TRƯỜNG CNTT & TRUYỀN THÔNG KHOA KHOA HỌC MÁY TÍNH

Phương pháp học Bayes Bayesian classification

PGS. TS. Đỗ Thanh Nghị TS. Trần Nguyễn Minh Thư tnmthu@ctu.edu.vn

Nội dung

- Giới thiệu về Bayesian classification
- Kiến thức về xác suất thống kê
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

Bayesian classification

Phương pháp học Bayes – bayesian classification

- Phân loại này được đặt theo tên của Thomas Bayes (1702-1761), người đề xuất các định lý Bayes
- Giải thuật học có giám sát (supervised learning) xây dựng mô hình phân loại dựa trên dữ liệu tập học đã có nhãn (lớp)
- Mang Bayes (Bayesian network), Bayes ngây thơ (naive Bayes)
- Giải quyết các vấn đề về phân loại

Bayesian classification

Phương pháp học Bayes ứng dụng thành công

> Phân loại thư rác

Cho một email, dự đoán xem đó là thư rác hay không

Chẩn đoán y tế

Cho một danh sách các triệu chứng, dự đoán xem bệnh nhân có bệnh X hay không

> Thời tiết

Dựa vào nhiệt độ, độ ấm, vv ... dự đoán nếu nó sẽ mưa vào ngày mai

Bayesian classification

- Phương pháp Bayesian là hệ thống ham học
- Dựa vào các đặc trưng đưa ra kết luận nhãn của đối tượng mới đến
- Khi đưa ra một tập huấn luyện, hệ thống ngay lập tức phân tích dữ liệu và xây dựng một mô hình. Khi cần phân loại một đối tượng mới đến, hệ thống sử dụng mô hình đã xây dựng để xác định đối tượng mới.
- Phương pháp Bayesian (ham học) có xu hướng phân loại các trường hợp nhanh hơn KNN (lười học)

Kỹ thuật DM thành công (2011)

Top 10 DM algorithms (2015)

Here are the algorithms:

- 1. C4.5
- 2. k-means
- 3. Support vector machines
- 4. Apriori
- 5. EM
- 6. PageRank
- 7. AdaBoost
- 8. kNN
- 9. Naive Bayes
- 10. CART

Nội dung

- Giới thiệu về Bayesian classification
- Kiến thức về xác suất thống kê
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

Một vài ví dụ

- Khi tung 1 đồng xu, khả năng nhận mặt ngửa là bao nhiêu?
- Khi tung một hột xúc xắc, khả năng xuất hiện mặt "6 nút" là bao nhiêu?

P (h): ký hiệu xác suất của giả thuyết h

Xác suất xuất hiện mặt ngửa:

$$P(ng\mathring{u}a) = 0.5$$

Xác suất xuất hiện mặt có 6 nút:

$$P(6) = 1/6$$

name	laptop	phone		
Kate	PC	Android		
Tom	PC	Android		
Harry	PC	Android		
Annika	Мас	iPhone		
Naomi	Мас	Android		
Joe	Мас	iPhone		
Chakotay	Мас	iPhone		
Neelix	Мас	Android		
Kes	PC	iPhone		
B'Elanna	Мас	iPhone		

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone là bao nhiêu?

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này có sử dụng một máy tính xách tay Mac là bao nhiêu?

name	laptop	phone
Kate	PC	Android
Tom	PC	Android
Harry	PC	Android
Annika	Мас	iPhone
Naomi	Мас	Android
Joe	Мас	iPhone
Chakotay	Мас	iPhone
Neelix	Мас	Android
Kes	PC	iPhone
B'Elanna	Мас	iPhone

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone là bao nhiêu?

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này có sử dụng một máy tính xách tay Mạc là bao nhiệu?

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

name	іартор	pnone
Kate	PC	Android
Tom	PC	Android
Harry	PC	Android
Annika	Мас	iPhone
Naomi	Мас	Android
Joe	Мас	iPhone
Chakotay	Мас	iPhone
Neelix	Mac	Android

PC

Mac

iPhone

iPhone

Kes

B'Elanna

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone?

$$P(iPhone) = 5/10 = 0.5$$

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này sử dụng một máy tính xách tay Mac?

$$P(iPhone|Mac) = \frac{P(Mac \cap iPhone)}{P(Mac)}$$

$$P(Mac \cap iPhone) = \frac{4}{10} = 0.4$$
 $P(Mac) = \frac{6}{10} = 0.6$

$$P(iPhone|Mac) = \frac{0.4}{0.6} = 0.667$$

Định lý Bayes bắt nguồn từ xác suất có điều kiện.

Định lý Bayes được đặt theo tên **Rev. Thomas Bayes** (/ beɪz /; 1702-1761), người đầu tiên đã cho thấy làm thế nào để sử dụng thông tin mới để cập nhật những thông tin trước đó.

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

$$P(A/B) = P(AB) / P(B)$$

 $\Rightarrow P(AB) = P(A/B)*P(B)$

$$P(B/A) = P(AB)/P(A)$$

 $\Rightarrow P(AB)=P(B/A)*P(A)$

$$P(A/B)=(P(B/A)*P(A))*P(B)$$

Định lý Bayes cho phép tính xác suất xảy ra của một sự kiện ngẫu nhiên A khi biết sự kiện liên quan B đã xảy ra. Xác suất này được ký hiệu là P(A|B)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{\text{likelihood} * \text{prior}}{normalizing_constant}$$

Theo định lí Bayes, xác suất xảy ra A khi biết B sẽ phụ thuộc vào 3 yếu tố:

- Xác suất xảy ra A của riêng nó, không quan tâm đến bất kỳ thông tin nào của B. Kí hiệu là P(A). Đại lượng này còn gọi là tiên nghiệm (prior)
- Xác suất xảy ra B của riêng nó, không quan tâm đến A. Kí hiệu là P(B). Đại lượng này còn gọi là hằng số chuẩn hóa (normalising constant)
- ➤ Xác suất xảy ra B khi biết A xảy ra. Kí hiệu là P(B|A) và đọc là "xác suất của B nếu có A". Đại lượng này gọi là khả năng (likelihood) xảy ra B khi biết A đã xảy ra.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{\text{likelihood} * \text{prior}}{normalizing_constant}$$

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] thuộc tính của dữ liệu cần dự báo

Event H: giá trị lớp/ nhãn của dữ liệu E cần sự báo

Н	The probability of a hypothesis
E	Conditional on a new piece of evidence
P(H E)	The probability of a hypothesis conditional on a new evidence
P(E H)	The probability of the evidence given the hypothesis
P(H)	The prior probability of the hypothesis
P(E)	The prior probability of the evidence

Giải thuật naive Bayes

■ Ngây thơ

- > các thuộc tính (biến) có độ quan trọng như nhau
- các thuộc tính (biến) độc lập thống kê

■ Nhận xét

- Giả thiết các thuộc tính độc lập không bao giờ đúng
- nhưng trong thực tế, naive Bayes cho kết quả khá tốt

Nội dung

- Giới thiệu về Bayesian classification
- Kiến thức về xác suất thống kê
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

Luật Bayes

Đinh lý xác suất Bayes

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] có n giá trị thuộc tính của dữ liệu cần dự báo

Event H: giá trị lớp/ nhãn của dữ liệu E cần sự báo

Luật Bayes

Đinh lý xác suất Bayes

$$P[H \mid E] = \frac{P[E \mid H]P[H]}{P[E]}$$

Do giả thiết: " các thuộc tính độc lập nhau"

$$=> P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] có n thuộc tính của dữ liệu cần dự báo Event H: giá trị lớp/ nhãn của dữ liệu E cần dự báo

Bayes thơ ngây

Bước 1: học/ huấn luyện mô hình (learning Phase) xây dựng mô hình sẳn dùng (tính sẳn xác suất xuất hiện của tất cả các trường hợp)

Bước 2: dự báo/ dự đoán

Khi có đối tượng/sự kiện mới xuất hiện cần phân loại: xác định nhãn của đối tương mới đến thông qua giá trị xác suất lớn nhất tính được

Outlook	Temp.	Humidity	Windy	Play	
Sunny	Cool	High	True	?	

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Ví dụ: Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	ormal False	
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Bước 1

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)....P(E_n|H).P(H)}{P(E)}$$

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	l Normal True		No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	d High		No
Sunny	Cool	Normal Fals		Yes
Rainy	Mild Normal False		False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	t Normal False		Yes
Rainy	Mild	High	True	No

Outlook		Temp	eratur	е	Humidity		Windy			Play			
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Ví dụ

Bước 2

	Play	Windy	Humidity	Temp.	Outlook
\blacksquare Evidence E	?	True	High	Cool	Sunny

- Phần tử mới đến,

Cần xác định: xác suất của lớp "yes" và xác suất của lớp "no"

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$$

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)....P(E_n|H).P(H)}{P(E)}$$

Bước 2

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

← Evidence E

- Phần tử mới đến,

x' =(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=True)

Ví dụ

Bước 2

"yes"

$$\times \frac{P[yes]}{P[E]}$$

$$=\frac{\frac{2}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{9}{14}}{P[E]}$$

$$P(Outlook=Sunny | Play=Yes) = 2/9$$

 $P(Temperature=Cool | Play=Yes) = 3/9$
 $P(Huminity=High | Play=Yes) = 3/9$
 $P(Wind=True | Play=Yes) = 3/9$
 $P(Play=Yes) = 9/14$

- $X_1 = (age < = 30, Income = medium,$ Student=yes, Credit_rating= Fair)
- X2:= (Age: 31-40; income=high, student=yes;credit =Fair

Bước 2

$$P[yes | E] = P[Outlook = Sunny | yes]$$

$$x\'{ac} su\'{at}$$

$$x\'{P[Humidity = High | yes]}$$

$$x\'{P[Windy = True | yes]}$$

$$x\'{P[yes]}$$

$$Y[E]$$

$$x\'{P[yes]}$$

$$Y[F[E]$$

$$Y[Coutlook = Sunny | Play = Yes) = 2/9$$

$$Y[Temperature = Cool | Play = Yes) = 3/9$$

$$Y[Huminity = High | Play = Yes) = 3/9$$

$$Y[Wind = True | Play = Yes) = 3/9$$

$$Y[Wind = True | Play = Yes) = 3/9$$

P(Temperature=
$$Cool | Play=Yes) = 3/9$$

P(Huminity= $High | Play=Yes) = 3/9$
P(Wind=True | Play= Yes) = 3/9
P(Play= Yes) = 9/14

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Outlook		Temperature		Humidity		Windy			Play				
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

quyết định (play=yes/no)?

$$P[Yes|E] = (2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14) / P[E]$$

$$= 0.0053/P[E]$$

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

$$P[No|E] = 0.0206 / P[E]$$

=> yes/no?

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Outlook		Temperature		Humidity		Windy			Play				
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

quyết định (play=yes/no)?

Likelihood(yes) = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

Likelihood(no) = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Likelihood(yes) = 0.0053 / (0.0053 + 0.0206) = 0.205

Likelihood(no) = 0.0206 / (0.0053 + 0.0206) = 0.795

=> yes/no?

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Bài tập - cho tập dữ liệu như bảng

Class:

'no'

C1:buys_computer=
'yes'
C2:buys_computer=

X₁ =(age<=30, Income=medium, Student=yes Credit_rating= Fair)

age	income	student	credit rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

X2:= (Age: 31-40; income=high, student=yes;credit =Fair

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)....P(E_n|H).P(H)}{P(E)}$$

X₁ =(age<=30, Income=medium, Student=yes Credit_rating=Fair)

<u> </u>	<=30 high no fair no <=30 high no excellent no 3140 high no fair yes >40 medium no fair yes									
age	income	student	credit_rating	buys_computer						
<=30	high	no	fair	no						
<=30	high	no	excellent	no						
3140	high	no	fair	yes						
>40	medium	no	fair	yes						
>40	low	yes	fair	yes						
>40	low	yes	excellent	no						
3140	low	yes	excellent	yes						
<=30	medium	no	fair	no						
<=30	low	yes	fair	yes						
>40	medium	yes	fair	yes						
<=30	medium	yes	excellent	yes						
3140	medium	no	excellent	yes						
3140	high	yes	fair	yes						
>40	medium	no	excellent	no						

P[Yes|X1] = ?

P[No| X1] = ?

X₁ =(age<=30, Income=medium, Student=yes Credit_rating=Fair)

X2:= (Age: 31-40; income=high, student=yes;credit =Fair

Age	Yes	No	Income	Yes	No	Student	Yes	No	credit	Yes	No		
<=30	2/9	3/5	high	2/9	2/5	No	3/9	4/5	fair	6/9	2/5	9/14	5/14
3140	4/9	0/5	Medium	4/9	2/5	Yes	6/9	1/5	exc	3/9	3/5		
>40	3/9	2/5	low	3/9	1/5								

 $P(H|E) = \frac{P(E_1|H).P(E_2|H)....P(E_n|H).P(H)}{P(E)}$

P[Yes|X1] = ?

P[No| X1] = ?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Bài tập- cho tập dữ liệu như bảng

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Xác suất = 0

- giá trị của thuộc tính không xuất hiện trong tất cả các lớp sử dụng *Laplace estimator*
- xác suất không bao giờ có giá trị 0
- Cộng thêm cho tử một giá trị là $p_i\mu$ và mẫu số giá trị μ để tính xác suất. μ hằng số dương và pi là hệ số dương sao cho tổng các $p_i = 1$ (i=1..n)

Laplace estimator – U´oc lượng Laplace

■ VD: thuộc tính *outlook* cho lớp "no" => $p_1 = p_2 = p_3 = 1/3$; $\mu = 1$

$$\frac{3+m/3}{5+m}$$

$$\frac{0+m/3}{5+m}$$

$$\frac{2+m/3}{5+m}$$

Sunny

Overcast

Rainy

Outlook		Temperature		Humidity		Windy			Play				
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Laplace estimator – U´oc lượng Laplace

ví dụ: thuộc tính outlook cho lớp "no"

$$\frac{3+1/3}{5+1}$$

$$\frac{0+1/3}{5+1}$$

$$\frac{2+1/3}{5+1}$$

Sunny

Overcast

Rainy

$$p_1 = p_2 = p_3 = 1/3$$
; $\mu = 1$

Rainy =
$$7/18$$

Laplace estimator – U´oc lượng Laplace

- trọng số có thể không bằng nhau, nhưng tổng phải là 1
- thuộc tính outlook cho lớp "Yes"

$$\frac{2 + \mu p_1}{9 + \mu}$$

$$\frac{4 + \mu p_2}{9 + \mu}$$

$$\frac{3 + \mu p_3}{9 + \mu}$$

Sunny

Overcast

Rainy

Đề xuất giá trị p1, p2, p3 và µ

Laplace estimator – U´oc lượng Laplace

Uớc lượng Laplace cho trường hợp sau (μ , $p_i = ?$)

	Α	В	C
T1	1/7	2/10	5/13
T2	2/7	1/10	3/13
Т3	1/7	2/10	0/13
T4	3/7	5/10	5/13

Giá trị thuộc tính nhiễu

- học : bỏ qua dữ liệu nhiễu
- phân lớp: bỏ qua các thuộc tính nhiễu
- ví dụ:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

Likelihood(yes) = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$ Likelihood(no) = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$ Likelihood(yes) = 0.0238 / (0.0238 + 0.0343) = 0.41Likelihood(no) = 0.0343 / (0.0238 + 0.0343) = 0.59

Giá trị rời rạc và liên tục

♦ Rời rạc

- ►Màu sắc
- ➢ Giới tính
- ➤Tôn giáo

Liên tục

- ≻Chiều cao
- ▶Cân nặng
- Thời gian hoàn thành công việc

Xác định dữ liệu trong bảng kế tiếp, giá trị của các thuộc tính là giá trị rời rạc hay liên tục?

Outlook	Temp	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Overcast	72	90	True	Yes
Overcast	81	75	False	Yes
Rainy	71	91	True	No

Dữ liệu liên tục

Phân phối chuẩn, còn gọi là **phân phối Gauss**, là một <u>phân phối xác suất</u> cực kì quan trọng trong nhiều lĩnh vực. Nó là họ phân phối có dạng tổng quát giống nhau, chỉ khác <u>tham số</u> vi tri (giá trị trung bình μ) và ti $l\hat{e}$ (phương sai σ^2).

Phân phối chuẩn tắc (standard normal distribution) là phân phối chuẩn với giá trị trung bình bằng 0 và phương sai bằng 1 (đường cong màu đỏ trong hình). Phân phối chuẩn còn được gọi là **đường cong chuông** (bell curve) vì đồ thị của mật độ xác

suất có dạng chuông.

Play tennis dataset

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Dữ liệu liên tục

- Giả sử các thuộc tính có phân phối Gaussian
- hàm mật độ xác suất f(x) được tính như sau

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean µ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Phương sai (Variance)
$$\sigma^2$$

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

> Độ lệch chuẩn -standard deviation: căn bậc 2 của phương sai

$$\sigma = \sqrt{\sigma^2}$$

Outlook	Temp.	Humidity	Windy	Play	
Sunny	66	90	true	?	

Outlook	Temp	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Overcast	72	90	True	Yes
Overcast	81	75	False	Yes
Rainy	71	91	True	No

Bước 1: huấn luyện mô hình

Outlook	Temp	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Overcast	72	90	True	Yes
Overcast	81	75	False	Yes
Rainy	71	91	True	No

Outlook		Temperature		Humidity		Windy			Play			
	Yes	No	Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3						False	6	2	9	5
Overcast	4	0						True	3	3		
Rainy	3	2		00								
Sunny	2/9	3/5		!!	???			False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5						True	3/9	3/5		
Rainy	3/9	2/5										

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Temp	Play
85	No
80	No
83	Yes
70	Yes
68	Yes
65	No
64	Yes
72	No
69	Yes
75	Yes
75	Yes
72	Yes
81	Yes
71	No

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \qquad f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

Temp	Play
85	No
80	No
83	Yes
70	Yes
68	Yes
65	No
64	Yes
72	No
69	Yes
75	Yes
75	Yes
72	Yes
81	Yes
71	No

	The numeric weather data with summary statistics												
out	look		t	empera	ture		humidity		,	windy		play	
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3		83	85		86	85	false	6	2	9	5
overcast	4	0		70	80		96	90	true	3	3		
rainy	3	2		68	65		80	70					
				64	72		65	95					
				69	71		70	91					
				75			80						
				75			70						
				72			90						
				81			75						

Dữ liệu liên tục

• $mean - trung \ binh$ $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$

$$\mu = (83+70+68+64+69+75+75+72+81)/9 = 73$$

- *Phuong sai* $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \mu)^2$
 - $\sigma^2 = \frac{1}{8} [(83-73)^2 + (70-73)^2 + (68-73)^2 + (64-73)^2 + (69-73)^2 + (75-73)^2 + (75-73)^2 + (72-73)^2 + (81-73)^2) = \mathbf{38.44}$
- standard deviation độ lệch chuẩn $\sigma = \sqrt{\sigma^2} = 6.2$
- hàm mật độ xác suất f(x) tính khi có phần tử mới xuất hiện $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Temp	Play	out	look		te	mperatu	re	h	umidity		V	vindy		pla	ay
85	No		yes	no		yes	no		yes	no		yes	no	yes	no
80	No	sunny	2	3		83	85		86	85	false	6	2	9	5
83	Yes	overcast	4	0		70	80		96	90	true	3	3	-	
70	Yes										liue	3	3		
68	Yes	rainy	3	2		68	65		80	70					
65	No					64	72		65	95					
64	Yes					69	71		70	91					
72	No					75			80						
69	Yes					75			70						
75	Yes					72			90						
75	Yes					81			75						
72	Yes		2/9	3/5	moa	73	74.6	mean	79.1	86.	false	6/9	2/5	9/1	5/1
81	Yes	sunny	2/9	3/3	mea n	73	74.0	IIICaii	7 3.1	2	iaise	0/9	2/3	4	4
71		overcast	4/9	0/5	std	6.2	7.9	std	10.2	9.7	true	3/9	3/5		
					dev			dev							
		rainy	3/9	2/5	σ^2	384 4									

	The numeric weather data with summary statistics													
out	look		te	emperature humidity			windy			play				
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4	
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5			
rainy	3/9	2/5	σ^2	3844										

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)....P(E_n|H).P(H)}{P(E)}$$

x P(Wind=True | Play=Yes)

$$x P(Play=Yes))/P[E]$$

P(Outl=Sunny | Play=Yes) =
$$2/9$$

P(Temp.=66 | Play=Yes) = ??
P(Hum.=90 | Play=Yes) = ??
P(Wind=True | Play=Yes) = $3/9$
P(Play=Yes) = $9/14$

			The r	numeric	weathe	r data wi	th summ	ary sta	atistics				
out	look		te	mperatu	re	humidity			windy			play	
sunny	2/9	3/5	Mean (μ)	73	74.6	Mean (μ)	79.1	86.2	false	6/9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev (σ)	6.2	7.9	std dev (σ)	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5	σ^2	3844	62.41	σ^2	104.0 4	86.2					

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

$$P(Outl=Sunny | Play=Yes) = 2/9$$

$$P(Hum.=90 | Play=Yes) = ??$$

$$P(Wind=True | Play=Yes) = 3/9$$

$$P(Play=Yes) = 9/14$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

			The r	numeric	weather	data wi	th summ	ary sta	atistics				
out	look		te	emperatu	re	humidity			windy			play	
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5	σ^2	3844									

P(Outl=
$$Sunny \mid Play=Yes$$
) = 2/9

P(Temp.= $66 \mid Play=Yes$) = 0.034

P(Hum.= $90 \mid Play=Yes$) = ??

P(Wind=True $\mid Play=Yes$) = 3/9

P(Play= Yes) = 9/14

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

			The r	numeric	weather	data wi	th summ	ary sta	atistics				
out	look		te	emperatu	re	humidity			windy			play	
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5	σ^2	3844									

P(Outl=Sunny | Play=Yes) =
$$2/9$$

P(Temp.=66 | Play=Yes) = 0.034
P(Hum.=90 | Play=Yes) = ??
P(Wind=True | Play=Yes) = $3/9$
P(Play=Yes) = $9/14$

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$f(humidity=90/No)=?$$

	The numeric weather data with summary statistics														
out	te	mperatu	mperature humidity			windy			play						
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4		
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5				
rainy	3/9	2/5	σ^2	3844											

P(Outl=
$$Sunny$$
 | Play= Yes) = 2/9

P(Temp.= 66 | Play= Yes) = 0.034

P(Hum.= 90 | Play= Yes) = 0.0221

P(Wind=True | Play= Yes) = 3/9

P(Play= Yes) = 9/14

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

f(humidity=90/Yes) =

			The r	numeric	weathe	data wit	th summ	ary sta	atistics				
out	look		te	emperatu	re	humidity			windy			play	
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		•
rainy	3/9	2/5	σ^2	3844									

Outlook	Temp.	Humidity	Windy	Play	
Sunny	66	90	true	?	

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

f(temp=66/Yes) = 0.034f(temp=66/No) = 0.0279

f(humidity=90/Yes) = 0.0221f(humidity=90/No) = 0.0380 Nhãn????

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$$

f(temp=66/Yes) = 0.034

f(humidity=90/Yes) = 0.0221

f(temp=66/No) = 0.0279

f(humidity=90/No) = 0.0380

The numeric weather data with summary statistics													
out	outlook			temperature		humidity		windy		play			
sunny	2/9	3/5	mea n	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5	σ^2	3844									

Dữ liệu liên tục

Bước 2- dự đoán

Outlook	Temp.	Humidity	Windy	Play	
Sunny	66	90	true	?	

```
Likelihood(yes) = 2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036

Likelihood(no) = 3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136

Likelihood(yes) = 0.000036 / (0.000036 + 0.000136) = 20.9\%

Likelihood(no) = 0.000136 / (0.000036 + 0.000136) = 79.1\%
```

out	outlook		temperature			ure humidity		V	vindy		pla	ıy	
sunny	2/9	3/5	Mean(μ)	73	74.6	Mean (μ)	79.1	86.2	false	6/ 9	2/5	9/14	5/1 4
overcast	4/9	0/5	std dev (σ)	6.2	7.9	std dev (σ)	10.2	9.7	true	3/ 9	3/5		
rainy —	3/9	2/5	σ^2	38.44	62.41	σ^2	104.04	86.2					

Bước 2- dự đoán

Outlook	Temp.	Humidity	Windy	Play	
Sunny	66	90	true	?	

$$P[Yes|E] = (2/9*0.034*0.022*3/9*9/14) / P[E] = 0.000036 / P[E]$$

 $P[No|E] = (3/5*0.0279*0.038*3/5*5/14) / P[E] = 0.000136 / P[E]$

Likelihood(yes) = 0.000036 / (0.000036 + 0.000136) = 20.9%Likelihood(no) = 0.000136 / (0.000036 + 0.000136) = 79.1%

Multinomial Naive Bayes

- Mô hình này chủ yếu được sử dụng trong phân loại văn bản mà Vectơ đặc trưng (feature vectors) được tính bằng <u>Bags of</u> <u>Words</u>.
- Mỗi văn bản được biểu diễn bởi một vector có độ dài d chính là số từ trong từ điển.
- \succ Giá trị của thành phần thứ i trong mỗi vector chính là số lần từ thứ i xuất hiện tronç N_{ci}

 $p(x_i|c) = rac{N_{ci}}{N_c}$

- •Nci là tổng số lần từ thứ i xuất hiện trong các văn bản của class c, nó được tính là tổng của tất cả các thành phần thứ i của các feature vectors ứng với class c.
- •Nc là tổng số từ (kể cả lặp) xuất hiện trong class c. Nói cách khác, nó bằng tổng độ dài của toàn bộ các văn bản thuộc vào class c.

Bernoulli Naive Bayes

Mô hình này được áp dụng cho các loại dữ liệu mà mỗi thành phần là một giá trị binary - bằng **0** hoặc 1. Ví dụ: cũng với loại văn bản nhưng thay vì đếm tổng số lần xuất hiện của 1 từ trong văn bản, ta chỉ cần quan tâm từ đó có xuất hiện hay không

Khi đó, $p(x_i|c)$ được tính bằng:

$$p(x_i|c) = p(i|c)^{x_i}(1-p(i|c)^{1-x_i}$$

p(i|c) có thể được hiểu là xác suất từ thứ "i" xuất hiện trong các văn bản của lớp "c"

Nội dung

- Giới thiệu về Bayesian classification
- Kiến thức về xác suất thống kê
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

Kết luận

naïve Bayes

- cho kết quả tốt trong thực tế mặc dù chịu những giả thiết về tính độc lập thống kê của các thuộc tính
- phân lớp không yêu cầu phải ước lượng một cách chính xác xác suất
- dễ cài đặt, học nhanh, kết quả dễ hiểu
- sử dụng trong phân loại text, spam, etc
- tuy nhiên khi dữ liệu có nhiều thuộc tính dư thừa thì naïve Bayes không còn hiệu quả
- dữ liệu liên tục có thể không tuân theo phân phối chuẩn (=> kernel density estimators)

Hướng phát triển

- naïve Bayes
 - chọn thuộc tính con từ các thuộc tính ban đầu
 - chỉ sử dụng các thuộc tính con để học phân lớp
 - mạng Bayes : mối liên quan giữa các thuộc tính

The Cond