物理学院本科生 06——07 学年第二学期理论力学课程期末考试试卷(A 卷) 专业: 年级: 学号: 姓名:

成绩:

)。

得 分

、一、填空题(本题共20分,共5小题,每空2分,共10个空)

草稿区

- 1. 质点系动量的变化率等于(
- 2. 质点系的动能的增加,等于()。
- 3. 时间的均匀性导致 (), 空间的均匀性导致 (), 空间的各项同性导致 ()。
- 4. 力 \vec{F} 在虚位移下所作的功称为虚功,用 \vec{F}_{Ni} 表示第i 个质点所受到的约束力,理想约束的定义为:()。
- 5. 刚体平动的自由度为 (),定轴转动自由度为 (),平面平行运动自由度为 ()。刚体的一般运动自由度为 ()。

得 分

、二、证明题(本题共20分,共2小题,每小题10分)

1. 设一质点在 X, Y, Z 方向的动量分量分别为 P_1 , P_2 , P_3 。 对三轴的角动量分别用 J_1 , J_2 , J_3 表示。应用泊松括号定义证明:

(1)
$$\left[p_{\alpha}, p_{\beta}\right] = 0$$
 (其中 $\alpha, \beta = 1, 2$)

(2)
$$[J_{\alpha}, p_{\alpha}] = 0$$
 (其中 $\alpha = 1, 2$)

2. 已知某完整保守体系, 其拉格朗日函数为:

$$L = \frac{1}{2}(m+m')\dot{R}^2 + \frac{1}{2}mR^2\dot{\phi}^2 - m'g(R-l)$$

其中, R, φ 为广义坐标, m, m', g, l 为常数。由拉格朗日方程证明系 统的运动微分为: $(m+m')\ddot{R}-mR\dot{\phi}^2+m'g=0$ 和 $\frac{d}{dt}(mR^2\dot{\phi})=0$

得分 、三、计算题(本题共60分,共2小题,每小题15分)

- 1. 一质点无摩擦地在环形轨道上下滑,轨道弯曲段的曲率半径为R, 该质点由高h处由静止开始下滑,在某处质点开始和轨道脱离接触,试 分析并说明脱离接触的位置,并计算发生这种情况的h的最小值
- 2. 自由落体的拉格朗日量可以表示为: $L=T-V=\frac{1}{2}m\dot{z}^2+mgz$,试根 据哈密顿原理求解自由落体运动的真实规律为: $z = \frac{1}{2}gt^2$
- 3. 带电粒子电磁场中运动,以失势 $\vec{A}(\vec{r},t)$ 、标势 $\varphi(\vec{r},t)$ 、电荷量 e 和 电荷的质量m等物理量表示系统的拉格朗日函数,该拉格朗日函数可 以写成: $L = \frac{1}{2}mv^2 - e\left(\varphi - \vec{v} \cdot \vec{A}\right) = \frac{1}{2}m\sum_{i=1}^{3}\dot{x}_i^2 - e\left(\varphi - \sum_{i=1}^{3}\dot{x}_iA_i\right)$, 应

用广义动量的定义和哈密顿函数的定义,求解哈密顿函数的表达式。

4. 已知复摆做为振动时的拉格朗日量可以写成:

$$L = \frac{1}{2}I\dot{\theta}^2 - mgl(1 - \cos\theta) \approx \frac{1}{2}I\dot{\theta}^2 - \frac{1}{2}mgl\theta^2$$

其中I (常量) 为复摆的转动惯量张量,M 为复摆的质量,l 为复摆 的长度。应用哈密顿原理,求复摆的运动微分方程。