Example: $A = \{0, 1\}$; start symbol $\langle s \rangle$; 2 production rules given by:

- 1. $\langle s \rangle \to 0 \langle s \rangle 1$
- $2. \langle s \rangle \rightarrow 01$

Let's see what we generate: via rule 2, $\langle s \rangle \to 01$, so we get $\langle s \rangle \Rightarrow 01$ Via rule 1, $\langle s \rangle \to 0 \langle s \rangle 1$, then via rule 2, $0 \langle s \rangle 1 \to 0011$. We write the process as $\langle s \rangle \Rightarrow 0 \langle s \rangle 1 \Rightarrow 0011$.

Via rule 1, <s $> <math>\rightarrow$ 0<s>1, then via rule 1 again 0<s>1 \rightarrow 00<s>11, then via rule 2, 00<s>11 \rightarrow 000111.

We got $\langle s \rangle \Rightarrow 0 \langle s \rangle 1 \Rightarrow 00 \langle s \rangle 11 \Rightarrow 000111$.

The language L we generated thus consists of all strings of the form $0^m 1^m$ (m 0's followed by m 1's) for all $m \ge 1, m \in \mathbb{N}$

We saw 2 types of strings that appeared in this process of generating L:

- 1. terminals, i.e. the elements of A
- 2. <u>nonterminals</u>, **i.e.** strings that don't consist solely of 0's and 1's such as $\langle s \rangle$, $0 \langle s \rangle 1$, $0 \langle s \rangle 11$, etc.

The production rules then have the form:

nonterminal \rightarrow word over the alphabet V = {terminals, non-terminals}

In our notation, the set of nonterminals is $V \setminus A$, so <T $> \in V \setminus A$ and $w \in V^* = \bigcup_{n=0}^{\infty} V^n$. To the production rule <T $> \to w$, we can associate the ordered pair (<T $>, w) \in (V \setminus A) \times V^*$, so the set of production rules, which we will denote by P, is a subset of the Cartesian product $(V \setminus A) \times V^*$. Grammars come in two flavours:

- 1. Context-free grammars where we can replace any occurrence of <T> by w if <T $> <math>\rightarrow w$ is one of our production rules.
- 2. Context-sensitive grammars only certain replacements of $\langle T \rangle$ by w are allowed, which are governed by the syntax of our language L.

The example we had was of a context-free grammar. We can now finally define context free-grammars.

Definition: A context-free grammar $(V, A, \langle s \rangle, P)$ consists of a finite set V, a subset \overline{A} of V, an element $\overline{\langle s \rangle}$ of $V \backslash A$, and a finite subset P of the Cartesian product $V \backslash A \times V^*$.

 $\textbf{Notation:} \ (\underbrace{V}_{set\ of\ terminals\ and\ non\ terminals}, \underbrace{A}_{set\ of\ terminals}, \underbrace{s>}_{start\ symbol}, \underbrace{P}_{set\ of\ production\ rules})$

Example: $A = \{0, 1\}$; start symbol $\langle s \rangle$; 3 production rules given by:

- 1. $< s > \to 0 < s > 1$
- $2. \langle s \rangle \rightarrow 01$
- 3. $< s > \rightarrow 0011$

We notice here that the word 0011 can be generated in 2 ways in this context free grammar:

By rule 3,
$$\langle s \rangle \rightarrow 0011$$
 so $\langle s \rangle \Rightarrow 0011$

By rule 1, <s $> \rightarrow 0<$ s>1 and by rule 2, 0<s>1 $\rightarrow 0011$. Therefore, <s $> \Rightarrow 0<$ s>1 $\Rightarrow 0011$.

Definition: A grammar is called <u>ambiguous</u> if it generates the same string in more than one way.

Obviously, we prefer to have unambiguous grammars, else we waste computer operations.

Next, we need to spell out how words <u>relate</u> to each other in the production of our language via the grammar:

Definition: Let w' and w" be words over the alphabet $V = \{\text{terminals}, \text{non-terminals}\}$. We say that $\underline{w'}$ directly yields $\underline{w''}$ if \exists words u and v over the alphabet V and a production rule $\langle T \rangle \rightarrow w$ of the grammar s.t. $w' = u \langle T \rangle v$ and w'' = uwv, where either or both of the words u and v may be the empty word.

In other words, w' directly yields $w" \Leftrightarrow \exists$ production rule <T $> \rightarrow w$ in the grammar s.t. w" may be obtained from w' by replacing a simple occurrence of the nonterminal <T> within the word w' by the word w.

Notation: w' directly yields w" is denoted by $w' \Rightarrow w$ "

Definition: Let w' and w" be words over the alphabet V. We say that w' yields w" if either w' = w" or else \exists words $w_0, w_1, ... w_n$ over the alphabet V s.t. $w_0 = w', w_n = w'', w_{i-1} \Rightarrow w_i$ for all $i, 1 \le i \le n$. In other words, $w_0 \Rightarrow w_1 \Rightarrow w_2 \Rightarrow ... \Rightarrow w_{n-1} \Rightarrow w_n$

Notation: w' yields w" is denotes by $w' \stackrel{*}{\Rightarrow} w$ ".

Definition: Let $(V, A, \langle s \rangle, P)$ be a context-free grammar. The <u>language</u> generated by this grammar is the subset L or A^* defined by $L = \{w \in A^* \mid \langle s \rangle \stackrel{*}{\Rightarrow} w\}$

In other words, the language L generated by a context-free grammar $(V, A, \langle s \rangle, P)$ consists of the set of all finite strings consisting entirely of terminals that may be obtained from the start symbol $\langle s \rangle$ by applying a finite sequence of production rules of the grammar, where the application of one production rule causes one and only one nonterminal to be replaced by the string in V^* corresponding of the right-hand side of the production rule.

8.1 Phrase Structure Grammars

Definition: A phrase structure grammar (V, A < s >, P) consists of a finite set V, a subset A of V, an element < s > of $V \setminus A$, and a finite subset P of $(V^* \setminus A^*) \times V^*$

In a context-free grammar, the set of production rules $P \subset (V \setminus A) \times V^*$. In a phrase structure grammar, $P \subset (V^* \setminus A^*) \times V^*$. In other words, a production rule in a phrase structure grammar $r \to w$ has a left-hand side r that may contain more than one nonterminal. It is required to contain at least one nonterminal.

For example, if $A = \{0,1\}$ and <s> is the start symbol in a phrase structure grammar grammar, 0<s>0<s $>0 <math>\rightarrow$ 00010 would be an acceptable production rule in a phrase structure grammar but not in a context-free grammar.

The notions $w' \Rightarrow w$ " (w' directly yields w") and $w' \stackrel{*}{\Rightarrow} w$ " (w' yields w") are defined the same way as for context-free grammars except that our production rules may, of course, be more general as we saw in the example above.

Definition: Let (V, A < s >, P) be a phrase structure grammar. The language generated by this grammar is the subset L or A^* defined by $L = \{w \in A^* \mid <s > \stackrel{*}{\Rightarrow} w\}$

Remark: The term phrase structure grammars was introduced by Noam Chowsky.

Definition: A language L generated by a context-free grammar is called a context-free language.

We now want to understand a particularly important subclass of context-free languages called regular languages.

8.2 Regular Languages

Task: Understand when a language is regular and how regular languages are produced. Understand basics of automata theory.

History: The term regular language was introduced by Stephen Kleene in 1951.

A more descriptive name is finite-state language as we will see that a language is regular ⇔ it can be recognised by a finite state acceptor, which is a type of finite state machine.

The definition of a regular language is very abstract, though. First, describe what operations the collection of regular languages is closed under:

Let A be a finite set, and let A^* be the set of all words over the alphabet A. The regular languages over the alphabet A constitute the smallest collection C of subsets of A^* satisfying that:

1. All finite subsets of A^* belong to C.

- 2. C is closed under the Kleene start operation (if $M \subseteq A^*$ is inside C, i.e. $M \in C$, then $M^* \in C$)
- 3. C is closed under concatenation (if $M \subseteq A^*, N \subseteq A^*$ satisfy that $M \in C$ and $N \in C$, then $M \circ N \in C$)
 - 4. C is closed under union (if $M \subseteq A^*$ and $N \subseteq A^*$ satisfy that $M \in C$ and $N \in \mathbb{C}$, then $M \cup N \in \mathbb{C}$)
- **Definition:** Let A be a finite set, and let A^* be the set of words over the alphabet A. A subset L of A^* is called a regular language over the alphabet A is $L = L_m$ for some finite sequence $L_1, L_2, ..., L_m$ of subsets of A^* with

the property that $\forall i, 1 \leq i \leq m, L_i$ satisfies one of the following:

1. L_i is a finite set

 $\mathbb{N}, n > 0$

- 2. $L_i = L_j^*$ for some $j, 1 \leq j < i$ (the Klenne star operation applied to one of the previous $L_i's$)
- 3. $L_i = L_j \circ L_k$ for some j, k such that $1 \leq j, k < i$ (L_i is a concatenation of previous $L_i's$)
- 4. $L_i = L_j \cup L_k$ for some j, k such that $1 \leq k, j < i$ (L_i is a union of previous $L_i's$)
- L is a regular language. Note that L consists of all strings of first 0's, then 1's or the empty string ε . 0^m1^n stands for m 0's followed by n 1's, **i.e.** $0^m \circ 1^n$. Let us examine $L' = \{0^m \mid m \in \mathbb{N}, m \geq 0\}$ and $L'' = \{1^n \mid n \in \mathbb{N}, m \geq 0\}$
- **Q:** Can we obtain them via operatons listed among 1-4?
- **A:** Yes! Let $M = \{0\}$

Example 1: Let $A = \{0, 1\}$. Let $L = \{0^m 1^n \mid m, n \in \mathbb{N} \mid m \ge 0, n \ge 0\}$

- 0}. Let $N = \{1\}$ $N \subseteq A \subseteq A^*$ and $N^* = L'' = \{1^n \mid n \in \mathbb{N}, n \ge 0\}$. In other words, we can do $L_1 = \{0\}, L_2 = \{1\}, L_3 = L_1^*, L_4 = L_2^*, L_5 = \{1\}, L_4 = L_2^*, L_5 = \{1\}, L_5 = \{1\}, L_6 = \{1\}, L_7 = \{1\}, L_8 = L_1^*, L_8 = L_2^*, L_8 = \{1\}, L_8 = L_1^*, L_8 = L_2^*, L_8 =$ $L_3 \circ L_4 = L$. Therefore, L is a regular language.
- **Example 2** Let $A = \{0,1\}$. Let $L = \{0^m 1^m \mid m \in \mathbb{N}, m \ge 1\}$. L is the language we used as an example earlier. It turns out L is NOT regular. This language consists of strings of 0's followed by an equal number of

strings of 1's. For a machine to decide that the string 0^m1^m is inside the language, it must store the number of 1's, as it examines the number of 0's or vice versa. The number of strings of the type 0^m1^m is not finite, however, so a finite-state machine cannot recognise this language.