Assignment 15, Authomata Theory

Oleg Sivokon

<2016-01-01 Fri>

Contents

1	Problems															2									
	1.1	Proble	em 1						•				•				•	•		•	•	•		•	2
		1.1.1	Answer 2	2 .																					2
		1.1.2	Answer 1										•											•	3
	1.2	Proble	em 2						•	•			•				•	•		•					3
		1.2.1	Answer 3	3 .					•				•				•			•					4
		1.2.2	Answer 4	ļ.																					4

1 Problems

1.1 Problem 1

Given context-free grammar $V = \{S, M, N, W, X, Y, Z\}$ s.t. $T = \{1, 0\}$

$$\begin{split} S &\to M \mid XN \mid W \mid 0N \mid 1Z1 \\ M &\to 0M0 \mid N \\ N &\to N0 \mid 0 \\ W &\to 0W \mid 00W0 \\ X &\to 0X1 \mid 0 \mid 0Y0 \\ Z &\to W \; . \end{split}$$

- 1. Is V ambiguous?
- 2. Give a normalized grammar equivalent to V.

1.1.1 Answer 2

It is easier to normalize the grammar first and then to look for ambiguities, thus the answers are in reverse order.

- 1. Any derivation containing W cannot terminate, and so does Z.
- 2. Further, we can eliminate the rule $M \to N$.
- 3. Y has no derivation rules, thus we can also remove it.

Thus obtaining:

$$S \rightarrow M \mid XM \mid 0M$$

$$M \rightarrow 0M0 \mid 0 \mid 0M$$

$$X \rightarrow 0X1 \mid 0.$$

1. It is easy to see that M derives number of zeros greater than one, thus $M\to 0M0$ is redundant. Subsequently, $S\to 0M$ is already covered by $S\to M$.

What remains is:

$$\begin{split} S \rightarrow M \mid XM \\ M \rightarrow 0 \mid 0M \\ X \rightarrow 0 \mid 0X1 \; . \end{split}$$

1.1.2 Answer 1

Now it is easy to see that the string 00 can be derived in two different ways:

•
$$S \to M, M \to 0M, M \to 0.$$

•
$$S \to XM, X \to 0, M \to 0.$$

Hence V is ambiguous.

1.2 Problem 2

Given context-free grammar $V = \{S, M, N, W, X, Y, Z\}$ s.t. $T = \{1, 0\}$

$$\begin{split} S &\to 0W11 \mid 0X1 \mid 0Y \\ W &\to S \mid Z \\ X &\to S \mid W \\ Y &\to 1 \\ Z &\to X \; . \end{split}$$

- 1. Bring V to Chomsky's normal form.
- 2. What is the language of V?

1.2.1 Answer 3

- 1. We can easily eliminate Y variable, thus removing $Y \to 1$ rule, and adding $S \to 01$ rule.
- 2. We can eliminate Z variable by removing $Z \to X$ and $W \to Z$ rules and adding $W \to X$ rule.
- 3. We can eliminate X variable by removing $X \to S \mid W$ and $S \to 0X1$ rules, and adding: $S \to 0S1$ rule.
- 4. Finally, we can eliminate W variable by removing $W \to S$ and $S \to 0W11$ rules and adding $S \to 0S11$ rule.

The resulting grammar will be:

$$S \to 0S11 \mid 0S1 \mid 01$$
.

Since this is still not CNF, I introduce an extra variable: X and derivation rules $X\to 0,\,Y\to 1\mid 11$ and $Z\to SY$ thus obtaining:

$$S \rightarrow XZ \mid 01$$

$$X \rightarrow 0$$

$$Y \rightarrow 1 \mid 11$$

$$Z \rightarrow SY$$

Which is in CNF.

1.2.2 Answer 4

Using the results from the previous answer it is easy to see that the language $L(V) = \{0^n 1^k \mid n \le k \land n, k > 0\}.$