## Optimization in the Loop

Implementing and Testing Scheduling Algorithms with SimuLTE

## Antonio Virdis University of Pisa

- Prof. Giovanni Stea
- Giovanni Nardini

## Outline

- Why Optimization
- Going into the Loop
- Methods
- Example

## An everyday problem



## **Comparing Results**

I'm better than you

Algorithm 1



system

Algorithm 2



## Comparing with the best



## Comparing with the best



## **Comparing Results**



I'm better than the optimum

system



s t.

$$x_i + p_i \in M$$

 $\max \mathring{a} = X_i$ 

• • •

## A simple problem



## Taking a Photo







# QUIZ

## Quiz 1



output speed

s1 > s2







## Finite Buffer: CBR



## How does the system evolve



## From outside to inside



## Going Into The Loop







## Overview



## 2 methods





LP file

## <sup>2</sup>Building A problem File

# $\max_{i} \bigwedge_{i}^{N} X_{i}$

```
for( i=0 ; i<N ; ++i )
   stream << "x" << i << " + ";</pre>
```

s t.

$$x_i + p_i \in M$$
 " i

• • •

```
for( i=0 ; i<N ; ++i )
```

XML file

## (3) Reading Results

- XML Management
  - Built-in in OMNeT
  - Easy to implement manually

```
<variable
</pre>
index="0" value="0"/>
index="3" value="0"/>
index="4" value="141"/>
index="5" value="0"/>
index="5" value="0"/>
```

### 2° method: API

Idea: can we use CPLEX as an API?

- Callable Library: matrix-based C-written API

Concert Tecnology: a set of modeling objects
 (also) in C++

## Including CPLEX

#### TELL OMNET:

- where the .h files are located
- where the dynamic libraries are located
- wich dynamic library to include
- enable the I\_STD preprocessor macro
- Can be done via the *Project Properties* of OMNeT++

## Matrix representation



## Matrix representation



## Custom C++ Interface

Generally variables are in the form:



## 2° Method: variables

Name , #1st , #2nd



Access with local indexes



## 2° Method: constraints

Add constraints one by one usign *local indexes*



Build the problem at the end one-shot



## Reading The Output

```
XML
```

```
<variable name="x0" index="0" value="51"/>
<variable name="x1" index="1" value="0"/>
<variable name="x2" index="2" value="141"/>
<variable name="x3" index="3" value="0"/>
<variable name="p0" index="4" value="141"/>
<variable name="p1" index="5" value="0"/>
```







$$X_i \ \widehat{l} \ \{0,1\}$$
 Binary values



## Quiz 2:

| x0<br>x1<br>x2<br>x3   | -> 0<br>-> 0<br>-> 1 | 2                      |            | <pre>&gt; 0.0000000 &gt; 0.0000000 1 0000000 0000000</pre>    |
|------------------------|----------------------|------------------------|------------|---------------------------------------------------------------|
| x4<br>x5<br>x6<br>x7   | -><br>-><br>->       | Do not tr<br>double va |            | 000000<br>000000<br>000000<br>000000                          |
| x8<br>x9<br>x10<br>x11 | -> 1 -> 1 -> 1 -> 0  |                        | <9 - <10 - | > 1.00000001<br>> 1.00000000<br>> 1.00000000<br>> 0.000000000 |

### **Pros and Cons**

- Easy to build
- Generally slower



- Generally faster
- Requires API knowledge



## Optimization in SimuLTE







## LTE



## Resource allocation in LTE



Allocate **RB**s to **UE**s

## Multi Band Scheduling



34

## SimuLTE: Scheduling structure



eNB



## SimuLTE: Scheduler Hierarchy



## Simulation Scenario



- Linear Mobility
- InLoop vs OutLoop

## InLoop vs OutLoop



## InLoop vs OutLoop





## Any question while running for **dinner**?

**Antonio Virdis** 

a.virdis@iet.unipi.it

simulte.com