Reading Please read Sections 2.1 through 2.3 by the time this assignment is due. I suggest that you only read one section at a sitting and that you think about all of the exercises – assigned or not – to help make sure that you are understanding all the concepts as you read.

Problems

- 1. Do the following two resolution exercises:
 - (a) exercise 33, p. 36.
 - (b) exercise 34, p. 36.
- 2. This problem is meant to reinforce the idea of the inductive step in the proof of the completeness of resolution in the text. Consider the following CNF formula represented as a set of clauses:

$$\varphi = \{ \{\neg x_3, x_1\}, \{\neg x_1, x_2\}, \{\neg x_2, \neg x_3\}, \{x_3, \neg x_1\}, \{x_1, \neg x_2\}, \{x_2, x_3\} \}$$

- (a) Compute $\varphi_0 = \varphi[x_3/\bot]$ and $\varphi_1 = \varphi[x_3/\top]$
- (b) Give a resolution derivation of $\varphi_0 \vdash \square$.
- (c) Give a resolution derivation of $\varphi_1 \vdash \square$.
- (d) Now show using the above two that $\varphi \vdash \{x_3\}$ and $\varphi \vdash \{\neg x_3\}$.

Thus, you get a proof of $\varphi \vdash \Box$.

- 3. Exercise 42, p. 43: Let free(F) be the set of all variables that occur freely in F. Define free(F) formally by induction on terms and then on formulas.
- 4. Exercise 45, p. 49: Consider the following sentences R, S, T which express that the predicate P is reflexive, symmetric, and transitive:

$$R = \forall x P(x, x)$$

$$S = \forall x y (P(x, y) \to P(y, x))$$

$$T = \forall x y z (P(x, y) \land P(y, z) \to P(x, z))$$

Show that these sentences are independent by constructing three structures that satisfy each possible pair of the sentences but not the third.

[Note that \land and \lor bind more tightly than \rightarrow , so I didn't use extra parentheses in the definition of T.]

5. Exercise 55, p. 52: show that the following pairs of formulas are not equivalent by constructing structures that satisfy one of them but not the other:

$$(\forall x P(x) \lor \forall x Q(x)) \not\equiv \forall x (P(x) \lor Q(x))$$

$$(\exists x P(x) \land \exists x Q(x)) \not\equiv \exists x (P(x) \land Q(x))$$

 6^* . Two sets of formulas M_1 and M_2 are **equivalent** iff they have the same set of models:

$$\{\mathcal{A} \mid \mathcal{A} \models M_1; \mathcal{A} \text{ suitable for } M_1 \cup M_2\} = \{\mathcal{A} \mid \mathcal{A} \models M_2; \mathcal{A} \text{ suitable for } M_1 \cup M_2\}$$

We also say that M_2 is an axiom system for M_1 if they are equivalent. We say that M is **finitely axiomatizable** iff it has a finite axiom system. Suppose that $\{\alpha_1, \alpha_2, \ldots\}$ is an axiom system for M, and for all i, $M \models \alpha_{i+1} \to \alpha_i$ but $M \not\models \alpha_i \to \alpha_{i+1}$. Show that M is not finitely axiomatizable.