Extras for Chapter 2

- A bit more what is likelihood
- Why do we need the normalization term
- Plotting a continuous function
- Why probability density can be larger than 1
- Explicit conditioning on model M

• Observation model (function of *y*, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.5$, n=10

• Observation model (function of *y*, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.5$, n=10

$$p(y|n = 10, \theta = 0.5)$$
: 0.00 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.00

• Observation model (function of *y*, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

• Observation model (function of *y*, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.5$, n=10

$$p(y = 6|n = 10, \theta = 0.5)$$
: 0.00 0.01 0.04 0.12 0.21 0.25 **0.21** 0.12 0.04 0.01 0.00

• Observation model (function of *y*, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

$$p(y = 6|n = 10, \theta = 0.9)$$
: 0.00 0.00 0.00 0.00 0.00 **0.01** 0.06 0.19 0.39 0.35

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

• Likelihood (function of θ , continuous)

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

integrate (function (theta) dbinom (6, 10, theta), 0, 1) ≈ 0.09

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

where
$$p(y|n) = \int p(y|\theta, n)p(\theta|n)d\theta$$

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

where
$$p(y|n) = \int p(y|\theta, n)p(\theta|n)d\theta$$

Start with uniform prior

$$p(\theta|n) = p(\theta|M) = 1$$
, when $0 \le \theta \le 1$

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

where
$$p(y|n) = \int p(y|\theta, n)p(\theta|n)d\theta$$

Start with uniform prior

$$p(\theta|n) = p(\theta|M) = 1$$
, when $0 \le \theta \le 1$

Then

$$p(\theta|y,n) = \frac{p(y|\theta,n)}{p(y|n)} = \frac{\binom{n}{y}\theta^{y}(1-\theta)^{n-y}}{\int_{0}^{1}\binom{n}{y}\theta^{y}(1-\theta)^{n-y}d\theta}$$
$$= \frac{1}{Z}\theta^{y}(1-\theta)^{n-y}$$

Normalization term Z (constant given y)

$$Z = p(y|n) = \int_0^1 \theta^y (1-\theta)^{n-y} d\theta = \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

• Evaluate with y=6, n=10 y<-6; n<-10; integrate (function(theta) theta^y*(1-theta)^(n-y), 0, 1) ≈ 0.0004329

Normalization term Z (constant given y)

$$Z = p(y|n) = \int_0^1 \theta^y (1-\theta)^{n-y} d\theta = \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

• Evaluate with y = 6, n = 10 y<-6; n<-10; integrate (function (theta) theta^y*(1-theta)^(n-y), 0, 1) ≈ 0.0004329 gamma (6+1) *gamma (10-6+1) /gamma (10+2) ≈ 0.0004329

Posterior is

$$p(\theta|y,n) = \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)}\theta^{y}(1-\theta)^{n-y},$$

which is called Beta distribution

$$\theta|y,n\sim \text{Beta}(y+1,n-y+1)$$

Sometimes conditioning on the model M is explicitly shown

$$p(\theta|y,n,M) = \frac{p(y|\theta,n,M)p(\theta|n,M)}{p(y|n,M)}$$

where
$$p(y|n, M) = \int p(y|\theta, n, M)p(\theta|n, M)d\theta$$

Sometimes conditioning on the model *M* is explicitly shown

$$p(\theta|y,n,M) = \frac{p(y|\theta,n,M)p(\theta|n,M)}{p(y|n,M)}$$

where
$$p(y|n, M) = \int p(y|\theta, n, M)p(\theta|n, M)d\theta$$

- makes it more clear that likelihood and prior are both part of the model
- makes it more clear that there is no absolute probability for p(y|n), but it depends on the model M
- in case of two models, we can evaluate marginal likelihoods $p(y|n, M_1)$ and $p(y|n, M_2)$ (more in Ch 7)

Sometimes conditioning on the model *M* is explicitly shown

$$p(\theta|y,n,M) = \frac{p(y|\theta,n,M)p(\theta|n,M)}{p(y|n,M)}$$

where
$$p(y|n, M) = \int p(y|\theta, n, M)p(\theta|n, M)d\theta$$

- makes it more clear that likelihood and prior are both part of the model
- makes it more clear that there is no absolute probability for p(y|n), but it depends on the model M
- in case of two models, we can evaluate marginal likelihoods $p(y|n, M_1)$ and $p(y|n, M_2)$ (more in Ch 7)
- usually dropped to make the notation more concise