

Permafrost Thermal Hydrology

Bo Gao, Scott Painter, Joe Beisman, & Ethan Coon

Oak Ridge National Laboratory

Outline

- Basic intro to permafrost processes
 - Flow + energy + surface energy balance/snow
 - Optional polygonal ground, subsidence
- What makes freezing soils weird
 - Thermal expansion
 - cryosuction
- Demo: lab experiment on cryosuction
- Modeling permafrost: spinup and initialization
- Demo: transient column run
- Fancier runs overview: transect/discontinuous permafrost, Seward Pen 3D run, Intermediate scale model

Permafrost in ATS

Hydrogeology Journal, 2014

Modeling challenges for predicting hydrologic response to degrading permafrost

S. L. Painter · J. D. Moulton · C. J. Wilson

Keywords Permafrost · Subsidence · Groundwater/ surface-water relations · Multiphase flow · Numerical

carbon (Tarnocai et al. 2009) currently frozen in perma- on Arctic surface hydrology (e.g. Liljedahl et al. 2012) frost affected regions of the Arctic and subarctic is highly evolution from low- to high- centered polygon landscap

computational challenges associated with microtop

phy-resolving models using hydrologic response of poly mires as an example. In such microtopography-resol models, horizontal grid spacing on the order of 0.25 m w typically be required. Although high- and low-centered The fate of the approximately 1,700 billion metric tons of wedge polygons have been identified as important con

Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

Scott L. Painter¹, Ethan T. Coon², Adam L. Atchley², Markus Berndt³, Rao Garimella⁴, J. David Moulton⁴, Daniil Svyatskiy⁴, and Cathy J. Wilson⁵

- Overland flow (diffusion wave approximation)
- Energy equation allowing freezing of ponded water
- Coupled to subsurface with flux and pressure continuity

Subsurface:

New 3-phase thermal hydrology model

Thermal hydrology model for freezing soil

- Conservation equation for water and energy with phase change
 - Passive gas Richards-type
- New constitutive models relating liquid pressure, liquid content and temperature
- Careful comparisons to multiple lab experiments
- Weird processes
 - Multiple feedbacks between thermal and flow processes
 - Cryosuction
 - Expansion upon freezing

Note on specifying bottom boundary conditions

- Geothermal flux is a problematic as a BC because of past climate
- Better to specify a bottom temperature below Z* based on deep boreholes in the region
- Thickness of permafrost can be controlled by imposed temperature BC, but requires some trial and error

Image modified from Biskaborn, B.K., Smith, S.L., Noetzli, J. *et al.* Permafrost is warming at a global scale. *Nat Commun* **10**, 264 (2019). https://doi.org/10.1038/s41467-018-08240-4

A note on model spinup

- Freeze from below on a single column
 - Start with hydrostatic initial conditions with constant T>0 C
 - At t=0, lower bottom temperature BC to desired value
 - Use T=0.5 C and "seepage face" condition at surface
 - Run to steady state
 - Ice table position can be controlled by initial water table location
- Transient spinup
 - Use "initialize from 1D column" option to map the column to 2D or 3D
 - Loop several times with "typical year" BCs at surface
- Discard first 1-2 years in transient runs with real forcing

Demo1 Lab Experiment vs. Modeling for Cryosuction

Cryosuction

- The increase of ice content in frozen zone can increase matric suction, attracting soil water from unfrozen zone to the freezing front.
- Unfrozen water content ~ **f** (temperature, suction)
- **f** ⇒ soil-freezing characteristic curve (SFCC)
- SFCC
 - 1) empirical expression :
 sat_liq ~ **f** (temperature) ⇒ no cryosuction included (McKenzie et al., 2007)
 - 2) physically based expression (Clapeyron equation): sat_liq ~ f (temperature, suction) ⇒ describe cryosuction (Painter et al., 2016) analogous to soil-water retention curve (SWCC)

Demo1 Lab Experimental Setup

Total water content was measured.

Parameter	
Permeability (m²)	3.19e-13
Porosity	0.535
Van Genuchten $lpha$ (Pa ⁻¹)	1.11e-4
Van Genuchten m	0.32
Residual water saturation	0.093
Saturated thermal conductivity (W m ⁻¹ K ⁻¹)	0.67
Dry thermal conductivity (W m ⁻¹ K ⁻¹)	0.07
Initial temperature (°C)	6.7
Initial water content	0.34
Measurement times (hours)	12, 24, 50

Mizoguchi, 1990; Stuurop et al., 2021 (demo1 folder)

Demo1 Model Setup

cd 04_arctic_hydrology/demo1_cryosuction/cryos_labexpVSmodel

There are two .xml input files, one including cryosuction and the other not.

vim model cryosuction.xml

/cycle driver

- The basic model configuration
- Only freezing process inside soil is simulated.
- Simulation time: 100 hours

/PKs

Detailed setup for each part.

Demo1 Model Setup

Required for cryosuction setup.

- Change in matric suction due to freezing is taken account.
- How: by fpd model.

(freezing point depression)
(Painter et al., 2016)

```
<Parameter name="liquid-ice capillary pressure key" type="string" value="temperature" />
<ParameterList name="permafrost model parameters" type="ParameterList">
        <Parameter name="permafrost WRM type" type="string" value="mck permafrost model" />
        <Parameter name="freezing point [K]" type="double" value="273.15" />
        <Parameter name="residual saturation [-]" type="double" value="0.093" />
        <Parameter name="sfc fitting coefficient" type="double" value="3" />
        </ParameterList>
```

<Parameter name="minimum dsi_dpressure magnitude" type="double" value="1e-12" />

- capillary_pressure_liq_ice
 evaluator will not be called.
- unfrozen content is temperature dependent.
- How: by mck model

(McKenzie et al., 2007)

</ParameterList>

Demo1 Model Setup

Boundary and initial conditions

/flow

/energy

Demo1 Experiment vs. Modeling

Underestimation of ice content and temperature if no cryosuction is considered.

with cryosuction

no cryosuction

observation

Demo1 Model Change for practice

- initial condition for flow:
 - hydrostatic head
- boundary condition for energy:
 - no flux bottom → constant temperature at bottom (e.g., 2 °C)
- soil properties:
 - base porosity
 - permeability
 - Van Genuchten parameters

Demo2 Transient Arctic Modeling

Soil layer	Moss	Peat	Mineral
Thickness	2 cm	8 cm	49.9 m
Porosity	0.9	0.876	0.596
Permeability (m²)	1.7e-11	9.38e-12	6e-13
VG α (Pa ⁻¹)	2.3e-3	9.5e-4	3.3e-4
VG n	1.38	1.44	1.33
Residual saturation	0.056	0.388	0.334
Thermal conductivity unfrozen (Wm ⁻¹ K ⁻¹)	0.446	0.427	0.788
Thermal conductivity dry (Wm ⁻¹ K ⁻¹)	0.024	0.025	0.104

(Atchley el at., 2015)

Forcing data from Daymet (https://daymet.ornl.gov/single-pixel/api)
Get these data by ATS tool daymet_to_ats.py

Demo2 Model Setup – Initialization

cd 04_arctic_hydrology/demo2_transient_column

Purpose

Freezing a soil column from bottom to top to obtain an initial freezing soil domain.

Model setup

- Same configuration with demo 1.
- Initial water table depth: -5.78 m.
- Run for a long time for a steady state (1000 years)
- Obtain the final pressure and temperature profile using ATS tool column_data.py

Demo2 Model Setup – Transient

vim transient.xml /cycle driver

- Basic configuration
- Run for 1 year

/subsurface flow

- Initial condition: from freezeup
- Boundary condition: J = 0

/surface flow

- Initial condition: from subsurface
- Boundary condition: outlet at surface

/subsurface energy

- Initial condition: from freezeup
- Boundary condition: T_{bottom} = -10°C

/surface energy

- Initial condition: from subsurface
- Boundary condition: J = 0

/SEB

Initial condition:
 snow depth from spinup

Demo2 Model Observation

- (1) surface water content
- (2) evaporation
- (3) thaw depth
- (4) temperature
- (5) saturation liquid
- (6) saturation ice

Demo2 Model Observation

user: 3hg Thu Aug 26 14:50:28 2021

Teller Watershed 3D Modeling

Plan view of permafrost distribution:

Arctic Ocean

Alaska

Seward Peninsula

Temperature distribution:
Temperature (Kelvin)

Interpolated SWE model:

