CSCI 544: Applied Natural Language Processing

Advanced Techniques in Large-Scale Pretraining

Xuezhe Ma (Max)

Large-Scale Pretraining

Model Architecture

- Transformer
- Data
 - Publicly available data
 - Common Crawl
 - Wikipedia
 - Books
 - •

Training Objective

- Autoregressive language modeling (next-token prediction)
- Machines
 - Sufficient amount of GPUs
 - A100 (80G memory per device)

Training Receipt

- 7B parameters
 - 32 blocks of Transformer decoder
 - Model dimension size d = 4096
- Training sequence length
 - 4096 tokens
- Training batch size
 - 4 million tokens (1,000 sequences)

Challenges in Large-Scale Pretraining

16 billion elements (64G memory w. float32) distributing the large tensor to multiple GPUs!

Communication between GPUs

- For distributed training, we need to synchronize training status
 - Model parameters
 - Gradients
 - Optimization states

Communication between GPUs

Some basic communication operations

Communication between GPUs

Some basic communication operations

Distributed Large-Scale Pretraining

• Three Criteria

- Minimal redundant computation
- Minimal peak memory cost
- Minimal communication overhead

- Each GPU keeps a complete copy of the model
- Each GPU process a subset of a training batch
 - No data overlaps between GPUs
- Synchronize parameter gradients after each forward-backward pass

Data Batch Copy1 Copy2 Copy3 Copy4 Grad1 Grad2 Grad3 Grad4

$$L = \frac{1}{4}(L_1 + L_2 + L_3 + L_4)$$

- No redundant computation in each forward-backward pass
- Communication only on gradients
 - One all-reduce operation

Is DDP optimal?

No!

Parameter optimization is entirely redundant

$$L = \frac{1}{4}(L_1 + L_2 + L_3 + L_4)$$

- For large-scale pretraining, parameter optimization is expensive
 - A whole copy of 7B model takes 28G memory
 - Gradient takes the same memory as parameters
 - Optimization states in Adam optimizer take two times of model parameters
 - 28G x 4 = 112G memory for only storing model and optimization states

How about splitting model parameters together with data?

Data Batch

- No redundant computation in optimizing parameters
- No redundant memory cost for the two optimization states in Adam
- No more communication overhead
 - All-reduce = Reduce-Scatter + All-gather
- At one moment, still need to store the whole parameters and gradients

Fully Sharded Data Parallel (FSDP)

- One Transformer model consists of multiple blocks
- Split each block parameters individually
- Gather the parameters of one layer only when we need to compute the output of that layer

Distributed Large-Scale Pretraining

• Three Criteria

- Minimal redundant computation
- Minimal peak memory cost
- Minimal communication overhead

- Specifically designed for linear layers
- Partition both model parameters and hidden states along model dimension
 - Can be applied together with data parallel

FFN

Column Parallel

• Split the weight matrix along the column axis

Column Parallel

Raw Parallel

• Split the weight matrix along the raw axis

Raw Parallel

$$Y = Y_1 + Y_2$$

- Communication is heavy
 - Only applied to GPUs in the same computing node
- How to apply tensor parallel to the attention layer?
 - First apply column parallel to QKV matrices
 - Compute attentions of different heads in different GPUs
 - Apply raw parallel to the output matrix to get the final attention output

Distributed Large-Scale Pretraining

• Three Criteria

- Minimal redundant computation
- Minimal peak memory cost
- Minimal communication overhead

Other Techniques in Large-Scale Pretraining

- Activation Checkpointing
 - https://pytorch.org/docs/stable/checkpoint.html

Half-Precision Training

FP32

- •1 bit sign
- 8 bits exponent
- 23 bits fraction
- •1e38 range

FP16

- •1 bit sign
- •5 bits exponent
- 10 bits fraction
- •65504 range

BF16

- •1 bit sign
- •8 bits exponent
- 7 bits fraction
- 1e38 range

Thanks! Q&A