## Chapitre

## Espaces vectoriels



## Calculer ker et Im

Soient  $f \in L(E, F), B = (e_1, \dots, e_n)$  une base de E.

- · Pour déterminer le noyau, on peut :
  - revenir à la définition, i.e. chercher le sev  $\{x \in E, f(x) = 0_E\}$
  - En connaissant  $dim(Ker(f)) = p \neq 0$ , on cherche une famille libre de p vecteurs tels que  $f(x_1) = \cdots = f(x_p) = 0_F$  et conclure avec  $Ker(f) = Vect(x_1, \ldots, x_p)$
- · Pour déterminer Im(f):
  - revenir à la définition et chercher le sev  $Im(f) = vect(f(e_1), \ldots, f(e_n))$
  - Avec  $rg(f)=p \neq 0$ , chercher une famille libre de p vecteurs  $\{f(e'_1),\ldots,f(e'_p)\}$  avec  $\{e'_1,\ldots,e'_p\}\subset B$  puis conclure avec  $Im(f)=Vect(f(e'_1),\ldots,f(e'_p))$



## Montrer l'injectivité ou la surjectivité

Pour l'injectivité, on montre au choix que :

- $\cdot \ \forall x \in E, f(x) = 0_F \Rightarrow x = 0_E$
- · dim(Ker(f)) = 0
- Si S est libre, alors f(S) est libre

Pour la surjectivité :

• Montrer que  $vect(f(e_1, \ldots, e_n)) = F$