Problema G

Grandes Factores (granfact)

Se tienen un arreglo a de n números enteros positivos. Sobre este arreglo se realizan tres tipos de operaciones:

- 1. Dado un valor i, eliminar un factor primo al azar de a_i . Si a_i no tiene factores primos, no se hace nada.
- 2. Dados dos valores l y r, hallar la mínima posible suma de los factores primos de los números $a_l, a_{l+1}, \ldots, a_r$.
- 3. Dados tres valores l, r y x, asignar a a_i el valor x para todo $l \le i \le r$.

Dado el arreglo a y una secuencia de q operaciones realizadas en orden, determina el resultado de cada operación de tipo 2.

Entrada

La primera línea contiene un entero n $(1 \le n \le 10^5)$, el tamaño del arreglo a.

La segunda línea contiene n enteros a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^4)$, los elementos del arreglo a.

La tercera línea contiene un entero q (1 $\leq q \leq 10^5),$ el número de operaciones.

Las siguientes q líneas describen las operaciones realizadas en orden. Cada operación está descrita por un número entero t ($1 \le t \le 3$) y los valores correspondientes a la operación.

- Si t = 1, se da un valor $i (1 \le i \le n)$.
- Si t=2, se dan dos valores l y r $(1 \le l \le r \le n)$.
- Si t = 3, se dan tres valores l, $r y x (1 \le l \le r \le n, 1 \le x \le 10^4)$.

Salida

Por cada operación de tipo 2, imprime un entero, la mínima posible suma de los factores primos de los números $a_l, a_{l+1}, \ldots, a_r$.

Subtareas

- 1. (9 puntos) $1 \le n \le 10$.
- $2.\ (40\ \mathrm{puntos})$ No hay operaciones de tipo 3.
- $3.\ (51\ \mathrm{puntos})$ Sin restricciones adicionales.

Examples

Ejemplos de entrada	Ejemplos de salida
4	17
10 9 2 4	10
8	16
1 4	0
2 1 4	
1 1	
2 1 3	
3 2 3 12	
2 2 4	
1 4	
2 4 4	
8	392
9608 9630 489 5648 5240 8338 9028 5564	17
10	14883
2 6 6	6248
3 3 7 9838	120
3 6 7 7525	62
1 8	
2 8 8	
2 2 5	
2 1 3	
1 5	
2 6 7	
2 5 6	

Para el primer caso, las primeras 4 operaciones se realizan de la siguiente manera:

- Se elimina un factor primo al azar de a_4 ; ya que $a_4=4=2\times 2$, se obtiene $a_4=2$.
- \blacksquare La suma de los factores primos de 10, 9, 2 y 2 es $\underline{2+5}$ + $\underline{3+3}$ + $\underline{2}$ + $\underline{2}$ = 17.

- Se elimina un factor primo al azar de a_1 ; ya que $a_1 = 10 = 2 \times 5$, se puede obtener $a_1 = 2$ o $a_1 = 5$.
- \blacksquare Hay dos posibles sumas: $\underline{2} + \underline{3+3} + \underline{2} = 10$ o $\underline{5} + \underline{3+3} + \underline{2} = 13$; la menor es igual a 10.