Binôme 1 :	CON	MPTE RENDU - TP N°4	Date
Binôme 2 :	-	INTERROGATION -	28/11/2013
Nom du répertoire :			
DRAGON Document de référence : Travaillez dans un dossier		teur DRAGON-VERSION4	
1/ jdd A - Contre-	éactions	du Cœur REP RZ (rep2D.d)	
<u>Consignes</u>			
du fichier de jdd à calculer courant. Lancer le jdd « rep2D.d »	qui doit être	N est un alias : « ./dragon.sh <jddfile> », où</jddfile> impérativement contenu dans un dossier nom ours4/dragon/data/rep2D.d	
Questions	Répo	<u>onses</u>	
Quel est le Keff obtenu ?			
Dessinez la géométrie modélisée. Indiquez en particulier sur schéma : • Les dimensions er faisant apparaitre maillage • Le nom des milieu	le		

COMPTE RENDU - TP N°4

- INTERROGATION -

Binôme 2:

Nom du répertoire :

Date

28/11/2013

Consignes

Les milieux combustible et absorbant de ce cœur sont des milieux homogénéisés relatif à la cellule de rep900 étudiée aux TP n°2 et n°3.

La densité du modérateur de la **cellule hétérogène** est donnée pour plusieurs températures :

T (°C)	d (kg/m³)	Concentration	ıs (10 ²⁴ at/cm³)
1 (C)	d_{mod} (kg/m 3)	[H]	[0]
308	710	4,7508E-02	2,3754E-02
318	685	4,5835E-02	2,2918E-02

La densité du modérateur du jdd fourni correspond à la température de 308°C.

Afin d'étudier la contre – réaction Modérateur du cœur, il est nécessaire de faire varier la concentration du modérateur du milieu homogénéisé.

Les fractions volumiques des milieux sont

• Pour le milieu combustible:

	fraction volumique
Pastille	33,26%
Gaine	11,02%
Eau (308°C)	54,41%

Pour le milieu absorbant:

	fraction volumique
B4C	27,62%
Eau (308°C)	72,38%

Créez un jdd identiques au jdd A à l'exception de la température (et donc de la densité) du modérateur:

• avec une température de modérateur à 318°C (nommez le rep2D.mod_318.d)

<u>ATTENTION</u> : la concentration de [O16] cumule les atomes d'oxygène issus du combustible et ceux issus du modérateur.

COMPTE RENDU - TP N°4

Binôme 2:

- INTERROGATION -

Date

28/11/2013

Nom du répertoire :

	Г				
<u>Questions</u>	Réponses	<u>s</u>			
Ecrivez les formules régissan les concentrations en atome d'oxygène et d'hydrogène da le milieu homogénéisé combustible					
Renseignez les valeurs de					
concentrations en atome d'oxygène et d'hydrogène da	ns	T (°C)	d_{mod} (kg/m³)	Concentrat [H]	ions (10 ²⁴ at/cm ³) [O]
le milieu homogénéisé combustible	3	318	685		
	:	308	710		
Ecrivez les formules régissan les concentrations en atome d'oxygène et d'hydrogène da le milieu homogénéisé absorbant					
Renseignez les valeurs de	_				
concentrations en atome d'oxygène et d'hydrogène da	ns	T (°C)	d_{mod} (kg/m³)	Concentrat [H]	ions (10 ²⁴ at/cm ³) [O]
le milieu homogénéisé absorbant		318	685		
		308	710		
Quels sont les Keff obtenus ?			Nom du fichier	Keff	
			rep2D.mod_318.	d	
Explicitez la formule de calculet calculez le coefficient Modérateur du cœur dans le deux unités usuelles : • (\Delta k/k)/(g/cm^3) • pcm/°C Comparez ce coefficient avec celui de la cellule combustible (cf. tp n°2)	5				

Binôme 1 :		COMPTE	RENDU - 7	rd No4			Date
Binôme 2 :		- IN I EI	RROGATIO	JN -		28	3/11/2013
Nom du répertoire :							
<u>Consignes</u>							
Efficacité du BORE							
Créez deux jdd identique modérateur du milieu co • de 10 ppm (nom Il n'est pas nécessaire de proportion.	mbustib mez le r rajoutei	ole uniquement : ep2D.bore_p10.dr r du bore dans le	i) milieu absorbant	car ce derni			
<u>Questions</u>		Réponses					
Ecrivez les formules régis les concentrations en ato B10 et de B11 dans le mi homogénéisé combustib fonction de la concentrat ppm de bore dans le modérateur de la cellule combustible hétérogène	ome de lieu l e en						
Renseignez les valeurs de concentrations en atome B10 et de B11 dans le mi	de		Concentration de bore dans	Concentra	ations ((10 ²⁴ at/cm ³)	
homogénéisé combustib			le modérateur en ppm	[B10]		[B11]	
Quel est le Keff obtenu ?							
			Nom du fich		Keff		
Explicitez la formule de ce et calculez l'efficacité différentielle du bore dar cellule en pcm/ppm. Comparez ce coefficient a	ns la						

celui de la cellule combustible

(cf. tp n°2)

COMPTE RENDU - TP N°4

Binôme 2:

- INTERROGATION -

Date

28/11/2013

Nom du répertoire :

2/jdd B - Modélisation du cœur de SPX (spx2D.d)

Consignes

L'homogénéisation spatiale consiste à définir un milieu homogène dans lequel les quantités isotopiques sont respectées. Pour chaque isotope, la « densité homogénéisée » équivalente est :

$$[i]_{hom} = \frac{\int_{Cellule} [i] dV}{V_{Cellule}}$$

Ci-dessous la géométrie d'une cellule **combustible** SuperPhénix:

	Géo		
cellule hexagonale	coté	0,56	cm
pastille	rayon	0,3685	cm
gaine	rayon	0,42926	cm

Ci-dessous la composition d'une cellule **combustible** SuperPhénix simplifiée:

isotope	GENER	ATION DRAG (10 ²⁴ at/cm ³)	
	Pastille	Gaine	Sodium (0°C)
'Pu239'	2,5000E-03		
'U238'	1,7000E-02		
'016'	3,9000E-02		
'Fe56'		5,0000E-02	
'Na23'			2,3096E-02

Homogénéisez cette cellule combustible

Questions Réponses Quel sont les fractions volumiques de chaque région ? Région Fraction volumique Pastille Gaine Sodium (0°C) Sodium (0°C)

COMPTE RENDU - TP N°4

Binôme 2 :

- INTERROGATION -

Date 28/11/2013

Nom du répertoire :

Quel sont les concentrations des isotopes de la cellule homogénéisée ?

isotope	GENERATION DRAGON FILE (10 ²⁴ at/cm³)
	Milieu homogène
'Pu239'	
'U238'	
'016'	
'Fe56'	
'Na23'	

Consignes

Ci-dessous la géométrie d'une cellule <u>absorbante</u> de B4C:

	Géo		
cellule hexagonale	coté	0,56	cm
Pastille B4C	rayon	0,370	cm

Ci-dessous la composition d'une cellule absorbante de B4C:

Milieu	isotope	Concentration (10 ²⁴ at/cm ³)
D 1111 -	'B10'	1,5453E-02
Pastille B4C	'B11'	6,2200E-02
D4C	'C0'	1,9391E-02
Sodium	'Na23'	4,7508E-02

Homogénéisez cette cellule absorbante

<u>Questions</u>	<u>Réponses</u>			
Quel sont les fractions				
volumiques de chaque région ?	Région		Fraction volumique	
	Pastille B4C			
	Sodium			
Quel sont les concentrations	OF!!	ISOT	COMPO (40034 + 1 + + 2)	
des isotopes de la cellule	CELL.	ISOT.	COMPO (10^24at/cm3)	
homogénéisée ?		'B10'		
nomogeneisee .	POISON	'B11'		
	POISON	'C0'		
		(1) 22/		
		'Na23'		

Binôme 1 : COMPTE RENDU - TP N°4 Binôme 2 : - INTERROGATION - 28/11/2013 Nom du répertoire : Consignes

Consignes

En vous inspirant des jdd déjà étudiés auparavant, construisez un jdd dragon nommé « spx2D.d » dans lequel sont définis ces deux milieux homogénéisés.

A l'aide du manuel Dragon, ajoutez dans ce jdd la définition de la géométrie suivante « grappes à mi-cœur »:

Enfin, ajoutez les éléments de résolution du flux selon une méthode SN

<u>Questions</u>	<u>Réponses</u>			
Quel est le Keff obtenu ? - Barres à mi-cœur (enfoncées de 50 cm) - Barres en haut du cœur	Config. Barres à mi-cœur	Nom du fichier spx2D.d	Keff	
	Barres extraites	spx2D.TGE.d		

3/ Effets des grappes

Consignes

Le **poids d'une barre** est défini par la différence de réactivité entre l'état « barre extraite » et l'état « barre insérée» :

 $\rho_{grappe} = \rho_{grappe\ en\ haut\ du\ coeur} - \rho_{grappe\ en\ bas\ du\ coeur}$

Faites varier la position des rideaux de barres.

COMPTE RENDU - TP N°4

- INTERROGATION -

Date

28/11/2013

Nom du répertoire :

Binôme 2:

Questions Réponses

Quels sont les poids :

- Du rideau intérieur
- Du rideau extérieur
- Des deux rideaux

Config.	Nom du fichier	Poids
Rideau int.		
Rideau ext.		
2 rideaux		

Commentez l'effet d'ombre.

Quel est la courbe d'insertion en antiréactivité du rideau intérieur lorsque le rideau extérieur est à mi-hauteur (enfoncé de 50 cm) ? Tracez-la et commentez-là.

z (cm)	Nom du fichier	$ ho_{grappe}(z)$
0.		
10.		
20.		
30.		
40.		
50.		
60.		
70.		
80.		
90.		

