IS893: Advanced Software Security

8. Logic and Constraint Languages

Kihong Heo

Constraint Solving in Program Analysis

- Various uses of logical constraints in program analysis
 - Verification condition: software verification
 - Path reachability: fuzzing, symbolic execution
 - Exploitable input: automated exploit generation
 - Etc

Example

```
int arr[size];
for (int i = 0; i < size - 1; i++) {
   arr[i] = 0;
}
assert(i < size);
arr[i] = 1;</pre>
```

```
if (a < b) {
   flag = 0;
} else {
   flag = 1;
}

if (a < b) {
   // Is this branch reachable if flag = 1?
}</pre>
```

```
array = random_array();
quicksort(array);

for(i = 0; i < size - 1; i++)
  assert(arr[i] <= array[i + 1];</pre>
```

```
// Does any exploitable input exist?
str = input();
int arr[10];
strcpy(arr, str);
```

Common Constraint Languages

- Commonly used languages in the community
 - SAT
 - SMT
 - Horn clause
 - Constrained Horn clause (CHC)
- Different expressiveness and efficiency

All languages supported by Z3

Propositional Logic: Syntax

- Atom: truth symbols ("true" and "false") and propositional variables
- Literal: atom α or its negation $\neg \alpha$
- Formula: literal or application of a logical connective to formulae ${\cal F}, {\cal F}_1, {\cal F}_2$

$$\neg F$$

$$F_1 \land F_2$$

$$F_1 \lor F_2$$

$$F_1 \Longrightarrow F_2$$

$$F_1 \iff F_2$$

Propositional Logic: Semantics

 Interpretation: assignment to every propositional variable exactly one truth value

$$I: \{p \mapsto \mathsf{true}, q \mapsto \mathsf{false}, \cdots \}$$

- Formula F + Interpretation I = Truth value
- We write $I \models F$ if F evaluates to true under I
- We write $I \nvDash F$ if F evaluates to false under I
- Example: $\{p \mapsto \mathsf{true}, q \mapsto \mathsf{false}\} \vDash (p \land q) \rightarrow (p \lor \neg q)$

The SAT Problem

- Boolean satisfiability problem
- "Given a propositional formula, decide whether it is satisfiable"
 - If satisfiable, there exists an satisfying assignment to the variables
 - NP-complete
- Example:

$$(\neg p \lor q) \land (\neg q \lor r) \land (p \lor \neg r \lor q)$$

$$p \wedge \neg p$$

Satisfiable when p = false, q = true, r = true

Unsatisfiable

First-order Logic

- Logical symbols
 - Quantifiers (∀ and ∃), logical connectives, variables, equality symbol
- Non-logical symbols
 - Predicates (relation): greaterThan, isFemale, etc
 - Functions: fatherOf, plus, etc
 - Constants: "Kihong", 1, etc (special case of a function with arity 0)
- Example: $\forall x \in \mathbb{Z} . p(x) \land f(x) > 0 \implies q(x)$

Terms

- Variables: any variable is a term
- Functions: any expression $f(t_1, ..., t_n)$ is a term if f is a function symbol and t_i is a term
- Example:
 - x, 1, f(f(x), f(f(x)))

First-order Formula

- Predicates: $P(t_1, ..., t_n)$ is a formula if P is a predicate symbol and t_i is a term
- Equality: $t_1 = t_2$ is a formula if t_1 and t_2 are terms
- Negation: $\neg \varphi$ is a formula if φ is a formula
- Connectives: $\varphi \oplus \psi$ is a formula if φ and ψ are formulas, and \oplus is a connectives
- Quantifiers: $\forall x . \varphi$ and $\exists x . \varphi$ are formulas if φ is a formula and x is a variable
- Example:
 - P(f(0),1,2) is a formula but, P(P(1,2),2) is NOT a formula

The SMT Problem

- Satisfiability Modulo Theories
- "Given a first-order formula, decide whether it is satisfiable"
- Higher level reasoning than the Boolean level by theories
- Complexity: depending on the underlying theories

Theories

- Signature + Axiom
 - Signature: a set of non-logical symbols (predicates, constants, functions)
 - Axiom: a set of true statements
 - E.g., linear arithmetic theory

Signature:
$$(0, 1, +, -, \leq)$$

Axioms:
$$\forall a,b.\ a+b=b+a \\ \forall a,b,c.\ (a+b)+c=a+(b+c)$$

Common Theories

- Equality with uninterpreted function (EUF): $x = y \implies f(x) = f(y)$
- Arrays: two axioms with two interpreted function read and write read(write(A, i, d), i) = d and read(write(A, i, d), j) = read(A, j) for $i \neq j$
- Bit-vectors (integers or floating-point)
- Linear arithmetic
- Inductive datatypes
- Etc

Horn Clause

- Clause: a disjunction of literals (e.g., $p \lor \neg q \lor \neg r$)
- Horn clause: a clause with at most one positive
 - E.g., $\neg p \lor \neg q \lor r$ which is equivalent to $p \land q \implies r$
- Horn clause logic: basis of logic programming languages such as Prolog and Datalog

Horn Clause Satisfiability

- Propositional Horn clause (HORNSAT): linear time
- First-order Horn clause (e.g., Prolog): undecidable
- First-order Horn clause w/o function symbols (e.g., Datalog): EXPTIME

Constrained Horn Clause (CHC)

A first-order logic formula,

$$\varphi \wedge p_1(X_1) \wedge \cdots \wedge p_n(X_n) \implies h(X)$$
 Constraint Datalog rule

• ϕ : a constraint in a background theory (e.g., linear)

Conclusion

- Constraint solving: check satisfiability of logical constraints
 - Constraints on program properties: PL, SE, Security, etc
 - Constraints on general facts: symbolic AI, knowledge discovery
- Various constraint languages with different expressive power