Kehua Chu (uid: 806153163)

```
In [31]: import pandas as pd from sklearn.linear_model import LassoCV import matplotlib.pyplot as plt
```

1.) Clean the Apple Data to get a quarterly series of EPS.

```
In [2]: y = pd. read_csv('AAPL_quarterly_financials.csv')
    y. index = y. name
    y = pd. DataFrame(y. loc['BasicEPS', :]).iloc[2:, :]
    y
```

Out[2]: **BasicEPS** 09/30/2023 1.47 06/30/2023 1.27 03/31/2023 1.53 12/31/2022 1.89 09/30/2022 1.29 09/30/1986 NaN 06/30/1986 0.002 03/31/1986 0.002 12/31/1985 09/30/1985 NaN

153 rows × 1 columns

```
In [3]: y. index = pd. to_datetime(y. index)
y = y. sort_index()
y
```

Out[3]: **BasicEPS** 1985-09-30 NaN 1985-12-31 0.004 1986-03-31 0.002 1986-06-30 0.002 **1986-09-30** NaN 2022-09-30 1.29 2022-12-31 1.89 2023-03-31 1.53 2023-06-30 1.27 2023-09-30 1.47 153 rows × 1 columns In [4]: $y = y. sort_index(). fillna(0)$ Out[4]:

	BasicEPS
1985-09-30	0
1985-12-31	0.004
1986-03-31	0.002
1986-06-30	0.002
1986-09-30	0
2022-09-30	1.29
2022-12-31	1.89
2023-03-31	1.53
2023-06-30	1.27
2023-09-30	1.47

153 rows × 1 columns

2.) Come up with 6 search terms you think could nowcast earnings. (Different than the ones I used) Add in 3 terms that that you think will not Nowcast earnings. Pull in the gtrends data. Clean

it to have a quarterly average.

```
Requirement already satisfied: requests>=2.0 in e:\..kacie\anacondakc\lib\site-packages (from p
                    ytrends) (2.31.0)
                    Requirement \ already \ satisfied: \ pandas >= 0.25 \ in \ e: \\ \\ \ ... \ kacie \\ \ anacondakc \\ \ 1ib \\ \ site-packages \ (from \ py) \\ \ ... \ begin{picture}(100,00) \put(0,0){\line(1,0){100}} \pu
                    trends) (2.0.3)
                    Requirement already satisfied: lxml in e:\..kacie\anacondakc\lib\site-packages (from pytrends)
                     (4, 9, 3)
                    Requirement already satisfied: python-dateuti1>=2.8.2 in e:\..kacie\anacondakc\lib\site-package
                    s (from pandas>=0.25->pytrends) (2.8.2)
                    Requirement already satisfied: pytz>=2020.1 in e:\..kacie\anacondakc\lib\site-packages (from pa
                    ndas \ge 0.25 - pytrends) (2023. 3. post1)
                    Requirement already satisfied: tzdata>=2022.1 in e:\..kacie\anacondakc\lib\site-packages (from
                    pandas\geq=0.25\rightarrowpytrends) (2023.3)
                    Requirement already satisfied: numpy>=1.21.0 in e:\..kacie\anacondakc\lib\site-packages (from p
                    andas\geq =0.25-pytrends) (1.24.3)
                    Requirement already satisfied: charset-normalizer<4,>=2 in e:\..kacie\anacondakc\lib\site-packa
                    ges (from requests>=2.0->pytrends) (2.0.4)
                    Requirement already satisfied: idna<4,>=2.5 in e:\..kacie\anacondakc\lib\site-packages (from re
                    quests>=2.0->pytrends) (3.4)
                    Requirement already satisfied: urllib3<3,>=1.21.1 in e:\..kacie\anacondakc\lib\site-packages (f
                    rom requests>=2.0->pytrends) (1.26.16)
                    Requirement already satisfied: certifi>=2017.4.17 in e:\..kacie\anacondakc\lib\site-packages (f
                    rom requests>=2.0->pytrends) (2023.7.22)
                    Requirement already satisfied: six>=1.5 in e:\..kacie\anacondakc\lib\site-packages (from python
                    -dateuti1 \ge 2.8.2 - pandas \ge 0.25 - pytrends) (1.16.0)
                     Installing collected packages: pytrends
                    Successfully installed pytrends-4.9.2
    In [5]: from pytrends.request import TrendReq
In [330...
                   # Create pytrends object
                    pytrends = TrendReq(h1='en-US', tz=360)
                     # Set up the keywords and the timeframe
                     keywords = ['iPhone', 'Samsung', 'Reccession', 'Interest Rates', 'New phone', 'Buy iPhone', 'Se
start_date = '2004-01-01'
                     end_date = '2024-01-01'
                     # Create an empty DataFrame to store the results
                     df = pd. DataFrame()
                     # Iterate through keywords and fetch data
                     for keyword in keywords:
                            # time.sleep(5) #wrong one
                            pytrends.build_payload([keyword], cat=0, timeframe=f'{start_date} {end_date}', geo='', gpro
                            interest_over_time_df = pytrends.interest_over_time()
                            df[keyword] = interest_over_time_df[keyword]
                    X = df. resample('Q'). mean()
In [331...
```

Collecting pytrends

Х

Downloading pytrends-4.9.2-py3-none-any.wh1 (15 kB)

Out[331]:		iPhone	Samsung	Reccession	Interest Rates	New phone	Buy iPhone	Sell iPhone	KPOP tickets	Log	Sun
	date										
	2004- 03-31	0.000000	24.666667	15.333333	60.333333	44.333333	0.000000	0.333333	0.000000	25.000000	39
	2004- 06-30	0.000000	23.666667	5.333333	67.000000	47.000000	0.333333	0.666667	31.000000	24.666667	53
	2004- 09-30	0.000000	26.666667	6.000000	52.666667	47.666667	0.000000	0.000000	0.000000	25.000000	41
	2004- 12-31	0.000000	30.000000	0.000000	46.333333	43.666667	0.333333	0.000000	0.000000	25.000000	33
	2005- 03-31	0.000000	26.666667	0.000000	47.333333	41.333333	0.000000	0.666667	14.000000	23.333333	32
	2023- 03-31	50.000000	57.333333	9.666667	88.333333	74.666667	25.000000	25.666667	70.666667	39.333333	34
	2023- 06-30	43.666667	53.000000	9.000000	74.000000	69.333333	22.000000	22.666667	70.666667	35.666667	50
	2023- 09-30	52.333333	57.333333	6.333333	74.000000	78.666667	30.333333	31.000000	68.000000	36.333333	56
	2023- 12-31	51.000000	57.666667	8.000000	71.666667	76.000000	32.333333	30.666667	48.666667	36.000000	25
	2024- 03-31	49.000000	61.000000	7.000000	79.000000	79.000000	27.000000	29.000000	50.000000	37.000000	27
81 rows × 10 columns											
4											•
In [332	<pre>temp = pd.concat([y, X],axis = 1).dropna() y = temp[["BasicEPS"]].copy() X = temp.iloc[:,1:].copy()</pre>										

3.) Normalize all the X data

```
In [333... from sklearn.preprocessing import StandardScaler
In [334... scaler = StandardScaler()
In [335... X_scaled = scaler.fit_transform(X)
```

4.) Run a Lasso with lambda of .01. Plot a bar chart.

```
In [336... from sklearn.linear_model import Lasso
In [351... lasso = Lasso(alpha = 0.01)
    lasso.fit(X_scaled, y)
    coef = lasso.coef_
    plt.figure(figsize = (18,5))
    plt.bar(range(len(coef)), coef, tick_label = X.columns)
    plt.axhline(0, color = 'red')
    plt.show()
```


5.) Do these coefficient magnitudes make sense?

Yes, I do think these coefficient magnitudes make sense. As for factors that we think would have significant influence, iPhone, Reccession, InterestRates, NewPhone have the coefficients of relatively larger magnitude, while as for fatocrs we consider not important have the close-to-zero coefficient.

In []: # -----