Permit Number 45622

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emission Rates	
No. (1)		Name (3)	lbs/hour	TPY (5)
KS2	Kiln No. 2	CO HCI HF NO _x Pb (6) PM PM ₁₀ PM _{2.5} SO ₂ (4) SO ₃ (6) VOC	14.46 6.38 1.52 61.81 0.13 73.54 29.14 29.14 727.31 8.78 0.29	63.33 24.83 6.66 238.22 0.55 283.20 112.06 112.06 2353.83 28.83 1.13
KS3	Kiln No. 3	CO HCI HF NO _x Pb (6) PM PM ₁₀ PM _{2.5} SO ₂ (4) SO ₃ (6) VOC	24.79 10.94 2.61 105.95 0.22 126.27 50.15 50.15 1131.38 15.05 0.50	108.57 42.56 11.42 408.38 0.95 486.38 193.00 193.00 3716.60 49.43 1.94
WHBS3	Kiln No. 3 Waste Heat Boiler Stack	CO HCI HF NO _x Pb (6) PM PM ₁₀ PM _{2.5} SO ₂ (4) SO ₃ (6) VOC	24.79 10.94 2.61 105.95 0.22 88.20 44.72 44.72 1131.38 15.05 0.50	108.57 42.56 11.42 408.38 0.95 486.38 193.00 193.00 3716.60 49.43 1.94

HCI - 24 HF - 3 NO _x - 4 Pb (6) - PM - 4	08.57 42.56 11.42 08.38
HF - 11 NO _x - 4 Pb (6) - Waste Heat Boiler Stacks HF - 1 NO _x - 4 Pb (6) PM - 4	11.42 08.38
NO _x - 4	08.38
NO _x - 4	08.38
Total Kiln No. 3 and Pb (6) - KS3/WHBS3 Waste Heat Boiler Stacks PM - 4	
KS3/WHBS3 Total Killi No. 3 and PM - 4	0.95
Wasta Haat Bollar Stacks	86.38
$ $ $ $ $ $ $ $ $ $ $ $ $ $	93.00
	93.00
	716.60
	49.43
	1.94
	08.57
	42.56
	11.42
	08.38
	0.95
	88.97
	95.59
	95.59
	716.60
	49.43
VOC 0.50	1.94
	08.57
DRAFT HCI 10.94	12.56
HF 2.61 1	L1.42
NO _x 105.95 4	08.38
Pb (6) 0.22	0.95
	88.97
	95.59
	95.59
	716.60
	49.43
	1.94
	08.57
	42.56
	11.42
	08.38
	0.95
	0.95 88.97
I Wasta Haat Bollar Stacks	95.59
PM ₁₀ - 1	
	95.59
SO ₂ (4) - 37	716.60
SO ₂ (4) - 37 SO ₃ (6) - 4	

Emission Sources - Maximum Allowable Emission Rates

	Emission Sources - Maximum	MIOWADIC EITHSSIOTT	laics	
KS5	Kiln No. 5 Stack	CO HCI HF NO _x Pb (6) PM PM ₁₀ PM _{2.5} SO ₂ (4) SO ₃ (6) VOC	251.10 15.80 3.76 164.40 0.31 86.87 42.55 42.55 1170.00 15.60 0.50	1100.00 61.74 16.49 720.00 1.37 380.49 186.33 186.33 5120.00 68.33 2.50
WHBS5	Kiln No. 5 Waste Heat Boiler Stack	CO HCI HF NO _x Pb (6) PM PM ₁₀ PM _{2.5} SO ₂ (4) SO ₃ (6) VOC	251.10 15.80 3.76 164.40 0.31 86.87 42.55 42.55 1170.00 15.60 0.50	1100.00 61.74 16.49 720.00 1.37 380.49 186.33 186.33 5120.00 68.33 2.50
KS5/WHBS5	Total Kiln No. 5 and Waste Heat Boiler Stacks	CO HCI HF NO _x Pb (6) PM PM ₁₀ PM _{2.5} SO ₂ (4) SO ₃ (6) VOC	251.10 15.80 3.76 164.40 0.31 86.87 42.55 42.55 1170.00 15.60 0.50	1100.00 61.74 16.49 720.00 1.37 380.49 186.33 186.33 5120.00 68.33 2.50
CLR3DC	Cooler No. 3 Baghouse	CO HCI HF NO _x PM PM ₁₀ PM _{2.5} SO ₂ SO ₃	5.61 1.29 0.01 1.29 0.59 0.59 0.59 1.39 0.10	24.55 5.66 0.03 5.64 2.59 2.59 2.59 6.08 0.45
CLR5DC Project Numbers: 174988	Cooler No. 5 Baghouse	$\begin{array}{c} \text{CO} \\ \text{HCI} \\ \text{HF} \\ \text{NO}_x \\ \text{PM} \\ \text{PM}_{10} \\ \text{PM}_{2.5} \\ \text{SO}_2 \end{array}$	11.37 2.62 0.02 2.61 1.49 1.49 2.82 0.21	49.79 11.47 0.07 11.43 6.53 6.53 6.53 12.33

	Emission Sources - Maximum		raies	
		SO₃		
		PM	120.86	47.82
MTLHDL	Material Handling (7)	PM ₁₀	3.23	2.07
WITEIIDE	(Raw and Calcined Coke Conveying)	PM _{2.5}	0.67	0.35
	Day Cake Loading Operations			
MTLLOAD	Raw Coke Loading Operations	PM	1.15	0.93
	(Railcar and Truck Loading with Front-	PM_{10}	0.14	0.11
	End Loader) (7)	PM _{2.5}	0.01	0.01
	Raw Coke Unloading Operations	DM	F 60	0.70
	(Raw Petcoke Barge and Ship Crane	PM	5.62	3.73
MTLUNLOAD	Unloading, Railcar Unloading and	PM_{10}	0.69	0.46
	Truck Unloading)	$PM_{2.5}$	0.08	0.06
	Track Officiality)	PM	0.13	0.57
PA-PILES	Dunance Auga Chart Tarra Dilac (7)	PM ₁₀	0.13	0.06
PA-PILES	Process Area Short-Term Piles (7)			
		PM _{2.5}	0.01	0.01
	Stockpiles (7)	PM	6.73	27.78
SP	(Raw and Calcined)	PM_{10}	0.74	3.22
	(Naw and Calcined)	$PM_{2.5}$	0.12	0.52
	5001	PM	0.02	0.09
5C2 DC	Conveyor 5C2 Insertable Dust	PM_{10}	0.02	0.09
002.20	Collector	PM _{2.5}	0.01	0.02
		PM	0.02	0.09
C2F DC	Conveyor 25 Insertable Dust Collector			
C25 DC		PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.07
	Conveyor 31 Insertable Dust Collector	PM	0.02	0.09
C31 DC		PM_{10}	0.02	0.09
		$PM_{2.5}$	0.01	0.02
	C35 Hi-Vac Unit Dust Collector	PM	0.04	0.15
C35-HV		PM ₁₀	0.04	0.15
C33-HV		PM _{2.5}	0.01	0.05
	Conveyor C36 Insertable Dust Collector			
000 00		PM	0.04	0.18
C36 DC		PM_{10}	0.04	0.18
		PM _{2.5}	0.02	0.09
	C36/37 Conveyor Transfer Chute Dust Collector	PM	0.17	0.74
C-37		PM_{10}	0.17	0.74
		$PM_{2.5}$	0.02	0.09
		PM	0.17	0.76
C-38	C37/38 Conveyor Transfer Point Dust Collector	PM_{10}	0.17	0.76
0.00		PM _{2.5}	0.02	0.09
OACETE!	C and S Daytank Bin Vent Dust	PM	0.07	0.31
C&SDTBV	Collector	PM ₁₀	0.07	0.31
	Concetor	PM _{2.5}	0.01	0.05
CS-1	Calcine Silo No. 1 Bin Vent Dust	PM	0.84	3.69
	Calcine Silo No. 1 Bill Verit Dust	PM_{10}	0.84	3.69
		$PM_{2.5}$	0.02	0.09
CS-2	Coloine Cil. N. C.Di. V. C.D.	PM	0.70	3.08
	Calcine Silo No. 2 Bin Vent Dust Collector	PM ₁₀	0.70	3.08
		PM _{2.5}	0.01	0.05
		PM	0.70	
CS-3	Calcine Silo No. 3 Bin Vent Dust			3.08
	Collector	PM_{10}	0.70	3.08
	2 3 3 3	PM _{2.5}	0.01	0.05

	Emission Sources Maximum	Tillottable Ellilocioli I	iaioo	
CS-4	Calaina Cila Na. 4 Din Vant Duct	PM	0.49	2.16
	Calcine Silo No. 4 Bin Vent Dust	PM ₁₀	0.49	2.16
	Collector	PM _{2.5}	0.01	0.05
	Main Calcine Material Handling	PM	2.56	11.22
CS-CC	System Dust Collector (Airtrol dust	PM ₁₀	2.56	11.22
	Collector)	PM _{2.5}	0.06	0.34
	,	PM	0.33	1.43
CS-DV	T1/T2 Pneumatic Conveying System	PM ₁₀	0.33	1.43
C3-DV	Dust Collector	PM _{2.5}	0.01	0.05
		PM	0.02	0.09
LEDC	Capuavar I C Incortable Duet Collector			
L6 DC	Conveyor L6 Insertable Dust Collector	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.09
	Conveyor L6A Insertable Dust	PM	0.02	0.09
L6A DC	Collector	PM ₁₀	0.02	0.09
	C 00010.	PM _{2.5}	0.02	0.09
	Conveyor L25A Insertable Dust	PM	0.02	0.09
L25A DC	Collector	PM ₁₀	0.02	0.09
	Collector	PM _{2.5}	0.02	0.09
	Canyover I 44 Incertable Duet	PM	0.04	0.18
L44 DC	Conveyor L44 Insertable Dust	PM ₁₀	0.04	0.18
	Collector	PM _{2.5}	0.02	0.09
		PM	0.02	0.09
L45 DC	Conveyor L45 Insertable Dust Collector	PM ₁₀	0.02	0.09
2.020		PM _{2.5}	0.02	0.09
		PM	0.06	0.01
LA-DC	Lab Annex Building Dust Collector	PM ₁₀	0.06	0.01
LA-DC		PM _{2.5}	0.06	0.01
		PM	0.07	0.01
RD-DC2	Kiln RD Building Hi-Vac Dust Collector		0.07	0.08
RD-DC2		PM ₁₀		
		PM _{2.5}	0.07	0.08
0.4	Ship Loading Dock Area Dust	PM	0.91	4.00
SL-1	Collector (L44 Dust Collector)	PM ₁₀	0.91	4.00
	,	PM _{2.5}	0.09	0.06
	Ship Loader DCL Spout Dust	PM	0.09	0.38
SL1-DCL	Collector	PM ₁₀	0.09	0.38
		PM _{2.5}	0.02	0.04
	Ship Loader Transfer No. 1 (L44/L1)	PM	0.09	0.38
SL1-T1	Dust Collector	PM ₁₀	0.09	0.38
	Dust Collector	PM _{2.5}	0.09	0.18
SL1-T2	Shin Loador Transfer No. 2 (L1/L2)	PM	0.09	0.38
	Ship Loader Transfer No. 2 (L1/L2)	PM ₁₀	0.09	0.38
	Dust Collector	PM _{2.5}	0.09	0.09
		PM	0.09	0.38
SL1-T3	Ship Loader Transfer No. 3 (L2/L3)	PM ₁₀	0.09	0.38
JL1 10	Dust Collector	PM _{2.5}	0.09	0.09
SL-PIT2-DC				
STK1	Total Ship Loading Pit Dust Collector	PM	0.28	0.62
SL-PIT2-DC	Stack 1 and Stack 2	PM ₁₀	0.28	0.62
STK2	Stack I and Stack E	PM _{2.5}	0.09	0.02
JINZ				

	Emission Sources - Maximum	MIOWADIC EITHSSIOTT	laico	
		PM	0.06	0.11
SR-DC	Sample Prep Building Dust Collector	PM ₁₀	0.06	0.11
		PM _{2.5}	0.06	0.11
		PM	0.02	0.09
S1 DC1	Silo 1 Insertable Dust Collector 1	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.02
		PM	0.02	0.09
S1 DC2	Silo 1 Insertable Dust Collector 2	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.02
		PM	0.02	0.09
S1 DC3	Silo 1 Insertable Dust Collector 3	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.02
		PM	0.02	0.09
S1 DC4	Silo 1 Insertable Dust Collector 4	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.02
		PM	0.02	0.09
S2 DC1	Silo 2 Insertable Dust Collector 1	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.03
		PM	0.02	0.09
S2 DC2	Silo 2 Insertable Dust Collector 2	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.03
		PM	0.02	0.09
S2 DC3	Silo 2 Insertable Dust Collector 3	PM ₁₀	0.02	0.09
	DRAI	PM _{2.5}	0.02	0.03
		PM	0.02	0.09
S3 DC1	Silo 3 Insertable Dust Collector 1	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.03
		PM	0.02	0.09
S3 DC2	Silo 3 Insertable Dust Collector 2	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.03
		PM	0.02	0.09
S3 DC3	Silo 3 Insertable Dust Collector 3	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.03
		PM	0.02	0.09
S4 DC1	Silo 4 Insertable Dust Collector 1	PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.05
		PM	0.02	0.09
S4 DC L44	Silo 4 Insertable Dust Collector at L44	PM ₁₀	0.02	0.09
0.202.1	Charles and a desired at E11	PM _{2.5}	0.02	0.05
		1 1412.5	0.02	0.00

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) CO - carbon monoxide

HCI - hydrogen chloride HF - hydrogen fluoride

NO_x - total oxides of nitrogen

Pb - lead

 $\,$ - $\,$ total particulate matter, suspended in the atmosphere, including PM_{10} and $PM_{2.5},$ as represented

Permit Number 45622 Page 7

Emission Sources - Maximum Allowable Emission Rates

 $\text{PM}_{\text{10}}\,\,$ - $\,$ total particulate matter equal to or less than 10 microns in diameter, including $\text{PM}_{\text{2.5}},$ as represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

SO₂ - sulfur dioxide SO₃ - sulfur trioxide

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

- (4) The hourly emission rate for SO₂ shall be the limit for stack testing purposes. The hourly emission rate for reporting SO₂ compliance with the permit shall be based on a 7-day rolling average from a 24-hour composite analysis of the blended raw feed sulfur content. The annual emission rate for reporting SO₂ compliance with the permit shall be based on a calendar year.
- (5) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.
- (6) Emitted as PM and included in the PM and PM_{10} emission rate.
- (7) Fugitive emissions are an estimate only.

DRAFT