Fondamenti dell'Informatica

Esercitazione 2

(CON RISPOSTE)

Esercizio 1. Relazioni 1

Siano $A = \{1, 2, 3, 4, 5, 6\}$ e $R_1 \subseteq A \times A$ e $R_2 \subseteq A \times A$ due relazioni definite intensionalmente come segue:

$$R_1 = \{ \langle x, y \rangle \mid y = x + 2 \}$$

$$R_2 = \{ \langle x, y \rangle \mid x + y > 6 \}$$

Rappresentare estensionalmente R_1 ed R_2 .

Risposta 1.

1.
$$R_1 = \{ \langle 1, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 5 \rangle, \langle 4, 6 \rangle \}$$

2.
$$R_2 = \{ <1, 6>, <2, 5>, <2, 6>, <3, 4>, <3, 5>, <3, 6>, <4, 3>, <4, 4>, <4, 5>, <4, 6>, <5, 2>, <5, 3>, <5, 4>, <5, 5>, <5, 6>, <6, 1>, <6, 2>, <6, 3>, <6, 4>, <6, 5>, <6, 6> \}$$

Esercizio 2. Funzioni e proprietà

Siano $q_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}, q_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z}, q_{mix} : \mathbb{Z} \to \mathbb{N}, f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, g : \mathbb{Z} \to \mathbb{R}, h : \mathbb{N} \to \mathbb{N} \text{ dove:}$

$$q_{\mathbb{N}}(x) = x^{2}$$

$$q_{\mathbb{Z}}(x) = x^{2}$$

$$q_{mix}(x) = x^{2}$$

$$f(x,y) = tr\left(\frac{x}{y}\right)$$

$$g(x) = 2^{x}$$

$$h(x) = x + 5$$

Determinare le proprietà di $q_{\mathbb{N}}, q_{\mathbb{Z}}, q_{mix}, f, g, h$ (tra totale, iniettiva, suriettiva, invertibile, biiettiva, biunivoca).

Risposta 2.

- 1. $q_{\mathbb{N}}$ = totale, iniettiva, non suriettiva, invertibile, non biiettiva, non biunivoca
- 2. $q_{\mathbb{Z}}$ = totale, non iniettiva, non suriettiva, non invertibile, non biiettiva, non biunivoca
- 3. q_{mix} = totale, non iniettiva, non suriettiva, non invertibile, non biiettiva, non biunivoca
- 4. f = parziale, non iniettiva, suriettiva, non invertibile, non biiettiva, non biunivoca
- 5. g = totale, iniettiva, non suriettiva, invertibile, non biiettiva, non biunivoca
- 6. h = totale, iniettiva, non suriettiva, invertibile, non biiettiva, non biunivoca

Esercizio 3. Composizione di funzioni

Si considerino le funzioni dell'esercizio precedente, ovvero $f(x,y) = tr\left(\frac{x}{y}\right)$, $g(x) = 2^x$ e h(x) = x + 5, con i rispettivi domini e codomini. Valutare se è possibile comporre le funzioni come definito sotto e, se si, determinare l'espressione analitica che denota tale composizione; infine, determinare le proprietà delle funzioni composte

- 1. $f \circ h$
- 2. $h \circ f$
- 3. $g \circ h$
- 4. $h \circ g$
- 5. $g \circ f$
- 6. $f \circ g$

Risposta 3.

- 1. $f \circ h = \text{non è possibile } (f \text{ è binaria});$
- 2. $h \circ f = \text{è possibile}; h(f(x,y)) = h(tr\left(\frac{x}{y}\right)) = tr\left(\frac{x}{y}\right) + 5$
- 3. $g \circ h =$ è possibile (il codominio di h è sottinsieme del dominio di g); $g(h(x)) = g(x+5) = 2^{x+5}$
- 4. $h \circ g$ non è possibile (il codominio di g non è sottinsieme del dominio di h);
- 5. $g \circ f$ è possibile; $g(f(x,y)) = g(tr\left(\frac{x}{y}\right)) = 2^{tr\left(\frac{x}{y}\right)}$
- 6. $f \circ g$ non è possibile (f è binaria e g non produce i due output necessari per l'input di f);

Esercizio 4. V/F

(extra) Vero o falso:

- 1. c'è una relazione biunivoca tra \mathbb{N} e $\{2^n \mid n \in \mathbb{Z}\}$
- 2. per ogni insieme A, esiste una funzione suriettiva $f: \mathcal{P}(A) \to A$
- 3. per ogni insieme A, esiste una funzione iniettiva $f: \mathcal{P}(A) \to A$
- 4. esiste un insieme A e una funzione biunivoca $f: \mathcal{P}(A) \to A$
- 5. $\mathscr{P}(\mathbb{N})$ e $\mathscr{P}(\mathbb{Z})$ hanno la stesa cardinalità

Risposta 4.

1. **Vero.** \mathbb{N} e \mathbb{Z} sono due insiemi infiniti appartenenti entrambi alla classe di cardinalità chiamata aleph-zero (\aleph_0 , potenza del numerabile) e, per definizione, un insieme infinito ha cardinalità aleph-zero se esiste una relazione biunivoca con l'insieme dei numeri naturali \mathbb{N} . Essendo $\{2^n \mid n \in \mathbb{Z}\}$ definita su \mathbb{Z} , è possibile effettuare una mappatura uno a uno fra gli elementi di questo insieme e gli elementi dell'insieme \mathbb{N} .

Per quanto riguarda le domande successive, in caso stessimo cercando una funzione totale la risposta è **Falso** per tutte. Per quanto riguarda una funzione parziale, invece:

- 2. **Vero.** In questo caso basta prendere la funzione che associa ad ogni $\{x\} \in \mathcal{P}(A)$ il relativo $x \in A$. A viene esaurito dalla funzione (suriettività).
- 3. **Vero.** Tenendo sempre conto della precedente funzione possiamo vedere come, ad ogni elemento $x \in A$ è associato un solo $\{x\} \in \mathcal{P}(A)$ per costruzione (iniettività).

- 4. Falso. Tenendo conto della funzione precedentemente descritta e della distinzione fra biiettività e biunivocità, dato che abbiamo a che fare con una funzione parziale abbiamo che f è biiettiva ma non biunivoca.
- 5. **Vero.** Dato che \mathbb{N} e \mathbb{Z} appartengono alla medesima classe di infinito, avendo entrambi cardinalità *aleph-zero* come detto prima, anche $\mathscr{P}(\mathbb{N})$ e $\mathscr{P}(\mathbb{Z})$ avranno la medesima cardinalità.

Esercizio 5. extra

- 1. quante relazioni binarie su A esistono?
- 2. se B ha n elementi, costruire una funzione biunivoca tra $\mathcal{P}(B)$ e $\{1,\dots,2^n\}$
- 3. può un'operazione binaria avere un punto fisso?

Risposta 5.