

TRANSFER ERROR COMPENSATION IN A PRINTING MACHINE

5 Background of the Invention:

Field of the Invention:

The invention relates to a printing machine, preferably for printing sheet-type material, which includes at least two printing unit groups having drives which are decoupled from one another and assigned, respectively, to one printing unit group, the printing unit groups having printing units with transfer cylinders and, for transferring the printed sheets, a dynamic control device and compensation elements for compensating for speed differences and positional errors between two printing unit groups. In addition, the invention relates to a method of transferring printed sheets in a printing machine of this type.

A printing machine with a great number of printing units is beset by a problem that the fundamental or inherent mechanical frequency thereof shifts to ever lower values the greater the number of printing units. This fundamental frequency is already excited at the printing speeds which are common nowadays, and contributes to an impairment or deterioration of the printed image.

Approaches for minimizing the influence of these fundamental or inherent frequencies are, for example, active or passive oscillation damping. With regard to active oscillation damping, the oscillations are damped by employing highly 5 dynamic actuators for introducing additional energy for damping, while passive dampers, such as absorber systems, serve merely for absorbing the oscillation energy.

An alternative to these systems is offered by printing 10 machines which are decoupled into two or more printing unit groups, each printing unit group containing its own drive. In this regard, during the transfer of a printed sheet from a preceding printing unit group to a succeeding printing unit group, differences in the speed and the position of the 15 transported printing sheets have to be taken into account. These differences produce a transfer error leading to damage to the printed sheet or to faulty printing results.

In order to reduce this transfer error, the published German 20 Patent Document DE 197 42 461 A1 discloses a device and a method for synchronizing printing unit groups. For this purpose, the device is provided with a transfer station having a separate drive. The separate drive is initially synchronized with the operating parameters of the preceding printing unit 25 group, and the printed sheet is accepted by the transfer station. The drive of the transfer station is then

synchronized with the succeeding printing unit group, and the printed sheet is passed on to the latter. A disadvantage of this device is that a transfer station is required for each printing unit group. In addition to a control system, a
5 considerable amount of mechanical equipment is required for realizing this synchronization. In addition, torque fluctuations which are caused by the transfer devices, such as gripper systems, remain unconsidered.

- 10 A further possibility for reducing the transfer error is disclosed by the published German Patent Document DE 44 06 740 A1. A device is described therein which has displaceably arranged sheet holders. The sheet holders are movable in the peripheral direction and in the axial direction
15 of the transfer cylinder of the preceding printing unit group. Before the transfer, the speed difference and the positional difference of the printed sheet are determined by computation. This is performed by sensors and a control device for processing the operating parameters. If a speed difference and
20 a positional difference, respectively, are determined, the appropriate sheet holder is displaced by actuators in the conveying direction of the printed sheet and, transversely thereto, into the calculated or computed position and is transferred to the succeeding printing unit group. The
25 actuators are accordingly controlled by the control device.

A disadvantage of this device is that a positional displacement caused by the transfer remains unconsidered by the positional correction. It is also disadvantageous that torque fluctuations caused by transfer equipment, and a speed change induced thereby, such as are produced by gripper systems and dynamic sheet holders, remain unconsidered by the positional correction.

The transfer performed by the devices and methods of the prior art is therefore inadequate and faulty, which results in a lower print quality, and damage to the sheet material.

Summary of the Invention:

Consequently, it is an object of the invention to provide a method and device for compensating for transfer errors in a printing machine which overcome the foregoing disadvantages and permit error-compensated transfer of the printed sheets, with regard to position and speed, between printing unit groups.

With the foregoing and other objects in view, there is provided, in accordance with one aspect of the invention, a printing machine, which includes at least two printing unit groups having drives which are decoupled from one another and assigned, respectively, to one printing unit group, and having printing units with transfer cylinders, comprising

compensation elements for compensating for speed differences and positional errors between two printing unit groups, the compensation elements being assigned to a printing unit group which is an accepting printing unit group, in order to
5 compensate for transfer errors.

In accordance with another aspect of the invention, there is provided a printing machine, which includes at least two printing unit groups having drives which are decoupled from one another and assigned, respectively, to one printing unit group, and having printing units with transfer cylinders, comprising compensation elements for compensating for speed differences and positional errors between two printing unit groups, the compensation elements being assigned to a first transfer cylinder of a printing unit group which is an accepting printing unit group, in order to compensate for transfer errors.
10
15

In accordance with a further aspect of the invention, there is provided a printing machine for printing sheet material, which includes at least two printing unit groups having drives which are decoupled from one another and assigned, respectively, to one printing unit group, and having printing units with transfer cylinders, comprising, for transferring the printed sheets, a dynamic control device and compensation elements for compensating for speed differences and positional errors
20
25

between two printing unit groups, the compensation elements being assigned to a first transfer cylinder of a printing unit group which is an accepting printing unit group, in order to compensate for transfer errors.

5

In accordance with an added aspect of the invention, there is provided a printing machine for printing sheet-type material, which includes at least two printing unit groups having drives which are decoupled from one another and assigned,

- 10 respectively, to one printing unit group, and having printing units with transfer cylinders, which comprise, for transferring the printed sheets, a dynamic control device and compensation elements for compensating for speed differences and positional errors between two printing unit groups, the
15 compensation elements being assigned to a printing unit group which is an accepting printing unit group, in order to compensate for transfer errors.

TOP SECRET//NOFORN

In accordance with an additional feature of the invention, the
20 dynamic control device is connected for communicating with the printing unit groups so as to record operating parameters, and

is connected for communicating with the compensation elements so as to control the transfer.

- 25 In accordance with yet another feature of the invention, the printing machine includes sensors selected from the group

consisting at least of charge-coupled switching elements, photosensors, electronic and electromagnetic sensors, and assigned to the printing unit groups, for recording operating parameters of the printing unit groups, and for passing the
5 parameters on to data processing elements of the dynamic control device.

In accordance with yet a further feature of the invention, the printing machine is provided with sensors selected from the
10 group thereof consisting of charge-coupled switching elements, photosensors, and electronic and electromagnetic sensors.

In accordance with yet an added feature of the invention, the compensation elements have a gripper system which, in order to
15 compensate for a speed difference between two printing unit groups and to correct the position of the printed sheet, is arranged parallel to the cylinder surface and axially displaceably on the first transfer cylinder of the accepting printing unit group.

20

In accordance with yet an additional feature of the invention, the gripper system comprises a dynamic actuator and a gripper bar for picking up the printed sheets, the position of the gripper bar being displaced by the actuator at constant radius
25 in a peripheral direction on the transfer cylinder in accordance with the difference in speed.

In accordance with still another feature of the invention, the actuator is an element selected from the group thereof consisting of piezoelectric and magnetostriuctive elements.

5

In accordance with still a further feature of the invention, the cylinders of the printing unit groups have an arrangement by which, after the printed sheet has been accepted by the gripper system of the transfer cylinder, the printed sheet is fixed only at one location in the accepting printing unit group.

10

In accordance with still an added feature of the invention, the gripper bar is axially displaceable in the direction of the axis of rotation of the first transfer cylinder for 15 correcting the position of the printed sheet.

15

In accordance with still an additional feature of the invention, there is provided a method of transferring printed sheets in a printing machine, which comprises determining a 20 difference in speed between two decoupled printing unit groups, and displacing a gripper system parallel to the surface of a cylinder during the sheet transfer so as to compensate thereby for the difference in speed between the 25 printing unit groups on a first transfer cylinder of an accepting printing unit group.

TOPAZ DESIGN CO

In accordance with another aspect of the invention, the method includes determining a positional error of the printed sheet on the first transfer cylinder of the accepting printing unit

- 5 group, and correcting the position of the printed sheet parallel to the cylinder surface and axially displaceably on the first transfer cylinder of the accepting printing unit group.

- 10 In accordance with a further aspect of the invention, a dynamic ce registers the operating parameters of the printing unit groups before the printed sheet is transferred, determine differences in speed and controls the compensation elements in a compensatory manner during the sheet transfer.

- 15 In accordance with an added aspect of the invention, the method includes having the dynamic control device register the position of the printed sheet on the first transfer cylinder of the accepting printing unit group after the sheet transfer,
- 20 and control the compensation elements in a corrective manner after the sheet transfer.

- In accordance with an additional aspect of the invention, the method includes completing the positional correction before
- 25 the sheet transfer to the second cylinder of the accepting printing unit group.

In accordance with an 18. The method according to claim 13,
which includes, in a first step, wherein a difference in speed
is compensated for, displacing the actuator parallel to the
5 cylinder surface of the first transfer cylinder of the
accepting printing unit group; in a second step, having the
gripper system of the first transfer cylinder of the accepting
printing unit group accept the printed sheet from the
preceding printing unit group; in a third step, registering
10 the position of the printed sheet and, if necessary,
determining a positional correction; in a fourth step, having
the actuator make the positional correction on the first
transfer cylinder of the accepting printing unit group; in a
fifth step, having the actuator moved into a rest position for
15 the printed sheet transfer to the second cylinder of the
accepting printing unit group; and in a sixth step, moving the
actuator back into the initial position thereof after the
printed sheet transfer to the second cylinder of the accepting
printing unit group.

20

The printing machine according to the invention provides one
solution to the problem, compensation elements assigned to the
accepting printing unit group, preferably to the first
transfer cylinder of the accepting printing unit group. This
25 makes it possible for the speed difference to be compensated
for only after the transfer has already been made. The effect

of this is that the torque fluctuations which, for example, are caused by a dynamic gripper system, are taken into account with the compensation of the speed difference. In addition, the positional correction takes place after the transfer, by
5 which displacements which are made during the transfer can still be corrected. The compensation of the transfer error can therefore be carried out directly, so that it is possible to dispense with a prior calculation, which is generally erroneous, of a transfer error which is to be expected by the
10 data processing elements of a control device.

One configuration of the invention is provided by having the dynamic control device connected so as to communicate with the printing unit groups, preferably with the individual printing units, in order to record operating parameters, and being connected so as to communicate with the compensation elements in order to control the transfer. The direct compensation for the transfer error makes it possible to take into account the operating parameters of the printing unit groups during the
15 transfer. This makes it necessary to make the operating parameters of the control device available without delay.
20 Advantageously, differences in the speed and the position can be detected immediately, and the compensation elements can be activated accordingly.

A further configuration of the invention is provided by sensors, preferably charge-coupled switching element, photosensors, electronic or electromagnetic sensors, being assigned to the printing unit groups, recording the operating parameters of the printing unit groups and passing the parameters on to data processing elements of the dynamic control device. Using the sensors, it is advantageously possible to register the rotational speeds of the cylinders, the conveying speed of the printed sheet and the position of the printed sheet using the edge position. In this regard, the edge position of the printed sheet is advantageously determined by using the leading edge in relation to the conveying direction of the printed sheet, because this is registered first by the sensors of the accepting printing unit group. The operating parameters of the successive printing unit groups are preferably determined. If this information is not sufficient to compensate for the transfer error, further information is registered by additional sensors, such as linear CCDs, light barriers in connection with counters and the like. Using this information, a speed difference during the transfer, and therefore the error in the transfer register can be determined. During the determination of the value for the transfer register, the action which is necessary in order to compensate for the speed difference is likewise taken into account.

- In a preferred configuration of the apparatus, the compensation elements have a gripper system which, in order to compensate for a speed difference between two printing unit groups and to correct the position of the printed sheet, is
- 5 arranged parallel to the cylinder surface and axially displaceably on the first transfer cylinder of the accepting printing unit group. These compensation elements can advantageously comprise a dynamic actuator, for example a piezoelectric or magnetostrictive element or a linear direct
- 10 drive, and a gripper bar for picking up the sheets, the actuator displacing the position of the gripper bar at constant radius in the peripheral direction of the transfer cylinder.
- 15 According to the invention, the difference in speed is compensated for during the transfer, and the positional difference is advantageously corrected after the transfer, when the printed sheet is fixed only by a pair of cylinders in the accepting printing unit group, because then the final
- 20 positional displacement can be determined. If necessary, this can be carried out directly in the printed image. To this end, according to the invention, the device has an arrangement of the cylinders of the printing unit groups by which, after the transfer of the printed sheet by the gripper system of the
- 25 transfer cylinder, the printed sheet is fixed only at one location in the accepting printing unit group.

Advantageously, in order to correct the position of the printed sheet, the gripper bar can also be configured to be displaceable axially in the direction of the axis of rotation 5 of the first transfer cylinder, in order to permit the positional correction.

A further advantageous solution is provided by a method of transferring printed sheets in a printing machine.

In this regard, a difference in speed determined between two decoupled printing unit groups is compensated for during the transfer, the gripper system on the first transfer cylinder of the accepting printing unit group being displaced parallel to 15 the cylinder surface. A positional error of the printed sheet is corrected on the first transfer cylinder of the accepting printing unit group by the gripper system, by the latter being displaced parallel to the cylinder surface and axially in the direction of the cylinder axis.

One method variant is provided by the dynamic control device registering the operating parameters of the printing unit groups, preferably by sensors, before the transfer of the printed sheet, determining speed differences and controlling 25 the compensation elements in a compensatory manner during the transfer. Likewise, the position of the printed sheet is

registered on the first transfer cylinder of the accepting printing unit group after the transfer, and the compensation elements are controlled in a corrective manner after the transfer.

5

The positional correction is advantageously completed before the transfer to the second cylinder of the accepting printing unit group, because after the transfer to the second cylinder, the printed sheet is fixed at two points and a positional correction requires considerably more effort.

10

In a preferred configuration of the method, the steps are combined, so that in a first step, to compensate for a difference in speed, the actuator is displaced parallel to the cylinder surface of the first transfer cylinder of the accepting printing unit group, in a second step the gripper system of the first transfer cylinder of the accepting printing unit group accepts the printed sheet from the preceding printing unit group, in a third step the position of the printed sheet is registered and, if necessary, a positional correction is determined, in a fourth step the actuator makes the positional correction on the first transfer cylinder of the accepting printing unit group, in a fifth step the actuator is moved into a rest position for the transfer to the second cylinder of the accepting printing unit group, and in a sixth step the actuator is moved back into its initial

15

20

25

position after the transfer of the printed sheet to the second cylinder of the accepting printing unit group. The actuator is positioned in its initial position, in which it can carry out the maximum compensatory movement in any direction during the
5 next transfer. During the transfer to the second cylinder of the accepting printing unit group, the actuator is at rest in order that any positional displacement after the positional correction is avoided.

10 By decoupling the printing machine into a number of printing unit groups, according to the invention, and error compensation during the transfer of the printed sheet from one printing unit group to the next, very long printing machines can be realized. As a result of the configuration according to
15 the invention, and as a result of the method, the length of the printing machine is no longer limited by mechanical influences, but only by the increase in control outlay involved in the error compensation of a number of decoupled and separately controlled printing unit groups.

20

Other features which are considered as characteristic for the invention are set forth in the appended claims.

Although the invention is illustrated and described herein as
25 embodied in a device and method for transfer error compensation in a printing machine, it is nevertheless not

intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.

5

The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings, wherein:

Brief Description of the Drawings:

Fig. 1 is a diagrammatic side elevational view of a printing machine having a plurality of printing units, namely, nine in the illustrated embodiment, arranged in-line, and decoupled into two printing unit groups;

Fig. 2 is a plot diagram or coordinate representation of the rotational speeds of the printing unit groups plotted against the machine angle in degrees during the transfer of a printed sheet;

Fig. 3 is a block diagram for controlling the speed difference;

25

Fig. 4 is a block diagram for controlling the positional correction;

Fig. 5 is a diagrammatic end view of a transfer cylinder
5 showing a gripper system thereon; and

Fig. 6 is an enlarged fragmentary view of Fig. 1 showing a different embodiment of an arrangement of cylinders in a transfer region thereof.

100-0547-2420

10 15 20 25

Description of the Preferred Embodiments:

Referring now to the drawings and, first, particularly to Fig. 1 thereof, there is shown therein a printing machine 1 having a plurality of printing units 2 and 3, namely, nine printing units 2 and 3 in the embodiment of Fig. 1, arranged in-line. A sheet to be printed is transported from a feeder 4, through the printing units 2 and 3, to a delivery 5. The printing units 2, which constitute a printing unit group II, and the feeder 4 are connected to one another by a gear train, which is represented by an arrow 6. The drive to this printing unit group II, together with the feeder 4 is effected by a motor 7. The printing units 3, which constitute a printing unit group III, together with the delivery 5 are likewise connected to one another by a gear train, which is represented by an arrow 8. The drive for this printing unit group III together with the delivery 5 is provided by a motor 9. Between the two

printing unit groups II and III, respectively, the printed sheet is transferred from the printing unit group II to the printing unit group III by transfer elements 10. Arrows 11 indicate a transfer plane between the printing unit groups II and III. The transfer elements 10 in the illustrated embodiment of Fig. 1 are represented by an impression cylinder 12 and a transfer cylinder 13. The plane represented by the line 11 also represents the decoupling of the printing unit groups II and III, the impression cylinder 12 of the printing unit group II being assigned to the transfer cylinder 13 of the printing unit group III. The printed sheet is passed on from the impression cylinder 12 to the transfer cylinder 13. The transfer error compensation is performed at the transfer cylinder 13.

For this purpose, the motors 7 and 9 are controlled by a control device 14. The task of the control device 14 is to control the motors 7 and 9 in accordance with a prescribed desired or nominal speed so that the prescribed angular difference between the two printing unit groups II and III is not exceeded. The maximum difference depends upon the dynamics of the drives. In addition, the task of the control device 14 is to determine the operating parameters at the instant of time that the printed sheet transfer occurs and to communicate the parameters to the compensation elements 15. The compensation elements 15 are not shown as such in the drawings

and are assigned to a gripper system 18 on the transfer cylinder 13. According to the invention, the compensation elements 15 serve to compensate for the transfer error.

5 Fig. 2 is a coordinate representation or plot diagram of the rotational speeds of the printing unit groups II and III against the machine angle in degrees. The curve n_1 represents the rotational speeds of the printing unit group II from Fig. 1; the curve n_2 represents the rotational speeds of the 10 printing unit group III from Fig. 1. The rotational speeds n_1 of the printing unit group II, fluctuate with respect to the rotational speeds n_2 of the printing unit group III. The task of the compensation elements 15, which constitute a dynamic actuator 16 and a gripper system 17, 18, is believed to be 15 readily apparent in the sections I-IV of the transfer shown in Fig. 2.

In section I, the actuator 16 compensates for the phase difference between the printing unit groups II and III. This 20 is performed during the transfer from the gripper system 17 of the printing unit group II to the gripper system 18 of the printing unit group III. To this end, the actuator 16, and therefore the gripper system 18, is displaced a phase difference A_1 . At a location 21, transfer of the printed sheet 25 takes place.

In section II, the actuator 16 performs a positional correction A_2 between the printing unit group II and the printing unit group III, after the printed sheet remains fixed only by the gripper system 18 of the first transfer cylinder 5 13 of the accepting printing unit group III. In this regard, the positional difference A_1 has to be taken into account, it having been induced by the torque fluctuations produced in section I by the gripper system 17, 18 and the actuator 16, respectively.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
95

Fig. 3 is a block diagram for controlling the speed difference performed during the transfer of the printed sheet from the printing unit group II to the printing unit group III. First,

5 the rotational speeds n_1 and n_2 are determined and passed on to the control device 14 as desired or nominal values. The control device 14 may be constructed as a PI controller and determines the displacement A_1 of the actuator 16 for the compensation of the speed difference between the two printing
10 unit groups II and III. The control device 14 controls the gripper system 18, which constitutes the actuator 16 and a gripper bar 20 with the printed sheet. The actual position of the actuator 16 serves as a correction value n_{act} for taking into account the respective displacement of the actuator 16.

15

Fig. 4 is a block diagram for controlling the positional correction. Through the intermediary of the switch 23, the positional values of the printed sheet ϕ_1 and ϕ_2 are made available to the control device 14, which uses them to
20 determine the desired or nominal value ϕ_{des} of the positional displacement A_2 . Then, the displacement A_1 of the actuator 16 and of the gripper system 18 which has been performed by the displacement compensation is taken into account, as described in relation to Fig. 3. By a correction value ϕ_{act} , the
25 position of the actuator 16 is taken into account during the positional correction. Via the switch 23, the actuator 16 is

set to zero again following the transfer of the printed sheet to the gripper system of the second cylinder 19 (note Fig. 6), and is moved back over the displacement A_3 into the initial position.

5

Ind A)
Fig. 5 shows a gripper system 18 on a transfer cylinder 13. Here, the gripper system 18, arranged in a cylinder gap or channel 24 extending axially in a sheet-carrying transfer cylinder 13 of the printing machine 1, is arranged on a slide 25 which has an angular cross section. At the upper end of an upwardly directed slide leg, there is disposed a gripper pad 26 for a gripper 27 of the gripper system 18 arranged on the slide 25. The horizontally extending leg 28 of the slide 25 is arranged by rolling-contact bearings on a non-illustrated bearing plate which can, in turn, move on rolling-contact bearings in the axial direction of the transfer cylinder 13. At both axial ends of the transfer cylinder 13, actuators are connected to the slide 25 and are activatable counter to the action of a spring which is braced by one end against the horizontal leg 28 of the slide 25 and by the other end against the wall of the cylinder gap or channel 24 formed in the transfer cylinder 13. The actuators are movable perpendicularly to the plane of the drawing, counter to the action of a spring. Arranged on the surface of the gripper pad 26 are electronic measuring elements, for example linear CCDs which can be illuminated, for registering the leading edge of

the printed sheet, and the measuring elements supply, via a computer, control pulses for the actuators for the positional correction of the printed sheet in the conveying direction.

For lateral sheet alignment, electronic measuring elements,

5 for example likewise linear CCDs which can be illuminated, are arranged at least at one axial end of the transfer cylinder

13. The latter linear CCDs can be set in a conventional manner, as a function of the format, and, via one of the data processors of the control device 14, as shown in Fig. 1,

10 control the actuators for the displacement of the gripper system 18 on the carriage in the direction of the cylinder axis. By using a desired or nominal/actual comparison, the measured values from the electronic measuring elements on the gripper pad 26 are used by the control device 14 to obtain

15 control pulses for the actuators for the positional correction in the conveying direction of the printed sheet and, by the electronic measuring elements at the axial cylinder end, to obtain control signals for the lateral positional correction of the printed sheet. During these correctional movements, the

20 printed sheet is held securely in the gripper system 18, so that the in-register transfer of the printed sheet to the gripper system of the subsequent second cylinder 19 of the printing unit group III is assured. Only after the printed

sheet has been released by the gripper system 18 does the

25 slide with the gripper system 18 arranged thereon return to the zero position as a result of the spring action.

FOURTY-SEVEN

Fig. 6 is a diagrammatic view of cylinders during the transfer of a printed sheet. In this regard, the cylinders are arranged between two printing unit groups II and III so that the
5 transfer-error compensation can be performed according to the invention. The printing unit groups II and III are decoupled. The decoupling is represented by the straight broken line. The printed sheet is transferred by the gripper system 17 of the last sheet-carrying cylinder of the printing unit group II,
10 which is represented as the impression cylinder 12, to the gripper system 18 of the transfer cylinder 13 of the printing unit group III. The printed sheet is then passed onward from the first transfer cylinder 13 of the printing unit group III to the second cylinder 19, which is represented as the first impression cylinder of the printing unit group III. Before
15 being transferred to the gripper system of the second cylinder 19 of the accepting printing unit group III, the printed sheet is fixed at only one location. In this position, the positional compensation of the printed sheet can therefore be
20 performed most desirably.