# ETL and ELT

DATA WAREHOUSING CONCEPTS



Aaren Stubberfield Data Scientist



# Understanding ETL and ELT names

ETL

1. Extract 1. Extract

2. Transform2. Load

3. Load 3. Transform

# **Understanding ETL - Pros and Cons**

- Data transformed during the move
- Uses separate system to process data

#### Pros:

- Lower data storage costs
- PII security compliance

#### Cons:

- Transformation errors/changes require new data pulls
- Costs of separate system to process data

# **Understanding ELT - Pros and Cons**

- Data is loaded, then transformed
- Uses the warehouse to transform the data

#### Pros:

- No separate system to process data
- Transformations can be rerun without impacting source systems
- Works well for near real-time requirements

#### Cons:

- Increased storage needs from raw data
- Compliance with PII security standards

## The cloud and ELT



# Let's practice!

DATA WAREHOUSING CONCEPTS



# Data cleaning

DATA WAREHOUSING CONCEPTS



Aaren Stubberfield Data Scientist



# Video agenda

- Data format revision
- Address parsing
- Data validation
- De-duplication

# Data format cleaning

- Update values to an expected format
  - Dates
  - Names of options
  - Capitalization
- Ensures output is in a consistent format

#### Taxi data example

| CustomerID | User_Name | Join_Date  |
|------------|-----------|------------|
| 440        | CABBY13   | 2022-06-20 |
| 230        | taxi#1    | 2020-08-03 |
| 559        | NY_taxi   | 2021-12-05 |

| CustomerID | Last_Ride_Date |
|------------|----------------|
| 440        | 7/01/2022      |
| 230        | 8/3/2020       |
| 559        | 1/31/2021      |

| CustomerID | User_Name | Join_Date  | Last_Ride_Date |
|------------|-----------|------------|----------------|
| 440        | cabby13   | 2022-06-20 | 2022-07-01     |
| 230        | taxi#1    | 2020-08-03 | 2020-08-03     |
| 559        | ny_taxi   | 2021-12-05 | 2021-01-31     |

# Address parsing

- Dividing a street address into its components
- Can use tools to validate addresses

#### **Address**

1234 S Normal St, Cleveland, OH 44102

| Address          | City      | State | Zip   |
|------------------|-----------|-------|-------|
| 1234 S Normal St | Cleveland | ОН    | 44102 |

### Data validation

- Range check
  - Is the value within the expected range?
  - Example: A person's age

| Age |           |
|-----|-----------|
| 300 | Not Valid |
| 67  | Valid     |
| 43  | Valid     |

#### Type check

- Is the value the proper data type?
- Example: Storing age as string vs number

| Age | dtype  |                  |
|-----|--------|------------------|
| 30  | String | Not Valid        |
| 67  | String | Not Valid        |
| 43  | string | <b>Not Valid</b> |

# Duplicate row elimination

This process gets rid of duplicate entries

| DoctorID | DoctorName |
|----------|------------|
| 275      | Miach      |
| 300      | Debbie     |
| 310      | Berry      |







# Data governance



# Let's practice!

DATA WAREHOUSING CONCEPTS



# On premise and cloud data warehouses

DATA WAREHOUSING CONCEPTS



Aaren Stubberfield
Data Scientist



# On premise

- Purchase and install software and hardware
- On the grounds of the organization



# On premise - pros and cons

#### Pros:

- Complete control
- Implement custom data governance
- Local network speeds
- Can optimize for workloads

#### Cons:

- Upfront hardware and software costs
- Personnel/staff must maintain system
- Must keep up with patches and security

### In the cloud

- Rapid growth
- Forecasted continued growth









<sup>&</sup>lt;sup>1</sup> Gartner Says Four Trends Are Shaping the Future of Public Cloud. Press release: Aug. 2021



# In the cloud - pros and cons

#### Pros:

- No maintaining equipment and infrastructure
- Frees up personnel
- Can scale storage and compute resources
- No upfront investment in equipment/software

#### Cons:

- Less control
- Cannot optimize warehouse workloads
- Possible unanticipated costs

# Hybrid approach

- On premise and in the cloud data warehouse
- Reasons for hybrid approach:
  - Backup
  - Disaster recovery



# Summary



# Let's practice!

DATA WAREHOUSING CONCEPTS



# Data warehouse design example

DATA WAREHOUSING CONCEPTS



Aaren Stubberfield
Data Scientist



# Let's set the stage

- A new startup company
- Photo sharing app



<sup>&</sup>lt;sup>1</sup> Photo by Alex Alvarado from unsplash.com



# Top-down, or bottoms up approach?

#### **Considerations:**

- Vital to show business impact quickly
- Top-down approach has a longer startup process

#### **Decision:**

- Bottom-up approach
- Sales data mart must be the priority

# Kimball - select the organizational process (step 1)

#### **Considerations:**

What type of customers purchase large volumes of photos?

#### **Decision:**

Develop customer purchases

# Kimball - Declare the grain (Step 2)

#### **Considerations:**

- Data should be flexible to answer many questions
- Selecting the lowest grain possible

#### **Decision:**

Tracking customer/photo purchases

# Kimball - Identify the dimensions (Step 3)

#### **Considerations:**

- How do users describe the data that results from the business process?
- Customer prioritization

#### **Decision:**

- Customer location (country & state)
- Date customer joined
- Default payment method

# Kimball - Identify the facts (Step 4)

#### **Considerations:**

What are we answering?

#### **Decision:**

- Time spent viewing photo before purchase
- Photo cost and tax
- Date of purchase

## Fact and dimensions tables



# On-premise or cloud implementation

#### **Considerations:**

- We do not want upfront costs for hardware / software infrastructure
- Small team focus on high value activities

#### **Decision:**

Cloud implementation

# ETL or ELT implementation

#### **Considerations:**

- Keep all data
- Cloud implementation allows us to scale compute as needed

#### **Decision:**

ELT implementation

# Summary

- Planning is critical
- Tailor your approach based on the situation

# Let's practice!

DATA WAREHOUSING CONCEPTS



# Wrap-up DATA WAREHOUSING CONCEPTS



Aaren Stubberfield Data Scientist



#### **Data Warehouse Basics**

- What is a data warehouse?
- Data warehouse life-cycle
- Comparing to data lakes and marts



#### Warehouse architectures and properties

- Warehouse layers
- Inmon vs Kimball designs
- OLAP and OLTP systems



#### Data warehouse data modeling

- Fact and dimension tables
- Slowly changing dimensions
- Row / column store
- Kimball's four-step process



#### Data cleaning and other considerations

- ETL / ELT processes
- Data cleaning
- On-premises / in the cloud implementations



# Things we didn't cover

- SQL fundamentals
- Building data pipelines
- Analyzing warehouse data

## Learning more

#### **Books:**

- The Data Warehouse Toolkit, Third Edition:
   The Definitive Guide to Dimensional
   Modeling (by Kimball)
- Building the Data Warehouse (by Inmon)
- DAMA Data Management Body of Knowledge (by DAMA International)

## DataCamp courses:

- Understanding Data Engineering
- Introduction to Power BI
- Intermediate SQL Server

# Good bye and thank you!

DATA WAREHOUSING CONCEPTS

