- 1. (Amended) An oligonucleotide comprising a plurality of nucleotides, wherein:
- a first portion of said plurality of nucleotides have B-form conformational geometry and are joined together in a continuous sequence, at least two of said nucleotides of said first portion being ribonucleotides; and
- a further portion of said plurality of nucleotides are ribonucleotide that have Aform conformation geometry and are joined together in at least one continuous sequence.
- 4 (Amended). The oligonucleotide of claim 1 wherein each nucleotide of said further portion, independently, is a 2'-fluoro nucleotide or a nucleotide having a 2'-substituent having the formula I or II:

$$-O = \begin{pmatrix} Q_1 \\ (CH_2)_{q_1} \\ V^{N_b} \end{pmatrix} O \begin{pmatrix} Q_1 \\ V \end{pmatrix}_{q_2} \\ O \begin{pmatrix} CH_2 \end{pmatrix}_{q_3} - O - E \end{pmatrix} O \begin{pmatrix} Y_m \\ I \end{pmatrix}$$

$$I \qquad \qquad II$$

wherein

E is C_1 - C_{10} alkyl, $N(Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;

each Q_1 and Q_2 is, independently, H, C_1 - C_{10} alkyl, dialkylaminoalkyl, a nitrogen protecting group, a tethered or untethered conjugate group, a linker to a solid support, or Q_1 and Q_2 , together, are joined in a nitrogen protecting group or a ring structure optionally containing at least one additional heteroatom selected from N and O;

 R_3 is OX, SX, or $N(X)_2$;

each X is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, C(=NH)N(H)Z, C(=O)N(H)Z or OC(=O)N(H)Z;

Z is H or C_1 - C_8 alkyl;

 L_1 , L_2 and L_3 form a ring system having from about 4 to about 7 carbon atoms or having from about 3 to about 6 carbon atoms and 1 or 2 heteroatoms selected from oxygen, nitrogen and sulfur and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic;