq \mathbb{R}^n$  is a polytope and  $C \subseteq \mathbb{R}^n$  is a polyhedral cone. Vice-versa, the Minkowski sum of a polytope and a polyhedral cone is always a polyhedron.

See problem sets for proof.

# Example 1.39

The graphic below shows an unbounded 2-dimensional polyhedron P and how it can be written as the Minkowski sum of a polytope Q and a polyhedral cone C.



An affine image of a polyhedron is a polyhedron, i.e., for any polyhedron  $P \subseteq \mathbb{R}^n$  and any affine function  $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ , the set  $\varphi(P) \coloneqq \{\varphi(x) \colon x \in P\}$  is a polyhedron.



Proof

We first observe that it suffices to prove the statement for linear functions like > IRM. Indeed, assume statement holds for linear functions.

If  $\varphi: \mathbb{R}^m \to \mathbb{R}^m$  is affine, then  $\varphi(x) = \varphi(x) + \varphi($ 

 $\varphi(P) = \varphi(P) + t$   $\varphi(P) = \{x + t : x \in \mathbb{R}^m, A_x \le b\}$   $= \{x + t : x \in \mathbb{R}^m, A_x \le b\}$   $= \{x \in \mathbb{R}^m : A_y = b\}$   $= \{y \in \mathbb{R}^m : A_y \le b + A + \}$ 

This is finite intersection of half-spaces

it is a polyhedron.

Hence, assume l'is linear.

By Proposition 1.38,

$$f(P) = f(Q + C)$$

 $flinear = df(q+c) : q \in Q, c \in C_3^2$ 

 $= \{\ell(q) + \ell(c) : q \in Q, c \in C\}$ 

Plan: We finish proof by showing that

(a) 
$$f(Q)$$
 is polyhedral cone   
(b)  $f(C)$  is polyhedral cone   
Proposition 1.38

$$f(Q) + f(C)$$
 is polyhedral cone polyhedron

(a) f(Q) is a polytope

By Proposition 1.32 : Q polytope => Q = conv(vertices(Q))

Let (q1, q2, ..., qx) = vertices (Q)

 $P(Q) = \{ \ell(x) : x \in conv(vertices(Q)) \}$ 

$$= \left\{ \varphi \left( \sum_{i=1}^{k} \lambda_i q_i \right) : \lambda \in \mathbb{R}_{\geq 0}^{k}, \sum_{i=1}^{k} \lambda_i = 1 \right\}$$

$$= \left\{ \sum_{i=1}^{k} \lambda_i \, \ell(q_i) : \lambda \in \mathbb{R}^k_{\geq 0}, \sum_{i=1}^{k} \lambda_i = 1 \right\}$$

$$\ell \text{ linear}$$

= 
$$conv\left(\left\{\ell(q_1), \ell(q_2), \dots, \ell(q_k)\right\}\right)$$

=) e(a) is convex hull of finitely many points.

(b) &(C) is a polyhedral cone

By Proposition 1.37: 7 x1,..., xe Ele s.f.

$$C = \left\{ \sum_{i=1}^{\ell} \chi_{i} \times_{i} : \lambda \in \mathbb{R}_{\geq 0}^{\ell} \right\}$$

$$\varphi(C) = \left\{ \left\{ \left( \sum_{i=1}^{\ell} \lambda_{i} \times_{i} \right) : \lambda \in \mathbb{R}_{\geq 0}^{\ell} \right\} \right\}$$

$$= \left\{ \sum_{i=1}^{\ell} \lambda_i \, \ell(x_i) \mid \lambda \in \mathbb{R}^{\ell}_{\geq 0} \right\}$$

Proposition 1.37 (() is a polyhedral cone.

The dominant of a polyhedron is a polyhedron.

Proof

Let P=R" be a polyhedon.



$$dom(P) = (Q + C) + IR_{\geq 0}^{n} = Q + (C + IR_{\geq 0}^{n})$$

Plan: Show that C+ IR, is a polyhedral cone.

Then, Proposition 1.38 implies that dom (P) is a polyhedron.

$$C = \left\{ \sum_{j=1}^{k} \mu_{j} x_{j} : m \in \mathbb{R}^{k} \right\}$$

 $\Rightarrow C + |R_{\geq 0}^{n} = \left\{ \sum_{i=1}^{k} u_{i} \times_{i} : n \in |R_{\geq 0}^{k} \right\} + \left\{ \sum_{i=1}^{n} \lambda_{i} e_{i} : \lambda \in |R_{\geq 0}^{n} \right\}$ 

$$= \left\{ \sum_{j=1}^{k} \mu_{j} \times_{j} + \sum_{i=1}^{n} \lambda_{i} e_{i} : \mu \in \mathbb{R}^{k}_{\geq 0} \right\}$$

a polyhedral cone due to Proposition 1.37.

# **Definition 1.43: (Strictly) separating hyperplanes**

Let  $Y, Z \subseteq \mathbb{R}^n$  be two sets. A hyperplane  $H = \{x \in \mathbb{R}^n : a^{\top}x \notin \beta\}$  is called a (Y, Z)-separating hyperplane, or simply separating hyperplane, if Y is contained in one of the half-spaces defined by H and Z in the other one, i.e., either

$$a^{\top}y \leq \beta \leq a^{\top}z \qquad \forall y \in Y, z \in Z \text{ , or }$$
  
 $a^{\top}y \geq \beta \geq a^{\top}z \qquad \forall y \in Y, z \in Z \text{ . }$ 

The hyperplane is called *strictly* (Y, Z)-separating, or simply *strictly separating*, if the above inequalities are strict.

## **Example 1.44: Separating two sets**

The illustration below shows two sets  $A, B \subseteq \mathbb{R}^2$  together with three separating hyperplanes. Hyperplane 3 is strictly separating the sets whereas hyperplanes 1 and 2 do not separate A and B in a strict sense.



## Theorem 1.45: Separating a point from a polyhedron

Let  $P \subseteq \mathbb{R}^n$  be a polyhedron and  $y \in \mathbb{R}^n \setminus P$ . Then there is a strictly (y, P)-separating hyperplane.

Proof

P polyhedron => 
$$P = \{x \in \mathbb{R}^n : Ax \leq b\}$$

$$y \in P \setminus R^n \implies 7$$
 constraint at  $x \in B$   
in  $Ax \in b$  s.t.

$$a^{T}y > \beta$$



Indeed, for 
$$x \in P$$
  $a^{T}x \leq \beta \leq \frac{1}{2}(\beta + a^{T}y)$ .  
Moveoner,  $a^{T}y \geq \frac{1}{2}(\beta + a^{T}y)$ 

#

#### Theorem 1.47

Let  $Y, Z \subseteq \mathbb{R}^n$  be two disjoint closed convex sets with at least one of them being compact, then there exists a strictly (Y, Z)-separating hyperplane.



This fails if one set is not convex.



It also fails if none of the sets is compact.

