

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy
Formy arkusza:	EMAP-P0-100-2108, EMAP-P0-200-2108, EMAP-P0-300-2108, EMAP-P0-400-2108, EMAP-P0-600-2108, EMAP-P0-700-2108, EMAP-P0-Q00-2108
Termin egzaminu:	24 sierpnia 2021 r.
Data publikacji dokumentu:	10 września 2021 r.

ZADANIA ZAMKNIĘTE

Nr zadania	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.
Odp.	D	С	Α	Α	D	С	В	С	Α	С	D	D	С	В
Nr zadania	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.
Odp.	С	В	D	Α	D	В	D	Α	С	С	Α	В	С	В

ZADANIA OTWARTE

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 29. (0-2)

Zasady oceniania

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów. **Pierwszy etap** to wyznaczenie pierwiastków trójmianu kwadratowego $x^2 - 4x - 5$.

Drugi etap to zapisanie zbioru rozwiązań nierówności kwadratowej $x^2 - 4x - 5 \ge 0$.

• obliczy lub poda pierwiastki trójmianu kwadratowego x^2-4x-5 : $x_1=-1$ oraz $x_2=5$

ALBO

• odczyta z wykresu funkcji $f(x) = x^2 - 4x - 5$ i zapisze miejsca zerowe $x_1 = -1$ oraz $x_2 = 5$.

- poda zbiór rozwiązań nierówności: $(-\infty, -1) \cup (5, +\infty)$ lub $x \in (-\infty, -1) \cup (5, +\infty)$ ALBO
 - poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Uwagi:

- 1. Jeżeli zdający, realizując pierwszy etap rozwiązania zadania, popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności, to otrzymuje **1 punkt**.
- Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy błędnie obliczony przez zdającego wyróżnik Δ jest niedodatni, to otrzymuje 0 punktów za całe rozwiązanie.
- 3. Jeżeli zdający, rozpoczynając realizację pierwszego etapu rozwiązania, rozpatruje inny niż podany w zadaniu trójmian kwadratowy i obliczy/poda pierwiastki tego rozpatrywanego trójmianu, to oznacza, że nie podjął realizacji 1. etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(-\infty,5) \cup \langle -1,+\infty \rangle$, $(+\infty,-1) \cup \langle 5,-\infty \rangle$, to przyznajemy **2 punkty**.
- 2. Jeśli zdający poprawnie obliczy lub poda pierwiastki trójmianu ($x_1 = -1$ oraz $x_2 = 5$) i zapisze np. $(-\infty, -5) \cup (-1, +\infty)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.

Przykładowe pełne rozwiązanie

Pierwszy etap rozwiązania

Zapisujemy nierówność w postaci $x^2-4x-5\geq 0$ i obliczamy pierwiastki trójmianu x^2-4x-5 .

Obliczamy wyróżnik tego trójmianu: $\Delta = 36$ i stąd $x_1 = -1$ oraz $x_2 = 5$.

ALBO

Stosujemy wzory Viète'a:

$$x_1 \cdot x_2 = -5$$
 oraz $x_1 + x_2 = 4$, stąd $x_1 = -1$ oraz $x_2 = 5$.

ALBO

Podajemy je bezpośrednio, zapisując pierwiastki trójmianu lub zaznaczając je na wykresie: $x_1 = -1$ oraz $x_2 = 5$.

Drugi etap rozwiązania

Podajemy zbiór rozwiązań nierówności: $(-\infty, -1) \cup (5, +\infty)$ lub $x \in (-\infty, -1) \cup (5, +\infty)$ lub

Zadanie 30. (0-2)

Zasady oceniania

gdy poprawnie przekształci równanie $\frac{x+8}{x-7}=2x$ do równania kwadratowego, np.:

$$x + 8 = 2x(x - 7)$$

Zdający otrzymuje 2 p. gdy zastosuje poprawną metodę rozwiązania równania wymiernego (np. stosuje przekształcenia równoważne) i uzyska poprawne rozwiązania: $x=-\frac{1}{2}$ lub x=8.

Uwagi:

- 1. Jeżeli zdający nie zapisze zastrzeżenia $x \neq 7$, to może otrzymać **2 punkty**.
- 2. Jeżeli zdający popełni błędy rachunkowe przy przekształcaniu równania, otrzyma równanie kwadratowe, które ma dwa rozwiązania i konsekwentnie je rozwiąże do końca, to może otrzymać za całe rozwiązanie 1 punkt.
- 3. Jeżeli zdający, przekształcając równanie wymierne do równania kwadratowego, zastosuje błędną metodę i zapisze np. (x+8)(x-7)=2x(x-7) albo $x+8=2x\cdot x-7$ (o ile w dalszej części rozwiązania zdający nie otrzymuje poprawnego równania $x + 8 = 2x^2 - 14x$), to otrzymuje **0 punktów** za całe rozwiązanie.
- 4. Jeżeli zdający odgadnie jedno z rozwiązań równania, to otrzymuje 0 punktów; jeżeli odgadnie dwa rozwiązania równania i nie uzasadni, że są to jedyne rozwiązania, to otrzymuje 1 punkt.
- 5. Jeżeli zdający poprawnie przekształci równanie do równania kwadratowego, uzyska poprawne wartości pierwiastków, lecz traktuje równanie jako nierówność (rysuje parabole i podaje przedziały jako rozwiązanie), to otrzymuje 1 punkt. Podobnie, jeżeli zdający poprawnie przekształci równanie do równania kwadratowego, uzyska poprawne wartości pierwiastków, lecz poda odpowiedź w postaci przedziału/sumy przedziałów o końcach $-\frac{1}{2}$ i 8, to otrzymuje **1 punkt.**

Przykładowe pełne rozwiązanie

Równanie ma sens liczbowy dla $x \neq 7$.

Przekształcamy równanie:

$$\frac{x+8}{x-7} = 2x$$

$$x+8 = 2x(x-7)$$

$$x+8 = 2x^2 - 14x$$

$$2x^2 - 15x - 8 = 0$$

Rozwiązujemy otrzymane równanie kwadratowe.

Obliczamy wyróżnik trójmianu kwadratowego $2x^2 - 15x - 8$: $\Delta = (-15)^2 - 4 \cdot 2 \cdot (-8) =$ = 289 i stąd $x_1 = -\frac{1}{2}$ oraz $x_2 = 8$.

Otrzymane pierwiastki są różne od liczby 7, wiec są rozwiązaniami danego równania.

Zadanie 31. (0-2)

Zasady oceniania

- - obliczy wyróżnik trójmianu $5b^2 4ab + a^2$ zmiennej b (lub zmiennej a) i stwierdzi, że jest on niedodatni.

Uwaga:

Jeżeli zdający sprawdza prawdziwość tezy jedynie dla wybranych wartości a oraz b, to za całe rozwiązanie otrzymuje **0 punktów**.

Przykładowe pełne rozwiązania

Sposób 1.

Przekształcamy równoważnie nierówność $b(5b-4a)+a^2 \ge 0$:

$$5b^{2} - 4ab + a^{2} \ge 0$$
$$b^{2} + 4b^{2} - 4ab + a^{2} \ge 0$$
$$b^{2} + (2b - a)^{2} \ge 0$$

Ponieważ kwadrat każdej liczby rzeczywistej jest nieujemny oraz suma liczb nieujemnych jest liczbą nieujemną, więc nierówność $b^2+(2b-a)^2\geq 0$ jest prawdziwa dla każdych liczb rzeczywistych a i b. Stąd nierówność $b(5b-4a)+a^2\geq 0$ jest również prawdziwa dla każdych liczb rzeczywistych a i b. To należało pokazać.

Sposób 2.

Przekształcamy równoważnie nierówność $b(5b-4a)+a^2\geq 0$ i otrzymujemy $5b^2-4ab+a^2\geq 0$. Wyrażenie $5b^2-4ab+a^2$ traktujemy jako trójmian kwadratowy zmiennej np. b. Obliczamy wyróżnik trójmianu: $\Delta=(-4a)^2-4\cdot 5\cdot a^2=-4a^2\leq 0$ dla każdej liczby rzeczywistej a. Zatem funkcja kwadratowa $f(b)=5b^2-4ab+a^2$ ma co najwyżej jedno miejsce zerowe, a ponieważ współczynnik przy drugiej potędze zmiennej jest dodatni, więc żaden fragment wykresu funkcji f nie leży poniżej osi Ox. Zatem funkcja nie przyjmuje wartości ujemnych. Oznacza to, że dla każdych liczb rzeczywistych a i b zachodzi $5b^2-4ab+a^2\geq 0$. To należało pokazać.

Zadanie 32. (0-2)

Zasady oceniania

Zdający otrzymuje 1 p. gdy:

• obliczy miarę kąta BCD: $| \not \Delta BCD | = 30^{\circ}$

ALBO

• zapisze, że |BD| = |CD|

ALBO

- zapisze związek między długościami odcinków AD i AC, np. $|AC| = \sqrt{3} \cdot |AD|$ ALBO
- - zapisze układ równań $\frac{h}{6} = \operatorname{tg} 60^{\circ}$ i $\frac{h}{x+6} = \operatorname{tg} 30^{\circ}$, gdzie h = |AC| i x = |BD|.

Przykładowe pełne rozwiązania

Sposób 1.

Ponieważ $| \angle ABC | = 30^\circ$ i $| \angle CDA | = 60^\circ$, więc $| \angle BCA | = 60^\circ$ i $| \angle DCA | = 30^\circ$. Stąd $| \angle BCD | = 30^\circ$, czyli | BD | = | CD |. Korzystając ze związków miarowych w trójkącie o kątach 30° , 60° i 90° , otrzymujemy

$$|AD| = \frac{1}{2} \cdot |CD|$$

więc $|CD| = 2 \cdot |AD| = 2 \cdot 6 = 12$, czyli |BD| = 12.

Sposób 2.

Obliczamy długość boku |AC|:

$$\frac{|AC|}{|AD|} = \mathsf{tg}| \not \triangle ADC|$$

$$\frac{|AC|}{6} = tg 60^{\circ}$$

$$|AC| = 6 \operatorname{tg} 60^{\circ} = 6\sqrt{3}$$

Obliczamy długość boku |AB|:

$$\frac{|AC|}{|AB|} = \operatorname{tg}| \not \triangle ABC|$$

$$\frac{6\sqrt{3}}{|AB|} = \text{tg } 30^{\circ}$$

$$\frac{6\sqrt{3}}{|AB|} = \frac{\sqrt{3}}{3}$$
$$\sqrt{3} \cdot |AB| = 6\sqrt{3} \cdot 3$$
$$|AB| = 18$$

Zatem |BD| = |AB| - |AD| = 18 - 6 = 12.

Uwaga:

Jeżeli zdający zapisze tylko |BD| = 12, to otrzymuje **1 punkt**.

Zadanie 33. (0-2)

Zasady oceniania

ullet zapisze, że trójkąty ASB i CSD są podobne ALBO

• korzystając z twierdzenia o stosunku pól figur podobnych, zapisze $\frac{P_{\Delta ASB}}{P_{\Delta CSD}} = \left(\frac{|AS|}{|SC|}\right)^2$ ALBO

• zapisze $\frac{|AS|}{|SC|} = \frac{|BS|}{|SD|} = \frac{3}{2}$.

Przykładowe pełne rozwiązanie

Ponieważ $AB \parallel CD$ i kąty BAC oraz DCA są naprzemianległe, więc $| \not \perp BAC | = | \not \perp DCA |$. Podobnie $| \not \perp ABC | = | \not \perp CDB |$. Ponadto kąty ASB i CSD są wierzchołkowe. Zatem trójkąty ASB i CSD są podobne (cecha KKK). Z twierdzenia o stosunku pól figur podobnych i warunków zadania otrzymujemy

$$\frac{P_{\Delta ASB}}{P_{\Delta CSD}} = \left(\frac{|AS|}{|SC|}\right)^2 = \frac{9}{4}$$

więc $P_{\Delta CDS} = \frac{12\cdot 4}{9} = \frac{16}{3}$.

Zadanie 34. (0-2)

Zasady oceniania

Zdający otrzymuje 1 p gdy:

- - przedstawi poprawny sposób wyznaczenia wszystkich elementów zbioru A lub wypisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu A:

ALBO

• obliczy lub poda liczbę wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=4

ALBO

• sporządzi drzewo stochastyczne składające się z 36 gałęzi i zapisze na co najmniej jednym odcinku każdego z etapów prawdopodobieństwo $\frac{1}{6}$ lub wskaże wszystkie istotne gałęzie na tym drzewie

ALBO

- sporządzi fragment drzewa doświadczenia składający się jedynie z 4 istotnych gałęzi
 ALBO
 - zapisze tylko $P(A) = \frac{4}{36}$.

Uwagi:

- 1. Jeżeli zdający zapisuje tylko liczby 4 lub 36 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający rozpatruje inne niż podane w treści zadania doświadczenie losowe, to otrzymuje **0 punktów**.
- 3. Jeżeli zdający sporządzi jedynie pustą tabelę o 36 pustych polach, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1. (klasyczna definicja prawdopodobieństwa)

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (a,b), gdzie $a,b \in \{1,2,3,4,5,6\}$. Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega|=6^2=36$. Obliczamy liczbę wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A, np. wypisując je i zliczając:

więc |A| = 4.

Prawdopodobieństwo zdarzenia A jest równe: $P(A) = \frac{|A|}{|\Omega|} = \frac{4}{36} = \frac{1}{9}$.

Sposób 2. (drzewo stochastyczne)

Rysujemy część drzewa stochastycznego z zaznaczonymi wszystkimi istotnymi gałęziami.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = 4 \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{4}{36} = \frac{1}{9}$$

Zadanie 35. (0-5)

Zasady oceniania

• obliczy czwarty albo jedenasty wyraz ciągu (a_n) : $a_4 = -1$ (albo $a_{11} = -4$)

ALBO

• korzystając z własności ciągu geometrycznego, zapisze $(x^2 + 2)^2 = a_4 \cdot a_{11}$.

- obliczy czwarty i jedenasty wyraz ciągu $\ (a_n)$: $a_4=-1$ i $\ a_{11}=-4$ ALBO
- korzystając z własności ciągu geometrycznego , zapisze $(x^2+2)^2=a_4\cdot a_{11}$ i obliczy $a_4=-1$ (albo $a_{11}=-4$).

• skorzysta z własności ciągu geometrycznego i zapisze równanie, w którym niewiadomą jest x, np.: $(x^2 + 2)^2 = (-1) \cdot (-4)$

ALBO

• skorzysta ze wzoru na n-ty wyraz ciągu geometrycznego i zapisze równanie, w którym niewiadomą jest q, np.: $(-1) \cdot q^2 = -4$.

Zdający otrzymuje 4 p. gdy:

• zapisze alternatywę równań $x^2+2=-2$ lub $x^2+2=2$ i zapisze rozwiązanie x=0

ALBO

• rozwiąże równanie $(-1) \cdot q^2 = -4$, otrzymując dwie wartości q, lecz dalej konsekwentnie rozwiązuje zadanie do końca tylko dla q = -2 i nie uzasadni, że dla q = 2 nie istnieje taka liczba x, żeby ciąg $(-1, x^2 + 2, -4)$ był geometryczny.

Przykładowe pełne rozwiązania

Sposób 1.

Obliczamy czwarty i jedenasty wyraz ciągu (a_n) : $a_4 = \frac{5-12}{7} = -1$, $a_{11} = \frac{5-33}{7} = -4$. Z warunków zadania wynika, że liczby (-1), $x^2 + 2$, (-4) są kolejnymi wyrazami ciągu geometrycznego. Korzystając z własności ciągu geometrycznego, otrzymujemy

$$(x^{2} + 2)^{2} = (-1) \cdot (-4)$$

 $x^{2} + 2 = 2$ lub $x^{2} + 2 = -2$
 $x^{2} = 0$ lub $x^{2} = -4$
 $x = 0$

Zatem wyrazami rozpatrywanego ciągu geometrycznego są liczby (-1), 2, (-4), więc iloraz q tego ciągu jest równy $q=\frac{2}{-1}=-2$.

Sposób 2.

Obliczamy czwarty i jedenasty wyraz ciągu (a_n) : $a_4 = \frac{5-12}{7} = -1$, $a_{11} = \frac{5-33}{7} = -4$.

Z warunków zadania wynika, że liczby (-1), x^2+2 , (-4) są kolejnymi wyrazami ciągu geometrycznego, więc korzystamy ze wzoru na n-ty wyraz ciągu geometrycznego i otrzymujemy $-4=(-1)q^2$. Stąd q=2 lub q=-2.

Dla q=2 otrzymujemy ciąg geometryczny (-1,-2,-4), więc wtedy $x^2+2=-2$, ale to równanie nie ma rozwiązań rzeczywistych.

Dla q=-2 otrzymujemy ciąg geometryczny (-1,2,-4). Stąd $x^2+2=2$, czyli x=0. Ostatecznie: x=0 i q=-2.

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. ogólnych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych szczegółowych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią matura z matematyki, poziom podstawowy, termin poprawkowy 2021.

I. <u>Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią</u>

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania,
 - przestawienia cyfr,
 - zapisania innej cyfry, ale o podobnym wyglądzie,
 - przestawienia położenia przecinka.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.
- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych

- sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania zadań otwartych w przypadku</u> arkuszy osób ze stwierdzoną dyskalkulią

Zadanie 29.

Zdający otrzymuje 1 pkt, jeżeli:

• stosuje poprawną metodę obliczenia pierwiastków trójmianu kwadratowego $x^2 - 4x - 5$, tzn. stosuje wzory na pierwiastki trójmianu kwadratowego i oblicza te pierwiastki, popełniając błędy o charakterze dyskalkulicznym

ALBO

- zdający w wyniku obliczeń otrzyma wyróżnik ujemny, ale konsekwentnie narysuje parabolę ALBO
- Poprawnie rozwiąże nierówność $x^2 5 \ge 0$.

Zdający otrzymuje 2 pkt, jeżeli:

• pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $x \in (-\infty, 5) \cup (-1, +\infty)$.

Uwaga:

Jeżeli zdający zapisze zbiór rozwiązań nierówności w postaci przedziału otwartego, to może otrzymać co najwyżej **1 pkt**.

Zadanie 30.

Zdający otrzymuje 1 pkt, jeżeli:

• popełnia błąd przy przekształceniu równania $\frac{x+8}{x-7}=2x$ do postaci równania kwadratowego, lecz dalej stosuje poprawną metodę rozwiązania otrzymanego równania i konsekwentnie oblicza pierwiastki tego równania.

Zadanie 31.

Zdający otrzymuje 1 pkt, jeżeli:

• obliczy wyróżnik trójmianu $5b^2 - 4ab + a^2$ zmiennej b (lub zmiennej a)

Zadanie 32.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 33.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 34.

Zdający otrzymuje 1 pkt, jeżeli:

• zapisze jedynie liczbę 36 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych).

ALBO

zapisze liczbę 4, o ile z zapisów wynika, że interpretuje tę liczbę jako liczbę zdarzeń elementarnych sprzyjających zdarzeniu A (np. jest to zilustrowane wypisaniem kilku zdarzeń elementarnych sprzyjających zdarzeniu A i zdający nie zapisze zdarzeń elementarnych, które nie sprzyjają zdarzeniu A).

Zdający otrzymuje 2 pkt, jeżeli:

• poprawnie wypisze (lub zaznaczy) wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, popełni błąd w ich zliczeniu i konsekwentnie zapisze wynik $\frac{x}{36}$, gdzie x jest liczbą zliczonych zdarzeń elementarnych sprzyjających zdarzeniu A.

Zadanie 35.

Zdający otrzymuje 3 pkt, jeżeli:

• obliczy czwarty i jedenasty wyraz ciągu (a_n) oraz zapisze, że ciąg (-1,2,-4) jest geometryczny.

