Homework 2

Huy Quang Lai 132000359

Texas A&M University

29 September 2022

An Aggie does not lie, cheat or steal. Nor does an Aggie tolerate those who do.

Chapter 4

4.2

correct

Figure 1: Timing Diagram

correct

Figure 2: 4-bit Register

4.10

correct

The maximum time delay for both the full adder and the half adder is 3 ns. Therefore, eight adders will have a total delay of 24 ns. However, the carry out of a half-adder will be correct after 2ns instead of 3ns. Since a half adder can be used to add the least significant bit of the numbers, the 8-bit sum will be correct by 23 ns.

correct

Figure 3: Quad 8-bit adder

4.21

correct

Figure 4: 16-bit Magnitude Comparator

correct

- (a) $11100000_2 = 32_{10}$
- (b) $011111111_2 = 127_{10}$
- (c) $11110000_2 = -16_{10}$
- (d) $11000000_2 = -64_{10}$
- (e) $11100000_2 = -32_{10}$

4.33

correct

- (a) $29_{10} = 00011101_2$
- (b) $100_{10} = 01100100_2$
- (c) $125_{10} = 011111101_2$
- (d) $-29_{10} = 11100011_2$
- (e) $-100_{10} = 10011100_2$
- (f) $-125_{10} = 10000011_2$
- $(g) -2_{10} = 111111110_2$

correct

Figure 5: Arithmetic Logic Unit

Operation of the AL-Extender is as follows.

x	y	z	S	a_o	b_o	c_o
0	0	0	A - B	a	b'	1
0	0	1	A + B	a	b	0
0	1	0	A * 8	a << 3	0	0
0	1	0	A/8	a >> 3	0	0
1	0	0	A NAND B	a NAND b	0	0
1	0	1	A XOR B	a XOR b	0	0
1	1	0	Reverse A	a reversed	0	0
1	1	1	NOT A	NOT a	0	0

Table 1: AL Extender Functionality

correct

Figure 6: 4×4 Register File

4.64

correct

- (a) $W_{data} = 1110, W_{addr} = 11, W_{en} = 1, R_{addr} = 11, R_{en} = 1$
- (b) Before rising edge.

 $R_0 = 0101$

 $R_1 = 0101$

 $R_2 = 0101$

 $R_3 = 0101$

 $R_{data} = 0101$

After rising edge.

 $R_0 = 0101$

 $R_1 = 0101$

 $R_2 = 0101$

 $R_3 = 1110$

 $R_{data} = 1110$