SQL: Structured Query Language

Adam Peterson

 $\label{lem:comparison} University of Michigan: Department of Biostatistics \\ materials found at \\ https://github.com/apeterson91/computing_workshops/workshop_2$

Agenda

- Motivation
- Keywords:
 - 'SELECT'
 - 'WHERE'
 - 'GROUP BY'
- Inner queries
- Joins
 - Inner
 - Outer
 - Left, Right

- What is SQL and why is it important?
- SQL is a programming language that allows one to programmatically access data in databases
- i.e. With SQL we can query
 a database for just the
 information we want and
 nothing else.

Set-Up:1

Table: Student_Table

S_ID	First_Name	Last_Name	Student_Age	Student_Major
1	John	Smith	23	Biostatistics
2	Anne	Doroughty	21	Biostatistics
3	Anthony	Jones	19	Statistics

Set-Up:2

Loading Data into SAS for PROC SQL exercises

SELECT Keyword

SELECT

SELECT: Formulaic

SELECT <ColumnNames> FROM <TableName>

SELECT: Example

SELECT First_Name FROM Student_Table;

First_Name
John
Anne
Anthony

SELECT Keyword

SELECT example- SAS

```
Code fairly simple...
PROC SQL;
SELECT First_Name
FROM Student_Table;
QUIT;
```

WHERE Keyword

Where

WHERE: Formulaic

SELECT <ColumnNames> FROM <TableName> WHERE <Condition>

WHERE: Example

SELECT First_Name FROM Student_Table WHERE Student_Age<22;

First_Name
Anne
Anthony

WHERE Keyword

WHERE example- SAS

```
PROC SQL;
SELECT First_Name
FROM Student_Table
WHERE Student_Age > 22; QUIT;
```

GROUP BY: Formulaic

$$\label{eq:selection} \begin{split} &\mathsf{SELECT} < \mathsf{Aggregate_Function}(\mathsf{ColumnNames}) > \mathsf{FROM} \\ &<\mathsf{TableName} > \mathsf{GROUPBY} < \mathsf{GroupColumnName} > \end{split}$$

GROUP BY: Example

$$\label{eq:select_sum} \begin{split} & \mathsf{SELECT} \ \mathsf{SUM}(\mathsf{Student_Age}) \ \mathsf{FROM} \ \mathsf{Student_Table} \ \mathsf{WHERE} \\ & \mathsf{Student_Age} > & 19 \ \mathsf{GROUP} \ \mathsf{BY} \ \mathsf{Student_Major}; \end{split}$$

Student_Major	SUM(Student_Age)
Biostatistics	44

GROUP BY Keyword

Group By example- SAS

```
PROC SQL;

SELECT SUM(Student_Age)

FROM Student_Table

WHERE Student_Age > 19

GROUP BY Student_Major;

QUIT;
```

Inner Query: Formulaic

SELECT <ColumnNames> FROM (SELECT <ColumnNames> FROM <TableName>)

Inner Query: Example

 $\label{eq:select_select} SELECT \ From \ Student_Table \\ WHERE \ Student_Age < 22) \ ;$

First_Name
Anne
Anthony

```
PROC SQL;
SELECT First Name FROM
(SELECT * FROM Student_Table WHERE Student_Age < 22) ;
QUIT;
```

Joins

Quick Aside: Relational Databases

Let's talk a bit about how data is stored in tables in a relational database

- Unique Identifiers
- One-To-Many Relationship
 - One student, multiple classes

$StuClass_Table$

S_ID	$Class_Num$	Class_Name	Class_Dept
1	602	Statistical Inference II	Biostatistics
1	651	Applied Linear Regression II	Biostatistics
2	516	Epidemiology II	Epidemiology
3	601	Statistical Inference I Biostatistics	
3	531	Analysis of Time Series Statistics	

Type of Joins

- Left Outer
 - Get everything from 'left' table, matching items from right
- Right Outer
 - Get everything from 'right' table, matching items from left
- Inner
 - Only items that are found in both tables
- More...

Type of Joins

Adam receisor.
University of Michigan: Department of Biostatistics materials found at https://github.com/apeterson91/computing_workshops/work

Join: Formulaic

$$\label{lem:select_table_1} \begin{split} & \mathsf{SELECT\ Table_1}. < \mathsf{ColumnNames}>, \ \mathsf{Table_2}. < \mathsf{ColumnNames}> \\ & \mathsf{FROM\ } < \mathsf{TableName}> < \mathsf{Type}> \ \mathsf{JOIN} \end{split}$$

Join: Example

SELECT Student_Table.First_Name StuClass_Table.Class_Name FROM Student_Table INNER JOIN StuClass_Table ON Student_Table.S_ID = StuClass_Table.S_ID;

Join: Example

SELECT Student_Table.First_Name, StuClass_Table.Class_Name FROM Student_Table INNER JOIN StuClass_Table ON Student_Table.S_ID = StuClass_Table.S_ID;

Student_ID	First_Name	Class_Name
1	John	Statistical Inference II
1	John	Applied Linear Regression II
2	Anne	Epidemiology II
3	Anthony	Statistical Inference I
3	Anthony	Analysis of Time Series

SAS - Join Example

```
PROC SQL;
SELECT Student_Table.First_Name,
StuClass_Table.Class_Name
FROM Student_Table
INNER JOIN StuClass_Table
ON Student_Table.S_ID = StuClass_Table.S_ID;
QUIT;
```

Resources for Further Learning

- pandasql
- sqldf
- CodeAcademy's SQL Course
- W3 great reference

Questions

Any Questions?