問題 3-5 $d = \omega \sqrt[3]{7}$, $w = e^{2\pi i/3} = -1 + \sqrt{3}i$ $z_3 < 1$

- (i) [Q(d);Q] を求めよ、
- (3) [Q(X,W);Q] E 成为よ、 \20年15.

しか体Kの拡大体のとき, (2) $[Q(d, w): Q(x)] = \pm x dx$. $[L: K] = [L/K] = dim_{K}L$ と書き,これをL/Kの拡大次数

ヒント dの Q上での最小多項式はよ3-7になる、 W年Q(4),

解答例(1) $d = \omega^3\sqrt{1}$ は $\chi^3-7=0$ の解でかつ、 χ^3-7 は Q上既的なので、 X3-7はよのQ上での最小多項式になる(問題2-4の解答例を見よ), ゆえに、体の同型 Q(d) \cong Q[x]/(x3-7) (f(d) \leftrightarrow f(x) = (f(d) mod x²-7))を得る、 Q[X]/(x3-7)のQ上のベクトル空間としての基底として、1,x,x2の像をとれる、 特化, $\dim_{\Omega} Q(x)/(x^3-7)=3$, bin, [Q(x):Q] = $\dim_{\Omega} Q(x)=3$ 、 Q(以/($\chi^3 - 7$)の中で、 $\chi^3 = 7$ なので、 χ の3条以上の項は 又の2乗以下の項の和で書ける

- (2) $\omega \notin Q(A)$ であることを示えう。 (1) と同様にして。 $Q(35) \cong Q(X)/(x^3-7)$ なので; $Q(A) \cong Q(35)$ となる。もしも $\omega \in Q(A)$ ならは Q(35) も 1 の厚始 3 乗根 を 含むことになって矛盾する。 ゆえに、 $\omega \notin Q(A)$ である。 (注) $Q(A) \neq Q(35)$ かえた, $Q(A, \omega) = Q(A)(\omega)$ ⊋ Q(A) 。 $Q(A, \omega) : Q(A) > 1$. ω は $\chi^2 + \chi + 1 = 0$ の解になっているので; $[Q(A, \omega) : Q(A)] \le 2$. したかって, $[Q(A, \omega) : Q(A)] = 2$. ω になっているので, $[Q(A, \omega) : Q(A)] \le 2$. ω の 1 を以下の項の ω とでの一次紹介で書ける。
- (3) $[Q(A, \omega): Q] = [Q(A, \omega): Q(A)][Q(A): Q] = 2.3 = 6.$

注意 以上の議論を見直せば、
Q(a, u)のQ(d)上のベクトル空間としての基底として1, wがとれ、
Q(d)のQ上のベクトル空間の基底として1, d, d²がとれ、
Q(d, u)のQ上のベクトル空間の基底として1, d, d²がとれ。
ことがわかる、