## ALGEBRA III (DOBLE GRADO INFORMÁTICA-MATEMÁTICAS)

## RELACIÓN 2 (TEORÍA DE GALOIS).

**Ejercicio 1.** Sea E/K una extensión de cuerpos de números. Probar que si [E:K]=2 entonces  $E=K(\sqrt{a})$  para un cierto  $a\in K$  tal que  $\sqrt{a}\notin K$ . Concluir que toda extensión de cuerpos de números de grado dos es normal.

Ejercicio 2. Estudiar la normalidad de las siguientes extensiones:

- (1)  $\mathbb{Q}(\sqrt[6]{27}, \sqrt[8]{16})/\mathbb{Q}$ ,
- (2)  $\mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_r})/\mathbb{Q}$ , donde cada  $a_i \in \mathbb{Q}$  con  $\sqrt{a_i} \notin \mathbb{Q}$ ,
- $(3) \ \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})/\mathbb{Q},$
- $(4) \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})/\mathbb{Q}(\sqrt{2}),$
- (5)  $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})/\mathbb{Q}(\sqrt[3]{2}),$
- (6)  $\mathbb{Q}(i\sqrt{2}, \sqrt[4]{2})/\mathbb{Q}$ ,
- $(7) \ \mathbb{Q}(i\sqrt{3}, \sqrt[3]{5})/\mathbb{Q},$
- (8)  $\mathbb{Q}(\sqrt{3}, \sqrt[3]{5})/\mathbb{Q}$ ,
- (9)  $\mathbb{Q}(\sqrt[4]{-1})/\mathbb{Q}$  (Nota: asumimos como conocido que el polinomio  $x^4 + 1$  es irreducible en  $\mathbb{Q}[x]$ ).

**Ejercicio 3.** Estudiar si el cuerpo  $\mathbb{Q}(\sqrt[3]{5}, i\sqrt{5})$  es una extensión normal de  $\mathbb{Q}$ . Para ello:

- (1) Probar que  $[\mathbb{Q}(\sqrt[3]{5}, i\sqrt{5}) : \mathbb{Q}] = 6$ .
- (2) Probar que  $i\sqrt{3} \notin \mathbb{Q}(i\sqrt{5})$ , y entonces también que  $\omega \notin \mathbb{Q}(i\sqrt{5})$ .
- (3) Probar que  $[\mathbb{Q}(\omega, i\sqrt{5}) : \mathbb{Q}] = 4$ .
- (4) Probar que  $\mathbb{Q}(\omega, i\sqrt{5}) \nsubseteq \mathbb{Q}(\sqrt[3]{5}, i\sqrt{5})$ , y entonces que  $\omega \notin \mathbb{Q}(\sqrt[3]{5}, i\sqrt{5})$ .
- (5) Probar que el polinomio  $Irr(\sqrt[3]{5}, \mathbb{Q})$  no descompone totalmente en  $\mathbb{Q}(\sqrt[3]{5}, i\sqrt{5})$ .

Ejercicio 4. (1) Probar que  $\sqrt{3} \in \mathbb{Q}(\sqrt{1+2\sqrt{3}})$ .

- (2) Probar que  $\sqrt{1+2\sqrt{3}} \notin \mathbb{Q}(\sqrt{3})$ .
- (3) Determinar el polinomio  $Irr(\sqrt{1+2\sqrt{3}}, \mathbb{Q}(\sqrt{3}))$ .
- (4) Determinar las  $\mathbb{Q}$ -inmersiones complejas de  $\mathbb{Q}(\sqrt{3})$



(5) Para cada  $\mathbb{Q}$ -inmersión compleja  $\sigma$  de  $\mathbb{Q}(\sqrt{3})$ , determinar las  $\sigma$ -inmersiones complejas de  $\mathbb{Q}(\sqrt{1+2\sqrt{3}})$ 



- (6) Argumentar que ya conocemos todas las  $\mathbb{Q}$ -inmersiones complejas de  $\mathbb{Q}(\sqrt{1+2\sqrt{3}})$ . Usando ese hecho, determinar:
  - (a) el grado  $[\mathbb{Q}(\sqrt{1+2\sqrt{3}}):\mathbb{Q}],$
  - (b) todas las raíces del polinomio  $Irr(\sqrt{1+2\sqrt{3}},\mathbb{Q})$ .

Ejercicio 5. Sea  $f = x^4 - 5x^2 + 6 \in \mathbb{Q}[x]$ .

- (1) Probar que  $\mathbb{Q}(f) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ .
- (2) Determinar  $[\mathbb{Q}(f):\mathbb{Q}]$  y describir los elementos del grupo de Galois  $G=G(f/\mathbb{Q})$ .
- (3) Determinar el orden de cada elemento del grupo G.
- (4) Argumentar que el grupo G isomorfo al grupo de Klein

$$C_2 \times C_2 = \langle u, v \mid u^2 = 1 = v^2, uv = vu \rangle.$$

- (5) Describir el retículo de subgrupos de G.
- (6) Describir el retículo de subcuerpos de  $\mathbb{Q}(f)$ , indicando qué subgrupos de G corresponden, por la Conexión de Galois, a cada subcuerpo de  $\mathbb{Q}(f)$ .
- (7) Determina el grupo de Galois  $G(\mathbb{Q}(f)/\mathbb{Q}(3\sqrt{2}-2\sqrt{3}))$  y argumenta entonces que  $\mathbb{Q}(f) = \mathbb{Q}(3\sqrt{2}-2\sqrt{3})$ .

**Ejercicio 6.** Sea E/K una extensión finita y normal de cuerpos de números con  $[E:K]=3^n$ . Argumentar que, para todo i con  $1 \le i \le n$ , existe un cuerpo F, con  $K \le F \le E$ , tal que  $[F:K]=3^i$ .

**Ejercicio 7.** Sea E/K una extensión finita de cuerpos de números. Probar que el orden de su grupo de Galois divide al grado de la extensión.

**Ejercicio 8.** Considerar el cuerpo de números  $\mathbb{Q}(\sqrt[4]{5},i)$ 

- (1) Determinar el grado  $[\mathbb{Q}(\sqrt[4]{5},i):\mathbb{Q}].$
- (2) Determinar el grado  $[\mathbb{Q}(\sqrt[4]{5}, i) : \mathbb{Q}(i)]$ .
- (3) Determinar el polinomio  $Irr(\sqrt[4]{5}, \mathbb{Q}(i)),$
- (4) Argumentar que la extensión  $\mathbb{Q}(\sqrt[4]{5},i)/\mathbb{Q}(i)$  es normal.
- (5) Describir los elementos del grupo de Galois de la extensión  $\mathbb{Q}(i, \sqrt[4]{5})/\mathbb{Q}(i)$ .
- (6) Probar que el grupo de Galois  $G(\mathbb{Q}(i, \sqrt[4]{5})/\mathbb{Q}(i))$  es cíclico.
- (7) Describir el el retículo de subgrupos del grupo  $G(\mathbb{Q}(i, \sqrt[4]{5})/\mathbb{Q}(i))$ .
- (8) Describir el retículo de subcuerpos intermedios entre  $\mathbb{Q}(i)$  y  $\mathbb{Q}(i, \sqrt[4]{5})$ .

## **Ejercicio 9.** Considerar el cuerpo $\mathbb{Q}(\sqrt[8]{2},i)$ .

- (1) Determinar el grado  $[\mathbb{Q}(\sqrt[8]{2},i):\mathbb{Q}].$
- (2) Determinar el grado  $[\mathbb{Q}(\sqrt[8]{2},i):\mathbb{Q}(\sqrt{2})].$
- (3) Determinar el grado  $[\mathbb{Q}(\sqrt[8]{2}) : \mathbb{Q}(\sqrt{2})].$
- (4) Determinar los polinomios  $Irr(\sqrt[8]{2}, \mathbb{Q}(\sqrt{2}))$  y  $Irr(i, \mathbb{Q}(\sqrt{2}))$ .
- (5) Argumentar que la extensión  $\mathbb{Q}(\sqrt[8]{2},i)/\mathbb{Q}(\sqrt{2})$  es normal.
- (6) Describir los elementos del grupo de Galois  $G = G(\mathbb{Q}(\sqrt[8]{2}, i)/\mathbb{Q}(\sqrt{2}))$ .
- (7) Determinar los ordenes de todos los elementos del grupo G.
- (8) Probar que el grupo G es isomorfo al Diédrico  $D_4 = \langle r, s \mid r^4 = 1 = s^2, sr = r^3 s \rangle$ .

## **Ejercicio 10.** Considerar la extensión $\mathbb{Q}(i, \sqrt[4]{5})/\mathbb{Q}$ .

- (1) Argumentar que es normal y describir los elementos de su grupo de Galois.
- (2) ¿Son iguales los subcuerpos  $\mathbb{Q}((1+i)\sqrt[4]{5})$  y  $\mathbb{Q}((1-i)\sqrt[4]{5})$ ?
- (3) Determinar todos los subcuerpos  $F \leq \mathbb{Q}(i, \sqrt[4]{5})$  tales que  $[F : \mathbb{Q}] = 2$  y el grupo de Galois  $G(\mathbb{Q}(i, \sqrt[4]{5})/F)$  es cíclico.