Физика

Table of contents

1 Курс. I Семестр	3
Введение в физику	
Физика - наука о природе	
Физика и техника	
Единицы физических велечин	4
MKT	
Уравнение Клайперона-Менделеева	5
Термодинамическая шкала	
Зависимость температуры от давления	
Нормальные условия для газа	
Замкнутая система	
Законы сохранения и превращения энергии	
Внутренняя энергия	
Способы измерения	
Уравнение теплового баланса	

1 Курс. I Семестр

Created with the Personal Edition of HelpNDoc: Full-featured EBook editor

Введение в физику

Введение в физику.

Created with the Personal Edition of HelpNDoc: Free EPub and documentation generator

Физика - наука о природе

Физика

Физика (от лат. "Фюзис" - природа).

Физика - наука из которой выделились:

- Сельское хозяйство
 - Математика
 - Философия
 - Медицина
 - Биология
 - Химия

Сейчас физика - это техника.

Created with the Personal Edition of HelpNDoc: Free HTML Help documentation generator

Физика и техника

Мир - материален.

Материя - есть объективная реальность существующая помимо нашего сознания и данная нам в ощущение.

Существует два вида материи:

- 1. <u>Как вещество это 3 агрегатных состояния (Газ, жидкость, твёрдое).</u>
 - 2. <u>Как поле Гравитационное и электрическое поле.</u>

История развития

В 18 веке		В 19 веке	В 20 веке	B 21
				веке
	Паравой век	Электрический век	Атомный и	Терм
1.	Паравой	1. Радиотехника и	космический век	ояде
	двигатель (КПД	электротехника	1. Первая АЭС в	рный

	9%)	2.	Тесла, Попов,		<u>Обнинске</u> (5000	В	ек
2.	Новая наука		Марткони		Ватт).	1.	TO
	Термодинамик		-	2.	1961 год - выход		KA
	а				в космос		MA
							κ

Created with the Personal Edition of HelpNDoc: Free help authoring environment

Единицы физических велечин

Международная система исчисления "СИ"

Основные единицы						
В механике В		В эл. физ-ке	В оптике	Дополнитель		
молекулярно й физ-ке				ные ед.		
 ед. длины [l] = м ед. массы [m] = кг ед. времени [t] = с 	1. ед. температур ы [Т] = К	1. ед. силы тока [I] = A (Ампер)	1. ед. силы света [г] = Кg (Кандел)	 Плоский угол [α] = гр. Телесный угол [Ω] = Ср. (Стеродиан) 		

Производные системы "СИ"

Механика

- 1. Скорость V = s/t, [V] = m/c
- 2. Ускорение $a = V_2 V_1/t$ [a] = $M/c_{/c} = M/c$
- 3. Сила $F = ma = mg [F] = \kappa r * m/c^2 = H (Ньютон)$
- 4. Работа A = Fs * cosFs [A] = кг * м/с² * м = H * м = Дж (Джоуль)
- 5. Мощность N = A/t [A] = кг * $M^2/c^2/c = Дж/c = BT$ (Ватт) Физическая величина, показывающая работу совершаемую за 1 единицу времени.
- 6. Давление P = F_{дав.} / S [P] = H/м² = Па (Паскаль) Физическая величина, показывающая действие силы давления на 1 площади опоры.

Вне системные единицы:

$$1_{\rm MM}$$
 Hg = 133 Па $1_{\rm atmocdepa} \approx 10^5$ Па

7. Плотность $\rho = m/v [\rho] = \kappa r/m^3$

Энергия

Энергия - это способность тела совершать работу (ω)

Механическа	Электрическ	Магнитная	Химическая	Ядерная	Внутренняя
Я	ая				

Кинетическая и потенциальная энергия

<u>Кинетическая энергия</u> - это энергия движения тел или частиц одного и тогоже тела.

$$E_k = mv^2/2$$
 $[E_k] = κε(M/c)^2 = Дж$

<u>Потенциальная энергия</u> - это энергия взаимодействия тел или деформирующихся частиц.

$$E_n = mgh = k * x^2/2$$

[E_n] = кг * м/с² * м = Дж

Система СГС(см, г, с | Система Государственного стандарта)

Ед. длины	Ед. массы	Ед. времени
1мм = 1 * 10 ⁻³ м	1мг = 1 * 10 ⁻⁶ кг	1мм = 1 * 10 ⁻³ с
1см = 1 * 10-2 м	1г = 1 * 10 ⁻³ кг	1мин. = 60 с
1дм = 1 * 10 ⁻¹ м	1ц = 1 * 10² кг	1час = 3.6 * 10 ³ с
1км = 1 * 10 ³ м	1т = 1 * 10 ³ кг	

Created with the Personal Edition of HelpNDoc: Easily create iPhone documentation

МКТ

Молекулярно-кинетическая теория

Created with the Personal Edition of HelpNDoc: Free HTML Help documentation generator

Уравнение Клайперона-Менделеева

Вывод уравнения *Клайперона-Менделеева*

$$P \sim T$$

P/T = const

$$P = Tconst$$
 из теории Менделеева $P = 2/3 * n_0 * mv^2/2$ из опыта Штерна

$$2/3 * n_0 * mv^2/2 = Tconst$$

Выразим
$$mv^2/2 = cpE_k$$

 \mathbf{E}_{κ} = **3Tconst/2n**₀ const u n₀ постоянное число для всех молекул в ед. V

От сюда следует, что $const\ u\ n_0$ - это постоянная Больцмана k

Подставим постоянную Болцмана в формулу => $E_k = 3/2Tk$ (Связь средней кинетической энергии)

Подставим $E_k = 3/2Tk$ во вторую формулу и получим $P = 2/3 * n_0 * 3/2 * K = n_0 Tk$

Выразим по

 $n_0 = Na/V$

Подставим в формулу:

P = Na/V * Tk / * V

Получим:

PV = NaTk (1 моль)

Добавим υ = m/M

Получим:

 $_{\rm U}$ P_{моль}V = $_{\rm U}$ NakT_{моль}

В итоге:

NaK = R (Универсальная газовая постоянная) ν и V = V всех молей

И мы получим конечный результат:

PV = m/M * RT Уравнение Клайперона-Менделеева

Термодинамические параметры: P; V; m; T; Created with the Personal Edition of HelpNDoc: Write EPub books for the iPad

Термодинамическая шкала

$$T = (t^{\circ}C + 273K)$$

Created with the Personal Edition of HelpNDoc: Produce Kindle eBooks easily

Зависимость температуры от давления

График
$$P = f(t^{\circ})$$

$$P_t$$
 - давление при любой температуре $Pt = P0 + (1 + \alpha + \Delta t^o)$

$$\Delta t^{\circ} = t_{KOH} - t_{HAH}$$

 α - температурный коэффициент давления α = 1/273 град-1

Т - абсолютный ноль
 <u>Абсолютный ноль</u> - это температура при которой прекращается всякое тепловое движение молекул.

Created with the Personal Edition of HelpNDoc: Full-featured Documentation generator

Нормальные условия для газа

$$t$$
°C = 0°C, T = 273K P₀ = 10⁵ΠA

$$P_0 = 1_{atmocdepa} = 760 \text{ MMHg}$$

Created with the Personal Edition of HelpNDoc: Free Web Help generator

Замкнутая система

Замкнутая система

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help generator

Законы сохранения и превращения энергии

3C - совокупность тел взаимодействующих друг с другом.

Энергия ЗС неизменная. Она не исчезает и и не появляется не из нечего, а переходит внутри этой системы от одного тела к другому в равных пропорциях.

Вечный двигатель создать нельзя, так как нельзя создать машину, которая работала бы за счёт однажды совершённой энергией.

Created with the Personal Edition of HelpNDoc: Easily create iPhone documentation

Внутренняя энергия

Внутрення энергия

Created with the Personal Edition of HelpNDoc: iPhone web sites made easy

Способы измерения

 $\Delta \mu$ - изменение внутренней энергии

Способы измерения:

Теплообмен	При совершении работы
Q - кол-во теплоты	$\mathbf{A} = \Delta \mu$
$\mathbf{Q} = \Delta \mu$	Q = $\Delta \mu$ + A - Первое начало
Q - это мера изменения	термодинамики
	Q = c * m * ∆ T - Расчитывает кол-
[Q] - Дж	во теплоты при теплообмене
	С - удельная теплоёмкость

Физический смысл С:

 $C = Q/m * \Delta T$

Если m = 1 кг, $\Delta T = 1$ К, то Q = C (Численно)

Удельная теплоёмкость численно равна кол-ву теплоты необходимому для нагревания 1 кг массы в-ва нагреваемого на 1К

Ед. измерения: [С] = Дж/кг * К

Q = q * m - кол-во теплоты при сгорании топлива **q** - удельная теплота сгорания

Физический смысл **q**:

q = Q/m

Если m = 1кг, то Q = q (Численно)

Удельная теплота сограния численно равна кол-ву теплоты выделяемого при согрании 1 кг массы в-ва.

<u>Ед. измерения:</u> [**q**] = Дж\кг

Created with the Personal Edition of HelpNDoc: Free EPub and documentation generator

Уравнение теплового баланса

$$\sum \mathbf{Q}_{\mathsf{oT}} = \sum \mathbf{Q}_{\mathsf{пол}}$$

Сумма теплот отданных, равна сумме теплот полученных.

$$\iota = (Q_{\text{пол}} / Q_{\text{отд}}) * 100\%$$

Created with the Personal Edition of HelpNDoc: Full-featured Documentation generator