Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**

Learning Objectives

- 1. Describe CASP and protein structure prediction challenge
- Identify the advances made by machine learning in structure prediction
- Critically evaluate models generated through structure prediction
- 4. Identify next challenges in protein structure prediction
- 5. Describe basics of machine learning modules

The protein structure prediction challenge

The protein structure prediction challenge started with Anfinsen's experiment

The protein structure prediction challenge started with Anfinsen's experiment

Describable

Solvable

Tractable

Testable

Describable

Solvable

Tractable

Testable

Describable

Solvable

Tractable

Testable

Describable

Solvable

Tractable

Testable

Describable

Solvable

Tractable

Testable

The need for a centralized systematic competition in prediction fields

Critical Assessment of protein Structure Prediction

Critical Assessment of protein Structure Prediction

Biannual experiment to assess protein modeling methods

Key element:

- A Blind experiment on protein structures that are not published

Participants:

- Groups of researchers, have several weeks to predict
- Servers: have 48 hours to predict

Critical Assessment of protein Structure Prediction

Tertiary structure prediction:

1. Comparative modeling based on clear sequence relationship

Critical Assessment of protein Structure Prediction

Tertiary structure prediction:

- 1. Comparative modeling based on clear sequence relationship
- 2. Modeling based on more distance evolutionary connections

Critical Assessment of protein Structure Prediction

Tertiary structure prediction:

- 1. Comparative modeling based on clear sequence relationship
- 2. Modeling based on more distance evolutionary connections
- 3. Modeling based on non-homologous fold relationships

Critical Assessment of protein Structure Prediction

Tertiary structure prediction:

- 1. Comparative modeling based on clear sequence relationship
- 2. Modeling based on more distance evolutionary connections
- 3. Modeling based on non-homologous fold relationships
- 4. Template-free modeling

Critical Assessment of protein Structure Prediction

Tertiary structure prediction
Secondary structure prediction

1994
CASP1

CASP: Critical Assessment of protein Structure Prediction

CASP: Critical Assessment of protein Structure Prediction

Critical Assessment of protein Structure Prediction

Critical Assessment of protein Structure Prediction

CASP: Critical Assessment of protein Structure Prediction

Critical Assessment of protein Structure Prediction

Model quality assessment Model refinement High accuracy template-based prediction

1994 **CASP1**

1994 **CASP1**

Critical Assessment of protein Structure Prediction

Model quality assessment

Model refinement

High accuracy template-based prediction

Critical Assessment of protein Structure Prediction

CASP: Critical Assessment of protein Structure Prediction

Fragment assembly proved to be one of the most successful methods for structure prediction

MNIFEMLRIDEGLRLKIYKDTE
GYYTIGIGHLLTKSPSLNASKS
ELDKAIGRNTNGVITKDEAEKL
FNQDVDAAVRGILRNAKLKPVY
DSLDAVRRAALINMVFQMGETG
VAGFTNSLRMLQQKRWDEAAVN
LAKSRWYNQTPNRAKRVITTFR
TGTWDAYKNL

Primary Sequence

Tertiary Structure

PDB doesn't cover the entire potential fragments

- For a 9 residue fragment there are 20^9 possible sequence combinations.
- In the PDB there are only 3 million characters.
- Only ~0.001% of the sequence space covered by the PDB.

To account for this, we take a look at fragment similarities

These similarities along with other features are used for picking fragments

VALL (<u>Very Awesome Looking Loops</u>) = Database of the entire PDB, contains the following:

- PDB, chain, position etc.
- Secondary Structure
- Dihedrals: Phi/Psi/Omega
- Coordinates: Ca/Cb/CEN
- Solvent Accessible Surface Area (SASA)
- Sequence Profiles (PSSM)
 - Constructed using MSA+BLOSUM62
- Structural Profiles (PSSM)
 - Constructed using RMSD+DEPTH matches.

These similarities along with other features are used for picking fragments

Model refinement focuses on taking the final step of perfecting a structure

Critical Assessment of protein Structure Prediction

Using coevolution data revolutionized the structure prediction field

Using coevolution data revolutionized the structure prediction field

Using coevolution data revolutionized the structure prediction field

CASP: Critical Assessment of protein Structure Prediction

CASP:

Critical Assessment of protein Structure Prediction

Machine learning for Protein Prediction and Design

Spring 2022 BioE410/510

parisah 'at' uoregon.edu

Artificial Intelligence

Artificial Intelligence

Machine Learning

Artificial Intelligence

Machine Learning

Deep learning

Inputs

Supervised tasks use labeled data

Supervised tasks use labeled data

Supervised tasks use labeled data

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$
 $F1 = \frac{2 \times precision \times recall}{precision + recall}$
 $accuracy = \frac{TP + TN}{TP + FN + TN + FP}$
 $specificity = \frac{TN}{TN + FP}$

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$
 $F1 = \frac{2 \times precision \times recall}{precision + recall}$
 $accuracy = \frac{TP + TN}{TP + FN + TN + FP}$
 $specificity = \frac{TN}{TN + FP}$

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$
 $F1 = \frac{2 \times precision \times recall}{precision + recall}$
 $accuracy = \frac{TP + TN}{TP + FN + TN + FP}$
 $specificity = \frac{TN}{TN + FP}$

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$
 $F1 = \frac{2 \times precision \times recall}{precision + recall}$
 $accuracy = \frac{TP + TN}{TP + FN + TN + FP}$
 $specificity = \frac{TN}{TN + FP}$

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$
 $F1 = \frac{2 \times precision \times recall}{precision + recall}$
 $accuracy = \frac{TP + TN}{TP + FN + TN + FP}$
 $specificity = \frac{TN}{TN + FP}$

$$\begin{array}{rcl} precision & = & \frac{TP}{TP + FP} \\ \\ recall & = & \frac{TP}{TP + FN} \\ \\ F1 & = & \frac{2 \times precision \times recall}{precision + recall} \\ \\ accuracy & = & \frac{TP + TN}{TP + FN + TN + FP} \\ \\ specificity & = & \frac{TN}{TN + FP} \end{array}$$

In class activity 1:

Recall, precision, accuracy

Unsupervised tasks do not need labeled data

Simple models are very powerful at making predictions/clustering

Regression

Random forest

Support Vector Machine

Neural nets gained traction due to enhanced power of computers and increase in data

Neural nets gained traction due to enhanced power of computers and increase in data

A perceptron

Deep neural nets are data hungry

A dense neural net

In class activity:

Examples of simple learning algorithms

Consideration 1:

Consideration 1:

Consideration 1:

Consideration 1:

Consideration 1:

Consideration 2:

Regularization

Consideration 3:

Number of hidden layers and number of neurons in each

Consideration 4:

Learning rate

Consideration 4:

Learning rate

Consideration 4:

Learning rate

Consideration 5:

Activation function

Consideration 5:

Activation function

Activation Functions

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

$$x$$
 $x \ge 0$ $\alpha(e^x-1)$ $x < 0$

In class activity:

Hyper-parameter tuning

CASP:

Critical Assessment of protein Structure Prediction

AlphaFold caused a paradigm shift the field of structure prediction

AlphaFold caused a paradigm shift the field of structure prediction

CASP:

Critical Assessment of protein Structure Prediction

AlphaFold2 generated highly accurate structures

AlphaFold2 is better than all competitors at ~all tasks

AlphaFold2 uses attention to learn from protein seq

AlphaFold2 can be used for structure prediction

AlphaFold2 finished CASP as we know it

What lies ahead for protein structure-prediction?

What lies ahead for protein structure-prediction?

What lies ahead for protein structure-prediction?

- Prediction of multiple functional conformations
- Prediction of protein-protein interaction
- Disordered protein prediction
- Protein design
- Function prediction

For the next lecture:

- 1. Read journal for the next week
 - a. Moderated by group IV
- 2. Post-class assignment
- 3. Work on your updated specific aims page

Next lecture: *Machine learning in protein engineering*

