Assignment 3 Chapter-15: Matrices and Determinants

EE24BTECH11049 Patnam Shariq Faraz Muhammed

1) If
$$a > 0$$
 and discriminant of $a.x^2 + 2.b.x + c$ is -ve, then $\begin{vmatrix} a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0 \end{vmatrix}$ is equal to [2002]

- (a) +ve
- (b) $(ac b^2)(ax^2 + 2bx + c)$
- (c) -ve
- (d) 0
- 2) If the system of linear equations x + 2ay + az =0; x + 3by + bz = 0; x + 4cy + cz = 0; has a non-zero solution, then a,b,c.

[2003]

- (a) satisfy a + 2b + 3c = 0
- (b) are in A.P
- (c) are in G.P
- (d) are in H.P
- 3) If 1, ω , ω^2 are the cube roots of unity, then

$$\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$$
 is equal to

[2003]

- (a) ω^2
- (b) 0
- (c) 1
- (d) ω

4) If
$$A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$
 and $A^2 = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$, then
[2003]

(a)
$$\alpha = 2ab, \beta = a^2 + b^2$$

(b)
$$\alpha = a^2 + b^2, \beta = ab$$

(c)
$$\alpha = a^2 + b^2, \beta = 2ab$$

(c)
$$\alpha = a^2 + b^2, \beta = 2ab$$

(d) $\alpha = a^2 + b^2, \beta = a^2 - b^2$