Abschlußbericht

Einsatz der Mikromechanik zur Herstellung frequenzanaloger Sensoren

Teilprojekt: Design, Herstellung und Charakterisierung von Sensoren mit thermischen Anregungsprinzip

Förderungskennzeichen: 13 AS 161A

Verbundpartner:

- (1) Fa. GMSmbH
- (2) HSG/ Institut f. Mikro- und Informationstechnik
- (3) BIZERBA Werke Balingen

Projektleiter:

- (1) Dipl.Phys. A.Schmid/ Dr.H. Bartuch
- (2) Dipl.Phys. H.-J. Wagner

Teilprojektbearbeiter: Dipl.Phys. T. Fabula

(3) Dr. K.P. Selig

Projektlaufzeit:

1.7.1989 - 31.12.1992

Arbeitsinhalte

Fa. GMSmbH

- Entwickung einer Labortechnologie zur Herstellung frequenzanaloger Sensoren auf Si-Basis mit den Schwerpunkten:
 - Untersuchungen an SiOxNy-Plasma-CVDSchichten
- Untersuchungen zur elektr. Stabilität eines löt- und bondbaren Kontaktschichtsystems
 - Anisotropes Si-Ätzen resonanter Balkenstrukturen
 - Layoutentwicklung und Bereitstellung von Maskensätzen
 - Musterbereitstellung

HSG/IMIT

- Charakterisierung des Schwingungsverhaltens der Balkenstrukturen auf dafür entwickelten Meßplätzen bei passiver und aktiver Anregung
- Untersuchungen der sensitiven Eigenschaften der Resonanzfrequenz
- FEM-Berechnungen für Redesign und Wärmebilanz des Sensors

BIZERBA-Werke

- -Entwicklung einer elektronischen An regungsschaltung
- schwingungstechn.
 Charakterisierung aktiv angeregter Sensoren und exp. Bestimmung der Temperaturverteilung
- Untersuchungen zum Strömungseinfluß auf die Resonanzfrequenz

Topics

- Zusammenfasung der Untersuchungen an SiOxNy-Plasma
 CVD Schichten
- 2. Zusammenfassung der Untersuchungen zur elektr. Stabilität eines löt- und bondbaren Kontaktschichtsystems
- 3. Charakterisierung anisotrop geätzter resonanter Balkenstrukturen
- 4. Realisierung des thermischen Anregungsprinzips
- 5. Meßergebnisse zum sensitiven Verhalten der Strukturen
- 6. Schlußbemerkung

Parallelplattenreaktor

3555 mm
300 mm
105 kHz
100500 W
bis 350 ⁰ C
0.5 1 mbar

Untersuchungen zur Eignung als Ätzmaskierung und zur Membranherstellung

		Ätzrate (KOH 30%/80°	Prozeßtemperatur	
		vertikal	lateral	
S	i3N4	1 nm/min		
S	iOxNy	6 nm/min.	24μ m/h	100°C 200°C
S	i02	7.8 nm/min		
tl	herm. Oxid	7.2 nm/min		

- Eine zwar gute selektive Ätzbarkeit der Si3N4-Schichten gegenüber Si, aber zu starke laterale Unterätzungen und trotz abgesenkter Substrattemperatur zu hohe Schichtspannungen (Rißbildung) hatten zur Folge, daß dieser Weg nicht weiter beschritten wurde.
- Die technologischen Untersuchungen zum Aufbringen einer sensitiven Metallschicht (Ni) wurden gleichfalls eingestellt.
- Als Ätzmaskierung für die weitere Arbeiten wurde ausschließlich thermisches SiO2 in Betracht gezogen.

Untersuchungen zur Eignung als Passivierungs- bzw. Isolationsschicht

	Si3N4	SiO2
Substrattemp.	150°C	300°C
Rate	30 nm/min	100 nm/min
Ätzrate (BHF 6:1)		160 nm/min
	therm.Oxid	40 nm/min
Schichtdicke 12μm	hohe Pinholdichte; ungenügenderSchutz gegen a	aggressive Medien
		Verbesserung der Stabilitätseigen- schaften von NiCr
Schichtdicke 58μm		vereinzelt Pinhols
Durchbruchsfeldstärke		$> 2*10^6 \text{ V/cm}$
		als Isolationsschicht gut geeignet

- Passivierungseigenschaften lassen sich auf Grundlage der bisherigen Untersuchungen bei Bedarf gezielt verbessern.
- Erkenntnisse aus Untersuchungen der Isolationseigenschaften der SiO2-Schichten werden bereits technologisch genutzt.

Elektrisches Kontaktsystem

li forderungen:

olie 8

- lötbar, bondbar
- hohe thermische und mechanische Stabilität im Bereich von 120°C bis 180°C
 - ätzresistent gegenüber KOH

KONTAKTSYSTEMVARIANTEN

barriere	Ni(400)	Au(160)
77 (50)		Au(160)
		Au(160)
		Au(160)
-	- Ni(50) Ni(50)/Ti(60) Ti(50)	Ni(50)/Ti(60) Pd(448)

Schichtdicke in nm

Technologie:

fichtabscheidung : Elektronenstrahl; in Vakuumfolge

≤ rukturierung : naßchemisch

Fontaktformierung: Variante 1 Variante 2

280°C, 2.5 h Luft 350°C, 24 h N2

Elektrische Untersuchungen — experimentelle Parameter

Teststruktur: Substrat

Dünnschichtkeramik

Vorderseite Heizschicht 200 Ohm, Kont.-sch.

Rückseite

Ni-Temp.-Meswiderstand

Anschlüsse

Cu—Draht, gelötet

impulsparameter:

Imp.-Länge 1 sec; Frequenz 0.1 Hz

Leistung 0.98 W; Strom 70 mA

Impulsspitzentemperatur: $(175+/-5)^{\circ}C$

Ofeniemperung: (150+/-5)°C $(175 + / -5)^{\circ}C$

Kontaktaufbau	Vorbehandlung	gelötet	gebondet
Ni/Au	- 280°C		
	350°C		7////
Ni/Pd/Au	280.C		XXXX
	350°C		7////
Ni/Ti/Pd/Au	280°C	\triangle	· XXXX
	350°C	A	7/////
NiCr-Gru	ndkurve 280°C	. <	\rightarrow

Elektrisches Kontaktsystem

Ergebnisse

- Eine signifikante Zunahme des Kontaktübergangswiderstandes bei Bondverbindungen und Temperaturen bis 200°C wurde variantenunabhängig nicht festgestellt.
- Lötverbindungen mit Standardkontaktsystem sind bei entsprechender thermischer Vorbehandlung (350°C, 24 h N2) bis ca. 160°C stabil möglich.
- Haftfestigkeit auf therm. SiO2 ist kritisch. Bewährt hat sich NiCr als zusätzliche Haftschicht.

Resonante Balkenstrukturen

Abb. 1 Baikenstruktur

Die erste Resonanzfrequenz errechnet sich nach der Gleichung für einen, an beiden Seiten fest eingespannten, Balken

$$f_0 = 1,026 \frac{t}{l^2} \sqrt{\frac{E_{710}}{\rho}}$$
 (1)

mit

Baikendicke

 $t = 50 \mu m$

reduziertes E-Modul $E_{110} = 1.7 \cdot 10^{11} Pa$,

Dichte

 $\rho = 2.329 \, \text{g/cm}^3$.

f,[Hz]
4380 (1,00)
6850 (1,00)
12170 (1,00)
27390 (1,00)
48700 (1,00)

Technologie

Substrate: beidseitig polierte und oxidierte 3" Si - Wafer; Orientierung (100)

Laserjustierbohrung

Belacken der Vorder und Rückseite

Belichten, Entwickeln, Ätzen der SiO2-Maskierung für die V - Gruben

> Belacken der Vorder und Rückseite

Belichten, Entwickeln, Ätzen der SiO2 - Maskierung für die rückseitigen Fenster

gleichzeitiges Ätzen von V - Gruben und Fenster in KOH (30 %, 60°, 16h)

Vereinzein

geometr. Meßdaten						
μm		Breit	.e		Dic	ke*
Wafer- Nr.	V-Gr Soll	ube Ist	Ball Soll	ken Ist	Bal Soll	ken Ist
4	70	90	900	870	50	3035
5	70	83	900	887	50	4852
5	70	80	900	892	50	5650

[&]quot; durch HSI mit REM bestimmt

Frequenzspektrum eines 10mm-Schwingers

		Berechnun	g		. Mess	ung	
1 .	· f _i [Hz]	berechnet	Verhältnis	Balken . #	gemessen	Güte	Verhältnis
	f_0	4380	1,00	1 2	4150 -	296 -	1,00 -
10	fi	12050	2,75	1 2	11390 -	872	2,75 -
	f_2	23560	5,38	1 2	22410 -	442 -	5,40 -
	f ₀	6850	1,00	1 2	7180 7330	⁻ 377 488	1,00 1,00
8	f_1	18840	2,75	1 2	19900 18990	836 950	2,77 2,59
	f ₂	36850	5,38	1 2	36610 36260	610 1133	5,10 4,95
	f_0	12170	1,00	1 2	14080 13740	140 138	1,00 1,00
6	f _i	33470	2,75	1 2	38320 37580	50 257	2,73 2,73
·	f_2	65470	5,38	1 2	-	-	- -
	f ₀	27390	. 1,00	1 2	26860 26120	290 523	1,00 1,00
4	f ₁	75320	2,75	1 2	-	-	-
	. f ₂	147350	5,38	1 2	-	-	-
	f_0	48700	1,00	Eigenfrequenzen nicht eindeutig			indeutig
3	f_i	133930	2,75		detek	tierbar	
	f_2	262000	5,38				

13K - 10K -

elektrische Meßdaten :

- Brückenwiderstand

$$(445 + / - 5)$$
 Ohm

- Heizerwiderstand

$$(300 + / - 5)$$
 Ohm

- Temperaturkoeff.

$$(80 + / - 10) ppm/K$$

Technologischer Ablauf zur Musterbereitstellung

Substrate: beidseitig polierte und oxidierte 3" Si - Wafer; Photolithographie und Ätzen von Heizer, DMS und Padstruktur Orientierung (100) Ti(Pd) Au - Beschichten Laserjustierbohrung Photolithographie und Ätzen Belacken der Vorder des Padsystems und Rückseite Belichten, Entwickeln, Lackmaske für der SiO2-Maskierung für Bondpadverstärkung die V - Gruben Galvanische Goldverstärkung Belacken der Vorder der Pads und Rückseite gleichzeitiges Ätzen von Belichten, Entwickeln, Ätzen der SiO2 - Maskierung für V - Gruben und Fenster in KOH (30 %, 60°, 16h) die rückseitigen Fenster Vereinzeln (Wafersäge) NiCr - Beschichten

Thermisches Anregungsprinzip

Bild 2: Prinzipschaltbild der verwendeten Erregerschaltung. (VCO: Voltage Controlled Oscillator; X: Mischer)

Bild 4.1: Geräteplan des optischen Meßplatzes

MESSERGEBNISSE

(1. Layout)	Balke Länge /mm/	n Dicke /μm/	Frequenz theor. ge /kHz/	m.	Güte
(Heiz	zleistung: 2	* 60 mW)	•		
1	3	34	29	19	570
=	6	34	7	6	180
<u> </u>	8	34	4	4	220
(Hei	zleistung: 2	* 600 mW)			***************************************
	6	55	12	11	300
	10	55	4	4	300

1	10 mm - Balken	1.Layout		Redesign
	elektr. Leistung / mW / :	••••••		
	Heizer	60	600	640
-	Brücke		280	320
	Temperaturdiff. / °C /		60	30
_	(Mitte / Rand) T _{max}		100 (170)	68
-	DMS - Signal / mV / (Verstfaktor: ca. 250)	- 1	40	200
_	Auslenkung / μm /	<0,1	ca. 1	ca. 1
1				

Bild 8.14: Verschiebung der Amplitudenspektren verschiedener Temperaturzustände

Bild 7.1: Seitenansicht der Vorrichtung zur Krafteinleitung

Bild 8.12: Abhängigkeit der Resonanzfrequenz von der eingeleiteten axialen Kraft

Aus den Kennlinien, die im gemessenen Bereich von $F_G=0$ - 11 N annähernd linear verlaufen, wurden die Kraftempfindlichkeiten der Moden ermittelt und in Tabelle 8.5 festgehalten.

Tab.8.5: Kraftempfindlichkeiten $\eta = \frac{1}{f_0} \cdot \frac{\Delta f}{\Delta F}$ der Moden im Bereich F = 0 - 11 N

	Grundmode fo	2.Obermode f ₂
η	0,04 N ⁻¹	0,011 N ⁻¹

Bild 5: Abhängigkeit der Resonanzfrequenz von der Strömumgsgeschwindigkeit der Umgebungsluft.

SCHLUSSBETRACHTUNG

- Entsprechend der im Projektantrag für die Fa.Staiger/GMSmbH formulierten Aufgabenstellung wurden im Bearbeitungszeitraum alle wesentlichen Zielstellungen erreicht. Das betrifft insbesondere
 - Einrichtung einer Prozeßlinie zur Herstellung dreidimensionaler Mikrostrukturen auf Si-Basis
 - Herstellung mikromechanischer Resonatoren als Testmuster (elektrothermisch anregbar); Optimierung von Prozeßparametern
 - Untersuchungen zur Integration der Resonatoren mit elektronischer Signalverarbeitung (NiCr-DMS,Leitbahn- und Kontaktsystem;Passivierung); Optimierung von Prozeßparametern
 - Durch die Arbeiten der Verbundpartner im Teilprojekt konnte gezeigt werden, daß
 - das thermische Anregungsprinzip zur Herstellung frequenzanaloger Sensoren geeignet ist,
 - die nachgewiesenen Effekte für Sensoranwendungen (Kraft, Druck, Temperatur, Strömung) nutzbar gemacht werden können,
 - die Umsetzung in ein zuverlässig funktionierendes Sensorsystem jedoch noch beträchtlicher Anstrengungen bedarf (Reduzierung von Querempfindlichkeiten, insb. Temp.; Einleitung von Meßgrößen; Langzeituntersuchungen)