Formulário de Estatística

Medidas descritivas

$$\mu = \frac{\sum_{i} y_{i}}{n} \qquad \sigma^{2} = \frac{\sum_{i} (y_{i} - \mu)^{2}}{n} = \frac{\sum_{i} y_{i}^{2} - n\overline{y}^{2}}{n}$$

$$\overline{y} = \frac{\sum_{i} y_{i}}{n} \qquad S^{2} = \frac{\sum_{i} (y_{i} - \overline{y})^{2}}{n - 1} = \frac{\sum_{i} y_{i}^{2} - n\overline{y}^{2}}{n - 1} \qquad CV = 100 \frac{S}{\overline{y}}$$

$$\chi^{2} = \sum_{i} \frac{(o_{i} - e_{i})^{2}}{e_{i}} \qquad C = \sqrt{\frac{\chi^{2}}{\chi^{2} + n}} \qquad C' = \sqrt{\frac{\chi^{2}/n}{(r - 1)(s - 1)}} \qquad C'' = \frac{C}{\sqrt{(t - 1)/t}}$$

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right) = \frac{\sum_i x_i y_i - n \overline{x} \overline{y}}{\sqrt{\left(\sum_i x_i^2 - n \overline{x}^2\right) \left(\sum_i y_i^2 - n \overline{y}^2\right)}}$$

$$Y = g(X) \to f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\mathrm{d}g^{-1}(y)}{\mathrm{d}y} \right|$$

Probabilidades

$$\mu_Y = E[Y] = \sum_i y_i P(Y = y_i)$$

$$\sigma_Y^2 = Var[Y] = \sum_i (y_i - \mu_y)^2 P(Y = y_i)$$

$$\mu_Y = E[Y] = \int y f_Y(y) dy$$

$$\sigma_Y^2 = Var[Y] = \int (y - \mu_y)^2 f_Y(y)$$

Distribuições de Probabilidade

Distribuição	Fç de Probabilidade/Densidade	Domínio	E[Y]	Var[Y]
$Y \sim \mathrm{U}(k)$	$\frac{1}{k}$	$y \in \{1, 2, \dots, k\}$	$\frac{y_{(1)}+y_{(n)}}{2}$	$\frac{k^2-1}{12}$
$Y \sim \mathrm{B}(n,p)$	$\binom{n}{y}p^y(1-p)^{n-y}$	$y \in \{0, 1, 2, \dots, n\}$	np	np(1-p)
$Y \sim \mathrm{HG}(m,n,k)$	$\frac{\binom{m}{y}\binom{n}{k-y}}{\binom{m+n}{k}}$	$y \in \{\max(0, k-n), \dots, \\ \dots, \min(k, m)\}$	$kp = k \frac{m}{m+n}$	$kp(1-p)^{\frac{m+n-k}{m+n-1}}$
$Y \sim P(\lambda)$	$\frac{e^{-\lambda}\lambda^y}{y!}$	$y \in \{0, 1, 2, \ldots\}$	λ	λ
$Y \sim G(p)$	$(1-p)^y p$	$y \in \{0, 1, 2, \ldots\}$	$\frac{1-p}{p}$	$\frac{(1-p)}{p^2}$
$Y \sim \mathrm{BN}(r,p)$	$\binom{y+r-1}{r-1}(1-p)^y p^r$	$y \in \{0, 1, 2, \ldots\}$	$r\frac{(1-p)}{p}$	$r\frac{(1-p)}{p^2}$
$Y \sim \mathrm{U}[a,b]$	$\frac{1}{b-a}$	$a \le y \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Y \sim \mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\{-\frac{1}{2\sigma^2}(y-\mu)^2\}$	$y \in (-\infty, \infty)$	μ	σ^2
$Y \sim \text{LN}(\mu, \sigma^2)$	$\frac{1}{y\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{1}{2\sigma^2}(\ln(y)-\mu)^2\right\}$	$y \in (0, \infty)$	$\exp\{\mu+\sigma^2/2\}$	$\exp\{2\mu+\sigma^2\}(\exp\{\sigma^2\}-1)$
$Y \sim \text{Exp}(\lambda)$	$\lambda \exp(-\lambda y)$	$y \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Y \sim \text{Erlang}(\lambda, r)$	$\lambda^r y^{r-1} \exp(-\lambda y)/(r-1)!$	$y \ge 0 \; ; \; r = 1, 2, \dots$	$\frac{r}{\lambda}$	$rac{r}{\lambda^2}$
$Y \sim G(\alpha, \beta)$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}} y^{\alpha-1} \exp\{-y/\beta\}$	$y \ge 0$	lphaeta	$lphaeta^2$
$Y \sim \text{Weibull}(\alpha, \beta)$	$\frac{\alpha}{\beta} (y/\beta)^{\alpha-1} \exp\{-(y/\beta)^{\alpha}\}$	$y \ge 0$	$\beta \Gamma(1+\frac{1}{\alpha})$	$\beta^2 \left[\Gamma(1 + \frac{2}{\alpha}) - \Gamma^2(1 + \frac{1}{\alpha}) \right]$
$Y \sim \text{Beta}(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha-1} (1-y)^{\beta-1}$	$0 \le y \le 1$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

$$Z = (Y - \mu)/\sigma \qquad \Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} \, \exp\{-t\} \, dt \qquad \Gamma(\alpha) = (\alpha - 1)! \qquad \Gamma(\alpha + 1) = \alpha \, \Gamma(\alpha) \qquad \Gamma(1/2) = \sqrt{\pi}$$

Estimador	Intervalo de Confianca	Estatística de Teste	Obs
9	THE TAKE OF COMMENSA		Cos:
$\overline{y} \sim N(\mu, \frac{\sigma^2}{n})$	$\overline{y} \pm z_t \frac{\sigma}{\sqrt{n}}$	$z_c = rac{y - \mu_0}{\sqrt{\sigma^2/n}}$	
$\overline{y} \sim t_{n-1}(\mu, \frac{S^2}{n})$	$\overline{y} \pm t_t \frac{S}{\sqrt{n}}$	$t_c = rac{ar{y} - \mu_0}{\sqrt{S^2/n}}$	u = n - 1
$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{(n-1)}^2$	$\left(\frac{(n-1)S^2}{\chi_{sup}^2}, \frac{(n-1)S^2}{\chi_{inf}^2}\right)$	$\chi_c^2 = \frac{(n-1)S^2}{\sigma_0^2}$	u = n - 1
$\hat{p} \sim N(p, \frac{p(1-p)}{n})$	$\hat{p} \pm z_t \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$z_c = rac{\hat{p} - p_0}{\sqrt{rac{p_0(1 - p_0)}{n}}}$	$\hat{p} \pm z_t \sqrt{\frac{1}{4n}}$
$S_1^2/\sigma_1^2 \sim F(n_1 - 1, n_2 - 1)$	$\left(\frac{1}{F_{\alpha/2,n_1-1,n_2-1}}\frac{S_1^2}{S_2^2}, F_{\alpha/2,n_2-1,n_1-1}\frac{S_1^2}{S_2^2}\right)$	$F_c=rac{S_1^2}{S_2^2}$	$F_{1-\alpha/2,\nu_2,\nu_1} = \frac{1}{F_{\alpha/2,\nu_1,\nu_2}}$
$\overline{y}_1 - \overline{y}_2 \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$	$(\overline{y}_1 - \overline{y}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$z_{c} = \frac{(\overline{y}_{1} - \overline{y}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$	
$\overline{y}_1 - \overline{y}_2 \sim t_{ u} \left(\mu_1 - \mu_2, \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2} \right)$	$(\overline{y}_1 - \overline{y}_2) \pm t_{\alpha/2,\nu} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$	$t_c = \frac{(\overline{y}_1 - \overline{y}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$gl = \nu = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$
$\overline{y}_1 - \overline{y}_2 \sim t_{\nu} \left(\mu_1 - \mu_2, S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \right)$	$(\overline{y}_1 - \overline{y}_2) \pm t_{\alpha/2,\nu} \sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}$	$t_c = \frac{\left(\overline{y}_1 - \overline{y}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$ $gl = \nu = n_1 + n_2 - 2$
$\overline{d} \sim t_{n-1}(\mu_d, \frac{S_d^2}{n})$	$\overline{d}\pm t_t rac{S_d}{\sqrt{n}}$	$t_c = rac{\overline{d} - d_0}{\sqrt{S_d^2/n_d}}$	$ u = n_d - 1 $
$\hat{p}_1 - \hat{p}_2 \sim N\left(p_1 - p_2, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}\right)$	$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	$z_c = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\overline{p} = \frac{y_1 + y_2}{n_1 + n_2}$
$\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right) \sim N\left(\frac{1}{2}\ln\left(\frac{1+\rho}{1-\rho}\right), \frac{1}{n-3}\right)$	$\left(\tanh\left(\arctanh(r) \pm \frac{z_{\alpha/2}}{\sqrt{n-3}}\right)\right)$	$z_c = (\arctan(r) - \arctan(\rho))\sqrt{n-3}$	
$rac{r\sqrt{n-2}}{\sqrt{1-r^2}}\sim t_{n-2}$		$t_c = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$	apenas para testar $\rho=0$
		$\chi_c^2 = \sum_i \frac{(o_i - e_i)^2}{e_i}$	$\nu = k - 1 (\text{aderência})$ $\nu = (L - 1)(C - 1) (\text{independência})$

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

$$g_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_1 = \frac{\sum_i x_i y_i - n \overline{x} \overline{y}}{\sum_i x_i^2 - n \overline{x}^2}$$

$$SQreg = \hat{\beta}_1^2 \sum_i (y_i - \overline{y}_i)^2$$

$$S_e^2 = \frac{\sum_i (y_i - \hat{y}_i)^2}{n - 2}$$

$$R^2 = \frac{SQreg}{SQtot}$$