

第八讲 四点共圆的常用技巧 1

例1. 如图,在圆O中,M为弧AB的中点,MC、MD与AB交于F、E. 求证:C、D、E、F四点共圆.

证一: $\angle AFC = \angle ABC + \angle BCM = \angle ADC + \angle ADM = \angle CDE$ 故 $C \setminus D \setminus E \setminus F$ 四点共圆.

所以 $MF \times MC = MA^2$.

同理可得 $\triangle MAE \hookrightarrow \triangle MDA$, $ME \times MD = MA^2$.

于是 $MF \times MC = ME \times MD$, 即 $C \times D \times E \times F$ 四点共圆.

例2. 如图,已知 $D \setminus E \setminus F$ 分别是 $\triangle ABC$ 三边上的点,求证: $\triangle AEF \setminus \triangle BDF \setminus \triangle CDE$ 的外接圆交于一点.

证:设 $\triangle AEF$ 和 $\triangle BDF$ 的外接圆交于 P.

则 $\angle PEC = \angle PFA = \angle PDB$.

从而 C、D、P、E 共圆,原命题得证.

例3. 如图,已知四边形 ABCD,延长 AB、DC 相交于 E,延长 AD、BC 相交于 F.

求证: $\triangle ADE$ 、 $\triangle ABF$ 、 $\triangle BCE$ 、 $\triangle CDF$ 的外接圆交于一点.

证: 设 $\triangle BCE$ 和 $\triangle CDF$ 的外接圆交于 P.

则 $\angle CPE = \angle ABF$, $\angle CPD = \angle AFB$.

于是 $\angle DPE = \angle ABF + \angle AFB = 180^{\circ} - \angle A$.

所以A、D、P、E 共圆.

同理由 $\angle BPF = \angle BPC + \angle CPF = \angle AED + \angle ADE = 180^{\circ} - \angle A$

可得A、B、P、F 共圆.

综上即可得证.

例4. 如图, P 为圆 O 外一点, PA 切圆 O 于 A, PC 交圆 O 于 B, 作 $AD \perp PO$ 于 D.

证明: D、O、B、C 共圆.

证: 由切割线定理 $PB \times PC = PA^2$.

由射影定理 $PD \times PO = PA^2$.

故 $PB \times PC = PD \times PO$. 所以 $D \times O \times B \times C$ 共圆.

例5. 如图,已知圆内接四边形 ABCD,延长 AB、DC 交于 E,延长 AD、BC 交于 F,过 E、F 作圆的切线,

切点分别为P、Q. 求证: $EF^2 = EP^2 + FQ^2$.

证: 在 EF 上取点 M, 使得 B、 C、 M、 E 共圆.

由 $\angle CME = \angle ABC = \angle CDF$, 可得 $C \setminus D \setminus F \setminus M$ 共圆. (例 2)

于是 $EF^2 = EM \times EF + FM \times EF = EC \times ED + FC \times FB = EP^2 + FQ^2$.

例6. 如图, P 为圆 O 外一点, 过 P 作圆 O 的切线 PA、PB. M 为 AB 中点, CD 为过点 M 的一条弦.

连结 PC、PD, 求证: $\angle APC = \angle BPD$.

证:由题意 P、M、O 共线且 $OA \perp PA$.

于是 $PM \times MO = AM^2 = AM \times BM = CM \times DM$.

所以P、C、O、D 共圆.

由 OC = OD 可得 $\angle OPC = \angle OPD$.

从而 $\angle APC = \angle OPA - \angle OPC = \angle OPB - \angle OPD = \angle BPD$.

