

## Distributed Algorithms 2020

Round elimination

Claim: solving problem X takes ≥ 5 rounds

- Claim: solving problem *X* takes ≥ 5 rounds
- Equivalent: any 4-round algorithm A fails to solve problem X

- Claim: solving problem *X* takes ≥ 5 rounds
- Equivalent: any 4-round algorithm A fails to solve problem X
- How to show something like this?

- Claim: solving problem *X* takes ≥ 5 rounds
- Equivalent: any 4-round algorithm A fails to solve problem X
- How to show something like this?
  - huge number of possible 4-round algorithms

• Easy to do directly: showing that 0-round algorithms fail

- Easy to do directly: showing that 0-round algorithms fail
- Hard to do directly: showing that 4-round algorithms fail

- Easy to do directly: showing that 0-round algorithms fail
- Hard to do directly: showing that 4-round algorithms fail
- Solution: round elimination technique

problem  $X_0$ 

$$X_1 = \operatorname{re}(X_0)$$

**Assume:**  $A_0$  solves problem  $X_0$  in 4 rounds

 $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds

$$\rightarrow A_1$$
 solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds  $X_2 = \text{re}(X_1)$ 

- $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds
- $\rightarrow A_2$  solves problem  $X_2 = \text{re}(X_1)$  in 2 rounds

- $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds
- $\rightarrow A_2$  solves problem  $X_2 = \text{re}(X_1)$  in 2 rounds

$$X_3 = \operatorname{re}(X_2)$$

- $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds
- $\rightarrow A_2$  solves problem  $X_2 = \text{re}(X_1)$  in 2 rounds
- $\rightarrow A_3$  solves problem  $X_3 = \text{re}(X_2)$  in 1 round

- $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds
- $\rightarrow A_2$  solves problem  $X_2 = \text{re}(X_1)$  in 2 rounds
- $\rightarrow A_3$  solves problem  $X_3 = \operatorname{re}(X_2)$  in 1 round problem  $X_4 = \operatorname{re}(X_3)$

- $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds
- $\rightarrow A_2$  solves problem  $X_2 = \text{re}(X_1)$  in 2 rounds
- $\rightarrow A_3$  solves problem  $X_3 = \text{re}(X_2)$  in 1 round
- $\rightarrow A_4$  solves problem  $X_4 = \text{re}(X_3)$  in 0 rounds

- $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds
- $\rightarrow A_2$  solves problem  $X_2 = \text{re}(X_1)$  in 2 rounds
- $\rightarrow A_3$  solves problem  $X_3 = \text{re}(X_2)$  in 1 round
- $\rightarrow A_4$  solves problem  $X_4 = \text{re}(X_3)$  in 0 rounds



- $\rightarrow A_1$  solves problem  $X_1 = re(X_0)$  in 3 rounds
- $A_2$  solves problem  $X_2 = \operatorname{re}(X_1)$  in 2 rounds  $A_3$  solves problem  $A_3 = \operatorname{re}(X_2)$  in 1 round  $A_4$  solves problem  $A_4 = \operatorname{re}(X_3)$  in 0 rounds

- $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 3 rounds
- $A_2$  solves problem  $X_2 = \text{re}(X_1)$  in 2 rounds  $A_3$  solves problem  $A_3 = \text{re}(X_2)$  in 1 round
- $\rightarrow A_4$  solves problem  $X_4 = \text{re}(X_3)$  in 0 rounds

- $\rightarrow$   $A_1$  solves problem  $X_1 = \operatorname{re}(X_0)$  in 3 rounds  $\rightarrow$   $A_2$  solves problem  $X_2 = \operatorname{re}(X_1)$  in 2 rounds
- $\rightarrow A_3$  solves problem  $X_3 = \text{re}(X_2)$  in 1 round
- $\rightarrow A_4$  solves problem  $X_4 = \text{re}(X_3)$  in 0 rounds

**Assume:**  $A_0$  solves problem  $X_0$  in 4 rounds  $\rightarrow A_1$  solves problem  $X_1 = \operatorname{re}(X_0)$  in 3 rounds

- $\rightarrow A_2$  solves problem  $X_2 = \text{re}(X_1)$  in 2 rounds
- $\rightarrow A_3$  solves problem  $X_3 = \text{re}(X_2)$  in 1 round
- $\rightarrow A_4$  solves problem  $X_4 = \text{re}(X_3)$  in 0 rounds

**Assume:**  $A_0$  solves problem  $X_0$  in 10 rounds

 $\rightarrow A_1$  solves problem  $X_1 = \text{re}(X_0)$  in 9 rounds

 $\rightarrow$   $A_{10}$  solves problem  $X_{10} = \text{re}(X_9)$  in 0 rounds



Round elimination turns problem  $X_0$ into a new problem  $X_1$ that can be solved 1 round faster

Round elimination turns problem  $X_0$ into a new problem  $X_1$ that can be solved 1 round faster

Bipartite locally verifiable problems

Defined using "local constraints"

- Defined using "local constraints"
- Example: vertex coloring
  - constraint on each edge: endpoints must have different colors

- Defined using "local constraints"
- Example: vertex coloring
  - constraint on each edge: endpoints must have different colors
- Example: maximal independent set
  - constraint on each edge: independence
  - constraint on each node: maximality

- Not locally verifiable: spanning tree
  - "connectivity" is a global constraint
  - "acyclicity" is a global constraint

# Bipartite locally verifiable problem

# Bipartite locally verifiable problem

defined on regular trees



























- active (deg 3): not all **R**, not all **G**, not all **B**
- passive (deg 2): equality

- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality







- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

 $X_1 = re(X_0)$ :

- active (deg 3): not all **R**, not all **G**, not all **B**
- passive (deg 2): equality

$$X_1 = re(X_0)$$
:



- active (deg 3): not all **R**, not all **G**, not all **B**
- passive (deg 2): equality

$$X_1 = re(X_0)$$
:



- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

#### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all **R**, not all **G**, not all **B**



- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B



Not solvable in 1 round

- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

 $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all **R**, not all **G**, not all **B**

 $X_2 = re(X_1)$ :

- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

 $X_2 = re(X_1)$ : labels R, G, B, RG, RB, GB, RGB

- active (deg 3): not all **R**, not all **G**, not all **B**
- passive (deg 2): equality

### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

### $X_2 = re(X_1)$ : labels R, G, B, RG, RB, GB, RGB

 active (deg 3): not all with R, not all with G, not all with B







- active (deg 3): not all **R**, not all **G**, not all **B**
- passive (deg 2): equality

### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

#### $X_2 = re(X_1)$ : labels R, G, B, RG, RB, GB, RGB

- active (deg 3): not all with R, not all with G, not all with B
- passive (deg 2): non-empty intersection







- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

### $X_2 = re(X_1)$ : labels R, G, B, RG, RB, GB, RGB

- active (deg 3): not all with R, not all with G, not all with B
- passive (deg 2): non-empty intersection

Solvable in 0 rounds



- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all **R**, not all **G**, not all **B**

### $X_2 = re(X_1)$ : labels R, G, B, RG, RB, GB, RGB

- active (deg 3): not all with R, not all with G, not all with B
- passive (deg 2): non-empty intersection



- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

#### $X_1 = re(X_0)$ : labels R, G, B

- active (deg 2): equality
- passive (deg 3): not all R, not all G, not all B

### $X_2 = re(X_1)$ : labels R, G, B, RG, RB, GB, RGB

- active (deg 3): not all with R, not all with G, not all with B
- passive (deg 2): non-empty intersection





- active (deg 3): not all R, not all G, not all B
- passive (deg 2): equality

*T* = 2

- $X_1 = re(X_0)$ : labels R, G, B
  - active (deg 2): equality
  - passive (deg 3): not all R, not all G, not all B

### T=1

- $X_2 = re(X_1)$ : labels R, G, B, RG, RB, GB, RGB
  - active (deg 3): not all with R, not all with G, not all with B
  - passive (deg 2): non-empty intersection

