Announcements

Homework #1: Due 9/8

Agenda

Finish Lab 1 and start Lab 2 materials

Numpy Arrays:

Similar in some ways to Python lists, but they're potentially multidimensional. They can be not just, as in a list, a single dimension of elements, but more than one. But they are homogeneous in type:

Python list, we have a series of elements in a particular order, and the types of those elements can be anything; they can be numbers or strings or other lists or other kinds of objects

In NumPy arrays, we have a similar sort of positional ordering, but the types are fixed for a given array. So we might have a one-dimensional array of floating point numbers, or floats; might have a 2D array of integers, or ints; or a 2D array of floats;

array shape: tuple of integers describing the number of elements in each dimension array dtype: datatype of array elements

4

Numpy Arrays

array axes: order of indexing into the array

axis = 0: first index coordinate

axis = 1: second index coordinate

etc.

can operate over one axis at a time

> sum over axis 1

axis = 0 $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 3 & 0 & 4 \\ 2 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}$ shape = (5,3) $= \begin{bmatrix} 3 & 0 & 4 \\ 2 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}$

Definition and Usage

The sort() method sorts the list ascending by default.

You can also make a function to decide the sorting criteria(s).

Syntax

list.sort(reverse=True|False, key=myFunc)

Parameter Values

Parameter	Description
reverse	Optional. reverse=True will sort the list descending. Default is reverse=False
key	Optional. A function to specify the sorting criteria(s)

pandas.Series.value_counts

Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) [source]

Return a Series containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequentlyoccurring element. Excludes NA values by default.

Parameters: normalize : bool, default False

If True then the object returned will contain the relative frequencies of the unique values.

sort: *bool, default True*Sort by frequencies.

ascending: bool, default False

Sort in ascending order.

bins: int, optional

Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data.

dropna: bool, default True

Don't include counts of NaN.

Returns: Series