2009학년도 2학	학기 (기말고사)	학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 험 일 시	2009.12.14.월요일 (오전 10:00~11:40)	성 명	점 수

1번~10번의 문제는 단답형으로 각 문제당 배점은 5점 이며 부분점수는 없음. <u>주어진 상자 안에 답만 쓸 것.</u>

- 1. 적분 $\int_{0}^{2} \int_{-1}^{3} x^{2}y + 2xy \ dydx$ 을 구하시오.
- 4. $0 \le u \le 1, 0 \le v \le u^3$ 인 매개변수 u,v에 대하여 $r(u,v) = \langle u+v, u-v, 3u \rangle$
- 로 매개화된 곡면의 넓이를 구하여라.

답:

2. 벡터장 $F(x,y,z)=\langle y,z,x\rangle$ 의 $\nabla \cdot F$ 와 $\nabla \times F$ 을 각각 구하여라.

답:

5. xy-평면, 평면 z=4-x와 원기둥면 $x^2+(y-1)^2=1$ 로 둘러싸인 영역의 부피를 구하여라.

답:

3. 적분 $\int_{0}^{1} \int_{\sqrt{\pi} x}^{\sqrt{\pi}} \sin(y^2) dy dx$ 을 구하시오.

답:

답:

- 6. 다음 벡터장 F의 퍼텐셜 함수를 구하여라. $F(x,y) = \langle 2x + y \cos xy, x \cos xy \rangle$
- 9. 함수 $f(x,y) = y \cos x$ 의 모든 임계점을 구하고 극대, 극소, 안장점 여부를 판별하시오.

답:

7. 적분 $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{1}{1+x^2+y^2} \, dy \, dx$ 을 구하시오.

답:

답:

8. C가 타원 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 로 주어질 때,

$$\int_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

을 구하여라.

답:

답:

2009학년도 2학	학기 (기말고사)	학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 혐 일 시	2009.12.14.월요일 (오전 10:00~11:40)	성 명	점 수

11번~15	번의	문제는	<u>۲</u>]술형으로	각	문제당	배점은	10
점이다.	풀이.	과정을	쓸	것.				

11. 2차원 평면에 영역 *D*가 다음과 같이 주어진다.

$$D = \left\{ (x,y) \,|\, 0 \le x \le 1, \, 0 \le y \le \sqrt{x} \right\}$$
 이때 D 의 경계 C 에 대해 다음 선적분을 구하여라.

$$\int_C y \, dx + 2x \, dy$$

12. 원점에서 곡면 $xyz^2 = 8$ 까지의 최단거리를 구하시 \circ

13.	평면	z=2의	위쪽에	놓인	포물면
~ =	$= 4 - r^2$	$-u^2$ 의 곡명	넓이를 구청	l 시 🌣	

14. 3차원 공간상에 있는 다음 영역의 부피를 구하여라.
$$x^2 + y^2 + z^2 \le 4, \ x^2 + (y-1)^2 \le 1$$

2009학년도 2학	학기 (기말고사)	학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 혐 일 시	2009.12.14.월요일 (오전 10:00~11:40)	성 명	점 수

15. 두 영역	
$x^2 + y^2 + (z - 1)^2 \le 1, \ z \ge 2\sqrt{x^2 + y^2}$	
의 공통부분의 부피를 구하여라.	