23PHY114 Class Notes

Adithya Nair

Contents

1	Soli	ds		
	1.1	Moment Of Area		
	1.2	Resist	ing Force And Moments From Supports	
	1.3	Deriva	ation Of The Uniaxial Formula	
	1.4	For Uniaxial Deformation		
		1.4.1	Finding The Local Stiffness Matrix	
		1.4.2	Converting The Local Stiffness To A Global Stiffness Matrix	
		1.4.3	Main Loop Through Evaluating The Global Stiffness Matrix	
		1.4.4	Applying Boundary Conditions	

Chapter 1

Solids

1.1 Moment Of Area

The moment of inertia is used to help find the "resistance" to the force, given a specific axis or direction.

1.2 Resisting Force And Moments From Supports

There are three main kinds of supports -

- 1. Pin/Hinge Fixes linear motion but leaves rotation free.
- 2. Roller Fixes rotation but leaves motion free.
- 3. Clamp Fixes both linear and rotational motion.

Take this case, with a bunch of forces being applied to the given load. There are three main things we need to find for this figure.

- 1. The resultant force acting on this bar fixed to a hinge.
- 2. The support reaction force and moment.
- 3. The moment on the object (maximum)

The way to approach the problem is as always,

- 1. Free Body Diagram first.
- 2. Assuming $\Sigma f = 0$, because the object has no acceleration currently, because it is fixed.
- 3. Assuming $\Sigma M = 0$

4. The point at which the resultant force is applied is found by,

$$\frac{\int |r|dm}{\int dm}$$

1.3 Derivation Of The Uniaxial Formula

1.4 For Uniaxial Deformation

Main Subroutines For Uniaxial Deformation

1.4.1 Finding The Local Stiffness Matrix

```
function stiffnessLocal = localStiffnessGenerator(E,A,1,theta);
    stiffnessConstant = E*A/1;
    R = [cos(theta) -sin(theta); sin(theta) cos(theta)];
    stiffnessMatrix = [stiffnessConstant 0 -stiffnessConstant 0;
    zeros(1,4);-stiffnessConstant 0 stiffnessConstant 0; zeros(1,4)
];
    R4 = [R zeros(2,2); zeros(2,2) R];
    stiffnessLocal = R4*stiffnessMatrix*R4';
end
```

octave

$\begin{array}{ccc} \textbf{1.4.2} & \textbf{Converting The Local Stiffness To A Global Stiffness} \\ \textbf{Matrix} \end{array}$

octave

1.4.3 Main Loop Through Evaluating The Global Stiffness Matrix

```
A = 0; theta = 0; 1 = 0; stiffnessLocal = zeros(4,4);
      nodeAxialForces = zeros(nodeCount,1);
  for element = 1:5 % For first three bars
18
      A = areaVector(element);
19
      theta = angleVector(element);
20
21
      1 = lengthVector(element);
      stiffnessLocal = localStiffnessGenerator(E,A,1,theta);
22
      nodeCounter = element*2 - 1;
      \verb|stiffnessLocalGlobal| = \verb|local2Global(stiffnessLocal, nodeVector(
24
      nodeCounter), nodeVector(nodeCounter+1), nodeCount);
       stiffnessLocal
25
       stiffnessLocalGlobal
26
       stiffnessGlobal += stiffnessLocalGlobal;
27
  end
```

octave

1.4.4 Applying Boundary Conditions

```
selectedVector = [3 5:end]
forceEval = forceVector(selectedVector);
displacementEval = displacementVector(selectedVector);
stiffnessEval = stiffnessGlobal(selectedVector);
displacementEval = stiffnessEval\forceEval;
```

octave

