## **Model BPMN**

### Sklep spożywczy

Sklep liczy zapotrzebowanie na produkty według modelu optymalizacyjnego.



Sklep kontaktuje się z obsługą magazynu w celu złożenia zamówienia. Obsługa oblicza transport warzyw z poszczególnych magazynów na podstawie modelu.



Po otrzymaniu dostawy sklep uzupełnia towary.



#### Magazyn

Poszczególne magazyny uzupełniają zapasy otrzymane od producentów i dostarczają zamówienia do wyznaczonych przez obsługę sklepów.



#### **Producent**

Każdy producent oblicza transport produktów do poszczególnych magazynów według modelu optymalizacyjnego.



# Lokalizacje

# Sklepy

| Identyfikator | Adres sklepu                                                 | Współrzędne           | Pojemność |
|---------------|--------------------------------------------------------------|-----------------------|-----------|
| S1            | Tamka 40, 00-355 Warszawa                                    | 52.23674,<br>21.02147 | 5.54      |
| S2            | Emilii Plater 53, 00-113 Warszawa                            | 52.23362,<br>21.00208 | 3.2       |
| S3            | Hoża 9, 00-001 Warszawa                                      | 52.22727,<br>21.0201  | 7.56      |
| S4            | Targowa 72, 03-734 Warszawa                                  | 52.25511,<br>21.03853 | 7.65      |
| S5            | Mołdawska 7A, 02-132 Warszawa                                | 52.19857,<br>20.97797 | 7.73      |
| S6            | Jana Długosza 19, 01-175 Warszawa                            | 52.24053,<br>20.97032 | 5.68      |
| S7            | Wolska 19/25, 01-201 Warszawa                                | 52.23504,<br>20.97605 | 6.34      |
| S8            | Dolna 3, 00-773 Warszawa                                     | 52.20145,<br>21.03401 | 8.1       |
| S9            | Generała Tadeusza Bora-Komorowskiego 14A, 03-982<br>Warszawa | 52.22491,<br>21.09574 | 6.48      |
| S10           | aleja Wyzwolenia 16, 00-568 Warszawa                         | 52.21999,<br>21.01898 | 6.92      |

## Magazyny

| Identyfikator | Adres magazynu   | Współrzędne        | Pojemność |
|---------------|------------------|--------------------|-----------|
| M1            | 05-800 Pruszków  | 52.17542, 20.79532 | 1000      |
| M2            | 05-500 Piaseczno | 52.08579, 21.02866 | 100       |
| M3            | 05-220 Zielonka  | 52.30194, 21.16922 | 850       |

#### Producenci

| Identyfikator | Adres producenta     | Współrzędne        |
|---------------|----------------------|--------------------|
| P1            | 05-870 Błonie        | 52.20375, 20.6072  |
| P2            | 05-825 Książenice    | 52.07816, 20.69791 |
| P3            | 05-530 Góra Kalwaria | 51.97842, 21.20881 |
| P4            | 05-480 Karczew       | 52.07803, 21.24465 |
| P5            | 05-200 Wołomin       | 52.3351, 21.2448   |
| P6            | 05-120 Legionowo     | 52.40413, 20.94602 |

### Rozmieszczenie na mapie



• Dystanse między obiektami w modelu optymalizacyjnym były oszacowane dla ułatwienia obliczeń

# Wykresy zapotrzebowania na warzywa

- Zakładając że pierwszy tydzień jest pierwszym tygodniem roku.
- Różne sklepy mają większe lub mniejsze wachania zapotrzebowania.
- Wszystkie wartości zostały ograniczone do przedziału [0, 2].

• Dane zostały wygenerowane za pomocą skryptu w języku python.









#### Całkowity koszt po minimalizacji wyniósł 210297

## Transport do magazynów



### Transport do sklepów



## Zapas w sklepach

