Amenability: A Not-Particularly-Brief Introduction

Avinash lyer

Occidental College

February 2, 2025

Outline

- ① Definitions
- 2 Paradoxical Decompositions
- 3 From Paradoxical Decompositions to Amenability
- 4 Equivalent Definitions

- Definitions
- 2 Paradoxical Decompositions
- 3 From Paradoxical Decompositions to Amenability
- 4 Equivalent Definitions

Groups

If A is a set, and $\star : A \times A \rightarrow A$ is an operation such that

- $a \star (b \star c) = (a \star b) \star c$;
- there exists e_A such that $a \star e_A = e_A \star a = a$;
- for each a there exists a^{-1} such that $a \star a^{-1} = a^{-1} \star a = e_A$, then we call the pair (A, \star) a group.

Groups

If A is a set, and $\star : A \times A \rightarrow A$ is an operation such that

- $a \star (b \star c) = (a \star b) \star c$;
- there exists e_A such that $a \star e_A = e_A \star a = a$;
- for each a there exists a^{-1} such that $a \star a^{-1} = a^{-1} \star a = e_A$, then we call the pair (A, \star) a group.

We abbreviate $a \star b$ as ab.

Subgroups, Quotient Groups

Let G be a group.

• If $H \subseteq G$ is a subset that satisfies, for all $a, b \in H$, $ab^{-1} \in H$, then we say H is a *subgroup*.

Subgroups, Quotient Groups

Let G be a group.

- If $H \subseteq G$ is a subset that satisfies, for all $a, b \in H$, $ab^{-1} \in H$, then we say H is a subgroup.
- If $N \subseteq G$ is a subgroup that satisfies, for all $g \in G$ and $h \in N$, $ghg^{-1} \in N$, then we say N is a *normal subgroup*.

Subgroups, Quotient Groups

Let G be a group.

- If $H \subseteq G$ is a subset that satisfies, for all $a, b \in H$, $ab^{-1} \in H$, then we say H is a *subgroup*.
- If $N \subseteq G$ is a subgroup that satisfies, for all $g \in G$ and $h \in N$, $ghg^{-1} \in N$, then we say N is a *normal subgroup*.
- The equivalence classes under the relation $g \sim_N g'$ if $g^{-1}g' \in N$ form a group $gN := [g]_{\sim}$ known as the *quotient group* G/N.

Some Groups

- The integers \mathbb{Z} are a group under addition.
- The group of invertible $n \times n$ matrices over \mathbb{C} , $\operatorname{GL}_n(\mathbb{C})$, is a group under matrix multiplication.
- The subgroup $SO(n) \subseteq GL_n(\mathbb{R})$ consisting of orthogonal matrices is a group under multiplication.

Group Actions

Let G be a group, and X a set. Let $\rho \colon G \times X \to X$ be a function that satisfies, for all $g, h \in G$ and $x \in X$,

- $\rho(e_G, x) = x$;
- $\rho(g, \rho(h, x)) = \rho(gh, x)$.

Then, we say ρ is an action of G on X. We write $\rho(g,x) = g \cdot x$.

σ -Algebras and Measures

If X is a set, then a collection of subsets $\{A_i\}_{i\in I}=\mathtt{A}\subseteq P(X)$ is known as an algebra of subsets if

- 2 for any $A_i \in A$, $A_i^c \in A$;
- **3** for any A_i , $A_j \in A$, $A_i \cup A_j \in A$.

σ -Algebras and Measures

If X is a set, then a collection of subsets $\{A_i\}_{i\in I}=\mathtt{A}\subseteq P(X)$ is known as an algebra of subsets if

- \bigcirc \emptyset , $X \in A$;
- 2 for any $A_i \in A$, $A_i^c \in A$;
- **3** for any A_i , $A_j \in A$, $A_i \cup A_j \in A$.

If, for any countable collection, $\{A_n\}_{n\geq 1}\subseteq A$, condition (3) holds, then we say A is a σ -algebra of subsets.

σ -Algebras and Measures, Cont'd

If X is a set and A is a σ -algebra, then a map $\mu: A \to [0, \infty]$ that satisfies:

- $\mu(\emptyset) = 0$;
- for disjoint sets $A, B \in A$, $\mu(A \sqcup B) = \mu(A) + \mu(B)$,

then we say μ is a *finitely additive* measure.

σ -Algebras and Measures, Cont'd

If X is a set and A is a σ -algebra, then a map $\mu: A \to [0, \infty]$ that satisfies:

- $\mu(\emptyset) = 0$;
- for disjoint sets $A, B \in A$, $\mu(A \sqcup B) = \mu(A) + \mu(B)$,

then we say μ is a *finitely additive* measure. If $\{A_n\}_{n\geq 1}$ is a countable collection of disjoint sets, then if μ satisfies

•
$$\mu\left(\bigcup_{n\geq 1}A_n\right)=\sum_{n\geq 1}\mu\left(A_n\right)$$
,

we say μ is a measure.

- Definitions
- 2 Paradoxical Decompositions
- 3 From Paradoxical Decompositions to Amenability
- 4 Equivalent Definitions

Questions?

- If G is a group, is it possible to reconstruct G by using some subset of G?
- When may we find a finitely additive probability measure $\mu \colon P(G) \to [0,1]$ such that $\mu(E) = \mu(tE)$ for all $E \subseteq G$?
- Are these questions even related?

- 1 Definitions
- 2 Paradoxical Decompositions
- 3 From Paradoxical Decompositions to Amenability
- 4 Equivalent Definitions

- 1 Definitions
- 2 Paradoxical Decompositions
- 3 From Paradoxical Decompositions to Amenability
- 4 Equivalent Definitions