UBA		<u>Primer Parcial de Física (03)</u>													
CBC	CBC Fecha: / /														
Apel	lido:											CO	MISI	ÓN	
Nom	bres:_								D	.N.I		F	Hoja 1	a de:	
		F	Reserva	ado pa	ra la c	orrecc	ión			Corrigió		Calif	ic.	Ten	na
	Proble	emas pa	ra desai	rrollar		Pregu	ntas de	opción	múltiple						
1.a	1.b	2.a	2.b	3.a	3.b	4	5	6	7					Δ	1
														_	

PROBLEMAS

- **1.-** El gráfico adjunto representa la velocidad en función del tiempo para dos autos que se mueven uno hacia el otro, por una carretera recta. Si en t = 0 los autos están distanciados 100 m:
- **1.a.-** hallar la distancia que los separará transcurridos 20 segundos,
- **1.b.-** graficar en un mismo par de ejes, posición en función del tiempo para ambos vehículos (indicar valores característicos sobre los ejes).

- **2.-** En el esquema de la figura, los bloques A de 40 kg y B de 40 kg se mueven en el sentido indicado, vinculados por una cuerda flexible e inextensible de masa despreciable. Depreciando el rozamiento sobre el plano y en la polea, y la masa de ésta última, hallar:
- **3.a.-** La intensidad y sentido de la aceleración de los bloques.
- **3.b.-** La fuerza que soporta la cuerda.

- **3.-** Desde la orilla A del pozo esquematizado en la figura se arroja una piedra en forma oblicua con velocidad inicial V_0 , formando un ángulo de 53° por encima de la horizontal.
- **3.a.-** Determinar la velocidad inicial máxima para que golpee en la pared
- **3 b.-** Hallar la velocidad (expresar en componentes) en el instante del impacto.

A1

4 Un avion vuela nacia el oeste a ol	•	· ·	ma rapidez, durante
2 horas. Su vector velocidad media, en			N
\Box -600 km/h i + 600 km/h j	\square 849 km/h i + 849 km/h		i Å
$\square - 200 \text{ km/h } \mathbf{i} + 300 \text{ km/h } \mathbf{j}$	-849 km/h i + 849 km	· ·	o ´Ĺ.¦. =
\square –240 km/h \mathbf{i} + 360 km/h \mathbf{j}	\Box – 360 km/h i +240 km/	/h j	9
			3
5 Indique cuál de las siguientes afirm			
☐ Cuando lanzamos un cuerpo vertic	almente hacia arriba, en el	l instante en que alcanza la altur	a máxima, la fuerza
resultante que actúa sobre él es cero.	ada an al nica y danasitan	lo an un actanta a 2 matrica da al	tumo hory ava aiamaan
Para elevar una caja que está apoys sobre ella una fuerza vertical mayor que			tura nay que ejercer
☐ Cuando un auto se mueve con mov	•		ento la resultante de
todas las fuerzas que actúan sobre él tie		-	into, la resultante de
☐ Cuando se martilla un clavo, la fue			que realiza el clavo
sobre el martillo.	•		•
\square El módulo de la resultante de dos fu	erzas perpendiculares entre	e sí, de módulo 10 N cada una, es	14,1 N.
\square Si la fuerza resultante sobre un cuer	po de masa 1 kg es 1kgf, la	aceleración del cuerpo es 1 m/s	2.
0 1 1 5	. 1 1 11		1. 1 1/
6. – Los vectores $\mathbf{v_A}$ y $\mathbf{v_B}$ de la figura punteada, en dos instantes distintos $\mathbf{t_A}$	_		
para representar, en el intervalo de tiem			•
Su desplazamiento; su velocidad		i de las dos magnitudes siguientes).
Su aceleración media; la fuerza		cobre al auto	
La variación de su velocidad; su	•	soore er auto.	
Su velocidad media; la fuerza re		shra al auto	_
Su velocidad media; su aceleraci	•	oole et auto.	
La suma de sus velocidades; su			
La suma de sus velocidades, su	refocidad illedia		$\mathbf{v_A}$
7.– Un auto y un camion viajan por la	misma ruta en sentidos op	uestos acercándose uno al otro. E	ll auto se desplaza a
60 km/h y el camión a 40 km/h, ambas	respecto de la ruta. Entonc	es:	-
$\hfill\Box$ La velocidad del auto respecto del c	amión es de 60 km/h (dirig	rida hacia el auto)	
\square La velocidad del auto respecto del c			
La velocidad del auto respecto del c	•		
La velocidad del auto respecto del c	·	•	
La velocidad del auto respecto del c			
La velocidad del auto respecto del c	aimon es de 20 km/h (dirig	giua nacia ei camion)	
_			
A]	В	

UBA															
CBC					Fech	a: /									
Apel	lido:_											CO	MISIO	Й	
Nom	nbres:								D.1	D.N.IHoja 1ª de:					
		F	Reserva	ado pa	ra la c	orrecc	ión			Corrigió		Calif	ic.	Ten	na
	Proble	emas pa	ra desai	rrollar		Pregu	ntas de	opción 1	múltiple						
1.a	1.b	2.a	2.b	3.a	3.b	4	5	6	7					A	2
ATENI	NION: I	4 . 1	C			El		4- 1- 1			1	1.1		11	

PROBLEMAS

- **1.-** El gráfico adjunto representa la velocidad en función del tiempo para dos autos que se mueven por una carretera recta, uno hacia el otro. Si en t = 0 los autos están distanciados 500 m:
- **1.a.-** hallar la distancia que los separará transcurridos 30 segundos,
- **1.b.-** graficar en un mismo par de ejes, posición en función del tiempo para ambos vehículos (indicar valores característicos sobre los ejes).

- **2.-** Desde la orilla A del pozo esquematizado en la figura se arroja una piedra en forma oblicua con velocidad inicial V_0 , formando un ángulo de $\frac{37^\circ}{}$ por encima de la horizontal.
- 2.a.- Determinar la velocidad inicial mínima para que golpee en la pared
- **2 b.-** Hallar la velocidad (expresar en componentes) en el instante del impacto.

- **3.-** En el esquema de la figura, los bloques A de 50 kg y B de 30 kg se mueven en el sentido indicado, vinculados por una cuerda flexible e inextensible de masa despreciable. Depreciando el rozamiento sobre el plano y en la polea, y la masa de ésta última, hallar:
- **3.a.-** La intensidad y sentido de la aceleración de los bloques.
- **3.b.-** La fuerza que soporta la cuerda.

4 Un avión vuela hacia el norte a 600 km/h durante 2 horas y luego hacia el oeste con la mism 3 horas. Su vector velocidad media, en un sistema de coordenadas como el indicado, es:	na rapidez, durante
\square 300 km/h \mathbf{i} + 200 km/h \mathbf{j} \square 849 km/h \mathbf{i} + 849 km/h \mathbf{j}	N
$\square - 200 \text{ km/h } \mathbf{i} + 300 \text{ km/h } \mathbf{j}$ $\square - 849 \text{ km/h } \mathbf{i} + 849 \text{ km/h } \mathbf{j}$	J∳ ;
\square -300 km/h \mathbf{i} + 200 km/h \mathbf{j} \square - 360 km/h \mathbf{i} +240 km/h \mathbf{j}	0
 5 Indique cuál de las siguientes afirmaciones es la única verdadera: Cuando lanzamos un cuerpo verticalmente hacia arriba, en el instante en que alcanza la altura resultante que actúa sobre él es cero. Para elevar una caja que está apoyada en el piso y depositarla en un estante a 3 metros de altusobre ella, en alguna etapa de su ascenso, una fuerza vertical menor que el peso de la caja. Cuando un auto se mueve con movimiento rectilíneo uniforme por una carretera con rozamientodas las fuerzas que actúan sobre él tiene la misma dirección y sentido que la velocidad. Cuando se martilla un clavo, la fuerza que realiza el martillo sobre el clavo es mayor que la q sobre el martillo. 	to, la resultante de ue realiza el clavo
 □ El módulo de la resultante de dos fuerzas perpendiculares entre sí, de módulo 10 N cada una, es 2 □ Si la fuerza resultante sobre un cuerpo de masa 1 kg es 1kgf, la aceleración del cuerpo es 1 m/s². 	
 6 Los vectores v_A y v_B de la figura representan a la velocidad de un auto sobre la trayectoria punteada, en dos instantes distintos t_A y t_B. Entonces el vector indicado con un signo de interrogació para representar, en el intervalo de tiempo entre t_A y t_B, cualquiera de las dos magnitudes siguientes: La suma de sus velocidades; su velocidad media Su aceleración media; la fuerza resultante media que actúa sobre el auto. La variación de su velocidad; su velocidad media. Su velocidad media; la fuerza resultante media que actúa sobre el auto. Su velocidad media; su aceleración media. Su desplazamiento; su velocidad media. 	
7.— Un auto y un camión viajan por la misma ruta en sentidos opuestos alejándose uno del otro. El 80 km/h y el camión a 60 km/h, ambas respecto de la ruta. Entonces: La velocidad del auto respecto del camión es de 60 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 60 km/h (dirigida hacia el camión) La velocidad del auto respecto del camión es de 140 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 140 km/h (dirigida hacia el camión) La velocidad del auto respecto del camión es de 20 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 20 km/h (dirigida hacia el camión)	auto se desplaza a

UBA		Primer Parcial de Física (03)													
CBC	;														
Apel	lido:											CO	MISI	ÓN	
Nom	bres:_								D.1	D.N.IHoja 1ª de:					
		F	Reserva	ado pa	ra la c	orrecc	ión			Corrigió		Calif	ic.	Tem	ıa
	Proble	emas pa	ra desai	rrollar		Pregu	ntas de	opción :	múltiple						
1.a	1.b	2.a	2.b	3.a	3.b	4	5	6	7					A	3
														^	J
A CENTRAL	NIONI I						•	. 1		1 4		1 1	_	11	

PROBLEMAS

- **1.-** Desde la orilla A del pozo esquematizado en la figura se arroja una piedra en forma oblicua con velocidad inicial V_0 , formando un ángulo de 53° por encima de la horizontal.
- 1.a.- Determinar la velocidad inicial máxima para que golpee en la pared
- **1 b.-** Hallar la velocidad (expresar en componentes) en el instante del impacto.
- **2.-** En el esquema de la figura, los bloques A de 40 kg y B de 40 kg se mueven en el sentido indicado, vinculados por una cuerda flexible e inextensible de masa despreciable. Depreciando el rozamiento sobre el plano y en la polea, y la masa de ésta última, hallar:
- **2.a.-** La intensidad y sentido de la aceleración de los bloques.
- **2.b.-** La fuerza que soporta la cuerda.
- **3.-** El gráfico adjunto representa la velocidad en función del tiempo para dos autos que se mueven uno hacia el otro, por una carretera recta. Si en t=0 los autos están distanciados 100 m:
- **3.a.-** hallar la distancia que los separará transcurridos 20 segundos,
- **3.b.-** graficar en un mismo par de ejes, posición en función del tiempo para ambos vehículos (indicar valores característicos sobre los ejes).

 4 Indique cuál de las siguientes afirmaciones es la única verdadera: Cuando lanzamos un cuerpo verticalmente hacia arriba, en el instante en que alcanza la altura máxima, la fuerza resultante que actúa sobre él es cero. Para elevar una caja que está apoyada en el piso y depositarla en un estante a 3 metros de altura hay que ejercer sobre ella una fuerza vertical mayor que el peso de la caja durante todo el recorrido Cuando un auto se mueve con movimiento rectilíneo uniforme por una carretera con rozamiento, la resultante de todas las fuerzas que actúan sobre él tiene la misma dirección y sentido que la velocidad. Cuando se martilla un clavo, la fuerza que realiza el martillo sobre el clavo es mayor que la que realiza el clavo sobre el martillo. El módulo de la resultante de dos fuerzas perpendiculares entre sí, de módulo 10 N cada una, es 14,1 N. Si la fuerza resultante sobre un cuerpo de masa 1 kg es 1kgf, la aceleración del cuerpo es 1 m/s².
 5.— Los vectores v_A y v_B de la figura representan a la velocidad de un auto sobre la trayectoria indicada en línea punteada, en dos instantes distintos t_A y t_B. Entonces el vector indicado con un signo de interrogación podría utilizarse para representar, en el intervalo de tiempo entre t_A y t_B, cualquiera de las dos magnitudes siguientes: Su desplazamiento; su velocidad media. Su aceleración media; la fuerza resultante media que actúa sobre el auto. La variación de su velocidad; su velocidad media. Su velocidad media; la fuerza resultante media que actúa sobre el auto. Su velocidad media; su aceleración media. La suma de sus velocidades; su velocidad media
6.— Un auto y un camion viajan por la misma ruta en sentidos opuestos acercándose uno al otro. El auto se desplaza a 60 km/h y el camión a 40 km/h, ambas respecto de la ruta. Entonces: La velocidad del auto respecto del camión es de 100 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 20 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 20 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 20 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 60 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 60 km/h (dirigida hacia el camión)
7 Un avión vuela hacia el oeste a 600 km/h durante 3 horas y luego hacia el norte con la misma rapidez, durante 2 horas. Su vector velocidad media, en un sistema de coordenadas como el indicado, es: 849 km/h i + 849 km/h j

s

UBA															
CBC															
Apel	lido:											CC	MISI	ÓN	
Nom	bres:_								D	.N.I		F	Hoja 1	a de:	
		F	Reserva	ado pa	ra la c	orrecc	ión			Corrigió		Calif	ic.	Tem	ıa
	Proble	emas pa	ra desa	rrollar		Pregu	ntas de	opción	múltiple						
1.a	1.b	2.a	2.b	3.a	3.b	4	5	6	7					A	1
														Λ.	T

PROBLEMAS

1.- En el esquema de la figura, los bloques A de 50 kg y B de 30 kg se mueven en el sentido indicado, vinculados por una cuerda flexible e inextensible de masa despreciable. Depreciando el rozamiento sobre el plano y en la polea, y la masa de ésta última, hallar:

- **1.a.-** La intensidad y sentido de la aceleración de los bloques.
- **1.b.-** La fuerza que soporta la cuerda.
- **2.-** El gráfico adjunto representa la velocidad en función del tiempo para dos autos que se mueven por una carretera recta, uno hacia el otro. Si en t=0 los autos están distanciados 500 m:
- 2.a.- hallar la distancia que los separará transcurridos 30 segundos,
- **2.b.-** graficar en un mismo par de ejes, posición en función del tiempo para ambos vehículos (indicar valores característicos sobre los ejes).

- **3.-** Desde la orilla A del pozo esquematizado en la figura se arroja una piedra en forma oblicua con velocidad inicial V_0 , formando un ángulo de 53° por encima de la horizontal.
- **3.a.-** Determinar la velocidad inicial mínima para que golpee en la pared
- **3 b.-** Hallar la velocidad (expresar en componentes) en el instante del impacto.

 4 Un auto y un camión viajan por la misma ruta en sentidos opuestos alejándose uno del otro. El auto se desplaza a 80 km/h y el camión a 60 km/h, ambas respecto de la ruta. Entonces: La velocidad del auto respecto del camión es de 140 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 20 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 20 km/h (dirigida hacia el camión) La velocidad del auto respecto del camión es de 20 km/h (dirigida hacia el camión) La velocidad del auto respecto del camión es de 60 km/h (dirigida hacia el auto) La velocidad del auto respecto del camión es de 60 km/h (dirigida hacia el camión)
5 Un avión vuela hacia el este a 600 km/h durante 2 horas y luego hacia el sur con la misma rapidez, durante 3 horas. Su vector velocidad media, en un sistema de coordenadas como el indicado, es: 849 km/h i + 849 km/h j
6 Indique cuál de las siguientes afirmaciones es la única verdadera: ☐ Cuando un auto se mueve con movimiento rectilíneo uniforme por una carretera con rozamiento, la resultante de todas las fuerzas que actúan sobre él tiene la misma dirección y sentido que la velocidad. ☐ Cuando se martilla un clavo, la fuerza que realiza el martillo sobre el clavo es mayor que la que realiza el clavo sobre el martillo ☐ Cuando lanzamos un cuerpo verticalmente hacia arriba, en el instante en que alcanza la altura máxima, la fuerza resultante que actúa sobre él es cero. ☐ Para elevar una caja que está apoyada en el piso y depositarla en un estante a 3 metros de altura hay que ejercer sobre ella, en alguna etapa de su ascenso, una fuerza vertical menor que el peso de la caja. ☐ El módulo de la resultante de dos fuerzas perpendiculares entre sí, de módulo 10 N cada una, es 20 N. ☐ Si la fuerza resultante sobre un cuerpo de masa 1 kg es 1kgf, la aceleración del cuerpo es 1 m/s².
 7 Los vectores v_A y v_B de la figura representan a la velocidad de un auto sobre la trayectoria indicada en línea punteada, en dos instantes distintos t_A y t_B. Entonces el vector indicado con un signo de interrogación podría utilizarse para representar, en el intervalo de tiempo entre t_A y t_B, cualquiera de las dos magnitudes siguientes: La suma de sus velocidades; su velocidad media Su aceleración media; la fuerza resultante media que actúa sobre el auto. La variación de su velocidad; su velocidad media. Su velocidad media; la fuerza resultante media que actúa sobre el auto. Su velocidad media; su aceleración media. Su desplazamiento; su velocidad media.