Influence of salt intake behavior to blood pressure STATS 506 group project

Xinjun Li

December 5, 2019

This is a report generated by jupyter notebook for the group project of STATS 506 in University of Michigan.

Our project aims to answer the following question:

Is salt intake associated with blood pressure? If so, to what extent is that relationship mediated or moderated by age or waist size?

We will use NHANES data in analysis.

Required software and packages to run the code are as follows: * Python3 * os * pandas * statsmodels * patsy * matplotlib

```
[1]: # Import packages
    import os
    import pandas as pd
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm
    import patsy
    from statsmodels.api import OLS
    from statsmodels.stats.mediation import Mediation
    import matplotlib.pyplot as plt
[2]: # Set working directory
    os.chdir('D:/STAT506/Group project/stats506/')

# read data
    demo = pd.read_excel("RawData/Demographics_15_16.xlsx")
    BMI = pd.read_excel("RawData/Body_measures_2015_16.xlsx")
    bp = pd.read_excel('RawData/Blood_Pressure_2015_16.xlsx')
```

0.1 Data cleaning

We need first clean the raw data and join different dataset.

```
[3]: # select useful columns
# ! Note: we need to drop values '9' or '99' which represent "don't know"

demo=demo.set_index('SEQN'
).filter(items=['RIDAGEYR'] # 'RIAGENDR', 'RIDRETH3'
```

nutr = pd.read_excel("RawData/Dietary_nutrients_firstday_2015_16.xlsx")

```
).dropna()
# demo[['RIAGENDR', 'RIDRETH3']] = demo[['RIAGENDR', 'RIDRETH3']].astype('category')
BMI=BMI.set_index('SEQN'
                  ).filter(items=['BMXWAIST']
                                               # , 'BMXWT', 'BMXHT'
                  ).dropna()
nutr=nutr.set_index('SEQN'
                    ).filter(items=['DBD100'] #,'DBQ095Z','DRQSPREP'
                    ).dropna(
                    ).query('DBD100 != 9'
                    ).astype('category')
# Calculate mean of blood pressure
bp=bp.set_index('SEQN'
                ).filter(regex='(BPXSY*)|(BPXDI*)')
bp=bp.assign(SY=bp.filter(regex='BPXSY*').mean(axis=1, skipna = True),
             DI=bp.filter(regex='BPXDI*').mean(axis=1, skipna = True)
             ).filter(items=['SY','DI']).dropna()
# Merge all data set
df=bp.join(demo,how='inner').join(BMI,how='inner').join(nutr,how='inner')
```

Take a look at the data we are about to work on.

```
[4]: # Show data summary of numeric variables df.describe()
```

```
[4]:
                   SY
                                DΙ
                                       RIDAGEYR
                                                    BMXWAIST
   count 4670.000000 4670.000000 4670.000000 4670.000000
   mean
           119.510921
                         66.050393
                                      38.107281
                                                   93.630557
   std
           17.292694
                         13.378804
                                      21.598139
                                                   19.019918
   min
           74.000000
                         0.000000
                                      8.000000
                                                   46.300000
   25%
           107.333333
                         58.666667
                                      18.000000
                                                   79.700000
   50%
           116.666667
                         66.66667
                                      35.000000
                                                   93.000000
                                      56.000000
   75%
            128.000000
                         74.666667
                                                  105.900000
            206.666667
                        124.000000
                                      80.000000
                                                  171.600000
   max
```

```
[5]: # Show data summary of categorical variables
df.describe(include='category')
```

```
[5]: DBD100
count 4670.0
unique 3.0
top 1.0
freq 2444.0
```

Generate plots show the relationship between salt intake behaviors and blood presure.

```
DI_salt.columns=["Rarely","Occasionally","Very often"]
DI_salt.boxplot(grid=False)
plt.title("Boxplot of Diastolic and frequency of add salt to food at table")
plt.suptitle("")
plt.show()
```

Boxplot of Diastolic and frequency of add salt to food at table

0.2 Fit OLS

Now fit the ordinary least square to the data. The models used are: DI ~ DBD100 and SY ~ DBD100

0.2.1 Diastolic result

```
[8]: # fit ols to Diastolic measurements
  ols_DI=ols('DI~DBD100',data=df).fit()
  # Print the summary
  ols_DI.summary()
```

[8]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	============		=======================================
Dep. Variable:	DI	R-squared:	0.003
Model:	OLS	Adj. R-squared:	0.003
Method:	Least Squares	F-statistic:	7.993
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	0.000343
Time:	12:15:13	Log-Likelihood:	-18730.
No. Observations:	4670	AIC:	3.747e+04
Df Residuals:	4667	BIC:	3.749e+04
Df Model:	2		
Covariance Type:	nonrobust		

··

	coef	std err	t	P> t	[0.025	
0.975]						
-						
Intercept	65.4003	0.270	242.026	0.000	64.871	
65.930 DBD100[T.2.0]	0.9326	0.449	2.077	0.038	0.052	
1.813	0.0020	0.113	2.011	0.000	0.002	
DBD100[T.3.0]	2.0782	0.535	3.886	0.000	1.030	
3.127					.======	
Omnibus:		524.110	Durbin-Wa			1.999
Prob(Omnibus):		0.000	Jarque-Be	ra (JB):		1560.469
Skew:		-0.594	Prob(JB):			0.00
Kurtosis:		5.570	Cond. No.			3.29
Warnings: [1] Standard Er specified.	rors assume	that the co	variance ma	trix of the	e errors is	s correct
[1] Standard Er		that the co	variance ma	trix of the	e errors is	s correct
[1] Standard Er specified.)		variance ma an_sq		e errors is	s correct
[1] Standard Er specified. """ anova_lm(ols_DI) f sw	m_sq me		F PR	(>F)	s correct
[1] Standard Er specified. """ anova_lm(ols_DI) f su 0 2852.7	m_sq me 6590 1426.3	an_sq	F PR	(>F)	s correct
[1] Standard Er specified. """ anova_lm(ols_DI d DBD100 2. Residual 4667.) f sw 0 2852.70 0 832862.70	m_sq me 6590 1426.3	an_sq 82950 7.99	F PR(2829 0.000	(>F) 0343	s correct
[1] Standard Er specified. """ anova_lm(ols_DI d DBD100 2.) f sw 0 2852.70 0 832862.70	m_sq me 6590 1426.3	an_sq 82950 7.99	F PR(2829 0.000	(>F) 0343	s correct
[1] Standard Er specified. """ anova_lm(ols_DI d DBD100 2. Residual 4667. 0.2.2 Systolic res # fit ols to Sy) f sw 0 2852.70 0 832862.70 cult	m_sq me 6590 1426.3 0838 178.4 urements	an_sq 82950 7.99	F PR(2829 0.000	(>F) 0343	s correct
[1] Standard Er specified. """ anova_lm(ols_DI d DBD100 2. Residual 4667. 0.2.2 Systolic res # fit ols to Sy ols_SY=ols('SY") f sw 0 2852.70 0 832862.70	m_sq me 6590 1426.3 0838 178.4 urements	an_sq 82950 7.99	F PR(2829 0.000	(>F) 0343	s correct
[1] Standard Er specified. """ anova_lm(ols_DI d DBD100 2. Residual 4667. 0.2.2 Systolic res # fit ols to Sy ols_SY=ols('SY" # Print the sum) f sum 0 2852.70 0 832862.70 sult stolic meas DBD100',dat mary	m_sq me 6590 1426.3 0838 178.4 urements	an_sq 82950 7.99	F PR(2829 0.000	(>F) 0343	s correct
[1] Standard Er specified. """ anova_lm(ols_DI d DBD100 2. Residual 4667. 0.2.2 Systolic res # fit ols to Sy ols_SY=ols('SY") f sum 0 2852.70 0 832862.70 sult stolic meas DBD100',dat mary	m_sq me 6590 1426.3 0838 178.4 urements	an_sq 82950 7.99	F PR(2829 0.000	(>F) 0343	s correct
[1] Standard Er specified. """ anova_lm(ols_DI d DBD100 2. Residual 4667. 0.2.2 Systolic res # fit ols to Sy ols_SY=ols('SY" # Print the sum) f sum 0 2852.70 0 832862.70 sult stolic meas DBD100',dat mary)	m_sq me 6590 1426.3 0838 178.4 urements a=df).fit()	an_sq 82950 7.99 57833	F PR(2829 0.000	(>F) 0343	s correct

______ Dep. Variable: R-squared: 0.004 SY Model: OLS Adj. R-squared: 0.003 Method: Least Squares F-statistic: 8.841 Date: Thu, 05 Dec 2019 Prob (F-statistic): 0.000147 Time: 12:15:13 Log-Likelihood: -19928. No. Observations: 4670 AIC: 3.986e+04 Df Residuals: 4667 BIC: 3.988e+04 Df Model: 2

Covariance Type	e: 	nonrobust				
0.975]	coef	std err	t	P> t	[0.025	
-						
Intercept 119.231	118.5461	0.349	339.471	0.000	117.861	
DBD100[T.2.0] 2.795	1.6571	0.580	2.856	0.004	0.520	
DBD100[T.3.0] 3.987	2.6321	0.691	3.809	0.000	1.277	
======================================	:======	835.290	======= Durbin-Wa	======== ntson:	=========	1.966
Prob(Omnibus):		0.000	Jarque-Be	era (JB):	16	634.915
Skew:		1.084	Prob(JB):			0.00
Kurtosis:		4.923	Cond. No.			3.29

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[11]: anova_lm(ols_SY)
```

[11]:	df	sum_sq	mean_sq	F	PR(>F)
DBD100	2.0	5.269709e+03	2634.854509	8.840718	0.000147
Residual	4667.0	1.390935e+06	298.036262	NaN	NaN

From the above results, we know that both models are significant and every coefficients are significant(at the level of 95%).

0.3 Moderation effect of waist size

First, add two columns recording a standiviation above and below of waist size.

```
[12]: df['waist_sd'] = df['BMXWAIST'].std()
    df['waist_up']=df['BMXWAIST']+df['waist_sd']
    df['waist_down']=df['BMXWAIST']-df['waist_sd']
```

0.3.1 Diastolic result

```
Fit model: DI ~ DBD100 + BMXWAIST + DBD100 * BMXWAIST

[13]: moderation_DI = ols('DI ~ DBD100 + BMXWAIST + DBD100 * BMXWAIST', data=df).fit()
moderation_DI.summary()
```

[13]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	DI	R-squa	red:		0.090
Model:	OLS	3	-squared:		0.089
Method:	Least Squares				92.35
	nu, 05 Dec 2019		F-statistic):		5.66e-93
Time:	12:15:13	_	kelihood:		-18518.
No. Observations:	4670				3.705e+04
Df Residuals:	4664				3.709e+04
Df Model:	5				
Covariance Type:	nonrobust 				
========					
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	45.2378	1.273	35.545	0.000	42.743
47.733					
DBD100[T.2.0]	2.5683	2.137	1.202	0.229	-1.621
6.757					
DBD100[T.3.0]	3.7644	2.720	1.384	0.166	-1.567
9.096					
BMXWAIST	0.2182	0.013	16.179	0.000	0.192
0.245					
DBD100[T.2.0]:BMXWAIST	-0.0214	0.022	-0.955	0.339	-0.065
0.023					
DBD100[T.3.0]:BMXWAIST	-0.0266	0.028	-0.953	0.341	-0.081
0.028	=========	=======	=========	======	========
Omnibus:	642.737	Durbin	-Watson:		2.006
Prob(Omnibus):	0.000	_	-Bera (JB):		2183.342
Skew:	-0.685	Prob(J	B):		0.00
Kurtosis:	6.057	Cond.	No.		1.62e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.62e+03. This might indicate that there are strong multicollinearity or other numerical problems.

[14]:]: anova_lm(moderation_DI)							
[14]:		df	sum_sq	mean_sq	F	PR(>F)		
	DBD100	2.0	2852.765900	1426.382950	8.748537	1.613124e-04		
	BMXWAIST	1.0	72202.692290	72202.692290	442.845941	5.372836e-94		

```
DBD100:BMXWAIST 2.0 229.976156 114.988078 0.705265 4.940305e-01 Residual 4664.0 760430.039934 163.042461 NaN NaN
```

[15]: # one standard deviation above mean
moderation_DI_up = ols('DI ~ DBD100 + waist_up + DBD100 * waist_up', data=df).

→fit()
moderation_DI_up.summary()

[15]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	========	=====	======	==========	======	========
Dep. Variable:		DI	R-squ	ıared:		0.090
Model:		OLS	Adj.	R-squared:		0.089
Method:	Least Squa			atistic:		92.35
Date:	Thu, 05 Dec 2	019	Prob	(F-statistic):		5.66e-93
Time:	12:15	:13	Log-I	ikelihood:		-18518.
No. Observations:	4	670	AIC:			3.705e+04
Df Residuals:	4	664	BIC:			3.709e+04
Df Model:		5				
Covariance Type:	nonrob	ust				
	========	=====	======	=========	======	========
	coef	g t	d err	t	P> t	[0.025
0.975]	0001		Ju CII	Ü	17 0	[0.020
Intercept	41.0870		1.525	26.946	0.000	38.098
44.076						
DBD100[T.2.0]	2.9751		2.555	1.164	0.244	-2.035
7.985						
DBD100[T.3.0]	4.2712		3.244	1.317	0.188	-2.088
10.630						
waist_up	0.2182		0.013	16.179	0.000	0.192
0.245						
DBD100[T.2.0]:waist_u	p -0.0214		0.022	-0.955	0.339	-0.065
0.023						
DBD100[T.3.0]:waist_u	p -0.0266		0.028	-0.953	0.341	-0.081
0.028						=======
Omnibus:		737		n-Watson:	=== == :	2.006
Prob(Omnibus):		000		ıe-Bera (JB):		2183.342
Skew:	-0.	685	Prob(0.00
Kurtosis:	6.	057	Cond.	No.		2.32e+03
=======================================		=====	======		======	=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

[2] The condition number is large, 2.32e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
[16]: # one standard deviation below mean
moderation_DI_down = ols('DI ~ DBD100 + waist_down + DBD100 * waist_down', 
→data=df).fit()
moderation_DI_down.summary()
```

[16]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

	OLS Regres	sion Result	ts 			
	OLS A Least Squares F Thu, 05 Dec 2019 P 12:15:14 L rations: 4670 A lls: 4664 B		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.090 0.089 92.35 5.66e-93 -18518. 3.705e+04 3.709e+04	
V 1		=======	=======:	=======	=======	
0.975]	coef	std err	t	P> t	[0.025	
Intercept	49.3885	1.023	48.287	0.000	47.383	
51.394 DBD100[T.2.0]	2.1615	1.722	1.255	0.209	-1.214	
5.537 DBD100[T.3.0]	3.2576	2.200	1.481	0.139	-1.055	
7.570 waist_down	0.2182	0.013	16.179	0.000	0.192	
0.245 DBD100[T.2.0]:waist_down 0.023	-0.0214	0.022	-0.955	0.339	-0.065	
DBD100[T.3.0]:waist_down 0.028	-0.0266	0.028	-0.953	0.341	-0.081	
Omnibus:	642.737	Durbin-Wa	atson:	=======	2.006	
<pre>Prob(Omnibus): Skew: Kurtosis:</pre>	0.000 -0.685 6.057	Jarque-Be Prob(JB) Cond. No	:		2183.342 0.00 1.06e+03	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.06e+03. This might indicate that there are strong multicollinearity or other numerical problems.

For the models above, coefficients for the interaction terms and salt intake itself are not significant (at level of 95%). There are not moderation effect of waist size on salt intake and diastole.

0.3.2 Systolic result

```
Fit model: SY ~ DBD100 + BMXWAIST + DBD100 * BMXWAIST

[17]: moderation_SY = ols('SY ~ DBD100 + BMXWAIST + DBD100 * BMXWAIST', data=df).fit()

moderation_SY.summary()
```

[17]: <class 'statsmodels.iolib.summary.Summary'>

OLS	Regres	sion	Results
	0		

Dep. Variable:		Y R-squa			0.176
Model:	OL.	3	-squared:		0.175
Method:	Least Square				199.6
	Thu, 05 Dec 201		F-statistic):		2.71e-193
Time:	12:15:1	0	kelihood:		-19484.
No. Observations:	467				3.898e+04
Df Residuals:	466				3.902e+04
Df Model:		5			
Covariance Type:	nonrobus	t			
=======================================	=========	=======	========	======	========
========					
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	83.3170	1.565	53.231	0.000	80.248
86.386	00.0170	1.000	00.201	0.000	00.210
DBD100[T.2.0]	1.6470	2.628	0.627	0.531	-3.505
6.799	1.0170	2.020	0.021	0.001	0.000
DBD100[T.3.0]	1.3457	3.345	0.402	0.687	-5.211
7.903	1.0107	0.010	0.102	0.007	0.211
BMXWAIST	0.3813	0.017	22.986	0.000	0.349
0.414	0.5015	0.017	22.500	0.000	0.040
DBD100[T.2.0]:BMXWAIS	T -0.0069	0.028	-0.250	0.802	-0.061
0.047	1 -0.0009	0.020	-0.230	0.002	-0.001
DBD100[T.3.0]:BMXWAIS	T -0.0027	0.034	-0.078	0.938	-0.070
	1 -0.0027	0.034	-0.070	0.938	-0.070
0.065					

Omnibus:	1183.493	Durbin-Watson:	1.972
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3393.681
Skew:	1.320	Prob(JB):	0.00
Kurtosis:	6.236	Cond. No.	1.62e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.62e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
[18]: anova_lm(moderation_SY)
```

[18]: df sum_sq F mean_sq DBD100 2.0 5.269709e+03 2634.854509 10.684907 BMXWAIST 1.0 2.407964e+05 240796.362719 976.481519 DBD100:BMXWAIST 2.0 1.548005e+01 7.740026 0.031387 246.595924 Residual 4664.0 1.150123e+06 NaN

PR(>F)

DBD100 2.345321e-05
BMXWAIST 8.385065e-195
DBD100:BMXWAIST 9.691002e-01
Residual NaN

[19]: # one standard deviation above mean
moderation_SY_up = ols('SY ~ DBD100 + waist_up + DBD100 * waist_up', data=df).

→fit()
moderation_SY_up.summary()

[19]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: SY R-squared: 0.176 Model: OLS Adj. R-squared: 0.175 Method: Least Squares F-statistic: 199.6 Date: Thu, 05 Dec 2019 Prob (F-statistic): 2.71e-193 Time: 12:15:14 Log-Likelihood: -19484. No. Observations: 4670 AIC: 3.898e+04 Df Residuals: 4664 BIC: 3.902e+04 Df Model: 5

Covariance Type: nonrobust

=======

coef std err t P>|t| [0.025

0.975]

Intercept	76.0645	1.875	40.563	0.000	72.388
79.741					
DBD100[T.2.0]	1.7782	3.143	0.566	0.572	-4.383
7.939					
DBD100[T.3.0]	1.3965	3.989	0.350	0.726	-6.424
9.217	0.0040	0.045			0.040
waist_up	0.3813	0.017	22.986	0.000	0.349
0.414	-0.0069	0.028	-0.250	0.802	-0.061
DBD100[T.2.0]:waist_up 0.047	-0.0009	0.026	-0.250	0.802	-0.001
DBD100[T.3.0]:waist_up	-0.0027	0.034	-0.078	0.938	-0.070
0.065	3,332				
=======================================	.========	======		=======	=======
Omnibus:	1183.493	Durbir	n-Watson:		1.972
Prob(Omnibus):	0.000	Jarque	e-Bera (JB):		3393.681
Skew:	1.320	Prob(JB):		0.00
Kurtosis:	6.236	Cond.	No.		2.32e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.32e+03. This might indicate that there are strong multicollinearity or other numerical problems.

[20]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	:==========		
Dep. Variable:	SY	R-squared:	0.176
Model:	OLS	Adj. R-squared:	0.175
Method:	Least Squares	F-statistic:	199.6
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	2.71e-193
Time:	12:15:14	Log-Likelihood:	-19484.
No. Observations:	4670	AIC:	3.898e+04
Df Residuals:	4664	BIC:	3.902e+04
Df Model:	5		
Commission of Tours			

Covariance Type: nonrobust

========

	coef	std err	t	P> t	[0.025
0.975]					
Intercept	90.5694	1.258	72.002	0.000	88.103
93.035					
DBD100[T.2.0]	1.5158	2.118	0.716	0.474	-2.636
5.667					
DBD100[T.3.0]	1.2949	2.705	0.479	0.632	-4.008
6.598					
waist_down	0.3813	0.017	22.986	0.000	0.349
0.414					
DBD100[T.2.0]:waist_down	-0.0069	0.028	-0.250	0.802	-0.061
0.047					
DBD100[T.3.0]:waist_down	-0.0027	0.034	-0.078	0.938	-0.070
0.065					
=======================================	========	=======	========	=======	======
Omnibus:	1183.493	Durbin-W	atson:		1.972
<pre>Prob(Omnibus):</pre>	0.000	00 Jarque-Bera (JB):			3393.681
Skew:	1.320	Prob(JB)	:		0.00
Kurtosis:	6.236	Cond. No	•		1.06e+03
=======================================		========		=======	======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.06e+03. This might indicate that there are strong multicollinearity or other numerical problems.

For the models above, coefficients for the interation terms and salt intake itself are not significant (at level of 95%). There are not moderation effect of waist size on salt intake and diastole.

0.4 Mediation effect of age

Fit model: RIDAGEYR ~ DBD100 to see if there are relationships between age and salt intake

```
[21]: # test if there is relationship between age and salt intake.
age_D = ols('RIDAGEYR ~ DBD100', data=df).fit()
age_D.summary()
```

[21]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

===========	=======================================		=========
Dep. Variable:	RIDAGEYR	R-squared:	0.009
Model:	OLS	Adj. R-squared:	0.008
Method:	Least Squares	F-statistic:	20.96
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	8.67e-10

Time: No. Observations Df Residuals: Df Model: Covariance Type:		12:15:14 4670 4667 2 nonrobust	Log-Likel AIC: BIC:	ihood:	-20954. 4.191e+04 4.193e+04
0.975]	coef	std err	t	P> t	[0.025
4.413 DBD100[T.3.0]	36.2901 2.9959 5.1646	0.435 0.723 0.861	83.420 4.145 5.999	0.000	35.437 1.579 3.477
6.852 		0.000	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	ra (JB):	2.043 325.994 1.63e-71 3.29

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The model is significant. There are relationships between age and salt intake behavior.

0.4.1 Diastolic result

Fit model: DI ~ DBD100 + RIDAGEYR.

```
[22]: mediation_DI = ols('DI ~ DBD100 + RIDAGEYR', data=df).fit()
mediation_DI.summary()
```

[22]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

============	=============		=========
Dep. Variable:	DI	R-squared:	0.073
Model:	OLS	Adj. R-squared:	0.072
Method:	Least Squares	F-statistic:	121.6
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	7.67e-76
Time:	12:15:14	Log-Likelihood:	-18563.
No. Observations:	4670	AIC:	3.713e+04
Df Residuals:	4666	BIC:	3.716e+04

Df Model: Covariance Type 		3 nonrobust				
=	coef	std err	t	D> +	[0.025	
0.975]	COGI	Stu eli	C	F> U	[0.023	
- -	FO 4640	0.444	444 540	0.000	FO 657	
Intercept 60.271	59.4642	0.411	144.512	0.000	58.657	
	0.4425	0.434	1.020	0.308	-0.408	
1.293						
DBD100[T.3.0]	1.2334	0.518	2.381	0.017	0.218	
2.249						
RIDAGEYR	0.1636	0.009	18.646	0.000	0.146	
0.181 						
Omnibus:		724.710	Durbin-Wa	atson:	2.	007
Prob(Omnibus):		0.000	Jarque-Be	era (JB):	2672.	320
Skew:		-0.747	Prob(JB):	:	0	00.0
Kurtosis:		6.391	Cond. No.	•	1	36.

The model is significant. Age might be a mediator between salt intake and diastolic.

11 11 11

```
[23]: # Create design matrix

DI,model_mat = patsy.dmatrices("DI ~ DBD100 + RIDAGEYR", data=df)

df_med_DI=pd.DataFrame(model_mat).iloc[:,1:]

df_med_DI.columns=['DBD2','DBD3','RIDAGEYR']

df_med_DI['DI']=DI

# origin model and mediator model

med_model_DI=OLS.from_formula('DI ~ RIDAGEYR+DBD2+DBD3', data=df_med_DI)

mediator_DI=OLS.from_formula('RIDAGEYR ~ DBD2+DBD3', data=df_med_DI)

# origin model and mediator model

med_DI = Mediation(med_model_DI,mediator_DI,['DBD2','DBD3'],'RIDAGEYR').fit()

med_DI.summary()
```

[23]:		Estimate	Lower CI bound	Upper CI bound	P-value
	ACME (control)	1.336201	0.894425	1.810091	0.000
	ACME (treated)	1.336201	0.894425	1.810091	0.000
	ADE (control)	1.692829	0.107259	3.290577	0.038
	ADE (treated)	1.692829	0.107259	3.290577	0.038

Total effect	3.029030	1.396428	4.608381	0.000
Prop. mediated (control)	0.438871	0.269666	0.920362	0.000
Prop. mediated (treated)	0.438871	0.269666	0.920362	0.000
ACME (average)	1.336201	0.894425	1.810091	0.000
ADE (average)	1.692829	0.107259	3.290577	0.038
Prop. mediated (average)	0.438871	0.269666	0.920362	0.000

All the mediation effect(ACME) are significant(at level of 95%). Which means that age is a mediator between salt intake and diastolic.

0.4.2 Systolic result

Kurtosis:

```
Fit model: SY ~ DBD100 + RIDAGEYR.
[24]: mediation_SY = ols('SY ~ DBD100 + RIDAGEYR', data=df).fit()
   mediation_SY.summary()
[24]: <class 'statsmodels.iolib.summary.Summary'>
                      OLS Regression Results
   ______
   Dep. Variable:
                           SY
                               R-squared:
                                                      0.326
   Model:
                          OLS Adj. R-squared:
                                                      0.326
                  Least Squares F-statistic:
   Method:
                                                     753.2
                Thu, 05 Dec 2019 Prob (F-statistic):
   Date:
                                                     0.00
                                                   -19015.
   Time:
                       12:16:57 Log-Likelihood:
   No. Observations:
                          4670 AIC:
                                                   3.804e+04
   Df Residuals:
                          4666 BIC:
                                                   3.806e+04
   Df Model:
                          3
   Covariance Type:
                     nonrobust
   ______
                 coef std err t P>|t| [0.025]
   0.975]
   Intercept 101.9719 0.453 224.951 0.000 101.083
   102.861
   DBD100[T.2.0] 0.2888 0.478 0.604 0.546 -0.648
   1.226
   DBD100[T.3.0] 0.2734 0.571 0.479 0.632
                                             -0.845
   1.392
           0.4567 0.010 47.259
   RIDAGEYR
                                       0.000
                                               0.438
   ______
   Omnibus:
                        587.593 Durbin-Watson:
                                                      1.956
                        0.000 Jarque-Bera (JB):
   Prob(Omnibus):
                                                   1253.258
                         0.767 Prob(JB):
                                                  7.22e-273
   Skew:
```

5.022 Cond. No.

136.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The model is significant. Even thought the coefficients of salt intake is not significant(at level of 95%). Age might be a mediator between salt intake and systolic.

```
[25]: # Create design matrix
SY,model_mat = patsy.dmatrices("SY ~ DBD100 + RIDAGEYR", data=df)
df_med_SY=pd.DataFrame(model_mat).iloc[:,1:]
df_med_SY.columns=['DBD2','DBD3','RIDAGEYR']
df_med_SY['SY']=SY

# origin model and mediator model
med_model_SY=OLS.from_formula('SY ~ RIDAGEYR+DBD2+DBD3', data=df_med_SY)
mediator_SY=OLS.from_formula('RIDAGEYR ~ DBD2+DBD3', data=df_med_SY)

# origin model and mediator model
med_SY = Mediation(med_model_SY,mediator_SY,['DBD2','DBD3'],'RIDAGEYR').fit()
med_SY.summary()
```

[25]:			Estimate	Lower CI bound	Upper CI bound	P-value
	ACME (control)		3.737113	2.471780	5.024574	0.000
	ACME (treated)		3.737113	2.471780	5.024574	0.000
	ADE (control)		0.563925	-1.081074	2.157202	0.514
	ADE (treated)		0.563925	-1.081074	2.157202	0.514
	Total effect		4.301039	2.189444	6.329029	0.000
	Prop. mediated	(control)	0.870716	0.616533	1.373339	0.000
	Prop. mediated	(treated)	0.870716	0.616533	1.373339	0.000
	ACME (average)		3.737113	2.471780	5.024574	0.000
	ADE (average)		0.563925	-1.081074	2.157202	0.514
	Prop. mediated	(average)	0.870716	0.616533	1.373339	0.000

All the mediation effect(ACME) are significant. Which means that age is a mediator between salt intake and systolic.

0.5 Summary

From the analysis above, we know that the salt intake behavior have significant influence on people's blood pressure (both diastolic and systolic). The influence of salt intake behavior on blood pressure(both diastolic and systolic) is not modirated by waist size. Age is a Mediator between salt intake behavior and blood pressure(both diastolic and systolic).

0.6 Reference

```
1. https://en.wikipedia.org/wiki/Moderation_(statistics)
```

^{2.} http://web.pdx.edu/~newsomj/semclass/ho_mediation.pdf

0.7 Aknowledgement

I would like to thank Dr. Henderson for always patiently answering any questions. I would also like to thank my fellow group members, Jingyan Lu and Karthik G. Your works are very inspiring. I cannot finishing this report without your contributions.