

Understanding Customer Reviews
Team Cape Town

- Overview
- Data Driven Insights
- Modelling Journey
- Model Evaluation
- LLM Integration
- Key Takeaways

Overview

Challenge

Lots of reviews per product, making it difficult for customers to find useful, relevant information, to assist with their purchase decisions

Current Situation

Poorly Written Reviews

Language & grammar errors make feedback difficult to decipher

Biased Reviews

Incentivized by discounts or brand affiliation

Unverified Reviews

No authentication for whether reviewer purchased the product

Duplicated Reviews

Reposting positive or negative comments

Goal

Identify reviews which are helpful to **customers** in their purchase decisions and to **Amazon** to improve their product assortment

^{*} This is a proxy for the age of a customer account, calculated as the time since the first review of a customer.

Modelling Journey

Objective: To flag customer reviews as helpful or not

Approach: Assess the recency, frequency & content of labelled, historically helpful reviews to build a predictive model, to spot similar patterns in recently generated reviews

Modelling Journey

Feature Engineering

CUSTOMER LEVEL

- Total reviews per customer
- Unique products reviewed
- Recency & Frequency of reviewing

TEXT PREPROCESSING

- Tokenizing words
- Removing stop words
- Count Vector (Word Frequency)
- TF-IDF of frequently occurring words

PRODUCT LEVEL

- Reviews generated per product
- General sentiment of product
- Recency & Frequency of reviews

CONTENT OF REVIEW

- · Word count of each review
- Sentiment of review
- Count of question marks, caps lock & exclamation points in review

SEASONALITY

- · Day of week / month of review creation
- Black Friday, Boxing Day & Prime Week

DIVERGENCE METRICS

- Does the review go against majority opinion?
- Does the customer only review when they have a negative experience?

amazon

Modelling Journey

^{*} All AUC values here represent the AUC on the Kaggle leader board.

Model Evaluation

LLM Integration

LLM Integration

✓ Debugging Code: Pasting the code and the error from the code provided a debugged version of the code, especially correcting for syntax issues.

Error Message:

HanalysisException: [AMBIGUOUS_REFERENCE] Reference `avg_sentiment_score_per_product` is ambiguous, could
be: [`avg_sentiment_score_per_product`, `avg_sentiment_score_per_product`].

LLM Solution:

Now, the joined DataFrame 'joined_df' will have two distinct columns: snippet / 'avg_sentiment_score_per_product_df2' (from 'df1') and 'avg_sentiment_score_per_product_df2' (from 'df2').

Remember to adjust the column operations accordingly after renaming. If you need to access the value from the original column in `df1`, use

`avg_sentiment_score_per_product`. If you need to access the value from the renamed column in `df2`, use `avg_sentiment_score_per_product_df2`.

In your given code, you might need to look at where the `df` dataframe is joined with `sentiment_product` and `result` dataframes. Ensure that none of the joining DataFrames have the column `avg_sentiment_score_per_product` before joining or, if they do, resolve the ambiguity as shown above.

LLM Integration

LLM Integration

✓ Code Refactoring: ChatGPT made the code better formatted, legible and easier to edit, increasing efficiency, as the code becomes more "readable".

Pre LLM: 24 lines

```
def review_counts_per_product(data_input):
         review_counts = data_input.groupBy("asin").agg(
             countDistinct("reviewID").alias("reviews_per_product"),
             countDistinct('reviewerID').alias("reviewers_per_product"),
             min('reviewDate').alias('product_earliest_review'),
             max('reviewDate').alias('product_latest_review'))
         data_input = data_input.join(review_counts, on="asin", how="inner")
10
11
         data_input = data_input.withColumn('product_review_interval',
12
                                            datediff(data_input['product_latest_review'],
13
                                                     data_input['product_earliest_review']))
14
15
         data_input = data_input.withColumn("product_review_interval",
16
                                            when(col("product_latest_review") == col
                                            ("product_earliest_review"), 0).otherwise(col
                                            ("product_review_interval")))
17
18
         data_input = data_input.withColumn('product_earliest_review',
19
                                            datediff(current_date(), data_input
                                            ['product_earliest_review']))
20
21
         data_input = data_input.withColumn('product_latest_review',
                                            datediff(current_date(), data_input
22
                                            ['product_latest_review']))
23
         return data_input
```

Post LLM: 17 lines (~29% reduction)

```
def review_counts_per_product(data_input):
         review_counts = (data_input.groupBy("asin")
                          .agg(F.countDistinct("reviewID").alias("reviews_per_product"),
                              F.countDistinct('reviewerID').alias("reviewers_per_product"),
                              F.min('reviewDate').alias('product_earliest_review'),
                                                                                                Compact
                              F.max('reviewDate').alias('product_latest_review')))
                                                                                                code
         review_counts = (review_counts.withColumn('product_review_interval',
10
                                                  F.when(F.col("product_latest_review") == F.col
                                                  ("product_earliest_review"), 0)
11
                                                  .otherwise(F.datediff(F.col('product_latest_review'),
                                                  F.col('product_earliest_review'))))
                                       .withColumn('product_earliest_review_age', F.datediff(F.
12
                                      current_date(), F.col('product_earliest_review')))
13
                                       .withColumn('product_latest_review_age', F.datediff(F.current_date
                                      (), F.col('product_latest_review')))
                                                                                    Multiple new
14
         data_input = data_input.join(review_counts, on="asin", how="inner")
                                                                                     columns created
15
16
                                                                                    all at once
         return data_input
17
```

Key Takeaways

Learnings

- ✓ **Feature Engineering:** The biggest improvement in model performance was brought about by adding features on how reviews are perceived by customers.
- ✓ Feature Selection: Relevant features need to be included in the model. Too many / too little features can erode performance.
- ✓ Fitting Different Models: Switching from Logistic Regression to Boosting models (Light GBM) improved model performance.
- ✓ Cross Validation: Cross-validation to optimize for hyper parameter values (using Optuna, Grid Search) improved model performance.
- ✓ Sampling Data: Data must be sampled to complete model training within a reasonable amount of time.

Thanks!

Our team: Team Cape Town	
	Q

APPENDIX

Model Evaluation

