Aim: To perform and analysis for Normal Distribution on given dataset

In [6]:

#Name : Taufiq Rafik Nagori
#Roll no. : 77 (BDA-B77)

#Section : B
#Subject : PE-II

In [8]:

import os
import pandas as pd

In [10]:

os.getcwd()

Out[10]:

'C:\\Users\\USER'

In [12]:

os.chdir("C:\\Users\\USER\\Desktop")

In [14]:

data = pd.read\_csv("diabetes.csv")

In [16]:

data.head()

Out[16]:

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | DiabetesPedigreeFunction | Age |
|---|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  |

In [18]:

data.tail()

Out[18]:

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | DiabetesPedigreeFunction | Ag |
|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|----|
| 763 | 10          | 101     | 76            | 48            | 180     | 32.9 | 0.171                    | 6  |
| 764 | 2           | 122     | 70            | 27            | 0       | 36.8 | 0.340                    | 2  |
| 765 | 5           | 121     | 72            | 23            | 112     | 26.2 | 0.245                    | 3  |
| 766 | 1           | 126     | 60            | 0             | 0       | 30.1 | 0.349                    | 4  |
| 767 | 1           | 93      | 70            | 31            | 0       | 30.4 | 0.315                    | 2  |

In [20]:

# data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

| # | Column                   | Non-Null Count | Dtype   |
|---|--------------------------|----------------|---------|
|   |                          |                |         |
| 0 | Pregnancies              | 768 non-null   | int64   |
| 1 | Glucose                  | 768 non-null   | int64   |
| 2 | BloodPressure            | 768 non-null   | int64   |
| 3 | SkinThickness            | 768 non-null   | int64   |
| 4 | Insulin                  | 768 non-null   | int64   |
| 5 | BMI                      | 768 non-null   | float64 |
| 6 | DiabetesPedigreeFunction | 768 non-null   | float64 |
| 7 | Age                      | 768 non-null   | int64   |
| 8 | Outcome                  | 768 non-null   | int64   |
|   |                          |                |         |

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

In [22]:

data.describe()

Out[22]:

|       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | ВМІ        | DiabetesPedigr |
|-------|-------------|------------|---------------|---------------|------------|------------|----------------|
| count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 |                |
| mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.992578  |                |
| std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.884160   |                |
| min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.000000   |                |
| 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.300000  |                |
| 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.000000  |                |
| 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  |                |
| max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  |                |

In [24]:

data.shape

Out[24]:

(768, 9)

In [26]:

data.size

Out[26]:

6912

In [28]:

data.ndim

Out[28]:

2

In [30]:

data.columns

Out[30]:

Data pre-processing, data-cleaning, mising value treatment

In [33]:

data.isna()

Out[33]:

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ   | DiabetesPedigreeFunction | 1 /  |
|-----|-------------|---------|---------------|---------------|---------|-------|--------------------------|------|
| 0   | False       | False   | False         | False         | False   | False | False                    | e Fa |
| 1   | False       | False   | False         | False         | False   | False | False                    | e Fa |
| 2   | False       | False   | False         | False         | False   | False | False                    | ÷ Fa |
| 3   | False       | False   | False         | False         | False   | False | False                    | e Fa |
| 4   | False       | False   | False         | False         | False   | False | False                    | e Fa |
|     |             |         |               |               |         |       |                          |      |
| 763 | False       | False   | False         | False         | False   | False | False                    | ∍ Fŧ |
| 764 | False       | False   | False         | False         | False   | False | False                    | e Fa |
| 765 | False       | False   | False         | False         | False   | False | False                    | e Fa |
| 766 | False       | False   | False         | False         | False   | False | False                    | e Fa |
| 767 | False       | False   | False         | False         | False   | False | False                    | e Fa |

768 rows × 9 columns

In [35]:

```
data.isna().any()
```

Out[35]: Pregnancies False Glucose False BloodPressure False SkinThickness False Insulin False BMI False DiabetesPedigreeFunction False Age False Outcome False

dtype: bool

In [37]:

data.isna().sum()

Out[37]:

Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction 0

Age 0
Outcome 0
dtype: int64

In [39]:

import seaborn as sns
import matplotlib.pyplot as plt

In [41]:

sns.distplot(data,bins=20)
plt.show()

C:\Users\USER\AppData\Local\Temp\ipykernel\_15968\1706651633.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data,bins=20)



In [43]:

sns.distplot(data['Glucose'],bins=20)
plt.show()

C:\Users\USER\AppData\Local\Temp\ipykernel\_15968\1093375177.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data['Glucose'],bins=20)



# In [45]:

sns.distplot(data['Age'], bins=20)
plt.show()

C:\Users\USER\AppData\Local\Temp\ipykernel\_15968\713659080.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data['Age'], bins=20)



### In [47]:

sns.distplot(data['BloodPressure'], bins = 20)
plt.show()

C:\Users\USER\AppData\Local\Temp\ipykernel\_15968\1074119919.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data['BloodPressure'], bins = 20)



### In [49]:

sns.distplot(data['SkinThickness'], bins = 20)
plt.show()

C:\Users\USER\AppData\Local\Temp\ipykernel\_15968\3091487386.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data['SkinThickness'], bins = 20)



```
In [51]:
plt.hist(data['Age'], bins=30, color='blue', edgecolor='black', alpha=0.7)
Out[51]:
(array([135.,
              84., 81.,
                          67.,
                                50.,
                                      40.,
                                            31.,
                                                  26.,
                                                        35.,
                                                              25.,
                    11.,
                                16.,
                                      11.,
                                             7.,
                                                         8.,
        21.,
              28.,
                          13.,
                                                  12.,
               4., 3.,
                                             0.,
         7.,
                         1., 0.,
                                       0.,
                                                   1.]),
 array([21., 23., 25., 27., 29., 31., 33., 35., 37., 39., 41., 43., 45.,
       47., 49., 51., 53., 55., 57., 59., 61., 63., 65., 67., 69., 71.,
       73., 75., 77., 79., 81.]),
 <BarContainer object of 30 artists>)
```



Q-Q (Quantile-Quantile) plot is a graphical tool that compares the distribution of a dataset to a theoretical normal distribution to check if the data follows normality

# In [55]:

```
import scipy.stats as stats
import matplotlib.pyplot as plt

plt.figure(figsize=(6,6))
stats.probplot(data['Age'], dist="norm", plot=plt)
plt.title("Q-Q Plot")
plt.show()
```

