Généralités sur les fonctions numériques

I. Fonction majorée - Fonction minorée - Fonction bornée :

Activité O:

On considère f la fonction définie par $f(x) = \frac{2x^2+3}{x^2+1}$.

- **1.** Déterminer D_f , l'ensemble de définition de \hat{f} .
- **2.** Montrer que $(\forall x \in D_f)$: $f(x) \le 3$.

On dit que f est majorée par 3 sur D_f .

3. Montrer que $(\forall x \in D_f)$: $f(x) \ge 2$.

On dit que f est minorée par $2 \operatorname{sur} D_f$.

4. En déduire que $(\forall x \in D_f)$: $2 \le f(x) \le 3$.

On dit que f est bornée par $2 \operatorname{sur} D_f$.

PP Définitions:

Soit f une fonction définie sur un intervalle I . On dit que :

- f est **majorée** sur I s'il existe un réel M tel que $(\forall x \in I)$: $f(x) \leq M$.
- f est **minorée** sur I s'il existe un réel m tel que $(\forall x \in I)$: $m \le f(x)$.
- f est **bornée** sur I s'il existe des réels M et m tels que $(\forall x \in I)$: $m \le f(x) \le M$.

O Exemple:

On considère La fonction $f: x \mapsto 1 - \frac{1}{x}$.

- o f est majorée sur]0; +∞[par 1. En effet $(\forall x \in]0; +\infty[): f(x) 1 = -\frac{1}{x}$ et $-\frac{1}{x} < 0$ pour tout $\in]0; +\infty[$.
- o f est minorée sur]-∞; 0[par 1 . En effet $(\forall x \in]-\infty; 0[)$: $f(x) 1 = -\frac{1}{x}$ et $-\frac{1}{x} > 0$ pour tout $\in]-\infty; 0[$.

O_Remarques :

Soit f une fonction définie sur un intervalle I de IR et (C_f) sa courbe.

- ✓ Si f est majorée par un réel M sur I, alors (C_f) est au-dessous la droite d'équation y = M sur I.
- ✓ Si f est minorée par un réel m sur I, alors (C_f) est au-dessus la droite d'équation y = m sur I.

Application 0:

On considère f et g les fonctions définies respectivement par $f(x) = 3 - \sqrt{1 - 2x}$ et $g(x) = \sqrt{x^2 + 4}$.

- **1.** Déterminer D_f et D_g .
- **2.** Montrer que f est majorée par 3 sur D_f .
- **3.** Montrer que g est minorée par 2 sur D_q .

No Définitions :

Soit f une fonction définie sur un intervalle I et a un élément de I. On dit que :

- f(a) est la valeur minimale (ou le minimum) de f sur I si $(\forall x \in I)$: $f(x) \ge f(a)$.
- f(a) est la valeur maximale (ou le maximum) de f sur I si $(\forall x \in I)$: $f(x) \leq f(a)$.
- f(a) est un **extremum** de f sur I s'il est le maximum ou le minimum de f sur I.

O Exemple:

-3 est La valeur minimale de la fonction $f: x \mapsto x^2 - 4x + 1$ sur \mathbb{R} . En effet : $(\forall x \in \mathbb{R}): f(x) - (-3) = (x-2)^2 \ge 0$ et f(2) = -3.

Exercice @ de la a série:

Soit *f* une fonction numérique définie par $f(x) = x + \frac{4}{x}$.

- **1.** Déterminer D_f l'ensemble de définition de f.
- **2.** a. Calculer f(2).
 - b. Montrer que f est minorée par 4 sur $]0; +\infty[$. Conclure.
- **3.** Montrer que -4 est la valeur maximale de f sur $]-\infty$; 0[.

II. Fonctions périodiques:

Activité 2:

La figure ci-contre représente la courbe représentative d'une fonction définie sur *IR*.

Définition :

Soit f une fonction définie sur D et T un nombre réel strictement positif.

On dit que f est périodique (ou T-périodique) sur D si :

- $x + T \in D$ pour tout x de D.
- f(x + T) = f(x) pour tout x de D.

O Exemples:

- Les fonctions $x \mapsto \sin(x)$ et $x \mapsto \cos(x)$ sont périodiques de période 2π .
- La fonction $x \mapsto \tan(x)$ est périodique de période π .

Application 2:

On considère les fonctions f et g définies respectivement sur \mathbb{R} par $f(x) = \cos^2(x)$ et $g(x) = \sin(2\pi x)$.

Montrer que les fonctions f et g sont périodiques de périodes respectives π et 1.

III. Comparaison de deux fonctions:

Définition :

Soient f et g deux fonctions définies sur le même ensemble D. On dit que :

- f et g sont **égales** sur D si et seulement si, $(\forall x \in D) : f(x) = g(x)$.
- f est **supérieure ou égale** à g sur D si et seulement si, $(\forall x \in D)$: $f(x) \ge g(x)$ et on écrit $f \ge g$.

O Exemple:

Soient f et g deux fonctions définies sur IR^* par $f(x) = x + 1 + \frac{1}{x^2 + 2}$ et g(x) = x + 1.

On a $(\forall x \in IR^*)$: $f(x) - g(x) = \frac{1}{x^2 + 2} > 0$.

Donc $f > g \operatorname{sur} IR^*$.

\mathcal{O}_{\perp} Interprétation graphique :

Soient f et g deux fonctions et D un ensemble inclus dans $D_f \cap D_g$.

- ✓ Si f > g sur D, alors (C_f) est strictement au-dessus de (C_g) sur D.
- \checkmark Si $f \leq g$ sur D, alors (C_f) est au-dessous de (C_g) sur D.

Application 3:

On considère f et g deux fonctions définies sur \mathbb{R} par $f(x) = x^2 - 2x + 1$ et $g(x) = -2x^2 + 4x + 1$.

- **1.** Etudier le signe de f(x) g(x) sur \mathbb{R} .
- **2.** En déduire une comparaison entre f et g sur \mathbb{R} .

Exercice @ de la série:

Soient f et g deux fonctions définies sur $\mathbb R$ par ses courbes ci-contre.

1) Résoudre graphiquement les équations suivantes: • f(x) = 2.

- f(x) = 0.
- f(x) = g(x).
- 2) Résoudre graphiquement les inéquations suivantes :
 - f(x) < 2
 - $g(x) \geq 0$.
 - f(x) > g(x).
 - Image d'un intervalle par une fonction numérique : IV.

Soit f une fonction définie sur un intervalle I.

L'ensemble des valeurs de f(x) tels que $x \in I$ est appelé **image de l'intervalle I** par la fonction f et on le note par f(I).

Autrement dit : $f(I) = \{f(x) / x \in I\}$.

O Exemple :

La figure ci-contre représente la courbe représentative d'une fonction f définie sur [-2; 4].

Lorsque x varie sur l'intervalle [-2; -1], f(x)varie sur l'intervalle [0; 1]. Donc :

$$f([-1;1]) = [1;3].$$

De même, on a:

 $(C_f$

$$f([0;1]) = [0;2]$$

$$of([1;3]) = [-1;2]$$

$$of([1; 4]) = [-1; 2]$$

 $of([-1; 1]) = [0; 2[$

$$of([0;3[) =]-1;2]$$

 $of([-2;4[) = [-1;2]$

Soit f une fonction définie sur un intervalle [a;b].

- Si f est croissante sur [a;b], alors : f([a;b]) = [f(a);f(b)].
- Si f est décroissante sur [a;b], alors : f([a;b]) = [f(b);f(a)].
- Si f change de monotonie sur [a; b], alors : f([a;b]) = [m;M] avec m la valeur minimale et M la valeur maximale de f sur [a;b].

Exercice @ de la série :

Soit f une fonction dont le tableau de variations est le suivant :

Déterminer ce qui suit :

•
$$f([-4;0])$$
 • $f([0;1])$ • $f([0;2])$

•
$$f([-4;1])$$
 • $f(1;+\infty[)$

V. Monotonie une fonction numérique :

Activité 3:

On considère f la fonction définie par $f(x) = \frac{1}{x^2+1}$.

- **1.** Déterminer D_f , l'ensemble de définition de f.
- **2.** Etudier la parité de *f* puis interpréter graphiquement le résultat.
- **3.** Etudier la monotonie de f sur $[0; +\infty[$ puis sa monotonie sur $]-\infty; 0]$.
- **4.** Etudier la monotonie des fonctions 3f, -2f et f + 3 sur $[0; +\infty[$.

Propriété :

Soit f une fonction numérique définie sur un intervalle I et λ un nombre réel.

- Les deux fonctions f et f + k ont le même sens de variations sur I.
- Si $\lambda > 0$, alors f et λf ont le même sens de variations sur I.
- Si λ < 0, alors f et λ f ont des sens de variations contraires sur I.

Application @:

Soit f une fonction définie sur [-3; 3] par sa courbe cicontre .

Donner le tableau de variations des fonctions f, f + 2 et -3f.

VI. Composée de deux fonctions numériques :

🗷 Activité D:

On considère f et g deux fonctions définies par f(x) = -x + 5 et $g(x) = \sqrt{x}$.

1. a.Calculer f(1) puis g(f(1)).

b.Calculer f(-4) puis g(f(-4)).

c.Calculer f(8). Peut-on calculer puis g(f(8)).

2. a.Déterminer l'intervalle I tel que g(f(x)) est calculable pour tout x de I. b.Déterminer l'expression de g(f(x)) pour tout x de I.

PP Définition :

g est une fonction définie sur un intervalle J et f est une fonction définie sur un intervalle I telle que, pour tout $x \in I$, on a $f(x) \in J$.

La fonction **composée** de f et g dans cet ordre, noté $g \circ f$, est la fonction définie pour tout $x \in I$ par : $(g \circ f)(x) = g(f(x))$.

O_Remarques:

- $x \in D_{gof} \iff x \in D_f \ et \ f(x) \in D_g$.
- En général, $gof \neq fog$.

O_{\perp} Exemple:

Soient $f: x \mapsto x^2$, définie sur $D_f = \mathbb{R}$, et $g: x \mapsto \frac{2x}{x-4}$, définie sur $D_g = \mathbb{R} \setminus \{4\}$.

• Domaine de définition de la fonction composée *gof* :

On a $x \in D_{gof} \iff x \in D_f \ et \ f(x) \in D_g$

$$\Leftrightarrow x \in \mathbb{R} \ et \ x^2 \neq 4$$

$$\Leftrightarrow x \in \mathbb{R} \text{ et } x \neq -2 \text{ et } x \neq 2.$$

Donc $D_{gof} =]-\infty; -2[\cup]2; +\infty[.$

• Expression de la fonction composée *gof* :

On a: $\forall x \in]-\infty; -2[\cup]2; +\infty[:(gof)(x) = g(f(x)) = g(x^2) = \frac{2x^2}{x^2-4}.$

Application 5:

- 1. Soient f et g deux fonctions numériques définies par $f(x) = \frac{1}{x}$ et $g(x) = \frac{2x+3}{3x-6}$.
 - a. Déterminer D_f , D_g et D_{gof} .
 - b. Donner l'expression de la fonction *gof* .
- **2.** Ecrire la fonction h définie sur \mathbb{R}^+ par $h(x) = \frac{\sqrt{x}-2}{\sqrt{x}+5}$

Propriété :

Soient f et g deux fonctions numériques définies respectivement sur les intervalles I et J tels que $f(I) \subset J$.

- Si f et g ont même sens de variations, respectivement sur I et J, alors la fonction composée gof est croissante sur I.
- Si f et g ont des sens de variations contraires, respectivement sur I et J, alors la fonction composée g of est décroissante sur I .

O_Exemple:

Soit *h* la fonction définie sur \mathbb{R} par $h(x) = \frac{1-x^2}{1+x^2}$

h est la fonction de composée de $f: x \mapsto x^2$ et $g: x \mapsto \frac{1-x}{1+x}$ (h = gof).

o On a f est décroissante sur $]-\infty;0]$ et $f(]-\infty;0]) = [0;+\infty[$.

Et puisque g est décroissante sur $[0; +\infty[$, alors h est croissante sur $]-\infty; 0]$.

o On a f est croissante sur $[0; +\infty[$ et $f([0; +\infty[) = [0; +\infty[$.

Et puisque g est décroissante sur $[0; +\infty[$, alors h est décroissante sur $[0; +\infty[$.

Application 6:

On considère les fonctions f et g définies sur \mathbb{R} par $f(x) = x^2 - 2x + 1$ et g(x) = -2x + 1.

- **1.** Dresser les tableaux de variations de f et g.
- **2.** Déterminer $f(]-\infty;1]$) et $f([1;+\infty[)$.
- **3.** Etudier les variations de la fonction gof sur $]-\infty$; 1] et $[1; +\infty[$.

Exercice 5 de la série :

On considère les fonctions f et g définies par $f(x) = x^2 - 2x - 1$ et $g(x) = \frac{x-2}{x+2}$.

- **1.** Donner D_f , D_g et D_{gof} .
- **2.** Déterminer gof(x) pour tout $x \in D_{gof}$.
- **3.** Dresser les tableaux de variations de f et g.
- **4.** Déterminer $f(]-\infty;1]$) et $f([1;+\infty[)$.
- **5.** Etudier les variations de la fonction *gof* sur $]-\infty;1]$ et $[1;+\infty[$.

VII. Représentation graphique des fonctions $x \mapsto \sqrt{x + a}$ et $x \mapsto ax^3$:

1. Représentation graphique de la fonction $x \mapsto ax^3$:

Soient a un nombre réel non nul et $f: x \mapsto ax^3$.

On a
$$(\forall x \in \mathbb{R}) : -x \in \mathbb{R}$$
 et $f(-x) = a(-x)^3 = -ax^3 = -f(x)$.

Ce qui entraine que f est impaire, donc qu'il suffit de l'étudier sur \mathbb{R}^+ .

Soient x et y deux éléments de $[0; +\infty[$ tels que x < y

$$\triangleright$$
 Si $a > 0$:

On a :
$$x < y \Rightarrow x^3 < y^3$$
(car x et y sont positifs)
 $\Rightarrow ax^3 < ay^3$ (car $a > 0$)
 $\Rightarrow f(x) < f(y)$.

Donc f est croissante sur $[0; +\infty[$, et puisqu' elle est impaire, alors elle croissante sur $]-\infty; 0]$.

D'où f est croissante sur \mathbb{R} .

\rightarrow Si *a* < 0:

On a:
$$x < y \Rightarrow x^3 < y^3$$

$$\Rightarrow ax^3 > ay^3 \text{ (car } a < 0)$$

$$\Rightarrow f(x) > f(y).$$

Donc f est décroissante sur $[0; +\infty[$, et puisqu' elle est impaire, alors elle décroissante sur $]-\infty; 0]$.

D'où f est décroissante sur \mathbb{R} .

2. Représentation graphique de la fonction $x \mapsto \sqrt{x + a}$:

Soient a un nombre réel non nul et $f: x \mapsto \sqrt{x+a}$.

On a $D_f = [-a; +\infty[$.

Soient x et y deux éléments de $D_f = [-a; +\infty[$ tels que x < y.

On a:
$$x < y \Rightarrow x + a < y + a$$

$$\Rightarrow \sqrt{x + a} < \sqrt{y + a}$$

$$\Rightarrow f(x) < f(y).$$

Donc f est strictement croissante sur $[-a; +\infty[$.

Application 0:

On considère les fonctions f et g définies par $f(x) = \sqrt{x+2}$ et $g(x) = -x^3$ et soient (C_f) et (C_g) les courbes représentatives respectives des fonctions f et g dans un repère $(0; \vec{\imath}; \vec{\jmath})$.

- **1.** Etudier les variations de f et g.
- **2.** Construire (C_f) et (C_g) .
- **3.** Résoudre graphiquement l'inéquation $\sqrt{x+3} + x^3 < 0$ sur $[-2; +\infty[$.

Exercice © de la série.

Soient f et g deux fonctions définies par $f(x) = x^2 - x$ et $g(x) = \sqrt{x+2}$ et soient (C_f) et (C_g) leurs courbes respectives dans un repère orthonormé (C_g) .

- **1.** a. Déterminer D_g , puis vérifier que f(2) = g(2).
- **b.** Représenter les courbes (C_f) et (C_q) .
- **c.** Déterminer graphiquement $f\left(\left]-\infty;\frac{1}{2}\right]\right)$.
- **d.** Résoudre graphiquement sur $[-2; +\infty[$ l'inéquation $x^2 x \sqrt{x+2} \le 0$.
- **2.** on considère la fonction h définie sur \mathbb{R} par : $h(x) = \sqrt{x^2 x + 2}$.
- **a.** Vérifier que $(\forall x \in \mathbb{R})$: $h(x) = (g \circ f)(x)$.
- **b.** Déterminer les variations de la fonction h sur les intervalles $\left]-\infty;\frac{1}{2}\right]$ et $\left[\frac{1}{2};+\infty\right[$ en utilisant les variations de f et g.