

WHAT IS CLAIMED IS:

1. In a method of etching a surface of a wafer to prepare the wafer surface for receiving a deposition, including the steps of
 - cleaning impurities from the surface of the wafer, and
 - creating a microscopic roughness on the surface of the wafer to receive a deposition on the surface.
2. In a method as set forth in claim 1 wherein
 - the microscopic roughness on the cleaned surface of the wafer is created by providing ions of an inert gas on the surface of the wafer with an insufficient energy to etch the surface of the wafer but with a sufficient energy to create the microscopic roughness on the surface of the wafer.
3. In a method as set forth in claim 2 wherein
 - the inert gas is argon.
4. In a method as set forth in claims wherein
 - the wafer is disposed on a waferland and wherein

a layer of chromium is deposited on the waferland after the microscopic roughness has been produced on the surface of the wafer.

5. In a method of providing for an attachment of an electrical component to a wafer, the steps of:

removing impurities from the surface of the wafer,

depositing a chromium layer with an intrinsic tensile stress on the cleaned surface of the wafer, and

depositing a layer of nickel vanadium with an intrinsic stress on the surface of the chromium layer to neutralize the intrinsic tensile stress produced by the chromium layer.

6. In a method as set forth in claim 4 wherein

a microscopic roughness is produced on the surface of the wafer after the surface of the wafer has been cleaned and wherein

the chromium is deposited on the microscopically rough surface of the wafer

5 and wherein

a minimal amount of an inert gas is produced on the wafer layer when the chromium layer is deposited on the surface of the wafer.

7. In a method as set forth in claim 4 wherein
a waferland is disposed in abutting relationship with the wafer and wherein
a layer of chromium is deposited on the surface of the waferland before etching
the surface of the wafer.
8. In a method as set forth in claim 5 wherein
the chromium layer is deposited on the surface of the wafer to produce an intrinsic
tensile stress in the chromium layer and wherein
the nickel vanadium layer is deposited on the surface of the chromium layer with
an RF bias power to produce an intrinsic compressive stress in the nickel vanadium layer.
9. In a method as set forth in claim 4 wherein
the chromium is deposited in a layer on the microscopically rough surface of the
wafer to produce an intrinsic tensile stress with a low stress value in the chromium layer and
wherein
5 the nickel vanadium layer is deposited on the surface of the chromium layer to
produce an intrinsic compressive stress with a value to neutralize the intrinsic tensile stress in the
chromium layer.

10. In a method as set forth in claim 7 wherein

the chromium is deposited in a layer on the microscopically rough surface of the

wafer in an intrinsic tensile stress with a low stress value and wherein

the layer of the nickel vanadium is deposited on the surface of the chromium in an

intrinsic compressive stress with a low stress value substantially neutralizing the low stress value

of the intrinsic tensile stress of the chromium layer.

11. In a method of providing for an attachment of an electrical component to a wafer,

including the steps of:

removing impurities from the surface of the wafer, and

depositing a chromium layer in an intrinsic tensile stress on the surface of the

wafer with a low stress value after the removal of the impurities from the surface of the wafer.

12. In a method as set forth in claim 10 wherein

the surface of the wafer is provided with a microscopic roughness after the

impurities have been removed from the surface of the wafer and wherein

the chromium layer is deposited on the microscopically rough surface of the wafer

5 in an intrinsic tensile stress with a low stress value.

13. In a method as set forth in claim 10 wherein
the chromium layer is deposited on the surface of the wafer in a magnetron with
substantially no RF bias in the magnetron and with a low flow rate of molecules of an inert gas in
the magnetron.

14. In a method as set forth in claim 12 wherein
the inert gas is argon and the flow rate of the molecules of the inert gas in the
chamber is in the order of three (3) to five (5) standard cubic centimeters (5 sccm) per minute (3-
5 sccm).

15. In a method as set forth in claim 12 wherein
a waferland is disposed in the chamber to support the wafer and wherein a layer of
chromium is deposited on the waferland before etching the wafer surface.

16. In a method as set forth in claim 11 wherein
the chromium layer is deposited on the surface of the wafer in a chamber with
substantially no RF bias on the waferland in the chamber and with a low flow rate of molecules
of an inert gas in the chamber,

5 the inert gas is argon and the flow rate of the molecules of the inert gas in the chamber is in the order of three (3) to five (5) standard cubic centimeters per minute (3-5 sccm), and

 a waferland is disposed in the chamber to support the wafer and wherein a layer of chromium is deposited on the waferland before etching the wafer surface.

17. In a method of providing for an attachment of an electrical component or sub-

assembly to a wafer, the steps of:

 removing impurities from the surface of the wafer,

 depositing a layer of chromium on the surface of the wafer with an intrinsic tensile stress, and

 depositing a nickel vanadium layer on the surface of the chromium layer with an RF bias power to produce an intrinsic compressive stress in the nickel vanadium layer for neutralizing the intrinsic tensile stress in the chromium layer.

18. In a method as set forth in claim 16 wherein

 a layer of metal selected from the group consisting of gold, silver and copper is deposited on the surface of the layer of nickel vanadium and wherein

 the nickel vanadium layer has an intrinsic compressive stress to neutralize the

5 intrinsic tensile stress in the chromium layer and any stress in the metal layer.

19. In a method as set forth in claim 18 wherein
the electrical component is soldered to the layer of the metal selected from the
group consisting of gold, silver and copper.

20. In a method as set forth in claim 18 wherein
the wafer is disposed on a waferland and wherein
a layer of chromium is deposited on the waferland before etching the wafer

surface and wherein
the electrical component is soldered to the layer of the metal selected from the
group consisting of gold, silver and copper.

21. In a method as set forth in claim 20 wherein
a lens shield is disposed in a spaced relationship to the waferland and the lens
shield is grounded and wherein
the RF bias for the deposition of the layer of nickel vanadium is provided between
5 the waferland and the grounded lens shield.

22. In a method of providing for an attachment of an electrical component to a wafer,
including the steps of:
removing impurities from the surface of the wafer,

providing the surface of the wafer with a microscopic roughness,
5 depositing a layer of chromium on the microscopically rough surface of the wafer
with a low intrinsic tensile stress, and
depositing a layer of nickel vanadium on the surface of the wafer with a low
intrinsic compressive stress.

23. In a method as set forth in claim 21 wherein
a layer of a metal selected from a group consisting of gold, nickel and copper is
deposited on the surface of the nickel vanadium layer and wherein
the component or sub-assembly is soldered to the layer of the metal selected from
the group consisting of copper, gold and silver.

24. In a method as set forth in claim 23 wherein
the layer of the chromium is deposited on the microscopically rough surface of the
wafer with no RF bias.

25. In a method as set forth in claim 22 wherein
the layer of chromium is deposited on the microscopically rough surface of the
wafer at a low rate of the flow of an inert gas.

26. In a method as set forth in claim 24 wherein

the layer of chromium is deposited on the microscopically rough surface of the wafer at a low rate of flow of an inert gas and wherein

an RF bias power is applied during the deposition of the nickel vanadium layer on

5 the chromium layer to produce the low intrinsic compressive stress in the nickel vanadium layer.

27. In a method as set forth in claim 24 wherein

the layer of the chromium is deposited on the microscopically rough surface of the wafer with no RF bias and wherein

the layer of chromium is deposited on the microscopically rough surface of the

wafer at a low rate of flow of an inert gas and wherein

an RF bias power is applied during the deposition of the nickel vanadium layer on the chromium layer to produce the low intrinsic compressive stress in the nickel vanadium layer.

28. In a method as set forth in claim 27 wherein

a layer of a metal selected from a group consisting of gold, nickel and copper is deposited on the surface of the nickel vanadium layer and wherein

the component or sub-assembly is soldered to the layer of the metal selected from

5 the group consisting of copper, gold and silver.

29. In a method of providing a deposition on a surface of a wafer, the steps of:
cleaning impurities from the surface of the wafer,
creating a microscopic roughness on the surface of the wafer, and
depositing a chromium layer with an intrinsic tensile stress on the microscopically

5 rough surface of the wafer by providing the layer with no RF bias.

30. In a method as set forth in claim 29 wherein
the chromium layer is deposited on the microscopically rough surface of the wafer

in a chamber and wherein

an inert gas having a low flow rate is passed through the chamber with no RF bias
on the wafer, when the chromium layer is deposited on the microscopically rough surface of the
wafer, to prevent molecules of the inert gas from being entrapped in the chromium layer.

31. In a method as set forth in claim 29 wherein

the inert gas is argon.

32. In a method as set forth in claim 29 wherein

the microscopic roughness is produced on the surface of the wafer by providing
the molecules of the inert gas with an insufficient energy to etch the surface of the wafer but with
a sufficient energy to create the microscopic roughness on the surface of the wafer.

33. In a method as set forth in claim 32 wherein

no RF bias is provided when the chromium layer is deposited on the surface of the wafer and wherein

the chromium layer is deposited on the microscopically rough surface of the wafer

5 in a chamber and wherein

an inert gas having a low flow rate is passed through the chamber, when the chromium layer is deposited on the microscopically rough surface of the wafer, to prevent the inert gas from being entrapped in the chromium layer and wherein

the inert gas is argon.

34. In a method as set forth in 31 wherein

the wafer is disposed on a waferland and wherein

a layer of chromium is deposited on the waferland, before etching the wafer surface, to prevent the layer of chromium deposited on the wafer from being contaminated by the
5 material from the waferland.

35. In a method of preparing a wafer surface for receiving an electronic component,

the steps of:

removing impurities from the surface of the wafer,

creating a microscopic roughness on the surface of the wafer by providing ions of
5 an inert gas with an insufficient energy to etch the surface of the wafer but with a sufficient
energy to create the microscopic roughness on the surface of the wafer, and
depositing a chromium layer on the microscopically rough surface of the wafer in
a chamber in which a minimal amount of an inert gas is passed through the chamber during the
deposition to prevent molecules of the inert gas from being entrapped in the chromium layer.

36. In a method as set forth in claim 35 wherein

no wafer bias is produced on the wafer when the chromium layer is deposited on
the surface of the wafer.

37. In a method as set forth in claim 35 wherein

the chromium layer is deposited on the surface of the wafer under tension with a
minimal amount of stress.

38. In a method as set forth in claim 36 wherein

the chromium layer is deposited on the surface of the wafer with a minimal
amount of intrinsic tensile stress.

39. In a method of providing a deposition on a surface of a wafer surface for receiving an electronic component on the wafer surface, the steps of:

removing impurities from the surface of the wafer,

creating a microscopic roughness on the surface of the wafer, and

atomically bonding a chromium layer to the microscopically rough surface on the wafer.

5
40. In a method as set forth in claim 39 wherein
the chromium layer is deposited on the microscopically rough surface of the wafer with no RF bias.

41. In a method as set forth in claim 39, the step of:

providing a minimal amount of intrinsic tensile stress in the chromium layer.

42. In a method as set forth in claim 39 wherein
the microscopic roughness on the surface of the wafer is provided by disposing the wafer in a chamber and by passing ions of an inert gas through the chamber with insufficient energy to etch the surface of the wafer but with sufficient energy to produce the microscopic roughness on the surface of the wafer.

43. In a method as set forth in claim 40 wherein
providing an intrinsic tensile stress with a low value in the chromium layer
the microscopic roughness on the surface of the wafer is provided by disposing
the wafer in a chamber and by passing ions of an inert gas through the chamber with insufficient
5 energy to etch the surface of the wafer but with sufficient energy to produce the microscopic
roughness on the surface of the wafer.

44. In combination,
a wafer having a clean surface with a microscopic roughness, and
a layer of chromium deposited on the microscopically rough surface of the wafer
with a minimal amount of stress in the chromium layer.

45. In a combination as set forth in claim 44 wherein
the chromium layer is deposited on the microscopically rough surface of the wafer
with a minimal amount of tensile stress.

46. In a combination as set forth in claim 44 wherein
the microscopic roughness is provided on the surface of the wafer by ions of an
inert gas with an insufficient energy to etch the surface of the wafer but with sufficient energy to
produce the microscopic roughness on the surface of the wafer.

47. In a combination as set forth in claim 44 wherein
an atomic bonding is produced between the chromium in the chromium layer and
the microscopically rough surface of the wafer.

48. In combination,
a wafer,
a chromium layer deposited on the wafer with an intrinsic tensile stress, and
a layer of nickel vanadium deposited on the chromium layer in firmly adhered
relationship to the chromium layer with an intrinsic compressive stress.

49. In a combination as set forth in claim 48,
the chromium layer being under an intrinsic tensile stress with a minimal value
and the nickel vanadium layer being under an intrinsic compressive stress to neutralize the
intrinsic tensile stress of the chromium layer.

50. In a combination as set forth in claim 48,
the chromium in the chromium layer having an intrinsic tensile stress for bonding
to the microscopically rough wafer surface,
the chromium in the chromium layer having an atomic bonding with the
5 microscopically rough surface on the wafer.

51. In combination,
a wafer having a clean surface with a microscopic roughness, and
a chromium layer deposited on the microscopically rough surface of the wafer and
atomically bonded to the microscopically rough wafer surface.

52. In a combination as set forth in claim 51,
the chromium layer having an intrinsic tensile stress for bonding to the
microscopically rough wafer surface.

53. In combination,
a wafer having a clean surface,
a chromium layer disposed on the clean surface of the wafer with an intrinsic
tensile stress, and

5 a nickel vanadium deposited on the chromium layer with an intrinsic compressive stress.

54. In a combination as set forth in claim 53 wherein
the intrinsic compressive stress of the nickel vanadium layer substantially
neutralizes the intrinsic tensile stress of the chromium layer.

55. In a combination as set forth in claim 53 wherein
the clean surface of the wafer has a microscopic roughness and wherein
the chromium in the chromium layer is atomically bonded to the microscopically
rough surface of the wafer.

56. In a combination as set forth in claim 52,
a layer of a metal selected from the group consisting of copper, gold and silver
and disposed on the nickel vanadium layer with an intrinsic tensile stress.

57. In a combination as set forth in claim 53 wherein
a layer of a metal selected from the group consisting of copper, gold and silver is
disposed on the nickel vanadium layer and wherein

the nickel vanadium layer substantially neutralizes any intrinsic stress in the metal
5 layer.

58. In a combination as set forth in claim 53 wherein
an electrical component is soldered to the layer of the metal selected from the
group consisting of copper, gold and silver.

59. In a method of etching a surface of a wafer to prepare the wafer surface for
receiving a deposition, the steps of:

providing a flow of an inert gas in the order of forty (40) to fifty (50) standard
cubic centimeters per minute through a chamber containing the wafer to etch a microscopic layer
of material with impurities from the surface of the wafer and provide an atomic roughness to the
wafer surface,

thereafter providing a flow of an inert gas through the chamber at a flow rate of
approximately forty (40) to fifty (50) standard cubic centimeters per minute and a power in the
order of six hundred watts (600 W) to twelve hundred watts (1200 W) to clean the surface of the
10 wafer and increase the roughness of the wafer surface,

disposing the wafer on a waferland, and

then providing a flow of an inert gas at a rate through the chamber at a low power in the order of fifty watts (50 W) to one hundred watts (100 W) between the waferland and ground to provide the surface of the wafer with a microscopic roughness.

60. In a method as set forth in claim 59 wherein
the power applied in the chamber to etch the surface of the wafer is in the order of 600-1200 watts.
61. In a method as set forth in claim 59 wherein
a layer of chromium is deposited on the microscopically rough surface of the wafer without any RF bias and at a low flow rate of the inert gas.
62. In a method as set forth in claim 59 wherein
a layer of nickel vanadium is deposited on the surface of the chromium layer with an RF bias power of approximately 300 watts and with a flow rate of argon of approximately 5 sccm.
63. In a method as set forth in claim 60 wherein
a layer of chromium is deposited on the surface of the waferland before the surface of the wafer is etched.

64. In a method as set forth in claim 60 wherein
the nickel vanadium layer is deposited on the chromium layer with a power of
approximately six thousand watts (6000 W), with a flow rate of argon of approximately five (5)
sccm and with RF power of approximately three hundred (300) watts.

DO NOT REMOVE THIS PAGE FROM THE FILING ENVELOPE