Reinforcement Learning and Optimal Control

IFT6760C, Fall 2021

Pierre-Luc Bacon

September 17, 2021

Overview

- ► The Bellman optimality operator is a contraction
- Bounds on value iteration
- ► Derivative, Spivak notation

Optimality equations

Today, we will see that the nonlinear equations:

$$v(s) = \max_{a \in \mathcal{A}(s)} r(s, a) + \sum_{j \in \mathcal{S}} p(j|s, a)v(j) ,$$

called the **optimality equations** have a unique solution, and that solution coincides with v_{γ}^{\star} – the value of the MDP. In vector notation:

$$v = \max_{d \in \mathcal{D}^{MD}} r_d + \gamma P_d v = L v ,$$

where *L* is the Bellman optimality operator. We will show that:

- 1. L is a contraction
- 2. v_{γ}^{\star} is the unique fixed point of L.

The Bellman optimality operator is a contraction

Theorem If $\gamma \in [0, 1)$, then L is a contraction mapping.

Proof

As usual, we assume that $\mathcal S$ is discrete and $L:\mathcal V\to\mathcal V$. We want to show that there exists a $\lambda\in[0,1)$ such that

$$||Lv - Lu|| \le \lambda ||v - u||, \forall u, v \in \mathcal{V}.$$

Assume that $Lv(s) \ge Lu(s)$:

$$0 \leq Lv(s) - Lu(s)$$

$$= \max_{a \in \mathcal{A}(s)} \left\{ r(s, a) + \gamma \sum_{j \in \mathcal{S}} p(j|s, a) v(j) \right\} - \max_{a \in \mathcal{A}(s)} \left\{ r(s, a) - \gamma \sum_{s \in \mathcal{S}} p(j|s, a) u(j) \right\}$$

Now let
$$a_s^* \in \arg\max_{a \in \mathcal{A}(s)} \left\{ r(s, a) + \gamma \sum_{j \in \mathcal{S}} p(j|s, a) v(j) \right\}.$$

$$\leq r(s, a^*) + \gamma \sum_{j \in \mathcal{S}} p(j|s, a^*) v(j) - r(s, a^*) - \gamma \sum_{j \in \mathcal{S}} p(j|s, a^*) v(j)$$

$$\leq r(s, a_s^{\star}) + \gamma \sum_{j \in \mathcal{S}} p(j|s, a_s^{\star}) v(j) - r(s, a_s^{\star}) - \gamma \sum_{s \in \mathcal{S}} p(j|s, a_s^{\star}) u(j)$$

$$= \gamma \sum_{j \in \mathcal{S}} p(j|s, a_s^{\star}) \left(v(j) - u(j) \right) \leq \gamma \sum_{j \in \mathcal{A}(s)} p(j|s, a_s^{\star}) \underbrace{\|v - u\|}_{\max_{i \in \mathcal{S}} |v_i - u_i|} = \gamma \|v - u\| .$$

Therefore:

$$\begin{split} |\mathit{Lv}(s) - \mathit{Lu}(s)| &\leq \gamma \|v - u\| \\ \Rightarrow \max_{s \in \mathcal{S}} |\mathit{Lv}(s) - \mathit{Lu}(s)| &\triangleq \|\mathit{Lv} - \mathit{Lu}\| \leq \gamma \|v - u\| \enspace . \end{split}$$

We can repeat the same argument for $Lu(s) \ge Lv(s)$.

Bellman equations: existence of unique solution

Theorem Let $\gamma \in [0, 1)$ with \mathcal{S} finite or countable and bounded reward function:

- 1. There exists a unique $v^* \in \mathcal{V}$ such that $Lv^* = v^*$.
- 2. This v^* is equal to v_{γ}^* , ie: $v^* = v_{\gamma}^* = \max_{\pi \in \Pi^{MR}} v_{\pi,\gamma}$

Proof

- Part 1. follows directly from the fact that L is a γ -contraction under the sup norm.
- ▶ Part 2. Doesn't come for free! In fact, we need to first (thm. 6.2.2 in Puterman) that if there exists a $v \in \mathcal{V}$ such that:
 - when $v \ge Lv$ then $v \ge v_{\gamma}^*$
 - when $v \leq Lv$ then $v \leq v_{\gamma}^{\star}$
 - hen if v = Lv, this v must be the only element of \mathcal{V} with this property and that $v = v_{\gamma}^{\star}$.

Recap

Consequence:

- We now know that the Bellman equations have a unique solution.
- The solution to the Bellman equations gives us the value of the MDP, ie: V_{γ}^{\star} .

What's next:

- How to find optimal policies
- How to find the solution to the Bellman equations numerically.

Optimal policies

So far, we have shown that v_{γ}^{\star} exists and can be found as the solution to the Bellman equations. What we obtain out of this nonlinear system of equations is v_{γ}^{\star} : not an optimal policy just yet.

In the following, we will show that there exists a **stationary deterministic** optimal policy.

Optimal policies

Theorem Let $\mathcal S$ be discrete, and assume that the sup in $\mathcal L v = \sup_{d \in \mathcal D^{MD}} \left\{ r_d + \gamma P_d v \right\}$ is attained for all $v \in \mathcal V$, then:

1. There exists a conserving decision rule $d^\star \in \mathcal{D}^{MD}$, ie:

$$L_{d^*}v_{\gamma}^* = r_{d^*} + \gamma P_{d^*}v_{\gamma}^* = v_{\gamma}^*.$$

and the stationary policy $(d^*)^{\infty}$ is optimal.

2. $v_{\gamma}^{\star} = \sup_{\pi \in \Pi^{MR}} v_{\pi,\gamma} = \sup_{d \in \mathcal{D}^{MD}} v_{d^{\infty},\gamma}$

Proof Since v_{γ}^{\star} is the unique solution of Lv = v, then:

$$L_{d^{\star}}v_{\gamma}^{\star}=r_{d^{\star}}+\gamma P_{d^{\star}}v_{\gamma}^{\star}=v_{\gamma}^{\star}=Lv_{\gamma}^{\star}$$

By the application of Neumann's lemma for policy evaluation(last lecture), we have that for any $d \in \mathcal{D}^{MD}$, $v_{d^{\infty}, \gamma}$ is the solution to:

$$v_{d^{\infty},\gamma} = L_d v_{d^{\infty},\gamma} = r_d + \gamma P_{d^{\infty},\gamma} = (I - \gamma P_d)^{-1} r_d$$
.

Going back to our theorem:

$$v_{\gamma}^{\star} = L v_{\gamma}^{\star} = \underbrace{r_{d^{\star}} + \gamma P_{d^{\star}} v_{\gamma}^{\star} = L_{d^{\star}} v_{\gamma}^{\star}}_{\text{because conserving}}$$
.

Therefore:

$$v_{\gamma}^{\star} = r_{d^{\star}} + \gamma P_{d^{\star}} v_{\gamma}^{\star} = v_{(d^{\star})^{\infty}, \gamma} \ .$$

Important thing to remember

The important consequence of the above is that we can now say that: $v_{\gamma}^{\star} = \sup_{\pi \in \Pi^{MR}} v_{\pi,\gamma} = \sup_{d \in \mathcal{D}^{MD}} v_{d^{\infty},\gamma}.$ This is a big deal because we went from searching over

This is a big deal because we went from searching over the space of nonstationary history-dependent randomized policies to only searching over the space of Markov deterministic decision rules, resulting in stationary deterministic Markovian policies.

Practical consequence

If we identified v_{γ}^{\star} , then we can derive an optimal stationary policy $(d^{\star})^{\infty}$ by taking:

$$d^{\star}(s) \in \arg\max_{a \in \mathcal{A}(s)} \left\{ r(s, a) + \gamma \sum_{j \in \mathcal{S}} p(j|s, a) v_{\gamma}^{\star}(j) \right\}$$

Value iteration

This algorithm corresponds to the **method of successive approximation**, which comes directly from the constructive proof in Banach fixed point theorem.

Given: $v^{(0)}$, and some tolerance $\epsilon > 0$.

While
$$||v^{(k+1)} - v^{(k)}|| \le \epsilon (1 - \gamma)/2\gamma$$
:

Compute for each $s \in \mathcal{S}$: $v^{(k+1)}(s) = \max_{a \in \mathcal{A}(s)} \left\{ r(s, a) + \gamma \sum_{j \in \mathcal{S}} p(j|s, a) v^{(k)}(j) \right\}$

Return:

 $lackbreak d_{\epsilon}(s) \in \operatorname{arg\,max}_{a \in \mathcal{A}(s)} \left\{ r(s,a) + \gamma \sum_{j \in \mathcal{S}} p(j|s,a) v^{(k+1)}(j) \right\}$

Termination criterion

Theorem Upon termination of value iteration with the above criterion, the last iterate is within $\epsilon/2$ of the optimal value function, ie: $||v^{(k+1)} - v_{\gamma}^{\star}|| < \epsilon/2$.

Proof

$$||v_{(d_{\epsilon})^{\infty},\gamma}-v_{\gamma}^{\star}|| \leq ||v_{(d_{\epsilon})^{\infty},\gamma}-v^{(k+1)}|| + ||v^{(k+1)}-v_{\gamma}^{\star}||.$$

Looking at the first term:

$$||v_{(d_{\epsilon})^{\infty},\gamma} - v^{(k+1)}|| = ||L_{d_{\epsilon}}v_{(d_{\epsilon})^{\infty},\gamma} - v^{(k+1)}||$$

$$\leq ||L_{d_{\epsilon}}v_{(d_{\epsilon})^{\infty},\gamma} - Lv^{(k+1)}|| + ||Lv^{(k+1)} - v^{(k+1)}||$$

$$= ||L_{d_{\epsilon}}v_{(d_{\epsilon})^{\infty},\gamma} - L_{d_{\epsilon}}v^{(k+1)}|| + ||Lv^{(k+1)} - Lv^{(k)}||$$

$$\leq \gamma ||v_{(d_{\epsilon})^{\infty},\gamma} - v^{(k+1)}|| + \gamma ||v^{(k+1)} - v^{(k)}||$$

Re-arranging the terms:

$$\|v_{(d_{\epsilon})^{\infty},\gamma} - v^{(k+1)}\| \le \frac{\gamma}{1-\gamma} \|v^{(k+1)} - v^{(k)}\|$$

We can also apply the same exact step to the second term and get:

$$\|v^{(k+1)} - v_{\gamma}^{\star}\| \le \frac{\gamma}{1-\gamma} \|v^{(k+1)} - v^{(k)}\|$$

Therefore, since:

$$\|v_{(d_{\epsilon})^{\infty},\gamma} - v_{\gamma}^{\star}\| \le \|v_{(d_{\epsilon})^{\infty},\gamma} - v^{(k+1)}\| + \|v^{(k+1)} - v_{\gamma}^{\star}\|$$
.

then:

$$\|v_{(d_{\epsilon})^{\infty},\gamma}-v_{\gamma}^{\star}\| \leq \frac{\gamma}{1-\gamma}\|v^{(k+1)}-v^{(k)}\| + \frac{\gamma}{1-\gamma}\|v^{(k+1)}-v^{(k)}\|.$$

By our termination criterion, we have $||v^{(k+1)} - v^{(k)}|| < \epsilon(1 - \gamma)/2\gamma$, therefore:

$$||v_{(d_{\epsilon})^{\infty},\gamma}-v_{\gamma}^{\star}|| \leq \epsilon$$
.

Differentiation as Linearization

Definition (Differentiability). A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be differentiable at $x \in \mathbb{R}^n$ if there exists a linear map $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that:

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - \lambda(h)\|}{\|h\|} = 0 ,$$

where $h \in \mathbb{R}^n$.

We can show that if f is differentiable at x, then the linear map λ is unique.

Jacobian

Definition (Jacobian matrix). The Jacobian matrix of $f: \mathbb{R}^n \to \mathbb{R}^m$ at $x \in \mathbb{R}^n$ is the matrix of Df(x) under the standard bases for \mathbb{R}^n and \mathbb{R}^m . We denote this matrix by $f'(x) \in \mathbb{R}^{m \times n}$ which we obtain by concatenating the values of $Df(x)(e_i), i = 1, \ldots, n$ as columns: $f'(x) \triangleq [Df(x)(e_i), \ldots, Df(x)(e_n)].$

Chain rule

Lemma (Chain rule). If $g: \mathbb{R}^k \to \mathbb{R}^n$ is differentiable at $x \in \mathbb{R}^k$ and $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at g(x), then $f \circ g: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x and

$$D(f\circ g)(x)=Df(g(x))\circ Dg(x)\ ,$$

and the matrix of $D(f \circ g)(x)$ is given by:

$$[D(f\circ g)(x)]=[Df(g(x))][Dg(x)] .$$

Directional derivative

Definition (Directional derivative). Let $f : \mathbb{R}^n \to \mathbb{R}$, the directional derivative of f at $x \in \mathbb{R}^n$ in the direction of $v \in \mathbb{R}^n$ is the limit:

$$D_{\nu}f(x) \triangleq \lim_{t \to 0} \frac{f(x+t\nu) - f(x)}{t}$$

where $t \in \mathbb{R}$.

If the derivative of f at x exists, the directional directive is given by the value of the linear mapping obtained at this point and evaluated at v, ie: $D_v f(x) = Df(x)(v)$. Using the matrix of Df(x) – the Jacobian – we also have that is given by the Jacobian-vector product $D_v f(x) = [Df(x)]v$ or $v^\top \nabla f(x)$ using the gradient notation.