Density functional theory in practice 2/2

 How to simulate non-periodic systems (surfaces, molecules, amorphous, etc..)

Structural optimization

- Example 1: Want to study properties of a system with a surface.
- Presence of surface ⇒ No periodicity along z.

- Example 1: Want to study properties of a system with a surface.
- Presence of surface ⇒ No periodicity along z.
- Use a supercell: artificial periodicity along z by repeating slabs separated by vacuum.
- Have to check convergence w.r.t. slab thickness & vacuum thickness.

 Example 2: Want to study properties of a nanowire.

Example 3: Want to study properties of a cluster

- Example 2: Want to study properties of a nanowire introduce artificial periodicity along y & z
- Example 3: Want to study properties of a cluster \Rightarrow introduce artificial periodicity along x, y & z

 Example 4: Want to study a system with a defect, e.g., a vacancy or impurity:

 Example 4: Want to study a system with a defect, e.g., a vacancy or impurity:

<u>Example 5</u>: Want to study an amorphous or quasicrystalline system.

 Example 5: Want to study an amorphous or quasicrystalline system: approximate by a periodic system (with large unit cell).

Artificially Periodic Systems \Rightarrow Large Unit Cells

Note: In all these cases, to minimize the effects of the artificially introduced periodicity, need a large unit cell.

Long \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 (primitive lattice vectors)

- Short **b**₁, **b**₂, **b**₃ (primitive reciprocal lattice vectors)
- Many G's will fall within E_{cut} sphere!

Structure optimization

The king of structure optimization

Among the highlights are the discovery of the structure of a superhard phase of boron, gamma-B, transparent phase of sodium, new carbon allotrope, stability of MgSiO3 post-perovskite in the Earth's mantle, prediction and synthesis of "forbidden" compounds (e.g., Na3Cl), discovery of helium chemistry, and creation of borophene - a 2D-monolayer of boron atoms, with great promises for future technologies

see wiki for references.

Why you will not be as successful as Artem Organov

Forces

- Need for geometry optimization and molecular dynamics.
- Could get as finite differences of total energy too expensive!
- Use force (Hellmann-Feynman) theorem:
 - Want to calculate the force on ion *I*:

$$\mathbf{F}_I = -\frac{d}{d\mathbf{R}_I} \langle \Psi | H | \Psi \rangle$$

- Get three terms:

$$\mathbf{F}_{I} = -\langle \Psi | \frac{\partial H}{\partial \mathbf{R}_{I}} | \Psi \rangle - \langle \frac{\partial \Psi}{\partial \mathbf{R}_{I}} | H | \Psi \rangle - \langle \Psi | H | \frac{\partial \Psi}{\partial \mathbf{R}_{I}} \rangle$$

When $|\Psi\rangle$ is an eigenstate, $H|\Psi\rangle=E|\Psi\rangle$

-Substitute this...

Forces (contd.)

The force is now given by

$$\mathbf{F}_{I} = -\langle \Psi | \frac{\partial H}{\partial \mathbf{R}_{I}} | \Psi \rangle - E \langle \frac{\partial \Psi}{\partial \mathbf{R}_{I}} | \Psi \rangle - E \langle \Psi | \frac{\partial \Psi}{\partial \mathbf{R}_{I}} \rangle$$
$$= -\langle \Psi | \frac{\partial H}{\partial \mathbf{R}_{I}} | \Psi \rangle - E \frac{\partial}{\partial \mathbf{R}_{I}} \langle \Psi | \Psi \rangle$$

- Note that we can now calculate the force from a calculation at ONE configuration alone – huge savings in time.
- If the basis depends upon ionic positions (not true for plane waves), would have extra terms = Pulay forces.
- $|\Psi\rangle$ should be exact eigenstate, i.e., scf well-converged!

Input parameter tprnfor

An Outer Loop: Ionic Relaxation

Geometry Optimization With Forces

 Especially useful for optimizing internal degrees of freedom, surface relaxation, etc.

calculation = 'relax'

Choice of algorithms for ionic relaxation, e.g., steepest descent, BFGS.

NAMELIST & IONS

Input parameter ion_dynamics

Structural relaxation

```
&control
  calculation= 'relax',
  prefix='silicon',
  pseudo dir='./'
  outdir = './'.
&system
  ibrav= 2.
  celldm(1) = 10.2,
  nat= 2.
  ntyp=1,
  ecutwfc = 12.0.
&electrons
&ions -
 ions dynamics='damp' or 'BFGS'
ATOMIC SPECIES
Si 28.086 Si.vbc.UPF
ATOMIC POSITIONS {crystal}
Si 0.00 0.00 0.00
Si 0.25 0.25 0.25
K POINTS automatic
222000
```

New calculation type

New namelist

Optimization methods for finding minimum energy paths J. Chem. Phys. 128, 134106 (2008)

CO molecule tutorial

Structure optimization of CO molecule

```
Tutorial files: on Dropbox
```

didatticaSdM (1)/EsercitazioneDFT_2017-2018/DFT-2017-2018/

Go to the CO/CO_relax folder

Run pw.x < co.optimize> output_optimize &

Visualize output with

xcrysden -pwo output_optimize

Extract energies from output

grep "! total energy" > tot_energy

Bond length and HOMO-LUMO

Bond length vs Ecut: CO/CO_relax/run_ecut

Bond length vs cell-size: CO/CO_cellsize/run_cellsize

- 1) Extract bond-length from output
- 2) Plot bond length vs Ecut and cell-size

HOMO and LUMO: CO/CO_HomoLumo

3) Which atom is positive charged?

Binding Energy of CO

Binding energy folder: CO/CO_binding

Calculate the energy of CO then subtract the C and O energy

1) Is the CO molecule stable?