Symbols You Must Know							
Population		Sample					
N	Size	n					
μ	Mean	\overline{x}					
σ^2	Variance	s ²					
σ	Standard Deviation	S					
р	Proportion	p'					
Single Data Set Formulae							
Population		Sample					
$\mu = E(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i)$	Arithmetic Mean	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} (x_i)$					
$Q_3 = rac{3(n+1)}{4}$, $Q_1 = rac{(n+1)}{4}$	Inter-Quartile Range IQR = Q ₃ - Q ₁	$Q_3 = rac{3(n+1)}{4}$, $Q_1 = rac{(n+1)}{4}$					
$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$	Variance	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$					
Grouped Data Set Formulae							
Population	Population						
$\mu = E(x) = \frac{1}{N} \sum_{i=1}^{k} (m_i * f_i)$	Arithmetic Mean	$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} (m_i * f_i)$					
$\sigma^2 = \frac{1}{N} \sum_{i=1}^{k} (m_i - \mu)^2 * f_i$	Variance	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} (m_{i} - \overline{x})^{2} * f_{i}$					
$CV = \frac{\sigma}{\mu} * 100$	Coefficient of Variation	$CV = \frac{s}{\overline{x}} * 100$					
Basic Probability Rules							
$P(A \cap B) = P(A \mid B) * P(B)$		Multiplication Rule					
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		Addition Rule					
$P(A \cap B) = P(A) * P(B)$ or $P(A B) = P(A)$		Independence Test					

Hypergeometric Distribution Formulae					
$nCx = \binom{n}{x} = \frac{n!}{x!(n-x)!}$	Combinatorial Equation				
$P(x) = \frac{\binom{N_1}{x}\binom{N-N_1}{n-x}}{\binom{N}{n}}$	Probability Equation				
$E(X) = \mu = np$	Mean				
$\sigma^2 = \left(\frac{N-n}{N-1}\right) n p(q)$	Variance				
Binomial Distribution Formulae					
$P(x) = \frac{n!}{x!(n-x)!}p^{x}(q)^{n-x}$	Probability Density Function				
$E(X) = \mu = np$	Arithmetic Mean				
$\sigma^2 = np(q)$	Variance				
Geometric Distribution Formulae					
$P(X = x) = (1 - p)^{x-1}(p)$	Probability when x is the first success				
$\mu = \frac{1}{p}$	Mean				
$\mu = \frac{1}{p}$ $\sigma^2 = \frac{(1-p)}{p^2}$	Variance				
Poisson Distribution Formulae					
$P(x) = \frac{e^{-\mu}\mu^x}{x!}$	Probability Equation				
$E(X) = \mu$	Mean				
$\sigma^2 = \mu$	Variance				
Uniform Distribution For	mulae				
$f(x) = \frac{1}{b-a} \text{ for } a \le x \le b$	PDF				
$f(x) = \frac{1}{b-a} \text{ for } a \le x \le b$ $E(X) = \mu = \frac{a+b}{2}$ $\sigma^2 = \frac{(b-a)^2}{12}$	Mean				
$\sigma^2 = \frac{(b-a)^2}{12}$	Variance				
Exponential Distribution Formulae					
$P(X \le x) = 1 - e^{-mx}$	Cumulative Probability				
$E(X) = \mu = \frac{1}{m} \text{ or } m = \frac{1}{\mu}$ $\sigma^2 = \frac{1}{m^2} = \mu^2$	Mean and Decay Factor				
$\sigma^2 = \frac{1}{m^2} = \mu^2$	Variance				

The following page of formulae require the use of the "Z", "t", and " χ^2 " tables.						
$Z = \frac{x - \mu}{\sigma}$	Z-transformation for Normal Distribution					
$Z = \frac{x - \mu}{\sigma}$ $Z = \frac{x - np'}{\sqrt{np'(q')}}$	Normal Approximation to the Binomial					
Probability (ignore subscripts) Hypothesis Testing	Confidence Intervals [bracketed symbols equal margin of error] (subscripts denote locations on respective distribution tables)					
$Z_c = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	Interval for the population mean when sigma is known $\overline{x}\pm\left[oldsymbol{Z}_{(lpha/2)}rac{oldsymbol{\sigma}}{\sqrt{n}} ight]$					
$t_c = rac{\overline{x} - \mu_0}{rac{S}{\sqrt{n}}}$	Interval for the population mean when sigma is unknown $\overline{x}\pm \left[t_{(n-1),(lpha/2)}rac{s}{\sqrt{n}} ight]$					
$Z_c = rac{p' - p_0}{\sqrt{rac{p_0 q_0}{n}}}$	Interval for the population proportion $oldsymbol{p'} \pm \left[oldsymbol{Z_{(lpha/2)}} \sqrt{rac{oldsymbol{p'} q'}{n}} ight]$					
$t_c = rac{\overline{d} - oldsymbol{\delta}_0}{rac{oldsymbol{s}_d}{\sqrt{n}}}$	Interval for difference between two means with matched pairs $\overline{d}\pm \left[t_{(n-1),(lpha/2)}rac{S_d}{\sqrt{n}} ight]$ where S_d is the deviation of the differences					
$Z_c = \frac{(\overline{x}_1 - \overline{x}_2) - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Interval for difference between two means when sigmas are known $(\overline{x}_1-\overline{x}_2)\pm \left[Z_{(lpha/2)}\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}} ight]$					
$t_c = \frac{(\overline{x}_1 - \overline{x}_2) - \delta_0}{\sqrt{\left(\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}\right)}}$	Interval for difference between two means with equal variances when sigmas are unknown $\left(\overline{x}_1 - \overline{x}_2\right) \pm \left[t_{df,(\alpha/2)}\sqrt{\left(\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}\right)}\right] \text{ where } df = \frac{\left(\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}\right)^2}{\left(\frac{1}{n_1-1}\right)\left(\frac{(s_1)^2}{n_1}\right)^2 + \left(\frac{1}{n_2-1}\right)\left(\frac{(s_2)^2}{n_2}\right)^2}$					
$Z_c = \frac{(p'_1 - p'_2) - \delta_0}{\sqrt{\frac{p'_1(q'_1)}{n_1} + \frac{p'_2(q'_2)}{n_2}}}$	Interval for the difference between two population proportions $({p'}_1-{p'}_2)\pm \left[Z_{(lpha/2)}\sqrt{rac{p'}_1({q'}_1)}{n_1}+rac{p'}_2({q'}_2)}{n_2} ight]$					
$\chi_c^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$\chi_c^2 = \sum rac{(m{O}-m{E})^2}{E}$ where $m{O}=$ observed values and $m{E}=$ expected values					
The Next 3 Formulae are for Determining Sample Size with Confidence Intervals (note: E represents the margin of error)						
$oldsymbol{n} = rac{oldsymbol{Z}_{\left(rac{lpha}{2} ight)}^2oldsymbol{\sigma}^2}{oldsymbol{E}^2}$	$n = \frac{Z_{\left(\frac{\alpha}{2}\right)}^2(0.25)}{E^2}$	$n = \frac{Z_{\left(\frac{\alpha}{2}\right)}^2[p'(q')]}{E^2}$				
Use when sigma is known	Use when p' is unknown	Use when p' is known				

Simple Linear Regression Formulae for $y = a + b(x)$						
$r = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{\sqrt{\sum (x - \overline{x})^2 * \sum (y - \overline{y})^2}} = \frac{S_{xy}}{S_x S_y} = \sqrt{\frac{SSR}{SST}}$			Correlation Coefficient			
$b = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{\sum (x - \overline{x})^2} = \frac{S_{xy}}{SS_x} = r_{y,x} \left(\frac{S_y}{S_x}\right)$				Coefficient <i>b</i> (slope)		
a	$u = \overline{y} - b(\overline{x})$		y-intercept			
$s_e^2 = \frac{\sum (y_i - \widehat{y}_i)^2}{n - k} = \frac{\sum_{i=1}^n e_i^2}{n - k}$			Estimate of the Error Variance			
$s_e^2 = \frac{\sum (y_i - \hat{y}_i)^2}{n - k} = \frac{\sum_{i=1}^n e_i^2}{n - k}$ $S_b = \frac{s_e^2}{\sqrt{(x_i - \overline{x})^2}} = \frac{s_e^2}{(n - 1)S_x^2}$			Standard Error for Coefficient <i>b</i>			
$t_c = \frac{b - \beta_0}{s_b}$			Hypothesis Test for Coefficient β			
$b \pm [t_{n-2, \alpha/2}S_b]$		Interval for Coefficient β				
$\widehat{y} \pm \left[t_{\alpha/2} * s_e \left(\sqrt{\frac{1}{n} + \frac{(x_p - \overline{x})^2}{s_x}} \right) \right]$			Interval for Expected Value of y			
$\widehat{y} \pm \left[t_{\alpha/2} * s_e \left(\sqrt{1 + \frac{1}{n} + \frac{(x_p - \overline{x})^2}{s_x}} \right) \right]$		Prediction Interval for an Individual y				
ANOVA Formulae						
$SSR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$		Sum of Squares Regression				
$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$		Sum of Squares Error				
$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$		Sum of Squares Total				
The Following is the breakdown of a one-way ANOVA table for linear regression						
Source of Variation Sum of Squares Degrees of F		reedom	Mean Squares	F - Ratio		
Regression	SSR	1 or k - 1		$MSR = \frac{SSR}{df_R}$ SSE	$F = \frac{MSR}{MSE}$	
Error	SSE	n-k		$MSE = \frac{SSE}{df_E}$		
Total	SST	n-1		, ,	1	