Programare logică

Algoritmul de unificare

F. Baader, T. Nipkow,

Terms Rewriting and All That,

Cambridge University Press, 1998.

Substituţie

 (S,Σ) signatură multisortată, X şi Y mulţimi de variabile O substituţie a variabilelor din X cu termeni din $T_\Sigma(Y)$ este o funcţie $\nu:X\to T_\Sigma(Y)$. Substituţia ν se extinde la o funcţie $\tilde{\nu}:T_\Sigma(X)\to T_\Sigma(Y)$ după cum urmează:

- lacksquare $ilde{
 u}_s(x) :=
 u(x) ext{ or. } x \in X_s,$
- $ullet ilde
 u_s(\sigma) := \sigma \text{ or. } \sigma : o s,$
- $oldsymbol{oldsymbol{arphi}} ilde{
 u}_s(\sigma(t_1,\ldots,t_n)) := \sigma(ilde{
 u}_{s_1}(t_1),\ldots, ilde{
 u}_{s_n}(t_n)) ext{ or. } \ \sigma:s_1\ldots s_n o s, ext{ or. } t_1\in T_\Sigma(X)_{s_1},\ldots,t_n\in T_\Sigma(X)_{s_n}.$
- $\{x_1 \leftarrow t_1, \cdots, x_n \leftarrow t_n\}$ e notație pt. $\nu: X \to T_{\Sigma}(X)$, $\nu(x_i) := t_i$ or. $i = 1, \ldots, n$ și $\nu(x) := x$ pt. $x \neq x_i$

Ecuații

 (S,Σ) signatură monosortată, $S=\{s\}$ X mulţime de variabile, $T_{\Sigma}(X)$ termenii cu variabile din X

- ■O ecuație este o pereche de termeni $\langle t, t' \rangle$, unde $t, t' \in T_{\Sigma}(X)$. Ecuația $\langle t, t' \rangle$ o vom nota $t \doteq t'$.
- Dacă $t = \sigma(t_1, \ldots, t_n)$ şi $t' = \tau(t'_1, \ldots, t'_k)$ atunci $t = t' \Leftrightarrow \sigma = \tau$, n = k, $t_i = t'_i$ or. i

Unificare

■O problemă de unificare este o mulţime finită de ecuaţii $U = \{t_1 \stackrel{.}{=} t'_1, \dots, t_n \stackrel{.}{=} t'_n\}$

- ■Un unificator (o soluţie) pentru U este o substituţie $\nu: X \to T_{\Sigma}(X)$ a.î. $\nu(t_i) = \nu(t_i')$ or. $i = 1, \ldots, n$.
- ■Notaţii
 - $\blacksquare Unif(U) :=$ mulţimea unificatorilor lui U
 - $lackbox{$\blacksquare$} Var(U) := igcup_{i=1}^n (Var(t_i) igcup Var(t_i'))$, unde $Var(t) := ext{mul}$ jimea variabilelor care apar în $t \in T_\Sigma(X)$
 - ■dacă $\nu = \{x_1 \leftarrow t_1, \cdots, x_n \leftarrow t_n\}$ atunci $\{x_1 \leftarrow t_1, \cdots, x_n \leftarrow t_n\}U := \{\nu(t) \doteq \nu(t') \mid t \doteq t' \in U\}$

Unificare

Spunem că problema de unificare

$$R = \{x_1 \stackrel{.}{=} t_1, \dots, x_n \stackrel{.}{=} t_n\}$$
 este rezolvată dacă

- $\blacksquare x_i \in X$, $x_i \neq x_j$ or. $i \neq j$
- $\blacksquare x_i \not\in \bigcup_{i=1}^n Var(t_i) \text{ or. } i=1,\ldots,n.$
- $\blacksquare \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\}$ este cgu idempotent pentru R.
- ■Algoritmul transformă o problemă de unificare U într-o problemă de unificare R. Dacă $R = \emptyset$ atunci U nu are unificatori. În caz contrar, R este rezovată, iar substituţia determinată de R este cgu idempotent pentru U.

Algoritmul de unificare

$$(S = \{s\}, \Sigma)$$
 signatură, X mulţime de variabile

Intrare:
$$U = \{t_1 \doteq t'_1, \dots, t_n \doteq t'_n\}$$
 Iniţializare: $R = U$

Se execută nedeterminist următorii paşi, atâta timp cât este posibil:

Sterge: $R \cup \{t = t\} \Rightarrow R$

Orientează: $R \cup \{t \doteq x\} \Rightarrow R \cup \{x \doteq t\}$ dc. $x \in X$, $t \notin X$

Descompune:

- $R \cup \{\sigma(e_1, \dots, e_n) \stackrel{\cdot}{=} \sigma(e'_1, \dots, e'_n)\} \Rightarrow R \cup \{e_1 \stackrel{\cdot}{=} e'_1, \dots, e_n \stackrel{\cdot}{=} e'_n\}$
- $R \cup \{\sigma(e_1, \dots, e_n) \stackrel{\cdot}{=} \tau(e'_1, \dots, e'_k)\} \Rightarrow \emptyset$ dc. $\sigma \neq \tau$

Elimină:

- $R \cup \{x = t\} \Rightarrow \{x = t\} \cup \{x \leftarrow t\}R \text{ dc.. } x \in Var(R) \setminus Var(t)$
- $R \cup \{x \stackrel{\cdot}{=} t\} \Rightarrow \emptyset$ dc. $x \in Var(t)$ şi $t \neq x$

leşire: dacă $R=\emptyset$ atunci nu există soluţii pentru U dacă $R\neq\emptyset$ atunci R este cgu pentru U

Algoritmul de unificare

Se execută nedeterminist următorii paşi, atâta timp cât este posibil:

Şterge: $R \cup \{t = t\} \Rightarrow R$

Orientează: $R \cup \{t \doteq x\} \Rightarrow R \cup \{x \doteq t\} \text{ dc. } x \in X, t \notin X$

Descompune:

- $R \cup \{\sigma(e_1, \dots, e_n) \stackrel{\cdot}{=} \sigma(e'_1, \dots, e'_n)\} \Rightarrow R \cup \{e_1 \stackrel{\cdot}{=} e'_1, \dots, e_n \stackrel{\cdot}{=} e'_n\}$
- $R \cup \{\sigma(e_1, \dots, e_n) \stackrel{\cdot}{=} \tau(e'_1, \dots, e'_k)\} \Rightarrow \emptyset$ dc. $\sigma \neq \tau$

Elimină:

- $R \cup \{x \doteq t\} \Rightarrow \{x \doteq t\} \cup \{x \leftarrow t\} R \text{ dc. } x \in Var(R) \setminus Var(t)$
- $R \cup \{x \doteq t\} \Rightarrow \emptyset$ dc. $x \in Var(t)$ şi $t \neq x$

$$\Sigma = \{g: s \to s, h: s \to s, f: sss \to s\},\$$

$$X = \{x, y, z, w\}$$

$$U = R = \{g(y) \doteq x, f(x, h(x), y) \doteq f(g(z), w, z)\}$$

(2)
$$R = \{x \doteq g(y), f(x, h(x), y) \doteq f(g(z), w, z)\}$$

(4)
$$R = \{x \doteq g(y), f(g(y), h(g(y)), y) \doteq f(g(z), w, z)\}$$

(3)
$$R = \{x = g(y), g(y) = g(z), h(g(y)) = w, y = z\}$$

(3)
$$R = \{x = g(y), y = z, h(g(y)) = w, y = z\}$$

(4)
$$R = \{x = g(z), y = z, h(g(z)) = w, z = z\}$$

(2)(1)
$$R = \{x \doteq g(z), y \doteq z, w \doteq h(g(z))\}$$

(4)
$$R = \{x \stackrel{\cdot}{=} g(z), y \stackrel{\cdot}{=} z, w \stackrel{\cdot}{=} h(g(z))\}$$
 cgu

$$\Sigma = \{a: \rightarrow s, g: s \rightarrow s, h: s \rightarrow s, f: sss \rightarrow s\},$$

$$X = \{x, z, w\}$$

$$U = R = \{g(a) \doteq x, f(x, h(x), a) \doteq f(g(z), w, z)\}$$

(2)
$$R = \{x \doteq g(a), f(x, h(x), a) \doteq f(g(z), w, z)\}$$

(4)
$$R = \{x \stackrel{\cdot}{=} g(a), f(g(a), h(g(a)), a) \stackrel{\cdot}{=} f(g(z), w, z)\}$$

(3)
$$R = \{x = g(a), g(a) = g(z), h(g(a)) = w, a = z\}$$

(3)
$$R = \{x = g(a), a = z, h(g(a)) = w, a = z\}$$

(2)
$$R = \{x = g(a), z = a, w = h(g(a)), z = a\}$$

(4)
$$R = \{x = g(a), z = a, w = h(g(a)), a = a\}$$

(1)
$$R = \{x = g(a), z = a, w = h(g(a))\}$$
 cgu

$$\Sigma = \{b: \rightarrow s, g: s \rightarrow s, h: s \rightarrow s, f: sss \rightarrow s\},$$

$$X = \{x, y, z\}$$

$$U = R = \{g(y) \doteq x, f(x, h(x), y) \doteq f(g(z), b, z)\}$$

(2)
$$R = \{x \doteq g(y), f(x, h(x), y) \doteq f(g(z), b, z)\}$$

(4)
$$R = \{x \doteq g(y), f(g(y), h(g(y)), y) \doteq f(g(z), b, z)\}$$

(3)
$$R = \{x \stackrel{.}{=} g(y), g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} b, y \stackrel{.}{=} z\}$$

(3)
$$R = \{x = g(y), y = z, h(g(y)) = b, y = z\}$$

(4)
$$R = \{x = g(z), y = z, h(g(z)) = b, z = z\}$$

(3)
$$R = \emptyset$$
 decarece $b \neq h$

$$\Sigma = \{g: s \to s, h: s \to s, f: sss \to s\},\$$

$$X \doteq \{x, y, z, w\}$$

$$U = R = \{g(y) \doteq x, f(x, h(x), y) \doteq f(y, w, z)\}$$

(2)
$$R = \{x \doteq g(y), f(x, h(x), y) \doteq f(y, w, z)\}$$

(4)
$$R = \{x \stackrel{\cdot}{=} g(y), f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(y, w, z)\}$$

(3)
$$R = \{x \doteq g(y), g(y) \doteq y, h(g(y)) \doteq w, y \doteq z\}$$

(2)
$$R = \{x = g(z), y = g(y), h(g(y)) = w, y = z\}$$

(4)
$$R = \emptyset$$
 decarece $y \in Var(g(y))$

Terminare

Algoritmul de unificare se termină.

Fie R problema de unificare. Notăm

$$n_{sol} := |\{x \in Var(R) | R = R' \cup \{x = t\}, x \notin Var(R') \cup Var(t)\}|,$$

 $n_1 := |Var(R)| - n_{sol}$
 $n_2 := \sum_{s = t \in R} (|s| + |t|), \quad n_3 := |R|$

Fiecare pas al algoritmului modifică n_1 , n_2 , n_3

Dacă la execuţia unui pas (n_1, n_2, n_3) se schimbă în (n'_1, n'_2, n'_3) , atunci $(n_1, n_2, n_3) >_{lex} (n'_1, n'_2, n'_3)$. Algoritmul se termină deoarece (n_1, n_2, n_3) descreţe în ordine lexicografică la fiecare pas.

Corectitudine

Dacă $R \Rightarrow T$ și $T \neq \emptyset$, atunci Unif(R) = Unif(T).

Proprietatea este evident adevărată pentru Ştergeşi Orientează.

Descompune.
$$R = R' \cup \{\sigma(e_1, \dots, e_n) \stackrel{\cdot}{=} \sigma(e'_1, \dots, e'_n)\}$$

 $T = R' \cup \{e_1 \stackrel{\cdot}{=} e'_1, \dots, e_n \stackrel{\cdot}{=} e'_n\}$

• oricare $\nu: X \to T_{\Sigma}(X)$ substituţie

$$\nu(\sigma(e_1,\ldots,e_n)) = \nu(\sigma(e_1',\ldots,e_n')) \Leftrightarrow \nu(e_i) = \nu(e_i') \text{ or. } i$$

Elimină: $R = R' \cup \{x = t\},\$

$$T = \{x \stackrel{\cdot}{=} t\} \cup \{x \leftarrow t\} R', x \in Var(R') \setminus Var(t)\}$$

 $\nu \in Unif(R) \Leftrightarrow \nu \in Unif(R') \text{ si } \nu \in Unif(\{x \stackrel{\cdot}{=} t\})$

• dacă $\nu \in Unif(\{x \doteq t\})$ atunci $\{x \leftarrow t\}; \nu = \nu$

$$\nu \in Unif(R) \Leftrightarrow \{x \leftarrow t\}; \nu \in Unif(R') \text{ \emptyset } \nu \in Unif(\{x \stackrel{.}{=} t\})$$

$$\Leftrightarrow \nu \in Unif(\{x \leftarrow t\}R') \text{ \emptyset } \nu \in Unif(\{x \stackrel{.}{=} t\})$$

$$\Leftrightarrow \nu \in Unif(T)$$

Completitudine

Dacă $U \Rightarrow \cdots \Rightarrow R \Rightarrow \emptyset$ atunci R nu are soluţii.

Distingem două cazuri.

- La pasul Descompune, există $\sigma(e_1,\ldots,e_n) \doteq \tau(e'_1,\ldots,e'_k) \in R$ cu $\sigma \neq \tau$. Termenii $\sigma(e_1,\ldots,e_n)$ şi $\tau(e'_1,\ldots,e'_k)$ nu pot fi unificaţi deoarece încep cu caractere diferite.
- La pasul Elimină, există $x \doteq t \in R$ cu $x \in Var(t)$ şi $t \neq x$. Dacă ν este o substituţie, atunci $|\nu(t)| > |\nu(x)|$, deci x şi t nu au unificator.

R conţine o ecuaţie care nu poate fi unificată, deciR nu are unificator. Deoarece U şi R au aceeasi unificatori, rezultă ca U nu are unificatori.

Complexitate

■Problema de unificare

$$U = \{x_1 \doteq f(x_0, x_0), x_2 \doteq f(x_1, x_1), \dots, x_n \doteq f(x_{n-1}, x_{n-1})\}$$

are cgu $R = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

Complexitate

■Problema de unificare

$$U = \{x_1 \doteq f(x_0, x_0), x_2 \doteq f(x_1, x_1), \dots, x_n \doteq f(x_{n-1}, x_{n-1})\}$$

are cgu $R = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

La pasul Elimină, pentru a verifica că o variabilă x_i nu apare în membrul drept al ecuaţiei (occur check) facem 2^i comparaţii.

Complexitate

■Problema de unificare

$$U = \{x_1 \stackrel{.}{=} f(x_0, x_0), x_2 \stackrel{.}{=} f(x_1, x_1), \dots, x_n \stackrel{.}{=} f(x_{n-1}, x_{n-1})\}$$

are cgu $R = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

- La pasul Elimină, pentru a verifica că o variabilă x_i nu apare în membrul drept al ecuației (occur check) facem 2^i comparații.
- Algoritmul de unificare prezentat anterior este exponenţial. Complexitatea poate fi îmbunătăţită printr-o reprezentare eficientă a termenilor.
 - EK. Knight, Unification: A Multidisciplinary Survey, ACM Computing Surveys, Vol. 21, No. 1, 1989.

CafeObj

```
{mod! MATCH{
[ Elem ]
op a : -> Elem
op _+_ : Elem Elem -> Elem
op * : Elem Elem -> Elem
vars x y : Elem
eq x + (y * y) = x * y . 
MATCH> reduce (a + y) + (x * x).
-- reduce in MATCH: ((a + y) + (x * x)):Elem
1>[1] rule: eq (x:Elem + (y:Elem * y)) = (x * y)
    { x:Elem \mid -> (a + y:Elem), y:Elem \mid -> x:Elem }
1<[1]((a + y:Elem) + (x:Elem * x))-->((a + y:Elem)* x:Elem)
((a + y) * x):Elem
(0.000 sec for parse, 1 rewrites(0.000 sec), 3 matches
```

Matching problem

Fie p şi t termeni cu variabile din X. Spunem că p matches t (t este o instanță a lui p) dacă există o substituție $\nu: X \to T_\Sigma(X)$ a. î. $\nu(p) = t$. p = x + (y * y), t = (a + y) + (x * x) $\nu(x) := a + y, \nu(y) := x$

Matching problem

- Fie p şi t termeni cu variabile din X. Spunem că p matches t (t este o instanță a lui p) dacă există o substituție $\nu: X \to T_\Sigma(X)$ a. î. $\nu(p) = t$. p = x + (y * y), t = (a + y) + (x * x) $\nu(x) := a + y$, $\nu(y) := x$
- Fie t' termenul obţinut din t prin înlocuirea fiecărei variabile $x \in Var(T)$ cu o operaţie constantă c_x . Substituţia ν poate fi determinată aplicînd algoritmul de unificare ecuaţiei $p \doteq t'$.

$$x + (y * y) \doteq (a + c_y) + (c_x * c_x)$$
$$\{x \doteq a + c_y, \ y \doteq c_x\}$$

Matching problem

- Fie p şi t termeni cu variabile din X. Spunem că p matches t (t este o instanță a lui p) dacă există o substituție $\nu: X \to T_\Sigma(X)$ a. î. $\nu(p) = t$. p = x + (y * y), t = (a + y) + (x * x) $\nu(x) := a + y$, $\nu(y) := x$
- Fie t' termenul obţinut din t prin înlocuirea fiecărei variabile $x \in Var(T)$ cu o operaţie constantă c_x . Substituţia ν poate fi determinată aplicînd algoritmul de unificare ecuaţiei $p \doteq t'$.

$$x + (y * y) \doteq (a + c_y) + (c_x * c_x)$$
$$\{x \doteq a + c_y, \ y \doteq c_x\}$$

O problemă de matching poate fi rezolvată prin unificare.