The Virtual Evolution of 2D Soft Robots

by

Naudé Thomas Conradie

Thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering (Mechatronic) in the Faculty of Engineering at Stellenbosch University

Supervisor: Dr. M. P. Venter

November 2020

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

D /							4	2	0	2	0	1	/ -	L	1,	/:	3	0				
Date:												٠.										

Copyright © 2020 Stellenbosch University All rights reserved.

Abstract

The Virtual Evolution of 2D Soft Robots

N. T. Conradie

Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.

> Thesis: MEng (Mech) November 2020

Abstract

Die Virtuele Evolusie van 2D Sagte Robotte

("The Virtual Evolution of 2D Soft Robots")

N. T. Conradie

Departement Meganiese en Megatroniese Ingenieurswese, Universiteit van Stellenbosch, Privaatsak X1, Matieland 7602, Suid Afrika.

Thesis: MIng (Meg)
November 2020

Om 'n tand implement te vibreer is 'n effektiewe manier om die trekkrag, wat benodig word om dit deur die grond te trek, te verminder. Die graad van krag vermindering is afhanklik van die kombinasie van werks parameters en die grond toestand. Dus is dit nodig om die vibrerende implement te optimeer vir verskillende omstandighede.

Numeriese modulering is meer buigsaam en goedkoper as eksperimentele opstellings en analitiese modelle. Die Diskrete Element Metode (DEM) was spesifiek vir korrelrige materiaal, soos grond, ontwikkel en kan gebruik word vir die modellering van 'n vibrerende implement vir die ontwerp en optimering daarvan. Die doel was dus om die vermoë van DEM om 'n vibrerende skeurploeg the modelleer, te evalueer, en om die oorsaak van die krag vermindering te ondersoek.

Die DEM model was geïvalueer teen data ...

Acknowledgements

I would like to express my sincere gratitude to the following people and organisations \dots

Dedications

Hierdie tesis word opgedra aan ...

Contents

Declaration	i
Abstract	ii
Abstract	iii
f Acknowledgements	iv
Dedications	${f v}$
Contents	vi
List of Figures	vii
List of Tables	viii
Nomenclature	ix
1 Discrete Element Method 1.1 Introduction	1 1
Appendices	2
A Discrete Element Method Theory A.1 Ball elements	3
List of References	4

List of Figures

List of Tables

Nomenclature

Constants

 $g = 9.81 \,\mathrm{m/s^2}$

Variables

Re_{D}	Reynolds number (diameter) []	
x	Coordinate	
\ddot{x}	Acceleration	!
θ	Rotation angle [rad]	
au	Moment N·m	1

Vectors and Tensors

 $\overrightarrow{\boldsymbol{v}}$ Physical vector, see equation ...

Subscripts

- a Adiabatic
- a Coordinate

Chapter 1

Introduction

1.1 Background

Appendices

Appendix A

Discrete Element Method Theory

A.1 Ball elements

A.1.1 Ball mass and inertia parameters

Consider a volume element dV with respect to a static base S of an arbitrary solid body with density ρ . The mass of the body is obtained by integrating over the volume of the body,

$$m = \int_{\text{body}} \rho \, dV \tag{A.1}$$

In figure A.1, a ball with radius R_i and uniform density ρ_i is depicted. The mass of the ball is after integration of equation (A.1)

$$m_i = \frac{4}{3}\pi\rho_i R_i^3. \tag{A.2}$$

Figure A.1: Ball Element Parameters

List of References

- Cundall, P.A. and Strack, O.D.L. (1979). A discrete numerical model for granular assemblies. *Géotechnique*, vol. 29, no. 1, pp. 47–65.
- Luding, S. (1994). Models and Simulations of Granular Materials. PhD, Universität Freiburg.
- Luding, S. (2004). Molecular dynamics simulations of granular materials. In: Hinrichsen, H. and Wolf, D. (eds.), *The Physics of Granular Media*, pp. 299–324. Wiley-VCH, Weinheim.