Protocole NOMITM

Description et schéma

JEKKAM Issame, GURTNER Leo, GEORGEON Gautier

Protocole

Le protocole est décrit comme suit :

- (1) $A \rightarrow B: A, N_a$
- (2) $B \to A : \{B, N_b, N_a\}_{\text{pub}(A)}$
- (3) $A \rightarrow B : \{K_{AB}, N_b, N_a\}_{\text{pub}(B)}$
- (4) $B \rightarrow A : H(K_{AB}, N_a)$

Connaissances initiales On suppose qu'au début du protocole les agents A et B connaissent la clé publique pub(C) de tout agent C.

Valeurs générées Les nonces N_a et N_b sont générés à la première exécution. La clé de session K_{AB} est choisie par A.

Description pas à pas

- 1. A envoie son identité et un nonce N_a à B.
- 2. B génère N_b et renvoie (B, N_b, N_a) chiffré avec pub(A). B répond à l'identité qui a été donnée dans le message à l'étape 1, c'est-à-dire A.
- 3. A vérifie N_a , puis envoie (K_{AB}, N_b, N_a) chiffré avec pub(B). A répond à l'identité envoyée dans le chiffré, c'est-à-dire B.
- 4. B vérifie les nonces et renvoie une preuve de possession $H(K_{AB}, N_a)$.

Propriétés de sécurité (intuitives)

- **Authentification :** les nonces assurent la fraîcheur ; le message (4) confirme que B connaît K_{AB} .
- Confidentialité et intégrité : K_{AB} n'est connu que de A et B (clés privées gardées secrètes).

Calcul du coût

Règles utilisées.

(1) $A \to B : A, N_a$ Message en clair à deux atomes :

$$c_1 = f(A) + f(N_a) = 1 + 1 = 2$$
.

(2) $B \to A : \{B, N_b, N_a\}_{\text{pub}(()A)}$ On modélise la triple concaténation par des paires imbriquées :

$$f(\langle B, N_b \rangle) = 50 + 1 + 1 = 52,$$

 $f(\langle \langle B, N_b \rangle, N_a \rangle) = 50 + 52 + 1 = 103,$
 $c_2 = 1 + 103 + f(\text{pub}(()A)) = 1 + 103 + 1 = \boxed{105}.$

(3) $A \to B : \{K_{AB}, N_b, N_a\}_{\text{pub}(()B)}$

$$f(\langle K_{AB}, N_b \rangle) = 50 + 1 + 1 = 52,$$

 $f(\langle \langle K_{AB}, N_b \rangle, N_a \rangle) = 50 + 52 + 1 = 103,$
 $c_3 = 1 + 103 + f(\text{pub}(()B)) = 1 + 103 + 1 = \boxed{105}.$

(4) $B \to A : H(K_{AB}, N_a)$

$$f(\langle K_{AB}, N_a \rangle) = 50 + 1 + 1 = 52,$$

 $c_4 = 20 + 0.5 \times 52 = \boxed{46}.$

Coût total du protocole

$$c(P) = c_1 + c_2 + c_3 + c_4 = 2 + 105 + 105 + 46 = 258$$