Ориентированные графы. Ациклические графы, их свойства. Сильная связность орграфов, компоненты сильной связности.

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 26.03.2024 и 02.04.2024

Содержание лекции

- ▶ Орграф. Пути и циклы в орграфе. Отношение достижимости.
- ▶ Отношение связанности. Компонента сильной связности.

Орграф. Пути и циклы в орграфе

Определение: Ориентированным графом (или орграфом) называют G=(V,E), где $V\neq\emptyset$ – множество вершин, $E\subseteq V\times V$ – множество ребер.

Ребра часто записывают по их концам: (v_1,v_2) или v_1v_2 .

Замечания: $V=\emptyset$ иногда встречается в доказательствах утверждений. Пустым графом называют граф, множество ребер которого пусто.

Определение: Пусть G=(V,E). G'=(V',E') называют подграфом G $(G'\leq G)$, если $V'\subseteq V$, $E'\subseteq (V'\times V')\cap E$. Если $E'=(V'\times V')\cap E$ подграф называют порожденным. Порожденный подграф обозначают G[V'].

Определение: Пусть G=(V,E). Путем называется последовательность вершин $v_0v_1\dots v_n: \ \forall i\in \overline{0:n} \ v_i\in V, \ \forall i\in \overline{1:n} \ (v_{i-1},v_i)\in E.$ Простым называется путь, в котором все вершины различны.

Определение: **Циклом** называется последовательность вершин $v_0v_1\dots v_n:\ \forall i\in\overline{0:n}\ v_i\in V,\ \forall i\in\overline{1:n}\ (v_{i-1},v_i)\in E,\ v_0=v_n.$ Простой цикл – все вершины, кроме последней, различны.

Определение: Ациклическим орграфом называется орграф без циклов.

Отношение достижимости

На множестве вершин V зададим отношение достижимости R^* : вершина $v_1 \in V$ находится в отношении R^* с вершиной $v_2 \in V$ (в этом случае говорят, что **вершина** v_2 достижима из вершины v_1), если существует путь с началом v_1 и концом v_2 .

Отношение достижимости для вершин ориентированного графа рефлексивно и транзитивно, но не обязательно симметрично.

Определим с помощью отношения достижимости разбиение множества вершин графа на классы эквивалентности: вершины v_1,v_2 принадлежат одному классу, если отношение симметрично, т.е. v_2 достижима из вершины v_1 и v_1 достижима из вершины v_2 (взаимная достижимость).

Отношение взаимной достижимости для вершин ориентированного графа рефлексивно, транзитивно и симметрично.

Пусть $l_1=v_1\dots v_2$ и $l_2=v_2\dots v_1$ – пути, связывающие эти вершины. Тогда вместе они образуют цикл. Т.о., любые вершины одного класса эквивалентности принадлежат некоторому циклу.

Если граф ациклический, то каждый класс эквивалентности состоит из одной вершины.

Граф-покрытие и граф достижимости

Определение: Минимальный граф G_b , индуцирующий на множестве вершин V(G) то же отношение достижимости, что и исходный ориентированный граф G (т.е. граф с неуменьшаемым далее множеством ребер), называется базисным графом для графа G.

Замечание: Базисный граф не обязательно единственный.

Замечание: В конечном орграфе существует базисный граф. Получается последовательным удалением ребер (v_1,v_2) , для которых существует не содержащий его путь.

Определение: В неорграфах классы эквивалентности по отношению достижимости называются связными компонентами. Классы эквивалентности по отношению взаимной достижимости называются компонентами сильной связности.

Определение: Пусть G = (V, E) – ориентированный граф.

Граф достижимости (а.к.а граф транзитивного замыкания)

 $G^* = (V, E^*)$ для G имеет то же мн-во вершин V и следующее мн-во ребер $E^* = \{(u,v) \mid \mathsf{B}$ графе G вершина v достижима из вершины $u\}$.

Замечание: Ребра G^* соответствуют путям исходного графа G.

Построение графа достижимости

Определение: Матрицей смежности ориентированного графа G=(V,E) с |V|=n называется матрица A_G размера $n\times n$ с элементами

$$A_{ij} = \left\{ egin{aligned} 1, & \mbox{если } (v_i, v_j) \in E, \\ 0, & \mbox{в противном случае.} \end{aligned}
ight.$$

Введем обозначения $\hat{A}\coloneqq A_G\vee E_n$, $\hat{A_0}=E_n,\hat{A_1}=\hat{A},\ldots$, $\hat{A_{k+1}}=\hat{A_k}\wedge\hat{A}$

Лемма: Пусть
$$\hat{A}_k = \left(a_{ij}^{(k)}\right)$$
. Тогда $a_{ij}^{(k)} = \begin{cases} 1, & \text{в } G \; \exists \; \text{путь из } v_i \; \text{в } v_j \; \text{длины} \leq k, \\ 0, & \text{в противном случае.} \end{cases}$

 $a_{ij} = \{0, \;\;$ в противном случае. Док-во: Индукция по k. База верна по определению \hat{A}_0 .

Пусть верно для k. Докажем для k+1. $a_{ij}^{(k+1)}=a_{i1}^{(k)}a_{1j}^{(1)}\vee\ldots\vee a_{ir}^{(k)}a_{rj}^{(1)}\vee\ldots\vee a_{in}^{(k)}a_{nj}^{(1)}$. Пусть в G из v_i в v_j есть путь длины $\leq k+1$. Рассмотрим кратчайший из таких путей.

Если длина $\leq k$, то $a_{ij}^{(k)}=1$ и, т.к. $a_{ij}^{(1)}=1$, то $a_{ij}^{(k)}a_{i1j}^{(1)}=1$ и $a_{ij}^{(k+1)}=1$.

Если длина ровно k+1, то пусть v_r – предпоследняя вершина. Тогда из v_i в v_r есть путь длины k и по предположению $a_{ir}^{(k)}=1$. Т.к. есть ребро (v_r,v_j) , то $a_{ir}^{(k)}a_{rj}^{(1)}=1$. Поэтому $a_{ir}^{(k)}a_{rj}^{(1)}=1$ и $a_{ij}^{(k+1)}=1$.

В другую сторону: пусть $a_{ij}^{(k+1)}=1$, тогда $\exists \ r:\ a_{ir}^{(k)}a_{rj}^{(1)}=1$. Если это r=j, то $a_{ij}^{(k)}=1$ и по предположению в G есть путь из v_i в v_j длины $\leq k$.

Если $r\neq j$, то $a_{ir}^{(k)}=1$ и $a_{rj}^{(1)}=1$. Это означает, что в G есть путь из v_i в v_r длины $\leq k$ и ребро (v_r,v_j) . Объединяем и получаем путь из v_i в v_j длины $\leq k+1$. \square

Следствие: Пусть G=(V,E) – ориентированный граф, $|V|=n,\ G^*$ – его граф достижимости. Тогда $A_{G^*}=\hat{A_{n-1}}.$

При вычислении можно хитрить: считать $\hat{A}\Rightarrow\hat{A_2}\Rightarrow\hat{A_4}\Rightarrow\dots$

Также, т.к. на диагонали \hat{A} стоят единицы, то $\forall \ i < j$ все единицы в \hat{A}_i сохранятся в \hat{A}_j (и в $(\hat{A}_i)^2$).

При вычислении квадратов, если в "сумме" обнаруживается r : $a_{ir}=1$ и $a_{rj}=1$, то остальные слагаемые можно не рассматривать.

Уже знаем: классы эквивалентности по отношению достижимости называются связными компонентами. Граф достижимости – ребра соответствуют путям исходного графа. Умеем строить по матрице смежности.

Определение: Граф сильной достижимости $G_*^* = (V, E_*^*)$, где $E_*^* = \{(u,v) \mid u,v$ взаимно достижимы в $G\}$.

Матрица графа сильной достижимости строится на основе матрицы достижимости: $A_{G_*^*}(i,j) = A_{G^*}(i,j) \wedge A_{G^*}(j,i)$

По матрице сильной достижимости можно выделить компоненты сильной связности графа G:

- В первую компоненту K_1 поместить вершину v_1 и все вершины $v_j:\ A_{G_*^*}(1,j)=1$
- lacktriangle Построены K_1,\dots,K_i и v_k вершина с минимальным индексом без компоненты. Помещаем ее в K_{i+1} и все $v_j:\ A_{G_*^*}(k,j)=1$

Определение: Пусть K и K' – компоненты сильной связности графа G. Компонента K достижима из компоненты K', если $K \equiv K'$ или существуют такие две вершины $u \in K$ и $v \in K'$, что u достижима из $v \in K'$ строго достижима из K'.

Определение: Отношение строгой достижимости можно представлять в виде орграфа, вершины – компоненты сильной связности, ребра есть если есть строгая достижимость – конденсация G, ацикличный орграф!

Турниры и полустепени в орграфе

Определение: Полустепень исхода в орграфе для вершины v – число дуг, исходящих из вершины Обозначается $d^+(v)$. Полустепень захода в орграфе для вершины v – число дуг, входящих в вершину $(d^-(v))$. Определение: Турнир – некоторый полный орграф (V, E) (орграф без

Определение: **Турнир** – некоторый полный орграф (V, E) (орграф без петель и между любой парой вершин есть ровно одно ребро).

Определение: Для ребра $(u,v)\in E$ говорим, что u доминирует над v.

Определение: Турнир (будучи орграфом) транзитивен, если из $(u,v) \in E, (v,w) \in E$ следует $(u,w) \in E$.

Определение: Порядком турнира \hat{T} называется число его вершин.

Замечание: Полустепень выхода вершины v турнира T – число вершин, над которыми v доминирует (ещё называется **результатом**).

Определение: Последовательность результатов T – упорядоченная последовательность (s_1,s_2,\ldots,s_n) , где s_i – результат $v_i,\ 1\leq i\leq n$, причём $s_1\leq s_2\leq\ldots\leq s_n$.

Определение: Множество результатов некоторого турнира T – это посл-ть $D=(d_1,d_2,\ldots,d_m)$ различных результатов вершин турнира T, где $d_1 < d_2 < \ldots < d_m$.

Определение: Если посл-тью результатов турнира T является S, а множество результатов – D, то будем говорить, что S генерирует D.

Теорема Редеи-Камиона (для пути)

Теорема Редеи-Камиона (для пути): любой турнир порядка n содержит гамильтонов путь (т.е. путь, содержащий все n вершин).

Док-во: Индукция по количеству вершин. База: n=3 очевидна. Переход: пусть утверждение теоремы справедливо для всех турниров порядка не более n. Рассмотрим произвольную вершину v^* . Турнир $T-v^*$ имеет порядок n, тогда по предположению индукции в нем есть гамильтонов путь $P=(v_1,v_2,\ldots,v_n)$.

 1° : если в турнире T существует ребро (v^*,v_1) , то значит найден гамильтонов путь $P'=(v^*,v_1,v_2,\ldots,v_n)$ в турнире T.

 $2^{\mathbf{o}}$: если нет ребра (v^*,v_1) , то рассмотрим на пути первую вершину v_i , $i\in 2:n$ такую, что в турнире T есть ребро (v^*,v_i) .

- если такого ребра не существует, то все ребра в турнире ведут в v^* в том числе (v_n,v^*) . Тогда есть гамильтонов путь $P'(v_1,v_2,\ldots,v_n,v^*)$.
- **>** пусть нашлось первое такое ребро (v^*, v_i) . Тогда существует ребро (v_{i-1}, v^*) и, следовательно, есть гамильтонов путь $P'(v_1, v_2, \ldots, v_{i-1}, v^*, v_i, \ldots, v_n)$.

Теорема Редеи-Камиона (для цикла)

Теорема (Редеи-Камиона (для цикла)): в сильно связном турнире есть гамильтонов цикл. Верно и обратное утверждение.

Лемма: Сильно связный турнир T порядка ≥ 3 содержит цикл длины 3.

Док-во леммы: Рассмотрим произвольную вершину v^* . Обозначим за V_1 и V_2 множества вершин доминирующих и доминируемых вершиной v^* соответственно. Заметим, что $V_1 \cap V_2 = \varnothing$ и $V_1 \cup V_2 = V(T)$. Кроме того, оба эти множества не пусты, иначе вершина v^* была бы истоком или стоком соответственно, что противоречит сильной связности.

Если это не существует ребро e=(u,w) с началом в V_2 и концом в V_1 , то вершины из V_1 не будут достижимы из вершин из V_2 , что снова будет противоречить сильной связности. Следовательно, существует ребро $e=(u,w), u\in V_2, w\in V_1$.

Тогда есть цикл длины 3: (u, w, v^*, u) .

Лемма: Если сильно связный турнир T порядка хотя бы 3 содержит цикл длины k, то он содержит цикл длины k+1.

Док-во леммы: Обозначим цикл $C_k = (v_1, \dots, v_k, v_1)$. Рассмотрим два случая:

- 1. существует вершина v^* такая, что существуют вершины $u,w\in C_k$ такие, что $(v^*,u)\in E(T), (w,v^*)\in E(T);$
- 2. такой v^* не существует.
- $1^{\rm o}$: перенумеруем вершины в цикле так, чтобы $(v_1,v^*)\in E(T)$ и найдем первую вершину (она обязательно существует) в направлении обхода цикла v_i : (v^*,v_i) . Отсюда следует, что есть ребро (v_{i-1},v^*) . Тогда есть цикл $P'=(v_1,\ldots,v_{i-1},v^*,v_i,\ldots,v_k,v_1)$ длины k+1.
- $2^{\mathbf{o}}$: В этом случае вершины из $V(T)\setminus C_k$ делятся на доминирующие все вершины из C_k и доминируемые всеми вершинами из C_k . Обозначим множества V_1 и V_2 соответственно. По построению $V_1\cap V_2=\varnothing$ и оба они не пусты, иначе нарушается условие сильной связности турнира T. Кроме того, в силу сильной связности, существует ребро $(u,w), u\in V_2, w\in V_1$. Тогда есть цикл $P'=(v_1,u,w,v_3,\ldots,v_k,v_1)$ длины k+1.

Док-во теоремы: Обозначим V(T)=n. Индукцией по количеству вершин в цикле покажем существование циклов длины $3,\dots,n$. База и переход следуют из лемм, соответственно.

Граф-турнир, его свойства. Король турнира

Определение: Вершина $v \in V(T)$ турнира T является королем $\Leftrightarrow \forall x \in V(T) \exists$ путь из v в x длиной не более 2.

Теорема: B любом турнире T существует вершина-король.

Док-во: Рассмотрим вершину k с самой большой полустепенью исхода. Покажем, что она является королем. Пусть k не король. V_1 — множество вершин, доминирующих k, V_2 множество вершин, доминируемых $k\Rightarrow \exists$ вершина $b\in V_1$, которая не проиграла никому из $V_2\Rightarrow$ эта вершина доминирует все вершины из $V_2\Rightarrow$ ее результат больше, чем у k (помимо вершин из V_2 вершина b доминирует еще и k). Противоречие!

Эквивалентность свойств турнира

 ${\sf Teopema}$: Для турнира порядка n следующие утверждения эквивалентны:

- ▶ Т транзитивен
- ightharpoonup T не содержит циклов длины 3
- Т ацикличен
- lacktriangledown T последовательность результатов турнира T это $(0,1,2,\ldots,n-1)$
- Т содержит ровно один гамильтонов путь.

Доказательство эквивалентности

- Док-во: $1 \Rightarrow 2 : \exists \ (u,v), (v,w), (w,u)$. Но также $\exists (u,w)$ (?!).
- $2\Rightarrow 3:\exists$ цикл $(v_1,\dots,v_k), k\geq 4$. Т.к. нет циклов длины 3, то $\forall u,v,w:(u,v)\in E, (v,w)\in E\Rightarrow (u,w)\in E$ это транзитивность! Индукцией покажем, что $\exists\;(v_1,v_{k-1}).$
- База: $(v_1, v_2), (v_2, v_3) \in E \Rightarrow (v_1, v_3) \in E$. Переход: $(v_1, v_i) \in E \ \forall i < k-1$, также $(v_i, v_{i+1}) \in E \Rightarrow (v_1, v_{i+1}) \in E$ (?!) цикл (v_1, v_{k-1}, v_k) .
- $3\Rightarrow 4:D^+(T)$ мн-во степеней исхода. Индукция по n. База очевидна. Переход: пусть верно для n-1. В ациклическом графе есть вершина-сток $t:\ d^+(t)=0$. Рассмотрим граф $T-t.\ D^+(T-t)=(0,1,\dots,n-2)$. А из $\forall\ v\in V\setminus t$ ведет одно ребро в t.
- $4\Rightarrow 5$: Существует по теореме Редеи-Камиона. Надо единственность. Снова индукция. База очевидна. Переход: берем $s:d^-(s)=0$ (все ребра выходят, исток). Она будет первой в гамильтоновом пути. Рассмотрим граф T-s: исток s был соединен со всеми, степени уменьшились на 1 и $D^-(T-s)=(0,1,\ldots,n-2)$. Значит в T-s $\exists!$ гамильтонов путь. Если \exists два г.п. с началом в s в T, то будет и два г.п. в T-s (?!).

 $5\Rightarrow 1: P=(v_1,\dots,v_n)-!$ г.п. Пусть $\exists\ m$ — наименьший индекс: в v_m идет ребро из вершины с большим индексом, а v_k — вершина с наибольшим индексом, из которой ребро ведет в v_m .

m
eq 1, k
eq n: есть ребро из v_{m-1} в v_{m+1} (минимальность v_m) и из v_m в v_{k+1} (максимальность k). Есть ещё путь $P_1 = (v_1, \ldots, v_{m-1}, v_{m+1}, \ldots, v_k, v_m, v_{k+1}, \ldots, v_n)$ m
eq 1, k = n: $P_1 = (v_1, \ldots, v_{m-1}, v_{m+1}, \ldots, v_n, v_m)$ m = 1, k
eq n: $P_1 = (v_2, \ldots, v_k, v_1, v_{k+1}, \ldots)$ m = 1, k = n: $P_1 = (v_2, \ldots, v_n, v_1)$

Значит такого m не существует и $(v_i,v_j) \in E \Leftrightarrow i < j$. Значит $\forall \ i,j,k: 1 \leq i,j,k \leq n \ (v_i,v_j) \in E$ и $(v_j,v_k) \in E \Rightarrow i < j \lor j < k \Rightarrow (v_i,v_k) \in E \ \square$

Теорема: Конденсация любого турнира является транзитивным турниром. Док-во: U,V — компоненты сильной связности. $u\in U,v\in V$: $(u,v)\in E$ или $(v,u)\in E$. Т.о. в конденсации есть либо ребро (U,V), либо (V,U). Рассмотрена произвольная пара вершин конденсации турнира, получилось, что она тоже турнир. Знаем, что конденсация ациклична \Rightarrow по теореме транзитивна. \square

Теорема Ландау

Теорема (Ландау, 1953): Некоторая неубывающая посл-ть неотрицательных целых чисел $S=(s_1,s_2,\ldots,s_n)$ является посл-тью результатов некоторого турнира $\Leftrightarrow \sum_{i=1}^k s_i \geq \frac{k(k-1)}{2}, \ 1 \leq k \leq n$, причем равенство при k=n.

Замечание: Восстановление турнира по некоторому допустимому множеству результатов – это более сложная задача, чем восстановление турнира по некоторой допустимой последовательности результатов.

Теорема (Яо, 1989): Если $m \ge 1, \ D = (d_1, \dots, d_m)$ – множество неотрицательных чисел, то существует турнир с множеством результатов D.

Замечание: теорема Яо доказывает только существование соответствующего турнира, но не дает способ его построения.

Замечание: проверка существования турнира с заданной посл-тью результатов – линейная задача (Ландау). Построение турниров по посл-ти результатов делается быстро (квадратичные алгоритмы).