(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 18. August 2005 (18.08.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/076659 A1

- (51) Internationale Patentklassifikation7: H04R 3/00, 1/26
- (21) Internationales Aktenzeichen: PCT/EP2005/050386
- (22) Internationales Anmeldedatum:

31. Januar 2005 (31.01.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 10 2004 005 998.5 6. Februar 2004 (06.02.2004) DE
- (71) Anmelder und
- (72) Erfinder: RUWISCH, Dietmar [DE/DE]; Gutenbergstrasse 11, 12557 Berlin (DE).

- (74) Anwalt: BETTEN & RESCH; Theatinerstr. 8, 80333 München (DE).
- (81) Bestimmungsstanten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD AND DEVICE FOR THE SEPARATION OF SOUND SIGNALS
- (54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR SEPARIERUNG VON SCHALLSIGNALEN

- 20... STEREO SCANNING AND FOURIER TRANSFORMER UNIT
- 30... CALCULATING UNIT WITH SPECTRUM CORRECTION
- 40... SIGNAL GENERATOR
- AA... ARITHMETIC UNIT

(57) Abstract: The invention relates to a method for separating sound signals from a plurality of sound sources, comprising the following steps: arrangement of two microphones (MIK1, MIK2) at a given distance (d) from each other; detection of the sound signals with two microphones (MIK1, MIK2) and production of associated microphone signals (m1, m2); and separation of the sound signal of one of the sound sources (S1) from the sound signals of other sound sources (S2) based on microphone output signals (m1, m2). According to the invention, the separation step comprises: Fourier transformation of the microphone output signals in order to determine the frequency spectra thereof (M1, M2); determination of the phase difference (F) between the two microphone output signals (m1, m2) for each frequency component of the frequency spectra thereof (M1, M2); determination of the angle of incidence (?) of each sound signal allocated to a frequency of the frequency spectra (M1, M2) based on relative phase angle (F) and frequency; production of a signal spectrum (S) of a signal to be outputted by combining one of the two frequency spectra (M1, M2) with a filter function (F<SB>?0</SB>),

which is selected in such a way, that sound signals from an environment ($?_{3dB}$) around a preferred angle of incidence ($?_{0}$) are amplified in relation to sound signals from outside said environment ($?_{3dB}$); and inverted Fourier transformation of the signal spectrum thus produced.

[Fortsetzung auf der nächsten Seite]

7O 2005/076659 A1

GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

mit internationalem Recherchenbericht

(57) Zusammenfassung: Bei einem Verfahren zur Separierung von Schallsignalen von einer Mehrzahl von Schallquellen, umfassend die Schritte: Anordnen von zwei Mikrofonen (MIK1, MIK2) in einem vorbestimmten Abstand (d) zueinander; Erfassen der Schallsignale mit beiden Mikrofonen (MIK1, MIK2) und Erzeugen zugeordneter Mikrofonsignale (m1, m2); und Separieren des Schallsignals einer der Schallquellen (S1) von den Schallsignalen der anderen Schallquellen (S2) basierend auf den Mikrofonausgangssignalen (m1, m2), wird vorgeschlagen, dass der Schritt des Separierens umfaßt: Fourier-Transformieren der Mikrofonausgangssignale zur Ermittlung ihrer Frequenzspektren (M1, M2); Bestimmen der Phasendifferenz (ϕ) zwischen den beiden Mikrofonausgangssignalen (m1, m2) für jede Frequenzkomponente ihrer Frequenzspektren (M1, M2); Bestimmen des Einfallswinkels (δ) jedes einer Frequenz der Frequenzspektren (M1, M2) zugeordneten Schallsignals basierend auf dem relativen Phasenwinkel (ϕ) und der Frequenz; Erzeugen eines Signalspektrums (S) eines auszugebenden Signals durch Verknüpfen eines der beiden Frequenzspektren (M1, M2) mit einer Filterfunktion (τ), die derart gewählt ist, dass Schallsignale aus einer Umgebung (τ) um einen bevorzugten Einfallswinkel (τ) herum relativ zu Schallsignalen von außerhalb dieser Umgebung (τ) verstärkt werden; und inverses Fourier-Transformieren des derart erzeugten Signalspektrums.

WO 2005/076659

PCT/EP2005/050386

Verfahren und Vorrichtung zur Separierung von Schallsignalen

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Separierung von Schallsignalen.

5

Die Erfindung liegt auf dem Gebiet der digitalen Signalverarbeitung zum Entmischen verschiedener akustischer Signale aus unterschiedlichen Raumrichtungen, welche mit zwei Mikrofonen in bekanntem Abstand stereo aufgenommen werden.

10

15

Das Gebiet der Quellentrennung, auch "beam forming" genannt, erfährt wachsende Bedeutung durch die Zunahme der mobilen Kommunikation sowie der automatischen Verarbeitung menschlicher Sprache. In sehr vielen Anwendungen tritt das Problem auf, dass das gewünschte Sprachsignal (Nutzsignal) durch verschiedene Störeinflüsse beeinträchtigt ist. Hier sind hauptsächlich Störungen durch Hintergrundgeräusche, Störungen durch andere Sprecher sowie Störungen durch Lautsprecherausgaben von Musik oder Sprache zu nennen. Die verschiedenen Störeinflusse erfordern je nach Ihrer Art und nach der Vorkenntnis über das Nutzsignal unterschiedliche Behandlungen.

20

25

Beispielhafte Anwendungen der Erfindung finden sich also In Kommunikationseinrichtungen, in denen die Position eines Sprechers bekannt ist, und in denen Störungen durch Hintergrundgeräusche oder andere Sprecher sowie Lautsprecherausgaben vorhanden sind. Anwendungsbeispiele sind Kfz-Freisprecheinrichtungen, in denen die Mikrofone z.B. im Rückspiegel untergebracht sind und eine sogenannte Richthyperbel auf den Fahrer gerichtet wird. In dieser Anwendung kann eine zweite Richthyperbel auf den Beifahrer gerichtet werden, so dass während eines Telefongesprächs gezielt zwischen Fahrer und Beifahrer hinund hergeschaltet werden kann.

30

In Fällen, in denen die geometrische Position der Nutzsignalquelle zu den aufnehmenden Mikrofonen bekannt ist, ist die geometrische Quellenseparation ein mächtiges Werkzeug. Das Standardverfahren dieser Klasse von "beam forming"-

Algorithmen ist das sog. "shift and add" Verfahren, bei welchem auf eines der Mikrofonsignale ein Filter angewendet wird, und das gefilterte Signal sodann zum zweiten Mikrofonsignal hinzuaddiert wird (siehe z.B. Haddad und Benoit, "Capabilities of a beamforming technique for acoustic measurements inside a moving car", The 2002 International Congress and Exposition On Noise Control Engineering, Deaborn, Mi, USA, August 19-21, 2002).

Eine Erweiterung dieses Verfahrens beschäftigt sich mit "adaptiven beam forming" bzw. "adaptiver Quellenseparation", wo die Lage der Quellen im Raum a priori unbekannt ist und durch die Algorithmen erst ermittelt werden muss (WO 02/061732, US6,654,719). Hier ist es das Ziel, die Lage der Quellen im Raum aus den Mikrofonsignalen zu bestimmen und nicht, wie beim "geometrischen" beam forming, fest vorzugeben. Adaptive Verfahren erweisen sich zwar als nützlich, allerdings ist auch hier gewöhnlich a-priori-Information erforderlich, da ein Algorithmus in der Regel nicht entscheiden kann, welche der detektierten Sprachquellen Nutz- und welche Störsignal ist. Nachteilig bei allen bekannten adaptiven Verfahren ist die Tatsache, dass die Algorithmen eine gewisse Adaptionszeit benötigen, bevor ausreichende Konvergenz besteht und die Quellentrennung gelingt. Außerdem sind adaptive Verfahren prinzipiell anfälliger für diffuse Hintergrundstörungen, da diese die Konvergenz erheblich beeinträchtigen können. Ein gravierender Nachteil beim klassischen "shift and add"-Verfahren ist die Tatsache, dass sich mit zwei Mikrofonen lediglich zwei Signalquellen voneinander separieren lassen und die Dämpfung von diffusem Hintergrundschall in der Regel nicht in ausreichendem Maße gelingt.

25

30

5

10

15

20

Aus der DE 69314514 T2 ist ein Verfahren zur Separierung von Schallsignalen gemäß dem Oberbegriff von Anspruch 1 bekannt. Das in diesem Dokument vorgeschlagene Verfahren führt eine Separation der Schallsignale dergestalt durch, dass ein gewünschtes Nutzschallsignal von Umgebungsrauschen befreit wird, und nennt als Anwendungsbeispiele die Sprachsignale eines Fahrzeuginsassen, die auf Grund des allgemeinen und nicht lokalisierten Fahrzeuglärms nur schwer verständlich sind.

Zum Herausfiltern des Sprachsignals schlägt dieses Dokument des Stands der Technik vor, mit Hilfe von zwei Mikrophonen jeweils ein Gesamtschallsignal zu Mikrophonsignale zur Ermittlung seines messen, iedes der beiden Frequenzspektrums einer Fouriertransformation zu unterziehen, in mehreren Frequenzbändern basierend auf der jeweiligen Phasendifferenz einen Einfallswinkel des jeweiligen Signals zu bestimmen, und schließlich die eigentliche "Filterung" vorzunehmen. Hierzu wird ein bevorzugter Einfallswinkel bestimmt, und dann eine Filterfunktion, nämlich ein Rauschspektrum, von einem der beiden Frequenzspektren subtrahiert, wobei dieses Rauschspektrum derart gewählt ist, dass Schallsignale aus der Umgebung des bevorzugten Einfallswinkels, der dem Sprecher zugeordnet ist, relativ zu den anderen Schallsignalen, die im wesentlichen Hintergrundlärm des Fahrzeugs darstellen, verstärkt werden. Das derart gefilterte Frequenzspektrum wird anschließend einer inversen Fourier-Transformation unterzogen und als gefiltertes Schallsignal ausgegeben.

15

10

5

Das in der DE 69314514 T2 offenbarte Verfahren leidet an mehreren Nachteilen:

 a) Die Schallsignalseparation gemäß diesem Dokument des Stands der Technik basiert auf dem vollständigen Entfernen eines Anteils des

ursprünglich gemessenen Gesamtschallsignals, nämlich demjenigen Anteil, der als Rauschen bezeichnet wird. Dieses Dokument geht nämlich von einem akustischen Szenario aus, bei dem nur eine einzige Nutzschallquelle vorhanden ist, deren Signale gleichsam eingebettet sind in Störsignale von nicht beziehungsweise weniger

lokalisierten Quellen, insbesondere Fahrzeuglärm. Das Verfahren gemäß diesem Dokument des Stands der Technik erlaubt daher ausschließlich das Herausfiltern dieses einen Nutzsignals durch

20

25

In Fällen mit einem einzigen Nutzschallsignal mag das Verfahren gemäß dieses Dokuments zufriedenstellende Ergebnisse liefern. Es kann jedoch auf Grund seines Grundprinzips nicht sinnvoll in

vollständiges Eliminieren aller Rauschsignale.

Situationen eingesetzt werden, in denen nicht nur eine Nutzschallquelle, sondern mehrere derartige Queilen zum Gesamtschallsignal beitragen. Dies liegt insbesondere daran, dass gemäß dieser Lehre nur ein einziger sog. dominanter Ankunftswinkel verarbeitet werden kann, nämlich derjenige Einfallswinkel, unter dem das energiereichste Schallsignal einfällt. Alle Signale, die unter anderen Ankunftswinkeln auf die Mikrophone fallen, zwangsläufig als Rauschen behandelt.

b) Darüber hinaus scheint dieses Dokument selbst davon auszugehen.

10

15

20

5

dass die dort vorgeschlagene Filterung in Form einer Subtraktion des Rauschspektrums von einem der beiden Frequenzspektren noch keine zufriedenstellenden Ergebnisse liefert. Daher sieht dieses Dokument zusätzlich, nämlich unmittelbar vor dieser eigentlichen Filterung, noch eine weitere Signalverarbeitung vor: Es werden nämlich in allen Frequenzbändem, nachdem der dominante Einfallswinkel bestimmt worden ist, durch entsprechende Phasenverschiebung eines der beiden fourier-transformierten Schallsignale in diesem Frequenzband die Rauschanteile im jewelligen Frequenzband relativ zu den in diesem Frequenzband möglicherweise ebenfalls enthaltenen Nutzschallsignalen abgeschwächt. Somit sieht dieses Dokument die in offenbarte Filterung in Form einer Subtraktion Rauschspektrums offenbar selbst als ungenügend an, so dass sie selbst weitere. nämlich unmittelbar vorhergehende Signalverarbeitungsschritte vorschlägt, die durch hierfür gesondert bereitgestellte Bauteile vorgenommen werden. Insbesondere benötigt System zusätzlich zu einer Rauschspektrumsubtraktionsvorrichtung (Vorrichtung 24 in der einzigen Figur dieses Dokuments) vorgeschaltete Mittel 20 zur Phasenverschiebung sowie Mittel 21 zur phasenrichtigen Addition von Spektren den einzelnen Frequenzbändem (vergleiche die entsprechenden Bauteile in der

einzigen Figur dieses Dokuments).

30

Hierdurch werden das Verfahren und die zu seiner Durchführung erforderliche Vorrichtung aufwendig.

Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Separierung von Schallsignalen von einer Mehrzahl von Schallquellen sowie eine entsprechende Vorrichtung vorzuschlagen, die durch den reinen Filterschritt eine ohne ZUVOT eine Ausgangssignale erzeugen, ausreichende Qualität der phasenrichtige Addition von Schallspektren in verschiedenen Frequenzbändern durchführen zu müssen, um eine zufriedenstellende Separierung zu erzielen, und die es ferner erlaubt, nicht nur Signale einer einzigen Nutzschallquelle von allen anderen Schallsignalen zu befreien, sondem grundsätzlich in der Lage ist, Schallsignale von einer Mehrzahl von Schallquellen ohne Eliminierung separat auszugeben.

5

10

15

20

25

30

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren nach Anspruch 1 bzw. eine Vorrichtung nach Anspruch 7 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen definiert.

Das erfindungsgemäße Verfahren benötigt keine Konvergenzzeit und kann mit zwei Mikrofonen mehr als zwei Schallquellen im Raum separierbaren, sofern diese in ausreichendem Maße räumlich getrennt sind. Das Verfahren stellt nur geringe Anforderungen an Speicherbedarf und Rechenleistung, und es ist sehr stabil gegenüber diffusen Störsignalen. Anders als beim herkömmlichen beam forming lassen sich solche diffusen Störungen effektiv dämpfen. Wie bei allen Zwei-Mikrofon-Verfahren sind die Raumbereiche, zwischen denen das Verfahren differenzieren kann, rotationssymmetrisch zur Mikrofon-Achse, d.h. zu der Geraden, welche durch die beiden Mikrofonpositionen definiert ist. In einem Schnitt durch den Raum, welcher die Symmetrieachse enthält, entspricht der Raumbereich, in dem sich eine Schallquelle befinden muss um als Nutzsignal betrachtet zu werden, einer Hyperbel. Der Winkel 90, den der Scheitel der Hyperbel zur Symmetrieachse einnimmt, ist frei wählbar, und die Breite der Hyperbel, welche durch einen Winkel γ3db bestimmt wird, ist ebenfalls ein wählbarer Parameter. Mit nur zwei Mikrofonen lassen sich gleichzeitig Ausgangssignale zu beliebigen, verschiedenen Winkeln 90 erzeugen, wobei die Trennschärfe zwischen den Bereichen mit dem Überlappungsgrad der

entsprechenden Hyperbeln abnimmt. Schallquellen innerhalb einer Hyperbel werden als Nutzsignale betrachtet und mit weniger als 3 db gedämpft. Störsignale werden in Abhängigkeit ihres Einfallswinkels 9 eliminiert, wobei eine Dämpfung von >25db für Einfallswinkel 9 außerhalb der Akzeptanzhyperbel erreichbar ist.

5

10

Das Verfahren arbeitet im Frequenzbereich. Das einer Richthyperbel zuzuordnende Signalspektrum entsteht durch Multiplikation einer Korrekturfunktion K2(x1) sowie einer Filterfunktion F(f,T) mit dem Signalspektrum M(f,T) eines der Mikrofone. Die Filterfunktion entsteht durch spektrale Glättung (z.B. durch Diffusion) einer Zuordnungsfunktion $Z(9-9_0)$, wobei im Argument der Zuordnungsfunktion der berechnete Einfallswinkel 9 einer spektralen Signalkomponente steht. Dieser Einfallswinkel 9 wird aus dem Phasenwinkel ϕ des komplexen Quotienten der Spektren der beiden Mikrofonsignale, M2(f,T)/M1(f,T), ermittelt, indem man ϕ mit der Schallgeschwindigkeit c multipliziert und durch 2π fd dividiert, wobei d den Mikrofonabstand bezeichnet. Das Ergebnis x1= ϕ c/ 2π fd, welches zugleich das Argument der Korrekturfunktion K2(x1) ist, liefert nach Beschränkung x=K1(x1) auf einen Betrag kleiner oder gleich eins den Kosinus des Einfallswinkels 9, welcher im Argument der Zuordnungsfunktion $Z(9-9_0)$ steht; K1(x1) bezeichnet dabei eine weitere Korrekturfunktion.

20

15

Kurzbeschreibung der Abbildungen:

Fig. 1 zeigt die Definition des Einfallswinkels 9 durch die Positionen beiden Mikrofone, deren Signale verarbeitet werden.

- Fig. 2 zeigt beispielhaft eine Zuordnungsfunktion Z(9) mit Halbwertsbreite $2\gamma_{3db}$, aus welcher eine Hyperbel mit Scheitel bei 9=0 resultiert.
- Fig. 3 zeigt eine Hyperbel mit Scheitel bei 9=9₀, die die 30 Richtcharakteristik der Quellenseparation bestimmt. Signale innerhalb des durch die Hyperbel definierten Raumbereichs werden mit einer Dämpfung <3db als Nutzsignal ausgegeben

Fig. 4 zeigt den Aufbau des Quellenseparators, in welchem die Zeitsignale zweler Mikrofone, m1(t) und m2(t), in einer Stereo-Abstast- und -Fourier-Transformator-Einheit (20) zu Spektren M1(f,T) und M2(f,T) transformiert werden, wobei T den Zeitpunkt der Entstehung der Spektren bezeichnet. Aus den Spektren wird in der ϑ -Berechnungseinheit (30) der frequenzabhängige Einfallswinkel ϑ (f,T) sowie das korrigierte Mikrofonspektrum M(f,T) berechnet, woraus in Signalgeneratoren (40) für verschiedene Richtwinkel ϑ 0 Ausgangssignale s0(t) entstehen.

10

5

Fig. 5 zeigt den Aufbau der ϑ -Berechnungseinheit (30), in welcher der Phasenwinkel $\varphi(f,T)$ einer spektralen Komponenten des komplexen Quotienten der beiden Mikrofonspektren M1(f,T) und M2(f,T) berechnet wird, welcher sodann mit der Schallgeschwindigkeit c zu multiplizieren und durch $2\pi fd$ zu dividieren ist, wobei d den Mikrofonabstand bezeichnet. Bei dieser Operation entsteht die Größe x1(f,T), welche das Argument der beiden Korrekturfunktionen K2 und K1 darstellt. Mit diesen Korrekturfunktionen entsteht das korrigierte Mikrofonspektrum M(f,T)=M1(f,T)*K2(x1(f,T)) sowie die Größe x(f,T)=K1(x1(f,T)), aus welcher durch Anwendung der Arcuskosinus-Funktion der Einfallswinkel $\vartheta(f,T)$ zu berechnen ist.

20

25

15

Fig. 6 zeigt einen Signalgenerator, in welcher eine Zuordnungsfunktion $Z(9-9_0)$ mit einem einstellbaren Winkel 9_0 durch spektrale Diffusion zu einer Filterfunktion F(f,T) geglättet wird, welche mit dem korrigierten Mikrofonspektrum M(f,T) zu multiplizieren ist. Daraus resultiert ein Ausgangsspektrum S_{80} (f,T), aus welchem durch inverse Fouriertransformation ein Ausgangssignal $s_{90}(t)$ entsteht, welches die Schallsignale innerhalb des durch die Zuordnungsfunktion Z und den Winkel 9_0 festgelegten Raumbereichs enthält.

Fig. 7 zeigt exemplarisch die beiden Korrekturfunktionen K2(x1) und 30 K1(x1).

Ein Grundgedanke der Erfindung ist es, jeder spektralen Komponente des einfallenden Signals zu jedem Zeitpunkt T einen Einfallswinkel 9 zuzuordnen und allein anhand des berechneten Einfallswinkels zu entscheiden, ob die entsprechende Schallquelle innerhalb einer gewünschten Richthyperbel liegt, oder nicht. Um die Zugehörigkeitsentscheidung etwas abzumildern, wird anstatt einer harten Ja/Nein-Entscheidung eine "weiche" Zuordnungsfunktion Z(3) (Fig. 2) benutzt, die einen kontinuierlichen Übergang zwischen erwünschten und unerwünschten Einfallsrichtungen erlaubt, was sich vorteilhaft auf die Integrität der Signale auswirkt. Die Breite der Zuordnungsfunktion entspricht dann der Breite der Richthyperbel (Fig. 3). Durch Division der komplexen Spektren der beiden Mikrofonsignale wird zunächst für jede Frequenz f zu einem Zeitpunkt T die Phasendifferenz φ berechnet. Mit Hilfe der Schallgeschwindigkeit c und der Frequenz f der entsprechenden Signalkomponente lässt sich aus der Phasendifferenz ein Wegunterschied berechnen, der zwischen den beiden Mikrofonen liegt, wenn das Signal von einer Punktquelle ausgesandt wurde. Ist der Mikrofonabstand d bekannt, ergibt eine einfache geometrische Überlegung, dass der Quotient x1 aus Wegunterschied und Mikrofonabstand dem Kosinus des gesuchten Einfallswinkels entspricht. In der Praxis ist aufgrund von Störungen wie diffusem Störschall oder Raumhall die Annahme einer Punktquelle selten erfüllt, weshalb x1 gewöhnlich nicht auf den erwarteten Wertebereich [-1,1] beschränkt ist. Bevor der Einfallswinkel 3 berechnetet werden kann, ist daher noch eine Korrektur erforderlich, die x1 auf das genannte Intervall beschränkt. Wurde zum Zeitpunkt T für jede Frequenz f der Einfallswinkel 9(f,T) bestimmt, ergibt sich das Spektrum des gewünschten Signals innerhalb einer Richthyperbel mit Scheitel beim Winkel 9=90 durch einfache frequenzweise Multiplikation mit dem Spektrum eines der Mikrofone, also M1(f,T)K(9(f,T)- 9_0). Unter Umständen ist es vorteilhaft, K(9(f,T)- 9₀) vor Ausführung der Multiplikation spektral zu glätten. Eine Glättung, deren Ergebnis als F₉₀(f,T) bezeichnet sei, erhält man z.B. durch Anwendung eines Diffusionsoperators. In Fällen, in denen durch Störeinflüsse die Größe x, die zur Berechnung des Einfallswinkels dient, außerhalb ihres Wertebereichs liegt, ist es vorteilhaft, die entsprechende spektrale Komponente des Mikrofonsignals abzuschwächen, da zu vermuten ist, dass sich Störsignale überlagert haben. Dies geschieht z.B. durch Anwendung einer Korrekturfunktion,

10

15

20

25

deren Argument die Größe x1 ist. Sei M(f,T) das korrigierte Mikrofonsignal, dann schreibt sich die Erzeugung des gewünschten Signalspektrums inklusive spektraler Glättung und Korrektur als $S_{90}(f,T)=F_{90}(f,T)M(f,T)$. Aus $S_{90}(f,T)$ ensteht durch inverse Fouriertransformation das Zeitsignal $s_{90}(t)$ für die entsprechende Richthyperbel mit Scheitelwinkel ϑ_0 .

5

10

15

20

25

30

Anders ausgedrückt ist es eine Grundidee der Erfindung, verschiedene Schallquellen, beispielsweise den Fahrer und den Beifahrer in einem Kraftfahrzeug, räumlich voneinander zu unterscheiden und somit beispielsweise das Nutz-Sprachsignal des Fahrers vom Stör-Sprachsignal des Belfahrers zu separieren, indem man die Tatsache ausnutzt, dass diese beiden Sprachsignale, also Schallsignale, in der Regel auch bei unterschiedlichen Frequenzen vorliegen. Die erfindungsgemäß vorgesehene Frequenzanalyse erlaubt also zunächst, das Gesamt-Schallsignal in die zwei Einzel-Schallsignale (nämlich vom Fahrer und vom Beifahrer) aufzuspalten. Es muß dann "nur noch" mit Hilfe geometrischer Überlegungen anhand der jeweiligen Frequenz jedes der beiden Schallsignale und der zu ermittelnden Phasendifferenz zwischen dem Ausgangssignal des Mikrofons 1 und des Mikrofons 2, die jeweils diesem Schallsignal zugeordnet sind, die Einfallsrichtung jedes der beiden Schallsignale berechnet werden. Da die Geometrie zwischen beispielsweise der Position des Fahrers, der Position des Belfahrers und der Position der Mikrofone, etwa in einer Freisprecheinrichtung im Kraftfahrzeug, bekannt ist, kann dann das weiter zu verarbeitende Nutz-Schallsignal aufgrund seines anderen Einfallswinkels vom Stör-Schallsignal separiert werden.

Es folgt ein detailliertes Ausführungsbeispiel der Erfindung, das anhand der Abbildungen beschrieben wird.

Die Zeitsignale m1(t) und m2(t) zweier Mikrofone, die einen festen Abstand d zueinander haben, werden einem Rechenwerk (10) zugeführt (Fig. 4), wo sie in einer Stereo-Abtast- und -Fourier-Transformator-Einheit (20) mit einer Abtastrate f_A diskretisiert und digitalisiert werden. Eine Folge von a Abtastwerten jeweils eines der Mikrofonsignale m1(t) und m2(t) wird durch Fourier-Transformation zum komplexwertigen Spektrum M1(f,T) bzw. M2(f,T) transformiert, wobei f die

Frequenz der jeweiligen Signalkomponente bezeichnet, und T den Zeitpunkt der Entstehung eines Spektrums angibt. Für die praktische Anwendung ist folgende Parameterwahl geeignet: f_A =11025 Hz, a=256, T a/2=t. Wenn Rechenleitung und Speicherplatz es erlauben, ist jedoch a=1024 zu bevorzugen. Der Mikrofonabstand d sollte kleiner sein als die halbe Wellenlänge der höchsten zu verarbeitenden Frequenz, welche sich aus der Abtastfrequenz ergibt, d.h. d < c/4f_A. Für die oben angegebene Parameterwahl eignet sich ein Mikrofonabstand d = 20 mm.

5

10

15

20

25

30

Die Spektren M1(f,T) und M2(f,T) werden einer 9-Berechnungseinheit mit Spektrum-Korrektur (30) zugeführt, die aus den Spektren M1(f,T) und M2(f,T) einen Einfallswinkel 9(f,T) berechnet, der angibt, aus welcher Richtung relativ zur Mikrofonachse eine Signalkomponente mit Frequenz f zum Zeitpunkt T in die Mikrofone einfällt (Fig.1). Dazu wird M2(f,T) durch M1(f,T) komplex dividiert. $\varphi(f,T)$ bezeichne den Phasenwinkel dieses Quotienten. Wo Verwechslungen ausgeschlossen sind, wird im folgenden das Argument (f,T) der zeit- und frequenzabhängigen Größen fortgelassen. Die genaue Rechenvorschrift zur Bestimmung von φ lautet gemäß der Eulerschen Formel und den Rechenregeln für komplexe Zahlen:

 φ =arctan((Re1*Im2-Im1*Re2)/(Re1*Re2+Im1*Im2)),

wobei Re1 und Re2 die Realteile und Im1 und Im2 die Imaginärteile von M1 bzw. M2 bezeichnen. Die Größe x1=φc/2πfd entsteht mit Hilfe der Schallgeschwindigkeit c aus dem Winkel φ, auch x1 ist frequenz- und zeitabhängig: x1=x1(f,T). Der Wertebereich von x1 muss in der Praxis mit Hilfe einer Korrekturfunktion x=K1(x1) (Fig. 7) auf das Intervall [-1,1] beschränkt werden. Auf die so berechnete Größe x wird durch Anwendung der Arcuskosinus-Funktion ein Einfallswinkel 9 der betrachteten Signalkomponente errechnet, welcher von der Mikrofonachse zu messen ist, d.h. von der durch die Positionen der beiden Mikrofone definierten Geraden (Fig. 1). Unter Berücksichtigung aller Abhängigkeiten lautet damit der Einfallswinkel einer Signalkomponente mit Frequenz f zum Zeitpunkt T: 9(f,t)=arccos(x(f,T)). Des weiteren wird mit Hilfe einer zweiten Korrekturfunktion K2(x1) das Mikrofonspektrum

korrigiert (Fig. 7): M(f,T)=K2(x1)M1(f,T). Diese Korrektur dient dazu, in Fällen, in denen die erste Korrekturfunktion greift, die entsprechende Signalkomponente zu reduzieren, da zu vermuten ist, dass sich Störungen überlagert haben, die das Signal verfälschen. Die zweite Korrektur ist optional, alternativ kann auch M(f,T)=M1(f,T) gewählt werden; M(f,T)=M2(f,T) ist ebenfalls möglich.

5

10

15

20 .

25

30

Das Spektrum M(f,T) wird zusammen mit dem Winkel $\vartheta(f,T)$ einem oder mehreren Signalgeneratoren (40) zugeführt, wo mit Hilfe einer Zuordnungsfunktion Z(ϑ) (Fig. 2) und einem wählbaren Winkel ϑ_0 jewells ein auszugebendes Signal $s_{\vartheta 0}(t)$ entsteht. Dies geschieht, indem zu einem Zeitpunkt T jede spektrale Komponente des Spektrums M(f,T) mit der entsprechenden Komponente eines ϑ_0 -spezifischen Filters $F_{\vartheta 0}(f,T)$ multipliziert wird. $F_{\vartheta 0}(f,T)$ entsteht durch spektrale Glättung von Z(ϑ - ϑ_0). Diese Glättung erfolgt z.B. durch spektrale Diffusion:

$$F_{90}(f,T) = Z(9(f,T)-9_0) + D\Delta^2_f Z(9(f,T)-9_0).$$

Dabei bezeichnet D die Diffusionskonstante, welche ein frei wählbarer Parameter größer oder gleich null ist. Der diskrete Diffusionsoperators Δ^2_f ist eine Abkürzung für

$$\Delta^{2}_{f}Z(\vartheta(f,T)-\vartheta_{0})) = (Z(\vartheta(f-f_{A}/a),T)-\vartheta_{0})-2Z(\vartheta(f,T)-\vartheta_{0}))+Z(\vartheta(f+f_{A}/a,T)-\vartheta_{0}))/(f_{A}/a)^{2}.$$

Der auftretende Quotient f_A/a aus Abtastrate f_A und Anzahl a der Abtastwerte entspricht dem Abstand zweier Frequenzen im diskreten Spektrum. Durch Anwendung des so erzeugten Filters $F_{80}(f,T)$ entsteht ein Spektrum $S_{90}(f,T)=F_{90}(f,T)M(f,T)$, welches durch inverse Fouriertransformation in das Zeitsignal $S_{90}(f,T)$ übergeht.

Das von einem Signalgenerator (40) auszugebene Signal $s_{90}(t)$ entspricht dem Schallsignal innerhalb desjenigen Raumbereichs, der durch die Zuordnungsfunktion $Z(\vartheta)$ und den Winkel ϑ_0 definiert ist. Der Einfachheit halber wird in der gewählten Nomenklatur für verschiedene Signalgeneratoren nur von einer

Zuordnungsfunktion Z(9) ausgegangen, verschiedene Signalgeneratoren benutzen lediglich verschiedene Winkel ϑ_0 . Praktisch spricht natürlich nichts dagegen, in jedem Signalgenerator auch eine eigene Form der Zuordnungsfunktion zu wählen. Die Anwendung von Zuordnungsfunktionen, welche über die Zugehörigkeit von Signalkomponenten zu verschiedenen Raumbereichen entscheiden, ist einer der zentralen Gedanken der Erfindung. Eine Zuordnungsfunktion muss eine gerade Funktion sein, geeignete Funktionen sind z.B. $Z(3)=((1+\cos 3)/2)^n$ mit einem Parameter n>0. Der Raumbereich, in welchem Signale mit weniger als 3db gedämpft werden, entspricht einer Hyperbel mit Öffnungswinkel 2γ3db (Fig. 3) und Scheitel bei dem Winkel **9**0. Hierbei entspricht $2\gamma_{3db}$ dem Halbwertswinkel Zuordnungsfunktion Z(9) (Fig. 2), mit der angegebenen Formel für die Zuordnungsfunktion gilt y_{3db}=arc cos(2^{1-1/n}-1). Bei diesen zweidimensionalen geometrischen Überlegungen ist zu beachten, dass der tatsächliche Bereich des dreidimensionalen Raums, aus welchem mit dem beschriebenen Verfahren Schallsignale extrahiert werden, ein Rotationshyperboloid ist, der durch Rotation der beschriebene Hyperbel um die Mikrofonachse entsteht.

Selbstverständlich ist die vorliegende Erfindung nicht auf den Einsatz in Kraftfahrzeugen und Freisprecheinrichtungen beschränkt: Weitere Anwendungen sind Konferenz-Telefonanlagen, bei denen mehrere Richthyperbeln in verschiedene Raumrichtungen gelegt werden, um die Sprachsignale einzelner Personen zu extrahieren und Rückkopplungen bzw. Echo-Effekte zu vermeiden. Des weiteren lässt sich das Verfahren mit einer Kamera kombinieren, wobei die Richthyperbel stets in die gleiche Richtung blickt wie die Kamera, und so nur aus dem Bildbereich kommende Schallsignale aufgezeichnet werden. In Bildtelefonsystemen ist mit der Kamera zugleich ein Monitor verbunden, in den die Mikrofonanordnung ebenfalls eingebaut werden kann, um eine Richthyperbel senkrecht zur Monitor-Oberfläche zu generieren, denn es ist zu erwarten, dass sich der Sprecher vor dem Monitor befindet.

30

10

15

20

25

Eine ganz andere Klasse von Anwendungen ergibt sich, wenn man anstatt des auszugebenden Signals den ermittelten Einfallswinkel 9 auswertet, indem man

z.B. zu einem Zeitpunkt T über Frequenzen f mittelt. Ein solche 9(T)-Auswertung kann zu Überwachungszwecken benutzt werden, wenn innerhalb eines ansonsten ruhigen Raums die Position einer Schallquelle geortet werden soll.

5

10

Das richtige "Ausschneiden" des gewünschten Bereichs entsprechend dem zu separierenden Nutz-Schallsignal aus einem Mikrofonspektrum muss nicht, wie in Figur 6 beispielhaft gezeigt, durch Multiplikation mit einer Filterfunktion erfolgen, deren Zuordnungsfunktion den in Figur 2 gezeigten beispielhaften Verlauf hat. Jede andere Art der Verknüpfung des Mikrofonspektrums mit einer Filterfunktion ist geeignet, solange diese Filterfunktion und diese Verknüpfung dazu führen, dass Werte im Mikrofonspektrum umso stärker "gedämpft" werden, je weiter ihr zugeordneter Einfallswinkel 9 vom bevorzugten Einfallswinkel 9₀ (beispielsweise der Richtung des Fahrers im Kraftfahrzeug) entfernt ist.

Bezugszeichenliste:

	10	Rechenwerk zur Durchführung der erfine	dungsgemäßen
		Verfahrensschritte	
5	20	Stereo-Abtast- und -Fourier-Transformator-Einheit	
	30	9-Berechnungseinheit	
	40	Signalgenerator	
	a	Anzahl der Abtastwerte, die zu Spektren M1 bzw. N	12 transformiert
		werden	
10	d	Mikrofonabstand	
	D	Diffusionskonstante, wählbarer Parameter größer o	der gleich Null
	Δ^2_f	Diffusionsoperator	
	f.	Frequenz	
	f _A	Abtastrate	
15	K1	erste Korrekturfunktion	
	K2	zweite Korrekturfunktion	
	m1(t)	Zeitsignal des ersten Mikrofons	
	m2(t)	Zeitsignal des zweiten Mikrofons	
		Spektrum zum Zeitpunkt T des ersten Mikrofonsigna	
20	M2(f,T)	Spektrum zum Zeitpunkt T des zweiten Mikrofonsig	
	M(f,t)	Spektrum zum Zeitpunkt T des korrigierten Mikrofor	
	s ₉₀ (t)	erzeugtes Zeitsignal, entsprechend einem W	'inkel 9 ₀ der
		Richthyperbel	
	S ₉₀ (f,T)	Spektrum des Signals s ₉₀ (t)	
25	үз db	Winkel, welcher die Halbwertsbreite einer Zuon	dnungsfunktion
		Z(9) bestimmt	
	φ	Phasenwinkel des komplexen Quotienten M2/M1	
	9(f,T)	Einfallswinkel einer Signalkomponente, gemes	sen von der
		Mikrofonachse	
30	90	Winkel des Scheitels einer Richthyperbel, Paramete	r in $Z(\vartheta-\vartheta_0)$
	x, x1	Zwischengrößen bei der 9-Berechnung	
	t	Zeitbasis der Signalabtastung	

- T Zeitbasis der Spektrumerzeugung
- Z(9) Zuordnungsfunktion

Ansprüche

1. Verfahren zur Separierung von Schallsignalen von einer Mehrzahl von Schallquellen (S1, S2), umfassend die Schritte:

- Anordnen von zwei Mikrofonen (MIK1, MIK2) in einem vorbestimmten Abstand (d) zueinander;
- Erfassen der Schallsignale mit beiden Mikrofonen (MIK1, MIK2) und Erzeugen zugeordneter Mikrofonsignale (m1, m2); und
- Separieren des Schallsignals einer der Schallquellen (S1) von den Schallsignalen der anderen Schallquellen (S2) basierend auf den Mikrofonsignalen (m1, m2),

wobei der Schritt des Separierens die Schritte umfaßt:

- Fourier-Transformieren der Mikrofonsignale zur Ermittlung ihrer Frequenzspektren (M1, M2);
- Bestimmen der Phasendifferenz (φ) zwischen den beiden Mikrofonsignalen (m1, m2) für jede Frequenzkomponente ihrer Frequenzspektren (M1, M2);
- Bestimmen des Einfallswinkels (9) jedes einer Frequenz der Frequenzspektren (M1, M2) zugeordneten Schallsignals basierend auf der Phasendifferenz (φ) und der Frequenz;
- Erzeugen eines Signalspektrums (S) eines auszugebenden Signals durch Verknüpfen eines der beiden Frequenzspektren (M1, M2) mit einer Filterfunktion (F₉₀), die derart gewählt ist, dass Schallsignale aus einer Umgebung (γ_{3dB}) um einen bevorzugten Einfallswinkel (9₀) herum relativ zu Schallsignalen von außerhalb dieser Umgebung (γ_{3dB}) verstärkt werden; und
- inverses Fourier-Transformieren des derart erzeugten Signalspektrums,

dadurch gekennzeichnet, dass die Filterfunktion (F_{90}) 9-abhängig ist und unter Variation von 9 ein Maximum bei dem bevorzugten Einfallswinkel (9_0) aufweist, und die Verknüpfung der Filterfunktion (F_{90}) mit einem der beiden Frequenzspektren eine Multiplikation derselben umfasst.

10

5

15

20

25

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Filterfunktion (F₉₀) die Form aufweist:

$$F_{80}(f,T)=Z(9-9_0)+D\Delta^2_f Z(9-9_0)$$

wobei

f die jeweilige Frequenz

T der Zeitpunkt der Ermittlung der Frequenzspektren (M1, M2)

 $Z(9-9_0)$ eine Zuordnungsfunktion mit Maximum bei 9_0

D ≥ 0 eine Diffusionskonstante, und

 Δ^{2}_{f} ein diskreter Diffusionsoperator ist.

10

5

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Zuordnungsfunktion (Z) die Form aufweist:

$$Z(9-9_0) = \left(\frac{1+\cos(\vartheta-\vartheta_0)}{2}\right)^n$$

wobei n > 0 ist.

15

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Bestimmung des Einfallswinkels 9 über die Beziehung

9=arc cos(x(f,T))

erfolgt mit

20

25

30

$$x(f,T) = \varphi c/2\pi f d$$

wobei

 ϕ die Phasendifferenz zwischen den beiden Mikrofonsignalkomponenten (m1, m2)

c die Schallgeschwindigkeit

f die Frequenz der Schallsignalkomponente und

d der vorbestimmte Abstand der beiden Mikrofone (MIK1, MIK2) ist.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass es fernerden Schritt umfasst:

Begrenzen des Werts von x(f,T) auf das Intervall [-1, 1].

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass es ferner den Schritt umfasst:

Reduzieren von Signalkomponenten, für die der Wert von x(f,T) vor der Begrenzung außerhalb des Intervalls [-1, 1] lag.

5

10

- 7. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6, umfassend:
 - zwei Mikrofone (MIK1, MIK2);
 - eine an die Mikrofone angeschlossene Abtast- und Fourier-Transformationseinheit (20) zum Diskretisieren, Digitalisieren und Fourier-Transformieren der Mikrofonsignale (m1, m2);
 - eine an die Abtast- und Fourier-Transformationseinheit (20) angeschlossene Berechnungseinheit (30) zur Berechnung des Einfallswinkels (3) jeder Schallsignalkomponente; und
 - wenigstens einen an die Berechnungseinheit (30) angeschlossenen Signalgenerator (40) zur Ausgabe des separierten Schallsignals, wobei der wenigstens eine Signalgenerator (40) Mittel zum Multiplizieren einer der Fourier-Transformierten (M1, M2) mit einer Filterfunktion (F₉₀) umfasst, die 9-abhängig ist und unter Variation von 9 ein Maximum bei einem bevorzugten Einfallswinkel (9₀) aufweist.

20

15

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Abstand (d) zwischen den Mikrofonen der Relation genügt:

d<c/4fA

25

30

wobei c die Schallgeschwindigkeit und f_A die Abtastfrequenz der Abtast- und Fourier-Transformationseinheit (20) ist.

9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Vorrichtung für jede zu separierende Schallquelle (S1, S2) einen Signalgenerator (40) umfaßt.

Fig. 1

Fig. 2

Fig. 3

Fig. 7

INTERNATIONAL SEARCH REPORT

Inter _ al Application No PCT/EP2005/050386

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER H04R3/00 H04R1/26		
According to	International Patent Classification (IPC) or to both national classification	ation and IPC	
	SEARCHED		
IPC 7	ocumentation searched (classification system followed by classification HO4R G01S G10L	on symbols)	· · ·
Documentat	lion searched other than minimum documentation to the extent that s	uch documents are included in the heigs se	arched
Electronic da	ata base consulted during the International search (name of data base	se and, where practical, search terms used)
EPO-In	ternal, WPI Data, PAJ		
	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rele	evant passages	. Relevant to claim No.
A	US 5 539 859 A (ROBBE ET AL) 23 July 1996 (1996-07-23) column 1, lines 5-10		1,3,5-7
	column 1, line 61 - column 2, lin column 4, line 64 - column 5, lin figures la,lb,2	ie 34 ie 42	
A	EP 0 831 458 A (NIPPON TELEGRAPH TELEPHONE CORPORATION) 25 March 1998 (1998-03-25) paragraph '0001!	AND	1,7
	paragraph '0023! figure 1	• .	•
	 -	· -/	
		'	
<u> </u>	ner documents are listed in the continuation of box C.	X Patent family members are listed in	п алпех.
		"T" later document published after the inte- or priority date and not in conflict with	
conside	nt defining the general state of the art which is not ered to be of particular relevance	cited to understand the principle or the invention	eory underlying the
filing da	ate .	"X" document of particular relevance; the cannot be considered novel or cannot	be considered to
which is	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another I or other special reason (as specified)	involve an inventive step when the document of particular relevance; the c	laimed invention
	int referring to an oral disclosure, use, exhibition or	cannot be considered to involve an inv document is combined with one or mo ments, such combination being obviou	re other such docu-
P docume:	nt published prior to the international filing date but	in the art. *&* document member of the same patent if	
	actual completion of the international search	Date of mailing of the international sear	
26	5 May 2005	02/06/2005	
Name and m	naling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Fachado Romano, A	

INTERNATIONAL SEARCH REPORT

Intern _ Init Application No PCT/EP2005/050386

C.(Continue	tion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.
A	WO 02/061732 A (THOMSON LICENSING S.A; PARRA, LUCAS, CRISTOBAL; ALVINO, CHRISTOPHER; S) 8 August 2002 (2002-08-08) cited in the application page 1, lines 5-10 page 7, lines 1-12 figure 2		1,7
			
			*
			*
		*	
- '.		•	÷
·			
·			
-			

INTERNATIONAL SEARCH REPORT

information on patent family members

Intern Application No
PCT/EP2005/050386

					101/21	2003/030300
	tent document in search report		Publication date		Patent family member(s)	Publication date
IIS	5539859	A	23-07-1996	FR	2687496 A1	20-08-1993
. ••		•	20 0, 2000	ΑŤ	159373 T	15-11-1997
				ΑU	662199 B2	24-08-1995
				AU	3285493 A	19-08-1993
				DE	69314514 D1	20-11-1997
				· DE	69314514 T2	12-02-1998
				, DK	557166 T3	03-11-1997
				EP	0557166 A1	25-08-1993
				ËS	2107635 T3	01-12-1997
				FI	930655 A	19-08-1993
			• •	GR	3025804 T3	31-03-1998
				NZ	245850 A	27-11-1995
	·			NZ	245650 A	27-11-1995
EP	0831458	Α	25-03-1998	CA	2215746 A1	18-03-1998
				DE	69732329 D1	03-03-2005
				ΕP	0831458 A2	25-03-1998
				JP	3355598 B2	09-12-2002
				JP	10313497 A	24-11-1998
				ÜS	6130949 A	10-10-2000
			*	JP	3384540 B2	10-03-2003
			1 1 4	ĴΡ	10313498 A	24-11-1998
				ĴΡ	3379083 B2	17-02-2003
				JP	10313500 A	24-11-1998
WO	02061732	Α	08-08-2002	DE	60203379 D1	28-04-2005
				EP	1371058 A1	17-12-2003
				JP	2004523752 T	05-08-2004
				MX	PA03006668 A	24-10-2003
			•	WO	02061732 A1	08-08-2002
				US	2004072336 A1	15-04-2004

INTERNATIONALER RECHERCHENBERICHT

Interr les Aktenzeichen
PCT/EP2005/050386

		10172:200	,, , , , , , , , , , , , , , , , , , ,
A. KLASSI IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES H04R3/00 H04R1/26		
Nach der int	iternationalen Patentiklassifikation (IPK) oder nach der nationalen Kla	assifikation und der IPK	
	RCHIERTE GEBIETE		
Recherchier IPK 7	nter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbol H04R G01S G10L	ole)	
Recherchier	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	owelt diese unter die recherchlerten Gebiete	fallen
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	Name der Datenbank und evtl. verwendete S	Suchbegriffe)
EPO-In	ternal, WPI Data, PAJ		
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie®	Bezeichnung der Veröffentlichung, sowell erforderlich unter Angab	e der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 5 539 859 A (ROBBE ET AL) 23. Juli 1996 (1996-07-23) Spalte 1, Zeilen 5-10 Spalte 1, Zeile 61 - Spalte 2, Ze	NS after	1,3,5-7
	Spalte 4, Zeile 64 - Spalte 5, Ze Abbildungen 1a,1b,2	eile 42	
Α	EP 0 831 458 A (NIPPON TELEGRAPH TELEPHONE CORPORATION) 25. März 1998 (1998-03-25) Absatz '0001! Absatz '0023! Abbildung 1	AND	1,7
		1	•
[-/	•
	**		·
			•
1			
entne	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie	
"A" Veröffen	Kategorien von angegebenen Veröffentlichungen : ntlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist	*T* Spätere Veröffentlichung, die nach dem i oder dem Prioritätsdatum veröffentlicht Anmeldung nicht kollidien, sondern nur	worden ist und mit der zum Verständnis des der
'E' Alteres D	Dokument, das jedoch erst am oder nach dem Internationalen	Erfindung zugrundellegenden Prinzips o Theorie angegeben ist "X" Veröffentlichung von besonderer Bedaut	
"L" Veröffen	ntlichung, die geeignet ist, einen Prioritätsanspruch zwelfelhaft er-	"X" Veröffentlichung von besonderer Bedeuti kann allein aufgrund dieser Veröffentlich erfinderischer T\u00e4tigkeit beruhend betrac	hung nicht als neu oder auf
andere soll ode	en im Recherchenbericht genannten Veröffentlichung belegt werden i er die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von besonderer Bedeuti kann nicht als auf erfinderischer Tätigke	tunce die beanspruchte Erfindung
ausgefi 'O' Veröffen	(ührt) ntlichung, die sich auf eine mündliche Offenbarung,	werden, wenn die Veröffentlichung mit e Veröffentlichungen dieser Kategorie in V diese Verbindung für einen Fachmann n	einer oder mehreren anderen
'P' Veröffen	enutzung, eine Ausstellung oder andere Maßnahmen bezieht nillichung, die vor dem internationalen Anmeidedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	diese Verbindung für einen Fachmann n *& Veröffentlichung, die Mitglied derseiben F	
_	Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Reci	herchenberichts
	6. Mai 2005	02/06/2005	
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentami, P.B. 5818 Patentiaan 2	Bevollmächtigter Bediensteter	
	Europäisches Patentami, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl,		
	Fax: (+31-70) 340-3016	Fachado Romano, A	

INTERNATIONALER RECHERCHENBERICHT

Intern des Aktenzeichen
PCT/EP2005/050386

		PCT/EP200	12/ 020300
C.(Fortsetzi	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	anden Tella	Betr. Anspruch Nr.
rategone	pezenomeny aci venorianimonany, sowan antiropantan unter rengabe daran betracia komme		Detr. Alispidal Nr.
A	WO 02/061732 A (THOMSON LICENSING S.A; PARRA, LUCAS, CRISTOBAL; ALVINO, CHRISTOPHER; S) 8. August 2002 (2002-08-08) in der Anmeldung erwähnt Seite 1, Zeilen 5-10 Seite 7, Zeilen 1-12 Abbildung 2		1,7
	• *		
-			
			·
	·		
			·
			·
			·
:	· ·		
	•		
	*		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intern Aldenzeichen
PCT/EP2005/050386

					51/Er2005/050386
Im Recherchenbericht ngeführtes Patentdokume	nt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5539859	Α	23-07-1996	FR	2687496 /	1 20-08-1993
			AT	159373	
			AU	662199	32 24-08-1995
		•	AU	3285493	
,•			DE	69314514 [
		,	DE	69314514	
			DK	557166	
			ΕP	0557166 A	1 25-08-1993
			ES	2107635	T3 01-12-1997
			FΙ	930655 A	
•			GR	3025804 7	
			NZ	245850 A	
EP 0831458	· A	25-03-1998	CA	2215746 A	18-03-1998
			DE	69732329	03-03-2005
			EP	0831458 A	
			JP	3355598 B	32 09-12-2002
	•		JP	. 10313497 A	24-11-1998
•			US	6130949 A	10-10-2000
		-	JP		10-03-2003
			JP	10313498 A	
			JP	3379083 B	
*****			JP	10313500 A	24-11-1998
WO 02061732	Α	08-08-2002	DE	60203379 D	
			ΕP	1371058 A	17-12-2003
			JP	2004523752 T	05-08-2004
			MX	PA03006668 A	24-10-2003
			WO	02061732 A	
			US	2004072336 A	15-04-2004