

Session 3 Networking

How Computers Communicate

- Signals over the wire
- Signal senders/receivers a called network interfaces
- Discrete chunks of information between 2 points
- How are they routed?
- How are they interpreted?

Log of first DARPANet communication

The Internet Protocol (IP)

- How most devices speak over the network
- Only one part of the networking stack
- IP addresses are assigned to each device on the network
- DHCP
 - Dynamic Host Control Protocol: assigns
- IPv4: xxx.xxx.xxx
- IPv6: xxxx:xxxx:xxxx
- We'll focus on IPv4 addresses

IP(v4) Addresses

- 32 bits of information
- Separated into 4 8-bit sections (octets)
- 8 bits = 256 possible values
- So the total theoretical IP address space is 256⁴
- We still ran out!
- We can re-use the same IP address in separate local networks
- These separate networks use smaller slices of this space called subnets

Subnets

- Your IP address might look like:
 - 192.168.0.XXX
 - The last octet is available, but the rest of the address is locked, or "masked"
- Subnet masks
 - o 255.255.255.0: Last octet fully available
 - Also written as /24 as in 24 of 32 bits masked
- When traffic needs to leave the subnet, it does so via the gateway.

Routes/Gateways

- When a packet is addressed to an IP outside of the subnet, it is routed to the **Default Gateway** (usually)
- This will handle the next step in the routing
- Routing can be a long chain!
- Traceroute tells the story

MAC Addresses

- The hardware identifier of the network interface
- Unique to each interface
- Not immutable
- Assigned by vendor
- IP networks map IP addresses to MAC addresses via
 Address Resolution Protocol

Networking is Layered

- The OSI model separates networking into abstract layers
- Not the only way to describe network data

		OSI Model	TCP/IP Model	
Networking is Layered	7	Application	Process/	
• The TCP/IP model	6	Presentation	Application	4
Generalizes more than OSI	5	Session		
Notice the overlap?	4	Transport	Host-to-Host	3
These models are	3	Network	Internet	2
for understanding, not purely	2	Data Link	Network	1
technical	1	Physical	Access	_

Clients and Servers

Clients and Servers

- Since Linux is so often a server, we better learn how to set one up
- A single computer can be a server of many services
- Common examples of network services:
 - o HTTP
 - > FTP
 - o SSH
 - O IMAP/SMTP

Services and Ports

- Client: A computer accessing a service
- Service: something available over the network
- Server: the thing offering the service
- Port: A number identifying the service and directing traffic to the right destination on the server

Setting up a Web Server