Math 1540

George C.

February 10, 2023

Contents

List of Theorems

Lecture 1

0 Motivation

Galois theory is a branch of mathematics that studies the connection between algebraic equations and their solutions. One of the main motivations for studying Galois theory is the Abel-Ruffini Theorem:

Theorem 1 (Abel-Rufin). There exists a polynomial of degree 5 with solutions that are not expressible using algebraic operators $(+, -, \cdot, /, \sqrt{r})$

1 Classical Formulas

Polynomials of degree [2,4] have equations for their solutions. These equations are often found by reducing a polynomial using a shift: Given a polynomial:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_0$$

A shift will get rid of the x^{n-1} term

$$f(x - \frac{a_{n-1}}{na_n}) = a_n x^n + \dots a_0$$

Example (Quadratic Formula).

$$X^2 + bX + c = 0$$

Using a shift of $-\frac{b}{2}$ removes the linear term:

$$(x - \frac{b}{2})^2 + b(x - \frac{b}{2}) + c = 0$$

$$(x^2 - bx + \frac{b^2}{4}) + bx - \frac{b^2}{2} + c = 0$$

$$x^2 + \frac{b^2}{4} - \frac{b^2}{2} + c = 0$$

$$x^2 - \frac{b^2}{4} + c = 0$$

$$x^2 = \frac{b^2}{4} - c$$

$$x = \pm \sqrt{\frac{b^2}{4} - c}$$

$$X = \pm \sqrt{\frac{b^2}{4} - c} - \frac{b}{2}$$

Lecture 2

Lecture 3

2 Splitting Fields

Lemma 1 (Euclid's Lemma). Let F be a field, if p(x) divides $q_1(x)q_2(x)\dots q_n(a)$ with p(x) irreducible then p(x) divides one of the $q_i(x)$

Note. Irreducibility is important because for example $x^2|x\cdot x$ but x^2 doesn't factor either

Proof. By induction:

Base Case: Let f(x) = 1 then, $p(x)|f(x)q_1(x)$ Trivial since there is only one polynomial for p(x) to divide

Inductive Step: Let $f(x) = q_1(x)q_2(x) \dots q_n(a)$ (p(x), f(x)) = 1, so there exist a(x) and b(x) s.t. a(x)p(x) + b(x)f(x) = 1 Therefore,

$$p(x)a(z)q_{n+1}(x) + f(x)q_{n+1}(x)b(x) = q_{n+1}(x)p(x)|q_{n+1}(x)$$

Proposition 1. Let F be a field and p(x) be irreducible. Then F[x](p(x)) is a field and contains a root to p(x) = 0

Note. $(\forall a \in F)(p(a) \neq 0)$ since it's irreducible F is inside F[x]/(p(x))

Lecture 4

Definition 1 (splits). A polynomial, f(x), splits in F[x] iff it can be written as a product of linear factors i.e F contains all the roots of f(x)

Theorem 2. Let $f(x) \in F[x]$, there exists a field extension $\frac{E}{F}$ for which f(x) splits

Proof. By induction:

Base Case: Trivial

Inductive Step: let f(x) be deg(f) = n + 1 Write f(x) = p(x)g(x) p(x) irreducclie. Find a field (B/F) for which p(x) has a root p(x) = (x - a)h(x)then f(x) = (x - a)h(x)g(x) then falls to previous case

Note. This result is similar to the FTA

Definition 2 (prime subfield). Let F be a field, then

$$P = \bigcap_{0 \neq S \in F} S$$

P be the prime subfield of F

Theorem 3. P a prime subfield is either isomorphic to \mathbb{Q} or \mathbb{Z}_p

Lecture 5

Theorem 4 (mod p-criterion). Let R domain, F field, $s: R \to F$ be a ring map Let $p(x) \in R[x]$ if deg(s(p)) = deg(p) and s(p) irreducible in F[x], then p(x) irreducible in R[x]

Example. $p(x) = 8x^3 - 6x - 1$ in $\mathbb{Z}[x]$ irreducible? $s : \mathbb{Z} \to \mathbb{Z}_5$ $s(p) = 3x^3 - x - 1$ And then we can check with 5 inputs in \mathbb{Z}_5

Theorem 5 (Eisenstein criterion). Let $f(x) \in \mathbb{Z}[x]$

$$f(x) = a_n x^n \dots a_1 x + a_0$$

If there exists a prime p so that $p|a_i$ for $0 \le i \le n$ and $p^2 \not|a_0$ then f(x) is irreducible over Q[x]

Definition 3 (splitting field). A splitting field is the smallest field extension over the field of the coefficients of a polynomial such that it contains all roots of the polynomial.

Theorem 6. Let $a \in E$ and $p(x) \in F[x]$ here $\frac{E}{F}$ p(x) monic irreducible has a as a root

Lecture 6

If there exists another $q(x) \in F[x]$ with q(a) = 0, monic irreducible, then (p - q)(x) = 0 at a and deg(p - q) < deg(p) which contridicts the first part.

Definition 4 (E/F as vector-space). We call the degree of $\frac{E}{F} = [E:F]$

Example. $\mathbb{Q}(\sqrt[3]{2})$ is a 3-dimentional extension

Example. $Q(\sqrt{2}, \sqrt{3})$ is 4-dimentional extension

Theorem 7. Let $p(x) \in F[x]$ be irreducible of deg(p) = d then E = F[x]/(p(x)) is an extension of degree d

Note. E contains a root of p(x), a. We should claim that an F-basis of E looks like powers of a

Definition 5 (Field Extension).

$$F(a_1 \dots a_n) = \bigcap_{F \subseteq S \subseteq E} S$$

where $a_1, \ldots a_n \in S$

Definition 6 (simple). a field extension is called simple if it only adds one element

Theorem 8. E/F is a finite extension \Rightarrow it's algebraic (each element $a \in E$ is algebraic)

Proof. Pick a $a \in E$ if a is a root if there's a linear combination of it's powers that equals zero

Theorem 9. Let E/F be field extension, $a \in E$ be algebraic over F then

- 1. There's a monic irreducible $p(x) \in F[x]$ having a as a root
- 2. There exists an isomorphism between $F[x]/(p(x)) \to F(a)$
- 3. p(x) unique monic of the least degree in F[x] with a as a root
- 4. [F(a):F] = deg(p)

ß

Lecture 0

Proof. To show this let's define a map $\varphi: F[x] \to E$ s.t. $\varphi(f) = f(a)$. The kernel of this map would be (p(x)). Because E is a field then the image of phi is a domain. Since $\ker(\varphi) = (p(x))$ is prime then $2 \Rightarrow 1,3$

Let's define another map $\tau: F[x]/(p(x)) \to img(\varphi)$. Then $img(\varphi) = F(a)$ and so $\tau(c) = c \forall c \in F, \, \tau(\bar{x}) = a$.

We know that $F(a) \subseteq img(\varphi)$, so we want to also show $F(a) \supseteq img(\varphi)$ If $F, a \subseteq S$ then all polynomials in a are in S Therefore, $F(a) \supseteq img(\varphi)$ **Theorem 10** (existence of splitting field). We know there exists some field such that f(x) splits. We can write $f(x)u(x-a_1)\dots(x-a_n)$. Then f(x) must split in $S=F(a_1\dots a_n)$

Lecture 8

Let F be a feild, $\sigma: F(\alpha_1, \dots a_n) \to F(\alpha_1 \dots a_n)$ so that $\sigma(1_F) = 1_F$ and $\sigma(a_i) \to a_i$ then $\sigma = \text{identity}$

Definition 7 (separable field). Let $f(x) \in F[x]$ has factorization $f(x) = up_1(x) \dots p_n(x)$ We say that f(x) is sequenable iff each $p_i(x)$ has no repeated toots

Let $f(x) \in F[x]$ irreducable, if $f'(x) \neq 0$ then f(x) is separable

Definition 8 (perfect). A field is called perfect if every non-constant $f(x) \in F[x]$ is separable

Example (perfect fields). Fields of charteristic 0 and finite fields

Definition 9 (seperable element). Let $\alpha \in E/F$, we say α is seperable if it's minimal polynomial is seperable in $F[\alpha]$

Theorem 11 (1). Let $f(x) \in F[x]$, $f'(x) = \sigma'(f(x))$, E a splitting field of f(x) and E' be a splitting field of f'(x). Then

- 1. $\exists \hat{\sigma} : E \to E'$
- 2. if f(x) is separabel, then of $\hat{\sigma}$ is [E:F]

Corollary. Any two finite feilds of order p^n are isomorphic