Scilab Textbook Companion for Problems In Fluid Flow by D. J. Brasch And D. Whyman¹

Created by
Avik Kumar Das
Fluid Mechanics & Hydraulics
Civil Engineering
IIT Bombay
College Teacher
Prof. Deepashree Raje
Cross-Checked by
Ganesh R

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Problems In Fluid Flow

Author: D. J. Brasch And D. Whyman

Publisher: Edward Arnold

Edition: 1

Year: 1986

ISBN: 0-7131-3554-9

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Schab Codes	
1	Pipe Flow of Liquids	5
2	pipe flow of gasses and gas liquid mixtures	15
3	velocity boundary layers	23
4	Flow Measurement	28
5	Flow measurement in open channel	35
6	pumping of liquids	46
7	Flow Through Packed Beds	55
8	Filtration	59
9	Forces on bodies Immersed in fluids	67
10	Sedimentation and Clssification	74
11	Fluidisation	83
12	Pneumatic Conveying	91
13	Centrifugal Separation Operations	97

List of Scilab Codes

Exa	1.1.1	laminar turnulent pipe flow and Reynolds number	5
Exa	1.1.2	conditions in pipeline while liquid passes in steady mo-	
		tion through it	6
Exa	1.1.3	laminar flow and Hagen Poiseuille equation	7
Exa	1.1.4	velocity distribution in fluid in laminar motion in pipe	8
Exa	1.1.5	comparison of laminar and turbulent flow	8
Exa	1.1.6	power required for pumping local pressure in pipeline and the effects on both of an increase in pipe roughness	9
Exa	1.1.7	power required for pumping when pipe system contains	
Lina	1.1.1	resistances to flow	10
Exa	1.1.8	fluid flow rate and use of friction and chart	12
Exa	1.1.9	time taken to drain a tank	13
Exa	1.1.10	minimum pipe diameter to obtain a given fluid flow	14
Exa	2.1.1	gas flow through pipe line when compressibility must be considered	15
Exa	2.1.2	flow of ideal gas at maximum velocity under isothermal and adiabatic condition	16
Exa	2.1.3	flow of a non ideal gas at maximum velocity under adiabatic condition	18
Exa	2.1.4	venting of gas from pressure vessel	20
Exa	2.1.5		20
Exa	2.1.6	pressure drop required for flow of a gas liquid mixture	
		through pipe	21
Exa	3.1.1		23
Exa	3.1.2	turbulent flow over a plate	24
Exa	3.1.3	streamline and turbulent flow through and equations of	0.5
T-)	111	<i>J</i> 1	25
Ľxa	4.1.1	use of pitot tube to measure flow rate	28

Exa 4.1.2	use of pitot tube to measure flow of gas	29
Exa 4.1.3	use of orifice and manometer to measure flow	30
Exa 4.1.4	determination of orifice size for flow measurement and	
	pressure drop produced by orifice and venturi meters .	31
Exa 4.1.5	use of rotatometer for flow measurement	32
Exa 4.1.6	mass of float required to measure fluid rate in rotatometer	33
Exa 5.1.1	use of manning and chezy formulae	35
Exa 5.1.2	stream depth in trapezoid channel	36
Exa 5.1.3	optimum base angle of a Vshaped channel Slope of a	
	channel	36
Exa 5.1.4	stream depth and maximum velocity and flow rate in a	
	pipe	37
Exa 5.1.5	flow measurement with sharp crested weir	38
Exa 5.1.6	equation of specific energy and analysis of tranquil and	
	shooting flow	39
Exa 5.1.7	alternate depth of stream gradient of mild and steep	
	slope	40
Exa 5.1.8	critical flw condition	41
Exa 5.1.9	flow measurement with broad crested weir	42
Exa 5.1.10	gradually varied flow behind a weir	42
Exa 5.1.11	analysis of hydraulic jump	43
Exa 6.1.1	cavitation and its avoidance in suction pipes	46
Exa 6.1.2	specific speed of a centrifugal pump	48
Exa 6.1.3	theoritical and effective characteristic of centrifugal pump	
	flow rate	48
Exa 6.1.4	flow rate when cetrifugal pumps operate singly and in	
	parallel	50
Exa 6.1.5	pumping with a reciprocating pump	51
Exa 6.1.6	pumping with a air lift pump	53
Exa 7.1.1	determination of particle size and specific surface area	
	for a sample of powder	55
Exa 7.1.2	rate of flow through packed bed	56
Exa 7.1.3	determination of pressure drop to drive fluid through a	
	packed bed of raschig rings then of similar size spheres	
	and the determination of total area of surface presented	
	with two types of packing	57
Exa 8.1.1	constant rate of filtration in a plate and frame filter	
	process	59

Exa	8.1.2	Constant rate and pressure drop filteration	60
Exa	8.1.3	determination of characteristic of filtration system	61
Exa	8.1.4	constant pressure drop filtration of suspension which	
		gives rise to a compressible filter cake	62
Exa	8.1.5	filtration on a rotatory drum filter	63
Exa	8.1.6	filtration of centrifugal filter	65
Exa	9.1.1	drag forces and coefficient	67
Exa	9.1.2	lift force and lift coefficient	68
Exa	9.1.3	Particle diameter and terminal settling velocity	69
Exa	9.1.4	terminal settling velocity of sphere	69
Exa	9.1.5	effect of shape on drag force	70
Exa	9.1.6	estimation of hindered settling velocity	71
Exa	9.1.7	acceleration of settling particle in gravitational feild .	72
Exa	10.1.1	determination of settling velocity from a single batch	
		sedimentation	74
Exa	10.1.2	Minimum area required for a continuous thickener	75
Exa	10.1.3	classification of materials on basis of settling velocities	76
Exa	10.1.4	density variation of settling suspension	78
Exa	10.1.5	determination of particle size distribution using a sedi-	
		mentation method	79
Exa	10.1.6	determination of particle size distribution of a suspended	
		solid	80
Exa	10.1.7	decanting of homogeneous suspension to obtain particle	
		size of a given size range	81
		particulate and aggregative fluidisation	83
		calculation of minimum flow rates	84
		calculation of flow rates in fluidised beds	85
Exa	11.1.4	estimation of vessel diameters and height for fluidisation	
		operations	86
		power required for pumping in fluidised beds	87
		wall effect in fluidised beds	88
		effect of particle size on the ratio of terminal velocity.	89
		flow pattern in pneumatic conveying	91
Exa	12.1.2	prediction of choking velocity and choking choking voidage	
		in a vertical transport line	92
Exa	12.1.3	prediction of pressure drop in horizontal pneumatic trans-	
		port	93

Exa	12.1.4	prediction of pressure drop in vertical pneumatic trans-	
		port	94
Exa	12.1.5	density phase flow regime for pneumatic transport	95
Exa	13.1.1	Equations of centrifugal operations	97
Exa	13.1.2	fluid pressure in tubular bowl centrifuge	98
Exa	13.1.3	particle size determination of fine particles	99
Exa	13.1.4	flow rates in continuous centrifugal sedimentation	99
Exa	13.1.5	separation of two immiscible liquid by centrifugation .	100
Exa	13.1.6	Cyclone Separators	101
		efficiency of cyclone separators	101

Chapter 1

Pipe Flow of Liquids

Scilab code Exa 1.1.1 laminar turnulent pipe flow and Reynolds number

```
1
2
3 //exapple 1.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 mu = 6.3/100; // viscosity
8 rho=1170; // density
9 d=.3; //diameter of pipe
10 b=0.142; //conversion factor
11 pi=3.14;
12 //calculation
13 Q=150000*b/24/3600//flow rate
14 u=Q/pi/d^2*4//flow speed
15 Re=rho*u*d/mu
16 if
         Re>4000
                     then
17
       disp(Re," the system is in turbulent motion as
          reynolds no is greater than 4000:");
18 elseif Re<2100 then
       disp(Re, "the system is in laminar motion");
19
20 else
```

```
21
       disp(Re, "the system is in transition motion");
22 \text{ end}
23 / part 2
24 mu=5.29/1000;
25 d=0.06;
26 G=0.32; //mass flow rate
27 Re= 4*G/pi/d/mu;
         Re>4000
28 if
                     then
29
       disp(Re," the system is in turbulent motion as
          reynolds no is greater than 4000:");
30 elseif Re<2100 then
       disp(Re,"the system is in laminar motion as Re
31
          is less than 2100");
32 else
       disp(Re, "the system is in transition motion");
33
34 end
```

Scilab code Exa 1.1.2 conditions in pipeline while liquid passes in steady motion through it

```
1
2
3 //exapple 1.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 G=21.2; //mass flow rate
7 rho=1120; //density
8 d=0.075; //diameter
9 l=50;
10 g=9.81;
11 pi=3.14;
12 delz=24/100; //head difference
13 //calculation
14 delP=delz*rho*g; // differece of pressure
15 u=4*G/pi/d^2/rho;
```

```
16 phi=delP/rho*d/1/u^2/4*50;
17 disp(phi, "The Stanton-Pannel friction factor per unit of length:");
18 R=phi*rho*u^2;
19 disp(R, "shear stress exerted by liquid on the pipe wall in (N/m^2):");
20 F=pi*d*1*R;
21 disp(F, "Total shear force exerted on the pipe in (N):");
22 Re=(.0396/phi)^4;//reynold's no.
23 mu=rho*u*d/Re;
24 disp(mu, "viscosity of liquid in (kg/m/s):")
```

Scilab code Exa 1.1.3 laminar flow and Hagen Poiseuille equation

```
1
2
3 //exapple 1.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi} = 3.14;
7 g=9.81;
8 d=0.00125;
9 Re=2100;
10 \ 1=0.035;
11 rhoc=779; // density of cyclohexane
12 rhow=999; //density of water
13 muc=1.02/1000; // viscosity of cyclo hexane
14 //calculation
15 u=Re*muc/rhoc/d;//speed
16 Q=pi*d^2*u/4; //volumetric flow rate
17 delP=32*muc*u*1/d^2; //pressure difference
18 delz=delP/(rhow-rhoc)/g;
19 disp(delz*100, "the difference between the rise
      levels of manometer in (cm):")
```

Scilab code Exa 1.1.4 velocity distribution in fluid in laminar motion in pipe

```
1
2
3 //exapple 1.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 d=0.05;
7 l=12;
8 per=100-2;
9 pi=3.1428
10 //calculation
11 s=sqrt(per/100/4*d^2);//radius of core of pure material
12 V=pi*d^2/4*1/(2*(1-(2*s)^2/d^2));
13 disp(V, "The volume of pure material so that 2% technical material appears at the end in (m^3):")
```

Scilab code Exa 1.1.5 comparison of laminar and turbulent flow

```
1
2
3 //exapple 1.5
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part 1
7 a=1/2*(1-1/sqrt(2));
8 disp(a*100, "The percent value of d for which where pitot tube is kept show average velocity in streamline flow in (%):");
```

```
9 //part 2
10 a=(49/60)^7/2;
11 disp(a*100, "The percent value of d for which where
      pitot tube is kept show average velocity in
      turbulent flow in (\%):");
12 //part 3
13 //on equating coefficient of r
14 y=a*2; //y=a/100*2*r
15 s=1-y; //s=r-y
16 //on equating coeff. of 1/4/mu*del(P)/del(1)
17 E=(1-s^2-.5)/.5;
18 disp(E, "The erreor shown by pitot tube at new
     position if value of streamlined flow flow was to
      be obtained in (\%):");
19 disp("The - sign indicates that it will display
     reduced velocity than what actually is");
```

Scilab code Exa 1.1.6 power required for pumping local pressure in pipeline and the effects on both of an increase in pipe roughness

```
1
2
3 //exapple 1.6
4 clc; funcprot(0);
5 // Initialization of Variable
6 rhon=1068; // density of nitric acid
7 mun=1.06/1000//viscosity of nitric acid
8 g=9.81;
9 l=278;
10 d=0.032;
11 alpha=1;
12 h2=57.4; // height to be raised
13 h1=5; // height from which to be raised
14 e=.0035/1000; // roughness
15 G=2.35 // mass flow rate
```

```
16 //calculations
17 //part 1
18 u=4*G/rhon/pi/d^2;
19 Re=rhon*d*u/mun;
20 rr=e/d;//relative roughness
21 //Reading's from Moody's Chart
22 phi = . 00225; // friction coeff.
23 W=u^2/2+g*(h2-h1)+4*phi*l*u^2/d;//The work done/kg
      of fluid flow in J/kg
24 \ V = abs(W) *G;
25 disp(abs(V)/1000, "The Power required to pump acid
      in kW :");
26 / part 2
27 P2 = -u^2 * rhon / 2 + g * (h1) * rhon + abs (W+2) * rhon;;
28 disp(P2/1000, "The gauge pressure at pump outlet when
       piping is new in (kPa)");
29 //part 3
30 e = .05/1000;
31 Re=rhon*d*u/mun;
32 \text{ rr=e/d}:
33 //Reading's from Moody's Chart
34 phi=0.0029;
35 \text{ W=u^2/2+g*(h2-h1)+4*phi*l*u^2/d};
36 \text{ Vnew=abs}(W)*G;
37 Pi = (Vnew - V) / V * 100;
38 disp(Pi , "The increase in power required to
      transfer in old pipe in (\%):");
\frac{39}{\sqrt{\text{part } 4}}
40 P2=-u^2*rhon/2+g*(h1)*rhon+abs(W+2)*rhon;
41 disp(P2/1000,"The gauge pressure at pump outlet when
       piping is old in (kPa)");
```

Scilab code Exa 1.1.7 power required for pumping when pipe system contains resistances to flow

```
1
2
3 //exapple 1.7
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 990;
7 mu = 5.88/10000;
8 g=9.81;
9 \text{ pi=} 3.14;
10 \text{ temp} = 46 + 273
11 e=1.8/10000//absolute roughness
12 \quad Q = 4800/1000/3600;
13 1=155;
14 h = 10.5;
15 d=0.038;
16 delh=1.54//head loss at heat exchanger
17 effi=0.6//efficiency
18 //calculations
19 // part 1
20 u=Q*4/pi/d^2;
21 Re=rho*d*u/mu;
22 rr=e/d;//relative roughness
23 //from moody's diagram
24 phi=0.0038//friction factor
25 alpha=1//constant
26 \quad leff=1+h+200*d+90*d;
27 Phe=g*delh//pressure head lost at heat exchanger
28 \text{ W=u^2/2/alpha+Phe+g*h+4*phi*leff*u^2/d;}/work done
      by pump
29 G=Q*rho; //mass flow rate
30 P=W*G; //power required by pump
31 Pd=P/effi//power required to drive pump
32 disp(Pd/1000, "power required to drive pump in (kW)")
33 / part 2
34 P2 = (-u^2/2/alpha + W) * rho;
35 disp(P2/1000, "The gauge pressure in (kPa):")
```

Scilab code Exa 1.1.8 fluid flow rate and use of friction and chart

```
1
3 //exapple 1.8
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 908;
7 \text{ mu} = 3.9/100;
8 g=9.81;
9 \text{ pi} = 3.14;
10 d=0.105;
11 1=87;
12 h=16.8;
13 e=0.046/1000; //absolute roughness
14 //calculations
15 / part1
16 P=-rho*g*h;//change in pressure
17 a=-P*rho*d^3/4/1/mu^2//a=phi*Re^2
18 //using graph given in book(appendix)
19 Re=8000;
20 u=mu*Re/rho/d;
21 Q=u*pi*d^2/4;
22 disp(Q, "Volumetric flow rate initial (m^3/s):");
23 //part 2
24 W = 320;
25 Pd=W*rho; //pressure drop by pump
26 \text{ P=P-Pd};
27 a=-P*rho*d^3/4/1/mu^2//a=phi*Re^2
28 //using graph given in book(appendix)
29 \text{ Re} = 15000;
30 u=mu*Re/rho/d;
31 \ Q=u*pi*d^2/4;
32 \operatorname{disp}(Q, "Volumetric flow rate final(part 2) (m^3/s):"
```

);

Scilab code Exa 1.1.9 time taken to drain a tank

```
1
2
3 //exapple 1.9
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 1000;
7 mu = 1.25/1000;
8 g=9.81;
9 \text{ pi} = 3.14
10 d1=0.28; // diameter of tank
11 d2=0.0042; //diameter of pipe
12 1=0.52; //length of pipe
13 rr=1.2/1000/d;//relative roughness
14 phid=0.00475;
15 disp(phid," It is derived from type graph giben in
      appedix and can be seen is arying b/w 0.0047 &
      0.0048 dependent on D which varies from 0.25 to
      0.45")
16 //calculations
17 function[a]=intregrate()
       s=0:
18
       for i=1:1000
19
20
            D=linspace(0.25,0.45,1000);
21
            y = sqrt(((pi*d1^2/pi/d2^2)^2-1)/2/9.81+(4*
               phid*l*(pi*d1^2/pi/d2^2)^2)/d2/9.81)
               *((0.52+D(i))^-0.5)*2/10000;
22
            s = s + y;
23
24
       end
25
       a=s;
26 endfunction
```

```
27 b=intregrate();
28 disp(b, "Time required to water level to fall in the
      tank in (s):");
```

Scilab code Exa 1.1.10 minimum pipe diameter to obtain a given fluid flow

```
1
2
3 //exapple 1.10
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 1000;
7 mu = 1.42/1000;
8 g=9.81;
9 \text{ pi} = 3.14;
10 1=485;
11 h=4.5
12 e=8.2/100000;
13 Q=1500*4.545/1000/3600;
14 disp("assume d as 6cm");
15 d=0.06;
16 u=4*Q/pi/d^2;
17 Re=rho*d*u/mu;
18 rr=e/d;//relative roughness
19 //using moody's chart
20 phi=0.0033//friction coeff.
21 d=(64*phi*1*Q^2/pi^2/g/h)^0.2;
22 disp(d*100, "The calculated d after (1st iteration
      which is close to what we assume so we do not do
      any more iteration) in (cm) ")
```

Chapter 2

pipe flow of gasses and gas liquid mixtures

Scilab code Exa 2.1.1 gas flow through pipe line when compressibility must be considered

```
1
2
3 // exapple 2.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi}=3.1428;
7 mmm=16.04/1000; //molar mass of methane
8 mV=22.414/1000;//molar volume
9 R=8.314;
10 mu=1.08/10<sup>5</sup>;
11 r=4.2/100; // radius
12 rr=0.026/2/r;//relative roughness
13 Pfinal=560*1000;
14 tfinal = 273+24;
15 1=68.5;
16 m=2.35; //mass flow rate
17 //calculation
18 A = pi * r^2;
```

```
19 A = round(A*10^5)/10^5;
20 rho=mmm/mV;
21 rho24=mmm*Pfinal*273/mV/101.3/tfinal; //density at
      24 'C
22 u=m/rho24/A;
23 Re=u*rho24*2*r/mu;
24 //from graph
25 phi=0.0032;
26 //for solving using fsolve we copy numerical value
      of constant terms
27 //using back calculation
28 //as pressure maintained should be more than Pfinal
     so guessed value is Pfinal;
29 function[y] = eqn(x)
       y=m^2/A^2*\log(x/Pfinal)+(Pfinal^2-x^2)/2/R/
30
          tfinal*mmm+4*phi*1/2/r*m^2/A^2;
31 endfunction
32 [x,v,info] = fsolve(560*10^3,eqn);
33 disp(x/1000, "pressure maintained at compressor in (
     kN/m^2: ");
```

Scilab code Exa 2.1.2 flow of ideal gas at maximum velocity under isothermal and adiabatic condition

```
1
2
3 //exapple 2.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 M=28.8/1000;
7 mu=1.73/10^5;
8 gamm=1.402;
9 P1=107.6*10^3;
10 V=22.414/1000;
11 R=8.314;
```

```
12 \text{ temp} = 285;
13 d=4/1000;
14 rr=0.0008;
15 phi=0.00285;
16 //calculation
17 //constant term of equation
18 //part1
19 a=1-8*phi*1/d;//constant term in deff
20 deff('y=f(x)', 'y=log(x^2)-x^2+2.938');
21 [x,v,info]=fsolve(1,f);
22 z = 1/x;
z=round(z*1000)/1000;
24 disp(z, "ratio of Pw/P1");
25 //part2
26 \text{ Pw=z*P1};
27 nuw=V*P1*temp/Pw/M/273;
28 Uw=sqrt(nuw*Pw);
29 disp(Uw, "maximum velocity in (m/s):")
30 / part3
31 Gw=pi*d^2/4*Pw/Uw;
32 disp(Gw, "maximum mass flow rate in(kg/s):");
33 //part4
34 G=2.173/1000;
35 J=G*Uw^2/2;
36 disp(J," heat taken up to maintain isothermal
      codition (J/s):");
37 //part5
38 nu2=2.79; //found from graph
39 \text{ nu1=R*temp/M/P1};
40 P2=P1*(nu1/nu2)^gamm;
41 disp(P2/P1, "crtical pressure ratio in adiabatic
      condition:");
42 //part6
43 Uw=sqrt (gamm*P2*nu2);
44 disp(Uw, "velocity at adiabatic condition in (m/s):")
45 // part7
46 Gw = pi * d^2/4 * Uw/nu2;
```

Scilab code Exa 2.1.3 flow of a non ideal gas at maximum velocity under adiabatic condition

```
1
2
3 //exapple 2.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 //1 refer to initial condition
7 R=8.314;
8 P1=550*10^3;
9 T1 = 273 + 350;
10 M = 18/1000;
11 d=2.4/100;
12 pi=3.1428;
13 A = pi * d^2/4;
14 \text{ gamm} = 1.33;
15 roughness=0.096/1000/d;
16 1=0.85;
17 phi=0.0035//assumed value of friction factor
18 //calculation
19 nu1=R*T1/M/P1;
20 Pw=0.4*P1; // estimation
```

```
21 nuw = (P1/Pw)^0.75*nu1;
22 enthalpy=3167*1000;
23 Gw = sqrt (enthalpy *A^2/(gamm * nuw^2/(gamm - 1) - nu1^2/2-
     nuw^2/2));
24 function[y] = eqn(x)
    y = log(x/nu1) + (gamm - 1)/gamm * (enthalpy/2*(A/Gw)^2*(1/Gw))
       x^2-1/nu1^2+0.25*(nu1^2/x^2-1)-.5*log(x/nu1))
       +4*phi*1/d;
26 endfunction
27 deff('y=f(x)', 'eqn');
[x,v,info] = fsolve(0.2,eqn);
29
30 if x~=nuw then
       disp("we again have to estimate Pw/P1");
31
       disp("new estimate assumed as 0.45")
32
       Pw=0.45*P1;//new estimation
33
       nuw = (P1/Pw)^0.75*nu1;
34
35 // & we equalise nu2 to nuw
36 nu2=nuw;
37 Gw = sqrt (enthalpy *A^2/(gamm*nuw^2/(gamm-1)-nu1^2/2-
      nuw^2/2));
38 printf("mass flow rate of steam through pipe (kg/s):
      \%.2 f", Gw);
39 //part 2
40 disp(Pw/1000," pressure of pipe at downstream end in
      (kPa):");
41
42 else
       disp("our estimation is correct");
43
44
45 end
46 //part3
47 enthalpyw=2888.7*1000; //estimated from steam table
48 Tw=sqrt((enthalpy-enthalpyw+.5*Gw^2/A^2*nu1^2)*2*A
      ^2/Gw^2/R^2*M^2*Pw^2);
49 disp(Tw-273, "temperature of steam emerging from pipe
       in (Celcius):")
```

Scilab code Exa 2.1.4 venting of gas from pressure vessel

```
1
2
3 // exapple 2.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 M = 28.05/1000;
7 \text{ gamm} = 1.23;
8 R=8.314;
9 atm = 101.3*1000;
10 P1=3*atm;
11 //calculation
12 //part1
13 P2=P1*(2/(gamm+1))^(gamm/(gamm-1));
14 disp(P2/1000, "pressure at nozzle throat (kPa):")
15 //part2
16 \text{ temp} = 273 + 50;
17 nu1=R*temp/P1/M;
18 G=18; //mass flow rate
19 nu2=nu1*(P2/P1)^{(-1/gamm)};
20 A=G^2*nu^2*(gamm-1)/(2*gamm*P1*nu1*(1-(P2/P1)^((
      gamm -1) / gamm)));
21 d=sqrt(4*sqrt(A)/pi);
22 disp(d*100, "diameter required at nozzle throat in (
      cm)")
23 //part3
24 vel=sqrt(2*gamm*P1*nu1/(gamm-1)*(1-(P2/P1)^((gamm-1)
      /gamm)));
25 disp(vel, "sonic velocity at throat in(m/s):");
```

Scilab code Exa 2.1.5 gas flow measurement with veturimeter

```
1
2
3 //exapple 2.5
4 clc; funcprot(0);
5 // Initialization of Variable
6 T = 273 + 15;
7 \text{ rho} = 999;
8 rhom=13559; //density of mercury
9 g=9.81;
10 P2=764.3/1000*rhom*g;
11 R=8.314;
12 M = 16.04/1000;
13 d=4.5/1000;
14 A = pi*d^2/4;
15 G=0.75/1000; //mass flow rate
16 delP = (1 - exp(R*T*G^2/2/P2^2/M/A^2))*P2;
17 h=-delP/rho/g;
18 disp(h*100, "height of manometer in (cm)")
```

Scilab code Exa 2.1.6 pressure drop required for flow of a gas liquid mixture through pipe

```
1
2
3  //exapple 2.6
4  clc; funcprot(0);
5  // Initialization of Variable
6  rhol=931;
7  mu=1.55/10000; // viscosity of water
8  Vsp=0.6057; // specific volume
9  T=273+133;
10  mug=1.38/100000; // viscosity of steam
11  P=300*1000;
12  d=0.075;
13  Gg=0.05; // mass flow gas phase
```

```
14 Gl=1.5; //mass flow liquid phase
15 A=pi*d^2/4;
16 //calculation
17 rhog=1/Vsp;
18 rhog=round(rhog*1000)/1000;
19 velg=Gg/A/rhog;
20 velg=round(velg*100)/100;
21 Reg=rhog*velg*d/mug;
22 //using chart
23 phig=0.00245;//friction factor gas phase
24 1 = 1;
25 delPg=4*phig*velg^2*rhog/d;
26 //consider liquid phase
27 vell=Gl/A/rho;
28 Rel=rho*vell*d/mu;
29 if Rel>4000 & Reg>4000 then
       disp("both liquid phase and solid phase in
30
          turbulent
                     motion");
       //from chart
31
32 end
33 PHIg=5;
34 \text{ delP=PHIg^2*delPg};
35 disp(delP, required pressure drop per unit length in
       (Pa)")
```

Chapter 3

velocity boundary layers

Scilab code Exa 3.1.1 streamline flow over a flat plate

```
1
2
3 //exapple 3.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 998;
7 \text{ mu} = 1.002/1000;
8 x=48/100;
9 u=19.6/100;
10 x1=30/100;
11 b=2.6;
12 //calculation
13 / part1
14 disp("fluid in boundary layer would be entirely in
      streamline motion ");
15 Re=rho*x*u/mu;
16 printf("reynolds no is \%.2e", Re);
17 // part 2
18 Re1=rho*x1*u/mu;
19 delta=x1*4.64*Re1^-.5;
20 disp(delta*1000, "boundary layer width in (mm):");
```

```
//part3
//part3
//part4
R=0.323*rho*u^2*Re1^-0.5;
//part4
R=0.323*rho*u^2*Re1^-0.5;
//part5
Rms=0.646*rho*u^2*Re^-0.5;
disp(Rms,"mean shear stress experienced over whole plate in (N/m^2)");
//part6
F=Rms*x*b;
disp(F,"total force experienced by the plate in (N)")
```

Scilab code Exa 3.1.2 turbulent flow over a plate

```
1
2
3 // \text{exapple } 3.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 P=102.7*1000;
7 M = 28.8/1000;
8 R=8.314;
9 temp=273+18;
10 Recrit = 10^5;
11 u=18.4;
12 b=4.7; // width
13 x=1.3;
14 mu=1.827/100000;
15 //calculation
16 //part1
17 rho = P * M/R/temp;
```

```
18 xcrit=Recrit*mu/rho/u;
19 a=1-xcrit/1.65;
20 disp(a*100,"% of surface over which turbulent
      boundary layer exist is :");
21 / part 2
22 \text{ Rex=rho*u*x/mu};
23 thik=0.375*Rex^-.2*x;
24 disp(thik*100,"thickness of boundary layer in (cm):"
      );
25 y=0.5*thik;
26 \text{ ux=u*(y/thik)^(1/7)};
27 disp(ux," velocity of air at mid point is (m/s):")
28 //part4
29 lthik=74.6*Rex^-.9*x;
30 disp(lthik*1000,"thickness of laminar boundary layer
       in (mm):");
31 //part5
32 ub=u*(lthik/thik)^(1/7);
33 disp(ub," velocity at outer edge of laminar sublayer
      in (m/s):");
34 //part6
35 R=0.0286*rho*u^2*Rex^-0.2;
36 disp(R, "shearforce expericienced in (N/m^2):");
37 //part7
38 x1=1.65; //length of plate
39 \operatorname{Rex1=rho*u*x1/mu};
40 Rms = 0.0358*rho*u^2*Rex1^-0.2;
41 disp(Rms, "mean shearforce in (N/m^2):");
42 //part8
43 F = x1 * Rms * b;
44 disp(F," total drag force expericienced by the plate
      is (N):");
```

Scilab code Exa 3.1.3 streamline and turbulent flow through and equations of universal velocity profile

```
1
2
3 // \text{exapple } 3.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 Q=37.6/1000000;
7 d=3.2/100;
8 \text{ mu} = 1.002/1000;
9 rho=998;
10 \text{ pi} = 3.14;
11 //calculation
12 //part1
13 u=4*Q/pi/d^2;
14 Re=rho*u*d/mu;
15 disp(Re, "pipe flow reynolds no :");
16 disp("Water will be in streamline motion in the pipe
      ");
17 //part2
18 \ a=-8*u/d;
19 disp(a," velocity gradient at the pipe wall is (s^-1)
      :");
20 //part3
21 Ro=-mu*a;
22 printf ("Sherastress at pipe wall is (N/m^2) %.2e", Ro
      );
23 //part4
24 \quad Q = 2.10/1000;
25 u=4*Q/pi/d^2;
u = round(u*1000)/1000;
27 disp(u,"new av. fluid velocity is <math>(m/s):");
28 Re=rho*u*d/mu;
29 phi=0.0396*Re^-0.25;//friction factor
30 phi=round(phi*10^5)/10^5;
31 delb=5*d*Re^-1*phi^-.5;
32 disp(delb*10^6, "thickness of laminar sublayer in
      (10^{-6}):");
33 //part5
34 \text{ y=}30*\text{d/phi}^0.5/\text{Re};//\text{thickness}
```

```
35 \text{ tbl=y-delb};
36 disp(tbl*1000, "thickness of buffer layer in (mm):");
37 //part6
38 A=pi*d^2/4; //cross sectional area of pipe
39 dc=d-2*y; //dia of turbulent core
40 Ac=pi*dc^2/4;
41 p = (1 - A/Ac) * 100;
42 disp(p,"percentage of pipe-s core occupied by
      turbulent core is (\%):");
43 //part7
44 uplus=5; //from reference
45 \text{ ux=uplus*u*phi}^0.5;
46 disp(ux," velocity where sublayer and buffer layer
      meet is (m/s):");
47 //part8
48 yplus=30; //from reference
49 ux2=u*phi^0.5*(2.5*\log(yplus)+5.5);
50 disp(ux2," velocity where turbulent core and buffer
      layer meet is (m/s):");
51 //part9
52 \text{ us=u/0.81};
53 disp(us, "fluid velocity along the pipe axis (m/s):")
54 / part 10
55 \text{ Ro=phi*rho*u^2};
56 disp(Ro, "shearstress at pipe wall (N/m^2):");
```

Chapter 4

Flow Measurement

Scilab code Exa 4.1.1 use of pitot tube to measure flow rate

```
1
2
3 //exapple 4.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 998;
7 rhom=1.354*10^4; // density of mercury
8 M=2.83/100;
9 mu = 1.001/1000;
10 mun=1.182/10^5; // vicosity of natural gas
11 R=8.314;
12 g=9.81;
13 h=28.6/100;
14 d=54/100;
15 //part1
16 \text{ nu=1/rho};
17 delP=h*g*(rhom-rho);
18 umax=sqrt(2*nu*delP);
19 umax=round(umax*10)/10;
20 disp(umax, "maximum fluid velocity in (m/s)");
21 Re=umax*d*rho/mu;
```

```
22 printf("reynold no. is %.2e", Re);
23 //using chart
24 u=0.81*umax;
25 \text{ G=rho*pi*d^2/4*u};
26 disp(G," mass flow rate in (kg/s):");
27 disp(G/rho, "Volumetric flow rate in (m^3/s):");
28 //part2
29 P1=689*1000; //initial pressure
30 T = 273 + 21;
31 \text{ nu1} = R*T/M/P1;
32 nu1=round(nu1*10000)/10000;
33 rhog=1/nu1;//density of gas
34 h=17.4/100;
35 P2=P1+h*(rho-rhog)*g;
36 P2=round(P2/100)*100;
37 umax2=sqrt(2*P1*nu1*log(P2/P1));
38 disp(umax2, "maximum fluid velocity in (m/s)");
39 Re=rhog*umax2*d/mun;
40 printf("reynold no. is \%.3e", Re);
41 //from table
42 \quad u=0.81*umax2;
43 \ Q=pi*d^2/4*u;
44 \operatorname{disp}(Q, "volumetric flow rate is (m^3/s):");
45 disp(Q*rhog,"mass flow rate in (kg/s):")
```

Scilab code Exa 4.1.2 use of pitot tube to measure flow of gas

```
liquid levels
8 r=[.175 .165 .150 .125 .075 .025 0];//
9 g=9.81;
10 R=8.314;
11 rho=999;
12 \text{ temp=289};
13 P1=148*1000;
14 M = 7.09 / 100;
15 \text{ pi}=3.12
16 rhoCl2=P1*M/R/temp; //density of Cl2
17 nuCl2=1/rhoCl2;//specific volume of Cl2
18 function[y]=P2(x);
19
       y=P1+x*(rho-rhoCl2)*g;
20 endfunction
21 for i=1:7
       y=P2(dlv(i));
22
       u(i)=sqrt(2*P1*nuCl2*log(y/P1));
23
24
       a(i)=u(i)*r(i);
25 end
26 clf();
27 plot(r,a);
28 xtitle("","r (m)","u*r (m^2/s)");
29 s = 0;
30 for i=1:6//itegration of the plotted graph
       s=abs((r(i)-r(i+1))*.5*(a(i)+a(1+1)))+s;
31
32 end
33 \text{ s=s-0.01};
34 \ Q=2*pi*s;
35 \operatorname{disp}(Q, "volumetric flow rate (m^3/s):");
36 disp(Q*rhoCl2," mass flow rate of chlorine gas (kg/s)
      ")
```

Scilab code Exa 4.1.3 use of orifice and manometer to measure flow

1

```
3 //exapple 4.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi} = 3.14;
7 Cd=0.61;
8 \text{ rho} = 999;
9 rhoo=877; //density of oil
10 g = 9.81;
11 h=75/100;
12 d=12.4/100; // dia of orifice
13 d1=15/100; //inside diameter
14 nuo=1/rhoo;//specific volume of oil
15 //calculation
16 //part1
17 delP=h*(rho-rhoo)*g;
18 A = pi * d^2/4;
19 G=Cd*A/nuo*sqrt(2*nuo*delP/(1-(d/d1)^4));
20 disp(G, "mass flow rate in (kg/s)")
21 //part2
22 h = (1+0.5)*d1;
23 delP=rhoo/2*(G*nuo/Cd/A)^2*(1-(d/d1)^4)+h*rhoo*g;
24 disp(delP, "pressuer difference between tapping points
      ");
25 delh=(delP-h*rhoo*g)/(rho-rhoo)/g;
26 disp(delh, "difference in water levels in manometer i
       (cm)")
```

Scilab code Exa 4.1.4 determination of orifice size for flow measurement and pressure drop produced by orifice and venturi meters

```
1
2
3 //exapple 4.4
4 clc; funcprot(0);
```

```
5 // Initialization of Variable
6 rhom=1.356*10^4; // density mercury
7 rhon=1266; //density NaOH
8 \text{ Cd} = 0.61;
9 g=9.81;
10 Cdv=0.98; //coeff. of discharge of venturimeter
11 Cdo=Cd;//coeff. of discharge of orificemeter
12 d=6.5/100;
13 pi=3.14;
14 A=pi*d^2/4;
15 Q=16.5/1000;
16 h=0.2; //head differnce
17 //calculation
18 //part1
19 delP=g*h*(rhom-rhon);
20 G=rhon*Q;
21 nun=1/rhon; //specific volume of NaOH
22 Ao=G*nun/Cd*sqrt(1/(2*nun*delP+(G*nun/Cd/A)^2));/
      area of orifice
23 \quad d0 = sqrt (4*Ao/pi)
24 disp(d0*100, "diameter of orifice in (cm):");
25 //part2
26 \quad a = (Cdv/Cdo)^2;
27 disp(a, "ratio of pressure drop")
```

Scilab code Exa 4.1.5 use of rotatometer for flow measurement

```
1
2
3  //exapple 4.5
4  clc; funcprot(0);
5  // Initialization of Variable
6  M=3.995/100;
7  g=9.81;
8  R=8.314;
```

```
9 \text{ Cd} = 0.94;
10 temp = 289;
11 df=9.5/1000; //diameter of float
12 Af=pi*df^2/4; // area of float
13 P=115*10^3;
14 \quad V = 0.92/10^6;
15 rhoc=3778; //density of ceramic
16 //calculation
17 rho=P*M/R/temp;
18 \text{ nu=1/rho};
19 P=V*(rhoc-rho)*g/Af;
20 disp(P, "pressure drop over the float in (Pa):");
21 //part2
22 x = .15/25*(25-7.6);
23 L = df * 100 + 2 * x;
24 L=L/100;
25 \quad A1=pi*L^2/4;
26 \text{ AO} = \text{A1} - \text{Af};
27 \text{ G=Cd*A0*sqrt}(2*\text{rho*P}/(1-(A0/A1)^2));
28 printf("mass flow rate in (kg/s) is \%.3e",G);
29 \quad Q=G/\text{rho};
30 disp(Q,"Volumetric flow rate in <math>(m^3/s):")
```

Scilab code Exa 4.1.6 mass of float required to measure fluid rate in rotatometer

```
1
2
3 //exapple 4.6
4 clc; funcprot(0);
5 // Initialization of Variable
6 rho=999;
7 rhos=8020;//density of steel
8 g=9.81;
9 pi=3.14;
```

```
10  df=14.2/1000; // dia  of  float
11  Af=pi*df^2/4; // area  of  float
12  Cd=0.97;
13  nu=1/rho;
14  Q=4/1000/60;
15  G=Q*rho;
16  // calculation
17  x=0.5*(18.8-df*1000)/280*(280-70);
18  L=df*1000+2*x;
19  L=L/1000;
20  A1=pi*L^2/4;
21  A0=A1-Af;
22  Vf=Af/g/(rhos-rho)/2/nu*(G*nu/Cd/A0)^2*(1-(A0/A1)^2);
23  m=Vf*rhos;
24  disp(m*1000," mass of  float  equired  in  (g):")
```

Chapter 5

Flow measurement in open channel

Scilab code Exa 5.1.1 use of manning and chezy formulae

```
1
3 // exapple 5.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 rho=999.7;
7 g=9.81;
8 mu=1.308/1000;
9 s=1/6950;
10 b=0.65;
11 h=32.6/100;
12 n = 0.016;
13 //calculation
14 //part1
15 A = b * h;
16 P=b+2*h;
17 m=A/P;
18 u=s^.5*m^(2/3)/n;
19 Q = A * u
```

```
20 disp(Q,"volumetric flow rate (m<sup>3</sup>/s):");
21 C=u/m<sup>0.5</sup>/s<sup>0.5</sup>;
22 disp(C,"chezy coefficient (m<sup>0.5</sup>/s):");
23 a=-m*rho*g*s/mu;//delu/dely
24 disp(a,"velocity gradient in the channel (s<sup>-1</sup>):")
```

Scilab code Exa 5.1.2 stream depth in trapezoid channel

```
1
2
3 //exapple 5.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 \quad Q = 0.885;
7 \text{ pi}=3.1428;
8 s = 1/960;
9 s=round(s*1000000)/1000000;
10 b=1.36;
11 n=0.014;
12 theta=55*pi/180;
13 //calculation
14 function[y]=flow(x);
15
       a=(x*(b+x/tan(theta)))/(b+2*x/sin(theta));
16
       y=a^{(2/3)}*s^{(1/2)}*(x*(b+x/tan(theta)))/n-Q;
17 endfunction
18 x=fsolve(0.1,flow);
19 disp(x, "depth of water in (m):")
```

Scilab code Exa 5.1.3 optimum base angle of a Vshaped channel Slope of a channel

1 2

```
3 //exapple 5.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 n=0.011;
7 h=0.12;
8 Q=25/10000;
9 //calculation
10 deff('y=f(x)', 'y=1/x^2-1');
11 x=fsolve(0.1,f);
12 theta=2*atan(x);
13 A=h*2*h/tan(theta/2)/2;
14 P=2*h*sqrt(2);
15 s=Q^2*n^2*P^(4/3)/A^(10/3);
16 disp(s,"the slope of channel in (radians):")
```

Scilab code Exa 5.1.4 stream depth and maximum velocity and flow rate in a pipe

```
1
2
3 //exapple 5.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 //maximizing eqution in theta & get a function
8 function[y]=theta(x)
       y=(x-.5*sin(2*x))/2/x^2-(1-cos(2*x))/2/x;
10 endfunction
11 x=fsolve(2.2, theta);
12 x = round(x*1000)/1000;
13 a=(1-\cos(x))/2;
14 printf("velocity will be maximum when stream depth
     in times of diameter is \%.3f",a);
15 //part2
16 //maximizing eqution in theta & get a function
```

```
17 function[y]=theta2(x)
18
       y=3*(x-.5*sin(2*x))^2*(1-cos(2*x))/2/x-(x-.5*sin
           (2*x))^3/2/x^2;
19 endfunction
20 	ext{ x1=fsolve}(2.2, \text{theta2});
21 \times 1 = round(x1*1000)/1000;
22 a = (1 - \cos(x1))/2;
23 disp("")
24 printf ("vlumetric flow will be maximum when stream
      depth in times of diameter is \%.3f",a);
25 //part3
26 r = 1;
27 \quad A=1*x-0.5*sin(2*x);
28 s = 0.35 * 3.14 / 180;
29 P = 2 * x * r;
30 C=78.6;
31 u=C*(A/P)^0.5*s^0.5;
32 disp(u,"maximum velocity of obtained fluid <math>(m/s):");
33 //part4
34 disp(x1, "maximum flow rate obtained at angle in (
      radians):")
```

Scilab code Exa 5.1.5 flow measurement with sharp crested weir

```
1
2
3  //exapple 5.5
4  clc; funcprot(0);
5  // Initialization of Variable
6  g=9.81;
7  h=28/100;
8  Cd=0.62;
9  B=46/100;
10  Q=0.355;
11  n=2; //from francis formula
```

```
12 //calcualtion
13 //part1
14 u=sqrt(2*g*h);
15 disp(u,"velocity of fluid (m/s):");
16 //part2a
17 H=(3*Q/2/Cd/B/(2*g)^0.5)^(2/3);
18 disp(H, "fluid depth over weir in (m):");
19 //part2b
20 //using francis formula
21 function[y]=root(x)
22
       y=Q-1.84*(B-0.1*n*x)*x^1.5;
23 endfunction
24 \text{ x=fsolve}(0.2, \text{root});
25 disp(x," fluid depth over weir in if SI units uesd in
       (m):");
26 // part3
27 H=18.5/100;
28 \quad Q = 22/1000;
29 a=15*Q/8/Cd/(2*g)^0.5/H^2.5;
30 theta=2*atan(a);
31 disp(theta*180/3.14,"base angle of the notch of weir
       (degrees)")
```

Scilab code Exa 5.1.6 equation of specific energy and analysis of tranquil and shooting flow

```
1
2
3  //exapple 5.6
4  clc; funcprot(0);
5  // Initialization of Variable
6  Q=0.675;
7  B=1.65;
8  D=19.5/100;
9  g=9.81;
```

```
10 //caculation
11 u=Q/B/D;
12 u = round(u*1000)/1000;
13 E=D+u^2/2/g;
14 y=poly([8.53/1000 0 -E 1], 'x', 'coeff');
15 x = roots(y);
16 disp(x(1), "alternative depth in (m)");
17 disp("It is shooting flow");
18 Dc = 2/3 * E;
19 Qmax=B*(g*Dc^3)^0.5;
20 disp(Qmax, "maximum volumetric flow (m^3/s)");
21 Fr=u/sqrt(g*D);
22 disp(Fr, "Froude no.");
23 a = (E-D)/E;
24 disp(a*100, "% of kinetic energy in initial system");
25 b = (E - x(1))/E;
26 disp(b*100, "% of kinetic energy in final system");
```

Scilab code Exa 5.1.7 alternate depth of stream gradient of mild and steep slope

```
1
2
3  //exapple 5.7
4  clc; funcprot(0);
5  // Initialization of Variable
6  G=338; //mass flow rate
7  rho=998;
8  q=G/rho;
9  E=0.48;
10  n=0.015;
11  g=9.81;
12  B=0.4;
13  y=poly([5.85/1000 0 -E 1], 'x', 'coeff');
14  x=roots(y);
```

```
15 disp(x(1),x(2),"alternate depths (m):");

16 s=(G*n/rho/x(2)/(B*x(2)/(B+2*x(2)))^(2/3))^2

17 disp(s,"slode when depth is 12.9cm");

18 s=(G*n/rho/x(1)/(B*x(1)/(B+2*x(1)))^(2/3))^2

19 disp(s,"slode when depth is 45.1cm");
```

Scilab code Exa 5.1.8 critical flw condition

```
1
2
3 //exapple 5.8
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi} = 3.14;
7 theta=pi/3;
8 h=1/tan(theta);
9 B=0.845;
10 E=0.375;
11 g=9.81;
12 //calculation
13 //part1
14 //deducing a polynomial(quadratic) in Dc
15 \ a=5*h;
16 b=3*B-4*h*E;
17 c = -2 * E * B;
18 y=poly([c b a], 'x', 'coeff');
19 x = roots(y);
20 disp(x(2), "critical depth in (m):");
21 //part2
22 Ac=x(2)*(B+x(2)*tan(theta/2));
23 Btc=B+x(2)*tan(theta/2)*2;
24 Dcbar=Ac/Btc;
25 uc=sqrt(g*Dcbar);
26 disp(uc, "critical velocity (m/s):");
27 //part3
```

```
28 Qc=Ac*uc;
29 disp(Qc,"Critical volumetric flow (m<sup>3</sup>/s):");
```

Scilab code Exa 5.1.9 flow measurement with broad crested weir

```
1
2
3 //exapple 5.9
4 clc; funcprot(0);
5 // Initialization of Variable
6 B2=1.60; //breadth at 2
7 D2=(1-0.047)*1.27; //depth at 2
8 g=9.81;
9 B1=2.95; //breadth at 1
10 D1=1.27; // depth at 1
11 Z=0;
12 //calculation
13 Q=B2*D2*(2*g*(D1-D2-Z)/(1-(B2*D2/B1/D1)^2))^0.5;
14 disp(Q," volumetric flow rate over flat topped weir
      over rectangular section in non uniform width (m
      ^3/_{\rm S})");
15 //next part
16 B2=12.8;
17 D1=2.58;
18 \quad Z=1.25;
19 Q=1.705*B2*(D1-Z)^1.5;
20 disp(Q," volumetric flow rate over flat topped weir
      over rectangular section in uniform width (m<sup>3</sup>/s)
      :")
```

Scilab code Exa 5.1.10 gradually varied flow behind a weir

1

```
2
3 //exapple 5.10
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi} = 3.14;
7 n=0.022;
8 B=5.75;
9 s=0.15*pi/180;
10 Q=16.8;
11 function[y]=normal(x)
12
       y=Q-B*x/n*(B*x/(B+2*x))^(2/3)*s^0.5;
13 endfunction
14 x=fsolve(1.33, normal);
15 disp(x,"Normal depth in (m):");
16 Dc = (Q^2/g/B^2)^(1/3);
17 disp(Dc, "Critical depth in (m):");
18 delD=.1;
19 D=1.55:.1:2.35
20 \text{ su} = 0;
21 \quad for \quad i=1:9
       delL=delD/s*(1-(Dc/D(i))^3)/(1-(x/D(i))^3.33);
23
       su=su+delL
24 end
25 disp(su," distance in (m) from upstream to that place
```

Scilab code Exa 5.1.11 analysis of hydraulic jump

```
1
2
3 //exapple 5.11
4 clc; funcprot(0);
5 // Initialization of Variable
6 g=9.81;
7 q=1.49;
```

```
8 \text{ pi}=3.14;
9 //calculation
10 //part1
11 Dc=(q^2/g)^3.333;
12 disp(Dc, "critical depth in (m):");
13 //part2
14 n = 0.021;
15 su=1.85*pi/180;//slope upstream
16 sd=0.035*pi/180;//slope downstream
17 Dnu = (n*q/sqrt(su))^(3/5);
18 Dnu=round (Dnu*1000) /1000;
19 disp(Dnu, "normal depth upstream in (m):");
20 Dnd = (n*q/sqrt(sd))^(3/5);
21 disp(Dnd, "normal depth downstream in (m):");
22 //part3
23 D2u = -0.5*Dnu*(1-sqrt(1+8*q^2/g/Dnu^3));
24 D2u = round(D2u * 1000) / 1000;
25 disp(D2u, "conjugate depth for upstream in (m):");
26 \quad D1d = -0.5*Dnd*(1-sqrt(1+8*q^2/g/Dnd^3));
27 disp(D1d, "conjugate depth for downstream in (m):");
28 //part4
29 //accurate method
30 \text{ delD} = .022;
31 D=0.987:.022:1.141
32 \text{ dis=0};
33 \text{ for } i=1:8
34
       delL=delD/su*(1-(Dc/D(i))^3)/(1-(Dnu/D(i))^3.33)
35
       dis=dis+delL
36 end
37 disp(dis," distance in (m) of occurrence of jump by
      accurate method:");
38 //not so accurate one
39 E1=D2u+q^2/2/g/D2u^2;
40 E2=Dnd+q^2/2/g/Dnd^2;
41 E2 = round(E2 * 1000) / 1000;
42 E1=round(E1*1000)/1000;
43 ahm = (D2u + Dnd)/2; //av. hydraulic mean
```

```
44 afv=.5*(q/D2u+q/Dnd);//av. fluid velocity
45 i=(afv*0.021/ahm^(2/3))^2;
46 l=(E2-E1)/(su-i+0.0002);
47 disp(1,"distance in (m) of occurence of jump by not so accurate method:")
48 //part5
49 rho=998;
50 Eu=Dnu++q^2/2/g/Dnu^2;
51 Eu=round(Eu*1000)/1000;
52 P=rho*g*q*(Eu-E1);
53 disp(P/1000,"power loss in hydraulic jump per unit width in (kW):")
```

Chapter 6

pumping of liquids

Scilab code Exa 6.1.1 cavitation and its avoidance in suction pipes

```
\frac{2}{\text{example }} 6.1
3 clc; funcprot(0);
4 //exapple 6.1
5 // Initialization of Variable
6 atp=100.2*1000;
7 g=9.81;
8 \text{ rho_w} = 996;
9 rho_toluene=867;
10 vap_pre_toluene = 4.535 * 1000;
11 viscosity_toluene=5.26/10000;
12 //calculation
13 m=(atp-vap_pre_toluene)/rho_toluene/g;
14 disp(m," Max. height of toluene supported by atm.
      pressure (in m):");
15 //part(1)
16 hopw=0.650; //head of pump in terms of water
17 hopt=hopw*rho_w/rho_toluene;//head of pump in terms
      of toluene
18 Q=1.8*10^-3; // \text{flow in m}^3/ \text{s}
19 d=2.3*10^-2; //diameter of pipe
```

```
20 \text{ pi} = 3.14127;
21 / u = 4*Q/pi/d^2
22 //substituting this for reynolds no.
23 Re=4*Q*rho_toluene/pi/d/viscosity_toluene;//reynolds
24 disp(Re , reynolds no : );
25 phi=0.0396*Re^-0.25;
\frac{26}{\sin c} both LHS and RHS are function of x(max. ht.
      ab. toluene)
27 //we define a new variable to solve the equ
28 //y=(atp/rho_toluene/g)-(vap_pre_toluene/rho_toluene
      /g) -(4*phi*16*Q^2*x/pi^2/d^5/g)-hopt;
29 / y = x
30 //these are two equations
31 b=[0;((atp/rho_toluene/g)-(vap_pre_toluene/
      rho_toluene/g)-hopt)];
32 A = [1 -1; 1 4*phi*16*Q^2/pi^2/d^5/g];
33 \quad x = A \setminus b;
34 \operatorname{disp}(x(2,1), \text{"the maximum height above toulene in})
      the tank the pump can be located without risk
      while flow rate is 1.80dm<sup>3</sup>/s (in m):");
35 //solution of part (2)
36 l=9/length
37 u=sqrt(((atp/rho_toluene/g)-(vap_pre_toluene/
      rho_toluene/g)-hopt-l)*d*g/4/phi/l);//fluid
      velocity in pipes
38 \ Q=pi*d^2*u/4;
39 disp(Q,"Maximum delivery rate if pump is located 9m
      above toluene tank(in m^3/s)")
40 //solution of part(3)
41 //clubing d together we get
42 \quad Q = 1.8/1000;
43 a=(atp/rho_toluene/g)-(vap_pre_toluene/rho_toluene/g
      )-hopt-1;
44 b=a*pi^2*g/4/9/16/Q^2/0.0396/(4*Q*rho_toluene/pi/
      viscosity_toluene)^-0.25;
45 d=(1/b)^{(1/4.75)};
46 disp(d, "minimum smooth diameter of suction pipe
```

```
which will have flow rate as (1.8 \text{ dm}^3/\text{s}) for pump kept at 9 m high (in m):");
```

Scilab code Exa 6.1.2 specific speed of a centrifugal pump

```
1
2 //example 6.2
3 clc; funcprot(0);
4 // \text{exapple } 6.2
5 // Initialization of Variable
6 Q1=24.8/1000; // flow in pump 1
7 d1=11.8/100; //diameter of impeller 1
8 H1=14.7//head of pump 1
9 N1=1450//frequency of motor 1
10 Q2=48/1000//flow in pump 2
11 //calculation
12 H2=1.15*H1; //head of pump 2
13 specific_speed=N1*Q1^0.5/H1^0.75;
14 N2=specific_speed*H2^0.75/Q2^0.5; //frequency of
     motor 2
15 disp(N2, "frequency of motor 2 in rpm");
16 d2 = sqrt(N2^2 + H1/H2/N1^2/d1^2);
17 disp(1/d2, "diametr of impeller 2 (in m)");
```

Scilab code Exa 6.1.3 theoritical and effective characteristic of centrifugal pump flow rate

```
1
2 //example 6.3
3 clc; funcprot(0);
4 clf()
5 //exapple 6.3
6 // Initialization of Variable
```

```
7 Q=[0 0.01 0.02 0.03 0.04 0.05]; // discharge
8 effi_hyd=[65.4 71 71.9 67.7 57.5 39.2];
9 effi_over=[0 36.1 56.0 61.0 54.1 37.0];
10 \text{ H_sys} = [0 \ 0 \ 0 \ 0 \ 0]
11 d=0.114; //diameter of pipe
12 d_o=0.096; //diameter of impeller
13 h=8.75; //elevation
14 g=9.81; //acc. of gravity
15 rho=999; // denisity of water
16 l=60; //length of pipe
17 theta=0.611; // angle in radians
18 B=0.0125; //width of blades
19 \text{ pi}=3.1412
20 mu=1.109/1000; // viscosity of water
21 \text{ omega} = 2 * pi * 1750/60;
22 // calculation
23 for i=1:6
24
         if i==1 then
25
         H_sys(i)=h;
26
    else
27
       H_sys(i)=h+8*Q(i)^2/pi^2/d^4/g*(1+8*1*0.0396/d
28
           *(4*rho*Q(i)/pi/d/mu)^-0.25);
29 \quad end,
30 \, \text{end};
31 H_theor=omega^2*d_o^2/g-omega*Q/2/pi/g/B/tan(theta);
32 //disp(H_sys"head of system (in m)");
33 // disp(H_theor);
34 for i=1:6
        H_{eff}(i) = effi_{hyd}(i) * H_{theor}(i) / 100;
35
36 end
37 // \operatorname{disp}(H_{-}eff);
38 plot(Q,effi_hyd, 'r-d');
39 plot(Q,effi_over, 'g');
40 plot(Q, H_eff, 'k');
41 plot(Q, H_theor);
42 plot(Q, H_sys, 'c-');
43 title('system characteritics');
```

```
44 ylabel('Head(m) or Efficiency(%)');
45 xlabel('volumetric flow rate(m^3/s)');
46 //calculation of power
47 //at intersecting point using datatrip b/w H_sys & H_eff
48 Q=0.0336
49 effi_over=59.9
50 H_eff=13.10
51 P=H_eff*rho*g*Q/effi_over/10;
52 disp(P, "Power required to pump fluid at this rate(in KW):")
```

Scilab code Exa 6.1.4 flow rate when cetrifugal pumps operate singly and in parallel

```
1
2
3 clc; funcprot(0);
4 clf()
5 // exapple 6.4
6 // Initialization of Variable
7 //each is increased by five units to make each
      compatible for graph plotting
8 Q=[0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
      0.1]; // flow rate
9 HeffA=[20.63 19.99 17.80 14.46 10.33 5.71 0 0 0 0
     ]; // Heff of pump A
10 HeffB=[18 17 14.95 11.90 8.10 3.90 0 0 0 0]; // Heff
       of pump B
11 alpha=1;
12 h=10.4;
13 d=0.14;
14 1=98;
15 pi=3.1412;
16 \text{ g=9.81};
```

```
17 rho=999;
18 for i=1:11
        if i==1 then
19
20
        H_sys(i)=h;
21
    else
22
23
       H_sys(i)=h+8*Q(i)^2/pi^2/d^4/g*(1+8*1*0.0396/d
          *(4*rho*Q(i)/pi/d/mu)^-0.25);
24 end,
25 end;
26 //H<sub>sys</sub> is head of the system
27 disp(H_sys, "the head of system in terms of height
      of water :");
28 plot(Q, H_sys, 'r—d');
29 plot(Q, HeffA, '-c');
30 plot(Q, HeffB);
31 //at intersecting point using datatrip b/w H_sys &
      H_effA
32 disp(0.03339," the flow rate at which H_sys takes
      over HeffA");
```

Scilab code Exa 6.1.5 pumping with a reciprocating pump

```
1
2 //example 6.5
3 clc; funcprot(0);
4 //exapple 6.5
5 // Initialization of Variable
6 rho=1000;
7 dc=.15;
8 l=7.8;
9 g=9.81;
10 pi=3.1428;
11 atp=105.4*1000;
12 vap_pre=10.85*1000;
```

```
13 \text{ sl} = .22;
14 \, dp = 0.045;
15 h=4.6;
16 //("x(t)=s1/2*cos(2*pi*N*t)" "the function of
      displcement");
17 //"since we have to maximize the acceleration double
       derivate the terms");
18 //since double derivation have the term cos(kt)
19 //finding it maxima
20 t=linspace(0,5,100);
21 k = 1;
22 function[m,v] = maximacheckerforcosine()
23 h = 0.00001;
24 a = 0.00;
25 \quad for \quad i=1:400
       if (\cos(a+h)-\cos(a-h))/2*h==0 \& \cos(i-1)>0 then
26
27 break;
28 else
29
       a=0.01+a;
30 \, \text{end}
31 break;
32 end
33 m = i - 1;
34 \ v = \cos(i-1);
35 endfunction;
36 [a, b] = maximacheckerforcosine();
37 disp(a," time t when the acceleration will be maximum
      (s)");
38 //double derivative will result in a square of value
       of N
39 //lets consider its coefficient all will be devoid
      of N<sup>2</sup>
40 k=s1/2*(2*pi)^2/accn max of piston
41 kp=k*1/4*pi*dc^2/1*4/pi/dp^2; //accn coeff. of suction
42 f=1/4*pi*dp^2*l*rho*kp;//force exerted by piston
43 p=f/1*4/pi/dp^2;//pressure exerted by piston
44 //calculation
```

```
45  o=atp-h*rho*g-vap_pre;
46  //constant term of quadratic eqn
47  y=poly([o 0 -p],'N', 'coeff')
48  a=roots(y);
49  disp(abs(a(1,1)),"Maximum frequency of oscillation
        if cavitation o be avoided(in Hz)");
```

Scilab code Exa 6.1.6 pumping with a air lift pump

```
1
2 //example 6.6
3 clc; funcprot(0);
4 //exapple 6.6
5 // Initialization of Variable
6 rhos=1830; //density of acid
7 atp=104.2*1000; //atmospheric pressure
8 temp=11+273; //temp in kelvin
9 M=28.8/1000; //molar mass of air
10 R=8.314;//universal gas constant
11 g=9.81; //acceleration of gravity
12 pi=3.14;
13 d=2.45; //diameter of tank
14 l=10.5; //length of tank
15 h_s=1.65; //height of surface of acid from below
16 effi=0.93//efficiency
17 //calculation
18 mliq=pi*d^2*l*rhos/4;
19 h_atm=atp/rhos/g; //height conversion of atp
20 \text{ h_r=4.3-1.65;}//\text{height difference}
21 mair=g*h_r*mliq*M/(effi*R*temp*log(h_atm/(h_atm+h_s)
      ));//mass of air
22 disp(mair, mass of air required to lift the
      sulphuric acid tank");
23 disp ("The negative sign indicates air is expanding &
       work done is magnitude of value in kg:");
```

```
24 m=abs(mair/mliq);
25 disp(m, "The mass of air required for per kilo of acid transferred:");
```

Chapter 7

Flow Through Packed Beds

Scilab code Exa 7.1.1 determination of particle size and specific surface area for a sample of powder

```
1
3 //exapple 7.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 mu=1.83/1000;
7 rhom=1.355*10000; // density mercury
8 \text{ K} = 5;
9 g=9.81;
10 d=2.5/100;
11 pi=3.14;
12 \text{ thik} = 2.73/100;
13 rho=3100; //density of particles
14 \quad Q = 250/(12*60+54)/10^6;
15 //calculation
16 A = pi*d^2/4;
17 Vb=A*thik; //volume of bed
18 Vp=25.4/rho/1000;//volume of particles
19 e=1-Vp/Vb;
20 u=Q/A;
```

```
21 delP=12.5/100*rhom*g;
22 S=sqrt(e^3*delP/K/u/thik/mu/(1-e)^2);
23 S=round(S/1000)*1000;
24 d=6/S;
25 disp(d*10^6,"average particle diameter in (x10^-6m)"
     );
26 A=pi*d^2/1000/(4/3*pi*d^3/8*rho);
27 disp(A*10^4,"surface area per gram of cement (cm^2):
     ")
```

Scilab code Exa 7.1.2 rate of flow through packed bed

```
1
2
3 // exapple 7.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 mu = 2.5/1000;
7 \text{ rho} = 897;
8 g=9.81;
9 pi=3.1414;
10 K = 5.1;
11 1=6.35/1000;
12 d=1;
13 hei=24.5+0.65;
14 \ len = 24.5;
15 dc=2.65; //dia of column
16 thik=0.76/1000;
17 Vs=pi*d^2/4*l-pi*l/4*(d-2*thik)^2;//volume of each
      ring
18 n=3.023*10^6;
19 e=1-Vs*n;
20 e=round(e*1000)/1000;
21 Surfacearea=pi*d*l+2*pi*d^2/4+pi*(d-2*thik)*l-2*pi*(
      d-2*thik)^2/4;
```

```
22 S=Surfacearea/Vs;
23 S=round(S);
24 delP=hei*g*rho;
25 delP=round(delP/100)*100;
26 u=e^3*delP/K/S^2/mu/(1-e)^2/len;
27 Q=pi*dc^2/4*u;
28 disp(Q,"initial volumetric flow rate in (m^3/s):")
```

Scilab code Exa 7.1.3 determination of pressure drop to drive fluid through a packed bed of raschig rings then of similar size spheres and the determination of total area of surface presented with two types of packing

```
1
2
3 //exapple 7.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 dr=2; //dia of column
7 \text{ mu} = 2.02/10^5;
8 rho=998;
9 \text{ K=5.1};
10 g=9.81;
11 Q = 10000/3600;
12 \quad 1=50.8/1000;
13 d=1;
14 n = 5790;
15 len=18;
16 thik=6.35/1000;
17 pi=3.1414;
18 //part1
19 //calculation
20 CA=pi*dr^2/4;//cross sectional area
21 u=Q/CA;
22 Vs=pi*d^2/4*l-pi*1/4*(d-2*thik)^2; //volume of each
```

Chapter 8

Filtration

Scilab code Exa 8.1.1 constant rate of filtration in a plate and frame filter process

```
1
2
3 //exapple 8.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 a=78/1000; //dV/dt
8 rho=998; //density of water
9 rhoc=2230; //density of china clay
10 rhod=1324; //density of cowdung cake
11 mu=1.003/1000;
12 P2=3.23*1000;//pressure after 2 min.
13 P5=6.53*1000; //pressure after 5 min.
14 t = 30*60;
15 b=[P2;P5];
16 A = [a^2*120 \ a; a^2*300 \ a];
17 x = A \setminus b;
18 P=x(1,1)*a^2*t+x(2,1)*a;
19 disp(P/1000, "pressure drop at t=30 \text{min in } (kN/m^2):")
20 //part2
```

```
21 J=0.0278; //mass fraction
22 1=1.25;
23 b1=0.7;
24 A1=1*b1*17*2; // area of filtering
25 V=a*30*60; //volume of filterate
26 e=1-rhod/rhoc;
27 nu=J*rho/((1-J)*(1-e)*rhoc-J*e*rho);
28 \ 11 = nu * V / A1;
29 disp(11," the thickness of filtercake formed after 30
       min in (m):")
30 //part3
31 r=x(1,1)/mu/nu*A1^2;
32 L=x(2,1)*A1/r/mu;
33 disp(L,"thickness of cake required in (m):");
34 //part 4
35 S = sqrt(r*e^3/5/(1-e)^2);
36 d=6/S;
37 disp(d*10^6, "average particle diameter in (10^-6m):")
```

Scilab code Exa 8.1.2 Constant rate and pressure drop filteration

```
1
2
3  //exapple 8.2
4  clc; funcprot(0);
5  // Initialization of Variable
6  P1=5.34*1000; // pressure after 3 min.
7  P2=9.31*1000; // pressure after 8 min.
8  a=240/10000000; //dV/dt
9  P3=15*10^3; // final pressure
10  // calculation
11  b=[P1;P2];
12  A=[a^2*180 a;a^2*480 a];
13  x=A\b;
14  // part1
```

```
15 t=(P3-x(2,1)*a)/x(1,1)/a^2;
16 disp(t," time at which the required pressure drop
      have taken place in (s):");
17 //part 2
18 V1=a*t;
19 disp(V1, "volume of filterate in (m^3):");
20 //part 3
21 \quad V2 = 0.75;
22 t2=t+x(1,1)/2/P3*(V2^2-V1^2)+x(2,1)/P3*(V2-V1);
23 disp(t2," the time required to collect 750dm<sup>3</sup> of
      filterate in (s):");
24 //part 4
25 P4=12*10^3;
26 \text{ a=P4/(x(1,1)*V2+x(2,1))};
27 t=10/1000/a;
28 disp(t,"time required to pass 10dm<sup>3</sup> volume in (s):"
      )
```

Scilab code Exa 8.1.3 determination of characteristic of filtration system

```
1
2
3  //exapple 8.3
4  clc; funcprot(0);
5  // Initialization of Variable
6  a=16/1000; //dV/dt
7  J=0.0876; //mass fraction
8  rho=999; // density of water
9  rhoc=3470; // density of slurry
10  mu=1.12/1000;
11  rhos=1922; // density of dry filter cake
12  t1=3*60;
13  t2=8*60;
14  V1=33.8/1000; // volume at t1
15  V2=33.8/1000+23.25/1000; // volume at t2
```

```
16 P=12*1000; //pressure difference
17 Ap = 70^2 / 10000 * 2 * 9;
18 As = 650/10000;
19 //calculation
20 b = [t1; t2]
21 A = [V1^2/2/P V1/P; V2^2/2/P V2/P];
22 x=A \setminus b;
23 K1p=x(1,1)*As^2/Ap^2;
24 K2p=x(2,1)*As/Ap;
25 P2=15*1000; // final pressure drop
26 t=(P2-K2p*a)/K1p/a^2;//time for filterate
27 V=a*t;//volume of filterate
28 \text{ e=1-rhos/rhoc};
29 nu=J*rho/((1-J)*(1-e)*rhoc-J*e*rho);
30 1 = (11-1)/200;
31 \text{ Vf} = Ap * 1/nu;
32 \text{ tf=t+K1p/2/P2*(Vf^2-V^2)+K2p/P2*(Vf-V)};
33 r=K1p/mu/nu*Ap^2;
34 L=K2p*Ap/r/mu;
35 disp(L," the thickness of filter which has resistance
       equal to resistance of filter medium in (m):")
```

Scilab code Exa 8.1.4 constant pressure drop filtration of suspension which gives rise to a compressible filter cake

```
1
2
3 //exapple 8.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 t1=3*60; //time 3min
7 t2=12*60; //time 12min
8 t3=5*60; //time 5min
9 P=45*1000; //pressure at t1&t2
10 P2=85*1000; //pres. at t3
```

```
11 a=1.86; //area
12 \text{ mu} = 1.29/1000;
13 c=11.8;
14 V1=5.21/1000; // volume at t1
15 V2=17.84/1000; //volume at t2
16 V3=10.57/1000; //volume at t3
17 //calculation
18 b=[t1;t2];
19 A = [mu*c/2/a^2/P*V1^2 V1/P; mu*c/2/a^2/P*V2^2 V2/P];
20 x = A \setminus b;
21 \quad r45 = x(1,1);
22 r85=(t3-x(2,1)*V3/P2)*2*a^2*P2/V3^2/mu/c;
23 n = log(r45/r85)/log(45/85);
24 \text{ rbar}=r45/(1-n)/(45*1000)^n;
25 \quad r78 = rbar * (1-n) * (78 * 1000) ^n;
26 //part1
\frac{27}{\text{polynomial}} in V as \frac{1}{\text{a1x}} + \frac{1}{\text{bx}} + \text{c1} = 0
28 \text{ c1} = 90*60; // \text{time at } 90
29 Pt=78*1000; //Pt=pressure at time t=90
30 \quad r78 = round(r78/10^12)*10^12;
31 a1=r78*mu/a^2/Pt*c/2;
32 b=x(2,1)/Pt;
33 y=poly([-c1 b a1], 'V1', 'coeff');
34 \text{ V1=roots(y)};
35 disp(V1(2), "Volume at P=90kPa in (m^3):");
36 //part2
37 \text{ Pt} = 45 * 1000;
38 c1 = 90 * 60;
39 \ a1=r45*mu/a^2/Pt*c/2;
40 b=x(2,1)/Pt;
41 y=poly([-c1 b a1], 'V1', 'coeff');
42 V1 = roots(y);
43 disp(V1(2), "Volume at p=45kPa in (m^3):");
```

Scilab code Exa 8.1.5 filtration on a rotatory drum filter

```
1
2
3 //exapple 8.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 t=60*0.3/0.5; //time of 1 revollution
7 d=34/1000000;
8 S=6/d;
9 e=0.415;
10 J = 0.154;
11 P=34.8*1000;
12 \text{ mu} = 1.17/1000;
13 L=2.35/1000;
14 rho=999; // density of water
15 rhos=4430; //density of barium carbonate
16 //calculation
17 //part1
18 nu=J*rho/((1-J)*(1-e)*rhos-J*e*rho);
19 r=5*S^2*(1-e)^2/e^3;
20 //quadratic in l
21 //in the form of ax^2+bx+c=0
22 c = -t;
23 b=r*mu*L/nu/P;
24 \quad a=r*mu/2/nu/P;
25 y=poly([c b a],'l','coeff');
26 l=roots(y);
27 disp(1(2), "thickness of filter cake in (m):");
28 //part2
29 d=1.2;
30 11 = 2.6;
31 \text{ pi}=3.1428;
32 u=pi*d*0.5/60;
33 Q=u*11*1(2);
34 \text{ mnet} = Q*(1-e)*rhos+Q*e*rho;
35 disp(mnet,"rate at which wet cake will be scrapped
      in (kg/s):");
36 //part3
37 md=Q*(1-e)*rhos;//rate at which solid scrapped from
```

```
the drum
38 r=md/0.154;
39 disp(r*3600,"rate of which slurry is treated is (kg/h):")
```

Scilab code Exa 8.1.6 filtration of centrifugal filter

```
1
2
3 //exapple 8.6
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ mu} = 0.224;
7 \text{ rho} = 1328;
8 \text{ K=5};
9 b=3*.5; // radius
10 h=2.5;
11 pi=3.1428;
12 x=2.1*.5;
13 rhos=1581; // density of sucrose
14 e=0.435; // void ratio
15 J=0.097; //mass fraction
16 m=3500; //mass flowing
17 a=85/10^6; // side length
18 L=48/1000; // \text{thickness}
19 omega=2*pi*325/60;
20 //calculation
21 bi=b^2-m/pi/h/(1-e)/rhos;//inner radius
22 bi=sqrt(bi);
23 bi=round(bi*1000)/1000;
24 nu=J*rho/((1-J)*(1-e)*rhos-J*e*rho);
25 S=6/a;
26 r=5*S^2*(1-e)^2/e^3;
27 t=((b^2-bi^2)*(1+2*L/b)+2*bi^2*log(bi/b))/(2*nu*rho*)
      omega^2/r/mu*(b^2-x^2);
```

Chapter 9

Forces on bodies Immersed in fluids

Scilab code Exa 9.1.1 drag forces and coefficient

```
1
3 // exapple 9.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 1.2;
7 \text{ mu} = 1.85/100000;
8 \text{ pi}=3.1428;
9 d=3;
10 v = 50 * 1000 / 3600;
11 //calculation part 1
12 Re=d*rho*v/mu;
13 //from chart of drag coeff. vs Re
14 Cd=0.2; // coeff. of drag
15 Ad=pi*d^2/4;//projected area
16 Fd=Ad*Cd*rho*v^2/2;
17 disp(Fd), "The drag force on sphere in N");
18 // part 2
19 v=2;
```

```
20  1=0.25;
21  Re=l*v*rho/mu;
22  zi=4*pi*(1^3*3/4/pi)^(2/3)/6/1^2;//sphericity
23  //using graph
24  Cd=2;
25  Ad=l^2;
26  Fd=Ad*Cd*rho*v^2/2;
27  disp(Fd , "The drag force on cube in N");
```

Scilab code Exa 9.1.2 lift force and lift coefficient

```
1
2
3 //exapple 9.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 1.2;
7 mu = 1.85/100000;
8 \text{ pi}=3.1428;
9 g=9.81;
10 d=1.38;
11 t=0.1; // thickness
12 \quad v = 30 * 1000 / 3600;
13 T=26.2; // Tension
14 \text{ m=0.51}/\text{mass}
15 theta=60*pi/180;
16 //calculation
17 Fd=T*cos(theta);
18 disp(Fd, "Drag force in N:");
19 A = pi * d^2/4;
20 Ad=A*cos(theta);//area component to drag
21 Cd=2*Fd/Ad/rho/v^2;//coeff of drag
22 disp(Cd, "The drag coefficient:")
23 Fg=m*g; //force of gravity
24 Fb=rho*pi*d^2/4*t*g;//buoyant force
```

```
25 Fl=Fg-Fb+T*sin(theta);
26 disp(Fl , "The lift force in N :");
27 Al=A*sin(theta);
28 Cl=2*Fl/Al/rho/v^2;
29 disp(Cl , "The coefficient of lift:")
```

Scilab code Exa 9.1.3 Particle diameter and terminal settling velocity

```
1
2
3 //exapple 9.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 rhog=1200; //density of glycerol
7 \text{ mu} = 1.45;
8 \text{ pi}=3.1428;
9 g=9.81;
10 rhos=2280; //density of sphere
11 v=0.04; //terminal velocity;
12 a=2*mu*g*(rhos-rhog)/v^3/3/rhog^2; //a=Cd/2/Re
13 //using graph of Cd/2/Re vs Re
14 Re=0.32;
15 d=Re*mu/v/rhog;
16 disp(d, "Diameter of sphere in (m):");
```

Scilab code Exa 9.1.4 terminal settling velocity of sphere

```
1
2
3 //exapple 9.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 rhoa=1.218; //density of air
```

```
7 mu=1.73/100000;
8 pi=3.1428;
9 g=9.81;
10 rhop=2280;//density of polythene
11 d=0.0034;//diameter
12 a=4*d^3*(rhop-rhoa)*rhoa*g/3/mu^2;//a=Cd*Re^2
13 //using graph of Cd*Re^2 vs Re
14 Re=2200;
15 v=Re*mu/d/rhog;
16 disp(v , "The terminal vrlocity in (m/s)");
```

Scilab code Exa 9.1.5 effect of shape on drag force

```
1
   3 // \text{exapple } 9.2
   4 clc; funcprot(0);
   5 // Initialization of Variable
   6 \text{ pi} = 3.1428;
   7 rho = 825;
   8 mu=1.21;
   9 g=9.81;
10 \quad 1 = 0.02;
11 de=0.02; // dia exterior
12 \text{ di=0.012}; // \text{dia interior}
13 //calculation
14 // part 1
15 \text{ zi=pi*}(6*(pi*de^2/4-pi*di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)^(2/3)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi)/(pi*l*(di^2/4)*1/pi*l*(di^2/4)*1/pi*l*(di^2/4)*1/pi*l*(di^2/4)*1/pi*l*(di^2/4)*1/pi*l*(di^2/4)*1/pi*l*(di^2/4)*1/pi*l*(
                             +de)+2*pi*(de^2/4-di^2/4));
16 disp(zi, "sphericity of Raschig ring is:");
17 //part 2
18 u = 0.04;
19 ds=0.003//diameter of each sphere
20 zi=pi*(6*pi*ds^3/pi)^(2/3)/6/pi/ds^2;//sphericity
21 disp(zi, "sphericity of given object is:");
```

```
Ap=4*ds^2-4*3/4*(ds^2-pi*ds^2/4);//projected area
dp=sqrt(4*Ap/pi);//projected dia
Re=dp*u*rho/mu;
disp(Re, "Reynolds no. for the object:");
//using graph b/w Re and zi and Cd
Cd=105;//coeff. of drag
Fd=Ap*Cd*u^2*rho/2;
disp(Fd, "The drag force on object in (N):")
```

Scilab code Exa 9.1.6 estimation of hindered settling velocity

```
1
3 //exapple 9.6
4 clc; funcprot(0);
5 // Initialization of Variable
6 rho=998; // density of water
7 mu=1.25/1000; // viscosity of water
8 w=100; //mass of water
9 pi=3.1428;
10 g=9.81;
11 rhog=2280; //density of glass
12 \text{ wg=60;} //\text{mass of glass}
13 d=45*10^-6; //diameter of glass sphere
14 //claculation
15 rhom=(w+wg)/(w/rho+wg/rhog);//density of mixure
16 e=w/rho/(w/rho+wg/rhog);//volume fraction of watter
17 //using charts
18 zi = exp(-4.19*(1-e));
19
20 K=d*(g*rho*(rhog-rho)*zi^2/mu^2)^(1/3);//stoke's law
21 disp(K);
22 if K<3.3 then
       disp("settling occurs in stoke-s law range");
23
```

```
U=g*d^2*e*zi*(rhog-rhom)/18/mu;
disp(U,"settling velocity in m/s:")
else
disp("settling does not occurs in stoke-s law range");
end
```

Scilab code Exa 9.1.7 acceleration of settling particle in gravitational feild

```
1
2
3 //exapple 9.7
4 clc; funcprot(0);
5 // Initialization of Variable
6 rhog=1200; //density of glycerol
7 mu=1.45; // viscosity of glycerol
8 \text{ pi}=3.1428;
9 g=9.81;
10 rhos=2280; //density of sphere
11 d=8/1000;
12 s = 0;
13 uf = 0.8*0.026;
14 //calculation
15 function[a]=intre()
       u=linspace(0, uf, 1000);
16
       for i=1:1000
17
            y = ((pi/6*d^3*rhos*g-pi*d^3/6*rhog*g-0.5*pi*d
18
               ^2/4*24*mu/d/rhog*rhog*u(i))/pi*6/d^3/
               rhos)^{(-1)}*uf/1000;
19
            s=s+y;
20
       end
21
       a=s;
22 endfunction
23 [t]=intre();
24 disp(t,"Time taken by particle to reach 80% of its
```

velocity in (s):");

Chapter 10

Sedimentation and Clssification

Scilab code Exa 10.1.1 determination of settling velocity from a single batch sedimentation

```
1
2
3 //example 10.1
4 clc; funcprot(0);
5 clf()
6 //exapple 10.1
7 // Initialization of Variable
8 t=[0 0.5 1 2 3 4 5 6 7 8 9 10]; //time
9 h=[1.10 1.03 .96 .82 .68 .54 .42 .35 .31 .28 .27
      .27];
10 Cl=[0 0 0 0 0 0 0 0 0 0];
11 m = 0.05;
12 V=1/1000; //volume
13 //calculations
14 Co=m/V; //concentration at t=0
15 v(1) = (h(1) - h(2)) / (t(2) - t(1));
16 \text{ Cl}(1) = \text{Co};
17 \text{ for } i=2:11
18
19
            v(i) = (h(i-1)-h(i+1))/(t(i+1)-t(i-1)); //slope
```

Scilab code Exa 10.1.2 Minimum area required for a continuous thickener

```
1
2
3 //example 10.2
4 clc; funcprot(0);
5 clf()
6 //exapple 10.2
7 // Initialization of Variable
8 t=[0 0.5 1 2 3 4 5 6 7 8 9 10]; //time
9 h=[1.10 1.03 .96 .82 .68 .54 .42 .35 .31 .28 .27
      .27];
10 Cl=50:5:100;
11 U=[19.53 17.71 16.20 14.92 13.82 12.87 12.04 11.31
      10.65 9.55]; //mass ratio of liquid to solid
v = [0.139 \ 0.115 \ 0.098 \ 0.083 \ 0.071 \ 0.062 \ 0.055 \ 0.049]
      0.043 0.034]; //terminal velocity
13 //above value taken from graph given with ques.
14 C=130; //conc. of solids
15 Q=0.06; //slurry rate
16 Cmax=130//maximum solid conc.
17 rhos=2300;//density of solid
18 rho=998; //density of water
```

```
19 V=rho*(1/C-1/rhos);
20 F=Q*Cl(1)*3600;
21 for i=1:10
22 A(i)=F*(U(i)-V)/rho/v(i);
23 end
24 plot(v,A,'r-');
25 xtitle("","Settling Velocity(m/h)", "Area(m^2)")
26 //maxima finding using datatraveller in the graph
27 disp(A,"the area for each settling velocity");
28 disp("1005 m^2 is the maximum area found out from the plot");
29 Qu=Q-F/3600/Cmax;
30 disp(Qu, "Volumetric flow rate of clarified water in (m^3/s):")
```

Scilab code Exa 10.1.3 classification of materials on basis of settling velocities

```
1
2
3 //example 10.3
4 clc; funcprot(0);
5 // exapple 10.3
6 // Initialization of Variable
7 rho1=2600; //density lighter
8 rho2=5100; // density heavier
9 pd1=0.000015:0.000010:0.000095; // particle diameter
10 pd2=0.000025:0.00001:0.000095; // particle diameter
      heavier
11 wp1=[0 22 35 47 59 68 75 81 100]; // weight
      distribution lighter
12 wp2=[0\ 21\ 33.5\ 48\ 57.5\ 67\ 75\ 100]; // weight
      distribution heavier
13 rho=998.6; //density water
```

```
14 mu=1.03/1000; // viscosity water
15 g=9.81;
16 u=0.004; // velocity of water
17 d=95/1000000; // paeticle diameter maximum
18 //calculation
19 //part 1
20 Re=d*u*rho/mu;
21 d1=sqrt(18*mu*u/g/(rho1-rho));
22 d2 = sqrt (18*mu*u/g/(rho2-rho));
23 function[a]=inter(d,f,g,b);//interpolation linear
24
       for i=1:b
            if d \le f(i+1) \& d > f(i) then
25
26
                break
27
            else
28
                continue
29
            end
30
            break
31
32
       a=(d-f(i))/(f(i+1)-f(i))*(g(i+1)-g(i))+g(i);
33 endfunction
34 [a]=inter(d1,pd1,wp1,9);
35 [b]=inter(d2,pd2,wp2,8);
36 \quad v2=1/(1+5)*100-b/100*1/(1+5)*100;
37 \text{ v1}=5/(1+5)*100-a/100*5/(1+5)*100;
38 \text{ pl2}=(v2)/(v2+v1);
39 disp(pl2, "The fraction of heavy ore remained in
      bottom");
40
    //part 2
    rho=1500;
41
42
    mu = 6.25/10000;
    a = log 10 (2*d^3*rho*g*(rho1-rho)*3*mu^2); //log 10 (Re
       ^2(R/rho/mu^2)
44
     //using value from chart (graph)
45 \text{ Re} = 10^{\circ}0.2136;
46 \quad u=Re*mu/rho/d;
47 d2 = sqrt(18*mu*u/g/(rho1-rho));
48 [b]=inter(d2,pd2,wp2,8);
49 disp(100-b+3.5, "The percentage of heavy ore left in
```

```
this case");

50 //part 3

51 a=0.75//% of heavy ore in overhead product

52 s=100*5/6/(100*5/6+0.75*100/6);

53 disp(s,"the fraction of light ore in overhead product:");

54 //part 4

55 da=pd2(1);

56 db=pd1(9);

7 rho=(da^2*rho2-db^2*rho1)/(-db^2+da^2);

6 disp(rho,"The minimum density required to seperate 2 ores in kg/m^3:")
```

Scilab code Exa 10.1.4 density variation of settling suspension

```
1
2
3 //example 10.4
4 clc; funcprot(0);
5 //exapple 10.4
6 // Initialization of Variable
7 \text{ rho} = 998;
8 w0=40; //density of slurry
9 mu = 1.01/1000;
10 g=9.81;
11 rho1=2660; //density quartz
12 h=0.25;
13 t=18.5*60;
14 mp=[5 11.8 20.2 24.2 28.5 37.6 61.8];
15 d=[30.2 21.4 17.4 16.2 15.2 12.3 8.8]/1000000;
16 u=h/t;
17 d1 = sqrt(18*mu*u/g/(rho1-rho));
18 function[a]=inter(d,f,g,b);//interpolation linear
19
       for i=1:b
20
           if d > f(i+1) & d <= f(i) then
```

```
21
                break
22
            else
23
                continue
24
            end
25
            break
26
       end
27
       a=-(d-f(i+1))/(f(i)-f(i+1))*(g(i+1)-g(i))+g(i+1)
28
29 endfunction
30 [a]=inter(d1,d,mp,6);
31 \text{ phi} = 1 - a / 100;
32 rhot=phi*(rho1-rho)/rho1*w0+rho;
33 disp(rhot," the density of suspension at depth 25cm
      in kg/m^3 is")
```

Scilab code Exa 10.1.5 determination of particle size distribution using a sedimentation method

```
16 d(1)=100/1000000; //assumed value
17 \text{ for } i=1:7
       d(i+1) = sqrt(18*mu*h/g/t(i+1)/(rho1-rho)); // dia
18
           of particles
19
       mc(i+1) = m(i+1) - 0.2/100 * V; //mass of cement
20
       s=s+mc(i+1);
21 end
22 mc(1) = m(1) - 0.2 * V/100;
23   s=s+mc(1);
24 \text{ mp}(1) = 100;
25 \text{ for } i=1:7
       mp(i+1)=mc(i+1)/mc(1)*100;//mass percent below
26
           size
27 end
28 plot(mp,d);
29 xtitle("", "%undersize", "Particle Size(m)");
30 u=h/t(2);
31 Re=d(2)*u*rho/mu;
32 if Re<2 then
       disp("since Re<2 for 81% of particles so
33
           settlement occurs mainly by stoke-s law")
34 end
```

Scilab code Exa 10.1.6 determination of particle size distribution of a suspended solid

```
1
2
3 //example 10.6
4 clc; funcprot(0);
5 //exapple 10.6
6 clf()
7 // Initialization of Variable
8 rho=998;
9 rho1=2398; //density of ore
```

```
10 mu = 1.01/1000;
11 g=9.81;
12 h = 25/100;
13 t=[114 150 185 276 338 396 456 582 714 960];
14 \text{ m} = [0.1429 \ 0.2010 \ 0.2500 \ 0.3564 \ 0.4208 \ 0.4781 \ 0.5354]
      0.6139 0.6563 0.7277];
15 \text{ for } i=1:10
16 ms=0.0573+m(10); // total mass setteled
17 d(i)=sqrt(18*mu*h/g/(rho1-rho)/t(i));
18 P(i)=m(i)/ms*100;//mass percent of sample
19 end
20 plot(t,P);
21 xtitle("", "Settling time (s)", "mass percent in (%)")
22 disp(P,d,"& its percentage mass distribution
      respectively", "the particle size distribution in
       (m)");
23 for i=2:9
            del(i) = (P(i+1)-P(i-1))/(t(i+1)-t(i-1)); //
24
               slope
25
            W(i)=P(i)-t(i)*del(i);
            W(1) = P(1) - P(1);
26
27
28 end
29 W(10) = P(10) - t(10) *0.025;
30 disp("mass% and diameter(m) respectively with serial
      no:")
31 \text{ for } i=4:10
32
       disp(i-4);
       disp("mass% is")
33
       disp( "for diameter in(m) of", W(i));
34
       disp(d(i));
35
36
37 end
```

Scilab code Exa 10.1.7 decanting of homogeneous suspension to obtain particle size of a given size range

```
1
2
3 //example 10.7
4 clc; funcprot(0);
5 //exapple 10.7
6 // Initialization of Variable
7 rho=1002; //density of disperant
8 rho1=2240; //density of kaolin
9 mu=1.01/1000; //viscosity
10 g=9.81;
11 t = 600;
12 h2=0.2;
13 h1=0.4;
14 dg=15*10^-6; // particle size to be removed
15 //calculations
16 //part 1
17 d=sqrt(18*mu*h2/g/(rho1-rho)/t);
18 x = dg/d;
19 f=h2/h1*(1-x^2);//fraction separated after first
      decanting
20 \text{ g=f*(1-f)};
21 disp(g," fraction of particles separated after second
       decanting");
22 disp(f+g,"total fraction of particles separated
      after decanting")
23 //part 2
24 h=(1-20/40*(1-x^2))^6;
25 disp(h, "fraction of particles separated after sixth
      decanting");
```

Chapter 11

Fluidisation

Scilab code Exa 11.1.1 particulate and aggregative fluidisation

```
1
2
3 //exapple 11.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi}=3.1428;
7 d=0.3/1000;
8 \text{ mu} = 2.21/100000;
9 rho=106.2; //density under operating condition
10 u=2.1/100;
11 rhos=2600;//density of particles
12 \quad 1 = 3.25;
13 \text{ g=9.81};
14 dt=0.95//fluidising diameter
15 / part 1
16 //calculation
17 a=u^2/d/g*d*rho*u/mu*(rhos-rho)/rho*1/dt;
18 if a>100 then
       disp(a,"Bubbling fluidisation will occur as
19
          value is ")
20 end
```

```
21 / part 2
Q = 2.04/100000;
23 \text{ rhos} = 2510;
24 \text{ rho} = 800;
25 \text{ mu} = 2.85/1000;
26 \quad 1 = 4.01;
27 \text{ dt} = 0.63;
28 d=0.1/1000;
29 u = Q*4/pi/dt^2;
30 a=u^2/d/g*d*rho*u/mu*(rhos-rho)/rho*l/dt;
31 if a<100*10^-4 then//compare as value of a is much
       less than 100
32
        disp(a," fluidisation occur in smooth mode as
            value is:");
33 end
```

Scilab code Exa 11.1.2 calculation of minimum flow rates

```
1
2
3 //exapple 11.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 d=50/1000000;
7 rhos=1850; //density of particle
8 rho=880;//density of hydrocarbon
9 mu=2.75/1000; // viscosity of hydrocarbon
10 e=0.45; //void fraction coeff.
11 g=9.81;
12 h=1.37; //flow depth
13 c=5.5/1000; //c=1/K
14 //calculation
15 //part 1
16 \text{ u=c*e^3*d^2*g*(rhos-rho)/mu/(1-e)};
17 disp(u, "The superficial linear flow rate in <math>(m/s):")
```

```
// part 2
u=d^2*g*(rhos-rho)/18/mu;
disp(u,"Terminal Settling Velocity in (m/s):");
Re=d*u*rho/mu;
if Re<2 then
    disp("Stoke law assumption is sustained with this velocity")

end
// part 3
P=g*(rhos-rho)*h*(1-e);
disp(P,"Pressure drop across fluidised bed in (N/m^2):");</pre>
```

Scilab code Exa 11.1.3 calculation of flow rates in fluidised beds

```
1
2
4 //exapple 11.3
5 clc; funcprot(0);
6 // Initialization of Variable
7 g=9.81;
8 rhos=1980; //density of ore
9 rho=1.218; // density of air
10 e = 0.4;
11 mu=1.73/10<sup>5</sup>;
12 s = 0;
13 wp=[0 .08 .20 .40 .60 .80 .90 1.00]; // weight percent
14 d = [0.4 0.5 0.56 0.62 0.68 0.76 0.84 0.94]/1000;
15 // part 1
16 \text{ for } i=1:7
       dav(i) = d(i+1)/2 + d(i)/2; //average dia
17
       mf(i) = wp(i+1) - wp(i); //mass fraction
18
19
       a(i)=mf(i)/dav(i);
20
       s=s+a(i);
```

```
21 end
22 	ext{ db=1/s;}/d 	ext{ bar}
23 //quadratic coeff. ax^2 +bx +c=0
24 c = -(rhos - rho) *g;
25 b=150*(1-e)/e^3/db^2*mu;
26 a=1.75*rho/e^3/db;
27 y=poly([c b a], 'U', 'coeff');
28 \quad U = roots(y);
29 disp(abs(U(2)), "the linear air flow rate in (m/s):"
      );
30 / part 2
31 d=0.4/1000;
32 a=2*d^3/3/mu^2*rho*(rhos-rho)*g;
33 a = log 10(a);
34 disp(a, "log10(Re^2/rho/U^2*R)=");
35 //using chart
36 \text{ Re} = 10^1.853;
37 u=Re*mu/rho/d;
38 disp(u, "speed required for smallest particle in (m/
      s):")
```

Scilab code Exa 11.1.4 estimation of vessel diameters and height for fluidisation operations

```
1
2
3 //exapple 11.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 U=2.032/10^4;
7 pi=3.1428;
8 rho=852;
9 g=9.81;
10 mu=1.92/1000;
11 mf=125/3600; //mass flow rate
```

```
12 //calculation
13 //part 1
14 \quad G=U*rho;
15 A=mf/G;
16 d = sqrt(4*A/pi);
17 disp(d, "the diameter of vessel will be in(m):");
18 //part 2
19 A = 0.201;
20 e = 0.43;
21 ms=102; //mass of solids
22 rhos=1500; // density of solid
23 L=ms/rhos/A;
24 \text{ Lmf} = L/(1-e);
25 disp(Lmf , "depth of bed in (m):")
26 //part 3
27 	 d1 = 0.2/1000;
28 \quad U=2*5.5/10^3*e^3*d1^2*(rhos-rho)*g/mu/(1-e);
29 //now euating for e
30 / a=e^3/(1-e)
31 a=U/5.5*10^3/(d1^2*(rhos-rho)*g/mu);
32 y=poly([-a a 0 1],'e',"coeff");
33 e2 = roots(y);
34 L=Lmf*(1-e)/(1-e2(3));
35 disp(L," depth of fluidised bed under operating
      condition in (m):")
```

Scilab code Exa 11.1.5 power required for pumping in fluidised beds

```
1
2
3 //exapple 11.5
4 clc; funcprot(0);
5 // Initialization of Variable
6 g=9.81;
7 pi=3.1428;
```

```
8 r=0.51;
9 e=0.48; //void ratio
10 rhos=2280; // density of glass
11 rho=1.204; //density of air
12 U=0.015; // velocity of water entering bed
13 L=7.32;
14 gam=1.4; //gamma
15 neta=0.7//efficiency
16 \quad P4=1.013*10^5;
17 P1=P4;
18 v1=1/1.204; //volume 1
19 //calculation
20 P3=P4+g*(rhos-rho)*(1-e)*L;
21 P2=P3+0.1*85090;
22 v2=(P1*v1^gam/P2)^(1/gam);//vlume 2
23 W=1/neta*gam/(gam-1)*(P2*v2-P1*v1); //work done
24 v3=P2*v2/P3;//volume 3
25 \text{ M=U*pi*r^2/v3;}//\text{mass flow rate}
26 P = M * W;
27 disp(P, "The power supplies to the blower in (W):");
```

Scilab code Exa 11.1.6 wall effect in fluidised beds

```
1
2
3  //exapple 11.6
4  clc; funcprot(0);
5  // Initialization of Variable
6  dt=12.7/1000;
7  d=1.8/1000;
8  Q=2.306/10^6;
9  pi=3.1428;
10  //calculation
11  //part 1
12  Sc=4/dt;
```

```
13 S=6/d;
14 f=(1+0.5*Sc/S)^2;
15 U=Q*4/pi/dt^2; // velocity
16 Ua=f*U; // actual velocity
17 disp(Ua, "minimum fluidising velocity found using smaller glass column in (m/s):")
18 // part 2
19 dt=1.5;
20 Sc=4/dt;
21 f=(1+0.5*Sc/S)^2;
22 Ua=f*U; // actual velocity
23 disp(Ua, "fluidising velocity found using larger glass column in (m/s):")
```

Scilab code Exa 11.1.7 effect of particle size on the ratio of terminal velocity

```
1
3 //exapple 11.7
4 clc; funcprot(0);
5 // Initialization of Variable
6 e=0.4; //incipent to fluidisation
7 //calculation
8 //part 1
9 disp("for Re<500");
10 disp("the ratio of terminal velocity & minimmum
     fluidising velocity is");
11 a=3.1*1.75/e^3;
12 disp(sqrt(a));
13 //part 2
14 disp("for Re>500");
15 disp("the ratio of terminal velocity & minimmum
      fluidising velocity is");
16 \ a=150*(1-e)/18/e^3;
```

17 disp(a);

Chapter 12

Pneumatic Conveying

Scilab code Exa 12.1.1 flow pattern in pneumatic conveying

```
1
2
3 //example 12.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 1.22;
7 \text{ pi}=3.1428;
8 \text{ rhos} = 518;
9 rhoav=321;
10 mu = 1.73/10^5;
11 g=9.81;
12 d=0.65/1000;
13 d2=25.5/100; //dia of duct
14 ms = 22.7/60; //mass flow rate
15 //calculation
16 e=(rhos-rhoav)/(rhos-rho);
17 //coeff of quadratic eqn in U
18 / a * x^2 + b * x + c = 0
19 c=-(1-e)*(rhos-rho)*g;
20 b=150*(1-e)^2*mu/d^2/e^3;
21 a=1.75*(1-e)*rho/d/e^3;
```

```
22 y=poly([c b a], 'U', 'coeff');
23 U=roots(y);
24 Us=ms*4/pi/d2^2/rhos;//superficial speed
25 Ua=e/e*(U(2)/e+Us/(1-e));
26 disp(Ua,"the actual linear flow rate through duct in (m/s):")
```

Scilab code Exa 12.1.2 prediction of choking velocity and choking choking voidage in a vertical transport line

```
1
2
3 //example 12.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 rho=1.22; // density of air
7 \text{ pi}=3.1428;
8 rhos=910; //density of polyethene
9 d=3.4/1000; // dia of particles
10 mu=1.73/10<sup>5</sup>;
11 g=9.81;
12 dt = 3.54/100; //dia of duct
13 //calculation
14 a=2*d^3*rho*g*(rhos-rho)/3/mu^2;
15 disp(a, "R/rho/U^2*(Re^2)=");
16 //using Chart
17 Re=2*10^3;
18 U=mu*Re/d/rho;
19 b=U/(g*dt)^{.5};
20 if b>0.35 then
       disp("choking can occur of this pipe system");
21
22 else
       disp("choking can not occur of this pipe system"
23
          );
24 end
```

```
25  //part 2
26  Uc=15; //actual gas velocity
27  e=((Uc-U)^2/2/g/dt/100+1)^(1/-4.7);
28  Usc=(Uc-U)*(1-e); //superficial speed of solid
29  Cmax=Usc*rhos*pi*dt^2/4;
30  disp(Cmax,"the maximum carrying capacity of polythene particles in (kg/s)");
```

Scilab code Exa 12.1.3 prediction of pressure drop in horizontal pneumatic transport

```
1
3 //example 12.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 rho=1.22; // density of air
7 \text{ pi}=3.1428;
8 rhos=1400; // density of coal
9 mu=1.73/10^5;
10 g=9.81;
11 U=25;
12 \text{ Ut} = 2.80;
13 \quad 1 = 50;
14 ms=1.2; //mass flow rate
15 mg=ms/10; //mass flow of gas
16 //calculation
17 Qs=ms/rhos;//flow of solid
18 Qg=mg/rho;//flow of gas
19 us=U-Ut; //actual linear velocity
20 A = Qg/U;
21 Us=Qs/A; //solid velocity
22 e = (us - Us)/us;
23 d=sqrt(4*A/pi);
24 function [y ] = fround(x,n)
```

```
25 // fround(x,n)
26 // Round the floating point numbers x to n decimal
27 // x may be a vector or matrix// n is the integer
     number of places to round to
y = round(x*10^n)/10^n;
29 endfunction
30 [d]=fround(d,4);
31 Re=d*rho*U/mu;
32 //using moody's chart
33 phi=2.1/1000; // friction factor
34 P1=2*phi*U^2*l*rho/d*2;
35 f = 0.05/us;
36 P2=2*1*f*(0.0098)*rhos*us^2/d;
37 P2=fround(P2/1000,1)*1000
38 \text{ delP=rho*e*U^2+rhos*(0.0098)*us^2+P1+P2};
39 //disp(delP," the pressure difference in kN/m<sup>2</sup>;
40 printf ('The Pressure value in (kN/m^2) is \%.1f', delP
      /1000);
```

Scilab code Exa 12.1.4 prediction of pressure drop in vertical pneumatic transport

```
1
2
3 //example 12.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 rho=1.22; //density of air
7 pi=3.1428;
8 rhos=1090; //density of steel
9 mu=1.73/10^5;
10 g=9.81;
11 d=14.5/100;
12 Qg=0.4;
```

```
13 Qs = 5000/3600/1090;
14 Ut=6.5;
15 ar=0.046/1000; //absolute roughness
16 l=18.5; //length
17 //calculation
18 function [y] = fround(x,n)
19 // fround(x,n)
20 // Round the floating point numbers x to n decimal
      places
21 // x may be a vector or matrix// n is the integer
      number of places to round to
y = round(x*10^n)/10^n;
23 endfunction
24 Us=Qs/pi/d^2*4; //solid velocity
25 \ U=Qg/pi/d^2*4;
26 us=U-Ut; //actual linear velocity
27 \text{ e=1-Us/us};
28 \text{ e=fround(e,4)};
29 Re=rho*U*d/mu;
30 rr=ar/d;//relative roughness
31 //using moody's diagram
32 \text{ phi} = 2.08/1000;
33 P1=2*phi*U^2*1*rho/d*2;
34 f = 0.05/us;
35 P2=2*1*f*(1-e)*rhos*us^2/d;
36 P2=fround(P2/1000,2)*1000;
37 \text{ delP=rhos*}(1-e)*us^2+rhos*(1-e)*g*l+P1+P2;
\frac{1}{38} //disp(delP," the pressure difference in kN/m<sup>2</sup>;
39 printf ('The Pressure value in (kN/m^2) is \%.2 f', delP
      /1000)
```

Scilab code Exa 12.1.5 density phase flow regime for pneumatic transport

1 2

```
//example 12.5
clc; funcprot(0);
// Initialization of Variable
l=25;
pi=3.1428;
rhos=2690;//density of ore
emin=0.6;
emax=0.8;
//calculation
Pmax=rhos*(1-emin)*g*1;
disp(Pmax,"The maximum pressure drop in (N/m^2):");
Pmin=rhos*(1-emax)*g*1;
disp(Pmin,"The minimum pressure drop in (N/m^2):");
```

Chapter 13

Centrifugal Separation Operations

Scilab code Exa 13.1.1 Equations of centrifugal operations

```
1
3 //exapple 13.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ rho} = 998;
7 g=9.81;
8 \text{ pi}=3.1428;
9 omega=2*pi*1055/60; //angular rotation
10 \text{ r=}2.55/100//\text{radius} outer
11 ld=1.55/100; // liq. depth
12 \quad 1 = 10.25/100;
13 //calculation
14 / part 1
15 \quad a=r*omega^2/g;
16 disp(a, "ratio of cetrifugal force & gravitational
      force is:");
17 //part2
18 ri=r-ld; // radius internal
```

```
19 V=pi*(r^2-ri^2)*1;
20 sigma=(omega^2*V)/(g*log(r/ri));
21 disp(sigma, "equivalent to gravity settling tank of crossectional area of in (m^2):")
```

Scilab code Exa 13.1.2 fluid pressure in tubular bowl centrifuge

```
1
2
3 //exapple 13.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 sigma=55*10^6; //maximum stress
7 d=35.2/100;
8 rhos=8890; //density of bronze
9 rho=1105; // density of solution
10 t=80/1000; //thickness
11 tau=4.325/1000;
12 pi=3.1428;
13 //calculation
14 //part1
15 ri=d/2-t;//radius internal
16 function [y] = fround(x,n)
17 // fround(x,n)
18 // Round the floating point numbers x to n decimal
      places
19 // x may be a vector or matrix// n is the integer
      number of places to round to
20 y = round(x*10^n)/10^n;
21 endfunction
22 omega=\operatorname{sqrt}((\operatorname{sigma}*\operatorname{tau}*2/d)/(.5*\operatorname{rho}*(d^2/4-\operatorname{ri}^2)+\operatorname{rhos})
      *tau*d/2));
23 N=60*omega/2/pi;
24 disp(N, "The maximum safe speed allowed in rpm:");
25 //part2
```

```
26  P=.5*rho*(d^2/4-ri^2)*omega^2;
27  P=fround(P/10^4,1)*10^4;
28  //disp(P,"the power in N/m^2:");
29  printf('the power in N/m^2: %3.2e\n', P);
30  a=rho*omega^2*d/2;
31  a=fround(a/10^6,1)*10^6;
32  //disp(a,"pressure gradient in radial direction in N /m^3:")
33  printf('pressure gradient in radial direction in N/m ^3: %3.2e\n', a);
```

Scilab code Exa 13.1.3 particle size determination of fine particles

```
1
3 //exapple 13.3
4 clc; funcprot(0);
5 // Initialization of Variable
6 rhos=1425;//density of organic pigment
7 rho=998; //density of water
8 pi=3.1428;
9 omega=360*2*pi/60;
10 mu = 1.25/1000;
11 t = 360;
12 r = 0.165 + 0.01;
13 \text{ ro=0.165};
14 //calculation
d = \sqrt{18 \cdot mu \cdot log(r/ro)/t/(rhos - rho)/omega^2};
16 printf ('the minimum diameter in organic pigment in m
      : \%3.1e\n', d);
```

Scilab code Exa 13.1.4 flow rates in continuous centrifugal sedimentation

```
1
2
3 //exapple 13.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 rhos=1455; //density of crystals
7 rho=998; //density of wliquid
8 g=9.81;
9 \text{ pi}=3.1428;
10 mu=1.013/1000;
11 omega=2*pi*60000/60;
12 \quad 1 = 0.5;
13 d=2*10^-6; // dia of particles
14 r=50.5/1000; //radius
15 t=38.5/1000; //thickness of liquid
16 //calculation
17 ri=r-t;
18 V=pi*l*(r^2-ri^2);
19 Q=d^2*(rhos-rho)/18/mu*omega^2*V/log(r/ri);
20 disp(Q," the maximum volumetric flow rate in (m^3/s):
      ")
```

Scilab code Exa 13.1.5 separation of two immiscible liquid by centrifugation

```
1
2
3 //exapple 13.5
4 clc; funcprot(0);
5 // Initialization of Variable
6 rhoc=867; // density of cream
7 rhom=1034; // density of skimmem milk
8 rm=78.2/1000; //radius of skimmed milk
9 rc=65.5/1000; //radius of cream
10 //calculation
```

```
11 r=sqrt((rhom*rm^2-rhoc*rc^2)/(rhom-rhoc));
12 disp(r," distance of xis of rotation of cream milk
    interface in (m):")
```

Scilab code Exa 13.1.6 Cyclone Separators

```
1
3 //exapple 13.6
4 clc; funcprot(0);
5 // Initialization of Variable
6 rho=1.210; // density of air
7 \text{ mu} = 1.78/10^5;
8 g=9.81;
9 rhos=2655; // density of ore
10 pi=3.1428;
11 d=0.095;
12 dp=2*10^-6/particle diameter
13 dt=0.333; //dia of cyclone separator
14 h=1.28;
15 //calculation
16 U=dp^2*g*(rhos-rho)/18/mu;
17 Q=0.2*(pi*d^2/4)^2*d*g/U/pi/h/dt;
18 disp(Q,"volumetric flow rate in (m^3/s):")
```

Scilab code Exa 13.1.7 efficiency of cyclone separators

```
1
2
3 //exapple 13.6
4 clc; funcprot(0);
5 // Initialization of Variable
6 b=4.46*10^4;
```

```
7 c=1.98*10<sup>4</sup>;
8 s = 0;
9 function[a]=intregrate()
10
       s=0;
11
       for i=1:10889
           d=linspace(0,10000,10889);
12
           y=(1-exp(-b*d(i))*c*(1-exp(-c*d(i))))*0.69;;
13
14
            s=s+y;
15
16
       end
17
       a=y;
18 endfunction
19 a=intregrate();
20 disp(a*100, "overall efficiency of cyclone separator
      in %");
```