7.7 Automatic Gain Control (AGC)

Q. Write a short note on AGC.

Need

- Different signals of different frequencies are received by radio stations.
- Each signal has its own strength, some are stronger comparatively and some are weaker.
- The receiver's gain is constant. Thus receiver output varies with the strength of the incoming signal. The beautiful and the leading of the incoming signal.
- This is undesirable. Hence AGC circuits were introduced to vary the gain of the receiver according to the input signal so that output is not fluctuating.

Definition

AGC is a circuit by means of which the overall gain of the receiver is varied in accordance with the strength of the received signal.

Thus a -ve AGC voltage is developed which is applied to the base

- Normally, AGC voltage is a -ve voltage that is applied at the base of transistors
 of IF and RF amplifiers which reduces the overall gain when the signal strength
 is high.
- When signal is weak, ideally there should be no AGC voltage.

· DAA elemis -

Types of AGC

There are two types :

- Simple AGC
- Delayed AGC

7.7.1 Simple AGC

Q. Discuss the merits of delayed AGC as compared to simple AGC. Sketch the circuit and explain how delayed AGC can be realized.

Advantages

a to mispinds and its

FEE 233

Fig. 7.12: Circuit Diagram of a Simple AGC

Diode D is connected such that only -ve peak of modulating signal is detected.

The receiver's gain is constant. Thus receiver oursus varies with the strength of

- The diode also produces a d.c. component and which is proportional to the strength of the received signal.
- The AGC filter passes this d.c. component and filters out the a.c. components.
- Thus a -ve AGC voltage is developed which is applied to the base of IF and RF ACC is a circuit by means of which the overall gain of the receiversillement
- Due to this, the gain of IF and RF amplifier reduces in turn reducing the overall Normally, AGC voltage is a - ye voltage that is applied at the base of misestors

Fig. 7.13

Types of AGC

7.7.1 Simple AGC

Advantages

Simple to design

Disadvantages, alguns of baraguon so III hayald he simple as an Oil

- Even if the signal is already weak, some amount of AGC voltage is developed reducing the gain of receiver.
- This may result in total loss of weak signals. We Don to which is a result in

7.7.2 Delayed AGC

- Delayed AGC system gets activated only after the signal strength is more than a predetermined value.
- Thus it won't operate for weaker signals.

Fig. 7.14: Circuit diagram of a delayed AGC.

Working

- The cathode of diode D is connected to +V_{dc}.
- Now we will consider the following two cases.

Case (i): Signal is Weak

- If the signal is weak, i.e. less compared to V_{dc} then the diode D is reverse biased.
- Thus all the a.c. signal is by passed by capacitor C_1 to ground resulting in No AGC voltage.
- Thus gain is not affected.

Case (ii): Signal is Strong

- If the signal is strong, i.e. more compared to V_{dc} then the diode D is forward biased during +ve cycle and reverse biased during -ve cycle.
- Now, diode D produces a d.c. component which varies according to the strength of the signal.
- The capacitor acts as an open circuit for this d.c. voltage.
- Thus a -ve voltage is developed as delayed AGC voltage.
- This is then connected to the IF and RF amplifiers to reduce the gain.

