Step-1

We need to tell whether the given statement is true or false with a reason or a counter example.

(a)

The given statement is $\hat{a} \in e^{A \operatorname{and} A^T}$ has the same number of pivots $\hat{a} \in e^{A \operatorname{and} A^T}$

Letâ \in TMs consider the 3 by 3 non-singular matrix. So, the rank of the matrix A is 3(because, the number of non-zeros are 3) and the rank of the matrix A is 3(because, the number of non-zero are 3).

Therefore, rank of $A = \text{rank of } A^T$

Therefore, the given statement is true

Step-2

(b)

The given statement is $\hat{a} \in e^{A \text{ and } A^T}$ has the same left null space $\hat{a} \in e^{A \text{ and } A^T}$

Letâ \in ^{TMs} consider $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$ then null space basis of A is $\{(0,1)\}$ But, the left null space basis is $\{(0)\}$.

i.e. $A^T X = 0$

$$\Rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} [x_1] = 0$$

 $\Rightarrow x_1 = 0$

Therefore, the given statement is false.

Step-3

(c)

The given statement is $\hat{a} \in \mathbb{C}$ If the row space equals the column space then $A^T = A \hat{a} \in \mathbb{C}$.

If the matrix A is invertible and un-symmetric then $A^T \neq A$

For example $A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$

The above matrix is invertible and un-symmetric. But, row space equals to the column space. i.e. $\{(1,0),(0,1)\}$. But, the transpose the matrix is nor equals to the matrix. i.e. $A^T \neq A$

Therefore, the given statement is false

Step-4

(d)

The given statement is $\hat{a} \in \text{ceIf } A^T = -A \text{ then row space of } A \text{ equals the column space} \hat{a} \in A$.

$$A^{T} = -A$$

$$\operatorname{col}(A^{T}) = \operatorname{col}(-A)$$

$$= -\operatorname{col}(A)$$

$$= \operatorname{col}(A)$$

Therefore, row space of A = column space of A

Therefore, the given statement is true.