

+

### The MIDAS Handbook



Template ver 6.3

| Who is this document for? | MIDAS Database Administrators   |
|---------------------------|---------------------------------|
| Purpose of the document   | Guide to the structure of MIDAS |

Contains public sector information licensed under the Open Government Licence v3.0 <a href="http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/</a>





### **Contents**

| 1 | 1 Introduction                        |              | 6  |
|---|---------------------------------------|--------------|----|
|   | 1.1 Overview of MIDAS                 |              | 6  |
|   |                                       |              |    |
|   | - I                                   |              |    |
|   | • • • • • • • • • • • • • • • • • • • |              |    |
|   |                                       |              |    |
|   | •                                     |              |    |
| 2 | 2 Relational Database Concepts        |              | 7  |
|   | 2.1 Fundamentals                      |              | 7  |
|   |                                       |              |    |
|   |                                       |              |    |
|   |                                       |              |    |
|   | , ,                                   |              |    |
|   | 5 ,                                   | )            |    |
|   |                                       | ary Key)     |    |
|   | . , ,                                 |              |    |
|   | 2.3.6 Relationships                   |              | 9  |
|   |                                       |              |    |
| 3 | 3 The Basic Design of MIDAS           |              | 10 |
|   | 3.1 The Data                          |              | 10 |
|   |                                       |              |    |
|   |                                       |              |    |
|   | 3.1.3 Meteorological data             |              | 10 |
|   | 3.2 The Structure                     |              | 11 |
|   |                                       |              |    |
| 4 | 4 Observations and Observation Sub    | o-Types      | 12 |
|   | 4.1 Observations, Messages, Report    | s and Tables | 12 |
|   |                                       |              |    |
|   | •                                     |              |    |
|   | 4.4 General Ideas about Observation   | n Sub-Types  | 14 |
|   | 4.4.1 Keys                            |              | 14 |
|   | •                                     |              |    |
|   |                                       |              |    |
|   | 4.5 Source Capability and Observation | ons          | 15 |
| _ |                                       |              |    |
| 5 | 5 Entity Keys and Relationships in M  | IIDAS        | 15 |
|   | 5.1 Keys of Land Observations         |              | 15 |
|   |                                       |              |    |
|   |                                       |              |    |
|   | 5.3.1 source and geographic_area      | 1            | 16 |
|   |                                       |              |    |
| 6 | 6 Organisation of Data in MIDAS       |              | 16 |
|   | 6.1 Tables                            |              | 16 |
|   | 6.2 Database Views                    |              | 17 |



|    |                    | w Reports Map To Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | 6.4 Ing            | estion And Backup Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19  |
| 7  | Databa             | se Partitioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20  |
| 8  | Data S             | tructure Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21  |
| _  | E. dd.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00  |
| 9  |                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|    |                    | roduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|    |                    | DAS Tables and MIDASUPD Views - All (except Marine and Upper Air)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|    |                    | DAS Tables and MIDASUPD Views - Marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|    |                    | DAS Tables and MIDASUPD Views- Upper Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|    | 9.5 MI             | DASVU Views                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70  |
| 1( | 0 Entit            | y Keys and Table Indexes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84  |
| 1  | 1 MID/             | AS Packaged Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92  |
|    | 11.1.1             | midas utility pkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|    | 11.1.2             | midas_humidity_pkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|    | 11.1.2             | mado_namaky_pkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 12 | 2 Uppe             | er Air Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104 |
|    | 12.1 Int           | roduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104 |
|    | 12.1.1             | Database Tables and Views                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105 |
|    | 12.1.2             | Standing Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106 |
|    | 12.1.3             | 3. Upper Air Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|    | 12.1.4             | Online Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|    | 12.1.5             | Routine Data Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|    | 12.1.6             | How to: Find out what data is available online                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|    | 12.1.7             | How to: Find out what data is in the upper air archive (and where it is located)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|    | 12.1.8             | How to: Restore data from the MASS archive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|    | 12.1.9             | How to: Work from the restored archive file(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|    | 12.1.10            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|    | 12.1.11<br>12.1.12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119 |
|    |                    | ig the required JCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122 |
|    | 12.1.13            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125 |
|    | 12.1.14            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|    | 12                 | , appoint in the cooleans in t | 120 |
| 1  | 3 Cont             | rol Of MIDAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126 |
|    | 13.1 Sp            | ecification Of Responsibilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126 |
|    | 13.2 Wh            | nat To Do If The Database Design Is Inadequate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126 |
|    |                    | nat To Do If The Data Details Are Wrong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|    | 13.4 Em            | nergency Arrangements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127 |
| 14 | 4 Aspe             | ects of using MIDAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127 |
|    | 14.1 Ba            | ckground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127 |
|    | 14.1.1             | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|    | 14.1.2             | Datatypes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|    | 14.1.3             | Access To Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|    | 14.1.4             | Security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129 |
|    | 14.1.5             | Application Environments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130 |



| 14.2 Qu | uery Techniques                                          | 131 |
|---------|----------------------------------------------------------|-----|
| 14.2.1  | 3                                                        |     |
| 14.2.2  | Sub-Queries                                              | 132 |
| 14.2.3  | Table Joins                                              | 133 |
| 14.2.4  | Set Operators                                            | 133 |
| 14.2.5  | The Group By And Order By Clauses                        | 134 |
| 14.3 Us | seful MIDAS Tables                                       | 135 |
| 14.3.1  | Start At The Source                                      |     |
| 14.3.2  | Check The Capability                                     |     |
| 14.3.3  | Sources, Identifiers And SRC_ID                          |     |
| 14.3.4  | Marine Reports Are Different                             | 136 |
| 14.3.5  | Code Tables                                              |     |
| 14.3.6  | Remarks About A Source                                   |     |
| 14.3.7  |                                                          |     |
|         | QL Performance Factors                                   |     |
| 14.4.1  | Specify ID_TYPE when extracting by ID                    |     |
| 14.4.2  | Selecting By Date/Time                                   | 138 |
| 14.4.3  | Use Of Partition Keys                                    |     |
| 14.4.4  | Performance Implications Of Order By                     |     |
| 14.4.5  | Performance Implications Of Sub-Queries, Outer Joins etc |     |
| 14.5 St | atic Values - Quality Control Information                |     |
| 14.5.1  | Static Values - State Indicators                         |     |
| 14.5.2  | Static Values - State Indicators                         | 148 |
| 14.5.3  | Static Values - Codes In code, detail Table              | 149 |



#### 1 Introduction

The MIDAS Handbook is divided into 2 parts:

- Part A describes the fundamental principles of the database
- Part B illustrates how to use it

The MIDAS database is designed to be extensible and usage is varied and dynamic. This documentation is therefore subject to periodic review. Metnet will provide the primary method of access.

Documentation concerning the source of climatological data, and the processing that is carried out before and after the observations are stored in the database, does not form part of the MIDAS Handbook.

Conventions used in the MIDAS Handbook:

- · Code and screen displays are in Courier New font.
- SQL keywords are in UPPER CASE
- · Names of MIDAS entities and attributes are in lower case
- Program variables are in italics

Comments and suggestions for improving the documentation are always welcome.

#### 1.1 Overview of MIDAS

#### 1.2 Purpose

The main aim of MIDAS was to replace the Climate Data Bank, Marine Data Bank and CLIMAT Data Bank with a single database, using industry standard software wherever possible to:

- eliminate data redundancy
- minimise maintenance
- simplify data security and management
- allow a wider range of retrieval methods

As such it is now the principal archive of meteorological observations, available for answering a vast range of enquiries relating to past weather.

#### 1.3 Scope

Data are routinely added to MIDAS in near real-time, so there is a substantial overlap with the MetDB. However, the MetDB encompasses a much wider range of data types for a much more extensive geographical coverage over a much shorter timescale, its main function being to act as the primary data source for numerical modelling.

The potential uses of MIDAS are much more wide-ranging, often covering periods of months, or even years, rather than days, and for "all times for one site" or "all sites for one time". MIDAS data are also subject to much more rigorous quality control since they are destined for permanent retention as the nation's climatological archive.

Validation and other processes act upon these data to ensure that they are:

syntactically correct



- internally consistent (e.g. a report of snow with a temperature of 20°C is suspect)
- sequentially consistent (e.g. a vast change of temperature between reports is unlikely)
- really consistent (i.e. conform to "buddy" checks with near neighbours) and are within reasonable ranges

#### 1.4 Test Database

The implementation of MIDAS is such that changes of design and usage can be accommodated much more easily than before. Therefore, to protect users when further development is under way, there is a 'test' database. This has the same structure as the production system, but has a limited amount of space for observational data.

#### 1.5 User Group

As well as being used for a wide range of enquiries, the database serves a range of users with quite different backgrounds and requirements. The MIDAS User Group exists to ensure that the needs of <u>all</u> these users are met.

### 2 Relational Database Concepts

#### 2.1 Fundamentals

At its simplest, a database is a collection of data, usually integrated to eliminate redundancy (where possible). It can take several forms:

- hierarchical where each record can be represented in a tree structure
- network (or CODASYL) where one record type is defined as the owner of another
- relational where data are stored in one or more tables whose contents can be related

MIDAS uses the Oracle relational database management system.

#### 2.2 Relational Databases

It is important to realise that the heart of a relational database is a set of tables, where a table is made up of a set of rows, each of which consists of a list of data items, in columns. Each table in a database must have a unique name to identify it, preferably in some meaningful way. For example the table geographic\_area in MIDAS includes the following columns:

| geog_area_id | geog_area_name  | geog_area_type   |
|--------------|-----------------|------------------|
| NYKS         | NORTH YORKSHIRE | COUNTY           |
| STRA         | STRATHCLYDE     | SCOTTISH REGION  |
| UK           | UNITED KINGDOM  | POLITICAL REGION |
|              |                 |                  |

A table has the following properties:

There are no duplicate rows



- Each row represents all the information stored in the database for (in the case above) a single area and for that area alone (e.g. North Yorkshire)
- There are no duplicate column names
- Each column represents just one item of data that is stored in the database for each area (e.g. name)
- For each column, all data values are of the same type (e.g. geog area ids are character strings)
- The order of rows or columns is not significant

Physical considerations (such as storage and retrieval via indexes, and alignment on word boundaries) will require a particular order for rows and columns in the database, but a user does not need to be constrained by the actual implementation. Efficiency may sometimes dictate a method that takes advantage of the storage strategy, but data can be retrieved in any order.

A relational system also has a set of operators so that the user can retrieve and manipulate data. These are not described here because they are well covered by standard texts on relational databases. In particular, Part B of this Handbook will make reference to SQL (Structured Query Language) for access to data, but only for illustrative purposes.

#### 2.3 Entity Keys and Relationships

Attributes, or combinations of attributes can be defined as a key of an entity in order to:

- uniquely identify an instance of the entity (each row in a database table must be unique)
- show relationships between entities
- provide a useful way for users to find data.

**Primary Key** 

#### 2.3.1 Primary Key

A Primary Key is an attribute (column), or group of attributes, that exist on a table allowing us to uniquely identify a single row (tuple/record). This value is a determinant, in that from knowing a single value, or subset of values, it allows us to determine all the other attribute values associated with that, and only that row. (e.g. geog\_area\_id for the table geographic\_area).

#### 2.3.2 Foreign Key

Foreign Keys are a functional form of controlled redundancy. The same attribute may appear on two tables. Generally this is the primary key of one table appearing as an attribute on another table. This serves to define a relationship between these two tables with the primary key of one table acting as a foreign key to another table. Section 5 gives more details (e.g. values of loc\_geog\_area\_id for the source table form a link with the geographic\_area table using its geog\_area\_id column).

#### 2.3.3 Alternate Key (or Super Key)

An Alternate Key includes the column/columns used to uniquely identify a row other than by the primary key. Both primary keys and alternate keys are unique.

#### 2.3.4 Non-Unique Key (or Secondary Key)

A Non-Unique is a column, or combination of columns, than can locate several rows in the database. They are mostly used for data retieval and usually contain values that are easier to remeber than the unique keys.



#### 2.3.5 Surrogate Key

A Surrogate Key is where a simple value (e.g. a unique integer) is substituted in place of a more complex structure (e.g. several attributes concatenated together to create a unique combination).

Keys can be used to define indexes. Just as in a book, an index is an ordered list which indicates where to find items, but with a database it is often useful to provide more than one index for the contents of a table.

MIDAS stores most observational data using an index on the primary key, but additional indexes have been included where analysis shows they will be helpful entry points for users. Users cannot specify these indexes in their queries, but it can also be beneficial to keep the concepts in mind for SQL applications because the database management system uses an optimiser to select the most efficient retrieval strategy, and careful specification of a query can result in an index being used, with obvious performance benefits.

#### 2.3.6 Relationships

The logical data structure diagram in Section 8 shows the relationships between entities; in most cases a foreign key is used. Consider the examples of met\_domain and met\_domain\_class.

PICTORIAL REPRESENTATION OF THE RELATIONSHIP



| met_domain_class   | met_domain           |
|--------------------|----------------------|
| met_dom_class (PK) | met_domain_name (PK) |
|                    | met_dom_class (FK)   |
|                    |                      |

Met domains are grouped together in classes such that each class has one or more members (met domains) and each met domain belongs to only one class. Each class has an identifier, met\_dom\_class, which forms the primary key (PK) of the entity. Including this identifier as a foreign key (FK) attribute (non-unique) of the met



domain makes the relationship between the two entities. So, if you need to know more about the class, you can use the met\_dom\_class attribute to retrieve the appropriate met\_dom\_class record. Similarly, if you start with a met domain class, you can find all the met\_domain records which have that value of met\_dom\_class. Section 5 elaborates on the design of keys for tables containing observational data, and also on making relationships between tables.

### 3 The Basic Design of MIDAS

#### 3.1 The Data

The MIDAS database contains three main groups of tables:

- Data sources
- Data definitions
- Meteorological data

#### 3.1.1 Data sources

These tables give information about the places where the observations were made, the way these places are identified, the facilities at the sources, and the regions in which they reside.

#### 3.1.2 Data definitions

These include definitions of the meteorological elements in the database, the groups of elements stored in the database, and the types of report made by the sources. Each group of elements is called a met domain. A domain may be a group of elements in a message as well as a group of elements stored in a table.

#### 3.1.3 Meteorological data

The meteorological data also breaks down into three groupings. They are:

CLIMAT Normals (surface and upper air)

Records (surface and upper air)

Marine based observations Currents

Ship SYNOPs, Light Vessel Reports, Marids, OWS etc.

Upper Air

Land based observations SYNOPs, METARs, F3208, NCMs

Radiation / Sunshine

Rainfall

Soil Temperatures

Upper Air Winds

These three groups adequately describe the range of meteorological information to be found in MIDAS, but not the method that MIDAS uses to store this information. MIDAS stores meteorological values, which are grouped into tables. Each table consists of parameters that have similar characteristics, or attributes. MIDAS does not store meteorological messages; although it does hold information about the type of message that supplied the



data. Refer to Sections A6 and A9 for details of what is actually stored for each meteorological data-type.

The database design includes one particularly important table (src\_capability) that links all this information together. It can be used to determine the ability of a station to produce meteorological reports of a specified type, when that ability started, if it is still current and where those reports are stored in the database.

#### 3.2 The Structure

MIDAS has a <u>Logical Data Structure</u> diagram and a <u>Physical Data Structure</u> diagram (see Section 8), but for the moment we will use a simplified, conceptual diagram, which shows the nature of the database in the simplest form.



Rectangles represent entities (tables in the database).

Lines are relationships between tables.

A "crow's foot" indicates a one-to-many relationship
e.g. a source may have many capabilities, but a
capability can be for only one source.

A 'O' indicates that the relationship is optional whilst a
solid bar'--' indicates a mandatory relationship.
e.g. a source may have one or more capabilities, but a
capability must be for one and only one source.

The brief description of these entities is:

#### Source

Location (position on the earth's surface, name, period of validity) e.g. Heathrow

#### **Met Domain**

A collection of meteorological elements e.g. SYNOP

#### **Source Capability**

Capability of a particular source to report data according to a specified met domain associated with a particular identifier

#### Observation

Observed values

To summarise, we can use a structure diagram to represent the nature of MIDAS.



### 4 Observations and Observation Sub-Types

#### 4.1 Observations, Messages, Reports and Tables

It is convenient to distinguish between:

- an **observation**, a group of one or more meteorological elements, plus some location and time information; other data items are added to an observation before it is encoded into a message.
- a **message**, meteorological information encoded into a pre-defined format for exchange between meteorological centres
- a report, some form of summary of (meteorological) data.

Data contained in messages and reports are stored in **tables**. They are structured to facilitate the extraction of selected data from the archive, the selection being based on location, time and meteorological element (where an element is a single meteorological variable such as wind speed, cloud cover or relative humidity). The tables do not store the incoming reports and data files, just the information held by them. (The tables do hold information on how the data were received.)

#### 4.2 Specification of a Data Value

The value of a single meteorological element is only of use if we can fix it in both space and time. Often, several elements may share the same 'fix' and may be stored by MIDAS in the same record. The horizontal spatial coordinate system is either referenced to the earth's geometry (latitude and longitude) or to a Cartesian (regular square) grid such as the Ordnance Survey Grid of 10 km squares.

#### Station identifiers

It is often convenient to refer to a given location on the earth's surface by means of a short-hand notation such as a station name or some other identifier. However, a single location may have several such short-hand references, and a single identifier can refer to more than one location! Therefore, to refer to a location in this way



it is necessary to specify the combination of identifier-type and identifier. MIDAS uses its own unique short-hand notation - the src id, which it associates with the different naming conventions.

Mobile sources of meteorological data have an identifier that is clearly not associated with a fixed location! The spatial co-ordinate information for these sources has to be included with the individual records of meteorological elements. The vertical space co-ordinate may be geometric height, geopotential or pressure level in the atmosphere; geometric depth below the lower boundary of the atmosphere.

MIDAS uses conventional time specifications with a resolution of one minute, using the Oracle DATE data-type.

Each of these space-time ordinates may be a single value, such as  $51013 \square$  N or 1135 on 04/11/1978. They can each also be extended: an extent in horizontal co-ordinates is used to define an area (as in radar rainfall elementary areas) while an extent in time may be used to indicate an average or integrated value, (such as the daily rainfall amount) or the period within which a meteorological element occurred, (such as the overnight minimum air temperature). When a time co-ordinate is extended, MIDAS uses the convention that the period is specified by the time of the later end of the period and the duration of the period. MIDAS does not yet contain data that have extended spatial co-ordinates; it is probable that the convention that will be adopted is for the extent to be specified by the lower value and the increment in that co-ordinate value - e.g.  $\{52010 \square N, 20 \square\}$  for  $52010 \square N$  to  $52030 \square N$ . (Note that these definitions may not be consistent with previous practices!)

This structure diagram shows the nature of the meteorological values in MIDAS.



#### Summary:

- In MIDAS, meteorological values are classified according to the type of reporting source. They may be for static sources (e.g. land stations) or from mobile sources (e.g. ships, buoys etc).
- MIDAS contains meteorological values on several time scales (e.g. monthly, daily, hourly or sub-hourly)
- The vertical co-ordinate is significant in the way that MIDAS stores meteorological values. All observations will have one or more levels. The default level will be the surface. Additional levels may occur; if they do, the vertical co-ordinate (e.g. height or depth) is part of the key of the values

#### 4.3 Observation Sub-Types

MIDAS stores observations in tables that either correspond directly to the observation, or to a sub-set of the observation, which means that some reports are separated into several tables. Equally, some of the MIDAS tables correspond to more than one type of observation (e.g. the MIDAS table weather\_hrly\_ob can contain data



extracted from both SYNOP and METAR messages). The general name for these tables is "Observation subtypes". Observation sub-types provide some independence and isolation from the report format.

- They divide the logical "observation" entity into a number of sub-groups
- Each sub-type is a table of related attributes, influenced by report type and volume
- The logical entity "observation" may map to more than one table
- They give a manageable number of tables and columns, reduce space wastage, and control data redundancy

Section 6 shows how meteorological reports map to MIDAS tables. Details of the tables are in Section 9.

#### 4.4 General Ideas about Observation Sub-Types

#### 4.4.1 Keys

- Observation sub-types are stored via a unique index on the primary key
- A non-unique index permits retrieval of all observations for a specified place
- The primary key of marine observations have both position and identifier

#### src id

Each land observation location (source) is allocated a unique number (src\_id) that has no significance other than to identify that location in a very simple manner. Each observation table includes the src\_id attribute so that an observation (report) distributed over more than one entity (e.g. F3208) can be reconstituted, and static details of the location can be retrieved.

#### version num

Most of the observation sub-type tables contain the attribute version\_num. This is to allow the data maintainers to store more than one occurrence of a row, as a result of Quality Control (QC).

version\_num = 0 Original observation, as reported. A version 1 probably exists as a result of QC

(QC fields showing level of QC attained before amendment became necessary)

version\_num = 1 Either an original observation, as reported (or correction received before QC),

or a QC improvement of it. A version 0 may exist.

Occasionally a version 0 is created but no version 1 is provided, if the original observation is suspect but no equivalent replacement value is available. If the observation sub-type does not have any QC, then the table will not have a version\_num column.

#### 4.4.2 Quality Control

As well as meteorological values, observation sub-types can contain additional attributes which store information about the quality control that has been applied. These occur as met\_element\_name\_q and met\_element\_name\_j (i.e. the attribute name depends on the observation sub-type).

met\_element\_name\_q is a five digit number (of the form MESQL), where each digit describes one aspect of the quality of a meteorological element.



| M | qc_marker   | A combination of two flags to indicate accumulations, and/or a trace of rainfall        |
|---|-------------|-----------------------------------------------------------------------------------------|
| Е | qc_estimate | Indicates 1 of up to 8 remarks about an estimate                                        |
| S | qc_status   | Indicates 1 of up to 8 descriptions of the value (e.g. reason for suspecting a value)   |
| Q | qc_query    | Indicates 1 of up to 8 statements about the original value (e.g. reason for correction) |
| L | qc_level    | Indicates which of 10 possible stages of QC has been reached                            |

Details of the various components of met\_element\_name QC are given in Section 14.5.1. The values are also documented in the code\_detail table of MIDAS (see Section 14.5.3).

met\_element\_name\_j is a single character code which either describes the method of measurement, or further qualifies the meteorological values. The meaning of any value depends on the element being qualified and details are given in Section 14.5.1). The values allocated to this item are also documented in the code\_detail table of MIDAS (see Section 14.5.3).

#### 4.4.3 State Indicators

Each of the observation sub-types contains an attribute that is used to describe the current stage in the life of a particular record, from creation to deletion. Values are listed in Section 14.5.2).

#### 4.5 Source Capability and Observations

The conceptual diagram in Section 3.2 shows that the src\_capability entity provides the link between the three main components of MIDAS.

- meteorological information
- sources of meteorological information
- definition of the meteorological information

A 'source capability' is the ability of a specified station to report observations of a specified type, using a specified identifier. It shows when the station first gained the ability, and if the station still has the capability. When the enquirer only knows the station and the type of report, the src\_capability entity can be used to find in which table(s) the reports are stored. It can also be used to find out if there are likely to be any observations of the required type for the required spot. It is clear that src\_capability is a very important entry point into the database.

### 5 Entity Keys and Relationships in MIDAS

Section 2 provided some insight into why we define entity keys. We will now examine some MIDAS keys in a little more detail, but we will still use general examples rather than specific ones, e.g. "observation" refers to a land observation or a marine observation, and of course a land observation could be one of many types. For specific examples, refer to Section 10, which lists the keys of each of the MIDAS entities.

#### 5.1 Keys of Land Observations

The primary key of a land observation contains a date (possibly including a time), and an identifier (e.g. a station number). The relative significance of attributes within the primary key (how near they are to the "start" of the record) can affect the retrieval strategy, and how quickly a specified observation will be found.

Most of the meteorological data in MIDAS will be partitioned, i.e. data are located in the database using a partition key. For most 'observation' tables, the data is partitioned according to the date and time of the record so



rows will be retrieved most efficiently by specifying the date and time (or a range of dates and times). Additionally, glbl\_wx\_ob is also partitioned by wmo\_region\_code, and marine\_ob is partitioned by longitude\_band\_code. Refer to Section 7 for further details of the partitioning.

Always specify the id\_type (e.g. DCNN, WMO, etc.) with an id. It uniquely specifies the identifier and also helps the SQL optimiser to choose a suitable index for efficient retrieval. A non-unique index allows retrieval by src id.

#### 5.2 Keys of Marine Observations

The primary key of a marine observation contains a position, date and id. The id is needed because we can have two ships at the same position. You should specify the id\_type, which in this case will probably be either SHIP or BUOY.

- Date and time is most significant (i.e. occurs first) in the primary key
- Latitude and longitude occur second and third in the primary index
- longitude\_band\_code is the partition key. It is a single character 'A' 'J' that allows the database to cluster the observations effectively. Always specify this if you can
- marine\_ob has an index on id\_type, id and ob\_time, to allow retrieval of a series of observations for a specified ship

#### 5.3 Relationships between Entities

The logical data structure diagram in Section 8 shows the relationships between entities. In Section 2.3 we saw an example of a foreign key relationship and, in most cases, relationships in MIDAS are formed in this way. Consider another example :

#### 5.3.1 source and geographic\_area

Each source record contains a loc\_geog\_area\_id to indicate the geographic area in which it is situated. For any specified loc\_geog\_area\_id, you can find all of the sources in that area. There is a potential problem that a source could appear to be in more than one geographic area, e.g. Beaufort Park is in Berkshire, England and UK. This problem is circumvented by ensuring that the source is connected at the lowest level, i.e. Beaufort Park contains the loc\_geog\_area\_id of BRK (for Berkshire). The relationship to England and the UK is made using the relationship between the geographic\_area and geog\_area\_hier records.

### 6 Organisation of Data in MIDAS

#### 6.1 Tables

Section 3.1 explained that MIDAS has a distinct grouping of tables. Some hold current information about the data sources and the types of data that are available, known as 'standing' data, while the remainder contain the permanent archive of data from the observation sub-types.

#### **Standing Data**

acquisitions\_log logs recent land data acquisitions, where QC is not yet complete describes the code types used in code\_detail describes the decoded values for each entry in a code table cross\_reference defines a relationship between one source and another defines a meteorological element within a met\_domain defines the relationship between geographic areas defines geographic areas in which sources are located hydrometric area details of UK Met Office hydrometric areas



identifier alphanumeric character strings used to identify a source identifier\_type defines the various types of identifier that may be used

longitude\_band\_code defines the range of longitude in each band

mar\_acq\_log logs recent marine data acquistions, where QC is not yet complete.

 $\begin{array}{ll} {\tt met\_domain} & {\tt defines \ groups \ of \ meteorological \ elements} \\ {\tt met\_domain\_class} & {\tt details \ about \ the \ general \ types \ of \ met \ domain} \end{array}$ 

met\_domain\_rank details about the ranking of met domains for an observation met\_elem\_class classifies met elements, to simplify access to their details

met\_element defines met elements independently of domains source details of the location where observations are made

report\_table\_mapping lists the types of report and the tables where they are stored src\_capability defines which types of observation a source is capable of making

src\_remarkcontains textual remarks concerning the sourcesrc\_runwaydetails of the runways at a specified source

See Section 9 for a full description of each table.

acquisitions\_log and mar\_acq\_log are written to whenever a new observation is added, but all other standing data tables are updated as and when required.

#### **Observation Sub-Types**

clm\_sfc\_rec monthly calculated values CLIMAT from globally located sources clm\_ua\_norm long period surface averages for a CLIMAT upper air station clm\_ua\_norm\_lvl CLIMAT upper air standard isobaric surface check values

clm\_ua\_rec surface values for upper air CLIMAT reports

clm\_ua\_rec\_lvl elements from a CLIMAT upper air report at a standard isobaric surface

glbl\_wx\_ob 3-hrly SYNOPs and METARs for selected overseas stations

marine\_current direction and speeds of marine currents

marine\_ob marine meteorological values

pollen\_drnl\_ob pollen grain counts

radt\_ob radiation amounts currently being reported

rain\_drnl\_ob rainfall amounts for one or more 24 hour period(s) ending at the specified time rain\_hrly\_ob rainfall amount and duration during the hour(s) ending at the specified time rain\_subhrly\_ob rainfall tip amounts with a time resolution of one minute, from SSER

runway\_ob runway visual ranges measured at the hour specified soil min temp ob bare soil minimum temperatures recorded at 09Z each day

soil\_tempo\_ob soil temperatures reported daily and hourly

temp\_drnl\_ob maximum and minimum temperatures measured over a period of up to 24 hrs

ua\_sounding the non-repeating (i.e. surface) items in an upper-air ascent

ua\_sounding\_point the points of an upper-air ascent

weather\_drnl\_ob meteorological values measured on a 24 hour time-scale

weather\_hrly\_ob SYNOPs and METARs measured during the hour ending at the specified time

wind\_mean\_ob wind direction/speed for one or more hours ending at the specified time

See Section 9 for a full description of each table.

These tables are updated whenever appropriate new reports become available (see Section 6.3 below).

#### 6.2 Database Views



SQL can be used to form 'virtual' tables, known as views. To reduce the impact of database changes on users, MIDAS does not allow direct access to the database tables. All access is via database views. These are defined as combinations of attributes from the 'base' tables mentioned above. They can be temporary (created purely for a specific query and then deleted), but a number have been developed for general use.

The database views are grouped into schemata, where each schema is for a defined purpose:

MIDASUPD One-for-one projection of the columns in the base tables. These views are updateable (by

authorised users) and do not project any values other than those in the base tables.

MIDASVU The general-purpose schema. This schema contains all the views in the MIDASUPD

schema, but they are not updateable. Additionally, the schema contains a series of views

designed to simplify end-user extraction (e.g. src\_hrly\_rain).

A full definition of each view can be found in Section 9 of this Handbook.

#### 6.3 How Reports Map To Tables

This section lists the reports stored in MIDAS, and the name of the table(s) used to store them.

| Met Report           | Contains                                                                  | Stored In       |
|----------------------|---------------------------------------------------------------------------|-----------------|
| CAWS (from CDLs)     | Hourly wind                                                               | wind_mean_ob    |
|                      | Hourly temperature & humidity                                             | weather_hrly_ob |
|                      | Hourly rainfall                                                           | rain_hrly_ob    |
|                      | Hourly radiation                                                          | radt_ob         |
|                      | Hourly sunshine                                                           | weather_hrly_ob |
|                      | Daily temperature (09-09Z or 09-21Z & 21-09Z)                             | temp_drnl_ob    |
| CLM surface normal   | Monthly averages for values at CLIMAT surface stations                    | clm_sfc_norm    |
| CLM upper air normal | Monthly averages for surface values at CLIMAT upper air stations          | clm_ua_norm     |
|                      | Monthly averages for isobaric surface values at CLIMAT upper air stations | clm_ua_norm_lvl |
| DALE                 | Hourly mean wind derived from minute mean of wind direction & speed       | wind_mean_ob    |
| ESAWS                | Hourly radiation                                                          | radt_ob         |
|                      | Hourly soil temperature at 10cm                                           | soil_temp_ob    |
|                      | Hourly wind                                                               | wind_mean_ob    |
| FM 12-VII SYNOP      | Hourly weather values                                                     | weather_hrly_ob |
| FM 13-IX SHIP        | Hourly marine weather values via GTS                                      | marine_ob       |
| FM 15-V METAR        | Hourly weather values                                                     | weather_hrly_ob |
|                      | Runway visual range                                                       | runway_ob       |
| FM 18-X BUOY         | Report of a drifting-buoy ob                                              | marine_ob       |
| FM 71-VI CLIMAT      | Monthly calculated surface values from global sources                     | clm_sfc_rec     |
| FM 71-X CLIMAT       | Monthly calculated surface values from global sources                     | clm_sfc_rec     |
| FM 75-VI CLIMAT TEMP | CLIMAT upper air report                                                   | clm_ua_rec      |
|                      |                                                                           | clm_ua_rec_lvl  |
| Light Vessel         | Reports from Light Vessels                                                | marine_ob       |
| Marid                | Abbreviated marine reports                                                | marine_ob       |
| Marine logbooks      | Directions and speeds of marine currents                                  | mar_current     |
|                      | Hourly marine weather values                                              | marine_ob       |
| Metform 3208         | Daily rainfall (09-09Z)                                                   | rain_drnl_ob    |
|                      | Daily temperature                                                         | temp_drnl_ob    |
|                      | Daily soil temperature at 10, 20, 30, 50 & 100 cm                         | soil_temp_ob    |
|                      | · · · · · · · · · · · · · · · · · · ·                                     |                 |



|                                      | Daily run of wind                                 | rind maan ab    |
|--------------------------------------|---------------------------------------------------|-----------------|
|                                      | ,                                                 | wind_mean_ob    |
|                                      | Other observations                                | weather_drnl_ob |
|                                      |                                                   | weather_hrly_ob |
| Metform 3445                         | Hourly values of sunshine duration                | weather_hrly_ob |
| Metform 6910                         | Analysis of Anemograms                            | wind_mean_ob    |
| Metform 7113                         | Hourly rainfall observations                      | rain_hrly_ob    |
| Form R35                             | Daily totals of radiation & sunshine              | radt_ob         |
| MODLE                                | Hourly radiation values                           | radt_ob         |
| NAVY                                 | Marine obs from RN ships                          | marine_ob       |
| NCM                                  | Daily soil temperatures at 30 & 100 cm            | soil_temp_ob    |
|                                      | Daily temperature extremes                        | temp_drnl_ob    |
|                                      | Daily weather values                              | weather_drnl_ob |
|                                      | Rainfall 09-09                                    | rain_drnl_ob    |
|                                      | Rainfall 09-21 & 21-09                            | rain_hrly_ob    |
|                                      | State of ground                                   | weather_hrly_ob |
| ows                                  | Marine obs from OWS, SDB type 19                  | marine_ob       |
| PLAT/RIG                             | Marine reports from platforms and rigs            | marine_ob       |
| Pollen observations                  | Pollen grain counts                               | pollen_drnl_ob  |
| Rainfall postcards<br>(Metform 7133) | Daily/monthly rainfall                            | rain_drnl_ob    |
| SREW                                 | Hourly rainfall values                            | rain_hrly_ob    |
| SSER cachettes                       | Hourly rainfall amounts calculated from tip times | rain_hrly_ob    |
| SSER cachettes                       | Tip times and amount of rainfall in tip           | rain_subhrly_ob |
| VOF                                  | Marine reports from VOF                           | marine_ob       |
| Water Authority diskettes            | Daily/monthly rainfall                            | rain_drnl_ob    |

N.B. This list is correct at the time of writing, but is subject to change. For the most up to date information, users should refer to the report table mapping table in MIDAS.

#### 6.4 Ingestion And Backup Schedule

Some reports are automatically and routinely ingested into the database. Others only become available on an intermittent basis and are processed accordingly.

Met ReportIngestion ScheduleCAWSMonthly, as receivedCLM surface normalIntermittent, very irregularCLM upper air normalIntermittent, very irregularDALEMonthly, as received

ESAWS Daily, in a network submitted automatically at 0100Z (see below)



FM 12-VII SYNOP Daily, in a network submitted automatically at 0100Z (see below) FM 13-IX SHIP Daily, in a network submitted automatically at 0100Z (see below) FM 15-V METAR Daily, in a network submitted automatically at 0100Z (see below) FM 18-X BUOY Daily, in a network submitted automatically at 0100Z (see below) FM 18-X Ext DRIFTER Daily, in a network submitted automatically at 0100Z (see below) FM 62 TRACKOB Daily, in a network submitted automatically at 0100Z (see below) FM 63-IX BATHY Daily, in a network submitted automatically at 0100Z (see below) FM 64-IX TESAC Daily, in a network submitted automatically at 0100Z (see below)

FM 71-VI CLIMAT Reports no longer received

FM 71-X CLIMAT Not being stored yet FM 75-VI CLIMAT TEMP Not being stored yet

Marine logbooks Intermittent, substantially in arrears
Metform 3208 Monthly, but day of month varies
Metform 3259 Reports no longer received

Metform 3445 Monthly, as received Metform 6910 Monthly, as received Metform 7113 Monthly, as received Met O 1 Form R35 Monthly, as received

MODLE Monthly, within first 5 days of each month for previous month NCM Daily, in a network submitted automatically at 0100Z (see below)

OWS/NAVY Intermittent

Pollen observations Daily between March and September

Rainfall postcards - Metform Monthly, as received

7133

SREW Daily, in a network submitted automatically at 0100Z (see below)

SSER cachettes Monthly, but day of month varies

VOF/PLAT Daily, in a network submitted automatically at 0100Z (see below)

Water Authority diskettes Monthly, but day of month varies

#### **Daily routine**

A network of inter-dependent jobs is submitted at 01:00Z each day, which handles:

- routine ingestion of a number of reports: marine & land SYNOP, SREW, NCM, HCM and METAR
- submission of other jobs that require the ingested data. One initiates a suite of quality control processes, and another submits various Commercial Suite jobs that require MIDAS data.

Exact timings are influenced by a number of factors and can vary appreciably from day to day, but usually these tasks are complete by 01:30Z. The timings of the later jobs are more likely to be unreliable since they depend on progress of the earlier ones. At 09:50Z another network of jobs is submitted to ingest the latest SYNOP, NCM and SREW data, which is usually complete by 10:00Z. Again a 'trigger' job is released for various Commercial Suite jobs.

#### Other routine tasks

Daily another suite of jobs extracts and stores a day's worth of data from numerous global SYNOP stations.

### 7 Database Partitioning

Several MIDAS tables are partitioned; i.e. the data is stored in a number of database files instead of a single file. One or more attributes of the table are defined as the partition key, and the value of the key determines in which file a particular row will be stored. Since the separate files are presented to the user as a single table, users can chose to disregard the partition key. However, the speed of response is directly related to the algorithm that the



database must employ to locate your data, and specifying the partition key will allow the database management system to eliminate those partitions that do not contain data in your chosen range. So, always specify the partition key if you can.

#### ob tables

For most '\_ob' tables, the partition key is ob\_time, so specifying the date and time (or range of dates and times) will also give the partition key.

#### glbl\_wx\_ob

For glbl\_wx\_ob the partition key is wmo\_region\_code and ob\_time. wmo\_region\_code is a single character '1' - '7' (see below).

- '1' Africa
- '2' Asia
- '3' South America
- '4' North and Central America
- '5' South-west Pacific
- '6' Europe
- '7' Antarctic

The user must give both wmo\_region\_code and ob\_time to get the best performance from the database.

#### marine ob

For marine\_ob the partition key is longitude\_band\_code and ob\_time. longitude\_band\_code is a single character 'A' - 'J' that defines a range of longitude values. The longitude band codes are derived by the midas\_utility\_pkg.lon\_ban\_fnc packaged function (see Section 11 for details). Users should specify longitude\_band\_code and ob\_time in order to get the best performance.

### 8 Data Structure Diagrams

This section contains diagrams showing the structure of the MIDAS database.

#### **Logical Data Structure**

The first is a **logical** perception, showing the entities and the relationships between them. Basically it is an expansion of the conceptual diagram shown in Section 3 showing all the ancillary entities that we are interested in e.g. met elements, hydrometric areas, etc.

- entities are named using their **logical** (primary) names, as defined during the database design process. They are not necessarily the same as the SQL names, which may be more familiar.
- boxes represent entities (the tables) in the database
- lines show relationships between tables
- a "crow's foot" on a line indicates a one-to-many relationship
- a solid bar is a mandatory relationship e.g. a source remark must refer to one and only one source
- a circle on the line shows an optional relationship e.g. a source may have one or more source remarks

#### **Physical Data Structure**

The second diagram shows how the logical structure has been implemented. This is the **physical** structure. Annotations on the lines show the minimum and maximum cardinality of the relationships.



- Each hydrometric\_area may be a rainfall catchement for 0 or more sources (minimum 0, maximum = many).
- Each source **may** be situated in one and only one hydrometric\_area (minimum = 0, maximum = 1).
- Each code\_detail **must** be a value for one and only one code (minimum = 1, maximum = 1).

See Section 9 for details of the attributes in each table. The foreign keys (the keys that enforce the relationships between entities) can be found from the primary key of the master entity. Again, see Section 9 for individual details.

\*\*\*\*\*\*\* Diagrams Under Development \*\*\*\*\*\*\*\*\*

#### 9 Entities

#### 9.1 Introduction

An Oracle database has both **physical** and **logical** structures. The **physical** structure is determined by the host operating system, and consists of data files, log files and control files to provide the actual physical storage for database information. The **logical** structure is determined by its **schema** objects (tables, views, indexes etc.) grouped together in some convenient way.

MIDAS is a schema. It has tables but no views.

**MIDASVU** is another schema. It contains many views but no tables. Users are provided with read-only access to the tables in MIDAS through views in MIDASVU. This schema also contains more specialised views (judicious combinations of tables).

**MIDASUPD** is yet another schema with views but no tables, its purpose being to control how the base tables in MIDAS are updated.

There are several other schemas in ORAP and ORAT but these are the ones of relevence to most MIDAS users.

Section 9.2 of this handbook describes the MIDAS tables and MIDASUPD views, because these are co-incident. Attributes in the primary key are marked with an asterisk. Foreign-key attributes can be deduced from the primary key of the master entity, by referring to the Physical Structure Diagram.

Section 9.3 describes the MIDASVU views. Where the MIDASVU view is identical to the corresponding MIDASUPD one, then the reader is referred back to MIDASUPD.

N.B. Some of the MIDASVU views are complex, involving joins on two or more tables (listed below). Users of SQL should **not** join these views with other views. In particular, the ones with names starting src combine attributes from the source, src\_capability and 'ob' tables. For best performance, do not use these views if you require only the 'ob' attributes.

capability\_at\_srcsrc\_hrly\_rainmet\_domain\_elementsrc\_hrly\_weatherrain\_obsrc\_mean\_windsrc\_drnl\_rainsrc\_radiationsrc\_drnl\_tempsrc\_sfc\_clmosrc\_drnl\_weathersrc\_sfc\_prcp\_clmosrc\_glbl\_wxsrc\_soil\_temp

#### 9.2 MIDAS Tables and MIDASUPD Views - All (except Marine and Upper Air)

#### **Observation Time Constraint**

A time constraint exists on all MIDASUPD views, except those for standing data tables, such that no observation data with a date/time greater than one hour in the future can be stored in MIDAS (e.g. 1000 ob can be stored at



0952). Any rejections are notified. This will prevent instances of data 'labelled' with a date later than 'today' being loaded into MIDAS.

| TABLE | acquisitions_log |
|-------|------------------|
|-------|------------------|

**Description:** This entity records recent data acquisitions (ingestion) into the database, except those for marine data (see marine\_ob.batch\_stamp\_time). It contains the key of database meteorological records, the stamp times and the batch number of those records. To assist OPR in identifying recent data which is not yet subject to QC, the batch number is indexed. All users may query this table, to ascertain if MIDAS contains the required data; this should prove more efficient than searching the database met records. This table will contain only RECENT records where QC is not yet complete. Typically this will be data less than a month old. OPR will submit a weekly batch job to clear old records from the log. Where the met record does not include ob\_time or ob hour count as part of its key, they will be set to NULL in this record.

| PK | Attribute          | Datatype     | Description / Units / Precision          |
|----|--------------------|--------------|------------------------------------------|
| *  | ob_end_time        | DATE         |                                          |
| *  | met_domain_name    | VARCHAR2(8)  |                                          |
| *  | table_name         | VARCHAR2(18) |                                          |
| *  | id_type            | VARCHAR2(4)  |                                          |
| *  | id                 | VARCHAR2(8)  |                                          |
| *  | ob_hour_count      | NUMBER(3)    |                                          |
| *  | version_num        | NUMBER(1)    |                                          |
|    | midas_acq_btch_num | DATE         | MIDAS acquisition batch number           |
|    | meto_stmp_time     | DATE         | Met Office receipt stamp time            |
|    | midas_stmp_etime   | NUMBER(6)    | Minutes elapsed time to storage in MIDAS |
|    | src_id             | NUMBER(6)    | Unique source identifier                 |

| _  |     |                  |
|----|-----|------------------|
| ТА | BLE | background_value |

**Description:** midas.background\_value contains NWP forecast model hourly background values, for UK land and marine based automatic weather stations. Observations Supply branch uses these values to compile reqular reports of AWS quality. midasupd.background\_value is the corresponding updatable view. midasvu.land\_aws\_quality is a read-only view, and joins midas.background\_value with midas.weather\_hrly\_ob. midasvu.marine\_aws\_quality is a read-only view, and joins midas.background\_value with midas.marine\_ob and src\_capability.

| PK | Attribute                    | Datatype    | Description / Units / Precision |
|----|------------------------------|-------------|---------------------------------|
| *  | id                           | VARCHAR2(8) |                                 |
| *  | id_type                      | VARCHAR2(4) | Identifier type                 |
| *  | ob_time                      | DATE        | Date and time of observation    |
|    | background_msl_pressure      | NUMBER(5,1) |                                 |
|    | background_air_temperature   | NUMBER(3,1) |                                 |
|    | background_relative_humidity | NUMBER(3)   |                                 |
|    | background_wind_direction    | NUMBER(3)   |                                 |



| background_wind_speed | NUMBER(3)   |                                                                                                   |
|-----------------------|-------------|---------------------------------------------------------------------------------------------------|
| clbw_id               | VARCHAR2(8) | The pseudo WMO number for CDL data. Values are > '90000'.                                         |
| clbw_id_type          | VARCHAR2(4) | Always set to 'WMO'. It allows data extraction processes to be consistent within the application. |

| TABLE | british_summer_time |
|-------|---------------------|
|-------|---------------------|

Description: The table records the offset of local time (e.g. British Summer Time) for each year since 1916.

| PK | Attribute  | Datatype  | Description / Units / Precision |
|----|------------|-----------|---------------------------------|
| *  | begin_time | DATE      |                                 |
|    | end_time   | DATE      |                                 |
|    | utc_offset | NUMBER(1) |                                 |

| VIEW | clm_src_capability |
|------|--------------------|
|------|--------------------|

**Description:** midasupd.clm\_src\_capability is a simple updateable view and is created in the MIDASUPD schema only. It provides one-for-one projection of columns from the base table, but is restricted to rows where met\_domain\_name is like 'CLM%'. This view allows specified users to update the CLIMAT src\_capability records only.

The structure of this view is identical to the <a href="mailto:src\_capability">src\_capability</a> table.

| TABLE | clm_ua_norm |
|-------|-------------|
|-------|-------------|

**Description:** Long period surface averages for a CLIMAT upper air station for the specified month. Attributes norm\_first\_year and norm\_last\_year specify the period over which the normals are calculated. CLIMAT normals are not subject to quality control, so there are no QC or version number attributes.

| PK | Attribute         | Datatype    | Description / Units / Precision        |
|----|-------------------|-------------|----------------------------------------|
| *  | id_type           | VARCHAR2(4) | Identifier type                        |
| *  | id                | VARCHAR2(8) |                                        |
| *  | norm_first_year   | NUMBER(4)   | First year of normal                   |
| *  | norm_last_year    | NUMBER(4)   | Last year of normal                    |
| *  | norm_month        | NUMBER(2)   | Month of normal                        |
| *  | met_domain_name   | VARCHAR2(8) |                                        |
|    | src_id            | NUMBER(6)   | Unique source identifier               |
|    | rec_st_ind        | NUMBER(4)   | State indicator for the record         |
|    | ua_norm_ob_id     | NUMBER(15)  | Observation identifier                 |
|    | mean_stn_lvl_pres | NUMBER(5,1) | Normal - monthly mean pressure 0.1 hpa |



| sd_mean_stn_lvl_pres  | NUMBER(5,1) | Std dev - monthly mean pressure 0.1 hpa    |
|-----------------------|-------------|--------------------------------------------|
| mean_sfc_air_temp     | NUMBER(3,1) | Normal - monthly mean air temp 0.1 deg C   |
| sd_mean_sfc_air_temp  | NUMBER(2,1) | Std dev - monthly mean air temp 0.1 deg C  |
| mean_surface_dewpoint | NUMBER(2)   | Normal - mean monthly dew point 0.1 deg C  |
| sd_mean_sfc_dwpt      | NUMBER(2,1) | Std dev - mean monthly dew point 0.1 deg C |

| TABLE | clm_ua_norm_lvl |
|-------|-----------------|
|-------|-----------------|

**Description:** CLIMAT upper air standard isobaric surface check values for a month and station at a specified upper air pressure level. CLIMAT normals are not subject to quality control, so there are no QC or version number attributes.

| PK | Attribute             | Datatype    | Description / Units / Precision                    |
|----|-----------------------|-------------|----------------------------------------------------|
| *  | ua_norm_ob_id         | NUMBER(15)  | Observation identifier                             |
| *  | pres_coord            | NUMBER(5,1) | Air pressure                                       |
|    | mo_mn_geop_ht         | NUMBER(6)   | Normal - monthly av geopot ht decametres           |
|    | sd_ua_mo_mn_geop_ht   | NUMBER(5,1) | Std dev - monthly average height decametres        |
|    | ua_mo_mn_temp         | NUMBER(3,1) | Normal - monthly mean air temp 0.1 deg C           |
|    | sd_ua_mo_mn_temp      | NUMBER(4,2) | Std dev - monthly mean air temp 0.1 deg C          |
|    | ua_mo_mn_dwpt         | NUMBER(2)   | Normal - mean monthly dew point 0.1 deg C          |
|    | sd_ua_mo_mn_dwpt      | NUMBER(4,2) | Std dev - mean monthly dew point 0.1 deg C         |
|    | ua_mo_mn_ucmp_wind    | NUMBER(2)   | Mean u-component of vector wind 0.1 knot           |
|    | sd_ua_mo_mn_ucmp_wind | NUMBER(3)   | Std dev - monthly mean u-<br>component<br>0.1 knot |
|    | ua_mo_mn_vcmp_wind    | NUMBER(2)   | Mean v-component of vector wind 0.1 knot           |
|    | sd_ua_mo_mn_vcmp_wind | NUMBER(3)   | Std dev - monthly mean v-<br>component<br>0.1 knot |

| TABLE | clm_ua_rec |
|-------|------------|
|-------|------------|



**Description:** This entity contains monthly values at the surface received in WMO code FM-75-CLIMAT TEMP which is a monthly report of upper air CLIMAT values. The record is for the specified year, month and station.

| PK | Attribute                     | Datatype    | Description / Units / Precision                   |
|----|-------------------------------|-------------|---------------------------------------------------|
| *  | src_id                        | NUMBER(6)   | Unique source identifier                          |
| *  | ob_date                       | DATE        | Last day of month of observation                  |
| *  | version_flag                  | CHAR(1)     | Observation version number                        |
|    | id_type                       | VARCHAR2(4) | Identifier type                                   |
|    | id                            | VARCHAR2(8) |                                                   |
|    | met_domain_name               | VARCHAR2(8) |                                                   |
|    | rec_st_ind                    | NUMBER(4)   | State indicator for the record                    |
|    | mean_stn_lvl_pres             | NUMBER(5,1) | Monthly mean surface pressure 0.1 hpa             |
|    | mean_sfc_air_temp             | NUMBER(3,1) | Mean monthly air temperature 0.1 deg C            |
|    | mean_surface_dewpoint         | NUMBER(4,1) | Mean monthly dew point 0.1 deg C                  |
|    | nom_rsnd_hr_id                | CHAR(1)     | Nominal hour of radio-sonde ascent / code         |
|    | mean_stn_lvl_pres_qc_code     | CHAR(1)     | Quality of mean station-level air pressure / code |
|    | mean_sfc_air_temp_qc_code     | CHAR(1)     | Quality of mean surface air temperature / code    |
|    | mean_surface_dewpoint_qc_code | CHAR(1)     | Quality of mean surface dewpoint / code           |
|    | meto_stmp_time                | DATE        | Met Office receipt stamp time                     |
|    | qual_analyst_id               | VARCHAR2(3) | Identifier of QC staff member                     |

| TABLE clm_ua_rec_lvl |
|----------------------|
|----------------------|

**Description:** This entity contains monthly values at specified pressure levels from CLIMAT upper air reports.

| PK | Attribute                | Datatype    | Description / Units / Precision           |
|----|--------------------------|-------------|-------------------------------------------|
| *  | src_id                   | NUMBER(6)   | Unique source identifier                  |
| *  | ob_date                  | DATE        | Last day of month of observation          |
| *  | version_flag             | CHAR(1)     | Observation version number                |
| *  | pres_coord               | NUMBER(5,1) | Upper air atmospheric pressure 0.1 hpa    |
|    | ua_month_mean_height     | NUMBER(6)   | Monthly mean geopotential height metres   |
|    | ua_month_mean_air_temp   | ,           | Mean monthly air temperature<br>0.1 deg C |
|    | ua_month_mean_dewpoint   | ,           | Mean monthly dewpoint<br>0.1 deg C        |
|    | ua_month_steadiness_wind | ` ,         | Monthly wind steadiness factor %          |



| ua_month_mean_wind_dir         | NUMBER(3) | Monthly mean vector wind dir'n deg True                                       |
|--------------------------------|-----------|-------------------------------------------------------------------------------|
| ua_month_mean_wind_speed       | NUMBER(3) | Monthly mean vector wind speed knots                                          |
| temp_miss_mo_day_cnt           | CHAR(1)   | Count of days when air temperature not reported at this pressure level / code |
| ua_wind_miss_mo_day_cnt_code   | CHAR(1)   | Count of days when wind not reported at this pressure level / code            |
| ua_month_mean_height_qc_code   | CHAR(1)   | Quality of monthly mean height at this pressure level / code                  |
| ua_month_mean_air_temp_qc_code | CHAR(1)   | Quality of monthly mean air temperature at this pressure level / code         |
| ua_month_mean_dewpoint_qc_code | CHAR(1)   | Quality of monthly mean dewpoint at this pressure level / code                |
| ua_month_mean_wind_qc_code     | CHAR(1)   | Quality of monthly mean wind at this pressure level / code                    |

| TABLE code |  |
|------------|--|
|------------|--|

**Description:** The codes described by this entity may be one of the following types: WMO, BUFR, NCM tables, local MIDAS codes. These codes are used in either met reports (i.e. input domains), or to describe the values in the columns of MIDAS observation tables. To facilitate substring searches, each description will start with the code type and number. Each domain element may be explained by one and only one code. Each code must be described by one or more code details. A met element (cf domain element) may be reported or stored using one or more codes.

| PK | Attribute        | Datatype     | Description / Units / Precision |
|----|------------------|--------------|---------------------------------|
| *  | code_id          | VARCHAR2(8)  | Code identifier                 |
|    | code_name        | VARCHAR2(15) | Unique code name                |
|    | code_description | VARCHAR2(72) |                                 |
|    | code_bgn_date    | DATE         |                                 |
|    | code_end_date    | DATE         |                                 |
|    | rec_st_ind       | NUMBER(4)    | State indicator                 |

| TABLE | code_detail |
|-------|-------------|
|-------|-------------|

**Description:** This entity describes the coded and decoded values for each entry in a code table (see Section 14.5.3).

| PK | Attribute        | Datatype    | Description / Units / Precision |
|----|------------------|-------------|---------------------------------|
| *  | code_id          | VARCHAR2(8) | Code identifier                 |
| *  | code_value       | VARCHAR2(4) |                                 |
| *  | desc_line_number | NUMBER(4)   | Description line number         |



| rec_st_ind        | NUMBER(4)     |                        |
|-------------------|---------------|------------------------|
| code_dtl_bgn_date | DATE          | Code value begin date  |
| code_dtl_end_date | DATE          |                        |
| code_val_dsc      | VARCHAR2(340) | Code value description |

| TABLE | cross reference |
|-------|-----------------|
|       |                 |

**Description:** This entity defines a cross reference relationship between one source and another. It could be one of a set of cross references of a specified type (e.g. a set of *n* daily rainfall buddy stations for a specified station). Cross references may be needed for the following reasons: QC purposes, administering, calibration or collecting stations, previous stations for climatological sequences, etc. A met\_domain\_name may be linked for indexing purposes but its use should also be indicated within the name of the association\_type as it is not a primary key field.

| PK | Attribute          | Datatype     | Description / Units / Precision |
|----|--------------------|--------------|---------------------------------|
| *  | ref_from_src_id    | NUMBER(6)    | from src_id                     |
| *  | ref_to_src_id      | NUMBER(6)    | to src_id                       |
| *  | association_type   | VARCHAR2(28) |                                 |
| *  | cross_ref_bgn_date | DATE         |                                 |
|    | cross_ref_end_date | DATE         |                                 |
|    | met_domain_name    | VARCHAR2(8)  |                                 |
|    | rec_st_ind         | NUMBER(4)    | State indicator                 |

| TABLE | domain_element |
|-------|----------------|
| IABLE | domain_eiement |

**Description:** This entity defines a met\_element within a met\_domain. The domain in which the element belongs may be:

- an input grouping (i.e. a meteorological report such as a SYNOP or METAR)
- a storage grouping (i.e. the name of a database table such as weather\_hrly\_ob
- an output grouping (i.e. a desired view of the data such as DMWR or DSS report)

Each domain element has the following attributes:

- the name of the domain of which it is part
- the id of the met element
- the position of the element within the domain
- the id of the code in which the element is reported or stored
- the current state of the domain element

Optionally, when the domain is an input domain (i.e. met report), the name of the domain (i.e. table) in which the element will be stored is also available. When the domain is a storage domain (i.e. a database table), attribute str\_met\_dom\_name will be null (if it was set it would merely point back to itself). If a change to a domain\_element is required, then a new met\_domain must be created and the old one (and its elements) closed.



ob\_table\_name and ob\_column\_name are used to record where the met\_element is stored in MIDAS. This information can also be deduced from report\_table\_mapping and all\_tab\_columns. This duplication will be resolved at the next opportunity.

| PK | Attribute        | Datatype     | Description / Units / Precision |
|----|------------------|--------------|---------------------------------|
| *  | met_domain_name  | VARCHAR2(8)  |                                 |
| *  | met_element_id   | NUMBER(5)    | Met element identifier          |
|    | dom_elem_pos_num | NUMBER(4)    |                                 |
|    | str_met_dom_name | VARCHAR2(8)  |                                 |
|    | code_id          | VARCHAR2(8)  | Code identifier                 |
|    | rec_st_ind       | NUMBER(4)    | State indicator                 |
|    | ob_table_name    | VARCHAR2(30) |                                 |
|    | ob_column_name   | VARCHAR2(30) |                                 |

| TABLE | domain_element_type |
|-------|---------------------|
|-------|---------------------|

**Description:** This entity resolves the many to many relationship between the midas.domain\_element table and the midas.identifier\_type table.

| PK | Attribute       | Datatype    | Description / Units / Precision |
|----|-----------------|-------------|---------------------------------|
| *  | met_domain_name | VARCHAR2(8) | Met domain name                 |
| *  | met_element_id  | NUMBER(5)   | Met element identifier          |
| *  | id_type         | VARCHAR2(4) | Identifier type                 |

| TABLE | geographic_area |
|-------|-----------------|
|-------|-----------------|

**Description:** These records define the geographic areas in which sources are located or who they are administered by, such as England, Great Britain, Europe, Scotland, Wales, Canada, etc. MIDAS will not store details of geographic areas for which there are no observations.

| PK | Attribute          | Datatype     | Description / Units / Precision |
|----|--------------------|--------------|---------------------------------|
| *  | geog_area_id       | VARCHAR2(4)  | Geographic area identifier      |
|    | geog_area_type     | VARCHAR2(16) | Geographic area type            |
|    | geog_area_name     | VARCHAR2(72) | Geographic area name            |
|    | rec_st_ind         | NUMBER(4)    | State indicator                 |
|    | geog_area_dsc      | VARCHAR2(24) |                                 |
|    | geog_area_upd_date | DATE         | Record updated date             |

| TABLE | geog_area_hier |
|-------|----------------|
|-------|----------------|

**Description:** Each record defines a relationship between two geographic areas e.g. Berkshire within England, England, within Great Britain, England within Europe. This table will be used to implement a strictly hierarchical



structure between geographic areas, until such time as there is a proven need for the more elaborate network relationships between them.

e.g. Northern Ireland is part of UK only; counties of Southern Ireland are part of Eire only; there is NO geographic area "Island of all Ireland" containing both N. Ireland and Eire.

| PK | Attribute               | Datatype    | Description / Units / Precision |
|----|-------------------------|-------------|---------------------------------|
| *  | wthn_geog_area_id       | VARCHAR2(4) | Member geographic area          |
| *  | cntn_geog_area_id       | VARCHAR2(4) | Owner geographic area           |
|    | geog_area_hier_upd_date | DATE        | Record updated date             |
|    | rec_st_ind              | NUMBER(4)   | State indicator                 |

| VIEW | glbl_wx_ob |
|------|------------|
|------|------------|

**Description:** This entity contains meteorological values observed at 3-hrly intervals by non-UK stations, as reported in SYNOP and METAR codes. The primary use of the entity requires the data in climatological sequence, i.e. all times for a station. New observations are added daily.

The attributes of this entity are similar to those of the weather\_hrly\_ob table, but with significant differences. Some of the attributes refer to 24hr values, but the primary user has requested that the data are not normalised. The period of maximum and minimum temperatures are defined by WMO Regional Reporting Practices. Where there is a 'WMO commitment', data will be retained permanently, but oldest data for other stations will be deleted annually. No QC is performed on the attribute values listed below, but QC flags may have been set. The flags themselves are held in attributes qc\_flag\_list\_1 and qc\_flag\_list\_2, each 1-bit flag in it corresponding to an attribute with a QC-flag. For software to interpret the flag lists please contact the MIDAS Team.

The table has two-dimensional partitioning, using wmo\_region\_code and ob\_time.

| PK | Attribute       | Datatype    | Description / Units / Precision   |
|----|-----------------|-------------|-----------------------------------|
| *  | id              | VARCHAR2(8) |                                   |
| *  | id_type         | VARCHAR2(4) | Identifier type                   |
| *  | ob_time         | DATE        | Date and time of observation      |
| *  | met_domain_name | VARCHAR2(8) |                                   |
|    | src_id          | NUMBER(6)   | Unique source identifier          |
|    | wmo_region_code | CHAR(1)     | '1' - '7'                         |
|    | rec_st_ind      | NUMBER(4)   |                                   |
|    | wind_direction  | NUMBER(3)   | Degs true                         |
|    | wind_speed      | NUMBER(3)   | Knots                             |
|    | prst_wx_id      | CHAR(2)     | Present weather code              |
|    | past_wx_id_1    | CHAR(1)     | Past weather code #1              |
|    | past_wx_id_2    | CHAR(1)     | Past weather code #2              |
|    | cld_ttl_amt_id  | CHAR(1)     | Total cloud amount code oktas     |
|    | cld_base_amt_id | CHAR(1)     | Cloud base amount code            |
|    | cld_base_ht     | NUMBER(4)   | Cloud base height code decametres |
|    | low_cld_type_id | CHAR(1)     | Low cloud type code               |
|    | med_cld_type_id | CHAR(1)     | Medium cloud type code            |
|    | hi_cld_type_id  | CHAR(1)     | High cloud type code              |



| wind_speed_unit_id  | CHAR(1)     | Wind speed unit code                                                                         |
|---------------------|-------------|----------------------------------------------------------------------------------------------|
| visibility          | NUMBER(4)   | Decametres                                                                                   |
| air_temperature     | NUMBER(3,1) | Surface air temperature 0.1 deg C                                                            |
| wetb_temp           | NUMBER(3,1) | Wet bulb temperature 0.1 deg C                                                               |
| dewpoint            | NUMBER(3,1) | Dewpoint temperature<br>0.1 deg C                                                            |
| stn_pres            | NUMBER(5,1) | Station air pressure<br>0.1 hpa                                                              |
| pres_sfc            | NUMBER(5,1) | Pressure surface                                                                             |
| pres_sfc_ht         | NUMBER(5)   | Height of pressure surface                                                                   |
| msl_pressure        | NUMBER(5,1) | Mean sea level air pressure<br>0.1 hpa                                                       |
| pres_tdcy_amt       | NUMBER(4,1) | Air pressure tendency                                                                        |
| prcp_ob_hr_cnt      | NUMBER(3)   | Precipitation hour count                                                                     |
| prcp_amt            | NUMBER(5,1) | Precipitation amount                                                                         |
| cld_amt_id_1        | CHAR(1)     | Layer cloud amount code #1                                                                   |
| cloud_type_id_1     | CHAR(1)     | Cloud type code #1                                                                           |
| cld_base_ht_id_1    | NUMBER(4)   | Cloud base height code #1 decametres                                                         |
| cld_amt_id_2        | CHAR(1)     | Layer cloud amount code #2                                                                   |
| cloud_type_id_2     | CHAR(1)     | Cloud type code #2                                                                           |
| cld_base_ht_it_2    | NUMBER(4)   | Cloud base height code #2 decametres                                                         |
| cld_amt_id_3        | CHAR(1)     | Layer cloud amount code #3                                                                   |
| cloud_type_id_3     | CHAR(1)     | Cloud type code #3                                                                           |
| cld_base_ht_id_3    | NUMBER(4)   | Cloud base height code #3 decametres                                                         |
| max_air_temp        | NUMBER(3,1) | Maximum air temperature                                                                      |
| min_air_temp        | NUMBER(3,1) | Minimum air temperature                                                                      |
| ground_state_id     | CHAR(2)     | Ground state id                                                                              |
| min_grss_temp       | NUMBER(3,1) | Grass temperature                                                                            |
| snow_depth          | NUMBER(4)   | Snow depth                                                                                   |
| sun_ob_hr_cnt       | NUMBER(3)   | Sunshine observation hour coun                                                               |
| sun_dur             | NUMBER(3,1) | Sunshine duration                                                                            |
| q24hr_prcp_amt      | NUMBER(5,1) | 24hr precipitation amount                                                                    |
| q24hr_pres_tdcy_amt | NUMBER(4,1) | 24hr air pressure tendency                                                                   |
| vert_vsby           | NUMBER(3)   | Vertical visibility decametres                                                               |
| src_opr_type        | CHAR(1)     | Source operation type code                                                                   |
| gust_spd_type_code  | CHAR(1)     | Gust speed type code 0 = 10 minute gust 1 = As past weather, etc. See 910 - 914 of code 3778 |
| max_gust_speed      | NUMBER(3)   | Maximum gust speed                                                                           |
| runway_name         | VARCHAR2(4) | Runway name                                                                                  |
| rnwy_vis_rnge       | NUMBER(4)   | Runway visual range                                                                          |



| alt_pres       | NUMBER(4) | Altimeter pressure<br>0.1 hpa      |
|----------------|-----------|------------------------------------|
| qc_flag_list_1 | NUMBER(9) | QC bit flags for 9 specified items |
| qc_flag_list_2 | NUMBER(9) |                                    |

| TABLE | hydrometric_area |
|-------|------------------|
|-------|------------------|

**Description:** This entity contains details for a UK Met Office hydrometric area. Each area contains a number of rainfall stations. For each area, the first and last possible rainfall station identifiers are defined. Each area is wholly contained within one Water Authority area.

| PK | Attribute          | Datatype     | Description / Units / Precision |
|----|--------------------|--------------|---------------------------------|
| *  | hydr_area_id       | NUMBER(4)    | Hydrometric area identifier     |
|    | water_auth_name    | VARCHAR2(22) | Water authority name            |
|    | frst_rfall_stn_num | CHAR(6)      | First rainfall station number   |
|    | last_rfall_stn_num | CHAR(6)      | Last rainfall station number    |
|    | hydr_area_upd_date | DATE         | Record updated date             |
|    | rec_st_ind         | NUMBER(4)    | State indicator                 |

| TABLE | identifier_type |
|-------|-----------------|
|-------|-----------------|

**Description:** This table defines the various types of source identifiers that may be used (e.g. ICAO, WMO, DCNN)

| PK | Attribute        | Datatype      | Description / Units / Precision |
|----|------------------|---------------|---------------------------------|
| *  | id_type          | VARCHAR2(4)   | Identifier type                 |
|    | id_type_dsc      | VARCHAR2(240) | Identifier type description     |
|    | id_type_upd_date | DATE          | Record updated date             |
|    | rec_st_ind       | NUMBER(4)     | State indicator                 |

| TABLE | met_domain |
|-------|------------|

**Description:** A met domain is a group of meteorological elements that are of interest to MIDAS users, uniquely identified by its name. Each met domain is assigned to a class. It may be an input grouping, or a storage group, or an output grouping. An input grouping is a meteorological report, e.g. synop. A storage group is the name of the MIDAS table in which the meteorological elements are stored. An output grouping corresponds to some desired view of the data, e.g. DMWR, or DSS report.

Every change to the elements used within a met domain will require a new met domain.

| PK | Attribute       | Datatype    | Description / Units / Precision |
|----|-----------------|-------------|---------------------------------|
| *  | met_domain_name | VARCHAR2(8) |                                 |



| met_dom_class    | VARCHAR2(28) |                             |
|------------------|--------------|-----------------------------|
| met_dom_bgn_date | DATE         | Effective from date         |
| met_dom_end_date | DATE         | Effective to date           |
| rec_st_ind       | NUMBER(4)    | State indicator             |
| dom_usg_id       | CHAR(1)      | Met domain usage identifier |
| met_domain_dsc   | VARCHAR2(80) | Met domain description      |

| TABLE | met_domain_class |
|-------|------------------|
|-------|------------------|

**Description:** This entity contains details about the types of met domain used to report and store meteorological data.

| PK | Attribute             | Datatype     | Description / Units / Precision |
|----|-----------------------|--------------|---------------------------------|
| *  | met_dom_class         | VARCHAR2(28) |                                 |
|    | dom_clas_dsc          | VARCHAR2(72) | Met domain class description    |
|    | met_dom_clas_upd_date | DATE         | Record updated date             |
|    | rec_st_ind            | NUMBER(4)    | State indicator                 |

| TABLE | met_domain_rank |
|-------|-----------------|
|-------|-----------------|

**Description:** This entity contains details about the ranking of report types for each met domain.

| PK | Attribute  | Datatype    | Description / Units / Precision                                       |
|----|------------|-------------|-----------------------------------------------------------------------|
| *  | table_type | , ,         | The type of observational data required e.g. 'RADIATION', 'HRLY_RAIN' |
|    | met_domain |             | The met domain name. Foreign key to met_domain.met_domain_name        |
|    | rank       | NUMBER(2,0) | The domain rank for the observation                                   |

| TABLE | met_element |
|-------|-------------|
|-------|-------------|

**Description:** This entity defines individual meteorological items (elements) independently of their organisation into meteorological observations or output views (met domains). It does not contain the values for the meteorological item, merely the definition of it. BUFR specifications are used in the definition of the appropriate attributes. The definition of each met element implies a Datatype and format for the attribute, e.g. temperatures are stored as integers, to a precision of 0.1 deg. C., and are defined as such in the data dictionary. MIDAS stores data in consistent units, but these may not be the units in which the element was reported. The met\_element table contains minimum and maximum values of "open ended" elements (e.g. air temperature). This allows the storage process to validate data upon input. The current maximum and minimum values can be inspected by users.

| PK Attribute Datatype Description / Uni | nits / Precision |
|-----------------------------------------|------------------|
|-----------------------------------------|------------------|



| * | met_element_id          | NUMBER(5)     | Met element identifier                |
|---|-------------------------|---------------|---------------------------------------|
|   | met_element_name        | VARCHAR2(32)  |                                       |
|   | met_element_class       | VARCHAR2(28)  |                                       |
|   | met_elem_bgn_date       | DATE          | Effective from date                   |
|   | met_elem_end_date       | DATE          | Effective to date                     |
|   | rec_st_ind              | NUMBER(4)     | State indicator                       |
|   | met_element_description | VARCHAR2(200) | Definitive description of met element |
|   | minimum_value           | NUMBER(5)     |                                       |
|   | maximum_value           | NUMBER(5)     |                                       |
|   | scale_factor            | NUMBER(2)     |                                       |

| TABLE | met_elem_class |
|-------|----------------|
|-------|----------------|

**Description:** This entity classifies met\_element records, to make access to their details easier. The classification system is based on BUFR classes (XX), but this is subject to further refinement.

| PK | Attribute              | Datatype     | Description / Units / Precision |
|----|------------------------|--------------|---------------------------------|
| *  | met_element_class      | VARCHAR2(28) | Met element class description   |
|    | elem_clas_dsc          | VARCHAR2(72) |                                 |
|    | met_elem_clas_upd_date | DATE         | Record updated date             |
|    | rec_st_ind             | NUMBER(4)    | State indicator                 |

| VIEW | mo_sfc_elem |
|------|-------------|
|------|-------------|

**Description:** Contains monthly surface values of specified met elements. The met\_element\_id column defines and constraints the met element, via a foreign-key relationship. The parent mo\_sfc\_rec constrains ob\_date and met\_domain\_name, and implicitly constrains id\_type and id. The midasupd.mo\_sfc\_elem view restricts rows to those with the appropriate storage met domain name, i.e. 'MOSFCELM'.

| PK | Attribute           | Datatype    | Description / Units / Precision                                 |
|----|---------------------|-------------|-----------------------------------------------------------------|
| *  | mo_sfc_elem_prtn_id | CHAR(2)     | Partition key (found via domain_element and met_domain_element) |
| *  | met_element_id      | NUMBER(5)   |                                                                 |
| *  | ob_date             | DATE        |                                                                 |
| *  | src_id              | NUMBER(6)   |                                                                 |
| *  | met_domain_name     | VARCHAR2(8) | e.g. 'CLM71-11', 'CARLOS' etc                                   |
| *  | version_num         | NUMBER(1)   |                                                                 |
|    | rec_st_ind          | NUMBER(4)   |                                                                 |
|    | met_elem_day_cnt    | NUMBER(2)   | Count of days when the met element occurred                     |
|    | met_elem_hour_cnt   | NUMBER(3)   | Count of hours when the met element occurred                    |
|    | met_elem_min_val    | NUMBER(6,2) | Minimum value of the met element                                |



| met_elem_min_val_day_num | NUMBER(2)   | Day on which the min value occurred                           |
|--------------------------|-------------|---------------------------------------------------------------|
| met_elem_mean_val        | NUMBER(6,2) | Mean value of the met element                                 |
| met_elem_sd_val          | NUMBER(6,2) | Standard deviation                                            |
| met_elem_max_val         | NUMBER(6,2) | Maximum value of the met element                              |
| met_elem_max_val_day_num | NUMBER(2)   | Day on which the max value occurred                           |
| met_elem_miss_hour_cnt   | NUMBER(3)   | Count of hours when the element was missing                   |
| met_elem_amt             | NUMBER(6,2) | e.g. rainfall amount                                          |
| met_elem_occr_prc        | NUMBER(3)   | Percent of occurrences, e.g. NE wind                          |
| met_elem_qual_id         | CHAR(1)     | Quality of the met element                                    |
| met_elem_sbst_hour_cnt   | NUMBER(3)   | Count of hours when substitute values used.                   |
| met_elem_sbst_code       | CHAR(2)     | Defines substitute values                                     |
| last_update_time         | DATE        | Stores date/time when table was last updated using a trigger. |

| VIEW | mo_sfc_rec |
|------|------------|
|------|------------|

**Description:** This table stores parent values for one or more mo\_sfc\_elem entries, for the given source, month and met domain name. It defines the id\_type and id used by the source, and constrains ob\_date to the last day of the month. The mo\_sfc\_elem entries are calculated monthly values from globally located sources. These values are received in WMO codes FM-71-VI-CLIMAT and FM-71-X1-CLIMAT, or are 'CARLOS' values derived from Midas data.

| PK | Attribute              | Datatype    | Description / Units / Precision                   |
|----|------------------------|-------------|---------------------------------------------------|
| *  | src_id                 | NUMBER(6)   |                                                   |
| *  | ob_date                | DATE        |                                                   |
| *  | met_domain_name        | VARCHAR2(8) | e.g. 'CLM71-11', 'CARLOS' etc.                    |
|    | rec_st_ind             | NUMBER(4)   |                                                   |
|    | id_type                | VARCHAR2(4) |                                                   |
|    | id                     | VARCHAR2(8) |                                                   |
|    | wind_speed_unit_id     | CHAR(1)     |                                                   |
|    | temp_read_type_id      | CHAR(1)     |                                                   |
|    | max_temp_read_hour_num | NUMBER(2)   | Time (Hour) when maximum air temperature is read. |
|    | min_temp_read_hour_num | NUMBER(2)   |                                                   |
|    | qual_analyst_id        | VARCHAR2(3) | Identifier of QC staff member                     |

| TABLE pollen_drnl_ob |  |
|----------------------|--|
|----------------------|--|

Description: This table stores pollen observations from a variety of tree and plant speicies from observing sites



in the UK. The observations are normally received by e-mail on a daily basis between March and September and then loaded to this table.

| PK | Attribute       | Datatype    | Description / Units / Precision                                         |
|----|-----------------|-------------|-------------------------------------------------------------------------|
| *  | ob_date         | DATE        |                                                                         |
| *  | version_num     | NUMBER(1)   |                                                                         |
| *  | met_domain_name | VARCHAR2(6) | Always POLLEN                                                           |
| *  | id_type         | VARCHAR2(4) | Always POLL                                                             |
| *  | id              | VARCHAR2(6) |                                                                         |
|    | src_id          | NUMBER(6)   |                                                                         |
|    | rec_st_ind      | NUMBER(4)   |                                                                         |
|    | corylus         | NUMBER(4)   | Precipitation duration (<24 hr) minutes                                 |
|    | alnus           | NUMBER(4)   | Number of alnus pollen grains per metre cubed over a 24 hour period     |
|    | salix           | NUMBER(4)   | Number of salix pollen grains per metre cubed over a 24 hour period     |
|    | betula          | NUMBER(4)   | Number of betula pollen grains per metre cubed over a 24 hour period    |
|    | fraxinus        | NUMBER(4)   | Number of fraxinus pollen grains per metre cubed over a 24 hour period  |
|    | ulmus           | NUMBER(4)   | Number of ulmus pollen grains per metre cubed over a 24 hour period     |
|    | quercus         | NUMBER(4)   | Number of quercus pollen grains per metre cubed over a 24 hour period   |
|    | platanus        | NUMBER(4)   | Number of platanus pollen grains per metre cubed over a 24 hour period  |
|    | poaceae         | NUMBER(4)   | Number of poaceae pollen grains per metre cubed over a 24 hour period   |
|    | urtica          | NUMBER(4)   | Number of urtica pollen grains per metre cubed over a 24 hour period    |
|    | artemisia       | NUMBER(4)   | Number of artemisia pollen grains per metre cubed over a 24 hour period |
|    | ambrosia        | NUMBER(4)   | Number of ambrosia pollen grains per metre cubed over a 24 hour period  |
|    | meto_stmp_time  | DATE        | Met Office receipt stamp time                                           |

| TABLE prime_drnl_rain_ob |  |
|--------------------------|--|
|--------------------------|--|

**Description:** This entity contains daily, best estimate rainfall data by src\_id. This table holds daily rainfall data back to 1958. New data is generally loaded monthly following the completion of quality control; therefore data should be available for the period up to approximately six months ago. Ad hoc updates may occur outside this cycle. This table also serves to simplify rainfall data query and extraction.

| PK | Attribute | Datatype  | Description / Units / Precision |
|----|-----------|-----------|---------------------------------|
| *  | src_id    | NUMBER(6) | Source identifier               |



| * | ob_end_time      | DATE        | Date and time at end of observation         |
|---|------------------|-------------|---------------------------------------------|
|   | prcp_amt         | NUMBER(5,1) | Precipitation amount                        |
|   | last_update_time | DATE        | Time of last update (maintained by trigger) |

| VIEW | radt_ob |
|------|---------|
|------|---------|

**Description:** This entity contains hourly and daily radiation amounts, including those no longer being reported. In all cases, ob\_end\_time and ob\_hour\_count define the observation period. Values are either for an hour or for 24 hours.

- Hourly approximately 50 UK stations and 100 overseas stations report hourly radiation, but only 3 have reported direct irradiation.
- Daily 24 hour values are usually for 0000-2359Z on the stated day. Occasionally the period may be 09-09Z, ending at 0900Z on the stated day. There should only be one 24 hour report per station per day. MIDAS will not store daily values derived from the sum of hourly values.

Non-key attributes are from mp.dradiatn, mp.hradiatn.ylast2yr and mc.hradname.

| PK | Attribute             | Datatype    | Description / Units / Precision                       |
|----|-----------------------|-------------|-------------------------------------------------------|
| *  | ob_end_time           | DATE        | Date and time at end of observation                   |
| *  | id_type               | VARCHAR2(4) | Identifier type                                       |
| *  | id                    | VARCHAR2(8) |                                                       |
| *  | ob_hour_count         | NUMBER(3)   | Observation hour count                                |
| *  | version_num           | NUMBER(1)   | Observation version number                            |
| *  | met_domain_name       | VARCHAR2(8) |                                                       |
|    | src_id                | NUMBER(6)   | Unique source identifier                              |
|    | rec_st_ind            | NUMBER(4)   | State indicator for the record                        |
|    | glbl_irad_amt         | NUMBER(4)   | Global solar irradiation amount<br>Kjoules/ sq metre  |
|    | glbl_irad_amt_q       | NUMBER(5)   | QC code - global irradiation amt                      |
|    | difu_irad_amt         | NUMBER(4)   | Diffuse solar irradiation amount Kjoules/ sq metre    |
|    | difu_irad_amt_q       | NUMBER(5)   | QC code - diffuse irradiation amt                     |
|    | direct_irad           | NUMBER(4)   | Direct irradiation amount Kjoules/ sq metre           |
|    | direct_irad_q         | NUMBER(5)   | QC code - direct irradiation                          |
|    | irad_bal_amt          | NUMBER(4)   | Irradiation balance amount Kjoules/ sq metre          |
|    | irad_bal_amt_q        | NUMBER(5)   | QC code - irradiation balance amt                     |
|    | glbl_s_lat_irad_amt   | NUMBER(4)   | Mean global S latitude radiation<br>Kjoules/ sq metre |
|    | glbl_s_lat_irad_amt_q | NUMBER(5)   | QC code - global S lat irad amt                       |
|    | glbl_horz_ilmn        | NUMBER(4)   | Global horizontal illumination<br>Kjoules/ sq metre   |
|    | glbl_horz_ilmn_q      | NUMBER(5)   | QC code - global horizontal illumination              |



| meto_stmp_time   | DATE      | Met Office receipt stamp time            |
|------------------|-----------|------------------------------------------|
| midas_stmp_etime | NUMBER(6) | Elapsed time to storage in MIDAS minutes |

TABLE radt\_ob\_v2

**Description:** This table is the underlying entity for the <a href="midasupd.radt\_ob">midasupd.radt\_ob</a> view and has the identical structure.

VIEW rain\_drnl\_ob

**Description:** This entity contains rainfall amounts measured over one or more 24 hour periods, ending on the stated day. Attributes ob\_end\_day and ob\_day\_count define the observation period. It does NOT contain 09-21Z and 21-09Z rainfall; they are attributes of the rain\_hrly\_ob entity. The entity can contain rainfall of two types:

- Daily rainfall over a 24 hour period usually 09-09Z. In this case ob\_day\_count = 1, the default value
- Daily rainfall from irregular sources those which report monthly or weekly. In this case ob day count = the number of days over which the rainfall is measured.

Some stations report rainfall at 10Z, so time is included as an attribute, although there is no time field on the rainfall postcard. To prevent multiple observations for a station for a day, attribute ob\_day\_count is not in the primary key. The identifier is a rainfall station number. Some stations report daily rainfall via F3208 using their DCNN. MIDAS will store them as rows in this table using their rainfall number, i.e. id\_type = 'rain' and id = rainfall\_number.

Non-key attributes are copied from mp.drain and mc.drain.

| PK | Attribute        | Datatype    | Description / Units / Precision          |
|----|------------------|-------------|------------------------------------------|
| *  | ob_date          | DATE        | Date of observation                      |
| *  | id               | VARCHAR2(8) |                                          |
| *  | id_type          | VARCHAR2(4) | Identifier type                          |
| *  | version_num      | NUMBER(1)   |                                          |
| *  | met_domain_name  | VARCHAR2(8) |                                          |
|    | ob_end_ctime     | NUMBER(4)   | Clock-time at end of observation         |
|    | ob_day_cnt       | NUMBER(3)   | Observation day count                    |
|    | src_id           | NUMBER(6)   | Unique source identifier                 |
|    | rec_st_ind       | NUMBER(4)   | State indicator for the record           |
|    | prcp_amt         | NUMBER(5,1) | Precipitation amount 0.1 mm              |
|    | ob_day_cnt_q     | NUMBER(5)   | QC code - day count                      |
|    | prcp_amt_q       | NUMBER(5)   | QC code - precipitation amount           |
|    | prcp_amt_j       | CHAR(1)     | Descriptor - precipitation amount        |
|    | meto_stmp_time   | DATE        | Met Office receipt stamp time            |
|    | midas_stmp_etime | NUMBER(6)   | Elapsed time to storage in MIDAS minutes |



| VIEW rain_hrly_ob |
|-------------------|
|-------------------|

**Description:** This entity contains rainfall amount (and duration from tilting syphon gauges) during the hour (or hours) ending at the specified time. Normally it will NOT be used to store precipitation measured over 24 hours or more - that will use the rain\_drnl\_ob table. However, where a station normally reports 09-21Z and 21-09Z values, an original value which is deemed to be erroneous can be replaced by a 24-hour value. ob\_hour\_count will be set to the number of hours (always less than 24). The data in this table are of the following types:

- Hourly rainfall (ob\_hour\_count = 1)
- 09-21Z or 21-09Z rainfall from NCM and F7113 (ob\_hour\_count = 12)
- Rainfall amounts measured over a number of hours (e.g. 06-18Z from SYNOPS not stored at present)

The identifier is a rainfall station number. Non-key attributes are taken from mp.hrain and mp.dmwr.

| PK | Attribute        | Datatype    | Description / Units / Precision          |
|----|------------------|-------------|------------------------------------------|
| *  | ob_end_time      | DATE        | Date and time at end of observation      |
| *  | id_type          | VARCHAR2(4) | Identifier type                          |
| *  | id               | VARCHAR2(8) |                                          |
| *  | ob_hour_count    | NUMBER(3)   | Observation hour count                   |
| *  | version_num      | NUMBER(1)   | Observation version number               |
| *  | met_domain_name  | VARCHAR2(8) |                                          |
|    | src_id           | NUMBER(6)   | Unique source identifier                 |
|    | rec_st_ind       | NUMBER(4)   | State indicator for the record           |
|    | prcp_amt         | NUMBER(5,1) | Precipitation amount 0.1 mm              |
|    | prcp_dur         | NUMBER(4)   | Precipitation duration (<24 hr) minutes  |
|    | prcp_amt_q       | NUMBER(5)   | QC code - precipitation amount           |
|    | prcp_dur_q       | NUMBER(5)   | QC code - precipitation duration         |
|    | prcp_amt_j       | CHAR(1)     | Descriptor - precipitation amount        |
|    | meto_stmp_time   | DATE        | Met Office receipt stamp time            |
|    | midas_stmp_etime | NUMBER(6)   | Elapsed time to storage in MIDAS minutes |

| VIEW | rain_subhrly_ob |  |
|------|-----------------|--|
|------|-----------------|--|

**Description:** This entity contains rainfall tip amounts with a time resolution of one minute, from SSER. The identifier is DCNN or rainfall station number. Non-key attributes are taken from mp.srain. There are no QC attributes because, in May 1995, OPR confirmed that there would not be any quality control performed on subhourly rainfall.

| PK | Attribute | Datatype    | Description / Units / Precision |
|----|-----------|-------------|---------------------------------|
| *  | ob_time   | DATE        | Date and time of observation    |
| *  | id_type   | VARCHAR2(4) | Identifier type                 |



| * | id               | VARCHAR2(8) |                                          |
|---|------------------|-------------|------------------------------------------|
| * | met_domain_name  | VARCHAR2(8) |                                          |
|   | src_id           | NUMBER(6)   | Unique source identifier                 |
|   | prcp_tip_amt     | NUMBER(4,3) | Precipitation tip amount 0.001 mm        |
|   | rec_st_ind       | NUMBER(4)   | State indicator for the record           |
|   | meto_stmp_time   | DATE        | Met Office receipt stamp time            |
|   | midas_stmp_etime | NUMBER(6)   | Elapsed time to storage in MIDAS minutes |

| VIEW report_tab | le_mapping |
|-----------------|------------|
|-----------------|------------|

**Description:** This entity records the valid combinations of id\_type and met\_domain for each ob table.

| PK | Attribute               | Datatype     | Description / Units / Precision                                  |
|----|-------------------------|--------------|------------------------------------------------------------------|
| *  | report_met_domain_name  | VARCHAR2(8)  |                                                                  |
| *  | report_id_type          | VARCHAR2(4)  |                                                                  |
| *  | table_name              | VARCHAR2(18) |                                                                  |
|    | stored_id_type          | VARCHAR2(4)  |                                                                  |
|    | domain_table_begin_date | DATE         |                                                                  |
|    | domain_table_end_date   | DATE         |                                                                  |
|    | archive_area_code       | \ ,          | Met domain rank. Precedence of the met domain within this table. |

| VIEW runway_ob |  |
|----------------|--|
|----------------|--|

**Description:** This entity contains runway visual ranges measured during the hour ending at the stated date and time. Identifier is ICAO-id or WMO number. Non-key attributes are taken from mop.hdata.egxx. At present only runway visual ranges are stored, but state of runway can be accommodated here if needed.

| PK | Attribute       | Datatype    | Description / Units / Precision                                |
|----|-----------------|-------------|----------------------------------------------------------------|
| *  | ob_time         | DATE        | Date and time of observation                                   |
| *  | id              | VARCHAR2(8) |                                                                |
| *  | id_type         | VARCHAR2(4) | Identifier type                                                |
| *  | runway_name     | VARCHAR2(4) |                                                                |
|    | met_domain_name | VARCHAR2(8) |                                                                |
|    | src_id          | NUMBER(6)   | Unique source identifier                                       |
|    | rec_st_ind      | NUMBER(4)   | State indicator for the record                                 |
|    | rnwy_vis_rnge   | NUMBER(4)   | Runway visual range metres                                     |
|    | rnwy_vis_rnge_q | NUMBER(5)   | Quality code - runway visual range Only present on base table  |
|    | rnwy_vis_rnge_j | CHAR(1)     | Descriptor - runway visual range<br>Only present on base table |



| TABLE | sfc_clmo_elem |
|-------|---------------|
|       |               |

**Description:** The midas.sfc\_clmo\_elem table contains monthly and annual surface climatological averages and met element check values for surface CLIMAT reports. These values are calculated by the CARLOS and CLIMAT teams. The owner midas.sfc\_clmo\_rec constrains clmo\_end\_date and met\_domain\_name, and implicitly constrains id\_type and id. A sfc\_clmo\_elem row is for the specified src\_id, clmo\_end\_date, year\_count, met\_domain\_name and met\_element\_id. midasupd.sfc\_clmo\_elem is a view of midas.sfc\_clmo\_elem, with one-for-one projection of the columns. midasvu.sfc\_clmo\_elem is a read-only synonym of midasupd.sfc\_clmo\_elem.

| PK | Attribute             | Datatype    | Description / Units / Precision |
|----|-----------------------|-------------|---------------------------------|
| *  | src_id                | NUMBER(6)   | Unique source identifier        |
| *  | clmo_end_date         | DATE        |                                 |
| *  | clmo_year_cnt         | NUMBER(2)   |                                 |
| *  | met_domain_name       | VARCHAR2(8) |                                 |
|    | month_number          | NUMBER(2)   |                                 |
|    | met_element_id        | NUMBER(5)   |                                 |
|    | rec_st_ind            | NUMBER(4)   | State indicator for the record  |
|    | met_elem_ob_per       | NUMBER(8)   |                                 |
|    | met_elem_ob_mo_cnt    | NUMBER(3)   |                                 |
|    | met_elem_mean_val     | NUMBER(6,2) |                                 |
|    | met_elem_sd_val       | NUMBER(6,2) |                                 |
|    | met_elem_medn_val     | NUMBER(6,2) |                                 |
|    | met_elem_75prc_val    | NUMBER(6,2) |                                 |
|    | met_elem_25prc_val    | NUMBER(6,2) |                                 |
|    | met_elem_high_cnf_val | NUMBER(6,2) |                                 |
|    | met_elem_low_cnf_val  | NUMBER(6,2) |                                 |
|    | coef_skew_prcp_amt    | NUMBER(4,3) |                                 |

| TABLE | sfc_clmo_rec |
|-------|--------------|
| TABLE | sfc_clmo_rec |

**Description:** The midas.sfc\_clmo\_rec table is the owner of midas.sfc\_clmo\_elem, which contains monthly and annual surface climatological averages and met element check values for surface CLIMAT reports. These values are calculated by the CARLOS and CLIMAT teams. A sfc\_clmo\_rec row is for the specified src\_id, clmo\_end\_date, year\_count and met\_domain\_name. This table is the owner of a one or more sfc\_clmo\_elem entries. It defines the id\_type and id used by the source, constrains clmo\_end\_date to the last day of the year, and enforces relationships to midas.source and midas.src\_met\_domain. midasupd.sfc\_clmo\_rec is the corresponding updatable view, with one-for-one projection of the columns. It projects all of the rows. midasvu.sfc\_clmo\_rec is a read-only synonym of midasupd.sfc\_clmo\_rec. carlos.mo\_sfc\_rec is a corresponding updatable view, with one-for-one projection of the columns, but is restricted to CARLOS rows (using met\_domain\_name).

| PK | Attribute     | Datatype  | Description / Units / Precision |
|----|---------------|-----------|---------------------------------|
| *  | src_id        | NUMBER(6) | Unique source identifier        |
| *  | clmo_end_date | DATE      |                                 |



| * | clmo_year_cnt   | NUMBER(2)   |                                |
|---|-----------------|-------------|--------------------------------|
| * | met_domain_name | VARCHAR2(8) |                                |
|   | rec_st_ind      | NUMBER(4)   | State indicator for the record |
|   | id              | VARCHAR2(8) |                                |
|   | id_type         | VARCHAR2(4) | Identifier type                |

| VIEW soil_temp_ob |  |
|-------------------|--|
|-------------------|--|

**Description:** This entity contains soil temperatures reported daily and hourly. Time (hour) is part of the key. Daily soil temperatures are usually measured at 0900Z. NCMs send 30 and 100 cm temperatures. F3208 can send 5, 10, 20, 30, 50 and 100 cm temperatures, but all values are optional. Hourly soil temperatures are usually at 10 cm. Identifier is climatological number (DCNN) or WMO station number. Non-key attributes are copied from mp.soil and mp.hrsoil.yyy.

| PK | Attribute          | Datatype    | Description / Units / Precision     |
|----|--------------------|-------------|-------------------------------------|
| *  | ob_time            | DATE        | Date and time of observation        |
| *  | id_type            | VARCHAR2(4) | Identifier type                     |
| *  | id                 | VARCHAR2(8) |                                     |
| *  | met_domain_name    | VARCHAR2(8) |                                     |
| *  | version_num        | NUMBER(1)   | Observation version number          |
|    | src_id             | NUMBER(6)   | Unique source identifier            |
|    | rec_st_ind         | NUMBER(4)   | State indicator for the record      |
|    | q5cm_soil_temp     | NUMBER(3,1) | 5cm soil temperature<br>0.1 deg C   |
|    | q5cm_soil_temp_q   | NUMBER(5)   | QC code - 5cm soil temperature      |
|    | q5cm_soil_temp_j   | CHAR(1)     | Descriptor - 5cm soil temp          |
|    | q10cm_soil_temp    | NUMBER(3,1) | 10cm soil temperature<br>0.1 deg C  |
|    | q10cm_soil_temp_q  | NUMBER(5)   | QC code - 10cm soil temperature     |
|    | q10cm_soil_temp_j  | CHAR(1)     | Descriptor - 10cm soil temp         |
|    | q20cm_soil_temp    | NUMBER(3,1) | 20cm soil temperature<br>0.1 deg C  |
|    | q20cm_soil_temp_q  | NUMBER(5)   | QC code - 20cm soil temperature     |
|    | q20cm_soil_temp_j  | CHAR(1)     | Descriptor - 20cm soil temp         |
|    | q30cm_soil_temp    | NUMBER(3,1) | 30 cm soil temperature<br>0.1 deg C |
|    | q30cm_soil_temp_q  | NUMBER(5)   | QC code - 30cm soil temperature     |
|    | q30cm_soil_temp_j  | CHAR(1)     | Descriptor - 30cm soil temp         |
|    | q50cm_soil_temp    | NUMBER(3,1) | 50cm soil temperature<br>0.1 deg C  |
|    | q50cm_soil_temp_q  | NUMBER(5)   | QC code - 50cm soil temperature     |
|    | q50cm_soil_temp_j  | CHAR(1)     | Descriptor - 50cm soil temp         |
|    | q100cm_soil_temp   | NUMBER(3,1) | 100cm soil temperature<br>0.1 deg C |
|    | q100cm_soil_temp_q | NUMBER(5)   | QC code - 100cm soil temperature    |
|    | q100cm_soil_temp_j | CHAR(1)     | Descriptor - 100cm soil temp        |



| meto_stmp_time   | DATE      | Met Office receipt stamp time            |
|------------------|-----------|------------------------------------------|
| midas_stmp_etime | NUMBER(6) | Elapsed time to storage in MIDAS minutes |

| TABLE | source |
|-------|--------|
|-------|--------|

**Description:** A source is a station where meteorological readings are made. Its location is defined as the location of the barometer or the rain gauge, or other principal instrument. A source changes its identity (i.e. it becomes a new source) when the location of the principal instrument changes by more than a specified amount, e.g. by 400 metres or more for a rainfall station. A source may change its identity under other circumstances (e.g. a change of exposure or if it closes and re-opens). A source must have at least one capability, and that must use an identifier of a specified id\_type. Start and end dates refer to the opening and final closing of the source - it may have been closed for one or more periods within these dates. A source may be re-opened, and re-use a src\_id, provided the details defined in this entity are the same. A source will not exist if it has no observations, but one may be created in advance, where it is known that a station is due to open. A source is in a fixed position. OPR cannot supply or maintain source information for ships. On-station Ocean Weather Ships are treated as a fixed source with a notional latitude and longitude. They will have a source record, with a src\_name of 'OWS A', 'OWS C', etc. and appropriate call-sign identifiers. Latitude and longitude at time of report are attributes of the report. This entity does not describe the reporting practice of individual elements or report types.

The src\_id, src\_name, high\_prcn\_lat, high\_prcn\_lon, loc\_geog\_area\_id, rec\_st\_ind and grid\_ref\_type are all mandatory columns. The grid\_ref\_type will default to a value of 'XX' for overseas stations. The high\_prcn\_lat and high\_prcn\_lon will be automatically calculated on insert for those stations identified by grid reference values. The src\_name value is validated on insert and update to ensure that it is unique for all stations in the UK and Ireland. Duplicate source names may exist within the database historically but all new source names will be checked for uniqueness.

NB: The entity has a self-referencing relationship, using parent\_src\_id, as required by the Metadata project. It also supports cross-referencing to other sources for a specified purpose, using relationships with the cross\_reference entity. This duplication will be resolved at the next opportunity.

| PK | Attribute        | Datatype     | Description / Units / Precision                        |
|----|------------------|--------------|--------------------------------------------------------|
| *  | src_id           | NUMBER(6)    | Unique source identifier                               |
|    | src_name         | VARCHAR2(40) |                                                        |
|    | high_prcn_lat    | NUMBER(5,3)  | 0.001 deg                                              |
|    | high_prcn_lon    | NUMBER(6,3)  | 0.001 deg                                              |
|    | loc_geog_area_id | VARCHAR2(4)  | Identifier for geographic area where source is located |
|    | src_bgn_date     | DATE         | Effective from date                                    |
|    | rec_st_ind       | NUMBER(4)    | State indicator                                        |
|    | src_type         | VARCHAR2(8)  | Source type                                            |
|    | grid_ref_type    | VARCHAR2(4)  | Grid reference type                                    |
|    | east_grid_ref    | NUMBER(6)    | Easting grid reference                                 |
|    | north_grid_ref   | NUMBER(7)    | Northing grid reference                                |
|    | hydr_area_id     | NUMBER(4)    | Hydrometric area identifier                            |
|    | post_code        | VARCHAR2(9)  |                                                        |
|    | src_end_date     | DATE         | Effective to date                                      |
|    | elevation        | NUMBER(4)    | Metres                                                 |



| wmo_region_code    | CHAR(1)     |                            |
|--------------------|-------------|----------------------------|
| parent_src_id      | NUMBER(6)   |                            |
| zone_time          | NUMBER(2)   | Hours                      |
| drainage_stream_id | VARCHAR2(4) | Drainage stream identifier |
| src_upd_date       | DATE        | Record updated date        |
| mtce_ctre_code     | VARCHAR2(4) |                            |
| place_id           | NUMBER(6)   |                            |

| TABLE | src_capability |
|-------|----------------|
|-------|----------------|

**Description:** This entity defines which types of observation (met\_domain) a source is capable of producing (and MIDAS will store), e.g. London/Gatwick is capable of producing SYNOPs and NCMs, while Southend is only capable of producing METARs. It does not record whether those reports have actually been produced. Some stations (e.g. Beaufort Park) use more than one identifier of the same type (e.g. WMO number 03693 for manned observations and 03694 for SAMOS) and so there will be two capabilities for this source. Changes over time are recorded. A src\_capability is closed when the src\_cap\_end\_date attribute is set to a value before the current date. If the capability is subsequently required again by the source, then the record may be re-opened by either resetting the end date or by creating a new record. A capability is not automatically created upon receipt of a new source or new meteorological domain. A source capability can be deleted when it is open.

The prime\_capability\_flag is a single character to indicate if the capability is the prime one of its type for the specified station, i.e. the prime daily rainfall capability for the station. Valid values are T and F. For each met domain, one and only one capability can be set to prime at one time. When SAMOS or similar equipment is trialed at a site, the site may continue to report using its current identifier and prime\_capability\_flag = T while the SAMOS uses a new capability and identifier with prime\_capability\_flag = F. When the trial concludes and the SAMOS becomes operational, the old capability is changed to prime\_capability\_flag = F (and is usually closed), while the new capability (and identifier) is updated to prime\_capability\_flag = T.

NB: Currently, rcpt\_method\_name and comm\_mthd\_id are both attributes of this entity. The rcpt\_method\_name attribute is carried forward from CA-IDMS, while comm\_mthd\_id is required by the Metadata project. At the first available opportunity,rcpt\_method\_name will be removed. All capability records with rec\_st\_ind = 2000 are located in the <a href="midas.src\_capability\_nodata">midas.src\_capability\_nodata</a> table.

| PK | Attribute             | Datatype     | Description / Units / Precision                 |
|----|-----------------------|--------------|-------------------------------------------------|
| *  | id_type               | VARCHAR2(4)  | Identifier type                                 |
| *  | id                    | VARCHAR2(8)  |                                                 |
| *  | met_domain_name       | VARCHAR2(8)  |                                                 |
| *  | src_cap_bgn_date      | DATE         | Effective from date                             |
|    | src_id                | NUMBER(6)    | Unique source identifier                        |
|    | rec_st_ind            | NUMBER(4)    | State indicator                                 |
|    | prime_capability_flag | CHAR(1)      | See above                                       |
|    | src_cap_end_date      | DATE         | Effective to date                               |
|    | first_online_ob_yr    | NUMBER(4)    | Year of latest observation                      |
|    | db_segment_name       | VARCHAR2(12) |                                                 |
|    | rcpt_method_name      | VARCHAR2(20) | Cross-reference between identifiers at a source |
|    | data_retention_period | NUMBER(3)    |                                                 |
|    | comm_mthd_id          | NUMBER(6)    |                                                 |



| TABLE | src_capability_nodata |
|-------|-----------------------|

**Description:** This structure of this entity is identical to the <u>midas.src\_capability</u> table, but it only contains records with rec\_st\_ind = 2000. These records have no data recorded in MIDAS for this capability. They have been placed in this table to simplify views and prevent cross-products in gueries.

| TABLE | src_met_domain |
|-------|----------------|
|-------|----------------|

**Description:** The midas.src\_met\_domain table contains the valid combinations of src\_id and met\_domain\_name. This allows the database to enforce a relationship between observation tables and src\_capability. To expedite the Metadata Project, we will not enforce relationships between src\_met\_domain and either the source or met\_domain tables at present. These relationships will be added when convenient to the Metadata project, and the direct relationships between source and src\_capability and between met\_domain and src\_capability will be removed at the same time. A src\_capability trigger inserts rows into src\_met\_domain when a new combination of src\_id and met\_domain\_name is stored in src\_capability. midasupd.src\_met\_domain is the corresponding updatable view, with one-for-one projection of the columns. midasvu.src\_met\_domain is a read-only synonym of midasupd.src\_met\_domain.

| PK | Attribute       | Datatype    | Description / Units / Precision |
|----|-----------------|-------------|---------------------------------|
| *  | src_id          | NUMBER(6)   | Unique source identifier        |
| *  | met_domain_name | VARCHAR2(8) |                                 |

| TABLE | src_remark |
|-------|------------|

**Description:** This table contains textual remarks concerning the location, topography, and exposure of a source, as well as general remarks and subjective comments on quality. Remarks can be added for a source even if it is closed (e.g. to indicate why it closed, or when it is likely to re-open, or to comment upon the observations from it). The src\_rmrk\_num attribute is stored DEScending so that when searching the associated index, the latest remarks will be found first.

| PK | Attribute         | Datatype      | Description / Units / Precision |
|----|-------------------|---------------|---------------------------------|
| *  | src_id            | NUMBER(6)     | Unique source identifier        |
| *  | src_rmrk_num      | NUMBER(4)     | Remark number                   |
|    | rmrk_type         | VARCHAR2(30)  | Remark type                     |
|    | src_rmrk_bgn_date | DATE          | Effective from date             |
|    | src_rmrk_txt      | VARCHAR2(120) | Remark text                     |
|    | rec_st_ind        | NUMBER(4)     | State indicator                 |
|    | src_rmrk_end_date | DATE          | Effective to date               |



**Description:** A runway is a facility at a source.

| PK | Attribute        | Datatype    | Description / Units / Precision |
|----|------------------|-------------|---------------------------------|
| *  | src_id           | NUMBER(6)   | Unique source identifier        |
| *  | runway_name      | VARCHAR2(4) | Name of the runway              |
|    | rec_st_ind       | NUMBER(4)   | State indicator                 |
|    | src_fac_bgn_date | DATE        | Effective from date             |
|    | src_fac_end_date | DATE        | Effective to date               |
|    | runway_height    | NUMBER(5)   | Runway height in metres         |
|    | rnwy_sig_ind     | VARCHAR2(1) | METDB STTE indicator            |
|    | rnwy_bearing     | NUMBER(5)   | Runway bearing                  |

| TABLE | synthetic_glbl_wx |  |
|-------|-------------------|--|
|-------|-------------------|--|

**Description:** The midas.synthetic\_glbl\_wx table contains meteorological values synthesised at 3-hrly intervals for non-UK stations. These values are created by Technical / Forecasting Developments Branch / Local Forecasting R&D group (LF R&D) and are used to provide adequate data coverage for data-sparse areas. Daily ingestion is not required - data will be added as and when LF R&D generate the pseudo-observations. An initial set of pseudo-station data will be added for areas of the World requested by Met Office defence customers. Once these data are added to MIDAS there will not be routine updating of pseudo-observations for these stations. Extra pseudo-observations might be added for these stations at the request of the customer. New pseudo-station data will be added as and when the customer requires. These additions will usually be in response to World events of interest to our defence customers. The attributes of this entity are similar to those of midas.weather\_hrly\_ob, but with significant differences. Some of the attributes refer to 24hr values. The data are not normalised. The period of maximum and minimum temperatures are defined by - Max temp at 18Z and Min temp at 06Z, both cover the previous 24 hour period to the time.

Minimum volume = 5 years of data (per station)

Maximum volume = 25 years of data (per station)

Data will be retained permanently, although a stations data might be completely replaced if the science used to create the pseudo-observations is improved sufficiently to warrant a complete replacement.

Neither id\_type nor id are attributes of this table, because they relate to reporting practices and therefore are not appropriate to a table of synthetic values. The met\_domain\_name attribute is also absent, because all the rows would have the same value. This table does not have a relationship to src\_capability. It does have a foreign-key relationhip to source, using src\_id. Records in source will be created to identify the locations for which synthetic\_glbl\_wx values are created. These synthetic sources will have a src\_type of 'SYNTHETIC', and will be created within a block, with adequate allowance for future growth.

The following measures will ensure that casual users cannot mistake these synthetic values for observed values:

- The synthetic values reside in a separate table. The table name and attributes do not contain the phrase Ob.
- Only specified users will have access to synthetic\_glbl\_wx.
- There will not be any views linking synthetic glbl wx to any other table.

Retrievals will usually ask for all the data at a specified src\_id, i.e. are more likely to query by place rather than time. Data will be added to the table a station at a time. The table has two-dimensional partitioning, using wmo\_region\_code and time. midasupd.synthetic\_glbl\_wx is the corresponding updatable view, with one-for-one projection of the columns.



| K | Attribute        | Datatype    | Description / Units / Precision      |
|---|------------------|-------------|--------------------------------------|
| * | time             | DATE        | Date and time of observation         |
| * | src_id           | NUMBER(6)   | Unique source identifier             |
| * | wmo_region_code  | CHAR(1)     | 1 - 7                                |
|   | wind_direction   | NUMBER(3)   | Degs true                            |
|   | wind_speed       | NUMBER(3)   | Knots                                |
|   | prst_wx_id       | CHAR(2)     | Present weather code                 |
|   | past_wx_id_1     | CHAR(1)     | Past weather code #1                 |
|   | past_wx_id_2     | CHAR(1)     | Past weather code #2                 |
|   | cld_ttl_amt_id   | CHAR(1)     | Total cloud amount code oktas        |
|   | cld_base_amt_id  | CHAR(1)     | Cloud base amount code               |
|   | cld_base_ht      | NUMBER(4)   | Cloud base height code decametres    |
|   | low_cld_type_id  | CHAR(1)     | Low cloud type code                  |
|   | med_cld_type_id  | CHAR(1)     | Medium cloud type code               |
|   | hi_cld_type_id   | CHAR(1)     | High cloud type code                 |
|   | visibility       | NUMBER(4)   | Decametres                           |
|   | air_temperature  | NUMBER(3,1) | Surface air temperature 0.1 deg C    |
|   | wetb_temp        | NUMBER(3,1) | Wet bulb temperature 0.1 deg C       |
|   | dewpoint         | NUMBER(3,1) | Dewpoint temperature 0.1 deg C       |
|   | stn_pres         | NUMBER(5,1) | Station air pressure 0.1 hpa         |
|   | pres_sfc         | NUMBER(5,1) | Pressure surface                     |
|   | pres_sfc_ht      | NUMBER(5)   | Height of pressure surface           |
|   | msl_pressure     | NUMBER(5,1) | Mean sea level air pressure 0.1 hpa  |
|   | pres_tdcy_amt    | NUMBER(4,1) | Air pressure tendency                |
|   | prcp_ob_hr_cnt   | NUMBER(3)   | Precipitation hour count             |
|   | prcp_amt         | NUMBER(5,1) | Precipitation amount                 |
|   | cld_amt_id_1     | CHAR(1)     | Layer cloud amount code #1           |
|   | cloud_type_id_1  | CHAR(1)     | Cloud type code #1                   |
|   | cld_base_ht_id_1 | NUMBER(4)   | Cloud base height code #1 decametres |
|   | cld_amt_id_2     | CHAR(1)     | Layer cloud amount code #2           |
|   | cloud_type_id_2  | CHAR(1)     | Cloud type code #2                   |
|   | cld_base_ht_id_2 | NUMBER(4)   | Cloud base height code #2 decametres |
|   | cld_amt_id_3     | CHAR(1)     | Layer cloud amount code #3           |
|   | cloud_type_id_3  | CHAR(1)     | Cloud type code #3                   |
|   | cld_base_ht_id_3 | NUMBER(4)   | Cloud base height code #3 decametres |
|   | max_air_temp     | NUMBER(3,1) | Maximum air temperature              |
|   | min_air_temp     | NUMBER(3,1) | Minimum air temperature              |
|   | ground_state_id  | CHAR(2)     | Ground state id                      |



| min_grss_temp       | NUMBER(3,1) | Grass temperature               |
|---------------------|-------------|---------------------------------|
| snow_depth          | NUMBER(4)   | Snow depth                      |
| sun_ob_hr_cnt       | NUMBER(3)   | Sunshine observation hour count |
| sun_dur             | NUMBER(3,1) | Sunshine duration               |
| q24hr_prcp_amt      | NUMBER(5,1) | 24hr precipitation amount       |
| q24hr_pres_tdcy_amt | NUMBER(4,1) | 24hr air pressure tendency      |
| vert_vsby           | NUMBER(3)   | Vertical visibility decametres  |
| max_gust_speed      | NUMBER(3)   | Maximum gust speed              |

**Description:** This entity contains maximum and minimum temperatures measured over a period of up to 24 hours. ob\_end\_time and ob\_hour\_count define the observation period. Attributes with different time-scales will not be compressed into a single row. For air temperatures, the observation period will usually be one of the following: 09-09Z, 09-21Z, 21-09Z. For minimum grass temperature and minimum concrete temperature ob\_end\_time is most usually 0900. Where the period of exposure is known to be 21-09Z, then ob\_hour\_count = 12. For some stations, the period of exposure is not known, but could be as much as 09-09Z, so a nominal ob\_hour\_count = 12 is used. MIDAS will store rows in this table using climatological station number, i.e. id\_type = 'DCNN'. If the station does not have a DCNN, it will use WMO number, i.e. id\_type = 'WMO'. Non-key attributes are from mp.dmwr and mc.daily.

| PK | Attribute       | Datatype    | Description / Units / Precision        |
|----|-----------------|-------------|----------------------------------------|
| *  | ob_end_time     | DATE        | Date and time at end of observation    |
| *  | id_type         | VARCHAR2(4) | Identifier type                        |
| *  | id              | VARCHAR2(8) |                                        |
| *  | ob_hour_count   | NUMBER(3)   | Observation hour count                 |
| *  | version_num     | NUMBER(1)   | Observation version number             |
| *  | met_domain_name | VARCHAR2(8) |                                        |
|    | src_id          | NUMBER(6)   | Unique source identifier               |
|    | rec_st_ind      | NUMBER(4)   | State indicator for the record         |
|    | max_air_temp    | NUMBER(3,1) | Maximum air temperature 0.1 deg C      |
|    | min_air_temp    | NUMBER(3,1) | Minimum air temperature 0.1 deg C      |
|    | min_grss_temp   | NUMBER(3,1) | Minimum grass temperature 0.1 deg C    |
|    | min_conc_temp   | NUMBER(3,1) | Minimum concrete temperature 0.1 deg C |
|    | max_air_temp_q  | NUMBER(5)   | QC code - max air temperature          |
|    | min_air_temp_q  | NUMBER(5)   | QC code - min air temperature          |
|    | min_grss_temp_q | NUMBER(5)   | QC code - min grass temp               |
|    | min_conc_temp_q | NUMBER(5)   | QC code - min concrete temp            |
|    | max_air_temp_j  | CHAR(1)     | Descriptor - max air temp              |
|    | min_air_temp_j  | CHAR(1)     | Descriptor - min air temp              |
|    | min_grss_temp_j | CHAR(1)     | Descriptor - min grass temp            |
|    | min_conc_temp_j | CHAR(1)     | Descriptor - min concrete temp         |



| meto_stmp_time   | DATE      | Met Office receipt stamp time            |
|------------------|-----------|------------------------------------------|
| midas_stmp_etime | NUMBER(6) | Elapsed time to storage in MIDAS minutes |

| VIEW | temp_min_soil_ob |
|------|------------------|
|------|------------------|

**Description:** This entity contains bare soil minimum temperatures recorded at 09Z each day. These data were stored in mp.dmwr and mc.daily. MIDAS stores rows in this table using climatological station number, i.e. id\_type = 'DCNN'. ob\_end\_time = '0900, and ob\_hour\_count = 12, are constants, and are not included as attributes. These temperatures have not been reported since 1970. The corresponding views for this table are called midasupd.soil\_min\_temp\_ob and midasvu.soil\_min\_temp\_ob

| PK | Attribute       | Datatype    | Description / Units / Precision                                            |
|----|-----------------|-------------|----------------------------------------------------------------------------|
| *  | id_type         | VARCHAR2(4) | Identifier type                                                            |
| *  | id              | VARCHAR2(8) |                                                                            |
| *  | ob_date         | DATE        | Date of observation                                                        |
| *  | version_num     | NUMBER(1)   | Version number Not present in corresponding views                          |
| *  | met_domain_name | VARCHAR2(8) |                                                                            |
|    | src_id          | NUMBER(6)   | Unique source identifier                                                   |
|    | rec_st_ind      | NUMBER(4)   | State indicator for the record                                             |
|    | min_soil_temp   | NUMBER(3,1) | Minimum soil temperature 0.1 deg C                                         |
|    | min_soil_temp_q | NUMBER(5)   | Quality code - minimum soil temperature Not present in corresponding views |

| VIEW weather_drnl_ob |
|----------------------|
|----------------------|

**Description:** This entity contains meteorological values measured on a 24 hour time scale. ob\_end\_time and ob\_hour\_count define the observation period. Sunshine duration, snow day, hail day, thunder day and gale day are usually for the period 0000-2359Z, i.e. ob\_end\_time = '2359' and ob\_hour\_count = 24. Concrete state, lying snow, snow depth, fresh snow depth and fresh mountain snowfall are "spot" values, usually at 0900Z, i.e. ob\_end\_time = 0900 and ob\_hour\_count = 0. Daily rainfall, daily radiation, daily temperature ranges and bare soil minimum temperatures are stored in separate entities. Day of fog at 0900Z is not included. MIDAS will store rows in this table using climatological station number, e.g. id\_type = 'DCNN'. If the station does not have a DCNN, it will use id\_type = 'WMO'. Non-key attributes are taken from mp.dmwr and mc.daily. Attributes with different time scales are not compressed into a single row.

| PK | Attribute       | Datatype    | Description / Units / Precision     |
|----|-----------------|-------------|-------------------------------------|
| *  | ob_end_time     | DATE        | Date and time at end of observation |
| *  | id              | VARCHAR2(8) |                                     |
| *  | id_type         | VARCHAR2(4) | Identifier type                     |
| *  | ob_hour_count   | NUMBER(3)   | Observation hour count              |
| *  | version_num     | NUMBER(1)   | Observation version number          |
| *  | met_domain_name | VARCHAR2(8) |                                     |



| src_id                | NUMBER(6)   | Unique source identifier                    |
|-----------------------|-------------|---------------------------------------------|
| rec_st_ind            | NUMBER(4)   | State indicator for the record              |
| cs_24hr_sun_dur       | NUMBER(3,1) | Campbell-Stokes sunshine duratior 0.1 hr    |
| wmo_24hr_sun_dur      | NUMBER(3,1) |                                             |
| conc_state_id         | CHAR(1)     | Concrete state code                         |
| lying_snow_flag       | CHAR(1)     | Lying snow flag                             |
| snow_depth            | NUMBER(4)   | Snow depth<br>cm                            |
| frsh_snw_amt          | NUMBER(4)   | Fresh snow amount cm                        |
| snow_day_id           | CHAR(1)     | Snow day code                               |
| hail_day_id           | CHAR(1)     | Hail day code                               |
| thunder_day_flag      | CHAR(1)     | Thunder day flag                            |
| gale_day_flag         | CHAR(1)     | Gale day flag                               |
| frsh_mnt_snwfall_flag | CHAR(1)     | Fresh mountain snowfall flag                |
| lying snow height     | NUMBER(3)   | Lying snow height decametres                |
| cs_24hr_sun_dur_q     | NUMBER(5)   | QC code - Campbell-Stokes sunshine duration |
| wmo_24hr_sun_dur_q    | NUMBER(5)   |                                             |
| conc_state_id_q       | NUMBER(5)   | QC code - concrete state code               |
| snow_depth_q          | NUMBER(5)   | QC code - snow depth                        |
| frsh_snw_amt_q        | NUMBER(5)   | QC code - fresh snow amount                 |
| snow_day_id_q         | NUMBER(5)   | QC code - snow day code                     |
| hail_day_id_q         | NUMBER(5)   | QC code - hail day code                     |
| thunder_day_flag_q    | NUMBER(5)   | QC code - thunder day flag                  |
| gale_day_flag_q       | NUMBER(5)   | QC code - gale day flag                     |
| lying_snow_ht_q       | NUMBER(5)   | QC code – lying snow height                 |
| meto_stmp_time        | DATE        | Met Office receipt stamp time               |
| midas_stmp_etime      | NUMBER(6)   | Elapsed time to storage in MIDAS minutes    |

| VIEW | weather_hrly_ob |
|------|-----------------|
|------|-----------------|

**Description:** This entity contains SYNOPs and METARs measured during the hour ending at the stated date and time. The identifier is climatological station number, DCNN or WMO station number, or ICAO-id. Non-key attributes are taken from mp.hmwr, mc.hdata and mop.hdata.egxx. It also contains sunshine duration measured during the hour ending at the specified time. Hourly sunshine is reported using Metform 3445, and the value is reported as "hour beginning". The MIDAS ingestion software makes the necessary transformation so that the observations are stored at "hour ending", consistent with other hourly data.

| PK | Attribute | Datatype    | Description / Units / Precision |
|----|-----------|-------------|---------------------------------|
| *  | ob_time   | DATE        | Date and time of observation    |
| *  | id        | VARCHAR2(8) |                                 |
| *  | id_type   | VARCHAR2(4) | Identifier type                 |



| met_domain_name    | VARCHAR2(8) |                                      |
|--------------------|-------------|--------------------------------------|
| version_num        | NUMBER(1)   | Observation version number           |
| src_id             | NUMBER(6)   | Unique source identifier             |
| rec_st_ind         | NUMBER(4)   | State indicator for the record       |
| wind_speed_unit_id | CHAR(1)     | Wind speed unit code                 |
| src_opr_type       | CHAR(1)     | Source operation type code           |
| wind_direction     | NUMBER(3)   | Wind direction degs true             |
| wind_speed         | NUMBER(3)   | Wind speed knots                     |
| prst_wx_id         | CHAR(2)     | Present weather code                 |
| past_wx_id_1       | CHAR(1)     | Past weather code #1                 |
| past_wx_id_2       | CHAR(1)     | Past weather code #2                 |
| cld_ttl_amt_id     | CHAR(1)     | Total cloud amount code oktas        |
| low_cld_type_id    | CHAR(1)     | Low cloud type code                  |
| med_cld_type_id    | CHAR(1)     | Medium cloud type code               |
| hi_cld_type_id     | CHAR(1)     | High cloud type code                 |
| cld_base_amt_id    | CHAR(1)     | Cloud base amount code               |
| cld_base_ht        | NUMBER(4)   | Cloud base height code decametres    |
| visibility         | NUMBER(4)   | Visibility decametres                |
| msl_pressure       | NUMBER(5,1) | Mean sea level air pressure 0.1 hpa  |
| cld_amt_id_1       | CHAR(1)     | Layer cloud amount code #1           |
| cloud_type_id_1    | CHAR(1)     | Cloud type code #1                   |
| cld_base_ht_id_1   | NUMBER(4)   | Cloud base height code #1 decametres |
| cld_amt_id_2       | CHAR(1)     | Layer cloud amount code #2           |
| cloud_type_id_2    | CHAR(1)     | Cloud type code #2                   |
| cld_base_ht_id_2   | NUMBER(4)   | Cloud base height code #2 decametres |
| cld_amt_id_3       | CHAR(1)     | Layer cloud amount code #3           |
| cloud_type_id_3    | CHAR(1)     | Cloud type code #3                   |
| cld_base_ht_id_3   | NUMBER(4)   | Cloud base height code #3 decametres |
| cld_amt_id_4       | CHAR(1)     | Layer cloud amount code #4           |
| cloud_type_id_4    | CHAR(1)     | Cloud type code #4                   |
| cld_base_ht_id_4   | NUMBER(4)   | Cloud base height code #4 decametres |
| vert_vsby          | NUMBER(3)   | Vertical visibility decametres       |
| air_temperature    | NUMBER(3,1) | Air temperature<br>0.1 deg C         |
| dewpoint           | NUMBER(3,1) | Dewpoint temperature<br>0.1 deg C    |
| wetb_temp          | NUMBER(3,1) | Wet bulb temperature 0.1 deg C       |



| rltv_hum           | NUMBER(4,1) | Calculated relative humidity           |
|--------------------|-------------|----------------------------------------|
| stn_pres           | NUMBER(5,1) | Station air pressure<br>0.1 hpa        |
| alt_pres           | NUMBER(4)   | Altimeter pressure 0.1 hpa             |
| ground_state_id    | CHAR(2)     | Ground state code                      |
| q10mnt_mxgst_spd   | NUMBER(3)   | 10 minute maximum gust speed knots     |
| cavok_flag         | CHAR(1)     | cavok flag                             |
| cs_hr_sun_dur      | NUMBER(3,1) | Campbell-Stokes hour sunshine duration |
| wmo_hr_sun_dur     | NUMBER(3,1) |                                        |
| wind_direction_q   | NUMBER(5)   | QC code - wind direction               |
| wind_speed_q       | NUMBER(5)   | QC code - wind speed                   |
| prst_wx_id_q       | NUMBER(5)   | QC code - present weather code         |
| past_wx_id_1_q     | NUMBER(5)   | QC code - past weather code #1         |
| past_wx_id_2_q     | NUMBER(5)   | QC code - past weather code #2         |
| cld_ttl_amt_id_q   | NUMBER(5)   | QC code - cloud total amount           |
| low_cld_type_id_q  | NUMBER(5)   | QC code - low cloud type code          |
| med_cld_type_id_q  | NUMBER(5)   | QC code - medium cloud type co         |
| hi_cld_type_id_q   | NUMBER(5)   | QC code - high cloud type code         |
| cld_base_amt_id_q  | NUMBER(5)   | QC code - cloud base amount            |
| cld_base_ht_q      | NUMBER(5)   | QC code - cloud base height            |
| visibility_q       | NUMBER(5)   | QC code - visibility                   |
| msl_pressure_q     | NUMBER(5)   | QC code - msl pressure                 |
| air_temperature_q  | NUMBER(5)   | QC code - air temperature              |
| dewpoint_q         | NUMBER(5)   | QC code - dewpoint                     |
| wetb_temp_q        | NUMBER(5)   | QC code - wet bulb                     |
| ground_state_id_q  | NUMBER(5)   | QC code - ground state code            |
| cld_amt_id_1_q     | NUMBER(5)   | QC code - layer cloud amount #1        |
| cloud_type_id_1_q  | NUMBER(5)   | QC code - cloud type code #1           |
| cld_base_ht_id_1_q | NUMBER(5)   | QC code - cloud base ht code #1        |
| cld_amt_id_2_q     | NUMBER(5)   | QC code - layer cloud amount #2        |
| cloud_type_id_2_q  | NUMBER(5)   | QC code - cloud type code #2           |
| cld_base_ht_id_2_q | NUMBER(5)   | QC code - cloud base ht code #2        |
| cld_amt_id_3_q     | NUMBER(5)   | QC code - layer cloud amount #3        |
| cloud_type_id_3_q  | NUMBER(5)   | QC code - cloud type code #3           |
| cld_base_ht_id_3_q | NUMBER(5)   | QC code - cloud base ht code #3        |
| cld_amt_id_4_q     | NUMBER(5)   | QC code - layer cloud amount #4        |
| cloud_type_id_4_q  | NUMBER(5)   | QC code - cloud type code #4           |
| cld_base_ht_id_4_q | NUMBER(5)   | QC code - cloud base ht code #4        |
| vert_vsby_q        | NUMBER(5)   | QC code - vertical visibility          |
| stn_pres_q         | NUMBER(5)   | QC code - station pressure             |
| alt_pres_q         | NUMBER(5)   | QC code - altimeter pressure           |
| q10mnt_mxgst_spd_q | NUMBER(5)   | QC code - 10 min max gust spee         |
| cs_hr_sun_dur_q    | NUMBER(5)   | <u> </u>                               |



| wmo_hr_sun_dur_q   | NUMBER(5)   |                                         |
|--------------------|-------------|-----------------------------------------|
| wind_direction_j   | CHAR(1)     | Descriptor - wind direction             |
| wind_speed_j       | CHAR(1)     | Descriptor - wind speed                 |
| prst_wx_id_j       | CHAR(1)     | Descriptor - present weather            |
| past_wx_id_1_j     | CHAR(1)     | Descriptor - past weather #1            |
| past_wx_id_2_j     | CHAR(1)     | Descriptor - past weather #2            |
| cld_amt_id_j       | CHAR(1)     | Descriptor - cloud total amt            |
| cld_ht_j           | CHAR(1)     | Descriptor - cloud base ht              |
| visibility_j       | CHAR(1)     | Descriptor - visibility                 |
| msl_pressure_j     | CHAR(1)     | Descriptor - msl pressure               |
| air_temperature_j  | CHAR(1)     | Descriptor - air temperature            |
| dewpoint_j         | CHAR(1)     | Descriptor - dewpoint                   |
| wetb_temp_j        | CHAR(1)     | Descriptor - wet bulb                   |
| rltv_hum_j         | VARCHAR2(1) | Descriptor - relative humidity          |
| vert_vsby_j        | CHAR(1)     | Descriptor - vertical vis               |
| stn_pres_j         | CHAR(1)     | Descriptor - station pressure           |
| alt_pres_j         | CHAR(1)     | Descriptor - altimeter press            |
| q10mnt_mxgst_spd_j | CHAR(1)     | Descriptor - 10 min max gust            |
| meto_stmp_time     | DATE        | Met Office receipt stamp time           |
| midas_stmp_etime   | NUMBER(6)   | Elapsed time to storage in MIDA minutes |
| snow_depth         | NUMBER(4)   | Snow depth<br>cm                        |
| snow_depth_q       | NUMBER(5)   | QC code - snow depth                    |

| VIEW | wind_mean_ob |
|------|--------------|
|------|--------------|

**Description:** This entity contains values of mean wind and gust direction and speed measured during one or more hours ending at the stated date and time. "Hour ending" is contrary to the CDB practice, which uses hour beginning at the stated time, but provides a uniform practice in MIDAS, and simplifies the creation of SQL views. The rows in this table are of two types:

- Wind and gust direction and speed measured over a WHOLE hour
   There may be hourly gust data from SYNOPs (with an id\_type of WMO) where the gust speed is 25 knots or more. However these will be overwritten by later input eg. hourly climate message data (from ESAWS or SAMOS), DALE tapes or Metform 6910.
- Mean value of wind speed for a 24 hour period, usually 09-09Z, obtained from run-of-wind.

This table is NOT intended for:

- Ten minute winds recorded in SYNOPs and METARs they are stored in weather hourly ob
- Mean speeds for 24 hours, obtained by meaning the hourly means they are derived.

Identifier is DCNN + anemograph site number.

| PK | Attribute | Datatype | Description / Units / Precision |
|----|-----------|----------|---------------------------------|



| * ob_end_time     | DATE        | Data and time at end of observation      |
|-------------------|-------------|------------------------------------------|
| * id_type         | VARCHAR2(4) | Identifier type                          |
| * id              | VARCHAR2(8) |                                          |
| * ob_hour_count   | NUMBER(3)   | Observation hour count                   |
| met_domain_name   | VARCHAR2(8) |                                          |
| * version_num     | NUMBER(1)   | Observation version number               |
| src_id            | NUMBER(6)   | Unique source identifier                 |
| rec_st_ind        | NUMBER(4)   | State indicator for the record           |
| mean_wind_dir     | NUMBER(3)   | Mean wind direction degs true            |
| mean_wind_speed   | NUMBER(4,1) | Mean wind speed knots                    |
| max_gust_dir      | NUMBER(3)   | Direction of maximum gust degs true      |
| max_gust_speed    | NUMBER(3)   | Speed of maximum gust knots              |
| max_gust_ctime    | NUMBER(4)   | Clock-time of maximum gust hhmm          |
| mean_wind_dir_q   | NUMBER(5)   | QC code - mean wind direction            |
| mean_wind_speed_q | NUMBER(5)   | QC code - mean wind speed                |
| max_gust_dir_q    | NUMBER(5)   | QC code - maximum gust direction         |
| max_gust_speed_q  | NUMBER(5)   | QC code - maximum gust speed             |
| max_gust_ctime_q  | NUMBER(5)   | QC code - maximum gust time              |
| mean_wind_dir_j   | CHAR(1)     | Descriptor - mean wind dirn              |
| mean_wind_speed_j | CHAR(1)     | Descriptor - mean wind speed             |
| max_gust_dir_j    | CHAR(1)     | Descriptor - max gust dirn               |
| max_gust_speed_j  | CHAR(1)     | Descriptor - max gust speed              |
| meto_stmp_time    | DATE        | Met Office receipt stamp time            |
| midas_stmp_etime  | NUMBER(6)   | Elapsed time to storage in MIDAS minutes |

| VIEW | year_sfc_elem |
|------|---------------|
|------|---------------|

**Description:** Midas.Year\_Sfc\_Elem table contains annual surface values of specified met elements. The Met\_Element\_Id column defines and constrains the met element via a foreign-key relationship. The owner Year\_Sfc\_Rec constrains Ob\_Date and Met\_Domain\_Name, and implicitly defines Id\_Type and Id. Carlos.Year\_Sfc\_Elem is the corresponding updatable view, with one-for-one projection of the columns. This view restricts rows to those with the appropriate met domain name, i.e. CARLOS and storage table name, i.e. Year\_Sfc\_Elem.

| PK | Attribute       | Datatype    | Description / Units / Precision |
|----|-----------------|-------------|---------------------------------|
| *  | Src_id          | NUMBER(6)   |                                 |
| *  | ob_date         | DATE        |                                 |
| *  | met_domain_name | VARCHAR2(8) | e.g. 'CARLOS'                   |
| *  | met_element_id  | NUMBER(5)   |                                 |
| *  | version_num     | NUMBER(1)   |                                 |
| *  | rec_st_ind      | NUMBER(4)   |                                 |



| met_elem_year_day_cnt         | NUMBER(2)   | Count of days in year when the met element occurred           |
|-------------------------------|-------------|---------------------------------------------------------------|
| met_elem_year_hour_cnt        | NUMBER(3)   | Count of hours in year when the met element occurred          |
| met_elem_min_val              | NUMBER(6,2) | Minimum value of the met element                              |
| met_elem_min_val_year_day_num | NUMBER(2)   | Day of the year on which the min value occurred               |
| met_elem_mean_val             | NUMBER(6,2) | Mean value of the met element                                 |
| met_elem_sd_val               | NUMBER(6,2) | Standard deviation                                            |
| met_elem_max_val              | NUMBER(6,2) | Maximum value of the met element                              |
| met_elem_max_val_year_day_num | NUMBER(2)   | Day of the year on which the max value occurred               |
| met_elem_miss_year_hour_cnt   | NUMBER(3)   | Count of hours in year when the element was missing           |
| met_elem_amt                  | NUMBER(6,2) | e.g. rainfall amount                                          |
| met_elem_occr_prc             | NUMBER(3)   | Percent of occurrences, e.g. NE wind                          |
| met_elem_qual_id              | CHAR(1)     | Quality of the met element                                    |
| met_elem_sbst_year_hour_cnt   | NUMBER(3)   | Count of hours in year when substitute values used.           |
| met_elem_sbst_code            | CHAR(2)     | Defines substitute values                                     |
| last_update_time              | DATE        | Stores date/time when table was last updated using a trigger. |

| VIEW | year_sfc_rec |
|------|--------------|
|      |              |

**Description:** This table is the owner of a one or more Year\_Sfc\_Elem entries for the given Source, Year and Met\_Domain\_Name. It defines the Id\_Type and Id used by the Source, and constrains Ob\_Date to the last day of the year. The Year\_Sfc\_Elem entries are annual calculated values from globally located sources. These values are primarily Carlos rainfall values derived from Midas data.

| PK | Attribute          | Datatype    | Description / Units / Precision |
|----|--------------------|-------------|---------------------------------|
| *  | src_id             | NUMBER(6)   |                                 |
| *  | ob_date            | DATE        |                                 |
| *  | met_domain_name    | VARCHAR2(8) | e.g. 'CARLOS' etc.              |
|    | rec_st_ind         | NUMBER(4)   |                                 |
|    | id_type            | VARCHAR2(4) |                                 |
|    | id                 | VARCHAR2(8) |                                 |
|    | wind_speed_unit_id | CHAR(1)     |                                 |

#### 9.3 MIDAS Tables and MIDASUPD Views - Marine

#### **Observation Time Constraint**

A time constraint exists on all MIDASUPD views, except those for standing data tables, such that no observation data with a date/time greater than one hour in the future can be stored in MIDAS (e.g. 1000 ob can be stored at



0952). Any rejections are notified. This will prevent instances of data 'labelled' with a date later than 'today' being loaded into MIDAS.

Cross references between Rigs and light vessels that have data stored in MIDAS under different IDs. ID cross references

TABLE mar\_acq\_log

**Description:** This entity records recent marine data acquisitions into the database. It contains the key of the data records (including lat/long), the stamp times and the batch number of those records. To assist in identifying recent data which is not yet subject to QC, the batch number is indexed.

All users may query this table, to ascertain if MIDAS contains their required data; this should prove more efficient than searching the meteorological data records. However, this table will contain only RECENT records where QC is not yet complete - typically this will be data less than 45 days old. A routine job will be used to remove data older than this from the data.

Attributes latitude and longitude are part of the primary key of this record, and have a precision of 0.1 degree. The attribute ob\_hour\_count is not included, because all marine observations are for the stated hour. Only precipitation has a period, and this is not part of its primary key. Attribute met\_domain\_name is not part of the primary key, because ships only store one type of report at a time in one table.

Procedure MAR\_ACQ\_DEL each day deletes data greater than 45 days old.

| PK | Attribute           | Datatype    | Description / Units / Precision          |
|----|---------------------|-------------|------------------------------------------|
| *  | ob_time             | DATE        | Observation date and time                |
| *  | latitude            | NUMBER(3,1) | 0.1 deg                                  |
| *  | longitude           | NUMBER(4,1) | 0.1 deg                                  |
| *  | id                  | VARCHAR2(8) | Identifier                               |
| *  | id_type             | VARCHAR2(4) | Identifier type                          |
| *  | version_flag        | CHAR(1)     |                                          |
|    | met_domain_name     | VARCHAR2(8) |                                          |
|    | longitude_band_code | CHAR(1)     |                                          |
|    | batch_stamp_time    | DATE        | Met Office receipt stamp time            |
|    | ob_rcpt_code        | CHAR(1)     |                                          |
|    | midas_stmp_etime    | NUMBER(6)   | Elapsed time to storage in MIDAS minutes |

| TABLE | marine_climatology |
|-------|--------------------|

**Description:** This table contains mean and standard deviation values of air temperature and sea-surface temperature for a 5-degree square and month. Latitude and longitude are for the SW corner of the square and have a precision of 0.1 degrees for consistency with other marine tables, but will be specified in whole degrees. The table will not contain values for squares which are wholly on land. These values are used for the daily quality control of marine observations. The period for which the values apply and the method of calculation are not known.



| PK | Attribute                    | Datatype    | Description / Units / Precision |
|----|------------------------------|-------------|---------------------------------|
| *  | month_number                 | NUMBER(2)   |                                 |
| *  | latitude                     | NUMBER(3,1) |                                 |
| *  | longitude                    | NUMBER(4,1) |                                 |
|    | mean_air_temp                | NUMBER(3,1) |                                 |
|    | sd_air_temperature           | NUMBER(4,2) |                                 |
|    | mean_sea_surface_temperature | NUMBER(3,1) |                                 |
|    | sd_sea_surface_temperature   | NUMBER(4,2) |                                 |

| TABLE | marine_current |
|-------|----------------|
|-------|----------------|

**Description:** This entity contains direction and speeds of marine currents. Time and position are the mid-points, calculated from a first and final position and times. Non-key attributes are copied from ma.main.ocn.

| PK | Attribute          | Datatype    | Description / Units / Precision |
|----|--------------------|-------------|---------------------------------|
| *  | ob_month           | NUMBER(2)   | Observation month               |
| *  | latitude           | NUMBER(3,1) | 0.1 deg                         |
| *  | longitude          | NUMBER(4,1) | 0.1 deg                         |
| *  | id                 | VARCHAR2(8) |                                 |
| *  | id_type            | VARCHAR2(4) | Identifier type                 |
| *  | met_domain_name    | VARCHAR2(8) |                                 |
|    | rec_st_ind         | NUMBER(4)   | State indicator for the record  |
|    | ob_year            | NUMBER(4)   | Observation year                |
|    | ob_day             | NUMBER(2)   | Observation day                 |
|    | ob_end_ctime       | NUMBER(4)   | Clock-time at observation end   |
|    | current_ob_period  | NUMBER(2)   | Duration of observation hours   |
|    | curr_dir           | NUMBER(3)   | Current direction               |
|    | current_speed      | NUMBER(4,2) | 0.1 knot                        |
|    | ship_mean_draught  | NUMBER(3)   | Metres                          |
|    | country_format_num | NUMBER(5)   |                                 |

| TABLE | marine_ice_ob |
|-------|---------------|
|-------|---------------|

**Description:** The midas.marine\_ice\_ob table contains ice observations from ships. The observations are made during the hour ending at the stated date and time and are defined by position (latitude and longitude) and by time. Duplicates can exist at a specified position and time, e.g. when ships are alongside for bunkering, so the identifier of the ship is part of the primary key of the entity. Identifier is either call-sign or buoy-id, depending upon report type. Only about 2% of marine observations include ice reports, so the icing attributes of a marine report are stored in a separate table because of their very low occurrence, and to correct a problem with pre-1979 reports. Each marine\_ice\_ob row may contain 0, 1 or 2 corresponding entries in midas.marine\_ob. A marine\_ice\_ob without a corresponding marine\_ob will be very rare. Each marine\_ob row may contain 0, 1 or 2 corresponding rows in marine\_ice\_ob. Most marine\_ob rows will not have a corresponding entry in marine\_ice\_ob. Although the icing attributes do not have any QC, QEv may decide to include this table when the date, time or position of the corresponding marine\_ob entry is QCd.



midasupd.marine\_ice\_ob is the corresponding updateable view, with one-for-one projection of the columns. midasvu.marine\_ice\_ob is a read-only view, with one-for-one projection of the columns.

| PK | Attribute                  | Datatype    | Description / Units / Precision                                                                            |
|----|----------------------------|-------------|------------------------------------------------------------------------------------------------------------|
| *  | ob_time                    | DATE        | Date and time of observation                                                                               |
| *  | latitude                   | NUMBER(3,1) | 0.1 deg                                                                                                    |
| *  | longitude                  | NUMBER(4,1) | 0.1 deg                                                                                                    |
| *  | id                         | VARCHAR2(8) |                                                                                                            |
| *  | id_type                    | VARCHAR2(4) | Identifier type                                                                                            |
|    | met_domain_name            | VARCHAR2(8) |                                                                                                            |
|    | ice_version_flag           | CHAR(1)     | Observation version number                                                                                 |
|    | ob_rcpt_code               | CHAR(1)     | Code for reception method                                                                                  |
|    | rec_st_ind                 | NUMBER(3)   | State indicator for the record                                                                             |
|    | country_format_num         | NUMBER(5)   | Country format number                                                                                      |
|    | ice_format_id              | VARCHAR2(2) | Pre1979: kind of ice<br>1979+: concentration/arrangement<br>of sea ice<br>code 0639                        |
|    | ice_age_id                 | VARCHAR2(2) | Pre1979: effect of ice on navigation 1979+: stage of development code 3739                                 |
|    | land_ice_type_id           | VARCHAR2(2) | Pre1979: bearing of principal ice edge 1979+: ice of land origin code 0439                                 |
|    | ice_edge_id                | VARCHAR2(2) | Pre1979: distance of ice edge from reporting ship 1979+: bearing of principal ice edge code 0739           |
|    | ice_cond_trnd              | VARCHAR2(2) | Pre1979: Orientation of ice edge<br>1979+: Ice situation and trend over<br>proceeding 3 hours<br>code 5239 |
|    | ice_accr_type              | CHAR(1)     | Ice accretion type                                                                                         |
|    | ice_accr_thkn              | NUMBER(3)   | Ice accretion thickness                                                                                    |
|    | ice_accr_rate              | CHAR(1)     | Ice accretion rate code                                                                                    |
|    | ice_type_code              | CHAR(1)     | e2 kind of ice<br>Pre1979 reports only                                                                     |
|    | ice_navigation_effect_code | CHAR(1)     | K effect of ice on navigation<br>Pre1979 reports only                                                      |
|    | ice_edge_distance_code     | CHAR(1)     | r distance of ice edge from reporting<br>ship<br>Pre1979 reports only                                      |
|    | ice_edge_orientation_code  | CHAR(1)     | e orientation of ice edge<br>Pre1979 reports only                                                          |
|    | ice_format_id_q            | NUMBER(5)   | QC code – Concentration                                                                                    |
|    | ice_age_id_q               | NUMBER(5)   | QC code – Stage of development                                                                             |



| land_ice_type_id_q | NUMBER(5) | QC code – Ice of land origin        |
|--------------------|-----------|-------------------------------------|
| ice_edge_id_q      | NUMBER(5) | QC code – Bearing of principal edge |
| ice_cond_trnd_q    | NUMBER(5) | QC code – Ice situation and trend   |
| ice_accr_type_q    | NUMBER(5) | QC code – Accretion type            |
| ice_accr_thkn_q    | NUMBER(5) | QC code – Accretion thickness       |
| ice_accr_rate_q    | NUMBER(5) | QC code – Accretion rate            |

#### **Triggers**

| Trigger Name                                                        | marine_ice_upd                                                                                                                                                                                                                                          |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| When Fired Row level update trigger fired after each row is updated |                                                                                                                                                                                                                                                         |  |
| Description                                                         | If changes are made to any of the fields which can be QC'd then the old values from before the update are stored for use by the trigger MARINE_ICE_UPD_V0. Details are only stored if the field(s) that has been updated was not previously set to NULL |  |

| Trigger Name | marine_ice_upd_v0                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| When Fired   | Statement level update trigger fired after updates                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Description  | The trigger will retain the orginal version of the MARINE_ICE_OB record as a version ZERO row. If a version ZERO doesn't exist then insert one. If version ZERO exists but contains NULL values for met elements then update the version ZERO record with the non-NULL values. If a version ZERO exists and non-NULL values are present, then these will not be updated. This protects the original non-NULL values that were entered. |  |  |

| Trigger Name marine_ice_del_adr |                                                                              |
|---------------------------------|------------------------------------------------------------------------------|
| When Fired                      | Statement level update trigger fired after deletes                           |
| Description                     | The trigger will remove the associated v0 rows if a v1 row is being deleted. |

| Trigger Name   marine_ice_del_ad |                                                                              |
|----------------------------------|------------------------------------------------------------------------------|
| When Fired                       | Table level update trigger fired after deletes                               |
| Description                      | The trigger will remove the associated v0 rows if a v1 row is being deleted. |



| TABLE | marine_ob |
|-------|-----------|

**Description:** The midas.marine\_ob table contains marine meteorological values measured during the hour ending at the stated date and time. Marine reports are defined by position (latitude and longitude) and by time. Duplicates can exist at a specified position and time, e.g. when ships are alongside for bunkering, so the identifier of the ship or buoy is part of the primary key of the entity. Identifier is either call-sign or buoy-id, depending upon report type. Most marine observations do not include cloud layers, ice reports or precipitation. Only about 2% of marine observations include these values so ice attributes are stored in midas.marine\_ice\_ob. The version\_flag is a CHAR(1) variation of version\_num - this was introduced to improve space utilisation and shorten the primary key.

Most data enquiries are of two types:

- a small area for a few days or,
- a small area for many years or a whole time-series

Consequently, there are Fortran data extraction routines for one 10-deg-sq for one day, and one 10-deg-sq for one month. To retrieve a few days, the first routine is called a number of times. To get many years the second routine is called repeatedly. Two additional Fortran data extraction routines are provided for QC. These extract one ship (ID) for one day and one ship (ID) for one month. They allow checks on the continuity of observations. All new data gets QCd. Sometimes, large batches of old data (e.g. 1,000,000 obs) are received, and this also gets QCd, but this does not happen very often. When UK land data is more than three years old, the "all times for one place" type of enquiry tends to take over from the "all places for one time" queries. Marine enquiries do not have this change in usage.

This table has two-dimensional partitioning using longitude\_band\_code (A -J) and by ob\_time, with an equipartioned primary index. midasupd.marine\_ob is the corresponding updateable view, with one-for-one projection of the columns.

There are five triggers associated with this table. They are listed after the description of the marine\_ob table.

| PK | Attribute           | Datatype    | Description / Units / Precision |
|----|---------------------|-------------|---------------------------------|
| *  | ob_time             | DATE        | Date and time of observation    |
| *  | latitude            | NUMBER(3,1) | 0.1 deg                         |
| *  | longitude           | NUMBER(4,1) | 0.1 deg                         |
| *  | id                  | VARCHAR2(8) |                                 |
| *  | id_type             | VARCHAR2(4) | Identifier type                 |
| *  | version_flag        | CHAR(1)     | Observation version number      |
| *  | longitude_band_code | CHAR(1)     |                                 |
|    | met_domain_name     | VARCHAR2(8) |                                 |
|    | ob_rcpt_code        | CHAR(1)     | Code for reception method       |
|    | rec_st_ind          | NUMBER(4)   | State indicator for the record  |
|    | country_format_num  | NUMBER(5)   | Country format number           |
|    | src_opr_type        | CHAR(1)     | Source operation type code      |
|    | wind_direction      | NUMBER(3)   | Degs true                       |
|    | wind_speed          | NUMBER(3)   | Knots                           |
|    | prst_wx_id          | CHAR(2)     | Present weather code            |
|    | past_wx_id_1        | CHAR(1)     | Past weather code #1            |
|    | past_wx_id_2        | CHAR(1)     | Past weather code #2            |
|    | cld_ttl_amt_id      | CHAR(1)     | Total cloud amount code         |



| low_cld_type_id  | CHAR(1)     | Low cloud type code                  |
|------------------|-------------|--------------------------------------|
| med_cld_type_id  | CHAR(1)     | Medium cloud type code               |
| hi_cld_type_id   | CHAR(1)     | High cloud type code                 |
| cld_base_amt_id  | CHAR(1)     | Cloud base amount code               |
| cld_base_ht      | NUMBER(4)   | Cloud base height decametres         |
| msl_pressure     | NUMBER(5,1) | Mean sea level air pressure 0.1 hpa  |
| visibility       | NUMBER(4)   | Decametres                           |
| air_temperature  | NUMBER(3,1) | Air temperature<br>0.1 deg C         |
| dewpoint         | NUMBER(3,1) | Dewpoint temperature<br>0.1 deg C    |
| wetb_temp        | NUMBER(3,1) | Wetbulb temperature 0.1 deg C        |
| rltv_hum         | NUMBER(4,1) | Calculated relative humidity         |
| sea_temperature  | NUMBER(3,1) | 0.1 deg C                            |
| pres_tdcy_id     | CHAR(1)     | Pressure tendency characteristi code |
| pres_tdcy_amt    | NUMBER(4,1) | Amount of pressure change 0.1 hpa    |
| wind_wave_per    | NUMBER(3,1) | Wind wave period 0.1 sec             |
| wind_wave_ht     | NUMBER(3,1) | Wind wave height 0.1 metre           |
| swell_dir_1      | NUMBER(3)   | Swell direction code #1              |
| swell_period_1   | NUMBER(3,1) | Swell wave period #1 0.1 sec         |
| swell_height_1   | NUMBER(3,1) | Swell height #1<br>0.1 metre         |
| swell_dir_2      | NUMBER(3)   | Swell direction code #2              |
| swell_period_2   | NUMBER(3,1) | Swell wave period #2<br>0.1 sec      |
| swell_height_2   | NUMBER(3,1) | Swell height #2<br>0.1 metre         |
| msr_wave_dir     | NUMBER(3)   | Wave direction deg true              |
| msr_wave_per     | NUMBER(3,1) | Measured wave period 0.1 sec         |
| msr_wave_height  | NUMBER(3,1) | Measured wave height 0.1 metre       |
| ship_direction   | CHAR(1)     | Ship direction code                  |
| ship_distance    | NUMBER(3)   | Ship distance nautical miles         |
| location_q       | NUMBER(5)   | QC code - location                   |
| wind_direction_q | NUMBER(5)   | QC code - wind direction             |
| wind_speed_q     | NUMBER(5)   | QC code - wind speed                 |
| prst_wx_id_q     | NUMBER(5)   | QC code - present weather code       |



| past_wx_id_1_q    | NUMBER(5)   | QC code - past weather code #1                           |
|-------------------|-------------|----------------------------------------------------------|
| past_wx_id_2_q    | NUMBER(5)   | QC code - past weather code #2                           |
| cld_ttl_amt_id_q  | NUMBER(5)   | QC code - cloud total amount                             |
| low_cld_type_id_q | NUMBER(5)   | QC code - low cloud type code                            |
| med_cld_type_id_q | NUMBER(5)   | QC code - medium cloud type code                         |
| hi_cld_type_id_q  | NUMBER(5)   | QC code - high cloud type code                           |
| cld_base_amt_id_q | NUMBER(5)   | QC code - cloud base amount                              |
| cld_base_ht_q     | NUMBER(5)   | QC code - cloud base height                              |
| visibility_q      | NUMBER(5)   | QC code - visibility                                     |
| msl_pressure_q    | NUMBER(5)   | QC code - msl pressure                                   |
| air_temperature_q | NUMBER(5)   | QC code - air temperature                                |
| dewpoint_q        | NUMBER(5)   | QC code - dewpoint                                       |
| wetb_temp_q       | NUMBER(5)   | QC code - wetbulb temperature                            |
| sea_temperature_q | NUMBER(5)   | QC code - sea temperature                                |
| wind_wave_per_q   | NUMBER(5)   | QC code - wind wave period                               |
| wind_wave_ht_q    | NUMBER(5)   | QC code - wind wave height                               |
| swell_dir_1_q     | NUMBER(5)   | QC code - swell direction #1                             |
| swell_period_1_q  | NUMBER(5)   | QC code - swell period #1                                |
| swell_height_1_q  | NUMBER(5)   | QC code - swell height #1                                |
| swell_dir_2_q     | NUMBER(5)   | QC code - swell direction #2                             |
| swell_period_2_q  | NUMBER(5)   | QC code - swell period #2                                |
| swell_height_2_q  | NUMBER(5)   | QC code - swell height #2                                |
| msr_wave_per_q    | NUMBER(5)   | QC code - wave period                                    |
| msr_wave_height_q | NUMBER(5)   | QC code - msr half metre wave ht                         |
| location_j        | CHAR(1)     | Descriptor - location                                    |
| wind_direction_j  | CHAR(1)     | Descriptor - wind direction                              |
| wind_speed_j      | CHAR(1)     | Descriptor - wind speed                                  |
| prst_wx_id_j      | CHAR(1)     | Descriptor - present weather                             |
| past_wx_id_j      | CHAR(1)     | Descriptor - past weather                                |
| cld_ht_j          | CHAR(1)     | Descriptor - cloud height                                |
| visibility_j      | CHAR(1)     | Descriptor - visibility                                  |
| msl_pressure_j    | CHAR(1)     | Descriptor - msl pressure                                |
| air_temperature_j | CHAR(1)     | Descriptor - air temperature                             |
| dewpoint_j        | CHAR(1)     | Descriptor - dewpoint                                    |
| wetb_temp_j       | CHAR(1)     | Descriptor - wetbulb temp                                |
| rltv_hum_j        | VARCHAR2(1) | Descriptor - relative humidity                           |
| sea_temperature_j | CHAR(1)     | Descriptor - sea temperature                             |
| wind_wave_j       | CHAR(1)     | Descriptor - wind wave                                   |
| swell_j           | CHAR(1)     | Descriptor - swell wave                                  |
| msr_wave_j        | CHAR(1)     | Descriptor - measured wave                               |
| batch_stamp_time  | DATE        | Time at start of the ingestion batch containing this row |



| metdb_delay_etime | NUMBER(6)   | Difference between time of observation and time of storage in MetDB           |
|-------------------|-------------|-------------------------------------------------------------------------------|
| cld_amt_id_1      | CHAR(1)     | Layer cloud amount code #1                                                    |
| cloud_type_id_1   | CHAR(1)     | Cloud type code #1                                                            |
| cld_base_ht_id_1  | NUMBER(4)   | Cloud base height code #1 decametres                                          |
| cld_amt_id_2      | CHAR(1)     | Layer cloud amount code #2                                                    |
| cloud_type_id_2   | CHAR(1)     | Cloud type code #2                                                            |
| cld_base_ht_id_2  | NUMBER(4)   | Cloud base height code #2 decametres                                          |
| cld_amt_id_3      | CHAR(1)     | Layer cloud amount code #3                                                    |
| cloud_type_id_3   | CHAR(1)     | Cloud type code #3                                                            |
| cld_base_ht_id_3  | NUMBER(4)   | Cloud base height code #3 decametres                                          |
| cld_amt_id_4      | CHAR(1)     | Layer cloud amount code #4                                                    |
| cloud_type_id_4   | CHAR(1)     | Cloud type code #4                                                            |
| cld_base_ht_id_4  | NUMBER(4)   | Cloud base height code #4 decametres                                          |
| vert_vsby         | NUMBER(3)   | Vertical visibility                                                           |
| prcp_ob_hr_cnt    | NUMBER(3)   | Precipitation hour count                                                      |
| prcp_amt          | NUMBER(5,1) | Precipitation amount mm                                                       |
| cld_lyr_1_q       | NUMBER(5)   | QC code - layer cloud amount #1, cloud type code #1 and cloud base ht code #1 |
| cld_lyr_2_q       | NUMBER(5)   | QC code - layer cloud amount #2, cloud type code #2 and cloud base ht code #2 |
| cld_lyr_3_q       | NUMBER(5)   | QC code - layer cloud amount #3, cloud type code #3 and cloud base ht code #3 |
| cld_lyr_4_q       | NUMBER(5)   | QC code - layer cloud amount #4, cloud type code #4 and cloud base ht code #4 |
| vert_vsby_q       | NUMBER(5)   | QC code - vertical visibility                                                 |
| max_gust_per      | NUMBER(5)   | Period of maximum gust relative t current time, in minutes e.g60 is last hour |
| max_gust_spd      | NUMBER(3)   | Max gust is knots                                                             |
| max_gust_spd_q    | NUMBER(5)   | QC code - max gust speed                                                      |

#### **Triggers**

| Trigger Name | marine_ob_ins                                                                 |
|--------------|-------------------------------------------------------------------------------|
|              | Row level insert and update trigger fired before each row is inserted/updated |



| Description | Calls the function to calculate the longitude band code from the longitude and then insert it into column LONGITUDE_BAND_CODE |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|
|-------------|-------------------------------------------------------------------------------------------------------------------------------|

| Trigger Name | marine_ob_upd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When Fired   | Row level update trigger fired after updates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Description  | The trigger serves two purposes. Firstly it maintains the primary keys on all of the child tables i.e. when a change is made to any of the primary key fields on MARINE_OB (ob_time, latitude, longitude, id, id_type) updates are performed on MAR_ACQ_LOG, MARINE_ICE_OB and MARINE_VOSCLIM_OB to maintain the referential integrity. Secondly if changes are made to any of the fields which can be QC'd then the old values from before the update are stored for use by the trigger MARINE_OB_UPD_V0. Details are only stored if the field(s) that has been updated was not previously set to NULL |

| Trigger Name | marine_ob_upd_v0                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When Fired   | Statement level update trigger fired after updates                                                                                                                                                                                                                                                                                                                                                                                 |
| Description  | The trigger will retain the orginal version of the MARINE_OB record as a version ZERO row. If a version ZERO doesn't exist then insert one. If version ZERO exists but contains NULL values for met elements then update the version ZERO record with the non-NULL values. If a version ZERO exists and non-NULL values are present, then these will not be updated. This protects the original non-NULL values that were entered. |

| Trigger Name | marine_ob_rh_trgr                                                                                                                                                    |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When Fired   | Row level insert and update trigger fired before each row is inserted/updated                                                                                        |
| Description  | Calls the function to calculate the relative humidity given the air temperature, pressure and wet bulb temperature. The result is then stored in the RLTV_HUM column |

| Trigger Name | marine_ob_acq                                              |
|--------------|------------------------------------------------------------|
| When Fired   | Row level insert trigger fired after row is inserted       |
| Description  | Calls the function to insert a record into the MAR_ACQ_LOG |

| Trigger Name | marine_ob_del_adr                                                                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When Fired   | Row level delete trigger fired after row is deleted                                                                                                                                              |
| Description  | Deletes v0 ob if the associated v1 ob is deleted. Will also delete associated v1 and v0 ob in the following tables: marine_ice_ob, marine_vosclim_ob and mar_acq_log. Also deletes associated v1 |



and v0 in marine\_ice\_ob, marine\_voscoim\_ob and mar\_acq\_log if a v0 row is deleted, which does not have an associated v1 row.

| Trigger Name | marine_ob_del_ad                                                                                                                                                                                                                                                                                                              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When Fired   | Table level delete trigger fired after row is deleted                                                                                                                                                                                                                                                                         |
| Description  | Deletes v0 ob if the associated v1 ob is deleted. Will also delete associated v1 and v0 ob in the following tables: marine_ice_ob, marine_vosclim_ob and mar_acq_log. Also deletes associated v1 and v0 in marine_ice_ob, marine_voscoim_ob and mar_acq_log if a v0 row is deleted, which does not have an associated v1 row. |

| TABLE | marine_vosclim_ob |
|-------|-------------------|

**Description:** The midas.marine\_vosclim\_ob table contains VOSCLIM data to support IMMT2 and 3 collected from observations from ships. The observations are made during the hour ending at the stated date and time and are defined by position (latitude and longitude) and by time. Duplicates can exist at a specified position and time, e.g. when ships are alongside for bunkering, so the identifier of the ship is part of the primary key of the entity. Identifier is either call-sign or buoy-id, depending upon report type. Only about 1.5% of marine observations include VOSCLIM data, so the VOSCLIM attributes of a marine report are stored in a separate table because of their very low occurrence. Each marine\_vosclim\_ob row may contain 0, 1 or 2 corresponding entries in midas.marine\_ob. A marine\_vosclim\_ob without a corresponding marine\_ob will be very rare. Each marine\_ob row may contain 0, 1 or 2 corresponding rows in marine\_vosclim\_ob. Most marine\_ob rows will not have a corresponding entry in marine\_vosclim\_ob. The QC attributes have been included although this data cannot currently be QC'd via MIDS.

midasupd.marine\_vosclim\_ob is the corresponding updateable view, with one-for-one projection of the columns. midasvu.marine\_vosclim\_ob is a read-only view, with one-for-one projection of the columns.

| * | ob_time              | DATE        | Date and time of observation                                                     |
|---|----------------------|-------------|----------------------------------------------------------------------------------|
| * | latitude             | NUMBER(3,1) | 0.1 deg                                                                          |
| * | longitude            | NUMBER(4,1) | 0.1 deg                                                                          |
| * | id                   | VARCHAR2(8) |                                                                                  |
| * | id_type              | VARCHAR2(4) | Identifier type                                                                  |
| * | vosclim_version_flag | CHAR(1)     | Observation version number                                                       |
|   | ship_heading         | NUMBER(3)   | Ships heading; the direction to which the bow is pointing                        |
|   | ship_ground_course   | NUMBER(3)   | Ship ground course; the direction the vessel actually moves over the fixed earth |
|   | ship_ground_speed    | NUMBER(2)   | The speed the vessel moves over the fixed earth                                  |
|   | cargo_deck_height    | NUMBER(2)   | Maximum height in meters of deck cargo above summer maximum                      |
|   | ref_level_from_sea   | NUMBER(2)   | Departure of reference level from actual sea level                               |



| rltv_wind_dir               | NUMBER(3)   | Relative wind direction in degrees off the bow |
|-----------------------------|-------------|------------------------------------------------|
| rltv_wind_speed             | VARCHAR2(2) | Relative wind speed                            |
| ship_heading_q              | NUMBER(5)   | QC code – Ship heading                         |
| ship_ground_course_q        | NUMBER(5)   | QC code – Ship ground course                   |
| ship_ground_speed_q         | NUMBER(5)   | QC code – Ship ground speed                    |
| cargo_deck_height_q         | NUMBER(5)   | QC code – Cargo deck height                    |
| ref_level_from_sea_sign_q   | NUMBER(5)   | QC code – Ref level from sea, sign             |
| ref_level_from_sea_height_q | NUMBER(5)   | QC code – Ref level from sea, height           |
| rltv_wind_dir_q             | NUMBER(5)   | QC code – Relative wind direction              |
| rltv_wind_speed_q           | NUMBER(5)   | QC code – Relative wind speed                  |

#### **Triggers**

| Trigger Name | marine_vosclim_upd                                                                                                                                                                                                                                          |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| When Fired   | Row level update trigger fired after each row is updated                                                                                                                                                                                                    |  |
| Description  | If changes are made to any of the fields which can be QC'd then the old values from before the update are stored for use by the trigger MARINE_VOSCLIM_UPD_V0. Details are only stored if the field(s) that has been updated was not previously set to NULL |  |

| Trigger Name | marine_vosclim_upd_v0                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| When Fired   | Statement level update trigger fired after updates                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Description  | The trigger will retain the orginal version of the MARINE_VOSCLIM_OB record as a version ZERO row. If a version ZERO doesn't exist then insert one. If version ZERO exists but contains NULL values for met elements then update the version ZERO record with the non-NULL values. If a version ZERO exists and non-NULL values are present, then these will not be updated. This protects the original non-NULL values that were entered. |  |

| Trigger Name | marine_vosclim_del_adr                                                      |
|--------------|-----------------------------------------------------------------------------|
| When Fired   | Statement level delete trigger fired after deletes                          |
| Description  | The trigger fires when a v1 row is deleted to delete the associated v0 row. |

| Trigger Name marine_vosclim_del_ad |                                                |
|------------------------------------|------------------------------------------------|
| When Fired                         | Table level delete trigger fired after deletes |



| Description | The trigger fires when a v1 row is deleted to delete the associated v0 row. |
|-------------|-----------------------------------------------------------------------------|
|-------------|-----------------------------------------------------------------------------|

#### 9.4 MIDAS Tables and MIDASUPD Views- Upper Air

| VIEW | ua_sounding |
|------|-------------|
|------|-------------|

**Description:** The midas.ua\_sounding table contains the non-repeating parameters of an upper air ascent, i.e. attributes common to the entire ascent. The ascent may originate from land stations or from ships, and may be a full TEMP or a PILOT. Every upper air ascent will have one and only one occurrence in the ua\_sounding table and one or more rows in the ua\_sounding\_point table. The entity contains the latitude and longitude of an upper air ascent from ships. Retrieval by ship latitude or longitude is not required, but retrieval by call sign is, so identifier is indexed. Some queries require a long period of obs for a limited area, e.g. for radar duct investigation.

Upper air data is not given quality control by QEv Team, but the ua\_sounding\_point table contains four QC\_code elements. The MIDAS data storage process sets these four attributes by converting the QC attributes present in the MetDB. These QC flags are originally set by the unified model, and are known as merge elements. The historic CDB data contained various flags, and these have been incorporated into the four QC\_code elements of ua\_sounding\_point. The three valid combinations of id\_type and met\_domain\_name are WMO/UAPLT, WMO/UATMP and SHIP/UATMPSHP.

The first year of data is 1948, for UK and a few overseas stations, with substantial increase in volumes from 1975. For WMO blocks 03, 04, some of 06 and a few others stations such as Gibraltar, we have a WMO commitment to store all of the data. For other WMO blocks, the requirement is to store 10 years worth of obs for selected stations. Data ingestion by monthly batch is deemed adequate. The upper air archive is maintained as a series of sequential tape datasets in MASS, using the SQL\*Loader utility to populate the MIDAS tables with the desired data. The flat files are organised by period (e.g. 1960-1969) and by groups of stations.

The name of the MASS dataset is stored in abbreviated form in the db\_seg\_name attribute of the src\_capability table. The contents of src\_capability.db\_seg\_name must be prefixed with MSD5.MIDUPAIR.and yyyy must be interpreted to the last year of a 10-year period, using src\_cap\_end\_date. Thus src\_capability.db\_seg\_name = A03998.Yyyyy shows that the data are in MSD5.MIDUPAIR.A03998.Y1959, MSD5.MIDUPAIR.A03998.Y1969, etc., depending on the range of dates between src\_cap\_bgn\_date and src\_cap\_end\_date.

A procedure allows customers to restore data from the MASS archive, and optionally to load the data into MIDAS using the SQL\*Loader utility. The SQL\*Loader utility operates in Direct Path mode. midasupd.ua\_sounding is the corresponding updateable with one-for-one projection of the columns. midasvu.ua sounding is a read-only view.

See Section 12 for details of how to use this table.

| PK | Attribute | Datatype    | Description / Units / Precision |
|----|-----------|-------------|---------------------------------|
| *  | id        | VARCHAR2(8) |                                 |
| *  | id_type   | VARCHAR2(4) | UAPLT, UATMP, UATMPSHP          |
| *  | ob_time   | DATE        | Date and time of observation    |



| met_domain_name       | VARCHAR2(8) |                              |
|-----------------------|-------------|------------------------------|
| src_id                | NUMBER(6)   |                              |
| rec_st_ind            | NUMBER(4)   |                              |
| ua_asc_Inch_ctm       | NUMBER(4)   | Time of launch               |
| wind_shr_abv_max_wind | NUMBER(4)   | Wind shear above max wind    |
| wind_shr_blw_max_wind | NUMBER(4)   | Wind shear below max wind    |
| cld_base_amt_id       | CHAR(1)     |                              |
| low_cld_type_id       | CHAR(1)     |                              |
| cld_base_ht           | NUMBER(4)   | Cloud base height decametres |
| med_cld_type_id       | CHAR(1)     |                              |
| hi_cld_type_id        | CHAR(1)     |                              |
| radar_type_id         | CHAR(2)     |                              |
| sonde_type_id         | CHAR(2)     |                              |
| latitude              | NUMBER(3,1) | UATMPSHP only<br>0.1 deg     |
| longitude             | NUMBER(4,1) | UATMPSHP only<br>0.1 deg     |

| VIEW | ua_sounding_point |
|------|-------------------|
|------|-------------------|

**Description:** The midas.ua\_sounding\_point table contains the repeating values of an upper air ascent, i.e. all the measurements at one level. All upper air ascents have one or more points. Date and time are part of the key, so too is the upper air level (i.e. elevation).

Upper air data is not given quality control by QEv Team, but the table contains four QC code elements. The MIDAS data storage process sets these four attributes by converting the QC attributes present in the MetDB. These QC flags are originally set by the unified model, and are known as merge elements. The historic CDB data contained various flags, and these have been incorporated into the four QC code elements.

Relative humidity and humidity mixing ratio are not stored. MIDAS provides packaged functions to calculate these values during retrieval. Refer to the description of ua\_sounding for details of how the upper air archive is maintained in MASS.

midasupd.ua\_sounding\_point is the corresponding updateable view with one-for-one projection of the columns, and midasvu.ua\_sounding\_point is a read-only view.

See Section 12 for details of how to use this table.

| PK | Attribute      | Datatype    | Description / Units / Precision                                                                         |
|----|----------------|-------------|---------------------------------------------------------------------------------------------------------|
| *  | id             | VARCHAR2(8) |                                                                                                         |
| *  | id_type        | VARCHAR2(4) | UAPLT, UATMP, UATMPSHP                                                                                  |
| *  | ob_time        | DATE        | Date and time of observation                                                                            |
| *  | ua_sndg_pt_num | NUMBER(3)   |                                                                                                         |
|    | vert_sig_code  | NUMBER(3)   | 2 = Significant level winds<br>4 = Significant level temperature<br>8 = Maximum wind<br>16 = Tropopause |



|                    |             | 32 = Standard level<br>64 = Surface level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ua_height          | NUMBER(5)   | Height<br>metres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pres_coord         | NUMBER(5,1) | Air pressure co-ordinate 0.1 Hpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ua_air_temperature | NUMBER(3,1) | 0.1 deg.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ua_dewpoint        | NUMBER(3,1) | 0.1 deg.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ua_wind_dir        | NUMBER(3)   | Degrees true                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ua_wind_speed      | NUMBER(3)   | Knots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ua_height_qc_code  | CHAR(1)     | Quality of height element. The code is set based on BUFR table 055019 as follows:  A = Accumulated value E = Estimated value, manually verified H = Homologous value, rigorously tested and manually approved I = Interpolated value, automatically generated, not verified, i.e. any of these 05519 flags set: 11, 15, 16. M = Missing Value N = Not tested, but within observed climatological boundaries, physical constraints, logical limits and current coding practices. Any of the following 05519 flags set: 10, 12, 17, 18, 19, meaning 17 set and 20 not set etc. R = Record-breaking value, verified and manually approved. 05519 flag 13 set. S = Suspect value outside climatological boundaries, no means to verify, (any of these 05519 flags set: 14, 20, 21, 22, 23, 24) T = Tested value, manually checked but not perfectly homologous.  BUFR table 055019 is a 24-bit flag table that defines QC Flags for an upper air level. These flags are set by the NWP model, and are known as merge elements. The values of 05519 flags are:  3 Partial layer 4 Tropopause 5 Max wind 6 Significant wind 7 Significant temperature 8 Standard 9 Surface 10 Superadiabatic 11 Interpolation |



|                              |         | 12 Hydrostatic 13 Extreme value 14 Inconsistent 15 Data correct (e.g. sign correction) 16 Perm correct (fixed correction) 7 Clim performed 18 Back performed (background check done) 19 Buddy performed 20 Clim reject 21 Perm reject (blacklisted) 22 Back reject (background check failed) 23 Buddy reject |
|------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |         | 24 Final reject (Do not use in analysis)  MIDAS supplies supply values 4 - 9 via the vert_sig_code attribute.                                                                                                                                                                                                |
| ua_air_temperature_qc_code   | CHAR(1) | See ua_height_qc_code                                                                                                                                                                                                                                                                                        |
| ua_relative_humidity_qc_code | CHAR(1) | See ua_height_qc_code MIDAS stores dewpoint not relative humidity. This code therefore implies the quality of the dewpoint (and of the derived relative humidity).                                                                                                                                           |
| ua_wind_qc_code              | CHAR(1) | See ua_height_qc_code                                                                                                                                                                                                                                                                                        |

#### 9.5 MIDASVU Views

| VIEW | capability_at_src |
|------|-------------------|
|------|-------------------|

**Description:** This database view joins the source table with src\_capability, to allow easy selection of src\_capability by source attributes, e.g. to find all capabilities in a selected post code.

| Attribute             | Datatype     | Description / Units / Precision |
|-----------------------|--------------|---------------------------------|
| src_id                | NUMBER(6)    |                                 |
| src_name              | VARCHAR2(40) |                                 |
| id_type               | VARCHAR2(4)  |                                 |
| id                    | VARCHAR2(8)  |                                 |
| met_domain_name       | VARCHAR2(8)  |                                 |
| src_cap_bgn_date      | DATE         |                                 |
| src_cap_end_date      | DATE         |                                 |
| prime_capability_flag | CHAR(1)      | See midas.src_capability        |
| rcpt_method_name      | VARCHAR2(20) |                                 |
| db_segment_name       | VARCHAR2(12) |                                 |
| data_retention_period | NUMBER(3)    |                                 |
| loc_geog_area_id      | VARCHAR2(4)  |                                 |
| post_code             | VARCHAR2(9)  |                                 |
| wmo_region_code       | CHAR(1)      |                                 |



| high_prcn_lat      | NUMBER(5,3) |  |
|--------------------|-------------|--|
| high_prcn_lon      | NUMBER(6,3) |  |
| grid_ref_type      | VARCHAR2(4) |  |
| east_grid_ref      | NUMBER(6)   |  |
| north_grid_ref     | NUMBER(7)   |  |
| elevation          | NUMBER(4)   |  |
| hydr_area_id       | NUMBER(4)   |  |
| drainage_stream_id | VARCHAR2(4) |  |
| zone_time          | NUMBER(2)   |  |
| src_bgn_date       | DATE        |  |
| src_end_date       | DATE        |  |
|                    |             |  |

| VIEW met_domain_element |
|-------------------------|
|-------------------------|

**Description:** This database view joins the midas.met\_domain table with the midas.met\_element and midas.domain\_element tables. It allows the user to easily identify all of the elements in a domain, or all of the domains where an element is used.

| Attribute         | Datatype     | Description / Units / Precision |
|-------------------|--------------|---------------------------------|
| met_domain_name   | VARCHAR2(8)  |                                 |
| met_dom_class     | VARCHAR2(28) |                                 |
| dom_usg_id        | CHAR(1)      |                                 |
| met_domain_dsc    | VARCHAR2(80) |                                 |
| met_element_id    | NUMBER(5)    |                                 |
| met_element_name  | VARCHAR2(32) |                                 |
| dom_elem_pos_num  | NUMBER(4)    |                                 |
| str_met_dom_name  | VARCHAR2(8)  |                                 |
| code_id           | VARCHAR2(8)  |                                 |
| minimum_value     | NUMBER(5)    |                                 |
| maximum_value     | NUMBER(5)    |                                 |
| scale_factor      | NUMBER(2)    |                                 |
| met_element_class | VARCHAR2(28) |                                 |

| VIEW | mo_sfc_rec_elem |
|------|-----------------|
|------|-----------------|

**Description:** This view projects all of the columns and all of the rows from mo\_sfc\_elem, joins with mo\_sfc\_rec to project id and id\_type, and joins with met\_element to project met\_element\_name. This allows selection by id, id\_type and met\_element\_name. For more information please see the <a href="mo\_sfc\_elem">mo\_sfc\_elem</a> and <a href="mo\_sfc\_elem">mo\_sfc\_rec</a> table definitions in Section 9.2.

| Attribute           | Datatype  | Description / Units / Precision |
|---------------------|-----------|---------------------------------|
| mo_sfc_elem_prtn_id | CHAR(2)   |                                 |
| src_id              | NUMBER(6) |                                 |



| id_type                  | VARCHAR2(4)  |                                             |
|--------------------------|--------------|---------------------------------------------|
| id_type                  | VARCHAR2(8)  |                                             |
| ob date                  | DATE         |                                             |
| _                        |              | o ~ !CLM74 44! !CADLOS!                     |
| met_domain_name          | VARCHAR2(8)  | e.g. 'CLM71-11', 'CARLOS'                   |
| met_element_id           | NUMBER(5)    |                                             |
| met_element_name         | VARCHAR2(32) |                                             |
| version_num              | NUMBER(1)    |                                             |
| met_elem_day_cnt         | NUMBER(2)    | Count of days when the element occurred     |
| met_elem_hour_cnt        | NUMBER(3)    | Count of hours when the element occurred    |
| met_elem_min_val         | NUMBER(6,2)  | Minimum value of the element                |
| met_elem_min_val_day_num | NUMBER(2)    | Day on which the min value occurred         |
| met_elem_mean_val        | NUMBER(6,2)  | Mean value of the element                   |
| met_elem_sd_val          | NUMBER(6,2)  | Standard deviation                          |
| met_elem_max_val         | NUMBER(6,2)  | Maximum value of the element                |
| met_elem_max_val_day_num | NUMBER(2)    | Day on which the max value occurred         |
| met_elem_miss_day_cnt    | NUMBER(2)    | Count of days when the element was missing  |
| met_elem_miss_hour_cnt   | NUMBER(3)    | Count of hours when the element was missing |
| met_elem_amt             | NUMBER(6,2)  | e.g. Rainfall amount                        |
| met_elem_occr_prc        | NUMBER(3)    | Percent of occurrences, e.g. NE wind        |
| met_elem_qual_id         | CHAR(1)      | Quality of the element                      |
| met_elem_sbst_day_cnt    | NUMBER(2)    | Count of days when substitute values used.  |
| met_elem_sbst_code       | CHAR(2)      | Defines substitute values                   |
| wind_speed_unit_id       | CHAR(1)      |                                             |
| temp_read_type_id        | CHAR(1)      |                                             |
| max_temp_read_hour_num   | NUMBER(2)    |                                             |
| min_temp_read_hour_num   | NUMBER(2)    |                                             |
| qual_analyst_id          | VARCHAR2(3)  | Identifier of QC staff member               |

| VIEW | rain_ob |
|------|---------|
|------|---------|

**Description:** This database view is a UNION of rain\_drnl\_ob with rain\_hrly\_ob. It allows the user to select daily and/or hourly rainfall, regardless of which table the data are stored in.

| Attribute       | Datatype     | Description / Units / Precision |
|-----------------|--------------|---------------------------------|
| ob_date         | VARCHAR2(10) |                                 |
| ob_end_ctime    | NUMBER(4)    |                                 |
| ob_hour_count   | NUMBER(3)    |                                 |
| id_type         | VARCHAR2(4)  |                                 |
| id              | VARCHAR2(8)  |                                 |
| met_domain_name | VARCHAR2(8)  |                                 |
| version_num     | NUMBER(1)    |                                 |



| NUMBER(6)    |
|--------------|
| NUMBER(5,1)  |
| NUMBER(5)    |
| CHAR(1)      |
| NUMBER(4)    |
| NUMBER(5)    |
| NUMBER(5)    |
| VARCHAR2(10) |
| CHAR(12)     |
| DATE         |
| NUMBER(6)    |
| NUMBER(4)    |
|              |

| VIEW src_drnl_rain |
|--------------------|
|--------------------|

**Description:** This view joins rain\_drnl\_ob with selected attributes from source and src\_capability. It checks that the rain\_drnl\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view allows users to select from rain\_drnl\_ob using attributes of the source, e.g. src\_name or post\_code. It also projects rain\_date, which is the observation time 'thrown' to the appropriate rainfall day - however, we recommend that users should use the midas.midas\_utility\_pkg.throw\_ob\_date\_fnc function in preference to this attribute, because the function provides a more flexible method of throwing the date.

| Attribute             | Datatype     | Description / Units / Precision |
|-----------------------|--------------|---------------------------------|
| src_name              | VARCHAR2(40) |                                 |
| loc_geog_area_id      | VARCHAR2(4)  |                                 |
| post_code             | VARCHAR2(9)  |                                 |
| grid_ref_type         | VARCHAR2(4)  |                                 |
| east_grid_ref         | NUMBER(6)    |                                 |
| north_grid_ref        | NUMBER(7)    |                                 |
| elevation             | NUMBER(4)    |                                 |
| high_prcn_lat         | NUMBER(5,3)  |                                 |
| high_prcn_lon         | NUMBER(6,3)  |                                 |
| hydr_area_id          | NUMBER(4)    |                                 |
| drainage_stream_id    | VARCHAR2(4)  |                                 |
| src_id                | NUMBER(6)    |                                 |
| id_type               | VARCHAR2(4)  |                                 |
| id                    | VARCHAR2(8)  |                                 |
| met_domain_name       | VARCHAR2(8)  |                                 |
| prime_capability_flag | CHAR(1)      | See midas.src_capability        |
| ob_date               | DATE         |                                 |
| ob_end_ctime          | NUMBER(4)    |                                 |
| ob_day_cnt            | NUMBER(3)    |                                 |
| ob_day_cnt_q          | NUMBER(5)    |                                 |
| version_num           | NUMBER(1)    |                                 |
| prcp_amt              | NUMBER(5,1)  |                                 |



| prcp_amt_q       | NUMBER(5)    |                                                 |
|------------------|--------------|-------------------------------------------------|
| prcp_amt_j       | CHAR(1)      |                                                 |
| meto_stmp_time   | DATE         |                                                 |
| midas_stmp_etime | NUMBER(6)    |                                                 |
| rain_date        | VARCHAR2(10) | ob_date thrown to the appropriate rainfall day. |

| VIEW | src_drnl_temp |
|------|---------------|
|------|---------------|

**Description:** This view joins temp\_drnl\_ob with selected attributes from source and src\_capability. It checks that the temp\_drnl\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view allows users to select from temp\_drnl\_ob using attributes of the source, e.g. src\_name or post\_code. It also projects ob\_group\_date\_1 and ob\_group\_date\_2, which are the observation time 'thrown' to the day of maximum temperature and minimum temperature - however, we recommend that users should use the midas.midas\_utility\_pkg.throw\_ob\_date\_fnc function in preference to these attributes, because the function provides a more flexible method of throwing these dates.

| Attribute             | Datatype     | Description / Units / Precision |
|-----------------------|--------------|---------------------------------|
| src_name              | VARCHAR2(40) |                                 |
| loc_geog_area_id      | VARCHAR2(4)  |                                 |
| post_code             | VARCHAR2(9)  |                                 |
| grid_ref_type         | VARCHAR2(4)  |                                 |
| east_grid_ref         | NUMBER(6)    |                                 |
| north_grid_ref        | NUMBER(7)    |                                 |
| elevation             | NUMBER(4)    |                                 |
| high_prcn_lat         | NUMBER(5,3)  |                                 |
| high_prcn_lon         | NUMBER(6,3)  |                                 |
| src_id                | NUMBER(6)    |                                 |
| id_type               | VARCHAR2(4)  |                                 |
| id                    | VARCHAR2(8)  |                                 |
| met_domain_name       | VARCHAR2(8)  |                                 |
| prime_capability_flag | CHAR(1)      | See midas.src_capability        |
| ob_end_time           | DATE         |                                 |
| ob_hour_count         | NUMBER(3)    |                                 |
| version_num           | NUMBER(1)    |                                 |
| max_air_temp          | NUMBER(3,1)  |                                 |
| min_air_temp          | NUMBER(3,1)  |                                 |
| min_grss_temp         | NUMBER(3,1)  |                                 |
| min_conc_temp         | NUMBER(3,1)  |                                 |
| max_air_temp_q        | NUMBER(5)    |                                 |
| min_air_temp_q        | NUMBER(5)    |                                 |
| min_grss_temp_q       | NUMBER(5)    |                                 |
| min_conc_temp_q       | NUMBER(5)    |                                 |
| max_air_temp_j        | CHAR(1)      |                                 |
| min_air_temp_j        | CHAR(1)      |                                 |



| min_grss_temp_j  | CHAR(1)   |                                                   |
|------------------|-----------|---------------------------------------------------|
| min_conc_temp_j  | CHAR(1)   |                                                   |
| meto_stmp_time   | DATE      |                                                   |
| midas_stmp_etime | NUMBER(6) |                                                   |
| ob_group_date_1  | · '       | ob_end_time thrown to day of maximum temperature. |
| ob_group_date_2  | ` '       | ob_end_time thrown to day of minimum temperature. |
| rec_st_ind       | NUMBER(4) | State indicator of the temp_drnl_ob record        |

| VIEW src_drnl_weather |
|-----------------------|
|-----------------------|

**Description:** This view joins weather\_drnl\_ob with selected attributes from source and src\_capability. It checks that the weather\_drnl\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view allows users to select from weather\_drnl\_ob using attributes of the source, e.g. src\_name or post\_code.

| Attribute             | Datatype     | Description / Units / Precision |
|-----------------------|--------------|---------------------------------|
| src_name              | VARCHAR2(40) |                                 |
| loc_geog_area_id      | VARCHAR2(4)  |                                 |
| post_code             | VARCHAR2(9)  |                                 |
| high_prcn_lat         | NUMBER(5,3)  |                                 |
| high_prcn_lon         | NUMBER(6,3)  |                                 |
| elevation             | NUMBER(4)    |                                 |
| grid_ref_type         | VARCHAR2(4)  |                                 |
| east_grid_ref         | NUMBER(6)    |                                 |
| north_grid_ref        | NUMBER(7)    |                                 |
| src_id                | NUMBER(6)    |                                 |
| id_type               | VARCHAR2(4)  |                                 |
| id                    | VARCHAR2(8)  |                                 |
| met_domain_name       | VARCHAR2(8)  |                                 |
| prime_capability_flag | CHAR(1)      | See midas.src_capability        |
| ob_end_time           | DATE         |                                 |
| ob_hour_count         | NUMBER(3)    |                                 |
| version_num           | NUMBER(1)    |                                 |
| cs_24hr_sun_dur       | NUMBER(3,1)  |                                 |
| cs_24hr_sun_dur_q     | NUMBER(5)    |                                 |
| wmo_24hr_sun_dur      | NUMBER(3,1)  |                                 |
| wmo_24hr_sun_dur_q    | NUMBER(5)    |                                 |
| conc_state_id         | CHAR(1)      |                                 |
| conc_state_id_q       | NUMBER(5)    |                                 |
| lying_snow_flag       | CHAR(1)      |                                 |
| snow_depth            | NUMBER(4)    |                                 |
| snow_depth_q          | NUMBER(5)    |                                 |



| frsh_snw_amt          | NUMBER(4) |  |
|-----------------------|-----------|--|
| frsh_snw_amt_q        | NUMBER(5) |  |
| snow_day_id           | CHAR(1)   |  |
| snow_day_id_q         | NUMBER(5) |  |
| hail_day_id           | CHAR(1)   |  |
| hail_day_id_q         | NUMBER(5) |  |
| thunder_day_flag      | CHAR(1)   |  |
| thunder_day_flag_q    | NUMBER(5) |  |
| gale_day_flag         | CHAR(1)   |  |
| gale_day_flag_q       | NUMBER(5) |  |
| frsh_mnt_snwfall_flag | CHAR(1)   |  |
| meto_stmp_time        | DATE      |  |
| midas_stmp_etime      | NUMBER(6) |  |

| VIEW | src_glbl_wx |
|------|-------------|
|------|-------------|

**Description:** This view joins glbl\_wx\_ob with selected attributes from source and src\_capability. It checks that the glbl\_wx\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view allows users to select from glbl\_wx\_ob using attributes of the source, e.g. src\_name. Always specify wmo\_region\_code ('1' - '7') if possible, because it is the partition key of glbl\_wx\_ob, and will significantly improve the response time of the query.

| Attribute        | Datatype     | Description / Units / Precision |
|------------------|--------------|---------------------------------|
| src_name         | VARCHAR2(40) |                                 |
| loc_geog_area_id | VARCHAR2(4)  |                                 |
| wmo_region_code  | CHAR(1)      |                                 |
| high_prcn_lat    | NUMBER(5,3)  |                                 |
| high_prcn_lon    | NUMBER(6,3)  |                                 |
| elevation        | NUMBER(4)    |                                 |
| zone_time        | NUMBER(2)    |                                 |
| src_id           | NUMBER(6)    |                                 |
| id_type          | VARCHAR2(4)  |                                 |
| id               | VARCHAR2(8)  |                                 |
| met_domain_name  | VARCHAR2(8)  |                                 |
| ob_time          | DATE         |                                 |
| wind_direction   | NUMBER(3)    |                                 |
| wind_speed       | NUMBER(3)    |                                 |
| prst_wx_id       | CHAR(2)      |                                 |
| past_wx_id_1     | CHAR(1)      |                                 |
| past_wx_id_2     | CHAR(1)      |                                 |
| cld_ttl_amt_id   | CHAR(1)      |                                 |
| cld_base_amt_id  | CHAR(1)      |                                 |
| cld_base_ht      | NUMBER(4)    |                                 |
| low_cld_type_id  | CHAR(1)      |                                 |
| med_cld_type_id  | CHAR(1)      |                                 |



| hi_cld_type_id      | CHAR(1)     |  |
|---------------------|-------------|--|
| wind_speed_unit_id  | CHAR(1)     |  |
| visibility          | NUMBER(4)   |  |
| air_temperature     | NUMBER(3,1) |  |
| wetb_temp           | NUMBER(3,1) |  |
| dewpoint            | NUMBER(3,1) |  |
| stn_pres            | NUMBER(5,1) |  |
| pres_sfc            | NUMBER(5,1) |  |
| pres_sfc_ht         | NUMBER(5)   |  |
| pres_tdcy_amt       | NUMBER(4,1) |  |
| prcp_ob_hr_cnt      | NUMBER(3)   |  |
| prcp_amt            | NUMBER(5,1) |  |
| cld_amt_id_1        | CHAR(1)     |  |
| cloud_type_id_1     | CHAR(1)     |  |
| cld_base_ht_id_1    | NUMBER(4)   |  |
| cld_amt_id_2        | CHAR(1)     |  |
| cloud_type_id_2     | CHAR(1)     |  |
| cld_base_ht_id_2    | NUMBER(4)   |  |
| cld_amt_id_3        | CHAR(1)     |  |
| cloud_type_id_3     | CHAR(1)     |  |
| cld_base_ht_id_3    | NUMBER(4)   |  |
| max_air_temp        | NUMBER(3,1) |  |
| min_air_temp        | NUMBER(3,1) |  |
| min_grss_temp       | NUMBER(3,1) |  |
| ground_state_id     | CHAR(2)     |  |
| snow_depth          | NUMBER(4)   |  |
| sun_ob_hr_cnt       | NUMBER(3)   |  |
| sun_dur             | NUMBER(3,1) |  |
| q24hr_prcp_amt      | NUMBER(5,1) |  |
| q24hr_pres_tdcy_amt | NUMBER(4,1) |  |
| vert_vsby           | NUMBER(3)   |  |
| src_opr_type        | CHAR(1)     |  |
| gust_spd_type_code  | CHAR(1)     |  |
| max_gust_speed      | NUMBER(3)   |  |
| runway_name         | VARCHAR2(4) |  |
| rnwy_vis_rnge       | NUMBER(4)   |  |
| alt_pres            | NUMBER(4)   |  |
| qc_flag_list_1      | NUMBER(5)   |  |
| qc_flag_list_2      | NUMBER(5)   |  |

| VIFW  | src_hrly_rain  |
|-------|----------------|
| V.L.V | Sio_iiiy_iaiii |

**Description:** This view joins rain\_hrly\_ob with selected attributes from source and src\_capability. It checks that the rain\_hrly\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view



allows users to select from rain\_hrly\_ob using attributes of the source, e.g. src\_name or post\_code. It also projects rain\_date, which is the observation time 'thrown' to the appropriate rainfall day.

| Attribute             | Datatype     | Description / Units / Precision                    |
|-----------------------|--------------|----------------------------------------------------|
| src_name              | VARCHAR2(40) |                                                    |
| loc_geog_area_id      | VARCHAR2(4)  |                                                    |
| post_code             | VARCHAR2(9)  |                                                    |
| grid_ref_type         | VARCHAR2(4)  |                                                    |
| east_grid_ref         | NUMBER(6)    |                                                    |
| north_grid_ref        | NUMBER(7)    |                                                    |
| elevation             | NUMBER(4)    |                                                    |
| high_prcn_lat         | NUMBER(5,3)  |                                                    |
| high_prcn_lon         | NUMBER(6,3)  |                                                    |
| hydr_area_id          | NUMBER(4)    |                                                    |
| drainage_stream_id    | VARCHAR2(4)  |                                                    |
| src_id                | NUMBER(6)    |                                                    |
| id                    | VARCHAR2(8)  |                                                    |
| id_type               | VARCHAR2(4)  |                                                    |
| met_domain_name       | VARCHAR2(8)  |                                                    |
| prime_capability_flag | CHAR(1)      | See midas.src_capability                           |
| ob_end_time           | DATE         |                                                    |
| ob_hour_count         | NUMBER(3)    |                                                    |
| version_num           | NUMBER(1)    |                                                    |
| prcp_amt              | NUMBER(5,1)  |                                                    |
| prcp_amt_q            | NUMBER(5)    |                                                    |
| prcp_amt_j            | CHAR(1)      |                                                    |
| prcp_dur              | NUMBER(4)    |                                                    |
| prcp_dur_q            | NUMBER(5)    |                                                    |
| meto_stmp_time        | DATE         |                                                    |
| midas_stmp_etime      | NUMBER(6)    |                                                    |
| rain_date             | VARCHAR2(10) | ob_end_time thrown to the appropriate rainfall day |

| VIEW | src_hrly_weather |
|------|------------------|
|------|------------------|

**Description:** This view joins weather\_hrly\_ob with selected attributes from source and src\_capability. It checks that the weather\_hrly\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view allows users to select from weather\_hrly\_ob using attributes of the source, e.g. src\_name or post\_code.

| Attribute        | Datatype     | Description / Units / Precision |
|------------------|--------------|---------------------------------|
| src_name         | VARCHAR2(40) |                                 |
| loc_geog_area_id | VARCHAR2(4)  |                                 |
| post_code        | VARCHAR2(9)  |                                 |
| grid_ref_type    | VARCHAR2(4)  |                                 |



| east_grid_ref         | NUMBER(6)                   |                          |
|-----------------------|-----------------------------|--------------------------|
| north_grid_ref        | NUMBER(7)                   |                          |
| elevatioN             | NUMBER(4)                   |                          |
| high_prcn_lat         | NUMBER(5,3)                 |                          |
| high_prcn_lon         | NUMBER(6,3)                 |                          |
| src_id                | NUMBER(6)                   |                          |
|                       | VARCHAR2(4)                 |                          |
| id_type<br>id         | VARCHAR2(8)                 |                          |
|                       |                             |                          |
| met_domain_name       | VARCHAR2(8)                 | 0                        |
| prime_capability_flag | CHAR(1)                     | See midas.src_capability |
| ob_time               | DATE                        |                          |
| version_num           | NUMBER(1)                   |                          |
| wind_speed_unit_id    | CHAR(1)                     |                          |
| src_opr_type          | CHAR(1)                     |                          |
| wind_direction        | NUMBER(3)                   |                          |
| wind_speed            | NUMBER(3)                   |                          |
| prst_wx_id            | CHAR(2)                     |                          |
| past_wx_id_1          | CHAR(1)                     |                          |
| past_wx_id_2          | CHAR(1)                     |                          |
| cld_ttl_amt_id        | CHAR(1)                     |                          |
| low_cld_type_id       | CHAR(1)                     |                          |
| med_cld_type_id       | CHAR(1)                     |                          |
| hi_cld_type_id        | CHAR(1)                     |                          |
| cld_base_amt_id       | CHAR(1)                     |                          |
| cld_base_ht           | NUMBER(4)                   |                          |
| visibility            | NUMBER(4)                   |                          |
| vert_vsby             | NUMBER(3)                   |                          |
| cld_amt_id_1          | CHAR(1)                     |                          |
| cloud_type_id_1       | CHAR(1)                     |                          |
| cld_base_ht_id_1      | NUMBER(4)                   |                          |
| cld_amt_id_2          | CHAR(1)                     |                          |
| cloud_type_id_2       | CHAR(1)                     |                          |
| cld_base_ht_id_2      | NUMBER(4)                   |                          |
| cld_amt_id_3          | CHAR(1)                     |                          |
| cloud_type_id_3       | CHAR(1)                     |                          |
| cld_base_ht_id_3      | NUMBER(4)                   |                          |
| cld_amt_id_4          | CHAR(1)                     |                          |
| cloud_type_id_4       | CHAR(1)                     |                          |
| cld_base_ht_id_4      | NUMBER(4)                   |                          |
| air_temperature       | NUMBER(3,1)                 |                          |
| dewpoint              | NUMBER(3,1)                 |                          |
| wetb_temp             | NUMBER(3,1)                 |                          |
| msl_pressure          | NUMBER(5,1)                 |                          |
| stn_pres              | NUMBER(5,1)                 |                          |
| alt_pres              | NUMBER(4)                   |                          |
| ground_state_id       | CHAR(2)                     |                          |
| 3. 34.14_0tato_ia     | · · · · · · · · · · · / · / |                          |



| q10mnt_mxgst_spd   | NUMBER(3)   |
|--------------------|-------------|
| cavok_flag         | CHAR(1)     |
| cs_hr_sun_dur      | NUMBER(3,1) |
| wmo_hr_sun_dur     | NUMBER(3,1) |
| wind_direction_q   | NUMBER(5)   |
| wind_speed_q       | NUMBER(5)   |
| prst_wx_id_q       | NUMBER(5)   |
| past_wx_id_1_q     | NUMBER(5)   |
| past_wx_id_2_q     | NUMBER(5)   |
| cld_ttl_amt_id_q   | NUMBER(5)   |
| low_cld_type_id_q  | NUMBER(5)   |
| med_cld_type_id_q  | NUMBER(5)   |
| hi_cld_type_id_q   | NUMBER(5)   |
| cld_base_amt_id_q  | NUMBER(5)   |
| cld_base_ht_q      | NUMBER(5)   |
| visibility_q       | NUMBER(5)   |
|                    | NUMBER(5)   |
| vert_vsby_q        |             |
| air_temperature_q  | NUMBER(5)   |
| dewpoint_q         | NUMBER(5)   |
| wetb_temp_q        | NUMBER(5)   |
| ground_state_id_q  | NUMBER(5)   |
| cld_amt_id_1_q     | NUMBER(5)   |
| cloud_type_id_1_q  | NUMBER(5)   |
| cld_base_ht_id_1_q | NUMBER(5)   |
| cld_amt_id_2_q     | NUMBER(5)   |
| cloud_type_id_2_q  | NUMBER(5)   |
| cld_base_ht_id_2_q | NUMBER(5)   |
| cld_amt_id_3_q     | NUMBER(5)   |
| cloud_type_id_3_q  | NUMBER(5)   |
| cld_base_ht_id_3_q | NUMBER(5)   |
| cld_amt_id_4_q     | NUMBER(5)   |
| cloud_type_id_4_q  | NUMBER(5)   |
| cld_base_ht_id_4_q | NUMBER(5)   |
| msl_pressure_q     | NUMBER(5)   |
| stn_pres_q         | NUMBER(5)   |
| alt_pres_q         | NUMBER(5)   |
| q10mnt_mxgst_spd_q | NUMBER(5)   |
| cs_hr_sun_dur_q    | NUMBER(5)   |
| wmo_hr_sun_dur_q   | NUMBER(5)   |
| wind_direction_j   | CHAR(1)     |
| wind_speed_j       | CHAR(1)     |
| prst_wx_id_j       | CHAR(1)     |
| past_wx_id_1_j     | CHAR(1)     |
| past_wx_id_2_j     | CHAR(1)     |
| cld_amt_id_j       | CHAR(1)     |
| cld_ht_j           | CHAR(1)     |
| _ ~                |             |



| visibility_j       | CHAR(1)   |                 |
|--------------------|-----------|-----------------|
| vert_vsby_j        | CHAR(1)   |                 |
| air_temperature_j  | CHAR(1)   |                 |
| dewpoint_j         | CHAR(1)   |                 |
| wetb_temp_j        | CHAR(1)   |                 |
| msl_pressure_j     | CHAR(1)   |                 |
| stn_pres_j         | CHAR(1)   |                 |
| alt_pres_j         | CHAR(1)   |                 |
| q10mnt_mxgst_spd_j | CHAR(1)   |                 |
| meto_stmp_time     | DATE      |                 |
| midas_stmp_etime   | NUMBER(6) |                 |
| rec_st_ind         | NUMBER(4) | State indicator |

| VIEW | src_mean_wind |
|------|---------------|
|------|---------------|

**Description:** This view joins wind\_mean\_ob with selected attributes from source and src\_capability. It checks that the wind\_mean\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view allows users to select from wind\_mean\_ob using attributes of the source, e.g. src\_name or post\_code. It also projects wind\_group\_date, which throws the midnight observation back to the previous day.

| Attribute             | Datatype     | Description / Units / Precision |
|-----------------------|--------------|---------------------------------|
| src_name              | VARCHAR2(40) |                                 |
| loc_geog_area_id      | VARCHAR2(4)  |                                 |
| post_code             | VARCHAR2(9)  |                                 |
| grid_ref_type         | VARCHAR2(4)  |                                 |
| east_grid_ref         | NUMBER(6)    |                                 |
| north_grid_ref        | NUMBER(7)    |                                 |
| elevation             | NUMBER(4)    |                                 |
| high_prcn_lat         | NUMBER(5,3)  |                                 |
| high_prcn_lon         | NUMBER(6,3)  |                                 |
| src_id                | NUMBER(6)    |                                 |
| id_type               | VARCHAR2(4)  |                                 |
| id                    | VARCHAR2(8)  |                                 |
| met_domain_name       | VARCHAR2(8)  |                                 |
| prime_capability_flag | CHAR(1)      | See midas.src_capability        |
| ob_end_time           | DATE         |                                 |
| ob_hour_count         | NUMBER(3)    |                                 |
| version_num           | NUMBER(1)    |                                 |
| mean_wind_dir         | NUMBER(3)    |                                 |
| mean_wind_dir_q       | NUMBER(5)    |                                 |
| mean_wind_dir_j       | CHAR(1)      |                                 |
| mean_wind_speed       | NUMBER(4,1)  |                                 |
| mean_wind_speed_q     | NUMBER(5)    |                                 |
| mean_wind_speed_j     | CHAR(1)      |                                 |
| max_gust_dir          | NUMBER(3)    |                                 |



| max_gust_dir_q   | NUMBER(5)    |                                                 |
|------------------|--------------|-------------------------------------------------|
| max_gust_dir_j   | CHAR(1)      |                                                 |
| max_gust_speed   | NUMBER(3)    |                                                 |
| max_gust_speed_q | NUMBER(5)    |                                                 |
| max_gust_speed_j | CHAR(1)      |                                                 |
| max_gust_ctime   | NUMBER(4)    |                                                 |
| max_gust_ctime_q | NUMBER(5)    |                                                 |
| meto_stmp_time   | DATE         |                                                 |
| midas_stmp_etime | NUMBER(6)    |                                                 |
| wind_group_date  | VARCHAR2(10) | Throws the midnight ob back to the previous day |

| VIEW src_radiation |  |
|--------------------|--|
|--------------------|--|

**Description:** This view joins radt\_ob with selected attributes from source and src\_capability. It checks that the radt\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view allows users to select from radt\_ob using attributes of the source, e.g. src\_name or post\_code.

| Attribute             | Datatype     | Description / Units / Precision |
|-----------------------|--------------|---------------------------------|
| src_name              | VARCHAR2(40) |                                 |
| loc_geog_area_id      | VARCHAR2(4)  |                                 |
| post_code             | VARCHAR2(9)  |                                 |
| grid_ref_type         | VARCHAR2(4)  |                                 |
| east_grid_ref         | NUMBER(6)    |                                 |
| north_grid_ref        | NUMBER(7)    |                                 |
| elevation             | NUMBER(4)    |                                 |
| high_prcn_lat         | NUMBER(5,3)  |                                 |
| high_prcn_lon         | NUMBER(6,3)  |                                 |
| src_id                | NUMBER(6)    |                                 |
| id_type               | VARCHAR2(4)  |                                 |
| id                    | VARCHAR2(8)  |                                 |
| met_domain_name       | VARCHAR2(8)  |                                 |
| prime_capability_flag | CHAR(1)      | See midas.src_capability        |
| ob_end_time           | DATE         |                                 |
| ob_hour_count         | NUMBER(3)    |                                 |
| version_num           | NUMBER(1)    |                                 |
| glbl_irad_amt         | NUMBER(4)    |                                 |
| glbl_irad_amt_q       | NUMBER(5)    |                                 |
| difu_irad_amt         | NUMBER(4)    |                                 |
| difu_irad_amt_q       | NUMBER(5)    |                                 |
| direct_irad           | NUMBER(4)    |                                 |
| direct_irad_q         | NUMBER(5)    |                                 |
| irad_bal_amt          | NUMBER(4)    |                                 |
| irad_bal_amt_q        | NUMBER(5)    |                                 |
| glbl_s_lat_irad_amt   | NUMBER(4)    |                                 |



| glbl_s_lat_irad_amt_q | NUMBER(5) |  |
|-----------------------|-----------|--|
| glbl_horz_ilmn        | NUMBER(4) |  |
| glbl_horz_ilmn_q      | NUMBER(5) |  |
| meto_stmp_time        | DATE      |  |
| midas_stmp_etime      | NUMBER(6) |  |

| VIEW | src_soil_temp |
|------|---------------|
|------|---------------|

**Description:** This view joins soil\_temp\_ob with selected attributes from source and src\_capability. It checks that the soil\_temp\_ob record is consistent with its src\_capability - if it is not, the view will not return the row. The view allows users to select from soil\_temp\_ob using attributes of the source, e.g. src\_name or post\_code.

| Attribute             | Datatype     | Description / Units / Precision |
|-----------------------|--------------|---------------------------------|
| src_name              | VARCHAR2(40) |                                 |
| loc_geog_area_id      | VARCHAR2(4)  |                                 |
| post_code             | VARCHAR2(9)  |                                 |
| grid_ref_type         | VARCHAR2(4)  |                                 |
| east_grid_ref         | NUMBER(6)    |                                 |
| north_grid_ref        | NUMBER(7)    |                                 |
| elevation             | NUMBER(4)    |                                 |
| high_prcn_lat         | NUMBER(5,3)  |                                 |
| high_prcn_lon         | NUMBER(6,3)  |                                 |
| src_id                | NUMBER(6)    |                                 |
| id_type               | VARCHAR2(4)  |                                 |
| id                    | VARCHAR2(8)  |                                 |
| met_domain_name       | VARCHAR2(8)  |                                 |
| prime_capability_flag | CHAR(1)      | See midas.src_capability        |
| ob_time               | DATE         |                                 |
| version_num           | NUMBER(1)    |                                 |
| q5cm_soil_temp        | NUMBER(3,1)  |                                 |
| q5cm_soil_temp_q      | NUMBER(5)    |                                 |
| q5cm_soil_temp_j      | CHAR(1)      |                                 |
| q10cm_soil_temp       | NUMBER(3,1)  |                                 |
| q10cm_soil_temp_q     | NUMBER(5)    |                                 |
| q10cm_soil_temp_j     | CHAR(1)      |                                 |
| q20cm_soil_temp       | NUMBER(3,1)  |                                 |
| q20cm_soil_temp_q     | NUMBER(5)    |                                 |
| q20cm_soil_temp_j     | CHAR(1)      |                                 |
| q30cm_soil_temp       | NUMBER(3,1)  |                                 |
| q30cm_soil_temp_q     | NUMBER(5)    |                                 |
| q30cm_soil_temp_j     | CHAR(1)      |                                 |
| q50cm_soil_temp       | NUMBER(3,1)  |                                 |
| q50cm_soil_temp_q     | NUMBER(5)    |                                 |
| q50cm_soil_temp_j     | CHAR(1)      |                                 |



| q100cm_soil_temp   | NUMBER(3,1) |
|--------------------|-------------|
| q100cm_soil_temp_q | NUMBER(5)   |
| q100cm_soil_temp_j | CHAR(1)     |
| meto_stmp_time     | DATE        |
| midas_stmp_etime   | NUMBER(6)   |

### 10 Entity Keys and Table Indexes

#### **Entity Keys**

Users do not need to have a detailed knowledge of the indexes in the MIDAS database. However, an overview of the indexes available to the database Query Optimiser may help users to construct their queries in such a way that they are most likely to achieve the desired results with maximum efficiency.

| table_name          | index_name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | column_name                                                                                    |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
| acquisitions_log    | acquisition_log_pk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ob_end_time met_domain_name table_name id_type id ob_hour_count version_num midas_acq_btch_num |
|                     | ix_midas_batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | table_name<br>met_domain_name<br>midas_acq_btch_num                                            |
|                     | ix_midas_batch2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | table_name<br>met_domain_name<br>midas_acq_btch_num                                            |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
| british_summer_time | c_bst_pk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | begin_time                                                                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
| clm_src_capability  | See src_capability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
| clm_ua_norm         | pk2638clm_ua_norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | src_id norm_first_year norm_last_year norm_month                                               |
|                     | The state of the s | _                                                                                              |



| clm_ua_norm_lvl | pk2643clm_ua_norm_lvl | src_id norm_first_year norm_last_year norm_month pres_coord       |
|-----------------|-----------------------|-------------------------------------------------------------------|
|                 |                       |                                                                   |
| clm_ua_rec      | c_clmumr_ob_id_u      | ua_mo_ob_id                                                       |
| ····            | pk2639clm_ua_rec      | src_id ob_date version_flag                                       |
|                 | ix_clmumr_si          | src_id                                                            |
| clm_ua_rec_lvl  | pk2642clm_ua_rec_l    | src_id ob_date pres_coord version_flag                            |
| code            | c_code_pk             | code_id                                                           |
| anda datail     |                       | Tanda id                                                          |
| code_detail     | c_coddet_pk           | code_id<br>code_value<br>desc_line_number                         |
|                 |                       |                                                                   |
| cross_reference | c_xref_pk             | ref_from_src_id ref_to_src_id association_type cross_ref_end_date |
|                 | ix_association        | association_type                                                  |
|                 | ix_ref_to             | ref_to_src_id                                                     |
|                 | ix_xref_domain        | met_domain_name                                                   |
|                 |                       |                                                                   |
|                 |                       |                                                                   |
| domain_element  | c_domelm_pk           | met_domain_name<br>met_element_id                                 |



| geog_area_hier     | c_geoghi_pk              | wthn_geog_area_id<br>cntn_geog_area_id             |
|--------------------|--------------------------|----------------------------------------------------|
|                    | ix_geog_contains         | cntn_geog_area_id                                  |
|                    | ·                        |                                                    |
| geographic_area    | c_geogar_pk              | geog_area_id                                       |
|                    | ix_geog_area             | geog_area_name                                     |
|                    | ix_geog_area_typ         | geog_area_type                                     |
|                    |                          |                                                    |
| glbl_wx_ob         | c_gwob_pk                | id<br>id_type<br>ob_time<br>wmo_region_code        |
| hydrometric_area   | c_hydrar_pk              | hydr_area_id                                       |
|                    |                          |                                                    |
| dentifier_type     | c_identy_pk              | id_type                                            |
| mar_acq_log        | mar_acq_pk               | ob_time latitude longitude id id_type version_flag |
|                    | mar_acq_log_btch         | mar_acq_log_btch                                   |
|                    | mar_acq_log_idx          | met_domain_name<br>midas_acq_btch_num              |
|                    |                          | ,                                                  |
| marine_climatology | pk2635marine_climatology | month_number<br>latitude<br>longitude              |
|                    |                          |                                                    |
| marine_current     | marcur_pk                | ob_month latitude longitude id id_type             |



|                  | marcur_srccap_fk          | id_type                                                                       |
|------------------|---------------------------|-------------------------------------------------------------------------------|
|                  |                           | id<br>met_domain_name                                                         |
|                  |                           | moc_uemam_name                                                                |
| marine_ob        | c_marob_pk                | ob_time                                                                       |
|                  |                           | latitude<br>longitude<br>id<br>id_type<br>version_flag<br>longitude_band_code |
|                  | ix_marob_id               | id id_type ob_time version_flag                                               |
|                  | ix_batch_time             | batch_stamp_time<br>(meto_stmp_time)                                          |
|                  |                           |                                                                               |
| met_domain       | c_metdom_pk               | met_domain_name                                                               |
| met_domain_class | c_domcls_pk               | met_dom_class                                                                 |
|                  |                           |                                                                               |
| met_elem_class   | c_elmcls_pk               | met_element_class                                                             |
|                  |                           |                                                                               |
| met_element      | c_metelm_name             | met_element_name                                                              |
|                  | c_metelm_pk               | met_element_id                                                                |
|                  | met_element_class         | met_element_class                                                             |
|                  |                           | ma afa also control                                                           |
| mo_sfc_elem      | mo_sfc_elem_pk            | mo_sfc_elem_prtn_i met_element_id ob_date src_id met_domain_name version_num  |
|                  | mo_sfc_elem_mo_sfc_rec_fk | src_id<br>ob_date<br>met_domain_name                                          |
|                  | mo_sfc_elem_dom_elem_fk   | met_domain_name<br>met_element_id                                             |



| mo_sfc_rec   | pkmo_sfc_rec              | src_id ob_date met_domain_name                                    |
|--------------|---------------------------|-------------------------------------------------------------------|
|              |                           |                                                                   |
| radt_ob      | c_radtob_pk               | id id_type ob_end_time ob_hour_count version_num met_domain_name  |
|              | c_radtob_si               | src_id                                                            |
|              |                           |                                                                   |
| radt_ob_v2   | radt_ob_v2_pk             | id id_type ob_end_time ob_hour_count version_num met_domain_name  |
|              | radt_ob_v2_src_id_ix      | src_id                                                            |
|              | radt_ob_v2_src_met_dom_fk | src_id<br>met_domain_name                                         |
|              | radt_ob_v2_upd_trgr_key   | glbl_irad_amt difu_irad_amt difu_irad irad_bal_amt glbl_horz_ilmn |
|              |                           | ,                                                                 |
| rain_drnl_ob | c_rndyob_pk               | id id_type ob_date version_num met_domain_name                    |
|              | ix_rndyob_src_id          | src_id                                                            |
|              |                           |                                                                   |
|              |                           |                                                                   |
| rain_hrly_ob | c_rnhrob_pk               | id id_type ob_end_time version_num met_domain_name ob_hour_count  |
|              |                           |                                                                   |



| rain_subhrly_ob      | c_rnshob_pk                                | ob_time id_type id met_domain_name                                                             |
|----------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|
|                      | ix_rnshob_si                               | src_id                                                                                         |
|                      | IX_ITISTIOD_SI                             | SIC_Id                                                                                         |
| report table mapping | c_domtbl_pk                                | stared id type                                                                                 |
| report_table_mapping | с_аоткы_рк                                 | stored_id_type report_met_domain_name report_id_type table_name                                |
|                      |                                            |                                                                                                |
| runway_ob            | c_rnwyob_pk                                | ob_time id id_type runway_name met_domain_name                                                 |
|                      | ix_rnwyob_si                               | src_id                                                                                         |
| sfc_clmo_elem        | sfc_clmo_elem_pk sfc_clmo_elem_dom_elem_fk | src_id clmo_end_date clmo_year_cnt met_domain_name month_number met_element_id met_domain_name |
|                      |                                            | met_element_id                                                                                 |
|                      | sfc_clmo_elem_sfc_clmo_rec_fk              | src_id clmo_end_date clmo_year_cnt met_domain_name                                             |
|                      |                                            |                                                                                                |
| sfc_clmo_rec         | sfc_clmo_rec_pk                            | src_id<br>clmo_end_date<br>clmo_year_cnt<br>met_domain_name                                    |
|                      | sfc_clmo_rec_src_met_domain_fk             | src_id<br>met_domain_name                                                                      |
|                      |                                            |                                                                                                |
| soil_min_temp_ob     | txbgob_pk                                  | id id_type ob_date met_domain_name                                                             |



|                | txbgob_srccap_fk  | id_type                                     |  |
|----------------|-------------------|---------------------------------------------|--|
|                | 33                | id                                          |  |
|                |                   | met_domain_name                             |  |
|                | txgob_src_id_ix   | src_id                                      |  |
|                |                   |                                             |  |
|                |                   |                                             |  |
| soil_temp_ob   | c_soilob_pk       | id id_type ob_time met_domain_name          |  |
|                | iv pollab pi      | version_num                                 |  |
|                | ix_soilob_si      | src_id                                      |  |
|                |                   |                                             |  |
|                |                   |                                             |  |
| source         | c_src_pk          | src_id                                      |  |
|                | ix_post_code      | post_code                                   |  |
|                | ix_src_hydro      | hydr_area_id                                |  |
|                | ix_src_loc_geo    | loc_geog_area_id                            |  |
|                | ix_src_name       | src_name                                    |  |
| src_capability | c_srccap_end_date | id id_type met_domain_name src_cap_end_date |  |
|                | c_srccap_pk       | id<br>id_type<br>met_domain_name            |  |
|                |                   | src_cap_bgn_date                            |  |
|                | ix_src_cap_dom    | met_domain_name                             |  |
|                | ix_src_cap_si     | src_id                                      |  |
|                |                   |                                             |  |
| src_met_domain | src_met_domain_pk | src_id<br>met_domain_name                   |  |
|                |                   |                                             |  |
| src_remark     | c_srcrem_pk       | src_id<br>src_rmrk_num                      |  |
|                |                   |                                             |  |
| src_runway     | c_runway_pk       | src_id                                      |  |
|                |                   | runway_name                                 |  |



| synthetic_glbl_wx | synthetic_glbl_wx_pk        | src_id<br>time<br>wmo_region_code                                |  |
|-------------------|-----------------------------|------------------------------------------------------------------|--|
|                   | synthetic_glbl_wx_prtn_key  | wmo_region_code<br>time                                          |  |
|                   | synthetic_glbl_wx_src_id_fk | src_id                                                           |  |
|                   |                             |                                                                  |  |
|                   |                             |                                                                  |  |
| temp_drnl_ob      | c_tdyob_pk                  | id id_type ob_end_time ob_hour_count version_num met_domain_name |  |
|                   | ix_tdyob_src_id             | src_id                                                           |  |
|                   |                             |                                                                  |  |
|                   |                             |                                                                  |  |
| ua_sounding       | c_ua_sndg_pk                | id<br>id_type<br>ob_time                                         |  |
|                   |                             |                                                                  |  |
|                   |                             |                                                                  |  |
| ua_sounding_point | c_ua_sndg_pt_pk             | id id_type ob_time ua_sndg_pt_num                                |  |
|                   |                             |                                                                  |  |
|                   |                             |                                                                  |  |
| weather_drnl_ob   | c_wxdyob_pk                 | id id_type ob_end_time ob_hour_count version_num met_domain_name |  |
|                   | to construct at             | src_id                                                           |  |
|                   | ix_wxdyob_si                | SIC_IU                                                           |  |
|                   | ix_wxayob_si                | SIC_IU                                                           |  |
|                   | ix_wxayob_si                | SIC_IU                                                           |  |
| weather_hrly_ob   | c_wxhrob_pk                 | id id_type ob_time version_num met_domain_name                   |  |



| wind_mean_ob | c_wndmob_pk    | id<br>id_type                               |
|--------------|----------------|---------------------------------------------|
|              |                | ob_end_time<br>version_num<br>ob_hour_count |
|              | ix_wndmob_si   | src_id                                      |
|              | ix_wndmob_time | ob_end_time                                 |

#### 11 MIDAS Packaged Functions

MIDAS includes a number of database packages. These packages contain a number of functions to decode database values or calculate derived values. These functions simplify retrieval for end-users and also centralise and control the functional logic. The packaged functions are available in the midas schema and are called using the *schema.package.function* notation. The package details are given below with examples of use. If you require more information about a packaged function then please contact a member of the midas team.

#### 11.1.1 midas\_utility\_pkg

decode\_j\_fnc
decode\_q\_fnc
decode\_to\_decamatres\_fnc
decode\_wx\_code\_fnc
feet\_to\_decametres\_fnc
get\_code\_val\_dsc\_id\_fnc
get\_code\_val\_dsc\_name\_fnc
high\_date\_fnc
kjoule\_to\_watt\_hour\_fnc
knots\_to\_beaufort\_fnc
lon\_band\_fnc
low\_date\_fnc
rank\_met\_domain\_fnc
throw\_ob\_date\_fnc

#### 11.1.2 midas\_humidity\_pkg

calc\_dwpt\_fnc
calc\_hmr\_fnc
calc\_rh\_fnc
calc\_svp\_fnc
calc\_ua\_hmr\_fnc
calc\_ua\_rh\_fnc
calc\_vp\_fnc
calc\_wbt\_fnc

\* MIDAS also contains a number of database triggers and packaged procedures. These are considered beyond the scope of this document, but details are available on request from the MIDAS Team.

| FUNCTION    | decode_j_fnc                                                                                                                                       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose:    | Decodes a J descriptor e.g. sea_temperature_j. If the _j value is not matched the function will return NULL.                                       |
| Parameters: | p_j_code_val VARCHAR2 - The value to be decoded. p_j_code_name VARCHAR2 - The code name for the type of column to be decoded. (See section 14.5.3) |
| Returns:    | The code value description of the descriptor's value from the code detail table.                                                                   |



**Description:** The function accepts the code value and code name for the descriptor and returns the

description as VARCHAR2

**Example:** SELECT wob.id

```
, TO_CHAR(wob.ob_time,'YYYY-MM-DD HH24:MI') ob_time
, wob.wetb_temp wetb
, wob.wetb_temp_j wetb_j
, midas.midas_utility_pkg.decode_j_fnc
```

(
wob.wetb\_temp\_j,
'TEMPERATURE'
) j\_dsc

FROM midas.weather\_hrly\_ob wob WHERE wob.id\_type = 'WMO' AND wob.id LIKE '0300%'

AND wob.met\_domain\_name = 'SYNOP'

AND wob.ob\_time BETWEEN TO\_DATE('2000-01-20 09:00',

**FUNCTION** 

decode\_q\_fnc

**Purpose:** Gives the description of each value in a QC attribute e.g. dewpoint\_q.

**Parameters:** p\_q\_code\_val VARCHAR2 - The value to be decoded.

p\_q\_code\_name VARCHAR2 - The code name for the type of column to be decoded.

(See section 14.5.3)

**Returns:** The QC item description for the QC value taken from the code\_detail table.

**Description:** \_q columns contain a 5-digit number, and each digit represents a different QC item. From

the left, they are: Marker, Estimate, Suspect, Query, and Level. The paramters for the function are the column value to be decoded e.g. wetb\_temp\_q and the item to be

decoded; this can be specified using any of the following:

'1', 'M', 'Marker'
'2', 'E', 'Estimate'
'3', 'S', 'Suspect'
'4', 'Q', 'Query'
'5', 'L', 'Level'

The function returns the description of the specified QC item as VARCHAR2. If the \_q value has been inadvertently stored as -32768, then the function will return NULL. Invalid values will return the character equivalent of the value.

**Example:** SELECT wob.id

```
, TO CHAR(wob.ob time, 'YYYY-MM-DD HH24:MI') ob time
```

, wob.msl\_pressure msl\_pr
, wob.msl pressure q msl pr q

midas.midas\_utility\_pkg.decode\_q\_fnc(wob.msl\_pressure\_q,

'S') msl\_pr\_susp

FROM midas.weather\_hrly\_ob wob WHERE wob.id type = 'WMO'

AND wob.id LIKE '03005%'

AND wob.met\_domain\_name = 'SYNOP'

AND wob.ob\_time BETWEEN TO\_DATE('2000-01-20 09:00',

'YYYY-MM-DD HH24:MI')

AND TO\_DATE('2000-01-22 10:00', 'YYYY-MM-DD HH24:MI');



**FUNCTION** decode to decametres fnc

Purpose: Converts coded values into decametres.

Parameters: p\_code\_val VARCHAR2 - The value to be decoded.

p\_met\_elem VARCHAR2 - The code name for the met element to be decoded.

Returns: Cloud height or visibility in decametres as NUMBER(5)

MIDAS stores 8-group cloud height and visibility as values, not codes, and the stored Description:

values are in decametres. This function can be used to convert coded data into

decametres during storage. The function will convert a code into the corresponding value in decametres for either cloud height (h<sub>s</sub>h<sub>s</sub> and h<sub>t</sub>h<sub>t</sub>) or visibility (VV and V<sub>s</sub>V<sub>s</sub>). Inputs to the function are coded value and met element (i.e. cloud height or visibility). Since the input is a code, it is assumed to be of character datatype, and must be enclosed within quotes. Values less than 10 must include a leading zero. Where a range of values applies (e.g. code figure 91 in htht) the function will return the lower value. The values for codes 1677 (CLOUD\_HEIGHT) and 4377 (HORIZONTAL\_VIS) are stored in the code\_detail table

(See section 14.5.3).

Example: SELECT midas.midas\_utility\_pkg.decode\_to\_decametres\_fnc

'CLOUD HEIGHT') cld ht

midas.midas\_utility\_pkg.decode\_to\_decametres\_fnc

'HORIZONTAL VIS') vis

FROM dual;

**FUNCTION** decode\_wx\_code\_fnc

Purpose: Returns present or past weather code descriptions for a particular weather code.

Parameters: p code value VARCHAR2 - a present or past weather code e.g. prst wx id from

weather hrly ob

p\_src\_opr\_type VARCHAR2 - the source operation type code for the site (manned or

automatic)

p\_cld\_ttl\_amt\_id VARCHAR2 - the cloud total amount (CLD\_TTL\_AMT\_ID)

Returns: The code value description for the weather code value

**Description:** The function first determines which WMO code table holds the description of the weather

code supplied, using the weather code and the source operation type code. It then calls function get\_code\_val\_dsc\_id\_fnc to obtain the weather code description, which becomes the return value of decode wx code fnc. The function currently returns only the first line

of each weather description, but can return an up to 340 character string

**Examples:** To obtain weather description for present weather code in midas.weather\_hrly\_ob

SELECT wob.id

TO\_CHAR(wob.ob\_time, 'YYYY-MM-DD HH24:MI') ob\_time

wob.prst wx id prst wx

wob.cld ttl amt id

wob.src\_opr\_type

midas.midas\_utility\_pkg.decode\_wx\_code\_fnc(wob.prst\_wx\_id

,wob.src\_opr\_type

,wob.cld\_ttl\_amt\_id)

FROM midas.weather hrly ob wob WHERE wob.src\_opr\_type >= '4' AND prst\_wx\_id IS NOT NULL

AND wob.met domain name = 'SYNOP'

AND wob.ob time = TO DATE('2001-06-01 00:00', 'YYYY-MM-DD HH24:MI');



Purpose:

Returns:

Purpose:

### **Observations**

```
To obtain weather description for first past weather code in midas.weather hrly ob
               SELECT wob.id
                   TO CHAR(wob.ob time, 'YYYY-MM-DD HH24:MI') ob time
                   wob.past wx id 1
                                                   past_wx_1
                   wob.cld_ttl_amt_id
                   wob.src_opr_type
                   midas.midas_utility_pkg.decode_wx_code_fnc(wob.past_wx_id_1
                                           ,wob.src_opr_type
                                           ,wob.cld_ttl_amt_id)
               FROM midas.weather_hrly_ob wob
               WHERE wob.id_type = 'WMO'
               AND wob.id IN ('03495','03772','03266', '03069','03763')
               AND wob.met domain name = 'SYNOP'
               AND wob.ob_time = TO_DATE('2001-06-01 00:00', 'YYYY-MM-DD HH24:MI');
               To obtain weather description for present weather code in midas.glbl_wx_ob
               SELECT gwo.id
                   TO_CHAR(gwo.ob_time,'YYYY-MM-DD HH24:MI') ob_time
                   gwo.prst wx id
                                                  prst wx
                   gwo.cld_ttl_amt_id
                   gwo.src opr type
                   midas.midas utility pkg.decode wx code fnc(gwo.prst wx id
                                           ,gwo.src_opr_type
                                           ,gwo.cld_ttl_amt_id)
               FROM midas.glbl_wx_ob gwo
               WHERE gwo.id_type = 'WMO'
               AND gwo.id LIKE '076%'
                     gwo.met_domain_name = 'SYNOP';
 FUNCTION
                feet_to_decametres_fnc
              Converts feet to decametres or decametres to feet
Parameters:
              p_feet NUMBER - The value, in feet, to be converted
              The converted value in decametres (NUMBER(9,5))
              Most MIDAS values are in decametres (rather than metres). This function takes an input
Description:
              value in feet, and converts it to decametres. The range of input values is constrained to
              match the maximum value of visibility that MIDAS can store. The output can readily be
              converted into metres, and the inverse of the function can be applied to convert
              decametres to feet.
Examples:
              Feet To Decametres
               SELECT '20'
                   midas.midas_utility_pkg.feet_to_decametres_fnc(20)
                   10 * midas.midas_utility_pkg.feet_to_decametres_fnc(20) m
              FROM dual:
              Decametres To Feet
              SELECT '30'
                                                        dm
                   30 / midas.midas_utility_pkg.feet_to_decametres_fnc(1) ft
               FROM dual;
 FUNCTION
                get_code_val_dsc_id_fnc
               Returns code description for a particular weather code given the relevant WMO code table
               number.
Parameters:
               p_code_id VARCHAR2 - The WMO code table number (code_id in the code table).
```

p\_code\_value VARCHAR2 - The value to be decoded. p\_desc\_line\_num NUMBER - Optional (default = 1)



Returns: The code value description for the weather code value **Description:** The function selects the weather code description required, using the given WMO weather code table number, the weather code and line number of the description needed. The function returns NULL for all invalid values. Example: To obtain the first line of the weather description for present weather code in midas.weather hrly ob SELECT wob.id TO\_CHAR(wob.ob\_time,'YYYY-MM-DD HH24:MI') ob\_time wob.prst wx id prst wx wob.past\_wx\_id\_2 wob.cld\_ttl\_amt\_id wob.src opr type midas.midas\_utility\_pkg.get\_code\_val\_dsc\_id\_fnc( '4677', wob.prst wx id FROM midas.weather\_hrly\_ob wob WHERE wob.id\_type = 'WMO' AND wob.id = '03495'AND wob.met\_domain\_name = 'SYNOP' AND wob.ob\_time = TO\_DATE('2001-06-01 00:00','YYYY-MM-DD HH24:MI'); **FUNCTION** get code val dsc name fnc Purpose: Returns code description for a particular weather code given the relevant code name. p code name VARCHAR2 - The weather code name (code name in the code table). Parameters: p\_code\_value VARCHAR2 - The value to be decoded. p\_desc\_line\_num NUMBER - Optional (default = 1) The code value description for the weather code value Returns: **Description:** The function selects the weather code description required, using the given code name, the weather code and line number of the description needed. The function returns NULL for all invalid values. To obtain the first line of the weather description for present weather code in Example: midas.weather\_hrly\_ob SELECT wob.id TO\_CHAR(wob.ob\_time,'YYYY-MM-DD HH24:MI') ob\_time wob.prst\_wx\_id prst\_wx wob.past wx id 2 wob.cld ttl amt id wob.src\_opr\_type midas.midas\_utility\_pkg.get\_code\_val\_dsc\_name\_fnc( 'PRES WX MAN', wob.prst\_wx\_id FROM midas.weather\_hrly\_ob wob WHERE wob.id\_type = 'WMO' wob.id = '03495'AND

**Purpose:** Gives the highest date and time permitted in MIDAS.

wob.met domain name = 'SYNOP'

wob.ob\_time = TO\_DATE('2001-06-01 00:00','YYYY-MM-DD HH24:MI');

AND

AND

high\_date\_fnc

**FUNCTION** 



Parameters: None.

Returns: Highest date and time

**Description:** This function has no parameters. It returns the highest date (and time) permitted in

MIDAS, i.e. TO DATE('3999-12-31 00:00','YYYY-MM-DD HH24:MI').

**Example:** SELECT TO\_CHAR(midas.midas\_utility\_pkg.high\_date\_fnc,

'YYYY-MM-DD HH24:MI') high

FROM dual;

**FUNCTION** kjoule\_to\_watt\_hour\_fnc

**Purpose:** Convert radiation from KJoules/sq metre to Watt-Hours/sq metre.

Parameters: p irad amt NUMBER - The irradiation amount.

**Returns:** Irradiation amount in Watt Hours. Returns NULL for invalid values. **Description:** Conversion supplied by C D Hall, 1J = 1 Watt/Second. 3600J = 1Watt/hr.

**Example:** SELECT midas.midas\_utility\_pkg.kjoule\_to\_watt\_hour\_fnc(glbl\_irad\_amt)

FROM midas.radt\_ob\_v2 WHERE ROWNUM < 10;

FUNCTION knots\_to\_beaufort\_fnc

**Purpose:** Converts wind speed in knots to the equivalent Beaufort force number or description.

Parameters: p knots NUMBER - Wind speed in knots

**Returns:** Beaufort force number or description. Returns NULL for invalid values.

**Description:** The function returns both Beaufort number and Description. Users may apply left substring

to get number only. Beaufort descriptions are taken from WMO 306 Manual on Codes 1.1

A, 1995.

**Example:** SELECT midas.midas utility pkg.knots to beaufort fnc(30) Beaufort

FROM dual;

FUNCTION | lon\_band\_fnc

**Purpose:** Gives code for a band of longitude. **Parameters:** p\_longitude NUMBER - Longitude.

Returns: Longitude band code

**Description:** This function returns the longitude\_band\_code for a specified longitude. It derives the

longitude band code for insertion into the marine\_ob table. This attribute forms part of the primary key of marine\_ob and is the primary partition key for this table. This function

should be used in most marine\_ob queries to enable use of partitions.

**Example:** SELECT 15.6 longitude

midas.midas\_utility\_pkg.lon\_band\_fnc(15.6) longitude\_band\_code

FROM dual;

FUNCTION | low\_date\_fnc

**Purpose:** Gives the lowest date and time permitted in MIDAS.

Parameters: None.

**Returns:** Lowest date and time



**Description:** This function has no parameters. It returns the lowest date (and time) permitted in MIDAS,

i.e. TO DATE('0001-01-01 00:00','YYYY-MM-DD HH24:MI').

**Example:** SELECT TO\_CHAR(midas.midas\_utility\_pkg.low\_date\_fnc,

'YYYY-MM-DD HH24:MI') low

FROM dual;

FUNCTION rank\_met\_domain\_fnc

**Purpose:** Provides the precedence of a met domain **Parameters:** p\_tab\_type VARCHAR2 - Table type.

p\_met\_dom VARCHAR2 - Met domain name. Values as found in the met domain rank table.

**Returns:** Met domain rank as NUMBER.

**Description:** The function gives the relative worth (precedence) of a met domain within specified tables,

so it can be used to get the 'best' rainfall figures for a station. Table type defines the table or view that the function is being used with e.g. 'RADIATION'. Met domain precedence is

defined in the met domain rank table. Invalid values return NULL.

**Example:** SELECT TO\_CHAR(rdo.ob\_date,'YYYY-MM-DD HH24:MI') ob\_date

rdo.id

, rdo.met\_domain\_name met\_dom

, midas.midas\_utility\_pkg.rank\_met\_domain\_fnc

('drnl rain',

,rdo.met\_domain\_name) rank

rdo.ob\_end\_ctime ob\_ctm

, rdo.ob\_day\_cnt

rdo.src\_id

rdo.prcp\_amt

throw\_ob\_date\_fnc

FROM midas.rain\_drnl\_ob rdo WHERE rdo.id\_type = 'RAIN' AND rdo.id LIKE '69%'

AND rdo.ob\_date BETWEEN TO\_DATE('2000-01-01 00:00',

'YYYY-MM-DD HH24:MI') AND TO\_DATE('2000-01-10 23:59',

'YYYY-MM-DD HH24:MI');

Purpose: Throws observation date and time forwards or back by one day, depending upon clock-

time.

**FUNCTION** 

**Parameters:** p\_ob\_time DATE - Observation date and time (in Oracle date format).

p clock time NUMBER - Clock-time limit.

p direction NUMBER - Direction of throw (-1 = Throw back; +1 = Throw forward).

**Returns:** Date (VARCHAR2) to which the observation belongs.

**Description:** Some met elements, e.g. rainfall and temperature, are measured over 12-hour periods.

These values may belong to the prior or next day, depending upon the observing period. This function compares ob date and time with the clock time limit supplied and returns the

date +/- 1 day.

If the direction is -1 and the clock time of the ob time is less than or equal to the clock time

limit then the thrown ob date is the ob date minus one day.

If the direction is +1 and the clock time of the ob\_time is greater than the clock time limit

then the thrown ob date is the ob date plus one day.

The function returns a date as VARCHAR2(10) to ensure unambiguous grouping by the return value. Observations for the hour 0000 are usually considered as being for the hour



ending at midnight, i.e. last hour of the day, but 2400 is not a valid time in the Oracle date datatype. The function returns NULL for all invalid values.

```
Examples:
              SELECT midas_midas_utility_pkg.throw_ob_date_fnc
                   (TO DATE('2000-02-29 23:00', 'YYYY-MM-DD HH24:MI'),
                   ,0600
                   ,-1
                   ) thrown_date
              FROM dual;
              SELECT tob.id
                 tob.met_domain_name
                  tob.ob_hour_count
                  tob.max air temp
                  tob.min air temp
                  SUBSTR(midas.midas utility pkg.throw ob date fnc
                   (tob.ob_end_time-1
                   ,1200
                   ,+1)
                  ,1,10) maxt_day
                  SUBSTR(midas.midas_utility_pkg.throw_ob_date_fnc
                   (tob.ob_end_time
                   ,1200
                   ,+1)
                  ,1,10) mint day
              FROM midas.temp drnl ob tob
              WHERE tob.id_type = 'DCNN'
              AND tob.id LIKE '02%'
              AND tob.ob_end_time BETWEEN TO_DATE('1999-01-01 00:01',
                                    'YYYY-MM-DD HH24:MI')
                                  TO_DATE('1999-01-04 23:59',
                           AND
                                    'YYYY-MM-DD HH24·MI'\-
```

| 1 1 1 1 - IVIIVI-DD 1 II 124.IVII ), |               |  |
|--------------------------------------|---------------|--|
| FUNCTION                             | calc_dwpt_fnc |  |

Purpose: Calculates dew-point.

Parameters: p\_air\_temp NUMBER - Air temperature.

p\_wetb\_temp NUMBER - Wet-bulb temperature.

p\_air\_pres NUMBER - Air pressure.

p\_st\_flag NUMBER - Screen-temperature flag, i.e. exposure-type.

Returns: Dew-point temperature as NUMBER

**Description:** If air temperature or wet bulb are missing, then the function will return NULL. Set the

screen temperatures flag to 1.0 for screen temperatures, otherwise 0.0. If air pressure is

missing, the function will default to 1000.0.

**Examples:** SELECT wob.id

TO\_CHAR(wob.ob\_time, 'YYYY-MM-DD HH24:MI') wob\_time

wob.air temperature

wob.dewpoint

wob.wetb\_temp

wob.msl\_pressure

midas.midas\_humidity\_pkg.calc\_dwpt\_fnc

(wob.air\_temperature ,wob.wetb\_temp ,wob.msl\_pressure ,1.0) calc\_dwpt

FROM midas.weather hrly ob wob



WHERE wob.id\_type = 'WMO'

AND wob.id = '03772'

AND wob.met domain name = 'SYNOP'

AND wob.ob time BETWEEN TO DATE('1999-02-01 00:00',

'YYYY-MM-DD HH24:MI')

AND TO\_DATE('1999-02-03 23:59', 'YYYY-MM-DD HH24:MI');

FUNCTION calc hmr fnc

**Purpose:** Calculates humidity mixing ratio.

**Parameters:** p\_air\_temp NUMBER - Air temperature.

p\_wetb\_temp NUMBER - Wet-bulb temperature.

p\_air\_pres NUMBER - Air pressure.

p\_st\_flag NUMBER - Screen-temperature flag, i.e. exposure-type.

Returns: Humidity Mixing Ratio as NUMBER

**Description:** If air temperature, wet bulb temperature or air pressure are NULL, then the function will

return NULL. Set the screen-temperatures flag to 1.0 for screen temperatures or to 0.0 for

aspirated temperatures. Other values default to 1.0.

NB: This function calculates HMR using the formula: HMR = 63197.0 \* VP / (MSL\_PRES -

VP)

As described in Met Glossary and used in HORACE etc.

However, MOP3.LAND.FORT(HUMIDS) uses: HMR = 63197.0 \* VP / (MSL\_PRES + VP)

**Example:** SELECT who.id

, TO\_CHAR(who.ob\_time,'YYYY-MM-DD HH24:MI') ob\_time

, who.air\_temperature , who.wetb\_temp

, who.wetb\_temp , who.msl\_pressure

, midas.midas\_humidity\_pkg.calc\_hmr\_fnc(who.air\_temperature

,who.wetb\_temp

,who.msl\_pressure

,1.0) hmr

FROM midas.weather hrly ob who

WHERE who.id\_type = 'WMO'

AND who.id = '03031'

AND who.met\_domain\_name = 'SYNOP'

AND who.ob\_time BETWEEN TO\_DATE('1999-02-01 00:00',

'YYYY-MM-DD HH24:MI')

AND TO\_DATE('1999-02-15 23:59',

'YYYY-MM-DD HH24:MI');

FUNCTION calc\_rh\_fnc

**Purpose:** Calculates relative humidity.

**Parameters:** p air temp NUMBER - Air temperature.

p wetb temp NUMBER - Wet-bulb temperature.

p\_air\_pres NUMBER - Air pressure.

p\_st\_flag NUMBER - Screen-temperature flag, i.e. exposure-type.

p\_trap\_invalid VARCHAR2 - To suppress invalid values.

**Returns:** Relative Humidity as NUMBER

**Description:** If either air temperature or wet bulb temperature are NULL, then the function will return

NULL. Set the screen-temperatures flag to 1.0 for screen temperatures or to 0.0 for aspirated temperatures. Other values default to 1.0. If air pressure is NULL,then a default of 1000.0 is used. If the boolean trap invalid flag is set to 'T' or is not set, then: if the calculated relative humidity is > 100% in certain frost conditions it is reset to 100%; or if



the calculated relative humidity is > 100% in other conditions, or is < 0%, it is reset to NULL. If the boolean trap invalid flag is set to 'F' then the calculated relative humidity is not reset even if outside range 0-100%.

NB: Relative humidity is available as a derived column on both the marine\_ob and weather\_hrly\_ob tables.

Example:

SELECT who.id

, TO\_CHAR(who.ob\_time,'YYYY-MM-DD HH24:MI') ob\_time

, who.air\_temperature

, who.dewpoint, who.wetb\_temp, who.msl\_pressure

midas.midas\_humidity\_pkg.calc\_rh\_fnc(who.air\_temperature

,who.wetb\_temp
,who.msl\_pressure

,1.0

,'F') rltv\_hum\_fnc

, who.rltv\_hum rltv\_hum\_col FROM midas.weather\_hrly\_ob who WHERE who.id\_type = 'WMO' AND who.id LIKE '0300%'

AND

AND who.met\_domain\_name = 'SYNOP'

AND who.ob\_time BETWEEN TO\_DATE('2000-01-20 09:00',

'YYYY-MM-DD HH24:MI')
TO\_DATE('2000-01-20 12:00',
'YYYY-MM-DD HH24:MI');

FUNCTION

calc\_svp\_fnc

Purpose: Gi

Gives saturation vapour pressure for the specified temperature.

Parameters:

p\_air\_temp NUMBER - Air temperature.

p\_rh\_flag VARCHAR2 - Relative humidity flag. Optional (default = 'N').

Returns:

Saturation vapour pressure as NUMBER

**Description:** 

Calculates saturation vapour pressure from temperature and ice-bulb flag. Ice-bulb flag is set when dry-bulb air temperature < 0.0 deg.C. If relative humidity flag is set then

saturation vapour pressure is calculated over water and never over ice despite

temperature. By default it is not set.

Example:

SELECT who.id

, TO\_CHAR(who.ob\_time,'YYYY-MM-DD HH24:MI') ob\_time

, who.air\_temperature
, who.wetb temp

midas.midas\_humidity\_pkg.calc\_svp\_fnc(who.air\_temperature) dry midas.midas\_humidity\_pkg.calc\_svp\_fnc(who.wetb\_temp) wet

FROM midas.weather\_hrly\_ob who WHERE who.id type = 'WMO'

AND who.id LIKE '0300%'
AND who.met\_domain\_name = 'SYNOP'

AND who.ob\_time BETWEEN TO\_DATE('2000-01-20 09:00',

'YYYY-MM-DD HH24:MI')
TO\_DATE('2000-01-20 12:00',
'YYYY-MM-DD HH24:MI');

calc\_ua\_hmr\_fnc

**AND** 

**FUNCTION** 



Purpose: Calculate Humidity Mixing Ratio for upper air ascents.

**Parameters:** p\_air\_temp NUMBER - Air temperature.

p\_dwpt NUMBER - Dewpoint.p\_air\_pres NUMBER - Air pressure.

Returns: Humidity Mixing Ratio as NUMBER.

**Description:** This function calculates humidity mixing ratio from air temperature, dewpoint and air

pressure, and gives more accurate results for upper air ascents than alternative methods,

which use wet bulb temperature. The function returns NULL for all invalid values.

**Example:** SELECT usp.id

, TO\_CHAR(usp.ob\_time,'YYYY-MM-DD HH24:MI') ob\_time

, usp.ua\_sndg\_pt\_num
, usp.vert\_sig\_code
, usp.ua\_height
, usp.pres\_coord

, usp.ua\_air\_temperature

, usp.ua\_an\_temperatur , usp.ua dewpoint

, midas.midas\_humidity\_pkg.calc\_ua\_hmr\_fnc(usp.ua\_air\_temperature

,usp.ua\_dewpoint

,usp.pres\_coord) ua\_hmr

FROM midas.ua\_sounding\_point usp

WHERE usp.id\_type = 'WMO' AND usp.id = '03496'

AND usp.ob\_time > TO\_DATE('1989-05-01 00:00',

'YYYY-MM-DD HH24:MI')

AND usp.ua\_sndg\_pt\_num BETWEEN 40 AND 52;

**FUNCTION** 

calc\_ua\_rh\_fnc

**Purpose:** Calculate relative humidity for upper-air ascents.

**Parameters** p\_air\_temp NUMBER - Air temperature.

p\_dwpt NUMBER - Dewpoint.p\_air\_pres NUMBER - Air pressure.

**Returns:** Relative Humidity as NUMBER.

Description: Adapted from Met.O.22 subroutine, as developed by D Akeroyd (May 1986) and L Gibson

(May 1987). The Met.O.22 subroutine was used in the SMR UA datasets (from which CDB

datasets were derived). Returns NULL for invalid values. Reference: Met.Mag., 114, No.1351, Feb 1985, pp49-56.

NB: An existing MIDAS function (calc\_rh\_fnc) calculates RH from air temperature, wet

bulb and air pressure.

**Example:** SELECT usp.id

, TO\_CHAR(usp.ob\_time,'YYYY-MM-DD HH24:MI') ob\_time

, usp.ua\_sndg\_pt\_num, usp.vert\_sig\_code, usp.ua\_height

, usp.pres\_coord

, usp.ua\_air\_temperature

, usp.ua\_dewpoint

, midas.midas\_humidity\_pkg.calc\_ua\_rh\_fnc(usp.ua\_air\_temperature

,ua\_dewpoint

,pres\_coord) ua\_rh

FROM midas.ua\_sounding\_point usp

WHERE usp.id\_type = 'WMO'

AND usp.id = '03496'

AND usp.ob\_time > TO\_DATE('1989-05-01 00:00',



'YYYY-MM-DD HH24:MI')

AND usp.ua\_sndg\_pt\_num BETWEEN 40 AND 52;

**FUNCTION** 

calc\_vp\_fnc

**Purpose:** Calculates vapour pressure using Regnault's formula.

**Parameters:** p air temp NUMBER - Air temperature.

p wetb temp NUMBER - Wet bulb temperature.

p\_air\_pres NUMBER - Air pressure.

p\_st\_flag NUMBER - Screen temperature flag i.e. exposure type.

**Returns:** Vapour pressure as NUMBER.

**Description:** If either air temperature or wet bulb temperature are NULL, then the function will return

NULL. Set the screen temperatures flag to 1.0 for screen temperatures or to 0.0 for aspirated temperatures. Any other value will default to 1.0. If air pressure is NULL a

default of 1000.0 is used.

**Example:** SELECT who.id

, TO CHAR(who.ob time, 'YYYY-MM-DD HH24:MI') ob time

, who.air\_temperature, who.wetb\_temp, who.msl pressure

midas.midas\_humidity\_pkg.calc\_vp\_fnc(who.air\_temperature

,who.wetb\_temp
,who.msl\_pressure

,1.0) vpres

FROM midas.weather\_hrly\_ob who

WHERE who.id\_type = 'WMO' AND who.id LIKE '0300%'

AND

AND who.met\_domain\_name = 'SYNOP'

AND who.ob\_time BETWEEN TO\_DATE('2000-01-20 09:00',

'YYYY-MM-DD HH24:MI')
TO\_DATE('2000-01-20 12:00',

'YYYY-MM-DD HH24:MI');

FUNCTION | calc\_wbt\_fnc

**Purpose:** Calculates wet bulb temperature.

**Parameters:** p\_air\_temp NUMBER - Air temperature.

p\_dwpt NUMBER - Dew point temperature.

p\_wetb\_temp NUMBER - Wet bulb temperature.

**Returns:** Wet bulb temperature as NUMBER.

**Description:** Wet bulb temperature is both an argument to the function and the return value. If the input

contains a value for wet bulb then the function will return that same value. If the input wet bulb temperature is NULL then the function will attempt to calculate a value for it. (In a set of inputs some of the values may be NULL while other are not). The function will return

NULL for any of the following conditions:

Air temp is NULL

Dewpoint is NULL

• Air temp < -40.0 deg.C. or > 40.0 deg.C.

Dewpoint > air temp

• Function fails to converge on a satisfactory value after 4 iterations



The function calculates wet bulb to three decimal places, and does not throw, round or truncate the return value.

#### **Description:** 1. Compare calculated wet-bulb with existing stored values.

```
SELECT who.id
   TO_CHAR(who.ob_time,'YYYY-MM-DD HH24:MI') ob_time
   who.air_temperature
   who.dewpoint
   who.wetb_temp
   midas.midas_humidity_pkg.calc_wbt_fnc(who.air_temperature
                        ,who.dewpoint
                        ,NULL) wbt_calc
FROM midas.weather_hrly_ob who
WHERE who.id type = 'WMO'
AND who.id = '03005'
AND who.met_domain_name = 'SYNOP'
AND who.ob time BETWEEN TO DATE('1999-02-03 00:00',
                  'YYYY-MM-DD HH24:MI')
                TO_DATE('1999-02-11 23:59',
                  'YYYY-MM-DD HH24:MI');
2. Return existing wet-bulb where stored, otherwise calculate one.
SELECT who.id
   TO CHAR(who.ob time, 'YYYY-MM-DD HH24:MI') ob time
   who.air temperature
```

who.dewpoint

who.wetb temp

midas.midas\_humidity\_pkg.calc\_wbt\_fnc(who.air\_temperature

,who.dewpoint

,who.wetb\_temp) wbt\_calc

FROM midas.weather\_hrly\_ob who WHERE who.id\_type = 'WMO' AND who.id = '03005'

AND who.met domain name = 'SYNOP'

AND who.ob time BETWEEN TO DATE('1999-02-03 00:00',

'YYYY-MM-DD HH24:MI') TO\_DATE('1999-02-11 23:59', AND 'YYYY-MM-DD HH24:MI');

#### 12 Upper Air Observations

#### 12.1 Introduction

This document refers specifically to upper air data within MIDAS, and replaces all earlier MIDAS upper air documents.

Midas stores selected upper air data in database tables, and considerably more data in the upper air archive. The upper air archive consists of a series of datasets, maintained in MASS.



The MIDAS database tables provide sufficient space for 500 station/years of observations, but the content of the database is not fixed. The tables are treated as a 'scratch' area, into which customers may load (subject to space availability) data of their choice from the upper air archive.

The MIDAS Upper Air sub-system consists of the following components:

- Database tables and views
- Data (Upper Air observations stored in MIDAS and MASS)
- Standing data
- Software modules for routine data storage
- Software modules to load data into the database tables
- Software modules to query the data

The components listed above provide for the storage, manipulation and querying of upper air <u>observations</u> from land stations and ships. Each of these components is described in detail in the following sections. Upper air monthly averages and 30-year normals are also available, but are not covered in this document.

SQL code and sample program outputs are shown in Courier font.

#### 12.1.1 Database Tables and Views.

MIDAS provides two tables for upper air observations, UA SOUNDING and UA SOUNDING POINT



- UA\_SOUNDING contains values that are common to all of the points in an upper air sounding (ascent), e.g. launch time, radar type, sonde type, etc.
- UA\_SOUNDING\_POINT describes the atmosphere at the specified level of an ascent, e.g. height, air pressure, temperature.

Each upper air ascent will have one <code>UA\_SOUNDING</code> and may have one or more <code>UA\_SOUNDING\_POINT</code>. Each <code>UA\_SOUNDING\_POINT</code> belongs to one and only one <code>UA\_SOUNDING</code>.

As previously mentioned, the contents of the database are not fixed. Customers may load data of their choice into the database tables. Customers cannot gain direct access to the database tables. Database views are



provided in both the MIDASUPD and MIDASUU schemas. All customers have both update and retrieval access via the MIDASUPD schema, and all users have retrieval access using the MIDASUU schema.

See Section 9.4 for a full description of the tables and their columns.

Relative humidity and humidity mixing ratio are not stored. MIDAS provides functions to calculate these values during retrieval.

#### 12.1.2 Standing Data

The Midas SOURCE table describes the upper air stations. See Section 9.2 for a description of the table.

The Midas SRC CAPABILITY table shows:

- The types of report the station can make (e.g. TEMP or PILOT)
- The period for which data is available
- Where data is located

See Section 9.2 for a general description of the SRC CAPABILITY table and its columns.

Some columns of SRC CAPABILITY have specific meanings for upper air obs. They are:

| Column Name<br>Met_Domain_Name | <b>Data-Type</b><br>VARCHAR2(8) | Description, Units Type of report. UAPLT = FM32 PILOT UATMP = FM35 TEMP UATMPSHP = FM36 TEMP SHIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First_Online_Ob_Yr             | NUMBER(4)                       | Year of the latest report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DB_Segment_Name                | VARCHAR2(12                     | e.g. B02999.Yyyyy. The contents of src_capability.db_seg_name must be prefixed with MSD5.MIDUPAIR., and yyyy must be interpreted to the last year of a 10-year period, using src_cap_end_date. Thus src_capability.db_seg_name = A03998.Yyyyy shows that the data are in MSD5.MIDUPAIR.A03998.Y1959, MSD5.MIDUPAIR.A03998.Y1969, etc., depending on the range of dates between src_cap_bgn_date and src_cap_end_date. When yyyy is replaced by a figure (e.g. U03998.Y1959) this indicates that the data are only in one dataset, MSD5.MIDUPAIR.A03998.Y1959 in this case. Recent data will also be available in the database tables. |
| Data_Retention_Perio           | d NUMBER(3)                     | Number of years for which data is retained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

See 3.1 for a list of the archive dataset names.

A sample of SRC CAPABILITY data is shown below.

| SRC_II | DID   | MET_DOM | MCAP_BGN | NCAP_ENI | DLATEST_Y | R DB_SEG_NAME | RETENTION |
|--------|-------|---------|----------|----------|-----------|---------------|-----------|
|        |       |         |          |          |           |               |           |
| 433    |       | UATMP   |          |          | 2000      | U03998.Yyyy   | y 999     |
| 1198   | 03496 | 6 UATMP | 1999-    | 3999-    | 2000      | U03998.Yyyy   | y 999     |
| 440    | 03502 | 2 UATMP | 12-01    | 12-31    | 2000      | U03998.Yyyy   | y 999     |
| 605    | 03590 | ) UATMP | 1999-    | 3999-    | 2000      | U03998.Yyyy   | y 999     |
| 888    | 03649 | UAPLT   | 12-01    | 12-31    | 2000      | U03998.Yyyy   | y 999     |
| 888    | 03743 | 3 UATMP | 1999-    | 3999-    | 2000      | U03998.Yyyy   | y 999     |
| 1395   | 03743 | B UATMP | 12-01    | 12-31    | 2000      | U03998.Yyyy   | y 999     |
| 811    | 03808 | B UATMP | 1999-    | 3999-    | 2000      | U03998.Yyyy   | y 999     |
| 1490   | 03882 | 2 UATMP | 12-01    | 12-31    | 2000      | U03998.Yyyy   | y 999     |
| 17090  | 03920 | ) UATMP | 1999-    | 3999-    | 2000      | U03998.Yyyy   | y 999     |
|        | 03953 | 3       | 12-01    | 12-31    |           |               |           |



1999- 3999-12-01 12-31 1999- 3999-12-01 12-31 1999- 3999-12-01 12-31 1999- 3999-12-01 12-31 1999- 3999-12-01 12-31

For convenience, SOURCE and SRC\_CAPABILITY tables are joined in a view, MIDASVU.CAPABILITY\_AT\_SRC. See Section 9.3 for a description of this view.

#### 12.1.3 3. Upper Air Data

The MIDAS upper air data is very voluminous, so it is primarily stored as a series of offline datasets within MASS. A subset of the data is duplicated within the MIDAS tables, and customers may add to the online data in the MIDAS tables by restoring the MASS data and loading it into MIDAS.

The MIDAS tables also contain standing data that provides details of the stations that make upper air observations and of the names of the MASS files where their upper air obs are stored.

Loading upper air data into MIDAS from the upper air MASS archive is a multi-step process, i.e.

- Query standing data to determine data availability and the generic name of the dataset where the required data is situated.
- Restore the files from MASS
- Load the obs using SQL\*Loader utility
- Interrogate the upper air obs using either batch or online methods
- Notify the MIDAS Team when the customer has completed their data enquiry.

A Batch Suite Diagram (BSGP0002) is available on request from the Midas Team



A set of software modules is available to facilitate the identification, restore and loading of the upper air obs, and a procedure to facilitate this process is provided.

When the upper air data has been restored from MASS, the customer may FTP them to another location or read from them directly, without loading them into the MIDAS tables. This approach is recommended when dealing with large volumes of data and the queries are not particularly sophisticated.

For more complex queries, the customer may load the data into Midas, and will thus be able to easily select data by several parameters, join it with standing data (or other Midas data), employ database functions, group the data, etc.

#### 3.1 Archive Data

The upper air reports are maintained as a series of datasets in MASS. Each dataset contains the reports for a region and period, e.g. MSD5.MIDUPAIR.A03998.Y1979 contains reports for UK and Ireland for the period 1970 - 1979. The datasets currently available are:

| ID Range    | DB_Seg_Name          | Files                      |
|-------------|----------------------|----------------------------|
| All SHIP    | SHIPS.Y <i>yyyy</i>  | MSD5.MIDUPAIR.SHIPS.Y1999  |
| reports     |                      | MSD5.MIDUPAIR.SHIPS.Y2002  |
| WMO 01001 - | в01999.Ү <i>уууу</i> | MSD5.MIDUPAIR.B01999.Y1999 |
| 01415       |                      | MSD5.MIDUPAIR.B01999.Y2002 |
| WMO 02185 - | в02999.Ү <i>уууу</i> | MSD5.MIDUPAIR.B02999.Y1999 |
| 02963       |                      | MSD5.MIDUPAIR.B02999.Y2002 |



| WMO 03005 - A03998.Yyyyy MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y2 WMO 04018 - A0449999.Yyyyy MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y2 WMO 06011 - A06399.Yyyyy MSD5.MIDUPAIR.A06399.Y1 MSD5.MIDUPAIR.A06399.Y1 MSD5.MIDUPAIR.A06399.Y1 | 969<br>979<br>989<br>999<br>002 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y2 MMO 04018 - A0449999.Yyyyy MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y2 WMO 06011 - A06399.Yyyyy MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                  | 979<br>989<br>999<br>002<br>979 |
| MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y2 WMO 04018 - A0449999.Yyyyy MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y2 WMO 06011 - A06399.Yyyyy MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                                                                  | 989<br>999<br>002<br>979        |
| MSD5.MIDUPAIR.A03998.Y1 MSD5.MIDUPAIR.A03998.Y2 WMO 04018 - A0449999.Yyyyy MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y2 WMO 06011 - A06399.Yyyyy MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                                                                                          | 999<br>002<br>979               |
| MSD5.MIDUPAIR.A03998.Y2 WMO 04018 - A0449999.Yyyyy MSD5.MIDUPAIR.A04999.Y1 04390 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y2 WMO 06011 - A06399.Yyyyy MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                                                                                                            | 002<br>979                      |
| WMO 04018 - A0449999.Yyyyy MSD5.MIDUPAIR.A04999.Y1 04390                                                                                                                                                                                                                                                                                                                                                                                             | 979                             |
| 04390 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y1 MSD5.MIDUPAIR.A04999.Y2 WMO 06011 - A06399.Y2 MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                                                                                                                                                                                          |                                 |
| MSD5.MIDUPAIR.A04999.Y1<br>MSD5.MIDUPAIR.A04999.Y2<br>WMO 06011 - A06399.Yyyyy MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                                                                                                                                                                                                               |                                 |
| MSD5.MIDUPAIR.A04999.Y2<br>WMO 06011 - A06399.Yyyyy MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| WMO 06011 - A06399.Yyyyy MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| MSD5.MIDUPAIR.A06399.Y1                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| MSD5.MIDUPAIR.A06399.Y2                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| WMO 06447 - B06999.Yyyyy MSD5.MIDUPAIR.B06999.Y1                                                                                                                                                                                                                                                                                                                                                                                                     | 999                             |
| 06610 MSD5.MIDUPAIR.B06999.Y2                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| WMO 07110 - B07999.Yyyyy MSD5.MIDUPAIR.B07999.Y1                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| 07761 MSD5.MIDUPAIR.B07999.Y2                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| WMO 08001 - B09999.Yyyyy MSD5.MIDUPAIR.B09999.Y1                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| 08589 MSD5.MIDUPAIR.B09999.Y2                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| (Except                                                                                                                                                                                                                                                                                                                                                                                                                                              | 002                             |
| 08495)                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| WMO 10035 - B11999.Yyyyy MSD5.MIDUPAIR.B11999.Y1                                                                                                                                                                                                                                                                                                                                                                                                     | 999                             |
| 11952 MSD5.MIDUPAIR.B11999.Y2                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| WMO 12120 - B12999.Yyyyy MSD5.MIDUPAIR.B12999.Y1                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| 12982 MSD5.MIDUPAIR.B12999.Y2                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| WMO 13130 - B16999.Yyyyy MSD5.MIDUPAIR.B16999.Y1                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| 16754 MSD5.MIDUPAIR.B16999.Y2                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| WMO 17030 - B17999.Yyyyy MSD5.MIDUPAIR.B17999.Y1 16607 MSD5.MIDUPAIR.B17999.Y2                                                                                                                                                                                                                                                                                                                                                                       |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| WMO 20107 - B39999.Yyyyy MSD5.MIDUPAIR.B39999.Y1<br>38507 MSD5.MIDUPAIR.B39999.Y2                                                                                                                                                                                                                                                                                                                                                                    |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| WMO 40179 - B40999.Yyyyy MSD5.MIDUPAIR.B40999.Y1                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| 40875 (Except   MSD5.MIDUPAIR.B40999.Y2 40648)                                                                                                                                                                                                                                                                                                                                                                                                       | 002                             |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |
| WMO 4114 - B60999.Yyyyy MSD5.MIDUPAIR.B60999.Y1                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| MSD5.MIDUPAIR.B60999.Y2                                                                                                                                                                                                                                                                                                                                                                                                                              | 002                             |
| 45004 pre<br>1979)                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                            |
| WMO 61902 - B99999.Yyyyy MSD5.MIDUPAIR.B99999.Y1                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
| 89009(Except   MSD5.MIDUPAIR.B99999.Y2   88889)                                                                                                                                                                                                                                                                                                                                                                                                      | UUZ                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| WMO UK UKOVRS.Yyyyy MSD5.MIDUPAIR.UKOVRS.Y1 Overseas MSD5.MIDUPAIR.UKOVRS.Y2                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| Overseas MSD5.MIDUPAIR.UKOVRS.Y2 stations,                                                                                                                                                                                                                                                                                                                                                                                                           | 002                             |
| i.e. 08495,                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| 40648, 45004                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| (pre July                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 1979),                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| 61901,                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| 888889,<br>89022                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |



Additionally, for each ID range there is a dataset with Mmm appended to the name (e.g. MSD5.MIDUPAIR.B17999.Y2002.Mmm) these contain the very latest data, but can be ignored because they duplicate the data in the online database tables.

#### 12.1.4 Online Data

Customers may load the online tables with data of their choice, selected from the upper air archive that is maintained in MASS.

Any online data <u>duplicates</u> part of the corresponding archive data (i.e. the online tables contain copies of the selected archive data). Customers should be aware that they can update the online data, but these updates will not be copied back to the archive, and will be visible to all customers.

The database tables have space for 500 station/years of data, which is about 10% of the total available in the archive tapes.

Customers can load the tables with data of their choice, e.g.:

- All times for a station (or a group of stations)
- All stations for a period, e.g. All reports for October 1956
- A mixture of the above

The process of loading the online tables from the archive datasets is described in sections 6 and 7.

With effect from January 2000, the routine ingestion process stores the new reports in the online database as well as the archive, so MIDAS contains all reports within the Met Office area of responsibility since then.

There are no housekeeping routines to remove records from the database tables (the anticipated low usage does not warrant it) so customers must raise a Remedy incident when they have completed their enquiries, so that extraneous data may be deleted.

### 12.1.5 Routine Data Storage

A batch suite runs after the 15<sup>th</sup> of each month, to extract selected upper air reports for the previous month from MetDB. The suite processes these reports and stores them in both the online database and the archive.

Full details of the data storage process are recorded in MIDAS work instruction DDGWI015 and in Batch Suite BSGP0001 of the Select SE CASE tool, maintained by the Database Development Tech Centre.

### 12.1.6 How to: Find out what data is available online

The data that you may require may already be available in the MIDAS upper air tables. The following short SQL program will display each WMO number and report type, along with the dates of the first and last ascents and the count of ascents for this station.



```
WHERE s.id_type = 'WMO'

GROUP BY
s.id_type
,s.id
,s.src_id
,s.met domain name;
```

This program can be run inter-actively or in batch. See Section 10\_for details of how to run in batch mode. To display SHIP reports as well as land stations, remove the WHERE s.id\_type = 'WMO' clause. Remember that this program displays what is currently loaded into the database tables - much more data may be available in the archive.

Templates for more detailed audit programs are available in the GPCS upper air SQL library, see MSD5.MIDUPAIR.SQL(AUDIT2) and MSD5.MIDUPAIR.SQL(AUDIT3). Copy the required templates to your own library

### 12.1.7 How to: Find out what data is in the upper air archive (and where it is located)

The SOURCE and SRC\_CAPABILITY tables can be searched using an application such as The Extractor or any online query software, or batch SQL, to determine the stations and dates required, An example batch SQL program is shown:

```
SELECT
sc.id
                             wmo
,SUBSTR(s.src name,1,18)
                            src name
,s.loc geog area id
                            cty
,sc.met domain name
                            met dom
,TO_CHAR(sc.src_cap_bgn_date,'DD-cap_bgn
MM-YYYY')
,TO_CHAR(sc.src_cap_end_date,'DD-cap_end
MM-YYYYY')
,sc.db segment name
                             file name
,sc.first_online_ob_yr
                            latest ob
FROM midasvu.source s
,midasvu.src capability sc
WHERE sc.src id = s.src id
AND sc.id type = 'WMO'
AND sc.id LIKE '08%'
AND sc.met domain name LIKE 'UA%'
ORDER BY
sc.id
,sc.met domain name
,sc.src cap bgn date;
WMO SRC_NAME CTY MET_DOM CAP_BGN CAP_END FILE_NAME LATEST_OB
08495 GIBRALTAR, NORTH F GIB UAPLT 01-01- 31-12- UKOVRS.YYYYY 1996
```



```
08495 GIBRALTAR, NORTH F GIB UATMP 1990 3999 UKOVRS.Yyyyy 2002
08508 LAJES/SANTA RITA (PORT UATMP 01-01- 31-12- B12999.Yyyyy 2002
                        MDRA UATMP 1990 3999 B12999.Yyyyy 2002
08522 FUNCHAL
08579 LISBOA/GAGO COUTIN PORT UATMP 01-01- 31-12- B12999.Yyyyy 2002
                         CAPV UATMP 1990 3999 01-04- 13-03-
08594 SAL
                                                     B12999.Yyyyy 2002
                                      1957 1996
01-01- 31-12-
                                             3999
                                      1948
                                      01-01- 31-12-
                                      1990 3999
01-01- 31-12-
                                      2001 3999
01-01- 31-12-
                                      1990 3999
01-01- 31-12-
                                      1990 3999
```

12 rows selected.

See Section 9.3 for column definitions.

### 12.1.8 How to: Restore data from the MASS archive

Upper air data is classified as A or B list data according to its data retention period.

A list data is retained forever

B list data is retained for the last 10 years

Since 01 January 2000, selected upper air obs (i.e. obs for A-list stations and all ships in the North Atlantic) are loaded into the UA SOUNDING and UA SOUNDING POINT tables of MIDASP routinely.

The remainder of the Upper air data is stored in MASS archive. A GPCS procedure (written in REXX) is provided to facilitate access to the archive data. The procedure allows the customer to select upper air data and restore it to a datafile, and optionally to load it into the database tables in MIDAST or MIDASP where it can be accessed by the usual Oracle database facilities.

To use the script, customers must log onto GPCS.

The script asks for the following information and uses this information to construct a network of 4 jobs.

- 1. Land or Sea Data
- 2. Restore or Restore and Load
- 3. Start date (yyyy,mm,dd)
- 4. End date (yyyy,mm,dd)
- Required WMO Block. With the exception of UK overseas data, only one WMO block can be selected at a time
- 6. Whether selected stations are required
- 7. Tic Code for the jobs
- 8. Priority for the jobs
- 9. Customer's email name eg.jhayhurst
- 10. Whether MidasT or MidasP database loading is required
- 11. Customers are then invited to select particular stations from those available within the WMO block

The first job allocates the necessary dataset into which the second job runs a MASS restore job and places the whole of the dataset into the pre allocated file. The customer is notified by email when this is complete. If the customer has specified that the data should be loaded to the database tables, then a third job is run to trim



the complete dataset to the customer's specified requirements, i.e. selected stations, and selected data periods. The data can be loaded to either ORAT or ORAP. The Customer is notified by email when the data has been loaded into the tables.

Requirements of the procedure in order to function are:

Look up table Msd5.midupair.rexx. table

Job skeletons Msd5.midupair.cntl (CLLOCX)

Msd5.midupair.cntl (MREST2) Msd5.midupair.cntl (TRIMOUTP) Msd5.midupair.cntl(UPNEXT)

The table msd5.midupair.rexx.table is updated monthly as the final job in the upper air ingestion suite.

### Instructions to run the procedure

Prerequisites for use are:

- A valid Cosmos User id and password.
- · Knowledge of the tic code to which the jobs are charged

All screen information requests are shown enclosed by a box and in bold All responses are in bold and unboxed Login to GPCS with User id and password.

At the READY command enter

### Exec 'MSD5.midupair.cntl (upair)' and press the Right hand control key or the Enter key

All replies are sent by pressing either the Right hand control key or the Enter key after selection.

To escape from the procedure at any time press ESC key and then enter HI to exit.

This may not respond immediately if the procedure is processing a reply and the ESC key may need to be pressed a second time before the screen displays the exit message.

A code will appear to inform the customer of the session id. This is used as part of the datafile identification, e.g. A127.

### Enter Land (L) or Sea (S) Upper Air data?

The customer must then select either L for land-based data or S for ships.

It does not matter if the reply is in upper or lower case.

### Data restore only (RO) or Restore and load data to Oracle (RL)?

### Start date (yyyymmdd)?

Enter the year month and day of the start of the required data.

NB: A-list data begins in 1949 B-list data begins in 1999

### End date (yyyymmdd)?

Enter the year month and day of the end of the required data period

### Enter nn where nn is the WMO block or OV for UK overseas stations

Enter the two-digit WMO block number, which must be between 01 and 99, or enter 'OV' for selection from the UK-overseas data, which includes such places as Gibraltar, Falkland Islands, Ascension etc.

See Appendix B for the details on WMO Block Numbers.

### Do you wish to select stations within a WMO block Y/N?



Answer N to load all stations within the WMO block.

An answer of 'Y' will present a list of stations to select from, after the job card information has been supplied.

At some point in the dialogue the screen will display a full list of the available stations for the block selected. NB. For some blocks (e.g. block 03) this may be a lengthy list.

If the customer has chosen to select stations from this list, each station in the list will be presented to the customer and the customer must indicate whether or not the station is required by entering 's' or pressing the control key for non selection.

This could be a tedious process and therefore it may be better to restore all the stations within a block by entering 'N'

block is 03

### Enter tic code for jobs

There is no check made for valid tic codes.

It is the customer's responsibility to ensure that a correct tic code is used to allow the job to run.

### Enter priority for jobs

Valid priorities are 1,2,5,6,8,10.

A sensible choice is priority 8 if the data is required urgently and the amount of data moderate, Otherwise priority 5 should achieve restoration of the data overnight.

### Enter the name part of your email address please- to allow notification of restore /loader completion

Again, it is the Customer's responsibility to enter the correct email name address, to ensure that he/she is notified of job completion.

The screen will display a full list of the available stations for the block selected.

NB. For some blocks this may be a lengthy list (e.g. Block 03)

If the customer has chosen to select stations from this list, each station in the list will be presented to the customer and the customer must indicate whether or not the station is required by entering 's' or pressing the control key for non selection.

This could be a tedious process and therefore it may be better to restore all the stations within a block by entering 'N'

Once selection has been made, the screen displays a list of stations selected

### Stations selected are

03005

03023

03026

followed by the dataset name in which the JCL to submit the job (s) has been placed

### **T22JH.REX.A127**

And the network id of the jobs in case they need to be cancelled.

#### N22JH12

Your data will be restored to T22JH.A127.UPTEMP.DATA and will be available shortly READY

The procedure can be used again once the ready command is displayed by repeating the instructions.

When the data has been restored, the customer will receive email notification

When the data has been loaded to MIDAST or MIDASP the customer will receive email notification.

Alternatives to selection displayed above

E.g. Restore and load will ask for database to load into. MIDAST or MIDASP



Enter Land (L) or Sea (S) Upper Air data?

s (no station selection with s option)

Data restore only (RO) or Restore and load data to oracle (RL)?

rl

Start date (yyyymmdd)?

19990101

End date (yyyymmdd)?

19991231

Enter tic code for jobs

cds01a

Enter priority for jobs

8

Enter the name part of your email address please- to allow notification of restore/loader completion

### jhayhurst

If data required is pre 2000 or a relatively small amount it can be loaded to MIDAST more efficiently

Enter 't' for system requirement MIDAST or enter 'p' for system requirement MIDASP

t
T22JH.REX.A778
N22JH77
Your data will be restored to T22JH.A778.UPTEMP.DATA
and will be available shortly
READY

The restore time for the data depends on MASS scheduling.

The dataset name listed above should be noted, as it is not repeated in the email notification.

### 12.1.9 How to: Work from the restored archive file(s)

Once the archived dataset has been restored from MASS, the customer may:

- Load it into Midas, to allow more sophisticated queries (see corresponding sections). If the customer has
  restored the archived data using the RL option, the loading will be done automatically.
- Send it to another location;
- Process it exactly as any other dataset.

If only simple processing is required, it is not necessary to load the data into the Midas tables.

A sample of data is shown below. In this case the data is for part of WMO block 06.

| OMW | 6011 | 20020 | 60110561 | 17115 | UATMP        | 1056 | 33 7 | 786 | 1026  | 671    |
|-----|------|-------|----------|-------|--------------|------|------|-----|-------|--------|
| OMW | 6011 | 20020 | 6011056  |       | 11003        | 54   | 64 9 | 9.4 | 8.917 | 14SNNN |
| OMW | 6011 | 20020 | 6011056  |       | 21000        | 79   | 32 9 | 9.4 | 8.618 | 20NNNN |
| OMW | 6011 | 20020 | 6011056  |       | 003<br>932 0 |      | 2    |     | 200   | 29SSSN |



| WMO 60 | 11 | 20020 | 601105 | 6      | 004<br>925. | 0 | 724  | 32 | 7         | 6.7205       | 30NNNN |
|--------|----|-------|--------|--------|-------------|---|------|----|-----------|--------------|--------|
| WMO 60 | 11 | 20020 | 601105 | 6      | 005<br>889. | 0 | 900  | 2  |           | 205          | 29SSSN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 006<br>850. | 0 | 1417 | 32 | 4.2       | 3.92         | 31NNNN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 007<br>844. | 0 |      | 4  | 4         | 3.6          | SNNS   |
| WMO 60 | 11 | 20020 | 601105 | 6      | 008<br>832. | 0 |      | 2  |           | 205          | 32SSSN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 009<br>800. | 0 |      | 2  |           | 205          | 29SSSN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 010<br>725. | 0 |      | 4  | -3.3      | -4           | SNNS   |
| WMO 60 | 11 | 20020 | 601105 | 6      | 011<br>701. | 0 |      | 4  | -4.7      | -7.1         | SNNS   |
| WMO 60 | 11 | 20020 | 601105 | 6      | 012<br>700. | 0 | 2973 | 32 | -4.7      | -7.1205      | 18NNNN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 013<br>692. | 0 |      | 2  |           | 205          | 18SSSN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 014<br>610. | 0 |      | 2  |           | 195          | 35SSSN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 015<br>600. | 0 |      | 2  |           | 195          | 36SSSN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 016<br>555. | 0 |      | 4  | -<br>14.7 | -17.7        | SNNS   |
| WMO 60 | 11 | 20020 | 601105 | 6      | 017<br>500. | 0 | 5550 | 32 | -<br>20.3 | -<br>23.4205 | 44NNNN |
| WMO 60 | 11 | 20020 | 601105 | 6      | 018<br>456. | 0 |      | 4  | -<br>25.5 | -28.2        | SNNS   |
| WMO 62 | 42 | 20020 | 627120 | 023559 | UAPL        | Т | 1200 |    |           |              |        |
| WMO 62 | 42 | 20020 | 627120 | 0      | 301<br>850. | 0 | 1500 | 32 | 275       | 14           | S      |
| WMO 62 | 42 | 20020 | 627120 | 0      | 302         |   | 1500 | 2  | 275       | 14           | S      |
| WMO 62 | 42 | 20020 | 627100 | 023559 | UAPL        | Т | 1000 |    |           |              |        |
| WMO 62 | 42 | 20020 | 627100 | 0      | 301<br>850. | 0 | 1500 | 32 | 290       | 12           | S      |
| WMO 62 | 42 | 20020 | 627100 | 0      | 302         |   | 1500 | 2  | 290       | 12           | S      |
|        |    |       |        |        |             |   |      |    |           |              |        |

The data are sorted so that a  ${\tt UA\_SOUNDING}$  row is followed by the corresponding  ${\tt UA\_SOUNDING\_POINT}$  rows.

The archive files are defined below. Notice that character blanks in columns 30:32 of the data show the row to be a  $\tt UA\_SOUNDING\_POINT$ .

### Row definition, UA\_SOUNDING

| Column Name     | Position | Len | Datatype              |
|-----------------|----------|-----|-----------------------|
| id type         | 01:04    | 4   | CHARACTER             |
| id              | 05:12    | 8   | CHARACTER             |
| ob time         | 13:24    | 12  | DATE "YYYYMMDDHH24MI" |
| src id          | 25:29    | 5   | INTEGER EXTERNAL      |
| met domain name | 33:40    | 8   | CHARACTER             |
| ua asc lnch ctm | 41:44    | 4   | CHARACTER INTEGER     |



```
wind shr abv max wind 45:47
                            3 CHARACTER INTEGER
wind shr blw max wind 48:5:
                            3 CHARACTER INTEGER
cld base amt id
                   51:51
                               CHARACTER
low cld type id
                   52:52
                            1
                               CHARACTER
                   53:55
cld base ht
                            4
                               CHARACTER INTEGER
med cld type id
                   56:56
                            1 CHARACTER
hi cld type id
                   57:57
                              CHARACTER
                            1
radar type id
                   58:59
                            2 CHARACTER
sonde type id
                   60:61
                            2 CHARACTER
                           5 CHARACTER DECIMAL (ships only)
latitude
                   62:66
                   67:72 6 CHARACTER DECIMAL (ships only)
longitude
```

### Row definition, UA\_SOUNDING\_POINT

| Column Name                  | Position | Len | Datatype              |
|------------------------------|----------|-----|-----------------------|
| id_type                      | 01:04    | 4   | CHARACTER             |
| id                           | 05:12    | 8   | CHARACTER             |
| ob_time                      | 13:24    | 12  | DATE "YYYYMMDDHH24MI" |
| ua_sndg_pt_num               | 30:32    | 3   | CHARACTER INTEGER     |
| pres_coord                   | 33:38    | 6   | CHARACTER INTEGER     |
| ua_height                    | 39:43    | 5   | CHARACTER INTEGER     |
| vert_sig_code                | 44:46    | 3   | CHARACTER INTEGER     |
| ua_air_temperature           | 47:51    | 5   | CHARACTER INTEGER     |
| ua_dewpoint                  | 52:56    | 5   | CHARACTER INTEGER     |
| ua_wind_dir                  | 57:59    | 3   | CHARACTER INTEGER     |
| ua_wind_speed                | 60:62    | 3   | CHARACTER INTEGER     |
| ua_height_qc_code            | 63:63    | 1   | CHARACTER             |
| ua_air_temperature_qc_code   | 64:64    | 1   | CHARACTER             |
| ua_relative_humidity_qc_code | 65:65    | 1   | CHARACTER             |
| ua_wind_qc_code              | 66:66    | 1   | CHARACTER             |
|                              |          |     |                       |

### 12.1.10 How to: Load archived data into the online tables

Loading the archived data into the online tables allows the customer to employ more sophisticated queries, see Section 10 for details.

Before attempting to load archive (offline) data into the online tables, please ensure that the following steps have been completed:

- Check that the data are not already online.
- Find if the required data are in the archive, and the name of the archive file.
- Restore the data from the MASS archive
- Can the data be processed from the restored archive file?

Procedure MSD5.MIDUPAIR.CNTL(UPAIR) allows customers to easily restore data from the upper air archive in MASS and load it into Midas; see Section 7 for details. The procedure uses the SQL\*Loader Oracle utility, but customers may elect to use the utility independently of the procedure.



MSD5.MIDUPAIR.SQL(MOD0015F) contains a script for SQL\*Loader Oracle utility. Customers should copy this script to their own library and amend it as necessary.

```
-- MSD5.MIDUPAIR.SQL (MOD0015G)
LOAD DATA
APPEND
INTO TABLE midasupd.ua sounding
WHEN src id != ' '
AND id='03496 '
AND 13:20='19560402'
                      POSITION (01:04) CHAR,
(id type
id
                      POSITION (05:12) CHAR,
ob time
                      POSITION (13:24) DATE "YYYYMMDDHH24MI",
src id
                      POSITION (25:29) INTEGER EXTERNAL,
met domain_name
                      POSITION (33:40) CHAR,
ua_asc_lnch_tm
                      POSITION (41:44) INTEGER EXTERNAL,
wind_shr_abv_max_wind POSITION(45:47) INTEGER EXTERNAL,
wind shr blw max wind POSITION(48:50) INTEGER EXTERNAL,
                    POSITION (51:51) CHAR,
cld base amt id
low cld type id
                     POSITION (52:52) CHAR,
                     POSITION (53:55) INTEGER EXTERNAL,
cld base ht
med cld type id
                     POSITION (56:56) CHAR,
hi_cld_type_id
                     POSITION (57:57) CHAR,
radar type id
                     POSITION (58:59) CHAR,
                    POSITION (60:61) CHAR,
sonde_type_id
--latitude
                     POSITION (62:66) DECIMAL EXTERNAL,
                     POSITION (67:72) DECIMAL EXTERNAL
--longitude
INTO TABLE midasupd.ua sounding point
WHEN ua sndg pt num != ' '
AND id= 03496 '
AND 13:20='19560402'
                              POSITION (01:04) CHAR,
(id type
                              POSITION (05:12) CHAR,
id
                              POSITION (13:24) DATE "YYYYMMDDHH24MI",
ob time
                              POSITION (30:32) INTEGER EXTERNAL,
ua_sndg_pt_num
pres coord
                              POSITION (33:38) INTEGER EXTERNAL,
                              POSITION (39:43) INTEGER EXTERNAL,
ua height
vert sig code
                              POSITION (44:46) INTEGER EXTERNAL,
                             POSITION (47:51) DECIMAL EXTERNAL,
ua air temperature
ua dewpoint
                             POSITION (52:56) DECIMAL EXTERNAL,
ua wind dir
                             POSITION (57:59) INTEGER EXTERNAL,
ua_wind_speed
                             POSITION (60:62) INTEGER EXTERNAL,
ua height qc code
                             POSITION (63:63) CHAR,
ua air temperature qc code POSITION(64:64) CHAR,
ua relative humidity qc code POSITION(65:65) CHAR,
ua wind qc code
                             POSITION (66:66) CHAR
)
```



The script loads both UA\_SOUNDING and UA\_SOUNDING\_POINT tables. UA\_SOUNDING must precede UA\_SOUNDING\_POINT rows. Customers may amend the conditions in the WHEN clause to suit their requirements, but src\_id != ' ' is obligatory for loading UA\_SOUNDING, as is ua\_sndg\_pt\_num != ' ' for loading UA\_SOUNDING POINT.

Customers may specify any of the named parameters in the WHEN clause, e.g.

```
AND id_type ='SHIP'
AND id = 'DBBH '
AND ob time = '200001032300'.
```

They may also specify a substring of the input, e.g. AND 13:20='19560402' would load all reports (in the dataset) for the given day.

Parameters may be rendered inactive by prefixing them with the comment characters '--'. The sample script above illustrates this, because latitude and longitude are not stored for land reports, so they are deactivated. Parameters in the 'WHEN' clause can also be deactivated if required. When loading ship reports, remember to reactivate the latitude and longitude attributes.

MSD5.MIDUPAIR.CNTL (MOD0015F) contains the JCL to run the SQL\*Loader utility. Customers should copy this to their own library and amend it as required.

```
-- MSD5.MIDUPAIR.CNTL(MOD0015F)
//* Job Card required
//*
//PROCLIB JCLLIB ORDER=MCD.DBA.PROC
//*-----*
//* ORACLE SOL*LOADER BATCH PROCESSOR *
//*-----*
//SQL EXEC ORATLOAD, PARM='++/DD/LDRPARM', TIME=10
//SYSIN DD DUMMY
//LDRPARM DD *
CONTROL=/DD/CTL
DATA=/DD/DAT
BAD=/DD/BAD
LOG=/DD/LOG
USERID=/
//CTL DD DSN=MSD5.MIDUPAIR.SQL(MOD0015F), DISP=SHR
//DAT DD DSN=MSD5.MIDUPAIR.U03998.Y2004,DISP=SHR
//BAD DD SYSOUT=*, DCB=LRECL=72
//LOG DD SYSOUT=*
//* DIS DD DUMMY
//* SQLLOGIN DD DUMMY
//
Use EXEC ORATLOAD to load to the MidasT Test database, and EXEC ORAPLOAD to load to
the MidasP Production database.
//CTL specifies the file containing the SQL*Loader control statements.
```

#### ERRORS file

The utility lists (counts) the number of records failing the 'WHEN' selection criteria, so if the customer has specified tight requirements (e.g. just one or two stations for just a few days) then the output will include a very large number of rejects. This is entirely normal.

If required, subsequent reports from the same region or from other regions (i.e. other datasets) may be appended.

//DAT specifies the file containing the input data (found from Section 7 above).



#### 12.1.11 How to: Query data in the upper air tables

The Midas tables provide great flexibility in querying the upper air data. The following facilities are available:

- Selection criteria in a WHERE clause (e.g. select by id, range of dates, height, pressure, vertical significance)
- Standard single-row number functions (e.g. FLOOR(), SQRT());
- Met Office function for Rltv Hum and Hum Mix Rto:
- Group functions, e.g. AVG(), MAX(), MAX(), STDDEV()

Various online SQL query tools (e.g. e.g. SQL Navigator, GQL, Extractor, etc.) are available to query the obs once they have been loaded into the database.

Alternatively, batch methods may be better suited to the large volumes of upper air data. SQL\*Plus is an Oraclesupplied utility which can be used to run batch SQL scripts.

Template SQL scripts are presented below. They can be copied and modified as required. To provide a compact output for this Handbook, some columns have been omitted by changing the row into a comment. They can be re-instated by removing the -- comment marks..

```
-- Select from UA Sounding only. See MSD5.MIDUAPAIR.SQL(SNDG)
SELECT
s.id
,TO CHAR(s.Ob Time, 'YYYY-MM-DD HH24:MI')
                                      Ob Time
,s.met domain name
                                       met dom
,s.src id
,s.wind shr abv max wind
                                       wsa
,s.wind shr blw max wind
                                       wsb
,s.cld base amt id
,s.low_cld_type_id
                                       1
,s.cld base ht
                                       cld ht
,s.med cld type id
                                       m
,s.hi cld type id
                                       h
,s.radar type id
                                       ra
,s.sonde type id
FROM MidasVu.ua Sounding s
WHERE
s.id type = 'WMO'
AND s.id = '08495'
AND s.ob_time BETWEEN TO_DATE('20020605 06:00','YYYYYMMDD HH24:MI')
AND TO DATE('20020610 23:59','YYYYYMMDD HH24:MI')
ORDER BY
s.id
,uas.ob time DESC;
    OB_TIME
                 MET DOM SRC ID WSA WSB C L CLD H M H RA SO
8495
       05/06/2002 00:11 UATMP
                             1585
                                         13 5 8 60 0 0 8 62
                                      7 21 6860 388 62
8495 04/06/2002 11:13 UATMP 1585
8495 03/06/2002 23:23 UATMP 1585 24 11 7 8 30 8 4 8 62
8495 03/06/2002 11:15 UATMP 1585
                                     9 12 15100 028 62
      02/06/2002 23:17 UATMP 1585
```

8495

2660 028 62



| 8495 | 02/06/2002 | 11:17 UATMP | 1585 | 3 8 60  | 0 0 8 | 62 |
|------|------------|-------------|------|---------|-------|----|
| 8495 | 01/06/2002 | 23:54 UATMP | 1585 | 0 0 250 | 0 1 8 | 62 |
| 8495 | 01/06/2002 | 11:16 UATMP | 1585 | 0 0 250 | 0 0 8 | 62 |

### 8 rows selected.

-- Select from UA Sounding Point. See MSD5.MIDUPAIR.SQL(SNGPT)

An example of using the relative humidity function is included as a comment. Remove the comment (--) marks to activate the function.

```
SELECT
p.id
,TO CHAR (p.ob time, 'YYYY-MM-DD HH24:MI') Ob Time
,p.ua sndg pt num
                                    pt
,p.pres coord
                                    pres
,p.ua height
                                    ht
,p.vert sig code
                                    sig
,p.ua_air_temperature
                                    air temp
,p.ua dewpoint
                                    dwpt
,p.ua wind dir
                                    ddd
,p.ua wind speed
                                    fff
,p.ua height qc code
,p.ua air temperature qc code
,p.ua relative humidity qc code
,p.ua_wind_qc_code
--, midas.uppr air rltv hum (p.ua air temperature
-- ,p.ua dewpoint
-- ,p.pres_coord) rh
FROM Midas Vu. UA Sounding Point p
WHERE
p.id type ='SHIP'
AND p.id = 'ZCBP6'
AND p.ob time BETWEEN TO DATE('20011006 00:00','YYYYMMDD HH24:MI')
AND TO DATE ('20011007 23:59', 'YYYYMMDD HH24:MI')
--AND p.ua sndg pt num BETWEEN 040 AND 052
--AND p.pres coord IS NOT NULL
--AND p.ua air temperature IS NOT NULL
--AND p.ua dewpoint IS NOT NULL
ORDER BY
p.id
,p.ob time
,p.pres coord DESC
,p.ua_height;
ID OB TIME
                  PT PRES HT SIG AIR TEMP DWPT DDD FFF HTRW
ZCBP6 06/10/2001
22:25
                       1 1000 -139 32
                                                                     NSSS
       06/10/2001
ZCBP6 22:25
                      2 981 64 12 7.1 310 35 SNNN
ZCBP6 06/10/2001 3 947 4 8.2 4.6
                                                                    SNNS
        22:25
        06/10/2001
ZCBP6
                      4 925 509 32 6.6
                                                   3.8 320 35 NNNN
        22:25
```

# **Met Office**

# **Observations**

| ZCBP6                               | 06/10/2001<br>22:25 | 5      | 882     |           | 4     | 3.2       | 2.8 |     | S  | NNS  |
|-------------------------------------|---------------------|--------|---------|-----------|-------|-----------|-----|-----|----|------|
| ZCBP6                               | 06/10/2001<br>22:25 | 6      | 868     | 900       | 2     |           |     | 315 | 36 | SSSN |
| etc.,<br>etc.                       |                     |        |         |           |       |           |     |     |    |      |
| ZCBP6                               | 07/10/2001<br>10:16 | 1      | 1001    |           | 64    | 10        | 6   | 310 | 52 | SNNN |
| ZCBP6                               | 07/10/2001<br>10:16 | 2      | 1000    | 33        | 32    | 9.6       | 5.4 | 310 | 52 | NNNN |
| ZCBP6                               | 07/10/2001<br>10:16 | 3      | 925     | 671       | 32    | 2.8       | 0.2 | 320 | 47 | NNNN |
| ZCBP6                               | 07/10/2001<br>10:16 | 4      | 924     |           | 4     | 2.8       | 0.2 |     |    | SNNS |
| etc.,<br>etc.                       |                     |        |         |           |       |           |     |     |    |      |
| ZCBP6                               | 07/10/2001<br>16:58 | 1      | 1013    |           | 64    | 9.4       | 5.4 | 285 | 27 | SNNN |
| ZCBP6                               | 07/10/2001<br>16:58 | 2      | 1008    |           | 4     | 7.8       | 1.8 |     |    | SNNS |
| ZCBP6                               | 07/10/2001<br>16:58 | 3      | 1000    | 134       | 32    | 7.2       | 1.2 | 290 | 25 | NNNN |
| ZCBP6                               | 07/10/2001<br>16:58 | 4      | 952     |           | 2     |           |     | 305 | 20 | SSSN |
| ZCBP6                               | 07/10/2001<br>16:58 | 5      | 925     | 768       | 32    | 1.2       | 0.6 | 315 | 20 | NNNN |
| etc.,<br>etc.<br>168 rows           | selected.           |        |         |           |       |           |     |     |    |      |
|                                     | from UA_SOUNDI      |        | ined wi | th UA_S   | SOUND | ING_POINT |     |     |    |      |
|                                     | PAIK.3QL(SNDGAL     | ш)     |         |           |       |           |     |     |    |      |
| SELECT<br>s.id                      |                     |        |         |           |       |           |     |     |    |      |
| ,TO_CHAR                            | (s.ob_time,'YYYY-MI | M-DD I | H24MI') | ob_time   |       |           |     |     |    |      |
| ,s.met_dom                          | ain_name            |        |         | met_don   | n     |           |     |     |    |      |
| ,s.src_id                           |                     |        |         |           |       |           |     |     |    |      |
|                                     | _abv_max_wind       |        |         | sa        |       |           |     |     |    |      |
|                                     | _blw_max_wind       |        |         | sb        |       |           |     |     |    |      |
| ,s.cld_base_ht<br>,p.ua_sndg_pt_num |                     |        |         | Cld_Ht Pt |       |           |     |     |    |      |
| ,p.pres_coord                       |                     |        |         | Pres      |       |           |     |     |    |      |
| ,p.ua_height                        |                     |        |         | Ht        |       |           |     |     |    |      |
| ,p.vert_sig_code                    |                     |        |         | Sig       |       |           |     |     |    |      |
| ,p.ua_air_temperature               |                     |        |         | air_temp  | )     |           |     |     |    |      |
| ,p.ua_dewpoint                      |                     |        |         | dwpt      |       |           |     |     |    |      |
| ,p.ua_wind_dir                      |                     |        |         | ddd       |       |           |     |     |    |      |
| ,p.ua_wind_speed                    |                     |        |         | fff       |       |           |     |     |    |      |
| ,p.ua_height_qc_code                |                     |        |         | h         |       |           |     |     |    |      |
|                                     |                     |        |         |           |       |           |     |     |    |      |

t

,p.ua\_air\_temperature\_qc\_code



```
,p.ua_relative_humidity_qc_code
,p.ua_wind_qc_code
FROM midasvu.ua sounding s
, midasvu.ua sounding point p
WHERE
s.id type = 'WMO'
AND s.id = '03920'
AND s.ob time BETWEEN TO DATE('20020602 00:00','YYYYYMMDD HH24:MI')
AND TO DATE('20020602 23:59','YYYYYMMDD HH24:MI')
AND p.id type = 'WMO'
AND p.id = '03920'
AND p.ob time BETWEEN TO DATE('20020602 00:00','YYYYYMMDD HH24:MI')
AND TO DATE('20020602 23:59','YYYYYMMDD HH24:MI')
AND p.id type = s.id type
AND p.id = s.id
AND p.ob time = s.ob time
ORDER BY
s.id
,s.ob time
,p.pres coord DESC
,p.ua height;
```

The output is voluminous, so is not displayed.

# 12.1.12 How to: Select data in its most compact form, using substitution variables, and including the required JCL

```
//* Job Card
//PROCLIB JCLLIB ORDER=(DSM.STORAGE.JCL,MCD.DBA.PROC)
//*
//*
//EXECUTE EXEC ORAPSQL, PARM='-S /', TIME=(01,59)
//SYSOUT DD SYSOUT=*, DCB=LRECL=105
//SQLLOGIN DD *
SET TRIMSPOOL ON
SET SERVEROUTPUT ON
EXECUTE DBMS OUTPUT. ENABLE (50000);
SET FEEDBACK OFF
SET PAGESIZE 0
SET HEADING OFF
//SYSIN DD *
-- SELECT FROM MIDASVU.UA SOUNDING, IN MOST COMPACT FORM --
-- Define Columns
COLUMN ID FORMAT A8 HEADING X TRUNCATED;
COLUMN ID TYPE FORMAT A4 HEADING X TRUNCATED;
COLUMN OB TIME FORMAT A14 HEADING X TRUNCATED;
COLUMN MET DOMAIN NAME FORMAT A8 HEADING X TRUNCATED;
COLUMN SRC ID FORMAT 999990 HEADING X TRUNCATED;
COLUMN REC ST IND FORMAT 9990 HEADING X TRUNCATED;
COLUMN UA ASC LNCH CTM FORMAT 9990 HEADING X TRUNCATED;
COLUMN WIND SHR ABV MAX WIND FORMAT 9990 HEADING X TRUNCATED;
COLUMN WIND SHR BLW MAX WIND FORMAT 9990 HEADING X TRUNCATED;
COLUMN CLD BASE AMT ID FORMAT A1 HEADING X TRUNCATED;
COLUMN LOW CLD TYPE ID FORMAT A1 HEADING X TRUNCATED;
COLUMN CLD BASE HT FORMAT 9990 HEADING X TRUNCATED;
COLUMN MED CLD TYPE ID FORMAT A1 HEADING X TRUNCATED;
COLUMN HI CLD TYPE ID FORMAT A1 HEADING X TRUNCATED;
```



```
COLUMN RADAR TYPE ID FORMAT A2 HEADING X TRUNCATED;
COLUMN SONDE TYPE ID FORMAT A2 HEADING X TRUNCATED;
COLUMN LATITUDE FORMAT 990.9 HEADING X TRUNCATED;
COLUMN LONGITUDE FORMAT 9990.9 HEADING X TRUNCATED;
-- Define Variables
DEFINE V BGN DATE = "20020605 0000"
DEFINE V END DATE = "20020610 2359"
DEFINE V ID = "08495"
DEFINE V Id Type = "WMO"
DEFINE V MET DOMAIN = "UATMP"
SET LINESIZE 105
-- SET COLSEP ','
SET TRANSACTION READ ONLY;
SELECT
S.ID
--, S.ID TYPE
,TO_CHAR(S.OB_TIME,'YYYYMMDDHH24MISS') OB TIME
,S.MET_DOMAIN_NAME
,S.SRC_ID
--,S.REC_ST_IND
,S.UA ASC LNCH CTM
,S.WIND_SHR_ABV_MAX_WIND
,S.WIND_SHR_BLW_MAX_WIND
,S.CLD BASE AMT ID
,S.LOW CLD TYPE ID
,S.CLD BASE HT
,S.MED CLD TYPE ID
,S.HI CLD TYPE ID
,S.RADAR TYPE ID
,S.SONDE TYPE ID
--, S.LATITUDE
--, S.LONGITUDE
FROM MIDASVU.UA SOUNDING S
WHERE
S.ID TYPE = '&V ID TYPE'
AND \overline{S}.ID = '&V \overline{ID}'
AND S.OB TIME BETWEEN TO DATE('&V BGN DATE', 'YYYYMMDD HH24MI')
AND TO DATE ('&V END DATE', 'YYYYMMDD HH24MI')
/*
//
//* Job Card
//PROCLIB JCLLIB ORDER=(DSM.STORAGE.JCL,MCD.DBA.PROC)
//EXECUTE EXEC ORAPSQL, PARM='-S /', TIME=(01,59)
//SYSOUT DD SYSOUT=*, DCB=LRECL=87
//SQLLOGIN DD *
SET TRIMSPOOL ON
SET SERVEROUTPUT ON
EXECUTE DBMS OUTPUT.ENABLE(50000);
SET FEEDBACK OFF
SET PAGESIZE 0
SET HEADING OFF
```



```
//SYSIN DD *
-- SELECT FROM MIDASVU.UA SOUNDING POINT, IN MOST COMPACT FORM
-- Define Columns
COLUMN ID FORMAT A8 HEADING X TRUNCATED;
COLUMN ID TYPE FORMAT A4 HEADING X TRUNCATED;
COLUMN OB TIME FORMAT A14 HEADING X TRUNCATED;
COLUMN UA SNDG PT NUM FORMAT 990 HEADING X TRUNCATED;
COLUMN VERT SIG CODE FORMAT 990 HEADING X TRUNCATED;
COLUMN UA HEIGHT FORMAT 99990 HEADING X TRUNCATED;
COLUMN PRES COORD FORMAT 99990.9 HEADING X TRUNCATED;
COLUMN UA AIR TEMPERATURE FORMAT 990.9 HEADING X TRUNCATED;
COLUMN UA DEWPOINT FORMAT 990.9 HEADING X TRUNCATED;
COLUMN UA WIND DIR FORMAT 990 HEADING X TRUNCATED;
COLUMN UA WIND SPEED FORMAT 990 HEADING X TRUNCATED;
COLUMN UA HEIGHT QC CODE FORMAT A1 HEADING X TRUNCATED;
COLUMN UA_AIR_TEMPERATURE_QC_CODE FORMAT A1 HEADING X TRUNCATED;
COLUMN UA_RELATIVE_HUMIDITY_QC_CODE FORMAT A1 HEADING X TRUNCATED;
COLUMN UA WIND QC CODE FORMAT A1 HEADING X TRUNCATED;
-- Define Variables
DEFINE V BGN DATE = "20020605 0000"
DEFINE V_END_DATE = "20020610 2359"
DEFINE V_ID = "08495"
DEFINE V ID TYPE = "WMO"
SET LINESIZE 87
-- SET COLSEP ','
SET TRANSACTION READ ONLY;
SELECT
P.ID
--, P.ID TYPE
,TO CHAR(P.OB TIME, 'YYYYMMDDHH24MISS') OB TIME
, P.UA SNDG PT NUM
, P. VERT SIG CODE
, P.UA HEIGHT
, P. PRES COORD
, P.UA AIR TEMPERATURE
, P.UA DEWPOINT
, P.UA WIND DIR
, P.UA WIND SPEED
, P.UA HEIGHT QC CODE
, P.UA AIR TEMPERATURE QC CODE
, P.UA RELATIVE HUMIDITY QC CODE
, P.UA WIND QC CODE
FROM MIDASVU.UA_SOUNDING_POINT P
P.ID TYPE = '&V ID TYPE'
AND P.ID = '&V ID'
AND P.OB TIME BETWEEN TO DATE('&V BGN DATE', 'YYYYMMDD HH24MI')
AND TO DATE('&V END DATE', 'YYYYMMDD HH24MI')
/*
//
```

MSD5.MIDUPAIR.SQL contains template SQL scripts.



MSD5.MIDUPAIR.CNTL (SQLPLUS) contains the JCL to run SQL scripts using the SQL\*Plus utility. Copy this JCL to your own library and amend as necessary. Again, use ORATSQL for Test Database and ORAPSQL for Production database.

### 12.1.13 How to: Delete data from the online database

The online upper air tables have space for approximately 500 station/years of data. Customers are requested to notify the Midas Team when they have completed their data investigation so that the space can be made available to other customers.

Customers should raise a Remedy Incident, assigned to 'Midas Team', and listing the data that can be deleted. The support team will ensure that the data are removed.

### 12.1.14 Appendix A - Associations

Upper air design objects are documented in the MIDASRS Design Database of Systems Engineer.

| Batch Suite General Picture | BSGP0002 | Upper Air Extraction<br>Routines   |
|-----------------------------|----------|------------------------------------|
| Batch Suite General Picture | BSGP0001 | Upper Air Store/Delete -<br>Oracle |
| Dataset General Form        | D0000036 | MSD5 MIDUPAIR Tyyyymm<br>LANDDATA  |
| Dataset General Form        | D0000037 | MSD5 MIDUPAIR Tyyyymm<br>SHIPDATA  |
| Dataset General Form        | D0000038 | MSD5 MIDUPAIR Unnnnn<br>Yyyyyy     |
| Function                    | F113     | Store upper air observations       |
| Module Set                  | MOD0015  | Store upper air reports            |
| Network ELH                 | ELH00445 | Upper Air Sounding                 |
| Transaction                 | Xctn0011 | Amend upper air observations       |
| Transaction                 | Xctn0012 | Delete time-expired upper air obs  |
| Transaction                 | Xctn0010 | upper air observations             |



| Transaction | Xctn0009 | Store upper air |
|-------------|----------|-----------------|
| Transaction |          | observations    |

### 13 Control Of MIDAS

### 13.1 Specification Of Responsibilities

TS(DD) Database & Archiving Group will provide operational support for:

- all technical issues relating to the database management system
- logical and physical design changes of the database
- · maintenance of logical views of database tables
- regular security tasks archive/recovery
- maintenance of ingestion software whether from the operational real time databases or from COSMOS datasets
- maintenance of the OPR Fortran interface software

'Maintenance' includes the correction of errors in the software, changing the software to meet changes in external specifications, (e.g. the format of data retrieval from the MetDB), and the documentation.

### TS(OPR3) will be responsible for:

- submitting and checking of **all meteorological data ingestion tasks** (the routine daily transfer from other databases is an automated process that is regularly re-submitted to COSMOS)
- the routine running of programs to update 'standing data'

**Users** will be responsible for their own MIDAS applications programs.

The TS(DD) Database & Archiving Group **may** be able to provide some assistance with programming difficulties and database performance issues **but**, as with other central computing issues, day-to-day problems should be reported to the COSMOS Help Desk on extension 6666.

### 13.2 What To Do If The Database Design Is Inadequate

- 1. Consult with your MIDAS User Group representative. There may be known reasons for the inadequacy.
- 2. If not, arrange to submit a MIDAS Change Request form to the MIDAS Support Team.

The effort required, and the impact on other users and procedures will be analysed. If, as a result of this, the change is agreed then it will be added to the Team's work schedule.

Changes are classified as either structural or procedural. Structural changes are those that affect the physical implementation of the MIDAS database, i.e. changes to tables, attributes, indexes. Procedural changes are those that affect the way in which the data in the database are defined, interpreted or used. Program changes are procedural. A structural change will almost always create associated program and procedural changes.

The MIDAS change control and configuration management procedures can be found at MIDAS Work Instruction



A report, showing the association of changes, problems and requirements to the various releases of MIDAS is available on request from the MIDAS Change Controller.

### 13.3 What To Do If The Data Details Are Wrong

OPR3 have the ultimate responsibility for all data in MIDAS.

Mistakes in observational data may be in the process of being rectified, but if not then OPR quality control staff will have the appropriate authority to change the data.

Errors in standing data can also be handled by OPR staff. However, procedures are available to add new details - e.g. a new met domain, a pertinent remark, a cross reference, a useful code table, etc.

### 13.4 Emergency Arrangements

In the event of an emergency that results in MIDAS being unavailable for an extended period, the following arrangements will apply:

- The MIDAS Team will act as the main point of contact for all incidents of this type.
- For all major incidents, the Corporate Database team will liaise primarily with the MIDAS team, who will be responsible for onward transmission of relevant information to users of the MIDAS service.
- The MIDAS Team will liaise with an agreed list of contacts for each of the following specified functional areas, and inform them of progress during the incident. The MIDAS Team will liaise with either the primary contact or a secondary contact (depending upon availability). Each of the contacts will be responsible for onward transmission of relevant information to all interested parties in their functional area. These 'functional contacts' will advise the MIDAS Team of the likely impact of the incident upon their business area.

# Functional Area Responsible for advising: OPR All OPR users, including Edinburgh F/C (CP) Commercial Suite product recipients Commercial enquiry officers

- If necessary, the Corporate Database team or the MIDAS team will inform the COSMOS Help Desk of the incident and its progress.
- The MIDAS Team will issue e-mail messages to an agreed list of users, advising them of progress.
  However, since some users only read e-mail infrequently this will be considered as a back-up
  mechanism to the 'quick response' chain outlined above. Although the MIDAS team will commit to
  issuing e-mail bulletins it remains the responsibility of functional contacts to inform their team members.
- As yet there is no cover outside of normal working hours.

### 14 Aspects of using MIDAS

#### 14.1 Background



**Oracle Server** is installed on the GPCS to provide a relational database management system for the Met Office. Currently we have two "instances" running – **ORAP** and **ORAT**, offering "production" and "test" facilities respectively.

#### 14.1.1 Structure

An Oracle database has both *physical* and *logical* structures. The **physical** structure is determined by the host operating system, and consists of data files, log files and control files to provide the actual physical storage for database information. The **logical** structure is determined by its *schema* objects (tables, views, indexes etc.) grouped together in some convenient way.

MIDAS is a schema. It has tables but no views.

**MIDASVU** is another schema. It contains many views but no tables. Users are provided with read-only access to the tables in MIDAS through views in MIDASVU. This schema also contains more specialised views (judicious combinations of tables).

**MIDASUPD** is yet another schema with views but no tables, its purpose being to control how the base tables in MIDAS are updated.

There are several other schemas in ORAP and ORAT but these are the ones of relevence to most MIDAS users.

### 14.1.2 Datatypes

The predominant datatypes used in MIDAS are:

**Character** - two forms are used to store character strings; CHAR for fixed length strings and VARCHAR2 for variable length strings.

e.g.

PRST\_WX\_ID is defined as CHAR(2), and always takes up 2 bytes.

SRC RMRK TXT is defined as VARCHAR2(120) and can take up to 120 characters.

**Number** - this is used to store fixed and floating point numbers using the general form <code>column\_name NUMBER</code> (precision, <code>scale</code>) where <code>precision</code> represents the total number of digits, and <code>scale</code> the number of digits to the right of the decimal point.

e.g.

WIND\_DIRECTION NUMBER(3) allows for a 3 digit integer.
AIR TEMPERATURE NUMBER(3,1) allows values between -99.9 and 99.9.

**Date** - this stores the year (including the century), month, day, hour, minute and second of a date. Oracle actually uses its own internal format to store dates so some sort of conversion is always required for input and output. The standard format is DD-MON-YYYY as in 13-NOV-1992. However this can be changed for a particular user session with the ALTER SESSION statement.

e.g.

```
ALTER SESSION SET NLS DATE FORMAT = 'YYYY-MM-DD HH24:MI'
```

Otherwise, for a particular query the TO\_DATE function with an appropriate format mask can achieve the required result.

```
e.g
```

```
TO DATE('November 13, 1992', 'MONTH DD, YYYY')
```

If no time portion of a date field is entered it defaults to midnight.

Date arithmetic:

- You can add or subtract number constants as well as other dates.
- Oracle interprets number constants in arithmetic date expressions as numbers of days.
   e.g.SYSDATE+1 is tomorrow, SYSDATE-7 is one week ago and SYSDATE+(10/1440) is ten minutes from now
- Subtraction of one date from another returns the number of days between the two dates.



Oracle also provides a number of date functions:

| ADD_MONTHS(d,n)       | date d plus n months                                                                                           |
|-----------------------|----------------------------------------------------------------------------------------------------------------|
| LAST_DAY(d)           | date of the last day of the month in d                                                                         |
| MONTHS_BETWEEN(d1,d2) | number of months between dates d1 and d2                                                                       |
| NEXT_DAY(d,char)      | date of the first weekday named by char that is later than date d                                              |
| ROUND(d[,fmt])        | date d rounded to the unit specified by the format model fmt; omit fmt and d is rounded to the nearest day     |
| TRUNC(d[,fmt])        | date d with the time portion truncated by the format model fmt; omit fmt and d is truncated to the nearest day |

**Null** - A null is the absence of a value in a column or row. It indicates missing, unknown or inapplicable data and should not be used to imply any other value, such as zero or 'blank'.

- Arithmetic expressions containing a null value evaluate to null
- To identify nulls in SQL use the IS NULL predicate
- To convert nulls to non-nulls use the NVL function

### 14.1.3 Access To Data

The basic tool for defining and manipulating data in a relational database is SQL (pronounced *sequel*). This is a simple but powerful language whereby single, sentence-like statements can generate significant amounts of database activity. Some will only return an indication of success or failure (e.g. CREATE TABLE ...), whereas a SELECT statement can return many thousands of rows of data.

These statements can be executed in isolation, or embedded in a procedural language (such as Fortran or C) to add functionality to an application.

In addition Oracle has a procedural language of its own called PL/SQL. This allows a developer to exert some control over the flow of a sequence of SQL statements, to use variables and write error-handling procedures.

Blocks of SQL and PL/SQL statements can be grouped together as a unit to solve a specific problem or perform a set of related tasks, and then stored centrally in the database where they can be executed by a user or a database application.

Centralisation is an important aspect of this feature. Not only does it mean that network traffic between the application and the database is minimised, thus improving performance, but also that only one copy of a piece of logic is required. In turn this means that there is less excuse for re-inventing software modules, and maintenance of software is made easier.

### 14.1.4 Security

Oracle has an extensive range of powerful security features to control the access rights of database users. Since the GPCS provides the operating environment RACF is used for an initial user identification check. Having established that the user is authorised to use GPCS facilities Oracle then maintains a constant check on what that user tries to do against what it has been told is allowable. To do this various 'roles' have been established, each with specific rights and privileges, and a user is allocated one or more roles, as deemed appropriate.

Thus to access MIDAS, a potential user must:



- 1. have a valid userid
- 2. be registered in the Oracle security system

Administration of userids is controlled by departmental RACF administrators, whereas Oracle security is the responsibility of the Corporate Database team.

### 14.1.5 Application Environments

Oracle has a *client-server* architecture whereby the whole database system logically divides into 2 parts.

The *client* portion is the front-end application which has no direct data access responsibilities; it concentrates on requesting, processing and presenting the data that it receives. This application can be running on a powerful workstation with a network connection to the host platform, or part of a batch program running directly on the GPCS itself.

The *server* portion runs Oracle software and handles the functions required for concurrent shared data access. It receives and processes SQL and PL/SQL statements originating from client applications.

### **GPCS** based applications

Raw SQL can be submitted to the server using Oracle's SQL\*Plus utility, using JCL of the form

```
//PROCLIB JCLLIB ORDER=MCD.DBA.PROC
//SQL EXEC ORAPSQL,PARM='/',TIME=n
//ORA@ORAP DD DUMMY
//SQLLOGIN DD DUMMY
//SYSIN DD DSN=hlq.lib name.DATA(member name),DISP=SHR
```

/ in the PARM field requests connection to Oracle with the current userid/password the SYSIN dataset contains the required SQL

SQL\*Plus offers many refinements, details of which can be found in the appropriate manual (follow the link from the MIDAS home page).

The following is an example of what is possible:

```
//PROCLIB JCLLIB ORDER=MCD.DBA.PROC
//SQL EXEC ORAPSQL, PARM='-S /'
//ORA@ORAP DD DUMMY
//MYFILE DD DSN=hlq.file name.DATA, DISP=(MOD, CATLG),
// STORCLAS=SCDATPRK, MGMTCLAS=MCSNC4,
// SPACE=(TRK, (1,1)), DCB=(RECFM=FB, LRECL=132, BLKSIZE=13200)
//SQLLOGIN DD DUMMY
//SYSIN DD *
SPOOL /DD/MYFILE
SET PAGESIZE 0
SET FEEDBACK OFF
ALTER SESSION SET NLS DATE FORMAT = 'YYYY-MM-DD HH24MI';
SELECT
OB END TIME, VERSION NUM, ID, MEAN WIND DIR, MEAN WIND SPEED
FROM
MIDASVU.WIND MEAN OB
WHERE
ID TYPE='WIND' AND ID='511303'
AND OB END TIME BETWEEN TO DATE ('1998010100', 'YYYYYMMDDHH24')
AND TO DATE ('1998013100', 'YYYYYMMDDHH24')
AND VERSION NUM=1;
```



#### where:

-S in the PARM field switches on 'silent' mode, suppressing all SQL\*Plus information, command prompts, banners, etc.

```
//MYFILE defines a dataset which SPOOL /DD/MYFILE spools output to
SET PAGESIZE 0 suppresses all headings, page breaks, titles, etc.
SET FEEDBACK OFF suppresses the display of the number of records returned by the query with the result that the output from the query is available in a dataset for subsequent reading by some other process, without any extraneous information.
```

 SQL commands can be embedded in Fortran code, provided the module is presented to Oracle's Pro\*Fortran pre-compiler first to convert all SQL code to standard Fortran. More extensive guidance notes are available from the Database Services group if required.

### PC based applications

- There are a number of commercially available database query tools available, running under Microsoft Windows using 'point and click' methods to generate the necessary SQL for *ad hoc* queries. Microsoft Query is a relatively simple example.
- For more specific requirements, sophisticated applications can be developed using the likes of Microsoft Access or Visual Basic. For example the Technical Development group of Forecasting division have a PC-based tool that masks much of the intricacy of MIDAS and allows their commercial enquiry officers to select and retrieve data for external customers. Similarly a comprehensive interactive quality control application has been developed.

These options require Oracle Client software to be installed on the PC.

### 14.2 Query Techniques

### 14.2.1 Using A Table Alias

An **alias** is a name that can be used to uniquely identify a database table without using its full name and can be used to simplify the appearance of SQL code.

```
SELECT so.src_id, so.src_name, so.loc_geog_area_id, ga.geog_area_id,
ga.geog_area_name
FROM midasvu.source so
, midasvu.geographic_area ga
WHERE ga.geog_area_id = so.loc_geog_area_id
AND so.src id = 9;
```

With more complex queries, involving joins across several tables, the need for readability in the join criteria becomes even more important. Note that if an alias is specified it must be used instead of the table name



throughout the SQL statement, but it is only valid for that statement. Sometimes, however, the use of an alias is essential. Consider the following *invalid* example:

```
SELECT src_name, src_id, id_type, id, ob_end_time, prcp_amt
FROM midasvu.source
, midasvu.rain_hrly_ob
WHERE ob_end_time BETWEEN TO_DATE('199512010000','YYYYYMMDDHH24MI')
TO_DATE('199512012359','YYYYYMMDDHH24MI')
AND midasvu.source.src_id = midasvu.rain_hrly_ob.src_id;
```

Oracle responds with an error message of the form "column ambiguously defined". This is because SRC ID occurs in the SOURCE table and the RAIN HRLY OB table. Re-writing the code as:

```
SELECT so.src_name, so.src_id, rh.id_type, rh.id, rh.ob_end_time, rh.prcp_amt
FROM midasvu.source so
, midasvu.rain_hrly_ob rh
WHERE rh.ob_end_time BETWEEN TO_DATE('199512010000','YYYYYMMDDHH24MI') AND
TO_DATE('199512012359','YYYYYMMDDHH24MI')
AND so.src_id = rh.src_id;
```

makes the distinction clear.

#### 14.2.2 Sub-Queries

Sometimes a query will require information that is not immediately known, but can be deduced from another query.

```
e.g. Inferring SRC ID
```

The key of the SOURCE record is SRC\_ID, but its value is unlikely to be widely known, as it bears no obvious relation to the source itself. So it needs to be extracted from the SRC\_CAPABILITY table first. However, it need not be a separate query with the result being manually fed into the next one - they can be nested.

```
SELECT so.src_name, so.east_grid_ref, so.north_grid_ref
FROM midasvu.source so
WHERE so.src_id =
(SELECT sc.src_id
FROM midasvu.sc_capability sc
WHERE sc.met_domain_name = 'SYNOP'
AND sc.id_type = 'WMO'
AND sc.id = '03100');
```

In this case the sub-query will return a single value. If it is likely to return a number of values (for example, if the MET DOMAIN NAME is not specified) the third line should use the IN operator:

```
WHERE so.src_id IN
(SELECT sc.src_id
FROM midasvu.sc_capability sc
WHERE sc.id_type = 'WMO'
AND sc.id = '03100');
```

### e.g. Using an alternative identifier

Hourly data may be stored with a WMO identifier, but need to be retrieved using an equivalent DCNN.

```
SELECT wh.id, wh.ob_time, wh.msl_pressure, wh.air_temperature
FROM midasvu.weather_hrly_ob wh
WHERE wh.id_type = 'WMO'
AND wh.ob_time BETWEEN TO_DATE('199512010000','YYYYYMMDDHH24MI') AND
TO_DATE('199512012359','YYYYMMDDHH24MI')
AND wh.id =
(SELECT sc1.id
FROM midasvu.src_capability sc1
WHERE sc1.met domain name = 'SYNOP'
```



```
AND sc1.id_type = 'WMO'
AND sc1.src_id =
  (SELECT sc2.src_id
FROM midasvu.src_capability sc2
WHERE sc2.met_domain_name = 'NCM'
AND sc2.id_type = 'DCNN'
AND sc2.ID = '5113'));
```

### 14.2.3 Table Joins

Quite often a query will require data from more than one table. For example, among the details stored in the source table is a code which can be used to cross refer to a record stored in the geographic\_area table, which contains more information about that area. Thus, to display details of sources, including the name of the county in which they are located, requires both tables to be accessed. This can be achieved in a single query by joining the two tables temporarily, for the duration of the query. Effectively, this means forming pairs of rows by matching the contents of related columns in each table. In the example above each table has a column with a geographic area code, so the requirement can be met by:

```
SELECT so.src_name, so.east_grid_ref, so.north_grid_ref, ga.geog_area_name
FROM midasvu.source so
, midasvu.geographic_area ga
WHERE so.loc_geog_area_id = ga.geog_area_id
AND so.src name LIKE 'HEATH%';
```

Equating the contents of the two columns like this limits the number of rows returned by the query. Without this condition <u>each</u> row in one table would be matched with <u>all</u> those in the other, giving a large (and inaccurate) result table. When a row in one table does not have a match in the other, then there is no corresponding row in the result table. If this is not what is required, it is possible to return unmatched rows as well.

For example, some weather observations have corresponding values in the <code>background\_value</code> table. To select the corresponding values a table join will be required, but it is also a requirement to return observations that have no corresponding background values. In this case an *outer join* is used. An outer join is achieved by placing the symbol '(+)' following the column that may not contain a value.

```
SELECT wh.id, wh.src_id, wh.air_temperature, bv.background_air_temperature
FROM midasvu.weather_hrly_ob wh
, midasupd.background_value bv
WHERE wh.met_domain_name = 'SYNOP'
AND wh.id_type = 'WMO'
AND wh.ob_time BETWEEN (sysdate - 10) AND sysdate
AND wh.id = b.id (+)
AND wh.id_type = b.id_type (+)
AND wh.ob time = b.ob time (+);
```

The query above would include rows for observations without corresponding background values. The background\_air\_temperature will return values where a corresponding row is found and NULL where there is no corresponding row.

### 14.2.4 Set Operators

A join results in rows being returned from different tables in a *single query*, according to common values existing in corresponding columns.

Set operators can be used to manipulate the results returned by *multiple queries*, provided that the number and types of columns in those queries are identical.

- union returns all rows from two queries, except that any duplicate rows are eliminated
- union all returns all rows from two queries, including any duplicate rows



- intersect returns all rows that are common to both two queries
- minus returns all rows from the first query that are not returned by the second

### 14.2.5 The Group By And Order By Clauses

#### Group By

The group by clause allows users to summarise the rows of a table into groups.

```
SELECT post_code, COUNT(src_name)
FROM midasvu.source
GROUP BY post code;
```

This query would list the number of sources for each post code.

Since group functions cannot be in a where clause, SQL uses a having clause to restrict the groups to be displayed.

```
SELECT post_code, COUNT(src_name)
FROM midasvu.source
GROUP BY post_code
HAVING COUNT(src name) > 5;
```

#### Order By

Columns are returned to a query in the order specified in the <code>select</code> statement, but rows are returned in an order determined by the access strategy of the SQL optimiser. However, an <code>order by</code> clause can be added to sort the rows before they are finally returned.

```
SELECT src_name, east_grid_ref, north_grid_ref
FROM midasvu.source
ORDER BY src name
```

This query will list all sources in alphabetical order.

The order by clause need not specifically reference a column name; it can be an aggregate function or a numerical reference to the required item in the select statement.

```
SELECT post_code, COUNT(src_name)
FROM midasvu.source
GROUP BY post_code
HAVING COUNT(src_name) > 5
ORDER BY COUNT(src_name);

SELECT post_code, COUNT(src_name)
FROM midasvu.source
GROUP BY post_code
HAVING COUNT(src_name) > 5
ORDER BY 2;
```

Both the above queries return the same result.

N.B. Under most circumstances the return of rows to a query is buffered, so using an order by clause may have a dramatic effect on the performance, since all the data must be retrieved before any ordering can be done.



### 14.3 Useful MIDAS Tables

### 14.3.1 Start At The Source

The design of MIDAS allows for a flexible approach to data access, but until you have gained some experience a disciplined approach can pay dividends.

Faced with a requirement for meteorological data for Little Tiddleypush, check in the source table to see if there is a likelihood of finding any data. If there isn't a source (i.e. station), then there will not be a source-capability, and consequently no data.

There are numerous ways of using SQL to search for suitable sources, depending on what information is known about them.

· Find sources by name

SELECT src\_id, src\_name, high\_prcn\_lat, high\_prcn\_lon, src\_bgn\_date, src\_end\_date FROM midasvu.source WHERE src\_name LIKE 'LITTLE TID%';

This will retrieve all sources whose name begins with the specified characters.

• Find sources by grid reference

SELECT src\_id, src\_name, grid\_ref\_type, east\_grid\_ref, north\_grid\_ref, src\_bgn\_date, src\_end\_date FROM midasvu.source

WHERE grid\_ref\_type = 'OS'

AND east\_grid\_ref BETWEEN value\_E1 and value\_E2

AND north\_grid\_ref BETWEEN value\_N1 and value\_N2;

This will retrieve all sources located in the NGR rectangle specified.

Find sources by post-code

SELECT src\_id, src\_name, grid\_ref\_type, east\_grid\_ref, north\_grid\_ref, src\_bgn\_date, src\_end\_date FROM midasvu.source WHERE post\_code LIKE 'RG12%';

This will retrieve all sources with a similar post code.

### 14.3.2 Check The Capability

Having found a source, either by one of the methods outlined above or from past knowledge, check to see if the source is capable of producing the data you require. Again, if there is no capability then there will be no data. If you used one of the methods in B3.1, you will already have the unique src\_id of the location you are interested in

SELECT id\_type, id, src\_id, met\_domain\_name, src\_cap\_bgn\_date, src\_cap\_end\_date FROM midasvu.src\_capability WHERE src\_id = *value*;

This will tell you what reports are available from this location.

### 14.3.3 Sources, Identifiers And SRC\_ID

A source, in MIDAS terms, is a place of origin for meteorological observations. It can have several different labels, or identifiers. Heathrow could be referred to by: 03772 (WMO), 5113 (DCNN), 247436 (RAINFALL) or EGLL (ICAO)



Some identifiers, such as rainfall numbers, have a single purpose but others serve several functions. For example, Lerwick reports synops and upper air ascents using its wmo number.

src\_id is a unique number that is applied to a source. Each new source that is added to MIDAS is allocated its own src\_id. The number itself is not directly related to the source as such, but it is used to distinguish between different locations. This means that it is an effective shorthand notation for the specification of that location, which would normally require lat/long, or an NGR pair, and altitude. src\_id is included as an attribute of the observation entities to allow users to join values in different tables without knowledge of all of the identifiers that a source can use.

For example, suppose you require a certain station's hourly air temperatures (from the weather\_hrly\_ob table, which uses WMO) and hourly rainfall (from the rain\_hrly\_ob table, which uses rainfall number). You know the WMO of the station, but you can't remember the rainfall number. The following request should find the data you require:

SELECT wh.ob\_time, wh.air\_temperature, rh.prcp\_amt
FROM midasvu.weather\_hrly\_ob wh
, midasvu.rain\_hrly\_ob rh
WHERE wh.id\_type= 'WMO'
AND wh.ID = '03772'
AND wh.ob\_time BETWEEN TO\_DATE('2000050100','YYYYMMDDHH24')
AND TO\_DATE('2000050123','YYYYMMDDHH24')
AND rh.src\_id = wh.src\_id
AND rh.ob\_end\_time = wh.ob\_time;

Notice that we did not need to specify the rainfall number (though we could have found it using the src\_capability record).

src\_id is an excellent means of joining tables, but it is not necessarily a good parameter to use for extracting data. For example, assume you require some rainfall data for Little Tiddleypush, and you know that its src\_id is 54321.

SELECT rd.ob\_date,rd.prcp\_amt FROM midasvu.rain\_drnl\_ob rd WHERE rd.src\_id = 54321 AND rd.ob\_date >= '1980';

The query shows that no data are received after 1982. Why? The station moved during that year and the new position warranted a new NGR. Each MIDAS source is at a specific position, and has a separate src\_id.

SELECT so.src\_name, so.src\_id, so.north\_grid\_ref, so.east\_grid\_ref, so.src\_bgn\_date, so.src\_end\_date FROM midasvu.source so WHERE so.src\_name LIKE 'LITTLE TID%';

This query reports the position of all appropriate sources. The mistake would not have occurred if the capability had been checked first (14.3.2).

### 14.3.4 Marine Reports Are Different

Marine reports differ from land station reports in a number of important respects.

- Ship reports are identified by the ship's call sign, so the id\_type is SHIP and id is the call sign.
- A great many ships do not include a valid call sign in their reports; the call sign may be missing or
  invalid. When this occurs, Midas will substitute the call sign value SHIP. We call these "generic" ships,
  because we know nothing of them.
- Logically, there is no such thing as a source record for ships, because a source implies a fixed point. However an Ocean Weather Ship is an exception, with a number of ships occupying the station position. In this case, there will be a source record, with a number of capabilities.
- The attributes of the primary key of ship reports are different to reports from land stations. The primary key includes position as well as identifier. Position is more significant in the key than identifier.
- It is possible to have two ships at the same position.



### 14.3.5 Code Tables

As you might expect, many of the values in MIDAS are stored using meteorological codes. To assist the user there is a <code>code detail</code> table which lists coded values and their meanings for many WMO code tables e.g.

| code_id | code_name | Description                                                   |
|---------|-----------|---------------------------------------------------------------|
| 0200    | 0200      | WMO code 0200 Characteristic of pressure tendency.            |
| 3551    | 3551      | WMO code 3551 Rate of ice accretion on ships.                 |
| 4677    | 4677      | WMO code 4677 Present weather reported from a manned station. |
| 8007    | PRESSURE  | MIDAS met element measurement code - Pressure.                |

The query below will return a code val dsc of: 'Rain, not freezing, continuous, heavy at time of ob.'

```
SELECT cd.code_val_dsc

FROM midasvu.code_detail cd

WHERE cd.code_id = '4677'

AND cd.code_value = '65';
```

### 14.3.6 Remarks About A Source

Entries in the src remark table are classified by a range of types.

| ASSOCIATED<br>RAINFALL | documents the historical association of rainfall stations with a DCNN. (Also associated by the <code>cross_reference</code> table) |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| DATA ROUTE             | describes how the data reach the Met Office                                                                                        |
| HISTORICAL NOTES       | significant events from the past                                                                                                   |
| IDENTIFIERS            | lists the various identifiers that are/have been applicable to a source                                                            |
| INSTRUMENTATION        | details of some of the instruments used at a site                                                                                  |
| MEASUREMENT            | significant aspects of the measurement of values at a site                                                                         |
| MISSING DATA           | lists periods of known missing data                                                                                                |
| OBSERVING PRACTICE     | describes the frequency of observations at various times                                                                           |
| SITE INFORMATION       | describes site details                                                                                                             |

The entries were merely compiled as part of the process of loading station details and are by no means complete. There is no restriction on the type and extent of remarks that can be stored. For example, comments on exposure and data quality might be considered useful. If the information is available it can be stored.

### 14.3.7 How To Find Where A Met Element Is Stored

As a total novice, interested in a particular met element, how can you find out where it is stored? If you know what type of report it is received in, e.g. SYNOP or NCM, then use section 9 of this handbook to find the table where it is stored. Alternatively, use the met element table to find the id of the element you are interested in.

```
SELECT me.met_element_id, me.met_element_name
FROM midasvu.met_element me
WHERE me.met element name LIKE 'WIND SP%';
```

This should tell you that the met\_element\_id of WIND SPEED is 11012. You can now use this fact to query the domain\_element table to find all met domains that the element occurs in.



```
SELECT de.met_domain_name, de.str_met_dom_name
FROM midasvu.domain_element de
WHERE de.met element id = 11012;
```

str\_met\_dom\_name contains a shorthand version of the name of the table in which the element is stored. If required, you can also query the met domain table using the value of met domain in domain element

```
SELECT *
FROM midasvu.met_domain md
WHERE md.met domain name = 'SYNOP';
```

In the met\_domain table, those entries with a met domain usage id (dom\_usg\_id) of "I" indicate 'Input' or 'Reported' domains; others, with a dom usg id of "S" specify the tables where elements are stored.

### 14.4 SQL Performance Factors

Many factors affect the performance of any computer system, but when using an **ad-hoc** query language such as SQL, the way in which the query is structured is particularly important. This section of The MIDAS Handbook explains some of the performance implications of certain queries, and presents some of our experiences with MIDAS and SQL.

Any user contributions to this section are especially welcome.

### 14.4.1 Specify ID\_TYPE when extracting by ID

An identifier consists of a value, e.g. 03344 and a type, e.g. WMO. The type is as much an important part of identification as the value, in that they should form a unique combination (e.g. EGLL on its own might be Heathrow's ICAO indicator or a ship call sign). For this reason the combination always forms a significant part of the key. The SQL optimiser attempts to find the best route to the records you want by examining what you have specified. If you provide enough information for it to use an index, it will, if not, it will conclude that it has to sweep the entire area, and that takes time. If you supply an id\_type as well as an id there is a much better chance of getting a quick response.

### 14.4.2 Selecting By Date/Time

If no time portion of a date field is entered it defaults to midnight which can give unexpected results if the selection criteria are not specified unambiguously. It is always better to use the  ${\tt TO\_DATE}$  function with an approriate format mask.

```
SELECT *

FROM midasvu.weather_hrly_ob who

WHERE who.id_type = 'WMO'

AND who.id = '03160'

AND who.ob_TIME BETWEEN '01-JAN-1989' AND '02-JAN-1989'
```

### returns 24 rows for Jan $1^{st}$ and 1 for Jan $2^{nd}$ (for midnight), whereas

```
SELECT *
FROM midasvu.weather_hrly_ob who
WHERE who.id_type = 'WMO'
AND who.id = '03160'
AND who.ob_time BETWEEN TO_DATE('01-JAN-1989 0000','dd-mon-yyyy hh24mi')
AND TO DATE('02-JAN-1989 2359','dd-mon-yyyy hh24mi')
```



returns 48 rows.

### 14.4.3 Use Of Partition Keys

Most of the observational data tables have been "partitioned". Effectively this means that a large table can be thought of as a collection of smaller ones, all with the same name. However, if the SQL optimiser is given sufficient information, it will be able to limit the search for data to the right partition(s). All these tables have date/time in the partition strategy, but the main component for marine and global data is based on a regional division.

### glbl wx ob

For glbl\_wx\_ob, the partition key is wmo\_region\_code plus ob\_time, where wmo\_region\_code is a single character in the range 1 - 7 representing the following regions:

- 1 Africa
- 2 Asia
- 3 South America
- 4 North and Central America
- 5 South-west Pacific
- 6 Europe
- 7 Antarctic

Performance will be enhanced if the appropriate value for a given station is provided, either directly if known, or inferred from its associated source record.

```
SELECT *
FROM midasvu.glbl_wx_ob gwo
WHERE gwo.id_type = 'WMO'
AND gwo.id = '62002'
AND gwo.ob_time BETWEEN TO_DATE ('2000010100','yyyymmddhh24')
AND TO_DATE ('2000013123','yyyyymmddhh24')
AND gwo.wmo_region_code =
(SELECT src.wmo_region_code
FROM midasvu.source src
WHERE src.src_id IN
(SELECT cap.src_id
FROM midasvu.src_capability cap
WHERE cap.id_type = 'WMO'
AND cap.id = '62002'))
```

#### marine ob

The marine\_ob table is partitioned by longitude\_band\_code and by ob\_time. longitude\_band\_code is a single character in the range A - J, each covering a set of longitude values. The required value can be determined from the lon\_band function which has longitude as an argument. Best performance will require specification of both longitude band code and ob time.

```
SELECT *
FROM midasvu.marine_ob mo
WHERE mo.latitude BETWEEN 50.4 AND 50.6
AND mo.latitude BETWEEN -10.6 AND -10.4
AND mo.ob_time BETWEEN TO_DATE ('2000010100','yyyyymmddhh24')
AND TO_DATE ('2000013123','yyyymmddhh24')
AND mo.longitude band code = midasvu.lon band(-10.5)
```



### 14.4.4 Performance Implications Of Order By

Data retrieval is buffered, which means that initial display of data should be fairly rapid, even if the full query will eventually return a lot more rows. However, using ORDER BY implies that **all** rows have to be retrieved, into some temporary workspace area, before they can be shuffled according to the requirements of the clause. Inevitably, this takes longer and can be appreciable for a large query.

### 14.4.5 Performance Implications Of Sub-Queries, Outer Joins etc

Inevitably, the more complex the query - several tables joined or several nested sub queries - the more likely that performance will suffer. It is also much more likely that, while syntactically correct, the query will not actually reflect requirements.

### 14.5 Static Values - Quality Control Information

Observation sub-types can contain attributes that store information about the quality control that has been applied. These take the format met\_element\_name\_q and met\_element\_name\_j. The attribute name depends on the observation sub-type.

### met\_element\_name\_q

This attribute is a five digit number (of the form MESQL), where each digit describes one aspect of the quality of a meteorological element.

A combination of two flows to indicate accumulations, and/or a trace of reinfall

| IVI | qc_marker   | A combination of two flags to indicate accumulations, and/or a trace of rainfall |
|-----|-------------|----------------------------------------------------------------------------------|
| Е   | qc_estimate | Indicates 1 of up to 8 remarks about an estimate                                 |
| S   | qc_status   | Indicates 1 of up to 8 possible descriptions of the value of the element         |
|     |             | (e.g. reason for suspecting a value)                                             |
| Q   | qc_query    | Indicates 1 of up to 8 statements about the original value                       |
|     |             | (e.g. a reason for correcting a data value)                                      |
| L   | qc_level    | Indicates which of 10 possible stages of QC has been reached                     |

**qc\_marker** (code\_id 8021) when set, indicates a precipitation trace or an accumulated value (e.g. rainfall or maximum temperature over more than one day; maximum gust speed over more than one hour).

- 0 NULL
- 1 Trace of precipitation
- 2 Accumulation
- Accumulated trace of precipitation

**qc\_estimate** (code\_id 8022) provides information about an estimated or corrected value. In this context an "estimate" is a value either derived by the QC teams where the observer or the automatic instrument has not provided a value, or has been provided retrospectively from the observing station after the original report was ingested with the element in question missing.

- 0 Value is not an estimate or correction, or information on the estimate/correction is not available
- 1 Estimate/correction derived automatically from a program with no manual intervention
- 2 Estimate/corrected value has been set manually (with or without assistance from a program)
- 3 Estimate/correction has been obtained retrospectively from the observer/station
- 4 Precipitation estimate/correction has been derived from a snow/rain equivalence, or trace estimate/correction has been set for consistency with present weather
- 5 Correction has been obtained by changing units of measurement
- 6 Correction has been obtained by applying a systematic adjustment
- 7 Measurement impossible, because of snow, etc.



qc\_status (code\_id 8023) indicates the status of the data value.

- 0 Observed and not suspect
- Observed and suspect (i.e. has failed the latest QC check), or there are strong grounds for suspecting the accuracy of the observation
- 2 An estimate where the original value is not available
- 3 An estimate where the original value is missing and cannot be retrieved
- 4 An unreliable estimate (used in radiation QC)
- 5 A correction (a reported value is assumed to be in error)
- 6 Value reverted to original
- 7 Original value verified by observer
- 8 Original value verified by quality control analyst

qc\_query (code\_id 8024) gives information about the original (as reported) value.

- Original value is/was not queried, or no information available
- 1 Failed SDB or MetDB QC check
- 2 Failed MIDAS validation
- 3 Failed climate QC marine position or movement check
- 4 Failed climate QC range check
- 5 Failed climate QC internal consistency check
- 6 Failed climate QC sequence check
- 7 Failed climate QC areal check

**qc\_level** (code\_id 8025) indicates the climate QC stage reached. Level 0 - no processing; Level 9 - normal processing complete. The number of values between will vary with the element, and with time as QC procedures change. This item will not indicate the application or otherwise of MIDAS validation checks, nor whether visual checks of data have been carried out, e.g. of data on forms.

- 0 Initial climate QC program not run
- 1 Initial climate QC program has run
- 2 Initial QC queries processed
- 3 Spare
- 4 Further range or internal consistency or sequence checks job(s) run and queries processed
- 5 Spare
- 6 Final (or only) areal or buddy job run and queries processed
- 7 Spare
- 8 Final (or only) monthly job(s) run and queries processed
- 9 Normal QC complete

#### met element name j

This attribute is a single character code which either describes the method of measurement, or further qualifies the meteorological values. The meaning of any value depends on the element being qualified. The values allocated to this item are also documented in the code detail table of MIDAS.

### Cloud (code\_id 8004)

NULL

- A Not originally reported in 1949 codes
- B Nominal cloud height
- C Height measured
- D Amount originally measured in tenths
- E Amount is derived from METAR code N<sub>s</sub>N<sub>s</sub>N<sub>s</sub>
- F Values from LCBR (ix = 5, 6 or 7)

### Precipitation (code\_id 8006)

# 

### **Observations**

- A Reading from autographic instrument
- B Amount due to dew, fog or frost
- C Amount due to snowfall
- D Rainfall converted from inches
- E Snow depth originally measured in inches

### Pressure (code\_id 8007)

#### **NULL**

- A Measured by barometer not calibrated in millibars, or from barograph
- B Measured in whole units

### Sea & Swell Waves (code id 8008)

### **NULL**

- A Estimated, using 36 point compass
- B Estimated, using 36 point compass, descriptive codes
- C Estimated, using 36 point compass, not units of 0.5 metres/sec
- D Estimated, not using 36 point compass, using descriptive codes
- E Estimated, not using 36 point compass, using units of 0.5 metres/sec
- F Estimated, not using 36 point compass, not using units of 0.5 metres/sec
- G Measured, using units other than 0.5 metres/sec
- H Measured, using units of 0.5 metres/sec
- J Mixed wave measured
- K High precision data supplied in tenths of metre
- L measured using a shipbourne wave recorder
- M measured using buoy
- N measured using another method

### Temperature (code id 8010)

- A Reading from autographic instrument
- B Original measured in degrees Fahrenheit
- C Original measured to nearest whole degree Fahrenheit
- D Original measured to nearest 0.5 degree Fahrenheit
- E Original measured to nearest whole degree Celsius
- F Original measured to nearest 0.5 degree Celsius
- G Iced Wetbulb (previously Spare)
- H Wet bulb not frozen, registering below 0.0 degrees Celsius
- J Wet bulb wick is assumed to have dried out
- K Wet bulb is derived from air temperature and dew point
- L Iced Wetbulb derived from air/dewpoint temp (previously Spare)
- M Aspirated
- N Aspirated and original in degrees Fahrenheit
- P Aspirated and original to nearest whole degree Fahrenheit
- Q Aspirated and original to nearest 0.5 degree Fahrenheit
- R Aspirated and original to nearest whole degree Celsius
- S Aspirated and original to nearest 0.5 degree Celsius
- T Max / min obtained from SAWS hourly values
- U Original temperature measured in 0.1 degrees F, and depth in inches
- V Original temperature measured in whole degrees F, and depth in inches
- W Original temperature measured in 0.1 degrees F, and depth at 24 inches
- X Original temperature measured in whole degrees F, and depth at 24 inches
- Y Original temperature measured in 0.1 degrees F, and depth at 48 inches

# 

### **Observations**

Z Original temperature measured in whole degrees F, and depth at 48 inches

### Visibility (code\_id 8011)

**NULL** 

A Measured rather than estimated

### Weather (past and present) (code\_id 8012)

**NULL** 

- A Derived from "AB" codes
- B Present weather is derived from code 4680
- C Present weather is derived from code 4678

### Speed / Direction (code\_id 8013)

**NULL** 

- A Speed originally estimated in metres/sec
- B Speed originally estimated in knots
- C Speed originally measured in metres/sec
- D Speed originally measured in knots
- E Speed originally measured in miles per hour
- F Converted from kilometres to whole knots
- G Mean wind derived from run of wind unspecified units
- H Mean wind derived from run of wind, converted from kilometres to whole knots
- J Direction converted from 8 point compass
- K Direction converted from 16 point compass
- L Direction converted from 32 point compass
- M Speed originally Beaufort scale

### Location (code\_id 8014)

**NULL** 

- A Stationary
- B Position reported to within 30 minutes
- C Position reported to within 10 minutes
- D Position reported to within 5 minutes
- E Position reported from dead reckoning from previous position
- F OWS not in area
- G Observation time calculated from Local Apparent Time

### Sea Temperature (code\_id 8015)

- a Original measured to nearest whole degree C using condenser inlet
- b Original measured to nearest whole degree C using trailing thermistor
- c Original measured to nearest whole degree C using hull contact sensor
- d Original measured to nearest whole degree C using through hull sensor
- e Original measured to nearest whole degree C using radiation thermometer Original measured to nearest whole degree C using bait tanks thermometer
- g Original measured to nearest whole degree C method unknown
- A Original measured in 0.1 degree F using bucket
- B Original measured in 0.1 degree F not using bucket
- C Original measured to nearest 0.5 degree F using bucket
- D Original measured to nearest 0.5 degree F not using bucket
- E Original measured to nearest whole degree F using bucket
- F Original measured to nearest whole degree F not using bucket

# Met Office

### **Observations**

- G Original measured in 0.1 degree C using bucket
- H Original measured in 0.1 degree C not using bucket
- I Original measured in 0.1 degree C using condenser inlet
- J Original measured in 0.1 degree C using trailing thermistor
- K Original measured in 0.1 degree C using hull contact sensor
- L Original measured in 0.1 degree C using through hull sensor
- M Original measured in 0.1 degree C using radiation thermometer
- N Original measured in 0.1 degree C using bait tanks thermometer
- O Original measured in 0.1 degree C method unknown
- P Original measured to nearest 0.5 degree C using bucket
- Q Original measured to nearest 0.5 degree C not using bucket
- R Original measured in 0.5 degree C using condenser inlet
- S Original measured in 0.5 degree C using trailing thermistor
- T Original measured in 0.5 degree C using hull contact sensor
- U Original measured in 0.5 degree C using through hull sensor
- V Original measured in 0.5 degree C using radiation thermometer
- W Original measured in 0.5 degree C using bait tanks thermometer
- X Original measured in 0.5 degree C method unknown
- Y Original measured to nearest whole degree C using bucket
- Z Original measured to nearest whole degree C not using bucket

#### 14.5.1 Static Values - State Indicators

Observation sub-types can contain attributes that store information about the quality control that has been applied. These take the format met\_element\_name\_q and met\_element\_name\_j. The attribute name depends on the observation sub-type.

### met\_element\_name\_q

This attribute is a five digit number (of the form MESQL), where each digit describes one aspect of the quality of a meteorological element.

| IVI | qc_marker   | A combination of two flags to indicate accumulations, and/or a trace of rainfall |
|-----|-------------|----------------------------------------------------------------------------------|
| E   | qc_estimate | Indicates 1 of up to 8 remarks about an estimate                                 |
| S   | qc_status   | Indicates 1 of up to 8 possible descriptions of the value of the element         |
|     |             | (e.g. reason for suspecting a value)                                             |
| Q   | qc_query    | Indicates 1 of up to 8 statements about the original value                       |
|     |             | (e.g. a reason for correcting a data value)                                      |
| L   | qc_level    | Indicates which of 10 possible stages of QC has been reached                     |

**qc\_marker** (code\_id 8021) when set, indicates a precipitation trace or an accumulated value (e.g. rainfall or maximum temperature over more than one day; maximum gust speed over more than one hour).

- 0 NULL
- 1 Trace of precipitation
- 2 Accumulation
- Accumulated trace of precipitation

**qc\_estimate** (code\_id 8022) provides information about an estimated or corrected value. In this context an "estimate" is a value either derived by the QC teams where the observer or the automatic instrument has not provided a value, or has been provided retrospectively from the observing station after the original report was ingested with the element in question missing.

- Value is not an estimate or correction, or information on the estimate/correction is not available
- 1 Estimate/correction derived automatically from a program with no manual intervention



- 2 Estimate/corrected value has been set manually (with or without assistance from a program)
- 3 Estimate/correction has been obtained retrospectively from the observer/station
- 4 Precipitation estimate/correction has been derived from a snow/rain equivalence, or trace estimate/correction has been set for consistency with present weather
- 5 Correction has been obtained by changing units of measurement
- 6 Correction has been obtained by applying a systematic adjustment
- 7 Measurement impossible, because of snow, etc.

qc\_status (code\_id 8023) indicates the status of the data value.

- 0 Observed and not suspect
- Observed and suspect (i.e. has failed the latest QC check), or there are strong grounds for suspecting the accuracy of the observation
- 2 An estimate where the original value is not available
- 3 An estimate where the original value is missing and cannot be retrieved
- 4 An unreliable estimate (used in radiation QC)
- 5 A correction (a reported value is assumed to be in error)
- 6 Value reverted to original
- 7 Original value verified by observer
- 8 Original value verified by quality control analyst following supplementary investigation

qc\_query (code\_id 8024) gives information about the original (as reported) value.

- Original value is/was not queried, or no information available
- 1 Failed SDB or MetDB QC check
- 2 Failed MIDAS validation
- 3 Failed climate QC marine position or movement check
- 4 Failed climate QC range check
- 5 Failed climate QC internal consistency check
- 6 Failed climate QC sequence check
- 7 Failed climate QC areal check

**qc\_level** (code\_id 8025) indicates the climate QC stage reached. Level 0 - no processing; Level 9 - normal processing complete. The number of values between will vary with the element, and with time as QC procedures change. This item will not indicate the application or otherwise of MIDAS validation checks, nor whether visual checks of data have been carried out, e.g. of data on forms.

- 0 Initial climate QC program not run
- 1 Initial climate QC program has run
- 2 Initial QC queries processed
- 3 Spare
- 4 Further range or internal consistency or sequence checks job(s) run and queries processed
- 5 Spare
- 6 Final (or only) areal or buddy job run and queries processed
- 7 Spare
- 8 Final (or only) monthly job(s) run and queries processed
- 9 Normal QC complete

#### met element name j

This attribute is a single character code which either describes the method of measurement, or further qualifies the meteorological values. The meaning of any value depends on the element being qualified. The values allocated to this item are also documented in the code detail table of MIDAS.

### Cloud (code id 8004)

NULL

A Not originally reported in 1949 codes

# 

### **Observations**

- B Nominal cloud height
- C Height measured
- D Amount originally measured in tenths
- E Amount is derived from METAR code N<sub>s</sub>N<sub>s</sub>N<sub>s</sub>
- F Values from LCBR (ix = 5, 6 or 7)

### Precipitation (code\_id 8006)

#### NULL

- A Reading from autographic instrument
- B Amount due to dew, fog or frost
- C Amount due to snowfall
- D Rainfall converted from inches
- E Snow depth originally measured in inches

### Pressure (code\_id 8007)

#### NULL

- A Measured by barometer not calibrated in millibars, or from barograph
- B Measured in whole units

### Sea & Swell Waves (code\_id 8008)

#### **NULL**

- A Estimated, using 36 point compass
- B Estimated, using 36 point compass, descriptive codes
- C Estimated, using 36 point compass, not units of 0.5 metres/sec
- D Estimated, not using 36 point compass, using descriptive codes
- E Estimated, not using 36 point compass, using units of 0.5 metres/sec
- F Estimated, not using 36 point compass, not using units of 0.5 metres/sec
- G Measured, using units other than 0.5 metres/sec
- H Measured, using units of 0.5 metres/sec
- J Mixed wave measured
- K High precision data supplied in tenths of metre
- L measured using a shipbourne wave recorder
- M measured using buoy
- N measured using another method

### Temperature (code\_id 8010)

- A Reading from autographic instrument
- B Original measured in degrees Fahrenheit
- C Original measured to nearest whole degree Fahrenheit
- D Original measured to nearest 0.5 degree Fahrenheit
- E Original measured to nearest whole degree Celsius
- F Original measured to nearest 0.5 degree Celsius
- G Iced Wetbulb (previously Spare)
- H Wet bulb not frozen, registering below 0.0 degrees Celsius
- J Wet bulb wick is assumed to have dried out
- K Wet bulb is derived from air temperature and dew point
- L Iced Wetbulb derived from air/dewpoint temp (previously Spare)
- M Aspirated
- N Aspirated and original in degrees Fahrenheit
- P Aspirated and original to nearest whole degree Fahrenheit
- Q Aspirated and original to nearest 0.5 degree Fahrenheit

# Met Office

### **Observations**

- R Aspirated and original to nearest whole degree Celsius
- S Aspirated and original to nearest 0.5 degree Celsius
- T Max / min obtained from SAWS hourly values
- U Original temperature measured in 0.1 degrees F, and depth in inches
- V Original temperature measured in whole degrees F, and depth in inches
- W Original temperature measured in 0.1 degrees F, and depth at 24 inches
- X Original temperature measured in whole degrees F, and depth at 24 inches
- Y Original temperature measured in 0.1 degrees F, and depth at 48 inches
- Z Original temperature measured in whole degrees F, and depth at 48 inches

### Visibility (code\_id 8011)

**NULL** 

A Measured rather than estimated

### Weather (past and present) (code\_id 8012)

NULL

- A Derived from "AB" codes
- B Present weather is derived from code 4680
- C Present weather is derived from code 4678

### Speed / Direction (code\_id 8013)

**NULL** 

- A Speed originally estimated in metres/sec
- B Speed originally estimated in knots
- C Speed originally measured in metres/sec
- D Speed originally measured in knots
- E Speed originally measured in miles per hour
- F Converted from kilometres to whole knots
- G Mean wind derived from run of wind unspecified units
- H Mean wind derived from run of wind, converted from kilometres to whole knots
- J Direction converted from 8 point compass
- K Direction converted from 16 point compass
- L Direction converted from 32 point compass
- M Speed originally Beaufort scale

### Location (code\_id 8014)

**NULL** 

- A Stationary
- B Position reported to within 30 minutes
- C Position reported to within 10 minutes
- D Position reported to within 5 minutes
- E Position reported from dead reckoning from previous position
- F OWS not in area
- G Observation time calculated from Local Apparent Time

### Sea Temperature (code\_id 8015)

- a Original measured to nearest whole degree C using condenser inlet
- b Original measured to nearest whole degree C using trailing thermistor
- c Original measured to nearest whole degree C using hull contact sensor
- d Original measured to nearest whole degree C using through hull sensor
- e Original measured to nearest whole degree C using radiation thermometer



- f Original measured to nearest whole degree C using bait tanks thermometer
- g Original measured to nearest whole degree C method unknown
- A Original measured in 0.1 degree F using bucket
- B Original measured in 0.1 degree F not using bucket
- C Original measured to nearest 0.5 degree F using bucket
- D Original measured to nearest 0.5 degree F not using bucket
- E Original measured to nearest whole degree F using bucket
- F Original measured to nearest whole degree F not using bucket
- G Original measured in 0.1 degree C using bucket
- H Original measured in 0.1 degree C not using bucket
- I Original measured in 0.1 degree C using condenser inlet
- J Original measured in 0.1 degree C using trailing thermistor
- K Original measured in 0.1 degree C using hull contact sensor
- L Original measured in 0.1 degree C using through hull sensor
- M Original measured in 0.1 degree C using radiation thermometer
- N Original measured in 0.1 degree C using bait tanks thermometer
- O Original measured in 0.1 degree C method unknown
- P Original measured to nearest 0.5 degree C using bucket
- Q Original measured to nearest 0.5 degree C not using bucket
- R Original measured in 0.5 degree C using condenser inlet
- S Original measured in 0.5 degree C using trailing thermistor
- T Original measured in 0.5 degree C using hull contact sensor
- U Original measured in 0.5 degree C using through hull sensor
- V Original measured in 0.5 degree C using radiation thermometer
- W Original measured in 0.5 degree C using bait tanks thermometer
- X Original measured in 0.5 degree C method unknown
- Y Original measured to nearest whole degree C using bucket
- Z Original measured to nearest whole degree C not using bucket

#### 14.5.2 Static Values - State Indicators

A state indicator is an attribute of each table that is used to describe the current stage in the life of a particular record, from creation to deletion.

### State Indicator settings and their meanings.

| 1001 | Normal ingestion of observation at creation                                       |
|------|-----------------------------------------------------------------------------------|
| 1002 | Normal ingestion of a multi level observation such as upper air at creation       |
| 1003 | Addition of observation level                                                     |
| 1004 | Receive a COR before normal observation received                                  |
| 1005 | Receive a COR before normal multi level observation received                      |
| 1006 | Receive a COR to observation level                                                |
| 1007 | Addition of a missing value                                                       |
| 1008 | Receive a COR after the observation received but before QC started                |
| 1009 | Recceive a COR to an observation level after normal receipt but before QC started |
| 1010 | Start of QC ob extracted for QC checks                                            |
| 1011 | QC level raised on Version 1                                                      |
| 1012 | CreateVersion 0 First Qc amend to an attribute other than just change of qc level |
| 1013 | Version 0 exists with no version 1                                                |
| 1014 | Version 1 exists as apportioned/corrected data with no version 0                  |



Working with Version 1 as corrected data

| 1022 | Version1 Creation Version 0 is frozen as original data state indicator 1012 |
|------|-----------------------------------------------------------------------------|
| 1023 | Version 1 of multi level ob                                                 |
| 1024 | QC amend to Version 1 observation multi level                               |
| 1025 | Change to qc level in Version 1                                             |
| 1026 | Receive subsequent qc amendments                                            |
| 1027 | Decision to Archive                                                         |
| 1028 | Archive observation                                                         |
| 1029 | COR of Key item- pre QC - mark for deletion                                 |

### 14.5.3 Static Values - Codes In code\_detail Table

The  $code\_detail$  table contains decodes of various WMO and other code tables that are used for values stored in MIDAS.

| code_id | code_name | Description                                                                    |  |  |
|---------|-----------|--------------------------------------------------------------------------------|--|--|
| 0200    | 0200      | WMO code 0200 Characteristic of pressure tendency.                             |  |  |
| 0265    | 0265      | WMO code 0265 Type of measuring equipment used.                                |  |  |
| 0439    | 0439      | WMO code 0439 Ice of land origin.                                              |  |  |
| 0500    | 0500      | WMO code 0500 Genus of cloud.                                                  |  |  |
| 0509    | 0509      | WMO code table 0509 Clouds of genera Cirrus, Cirrocumulus and Cirrostratus.    |  |  |
| 0513    | 0513      | WMO code table 0513 Clouds of the genera Stratocumulus, Stratus, Cumulus, etc. |  |  |
| 0515    | 0515      | WMO code 0515 Clouds of the genera Altocumulus, Altostratus, etc.              |  |  |
| 0639    | 0639      | WMO code 0639 Concentration or arrangement of sea ice.                         |  |  |
| 0700    | 0700      | WMO code 0700 Direction or bearing in one figure.                              |  |  |
| 0739    | 0739      | WMO code 0739 True bearing of principal ice edge.                              |  |  |
| 0901    | 0901      | WMO code 0901 State of ground without snow or measureable ice cover.           |  |  |
| 0975    | 0975      | WMO code 0975 State of ground with snow or measureable ice cover.              |  |  |
| 1400    | 1400      | WMO code 1400 Time of observations used to compute mean values.                |  |  |
| 1600    | 1600      | WMO code 1600 Height above surface of base of lowest cloud seen.               |  |  |
| 1751    | 1751      | WMO code 1751 Ice accretion on ships.                                          |  |  |
| 2262    | 2262      | WMO code 2262 Indicator for digitization.                                      |  |  |
| 2263    | 2263      | WMO code 2263 Method of salinity/depth measurement.                            |  |  |
| 2264    | 2264      | WMO code 2264 Duration and time of current measurement.                        |  |  |
| 2265    | 2265      | WMO code 2265 Period of current measurement (drift method).                    |  |  |
| 2266    | 2266      | WMO code 2266 Indicator for the method of current measurement.                 |  |  |
| 2267    | 2267      | WMO code 2267 Method of removing ship velocity and motion from current.        |  |  |
| 2700    | 2700      | WMO code 2700 Cloud cover.                                                     |  |  |
| 3363    | 3363      | WMO code 3363 Quality of measurement.                                          |  |  |
| 3551    | 3551      | WMO code 3551 Rate of ice accretion on ships.                                  |  |  |
| 3570    | 3570      | WMO code 3570 Amount of precipitation, water equiv., or deposit                |  |  |
| 3590    | 3590      | WMO code 3590 Amount of precipitation during period preceding the ob.          |  |  |
| 3739    | 3739      | WMO code 3739 Stage of ice development.                                        |  |  |
| 4451    | 4451      | WMO code 4451 Ship's average speed made good during 3 hours before ob.         |  |  |
| 4561    | 4561      | WMO code 4561 Past weather.                                                    |  |  |



| 4677     | 4677            | MMO code 4677 Present weether reported from a manned station            |  |  |
|----------|-----------------|-------------------------------------------------------------------------|--|--|
|          | 1 - 1 - 1       | WMO code 4677 Present weather reported from a manned station.           |  |  |
| 4680     | 4680            | WMO code 4680 Present weather reported from an automatic weather        |  |  |
| 5239     | 5239            | WMO code 5239 Present ice situation and trend of conditions over 3 hrs. |  |  |
| 6000     | 6000            | NCM table 24 Day of thunder.                                            |  |  |
| 6001     | 6001            | NCM table 23 Day of hail, ice, etc.                                     |  |  |
| 6002     | 6002            | NCM table 27 Day of snow or sleet.                                      |  |  |
| 6003     | 6003            | NCM table 25 Day of fog.                                                |  |  |
| 6004     | 6004            | NCM table 26 Day of gale.                                               |  |  |
| 6005     | 6005            | NCM table 22 State of concrete.                                         |  |  |
| 6006     | 6006            | CDB flag Snow lying.                                                    |  |  |
| 0 08 001 | 0 08 001        | BUFR code 0 08 001 Vertical sounding significance.                      |  |  |
| 0 20 062 | 0 20 062        | BUFR code 0 20 062 State of ground.                                     |  |  |
| 8004     | CLOUD           | MIDAS met element measurement code - Cloud amount and height.           |  |  |
| 8006     | PRECIPITATION   | MIDAS met element measurement code - Precipitation.                     |  |  |
| 8007     | PRESSURE        | MIDAS met element measurement code - Pressure.                          |  |  |
| 8008     | SWELL_WAVES     | MIDAS met element measurement code - Sea state, Waves, Swell.           |  |  |
| 8010     | TEMPERATURE     | MIDAS met element measurement code - Temperature, Wet-bulb.             |  |  |
| 8011     | VISIBILITY      | MIDAS met element measurement code - Visibility.                        |  |  |
| 8012     | WEATHER         | MIDAS met element measurement code - Weather                            |  |  |
| 8013     | WIND_SPEED_DIR  | MIDAS met element measurement code - Direction and speed.               |  |  |
| 8014     | LOCATION        | MIDAS met element measurement code - Location.                          |  |  |
| 8015     | SEA_TEMPERATURE | MIDAS met element measurement code - Sea temperature                    |  |  |
| 8016     | RLTV_HUM        | MIDAS met element measurement code - Relative Humidity.                 |  |  |
| 8021     | M               | MIDAS met element quality code - QC marker for trace or                 |  |  |
|          |                 | accumulation.                                                           |  |  |
| 8022     | E               | MIDAS met element quality code - QC estimate or correction              |  |  |
| 8023     | S               | MIDAS met element quality code - Reason for suspecting a value          |  |  |
| 8024     | Q               | MIDAS met element quality code - Check level                            |  |  |
| 8025     | L               | MIDAS met element quality code - Level of Quality control.              |  |  |
| 8030     | 8030            | MIDAS OB_RCPT_CODE, i.e. Ob reception method code                       |  |  |

### **Document responsibilities**

|          | Role Title                   | Name |
|----------|------------------------------|------|
| Owner    | Observations Quality Manager |      |
| Owner    | Senior IT Practitioner       |      |
| Author   | Operational Meteorologist    |      |
| Reviewer | Senior IT Practitioner       |      |

### **Document history**

Document Register:

Observations Quality Management Team Register

Document identity and location:

OBQM\_DEV\_The\_MIDAS\_Handbook.pdf

| Version | Issue date | Review due | Reviewer | Change description                                                                                      |
|---------|------------|------------|----------|---------------------------------------------------------------------------------------------------------|
| 1.0     | 03/11/2016 | 05/12/2017 |          | Created from Metnet Content                                                                             |
| 1.0     | 05/12/2017 | 05/12/2018 |          | Moved to ISO template                                                                                   |
| 1.0     | 24/05/2018 | 24/05/2019 |          | Reviewed and no changes                                                                                 |
| 1.1     | 19/07/2018 | 24/05/2019 |          | Added flag 8 to qc_status code at section 14.5.                                                         |
| 1.2     | 09/08/2018 | 24/05/2019 |          | Added pollen data table in section 6 and 9.2 and lying_snow_ht to weather_drnl_ob table in section 9.2. |
| 1.2     | 09/09/2019 | 09/09/2020 |          | Reviewed and no changes                                                                                 |