Mini-Project 2

Name of Group: Error 404

Group Members:

Ahmad Raza	220088
Harsh Kumar	220428
Kanav Singh Chouhan	220495
Sankalp Pande	220964

Indian Institute of Technology Kanpur

CS771: Introduction to Machine Learning

Instructor: Prof. Piyush Rai

Problem 1

1 Task 1: A Multi-Dataset Classifier for Image Recognition

1.1 Introduction

The objective of Task 1 is to build a robust classifier capable of handling ten distinct datasets (D1 through D10) for image recognition. This project addresses challenges such as domain shifts across datasets and pseudo-labeling for datasets without ground truth labels. The primary methodologies employed include feature extraction via ResNet-50, pseudo-labeling, and a classification pipeline optimized with label smoothing.

1.2 Methodology

1.2.1 Feature Extraction

Features were extracted from input images using ResNet-50, a pre-trained convolutional neural network, which was trained on our datasets. The classification head of ResNet-50 was removed, retaining the feature extraction layers.

The feature extraction process is represented mathematically as:

$$\mathbf{F} = \text{ResNet-50}(\mathbf{X}), \ \mathbf{F} \in \mathbb{R}^{N \times d}$$

where:

- X is the input batch of images,
- N is the batch size,
- d = 2048, the dimensionality of extracted features.

Normalization of images was performed using:

$$\mathbf{X}' = \frac{\mathbf{X} - \mu}{\sigma}, \quad \mu = [0.485, 0.456, 0.406], \ \sigma = [0.229, 0.224, 0.225]$$

1.2.2 Classification Model

The extracted features were input to a custom feedforward classifier with:

- A fully connected layer with 256 neurons and ReLU activation.
- A fully connected output layer for 10 classes.

The model's predictions are given by:

$$P = Softmax(W_2 \cdot ReLU(W_1F + b_1) + b_2)$$

1.2.3 Label Smoothing

To improve generalization and handle noisy labels, label smoothing was applied:

$$\tilde{y}_i = (1 - \epsilon)y_i + \frac{\epsilon}{C}, \quad \epsilon = 0.1, \ C = 10$$

1.2.4 Training Strategy

- 1. Dataset D1: Supervised training with labeled data.
- 2. **Datasets D2 to D10**: Pseudo-labeling was used for training:

$$\hat{y} = \arg\max_{j} P_{j}$$

1

3. Fine-tuning with pseudo-labeled datasets for N=5 epochs to prevent overfitting.

1.3 Results

The classifier's performance was evaluated across datasets D1 to D10, producing the accuracy matrix:

	[0.6464]	0	0	0	0	0	0	0	0	0 7
	0.6464	0.642	0	0	0	0	0	0	0	0
	0.6464	0.642	0.6424	0	0	0	0	0	0	0
	0.6464	0.642	0.6424	0.65	0	0	0	0	0	0
۸ _	0.6464	0.642	0.6424	0.65	0.655	0	0	0	0	0
A —	0.6464	0.642	0.6424	0.65	0.655	0.6604	0	0	0	0
	0.6464	0.642	0.6424	0.65	0.655	0.6604	0.6702	0	0	0
	0.6464	0.642	0.6424	0.65	0.655	0.6604	0.6702	0.6789	0	0
	0.6464	0.642	0.6424	0.65	0.655	0.6604	0.6702	0.6789	0.6875	0
	0.6464	0.642	0.6424	0.65	0.655	0.6604	0.6702	0.6789	0.6875	0.6958

Key observations:

- The highest accuracy was achieved for D6 (0.6608).
- Accuracy decreased slightly with pseudo-labeling, likely due to domain shifts. The heatmap visualizing the accuracy matrix is shown in Figure 1.

Figure 1: Accuracy matrix showing performance across datasets.

1.4 Analysis

1.4.1 Strengths

- ResNet-50 features provided a strong initialization for the classification tasks.
- Pseudo-labeling enabled training on unlabeled datasets.
- Label smoothing improved model generalization.

1.4.2 Limitations

• Reduced performance for datasets D8 to D10 due to domain differences.

• Dependency on pseudo-label quality directly impacted accuracy.

1.5 Conclusion

The proposed methodology achieved reasonable accuracy across multiple datasets, demonstrating the utility of transfer learning and pseudo-labeling.

2 Task 2: Fine-Tuning Pretrained ResNet50 and Classification Using Custom Features

2.1 Introduction

This report documents Task 2, which involves training a classifier using features extracted from a pretrained ResNet50 model. The objectives include:

- Leveraging the pretrained ResNet50 as a feature extractor.
- Incorporating label smoothing to enhance the robustness of predictions.
- Fine-tuning the model on training datasets and evaluating its performance on held-out datasets.
- Visualizing the accuracy matrix across all datasets.

2.2 Methodology

2.2.1 Feature Extraction Using ResNet50

A pretrained ResNet50 model is used as a feature extractor. The following steps were employed:

- Removed the fully connected layer from ResNet50 to extract a 2048-dimensional feature vector for each input image.
- Kept only the 'layer4' block trainable while freezing other layers.
- Normalized input images using the ImageNet mean and standard deviation.

Mathematically, the feature extraction process can be represented as:

$$\mathbf{F} = ResNet50_{truncated}(\mathbf{I})$$

where I is the input image and F is the 2048-dimensional feature vector.

2.2.2 Classifier Architecture

The classifier is a feedforward neural network with the following structure:

- Input layer: 2048 nodes.
- Hidden layer: 256 nodes with ReLU activation.
- Output layer: 10 nodes for classification.

The forward propagation is defined as:

$$\mathbf{O} = \text{ReLU}(\mathbf{W}_1 \mathbf{F} + \mathbf{b}_1) \cdot \mathbf{W}_2 + \mathbf{b}_2$$

where W_1, W_2, b_1, b_2 are the weight matrices and biases of the layers.

2.2.3 Training Procedure

- Optimizer: Adam optimizer with a learning rate of 0.001.
- Learning rate scheduler: Reduced learning rate every 5 epochs using a decay factor of 0.1.
- Loss function: Label smoothing was applied to reduce overconfidence in predictions:

$$\mathcal{L} = -(1 - \alpha) \cdot \log(\hat{p}_c) - \alpha \cdot \sum_{k=1}^{K} \log(\hat{p}_k)$$

where α is the smoothing factor, c is the true class, and \hat{p}_k is the predicted probability for class k.

2.3 Results

2.3.1 Accuracy Matrix

The classifier was evaluated on 10 training datasets and 20 held-out datasets. The accuracy matrix visualizes the performance. Higher accuracy indicates better generalization.

0.6416	0.6420	0.6244	0.6396	0.6464	0.6384	0.6256	0.6168	0.6292	0.6340
0.5508	0	0	0	0	0	0	0	0	0
0.6424	0.6424	0.6244	0.6392	0.6464	0.6380	0.6256	0.6184	0.6296	0.6336
0.5508	0.4140	0	0	0	0	0	0	0	0
0.6424	0.6428	0.6248	0.6392	0.6464	0.6380	0.6256	0.6184	0.6300	0.6336
0.5508	0.4140	0.5264	0	0	0	0	0	0	0
0.6424	0.6428	0.6248	0.6392	0.6464	0.6380	0.6256	0.6184	0.6300	0.6336
0.5508	0.4140	0.5264	0.5232	0	0	0	0	0	0
0.6424	0.6428	0.6248	0.6392	0.6464	0.6380	0.6256	0.6184	0.6300	0.6336
0.5508	0.4140	0.5264	0.5232	0.6272	0	0	0	0	0
0.6424	0.6428	0.6248	0.6392	0.6464	0.6380	0.6256	0.6184	0.6300	0.6336
0.5508	0.4140	0.5264	0.5232	0.6272	0.5176	0	0	0	0
0.6424	0.6428	0.6248	0.6392	0.6464	0.6380	0.6256	0.6184	0.6300	0.6336
0.5508	0.4140	0.5264	0.5232	0.6272	0.5176	0.4624	0	0	0
0.6424	0.6428	0.6248	0.6392	0.6464	0.6380	0.6256	0.6184	0.6300	0.6336
0.5508	0.4140	0.5264	0.5232	0.6272	0.5176	0.4624	0.5104	0	0
0.6424	0.6428	0.6248	0.6392	0.6464	0.6380	0.6256	0.6184	0.6300	0.6336
0.5508	0.4140	0.5264	0.5232	0.6272	0.5176	0.4624	0.5104	0.5536	0
0.6424	0.6428	0.6248	0.6392	0.6464	0.6380	0.6256	0.6184	0.6300	0.6336
0.5508	0.4140	0.5264	0.5232	0.6272	0.5176	0.4624	0.5104	0.5536	0.5792

2.3.2 Performance Analysis

The final accuracy matrix shows:

- Consistent improvement as the model is fine-tuned on more datasets.
- Performance degradation for some datasets, indicating potential domain shifts or overfitting.

2.4 Conclusions

- The pretrained ResNet50 model effectively extracted meaningful features for classification.
- Label smoothing improved generalization by preventing overconfidence in predictions.
- Fine-tuning using incremental datasets allowed the classifier to adapt to new distributions effectively.

Figure 2: Accuracy Matrix for Training and Held-out Datasets

Problem 2

Click here for the Youtube video