Homogeneous Binary Relational Structures with the same Lattice of Reducts

Lovkush Agarwal The University of Leeds

Preliminaries

Definition. Let \mathcal{M} be a structure. A structure \mathcal{N} is a *reduct* of \mathcal{M} if \mathcal{N} has the same domain as \mathcal{M} and all \emptyset -definable relations in \mathcal{N} are \emptyset -definable in \mathcal{M} .

Intuition. \mathcal{N} is a reduct of \mathcal{M} if \mathcal{N} is a less detailed version of \mathcal{M} , or, if \mathcal{N} contains less information than \mathcal{M} .

General Question. Given a structure \mathcal{M} , what are its reducts?

Remark 1. If two reducts $\mathcal{N}_1, \mathcal{N}_2$ of \mathcal{M} are reducts of each other, they are considered to be the same reduct of \mathcal{M} ; intuitively they contain the same information.

Remark 2. The reducts of a structure \mathcal{M} form a lattice. For example, the join of two reducts \mathcal{N}_1 and \mathcal{N}_2 is the structure whose relations are those \emptyset -definable in both \mathcal{N}_1 and \mathcal{N}_2 .

A Familiar Structure: $(\mathbb{Q}, <)$

These properties of \mathbb{Q} provide some intuition for the later structures.

- $-(\mathbb{Q},<)$ is \aleph_0 -categorical.
- $-(\mathbb{Q}, <)$ embeds all linear orders.
- $-(\mathbb{Q},<)$ is homogeneous: Any iso^m $f:A\to B$, $A,B\subset \mathbb{Q}$ finite, can be extended to an auto^m of \mathbb{Q} .
- -Let p(x) be a 1-type over a finite parameter set a_1,\ldots,a_n . Let $A=\{a\in\mathbb{Q}:a\models p(x)\}$. Then $A=\{a_i\}$ for some i, or, $A\cong\mathbb{Q}$.

Some relations on $(\mathbb{Q}, <)$

We define three relations:

$$<_{\scriptscriptstyle{\mathsf{W}}}(a,b;x,y):=a< b\leftrightarrow x< y$$
 $\mathrm{cyc}(x,y,z):=x< y< z$ $\vee y< z< x$

$$\forall z < x < y$$
.

$$\mathsf{cyc}_{\mathsf{w}}(a,\!b,\!c;x,\!y,\!z) := \mathsf{cyc}(a,\!b,\!c) \ \leftrightarrow \mathsf{cyc}(x,\!y,\!z)$$

('w' abbreviates 'weakened'.)

Reducts of $(\mathbb{Q}, <)$

Theorem. ([Cam76]) The reducts of $(\mathbb{Q}, <)$ are: $(\mathbb{Q}, <)$, $(\mathbb{Q}, <_w)$, $(\mathbb{Q}, \operatorname{cyc})$, $(\mathbb{Q}, \operatorname{cyc}_w)$ and $(\mathbb{Q}, =)$.

Three other structures

The following structures have the same lattice of reducts as $(\mathbb{Q}, <)$:

- –The random graph Γ , [Tho91]
- -The random tournament, [Ben97]
- -The generic partial order, $[PPP^+11]$

(These can be defined as satisfying the earlier properties of \mathbb{Q} but with 'linear order' changed appropriately.)

Surprisingly, the reducts are defined in the same way: the original binary relation, its 'weakened version', a 'cyclic' relation, its 'weakened version' and the trivial structure.

Question. Is this just a coincidence? Are there other homogeneous binary structures with the same pattern of reducts?