PRAKTICKÁ ČÁST

Úloha: Měření vzdálenosti supernovy SN 1987A

Jméno: Arten Good lov Datum odevzdání: 404.23

1. Nejprve spočítáme úhlový průměr vnitřního prstence, tedy takový, jak jej pozorujeme ze Země. Využijeme k tomu hvězdy 1, 2, 3 v obrázku 7. V tabulce 7 jsou udány jejich vzdálenosti v úhlových vteřinách. Změřte vzdálenost hvězd na snímku. Zapište do tabulky a spočítejte odpovídající měřítko snímku.

Tabulka 7: Měřítko snímku na obrázku 7.

	Vzdálenost [mm]	Vzdálenost ["]	Měřítko ["/mm]
Hvězdy 2 ke hvězdě 1	94,3	3.0	0, 031 81
Hvězdy 3 ke hvězdě 1	52,7	1.4	0,02657
Hvězdy 3 ke hvězdě 2	145,1	4.3	0,02563

(0,029 ± 0,03) ==

2. Úhel mezi rovinou prstence a rovinou kolmou na zorný paprsek ze Země se nazývá inklinace nebo inklinační úhel i. Pokud by inklinace byla nulová nebo rovna 180°, pak bychom viděli prstenec kruhový. Kdyby byla rovna 90°, pozorovali bychom místo prstence jen úsečku. Pro všechny ostatní hodnoty z intervalu (0°,180°) má pro nás prstenec tvar elipsy. Změření velké a malé osy vnitřního prstence nám pomůže určit nejen průměr prstence, ale také velikost inklinace v případě prstence u SN 1987A.

Na obrázku 7 změřte velikost malé a velké osy vnitřního jasného prstence. Měření vztáhněte ke středu jasného pásu vnitřního prstence, vypočtěte průměry a příslušné chyby. Vše zapište do tabulky 8.

a _	T	abulka 8: Velikost	prstence.	b
	Měření	Velká osa [mm]	Malá osa	[mm]

Měření	Velká osa [mm]	Malá osa [mm]
1	26,8	21,8
2	26,8	20,1
3	26,6	20,4
4	27,0	13,7
5	λ 6 , 3	20,1
průměr	26, 7	२७,५
chyba	0,1	0,4

S pomocí obrázku 8 spočtěte inklinaci včetně její chyby. Inklinace prstence SN 1987A je . (\$1, 1, 1, 1, 2, 3)

3. Abychom určili vzdálenost supernovy SN 1987A potřebujeme znát skutečný průměr d prstence v rovině kolmé na zorný paprsek. Výbuch supernovy vyvolá silný záblesk, který se do okolí šíří rychlostí světla. V určitém čase t sekund po výbuchu supernovy, záblesk osvětlí prstenec. Když předpokládáme, že je prstenec přesně kruhový

Obr. 8: Určení inklinačního úhlu. Představte si, že se na soustavu díváme ze strany, takže vidíme prstenec pod inklinačním úhlem i vzhledem k rovině kolmé na zorný paprsek. Inklinační úhel můžeme určit z jednoduchého vztahu mezi velkou a malou osou pozorované elipsy. Vyznačeny jsou nejbližší část prstence A a nejvzdálenější část B.

a jeho střed souhlasí se středem supernovy, pak by měly být všechny části prstence při pohledu ze supernovy osvětleny současně. Jenže, při pohledu ze Země, při inklinaci $i \neq 0^\circ$, resp 180° se nejdříve zjasní k Zemi nejbližší část prstence, protože trajektorie světla z této části prstence je k Zemi nejkratší. Ale teprve až je vidět ze Země celý prstenec osvětlený, dosáhne světelná křivka prstence svého maxima. Rozdíl mezi nejbližšími a nejvzdálenějšími body prstence může být určen z prodlevy mezi těmito jevy na světelné křivce. Určete z obrázku 11 dobu mezi prvním záznamem osvětlení prstence a okamžikem maxima světelné křivky, kdy záblesk ze supernovy pro pozorovatele na Zemi dospěl k nejvzdálenějším částem prstence.

Zjištěná doba $t=(35.6.2\pm.1)$ je. a jí odpovídající vzdálenost $d_p=(9.3.9.\pm5.5.6)$ pc. Kdybychom měli inklinaci 90°, bylo by určení skutečného průměru prstence vzhledem

Obr. 9: Záblesk ze supernovy SN 1987A zasáhne celý prstenec ve stejnou dobu. Také nejbližší část A a nejvzdálenější B byly ozářeny ve stejnou dobu a simultánně vyslaly záření dále k Zemi. Světlo vyzářené částí B má ale kvůli sklonu prstence delší trajektorii k Zemi.

4. Bohužel v našem případě je inklinace $i \neq 90^{\circ}$, takže situace není tak jednoduchá. Musíme provést jisté zjednodušení, jak je naznačeno na obrázcích 10. Rozměry prstence jsou vzhledem k uvažované vzdálenosti malé, a proto můžeme zanedbat úhel mezi zornými paprsky k bodu A a bodu B a považovat je za rovnoběžné. Úhly i a j jsou pak shodné a výpočet hodnoty skutečného průměru prstence je už triviální záležitostí.

Obr. 10: S pomocí obrázku a dříve zjištěných hodnot je možné určit skutečný rozměr prstence d. Obrázek a) ukazuje skutečnou situaci, ale vzhledem k velké vzdálenosti LMC od Země lze provést zjednodušující předpoklad, že paprsky mířící k Zemi k části prstence A i B jsou rovnoběžné, jak je zobrazeno na spodním obrázku b).

Určete skutečný průměr prstence v radiánech včetně chyby určení. Vnitřní prstenec má průměr ($.7,6.5.6.\pm.9,3.5.6$) rad. $\overset{\circ}{}$ $\overset{\circ}{}$

Skutečný průměr prstence $d=.9,43...\pm...$ 3... pc.

5. Diskutujte, jak se nepřesnost v určení časového zpoždění projeví na přesnosti určení skutečného průměru prstence.

Pokud reprovedete korekei utilu inklinaci, mohou byt výsledky výravně zkreslene pretože do bude mít hodnot n o několik desetin menší než skute čna (v nošem přípodě).

6. Nyní už známe, jak pozorovaný úhlový průměr prstence, tak jeho skutečný rozměr, takže určení vzdálenosti je opravdu snadnou úlohou.

(3. 4 (4) 2. \$41 kpc

Vzdálenost supernovy SN 1987A r=. (5.7. . $\pm .3$.) kpc.

7. V předchozím úkolu jste diskutovali vliv přesnost určení času t na hodnotu skutečného průměru prstence. Doplňte nyní diskusi úvahou, v jakém rozmezí jste stanovili vzdálenost supernovy (v závislosti na chybách veličin potřebných pro její určení).

Pravdesposobne nej vétří chyba při měření byla v určení vhlové velikosti prtence. Protože chyba měření byla zpočátku vysoka ctohulha 1), měla nakonec vliv na chybu při určování vzdálamosti.

8. Na serveru https://ui.adsabs.harvard.edu/ jsou k dispozici astronomické články publikované v odborných časopisech. Pokuste se nalézt originální práci, v níž Panagia a kol. (1991) publikovali mimo jiné vzdálenost supernovy SN 1987A. Srovnejte jejich výsledek s vaším a diskutujte možné příčiny případných odchylek. V žádném případě vámi určené hodnoty neupravujte! Pro uklidnění, pokud se vaše výsledky neliší od publikovaných více než o součet nejistoty ze zdroje a vašeho postupu, pracovali jste dobře.

Nejvýznamnější rozdil byl v určení tíhlove velikost; postence. Nokonec rozdíl v hodnodorch g o 0,4 rad, vzdetil získa nou hodnoku od shuteřní.

Obr. 11: Světelná křivka prstence ukazuje měření celkové jasnosti prstence měsíce po explozi supernovy. Jasnost začala růst, když světlo ze supernovy dosáhlo k prstenci. Maximum křivky odpovídá situaci, kdy je při pohledu Země "rozsvícený" celý prstenec. Měření pocházejí z družice International Ultraviolet Explorer (IUE). Nejistotu měření odhadněte jako polovinu nejmenšího dílku v grafu.