Nouvelles fonctionnalités du package fitdistrplus

Marie Laure Delignette-Muller

Université de Lyon
UMR CNRS 5558, Laboratoire de Biométrie et Biologie
Evolutive
VetAgro Sup, Campus vétérinaire de Lyon
et

Christophe Dutang

Université de Strasbourg
UMR CNRS 7501, Institut de Recherche Mathématique
Avancée

Deuxièmes rencontres R, Lyon, 27-28 juin 2013

Présentation du package fitdistrplus

```
http://cran.r-project.org/package=fitdistrplus
http://riskassessment.r-forge.r-project.org/
```

Package pour l'ajustement de distributions paramétriques à des données univariées,

proposant diverses fonctions pour :

- le choix de distributions candidates pour décrire les données,
- l'ajustement de chacune des distributions candidates aux données,
- la comparaison des ajustements en vue de choisir la distribution la plus adaptée,
- le calcul, par bootstrap, de l'incertitude sur les paramètres estimés de la distribution choisie.

Quelques spécificités du package

- Différentes méthodes d'estimation des paramètres sont proposées :
 - méthode du maximum de vraisemblance (MLE),
 - méthode des moments (MME),
 - méthode des quantiles (QME),
 - méthode de minimisation d'une statistique d'ajustement (MGE) (8 distances proposées).
- Prise en compte
 - des données discrètes
 - et des données censurées quel que soit le type de censures (à droite, à gauche ou par intervalle).
- Possibilité de modifier l'algorithme d'optimisation (par défaut optim).

Utilisation actuelle du package

Package développé initialement pour l'appréciation quantitative du risque

notamment pour permettre la caractérisation hiérarchique de la variabilité et de l'incertitude dans le cadre de simulations de Monte carlo à deux dimensions (package mc2d).

Package généraliste simple à utiliser,

utilisé dans des domaines variés :

- risque alimentaire,
- épidémiologie,
- biologie moléculaire,
- bioinformatique,
- mathématiques financières et actuarielles, . . .
- → les retours des utilisateurs nous ont incité à développer de nouvelles fonctionnalités.

Comparaison visuelle de plusieurs ajustements (cdfcomp)

```
> data(groundbeef)
> fw <- fitdist(groundbeef$serving, "weibull")
> fg <- fitdist(groundbeef$serving, "gamma")
> fln <- fitdist(groundbeef$serving, "lnorm")
> cdfcomp(list(fw,fln,fg),
+ legendtext=c("Weibull", "lognormal", "gamma"))
```

Empirical and theoretical CDFs

M.L. Delignette-Muller et C. Dutang

Comparaison visuelle de plusieurs ajustements : représentation en densité de probabilité (denscomp)

```
> denscomp(list(fw,fln,fg),
+ legendtext=c("Weibull", "lognormal", "gamma"))
```

Histogram and theoretical densities

Comparaison visuelle de plusieurs ajustements : P-P plot (ppcomp)

```
> ppcomp(list(fw,fln,fg),
+ legendtext=c("Weibull", "lognormal", "gamma"))
```


Comparaison visuelle de plusieurs ajustements : Q-Q plot (qqcomp)

```
> qqcomp(list(fw,fln,fg),
+ legendtext=c("Weibull", "lognormal", "gamma"))
```


Comparaison numérique de plusieurs ajustements

- Statistiques d'ajustement,
 Kolmogorov-Smirnov, Cramér-von Mises et Anderson-Darling,
- et critères d'information , AIC et BIC.

```
> gofstat(list(fw,fln,fg),
         fitnames = c("Weibull", "lognormal", "gamma"))
Goodness-of-fit statistics
                            Weibull lognormal gamma
Kolmogorov-Smirnov statistic
                             0.140
                                       0.149 0.128
Cramer-von Mises statistic
                             0.684 0.828 0.693
                             3.574 4.544 3.566
Anderson-Darling statistic
Goodness-of-fit criteria
                              Weibull lognormal gamma
Aikake's Information Criterion
                                2514
                                          2527 2511
                                2522
                                          2534 2518
Bayesian Information Criterion
```

Calcul de quantiles à partir d'une loi ajustée : exemple sur données censurées en écotoxicologie

```
> data(salinity)
> f <- fitdistcens(salinity, "lnorm")
> quantile(f,probs = c(0.05, 0.20))
```

Estimated quantiles for each specified probability (censored data) $p \! = \! 0.05 \ p \! = \! 0.2$

estimate 13.1 19.5

Bootstrap

Intervalles de confiance bootstrap sur les quantiles

- > cdfcompcens(f)
- $> q \leftarrow quantile(b, probs = seq(0,1,length=101))$
- > points(q\$quantCI[1,],q\$probs,type="1",lty=2,col="red")
- > points(q\$quantCI[2,],q\$probs,type="1",1ty=2,col="red")

M.L. Delignette-Muller et C. Dutang

Perspectives

Nous envisageons

- d'étendre aux données censurées certaines méthodes disponibles actuellement sur les données non censurées,
- d'élargir le choix de distances utilisables pour l'ajustement par minimisation de ces distances et pour l'évaluation de la qualité de l'ajustement (distances basées sur les quantiles),
- d'élargir le choix des moments pour l'ajustement par la méthode des moments ("L-moment"),
- aborder l'ajustement de distributions multivariées.

N'hésitez pas à nous envoyer vos retours ou idées en vue de l'amélioration de ce package.