0.1 Introduction

0.2 Characteristic Values

Definition 0.2.1: Characteristic Value and Vectors, Spaces

T: endo. on f.d.v.s V/F. A characteristic value of T is $c \in F$ s.t. $\exists \alpha \in V \setminus \{0\}$ s.t. $T\alpha = c\alpha$. This α is also called a characteristic vector of T associated to c. Also, $E_c := \{\alpha \in V \mid T\alpha = c\alpha\}$ is called the characteristic space of T associated to c.

Theorem 0.2.1

T: endo. on f.d.v.s. V/F. TFAE:

- i) *c* is a characteristic value of *T*
- ii) Operator T cI is singular (not invertible)
- iii) det(T cI) = 0

Proof. ii) \iff iii) is trivial. If i) holds, $\exists v \in V \setminus \{0\}$ $(Tv = cv) \Rightarrow (T - cI)v = 0$. Thus this is not injective, so singular. Thus i) \iff ii).

Definition 0.2.2: Characteristic Polynomials

 $f(x) := \det(xI - A) \in F[x]$ is called characteristic polynomial of T. Then f is monic with $\deg(f) = n$ for $n \times n$ mat. A and $\forall c$ which is characteristic values, f(c) = 0.

Exercise 0.2.1

Check the choice of basis doesn't affect the char. poly. of T.

Proof.
$$B := P^{-1}AP$$
. $\det(xI - B) = \det(xI - P^{-1}AP) = \det(P^{-1}(xI - A)P) = \det(xI - A)$.

Definition 0.2.3: Diagonalizable

T: endo. on f.d.v.s. V/F. If $\exists \mathfrak{B} = \{v_1, v_2, \dots, v_n\}$ s.t. each v_i are char. vec. of T, we say T is diagonalizable.

Note:-

 $[T]_{\mathfrak{B}} = \begin{bmatrix} c_1 & & \\ & \ddots & \\ & & c_n \end{bmatrix}$ with (may be) repititions. Then $[T]_{\mathfrak{B}}$ is diagonal mat. Further-

more, we can see $f(x) = \det(xI - [T]_{\mathfrak{B}})$ is decomposed complety into a product of linear factors.

Example 0.2.1

 $A: n \times n$ mat. on f.d.v.s. V/\mathbb{R} . If char. poly. has no real sol., then it is not diagonalizable.

1

Lemma 0.2.1

T: endo. on f.d.v.s. V/F. Suppose c_1, c_2, \ldots, c_k are all possible distinct char. values of Tand $W_i := \text{Null}(T - c_i I)$. Then $W := W_1 + \cdots + W_k \Rightarrow \dim(W) = \dim(W_1) + \cdots + \dim(W_k)$.

Proof. Trivially $\dim(W) \leq \dim(W_1) + \cdots + \dim(W_k)$. Thus we have to check \geq part. Suppose $\forall \beta_i \in W_i \ (\beta_1 + \dots + \beta_k = 0)$. We will show $\forall \beta_i = 0$. Suppose $\beta_1 + \beta_2 = 0$. Then $T\beta_1 + T\beta_2 = 0$ $c_1\beta_1+c_2\beta_2=0$. We can derive $(c_1-c_2)\beta_2=0$. Since $c_1\neq c_2$, $\beta_2=0$ thus $\beta_1=0$. Inductively, we can derive $\forall \beta_i = 0$. Thus $\dim(W) = \dim(W_1) + \cdots + \dim(W_k)$.

Theorem 0.2.2

T: endo. on n-d.v.s. $V/F.\ c_1,c_2,\ldots,c_k$ are all possible distinct char. values of T and $W_i:=\text{Null}(T-c_iI).$ TFAE:

- i) T is diagonalizable
 ii) Char. poly. $p(x) = \prod_{i=1}^k (x c_i)^{d_i}$ where $d_i = \dim(W_i)$ iii) $d_1 + d_2 + \cdots + d_k = n = \dim(V)$

Proof. i) \Rightarrow ii): $\exists \bigcup_{i=1}^{k} \mathfrak{B}_{i}$, basis of V where each \mathfrak{B}_{i} are the part belonging to c_{i} . Then, $\operatorname{span}(\mathfrak{B}_i) = W_i$, $\dim(W_i) = d_i \Rightarrow p(x) = \prod_{i=1}^k (x - c_i)^{d_i}$ where $d_i = \dim(W_i)$.

- ii)⇒ iii): Trivial.
- iii) \Rightarrow i): $W_1 + \cdots + W_k = W \Rightarrow d_1 + \cdots + d_k = n$. Thus W = V. Thus V has a basis consisting of char. vec., so diagonalizable.

Annihilating Polynomials 0.3

T: endo. on n-d.v.s. V/F. p(x) as char. poly. of T, and m(x) as min. poly. of T. Ignoring multiplicities, p(x) and m(x) has same sol. in F.

Proof. $m(c) = 0 \Rightarrow m(x) = (x - c)q(x)$. m is minimal implies $q(T) \neq 0$. Thus $\exists \beta \in V$ s.t. $q(T)\beta \neq 0$. This leads $(T-cI)q(T)\beta = 0$ since $(T-cI)q(T)\beta = m(T)\beta = 0\beta$. Thus $q(T)\beta$ is char. vec., which leads c as a char. value of T, so p(c) = 0.

Now if p(c) = 0, $\exists \alpha \in V \setminus \{0\}$ s.t. $T\alpha = c\alpha$. Thus $T^n \alpha = c^n \alpha$. So for any poly. $f(x) \in F[x]$, $f(T)\alpha = f(c)\alpha$. In particular, $m(T)\alpha = m(c)\alpha \Rightarrow m(c)\alpha = 0\alpha \Rightarrow m(c) = 0$.

Corollary 0.3.1

$$p(x) = \prod_{i=1}^{k} (x - c_i)^{d_i} \Rightarrow m(x) = \prod_{i=1}^{k} (x - c_i)^{r_i} \text{ where } 1 \le r_i \le d_i.$$

Theorem 0.3.2 Cayley-Hamilton

T: endo. on n-d.v.s. V/F. p(x) as char. poly. of T. Then p(T) = 0. In particular,

Proof. $K := \{h(T) \mid h(x) \in F[x]\}$ be image of $ev_T : F[x] \to L(v, v)$. Let $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$ be a basis of V. $A := [T]_{\mathfrak{B}}$ so that $T\alpha_i = \sum_{j=1}^n A_{ji}\alpha_j$ $(i \in [n]) \Rightarrow \sum_{j=1}^n (\delta_{ij}T - A_{ji}I)\alpha_j =$ 0. Then $B := [B_{ij}]$ where $B_{ij} := (\delta_{ij}T - A_{ji}I)$. We know $adj(B) \cdot B = B \cdot adj(B) = det(B)I$. By construction, $\sum_{j=1}^{n} B_{ij} \alpha_j = 0 \Rightarrow \sum_{j=1}^{n} \operatorname{adj}(B)_{ki} B_{ij} \alpha_j = 0$. Taking sums over i leads 0 = 0 $\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{adj}(B)_{ki} B_{ij} \alpha_{j} = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \operatorname{adj}(B)_{ki} B_{ij} \right) \alpha_{j} = \sum_{j=1}^{n} \delta_{kj} \operatorname{det}(B) \alpha_{j} = \operatorname{det}(B) \alpha_{k}. \text{ Since } \{\alpha_{1}, \ldots, \alpha_{n}\} \text{ is basis, } \operatorname{det}(B) = 0, \text{ which is char. poly. of } T.$

Invariant Subspaces 0.4

Theorem 0.4.1

T : endo. on f.d.v.s. V/F . c_1,c_2,\ldots,c_k are all possible distinct char. values of T . Then Tis diagonalizable $\iff m(x) = (x - c_1)(x - c_2) \cdots (x - c_k)$.

Proof. Only for (\Rightarrow) here: Let f(x) be a char. poly. of T. Then m(x)|f(x). Thus m(x)= $(x-c_1)^{e_1}(x-c_2)^{e_2}\cdots(x-c_k)^{e_k}$.

Claim 0.4.1
$$(T - c_1 I)(T - c_2 I) \cdots (T - c_k I) = 0$$

Proof. Since T is diagonalizable, it has a basis $\{\alpha_1, \ldots, \alpha_n\}$ consisting of char. vec. Thus $T\alpha_i =$ $c_{i(j)}\alpha_i$ where $c_{i(j)} \in \{c_1, \ldots, c_k\}$. This leads $(T - c_{i(j)}I)\alpha_i = 0$. Take $S := (T - c_1I)\cdots(T - c_kI)$. Then for each $j \in [n]$, $S(\alpha_j) = 0$. since each α_i form basis, $\forall v \in V \ (S(v) = 0)$. Thus Claim 0.4.1 holds.

Oppisite of this proof is at Theorem 0.4.3.

Corollary 0.4.1

T: endo. on n-d.v.s. V/F. Suppose T has n distinct char. values. If $f(x) = \prod_{i=1}^{n} (x - c_i)$ where distinct c_i , then m(x) = f(x) thus it is diagonalizable.

Definition 0.4.1: *T*-Invariant Subspaces

T: endo. on n-d.v.s. V/F. Take subspace W. We say W is T-invariant or invariant under T if $T(W) \subset W$. If W is T-invariant, then T induces a endo. on W, denoted as $T|_{W}$.

$$\begin{array}{cccc} T: & V & \longrightarrow & V \\ & & \updownarrow & & \updownarrow \\ T|_W: & W & \longrightarrow & W \end{array}$$

Example 0.4.1

W = 0 is trivailly *T*-invariant. Also, char. space E_c is *T*-invariant.

Lemma 0.4.1

Suppose W is T-invariant. m(x) as min. poly. and f(x) as char. poly. of T. Then $m_W(x)|m(x)$ and $f_W(x)|f(x)$ for each restriction to W.

Proof. Choose a basis $\mathfrak{B}' = \{\alpha_1, \dots, \alpha_k\}$ of W and extend it to $\mathfrak{B} = \{\alpha_1, \dots, \alpha_k, \alpha_{k+1}, \dots, \alpha_n\}$ which is a basis of V. Since W is T-inv., $T\alpha_i \in \operatorname{span}\{\mathfrak{B}'\}$. So $A = [T]_{\mathfrak{B}} = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$ where $B = [T|_W]_{\mathfrak{B}'}$. Furthermore, $f(x) = \det(xI - A) = \det(xI - B) \cdot \det(xI - D)$. clearly, $f_W(x) \mid f(x)$. Note that $A^r = \begin{bmatrix} B^r & C_r \\ 0 & D^r \end{bmatrix}$. Therefore, $\forall p(x) \in F[x]$ (p(T) = 0), we can see $p_W(x) \mid p(x)$. Especially, $m_W(x) \mid m(x)$. □

Definition 0.4.2: *T***-Conductors**

T: endo. on f.d.v.s. V/F. W be T-inv. subspaces. Suppose $\alpha \in V$. We define T-conductor as $S_T(\alpha; W) := \{g(x) \in F[x] \mid g(T)\alpha \in W\}$.

Lemma 0.4.2

 $S_T(\alpha; W)$ is a nonzero ideal.

Proof. char. poly. f(x) satisfies $f(T) = 0 \in W \Rightarrow f(x) \in S_T(\alpha; W)$. Trivially it is closed. Also, since polynomials are commutative and W is T-inv., it satisfies properties of ideals.

Definition 0.4.3: T-Conductor as Generator

The unique monic poly. generator of $S_T(\alpha; W)$ is also often called the T-conductor of α to W.

Corollary 0.4.2

Min. poly. and char. poly. is in $S_T(\alpha; W)$, thus generator of that conductor divides both.

Definition 0.4.4: Triangulable

T: endo. on f.d.v.s. V/F. We say T is triangulable if V has a basis $\mathfrak B$ s.t. $[T]_{\mathfrak B}$ is an upper triangular mat.

Corollary 0.4.3

T is diagonalizable \Rightarrow *T* is triangulable.

Lemma 0.4.3

T: endo. on f.d.v.s. V/F. Suppose $m(x) = \prod_{i=1}^k (x-c_i)^{r_i}$ where c_i are all distinct and $r_i \ge 1$. If W is T-inv. subspace, then $\exists \alpha \in V \setminus W \ ((T-cI)\alpha \in W)$ for some char. value $c = c_i$.

Proof. Let $\beta \in V \setminus W$ and let g(x) be the min. T-conducting poly. taking β to W. Then $g(x) \mid m(x)$. Since $\beta \notin W$, $\deg(g(x)) \geq 1$. Then $g(x) = \prod_{i=1}^k (x-c_i)^{e_i}$ for $e_i \leq r_i$. since $\deg(g) \geq 1$, $\exists j \ (e_j \geq 1)$, so $(x-c_j) \mid g(x) \Rightarrow g(x) = (x-c_j)h(x)$. $\alpha := h(T)\beta$. This cannot be in W since g(x) is the min. deg. fellow in $S_T(\beta; W)$. But $(T-c_jI)\alpha = g(T)\beta \in W$. Thus $(x-c_j) = S_T(\alpha; W)$.

Theorem 0.4.2

T: endo. on n-d.v.s. V/F. T is triangulable $\iff m(x) = \prod_{i=1}^k (x-c_i)^{r_i}$ for $r_i \ge 1$.

Proof. (\Rightarrow): Since T is triangulable, $\exists \mathfrak{B}$ s.t. $[T]_{\mathfrak{B}}$ is triangular. Thus char. poly. $f(x) = \prod_{i=1}^k (x-c_i)^{e_i}$ for $\sum e_i = n$, $e_i \geq 1$ and distinct c_i . Since m(x)|f(x) our statement holds.

(\Leftarrow): Suppose $m(x) = \prod_{i=1}^k (x-c_i)^{r_i}$. We use the Lemma 0.4.3 repeatedly over different choices of W. Take W = 0 then $\exists \alpha_1 \in V \setminus W$ $((T-d_1)\alpha_1 = 0)$ for some d_1 . Take $W_1 = \text{span}\{\alpha_1\}$. Then $\exists \alpha_2 \in V \setminus W_1$ $((T-d_2)\alpha_2 = 0)$. Repeating this, we can derive $T\alpha_1 = d_1\alpha_1$, $T\alpha_2 = d_1\alpha_1$.

 $*\alpha_1 + d_2\alpha_2$, and so on, thus $[T]_{\{\alpha_1,...,\alpha_n\}} = \begin{bmatrix} d_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & d_k \end{bmatrix}$, which is upper triangular mat. \square

Theorem 0.4.3

T: endo. on n-d.v.s. V/F. T is diagonalizable $\iff m(x) = (x - c_1)(x - c_2) \cdots (x - c_k)$.

Proof. Forward is at Theorem 0.4.1. (\Leftarrow): Let $W \subset V$ be subspace spanned by all char. vec. Suppose $W \subsetneq V$ toward contradiction. Since $T\alpha = c\alpha$ for each char. vec. α of T, W is T-inv. So by Lemma 0.4.3, $\exists \alpha \in V \setminus W$ ($(T - c_j I)\alpha =: \beta \in W$). Note that $\beta \in W \setminus \{0\}$. So we can write $\beta = \beta_1 + \dots + \beta_k$ where $\beta_i \in E_{c_i}$. Here, $T\beta_i = c_i\beta_i$, and $T^k\beta_i = c_i^k\beta_i$. Thus $f(T)\beta = f(T)\beta_1 + \dots + f(T)\beta_k$. $m(x) := (x - c_j)h(x)$ where $h(x) = \prod_{i \neq j} (x - c_i)$. Clearly $h(c_j) \neq 0$. Consider $h(x) - h(c_j) = (x - c_j)q(x) \Rightarrow h(T)\alpha - h(c_j)\alpha = q(T)(T - c_j I)\alpha = q(T)\beta \in W$. Also, $m(T)\alpha = (T - c_j I)h(T)\alpha = 0 \Rightarrow h(T)\alpha \in E_{c_j} \subset W$. Thus $(h(T)\alpha \in W) \land (q(T)\beta \in W)$ implies $h(c_j)\alpha \in W$, so $h(c_j) = 0$. This is contradiction to the fact that min. poly. has distinct roots, so W = V, which means V has basis consisting of char. vec., and T is diagonalizable. \square

Corollary 0.4.4

If *F* is algebraically closed, then *T* is always triangulable.

0.5 Simultaneous Triangulation; Simultaneous Diagonalization

Definition 0.5.1: Commuting Family

 T_i : endo. on n-d.v.s. V/F. We say \mathscr{F} is a commuting family of endo. if $\forall T_i, T_j \in \mathscr{F}$ $(T_iT_j=T_jT_i)$.

Definition 0.5.2: *ℱ*-Invariant

If $\forall T_i \in \mathscr{F}$ (*W* is T_i -invariant), then we say *W* is \mathscr{F} -inv.

Lemma 0.5.1

Suppose \mathscr{F} is a commuting family of triangulable endo. Suppose $W \subsetneq V$, which is \mathscr{F} -inv. Then $\exists \alpha \in V \setminus W \ (\forall T_i \in \mathscr{F} \ ((T_i - cI)\alpha \in \operatorname{span}\{W, \alpha\}))$.

Proof. We may assume $\{T_1, \ldots, T_r\}$, a maximal lin. indep. subset of \mathscr{F} . Applying Lemma 0.4.3 to T_1 , $\exists \beta_1 \in V \setminus W \ \exists c_1 \in F \ ((T_1 - c_1 I)\beta_1 \in W)$. Let $V_1 = \{\beta \in V \mid (T_1 - c_1 I)\beta \in W\}$. $\beta_1 \in V_1$, so it is nonempty and $W \not\subseteq V_1 \subset V$. Here, by construction, V_1 is \mathscr{F} -inv. since $\forall T_i \in \mathscr{F} \ ((T_1 - c_1 I)T\beta = T(T_1 - c_1 I)\beta \in W)$.

Now, take $V_1 \subset V$ and let $U_2 := T_2|_{V_1}$. Applying Lemma 0.4.3 to $V_1 \setminus W$ and U_2 , $\exists \beta_2 \in V_1 \setminus W \ \exists c_2 \in F \ ((T_2 - c_2 I)\beta_2 \in W)$. So, $\beta_2 \notin W$, $(T_1 - c_1 I)\beta_2 \in W$, $(T_2 - c_2 I)\beta_2 \in W$. Take $V_2 = \{\beta \in V_1 \mid (T_2 - c_2 I)\beta \in W\}$. Then $(\beta_2 \notin W) \land (\beta_2 \in V_2)$. By repeating, we can get $W \subsetneq \cdots \subset V_1 \subset V$. Thus terminates in finite steps since $\dim(V) < \infty$.

Corollary 0.5.1

V: f.d.v.s./F and \mathscr{F} as comuuting family of triangulable endo. Then $\exists \mathfrak{B}$ s.t. $[T_i]_{\mathfrak{B}}$ are all upper triangular mat.

Proof. Exercise. Use our argument for a single operator and use Lemma 0.4.3 for commuting families.

Corollary 0.5.2

V: f.d.v.s./F and \mathscr{F} as comuuting family of diagonalizable endo. Then $\exists \mathfrak{B}$ s.t. $[T_i]_{\mathfrak{B}}$ are all diagonal mat.

Corollary 0.5.3

Suppoer F is algebraically closed and \mathcal{F} as commuting family of endo. Then \exists simultaneously triangulating basis.

0.6 Direct-Sum Decompositions

Definition 0.6.1: Independent

V: v.s./F. We say subspaces, just say W_i , are indep. if there common elements are just 0.

Definition 0.6.2: Internal Direct Sum

If $W = \sum_{i=1}^{k} W_i$ and each W_i are indep., then we say the sum is direct and we write it as $W = \bigoplus_{i=1}^{k} W_i$.

Exercise 0.6.1

If $W = \bigoplus_{i=1}^k$, then $\exists!$ expression of $w \in W$ w.r.t. each $w_i \in W_i$.

Definition 0.6.3: Projection

V: f.d.v.s./*F*. Supopose we have endo. $E: V \to V$ s.t. $E^2 = E$. Then we say *E* is a projection.

Example 0.6.1

 $V := V_1 \oplus V_2$. $P_1 : V \mapsto V_1$ and $P_2 : V \mapsto V_2$. Then those classical 'projection' is actually a projection we defined above.

Lemma 0.6.1

Let E be a projection. Then for $V := V_1 \oplus V_2$ and $P_1 : V \mapsto V_1$, E really is a classical 'projection', i.e., $E = P_1 : V \mapsto V_1$.

Proof. $V_1 := R(E), V_2 := N(E).$

Claim 0.6.1

$$V = V_1 \oplus V_2$$

Proof. Let $v \in V$. Then v = E(v) + v - E(v). $E(v) \in R(E)$. Also, $E(v - E(v)) = E(v) - E^2(v) = 0$, so $(v-E(v)) \in N(E)$. Thus V = R(E) + N(E). To show this is direct, suppose we have $v_1 + v_2 = 0$ for $(v_1 \in R(E)) \land (v_2 \in N(E))$. Then $v_1 = -v_2 \in R(E)$ and $\exists \alpha \in V \ (v_1 = R(\alpha))$. $E(v_1) = -E(v_2) = 0$ and $E(v_1) = E^2(\alpha) = E(\alpha) = v_1$. Since $E(v_1) = 0$, $v_1 = 0$. Thus $v_2 = 0$, which leads sum is direct.

Now if $v \in V_1 \oplus V_2$, write $v = v_1 + v_2$, then $E(v) = E(v_1) = v_1$. So $E = P_1$.

Theorem 0.6.1

V: f.d.v.s./F and $V = \bigoplus_{i=1}^k W_i$. Then $\exists E_i : V \mapsto W_i$ s.t.

i) Each E_i are projection

ii) $\forall i \neq j \ (E_i E_j = 0)$ iii) $I = \sum E_i$ iv) The range of E_i is W_i

Converse also holds. Furthermore, only i), ii), and iii) leads our theorem.

Proof. i), ii), and iv) are trivial by definition. For iii), take $\alpha \in V$. $\alpha = \sum E_i \alpha \Rightarrow I = \sum E_i$. Conversely, suppose we have E_i $i \in [k]$ s.t. they satisfy those first three conditions. We can take W_i as $R(E_i)$. Then, $V = W_1 + \cdots + W_k$. We have to show this is direct. By iii), we have $\alpha = \sum E_i \alpha$. This expression is unique since if $\alpha = \alpha_1 + \cdots + \alpha_k$ for $\alpha_i \in W_i$, then using i) and ii), we can derive $E_j \alpha = \sum_{i=1}^k E_j \alpha_i = E_j^2 \beta_j = E_j \beta_j = \alpha_j$ if we take $\alpha_i = E_i \beta_i$.

0.7 **Invariant Direct Sum**

T: endo. on n-d.v.s. V/F. $V=\bigoplus_{i=1}^k W_i$. Let $E_i:V\mapsto V$ be projection to W_i . Then W_i are T-inv. $\iff T$ commutes with E_i .

Proof. (\Leftarrow): Suppose T commutes with all E_i . Let $\alpha_i \in W_i = R(E_i)$. N.T.S. $T\alpha_i \in W_i$. We can write $\alpha_i = E_i \beta$. So $T \alpha_i = T E_i \beta = E_i T \beta$, which leads $T \alpha_i \in R(E_i) = W_i$. Since α_i was arbitrary element is W_i , W_i is T-inv.

(⇒): Let $\alpha \in V$. We can say $\alpha = v_1 + \cdots + v_k$ for each $v_i \in W_i$ uniquely. $W_i := R(E_i)$, so each $v_i = E_i(\alpha)$. So $\alpha = E_1(\alpha) \cdots + E_k(\alpha) \Rightarrow T\alpha = TE_1(\alpha) + \cdots TE_k(\alpha)$. Since $E_i(\alpha) \in W_i$ is T-inv., $T(E_i\alpha) = E_i(\beta_i) \in W_i \Rightarrow T\alpha = E_1(\beta_1) + \cdots + E_k(\beta_k)$. For $i \neq j$, $E_iTE_i\alpha = E_iE_i\beta_i = 0$. For i = j, $E_i T E_i \alpha = E_i \beta_i$. Thus $E_i T \alpha = E_i T E_1 \alpha + \dots + E_i T E_k \alpha = E_i \beta_i = T E_i \alpha$. Thus $E_i T = T E_i$ since α is arbitrary.

Theorem 0.7.2

T: endo. on n-d.v.s. V/F. If T is diagonalizable and if c_1, \ldots, c_k are the distinct char. values of T, then $\exists E_i$ on V s.t.

i)
$$T = c_1 E_1 + \dots + c_k E_k$$

ii)
$$I = \sum_{i} E_{i}$$

iii)
$$\forall i \neq j \ (E_i E_i = 0)$$

iv)
$$E_{i}^{2} = E_{i}$$

i) $T = c_1 E_1 + \dots + c_k E_k$ ii) $I = \sum E_i$ iii) $\forall i \neq j \ (E_i E_j = 0)$ iv) $E_i^2 = E_i$ v) The range of E_i is the char. space for T associated with c_i

Converse also holds. Furthermore, only i), ii), and iii) leads our theorem.

Proof. (\Rightarrow): Suppose diagonalizable with char. values c_i . $W_i := E_{c_i} = N(T - c_i I)$. Since T is diagonalizable, $V = \bigoplus_{i=1}^k W_i$. Thus ii)~v) are trivial. Now, $\alpha = \sum_{i=1}^k E_i \alpha \Rightarrow T\alpha = \sum_{i=1}^k TE_i \alpha = \sum_{i=1}^k T\alpha_i = \sum_{i=1}^k C_i \alpha_i = \sum_{i=1}^k C_i \alpha_i$. Since α is arbitrary, $T = \sum_{i=1}^k C_i E_i$.

(\Leftarrow): Using ii) and iii) to obtain iv). using i) and iv) to obtain $R(E_i)$ ⊂ $N(T-c_iI)$. Since we assumed $E_i \neq 0$, c_i is char. value of T. Take i) – $c \times ii$). Then $(T - cI) = (c_1 - c)E_1 + c$ $\cdots + (c_k - c)E_k$ so if $(T - cI)\alpha = 0$, we must have $(c_i - c)E_i\alpha = 0$. If $\alpha \neq 0$, then $E_i\alpha \neq 0$ for some i, so in this case, $c_i = c$. Certainly T is diagonalizable, since every nonzero vector in $R(E_i)$ is a char. vec. of T, and $I = \sum E_i$ shows these char. vec. span V. Now we have to show $N(T - c_i I) = R(E_i)$. This is clear since if $T\alpha = c_i \alpha$, then $\sum_{j=1}^k (c_j - c_i) E_j \alpha = 0$ hence $(c_j - c_i) E_j \alpha = 0$ for each j, and then $E_j \alpha = 0$ for $j \neq i$. Since $\alpha = \sum E_i \alpha$ and $E_j \alpha = 0$ for $j \neq i$, $\alpha = E_i \alpha$, which shows $\alpha \in R(E_i)$.

The Primary Decomposition Theorem 0.8

Theorem 0.8.1 Primary Decomposition Theorem

T: endo. on f.d.v.s. V/F. \exists a decomposition of V into $V=\bigoplus_{i=1}^k W_i$ s.t. $W_i=N(p_i(T)^{r_i})$ where $m(x)=\prod_{i=1}^k p_i(x)^{r_i}$ for $r_i\geq 1$ and irreducible, distinct p_i . Also, each W_i are T-inv., and $T_i:=T|_{W_i}$ has min. poly. $p_i(T)^{r_i}$.

Proof. When k=1, it is trivial. Suppose k>1. Define $f_i(x):=\frac{m(x)}{p_i(x)^{r_i}}=\prod_{j\neq i}p_j(x)^{r_j}$. Then $\gcd(f, p_i^{r_i}) = 1$. Since each f_i are also relatively prime, $\exists g_1, \dots, g_k \ (f_1g_1 + \dots + f_kg_k = 1)$. Define $h_i(x) := f_i(x)g_i(x)$. For $i \neq j$, $m \mid f_if_j$ thus $f_i(T)f_j(T) = 0$. Note that $\sum h_i(T) = I$. Define $E_i := h_i(T)$. Then $\sum E_i = I$ and $\forall i \neq j$ ($E_i E_j = 0$) since $E_i E_j = f_i(T)g_i(T)f_j(T)g_j(T) = 0$. Thus we can see E_i are projection. Thus $V = \bigoplus_{i=1}^k R(E_i)$ and each $R(E_i)$ are T-inv.

Claim 0.8.1
$$R(E_i) = W_i = N(p_i(T)^{r_i})$$

Proof of Claim 0.8.1. Let $\alpha \in R(E_i)$. Then $\alpha = E_i \alpha \Rightarrow p_i(T)^{r_i} \alpha = p_i(T)^{r_i} f_i(T) g_i(T) \alpha =$ 0 since $p_i(T)^{r_i}f_i(T)g_i(T)=m(T)g_i(T)=0$. Thus $R(E_i)\subset N(p_i(T)^{r_i})$. Conversely, let $\alpha\in$ $N(p_i(T)^{r_i})$. Note that if $i \neq j$, $p_i^{r_i} \mid f_j$ thus $p_i^{r_i} \mid f_j g_j = h_j$, thus $f_j(T)g_j(T)\alpha = h_j(T)\alpha = 0$. In other words, $\forall i \neq j$, α is in V whose projection about E_j is 0. Thus α has only $R(E_i)$ component. Thus $N(p_i(T)^{r_i}) \subset R(E_i)$, consequently $R(E_i) = N(p_i(T)^{r_i})$.

Now we have to show T_i has min. poly. as $p_i(x)^{r_i}$. Note that $W_i = N(p_i(T)^{r_i})$ implies $p_i(T)^{r_i}|_{W_i} = 0$. Thus $m_i(x) \mid p_i(x)^{r_i}$. So $m_i(x) = p_i^{s_i}$ for $1 \le s_i \le r_i$. E.T.S. $s_i = r_i$. Let g(x) be poly. s.t. $g(T_i) = 0$.

Claim 0.8.2

 $p_i(x)^{r_i} \mid g(x)$

Proof of Claim 0.8.2. $g(T_i) = 0 \iff g(T)f_i(T) = 0$. So min. poly. of T divides $g(x)f_i(x)$. Since $gcd(p_i^{r_i}, f_i) = 1$, $m(x) \mid g(x)f_i(x)$ leads $p_i^{r_i} \mid g(x)$. In particular, $m_i(x)$ is divisible by $p_i^{r_i}$, thus $r_i = s_i$.

Corollary 0.8.1

 E_1, \ldots, E_k be projection associated to primary decomposition of V w.r.t. T. Then each E_i is a poly. in T. In particular, if $U: V \mapsto V$ is another endo. commuting with T, then, U commutes with each E_i so W_i are U-inv.

Theorem 0.8.2

T: endo. on f.d.v.s. V/F. If T is triangulable, \exists diagonalizable D and nilpotent N s.t. T = D + N and DN = ND. Such D and N are uniquely determined by T.

Proof. $m(x) = \prod (x - c_i)^{r_i}$ for distinct c_i . Take $R(E_i) = W_i := N((T - c_i I)^{r_i})$ as like Theorem 0.8.1. Take $D := \sum c_i E_i$ and N = T - D.

Claim 0.8.3

N is nilpotent

Proof for Claim 0.8.3. $I = \sum E_i \Rightarrow T = \sum TE_i \Rightarrow N = T - D = \sum (T - c_i I)E_i$. Since each E_i are poly. in T and $E_i E_j = 0$, $N^r = \sum (T - c_i I)^r E_i$. By choosing $T = \max(T_1, \dots, T_k)$, $N^r = 0$. \square

D and N are commute since they are poly. in T. Thus existence is proven.

For uniqueness, suppose we have T=D'+N'=D+N. Then D-D'=N'-N. We know D-D' is diagonalizable. Now suppose $N^r=N'^{r'}=0$. Then $(N'-N)^A=\sum_{i=0}^A \binom{A}{i}N'^iN^{A-i}$. Taking A>r+r' leads $(N'-N)^A=0$. Take $\alpha:=N'-N=D'-D$. Then α is diagonalizable and nilpotent, which leads $\alpha=0$. Thus D=D' and N=N'.