# **Dynamic Parking Pricing Report**

This notebook implements a **dynamic pricing model** for parking lots using multiple strategies, from a **simple baseline to demand-based** and **competitive pricing**. It also includes data preprocessing and visualization using Bokeh.the required packages pathway and bokeh are installed using **pip install pathway bokeh --quiet**, which silently installs the necessary dependencies while suppressing verbose output.

## **Data Import and Setup**

We import essential libraries including **pandas** and **numpy** for **data manipulation**, **math** for calculating distances, and **bokeh.plotting** for interactive visualization. **output\_notebook()** is called to ensure Bokeh renders plots directly within the notebook. After this, the dataset is loaded from a CSV file using **pd.read\_csv('dataset.csv')**, and its structure is briefly examined using **print(df.columns)** and **print(df.head())**.

## **Data Cleaning and Feature Engineering**

To prepare the data, we engineer several features. We calculate the **occupancy\_rate** as the ratio of Occupancy to Capacity. Vehicle types are **numerically mapped** with weights (**bike = 0.5**, **car = 1.0**, **truck = 1.5**) using a dictionary and the .map() method. **Categorical values** for **TrafficConditionNearby** and **IsSpecialDay** are also converted to **binary values**. **Missing values** across key columns like QueueLength, occupancy\_rate, traffic, special\_day, and vehicle\_weight are filled with **zeros** to ensure the model functions properly without interruptions.

## Model 1 - Baseline Linear Pricing

In the first pricing model, we **initialize a base price of 10** in a new column **price\_model1**. A linear update rule is applied: each subsequent price is **incremented by alpha times** the current occupancy\_rate, where alpha = 2. This is implemented using a loop that iterates over the rows, and the resulting prices are clipped between a **minimum of 5 and a maximum of 20** to avoid unrealistic values.

## Model 2 - Demand-Based Dynamic Pricing

The second model computes a demand\_score based on a weighted combination of various factors: occupancy\_rate, QueueLength, traffic, special\_day, and vehicle\_weight, with respective coefficients a=2, b=1, c=1.5, d=2, and e=1.2. This score is normalized between 0 and 1, and the price is calculated as 10 \* (1 + 0.8 \* normalized\_demand).

The prices are again **clipped between 5 and 20** for stability. This model introduces more granularity, reflecting fluctuating conditions that might affect parking demand.

## Model 3 – Competitive Pricing Based on Distance

The third model introduces competition. A **Haversine formula function** is defined to calculate the **distance** (**in kilometers**) between latitude and longitude points of parking lots. Starting with **price\_model2 values as a base**, we adjust prices based on nearby competitors. If a **parking lot** is **full (occupancy >= capacity)** and has at least one **cheaper competitor** within 0.5 km, **the price is reduced by 1**. Conversely, if all nearby competitors are more **expensive**, **the price is increased by 1**. These comparisons are done within each unique timestamp slice of the data, ensuring fairness in the competitive assessment. The final prices are also bounded **between 5 and 20**.

## **Visualization Using Bokeh**

Finally, we visualize the pricing outcomes using **Bokeh**. An **x\_values list** representing time steps is created. Three plots are then generated using figure() and .line() methods, one for each pricing model—**price\_model1** in **blue**, **price\_model2** in **red**, and **price\_model3** in **yellow**. These plots are stacked vertically using column() and rendered with show() to compare how each model adapts over time or data index.



## **Summary**

This complete workflow demonstrates how we can simulate and visualize intelligent pricing strategies for parking lots, incorporating both rule-based logic and market-responsive behavior. The progression from simple to complex models—baseline linear, demand-based, and competition-aware—offers insights into how different pricing techniques can be modeled, evaluated, and visualized interactively. The approach is modular and extendable, making it suitable for real-time urban parking systems or simulation-based pricing policy design.