### Obsah

| <b>25</b> | Zák  | ladní pojmy kvantové fyziky              | 1 |
|-----------|------|------------------------------------------|---|
|           | 25.1 | Planckova kvantová hypotéza              | 1 |
|           | 25.2 | Absolutně černé těleso                   | 1 |
|           |      | 25.2.1 Wienův posunovací zákon           | 1 |
|           | 25.3 | Fotoelektrický jev                       | 1 |
|           |      | 25.3.1 Druhy fotoefektu                  | 1 |
|           | 25.4 | Comptonův jev                            | 2 |
|           |      |                                          | 2 |
|           | 25.6 | Korpuskulárně vlnový dualismus           | 3 |
|           | 25.7 | Huygensův princip                        | 3 |
|           |      | 25.7.1 Dvouštěrbinový experiment         | 3 |
|           | 25.8 | Popis částic v mikrosvětě                |   |
|           |      | 25.8.1 Heinsenbergův princip neurčitosti | 4 |
|           |      | 25.8.2 Vlnová funkce                     |   |
|           | 25.9 | Laser                                    | 4 |

# 25 Základní pojmy kvantové fyziky

- věda mikrosvěta
- malé rozměry  $(10^{-9}\,\mathrm{m},\,10^{-24}\,\mathrm{s})$

### 25.1 Planckova kvantová hypotéza

- záření se šíří nespojitě v kvantech
  - nejmenší jednotka energie elmag. záření
- energie kvanta úměrná frekvenci záření E=hf
  - Planckova konstanta  $h = 6.626 \cdot 10^{-34} \,\mathrm{J\cdot s}$
- kvantum = **foton** částice záření Pojmenováno později Albertem Einsteinem
- energie elmag. záření vždy násobek energie kvanta

### 25.2 Absolutně černé těleso

- ideální těleso pohlcující všechny vlnové délky
- ideální zářič, vyzařuje maximální množství energie
  - celková vyzářená energie závislá pouze na teplotě tělesa

#### 25.2.1 Wienův posunovací zákon

- "V záření absolutně černého tělesa je maximální energie vyzařovaná na vlnové délce, která se s rostoucí termodynamickou teplotou snižuje"
- čím teplejší těleso, tím více vyzařuje záření o vyšších frekvencích / kratších vlnových délkách

$$\lambda_{\max} = \frac{b}{T}$$

kde  $b = 2,898 \,\mathrm{mm}\cdot\mathrm{K}$  je Wienova konstanta



Obr. 25.1: Nákres Wienova posunovacího zákona

# 25.3 Fotoelektrický jev

- elektrony emitované z látky (nejčastěji kovu) v důsledku absorpce elmag. záření
- energie kvanta (fotonu) předána elektronu, přeměna na:
  - vykování výstupní práce W
  - kinetickou energie elektronu  $E_k$
- mezní frekvence  $f_0$  nejmenší frekvence potřebná pro uvolnění elektronu
  - $\Rightarrow W = hf_0$

$$hf = W + E_{\mathbf{k}} \quad \Rightarrow \quad hf = hf_0 + E_{\mathbf{k}}$$

#### 25.3.1 Druhy fotoefektu

Vnitřní fotoefekt uvolněné elektrony zůstávají uvnitř látky, nekonají výstupní energie W, zůstávají v ní jako vodivostní elektrony

Vnější fotoefekt jev na povrchu látky, elektrony uvolněny do okolí

# 25.4 Comptonův jev

- Arthur Holly Compton, 1923
- elektromagnetická vlna interaguje s atomem
- foton předá atomu část své energie  $\rightarrow$  změna vlnové délky záření

### 25.5 Vlastnosti fotonů

- částice elektromagnetického záření
- pohybují se rychlostí světla  $c \doteq 2{,}998 \cdot 10^8 \, \mathrm{m \cdot s^{-1}}$
- energie:

$$E = hf = h\frac{c}{\lambda}$$

• hybnost:



Obr. 25.2: Nákres Comptonova jevu

- vztah platící díky relativistickému vztahu pro energii  $E=mc^2$ 

$$p = mc = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda}$$

### 25.6 Korpuskulárně vlnový dualismus

- stejně jako vlna na vlastnosti částice, tak částice má vlastnosti vlny
- De Broglie 1924 "s každou částicí o hybnosti p je spjato vlnění"  $\rightarrow$  de Broglieovy vlny (hmotnostní vlny)

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

#### 25.7 Huygensův princip

- "Každý bod vlnoplochy, do něhož dospělo vlnění v určitém okamžiku, můžeme pokládat za zdroj elementárního vlnění, které se z něho šíří v elementárních vlnoplochách. Vlnoplocha v dalším časovém okamžiku je vnější obalová plocha všech elementárních vlnoploch"
- vlnoplocha plocha kmitajících bodů se stejnou fází
- jednotlivé vlnoplochy spolu interferují a vytvářejí vnější vlnoplochu
- jestliže vlna narazí na štěrbinu, bude se štěrbina chovat jako nový zdroj vlny
- viz otázka??

#### 25.7.1 Dvouštěrbinový experiment

- důkaz dualismu vlna a částic a Huygensova principu
- proud elektronů po průchodu dvěma štěrbinami vykazují interferenci  $\rightarrow$ elektrony se chovají jako vlna



Obr. 25.3: Heygensův jev u štěrbiny



Obr. 25.4: Dvouštěrbinový experiment

### 25.8 Popis částic v mikrosvětě

### 25.8.1 Heinsenbergův princip neurčitosti

• čím přesněji znám jednu vlastnost, s tím menší přesností určím druhou

$$\Delta x \Delta p_x \ge \frac{\hbar}{2}$$
$$\Delta y \Delta p_y \ge \frac{\hbar}{2}$$
$$\Delta z \Delta p_z \ge \frac{\hbar}{2}$$

- $-\Delta x$  neurčitost polohy
- $-\Delta p_x$  neurčitost hybnosti
- $\hbar = h/2\pi$  redukovaná Planckova konstanta

#### 25.8.2 Vlnová funkce

• matematický popis kvantového stavu částice v izolovaném kvantovém systému

•

$$\Psi(x, y, z, t)$$

- odvozena ze Schrödingerovy rovnice
- pravděpodobnost naměření částice na daném místě nebo s danou hybností:

$$|\Psi(x,y,z,t)|^2$$

#### 25.9 Laser

- Light Amplification by Stimulated Emission of Radiation
- monochromatický, koherentní, jednoduše ovladatelný a vysoce zaostřitelný zdroj světla
- atom absorbuje záření, excituje (elektron jde do vyššího energetického stavu / vyšší hladiny), elektron je vyražen z excitované hladiny fotonem, elektron se přesunuje do nižší hladiny a emituje foton
- využití
  - spektroskopie
  - komunikace (optická internetová vlákna, satelity)
  - řezání, sváření, vypalování
  - lidar, zaměřování cílů, navádění střel



Obr. 25.5: Princip fungování LASERu