Binary probit regression with I-priors

Haziq Jamil
Supervisors: Dr. Wicher Bergsma & Prof. Irini Moustaki

Social Statistics (Year 3) London School of Economics & Political Science

8-9 May 2017

PhD Presentation Event

http://phd3.haziqj.ml

Outline

Introduction

I-priors PhD Roadmap

2 Probit models with I-priors

The latent variable motivation Using I-priors Estimation (and challenges)

The regression model

• For i = 1, ..., n, consider the regression model

$$y_i = f(x_i) + \epsilon_i$$

 $(\epsilon_1, \dots, \epsilon_n) \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi}^{-1})$

where $f \in \mathcal{F}$, $y_i \in \mathbb{R}$, and $x_i = (x_{i1}, \dots, x_{ip}) \in \mathcal{X}$.

• Let \mathcal{F} be a reproducing kernel Hilbert space (RKHS) with reproducing kernel $h_{\lambda}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. An I-prior on f is

$$(f(x_1),\ldots,f(x_n))^{\top}\sim \mathsf{N}\left(\mathbf{f}_0,\mathcal{I}(f)\right)$$

with \mathbf{f}_0 a prior mean, and \mathcal{I} the Fisher information for f, given by

$$\mathcal{I}(f(x), f(x')) = \sum_{k=1}^{n} \sum_{l=1}^{n} \psi_{kl} h_{\lambda}(x, x_k) h_{\lambda}(x', x_l).$$

• The I-prior regression model for i = 1, ..., n becomes

$$y_i = f_0(x_i) + \sum_{k=1}^n h_\lambda(x_i, x_k) w_k + \epsilon_i$$

 $(w_1, \dots, w_n) \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi})$
 $(\epsilon_1, \dots, \epsilon_n) \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi}^{-1})$

W. Bergsma (2017). "Regression with I-priors". Manuscript in preparation

I-priors (cont.)

 Of interest is the posterior regression function characterised by the distribution

$$p(\mathbf{f}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f})}{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})\,\mathrm{d}\mathbf{f}},$$

and also the posterior predictive distribution for new data points x_{new}

$$p(y_{\text{new}}|\mathbf{y}) = \int p(y_{\text{new}}|\mathbf{y}, f_{\text{new}}) p(f_{\text{new}}|\mathbf{y}) \, df_{\text{new}}$$

with $f_{\text{new}} = f(x_{\text{new}})$.

- Estimation using EM algorithm or direct maximisation of the marginal likelihood $\log p(y)$.
- Complete Bayesian estimation also possible.

HJ (2017). iprior: Linear Regression using I-Priors. R Package version 0.6.4: CRAN/GitHub

Fractional Brownian motion (FBM) RKHS

Fractional Brownian motion (FBM) RKHS

Fractional Brownian motion (FBM) RKHS

Posterior predictive distribution

Posterior predictive distribution

PhD Roadmap

- multilevel models
- models with functional covariates

<u>Advantages</u>

- Minimal assumptions
- Straightforward inference
- Performance competetive

PhD Roadmap

- additive models
- multilevel modelsmodels with functional covariates

<u>Advantages</u>

- · Minimal assumptions
- Straightforward inference
- Performance competetive

R/iprior

Estimation:

- Direct maximisation
- EM algorithm
- MCMC (Gibbs/HMC)

Pearson

PhD Roadmap

- additive models
- multilevel models
- models with functional covariates

<u>Advantages</u>

- · Minimal assumptions
- Straightforward inference
- Performance competetive

R/iprior

Estimation:

- Direct maximisation
- EM algorithm
- MCMC (Gibbs/HMC)

Bayesian Variable Selection

(using I-priors in the canonical RKHS)

Good performance in cases with multicollinearity

Introduction Probit with I-priors

Pearson

PhD Roadmap

000000

additive models

- multilevel models
- models with functional covariates

<u>Advantages</u>

- Minimal assumptions
- Straightforward inference
- Performance competetive

R/iprior

Estimation:

- Direct maximisation
- **EM algorithm**
- MCMC (Gibbs/HMC)

Bayesian Variable Selection (using I-priors in the canonical RKHS)

Good performance in cases with multicollinearity

Binary probit models with I-priors

Extension to binary responses Estimation using variational inference

classification

- Introduction
- Probit models with I-priors

The latent variable motivation

- Consider binary responses y_1, \ldots, y_n together with their corresponding covariates x_1, \ldots, x_n .
- For i = 1, ..., n, model the responses as

$$y_i \sim \text{Bern}(p_i)$$
.

End

The latent variable motivation

- Consider binary responses y_1, \ldots, y_n together with their corresponding covariates x_1, \ldots, x_n .
- For i = 1, ..., n, model the responses as

$$y_i \sim \text{Bern}(p_i)$$
.

• Assume that there exists continuous, underlying latent variables y_1^*, \ldots, y_n^* , such that

$$y_i = \begin{cases} 1 & \text{if } y_i^* \ge 0 \\ 0 & \text{if } y_i^* < 0. \end{cases}$$

End

The latent variable motivation

- Consider binary responses y_1, \ldots, y_n together with their corresponding covariates x_1, \ldots, x_n .
- For i = 1, ..., n, model the responses as

$$y_i \sim \text{Bern}(p_i)$$
.

• Assume that there exists continuous, underlying latent variables y_1^*, \ldots, y_n^* , such that

$$y_i = \begin{cases} 1 & \text{if } y_i^* \ge 0 \\ 0 & \text{if } y_i^* < 0. \end{cases}$$

• Model these continuous latent variables according to

$$y_i^* = f(x_i) + \epsilon_i$$

where $(\epsilon_1, \dots, \epsilon_n) \sim N(\mathbf{0}, \mathbf{\Psi}^{-1})$ and $f \in \mathcal{F}$ (some RKHS).

• Assume an I-prior on f. Then,

$$f(x_i) = f_0(x_i) + \sum_{k=1}^n h_\lambda(x_i, x_k) w_k$$

 $(w_1, \dots, w_n) \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi})$

• Assume an I-prior on f. Then,

$$f(x_i) = \overbrace{f_0(x_i)}^{\alpha} + \sum_{k=1}^{n} h_{\lambda}(x_i, x_k) w_k$$
$$(w_1, \dots, w_n) \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi})$$

• For now, consider iid errors $\Psi = \psi \mathbf{I}_n$.

• Assume an I-prior on f. Then,

$$f(x_i) = \overbrace{f_0(x_i)}^{\alpha} + \sum_{k=1}^{n} h_{\lambda}(x_i, x_k) w_k$$
$$(w_1, \dots, w_n) \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi})$$

• For now, consider iid errors $\Psi = \psi I_n$. In this case,

$$p_i = P[y_i = 1] = P[y_i^* \ge 0]$$

$$= P[\epsilon_i \le f(x_i)]$$

$$= \Phi\left(\psi^{1/2}(\alpha + \sum_{k=1}^n h_\lambda(x_i, x_k)w_k)\right)$$

where Φ is the CDF of a standard normal.

• Assume an I-prior on f. Then,

$$f(x_i) = \overbrace{f_0(x_i)}^{\alpha} + \sum_{k=1}^{n} h_{\lambda}(x_i, x_k) w_k$$
$$(w_1, \dots, w_n) \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi})$$

• For now, consider iid errors $\Psi = \psi I_n$. In this case,

$$p_i = P[y_i = 1] = P[y_i^* \ge 0]$$

$$= P[\epsilon_i \le f(x_i)]$$

$$= \Phi\left(\psi^{1/2}(\alpha + \sum_{k=1}^n h_\lambda(x_i, x_k)w_k)\right)$$

where Φ is the CDF of a standard normal.

• No loss of generality compared with using an arbitrary threshold τ or error precision ψ . Thus, set $\psi = 1$.

Estimation

- Denote $f_i = f(x_i)$ for short.
- The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

Estimation

- Denote $f_i = f(x_i)$ for short.
- The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

- Some strategies:
 - Naive Monte-Carlo integral

Estimation

- Denote $f_i = f(x_i)$ for short.
- The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot \mathsf{N}(\alpha \mathbf{1}_n, \mathsf{H}_{\lambda}^2) d\mathbf{f}$$

- Some strategies:
 - X Naive Monte-Carlo integral
 - X EM algorithm with a MCMC E-step

wai vu no taylor

- Stilliation
 - Denote $f_i = f(x_i)$ for short.
 - The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

- Some strategies:
 - X Naive Monte-Carlo integral
 - X EM algorithm with a MCMC E-step
 - ✓ Laplace approximation

wai vu no taylor

- .Stilliation
 - Denote $f_i = f(x_i)$ for short.
 - The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

- Some strategies:
 - X Naive Monte-Carlo integral
 - X EM algorithm with a MCMC E-step
 - ✓ Laplace approximation
 - ✓ MCMC sampling

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2{\it Q}({\bf f})$ being the negative Hessian of ${\it Q}$ evaluated at $\tilde{\bf f}$.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, §4.1, pp. 777-778.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{\bf f}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\mathbf{\tilde{f}}) p(\mathbf{\tilde{f}})$$

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, §4.1, pp. 777-778.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) pprox Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{\bf f}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\tilde{\mathbf{f}}) p(\tilde{\mathbf{f}})$$

Won't scale with large n; difficult to find modes in high dimensions.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, §4.1, pp. 777-778.

Full Bayesian analysis using MCMC

- Assign hyperpriors on parameters of the I-prior, e.g.
 - $\lambda^2 \sim \Gamma^{-1}(a,b)$
 - $\alpha \sim N(c, d^2)$

for a hierarchical model to be estimated fully Bayes.

- No closed-form posteriors need to resort to MCMC sampling.
- Computationally slow, and sampling difficulty results in unreliable posterior samples.

End

Thank you!

References I

- Bergsma, W. (2017). "Regression with I-priors". *Manuscript in preparation*.
- HJ (2017). *iprior: Linear Regression using I-Priors*. R Package version 0.6.4: CRAN/GitHub.
- Kass, R. and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430.