Potencial elétrico

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

- Potencial elétrico
- Potencial e campo elétrico
- Potencial de alguns objetos não puntuais
- **Apêndice**

Prof. Flaviano W. Fernandes IFPR-Irati

Trabalho realizado pela forca elétrica

Supondo duas cargas Q e q no espaço, a força \vec{F} entre elas é dado pela lei de Coulomb,

$$F=Krac{Qq}{r^2}.$$

O trabalho necessário para trazer a carga q do ponto A ao ponto B é igual a diferenca de energia potencial entre esses pontos.

$$au_{AB} = U_A - U_B$$
.

Carga q se deslocando do ponto A até B devido a forca \vec{F}_{qQ} .

Energia potencial elétrica

Pela relação de trabalho e força

$$\tau = F \Delta r$$
,

onde Δr é o deslocamento realizado por q de A até B, $\Delta r = r_A - r_B$. Assim

$$\tau \Rightarrow F_A r_A - F_B r_B$$
.

Se $F = K \frac{Qq}{r^2}$, substituímos acima

$$\tau \Rightarrow \left(\frac{\mathit{KQq}}{\mathit{Y}_{A}^{2}}\right)(\mathit{Y}_{A}) - \left(\frac{\mathit{KQq}}{\mathit{Y}_{B}^{2}}\right)(\mathit{Y}_{B})\,,$$

$$\tau \Rightarrow \frac{\textit{KQq}}{\textit{r}_{\textit{A}}} - \frac{\textit{KQq}}{\textit{r}_{\textit{B}}}.$$

Definimos U_A a energia potencial no ponto A e U_B a energia no ponto B,

$$\tau = U_A - U_B = \frac{KQq}{r_A} - \frac{KQq}{r_B},$$

Chegando assim na energia potencial

$$U(r) = K \frac{Qq}{r}.$$

Prof. Flaviano W. Fernandes

IFPR-Irati

Diferenca de potencial

Supondo um conjunto de carga elétrica q, o trabalho necessário para deslocar do ponto A até B cada portador de carga elementar dividimos o trabalho total pela quantidade de carga elétrica q

$$V_{AB}=rac{ au_{AB}}{q}.$$

Vimos anteriormente que $\tau_{AB} = U_A - U_B$,

$$V_{AB}=rac{U_{AB}}{q},$$

mas $U = K \frac{Qq}{r}$, portanto

$$V_{AB} = \frac{KQ}{Qr_A}Q - \frac{KQ}{Qr_B}Q,$$

$$V_{AB} = K \frac{Q}{r_A} - K \frac{Q}{r_B}.$$

Diferença de potencial (d.d.p.)

Trabalho necessário para deslocar cada carga elementar de um ponto a outro.

Prof. Flaviano W. Fernandes IFPR-Irati

Potencial elétrico

Se trouxermos a carga elementar do infinito até o ponto A teremos

$$V_A - V(\infty) = K \frac{Q}{r_A} - K \frac{Q}{r \to \infty},$$

$$V_A = K \frac{Q}{r_A}.$$

Carga q se deslocando do infinito até o ponto A.

Potencial elétrico

Trabalho necessário para trazer uma carga elementar do infinito até o ponto A.

Corollary

A unidade de medida do potencial elétrico no SI é Volt (V).

Prof. Flaviano W. Fernandes IFPR-Irati

Potencial elétrico versus posição de uma carga puntiforme

O potencial elétrico de uma carga puntiforme é uma função hiperbólica que depende do sinal da carga elétrica.

Potencial elétrico de uma carga Q positiva.

Potencial elétrico de uma carga Q negativa.

Campo de várias cargas puntuais

Ao contrário do campo elétrico, para calcular o potencial elétrico em um ponto no espaço devido a uma distribuição de cargas, usamos a soma algébrica ao invés da soma vetorial, pois o potencial elétrico é uma grandeza escalar,

$$V_P = V_1 + V_2 + V_3 + V_4,$$
 $V_P = \sum_{i=1}^{4} V_i.$

Quatro cargas puntiformes e suas distâncias relativas em relação ao ponto P.

Relação entre campo elétrico e potencial

Para exemplificar a relação entre campo e potencial elétrico usamos duas placas paralelas carregadas eletricamente, de modo a ter um campo elétrico \vec{E} uniforme no interior dessa placa. Se colocarmos uma carga elétrica em A, o trabalho necessário para deslocá-lo até B é dado por

$$au_{AB} = qV_{AB}$$
.

E o trabalho é força F vezes deslocamento d, portanto

$$au_{AB} = Fd = qV_{AB}$$
.

Linhas de campo elétrico entre duas placas eletrizadas com cargas de sinais contrários.

Superfícies equipotenciais

Pela lei de Coulomb sabemos que a forca elétrica é dado por F = qE, onde E é o campo elétrico entre as placas, assim

$$abla Ed = aV_{AB},$$

$$V_{AB} = Ed.$$

$$V_{AB} = Ed$$
.

A ligação entre pontos que possuem o mesmo potencial elétrico forma uma superfície chamada superfície equipotencial.

Superfícies equipotenciais (linhas tracejadas) e campo elétrico entre placas carregadas eletricamente.

Características de uma superfície equipotencial

As características de uma superfície equipotencial são:

- ✓ Perpendicular ao campo elétrico;
- ✓ A d.d.p. é diferente de zero entre duas superfícies;
- ✓ A d.d.p. é zero entre dois pontos da mesma superfície;
- Uma carga elétrica irá se deslocar entre superfícies equipotenciais diferentes, ao invés de pontos na mesma superfície.

Superfícies equipotenciais (linhas tracejadas) e campo elétrico entre placas carregadas eletricamente.

Superfícies equipotencais de cargas puntiformes

Potencial de uma esfera condutora eletrizada

Características do potencial elétrico de uma esfera condutora:

- ✓ Fora da esfera, ela se comporta como uma carga puntiforme;
- ✓ Dentro da esfera não há cargas e o campo elétrico é zero, portanto a d.d.p. é zero o potencial é constante;
- ✓ Na superfície da esfera $V = K\frac{Q}{R}$.

Campo elétrico de uma esfera condutora.

Potencial elétrico de uma esfera condutora.

Prof. Flaviano W. Fernandes

Potencial elétrico

Diferença de potencial e deslocamento de cargas no condutor

Se dois condutores estiverem em contato haverá transferência de cargas de um para outro até que o potencial de ambos se igualem.

Duas esferas condutoras (uma neutra e outra ele- Duas esferas condutoras após a eletrização por tricamente carregada).

Prof. Flaviano W. Fernandes IFPR-Irati

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	heta
lota	1	ι
Capa	K	κ
Lambda	٨	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Р	ρ
Sigma	Σ	σ
Tau	T	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.3, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereco https://flavianowilliams.github.io/education

Prof. Flaviano W. Fernandes IFPR-Irati

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.