Zusammenfassung Betriebssysteme

Mathis Hermann

February 27, 2023

Diese Zusammenfassung ist basierend auf den gegebenen Unterlagen. Alle Angaben ohne Gewähr. Weitergabe und Verbreitung erlaubt nur mit expliziter Genehmigung.

Inhalte des Moduls

- Der grundlegende Aufbau eines Betriebssystems
- Die Aufgaben der einzelnen Betriebssystem-Moduel und Abgrenzung voneinander sowie von darauf aufbauenden Modulen (Applikationen, Datenbanken, Middleware-Komponenten)
- Vor- und Nachteile bzw. Einsatzgebiete verschiedener Typen von Betriebssystemen und Zuordnung anhand gegebener Vorgaben
- Überblick über aktuelle Forschungs- und Entwicklungsschwerpunkte im Bereich Betriebssysteme

1 Einführung Betriebssysteme

Ein Betriebssystem ist die Software, die die Verwendung (den Betrieb) eines Computers ermöglicht. Es verwaltet Betriebsmittel wie Speicher, Ein- und Ausgabegeräte und steuert die Ausführung von Programmen.

Definitionen

- Kernel Betriebssystemkern; verwaltet Hardware des Computers
- Grundlegende Programme dienen dem Start des BS und dessen Konfiguration

1.1 Klassifizierung von Betriebssystemen

Nach Kriterien:

- Nutzeranzahl:
 - Single-User-BS
 - Multi-User-BS
- Anzahl unabhängiger Aktivitäten:
 - Single-Tasking-BS
 - Multi-Tasking-BS
- Kommunikation mit der Umwelt:
 - Stapelverarbeitung (Batchbetrieb)
 - Interaktives BS
 - BS für autonome Systeme
- Verteilung:
 - Lokales BS
 - Verteiltes BS
- Zielarchitektur / Einsatzzweck:
 - Serverbetriebssystem
 - Eingebettetes BS
 - Echtzeitsystem Mainframe-BS
 - BS für Personal Computer
 - BS für Smart Card
 - BS für Ausbildung / Lehre

Systeme in Computern

- Echtzeitsysteme auf Prozessrechnern
- Embedded-Systeme (e.g. Set-Top-Boxen, Waschmaschinen)
- Auf normalen PCs, Tablets, Smartphones
- Mehrprozessorsysteme auf Hosts und Grossrechnern

1.2 Abstraktion

- ungestörte Programmabarbeitung \rightarrow Prozess
- unendlich grosser Speicher, Files \rightarrow Speicherverwaltung
- \bullet private Maschine \rightarrow Zugriffsschutz., Datensicherheit

Prozess Programm bei der Ausführung. Anforderungen an Prozessmanagement:

- Zeitzuteilung
- Signalisierung von Ereignissen (e.g. I/O)
- Vermeidung von Zugriffskonflikten Synchronisation

Speicherverwaltung

- Verwendung von Speicher ohne Berücksichtigung der Grösse des physikalischen Speichers
- Nur Teile laufender Programme werden im physikalischen Speicher gehalten
- \bullet Der Rest befindet sich auf dem Sekundärspeicher: adressierbarer Speicher \to Arbeitsspeicher

Datenschutz und Sicherheit

- Access Control
- Information flow control
- Authentizität Quelle der Information
- Integrität keine Verfälschungen
- Verfügbarkeit

Eigenschaften

- Funktionale Eigenschaften
 - Authentisierung, Verschlüsselung
 - Informationsmanagement
 - Kommunikationsmanagement
 - Fahrzeug / Verkehrsmanagement
- Nichtfunktionale Eigenschaften
 - Sicherheit
 - Korrektheit
 - Echtzeitfähigkeit
 - Sparsamkeit
 - Verfügbarkeit
 - Skalierbarkeit
 - Offenheit
 - Robustheit

1.3 Interaktionen mit dem Betriebssystem

Paradigmen:

- Vorwiegend textorientiert Konsole, Shell, Eingabeaufforderung
- Grafische Oberfläche Windows, KDE, Windowmaker

Persönliche Vorliebe, keine Definition, was besser ist.

1.4 Architekturen von Betriebssystem

BS gehören zu den komplexesten Softwaresystemen. Durch Lesen des Programmcodes kaum zu verstehen. Durch Reduktion der möglichen Kommunikationsbeziehungen zwischen Komponenten Übersicht schaffen.

Monolith

- The Big Mess
- Jede Routine, Funktion etc. darf jede andere im System aufrufen
- unübersehbare Vielfalt potentieller Kommunikationsbeziehungen
- Kein Information Hiding
- BS = Sammlung an Funktionen
- Typisch für historisch gewachsene Systeme

Geschichtetes System

- Kommunikation nur zwischen Instanzen benachbarter Schichten
- Kein Standard in BS-Technologie etabliert (e.g. ISO-Schichten)

Hardware interfaces (buses. I/O devices. interrupts.

Client-Server-Modell

- Diensterbringung durch eine zentrale Instanz
- Client wendet sich mit Dienst-Wunsch an Server
- Server erbringt gewünschten Dienst, wenn möglich
- Mirkokern-Architekturen verwenden das Prinzip konsequent auf BS-Komponenten an
- Beispiele: Speicherverwaltung im BS, NTP-Server, Drucker-Server