SAMB for "C3v"

Generated on 2023-06-01 17:34 by MultiPie 1.1.2

• Group: No. 19 $C_{3v} - 1$ 31m (31m setting) [trigonal]

• Generation condition

model type: tight_bindingtime-reversal type: electric

- irrep: [A1]
- spinless

• Kets: dimension = 12

Table 1: Hilbert space for full matrix.

No.	ket								
1	$s@A_1$	2	$s@A_2$	3	$s@A_3$	4	$p_x@B_1$	5	$p_y@B_1$
6	$p_z@B_1$	7	$p_x@B_2$	8	$p_y@B_2$	9	$p_z@B_2$	10	$p_x@B_3$
11	$p_y@B_3$	12	$p_z@B_3$						

• Sites in (primitive) unit cell:

Table 2: Site-clusters.

	site	position	mapping
S_1	A_1	$\begin{pmatrix} -\frac{1}{6} & -\frac{1}{6} & 0 \end{pmatrix}$	[1,6]
	A_2	$\left(\begin{array}{ccc} \frac{1}{6} & 0 & 0 \end{array}\right)$	[2,5]
	A_3	$\left(0 \frac{1}{6} 0\right)$	[3,4]

 $continued \dots$

Table 2

	site	position	mapping
S_2	B_1	$\left(-\frac{2}{3} 0 0\right)$	[1,4]
	B_2	$\begin{pmatrix} 0 & -\frac{2}{3} & 0 \end{pmatrix}$	[2,6]
	B_3	$\left(\begin{array}{ccc} \frac{2}{3} & \frac{2}{3} & 0 \end{array}\right)$	[3,5]

• Bonds in (primitive) unit cell:

Table 3: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	A_1	A_2	1	1	$ \left(\begin{array}{ccc} \frac{1}{3} & \frac{1}{6} & 0 \end{array}\right) @ \left(0 & -\frac{1}{12} & 0 \right) $	[1,-5]
	b_2	A_2	A_3	1	1	$ \left(\begin{array}{ccc} -\frac{1}{6} & \frac{1}{6} & 0 \end{array} \right) @ \left(\begin{array}{ccc} \frac{1}{12} & \frac{1}{12} & 0 \end{array} \right) $	[2,-4]
	b_3	A_1	A_3	1	1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	[-3,6]
B_2	b_4	A_1	B_1	1	1	$\left(-\frac{1}{2} \frac{1}{6} 0\right) @ \left(-\frac{5}{12} -\frac{1}{12} 0\right)$	[1]
	b_5	A_2	B_2	1	1	$\left(-\frac{1}{6} -\frac{2}{3} 0 \right) @ \left(\frac{1}{12} -\frac{1}{3} 0 \right)$	[2]
	b_6	A_3	B_3	1	1	$ \left(\begin{array}{cccc} \frac{2}{3} & \frac{1}{2} & 0 \end{array}\right) @ \left(\begin{array}{cccc} \frac{1}{3} & \frac{5}{12} & 0 \end{array}\right) $	[3]
	b_7	A_3	B_1	1	1	$\left(-\frac{2}{3} - \frac{1}{6} 0 \right) @ \left(-\frac{1}{3} \frac{1}{12} 0 \right)$	[4]
	b_8	A_2	B_3	1	1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	[5]
	b ₉	A_1	B_2	1	1	$\left(\begin{array}{cccc} \frac{1}{6} & -\frac{1}{2} & 0 \end{array}\right) @ \left(-\frac{1}{12} & -\frac{5}{12} & 0 \right)$	[6]

• SAMB:

$$\begin{split} & \boxed{ \text{No. 1} } & \hat{\mathbb{Q}}_0^{(A_1)} \; [M_1, S_1] \\ & \hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(s, A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s, A_1)}] \end{split}$$

No. 3
$$\hat{\mathbb{Q}}_{2}^{(A_1)}$$
 [M₂, S₂]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_3[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_1)}]$$

No. 4
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₂, S₂]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_4[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_5[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 5
$$\hat{\mathbb{Q}}_3^{(A_1,2)}$$
 [M₂, S₂]

$$\hat{\mathbb{Z}}_5 = \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_7[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_5[\mathbb{Q}_0^{(u,A_1)}]$$

No. 7
$$\hat{\mathbb{Q}}_{1}^{(A_{1})}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_8[\mathbb{Q}_1^{(a,A_1)}] \otimes \mathbb{U}_6[\mathbb{Q}_0^{(u,A_1)}]$$

No. 8
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_8 = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_8[\mathbb{Q}_{1,1}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_7[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 9
$$\hat{\mathbb{Q}}_3^{(A_1,2)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_9 = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{2,1}^{(u,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_9[\mathbb{Q}_{2,0}^{(u,E,2)}]}{2}$$

Table 4: Atomic SAMB group.

group	bra	ket
M_1	s	s
M_2	p_x, p_y, p_z	p_x, p_y, p_z
M_3	s	p_x, p_y, p_z

Table 5: Atomic SAMB.

symbol	type	group	form
$\overline{\mathbb{X}_1}$	$\mathbb{Q}_0^{(a,A_1)}$	M_1	(1)
\mathbb{X}_2	$\mathbb{Q}_0^{(a,A_1)}$	M_2	$\begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & 0\\ 0 & \frac{\sqrt{3}}{3} & 0\\ 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{X}_3	$\mathbb{Q}_2^{(a,A_1)}$	M_2	$ \begin{bmatrix} -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & \frac{\sqrt{6}}{3} \end{bmatrix} $
\mathbb{X}_4	$\mathbb{Q}_{2,0}^{(a,E,1)}$	M_2	$ \begin{pmatrix} 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix} $
\mathbb{X}_5	$\mathbb{Q}_{2,1}^{(a,E,1)}$	M_2	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_6	$\mathbb{Q}_{2,0}^{(a,E,2)}$	$ m M_2$	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0\\ 0 & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_7	$\mathbb{Q}_{2,1}^{(a,E,2)}$	$ m M_2$	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_8	$\mathbb{Q}_1^{(a,A_1)}$	M_3	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$
\mathbb{X}_9	$\mathbb{Q}_{1,0}^{(a,E)}$	M_3	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

 $continued\ \dots$

Table 5

symbol	type	group	form
\mathbb{X}_{10}	$\mathbb{Q}_{1,1}^{(a,E)}$	M_3	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

Table 6: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{3}}{3} & 0 & 0 & 0 & 0\\ 0 & 0 & \frac{\sqrt{3}}{3} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{U}_2	$\mathbb{Q}_0^{(s,A_1)}$	S_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_3	$\mathbb{Q}_{1,0}^{(s,E)}$	S_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_4	$\mathbb{Q}_{1,1}^{(s,E)}$	S_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

 $continued \dots$

Table 6

symbol	type	cluster	form
\mathbb{U}_5	$\mathbb{Q}_0^{(u,A_1)}$	В1	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_6	$\mathbb{Q}_0^{(u,A_1)}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6}\\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}}{6}\\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0\\ \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{U}_7	$\mathbb{Q}_{1,0}^{(u,E)}$	$ m B_2$	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
\mathbb{U}_8	$\mathbb{Q}_{1,1}^{(u,E)}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6}\\ 0 & 0 & 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}}{12}\\ -\frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{U}_9	$\mathbb{Q}_{2,0}^{(u,E,2)}$	$ m B_2$	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & 0\\ 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6}\\ 0 & 0 & 0 & \frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}}{12}\\ \frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0\\ \frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \end{pmatrix} $

 $continued \dots$

Table 6

symbol	type	cluster	form
\mathbb{U}_{10}	$\mathbb{Q}_{2,1}^{(u,E,2)}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 &$

Table 7: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{Q}_1^{(A_1)}$	1	A_1	_	_	z
3	$\mathbb{Q}_{1,0}^{(E)}$	1	E	_	0	x
4	$\mathbb{Q}_{1,1}^{(E)}$	1	E	_	1	y
5	$\mathbb{Q}_2^{(A_1)}$	2	A_1	-	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,0}^{(E,1)}$	2	E	1	0	$\sqrt{3}xz$
7	$\mathbb{Q}_{2,1}^{(E,1)}$	2	E	1	1	$\sqrt{3}yz$
8	$\mathbb{Q}_{2,0}^{(E,2)}$	2	E	2	0	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
9	$\mathbb{Q}_{2,1}^{(E,2)}$	2	E	2	1	$-\sqrt{3}xy$
10	$\mathbb{Q}_3^{(A_2)}$	3	A_2	_	_	$\frac{\sqrt{10}y(3x^2-y^2)}{4}$

 \bullet Group info.: Generator = $3^+_{\ 001},\ m_{1-10}$

Table 8: Conjugacy class.

rep. SO	symmetry operations		
1	1		
3 ⁺ ₀₀₁	3 ⁺ ₀₀₁ , 3 ⁻ ₀₀₁		
m_{120}	$m_{120}, m_{210}, m_{1-10}$		

Table 9: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	1	2	3 ⁺ ₀₀₁	3	3^{-}_{001}	4	m_{120}	5	m_{210}
6	m_{1-10}								

Table 10: Character table.

	1	3^{+}_{001}	m_{120}
$\overline{A_1}$	1	1	1
A_2	1	1	-1
E	2	-1	0

Table 11: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_1 (A_2)$	$A_2(A_1)$	E(E)

Table 12: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	E
$\overline{A_1}$	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

Table 13: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_1	A_2	E
_	_	A_2

Table 14: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$	3	$\begin{pmatrix} -2 & -1 & 0 \end{pmatrix}$	4	(2 1 0)
5	$\begin{pmatrix} -1 & -2 & 0 \end{pmatrix}$	6	$\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}$				

Table 15: Virtual-cluster basis.

symbol	1	2	3	4	5	6
$\mathbb{Q}_0^{(A_1)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_{1,0}^{(E)}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
$\mathbb{Q}_{1,1}^{(E)}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{2,0}^{(E,2)}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$

 $continued\ \dots$

Table 15

symbol	1	2	3	4	5	6
$\mathbb{Q}_{2,1}^{(E,2)}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$
$\mathbb{Q}_3^{(A_2)}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$