Assessment Schedule – 2015

Calculus: Apply differentiation methods in solving problems (91578)

Evidence

Q1	Expected Coverage	Achievement u	Merit r	Excellence t
(a)	$30\sec^2(5x)$	A correct expression for the derivative.		
(b)	$\frac{dy}{dx} = 3(4x - 3x^{2})^{2} (4 - 6x)$ At $x = 1$, $\frac{dy}{dx} = 3 \times 1 \times -2 = -6$	Correct solution with correct derivative.		
(c)	$f'(x) = 8 - \frac{2}{(x+1)^2}$ $f'(x) > 0 \Rightarrow 8 > \frac{2}{(x+1)^2}$ $(x+1)^2 > \frac{1}{4}$ Either $x+1 > \frac{1}{2}$ or $x+1 < \frac{-1}{2}$ $x > \frac{-1}{2}$ or $x < \frac{-3}{2}$	Correct derivative.	Correct solution with correct derivative.	
(d)	$f'(x) = \frac{x(x-5) - (x+4)(2x-5)}{x^2(x-5)^2}$ $f'(x) = 0 \Rightarrow x(x-5) - (x+4)(2x-5) = 0$ $x^2 - 5x - (2x^2 + 3x - 20) = 0$ $-x^2 - 8x + 20 = 0$ $x^2 + 8x - 20 = 0$ $(x+10)(x-2) = 0$ $x = -10 \text{ or } +2$	Correct derivative.	Correct solution with correct derivative.	

(e)	Let $V = \text{volume (m}^3)$ S = slant height (m) h = height (m) r = radius (m)	$\frac{\mathrm{d}S}{\mathrm{d}r} \operatorname{or} \frac{\mathrm{d}V}{\mathrm{d}r}$ correct.	Valid statement of the relationship between rates.	Correct solution with correct derivatives.
	$\cos 30 = \frac{r}{S}$ $S = \frac{r}{\cos 30}$ $\frac{dS}{dr} = \frac{1}{\cos 30}$			
	$\tan 30 = \frac{h}{r}$ $h = r \tan 30$ $V = \frac{1}{3}\pi r^2 h$			
	$= \frac{1}{3}\pi r^3 \tan 30$ $\frac{dV}{dr} = \pi r^2 \tan 30$ $\frac{dS}{dt} = \frac{dS}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt}$			
	$= \frac{1}{\cos 30} \times \frac{1}{\pi r^2 \tan 30} \times 2$ When $r = 10$ m, $\frac{dS}{dt} = \frac{1}{\cos 30} \times \frac{1}{\pi 10^2 \times \tan 30} \times 2$ $= 0.01273 \text{ m/minute}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of differentiation techniques.	1u	2u	3u	lr	2r	It with minor error(s).	1t

Q2	Expected Coverage	Achievement u	Merit r	Excellence t
(a)	$\frac{1}{5} \left(x - 3x^2 \right)^{\frac{-4}{5}} \cdot (1 - 6x)$	A correct expression for the derivative.		
(b)	$\frac{dy}{dx} = 1 + \frac{16}{x^2}$ At $x = 4$, $\frac{dy}{dx} = 2$ ∴ Gradient of normal = $\frac{-1}{2}$	Correct solution with correct derivative.		
(c)(i)	1. $x = 1$ 2. $x = -1, 1, 2$ 3. $-1 < x < 1$	Two correct answers.	Four correct answers.	
(ii)	3			
(iii)	Does not exist.			
(d)	$ \begin{array}{c c} 5 \text{ m} \\ \hline & 1.5 \text{ m} \\ \hline & x \end{array} $	$\frac{\mathrm{d}x}{\mathrm{d}L}$ correct.		Correct solution with correct derivatives. (Units not required.)
	$\frac{x+L}{5} = \frac{L}{1.5}$ $1.5x + 1.5L = 5L$ $1.5x = 3.5L$ $x = \frac{7L}{3}$ $\frac{dx}{dL} = \frac{7}{3}$ $\frac{dx}{dt} = 2$ $\frac{dL}{dt} = \frac{dL}{dx} \times \frac{dx}{dt}$ $= \frac{3}{7} \times 2$ $= \frac{6}{7} = 0.857 \text{ m s}^{-1}$			

(e)	Depth of water = x h = x + 20	Correct $\frac{dV}{dx}$	Correct $\frac{dV}{dx}$	Correct solution.
	$V = \frac{1}{3}h^3 - \frac{1}{3}20^3$	OR <u>dA</u>	AND dA	
	$= \frac{1}{3}(x+20)^3 - \frac{1}{3}20^3$	$\frac{dx}{dx}$	$\frac{\mathrm{d}A}{\mathrm{d}x}$	
	$\frac{\mathrm{d}V}{\mathrm{d}x} = (x+20)^2$ $A = (x+20)^2$			
	$\frac{A = (x+20)}{\frac{dA}{dx}} = 2(x+20)$			
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3000$			
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$			
	$= 2(x+20) \times \frac{1}{(x+20)^2} \times 3000$			
	When $x = 15$			
	$\frac{dA}{dt} = 2 \times 35 \times \frac{1}{35^2} \times 3000 = 171.4 \text{ cm}^2 \text{ min}^{-1}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of differentiation techniques.	1u	2u	3u	1r	2r	It with minor error(s).	1t

Q3	Expected Coverage	Achievement u	Merit r	Excellence t
(a)	$f'(x) = \frac{5}{2x - 3} \times 2 = \frac{10}{2x - 3}$ $\frac{10}{2x - 3} = 4$ $8x - 12 = 10$ $x = 2.75$	Correct solution with correct derivative.		
(b)	$f'(x) = \frac{e^{3x} - x \cdot 3e^{3x}}{\left(e^{3x}\right)^2}$ $= \frac{1 - 3x}{e^{3x}}$ $f'(x) = 0 \Rightarrow x = \frac{1}{3}$	Correct solution with correct derivative.		
(c)	$\frac{dx}{dt} = -3\sin t$ $\frac{dy}{dt} = 3\cos 3t$ $\frac{dy}{dx} = \frac{3\cos 3t}{-3\sin t} = \frac{-\cos 3t}{\sin t}$ At $t = \frac{\pi}{4}$, $\frac{dy}{dx} = \frac{-\cos\left(\frac{3\pi}{4}\right)}{\sin\left(\frac{\pi}{4}\right)} = 1$ $\therefore \text{ Gradient of normal} = -1$	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	Correct solution with correct derivatives.	
(d)(i)	$\frac{dx}{dt} = -Ak \sin kt + Bk \cos kt$ $\frac{d^2x}{dt^2} = -Ak^2 \cos kt - Bk^2 \sin kt$ $= -k^2 (A \cos kt + B \sin kt)$ $= -k^2 x$ $x(0) = 0 \Rightarrow A \cos 0 + B \sin 0 = 0$ $A = 0$ $v(0) = 2k \Rightarrow 2k = -Ak \sin(0) + Bk \cos(0)$ $B = 2$	Correct $\frac{dx}{dt}$ Or $\frac{d^2x}{dt^2}$ Consistent with $\frac{dx}{dt}$ incorrect $\frac{dx}{dt}$	Parts (i) and (ii) both correct.	

NØ	N1	N2	A3	A4	M5	М6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of differentiation techniques.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

Correct solution.

Cut Scores

 $5\cos^3 A - 2 = 0$

 $\cos^3 A = \frac{2}{5}$ $A = 42.5^{\circ}$

w = 1.55 m

Not Achieved	Not Achieved Achievement		Achievement with Excellence	
0 – 7	0 – 7 8 – 12		19 – 24	