Assignement 2 Dataflow Analisys

CORSO DI COMPILATORI

Corso di Laurea in Informatica

Autori:

Marco Magni (166082) Riccardo Rimondi (180381) Manuel Testoni (176931)

April 14, 2025

Contents

1	Very	y Busy Expression	2
	1.1	Domain	2
	1.2	Direction	2
	1.3	Transfer Function	2
	1.4	Meet Operator	
	1.5	Boundary Condition	
	1.6	Initial Interior Points	
	1.7	Esempio	
2	Don	ninator Analysis	1
	2.1	Domain	4
	2.2	Direction	4
	2.3	Transfer Function	4
	2.4	Meet Operator	4
	2.5	Boundary Condition	
	2.6	Initial Interior Points	4
	2.7	Esempio	
3		estant Propagation	ô
	3.1	Domain	
	3.2	Direction	
	3.3	Transfer Function	Ĉ
	3.4	Meet Operator	ĉ
	3.5	Boundary Condition	ŝ
	3.6	Initial Interior Points	2
	3.7	Esempio	7

1 Very Busy Expression

Un'espressione è **Very Busy** in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito.

	Very Busy Expressions	
Domain	Set of Expressions	
Direction	Backward:	
	$ IN[b] = f_b(OUT[b])$	
	$OUT[b] = \wedge IN[Pred(b)]$	
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$	
Meet Operation (△)	Ω	
Boundary Condition	$IN[EXIT] = \emptyset$	
Initial interior points	IN[b] = U	

Table 1: Framework di Dataflow Analysis

1.1 Domain

Il domain, nell'analisi presa in considerazione, risulta essere quello delle **espressioni**, in quanto ci interessa determinare quali di queste siano Very Busy.

1.2 Direction

La direzione presa per operare l'analisi è **Backwards**. Questo perché per verificare se un'espressione è very busy dobbiamo controllare le istruzioni successive.

1.3 Transfer Function

La funzione di trasferimento per l'analisi è $\mathbf{f}_b(x) = \mathbf{Gen}_b \cup (\mathbf{x} - \mathbf{Kill}_b)$

1.4 Meet Operator

Data la necessità che l'espressione venga valutata in tutti i percorsi l'operatore di meet deve essere l'intersezione, ovvero \cap .

1.5 Boundary Condition

La Boundary Condition per questa analisi è $\mathbf{IN}[\mathbf{EXIT}] = \emptyset$

1.6 Initial Interior Points

Dato che siamo in un analisi con direzione di tipo Backwards dobbiamo porre le nostre condizioni sugli IN dei BB. La condizione iniziale deve essere: $\mathbf{IN}[\mathbf{b}] = U$

1.7 Esempio

In generale l'analisi va ripetuta fino ad ottenere una convergenza, in questo esempio essa avviene dopo la prima iterazione.

Figure 1: CFG relativo al problema di Very Busy Expression

	11.170.01	OUTION
	IN[BB]	OUT[BB]
BB8	Ø	-
BB7	$\{a-b\}$	Ø
BB6	Ø	$\{a-b\}$
BB5	$\{b-a\}$	Ø
BB4	$\{a-b\}$	Ø
BB3	$\{a-b,b-a\}$	$\{a-b\}$
BB2	$\{b - a, a! = b\}$	$\{b-a\}$
BB1	-	$\{b - a, a! = b\}$

Table 2: Esempio di Very Busy Expression

2 Dominator Analysis

In un CFG diciamo che un nodo X **domina** un altro nodo Y se il nodo X appare in ogni percorso dal grafo che porta dal blocco ENTRY al blocco Y.

	Dominatior Analysis	
Domain	Set of Basic Blocks	
Direction	Forward:	
	$OUT[b] = f_b(IN[b])$	
	$IN[b] = \land OUT[Pred(b)]$	
Transfer function	$f_b(x) = x \cup \{b\}$	
Meet Operation (△)	Ω	
Boundary Condition	OUT[ENTRY] = {ENTRY}	
Initial interior points	OUT[b] = U	

Table 3: Framework di Dataflow Analysis

2.1 Domain

Il domain per questo problema di analisi riguarda l'insieme dei Basic Block.

2.2 Direction

La direzione presa per operare l'analisi è **Forward**. Questo perché per verificare se **un nodo X DOMINA un nodo Y** dobbiamo controllare i nodi **precedenti**.

2.3 Transfer Function

La funzione di trasferimento per l'analisi è $f_b(x) = x \cup \{b\}$.

2.4 Meet Operator

Data la necessità che l'espressione venga valutata in ogni percorso, l'operatore di meet deve essere l'intersezione, ovvero ∩.

2.5 Boundary Condition

La Boundary Condition per questa analisi è $OUT[ENTRY] = \{ENTRY\}$ poiché l'unico Basic Block che domina il blocco di entry è esso stesso.

2.6 Initial Interior Points

Dato che siamo in un analisi con direzione di tipo Forward dobbiamo porre le nostre condizioni sugli OUT dei BB. La condizione iniziale deve essere: $\mathbf{OUT}[\mathbf{b}] = U$ in modo tale che l'operazione di intersezione vada a buon fine.

2.7 Esempio

In generale l'analisi va ripetuta fino ad ottenere una convergenza, in questo esempio essa avviene dopo la prima iterazione.

Figure 2: CFG relativo al problema di Dominator Analysis

	IN[BB]	OUT[BB]
Α	-	$\{A\}$
В	$\{A\}$	$\{A,B\}$
С	$\{A\}$	$\{A,C\}$
D	$\{A,C\}$	$\{A,C,D\}$
Е	$\{A,C\}$	$\{A, C, E\}$
F	$\{A,C\}$	$\{A,C,F\}$
G	$\{A\}$	$\{A,G\}$

Table 4: Esempio di Dominator Analysis

3 Constant Propagation

L'obiettivo della Constant Propagation è quello di determinare in quali punti del programma le variabili hanno un valore costante.

L'informazione da calcolare per ogni nodo n del CFG è un insieme di coppie del tipo <variabile, valore costante>.

Se abbiamo la coppia <x, c> al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

	Constant Propagation	
Domain	$\{ \langle x, c \rangle \mid x \in \{variables\}, c \in \mathbb{R} \}$	
Direction	Forward:	
	$OUT[b] = f_b(IN[b])$	
	$IN[b] = \land OUT[Pred(b)]$	
Transfer function	$f_b(x) = x \cup \{b\}$	
Meet Operation (∧)	Ω	
Boundary Condition	OUT[ENTRY] = Ø	
Initial interior points	OUT[b] = U	

Table 5: Framework di Dataflow Analysis

3.1 Domain

Il domain per questo problema di analisi riguarda l'insieme dei basic block.

3.2 Direction

La direzione presa per operare l'analisi è **Forward**. Questo perché per verificare se **una coppia** < x, c > è **costante** dobbiamo controllare cosa avviene all'interno dei Basic Block **precedenti**.

3.3 Transfer Function

La funzione di trasferimento per l'analisi è $\mathbf{f}_b(x) = GenK_b \cup (x - KillK_b)$ $GenK_b$ è l'insieme delle coppie < x, c > di variabili x con valore costante c generate nel Basic Block b. $KillK_b$ è l'insieme delle variabili a cui viene assegnato un valore non costante all'interno del Basic Block b.

3.4 Meet Operator

Data la necessità che la costante abbia lo stesso valore indipendentemente dal percorso, l'operatore di meet deve essere l'intersezione, ovvero \cap .

3.5 Boundary Condition

La Boundary Condition per questa analisi è $\mathbf{OUT}[\mathbf{ENTRY}] = \emptyset$ poiché all'inizio del CFG non è definita alcuna variabile.

3.6 Initial Interior Points

Dato che siamo in un analisi con direzione di tipo Forward dobbiamo porre le nostre condizioni sugli OUT dei BB. La condizione iniziale deve essere: $\mathbf{OUT}[\mathbf{b}] = U$ affinché l'operazione di intersezione vada a buon fine.

3.7 Esempio

In generale l'analisi va ripetuta fino ad ottenere una convergenza, in questo esempio essa avviene dopo la seconda iterazione.

Figure 3: CFG relativo al problema di Constant Propagation

	Iterazione 1		Iterazione 2	
	IN[B]	OUT[B]	IN[B]	OUT[B]
BB1	-	Ø	-	Ø
BB2	Ø	$\{\langle k,2 angle\}$	Ø	$\{\langle k, 2 \rangle\}$
BB3	$\{\langle k,2 angle \}$	$\{\langle k,2 angle \}$	$\{\langle k, 2 \rangle\}$	$\{\langle k, 2 \rangle\}$
BB4	$\{\langle k,2 angle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 2 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$
BB5	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle, \langle x, 5 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle, \langle x, 5 \rangle\}$
BB6	$\{\langle k,2 angle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 2 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$
BB7	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle, \langle x, 8 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle, \langle x, 8 \rangle\}$
BB8	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 4 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 2 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 4 \rangle, \langle a, 4 \rangle\}$
BB9	$\{\langle k, 4 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 4 \rangle, \langle a, 4 \rangle\}$	$\{\langle a,4\rangle\}$	$\{\langle a,4\rangle\}$
BB10	$\{\langle k, 4 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 4 \rangle, \langle a, 4 \rangle, \langle b, 2 \rangle\}$	$\{\langle a,4\rangle\}$	$\{\langle a,4\rangle,\langle b,2\rangle\}$
BB11	$\{\langle k, 4 \rangle, \langle a, 4 \rangle, \langle b, 2 \rangle\}$	$\{\langle k, 4 \rangle, \langle a, 4 \rangle, \langle b, 2 \rangle, \langle x, 8 \rangle\}$	$\{\langle a, 4 \rangle, \langle b, 2 \rangle\}$	$\{\langle a, 4 \rangle, \langle b, 2 \rangle\}$
BB12	$\{\langle k, 4 \rangle, \langle a, 4 \rangle, \langle b, 2 \rangle, \langle x, 8 \rangle\}$	$\{\langle k, 4 \rangle, \langle a, 4 \rangle, \langle b, 2 \rangle, \langle x, 8 \rangle, \langle y, 8 \rangle\}$	$\{\langle a, 4 \rangle, \langle b, 2 \rangle\}$	$\{\langle a, 4 \rangle, \langle b, 2 \rangle, \langle y, 8 \rangle\}$
BB13	$\{\langle k, 4 \rangle, \langle a, 4 \rangle, \langle b, 2 \rangle, \langle x, 8 \rangle, \langle y, 8 \rangle\}$	$\{\langle k, 5 \rangle, \langle a, 4 \rangle, \langle b, 2 \rangle, \langle x, 8 \rangle, \langle y, 8 \rangle\}$	$\{\langle a, 4 \rangle, \langle b, 2 \rangle, \langle y, 8 \rangle\}$	$\{\langle a, 4 \rangle, \langle b, 2 \rangle, \langle y, 8 \rangle\}$
BB14	$\{\langle k, 4 \rangle, \langle a, 4 \rangle\}$	$\{\langle k, 4 \rangle, \langle a, 4 \rangle\}$	$\{\langle a,4\rangle\}$	$\{\langle a,4\rangle\}$
BB15	$\{\langle k, 4 \rangle, \langle a, 4 \rangle\}$	-	$\{\langle a, 4 \rangle\}$	-

Table 6: Esempio di tabella per analisi dati IN/OUT per basic blocks (senza Iterazione 3)