Mathematical Logic Homework 02

Qiu Yihang

Sept.28 - 30, 2022

1 The Set of Real Numbers in (-1,0] is Uncountable

Proof. Assume R is countable.

Then we can find a listing of R without repetitions: $a_0, a_1, a_2, ...a_n, ...$ (which could be finite).

Meanwhile, any real number in the interval (-1,0] can be rewritten as a binary decimal, i.e. $-(\overline{0.h_0h_1h_2...h_m...})_2$, where $h_i \in \{0,1\}$, $i \in \mathbb{N}$.

For infinite binary decimal, its fraction part is obvious a sequence only containing 0s and 1s. For finite binary decimal, we can convert it to an infinite sequence by adding infinite 0s at its end.

Therefore, any number a_i can be rewritten as $-\left(\overline{0.a_{i0}a_{i1}a_{i2}...a_{ik}...}\right)_2$, where $a_{ij} \in \{0,1\}$, $j \in \mathbb{N}$.

Then we construct a real number x by diagnal argument as follows. Let $x = -(\overline{0.x_0x_1x_2...x_k...})_2$, where $x_i = 1 - a_{ii} \in \{0, 1\}$ $i \in \mathbb{N}$.

To further clarify, an example is given as below.

Then we know $x \neq a_n$ for any a_n in the listing. (Since the (n+1)-th bits are different).

Therefore, $x \notin (-1,0]$. Meanwhile, by the construction of x, we know x > -1 and $x \le 0$, i.e. $x \in (-1,0]$. Contradiction.

Thus, R is uncountable.

2 An Algorithm for Determining Membership in \mathbb{P}

Solution. We design the following algorithm.

Algorithm 1: Algorithm for Determining Membership in Set of Prime Numbers

```
Algo. Prime Number Discriminator

begin

on Input n;

if n = 0 or n = 1 then Output: "NO";

for i = 2 \rightarrow (n - 1) do

if i | n then Output: "NO";

end
Output: "YES";
```

Obvious the algorithm will halt within finite steps. Now we prove its correctness.

If the input n is a prime number, we know for any $k \in \mathbb{N}, k \geq 2, k \neq n, k \nmid n$. Thus, the algorithm will output "YES".

If the input n is 0 or 1, neither of which is not a prime number, the algorithm outputs "NO".

If the input n is not a prime number, we know exists $k \in \mathbb{N}, 2 \leq k \leq (n-1)$ s.t. $k \mid n$. Then the algorithm will output "NO" at i = k.

Thus, the algorithm can correctly determine the membership of the input in \mathbb{P} .

In fact, $i = 2 \to \lfloor \sqrt{n} \rfloor$ is enough for the for-loop, considering $k \mid n \Leftrightarrow \frac{n}{k} \mid n$.

Therefore, the **Algorithm 1** is an algorithm for determining membership in \mathbb{P} .

3 An Algorithm For Enumerating Prime Numbers

Solution. Based on the Algorithm 1, we design the algorithm as follows.

Algorithm 2: Algorithm for Enumerating Prime Numbers

```
Algo. Prime Number Enumerator

begin

for n = 0, 1, 2, ... do

Run Prime Number Discriminator on n;

if the result is "YES" then print: n;

end

end
```

Let the numbers listed by the algorithm above be $a_0, a_1, a_2, ...a_n, ...$

For any $i \in \mathbb{N}$, a_i is a prime number, which is guaranteed by the correctness of Algorithm 1.

For any prime number p, let p be the k-th smallest prime number. Then exists k s.t. $p = a_k$.

Thus, **Algorithm 2** is an algorithm for enumerating prime numbers.

4 Range of Total Function f is Effectively Decidable

Proof. Since f is a total function, we know domain $(f) = \mathbb{N}$, i.e. for any $n \in \mathbb{N}$, f(n) is defined.

Meanwhile, f is effectively computable.

Then exists an algorithm \mathcal{A} s.t. on input n, \mathcal{A} prints f(n) within finite steps.

Considering f is strictly increasing, we know $x \in \mathtt{range}(f) \Longleftrightarrow \mathtt{exists} \ n \in \mathbb{N} \ \mathrm{s.t.} \ f(n) = x$ while $x \notin \mathtt{range}(f) \Longleftrightarrow \mathtt{exists} \ n \in \mathbb{N} \ \mathrm{s.t.} \ f(n) < x, f(n+1) > x.$

Thus, we can construct an algorithm for determining membership in range(f) as follows.

Algorithm 3: Algorithm for Determining Membership in range(f)

```
Algo. Strictly Increasing Total Function Range Discriminator begin

on Input n;

Run \mathcal{A} on 0; // Since f is total, \mathcal{A} will terminate in finite steps.

if the result = n then Output: "YES";

if the result > n then Output: "NO";

for i = 1, 2, ... do

| Run \mathcal{A} on i; // Since f is total, \mathcal{A} will terminate in finite steps.

if the result = n then Output: "YES";

if the result > n then Output: "YES";

end

end
```

Now we prove the algorithm above is one for determining membership in range(f).

First we prove that for any input $n \in \mathbb{N}$, the algorithm will halt within finite steps.

Each time we run \mathcal{A} , it will terminate in finite steps.

Meanwhile, for input $n \in \mathbb{N}$, we run \mathcal{A} for at most n times. Otherwise, exists $x \in \mathbb{N}$ s.t. $f(x) \geq f(x+1)$, which contradicts to that f is strictly increasing.

Thus, on any input $n \in \mathbb{N}$, the algorithm will terminate within finite steps.

Then we prove the correctness of the algorithm.

When the algorithm returns "YES", either $f(0) = \mathcal{A}(0) = n \in \mathsf{range}(f)$ or exists a number $i \in \mathbb{N}$ s.t. $f(i) = \mathcal{A}(i) = n \in \mathsf{range}(f)$. Correct.

When the algorithm returns "NO", there exists two cases.

CASE 01. f(0) > n. Then for any $i \in \mathbb{N}$, f(i) > f(0) > n. Thus, $n \notin \text{range}(f)$.

CASE 02. f terminates at i = k. Then we know for i < k, f(i) < n while f(k) > n. Thus, exists $x = k - 1 \in \mathbb{N}$ s.t. f(x) < k < f(x + 1), i.e. $n \notin \text{range}(f)$.

In conclusion, **Algorithm 3** gives the correct result.

Therefore, **Algorithm 3** is an algorithm for determining membership in range(f).

5 A is Effectively Decidable

Proof. A is effectively enumerable \Longrightarrow exists algorithm \mathcal{A} for enumerating members in A.

 $\mathbb{N} \setminus A$ is effectively enumerable \Longrightarrow exists algorithm \mathcal{B} for enumerating members in $\mathbb{N} \setminus A$.

Let the output of \mathcal{A} and \mathcal{B} be $a_0, a_1, ...a_n, ...$ and $b_0, b_1, ...b_n, ...$ respectively.

Then we know

- $a \in A \Rightarrow a = a_n$ for some $n \in \mathbb{N}$, i.e. a will show up in the output of A after finite steps.
- $a \in \mathbb{N} \setminus A \Rightarrow a = b_n$ for some $n \in \mathbb{N}$, i.e. a will show up in the output of \mathcal{B} after finite steps.

Then we con construct an algorithm $\mathcal C$ for determining membership in A as follows.

Algorithm 4: Algorithm for Determining Membership in A

```
Algo. Algorithm \mathcal{C}
begin

on Input n;
for i = 1, 2, ... do

Run \mathcal{A} until it prints the i-th number;
if the i-th output = n then Output: "YES";
Run \mathcal{B} until it prints the i-th number;
if the i-th output = n then Output: "NO";
end

end
```

Now we prove C is an algorithm for determining membership in A.

When $n \in A$, we know exists k s.t. $a_k = n$. Thus, \mathcal{C} will terminate when i = k with "YES", i.e. \mathcal{C} returns "YES" within finite steps.

When $n \in \mathbb{N} \setminus A$, we know exists k s.t. $b_k = n$. Thus, \mathcal{C} will terminate when i = k with "NO", i.e. \mathcal{C} returns "NO" within finite steps.

Thus, \mathcal{C} is an algorithm for determining membership in A.

Therefore, A is effectively deicidable.

6 P is Effectively enumerable

```
Solution. P = \{n \in \mathbb{N} \mid \forall x < n, x \in R\}.
```

Since R is effectively enumerable, there exists algorithm \mathcal{A} for enumerating members of R. Then we can construct an algorithm \mathcal{A}' for listing members in P as follows.

Algorithm 5: Algorithm for Enumerating Members in P

```
Algo. Algorithm \mathcal{A}'
begin
\begin{array}{c|c}
S \leftarrow \varnothing; \\
\text{print: } 0; \\
\text{for } i = 1, 2, 3, \dots \text{ do} \\
\text{Continue running } \mathcal{A} \text{ until it prints the } i\text{-th number } a_i; \\
S \leftarrow S \cup \{a_i\}; \\
\text{for } j = 0, 1, 2, \dots \text{ do} \\
\text{if } j \notin S \text{ then break}; \\
\text{print: } j + 1; \\
\text{end} \\
\text{end} \\
\text{end} \\
\end{array}
```

Now we prove \mathcal{A}' is an algorithm for enumerating members in P.

Let the output of \mathcal{A}' be $p_0, p_1, p_2, ...p_n, ...$ Obvious $p_0 = 0$.

When n = 0, $p_n = 0$. $0 \in P$.

For any $n \in \mathbb{N}, n \geq 1$, by the process of algorithm, we know $0, 1, ..., (p_n - 1) \in S$. Meanwhile, $S \subset R$. Thus, $p_n \in P$.

Suppose $x \in R$ will appear in the output of \mathcal{A} after num(x) steps.

Then for any $a \in P$, we know for any $x \in \mathbb{N}, x < a \Rightarrow x \in R$, i.e. x will appear in the output of \mathcal{A} within finite steps. Thus, a will appear in the output of \mathcal{A}' within $\sum_{k \in \mathbb{N}, k < a} \text{num}(k)$ steps, i.e. within finite steps.

Therefore, \mathcal{A}' is an algorithm for listing the members in P.

Thus, P is effectively enumerable.