电子测量技术 2014

第一章 作业题

1. 测得某检测装置的一组输入输出数据如下表所示,试用最小二乘法拟合直线,并求出该 检测装置的非线性度。

x/cm	0.9	2.5	3.3	4.5	5.7	6.7
y/V	1.1	1.6	2.6	3.2	4.0	5.0

解: 设最小二乘法拟合直线为: $y = Kx + y_0$

则:

$$K = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}} = \frac{6\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{6\sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$\sum_{i=1}^{6} x_i = 0.9 + 2.5 + 3.3 + 4.5 + 5.7 + 6.7 = 23.6$$

$$\sum_{i=1}^{6} x_i^2 = 0.9^2 + 2.5^2 + 3.3^2 + 4.5^2 + 5.7^2 + 6.7^2 = 115.58$$

$$\sum_{i=1}^{6} x_i y_i = 0.9 \times 1.1 + 2.5 \times 1.6 + 3.3 \times 2.6 + 4.5 \times 3.2 + 5.7 \times 4.0 + 6.7 \times 5.0 = 84.27$$

$$\sum_{i=1}^{6} y_i = 1.1 + 1.6 + 2.6 + 3.2 + 4.0 + 5.0 = 17.5$$

$$K = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2} = \frac{6 \times 84.27 - 23.6 \times 17.5}{6 \times 115.58 - 23.6 \times 23.6} = \frac{92.62}{136.52} = 0.68$$

$$y_0 = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2} = \frac{115.58 \times 17.5 - 23.6 \times 84.27}{6 \times 115.58 - 23.6 \times 23.6} = \frac{33.878}{136.52} = 0.25$$

最小二乘拟合直线: $y = Kx + y_0 = 0.68x + 0.25$

因此,对应六个输入点,拟合直线的输出分别为 0.86, 1.95, 2.49, 3.31, 4.13, 4.81 标定曲线与拟合直线的差值为 0.24, 0.35, 0.11, 0.11, 0.13, 0.19

检测装置的非线性度为:

非线性度=
$$\frac{B_{\text{max}}}{A}$$
×100%= $\frac{0.35}{5.0 - 1.1}$ ×100%= $\frac{0.35}{3.9}$ ×100%=9%

2. 一只压力传感器的校准数据如下表所示,已知该传感器的最小二乘拟合直线为:

$$y = 96.42 x - 0.16$$

试确定该传感器的非线性度、灵敏度和回程误差。

压 力	输出值(mV)						
(MPa)	第一次循环		第二次循环		第三次循环		
	正行程	反行程	正行程	反行程	正行程	反行程	
0.2	19.09	19.16	19.11	19.16	19.13	19.20	
0.4	38.28	38.41	38.32	38.42	38.35	38.47	
0.6	57.58	57.73	57.61	57.74	57.66	57.81	
0.8	76.94	76.94	76.98	76.98	77.04	77.04	

解:

(1) 计算值

输入量(MPa)	0.2	0.4	0.6	0.8	
正行程平均输出	19.11	38.32	57.62	76.99	
(mV)	19.11	36.32	37.02	70.99	
反行程平均输出	19.17	38.43	57.76	76.99	
(mV)	19.1/	36.43	37.70	70.99	
标定曲线值	19.14	38.38	57.69	76.99	
(mV)	19.14	30.30	37.09	70.99	
最小二乘拟合直					
线计算值	19.12	38.41	57.69	76.98	
(mV)					
标定曲线与拟合					
直线的偏差值	0.02	0.03	0	0.01	
(mV)					
正、反行程输出	0.06	0.11	0.14	0	
的差值(mV)	0.00	0.11	0.14	U	

(2) 传感器的非线性度

非线性度=
$$\frac{B_{\text{max}}}{A} \times 100\% = \frac{0.03}{76.99-19.14} \times 100\% = \frac{0.03}{57.85} \times 100\% = 0.05\%$$

(3)

根据最小二乘拟合直线:

$$y = Kx + y_0 = 96.42 x - 0.16$$

可知传感器的灵敏度为:

$$S = \frac{\Delta y}{\Delta x} = K = 96.42 \text{ mV/MPa}$$

(4) 传感器的回程误差

回程误差=
$$\frac{h_{\text{max}}}{A} \times 100\% = \frac{0.14}{76.99-19.14} \times 100\% = \frac{0.14}{57.85} \times 100\% = 0.24\%$$

3. 某测量系统,其微分方程为30 $\frac{dy}{dt}$ +3y=0.15x,其中 y 为输出电压 (mV),x 为输入温度

(ℂ),试求该测量系统的时间常数 τ 和静态灵敏度 k。

解:根据题意,可知该测量系统为一阶系统。

因此该测量系统的时间常数为:

$$\tau = \frac{a_1}{a_0} = \frac{30}{3} = 10$$
s

测量系统的静态灵敏度为:

$$k = \frac{b_0}{a_0} = \frac{0.15}{3} = 0.05 \text{ mV/°C}$$

1-10 用一时间常数为 2s 的温度计测量炉温时, 当炉温在 200~400℃之间, 按正弦规律变化时, 周期为 150s, 温度计输出的变化范围是多少?

解:温度计为一阶系统,系统的输入信号即炉温 T=300+100sinwt,对于其中的正弦分量,系统的幅频特性为:

$$A(\omega) = \frac{1}{\sqrt{(\omega \tau)^2 + 1}} = \frac{1}{\sqrt{(\frac{2\pi}{T}\tau)^2 + 1}} = \frac{1}{\sqrt{(\frac{2\pi}{150} \times 2)^2 + 1}} = 0.997$$

当炉温为 200℃~400℃变化时,温度计的输出变化范围为 ymin~ymax,其中:

$$y_{\min}$$
=300+A(ω) ×(-100)=300-0.997×100=200.3°C

$$y_{\text{max}} = 300 + A(\omega) \times 100 = 300 + 0.997 \times 100 = 399.7^{\circ}$$
C

1-12 设某种传感器可作为二阶振荡系统处理。传感器的固有频率为 800Hz,阻尼比为 0.14,使用该传感器为频率为 400Hz 的正弦输入进行测试,其振幅和相位各是多少? 若 将阻尼比改为 0.7,对应幅值和相位做何种变化?

解: (1)该传感器的频率特性为:

$$H(j\omega) = \frac{{\omega_n}^2}{s^2 + 2\zeta\omega_n s + {\omega_n}^2} \bigg|_{s=i\omega} = \frac{{\omega_n}^2}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + {\omega_n}^2}$$

由于

$$\omega_{\rm n} = 2\pi f_{\rm n} = 2\pi \times 800 = 1600\pi$$

 $\omega = 2\pi f = 2\pi \times 400 = 800\pi$

$$H(j\omega) = \frac{4}{3+j0.56}$$

$$A(\omega) = \frac{4}{\sqrt{3^2+0.56^2}} = 1.31$$

$$\phi(\omega) = -\tan^{-1}\frac{0.56}{3} = -10.57^{\circ}$$

(2) 当阻尼比改为 0.7 时,该传感器的频率特性为:

$$H(j\omega) = \frac{{\omega_n}^2}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + {\omega_n}^2} = \frac{4}{3 + j2.8}$$

$$A(\omega) = \frac{4}{\sqrt{3^2 + 2.8^2}} = 0.97$$

$$\phi(\omega) = -\tan^{-1}\frac{2.8}{3} = -43^\circ$$