K- means

CS550 Homework Shoumya Singh ID-19566

2. Please refer K-means example to calculate 2-cluster K-means for the following subjects

Subject	A	В
1	1.5	1.0
2	1.0	2.0
3	2.0	3.5
4	5.0	6.0
5	3.5	4.0
6	4.5	5.0
7	2.5	4.5

Solution:

Step 1:

Data: the scores of two variables on each of seven individuals

Subject	A	В
1	1.5	1.0
2	1.0	2.0
3	2.0	3.5
4	5.0	6.0
5	3.5	4.0
6	4.5	5.0
7	2.5	4.5

Note:

- o Two known information before k-means clustering
 - The data in matrix format
 - Assuming that the data set is to be grouped into 2

Step 2: Initial Partition

1. Calculate the centroid

Subject	A	В	Centroid = (A+B)/2
1	1.5	1.0	1.25
2	1.0	2.0	1.5
3	2.0	3.5	2.75
4	5.0	6.0	5.5
5	3.5	4.0	3.75
6	4.5	5.0	4.75
7	2.5	4.5	3.5

- 2. Find the minimum and maximum centroids
- 3. Let the A & B values of the two individuals furthest apart (using the Euclidean distance measure), define the initial cluster means.

	Individual	Mean Vector (centroid)
Group 1	1	(1.5, 1.0)
Group 2	4	(5.0, 6.0)

Step 3: First clustering

Process:

1. Calculate the distance of each subject and the 2 centroids

Subject	A	В	Centroid = (A+B)/2	Distance from Centroid 1.25	Distance from Centroid 5.5
1	1.5	1.0	1.25	0	4.25
2	1.0	2.0	1.5	0.25	4.0
3	2.0	3.5	2.75	1.5	2.75
4	5.0	6.0	5.5	4.25	0
5	3.5	4.0	3.75	2.5	1.75
6	4.5	5.0	4.75	3.5	0.75
7	2.5	4.5	3.5	2.25	2.0

- 2. The remaining individuals are now examined in sequence and allocated to the cluster to which they are closest, in terms of Euclidean distance to the cluster mean.
- 3. The mean vector is recalculated each time a new member is added.

	Cluster 1		Cluster 2	
Step	Individual	Mean Vector (centroid)	Individual	Mean Vector (centroid)
1	1	(1.0, 1.0)	4	(5.0, 7.0)
2	1, 2	(1.2, 1.5)	4	(5.0, 7.0)
3	1, 2, 3	(1.5, 2.16)	4	(5.0, 7.0)
4	1, 2, 3	(1.5, 2.16)	4, 5	(4.2, 5.0)
5	1, 2, 3	(1.5, 2.16)	4, 5, 6	(4.3, 5.0)
6	1, 2, 3	(1.5, 2.16)	4, 5, 6, 7	(3.8, 4.8)

Note:

```
1.5 = (1.5 + 1.0 + 2.0) / 3
2.16 = (1.0 + 2.0 + 3.5) / 3
3.8 = (5.0 + 3.5 + 4.5 + 2.5) / 4
4.8 = (6.0 + 4.0 + 5.0 + 4.5) / 4
```

Step 4: Check the result of the new clustering

Now the initial partition has changed, and the two clusters at this stage having the following characteristics:

	Individual	Mean Vector (centroid)
Cluster 1	1, 2, 3	(1.5, 2.16)
Cluster 2	4, 5, 6, 7	(3.8, 4.8)

Step 5: Compare each individual's distance to the 2 clusters

But we cannot yet be sure that each individual has been assigned to the right cluster.

- So, we compare each individual's distance to its own cluster mean and to that
 of the opposite cluster. For example,
 - The distance between individual 1 and the centroid of Cluster 1
 - $sqrt((1.5 1.5)^2 + (2.16 1.0)^2) = 1.16$
 - The distance between individual 1 and the centroid of Cluster 2
 - sqrt $((3.8 1.5)^2 + (4.8 1.0)^2) = 4.4$

Individual	Distance to mean (centroid) of Cluster 1: (1.5,2.16)	Distance to mean (centroid) of Cluster 2: (3.8,4.8)
1	1.16	4.4
2	0.5	3.9
3	1.4	2.2
4	5.2	1.69
5	2.7	0.85
6	4.1	0.72
7	2.5	1.33