Lista 4 - 1/2

1. Seja $f(x) = x^5$. Calcule

a) f'(x)

b) f'(0)

c)f'(2)

2. Calcule g'(x) sendo g dada por

a) $g(x) = x^6$ b) $g(x) = x^{100}$

c) $g(x) = \frac{1}{x}$ $d) g(x) = x^2$

e) $g(x) = \frac{1}{x^3}$ f) $g(x) = \frac{1}{x^7}$ g) g(x) = x h) $g(x) = x^{-3}$

3. Determine a equação da reta tangente ao gráfico de $f(x) = \frac{1}{x}$ no ponto de abscissa 2.

4. Determine a equação da reta tangente ao gráfico de $f(x) = \frac{1}{x^2}$ no ponto de abscissa 1.

5. Seja $f(x) = \sqrt[5]{x}$. Calcule.

a) f'(x) b) f'(1) c) f'(-32)

6. Calcule g'(x), sendo g dada por

a) $g(x) = \sqrt[4]{x}$

 $b) g(x) = \sqrt[6]{x}$

c) $g(x) = \sqrt[8]{x}$

d) $g(x) = \sqrt[9]{x}$

7. Determine a equação da reta tangente ao gráfico de $f(x) = \sqrt[3]{x}$ no ponto de abscissa 1.

8. Encontre <u>a linearização</u> da função $f(x) = \sqrt{x+3}$ em a=1 e use-a para aproximar os números $\sqrt{3,98}$ e $\sqrt{4,05}$

Use $f'(x) = \frac{1}{2\sqrt{x+3}}$ Esta técnica de derivação será apresentada na aula de regra de cadeia

Respostas:

1. *a*)
$$5x^4$$

b)
$$0$$
 c) 80

2. *a*)
$$6x^5$$

b)
$$100x^{99}$$

$$c) - \frac{1}{x^2}$$

2. a)
$$6x^5$$
 b) $100x^{99}$ c) $-\frac{1}{x^2}$ d) $2x$ e) $-\frac{3}{x^4}$ f) $-\frac{7}{x^8}$

$$f$$
) $-\frac{7}{x^8}$

g) 1 **h**)
$$-3x^{-4}$$

3.
$$y = -\frac{1}{4}x + 1$$

4.
$$y = -2x + 3$$

5. a)
$$\frac{1}{5\sqrt[5]{x^4}}$$
 b) $\frac{1}{5}$

$$b) \frac{1}{5}$$

$$c) \; \frac{1}{80}$$

6. a)
$$\frac{1}{4\sqrt[4]{x^3}}$$
 b) $\frac{1}{6\sqrt[6]{x^5}}$ c) $\frac{1}{8\sqrt[8]{x^7}}$ d) $\frac{1}{9\sqrt[9]{x^8}}$

b)
$$\frac{1}{6\sqrt[6]{x^5}}$$

c)
$$\frac{1}{8\sqrt[8]{x^7}}$$

d)
$$\frac{1}{9\sqrt[9]{x^8}}$$

7.
$$y = \frac{1}{3}x + \frac{2}{3}$$

8.
$$L(x) = \frac{x}{4} + \frac{7}{4}$$
 Linearização, ou seja, aproximação linear de f em a = 1

1,995

2,0125