

Microelectronic Systems

DLX Microprocessor: Design & Development Final Project Report

Master degree in Computer Engineering Master degree in Electronics Engineering

Referents: Prof. Mariagrazia Graziano, Giovanna Turvani

Authors: group_16

Battilana Matteo, La Greca Salvatore Gabriele, Pollo Giovanni

Feature

- Frequency - Slack - Area - Ecc

 $Grandes\ nacelles:$

- Nacelle A318 PW
- \bullet Inverseur A320 CFM
- Inverseur A340 CFM
- Nacelle A340 TRENT
- Inverseur A330 TRENT
- $\bullet\,$ Nacelles A380 TRENT900
- Nacelles A380 GP7200

Petites nacelles:

- Nacelle SAAB2000
- Inverseur DC8
- Inverseur CF34-8
- Inverseur BR710
- Nacelle F7X

Contents

Fe	eatur	re	j
1	Intr	roduction	1
	1.1	Abstract	1
	1.2	Workflow	1
2	Har	rdware Architecture	2
	2.1	Overview	2
	2.2	Pipeline Stages	2
	2.3	Control Unit	2
	2.4	Memories Interface	2
	2.5	Instruction Set	2
3	Fete	ch Stage	3
	3.1	Instruction Register	3
	3.2	Program Counter	3
	3.3	Jump and Branch Management	3
4	Dec	code Stage	4
	4.1	Instruction Decode	4
	4.2	Register File and Windowing	4
	4.3	Hazard Control	4
	4.4	Comparator	4
	4.5	Jump and Branch decision	4
	4.6	Next Program Counter computation	4
5	Exe	ecute Stage	5
	5.1	ALU: Arithmetic Logic Unit	5
		5.1.1 Adder	5
		5.1.2 Multiplier	5
		5.1.3 Logic Operands	5
		5.1.4 Shifting	5
	5.2	Set-Like Operations unit	5
6	Me	mory Stage	6
	6.1	Load-Store Unit	6
	6.2	Address Mask Unit	6
7	Wri	ite Back Stage	7

8	Testing and Verification		
	8.1 Test Benches		
	8.2 Simulation		
	8.3 Post Synthesis Simulation		
9	Physical Design		
	9.1 Synthesis		
	· ·		

Listings

Introduction

1.1 Abstract

1.2 Workflow

- Workflow used - git / github / pair programming

Hardware Architecture

2.1 Overview

Figure 2.1: Schematic of the DLX

- 2.2 Pipeline Stages
- 2.3 Control Unit
- 2.4 Memories Interface
- 2.5 Instruction Set

Fetch Stage

- 3.1 Instruction Register
- 3.2 Program Counter
- 3.3 Jump and Branch Management

Decode Stage

- 4.1 Instruction Decode
- 4.2 Register File and Windowing
- 4.3 Hazard Control
- 4.4 Comparator
- Unsigned things
- 4.5 Jump and Branch decision
- 4.6 Next Program Counter computation

Execute Stage

- 5.1 ALU: Arithmetic Logic Unit
- **5.1.1** Adder
- 5.1.2 Multiplier
- 5.1.3 Logic Operands
- 5.1.4 Shifting
- 5.2 Set-Like Operations unit

- setcmp

Memory Stage

- 6.1 Load-Store Unit
- Unsigned things
- 6.2 Address Mask Unit

Write Back Stage

Mux selects from Memory Output (LoadStore Unit) or ALU output. Signal to enable register file write. Registers to delay the write register address

Testing and Verification

- 8.1 Test Benches
- 8.2 Simulation
- 8.3 Post Synthesis Simulation

Physical Design

- 9.1 Synthesis
- 9.2 Place and Route

Conclusions