Машинное обучение

Лекция 13

Анализ изображений. Свёрточные нейронные сети.

Михаил Гущин

mhushchyn@hse.ru

На прошлой лекции

Mikhail Hushchyn, NRU HSE

Как компьютер видит изображения

mmm.

Изображение

Пиксели

Пиксели

- ▶ Изображение состоит из матрицы пикселей
- Каждый пиксель имеет свой цвет

Цветовая модель

- Цвета пикселей представляются в виде комбинации красного (R),
 зеленого (G) и синего (B) цветов
- ▶ Такой способ называется RGB цветовой моделью

Цветовая модель

▶ Любой цвет задается тремя числами от 0 до 255:

 $(\mathbf{R}, \mathbf{G}, \mathbf{B})$

Примеры

(0, 0, 0)	(150, 150, 150)	(255, 255, 255)	
(255, 0, 0)	(0, 255, 0)	(0, 0, 255)	
(255, 64, 255)	(255, 252, 121)	(148, 23, 81)	

Разложение изображений

Каналы изображений

- Изображение представляется в виде трех матриц
- Каждая матрица соответствует одному из цветовых каналов

Операция свёртки изображений

Мотивация

- ▶ Изображение в HD разрешении имеет 1280 х 720 пикселей
- ▶ Каждый пиксель имеет 3 цветовых канала
- ightharpoonup Общее количество признаков N:

$$N = 1280 * 720 * 3 = 2764800$$

Слишком большая размерность для полносвязной сети

Mikhail Hushchyn, NRU HSE

Пример

3	3	5	1	2	3
3	4	0	1	4	5
5	1	2	3	2	0
5	0	4	5	2	1
3	4	3	1	0	2
2	0	4	3	5	1

▶ Рассмотрим изображение с одним каналом

Входное изображение

3	3	5	1	2	M
3	4	0	1	4	5
5	1	2	3	2	0
5	0	4	5	2	1
3	4	3	1	0	2
2	0	4	3	5	1

$$3*0+3*1+5*0 3*1+4*2-0*1+$$
 $5*0+1*1+2*0=9$

Входное изображение

3	3	5	1	2	3
3	4	0	1	4	5
5	1	2	3	2	0
5	0	4	5	2	1
3	4	3	1	0	2
2	0	4	3	5	1

$$3*0+5*1+1*0 4*1+0*2-1*1+$$
 $1*0+2*1+3*0=2$

Входное изображение

3	3	5	1	2	3
3	4	0	Υ_	4	5
5	1	2	3	2	0
5	0	4	5	2	1
3	4	3	1	0	2
2	0	4	3	5	1

$$5*0+1*1+2*0-0*1+1*2-4*1+2*0+3*1+2*0=2$$

Входное изображение

	изооражение			• • • • • • • • • • • • • • • • • • •					Свернутое					
3	3	5	1	2	3			1дро 3x3	J		ИЗО	бра	эже	ние
3	4	0	1	4	5			1			9	2	2	6
5	1	2	3	2	0	مام	U		U		-	4	8	7
5	0	4	5	2	1	*	1	2	1	_	1	7	0	
3	4	3	1	0	2		0	1	0		-	8	8	0
2	0	4	3	5	1						4			
											2	9		4

Свертка - это процесс сложения соседних элементов изображения, взвешиваемых ядром.

Пример: детектор вертикальных границ

*

Входное изображение

2	2	2	0	0	0
2	2	2	0	0	0
2	2	2	0	0	0
2	2	2	0	0	0
2	2	2	0	0	0
2	2	2	0	0	0

Ядро 3x3

Свернутое изображение

Пример: детектор горизонтальных границ

Применим оператор Собеля для обнаружения горизонтальных линий.

Пример: детектор горизонтальных границ

Шаг свертки

Шаг свертки (stride) - это величина сдвига ядра между соседними операциями свертки изображения.

Шаг свертки

Входное изображение

3	3	5	1	2	3
3	4	0	1	4	5
5	1	2	3	2	0
5	0	4	5	2	1
3	4	3	1	0	2
2	0	4	3	5	1

Дополнение изображения

Входное изображение Свернутое Ядро изображение 3x3 3 Stride = 1

- Свертка изображения всегда уменьшает его размер.
- Как этого можно избежать?

Дополнение изображения

Дополнение изображения (padding) - это искусственное расширение изображения по краям.

Свертка многоканального изображения

Результат свертки – одноканальное изображение.

Операция объединения пикселей

Объединение по максимуму

Входное изображение

3	3	5	1	2	3
3	4	0	1	4	5
5	1	2	ന	2	0
5	0	4	5	2	1
3	4	3	1	0	2
2	0	4	3	5	1

- Объединение по максимуму (MaxPooling) возвращает максимальное значение соседних пикселей.
- Выбирают шаг так, чтобы ядра не пересекались.

Задача

https://www.facebook.com/katzenbes

VS

https://sobakibalabaki.com

- Рассмотрим задачу бинарной классификации изображений.
- Как подать изображение на вход нейронной сети?

Выпрямление изображения

Изображение

x_1	x_2	x_3
x_4	x_5	x_6
x_7	x_8	<i>x</i> ₉

(3, 3, 1)

Значения пикселей в каждом канале изображения – входные признаки для классификатора

Выпрямление изображения

Развернем значения пикселей во всех каналах в вектор.

Вектор

 χ_9

Полносвязная нейронная сеть

Количество весов сети:

$$9 * N + N = 10 * N$$

Свертка изображения

Ядро свертки как нейрон:

$$z_1 = \mathbf{w_1} x_1 + \mathbf{w_2} x_2 + \mathbf{w_3} x_4 + \mathbf{w_4} x_5$$

Веса w_i получим в процессе обучения.

Простая сверточная нейронная сеть

Количество весов сети:

$$4 + 4 * N + N = 5 * N + 4$$

Преимущества сверток

- > Значительно уменьшают количество весов сети
- Сети быстрее обучаются
- Требуют меньше данных
- Достигают лучшего качества

Mikhail Hushchyn, NRU HSE 36

Входное изображени

(32, 32, 3)

Вычислительный граф

Mikhail Hushchyn, NRU HSE 43

Типичная архитектура

- Последовательное применение комбинаций свёрточный слой -> нелинейность -> pooling
- ► Выпрямление (**flattening**) выхода последней комбинации
- Серия полносвязных слоёв

Mikhail Hushchyn, NRU HSE 44

На первом слое сеть учится находить простые шаблоны: прямые линии, границы, цвета.

На втором слое – более сложные шаблоны: комбинации линий, окружности.

Заключение

Резюме

Mikhail Hushchyn, NRU HSE 51