Living with Aging Materials – Challenges, and Opportunities

Willis Whitney Award Lecture, AMPP Corrosion 2025 by

Narasi Sridhar
MC Consult LLC
The Ohio State University

Acknowledgement

Haynes International	Aziz Asphahani, Steve Corey, Paul Crook, Lee Flasche, Galen Hodge, Venky Ishwar, Dwaine Klarstrom, Juri Kolts, Paul Manning, Bill Silence, Jim Wu	
Southwest Research Institute	Sean Brossia, Gustavo Cragnolino, Jim Dante, Darius Daruwalla, Darrell Dunn, Sheewa Feng, Vijay Jain, Marta Jakab, Peter Lichtner, Fred Lyle, Julio Maldonado, Oliver Moghissi, Roberto Pabalan, Yi Ming Pan, Wes Patrick, Herb Pennick, Osvaldo Pensado, Budhi Sagar, Nabuo Shiratori, Frank Song, Ben Thacker, Garth Tormoen, Tony Torng, Liz Trillo, Lietai Yang, John Walton	
DNV	Arun Agarwal, Francois Ayello, John Beavers, Liu Cao, Sandeep Chawla, Hongbo Cong, Ken Evans, Ayca Ertekin, Shan Guan, Feng Gui, Peter Friis Hansen, Angeire Huggins-Gonzalez, Mariano Iannuzzi, Swati Jain, Gerry Koch, Xiaoji Li, Guanlan Liu, Stefan Marion, Brandon Rollins, Andrea Sanchez Sours, Chris Taylor, Ramgo Thodla, Neil Thompson, Yumei Zhai	
Ohio State University	Jerry Frankel, Liu Cao, Mariana Georges, Jiheon Jun, Mariano Kappes, Anup Panindre, Jinwook Seong, Angeire Huggins-Gonzalez, Chenxi Liu, Vijay Srinivasan	
OLI Systems	Andre Anderko, Deepti Ballal	
Sponsors	California Energy Commission, DNV, DoD, DOE, EPRI, NASA, NIST, NRC, PHMSA, PRCI, SwRI, MTI, WRPS (H2C), Batelle Savannah River Alliance, Various Industrial Consortia	

A special appreciation of my mentor and friend, the late Gustavo Cragnolino

Why must we live with aging materials?

Managing aging materials is critical to safety

 Longer life of materials Improves sustainability (Iannuzzi and Frankel, 2023; Milosev and Scully, 2023)

 Efficient use of materials helps us meet emissions target (Milford et al., 2013)

What is NOT aging

- It is not the calendar time
 - "Ageing is not about how old your equipment is; it is about its condition, and how that is changing over time. Ageing is the effect whereby a component suffers some form of material deterioration and damage (usually, but not necessarily, associated with time in service)....." - UK HSE, www.hse.gov.uk/offshore/ageing.htm.

There is no single, quantitative definition of Aging

Aging Management Approaches focus on lagging indicators

A quantitative definition of aging

Aging is defined as increasing hazard rate

• Hazard rate,
$$h(t) = \frac{f(t)}{(R(t))}$$

Probability of failure at any time

Reliability up to that time = $1 - \int_0^t f(t)dt$

- Cumulative hazard function, $H(t) = \int_0^t h(t)dt = -Ln(R(t))$
- More generally: $H(t) = \{F(t)|R(t \Delta t)\} \times R(t \Delta t)$

Statistical approaches

SCC of MA 600 steam generators Staehle and Gorman, Corrosion, 59(11), 931-994

If there is no prior failure what distribution should I choose?

If failure mechanism changes how would the distribution change?

Aging of materials is a part of hierarchy of complex systems

Aging of societies, nations, and civilizations

Source: Peter Turchin, Ages of Discord, 2016

China

Certain fundamental mechanisms drive aging of societies that cannot be derived from historical data alone

Aging in the tree of life

O. R. Jones, et al., Nature, 2014, 505(7482), 169-173.

Challenges in predicting aging

 The performance of an aging system depends on its history (probability curve) – lack of knowledge of early history of a structure may lead to failures of currently well-managed systems.

 Predicting aging requires integration across diverse size and time scales and integration across various disciplines.

 Things we don't know that we don't know (unknown unknowns) may affect aging

Two approaches to dealing with time problem

- Model failure rates explicitly (corrosion rate, crack growth rates, etc.)
 - Successful in well constrained systems over limited time periods
 - Works for metal-environment conditions where $pH \leq pH(depassivation)$ active corrosion
 - Does not work for complex systems or when engineered system interacts with a natural system
- Give the time problem to somebody else
 - We establish limit states for corrosion/SCC
 - Others determine whether a system exceeds these limit states
 - Allows modeling of complex systems and passive materials

Use of limit states in temporal predictions

- In structural reliability, failure is assumed to occur when load exceeds resistance
 - $P(Failure) = P(m \times Load n \times Resistance) \ge 0$
- In corrosion, there may be other limit states:
 - Thermodynamic limit states Pourbaix diagrams
 - pH ≤ Depassivation pH (Galvele, Oldfield-Sutton criteria)
 - Corrosion potential ≥ Repassivation potential
 - Stress intensity factor ≥ Threshold stress intensity factor
 - Temperature ≥ Critical crevice temperature
 - Aggressive species ≥ critical concentration
 - Inhibitors ≤ critical concentration

Limit state pH model

10¹

Time, hours

10²

Gaps are stochastic on real mating surfaces

pH vs. Current (304L ss)

N. Sridhar and D. S. Dunn, Corrosion, 1994, 50(11), 857-872.

Crevice pH always lags stable current increase

Observation of Corrosion in Crevice

3%NaCI

-150mV-SCE W/2=2-5mm 10~25µm

T. Shinohara, N. Mascko, and S. Tsujikawa, Corrosion Science, 1993, 35(1-4), 785-789.

- Moiré fringe measurements under a crevice with plane glass
- Observations of several microsites of initiation
- An intermediate distance seems to be favored
- Repassivation potential occurred at a current density of about 3x10⁻¹ A/m² regardless of bulk chloride

Importance of potential as limit state

The role of salt film on repassivation

 Concentrated metal-chloride solutions affect repassivation of pits

Experimental Results - 308SS

Brossia et al., ECS, 1998

- Dissolution rate still high even at -0.20 V_{SCE}
- Observed relationship between Cr-Cl concentration and dissolution rate -- similar to Ni

Single pit in Al

Repassivation Potential Model: Limiting Behavior as Repassivation is Approached

• The expressions can be solved in the limit $E \rightarrow E_{rp}$

Modeling long-term performance using limit states

Relationship between limit states

Anderko et al., Corrosion/2005, Paper 05053

Predicting hazard rate from limit states

Current and future work

Probability of SCC vs. Time using limit states

Growth of fracture limit distribution over time

Hallmarks of Aging

Leading indicators

Hallmarks of aging in biological systems

Can we identify hallmarks of aging for materials?

	Domains	Factors and Events	Hallmarks of Aging	Failure Modes
External Environment		Temperature Pressure Gas-liquid reactions Deliquescence Speciation, ion exchange, micellization Radiolysis Microbiological colonies Flow/erosion Stress/Strain rates	Changes in corrosion (open-circuit) potential	I I
			Increase in corrosion products	Large area nonuniform corrosion
			Rapid changes in electrochemical impedance	Pitting
Local Environment		Alkalinization at cathodes Acidification from hydrolysis Biofilm environment Inclusion reactions Chemistry change - % saturation Scaling Evaporative concentration	Increase in current variations between nominally identical electrodes	Crevice corrosion
			Increase in hydrogen uptake	Stress corrosion cracking
			Crack colonies increase and link up	Hydrogen stress cracking
Surface		Adsorption/desorption Passivity/depassivation	Increasing segregation of alloying elements	Hydrogen Induced Cracking
	Point of Segreg	lip steps/fresh metal oint defect generation and transport egregation ealloying	Changes in surface composition and element distribution	Hydrogen reaction cracking
Bulk Microstructure		Alloying element depletion Anti-phase domains/coherent phase – planar slip Deformation mode/ twinning Dislocation pileup at boundaries Trapping	Increase in macro or microhardness and decrease in toughness	Corrosion fatigue
	Dislo		Increase in precipitates or second phase formation	Embrittlement
Nanostructure		Point defect generation and transport Nanovoid formation	Acceleration of increase in strain rate or decrease in load	I I
			Grain boundary void formation/depletion	1

Corrosion potential vs. time (Carbon steel – nitrate-nitrite solutions)

K. Evans, N. Sridhar, B. Rollins, S. Chawla, J. Beavers, and J. Page, Corrosion, 2019, 75(1), 106-119.

Corrosion potential vs. time

Interpretation of corrosion potential must be done carefully

D. S. Dunn, G. A. Cragnolino, and N. Sridhar, Corrosion, 2000, 56(1), 90-104.

S. Chawla, K. Evans, S. Feng, and N. Sridhar, Corrosion, 2024, 80(5), 472-488.

Unknown unknowns

"Thus, the category of scenarios not yet thought of may be handled by the same process as any other scenario category: The relevant evidence is assembled and quantitatively assessed using Bayes' theorem." – Kaplan and Garrick

Unknown unknowns

Event sequences

Summary

- Aging involves increasing hazard rate but hazard rates cannot be predicted using only databased models
- Our knowledge is the key to our ability to predict future performance of aging systems
- Predicting the behavior of aging systems should involve an understanding of fundamental mechanisms aggregate data should be used to validate predictions, but not as inputs
- Limit state models provide us flexibility in considering a variety of materials and systems
- A complete identification of hallmarks of materials aging will be beneficial in monitoring aging systems proactively
- Unknown unknowns can be represented as unknown sequences of events governed by known laws of corrosion

Narasi Sridhar, Ph.D.

CEO

MC Consult LLC

Materials & Corrosion Consulting

31510 Sweetwater Circle Temecula, CA 92591 USA (614) 787-8249

Nsridhar@mcconsultco.com www.mcconsultco.com

