

Inżynieria Obrazów

Laboratorium nr 6
Dithering i rasteryzacja

Szymon Datko & Mateusz Gniewkowski szymon.datko@pwr.edu.pl , mateusz.gniewkowski@pwr.edu.pl

Wydział Elektroniki, Politechnika Wrocławska

semestr letni 2020/2021

Cel ćwiczenia

- 1. Zaznajomienie się z problematyką redukcji kolorów w obrazach.
- $2. \ \ \, Implementacja \ \, algorytmu \ \, ditheringu \ w \ \, obrazach.$
- 3. Usystematyzowanie informacji na temat potoku graficznego.
- 4. Zapoznanie się z technikami rasteryzacji obrazu.

Redukcja palety barw

- Typowo każdą składową koloru reprezentujemy jako jedną z 256 wartości.
 - ▶ Jest to tak zwany *true color* głębia 24-bitowa, 8 bitów na kanał.
 - Daje to w sumie 16 777 216 unikalnych odcieni możliwych do uzyskania.
- Niektóre urządzenia i formaty graficzne są ograniczone w tej kwestii.
- Efektywnie mamy wtedy dostępnych mniej wartości pośrednich odcieni.

k = 256									
	0 1	2	63 64	65	127 128	129	191 192	193 253	3 254 255
k = 9	0	32	64	96	128	160	192	224	255
k = 5	0		64		128		192		255
k = 3									
k = 2	0				128				255
K = 2	0								255

Dithering

- Zastosowanie szumu w celu zniwelowania błędu kwantyzacji.
- Zapobiega efektowi pasmowania przy zredukowanej palecie kolorów.

Algorytm Floyda–Steinberga

- Kontrolowane rozpraszanie pikseli o kolorach z ograniczonej palety barw.
- Dla każdego przetwarzanego piksela obliczany jest błąd kwantyzacji.
- Wartość błędu jest dodawana do sąsiednich, nieprzetworzonych pikseli.
 - Jeśli bieżący piksel był rozjaśniony, to sąsiednie będą przyciemnione, itd.
- Rozproszenie błędu realizowane jest według macierzy współczynników,

$$\begin{bmatrix} - & * & \frac{7}{16} \\ \frac{3}{16} & \frac{5}{16} & \frac{1}{16} \end{bmatrix}.$$

```
for each y from top to bottom do
    for each x from left to right do
        oldpixel := pixel[y][x]
    newpixel := find_closest_palette_color(oldpixel)
    pixel[y][x] := newpixel
    quant_error := oldpixel - newpixel
    pixel[y      ][x + 1] := pixel[y      ][x + 1] + quant_error * 7 / 16
    pixel[y + 1][x - 1] := pixel[y + 1][x - 1] + quant_error * 3 / 16
    pixel[y + 1][x      ] := pixel[y + 1][x      ] + quant_error * 5 / 16
    pixel[y + 1][x      ] := pixel[y + 1][x      ] + quant_error * 1 / 16
```


Algorytm Floyda–Steinberga – przykład

- Oba poniższe obrazki składają się jedynie z czterech tych samych kolorów.
- Różni je jedynie ich proporcja ilościowa i rozmieszczenie na obrazku.
- Algorytm można zrealizować także na obrazkach kolorowych.
 - Dbliczenia powtarzamy wtedy dla każdej składowej koloru niezależnie.
- Ważne: wejście algorytmu stanowi obrazek przed redukcją kolorów.

Elementy potoku graficznego

Rasteryzacja

- Proces odwzorowywania kształtu w możliwy do wyświetlenia zbiór pikseli.
- Obecnie realizowany jest głównie sprzętowo przez procesory graficzne.
- Implementacje programowe dotyczą np. edytorów grafiki wektorowej.

Algorytm Bresenhama

- Bardzo wydajny algorytm rysowania ciągłych odcinków.
- Opiera się na analizie współczynnika kierunkowego i minimalizacji błędu.
- Wyznaczamy kierunek zmian w osi X i Y oraz dominującą oś dla zmian.
 - W kierunku dominującym zmiana następuje w każdym kroku.
 - Krok w drugim kierunku zależny jest od wyznaczonego błędu.
- Linię rysujemy od punktu początkowego aż do osiągnięcia końca.

Algorytm Bresenhama – przykładowa implementacja

- Wyznaczenie wielkości pomocniczych,
 - $\Delta X = |X_2 X_1|,$

 - $X_i = sign(X_2 X_1) = \frac{X_2 X_1}{|X_2 X_1|}$ lub 0,
 - $Y_i = sign(Y_2 Y_1) = \frac{Y_2 Y_1}{|Y_2 Y_1|}$ lub 0.
- Określenie początkowej wartości błędu,
- Rysowanie w punkcie początkowym $X = X_1$ i $Y = Y_1$.
- Powtarzanie w pętli aż do osiągnięcia punktu docelowego.
 - Krok w kierunku dominującym.
 - $X += X_i$ oraz $d += 2 \cdot \Delta Y$, gdy $\Delta X > \Delta Y$.
 - $Y += Y_i$ oraz $d += 2 \cdot \Delta X$, gdy $\Delta Y > \Delta X$.
 - Krok w drugim kierunku, o ile trzeba.
 - $Y += Y_i$ oraz $d = 2 \cdot \Delta X$, gdy $\Delta X > \Delta Y$ i d > 0.
 - $X += X_i$ oraz $d -= 2 \cdot \Delta Y$, gdy $\Delta Y > \Delta X$ i $d \ge 0$.

Algorytm przeglądania linii

- Jeden z klasycznych pomysłów na rysowanie wypełnionych wielokątów.
- Algorytm staje się kłopotliwy przy dużej liczbie prymitywów.
- Obecnie implementuje się techniki związane z rysowaniem trójkątów.

Rysowanie trójkątów

- Trójkąt jest podstawową jednostką renderingu we współczesnym potoku.
- Wykorzystuje się prostotę w określeniu czy dany punkt należy do trójkąta.
- Przykładowy pomysł:
 - Wyznaczyć pola trzech trójkątów, bazując na iloczynie wektorowym w 2D.
 - $Area(A, B, C) = (C.x A.x) \cdot (B.y A.y) (C.y A.y) \cdot (B.x A.x).$
 - Na rysunku: Area(V0, V1, P), Area(V1, V2, P), Area(V2, V0, P).
 - lacktriangle Jeśli znaki (+/-) wyników są takie same to punkt P należy do trójkąta.

Przykładowy rezultat

Wygładzanie krawędzi

- Dodatkowe zapobieganie ostrym przejściom na krawędziach obiektów.
- Może być zaimplementowane jako integralna część algorytmu rysowania.
 - https://en.wikipedia.org/wiki/Xiaolin_Wu's_line_algorithm

Koniec wprowadzenia.

Zadania do wykonania...

Zadania do wykonania (1)

Na ocenę 3.0 należy zaimplementować dithering w skali szarości.

- odwzorować w języku Python kod ze slajdu 5,
- wygodnie będzie pracować na wartościach typu uint8,
- funkcja find_closest_palette_color() realizuje redukcję palety barw,
 - w najprostszym układzie wystarczy zaokrąglić wartości w macierzy pikseli,
 - return round(value / 255) * 255,
- dodanie błędu kwantyzacji może spowodować wyjście poza zakres typu,
 - należy odpowiednio się przed tym zabezpieczyć i przyciąć wartości,
 - w przeciwnym wypadku zaobserwujemy pojedyncze bad pixele,
- należy też uważać na zakres indeksów przy odwołaniach do tablicy pikseli.

Zadania do wykonania (2)

Na ocenę 3.5 należy uwzględnić kolory w algorytmie Floyda–Steinberga.

- uwagi i kroki do wykonania są analogiczne jak w zadaniu poprzednim,
- dodatkowo umożliwić wybór ile wartości składowych chcemy zachować,
 - ▶ domyślnie mają to być dwie wartości dla każdej składowej 0 i 255,
 - return round((k 1) * value / 255) * 255 / (k 1),
- należy obliczyć błąd kwantyzacji osobno dla każdej składowej koloru,
- dla porównania wyświetlić jak wygląda obrazek po samej redukcji barw,
- skuteczność algorytmu potwierdzić prezentując histogram kolorów.

Zadania do wykonania (3)

Na ocenę 4.0 należy zaimplementować rysowanie jednokolorowej linii i trójkąta.

- wykorzystać dostarczoną funkcję draw_point() do rysowania,
- rysowanie linii zrealizować np. algorytmem Bresenhama,
- rysowanie trójkąta polega na testowaniu które punkty leżą w jego środku,
 - przykładowy pomysł na sprawdzanie przynależności opisano na slajdzie 12,
- dla trójkąta warto wyznaczyć obszar ograniczający wokół niego,
 - skutecznie ogranicza to liczbę punktów, które musimy przetestować,
 - tak zwany bounding box, na przykład dla trójkąta ABC:
- dopuszczalna jest realizacja innych algorytmów, dających sensowny wynik.

Zadania do wykonania (4)

Na ocenę ${\bf 4.5}$ należy wprowadzić interpolację koloru w rysowanej linii i trójkącie.

- zakładamy, że kolor jest podany z każdym wierzchołkiem (jak położenie),
- w przypadku linii można wykorzystać interpolację liniową koloru,
 - $\vec{C} = \vec{A} + t \cdot (\vec{B} \vec{A})$, dla $t \in [0; 1]$,
 - ightharpoonup t określa wtedy postęp w rysowaniu linii (0 = początek, 1 = koniec),
- w przypadku trójkąta wykorzystujemy ważenie względem pól trójkątów,

$$\vec{C}_P = \frac{\lambda_0}{\lambda} \cdot \vec{V0} + \frac{\lambda_1}{\lambda} \cdot \vec{V1} + \frac{\lambda_2}{\lambda} \cdot \vec{V2},$$

- $\lambda_0 = Area(V0, V1, P), \ \lambda_1 = Area(V1, V2, P), \ \lambda_2 = Area(V2, V0, P).$

Zadania do wykonania (5)

Na ocenę 5.0 należy dodać wygładzanie krawędzi w generowanym obrazie.

- doskonale sprawdzi się SSAA ang. Super Sampling Anti-Aliasing,
- należy wygenerować obraz roboczy w wyższej rozdzielczości,
 - wystarczy wysokość, szerokość i wszystkie współrzędne przemnożyć razy 2,
 - na tym etapie nie powinno być potrzeby modyfikacji funkcji rysujących,
 - zmianna powinna wiązać się jedynie z wywołaniami funkcji rysujących,
 - warto w tym miejscu wprowadzić dodatkową zmienną, np. scale = 2,
- obraz wynikowy uzyskać przez przeskalowanie w dół obrazu roboczego,
 - ▶ 1 piksel obrazu wynikowego to 4 uśrednione piksele obrazu roboczego.