Problem from STAT5010

1. Suppose X_1, X_2, \dots, X_n is an i.i.d. sample from the distribution function

$$F_{\theta}(x) = \exp[-\exp(-(x-\theta))]$$

- (a) Verify that $F_{\theta}(x)$ is a distribution function for any θ .
- (b) Find the density function of $F_{\theta}(x)$.

(i) = P - (-1) - (i)

4)= e-41 milling

- (c) Find a minimal sufficient statistic for θ .
- (d) Find a UMP level α test for $H_0: \theta \geq 0$ VS. $H_1: \theta < 0$. State clearly which theorem you have used.
- (e) Invert the test in d) to obtain an (1α) confidence interval.
- 2. Suppose we have four random variables Y_i , i = 1, 2, 3, 4, following the model $Y_i =$ $i\theta + \varepsilon_i, i = 1, \dots, 4$ where $\varepsilon_i, i = 1, \dots, 4$ are i.i.d. with the distribution function

$$F(u) = \exp\{-e^{-u}\}, -\infty < u < \infty.$$

 $+e^{-\theta}$ $= (4e^{-\theta})e^{\theta} + \sqrt{(4e^{-\theta})e^{\theta}} = (a)$ Calculate the probability $P_r\{Y_1 < Y_2 < Y_3 < Y_4\}$ (Hint: Let $U_i = e^{-\epsilon_i}$, then $U_i = e^{-\epsilon_i}$) [469641]66427-1 are i.i.d. following the standard exponential distribution and the required probability becomes

$$P_r\{e^{-\theta}U_1>e^{-2\theta}U_2>e^{-3\theta}U_3>e^{-4\theta}U_4\}$$

$$=\int_{0}^{\infty}f_{u_4}(u_4)du_4\int_{0}^{\infty}f_{u_3}(u_3)du_3\int_{0}^{\infty}Pr\{U_1>e^{-\theta}u_2\}f_{u_2}(u_2)du_2}Pr\{U_1>e^{-\theta}u_2\}f_{u_2}(u_2)d$$

 $\text{T} = \frac{\sum (\theta = 0)}{\sum (\theta = \theta^*)} \approx \text{Synch}$ (c) How will you test the hypothesis $H_0: \theta = 0$ VS. $H_a: \theta \neq 0$?

$$\frac{1}{P(\theta=\theta^*)} = \frac{1}{P(\theta=\theta^*)} = \frac{1}{P(\theta^*)} = \frac{1}$$

(b)
$$f_{\theta}(x) = e^{-e^{x\cdot\theta}} \cdot x \in \mathbb{R}$$

(c) $f_{(x)}(x) = e^{-e^{x\cdot\theta}} \cdot x \in \mathbb{R}$ $f_{\theta}(x) = e^{-e^{x\cdot\theta}} \cdot e^{-e^{x\cdot\theta}} \cdot x \in \mathbb{R}$ $f_{\theta}(x) = e^{-e^{x\cdot\theta}} \cdot e^{-e^{x\cdot\theta}} \cdot x \in \mathbb{R}$

(c)
$$f(\vec{x}|\theta) = e^{e \cdot \vec{z} \cdot e^{\cdot \vec{x}} \cdot n\theta}$$
, $\vec{z} \cdot e^{\cdot \vec{x}} \cdot e^{\cdot \vec{x}}$

By Karlin-Pulson Theorem, Reject the iff
$$Ze^{Xi} < t_0$$
, $X = P_{\theta=0}$, $Ze^{Xi} < t_0$.

The $Y = e^{Xi}$, $Y = P_{\theta=0}$,

(e) P(e-0zexi2t)= x => P(zexi>toe0)= 1-x => 0< In zexi

STA 5010

Final Exam. December 10, 2003

1. Suppose that

$$Y_i = \alpha + \beta x_i + \varepsilon_i, \quad i = 1, \dots, n$$

 $\varepsilon_i's$ are i.i.d. with density function

$$f(u) = \exp\{c_2 u^2 + c_1 u + c_0\}$$

where $x_1, \dots, x_n, c_0, c_1, c_2$ are known constants and α, β are unknown parameters.

- (a) Find a minimal sufficient statistics for (α, β) .
- (b) Is your statistic complete?
- (c) Give the UMVUE for (α, β) .
- 2. Continue with the Last problem. Let X_{n+1} and X_{n+2} be two known numbers. What is the UMVUE of $P\{Y_{n+1} > Y_{n+2}\}$, where $Y_{n+i} = \alpha + \beta X_{n+i} + \varepsilon_{n+i}$.
- Let X_1, \dots, X_n be a random Sample from $N(0, \sigma_X^2)$, and let Y_1, \dots, Y_m be a random Sample from $N(0, \sigma_Y^2)$, independent of X_s' . Define $X = \frac{\sigma_Y^2}{\sigma_X^2}$.
 - (a) Find the level α LRT of $H_0: \lambda = \lambda_0$ versus $H_1: \lambda \neq \lambda_0$.
 - Express the rejection region of the LRT of part (a) in terms of an F random variable.
 - (c) Find a $1-\alpha$ confidence interval for λ .
- Let X_1, X_2, X_3 be a random sample of size three from a uniform $(\theta, 2\theta)$ distribution, where $\theta > 0$,
 - (a) Find the method of moments estimator of θ .
 - (b) Find the MLE, $\hat{\theta}$, and find a constant k such that $E_{\theta}(k\hat{\theta}) = \theta$.
 - (c) Which of the two estimators can be improved by using sufficiency? How?
- We observe the values of X_1, \dots, X_{n+m} be an i.i.d. sample from $f(x) = \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right), x > 0$. We observe the values of X_1, \dots, X_n and the event that $X_{n+1} > Y_{n+1}, \dots, Y_{n+m} > Y_{n+m}$ (The exact value of X_{n+1}, \dots, X_{n+m} are unknown, but Y_{n+1}, \dots, Y_{n+m} are observed).
 - (a) Find a MLE of β .
 - (b) Find a minimal sufficient.
 - (c) Is you Statistic in a) an UMVUE?

Qualify Exam. August 10, 2012

Problem from STAT5010

1. Let μ and Σ be the mean and covariance matrix from a bi-variate normal distribution. Let X_1, X_2, \dots, X_n be an i.i.d. sample from a truncated bi-variate normal distribution, or for $\mathbf{x} \in \mathbb{R}^2$, the density function of X_1 is

$$f(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\gamma}) = \begin{cases} C\frac{1}{\sqrt{\det(\boldsymbol{\Sigma})}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}, & \text{for } (\mathbf{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \leq \boldsymbol{\gamma}^2 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find constant C and show that C only depends on γ .
- (b) Find minimum sufficient statistic for (μ, Σ) if γ is known.
- (c) Find minimum sufficient statistic for γ if (μ, Σ) is known.
- (d) Find UMVUE for (μ, Σ) if γ is known and prove your answer.
- (e) Find UMVUE for γ if (μ, Σ) is known and prove your answer.
- (f) If all μ , Σ and γ are unknown, how do you estimate all three parameters?
- 2. Suppose that X_1, \dots, X_{n_1} and Y_1, \dots, Y_{n_2} are two samples from the population $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$. Assume σ^2 is unknown.
 - (a) Show that the α -level likelihood ratio test for

 $H_o: \mu_2 \leq \mu_1 \;\; \mathrm{VS.} \;\; H_a: \mu_2 > \mu_1 \;\; \mathrm{is \; the \; usual \; two \; sample \; t-test.}$

(b) Can you show that the test is an uniformly most powerful test?

Qualify Exam.

Decemeber 2013

Problem from STAT5010

1. Let X_1, \dots, X_0 be a random sample from Uniform $(\theta, \theta + 1)$ distribution. To test $H_0: \theta = \theta_0 \text{ Vs } H_1: \theta > \theta_0, \text{ use the test}$

reject H_0 if $Y_n \ge 1 + \theta_0$ or $Y_1 \ge k + \theta_0$ $f(\theta) > f_{\theta}$ where k is a constant, $Y_1 = \min\{X_1, \dots, X_n\}, Y_n = \max\{X_1, \dots, X_n\}$

- (a) Determin k so that the test will have size α .
- (b) Find the power function of the test in a).
- (c) Prove that the test is UMP size α test.
- (d) Find values of n and k so that the UMP $\alpha = .05$ level test will have power at \checkmark least .8 if $\theta > \theta_0 + 1$.
- (e) Obtain an $1-\alpha$ level confidence interval by inverting the above test.
- Let X_1, X_2, \dots, X_n be an sequence of i.i.d. r.v.s from $f(x|\beta) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), x > 0$. We also know that Y_1, Y_2, \dots, Y_n be an sequence of i.i.d. r.v.s from a known population with density g(y). Suppose that the following sample is observed $\min(X_i, Y_i), 1_{[X_i \leq Y_i]}, i =$
 - (a) Find a MLE of β based on the observed sample.
 - (b) Find a minimal sufficient statistics for β .
 - (c) Is the statistics in a) an UMVUE? Prove or disprove your answer.

Department of Statistics, The Chinese University of Hong Kong STAT5010 Advanced Statistical Inference | Term 1, 2019–20

Take-home Examination

<u>Instruction to the candidates:</u> Please attempt all of the questions. Each problem carries an equal weight of 4 points. Your final score will be capped by 20, which is also the defined full mark of this exam. Good luck!

- I. Let $X_1, \ldots X_n$ be a random sample from a $N(\theta, \sigma^2)$ population with σ^2 known. Consider estimating θ using the squared error loss. Let $\pi(\theta)$ be a $N(\mu, \tau^2)$ prior distribution on θ and let δ^{π} be the Bayes estimator of θ . Verify the following formulas for the risk function and Bayes risk.
 - (a) For any constants a and b, the estimator $\delta(\boldsymbol{X}) = a\bar{\boldsymbol{X}} + b$ has risk function

$$R(\theta, \delta) = a^2 \frac{\sigma^2}{n} + \{b - (1 - a)\theta\}^2.$$

(b) Let $\eta = \sigma^2/(n\tau^2 + \sigma^2)$. The risk function for the Bayes estimator is

$$R(\theta, \delta^{\pi}) = (1 - \eta)^2 \frac{\sigma^2}{n} + \eta^2 (\theta - \mu)^2.$$

(c) The Bayes risk for the Bayes estimator is

$$B(\pi, \delta^{\pi}) = \tau^2 \eta.$$

2. Let X be an observation from the pdf

$$f(x \mid \theta) = \left(\frac{\theta}{2}\right)^{|x|} (1 - \theta)^{1-|x|}, \quad x \in \{-1, 0, 1\}; \theta \in [0, 1].$$

- (a) Find the MLE of θ .
- (b) Define an estimator T(X) by

$$T(X) = \begin{cases} 2 & \text{, if } x = 1 \\ 0 & \text{, otherwise} \end{cases}.$$

Show that T(X) is an unbiased estimator of θ .

- (c) Find a better estimator than T(X) and prove that it is better.
- 3. Consider a Bayesian model in which the prior distribution for Θ is standard exponential and the density for X given Θ is

Ι

$$f(x \mid \theta) = e^{\theta - x} I(x > \theta).$$

- (a) Find the marginal density for X and E(X) in the Bayesian model.
- (b) Find the Bayes estimator for Θ under squared error loss. (Assume X > 0.)

4. Let X_1, X_2, \ldots, X_n be i.i.d. from the uniform distribution on (1, 2), and let H_n denote the harmonic average of the first n variables:

$$H_n = \frac{n}{X_1^{-1} + \ldots + X_n^{-1}}.$$

- (a) Show that $H_n \stackrel{p}{\to} c$ as $n \to \infty$, identifying the constant c.
- (b) Show that $\sqrt{n}(H_n-c)$ converges in distribution, and identify the limit.
- 5. Let X_1,\ldots,X_n be i.i.d. from $N(\theta,1)$ and let U_1,\ldots,U_n be i.i.d. from a uniform distribution on (0,1), with all 2n variables independent. Define $Y_i=X_iU_i,\,i=1,\ldots,n$. If the X_i and U_i are both observed, then \bar{X} would be a natural estimator for θ . If only the products Y_1,\ldots,Y_n are observed, then $2\bar{Y}$ may be a more responsible estimator. Determine the asymptotic relative efficiency (ARE) of $2\bar{Y}$ with respect to \bar{X} , where ARE of $\hat{\theta}_n$ with respect to $\tilde{\theta}_n$ is defined as the ratio $\sigma_{\tilde{\theta}}^2/\sigma_{\hat{\theta}}^2$ if $\sqrt{n}(\hat{\theta}-\theta_0)\stackrel{d}{\to} N(0,\sigma_{\hat{\theta}}^2)$ and $\sqrt{n}(\tilde{\theta}-\theta_0)\stackrel{d}{\to} N(0,\sigma_{\hat{\theta}}^2)$, respectively.
- 6. Suppose $X_1,\ldots,X_n \overset{i.i.d.}{\sim} N(\theta,1)$ for some $\theta \in \mathbb{R}$, and we want to estimate θ with respect to squared error loss. Show that the estimator $\delta_a(X) = \bar{X} + a$ is not a Bayes estimator for any a.

Department of Stationics, The Chinese University of Hong Kong. STAT cono Advanced Seatistical Inference | Term 1, 2018-19

Final Examination on 2th December 2018.

Instruction to the candidates. Please attempt all of the questions. Each problem carries an equal weight of 2 points. Your final score will be capped by 40, which is also the defined full mark of this exam. Good lock!

- 1. Determine whether or not each of the following statements is correct. If a statement is not always true, you should regard it as a "false" statement. Note that a correct answer without a proper explanation is considered as a wrong answer. You are required to show clearly your reasoning.
 - (a) Any regular one-parameter exponential family admits a canonical form has a monotone likelihood ratio statistic.
 - (b) (i.) For hypothesis $H_0: \theta = \theta_0, \ v.s. \ H_1: \theta = \theta_1$, and a continuous test statistic T(X), the p-value pfollows Uniform[0, 1].
 - (ii.) If the hypothesis is given as $H_0: \theta = \theta_0, v.s. H_1: \theta \in \Theta_1$, the p-value p follows Uniform [0,1]
 - (iii.) If the hypothesis is given as $H_0: \theta \in \Theta_0, v.s. H_1: \theta \in \Theta_1$, the p-value p follows Uniform [0,1]
- 2. Suppose that the parameter space Θ is an open subset of \mathbb{R}^2 , and the risk function $R(\theta, \delta)$ is continuous in θ for every estimator $\delta(X)$. Suppose further that π_n be a sequence of (possibly improper) priors on Θ such that the following conditions hold:
 - (i) $r(\pi_n, \delta_0) < \infty$ for all n.
 - (ii) For any open set $\Theta_0 \subset \Theta$, one has $\liminf_{n\to\infty} \int_{\Theta_0} \pi_n(\theta) d\theta > 0$, and
 - (iii) $\lim_{n\to\infty} r(\pi_n, \delta_0) r(\pi_n, \delta_{\pi_n}) = 0$,

where δ_{π_n} is the Bayes estimate with respect to the prior π_n and δ_0 is an estimator. Conclude that δ_0 is admissible without necessarily assuming squared loss error function. (Hint: If δ_0 is inadmissible, there exists an estimator δ' such that $R(\theta, \delta_0) \geq R(\theta, \delta'), R(\theta_0, \delta_0) > R(\theta_0, \delta')$ for some $\theta_0 \in \Theta$.)

- 3. Find the asymptotic distribution of $\ell_n(\theta_0 + hn^{-1/2}) \ell_n(\theta_0)$, where $h \in \mathbb{R}$ is fixed and $\ell_n(\theta)$ is the log likelihood function of a random sample X_1, \ldots, X_n evaulated at θ . State also the regularity conditions needed.
- 4. Let X_1, \ldots, X_n be i.i.d. random variables, having the exponential distribution with density $f(x; \lambda) = \lambda \exp\{-\lambda x\}$ for $x, \lambda > 0$.
 - (a) Show that $T_n = \sum_{i=1}^n X_i$ is minimal sufficient and complete for λ .
 - (b) Furthermore, for given x>0, it is desired to estimate the quantity $\phi=\Pr(X_1>x;\lambda)$. Compute the Fisher information for ϕ .

(c) State the Lehmann-Scheffe theorem which ties together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. Show that the estimator $\tilde{\phi}_n$ of ϕ defined by

$$\bar{\phi}_n = \begin{cases} 0, & \text{if } T_n < x \\ \left(1 - \frac{x}{T_n}\right)^{n-1}, & \text{if } T_n \ge x \end{cases}$$

is the minimum variance unbiased estimator of ϕ based on (X_1,\ldots,X_n) . Without conducting any computations, state whether or not the variance of $\bar{\phi}_n$ achieves the Cramér-Rao lower bound with brief justification. Show also that $E(\bar{\phi}_k \mid T_n, \lambda) = \bar{\phi}_n$ for $k \leq n$.

- 5. Let $(X_1,Y_1),\ldots(X_n,Y_n)$ be i.i.d. with $X_i\sim N(0,1)$ and $Y_i\mid X_i=x\sim N(x\theta,1)$.
 - (a) Find the maximum likelihood estimator $\hat{\theta}$ of θ .
 - (b) Determine the limiting distribution of $n^{1/2}(\hat{\theta} \theta)$.
 - (c) Construct 1α asymptotic confidence interval for θ based on $I(\hat{\theta})$, where $I(\theta)$ denotes the Fisher information for a single observation (X_1, Y_1) .
 - (d) Determine the exact distribution of $\sqrt{\sum_{i=1}^{n} X_i^2} (\hat{\theta} \theta)$ and use it find the true coverage probability for the interval constructed based on observed Fisher information.
- 6. Let X_1, \ldots, X_n be a random sample from a population on \mathbb{R} with Lebesgue density f_θ . Let θ_0 and θ_1 be two constants with $\theta_0 < \theta_1$. Find a uniform most power test of size α for testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$ for $f_\theta(x) = \exp\{-(x-\theta)\}I(x>\theta)$.
- 7. Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma_0^2)$ with σ_0^2 known. Consider testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. Show that a UMP test does not exist for any size $\alpha \in (0, 1)$. (Hint: You may consider a one-sided test first. Check its power for another side of the test from which you may argue over the power of this particular one-sided UMP test.)

Final Examination of 5010 STAT TONY SHI JIASHENA.

- 1. Trac/False, give explanation.
 - O Th6.12 of Lehmann. (ch1).
 - $\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \{ X_i \in x \}, \quad X_1, \dots, X_n \text{ sample from } \mathcal{P}(\text{all poly}).$ Then $\widehat{F}_n(x)$ is UMVUE of F(x).
 - 3 p is exponential family admits one-parallmeter canonical form. then it has monotone likelihood function.
- 2. X1, ", Xn iid ~U(0,0,), Y, ... Yn iid ~U(0,02)
 - @ Find complete sufficient statistic for (0,02) (Xm, Ym)
- 3. X = YZ, $Y \sim \mathcal{N}(0, 1)$, $P(Z = \frac{1}{2}) = P(Z = -1) = -\frac{1}{2}$.
 - O T(X)=X is sufficient but not complete.
 - @ If there exists a complete sufficient statistic for . o.
- 4. $f_{\mathbf{p}}(x) = e^{-(x-\theta)} 1 \{x > \theta\}$. (Refer to $f_{\mathbf{p}}(x) = e^{-(x-\theta)} 1 \{x > \theta\}$.)
 - 1) Find complete sufficient statistic for θ . $(T_n = \sum_{i=1}^n x_i)$
 - $\Theta \phi = P(X_1 > x) Nor P(X_1 = x)$. Find Fisher info $I(\phi)$
 - 3 State Lehmann-Scheffé Theorem ties together with sufficiency completeness, uniqueness, biast unbiased estimation. Show that $\widehat{\mathcal{G}}_n = 1 \{ T_n > x \} \cdot \left(1 \frac{x}{T_n} \right)^{n-1}$ is VMVVE of \emptyset
- 5. $(X_i, Y_i), (X_n, Y_n)$ are iid, $X_i \sim \mathcal{N}(0, 1)$, $Y_i | X_i = x \sim \mathcal{N}(0x, 1)$.
 - 1) Find MLE of O
 - @ # Find limiting dist of $\sqrt{n}(\hat{\theta}-\theta)$ (MLE *** PR 36) $\Rightarrow N(0, \frac{1}{L(\theta)})$
 - 3 Construct 1-2 Asymptotic confidence interval for θ based on $\underline{T}(\hat{\theta})$, $\underline{T}(\theta)$ is Fisher info based on one observation (χ_1, χ_1) .

- @ Give the exact dist of $\int_{i=1}^{\infty} \chi_i^2(\hat{\theta}-\theta)$.
- 6. QHo: $\theta = \theta_0$, $H_1: \theta = \theta_1$, Find the UMPT (uniform most powerful) of size $d = \Re f_x(x) = e^{-(x-\theta)} \cdot 1\{x>\theta\}$.

STAT 5010 Syllabus

Chaojie Wang

May 27, 2015

1 Probability Theory

	Without Replacement	With Replacement
Ordered	n!/(n-r)!	n^r
Unordered	$\binom{n}{r}$	$\binom{n+r-1}{r}$

2 Transformation and Expectation

Theorem 2.1.10: $Y = F_X(X) \Rightarrow P(Y \le y) = y, \ 0 < y < 1.$

Hint: $F_X^{-1}(y) = \inf\{x : F_X(x) \ge y\}$

Theorem 2.4.1: Leibnitz's Rule

$$\frac{d}{d\theta} \int_{a(\theta)}^{b(\theta)} f(x,\theta) dx = f(b(\theta),\theta) \frac{d}{d\theta} b(\theta) - f(a(\theta),\theta) \frac{d}{d\theta} a(\theta) + \int_{a(\theta)}^{b(\theta)} \frac{\partial}{\partial \theta} f(x,\theta) dx$$

3 Common Families of Distributions

Theorem 3.4.2: X follows exponential family

$$E(\sum_{i=1}^{k} \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X)) = -\frac{\partial}{\partial \theta_j} \log c(\boldsymbol{\theta})$$

$$Var(\sum_{i=1}^{k} \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X)) = -\frac{\partial^2}{\partial \theta_j^2} \log c(\boldsymbol{\theta}) - E(\sum_{i=1}^{k} \frac{\partial^2 w_i(\boldsymbol{\theta})}{\partial \theta_j^2} t_i(X))$$

Lemma 3.6.5 Stein's Lemma: $X \sim n(\theta, \sigma^2)$

$$E[g(X)(X - \theta)] = \sigma^2 E g'(X)$$

4 Multiple Random Variable

5 Properties of a Random Sample

Theorem 5.4.4: The pdf of $X_{(j)}$

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}$$

Metropolis Algorithm: $Y \sim f_Y(y)$ and $V \sim f_V(v)$, to generate $Y \sim f_Y(v)$

- 0. Generate $V \sim f_V$. Set $Z_0 = V$. For $i = 1, 2, \cdots$
- 1. Generate $U_i \sim \text{uniform}(0,1), V \sim f_V$, and calculate

$$\rho_i = \min\{\frac{f_Y(V_i)}{f_V(V_i)}\frac{f_V(Z_i)}{f_V(V_i)}\}$$

6 Principles of Data Reduction

Check $T(\mathbf{X})$ is sufficient statistic:

- (a) Theorem 6.2.2: If $p(\mathbf{x}|\theta)/q(T(\mathbf{x}|\theta))$ is constant of θ
- (b) Theorem 6.2.6: Factorization Theorem $f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$
- (c) Theorem 6.2.10: $f(x|\theta)$ is exponential family
- (d) Theorem 6.2.13: $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant iff $T(\mathbf{x}) = T(\mathbf{y})$

Check $S(\mathbf{X})$ is ancillary statistic:

Example 6.2.18: Location family. Example 6.2.19: Scale family

Check $T(\mathbf{X})$ is complete statistic:

Theorem 6.2.21: If $E_{\theta}g(T) = 0$ for all θ implies $P_{\theta}(g(T) = 0) = 1$ for all θ

Theorem 6.2.25: $f(x|\theta)$ is exponential family

Theorem 6.2.24: $T(\mathbf{X})$ is complete and minimal sufficient statistic $\Rightarrow T(\mathbf{X})$ independent of ancillary statistic. Remark: Used under the exponential family