

BRAC University

Department of Mathematics and Natural Science

MAT 216: Linear Algebra & Fourier Analysis Assignment 02 Section 09

Due Date: 07 March, 2024 Spring 2024 Total Mark: 170

Answer all Questions

- 1. (a) Determine the values of λ such that the following system of linear equations has:
 - (i) no solution, (ii) more than one solution, (iii) a unique solution.

5

$$x + \lambda y + z = 1$$

$$x + y + \lambda z = 1$$

$$\lambda x + y + z = 1$$

(b) Determine the values of λ and μ such that the following system of linear equations has: (i) no solution, (ii) more than one solution, (iii) a unique solution. 5

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2u + \lambda z = u$$

2. (a) Describe the row picture, column picture and matrix picture of these two equations 5

$$x + y = 3$$

$$x - 2y + = -3$$

(b) Describe the possible types of row pictures of these two equations depending on the parameters ${f 5}$

$$a_1x + b_1y = c_1$$

$$a_2x + b_2y = c_2$$

- 3. (a) Calculate the inverse of the matrix $A=\begin{bmatrix}1&4\\2&1\end{bmatrix}$ (i.e. A^{-1}) using Gauss-Jordan elimination.
 - (b) Consider $A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 4 & 7 \\ 3 & 7 & 5 \end{bmatrix}$. Justify the statement " A is not invertible". 4
 - (c) Use Gauss-Jordan elimination on [UI] to find the U^{-1}

10

$$UI = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 4. (a) Check whether the set \mathbb{R} (Set of real numbers) with the usual addition and scalar multiplication is a vector space or not over the field (i) $\mathbb{F} = \mathbb{R}$ (set of real numbers), (ii) $\mathbb{F} = \mathbb{Q}$ (set of rational numbers), (iii) $\mathbb{F} = \mathbb{C}$ (set of complex numbers). Explain with details.
 - (b) Consider the set \mathbb{R}^2 . A generic element of \mathbb{R}^2 is given by the pair (x,y), where $x,y \in \mathbb{R}$. The operations addition and scalar multiplication is defined on \mathbb{R}^2 by, $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$ and $k(x_1,y_1)=(kx_1,0)$ respectively. Is the set \mathbb{R}^2 with the above-defined operations a vector space over the field \mathbb{R} ? If it is a vector space, show that it is closed under the above-defined addition and Scalar multiplication and there exists an additive identity. If it is not, give a counterexample, i.e., give an example that violates any axiom of the vector space.
 - (c) Let \mathbb{R}^+ be the set of all positive real numbers. Define vector addition and scalar multiplication by

$$x \oplus y = xy$$
 for all $x, y \in \mathbb{R}^+$

$$k \circ x = x^k$$
 for all $x \in \mathbb{R}^+$ and $k \in \mathbb{R}$

Show that \mathbb{R}^+ is a vector space over the field \mathbb{R} .

- 5. Determine which of the following are subspaces of the vector space V. For a subspace, you need to show all three required axioms of subspaces are fulfilled. If it is not a subspace single counter-example will suffice as proof.
 - (a) All vectors of the form $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ with x + 2y + 3z = 5, where the total vector space

 $V = \mathbb{R}^3$ over the scalar field $\overline{\mathbb{F}} = \mathbb{R}$, with usual addition and scalar multiplication. 5

- (b) Consider the vector space $V=M^{2\times 2}$ over the field $\mathbb R$ with usual matrix addition and scalar multiplication, where $M^{2\times 2}$ is the set of all 2×2 matrices. Now consider a subset consisting of all 2×2 symmetric matrices of the vector space $M^{2\times 2}$. Is this subset a subspace over the field $\mathbb R$? (Hints: For symmetric matrix $A=A^T$.)
- c) Let S be the subset of R^3 consisting of vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying if $x_1 + 2x_3 = 0$.

Determine if S is a subspace or not.

- d) Let V be a subset of the vector space R^n consisting only of the zero vector of R^n , Namely $V = \{0\}$. Then prove that V is a subspace of R^n .
- 6. Determine which sets are vector spaces under the given operations. For those that are not vector spaces, list at least one axiom that fail to hold.
 - a) The set of all triples of real numbers (x, y, z) with the operations (x, y, z) + (x', y', z') = (x + x', y + y', z + z') and k(x, y, z) = (0, 0, 0).
 - **b)** The set of all pairs of real numbers of the form (x, y), where $x \ge 0$, with the standard operations on \mathbb{R}^2 .
 - c) The set of all pairs of real numbers of the form (x, y), where $x^2 + y^2 <= 1$, with the standard operations on \mathbb{R}^2 .
 - d) The set of all pairs of real numbers (x, y) with the operations (x, y) + (x', y') = (x + x' + 1, y + y' + 1) and k(x, y) = (kx, ky).

- **e)** The set of all pairs of real numbers of the form (1, y) with the operations (1, y) + (1, y') = (1, y + y') and k(1, y) = (1, ky).
- 7. Consider the matrix $A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 4 & 7 \\ 3 & 7 & 5 \end{bmatrix}$
 - (a) Find the Row Space and Rank of A. 7
 - (b) Find the Null Space and Nullity of A. 7
 - (c) Show that Rank(A) + Nullity(A) = Number of Columns of A
- 8. Consider the matrix $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -5 & -3 \\ 0 & 5 & 15 \end{bmatrix}$
 - (i) Calculate the Colums Space of A. 5
 - (ii) Do the vector $\mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ -4 \end{bmatrix}$ lies is in the column space of A? (Justify) 5
- 9. Find the Transformation Matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, where, T is defined by,

$$T(x, y, z, w) = (4x - 6y + 5z, 3x - 2y - 3w, 2y - 3x + 4w)$$

- (a) Show that T is linear 5
- (b) Find the Matrix of T.
- (c) Find the Kernel of T.
- (d) Find the Image of T.

Best wishes