

quaternions \mathbb{H} , where the unit quaternions $\mathbf{q}^* \mathbf{q} = 1$ live. The Lie algebra is the space of pure imaginary quaternions $ix + jy + kz \in \mathbb{H}_p$, isomorphic to the hyperplane \mathbb{R}^3 (red grid), and any other tangent space TS^3 is also isomorphic to \mathbb{R}^3 . Tangent vectors (red segment) wrap the manifold over the great arc or *geodesic* (dashed). The centre and right figures show a side-cut through this geodesic (notice how it ressembles S^1 in Fig. 3). Mappings exp and \log (arrows) map (wrap and unwrap) elements of \mathbb{H}_p to/from elements of

 S^3 (blue arc). Increments between quaternions are expressed in the tangent

space via the operators \oplus , \ominus (see text).