SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Computer Academic Year: 2022 Duration: 3 hours

Engineering Date: 19.01.2023

Time: 09:00 am to 12:00 pm

Subject: Engineering Mathematics -III (Semester III) Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required but justify it.
- (7) Draw the neat, labelled diagrams, wherever necessary.

Question No.	Questions	Max Marks
Q.1.(a)	Find Laplace transform of $sinh(t) \int_0^t e^{2u} cosh(u) du$.	(7)
	OR	
Q.1.(a)	Evaluate by using Laplace transform $\int_0^\infty e^{-t} (1 + 2t - 3t^2 + 4t^3) H(t - 2) dt.$	(7)
Q.1.(b)	Solve using Laplace transform $\frac{d^2y}{dt^2} + 9y = 18t$ given that $y(0) = 0$ and $y(\pi/2) = 0$.	(8)
Q.2.(a)	Find the Z- transform of $\left\{\cos\left(\frac{k\pi}{8} + \alpha\right)\right\}$.	(7)
	OR	
Q.2.(a)	Find the inverse Z- transform of $\frac{1}{(z-3)(z-2)}$, i) $ z < 2$ ii) $2 < z < 3$ iii) $ z > 3$.	(7)
Q.2.(b)	Find inverse Laplace transform of $\frac{(s+3)^2}{(s^2+6s+5)^2}$ by convolution theorem.	(8)
Q.3.(a)	Find the Fourier series expansion for $f(x) = \sqrt{1 - \cos(x)}$ in $(0, 2\pi)$.	(7)
	OR	•
Q.3.(a)	Obtain half rang cosine series for $f(x) = \begin{cases} kx & 0 < x < (\frac{1}{2}) \\ k(l-x) & (\frac{1}{2}) < x < l \end{cases}$	(7)

******* 1 *******

Q.3.(b)	Obtain the complex form of Fourier series for	(8)
	$f(x) = \cosh(2x) + \sinh(2x)$ in $(-2, 2)$.	
Q.4. (a)	Show that the set of functions $\{\sin\left(\frac{\pi x}{2L}\right), \sin\left(\frac{3\pi x}{2L}\right), \sin\left(\frac{5\pi x}{2L}\right),\}$ is	(7)
	orthogonal over (0, L) Hence Construct corresponding orthonormal set.	
	OR	
Q.4.(a)	Express the function $f(x) = \begin{cases} 1 & x < 1 \\ 0 & x \ge 1 \end{cases}$ as a Fourier integral and	(7)
	Hence evaluate $\int_0^\infty \frac{\sin(\lambda)\cos(\lambda x)}{\lambda} d\lambda$.	
Q.4.(b)	1) Find the Fourier Sine Transforms of $f(x) = e^{-ax}$, $a > 0$.	(8)
	2) Find the finite Fourier Sine Transforms of $f(x) = x^2$, $0 < x < 4$.	
Q.5.(a)	Find the Fourier Transform of $f(x) = \begin{cases} 1 & x < a \\ 0 & x \ge a \end{cases}$ where a is a positive	(7)
	real number. Hence deduce that $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$	
	OR	
Q.5.(a)	Find the Fourier Transform of $e^{-a^2x^2}$ and hence find the Fourier	(7)
	Transform of $\cos\left(\frac{x^2}{2}\right)$ and $\sin\left(\frac{x^2}{2}\right)$.	
Q.5.(b)	If $f(x) = e^{-ax}$, $a > 0$ then find the Fourier Cosine Transform and hence	(8)
	using Parseval's identity evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)^2}$, $a > 0$.	

All the Best!

******* 2 *******