Теортест-1 (Вариант 113)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения:

- 1. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 2. Длина кривой зависит от параметризации;
- 3. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 4. Гладкая кривая это кривая, все параметризации которой гладкие;
- 5. Любая кривая имеет бесконечно много различных параметризаций;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. du = vdt:
- 2. v = du + C:
- 3. dv = udt + C;
- 4. vdt = u'dt:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 2. если первообразная дробно-рациональной функции f(x) является дробнорациональной, то все корни знаменателя f(x) кратные;
- 3. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 4. первообразная дробно-рациональной функции является дробно-рациональной функцией;

Задача 4

Пусть f(x) определена на отрезке [a,b]. Выберите все верные утверждения:

- 1. Если f дифференцируема на [a,b], то она интегрируема на [a,b];
- 2. Если f имеет конечное число точек разрыва на [a,b], то она интегрируема на [a,b];
- 3. Если f непрерывна на [a, b], то она интегрируема на [a, b];
- 4. Если f имеет конечное число точек разрыва типа скачок на [a,b], то она интегрируема на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f > 0 на [a, b];
- 2. f((a+b)/2) = 1;
- 3. f непрерывна в точке a и f(b) = 1;
- 4. f непрерывна в точке a и f(a) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi; s_{\tau}, S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\forall \tau, \exists \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0$: $\forall \tau : |\tau| < \delta \ \exists \xi : S_{\tau} \sigma_{\tau}(\xi) < \varepsilon$;
- 3. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \tau: |\tau| < \delta \ \exists \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 4. $\forall \tau, \forall \xi : s_{\tau} < \sigma_{\tau}(\xi) < S_{\tau};$

Задача 7

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-2, 20];
- 2. [-1, 10];
- 3. [-1, 20];
- 4. [-10, 20];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения (тела A и B имеют объем):

- 1. при движении объем не меняется;
- 2. объем $A \cup B$ равен сумме объемов A и B;
- 3. если $A \subset B$, то объем A меньше объема B;
- 4. объем треугольника равен нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F ограничена на [a, b];
- 2. F не убывает на [a, b];
- 3. $\int_{a}^{b} f(x)dx = F(b) F(a);$
- 4. F дифференцируема на [a,b];

Задача 10

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

1.
$$\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$$
;

2.
$$\int f(x)dx = \int f(1/t)\frac{dt}{t^2};$$

3.
$$\int f(x)dx = \int \frac{f(\ln t)}{t}dt;$$

4.
$$\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$$