1 Teoria de conjuntos

Proposição 1. Se $f: X \to Y$ e $g: Y \to Z$ são bijeções, então $(g \circ f)X \to Z$ é uma bijeção.

Proof. Temos $g(f(a)) = g(f(b)) \implies f(a) = f(b) \implies a = b$. Logo $g \circ f$ é injetiva.

Tomando $z \in Z$. Como g é sobrejetiva, existe $y \in Y$ tal que g(y) = z. Como f é sobrejetiva, existe $x \in X$ tal que f(x) = y. Logo existe $x \in X$ tal que g(f(x)) = g(y) = z. Logo $g \circ f$ é sobrejetiva.

2 Conjuntos Finitos e Infinitos

2.1 Números naturais

Temos como conceitos primitivos o conjunto dos naturais, denotado por \mathbb{N} , cujos elementos são os números naturais, e uma função $s: \mathbb{N} \to \mathbb{N}$. Para cada $n \in \mathbb{N}$, o número s(n) é o sucessor de n. Temos os axiomas:

Axioma 1. $s: \mathbb{N} \to \mathbb{N}$ é injetiva.

Axioma 2. $\mathbb{N} - s(n) = \{1\}$. Ou seja, só existe um número natural que não é sucessor de nenhum outro, e ele é denotado por 1.

Proposição 2. Todo natural diferente de 1 possui um antecessor.

Proof. Seja $n \neq 1$ um número natural. Suponha que não exista n_0 natural com $s(n_0) = n$. Logo $n \notin s(\mathbb{N})$. Logo $n \in \mathbb{N} - s(n)$. Mas $\mathbb{N} - s(n) = \{1\}$. Logo n = 1. Contradição. Logo existe $n_0 \in \mathbb{N}$ tal que $s(n_0) = n$.

Observação 2.1. Observe que a função $s: \mathbb{N} \to \mathbb{N} \setminus \{1\}$ é injetiva por definição e sobrejetiva pela proposicao 2.1, logo é uma bijeção entre um subconjunto dos naturais com os naturais.

Axioma 3 (Princípio de indução). Se $X \subset \mathbb{N}$ é um subconjunto tal que:

$$\begin{cases} 1 \in X \\ n \in X \implies s(n) \in X \end{cases}$$

 $Ent\tilde{a}o \ \mathbb{N} = X.$

Definição 2.1 (Soma). Dados $m, n \in \mathbb{N}$, sua soma m+n é definida como:

$$m+n \coloneqq s^n(m)$$
.

A soma deve obedecer

$$m+1 = s(m) \tag{1}$$

$$m + s(n) = s(m+n) \tag{2}$$

para todos os m, n naturais.

Observação 2.2. Dedekind prova o "Teorema da Definição por Indução" para garantir que a notação $s^n(m)$ faça sentido.

Proposição 3 (Associatividade da Soma). Para todos $p, m, n \in \mathbb{N}$, temos m + (n+p) = (m+n) + p.

Proof. Seja $X=\{p\in\mathbb{N}\ | \forall m,n\in\mathbb{N}: m+(n+p)=(m+n)+p\}$. Da definição de adição, temos pra qualquer m,n que n+1=s(n), logo $m+(n+1)=m+s(n)=s(m+n)=(m+n)+1\implies m+(n+1)=(m+n)+1$. Logo $1\in X$. Se $p\in X$, temos m+(n+p)=(m+n)+p. Logo

$$m + (n + s(p)) = m + s(n + p)$$
$$= s(m + (n + p))$$
$$= s((m + n) + p)$$
$$= (m + n) + s(p).$$

Logo $p \in X \implies s(p) \in X$. Temos que $X = \mathbb{N}$ pelo princípio de indução. Logo a soma é associativa nos naturais.

Lema 1 (Comutatividade da soma com o 1). Para todo $m \in \mathbb{N}$, temos m+1 = 1+m.

Proof. Seja $X=\{m\in\mathbb{N}\ | m+1=1+m\}$. Temos $1\in X$, pois 1+1=1+1. Supondo $m\in X$, logo m+1=1+m. Temos

$$1 + s(m) = s(1+m)$$
$$= s(m+1)$$
$$= (m+1) + 1$$
$$= s(m) + 1$$

Como $m \in X \implies s(m) \in X \text{ e } 1 \in X, \text{ temos } X = \mathbb{N}.$

Proposição 4 (Comutatividade da soma). Para todos $m, n \in \mathbb{N}$, temos m+n = n+m.

Proof. Seja $X = \{m \in \mathbb{N} \mid \forall n \in \mathbb{N} : m+n=n+m\}$. Temos $1 \in X$ pelo Lema

1. Supondo $m \in X$, logo m+n=n+m para todo $n \in \mathbb{N}.$ Temos

$$n + s(m) = s(n + m)$$

$$= s(m + n)$$

$$= (m + n) + 1$$

$$= 1 + (m + n)$$

$$= (1 + m) + n$$

$$= (m + 1) + n$$

$$= s(m) + n$$

Como 1
 $\in X$ e $m \in X \implies s(m) \in X,$ temos $X = \mathbb{N}$ pelo princípio de indução.
 \Box

Proposição 5 (Lei do corte). Para todos $m, n, p \in \mathbb{N}$, temos $m+n = m+p \implies n = p$.

Proof. Seja $X=\{m\in\mathbb{N}\ | \forall n\in\mathbb{N}\ \forall p\in\mathbb{N}: m+n=m+p \Longrightarrow n=p\}$. Temos $1\in X$ pois $1+n=1+p \Longrightarrow n+1=p+1 \Longrightarrow s(n)=s(p) \Longrightarrow n=p$ pela injetividade de s. Supondo $m\in X$, temos $m+n=m+p \Longrightarrow n=p$ para todos n,p naturais. Temos

$$s(m) + n = s(m) + p \implies$$

 $n + s(m) = p + s(m) \implies$
 $s(n + m) = s(p + m) \implies$
 $n + m = p + m \implies$
 $m + n = m + p \implies$

$$n = p$$
.

Logo $s(m)+n=s(m)+p \implies n=p$. Como $1\in X$ e $m\in X \implies s(m)\in X$, temos $X=\mathbb{N}$ pelo princípio de indução.

Lema 2 (Não existem ciclos nos naturais). Para todos $m, p \in \mathbb{N}$, temos $m \neq m + p$.

Proof. Suponha que m=m+p com $m,p\in\mathbb{N}$. Logo $s(m)=s(m+p)\Longrightarrow m+1=(m+p)+1\Longrightarrow m+1=m+(p+1)\Longrightarrow 1=p+1\Longrightarrow s(p)=1$. Como 1 não é sucessor de nenhum natural, temos uma contradição. Logo $m\neq m+p$ para todos naturais m,p.

Lema 3 (Unicidade da Tricotomia). Dados dois naturais m e n, apenas uma das 3 possibilidades ocorre:

$$\begin{cases} m = n \\ \exists p \in \mathbb{N} : m = n + p \\ \exists q \in \mathbb{N} : n = m + q \end{cases}$$

Proof. Pelo lema 2, se m=n, não podemos ter m=n+p=m+p ou n=m+q=n+q para algum $p,q\in\mathbb{N}$. Se $\exists p\in\mathbb{N}: m=n+p$, não podemos ter m=n pelo lema 2 e não podemos ter $\exists q\in\mathbb{N}: n=m+q$, pois teríamos $m=n+p=(m+q)+p=m+(q+p) \implies m=m+(q+p)$, que contradiz o lema 2.

Proposição 6 (Tricotomia). Dados dois naturais m e n, exatamente uma das 3 possibilidades ocorre:

$$\begin{cases} m = n \\ \exists p \in \mathbb{N} : m = n + p \\ \exists q \in \mathbb{N} : n = m + q \end{cases}$$

Proof. Seja $X = \{m \in \mathbb{N} | \forall n \in \mathbb{N} : (m = n) \lor (\exists p \in \mathbb{N} : m = n + p) \lor (\exists q \in \mathbb{N} : n = m + q) \}$, ou seja: o conjunto dos números naturais que satisfazem pelo menos uma das condições da tricotomia para todo n.

 $1 \in X$, pois dado $n \in \mathbb{N}$, temos n = 1 ou $n \neq 1$. Se n = 1, temos m = 1 = n. Se $n \neq 1$, como $\mathbb{N} - s(\mathbb{N}) = \{1\}$, temos que existe um $n_0 \in \mathbb{N}$ tal que $s(n_0) = n$. Logo $n = n_0 + 1 \implies \exists q : n = q + 1 = q + m$.

Supondo $m \in X$. Dado $n \in \mathbb{N}$, se m = n, temos s(m) = s(n) = n + 1, logo $\exists p \in \mathbb{N} : s(n) = n + p$. Se $\exists p \in \mathbb{N} : m = n + p$, temos s(m) = s(n + p) = (n + p + 1) = n + s(p), logo $\exists p' \in \mathbb{N} : s(n) = n + p'$. Se $\exists q \in \mathbb{N} : n = m + q$ com q = 1, temos n = m + 1 = s(m). Se $\exists q \in \mathbb{N} : n = m + q$ com $q \neq 1$, existe $q_0 \in \mathbb{N}$ tal que $s(q_0) = q$, logo temos $n = m + q = m + s(q_0) = m + (q_0 + 1) = m + 1 + q_0 = s(m) + q_0 \implies \exists q' \in \mathbb{N} : n = s(m) + q'$.

Como $1 \in X$ e $m \in X \implies s(m) \in X$, temos $X = \mathbb{N}$. Logo para todo par $m, n \in \mathbb{N}$, pelo menos uma das condições da tricotomia ocorre. Pelo lema 3, apenas uma das possbilidades ocorre.

Definição 2.2 (<).

$$m < n \iff \exists p \in \mathbb{N} : n = m + p$$

Dados m,n naturais, dizemos que m é menor que n (m < n) quando existe $p \in \mathbb{N}$ tal que n = m + p.

Proposição 7. Temos 1 < n para todo $1 \neq n \in \mathbb{N}$.

Proof. Como $n \neq 1$, temos pela proposição que n possui um antecessor. Logo existe n_0 tal que $s(n_0) = n \implies n = 1 + n_0$. Logo 1 < n.

Definição 2.3 (\leq).

$$m \le n \iff (m = n) \lor (m < n)$$

Proposição 8 (Transitividade da relação <). $m < n \land n < p \implies m < p$

Proof. Se m < n e n < p, temos n = m + q e p = n + r para algum par $q, r \in \mathbb{N}$. Logo p = n + r = (m + q) + r = m + (q + r). Logo m < p.

Proposição 9 (Tricotomia da relação <). Dados $m, n \in \mathbb{N}$, exatamente uma das afirmações ocorre: m = n, ou m < n, ou n < m.

Proof. Segue diretamente da proposição 6.

Proposição 10.

$$p \leq q \land q \leq p \iff p = q$$

Proof. Supondo p = q, temos $p \le q$ e $q \le p$.

Supondo $p \le q \land q \le p$. Se p = q, acabou a demonstração. Supondo $p \ne q$. Logo devemos ter p < q e q < p (contradição). Logo devemos ter p = q.

Proposição 11. Dados m, n, p naturais, temos

$$m + p < n + p \implies m < n.$$

Proof. Temos $m+p < n+p \implies \exists q \in \mathbb{N} : n+p = (m+p)+q \implies \exists q \in \mathbb{N} : n=m+q \implies m < n.$

Lema 4.

$$m < n + 1 \iff m < n$$

Proof. Supondo m < n+1. Logo existe $q \in \mathbb{N}$ tal que n+1=m+q. Se q=1, temos $n+1=m+1 \implies n=m \implies m \le n$. Se $q \ne 1$, existe q_0 tal que $s(q_0)=q$. Logo $n+1=m+s(q_0)=m+q_0+1 \implies n=m+q_0 \implies m < n \implies m \le n$.

Se $m \le n$, temos $m \le n < n+1 \implies m < n+1$.

Definição 2.4 (Multiplicação). Para todo $m \in \mathbb{N}$, seja $f_m : \mathbb{N} \to \mathbb{N}$ que associa cada $p \in \mathbb{N}$ a $f_m(p) = m + p$. Dados $m, n \in \mathbb{N}$, o produto entre naturais satisfaz $m \cdot 1 = m$ e $m \cdot (n+1) = (f_m)^n(m)$.

Lema 5 (Distributiva do sucessor).

$$m \cdot (n+1) = mn + m$$

Proof. Se n = 1, temos $m \cdot (1+1) = (f_m)^1(m) = f_m(m) = m+m = m \cdot 1 + m$. Se $n \neq 1$, existe $n_0 \in \mathbb{N}$ tal que $s(n_0) = n$. Logo temos $m \cdot (n+1) = (f_m)^n(m) = (f_m)^{s(n_0)}(m) = f_m((f_m)^{n_0}(m)) = f_m(m(n_0+1)) = f_m(m \cdot n) = mn + m$.

Proposição 12 (Distributiva à esquerda).

$$m \cdot (n+p) = mn + mp$$

Proof. Seja $X=\{p\in\mathbb{N}|\forall m,n\in\mathbb{N}:n\cdot(m+p)=nm+np\}$. Temos $1\in X$ pelo lema 2.1. Supondo $p\in X$. Temos

$$n \cdot (m+s(p)) = n \cdot ((m+p)+1)$$

$$= n \cdot (m+p) + n$$

$$= nm + np + n$$

$$= nm + n(p+1)$$

$$= nm + n \cdot s(p)$$

Como $p \in X \implies s(p) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Proposição 13 (Distributiva à direita).

$$(m+n) \cdot p = mp + np$$

Proof. Seja $X = \{p \in \mathbb{N} | \forall m, n \in \mathbb{N} : (m+n) \cdot p = mp + np \}$. Temos $1 \in X$,

pos
$$(m+n)\cdot 1=m+n=m\cdot 1+n\cdot 1$$
 . Supondo $p\in X$. Temos
$$(m+n)\cdot s(p)=(m+n)\cdot (p+1)$$

$$=(m+n)\cdot p+(m+n)$$

$$=mp+np+m+n$$

$$=mp+m+np+n$$

$$=m(p+1)+n(p+1)$$

$$=m\cdot s(p)+n\cdot s(p)$$

Como $p \in X \implies s(p) \in X \text{ e } 1 \in X, \text{ temos } X = \mathbb{N}.$

Proposição 14 (Associatividade).

$$m \cdot (n \cdot p) = (m \cdot n) \cdot p$$

Proof. Seja $X=\{p\in\mathbb{N}|\forall m,n\in\mathbb{N}:m\cdot(n\cdot p)=(m\cdot n)\cdot p\}.$ Temos $m\cdot(n\cdot 1)=m\cdot n=(m\cdot n)\cdot 1,$ logo $1\in X.$

Supondo $p \in X$. Temos

$$m \cdot (n \cdot s(p)) = m \cdot (n \cdot (p+1))$$

$$= m \cdot (n \cdot p + n)$$

$$= m \cdot (n \cdot p) + m \cdot n$$

$$= (m \cdot n) \cdot p + (m \cdot n)$$

$$= (m \cdot n) \cdot (p+1)$$

$$= (m \cdot n) \cdot s(p)$$

Como $p \in X \implies s(p) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Lema 6 (Comutatividade com 1).

$$m\cdot 1=1\cdot m$$

Proof. Seja $X=\{m\in\mathbb{N}|m\cdot 1=1\cdot m\}$. Temos $1\cdot 1=1\cdot 1,$ logo $1\in X.$ Supondo $m\in X.$ Temos

$$s(m) \cdot 1 = (m+1) \cdot 1$$

$$= m+1$$

$$= m \cdot 1 + 1 \cdot 1$$

$$= 1 \cdot m + 1 \cdot 1$$

$$= 1 \cdot (m+1)$$

$$= 1 \cdot s(m)$$

Como $m \in X \implies s(m) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Proposição 15 (Comutatividade).

$$m \cdot n = n \cdot m$$

Proof. Seja $X=\{n\in\mathbb{N}|\forall m\in\mathbb{N}:m\cdot n=n\cdot m\}$. Temos $1\in X$ pelo lema 6. Supondo $n\in X$. Temos

$$m \cdot s(n) = m \cdot (n+1)$$

$$= mn + m \cdot 1$$

$$= nm + 1 \cdot m$$

$$= (n+1) \cdot m$$

$$= s(n) \cdot m$$

Como $p \in X \implies s(p) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Proposição 16 (Monotonicidade).

$$m < n \implies mp < np$$

Proof. Supondo m < n. Logo n = m + q com $q \in \mathbb{N}$. Logo np = (m + q)p = mp + qp. Como $qp \in \mathbb{N}$, temos mp < np.

Proposição 17 (Lei do cancelamento).

$$mp < np \implies m < n$$

Proof. Supondo mp < np. Pela tricotomia, temos n < m, m = n, ou m < n. Se n < m, temos np < mp (contradição). Se m = n, temos mp = np (contradição). Logo devemos ter m < n.

Definição 2.5 (Elemento Mínimo). Dado $X \subset \mathbb{N}$, dizemo que $p \in X$ é o menor elemento (ou elemento mínimo) de X se $\forall n \in X : p \leq n$.

Observação 2.3. Como $\forall n\in\mathbb{N}:1\leq n,$ temos que $1\in X$ implica 1 menor elemento de X.

Proposição 18. O elemento mínimo de um conjunto $X \subset \mathbb{N}$, quando existir, é unico.

Proof. Suponha que dado um conjunto $X \subset \mathbb{N}$, existam $p, q \in X$ elementos mínimos. Logo $p \leq q$ e $q \leq p$. Logo p = q.

Definição 2.6 (Maior elemento). Dado $X \subset \mathbb{N}$, dizemo que $p \in X$ é o maior elemento (ou elemento máximo) de X se $\forall n \in X : p \geq n$.

Proposição 19. Os naturais não possuem maior elemento.

Proof. Suponha que $x \in \mathbb{N}$ seja o maior elemento de \mathbb{N} . Teríamos $s(x) \in \mathbb{N}$ e x < s(x) (contradição). Logo os naturais não possuem maior elemento.

Proposição 20. O elemento máximo de um conjunto $X \subset \mathbb{N}$, quando existir, é unico.

Proof. Exercício.

Definição 2.7 (I_n) .

$$I_n := \{ x \in \mathbb{N} \mid x \le n \}$$

Teorema 1 (Princípio da boa Ordenação). Todo subconjunto $A \neq \emptyset$ dos naturais admite menor elemento.

Proof. Dado $A \subset \mathbb{N}$ não vazio. Se $1 \in A$, temos 1 menor elemento.

Supondo $1 \notin A$. Logo $1 \in \mathbb{N} - A$. Seja $X = \{x \in \mathbb{N} \mid I_n \subset \mathbb{N} - A\}$. Como $1 \in \mathbb{N} - A$, temos $I_1 = \{1\} \subset \mathbb{N} - A$, logo $1 \in X$. Como A é não vazio, existe $a \in A$. Logo $a \notin \mathbb{N} - A$. Temos $a \leq a \implies a \in I_a$. Logo $I_a \notin \mathbb{N} - A$. Logo $a \notin X$. Temos $1 \in X$ e $X \neq \mathbb{N}$, logo o axioma da indução deve falhar. Logo deve existir $n \in X$ com $n + 1 = s(n) \notin X$.

Afirmo que n+1 é o menor elemento de A. Como $n \in X$, temos $I_n \subset \mathbb{N} - A$, logo $x \leq n \implies x \in \mathbb{N} - A$. Como $n+1 \notin X$, temos $I_{n+1} \not\subset \mathbb{N} - A$.

Logo existe um $m \in I_{n+1}$ com $m \notin \mathbb{N} - A \implies m \in A$. Observe que $m \in I_{n+1} \implies m \le n+1 \implies m = n+1 \lor m < n+1$. Se m < n+1, temos pelo Lema 4 que $m \le n$, que implica $m \in I_n$, logo $m \in \mathbb{N} - A$ (contradição). Logo devemos ter m = n+1. Temos portanto que $n+1 \in A$.

Suponha que exista $p \in A$ tal que p < n + 1. Teríamos $p \le n \implies p \in I_n \implies p \in \mathbb{N} - A \implies p \notin A$. Contradição. Logo temos $n + 1 \le p$ para todo $p \in A$. Logo n + 1 é o menor elemento de A.

Teorema 2 (Indução completa). Seja $X \subset \mathbb{N}$ tal que $(\forall m \in \mathbb{N} : m < n \implies m \in X) \implies n \in X$. Então $X = \mathbb{N}$

Proof. Temos $1 \in X$, pois $1 \notin X$ implicaria na existência de um m < 1 com $m \notin X$. Supondo $X \neq \mathbb{N}$ e $A = \mathbb{N} - X$. Como $X \neq \mathbb{N}$, temos $A \neq \emptyset$. Logo A possui um menor elemento $a \in A$. Se $p \in \mathbb{N}$ com p < a, então $p \notin A$, logo $p \in X$. Como $\forall p \in \mathbb{N} : p < a \implies p \in X$, temos $a \in X$. Contradição. Logo A é vazio. Logo $X = \mathbb{N}$. □

3 Conjuntos Finitos e Infinitos

Definição 3.1 (Conjuntos finitos). Um conjunto X é finito quando for vazio ou quando existir para algum $n \in \mathbb{N}$ uma bijeção $\phi : I_n \to X$

Definição 3.2 (Tamanho de um conjunto). Dado um conjunto finito. Dizemos que ele tem zero elementos se for vazio e que ele tem n elementos se tiver bijeção com I_n .

Observação 3.1. O conjunto I_n é finito e possui n elementos.

Proposição 21. Se $f: X \to Y$ é uma bijeção, então X é finito se, e somente se, Y for finito.

Proof. Se X for finito, então existe um bijeção $\phi:I_n\to X$. A composição $(\phi\circ f):I_n\to Y$ é uma bijeção, logo Y é finito. O caso Y finito é análogo. \square

Teorema 3. Seja $A \subset I_n$ não vazio. Se exite uma bijeção $f: I_n \to A$, então $A = I_n$.

Proof. Seja $X = \{n \in \mathbb{N} \mid \forall A \subset I_n : \text{(Existe uma bijeção } f: A \to I_n) \implies A = I_n\}$. Temos $1 \in X$, pois $I_1 = \{1\}$ e $A \subset I_1 \implies A = \{1\} = I_1$. Supondo $n \in X$. Seja $A \subset I_{n+1}$ com uma bijeção $f: I_{n+1} \to A$. Restringindo f a I_n , obtemos $f': I_n \to A - \{f(n+1)\}$. Se $A - \{f(n+1)\} \subset I_n$, temos por $n \in X$ que □