MATH 289 PROBLEM SET 1: INDUCTION

1. The induction Principle

The following property of the natural numbers is intuitively clear:

Axiom 1. Every nonempty subset of the set of nonnegative integers $\mathbb{Z}_{\geq 0} = \{0, 1, 2, 3, \dots\}$ has a smallest element.

This axiom can be thought of a instance of the *extremal principle* which will be discussed later.

Suppose that k is an integer and we want to prove that

"P(n) is true for every positive integer n",

where P(n) is a proposition (statement) which depends on a positive integer n. Proving P(1), P(2), P(3) individually, would take an infinite amount of time. Instead, we can use the *Induction Principle*:

Theorem 2 (Induction Principle). Assume that k is an integer and P(n) is a proposition for all $n \ge k$.

- (1) Suppose that P(k) is true, and
- (2) for any integer $m \geq k$ for which P(m) is true, P(m+1) is true.

Then P(n) is true for all integers $n \geq k$.

For k = 1, the induction principle can be compared to an infinite sequence of dominos tiles, numbered 1,2,3, etc.

If the m-th domino tile falls, it will hit the (m+1)-th domino tile and the (m+1)-th domino tile will fall as well. If the first domino tile falls, then *all* domino tiles will fall down. (Here P(n) is the statement: "the n-th domino tile falls down")

Proof of the Induction Principle. Let S to be the set of all nonnegative integers i for which P(k+i) is false. If S is nonempty, then S has a smallest element, say l by Axiom 1. By property (1)), P(k) is true and l > 0. The statement P(k+l-1) is true because l is the minimal element of S. Therefore, statement P(k+l) is true because of property (2). Hence $l \notin S$. Contradiction! We conclude that S is empty, and P(n) is true for all $n \ge k$.

A typical example of the induction principle is the following:

Example 3. Prove that

(1)
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

for every positive integer n.

Proof. We prove (1) by induction on n. For n = 1 we check that

$$1 = \frac{1 \cdot (1+1)}{2}.$$

Suppose that (1) is true for n = m. Then

$$1 + 2 + \dots + m + (m+1) = (1 + 2 + \dots + m) + (m+1) =$$
$$= \frac{m(m+1)}{2} + (m+1) = \frac{(m+1)(m+2)}{2}.$$

So (1) is true for n=m+1. Now (1) is true for all positive integers n by the induction principle.

Remark 4. When the German mathematician Carl Friedrich Gauss (1777–1855) was 10 years old, his school teacher gave the class an assignment to add all the numbers from 1 to 100. Gauss gave the answer almost immediately: 5050. This is how (we think) he did it: Write the numbers from 1 to 100 from left to right. Write under that the numbers from 1 to 100 in reverse order.

Each of the 100 column sums is 101. This shows that

$$2 \cdot (1 + 2 + \dots + 100) = 100 \cdot 101$$

and

$$1 + 2 + \dots + 100 = \frac{100 \cdot 101}{2} = 50 \cdot 101 = 5050.$$

This easily generalizes to a proof of (1).

A formula similar to (1) exists for the sums of squares, namely

(2)
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

Example 5. Give and prove a formula for

$$1^3 + 2^3 + \dots + n^3$$

We have seen similar examples, namely (1) and (2). We can also add the formula

$$1^0 + 2^0 + 3^0 + \dots + n^0 = n.$$

Let

$$p_k(n) = 1^k + 2^k + 3^k + \dots + n^k$$

where $k \in \mathbb{Z}_{\geq 0}$. The examples so far suggest that $p_k(n)$ is a polynomial of degree k+1 (and that the leading coefficient is $\frac{1}{k+1}$). Let us assume that $p_3(n)$ is a polynomial of degree 4.

Since $p_3(0)$ is an empty sum, we have that $p_3(0) = 0$. We can write $p_3(n) = an^4 + bn^3 + cn^2 + dn$. for certain real numbers a, b, c, d. We have

(3)

$$n^{3} = p_{3}(n) - p_{3}(n-1) = a(n^{4} - (n-1)^{4}) + b(n^{3} - (n-1)^{3}) + c(n^{2} - (n-1)^{2}) + d(n - (n-1)) =$$

$$= a(4n^{3} - 6n^{2} + 4n - 1) + b(3n^{2} - 3n + 1) + c(2n - 1) + d =$$

$$= n^{3}(4a) + n^{2}(-6a + 3b) + n(4a - 3b + 2c) + (-a + b - c + d)$$

Comparing coefficients in (3) gives us the linear equations:

$$(4) 1 = 4a$$

$$0 = -6a + 3b$$

$$0 = 4a - 3b + 2c$$

$$0 = -a + b - c + d$$

We solve the system of equations and find $a = \frac{1}{4}$, $b = \frac{1}{2}$, $c = \frac{1}{4}$ and d = 0. We now should conjecture the following formula:

$$1^3 + 2^3 + \dots + n^3 = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2.$$

Finding this formula was the hard part. It is now not so hard to prove this formula by induction:

Proof. We will prove that

(8)
$$1^3 + 2^3 + \dots + n^3 = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2.$$

by induction on n. The case n = 0 is clear, because both sides of the equation are equal to 0. If (8) is true for n = m - 1, then

$$1^{3} + 2^{3} + \dots + (m-1)^{3} = \frac{1}{4}(m-1)^{4} + \frac{1}{2}(m-1)^{3} + \frac{1}{4}(m-1)^{2}.$$

From this follows that

$$1^{3} + 2^{3} + \dots + (m-1)^{3} + m^{3} = \frac{1}{4}(m-1)^{4} + \frac{1}{2}(m-1)^{3} + \frac{1}{4}(m-1)^{2} + m^{3} =$$

$$= \frac{1}{4}(m^{4} - 4m^{3} + 6m^{2} - 4m + 1) + \frac{1}{2}(m^{3} - 3m^{2} + 3m - 1) + \frac{1}{4}(m^{2} - 2m + 1) + m^{3} =$$

$$= \frac{1}{4}m^{4} + \frac{1}{2}m^{3} + \frac{1}{4}m^{2},$$

so (8) is true for n = m. By induction follows that (8) is true for all $n \in \mathbb{Z}_{>0}$.

Notice that

$$\frac{1}{4}m^4 + \frac{1}{2}m^3 + \frac{1}{4}m^2 = (\frac{1}{2}n(n+1))^2$$

which leads to the following aesthetic formula:

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

Example 6. What is the value of

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots?$$

Let us compute the partial sums. Perhaps we will find a pattern.

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} = \frac{2}{6} + \frac{4}{6} = \frac{2}{3},$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} = \frac{2}{3} + \frac{1}{12} = \frac{8}{12} + \frac{1}{12} = \frac{9}{12} = \frac{3}{4},$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} = \frac{3}{4} + \frac{1}{20} = \frac{15}{20} + \frac{1}{20} = \frac{16}{20} = \frac{4}{5}.$$

A pattern emerges. Namely, it seems that

(9)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}.$$

Proof. By induction on n we prove:

(10)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}.$$

For n = 1 we check

$$\frac{1}{1 \cdot 2} = 1 - \frac{1}{2}.$$

If (10) is true for n = m, then

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{m(m+1)} + \frac{1}{(m+1)(m+2)} =$$

$$= \left(1 - \frac{1}{m+1}\right) + \left(\frac{1}{m+1} - \frac{1}{m+2}\right) = 1 - \frac{1}{m+2}.$$

Hence (10) is true for n = m + 1. By induction, (10) is true for all integers $n \ge 1$. We have

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1.$$

Example 7 (UMUMC, 1988). Let S_n be the set of all pairs (x, y) with integral coordinates such that $x \ge 0$, $y \ge 0$ and $x + y \le n$. Show that S_n cannot be covered by the union of n straight lines.

First we should try a few small cases, say n = 0, 1, 2, 3, 4:

Notice that S_n is a subset of S_{n+1} . This will be helpful for our induction proof:

Proof. We prove the statement by induction on n, the case n = 0 being trivial. Suppose that one needs at least n + 1 lines to cover S_n . Define $C_{n+1} = S_{n+1} \setminus S_n$. The set C_{n+1} consists of n + 2 points on the line x + y = n + 1. Suppose that k lines $\ell_1, \ell_2, \ldots, \ell_k$ cover S_{n+1} .

case 1: One of the lines is equal to the line x + y = n + 1. Without loss of generality we may assume that ℓ_k is equal to the line x + y = n + 1. Then $\ell_1, \ell_2, \ldots, \ell_{k-1}$ cover S_n because $\ell_k \cap S_n = \emptyset$. From the induction hypothesis follows that $k - 1 \ge n + 1$, so $k \ge n + 2$.

case 2: None of the lines are equal to the line x+y=n+1. Then each of the lines intersects the line x+y=n+1 in at most one point, and therefore it intersects the set C_{n+1} in at most one point. Since C_{n+1} has n+2 elements, there must be at least n+2 lines.

So in both cases we conclude that one needs at least n+2 lines to cover S_{n+1} .

2. Strong Induction

The following example illustrates that sometimes one has to make a statement stronger in order to be able to prove it by induction.

Example 8. Prove that

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{999,999}{1,000,000} < \frac{1}{1000}.$$

Since $1000 = \sqrt{1,000,000}$ one might suggest that

(11)
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2n-1}{2n} < \frac{1}{\sqrt{2n}}$$

for all $n \ge 1$. Let us try to prove (11). We can check (11) for small n (which gives some validity to our conjecture that this inequality holds). Suppose that (11) holds for n = m:

(12)
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2m-1}{2m} < \frac{1}{\sqrt{2m}}$$

We have to prove (11) for n = m + 1:

(13)
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2m+1}{2m+2} < \frac{1}{\sqrt{2m+2}}.$$

If we divide (13) by (12) we obtain

(14)
$$\frac{2m+1}{2m+2} \le \sqrt{\frac{2m}{2m+2}}.$$

If (12) and (14) are true, then (13) is true. By squaring (14) we see that (14) is equivalent to

$$\left(\frac{2m+1}{2m+2}\right)^2 \le \frac{2m}{2m+2}$$

and to

$$(2m+1)^2 \le (2m+2)(2m)$$

So if (15) is true then our induction proof is complete. Unfortunately (15) is not true and we are stuck.

Sometimes it is easier to prove a *stronger* statement by induction:

Proof. We prove

(16)
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}$$

by induction on n. The case n = 1 is clear because

$$\frac{1}{2} < \frac{1}{\sqrt{3}}.$$

Suppose that (16) is true for n = m:

(17)
$$\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2m-1}{2m} < \frac{1}{\sqrt{2m+1}}$$

Since

$$(2m+1)(2m+3) = (2m+2)^2 - 1 < (2m+2)^2$$

we have that

$$\left(\frac{2m+1}{2m+2}\right)^2 < \frac{2m+1}{2m+3}$$

and

(18)
$$\frac{2m+1}{2m+2} < \sqrt{\frac{2m+1}{2m+3}}.$$

Multiplying (17) by (18) yields

(19)
$$\frac{1}{2}\frac{3}{4}\cdots\frac{2m+1}{2m+2} < \frac{1}{\sqrt{2m+3}},$$

so (16) is true for n = m + 1. This shows that (16) is true for all positive integers n. In particular, for n = 500,000 we get

$$\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{999,999}{1,000,000} < \frac{1}{\sqrt{1,000,001}} < \frac{1}{1000}.$$

Below is a trickier proof of Example 8.

Proof. Let

$$A = \frac{1 \cdot 3 \cdot 5 \cdots 999,999}{2 \cdot 4 \cdot 6 \cdots 1,000,000}$$

and

$$B = \frac{2 \cdot 4 \cdot 6 \cdots 1,000,000}{3 \cdot 5 \cdot 7 \cdots 1,000,001}.$$

Clearly A < B because

$$\frac{1}{2} < \frac{2}{3}, \frac{3}{4} < \frac{4}{5}, \dots, \frac{999,999}{1,000,000} < \frac{1,000,000}{1,000,001}.$$

It follows that

$$A^2 < AB = \frac{1}{1,000,001} < \frac{1}{1,000,000}$$

and $A < 1000^{-1}$.

Example 9. Prove that every integer $n \geq 2$ is a product of prime numbers.

Proof. Let Q(n) be the statement:

"every integer r with $2 \le r \le n$ is a product of prime numbers."

We use induction on n to prove that Q(n) holds for all integers $n \geq 2$.

For n=2 the statement is true because 2 is a prime number. Suppose that Q(m) is true. We will prove Q(m+1). Suppose that $2 \le r \le m+1$. If $r \le m$ then r is a product of prime numbers because Q(m) is true. Suppose that r=m+1. If m+1 is a prime number, then m+1 is a product of prime numbers and we are done. Otherwise, m+1 can be written as a product ab with $1 \le a, b \le m$. Because Q(m) is true, both a and b are products of prime numbers. Hence m+1=ab is a product of prime numbers.

We have shown that Q(n) holds for all $n \geq 2$. In particular, every integer $r \geq 2$ is a product of prime numbers because Q(r) is true.

3. Induction in definitions

We can also use induction in a definition. For example, the Fibonacci numbers is a sequence of numbers F_0, F_1, F_2, \ldots defined by $F_0 = 0, F_1 = 1$ and

$$F_{n+1} = F_n + F_{n-1}, \quad n \ge 1.$$

By (strong) induction on n we can prove that F_n is well-defined for all integers $n \geq 0$. The first few Fibonacci numbers are:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

The sum notation is an example of a recursive definition. Suppose that f(n) is some function. If a, b are integers and $a \leq b + 1$ then we define

$$\sum_{n=a}^{b} f(n)$$

as follows.

$$\sum_{n=a}^{a-1} f(n) = 0$$

and

(20)
$$\sum_{n=a}^{b} f(n) = f(b) + \sum_{n=a}^{b-1} f(n)$$

if $b \geq a$.

One can then formally prove by induction that

$$\sum_{n=a}^{c} f(n) = \sum_{n=a}^{b} f(n) + \sum_{n=b+1}^{c} f(n).$$

if $a, b, c \in \mathbb{Z}$ and $a - 1 \le b \le c$. (Induction on c. Start with c = b.) Similarly we have the product notation.

$$\prod_{n=a}^{a-1} f(n) = 1$$

and

$$\prod_{n=a}^{b} f(n) = f(b) \prod_{n=a}^{b-1} f(n).$$

if $b \geq a$.

For nonnegative integers m and n with $m \leq n$ we define a binomial coefficient by

$$\binom{n}{m} = \left\{ \begin{array}{ll} 1 & \text{if } m = 0 \text{ or } m = n \\ \binom{n-1}{m-1} + \binom{n-1}{m} & \text{if } 0 < m < n \end{array} \right. .$$

If we arrange the binomial coefficients in a triangular shape, we get Pascal's triangle:

$$\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 3 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix} & \begin{pmatrix} 4 \\ 3 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \vdots & \end{pmatrix}$$

After evaluating the binomial coefficients we get:

4. Exercises

Exercise 1. * Prove that

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

for all positive integers n.

Exercise 2. * Show that

$$1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{1}{2n - 1} - \frac{1}{2n} = \frac{1}{n + 1} + \frac{1}{n + 2} + \dots + \frac{1}{2n}$$

for all $n \in \mathbb{N}$.

Exercise 3. * Prove that

$$\sum_{i=0}^{n} {m+i \choose m} = {m+n+1 \choose m+1}.$$

for all nonnegative integers m and n.

Exercise 4. * Prove that

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}b^n.$$

Exercise 5. *

(a) Prove that

$$1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}.$$

for every real number x and every positive integer n.

(b) If x is a real number with |x| < 1 then

$$1 + x + x^2 + \dots = \frac{1}{1 - x}.$$

Exercise 6. ** Show that the sum of the squares of two consecutive Fibonacci numbers is again a Fibonacci number.

Exercise 7. ** Cut out a 1×1 corner of a $2^n \times 2^n$ chess board $(n \ge 1)$. Show that the remainder of the chess board can be covered with L-shaped tiles (see picture).

The case n=2 is shown below.

Exercise 8. ** Find and prove a formula for

$$1^4 + 2^4 + \dots + n^4$$
.

Exercise 9. ** Show that

$$\binom{n}{m} = \frac{n!}{m! (n-m)!}$$

as follows: Define

$$f(x) = (1+x)^n = \binom{n}{0} + \binom{n}{1}x + \dots + \binom{n}{n}x^n.$$

and consider $f^{(k)}(0)$ $(f^{(k)}(x))$ is the k-th derivative of f(x).

Exercise 10. ** Define a sequence a_1, a_2, \ldots by $a_1 = \frac{5}{2}$ and $a_{n+1} = a_n^2 - 2$ for $n \ge 1$. Give an explicit formula for a_n and prove it.

Exercise 11 (Division with remainder). ** Suppose that n is a nonnegative integer, and m is a positive integer. Prove that there exist integers q and r with n = qm + r and $0 \le r < m$.

Exercise 12. ** Give and prove a formula for

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1) \cdot (n+2)}$$

Exercise 13 (Expansion in base b). *** Suppose that n is a positive integer, and b is an integer ≥ 2 . Show that there exist an nonnegative integer m, and integers $a_0, a_1, \ldots, a_m \in \{0, 1, 2, \ldots, b-1\}$ such that

(21)
$$n = a_m b^m + a_{m-1} b^{m-1} + \dots + a_0$$

and $a_m \neq 0$. Moreover, show that m and a_0, a_1, \ldots, a_m are uniquely determined by n. (We will write $(a_m a_{m-1} \cdots a_0)_b$ for the right-hand side in (21)).

Exercise 14 (Zeckendorf's Theorem). *** Suppose that n is a positive integer. Show that we can write

$$n = F_{i_1} + F_{i_2} + \dots + F_{i_k}$$

where k is a positive integer, $i_1 \ge 2$ and $i_j \ge i_{j-1} + 2$ for j = 2, 3, ..., k. Also show that k and $i_1, ..., i_k$ are uniquely determined by n.

Exercise 15 (Putnam 1985, B2). *** Define polynomials $f_n(x)$ for $n \ge 0$ by $f_0(x) = 1$, $f_n(0) = 0$ for $n \ge 1$, and

$$\frac{d}{dx}(f_{n+1}(x)) = (n+1)f_n(x+1)$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

Exercise 16 (Putnam 1987, B2). *** Let r, s and t be integers with $0 \le r$, $0 \le s$ and $r + s \le t$. Prove that

$$\frac{\binom{s}{0}}{\binom{t}{r}} + \frac{\binom{s}{1}}{\binom{t}{r+1}} + \dots + \frac{\binom{s}{s}}{\binom{t}{r+s}} = \frac{t+1}{(t+1-s)\binom{t-s}{r}}.$$

Exercise 17. **** Let $n = 2^k$. Prove that we can select n integers from any (2n - 1) integers such that their sum is divisible by n.

Exercise 18. *** Find the sum of all fractions 1/xy such that gcd(x,y) = 1, $x \le n$, $y \le n$, x + y > n.

Exercise 19. **** Find and prove a formula for

$$\int_0^{\frac{\pi}{2}} \sin^n(x) \, dx.$$

Exercise 20. **** Suppose that a_1, a_2, \ldots, a_n are positive integers such that $a_1 \leq a_2 \leq \cdots \leq a_n$. Prove that

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = 1$$

implies that $a_n < 2^{n!}$.

Exercise 21. *** Generalize example 7: Let $S_{n,d} \subseteq \mathbb{R}^d$ be the set of all integer vectors (x_1, \ldots, x_d) such that $x_i \geq 0$ for all i and $x_1 + x_2 + \cdots + x_d \leq n$. Show that $S_{n,d}$ cannot be covered with n hyperplanes in \mathbb{R}^d .