13.) Let $x, y \in \mathbb{R}$ such that x, y > 0 and $n \in \mathbb{N}$. To show that $x < y \iff x^n < y^n$, we must prove it both ways.

Suppose x < y:

$$x < y \implies x - y < 0$$

$$\implies (x - y) \sum_{k=0}^{n-1} x^k y^{n-k-1} < 0$$

$$\implies x^n - y^n < 0$$

$$\implies x^n < y^n$$

Now suppose $x^n < y^n$:

$$x^{n} < y^{n} \implies x^{n} - y^{n} < 0$$

$$\implies (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-k-1} < 0$$

$$\implies x - y < 0$$

$$\implies x < y$$

Thus $x < y \iff x^n < y^n$. Q.E.D.

- 22.) a.) False, as $\sup((0,1)) = 1 \notin (0,1)$
 - b.) False, as $\sup([0,1]) = 1 \in [0,1]$
 - c.) True, as $\sup([0,1])=1\in[0,1]$
 - d.) True, as $\sup((0,1)) = 1 \notin (0,1)$
- 23.) Let $u, v \in \mathbb{R}$ such that $u = \sup(S)$ and $v = \inf(S)$. For the sake of establishing a contradiction, suppose v > u. Since v > u, v > x for all $x \in S$, but for $v = \inf(S)$, $v \le x$ for all $x \in S$, thus $v > u \implies v \ne \inf(S) \implies (S) \implies (C) = (C)$.
- 24.) a.) $S = \mathbb{R}$; $\mathbb{R} = (-\infty, \infty)$ and thus has no upper bound nor lower bound.
 - b.) DNE; for $S \subseteq \mathbb{R}$ to be bounded, there must exist $u \in \mathbb{R}$ such that $u = \sup(S)$.
 - c.) S = [0, 1); $\inf(S) = 0 \in S$ and $\sup(S) = 1 \notin S$.
 - d.) $S = (-\infty, 1]$; sup(S) exists but inf(S) does not.
 - e.) S = (0, 1); $\sup(S)$ exists but $\sup(S) \notin S$.

- 26.) My first exposure to functions was in the context of programming rather than math, specifically in procedural programming languages like C. In this context, functions are often used for their side-effects, rather than being purely functional. When I took discrete math, I was introduced to the mathematical notion of a function, i.e. a mapping between two sets. To me, the distinction between these two types of functions has always been clear as their use cases are quite different.
- 27.) a.) S = (0,1); $\sup(S) = 1 \notin S$.
 - b.) S = (0, 1); $\inf(S) = 0 \notin S$.
 - c.) DNE; for $u = \sup(S)$, $u \ge x$ for all $x \in S$, but u < t and $t \in S$, thus $u \ne \sup(S)$.
- 32.) For all $x \in \mathbb{R}$, |x| is defined as follows:

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$