#### JRC - IFORCE meeting - September, 7th 2013

# Modelling and forecasting tropical deforestation: advances and perspectives



Ghislain Vieilledent<sup>1,2</sup>

[1] JRC Forest Resources and Climate, [2] Seconded National Expert from Cirad





- Deforestation and demography
  in Africa
- ② forestatrisk Python module
  - Specifications
  - Improvements
  - Model performance

- Forecasting spatial deforestation spatially
- Perspectives

- Deforestation and demography in Africa
- 2 forestatrisk Python module
  - Specifications
  - Improvements
  - Model performance

- 3 Forecasting spatial deforestation spatially
- 4 Perspectives



# Deforestation and demography in Africa

- The fate of African tropical forests
- Associated to demographic explosion
- $\log D = \beta_0 + \beta_1 \log F + \beta_2 \log P$
- Data on deforestation :
  - 1. JRC: 1990-2000-2010
  - 2. GFC: 2000-2005-2010-2015
- Projection of forest cover in 2050, 2100







## Perspectives

- Scientific articles
- Integration of Roadless data on deforestation?
- Use of the results for future deforestation scenario in Africa
- ullet Predictions in percentage of forest loss :  $\sim$  independent of forest definition

- Deforestation and demography in Africa
- 2 forestatrisk Python module
  - Specifications
  - Improvements
  - Model performance

- Forecasting spatial deforestation spatially
- 4 Perspectives





## forestatrisk Python module specifications

- Spatial probability of deforestation
- $logit(\theta_i) = f(spatial factors_i) + \rho_j$
- Factors: accessibility (dist. towns, roads, villages), landscape (dist. forest edge), land-tenure (protected areas)
- $\bullet$   $\rho_i$ : spatial random effect





https://github.com/ghislainv/forestatrisk

# Spatial random effects

- Hotspots of deforestation
- Not explained by the fixed env. factors



# Spatial probability of deforestation

- Computed at 30 m resolution
- Greener : lower probability
- Darker red : higher probability



#### Future forest cover

• green : residual forest in 2050

• red : deforested area 2010-2050





# **Improvements**

- Python 2.7 and Python 3.x compatible
- Tests with reticulate R package to
- Spatial random effects limited to country border
- Set of new functions for model validation





# Model peformance

| 27629 | 0              |
|-------|----------------|
| 25365 | 8              |
| 19279 | 30             |
| 0     | 100            |
|       | 25365<br>19279 |

TODO: Add map of differences

- Deforestation and demography in Africa
- 2 forestatrisk Python module
  - Specifications
  - Improvements
  - Model performance

- Forecasting spatial deforestation spatially
- 4 Perspectives



### Africa

- Map of deforestation probability in 2015
- Future forest cover in 2050, 2100





#### Asia

- 11 countries in tropical Asia
- Including MMR, THA, KHM, LAO, VNM (ReCaREDD focus countries)
- Ex. Vietnam in 2050 (half current deforestation rate)



- Deforestation and demography in Africa
- 2 forestatrisk Python module
  - Specifications
  - Improvements
  - Model performance

- Forecasting spatial deforestation spatially
- Perspectives



## Perspectives

- 1. Finalize the deforestation-demography study
- Consolidate the code for the forestatrisk Python module and publish a methodological paper
- 3. Update the spatial prediction for Africa taking into account the demography
- 4. Extend projection to South America and publish the pantropical future forest cover map in 2050

... Thank you for attention ...