Unidades de Medidas Computacionais

QUANTIFICAÇÃO DE DADOS

Dados e Informações

- Como nós representamos?
 - Texto: Nome ou Endereço?
 - Letras de Alfabeto + Símbolos e Pontuação;
 - Número: Valor ou Quantidade?
 - Numeração Decimal;
 - Pixel: Cor?
 - Conjunto de cores visíveis;
 - Som: Frequência?
 - 20Hz ~ 20.000Hz;
 - Etc...

- Como o computador representa o menor dado?
 - Bit.
- O que é um Bit?
 - É o menor dado ou informação existente no computador (binary digit, ou dígito binário).
- Como representar um Bit?
 - O Bit pode possuir apenas 1 entre 2 possíveis estados, algumas formas:
 - 0 e 1;
 - Verdadeiro e Falso;
 - Ligado e Desligado;

Agrupando Bits

- No sistema decimal, trabalhamos com números de 0 a 9;
 - Para representar números maiores que 9,
 passamos a agrupar dígitos decimais: 10, 11, 12
- No sistema binário trabalhamos com números de 0 a 1;
 - Para representar números maiores que 1,
 passamos a agrupar dígitos binários: 10, 11, 100

Conhecendo o Byte

- Por ser uma máquina e para obter velocidades maiores, um computador costuma agrupar bits de 8 em 8 bits. Cada agrupamento de 8 bits é chamado de byte.
- Os bytes são as unidades de medidas mais utilizadas na computação, servem para referenciar tamanho de arquivos ou espaço em memória.

Conjuntos de Bytes

- Em nosso dia-a-dia utilizamos diversas abreviações, principalmente com números, para encurtar a pronuncia ou escrita:
 - 1000 gramas: 1Kg
 - 100000 metros: 100Km
- Na computação também possuímos tal abreviação, mas esta é feita de modo particular.

Conjuntos de Bytes

- Como a base numérica humana é decimal, costumamos dividir os números de 10 em 10.
 - Ex: 1KM = 1m x 10³, logo = 1000m
- Como a base numérica computacional é binária, na computação costumamos dividir os números na base 2.
 - Ex: 1KB = 1B x 2^{10} , logo = 1024B

Conjuntos de Bytes

• Mais comuns:

Unidade	Quantidade
Byte (B)	1 (composto por 8 bits [b])
Kbyte (KB) [kilobyte]	$1x2^{10} = 1024$
Mbyte (MB) [megabyte]	$1KB \times 2^{10}$ ou $1B \times 2^{20} = 1.048.576$
Gbyte (GB) [gigabyte]	1MB x 2^{10} ou 1B x 2^{30} = 1.073.741.284
Tbyte (TB) [terabyte]	1GB x 2 ¹⁰ ou 1B x 2 ⁴⁰
Pbyte (PB) [petabyte]	1TB x 2 ¹⁰ ou 1B x 2 ⁵⁰
Ebyte (EB) [exabyte]	1PB x 2 ¹⁰ ou 1B x 2 ⁶⁰
Zbyte (ZB) [zettabyte]	1EB x 2 ¹⁰ ou 1B x 2 ⁷⁰
Ybyte (YB) [yottabyte]	1ZB x 2 ¹⁰ ou 1B x 2 ⁸⁰

Lembrar!

Exceções

- Vendedores de Discos Rígidos e alguns outros dispositivos de armazenamento tratam cada 1.000 bytes como 1KB, ao invés de 1024.
- O tamanho da letra "B" diferencia entre bit e
 Byte, lembre que a razão entre eles é 8.
 - Dispositivos de comunicação geralmente informam velocidade em bits, e não bytes.

Unidades de Medidas Computacionais

REPRESENTAÇÃO DE DADOS

Por que *bit*?

- Uma solução: o uso de dispositivos eletrônicos baseados na tecnologia dos semicondutores, como os transistores.
- O transistor: é um dispositivo usado para controlar o fluxo de corrente. Ele tem duas características importantes:
 - 1é capaz de amplificar um sinal elétrico.
 - 2é capaz de chavear (comutar) entre ligado e desligado (ou fechado e aberto), deixando corrente passar através dele ou bloqueando-a.

Representação de Dados

- É possível utilizar os bytes para representar qualquer tipo de dado;
- Para isso, geralmente existe algum meio de transformar um byte na representação adequada;
- Essa transformação pode ser feita através de tabelas ou equações matemáticas.

Representando Texto

- A representação mais comum em um computador, depois dos números, é a do texto;
- Os textos são estabelecidos como a união de diversos caracteres;
- Caracteres são, em geral, traduzidos por:
 - Tabela ASCII; ou
 - Padrão Unicode.

A Tabela ASCII

- É um modelo antigo e um pouco defasado, mas ainda utilizado em alguns sistemas;
- Sua defasagem está na ausência de representação para letras de escritas em algumas outras línguas, principalmente orientais;
- Cada letra, pontuação ou símbolo, é representado por um conjunto de 8 bits, ou seja, 1 Byte.

A Tabela ASCII

- ASCII Wikipedia Tabela Completa
- Exemplos:

Binário	Decimal	Glifo
0100 0001	65	Α
0100 0010	66	В
0110 0001	97	а
0110 0010	98	b
0011 0001	49	1
0011 0010	50	2

Padrão Unicode

- Permite ao computador representar texto em qualquer sistema de escrita existente;
- Mais de 107 mil caracteres comportados;
- É composto por um conjunto de diagramas de códigos e metodologias de codificação;
- É desenvolvido e mantido por um consorcio sem fins lucrativos chamado *Unicode Consortium* que é mantido por diversas universidades e grandes empresas;

Padrão Unicode

- Este padrão surgiu principalmente com base na necessidade de troca mundial de informações;
- Impulsionado pela globalização e pela internet;
- Também pode ser representado por tabelas mais complexas: <u>Exemplo</u>.

Unidades de Medidas Computacionais

CONVERSÃO ENTRE BASES NUMÉRICAS BINÁRIO

- Binária:
 - $-1010_{(2)}$
- Decimal:
 - $-10_{(10)}$
- Octal:
 - $-12_{(8)}$
- Hexadecimal:
 - A₍₁₆₎

$$(10) \rightarrow (2)$$

Como só existem dois números no sistema binário (0 e 1) temos a seguinte correspondência:

eci	imal	(10)	Binário (2)
	0	>	0
99	1	→	1
	2	→	10
	3	>	11
>>>	4	>	100
	5	→	101
	6	\rightarrow	110
	7	>	111
	8	>	1000

 A conversão de números do sistema decimal para outro qualquer sistema de numeração processa-se através de operações de divisão.

sempre de baixo para cima.

Ex: Converter o número 20 para a base 2.

Importante

☞ A conversão de números do sistema decimal para outro qualquer sistema de numeração processa-se através de operações de divisão.

$$20_{(10)} = 10100_{(2)}$$

O número binário é escrito a partir dos restos das divisões e sempre de baixo para cima.

 A conversão de números do sistema binário para decimal é feito através de multiplicações.

0	0	1	0	0	1	1	0
$2^7 = 128$	$2^6 = 64$	$2^5 = 32$	24 = 16	$2^3 = 8$	$2^2 = 4$	21 = 2	20 = 1
0 * 128	0 * 64	1 * 32	0 * 16	0 * 8	1 * 4	1 * 2	0 * 1

$$-0+0+32+0+0+4+2+0=38_{(10)}$$

 A conversão de números do sistema binário para decimal é feito através de multiplicações.

1	0	1	1	0	1	0	1
$2^7 = 128$	$2^6 = 64$	$2^5 = 32$	24 = 16	$2^3 = 8$	$2^2 = 4$	21 = 2	20 = 1
1 * 128	0 * 64	1 * 32	1 * 16	0 * 8	1 * 4	0 * 2	1 * 1

$$-128 + 0 + 32 + 16 + 0 + 4 + 0 + 1 = 181_{(10)}$$