Overfitting and Cross validation Introduction

How good is the regression model?

How good is the regression model?

How well the model fits the data?

How well the model predicts the data?

How good is the regression model?

How well the model fits the data?

SSE R²

How well the model predicts new data?

How good is the regression model?

How well the model fits the data?

SSE R²

How well the model predicts new data?
 MSPF

Overfitting

Regression assumption:

Expected values of Y follow a regression function

Best model:

Closest model to the (unknown) regression function

Overfitting:

Model too close to data points but far from the regression function

Overfitting - Example

Overfitting - Example

Overfitting

What is overfitting?

- A model that follows the data points too closely
- It does not follow the regression function

Overfitting

- How to identify overfitting?
- How to avoid overfitting?
- Cross-validation,
 Ridge regression

CROSS VALIDATION

- Reserve part of the data to test the model (MSPE)
- Use the remaining data to build the model
- If the model fits the data (large R-square) but cannot predict well the test data (small MSPE), it is overfitting

Cross Validation - Types

- Holdout CV (validation Set approach)
- K-fold cross validation
- Leave-one-out cross validation (LOOCV)


```
Data set { training set (to build the model) test set (to test model)
```

Training

set

Test

set

- feature selection
- feature engineering
- R-squared
- Adj R-squared, AIC

Y X Yhat

Training

Set

Test

set

test model

Average of squared residuals on the test set

$$MSPE = \frac{\sum_{i=1}^{m} (y_i - \hat{y}_i)^2}{m}$$

Prediction performance

- Compare models based on MSPE
- Model with the smallest MSPE is the best for prediction

dataset

dataset

dataset

		k folds			
test	test	test	test	test	$n\left(\frac{1}{k}\right)$ obs
	1		1	n	in each subset

Eventually each subset becomes a test set

dataset

		k folds		
test	test	test	test	test

test		train		
train	test train			
	train	test		train
train			test	

MSPE (average)

k=5 folds

k=5 folds

$$Data \ set \qquad \begin{cases} training \ set \qquad n\left(1-\frac{1}{k}\right) \ obs \qquad \qquad 80\% \\ test \ set \qquad \qquad n\left(\frac{1}{k}\right) \quad obs \qquad \qquad 20\% \end{cases}$$

Leave-one-out Cross Validation (LOOCV)

k=*n* folds

Data set
$$\begin{cases} training \ set \\ test \ set \end{cases} n\left(\frac{1}{k}\right) = 1 \ observation$$

Leave-one-out Cross Validation (LOOCV)

k=*n* folds

LOOCV is a K-Fold Cross validation when k = n

Holdout Cross Validation - sklearn

HOLDOUT Cross Validation

у	x
y_train	X_train
y_test	X_test

Holdout Cross Validation - sklearn

HOLDOUT Cross Validation

y x

y_train X_train

y_test X_test

20.005851783316732

K-Fold Cross Validation - sklearn

```
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

measure = 'neg_mean_squared_error'
```

linear model

mspe1 is an array with 5 mspe values, one from each fold

MSPE