Lee, Min-Sung

Github: https://github.com/Minsung-commit Notion: https://www.notion.so/Ordinary-Code-7b09a99b48604d329bb51c58179f9ba7

Profile

이민성 Lee, Min-Sung

1993.12.03 010-3641-6141 lgt302@hanmail.net

총신대학교 영어교육과 졸 멀티캠퍼스 DS전문가 과정 수료

Interest:
ML, Recommendation System,
Data Visualization, NLP

코로나 시대, 안전한 여행을 위한 SNS기반 감성숙소 추천 앱서비스

Data

- ✓ 인스타그램 감성숙소 계정 7개의 텍스트 데이터
- ✓ 네이버 블로그 데이터
- ✓ 코로나 거리두기 단계 & 네이버 Place API(분석X)

Environment

- ✓ Python 3.6+ / Tableau / Google Trends
- ✓ Django / AWS / HDFS / Spark / MongoDB

<u>Bankground</u>

- ✓ 코로나 이후 <u>여행 트렌드의 변화</u>가 가속화
- ✓ <u>감성숙소</u>를 키워드로 한 "힐링여행" 급부상
- ✓ 하지만 <u>감성숙소에 대한 분석이나 서비스화 ↓</u>

Purpose

- ✓ SNS데이터를 통해 감성숙소의 <u>새로운 분류기준</u>을 제시
- ✓ 코로나 관련 정보와 <u>감성 숙소 추천서비스</u>를 제공
- ✓ 코로나 시대 속 안전한 여행을 돕고자 함

Methodology

- ✓ 경향성 및 패턴 분석 △ Spherical K-means 군집분석
- ✓ 군집별 토픽 모델링 ♪ TextRank 키워드 분석
- ✓ UserInfo의 부재 ☆ CB 필터링을 적용한 추천모델

Outcomes: 시스템 아키텍쳐

Description

- 1. 하둡 : 수집 데이터 저장
- 2. 스파크 : 수집 데이터 전처리
- 3. 클러스터링 모델: 숙소 카테고리 분류
- 4. 몽고database : 분류된 숙소 정보 저장
- 5. 추천모델 : Django 내에서 몽고 database 연결

Outcomes: 분석 아키텍쳐

Description

- 1. Kiwi: 형태소 분석 & 토크나이징
- 2. W2V: 단어 임베딩
- 3. Spherical Kmeans : 군집 분석
- 4. TextRank : 키워드 추출 및 토픽모델링
- 5. CB filtering : 유사도기반 추천 모델

Outcomes: 군집분석 및 토픽모델링

Elbow를 통한 최적 군집수 도출

- ✔ 6과 10 지점에서 두번의 경사 변화가 나타남
- ✓ 10 이후로는 SSE의 변동성이 높음.
- ✓ 최적 군집수를 10으로 설정

TextRank적용 토픽 모델링

```
keywords
           33.5657007490261)
   국내
           32.57158090901199)
   여행지:
             16.609191914951744),
   예 때 다.
             12.539879124397292),
             10.903731012174422),
             9.782780058418812),
          7.925628220078781),
        7.352853884107331)
             7.280217514661686),
           7.2160691805341015),
           7.081380631091912),
          7.0347946270245965).
        6.882867149232523),
          6.337599205678244)
   인테리어:
               5.438794658073363),
          5.324179603940402).
             5.260345657614331),
             4.654988711388162),
  ·가족·, 4.600031490255179),
'프다', 4.486491807012084)]
```

- ✓ 문서 요약에 대표적인 기법인 TextRank를 활용하여 군집별 키워드 비율을 분석하고, 이를 토대로 군집별 카테고리 해 석을 진행함.
- ✔ 예: 커플, 가족, 즐기다, 수영장 = '다같이 놀기 좋은 숙소'

Outcomes: 요구사항 명세서 & 유즈케이스 다이어그램

RQ-ID ↓	화면명 ↓1	요구사항명 🔻	요구사항 내용	· 날짜 나	진행사 🔻	∐ _ ▼	
RQ-0001	관리자	통계	코로나 API 및 숙소리스트를 갱신 및 점검	9-7	반영		
RQ-0002	메인배너(고정)	좌측 상단 영역	[화면이동] 처음 화면으로 이동, 인기숙소 둘러보기, 코로나 안전정보	9-14	반영		
RQ-0003	하단배너(고정)	좌측	정보 업데이트 일자 / 주기 안내	9-14	미반영		
RQ-0101	인트로	화면 개설	메인배너, 하단배너 고정	9-14	반영		
RQ-0102	인트로	언어	한국어	9-14	반영		
RQ-0103	인트로	가운데 영역	사용자가 여행 유형(키워드)를 선택/ 선호 유형 없을 시 '인기 숙소' 키워드 선택	9-7	제외		
RQ-0104	인트로	로그인	사용자 구별을 위한 로그인 기능 제공	10-5	반영		
RQ-0105	인트로	계정생성	신규 사용자를 위한 계정 생성 기능 제공	10-5	반영		
RQ-0106	인트로	재로그인	계정 오입력 시 재로그인을 위한 안내 기능 제공	10-5	반영		
RQ-0201	공통	배너	메인, 하단 배너	9-14	반영		
RQ-0202	공통	오른쪽 영역	우측에 코로나 지역별 단계 지도 및 최근 본 매물을 floating 형식으로 제공	10-5	일부반영	확인 아이템	제외
RQ-0203	공통	필터	지역, 인원, 숙소유형 등 요소를 선택 > 지역 선택만 가능	9-14	일부반영	지역선택	
RQ-0206	공통	추천 매물 개수	상단에 추천 리스트의 개수를 표시	9-7	제외		
RQ-0207	공통	숙소 정보	숙소명, 숙소 이미지, 숙소 위치, 숙소 가격을 제공 > 숙소 가격은 제외	9-14	반영		ĺ
RQ-0208	공통	숙소별 선호 표시	숙소 이미지에 좋아요 표시(클릭)	9-7	제외		
RQ-0301	인기숙소	배너	메인, 하단 배너	9-14	반영		
RQ-0302	인기숙소	오른쪽 영역	우측에 코로나 지역별 단계 지도 및 최근 본 매물을 floating 형식으로 제공	9-14	화면이동		
RQ-0303	인기숙소	필터	카테고리, 지역, 인원, 숙소유형 등 요소를 선택	9-14	일부반영		
RQ-0304	인기숙소	추천 매물 개수	상단에 추천 리스트의 개수를 표시	9-14	제외		
RQ-0305	인기숙소	숙소 정보	숙소명, 숙소 이미지, 숙소 위치, 숙소 가격을 제공	9-14	반영		
RQ-0306	인기숙소	숙소별 선호 표시	숙소 이미지에 좋아요 표시(클릭)	9-14	제외		
RQ-0307	인기숙소	좋아요 개수 표시	인스타그램 데이터를 바탕으로, 숙소별 선호도(좋아요)정보를 제공하고, 이를 기준으로 우선순위 배치	10-5	반영		
RQ-0308	인기숙소	숙소 상세페이지 연결	아이템 버튼을 통해 해당 숙소의 상세정보 페이지로 연결	10-5	반영		
RQ-0401	상세 페이지	배너	메인, 하단 배너	9-14	반영		
RQ-0402	상세 페이지	형태	숙소에 대한 상세한 정보를 제공	9-7	반영		
RQ-0403	상세 페이지	상세 설명	숙소명, 숙소 이미지, 위치, 가격, 인원, 코로나관련 정보, 지역 여행수요, 링크(논의 필요) 등을 제공	9-7	일부반영		Î
RQ-0404	상세 페이지	안전여행 가이드	- 코로나 안전여행을 위한 가이드라인을 제공(http://ncov.mohw.go.kr/socdisBoardView.do?brdId=6&brdGubun=1)	9-7	반영		

Outcomes: 화면 설계서 및 실제 화면

머신러닝을 이용한 서울 아파트 실거래가 예측

Data

- ✓ 국토 교통부 실거래가 데이터
 - ✓ 거래가격, 일자, APT명, 면적, 층수 등
- ✓ 전국 병원 리스트(주소 정보 활용)
- ✓ 서울 지하철 행정동 정보(역 명, 행정동명 등) Environment
- ✓ Python 3.6+ / Tableau
- ✓ Pandas / Seaborn / Meplotlib

Bankground

- ✓ 주택 거래량의 급 상승 ↑
- ✓ 전국 청약 경쟁률 ↑
- ✓ 불어나는 시중 유동성

<u>Purpose</u>

- ✓ 서울시 아파트 거래 밀집 지역 및 실거래가를 예측
- ✓ 투기성 부동산 거래에 대한 규제 및 대책 형성에 일조

Methodology

- ✓ 헤도닉 가격모형을 베이스로 하여 연구모형 구축
- ✔ 다양한 ML알고리즘을 시도하여, 최적의 알고리즘 도출
 - → KNN, DT, RF, GBM, LGBM, Xgboost 出교
 - ♪ 모델 성능은 MSE & RMSE를 통해 비교

머신러닝을 이용한 서울 아파트 실거래가 예측

Processing

피어슨 상관계수를 통한 상관관계 시각화

Price per square(구별 평당 공시지가)
Per_cost(해당 아파트 평당 가격)
Square(전용 면적)
Top10(아파트 브랜드)
Floor(층수)

5개 변수와 cost의 양의 상관관계를 확인

머신러닝을 이용한 서울 아파트 실거래가 예측

Processing

각 모델 별 MSE & RMSE 시각화

XGB > DT > RF > KNN > GBM > LGBM

순으로 모델 성능 확인

평균 오차(MSE)가 가장 낮게 나오는 LGBM 모델 선정

머신러닝을 이용한 서울 아파트 실거래가 예측

Processing


```
Igb.feature_importances_
array([ 88, 566, 3361, 62039, 58621, 1239, 1521, 51, 168, 78, 483, 0], dtype=int32)
```

Feature Selection : Feature Importance 이용

```
# 하이퍼 파라미터 튜닝
from sklearn.model_selection import GridSearchCV
    'learning_rate' : [0.1, 0.01, 0.001, 0.0001],
    'max_depth' : [1,2,3,4]
grid_cv = GridSearchCV(lgb, param_grid = params, cv=4, scoring='neg_mean_squared_error', verbose=1)
grid_cv.fit(X_train, y_train)
CPU times: user 3 μs, sys: 0 ns, total: 3 μs
Wall time: 5.72 µs
Fitting 4 folds for each of 16 candidates, totalling 64 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n jobs=1)]: Done 64 out of 64 | elapsed: 25.8min finished
GridSearchCV(cv=4,
             estimator=LGBMRegressor(learning_rate=0.001, linear_tree=True,
                                     max_depth=4, n_estimators=9000,
                                     objective='regression').
             param_grid={ 'learning_rate': [0.1, 0.01, 0.001, 0.0001],
                         'max_depth': [1, 2, 3, 4]},
             scoring='neg_mean_squared_error', verbose=1)
```

```
최적의 하이퍼 파라미터 : {'learning_rate': 0.1, 'max_depth': 4}
예측 오차 : -140939.36042289424
```

<u>Model tuning : GridSearch CV 적용</u>

머신러닝을 이용한 서울 아파트 실거래가 예측

Processing

CPU times: user 2 μs, sys: 0 ns, total: 2 μs Wall time: 5.25 μs

MSE : 537552.7584483256 RMSE : 733.1798950109895

RMSE가 733(만원) 정도로 오차가 파라미터 튜닝 전보다 절반정도로 줄었다.

RMSE 결과값 변화 추이(단위: 1만원)

<u>초기</u> Dataset	1차 하위변수 제거	2차 하위변수 제거	파라미터 튜닝 후
<u>1352</u>	1352	1355	<u>733</u>

튜닝한 하이퍼 파라미터를 통해서 test 데이터 확인

pred[0]

62496.679686278745

y_test.iloc[0]

62500

예측값 = <u>62496.68</u> 실제값 = 62500

2020 코로나 확산으로 인한 경제적 손실 분석 : 이태원 상권을 중심으로

Data

- ✓ 생활인구 특성 데이터 : 유동인구
- ✓ 상권 특성 데이터 : 추청 매출액
- ✓ 기타 특성 데이터 : 코로나 확진자, 폐업/공실률

Environment

- ✓ Python 3.6+ / Jupyter /Tableau
- ✓ Pandas / MySQL /Scikit-learn / Plotly

Bankground

- ✓ 코로나 이후 자영업계에 큰 손실이 발생되고 있음
- ✓ But 정부가 제안하는 자영업자 지원정책은 제한적임

<u>Purpose</u>

- ✓ 코로나 이후 개별 상권 자영업 손실 특성을 분석.
- ✓ 상권 특성을 반영한 구체적인 기준을 제시하고자 함.

Methodology

- ✓ 대표성, 위험성, 개성을 기준으로 타겟 지역 선정☑ 이태원 지역 선정(Gentrification)
- ✓ 매출 증감 분석 ♪ 상권별, 업종별로
- ✓ 업종,상권 군집분석 △ K-means 적용

2020 코로나 확산으로 인한 경제적 손실 분석 : 이태원 상권을 중심으로

<u>Issue 1 : 폐업률</u>

- ✓ 코로나 이후 폐업률이 지속적으로 증가하지 않음
- ✓ 폐업률이 증가했을 것이란 최초 가설 성립 🗙

Solution 1: 매출증감액 및 증감률 분석

- ✓ 예상과 달리, 일부 업종의 매출액 증가 확인
- ✓ 업종별 특성 구분의 필요성 도출

2020 코로나 확산으로 인한 경제적 손실 분석 : 이태원 상권을 중심으로

<u>Issue 2 : 군집 수 설정 기준</u>

- ✓ K-means 기법의 고질적인 한계이기도 한 군집수 설정
- ✓ 엘보우 & 실루엣 기법 > 상권별 업종 특성 반영 X

Solution 2 : 공신력 있는 기준 활용

- ✓ 서울신용보증재단의 코로나 상권 분류 기준
- ✓ 공신력있는 기관의 기준을 활용하여 상권 분류

전년도 대비 매출 증감액과 유동인구 기준이 비원 내 11개 지역의 군집분석 결과

2020 코로나 확산으로 인한 경제적 손실 분석 : 이태원 상권을 중심으로

<u>Issue 3 : 기존 정책과의 차별성</u>

- ✓ 기존 정책의 한계점을 극복할 수 있는 새로운 방법
- ✓ 기존 정책의 한계점 : 상권 특성과 업종 특성을 반영 X

Solution 3 : 포인트제를 도입한 새로운 지급 기준 제시

- ✓ 업종과 상권을 모두 기준으로 할 수 있음
- ✓ 각 영역 별 접수를 합산하여 지원금을 산정
- ✓ 새로운 특성을 반영하기에 용이하다는 장점

	업종	상권
1순위(2p)	고위험군	충격상권
2순위(1p)	중위험군	선방상권
3순위(0p)	저위험군	

2020 코로나 확산으로 인한 경제적 손실 분석 : 이태원 상권을 중심으로

Data

- ✓ 생활인구 특성 데이터 : 유동인구
- ✓ 상권 특성 데이터 : 추청 매출액
- ✓ 기타 특성 데이터 : 코로나 확진자, 폐업/공실률

Environment

- ✓ Python 3.6+ / Jupyter /Tableau
- ✓ Pandas / MySQL /Scikit-learn / Plotly

Bankground

- ✓ 코로나 이후 자영업계에 큰 손실이 발생되고 있음
- ✓ But 정부가 제안하는 자영업자 지원정책은 제한적임

<u>Purpose</u>

- ✓ 코로나 이후 개별 상권 자영업 손실 특성을 분석.
- ✓ 상권 특성을 반영한 구체적인 기준을 제시하고자 함.

Methodology

- ✓ 대표성, 위험성, 개성을 기준으로 타겟 지역 선정☑ 이태원 지역 선정(Gentrification)
- ✓ 매출 증감 분석 ♪ 상권별, 업종별로
- ✓ 업종,상권 군집분석 △ K-means 적용

- 1. 나눔스퀘어
- 2. 나눔바른고딕

— O —

PONYBUHAGOM

THANK YOU

PONYBUHAGOM.TISTORY.COM/NUMBER