Esercizi 2-categorie

Primo foglio: categorie arricchite

• Una categoria monoidale è l'ambiente adeguato per definire oggetti monoide: un oggetto monoide in $\mathcal V$ è un oggetto M con una mappa $\mu: M \otimes M \to M$ che sia associativa, e una mappa $\eta: I \to M$ che faccia da unità per μ : ciò significa che i diagrammi

siano commutativi. Determinate cosa è un monoide interno alla categoria degli insiemi; determinate cos'è un monoide interno alla categoria degli spazi vettoriali; determinate cos'è un monoide interno alla categoria **Cat** delle categorie e funtori.

- Mostrare esplicitamente che (\mathbf{Set}_*, \vee) sottintende una struttura monoidale sulla categoria degli insiemi puntati; mostrare esplicitamente le regole di coerenza per associatore e unitore. Stessa domanda per la categoria degli spazi topologici puntati. E' vero che $A \vee -$ commuta coi colimiti?
- Definiamo il prodotto schiacciato di due insiemi puntati come il pushout

 $(A,B)\mapsto A\wedge B$ è una struttura monoidale su \mathbf{Set}_* ? Stessa domanda per la categoria degli spazi topologici puntati. E' vero che $A\wedge -$ commuta coi colimiti?

- Dimostrare che la categoria Fin_* degli insiemi finiti puntati $\{*,1,\ldots,n\}$ e funzioni puntate (le $f:[m]_* \to [n]_*$ tali che $f(*_{[m]}) = *_{[n]}$) è equivalente alla categoria degli insiemi finiti e funzioni parziali. Che cosa diventa la struttura monoidale ($\operatorname{Fin}_*, \vee$) lungo questa equivalenza? Che cosa diventa la struttura monoidale ($\operatorname{Fin}_*, \wedge$ lungo questa equivalenza?
- $\bullet\,$ Se $F:\mathcal{V}\leftrightarrows\mathcal{W}:G$ è una coppia di funtori aggiunti monoidali, mostrare o confutare che
 - L'unità $\alpha:1\Rightarrow GF$ e la counità $\epsilon:FG\Rightarrow 1$ sono trasformazioni naturali monoidali;
 - Il "cambio di base mediante F", $F_*: \mathcal{V}\text{-}\mathbf{Cat} \to \mathcal{W}\text{-}\mathbf{Cat}$ ha per aggiunto destro il cambio di base mediante G.
- Dimostrare che la sottocategoria $S = \{\emptyset, 1\} \subset \mathbf{Set}$ è cartesiana chiusa; è vero o falso che un insieme coincide con una S-categoria?
- La categoria dei gruppi è cartesiana chiusa? Possiede una struttura monoidale ⊗ per cui è chiusa?

1

ullet Sia G un gruppo fissato; nella categoria \mathbf{Set}^G degli insiemi dotati di una azione di G è possibile definire un bifuntore \otimes_G come

$$X \otimes_G Y := \operatorname{coeq} \left(\coprod_{g \in G} X \times Y \xrightarrow{1 \times g \atop g \times 1} X \times Y \right)$$

Questo (insieme all'insieme terminale con azione banale, e alle ovvie coerenze) definisce una struttura monoidale su \mathbf{Set}^G ?

- Dimostrare che per ogni categoria piccola A, la categoria dei funtori [A, Set] è cartesiana chiusa; dedurne che la categoria degli insiemi con una azione di gruppo è cartesiana chiusa.
- Mostrare la regola di interscambio per trasformazioni V-naturali:

$$(\alpha \circ \beta) \bullet (\gamma \circ \delta) = (\alpha \bullet \gamma) \circ (\beta \bullet \delta).$$

- Dimostrare che se esiste una aggiunzione $F: \mathcal{V} \leftrightarrows \mathcal{W}: G$ $(F: \mathcal{V} \to \mathcal{W})$ aggiunto sinistro), allora esiste una aggiunzione $F_{\dagger} \dashv G_{\dagger}$.
- Un'equivalenza di categorie è sempre un funtore monoidale forte? Se $F \dashv G$ è un'equivalenza monoidale, dimostrare che $F_{\dagger} \dashv G_{\dagger}$ induce un'equivalenza tra le \mathcal{V} -categorie e le \mathcal{W} -categorie: restano indotti degli isomorfismi di categorie \mathcal{V} -Cat $[A, A'] \cong \mathcal{W}$ -Cat $[F_{\dagger}A, F_{\dagger}A']$.
- Data una categoria monoidale \mathcal{V} , mostrare che esiste una categoria \mathcal{V}^{\otimes} così definita:
 - gli oggetti di \mathcal{V}^{\otimes} sono *n*-uple di oggetti di \mathcal{V} denotate $[C_1, \ldots, C_n]$ (con la convenzione che se n = 0 la tupla è vuota);
 - i morfismi $[C_1,\ldots,C_n] \to [D_1,\ldots,D_m]$ sono coppie $(\alpha,\{f_i\})$ dove α è una funzione parziale $[n] \to [m]$ con dominio S_{α} e $\{f_j : \bigotimes_{\{i \mid \alpha(i)=j\}} C_i \to a\}$ $D_i \mid 1 \leq j \leq m$ è una famiglia di morfismi di \mathcal{V} .

(definire opportunamente la composizione di due morfismi $(\alpha, f), (\beta, g)$).

- Mostrare che esiste un funtore $p: \mathcal{V}^{\otimes} \to \operatorname{Fin}_*$ che manda $[C_1, \dots, C_n]$ in $[n]_*$; mostrare che p è una opfibrazione: per ogni oggetto \overline{C} $[C_1,\ldots,C_n]\in\mathcal{V}^{\otimes}$ e ogni morfismo $f:[n]_*\to[m]_*$ in Fin* esiste un morfismo $(\theta_f, \overline{f}): \overline{C} \to \overline{D} = [D_1, \dots, D_m]$ tale che $p(\theta_f, \overline{f}) = f$, e tale che la composizione con \bar{f} induce la seguente biiezione per ogni $\overline{E} = [E_1, \dots, E_d]$

$$\mathcal{V}^{\otimes}(\overline{D},\overline{E}) \cong \mathcal{V}^{\otimes}(\overline{C},\overline{E}) \times_{\mathrm{Fin}_{*}([n]_{*},[d]_{*})} \mathrm{Fin}_{*}([m]_{*},[d]_{*}).$$

- Mostrare che se indichiamo V_n[⊗] la fibra di [n]_{*} mediante p, p induce un funtore V_m[⊗] → V_n[⊗] per ogni f: [m]_{*} → [n]_{*} in Fin_{*}.
 Mostrare che V₀[⊗] ≅ {0}, V₁[∞] ≅ V, e in generale che V_n[∞] ≅ V × · · · × V
- Mostrare che la corrispondenza che manda $\mathcal V$ in $\mathcal V^\otimes$ è funtoriale in
- Mostrare che Fin_{*} $\cong \{0\}^{\otimes}$ rispetto all'unica struttura monoidale che esiste sulla categoria terminale $\{0\}$; mostrare che p è il funtore indotto dall'unico funtore terminale $\mathcal{V} \to \{0\}$.