Practice Assignment 12

Chinese Remaindering and Algebraic Structures

Exercise 12-1

- (a) Find x such that $3x \equiv 7 \mod 10$
- (b) Find x such that $3x \equiv 6 \mod 12$

Solution:

(a) The inverse of 3 modulo 10 is $3^3 \equiv 27 \equiv 7 \pmod{10}$. Hence, multiplying both sides of the above equation by 7, we obtain

$$3x \equiv 7 \pmod{10}$$

$$\Leftrightarrow 7 \cdot 3x \equiv 7 \cdot 7 \pmod{10}$$

$$\Leftrightarrow x \equiv 49 \equiv 9 \pmod{10}$$

Hence, the solution is $x \equiv 9 \pmod{10}$.

(b) This time we don't have a multiplicative inverse to work with. So what to do? Well, let's take a look at what this would mean. If $3x \equiv 6 \pmod{12}$, that means 3x - 6 is divisible by 12, so there is some $k \in \mathbb{Z}$ such that 3x - 6 = 12k. Now that we're working in the integers, we can happily divide by 3, and we thus obtain that x - 2 = 4k. Hence, we have that $x \equiv 2 \pmod{4}$ solves the desired congruence.

Exercise 12-2

Find x, if possible, such that

(a)
$$2x \equiv 5 \mod 7$$

 $3x \equiv 4 \mod 8$
 (b) $x \equiv 3 \mod 4$
 $x \equiv 0 \mod 6$

Solution.

(a) First note that 2 has an inverse modulo 7, namely 4. So we can write the first equivalence as $x \equiv 4 \cdot 5 \equiv 6 \pmod{7}$. Hence, we have that x = 6 + 7k for some $k \in \mathbb{Z}$. Now we can substitute this in for the second equivalence:

$$3x \equiv 4 \pmod{8}$$
$$3(6+7k) \equiv 4 \pmod{8}$$
$$18+21k \equiv 4 \pmod{8}$$
$$2+5k \equiv 4 \pmod{8}$$
$$5k \equiv 2 \pmod{8}.$$

Recalling that 5 has an inverse modulo 8, namely 5, we thus obtain

$$k \equiv 10 \equiv 2 \pmod{8}$$
.

Hence, we have that k = 2 + 8j for some $j \in \mathbb{Z}$.

Plugging this back in for x, we have that x = 6 + 7k = 6 + 7(2 + 8j) = 20 + 56j for some $j \in \mathbb{Z}$. In fact, any choice of j will work here. Hence, we have that x is a solution to the system of congruences if and only if $x \equiv 20 \pmod{56}$.

Practice Assignment 12 Page 1/2

(b) Let's work as we did above. From the first equivalence, we have that x=3+4k for some $k\in\mathbb{Z}$. Then, the second equivalence implies that $3+4k\equiv 0\pmod 6$, and hence $4k\equiv -3\equiv 3\pmod 6$. However, this is impossible, since we know that $\gcd(4,6)=2$ and $2\ / 3$.

Exercise 12-3

Determine whether the following statements are true or false and justify your answer.

- (a) There exists a finite field of order 243.
- (b) There exists a finite field of order 8.
- (c) There exists a finite field of order 12.
- (d) There exists a finite field of order 500.

Solution:

- (a) Yes, as $243 = 3^5$ and thus can be written as p^m .
- (b) Yes, as $8 = 2^3$ and thus can be written as p^m .
- (c) No, as $12 = 2^2 \times 3$
- (d) No, as $500 = 2^2 \times 5^3$

Exercise 12-4

- (a) Construct a table which describes the addition of all elements in the ring with each other for the ring Z_4 .
- (b) Construct the multiplication table for Z_4 .
- (c) Construct the addition and multiplication tables for Z_5 .
- (d) Construct the addition and multiplication tables for Z_6 .
- (e) There are elements in Z_4 and Z_6 without a multiplicative inverse. Which elements are these? Why does a multiplicative inverse exist for all non-zero elements in Z_5 ?

Solution:

(a) Multiplication Table for Z₄

		0	1	2	3
	0	0	0	0	0
Ī	1	0	1	2	3
Ī	2	0	2	0	2
Ī	3	0	3	2	1

(b) Addition Table for Z₅

Multiplication Table for Z_5

	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

		0	1	2	3	4
	0	0	0	0	0	0
T	1	0	1	2	3	4
T	2	0	2	4	1	3
T	3	0	3	1	4	2
	4	0	4	3	2	1

Practice Assignment 12 Page 2/2