

Joint Allocation of Climate Control Mechanisms is the Cheapest Way to Reduce Global Climate Damage.

MIT Energy Initiative -- October 16, 2019

John Deutch, Department of Chemistry, MIT

jmd@mit.edu

Today's Climate Circumstance

- 2015 Paris Agreement moved 2100 δT target from 3°C to 2°C. (perhaps 1.5°C)
- [2020 INDC Commitments will not be met.]
- Emission Reduction cannot do it alone.
- Paris COP underscored need for attention to Adaptation.
- New interest in Negative Emission Technologies
- What is the role for Geoengineering?

Today's Climate Circumstance

2015 Paris Agreement 2020 Commitments will not be

2100 δT target moved from 3°C to 2°C. (perhaps 1.5)

Emission Reduction cannot do it alone.

Paris COP underscored need for attention to Adapta

New interest in Negative Emission Technologies

O What is the role for Geoengineering?

The Joint Model

- \circ Damage $D[\delta T(t)]$ is a monotonically increasing function of δT
- o In the limit: $D[\delta T(t)] \rightarrow \beta \delta T(t)^2$ as $\delta T(t) \rightarrow 0$

$$D \big[\delta T(t) \big] \! \to \! D \Big[\delta T_{\phi(t), \phi(t)}(t) \Big] \! = \! \big(1 \! - \! \chi(t) \big) \beta \Big\langle \delta T_{\phi(t), \phi(t)}(t)^2 \Big\rangle \! \big(1 \! - \! \lambda(t) \big)^2$$

- \circ $\varphi(t)$ Emission Reduction. $\varphi(t)$ CO₂ Removal
 - $\lambda(t)$ Geoengineering. $\chi(t)$ Adaptation
- O All variables $\alpha(\tau) = \{ \phi(\tau), \phi(\tau), \lambda(\tau), \chi(\tau) \}$ [0,1]

0 = no abatement, 1 = full abatement

Atmospheric Dynamics: $q(t) \rightarrow c(t) \rightarrow T(t)$

$$q(t) \rightarrow c(t)$$

$$c_{_{0}}(t) = c_{_{0}}\big(t_{_{0}}\big) + \int_{t_{_{0}}}^{t} d\tau q(\tau) \quad c_{_{\phi,\varphi}}(t) \rightarrow c_{_{0}}(t) - \int_{t_{_{0}}}^{t} d\tau \big[\phi(\tau)q(\tau) + \phi(t)c_{_{0}}\big(t_{_{0}}\big)\big]$$

$$c(t) \rightarrow T(t)$$

Equilibrium Climate Sensitivity
$$\delta T(t) - \delta T(t') = \epsilon \ln(c(t)/c(t'))$$

$T(t) \rightarrow D[\delta T(t])$

$$D\Big[\delta T_{\phi(t),\phi(t)}(H)\Big] \simeq \Big(1-\chi(H)\Big)\beta \left\langle \left(\delta T_{0}\left(H\right)+\epsilon In\left(1-\frac{\int_{t_{0}}^{H}\phi(\tau)q(\tau)+c_{0}\left(t_{0}\right)\phi(t)}{c_{0}\left(t_{0}\right)+\int_{t_{0}}^{H}d\tau q(\tau)}\right)\right)^{2}\right\rangle \left(1-\lambda(H)\right)^{2}.$$

t₀ initial time, H horizon time

 $\langle \cdots \rangle$ Possible stochastic behavior of q(t)

10/10/19

Optimization: Determine $\{\alpha(t)\}$ that minimizes $D[\delta T(H)]$ for a given Budget Constraint

$$B = C_{\varphi}(\varphi(t)) + C_{\varphi}(\varphi(t)) + C_{\chi}(\chi(t)) + C_{\chi}(\chi(t))$$

- \circ No empirical or engineering studies on $C_{\alpha}(\alpha(t))$
- $\begin{array}{ll} \hline \text{O} & \underline{\text{For illustration}} & \text{Choose the same functional forms} \\ & \text{differing by only a scale factor} & C_{\alpha} \Big(\alpha(t) \Big) = \tilde{C}_{\alpha} f \Big(\alpha(t) \Big) \\ & \text{and two cases } f_{\alpha} \big(\alpha \big)_{\text{high}} = \big(\alpha/1 \alpha \big)^2 & f_{\alpha} \big(\alpha \big)_{\text{low}} = \big(\alpha/1 + \alpha \big)^2 \\ \hline \end{array}$

$$\tilde{C}_{\phi} = \$50 \text{ T}$$
 $\tilde{C}_{\phi} = \$100 \text{ T}$ $\tilde{C}_{\lambda} = \$150 \text{ T}$ $\tilde{C}_{\chi} = \$150 \text{ T}$

Addressing Policy Questions: Minimum Cost to achieve $\delta T(2100) = 2^{0}C$, 1.5°C,

$$D[\delta T(H)]/\beta = (1-\chi)[\delta T(t_0) + \varepsilon \ln(1-aq(1-\phi)) - \phi]^2 (1-\lambda)^2$$

Paris Goal	$\delta T(2100)$		$\delta T(2100)$	Low Cost	High Cost
Deeper Goal	3.0°C	\rightarrow	2.0°C	\$3.9T	\$7.1T
Wrong Horizon	3.0°C	\rightarrow	1.5°C	\$7.3T	\$17.1T
Estimate	4.0°C	\rightarrow	2.0°C	\$13.8T	\$70.0T

Linear Assumptions.

$$t_0 = 2020$$
 $H = 2100$ $c_0 = 400$ ppmv $c_H = 560$ (2x c_{pre}) $q = 2ppmv/yr$ $\epsilon = 4.34$ $a = q(H-t_0)/c_0 = 0.4$

Minimum Cost to achieve $\delta T(2100) = 2^{\circ}C$

Table (1) Budget \$B T and Allocation to Control Measures to reduce global temperature anomaly from $\delta T(2100) = 3^{\circ}C$ to $\delta T(2100) = 2^{\circ}C$

Cost Functions	Total	Emission Reduction φ	CO ₂ Removal ϕ	$\begin{array}{c} \text{Geo-} \\ \text{Engineering} \\ \lambda \end{array}$	Adaptation χ
Low Cost Budget \$ T	\$3.91 T	\$0.71	\$2.73	\$0.39	\$0.08
%	100%	18%	70%	10%	2%
Control Shares	-	0.135	0.198	0.054	0.024
Individual		\$8.79T	\$5.02	\$9.38T	\$19.13T
High Cost Budget \$ T	\$7.13 T	\$1.33 T	\$3.74 T	\$1.61T	\$0.43T
%	100%	19%	52%	23%	6%
Control Shares		0.140	0.162	0.094	0.051
Individual		\$336.5 T	\$16.47T	\$37.49	\$234.5 T

Damage/β vs Budget Relationship, (Linear Assumptions)

9

Joint Optimization With Three Climate Control Measures

- Optimization among pairs or triplets of the four adaptation measures will close the gap between the result for individual and all measures.
- Drop Geoengineering: Low TRL and Significant Governance Issues.
- o Cost of lower $\delta T(2100)$ from 3°C to 2°C: (linear assumptions)

	Low Budget	High Budget	
4 Measures	\$3.91	\$7.3T	
3 Measure	\$4.25T	\$9.3T.	(No Geoeng.)

MITe Variation of $\delta T(H)$ with emission rate, q, (Linear Assumptions)

As q increases (at fixed budget) $\delta T(H)$ increases

Table (3) Variation of Damage/β and Control Mechanism Share with Emission at Low and High Cost										
Low Cost \$3.91 T						High Cost \$7.13 T				
q emission ppmv/yr	δT(H) ²	φ	ф	λ	χ	δT(H) ²	φ	ф	λ	χ
q = 0.0	3.04	0.000	0.240	0.030	0.014	3.48	0.000	0.193	0.080	0.043
q = 0.2	3.72	0.058	0.227	0.044	0.020	3.89	0.095	0.178	0.091	0.050
q = 0.4	4.00	0.135	0.198	0.054	0.024	4.00	0.140	0.162	0.094	0.051
q = 0.6	4.01	0.219	0.156	0.054	0.024	4.00	0.167	0.149	0.094	0.051

Social Cost of Carbon - SCC

SCC definition: Damage increase from addition of 1 MT CO₂ to the atmosphere. $SCC(t) = \partial D[\delta T(t)]/\partial q > 0$

$$\begin{split} SCC_q(H) &= \partial D \big[\delta T(H) \big] \big/ \partial q = \big(1 - \chi(B) \big) 2\beta \Big(\delta T \big(t_0 \big) + \epsilon In \Big(1 + a \big(1 - \phi(B) \big) - \phi(B) \big) \Big) \\ & \frac{\epsilon a \big(1 - \phi(B) \big)}{\big(1 + a \big(1 - \phi(B) \big) - \phi(B) \big) q} \big(1 - \lambda(B) \big)^2 \end{split}$$

$$a = q(H-t_0)/c_0$$

$$SCC_{0}(H) = 2\beta \left(\delta T(t_{0}) + \epsilon \ln(1+a)\right) \frac{\epsilon a}{(1+a)q}$$

q_m = 1ppmv = 2.13 GT

Low Cost
$$SCC_2(2100) / SCC_0(2100) = 1.71/2.92$$

High Cost $SCC_2(2100) / SCC_0(2100) = 1.59/292$
Linear assumptions @ $\delta T(2100) = 2^{\circ}C$

Variable Emission Rate q(t)

- Desirable to determine minimum cost emission trajectory to support discounted damage in joint climate measures context.
- Minimization solution will involve time dependent climate shares.
- \circ Simple example: assume that the interval [t₀, H] is divided into two equal periods that have different emission rates, q₁ and q₂

Table (2) Temperature Increase from $\delta T(2020) = 3^{\circ}C$ to $\delta T(2100) = 2^{\circ}C$ at Different Emission Rates (ppmv) in Equally Divided period with Associated Control Shares and Budgets									
	st Budget 245 T q ₂	δT(H) ⁰ C	Emission Reduction φ1	Emission Reduction φ2	CO ₂ Removal ϕ	$\begin{array}{c} \text{Geo-} \\ \text{Engineering} \\ \lambda \end{array}$	Adaptation χ		
0.2 0.3 0.2 0.2	0.2 0.1 0.3 0.1	4.00 3.95 4.13 3.85	0.0580 0.0960 0.0561 0.0589	0.0580 0.0263 0.0934 0.0268	0.2254 0.2217 0.2121 0.2315	0.0590 0.0576 0.0653 0.5160	0.0259 0.0254 0.0283 0.0231		
High Cost Budget Emission CO2 Geo-									
	94 T q ₂	δT(H) ⁰ C	Emission Reduction φ1	Emission Reduction φ2	Removal ¢	Geo- Engineering λ	Adaptation χ		
0.2 0.3 0.2 0.2	0.2 0.1 0.3 0.1	4.00 3.96 4.05 3.90	0.0916 0.1230 0.0871 0.0963	0.0916 0.0518 0.1179 0.0551	0.1729 0.1723 0.1660 0.1799	0.1035 0.1020 0.1048 0.1005	0.0572 0.0563 0.0580 0.0554		

Major Points

- Emission Reduction Cannot Do It Alone.
- There Four Climate Control Mechanisms (emission reduction, CO₂ removal, abatement, geoengineering).
- Least Cost Solution Involves All Four Control Measures.
- No Information on Cost of Climate Control Measures.
- Balance spending on Emission Reduction and the Other Climate Control measures

Next Steps

- Generalize optimization to time dependent q(t)
- Research on cost functions for climate control measures.
 - (web tool: optimization of cost functions)
- Launch serious geoengineering R&D program.
- Speculate on different paths to raise and manage ~ 1 T\$/yr for climate programs
- Educate public about magnitude of the challenge.