

概率与统计第7讲

主讲: 邱玉文 内容: 常见的随机变量, 连续型随机变量

本次内容概要

ID 密度函数

Љ 常用分布&均匀分布,指数分布;

Љ 正态分布;

/b 标准正态分布及其查表求概率.

一、连续随机变量

2.4 连续型随机变量

1. 定义 对于随机变量X,若存在非负函数f(x), $(-\infty < x < +\infty)$,满足条件

$$P\{a < X \le b\} = \int_a^b f(x) dx.$$

则称X为连续型随机变量,f(x)为X的概率密度 函数,简称概率密度或密度函数.

2. 概率密度的几何意义为

$$\forall x_1, x_2 \in R, \quad P(x_1 < X < x_2) = \int_{x_1}^{x_2} f(x) dx$$

X取值在某区间的概率等于密度函数 f(x) 在此区间上的定积分

【例】 已知随机变量X的密度为

$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ a - x, & 1 \le x \le 2 \\ 0, & \sharp \end{aligned}$$

求 (1) 参数
$$a$$
; (2) 概率 $P(0.5 < X < 1.5)$;

解: (1) 由
$$1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} x dx + \int_{1}^{2} (a - x) dx = a - 1$$

解得 a=2

(2)
$$P(0.5 < X \le 1.5) = \int_{0.5}^{1} x dx + \int_{1}^{1.5} (2 - x) dx = \frac{3}{4}$$

设随机变量 X 具有概率密度。

$$f(x) = \begin{cases} kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0 \neq \exists c. \end{cases}$$

(1)确定常数k;

(2)求X的分布函数F(x), (3)求 $P\{1 < X \le 7/2\}$.

解 (1) 由
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$
, 得 $\int_{0}^{3} kx dx + \int_{3}^{4} \left(2 - \frac{x}{2}\right) dx = 1$, $dx = 1$, dx

例 2 设随机变量 X 具有概率密度。

$$f(x) = \begin{cases} kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \text{ 其它.} \end{cases}$$

- (1)确定常数k; (2)求X的分布函数F(x); (3)求 $P\{1 < X \le 7/2\}$.
- (2) X的分布函数为。

$$F(x) = \begin{cases} 0, & x < 0 \\ x^2 / 12, & 0 \le x < 3 \\ -3 + 2x - x^2 / 4, & 3 \le x < 4 \end{cases}$$

(3)
$$P\{1 < X \le 7/2\} = \int_{1}^{7/2} f(x) dx = \int_{1}^{3} \frac{1}{6} x dx + \int_{3}^{7/2} \left(2 - \frac{x}{2}\right) dx = \frac{1}{12} x^{2} \Big|_{1}^{3} + \left(2x - \frac{x^{2}}{4}\right) \Big|_{3}^{7/2} = \frac{41}{48},$$

【练习】已知随机变量的密度为

$$f(x) = \begin{cases} ax^3, & 0 < x < 1 \\ 0, & \text{#th} \end{cases}$$

求 (1) 参数 a; (2) 概率P(0 < x < 0.5);

#:
$$1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} ax^{3} dx = a/4 \implies a = 4$$

$$P(0 < X < 0.5) = \int_0^{0.5} 4x^3 dx = 1/16$$

二、常见的连续随机变量

一、均匀分布

定义 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{ 其他} \end{cases}$$

则称随机变量 X 在[a, b]上服从均匀分布,记作 $X \sim U(a, b)$,其中a, b是分布的参数。

$X\sim U(a,b)$,即X在区间(a,b)上服从均匀分布

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{ #de} \end{cases}$$

均匀分布X的分布函数为:

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x - a}{b - a} & a \le x < b \\ 1 & x \ge b \end{cases}$$

均匀分布的例子

【实例1】 一个实数x经四舍五入后,约等于1.22;那么x的真值X服从[1.215, 1.225)上的均匀分布,即 $X\sim$ U(1.215, 1.225); P(1.217<X<1.223)=0.6;

【实例2】等车:已知地铁1号线每隔5分钟有一班列车经管Z站;小张同学任一时刻到达车站,设小张同学等车时间为X,则X~U[0,5]

二、指数分布

某些元件或设备的寿命服从指数分布。例如无线电元件的寿命、电力设备的寿命、动物的寿命等都服从指数分布。

定义 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布,记作 $X \sim e(\lambda)$ 。

$X\sim e(\lambda)$, 即X服从参数为 λ 的指数分布

指数分布X的密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases} \qquad (\lambda > 0 为常数)$$

X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

【例】已知某电子元件厂生产的电子元件的寿命 X(h)服从指数分布 e(0.0002),该厂规定寿命低于500 h的元件可以退换,求该电子元件的退换率。

 \mathbf{M} : X 的密度函数为

$$f(x) = \begin{cases} 0.0002e^{-0.0002x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

所求概率为

$$P(X < 500) = \int_0^{500} 0.0002e^{-0.0002x} dx = 1 - e^{-0.1} \approx 0.095$$

指数分布常用的积分运算

2022/10/10

【例】小明到某银行办事总要排队等待,设等待时间T(单位:分钟)服从指数分布 e(0.1)。小明等待时间若超过15分钟,他就愤然离去,若小明一个月要去该银行10次,求他恰好有2次愤然离去的概率。

解: T的密度函数为

$$f(t) = \begin{cases} 0.1e^{-0.1t}, & t > 0 \\ 0, & t \le 0 \end{cases}$$

小明任一次愤然离去的概率为

$$p = P(T > 15) = \int_{15}^{+\infty} 0.1e^{-0.1t} dt = e^{-1.5} \approx 0.2231$$

解:设10次中愤然离去的次数为 X,则

 $X \sim B(10, 0.2231)$

于是所求概率为

$$P(X = 2) = C_{10}^2 \times 0.2231^2 \times (1 - 0.2231)^8 \approx 0.2973$$

二、正态分布的定义

1. 定义

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < +\infty$$

其中 μ , σ 为常数, $\sigma > 0$

亦称高斯 (Gauss)分布

则称 X 服从参数为 μ , σ^2 的正态分布,记作 $X \sim N(\mu, \sigma^2)$

正态分布的密度函数的性质与图形

中间高两边低

■对称性

关于 $x = \mu$ 对称

■単调性

(-∞, μ)升, (μ, +∞)降

(2) σ的大小直接影响概率的分布

σ越大, 曲线越平坦,

σ越小, 曲线越陡峻。

在 μ ±σ处是曲线的两个拐点,凹凸性发生改变;

- 3. 正态分布的分布函数及其图像
- > 分布函数表达式

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx, \quad -\infty < x < +\infty$$

> 令人心动的 S 曲线

知道就行

标准正态分布 Standard Normal distribution

X~N(0,1)分布称为标准正态分布

其密度函数
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} - \infty < x < +\infty$$

f(x)

三、标准正态分布

$$\mu = 0$$
, $\sigma = 1$ 的正态分布称为标准正态分布,记作 $X \sim N(0,1)$

> 密度函数记为

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty$$

> 分布函数记为

2. 标准正态分布的分布函数值表

见263页附表3。我们一起学查表。

注: $\Phi(-x) = 1 - \Phi(x)$

										11.00
X	0	1	2	3	4	5	6	$\left(\begin{array}{c}7\end{array}\right)$	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
14	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
(1.5)	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	_0.9545

【例】已知 $X \sim N(0, 1)$, 查表解决以下问题。

> 求概率
$$P(-1 < X < 1) = \Phi(1) - \Phi(-1)$$

= $2\Phi(1) - 1 = 0.6826$

$$P(-2 < X < 2) = 0.9544$$

$$P(-3 < X < 3) = 0.9973$$

> 求x, 使得 $P(X \ge x) = 0.05$

正态分布了标准正态分布的关系。 1. 定理1: 差X~N(从,时),则从一类~N的) 抖地、爱X~NUp),知 $P(\alpha < X \leq b) = P(\frac{\alpha - \mu}{\sigma} < y \leq \frac{b - \mu}{\sigma})$ = 1 (6-1) - 4(5-1)

 $\frac{1}{2\pi\sigma} = \frac{(t-u)^2}{2\sigma^2} dt$ $+ \Gamma \chi$ $\frac{1}{2\pi\sigma} = \frac{(t-u)^2}{2\sigma^2} dt$ 5 5 ℃ √m e = 2 ch 标"不可铁" 所以,正层加密通过查查格维 正左分布的和佐木棚。 trs X~N(1,9)