1) Prove the adsorption theorem:
$$A \cdot (\overline{A} + B) = A \cdot B$$

 $A + (\overline{A} \cdot B) = A + B$

A
$$(\overline{A} + B)$$
 Given $A+(\overline{A} \cdot B)$
= $(A \cdot \overline{A})+(A \cdot B)$ Distributivity = $(A+\overline{A})\cdot(A+B)$
= $0 + A \cdot B$ (omplement = $1 \cdot (A+B)$
= $A \cdot B$ Identity = $A+B$

L807	Win Wap				
0,00	00	oί	11	11	
00	Υ	O	0	0	
Øl	X	Ð	Х		
11	V	((X)		
(1)	0	0	¥	V	

Win Eq: 0,0003+ p,n. N2

Lose ANDIDELOGIL

Lose losiz NAND NADO

SixOL WAND (ONAN ~ IN)

AND FOR LOUIC

DR

AND

AND

Lose logic Pos form:

$$\overline{D_{3}} \overline{D_{2}} + \overline{D_{3}} \overline{D_{2}} = (\overline{D_{3}} \overline{D_{2}} + \overline{D_{3}}) (\overline{D_{3}} \overline{D_{2}} + \overline{D_{2}})$$

$$= ((\overline{D_{3}} + \overline{D_{3}}) (\overline{D_{2}} + \overline{D_{3}})) ((\overline{D_{3}} + \overline{D_{2}}) (\overline{D_{2}} + \overline{D_{2}})$$

$$= (\overline{D_{2}} + \overline{D_{3}}) (\overline{D_{3}} + \overline{D_{2}})$$

1 OSE MAP | Falso)

Win Losiz Pes form'.

$$\begin{array}{lll}
D_{1} D_{0} D_{3} + D_{1} D_{0} D_{3} + D_{0} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{0} D_{3} + D_{1} D_{0} D_{3} + D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{0} D_{3} + D_{1} D_{0} D_{3} + D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{0} D_{3} + D_{1} D_{0} D_{3} + D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{0} D_{1} D_{0} D_{3} + D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{1} D_{0} D_{1} D_{0} D_{3} + D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{1} D_{0} D_{1} D_{0} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{2} D_{1} D_{0} D_{1} D_{0} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{0} D_{1} D_{0} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{0} D_{1} D_{0} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{1} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}
\end{array}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0} D_{1}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{1} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0} D_{1}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{1} D_{0} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{0} D_{1} D_{0}$$

$$\begin{array}{lll}
D_{2} D_{1} D_{0} D_{0}$$

$$\begin{array}{l$$

(2"77 V3 /("37 V2

1 12 -11 -1 (1031 WO)] H1 2 (1/3) (1/2+0) (1/2+0)

= 000, (0,+00) (0,+00) (0,+00) (02+00) (02+01) (02+02)

Lose MAP (Fale)

۸ ۳				U	_
0302	00	01	11	lo	
60	Х	0	1	10	
0 (X	ð	X	0	
11	1	0	X	ð	
(0	١	0	Х	0	
		1			

$$F = \overline{D_3} D_2 + D_3 \overline{D_2}$$

$$F = \overline{D_3} D_2 + D_3 \overline{D_2}$$

$$\overline{P} = \overline{\left(\left(0_3 + \overline{0}_2 \right) \left(\overline{0}_3 + \overline{0}_2 \right) \right)}$$

Win Wap (False) 0 00 0 01 Ð 11 ()

A-13 = AB

$$F = \overline{D_1} + \overline{D_3} \overline{D_2}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

$$F = \overline{D_1} + \overline{D_3} \overline{D_2} + \overline{D_1} \overline{D_0}$$

Lose Losic ANDJOR

Win losic ANDLOR

Lose Lopie Worlnor

Win Losic Northon

