

# ISTA 421/521 Introduction to Machine Learning

**Lecture 2: Linear Models** 

#### **Clay Morrison**

clayton@sista.arizona.edu Gould-Simpson 819 Phone 621-6609

28 August 2014



#### **Three General Classes of ML**

- Supervised learning model p(y|x)
  - Given data and model, or data with correct output (label)
  - Regression, Classification, etc.
- Unsupervised Learning model p(x)
  - Only given input data (no output)
  - Clustering, Latent Models, Projection methods, etc.
- Reinforcement Learning model  $p(s_{t+1}|s,a)$ 
  - Given input data, some output, and grade for output
  - Learning to choose better actions
  - Markov decision processes, POMDPs, planning

#### **Supervised Learning**



Learning a continuous function from a set of examples.



#### Example

Predicting stock prices (x might be time or some other variable of interest).



## **Supervised Learning**

#### Classification

Learning a rule that can separate objects of different types from one another.



#### Examples

Disease diagnosis, spam email detection.

## **Unsupervised Learning**



#### Examples

People with similar 'taste', genes with similar function.



# **Unsupervised Learning**



#### Examples

Visualising complex data.



6

#### **Reinforcement Learning**

- Example: Simulated Robot Soccer Keepaway
- Input: angles, distances, clock



- What is the best next action to take given what I know now?
- Allows system to learn by interacting with environment with human only providing tips about ʻgoodness'



#### **Topics**

- The linear model
  - Regression, Classification
- Classification
  - Probabilistic:
    - Bayes Classifier, Naïve Bayes
    - · Logistic Regression
  - Other, non-probabilistic
    - K-nearest neighbors
    - **Support Vector Machines and** kernel methods
- Clustering
  - K-means
  - Mixture Models and EM
- Other Unsupervised methods:
  - Principle Components Analysis
  - Latent Variable Models
- Additional topics (time permitting)
  - Neural networks, Deep networks
  - Ensemble methods, Boosting
  - Gaussian processes

- **Probability** 
  - Quantifying uncertainty
  - Bayesian Approach: Prior, Marginal Likelihood, MAP
- Inference Methods
  - Least Squares
  - Maximum Likelihood
  - Bayesian Inference: Direct and Sampling
- Machine Learning algorithm evaluation
- Learning theory
- Feature Selection and Model Selection



#### **Today**

- Homework 1
- A simple learning problem
- Linear Model (what is the model)
- Loss Function (what is a good model)
- Least Squares (finding the best model)
- Prediction
- Moving to higher dimensions



#### **Homework 1**

- Goal: Get comfortable with your programming environment and some written exercises.
- Three parts:
  - Exercises: 1.1, 1.3, 1.4, 1.5
  - Use script, plotlinear[.m/.py], to plot some lines! Generate the plot and put it in your pdf submission with a caption.
  - I give you a matrix that I will ask you to use code to transpose and take the matrix inverse. You need to include in your pdf a neat representation of the original matrix, and the two resulting matrices, and include the code you used to generate the matrix.
- I will post these written instructions on D2L and let everyone know when it's available.
- DUE: Next Friday, Sept 5, through D2L dropbox
- Worth 8 points

## **Plotlinear.py**

need matplotlib

```
-5
-15
-6 -4 -2 0 2 4 6
```

```
15 Keeps plotting lines on the current plot until you quit (Ctrl-D)
16
17 Enter intercept: 0
18 Enter gradient (slope): 2
19
20 y = 0.0 + 2.0 x
21
22
23 Enter intercept: -5
24 Enter gradient (slope): 2
25
26 y = -5.0 + 2.0 x
27
28
29 Enter intercept: -3
30 Enter gradient (slope): -2
31
32 y = -3.0 + -2.0 x
33
```



## A simple learning problem



Want to describe Winning time (t) as a function of Olympic year (x)



# **Defining a Model**

- Define function that maps inputs (Olympics year,  $x_i$ ) to output or target values (Winning times,  $t_i$ ) t = f(x)
- The model itself likely has parameters, which we'll generically refer to as 'a' here. It is common to make them explicit within a function:

$$t = f(x; a)$$



13

#### Lines!

Slope-intercept form

$$y = \underline{m}x + \underline{b}^*$$

• General (standard) form

$$ax + by + c = 0$$



slope 
$$m = -\frac{a}{b}$$

y-intercept 
$$b^* = -\frac{c}{b}$$

$$\text{x-intercept } = -\frac{c}{a}$$

#### Lines!

• General (standard) form

$$\underline{a}x + \underline{b}y + \underline{c} = 0$$



$$y=\underline{m}x+\underline{b}^*$$
 slope  $m=-rac{a}{b}$  y-intercept  $b^*=-rac{c}{b}$ 

$$\text{x-intercept } = -\frac{c}{a}$$





#### **Linear Models**

- y = mx + b (or  $t = w_1x + w_0$ )
  - the classic line (in 2D space)
  - For a given line, m and b are the parameters and

x is a variable in the relationship:

$$y = f(x; m, b)$$

- When considering alternate lines, we are adjusting m and b
- Generally, as long as the <u>variables</u> are not themselves involved in anything more than addition and scalar multiplication, then the relationship is *linear*.

$$y = mx^2 + c$$
  $y = \sin(x)$   $\sqrt{y} = mx + c$  Not linear rel. btwn x,y  $y = mx + c^2$   $y = x\sin(m) + c$  Is linear rel. btwn x,y (but not parameters!)

## **Data with line** (particular $w_0 \& w_1$ )



(The red line happens to be a "best" fit)

(The dashed orange line does not describe the trend in the data very well; not a good fit)

#### **Loss Function**

$$\mathcal{L}_n()$$

**Squared Error:** 

$$(t_n - f(x_n; w_0, w_1))^2$$

$$\mathcal{L}_n(t_n, f(x_n; w_0, w_1)) = (t_n - f(x_n; w_0, w_1))^2$$

Mean Squared Error:

$$\mathcal{L} = rac{1}{N} \sum_{n=1}^N \mathcal{L}_n(t_n, f(x_n; w_0, w_1))$$



# Goal: Find the "best" values for the parameters of model according to the loss fn

- If we're lucky (i.e., the model and the loss fn are "well-behaved") we can derive an *analytic* solution. Otherwise, we'll pick some (iterative) optimization method that is appropriate.
- Our first example, using a mean squared error loss function with a linear model permits a nice analytic solution!
  - Here (and in the book) we'll first look at the direct, analytic method.
  - Another method: gradient descent
    - Same loss function, but iterative algorithm and can be used in cases where we don't have an analytic solution for the parameters

#### **Least Mean Squares Solution**

(for single variable, 2 parameter linear model)

$$f(x; w_0, w_1) = w_0 + w_1 x$$

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(t_n, f(x_n; w_0, w_1))$$

$$= \frac{1}{N} \sum_{n=1}^{N} (t_n - f(x_n; w_0, w_1))^2 \qquad \text{The specific loss fn we're working with here}$$

$$= \frac{1}{N} \sum_{n=1}^{N} (t_n - (w_0 + w_1 x_n))^2 \qquad \text{The specific model we're working with here}$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w_1^2 x_n^2 + 2w_1 x_n w_0 - 2w_1 x_n t_n + w_0^2 - 2w_0 t_n + t_n^2) \qquad \text{Multiply out and rearrange to put into an easier-to deal with form.}$$

#### **Least Mean Squares Solution**

(for single variable, 2 parameter linear model)

$$f(x;w_0,w_1)=w_0+w_1x$$
 Our model family  $\mathcal{L}=rac{1}{N}\sum_{n=1}^N(w_1^2x_n^2+2w_1x_n(w_0-t_n)+w_0^2-2w_0t_n+t_n^2)$ 

Our goal: We want values for  $w_0$  and  $w_1$  that will minimize this loss function

I.e., we seek values for  $w_0$  and  $w_1$  that will make the loss function be the smallest when we actually sum over all the values of x and t in the dataset.

Because the loss function happens to be quadratic (in the two parameters) we can use a standard method from calculus for finding minima (maxima) directly: taking the derivative of the function and setting it to zero.

Our loss function has **two** parameters that we're trying set to minimize the loss fn, so we need to take the partial derivative (w.r.t.  $w_0$  and  $w_1$ )

What we end up with are two functions, one for  $w_0$  and one for  $w_1$ , and both will work with any data and give the best least mean square (LMS) fit!

# Side note: One way to tell we have a unique extreme

First and Second Derivative around particular x value (x=a)

| Stationary point      | Sign diagram of $f'(x)$<br>near $x = a$ | Shape of curve near $x = a$ |
|-----------------------|-----------------------------------------|-----------------------------|
| local maximum         | +   - a                                 | x = a                       |
| local minimum         | -   +                                   | x = a                       |
| horizontal inflection | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$   | x = a or $x = a$            |

#### Second derivative

Constant negative (if *f* is quadratic)

Constant positive (if *f* is quadratic)

No longer a constant fn (if *f* higher order than quad)

#### **Least Mean Squares Solution**

(for single variable, 2 parameter linear model)

$$\mathcal{L} = rac{1}{N} \sum_{n=1}^{N} (w_1^2 x_n^2 + 2w_1 x_n (w_0 - t_n) + w_0^2 - 2w_0 t_n + t_n^2)$$

• Partial derivative for  $w_0$ 

First, since we're taking the partial w.r.t.  $w_0$ , can drop any terms without  $w_0$ .

$$rac{1}{N}\sum_{n=1}^{N}\left[w_{0}^{2}+2w_{1}x_{n}w_{0}-2w_{0}t_{n}
ight]$$

$$w_0^2 + 2w_0w_1rac{1}{N}\left(\sum_{n=1}^N x_n
ight) - 2w_0rac{1}{N}\left(\sum_{n=1}^N t_n
ight)$$
 Next, move sums inward to put in easier form

$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + 2w_1 \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) \quad \text{finally, take deriv. w.r.t } \\ \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) \quad \text{finally, take deriv. w.r.t } \\ \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) \quad \text{finally, take deriv. w.r.t } \\ \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) \quad \text{finally, take deriv. w.r.t } \\ \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) \quad \text{finally, take deriv. w.r.t } \\ \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) \quad \text{finally, take deriv. w.r.t } \\ \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) \quad \text{finally, take deriv. w.r.t } \\ \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) \quad \text{finally, take deriv. w.r.t } \\ \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left$$

#### Continued...

• Solve for 
$$\frac{\partial \mathcal{L}}{\partial w_0} = 0$$

$$2w_0 + 2w_1 \frac{1}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N t_n \right) = 0$$

$$2w_0 = rac{2}{N}\left(\sum_{n=1}^N t_n
ight) - w_1rac{2}{N}\left(\sum_{n=1}^N x_n
ight)$$

$$w_0 = \frac{1}{N} \left( \sum_{n=1}^{N} t_n \right) - w_1 \frac{1}{N} \left( \sum_{n=1}^{N} x_n \right) = \bar{t} - w_1 \bar{x}$$

#### **Least Mean Squares Solution**

(for single variable, 2 parameter linear model)

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} (w_1^2 x_n^2 + 2w_1 x_n (w_0 - t_n) + w_0^2 - 2w_0 t_n + t_n^2)$$

• Partial derivative for  $w_1$  Do the same for  $w_1$ ...

$$\frac{1}{N}\sum_{n=1}^{N}\left[w_1^2x_n^2+2w_1x_nw_0-2w_1x_nt_n\right] \quad \text{only keep terms with } \mathbf{w}_1$$

$$w_1^2rac{1}{N}\Biggl(\sum_{n=1}^N x_n^2\Biggr) + 2w_1rac{1}{N}\Biggl(\sum_{n=1}^N x_n(w_0-t_n)\Biggr)$$
 move sums inside

$$\begin{split} \frac{\partial \mathcal{L}}{\partial w_1} &= 2w_1 \frac{1}{N} \left( \sum_{n=1}^N x_n^2 \right) + \frac{2}{N} \left( \sum_{n=1}^N x_n (w_0 - t_n) \right) & \text{now take partial derivative} \\ &= w_1 \frac{2}{N} \left( \sum_{n=1}^N x_n^2 \right) + \frac{2}{N} \left( \sum_{n=1}^N x_n \left( \overbrace{t - w_1 \overline{x}}^{\text{solution for } w_0} - t_n \right) \right) & \text{plug in solution for } w_0 \\ &= w_1 \frac{2}{N} \left( \sum_{n=1}^N x_n^2 \right) + \frac{2}{N} \left( \sum_{n=1}^N x_n \left( \overbrace{t - w_1 \overline{x}}^{\text{solution for } w_0} - t_n \right) \right) & \text{... and rearrange terms} \end{split}$$

$$= w_1 \frac{2}{N} \left( \sum_{n=1}^{N} x_n^2 \right) + \bar{t} \frac{2}{N} \left( \sum_{n=1}^{N} x_n \right) - w_1 \bar{x} \frac{2}{N} \left( \sum_{n=1}^{N} x_n \right) - \frac{2}{N} \left( \sum_{n=1}^{N} x_n t_n \right)$$
25

• Partial derivative for w₁ continued...

$$\begin{split} \frac{\partial \mathcal{L}}{\partial w_1} &= w_1 \frac{2}{N} \left( \sum_{n=1}^N x_n^2 \right) + \bar{t} \frac{2}{N} \left( \sum_{n=1}^N x_n \right) - w_1 \overline{x} \frac{2}{N} \left( \sum_{n=1}^N x_n \right) - \frac{2}{N} \left( \sum_{n=1}^N x_n t_n \right) \\ &= 2 w_1 \left[ \left( \frac{1}{N} \sum_{n=1}^N x_n^2 \right) - \overline{x} \ \overline{x} \right] + 2 \bar{t} \overline{x} - 2 \frac{1}{N} \left( \sum_{n=1}^N x_n t_n \right) \end{aligned} \quad \begin{array}{c} \text{replace remaining mean x with } \overline{\mathbf{x}} \\ \text{and group } \mathbf{w}_1 \text{ terms} \end{split}$$

$$\begin{aligned} 2w_1\left[\left(\frac{1}{N}\sum_{n=1}^N x_n^2\right) - \overline{x}\ \overline{x}\right] + 2\overline{t}\overline{x} - 2\frac{1}{N}\left(\sum_{n=1}^N x_n t_n\right) &= 0 \qquad \text{Solve for } \mathbf{w}_1 \text{ with } \frac{\partial \mathcal{L}}{\partial w_1} &= 0 \quad \dots \\ 2w_1\left[\left(\frac{1}{N}\sum_{n=1}^N x_n^2\right) - \overline{x}\ \overline{x}\right] &= 2\frac{1}{N}\left(\sum_{n=1}^N x_n t_n\right) - 2\overline{t}\overline{x} \end{aligned}$$

$$w_{1} = \frac{\frac{1}{N} \left( \sum_{n=1}^{N} x_{n} t_{n} \right) + \bar{t} \bar{x}}{\left( \frac{1}{N} \sum_{n=1}^{N} x_{n}^{2} \right) - \bar{x} \; \bar{x}} = \frac{\left( \frac{1}{N} \sum_{n=1}^{N} x_{n} t_{n} \right) - \left( \frac{1}{N} \sum_{n=1}^{N} t_{n} \right) \left( \frac{1}{N} \sum_{n=1}^{N} x_{n} \right)}{\left( \frac{1}{N} \sum_{n=1}^{N} x_{n}^{2} \right) - \left( \frac{1}{N} \sum_{n=1}^{N} x_{n} \right)^{2}}$$

#### Solving LMS: Method 1 (analytic)

(for single variable, 2 parameter linear model)

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} (w_1^2 x_n^2 + 2w_1 x_n (w_0 - t_n) + w_0^2 - 2w_0 t_n + t_n^2)$$

• Partial derivative for  $w_0$ :

$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + 2w_1 \frac{1}{N} \left( \sum_{n=1}^N x_n \right)^0 - \frac{2}{N} \left( \sum_{n=1}^N t_n \right)$$

• Set  $\frac{\partial \mathcal{L}}{\partial w_0} = 0$  and solve for  $\mathbf{w_0}$ :

$$w_0 = \frac{1}{N} \left( \sum_{n=1}^N t_n \right) - w_1 \frac{1}{N} \left( \sum_{n=1}^N x_n \right) = \overline{t} - w_1 \overline{x}$$

• Partial derivative for  $w_1$ :

$$\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \frac{1}{N} \left( \sum_{n=1}^N x_n^2 \right) + \frac{2}{N} \left( \sum_{n=1}^N x_n (w_0 - t_n) \right)$$

• Plug in  $w_0$ , set  $\frac{\partial \mathcal{L}}{\partial w_1} = 0$  and solve for  $w_1$ :

$$w_{1} = \frac{\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}t_{n}\right) - \left(\frac{1}{N}\sum_{m=1}^{N}t_{n}\right)\left(\frac{1}{N}\sum_{m=1}^{N}x_{n}\right)}{\left(\frac{1}{N}\sum_{n=1}^{N}x_{n}^{2}\right) - \left(\frac{1}{N}\sum_{n=1}^{N}x_{n}\right)^{2}} = \frac{\overline{xt} - \overline{xt}}{\overline{x^{2}} - (\overline{x})^{2}}$$





# How about more than 1 input?

- Most problems will involve more than just the relationship between 1 input attribute and a target.
- Extending our linear models to higher dimensions is desirable, and at least for 2 inputs (now the "line" is a plane in 3D) it is easy to visualize the geometry.
- In general, a linear model with n input variables and n+1 parameters (the w's, with their values determined) is an n-dimensional "hyperplane" embedded in n+1 dimensions.



# Things quickly get messy as we increase the dimensions...

- Suppose we want a richer predictive model for the Olympic data: not only include the best overall time for the gold, but also the best times of each sprinter that raced  $(s_1,...,s_8)$
- This is a 9 dimensional hyperplane with 10 parameters:

$$t = f(x, s_1, ..., s_8; w_0, ..., w_9) = w_0 + w_1 x + w_2 s_1 + w_3 s_2 + w_4 s_3 + w_5 s_4 + w_6 s_5 + w_7 s_6 + w_8 s_7 + w_9 s_8$$

 The math is fundamentally the same, but to derive the normal equations, we need to take 10 partial derivatives, then have 10 equations to re-arrange and substitute back in...