These slides are adapted from Poole & Mackworth, chap 8

From a Constraint Satisfaction Problem [Var,Dom,Con] to random variables with probabilities constrained by a graph

• The domain (range) of a variable X, written Dom(X), is the set of (possible) values X can take.

These slides are adapted from Poole & Mackworth, chap 8

From a Constraint Satisfaction Problem [Var,Dom,Con] to random variables with probabilities constrained by a graph

- The domain (range) of a variable X, written Dom(X), is the set of (possible) values X can take.
- A proposition α is an equation X = x between a variable X and a value $x \in Dom(X)$, or a Boolean combination of such.

These slides are adapted from Poole & Mackworth, chap 8

From a Constraint Satisfaction Problem [Var,Dom,Con] to random variables with probabilities constrained by a graph

- The domain (range) of a variable X, written Dom(X), is the set of (possible) values X can take.
- A proposition α is an equation X = x between a variable X and a value $x \in Dom(X)$, or a Boolean combination of such.
- ullet A proposition α is assigned a probability through
 - ▶ a notion \models of a possible world ω satisfying α , and
 - ightharpoonup a measure μ for weighing a set of possible worlds.

Satisfaction, measure and probability

Fix a set Ω of possible worlds ω that assign a value to each random variable, and interpret a proposition via \models

$$\omega \models X = x \iff \omega \text{ assigns } X \text{ the value } x$$

$$\omega \models \alpha \land \beta \iff \omega \models \alpha \text{ and } \omega \models \beta$$

$$\omega \models \alpha \lor \beta \iff \omega \models \alpha \text{ or } \omega \models \beta$$

$$\omega \models \neg \alpha \iff \omega \not\models \alpha.$$

Satisfaction, measure and probability

Fix a set Ω of possible worlds ω that assign a value to each random variable, and interpret a proposition via \models

$$\omega \models X = x \iff \omega \text{ assigns } X \text{ the value } x$$

$$\omega \models \alpha \land \beta \iff \omega \models \alpha \text{ and } \omega \models \beta$$

$$\omega \models \alpha \lor \beta \iff \omega \models \alpha \text{ or } \omega \models \beta$$

$$\omega \models \neg \alpha \iff \omega \not\models \alpha.$$

For finite Ω , a probability measure is a function

$$\mu: Pow(\Omega) \rightarrow [0,1]$$

such that $\mu(\Omega) = 1$ and for any subset S of Ω ,

$$\mu(S) = \sum_{\omega \in S} \mu(\{\omega\}).$$

Satisfaction, measure and probability

Fix a set Ω of possible worlds ω that assign a value to each random variable, and interpret a proposition via \models

$$\omega \models X = x \iff \omega \text{ assigns } X \text{ the value } x$$

$$\omega \models \alpha \land \beta \iff \omega \models \alpha \text{ and } \omega \models \beta$$

$$\omega \models \alpha \lor \beta \iff \omega \models \alpha \text{ or } \omega \models \beta$$

$$\omega \models \neg \alpha \iff \omega \not\models \alpha.$$

For finite Ω , a probability measure is a function

$$\mu: Pow(\Omega) \rightarrow [0,1]$$

such that $\mu(\Omega) = 1$ and for any subset S of Ω ,

$$\mu(S) = \sum_{\omega \in S} \mu(\{\omega\}).$$

Given μ , a proposition α has probability

$$P(\alpha) = \mu(\{\omega \mid \omega \models \alpha\}).$$

Tuples, distributions and the sum rule

A tuple X_1, \ldots, X_n of random variables is a random variable with domain

 $\mathsf{Dom}(X_1) \times \cdots \times \mathsf{Dom}(X_n)$.

Tuples, distributions and the sum rule

A tuple X_1, \ldots, X_n of random variables is a random variable with domain

$$\mathsf{Dom}(X_1) \times \cdots \times \mathsf{Dom}(X_n)$$
.

A probability distribution on a random variable X is a function $P_X : \mathsf{Dom}(X) \to [0,1]$ s.t.

$$P_X(x) = P(X = x).$$

 P_X is often written as P(X), and $P_X(x)$ as P(x).

Tuples, distributions and the sum rule

A tuple X_1, \ldots, X_n of random variables is a random variable with domain

$$\mathsf{Dom}(X_1) \times \cdots \times \mathsf{Dom}(X_n)$$
.

A probability distribution on a random variable X is a function $P_X : Dom(X) \rightarrow [0,1]$ s.t.

$$P_X(x) = P(X = x).$$

 P_X is often written as P(X), and $P_X(x)$ as P(x).

sum rule
$$P(X) = \sum_{Y} P(X, Y)$$

 $P_X(x) = \sum_{y \in Dom(Y)} P_{X,Y}(x, y)$ for $x \in Dom(X)$

Conditional probability

To incorporate a proposition α into the background assumptions, we restrict the set Ω of possible worlds to

$$\Omega \! \upharpoonright \! \alpha \ := \ \{\omega \in \Omega \mid \omega \models \alpha\}$$

and assuming $\mu(\Omega \! \upharpoonright \! \alpha) \neq 0$, map a subset $S \subseteq \Omega \! \upharpoonright \! \alpha$ to

$$\mu^{\alpha}(S) := \frac{\mu(S)}{\mu(\Omega \upharpoonright \alpha)}$$

for a probability measure $\mu^{\alpha} : Pow(\Omega \upharpoonright \alpha) \to [0,1]$ on $\Omega \upharpoonright \alpha$.

Conditional probability

To incorporate a proposition α into the background assumptions, we restrict the set Ω of possible worlds to

$$\Omega \! \upharpoonright \! \alpha \ := \ \{ \omega \in \Omega \mid \omega \models \alpha \}$$

and assuming $\mu(\Omega \! \upharpoonright \! \alpha) \neq 0$, map a subset $S \subseteq \Omega \! \upharpoonright \! \alpha$ to

$$\mu^{\alpha}(S) := \frac{\mu(S)}{\mu(\Omega \upharpoonright \alpha)}$$

for a probability measure $\mu^{\alpha} : Pow(\Omega \upharpoonright \alpha) \to [0,1]$ on $\Omega \upharpoonright \alpha$.

The conditional probability of α' given α is

$$P(\alpha' | \alpha) := \mu^{\alpha}(\Omega \upharpoonright \alpha' \wedge \alpha) = \frac{P(\alpha' \wedge \alpha)}{P(\alpha)}$$

The product rule and Bayes' theorem

product rule
$$P(X, Y) = P(X|Y)P(Y)$$

$$P_{X,Y}(x, y) = P_X(x|Y = y)P_Y(y)$$
for $x \in Dom(X), y \in Dom(Y)$

The product rule and Bayes' theorem

product rule
$$P(X, Y) = P(X|Y)P(Y)$$

$$P_{X,Y}(x, y) = P_X(x|Y = y)P_Y(y)$$
 for $x \in Dom(X), y \in Dom(Y)$

As conjunction is commutative $(\Omega \upharpoonright \alpha' \land \alpha = \Omega \upharpoonright \alpha \land \alpha')$,

$$P(X,Y)=P(Y,X)$$

and so the product rule yields

Bayes' theorem
$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$
 if $P(Y) \neq 0$

The product rule and Bayes' theorem

product rule
$$P(X, Y) = P(X|Y)P(Y)$$

$$P_{X,Y}(x, y) = P_X(x|Y = y)P_Y(y)$$
for $x \in Dom(X), y \in Dom(Y)$

As conjunction is commutative $(\Omega \upharpoonright \alpha' \land \alpha = \Omega \upharpoonright \alpha \land \alpha')$, P(X,Y) = P(Y,X)

and so the product rule yields

Bayes' theorem
$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$
 if $P(Y) \neq 0$

The prior probability of α

$$P(\alpha) = \mu(\Omega \upharpoonright \alpha)$$

is updated by $lpha_\circ$ to the posterior probability given $lpha_\circ$

$$P(\alpha \mid \alpha_{\circ}) = \mu^{\alpha_{\circ}}(\Omega \upharpoonright (\alpha \wedge \alpha_{\circ}))$$

Why is Bayes' theorem interesting?

Form a hypothesis h given evidence e with $P(e) \neq 0$ via Bayes

$$P(h|e) = \frac{P(e|h)P(h)}{P(e)} .$$

Why is Bayes' theorem interesting?

Form a hypothesis h given evidence e with $P(e) \neq 0$ via Bayes

$$P(h|e) = \frac{P(e|h)P(h)}{P(e)} .$$

We often have causal knowledge

$$P(\text{symptom} \mid \text{disease}), P(\text{alarm} \mid \text{fire})$$

but want to do evidential reasoning

$$P(\text{disease} \mid \text{symptom}), P(\text{fire} \mid \text{alarm})$$

$$P(a \text{ tree is in front of a car} \mid image = \clubsuit)$$

Tuples and the chain rule

Recall: a tuple X_1, \ldots, X_n of random variables is a random variable.

Let us write

$$X_{1:n}$$
 for X_1, \ldots, X_n

Tuples and the chain rule

Recall: a tuple X_1, \ldots, X_n of random variables is a random variable.

Let us write

$$X_{1:n}$$
 for X_1, \ldots, X_n

and apply the product rule repeatedly for

$$P(X_{1:n}) = P(X_n | X_{1:n-1})P(X_{1:n-1})$$

$$= P(X_n | X_{1:n-1})P(X_{n-1} | X_{1:n-2})P(X_{1:n-2})$$

$$= \cdots$$

$$= \prod_{i=1}^n P(X_i | X_{1:i-1}) \text{ chain rule}$$

with $X_{1:0}$ as the empty tuple and $P(X_1 | X_{1:0}) = P(X_1)$.

Choose a sub-tuple $parents(X_i)$ of $X_{1:i-1}$ such that

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i))$$
.

Choose a sub-tuple $parents(X_i)$ of $X_{1:i-1}$ such that

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i))$$
.

X is independent of Y given Z, written $X \perp \!\!\! \perp Y \mid Z$,

$$P(X \mid Y, Z) = P(X \mid Z)$$

Choose a sub-tuple $parents(X_i)$ of $X_{1:i-1}$ such that

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i))$$
.

X is independent of Y given Z, written $X \perp\!\!\!\perp Y \mid Z$,

$$P(X \mid Y, Z) = P(X \mid Z)$$

i.e. for all $x \in Dom(X)$, $y \in Dom(Y)$, and $z \in Dom(Z)$,

$$P(X = x \mid Y = y \land Z = z) = P(X = x \mid Z = z)$$

— knowing Y's value says nothing about X's value, given Z's value.

Choose a sub-tuple $parents(X_i)$ of $X_{1:i-1}$ such that

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i))$$
.

X is independent of Y given Z, written $X \perp \!\!\! \perp Y \mid Z$,

$$P(X \mid Y, Z) = P(X \mid Z)$$

i.e. for all $x \in Dom(X)$, $y \in Dom(Y)$, and $z \in Dom(Z)$,

$$P(X = x \mid Y = y \land Z = z) = P(X = x \mid Z = z)$$

— knowing Y's value says nothing about X's value, given Z's value.

Note

$$X \perp\!\!\!\perp Y \mid Z \iff P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

 $\iff Y \perp\!\!\!\perp X \mid Z$

Totally order the variables of interest

$$X_1 < X_2 < \cdots < X_n$$

and for each i from 1 to n, choose $parents(X_i)$ from $X_{1:i-1}$ s.t.

$$P(X_i \mid X_{1:i-1}) = P(X_i \mid parents(X_i))$$
 (†)

Belief networks

Totally order the variables of interest

$$X_1 < X_2 < \cdots < X_n$$

and for each i from 1 to n, choose $parents(X_i)$ from $X_{1:i-1}$ s.t.

$$P(X_i \mid X_{1:i-1}) = P(X_i \mid parents(X_i))$$
 (†)

A belief network consists of:

- a directed acyclic graph with nodes = random variables, and an arc from the parents of each node into that node
- a domain for each random variable
- conditional probability tables for each variable given its parents (for a probability distribution respecting (†))

Example: Markov chain

A Markov chain is a special sort of belief network:

What probabilities need to be specified?

Example: Markov chain

A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics

Example: Markov chain

A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics

What independence assumptions are made?

$$P(S_{t+1}|S_{0:t}) = P(S_{t+1}|S_t)$$

 S_t represents the state at time t, capturing everything about the past (< t) that can affect the future (> t)

The future is independent of the past given the present.

Two elaborations

In a stationary Markov chain,

$$\mathsf{Dom}(S_i) = \mathsf{Dom}(S_0)$$
 and $P(S_{i+1}|S_i) = P(S_1|S_0)$ for all $i \geq 0$

so it is enough to specify $P(S_0)$ and $P(S_1|S_0)$.

- Simple model, easy to specify
- The network can extend indefinitely

Two elaborations

In a stationary Markov chain,

$$\mathsf{Dom}(S_i) = \mathsf{Dom}(S_0)$$
 and $P(S_{i+1}|S_i) = P(S_1|S_0)$ for all $i \geq 0$

so it is enough to specify $P(S_0)$ and $P(S_1|S_0)$.

- Simple model, easy to specify
- The network can extend indefinitely

A Hidden Markov Model (HMM) is a belief network of the form

- $P(S_0)$ specifies initial conditions
- $P(S_{i+1}|S_i)$ specifies the dynamics
- $P(O_i|S_i)$ specifies the sensor model

Naive Bayes Classifier

Problem: classify on the basis of features F_i

$$P(Class|F_{1:n}) = \frac{P(F_{1:n}|Class)P(Class)}{P(F_{1:n})}$$

Naive Bayes Classifier

Problem: classify on the basis of features F_i

$$P(Class|F_{1:n}) = \frac{P(F_{1:n}|Class)P(Class)}{P(F_{1:n})}$$

Assume F_i are independent of each other given *Class*

$$P(F_{1:n}|Class) = \prod_{i} P(F_{i}|Class)$$

Naive Bayes Classifier

Problem: classify on the basis of features F_i

$$P(Class|F_{1:n}) = \frac{P(F_{1:n}|Class)P(Class)}{P(F_{1:n})}$$

Assume F_i are independent of each other given *Class*

$$P(F_{1:n}|Class) = \prod_{i} P(F_{i}|Class)$$

Assume the values of features F_i are predictable given a class.

Requires P(Class) and $P(F_i|Class)$ for each F_i

Learning Probabilities

F_1	F_2	F_3	F_4	С	Count
:	:	:	:	:	:
t	f	t	t	1	40
t	f	t	t	2	10
t	f	t	t	3	50
:	:	÷	÷	:	:

Learning Probabilities

F_1	F_2	F_3	F_4	С	Count
:	:	:	:	:	:
t	f	t	t	1	40
t	f	t	t	2	10
t	f	t	t	3	50
:	:	:	:	:	:

$$P(C=c) = \frac{\sum_{\omega \models C=c} Count(\omega)}{\sum_{\omega} Count(\omega)}$$

$$P(F_k = b | C=c) = \frac{\sum_{\omega \models C=c \land F_k=b} Count(\omega)}{\sum_{\omega \models C=c} Count(\omega)}$$

with pseudo-counts (Cromwell's rule)

Help System

- The domain of H is the set of all help pages.
 The observations are the words in the query.
- What probabilities are needed?
 What pseudo-counts and counts are used?
 What data can be used to learn from?

Constructing a belief network

To represent a domain in a belief network, we need to consider:

- What are the relevant variables?
 - ► What will you observe?
 - What would you like to find out (query)?
 - What other features make the model simpler?
- What values should these variables take?
- What is the relationship between them? Express this in terms of a directed graph, representing how each variable X_i is generated from its predecessors $X_{1:i-1}$.

The parents of X are variables on which X directly depends

- ► *X* is independent of its non-descendants given its parents.
- How does the value of each variable depend on its parents?
 This is expressed in terms of the conditional probabilities.

Example: fire alarm belief network

Variables:

- Fire: there is a fire in the building
- Tampering: someone has been tampering with the fire alarm
- Smoke: what appears to be smoke is coming from an upstairs window
- Alarm: the fire alarm goes off
- Leaving: people are leaving the building *en masse*.
- Report: a colleague says that people are leaving the building en masse. (A noisy sensor for leaving.)

• alarm and report are

• alarm and report are dependent

- alarm and report are dependent
- alarm and report are given leaving

- alarm and report are dependent
- alarm and report are independent given leaving

- alarm and report are dependent
- alarm and report are independent given leaving
- Intuitively, the only way that the alarm affects report is by affecting leaving.

- alarm and report are dependent
- alarm and report are independent given leaving
- Intuitively, the only way that the alarm affects report is by affecting leaving.

$$\begin{split} &P(\mathsf{report},\,\mathsf{alarm}\mid\mathsf{leaving}) \,=\, \frac{P(\mathsf{report},\,\mathsf{alarm},\,\mathsf{leaving})}{P(\mathsf{leaving})} \\ &=\, \frac{P(\mathsf{alarm})P(\mathsf{leaving}\mid\,\mathsf{alarm})P(\mathsf{report}\mid\,\mathsf{leaving})}{P(\mathsf{leaving})} \quad \mathsf{net} \\ &=\, \frac{P(\mathsf{alarm},\,\mathsf{leaving})}{P(\mathsf{leaving})}P(\mathsf{report}\mid\,\mathsf{leaving}) \qquad \mathsf{product} \\ &=\, P(\mathsf{alarm}\mid\,\mathsf{leaving})P(\mathsf{report}\mid\,\mathsf{leaving}) \qquad \mathsf{for} \;\; \bot\!\!\!\bot \end{split}$$

• alarm and smoke are

alarm and smoke are dependent

- alarm and smoke are dependent
- alarm and smoke are given fire

- alarm and smoke are dependent
- alarm and smoke are independent given fire

- alarm and smoke are dependent
- alarm and smoke are independent given fire
- Intuitively, fire can explain alarm and smoke; learning one can affect the other by changing your belief in fire.

- alarm and smoke are dependent
- alarm and smoke are independent given fire
- Intuitively, fire can explain alarm and smoke; learning one can affect the other by changing your belief in fire.

smoke ⊥⊥ alarm | fire

$$P(\mathsf{smoke, alarm} \mid \mathsf{fire}) = \frac{P(\mathsf{smoke, alarm, fire})}{P(\mathsf{fire})}$$

$$= \frac{P(\mathsf{fire})P(\mathsf{alarm} \mid \mathsf{fire})P(\mathsf{smoke} \mid \mathsf{fire})}{P(\mathsf{fire})} \quad \mathsf{net}$$

$$= P(\mathsf{alarm} \mid \mathsf{fire})P(\mathsf{smoke} \mid \mathsf{fire}) \quad \mathsf{for} \quad \bot\!\!\!\bot$$

• tampering and fire are independent

- tampering and fire are independent
- tampering and fire are given alarm

- tampering and fire are independent
- tampering and fire are dependent given alarm

- tampering and fire are independent
- tampering and fire are dependent given alarm
- Intuitively, tampering can explain away fire

- tampering and fire are independent
- tampering and fire are dependent given alarm
- Intuitively, tampering can explain away fire

$$P(\mathsf{fi}=1 \mid \mathsf{am}=1) > P(\mathsf{fi}=1 \mid \mathsf{am}=1 \land \mathsf{tg}=1)$$
 for
$$P(\mathsf{tg}=0) = 0.9 \qquad P(\mathsf{fi}=0) = 0.9$$

$$P(\mathsf{am}=1 \mid \mathsf{tg}=1 \land \mathsf{fi}=1) = 0.95$$

$$P(\mathsf{am}=1 \mid \mathsf{tg}=1 \land \mathsf{fi}=0) = 0.5$$

$$P(\mathsf{am}=1 \mid \mathsf{tg}=0 \land \mathsf{fi}=1) = 0.9$$

$$P(\mathsf{am}=1 \mid \mathsf{tg}=0 \land \mathsf{fi}=0) = 0.1$$

$$P({\sf fi}=1|{\sf am}=1)\approx 0.418$$

$$P(\mathsf{fi}=1|\mathsf{am}=1) = \frac{P(\mathsf{am}=1|\mathsf{fi}=1)P(\mathsf{fi}=1)}{P(\mathsf{am}=1)}$$
 Bayes

$$P(\mathsf{am}=1|\mathsf{fi}=1) = \sum_{tg} \underbrace{P(\mathsf{am}=1,tg|\mathsf{fi}=1)}_{P(\mathsf{am}=1|tg,\mathsf{fi}=1)} \quad \mathsf{sum}$$
 $P(\mathsf{am}=1|tg,\mathsf{fi}=1) \underbrace{P(tg|\mathsf{fi}=1)}_{P(tg)} \quad \mathsf{product}$

$$P(\mathsf{am}=1) = \sum_{tg} \sum_{fi} \underbrace{P(\mathsf{am}=1,tg,fi)}_{P(tg)P(fi)P(\mathsf{am}=1|tg,fi)} \quad \mathsf{sum}$$

$$P(\text{fi} = 1 | \text{am} = 1, \text{tg} = 1) \approx 0.174$$

$$P(\mathsf{fi}=1|\mathsf{am}=1,\mathsf{tg}=1) \ = \ \frac{P(\mathsf{am}=1|\mathsf{fi}=1,\mathsf{tg}=1)}{P(\mathsf{am}=1|\mathsf{tg}=1)} \frac{P(\mathsf{fi}=1) \ \mathsf{net}}{P(\mathsf{am}=1|\mathsf{tg}=1)}$$
 Bayes

$$P(\mathsf{am}=1|\mathsf{tg}=1) = \sum_{fi} \underbrace{P(\mathsf{am}=1,fi|\mathsf{tg}=1)}_{P(\mathsf{fi})\mathsf{tg}=1} \quad \mathsf{sum}$$
 $P(\mathsf{am}=1|fi,\mathsf{tg}=1)\underbrace{P(fi|\mathsf{tg}=1)}_{P(fi)} \quad \mathsf{net}$