Probabilistic Runge-Kutta methods for ODEs

Giacomo Garegnani - ANMC

MATHICSE retreat

June 2017

Motivation

Example

Lorenz system ($\sigma=10$, $\rho=28$, $\beta=8/3$)

$$y'_1 = \sigma(y_2 - y_1),$$
 $y_1(0) = -10,$
 $y'_2 = y_1(\rho - y_3) - y_2,$ $y_2(0) = -1,$ (1)
 $y'_3 = y_1y_2 - \beta y_3,$ $y_3(0) = 40.$

Figure: Deterministic (black) and probabilistic (grey) numerical solutions of (1)

Problem statement

Consider $f: \mathbb{R}^d \to \mathbb{R}$ and the ODE

$$y' = f(y), \quad y(0) = y_0.$$
 (2)

Flow of the equation φ_t : for any $y_0 \in \mathbb{R}^d$

$$y(t) = \varphi_t(y_0). \tag{3}$$

One-step Runge-Kutta method: numerical flow Ψ_h such that

$$y_{n+1} = \Psi_h(y_n). \tag{4}$$

Problem

Modify (4) in order to give a probabilistic numerical solution.

Additive noise [Conrad et al., 2016]. Build stochastic process $\{Y_n\}_{n=1,2,...}$

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}, \tag{5}$$

where $\{\xi_n\}_{n=1,2,\dots}$ i.i.d. random variables s.t. for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h) = 0, \quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T = Qh^{2p+1}.\tag{6}$$

Additive noise [Conrad et al., 2016]. Build stochastic process $\{Y_n\}_{n=1,2,...}$

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}, \tag{5}$$

where $\{\xi_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h) = 0, \quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T = Qh^{2p+1}.\tag{6}$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

Additive noise [Conrad et al., 2016]. Build stochastic process $\{Y_n\}_{n=1,2,...}$

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}, \tag{5}$$

where $\{\xi_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h) = 0, \quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T = Qh^{2p+1}.\tag{6}$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

- Strong convergence: $\mathbb{E}\|y(hn) - Y_n\| \le Ch^{\min\{p,q\}}$,

Additive noise [Conrad et al., 2016]. Build stochastic process $\{Y_n\}_{n=1,2,...}$

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}, \tag{5}$$

where $\{\xi_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.\tag{6}$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

- Strong convergence: $\mathbb{E}\|y(hn) Y_n\| \le Ch^{\min\{p,q\}}$,
- Weak convergence: $|\Phi(y(hn)) \mathbb{E} \Phi(Y_n)| \le Ch^{\min\{2p,q\}}$,

Additive noise [Conrad et al., 2016]. Build stochastic process $\{Y_n\}_{n=1,2,...}$

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}, \tag{5}$$

where $\{\xi_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.\tag{6}$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

- Strong convergence: $\mathbb{E}\|y(hn) Y_n\| \le Ch^{\min\{p,q\}}$,
- Weak convergence: $|\Phi(y(hn)) \mathbb{E} \Phi(Y_n)| \leq Ch^{\min\{2p,q\}}$,
- Good qualitative behavior in Bayesian inverse problems.

Additive noise [Conrad et al., 2016]. Build stochastic process $\{Y_n\}_{n=1,2,...}$

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}, \tag{5}$$

where $\{\xi_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h) = 0, \quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T = Qh^{2p+1}.\tag{6}$$

Issues

- Robustness: $\Psi_h(Y_{n-1}) > 0 \implies \mathbb{P}(Y_n > 0) = 0$,

Additive noise [Conrad et al., 2016]. Build stochastic process $\{Y_n\}_{n=1,2,...}$

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}, \tag{5}$$

where $\{\xi_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.\tag{6}$$

Issues

- Robustness: $\Psi_h(Y_{n-1}) > 0 \implies \mathbb{P}(Y_n > 0) = 0$,
- Geometric properties are not conserved. For example if $I(y) = y^T Sy$,

$$I(Y_1) = I(y_0) + 2\xi_0(h)^T S \Psi_h(y_0) + \xi_0(h)^T S \xi_0(h).$$
 (7)

Intrinsic noise: Random time-stepping Runge-Kutta (RTS-RK)

$$Y_{n+1} = \Psi_{H_n}(Y_n), \tag{8}$$

where $\{H_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for h,C>0 and p>1

$$H_n > 0$$
 a.s., $\mathbb{E} H_n = h$, $\operatorname{Var} H_n = Ch^{2p}$. (9)

For example $H_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(h - h^p, h + h^p)$ is a suitable choice.

Intrinsic noise: Random time-stepping Runge-Kutta (RTS-RK)

$$Y_{n+1} = \Psi_{H_n}(Y_n), \tag{8}$$

where $\{H_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for h,C>0 and p>1

$$H_n > 0$$
 a.s., $\mathbb{E} H_n = h$, $\operatorname{Var} H_n = Ch^{2p}$. (9)

For example $H_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(h - h^p, h + h^p)$ is a suitable choice.

Intrinsic noise: Random time-stepping Runge-Kutta (RTS-RK)

$$Y_{n+1} = \Psi_{H_n}(Y_n), \tag{8}$$

where $\{H_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for h, C > 0 and p > 1

$$H_n > 0$$
 a.s., $\mathbb{E} H_n = h$, $\operatorname{Var} H_n = Ch^{2p}$. (9)

For example $H_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(h - h^p, h + h^p)$ is a suitable choice.

Properties

- Strong and weak convergence equivalent to additive noise method,

Intrinsic noise: Random time-stepping Runge-Kutta (RTS-RK)

$$Y_{n+1} = \Psi_{H_n}(Y_n), \tag{8}$$

where $\{H_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for h,C>0 and p>1

$$H_n > 0$$
 a.s., $\mathbb{E} H_n = h$, $\operatorname{Var} H_n = Ch^{2p}$. (9)

For example $H_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(h - h^p, h + h^p)$ is a suitable choice.

- Strong and weak convergence equivalent to additive noise method,
- Good qualitative behavior in Bayesian inverse problems,

Intrinsic noise: Random time-stepping Runge-Kutta (RTS-RK)

$$Y_{n+1} = \Psi_{H_n}(Y_n), \tag{8}$$

where $\{H_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for h,C>0 and p>1

$$H_n > 0$$
 a.s., $\mathbb{E} H_n = h$, $\operatorname{Var} H_n = Ch^{2p}$. (9)

For example $H_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(h - h^p, h + h^p)$ is a suitable choice.

- Strong and weak convergence equivalent to additive noise method,
- Good qualitative behavior in Bayesian inverse problems,
- If Ψ_h conserves an invariant I(y), then so do RTS-RK,

Intrinsic noise: Random time-stepping Runge-Kutta (RTS-RK)

$$Y_{n+1} = \Psi_{H_n}(Y_n), \tag{8}$$

where $\{H_n\}_{n=1,2,...}$ i.i.d. random variables s.t. for h,C>0 and p>1

$$H_n > 0$$
 a.s., $\mathbb{E} H_n = h$, $\operatorname{Var} H_n = Ch^{2p}$. (9)

For example $H_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(h - h^p, h + h^p)$ is a suitable choice.

- Strong and weak convergence equivalent to additive noise method,
- Good qualitative behavior in Bayesian inverse problems,
- If Ψ_h conserves an invariant I(y), then so do RTS-RK,
- Simplecticity is guaranteed for Ψ_h symplectic.

References I

[Conrad et al., 2016] Conrad, P. R., Girolami, M., Särkkä, S., Stuart, A., and Zygalakis, K. (2016).

Statistical analysis of differential equations: introducing probability measures on numerical solutions.

Stat. Comput.