FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE

HOMEWORK

Discrete Mathematics

TUT-04: Problem Set 04

Problem 1: Prove that:

- a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Problem 2:

Given a function $f: R \to R$; $f(x) = x^2 + 3x - 4$ and A = [0; -6]. Find the set $f(A) \wedge f^{-1}(A)$.

Problem 3:

Given a function $f: N \to N$ and f(x) = 2x + 1. Determine whether the function f is injection, surjection and bijection.

Problem 4:

Given a function $f: R : 1 \rightarrow R$

a)
$$f(x) = \frac{x+1}{x-1}$$
; find $f^{-1}(\lambda)$

b) What is the inverse of f.

c) Compute: $f \circ f^{-1} \wedge f^{-1} \circ f$

Problem 5:

Determine if f is a function from R & R

a)
$$f(x)=1/x$$

b)
$$f(x) = \pm \sqrt{x^2 + 1}$$

c)
$$f(x) = \sqrt{x}$$

Problem 6:

The following function $f: A \to B$ is injection, surjection or bijection. Determine f^{-1} if possible.

- a) $A=R; B=R; f(x)=x^2+2x-3$
- b) $A=[4,9]; B=[21,96]; f(x)=x^2+2x-3$ c) $A=R; B=R; f(x)=3x-2 \lor x \lor \dot{c}$

Problem 7:

Given a function $f: R \to R$; $f(x) = x^3 - x$. Find a, b if $f^{-1}(a) = \{0; -1; b\}$

Problem 8:

- a) Given a function $f: R \to R$; $f(x) = \frac{2x}{1+x^2}$. Determine if f is injection or surjection?
- b) Find the range of image f(R)
- c) Given a function $g: R^{i} \to R$; g(x) = 1/x. Find the $f \circ g \land g \circ f$