De-multiplexer

Introduction

- Combinational circuit
- Output depends only on present input(s)
- Takes a single input, and transmits it to one selected output line
- Also called **DEMUX** or data distributor

Introduction

Introduction

- Can take 1 input
- Provide n outputs

• The single input is transmitted as one of the many possible outputs, based on selection

General Block Diagram

1:2 DEMUX – Block Diagram

• 1:2 DEMUX or 1 line to 2 line DEMUX

1:2 DEMUX

- If S = 0, Y_0 is selected for sending I
- If S = 1, Y₁ is selected for sending I

S	Y ₀	Y ₁
0	I	0
1	0	I

1:2 DEMUX

Here, the output
 Y can take 2 values:

$$Y_0 = S'.I$$

$$Y_1 = S. I$$

S	Y ₀	Y ₁
0	I	0
1	0	I

Circuit Diagram – 1:2 DEMUX

1:4 DEMUX – Block Diagram

• 1:4 DEMUX or 1 line to 4 line DEMUX

1:4 DEMUX

- If $S_1 = 0$ and $S_0 = 0$, Y_0 is selected for sending I
- If S₁ = 0 and S₀ = 1, Y₁ is selected for sending I
- If S₁ = 1 and S₀ = 0, Y₂ is selected for sending I
- If $S_1 = 1$ and $S_0 = 1$, Y_3 is selected for sending I

S1	S0	Υ0	Y1	Y2	Y3
0	0	I	0	0	0
0	1	0	I	0	0
1	0	0	0	I	0
1	1	0	0	0	I

1:4 DEMUX

Here, the expressions for the outputs are:

$$Y_0 = S_1 S_0 I$$

 $Y_1 = S_1 S_0 I$
 $Y_2 = S_1 S_0 I$
 $Y_3 = S_1 S_0 I$

S1	S0	Y0	Y1	Y2	Y3
0	0	I	0	0	0
0	1	0	I	0	0
1	0	0	0	I	0
1	1	0	0	0	I

Circuit Diagram – 1:4 DEMUX

