Laboratorium 1 Transkoder liczb

Łukasz Kwinta, Kacper Kozubowski, Ida Ciepiela marzec 2024

1 Cel zadania

Celem zadania było zaprojektować, zbudować i przetestować układ kombinacyjny realizujący transkoder czterobitowej liczby naturalnej (wraz z zerem) na sześciobitową liczbę pierwszą, bazując wyłącznie na bramkach NAND.

2 Idea rozwiązania

Nasze rozwiązanie opiera się na przekształcaniu 4 bitów wejściowych za pomocą transkoderów, generując w rezultacie 6 bitów wyjściowych. Aby uzyskać konkretne kombinacje bitów wyjściowych, zastosowaliśmy funkcje logiczne opracowane z wykorzystaniem tablic Karnaugh.

3 Układ transkodera liczb pierwszych

3.1 Black box

Pierwszym krokiem w projektowaniu układu jest przedstawienie go jako tzw. "Black Box". Czyli taką czarną skrzynkę dla której określamy tylko wejście i oczekiwany wynik działania dla danego wejścia ale nie wgłębiamy się w implementację.

Wejście do układu stanowią 4 piny ABCD kodujące binarnie wejściową liczbę 0-15. Stan wysoki na pinach stanowi logiczną jedynkę (1), a stan niski logiczne zero

(0).

Numer bitu	3	2	1	0
Bit	A	В	С	D
Mnożnik	2^3	2^2	2^1	2^{0}

Wyjście układu stanowi 6 pinów EFGHIJ kodujące pierwsze 16 liczb pierwszych. Tak samo jak na wejściu stan wysoki na pinach stanowi logiczną jedynkę (1), a stan niski logiczne zero (0).

Numer bitu	5	4	3	2	1	0
Bit	Е	F	G	Н	I	J
Mnożnik	2^5	2^4	2^3	2^2	2^1	2^{0}

Układ mapuje wejście na wyjście w następujący sposób - zakładając notację binarną zapisanego mapowania.

Wejście	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Oczekiwane wyjście	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	43

3.2 Tabela prawdy

Poniżej zapisaliśmy tabelę prawd dla projektowanego układu:

	Wej	ście	;	Wyjście							
A	В	С	D	Е	F	G	Н	Ι	J		
0	0	0	0	0	0	0	0	1	0		
0	0	0	1	0	0	0	0	1	1		
0	0	1	0	0	0	0	1	0	1		
0	0	1	1	0	0	0	1	1	1		
0	1	0	0	0	0	1	0	1	1		
0	1	0	1	0	0	1	1	0	1		
0	1	1	0	0	1	0	0	0	1		
0	1	1	1	0	1	0	0	1	1		
1	0	0	0	0	1	0	1	1	1		
1	0	0	1	0	1	1	1	0	1		
1	0	1	0	0	1	1	1	1	1		
1	0	1	1	1	0	0	1	0	1		
1	1	0	0	1	0	1	0	0	$\overline{1}$		
1	1	0	1	1	0	1	0	1	1		
1	1	1	0	1	0	1	1	1	1		
1	1	1	1	1	1	0	1	0	1		

- 3.3 Tablice Karnaugh
- 3.4 Implementacja
- 4 Zastosowania

Poniżej wymieniamy przykładowe zastosowania zaprojektowanego układu:

- Transkoder generujący liczby pierwsze na podstawie prostej liczby może być zastosowany w urządzeniach szyfrujących. Dużo łatwiej jest wygenerować (pseudo)losową liczbę z przedziału 0-15 i ją przekształcić na liczbę pierwszą za pomocą takiego transkodera niż wybierać losową liczbę pierwszą. Wiele algorytmów szyfrujących czy funkcji hashujących bazuje na liczbach pierwszych więc taki układ miałby tam zastosowanie.
- Innym zastosowaniem układów z rodziny transkoderów lecz nie koniecznie tego konkretnego może być przekształcenie kodu jakiegoś błędu reprezentowanego w systemie przez liczby 0-15 na jakiś inny kod błędu, który np. nadaje się do wyświetlenia użytkownikowi bo mówi coś więcej o istocie problemu.