

Arquitetura e Organização de Computadores

Centro Universitário 7 Setembro - Uni7 **Sistemas de Informação**

Aula 3

Prof. MSc Manoel Ribeiro

manoel@opencare.com.br

Componentes básicos de um sistema computacional

Figura. 1.8: Microprocessador

Segundo a arquitetura de Von Neumann, os computadores possuem quatro componentes principais:

- Unidade Central de Processamento (UCP) – composta pela
 - Unidade Lógica e Aritmética (ULA)
 - Unidade de Controle (UC),
- Memória
- Dispositivos de entrada e saída.
- Interconectadas por barramentos.

Unidade Central de Processamento

- Podemos dizer que se trata do componente principal do computador
- Também conhecido por processador ou microprocessador
- É responsável pela execução de dados e instruções armazenadas em memória (código de programas e dados)
- Este componente produz muito calor

Memória de acesso aleatório - RAM

TIPE RAM

SDRAM

DDR

DDR2

DDR3

- Conhecida como memória principal é responsável por armazenar todos os programas que executam no computador e os dados que utilizam
- É volátil
- Possui canal de comunicação direto com CPU

SDRAM (Synchronous Dynamic Random Access Memory)

Tipo	Clock externo
DDR2-800	400 MHz
DDR2-1066/DDR3-1066	533 MHz
DDR3-1333	666,6 MHz
DDR4-2133	1.067 MHz

DDR significa Double Data Rate

Atingir o clock externo vai depender se o processador por acompanhar esta frequência

Dispositivos de Entrada e Saída (E/S)

- são dispositivos responsáveis pelas entradas e saídas de dados, ou seja, pelas interações entre o computador e o mundo externo (usuários).
- São exemplos de dispositivos de E/S: monitor de vídeo, teclado, mouse, webcam, impressora, entre outros;

Universal Serial Bus - USB

Tipo	taxa de transferência
USB 1.0	1,5 Mbit/s
USB 1.1	12 Mbit/s
USB 2.0	480 Mbit/s
USB 3.0	5 Gbit/s
USB 3.1	10 Gbit/s

USB é uma porta de comunicação serial com recursos de Plug and Play (autoconfiguração)

Serial ATA, SATA ou S-ATA (acrônimo para Serial AT Attachment)

É uma tecnologia de transferência de dados em série entre um computador e dispositivos de armazenamento em massa (mass storage devices) como unidades de disco rígido e drives ópticos.

Tipo	taxa de transferência
SATA I - 1.5 Gb/s	150 MB/s
SATA II - 3 Gb/s	300 MB/s
SATA III - 6 Gb/s	600 MB/s

SCSI - Small Computer System Interface

É uma tecnologia que permite ao usuário conectar uma larga gama de periféricos, tais como discos rígidos, unidades CD-ROM, impressoras e scanners.

Utiliza barramento paralelo (68 pin)

Tipo	taxa de transferência
SCSI-1 - 8 bits - 5 MHz	5 MB/s
Fast SCSI - 8 bits - 10 MHz	10 MB/s
Ultra SCSI - 8 bits - 20 MHz	20 MB/s
Ultra2 Wide SCSI - 16 bits - 40 MHz	80 MB/s
Ultra-320 SCSI - 16 bits - 80 MHz	320 MB/s

PCI-Express

é o padrão de slots (soquetes) criado para placas de expansão utilizadas em computadores pessoais para transmissão de dados.

Introduzido pela Intel em 2004, o PCI-Express foi concebido para substituir os padrões AGP e PCI.

A tecnologia utilizada no PCI-Ex conta com um recurso que permite o uso de várias conexões seriais ("caminhos" também chamados de lanes) para transferência de dados

Tipo	taxa de transferência
PCI-Express 1.0	4 GB/s
PCI-Express 2.0	8 GB/s
PCI-Express 3.0	32 GB/seg

Barramento

Em Arquitetura de Computadores, um barramento é um conjunto de linhas de comunicação que permitem a interligação entre dispositivos de um sistema de computação (CPU; Memória Principal; HD e outros periféricos), ou entre vários sistemas de computação.

Tipos de Barramento

- Barramento do Processador/Controle
 - É utilizado pelo processador internamente e para envio de sinais para outros componentes do sistema computacional.
- Barramento do Cache
 - É o barramento dedicado para acesso à memória cache do computador, memória estática de alto desempenho localizada próximo ao processador.
- Barramento da Memória
 - o É o barramento responsável pela conexão da memória principal ao processador.

Tipos de Barramento

Barramento de Entrada e Saída

 É o barramento I/O (ou E/S), responsável pela comunicação das diversas interfaces e periféricos ligados à placa-mãe, possibilitando a instalação de novas placas, os mais conhecidos são: PCIe, USB, SATA

Barramento de Dados

É o barramento Data Bus, responsável por transportar informação da instrução (através do código de operação), variável do processamento (cálculo intermediário de uma fórmula por exemplo) ou informação de um periférico de E/S (dado digitado em um teclado). Este barramento que define a arquitetura do computador como 8bits, 32bits ou 64 bits.

