Linear Machines and SVM – Part 3: SVM for Linearly Separable Case

Objective

Objective

Construct SVM for Linearly Separable Data

Key Idea of Support Vector Machines

For a given set, a classifier that gives rise to a larger margin will be better.

SVM: To find the decision boundary such that the margin is maximized.

Formulating the Problem

Given labeled training data:

$$\{\mathbf{x}^{(i)}, \mathbf{y}^{(i)} >, \mathbf{y}^{(i)} \in \{-1, 1\}, \mathbf{x}^{(i)} \in \mathbf{R}^{d}, i=1,...,n,$$

Assuming the points are linearly separable, let's write a separating hyperplane as:

H:
$$\mathbf{w}^t \mathbf{x} + b = 0$$

Formulating the Problem (cont'd)

Let d₊ (d₋) be the shortest distance from the separating hyperplane to the *closest* positive (negative) examples.

These defines planes H₁ and H₂.

We can let d₊=d₋=d

→ Find a solution maximizing 2d.

Formulating the Margin

Given separating plane H: $\mathbf{w}^t \mathbf{x} + b = 0$ and distance d,

what are the equations for H₁ and H₂?

Consider the plane H* given by $\mathbf{w}^t \mathbf{x} + b = ||\mathbf{w}||d$

- -Check its orientation
- Check its distance to H

Formulating the Margin (cont'd)

 $|H_1|$ is given by $\mathbf{w}^t\mathbf{x} + b = ||\mathbf{w}||d$

Similarly, H_2 is given by $\mathbf{w}^t \mathbf{x} + b = -||\mathbf{w}||d$

Note: for any plane equation, $\mathbf{w}^t \mathbf{x} + b = 0$, $\{\mathbf{w}, b\}$ is defined only up to an unknow scale:

 {sw, sb} is also a valid solution to the equation, for any constant s.

Formulating the Margin (cont'd)

→ We can have the canonical formulation for all the planes as

H:
$$\mathbf{w}^t \mathbf{x} + b = 0$$

$$H_1$$
: $\mathbf{w}^t \mathbf{x} + b = 1$

$$H_2$$
: $\mathbf{w}^t \mathbf{x} + b = -1$

→ The region between H₁ and H₂ is also called the margin, and its width

is
$$\frac{2}{||\mathbf{w}||}$$

Formulating SVM

$$\{\mathbf{w}^*, b^*\} = \underset{\mathbf{w}, b}{\operatorname{argmin}} \|\mathbf{w}\| \text{ or } \{\mathbf{w}^*, b^*\} = \underset{\mathbf{w}, b}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2$$

Subject to
$$\mathbf{w}^t \mathbf{x}^{(i)} + b \ge 1 \quad \text{for } \mathbf{y}^{(i)} = +1$$
$$\mathbf{w}^t \mathbf{x}^{(i)} + b \le -1 \quad \text{for } \mathbf{y}^{(i)} = -1$$

The constraints can be combined into:

$$y^{(i)}(\mathbf{w}^t\mathbf{x}^{(i)} + b) - 1 \ge 0 \quad \forall i$$

→ A nonlinear (quadratic) optimization problem with linear inequality constraints.

How to solve SVM? (Outline)

Reformulate the problem using Lagrange multipliers α

- -Lagrangian Primal Problem
- Lagrangian Dual Problem

The Karush-Kuhn-Tucker Conditions

- Necessary and sufficient for **w**, b, α.
- Solving the SVM problem → finding a solution to the KKT conditions.

SVM: Lagrangian Primal Formulation

Define

$$L_P(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_i \alpha_i [y^{(i)} (\mathbf{w}^t \mathbf{x}^{(i)} + b) - 1]$$

then the SVM solution should satisfy

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0, \qquad \frac{\partial L_P}{\partial \mathbf{b}} = 0,$$

 $\alpha_i \geq 0$,

$$\alpha_i[y^{(i)}(\mathbf{w}^t\mathbf{x}^{(i)}+b)-1]=0$$

The final w is given by

and b is given by

$$y^{(k)} - \mathbf{w}^t \mathbf{x}^{(k)}$$

for any k such that $\alpha_k > 0$

SVM: Lagrangian Dual Formulation

The objective function is

$$L_D(\mathbf{w}, b, \alpha) = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$$

The solution is the same as before. But there is an important observation.

Points for which $\alpha_i > 0$ are called **support vectors**

