2. Convex sets

Xinfu Liu

Outline

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1, x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment: between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies x = \theta x_1 + (1 - \theta) x_2 \in C$

example: (one convex, two nonconvex sets)

Convex set

example

Convex combination and convex hull

convex combination of x_1, \dots, x_n : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \dots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull: set of all convex combinations of points in C (conv C)

Convex cone

cone: A set C is called a cone if for every $x \in C$ and $\theta \ge 0$ we have $\theta x \in C$

convex cone: A set that is convex and a cone, which means that for any $x_1, x_2 \in C$, $\theta_1, \theta_2 \ge 0$, we have

Convex cone

conic (nonnegative) combination of x_1, \dots, x_n : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1, \theta_2, \dots, \theta_k \ge 0$

conic hull: A set that contains all conic combinations of points in C

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^Tx = b\} \ (a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\} \ (a \neq 0)$

• hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x | \|x - x_c\|_2 \le r\} = \{x_c + ru | \|u\|_2 \le 1\}$$

ellipsoid: set of the form

$$\{x | (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in S_{++}^n$ (i.e. P symmetric positive definite)

other representation: $\{x_c + Au | ||u||_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$
- ||x|| = 0 if and only if x = 0
- ||tx|| = |t|||x|| for $t \in \mathbb{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm

norm ball: with center x_c and radius r: $\{x | ||x - x_c|| \le r\}$

norm cone: $\{(x, t) | ||x|| \le t\}$

$$||x||_2 \le t$$

Euclidean norm cone is called second-order cone

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
, $Cx = d$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \leq \text{is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- S^n is set of symmetric $n \times n$ matrices
- $S_+^n = \{X \in S^n | X \ge 0\}$: positive semidefinite $n \times n$ matrices

$$X \in S_+^n \iff z^T X z \ge 0 \text{ for all } z$$

 S_{+}^{n} is convex cone

• $S_{++}^n = \{X \in S^n | X > 0\}$: positive definite $n \times n$ matrices

example:

$$S_+^2 = \{X \in S^2 | \begin{bmatrix} x & y \\ y & z \end{bmatrix} \geqslant 0\}$$

it is equivalent to (Sylvester's Criterion):

$$y = 1 \quad 0 \quad x$$

$$x \ge 0$$
 and $\begin{vmatrix} x & y \\ y & z \end{vmatrix} \ge 0 \implies x \ge 0$ and $xz \ge y^2$

Operation that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - Intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex **example:**

$$S = \{x \in \mathbb{R}^m | |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 cost + x_2 cos2t + \dots + x_m cosmt$

For m=2:

Affine function

suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex } \implies f(S) = \{f(x) | x \in S\} \text{ convex }$$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex } \implies f^{-1}(C) = \{x \in \mathbf{R}^n | f(x) \in C\} \text{ convex }$$

example

- scaling, translation, projection
- solution set of linear matrix inequality $\{x | x_1 A_1 + \dots + x_m A_m \leq B\}$ $(A_i, B \in S^p)$
- hyperbolic cone $\{x | x^T P x \le (c^T x)^2, c^T x \ge 0\}$ (with $P \in S_+^n$)

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t$$
, $dom P = \{(x,t)|t>0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom $f = \{x | c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Generalized inequalities

A cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if

- *K* is convex
- *K* is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

Examples

- Nonnegative orthant $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n | x_i \ge 0, i = 1, ..., n\}$
- Positive semidefinite cone $K = S_+^n$
- Nonnegative polynomials on [0,1]:

$$K = \{x \in \mathbb{R}^n | x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0,1]\}$$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x <_K y \iff y - x \in \text{int } K$$

examples

• component wise inequality $(K = \mathbb{R}^n_+)$

$$x \leq_{R^n_+} y \iff x_i \leq y_i, \qquad i = 1, \dots, n$$

• matrix inequality $(K = S_+^n)$

$$X \leq_{S^n_+} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \leq_K **properties**: many properties of \leq_K are similar to \leq on R, e.g.

$$x \leq_K y, u \leq_K v \Rightarrow x + u \leq_K y + v$$

Minimum and minimal elements

 \leq_K is not in general a linear ordering: we can have $x \not\leq_K y$ and $y \not\leq_K x$ $x \in S$ is **the minimum element** of S with respect to \leq_K if

$$x \leq_K y$$
 for every $y \in S$

 $x \in S$ is **the minimal element** of S with respect to \leq_K if

for
$$y \in S$$
, $y \leq_K x$ only if $y = x$

example $(K = \mathbb{R}^2_+)$

 x_1 is the **minimum** element of S_1

 x_2 is the **minimal** element of S_2

Separating hyperplane theorem

if C and D are nonempty convex sets that **do not intersect**, there exist $a \neq 0$ and b such that

$$a^T x \le b$$
 for all $x \in C$ and $a^T x \ge b$ for $x \in D$

strict separation requires the stronger condition that $a^Tx < b$ for all $x \in C$ and $a^Tx > b$ for $x \in D$

it is possible that disjoint convex sets cannot be strictly separated. example?

Supporting hyperplane theorem

supporting hyperplane: for set $C \in \mathbb{R}^n$ and a point x_0 in its boundary, if $a \neq 0$ satisfies $a^Tx \leq a^Tx_0$ for all $x \in C$, then the hyperplane

$$\{x \mid a^T x = a^T x_0\}$$

is called a supporting hyperplane at the point x_0

supporting hyperplane theorem:

if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone *K*:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

$$\bullet \quad K = \mathbf{R}^n_+ \qquad \qquad \to \quad K^* = \mathbf{R}^n_+$$

$$\bullet \quad K = S_+^n \qquad \to \quad K^* = S_+^n$$

•
$$K = \{(x,t)|||x||_2 \le t\} \rightarrow K^* = \{(x,t)|||x||_2 \le t\}$$

•
$$K = \{(x,t) | ||x||_1 \le t\} \rightarrow K^* = \{(x,t) |||x||_{\infty} \le t\}$$

First three examples are self-dual cones

Dual cones of proper cones are proper, hence define generalized inequalities:

$$y \geqslant_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \geqslant_K 0$$