NAME	Shreya Shetty
UID	2019140059
CLASS	TE IT
BATCH	В
ACADEMIC YEAR	2021-22
SUBJECT	SC (Soft Computing)
COURSE CODE	IT312
EXPERIMENT NO.	6

Aim:

To implement an unsupervised learning algorithm (KSOFM) for pattern classification problem.

Theory:

KSOFM (Kohonen Self-Organizing Feature Maps)

- Feature mapping is a process which converts the patterns of arbitrary dimensionality into a response of one or two-dimensional arrays of neurons, i.e., it converts a wide pattern space into a typical feature space.
- The network performing such a mapping is called feature map.
- Apart from its capability to reduce the higher dimensionality, it has to preserve the neighborhood relations of the input patterns, i.e., it has to obtain a topology preserving map.
- For obtaining such feature maps, it is required to find self-organizing neuralarcay which consists of neurons arranged in one-dimensional array or a two-dimensional array.
- To depict this, a typical network structure where each component of the input vector x is connected to each of the nodes is shown in below Figure.

Soft Computing Lab 21-22

• On the other hand, if the input vector is two-dimensional, the inputs, say la, b), can arrange themselves in a two-dimensional array defining the input space (a, b) as in Figure 5-6. Here, the two layers are fully connected.

Figure 5-6 Two-dimensional feature mapping network.

- The topological preserving property is observed in the brain, but not found in any other artificial neural network.
- Here, there are in ourpur cluster units arranged in a one-or two-dimensional array and the input signals are n-tuples. The cluster (output) units' weight vector serves as an exemplar of the inpul pattern char is associated with that cluster.
- At the time of self-organization, the weight vector of the cluster unit which matches the input pattern very closely is chosen as the winner unit.
- The closeness of weight vector of cluster unit to the input pattern may be based on the square of the minimum Euclidean distance.
- The weights are updated for the winning unic and its neighboring units.
- It should be noced that the weight vectors of the neighboring units are not close to the input pattern and the connective weights do not multiply the signal sent from the input units to the cluster units until dor product measure of similarity is being used.
- The extension of Kohonen feature map for a multilayer network involves the addition of an association layer to the output of the self-organizing feature map layer.

- The output node is found to associate the desired output values with certain input vectors.
- This type of architecture is called as Kohonen self-organizing motor map (KSOMM; Ritter, 1992) and layer that is added is called a motor map in which the movement command, are being mapped into two-dimensional locations of excitation.
- Here, the feature map is a hidden layer this acts as a competitive network which classifies the Input vectors.
- The motor map formation is based on the learning of a control task.
- The motor map learning may be either supervised or unsupervised learning and can be performed by delta learning rule or outstar learning rule.
- The motor map learning is an extension of Kohonen's original learning algorithm.

<u>ARCHITECTURE</u>

Figure 5-10 Kohonen self-organizing feature map architecture.

Training Algorithm for KSOFM

Step 0: Initialize the reference vectors. This can be done using the following steps.

- From the given set of training vectors, take the first "m" (number of clusters) training vectors and use them as weight vectors, the remaining vectors can be used for training.
- Assign the initial weights and classifications randomly.
- K-means clustering method.

Set initial learning rate alpha.

Step 1: Perform Steps 2-6 if the stopping condition is false.

Step 2: Perform Steps 3-4 for each training input vector x.

Step 3: Calculate the Euclidean distance; for i = 1 to n, j = 1 to m.

$$D(j) = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i - w_{ij})^2$$

Find the winning unit index J, when D(J) is minimum.

Step 4: Update the weights on the winning unit, W_i using the following conditions.

If
$$T = y$$
 then $W_i(new) = W_i(old) + \alpha(x_i - W_i(old))$

If
$$T != y$$
 then $W_i(new) = W_i(old) - \alpha (x_i - W_i(old))$

Step 5: Reduce the learning rate α .

Step 6: Test for the stopping condition of the training process. (The stopping conditions may be fixed number of epochs or if learning rate has reduced to a negligible value)

FlowChart:

Figure 5-11 Flowchart for training process of KSOFM.

Procedure:

- 1. Import necessary libraries
- 2. Take input of weights
- 3. Take input of vectors
- 4. For each input vector x, calculate winner unit j and update the weights on winning cluster

Solved Example:

00	Page No.:
	ω ₄ , (h) = ω ₄ , (o) + 0: (λy - ω ₄ , (o)) = 0.r + 0: S (1-0:r)
	= 0.7 +0.5 (1-0.6)
Lateral by	Updated weight matrix for stimput pattern:
	$w_{ij} = \begin{bmatrix} 0 & 1 & 0.9 \\ 0.2 & 0.7 \end{bmatrix}$
	3 0.2 0.7
	0.00.5
	0.9 0.3
	for and imput vector:
	Jox 2 = [1000] Suchidian distance: D(j) = Z(w; -1;)-
	10x 2= (1000)
-4	20:1 = I(w., -1;)-
The state of the s	100 :
T HO	D(1) = 2 (w, -2;)
	L. Company
	= (0:1-1) 2+(0:2) +(0:1-6) 2+(0:9-0)
	$D(2) = \frac{1}{2}, (w: 2 - ni)^{2} = (0.9 - 1)^{2} + (0.7 - 0)^{2} + (0.3 - 0)^{2}$
	D(2) = 2 (w: - ni) = (0.9-1) + (0.7-0) + (0.5-0) +
	(0.3-0)
	0.64
	: (R) < D(1) D(2) is min ~
1	Hunu, winning cluster & 9, i.e. J = 2
	Now, updating weight on j=2
	we (() + ((x; - w, 10 H)
	wij (nw) = wis (old) + x (x; - wis (old)) wo (new) - wis (old) + 0.5 (2; -wis (old))
	ω, (n) = ω, (0) + ο. s (2, -ω, (0)) = 0.9 + 0. s (1-0.9)
	20.95

	Free No.	9
	(a) = 0.7 + 0.5 (0-0.2) = 0.25	
	1 1 1 1 1 1 (0-0-1) = 0.50	1000
9/63	(b) = 0.3 + 0.7 (0-0.7) = 0.11	
	". Updated weight matrix after second inpu	gatten:
	w: = 00.1 098	
	ω; = 0.1 098) 0.2 0.35	Page 3
	0.8 0.5	
	[0.1 0.4)	7
	27d 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	3rd Input rector:	
	for = [0 110)	
	Eudiqua what	12
	N. > - 1 0:1 - 0 \ 1 (0:1)	-0)
5000	Endiduar distance: D(1) = (0:1-0) + (0:3-1) + (0:8-1) + (0:9	
	D(2) = (0.05 -0) + (0.05 -1) + (0.35-1) + (0.15-	
10-20	$D(2) = (0.95 - 0)^{2} + (0.05 - 1)^{2}$	
(n-r)	$D(2) = (0.95 - 0)^{2} + (0.05 - 1)^{2}$	
16-11	D(2) = (0-95-0) = (0-25-1) + (0-25-1) + (0-1	o) ²
16-11	D(2) = (0-95-0) + (0-25-1) + (0-25-1) + (0-1	o) ²
16-17	$D(2) = (0.95 - 0) + (0.05 - 1)^{2} + ($	o) ²
16-11	$D(2) = (0.95 - 0)^{2} + (0.05 - 1)^{2}$	o) ²
16-13	$D(2) = (0.95 - 0)^{2} + (0.05 - 1)^{2}$	o) ²
/a- r c	D(2) = (0.95 -0) + (0.05 -1) + (0.25-1) + (0.15-1) + (0	o) ²
/6-10 /6-10	D(2) = (0-95-0) + (0-25-1) + (0-25-1) + (0-1	o) ²
/6-10 /6-10 /6-10 /6-10	$D(2) = (0.95 - 0)^{2} + (0.35 - 1)^{2} + (0.35 - 1)^{2} + (0.15 - 1)^{2}$	o) ²
16-13 16-13 16-13 16-13 16-13 16-13 16-13	D(2) = (0-95-0) + (0-25-1) + (0-25-1) + (0-1	o) ²

	4th enput veder:
44	for sop n= [0001]
Z 33	Euclidian distance:
	$D(1) = \frac{3}{2} (w_{i1}^{-n})^{\frac{1}{2}}$
	= (0.05-0) + (0-4-0) + (09-0) + (0.45-1)
- 27	D(2) = (0.95-0) + (0:35-0) + (0:45-0) + (0:45-0)
	thena, winning cluster with is 4, J=1:
	thence, winning cluster with is 4, J=1
	Now, upday weight on winning cluster 3-1
	win (na) = wo (old + of ne) - wo (old))
	10, ch = 0.05 + 0.5 (0 -0.05) = 0.021
	$\omega_{1}(h) = 0.4 + 0.5 (0 - 06) = 0.3$ $\omega_{1}(h) = 0.4 + 0.5 (1 - 0.45) = 0.43$ $\omega_{1}(h) = 0.45 + 0.5 (1 - 0.45) = 0.43$
	(a) (b) = 0.4 +0.1 (0 - 01) = 0.45
	Wy, (h) = 0.40 103 (1 = 0.45) = 0.13
	They lind weight obtained after preventation
	Thus I grad weight obtained after presentation of 4th Propert pattern is - 0.95]
	0 wg. = 0:025 0.957
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5	0.42 0.93
)	[0.₩₽ 0.N]
9	1, 1010 4 of your out only
9	is and of 1st Extration of ict epoch
•	Now, wearing rate is
•	2 (tri) 4 0.5 x 1+1
•	a(1) = 0.5x(0) = 0.5x0.c = 0.2
9	with the rad, we can proceed for 100 Herations

Code:

```
import numpy as np
import pandas as pd
w = pd.DataFrame(np.array([[0.2, 0.9], [0.4, 0.7], [0.6, 0.5], [0.8, 0.3]]))
input_vectors = [[0, 0, 1, 1], [1, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1]]
alpha = 0.5
print("Input Vectors : \n",input_vectors)
for x in input_vectors:
    print("\nInput Vector : ",x)
    D1 = round(sum((w[0][i] - x[i]) ** 2 for i in range(len(x))), 3)
    D2 = round(sum((w[1][i] - x[i]) ** 2 for i in range(len(x))), 3)
    print(D1, D2)
    if D1 < D2:
        J = 0
        J = 1
    for i in range(4):
        w[J][i] += alpha * (x[i] - w[J][i])
    print("Winning Team :",J+1,"\n")
```

Output:

```
0 0.2 0.9
2 0.6 0.5
```


In this experiment, I have learnt and implemented KSOFM algorithm and how to select the winning team and then update the weights of the under winning team.