Introduction to Quantum Computing

Paolo Cremonesi

Tensor product between matrices

• Given two matrices A (with n_a rows and m_a columns) and B (with n_b rows and m_b columns) their tensor product C is a matrix (with $n_a n_b$ rows and $m_a m_b$ columns) defined as the element-by-element product between two matrices

• Example: if
$$A = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix}$

• their tensor product is
$$C = A \otimes B = \begin{bmatrix} 2 \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix} \\ 3 \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ 10 & 4 \\ 3 & 12 \\ 15 & 6 \end{bmatrix}$$

Distributive property of the tensor product over addition

$$(A + B) \otimes C = A \otimes C + B \otimes C$$
$$A \otimes (B + C) = A \otimes B + A \otimes C$$

Given two qubits

$$|v_A\rangle = a_0|0\rangle + a_1|1\rangle$$

$$|v_B\rangle = b_0|0\rangle + b_1|1\rangle$$

we wish to know their combined state

- We wish to know the probability for the two qubits to be
 - both in state $|0\rangle$,
 - or the first in state $|0\rangle$ and the second in state $|1\rangle$,
 - or the opposite,
 - or both in state |1>
- The two qubits do not necessarily interact with each other

The state of the two qubits

$$|v_A\rangle = a_0|0\rangle + a_1|1\rangle$$

$$|v_B\rangle = b_0|0\rangle + b_1|1\rangle$$

is described with their tensor product

The opposite is not always true!!

(a vector of 4 elements cannot always be decomposed into the tensor product of 2 qubits)

$$|v_A\rangle \otimes |v_B\rangle = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} a_0b_0 \\ a_0b_1 \\ a_1b_0 \\ a_1b_1 \end{bmatrix}$$

We introduce a new compact ket notation

$$|v_A v_B\rangle = |v_A\rangle |v_B\rangle = |v_A\rangle \otimes |v_B\rangle$$

We can rewrite in a different format

$$|v_A\rangle = a_0|0\rangle + a_1|1\rangle = a_0 \begin{bmatrix} 1\\0 \end{bmatrix} + a_1 \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$|v_B\rangle = b_0|0\rangle + b_1|1\rangle = b_0 \begin{bmatrix} 1\\0 \end{bmatrix} + b_1 \begin{bmatrix} 0\\1 \end{bmatrix}$$

The tensor product is

$$|v_A v_B\rangle = a_0 b_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_0 b_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} + a_1 b_0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_1 b_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

We can rewrite in a different format

$$|v_A\rangle = a_0|0\rangle + a_1|1\rangle = a_0\begin{bmatrix} 1\\0 \end{bmatrix} + a_1\begin{bmatrix} 0\\1 \end{bmatrix}$$
$$|v_B\rangle = b_0|0\rangle + b_1|1\rangle = b_0\begin{bmatrix} 1\\0 \end{bmatrix} + b_1\begin{bmatrix} 0\\1 \end{bmatrix}$$

The tensor product is

$$|v_A v_B\rangle = a_0 b_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_0 b_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} + a_1 b_0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_1 b_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$(a_0b_0)^2$$
 probability of being in state $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$(a_0b_1)^2$$
 probability of being in state $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$(a_1b_0)^2$$
 probability of being in state $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$(a_1b_1)^2$$
 probability of being in state $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

We can rewrite in a different format

$$|v_A\rangle = a_0|0\rangle + a_1|1\rangle = a_0 \begin{bmatrix} 1\\0 \end{bmatrix} + a_1 \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$|v_B\rangle = b_0|0\rangle + b_1|1\rangle = b_0 \begin{bmatrix} 1\\0 \end{bmatrix} + b_1 \begin{bmatrix} 0\\1 \end{bmatrix}$$

The tensor product is

$$|v_A v_B\rangle = a_0 b_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_0 b_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} + a_1 b_0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_1 b_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

We can rewrite as

$$|v_A v_B\rangle = a_0 b_0 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + a_0 b_1 \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} + a_1 b_0 \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} + a_1 b_1 \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

• We introduce a new notation for the basis of a two-qubit state

•
$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $|01\rangle = |0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
• $|10\rangle = |1\rangle \otimes |0\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $|11\rangle = |1\rangle \otimes |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

We can rewrite the two-qubit state

$$|v_A v_B\rangle = a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle$$

or

$$|v_A v_B\rangle = c_0 |00\rangle + c_1 |01\rangle + c_2 |10\rangle + c_3 |11\rangle$$

- where coefficients c_0 , c_1 , c_2 and c_3 are the **amplitudes** of the multi-qubit state
- An alternative notations is

$$|v_A v_B\rangle = c_0 |\mathbf{0}\rangle + c_1 |\mathbf{1}\rangle + c_2 |\mathbf{2}\rangle + c_3 |\mathbf{3}\rangle$$

Multiple-Qubits States: exercise

Given two qubits

$$|v_A\rangle = a_0|0\rangle + a_1|1\rangle$$

$$|v_B\rangle = b_0|0\rangle + b_1|1\rangle$$

and their state

$$|v_A v_B\rangle = a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle$$

- show that the amplitudes normalize to 1
- We can write the sum of the square of the amplitudes as

$$a_0^2b_0^2 + a_0^2b_1^2 + a_1^2b_0^2 + a_1^2b_1^2 = a_0^2(b_0^2 + b_1^2) + a_1^2(b_0^2 + b_1^2) = a_0^2 + a_1^2 = 1$$

Multiple-Qubits Circuits (Parallel Gates)

Multiple-Qubits Circuits (Parallel Gates)

Parallel Gates: Example 1

$$H \otimes X = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & 1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ 1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & -1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

$$(H \otimes X)|00\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 & 1\\ 1 & 0 & 1 & 0\\ 0 & 1 & 0 & -1\\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ 1\\ 0\\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} (|01\rangle + |11\rangle)$$

Parallel Gates: Example 2

$$I \otimes X = \begin{bmatrix} 1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & 0 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ 0 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & 1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$(I \otimes X)|00\rangle = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = |01\rangle$$

Parallel Gates: the $H^{\otimes 2}$ Hadamard transform

- This circuit performs the $H^{\otimes 2}$ Hadamard transform on two qubits
- Similarly, we can define the $H^{\bigotimes n}$ Hadamard transform on n qubits
- Hadamard transform places the state in a "uniform" superposition across all qubits

Thanks

Paolo Cremonesi

