BEST AVAILABLE COPY

MANUFACTURING METHOD OF BULK SINGLE CRYSTAL OF NITRIDE CONTAINING GALLIUM

Patent number:

JP2003040699

Publication date:

2003-02-13

Inventor:

DWILINSKI ROBERT; DORADZINSKI ROMAN; GARCZYNSKI JERZY;

SIERZPUTOWSKI LESZEK; KANBARA YASUO

Applicant:

AMMONO SP ZO O;; NICHIA CHEM IND LTD

Classification:

- international:

C30B29/38; C30B7/10

- european:

Application number: JP20020143449 20020517

Priority number(s):

Also published as:

WO02101126 (A⁻ WO02101120 (A: WO02101120 (A: EP1432853 (A3) EP1432853 (A2)

more >>

Report a data error h-

Abstract of JP2003040699

PROBLEM TO BE SOLVED: To obtain a bulk single crystal of a nitride containing gallium by using supercritical ammonia. SOLUTION: A supercritical ammonia containing an alkali metal ion is prepared in an autoclave, and supercritical solution is formed by dissolving feed stock therein. The nitride containing gallium is crystallized simultaneously or separately on a seed surface. This method is performed by using the autoclave 1 with a convection controlling device 2 for manufacturing supercritical solvent. The autoclave is installed in a furnace 4 provided with a heating device 5 and a cooling

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-40699 (P2003-40699A)

(43)公開日 平成15年2月13日(2003.2.13)

(51) Int.Cl7

C30B 29/38

識別記号

FΙ C30B 29/38 テーマコート*(参考)

7/10

7/10

D 4G07.7

審査請求 未請求 請求項の数42 OL (全 14 頁)

(21)出願番号 特願2002-143449(P2002-143449)

(22)出願日

平成14年5月17日(2002.5.17)

(31)優先権主張番号 P-347918

(32)優先日

平成13年6月6日(2001.6.6)

(33)優先權主張国

ポーランド (PL)

(31)優先権主張番号 P-350375 (32)優先日

平成13年10月26日(2001.10.26)

(33)優先權主張国

ポーランド (PL)

(71)出願人 502177901

アンモノ・スプウカ・ジ・オグラニチョノ ン・オドボヴィエドニアウノシツィオン

AMMONO Sp. zo. o.

ポーランド00-377ワルシャワ、チェルヴ

オネゴ・クシジャ2/31番

(71) 出額人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(74)代理人 100074354

弁理士 豊栖 康弘 (外1名)

最終頁に続く

(54) 【発明の名称】 ガリウム含有窒化物のパルク単結晶の製造法

(57)【要約】

【課題】超臨界アンモニアを用いてガリウム含有窒化物 のバルク単結晶を得ること。

【解決手段】オートクレーブ中に、アルカリ金属イオン を含有する超臨界溶媒を形成し、これに、フィードスト ックを溶解して超臨界溶液を生成し、同時あるいは個別 にシード面にガリウム含有窒化物を結晶させる。との方 法は、対流管理装置2が設置された超臨界溶媒を生成す るためのオートクレーブ1を用いて実施される。前記オ ートクレーブは、加熱措置5または冷却装置6を備えた 炉ユニット4に投入される。

20

【特許請求の範囲】

【請求項1】 ガリウム含有窒化物のバルク単結晶を得る方法であって、オートクレイブ中にアルカリ金属イオンを含有する超臨界アンモニア溶媒を形成し、該超臨界アンモニア溶媒中にガリウム含有フィードストックを溶解させ、超臨界溶媒へのガリウム含有フィードストックの溶解時より高温および/またはより低圧の条件において上記フィードストックの溶解した超臨界溶液からガリウム含有窒化物をシード面に結晶させることを特徴とする方法。

【請求項2】 フィードストックの溶解工程とは別個 に、超臨界溶液をより高温および/またはより低圧に移動させる工程を備える請求項1記載の方法。

【請求項3】 オートクレイブ中に温度差を有する少なくとも2つの領域を同時形成し、ガリウム含有フィードストゥクを低温の溶解領域に配置し、シードを高温の結晶化領域に配置することを特徴とする請求項1記載の方法

【請求項4】 溶解領域と結晶化領域の温度差は、超臨界溶液内の化学輸送を確保する範囲に設定されることを特徴とする請求項3記載の方法。

【請求項5】 超臨界溶液内の化学輸送は主として対流 によって行われるととを特徴とする請求項4記載の方 法。

【請求項6】 溶解領域と結晶化領域の温度差は1℃以上であるととを特徴とする請求項4記載の方法。

【請求項7】 ガリウム含有窒化物はA1、Ga - x - y In, N(0 < x < 1、0 < y < 1、0 < x + y < 1) であることを特徴とする請求項1記載の方 法.

【請求項8】 ガリウム含有窒化物はドナー、アクセプ タまたは磁気性のドーブを含有できることを特徴とする 請求項1記載の方法。

【請求項9】 超臨界溶媒はNH,またはその誘導体を 含有するととを特徴とする請求項1記載の方法。

【請求項10】 超臨界溶媒は少なくともナトリウムまたはカリウムのイオンを含有することを特徴とする請求項1記載の方法。

【請求項11】 ガリウム含有フィードストックは主に ガリウム含有窒化物またはその前駆体で構成されること 40 を特徴とする請求項1記載の方法。

【請求項12】 前駆体はガリウムを含有するアジド、イミド、アミドイミド、アミド、水素化物、金属間化合物、合金および金属ガリウムから選べられることを特徴とする請求項11記載の方法。

【請求項13】 シードは少なくともガリウムまたは他のIII族元素を含む窒化物の結晶層を有する請求項1記載の方法。

【請求項14】 シードが有するガリウム含有窒化物の 結晶層における表面欠陥密度は10°/cm²以下であ ることを特徴とする請求項1記載の方法。

【請求項15】 ガリウム含有窒化物の結晶化は100~800°C、好ましくはの300~600°C、より好ましくは400~550°C温度で行われることを特徴とする請求項1記載の方法。

【請求項16】 ガリウム含有窒化物の結晶化は100~10000bar、好ましくは1000~5500bar、より好ましくは1500~3000barの圧力で行われることを特徴とする請求項1記載の方法。

10 【請求項17】 超臨界溶媒内のアルカリ金属イオンの 濃度はフィードストック及びガリウム含有窒化物の特定 溶解度を確保できるように調整されることを特徴とする 請求項1記載の方法。

【請求項18】 超臨界溶液内の他の成分に対するアルカリ金属イオンのモル比を1:200~1:2、好ましくは1:100~1:5、より好ましく1:20~1:8の範囲以内に管理する請求項1記載の方法。

【請求項19】 超臨界溶媒を生成するオートクレーブ 1を有する設備であって、前記オートクレーブには対流 管理装置2が設置され、加熱装置5または冷却装置6を 備えた炉ユニット4に投入されることを特徴とするガリ ウム含有窒化物のバルク単結晶の生産設備。

【請求項20】 炉ユニット4は、オートクレーブ1の結晶化領域14に相当する、加熱装置5を備えた高温領域およびオートクレーブ1の溶解領域13に相当する、加熱装置5または冷却装置6を備えた低温領域を有する請求項19記載の設備。

【請求項21】 炉ユニット4は、オートクレーブ1の 結晶化領域14に相当する、加熱装置5または冷却装置 6を備えた高温領域およびオートクレーブ1の溶解領域 13に相当する、加熱装5または冷却装置6を備えた低 温領域を有する請求項19記載の設備。

【請求項22】 対流管理装置2は、結晶化領域14と 溶解領域13を区分し、中心あるいは周囲に穴のある横型パッフル12-枚又は数枚で構成される請求項19記載の設備。

【請求項23】 オートクレーブ1内には、フィードストック16を溶解領域13に、シード17を結晶化領域14に配置し、13と14領域間の超臨界溶液の対流を管理装置2によって設定する請求項19記載の設備。

【請求項24】 溶解領域13は横型バッフル12の上位に、結晶化領域14は横型バッフル12の下位にある ことを特徴とする請求項22記載の設備。

【請求項25】 ガリウム含有窒化物のバルク単結晶を得る方法であって、オートクレイプ内でガリウム含有フィードストックをアンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、ガリウム含有窒化物の溶解度が負の温度係数を有する超臨界溶液を供給し、上記超臨界溶液からガリウム含有窒化物の溶解度の負の温度係数を利用してオートクレープ内に配置されたシード

2

面のみにガリウム含有窒化物の結晶を選択的に成長されることを特徴とする方法。

【請求項26】 ガリウム含有窒化物のバルク単結晶を得る方法であって、オートクレイプ内でガリウム含有フィードストックをアンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、ガリウム含有窒化物の溶解度が正の圧力係数を有する超臨界溶液を供給し、上記超臨界溶液からガリウム含有窒化物の溶解度の正の圧力係数を利用してオートクレープ内に配置されたシード面のみにガリウム含有窒化物の結晶を選択的に成長され 10ることを特徴とする方法。

【請求項27】 前記アルカリ金属のイオンがアルカリ金属またはハロゲン物質を含有しないミネラライザーの形で投与されることを特徴とする請求項25または26記載の方法。

【請求項28】 アルカリ金属イオンが Li^+ , N a^+ , K^+ から選ばれる1 種または2 種以上を含む請求項27記載の方法。

【請求項29】 超臨界溶媒に溶解されるガリウム含有フィードストックはガリウム含有窒化物または超臨界溶 20液に溶解可能なガリウム化合物を生成できるガリウム前駆体からなるととを特徴とする請求項25または26記載の方法。

【請求項30】 ガリウム含有フィードストックがHVPEで形成されたGaNまたはその他の化学反応で形成されたGaNで、アンモノ塩基性超臨界反応を害しない塩素を含む請求項25または26記載の方法。

【請求項31】 超臨界アンモニア溶液がガリウム含有フィードストックが超臨界アンモニア溶媒に対し平衡反応で溶解するガリウム含有窒化物と超臨界アンモニア溶 30 媒に対し不可逆的に反応するガリウムメタルとの組み合わせにより形成される請求項25または26記載の方法

【請求項32】 前記のガリウム含有窒化物とは窒化ガリウムであることを特徴とする請求項25または26記載の方法。

【請求項33】 前記のシードはGaN単結晶であると とを特徴とする請求項25または26記載の方法。

【請求項34】 ガリウム含有窒化物を含む超臨界アンモニア溶液を得る方法であって、オートクレイプ内でアンモニアとアルカリ金属イオンを含有する超臨界溶媒を形成し、該超臨界溶媒中に上記ガリウム含有窒化物の溶解温度よりも低温でガリウムメタルを溶解し、ガリウム含有窒化物の溶解度が負の温度係数を有する超臨界溶液を供給することを特徴とする方法。

【請求項35】 得られる超臨界溶液中のガリウム含有 窒化物の濃度が結晶化温度における溶解度を越えない請 求項34記載の方法。

【請求項36】 超臨界溶媒に対するガリウムメタルの 溶解を150から300℃の温度で行う請求項34記載 50

の方法。

【請求項37】 ガリウム含有窒化物のバルク単結晶を結晶化させる方法であって、アンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、ガリウム含有窒化物の溶解度が負の温度係数を有する超臨界溶液を、少なくともオートクレーブ内のシードの配置された領域において、所定の温度に上昇または所定の圧力に低下させて超臨界溶液の溶解度をシードに対する過飽和領域であって、自発的結晶化が起こらない濃度以下に調節してオートクレーブ内に配置されたシード面のみにガリウム含有窒化物の結晶を選択的に成長されることを特徴とする方法。

【請求項38】 オートクレーブ内に溶解領域と結晶化 領域という2つの領域を同時形成し、シードに対する超 臨界溶液の過飽和の管理を溶解温度と結晶化温度の調整 によって行われることを特徴とする請求項37記載の方 法。

【請求項39】 結晶化領域の温度を400~600℃ の温度に設定することを特徴とする請求項38記載の方法。

【請求項40】 オートクレーブ内に溶解領域と結晶化領域という2つの領域を同時形成し、領域間の温度差を150℃以下、好ましくは100℃以下に保持することを特徴とする請求項38記載の方法。

【請求項41】 シードに対する超臨界溶液の過飽和調整が低温の溶解領域と高温の結晶化領域を区分するバッフルを1または複数設け、溶解領域と結晶化領域の対流量を調整により行われることを特徴とする請求項38記載の方法。

【請求項42】 オートクレイブ中に特定の温度差を有する溶解領域と結晶化領域という2つの領域を形成し、シードに対する超臨界溶液の過飽和調整は、シードの総面積を上回る総面積を有するGaN結晶として投与されるガリウム含有フィードストックを利用することによって行われることを特徴とする請求項38記載の方法。【発明の詳細な説明】

【0001】本発明は、超臨界溶液からシード上に結晶させることによって、ガリウム含有窒化物のバルク単結晶を成長する方法並びにガリウム含有窒化物のバルク単結晶の製造設備に関する。特に超臨界N-bを利用する技術によって、窒化ガリウムのバルク単結晶の成長を可能とするものである。

【0002】窒化物を応用する電子光学機器は、一般的 に堆積する窒化物層と異なるサファイヤ基板あるいは炭 化珪素の基板の上に造られている(ヘテロエビタキシ)。最もよく使われるMOCVD法では、GANがアンモニアと金属有機化合物から気相成長するが、バルク単結晶層 の生成は不可能であった。また、バッファ層の利用によって単位面積あたりの転位数が減らされるが、上記方法では約10⁸/c m² までにしか低減できないのが現状

である。

【0003】他の窒化ガリウムのバルク単結晶の製造方 法として気相ハロゲンを利用するエピタクシー法(HVP E) ["Optical patterning of GaN films" M.K.Kelly, O.Ambacher, Appl. Phys. Lett. 69 (12) (1996) and " Fabrication of thin-film InGaN light-emitting diod e membranes" W.S.Wrong, T. Sands, Appl. Phys. Let t. 75 (10) (1999)].が提案されている。この方法を利 用することよって直径2インチのGaN基板を製造できる が、表面の欠陥密度が約10⁷~10⁹/c m² である ため、レーザダイオードに必要とされる品質を充分確保 できない。そこで、最近では表面の欠陥密度を低減させ るために横方向成長法 (ELO) が使われている。 との方 法では、サファイア基板の上にGaN層を成長させ、その 上にさらに線状あるいは網状のSiO。を堆積させる。と のように準備された基板に対しGaNの横方向成長が行わ れることによって、欠陥密度が約10~/cm²以下に 抑制される。しかしこの方法では10°/cm²以下に 低減するのは難しい。

【0004】窒化ガリウムおよびXIII族(IUPAC、1989)の金属窒化物の場合は、バルク結晶の成長が大変困難である。また、窒化物が金属とN。へ分解するために標準的な溶融方法と昇華方法を適用できないのである。HNP法["Prospects for high-pressure crystal growth of III-V nitrides" S, Porowski et al., Inst.Phys.C onf.Series, 137, 369 (1998)]においては、前記の分解を高圧窒素の使用によって阻止する。結晶の成長は溶解したガリウムの中に、つまり液相で行われ、10mm程度のGaN結晶を生成できる。ガリウム内に十分な窒素溶解度を得るには、温度を1500 C、窒素の圧力を15kbarに設定する必要がある。しかもこの方法では結晶が厚さ方向に成長せず、せいぜい $30\sim50\mu$ にすぎない。また、高圧を必要とするという性格上、これまでに得られた大きさは一辺が10から15mm程度に過ぎない

【0005】その他に知られる方法においては、成長工程の温度と圧力を低下するために、超臨界アンモニアの利用が提案されている。特に、ガリウムとアルカリ金属アミド(KNH2またはLiNH2)を含有するアンモニアの合成によってGaN結晶を成長することが可能で40あると示唆された。反応温度を550℃以下、圧力を5kbar以下に設定し、成長した結晶の大きさは5μmである["Ammono method of BN, AlN, and GaN synthesis and crystal growth" R.Dwilinski et al., Proc. ECW-3, Warsaw, June 22-24, 1998, MRS Internet Journal of Nitride Semiconductor Research]。超臨界アンモニアを利用することによって、市販のGaN粉末を用い、窒化ガリウムの再結晶が得られた["Crystal Growth of galium nitride in supercritical ammonia" J.W.Kolis et al., J.Cryst. Growth 222, 431-434 (2001)]。この50

再結晶を可能とする主因は、超臨界アンモニアに投与されたアミド(KNH₂)と少量のハロゲン(KI)であって、反応は温度400℃と圧力3.4kbarで行われたが、0.5 mm程度のGaN結晶が得られたに過ぎず、バルク単結晶の得られなかった。これは、超臨界溶液内の化学輸送もシード上の成長も見られなかったためであ

【0006】他方、半導体を用いる光学素子の寿命特性は、主に転位密度を含む活性層の結晶性に依存する。GaN基板を応用するレーザダイオードの場合は、GaN層の転位密度を10°/cm²以下に低減することが好ましいが、それは従来の方法では大変困難である。【0007】

【発明の解決しようとする課題】そこで、本発明の第1 の目的は、シード上にガリウム含有窒化物のバルク単結 晶を形成することができる方法および装置を提供するこ とにある。また、本発明の第2の目的は光学素子の基板 として品質上に応用できる窒化物のバルク結晶を成長す ることである。この目的は、アルカリ金属イオンを含有 する超臨界溶媒が存在するオートクレーブの中にフィー ドストックを溶解し、超臨界溶液を作り、溶解温度より 高い温度または溶解圧力より低い圧力において、溶液か らガリウム含有窒化物をシード面に結晶させることを特 徴とするガリウム含有窒化物のバルク単結晶を成長方法 によって達成された。

[0008]

【課題を解決するための手段】上記目的を達成するため の本発明の第1の構成は、アンモノ塩基性 (ammono-bas ic) を付与する 1 種または複数のミネラライザーを含む 超臨界アンモニア溶媒中で化学輸送が起き、ガリウム含 有窒化物の単結晶成長を得ることができる、アンモノ塩 基性結晶成長に関するもので、ガリウム含有窒化物のバ ルク単結晶を得る方法であって、オートクレイブ内でガ リウム含有フィードストックをアンモニアとアルカリ金 属イオンを含有する超臨界溶媒の中に溶解し、ガリウム 含有窒化物の溶解度が負の温度係数を有する超臨界溶液 を供給し、上記超臨界溶液からガリウム含有窒化物の溶 解度の負の温度係数を利用してオートクレーブ内に配置 されたシード面のみにガリウム含有窒化物の結晶を選択 的に成長されることを特徴とする方法、およびガリウム 含有窒化物のバルク単結晶を得る方法であって、オート クレイプ内でガリウム含有フィードストックをアンモニ アとアルカリ金属イオンを含有する超臨界溶媒の中に溶 解し、ガリウム含有窒化物の溶解度が正の圧力係数を有 する超臨界溶液を供給し、上記超臨界溶液からガリウム 含有窒化物の溶解度の正の圧力係数を利用してオートク レープ内に配置されたシード面のみにガリウム含有窒化 物の結晶を選択的に成長されることを特徴とする方法を 提供するものである。

【0009】第1の構成において、ガリウム含有窒化物

を溶解する超臨界溶液を供給する工程は、水晶の水熱合 成法法と異なり、その原料となるガリウム含有窒化物は 天然に存在しない。そこで、本件発明の第2の構成は、 金属ガリウムから上記ガリウム含有窒化物を溶解する超 臨界溶液を形成する方法を提供するものである。すなわ ち、ガリウム含有窒化物を含む超臨界アンモニア溶液を 得る方法であって、オートクレイブ内でアンモニアとア ルカリ金属イオンを含有する超臨界溶媒を形成し、該超 臨界溶媒中にガリウム含有窒化物の溶解温度よりも低温 でガリウムメタルを溶解し、ガリウム含有窒化物の溶解 度が負の温度係数を有する超臨界溶液を供給することを 特徴とする方法。上記方法においては、得られる超臨界 溶液中のガリウム含有窒化物の濃度が結晶化温度におけ る溶解度を越えないように調整するのが好ましい。後工 程での自発的結晶成長を避けるためである。また、第2 の結晶化工程の前段として実施する場合は、超臨界溶媒 に対するガリウムメタルの溶解を150から300℃の 温度で行うのが好ましい。シードの溶解を防止するため である。

【0010】第1の構成において、第2の結晶化を行う 工程はシード面に選択的結晶化を行わせることが肝要で ある。そこで、本件発明の第3の構成はガリウム含有窒 化物のバルク単結晶を結晶化させる方法であって、アン モニアとアルカリ金属イオンを含有する超臨界溶媒の中 に溶解し、ガリウム含有窒化物の溶解度が負の温度係数 を有する超臨界溶液を、少なくともオートクレーブ内の シードの配置された領域において、所定の温度に上昇ま たは所定の圧力に低下させて超臨界溶液の溶解度をシー ドに対する過飽和領域であって、自発的結晶化が起とら ない濃度以下に調節してオートクレーブ内に配置された シード面のみにガリウム含有窒化物の結晶を選択的に成 長されることを特徴とする方法を提供するものである。 【0011】第3の構成においては、オートクレープ内 に溶解領域と結晶化領域という2つの領域を同時形成す る場合は、シードに対する超臨界溶液の過飽和の管理を 溶解温度と結晶化温度の調整によって行われるのが好ま しい。そして、結晶化領域の温度を400~600℃の 温度に設定するが制御が容易であり、オートクレープ内 に溶解領域と結晶化領域の温度差を150℃以下、好ま しくは100℃以下に保持することにより制御が容易で ある。また、シードに対する超臨界溶液の過飽和調整は オートクレープ内に低温の溶解領域と高温の結晶化領域 を区分するバッフルを1または複数設け、溶解領域と結 晶化領域の対流量を調整により行われるのがよい。さら に、オートクレイブ中に特定の温度差を有する溶解領域 と結晶化領域という2つの領域を形成する場合は、シー ドに対する超臨界溶液の過飽和調整は、シードの総面積 を上回る総面積を有するGaN結晶として投与されるガ リウム含有フィードストックを利用するのがよい。

【0012】なお、上記第1の構成において、前記アル

カリ金属のイオンがアルカリ金属またはハロゲン物質を含有しないミネラライザーの形で投与され、アルカリ金属イオンとしては、 Li^+ , Na^+ , K^+ から選ばれる1種または2種が選ばれる。また、超臨界溶媒に溶解されるガリウム含有フィードストックはガリウム含有窒化物または超臨界溶液に溶解可能なガリウム化合物を生成できるガリウム前駆体からなる。

【0013】また、本発明方法はアンモノ塩基性反応に基づくものであるが、ガリウム含有フィードストックがHVPEで形成されたGaNまたは化学反応で形成されたGaNで、塩素を本来的に含むものであってもアンモノ塩基性超臨界反応を害しない限り問題はない。

【0014】上記第2の構成を利用する場合は、フィードストックとして超臨界アンモニア溶媒に対し平衡反応で溶解するガリウム含有窒化物と超臨界アンモニア溶媒に対し不可逆的に反応するガリウムメタルとの組み合わせを用いる事ができる。

【0015】前記のガリウム含有窒化物としては窒化ガリウムを用いると結晶化の反応制御が容易である。その20 場合は、シードとしてGaN単結晶を用いるのが好ましい。

【0016】本発明は、上記第1の溶解工程と第2の結晶化工程を同時に、かつオートクレーブ内で分離して行う方法として次の第4の構成を提供するものである。すなわち、ガリウム含有窒化物のバルク単結晶を得る方法であって、オートクレイブ中にアルカリ金属イオンを含有する超臨界アンモニア溶媒を形成し、該超臨界アンモニア溶媒中にガリウム含有フィードストックを溶解させ、超臨界溶媒へのガリウム含有フィードストックの溶解時より高温および/またはより低圧の条件において上記フィードストックの溶解した超臨界溶液からガリウム含有窒化物をシード面に結晶させることを特徴とする方法を提供するものである。

【0017】第1の構成においては、ガリウム含有フィードストックの溶解工程とは別個に、超臨界溶液をより高温および/またはより低圧に移動させる工程を備えるのがよい。また、オートクレイブ中に温度差を有する少なくとも2つの領域を同時形成し、ガリウム含有フィードストックを低温の溶解領域に配置し、シードを高温の結晶化領域に配置することにより実施される。溶解領域と結晶化領域の温度差は、超臨界溶液内の化学輸送を確保する範囲に設定される必要があり、超臨界溶液内の化学輸送を主として対流によって行われることができる。通常、溶解領域と結晶化領域の温度差は1℃以上である。好ましくは5~150℃であり、さらに好ましくは100℃以下である。

【0018】本発明において、ガリウム含有窒化物は以下のように定義され、Al、Gal-x-, In, N (0≤x<1、0≤y<1、0≤x+y<1)を対象と 50 し、用途に応じてドナー、アクセプタまたは磁気性のド ープを含有できる。超臨界溶媒は以下のように定義され、NH。またはその誘導体を含み、ミネラライザーとしてアルカリ金属イオン、少なくともナトリウムまたはカリウムのイオンを含有する。他方、ガリウム含有フィードストックは主にガリウム含有窒化物またはその前駆体で構成され、前駆体はガリウムを含有するアジド、イミド、アミドイミド、アミド、水素化物、金属間化合物、合金および金属ガリウムから選べられ、以下のように定義される。

【0019】本発明において、シードは少なくともガリ 10 ンを含むものと理解する。 ウムまたは他のIII族元素を含む窒化物の結晶層を有 し、シードが有するガリウム含有窒化物の結晶層におけ 媒にガリウム含有窒化物を る表面欠陥密度は10°/cm²以下であるのが好まし 複数のアルカリ金属イオン は、 第には具体例が示されてし

【0020】本発明において、ガリウム含有室化物の結晶化は $100\sim800$ ℃範囲で行うととができるが、好ましくは $00\sim600$ ℃、より好ましくは $400\sim550$ ℃温度で行われるのがよい。また、ガリウム含有窒化物の結晶化は $100\sim10000$ barで行うととができるが、好ましくは $1000\sim5500$ bar、より好ましくは $1500\sim3000$ barの圧力で行われるのがよい。

【0021】 超臨界溶媒内のアルカリ金属イオンの濃度はフィードストック及びガリウム含有窒化物の特定溶解度を確保できるように調整され、超臨界溶液内の他の成分に対するアルカリ金属イオンのモル比は1:200~1:2であるが、好ましくは1:100~1:5、より好ましく1:20~1:8の範囲以内に管理するのがよい。

【0022】なお、本発明は、アンモノ塩基性(armono-basic)を付与する1種または複数のミネラライザーを含む超臨界アンモニア溶媒中で化学輸送が起き、ガリウム含有窒化物の単結晶成長を得る、アンモノ塩基性結晶成長技術に関するものであり、極めてオリジナリテイの高い技術であるため、本件発明において使用される以下の用語は、以下の本件明細書で定義された意味に解すべきである。

【0023】ガリウム含有窒化物とは、少なくとも構成 要素として少なくともガリウムと窒素原子を含む化合物 で、少なくとも二元化合物GaN、三元化合物AlGaN、InGaNを含み、上記アンモノ塩基性結晶成長技術に反しない限り、ガリウムに対する他の元素の組成範囲は変わりうる。 【0024】ガリウム含有窒化物のバルク単結晶とは、MOCVDまたはHVPE等のエピ成長方法によりしED又はLDのような光および電子デバイスを形成することができるガリウム含有窒化物の前駆物質とは、少なくとガリウム、要すればアルカリ金属、XIII族元素、窒素および/又は水素を含む物質またはその混合物であ

って、金属Ga、その合金または金属間化合物、その水 素化物、アミド類、イミド類、アミドーイミド類、アジ ド類であって、以下に定義する超臨界アンモニア溶媒に

溶解可能なガリウム化合物を形成できるものをいう。 【0026】ガリウム含有フィードストックとは、ガリウム含有窒化物またはその前駆物質をいう。

10

【0027】超臨界アンモニア溶媒とは、少なくともアンモニアを含み、超臨界ア該溶媒はガリウム含有窒化物を溶解させるための1種または複数のアルカリ金属イオンを含むものと理解する

【0028】ミネラライザーとは、超臨界アンモニア溶媒にガリウム含有窒化物を溶解させるための1種または複数のアルカリ金属イオンを供給するものをいい、明細書には具体例が示されている。

【0029】ガリウム含有フィードストックの溶解とは、上記フィードストックが超臨界溶媒に対し溶解性ガリウム化合物、例えばガリウム錯体化合物の形態ををとる可逆性または非可逆性の過程をいう。ガリウム錯体化合物とはNH。又はその誘導体NH。「、NH² oような配位子がガリウムを配位中心として取り囲む錯体化合物を意味する。

【0030】超臨界アンモニア溶液とは、上記超臨界アンモニア溶媒とガリウム含有フィードストックの溶解から生ずる溶解性ガリウム化合物を意味する。我々は実験により、十分な高温高圧では固体のガリウム含有窒化物と超臨界溶液との間に平衡関係が存在するを見出しており、したがって、溶解性ガリウム含有窒化物の溶解度は固体のガリウム含有窒化物の存在下で上記溶解性ガリウム化合物の平衡濃度と定義することができる。かかる工程では、この平衡は温度および/または圧力の変化によりシフトさせることができる。

【0031】溶解度の負の温度係数とは、他の全てのバラメータを保持するとき溶解度が温度の 減少関数 (mon otonically decreasing function) で表されることを意味し、同様に、溶解度の正の圧力係数とは、他の全てのパラメータを保持するとき溶解度が温度の 増加関数で表されることを意味する。 我々の研究では、超臨界アンモニア溶媒におけるガリウム含有窒化物の溶解度は少なくとも300から550℃に渡る温度領域、そして1から5.5 kbarの圧力範囲で負の温度係数および正の圧力係数として現れる事を見出している。

【0032】ガリウム含有窒化物に対する超臨界アンモニア溶液の過飽和とは、上記超臨界アンモニア溶液中での可溶性ガリウム化合物の濃度が平衡状態の濃度、すなわち溶解度より高い事を意味する。閉鎖系ではガリウム含有窒化物の溶解の場合、このような過飽和は溶解度の負の温度係数または正の圧力係数に従い、温度の増加または圧力の減少により到達させることができる。

【0033】超臨界アンモニア溶液におけるガリウム含 50 有窒化物の化学輸送とは、ガリウム含有フィードストッ

クの溶解、可溶性ガリウム化合物の超臨界アンモニア溶 液を通しての移動、過飽和超臨界アンモニア溶液からの ガリウム含有窒化物の結晶化を含む、連続工程をいい、 一般に化学輸送工程は温度勾配、圧力勾配、濃度勾配、 溶解したフィードストックと結晶化した生成物の化学的 又は物理的に異なる性質などの、ある駆動力により行わ れる。本件発明方法によりガリウム含有窒化物のバルク 単結晶をえることができるが、上記化学輸送は溶解皇帝 と結晶化工程を別々の領域で行い、結晶化領域を溶解領 域より高い温度に維持することにより達成するのが好ま 10 しい。

11

【0034】シードとは本件明細書の中で例示してある が、ガリウム含有窒化物の結晶化を行う領域を提供する ものであり、結晶の成長品質を支配するので、成長させ る結晶と同質で、品質の良いものが選ばれる。

【0035】自発的結晶化(Spontaneous crystallizat ion)とは、過飽和の超臨界アンモニア溶液からガリウ ム含有窒化物の核形成 及び成長がオートクレーブ内で いずれのサイトにも起こる、望ましくない工程をいい、 シード表面での異なる方向性の成長 (disoriented grow 20

【0036】シードへの選択的結晶化とは、自発的成長 なく、結晶化がシード上で行われる工程をいう。バルク 単結晶の成長には欠かせない実現すべき工程であり、本 件発明方法の1つでもある。

【0037】オートクレーブとは形態を問わず、アンモ ノ塩基性結晶成長を行うための閉鎖系反応室をいう。ま た、本発明で使用するGaNペレットとはGaN粉末を成形 し、招請して密度を70%以上にしたものをいい、密度 の高い方が好ましい。

【0038】なお、本件発明の実施例ではオートクレー ブ内の温度分布は超臨界アンモニアの存在しない、空の オートクレーブで測定したもので、実際の超臨界温度で はない。また、圧力は直接測定をおこなったか最初に導 入したアンモニアの量およびオートクレーブの温度、容 積から計算により決定したものである。

【0039】上記方法を実施するにあたっては、以下の 装置を使用するのが好ましい。すなわち、本発明は超臨 界溶媒を生成するオートクレーブ 1を有する設備であっ て、前記オートクレーブには対流管理装置2が設置さ れ、加熱装置5または冷却装置6を備えた炉ユニット4 に投入されることを特徴とするガリウム含有窒化物のバ ルク単結晶の生産設備を提供するものでもある。上記炉 ユニット4は、オートクレーブ1の結晶化領域14に相 当する、加熱装置5を備えた高温領域およびオートクレ ーブ1の溶解領域13に相当する、加熱装置5または冷 却装置6を備えた低温領域を有するかまたは上記炉ユニ ット4は、オートクレープ 1 の結晶化領域 1 4に相当す る、加熱装置5または冷却装置6を備えた髙温領域およ

5または冷却装置6を備えた低温領域を有する。対流管 理装置2は、結晶化領域14と溶解領域13を区分し、 中心あるいは周囲に穴のある横型バッフル12ー枚又は 数枚で構成される。オートクレーブ1内には、フィード ストック16を溶解領域13に、シード17を結晶化領 域14に配置し、13と14領域間の超臨界溶液の対流 を管理装置2によって設定するように構成される。溶解 領域13は横型バッフル12の上位に、結晶化領域14 は横型バッフル12の下位にあることを特徴とする。 [0040]

12

【発明の好ましい実施態様】本発明方法においては、フ ィードストックの溶解工程と、シード面にガリウム含有 窒化物結晶の成長が行われる高温または低圧条件に超臨 界溶を移動させる工程を分けることができる。または、 オートクレーブ中に温度差を有する少なくとも2つの領 域に区分し,ガリウム含有フィードストックを低温の溶 解領域に、シードを高温の結晶化領域に配置することも 可能である。溶解領域と結晶化領域間の温度差を対流に よって行われる超臨界溶液内の化学輸送が可能となる範 囲に設定するが、前配の溶解領域と結晶化領域間の温度 差が1°C以上である。ガリウム含有窒化物はA1、Ga 1 - x - y In, N $(0 \le x \le 1, 0 \le y \le 1, 0 \le x$ +y<1)であり、ドナー、アクセプター、磁気性のド ーブなどを含有することができる。超臨界溶媒にはアル カリ金属(少なくともカリウム)のイオンを含有するN H3またはその誘導体を用いることができる。フィード ストックには、主にガリウム含有窒化物またはアジド、 イミド、アミドイミド、アミド、水素化物、ガリウムを 含有する金属化合物や合金、金属ガリウムの中から選べ られるGaN前駆体を用いることができる。シードは少 なくともガリウムまたはその他の族番号13 (IUPAC、198 9) 元素を含む窒化物の結晶層を有し、その結晶層の表面 欠陥密度が10°/cm²以下である。

【0041】ガリウム含有窒化物の結晶化が温度100 ~800℃、圧力100~10000 barの条件で行わ れ、超臨界溶媒におけるアルカリ金属イオンの濃度はフ ィードストックとガリウム含有窒化物の適当な溶解度を 確保できるように調整され、超臨界溶媒内の他の成分に 対するアルカリ金属イオンのモル比が1:200~1: 2の範囲に管理される。

【0042】ガリウム含有窒化物の単結晶を生産する設 備は、対流管理装置を備えた超臨界溶媒を生成するオー トクレーブ及びオートクレーブが配置される加熱・冷却 措置を備えた1台または数台の炉ユニットで構成され る。炉ユニットにはオートクレーブの結晶化領域に相当 する加熱措置を備えた髙温領域とオートクレーブの溶解 領域に相当する加熱・冷却装置を備えた低温領域があ る。または加熱・冷却装置を備えた高温領域と加熱・冷 却装置を備えた低温領域を有する炉ユニットも利用でき びオートクレーブ1の溶解領域13に相当する、加熱装 50 る。上記の対流管理装置とは、結晶化領域と溶解領域を 区分するように、中心あるいは周囲に穴のある横型バッフルの一枚または数枚で造るすることができる。オートクレーブ内にフィードストックを溶解領域に配置し、シードを結晶化領域に配置する。溶解領域と結晶化領域間の超臨界溶液の対流は前記の装置によって管理される。溶解領域は横型バッフルの上位に、結晶化領域は横型バッフルの下位に位置する。

【0043】実施された研究結果によると、最良のGaNバルク単結晶の欠陥密度が約10⁴/cm²であり、表面(0002)に対するX線測定の半値幅が60arcs 10e以下であったので、それを用いる半導体素子の適切な品質と寿命特性を確保できる。

【0044】GaNは、アルカリ金属あるいはその化合 物(KNH2等)を含有するNH。において、良い溶解 度を示す。Fig.1のグラフでは、超臨界溶媒内のG a Nの溶解度は400 Cと500 CC の温度と圧力との 関数として表示されたが、この溶解度はモル%:S=G a Na : (KNH2 + NH3) 100%と定義する。 との場合の溶媒とは、モル比X≡KNH2:NH3が 0.07となる超臨界アンモニア内のKNH。溶液であ る。前記のグラフによると、溶解度は圧力の増加関数で あり、温度の減少関数である。との関係を利用し、溶解 度の高い条件でガリウム含有窒化物の溶解を行い、溶解 度が低い条件で結晶させることによって、GaNのバル ク単結晶を成長することができる。この負の温度勾配 は、温度差が生じた場合においてガリウム含有窒化物の 化学輸送が低温の溶解領域から高温の結晶化領域へ行わ れることを意味する。また、他のガリウム化合物も金属 ガリウムもGaN錯体の供給源として使用できることが 明かになった。たとえば、上記の成分からなる溶媒に最 30 も簡素な原料である金属ガリウムを始め、Ga錯体を投 与できる。次ぎに、加熱などのような条件変化を適切に 行い、ガリウム含有窒化物に対して過飽和溶液をつくる ことによって、シード面に結晶が成長する。本発明の方 法は、シード面にガリウム含有窒化物のバルク単結晶の 成長を可能にし、GaN結晶からなるシード上にバルク 単結晶層として得られるGaNの化学量論的な成長に繋 がる。前記の単結晶は、アルカリ金属イオンを含有する 超臨界溶液内に成長されるので、得られた単結晶も0. 1 p p m以上のアルカリ金属を含む。また、設備の腐食 を防ぐ超臨界溶液の塩基性を保持するために、意図的に 溶媒にハロゲン物質を投与しないのである。本発明の方 法によって、0.05~0.5のGaをAlまたはInで 置き代えることができる。成分を柔軟に変更できること によって、得られる窒化物の格子定数を調整することが 可能である。更に、GaNのバルク単結晶に濃度10 ¹¹~10²¹/cm³のドナー(Si, O等)、アク セプター (Mg, Zn等)、磁気物質 (Mn, Cr等) をドープすることができる。ドープによってガリウム含

の他の物理的な特性において、成長されたGaNのバルク単結晶表面の欠陥密度が10°/cm²以下、好ましくは10°/cm²以下、より好ましくは10°/cm²以下である。また、(0002)面に対するX線の半値幅は600arcsec以下、好ましくは300arcsec以下、より好ましくは60arcsec以下である。最良のバルクGaN単結晶は、欠陥密度が約10°/cm²以下、

表面(0002)に対するX線測定の半値幅が60arcs

14

【0045】実施例1

ec以下で成長することができる。

容積10.9 c m³ の高圧オートクレープ[H. Jacobs, D. Schmidt, Current Topics in Material Science, vol. 8, ed. E.Kaldis(north-Holland, Amsterdam, 19810, 381 設計)に坩堝2台を導入し、一つにフィードストックと してHVPE法で生成さられた厚み0.1mmのGaN 薄板を0.4g配置し、もう一つに同じくHVPE法で 得られた厚み2倍、重量0.1gのシードを配置した。 オートクレーブに純度4Nの金属カリウムを0.72g 投与した。さらにアンモニアを4.81g投与した後、 20 オートクレーブを密閉した。オートクレーブを炉に投入 し、400℃までに加熱した。オートクレープ内の圧力 は2 kbarであった。8日後、温度を500℃までに加熱 し、圧力を2kbarに保持した状態で更に8日間放置した (図2)。工程の結果として、フィードストックの全量 が溶解し、部分的に溶解したシード上にG a N層が再結 晶した。両面の単結晶層は総厚み約0.4mmを有して しった。

【0046】実施例2

容積10.9 c m ® の高圧オートクレーブに坩堝2台を導入し、一つにフィードストックとしてHVPE法で生成された厚み0.1 m m の G a N 薄板を0.44 g を入れ、もう一つに同じくHVPE法で得られた厚み2倍、重量0.1 g のシードを配置した。オートクレーブに純度4 N の金属カリウムを0.82 g 投与した。さらにアンモニアを5.43 g 投与した後、オートクレーブを密閉した。オートクレーブを密閉した。オートクレーブを短い投入し、500℃までに加熱した。オートクレーブ内の圧力は3.5 kbarであった。2日後、圧力を2 kbarに低下し、温度を500℃で保持した状態で更に4日間放置した(図3)。工程の結果として、フィードストックの全量が溶解し、部分的に溶解したシード上にG a N 層が再結晶した。両面の単結晶層は総厚み約0.25 m m を有していた。

【0047】実施例3

置き代えることができる。成分を柔軟に変更できること 容積10.9cm[®] の高圧オートクレーブに坩堝2台を によって、得られる窒化物の格子定数を調整することが 導入し、一つにフィードストックとして純度6Nの金属 可能である。更に、GaNのバルク単結晶に濃度10 ガリウムを0.3g入れ、もう一つにHVPE法で得ら れた重量0.1gのシードを配置した。オートクレーブ セブター(Mg,Zn等)、磁気物質(Mn,Cr等) に純度4Nの金属カリウムを0.6g投与した。 きらに アンモニアを4g投与した後、オートクレーブを密閉し 有窒化物の光学・、電気・磁気の特性が変えられる。そ 50 た。オートクレーブを炉に投入した後、200℃までに

加熱した。2日後に温度を500℃までに加熱し、圧力 は2 kbarであった。この状態で更に4日間放置した(図 4)。工程の結果として、フィードストックの全量が溶 解し、シード上にGaN層が再結晶した。両面の単結晶 層は総厚み約0.3mmを有していた。

【0048】実施例4

容積35.6 c m 3 の高圧オートクレーブ1 (図9) に HVPE法で得られGaNの3.0gを溶解領域13と 結晶化領域14に同量に分けてから配置し、純度4Nの 金属カリウムを2.4 g加えた。次ぎにアンモニア(5 N)を15.9g投与し、オートクレーブ1を密閉した 後、炉ユニット4に入れて、450℃までに加熱した。 オートクレーブ内の圧力は約2kbarであった。1日後、 結晶化領域14の温度を500℃までに増加し、溶解領 域13の温度を400℃までに低下した。この状態のオ ートクレーブ1を更に6日間放置した(図5)。工程の 結果として、溶解領域13のフィードストックの一部が 溶解し、結晶化領域14のGaNシードの上に窒化ガリ ウムが成長した。

【0049】実施例5

容積35.6cm³の高圧オートクレーブ1(図9)の 溶解領域13にGaNペレットからなるフォードストッ クを3.0g配置し、結晶化領域14にHVPE法で得 られGaNシードを配置した。更に純度4Nの金属カリ ウムを2.4g加えた。次ぎにアンモニア(5N)を1 5.9g投与し,オートクレーブ1を密閉した後、炉ユニ ット4に入れて、450℃までに加熱した。オートクレ ーブ内の圧力は約2kbarであった。1日後、結晶化領域 14の温度を500℃までに増加し、溶解領域13の温 度を420℃までに低下した。この状態のオートクレー 30 ブ1を更に6日間放置した(図6)。工程の結果とし て、溶解領域13のフィードストックの一部が溶解し、 結晶化領域14のシード上に窒化ガリウムが成長した。 両面の単結晶層は総厚み約0.2mmを有していた。

【0050】実施例6

容積36 cm3 の高圧オートクレーブ1 (図9) の溶解 領域13にHVPE法で得られたGaNからなるフォー ドストックを1.6g配置し、結晶化領域14に同じH VPE法で得られGaNシードを0.8g配置した。更 に純度4Nの金属カリウムを3.56g加えた。次ぎに アンモニア (5N) を14.5 g 投与し、オートクレー ブ1を密閉した。オートクレーブ1を炉ユニット4に入 れて、425℃までに加熱した。オートクレーブ内の圧 力は約1.5 kbarであった。1日後、溶解領域13の温 度を400℃までに低下し、結晶化領域14の温度を4 50℃までに増加した。この状態のオートクレーブを更 に8日間放置した(図7)。工程の結果として、溶解領 域13のフィードストックの一部が溶解し、結晶化領域 14のHVPE・GaNシードの上に窒化ガリウムが成

ていた。

【0051】実施例7

容積36 c m³ の高圧オートクレーブ 1 (図9) の溶解 領域13にHVPE法で得られたGaNからなるフォー ドストックを2g配置し、純度4Nの金属カリウムを 0.47g加えた。結晶化領域14に同じHVPE法で 得られGaNシードを0.7g配置した。次ぎにアンモ ニア (5N) を16.5g投与し、オートクレーブ1を 密閉した。オートクレーブ1を炉ユニット4に入れて、 500℃までに加熱した。オートクレーブ内の圧力は約 3kbarであった。1日後、溶解領域13の温度を450 ℃までに低下し、結晶化領域14の温度を550°Cまで に増加した。との状態のオートクレーブを更に8日間放 置した(図8)。工程の結果として、溶解領域13のフ ィードストックの一部が溶解し、結晶化領域 1 4 のシー ド上に窒化ガリウムが成長した。両面の単結晶層は総厚 み約0.4mmを有していた。

16

【0052】実施例8

容積35.6cm゚の高圧オートクレーブの溶解領域に 20 フィードストックとしてHVPE法で得られたGaNの 1gを配置し、結晶化領域にHVPE法で得られた厚み 約100 μm、面積2.5 cm2 のGaN結晶シードを 配置した。オートクレーブに純度6Nの金属ガリウムを 1.2gと純度4Nの金属カリウムを2.2g加えた。次 ぎにアンモニア (5N)を15.9g投与し,オートクレ ーブを密閉した後、炉ユニットに入れて、200℃まで に加熱した。金属ガリウムの全量がガリウム錯体として 溶液に溶解した3日後に温度を450℃に加熱した。オ ートクレープ内の圧力は約230MPaであった。1日 後、結晶化領域の温度を500℃までに増加し、溶解領 域の温度を370℃までに低下した。この状態のオート クレーブを更に20日間放置した(図11)。工程の結 果として、溶解領域のフィードストックの一部が溶解 し、結晶化領域のシード両面に合計で約350μmの厚 みのある窒化ガリウム単結晶層が成長した。

【0053】実施例9

容積35.6cm。の高圧オートクレーブの溶解領域に GaNペレットからなるフォードストックを3.0g配 置し、結晶化領域にHVPE法で得られた厚み約120 μm、面積2.2 cm² のGaN結晶シードを配置し た。更に純度4 Nの金属カリウムを2.3 g加えた。次 ぎにアンモニア(5N)を15.9g投与し、オートクレ ーブを密閉した。オートクレーブを炉ユニットに入れ て、GaNペレットを部分的に溶解することによってガ リウム錯体で予備に飽和された溶液を得るために250 ℃までに加熱した。2日後、結晶化領域の温度を500 ℃までに増加し、溶解領域の温度を420℃までに増加 した。この状態のオートクレーブを更に20日間放置し た(図12)。工程の結果として、溶解領域のフィード 長した。両面の単結晶層は総厚み約0.15mmを有し 50 ストックの多くが溶解し、結晶化領域のシード両面に合

17

計で約500μmの厚みのある窒化ガリウム層が成長した。

【0054】実施例10

容積35.6cm³の高圧オートクレーブ1の溶解領域13にHVPE法で得られた厚み約120μmのGaN板からなるフォードストックを0.5g配置し、結晶化領域14にHVPE法で得られた厚み約120μm、面積1.5cm²のGaN結晶シードを配置した。更に純度3Nの金属リチウムを0.41g加えた。次ぎにアンモニア(5N)を14.4g投与し、オートクレーブを密閉した。オートクレーブを炉ユニットに入れて、結晶化領域の温度を550℃までに増加し、溶解領域の温度を450℃までに増加した。得られる圧力は約2.6kbarであった。この状態のオートクレーブを8日間放置した(図13)。工程の結果として、溶解領域のフィードストックの一部が溶解し、結晶化領域のシード両面に合計で約40μmの厚みのある窒化ガリウム層が成長した。

【0055】実施例11

容積35.6cm3の高圧オートクレープの溶解領域1 3にHVPE法で得られた厚み約120μmのGaN板 からなるフォードストックを0.5g配置し、結晶化領 域14にHVPE法で得られた厚み約120μm、面積 1.5 cm² のGaN結晶シードを配置した。 更にオー トクレーブに純度6Nの金属ガリウム0.071gと純 度3 Nの金属ナトリウムを1.4g加えた。次ぎにアン モニア (5N) を14.5g投与し、オートクレーブを密 閉した。オートクレーブを炉ユニットに入れて、200 Cまでに加熱し、一日後、金属ガリウムを溶解し、超臨 界溶液中に、溶解性のガリウムを形成した。そして、オ ートクレーブの結晶化領域の温度を500℃までに増加 し、溶解領域の温度を400℃までに増加した。得られ る圧力は約2.3kbarであった。この状態のオート クレーブを8日間放置した(図14)。工程の結果とし て、溶解領域のフィードストックの一部が溶解し、結晶 化領域のシード両面に合計で約400 μmの厚みのある 窒化ガリウム層が成長した。

【0056】実施例12

容積35.6 c m³ の高圧オートクレーブの溶解領域1 結晶化領域14と溶解領域13を区分し、中心あるいは3にHVPE法で得られた厚み約120μmのGaN板 40 周囲に穴のある横型バッフル12一枚又は数枚で構成さからなるフォードストックを0.5g配置し、結晶化領 4にHVPE法で得られた厚み約120μm、面積 1.5 c m² のGaN結晶シードを配置した。更にオートクレーブにガリウムアミド0.20gと純度3Nの金属ナトリウムを1.4g加えた。次ぎにアンモニア(5 N)を14.6g投与し,オートクレーブを密閉した。オートクレーブを炉ユニットに入れて、200℃までに加熱し、一日後、ガリウムアミドを溶解し、超臨界溶液中に、溶解性のガリウムを形成した。そして、オートクレーズの結晶化領域の温度を500℃までに増加し、溶解 50 の配置の位置を対流の上流と下流が交差する場所の下位

領域の温度を400℃までに増加した。得られる圧力は約2.3kbarであった。この状態のオートクレーブを8日間放置した(図14)。工程の結果として、溶解領域のフィードストックの一部が溶解し、結晶化領域のシード両面に合計で約490 μ mの厚みのある窒化ガリウム圏が成長した。

18

実施例13

容積10.9 cm3 の高圧オートクレーブに坩堝2台を 導入し、一つにフィードストックとして純度6Nの金属 ガリウムを0.3g入れ、もう一つにHVPE法で得ら れた厚み0.5mm、重量0.2gのシード3個を配置 した。オートクレーブに純度4Nの金属ナトリウムを 0.5 g投与した。さらにアンモニアを5. 9 g投与し た後、オートクレーブを密閉した。オートクレーブを炉 に投入した後、200℃までに加熱した。圧力は約2. 5 k b a r であった。1日後に温度を500℃までに加 熱し、圧力を5kbarの保持し、この状態で更に2日間放 置した(図15)。工程の結果として、フィードストッ クの全量が溶解し、シード上にGaN層が再結晶した。 20 両面の単結晶層は平均厚み約0.14mmを有してい た。 (0002) 面のX線ロッキングカーブの半値幅 (F WHM) はガリウム終端面で43 arcsec、窒素終端面で9 27 arcsecであった。

【0057】本発明に関わる方法は超臨界溶媒内にガリ ウム含有窒化物のバルク単結晶を生産する設備を利用し て実施されている。この設備の主な部分は超臨界溶媒を 生成するオートクレープ1とオートクレーブ1の中にあ る超臨界溶液内の化学輸送を可能とする管理装置2で構 成されている。上記のオートクレーブ1を加熱措置5ま 30 たは冷却装置6を備えた炉(2台)ユニット4の室内3 に投入し、炉ユニット4に対して一定の位置を保つため に、ボルトの固定装置7で固定する。炉ユニット4を炉 床8に設置し、炉ユニット4と炉床8の周囲に巻かれた スチールテープ9で固定される。炉床8と炉ユニット4 を回転台10に設置し、特定の角度でピン固定装置11 で固定することによって、オートクレーブ1内の対流種 類と対流速度を管理することができる。炉ユニット4に 投入されたオートクレーブ1内の超臨界溶液の対流を、 結晶化領域14と溶解領域13を区分し、中心あるいは 周囲に穴のある横型バッフル12-枚又は数枚で構成さ れる対流管理装置2によって設定する。オートクレーブ 1内の両領域の温度を、炉ユニット4に設置された制御 装置15によって、100℃~800℃の範囲内に設定 する。 炉ユニット4の低温領域に相当するオートクレー ブ1内の溶解領域13は、横型バッフル12の上位に位 置され、その領域13内にフィードストック16を配置 する。 炉ユニット4 の髙温領域に相当するオートクレー ブ内の結晶化領域14は横型バッフル12の下位に位置 される。との領域14亿シード17が配置されるが、そ に設定する。

【0058】このように得られたガリウム含有窒化物の バルク単結晶は、結晶性が良いため、窒化物半導体を利 用するレーザダイオードなどのような光学素子の基板と して応用できるのである。

19

【図面の簡単な説明】

【図1】 T=400℃とT=500℃において、圧力と カリウムアミド (KNH2:NH3=0.07) を含有 する超臨界アンモニア内のGaN溶解度の関係を表すグ ラフである。

【図2】実施例1、p=const.において、時間経過によるオートクレープ内の温度変化を表すグラフである。

【図3】実施例2、T=const.において、時間経過によるオートクレープ内の圧力変化を表すグラフである。

【図4】実施例3、固定容量において、時間経過による オートクレーブ内の温度変化を表すグラフである。

【図5】実施例4において、時間経過によるオートクレープ内の温度変化を表すグラフである。

【図6】実施例5において、時間経過によるオートクレープ内の温度変化を表すグラフである。

【図7】実施例6において、時間経過によるオートクレ*

*ープ内の温度変化を表すグラフである。

【図8】実施例7において、時間経過によるオートクレーブ内の温度変化を表すグラフである。

【図10】ガリウム含有窒化物のバルク単結晶を生産する設備の概要図である。

【図11】実施例8において、時間経過によるオートクレープ内の温度変化を表すグラフである。

10 【図12】実施例9において、時間経過によるオートクレーブ内の温度変化を表すグラフである。

【図13】実施例10において、時間経過によるオートクレーブ内の温度変化を表すグラフである。

【図14】実施例11、12において、時間経過によるオートクレーブ内の温度変化を表すグラフである。

【図15】実施例13において、時間経過によるオートクレーブ内の温度変化を表すグラフである。

【符号の説明】

1:オートクレーブ、2:対流管理装置、4:炉ユニッ 20 ト、5:加熱装置、6:冷却装置

【図1】

[図3]

【図2】

【図4】

[図12]

【図13】

【図14】

【図15】

フロントページの続き

(72)発明者 ロベルト・ドヴィリニスキ ポーランド01-875ワルシャワ、ウーリツ ァ・ズグルポヴァニャ・ジミヤ23/12番

(72)発明者 ロマン・ドラジニスキ ポーランド02-793ワルシャワ、ウーリツ ァ・ベルグラズカ4/115番 (72)発明者 イエジ・ガルチニスキ

ポーランド05-092ウオミャンキ、ウーリ ツァ・パチニスキェゴ20/7番

(72)発明者 レシェック・シェシュブトフスキ アメリカ合衆国07083-7944ニュージャー ジー州ユニオン、ハンティングトン・ロー ド403番 (14)

(72)発明者 神原 康雄

徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内

Fターム(参考) 4G077 AA02 BE11 8E15 CB03 CB04 EA02 KA03 KA11

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第3部門第1区分

【発行日】平成15年9月10日(2003.9.10)

【公開番号】特開2003-40699 (P2003-40699A)

【公開日】平成15年2月13日(2003.2.13)

【年通号数】公開特許公報15-407

【出願番号】特願2002-143449 (P2002-143449)

【国際特許分類第7版】

C30B 29/38

7/10

[FI]

C30B 29/38

7/10

【手続補正書】

【提出日】平成15年6月16日(2003.6.1 6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 ガリウム含有窒化物のバルク単結晶を得る方法であって、オートクレイブ中にアルカリ金属イオンを含有する超臨界アンモニア溶媒を形成し、該超臨界アンモニア溶媒中にガリウム含有フィードストックを溶解させ、超臨界溶媒へのガリウム含有フィードストックの溶解時より高温および/またはより低圧の条件において上記フィードストックの溶解した超臨界溶液からガリウム含有窒化物をシード面に結晶させることを特徴とする方法。

【請求項2】 フィードストックの溶解工程とは別個 に、超臨界溶液をより高温および/またはより低圧に移動させる工程を備える請求項1記載の方法。

【請求項3】 オートクレイブ中に温度差を有する少なくとも2つの領域を同時形成し、ガリウム含有フィードストゥクを低温の溶解領域に配置し、シードを高温の結晶化領域に配置することを特徴とする請求項1記載の方法。

【請求項4】 溶解領域と結晶化領域の温度差は、超臨 界溶液内の化学輸送を確保する範囲に設定されるととを 特徴とする請求項3記載の方法。

【請求項5】 超臨界溶液内の化学輸送は主として対流 によって行われることを特徴とする請求項4記載の方 法。

【請求項6】 溶解領域と結晶化領域の温度差は1℃以上であるととを特徴とする請求項4記載の方法。

【請求項7】 ガリウム含有窒化物はAl. Ga

1-x-, In, $N(0 \le x < 1, 0 \le y < 1, 0 \le x + y < 1$) であるととを特徴とする請求項1記載の方法。

【請求項8】 ガリウム含有窒化物はドナー、アクセブ タまたは磁気性のドープを含有できることを特徴とする 請求項1記載の方法。

【請求項9】 超臨界溶媒はNH。またはその誘導体を含有するととを特徴とする請求項1記載の方法。

【請求項10】 超臨界溶媒は少なくともナトリウムまたはカリウムのイオンを含有することを特徴とする請求項1記載の方法。

【請求項11】 ガリウム含有フィードストックは主に ガリウム含有窒化物またはその前駆体で構成されること を特徴とする請求項1記載の方法。

【請求項12】 前駆体はガリウムを含有するアジド、イミド、アミドイミド、アミド、水素化物、金属間化合物、合金および金属ガリウムから選ばれることを特徴とする請求項11記載の方法。

【請求項13】 シードは少なくともガリウムまたは他のIII族元素を含む窒化物の結晶層を有する請求項1記載の方法。

【請求項14】 シードが有するガリウム含有窒化物の結晶層における表面欠陥密度は10°/cm²以下であることを特徴とする請求項1記載の方法。

【請求項15】 ガリウム含有窒化物の結晶化は100 ~800 °C、好ましくは300 ~600 °C、より好ましくは400 ~550 °C温度で行われることを特徴とする請求項1 記載の方法。

【請求項16】 ガリウム含有窒化物の結晶化は100~10000bar、好ましくは1000~5500bar、より好ましくは1500~3000barの圧力で行われることを特徴とする請求項1記載の方法。

【請求項17】 超臨界溶媒内のアルカリ金属イオンの 濃度はフィードストック及びガリウム含有窒化物の特定 溶解度を確保できるように調整されることを特徴とする 請求項1記載の方法。

【請求項18】 超臨界溶液内の他の成分に対するアルカリ金属イオンのモル比を1:200~1:2、好ましくは1:100~1:5、より好ましくは1:20~1:8の範囲以内に管理する請求項1記載の方法。

【請求項19】 超臨界溶媒を生成するオートクレーブ 1を有する設備であって、前記オートクレーブには対流 管理装置2が設置され、加熱装置5または冷却装置6を 備えた炉ユニット4に投入されることを特徴とするガリ ウム含有窒化物のバルク単結晶の生産設備。

【請求項20】 炉ユニット4は、オートクレーブ1の結晶化領域14に相当する、加熱装置5を備えた高温領域およびオートクレーブ1の溶解領域13に相当する、加熱装置5または冷却装置6を備えた低温領域を有する請求項19記載の設備。

【請求項21】 炉ユニット4は、オートクレーブ1の結晶化領域14に相当する、加熱装置5または冷却装置6を備えた高温領域およびオートクレーブ1の溶解領域13に相当する、加熱装置5または冷却装置6を備えた低温領域を有する請求項19記載の設備。

【請求項22】 対流管理装置2は、結晶化領域14と溶解領域13を区分し、中心あるいは周囲に穴のある横型パッフル12-枚又は数枚で構成される請求項19記載の設備。

【請求項23】 オートクレーブ1内には、フィードストック16を溶解領域13に、シード17を結晶化領域14に配置し、13と14領域間の超臨界溶液の対流を管理装置2によって設定する請求項19記載の設備。

【請求項24】 溶解領域13は横型バッフル12の上位に、結晶化領域14は横型バッフル12の下位にあることを特徴とする請求項22記載の設備。

【請求項25】 ガリウム含有窒化物のバルク単結晶を得る方法であって、オートクレイブ内でガリウム含有フィードストックをアンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、ガリウム含有窒化物の溶解度が負の温度係数を有する超臨界溶液を供給し、上配超臨界溶液からガリウム含有窒化物の溶解度の負の温度係数を利用してオートクレーブ内に配置されたシード面のみにガリウム含有窒化物の結晶を選択的に成長されることを特徴とする方法。

【請求項26】 ガリウム含有窒化物のバルク単結晶を得る方法であって、オートクレイブ内でガリウム含有フィードストックをアンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、ガリウム含有窒化物の溶解度が正の圧力係数を有する超臨界溶液を供給し、上記超臨界溶液からガリウム含有窒化物の溶解度の正の圧力係数を利用してオートクレーブ内に配置されたシード面のみにガリウム含有窒化物の結晶を選択的に成長されることを特徴とする方法。

【請求項27】 前記アルカリ金属のイオンがアルカリ金属またはハロゲン物質を含有しないミネラライザーの形で投与されることを特徴とする請求項25または26記載の方法。

【請求項28】 アルカリ金属イオンが Li^+ , N a^+ , K^+ から選ばれる1 種または2 種以上を含む請求項27記載の方法。

【請求項29】 超臨界溶媒に溶解されるガリウム含有フィードストックはガリウム含有窒化物または超臨界溶液に溶解可能なガリウム化合物を生成できるガリウム前駆体からなることを特徴とする請求項25または26記載の方法。

【請求項30】 ガリウム含有フィードストックがHVPEで形成されたGaNまたはその他の化学反応で形成されたGaNで、アンモノ塩基性超臨界反応を害しない塩素を含む請求項25または26記載の方法。

【請求項31】 超臨界アンモニア溶液がガリウム含有フィードストックが超臨界アンモニア溶媒に対し平衡反応で溶解するガリウム含有窒化物と超臨界アンモニア溶媒に対し不可逆的に反応するガリウムメタルとの組み合わせにより形成される請求項25または26記載の方法。

【請求項32】 前記のガリウム含有窒化物とは窒化ガリウムであることを特徴とする請求項25または26記載の方法。

【請求項33】 前記のシードはGaN単結晶であるととを特徴とする請求項25または26記載の方法。

【請求項34】 ガリウム含有窒化物を含む超臨界アンモニア溶液を得る方法であって、オートクレイブ内でアンモニアとアルカリ金属イオンを含有する超臨界溶媒を形成し、該超臨界溶媒中に上記ガリウム含有窒化物の溶解温度よりも低温でガリウムメタルを溶解し、ガリウム含有窒化物の溶解度が負の温度係数を有する超臨界溶液を供給することを特徴とする方法。

【請求項35】 得られる超臨界溶液中のガリウム含有 窒化物の濃度が結晶化温度における溶解度を越えない請 求項34記載の方法。

【請求項36】 超臨界溶媒に対するガリウムメタルの溶解を150から300℃の温度で行う請求項34記載の方法。

【請求項37】 ガリウム含有窒化物のバルク単結晶を結晶化させる方法であって、アンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、ガリウム含有窒化物の溶解度が負の温度係数を有する超臨界溶液を、少なくともオートクレーブ内のシードの配置された領域において、所定の温度に上昇または所定の圧力に低下させて超臨界溶液の溶解度をシードに対する過飽和領域であって、自発的結晶化が起こらない濃度以下に調節してオートクレーブ内に配置されたシード面のみにガリウム含有窒化物の結晶を選択的に成長されることを特徴

とする方法。

【請求項38】 オートクレーブ内に溶解領域と結晶化領域という2つの領域を同時形成し、シードに対する超臨界溶液の過飽和の管理を溶解温度と結晶化温度の調整によって行われることを特徴とする請求項37記載の方法。

【請求項39】 結晶化領域の温度を400~600℃ の温度に設定するととを特徴とする請求項38記載の方 法。

【請求項40】 オートクレーブ内に溶解領域と結晶化 領域という2つの領域を同時形成し、領域間の温度差を 150℃以下、好ましくは100℃以下に保持すること を特徴とする請求項38記載の方法。

【請求項41】 シードに対する超臨界溶液の過飽和調整が低温の溶解領域と高温の結晶化領域を区分するバッフルを1または複数設け、溶解領域と結晶化領域の対流量を調整により行われることを特徴とする請求項38記載の方法。

【請求項42】 オートクレイブ中に特定の温度差を有する溶解領域と結晶化領域という2つの領域を形成し、シードに対する超臨界溶液の過飽和調整は、シードの総面積を上回る総面積を有するGaN結晶として投与されるガリウム含有フィードストックを利用することによって行われることを特徴とする請求項38記載の方法。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.