Feuille d'exercices nº 4 : calcul algébrique

Exercice 1. Écrire les formules suivantes en utilisant le symbole \sum .

$$S_1 = 1 + 3 + 5 + \dots + 99$$
 $S_2 = 1 + 3^2 + 3^4 + 3^6 + \dots + 3^{2n+4}$

Exercice 2. Calculer les sommes suivantes :

•
$$S_1 = \sum_{j=0}^{2n} (3j+2^n),$$
 • $S_3 = \sum_{k=0}^n e^{kx} \text{ avec } x \in \mathbb{R},$ • $S_5 = \sum_{k=0}^{2n} \frac{1+3^{2k}}{2^{k+2}}.$

•
$$S_2 = \sum_{j=0}^{2n} 3j + 2^n$$
, • $S_4 = \sum_{k=0}^{4n} (-2)^{3k} + a^{k/2}$,

Exercice 3. Calculer la somme suivante :

$$S = \sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right).$$

Exercice 4. Calculer les produits suivants :

$$P_1 = \prod_{k=2}^{n} \left(1 - \frac{1}{k} \right), \qquad P_2 = \prod_{k=1}^{n} \left(1 + \frac{4}{k} + \frac{4}{k^2} \right), \qquad P_3 = \prod_{k=1}^{n} \left(1 - \frac{1}{k^3} \right).$$

Exercice 5. Soit $n \in \mathbb{N}^*$. On considère la somme : $S = \sum_{k=0}^{2n} \cos\left(\frac{k\pi}{2n}\right)$.

- 1. Effectuer le changement d'indice : i = 2n k.
- 2. En déduire la valeur de S.

Exercice 6. Résoudre dans \mathbb{R} les équations suivantes :

1.
$$x^3 - x^2 - 2x + 2 = 0$$
, 2. $x^3 + x^2 + x - 14 = 0$, 3. $x^3 - 2x^2 - 5x + 6 = 0$.

Exercice 7. Calculer les sommes doubles suivantes :

$$S_1 = \sum_{k=1}^n \sum_{i=1}^k (k-2i), \qquad S_2 = \sum_{i=0}^n \sum_{j=i}^n \binom{j}{i}, \qquad S_3 = \sum_{0 \le i \le j \le n} x^i.$$

Exercice 8. Montrer par récurrence sur n que : $\forall n \in \mathbb{N}^*$, $2^{n-1} \leq n! \leq n^n$.

Exercice 9. Soit $x \in \mathbb{R} - \{1\}$. Calculer la somme : $\sum_{i=0}^{n} ix^{i-1}$.

Indication: On pourra considérer la fonction $f: x \mapsto \sum_{i=0}^{n} x^{i}$.

Exercice 10. Calculer les sommes :

$$S_0 = \sum_{k=0}^n \binom{n}{k}, \qquad S_1 = \sum_{k=0}^n (-1)^k \binom{n}{k}, \qquad S_2 = \sum_{k=0}^n 2^k \binom{n}{k}, \qquad S_3 = \sum_{\substack{0 \leqslant k \leqslant n \\ k \text{ pair}}} \binom{n}{k}, \qquad S_4 = \sum_{\substack{1 \leqslant k \leqslant n \\ k \text{ impair}}} \binom{n}{k}.$$

Exercice 11.

- 1. Montrer par récurrence sur n que : $\forall n \in \mathbb{N}, \ \forall p \in [0, n], \quad \sum_{k=n}^{n} \binom{k}{p} = \binom{n+1}{p+1}$.
- 2. En utilisant la formule, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$, en déduire un nouveau calcul de $S = \sum_{k=1}^{n} k^2$.

 Indication: faire p=2.

Exercice 12. L'objectif est le calcul des sommes $S_n = \sum_{k=1}^n k \binom{n}{k}$ et $T_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1}$.

1. Méthode 1 : pour calculer S_n et T_n , démontrer puis utiliser les formules suivantes :

$$\forall (k,n) \in \mathbb{N}^2, \quad k \binom{n}{k} = n \binom{n-1}{k-1} \qquad \text{et} \qquad \frac{1}{k+1} \binom{n}{k} = \frac{1}{n+1} \binom{n+1}{k+1}.$$

2. Méthode 2 : utiliser la fonction ϕ définie par $\phi(x) = \sum_{k=0}^{n} \binom{n}{k} x^k$.

Exercice 13.

- 1. Montrer que pour tout $x \ge 0$: $x \frac{x^2}{2} \le \ln(1+x) \le x$.
- 2. En utilisant $\sum_{k=1}^{n} k^2$, déduire la limite de la suite $u_n = \prod_{k=1}^{n} \left(1 + \frac{k}{n^2}\right)$.

Exercice 14. On pose $a_n = (2 + \sqrt{3})^n$ et $b_n = (2 - \sqrt{3})^n$, pour $n \in \mathbb{N}$.

- 1. Montrer (en utilisant la formule du binôme) que $a_n + b_n$ est un entier pair.
- 2. Montrer que la partie entière de a_n est un entier impair.

Exercice 15. Résoudre les systèmes suivants où a et m sont des paramètres.

1.
$$\begin{cases} x + 2y + 3z = 1 \\ -x - 3y + 5z = 2 \\ x + y + z = -1 \end{cases}$$
2.
$$\begin{cases} x + y - z = 1 \\ x + 2y + az = 2 \\ 2x + ay + 2z = 3 \end{cases}$$
3.
$$\begin{cases} x + y - z = 1 \\ x + 2y + az = 2 \\ 2x + ay + 2z = 3 \end{cases}$$
4.
$$\begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases}$$

Pour s'entrainer

Exercice 16. Calculer les sommes doubles suivantes :

$$S_1 = \sum_{k=0}^{n} \sum_{i=0}^{n} q^i q^k, \qquad S_3 = \sum_{p=0}^{n} \sum_{q=p}^{n} \frac{p}{q+1}, \qquad S_4 = \sum_{i=1}^{p} \sum_{j=1}^{p} |i-j|.$$

Exercice 17. Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, on a :

$$\prod_{k=0}^{n-1} \left(1 + \frac{1}{2k+1} \right) \geqslant \sqrt{2n+1}.$$

Exercice 18. Montrer par récurrence les propriétés suivantes :

1.
$$\forall n \geqslant 2, \ n! \geqslant 2 \times 3^{n-2}$$
.

2.
$$\forall n \geqslant 5, \ \frac{3^n}{n!} \leqslant \frac{1}{2^{n-7}}.$$

Exercice 19. Montrer que pour tout entier naturel $n \in \mathbb{N}^*$, on a : $\sum_{k=1}^n k.k! = (n+1)! - 1$

Exercice 20.

- 1. Simplifier $\frac{n!}{(n-2)!}$.
- 2. Factoriser n! 2(n-2)!.
- 3. Exprimer à l'aide de factorielles et de puissances de 2 les expressions suivantes :

(a)
$$(2n)(2n-2)(2n-4)\dots 4.2$$
,

(b)
$$(2n-1)(2n-3)(2n-5)\dots 3.1$$
.

Exercice 21. Ecrire les sommes suivantes avec le symbole \sum (on ne demande pas de les calculer) :

$$A = 2^{5} + 3^{5} + 4^{5} + \dots + n^{5}$$

$$B = 1 - a + a^{2} - a^{3} + \dots + (-1)^{n} a^{n},$$

$$C = \frac{a^{2}}{2} + \frac{a^{4}}{4} + \frac{a^{6}}{6} + \dots + \frac{a^{2n}}{2n},$$

$$D = \frac{1}{1} + \frac{2}{2} + \frac{2^{3}}{3} + \frac{2^{3}}{4} + \dots + \frac{2^{2005}}{2006},$$

$$E = \frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \dots + (-1)^{n+1} \frac{n}{n+1},$$

$$F = \ln(1 \times 2 \times 3 \times \dots \times n).$$

Exercice 22. Écrire les nombres suivants sans le symbole \sum (on ne demande pas de les calculer) :

$$S_1 = \sum_{i=1}^{n} \ln(i),$$
 $S_2 = \sum_{i=0}^{n-1} \ln(i+1),$ $S_3 = \sum_{i=2}^{n+1} \ln(i-1).$

Exercice 23. Écrire les nombres suivants sans le symbole Σ puis les calculer :

$$S_1 = \sum_{i=3}^{n+2} 1 \qquad S_2 = \sum_{i=1}^{2008} (-1)^i$$

Exercice 24. Écrire les sommes suivantes en faisant en sorte que la première valeur de l'indice soit 0 :

$$S_1 = \sum_{i=10}^{20} i,$$
 $S_2 = \sum_{k=-4}^{180} \frac{k}{k+5},$ $S_3 = \sum_{i=2}^{45} 1.$

Exercice 25. Changer d'indice dans les sommes suivantes pour que le terme général soit plus simple :

$$S_1 = \sum_{k=3}^{n+2} \frac{x^{k-3}}{(k-3)!},$$
 $S_2 = \sum_{i=1}^{n+1} (i-1)2^i + 3^{i-1}.$

Exercice 26. Calculer les sommes suivantes :

$$S_{1} = \sum_{k=1}^{n} k$$

$$S_{2} = \sum_{k=0}^{n} k$$

$$S_{3} = \sum_{k=1}^{n+1} k$$

$$S_{4} = \sum_{k=p}^{n} k$$

$$S_{5} = \sum_{k=0}^{n} q^{k}$$

$$S_{6} = \sum_{k=1}^{n} q^{k}$$

$$S_{7} = \sum_{k=0}^{n+1} q^{k}$$

$$S_{8} = \sum_{k=p}^{n} q^{k}$$

$$S_{9} = \sum_{k=0}^{n} 1$$

$$S_{10} = \sum_{k=1}^{n} 1$$

$$S_{11} = \sum_{k=1}^{n+1} 1$$

$$S_{12} = \sum_{k=m}^{n} 1$$

$$S_{13} = \sum_{k=1}^{n} k^{2}$$

$$S_{14} = \sum_{k=0}^{n} k^{2}$$

$$S_{15} = \sum_{k=1}^{n} k^{2}$$

$$S_{16} = \sum_{k=3}^{n} k^{2}$$

Exercice 27. Calculer : $S_1 = \sum_{i=-n}^{n} (i+1)$.

Exercice 28. Calculer les sommes suivantes :

$$S_1 = 1 + 2 + 3 + \dots + 100,$$
 $S_2 = 2 + 4 + 6 + \dots + 100,$ $S_3 = 1 + 3 + 5 + \dots + 99.$

Exercice 29. Calculer les sommes suivantes :

$$S_1 = \sum_{i=n}^{2n} i$$
 $S_2 = \sum_{i=n}^{2n} 1$ $S_3 = \sum_{i=n}^{2n} (i+1+n)$ $S_4 = \sum_{i=1}^{n} ((-2)^i + i)$

Exercice 30. Calculer les sommes suivantes :

$$S_1 = \sum_{i=1}^n (2i^3 + 3i^2 + i - 1)$$

$$S_2 = \sum_{i=0}^n \left(2^i + \left(\frac{1}{2}\right)^i\right)$$

$$S_3 = \sum_{i=0}^n \frac{1}{3^i}$$

$$S_4 = \sum_{i=0}^n 2^{2i+1}$$

Exercice 31. Calculer:

$$S_1 = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n \qquad S_2 = 1 + a^2 + a^4 + \dots + a^{2n} \qquad S_3 = \sum_{k=1}^{2n} k(2k-1)(k+1)$$

Exercice 32. Calculer:

$$S_1 = \sum_{i=0}^{2n} 3 \cdot 4^{i+1} \qquad S_2 = \sum_{i=0}^{n} \frac{3}{10^i} \qquad S_3 = \sum_{i=0}^{n} \frac{5 \cdot 2^i}{3^{i+1}} \qquad S_4 = \sum_{i=0}^{n+1} 3^{2i+1}$$

Exercice 33. Calculer:

$$S_1 = \sum_{i=3}^{n+1} \frac{2^i}{3^{i+2}} \qquad \qquad S_2 = \sum_{i=1}^{n} (5 \cdot 2^i + 2 \cdot 3^i) \qquad \qquad S_3 = \sum_{k=3}^{2n} 2^{3k+1} \cdot \frac{3^{k+1}}{4^k} \qquad \qquad S_4 = \sum_{i=1}^{50} \frac{1}{i} - \sum_{k=3}^{51} \frac{1}{k} - \sum_{k=3}^{51} \frac{1}{k}$$

Exercice 34. Soit $x \in \mathbb{R} \setminus \{1\}$.

- 1. Calculer la « somme géométrique dérivée deux fois » : $\sum_{i=0}^{n} i(i-1)x^{i-2}$.
- 2. En déduire $\sum_{i=0}^{n} i(i-1)x^{i}$
- 3. En déduire $\sum_{i=0}^{n} i^2 x^i$