C-V Characteristics of Solar cell

Wadhwani Electronics Laboratory
Department of Electrical Engineering
Indian Institute of Technology Bombay
July 2018

The Problem Statement

In this experiment, we will do the following:

- ⇒ Test an opamp based simple circuit for measurement of CV characteristics
- \Rightarrow Measure the C-V characteristics of Solar Cell and estimate the doping concentration and built-in potential of the solar cell.

What You Will Need

Before starting the experiment, ensure that you have

- ⇒ Solar Cell Unit
- ⇒ TL071 Operational Amplifier
- \Rightarrow Resistors- 1 k Ω , 10 k Ω
- \Rightarrow Capacitor- 0.1 uF and 4.7nF
- ⇒ Multimeters (two), a function generator, a DC power supply
- ⇒ Breadboard and connecting wires (but of course!)

C-V Characteristics of a Solar Cell

- \Rightarrow When reversed biased, a PN junction exhibits capacitance C_j . The value of capacitance depends upon the applied reverse bias.
- ⇒ In this experiment, we intend to measure this capacitance, its voltage dependence and estimate doping profile of a PN junction, using a very low cost instrumentation.
- ⇒ The PN junction under consideration is that of a solar cell. (Why?)

C-V Characteristics of a Solar Cell (cont'd...)

- ⇒ This can be achieved by applying a reverse bias to the diode so that it acts as a capacitor.
- ⇒ To estimate the capacitance value, a small AC signal is superimposed on this DC reverse bias using a summing amplifier, and the AC current through the capacitor is measured (by converting it to voltage *why ?).

* We need to ensure that the device functions as a capacitor. This is done by ensuring the phase shift between the voltage applied to the capacitor and the current through the capacitor to be 90° .

Measurement of capacitance of solar cell

Note: DUT = Device Under Test

- ⇒ This is the circuit for the measurement of capacitance.
- ⇒ Don't connect the entire circuit. We will do it in parts.

Part A: Inverting Summing Amplifier

- \Rightarrow Figure shows inverting summing amplifier. Let V_{ac} be of 1 V_{pp} amplitude and 1KHz frequency.
- \Rightarrow Derive the equation for the output V_{DUT} .

Part A: Inverting Summing Amplifier (Cont'd...)

Procedure:

- 1. Wire up the circuit as shown. Switch on the $+V_{cc}$ and $-V_{cc}$ supply before giving the inputs.
- 2. Now adjust the DC level input V_{dc} to 1 V.
- 3. Adjust V_{ac} : AC voltage level to Sine wave of 1 V_{pp} and a frequency of 1 kHz (without any DC offset).
- 4. Observe the output of the operational amplifier with respect to input. Sketch these waveforms in your report.
- 5. Measure and label the AC and DC components of the input and output waveform.
- 6. What is the gain of the circuit for V_{ac} and V_{dc} inputs ?

Part B: Measurement of unknown Resistor

- \Rightarrow Current to voltage converter will convert the current flowing through R_{unknown} to output voltage across R_{fb}.
- \Rightarrow Derive the equation for $R_{unknown}$ in terms of V_{out} , V_{DUT} , and R_{fb} .

Part B: Measurement of unknown Resistor (Cont'd...)

Procedure:

- 1. Now connect the Current to voltage converter circuit.
- 2. Connect 1 k Ω resistor as R_{unknown}.
- 3. Observe V_{out} with respect to V_{DUT} and sketch in your report. Observe the phase difference.
- 4. Can you estimate the value of $R_{\textit{unknown}}$ from the equation you derived. It should be $1 \text{ k}\Omega$.

This means our circuit is working!

Part C: Measurement of unknown Capacitor

- Now let's see how the same circuit can be used to estimate capacitance.
- ⇒ Now connect a capacitor as DUT.
- \Rightarrow Derive the equation for $C_{unknown}$ in terms of V_{out} , V_{DUT} , and R_{fb} .

Part C: Measurement of unknown Capacitor (Cont'd...)

Procedure:

- 1. Now we will use a 0.1 uF capacitor as DUT : Cunknown.
- 2. Observe V_{out} and V_{DUT} on CH1 and CH2 of the DSO. Sketch/paste the picture of these waveforms in your report.
- 3. What is the phase difference between V_{out} and V_{DUT} ? It should be 90°.
- 4. From the output voltage V_{out} estimate the value of the capacitor $C_{\textit{unknown}}$. It should be 0.1~uF.

This means the circuit can be used to measure unknown capacitance!

Part D: C-V Characteristics of Solar Cell

- ⇒ Now in this part, we use solar cell as DUT.
- ⇒ We will make the measurements in "Dark", So do not apply any voltage to LED bank.
- \Rightarrow Negative DC component of V_{DUT} ensures -ve voltage at the anode of the cell and with cathode held at ground potential, the cell gets reverse biased. Recall virtual ground concept in Op-Amp.

Part D: C - V Characteristics of Solar Cell (Cont'd...)

Procedure:

- 1. Set the frequency to be 1 kHz. Measure the phase difference.
- The phase difference should be close to 90°. This indicates that the solar cell behaves like a capacitor.
- 3. Vary the DC voltage increments to measure the capacitance values at each bias voltage.

Why does the capacitance vary as a function of applied Voltage?

Tips for phase Measurement:

- \Rightarrow Adjust the input frequency (Around 1 kHz) to get more clear waveform on the CRO Screen. Don't forget to use the same one in calculations.
- ⇒ It's advised to use the time domain method to calculate the phase difference and reduce errors.

Formulae

Output of the Summing Amplifier:

$$V_{DUT} = -R_F (\frac{V_{dc}}{R_2} + \frac{V_{ac}}{R_1}) \tag{1}$$

Output of current to voltage converter:

$$V_{out} = V_{DUT}(\frac{-Z_{fb}}{Z_{DUT}}) \tag{2}$$

$$Z_{fb} = R_{fb}||X_{cfb}||$$

$$Z_{DUT} = R_{unknown}$$
 if DUT is a resistor

$$Z_{DUT} = \frac{1}{j\omega C_{DUT}}$$
 if DUT is a capacitor

Obtaining Results and Interpreting Them

- ⇒ Part A : Verify the output of summing amplifier.
- \Rightarrow Part B : $V_{DUT} = ?$, $V_{out} = ?$, $R_{unknown} = ?$
- \Rightarrow Part C : $V_{DUT} = ?$, $V_{out} = ?$, $C_{unknown} = ?$
- \Rightarrow Part D : Plot $(\frac{1}{C^2})$ Vs. V_{dc} and get doping concentration and built in voltage (see the writeup) .