WHAT IS CLAIMED IS

1

24

2	1. A method for fabricating a ceramic board with high integration of
3	multi-polyimide-layer DPC lines, comprising the following steps:
4	defining fine through holes on a portion of a ceramic board;
5	forming conductive pillars in the fine through holes by a conductive
6	material;
7	forming first metal lines on an upper surface and a bottom surface of the
8	ceramic board, wherein the conductive pillars connect with the first metal lines
9	respectively formed on the upper surface and the bottom surface of the ceramic
10	board;
11	applying an insulating layer on the upper surface and the bottom surface
12	of the ceramic board to cover the upper surface and the bottom surface of the
13	ceramic board and the first metal lines; and
14	forming second metal lines in the insulating layer, wherein when using
15	conductive material to form the second metal lines.
16	2. The method as claimed in claim 1, wherein the method further
17	comprises an electronically connecting step after the applying insulating layer
18	step, wherein the electronically connecting step is forming columns in the
19	insulating layer for electronically connecting the first metal lines with the second
20	metal lines.
21	3. The method as claimed in claim 1, wherein the fine through holes
22	defined in the ceramic board are cut by using laser beams.
23	4. The method as claimed in claim 1, wherein the fine through holes

defined in the ceramic board are cut by using a photolithography technology.

- 5. The method as claimed in claim 1, wherein the conductive material of
- 2 the conductive pillars is copper or silver material.
- 6. The method as claimed in claim 1, wherein the conductive material of
- 4 the conductive pillars is silver material.
- 5 7. The method as claimed in claim 1, wherein the conductive material of
- 6 the first and second metal lines is titanium.
- 8. The method as claimed in claim 1, wherein the conductive material of
- 8 the first and second metal lines is copper material.