Riemann; Complex Analysis

- HW1 -

Ji, Yong-hyeon

April 29, 2025

We cover the following topics in this note.

- Vector Fields
- Line Integrals for Vector Fields
- Surface Integrals for Vector Fields
- TBA

Contents

Scalar Function and Vector Fields	2
Line Integrals	3
Line Integral of Scalar Function over Arc Length	3
Line Integral of Vector Fields	5
Surface Integral for Vector Fields	10
A Differential Geometry	14

Scalar Function and Vector Fields

A **scalar function** on \mathbb{R}^n is a real-valued function of an n-tuple; that is,

$$f: \mathbb{R}^n \to \mathbb{R}, \quad \mathbf{x} \mapsto f(\mathbf{x}) = f(x_1, x_2, \dots, x_n).$$

where $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $f(\mathbf{x}) \in \mathbb{R}$.

A **vector field** on \mathbb{R}^n is a function

$$\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$$
, $\mathbf{x} \mapsto \mathbf{F}(\mathbf{x}) = (F_1(\mathbf{x}), F_2(\mathbf{x}), \dots, F_n(\mathbf{x}))$,

where each component $F_i : \mathbb{R}^n \to \mathbb{R}$ is itself a scalar function.

Line Integrals

Line Integral of Scalar Function over Arc Length

Secant Lines & Tangent as a Limit

For a curve $\gamma \colon \mathbb{R} \to \mathbb{R}^2 \colon t \mapsto (x(t), y(t))$, the **secant vector** over $[t, t + \Delta t]$ is

$$\frac{\gamma(t+\Delta t)-\gamma(t)}{\Delta t} = \left(\frac{x(t+\Delta t)-x(t)}{\Delta t}, \ \frac{y(t+\Delta t)-y(t)}{\Delta t}\right).$$

As $\Delta t \rightarrow 0$, these secants converge (if γ is smooth) to

$$\gamma'(t) = \frac{d}{dt}\gamma(t) = \lim_{\Delta t \to 0} \frac{\gamma(t + \Delta t) - \gamma(t)}{\Delta t} = \left(\lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}, \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{\Delta t}\right)$$
$$= \left(\frac{d}{dt}x(t), \frac{d}{dt}y(t)\right)$$
$$= (x'(t), y'(t)),$$

which gives the **tangent vector** at $\gamma(t)$. The tangent vector captures how the curve is moving instantaneously at time t.

By Pythagoras' theorem, the **length moved per unit time** is $\|\gamma'(t)\| = \sqrt{(x'(t))^2 + (y'(t))^2}$, and the small arc length traveled between t and $t + \Delta t$ is approximately:

$$\|\gamma'(t)\|\Delta t = \sqrt{\left(\frac{d}{dt}x(t)\right)^2 + \left(\frac{d}{dt}y(t)\right)^2} \cdot \Delta t.$$

Arc Length of a Parametrized Curve

Definition. Let $C \subset \mathbb{R}^n$ be a piecewise smooth curve, given by a smooth parameterization:

$$\gamma:[a,b]\to\mathbb{R}^n,\quad t\mapsto \gamma(t)=\big(x_1(t),x_2(t),\ldots,x_n(t)\big).$$

Then the **arc length** s of the curve C from t = a to t = b is defined by

$$s := \int_a^b \|\gamma'(t)\| dt, \quad \text{where } \|\gamma'(t)\| = \sqrt{\left(\frac{d}{dt}x_1(t)\right)^2 + \left(\frac{d}{dt}x_2(t)\right)^2 + \dots + \left(\frac{d}{dt}x_n(t)\right)^2}.$$

$$\gamma : \mathbb{R} \longrightarrow \mathbb{R}^3$$

$$t \longmapsto \gamma(t) = (x(t), y(t), z(t))$$

$$\gamma'(t) = \frac{d}{dt}\gamma(t) = \lim_{\Delta t \to 0} \frac{\gamma(t + \Delta t) - \gamma(t)}{\Delta t} = (x'(t), y'(t), z'(t))$$

$$s = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$

Definition (Line Integral of Scalar Function over Arc Length). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a scalar function, and let C be a piecewise smooth curve in \mathbb{R}^n given by a smooth parameterization:

$$\gamma:[a,b]\to\mathbb{R}^n,\quad t\mapsto \gamma(t)=(x_1(t),x_2(t),\ldots,x_n(t)).$$

The **line integral of the scalar function** f along the curve C with respect to arc length is defined by

$$\int_C f \ ds := \int_a^b f(\gamma(t)) \| \gamma'(t) \| \ dt.$$

Here, $ds = ||\gamma'(t)|| dt$ is the **infinitesimal arc length**.

Line Integral of Vector Fields

Fundamental Theorem of Calculus for Line Integrals

Theorem. Let $U \subset \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}$ be a C^1 -function. Consider its gradient field by

$$\nabla f = \langle \partial_{x_1} f, \dots, \partial_{x_n} f \rangle.$$

Let $\gamma: [a,b] \to U$ be any piecewise- C^1 curve with endpoints $\gamma(a) = P$ and $\gamma(b) = Q$. Then

$$\int_{\gamma} \nabla f \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\gamma(t)) \cdot \gamma'(t) dt = f(\gamma(b)) - f(\gamma(a)).$$

Excellent — this is a key question for understanding how **vector calculus** connects with **differential forms** and notation. Let's walk through how to **rigorously deduce**:

$$\int_C F_1 dx + F_2 dy \quad \text{from} \quad \int_C \mathbf{F} \cdot d\mathbf{r}$$

for a vector field $\mathbf{F}(x, y) = (F_1(x, y), F_2(x, y)).$

Step 1: Parametrize the Curve C

Let $\gamma : [a, b] \to \mathbb{R}^2$ be a smooth parameterization of the curve *C*, given by:

$$\gamma(t)=(x(t),y(t)),\quad t\in [a,b].$$

Then the **derivative of the curve** is:

$$\gamma'(t) = (x'(t), y'(t)),$$

and the **differential displacement** is:

$$d\mathbf{r} = \gamma'(t) dt = (dx, dy) = (x'(t) dt, y'(t) dt).$$

Step 2: Write the Line Integral of F

The **vector line integral** is defined as:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\gamma(t)) \cdot \gamma'(t) dt = \int_a^b \left[F_1(x(t), y(t)) x'(t) + F_2(x(t), y(t)) y'(t) \right] dt.$$

^{**}Step 3: Recognize the Total Differentials**

From calculus, we know:

$$dx = x'(t) dt$$
, $dy = y'(t) dt$.

Substitute into the integral:

$$\int_{a}^{b} F_{1}(x(t), y(t)) dx + F_{2}(x(t), y(t)) dy.$$

So we have:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} F_{1}(x(t), y(t)) dx + F_{2}(x(t), y(t)) dy = \int_{C} F_{1} dx + F_{2} dy.$$

Final Deduction

Thus:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C F_1 \, dx + F_2 \, dy$$

where: $-\mathbf{F} = (F_1, F_2)$, $-d\mathbf{r} = (dx, dy)$, - The dot product $\mathbf{F} \cdot d\mathbf{r} = F_1 dx + F_2 dy$.

Interpretation

- The vector line integral becomes an integral of a **1-form**:

$$\mathbf{F} \cdot d\mathbf{r} \leftrightarrow F_1 dx + F_2 dy$$
.

- The dot product turns into a sum of **components times differentials**.

Would you like to go one step further and express this in terms of pullbacks or show how it generalizes to \mathbb{R}^3 ?

Let $U \subseteq \mathbb{R}^n$ be an open set and $\mathbf{F}: U \to \mathbb{R}^n$ a continuous vector field. Suppose $C \subset U$ is a smooth curve parametrized by

$$\mathbf{r} \colon [a,b] \longrightarrow \mathbb{R}^n, \quad t \mapsto \mathbf{r}(t),$$

with nonzero velocity $\mathbf{r}'(t)$. Then the **line integral** of **F** along *C* is defined by

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_a^b \sum_{i=1}^n F_i(\mathbf{r}(t)) x_i'(t) dt,$$

where $\mathbf{r}(t) = (x_1(t), ..., x_n(t))$ and $\mathbf{F} = (F_1, ..., F_n)$.

This integral "accumulates" at each infinitesimal step dt the projection of **F** onto the tangent vector $\mathbf{r}'(t)$, yielding a single real number that captures the **circulation** or **work** of **F** along C.

Example. Take n=2 and $\mathbf{F}(x,y)=\left(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$ on $U=\mathbb{R}^2\setminus\{(0,0)\}$. Let C be the unit circle $x^2+y^2=1$, counterclockwise. Parametrize $\mathbf{r}(t)=(\cos t,\sin t),\,t\in[0,2\pi]$. Then

$$\mathbf{r}'(t) = (-\sin t, \cos t), \qquad \mathbf{F}(\mathbf{r}(t)) = (-\sin t, \cos t),$$

so

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \left(-\sin t, \cos t \right) \cdot \left(-\sin t, \cos t \right) dt = \int_0^{2\pi} \left(\sin^2 t + \cos^2 t \right) dt = 2\pi.$$

Thus the total circulation (or "work") of **F** around the unit circle is 2π .

Problem #1 (Line Integral around Unit Circle). Let $C \subset \mathbb{R}^2$ be the unit circle defined by

$$C: x^2 + y^2 = 1,$$

traversed in the **counterclockwise direction**. Let the vector field $\mathbf{F}: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ be defined by

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Evaluate the **line integral** of **F** along *C*:

$$\oint_C \mathbf{F} \cdot d\mathbf{r}.$$

Sol.

Consider the vector field:

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \ \frac{x}{x^2 + y^2}\right),$$

and the curve C is the unit circle $x^2 + y^2 = 1$, traversed counterclockwise.

Step 1. (Parametrization) Define a function

$$\begin{array}{cccc} \gamma & : & [0,2\pi] & \longrightarrow & \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\} \\ \theta & \longmapsto & \gamma(\theta) = (\cos\theta, \sin\theta) \end{array} .$$

Here, $\frac{d\gamma}{d\theta} = (-\sin\theta, \cos\theta)$.

Step 2. (Evaluate $F(\gamma(\theta))$ and the dot product) We have

$$\mathbf{F}(\gamma(\theta)) = \mathbf{F}(\cos\theta, \sin\theta) \stackrel{\sin^2\theta + \cos^2\theta = 1}{=} \left(\frac{-\sin\theta}{1}, \frac{\cos\theta}{1} \right) = (-\sin\theta, \cos\theta).$$

and

$$\mathbf{F}(\gamma(\theta)) \cdot \frac{d\gamma}{d\theta} = (-\sin\theta)(-\sin\theta) + (\cos\theta)(\cos\theta) = \sin^2\theta + \cos^2\theta = 1.$$

Step 3. (Integral)

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F}(\gamma(\theta)) \cdot \frac{d\gamma}{d\theta} d\theta = \int_0^{2\pi} 1 d\theta = 2\pi.$$

Surface Integral for Vector Fields

Surface Integral of a Vector Field

Definition. Let $S \subset \mathbb{R}^3$ be a smooth, oriented surface, and let

$$T: D \subseteq \mathbb{R}^2 \longrightarrow S, \quad (u,v) \longmapsto T(u,v),$$

be a regular C^1 parametrization whose orientation agrees with that of S. Consider the partial-derivative (tangent) vectors

$$T_u(u,v) = \frac{\partial T}{\partial u}(u,v), \quad T_v(u,v) = \frac{\partial T}{\partial v}(u,v),$$

and the induced normal-vector field

$$N(u,v) = T_u(u,v) \times T_v(u,v) \in \mathbb{R}^3,$$

which is everywhere nonzero on D and points according to the chosen orientation. Now let

$$\mathbf{F} \colon U \ (\supseteq S) \ \longrightarrow \ \mathbb{R}^3$$

be a continuous (or C^1) vector field defined on an open neighborhood U of S. Then **the surface integral of F over** S is defined by the formula

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(T(u,v)) \cdot N(u,v) \, du \, dv = \iint_{D} \mathbf{F}(T(u,v)) \cdot (T_{u}(u,v) \times T_{v}(u,v)) \, du \, dv.$$

Remark. 1. **Geometric meaning.** At each point $T(u,v) \in S$, the vector N(u,v) du dv represents the oriented area element $d\mathbf{S}$. Thus $\mathbf{F} \cdot d\mathbf{S}$ measures how much \mathbf{F} "flows through" that little patch of surface.

2. **Independence of parametrization.** If $\widetilde{T} \colon \widetilde{D} \to S$ is any other orientation-preserving C^1 parametrization, then a change-of-variables argument shows

$$\iint_D \mathbf{F} \cdot \left(T_u \times T_v \right) \, du \, \, dv \; = \; \iint_{\widetilde{D}} \mathbf{F} \cdot \left(\widetilde{T}_u \times \widetilde{T}_v \right) \, d\widetilde{u} \, \, d\widetilde{v}.$$

3. **Special case (scalar area).** Taking $\mathbf{F} = (0,0,1)$ recovers the usual surface-area integral $\operatorname{Area}(S) = \iint_S dS = \iint_D \|T_u \times T_v\| \, du \, dv$.

This definition is the standard one found in graduate-level treatments of differential geometry and vector calculus.

Problem #2 (Surface-Flux). Let $S \subset \mathbb{R}^3$ be the smooth surface parametrized by

$$r: [0,1] \times [0,1] \longrightarrow \mathbb{R}^3, \quad r(u,v) = (u+2v, 2u+v, 3uv),$$

equipped with the orientation induced by the parametrization (so that the unit normal points in the direction of $\mathbf{r}_u \times \mathbf{r}_v$). Let the vector field

$$\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3, \qquad \mathbf{F}(x, y, z) = (x, y, -z).$$

Compute

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}.$$

Sol. We compute in five steps.

1. **Parametrization and partials.** The surface is

$$S = \mathbf{r}([0,1]^2), \quad \mathbf{r}(u,v) = (u+2v, 2u+v, 3uv),$$

and hence

$$\mathbf{r}_u = (1, 2, 3v), \qquad \mathbf{r}_v = (2, 1, 3u).$$

2. **Oriented normal.** The induced normal vector is the cross-product

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3v \\ 2 & 1 & 3u \end{vmatrix}$$

$$= \det \begin{vmatrix} 2 & 3v \\ 1 & 3u \end{vmatrix} \mathbf{i} - \det \begin{vmatrix} 1 & 3v \\ 2 & 3u \end{vmatrix} \mathbf{j} + \det \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \mathbf{k}$$

$$= (6u - 3v, -3u + 6v, -3).$$

3. **Pullback of the field.** The given field is F(x, y, z) = (x, y, -z). Along the patch,

$$\mathbf{F}(\mathbf{r}(u,v)) = (u+2v, 2u+v, -3uv).$$

4. **Integrand.** Taking the dot-product,

$$\mathbf{F}(\mathbf{r}) \cdot (\mathbf{r}_u \times \mathbf{r}_v) = (u + 2v)(6u - 3v) + (2u + v)(-3u + 6v) + (-3uv)(-3)$$

$$= 6u^2 - 3uv + 12uv - 6v^2 - 6u^2 + 12uv - 3uv + 6v^2 + 9uv$$

$$= (-3uv + 12uv + 12uv - 3uv + 9uv) = 27uv.$$

5. **Double integral.** Thus the flux is

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{[0,1]^{2}} 27 \, u \, v \, du \, dv = 27 \int_{0}^{1} \int_{0}^{1} u \, v \, du \, dv = 27 \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{27}{4}.$$

Hence

$$\int\!\!\!\int_S \mathbf{F} \cdot d\mathbf{S} = \frac{27}{4} \, .$$

A Differential Geometry