# Capítulo 1 Introducción a bases de datos relacionales y SQL

### Objetivos Conocimiento

- Identificar los tres componentes principales de hardware de un sistema cliente/servidor.
- Describa la forma en que un cliente accede a la base de datos en un servidor utilizando estos términos: software de aplicación, API de acceso a datos, sistema de administración de bases de datos, consulta SQL y resultados de consultas.
- Describa la forma en que se organiza una base de datos utilizando estos términos: tablas, columnas, filas y celdas.
- Describa cómo se relacionan las tablas de una base de datos relacional utilizando estos términos: clave principal y clave externa.
- Identifique los tres tipos de relaciones que pueden existir entre dos tablas.
- Describa la forma en que se definen las columnas de una tabla utilizando estos términos: tipo de datos, valor nulo, valor predeterminado y columna de identidad.

### **Objetivos (cont.)**

- Describir la relación entre SQL estándar y Transact-SQL de Microsoft SQL Server.
- Describa la diferencia entre las instrucciones DML y las instrucciones DDL.
- Describa la diferencia entre una consulta de acción y una consulta SELECT.
- Enumere tres técnicas de codificación que pueden hacer que su código SQL sea más fácil de leer y mantener.
- Explique en qué se diferencian las vistas y los procedimientos almacenados de las sentencias SQL que se emiten desde un programa de aplicación.
- Describir el uso de objetos de comando, conexión y lector de datos cuando las aplicaciones .NET tienen acceso a una base de datos de SQL Server.

### Un sistema cliente/servidor sencillo



# Los tres componentes de hardware de un sistema cliente/servidor

- Clientes
- Servidor
- Palabra de red

# Términos que debes conocer

- Red de área local (LAN)
- Red de área extensa (WAN)
- Sistema empresarial

# Software de cliente, software de servidor y la interfaz SQL



### Software de servidor

- Sistema de gestión de bases de datos (DBMS)
- El DBMS realiza el procesamiento back-end

### Software de cliente

- Aplicación
- API de acceso a datos (interfaz de programación de aplicaciones)
- El software cliente realiza el procesamiento front-end

### La interfaz SQL

- El software de la aplicación se comunica con el DBMS mediante el envío de consultas SQL a través de la API de acceso a datos.
- Cuando el DBMS recibe una consulta, proporciona un servicio como devolver los datos solicitados (los resultados de la consulta) al cliente.
- SQL son las siglas de Structured Query Language, que es el lenguaje estándar para trabajar con una base de datos relacional.

### Sistema cliente/servidor

• El procesamiento se divide entre el cliente y el servidor

# Sistema de manejo de archivos

• Todo el procesamiento se realiza en los clientes

# Un sistema basado en Windows que utiliza un servidor de aplicaciones



### Un sistema sencillo basado en la web



# Otras arquitecturas de sistemas cliente/servidor

- Los servidores de aplicaciones almacenan componentes empresariales
- Los servidores web almacenan aplicaciones web y servicios web

# Cómo funcionan las aplicaciones web

- Un explorador web de un cliente envía una solicitud a un servidor web.
- El servidor web procesa la solicitud.
- El servidor web pasa las solicitudes de datos al servidor de bases de datos.
- El servidor de bases de datos devuelve los resultados al servidor web.
- El servidor web devuelve una respuesta al navegador.

# La tabla Proveedores en una base de datos de proveedores (AP)



### **Terms**

- Base de datos relacional
- Mesa
- Columna
- Fila
- Celda
- Clave principal
- Clave principal compuesta
- Clave no principal (clave única)
- Índice

#### La relación entre dos tablas



### **Terms**

- Clave foránea
- Relación de uno a varios
- Relación uno a uno
- Relación de varios a varios

#### Las columnas de la tabla Facturas



### **Common SQL Server data types**

- bit
- int, bigint, smallint, tinyint
- money, smallmoney
- decimal, numeric
- float, real
- datetime, smalldatetime
- char, varchar
- nchar, nvarchar

### **Terms**

- Data type
- Null value
- Default value
- Identity column

# A comparison of relational databases and conventional file systems

| Feature           | File system                                                                           | Relational database                                                                   |
|-------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Definition        | Each program must define<br>the file and the layout of<br>the records within the file | Tables, rows, and columns are defined within the database and can be accessed by name |
| Maintenance       | If the definition of a file changes, each program that uses the file must be modified | Programs can be used without modification when the definition of a table changes      |
| Validity checking | Each program that updates<br>a file must include code to<br>check for valid data      | Can include checks for valid data                                                     |

# A comparison of relational databases and conventional file systems (continued)

| Feature       | File system                                                                                                       | Relational database                                                                                            |
|---------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Relationships | Each program must provide for and enforce relationships between files                                             | Can enforce relationships<br>between tables using<br>foreign keys; ad hoc<br>relationships can also be<br>used |
| Data access   | Each I/O operation targets<br>a specific record based on<br>its relative position in the<br>file or its key value | A program can use SQL to access selected data in one or more tables of a database                              |

# A comparison of relational databases and other database systems

| Feature                 | Hierarchical database                                                                 | Network<br>database                                                                   | Relational database                                                                          |
|-------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Supported relationships | One-to-many only                                                                      | One-to-many, one-to-one, and many-to-many                                             | One-to-many,<br>one-to-one, and<br>many-to-many; ad<br>hoc relationships<br>can also be used |
| Data access             | Programs must include code to navigate through the physical structure of the database | Programs must include code to navigate through the physical structure of the database | Programs can access data without knowing its physical structure                              |

# A comparison of relational databases and other database systems (continued)

| Feature     | Hierarchical database                                                                | Network<br>database                                                                  | Relational database                                                              |
|-------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Maintenance | New and modified relationships can be difficult to implement in application programs | New and modified relationships can be difficult to implement in application programs | Programs can be used without modification when the definition of a table changes |

### Important events in the history of SQL

| Year | Event                                                                                        |
|------|----------------------------------------------------------------------------------------------|
| 1970 | Dr. E. F. Codd developed the relational database model.                                      |
| 1978 | IBM developed the predecessor to SQL, called Structured English Query Language (SEQUEL).     |
| 1979 | Relational Software, Inc. (later renamed Oracle) released the first relational DBMS, Oracle. |
| 1982 | IBM released their first relational database system, SQL/DS (SQL/Data System).               |
| 1985 | IBM released DB2 (Database 2).                                                               |
| 1987 | Microsoft released SQL Server.                                                               |
| 1989 | ANSI published the first set of standards (ANSI/ISO SQL-89, or SQL1).                        |
| 1992 | ANSI revised standards (ANSI/ISO SQL-92, or SQL2).                                           |
| 1999 | ANSI published SQL3 (ANSI/ISO SQL:1999).                                                     |

### Important events in the history of SQL (continued)

| Year | Event                                                       |
|------|-------------------------------------------------------------|
| 2003 | ANSI published SQL:2003.                                    |
| 2006 | ANSI published SQL:2006.                                    |
| 2008 | ANSI published SQL:2008.                                    |
| 2011 | Information on these standards is not yet freely available. |

### How knowing "standard SQL" helps you

- Basic SQL statements are the same for all SQL dialects.
- Once you know one SQL dialect, you can easily learn others.

### How knowing "standard SQL" does not help you

 Any non-trivial application will require modification when moved from one SQL database to another.

#### First database releases

Oracle 1979

DB2 1985

MySQL 2000

SQL Server 1987

### **Primary platforms**

Oracle Unix

OS/390 and z/OS

OS/390 and z/OS

Unix

MySQL Unix

Windows

Mac OS

SQL Server Windows

#### **SQL DML statements**

- SELECT
- INSERT
- UPDATE
- DELETE

#### **SQL DDL statements**

- CREATE DATABASE, TABLE, INDEX
- ALTER TABLE, INDEX
- DROP DATABASE, TABLE, INDEX

#### A statement that creates a new database

CREATE DATABASE AP;

CREATE TABLE Invoices

#### A statement that creates a new table

```
(InvoiceID
                             NOT NULL IDENTITY
               INT
               PRIMARY KEY,
VendorID
               INT
                             NOT NULL
               REFERENCES Vendors (VendorID),
InvoiceNumber
               VARCHAR (50)
                             NOT NULL,
InvoiceDate
               SMALLDATETIME NOT NULL,
InvoiceTotal
                             NOT NULL,
               MONEY
PaymentTotal
               MONEY
                             NOT NULL DEFAULT 0,
```

CreditTotal MONEY NOT NULL DEFAULT 0,

TermsID INT NOT NULL

REFERENCES Terms (TermsID),

InvoiceDueDate SMALLDATETIME NOT NULL,

PaymentDate SMALLDATETIME NULL);

#### A statement that adds a new column to the table

ALTER TABLE Invoices
ADD BalanceDue MONEY NOT NULL;

#### A statement that deletes the new column

ALTER TABLE Invoices
DROP COLUMN BalanceDue;

#### A statement that creates an index on the table

```
CREATE INDEX IX_Invoices_VendorID
ON Invoices (VendorID);
```

### The Invoices base table

|    | InvoiceID | VendorID | InvoiceNumber | InvoiceDate         | InvoiceTotal | Payment Total | Credit Total | TemsID |   |
|----|-----------|----------|---------------|---------------------|--------------|---------------|--------------|--------|---|
| 1  | 1         | 122      | 989319-457    | 2011-12-08 00:00:00 | 3813.33      | 3813.33       | 0.00         | 3      |   |
| 2  | 2         | 123      | 263253241     | 2011-12-10 00:00:00 | 40.20        | 40.20         | 0.00         | 3      |   |
| 3  | 3         | 123      | 963253234     | 2011-12-13 00:00:00 | 138.75       | 138.75        | 0.00         | 3      |   |
| 4  | 4         | 123      | 2-000-2993    | 2011-12-16 00:00:00 | 144.70       | 144.70        | 0.00         | 3      |   |
| 5  | 5         | 123      | 963253251     | 2011-12-16 00:00:00 | 15.50        | 15.50         | 0.00         | 3      |   |
| 6  | 6         | 123      | 963253261     | 2011-12-16 00:00:00 | 42.75        | 42.75         | 0.00         | 3      |   |
| 7  | 7         | 123      | 963253237     | 2011-12-21 00:00:00 | 172.50       | 172.50        | 0.00         | 3      |   |
| 8  | 8         | 89       | 125520-1      | 2011-12-24 00:00:00 | 95.00        | 95.00         | 0.00         | 1      |   |
| 9  | 9         | 121      | 97/488        | 2011-12-24 00:00:00 | 601.95       | 601.95        | 0.00         | 3      |   |
| 10 | 10        | 123      | 263253250     | 2011-12-24 00:00:00 | 42.67        | 42.67         | 0.00         | 3      |   |
| 11 | 11        | 123      | 963253262     | 2011-12-25 00:00:00 | 42.50        | 42.50         | 0.00         | 3      |   |
| 12 | 12        | 96       | 177271-001    | 2011-12-26 00:00:00 | 662.00       | 662.00        | 0.00         | 2      |   |
| 13 | 13        | 95       | 111-92R-10096 | 2011-12-30 00:00:00 | 16.33        | 16.33         | 0.00         | 2      |   |
| 14 | 14        | 115      | 25022117      | 2012-01-01 00:00:00 | 6.00         | 6.00          | 0.00         | 4      |   |
| 15 | 15        | 48       | P02-88D77S7   | 2012-01-03 00:00:00 | 856.92       | 856.92        | 0.00         | 3      | + |
| 4  |           |          |               |                     |              |               |              |        |   |

# A SELECT statement that retrieves and sorts selected columns and rows

### The result set defined by the SELECT statement

|   | InvoiceNumber | InvoiceDate         | InvoiceTotal | Payment Total | Credit Total | BalanceDue |   |
|---|---------------|---------------------|--------------|---------------|--------------|------------|---|
| 1 | 39104         | 2012-03-10 00:00:00 | 85.31        | 0.00          | 0.00         | 85.31      |   |
| 2 | 963253264     | 2012-03-18 00:00:00 | 52.25        | 0.00          | 0.00         | 52.25      | = |
| 3 | 31361833      | 2012-03-21 00:00:00 | 579.42       | 0.00          | 0.00         | 579.42     |   |
| 4 | 263253268     | 2012-03-21 00:00:00 | 59.97        | 0.00          | 0.00         | 59.97      |   |
| 5 | 263253270     | 2012-03-22 00:00:00 | 67.92        | 0.00          | 0.00         | 67.92      |   |
| 6 | 263253273     | 2012-03-22 00:00:00 | 30.75        | 0.00          | 0.00         | 30.75      | + |

# A SELECT statement that joins data from the Vendors and Invoices tables

### The result set defined by the SELECT statement

|    | VendorName                     | InvoiceNumber | InvoiceDate         | InvoiceTotal |
|----|--------------------------------|---------------|---------------------|--------------|
| 1  | Bertelsmann Industry Svcs. Inc | 509786        | 2012-02-18 00:00:00 | 6940.25      |
| 2  | Cahners Publishing Company     | 587056        | 2012-02-29 00:00:00 | 2184.50      |
| 3  | Computerworld                  | 367447        | 2012-02-11 00:00:00 | 2433.00      |
| 4  | Data Reproductions Corp        | 40318         | 2012-02-01 00:00:00 | 21842.00     |
| 5  | Dean Witter Reynolds           | 75C-90227     | 2012-02-11 00:00:00 | 1367.50      |
| 6  | Digital Dreamworks             | P02-3772      | 2012-01-21 00:00:00 | 7125.34      |
| 7  | Federal Express Corporation    | 963253230     | 2012-03-07 00:00:00 | 739.20       |
| 8  | Ford Motor Credit Company      | 9982771       | 2012-03-24 00:00:00 | 503.20       |
| 9  | Franchise Tax Board            | RTR-72-3662   | 2012-01-25 00:00:00 | 1600.00      |
| 10 | Fresno County Tax Collector    | P02-88D77S7   | 2012-01-03 00:00:00 | 856.92       |
| 11 | IBM                            | Q545443       | 2012-02-09 00:00:00 | 1083.58      |
| 12 | Ingram                         | 31359783      | 2012-02-03 00:00:00 | 1575.00      |
| 13 | Ingram                         | 31361833      | 2012-03-21 00:00:00 | 579.42       |
| 14 | Malloy Lithographing Inc       | 0-2058        | 2012-01-28 00:00:00 | 37966.19     |
| 15 | Malloy Lithographing Inc       | P-0259        | 2012-03-19 00:00:00 | 26881.40     |
| 16 | Malloy Lithographing Inc       | 0-2060        | 2012-03-24 00:00:00 | 23517.58     |
| 17 | Malloy Lithographing Inc       | P-0608        | 2012-03-23 00:00:00 | 20551.18     |

### **Terms**

- Base table
- Result set
- Calculated value
- Query
- Join
- Inner join
- Outer join

#### Add a row to the Invoices table

### Change the value of a column for a selected row

```
UPDATE Invoices
SET CreditTotal = 35.89
WHERE InvoiceNumber = '367447';
```

## Change the value in a column for all rows that satisfy the search condition

```
UPDATE Invoices
SET InvoiceDueDate = InvoiceDueDate + 30
WHERE TermsID = 4;
```

#### Delete a selected invoice from the Invoices table

```
DELETE FROM Invoices
WHERE InvoiceNumber = '4-342-8069';
```

### Delete all paid invoices from the Invoices table

```
DELETE FROM Invoices
WHERE InvoiceTotal - PaymentTotal - CreditTotal = 0;
```

#### A SELECT statement that's difficult to read

select invoicenumber, invoicedate, invoicetotal,
invoicetotal - paymenttotal - credittotal as balancedue
from invoices where invoicetotal - paymenttotal credittotal > 0 order by invoicedate

# A SELECT statement that's coded with a readable style

#### A SELECT statement with a block comment

### A SELECT statement with a single-line comment

### Recomendaciones de codificación SQL

- Comience cada nueva cláusula en una nueva línea.
- Divida las cláusulas largas en varias líneas y aplique sangría a las líneas continuas.
- Escriba en mayúscula la primera letra de cada palabra clave y cada palabra en los nombres de columnas y tablas.
- Termine cada instrucción con un punto y coma (;).
- Use comentarios solo para las partes del código que son difíciles de entender.

### A CREATE VIEW statement for a view named VendorsMin

CREATE VIEW VendorsMin AS

SELECT VendorName, VendorState, VendorPhone
FROM Vendors;

#### The virtual table that's represented by the view

|   | VendorName                      | VendorState | VendorPhone    |
|---|---------------------------------|-------------|----------------|
| 1 | US Postal Service               | WI          | (800) 555-1205 |
| 2 | National Information Data Ctr   | DC          | (301) 555-8950 |
| 3 | Register of Copyrights          | DC          | NULL           |
| 4 | Jobtrak                         | CA          | (800) 555-8725 |
| 5 | Newbrige Book Clubs             | NJ          | (800) 555-9980 |
| 6 | California Chamber Of Commerce  | CA          | (916) 555-6670 |
| 7 | Towne Advertiser's Mailing Svcs | CA          | NULL           |
| 8 | BFI Industries                  | CA          | (559) 555-1551 |
| 9 | Pacific Gas & Electric          | CA          | (800) 555-6081 |

### A SELECT statement that uses the VendorsMin view

SELECT \* FROM VendorsMin
WHERE VendorState = 'CA'
ORDER BY VendorName;

# The result set that's returned by the SELECT statement

|   | VendorName                     | VendorState | VendorPhone    |
|---|--------------------------------|-------------|----------------|
| 1 | Abbey Office Fumishings        | CA          | (559) 555-8300 |
| 2 | American Express               | CA          | (800) 555-3344 |
| 3 | ASC Signs                      | CA          | NULL           |
| 4 | Aztek Label                    | CA          | (714) 555-9000 |
| 5 | Bertelsmann Industry Svcs. Inc | CA          | (805) 555-0584 |
| 6 | BFI Industries                 | CA          | (559) 555-1551 |
| 7 | Bill Jones                     | CA          | NULL           |
| 8 | Bill Marvin Electric Inc       | CA          | (559) 555-5106 |
| 9 | Blanchard & Johnson Associates | CA          | (214) 555-3647 |

## A CREATE PROCEDURE statement for a procedure named spVendorsByState

CREATE PROCEDURE spVendorsByState @State char(2) AS
 SELECT VendorName, VendorState, VendorPhone
 FROM Vendors
 WHERE VendorState = @State
 ORDER BY VendorName;

# Instrucción que ejecuta el procedimiento almacenado spVendorsByState

EXEC spVendorsByState 'CA';

### El conjunto de resultados

|   | VendorName                     | VendorState | VendorPhone    |
|---|--------------------------------|-------------|----------------|
| 1 | Abbey Office Fumishings        | CA          | (559) 555-8300 |
| 2 | American Express               | CA          | (800) 555-3344 |
| 3 | ASC Signs                      | CA          | NULL           |
| 4 | Aztek Label                    | CA          | (714) 555-9000 |
| 5 | Bertelsmann Industry Svcs. Inc | CA          | (805) 555-0584 |
| 6 | BFI Industries                 | CA          | (559) 555-1551 |
| 7 | Bill Jones                     | CA          | NULL           |
| 8 | Bill Marvin Electric Inc       | CA          | (559) 555-5106 |
| 9 | Blanchard & Johnson Associates | CA          | (214) 555-3647 |

#### Letra chica

- Procedimiento almacenado
- Lenguaje de control de flujo
- Detonante
- Función definida por el usuario (UDF)

#### Opciones comunes para acceder a los datos de SQL Server



#### Letra chica

- Modelo de acceso a datos
- ADO.NET (para lenguajes .NET)
- JDBC (para Java)
- Controlador de base de datos

### Basic ADO.NET objects in a .NET application



#### Letra chica

- Proveedor de datos .NET
- Objeto de comando
- Objeto de conexión
- Objeto lector de datos
- Arquitectura de datos desconectada

### A Visual Basic function that uses ADO.NET to retrieve data from SQL Server

```
Public Shared Function GetVendor(
       vendorID As Integer) As Vendor
   Dim vendor As New Vendor
    ' Create the connection object
   Dim connection As New SqlConnection()
    connection.ConnectionString =
        "Data Source=localhost\SqlExpress;" &
        "Initial Catalog=AP; Integrated Security=True"
    ' Create the command object and set the connection,
    ' SELECT statement, and parameter value
   Dim selectCommand As New SqlCommand
    selectCommand.Connection = connection
    selectCommand.CommandText = "SELECT VendorID, " &
        "VendorName, VendorAddress1, VendorAddress2, " &
        "VendorCity, VendorState, VendorZipCode " &
        "FROM Vendors WHERE VendorID = @VendorID"
    selectCommand.Parameters.AddWithValue(
        "@VendorID", vendorID)
```

# A Visual Basic function that uses ADO.NET to retrieve data from SQL Server (continued)

' Open the connection to the database connection.Open() ' Retrieve the row specified by the SELECT statement ' and load it into the Vendor object Dim reader As SqlDataReader = selectCommand.ExecuteReader If reader.Read Then vendor.VendorID = CInt(reader("VendorID")) vendor.VendorName = reader("VendorName").ToString vendor.VendorAddress1 = reader("VendorAddress1").ToString vendor.VendorAddress2 = reader("VendorAddress2").ToString vendor.VendorCity = reader("VendorCity").ToString vendor.VendorState = reader("VendorState").ToString vendor.VendorZipCode = reader ("VendorZipCode"). ToString

# A Visual Basic function that uses ADO.NET to retrieve data from SQL Server (continued)

```
vendor = Nothing
End If
reader.Close()

' Close the connection to the database
connection.Close()

Return vendor
End Function
```

### A C# method that uses ADO.NET to retrieve data from SQL Server

```
public static Vendor GetVendor(int vendorID)
   Vendor vendor = new Vendor();
    // Create the connection object
    SqlConnection connection = new SqlConnection();
    connection.ConnectionString =
        "Data Source=localhost\\SqlExpress;" +
        "Initial Catalog=AP; Integrated Security=True";
    // Create the command object and set the connection,
    // SELECT statement, and parameter value
    SqlCommand selectCommand = new SqlCommand();
    selectCommand.Connection = connection;
    selectCommand.CommandText = "SELECT VendorID, " +
        "VendorName, VendorAddress1, VendorAddress2, " +
        "VendorCity, VendorState, VendorZipCode " +
        "FROM Vendors WHERE VendorID = @VendorID";
    selectCommand.Parameters.AddWithValue(
        "@VendorID", vendorID);
```

# A C# method that uses ADO.NET to retrieve data from SQL Server (continued)

```
// Open the connection to the database
connection.Open();
// Retrieve the row specified by the SELECT statement
// and load it into the Vendor object
SqlDataReader reader = selectCommand.ExecuteReader();
if (reader.Read())
    vendor.VendorID = (int)reader["VendorID"];
    vendor.VendorName =
        reader["VendorName"].ToString();
    vendor.VendorAddress1 =
        reader["VendorAddress1"].ToString();
    vendor.VendorAddress2 =
       reader["VendorAddress2"].ToString();
    vendor.VendorCity =
       reader["VendorCity"].ToString();
    vendor.VendorState =
       reader["VendorState"].ToString();
```

# A C# method that uses ADO.NET to retrieve data from SQL Server (continued)