

Monolithisch integrierter Nullspannungsschalter Monolithic integrated zero voltage switch

Anwendungen: Thyristor- und Triac-Ansteuerung im Nulldurchgang für statische Schalter.

Periodengruppensteuerung, Zweipunktregler, Proportionalregler, Leistungszeitgeber

usw. im Ein- und Dreiphasen-Netz.

Applications: Thyristor- and triac control in the zero crossing mode for static switch, burst firing,

two-point driver, proportional driver, power timer, etc. in one and three phase power

supply.

Besondere Merkmale:

- Einfache AC- oder DC-Stromversorgung und definiertes IS-Einschaltverhalten
- Betriebsspannungsüberwachung
- Wenig externe Bauelemente
- Vollwellensteuerung keine Gleichstromkomponente im Lastkreis
- Negativer Ausgangsimpuls bis 250 mA dauerkurzschlußfest
- Frequenzkompensierter Operationsverstärker
- Sägezahngenerator
- Hochohmiger Eingang für Geberüberwachung
- Steueranschluß für Dauerpuls-Schaltung
- Referenzspannung
- Logik-Ausgang
- Pulssperre

Features:

- Simple a.c. or d.c. power supply requirement and definite IC-switching characteristics
- Supply voltage control
- Very few external components
- ◆ Full wave drive no d.c. current component in the load circuit
- Negative output current pulse up to 250 mA – short circuit protection
- Frequency compensated operational amplifier
- Ramp generator
- High resistant input sensor control

7.620,2

- Control terminal for continuous pulse circuit
- Reference voltage
- Logic output
- Pulse blocking

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm Dimensions in mm

Normgehäuse Case 20 A 16 DIN 41866 JEDEC MO 001 AC Gewicht · Weight max. 1,5 g

Fig. 1 Blockschaltung und Anschlußbelegung Block diagram and pin connections

Bezugspunkt Reference point Pin 13

Absolute Grenzdaten Absolute maximum ratings

Versorgungsspannung Supply voltage	Fig. 2 Pin 9	- U _S	8,2	V
Stromaufnahme Fig. 3 Supply current	B, 4 Pin 9	-1 _S	50	mA
Synchronisierstrom Synchronous current	Pin 14	$\pm I_{Syn}$	10	mA
Ausgangsstrom Output current	Pin 15	I_{Q}	20	mA
Eingangsspannungen Input voltages	Pins 2, 3, 4, 5, 11, 12 Pin 14	U_{I} U_{Isyn}	≤ <i>U</i> _S ≤ ± <i>U</i> _S	
$I_{18} \leq 1 \text{ mA}$	Pin 8	U_{\parallel}	$\leq U_{S}$	

U 106 BS

Sperrschichttemperatur Junction temperature			t_{j}		125		°C	
Betriebs-Umgebungstemperaturbereich Operating-ambient temperature range			¹ amb		070		°C	
Lagerungstemperaturbereich Storage temperature range			¹ stg		40+ 12	25	°C	
Verlustleistung Power dissipation 'amb = 45 °C 'amb = 70 °C			$\frac{P}{P}_{tot}$		530 365		mW mW	
Wärmewiderstand Thermal resistance				Min.	Тур.	Max.		
Sperrschicht-Umgebung Junction ambient			R_{thJA}			150	°C/W	
Elektrische Kenngrößen Electrical characteristics								
$U_{\rm S}$ = 7.5 V, $t_{\rm amb}$ = 25 °C, falls nicht anders angegeben unless otherwise specified								
Versorgungsspannungsbereich Supply voltage range	Pin	9	- U _S	7,3		8,2	٧	
Gleichstromaufnahme Fig. 2 Supply current	Pin	9	-/ _S			22	mA	
Synchronisation Synchronisation								
Synchronisierstrom Synchronous current	Pin :	14	¹ Syn	400			μΑ	
Ausgangsimpulsbreite Fig. 5 Output pulse width $R_{\rm Syn} = 47~{\rm k}\Omega,~U_{\rm Syn} = 220~{\rm V} \sim R_{\rm Syn} = 100~{\rm k}\Omega,~U_{\rm Syn} = 220~{\rm V} \sim 100~{\rm k}\Omega$			¹ p ¹ p		100 200		ha ha	

U 106 BS

Impulsausgang Output pulse			Min.	Тур.	Max.	
Ausgangsspannung Output voltage $i_{q,10} \le 250 \text{ mA}$	Pin 10	− <i>u</i> q	5			V
Ausgangsimpulsstrom Output pulse current $R_{\mathbf{Q}} \leq 25 \Omega$ Fig. 6	Pin 10	i _q		250		mA
Operationsverstärker Operational amplifier						
Eingangs-Nullspannung Input offset voltage	Pin 3, 4	U_{IO}		15		mV
Eingangs-Nullstrom Input offset current	Pin 3, 4	IIO		1		μ A ·
Eingangsruhestrom Input bias current	Pin 3, 4	I_{\parallel}			1	μA
Leerlaufspannungsverstärkung Open loop differential voltage gain	Pin 6	A_{uo}		80		dB
Gleichtaktunterdrückung Common mode rejection ratio	Pin 6	^k or		70		dB
Eingangs-Gleichtaktbereich Input common mode rejection range	Pin 6	- <i>U</i> _{IC}	1		6	٧
Komparator Comparator						
Eingangs-Nullspannung Input offset voltage	Pin 6, 8	U_{IO}		10		mV
Eingangs-Ruhestrom Input bias current	Pin 8	$I_{f l}$			1	μA
Eingangs-Gleichtaktbereich Input common mode rejection range	Pin 6, 8	- <i>U</i> IC	1		6	V
Geberüberwachung Sensor control						
Eingangsstrom: Ausgangsimpuls an Input current: Output pulse at Pin $-U_{ 11} = 1,56,4 \text{ V}$		± <i>I</i>			200	nA
Kein Ausgangsimpuls an Pin 10 No output pulse at Pin 10 – $U_{ m l11}$ < 1.3 V		<i>I</i> ₁			1	μA
$-U_{111}^{111} > 6.7 \text{ V}$		- /			5	μA

Impulssperre Pulse blocking			Min.	Тур.	Max.		
-							
Ansprechschwelle kein Ausgangsimpuls an Pin 10 Trigger level no output pulse at Pin 10							
mager reverse earper parce at the transfer	Pin 12	$-U_{ }$		2,2		V	
Eingangsstrom Input current $-U_{\parallel} > 3.5 \text{ V}$ $-U_{\parallel} < 2.2 \text{ V}$	Pin 12 Pin 12	/ /			200 40	nA µA	
Dauerpulsschalter Continuous pulse switch							
Ansprechschwelle für Dauerimpulse am Ausgang P 10 Trigger level for continuous pulses at P 10	Pin 7	- U ₁	4,7			V	
Eingangsstrom Input current $-U_{\parallel} >$ 5,0 V $-U_{\parallel} <$ 4,5 V	Pin 7 Pin 7		20		200 800	nA µA	
Logischer Ausgang							
Logic output $I_{\rm q} = 20 \text{ mA}$	Pin 15	$-U_{q}$	5,5			V	
Sägezahngenerator Ramp generator							
Vorwiderstand Series resistance	Pin 2-9	R_{V2}	0		200	kΩ	
Periodendauer Fig. 8 Period							
$R_{V2} = 200 \mathrm{k}\Omega, \ C_{p} = 10 \mathrm{\mu F}$	Pin 16	T		10		S	
Anfangsspannung Initial voltage	Pin 16	- <i>U</i> _Q		1,2		V	
Endspannung Final voltage	Pin 16	– <i>U</i> Q		4,8		V	
Referenzspannung Reference voltage							
I _{Ref} ≦ 10 μA	Pin 5	$-U_{Ref^{1}}$		5,1		V	

¹⁾ Durch Belasten der Referenzspannung mit einem Widerstand R zwischen P 5 und P 13 ist $-U_{\mbox{Ref}}$ reduzierbar:

By loadi.ig the reference voltage with a resistance R between P 5 and P 13, the reference voltage is reduced to:

to:

$$-U_{Ref} \approx \frac{5.1 \text{ V}}{1 + \frac{5.1 \text{ k}}{R}}$$

Anhaltswerte für die Dimensionierung Dimensioning values

Fig. 2 Gleichspannungsbetrieb $-U_S = 7.3...8.2 \text{ V}$ *DC operation*

$$\frac{U\sim}{0.4~\mathrm{mA}}>~R_{\mathrm{Syn}}>~\frac{U\sim}{10~\mathrm{mA}}~\mathrm{[k\Omega]}$$

für
$$t_p \approx 100 \,\mu s$$
 gilt for is valid

$$R_{\text{Syn}} \approx \frac{l' \sim}{4.5 \text{ mA}} [k\Omega]$$

$$R_{\text{V1}} \approx \frac{U_{\text{S}} - 8 \text{ V}}{20 \text{ mA}} [k\Omega]$$

Fig. 3 Gleichspannungsbetrieb
$$-U_{\rm S} \ge$$
 15 V DC operation

$$R_{V1} \approx \frac{U^{\sim}}{50 \text{ mA}} [k\Omega]$$

$$P_{\text{RV1}} \approx \frac{(0.68 \cdot U^{\sim})^2}{R_{\text{V1}}}$$
 [w]

Fig. 4 Wechselspannungsbetrieb AC operation

$$R_{\text{Syn}} = 47 \text{ k} \Omega, C_{\text{Syn}} = 10 \text{ nF}$$

Ausgangsimpulsbreite $t_{\rm p} \approx 200\,\mathrm{\mu s}$ Output pulse width

Phasenverschiebung

Phase shift $\Delta t \approx 100 \, \mu \text{s} = \Delta \varphi = 1.8^{\circ}$

Fig. 5 Phasenverschiebung der Triggerimpulse aus der Nullage Phase shift of the trigger pulse from the zero phase position

Anwendungsbeispiele Applications

Fig. 6 Zweipunkt-Regelung mit Übertemperatur-Sicherheitsschalter (S $_{\vartheta}$) 60 ... 150 °C Two point driver with over temperature protection switch (S $_{\vartheta}$) 60 ... 150 °C

Fig. 7 Proportional-Regelung mit Geberüberwachung und großem Sollwertbereich 25 ... 300 °C Proportional driver with sensor control and high nominal range 25 ... 300 °C

Fig. 8 Proportional-Regelung mit einstellbarer Dauerpuls-Schaltung, Grenzwertabschaltung und Geberüberwachung Proportional driving with adjustable continuous pulse circuit, limit value switch and sensor control

Fig. 9 Optimales Schalten von induktiven Lasten Optimum switching of inductive loads

Fig. 10 Schaltung und Anschlußbelegung Diagram and pin connections