Zener Diode Voltage Regulators

KLOGO, Griffith Selorm (PhD Candidate)

Types of Diodes

Types of Diode

Rectifier Circuits

One of the most important applications of diodes is in the design of rectifier circuits. Used to convert an AC signal into a DC voltage used by most electronics.

Regulator Circuits

The Zener Diode

- * **Zener diode** is designed for operation in the reverse-breakdown region.
- * The *breakdown voltage* is controlled by the doping level (-1.8 *V* to -200 *V*).
- * The major application of Zener diode is to provide an output reference that is stable despite changes in input voltage power supplies, voltmeter,...

Figure 7.3 Zener diode symbol.

Zener-Diode Voltage-Regulator Circuits

- * Sometimes, a circuit that produces constant output voltage while operating from a variable supply voltage is needed. Such circuits are called *voltage regulator*.
- * The Zener diode has a breakdown voltage equal to the desired output voltage.
- The resistor limits the diode current to a safe value so that Zener diode does not overheat.
- Zener Diode is a reversed-biased heavily-doped PN-Junction diode which operates in the breakdown region.
- The breakdown voltage of a zener diode can be set by controlling the doping level.
- For zener diodes, silicon is preferred to Ge because of its higher temperature and current capability

Reverse-

breakdown region Reverse-bias

Figure 10.9 A simple regulator circuit that provides a nearly constant output voltage v_o from a variable supply voltage.

I-V Characteristics

Zener Diode - Voltage Regulator (reverse biased)

- A **Zener diode** is a type of <u>diode</u> that permits <u>current</u> not only in the forward direction like a normal diode, but also in the reverse direction if the voltage is larger than the <u>breakdown voltage</u> known as "Zener knee voltage" or "Zener voltage".
- The zener breakdown voltage or zener voltage can be precisely controlled by controlling the doping levels of P and N regions at the time of manufacturing a zener diode
- After breakdown has occurred, the voltage across zener diode remains constant equal to Vz.
- Any increase in the source voltage will result in the increase in the reverse zener current.
- The zener current after reverse breakdown must be controlled by connecting a resistor R as shown. This is essential to avoid any damage to the device due to excessive heating

Working of Zener Diode

- Case 1: Regulation when input voltage is varied
- Case 2: Regulation when load resistance is varied

Case 1: Regulation when input voltage is varied

Case 2: Regulation when load resistance is varied

Tutorials