

Escuela Superior de Cómputo

Termómetro NTCLE100E3

Práctica

Materia:

	1/14/CI I4/
	Instrumentación
Grupo:	
	3CM13
Profesor:	
	Martínez Díaz Juan Carlos
Alumno:	
	Castro Cruces Jorge Eduardo
Boleta:	
	2015080213
Facha	

Viernes, 4 de junio de 2021

CONTENIDO

Materia:	1
OBJETIVOS	4
Objetivo general:	4
 Diseñar y simular un sistema que muestre la información en base a la temperatura registrada por el Termison NTCLE100E3 	
Objetivos específicos:	4
INTRODUCCIÓN	5
Descripción de la Práctica:	5
Diagrama de bloques:	5
Puente de Wheatstone	5
Termistor 10kΩ (NTCLE100E3):	6
Datasheet NTCLE100E3:	7
Amplificador de instrumentación AD620:	8
Datasheet AD620:	9
Display LCD	10
Descripción:	10
Características:	10
Ventajas:	10
Desventajas:	11
Valores de operación:	11
Descripción de terminales:	11
DESARROLLO	12
Instrucciones:	12
Diseño del primer bloque: Termómetro (Termistor NTCLE100E3)(Entrada):	13
Diseño del segundo bloque: Circuito Acondicionador de Señal:	17
Tabla de valores de CAS	18
Diseño del cuarto bloque: Tarjeta de Adquisición de Datos (Arduino):	19
Visualización de resultados y unificación del sistema completo:	21
RESULTADOS	24
Tablas comparativas de los resultados Teóricos:	24
Análisis de la tabla comparativa:	24
Obtención de las curvas de transferencia de Datos Simulados:	25
CONCLUSIÓN	26
Objetivo general:	26

ojetivos específicos:		2
•		

OBJETIVOS

Objetivo general:

• Diseñar y simular un sistema que muestre la información en base a la temperatura registrada por el Termistor NTCLE100E3

Objetivos específicos:

- Diseñar un puente de Wheatstone para acoplar el termistor NTCLE100E3, y posteriormente, poder ser acoplado al microcontrolador.
- Corroborar el comportamiento un termistor NTCLE100E3, como base para la construcción de un circuito sensor de temperatura.
- Implementar un Circuito Acondicionador de señal para los rangos de voltaje de un sensor de temperatura a partir del comportamiento de un termistor NTCLE100E3.
- Comprender el funcionamiento de un LCD.
- Programar un microcontrolador Arduino UNO para procesar la información y que esta misma pueda ser vista en un LCD.

INTRODUCCIÓN

Descripción de la Práctica:

En la presente práctica se desarrolló un circuito de detección de temperatura a partir del termistor NTCLE100E3. Este voltaje es amplificado y acondicionado para su mejor medición y representación en LCD, que previamente pasó por un Circuito Acondicionador de Señal y que fue procesado por una Tarjeta de Adquisición de Datos (Arduino UNO).

Diagrama de bloques:

Diagrama de bloques del sistema

Puente de Wheatstone

El puente de Wheatstone es un circuito inicialmente descrito en 1833 por Samuel Hunter Christie (1784-1865), Pero fue el Sr. Charles Wheatstone quien le dio muchos usos cuando lo descubrió en 1843. Como resultado este circuito lleva su nombre.

Sistema en igualdad de resistencias, cuando el sistema está en equilibrio.

$$\frac{R_2}{R_1} = \frac{R_x}{R_3}$$

En este caso, para determinar un valor de salida correspondiente a la variación de Rx, consideramos el análisis del circuito. Considerando que el instrumento de medición tiene una resistencia suficientemente alta, la determinación del voltaje de la diferencia de potencial entre Vx1 y Vx2 es igual a:

$$V_G = \left(\frac{R_2}{R_1 + R_2} - \frac{R_X}{R_X + R_3}\right) V_S$$

El análisis anterior está basado en la siguiente figura:

Termistor $10k\Omega$ (NTCLE100E3):

Un termistor es un sensor de temperatura por resistencia. Su funcionamiento se basa en la variación de la resistividad que presenta un semiconductor con la temperatura. El término termistor proviene de **Therm**ally Sensitive Res**istor.**

Existen dos tipos fundamentales de termistores:

- NTC (Negative Temperature Coefficient), donde la resistencia disminuye a medida que aumenta la temperatura.
- PTC (Positive Temperature Coefficient), los cuales incrementan su resistencia a medida que aumenta la temperatura

Los termistores de coeficiente de temperatura negativo (NTC) se usan comúnmente como sensores de temperatura o como limitadores de corriente de arranque.

Los termistores de coeficiente de temperatura positivo (PTC) o **posistore** se instalan comúnmente para proteger contra condiciones de sobre corriente, por ejemplo: como fusibles reajustables

Datasheet NTCLE100E3:

www.vishay.com

NTCLE100E3

Vishay BCcomponents

NTC Thermistors, Radial Leaded, Standard Precision

QUICK REFERENCE D	ATA	
PARAMETER	VALUE	UNIT
Resistance value at 25 °C	3.3 to 470K	Ω
Tolerance on R ₂₅ -value	± 2; ± 3; ± 5	%
B _{25/85} -value	2880 to 4570	K
Tolerance on B _{25/85} -value	± 0.5 to ± 3	%
Operating temperature range:		
At zero power dissipation; continuously	-40 to +125	°C
At zero power dissipation; for short periods	≤ 150	
Response time (in oil)	≈ 1.2	s
Thermal time constant τ (for information only)	15	s
Dissipation factor δ	7	mW/K
(for information only)	8.5 (for R ₂₅ -value ≤ 680 Ω)	
Maximum power dissipation at 55 °C	500	mW
Climatic category (LCT / UCT / days)	40 / 125 / 56	-
Weight	≈ 0.3	g

FEATURES

- Accuracy over a wide temperature range
- · High stability over a long life
- · Excellent price/performance ratio
- RoHS compliant, available with or without exemption

 Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

APPLICATIONS

 Temperature measurement, compensation, sensing and control in consumer and industrial applications

DESCRIPTION

These thermistors have a negative temperature coefficient. The part consists of a NTC chip, soldered between two tin plated copper wires. It has a gray base coating and is color band coded. The coating has no specified insulation properties.

PACKAGING

The thermistors are packed in bulk or tape on reel; see part numbers and relevant packaging quantities.

DESIGN-IN SUPPORT

For complete Curve Computation, visit: www.vishay.com/thermistors/ntc-curve-list/

MARKING

The thermistors are marked with colored bands; see dimensions drawing and "Electrical data and ordering information".

MOUNTING

By soldering in any position. Not intended for potted applications.

Amplificador de instrumentación AD620:

El amplificador de instrumentación de Analog Devices es de baja deriva, energía baja, alta exactitud y es ideal para aplicaciones de alta precisión.

El AD620, con su alta precisión de no linealidad de 40 ppm (máximo), baja tensión de deriva de 50 μ V (máximo) y compensación de deriva de 0,6 μ V / $^{\circ}$ C (máxima), es ideal para uso en sistemas de adquisición de datos precisos tales como balanzas de peso e interfaces de transductor. Además, el bajo ruido, baja corriente de polarización de entrada y baja potencia de entrada del AD620lo hacen apto para aplicaciones médicas tales como ECG y monitores de presión sanguínea no invasivos.

La baja de entrada corriente de polarización de 1,0 nA (máximo) es posible con el uso de proceso Super6eta en la etapa de entrada. El AD620 trabaja bien como un preamplificador debido a su bajo ruido de tensión de entrada de 9 nV/ $\sqrt{}$ Hz a 1 kHz, 0.28 μ V p-p en la banda 0.1 Hz a 10 Hz, y 0.1 pA/ $\sqrt{}$ Hz de ruido de corriente de entrada. Además, el AD620 es ideal para aplicaciones de multiplexado con su tiempo de adaptación de 15 μ s a 0.01%, y su costo es tan bajo que permite con una amp-in por canal.

Características:

- Rango de ganancia de 1 a 10.000 con una resistencia externa
- Amplio rango de potencia (±2.3 V a ±18 V)
- Rendimiento más alto que tres diseños IA de op amp
- Baja alimentación, 1.3 mA (máx.) de corriente de alimentación
- Voltaje de polarización de entrada 50 μV (máx.)
- Deriva de polarización de entrada de 0.6 μV/°C (máx.)

- Corriente de polarización de entrada 1,0 nA (máx.),
- Relación de rechazo de modo común de 100 dB (mínimo) (G = 10)
- Bajo nivel de ruido
- Ruido de voltaje de entrada de 9 nV/√Hz a 1 kHz
- 0.28 μV p-p ruido (0.1 Hz a 10 Hz)
- Ancho de banda de 120 kHz (G = 100)
- Tiempo de ajuste de 15 µs a 0.01%

Datasheet AD620:

Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
GAIN	G = 1 + (49.4	kΩ/R _G)									
Gain Range		1		10,000	1		10,000	1		10,000	
Gain Error ²	$V_{OUT} = \pm 10 V$										
G = 1			0.03	0.10		0.01	0.02		0.03	0.10	96
G = 10			0.15	0.30		0.10	0.15		0.15	0.30	%
G = 100			0.15	0.30		0.10	0.15		0.15	0.30	96
G = 1000			0.40	0.70		0.35	0.50		0.40	0.70	96
Nonlinearity	$V_{OUT} = -10 \text{ V}$	to +10 V									
G = 1-1000	$R_L = 10 \text{ k}\Omega$		10	40		10	40		10	40	ppm
G = 1-100	$R_L = 2 k\Omega$		10	95		10	95		10	95	ppm
Gain vs. Temperature											
	G = 1			10			10			10	ppm/°C
VOLTA CE OFFCET	Gain >12	W W	(6)	-50			-50			-50	ppm/°C
VOLTAGE OFFSET	(Total RTI Erro	$or = V_{OSI} + V_{OSI}$			ı						
Input Offset, Vosi	$V_s = \pm 5 \text{ V}$ to $\pm 15 \text{ V}$		30	125		15	50		30	125	μV
Overtemperature	$V_s = \pm 5 \text{ V}$			185			85			225	μV
	to ± 15 V										
Average TC	$V_s = \pm 5 \text{ V}$		0.3	1.0		0.1	0.6		0.3	1.0	μV/°C
	to ± 15 V										
Output Offset, Voso	$V_s = \pm 15 \text{ V}$		400	1000		200	500		400	1000	μV
	$V_s = \pm 5 V$			1500			750			1500	μV
Overtemperature	$V_s = \pm 5 \text{ V}$ to $\pm 15 \text{ V}$			2000			1000			2000	μV
Augraga TC	V _s = ±5 V		5.0	15		2.5	7.0		5.0	15	
Average TC	$v_s = \pm 5 \text{ V}$ to $\pm 15 \text{ V}$		5.0	15		2.5	7.0		5.0	15	μV/°C
Offset Referred to the											
Input vs. Supply (PSR)	Vs = ±2.3 V										
прастолограну (голу	to ±18 V										
G = 1		80	100		80	100		80	100		dB
G = 10		95	120		100	120		95	120		dB
G = 100		110	140		120	140		110	140		dB
G = 1000		110	140		120	140		110	140		dB
Common-Mode Rejection											
-		1			1			1			I.
Ratio DC to 60 Hz with	1										
1 kΩ Source Imbalance	$V_{CM} = 0 V to$	± 10 V									
G = 1	1	73	90		80	90		73	90		dB
G = 10	1	93	110		100	110		93	110		dB
G = 100	1	110	130		120	130		110	130		dB
G = 1000	1	110	130		120	130		110	130		dB
OUTPUT											
Output Swing	$R_L = 10 \text{ k}\Omega$										
output 5mily	$V_S = \pm 2.3 \text{ V}$	-Vs +		+Vs - 1.2	-Vs + 1.1		+Vs - 1.2	-Vs + 1.1		+Vs - 1.2	v
	to ± 5 V	1.1		+45-1.2	-vs + 1.1		+45-1.2	-V5 + 1.1		+45 - 1.2	V
Overtemperature	10231	-Vs + 1.4		+V _s - 1.3	-Vs + 1.4		+V _s - 1.3	-V _s + 1.6		+V _s - 1.3	v
Overtemperature	$V_s = \pm 5 \text{ V}$	$-V_S + 1.4$ $-V_S + 1.2$		$+V_S - 1.3$ $+V_S - 1.4$	$-V_S + 1.4$ $-V_S + 1.2$			$-V_S + 1.0$ $-V_S + 1.2$			v
	$v_s = \pm 5 \text{ V}$ to $\pm 18 \text{ V}$	-V _S + 1.2		+V ₅ -1.4	-V ₅ + 1.2		$+V_{s}-1.4$	-V ₅ + 1.2		$+V_{s}-1.4$	v
0	10 1 10 4	V . 16			14 . 16			W . 22			v
Overtemperature	1	-Vs + 1.6		+Vs - 1.5	-Vs + 1.6		+Vs - 1.5	-Vs + 2.3		+Vs - 1.5	
Short Circuit Current			±18			±18			±18		mA
DYNAMIC RESPONSE	1										
Small Signal –3 dB Band	width										
G = 1	1		1000			1000			1000		kHz
G = 10	1		800			800			800		kHz
G = 100	1		120			120			120		kHz
G = 1000	1		12			12			12		kHz
Slew Rate	1	0.75	1.2		0.75	1.2		0.75	1.2		V/µs
Settling Time to 0.01%	10 V Step	0.75			0.75			0.75			V/ p.s
•	10 v Step		15			15			15		
G = 1-100	1		15			15			15		μs
G = 1000			150			150			150		μs
NOISE											
Voltage Noise, 1 kHz	Total RTI N	$oise = \sqrt{(e^2 \pi i)}$	+(e_/0	\mathfrak{d}^2							
Input, Voltage Noise, en		 			1		13	1	9	12	nV/√Hz
	1		9	13		9	13			13	
Output, Voltage Noise, e	no		72	100	1	72	100		72	100	nV/√Hz
RTI, 0.1 Hz to 10 Hz	1				1						
G = 1	1		3.0		1	3.0	6.0		3.0	6.0	μV p-p
G = 10	1		0.55		1	0.55	0.8		0.55	0.8	μV p-p
G = 100-1000	1		0.28		1	0.28	0.4		0.28	0.4	μV p-p
Current Noise	f = 1 kHz		100		1	100			100		fA/√Hz
0.1 Hz to 10 Hz			10		1	10			10		pA p-p
DEFENDENCE INDUST	+	-	.0		+	.0		+	10		by b.h

Display LCD

• Descripción:

Una pantalla de cristal líquido o LCD (sigla del inglés liquid-crystal display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.

Asignación de pines del LCD 16x2

• Características:

- a. Estas son algunas de las características de los módulos LCD de 20 x 4 que se describen aquí con el detalle.
- b. La característica más importante de este módulo es que puede mostrar 80 caracteres a la vez.
- c. El cursor de este módulo tiene 5x8 (40) puntos.
- d. En este módulo ya está montado el controlador de RW1063.
- e. Este módulo funciona con el suministro de entrada de más cinco voltios y también puede funcionar con el más de tres voltios.
- f. El pinout de más tres voltios también se puede utilizar para el suministro negativo.
- g. El ciclo de trabajo de este módulo es de uno por dieciséis (1/16).
- h. El diodo emisor de luz de este módulo puede recibir alimentación del pinout uno, pinout dos, pinout quince, pinout dieciséis o pinout A y K.

• Ventajas:

Estas son algunas de las ventajas de este módulo que se describen con el detalle.

- Es menos costoso, liviano en comparación con la pantalla de tubo de rayos catódicos.
- Utiliza menos energía según la resolución de brillo.
- o Produce menos cantidad de calor debido al menor uso de energía.
- o En este módulo, no hay distorsión geométrica.
- Puede construirse en cualquier forma y tamaño según los requisitos del usuario.
- o La pantalla LCD utilizada en el monitor de la computadora usa doce voltios.

Desventajas:

Con las ventajas de este módulo, hay algunos problemas creados por este módulo que se describe aquí.

- o En algunos módulos LCD más antiguos, existen algunos problemas debido al ángulo de visión y al brillo.
- o Pierde brillo y opera con menos tiempo de respuesta con el incremento de temperatura.
- o Con el incremento de la temperatura circundante, su contraste también perturba.

• Valores de operación:

Parámetro	Símbolo	Condición	Valores estándar			
rarametro	Simbolo	Condicion	Mínimo	Común	Máximo	
Voltaja da antrada	Vdd	Vdd = +5V	4.7V	5.0V	5.3V	
Voltaje de entrada		Vdd = +3V	2.7V	3.0V	5.3V	
Corriente	Idd	Vdd = +5V		8.0mA	10.0mA	
Voltaje directo del LED	Vf	25°C		4.2V	4.6V	
Corriente directa del LED	If	25°c		540mA	1080mA	

Tabla de valores característicos del LCD

• Descripción de terminales:

No. Terminal	Símbolo	Función
1	Vss	Conexión a tierra.
2	Vdd	+3V ó +5V.
3	V0	Ajuste de contraste.
4	RS	Selector de registro.
5	R/W	Señal de lectura/escritura.
6	Е	Habilitar señal (alto/bajo).
7	DB0	Bus de datos.
8	DB1	Bus de datos.
9	DB2	Bus de datos.
10	DB3	Bus de datos.
11	DB4	Bus de datos.
12	DB5	Bus de datos.
13	DB6	Bus de datos.
14	DB7	Bus de datos.
15	A	Alimentación para el LED (4.2V recomendado).
16	K	Alimentación para B/L.
17	NC/VEE	NC o voltaje negativo de salida.
18	NC	Conexión NC.

Tabla de descripción de terminales del LCD 20x4

DESARROLLO

Instrucciones:

Implementar un circuito sensor de temperatura en base al comportamiento de un termistor NTCLE100E3 ante los efectos de la temperatura, circuito cuya salida analógica deberá ser convertida a señal digital de 8 bits por una Tarjeta de Adquisición de Datos (Arduino UNO) y finalmente mostrada en un LCD

Basándonos en el diagrama de bloques propuesto anteriormente, procedemos a explicar de forma detallada cada uno de los bloques por separado:

• Termómetro (Termistor NTCLE100E3)(Entrada):

Este bloque se encarga de fungir como termómetro, ya que, sabemos que el termistor NTCLE100E3 es sumamente sensible a la temperatura, con un rango de medición entre 0°C y 50°C; Y esto se ve reflejado en su salida en voltaje.

• Circuito Acondicionador de Señal:

Es Circuito Acondicionador de Señal se va a encargar de modificar y acoplar la señal de salida del Termómetro termistor NTCLE100E3 a un rango entre 0 y 5V, que es el voltaje de entrada para nuestro siguiente módulo (Arduino UNO).

• Tarjeta de Adquisición de datos Arduino:

Este módulo se va a encargar de procesar el voltaje de entrada y mostrar la siguiente información, en el siguiente módulo:

- Vsalida (CAS)
- Vtermistor
- o Temperatura (°C, °K|)
- Liquid Crystal Display:

Módulo final donde se proyectarán los valores anteriormente mencionados.

Diseño del primer bloque: Termómetro (Termistor NTCLE100E3)(Entrada):

El primer paso, es conocer todos los datos necesarios para poder trabar con el termistor NTC, y para eso nos vamos a apoyar de la teoría proporcionada en clase por el profesor, y obviamente, en la hoja de datos proporcionada por el fabricante.

Sabemos que nuestro rango de medida de la temperatura va a ser de 0°C a 50°C, o bien, 273°K a 323°K.

Refiriéndonos a la hoja de datos, extraemos el valor de B:

$$B = 3977$$

$$\alpha(273^{\circ}\text{K}) = -\frac{B}{T^2} = -\frac{3977}{273^2} = -0.05336177864$$

$$\alpha(323^{\circ}\text{K}) = -\frac{B}{T^2} = -\frac{3977}{323^2} = -0.03811979411$$

Procedemos a calcular las resistencias Rt correspondientes:

$$\begin{aligned} \text{Rt} &= (10,000\Omega) * \varepsilon^{\text{B*}\left(\frac{1}{\text{T}} - \frac{1}{\text{T}_0}\right)} \\ \text{Rt}_{273} &= (10,000\Omega) * \varepsilon^{3977\left(\frac{1}{273} - \frac{1}{298}\right)} = 33,944.04\Omega \\ \text{Rt}_{323} &= (10,000\Omega) * \varepsilon^{3977\left(\frac{1}{323} - \frac{1}{298}\right)} = 3559.58\Omega \end{aligned}$$

Ahora, calculamos la sensibilidad del termistor:

$$S = \frac{\Delta y}{\Delta x} = \frac{3559.58 - 33944.04}{323 - 273} = -607.6892 \frac{\Omega}{{}^{\circ}K}$$

Después, procedemos a linealizar al puente de Wheatstone

$$T_C = \frac{T_1 - T_0}{2} + T_0 = \frac{323 - 273}{2} + 273 = 298$$
°K a 25°C

Sabemos que la resistencia Rt proporcionada por el fabricante es de $10k\Omega$, con lo cual, es posible calcular el valor de R:

$$R = \frac{B - 2Tc}{B + 2Tc} Rtc = \frac{3977 - 2(298)}{3977 + 2(298)} * (10,000\Omega) = 7393.39602\Omega$$

Calculamos la sensibilidad de las 3 temperaturas características del termistor NTC, siendo a 0°C, 25°C y 50°C, respectivamente, 273°K, 298°K y 323°K:

$$Stc = \frac{R^2}{(Rtc + R)^2} \left(-\frac{B}{T^2} \right) Rtc$$

$$St_{273} = \frac{7393.39602\Omega^2}{(10000\Omega + 7393.39602\Omega)^2} \left(-\frac{3977}{273^2} \right) 10000\Omega = -96.41607$$

$$St_C = St_{298} = \frac{7393.39602\Omega^2}{(10000\Omega + 7393.39602\Omega)^2} \left(-\frac{3977}{298^2} \right) 10000\Omega = -80.91745$$

$$St_{323} = \frac{7393.39602\Omega^2}{(10000\Omega + 7393.39602\Omega)^2} \left(-\frac{3977}{323^2} \right) 10000\Omega = -68.87628$$

Ahora, podemos calcular el índice óhmico característico (A) del termistor NTC:

$$\therefore A = \frac{Rtc}{e^{\frac{B}{Tc}}} = \frac{10,000\Omega}{e^{\frac{3977}{298}}} = 0.01599790965$$

Una vez calculado todos los datos anteriores, procedemos a calcular los datos correspondientes al Puente de Wheatstone: Sabemos que la relación del puente para obtener 0V a 25°C, es necesaria la expresión para el voltaje de salida:

$$V0 = Vcc \left(\frac{R}{R + Rt} - \frac{R}{R1 + R}\right)$$

Por lo tanto:

$$\frac{\frac{R}{R+Rt} = \frac{R}{R2+R1}}{\frac{10000\Omega}{10000\Omega} = \frac{R}{R2+R1}}$$

Proponemos una resistencia $\mathbf{R1} = \mathbf{10}\mathbf{k}\Omega$:

$$\frac{10000\Omega}{10000\Omega + 33944.03\Omega} = \frac{R2}{R2 + 10000\Omega}$$

$$R2 + 10000\Omega(10000\Omega) = R2(10000\Omega + 33944.03\Omega)$$

$$R2 + 10000\Omega(10000\Omega) = R2(43944.03\Omega)$$

$$R2 + 10000\Omega = \frac{R2(43944.03\Omega)}{10000\Omega}$$

$$R2 + 10000\Omega = R2(4.394403\Omega)$$

$$R2 = R2(4.394403\Omega) - 10000\Omega$$

$$R2 - R2(4.394403\Omega) = -10000\Omega$$

$$R2(1 - 4.394403\Omega) = -10000\Omega$$

$$R2 = \frac{-10000\Omega}{(1 - 4.394403\Omega)}$$

$$R2 = \frac{-10000\Omega}{-3.394403}$$

$$R2 = 2946.02615\Omega \sim 3000\Omega$$

Una vez calculado lo anterior, propondremos un voltaje de alimentación del Puente de Wheatstone de 5V:

Vamos a calcular:

$$Imax = Vcc + I(Rt) + Ir = 0$$

$$Imax = Vcc + I * Rt + I * R = 0$$

$$Imax = Vcc + I(Rt + R) = 0$$

$$Vcc = 0 - I(Rt + R)$$

$$Vcc = -I(Rt + R)$$

$$\frac{Vcc}{(Rt + R)} = -I$$

$$\frac{Vcc}{(Rt + R)} = -I$$

$$\therefore I = \frac{Vcc}{Rt_{323} + R}$$

$$I = \frac{5V}{3559.58\Omega + 10K\Omega} = 368.7429847\mu A$$

Ahora que tenemos la corriente, podemos calcular la incertidumbre por calentamiento; Usando el valor del Factor de Disipación que nos proporciona el fabricante ($\delta = 8.5 \frac{mW}{^{\circ}_{K}}$):

$$I^{2}Rt = \delta * \Delta T$$

$$\therefore \Delta T = \frac{I^{2} * Rt_{323}}{\delta}$$

$$\Delta T = \frac{(368.7429847\mu A)^{2} * 3559.58\Omega}{8.5 \frac{mW}{\circ K}} = 0.05694129836^{\circ}C$$

Una vez determinado el valor de R y de Vcc, la sensibilidad en el punto medio del intervalo de medida se puede calcular de la siguiente manera:

$$S(Tc) = \frac{dV_0(T)}{dT}$$

$$S(Tc) = Vcc * \frac{R * Rt}{(R + Rt)^2} * \frac{B}{T^2}$$

$$S(Tc) = 5V * \frac{10000\Omega * 7393.39602\Omega}{(10000\Omega + 7393.39602\Omega)^2} * \frac{3977}{298^2} = 54.72279436 \frac{mV}{°K}$$

Por último, procedemos a calcular el voltaje de salida del Puente de Wheatstone, $\mathbf{R4} = \mathbf{10k}$:

$$\begin{split} V_{o(T)} &= Vcc \left(\frac{R4}{Rtc + R4} - \frac{R2}{R1 + R2} \right) \\ V_{o(273)} &= 5V * \left(\frac{10000\Omega}{33,944.04\Omega + 10000\Omega} - \frac{3000\Omega}{10000\Omega + 3000\Omega} \right) = -0.01603542912V \approx 0V \\ V_{o(298)} &= 5V * \left(\frac{10000\Omega}{10000\Omega + 10000\Omega} - \frac{3000\Omega}{10000\Omega + 3000\Omega} \right) = 1.346153846V \\ V_{o(323)} &= 5V * \left(\frac{10000\Omega}{3559.58\Omega + 10000\Omega} - \frac{3000\Omega}{10000\Omega + 3000\Omega} \right) = 2.533583693V \end{split}$$

Comprobamos que los cálculos sean aproximadamente correctos, de la siguiente manera:

sean aproximadamente correctos, de la siguiente manera:
$$T = \frac{V_{o(T)}}{S(T)}$$

$$T_{(273)} = \frac{-0.01603542912V}{54.72279436\frac{mV}{°K}} = -0.2930301588°C \approx 0°C$$

$$T_{(298)} = \frac{1.346153846V}{54.72279436\frac{mV}{°K}} = 24.59950852°C \approx 25°C$$

$$T_{(323)} = \frac{2.533583693V}{54.72279436\frac{mV}{°K}} = 46.29850728°C \approx 50°C$$

Ahora, muestreamos de forma tabulada algunos de los valores que se presentan en nuestro circuito:

Temperatura		Resistencia NTC (Ω)	Voltaje de salida (V)	
°C	°K			
0	273	33,944.04	-0.01603542912 = 0	
25	298	10,000	1.346153846	
50	323	3559.58	2.533583693	

Tabla de resultados

Gráfica de transferencia

Diseño del segundo bloque: Circuito Acondicionador de Señal:

Nuestro rango de salida va a ser el siguiente:

$$V_{o(NTC)} = -0.01603542912V \approx 0V \rightarrow V_{o(CAS)} = 0V$$

 $V_{o(NTC)} = 2.533583693V \rightarrow V_{o(CAS)} = 5V$

Ahora, vamos a calcular la Ganancia de nuestro Amplificador de Instrumentación:

$$G = \frac{V_{i(CAS)}}{V_{o(NTC)}}$$

$$G = \frac{5V}{2.533583693V} = 1.973489178$$

Nos referimos a la hoja de datos del encapsulado, y nos da la siguiente fórmula para obtener el valor de la Resistencia que nos va a dar la Ganancia deseada:

$$G = 1 + \frac{49400\Omega}{R_G}$$

$$\therefore R_G = \frac{49400\Omega}{G - 1}$$

$$R_G = \frac{49400\Omega}{1.973489178 - 1} = 50745.2996\Omega$$

Con el valor de Resistencia ya calculado, podemos obtener los valores del Voltaje de Salida del CAS:

Temperatura		Resistencia NTC (Ω)	Voltaje de salida (V)	Voltaje de salida
°C	°K			CAS (V)
0	273	33,944.04	-0.01603542912 = 0	0
25	298	10,000	1.346153846	2.656620047
50	323	3559.58	2.533583693	5

Tabla de resultados

• Tabla de valores de CAS

Temperatura		Resistencia NTC (Ω)	Voltaje de salida NTC	Voltaje de salida	
°C	°K		(V)	CAS (V)	
0	273	33,944.04	-0.01603542912 = 0	0	
5	278	26120.04	0.2304269533	0.4553359684	
10	283	20286.40	0.4970598634	0.9822134387	
15	288	15894.53	0.7770635788	1.535573123	
20	293	12557.60	1.062701706	2.09486166	
25	298	10,000	1.346153846	2.656620047	
30	303	8023.38	1.62032828	3.201581028	
35	308	6483.66	1.879460769	3.695652174	
40	313	5275.20	2.11943341	4.169960474	
45	318	4319.91	2.337795903	4.604743083	
50	323	3559.58	2.533583693	5	

Tabla de resultados

Gráfica de transferencia

Diseño del cuarto bloque: Tarjeta de Adquisición de Datos (Arduino):

A continuación se presenta el código con el que se programó la Placa de Adquisición de Datos (Arduino), cada línea se comentó de forma adecuada para su comprensión:

```
#include <LiquidCrystal.h>
2
3 LiquidCrystal lcd(10, 9, 8, 5, 4, 3, 2); //(RS, RW, E, D4,D5, D6, D7)
4
5 float volt;
6 float CAS;
7 float E1;
8 float E2;
9 float vNTC;
10 float Celsius;
11 float Kelvin;
12 float RTC;
13
14 void setup(){
     Serial.begin(9600);
15
     lcd.noCursor();
16
17
     delay(500);
     lcd.begin(20, 4);
18
19 }
20
21 void loop(){
22
     volt = analogRead(A0);
23
     CAS = (volt * 5) / 1024;
24
     volt = analogRead(A1);
     E1 = (volt * 5) / 1024;
25
26
     volt = analogRead(A2);
27
     E2 = (volt * 5) / 1024;
28
29
     vNTC = E1 - E2;
30
     Celsius = vNTC / 54.72279436;
31
     Kelvin = Celsius + 273;
32
     RTC = 10000 * pow(2.7182, 3977 * (pow(Kelvin, -1) - pow(298, -1)));
33
34
     lcd.setCursor(0, 0); //Posición del renglón
     lcd.print("Voltaje CAS(V):"); //Mensaje
35
36
     lcd.setCursor(16,0); //Posición del cursor
37
     lcd.print(CAS); //Imprimir valor
38
39
     lcd.setCursor(0,1); //Posición del renglón
40
     lcd.print("Voltaje WS(V):"); //Mensaje
41
     lcd.setCursor(15,1); //Posición del cursor
42
     lcd.print(vNTC); //Imprimir valor
43
44
     lcd.setCursor(0,2); //Posición del renglón
45
     lcd.print("T(C,K):"); //Mensaje
46
     lcd.setCursor(8,2); //Posición del cursor
```

```
47
     lcd.print(Celsius); //Imprimir valor
48
     lcd.setCursor(12,2); //Posición del cursor
     lcd.print(","); //Imprimir valor
49
50
     lcd.setCursor(14,2); //Posición del cursor
51
     lcd.print(Kelvin); //Imprimir valor
52
53
     lcd.setCursor(0,3); //Posición del renglón
54
     lcd.print("RTC(ohm):"); //Mensaje
55
     lcd.setCursor(10,3); //Posición del cursor
     lcd.print(RTC); //Imprimir valor
56
57
     lcd.cursor();
58
59
     delay(500);
60 }
```

Visualización de resultados y unificación del sistema completo:

Como último paso, se enumeran los puertos del LCD que se conectaron al Arduino:

- VSS: conexión a tierra.
- VDD: alimentación (3V/5V).
- RS: conexión a la salida digital 10.
- RW: conexión a la salida digital 9.
- E: conexión a la salida digital 8.
- D4: conexión a la salida digital 5.
- D5: conexión a la salida digital 4.
- D6: conexión a la salida digital 3.
- D7: conexión a la salida digital 2.

A continuación se presenta la unificación del circuito y todos sus bloques:

Circuito final funcionando a 0°C

Circuito final funcionando a 25°C

Circuito final funcionando a 50°C

RESULTADOS

Tablas comparativas de los resultados Teóricos:

	Datos teóricos					Datos Simulados				
Dato	Tempe	eratura	Resistencia	Voltaje salida	Voltaje salida Voltaje de		ratura	Resistencia	Voltaje	Voltaje de
	(°C)	(° K)	(Ω)	NTC(V)	salida CAS (V)	(°C)	(°K)	(Ω)	salida NTC(V)	salida CAS (V)
1	0	273	33,944.04	-0.01603542912	0	0	273	33,944.04	0	0
2	5	278	26120.04	0.2304269533	0.4553359684	5	278	26120.04	0.24	0.49
3	10	283	20286.40	0.4970598634	0.9822134387	10	283	20286.40	0.51	1.01
4	15	288	15894.53	0.7770635788	1.535573123	15	288	15894.53	0.79	1.57
5	20	293	12557.60	1.062701706	2.09486166	20	293	12557.60	1.08	2.13
6	25	298	10,000	1.346153846	2.656620047	25	298	10,000	1.36	2.69
7	30	303	8023.38	1.62032828	3.201581028	30	303	8023.38	1.64	3.23
8	35	308	6483.66	1.879460769	3.695652174	35	308	6483.66	1.89	3.74
9	40	313	5275.20	2.11943341	4.169960474	40	313	5275.20	2.13	4.21
10	45	318	4319.91	2.337795903	4.604743083	45	318	4319.91	2.35	4.64
11	50	323	3559.58	2.533583693	5	50	323	3559.58	2.55	5.00

Tabla comparativa de los resultados finales

Análisis de la tabla comparativa:

Podemos apreciar que ambas partes difieren por milésimas, y esto es debido a diversos factores, como:

- El tipo de simulador que se ocupa.
- Errores de cálculo por falta de cifras.

Obtención de las curvas de transferencia de Datos Simulados:

CONCLUSIÓN

En conclusión, al finalizar esta práctica se lograron todos y cada uno de los objetivos propuestos al principio de esta:

Objetivo general:

 Diseñar y simular un sistema que muestre la información en base a la temperatura registrada por el Termistor NTCLE100E3.

Objetivos específicos:

- Corroborar el comportamiento un transistor NTCLE100E3, como base para la construcción de un circuito sensor de temperatura.
- Implementar un Circuito Acondicionador de señal para los rangos de voltaje de un sensor de temperatura a partir del comportamiento de un termistor.
- Comprender el funcionamiento de un LCD.
- Programar un microcontrolador Arduino UNO para procesar la información y que esta misma pueda ser vista en un LCD.

Creo que la parte más complicada fue el aprendizaje autodidacta que tuve que realizar para poder llevar a cabo esta práctica, por ejemplo:

- Aprender a programar en Arduino.
- Aprender cómo funciona un LCD.
- Recordar el funcionamiento de un Transistor NTCLE100E3.