Introduction to Machine Learning

Advanced Risk Minimization
Maximum Likelihood Estimation vs.
Empirical Risk Minimization

Learning goals

- Connection between maximum likelihood and risk minimization
- Correspondence between Gaussian errors and L2 loss, Laplace errors and L1 loss, and Bernoulli targets and Bernoulli/log loss

MAXIMUM LIKELIHOOD

Let's consider regression from a maximum likelihood perspective. Assume:

$$y \mid \mathbf{x} \sim p(y \mid \mathbf{x}, \boldsymbol{\theta})$$

Common case: true underlying relationship f_{true} with additive noise:

$$y=f_{ ext{true}}(\mathbf{x})+\epsilon$$

where f_{true} has params θ and ϵ a RV that follows some distribution \mathbb{P}_{ϵ} , with $\mathbb{E}[\epsilon] = 0$. Also, assume $\epsilon \perp \!\!\! \perp \mathbf{x}$.

MAXIMUM LIKELIHOOD

From a statistics / maximum-likelihood perspective, we assume (or we pretend) we know the underlying distribution family $p(y \mid \mathbf{x}, \theta)$.

• Given i.i.d data $\mathcal{D} = ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}))$ from \mathbb{P}_{xy} the maximum-likelihood principle is to maximize the **likelihood**

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)$$

or equivalently minimize the negative log-likelihood (NLL)

$$-\ell(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)$$

MAXIMUM LIKELIHOOD

From an ML perspective we assume our hypothesis space corresponds to the space of the (parameterized) f_{true} .

Simply define neg. log-likelihood as loss function

$$L(y, f(\mathbf{x} \mid \theta)) := -\log p(y \mid \mathbf{x}, \theta)$$

Then, maximum-likelihood = ERM

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)
ight)$$

- NB: When we are only interested in the minimizer, we can ignore multiplicative or additive constants.
- \bullet We use \propto as "proportional up to multiplicative and additive constants"

GAUSSIAN ERRORS - L2-LOSS

Assume $y = f_{\text{true}}(\mathbf{x}) + \epsilon$ with additive Gaussian errors, i.e. $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$. Then $y \mid \mathbf{x} \sim \mathcal{N}\left(f_{\text{true}}(\mathbf{x}), \sigma^2\right)$. The likelihood is then

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \rho \left(y^{(i)} \mid f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right), \sigma^{2} \right)$$

$$\propto \prod_{i=1}^{n} \exp \left(-\frac{1}{2\sigma^{2}} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) \right)^{2} \right)$$

Easy to see: minimizing Gaussian NLL s is ERM with L2-loss:

$$-\ell(\boldsymbol{\theta}) = -\log\left(\mathcal{L}(\boldsymbol{\theta})\right)$$

$$\propto -\log\left(\prod_{i=1}^{n} \exp\left(-\frac{1}{2\sigma^{2}}(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right))^{2}\right)\right)$$

$$\propto \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)^{2}$$

GAUSSIAN ERRORS - L2-LOSS

- We simulate data $y \mid \mathbf{x} \sim \mathcal{N}\left(f_{\text{true}}(\mathbf{x}), 1\right)$ with $f_{\text{true}} = 0.2 \cdot \mathbf{x}$
- Let's plot empirical errors as histogram, after fitting our model with L2-loss
- Q-Q-plot compares empirical residuals vs. theoretical quantiles of Gaussian

LAPLACE ERRORS - L1-LOSS

Let's consider Laplacian errors ϵ now, with density:

$$\frac{1}{2\sigma} \exp\left(-\frac{|\epsilon|}{\sigma}\right) \,, \sigma > 0.$$

Then

$$y = f_{\mathsf{true}}(\mathbf{x}) + \epsilon$$

also follows Laplace distribution with mean $f(\mathbf{x}^{(i)} \mid \boldsymbol{\theta})$ and scale σ .

LAPLACE ERRORS - L1-LOSS

The likelihood is then

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \rho \left(y^{(i)} \mid f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right), \sigma \right)$$

$$\propto \exp \left(-\frac{1}{\sigma} \sum_{i=1}^{n} \left| y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) \right| \right).$$

The negative log-likelihood is

$$-\ell(\boldsymbol{\theta}) \propto \sum_{i=1}^{n} \left| y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) \right|.$$

MLE for Laplacian errors = ERM with L1-loss.

- Some losses correspond to more complex or less known error densities, like the Huber loss ► Meyer 2021
- Huber density is (unsurprisingly) a hybrid of Gaussian and Laplace

LAPLACE ERRORS - L1-LOSS

- We simulate data $y \mid \mathbf{x} \sim \text{Laplacian}(f_{\text{true}}(\mathbf{x}), 1) \text{ with } f_{\text{true}} = 0.2 \cdot \mathbf{x}.$
- We can plot the empirical error distribution, i.e. the distribution of the residuals after fitting a regression model w.r.t. L1-loss.
- With the help of a Q-Q-plot we can compare the empirical residuals vs. the theoretical quantiles of a Laplacian distribution.

MAXIMUM LIKELIHOOD IN CLASSIFICATION

Let us assume the outputs y to be Bernoulli-distributed, i.e. $y \mid \mathbf{x} \sim \text{Bern}(\pi_{\text{true}}(\mathbf{x}))$. The negative log likelihood is

$$-\ell(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)$$

$$= -\sum_{i=1}^{n} \log \left[\pi(\mathbf{x}^{(i)})^{y^{(i)}} \cdot (1 - \pi(\mathbf{x}^{(i)}))^{(1 - y^{(i)})}\right]$$

$$= \sum_{i=1}^{n} -y^{(i)} \log[\pi(\mathbf{x}^{(i)})] - (1 - y^{(i)}) \log[1 - \pi(\mathbf{x}^{(i)})].$$

This gives rise to the following loss function

$$L(y, \pi(\mathbf{x})) = -y \log(\pi(\mathbf{x})) - (1 - y) \log(1 - \pi(\mathbf{x})), \quad y \in \{0, 1\}$$

which we introduced as Bernoulli loss.

DISTRIBUTIONS AND LOSSES

For **every** error distribution \mathbb{P}_{ϵ} we can derive an equivalent loss function, which leads to the same point estimator for the parameter vector $\boldsymbol{\theta}$ as maximum-likelihood. Formally,

$$\hat{\theta} \in \operatorname{arg\,max}_{\pmb{\theta}} \mathcal{L}(\pmb{\theta}) \Leftrightarrow \hat{\theta} \in \operatorname{arg\,min}_{\pmb{\theta}} - \log(\mathcal{L}(\pmb{\theta})).$$

But: Other way does not always work: We cannot derive a pdf/error distrib. for every loss – the Hinge loss is one prominent example (some prob. interpretation is still possible Sollich 1999).

When does the reverse direction hold?

If we can write loss as $L(y, f(\mathbf{x})) = L_{\mathbb{P}}(y - f(\mathbf{x})) = L_{\mathbb{P}}(r)$ for $r \in \mathbb{R}$, then minimizing $L_{\mathbb{P}}(y - f(\mathbf{x}))$ is equiv. to maximizing a conditional log-likelihood $\log(p(y - f(\mathbf{x}|\theta)))$ if

- $\log(p(r))$ is affine trafo of $L_{\mathbb{P}}$ (undoing the ∞): $\log(p(r)) = a bL_{\mathbb{P}}(r), \ a \in \mathbb{R}, b > 0$
- p is a pdf (non-negative and integrates to one)

