

APG

DSA5103 Lecture 4

Yangjing Zhang 02-Feb-2023

NUS

Today's content

- 1. Basic convex analysis
- 2. Proximal operator
- 3. (Accelerated) proximal gradient method

Basic convex analysis

Norms

A vector norm on \mathbb{R}^n is a function $\|\cdot\|:\mathbb{R}\to\mathbb{R}$ satisfying the following properties:

- (1) $||x|| \ge 0 \quad \forall x \in \mathbb{R}^n$, and $||x|| = 0 \iff x = 0$
- (2) $\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R}, x \in \mathbb{R}^n$
- (3) $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^n$

Example.

- 1. $||x||_1 = \sum_{i=1}^n |x_i|$ (ℓ_1 norm)
- 2. $||x||_2 = (\sum_{i=1}^n |x_i|^2)^{1/2}$ (ℓ_2 norm)
- 3. $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$, where $1 \le p < \infty$ (ℓ_p norm)
- 4. $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$ (ℓ_{∞} norm)
- 5. $\|x\|_{W,p} = \|Wx\|_p$, where W is a fixed nonsingular matrix, $1 \leq p \leq \infty$

Inner product

For the space of $m\times n$ matrices, $\mathbb{R}^{m\times n}$, we define the standard inner product, for any $A,B\in\mathbb{R}^{m\times n}$,

$$\langle A, B \rangle = \text{Tr}(A^T B) = \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij}$$

Recap: the trace of a square matrix $C \in \mathbb{R}^{n \times n}$ is $\text{Tr}(C) = \sum_{i=1}^{n} C_{ii}$.

For the space of n-vectors, \mathbb{R}^n , we define the standard inner product, for any $x,y\in\mathbb{R}^n$,

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$

Theorem (Projection theorem). Let C be a closed convex set.

(1) For every z, there exists a unique minimizer of

$$\min_{x \in C} \quad \frac{1}{2} ||x - z||^2,$$

denoted as $\Pi_C(z)$ and called as the projection of z onto C.

(2) $x^* := \Pi_C(z)$ is the projection of z onto C if and only if

$$\langle z - x^*, x - x^* \rangle \le 0 \quad \forall x \in C.$$

Theorem (Projection theorem). Let C be a closed convex set.

(1) For every z, there exists a unique minimizer of

$$\min_{x \in C} \quad \frac{1}{2} ||x - z||^2,$$

denoted as $\Pi_C(z)$ and called as the projection of z onto C.

(2) $x^* := \Pi_C(z)$ is the projection of z onto C if and only if

$$\langle z - x^*, x - x^* \rangle \le 0 \quad \forall x \in C.$$

Example.

1.
$$C=\mathbb{R}^n_+=\{x\in\mathbb{R}^n\mid x_i\geq 0,\, \forall\, i=1,2,\dots,n\}$$
 positive orthant
$$\Pi_C(z)=\Pi_{\mathbb{R}^n_+}(z)=\max\{z,0\}$$

2.
$$C = \{x \in \mathbb{R}^n \mid \|x\|_p \le 1\} \ \ell_p$$
 ball

$$\Pi_C(z) = \begin{cases} z, & \text{if } ||z||_p \le 1\\ \frac{z}{||z||_p}, & \text{if } ||z||_p > 1 \end{cases} = \frac{z}{\max\{||z||_p, 1\}}$$

Figure 1: $C = \{x \in \mathbb{R}^2 \mid ||x||_2 \le 1\} \ \ell_2$ ball

Example.

3. $C = \mathbb{S}^n_+$ the space of $n \times n$ symmetric and positive semidefinite matrices

$$\Pi_C(A) = \Pi_{\mathbb{S}^n_+}(A) = Q \begin{bmatrix} \max\{\lambda_1, 0\} & & \\ & \ddots & \\ & \max\{\lambda_n, 0\} \end{bmatrix} Q^T$$

for a given $A \in \mathbb{S}^n$ with eigenvalue decomposition

$$A = Q \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} Q^T$$

arg min

 $\arg\min_x f(x)$ denotes the solution set of x for which f(x) attains its minimum (argument of the minimum)

Left: $\min_{x} f(x) = 0$, $\arg\min_{x} f(x) = \{2\}$

Right: $\min_{x} f(x) = 0$, $\arg \min_{x} f(x) = [-1, 1]$

$$\Pi_C(z) = \arg\min_{x \in C} \quad \frac{1}{2} ||x - z||^2$$

Extended real-valued function

Definition.

Let \mathcal{X} be a Euclidean space (e.g., $\mathcal{X} = \mathbb{R}^n$ or $\mathbb{R}^{m \times n}$). Let $f: \mathcal{X} \to (-\infty, +\infty]$ be an extended real-valued function¹.

(1) The (effective) domain of f is defined to be the set

$$dom(f) := \{ x \in \mathcal{X} \mid f(x) < +\infty \}.$$

- (2) f is said to be proper if $dom(f) \neq \emptyset$.
- (3) f is said to be closed if its epi-graph

$$\operatorname{epi}(f) := \{(x, \alpha) \in \mathcal{X} \times \mathbb{R} \mid f(x) \le \alpha\}$$

is closed.

(4) f is said to be convex if its epi-graph is convex.

¹Here f is allowed to take the value of $+\infty$, but not allowed to take the value of $-\infty$

Extended real-valued function

ullet For a real-valued function $f:\mathcal{X} \to \mathbb{R}$, this definition of convexity

$$epi(f)$$
 is convex (1)

coincides with the one we have used

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \ \forall x, y \in \text{dom}(f), \ \lambda \in [0, 1]$$
(2)

[Exercise] (1) \iff (2)

• A convex function $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ can be extended to a convex function on all of \mathbb{R}^n by setting $f(x)=+\infty$ for $x\notin D$.

Example: extended real-valued function

$$f(x) = \begin{cases} 0, & \text{if } x = 0\\ 1, & \text{if } x > 0\\ +\infty, & \text{if } x < 0 \end{cases}$$

- $dom(f) = [0, +\infty)$, f is proper
- $\operatorname{epi}(f) = \{0\} \times [0, +\infty) \cup (0, +\infty) \times [1, +\infty)$ is closed, i.e., f is closed
- \bullet epi(f) is not convex, i.e., f is not convex

Indicator/support function

Let C be a nonempty set in \mathcal{X} .

The indicator function of C is

$$\delta_C(x) = \begin{cases} 0, & \text{if } x \in C \\ +\infty, & \text{if } x \notin C \end{cases}$$

- dom(f) = C, f is proper
- $\operatorname{epi}(f) = C \times [0, +\infty)$ is closed if C is closed, i.e., $\delta_C(\cdot)$ is closed if C is closed
- $\bullet \ \operatorname{epi}(f)$ is convex if C is convex, i.e., $\delta_C(\cdot)$ is convex if C is convex

The support function of C is

$$\delta_C^*(x) = \max_{y \in C} \langle x, y \rangle.$$

Indicator and support functions give correspondences between convex sets and convex functions.

Dual/polar cone

Definition (Cone)

A set $C \subseteq \mathcal{X}$ is called a cone if $\lambda x \in C$ when $x \in C$ and $\lambda \geq 0$.

Definition (Dual and polar cone)

The dual cone of a set $C \subseteq \mathcal{X}$ (not necessarily convex) is defined by

$$C^* = \{ y \in \mathcal{X} \mid \langle x, y \rangle \ge 0 \quad \forall x \in C \}$$

The polar cone of C is $C^o = -C^*$.

If $C^* = C$, then C is said to be self-dual.

ullet C^* is always a convex cone, even if C is neither convex nor a cone.

Dual/polar cone

Figure 2: Left: A set C and its dual cone C^* . Right: A set C and its polar cone C^o . The dual cone and the polar cone are symmetric to each other with respect to the origin. Image from internet

Example: self-dual cones

- 1. $\mathcal{X} = \mathbb{R}^n$. $C = \mathbb{R}^n_+$ is a self-dual closed convex cone \triangleright Proof: $C^* = \{ y \in \mathbb{R}^n \mid \langle x, y \rangle > 0 \quad \forall x \in \mathbb{R}^n_+ \} = \mathbb{R}^n_+$
- 2. $\mathcal{X} = \mathbb{S}^n$. $C = \mathbb{S}^n_+$ is a self-dual closed convex cone (psd cone)
 - Proof: want to show that $\{B \in \mathbb{S}^n \mid \langle A, B \rangle \geq 0 \quad \forall A \in \mathbb{S}^n_+\} = \mathbb{S}^n_+$ [LHS \subseteq RHS] Take $B \in C^*$. For any $x \in \mathbb{R}^n$, we have $xx^T \in \mathbb{S}^n_+$ and thus $\langle xx^T, B \rangle = x^TBx \geq 0$, which implies $B \in \mathbb{S}^n_+$. [RHS \subseteq LHS] Take $B \in \mathbb{S}^n_+$. Compute its eigenvalue decomposition $B = \sum_{i=1}^n \lambda_i v_i v_i^T$, $\lambda_i \geq 0$. For any $A \in \mathbb{S}^n_+$, we have $\langle A, B \rangle = \langle A, \sum_{i=1}^n \lambda_i v_i v_i^T \rangle = \sum_{i=1}^n \lambda_i v_i^T A v_i \geq 0$.

Example: self-dual cones

- 3. $\mathcal{X} = \mathbb{R}^n$. $C := \{x \in \mathbb{R}^n \mid \sqrt{x_2^2 + \dots + x_n^2} \le x_1, x_1 \ge 0\}$ is a self-dual closed convex cone (second-order cone)
 - Proof: want to show that $\{y \in \mathbb{R}^n \mid \langle x, y \rangle \geq 0 \quad \forall x \in C\} = C$ [RHS ⊂ LHS] Take $y \in C$. For any $x \in C$

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \ge x_1 y_1 - \sqrt{\sum_{i=2}^n x_i^2} \sqrt{\sum_{i=2}^n y_i^2} \ge 0$$

The first inequality follows from the Cauchy-Schwartz inequality, and the last inequality follows from the fact that $x,y \in C$. [LHS \subseteq RHS] Take $y \in C^*$. If $[y_2; \ldots; y_n] = 0$, we take $x = [1;0;\ldots;0] \in C$ then $\langle x,y \rangle = y_1 \geq 0$. Obviously, $y \in C$. Else,

we take

$$x = \left[\sqrt{\sum_{i=2}^{n} y_i^2; -y_2^2; \dots; -y_n^2} \right] \in C$$

then

$$\langle x, y \rangle = y_1 \sqrt{\sum_{i=2}^n y_i^2 - y_2^2 - y_n^2} \ge 0 \Rightarrow y_1 \ge \sqrt{\sum_{i=2}^n y_i^2} \Rightarrow y \in C$$

Example: self-dual cones

Figure 3: Left: second-order cone $\{x \in \mathbb{R}^2 \mid x_1 \geq |x_2|\}$. Right: second-order cone $\{x \in \mathbb{R}^3 \mid x_1 \geq \sqrt{x_2^2 + x_3^2}\}$. Image from internet

Normal cone

Definition (Normal cone)

Let C be a convex set in $\mathcal X$ and $\bar x\in C$. The normal cone of C at $\bar x\in C$ is defined by

$$N_C(\bar{x}) := \{ z \in \mathcal{X} \mid \langle z, x - \bar{x} \rangle \ge 0 \quad \forall x \in C \}$$

By convention, we let $N_C(\bar{x}) = \emptyset$ if $\bar{x} \notin C$.

$$N_C(\bar{x}) := \{ z \in \mathcal{X} \mid \langle z, x - \bar{x} \rangle \ge 0 \quad \forall x \in C \}$$

Example 1.
$$C = [0, 1] \subseteq \mathbb{R}$$

$$N_C(\bar{x}) = \begin{cases} (-\infty, 0], & \text{if } \bar{x} = 0\\ [0, +\infty), & \text{if } \bar{x} = 1\\ \{0\}, & \text{if } \bar{x} \in (0, 1)\\ \emptyset, & \text{if } \bar{x} \notin C \end{cases}$$

$$N_C(\bar{x}) := \{ z \in \mathcal{X} \mid \langle z, x - \bar{x} \rangle \ge 0 \quad \forall x \in C \}$$

Example 2.

$$C = \{x \in \mathbb{R}^2 \mid ||x|| \le 1\} \subseteq \mathbb{R}^2$$

$$N_C(\bar{x}) = \begin{cases} \{\lambda \bar{x} \mid \lambda \ge 0\}, & \text{if } ||\bar{x}|| = 1\\ \{0\}, & \text{if } ||\bar{x}|| < 1\\ \emptyset, & \text{if } \bar{x} \notin C \end{cases}$$

$$N_C(\bar{x}) := \{ z \in \mathcal{X} \mid \langle z, x - \bar{x} \rangle \ge 0 \quad \forall x \in C \}$$

Example 3. C= a triangle $\subseteq \mathbb{R}^2$

$$N_C(\bar{x}) := \{ z \in \mathcal{X} \mid \langle z, x - \bar{x} \rangle \ge 0 \quad \forall x \in C \}$$

Example 3. C= a triangle $\subseteq \mathbb{R}^2$

[Exercise] (1) $C=\{x\in\mathbb{R}^2\mid x_1+x_2\leq 1, x_1\geq 0, x_2\geq 0\}$. Find $N_C(\bar x)$ for $\bar x=[0;1]$, $\bar x=[0.5;0.5]$, $\bar x=[0.1;0.2]$.

(2)
$$C = \mathbb{R}^n_+$$
. Find $N_C(\bar{x})$, $\bar{x} = [1; 1; 0; 0; \dots; 0]$.

Normal cone

Proposition Let $C\subseteq \mathcal{X}$ be a nonempty convex set and $\bar{x}\in C.$ Then

- (1) $N_C(\bar{x})$ is a closed convex cone.
- (2) If $\bar{x} \in \text{int}(C)$ (\bar{x} is an interior point of C), then $N_C(\bar{x}) = \{0\}$.
- (3) If C is a cone, then $N_C(\bar{x}) \subseteq C^o$.

Normal cone

Proposition Let $C\subseteq \mathcal{X}$ be a nonempty closed convex set. Then for any $u,y\in C$,

$$u \in N_C(y) \iff y = \Pi_C(y+u)$$

Proof. " \Rightarrow " Suppose $u \in N_C(y)$. Then $\langle u, x - y \rangle \leq 0$ for all $x \in C$. Thus

$$\langle (y+u)-y, x-y \rangle \leq 0$$
 for all $x \in C$

which implies that $y = \Pi_C(y + u)$.

" \Leftarrow " Suppose $y = \Pi_C(y+u)$. Then we know that

$$\langle u, x-y\rangle = \langle (y+u)-y, x-y\rangle \leq 0 \text{ for all } x\in C$$

which implies that $u \in N_C(y)$.

Subdifferantial

Definition Let $f: \mathcal{X} \to (-\infty, +\infty]$ be a convex function.

We call v a subgradient of f at $x \in dom(f)$ if

$$f(z) \ge f(x) + \langle v, z - x \rangle \quad \forall z \in \mathcal{X}.$$

The set of all subgradients at x is called the subdifferential of f at x, denoted as

$$\partial f(x) = \{ v \mid f(z) \ge f(x) + \langle v, z - x \rangle \quad \forall z \in \mathcal{X} \}.$$

By convention, $\partial f(x) = \emptyset$ for any $x \notin \text{dom}(f)$.

23/52

Subdifferantial and optimization

Subgradient is an extension of gradient

- If f is differentiable at x, then $\partial f(x) = {\nabla f(x)}.$
 - $\mbox{Proof: If } v \in \partial f(x) \mbox{, then } f(x+h) \geq f(x) + \langle v,h \rangle \, \forall \, h. \mbox{ By taking } \\ h = t(v \nabla f(x)), t > 0 \mbox{, and use first-order Taylor series expansion } \\ \mbox{to get } t\|v \nabla f(x)\| \leq o(t) \, \forall \, t > 0 \mbox{, which implies } v = \nabla f(x).$

Theorem Let $f:\mathcal{X}\to(-\infty,+\infty]$ be a proper convex function. Then $\bar{x}\in\mathcal{X}$ is a global minimizer of $\min_{x\in\mathcal{X}}f(x)$ if and only if $0\in\partial f(\bar{x})$.

Proof. By the subgradient inequality $f(z) \geq f(\bar{x}) + \langle v, z - \bar{x} \rangle \quad \forall \, z \in \mathcal{X}.$

Take
$$0 = v \in \partial f(\bar{x})$$

Example 1.

$$f(x) = |x|, x \in \mathbb{R}.$$

$$\partial f(x) = \begin{cases} \{-1\}, & \text{if } x < 0 \\ [-1, 1], & \text{if } x = 0 \\ \{1\}, & \text{if } x > 0 \end{cases}$$

Example 1.

$$f(x) = |x|, x \in \mathbb{R}.$$

$$\partial f(x) = \begin{cases} \{-1\}, & \text{if } x < 0 \\ [-1, 1], & \text{if } x = 0 \\ \{1\}, & \text{if } x > 0 \end{cases}$$

0.9 0.8 0.5 0.4 0.3 0.2 0.1

Example 2.

$$f(x) = \max\{x^2 - 1, 0\}, x \in \mathbb{R}.$$

$$\partial f(x) = \begin{cases} \{2x\}, & \text{if } x < -1, x > 1 \\ \{0\}, & \text{if } -1 < x < 1 \\ [-2, 0], & \text{if } x = -1 \\ [0, 2], & \text{if } x = 1 \end{cases}$$

Example 3. Let C be a convex set.

$$\partial \delta_C(x) = \begin{cases} N_C(x), & \text{if } x \in C \\ \emptyset, & \text{if } x \notin C. \end{cases}$$

Proof: Take $x \in C$.

$$v \in \partial \delta_C(x)$$

$$\iff \delta_C(z) \ge \delta_C(x) + \langle v, z - x \rangle \quad \forall z \in C$$

$$\iff 0 \ge \langle v, z - x \rangle \quad \forall z \in C$$

$$\iff v \in N_C(x)$$

Example 3. Let C be a convex set.

$$\partial \delta_C(x) = \begin{cases} N_C(x), & \text{if } x \in C \\ \emptyset, & \text{if } x \notin C. \end{cases}$$

Proof: Take $x \in C$.

$$v \in \partial \delta_C(x)$$

$$\iff \delta_C(z) \ge \delta_C(x) + \langle v, z - x \rangle \quad \forall z \in C$$

$$\iff 0 \ge \langle v, z - x \rangle \quad \forall z \in C$$

$$\iff v \in N_C(x)$$

Example 4. $f(x) = ||x||_1, x \in \mathbb{R}^n$. [Exercise] Show that

$$\partial f(0) = \{ y \in \mathbb{R}^n \mid ||y||_{\infty} \le 1 \}.$$

Lipschitz continuous

Definition (Lipschitz continuous)

A function $F: \mathbb{R}^n \to \mathbb{R}^m$ is said to be locally Lipschitz continuous if for any open set $\mathcal{O} \subseteq \mathbb{R}^n$, there exists a constant L (depending on \mathcal{O}) such that

$$||F(x) - F(y)|| \le L||x - y|| \quad \forall x, y \in \mathcal{O}.$$

If $\mathcal{O} = \mathbb{R}^n$, then F is said to be globally Lipschitz continuous.

Example

- (1) $f(x)=|x|, x\in\mathbb{R}$ is globally Lipschitz continuous with Lipschitz constant L=1
- (2) $f(x)=x^2, x\in\mathbb{R}$ is locally Lipschitz continuous but not globally Lipschitz continuous

Fenchel conjugate

Definition Let $f: \mathcal{X} \to [-\infty, +\infty]$. The (Fenchel) conjugate of f is defined by

$$f^*(y) = \sup\{\langle y, x \rangle - f(x) \mid x \in \mathcal{X}\}, \ y \in \mathcal{X}$$

Remark

- f^* is always closed and convex, even if f is neither convex nor closed.
- If $f:\mathcal{X}\to (-\infty,+\infty]$ a closed proper convex function, then $(f^*)^*=f.$

Fenchel conjugate

Proposition Let $f:\mathcal{X}\to (-\infty,+\infty]$ be a closed proper convex function. The following is equivalent:

(1)
$$f(x) + f^*(y) = \langle x, y \rangle$$

- (2) $y \in \partial f(x)$
- (3) $x \in \partial f^*(y)$
 - " $y \in \partial f(x) \iff x \in \partial f^*(y)$ " means that ∂f^* is the inverse of ∂f in the sense of multi-valued mappings.

Example: conjugate function

Example 1. Let $C\subseteq\mathcal{X}$ be a nonempty convex set. Compute the conjugate of the indicator function of C.

Solution. Recall that the indicator function of C is

$$\delta_C(x) = \begin{cases} 0, & \text{if } x \in C \\ +\infty, & \text{if } x \notin C \end{cases}$$

Its conjugate

$$\delta_C^*(y) = \sup\{\langle y, x \rangle - \delta_C(x) \mid x \in \mathcal{X}\} = \sup\{\langle y, x \rangle \mid x \in C\}$$

is the support function. This explains why we use the notation δ_C^* for the support function of C.

[Exercise] Let $C \subseteq \mathcal{X}$ be a nonempty convex cone. Show that

$$\delta_C^*(y) = \delta_{C^o}(y) \quad \forall \, y$$

Example: conjugate function

Example 2. Let $f(x) = ||x||_1, x \in \mathbb{R}^n$. Compute f^* .

Solution. $f^*(y) = \sup_x \{\langle y, x \rangle - ||x||_1\}$

Case 1: if $\|y\|_{\infty} \le 1$, we have $\langle y, x \rangle - \|x\|_1 \le \|x\|_1 \|y\|_{\infty} - \|x\|_1 \le 0$.

Therefore, $f^*(y) = 0$.

Case 2: if $||y||_{\infty} > 1$, there exists $|y_k| > 1$. For a positive integer m, we construct

$$\bar{x} = [0; \ldots; 0; m \operatorname{sign}(y_k); 0; \ldots; 0]$$

and therefore $f^*(y) \ge \langle y, \bar{x} \rangle - \|\bar{x}\|_1 = m(|y_k| - 1) \to +\infty$, as $m \to +\infty$. Therefore, $f^*(y) = +\infty$.

In conclusion, $f^*(y) = \delta_C(y)$, $C = \{y \in \mathbb{R}^n \mid ||y||_{\infty} \le 1\}$.

Example: conjugate function

Example 2. Let $f(x) = ||x||_1, x \in \mathbb{R}^n$. Compute f^* .

Solution. $f^*(y) = \sup_x \{\langle y, x \rangle - ||x||_1\}$

Case 1: if $||y||_{\infty} \le 1$, we have $\langle y, x \rangle - ||x||_1 \le ||x||_1 ||y||_{\infty} - ||x||_1 \le 0$. Therefore, $f^*(y) = 0$.

Case 2: if $||y||_{\infty} > 1$, there exists $|y_k| > 1$. For a positive integer m, we construct

$$\bar{x} = [0; \ldots; 0; m \operatorname{sign}(y_k); 0; \ldots; 0]$$

and therefore $f^*(y) \ge \langle y, \bar{x} \rangle - \|\bar{x}\|_1 = m(|y_k|-1) \to +\infty$, as $m \to +\infty$. Therefore, $f^*(y) = +\infty$.

In conclusion, $f^*(y) = \delta_C(y)$, $C = \{y \in \mathbb{R}^n \mid ||y||_{\infty} \le 1\}$.

[Exercise] Let $f(x)=\lambda\|x\|_p,\,x\in\mathbb{R}^n$, $1< p<\infty$, $\lambda>0$. Show that $f^*(y)=\delta_C(y),\,C=\{y\in\mathbb{R}^n\mid\|y\|_q\leq\lambda\},\,\frac{1}{p}+\frac{1}{q}=1.$

Proximal operator

Moreau envelope and proximal mapping

Let $f:\mathcal{X}\to(-\infty,\infty]$ be a closed proper convex function. We define

• Moreau envelope (Moreau-Yosida regularization) of f at x

$$M_f(x) = \min_{y} \left\{ f(y) + \frac{1}{2} ||y - x||^2 \right\}$$

ullet Proximal mapping of f at x

$$P_f(x) = \arg\min_{y} \left\{ f(y) + \frac{1}{2} ||y - x||^2 \right\}$$

- $M_f(x)$ is differentiable, its gradient is $\nabla M_f(x) = x P_f(x)$ (Moreau envelope is a way to smooth a possibly non-differentiable convex function)
- $P_f(x)$ exists and is unique
- $M_f(x) \leq f(x)$
- $arg min f(x) = arg min M_f(x)$

Example

Let $C \subseteq \mathcal{X}$ be a nonempty closed convex set and $f(x) = \delta_C(x)$ be the indicator function of C. Its proximal mapping is

$$P_f(x) = \arg\min_{y \in \mathcal{X}} \left\{ \delta_C(y) + \frac{1}{2} \|y - x\|^2 \right\} = \arg\min_{y \in C} \frac{1}{2} \|y - x\|^2 = \Pi_C(x)$$

Its Moreau envelope is

$$M_f(x) = \frac{1}{2} ||x - \Pi_C(x)||^2$$

Example

Let $f(x) = \lambda |x|, x \in \mathbb{R}$. Its Moreau envelope (known as Huber function)

$$M_f(x) = \begin{cases} \frac{1}{2}x^2, & |x| \le \lambda \\ \lambda |x| - \frac{\lambda^2}{2}, & |x| > \lambda \end{cases}$$

Its proximal mapping is (known as soft thresholding)

$$P_f(x) = \operatorname{sign}(x) \max\{|x| - \lambda, 0\}$$

We can see that M_f is a smoothing of f, $M_f \leq f$, $\arg\min f(x) = \arg\min M_f(x)$.

Soft thresholding

The soft thresholding operator $S: \mathbb{R}^n \to \mathbb{R}^n$ is defined as

$$S_{\lambda}(x) = \begin{bmatrix} \operatorname{sign}(x_1) \max\{|x_1| - \lambda, 0\} \\ \operatorname{sign}(x_2) \max\{|x_2| - \lambda, 0\} \\ \vdots \\ \operatorname{sign}(x_n) \max\{|x_n| - \lambda, 0\} \end{bmatrix}$$

for any $x = [x_1; \dots; x_n] \in \mathbb{R}^n$ and $\lambda > 0$.

Example. Given

$$x = \begin{bmatrix} 1.5 \\ -0.4 \\ 3 \\ -2 \\ 0.8 \end{bmatrix}, \quad S_{0.5}(x) = \begin{bmatrix} 1 \\ 0 \\ 2.5 \\ -1.5 \\ 0.3 \end{bmatrix}, \quad S_{2}(x) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Moreau envelope and proximal mapping

Theorem (Moreau decomposition)

Let $f:\mathcal{X}\to(-\infty,\infty]$ be a closed proper convex function and f^* be its conjugate. For any $x\in\mathcal{X}$, it holds that

$$x = P_f(x) + P_{f^*}(x)$$
$$\frac{1}{2}||x||^2 = M_f(x) + M_{f^*}(x)$$

Example. Let $C\subseteq\mathcal{X}$ be a nonempty closed convex cone. $f(x)=\delta_C(x)$ and $f^*(x)=\delta_C^*(x)=\delta_{C^o}(x)$. Therefore

$$x = \Pi_C(x) + \Pi_{C^o}(x).$$

Moreau envelope and proximal mapping

Theorem (Moreau decomposition)

Let $f:\mathcal{X}\to(-\infty,\infty]$ be a closed proper convex function and f^* be its conjugate. For any $x\in\mathcal{X}$, it holds that

$$x = P_f(x) + P_{f^*}(x)$$
$$\frac{1}{2}||x||^2 = M_f(x) + M_{f^*}(x)$$

Example. Let $C\subseteq\mathcal{X}$ be a nonempty closed convex cone. $f(x)=\delta_C(x)$ and $f^*(x)=\delta_C^*(x)=\delta_{C^o}(x)$. Therefore

$$x = \Pi_C(x) + \Pi_{C^o}(x).$$

- ullet $M_f(\cdot)$ is always differentiable even though f is non-differentiable
- $P_f(\cdot)$ is important in many optimization algorithms (e.g., accelerated proximal gradient methods introduced later)
- \bullet For many widely used regularizaters, $P_f(\cdot)$ and $M_f(\cdot)$ have explicit expression

(Accelerated) proximal gradient

method

A proximal point view of gradient methods

To minimize a differentiable function $\min_{\beta} f(\beta)$

$$\beta^{(k+1)} = \beta^{(k)} - \alpha_k \nabla f(\beta^{(k)})$$

The gradient step can be written equivalently as

$$\beta^{(k+1)} = \arg\min_{\beta} \{ \underbrace{f(\beta^{(k)}) + \langle \nabla f(\beta^{(k)}), \beta - \beta^{(k)} \rangle}_{\text{linear approximation}} + \underbrace{\frac{1}{2\alpha_k} \|\beta - \beta^{(k)}\|^2}_{\text{proximal term}} \}$$

Optimizing composite functions

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \quad f(\beta) + g(\beta)$$

- $f: \mathbb{R}^p \to \mathbb{R}$ is convex and differentiable, ∇f is L-Lipschitz continuous
- $g: \mathbb{R}^p \to (-\infty, +\infty]$ is closed proper convex, non-differentiable
- For example, in lasso,

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \quad \underbrace{\frac{1}{2} \|X\beta - Y\|^2}_{=f(\beta)} + \underbrace{\lambda \|\beta\|_1}_{=g(\beta)}$$

ullet Since g is non-differentiable, we cannot apply gradient methods

Proximal gradient step

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \quad f(\beta) + g(\beta)$$

Gradient step (suppose $g(\beta)$ disappears):

$$\beta^{(k+1)} = \beta^{(k)} - \alpha_k \nabla f(\beta^{(k)})$$

which can be written equivalently as

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ f(\beta^{(k)}) + \langle \nabla f(\beta^{(k)}), \beta - \beta^{(k)} \rangle + \frac{1}{2\alpha_k} \|\beta - \beta^{(k)}\|^2 \right\}$$

Proximal gradient step:

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ f(\beta^{(k)}) + \langle \nabla f(\beta^{(k)}), \beta - \beta^{(k)} \rangle + g(\beta) + \frac{1}{2\alpha_k} \|\beta - \beta^{(k)}\|^2 \right\}$$

Proximal gradient step

Proximal gradient step:

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ f(\beta^{(k)}) + \langle \nabla f(\beta^{(k)}), \beta - \beta^{(k)} \rangle + g(\beta) + \frac{1}{2\alpha_k} \|\beta - \beta^{(k)}\|^2 \right\}$$

After ignoring constant terms and completing the square, the above step can be written equivalently as

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ \frac{1}{2\alpha_k} \left\| \beta - \left(\beta^{(k)} - \alpha_k \nabla f(\beta^{(k)}) \right) \right\|^2 + g(\beta) \right\}$$
$$= P_{\alpha_k g} \left(\beta^{(k)} - \alpha_k \nabla f(\beta^{(k)}) \right)$$

Proximal gradient step

Proximal gradient step:

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ f(\beta^{(k)}) + \langle \nabla f(\beta^{(k)}), \beta - \beta^{(k)} \rangle + g(\beta) + \frac{1}{2\alpha_k} \|\beta - \beta^{(k)}\|^2 \right\}$$

After ignoring constant terms and completing the square, the above step can be written equivalently as

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ \frac{1}{2\alpha_k} \left\| \beta - \left(\beta^{(k)} - \alpha_k \nabla f(\beta^{(k)}) \right) \right\|^2 + g(\beta) \right\}$$
$$= P_{\alpha_k g} \left(\beta^{(k)} - \alpha_k \nabla f(\beta^{(k)}) \right)$$

Derivation* completing the square

$$\begin{split} &\langle \nabla f(\beta^{(k)}), \beta \rangle + \frac{1}{2\alpha_k} \|\beta - \beta^{(k)}\|^2 \\ = &\langle \nabla f(\beta^{(k)}) - \frac{1}{\alpha_k} \beta^{(k)}, \beta \rangle + \frac{1}{2\alpha_k} \|\beta\|^2 + \text{constant} \\ = &\frac{1}{\alpha_k} \langle \alpha_k \nabla f(\beta^{(k)}) - \beta^{(k)}, \beta \rangle + \frac{1}{2\alpha_k} \|\beta\|^2 + \text{constant} \end{split}$$

Proximal gradient methods

```
Algorithm (Proximal gradient (PG) method)  \text{Choose } \beta^{(0)}, \text{ constant step length } \alpha > 0. \text{ Set } k \leftarrow 0   \text{repeat until convergence}   \beta^{(k+1)} = P_{\alpha g} \left( \beta^{(k)} - \alpha \nabla f(\beta^{(k)}) \right)   k \leftarrow k+1   \text{end(repeat)}   \text{return } \beta^{(k)}
```

Proximal gradient methods

(Informal) in convex problems (f and g are convex), iteration complexity of PG method is $O(\frac{1}{k})$:

$$f(\beta^{(k)}) + g(\beta^{(k)}) - \underbrace{\min_{\beta \in \mathbb{R}^p} f(\beta) + g(\beta)}_{\text{optimal value}} \le O\left(\frac{1}{k}\right)$$

If adopting stopping condition

$$f(\beta^{(k)}) + g(\beta^{(k)}) - \text{optimal value} \leq 10^{-4}$$

we need $O(10^4)$ PG iterations

Nesterov's accelerated method

Nesterov's idea: include a momentum term for acceleration

$$\begin{split} \bar{\beta}^{(k)} &= \beta^{(k)} + \underbrace{\frac{t_k - 1}{t_{k+1}} \left(\beta^{(k)} - \beta^{(k-1)}\right)}_{\text{momentum term}} \\ \beta^{(k+1)} &= P_{\alpha g} \left(\bar{\beta}^{(k)} - \alpha \nabla f(\bar{\beta}^{(k)})\right) \end{split}$$

 $\{t_k\}$ is a positive sequence such that $t_0=t_1=1$, $t_{k+1}^2-t_{k+1}\leq t_k$

- ullet e.g., $t_k=1,\, orall\, k.$ In this case, momentum term =0, it is reduced to PG without acceleration
- e.g., $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2} \Rightarrow t_0 = 1, t_1 = 1, t_2 = \frac{1+\sqrt{5}}{2}, \dots$
- there are many other sequences satisfying the condition
- Next we simply take $t_0 = t_1 = 1, t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$

Sequence t_k

Take
$$t_0 = t_1 = 1, t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

Accelerated proximal gradient methods

Algorithm (Accelerated proximal gradient (APG) method)

Choose $\beta^{(0)}$, constant step length $\alpha > 0$. Set $t_0 = t_1 = 1$, $k \leftarrow 0$

repeat until convergence

$$\bar{\beta}^{(k)} = \beta^{(k)} + \frac{t_k - 1}{t_{k+1}} (\beta^{(k)} - \beta^{(k-1)})$$

$$\beta^{(k+1)} = P_{\alpha g} \left(\bar{\beta}^{(k)} - \alpha \nabla f(\bar{\beta}^{(k)}) \right)$$

$$k \leftarrow k + 1$$

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

end(repeat)

return $\beta^{(k)}$

The algorithmic framework follows from [1]. It is built based on Nesterov's accelerated method in 1983 [2]

Accelerated proximal gradient methods

(Informal) in convex problems (f and g are convex), iteration complexity of APG method is $O(\frac{1}{L^2})$:

$$f(\beta^{(k)}) + g(\beta^{(k)}) - \underbrace{\min_{\beta \in \mathbb{R}^p} f(\beta) + g(\beta)}_{\text{optimal value}} \leq O\left(\frac{1}{k^2}\right)$$

If adopting stopping condition

$$f(\beta^{(k)}) + g(\beta^{(k)}) - \text{optimal value} \leq 10^{-4}$$

we need $O(10^2)$ PG iterations

Accelerated proximal gradient methods

- Backtracking line search is also applicable for finding step length α_k .
- For simplicity, we take a constant step length. f It should satisfy $\alpha \in (0, \frac{1}{L})$, where L is Lipschitz constant of $\nabla f(\cdot)$ (typically unknown)
- APG methods enjoy the same computational cost per iteration as PG methods.
- Iteration complexity: APG $O(\frac{1}{k^2})$; PG $O(\frac{1}{k})$

APG for lasso

$$\underset{\beta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \underbrace{\frac{1}{2}\|X\beta - Y\|^2}_{=f(\beta)} + \underbrace{\lambda\|\beta\|_1}_{=g(\beta)} \quad \text{lasso problem}$$

Then $\nabla f(\beta) = X^T(X\beta - Y)$ with Lipschitz constant $L = \lambda_{\max}(X^TX)$. Choose step length $\alpha = 1/L$. APG iterations:

$$\begin{split} \bar{\beta}^{(k)} &= \beta^{(k)} + \frac{t_k - 1}{t_{k+1}} \left(\beta^{(k)} - \beta^{(k-1)} \right) \\ \beta^{(k+1)} &= S_{\lambda/L} \left(\bar{\beta}^{(k)} - \frac{1}{L} X^T (X \bar{\beta}^{(k)} - Y) \right) \end{split}$$

APG is also applicable for "logistic regression + lasso regularization"

APG for lasso

Design a stopping criteria for lasso problem

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \quad \underbrace{\frac{1}{2} \|X\beta - Y\|^2}_{=f(\beta)} + \underbrace{\lambda \|\beta\|_1}_{=g(\beta)}$$

We know that β is a global minimizer to lasso problem if and only if

$$0 \in \nabla f(\beta) + \partial g(\beta),$$

which is equivalent to [check]

$$\beta = P_g(\beta - \nabla f(\beta)).$$

Therefore, we can choose a tolerance $\varepsilon > 0$ and stop the method at $\beta^{(k)}$ once the stopping criteria is satisfied

$$\left\| \beta^{(k)} - S_{\lambda} \left(\beta^{(k)} - X^{T} (X \beta^{(k)} - Y) \right) \right\| < \varepsilon.$$

Restart

- A strategy to speed up APG is to restart the algorithm after a fixed number of iterations
- using the latest iterate as the starting point of the new round of APG iteration
- ullet a reasonable choice is to perform restart every 100 or 200 iterations

References i

A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM journal on imaging sciences, 2(1):183-202, 2009.

Y. E. Nesterov.

A method for solving the convex programming problem with convergence rate ${\bf O}(1/k^2)$.

In Dokl. Akad. Nauk SSSR,, volume 269, pages 543–547, 1983.