Homework due next Tuesday.

GSI office hours: Fridays 11-12, 426 Evans. Optional lab ours: Mondays 3:00-4:00 ? TBA

1 Transforms — 3 variants of same idea

(a) X values in $\{0,1,2,\ldots\}$. Probability generating function

$$h_X(z) = \sum_{n=0}^{\infty} P(X=n)z^n = \mathbb{E}z^X, \quad 0 \le z \le 1$$
 (1.1)

(b) X values in $[0, \infty)$. Laplace transform

$$L_X(\theta) = \mathbb{E}e^{-\theta X} = \int_0^\infty e^{-\theta x} \underbrace{f_X(x)dx}_{\mu_X(dx)}$$
 (1.2)

if *X* has density $f_X(x)$, or more generally if *X* has distribution μ_X . Finite for $0 \le \theta < \infty$.

(c) X arbitrary \mathbb{R} -valued. Characteristic function (aka Fourier transform)

$$\phi_X(t) = \mathbb{E}e^{itX} = \mathbb{E}\cos(tX) + i\mathbb{E}\sin(tX)$$
(1.3)

$$= \int_{-\infty}^{\infty} e^{itx} f_X(x) dx \tag{1.4}$$

Proposition 1.1. *If* $S = X_1 + X_2$, *independent* X_1 , X_2 , *then*

$$h_S(z) = h_{X_1}(z)h_{X_2}(z)$$
 (1.5)

$$L_S(z) = L_{X_1}(z)L_{X_2}(z) \tag{1.6}$$

$$\phi_S(z) = \phi_{X_1}(z)\phi_{X_2}(z) \tag{1.7}$$

Proof.

$$\mathbb{E}e^{itS} = \mathbb{E}\left(e^{itX_1}e^{itX_2}\right) \tag{1.8}$$

Product rule
$$\implies = \left(\mathbb{E}e^{itX_1}\right)\left(\mathbb{E}e^{itX_2}\right)$$
 (1.9)

Notation: $t, x, y \in \mathbb{R}$, $z \in \mathbb{C}$, z = x + iy. Then $|z| = \sqrt{x^2 + y^2}$, $|z_1 z_2| = |z_1||z_2|$. For \mathbb{C} -valued RV Z = X + iY, $\mathbb{E}Z = \mathbb{E}X + i\mathbb{E}Y$. Jensen's gives $|\mathbb{E}Z| \leq \mathbb{E}|Z|$. Consider the characteristic function

$$\phi: \mathbb{R} \to \mathbb{C} \tag{1.10}$$

$$t \mapsto \mathbb{E}e^{itX} \tag{1.11}$$

We have

$$\phi_X(t+h) - \phi_X(t) = \mathbb{E}\left(e^{i(t+h)X} - e^{itX}\right) = \mathbb{E}\left(e^{itX}(e^{ihX} - 1)\right)$$
(1.12)

$$|\phi_X(t+h) - \phi_X(t)| \le \mathbb{E}\left(|e^{itX}||e^{ihX} - 1|\right) = \mathbb{E}|e^{ihX} - 1| =: \psi(h)$$
 (1.13)

As $h \downarrow 0$, $e^{ihX} - 1 \rightarrow 0$. By bounded convergence $\phi(h) \rightarrow 0$ as $h \rightarrow 0$, so ϕ is uniformly continuous.

Proposition 1.2 (Inversion Formulas). Let $\phi(t)$ be the characteristic function of a PM μ .

(a)
$$\mu(a,b) + \frac{1}{2}(\mu(\{a\} + \mu\{b\})) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt$$
, $-\infty < a < b < \infty$

(b) If $\int_{-\infty}^{\infty} |\phi(t)| dt < \infty$ then μ has bounded continuous density $f(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \phi(t) dt$ Proof.

$$I(T) := \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt \tag{1.14}$$

$$S(T) := \int_0^\infty \frac{\sin x}{x} dx \to \frac{\pi}{2} \text{ as } T \to \infty$$
 (1.15)

$$\frac{e^{-ita} - e^{-itb}}{it} = \int_a^b e^{-ity} dy \tag{1.16}$$

So $\left| \frac{e^{-ita} - e^{-itb}}{it} \right| \le b - a$.

By Fubini's theorem

$$I(T) = \int_{-\infty}^{\infty} \left(\int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} e^{itx} dt \right) \mu(dx)$$
 (1.17)

(1.18)

By symmetry

$$\int_{-T}^{T} \frac{e^{it(x-a)}}{it} dt = \int_{-T}^{T} \frac{\sin(t(x-a))}{t} dt + \frac{1}{i} \int_{-T}^{T} \frac{\cos(t(x-a))}{t} dt = 0$$
 (1.19)

and

$$\int_{-T}^{T} \frac{e^{it(x-a)}}{it} dt = 2 \int_{0}^{T} \frac{\sin(\theta t)}{t} dt = 2S(\theta T), \quad \theta > 0$$
 (1.20)

$$= \underbrace{2\operatorname{sgn}(\theta)S(T|\theta|)}_{:=R(T,\theta)}, \quad -\infty < \theta < \infty \tag{1.21}$$

$$\rightarrow \pi \operatorname{sgn}(\theta) \text{ as } T \rightarrow \infty$$
 (1.22)

Hence

$$I(T) = \int_{-\infty}^{\infty} (R(x - a, T) - R(x - b, T)) \,\mu(dx) \tag{1.23}$$

(1.24)

But since $R(x - a, T) - R(x - b, T) \le 2 \sup_{\theta, T} R(\theta, T) =: K < \infty$, letting $T \to \infty$ gives

$$\lim_{T \to \infty} I(T) = 2\pi \int_{-\infty}^{\infty} \chi_{a,b}(x) \mu(dx)$$
 (1.25)

where $\chi_{a,b} := \begin{cases} 0, & \text{if } x < a \text{ or } x > b \\ 2\pi, & \text{if } a < x < b \end{cases}$ THis shows TODO: reference (a). π , if x = a or x = b

In case <mark>TODO: reference (b),</mark> the integral

$$\int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt \tag{1.26}$$

is absolutely convergent, and $\left|\frac{e^{-ita}-e^{-itb}}{it}\phi(t)\right| \leq b-a$. Use TODO: ref (a) to get

$$\mu(a,b) + \frac{1}{2}\mu\{a\} + \frac{1}{2}\mu\{b\} \le \frac{b-a}{2\pi} \int_{-\infty}^{\infty} |\phi(t)| dt$$
 (1.27)

Note $(a', b') \downarrow \{x\} \implies \mu\{x\} = 0 \ \forall x$. TODO: ref (a) implies

$$\mu(a,b) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{a}^{b} e^{-ity} dy \right) \phi(t) dt$$
 (1.28)

Fubini
$$\Longrightarrow = \int_{a}^{b} \underbrace{\left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \phi(t) dt\right)}_{\text{the density function for } \mu} dy$$
 (1.29)

Some comments:

(a) (Uniqueness) If $\phi_{\mu}(t) := \phi_{\nu}(t) \ \forall t$, then $\nu = \mu$

(b) In principle, we can calculate dist of $S_n = X_1 + X_2 + \cdots + X_n$ for independent X_i using $\phi_{S_n} = \prod_{i=1}^n \phi_{X_i}(t)$

Example 1.3. If $X \sim N(0, \sigma^2)$ then $\phi_X(t) = e^{-\sigma^2 t^2/2}$. So if X_1, X_2 are independent $N(0, \sigma_i^2)$, then $S = X_1 + X_2$ has

$$\phi_S(t) = \phi_{X_1}(t)\phi_{X_2}(t) \tag{1.30}$$

$$= \exp(-\sigma_1^2 t^2 / 2 - \sigma_2^2 t^2 / 2) \tag{1.31}$$

$$= \exp(-(\sigma_1^2 + \sigma_2^2)t^2/2) \tag{1.32}$$

= CF of
$$N(0, \sigma_1^2 + \sigma_2^2)$$
 (1.33)

Example 1.4. $X \sim \text{Exponential}(1)$, so $f(x) = e^{-x}$ for x > 0. Then

$$\phi_X(t) = \int_0^\infty e^{itx} e^{-x} dx = \int_0^\infty e^{-(1-it)x} dx = \frac{1}{1-it}$$
 (1.34)

For c > 0, $\phi_{cX}(t) = \mathbb{E}e^{ictX} = \phi_X(ct)$.

Example 1.5 (Laplace RV). *Y* has density $f_Y(y) = \frac{1}{2}e^{-|y|}$, $-\infty < y < \infty$.

$$\mu_Y = \frac{1}{2}\mu_X + \frac{1}{2}\mu_{-X} \tag{1.35}$$

$$\implies \phi_Y(t) = \frac{1}{2}\phi_X(t) + \frac{1}{2}\phi_{-X}(t) = \frac{1}{2}\left(\phi_X(t) + \phi_X(-t)\right) \tag{1.36}$$

$$=\frac{1}{2}\left(\frac{1}{1-it}+\frac{1}{1+it}\right)=\frac{1}{(1-it)(1+it)}=\frac{1}{1+t^2}$$
 (1.37)

Proposition 1.6 (Parseval's Identity). Let μ and ν be PMs with CF ϕ_{μ} and ϕ_{ν} . Then

$$\int_{-\infty}^{\infty} \phi_{\nu}(t)\mu(dt) = \int_{-\infty}^{\infty} \phi_{\mu}(t)\nu(dt)$$
 (1.38)

Proof. Take X, Y independent, $dist(X) = \mu$, $dist(Y) = \nu$.

$$\mathbb{E}[e^{iXY} \mid Y = y] = \mathbb{E}e^{iyX} = \phi_{\mu}(y) \tag{1.39}$$

$$\implies \mathbb{E}e^{iXY} = \mathbb{E}\phi_{\mu}(Y) = \int_{-\infty}^{\infty} \phi_{\mu}(y)\nu(dy) = \text{Right side}$$
 (1.40)

$$\mathbb{E}e^{iXY} = \mathbb{E}[\mathbb{E}[e^{iYX} \mid X]] = \text{Left side}$$
 (1.41)

where we have applied Fubini's theorem.

By choice of "simple" ν , get general identities between μ and ϕ_{μ} !

Example 1.7. ν uniform on [-c,c]. $\phi_{\nu}(t) = \frac{\sin(ct)}{cct}$. For any ν ,

$$\frac{1}{2c} \int_{-c}^{c} \phi_{\mu}(t)dt = \int_{-\infty}^{\infty} \frac{\sin(ct)}{ct} \mu(dt)$$
 (1.42)

Example 1.8. ν Normal $(0, \sigma^2)$. For any μ

$$\int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{t^2}{2\sigma^2}} \phi_{\mu}(t) dt = \int_{-\infty}^{\infty} e^{-\frac{1}{2}\sigma^2 t^2} \mu(dt)$$
 (1.43)