Forecasting U.S. recessions with a large number of predictors

Shuting Chen

MACSS Project Proposal April 4, 2018

Introduction - Motivation of the project

Predicting recessions using probit models

- Estrella and Mishkin (1998) predict the recession indicator y_t with a static probit model
- Kauppi and Saikkonen (2008) propose the dynamic autoregressive specification
 - Improve the forecasting performance by including lags of π_t , the usual probit latent variable
 - Only use interest rate spread as the driving predictor
 - Use the same variables for different forecasting horizons

Using a large panel of predictors

- Stock and Watson (2002) forecast real-valued economic activities with a large set of predictors
- Chen, Iqbal, and Li (2011) demonstrate that including principal components improves dynamic probit models

Introduction - Motivation of the project

Predicting recessions using probit models

- Estrella and Mishkin (1998) predict the recession indicator y_t with a static probit model
- Kauppi and Saikkonen (2008) propose the dynamic autoregressive specification
 - Improve the forecasting performance by including lags of π_t , the usual probit latent variable
 - Only use interest rate spread as the driving predictor
 - Use the same variables for different forecasting horizons

Using a large panel of predictors

- Stock and Watson (2002) forecast real-valued economic activities with a large set of predictors
- Chen, Iqbal, and Li (2011) demonstrate that including principal components improves dynamic probit models

Introduction - Purpose of the project

- Extend Kauppi and Saikkonen's (2008) dynamic autoregressive probit model by
 - replacing the interest rate spread with a few factors or predictors selected from a large panel of predictors
 - augmenting nonlinearity with factors selected from a pool set of predictors and their squares
- Ideal contributions:
 - Identify most informative predictors/factors
 - Understand whether the selected predictors/factors are horizon specific

Models

How to predict the probability of recessions occurring at time t?

- y_t recession indicator, having a Bernoulli distribution with conditional probability p_t
- Using probit model: $\Phi(\pi_t) = p_t$
- Model specification:

$$\pi_t = \omega + \mathbf{y}_{t-1}\alpha + \pi_{t-1}\delta + \mathbf{f}'_{t-1}\beta$$

- How to determine f_{t-1}?
 - Option 1: factors extracted from a large set of predictors by principal component analysis
 - Option 2: predictors selected from the same set of predictors by Adaboost (Ng, 2014)

Models

How to predict the probability of recessions occurring at time t?

- y_t recession indicator, having a Bernoulli distribution with conditional probability p_t
- Using probit model: $\Phi(\pi_t) = p_t$
- Model specification:

$$\pi_t = \omega + \mathbf{y}_{t-1}\alpha + \pi_{t-1}\delta + \mathbf{f}'_{t-1}\beta$$

- How to determine f_{t-1}?
 - Option 1: factors extracted from a large set of predictors by principal component analysis
 - Option 2: predictors selected from the same set of predictors by Adaboost (Ng, 2014)

Estimation and forecasting

- Estimate parameters, $\theta = \left(\omega, \alpha, \delta, \beta', \pi_0\right)'$ in the specification of π_t , by maximum likelihood estimation
- Forecasting procedures
 - Forecasting horizons: h = 3, 6, 12 months ahead
 - Direct approach vs iterative approach
 - Iterative approach: need to consider every possible path of y_t through the h - 1 months
 - · Potential drawbacks

Data description

Use data from two different sources

- U.S. business cycle expansion and contraction dates announced by NBER
 - The first month following a peak month defines the first recession month
 - · The last month of a trough defines the last recession month
- Monthly frequency macroeconomic series from FRED-MD
 - disposed by McCracken and Ng with the data desk at the Federal Reserve Bank of St. Louis
 - including 123 variables over 1960:M1 to 2017:M10
 - covering macroeconomic and financial series such as real activity indicators, interest rate indices and price indices

Data Figure - U.S. Business Cycle Dates by NBER

Data Table - Interest and exchange rates

Table 1: Summary Statistics for 10 Predictors Classified as Interest and Exchange Rates

Fred	Description	Mean	S. D.
FEDFUNDS	Effective Federal Funds Rate	5.1085	3.6843
CP3Mx	3-Month AA Financial Commercial Paper Rate	5.2132	3.4627
TB3MS	3-Month Treasury Bill	4.6322	3.1724
TB6MS	6-Month Treasury Bill	4.7704	3.1582
GS1	1-Year Treasury Rate	5.1491	3.3706
GS5	5-Year Treasury Rate	5.8484	3.0684
GS10	10-Year Treasury Rate	6.1815	2.8436
AAAFFM	Moody's Aaa Corporate Bond Minus FEDFUNDS	2.0696	1.9733
BAAFFM	Moody's Baa Corporate Bond Minus FEDFUNDS	3.0836	2.0758
TB3SMFFM	3-Month Treasury C Minus FEDFUNDS	-0.4764	0.7146