Федеральное агентство связи (Россвязь)

Сибирский государственный университет телекоммуникаций и информатики

КАФЕДРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

ДИСЦИПЛИНА

АРХИТЕКТУРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Расчетно-графические задания

Составитель – к.т.н._______А.В. Ефимов

Задание 1

- 1. Произвести анализ возможностей процессоров с микроархитектурой Эльбрус. Привести пример функциональной структуры современного процессора.
- 2. Произвести численный расчет и построить график для функции $f^{(t)}$ надежности и $f^{(t)}$ осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 2^{-1/q}$,
 - среднего времени безотказной работы $9 = 5*10^4$ ч.
- 3. Построить блок-схему p -алгоритма умножения матриц:

$$\Psi[1:Q;1:R],\Omega[1:S;1:Q]$$

обеспечивающего распределение в элементарных машинах ВС элементов результирующей матрицы по вертикальным полосам.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами $\nu = 10$ Гигабод.
- время выполнения операции сложения $t_c = 0.3$ нс;
- время выполнения операции умножения $t_y = 0.9$ нс.

Задание 2

- 1. Произвести анализ возможностей процессоров с микроархитектурой MIPS. Привести пример функциональной структуры современного процессора.
- 2. Произвести численный расчет и построить график для функции f(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0,2^{-1/4}$,
 - среднего времени безотказной работы $9 = 2*10^2$ ч.
- 3. Разработать блок-схему *p* -алгоритма для вычисления произведения двух матриц:

применив методику крупноблочного распараллеливания.

Отыскать максимум коэффициента ε накладных расходов при реализации p - алгоритма на BC МИНИМАКС.

- разрядность l = 16;
- полосу пропускания канала между машинами $\nu = 800\,$ Килобод;
- время выполнения операции сложения $t_c = 2.5\,$ мкс и умножения 50 мкс.

Задание 3

- 1. Произвести анализ возможностей процессоров с микроархитектурой ARM. Привести пример функциональной структуры современного процессора.
- 2. Произвести численный расчет и построить график для функции f(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.02 \ 1/u$,
 - среднего времени безотказной работы $9 = 5*10^3$ ч.
- 3. Разработать блок-схему p-алгоритма для вычисления произведения A[1:L;1:G] двух матриц:

p -алгоритм должен обеспечить распределение элементов матрицы L[1:L;1:G] по вертикальным полосам в элементарных машинах BC.

Определить максимум коэффициента ε накладных расходов при реализации p -алгоритма на BC МИКРОС-Т.

Задание 4

- 1. Произвести анализ возможностей процессоров с микроархитектурой POWER. Привести пример функциональной структуры современного процессора.
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.005^{-1/4}$,
 - среднего времени безотказной работы $9 = 10^4$ ч.
- 3. Построить блок-схему p -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 15$ Гигабод;
- время выполнения операции сложения $t_c = 0.1$ нс;
- время выполнения операции умножения $t_v = 0.7 \,\mathrm{hc}.$

Задание 5

- 1. Произвести анализ возможностей процессоров с микроархитектурой SPARC. Привести пример функциональной структуры современного процессора.
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 1^{-1/4}$,
 - среднего времени безотказной работы $9 = 10^3$ ч.
- 3. Разработать блок-схему p -алгоритма для вычисления произведения O[1:L;1:N] двух матриц:

p -алгоритм должен обеспечить распределение элементов матрицы O[1:L;1:N] по горизонтальным полосам в элементарных машинах BC.

Определить максимум коэффициента ε накладных расходов при реализации p - алгоритма на модифицированной ВС СУММА.

Залание 6

1. Произвести анализ возможностей процессоров с микроархитектурой Intel Core. Привести пример функциональной структуры современного процессора.

- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.3^{-1/4}$,
 - среднего времени безотказной работы $9 = 10^2$ ч.
- 3. Построить блок-схему p -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 1$ Мегабод;
- время выполнения операции сложения $t_c = 1$ мкс;
- время выполнения операции умножения $t_v = 10$ мкс.

Задание 7

- 1. Произвести анализ возможностей сопроцессоров с архитектурой Intel MIC. Привести пример функциональной структуры современного сопроцессора.
- 2. Произвести численный расчет и построить графики для функций надежности r(t) ЭВМ и осуществимости f(t) решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.07 \ 1/v$,
 - среднего времени безотказной работы $9 = 10^3$ ч.
- 3. Построить блок-схему p -алгоритма умножения матриц:

обеспечивающего распределение в элементарных машинах ВС элементов результирующей матрицы по вертикальным полосам.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами $\nu = 10$ Мегабод.
- время выполнения операции сложения $t_c = 0,2\,$ мкс;
- время выполнения операции умножения $t_v = 1,5$ мкс.

Задание 8

- 1. Произвести анализ возможностей сопроцессоров с микроархитектурой Nvidia Volta. Привести пример функциональной структуры современного сопроцессора.
- 2. Выполнить численный расчет и построить графики для функции r(t) надежности и коэффициента s готовности ЭВМ для следующих количественных характеристик:
 - интенсивности отказов $\lambda = 10^{-3} 1/4$,
 - интенсивности восстановления $\mu = 1 \ 1/q$.
- 1. Построить блок-схему p -алгоритма умножения двух матриц:

$$\Omega[1:N;1:M], \Sigma[1:L;1:N],$$

применив методику крупноблочного распараллеливания.

Отыскать максимум коэффициента ε накладных расходов при реализации p - алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 10$ Гигабод;
- время выполнения операции сложения $t_c = 0.1$ нс;
- время выполнения операции умножения $t_v = 1$ нс.

Задание 9

- 1. Выполнить анализ (качественный и количественный) тороидальных макроструктур вычислительных систем. Привести примеры промышленных (современных) ВС, в которых используются тороидальные макроструктуры.
- 2. Произвести численный расчет показателей надежности ЭВМ, режим работы которой является стационарным и которая характеризуется следующими параметрами $\lambda = 0{,}001$ 1/u , $\mu = 1$ 1/u .
- 3. Построить блок-схему p -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 100\,$ Мегабод;
- время выполнения операции сложения $t_c = 10$ нс;
- время выполнения операции умножения $t_v = 100$ нс.

Задание 10

- 1. Выполнить анализ (качественный и количественный) простейших макроструктур вычислительных систем. Привести примеры промышленных (современных) ВС, в которых используются простейшие макроструктуры.
- 2. Произвести численный расчет и построить график для функции f(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.02 \ 1/4$,
 - среднего времени безотказной работы $\theta = 10^2$ ч.
- 3. Построить блок-схему *p* -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p - алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами v = 5 Гигабод;
- время выполнения операции сложения $t_c = 0.5$ нс;
- время выполнения операции умножения $t_v = 1$ нс.

Задание 11

- 1. Выполнить анализ (качественный и количественный) древовидных макроструктур вычислительных систем. Привести примеры промышленных (современных) ВС, в которых используются древовидные макроструктуры.
- 2. Выполнить численный расчет и построить графики для функции s(i,t) готовности и u(t) восстановимости ЭВМ, интенсивности отказов и восстановления которой соответственно равны $\lambda = 10^{-2} \ 1/v$, $\mu = 1 \ 1/v$.
- 3. Построить блок-схему *p* -алгоритма умножения матриц:

$$\Psi[1:J;1:L],\Omega[1:M;1:J]$$

обеспечивающего распределение в элементарных машинах ВС элементов результирующей матрицы по горизонтальным полосам.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами $\nu = 10 \, \Gamma$ игабод.
- время выполнения операции сложения $t_c = 0.3$ нс;
- время выполнения операции умножения $t_y = 0.9$ нс.

Задание 12

- 1. Осуществить анализ иерархии структур коммуникационных сетей одной из современных суперВС (из списка Тор500).
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i,t) ЭВМ, обладающей следующими техническими параметрами:
 - средним временем безотказной работы $\mathcal{G} = 10^6$ ч,
 - интенсивностью восстановления $\mu = 10 \text{ 1/y}$.
- 3. Разработать блок-схему *p* -алгоритма для вычисления произведения двух матриц:

применив методику крупноблочного распараллеливания.

Отыскать максимум коэффициента ε накладных расходов при реализации p - алгоритма на BC МИНИМАКС.

- разрядность l = 16;
- полосу пропускания канала между машинами $\nu = 800\,$ Килобод;
- время выполнения операции сложения $t_c = 2,5\,$ мкс и умножения 50 мкс.

Задание 13

- 1. Выполнить архитектурный анализ современных вычислительных систем. Описать архитектуру и функциональную структуру одной из суперВС (из списка Тор500).
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i,t) ЭВМ, обладающей следующими техническими параметрами:
 - средним временем безотказной работы $9 = 10^5$ ч,
 - интенсивностью восстановления $\mu = 10 \ 1/u$.
- 3. Разработать блок-схему p -алгоритма для вычисления произведения A[1:L;1:G] двух матриц:

p -алгоритм должен обеспечить распределение элементов матрицы L[1:L;1:G] по горизонтальным полосам в элементарных машинах BC.

Определить максимум коэффициента ε накладных расходов при реализации p -алгоритма на BC МИКРОС-Т.

Залание 14

- 1. Осуществить анализ архитектуры и функциональной структуры одной из современных суперВС (из списка Тор500).
- 2. Произвести численный расчет и построить график для функции f(t) надежности и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0,005 \ 1/4$.
 - среднего времени безотказной работы $g = 10^3$ ч.
- 3. Построить блок-схему р -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 15$ Гигабод;
- время выполнения операции сложения $t_c = 0.1$ нс;
- время выполнения операции умножения $t_v = 0.7$ нс.

Задание 15

- 1. Осуществить анализ принципов технической реализации модели коллектива вычислителей. Проанализировать функциональную структуру одной из суперВС (из списка Top500).
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.05 \ 1/v$
 - среднего времени безотказной работы $\mathcal{G} = 10^2$ ч.
- 3. Разработать блок-схему p -алгоритма для вычисления произведения O[1:L;1:N] двух матриц:

p -алгоритм должен обеспечить распределение элементов матрицы O[1:L;1:N] по вертикальным полосам в элементарных машинах BC.

Определить максимум коэффициента ε накладных расходов при реализации p - алгоритма на модифицированной ВС СУММА.

Задание 16

1. Выполнить анализ архитектурных свойств современных высокопроизводительных вычислительных систем. Привести пример функциональной структуры суперВС (из списка Тор500).

- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $g = 10^3 \, \mathrm{g}$.,
 - интенсивности восстановления $\mu = 1 \ 1/q$.
- 3. Построить блок-схему *p* -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по вертикальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 1$ Мегабод;
- время выполнения операции сложения $t_c = 1$ мкс;
- время выполнения операции умножения $t_y = 10$ мкс.

Задание 17

- 1. Проанализировать мультиархитектуру одной из современных суперВС (из списка Тор500).
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.07 \ 1/v$.
 - среднего времени безотказной работы $g = 10^5$ ч.
- 3. Построить блок-схему p -алгоритма умножения матриц:

обеспечивающего распределение в элементарных машинах BC элементов результирующей матрицы по горизонтальным полосам.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами $\nu = 10\,$ Мегабод.
- время выполнения операции сложения $t_c = 0,2\,$ мкс;
- время выполнения операции умножения $t_v = 1,5$ мкс.

Залание 18

- 1. Обосновать необходимость использования парадигмы мультиархитектуры в суперВС.
- 2. Выполнить численный расчет и построить графики для функции r(t) надежности и функции S(i,t) готовности ЭВМ для следующих количественных характеристик:
 - интенсивности отказов $\lambda = 10^{-2} \text{ 1/} u$
 - интенсивности восстановления $\mu = 1 \ 1/u$.
- 3. Построить блок-схему p -алгоритма умножения двух матриц:

$$\Omega[1:A;1:B], \Sigma[1:C;1:A],$$

применив методику крупноблочного распараллеливания.

Отыскать максимум коэффициента ε накладных расходов при реализации p - алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 10$ Гигабод;
- время выполнения операции сложения $t_c = 0.1$ нс;
- время выполнения операции умножения $t_y = 1$ нс.

Задание 19

- 1. Выполнить анализ архитектурных принципов модели коллектива вычислителей. Привести пример суперВС, в которой модель используется на нескольких уровнях иерархической функциональной структуры.
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i,t) ЭВМ, обладающей следующими техническими параметрами:
 - средним временем безотказной работы $g=10^5$ ч,
 - интенсивностью восстановления $\mu = 10^{-1/q}$.
- 3. Построить блок-схему *p* -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 100$ Мегабод;
- время выполнения операции сложения $t_c = 10$ нс;
- время выполнения операции умножения $t_y = 100$ нс.

Задание 20

- 1. Оценить архитектурные возможности модели вычислителя. Привести пример суперВС, в которой используется модель вычислителя.
- 2. Произвести численный расчет и построить график для функции $\mathbf{u}(t)$ восстановимости и f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.07 \ 1/v$
 - среднего времени безотказной работы $\theta = 10^2$ ч.
- 3. Построить блок-схему *p* -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p - алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами v = 5 Гигабод;
- время выполнения операции сложения $t_c = 0.5$ нс;
- время выполнения операции умножения $t_v = 1$ нс.

Задание 21

- 1. Осуществить анализ возможностей вычислительных систем с SIMD-архитектурой. Привести пример использования SIMD-архитектуры в суперВС.
- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $9 = 5*10^4$ ч.,
 - интенсивности восстановления $\mu = 24^{-1/4}$.
- 3. Построить блок-схему p -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 15~$ Гигабод;
- время выполнения операции сложения $t_c = 0.1$ нс;
- время выполнения операции умножения $t_v = 0.7$ нс.

Задание 22

- 1. Произвести анализ возможностей вычислительных систем с MIMD-архитектурой. Привести пример функциональной структуры суперВС с MIMD-архитектурой.
- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $9 = 5*10^3$ ч.,
 - интенсивности восстановления $\mu = 12^{-1/q}$.
- 3. Разработать блок-схему p -алгоритма для вычисления произведения O[1:K;1:N] двух матриц:

p -алгоритм должен обеспечить распределение элементов матрицы O[1:K;1:N] по вертикальным полосам в элементарных машинах BC.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 25$ Гигабод;
- время выполнения операции сложения $t_c = 0.15$ нс;
- время выполнения операции умножения $t_v = 0.75 \,\mathrm{hc}$.

Задание 23

1. Проанализировать архитектурные возможности вычислительных систем с программируемой структурой. Привести пример функциональной структуры реконфигурируемой ВС.

- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $9 = 10^4$ ч.,
 - интенсивности восстановления $\mu = 3^{-1/q}$.
- 3. Построить блок-схему *p* -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по вертикальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 10$ Мегабод;
- время выполнения операции сложения $t_c = 0.1$ мкс;
- время выполнения операции умножения $t_v = 1$ мкс.

Задание 24

- 1. Осуществить анализ архитектуры мультипроцессорных вычислительных систем. Привести пример функциональной структуры суперВС (из списка Тор500).
- 2. Выполнить численный расчет и построить графики для функции $\mathbf{u}(t)$ восстановимости и $\mathbf{S}(\mathbf{i},t)$ готовности ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $g = 10^3 \, \mathrm{y}$.
 - интенсивности восстановления $\mu=1$ 1/q
- 3. Построить блок-схему *p* -алгоритма умножения матриц:

обеспечивающего распределение в элементарных машинах BC элементов результирующей матрицы по горизонтальным полосам.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами $\nu = 100$ Мегабод.
- время выполнения операции сложения $t_c = 0.02$ мкс;
- время выполнения операции умножения $t_v = 0,2$ мкс.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хорошевский В.Г. Архитектура вычислительных систем. М.: МГТУ им. Н.Э. Баумана, 2008. 520 с.
- 2. Конспект лекций по курсу "Архитектура вычислительных систем"
- 3. Сергей Алексеевич Лебедев. К 100-летию со дня рождения основоположника отечественной электронной вычислительной техники. М.: Физматлит, 2002. 440 с.
- 4. Евреинов Э.В., Хорошевский В.Г. Однородные вычислительные системы. Новосибирск: Наука, 1978. 320 с.
- 5. Хорошевский В.Г. Инженерный анализ функционирования вычислительных машин и систем. М.: Радио и связь, 1987. 255 с.
- 6. Головкин Б.А. Параллельные вычислительные системы. М.: Наука, 1980. 520 с.
- 7. Поиск...