Critical velocity for superfluidity of a generalized Gross-Pitaevskii flow past a localized obstacle in one dimension

<u>Juliette Huynh</u>, Mathias Albert, and Pierre-Élie Larré Université Côte d'Azur, CNRS, Institut de Physique de Nice, France

1. Critical velocity for superfluidity

Landau: $v_{\scriptscriptstyle
m C} = \min \epsilon_p/p$

Michel et al., 2018; Eloy et al., 2021

Beyond Landau: $v_{
m c}=?$

No scattering off a localized obstacle when $v_{\infty} < v_{\rm c}$

→ Analytical and numerical results in 1D

2. Generalized Gross-Pitaevskii equation

Ultracold atoms, microcavity polaritons, paraxial or guided photons, etc.:

$$\mathrm{i}\psi_t = -\frac{1}{2m}\psi_{xx} + (U(x) + g(n = |\psi|^2) - \mathrm{i}\gamma)\psi_{\text{Adiabatic}}$$

$$v_{\infty} < c_{\infty} \longrightarrow U_0 \geqslant 0$$

3. Narrow then wide obstacle

Narrow:
$$v_{\mathrm{c}} = \begin{cases} F(U_0,\sigma), & \text{Repulsive} \\ c_{\infty}, & \text{Attractive} \end{cases}$$
 Wide: $v_{\mathrm{c}} = \begin{cases} G(U_0) + H(U_0,U_{xx}(0))/\sigma^{4/3} \\ c_{\infty} \end{cases}$ Hakim, 1997; Leboeuf and Pavloff, 2001; Pavloff, 2002

4. Obstacle of arbitrary width

