CS23336-Introduction to Python Programming

Started on Monday, 21 October 2024, 8:05 PM

State Finished

Completed on Monday, 21 October 2024, 8:55 PM

Time taken 49 mins 53 secs **Marks** 10.00/10.00

Grade 100.00 out of 100.00

Question 1

Correct
Mark 1.00 out of 1.00

Flag guestion

Question text

Given two arrays of positive integers, for each element in the second array, find the total number of elements in the first array which are *less than or equal to* that element. Store the values determined in an array.

For example, if the first array is [1, 2, 3] and the second array is [2, 4], then there are 2 elements in the first array less than or equal to 2. There are 3 elements in the first array which are less than or equal to 4. We can store these answers in an array, answer = [2, 3].

Program Description

The program must return an array of m positive integers, one for each maxes[i] representing the total number of elements nums[i] satisfying $nums[i] \le maxes[i]$ where $0 \le i < n$ and $0 \le i < m$, in the given order.

The program has the following:

nums[nums[0],...nums[n-1]]: first array of positive integers
maxes[maxes[0],...maxes[n-1]]: second array of positive integers

Constraints

- \cdot 2 \leq n, $m \leq 10^5$
- · $1 \le nums[j] \le 10^9$, where $0 \le j < n$.
- · $1 \le maxes[i] \le 10^9$, where $0 \le i < m$.

Input Format For Custom Testing

Input from stdin will be processed as follows and passed to the program.

The first line contains an integer *n*, the number of elements in *nums*.

The next n lines each contain an integer describing nums[j] where $0 \le j < n$.

The next line contains an integer m, the number of elements in maxes.

The next m lines each contain an integer describing maxes[i] where $0 \le i < m$.

Sample Case 0

Sample Input 0

> 2 3

Sample Output 0

2

Explanation 0

We are given n = 4, nums = [1, 4, 2, 4], m = 2, and maxes = [3, 5].

- 1. For maxes[0] = 3, we have 2 elements in nums(nums[0] = 1 and nums[2] = 2) that are $\leq maxes[0]$.
- 2. For maxes[1] = 5, we have 4 elements in nums(nums[0] = 1, nums[1] = 4, nums[2] = 2, and nums[3] = 4) that are $\leq maxes[1]$.

Thus, the program returns the array [2, 4] as the answer.

Sample Case 1

Sample Input 1

Sample Output 1

-

Explanation 1

We are given, n = 5, nums = [2, 10, 5, 4, 8], m = 4, and maxes = [3, 1, 7, 8].

- 1. For maxes[0] = 3, we have 1 element in nums(nums[0] = 2) that is $\leq maxes[0]$.
- 2. For maxes[1] = 1, there are 0 elements in nums that are $\leq maxes[1]$.
- 3. For maxes[2] = 7, we have 3 elements in nums(nums[0] = 2, nums[2] = 5, and nums[3] = 4) that are $\leq maxes[2]$.
- 4. For maxes[3] = 8, we have 4 elements in nums(nums[0] = 2, nums[2] = 5, nums[3] = 4, and nums[4] = 8) that are $\leq maxes[3]$.

Thus, the program returns the array [1, 0, 3, 4] as the answer.

Answer:(penalty regime: 0 %)

4 1 4 2 4 2 3 5	2 4	2 4
5 2 10 5 4 8 4 3 1 7	1 0 3 4	1 0 3 4

Input Expected Got

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 2

Correct

Mark 1.00 out of 1.00

☑Flag question

Question text

Complete the program to count frequency of each element of an array. Frequency of a particular element will be printed once.

Sample Test Cases

Test Case 1

Input

23

45

23

56

45

2340

Output

23 occurs 3 times

45 occurs 2 times

56 occurs 1 times

40 occurs 1 times

Answer:(penalty regime: 0 %)

Feedback

Input		Expe	cto	ed	Go	t	
7							
23							
45	23	occurs	3	times 23	occurs	3	times
23	45	occurs	2	times 45	occurs	2	times
56	56	occurs	1	times 56	occurs	1	times
45	40	occurs	1	times 40	occurs	1	times
23							
40							

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 3

Correct

Mark 1.00 out of 1.00

Flag question

Question text

Given an integer n, return an list of length n+1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i.

Example:

5 --> 101

Input: n = 2
Output: [0,1,1]

```
Explanation:

0 --> 0

1 --> 1

2 --> 10

Example2:

Input: n = 5

Output: [0,1,1,2,1,2]

Explanation:

0 --> 0

1 --> 1

2 --> 10

3 --> 11

4 --> 100
```

Note: Complete the given function alone

For example:

Test Result

print(CountingBits(5)) [0, 1, 1, 2, 1, 2]

Answer:(penalty regime: 0 %)

Reset answer

Feedback

Test	Ex	pe	cte	ed				Go	ot			
<pre>print(CountingBits(2)) [0,</pre>	1,	1]				[0,	1,	1]				
<pre>print(CountingBits(5)) [0,</pre>	1,	1,	2,	1,	2]	[0,	1,	1,	2,	1,	2]	

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 4

Correct
Mark 1.00 out of 1.00

Flag question

Question text

Given a matrix mat where every row is sorted in **strictly increasing** order, return the **smallest common element** in all rows.

If there is no common element, return -1.

Example 1:

Input:

4 5

12345

```
2 4 5 8 10
3 5 7 9 11
1 3 5 7 9
```

Output:

5

Constraints:

- 1 <= mat.length, mat[i].length <= 500
- $1 \le mat[i][j] \le 10^4$
- mat[i] is sorted in strictly increasing order.

Answer:(penalty regime: 0 %)

Feedback

Input Expected Got

```
4 5
1 2 3 4 5
2 4 5 8 10 5 5
3 5 7 9 11
1 3 5 7 9
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 5

Correct

Mark 1.00 out of 1.00

Flag question

Question text

Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A[i] - A[j] = k, i != j.

Input Format

- First line is number of test cases T. Following T lines contain:
 N, followed by N integers of the array
 The non-negative integer k
 - 5

Output format

Print 1 if such a pair exists and 0 if it doesn't.

Example

Input

1

3

1

3

5

4

Output:

Input

1

3

1

_

99

Output

0

For example:

Input Result

```
1 3 1 3 5 4 1 3 1 3 5 99
```

Answer:(penalty regime: 0 %)

Feedback

Input Expected Got

1 3 1 3 5 4	1	1
1 3 1 3 5 99	Θ	0

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 6

Correct

Mark 1.00 out of 1.00

Flag question

Question text

An array is monotonic if it is either **monotone increasing** or **monotone decreasing**.

An array A is monotone increasing if for all $i \le j$, $A[i] \le A[j]$. An array A is monotone decreasing if for all $i \le j$, $A[i] \ge A[j]$.

Write a program if n array is monotonic or not. Print "True" if is monotonic or "False" if it is not. Array can be monotone increasing or decreasing.

Input Format:

First line n-get number of elements

Next n Lines is the array of elements

Output Format:

True ,if array is monotone increasing or decreasing.

otherwise False is printed

Sample Input1

4

5

6

7

8

Sample Output1

```
True
Sample Input2
6
3
Sample Output2
True
Sample Input 3
6
7
8
7
Sample Output3
False
For example:
Input Result
6
5
       True
4
Answer:(penalty regime: 0 %)
      n=int(input())
          inc=dec=True
for i in range(1,len(array)):
              if array [i]<array[i-1]:</pre>
              if array[i]>array[i-1]:
```

Feedback

Input Expected Got

```
4
6
5 True True
4
3
```

4 3 5 7 4	False	False
4 1 6 9 2	False	False
4 9 6 4 2	True	True
3 2 1	False	False

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 7

Correct
Mark 1.00 out of 1.00

Flag question

Question text

The program must accept N integers and an integer K as the input. The program must print every K integers in descending order as the output.

Note: If N % K != 0, then sort the final N%K integers in descending order.

Boundary Condition(s):

 $1 \le N \le 10^4$ -99999 \in Array Element Value \in 99999

Input Format:

The first line contains the values of N and K separated by a space. The second line contains N integers separated by space(s).

Output Format:

The first line contains N integers.

Example Input/Output 1:

Input:

48 541 23 68 13 41 6

Output:

541 48 23 68 41 13 6

Explanation:

The first three integers are 48 541 23, after sorting in descending order the integers are **541 48 23**. The second three integers are 68 13 41, after sorting in descending order the integers are **68 41 13**. The last integer is **6**.

The integers are **541 48 23 68 41 13 6**

Hence the output is **541 48 23 68 41 13 6**.

Answer:(penalty regime: 0 %)

Feedback

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 8

Correct

Mark 1.00 out of 1.00

Flag question

Question text

Program to print all the distinct elements in an array. Distinct elements are nothing but the unique (non-duplicate) elements present in the given array.

Input Format:

First line take an Integer input from stdin which is array length \boldsymbol{n} .

Second line take n Integers which is inputs of array.

Example Input:
5
1
2
2
3
4
Output:
1 2 3 4
Example Input:
6
1
1
2
2
3
3
Output:
1 2 3
For example:
For example: Input Result
Input Result
Input Result 5 1 2
Input Result 5 1 2 2 1 2 3 4 3
Input Result 5 1 2 2 1 2 3 4
Input Result 5 1 2 2 1 2 3 4 3 4
Input Result 5 1 2 2 1 2 3 4 3 4
Input Result 5 1 2 2 1 2 3 4 3 4 6 1 1 2 1 2 3
Input Result 5
Input Result 5 1 2 1 2 3 4 3 4 6 1 1 2 1 2 3 2 3 3 Answer:(penalty regime: 0 %) 1 p=int(input())
Input Result 5 1 2 1 2 3 4 3 4 6 1 1 2 1 2 3 3 3 Answer:(penalty regime: 0 %) 1 p=int(input()) 2 arrray=[int(input()) for _in range(n)]
Input Result 5 1 2 1 2 3 4 3 4 6 1 1 2 1 2 3 2 3 3 Answer:(penalty regime: 0 %) 1 p=int(input())
Input Result 5 1 2 1 2 3 4 3 4 6 1 1 2 1 2 3 3 Answer:(penalty regime: 0 %) 1 p=int(input()) 2 arrray=[int(input()) for _ in range(n)] 3 ele=set(arrray)
Input Result 5 1 2 1 2 3 4 3 4 6 1 1 2 1 2 3 3 Answer:(penalty regime: 0 %) 1 p=int(input()) 2 arrray=[int(input()) for _ in range(n)] 3 ele=set(arrray)
Input Result 5 1 2 1 2 3 4 3 4 6 1 1 2 1 2 3 3 Answer:(penalty regime: 0 %) 1 p=int(input()) 2 arrray=[int(input()) for _ in range(n)] 3 ele=set(arrray)
Input Result 5 1 2 1 2 3 4 3 4 6 1 1 2 1 2 3 3 Answer:(penalty regime: 0 %) 1 p=int(input()) 2 arrray=[int(input()) for _ in range(n)] 3 ele=set(arrray)

 $Output\ Format:$

Print the Distinct Elements in Array in single line which is space Separated

Feedback

Input Expected Got

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 9

Correct

Mark 1.00 out of 1.00

Question text

Assume you have an array of length n initialized with all 0's and are given k update operations.

Each operation is represented as a triplet: **[startIndex, endIndex, inc]** which increments each element of subarray **A[startIndex ... endIndex]** (startIndex and endIndex inclusive) with **inc**.

Return the modified array after all k operations were executed.

Example:

Input:

5

3

1 3 2

2 4 3

0 2 -2

Output:

Explanation:

Initial state:

length = 5, updates = [[1,3,2],[2,4,3],[0,2,-2]]

[0,0,0,0,0]

After applying operation [1,3,2]:

[0,2,2,2,0]

After applying operation [2,4,3]:

[0,2,5,5,3]

After applying operation [0,2,-2]:

[-2,0,3,5,3]

Answer:(penalty regime: 0 %)

Feedback

Input Expected Got

```
5 3 1 3 2 -2 0 3 5 3 -2 0 3 5 3 2 4 3 0 2 -2
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 10

Correct

Mark 1.00 out of 1.00

Flag question

Question text

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p^{th} element of the list, sorted ascending. If there is no p^{th} element, return 0.

Example

```
n = 20
p = 3
The factors of 20 in ascending order are \{1, 2, 4, 5, 10, 20\}. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0
would be returned.
Constraints
1 \le n \le 10^{15}
1 \le p \le 10^9
The first line contains an integer n, the number to factor.
The second line contains an integer p, the 1-based index of the factor to return.
Sample Case 0
Sample Input 0
10
3
Sample Output 0
Explanation 0
Factoring n = 10 results in \{1, 2, 5, 10\}. Return the p = 3^{rd} factor, 5, as the answer.
Sample Case 1
Sample Input 1
10
5
Sample Output 1
Explanation 1
Factoring n = 10 results in \{1, 2, 5, 10\}. There are only 4 factors and p = 5, therefore 0 is returned as the answer.
Sample Case 2
Sample Input 2
Sample Output 2
Explanation 2
Factoring n = 1 results in \{1\}. The p = 1st factor of 1 is returned as the answer.
```

For example:

Input Result

5

0

1

10

10

Answer:(penalty regime: 0 %)

Feedback

Input Expected Got

10 3	5	5
10 5	Θ	0
1 1	1	1

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Finish review

Skip Quiz navigation

Quiz navigation

Question 1 This page Question 2 This page Question 3 This page Question 4 This page Question 5 This page Question 6 This page Question 7 This page Question 8 This page Question 9 This page Question 10 This page Show one page at a timeFinish review