4CCS1ELA - ELEMENTARY LOGIC WITH APPLICATIONS

2 - SYNTACTICAL TRANSFORMATIONS

Dr. Odinaldo Rodrigues

odinaldo.rodrigues@kcl.ac.uk
Room S1.26, +44 (0)20 7848 2087
Department of Informatics
King's College London

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 0 / 32

Outline

- 1. Fundamental Logical Equivalences
- 2. Normal Forms
- 3. Complete Sets of Connectives
- 4. Substitution Instances
- 5. Quine's Method

FUNDAMENTAL LOGICAL EQUIVA-LENCES

Fundamental Logical Equivalences

Fundamental Logical Equivalences

$P \lor P$	=	P	idempotency
$P \wedge P$	=	P	idempotency
$P \lor Q$	\equiv	$Q \lor P$	commutativity
$P \wedge Q$	\equiv	$Q \wedge P$	commutativity
$P \lor (Q \lor R)$	\equiv	$(P \lor Q) \lor R$	associativity
$P \wedge (Q \wedge R)$	\equiv	$(P \wedge Q) \wedge R$	associativity
$P \wedge (Q \vee R)$	\equiv	$(P \wedge Q) \vee (P \wedge R)$	distributivity
$P \lor (Q \land R)$	\equiv	$(P \lor Q) \land (P \lor R)$	distributivity
$\neg (P \land Q)$	\equiv	$(\neg P \lor \neg Q)$	De Morgan's law
$\neg (P \lor Q)$	\equiv	$(\neg P \wedge \neg Q)$	De Morgan's law

Fundamental Logical Equivalences (cont)

$$P \vee \neg P \equiv 1$$

excluded middle

$$P \wedge \neg P \equiv \mathbf{0}$$

$$\neg \neg P \equiv P$$

$$P \lor \mathbf{1} \equiv \mathbf{1}$$

$$P \wedge \mathbf{1} \equiv P$$

$$P \vee \mathbf{0} \equiv P$$

$$P \wedge \mathbf{0} \equiv \mathbf{0}$$

$$P \rightarrow Q \equiv \neg P \lor Q$$

$$P o Q \equiv \neg Q o \neg P$$
 contraposition

$$\neg(P \to Q) \equiv P \land \neg Q$$

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 4 / 32

Fundamental Logical Equivalences

A Few More Useful Equivalences

$$1 \leftrightarrow P \equiv P$$

$$\mathbf{0} \leftrightarrow P \equiv \neg P$$

$$1 \rightarrow P \equiv P$$

$$P \rightarrow 1 \equiv 1$$

$$\mathbf{0} \rightarrow P \equiv \mathbf{1}$$

$$P \rightarrow \mathbf{0} \equiv \neg P$$

$$P \leftrightarrow P \equiv 1$$

$$P \leftrightarrow \neg Q \equiv \neg (P \leftrightarrow Q)$$

$$P \lor (P \land Q) \equiv P$$

absorption

$$P \wedge (P \vee Q) \equiv P$$

absorption

The Equivalence Replacement Rule

Any subformula can be replaced by an equivalent formula without changing the truth-value of its containing formula.

In other words, from

$$G \equiv H$$

we can conclude

$$A(\cdots G\cdots) \equiv A(\cdots H\cdots)$$

Example. From $\neg (Q \lor R) \equiv \neg Q \land \neg R$ we obtain, by replacement,

$$(P \to \underline{\neg (Q \lor R)}) \land \neg Q \equiv (P \to \underbrace{(\neg Q \land \neg R)}_{H}) \land \neg Q$$

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 – Introduction

(2) 6 / 32

Fundamental Logical Equivalences

Example

If we replace the second occurrence of the (sub)formula $P \lor Q$ in the formula A

$$(P \lor Q) \to (R \leftrightarrow (P \lor Q))$$

by the equivalent formula $Q \vee P$, then we obtain the equivalent formula A'

$$(P \lor Q) \to (R \leftrightarrow (Q \lor P))$$

Replacement Can Be Used to Simplify Formulae

The formula $(P \land Q) \lor \neg (\neg P \lor Q)$ can be simplified as follows.

$$(P \land Q) \lor \neg (\neg P \lor Q) \equiv (P \land Q) \lor (\neg \neg P \land \neg Q)$$

$$\equiv (P \land Q) \lor (P \land \neg Q)$$

$$\equiv P \land (Q \lor \neg Q)$$

$$\equiv P \land \mathbf{1}$$

$$\equiv P$$

Thus, the initial formula $(P \land Q) \lor \neg (\neg P \lor Q)$ is equivalent to the formula P.

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 8 / 32

Fundamental Logical Equivalences

Associativity and the Use of Parentheses

Since the associative law holds for \vee and \wedge , it is common practice to drop parentheses in situations such as

$$P \wedge ((Q \wedge R) \wedge S),$$

yielding

$$P \wedge Q \wedge R \wedge S$$
.

Likewise, we may write

$$P \lor Q \lor R \lor S$$
,

instead of

$$(P \lor Q) \lor (R \lor S)$$
, or $P \lor (Q \lor (R \lor S))$, or $((P \lor Q) \lor R) \lor S$, etc.

NORMAL FORMS

Normal Forms

Literals

A **literal** is a propositional symbol or the negation of a propositional symbol.

Examples.

$$P, \neg P, Q, \neg Q,$$
 etc

Some formulae that are **not** literals.

$$\neg \neg P$$
, $P \land Q$, $Q \lor Q$, etc

Literals can have at most one connective and it must be the negation

Disjunctive Normal Form

Disjunctive normal form (DNF)

A formula is in DNF if it is a disjunction of one or more formulae, each of which is a conjunction of one or more literals.

Examples.

$$(P \wedge \neg Q) \vee (\neg P \wedge Q)$$

P (special case, think of it as $P \vee P$)

 $P \wedge Q$

 $P \vee Q$

Every propositional formula is equivalent to some formula in DNF

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 12 / 32

Normal Forms

Conjunctive Normal Form

Conjunctive normal form (CNF)

A formula is in CNF if it is a conjunction of one or more formulae, each of which is a disjunction of one or more literals.

Examples.

$$(P \vee \neg Q) \wedge (\neg P \vee Q)$$

P (special case, think of it as $P \wedge P$)

$$P \vee \neg Q$$

$$P \wedge \neg Q$$

Every propositional formula is equivalent to some formula in CNF

Rewrite Rules to Obtain a Normal Form - 1

To put a formula into **disjunctive** normal form (DNF), apply the following transformations:

$$F \to G \implies \neg F \lor G$$

$$F \leftrightarrow G \implies (F \to G) \land (G \to F)$$

$$\neg (F \lor G) \implies \neg F \land \neg G$$

$$\neg (F \land G) \implies \neg F \lor \neg G$$

$$\neg \neg F \implies F$$

$$F \land (G \lor H) \implies (F \land G) \lor (F \land H)$$

$$(F \lor G) \land H \implies (F \land H) \lor (G \land H)$$

These rules are applied until no further applications are possible.

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 14 / 32

Normal Forms

Rewrite Rules to Obtain a Normal Form – 2

To put a formula into **conjunctive** normal form (CNF), apply the following transformations:

$$F o G \implies \neg F \lor G$$
 $F \Leftrightarrow G \implies (F o G) \land (G o F)$
 $\neg (F \lor G) \implies \neg F \land \neg G$
 $\neg (F \land G) \implies \neg F \lor \neg G$
 $\neg \neg F \implies F$
 $F \lor (G \land H) \implies (F \lor G) \land (F \lor H)$
 $(F \land G) \lor H \implies (F \lor H) \land (G \lor H)$

These rules are applied until no further applications are possible.

Simplifying Rewrite rules

0 (false) can be eliminated in DNF.

Example:

$$(P \land Q) \lor (R \land S \land \neg R) \equiv (P \land Q) \lor (\mathbf{0} \land S) \equiv (P \land Q) \lor \mathbf{0} \equiv P \land Q.$$

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 16 / 32

Normal Forms

Rewriting to DNF – Example

$$P \wedge (P \rightarrow Q) \implies P \wedge (\neg P \vee Q)$$

 $\implies (P \wedge \neg P) \vee (P \wedge Q)$

Now this formula clearly is in DNF. However, we can simplify it considerably.

Note that $P \wedge \neg P \equiv 0$ and $0 \vee (P \wedge Q) \equiv (P \wedge Q)$.

Therefore, $P \land (P \rightarrow Q)$ is equivalent to the formula $P \land Q$ (which is in DNF).

Special DNF and CNF Cases

Any contradictory formula F is equivalent to the single conjunction $P \wedge \neg P$ (in DNF and CNF), which we abbreviated to $\mathbf{0}$.

Any tautology F is equivalent to the single disjunction $P \vee \neg P$ (in DNF and CNF), which we abbreviated to **1**.

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 – Introduction

(2) 18 / 32

COMPLETE SETS OF CONNECTIVES

Complete Sets of Connectives

A set of connectives is called *complete* (or *adequate*) if every formula of propositional logic is equivalent to a formula using only connectives from this set.

Since every formula has a disjunctive normal form, the set $\{\neg, \land, \lor\}$ is complete.

From the De Morgan's laws we have

$$P \lor Q \equiv \neg (\neg P \land \neg Q)$$

$$P \wedge Q \equiv \neg (\neg P \vee \neg Q).$$

Therefore **both** sets of connectives $\{\land, \neg\}$ and $\{\lor, \neg\}$ are **complete**.

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 20 / 32

Complete Sets of Connectives

Complete Sets of Connectives (cont)

To show that a given set of connective is complete all we need to do is to express it in terms of a known complete set of connectives.

Example. The set $\{\neg, \rightarrow\}$ is complete because $P \rightarrow Q \equiv \neg P \lor Q$. Thus, the set $\{\neg, \rightarrow\}$ is expressed in terms of the complete set $\{\neg, \vee\}$.

No singleton set from the *standard set of connectives* $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ is complete.

However, the (non-standard) set $\{0, \rightarrow\}$ is complete, because $\neg P \equiv P \rightarrow \mathbf{0}$, and hence it can be expressed in terms of the known complete set $\{\neg, \rightarrow\}$.

Truth-functions and Normal Forms

A **truth-function** is a function whose arguments can take only the values *true* (or 1) and *false* (or 0).

Any wff defines a truth-function, and vice-versa.

Example. Let *f* be the truth-function defined as follows:

$$f(P,Q,R) = 1$$
 iff either $P = Q = 0$ or $Q = R = 1$

Then *f* is equal to 1 in exactly the following four cases:

$$f(0,0,1), f(0,0,0), f(1,1,1), f(0,1,1)$$

f can be represented by the formula

$$(\neg P \land \neg Q \land R) \lor (\neg P \land \neg Q \land \neg R) \lor (P \land Q \land R) \lor (\neg P \land Q \land R)$$

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 22 / 32

SUBSTITUTION INSTANCES

Substitution

Uniform substitution of formulae for propositional variables

Let W, H_1, \ldots, H_n be formulae and P_1, \ldots, P_n be propositional variables.

Then the expression $W(P_1/H_1, ..., P_n/H_n)$ denotes the formula obtained by replacing *simultaneously* all occurrences of P_1 in W by the formula $H_1, ...,$ and all occurrences of P_n by the formula H_n .

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 24 / 32

Substitution Instances

Example

Let
$$W$$
 be $P \to (Q \to P)$, then $W(P/\neg P \lor R, Q/\neg P)$ is $\neg P \lor R \to (\neg P \to \neg P \lor R)$.

We say that the formula $\neg P \lor R \to (\neg P \to \neg P \lor R)$ is a *substitution* instance of $P \to (Q \to P)$.

Questions.

What type of formula is $P \rightarrow (Q \rightarrow P)$?

What does that make $\neg P \lor R \to (\neg P \to \neg P \lor R)$?

Exercises

Which of the following propositional formulae are substitution instances of the formula $P \to (Q \to P)$?

If a formula is indeed a substitution instance, give the formulae substituted for P and Q.

1.
$$\neg R \rightarrow (R \rightarrow \neg R)$$

2.
$$\neg R \rightarrow (\neg R \rightarrow \neg R)$$

3.
$$\neg R \rightarrow (\neg R \rightarrow R)$$

4.
$$(P \land Q \rightarrow P) \rightarrow ((Q \rightarrow P) \rightarrow (P \land Q \rightarrow P))$$

5.
$$((P \rightarrow P) \rightarrow P) \rightarrow ((P \rightarrow (P \rightarrow (P \rightarrow P))))$$

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 26 / 32

Substitution Instances

Substitution Properties

From $F \equiv G$ we can conclude

$$F(P_1/H_1,\ldots,P_n/H_n)\equiv G(P_1/H_1,\ldots,P_n/H_n).$$

Example. We can obtain a new equivalence as a substitution instance of the De Morgan law:

From $\neg (P \lor Q) \equiv \neg P \land \neg Q$, we have

$$\neg((P \to R) \lor (R \leftrightarrow Q)) \equiv \neg(P \to R) \land \neg(R \leftrightarrow Q).$$

Thus, a new tautology is generated:

$$\neg((P \to R) \lor (R \leftrightarrow Q)) \leftrightarrow \neg(P \to R) \land \neg(R \leftrightarrow Q).$$

Quine's Method

Quine's Method

Quine's Method

For any formula W and propositional variable P:

- \bigcirc W is a tautology if and only if $W(P/\mathbf{0})$ and $W(P/\mathbf{1})$ are tautologies.
- \bigcirc *W* is a contradiction if and only if $W(P/\mathbf{0})$ and $W(P/\mathbf{1})$ are contradictions.

Quine's method can be described graphically with a binary tree (Hein, Section 6.2).

Constructing Quine's Tree for a Formula W

- 1. Start with W as the root of the tree.
- 2. Take the first level in the tree with a propositional symbol, say *P*, in any of the level's nodes *n*. If none are left, then finish.
- 3. Let the left child of *n* be n(P/1) and let its right child be n(P/0).
- 4. Repeat from 2.

When no propositional symbols remain:

- W is a tautology if all of the leaves in the tree are true (i.e., 1)
- \bigcirc W is a contradiction if all leaves in the tree are false (i.e., **0**)
- Otherwise, *W* is a *contingency* (i.e., sometimes true, sometimes false)

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 - Introduction

(2) 30 / 32

Quine's Method

Example

$$P \rightarrow Q \land P$$
 $1 \rightarrow Q \land 1 \quad 0 \rightarrow Q \land 0$
 $1 \rightarrow Q \quad 0 \rightarrow 0$
 $Q \quad 1$
 $1 \quad 0$

Conclusion. The formula $P \to Q \land P$ is a contingency, because neither all leaves in the tree are true, nor all of them are false.

To know more...

 Most of the material in this session can be found in detail in Chapter 1 of 'Elementary Logic with Applications' – the only exception is Quine's method.

© Dr. Odinaldo Rodrigues

Elementary Logic with Applications: 2 – Introduction

(2) 32 / 32