ICS 29.240.30

F 21

备案号: 10889-2002

# 中华人民共和国电力行业标准

DL / T 634.5104—2002 / IEC 60870-5-104: 2000

远动设备及系统 第5-104部分: 传输规约 采用标准传输协议子集的 IEC60870-5-101网络访问

Telecontrol equipment and systems
Part5-104: Transmission protocolsNetwork access for IEC 60870-5-101 using standard transport profiles

(IEC 60870-5-104: 2000, IDT)

2002-09-16发布

2002-12-01实施

# 中华人民共和国国家经济贸易委员会 发布

目 次

前言 引言

- 1 范围
- 2 规范性引用文件
- 3 一般体系结构
- 4 规约结构
- 5 应用规约控制信息(APCI)的定义
- 5.1 防止报文丢失和报文重复传送
- 5.2 测试过程
- 5.3 采用启 / 停的传输控制
- 5.4 端口号
- 5.5 未被确认的 I 格式APDU最大数目 (k)
- 6 DL/T 634.5101-2002中定义的ASDU的选取与新增的ASDU
- 7 选定的应用数据单元和功能与TCP服务间的映射关系

- 7.1 站初始化 (GB / T 18657.5—2002的6.1.5~6.1.7)
- 7.2 用查询方式收集数据(GB/T 18657.5—2002的6.2)
- 7.3 循环数据传输(GB/T 18657.5—2002的6.3)
- 7.4 事件收集(GB/T 18657.5—2002的6.4)
- 7.5 总召唤(GB/T 18657.5—2002的6.6)
- 7.6 时钟同步(GB/T 18657.5-2002的6.7)
- 7.7 命令传输(GB/T 18657.5—2002的6.8)
- 7.8 累计量的传输(GB/T 18657.5—2002的6.9)
- 7.9 参数装载 (GB / T 18657.5—2002的6.10)
- 7.10 测试过程(GB/T 18657.5—2002的6.11)
- 7.11 文件传输(GB/T 18657.5—2002的6.12)
- 8 在控制方向带时标的过程信息的ASDU
- 8.1 类型标识58: C SC TA 1 带时标CP56Time2a的单命令
- 8.2 类型标识59: C\_DC\_TA\_1 带时标CP56Time2a的双命令
- 8.3 类型标识60: C RC TA 1 带时标CP56Time2a的步调节命令
- 8.4 类型标识61: C\_SE\_TA\_1 带时标CP56Time2a的设定值命令,归一化值
- 8.5 类型标识62: C\_SE\_TB\_1 带时标CP56Time2a的设定值命令,标度化值
- 8.6 类型标识63: C\_SE\_TC\_1 带时标CP56Time2a的设定值命令,短浮点数
- 8.7 类型标识64: C\_BO\_TA\_1 带时标CP56Time2a的32比特串
- 8.8 类型标识107: C TS TA 1 带时标CP56Time2a的测试命令
- 9 互操作性
- 9.1 系统或设备
- 9.2 网络配置
- 9.3 物理层
- 9.4 链路层
- 9.5 应用层
- 9.6 基本应用功能

# 前 言

国际电工委员会(IEC)1995年出版IEC60870-5-101以来,得到了广泛应用,为适应网络传输,2000年出版了IEC 60870-5-104: 2000。为规范本标准在国内的应用,全国电力系统控制及其通信标准化技术委员会于2000年向国家经贸委提出申请,经国家经贸委电力[2000]70号文批准立项。本标准等同采用IEC 60870-5-104: 2000 远动设备与系统 第5-104部分: 传输规约—采用标准传输协议子集的IEC 60870-5-101的网络访问。

20世纪90年代以来,国际电工委员会第57技术委员会,为适应电力系统(包括EMS、SCADA和配电自动 化系统)及其他公用事业的需要,制定了一系列传输规约。这些规约共分5篇:

IEC 60870-5-1: 1990 远动设备与系统 第5部分: 传输规约 第1篇: 传输帧格式;

IEC 60870-5-2: 1992 远动设备与系统 第5部分: 传输规约 第2篇: 链路传输规则;

IEC 60870-5-3: 1992 远动设备与系统 第5部分: 传输规约 第3篇: 应用数据的一般结构;

IEC 60870-5-4: 1992 远动设备与系统 第5部分: 传输规约 第4篇: 应用信息元素定义和编码;

IEC 60870-5-5: 1995 远动设备与系统 第5部分: 传输规约 第5篇: 基本应用功能。

近年来,IEC制定了一系列配套标准,经国家经贸委批准,我国制定了相应的电力行业标准,它们是:

- DL/T ×××-200× 基本远动任务配套标准(IEC 60870-5-101: 2000, IDT);
- DL / T 719-2000电力系统电能累计量传输配套标准(IEC 60870-5-102: 1996, IDT);
- DL/T 667—1999 继电保护设备信息接口配套标准(IEC 60870-5-103: 1997, IDT)。

基本标准是制定和理解配套标准的依据,配套标准都要引用基本标准,配套标准是针对具体应用作了具体规定,使基本标准的原则更加明确。等同采用基本标准和配套标准有利于更好地贯彻标准,实现远动设备的互操作性。

本标准要求采用端口号2404,起草小组提醒使用者关注由此而可能引起的安全性问题,采取相关的防范措施。

本标准由全国电力系统控制及其通信标准化技术委员会提出和归口。

本标准由国家电力公司电力自动化研究院负责起草,国调中心、中国电力科学研究院、国家电力公司南京电力自动化设备总厂参加。

本标准主要起草人:何卫、谭文恕、刘佩娟、郭进、徐劲松、马文龙。

# 引 言

IEC 60870-5-101为两个具有永久连接电路的主站与子站间传输基本远动信息提供了一套通信协议集。

在某些应用中,可能需要在通过数据网络连接的远动站之间传输相同类型的应用报文,这个数据网络上含有中继站,可以存储与转发报文,并在远动站之间提供虚电路。这种网络的传输延时取决于网络负载。

一般而言,不确定的延时意味着在远动站之间没办法采用在IEC 60870-5-101中定义的数据链路层。但是,在某些情况下,还是可以使具有IEC 60870-5-101全部3层的远动站,以适应采用数据包装配与拆卸 (PAD)类型站的数据网络,实现平衡通信的访问。

对于其他所有情况,本标准不采用IEC 60870-5-101的链路功能,但通过一套合适的传输协议子集,可用来提供平衡式存取。

# 远动设备及系统 第5-104部分:传输规约 采用标准传输协议子集的IEC 60870-5-101网络访问

#### 1 范围

本标准适用于具有串行比特编码的数据传输的远动设备和系统,用以对地理广域过程的监视和控制。制定远动配套标准的目的是使兼容的远动设备之间达到互操作。本标准利用了国际标准IEC 60870-5的系列文件,本标准规定了IEC 60870-5-101的应用层与TCP / IP提供的传输功能的结合。在TCP / IP框架内,可以运用不同的网络类型,包括X.25,FR(帧中继),ATM(异步传输模式)和ISDN(综合服务数据网络)。根据相同的定义,不同的ASDU,包括IEC 60870-5全部配套标准(例如IEC 60870-5-102)所定义的ASDU,可以与TCP / IP相结合,不过这些在本标准中没有进一步说明。

注:安全机制不在本标准范围之内。

#### 2 规范性引用文件

下列文件中条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单

(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB / T 18657.3—2002 远动设备与系统 第5部分: 传输规约 第3篇: 应用数据的一般结构 (IEC 60870-5-3: 1992, IDT)

GB/T 18657.4—2002 远动设备与系统 第5部分: 传输规约 第4篇: 应用信息元素的定义和编码 (IEC 60870-5-4: 1993, IDT)

GB / T 18657.5—2002 远动设备与系统 第5部分: 传输规约 第5篇: 基本应用功能(IEC 60870-5-5: 1995, IDT)

DL/T 634.5101—2002 远动设备与系统 第5部分: 传输规约 第101篇: 基本远动任务配套标准 (IEC 60870-5-101: 2000, IDT)

DL / T 719—2000 远动设备与系统 第5部分: 传输规约 第102篇: 电力系统电能累计量传输规约配套标准(IEC 60870-5-102: 1996, IDT)

ITU-T建议X.25: 1996 数据终端设备(DTE)与数据通信设备的接口,用于工作在分组方式,以及通过专用电路与共用数据网相连接的终端

IEEE 802.3: 1998 信息技术 电讯与系统间信息交换 局域网与城域网 特殊要求 第3部分: 载波侦听多址访问冲突检测(CSMA/CD)访问方法与物理层规范

RFC 791 互联网协议 请求注释791 (MILSTD 1777) (9, 1981)

RFC 793 传输控制协议 请求注释793 (MILSTD 1778) (9, 1981)

RFC 894 以太网上的互联网协议

RFC 1661 点对点协议(PPP)

RFC 1662 HDLC帧上的PPP

RFC 1700 赋值,请求注释1700(STD 2)(10, 1994)

RFC 2200 互联网正式协议标准集,请求注释2200 (6, 1997)

## 3 一般体系结构

本标准定义了开放的TCP / IP接口的使用,这个网络包含例如传输DL / T 634.5101—2002 ASDU的远动设备的局域网。包含不同广域网类型(如X.25,帧中继; ISDN等等)的路由器可通过公共的TCP / IP 局域网接口互联(见图1)。图1所示为一个冗余的主站配置与一个非冗余的主站配置。



图1 一般体系结构

使用单独的路由器有以下好处:

- ——端系统无需特殊的网络软件;
- ——端系统无需路由功能;
- ——端系统无需网络管理;
- ——更便于从专门从事于远动设备的制造商处得到端系统;
- ——更便于从非专业远动设备的制造商处得到适用于各种网络的路由器;
- ——只需更换路由器即可改变网络类型,而对端系统没有影响;
- ——特别适合于转换原已存在的支持DL/T 634.5101—2002的端系统;
- ——现在和将来都易于实现。

#### 4 规约结构

| 根据DL/T634.5101—2002从GB/T18657.5—2002中选取的应用功能  | 初始化      | 用户进程     |
|-----------------------------------------------|----------|----------|
| 从DL / T 634.5101—2002和IEC 60870-5-104中选取的ASDU |          |          |
| APCI (应用规约控制信息)                               |          | 应用层      |
| 传输接口(用户到TCP的接口)                               |          | (第7层)    |
|                                               |          | 传输层(第4层) |
| TCP / IP协议子集(RFC2200)                         | 网络层(第3层) |          |
| ICF / IF 例以 J 来(RFC2200)                      | 链路层(第2层) |          |
|                                               |          | 物理层(第1层) |
| 注: 第5、第6层未用。                                  |          |          |

# 图2 定义的远动配套标准选择的标准版本

图2所示为端系统的规约结构。

图3所示为本标准推荐使用的TCP / IP协议子集(RFC2200)。本标准出版时,RFC文件均为有效,但可能在某时被等效的RFC文件所取代,相关的RFC文件可从网址http: / / www.ietf.org取得。

| 7.1               |                |          |  |
|-------------------|----------------|----------|--|
| RFC793            | 传输层(第4层)       |          |  |
| RFC791            | RFC791(互联网协议)  |          |  |
| RFC 1661<br>(PPP) | RFC 894        | 数据链路层    |  |
| RFC 1662          | (在以太网上传输IP数据报) | (第2层)    |  |
| (HDLC帧格式PPP)      |                |          |  |
| X.21              | IEEE802.3      | 物理层(第1层) |  |
|                   |                |          |  |

传输层接口(用户到TCP的接口)

串行线 以太网

图3 选择的TCP / IP协议集RFC 2200的标准版本

如图1所示的例子,以太网802.3栈可能被用于远动站端系统或DTE(数据终端设备)驱动一单独的路由器。如果不要求冗余,可以用点对点的接口(如X.21)代替局域网接口接到单独的路由器,这样可以在对原先支持DL/T 634.5101—2002的端系统进行转化时,保留更多本来的硬件。

其他来自RFC 2200的兼容子集都是允许的。

本标准采用的TCP / IP传输集与在其他引用标准中的定义相同,没有变更。

## 5 应用规约控制信息(APCI)的定义

传输接口(用户到TCP)是一个面向流的接口,它没有为DL/T 634.5101—2002中的ASDU定义任何启动或者停止机制。为了检出ASDU的启动和结束,每个APCI包括下列的定界元素:一个启动字符,ASDU的规定长度,以及控制域(见图4)。可以传送一个完整的APDU(或者出于控制目的,仅仅是传送APCI域)(见图5)。



# 图4 远动配套标准的APDU定义



图5 远动配套标准的APCI定义

注: 以上所使用的缩略语出自GB/T 18657.3-2002的第5章,如下所示:

APCI应用规约控制信息;

ASDU应用服务数据单元;

APDU应用规约数据单元。

启动字符68H定义了数据流中的起点。

APDU的长度域定义了APDU体的长度,它包括APCI的四个控制域八位位组和ASDU。第一个被计数的八位位组是控制域的第一个八位位组,最后一个被计数的八位位组是ASDU的最后一个八位位组。ASDU的最大长度限制在249以内,因为APDU域的最大长度是253(APDU的最大值等于255减去启动和长度的八位位组),控制域的长度是4个八位位组。

控制域定义了保护报文不至丢失和重复传送的控制信息、报文传输启动 / 停止以及传输连接的监视等控制信息。控制域的计数器机制是根据ITU-T X.25标准中推荐的2.3.2.2.1至2.3.2.2.5来定义的。

图6、图7、图8为控制域的定义。



图6 信息传输格式类型(I格式)的控制域



图7 编号的监视功能类型(S格式)的控制域



图8 未编号的控制功能类型(U格式)的控制域

三种类型的控制域格式用于编号的信息传输(I格式),编号的监视功能(S格式)和未编号的控制功能(U格式)。

控制域第一个八位位组的比特1=0定义了I格式,I格式的APDU常常包含一个ASDU。I格式的控制信息如图6所示。

控制域第一个八位位组的比特1=1并且比特2=0定义了S格式。S格式的APDU只包括APCI。S格式的控制信息如图7所示。

控制域第一个八位位组的比特1=1并且比特2=1定义了U格式。U格式的APDU只包括APCI。U格式的控制信息如图8所示。在同一时刻,TESTFR、STOPDT或STARTDT中只有一个功能是激活的。

# 5.1 防止报文丢失和报文重复传送

发送序列号N(S) 和接收序列号N(R) 的使用与ITU-TX.25定义的方法一致。为了简化起见,附加的次序如图9~图12所示。

|             | Αź   | 4               |                 |        | Dħ              |             |
|-------------|------|-----------------|-----------------|--------|-----------------|-------------|
|             |      | t検収度"<br>レ状态    | 9               |        | 发恩或<br>计模器      | 接换原的<br>艺术态 |
| $A_{i}\Phi$ | Y(8) | $V(\mathbf{R})$ |                 | V(s)   | $V(\mathbf{R})$ | Acti        |
| a           | 0    | ŋ               | 1(0,9)          | 0<br>1 | n               | ₩.          |
|             |      | 1 2             | 1(3.0)          | 3      |                 |             |
|             | 1    | 3               |                 |        |                 |             |
|             | 2    |                 | <u>{([,3)</u> + |        | 1               | 3           |
| ,           |      | 4               | 1(3,2)          | 4      | •               |             |

图9 编号的I格式APDU的未受干扰过程

| 4 <b>t</b> h                                                                       |                   | 621           |
|------------------------------------------------------------------------------------|-------------------|---------------|
| APDIT 发送或接收后的<br>内部计数器 中繼素                                                         |                   |               |
| $ \begin{array}{c cccc} \hline Ast & V(S) & V(R) \\ \hline 0 & 0 & 0 \end{array} $ | ;(a,. <u>b)</u> = | V(S) V(R) Add |
| 1                                                                                  | 10.90<br>10.90    | i i           |
| 2<br>                                                                              |                   |               |
| 1                                                                                  | 8(3)              |               |
|                                                                                    |                   |               |

图10 用S格式APDU确认的编号的I格式APDU的未受干扰过程

|     | A Vi        | i           |                                |      | 8.42             |              |
|-----|-------------|-------------|--------------------------------|------|------------------|--------------|
| ı   | 发送或<br> 数器1 | 接收后的<br>四收器 |                                |      | 22考成:<br>   数者 1 | 读成后的<br>4.状态 |
| Ack | V(8)        | V(R)        |                                | V(S) | Ψ(R)             | Ante         |
|     | 0           |             | I(0,0;                         | 0    | - 11             | 0            |
|     | 1           |             | 7                              |      |                  |              |
|     | 2           |             | I(2,0:                         |      | - 1              |              |
|     | )           |             |                                |      |                  |              |
|     |             |             | 主動力光<br>細層上が打断<br>(基例 17・第 20) |      | 項形<br><b>他</b> 读 |              |
|     |             |             |                                |      |                  |              |

图11 编号的I格式APDU受干扰的过程



图12 最后的I格式APDU未被认可的情况下的超时 bzxzk.com

两个序列号在每个APDU和每个方向上都应按顺序加一。发送方增加发送序列号而接受方增加接收序列号。接收站认可连续正确接收的一个APDU或者多个APDU,将最后一个正确接收的APDU的发送序列号作为接收序列号返回,发送站把一个或几个APDU保存在缓冲区里,直到它收到接收序列号,这个接收序列号是对所有发送序列号小于或等于该号的APDU的有效确认,这时就可以删除缓冲区里已正确传送过的APDU。如只在一个方向进行较长的数据传输,就得在另一个方向发送S格式认可这些APDU。这种方法应该在两个方向上采用。在创建一个TCP连接后,发送和接收序列号都被设置成0。

下列定义对图9~图16有效:



图13 未受干扰的测试过程



图14 未确认的测试过程



图15 开始数据传送过程

| A ili                      |                      |   | ∃3µ           |     |
|----------------------------|----------------------|---|---------------|-----|
| APDU 炎透支接板こめ<br>内部計波器 V 状态 |                      |   | 公園教授<br> 教器で: |     |
| Ast V(S) V(R)              | 原接霉素                 |   | ν(K)          | Ack |
| H 3 0                      | 17(SCOPD ( 深野)       | n | ù             | n   |
|                            | 15 (STV)PDT 40 (A.)  |   |               |     |
|                            |                      |   |               |     |
| ा विकेत                    | 数据可能丢失 //            |   |               |     |
| 1                          |                      |   |               |     |
|                            | 版月主动打开<br>(現名17~450) |   |               |     |

图16 停止数据传输过程

- V(S) = 发送状态变量(见ITU-TX.25);
- $V(\mathbf{R}) = 接收状态变量(见ITU-TX.25);$

Ack=指示DTE已经正确收到所有小于或等于这个编号的I格式的APDU;

I(a,b) = I格式的APDU, a =发送序列号, b =接收序列号;

S(b) = S格式的APDU, b = 接收序列号;

U=未编号的U格式的APDU。

5.2 测试过程

未使用但已建立的连接通过发送测试APDU(TESTFR为激活状态)并得到接收站发回的TESTFR为确认状态,在两个方向上进行周期性测试。发送站和接收站在规定时间段内没有数据传输(超时)要启动测试过程。每接收一帧(I帧、S帧或U帧)重新触发时间为 $t_3$ 的定时器。B站要独立地监视连接。当然,如果它接收到从A站传来的测试帧,它就不再发送测试帧。

当连接长时间缺乏活动性,又需要确保不断时,测试过程也可以在"激活"的连接上启动。

#### 5.3 采用启 / 停的传输控制

控制站(例如,A站)利用STARTDT(启动数据传输)和STOPDT(停止数据传输)来控制被控站(B站)的数据传输。这个方法很有效。例如,当在站间有超过一个以上的连接打开从而可利用时,一次只有一个连接可以用于数据传输。定义STARTDT和STOPDT的功能在于从一个连接切换到另一个连接时避免数据的丢失。STARTDT和STOPDT还可与单个连接一起用于控制连接的通信量。

当连接建立后,连接上的用户数据传输不会从被控站自动激活,即当一个连接建立时,STOPDT是缺省状态。在这种状态下,被控站并不通过这个连接发送任何数据,除了未编号的控制功能和对这些功能的确认。控制站必须通过这个连接发送STARTDT激活指令来激活这个连接中的用户数据传输。被控站用STARTDT确认响应这个命令。如果STARTDT没有被确认,这个连接将被控制站关闭。这意味着站初始化之后(见7.1),STARTDT必须总是在来自被控站的任何用户数据传输(例如;总召唤信息)开始前发送。任何被控站只有在发送STARTDT确认后才能发送待发用户数据。

STARTDT / STOPDT是一种控制站激活 / 解除激活监视方向的机制。控制站即使没有收到激活确认,也可以发送命令或者设定值。发送和接收计数器继续运行,它们并不依赖于STARTDT / STOPDT的使用。

在某种情况下,例如从一个有效连接切换到另一连接(例如,通过操作员),控制站首先在有效连接上传送一个STOPDT激活指令,受控站停止这个连接上的用户数据传输并返回一个STOPDT确认。挂起的ACK可以在被控站收到STOPDT激活指令和返回STOPTD确认的时刻之间发送。收到STOPDT确认后,控制站可以关闭这个连接。另建的连接上需要一个STARTDT启动来自于被控站的数据传送。

## 5.4 端口号

每一个TCP地址由一个IP地址和一个端口号组成。每个连接到TCP-LAN上的设备都有自己特定的IP地址,而为整个系统定义的端口号却是一样的(见RFC1700)。本标准中使用的端口号定义为2404,已由IANA(互联网编号分配管理机构)确认。

#### 5.5 未被确认的I格式APDU最大数目 (k)

k表示在某一特定的时间内未被DTE确认(即不被承认)的连续编号的I格式APDU的最大数目。每一I格式帧都按顺序编好号,从0到模数n减1。以n为模的操作中k值永远不会超过 $n_1$ (见ITU-TX.25建议的2.3.2.2.1和2.4.8.6)。

- ——当未确认I格式APDU达到k个时,发送方停止传送。
- ——接收方收到w个I格式APDU后确认。
- ——模n操作时k的最大值是 $n_1$ 。

k值的最大范围: 1到32767( $2^{15}$ -1)APDU,精确到一个APDU。

w值的最大范围: 1到32767 APDU, 精确到一个APDU(推荐: w不应超过2k/3)。

## 6 DL / T 634.5101-2002中定义的ASDU的选取与新增的ASDU

在DL/T 634.5101-2002中以及本标准第8章中定义的表1~表6的ASDU是有效的:

#### 表 1 在监视方向的过程信息

| l (0)               | + c+ W                          |             |
|---------------------|---------------------------------|-------------|
| ⟨0⟩                 | : =未定义                          |             |
| ⟨1⟩                 | : =单点信息                         | M_SP_NA_1   |
| ⟨3⟩                 | : =双点信息                         | M_DP_NA_1   |
| ⟨5⟩                 | : =步位置信息                        | M_ST_NA_1   |
| ⟨7⟩                 | : =32比特串                        | M_BO_NA_1   |
| $\langle 9 \rangle$ | : =测量值, 归一化值                    | M_ME_NA_1   |
| ⟨11⟩                | : =测量值,标度化值                     | M_ME_NB_1   |
| ⟨13⟩                | : =测量值,短浮点数                     | M_ME_NC_1   |
| ⟨15⟩                | : =累计量                          | M_IT_NA_1   |
| ⟨20⟩                | : =带状态检出的成组单点信息                 | M_PS_NA_1   |
| ⟨21⟩                | : =不带品质描述的归一化测量值                | M_ME_ND_1   |
| ⟨22∼                | 29〉: =为将来的兼容定义保留                |             |
| a ⟨30⟩              | : =带时标CP56Time2a的单点信息           | M_SP_TB_1   |
| a ⟨31⟩              | : =带时标CP56Time2a的双点信息           | M_DP_TB_1   |
| a ⟨32⟩              | : =带时标CP56Time2a的步位置信息          | M_ST_TB_1   |
| a (33)              | : =带时标CP56Time2a的32比特串          | $M_BO_TB_1$ |
| a ⟨34⟩              | : =带时标CP56Time2a的测量值,归一化值       | M_ME_TD_1   |
| a ⟨35⟩              | : =带时标CP56Time2a的测量值,标度化值       | M_ME_TE_1   |
| a ⟨36⟩              | : =带时标CP56Time2a的测量值,短浮点数       | M_ME_TF_1   |
| a ⟨37⟩              | : =带时标CP56Time2a的累计量            | M_IT_TB_1   |
| a ⟨38⟩              | : =带时标CP56Time2a的继电保护装置事件       | M_EP_TD_1   |
| a (39)              | : =带时标CP56Time2a的继电保护装置成组启动事件   | M_EP_TE_1   |
| a ⟨40⟩              | : =带时标CP56Time2a的继电保护装置成组输出电路信息 | M_EP_TF_1   |
| ⟨41∼⋅               | 44〉: =为将来的兼容定义保留                |             |
| a 这些约               | 类型在DL/T634.5101—2002中定义。        |             |
|                     |                                 |             |

# 表 2 在控制方向的过程信息

| 类型标识: =U18 [1~8] 〈45~69〉            |           |
|-------------------------------------|-----------|
| CON 〈45〉 : = 单命令                    | C_SC_NA_1 |
| CON 〈46〉 : =双命令                     | C_DC_NA_1 |
| CON 〈47〉 : =步调节命令                   | C_RC_NA_1 |
| CON 〈48〉 : =设点命令,归一化值               | C_SE_NA_1 |
| CON 〈49〉 : = 设点命令,标度化值              | C_SE_NB_1 |
| CON 〈50〉 : =设点命令,短浮点数               | C_SE_NC_1 |
| CON 〈51〉 : =32比特串                   | C_BO_NA_1 |
| 〈52~57〉 : =为将来的兼容定义保留               |           |
| 在控制方向的过程信息,带时标的ASDU                 |           |
| CON 〈58〉 : = 带时标CP56Time2a的单命令      | C_SC_TA_1 |
| CON 〈59〉 : = 带时标CP56Time2a的双命令      | C_DC_TA_1 |
| CON 〈60〉 : = 带时标CP56Time2a的步调节命令    | C_RC_TA_1 |
| CON 〈61〉 : =带时标CP56Time2a的设点命令,归一化值 | C_SE_TA_1 |
| CON 〈62〉 : =带时标CP56Time2a的设点命令,标度化值 | C_SE_TB_1 |
| hzyzk com                           | l         |

DZXZK.COM

 CON 〈63〉 : =带时标CP56Time2a的设点命令,短浮点数
 C\_SE\_TC\_1

 CON 〈64〉 : =带时标CP56Time2a的32比特串
 C\_BO\_TA\_1

 〈65~69〉 : =为将来的兼容定义保留

# 表 3 在监视方向的系统信息

 类型标识: =U18 [1~8] 〈70~99〉

 〈70〉: =初始化结束
 M\_EI\_NA\_1

 〈71~99〉: =为将来的兼容定义保留

## 表 4 在控制方向的系统信息

| 类型标识: =U18 [1~8] 〈100~109〉      |           |
|---------------------------------|-----------|
| CON 〈100〉 : =总召唤命令              | C_IC_NA_1 |
| CON 〈101〉 : = 电能脉冲召唤命令          | C_CI_NA_1 |
| 〈102〉 : =读命令                    | C_RD_NA_1 |
| CON 〈103〉 : =时钟同步命令(可选, 见7.6)   | C_CS_NA_1 |
| CON 〈105〉 : =复位进程命令             | C_RP_NA_1 |
| CON 〈107〉 : =带时标CP56Time2a的测试命令 | C_TS_TA_1 |
| 〈108~109〉: = 为将来的兼容定义保留         |           |

## 表 5 在控制方向的参数

| 类型标识: =U18 [1~8] 〈110~119〉 |           |
|----------------------------|-----------|
| CON 〈110〉 : =测量值参数,归一化值    | P_ME_NA_1 |
| CON 〈111〉 : =测量值参数,标度化值    | P_ME_NB_1 |
| CON 〈112〉 : =测量值参数,短浮点数    | P_ME_NC_1 |
| CON 〈113〉 : =参数激活          | P_AC_NA_1 |
| 〈114~119〉: =为将来的兼容定义保留     |           |

## 表 6 文 件 传 输

| 类型标识: | =U18 [1~8] 〈120~127〉  |           |
|-------|-----------------------|-----------|
| ⟨120⟩ | : =文件已准备好             | F_FR_NA_1 |
| ⟨121⟩ | : =节已准备好              | F_SR_NA_1 |
| ⟨122⟩ | : =召唤目录,选择文件,召唤文件,召唤节 | F_SC_NA_1 |
| ⟨123⟩ | : =最后的节,最后的段          | F_LS_NA_1 |
| ⟨124⟩ | : =确认文件,确认节           | F_AF_NA_1 |
| ⟨125⟩ | : =段                  | F_SG_NA_1 |
| ⟨126⟩ | : =目录                 | F_DR_TA_1 |
| ⟨127⟩ | : =为将来的兼容定义保留         |           |

注:在控制方向上具有"CON"标记的ASDU,在监视方向上可以传送同样的报文内容,只是传送原因会不相同,在监视方向上这些ASDU用作肯定或否定确认。

# 7 选定的应用数据单元和功能与TCP服务间的映射关系

这一章描述了标准中从GB/T 18657.5—2002中选择出的功能。标准中定义的应用服务被分配到适当的RFC793传输服务上。ASDU标识与GB/T 18657.5—2002定义的相同。

控制站等同于客户(连接者),被控站等同于服务器(监听者)。

7.1 站初始化(GB/T 18657.5—2002的6.1.5~6.1.7)

连接的释放既可以由控制站也可以由被控站提出。连接的建立有两种方式:

- ——由一对控制站和被控站中的控制站建立连接:
- ——两个平等的控制站,固定选择(参数)其中一个站建立连接(见图1)。

图17显示关闭一个已建立的连接,首先由控制站向TCP发出主动关闭请求,接着被控站向TCP发出被动关闭请求。图17接着显示建立一个新连接,首先由控制主站向TCP发出主动打开请求,接着被控站向TCP发出被动打开请求。最后图17显示可选择由被控站主动关闭连接。



图17 TCP连接的建立和关闭

图18显示控制站初始化时依次与每一个被控站建立连接。由子站1开始,控制站向TCP发出主动打开请求,如果被控站的TCP有监听状态(状态未显示在图18中),连接就建立起来了。其他的被控站也重复相同的过程。



图18 控制站的初始化

图19显示控制站反复尝试与被控站建立连接。直到被控站完成本地的初始化,向TCP发出被动打开请求,取得监听状态(状态未显示在图19中),连接才成功。



图19 被控站的本地初始化

图20显示控制站向TCP发出主动打开请求建立连接。然后向被控站发出复位进程命令,被控站返回确认并向TCP发出主动关闭请求。控制站向TCP发出被动关闭请求后连接被释放。然后控制站向TCP循环发出主动打开请求,试着连接被控站。当被控子站完成初始化并再次可用,被控站返回CLT=SYN,ACK。当控制站确认CLT=SYN,ACK后,连接建立。



图20 被控站的远方初始化

#### 7.2 用查询方式收集数据(GB/T 18657.5—2002的6.2)

请求1级和2级用户数据是GB/T 18657.2—2002的链路功能,无法用于本标准中。但是可以按照GB/T 18657.5—2002中图10底部所示的方法读取(请求)数据。因为循环请求数据会加重网络传输负担,所以尽管允许,也应尽量避免。

| 应用服务                | TCP服务   | ASDU标识              |
|---------------------|---------|---------------------|
| GB / T 18657.5—2002 | RFC 793 | GB / T 18657.5—2002 |
| A_RD_DATA.req       | 发送      | C_RD                |
| A_RD_DATA.ind       | 接收      | C_RD                |
|                     |         |                     |
| A_M_DATA.req        | 发送      | M                   |
| A_M_DATA.ind        | 接收      | M                   |

#### 7.3 循环数据传输(GB / T 18657.5—2002的6.3)

| 应用服务                | TCP服务   | ASDU标识              |
|---------------------|---------|---------------------|
| GB / T 18657.5—2002 | RFC 793 | GB / T 18657.5—2002 |
| A_CYCLIC_DATA.req   | 发送      | M CYCLIC            |
| A_CYCLIC_DATA.ind   | 接收      | M CYCLIC            |

#### 7.4 事件收集(GB/T18657.5—2002的6.4)

| 应用服务                | TCP服务   | ASDU标识              |
|---------------------|---------|---------------------|
| GB / T 18657.5—2002 | RFC 793 | GB / T 18657.5—2002 |
| A_EVENT.req         | 发送      | M SPONT             |
| A_EVENT.ind         | 接收      | M SPONT             |

#### 7.5 总召唤(GB/T 18657.5—2002的6.6)

| TCP服务   | ASDU标识                                      |
|---------|---------------------------------------------|
| RFC 793 | GB / T 18657.5—2002                         |
| 发送      | C_IC ACT                                    |
| 接收      | C_IC ACT                                    |
| 发送      | C_IC ACTCON                                 |
| 接收      | C_IC ACTCON                                 |
|         |                                             |
| 发送      | M                                           |
| 接收      | M                                           |
| 发送      | C_IC ACTTERM                                |
| 接收      | C_IC ACTTERM                                |
|         | RFC 793<br>发送<br>接收<br>发送<br>接收<br>发送<br>接收 |

#### 7.6 时钟同步(GB/T 18657.5—2002的6.7)

| 应用服务                | TCP服务   | ASDU标识              |
|---------------------|---------|---------------------|
| GB / T 18657.5—2002 | RFC 793 | GB / T 18657.5—2002 |
| A_CLOCKSYN.req      | 发送      | C_CS ACT            |
| A_CLOCKSYN.ind      | 接收      | C_CS ACT            |
| A_TIMEMESS.req      | 发送      | C_CS ACTCON         |
| A TIMEMESS.ind      | 接收      | C CS ACTCON         |

按照GB/T 18657.2—2002,链路层提供发送时钟命令的精确时间。因为本标准不使用该链路层,所以GB/T 18657.5—2002中定义的时钟同步过程无法应用于本标准中。

然而,在最大网络延迟小于接收站要求的时钟精度时,仍然可以使用时钟同步。例如,如果网络提供者保证网络延迟不大于400ms(X.25 WAN的典型值),并且被控站要求的精度为1s,时钟同步过程就可以使用,从而避免了在几百甚至上千个被控站安装时钟同步接收器或类似的装置。

时钟同步过程是参照GB/T 18657.5—2002的6.7, 但是"比特1"和"时间修正"要求以及链路层选项(发送/无回答或发送/确认)被删去了。

被控站的时钟必须与主站同步,这样它才能够提供具有正确的按时间顺序排列的带时标的事件和信息对

象,不管发送给控制站还是记录在本地。系统初始化完成后,控制站进行初始化同步,以后每隔一段协定的时间发送C CS ACT PDU再同步。

C\_CS ACT PDU包含完整的时钟信息(日期和时间),这个时间是应用层生成报文时的时间,并且具有要求的时间分辨率。被控站内部执行了时钟同步之后,生成一个包含同步前本地时间的C\_CS ACTCON PDU,排在缓冲区中等待发送的带时标的PDU之后发送。内部时钟同步之后发生的带时标的事件,排在C\_CS ACTCON PDU之后发送。

被控站在协定的时间间隔内等待接收时钟同步报文。如果在协定的时间间隔内未收到同步命令,被控站给所有带时标的信息对象设置上时标可能不精确(正确)的标志。在被控站初始化 (热启动或冷启动)后,收到正确的C\_CS ACT PDU前,也要设置这个标志。收到正确的C\_CS ACT PDU后发生的带时标的事件,发送时无此标志。

## 7.6.1 顺序过程描述 (见GB/T 18657.5—2002的图15)

控制站的应用进程使用CLOCKSYN.req原语发送时钟同步命令,命令包括应用进程的时间和通信服务要求的精度。通信服务使用C\_CS ACT PDU发送此请求,并使用A\_CLOCKSYN.ind原语将此请求递交给被控站的应用进程。

完成时钟同步操作后,被控站的应用进程产生一个时间报文,并用由A\_TIMEMESS.req原语启动的C\_CS A\_CTCON PDU发送。这个请求包含被控站收到A\_CLOCKSYN.ind之前应用进程的时间。这个PDU使用 A\_TIMEMESS.ind原语传递给控制站的应用进程。

# 7.7 命令传输(GB/T 18657.5—2002的6.8)

| 应用服务                | TCP服务    | ASDU标识                                |
|---------------------|----------|---------------------------------------|
| GB / T 18657.5—2002 | RFC 793  | GB / T 18657.5—2002                   |
| A_SELECT.req        | 发送       | C_SC, C_DC, C_SE, C_RC, C_BO ACT      |
| A_SELECT.ind        | 接收       | C_SC, C_DC, C_SE, C_RC, C_BO ACT      |
| A_SELECT.res        | 发送       | C_SC, C_DC, C_SE, C_RC, C_BO ACTCON   |
| A_SELECT.con        | 接收       | C_SC, C_DC, C_SE, C_RC, C_BO ACTCON   |
|                     |          |                                       |
| A_BREAK.req         | 发送       | C_SC, C_DC, C_SE, C_RC, C_BO DEACT    |
| A_BREAK.ind         | 接收       | C_SC, C_DC, C_SE, C_RC, C_BO DEACT    |
| A_BREAK.res         | 发送       | C_SC, C_DC, C_SE, C_RC, C_BO DEACTCON |
| A_BREAK.con         | 接收       | C_SC, C_DC, C_SE, C_RC, C_BO DEACTCON |
| A_EXCO.req          | 发送       | C_SC, C_DC, C_SE, C_RC, C_BO ACT      |
| •                   | 接收       |                                       |
| A_EXCO.ind          |          | C_SC, C_DC, C_SE, C_RC, C_BO ACT      |
| A_EXCO.res          | 发送       | C_SC, C_DC, C_SE, C_RC, C_BO ACTCON   |
| A_EXCO.con          | 接收       | C_SC, C_DC, C_SE, C_RC, C_BO ACTCON   |
| A_RETURNINF.req     | 发送       | M_SP, M_DP, M_ST                      |
| A_RETURNINF.ind     | 接收       | M_SP, M_DP, M_ST                      |
| A COTEDM mag        | <b>岩</b> |                                       |
| A_COTERM.req        | 发送       | C_SC, C_DC, C_SE, C_RC, C_BO ACTTERM  |
| A_COTERM.ind        | 接收       | C_SC, C_DC, C_SE, C_RC, C_BO ACTTERM  |

| 应用服务                | TCP服务   | ASDU标识              |
|---------------------|---------|---------------------|
| GB / T 18657.5—2002 | RFC 793 | GB / T 18657.5—2002 |
| A_MEMCNT.req        | 发送      | C_CI ACT            |
| A_MEMCNT.ind        | 接收      | C_CI ACT            |
| A_MEMCNT.res        | 发送      | C_CI ACTCON         |
| A_MEMCNT.con        | 接收      | C_CI ACTCON         |
| A_MEMINCR.req       | 发送      | C_CI ACT            |
| A_MEMINCR.ind       | 接收      | C_CI ACT            |
| A_MEMINCR.res       | 发送      | C_CI ACTCON         |
| A_MEMINCR.con       | 接收      | C_CI ACTCON         |
| A_REQINTO.req       | 发送      | C_CI ACT            |
| A_REQINTO.ind       | 接收      | C_CI ACT            |
| A_REQINTO.res       | 发送      | C_CI ACTCON         |
| A_REQINTO.con       | 接收      | C_CI ACTCON         |
| A_INTOINF.req       | 发送      | M_IT                |
| A_INTOINF.ind       | 接收      | M_IT                |
| A_IBREAK.req        | 发送      | C_CI DEACT          |
| A_IBREAK.ind        | 接收      | C_CI DEACT          |
| A_IBREAK.res        | 发送      | C_CI DEACTCON       |
| A_IBREAK.con        | 接收      | C_CI DEACTCON       |
| A_ITERM.req         | 发送      | C_CI ACTTERM        |
| A_ITERM.ind         | 接收      | C_CI ACTTERM        |
|                     |         |                     |

# **7.9** 参数装载(GB / T 18657.5—2002的6.10)

| 应用服务                | TCP服务   | ASDU标识              |
|---------------------|---------|---------------------|
| GB / T 18657.5—2002 | RFC 793 | GB / T 18657.5—2002 |
| A_PARAM.req         | 发送      | P_ME ACT            |
| A_PARAM.ind         | 接收      | P_ME ACT            |
| A_PARAM.res         | 发送      | P_ME ACTCON         |
| A_PARAM.con         | 接收      | P_ME ACTCON         |
|                     |         |                     |
| A_PACTIV.req        | 发送      | P_AC ACT            |
| A_PACTIV.ind        | 接收      | P_AC ACT            |
| A_PACTIV.res        | 发送      | P_AC ACTCON         |
| A_PACTIV.con        | 接收      | P_AC ACTCON         |

| A_LCPACH.req | 发送 | P_ME SPONT |
|--------------|----|------------|
| A_LCPACH.ind | 接收 | P_ME SPONT |

# **7.10** 测试过程(GB / T 18657.5—2002的6.11)

| 应用服务                | TCP服务   | ASDU标识              |
|---------------------|---------|---------------------|
| GB / T 18657.5—2002 | RFC 793 | GB / T 18657.5—2002 |
| A_TEST.req          | 发送      | C_TS ACT            |
| A_TEST.ind          | 接收      | C_TS ACT            |
| A_TEST.res          | 发送      | C_TS ACTCON         |
| A_TEST.con          | 接收      | C_TS ACTCON         |

# 7.11 文件传输(GB / T 18657.5—2002的6.12) 控制和监视方向:

| 应用服务                 | TCP服务   | ASDU标识              |
|----------------------|---------|---------------------|
| GB / T 18657.5—2002  | RFC 793 | GB / T 18657.5—2002 |
| A_CALL_DIRECTORY.req | 发送      | F_SC                |
| A_CALL_DIRECTORY.ind | 接收      | F_SC                |
| A_CALL_DIRECTORY.res | 发送      | F_DR                |
| A_CALL_DIRECTORY.con | 接收      | F_DR                |
| A_SELECT_FILE.req    | 发送      | F_SC                |
| A_SELECT_FILE.ind    | 接收      | F_SC                |
| A_FILE_READY.req     | 发送      | F_FR                |
| A_FILE_READY.ind     | 接收      | F_FR                |
| A_CALL_FILE.req      | 发送      | F_SC                |
| A_CALL_FILE.ind      | 接收      | F_SC                |
| A_SECTIONI_READY.req | 发送      | F_SR                |
| A_SECTIONI_READY.ind | 接收      | F_SR                |
| A_CALL_SECTIONI.req  | 发送      | F_SC                |
| A_CALL_SECTIONI.ind  | 接收      | F_SC                |
| A_SEGMENTI.req       | 发送      | F_SG                |
| A_SEGMENTI.ind       | 接收      | F_SG                |
| A_SEGMENTn.req       | 发送      | F_SG                |
| A_SEGMENTn.ind       | 接收      | F_SG                |

| A_LAST_SEGMENT.req   | 发送          | F_LS |
|----------------------|-------------|------|
| A_LAST_SEGMENT.ind   | 接收          | F_LS |
| A_ACK_SECTIONI.req   | 发送          | F_AF |
| A_ACK_SECTIONI.ind   | 接收          | F_AF |
| A_ACK_SECTION.illd   | 12.17       | 1_/M |
| A_SECTIONm_READY.req | 发送          | F_SR |
| A_SECTIONm_READY.ind | 接收          | F_SR |
|                      |             |      |
| A_CALL_SECTIONm.req  | 发送          | F_SC |
| A_CALL_SECTIONm.ind  | 接收          | F_SC |
|                      |             |      |
| A_ACK_SECTIONm.req   | 发送          | F_AF |
| A_ACK_SECTIONm.ind   | 接收          | F_AF |
|                      | 27. VV      |      |
| A_LAST_SECTION.req   | 发送          | F_LS |
| A_LAST_SECTION.ind   | 接收          | F_LS |
|                      | 112.22%     |      |
| A_ACK_FILE.req       | 发送          | F_AF |
| A_ACK_FILE.ind       | 接收          | F_AF |
| A DIDECTORY          | <b>小</b> 5六 | E 55 |
| A_DIRECTORY.req      | 发送          | F_DR |
| A_DIRECTORY.ind      | 接收          | F_DR |
|                      |             |      |

## 8 在控制方向带时标的过程信息的ASDU

本章定义了一些另加的在控制方向带时标CP56Time2a的ASDU。这个时标包含从毫秒到年的日期和时钟时间,在DL/T 634.5101—2002中有定义。当我们使用那些可能产生较大命令延迟的网络时,本标准建议在发送时使用带时标的ASDU,这样当被控站收到一个超过最大允许延迟(系统特定参数)的命令或设定时,才能进行正确的处理,该时标包含了控制站的命令初始形成时的时间。

**8.1** 类型标识58: C\_SC\_TA\_1 带时标CP56Time2a的单命令单个信息对象(SQ=0)(见图21):

| の 1 1 1 0 1 H<br>g 0 0 g 0 0 g 1<br>ATMAT 63: S161—2062 物 7 2.3 中泉文<br>在101.71 634 .S161 - 2063 後 7.7 4 中産文 | 炎型标识<br>可含结构识定性<br>传媒形出<br>ASDU 公共地址:                        | 数据单元标识符在 IL/7<br>634 5101—2002 的 7.1 中華文 |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|
| π.DLZ1 63: .S101 - 2002 パワ.2.5 中定文<br>1<br>SZC - GO - 0 - SCS                                               | 情感对象地让<br>500 - 单命令, 在1957 - 631.5161−2002<br>前 5.2.6.15 中意义 | 行基州家                                     |
| (1956円in/25<br>DL2] 634 .5101 - 2002 的 7 .2.6.18 中在文                                                        | 7 个人选些组的一定剖析的。<br>7 计内选性组的一定剖析的。<br>7 日明和特例为于8 至年)           |                                          |

C\_SC\_TA\_1: =CP {数据单元标识符,信息对象地址,SCO,CP56Time2a}。

类型标识58: =C\_SC\_TA\_1中使用的传送原因

在控制方向:

- 〈6〉: =激活
- (8): =停止激活

在监视方向:

- 〈7〉:=激活确认
- 〈9〉: =停止激活确认
- 〈10〉: =激活终止
- 〈44〉: =未知的类型标识
- 〈45〉: =未知的传送原因
- 〈46〉: =未知的ASDU公共地址
- 〈47〉: =未知的信息对象地址
- 8.2 类型标识59: C DC TA 1带时标CP56Time2a的双命令

单个信息对象(SQ=0)(见图22):

| n n n n n n n n n n n n n n n n n n n             | 类型标制<br>可含结构限定律<br>传媒形出<br>ASDU 公共推定:                       | 数据单元标识符布 IC/行<br>634 5101—2002 677.1 中電义 |
|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------|
| 東DECT 62: .5101 2002 系7.2.5 中定文<br>5才: QU DCS     | 情感对象地让<br>1900 - 双命令, 第1957年631.5J的1—2002<br>的 5.2.6.15 中夏义 | 竹基州泰                                     |
| (P56TimeS)<br>Til /T634,5101 - 2002 的?.2.6.18 中定义 | ?个人位位组的一定制度的。<br>(日刊和时间为 + m 至年)                            |                                          |

## 图22 ASDU: C DC TA 1, 带时标CP56Time2a的双命令

C\_DC\_TA\_1: =CP {数据单元标识符,信息对象地址,DCO,CP56Time2a}

类型标识59: = C DC TA 1中使用的传送原因

在控制方向:

- 〈6〉: =激活
- (8): =停止激活

在监视方向:

- 〈7〉:=激活确认
- 〈9〉:=停止激活确认
- 〈10〉: =激活终止
- 〈44〉: =未知的类型标识
- 〈45〉: =未知的传送原因
- 〈46〉: =未知的ASDU公共地址
- 〈47〉: =未知的信息对象地址
- **8.3** 类型标识60: C\_RC\_TA\_1带时标CP56Time2a的步调节命令单个信息对象(SQ=0)(见图23):

```
a' o i i' i : 0 :
                                     类图标识
                                     可含结构现实的
                                                                    数据单元标识符在 111.77
                                                                  634 5101-2002 677.1 中電災
和 31.41163、8101-2002 物7 2.3 中深泛
                                     传送形型
在DL/1674.5101 2000.约2.2.4 中定义
                                    ASDU会共推出
在10.../1 635 ...5101 - 2002 点 7..2..5 中定文
                                     抽底料象地迁
                                                                    伯思别索
                                    RCO 原闭节命令,在 DL/T 634,5161-2002
                         RCS.
SÆD.
           001
                                    的 7.2.6.17 中心类
          CPS6Time?v
                                    2.个人位位组的一直剖析的
DLZT 634,5101 - 2002 的 7.2.6.18 中定文。
                                    7日期和計例为 ros 至年》
```

图23 ASDU: C RC TA 1, 带时标CP56Time2a的步调节命令

C\_RC\_TA\_1: =CP {数据单元标识符,信息对象地址,RCO,CP56Time2a}; 类型标识60: =C\_RC\_TA\_1中使用的传送原因 在控制方向:

- 〈6〉: =激活
- 〈8〉: =停止激活

在监视方向:

- 〈7〉: =激活确认
- 〈9〉:=停止激活确认
- 〈10〉: =激活终止
- 〈44〉: =未知的类型标识
- 〈45〉: =未知的传送原因
- 〈46〉: =未知的ASDU公共地址
- 〈47〉: =未知的信息对象地址
- **8.4** 类型标识61: C\_SE\_TA\_1带时标CP56Time2a的设定值命令,归一化值单个信息对象(SQ=0)(见图24):

| 市101.7 1 654.5101 - 2002 β9 7.2.3 ,定义              | 传送原图 637.5101-2002 fs 7.1 中心义                                                 |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| 在DL/T 694,5161—2002 前 7.2.4 丁足义                    | ASDU 公共知识                                                                     |  |  |  |  |
| 在1077年634.5101 2002前7.2.5 - 建义                     | 信息对象 伯丽 信息对象                                                                  |  |  |  |  |
| Value                                              | - NVA - 月 (化値) 在 507年 634,5161 - 2002<br>- 約7.2.6.6中京文                        |  |  |  |  |
| g Value                                            | 3) 7.2.6.6 (PA) C                                                             |  |  |  |  |
|                                                    |                                                                               |  |  |  |  |
| CP56Time2a<br>  DLZT 631 5101—2002 ft 7/2/6.18 中级区 | T 4.8 %,按定任命令品质限定值。在 DL7 1634,5191 2002 每 7,2,6,39,定义工个八位证据的工迹制材值(E期限时间为元。至年) |  |  |  |  |

图24 ASDU: C\_SE\_TA\_1, 带时标CP56Time2a的设定值命令, 归一化值

C\_SE\_TA\_1: = CP { 数据单元标识符,信息对象地址,NVA,QOS, CP56Time2a } 类型标识61: = C\_SE\_TA\_1中使用的传送原因

## 在控制方向:

- 〈6〉: =激活
- (8): =停止激活

#### 在监视方向:

- 〈7〉:=激活确认
- 〈9〉:=停止激活确认
- 〈10〉: =激活终止
- 〈44〉: =未知的类型标识
- 〈45〉: =未知的传送原因
- 〈46〉: =未知的ASDU公共地址
- 〈47〉: =未知的信息对象地址
- **8.5** 类型标识62: C\_SE\_TB\_1带时标CP56Time2a的设定值命令,标度化值单个信息对象(SQ=0)(见图25):



图25 ASDU: C\_SE\_TB\_1, 带时标CP56Time2a的设定值命令,标度化值

C\_SE\_TB\_1: = CP {数据单元标识符,信息对象地址, SVA, QOS, CP56Time2a}

类型标识 $62: = C_SE_TB_1$ 中使用的传送原因

在控制方向:

- 〈6〉: =激活
- (8): =停止激活

#### 在监视方向:

- 〈7〉: =激活确认
- 〈9〉:=停止激活确认
- 〈10〉: =激活终止
- 〈44〉: =未知的类型标识
- 〈45〉: =未知的传送原因
- 〈46〉: =未知的ASDU公共地址
- 〈47〉: =未知的信息对象地址
- **8.6** 类型标识63: C\_SE\_TC\_1带时标CP56Time2a的设定值命令,短浮点数单个信息对象(SQ=0)(见图26):

| 9 0<br>在IC/I<br>在IIC/I | 635101-2002 ftg 7<br>63-4-5101-2002 ftg 7<br>63-4-5101-2002 ftg 7<br>53-4-5101-2002 ftg 7 | 0 0 1<br>.2.3 中洪炎<br>.2.4 中定义 | 类互标识<br>可变结构限定词<br>传统原则<br>ASD 2 今 因此还<br>信息对象 (数)      | 教据华元标识的<br>在19.7年 634.510。<br>-5002的7.1十 定义<br>信息反象 |
|------------------------|-------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| E                      | 小説・小説・小教・小教                                                                               | -                             |                                                         | カブ1 637 .5101 2002 約7.2.6 8 生選業                     |
|                        | 表数<br>QH.<br>CP58Tim/s<br>634.5101-2002的7.5                                               | 2.6.18±52X                    | —<br>QGS=装定值命令品通限定值,在<br>文/不久位付组体三进制时间<br>(上期4时间为:cs充年) | 1年/〒 934,51)1-2)02 次7,2,6,39 中定                     |

图26 ASDU: C SE TC 1, 带时标CP56Time2a的设定值命令, 短浮点数

C\_SE\_TC\_1: = CP {数据单元标识符,信息对象地址,IEEE STD 754,QOS,CP56Time2a} 类型标识63: = C SE TC 1中使用的传送原因

在控制方向:

〈6〉: =激活

(8): =停止激活

在监视方向:

〈7〉: =激活确认

〈9〉: =停止激活确认

〈10〉: =激活终止

〈44〉: =未知的类型标识

〈45〉: =未知的传送原因

〈46〉: =未知的ASDU公共地址

〈47〉: =未知的信息对象地址

**8.7** 类型标识64: C\_BO\_TA\_1带时标CP56Time2a的32比特串

单个信息对象(SQ=0)(见图27):



图27 ASDU: C\_BO\_TA\_1, 带时标CP56Time2a的32比特串

C\_BO\_TA\_1: = CP {数据单元标识符,信息对象地址,BSI,CP56Time2a} 类型标识64: = C BO TA 1中使用的传送原因

在控制方向:

- 〈6〉: =激活
- (8): =停止激活

在监视方向:

- 〈7〉: =激活确认
- 〈9〉:=停止激活确认
- (10): =激活终止(可选)
- 〈44〉: =未知的类型标识
- 〈45〉: =未知的传送原因
- 〈46〉: =未知的ASDU公共地址
- 〈47〉: =未知的信息对象地址
- **8.8** 类型标识107: C\_TS\_TA\_1带时标CP56Time2a的测试命令

单个信息对象(SQ=0)(见图28):



图28 ASDU: C\_TS\_TA\_1, 带时标CP56Time2a的测试命令

C TS TA 1: = CP {数据单元标识符,信息对象地址,TSC,CP56Time2a}

TSC: =UI16 [1..16]  $\langle 0..65535 \rangle$ 

TSC是一个二进制计数器,它给出测试命令的顺序号。在复位以后,它总是从初始值0开始计数。

类型标识107: = $C_TS_TA_1$ 中使用的传送原因:

在控制方向:

〈6〉: =激活

在监视方向:

- 〈7〉: =激活确认
- 〈44〉: =未知的类型标识
- 〈45〉: =未知的传送原因
- 〈46〉: =未知的ASDU公共地址
- 〈47〉: =未知的信息对象地址

#### 9 互操作性

本配套标准提出了一系列参数与可选项,供选用以构成支持特定远动系统的子集。某些参数值,如ASDU中的信息对象地址中的"结构"或"非结构"域,是互斥性选项。这意味着一个系统对这些参数只能选择一个值。而其他参数,如已列出的在监视方向与控制方向的不同过程信息,允许对给定应用指定适合于该应用的全集或子集。本章归纳了前述各章的参数,以帮助对特定应用做出合适的选择。如果一个系统是由不同厂家生产的设备构成的,那么所有参与者必须遵守一致的参数选择。

以下互操作性列表包含DL / T634.5101—2002的所定义的参数和本标准扩展了的参数。本标准中不适用的

参数的文字描述被划掉(文前选择框描黑)。

注:另外,系统的全部规范可能要求对系统的某些部分的某些参数,做出个别的选择,例如,对个别的可寻址测量值的比例因子做出选择。

被选择的参数必须按如下方式在方框中标注:

----功能或ASDU未采用

、 功能或ASDU按标准使用(缺省)

\_\_\_\_功能或ASDU按反向模式使用

上 功能或ASDU按标准和反向模式使用

对每一特定的节或参数给出可能的选择(空白, X, R, B)。

描黑的方框或加线的均表示本配套标准不采用该选项。

9.1 系统或设备

(系统特定参数,通过给如下选项标"×"以指定系统或设备的定义)。

□系统定义

□控制站定义(主站)

□被控站定义(从站)

9.2 网络配置

(网络特定参数,所有采用的参数均标"×")。

■ 点到点

■ 多点

■ 多个点到点

■ 多点星形

9.3 物理层

(网络特定参数,所有采用的接口与数据速率均标"×")。

传输速度(控制方向):

| 非半衡父换甩路             | 非半衡父换电路          | 半衡父狭時         | <b></b>        |
|---------------------|------------------|---------------|----------------|
| V.24 / V.28         | V.24 / V.28      | X.24 / X      | K.27           |
| 标准                  | 大于1200bit / s时推荐 |               |                |
| ■ 100bit / s        | ■2400bit / s     | ■ 2400bit / s | ■ 56000bit / s |
| ■200bit / s         | ■4800bit / s     | ■4800bit / s  | ■ 64000bit / s |
| ■300bit / s         | ■9600bit / s     | ■9600bit / s  |                |
| <b>■</b> 600bit / s |                  | ■19200bit / s |                |
| ■1200bit / s        |                  | ■38400bit / s |                |
|                     |                  |               |                |

# 传输速度(监视方向):

| 非平衡交换电路       | 非平衡交换电路          | 平衡交换电路         |               |  |  |  |  |
|---------------|------------------|----------------|---------------|--|--|--|--|
| V.24 / V.28   | V.24 / V.28      | X.24           | / X.27        |  |  |  |  |
| 标准            | 大于1200bit / s时推荐 |                |               |  |  |  |  |
| ■ 100bit / s  | ■ 2400bit / s    | ■ 2400bit / s  | ■56000bit / s |  |  |  |  |
| ■ 200bit / s  | ■4800bit / s     | ■4800bit / s   | ■64000bit / s |  |  |  |  |
| ■300bit / s   | ■9600bit / s     | ■9600bit / s   |               |  |  |  |  |
| ■ 600bit / s  |                  | ■ 19200bit / s |               |  |  |  |  |
| ■ 1200bit / s |                  | ■38400bit / s  |               |  |  |  |  |

#### 9.4 链路层

(网络特定参数,所有采用的选项均标"×",规定最大帧长。如采用非平衡传输的2级报文的非标准的分配,指明所有分配到2级的报文的类型标识与传送原因)。

帧格式FT1.2,单字符与室超时间隔在本标准中唯一采用。

链路传输: 链路地址域:

■平衡传输; ■无(只对平衡传输);

■非平衡传输。 ■一个8位位组

■两个8位为组

■结构化。

■非结构化

## 帧长度:

■最大长度L(八位位组数)。

当采用非平衡链路层,如下ASDU类型指明传输原因用二级报文(低优先级)返回。

■标准分配如下ASDU用二级数据如表7所示。

## 表7 ASDU的标准分配

| 类型标识          | 传送原因 |
|---------------|------|
| 9, 11, 13, 21 | ⟨1⟩  |

■特别分配ASDU到二级报文如表8所示:

## 表8 ASDU的特别分配

注: (当受控站没有二级数据时,可用一级数据响应对二级数据的轮询)。

#### 9.5 应用层

应用数据的传输模式:

模式1(低八位位组在前),如GB / T 18657.4—2002的4.10所定义,在本配套标准中唯一采用。 ASDU公共地址:

(系统特定参数,所有采用的参数均标"≥")。

■单个八位位组;

**×**两个八位位组。

信息对象地址:

(系统特定参数,所有采用的参数均标"×")。

| ■单个八位位组;                    |                     |            |
|-----------------------------|---------------------|------------|
| ■两个八位位组;                    | 非结构的:               |            |
| 区                           |                     |            |
| 传送原因:                       |                     |            |
| (系统特定参数,所有采用的参数均标"×'        | ")。                 |            |
| ■单个八位位组;                    |                     |            |
| <b>×</b> 两个八位位组(含源地址),若未用到, | 海 神 牡 允 力 O         |            |
| APDU长度:                     | <b>冰地址区为0。</b>      |            |
| (系统特定参数,指定每个系统APDU的最大       | 大长度)。               |            |
| APDU的最大长度域为253(缺省)。视具体      |                     |            |
| 每个系统APDU的最大长度。              | AND TO THE O        |            |
| 标准ASDU的选集。                  |                     |            |
| 在监视方向的过程信息:                 |                     |            |
| (站特定参数,只用在标准方向标"×",         | 只用在相反方向标"R",用在两个方向标 | "B")       |
| □ ⟨1⟩: =単点信息                |                     | M-SP-NA-1; |
| ■〈2〉:=帯时标单点信息               |                     | M-SP-TA-1; |
| □〈3〉: =双点信息                 |                     | M-DP-TA-1; |
| ■〈4〉:=带时标双点信息               |                     | M-DP-TA-1; |
| □〈5〉:=步位置信息                 |                     | M-ST-NA-1; |
| ■〈6〉: =带时标步位置信息             |                     | M-ST-TA-1; |
| □〈7〉: =32比特串                |                     | M-BO-NA-1; |
| ■ 〈8〉: = 带时标32比特串           |                     | M-BO-TA-1; |
| □〈9〉:=测量值,归一化值              |                     | M-ME-NA-1; |
| ■〈10〉:=测量值,带时标归一化值          |                     | M-ME-TA-1; |
| □〈11〉:=测量值,标度化值             |                     | M-ME-NB-1; |
| ■〈12〉: =测量值,带时标标度化值         |                     | M-ME-TB-1; |
| □〈13〉:=测量值,短浮点数             |                     | M-ME-NC-1; |
| ■〈14〉:=测量值,带时标短浮点数          |                     | M-ME-TC-1; |
| □〈15〉: =累计量                 |                     | M-IT-NA-1; |
| ■〈16〉:=带时标累计量               |                     | M-IT-TA-1; |
| □〈17〉:=带时标继电保护装置事件          |                     | M-EP-TA-1; |
| ■〈18〉:=带时标继电保护装置成组启动        | 事件                  | M-EP-TB-1; |
| ■〈19〉:=带时标继电保护装置成组输出        | 电路信息                | M-EP-TC-1; |
| □〈20〉: =具有状态变位检出的成组单点       | 信息                  | M-SP-NA-1; |
| □〈21〉:=测量值,不带品质描述的归一        | 化值                  | M-ME-ND-1; |
| □〈30〉:=带时标CP56Time2a的单点信息   | N                   | M-SP-TB-1; |
| □〈31〉:=带时标CP56Time2a的双点信息   | N                   | M-DP-TB-1; |
| □〈32〉:=带时标CP56Time2a的步位置信   | 息                   | M-ST-TB-1; |
| □〈33〉:=帯时标CP56Time2a的32位串   |                     | M-BO-TB-1; |
| □〈34〉:=带时标CP56Time2a的归一化测   |                     | M-ME-TD-1; |
| □ 〈35〉: =测量值,带时标CP56Time2a的 | J标度化值               | M-ME-TE-1; |
| □〈36〉: =测量值,带时标CP56Time2a的  | J短浮点数               | M-ME-TF-1; |

□〈113〉: =参数激活

P-AC-NA-1  $\circ$ 

| □ 〈37〉: = 带时标CP56Time2a的累计值                                                                                                                                                                                                     | M-IT-TB-1;                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| □〈38〉:=带时标CP56Time2a的继电保护装置事件                                                                                                                                                                                                   | M-EP-TD-1;                                  |
| □〈39〉:=带时标CP56Time2a的继电保护装置成组启动事件                                                                                                                                                                                               | M-EP-TE-1;                                  |
| □〈40〉:=带时标CP56Time2a的继电保护装置成组输出电路信息                                                                                                                                                                                             | M-EP-TF-1;                                  |
| ASDU $\mbox{$\sharp$}\ \langle 1 \rangle$ 、 $\langle 3 \rangle$ 、 $\langle 5 \rangle$ 、 $\langle 7 \rangle$ 、 $\langle 9 \rangle$ 、 $\langle 11 \rangle$ 、 $\langle 13 \rangle$ 、 $\langle 15 \rangle$ 、 $\langle 20 \rangle$ 、 | $\langle 21 \rangle$ , $\langle 30 \rangle$ |
| 〈40〉都可采用。(注:此处原文可能有误,已作改动)。                                                                                                                                                                                                     |                                             |
| 在控制方向的过程信息:                                                                                                                                                                                                                     |                                             |
| (站特定参数,只用在标准方向标"×",只用在相反方向标"R",用在两个方向标                                                                                                                                                                                          | "B")。                                       |
| □ 〈45〉: = 单命令                                                                                                                                                                                                                   | C-SC-NA-1;                                  |
| □ 〈46〉: =双命令                                                                                                                                                                                                                    | C-DC-NA-1;                                  |
| □〈47〉:=步调节命令                                                                                                                                                                                                                    | C-RC-NA-1;                                  |
| □〈48〉:=设定值命令,归一化值                                                                                                                                                                                                               | C-SE-NA-1;                                  |
| □〈49〉:=设定值命令,标度化值                                                                                                                                                                                                               | C-SE-NB-1;                                  |
| □〈50〉:=设定值命令,短浮点数                                                                                                                                                                                                               | C-SE-NC-1;                                  |
| □ 〈51〉: =32比特串                                                                                                                                                                                                                  | C-BO-NA-1;                                  |
| □ 〈58〉: = 带时标CP56Time2a的单命令                                                                                                                                                                                                     | C-SC-TA-1;                                  |
| □ 〈59〉: = 带时标CP56Time2a的双命令                                                                                                                                                                                                     | C-DC-TA-1;                                  |
| $\square$ 〈 $60$ 〉: = 带时标CP56Time2a的步调节命令                                                                                                                                                                                       | C-RC-TA-1;                                  |
| □〈61〉:=带时标CP56Time2a的设定值命令,归一化值                                                                                                                                                                                                 | C-SE-TA-1;                                  |
| □〈62〉:=带时标CP56Time2a的设定值命令,标度化值                                                                                                                                                                                                 | C-SE-TB-1;                                  |
| □〈63〉:=带时标CP56Time2a的设定值命令,短浮点数                                                                                                                                                                                                 | C-SE-TC-1;                                  |
| □ 〈64〉: = 带时标CP56Time2a的32比特串                                                                                                                                                                                                   | C-BO-TA-1;                                  |
| ASDU集(45~51)或(58~64)都可采用。                                                                                                                                                                                                       |                                             |
| 在监视方向的系统信息:                                                                                                                                                                                                                     |                                             |
| (站特定参数,采用标"×")。                                                                                                                                                                                                                 |                                             |
| □ 〈70〉: =初始化结束                                                                                                                                                                                                                  | M-EI-NA-1。                                  |
| 在控制方向的系统信息:                                                                                                                                                                                                                     | M-EI-NA-1                                   |
| (站特定参数,只用在标准方向标"×",只用在相反方向标"R",用在两个方向标                                                                                                                                                                                          | "R")                                        |
| □ 〈100〉: = 总召唤命令                                                                                                                                                                                                                | C-IC-NA-1;                                  |
| □ 〈100/ · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                     | C-CI-NA-1;                                  |
| □ 〈102〉: =读命令                                                                                                                                                                                                                   | C-RD-NA-1;                                  |
| □ 〈103〉: =时钟同步命令                                                                                                                                                                                                                | C-CS-NA-1;                                  |
| ■ 〈104〉: =测试命令                                                                                                                                                                                                                  | C-TS-NA-1;                                  |
| □ 〈105〉: =复位进程命令                                                                                                                                                                                                                | C-RP-NA-1;                                  |
| ■ 〈106〉: =延时获得命令                                                                                                                                                                                                                | C-CD-NA-1;                                  |
| □ 〈107〉: = 帯时标CP56Time2a的测试命令                                                                                                                                                                                                   | C-TS-TA-1                                   |
| 在控制方向的参数命令:                                                                                                                                                                                                                     | C 15 171-10                                 |
| (站特定参数,只用在标准方向标"×",只用在相反方向标"R",用在两个方向标                                                                                                                                                                                          | "B")。                                       |
| □〈110〉: =测量值参数,归一化值                                                                                                                                                                                                             | P-ME-NA-1;                                  |
| □ 〈111〉: =测量值参数,标度化值                                                                                                                                                                                                            | P-ME-NB-1;                                  |
| □〈112〉: =测量值参数,短浮点数                                                                                                                                                                                                             | P-ME-NC-1;                                  |

# 文件传输:

(站特定参数,只用在标准方向标"×",只用在相反方向标"R",用在两个方向标"B")。 □〈120〉: =文件已准备好 F-FR-NA-1; □〈121〉:=节已准备好 F-SR-NA-1; □〈122〉: =召唤目录,选择文件,召唤文件,召唤节 F-SC-NA-1; □〈123〉:=最后的节,最后的段 F-LS-NA-1: □〈124〉:=确认文件,确认节 F-AF-NA-1; □〈125〉: =段 F-SG-NA-1; □〈126〉: =目录(空白或×,只在监视(标准)方向有效) F-DR-TA-1. 类型标识与传送原因分配(表9):

表 9 类型标识与传送原因分配

|      |                                                                      |                                      |                 |                |           | (4                                                                 | ŧ     | iii   | 原               | 쳐    |                |                  |                    |       |                                        |                |     |
|------|----------------------------------------------------------------------|--------------------------------------|-----------------|----------------|-----------|--------------------------------------------------------------------|-------|-------|-----------------|------|----------------|------------------|--------------------|-------|----------------------------------------|----------------|-----|
|      | 类互标识                                                                 | 1 2                                  | 3 1 5           | 6              | 7         | 8                                                                  | 9     | 10    |                 | 12   | 13             | 20 -             | 37 -               | 11    | 15                                     | 16             | 17  |
|      |                                                                      |                                      |                 | "              | _ '       |                                                                    | ,     | l ''' | ''              | 12   | 1.3            | 36               | 11                 | ] ''. | 1.7                                    | ""             | "   |
| (1)  | $M\_SP\_NA\_1$                                                       |                                      |                 | 200            |           |                                                                    | NaV   |       |                 |      | <u> </u>       |                  | Š.                 |       |                                        |                |     |
| (2)  | M SP TA T                                                            |                                      |                 |                | $S_{i,j}$ | <b>"</b> / (                                                       | 200   | ă,    |                 |      |                |                  | W.                 |       |                                        |                |     |
| (3)  | $M_DP_NA_H$                                                          |                                      |                 |                |           |                                                                    |       |       |                 |      | 9              | ,                | 905 72<br>77 20 20 |       |                                        |                |     |
| (4)  | M DP TA T                                                            |                                      |                 | W.47           |           |                                                                    |       |       |                 |      |                | 2.5              |                    |       |                                        |                |     |
| (5)  | M_ST_NA_1                                                            |                                      |                 |                |           |                                                                    |       |       |                 |      | 100            |                  | 9.0<br>2.3         |       |                                        |                |     |
| (6)  | M ST TA I                                                            |                                      |                 | 70277<br>30296 |           | 6                                                                  |       |       |                 |      |                |                  | 22                 |       |                                        |                |     |
| 772  | $M \subseteq BO \subseteq NA \subseteq I$                            |                                      |                 |                |           |                                                                    | 44    |       | 4               | 75   |                | , , , , ,        |                    |       |                                        | 3              |     |
| (8)  | M BO TA 1                                                            |                                      |                 | 3.8%           |           |                                                                    |       | 7     |                 |      |                |                  | 200                |       |                                        | 3914 S         |     |
| 79>  | $M \perp M E \perp N A \perp I$                                      | 24-20-14 (1-1-14)                    |                 | 300            |           |                                                                    |       | 3     |                 |      |                |                  | Se.                |       | 20                                     |                |     |
| (10) | M ME TA 1                                                            |                                      |                 |                |           |                                                                    |       |       |                 | -3   | 10.70          | (2.77)<br>(2.44) |                    |       |                                        |                |     |
| (11) | $M \subseteq ME \subseteq NB \subseteq I$                            |                                      | (N).<br>(1/3/2) |                |           |                                                                    |       |       |                 |      |                |                  |                    |       |                                        |                |     |
| (12) | M ME TO 1                                                            | (2000 COV<br>(2000 COV<br>(2000 COV) |                 |                | 3,82      | 100                                                                |       | 7.2   |                 | 7    | 165            |                  |                    |       | ************************************** |                |     |
| (13) | $M \perp ME \perp NC \perp I$                                        |                                      |                 | X 342<br>14-3  |           |                                                                    | o./A} |       |                 |      |                |                  |                    |       |                                        | 4 744<br>2 150 |     |
| (14) | M ME TO 1                                                            | (0)4000 (1)00<br>(0)4448 (0)         |                 |                |           |                                                                    |       |       |                 | e S  |                | S                |                    |       |                                        | 7.5            |     |
| (15) | M_IT_NA_I                                                            |                                      |                 |                | V. X      |                                                                    | vil.  |       |                 |      |                |                  |                    |       |                                        |                |     |
| (16) | M H TA I                                                             |                                      |                 |                |           |                                                                    |       |       |                 |      |                | *                |                    |       | i,                                     |                |     |
| (17) | M_EP_TA_I                                                            |                                      |                 |                | 5,3 g     |                                                                    |       |       |                 |      |                | 350              | <b>*</b>           |       |                                        |                |     |
| (18) | M LF TB 1                                                            |                                      |                 |                |           |                                                                    |       |       |                 | 20.4 |                |                  | 9.50               | 10.7  | <b>X</b>                               | 7.00<br>7.00   |     |
| (19) | $M\_EP\_TC\_I$                                                       |                                      |                 |                |           |                                                                    | 4.0   |       |                 |      | Ž.             |                  |                    |       |                                        |                |     |
| (20) | M PS NA 1                                                            | 339                                  |                 | 200            |           | 730                                                                |       |       |                 |      | 6503<br>850    | r                | X                  |       |                                        | 79.31<br>2001  | 3.3 |
| (21) | $M \subseteq ME \subseteq ND \subseteq I$                            |                                      |                 |                |           |                                                                    |       |       |                 |      |                | \$<br>\          |                    |       |                                        |                |     |
| (30) | M SP TB I                                                            |                                      | 17.550<br>6.550 |                |           | 7290<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>14 |       |       |                 |      |                |                  | 3705               |       |                                        | 37             |     |
| (31) | $\mathbf{M}_{\perp}\mathbf{DP}_{\perp}\mathbf{TB}_{\perp}\mathbf{I}$ |                                      |                 |                |           |                                                                    |       |       |                 |      |                |                  |                    |       |                                        |                |     |
| (32) | M 81 TB 1                                                            |                                      | 9.33%<br>5.6%   |                |           |                                                                    |       |       |                 |      |                |                  |                    |       | ĸ.                                     |                |     |
| (33) | $M_B(R) = TR_B(R)$                                                   |                                      |                 | 68             |           |                                                                    |       |       |                 |      | (40,5<br>20137 |                  |                    |       | \$ .<br>\$                             |                |     |
| (34) | M ME TD 1                                                            | 49 74 6                              |                 |                |           | 33                                                                 |       |       |                 |      |                | W                | 7.7                |       | Š                                      |                |     |
| (35) | $M \perp ME \perp TE \perp I$                                        |                                      |                 |                |           |                                                                    |       |       |                 |      |                |                  | , 1.               |       |                                        |                |     |
| (36) | M ME IF 1                                                            |                                      |                 |                |           |                                                                    |       |       | \$ 7.5<br>(* ): | ( ×) |                |                  |                    |       |                                        | 766.7<br>375.2 |     |

表 9 (续)

|       |                                   | Τ                                      |                                      |                 |                              |                   |                                                                                                                | ( <del>/</del>                         | ä                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 乐             | р;                |                |                            |                               |              |                 |                                   |                                 |
|-------|-----------------------------------|----------------------------------------|--------------------------------------|-----------------|------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|----------------|----------------------------|-------------------------------|--------------|-----------------|-----------------------------------|---------------------------------|
|       | 茶响杯饼                              | ,                                      | 2 .                                  | 3               | 4 5                          | 5 6               | 7                                                                                                              | 8                                      | ۹                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11            | 12                | 13             | 20                         | 37 -<br>41                    | 44           | 45              | 46                                | 47                              |
| ⟨37⟩  | M_IT_TB_1                         | 100 mm                                 | 9,00                                 | : **<br>***     | 1808                         | 0)<br>80)85933    | <br>  160072                                                                                                   | (1), Su                                | 6963                                        | <br>  <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133           | <u>, 1</u> 30%    | :35 S          | on<br>Mag                  | 311                           | 2511         | D.              | ري ويو.<br>(د) دويو.<br>(د) د دوي | ورود من <u>دن</u><br>معرود کاری |
| (38)  | M. EP. TD. 1                      | 3343                                   | 198 <u>3</u><br>886                  | 7               |                              |                   |                                                                                                                |                                        | (94) B                                      | \$ \frac{1}{2} \cdot \frac{1}{2 |               | 3023.<br>NGW      |                |                            | <u>.</u><br>375               | 396.<br>296. | jis din<br>Nosa |                                   | 3 - 70<br>27 - 1                |
| 1 1   |                                   |                                        | 649<br>1834                          | 100             |                              |                   |                                                                                                                |                                        | <i>\$</i>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 2090<br>2000      |                |                            |                               |              |                 |                                   |                                 |
| (39)  | M EP TE 1                         |                                        | 70 %<br>40 A                         |                 |                              |                   |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            |                               |              |                 |                                   |                                 |
| (40)  | M EP 17/ I                        |                                        |                                      | ار)<br>مرابقهای |                              | 1/4               | 100                                                                                                            | <b>183</b> 00                          | <b>\$</b> \$                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   | ide<br>Onio    |                            | V                             |              | W.              | 187°.9                            | 90,                             |
| (15)  | C SC NA 1                         |                                        |                                      |                 |                              |                   |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>73.</b> 4  | 7.77<br>27.99     |                |                            |                               | )<br>(       |                 |                                   |                                 |
| (46)  | C DC NA L                         |                                        |                                      |                 | <u> </u>                     |                   | _                                                                                                              |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>      | 1                 |                | . A ()                     | 100                           | <u>-</u>     |                 |                                   |                                 |
| (47)  | C RC NA 1                         |                                        |                                      |                 |                              | 4)3<br>2/3        |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | Š                 |                | 93 (x4)                    |                               | Š            |                 |                                   |                                 |
| (48)  | C_SE_NA_1                         |                                        |                                      |                 |                              | <u> </u>          |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   | 1.7            | 23                         | <sup>2</sup> ्रही<br><u> </u> | <u> </u>     |                 |                                   |                                 |
| (49)  | C SE NB 1                         | 200                                    |                                      | Ŷ               |                              | <b>33</b>         |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   | ×.,            |                            | () (1 V                       | Ä            |                 |                                   |                                 |
| ⟨50⟩  | C_SE_NC_I                         | ************************************** |                                      |                 |                              | 8                 |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ij,           |                   | 70.5           | 37.<br>Gra                 | Ø                             | e<br>S       |                 |                                   |                                 |
| (51)  | C BO NA I                         |                                        |                                      |                 |                              | Ž.                |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 77. ¥             |                |                            |                               | Š            |                 |                                   |                                 |
| (58)  | C SC TA 1                         | 875 A                                  |                                      |                 |                              | 3                 |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   | ĸ,             |                            |                               | 9            |                 |                                   |                                 |
| (59)  | C DC TA 1                         |                                        |                                      |                 |                              |                   |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            |                               | Š            |                 |                                   |                                 |
| (60)  | G RC TA I                         |                                        | 32                                   |                 |                              | <u> </u>          |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            |                               | 5            |                 |                                   |                                 |
| (61)  | $C\_SE\_TA\_T$                    |                                        |                                      |                 |                              |                   |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   | 40             |                            |                               | 2            |                 |                                   |                                 |
| (62)  | C 8E 13 1                         | 300                                    |                                      | 0.578           |                              |                   |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1             |                   |                | T.                         | (3x)                          | 3            |                 |                                   |                                 |
| (63)  | C_SE_TC_I                         |                                        |                                      |                 |                              | <u> </u>          |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | (3)               | 77             |                            |                               | Š            |                 |                                   |                                 |
| (64)  | C BO TA 1                         | 1/2/3/3                                |                                      |                 |                              | *                 |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                | - 100 m                    |                               |              |                 |                                   |                                 |
| (70)  | M El NA F                         |                                        |                                      | <u> </u>        |                              |                   |                                                                                                                | 357                                    | 200                                         | (1) Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                   |                |                            |                               | (240)        |                 |                                   | 373                             |
| (100) | C IC NA 1                         |                                        |                                      |                 |                              | 90 SWEE           | 4330                                                                                                           | King Ph                                | in de                                       | FSCS.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ďġ,           |                   |                |                            |                               | MAN<br>G     | 97VS            | (4.7%                             |                                 |
| (101) | C DL SA T                         |                                        |                                      | S.              |                              | Ĩ                 |                                                                                                                | 3.2¥3                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            | inger in<br>Selection         | 9<br>9       |                 |                                   |                                 |
| (102) | C_RD_NA_I                         | 3 2 3 N                                |                                      |                 |                              |                   | No                                                                                                             |                                        |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                   |                | , N                        |                               | Š            |                 |                                   |                                 |
| (103) |                                   | 0730W                                  | <u> </u>                             |                 |                              | :N                | <b>1</b> 340                                                                                                   |                                        | 200                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7             |                   |                |                            |                               | -            |                 |                                   |                                 |
| 1 1   | C C8 NA 1                         |                                        |                                      | e y S           |                              |                   |                                                                                                                |                                        | 11 7 7 7 7<br>7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            |                               |              |                 |                                   |                                 |
| (104) | C_TS_NA_I                         |                                        |                                      | G\$15<br>2000   |                              | (C)<br>(A)        |                                                                                                                |                                        | (2) * 12<br>(3 × 3)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1200          |                   | r s            |                            | )                             | 3            |                 |                                   |                                 |
| (105) | C RP NA 1                         |                                        |                                      | P.              |                              |                   |                                                                                                                |                                        | 2                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                | 2 y                        |                               | ė            |                 |                                   |                                 |
| (196) | C_CD_NA_I                         |                                        |                                      | 3               |                              | ), (1<br>8.77     |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            |                               |              |                 |                                   |                                 |
| (107) | C TS NA 1                         |                                        |                                      |                 | 400                          |                   |                                                                                                                | 89X                                    | Ž 72                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                | SE                         |                               | S.<br>At     |                 |                                   |                                 |
| (110) | P_ME_NA_I                         | 10000<br>1200 z                        |                                      |                 | 77.52                        | <u> </u>          | $\vdash$                                                                                                       | 3.0                                    | 80 4 Te                                     | 1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |                | -                          | <u> </u>                      | <u>{</u>     |                 |                                   |                                 |
| (111) | P ME NB 1                         |                                        |                                      |                 | ng (E)<br>Ng lai             |                   |                                                                                                                | 70                                     |                                             | Į,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | (4)<br>(4)<br>(5) |                | ì                          | 9%<br>31%                     | g:<br>e.     |                 |                                   |                                 |
| (112) | P_ME_NC_1<br>P_AC_NA_1            |                                        | 786.<br>786.                         | orași<br>Vie    |                              |                   |                                                                                                                | 13.4                                   | -35/2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            | 43.55<br>793.85               | ()<br>6:     |                 |                                   |                                 |
| (120) | F_FR_NA_I                         | 125° (M<br>N256' 1                     |                                      |                 |                              | 10.]<br>Tallyani  | <br> -<br> -                                                                                                   | ija,                                   | (\$14)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            | (20)<br>2(4)                  |              |                 |                                   |                                 |
| (121) | T SR NA 1                         | (A) (B)                                | 9-9 <b>-9)</b><br>(2/9-9)            | 740             | <u>*-1750-0</u><br>\$337-200 | 12 34             |                                                                                                                | 77 (A)                                 | 144                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 746.8<br>(4.8 |                   |                | 18.48                      |                               | <del>}</del> |                 |                                   |                                 |
| (122) | F_SC_NA_I                         |                                        |                                      |                 | ery tak t<br>Seles           |                   | **************************************                                                                         |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                | 37                         |                               | 94<br>()     |                 |                                   |                                 |
| (123) | F LS NA I                         |                                        | 1000<br>1000<br>1000<br>1000<br>1000 |                 | (%)<br>8(%)(%)               | sa loviš<br>Odave |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            |                               |              |                 |                                   |                                 |
| (124) | F_AF_NA_I                         | 100 A CO                               |                                      |                 |                              |                   |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                |                            | <b>.</b> (                    | 9            |                 |                                   |                                 |
| (125) | F 8G NA 1                         |                                        | 70 70 M                              |                 | Š. 4.                        | 1                 |                                                                                                                |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | <i>3</i>          |                | X-174<br>772 17<br>57 - 18 |                               |              |                 |                                   |                                 |
| (126) | $\Gamma = DR = \Gamma A - \Gamma$ |                                        | 0.75°<br>0.75°<br>0.50°              |                 | erioria<br>Pril<br>State     |                   | W                                                                                                              | ************************************** |                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×             | 77.17.<br>17.869  | 80.51<br>19.57 |                            | W.                            | 939          |                 |                                   |                                 |
| ' '   | 能为空自或×                            | KU WENNE                               | . m *E                               | , 1             | ক) ক                         | K in a fil        | Maria de la como de la | neareT                                 | PH 44                                       | r Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68 URN        | 12.11.12.1        | W.C.           | 291,101,5                  | X 1 T .                       | 21.47.4      | 7.              | p w/27/                           | - x s . 3                       |

(站特定参数) 灰块:不要求

|     | 黑块:本配套标空白:功能或A类型标识与传输"×"只用在标"R"只用相在"B"用在两个 | ASDU未采用<br>俞原因的标记:<br>示准方向<br>E反方向                                                                       |                                                                                                         |                                                                                 |                                                              |             |
|-----|--------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|
| 9.6 | 站初始化:                                      | 被采用标 <b>"X"</b> )<br>と。                                                                                  | •                                                                                                       |                                                                                 |                                                              |             |
|     | 循环数据传送:<br>(站特定参数,<br>□ 循环数据付              |                                                                                                          | 时标 " <b>X"</b> ,只月                                                                                      | 月在相反方向                                                                          | ]时标"R",双向使                                                   | E用时标"B")。   |
|     | 读过程:<br>(站特定参数,<br>□ 读过程。                  | 仅用于标准方向                                                                                                  | 时标 " <b>X"</b> ,仅月                                                                                      | 月于反向时标                                                                          | :"R",双向使用时                                                   | ∤标"B")。     |
|     | 突发传送:<br>(站特定参数,<br>□ 突发传送。                |                                                                                                          | 时标 "X" , 仅月                                                                                             | 月于反向时标                                                                          | :"R",双向使用时                                                   | 付标"B")。     |
| 送时  | (站特定参数,                                    | 图的信息对象的两<br>在响应被监视信<br>中信息类型均标"                                                                          | 息对象的单个突然                                                                                                | 发变位时,不                                                                          | 下带时标及相应带时                                                    | 标的类型标识均被组织上 |
| 特定  | E的列表中定义。                                   | M_SP_NA_1,M_S<br>M_DP_NA_1,M_3<br>BM_ST_NA_1,M<br>M_BO_NA_1,M_<br>日一化值M_ME_N<br>示度化值M_ME_N<br>豆浮点数M_ME_N | SP_TA_1,M_SP<br>DP_TA_1和M_D<br>I_ST_TA_1和M_<br>BO_TA_1和M_B<br>A_1,M_ME_TA<br>B_1,M_ME_TB<br>C_1,M_ME_TC | _TB_1和M_]<br>P_TB_1;<br>ST_TB_1;<br>O_TB_1(如<br>_1,M_ME<br>_1和M_ME_<br>_1和M_ME_ | PS_NA_1;<br><sup>□</sup> 果是为一个特定项<br>_ND_1和M_ME_TD<br>_TE_1; | _1;         |
|     | □ 全局;<br>□ 第一组;                            |                                                                                                          | 第七组;                                                                                                    |                                                                                 | 第十三组;                                                        |             |
|     | □ 第二组;                                     |                                                                                                          | 第八组;                                                                                                    |                                                                                 | 第十四组;                                                        |             |

|    | 第三组;                      |       | 第九组;            |         | 第十五组;              |  |
|----|---------------------------|-------|-----------------|---------|--------------------|--|
|    | 第四组;                      |       | 第十组;            |         | 第十六组;              |  |
|    | 第五组;                      |       | 第十一组;           | 分配      | 配给每一组的信息对象地址应      |  |
|    | 第六组;                      |       | 第十二组;           | 在-      | 一个单独的表中显示。         |  |
| 时包 | 中同步:                      |       |                 |         |                    |  |
| (対 | 占特定参数,仅用于标准方              | 方向日   | 付标"X", (        | 仅用于反向时标 | 示"R",双向使用时标"B")。   |  |
|    | 时钟同步。                     |       |                 |         |                    |  |
| 任英 | <b>步,见7.6。</b>            |       |                 |         |                    |  |
|    | 训命令传送:                    |       |                 |         |                    |  |
|    |                           | Ē方    | 句时标"X",         | 仅用于反向时  | 寸标"R",双向使用时标"B")。  |  |
|    | 直接命令传送;                   |       |                 |         |                    |  |
|    | 直接设定值命令传送;                |       |                 |         |                    |  |
|    | 选择和执行命令;                  |       |                 |         |                    |  |
|    | 选择和执行设定值命令;               |       |                 |         |                    |  |
|    | 采用C_SE ACTTERM;<br>无附加定义; |       |                 |         |                    |  |
|    | 短脉冲宽度(在被控站由               | 三系名   | ·               |         |                    |  |
|    | 长脉冲宽度(在被控站由               |       |                 |         |                    |  |
|    | 持续输出;                     | 1/1/- | 70 3 3x 1907C7  | ,       |                    |  |
|    | 命令和设定值命令在命令               | >方[   | 句上的最大延          | 迟监控;    |                    |  |
|    | 命令和设定值命令的最大               |       |                 |         |                    |  |
| 累计 | 十量传送:                     |       |                 |         |                    |  |
| (站 | i或对象特定参数,仅用于              | 标准    | 主方向时标"X         | x",仅用于反 | 向时标"R",双向使用时标"B")。 |  |
|    | 模式A: 突发传送的当地              | 冻结    | <b>‡</b> ;      |         |                    |  |
|    | 模式B: 累计量召唤的当              | 地次    | 乐结;             |         |                    |  |
|    | 模式C: 由累计量召唤命令冻结和传送;       |       |                 |         |                    |  |
|    | 模式D: 由累计量召唤命              | 令涉    | 东结,冻结值 <b>?</b> | 突发传送;   |                    |  |
|    | 读累计量;                     |       |                 |         |                    |  |
|    | 累计量冻结不复位;                 |       |                 |         |                    |  |
|    | 累计量冻结并复位;                 |       |                 |         |                    |  |
|    | 累计量复位;                    |       |                 |         |                    |  |
|    | 总请求累计量;                   |       |                 |         |                    |  |
|    | 请求累计量第1组;                 |       |                 |         |                    |  |
|    | 请求累计量第2组;                 |       |                 |         |                    |  |
|    | 请求累计量第3组;                 |       |                 |         |                    |  |
|    | 请求累计量第4组;                 |       |                 |         |                    |  |

# 参数装载:

(对象特定参数,仅用于标准方向时标"X",仅用于反向时标"R",双向使用时标"B")。

| <ul><li>□ 门限值;</li><li>□ 滤波因子;</li><li>□ 测量值传送的下限;</li><li>□ 测量值传送的上限。</li></ul>                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------|
| 参数激活: (对象特定参数,仅用于标准方向时标"X",仅用于反向时标"R",双向使用时标"B") □ 所寻址信息对象的循环传输或者周期传输的激活 / 停止激活。                                                         |
| 测试过程: (站特定参数,仅用于标准方向时标"X",仅用于反向时标"R",双向使用时标"B")。  浏试过程。 文件传输: (站特定参数,在应用程序时标"X")。 在监视方向上的文件传送: 透明文件; 继电保护装置的扰动数据的传输; 事件序列传输; 横拟量顺序记录的传输。 |
| 在控制方向上的文件传送:<br>□ 透明文件。                                                                                                                  |
| 背景扫描:<br>(站特定参数,仅用于标准方向时标"X",仅用于反向时标"R",双向使用时标"B")。<br>□ 背景扫描。<br>传输延时获得:                                                                |
| (站特定参数,仅用于标准方向时标"X",仅用于反向时标"R",双向使用时标"B")。 ■ 传输延时获得。 超时的定义如表10所示。                                                                        |

# 表 10 超时的定义

| 参数    | 默认值 | 备 注                      | 选择值 |
|-------|-----|--------------------------|-----|
| $t_0$ | 30s | 建立连接的超时                  |     |
| $t_1$ | 15s | 发送或测试APDU的超时             |     |
| $t_2$ | 10s | 无数据报文时确认的超时, $t_2 < t_1$ |     |
| $t_3$ | 20s | 长期空闲状态下发送测试帧的超时          |     |

所有超时值的最大范围: 1s~255s, 精确到1s。

未被确认的I格式APDU的最大数目k和最迟确认APDU的最大数目w如表11所示。

| 参 数 | 默认值     | 备 注                  | 选择值 |
|-----|---------|----------------------|-----|
| k   | 12APDUs | 发送状态变量和接收序号的最大差值     |     |
| w   | 8APDUs  | 最迟接收到w个I格式的APDU后给出确认 |     |

k值的最大范围: 1到32767( $2^{15}$ -1)个APDU,精确到1个APDU。 w值的最大范围: 1到32767个APDU,精确到1个APDU。(建议: w不应超过2k/3)。 端口号如表12所示。

## 表 12 端 口 号

| 参 数 | 值    | 备注       |
|-----|------|----------|
| 端口号 | 2404 | 任何情况下均如此 |

RFC 2200组:

RFC 2200是一个官方互联网标准,它描述了由互联网构架委员会(IAB)所定的互联网上使用的协议标准的情况。它提供了一个用于互联网的广泛的实际标准集。对于给定的项目,由本标准的用户从本标准有定义的源自RFC 2200的文档中做出合适的选择。

| , ,   |                 | •  |
|-------|-----------------|----|
| □ 以   | 太网802.3;        |    |
| □ 串   | 行X.21接口;        |    |
| □ 来   | 自RFC 2200的其他选集。 |    |
| RFC 2 | 200中的有效文档列表     |    |
| 1     |                 | •  |
| 2     | •••••           | •• |
| 3     |                 | •• |
| 4     | •••••           | •• |
| 5     | •••••           | •• |
| 6     | •••••           | •• |
| 7.等。  |                 |    |