

Series de Tiempo

VI Semestre Grupo: B

Mtr. Alcides Ramos Calcina

DESCOMPOSICIÓN Y ANÁLISIS DE COMPONENTES

- Tendencia

Introducción

Descomposición de Componentes

- Antes de abordar cualquier estudio analítico de una serie temporal, se impone:
 - ✓ Representación gráfica
 - ✓ Observación detenida de su aspecto evolutivo
- Para estudiar el comportamiento de cualquier serie temporal, y predecir los valores que puede tomar en un futuro, puede hablarse de distintas metodologías:
 - Descomposición de componentes
 - Análisis de componentes

1. DESCOMPOSICIÓN

- Cada componente se estudia por separado.
- Las proyecciones de cada componente se pueden combinar para producir pronósticos de valores futuros de una serie de tiempo.
- Los métodos de descomposición se utilizan para los pronósticos de corto y largos plazos.
- Se emplean para mostrar de manera simple el crecimiento subyacente o la declinación de la serie.
- También para ajustar las series al eliminar uno o más de los componentes.

1. DESCOMPOSICIÓN

- Los métodos de descomposición consideran la serie temporal como suma de estos cuatro componentes:
 - ✓ Tendencia,
 - ✓ Estacionalidad,
 - ✓ Ciclo
 - ✓ Irregular o aleatorio.
- Según estas definiciones, una serie temporal, Yt, puede admitir una descomposición del tipo:
 - √ Esquema aditivo
 - ✓ Esquema multiplicativo
 - ✓ Esquema mixto

Aditivo

$$\mathbf{Y}_{t} = \mathbf{T}_{t} + \mathbf{E}_{t} + \mathbf{C}_{t} + \mathbf{I}_{t}$$

Multiplicativo

$$Y_t = T_t \cdot E_t \cdot C_t \cdot I_t$$

Mixto

$$Y_t = T_t \cdot E_t \cdot C_t + I_t$$

1) Descomposición aditiva

• Dada una serie temporal Y_t , el modelo aditivo:

$$Y_t = T_t + E_t + C_t + I_t$$

La Tendencia (T)

Es normalmente un polinomio de orden menor o igual a dos (tendencia lineal o cuadrática).

La Estacionalidad (E)

Es una función periódica que cumple la condición: $E_{\rm t} = E_{\rm (t-s)}$

Donde s es el periodo de estacionalidad:

Mensual : s = 12Trimestral : s = 4

- Semanal : s = 7

Realice la descomposición de los componentes de la serie temporal de Ventas estacional, periodo: 2013-2019.

Tabla 3.1 Estadísticas de ventas estacional, periodo de 2013:1–2019:3.

Mes	2013	2014	2015	2016	2017	2018	2019
Ene	24854	25075	25757	20657	21570	20174	23156
Feb	24209	24903	25984	22719	24371	24349	24598
Mar	30384	30806	30151	26755	25263	31987	28806
Abr	31363	31846	32018	29748	30603	32312	
May	33342	33509	31688	27275	30932	34914	
Jun	28747	28930	30547	28227	27076	30994	
Jul	27221	28563	30211	31573	32581	29570	
Ago	26676	28655	30189	27372	32949	29638	
Set	25691	26058	29722	25241	28361	28556	
Oct	25738	26057	30274	25386	29685	30842	
Nov	25365	25901	30822	24820	23826	26027	
Dic	30409	19000	31579	27894	29107	27824	

Vamos a descomponer la serie mensual de Ventas estacional (Y) en sus componentes básicos.

```
library(readxl)
serie <- read_excel("D:/.../Ejm_3_1.xlsx")
View(serie)
# Convertir a una ST
Y <- ts(serie$Y, start = c(2009,1), frequency = 12)
print(Y)
# Gráfica de la serie
plot(Y, type = "l", xlab="Meses", ylab="Y")</pre>
```

• Descomposición: función decompose()

```
# Libreria necesaria
library(ggplot2)
library(ggfortify)

Yd_a <- decompose(Y, type = "additive")
plot(Yd_a, xlab = "Años/Meses")</pre>
```


Descomposición de la serie de Ventas con modelo aditivo

Decomposition of additive time series

2) Descomposición multiplicativa

• Dada una serie temporal Y $_{t}$, el modelo multiplicativo: $\;Y_{t}=T_{t}.E_{t}.C_{t}.I_{t}\;$

Transformación logaritmica

Permite pasar del modelo multiplicativo al aditivo.

A través de los siguientes pasos:

1. Transformar en primer lugar la serie temporal mediante la función logaritmo natural:

$$\ln(Y_t) = \ln(T_t.E_t.C_t.I_t)$$

$$\underbrace{\ln(Y_t)}_{Y_t} = \underbrace{\ln(T_t)}_{T_t} + \underbrace{\ln(E_t)}_{E_t} + \underbrace{\ln(C_t)}_{C_t} + \underbrace{\ln(I_t)}_{I_t}$$

$$Y'_{t} = T'_{t} + E'_{t} + C'_{t} + I'_{t} \rightarrow \text{Modelo Aditivo}$$

2) Descomposición multiplicativa

- 2. Calcular las componentes de tendencia y estacionalidad del modelo aditivo de la serie temporal transformada Y'_t.
- 3. Una vez obtenido el modelo aditivo de la serie temporal transformada Y'_t, se desea obtener el modelo de la serie temporal original Y_t. Para ello, se deshace la transformación del logaritmo mediante su función inversa, es decir, la función exponencial:

$$Y_{t} = e^{Y'_{t}} = e^{(T'_{t} + E'_{t} + C'_{t})} = e^{T'_{t}} \cdot e^{E'_{t}} \cdot e^{C'_{t}}$$

Ahora realizaremos la descomposición de un modelo multiplicativo, la cual consiste en una serie mensual de datos desde el 01 de enero de 1949 al 31 de diciembre del 1961 relativos a los pasajeros de líneas aéreas. Los datos se muestran en la Tabla 3.2.

Tabla 3.2 Número de pasajeros de líneas aéreas de 1994:1 – 2005:12

Año	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
1994	112	118	132	129	121	135	148	148	136	119	104	118
1995	115	126	141	135	125	149	170	170	158	133	114	140
1996	145	150	178	163	172	178	199	199	184	162	147	166
1997	171	180	193	181	183	218	230	242	209	191	172	194
1998	196	196	236	235	229	243	264	272	237	211	180	201
1999	204	188	235	227	234	264	302	293	259	229	203	229
2000	242	233	267	269	270	315	364	347	312	274	237	278
2001	284	277	317	313	318	374	413	405	355	306	271	306
2002	315	301	356	348	355	422	461	467	404	347	305	336
2003	340	318	362	348	363	435	491	505	404	359	310	337
2004	360	342	406	396	420	472	548	559	463	407	362	405
2005	417	391	419	461	472	535	622	606	508	461	390	432

Vamos a descomponer la serie número de pasajeros de líneas aéreas (Y) en sus componentes básicos.

```
# Importar serie
library(readxl)
serie <- read_excel("D:/.../Ejm_3_2.xlsx")
View(serie)

Y <- ts(serie$Y, start = c(1949,1), frequency = 12)
plot(Y, type = "l", xlab="Meses", ylab="Y")</pre>
```

• Descomposición: función decompose()

```
Yd_m <- decompose(Y, type="multiplicative")
plot(Yd m,xlab="Años/Meses")</pre>
```


Ejemplos 2 1. DESCOMPOSICIÓN

• Descomposición de la serie número de pasajeros de líneas aéreas (Y).

Decomposition of multiplicative time series

2. ANÁLISIS DE COMPONENTES °

- Se pueden detectar las características más sobresalientes de una serie, tales como:
 - ☐ el movimiento a largo plazo
 - ☐ la amplitud de las oscilaciones
 - ☐ la posible existencia de ciclos
 - ☐ los puntos de ruptura
 - ☐ presencia de valores atípicos o anómalos, etc.
- Desde este punto de vista, cualquier serie temporal se supone que es el resultado de cuatro componentes: tendencia, variaciones estacionales, variaciones cíclicas y variaciones accidentales.
- Pero la descomposición no deja de ser un procedimiento diseñado para que el estudio resulte más fácil, pues esas componentes no siempre existen.
- En esta sección se hará énfasis en el análisis de la tendencia y estacionalidad,

2. ANÁLISIS DE COMPONENTES °

TENDENCIA

- El periodo de información debe ser lo suficientemente largo para evitar identificar como tendencia otros movimientos distintos de la serie.
- Para entender esta idea se puede hacer uso de la Figura.
- La tendencia de la serie, como movimiento a largo plazo, es creciente. Sin embargo:
 - ✓ En el periodo que va de A a la B, la conclusión sería lo contrario.
 - ✓ Al mismo resultado se habría llegado si el periodo hubiera sido desde A hasta C.
- Por tanto, as conclusiones serían poco afortunadas en periodos de tiempo muy corto.

i) Tendencia

• Supondremos aquí que la componente estacional *E*_t no está presente y que el modelo aditivo es adecuado, esto es:

$$Y_t = T_t + a_t$$

Donde:

 a_t : es ruido blanco

- Hay varios métodos para estimar T_t.
- Los más utilizados consisten en:
 - ✓ Ajustar una función del tiempo, como un polinomio, una exponencial u otra función suave de t.
 - ✓ Suavizar (o filtrar) los valores de la serie.
 - ✓ Utilizar diferencias.

i) Tendencia

· Ajuste de una función

Nota:

- a) Lineal,
- b) Exponencial,
- c) Exponencial modificada y
- d) Polinomial.

d)
$$Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \dots + \beta_m t^m$$

La Tabla 3.3 presenta los datos trimestrales de unidades habitacionales iniciadas en los Estados Unidos desde el tercer trimestre de 1984 hasta el segundo trimestre de 1992.

Tabla 3.3Nuevas unidades habitacionales comenzadas en los Estados Unidos del tercer trimestre de 1984 al segundo trimestre de 1992 (en miles de unidades).

Año	I	II	III	IV
1984			398	352
1985	283	454	392	345
1986	274	392	290	210
1987	218	382	382	340
1988	298	452	423	372
1989	336	468	387	309
1990	264	399	408	396
1991	389	604	579	513
1992	510	661		

Nota: Datos extraidos de U.S. Department of Comerse, Survey of Current Bussiness.

Ajuste a un modelo lineal: $Y = \alpha + \beta . t$

```
serie <- read_excel("D:/.../Ejm_3_3.xlsx")</pre>
View(serie)
Yts \leftarrow ts(serie$Y, start = c(1984,3), frequency = 4)
print(Yts)
plot(Yts, type = "l", xlab="Años", ylab="Y")
                                                      900
                                                      500
                                                  >
                                                      400
                                                      300
                                                      200
                                                                   1986
                                                                                1988
                                                                                             1990
                                                                                                          1992
                                                                                  Años
```


Ajuste lineal

```
t <- time(Yts)
Ylm <- lm(Yts ~ t) # Modelo lineal simple Y = a + b*t
pron = ts(predict(Ylm, t), c(1984,3), frequency = 4)
plot(Yts, xlab="Años", ylab=" ")
lines(pron, type = "l", col = "red")
legend(x = "bottomright", legend = c("Yts", "Ylm"), col = c('black', 'red'), lty = c(1, 1))</pre>
```


• Ajuste Cuadrático: $Y = a+bt+ct^2$

```
Y2 <- lm(Yts ~ t + I(t^2))

pron2 = ts(predict(Y2, t), c(1984,3), frequency = 4)

plot(Yts, xlab="Años", ylab=" ")

lines(pron2, type = "l", col = "red")

legend(x = "bottomright", legend = c("Yts", "Y2"), col = c('black', 'red'), lty = c(1, 1))
```


• Ajuste a un Exponencial: $Y=ae^{bt}$

Para estimar según MCO, es necesario linealizar el modelo y luego sustituir variables de manera adecuada.

Aplicando la función logaritmo natural, se tiene: $\ln(Y_t) = \ln(a.e^{bt})$

Modelo linealizado ajustado: $\ln(Y_t) = \ln(a) + b.t$

De esta manera, se convertirá en una función lineal.

Entonces: $Log(Y_t) = 5.68266 + 0.001511*t$

Su gráfica se realiza con la siguiente codificación:

```
Y3 <- Ye$coefficients[1] + Ye$coefficients[2]*nt
pron3 = exp(Y3)
plot(serie$Y, type = "l", xlab="Tiempo", ylab=" ")
lines(pron3, type = "l", col = "red")
legend(x = "bottomright", legend = c("Y", "Y3"), col = c('black', 'red'), lty = c(1, 1))
```


i) Tendencia

Suvizamiento – Filtros Lineales

Una forma de visualizar la tendencia, es mediante suavizamiento de la serie.

Lo que hacemos es usar una expresión lineal que transforma la serie Y_t en una serie suavizada Z_t : $Z_t = F(Y_t)$, t = 1,...,n. La función F se denomina Filtro Lineal.

Los filtros más usados son:

- El promedio móvil.
- Suavizamiento exponencial: Método de Holt Winters
- Filtro de Hodrick Prescott

Promedio móvil

```
library(TTR) # Método de Media móvil
Yts_ma <- SMA(Yts, 4)
plot(Yts, xlab="Años", ylab=" ")
lines(Yts_ma, type = "l", col = "red")
legend(x = "bottomright", legend = c("Yts", "Yts_ma"), col = c('black', 'red'), lty = c(1, 1))</pre>
```


Suavizamiento Exponencial: Método de Holt-Winters

```
Yholt <- holt(Yts, h = 4)
plot(Yts, type = "l", xlab="Años", ylab=" ")
lines(Yholt$fitted, type = "l", col = "red")
legend(x = "bottomright", legend = c("Yts", "Y_holt"), col = c('black', 'red'), lty = c(1, 1))</pre>
```


Filtro de Hodrick - Prescott

El filtro Hodrick – Prescott descompone una variable temporal Yt en su componente cíclico y tendencia:

$$Yt = Tt + Ct$$

Para el cálculo del mismo se debe minimizar la siguiente función:

$$\min \sum_{t=1}^{N} (Y_t - Y_t^T)^2 + \lambda \sum_{t=2}^{N-1} ((Y_t - Y_{t-1}^T) - (Y_{t-1} - Y_{t-2}^T))^2$$

El primer término es el "grado de ajuste" de la tendencia a la serie original y el segundo el grado de variabilidad en términos de las segundas diferencias.

El coeficiente λ penaliza la variación de la tendencia entre un período y otro.

Los autores recomiendan usar λ = 14400 para series mensuales, λ = 1600 para series trimestrales y λ = 1000 para series anuales.

Una vez que hemos desestacionalizado $Y_t - Y_t^E$ la serie, y le hemos calculado su componente tendencial Y_t^T podemos obtener el componente cíclico.

$$Y_t^C = Y_t - Y_t^T - Y_t^E$$

Procedimiento y/o solución: Hodrick - Prescott

A continuación, aplicaremos el filtro de Hodrick –Prescott sobre la serie **Yts**, denominando a la serie de tendencia como **Yhp**.

```
# Filtro de Hodrick - Prescott
install.packages("mFilter")
library(mFilter)

lambda_hp <- 1600
Yhp <- hpfilter(Yts, type="lambda", freq=lambda_hp)
plot(Yhp)
abline(h=0, col="green")</pre>
```


Suavizamiento método de Hodrick-Prescott.

