$$egin{aligned} 5 & 2$$
 次の正方行列 A を $A=egin{pmatrix} -rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \end{pmatrix}$ で定める。 $n=1,\,2,\,3,\,\cdots$ に対して ,

点 $P_n(x_n, y_n)$ を関係式

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = A \begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad (n = 1, 2, 3, \dots)$$

で定める。ただし, $x_0=1$, $y_0=0$ とする。

- (1) A^4 を求めよ。
- (2) $n=0, 1, 2, \cdots$ に対して,

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = (E - A^{n+1})(E - A)^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

が成り立つことを示せ。ただし,Eは2次の単位行列とする。

(3) 原点 O から P_n までの距離 OP_n が最大となる n を求めよ。