Student Name: Subham Kumar

Roll Number: 160707 Date: February 23, 2019 QUESTION 1

Given eigenvector $\mathbf{v} \in \mathbb{R}^n$ of the matrix $\frac{1}{N} \mathbf{X} \mathbf{X}^T$ we can use it to the eigenvector $\mathbf{u} \in \mathbb{R}^d$ of $\mathbf{S} = \frac{1}{N} \mathbf{X}^T \mathbf{X}$:

$$\frac{1}{N} \mathbf{X} \mathbf{X}^T \mathbf{v} = \lambda \mathbf{v}$$

Multiplying both side by \mathbf{X}^T , we get

$$\frac{1}{N}\mathbf{X}^{T}\mathbf{X}\left(\mathbf{X}^{T}\mathbf{v}\right)=\lambda\left(\mathbf{X}^{T}\mathbf{v}\right)$$

This $\mathbf{X}^T\mathbf{v}$ is simply the eigenvector \mathbf{u} of \mathbf{S} . The time complexity of the traditional PCA is $\mathcal{O}(D^3)$ whereas this of calculating eigenvectors will have time complexity of $\mathcal{O}(N^3) + \mathcal{O}(DN^2) = \mathcal{O}(DN^2)$. Clearly the later one is better when D > N.

Student Name: Subham Kumar

Roll Number: 160707 Date: February 23, 2019 QUESTION 2

Given the activation function $h(x) = x\sigma(\beta x)$, we can choose suitable values of β to approximate it to get the mentioned activation functions. Here σ denotes the sigmoid function $\sigma(z) = \frac{1}{1+\exp(-z)}$.

 $\sigma(z) = \frac{1}{1 + \exp(-z)}$. To get linear activation function set β to be zero. Then $h(x) = \frac{x}{2}$ which is linear. To get Relu activation function set β to be some very large number. In this case

$$h(x) = \begin{cases} 0 & \forall x < 0 \\ x & otherwise \end{cases}$$

Student Name: Subham Kumar

Roll Number: 160707 Date: February 23, 2019 3

$$p(y_n|z_n, \mathbf{x}_n) = Bernoulli\left[\sigma\left(\mathbf{w}_{z_n}^T \mathbf{x}_n\right)\right]$$

So, the marginal distribution $p(y_n = 1 | \mathbf{x}_n)$ can be written as:

$$p(y_n = 1 | \mathbf{x}_n) = \sum_{k=1}^K p(z_n = k) p(y_n = 1 | z_n = k, \mathbf{x}_n)$$
$$= \sum_{k=1}^K \pi_k \sigma\left(\mathbf{w}_k^T \mathbf{x}_n\right)$$

Now consider an equivalent neural network which has an input layer, a hidden layer and an output layer with the following specifications:

- **1.**The input layer will have all the features of an input(say \mathbf{x}_n) going into it i.e. it will have D nodes in input layer.
- **2.**The hidden layer will have K nodes.Each node(say k_{th} node) will have pre-activation as $\sum_{d=1}^{D} w_{kd}x_{nd} = \mathbf{w}_{k}^{T}\mathbf{x}_{n}$ i.e. the edge from the input node x_{nd} to the k_{th} node of hidden layer will have weight w_{kd} .Then the non-linear activation used will be sigmoid.Hence the output of this node will $\sigma\left(\mathbf{w}_{k}^{T}\mathbf{x}_{n}\right)$
- 3. Now for the output layer there will be a single node, where the pre-activation will be $\sum_{k=1}^{K} \pi_k \sigma\left(\mathbf{w}_k^T \mathbf{x}_n\right)$ i.e each node from the hidden layer(say k_{th} node) will have an edge to the output-layer node with weight π_k . The activation used in the output layer will be simply identity activation function.

So the final output of this neural network will be $\sum_{k=1}^{K} \pi_k \sigma\left(\mathbf{w}_k^T \mathbf{x}_n\right)$ which is same as $p(y_n = 1 | \mathbf{x}_n)$

4

QUESTION

Student Name: Subham Kumar

Roll Number: 160707 Date: February 23, 2019

Loss Function=Negative of MAP Objective: $= -\log p(\Theta|X)$

Here
$$\Theta = \left\{ \left\{ \mathbf{u}_n, \theta_n \right\}_{n=1}^N, \left\{ \mathbf{v}_m, \phi_m \right\}_{m=1}^M, \mathbf{W}_u, \mathbf{W}_v \right\}$$

$$-\log p(\Theta|X) = -\log p(X|\Theta) - \log p(\Theta)$$

$$-\log p(\Theta|X) = -\log p(X|\Theta) - \log p(\mathbf{u}) - \log p(\mathbf{v})$$

$$= \sum_{(n,m)\in\Omega} \lambda_x (X_{nm} - (\theta_n + \phi_m + \mathbf{u}_n^T \mathbf{v}_m))^2 + \sum_{n=1}^N \lambda_u (\mathbf{u}_n - \mathbf{W}_u \mathbf{a}_n)^T (\mathbf{u}_n - \mathbf{W}_u \mathbf{a}_n) + \sum_{m=1}^M \lambda_v (\mathbf{v}_m - \mathbf{W}_v \mathbf{b}_m)^T (\mathbf{v}_m - \mathbf{W}_v \mathbf{b}_m)$$

Taking the partial derivative of $-\log p(\Theta|X)$ w.r.t. $\theta_n, \mathbf{u}_n, \mathbf{v}_m, \phi_m$ we get the following expressions for updates:

$$\mathbf{W}_{u} = \sum_{n=1}^{N} \left(\mathbf{u}_{n} \mathbf{a}_{n}^{T}\right) \left(\sum_{n=1}^{N} \mathbf{a}_{n} \mathbf{a}_{n}^{T}\right)^{-1}$$

$$\mathbf{W}_{v} = \sum_{m=1}^{M} \left(\mathbf{v}_{m} \mathbf{b}_{m}^{T}\right) \left(\sum_{m=1}^{M} \mathbf{b}_{m} \mathbf{b}_{m}^{T}\right)^{-1}$$

$$\sum_{m=1}^{N} \left(X_{nm} - \left(\phi_{m} + \mathbf{u}_{n}^{T} \mathbf{v}_{m}\right)\right)$$

$$\theta_{n} = \frac{\sum_{m \in \Omega_{c_{m}}} \left(X_{nm} - \left(\theta_{n} + \mathbf{v}_{m}^{T} \mathbf{u}_{n}\right)\right)}{\Omega_{c_{m}}}$$

$$\mathbf{u}_{n} = \left(\lambda_{u} \mathcal{I}_{k} + \lambda_{x} \sum_{m \in \Omega_{c_{m}}} \mathbf{v}_{m} \mathbf{v}_{m}^{T}\right)^{-1} \left(\lambda_{u} \mathbf{W}_{u} \mathbf{a}_{n} + \lambda_{x} \sum_{m \in \Omega_{c_{m}}} \left(X_{nm} - \theta_{n} - \phi_{m}\right) \mathbf{v}_{m}\right)$$

$$\mathbf{v}_{m} = \left(\lambda_{v} \mathcal{I}_{k} + \lambda_{x} \sum_{n \in \Omega_{c_{m}}} \mathbf{u}_{n} \mathbf{u}_{n}^{T}\right)^{-1} \left(\lambda_{v} \mathbf{W}_{v} \mathbf{b}_{m} + \lambda_{x} \sum_{n \in \Omega_{c_{m}}} \left(X_{nm} - \theta_{n} - \phi_{m}\right) \mathbf{u}_{n}\right)$$

ALT-OPT Algorithm:

1.Initialize all the parameters belonging to $\Theta^{(0)}$.Set t=1.

 $\mathbf{2}.$

For all $n \in \{1, 2, ..., N\}$ update \mathbf{u}_n as:

$$\mathbf{u}_n^{(t)} = \left(\lambda_u \mathcal{I}_k + \lambda_x \sum_{m \in \Omega_{\mathrm{r_n}}} \mathbf{v}_m^{(t-1)} \mathbf{v}_m^{(t-1)T}\right)^{-1} \left(\lambda_u \mathbf{W}_u^{(t-1)} \mathbf{a}_n + \lambda_x \sum_{m \in \Omega_{\mathrm{r_n}}} (X_{nm} - \theta_n^{(t-1)} - \phi_m^{(t-1)}) \mathbf{v}_m^{(t-1)}\right)$$

$$\mathbf{W}_{u}^{(t)} = \sum_{n=1}^{N} \left(\mathbf{u}_{n}^{(t)} \mathbf{a}_{n}^{T} \right) \left(\sum_{n=1}^{N} \mathbf{a}_{n} \mathbf{a}_{n}^{T} \right)^{-1}$$

3.

For all $m\epsilon\{1,2,...,M\}$ update \mathbf{v}_m as:

$$\mathbf{v}_{m}^{(t)} = \left(\lambda_{v} \mathcal{I}_{k} + \lambda_{x} \sum_{n \in \Omega_{c_{m}}} \mathbf{u}_{n}^{(t)} \mathbf{u}_{n}^{(t)^{T}}\right)^{-1} \left(\lambda_{v} \mathbf{W}_{v}^{(t-1)} \mathbf{b}_{m} + \lambda_{x} \sum_{n \in \Omega_{c_{m}}} (X_{nm} - \theta_{n}^{(t-1)} - \phi_{m}^{(t-1)}) \mathbf{u}_{n}^{(t)}\right)$$

$$\mathbf{W}_{v}^{(t)} = \sum_{m=1}^{M} \left(\mathbf{v}_{m}^{(t)} \mathbf{b}_{m}^{T}\right) \left(\sum_{m=1}^{M} \mathbf{b}_{m} \mathbf{b}_{m}^{T}\right)^{-1}$$

$$\mathbf{M}_{v}^{(t)} = \sum_{m=1}^{M} \left(\mathbf{v}_{m}^{(t)} \mathbf{b}_{m}^{T}\right) \left(\sum_{m=1}^{M} \mathbf{b}_{m} \mathbf{b}_{m}^{T}\right)^{-1}$$

$$\mathbf{M}_{v}^{(t)} = \sum_{m=1}^{M} \left(\mathbf{v}_{m}^{(t)} \mathbf{b}_{m}^{T}\right) \left(\sum_{m=1}^{M} \mathbf{b}_{m} \mathbf{b}_{m}^{T}\right)^{-1}$$

4.

$$\theta_n^{(t)} = \frac{\sum\limits_{m \in \Omega_{\mathbf{r_n}}} (X_{nm} - (\phi_m^{(t-1)} + \mathbf{u}_n^{(t)^T} \mathbf{v}_m^{(t)}))}{\Omega_{\mathbf{r_n}}}$$
$$\phi_m^{(t)} = \frac{\sum\limits_{n \in \Omega_{\mathbf{c_m}}} (X_{nm} - (\theta_n^{(t)} + \mathbf{u}_n^{(t)^T} \mathbf{v}_m^{(t)}))}{\Omega_{\mathbf{c_m}}}$$

5.Go to step 2 if not converged yet, set t=t+1.