

Towards Maximizing the Representation Gap between In-Domain & Out-of-Distribution Examples

1. Introduction

- Deep learning based models produce wrong predictions without any warning
- This raises questions about their reliability for sensitive real-world applications
- Determining source of uncertainty can allow manual intervention in an informed way, enhancing the reliability of DNN based models

2. Types of Predictive Uncertainty

Model or Epistemic uncertainty

- Uncertainty in estimating network parameters
- Reducible with enough training data

Data or Aleatoric uncertainty

 Arises due to the natural complexities of the underlying distribution, such as class overlap, label noise, homoscedastic and heteroscedastic noise

Distributional uncertainty

- Distributional mismatch between the training and test examples during inference
- Test data is out-of-distribution (OOD)

OOD example leading to distributional uncertainty

OOD

3. Existing Approaches: Non-Bayesian

Limitation:

- In the presence of high data uncertainty among multiple classes, existing OOD detectors produce similar representation for both in-domain and OOD examples.
- Compromise their performance for OOD detection

4. Existing Approaches: Bayesian

In-Domain Confident. At one corner of the simplex.

In-Domain Miss:

Middle of the simplex.

Scattered over simplex.

Limitation:

- Computationally expensive to produce the ensemble
- Difficult to control this desired behavior

5. Existing Dirichlet Prior Network (DPN)

Emulating the behavior of Bayesian (ensemble) approaches [Malinin & Gales, 2018; 2019] Parameterize a prior Dirichlet distribution to the categorical over a simplex

6. Proposed Representation for OOD

- Maximize representation gap by producing sharp multi-modal Dirichlet for OODs.
- We show that existing RKL loss cannot produce this representation.
- We propose a novel loss function for DPN to address this limitation.

7. Dirichlet Distribution

Parameterized using the concentration parameters, $\alpha = \{\alpha_1, \dots, \alpha_K\}$

$$Dir(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma\alpha_0}{\prod_{c=1}^K \Gamma\alpha_c} \prod_{c=1}^K \mu_c^{\alpha_c - 1}, \qquad where \ \alpha_c > 0 \ \forall \ c$$

 $\alpha_0 = \sum \alpha_c$ denotes the precision of the Dirichlet distribution.

- Larger α_0 with at least one $\alpha_c > 0$ produces a sharp unimodal Dirichlet
- $\alpha_c < 1 \ \forall \ c$ produces sharp multi-modal Dirichlet

Visualization of Dirichlet distributions for different concentration parameters

8. A standard DNN with soft-max is a DPN

- Concentration parameters of the Dirichlet is exponential of logits: $\alpha_c = \exp(z_c(\mathbf{x}^*))$
- Categorical posterior, obtained from soft-max, is the mean of the Dirichet distribution

$$p\left(\frac{y = \omega_c}{\boldsymbol{x}^*}\right) = \frac{\alpha_c}{\alpha_0} = \frac{\exp(z_c(\boldsymbol{x}^*))}{\sum_c \exp(z_c(\boldsymbol{x}^*))}$$

• **Limitation:** Cannot control the individual α_c to produce desired Dirichlet distributions.

Jay Nandy, Wynne Hsu, Mong Li Lee {jaynandy, whsu, leeml}@comp.nus.edu.sg

9. Proposed Loss Function

Proposed a novel regularizer to control the concentration parameters, α_c Train using both in-domain and OOD training examples in multi-task fashion

- In-domain: $\mathbb{E}_{p_{in}(x,y)} \left| -\log p(y|x, \theta) \right| \frac{\lambda_{in}}{\kappa} \sum sigmoid(z_c(x)) \right|$ where $\lambda_{in} > 0$
- OOD: $\mathbb{E}_{p_{in}(x,y)} \left[\mathcal{H}_{ce}(\mathcal{U}; p(y|x, \boldsymbol{\theta})) \frac{\lambda_{out}}{\kappa} \sum sigmoid(z_c(x)) \right]$ where $\lambda_{out} < \lambda_{in}$

10. Results on Synthetic Dataset

DPN_{rev} using RKL [Malinin & Gales, 2019]

11. Results on Benchmark Datasets

	OOD	Tiny [29]				STL-10 [32]				LSUN [33]			
		Max.P	MI	α_0	D.Ent	Max.P	MI	$lpha_0$	D.Ent	Max.P	MI	$lpha_0$	D.Ent
C10	Baseline	$88.9_{\pm 0.0}$	12	-	9 - 9	$75.9_{\pm 0.0}$	-	11-11	_	$90.3_{\pm 0.0}$	-	0 - 0	-
	MCDP	$88.7{\scriptstyle\pm0.1}$	$88.1{\scriptstyle\pm0.1}$	-	-	76.2 ± 0.0	$76.0{\scriptstyle \pm 0.0}$	-	-	$90.6_{\pm 0.0}$	90.2 ± 0.0		-
	DE	$88.9 \scriptstyle{\pm NA}$	$87.8 \pm NA$	-	_	76.0±na	$75.6 \pm NA$	-	-	90.3±na	$89.7 \pm NA$	-	-
	OE	$98.2{\scriptstyle\pm0.1}$	-	-	-	$81.4_{\pm 1.2}$	-	-	-	$98.4_{\pm 0.3}$	-	- ·	-
	DPN_{rev}	$97.5{\scriptstyle\pm0.5}$	$97.8{\scriptstyle\pm0.4}$	$97.8 \scriptstyle{\pm 0.4}$	$97.7{\scriptstyle\pm0.4}$	81.6±1.7	82.2 ± 1.7	82.2 ± 1.6	81.9 ± 1.7	$98.5_{\pm 0.4}$	$98.7{\scriptstyle\pm0.3}$	$98.7{\scriptstyle\pm0.3}$	$98.7{\scriptstyle\pm0.3}$
	DPN ⁺	$98.0{\scriptstyle\pm0.2}$	$98.0{\scriptstyle\pm0.2}$	$98.0{\scriptstyle\pm0.2}$	$98.0{\scriptstyle\pm0.2}$	81.6±1.4	$81.8_{\pm 1.2}$	$81.8_{\pm 1.2}$	$81.8_{\pm 1.2}$	$98.2_{\pm 0.3}$	$98.3_{\pm 0.4}$	$98.3_{\pm 0.4}$	$98.3_{\pm 0.4}$
	DPN-	$99.0 \scriptstyle{\pm 0.1}$	$99.0 \scriptstyle{\pm 0.1}$	$97.7{\scriptstyle\pm0.1}$	6.0 ± 0.3	$84.7_{\pm 0.4}$	$\textbf{85.3} \scriptstyle{\pm 0.5}$	$84.9{\scriptstyle\pm0.5}$	$34.6{\scriptstyle\pm0.4}$	$99.2_{\pm 0.1}$	$99.3 \scriptstyle{\pm 0.0}$	$98.1{\scriptstyle\pm0.1}$	$5.0_{\pm 0.2}$
-	OOD	Tiny [29]			STL-10 [32]				LSUN [33]				
C100		Max.P	MI	$lpha_0$	D.Ent	Max.P	MI	$lpha_0$	D.Ent	Max.P	MI	$lpha_0$	D.Ent
	Baseline	$68.8_{\pm 0.2}$	-	-	-	69.6 ± 0.0	-	-	-	72.5 ± 0.0	-	(* 70)	-
	MCDP	$69.7_{\pm 0.3}$	70.6 ± 0.3	-	-	$70.7_{\pm 0.1}$	71.6 ± 0.2	-	-	$74.5_{\pm 0.1}$	$75.9{\scriptstyle\pm0.2}$	-	-
	DE	$68.9_{\pm \mathrm{NA}}$	$69.6 \pm \text{NA}$	-	-	69.6±NA	$70.2 \pm NA$	-	-	72.6±NA	$73.4\pm NA$	-	_
	OE	$89.5_{\pm 1.0}$	-	-	-	$91.2_{\pm 0.7}$	-	11-	-	$92.2_{\pm 0.9}$	-	-	-
	DPN_{rev}	$81.2_{\pm 0.2}$	$83.8_{\pm 0.1}$	83.8 ± 0.1	$83.5_{\pm 0.1}$	$87.2_{\pm 0.1}$	$89.3_{\pm 0.1}$	$89.3_{\pm 0.1}$	$89.0_{\pm 0.1}$	$86.7_{\pm 0.0}$	$89.3_{\pm 0.1}$	$89.3_{\pm 0.1}$	$88.9{\scriptstyle\pm0.1}$
	DPN ⁺	$85.9_{\pm 0.3}$	$92.2_{\pm 0.1}$	$92.2_{\pm 0.1}$	$92.3_{\pm 0.1}$	$89.1_{\pm 0.2}$	$95.0_{\pm 0.0}$	$95.0_{\pm 0.0}$	$94.8{\scriptstyle\pm0.0}$	$90.3_{\pm 0.3}$	$95.0_{\pm 0.1}$	$95.0_{\pm 0.1}$	$95.0{\scriptstyle\pm0.1}$
	DPN-	$89.2_{\pm 0.1}$	$94.5 \scriptstyle{\pm 0.1}$	$94.5 \scriptstyle{\pm 0.1}$	$38.1{\scriptstyle\pm0.5}$	$92.8_{\pm 0.1}$	$96.8 \scriptstyle{\pm 0.1}$	$96.8 \scriptstyle{\pm 0.1}$	$25.4{\scriptstyle\pm0.4}$	$92.8_{\pm 0.1}$	$96.5 \scriptstyle{\pm 0.1}$	$96.5{\scriptstyle\pm0.1}$	$31.5_{\pm 0.4}$
-	OOD	CIFAR-10 [28]				CIFAR-100 [28]				Textures [34]			
		Max.P	MI	$lpha_0$	D.Ent	Max.P	MI	$lpha_0$	D.Ent	Max.P	MI	$lpha_0$	D.Ent
TIM	Baseline	$76.9_{\pm 0.2}$	-	-	-	73.6 ± 0.2	-	-	-	$70.9_{\pm 0.2}$	-	·	-
	MCDP	$77.4_{\pm0.1}$	$77.5_{\pm 0.2}$	-	-	$74.0_{\pm 0.2}$	$73.6{\scriptstyle\pm0.2}$	-	-	$70.3_{\pm 0.2}$	63.6 ± 0.2	-	-
	DE	$76.9_{\pm NA}$	$77.7_{\pm \mathrm{NA}}$	-	-	$73.7\pm NA$	$75.3 \pm NA$	-	-	71.1±NA	$76.2\pm NA$	-	_
	OE	$91.3_{\pm 0.4}$	-	-	-	$89.5_{\pm 0.5}$	a-a		1-	95.8 ± 0.3	-		-
	DPN_{rev}	$85.4_{\pm 0.7}$	$82.8{\scriptstyle\pm1.4}$	$81.9_{\pm 1.6}$	85.6 ± 0.9	$84.2_{\pm 0.8}$	$82.5_{\pm 1.4}$	$81.7_{\pm 1.6}$	$85.0{\scriptstyle\pm0.9}$	$90.9_{\pm 0.3}$	$91.2_{\pm 0.6}$	$90.6{\scriptstyle\pm0.6}$	$92.6_{\pm 0.3}$
	DPN ⁺	$99.2_{\pm 0.0}$	$99.7_{\pm 0.0}$	$99.7_{\pm 0.0}$	$99.6_{\pm 0.0}$	$98.8_{\pm 0.0}$	$99.5_{\pm 0.0}$	$99.5_{\pm 0.0}$	$99.4_{\pm 0.0}$	$96.5_{\pm 0.1}$	$98.4_{\pm 0.0}$	$98.4_{\pm 0.0}$	$98.2_{\pm 0.0}$
	DPN-	$99.7_{\pm 0.0}$	$99.9 \scriptstyle{\pm 0.0}$	$99.9 \scriptstyle{\pm 0.0}$	$3.5{\scriptstyle\pm0.1}$	$98.7_{\pm 0.1}$	$99.6 \scriptstyle{\pm 0.0}$	$99.6 \scriptstyle{\pm 0.0}$	$7.5{\scriptstyle\pm0.2}$	$95.8_{\pm 0.1}$	$\textbf{98.7} \scriptstyle{\pm 0.1}$	$98.7 \scriptstyle{\pm 0.1}$	$19.3_{\pm 0.4}$

AUROC scores for OOD detection (Higher scores are better)

Please refer to our paper for additional details and more experimental results:

ArXiv Paper Link

GitHub Code Link