Thm: Suppose for QCXI is solvable by radicals, and let K
be its splitting Reld over Q. Then Gal(K/Q) is
solvable.

for solv. by rade.

 $F_{0} = G$ $F_{0} = G$ $F_{0} = G$ $F_{0} = G$ $F_{0} = G$

Lemma: Suppose K=F(x) for some $a \in K$ with $x^m \in F$.

If F contains all mth roots of unity then F is Galais and Gal (F/F) is Aberlian. (prived last time)

Pf. of thm: Suppose F is solve by rads. and let F be its spl. Acted over Q. Then $F \in F$ of $F \in F$ in $F \in F$ in

Golds, and

i

Krelian

by the lowner

Lo = Q(Pm), m=lan(m,..., m,c) Golds, w/ Gal.

Lo=Q(Pm), m=lan(my..., m,c)

gr = (Z/mz)*

Since $|Gal(L_1/L_0)| = [L_1:L_0]$ and $|Gal(L_0/Q)| = [L_0:Q]$, and since the map $|Gal(L_1/L_0)| \times |Gal(L_0/Q)| = |Gal(L_0/Q)| \times |Gal(L_0/Q)| = |Gal(L_0/Q)| \times |Gal(L_0/Q)| = |Gal(L_0/Q)| \times |Gal(L_0/Q$

let Ho= 6= Gal (Ux(Q) (and Y 15 i 5 k+1)
·
let hi, be the subgroup of 6 which tixes Li., From FT67 we have;
i) li-1/Q Galots => Hi, & G, and Gal (401/Q) = G/H
1i) 6/H: (C) 6/H:-1
By the 3rd voon thm.
Hi-1/Hi = Gal (Ci-1/Li-2)
so il's Abdran by our provious.
Smee Hzer= [1], Mrs shows that G is solveable.
Furally consider he extension Lx
The extension KLQ is Goldis
(il's the spl. fid. of f).
Therefore (F767),
Gal (K/Q) = G/Gx. Since the commical
rap $6 \rightarrow 6/6$ is a homom, $Gal(F/Q)$. By