Razonamiento Basado en Probabilidades

Medida de probabilidad

- Definición 1. Medidas de Probabilidad. Una función p que proyecta los sub-conjuntos de S⊇A en el intervalo [0, 1] se llama medida de la probabilidad si satisface los siguientes axiomas:
 - Axioma 1 (Normalización): p(S) = 1.
 - Axioma 2 (Aditividad): Para cualquier sucesión infinita A₁, A₂, ... de subconjuntos disjuntos de S, se cumple la igualdad:

$$p(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} p(A_i)$$

- · Ejemplo probabilidades: Lanzamiento de un dado no trucado
 - S = {1, 2, 3, 4, 5, 6}
 - p(S) = 1
 - p({1})= 1/6
 - p({1, 3}) = p({1})+p({3}) = 1/3.

Introducción

- En la mayor parte de aplicaciones de S.E. la incertidumbre es lo común:
 - Por ejemplo, en un diagnóstico médico la pregunta típica es:

Dado que el paciente presenta un conjunto de síntomas, ¿cuál de las enfermedades posibles es la que tiene el paciente?

- Esta situación implica cierto grado de incertidumbre puesto que:
 - Los hechos o datos pueden no ser conocidos con exactitud.
 - Hay un cierto grado de incertidumbre en la información asociada a cada paciente (subjetividad, imprecisión, ausencia de información, errores, etc.) Por ejemplo, un paciente no está seguro de haber tenido fiebre la noche anterior.
 - El conocimiento no es determinista.
 - Las relaciones entre las enfermedades y los sintomas no son deterministas. Por ejemplo, podemos encontrar dos pacientes con los mismos sintomas y enfermedades diferentes.

Distribución de probabilidad

- Sea $\{X_1,\,...\,\,X_n\}$ un conjunto de variables aleatorias discretas y $\{x_1,\,...\,\,x_n\}$ el conjunto de sus posibles realizaciones.
 - lacksquare Por ejemplo, si X_i es una variable binaria x_i puede ser 0 o 1.
- · Se denomina función de probabilidad conjunta a

$$p(x_1, \; ... \; \; x_n) = p(\; X_1 \! = x_1 \; , \; ... \; X_n \! = x_n)$$

 Se denomina función de probabilidad marginal de la i-ésima variable mediante la fórmula:

$$p(x_i) = p(X_i = x_i) = \sum_{X_1, ..., X_{i-1}, X_{i+1}} p(x_1, ..., X_n)$$

El conocimiento de la courrencia de un

- El conocimiento de la ocurrencia de un suceso puede modificar las probabilidades de otros sucesos.
 - Por ejemplo, la probabilidad de que un paciente tenga una enfermedad dada puede cambiar tras el conocimiento de los resultados de un análisis de conduce al concepto de probabilidad condicional.

La teoría de la Probabilidad

- · Medida de la probabilidad
 - Para medir la incertidumbre se parte de un conjunto S (El espacio muestral), en el que se incluyen todos los posibles resultados de un cierto experimento.
 - Una vez definido este conjunto, el objetivo consiste en asignar a todo subconjunto S un numero real que mida el grado de incertidumbre sobre su realización.
 - Para obtener medidas con significado claro y práctico, se imponen ciertas propiedades intuitivas adicionales que definen una clase de medidas que se conocen como medidas de probabilidad.

Probabilidad condicional

 Definición 2. Probabilidad condicional. Sean X e Y dos conjuntos disjuntos de variables tales que p(y) > 0 . Entonces, la probabilidad condicional (función de probabilidad condicionada) de X dado Y=y viene dada por

$$p(X{=}x\mid Y{=}y)=p(x|y)=p(x{,}y)/p(y)$$

 Esta definición implica que la función de probabilidad conjunta de X e Y puede escribirse como

$$p(x,y) = p(y)p(x|y).$$

 Se obtiene un caso particular cuando X es una única variable e Y es un subconjunto de variables:

$$p(x_i \mid x_1, \, ..., \, x_k) = p(x_i \, \, , \, x_1 \, \, , \, ..., \, x_k)/p(x_1 \, \, , \, ..., \, x_k \,)$$

Dependencia e Independencia

 Definición 3. Independencia de dos variables. Sean X e Y dos subconjuntos disjuntos del conjunto de variables aleatorias {X₁, ... X_n}. Entonces se dice que X es independiente de Y si y solamente si

$$p(x|y) = p(x),$$

para todos los valores posibles de x e y de X e Y; en otro caso, X se dice dependiente de Y.

Nótese que al si x e y son valores posibles de X e Y, entonces p(x) > 0 y p(y) > 0.

- Si X es independiente de Y, entonces nuestro conocimiento de Y no afecta nuestro conocimiento sobre X, es decir, Y no tienen información sobre X.
- Si X es independiente de Y entonces p(x,y) = p(x) p(y).
- Una propiedad importante de la relación de independencia es su simetría: $p(y|x)=p(x,y)\ /\ p(x)=p(x)\ p(y)\ /\ p(x)=p(y)$

Ejemplo: variables

- Sea A una persona elegida al azar de la población.
 - Sin conocer si la persona es fumadora, la probabilidad de que se trate de una mujer es p(A=mujer) = 0.50
 - * Si se sabe que las persona es fumadora, esta probabilidad cambia de 0.50 a $p(A{=}mujer\mid A=f)=0.64.$
 - Por lo tanto, se tiene que p(A=mujer | A = f) ° p (A = mujer) ; por lo que las variables Sexo y Fumador son dependientes.
 - · ¿Estado Civil contiene información relevante sobre el Sexo ?

Independencia de variables

• Definición 4. Independencia de un conjunto de variables. Las variables aleatorias $\{X_1, \dots X_n\}$ se dice que son independientes si y sólo si m

$$p(x_1, ..., x_m) = \prod_{i=1}^{i=1} p(x_i)$$

para todos los valores posibles $x_1, ..., x_m$ de $X_1, ..., X_m$. En otro caso se dice que son dependientes.

• Si $X_1, ..., X_m$ son condicionalmente independientes dado otro subconjunto $Y_1, ..., Y_n$, entonces i=1

$$p(x_1, ..., x_m | y_1, ..., y_n) = \prod p(x_i | y_1, ..., y_n)$$

 Una implicación importante de la independencia es que no es rentable obtener información sobre variables independientes, pues es irrelevante. Es decir, independencia significa irrelevancia.

Ejemplo: Distribuciones de probabilidad

Considérese la función de probabilidad conjunta de tres variables binarias:

x 0	y 0	z	p(x,y,z) 0.12	Í Función de probabilidad marginal de X:
0	0	1	0.18	1 1
0	1	0	0.04	$p(X=0) = \sum_{y=0}^{\infty} \sum_{z=0}^{\infty} p(0,y,z) = 0.12+0.18+0.04+0.16 = 0.5$
1	0	0	0.09	y=0 2=0
1	1	0	0.21	$p(X=1) = \sum_{v=0}^{1} \sum_{z=0}^{1} p(1,y,z) = 0.09 + 0.21 + 0.02 + 0.18 = 0.5$
1	1	1	0.18	V=0 z=0

Función de probabilidad
 conjunta de X e Y

$$\begin{split} p(X=0,Y=0) &= \sum_{z=0}^{1} p(0,0,z) = 0.12 + 0.18 = 0.3 \\ p(X=0,Y=1) &= \sum_{z=0}^{2} p(0,1,z) = 0.04 + 0.16 = 0.2 \\ p(X=1,Y=0) &= \sum_{z=0}^{2} p(1,0,z) = 0.09 + 0.21 = 0.3 \\ p(X=1,Y=1) &= \sum_{z=0}^{1} p(1,1,z) = 0.18 + 0.02 = 0.2 \end{split}$$

Ejemplo: variables

- Considérense las siguientes características de las personas de una población
 - Sexo = {hombre, mujer}
 - Fumador = {si (f), no (¬ f)}
 - Estado civil = {casado (c), no casado (\neg c)}
- Embarazo = {si (e), no (¬ e)}
- Función de probabilidad conjunta

		h	h	m	m
		f	¬f	f	¬f
С	e	0.00	0.00	0.01	0.05
	¬e	0.02	0.18	0.04	0.10
¬e	e	0.00	0.00	0.01	0.01
	¬e	0.07	0.23	0.10	0.18

 Por ejemplo, el 50% de las personas son mujeres, y el (0.01+0.04+0.01+0.1)/ ((0.01+0.04+0.01+0.1)+ (0.00+0.02+0.00+0.07)) = 64% de los fumadores son mujeres

Dependencia e Independencia condicional

- Definición 5: dependencia e independencia condicional: Sean X, Y, Z tres conjuntos disjuntos de variables, entonces X se dice condicionalmente independiente de Y, dado Z, si y sólo si p(x/z, y) = p(x/z) para todos los valores posibles de x, y, y z de X, Y y Z; En otro caso X e Y se dicen condicionalmente dependientes dado Z.
 - Cuando X e Y son condicionalmente independientes dado Z, se escribe I(X, Y|Z), y se escribe D(X,Y|Z) si X e Y son condicionalmente dependientes de Z.
 - La definición de independencia condicional lleva en sí la idea de que una vez conocida Z, el conocimiento de Y no altera la probabilidad de X.

Teorema de Bayes

. Teorema de Baves

$$p(x_{i} | x_{1}, ..., x_{k}) = -\frac{p(x_{i}) \ p(x_{1}, ..., x_{k} | x_{i})}{\sum_{X_{i}} p(x_{i}) p(x_{1}, ..., x_{k} | x_{i})}$$

- , Supóngase que un paciente puede estar sano, o tiene una de m-1 enfermedades posibles (E₁, ..., E_{m-1}). Por simplicidad, sea E una variable aleatoria que puede tomar uno de m posibles valores {e₁, ..., e_m}, donde e_m significa que el paciente está sano.
- Supongase también que se tienen n síntomas $\{S_1, ..., S_n\}$. Ahora dado que el paciente tiene un conjunto de síntomas $\{s_1, ..., s_n\}$, se desea calcular la probabilidad de que el paciente tenga la enfermedad E_i . Aplicando el teorema de Baves:

$$\begin{array}{l} \text{paciente tenga la enfermedad } E_i. \text{ Aplicando e} \\ p(e_i \mid s_1 \,, \, ..., \, s_k) &= & \frac{p(e_i) \, p(s_1 \,, \, ..., \, s_k \mid e_i)}{\sum_{e_i} \, p(e_i) p(s_1 \,, \, ..., \, s_k \mid e_i)} \end{array}$$

Ejemplo : Adenocarcinoma gástrico

- => Pueden hacerse las siguientes afirmaciones:
- * Probabilidad a priori: 440 de 1000 pacientes vomitan => p(v) = 0.44
- Verosimilitud: El 50% de los pacientes que tienen la enfermedad vomitan.

p(v|g) = card(v,g)/card(g)=350/750=0.5 mientras que sólo el 30% de los paciente que no tienen la enfermedad vomitan

p(v| ¬ g)=card(v, ¬ g)/card(¬ g)= 90/300=0.3

* Verosimilitud: El 45% de los pacientes que tienen

la enfermedad vomitan y pierden peso, p(v,p|g) = card(v,p,g)/card(g)=315/750=0.45 mientras que sólo el 12% de los que no tienen la enfermedad vomitan y pierden peso

 $p(v,p| \neg g) = card(v,p, \neg g)/card(\neg g) = 35/300 = 0.12$

Teorema de Bayes

$$p(e_i \mid s_1 \,,\, ...,\, s_k) \quad = \quad \frac{p(e_i) \; p(s_1 \,,\, ...,\, s_k \, | \, e_i)}{\displaystyle \sum_{e_i} \; p(e_i) \; p(s_1 \,,\, ...,\, s_k \, | \, e_i)}$$

- La probabilidad p(e) se llama probabilidad marginal, inicial o "a priori" de la enfermedad E= e, puesto que puede ser obtenida antes de conocer los síntomas
- La probabilidad p(e, | s_1 , ..., s_k) es la **probabilidad posterior**, **condicional** o "a **posterior**" de la enfermedad $E = e_1$, puesto que se calcula después de conoce los síntomas $S_1 = s_1$, ..., $S_k = s_k$
- La probabilidad $p(s_1,...,s_k \mid e_i)$ se conoce por el nombre de verosimilitud de que un paciente con la enfermedad $E=e_i$ tenga los síntomas $S_1=s_1,...,S_k=s_k$.
- Se puede utilizar el teorema de Bayes para actualizar la probabilidad "a posteriori" usando ambas, la probabilidad "a priori" y la verosimilitud.

Ejemplo : Adenocarcinoma gástrico

- Puesto que la probabilidad inicial de que el paciente tenga adenocarcinoma gástrico, p(g)=0.7, no es suficientemente alta para hacer un diagnóstico (tomar una decisión ahora implica una probabilidad 0.3 de equivocarse), el doctor decide examinara al paciente para obtener más información:
 - Supóngase que los resultados muestran que el paciente tiene los síntomas vómitos (V=v) y pérdida de peso (P=p). ¿Cuál es ahora la probabilidad de que el paciente tenga la enfermedad?
 - Tras observar que V=v la probabilidad a posteriori es

$$p(g|v) = \frac{p(g) \; p(v|g)}{p(g) \; p(v|g) + \; p(\neg g) \; p(v|\neg g)} = \; \frac{0.7 \times 0.5}{(0.7 \times 0.5) + (0.3 \times 0.3)} = 0.795$$

• Tras observar que V=v y P = p la probabilidad a posteriori es

$$p(g|v,p) = \frac{p(g) \; p(v,p|g)}{p(g) \; p(v,p|\;g) + p(\neg\;g) \; p(v,p|\;\neg\;g)} = \frac{0.7 \times 0.45}{(0.7 \times 0.45) + (0.3 \times 0.12)} = 0.9$$

Ejemplo : Adenocarcinoma gástrico

 Un centro médico tienen una base de datos consistente en las historias clínicas de N= 1000 pacientes.

- * Hay 700 pacientes (región sombreada) que tienen la enfermedad adenocarcinoma gástrico (G), y 300 no la tienen.
- Tres síntomas: Dolor (D), pérdida de peso (P) y vómitos (V) están ligados a la enfermedad.
- Cuando un paciente nuevo llega a la consulta, hay una probabilidad
 700/1000 = 70% de que el paciente tenga G.

Ejemplo: Adenocarcinoma gástrico

- Nótese que cuando se aplica el teorema de Bayes sucesivamente, la probabilidad "a posteriori" calculada en una etapa dada es la misma que la probabilidad "a priori" en la siguiente.
 - Por ejemplo, la probabilidad "a posteriori" que se ha calculado en el primer paso anterior, puede ser utilizada como probabilidad "a priori" en la siguiente:

$$\begin{split} p(g|v,p) &= \frac{p(g|v) \, p(p|g,v)}{p(g|v) \, p(p|g,v) + \, p(\neg g|v) \, p(p|\neg g,v)} \\ &= \frac{0.795 \times 0.9}{(0.795 \times 0.9) + (0.205 \times 0.389)} = 0. \end{split}$$

Teorema de Bayes como clasificador

Simplificación del teorema

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)}$$

- P(h) : probabilidad a priori de la hipótesis h
- P(D): probabilidad a priori de los datos de entrenamiento
- P(h/D): probabilidad de h dado D
- P(D/h): probabilidad D dado h

Algoritmo de aprendizaje de la probabilidad máxima a posteriori MAP

 Para cada hipótesis de h ∈ H, calcule la probabiliada a posteriori

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)}$$

 Escoja la hipótesis h_{MAP} de mayor probabilidad a posteriori:

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} P(h/D)$$

Elección de hipótesis

- Generalmente se desea la hipótesis mas probable observada en los datos de entrenamiento
- · Hipótesis de mayor probabilidad a posteriori

$$\begin{array}{ll} h_{MAP} & = & \displaystyle \mathop{\arg\max}_{h \in H} P(h/D) \\ & = & \displaystyle \mathop{\arg\max}_{h \in H} \frac{P(D/h)P(h)}{P(D)} \\ & = & \displaystyle \mathop{\arg\max}_{h \in H} P(D/h)P(h) \end{array}$$

· Hipótesis de máxima verosimilitud

$$h_{ML} = \underset{h_i \in H}{\operatorname{arg\,max}} \ P(D / h_i)$$

Clasificación mas probable de una nueva instancia

- Dada una nueva instancia x, cual es su clasificación mas probable?
 - h_{MAP} (x) no es la clasificación mas probable
- Considere
 - $P(h_1/D) = 0.4$, $P(h_2/D) = 0.3$ e $P(h_3/D) = 0.3$
 - Dada una nueva instancia de x suponga que
 - $h_1(x) = +, h_2(x) = -y h_3(x) = -$
 - La clasificacion mas probable de x es -

Aplicación del Teorema de Bayes

- Sea
 - M = enfermedad meningitis
 - S = Dolor de cabeza
- Un doctor sabe
 - P(S/M) = 0.5
 - P(M) = 1 / 50000
 - P(S) = 1 / 20
- P(M/S)=P(S/M)P(M)

P(S)

=0.5*(1/50000)=0.0002

1/20

• La probabilidad de una persona tener meningitis dado que ella está com dolor de cabeza es 0,0002% o 1 en 5000.

Clasificador Bayesiano optimo

• Un nuevo ejemplo puede ser clasificado como $v_j \in V$, la probabiliadad de clasificación correcta v_i

$$P(v_j / D) = \sum_{h_i \in H} P(v_j / h_i) P(h_i / D)$$

Clasificación bayesiana optima

$$\underset{v_{j} \in V}{\operatorname{arg\,max}} \sum_{h_{i} \in H} P(v_{j} / h_{i}) P(h_{i} / D)$$

Ejemplo clasificador Bayesiano

- Dado
 - $P(h_1/D) = 0.4$, $P(-/h_1) = 0$, $P(+/h_1) = 1$
 - $P(h_2/D) = 0.3$, $P(-/h_1) = 1$, $P(+/h_1) = 0$
 - $P(h_3/D) = 0.3$, $P(-/h_3) = 1$, $P(+/h_1) = 0$
- · Por lo tanto

$$\sum_{h_i \in H} P(+/h_i) P(h_i/D) = 0.4 \qquad \sum_{h_i \in H} P(-/h_i) P(h_i/D) = 0.6$$

$$\underset{v_{j} \in V}{\operatorname{arg\,max}} \sum_{h_{i} \in H} P(v_{j} / h_{i}) P(h_{i} / D) = -$$

Clasificador Bayesiano ingenuo

- Una función de clasificación f: X->V donde cada instancia en X es descrita por los atributos $\{a_1,...,\,a_n\}$

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j}/a_{1}, \dots, a_{n})$$

$$= \underset{v_{j} \in V}{\operatorname{argmax}} \frac{P(a_{1}, \dots, a_{n}/v_{j})P(v_{j})}{P(a_{1}, \dots, a_{n})}$$

- Suposición ingenua = $\underset{\cdots}{\operatorname{argmax}}P(a_1, \dots, a_n/v_j)P(v_j)$
- Clasificador bayesiano ingenuo

$$P(a_1, \dots, a_n/v_j) = \prod_i P(a_i/v_j)$$

$$v_{NB} = \underset{v_j \in V}{\operatorname{arg max}} P(v_j) \prod_i P(a_i/v_j)$$

Ejemplo

D11 Sol Frio Alta Fuerte ?

- P(Si) = 5/10 = 0.5
- P(No) = 5/10 = 0.5
- P(Sol/Si) = 1/5 = 0.2
- P(Sol/No) = 3/5 = 0.6
- P(Frio/Si) = 2/5 = 0.4
- P(Frio/No) = 2/5 = 0.4
- P(Alta/Si) = 2/5 = 0.4
- P(Alta/No) = 3/5 = 0.6
- P(Fuerte/Si) = 1/5 = 0.2
- P(Fuerte/No) = 2/5 = 0.4
- P(Si)P(Sol/Si) P(Frio/Si)
 P(Alta/Sm) P(Fuerte/Si) = 0.0032
- P(No)P(Sol/No)P(Frio/No)
- P(Alta/No) P(Fuerte/No) = 0.0288
- ⇒ Jogar_Tenis(D11) = No