AN EXAMPLE ARTICLE*

DIANNE DOE[†], PAUL T. FRANK[‡], AND JANE E. SMITH[‡]

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 7 **Key words.** example, LATEX
- 8 **MSC codes.** 68Q25, 68R10, 68U05
- 1. Introduction. The introduction introduces the context and summarizes the manuscript. It is importantly to clearly state the contributions of this piece of work.

For
$$\Omega = (0, 2T)$$
, $1 < \alpha < 2$, suppose $f \in C^{\beta}(\Omega) \cap L^{\infty}(\Omega)$, $\beta > 4 - \alpha$, $||f||_{\beta}^{\alpha/2} < \infty$

12 (1.1)
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}}u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

13 where

$$(-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

15

17

2

16 (1.3)
$$\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$$

2. Regularity.

18 Remark 2.1. 1. $C^k(U)$ is the set of all k-times continuously differentiable func-19 tions on open set U.

20 2. $C^{\beta}(U)$ is the collection of function f which for any $V \subset U$ $f|_{V} \in C^{\beta}(\bar{V})$.

212223

THEOREM 2.2. If $f \in C^{\beta}(\Omega), \beta > 2$ and $||f||_{\beta}^{(\alpha/2)} < \infty$, then for l = 0, 1, 2

24 (2.1)
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \begin{cases} x^{-l-\alpha/2}, & \text{if } 0 < x \le T \\ (2T-x)^{-l-\alpha/2}, & \text{if } T \le x < 2T \end{cases}$$

25

THEOREM 2.3 (Regularity up to the boundary [1]).

27 (2.2)
$$||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left(||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$$

Funding: This work was funded by the Fog Research Institute under contract no. FRI-454.

1

^{*}Submitted to the editors DATE.

 $^{^\}dagger Imagination \ Corp., \ Chicago, \ IL \ (ddoe@imag.com, \ http://www.imag.com/\sim ddoe/). \ The substitute of the subs$

 $^{^{\}ddagger}$ Department of Applied Mathematics, Fictional University, Boise, ID (ptfrank@fictional.edu, jesmith@fictional.edu).

Corollary 2.4. Let u be a solution of (1.1) on Ω . Then, for any $x \in \Omega$ and l = 0, 1, 2, 3, 4

30 (2.3)
$$|u^{(l)}(x)| \le C \begin{cases} x^{\alpha/2-l}, & \text{if } 0 < x \le T \\ (2T-x)^{\alpha/2-l}, & \text{if } T \le x < 2T \end{cases}$$

The paper is organized as follows. Our main results are in section 4, experimental results are in section 7, and the conclusions follow in section 8.

3. Numeric Format.

33 (3.1)
$$x_{i} = \begin{cases} T\left(\frac{i}{N}\right)^{r}, & 0 \leq i \leq N \\ 2T - T\left(\frac{2N-i}{N}\right)^{r}, & N \leq i \leq 2N \end{cases}$$

34 where $r \geq 1$. And let

35 (3.2)
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let $\{\phi_j(x)\}_{j=1}^{2N-1}$ be standard hat functions, which are basis of the piecewise linear function space.

38 (3.3)
$$\phi_j(x) = \begin{cases} \frac{1}{h_j}(x - x_{j-1}), & x_{j-1} \le x \le x_j \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_j \le x \le x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

39 And then, we can approximate u(x) with

$$u_h(x) := \sum_{j=1}^{2N-1} u(x_j)\phi_j(x)$$

41 For convience, we denote

42 (3.5)
$$I_h^{2-\alpha}(x_i) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_i - y|^{1-\alpha} u_h(y) dy$$

And now, we can approximate the operator (1.2) at x_i with (3.6)

$$D_{h}^{\alpha'}u_{h}(x_{i}) := D_{h}^{2}I_{h}^{2-\alpha}(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}}I_{h}^{2-\alpha}(x_{i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right)I_{h}^{2-\alpha}(x_{i}) + \frac{1}{h_{i+1}}I_{h}^{2-\alpha}(x_{i+1}) \right)$$

Finally, we approximate the equation (1.1) with

46 (3.7)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = f(x_i), \quad 1 < i < 2N-1$$

The discrete equation (3.7) can be written in matrix form

48 (3.8)
$$AU = F$$

where U is unknown, $F=(f(x_1),\cdots,f(x_{2N-1}))$. The matrix A is constructed as follows: Since

(3.9)

$$I_{h}^{2-\alpha}(x_{i}) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u_{h}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u(x_{j}) \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} u(x_{j}) \frac{1}{\Gamma(2-\alpha)} \int_{x_{j-1}}^{x_{j+1}} |x_{i} - y|^{1-\alpha} \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{u(x_{j})}{\Gamma(4-\alpha)} \left(\frac{|x_{i} - x_{j-1}|^{3-\alpha}}{h_{j}} - \frac{h_{j} + h_{j+1}}{h_{j}h_{j+1}} |x_{i} - x_{j}|^{3-\alpha} + \frac{|x_{i} - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

$$=: \sum_{j=1}^{2N-1} \tilde{a}_{ij} u(x_{j}), \quad 0 \le i \le 2N$$

52 Then, substitute in (3.6), we have

53 (3.10)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{j=1}^{2N-1} a_{ij} \ u(x_j)$$

54 where

58

64

55 (3.11)
$$a_{ij} = -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \tilde{a}_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

4. Main results. Here we state our main results; the proof is deferred to section 5 and section 6.

Let's denote $h = \frac{1}{N}$, we have

Theorem 4.1 (Truncation Error). If $f \in C^2(\Omega)$ and $\alpha \in (1,2)$, and u(x) is a so-

lution of the equation (1.1), then there exists a constant $C_1, C_2 = C_1(T, \alpha, r, ||f||_{C^2(\Omega)}), C_2(T, \alpha, r, ||f||_{C^2(\Omega)}),$

61 such that the truncation error of the discrete format satisfies

$$|-\kappa_{\alpha}D_{h}^{\alpha}u_{h}(x_{i}) - f(x_{i})| \leq C_{1}(h^{r\alpha/2+r}(x_{i}^{-1-\alpha} + (2T - x_{i})^{-1-\alpha})$$

$$+ h^{2}(x_{i}^{-\alpha/2-2/r} + (2T - x_{i})^{-\alpha/2-2/r}))$$

$$+ C_{2}h^{2}\begin{cases} |T - x_{i-1}|^{1-\alpha}, & 1 \leq i \leq N \\ |T - x_{i+1}|^{1-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

63 where $C_2 = 0$ if r = 1.

THEOREM 4.2 (Convergence). The discrete equation (3.7) has substitute U, and

there exists a positive constant $C = C(T, \alpha, r, ||f||_{C^2(\Omega)})$ such that the error between

67 the numerial solution U with the exact solution $u(x_i)$ satisfies

68 (4.2)
$$\max_{1 \le i \le 2N-1} |U_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

That means the numerial method has convergence order $\min\{\frac{r\alpha}{2}, 2\}$.

5. Proof of Theorem 4.1. For convience, let's denote

71 (5.1)
$$I^{2-\alpha}(x) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha} u(y) dy$$

72 Then, the truncation error of the discrete format can be written as

$$-\kappa_{\alpha} D_{h}^{\alpha} u_{h}(x_{i}) - f(x_{i}) = -\kappa_{\alpha} \left(D_{h}^{2} I_{h}^{2-\alpha}(x_{i}) - \frac{d^{2}}{dx^{2}} I^{2-\alpha}(x_{i})\right) \\
= -\kappa_{\alpha} D_{h}^{2} \left(I_{h}^{2-\alpha} - I^{2-\alpha}\right)(x_{i}) - \kappa_{\alpha} \left(D_{h}^{2} - \frac{d^{2}}{dx^{2}}\right) I^{2-\alpha}(x_{i})$$

- 74 **5.1. Estimate of** $-\kappa_{\alpha}(D_h^2 \frac{d^2}{dx^2})I^{2-\alpha}(x_i)$.
- THEOREM 5.1. There exits a constant $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$ such that

76 (5.3)
$$\left| -\kappa_{\alpha} (D_h^2 - \frac{d^2}{dx^2}) I^{2-\alpha}(x_i) \right| \le Ch^2 (x_i^{-\alpha/2 - 2/r} + (2T - x_i)^{-\alpha/2 - 2/r})$$

77 Proof. Since $f \in C^2(\Omega)$ and

78 (5.4)
$$\frac{d^2}{dx^2}(-\kappa_{\alpha}I^{2-\alpha}(x)) = f(x), \quad x \in \Omega,$$

- 79 we have $I^{2-\alpha} \in C^4(\Omega)$. Therefore, using equation (A.3) of Lemma A.1, for $1 \leq i \leq 1$
- 80 2N-1, we have

81
$$-\kappa_{\alpha}(D_h^2 - \frac{d^2}{dx^2})I^{2-\alpha}(x_i) = \frac{h_{i+1} - h_i}{3}f'(x_i) + \frac{1}{4!}\frac{2}{h_i + h_{i+1}}(h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. By Lemma B.2 and Theorem 2.2 we have 1.

83 (5.6)
$$\left| \frac{h_{i+1} - h_i}{3} f'(x_i) \right| \le \frac{\|f\|_{\beta}^{(\alpha/2)}}{3} Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N - 1\\ 0, & i = N\\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i \le 2N - 1 \end{cases}$$

84 2. See Proof 9, there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

$$\begin{vmatrix}
\frac{1}{4!} \frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \\
\leq Ch^2 \begin{cases}
x_i^{-\alpha/2 - 2/r}, & 1 \leq i \leq N \\
(2T - x_i)^{-\alpha/2 - 2/r}, & N \leq i \leq 2N - 1
\end{cases}$$

- 86 Summarizes, we get the result.
- 5.2. Estimate of R_i . Now, we study the first part of (5.2)

88 (5.8)
$$D_h^2(I^{2-\alpha} - I_h^{2-\alpha})(x_i) = D_h^2(\int_0^{2T} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy)$$

89 For convience, let's denote

90 (5.9)
$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

91 And define

$$R_{i} := D_{h}^{2} (I^{2-\alpha} - I_{h}^{2-\alpha})(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \sum_{j=1}^{2N} \left(\frac{1}{h_{i}} T_{i-1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

- We have some results about the estimate of R_i
- Theorem 5.2. For $1 \le i < N/2$, there exists a constant C such that

95 (5.11)
$$R_i \le C(h^{r\alpha/2+r}x_i^{-1-\alpha} + h^2x_i^{-\alpha/2-2/r})$$

96

THEOREM 5.3. For $N/2 \le i \le N$, there exists constant C, C_2 such that

98 (5.12)
$$R_i \le Ch^2 x_i^{-\alpha/2 - 2/r} + C_2 h^2 |T - x_{i-1}|^{1-\alpha}$$

- 99 where $C_2 = 0$ if r = 1.
- And for $N < i \le 2N 1$, it is symmetric to the previous case.
- To prove these results, we need some utils. Also for simplicity, we denote

102 (5.13)
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

103 then

104 (5.14)
$$R_i = \sum_{j=1}^{2N} S_{ij}$$

- 105 **5.3. Proof of Theorem 5.2.**
- Lemma 5.4. There exists a constant $C = C(T, \alpha, r, f)$ such that for $1 \le i < N/2$,

107 (5.15)
$$\sum_{j=\max\{2i+1,i+3\}}^{2N} S_{ij} \le Ch^2 x_i^{-\alpha/2-2/r}$$

108 Proof. For $\max\{2i+1, i+3\} \le j \le N$, by Lemma C.1 and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} y^{-\alpha/2 - 2/r - 1} dy$$

110 Therefore,

$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le \frac{C}{\alpha/2 + 2/r} 2^{r(-\alpha/2-2/r)} h^2 x_i^{-\alpha/2-2/r}$$

Otherwise, for $N+1 \le j \le 2N-1$, by equation (C.2) and Lemma C.2

$$\sum_{j=N+1}^{2N-1} S_{ij} \le Ch^2 \int_{x_N}^{x_{2N-1}} (2T - y)^{\alpha/2 - 2/r} y^{-1 - \alpha} dy$$

$$\le CT^{-1 - \alpha} \frac{1}{|\alpha/2 - 2/r + 1|} h^2$$

114 For i = 1, 2.

LEMMA 5.5. By Lemma C.5 and Lemma 5.4 we get

116 (5.19)
$$R_{1} = \sum_{j=1}^{3} S_{1j} + \sum_{j=4}^{2N} S_{1j}$$
$$\leq Ch^{2} x_{1}^{-\alpha/2 - 2/r}$$

117

118 (5.20)
$$R_2 = \sum_{j=1}^4 S_{2j} + \sum_{j=5}^{2N} S_{2j}$$
$$\leq Ch^2 x_2^{-\alpha/2 - 2/r}$$

For $2 \le i < N/2$, we have a new separation of R_i , Let's denote $k = \lceil \frac{i}{2} \rceil$.

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{2i-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i-1}} (T_{i-1,2i} + T_{i-1,2i-1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,2i} \right)$$

$$+ \sum_{j=2i+1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

where I_1 makes sence only if $i \geq 3$.

For convience, let's denote

123 (5.22)
$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

LEMMA 5.6. There exists a constant $C = C(T, \alpha, r, f)$ such that for $3 \leq i < 1$

125
$$N/2, k = \lceil \frac{i}{2} \rceil$$

126 (5.23)
$$I_1 \le C(h^{r\alpha/2+r}x_i^{-1-\alpha} + h^2x_i^{-\alpha/2-2/r})$$

127 *Proof.* For $2 \le j \le k-1$, by Lemma C.1 and Lemma C.3

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 x_i^{-1-\alpha} \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} dy$$

129 And by Lemma A.3, Lemma C.3

130 (5.25)
$$S_{i1} \le Cx_1^{\alpha/2}x_1x_i^{-1-\alpha} = Cx_1^{\alpha/2+1}x_i^{-1-\alpha} = CT^{\alpha/2+1}h^{r\alpha/2+r}x_i^{-1-\alpha}$$

131 Therefore,

$$I_{1} = \sum_{j=1}^{k-1} S_{ij} = S_{i1} + \sum_{j=2}^{k-1} S_{ij}$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{2^{-r} x_{i}} y^{\alpha/2 - 2/r} dy$$

133 But

134 (5.27)
$$\int_{x_1}^{2^{-r}x_i} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r}x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0 \\ \ln(2^{-r}x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0 \\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

THEOREM 5.7. There exists a constant $C = C(T, \alpha, r, f)$ such that for $2 \le i < \infty$

136 $N/2, k = \left\lceil \frac{i}{2} \right\rceil$,

137 (5.28)
$$I_3 = \sum_{j=k+1}^{2i-1} V_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

To estimete V_{ij} , we need some preparations.

LEMMA 5.8. Denote $y_i^{\theta} = \theta x_{j-1} + (1-\theta)x_j, \theta \in [0,1]$, by Lemma A.2

$$T_{ij} = \int_{x_{j-1}}^{x_{j}} (u(y) - u_{h}(y)) \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_{x_{j-1}}^{x_{j}} -\frac{\theta(1-\theta)}{2} h_{j}^{2} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{3} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) dy_{j}^{\theta}$$

$$= \int_{0}^{1} -\frac{\theta(1-\theta)}{2} h_{j}^{3} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{4} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) d\theta$$

141 where $\eta_{j1}^{\theta} \in [x_{j-1}, y_{j}^{\theta}], \eta_{j2}^{\theta} \in [y_{j}^{\theta}, x_{j}].$

Now Let's construct a series of functions to represent T_{ij} .

143 (5.30)
$$y_{j-i}(x) = (x^{1/r} + z_{j-i})^r, \quad z_{j-i} = T^{1/r} \frac{j-i}{N}$$

144

145 (5.31)
$$y_{i-i}^{\theta}(x) = \theta y_{i-1-i}(x) + (1-\theta)y_{i-i}(x)$$

146

147 (5.32)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

148 Now, we define

149 (5.33)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

150

151 (5.34)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

152 And now we can rewrite T_{ij}

153 Lemma 5.9. For $2 \le i \le N, 2 \le j \le \min\{2i - 1, N\}$,

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{j-i}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} (\theta^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j2}^{\theta})) d\theta$$

155 Immediately, we can see that

LEMMA 5.10. For
$$2 \le i < N/2, k = \lceil \frac{i}{2} \rceil, k+1 \le j \le \min\{2i-1, N\},\$$

157

Lemma 5.11. There exists a constant $C = C(T, \alpha, r, f)$ such that for $2 \le i < 1$

159
$$N, k = \lceil \frac{i}{2} \rceil, k+1 \le j \le \min\{2i-1, N\},\$$

$$V_{ij} \leq Sorry$$

Proof.

161 (5.37)
$$P_{ij}^{\theta} = h_j^3 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} u''(y_j^{\theta})$$

162

163 (5.38)
$$Q_{ij}^{\theta} = h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)}$$

164

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} \left(\frac{1}{h_{i+1}} P_{i+1,j+1}^{\theta} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) P_{i,j}^{\theta} + \frac{1}{h_i} P_{i-1,j-1}^{\theta} \right) d\theta \quad \Box$$

$$+ \int_0^1 \frac{\theta(1-\theta)}{3!} \left(\frac{1}{h_{i+1}} Q_{i+1,j+1}^{\theta} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) Q_{i,j}^{\theta} + \frac{1}{h_i} Q_{i-1,j-1}^{\theta} \right) d\theta$$

- **6. Proof of Theorem 4.2.**
- 7. Experimental results.
- 8. Conclusions. Some conclusions here.
- 169 Appendix A. Approximate of difference quotients.
- LEMMA A.1. If g(x) is twice differentiable continous function on open set Ω , there exists $\xi \in [x_{i-1}, x_{i+1}]$ such that

$$D_h^2g(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right)$$

$$= g''(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

(A.2)
$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} g''(y) (y - x_{i-1}) dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} g''(y) (x_{i+1} - y) dy \right)$$

175 And if $g(x) \in C^4(\Omega)$, then

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= g''(x_{i}) + \frac{h_{i+1} - h_{i}}{3} g'''(x_{i}) + \frac{1}{4!} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} g''''(\eta_{1}) + h_{i+1}^{3} g''''(\eta_{2}))$$

177 where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}].$ Proof.

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in [x_{i-1}, x_i]$$

179
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in [x_i, x_{i+1}]$$

Substitute them in the left side of (A.1), we have

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{h_{i}}{h_{i} + h_{i+1}} g''(\xi_{1}) + \frac{h_{i+1}}{h_{i} + h_{i+1}} g''(\xi_{2})$$

Now, using intermediate value theorem, there exists $\xi \in [\xi_1, \xi_2]$ such that

$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

184 For the second equation, similarly

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \int_{x_{i-1}}^{x_i} g''(y)(y - x_{i-1})dy$$

$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \int_{x_i}^{x_{i+1}} g''(y)(x_{i+1} - y)dy$$

187 And the last equation can be obtained by

188
$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \frac{h_i^4}{4!} g''''(\eta_1)$$
189
$$g(x_{i+1}) = g(x_i) + h_{i+1} g'(x_i) + \frac{h_{i+1}^2}{2} g''(x_i) + \frac{h_{i+1}^3}{3!} g'''(x_i) + \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

190 where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. Expecially,

$$\frac{h_i^4}{4!}g''''(\eta_1) = \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$\frac{h_{i+1}^4}{4!}g''''(\eta_2) = \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

192 Substitute them to the left side of (A.3), we can get the result.

193 Lemma A.2. If $y \in [x_{j-1}, x_j]$, denote $y = \theta x_{j-1} + (1 - \theta)x_j, \theta \in [0, 1]$,

194 (A.5)
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2}h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

195 (A.6)

196
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2}h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!}h_j^3(\theta^2 u'''(\eta_1) - (1-\theta)^2 u'''(\eta_2))$$

197 where $\eta_1 \in [x_{j-1}, y_i^{\theta}], \eta_2 \in [y_i^{\theta}, x_j].$

198 *Proof.* By Taylor expansion, we have

199
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in [x_{j-1}, y_j^{\theta}]$$

$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in [y_j^{\theta}, x_j]$$

201 Thus

202

$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = u(y_j^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_j)$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2(\theta u''(\xi_1) + (1 - \theta)u''(\xi_2))$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2 u''(\xi), \quad \xi \in [\xi_1, \xi_2]$$

203 The second equation is similar,

$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{\theta^3 h_j^3}{3!} u'''(\eta_1)$$

$$u(x_j) = u(y_j^{\theta}) + (1 - \theta) h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{(1 - \theta)^3 h_j^3}{3!} u'''(\eta_2)$$

206 where $\eta_1 \in [x_{j-1}, y_j^{\theta}], \eta_2 \in [y_j^{\theta}, x_j]$. Thus

$$u(y_{j}^{\theta}) - u_{h}(y_{j}^{\theta}) = u(y_{j}^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(y_{j}^{\theta}) + \frac{\theta(1 - \theta)}{3!}h_{j}^{3}(\theta^{2}u'''(\eta_{1}) - (1 - \theta)^{2}u'''(\eta_{2}))$$

208 LEMMA A.3. For $x \in [x_{j-1}, x_j]$

$$|u(x) - u_h(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

210 If $x \in [0, x_1]$, with Corollary 2.4, we have

211 (A.8)
$$|u(x) - u_h(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2}$$

212 Similarly, if $x \in [x_{2N-1}, 1]$, we have

213 (A.9)
$$|u(x) - u_h(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} x_1^{\alpha/2}$$

214 Appendix B. Inequality.

LEMMA B.1.

215 (B.1)
$$h_i \le rT^{1/r}h \begin{cases} x_i^{1-1/r}, & 1 \le i \le N \\ (2T - x_{i-1})^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

216 Proof. For $1 \le i \le N$,

$$h_i = T\left(\left(\frac{i}{N}\right)^r - \left(\frac{i-1}{N}\right)^r\right)$$

$$\leq rT\frac{1}{N}\left(\frac{i}{N}\right)^{r-1} = rT^{1/r}hx_i^{1-1/r}$$

218 For $N < i \le 2N - 1$,

$$h_{i} = T\left(\left(\frac{2N - i + 1}{N}\right)^{r} - \left(\frac{2N - i}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{2N - i + 1}{N}\right)^{r - 1} = rT^{1/r}h(2T - x_{i-1})^{1 - 1/r}$$

220

LEMMA B.2. There is a constant $C=2^{|r-2|}r(r-1)T^{2/r}$ such that for all $i\in\{1,2,\cdots,2N-1\}$

223 (B.2)
$$|h_{i+1} - h_i| \le Ch^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

Proof

$$224 h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

225 For i = 1,

$$226 h_2 - h_1 = T(2^r - 2) \left(\frac{1}{N}\right)^r = (2^r - 2)T^{2/r}h^2x_1^{1 - 2/r}$$

227 For $2 \le i \le N-1$,

228
$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2}, \quad \eta \in \left[\frac{i-1}{N}, \frac{i+1}{N}\right]$$

229 If $r \in [1, 2]$,

230

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2} \le r(r-1)T h^2 \left(\frac{i-1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{2-r} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{2-r} r(r-1)T^{2/r} h^2 x_i^{1-2/r}$$

else if r > 2,

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2} \le r(r-1)T h^2 \left(\frac{i+1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{r-2} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{r-2} r(r-1)T^{2/r} h^2 x_i^{1-2/r}$$

233 Since

$$2^{r} - 2 \le 2^{|r-2|} r(r-1), \quad r > 1$$

235 we have

242

236
$$h_{i+1} - h_i \le 2^{|r-2|} r(r-1) T^{2/r} h^2 x_i^{1-2/r}, \quad 1 \le i \le N-1$$

For i = N, $h_{N+1} - h_N = 0$. For $N < i \le 2N - 1$, it's central symmetric to the first half of the proof, which is

239
$$h_i - h_{i+1} \le 2^{|r-2|} r(r-1) T^{2/r} h^2 (2T - x_i)^{1-2/r}$$

240 Summarizes the inequalities, we can get

241 (B.3)
$$|h_{i+1} - h_i| \le 2^{|r-2|} r(r-1) T^{2/r} h^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

Appendix C. Proofs of some technical details.

243 Additional proof of Theorem 5.1. For $2 \le i \le N-1$,

$$\frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} f''(\eta_{1}) + h_{i+1}^{3} f''(\eta_{2}))$$

$$\leq C \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} x_{i-1}^{-2-\alpha/2} + h_{i+1}^{3} x_{i}^{-2-\alpha/2})$$

$$\leq 2C (h_{i}^{2} x_{i-1}^{-2-\alpha/2} + h_{i+1}^{2} x_{i}^{-2-\alpha/2})$$

245 Since Lemma B.1, we have

246
$$h_i \le rT^{1/r}hx_i^{1-1/r}, \quad 1 \le i \le N$$

247
$$h_{i+1} \le rT^{1/r}hx_{i+1}^{1-1/r}, \quad 1 \le i \le N-1$$

248 and

$$x_{i-1}^{-2-\alpha/2} \le 2^{-r(-2-\alpha/2)} x_i^{-2-\alpha/2} \quad 2 \le i \le N-1$$

$$250 x_{i+1}^{1-1/r} \le 2^{r-1} x_i^{1-1/r} 1 \le i \le N-1$$

So there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le C h^2 x_i^{-\alpha/2 - 2/r}, \quad 2 \le i \le N - 1$$

253 For i = 1, by (A.4)

$$\frac{1}{4!} \frac{2}{h_1 + h_2} (h_1^3 f''(\eta_1) + h_2^3 f''(\eta_2))$$

$$= \frac{2}{h_1 + h_2} \left(\frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy + \frac{1}{4!} h_2^3 f''(\eta_2) \right)$$

255 We have proved above that

$$\frac{2}{h_1 + h_2} h_2^3 f''(\eta_2) \le C h^2 x_1^{-\alpha/2 - 2/r}$$

257 and we can get

$$\int_0^{x_1} f''(y) \frac{y^3}{3!} dy \le C \frac{1}{3!} \int_0^{x_1} y^{1-\alpha/2} dy$$
$$= C \frac{1}{3!(2-\alpha/2)} x_1^{2-\alpha/2}$$

259 **so**

258

$$260 \qquad \frac{2}{h_1 + h_2} \frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy = \frac{C2^{1-r}}{3!(2 - \alpha/2)} x_1^{-\alpha/2} = \frac{C2^{1-r}}{3!(2 - \alpha/2)} T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

261 And for i = N, we have

$$\frac{2}{h_N + h_{N+1}} (h_N^3 f''(\eta_1) + h_{N+1}^3 f''(\eta_2))$$

$$= h_N^2 (f''(\eta_1) + f''(\eta_2))$$

$$\leq r^2 T^{2/r} h^2 x_N^{2-2/r} 2C x_{N-1}^{-2-\alpha/2}$$

$$\leq 2r^2 T^{2/r} C 2^{-r(-2-\alpha/2)} h^2 x_N^{-\alpha/2-2/r}$$

Finally, $N+1 \le i \le 2N-1$ is symmetric to the first half of the proof, so we can conclude that

265
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N \le i \le 2N - 1 \end{cases}$$

Lemma C.1. There is a constant $C=C(T,\alpha,r,f)$ for $2\leq j\leq N,$ if $y\in [x_{j-1},x_j],$

268 (C.1)
$$|u(y) - u_h(y)| \le Ch^2 y^{\alpha/2 - 2/r}$$

269 *Proof.* For $2 \le j \le N$, we have

$$270 x_j \le 2^r y, \quad x_{j-1} \ge 2^{-r} y$$

271 And by Lemma A.2, Lemma B.1 and Corollary 2.4, we have

$$u(y) - u_h(y) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

$$\leq \frac{C}{4} h^2 x_j^{2-2/r} x_{j-1}^{\alpha/2-2}$$

$$\leq \frac{C}{4} h^2 2^{2r-2} y^{2-2/r} 2^{-r(\alpha/2-2)} y^{\alpha/2-2}$$

$$= C 2^{-r\alpha/2+4r-2} h^2 y^{\alpha/2-2/r}$$

symmetricly, for $N < j \le 2N - 1$, we have

$$|u(y) - u_h(y)| \le Ch^2 (2T - y)^{\alpha/2 - 2/r}$$

LEMMA C.2. There is a constant $C = C(\alpha, r)$ such that for all $1 \le i < N/2$, $\max\{2i+1, i+3\} \le j \le 2N$ and $y \in [x_{j-1}, x_j]$, we have

$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C\frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

278 *Proof.* Since $y \ge x_{j-1} > x_{i+1}$, by Lemma A.1, if j - 1 > i + 1

$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|y-\xi|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(y-x_{i+1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq (1-(\frac{2}{3})^r)^{-1-\alpha} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

LEMMA C.3. There is a constant $C = C(\alpha, r)$ such that for all $3 \le i < N/2, k = 281 \quad \lceil \frac{i}{2} \rceil$, $1 \le j \le k-1$ and $y \in [x_{j-1}, x_j]$, we have

282 (C.4)
$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C\frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

283 Proof. Since $y \le x_j < x_{i-1}$, by Lemma A.1,

$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|\xi - y|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(x_{i-1} - x_j)^{-1-\alpha}}{\Gamma(-\alpha)} \leq \frac{(x_{i-1} - x_{k-1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq ((\frac{2}{3})^r - (\frac{1}{2})^r)^{-1-\alpha} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

Lemma C.4. While $0 \le i < N/2$, By Lemma A.3

$$|T_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} \frac{|x_i - y|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2} \left| x_i^{2-\alpha} - |x_i - x_1|^{2-\alpha} \right|$$

$$\le C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2+2-\alpha} = C \frac{1}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \quad 0 < 2 - \alpha < 1$$

288 For $2 \le j \le N$, by Lemma A.2 and Corollary 2.4

$$|T_{ij}| \leq \frac{C}{4} \int_{x_{j-1}}^{x_j} h_j^2 x_{j-1}^{\alpha/2-2} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$\leq \frac{C}{4\Gamma(3-\alpha)} h_j^2 x_{j-1}^{\alpha/2-2} \left| |x_j - x_i|^{2-\alpha} - |x_{j-1} - x_i|^{2-\alpha} \right|$$

LEMMA C.5. There exists a constant $C = C(T, \alpha, r, f)$ such that

291 (C.7)
$$\sum_{j=1}^{3} S_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

293 (C.8)
$$\sum_{j=1}^{4} S_{2j} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

Proof.

285

292

294

300

$$S_{1j} = \frac{2}{x_2} \left(\frac{1}{x_1} T_{0j} - \left(\frac{1}{x_1} + \frac{1}{h_2} \right) T_{1j} + \frac{1}{h_2} T_{2j} \right)$$

296 So, by Lemma C.4

297
$$S_{11} \le \frac{2}{x_2 x_1} 4 \frac{C}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \le C x_1^{-\alpha/2}$$
298
$$S_{12} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_2^2 x_1^{\alpha/2-2} \left(x_2^{2-\alpha} + 2h_2^{2-\alpha} + h_2^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

301
$$S_{13} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_3^2 x_2^{\alpha/2-2} \left(x_3^{2-\alpha} + 2x_3^{2-\alpha} + h_3^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

302 But

$$x_1^{-\alpha/2} = T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

304 For i = 2, Sorry

Acknowledgments. We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement.

307 REFERENCES

308 [1] X. ROS-OTON AND J. SERRA, The dirichlet problem for the fractional laplacian: Regular-309 ity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 310 pp. 275–302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://www. 311 sciencedirect.com/science/article/pii/S0021782413000895.