初赛模拟卷

—,	, 卑坝选择(共 15 题, 每题 2 分, 共1	十3	0分;每题有且仅有一个止确选项)		
1.	下列不是 linux 命令的是()				
Α.	ps	В.	usd		
С.	ср	D.	cd		
2.	()是目前互联网上常用的 E-mai	il 🏻	服务协议		
Α.	POP3	В.	FTP		
С.	НТТР	D.	Telnet		
3.	在计算机中, 防火墙的作用是 ()				
Α.	防止火灾蔓延	В.	防止网络攻击		
С.	防止计算机死机	D.	防止使用者误删数据		
4.	()就是把一个复杂的问题分成两	 「	·或更多的相同类似的子问题,再把子问题分解		
	成更小的子问题直到最后的子问题	可	以简单地直接求解。而原问题的解就是子问题		
	的并。				
Α.	贪心	В.	动态规划		
С.	分治	D.	搜索		
5.	如果平面上任取 n 个整点(横纵坐标	均;	为整数),其中一定存在两个点,它们连线的中		
	点是整点,则n至少是()				
Α.	3	В.	4		
С.	5	D.	8		
6.	阅读下面的函数,当传入的三个参数。	为丁	列哪个时,函数能正常地获得返回值。()		
<pre>int dfs(int a, int b, int c) {</pre>					
	if(a == b) return 1;				
	int newa = b * b / a, newb =	c ³	c / b, newc = a * a / c;		
	return dfs(newa, newb, newc);				
}					
Α.	a = 0, b = 1, c = 2	В.	a = 1, b = 2, c = 3		
С.	a = -1, $b = 0$, $c = 1$	D.	a = 3, b = 4, c = 5		
7.	由 3 个 a,5 个 b 和 2 个 c 构成的所有	字	符串中,包含子串为 abc 的共有()个		
Α.	40320	В.	39600		
С.	840	D.	780		
8.	由 4 个不同的点构成的简单无向连通	图的	的个数是()		
Α.	32	В.	41		
С.	35	D.	38		
9.	一棵二叉树前序遍历为 ABDECFGH,后	序;	遍历为 EDBGFHCA,以下不可能是其中序遍历的		
	是 ()				
Α.	DEBAFGCH	В.	BEDAFGCH		
С.	EDBAGFCH	D.	DBEAFGCH		
10	. 数字 319 和数字 377 的最大公约数是	()		
Α.	33	В.	27		
С.	29	D.	21		
	. 前缀表达式-+*4+2315的	/ + \			

16	В.	19
17	D.	15
,以下关于二叉树性质中,正确的描述	的~	个数有 ()
包含n个结点的二叉树的高度至少为	ce:	il(log₂n)
在任意一棵非空二叉树中, 若叶子结点	点的	个数为 ne,出度为 2 的结点数为 n2,则 ne=n2+1
深度为 k 的二叉树至多有 2k 个结点		
没有一棵二叉树的前序遍历序列与后	亨遍	量历序列相同
0	В.	1
2	D.	3
. 将 2 个相同的红球, 1 个蓝球, 1 个白	球	放到 10 个编号不同的盒子中去,每个盒子最多
放一个球,有多少种放法()		
5040	В.	420
2520	D.	1260
. 设A和B是两个长度为n的有序数组	狙,	现在需要将 A 和 B 合并成一个排好序的数组,
请问任何以元素比较作为基本运算的	加	并算法,在最坏情况下至少要做多少次比较?
()		
n²	В.	nlogn
2n	D.	2n - 1
. G 是一个非连通无向图(没有重边和	自	环),共有 45 条边,则该图至少有()个顶
点。		
8	В.	9
10	D.	11
	17 ·以下关于二叉树性质中,正确的描述包含 n 个结点的二叉树的高度至少为在任意一棵非空二叉树中,若叶子结点深度为 k 的二叉树至多有 2 ^k 个结点没有一棵二叉树的前序遍历序列与后2 ·将 2 个相同的红球, 1 个蓝球, 1 个的放一个球, 有多少种放法()5040 2520 ·设 A 和 B 是两个长度为 n 的有序数统请问任何以元素比较作为基本运算的()n² 2n · G 是一个非连通无向图(没有重边和点。8	17 D. 以下关于二叉树性质中,正确的描述的个包含 n 个结点的二叉树的高度至少为 ceie 在任意一棵非空二叉树中,若叶子结点的深度为 k 的二叉树至多有 2 ^k 个结点没有一棵二叉树的前序遍历序列与后序谑 0 B. 2 D. 将 2 个相同的红球,1 个蓝球,1 个白球放一个球,有多少种放法()5040 B. 2520 D. 设 A 和 B 是两个长度为 n 的有序数组,请问任何以元素比较作为基本运算的归() n² B. 2n D. G 是一个非连通无向图(没有重边和自主点。 B.

- 二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题选正误;除特殊说明外,判断题每题 2 分,选择题每题 3 分,共 40 分)
- (一) 阅读下列程序,回答问题。

```
01 #include <bits/stdc++.h>
02 using namespace std;
03 const int maxn = 110;
04 int n, k, w[maxn]; double v[maxn];
05 struct node {
       double pt; int total;
06
07
       bool operator < (const node &temp) const {</pre>
80
           return pt < temp.pt;
09
       }
10 };
11 priority_queue<node> pq;
12 int main() {
13
       cin >> n >> k; double ans = 0;
14
       for(int i = 1;i <= n; ++i) cin >> v[i];
       for(int i = 1;i <= n; ++i) cin >> w[i];
15
      for(int i = 1;i <= n; ++i)
16
17
           pq.push({v[i] / w[i], w[i]});
18
       while(k > 0 \&\& pq.size()) {
19
           node u = pq.top(); pq.pop();
           ans += min(k, u.total) * u.pt;
20
21
           k -= min(k, u.total);
22
       }
23
       cout << ceil(ans) << '\n';</pre>
24
       return 0;
25 }
```

假设所有输入的数据均为[0,100]之间的自然数,回答下列问题。

- 判断题
- 16. 存在可以被构造出的输入数据, 使得程序无法正确运行。()
- **17.** 对于优先队列 pq, 当其非空时, 若取出 pq 中的 top 处的元素, 该元素必然是优先队 列 pq 中 pt 属性较小的元素。()
- 18. 当程序正常运行结束时,ans 一定小于等于 $\sum v[i](1 \le i \le n)$ 。()
- 选择题
- 19. 当 n = 5, k = 7, 数组 v[i]为[1, 2, 3, 4, 5], w[i]为[5, 4, 3, 2, 1]时, 程序的输出结果为()
- A. 13 B. 2 C. 12 D. 1
- (二) 阅读下列程序, 回答问题。

```
01 #include <bits/stdc++.h>
02 using namespace std;
03 int main() {
04   int cnt[50]; memset(cnt, 0, sizeof cnt);
```

```
05
       string str; cin >> str;
06
       for(int i = 0;i < str.size(); ++i)</pre>
07
           cnt[str[i] - 'a']++;
       int ans = 0; bool judge = false;
80
09
       for(int i = 0; i <= 25; ++i) {
10
           if(cnt[i] % 2 == 0) ans += cnt[i];
11
           else ans += cnt[i] - 1, judge = true;
       }
12
13
       if(judge) ++ans;
14
       cout << ans << endl;</pre>
15
       return 0;
16 }
```

假设输入的字符串仅包含小写字母,且长度不超过105,完成下列问题。

- 判断题
- 20. 将第 09 行的 i <= 25 改为 i <= 30, 不影响程序的结果。()
- 21. 当第 13 行中的 judge 为 true 时, 求出的 ans 为偶数。()
- 选择题
- 22. 当输入的字符串为 helloworld 时,输出的答案为()

A. 7 B. 5 C. 8 D. 6

(三) 阅读下列程序,回答问题。

下面的代码的输入以下列方式给出:

第一行两个正整数 n, m,表示将给出一个长度为 n 的序列,并对其进行 m 次操作。其中,n 和 m 的范围在[1, 1e6]之间。

第二行 n 个正整数,表示一个序列。

接下来 m 行, 每行表示一种操作。

操作 1 给出的方式是 1 l r v,其中保证 1 <= l <= r <= n,1 <= v <= 1e9,表示对 [1,r]这个区间做某种和 v 有关的操作。

操作 2 给出的方式是 2 l r,其中保证 1 <= l <= r <= n,表示对[1, r]这个区间做某种询问操作。

```
01 #include <cstdio>
02 #include <iostream>
03 #include <algorithm>
04 #include <cmath>
05 using namespace std;
06 const int maxn = 1e6 + 10;
07 long long tree[maxn * 4], num[maxn];
08 void build(int u, int l, int r) {
09
       if(1 == r) {
10
           tree[u] = num[1] - num[1 - 1];
11
           return;
12
13
       int mid = (1 + r) / 2;
14
       build(u * 2, 1, mid);
```

```
15
       build(u * 2 + 1, mid + 1, r);
16
       tree[u] = min(tree[u * 2], tree[u * 2 + 1]);
17
       return;
18 }
   void update(int u, int l, int r, int pos, long long v) {
19
20
       if(1 == r) {
21
           tree[u] -= v;
22
           return;
23
       }
24
       int mid = (1 + r) / 2;
25
       if(pos <= mid) update(u * 2, 1, mid, pos, v);</pre>
26
       else update(u * 2 + 1, mid + 1, r, pos, v);
27
       tree[u] = min(tree[u * 2], tree[u * 2 + 1]);
28
       return;
29 }
30 long long query(int u, int l, int r, int L, int R) {
31
       if(L \le 1 \&\& r \le R) return tree[u];
32
       int mid = (1 + r) / 2; long long t = 1e9;
33
       if(L \leftarrow mid) t = min(t, query(u * 2, 1, mid, L, R));
34
       if(R > mid) t = min(t, query(u * 2 + 1, mid + 1, r, L, R));
35
       return t;
36 }
37 int main() {
38
       ios::sync_with_stdio(false);
39
       cin.tie(0); cout.tie(0);
40
       int n, m; cin >> n >> m;
41
       for(int i = 1;i <= n; ++i)
42
           cin >> num[i];
43
       build(1, 1, n);
44
       for(int i = 1;i <= m; ++i) {
45
           int opt; cin >> opt;
46
           if(opt == 1) {
47
               int 1, r; long long v;
48
               cin >> 1 >> r >> v;
49
               update(1, 1, n, l, -v);
50
               if(r + 1 \le n) update(1, 1, n, r + 1, v);
51
           } else {
52
               int l, r;
53
               cin >> 1 >> r;
               if(1 == r) {
54
55
                   cout << "Yes\n";</pre>
56
               } else {
57
                   long long ans = query(1, 1, n, l + 1, r);
                   cout << (ans >= 0 ? "Yes\n" : "No\n");
58
```

```
59 }
60 }
61 }
62 return 0;
63 }
```

● 判断题

- 23. 操作 1 是对区间进行减法操作,表示将区间[1, r]统一减去 v。()
 24. 当进行操作 2 时,若区间长度为 1,无论如何都会输出一行 Yes。()
 25. 程序中 32 行的 long long t = 1e9,改为 long long t = 0 仍然能正常求解。()
 选择题
 26. (4分)操作 2 判断的是对于区间[1, r],当区间满足()时,程序会输出 Yes。
- A. 单调增加
 B. 单调减小

 C. 单调不增
 D. 单调不减
- (四) 阅读下列程序,回答问题。

```
01 #include <bits/stdc++.h>
02 using namespace std;
03 typedef long long ll;
04 ll l, r, f[25][15][15], a[25];
05 ll dfs(ll pos, bool limit, bool lead, ll pre1, ll pre2) {
06
       if (!pos) {
07
           return 1;
80
       }
09
       11 \text{ ans} = 0;
10
       if (!limit && !lead && f[pos][pre1 + 1][pre2 + 1] != -1) {
           return f[pos][pre1 + 1][pre2 + 1];
11
12
       }
       11 up = limit ? a[pos] : 9;
13
       for (ll i = 0; i <= up; ++i) {
14
15
           if (i != pre1 && i != pre2) {
               ans += dfs(pos - 1, limit && i == up, lead && !i, (!lead
|| i) ? i : -1, pre1);
17
           }
18
       if (!limit && !lead) {
19
20
           f[pos][pre1 + 1][pre2 + 1] = ans;
21
       }
22
       return ans;
23 }
24 ll solve(ll x) {
25
       11 \text{ cnt} = 0;
       while (x) {
26
27
           a[++cnt] = x \% 10;
28
           x /= 10;
29
       }
```

```
30  memset(f, -1, sizeof(f));
31  return dfs(cnt, 1, 1, -1, -1);
32 }
33  int main() {
34    cin >> 1 >> r;
35    cout << solve(r) - solve(l - 1);
36    return 0;
37 }</pre>
```

假设输入的 1 和 r 都是不超过 10^{18} 的自然数,本程序目标是统计位于区间 [1, r] 中具有某种性质的正整数的数量。据此完成下列问题。

- 判断题
- **27.** 将第 **07** 行改为 **return 0**;程序统计出的数量不会改变。()
- **28.** (3分) 第 **15** 行的作用是保证对所有被统计到答案的数字中,不会出现连续的三个相等的正整数。()
- 29. 当输入的1和r相等时,输出答案必定为1。()
- 单选题
- 30. 若输入数据为 1 100,则输出的答案为()

A. 100 B. 90

C. 70 D. 80

31. (4分) 若输入数据为 1 1000,则输出的答案为()

A. 991 B. 688

C. 738 D. 832

三、完善程序(单选题,每小题 3 分,共计 30 分) (一) 现在要求你求出满足下列要求的序列的数量,答案对 10^9+7 取模。 ① $a_0=0$ ② $\forall i \in [1,n]$,满足 $a_i=a_{i-1}+x$ 或 $a_i=a_{i-1}+y$ ③ $\forall i \in [1,n]$,满足 $a_i \mod p \neq 0$ 输入数据格式为第一行一个正整数 $t(1 \le t \le 1000)$,表示有 t 组询问。 对每组询问给出一行四个正整数 n,p,x,y,以空格分开。

保证 $1 \le \sum n \le 10^4, 1 \le p, x, y \le 10^9$ 。对每组询问你都需要回答一行正整数表示答案。

```
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
const int maxn = 1e4 + 10;
const int mod = 1e9 + 7;
int n, dp[2 * maxn];
long long p, x, y;
int main( ) {
   int t; cin >> t;
   while(t--) {
       int ans = 0;
       cin >> n >> p >> x >> y;
       if(x == y) {
           bool judge = true;
           for(int i = 1; i \leftarrow n; ++i) if(_______) judge = false;
           cout << (2) << '\n';
           continue;
       }
       dp[maxn] = 1;
       for(int i = 1;i <= n; ++i) {
           for(int j = 0; j <= i; ++j) {
              int t = _____; dp[maxn + t] = 0;
              if(______)
                  dp[maxn + t] = (________) \% mod;
              if(i == n) ans = (ans + dp[maxn + t]) % mod;
           }
       }
       cout << ans << '\n';</pre>
       for(int i = -n; i <= n; ++i) dp[maxn + i] = 0;
   return 0;
```

```
B. x * i % p == 0
A. x \% p == 0
C. i % p == 0
                               D. judge && (x \% p == 0)
33. ②处应填( )
A. judge ? 1 : 0
                               B. judge ? n : 0
C. judge ? 0 : 1
                               D. judge ? 0 : n
34. ③处应填( )
A.j
                               B. j + (i - j)
C. i - j
                               D. j - (i - j)
35. ④处应填( )
A. (x * i + y * j) % p == 0
B. (x * i + y * j) \% p != 0
C. (x * j + y * (i - j)) % p == 0
D. (x * j + y * (i - j)) % p != 0
36. ⑤处应填( )
A. dp[maxn + t + 1] + dp[maxn + t - 1]
B. dp[maxn + t + 1] - dp[maxn + t - 1]
C. dp[t + 1] + dp[t - 1]
```

D. dp[t + 1] - dp[t - 1]

(二) 现在你有一个包含 n 个不同的字符串的串集 S。现在询问你有多少个不同的长度为 m 的字符串,使得字符串中至少有一个连续子串,位于串集 S 中。由于答案可能很 大,你需要对 10007 取模。

所有出现的字符均只考虑大写字母。

数据范围有 $1 \le n \le 60, 1 \le m \le 100$,每个字符串的串长 $\in [1,100]$

输入格式为第一行两个正整数 n,m, 表示你拥有的串集大小为 n, 你可以构造的字符串的长度为 m。

接下来 n 行, 每行一个字符串, 表示串集中的一个字符串。

提示: 考虑用所有字符串的数量减去非法字符串的数量。

```
#include<bits/stdc++.h>
using namespace std;
const int maxn = 6000 + 10;
const int mod = 10007;
struct Aho_corasick{
   int ch[maxn][30], f[maxn], tot;
   bool endp[maxn];
   Aho_corasick() {
       memset(ch, 0, sizeof ch);
       memset(endp, 0, sizeof endp);
       memset(f, 0, sizeof f);
       tot = 0;
   }
   void insert(string &s) {
       int n = s.size(); int u = 0;
       for(int i = 0; i < n; ++i) {
          if(!ch[u][s[i] - 'A'])
              ch[u][s[i] - 'A'] = ++tot;
          u = ch[u][s[i] - 'A'];
       }
         }
   void getfail() {
       queue<int> q;
       for(int i = 0; i <= 25; ++i)
           if(ch[0][i])
              q.push(ch[0][i]);
       while(!q.empty()) {
           int u = q.front(); q.pop();
           for(int i = 0;i <= 25; ++i) {
              int v = ch[u][i];
              if(v) {
                  f[v] = ch[f[u]][i];
                   q.push(v);
```

```
} else {
                  ch[u][i] = ch[f[u]][i];
           }
       }
   }
} AC;
int quickpow(int x, int y) {
   int base = x, ans = 1;
   while(y) {
       if(y & 1) _____3_
       base *= base;
       ans %= mod; base %= mod;
       y /= 2;
   }
   return ans;
int ans, dp[105][maxn];
int main() {
   int n, m; cin >> n >> m;
   ans = quickpow(26, m);
   for(int i = 1;i <= n; ++i) {
       string str; cin >> str;
       AC.insert(str);
   }
   AC.getfail();
   int max_state = AC.tot;
   dp[0][0] = 1;
   for(int i = 0;i < m; ++i) {
       for(int state = 0;state <= max_state; ++state) {</pre>
           for(int nxt = 0;nxt <= 25; ++nxt) {</pre>
              if(\underline{4}___) continue;
                   <u>5</u> += dp[i][state];
                   }
       }
   for(int state = 0; state <= max_state; ++state)</pre>
       ans = (ans + mod - dp[m][state]) % mod;
   cout << ans << '\n';</pre>
   return 0;
37. ①处应填( )
```

```
A. endp[u] = 0 B. endp[u] = 1
```

```
C. f[u] = 0
                               D. f[u] = 1
38. ②处应填( )
A. if(endp[f[u]]) endp[u] = 1;
B. if(endp[f[u]]) endp[v] = 1;
C. if(endp[f[v]]) endp[u] = 1;
D. if(endp[f[v]]) endp[v] = 1;
39. ③处应填( )
A. ans *= base;
                               B. base *= ans
C. ans += base
                               D. base += ans
40. ④处应填( )
A. AC.f[AC.ch[state][nxt]]
B. AC.endp[AC.ch[state][nxt]]
C. AC.f[AC.ch[nxt][state]]
D. AC.endp[AC.ch[nxt][state]]
41. ⑤处应填( )
A. dp[i][AC.f[AC.ch[state][nxt]]]
B. dp[i + 1][AC.f[AC.ch[state][nxt]]]
C. dp[i][AC.ch[state][nxt]]
```

D. dp[i + 1][AC.ch[state][nxt]]