Introdução à Programação em Baixo Nível [REVISÃO]

Engenharia de Computação UFC QUIXADÁ

Programa em C

```
#include <stdio.h>
int main(void) {
   int a = 5;
   int b = 7;
   int c;
   c = a + b;
   return 0;
}
```

Em NASM

```
%include "io.inc"
section .data
add 5
bdd7
section .bss
c resd 1
section .text
global CMAIN
CMAIN:
     mov EAX, [a]
     add EAX, [b]
     mov [c], EAX
     xor eax, eax
```

ret

Programação em Assembly

Instruções Manipulam:

- Unidade Lógico Aritmética (ULA)
- Unidade de Controle (UC)
- Interrupções
 - Vetor de Interrupção
 - Chamadas de Sistema
 - Memória Externa
- Co-processadores Intel de ponto flutuante (x87)
- Conjunto estendido de instruções vetoriais (SSE, MMX, AVX, ...)

Armazenando Dados

Locais de Armazenamento durante a execução de um programa

- Memória Externa
- Memória Interna
- Registradores
 - Implícitos
 - Explícitos

Registradores x86

Registradores Explícitos de Propósito Geral

Entendendo o OFFSET

Considere o segmento DS (Segmento de Dados)

section .data

a dd 5

bdd7

c dd 3

d dd 8

Acessando Partes de Registradores

- Usando nome de 8-bit, nome de 16-bit, ou nome de 32-bit
- Aplicáveis a EAX, EBX, ECX e EDX

32-bit	16-bit	8-bit (high)	8-bit (low)
EAX	AX	AH	AL
EBX	BX	ВН	BL
ECX	CX	СН	CL
EDX	DX	DH	DL

Registradores de Índice e Base

 Alguns registradores possuem somente nome de 16-bit para sua metade menor

32-bit	16-bit	
ESI	SI	
EDI	DI	
EBP	BP	
ESP	SP	

Registradores de Uso Especializado

Propósito Geral

- EAX acumulador (accumulator)
- ECX contador de laço (loop counter)
- ESP ponteiro de pilha (stack pointer)
- ESI, EDI registrador de índice (index registers)
- EBP ponteiro de frame estendido (extended frame pointer-stack)

Segmento

- CS segmento de código (code segment)
- DS segmento de dados (data segment)
- SS segmento de pilha (stack segment)
- ES, FS, GS segmento adicional (additional segments)
- EIP ponteiro de instrução (instruction pointer)
- EFLAGS
 - Flags de status e controle
 - o cada flag é um único bit binário

Flags de Status

- Carry
 - o operação aritmética sem sinal fora de faixa (out of range)
- Overflow
 - o operação aritmética com sinal fora de faixa (out of range)
- Sign
 - o resultado é negativo
- Zero
 - o o resultado é zero
- Auxiliary Carry
 - o carry do bit 3 ao bit 4
- Parity
 - o soma de 1 bit e um número par

Registradores de ponto flutuante, MMX, XMM

- Oito registradores de dados ponto flutuante de 80-bit na unidade de ponto flutuante (Float Point Unit- FPU)
 - o ST(0), ST(1), ..., ST(7)
 - o arranjados em uma pilha
 - usado por todos operações aritméticas de ponto flutuante
- Oito registradores 64-bit MMX
 - Utiliza os mesmos registradores da FPU
- Oito registradores 128-bit XMM para operações SIMD (single instruction multiple data)
 - XMM0, XMM1,..., XMM7
- O AVX utiliza dezesseis registradores YMM de 256bits
 - YMM0, YMM1,..., YMM15