Recall that, given a continuous function $f \colon \mathbb{R} \to \mathbb{R}$, the Fourier Transform of f is given by

$$\hat{f}(\xi) := \mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-i2\pi\xi t} dt,$$

and the inverse Fourier Transform is given by

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi)e^{i2\pi\xi t} d\xi,$$

Throughout this answer, we will denote the Fourier Transform operator by \mathcal{F} .

As the hint suggests, we will first investigate what we get when we simplify $\mathcal{F}\{\mathcal{F}\{f(t)\}\}\$. Since $\hat{f}(\xi) = \mathcal{F}\{f(t)\}\$, we know that $\mathcal{F}\{\mathcal{F}\{f(t)\}\}\$ $= \mathcal{F}\{\hat{f}(\xi)\}\$. Expanding the expression, we get

$$\mathcal{F}\{\hat{f}(\xi)\} = \int_{-\infty}^{\infty} \hat{f}(\xi)e^{-i2\pi\xi t} d\xi$$

By performing a change of variable with $u = -\xi$ (so that $du = -d\xi$), we get

$$\int_{-\infty}^{\infty} \hat{f}(\xi)e^{-i2\pi\xi t} d\xi = -\int_{\infty}^{-\infty} \hat{f}(-u)e^{i2\pi ut} du$$
$$= \int_{-\infty}^{\infty} \hat{f}(-u)e^{i2\pi ut} du$$

The last expression is, by definition, the inverse Fourier Transform of f(-u). Hence, we have shown (sans some variable renaming) that

$$\mathcal{F}\{\mathcal{F}\{f(t)\}\} = f(-t)$$

With this lemma in mind, we can easily prove the given proposition. Given $\mathcal{F}\{\mathcal{F}\{\mathcal{F}\{f(t)\}\}\}\}$, we can simplify it to $\mathcal{F}\{\mathcal{F}\{f(-t)\}\}$ by using the previous lemma. By applying the same lemma again, we get $\mathcal{F}\{\mathcal{F}\{f(-t)\}\}=f(-(-t))=f(t)$, which proves the proposition.