Linear classifiers

Gosia Migut

Admin stuff

- Answers (not solutions) to the labs 2 are on Brightspace.
- I like your tips at the end of each lecture. Bring them on!
- Next week exercises to practice for the exam.

Learning goals

- Explain logistic regression classifier, including cost function and it's optimization
- Explain the following concept of support vector classifier: margin, support vectors, hinge loss
- Explain approaches to multi-class classification and their problems

Reading

- Logistic regression: CS229 Lecture Notes by Andrew Ng http://cs229.stanford.edu/notes/cs229-notes1.pdf
- SVM: CS229 Lecture Notes by Andrew Ng <u>http://cs229.stanford.edu/notes/cs229-notes3.pdf</u>
- Multi-class classification: Bishop "Pattern recognition, section 4.1.2 (p.182-184)

Recap last lecture

- Discriminative models
- Linear classifier
- Cost function
- Gradient descent

Generative vs discriminative models

 Models decision boundary between classes

Linear classifier

Find linear function (hyperplane) to separate positive and negative

examples

Which hyperplane is best?

Linear classifier

 $\bullet \ h(x) = w^T x + w_0$

How to choose w?

Cost/Loss function

General idea:

$$J(w) = \sum_{i=1}^{n} cost(h(x_i), y_i)$$

- Examples: least squares, logistic loss, hinge loss, perceptron loss etc.
- Goal: optimize cost function
 - Analytical solution $\frac{\partial J(w)}{\partial w} = 0$, if possible
 - Gradient descent

Gradient descent

• $w_j := w_j - \alpha \frac{\partial J(w)}{\partial w_j}$

Logistic regression

Logistic regression

• Let's change the form of linear hypotheses $h(x) = w^T x$ to satisfy $0 \le h(x) \le 1$

$$g(z) = \frac{1}{1 + e^{-z}}$$

- $z = w^T x$
- $\bullet \ h(x) = g(w^T x)$

Logistic function

$$h(x) = \frac{1}{1 + e^{(-w^T x)}}$$

•
$$0 \le h(x) \le 1$$

• h(x) gives us the probability that our output is 1

How to choose parameters w?

- Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}) \dots (x^{(n)}, y^{(n)})\}$
- D features: $\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$, $x_0 = 1$
- $y \in \{0, 1\}$
- $h(x) = \frac{1}{1 + e^{-w^T x}}$
- Define cost function and optimize!

- We defined that: $p(y_1|x) = h_w(x)$
- For a 2 class problem: $p(y_0|x) = 1 h_w(x)$
- We can rewrite:

•
$$p(y|x) = \begin{cases} h_w(x) & : y = 1\\ 1 - h_w(x) & : y = 0 \end{cases}$$

 This is discrete probability distribution Bernoulli which takes the value 1 with probability p and the value 0 with probability 1-p

•
$$p(y|x) = \begin{cases} h_w(x) & : y = 1\\ 1 - h_w(x) & : y = 0 \end{cases}$$

- We can interpret it as:
 - Given x, class y=1 occurs with probability $h_w(x)^y$
 - Given x, class y=0 occurs with probability $1 h_w(x)^{1-y}$
- Therefore: $p(y|x) = h_w(x)^y (1 h_w(x))^{1-y}$

$$p(y|x) = h_w(x)^y (1 - h_w(x))^{1-y}$$

For the entire dataset (assuming samples were drawn independently):

$$p(y|x) = \prod_{i=1}^{n} p(y^{(i)}|x^{(i)}) = \prod_{i=1}^{n} h_w(x^{(i)})^{y^{(i)}} (1 - h_w(x^{(i)}))^{1-y^{(i)}}$$

- We can interpret this as the likelihood of the data given the parameter $w \to l(w)$
- Maximum likelihood estimator: $\widehat{w} = \operatorname{argmax}_{w} \log(l(w))$
- Or: $\widehat{w} = \underset{w}{\operatorname{argm}} in(-\log(l(w)))$

- $J(w) = -\log(l(w))$
- $l(w) = \prod_{i=1}^{n} h_w(x^{(i)})^{y^{(i)}} (1 h_w(x^{(i)}))^{1-y^{(i)}}$
- $J(w) = -\log\left(\prod_{i=1}^{n} h_w(x^{(i)})^{y^{(i)}} (1 h_w(x^{(i)}))^{1-y^{(i)}}\right) =$
- $\sum_{i=1}^{n} -log\left(h_w(x^{(i)})^{y^{(i)}}\right) \log\left((1 h_w(x^{(i)}))^{1-y^{(i)}}\right) =$
- $\sum_{i=1}^{n} -y^{(i)} log(h_w(x^{(i)})) (1-y^{(i)}) log(1-h_w(x^{(i)}))$

Cost function

$$J(w) = \sum_{i=1}^{n} -y^{(i)} log(h_w(x^{(i)})) - (1 - y^{(i)}) log(1 - h_w(x^{(i)}))$$

•
$$Cost(h(x), y) = \begin{cases} -\log(h_w(x^{(i)})) & if \ y = 1 \\ -\log(1 - h_w(x^{(i)})) & if \ y = 0 \end{cases}$$

- If y = 1 and h(x) = 1, Cost = 0
- If $h_w(x) \to 0$, $Cost \to \infty$
- Captures intuition:
 if prediction is h(x) = 0, but y = 1,
 learning algorithm will be
 penalized by large cost

Cost function

•
$$Cost(h(x), y) = \begin{cases} -\log(h_w(x^{(i)})) & if \ y = 1 \\ -\log(1 - h_w(x^{(i)})) & if \ y = 0 \end{cases}$$

- If y = 0 and h(x) = 0, Cost = 0
- If $h_w(x) \to 1 \ Cost \to \infty$
- Captures intuition:
 if prediction is h(x) = 1, but y = 0,
 learning algorithm will be
 penalized by large cost

How to minimize the $-\log(l(w))$?

- No analytical solution for logistic regression.
- Do gradient descent:
- Repeat {

$$w_j := w_j - \alpha \frac{\partial J(w)}{\partial w_j}$$

}

•
$$\frac{\partial J(w)}{\partial w} = \sum_{i=1}^{n} (y^{(i)} - h(x^{(i)}))x^{(i)}$$

• Where
$$h(x) = \frac{1}{1 + e^{(-w^T x)}}$$

Logistic regression summary

Linear classifier

Models decision boundary
by modelling probability of the classes
by minimizing the logistic loss

• $h(x) = \frac{1}{1 + e^{(-w^T x)}}$

Multi-class

One-versus-the-rest (one-versus-all)

- Use K-1 binary classifiers
- Separate one class from the rest
- Problem?

Ambigiously classified regions

One-versus-one

- Use K(K-1)/2 binary classifiers
- One for each pair of classes
- Take majority vote among classifiers

One-versus-one

- Use K(K-1)/2 binary classifiers
- One for each pair of classes
- Take majority vote among classifiers
- Problem?

Ambigiously classified regions

Single k-class discriminant

Comprises of K functions

$$-h_k(x) = w_k^T x + w_{k0}$$

- Assign point x to class C_k if $h_k(x) > h_i(x)$
- The decision boundary between class C_j and C_k is given by $y_j(x) = y_k(x)$ and defined as: $(w_k - w_i)^T x + (w_{k0} - w_{i0}) = 0$

Support vector machine

SVM classifier

SVM is much more then I will tell you today

- Intuition about
 - the cost function
 - the margin
 - the support vectors

Support vector machine intuition

Support vector machines

 Find hyperplane that maximizes the margin between the positive and negative examples

Support vector machines

 Find hyperplane that maximizes the margin between the positive and negative examples

$$x_i$$
 positive $(y_i = 1)$: $w^T x_i + b \ge 1$
 x_i negative $(y_i = -1)$: $w^T x_i + b \le -1$

For support vectors, $w^T x_i + b = \pm 1$

Distance between point and hyperplane: $\frac{w^T x_i + b}{\|w\|}$

The margin is $\frac{2}{\|w\|}$

Find the maximum margin hyperplane

Correctly classify all training data:

$$x_i$$
 positive $(y_i = 1)$: $w^T x_i + b \ge 1$
 x_i negative $(y_i = -1)$: $w^T x_i + b \le -1$

• Maximize margin $\frac{2}{\|w\|}$

•
$$J(W) = \frac{1}{2} ||w||^2$$

• $\min J(W)$

Find the maximum margin hyperplane: Hinge loss

- If y = 1, we want $w^T x \ge 1$ (not just $w^T x \ge 0$)
- If y = 0, we want $w^T x \le -1$ (not just $w^T x < 0$)

•
$$J(w) = \left[\frac{1}{n}\sum_{i=1}^{n} max(0, 1 - y_i(w^Tx_i - b))\right]$$

Svm summary

- Find hyperplane that maximizes the margin between the positive and negative examples
- Maximize the margin and correctly classify all examples
- Use hinge loss to penalize for errors

Summary

- Discriminative linear classifiers
 - Linear decision boundary
 - Models decision boundary
 - Through minimizing the loss/cost function, eg.
 - Logistic loss
 - Hinge loss

