

FORECASTING PRODUCT DEMAND IN R

Price elasticity

Aric LaBarr, Ph.D.
Senior Data Scientist, Elder Research

Price vs. Demand

- Price elasticity is the economic measure of how much demand "reacts" to changes in price
- As price changes, it is expected that demand changes as well, but how much?

$$Price \ Elasticity = \frac{\% Change \ in \ Demand}{\% Change \ in \ Price}$$

Elastic vs. Inelastic

- Elastic products are ones that have % changes in demand larger than the % change in price (Price Elasticity > 1)
- Inelastic products are ones that have % changes in demand smaller than the % change in price ($Price\ Elasticity < 1$)
- Unit elastic products are ones that have % changes in demand equal to the % change in price (Price Elasticity = 1)

Linear Regression

Linear Regression

Price Elasticity Example

```
M hi <- as.vector(bev xts train[,"M.hi"])</pre>
M_hi_p <- as.vector(bev_xts_train[,"M.hi.p"])</pre>
M_hi_train <- data.frame(log(M_hi), log(M_hi_p))</pre>
colnames(M_hi_train) <- c("log_sales", "log_price")</pre>
model M hi <- lm(log sales ~ log price, data = M hi train)</pre>
model M hi
Call:
lm(formula = log sales ~ log price)
Coefficients:
(Intercept) log price
     8.9907 -0.7138
```


Let's practice!

FORECASTING PRODUCT DEMAND IN R

Seasonal / holiday / promotional effects

Aric LaBarr, Ph.D.
Senior Data Scientist, Elder Research

Influencers of Demand

- Seasonal effects
 - Examples: Winter coats, bathing suits, school supplies, etc.
- Holiday effects
 - Examples: Retail sales, holiday decorations, candy, etc.
- Promotion effects
 - Examples: Digital marketing, shelf optimization, etc.

Seasonal / Holiday / Promotion?

plot(M_hi)

Linear Regression! Again...

- Linear regression helps us evaluate the relationship between many factors and demand, not just price.
- Add seasonal, holiday, and promotion effects to previous regression!
- Any of these effects statistically significant?
 - Are the effects due to random chance or not?

Creating Effects Example

Adding Effects Example

Let's practice!

Forecasting with regression

Aric LaBarr, Ph.D.
Senior Data Scientist, Elder Research

Forecasting with Time Series

Forecasting with Regression

Future Input Variables

- How to "predict" future input variables?
 - Holidays and Promotions: NO WORRIES we know these ahead of time
- Prices Possible problem!
 - Prices set ahead of time (our assumption)
 - Forecast future prices with time series!

Future Input Variables Example

```
v.dates_v <- as.Date("2017-02-12")

valentine_v <- as.xts(1, order.by = v.dates_v)
dates_valid <- seq(as.Date("2017-01-01"), length = 22, by = "weeks")

valentine_v <- merge(valentine_v, dates_valid, fill = 0)

l_M_hi_p_valid <- log(bev_xts_valid[,"M.hi.p"])

model_M_valid <- data.frame(as.vector(l_M_hi_p_valid), as.vector(valentine_v))
colnames(model_M_valid) <- c("log_price", "valentine")</pre>
```


Future Regression Example

Let's practice!