

Modul 4

Floating Point
IEEE Standard

EL3011 Arsitektur Sistem Komputer

STEI - Institut Teknologi Bandung

Contents

- 1. Background: Fractional binary numbers
- 2. IEEE floating point standard: Definition
- 3. Example and properties
- 4. Rounding, addition, multiplication
- 5. Summary

This module adopted from 15-213 Introduction to Computer Systems Lecture, Carnegie Mellon University, 2020

STEI - Institut Teknologi Bandung

Modul 4. Floating Point

4.1. Fractional Binary Numbers

EL3011 Arsitektur Sistem Komputer

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of
 - Represents rational number:

Fractional Binary Numbers: Examples

■ Value Representation

```
5 \frac{3}{4} = \frac{23}{4} 101.11_2 = 4 + 1 + \frac{1}{2} + \frac{1}{4}

2 \frac{7}{8} = \frac{23}{8} 10.111_2 = 2 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}

1 \frac{7}{16} = \frac{23}{16} 1.0111_2 = 1 + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}
```

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

- Use notation 1.0 – ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.01010101[01]...2
 - 1/5 0.00110011[0011]...2
 - 1/10 0.0001100110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

STEI - Institut Teknologi Bandung

Modul 4. Floating Point

4.2. IEEE Floating Point Standard

EL3011 Arsitektur Sistem Komputer

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - Some CPUs don't implement IEEE 754 in full e.g., early GPUs, Cell BE processor
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point's Disaster

- Ariane 5 explodes on maiden voyage: \$500 MILLION dollars lost (June 4th, 1996)
 - 64-bit floating point number assigned to 16-bit integer
 - Causes rocket to get incorrect value of horizontal velocity and crash
- Patriot Missile defense system misses scud 28 people die
 - System tracks time in tenths of second
 - Converted from integer to floating point number.
 - Accumulated rounding error causes drift. 20% drift over 8 hours.
 - Eventually (on 2/25/1991 system was on for 100 hours) causes range mis-estimation sufficiently large to miss incoming missiles.

Floating Point Representation

Numerical Form:

 $(-1)^{s} M 2^{E}$

Example: $15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

• Single precision: 32 bits \approx 7 decimal digits, $10^{\pm 38}$

• Double precision: 64 bits \approx 16 decimal digits, $10^{\pm 308}$

• Other formats: half precision, quad precision

Three "kinds" of floating point numbers

$v = (-1)^s M 2^E$

"Normalized" Values

- When: **exp** ≠ 000...0 and **exp** ≠ 111...1
- Exponent coded as a biased value: E = **exp** Bias
 - exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (exp: 1...254, E: -126...127)
 - Double precision: 1023 (exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when **frac**=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
    Value: float F = 15213.0;
    15213<sub>10</sub> = 11101101101101<sub>2</sub>
    = 1.1101101101101<sub>2</sub> x 2<sup>13</sup>
```

```
v = (-1)^s M 2^E
E = exp - Bias
```

Significand

```
M = 1.101101101_2
frac= 1101101101000000000000002
```

Exponent

```
E = 13
Bias = 127
exp = 140 = 10001100_2
```

• Result:

0 10001100 1101101101101000000000

s exp

frac

Denormalized Values

```
v = (-1)^s M 2^E
E = 1 - Bias
```

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of exp Bias) (why?)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

- Condition: **exp** = **111**...**1**
- Case: **exp** = **111**...**1**, **frac** = **000**...**0**
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

float: 0xC0A0000

 $v = (-1)^s M 2^E$ E = exp - Bias

Bias = $2^{k-1} - 1 = 127$

binary:

E =

S =

M =

 $v = (-1)^s M 2^E =$

Hex Decimanary

0	0	0000
1	1	0001
2 3	2 3	0010
3		0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111
40		

 $v = (-1)^{s} M 2^{E}$ E = **exp** - Bias

float: **0xC0A00000**

binary: **1100 0000 1010 0000 0000 0000 0000 0000**

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

E =

S =

M = 1.

 $v = (-1)^s M 2^E =$

He	t De	imal Binary
0	0	0000
0 1 2 3	1	0001
2	2 3	0010
3	3	0011
4 5	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

float: **0xC0A0000**

$$v = (-1)^{s} M 2^{E}$$

E = **exp** - Bias

Bias =
$$2^{k-1} - 1 = 127$$

1 1000 0001 010 0000 0000 0000 0000

8-bits

23-bits

$$E = exp - Bias = 129 - 127 = 2 (decimal)$$

S = 1 -> negative number

M = 1.010 0000 0000 0000 0000= 1 + 1/4 = 1.25

 $v = (-1)^s M 2^E = (-1)^1 * 1.25 * 2^2 = -5$

He		Binar
0	0	0000
1	1	0001
2	2	0010
1 2 3 4 5	1 2 3 4 5	0011
4	4	0100
5	5	0101
6	6	0110
7		0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
B C D	12	1100
D	13	1101
E	14	1110
F	15	1111

 $v = (-1)^s M 2^E$ E = 1 - Bias

float: **0x001C0000**

0 0000 0000 001 1100 0000 0000 0000 0000

1 8-bits 23-bits

E =

S =

M = 0.

 $v = (-1)^s M 2^E =$

He	+ 06	imal Binary
	0	0000
0 1 2 3 4 5		0001
2	1 2 3 4 5	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

float: **0x001C0000**

$$v = (-1)^s M 2^E$$

E = 1 - Bias

Bias =
$$2^{k-1} - 1 = 127$$

0 0000 0000 001 1100 0000 0000 0000 0000

1 8-bits

23-bits

$$E = 1 - Bias = 1 - 127 = -126$$
 (decimal)

S = 0 -> positive number

M = 0.001 1100 0000 0000 0000 0000= $1/8 + 1/16 + 1/32 = 7/32 = 7*2^{-5}$

$$\mathbf{v} = (-1)^{s} \ \mathsf{M} \ 2^{\mathsf{E}} = (-1)^{0} * 7*2^{-5} * 2^{-126} = 7*2^{-131}$$

 $\approx 2.571393892 \times 10^{-39}$

He	, Oe,	Bine
0	0	0000
1	1	0001
2	2	0010
1 2 3 4 5	2 3	0011
4	4	0100
5		0101
6 7	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Visualization: Floating Point Encodings

STEI - Institut Teknologi Bandung

Modul 4. Floating Point

4.3. Example and Properties

EL3011 Arsitektur Sistem Komputer

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exp, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

8-bit float = 0x00 = 0000 0000

8-bit float = 0x01 = 0000 0001

8-bit float = 0x02 = 0000 0010

8-bit float = $0x38 = 0011\ 1000$

8-bit float = 0x78 = 0111 1000

8-bit float = 0x79 = 0111 1001

8-bit float = $0x80 = 1000\ 0000$

Suatu 8-bit float dengan nilai real v = 7/512. Tentukan kode float

Suatu 8-bit float dengan nilai real v = 9/512. Tentukan kode float

Dynamic Range (s=0 only)

 $v = (-1)^s M 2^E$ norm: E = exp - Biasdenorm: E = 1 - Bias

	se	exp	frac	E	Value				denorm: E = 1 -
	0 (0000	000	-6	0				
	0 (0000	001	-6	1/8*1/64	= :	1/512	C	losest to zero
Denormalized	0 (0000	010	-6	2/8*1/64	= :	2/512	(-1)	$^{0}(0+1/4)*2^{-6}$
numbers									
	0 (0000	110	-6	6/8*1/64	=	6/512		
	0 (0000	111	-6	7/8*1/64	= '	7/512	la	argest denorm
	0 (0001	000	-6	8/8*1/64	= :	8/512	s	mallest norm
	0 (0001	001	-6	9/8*1/64	= :	9/512	(-1)	$^{0}(1+1/8)*2^{-6}$
	0 (0110	110	-1	14/8*1/2	= :	14/16		
	0 (0110	111	-1	15/8*1/2	= :	15/16	c	losest to 1 below
Normalized	0 (0111	000	0	8/8*1	= :	1		
numbers	0 (0111	001	0	9/8*1	= :	9/8	C	losest to 1 above
	0 (0111	010	0	10/8*1	= :	10/8		
	0 1	1110	110	7	14/8*128	= :	224		
	0 1	1110	111	7	15/8*128	= :	240	la	argest norm
	0 1	1111	000	n/a	inf				

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

• Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? The answer is complicated.
 - Otherwise OK
 - · Denorm vs. normalized
 - Normalized vs. infinity

STEI - Institut Teknologi Bandung

Modul 4. Floating Point

4.4. Rounding, Addition, Multiplication

EL3011 Arsitektur Sistem Komputer

Floating Point Operations: Basic Idea

•
$$x +_f y = Round(x + y)$$

•
$$x \times_f y = Round(x \times y)$$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

\$1.40 \$1.60 \$1.50 \$2.50
$$-$1.50$$
• Towards zero \$1 \| \\$1 \| \\$1 \| \\$1 \| \\$2 \| \\$-\$1\|
• Round down ($-\infty$) \$1 \| \\$1 \| \\$1 \| \\$2 \| \\$2 \| \\$2 \|
• Round up ($+\infty$) \$2 \| \

^{*}Round to nearest, but if half-way in-between then round to nearest even

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - C99 has support for rounding mode management
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is o
 - "Half way" when bits to right of rounding position = 100...2

• Examples

• Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.0 <mark>0</mark> 2	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.1 <mark>0</mark> 2	(1/2—down)	2 1/2

Rounding

1.BBGRXXX

Guard bit: LSB of result •

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

- Round up conditions
 - Round = 1, Sticky = $1 \rightarrow > 0.5$
 - Guard = 1, Round = 1, Sticky = 0 → Round to even

Fraction	GRS	Incr? Rounded	
1.0000000	000	N	1.000
1.1010000	100	N	1.101
1.0001000	010	N	1.000
1.0011000	11 0	Y	1.010
1.0001010	011	Y	1.001
1.111 <mark>1</mark> 100	1 <mark>1</mark> 1	Y	10.000

FP Multiplication

- $(-1)^{s1}$ M1 2^{E1} x $(-1)^{s2}$ M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

```
4 bit significand: 1.010*2^2 \times 1.110*2^3 = 10.0011*2^5
= 1.00011*2^6 = 1.001*2^6
```


Floating Point Addition

- $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
 - •Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - •Sign s, significand M:
 - · Result of signed align & add
 - •Exponent E: E1
- Fixing
 - •If M ≥ 2, shift M right, increment E
 - •if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - •Round M to fit frac precision

```
1.010*2^{2} + 1.110*2^{3} = (0.1010 + 1.1100)*2^{3}
= 10.0110 * 2^{3} = 1.00110 * 2^{4} = 1.010 * 2^{4}
```

Get binary points lined up

Mathematical Properties of FP Add

Compare to those of Abelian Group

Yes

• Closed under addition?

But may generate infinity or NaN

Yes

• Commutative?

Associative?

Overflow and inexactness of rounding

• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

• 0 is additive identity?

• Every element has additive inverse? Almost

• Yes, except for infinities & NaNs

Monotonicity

• $a \ge b \Rightarrow a+c \ge b+c$?

• Except for infinities & NaNs

Almost

Yes

Mathematical Properties of FP Mult

Compare to Commutative Ring

Yes

- Closed under multiplication?
 - But may generate infinity or NaN

Yes

Multiplication Commutative?

No

- Multiplication is Associative?
 - · Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity?

Yes

Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?
 - Except for infinities & NaNs

Almost

STEI - Institut Teknologi Bandung

Modul 4. Floating Point

4.5. Floating Point in C

EL3011 Arsitektur Sistem Komputer

Floating Point in C

- C Guarantees Two Levels
 - **float** single precision
 - double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - · Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - •int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - •int → float
 - Will round according to rounding mode

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

