Continuous Random Variables

Continues random variable

 A random variable is called continuous if its possible values contain a whole interval of numbers. These typically arise from a measurement. New possible examples:

Experiment	Number X	Possible Values of X
Body height	Measurement in cm	55 ≤ x < 310
A person's annual income	Measurement in money	0 ≤ x < ∞

The probability distribution of a continuous random variable

- A discrete random variable X has a probability for each outcome of the experiment, continues random variables does not.
- A person waits for a bus that leaves every 30 minutes.
 How long does he have to wait.
- The probability of exactly 7.211916 minutes is pretty slim.
- Intervals are more meaning full. For example, the waiting time is less than 10 minutes, or is between 5 and 10 minutes

Trick question

 Let X be a continues random variable, what is P(X=0)?

Probability density function

 The probability distribution of a continuous random variable X is an assignment of probabilities to intervals of decimal numbers. The probability that X assumes a value in the interval [a,b] is the area under the curve in that interval.

$$P(a < X < b) = \text{area of shaded region}$$

- 1. For all numbers x, $f(x) \ge 0$
- 2. The area of the region under the graph of y=f(x) and above the x-axis is 1.

For any continuous random variable X:P($a \le X \le b$)=P($a \le X \le b$)=P($a \le X \le b$)=P($a \le X \le b$)

Bus stop example

- A person just arrived at the bus stop, for how long does the person has to wait until the next bus leaves. The bus leaves uniformly distributed every 30 minutes.
- Find the probability that a bus will come within the next 10 minutes.

Example continued

X is uniformly distributed f(x)=1/30

- •We want to estimate $P(0 \le X \le 10)$
- •We integrate over the probability density function in the limits 0 and 10. $P(0 \le X \le 10) = 1/3$

Normal Distribution

- Bell shaped curve with the probability density function= $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Notated as: $\mathcal{N}(\mu, \sigma^2)$
- With the parameters μ for the mean and σ^2 for the variance

Normal Distribution

 The density curve for the normal distribution is symmetric about the mean.

Standard normal random variable

• Standard normal random variable is a normally distributed random variable with mean $\mu=0$ and standard deviation $\sigma=1$. Denoted as Z in the following.

Standard normal random variable

- P(Z<1.6)=0.9452
- P(Z>1.6)=1-P(Z<1.6)

P(0.5<Z<1.57)=P(Z<1.57) -P(Z<0.5)

Probability computations for general normal random variables

 If X is any normally distributed normal random variable then we can compute a probability of

the form

$$P(a < X < b) - P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

Areas of tails of distributions

- The left tail is the area cut of by x* from the left Figure a)
- The right tail cut off by x* from the right
 Figure b)

(a)

(b)

PDF, CDF, Quantile function

R Exercise

 How to create random samples from any distribution using random samples from the uniform distribution and the targets quantile function?

