50.012 Networks

Lecture 14: Network Layer Control Plane Overview

2021 Term 6

Assoc. Prof. CHEN Binbin

Outline

Control Plane

- routing protocols
- link state
- distance vector

Network-layer functions

Recall: two network-layer functions:

- forwarding: move packets from router's input to appropriate router output
- data plane
- routing: determine route taken by packets from source to destination

control plane

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)

Per-router control plane

Individual routing algorithm components in each and every router interact with each other in control plane to compute forwarding tables

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables

Routing protocols

Routing protocol goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

- path: sequence of routers packets will traverse in going from given initial source host to given final destination host
- "good": least "cost", "fastest", "least congested"
- routing: a "top-10" networking challenge!

Graph abstraction of the network

graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information? global:

- all routers have complete topology, link cost info
- "link state" algorithms

decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Outline

Control Plane

- routing protocols
- link state
- distance vector

A link-state routing algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- C(X,y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to dest.
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's algorithm

```
Initialization:
   N' = \{u\}
   for all nodes v
    if v adjacent to u
5
       then D(v) = c(u,v)
    else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
   add w to N'
    update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
    shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

		D(v)	$D(\mathbf{w})$	D(x)	D(y)	D(z)
Step) N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		5,u) 11,w	∞
2	uwx	6,w			11,W	14,x
3	uwxv				10,V	14,x
4	uwxvy					12,y
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

St	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0						
	1						
	2						
	3						
	4						
	5						

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose ross/interactive/

Dijkstra's algorithm: another example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>←</mark>	2, u	3,y			4,y
3	uxyv 🗸		3,y			4,y
4	uxyvw 🗲		-			4,y
5	uxyvwz 🗲					

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose ross/interactive/

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:

resulting forwarding table in u:

destination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

Dijkstra's algorithm, discussion

oscillations possible:

e.g., suppose link cost equals amount of carried traffic:

Outline

Control Plane

- routing protocols
- link state
- distance vector

Bellman-Ford equation (dynamic programming)

let $d_x(y) := cost of least-cost path from x to y$ then $d_x(y) = min \{c(x,y) + d_y(y)\}$

 $d_{x}(y) = min_{v}\{c(x,v) + d_{v}(y)\}$ cost from neighbor v to destination y cost to neighbor v min taken over all neighbors v of x

Bellman-Ford example

u's neighbors: v, x, and w

$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

node achieving minimum is next hop in shortest path, used in forwarding table

- $D_x(y)$ = estimate of least cost from x to y
 - x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbf{N}]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains

$$\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$$

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\} \text{ for each node } y \in \mathbb{N}$$

* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

each node:

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$

time

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast"

 t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does not send a message to z.

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose ross/interactive/

Distance vector: good news travel fast

node x table		X	ost y	to Z	
	X	0	4	5	$\overline{\bigcirc}$
rom	y	4	0	1	
T.	Z	5	1	0	

	cost to							
	X	У	Z					
x woy y z				$\overline{\ \ }$				

node tab		X	ost y	to Z	
	X	0	4	5	
from	У	4	0	1	\mathcal{I}
·	Z	5	1	0	

		X	ost y	to Z	
from	x y z				

node tab		X	cost y	to Z	
	X	0	4	5	
from	У	4	0	1	
	Z	5	1	0	\supset

. <u>-</u>		X	ost y	to Z	
from	x y z				

Distance vector: good news travel fast

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text

poisoned reverse:

- If Z routes through Y to get to X:
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

count to infinity

		cost to
from	x y z	

z e	X	cost y	to Z	
Х	0	4	5	
У	4	0	1	
Z	5	1	0	\mathcal{I}
	x y	e Xx 0y 4	e x y x 0 4 y 4 0	e x y z x 0 4 5 y 4 0 1

count to infinity, continued.

		cost to
from	x y z	

60 x 50

count to infinity, continued.

Adding poisoned reverse

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires
 O(nE) msgs
 - may have oscillations
- DV: convergence time varies
 - may have routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect
 link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network