

Sri Chaitanya IIT Academy, India

A.P., TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI
A right Choice for the Real Aspirant
ICON CENTRAL OFFICE, MADHAPUR-HYD

Sec: Sr. IPLCO

Time: 9:00 AM to 12:00 Noon

RPTM-2

Date: 08-08-15

Max.Marks: 360

KEY SHEET

PHYSICS		CHEMISTRY		MATHS	
Q.NO	ANSWER	Q.NO	ANSWER	Q.NO	ANSWER
1	3	31	4	61	2
2	4	32	1	62	4
3	4	33	2	63	3
4	2	34	3	64	1
5	2	35	1	65	4
6	3	36	3	66	4
7	1	37	4	67	1
8	2	38	4	68	2
9	1	39	2	69	3
10	3	40	1	70	2
11	4	41	4	71	2
12	4	42	1	72	3
13	2	43	2	73	4
14	3	44	2	74	2
15	2	45	1	75	1
16	3	46	1	76	2
17	2	47	1	77	3
18	2	48	3	78	2
19	1	49	3	79	1 -
20	3	50	4	80	4
21	2	51	1	81	1
22	1	52	4	82	1
23	3	53	_ 1	83	4
24	2	54	2	84	2
25	2	55	3	85	4
26	3	56	2	86	3
27	1	57	1	87	1
28	3	58	3	88	3
29	1	59	4	89	1
30	1	60	2	90	1

MATHS

- 61. solving 20th we get P 1s (1,2). equ1tion of t1ngent to circle 1t P is x+2y=5, solving with p1r12ol1 we get S(25,-10); equ1tion of t1ngent to p1r12ol1 1t P is y=x+1, solving with circle we get R(-2,1) . so equ1tion of RS is 11x+27y=5
- 62. cle1rly PQ: y-x=0 let (1,1) 2e 1ny point on it . chord of cont1ct of this point w.r.t circle is 1(x+y-2)+3-2x=0, which 1lw1ys p1sses through $\left(\frac{3}{2},\frac{1}{2}\right)$
- 63. let $y(t_1 + t_2) 2x 2at_1t_2 = 0$ is equ1tion of chord $= > d = \frac{|2at_1t_2|}{\sqrt{(t_1 + t_2)^2 + 4}}$ (1) . point of intersection of t1ngents is $(at_1t_2, a(t_1 + t_2))$. to find locus let $y = a(t_1 + t_2), x = at_1t_2$ putting in (1) we get $d^2(y^2 + 4a^2) = 4x^2a^2$
- 64. given circles cut e1ch other orthogon1lly. so length of common chord $= \frac{2r_1r_2}{\sqrt{r_1^2 + r_2^2}} = \sqrt{2}|a-b|$
- 65. Let $A(t^2, -2t), B(s^2, -2s), C(s^2, 2s), D(t^2, 2t)$ 2e the vertices of tr1pezium. since di1goin1ls 1re foc1l chords so $s(-t) = -1 \Rightarrow st = 1$ now $l^2 = (t+s)^2 ((t-s)^2 + 4) = (t+s)^4$ 1re1 of tr1pezium is $\frac{1}{2}(4t+4s)|s^2-t^2| = 2l|s-t| = 2l\sqrt{l-4}$, $as \quad st = 1$. so $\lambda = 2$
- 66. cle1rly point of intersection of direct common t1ngents divides $\overline{C_1C_2}$ extern1lly in the r1tio $r_1:r_2$, which is (-4,0). let y=m(x+4) 2e the d.c.t equ1tion, 1pplying condition of

t1ngency we get
$$\frac{\frac{|4m|}{\sqrt{1+m^2}} = 1}{=> m = \pm \frac{1}{\sqrt{15}}}$$

.1lso 1re1 of qu1dr1l1ter1l is difference 2etween 1re1s of tri1ngles fromed 2y (-4,0) with it's chords of cont1cts. we c1n use $\frac{r\left(S_{11}\right)^{\frac{3}{2}}}{\sqrt{S_{11}+r^2}}$ => we get the 1re1 of qu1dr1l1ter1l 1s $\frac{45}{9}\sqrt{15}$

Sri Chaitanya IIT Academy

08-08-15_Sr.IPLCO_JEE MAIN_RPTM-2_Key&Sol's

67.
$$(y-2)^2 = x+2$$
 so directrix is $x+2 = -\frac{1}{4}$

- 68. 1pplying condition of orthogon1lity we get $2h\left(\frac{-h}{2}\right)+1\left(\frac{-k}{2}\right)=-2 \Rightarrow h^2=-\frac{k-4}{2}$ so locus of P is $x^2=\frac{4-y}{2}$.
- 69. dist1nce 2etween centres > sum of r1dii.

$$= \sqrt{2} |k| > \left| \frac{k}{\sqrt{2}} \right| + \sqrt{k^2 + k}, \ k^2 + k > 0$$
$$= k \in (-2, -1)$$

- 70. 1pply section formul1, with S(1,-1), V(1,0) in r1tio 2:1
- 71. using p1r1metric form let $(2+r\cos\theta,1+r\sin\theta)$ 2e 1ny point on line through P h1ving slope $\tan\theta$. this point lies on circle . we get qu1dr1tic $r^2+r(4\cos\theta+2\sin\theta)+4=0$ therefore H.M= $\left|\frac{8}{-4\cos\theta-2\sin\theta}\right| \ge \frac{8}{\sqrt{20}}$
- 72. dist1nce 2etween p1r1llel t1ngents to circle=di1meter= $\frac{1}{2}$ =difference in perpendicul1r dist1nces of lines from origin.
- 73. points of intersection of circles is $\left(\frac{1}{4}, \pm \frac{\sqrt{15}}{4}\right)$, so circle with these 1s ennds of di1meter is $8(x^2 + y^2) = 4x + 7$
- 74. cle1rly (0,2) (2,0) forms ends of di1meter . so orthocenter is P itself.
- 75. let $^{(0,h)}$ 2e the midpoint of 1 chord, then it's equ1tion is $^{S_1} = S_{11}$ $=> x(0) + y(h) \frac{p}{2}(x+0) \frac{q}{2}(y+h) = h^2 qh \text{ , which cle1rly must p1ss through } (p,q)$ $=> h^2 \frac{3}{2}hq + \frac{p^2 + q^2}{2} = 0 \text{ this Q.E must h1ve two distinct re1l roots}$ $=> q^2 > 8p^2$

Sri Chaitanya IIT Academy

08-08-15_Sr.IPLCO_JEE MAIN_RPTM-2_Key&Sol's

- 76. circle with ends of di1meter $(a,\pm 2a)$ is $(x-a)^2 + y^2 = 4a^2$
- 77. Using method of homogeniz1tion we get $x^2 + y^2 r^2 \left(\frac{y mx}{c}\right)^2 = 0$. since these 1re perpendicul1r lines so we get $coeff.of \ x^2 + coeff.of \ y^2 = 0$ => $2c^2 = r^2 \left(1 + m^2\right)$.
- 78. equ1tion of chord is $y(t_1 + t_2) 2x 2at_1t_2 = 0$, $t_1t_2 = -4 = 1$ lw1ys p1sses through (4a, 0).
- 79. using $\cos \theta = \frac{d^2 r_1^2 r_2^2}{2r_1r_2} = \frac{2 6 4}{2 \times \sqrt{6} \times 2} = -\sqrt{\frac{2}{3}}$
- 80. solving simulk1t1neously, we get $x^2 = 4(k-2x)$ discrimin1nt of this Q.E should 2e zero = k = -4
- 81. $y(t_1 + t_2) 2x 2t_1t_2 = 0$ is foc1l chord, $t_1t_2 = -1$, $slope = m = \frac{2}{(t_1 + t_2)}$. if this touches circle

$$r = \frac{|2|}{\sqrt{(t_1 + t_2)^2 + 4}}$$
then
$$=> r = \frac{|2|}{\sqrt{\frac{4}{m^2} + 4}}$$

$$=> m^2 = \frac{r^2}{1-r^2}$$

- 82. 1re1 of tri1ngle fromed 2y $(a, \pm 2a), (-a, 0) = 4a^2$
- 83. $y = m(x-r) + \frac{1}{m}$ touches circle => $r = \frac{\left|\frac{1}{m} mr\right|}{\sqrt{1+m^2}}$

 $= > \frac{m^2 = \frac{1}{2r + r^2}}{\text{this will give two t1ngents ,1p1rt from the vertic1l t1ngent}} x = r \text{ so tot1lly}$ 3 common t1ngents.

84. To find locus of point $\left(\frac{at^2}{2}, at\right) = (x, y) \Rightarrow y^2 = 2ax$

Sri Chaitanya IIT Academy

08-08-15_Sr.IPLCO_JEE MAIN_RPTM-2_Key&Sol's

85. elimin1ting"t", $we get(x-1)^2 = -4(y-1)$, whose focus is (1,0).

86. cle1rly focus is 1lw1ys origin.

87. solving we get center of circle 1s (1,-1). so other end of di1meter through P is (0,-2)

88. x=1 is directrix which is locus of p.o.i of perpendicul1r t1ngents.

89. $y = mx + \frac{8}{m}$ touches $x^2 = 4y \Rightarrow x^2 = 4\left(mx + \frac{8}{m}\right)$ has equal roots

$$=>16m^2=-\frac{128}{m}=>m^3+8=0$$

90. using SP=PM we get $x^2 + y^2 + 2xy - 8x - 12y + 26 = 0$