圏論

me

2024年8月17日

1 予備知識

Def. 1.1. 単射, 全射, 同型

- 1. $f: A \longrightarrow B \in \text{Mor } \mathcal{C}$ が単射であるとは、 $\forall X \in \text{Ob } \mathcal{C}$. $\forall q, h: X \longrightarrow A$. $f \circ g = f \circ h \implies g = h$
- 2. $f:A\longrightarrow B\in \mathrm{Mor}\ \mathcal{C}$ が全射であるとは、 $\forall X\in \mathrm{Ob}\ \mathcal{C},\ \forall g,h:\ B\longrightarrow A.g\circ f=h\circ f\implies g=h$
- 3. $f: A \longrightarrow B \in \operatorname{Mor} \mathcal{C}$ が同型であるとは、 $\exists g: B \longrightarrow A. \ st. \ g \circ f = \operatorname{id}_A, \ f \circ g = \operatorname{id}_B$

Rem. 1.2. 図でイメージしよう.

単射: 左の射が一意

$$X \xrightarrow{g} A \xrightarrow{f} B = X \xrightarrow{f} B$$

全射: 右の射が一意

$$A \xrightarrow{f} B \xrightarrow{g} X = A \xrightarrow{f} B \xrightarrow{f} X$$

Rem. 1.3. 集合論的な意味で雰囲気をとらえよう.(集合論の教科書を読めば厳密に書いてある) 単射であれば、元の行き先が等しいときに、もとの元も等しいので $f(g(x)) = f(h(x)) \implies g(x) = h(x)$ となる.(実は逆も成り立つ) 圏においてはこれを単射の定義としてしまおうというわけです.

また全射であれば、元の行き先が codomain をすべて埋め尽くすので f(x) は B の元をすべて表せる. よって g(f(x)) = h(f(x)) の時 g,h の中身は B の任意の元とみなせる. よって g=h となる. (逆も成り立つ) 単射と同様に、これを全射の定義としてしまうのです.

Def. 1.4. 始対象 (initial object)

圏 \mathcal{C} において, $I \in \text{Ob } \mathcal{C}$ が始対象であるとは,

$$\forall X \in \text{Ob } \mathcal{C}.\exists ! f: I \longrightarrow X$$

である.

Rem. 1.5. 次の図ようにIからすべての対象に1本の射があるもの.

Def. 1.6. 終対象 (final object)

圏 C において, $I \in Ob C$ が終対象であるとは,

$$\forall X \in \text{Ob } \mathcal{C}.\exists ! f : X \longrightarrow I$$

である.

Rem. 1.7. 次の図ように I に向かってすべての対象から 1 本の射があるもの.

Def. 1.8. 零対象 (zero object)

圏 C において, $O \in Ob C$ が零対象であるとは, O が始対象であり, かつ終対象であること.

Def. 1.9. 零射 (zero morphism)

 $A, B \in \text{Ob } \mathcal{C}$ に対し、合成 $A \longrightarrow O \longrightarrow B$ を零射といい、0 で表す.

2 アーベル圏

Def. 2.1. アーベル圏

Aがアーベル圏であるとは、次の条件を満たすことである.

- 1. A はゼロ対象を持つ
- 2. 任意の A_1,A_2 に対して積と和 $A_1 \prod A_2, A_1 \prod A_2$ が存在する.
- 3. Aの任意の射に ker, coker が存在する.
- 4. Aの任意の単射はある射の ker で、任意の全射はある射の coker である.

Lem. 2.2. A をアーベル圏とする. A における射 $f: A \longrightarrow B$ に対し、

- f が単射 $\Longrightarrow f \simeq \ker(\operatorname{coker} f)$
- f が全射 $\Longrightarrow f \simeq \operatorname{coker}(\ker f)$

が成り立つ.

