

Budovanie mostov

Časový limit: 3 s Pamäťový limit: 128 MB

V širokej rieke Oravici sa nachádza n pilierov, ktoré vyčnievajú z vody a môžu mať rôzne výšky. Sú usporiadané v jednej línii z jedného brehu na druhý. Chceme vybudovať most (pomocou traktorov), v ktorom budú použité niektoré z týchto pilierov. Aby sme to dosiahli, vyberieme nejakú podmnožinu pilierov. Spojením vrcholov pilierov v podmnožine vybudujeme jednotlivé časti mosta. Podmnožina musí obsahovať prvý a posledný pilier.

Cena stavby mostovej časti medzi piliermi i a j je $(h_i - h_j)^2$, kde h_i je výška i-teho piliera¹. Navyše, musíme tiež odstrániť všetky piliere, ktoré nie sú súčasťou mosta, pretože by bránili doprave. Cena odstránenia i-teho piliera je rovná w_i . Táto cena môže byť aj negatívna — niektoré firmy sú ochotné zaplatiť odstránenie určitých pilierov. Všetky výšky h_i a ceny w_i sú celočíselné.

Aká je minimálna cena vybudovania mosta, ktorý spája prvý a posledný pilier?

Vstup

Prvý riadok obsahuje počet pilierov, n. Druhý riadok obsahuje výšky pilierov h_i oddelené medzerou, v poradí ich umiestnenia v rieke. Tretí riadok obsahuje ceny odstránenia pilierov w_i v tom istom poradí.

Výstup

Výstupom je minimálna cena na vybudovanie mosta. Poznamenajme, že môže byť záporná.

Ohraničenia

- $2 < n < 10^5$
- $0 \le h_i \le 10^6$
- $0 < |w_i| < 10^6$

Podúloha 1 (30 bodov)

• $n \le 1000$

Podúloha 2 (30 bodov)

- optimálne riešenie obsahuje okrem prvého a posledného najviac 2 dodatočné piliere
- $|w_i| \le 20$

Podúloha 3 (40 bodov)

• žiadne ďalšie ohraničenia

¹Čím väčšie prevýšenie, tým drahší most.

Príklad

Vstup	Výstup
6	17
3 8 7 1 6 6 0 -1 9 1 2 0	

Palindromické Psycho Rozklady

Časový limit: 10 s Pamäťový limit: 128 MB

Rozklad retazca s je postupnosť obsahujúca jeden alebo viac neprekrývajúcich sa neprázdnych podretazcov retazca s (nazvime ich $a_1, a_2, a_3, \ldots, a_d$) taká, že s vznikne ich zretazením: $s = a_1 + a_2 + a_3 + \ldots + a_d$. Tieto podretazce nazývame "bloky" a počet blokov rozkladu d nazývame jeho dlžkou.

Rozklad retazca je možné reprezentovať tak, že bloky zapíšeme v zátvorkách. Napríklad, retazec "decode" má rozklad (d)(ec)(ode) alebo (d)(e)(c)(od)(e) alebo (decode) alebo (decode) alebo (decode) alebo niekoľko ďalších.

Rozklad je *palindromický*, ak bloky tvoria palindrom, pričom každý blok považujeme za atomickú jednotku. Napríklad, existujú len dva palindromické rozklady reťazca "decode", a síce (de) (co) (de) a (decode). Tu vidíme, že každé slovo má triviálny palindromický rozklad dĺžky jedna.

Vašou úlohou je vypočítať maximálny možný počet blokov v palindromickom rozklade.

Vstup

Na vstupe je v prvom riadku uvedený počet testovaných prípadov t. Nasledujúcich t riadkov obsahuje individuálne testované prípady tvorené jediným slovom (retazcom) s, ktorý obsahuje len malé písmená anglickej abecedy. Na vstupe nie sú žiadne medzery.

Výstup

Výstupom je jediné číslo pre každý testovaný prípad: dĺžka najdlhšieho palindromického rozkladu vstupného reťazca s.

Ohraničenia

Nech dĺžka vstupného retazca s je n.

- 1 < t < 10
- $1 \le n \le 10^6$

Podúloha 1 (15 bodov)

• n < 30

Podúloha 2 (20 bodov)

• n < 300

Podúloha 3 (25 bodov)

• $n \le 10000$

Podúloha 4 (40 bodov)

• žiadne ďalšie ohraničenia

Príklad

Vstup	V ý stup
4	
bonobo	3
deleted	5
racecar	7
racecars	1

Mišo a myš vol. 2: Naháňačka

Časový limit: 4 s Pamäťový limit: 512 MB

Mišo s vašou pomocou úspešne dohnal myš do miestnosti s pascou. Myš vošla do miestnosti, zbadala pascu, vysmiala sa Mišovi a jednoducho ju obišla. Mišo bol natoľko vytočený, až sa ju pojal naháňať. Myš utekala do neďalekého parku², kde dostala úžasný nápad.

Park pozostáva z n sôch (očíslovaných 1...n), pri ktorých sa zhlukujú veľké množstvá holubov. Sochy sú pospájané n-1 chodníkmi tak, že sa dá od každej sochy dostať ku každej inej iba po chodníkoch. Pri každej soche i sa na začiatku nachádza p_i holubov.

Myš si z predošlej epizódy odniesla v chlebových odrobiniek. Keď jednu z nich vyhodí pri niektorej soche, všetky holuby zo susedných sôch si to všimnú a okamžite priletia v snahe nakŕmiť sa. Počty holubov p pri aktuálnej a pri okolitých sochách sa kvôli tomu zmenia

Pokiaľ myš beží okolo sochy i a omrvinku nevyhodí, stretne p_i holubov a beží ďalej. Ak omrvinku vyhodí, všetko sa zomelie v tomto poradí: Myš pribehne k soche i a stretne p_i holubov. Potom vyhodí jednu odrobinku. Myš okamžite opúšťa sochu, holuby zo susedných sôch vzlietnu a letia smerom k soche i (letiace holuby myš nestretne). Než myš dorazí k susednej soche, holuby stihnú doletieť.

Myš môže vstúpiť do parku pri ktorejkoľvek soche, prejsť po ľubovoľnom počte chodníkov, **po každom chodníku najviac raz**³, a opustiť park pri ktorejkoľvek soche. Keď myš opustí park, do parku pribehne Mišo a prebehne po rovnakej trase, ako myš.

Prečo vôbec spomíname nejaké holuby? Keď niektorý z našich hrdinov beží okolo sochy, holuby ho výrazne spomaľujú. Myš chce preto vyhodiť niekoľko (nanajvýš v) odrobiniek tak, aby maximalizovala rozdiel medzi počtom holubov, ktoré stretne ona a počtom holubov, ktoré stretne Mišo. Všimnite si, že myš stretne iba tie holuby, ktoré sa nachádzajú pri soche v momente, keď k nej dobehne (pozrite si ukážkový príklad).

Vstup

Prvý riadok vstupu obsahuje čísla n a v – počet sôch v parku a počet odrobiniek, ktoré má myš k dispozícii. V druhom riadku sa nachádza n čísel oddelených medzerou, $p_1 \dots p_n$ – pôvodné počty holubov pri jednotlivých sochách. Nasledujúcich n-1 riadkov popisuje chodníky v parku; každý z nich obsahuje dve čísla a_i a b_i znamenajúc, že sochy a_i a b_i sú spojené chodníkom.

Výstup

Vypíšte jediný riadok obsahujúci jediné číslo: Rozdiel medzi počtom holubov, ktoré stretne Mišo a počtom holubov, ktoré stretne myš.

²Blízko matfyzných intrákov

³V opačnom prípade riskuje, že ju Mišo dobehne!

Ohraničenia

- $1 \le n \le 10^5$
- $0 \le v \le 100$
- $0 \le p_i \le 10^9$

Podúloha 1 (20 bodov)

• $1 \le n \le 10$

Podúloha 2 (20 bodov)

• $1 \le n \le 1000$

Podúloha 3 (30 bodov)

• Najlepšia trasa pre myš začína pri soche 1.

Podúloha 4 (30 bodov)

• Bez ďalších ohraničení.

Príklad

Vstup	Výstup
12 2 2 3 3 8 1 5 6 7 8 3 5 4 2 1 2 7 3 4 4 7	36
7 6 5 6 6 8 6 9 7 10 10 11 10 12	

Komentár

Jedno možné riešenie je nasledovné: Myš vojde do parku pri soche 6, kde stretne 5 holubov. Vyhodí odrobinku. Ďalej beží k soche 7 a všetky holuby pri sochách 5, 7, 8 a 9 letia k soche 6. Keď myš dobehne, pri soche 6 bude $p_6=27$ holubov, zatiaľ čo $p_5=p_7=p_8=p_9=0$. Pri soche 7 teda stretne 0 holubov. V tomto momente vyhodí druhú omrvinku a opustí park. Pri soche 7 ostane 41 holubov.

Myš stretla celkovo 5+0=5 holubov, Mišo, ktorý beží po tej istej trase, stretne $p_6+p_7=0+41$ holubov. Rozdiel týchto dvoch hodnôt je 41-5=36.