Problem 6.3.1

For each integer n, consider the set $B_n = \{n\} \times \mathbb{R}$

- (a) Draw a picture of $\bigcup_{n=2}^{4} B_n$ (in the Cartesian plane).
- (b) Draw a picture of the set $C = [1, 5] \times \{-2, 2\}$
- (c) Compute $\left(\bigcup_{n=2}^4 B_n\right) \cap C$
- (d) Compute $\bigcup_{n=2}^{4} (B_n \cap C)$
- (e) Compare $\left(\bigcup_{n=2}^4 B_n\right) \cap C$ and $\bigcup_{n=2}^4 (B_n \cap C)$

Solution

Part C

$$\left(\bigcup_{n=2}^{4} B_{n}\right) \cap C = \{(2,2), (3,2), (4,2), (2,-2), (3,-2), (4,-2)\}.$$

Part D

$$\bigcup_{n=2}^{4} (B_n \cap C) = \{(2,2), (3,2), (4,2), (2,-2), (3,-2), (4,-2)\}.$$

Part E

Both sets are the same regardless whether the intersection with C happens within the indexed collection or outside the indexed collection.

Problem 6.3.2

For each real number r, define the interval $S_r = [r-1, r+3]$. Let $I = \{1, 3, 4\}$. Determine $\bigcup_{r \in I} S_r$ and $\bigcap_{r \in I} S_r$.

Solution

$$\bigcup_{r \in I} S_r = [0, 4] \cup [2, 6] \cup [3, 7] = [0, 7]$$
$$\bigcap_{r \in I} S_r = [0, 4] \cap [2, 6] \cap [3, 7] = [3, 4].$$

Problem 6.3.3

Give an example of four different subsets A, B, C and D of $\{1, 2, 3, 4\}$ such that all intersections of two subsets are different.

Solution

$$A = \{1, 2, 3, 4\}$$

$$B = \{2, 3\}$$

$$C = \{3, 4\}$$

$$D = \{4, 1\}.$$

$$A \cap B = \{2, 3\}$$
 $A \cap C = \{3, 4\}$ $A \cap D = \{4, 1\}$
 $B \cap C = \{3\}$ $B \cap D = \emptyset$ $C \cap D = \{4\}$

Problem 6.3.4

For each of the following collections of intervals, define an interval An for each $n \in \mathbb{N}$ such that indexed collection $\{A_n\}_{n\in\mathbb{N}}$ is the given collection of sets. Then find both the union and intersection of the indexed collections of sets.

(a)
$$\left\{ \left[1, 2+1\right), \left[1, 2+\frac{1}{2}\right), \left[1, 2+\frac{1}{3}\right), \ldots \right\}$$

(b)
$$\{(-1,2), (-\frac{3}{2},4), (-\frac{5}{3},6), (-\frac{7}{4},8), \ldots\}$$

(c)
$$\{(\frac{1}{4}, 1), (\frac{1}{8}, \frac{1}{2}), (\frac{1}{16}, \frac{1}{4}), (\frac{1}{32}, \frac{1}{8}), (\frac{1}{64}, \frac{1}{16}), \ldots\}$$

Solution

Part A

$$A_n = \left[1, 2 + \frac{1}{n}\right] \text{ with } \bigcup_{n \in \mathbb{N}} A_n = [1, 3)$$

$$\bigcap_{n \in \mathbb{N}} A_n = [1, 2].$$

Proof. Firstly consider $\bigcup_{n\in\mathbb{N}}A_n$. Let $x\in\bigcup_{n\in\mathbb{N}}A_n$. Then $x\in\left[1,2+\frac{1}{n}\right)$ for some $n\geq 1$. Therefore $1\leq x<2+\frac{1}{n}$. If n=1, then $1\leq x<3$, therefore $x\in\left[1,3\right)$, meaning $\bigcup_{n\in\mathbb{N}}A_n\subseteq\left[1,3\right)$. Let $x\in\left[1,3\right)$. It follows that $x\in A_1$ and therefore $x\in\bigcup_{n\in\mathbb{N}}A_n$, meaning $x\in\bigcup_{n\in\mathbb{N}}A_n$, meaning $x\in\bigcup_{n\in\mathbb{N}}A_n$. Therefore $x\in\bigcup_{n\in\mathbb{N}}A_n=\left[1,3\right)$.

Consider now $\bigcap_{n\in\mathbb{N}}A_n$. Let $x\in\bigcap_{n\in\mathbb{N}}A_n$. Then $\forall n\in\mathbb{N}, x\in[1,2+\frac{1}{n})$. If x<1, then $x\notin A_1$. For all $n\in\mathbb{N}$, if x=2 then $x\in A_n$ since $2<2+\frac{1}{n}$. If x>2, then $\frac{1}{N}\leq x$ with $N=\lceil\frac{1}{x}\rceil$, hence $x\notin A_N$. Therefore $\bigcap_{n\in\mathbb{N}}A_n\subseteq[1,2]$. Let $x\in[1,2]$. For all $n\in\mathbb{N}$, $x\in[1,2+\frac{1}{n})$, hence $x\in\bigcap_{n\in\mathbb{N}}A_n$. Therefore $\bigcap_{n\in\mathbb{N}}A_n=[1,2]$.

Part B

$$A_n=\left(rac{1-2n}{n},2n
ight)$$
 with $igcup_{n\in\mathbb{N}}A_n=(-2,\infty)$ $igcap_{n\in\mathbb{N}}A_n=(-1,2).$

Proof. First consider $\bigcup_{n\in\mathbb{N}}A_n$. Let $x\in\bigcup_{n\in\mathbb{N}}A_n$. Assume that $x\leq -2$. Note that $-2<-2+\frac{1}{n}=\frac{1-2n}{n}$ for all $n\in\mathbb{N}$. Therefore x cannot be in any A_n , meaning $x\notin\bigcup_{n\in\mathbb{N}}A_n$, meaning $x\notin -2$. Therefore $x\in (-2,\infty)$, hence $\bigcup_{n\in\mathbb{N}}A_n\subseteq (-2,\infty)$. Let $x\in (-2,\infty)$. If x=0, then $x\in A_n$ for all $n\in\mathbb{N}$ since the lower bound is always negative and the upper bound is always positive. If x>0, then choose $N=\lceil x\rceil$. It follows that $x\in A_N$, meaning $x\in\bigcup_{n\in\mathbb{N}}A_n$. If -2< x<0, then since $\lim_{n\to\infty}\frac{1-2n}{n}=-2$, then a $N\in\mathbb{N}$ can be chosen such that $\frac{1-2N}{N}< x$. Therefore $x\in A_N$.

Now consider $\bigcap_{n\in\mathbb{N}} A_n$. Let $x\in\bigcap_{n\in\mathbb{N}} A_n$. Let $x\in(-1,2)$. Therefore -1< x<2. Note that for all $n\in\mathbb{N}$ that

$$-2 + \frac{1}{n} < -1 < x < 2 \le 2n$$
$$\frac{1 - 2n}{n} < x < 2n.$$

Therefore $x \in A_n$ for all $n \in \mathbb{N}$, meaning $x \in \bigcap_{n \in \mathbb{N}} A_n$. Let $x \in \bigcap_{n \in \mathbb{N}} A_n$. Note that for all $n \in \mathbb{N}$ that $A_1 \subseteq A_n$. Since $x \in \bigcap_{n \in \mathbb{N}} A_n$, then $x \in A_n$ for all $n \in \mathbb{N}$. Therefore since $A_1 \subseteq A_n$ and x is in all sets A_n , $x \in A_1$. Hence $x \in (-1,2)$. Therefore $\bigcap_{n \in \mathbb{N}} A_n = (-1,2)$.

Part C

$$A_n=\left(rac{1}{2^{n+1}},rac{1}{2^{n-1}}
ight) ext{with } igcup_{n\in\mathbb{N}} A_n=(0,1) \ igcap_{n\in\mathbb{N}} A_n=arnothing.$$

Solution

Proof. First consider $\bigcup_{n\in\mathbb{N}}A_n$. Let $x\in\bigcup_{n\in\mathbb{N}}A_n$. Assume that $x\leq 0$. Note that for all $n\in\mathbb{N}$ that the lower bound $\frac{1}{2^{n+1}}$ is strictly positive or otherwords strictly greater than zero. Therefore x cannot be in A_n for any n and hence $x\not\leq 0$. Assume that x=1. Note that the upper bound $\frac{1}{2^{n-1}}$ only equals 1 when n=1. However the range is non-inclusive and hence $1\notin\bigcup_{n\in\mathbb{N}}A_n$, meaning $x\neq 1$. Assume x>1. Note that for all $n\in\mathbb{N}$ that $1\geq \frac{1}{2^{n-1}}$. Therefore $x>\frac{1}{2^{n-11}}$, meaning $x\notin\bigcup_{n\in\mathbb{N}}A_n$ and therefore $x\not\geq 1$. Therefore $x\in(0,1)$. Let $x\in(0,1)$.

Now consider $\bigcap_{n\in\mathbb{N}} A_n$. Assume towards contradiction that there is an element

 $x\in \bigcap_{n\in\mathbb{N}}A_n$. This means that for all $n\in\mathbb{N}$ that $x\in A_n$. Let $N\in\mathbb{N}$ be the index of the set A_N that x is in. Consider now the set A_L where L=N+3. Then $A_N=\left(\frac{1}{2^{N+1}},\frac{1}{2^{N-1}}\right)$ and $A_L=\left(\frac{1}{2^{N+4}},\frac{1}{2^{N+2}}\right)$. It follows that $A_N\cap A_L=\emptyset$. Therefore x is not in every set A_n , hence a contradiction. Therefore there are no elements in the intersection meaning $\bigcap_{n\in\mathbb{N}}A_n=\emptyset$.

Problem 6.4.7

Use Definition 6.7 to prove the following results about nested sets.

(a)
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots \implies \bigcup_{n \in \mathbb{N}} A_n = A_1$$

(b)
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \implies \bigcap_{n \in \mathbb{N}} A_n = A_1$$

Solution

Part A

Proof. Let A_1, A_2, A_3, \ldots be sets and assume that $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$. Let $x \in \bigcup_{n \in \mathbb{N}} A_n$. Then $\exists l \in \mathbb{N}$ such that $x \in A_l$. By the transitivity of subsets, $\forall n \in \mathbb{N}, A_n \subseteq A_1$. Therefore since x is in A_l, x is also in A_1 . Therefore $\bigcup_{x \in \mathbb{N}} A_n \subseteq A_1$. Let $x \in A_1$. By the definition of the indexed union, since 1 is in the index set \mathbb{N} , $x \in \bigcup_{n \in \mathbb{N}} A_n$. Therefore $A_1 \subseteq \bigcup_{n \in \mathbb{N}} A_n$, meaning $\bigcup_{n \in \mathbb{N}} A_n = A_1$.

Part B

Proof. Let A_1, A_2, A_3, \ldots be sets and assume that $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$. Let $x \in \bigcap_{n \in \mathbb{N}} A_n$. Then $\forall n \in \mathbb{N}$, x is in A_n meaning $x \in A_1$. Therefore $\bigcap_{n \in \mathbb{N}} A_n \subseteq A_1$. Let $x \in A_1$. By the transitivity of subsets, $A_1 \subseteq A_n$ for all $n \in \mathbb{N}$. Therefore since $x \in A_1$, it follows that $x \in A_n$ for all $n \in \mathbb{N}$, which by definition of the indexed intersection means that $x \in \bigcap_{n \in \mathbb{N}} A_n$. Therefore $A_1 \subseteq \bigcap_{n \in \mathbb{N}} A_n$. Hence $\bigcap_{n \in \mathbb{N}} A_n = A_1$.

Additional Problem #1

Let *A* and *B* be disjoint sets and define a function

$$f: \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(A \cup B) : (X, Y) \mapsto X \cup Y.$$

Prove that f is bijective.

Solution

Proof. Let A and B be disjoint sets associated with the function f as defined.

(Injectivity) Suppose that $(X_1, Y_1), (X_2, Y_2) \in \mathcal{P}(A) \times \mathcal{P}(B)$. Therefore $X_1, X_2 \subseteq A$ and $Y_1, Y_2 \subseteq B$. Since A and B are disjoint, both X_1 and X_2 are disjoint to both Y_1 and Y_2 and vice versa. Assume that $f(X_1, Y_1) = f(X_2, Y_2)$.

$$f(X_1, Y_1) = f(X_2, Y_2)$$
$$X_1 \cup Y_1 = X_2 \cup Y_2.$$

Since X_1 and X_2 are disjoint to Y_1 and Y_2 , this implies that X_1 must equal X_2 . The same argument implies that $Y_1 = Y_2$. Hence f is injective

(Surjectivity) Let $S \in \mathcal{P}(A \cup B)$. Therefore $S \subseteq A \cup B$. Let $K_1 = S \cap A$ and $K_2 = S \cap B$. Note that $K_1 \subseteq A$ and $K_2 \subseteq B$, therefore $K_1 \in \mathcal{P}(A)$ and $K_2 \in \mathcal{P}(B)$. It also follows that

$$f(K_1, K_2) = K_1 \cup K_2$$

$$= (S \cap A) \cup (S \cap B)$$

$$= S \cap (A \cup B)$$

$$= S.$$

Therefore f is surjective.

Since f is both injective and surjective, it follows that f is bijective.

Additional Problem #2

Let $A_n = \{x \in \mathbb{R} : |x^2| < \frac{1}{n}\}$. Determine $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$ and prove your claims.

Solution

$$\bigcup_{n\in\mathbb{N}}A_n=(-1,1)\qquad \qquad \bigcap_{n\in\mathbb{N}}A_n=\{0\}.$$

Proof. First note that A_n can be rewritten as $A_n = \left(-\sqrt{\frac{1}{n}}, \sqrt{\frac{1}{n}}\right)$. Let $x \in (-1, 1)$. It follows that $x \in A_1$ since $A_1 = (-1, 1)$. Therefore $x \in \bigcup_{n \in \mathbb{N}} A_n$, meaning $(-1, 1) \subseteq \bigcup_{n \in \mathbb{N}} A_n$. Now let $x \in \bigcup_{n \in \mathbb{N}} A_n$. Note that for all $n \in \mathbb{N}$, $A_n \subseteq A_1$ since $\frac{1}{n} \le 1$. Therefore $x \in (-1, 1)$, meaning $x \in (-1, 1)$, therefore $x \in (-1, 1)$.

Now consider $\bigcap_{n\in\mathbb{N}}A_n$. Let $x\in\bigcap_{n\in\mathbb{N}}A_n$. Therefore $x\in A_n$ for all $n\in\mathbb{N}$. Note that x=0 works because $0\in A_n$ for all n. Assume towards contradiction that x>0 or x<0. If x>0, since $\lim_{n\to\infty}\sqrt{\frac{1}{n}}=0$, there exists an $N\in\mathbb{N}$ such that $\frac{1}{N}< x$, meaning $x\notin A_N$. The same argument applies if x<0. Therefore x can only be zero, meaning $\bigcap_{n\in\mathbb{N}}A_n=\{0\}$.

Additional Problem #3

Suppose you are given access to an infinite number of 3-pound weights and 10-pound weights. Prove that you can stack these weights to get a total of N-pounds of weight for any N greater than or equal to 18. (e.g., you can form a 19-pound weight by combining 10+3+3+3 but you cannot form a 7-pound weight).

Solution

Proof. We proceed with strong induction. Consider the following base cases.

$$n = 18 \implies n = 6(3) + 0(10)$$
, hence 18 pounds is possible $n = 19 \implies n = 3(3) + 1(10)$, hence 19 pounds is possible $n = 20 \implies n = 0(6) + 2(10)$, hence 20 pounds is possible

Now fix an $n \in \mathbb{N}$ where $n \geq 21$ and assume that for all $k \in \mathbb{N}$ with $18 \leq k \leq n$ that a k-pound weight can be made of 3 and 10 pound weights. Otherwisely stated, $\exists a, b \in \mathbb{N}_0$ such that k = 3a + 10b. Consider the n + 1 case. Then

$$n + 1 - 3 = n - 2$$

By the induction hypothesis, $\exists a, b \in \mathbb{N}_0$ such that n-2=3a+10b. Therefore

$$n + 1 - 3 = 3a + 10b$$
$$n + 1 = 3(a + 1) + 10b.$$

Therefore for all $n \in \mathbb{N}$ greater than or equal to 18, an n-pound can be made from 3 and 10 pound weights.