# Negative Binomial Modeling on Seoul Bike Sharing Demand

Minmin Pan

Mark Gottermeier

Yao Chen



#### Introduction





#### Introduction

- Benefits of Bike sharing system
  - Convenient first/last mile link to other transportations
  - Pleasant city sightseeing approach
  - Boosting public health
  - Reduce greenhouse gas emission
  - •
  - -> Worldwide rising, even from urban to rural

#### Introduction

- Need to predict the demand of bikes in advance
  - A model between the influencing factors and the demand of bikes
- Our work
  - Dataset: hourly Seoul bike share demand data for a whole year
  - Factors: weather(temperature, humidity etc.), hour of the day, holiday
  - GLM tools: utilizing negative binomial regression, identifying significant factors and interactions, evaluating the model



#### Characteristics











#### Characteristics









#### Characteristics







#### **Correlation Matrix**



#### Poisson Model

- Response variable is a rate (number of bikes rented per hour)
- All explanatory variables significant from univariate analysis
- Stepwise variable selection
- Full model deviance of 993,729 on 8,429 degrees of freedom
  - Overdispersion
  - Negative binomial model more appropriate
  - Poisson model has an AIC of 704,657
  - Negative binomial model has an AIC of 113,915

# Poisson, Quasi-Poisson and Negative binomial Models

- The linear quasi-Poisson variance function performs very well for most of the data points but fail to capture the large variances of the highest demands of bike rental.
- The quadratic negative binomial variance function rises drastically as mean increases; however, it deviates from the true variances by over estimation.



#### Negative Binomial Model

- In the presence of other explanatory variables
  - Visibility excluded (p-value 0.56)
  - Solar radiation excluded (p-value 0.058)
- Temperature
  - Adding dew point increases standard error
  - Highly correlated with dew point (0.91)
  - Drop dew point to avoid multicollinearity

#### Rainfall

- Categories
  - None
  - Light less than 2.5 mm/hour
  - Moderate 2.5 to 7.6 mm/hour
  - Heavy 7.6 mm/hour or greater
- No overlap between levels
- Fractional polynomials didn't appear to make sense
- Rental rate decreases as rainfall increases



#### Snowfall

- Liquid Water Equivalent
- Categories
  - None
  - Light less than 1 mm/hour
  - Moderate 1 to 5 mm/hour
  - Heavy 5 mm/hour or greater
- Lower AIC than fractional polynomials
- Rental rate decreases as snowfall increases



## Wind Speed

- Beaufort scale
- Categories
  - 0 (calm) less than 0.5 m/s
  - 1 (light air) 0.5-1.5 m/s
  - 2 (light breeze) 1.6-3.3 m/s
  - 3 (gentle breeze) 3.4-5.5 m/s
  - 4 (moderate breeze) 5.5-7.9 m/s





## Wind Speed

- Level 1 appears no different than level 0
- Level 3 appears no different than level 2
- Likelihood ratio test supports combining
- High variance in level 4

#### **Estimated Coefficient vs Midpoints of Wind Speed**



#### **Estimated Coefficient vs Midpoints of Wind Speed**



#### Temperature

- Fractional polynomials
- Rental rate increases up to 24 degrees
   Celsius and then decreases
- J = 2 is the best model

$$FP1 = I\left(\left(\frac{Temperature + 17.9}{10}\right)^{3}\right)$$

$$FP2 = I\left(\left(\frac{Temperature + 17.9}{10}\right)^{3} * log\left(\left(\frac{Temperature + 17.9}{10}\right)\right)\right)$$



# Humidity

- Fractional polynomials
- Rental rate flat up until 60%
- J = 2 is the best model

$$FP1 = I\left(\left(\frac{Humidity + 1}{100}\right)^3\right)$$

$$FP2 = I\left(\left(\frac{Humidity + 1}{100}\right)^{3} * log\left(\left(\frac{Humidity + 1}{100}\right)\right)\right)$$



# Visibility & Solar Radiation

- Check main effects not included
  - Visibility still not significant (p-value 0.21)
  - Solar radiation significant
- Add solar radiation back into the model
- Rental rate should decrease when its darker
- J = 1 is the best model

$$FP1 = I\left((Solar.Radiation + 0.1)^{-0.5}\right)$$



#### Interaction Effects

- Temperature, rainfall, and snowfall are the most important variables
- Temperature FP1 highly correlated with FP2 term
- Humidity FP1 is not highly correlated with FP2 term
- Interaction effects included in the model:
  - Temperature & Rainfall, Temperature & Snowfall, Temperature & Humidity, Temperature & Wind Speed, Temperature & Solar Radiation, Humidity & Wind Speed, Humidity & Solar Radiation
- Main effects included:
  - Hour, Temperature, Humidity, Wind Speed, Rainfall, Snowfall, Season, Holiday, Solar Radiation

# Residual plot

Most outliers have high humidity.

humidity in outliers with | standard deviance residuals | > 3:

Min.: 39.0

1st Qu.: 87.0

Median: 92.0

Mean: 88.8

3rd Qu.: 97.0

Max. :98.0



#### **DFBETAS**

• Indicates the effect that deleting each observation has on the estimates for the regression coefficients.

Most DFBETA < 0.05</li>

Humidity FP2: Wind.grp.4

• Humidity FP1: Wind.grp.4

Humidity FP2

• Windgroup4

Few observations in Wind.4 Wind01 Wind23 Wind4 3982 4468 15









#### **DIFFITS**

Influential points
 in a statistical regression

Few observations in Wind.4



## VIF

#### Multicollinearity

| Variable Name   | GVIF   | Df | GVIF^(1/(2*Df)) |
|-----------------|--------|----|-----------------|
| Hour            | 15.33  | 23 | 1.06            |
| Temperature.FP1 | 402.31 | 1  | 20.06           |
| Temperature.FP2 | 344.80 | 1  | 18.57           |
| Humidity.FP1    | 26.77  | 1  | 5.17            |
| Humidity.FP2    | 17.08  | 1  | 4.13            |
| Wind Group      | 58.85  | 2  | 2.77            |
| Rain            | 225.75 | 3  | 2.47            |
| Snow            | 50.75  | 3  | 1.92            |
| Season          | 9.81   | 3  | 1.46            |
| Holiday         | 1.04   | 1  | 1.02            |

| Variable Name (Interactions)            | GVIF   | Df |      |
|-----------------------------------------|--------|----|------|
| Solar.Radiation.FP1                     | 19.99  | 1  | 4.47 |
| Temperature.FP1:Rain                    | 228.46 | 3  | 2.47 |
| Temperature.FP1:Snow                    | 47.10  | 3  | 1.90 |
| Temperature.FP1:Humidity.FP1            | 9.83   | 1  | 3.14 |
| Temperature.FP1:Humidity.FP2            | 19.06  | 1  | 4.37 |
| Temperature.FP1:WindGroup               | 30.43  | 2  | 2.35 |
| Temperature.FP1:<br>Solar.Radiation.FP1 | 9.45   | 1  | 2.47 |
| Humidity.FP1:WindGroup                  | 46.05  | 2  | 2.61 |
| Humidity.FP2:WindGroup                  | 376.90 | 2  | 4.41 |
| Humidity.FP1:Solar.Radiation.FP1        | 21.92  | 1  | 4.68 |
| Humidity.FP2:Solar.Radiation.FP1        | 23.88  | 1  | 4.89 |

# Model Interpretation

Rush hour – more bicycles need

 $\exp(0.6965) = 2.01$  $\exp(0.7955) = 2.22$ 

| Coefficients | Estimate | S.E.   | z-value  | p-value |
|--------------|----------|--------|----------|---------|
| (Intercept)  | 5.5676   | 0.0705 | 78.9577  | 0.0000  |
| Hour1        | -0.1878  | 0.0329 | -5.7099  | 0.0000  |
| Hour2        | -0.4906  | 0.0330 | -14.8673 | 0.0000  |
| Hour3        | -0.7994  | 0.0331 | -24.1232 | 0.0000  |
| Hour4        | -1.2624  | 0.0333 | -37.8574 | 0.0000  |
| Hour5        | -1.2169  | 0.0334 | -36.4448 | 0.0000  |
| Hour6        | -0.4764  | 0.0332 | -14.3335 | 0.0000  |
| Hour7        | 0.2219   | 0.0343 | 6.4731   | 0.0000  |
| Hour8        | 0.6965   | 0.0377 | 18.4530  | 0.0000  |
| Hour9        | 0.1108   | 0.0424 | 2.6154   | 0.0089  |
| Hour10       | -0.2873  | 0.0445 | -6.4531  | 0.0000  |
| Hour11       | -0.2276  | 0.0451 | -5.0415  | 0.0000  |
| Hour12       | -0.0860  | 0.0455 | -1.8908  | 0.0587  |
| Hour13       | -0.0568  | 0.0456 | -1.2473  | 0.2123  |
| Hour14       | -0.0543  | 0.0453 | -1.1977  | 0.2310  |
| Hour15       | 0.0294   | 0.0447 | 0.6590   | 0.5099  |
| Hour16       | 0.1274   | 0.0434 | 2.9348   | 0.0033  |
| Hour17       | 0.3736   | 0.0411 | 9.0964   | 0.0000  |
| Hour18       | 0.7955   | 0.0371 | 21.4713  | 0.0000  |
| Hour19       | 0.5752   | 0.0343 | 16.7879  | 0.0000  |
| Hour20       | 0.4762   | 0.0332 | 14.3501  | 0.0000  |
| Hour21       | 0.4957   | 0.0330 | 15.0428  | 0.0000  |
| Hour22       | 0.3918   | 0.0328 | 11.9410  | 0.0000  |
| Hour23       | 0.1297   | 0.0328 | 3.9532   | 0.0001  |

# Interpretation

| Coefficients           | Estimate | S.E.   | z-value  | p-value |
|------------------------|----------|--------|----------|---------|
| Temperature.FP1        | 0.0956   | 0.0025 | 38.3230  | 0.0000  |
| Temperature.FP2        | -0.0549  | 0.0014 | -38.7724 | 0.0000  |
| Humidity.FP1           | -1.0601  | 0.0979 | -10.8285 | 0.0000  |
| Humidity.FP2           | -1.6354  | 0.5812 | -2.8137  | 0.0049  |
| WindGroup23            | -0.1270  | 0.0313 | -4.0509  | 0.0001  |
| WindGroup4             | -0.1416  | 0.2629 | -0.5387  | 0.5901  |
| RainLight              | -1.0263  | 0.0508 | -20.1855 | 0.0000  |
| RainModerate           | -1.9849  | 0.1115 | -17.8017 | 0.0000  |
| RainHeavy              | -2.5205  | 0.2067 | -12.1942 | 0.0000  |
| SnowLight              | -0.1426  | 0.0378 | -3.7675  | 0.0002  |
| SnowModerate           | -0.0186  | 0.0676 | -0.2751  | 0.7833  |
| SnowHeavy              | -0.6015  | 0.1934 | -3.1101  | 0.0019  |
| SeasonSpring           | 0.3612   | 0.0207 | 17.4177  | 0.0000  |
| SeasonSummer           | 0.5794   | 0.0290 | 19.9946  | 0.0000  |
| SeasonAutumn           | 0.6081   | 0.0209 | 29.1089  | 0.0000  |
| <b>Holiday Holiday</b> | -0.2425  | 0.0226 | -10.7226 | 0.0000  |
| Solar.Radiation.FP1    | -0.2449  | 0.0198 | -12.3888 | 0.0000  |

#### Interpretation

- Interaction terms are all associated with FP terms.
- Fractional Polynomial is a more analytical method which we cannot interpretate intuitively.

| Coefficients                     | Estimate | S.E.   | z-value | p-value |
|----------------------------------|----------|--------|---------|---------|
| Temperature.FP1:RainLight        | 0.0021   | 0.0009 | 2.2877  | 0.0222  |
| Temperature.FP1:RainModerate     | 0.0094   | 0.0021 | 4.4635  | 0.0000  |
| Temperature.FP1:RainHeavy        | 0.0088   | 0.0039 | 2.2285  | 0.0259  |
| Temperature.FP1:SnowLight        | 0.0353   | 0.0071 | 4.9661  | 0.0000  |
| Temperature.FP1:SnowModerate     | -0.0151  | 0.0112 | -1.3422 | 0.1795  |
| Temperature.FP1:SnowHeavy        | 0.0567   | 0.0306 | 1.8546  | 0.0637  |
| Temperature.FP1:Humidity.FP1     | -0.0022  | 0.0010 | -2.2638 | 0.0236  |
| Temperature.FP1:Humidity.FP2     | 0.0194   | 0.0055 | 3.5229  | 0.0004  |
| Temperature.FP1:WindGroup23      | 0.0017   | 0.0003 | 6.0106  | 0.0000  |
| Temperature.FP1:WindGroup4       | -0.0052  | 0.0065 | -0.7945 | 0.4269  |
| Temperature.FP1:Solar.Radiation. |          |        |         |         |
| FP1                              | 0.0015   | 0.0002 | 8.3548  | 0.0000  |
| Humidity.FP1:WindGroup23         | -0.1872  | 0.0415 | -4.5116 | 0.0000  |
| Humidity.FP1:WindGroup4          | -0.5850  | 2.2223 | -0.2633 | 0.7924  |
| Humidity.FP2:WindGroup23         | -0.8170  | 0.3177 | -2.5711 | 0.0101  |
| Humidity.FP2:WindGroup4          | -0.5464  | 9.3099 | -0.0587 | 0.9532  |
| Humidity.FP1:Solar.Radiation.FP1 | 0.1438   | 0.0292 | 4.9302  | 0.0000  |
| Humidity.FP2:Solar.Radiation.FP1 | -0.6395  | 0.1775 | -3.6021 | 0.0003  |

#### Heterogeneity Z

- Contributes to individual's mean unobserved characteristics.
- Bike rental count
  - at Q1 of the distribution of unobserved heterogeneity Z is 31% lower than expected from their observed characteristics
  - Median is 6% lower
  - At Q3, 25% higher than expected



#### Summary

- Our best model includes
  - the hour of the day, temperature, humidity, wind, rain, snow, season, holiday, solar radiation and
  - interaction terms
    - between temperature and rain, snow, humidity, wind, solar radiation,
    - between humidity and wind, solar radiation
- Fractional polynomial
- Multicollinearity

#### References

- [1] https://www.baranidesign.com/faq-articles/2020/1/19/rain-rate-intensity-classification
- [2] https://fpaw.aero/sites/default/files/128/baker-snowfall-intensity-table-a4a-fpaw-summer-brief-
- v3-0.pdf
- [3] https://www.nssl.noaa.gov/education/svrwx101/winter/faq/
- [4] https://windy.app/blog/wind-speed-beaufort-scale.html
- [5] https://journals.aau.dk/index.php/djtr/article/view/3560/3106
- [6] https://link-springer-com.proxy.ulib.uits.iu.edu/article/10.1007/s11116-014-9540-7

