Глава 7. МЕТОДЫ ВТОРОГО ПОРЯДКА

7.1. МЕТОД НЬЮТОНА

Постановка задачи

Пусть дана функция f(x), ограниченная снизу на множестве \mathbb{R}^n и имеющая непрерывные частные производные первого и второго порядков во всех его точках.

Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X = R^n$, т.е. найти такую точку $x^* \in R^n$, что

$$f(x^*) = \min_{x \in \mathbb{R}^n} f(x).$$

Стратегия поиска

Стратегия метода Ньютона (Newton) состоит в построении последовательности точек $\left\{x^k\right\}, k=0,1,\ldots$, таких, что $f\left(x^{k+1}\right) < f\left(x^k\right), \ k=0,1,\ldots$. Точки последовательности вычисляются по правилу

$$x^{k+1} = x^k + d^k, \quad k = 0, 1, \dots,$$
 (7.1)

где x^0 — задается пользователем, а направление спуска d^k определяется для каждого значения k по формуле

$$d^{k} = -H^{-1}(x^{k})\nabla f(x^{k}). \tag{7.2}$$

Выбор d^k по формуле (7.2) гарантирует выполнение требования $f(x^{k+1}) < f(x^k)$ при условии, что $H(x^k) > 0$. Формула (7.2) получена из следующих соображений:

- 1) функция f(x) аппроксимируется в каждой точке последовательности $\left\{x^k\right\}$ квадратичной функцией $F_k = f\left(x^k\right) + \left(\nabla f\left(x^k\right), d^k\right) + \frac{1}{2}\left(d^k, H\left(x^k\right)d^k\right);$
- 2) направление d^k определяется из необходимого условия экстремума первого порядка: $\frac{dF_k}{dd^k}=0$. Таким образом, при выполнении требования $H(x^k)>0$ последовательность является последовательностью точек минимумов квадратичных функций F_k , k=0,1,... (рис.7.1). Чтобы обеспечить выполнение требования $f(x^{k+1}) < f(x^k)$, k=0,1,..., даже в тех случаях, когда для каких-либо значений матрица Гессе $H(x^k)$ не окажется положительно определенной, рекомендуется для соответствующих значений k вычислить точку x^{k+1} по методу градиентного спуска $x^{k+1}=x^k-t_k$ $\nabla f(x^k)$ с выбором величины шага t_k из условия $f(x^k-t_k) = f(x^k)$.

Построение последовательности $\left\{x^k\right\}$ заканчивается в точке x^k , для которой $\left\|\nabla f\left(x^k\right)\right\| < \epsilon_1$, где ϵ_1 — заданное малое положительное число, или при $k \geq M$, где M — предельное число итераций, или при двукратном одновременном выполнении двух неравенств $\left\|x^{k+1} - x^k\right\| < \epsilon_2$, $\left|f\left(x^{k+1}\right) - f\left(x^k\right)\right| < \epsilon_2$, где ϵ_2 — малое положительное число.

Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования, которое описано ниже.

Рис. 7.1

Алгоритм

Шаг 1. Задать x^0 , $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, M – предельное число итераций. Найти градиент $\nabla f(x)$ и матрицу Гессе H(x).

Шаг 2. Положить k=0.

Шаг 3. Вычислить $\nabla f(x^k)$.

Шаг 4. Проверить выполнение критерия окончания $\|\nabla f(x^k)\| \le \varepsilon_1$:

- а) если неравенство выполнено, то расчет окончен и $x^* = x^k$;
- б) в противном случае перейти к шагу 5.

Шаг 5. Проверить выполнение неравенства $k \ge M$:

- а) если неравенство выполнено, расчет окончен и $x^* = x^k$;
- б) если нет, перейти к шагу 6.

UIaг 6. Вычислить элементы матрицы $H(x^k)$.

Шаг 7. Найти обратную матрицу $H^{-1}(x^k)$.

UIIaг 8. Проверить выполнение условия $H^{-1}(x^k) > 0$:

- а) если $H^{-1}(x^k) > 0$, то перейти к шагу 9;
- б) если нет, то перейти к шагу 10, положив $d^k = -\nabla f(x^k)$.

Шаг 9. Определить $d^k = -H^{-1}(x^k)\nabla f(x^k)$.

UІаг 10. Найти точку $x^{k+1} = x^k + t_k d^k$,

положив $t_k = 1$, если $d^k = -H^{-1}(x^k)\nabla f(x^k)$,

или выбрав t_k из условия $f(x^{k+1}) < f(x^k)$, если $d^k = -\nabla f(x^k)$.

$$extit{\it Шаг}$$
 11. Проверить выполнение условий
$$\left\|x^{k+1}-x^k\right\|<\epsilon_2\,,\qquad \left|f\left(x^{k+1}\right)-f\left(x^k\right)\right|<\epsilon_2\,;$$

- а) если оба условия выполнены при текущем значении k и k=k-1, то расчет окончен, $x^* = x^{k+1}$;
- б) в противном случае положить k = k + 1 и перейти к шагу 3.

Сходимость

Утверждение 7.1. Пусть f(x) дважды непрерывно дифференцируемая сильно выпуклая функция c константой l>0 на R^n и удовлетворяющая условию

$$||H(x)-H(y)|| \le L ||x-y|| \quad \forall x,y \in \mathbb{R}^n,$$

где L>0, а начальная точка такова, что $\|\nabla f(x^0)\| \leq 8\frac{l^2}{L}$, т.е.

$$\left\| \nabla f(x^0) \right\| = \frac{8l^2q}{L},\tag{7.3}$$

где $q \in (0,1)$. Тогда последовательность $\left\{x^k\right\}$ сходится к точке минимума с квадратич-

ной скоростью $\|x^k - x^*\| \le \frac{4lq^{2^k}}{r}$ [39].

Замечания 7.1.

- 1. Сходимость метода Ньютона доказана лишь для сильно выпуклых функций и для достаточно хорошего начального приближения, определяемого условием (7.3), практическое использование которого крайне затруднено, так как постоянные l и L, как правило, неизвестны или требуют трудоемкого исследования для их определения. Поэтому при практическом использовании метода Ньютона следует:
- а) проанализировать матрицу $H(x^k)$ на выполнение условия $H(x^k) > 0$ $orall k=0,1,\dots$ и заменить формулу $x^{k+1}=x^k-H^{-1}ig(x^kig)
 abla fig(x^kig)$ на формулу $x^{k+1} = x^k - t_k \nabla f(x^k)$ в случае его невыполнения;

- б) проанализировать точку x^k с целью выяснения, является ли она найденным приближением искомой точки x^* .
- **2.** При решении задачи поиска безусловного максимума формула (7.2) не изменяется, так как в этом случае $H(x^k) < 0$.

Процедура решения задачи

- 1. Используя алгоритм Ньютона, найти точку x^k , в которой выполняется по крайней мере один критерий окончания расчета.
- 2. Так как $f(x) \in C^2$, то осуществить проверку выполнения достаточного условия минимума $H(x^k) > 0$. Если условие выполнено, то точка x^k может рассматриваться как найденное приближение точки минимума x^* . Проверку выполнения достаточного условия минимума можно заменить проверкой функции f(x) на выпуклость.

Пример 7.1. Найти локальный минимум функции

$$f(x) = 2x_1^2 + x_1x_2 + x_2^2.$$

- \square I. Определим точку x^k , в которой выполняется по крайней мере один критерий окончания расчетов.
- 1. Зададим x^0 , ε_1 , ε_2 , M: $x^0 = \begin{pmatrix} 0.5; 1 \end{pmatrix}^T$; $\varepsilon_1 = 0.1$; $\varepsilon_2 = 0.15$; M = 10. Найдем градиент функции $\nabla f(x) = (4x_1 + x_2; x_1 + 2x_2)^T$ и матрицу Γ ессе $H(x) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 2. Положим k = 0.
 - 3^{0} . Вычислим $\nabla f(x^{0})$: $\nabla f(x^{0}) = (3; 2,5)^{T}$.
- 4^0 . Проверим выполнение условия $\|\nabla f(x^0)\| \le \varepsilon_1$: $\|\nabla f(x^0)\| = 3.9 > 0.1$. Перейдем к шагу 5.
 - 5^0 . Проверим выполнение условия $\ k \geq M : \ k = 0 < 10$. Перейдем к шагу 6.
 - 6^0 . Вычислим $H(x^0)$: $H(x^0) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 7^0 . Вычислим $H^{-1}(x^0)$: $H^{-1}(x^0) = \begin{pmatrix} \frac{2}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{4}{7} \end{pmatrix}$.
- 8^0 . Проверим выполнение условия $H^{-1}\!\left(x^0\right)>0$. Так как $\Delta_1=\frac{2}{7}>0$, $\Delta_2=\frac{1}{7}>0$, то согласно критерию Сильвестра $H^{-1}\!\left(x^0\right)>0$ (см. гл. 2).

$$9^0$$
 . Определим $d_0 = -H^{-1}(x^0)\nabla f(x^0) = -\begin{pmatrix} \frac{2}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{4}{7} \end{pmatrix}\begin{pmatrix} 3 \\ 2,5 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix}$.

$$10^0$$
. Вычислим $x^1 = \left(\frac{1}{2},1\right)^T + \left(-\frac{1}{2},-1\right)^T = (0,0)^T$.
 11^0 . Проверим выполнение условий $\left\|x^1-x^0\right\| < \varepsilon_2, \ \left|f\left(x^1\right)-f\left(x^0\right)\right| < \varepsilon_2$:
$$\left\|x^1-x^0\right\| = 1,12 > 0,15; \qquad \left|f\left(x^1\right)-f\left(x^0\right)\right| = 2 > 0,15 \ .$$

Положим k = 1 и перейдем к шагу 3.

 3^1 . Вычислим $\nabla f(x^1)$: $\nabla f(x^1) = (0,0)^T$.

 4^1 . Проверим выполнение условия $\|\nabla f(x^1)\| < \varepsilon_1$: $\|\nabla f(x^1)\| = 0 < 0,1$. Расчет окончен. Заметим, что в точке x^1 выполняется необходимое условие первого порядка, поэтому она является стационарной точкой.

II. Проведем анализ точки x^1 .

Функция $f(x) = 2x_1^2 + x_1x_2 + x_2^2$ является строго выпуклой, так как ее матрица вторых производных $H = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix} > 0$ в силу того, что $\Delta_1 = 4 > 0$, $\Delta_2 = 7 > 0$. Найденная точка $x^1 = (0,0)^T$ есть точка локального и одновременно глобального минимума целевой функции f(x).

Рис. 7.2

На рис. 7.2 траектория спуска изображена сплошной линией. ■

7.2. МЕТОД НЬЮТОНА-РАФСОНА

Постановка задачи

Пусть дана функция f(x), ограниченная снизу на множестве \mathbb{R}^n и имеющая непрерывные частные производные первого и второго порядков во всех его точках.

Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X=R^n$, т.е. найти такую точку $x^*\in R^n$, что

$$f(x^*) = \min_{x \in R^n} f(x).$$

Стратегия поиска

Стратегия метода Ньютона–Рафсона (Newton–Raphson) состоит в построении последовательности точек $\left\{x^k\right\}, k=0,1,\ldots$, таких, что $f\left(x^{k+1}\right) < f\left(x^k\right), \ k=0,1,\ldots$. Точки последовательности вычисляются по правилу

$$x^{k+1} = x^k - t_k H^{-1}(x^k) \nabla f(x^k), \quad k = 0, 1, \dots,$$
 (7.4)

где x^0 задается пользователем, а величина шага t_k определяется из условия

$$\varphi(t_k) = f(x^k - t_k H^{-1}(x^k) \nabla f(x^k)) \to \min_{t_k}.$$
 (7.5)

Задача (7.5) может решаться либо аналитически с использованием необходимого условия минимума $\frac{d \varphi}{d t_k} = 0$ и последующей проверкой достаточного условия $\frac{d^2 \varphi}{d t_k^2} > 0$, либо численно как задача

$$\varphi(t_k) \to \min_{t_k \in [a,b]},\tag{7.6}$$

где интервал [a,b] задается пользователем.

Если функция $\varphi(t_k)$ достаточно сложна, то возможна ее замена полиномом $P(t_k)$ второй или третьей степени и тогда шаг t_k может быть определен из условия $\frac{dP}{dt_k}=0$ при выполнении условия $\frac{d^2P}{dt_k^2}>0$.

При численном решении задачи определения величины шага степень близости найденного значения t_k к оптимальному значению t_k^* , удовлетворяющему условиям $\frac{d\varphi}{dt_k} = 0 \; , \; \frac{d^2\varphi}{dt_k^2} > 0 \; , \; \text{зависит от задания интервала} \; \left[a,b\right] \; \text{и точности методов одномерной минимизации} [27].$

Построение последовательности $\left\{x^k\right\}$ заканчивается в точке x^k , для которой $\left\|\nabla f\left(x^k\right)\right\| < \epsilon_1$, где ϵ_1 — заданное число, или при $k \geq M$, где M — предельное число итераций), или при двукратном одновременном выполнении двух неравенств $\left\|x^{k+1}-x^k\right\| < \epsilon_2$, $\left|f\left(x^{k+1}\right)-f\left(x^k\right)\right| < \epsilon_2$, где ϵ_2 — малое положительное число.

Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования, которое описано ниже.

Алгоритм

Шаг 1. Задать x^0 , $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, M – предельное число итераций. Найти градиент $\nabla f(x)$ и матрицу Гессе H(x).

Шаг 2. Положить k=0.

Шаг 3. Вычислить $\nabla f(x^k)$.

Шаг 4. Проверить выполнение условия $\|\nabla f(x^k)\| \le \varepsilon_1$:

- а) если неравенство выполнено, то расчет закончен и $x^* = x^k$;
- б) если нет, перейти к шагу 5.

Шаг 5. Проверить выполнение условия $k \ge M$:

- а) если неравенство выполнено, расчет окончен и $x^* = x^k$;
- б) если нет, перейти к шагу 6.

 $extit{Шаг}$ 6. Вычислить элементы матрицы $extit{ }H\!\left(x^{k}\right).$

 $extit{Шаг}$ 7. Найти обратную матрицу $H^{-1}(x^k)$.

Шаг 8. Проверить выполнение условия $H^{-1}(x^k) > 0$:

- а) если условие выполняется, то найти $d^k = -H^{-1}(x^k) \nabla f(x^k)$;
- б) если нет, то положить $d^k = -\nabla f(x^k)$.

Шаг 9. Определить $x^{k+1} = x^k + t_k d^k$.

Шаг 10. Найти шаг t_k^* из условия $\varphi(t_k) = f(x^k + t_k d^k) \to \min_{t_k}$.

Шаг 11. Вычислить $x^{k+1} = x^k + t_k^* d^k$.

Шаг 12. Проверить выполнение неравенств

$$\|x^{k+1} - x^k\| < \varepsilon_2, \quad |f(x^{k+1}) - f(x^k)| < \varepsilon_2$$
:

- а) если оба условия выполнены при текущем значении k и k=k-1, то расчет окончен и $x^*=x^{k+1}$;
- б) в противном случае положить k = k + 1 и перейти к шагу 3.

Сходимость

Утверждение 7.2. Пусть функция f(x) дважды непрерывно дифференцируема и сильно выпукла на R^n , а ее матрица Гессе H(x) удовлетворяет условию Липшица

$$||H(x)-H(y)|| \le L ||x-y|| \quad \forall x, y \in \mathbb{R}^n.$$

Тогда последовательность $\left\{x^k\right\}$ сходится независимо от выбора начальной точки x^0 к точке минимума x^* с квадратичной скоростью $\left\|x^{k+1}-x^k\right\| \leq \frac{L}{m}\left\|x^k-x^*\right\|^2$, где m- оценка наименьшего собственного значения матрицы [28].

- **Замечание 7.2.** Сходимость к точке минимума метода Ньютона–Рафсона гарантируется независимо от выбора начального приближения лишь для сильно выпуклых функций. Поэтому при практическом использовании метода Ньютона–Рафсона следует:
- а) проанализировать матрицу Гессе $H(x^k)$ на выполнение условия $H(x^k) > 0$, $k = 0,1,\ldots$, и заменить формулу $x^{k+1} = x^k t_k H^{-1}(x^k) \nabla f(x^k)$ на формулу метода градиентного спуска $x^{k+1} = x^k t_k \nabla f(x^k)$ в случае его невыполнения;
- б) проанализировать точку x^k с целью выяснения, является ли она найденным приближением искомой точки x^* .

Процедура решения задачи

- 1. Используя алгоритм Ньютона–Рафсона, построить точку x^k , в которой выполняется по крайней мере один критерий окончания расчетов.
- 2. Так как $f(x) \in C^2$, то проверить выполнение достаточного условия минимума $H(x^k) > 0$. Если условие выполнено, то точка x^k может рассматриваться как найденное приближение точки минимума x^* . Проверку выполнения достаточного условия минимума можно заменить проверкой функции f(x) на выпуклость.

Пример 7.2. Найти локальный минимум функции $f(x) = 2x_1^2 + x_1x_2 + x_2^2$.

- \square I. Определим точку x^k , в которой выполняется по крайней мере один критерий окончания расчетов.
- 1. Зададим x^0 , ε_1 , ε_2 , M: $x^0 = \begin{pmatrix} 0.5; 1 \end{pmatrix}^T$, $\varepsilon_1 = 0.1$; $\varepsilon_2 = 0.15$; M = 10. Найдем градиент функции $\nabla f(x) = \begin{pmatrix} 4x_1 + x_2; x_1 + 2x_2 \end{pmatrix}^T$ и матрицу Γ ессе $H(x) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 2. Положим k = 0.
 - 3^{0} . Вычислим $\nabla f(x^{0})$: $\nabla f(x^{0}) = (3; 2,5)^{T}$.
 - 4^0 . Проверим выполнение условия $\left\| \nabla f\left(x^0\right) \right\| \leq \epsilon_1$: $\left\| \nabla f\left(x^0\right) \right\| = 3.9 > 0.1$.

 5^0 . Проверим выполнение условия $k \geq M$: k = 0 < 10 . Перейдем к шагу 6.

$$6^0$$
. Вычислим $H(x^0)$: $H(x^0) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.

$$7^0$$
. Вычислим $H^{-1}(x^0)$: $H^{-1}(x^0) = \begin{pmatrix} \frac{2}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{4}{7} \end{pmatrix}$.

 8^0 . Проверим выполнение условия $H^{-1}(x^0) > 0$.

Так как $\Delta_1=rac{2}{7}>0,\ \Delta_2=rac{1}{7}>0$, то согласно критерию Сильвестра $H^{-1}\!\left(x^0
ight)>0$. Поэто-

му найдем
$$d^0 = -H^{-1}(x^0)\nabla f(x^0)$$
: $d^0 = \left(-\frac{1}{2}, -1\right)^T$ (см. шаг 9^0 примера 7.1).

$$9^0$$
 . Определим: $x^1=x^0+t_0d^0=\left(\frac{1}{2},1\right)^T+t_0\left(-\frac{1}{2},-1\right)^T=\left(\frac{1}{2}-\frac{1}{2}t_0,1-t_0\right)^T$.

 10^0 . Определим $\ t_0^*$ из условия $\ \varphi(t_0) = f(x^0 + t_0 d^0) o \min_{t_0}$. Получим

$$f(x^{0} + t_{0}d^{0}) = f\left(\left(\frac{1}{2} - \frac{1}{2}t_{0}, 1 - t_{0}\right)^{T}\right) =$$

$$= 2 \cdot \left(\frac{1}{2} - \frac{1}{2}t_{0}\right)^{2} + \left(\frac{1}{2} - \frac{1}{2}t_{0}\right) \cdot (1 - t_{0}) + (1 - t_{0})^{2} = 2 \cdot (1 - t_{0})^{2} = \varphi(t_{0}).$$

Из условия $\frac{d\varphi}{dt_0}=2\cdot 2\cdot (1-t_0)\cdot (-1)=0$ находим $t_0^*=1$. При этом $\frac{d^2\varphi}{d\,t_0^2}=4>0$, т.е. най-

денная величина шага обеспечивает минимум функции $\varphi(t_0)$.

$$11^0$$
. Вычислим $x^1 = x^0 + t_0^* d^0$: $x^1 = \left(\frac{1}{2} - \frac{1}{2} \cdot 1, \ 1 - 1\right)^T = (0, \ 0)^T$.

 12^{0} . Проверим выполнение условий $\|x^{1}-x^{0}\|<\varepsilon_{2}, |f(x^{1})-f(x^{0})|<\varepsilon_{2}$:

$$||x^1 - x^0|| = 1.12 > 0.15;$$
 $|f(x^1) - f(x^0)| = 2 > 0.15.$

Положим k = 1 и перейдем к шагу 3.

 3^1 . Вычислим $\nabla f(x^1)$: $\nabla f(x^1) = (0;0)^T$.

 4^1 . Проверим выполнение условия $\|\nabla f(x^1)\| < \varepsilon_1$: $\|\nabla f(x^1)\| = 0 < 0,1$. Расчет окончен: $x^* = x^1$.

II. Проведем анализ точки x^1 .

Точка $x^* = (0;0)^T$ — точка локального и одновременно глобального минимума f(x) (см. пример 7.1). На рис. 7.2 траектория спуска изображена штрихпунктирной линией.

7.3. МЕТОД МАРКВАРДТА

Постановка задачи

Пусть дана функция f(x), ограниченная снизу на множестве \mathbb{R}^n и имеющая непрерывные частные производные первого и второго порядков во всех его точках.

Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X=R^n$, т.е. найти такую точку $x^*\in R^n$, что

$$f(x^*) = \min_{x \in R^n} f(x).$$

Стратегия поиска

Стратегия метода Марквардта (Marquardt) состоит в построении последовательности точек $\left\{x^k\right\}$, $k=0,1,\ldots$, таких, что $f\!\left(x^{k+1}\right)\!< f\!\left(x^k\right)$, $k=0,1,\ldots$

Точки последовательности $\left\{x^k\right\}$ вычисляются по правилу

$$x^{k+1} = x^k - \left[H(x^k) + \mu^k E \right]^{-1} \nabla f(x^k), \ k = 0, 1, \dots,$$
 (7.7)

где точка x^0 задается пользователем, E — единичная матрица, μ^k — последовательность положительных чисел, таких, что матрица $\left[H(x^k) + \mu^k E\right]^{-1}$ положительно определена. Как правило, число μ^0 назначается как минимум на порядок больше, чем самый большой элемент матрицы $H(x^0)$, а в ряде стандартных программ полагается $\mu^0 = 10^4$ [36] . Если

 $f\left(x^k - \left(H(x^k) + \mu^k E\right)^{-1} \nabla f(x^k)\right) < f(x^k)$, то $\mu^{k+1} = \frac{\mu^k}{2}$. В противном случае $\mu^{k+1} = 2\mu^k$. Легко видеть, что алгоритм Марквардта в зависимости от величины μ^k на каждом шаге по своим свойствам приближается либо к алгоритму Ньютона, либо к алгоритму градиентного спуска.

Построение последовательности $\left\{x^k\right\}$ заканчивается, когда либо $\left\|\nabla f\left(x^k\right)\right\|<\epsilon_1$, либо число итераций $k\geq M$, где ϵ_1 — малое положительное число, а M — предельное число итераций.

Вопрос о том, может ли точка x^k рассматривается как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования, которое описано ниже.

Алгоритм

Шаг 1. Задать x^0 , $\varepsilon_1 > 0$, M – предельное число итераций. Найти градиент $\nabla f(x)$ и матрицу Гессе H(x).

Шаг 2. Положить k = 0, $\mu^k = \mu^0$.

Шаг 3. Вычислить $\nabla f(x^k)$.

Шаг 4. Проверить выполнение условия $\|\nabla f(x^k)\| \le \varepsilon_1$:

а) если неравенство выполнено, то расчет окончен и $x^* = x^k$;

б) если нет, перейти к шагу 5.

Шаг 5. Проверить выполнение условия $k \ge M$:

- а) если неравенство выполнено, расчет окончен и $x^* = x^k$;
- б) если нет, перейти к шагу 6.

Шаг 6. Вычислить $H(x^k)$.

Шаг 7. Вычислить $H(x^k) + \mu^k E$.

 $extit{\it Шаг}$ 8. Найти обратную матрицу $\left[H \Big(x^k \Big) + \mu^k E \right]^{-1}$.

Шаг 9. Вычислить $d^k = -\left[H(x^k) + \mu^k E\right]^{-1} \nabla f(x^k)$.

Шаг 10. Вычислить $x^{k+1} = x^k - \left[H(x^k) + \mu^k E\right]^{-1} \nabla f(x^k)$.

Шаг 11. Проверить выполнение условия $f(x^{k+1}) < f(x^k)$:

- а) если неравенство выполняется, то перейти к шагу 12;
- б) если нет, перейти к шагу 13.

Шаг 12. Положить k = k + 1, $\mu^{k+1} = \frac{\mu^k}{2}$ и перейти к шагу 3.

Шаг 13. Положить $\mu^k = 2\mu^k$ и перейти к шагу 7.

Процедура решения задачи

- 1. Используя алгоритм Марквардта, построить точку x^k , в которой выполняется по крайней мере один критерий окончания расчетов.
- 2. Так как $f(x) \in C^2$, то проверить выполнение достаточного условия минимума $H(x^k) > 0$. Если условие выполнено, то точка x^k может рассматриваться как найденное приближение точки минимума x^* . Проверку выполнения достаточного условия минимума можно заменить проверкой функции f(x) на выпуклость.

Замечания 7.3.

- **1.** Метод Марквардта за счет выбора μ^k обеспечивает построение последовательности $\left\{x^k\right\}$, такой, что $f\left(x^{k+1}\right) < f\left(x^k\right)$, $k=0,1,\dots$ [28].
- **2.** В окрестности точки минимума x^* метод Марквардта обладает скоростью сходимости, близкой к квадратичной [28].

Пример 7.3. Найти локальный минимум функции $f(x) = 2x_1^2 + x_1x_2 + x_2^2$.

- \square I. Определим точку x^k , в которой выполняется по крайней мере один критерий окончания расчетов.
- 1. Зададим $x^0 = (0,5;1)^T$; $\varepsilon_1 = 0,1$; M = 10. Найдем градиент функции $\nabla f(x) = (4x_1 + x_2; x_1 + 2x_2)^T$ и матрицу Γ ессе $H(x) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 2. Положим k = 0, $\mu^0 = 20$.
 - 3^{0} . Вычислим $\nabla f(x^{0})$: $\nabla f(x^{0}) = (3; 2,5)^{T}$.
- 4^0 . Проверим выполнение условия $\|\nabla f(x^0)\| \le \varepsilon_1$: $\|\nabla f(x^0)\| = 3.9 > 0.1$. Перейдем к шагу 5.
 - 5^0 . Проверим выполнение условия $k \ge M$: k = 0 < 10 . Перейдем к шагу 6.
 - 6^0 . Вычислим $H(x^0)$: $H(x^0) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 7^{0} . Вычислим $H(x^{0}) + \mu^{0}E$: $H(x^{0}) + \mu^{0}E = \begin{pmatrix} 24 & 1 \\ 1 & 22 \end{pmatrix}$.
 - 8^0 . Вычислим $\left[H(x^0) + \mu^0 E\right]^{-1}$: $\left[H(x^0) + \mu^0 E\right]^{-1} = \begin{bmatrix} 0.0417 & -0.0019 \\ -0.0019 & 0.0455 \end{bmatrix}$.
 - 9^0 . Вычислим $d^0 = -\left[H(x^0) + \mu^0 E\right]^{-1} \nabla f(x^0)$: $d^0 = \left(-0.119; -0.108\right)^T$.
 - 10^0 . Вычислим $x^1 = x^0 \left[H(x^0) + \mu^0 E\right]^{-1} \nabla f(x^0)$: $x^1 = (0.381; 0.892)^T$.
 - 11^0 . Проверим выполнение условия $f(x^1) < f(x^0)$: $f(x^1) = 1,438 < 2 = f(x^0)$.
 - 12^0 . Положим k=1, $\mu^1=\frac{\mu^0}{2}=10$ и перейдем к шагу 3.
 - 3^1 . Вычислим $\nabla f(x^1)$: $\nabla f(x^1) = (2,41;2,16)^T$.
- 4^1 . Проверим выполнение условия $\|\nabla f(x^1)\| < \varepsilon_1$: $\|\nabla f(x^1)\| = 3,18 > 0,1$. Перейдем к шагу 5.
 - 5^1 . Проверим выполнение условия $\ k \geq M : \ k = 1 < 10$. Перейдем к шагу 6 .
 - 6^1 . Вычислим $H(x^1)$: $H(x^1) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 7^1 . Вычислим $H(x^1) + \mu^1 E$: $H(x^1) + \mu^1 E = \begin{pmatrix} 14 & 1 \\ 1 & 12 \end{pmatrix}$.
 - 8^1 . Вычислим $\left[H\left(x^1\right) + \mu^1 E\right]^{-1}$:

$$\left[H(x^1) + \mu^1 E\right]^{-1} = \begin{bmatrix} 0.072 & -0.0059 \\ -0.0059 & 0.084 \end{bmatrix}.$$

$$9^1$$
. Вычислим $d^1 = -\left[H(x^1) + \mu^1 E\right]^{-1} \nabla f(x^1)$: $d^1 = (-0.160; -0.168)^T$.

10¹. Вычислим
$$x^2 = x^1 - \left[H(x^1) + \mu^1 E \right]^{-1} \nabla f(x^1)$$
:

$$x^2 = (0.381; 0.892)^T - (0.160; 0.168)^T = (0.221; 0.724)^T$$

 11^1 . Проверим выполнение условия $f(x^2) < f(x^1)$:

$$f(x^2) = 0.791 < 1.438 = f(x^1).$$

- 12^1 . Положим k=2, $\mu^2=\frac{\mu^1}{2}=5$ и перейдем к шагу 3.
- 3^2 . Вычислим $\nabla f(x^2)$: $\nabla f(x^2) = (1,60;1,67)^T$.
- 4^2 . Проверим выполнение условия $\|\nabla f(x^2)\| < \varepsilon_1$: $\|\nabla f(x^2)\| = 2{,}31 > 0{,}1$. Перейдем к шагу 5.
 - 5^2 . Проверим выполнение условия $k \ge M$: k = 2 < 10. Перейдем к шагу 6.
 - 6^2 . Вычислим $H(x^2)$: $H(x^2) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 7^2 . Вычислим $H(x^2) + \mu^2 E$:

$$H(x^2) + \mu^2 E = \begin{pmatrix} 9 & 1 \\ 1 & 7 \end{pmatrix}.$$

 8^2 . Вычислим $\left[H(x^2) + \mu^2 E\right]^{-1}$:

$$\left[H(x^2) + \mu^2 E\right]^{-1} = \begin{pmatrix} 0.113 & -0.016 \\ -0.016 & 0.145 \end{pmatrix}.$$

- 9^2 . Вычислим $d^2 = -\left[H(x^2) + \mu^2 E\right]^{-1} \nabla f(x^2)$: $d^2 = \left(-0.155; -0.217\right)^T$.
- 10^2 . Вычислим $x^3 = x^2 \left[H(x^2) + \mu^2 E\right]^{-1} \nabla f(x^2)$:

$$x^3 = (0,221;0,724)^T - (0,155;0,217)^T = (0,07;0,51)^T$$

 11^2 . Проверим выполнение условия $f(x^3) < f(x^2)$:

$$f(x^3) = 0.3 < 0.791 = f(x^2)$$

- 12^2 . Положим k=3, $\mu^3=\frac{\mu^2}{2}=2,5$ и перейдем к шагу 3.
- 3^3 . Вычислим $\nabla f(x^3)$: $\nabla f(x^3) = (0.79; 1.09)^T$.
- 4^3 . Проверим выполнение условия $\|\nabla f(x^3)\| < \varepsilon_1$: $\|\nabla f(x^3)\| = 1{,}34 > 0{,}1$. Перейдем к шагу 5.
 - 5^3 . Проверим выполнение условия $k \ge M$: k = 3 < 10 . Перейдем к шагу 6.

$$6^3$$
. Вычислим $H(x^3)$: $H(x^3) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.

$$7^3$$
. Вычислим $H(x^3) + \mu^3 E$: $H(x^3) + \mu^3 E = \begin{pmatrix} 6.5 & 1 \\ 1 & 4.5 \end{pmatrix}$.

$$8^3$$
. Вычислим $\left[H(x^3) + \mu^3 E\right]^{-1}$:

$$\left[H(x^3) + \mu^3 E\right]^{-1} = \begin{pmatrix} 0.159 & -0.035 \\ -0.035 & 0.23 \end{pmatrix}.$$

$$9^3$$
. Вычислим $d^3 = -\left[H(x^3) + \mu^3 E\right]^{-1} \nabla f(x^3)$: $d^3 = (-0.078; -0.22)^T$.

$$10^3$$
. Вычислим $x^4 = x^3 - \left[H(x^3) + \mu^3 E\right]^{-1} \nabla f(x^3)$:

$$x^4 = (0.07; 0.51)^T - (0.078; 0.22)^T = (-0.008; 0.29)^T.$$

 11^3 . Проверим выполнение условия $f(x^4) < f(x^3)$:

$$f(x^4) = 0.082 < 0.3 = f(x^3)$$
.

- 12^3 . Положим k=4, $\mu^4=\frac{\mu^3}{2}=1{,}25$ и перейдем к шагу 3.
- 3^4 . Вычислим $\nabla f(x^4)$: $\nabla f(x^4) = (0.26; 0.57)^T$.
- 4^4 . Проверим выполнение условия $\|\nabla f(x^4)\| < \varepsilon_1$: $\|\nabla f(x^4)\| = 0.62 > 0.1$. Перейдем к шагу 5.
 - 5^4 . Проверим выполнение условия $k \ge M$: k = 4 < 10 . Перейдем к шагу 6.
 - 6^4 . Вычислим $H(x^4)$: $H(x^4) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 7^4 . Вычислим $H(x^4) + \mu^4 E$: $H(x^4) + \mu^4 E = \begin{pmatrix} 5,25 & 1 \\ 1 & 3,25 \end{pmatrix}$.
 - 8^4 . Вычислим $\left[H(x^4) + \mu^4 E\right]^{-1}$:

$$\left[H(x^4) + \mu^4 E\right]^{-1} = \begin{pmatrix} 0.203 & -0.0623 \\ -0.0623 & 0.327 \end{pmatrix}.$$

$$9^4$$
. Вычислим $d^4 = -\left[H(x^4) + \mu^4 E\right]^{-1} \nabla f(x^4)$: $d^4 = (-0.017; -0.17)^T$.

$$10^4$$
. Вычислим $x^5 = x^4 - \left[H(x^4) + \mu^4 E\right]^{-1} \nabla f(x^4)$:

$$x^{5} = (-0.008; 0.29)^{T} - (0.017; 0.17)^{T} = (-0.025; 0.12)^{T}$$

 11^4 . Проверим выполнение условия $f(x^5) < f(x^4)$:

$$f(x^5) = 0.012 < 0.082 = f(x^4).$$

$$12^4$$
. Положим $k=5$, $\mu^5=\frac{\mu^4}{2}=0,625$ и перейдем к шагу 3.

$$3^5$$
. Вычислим $\nabla f(x^5)$: $\nabla f(x^5) = (0.02; 0.22)^T$.

4⁵. Проверим выполнение условия
$$\|\nabla f(x^5)\| < \varepsilon_1$$
: $\|\nabla f(x^5)\| = 0.22 > 0.1$. Перейдем к шагу 5.

 5^5 . Проверим выполнение условия $k \ge M$: k = 5 < 10 . Перейдем к шагу 6.

$$6^5$$
. Вычислим $H(x^5)$: $H(x^5) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.

$$7^5$$
. Вычислим $H(x^5) + \mu^5 E$: $H(x^5) + \mu^5 E = \begin{pmatrix} 4,622 & 1 \\ 1 & 2,622 \end{pmatrix}$.

$$8^5$$
. Вычислим $\left[H(x^5) + \mu^5 E\right]^{-1}$:

$$\left[H(x^5) + \mu^5 E\right]^{-1} = \begin{pmatrix} 0.236 & -0.09 \\ -0.09 & 0.416 \end{pmatrix}.$$

$$9^5$$
. Вычислим $d^5 = -\left[H(x^5) + \mu^5 E\right]^{-1} \nabla f(x^5)$: $d^5 = (0.015; -0.090)^T$.

$$10^5$$
. Вычислим $x^6 = x^5 - \left[H(x^5) + \mu^5 E \right]^{-1} \nabla f(x^5)$:

$$x^6 = (-0.025; 0.12)^T + (0.015; -0.09)^T = (-0.01; 0.03)^T.$$

 11^{5} . Проверим выполнение условия $f(x^{6}) < f(x^{5})$:

$$f(x^6) = 0.0006 < 0.012 = f(x^5).$$

$$12^5$$
. Положим $k = 6$, $\mu^6 = \frac{\mu^5}{2} = 0,311$ и перейдем к шагу 3.

$$3^6$$
. Вычислим $\nabla f(x^6)$: $\nabla f(x^6) = (-0.01; 0.05)^T$.

 4^6 . Проверим выполнение условия $\|\nabla f(x^6)\| < \varepsilon_1$: $\|\nabla f(x^6)\| = 0.051 < 0.1$. Расчет окончен.

II. Проведем анализ точки x^6 .

Точка $x^6 = (-0.01; 0.03)$ (см. рис. 7.2) является найденным приближением точки минимума x^* , так как функция $f(x) = 2x_1^2 + x_1x_2 + x_2^2$ является строго выпуклой (см. пример 7.1). На рис. 7.2 полученная траектория спуска изображена пунктирной линией.

Задачи для самостоятельного решения

1. Будет ли удачной начальная точка $x^0 = (1;2;1;1)^T$ для решения задачи $f(x) = \left(x_1^2 - x_2\right)^2 + \left(x_3 - x_4\right)^2 o \min$ методом Ньютона?

Ответ: нет, так как матрица $H(x^0)$ не является положительно определенной.

2. После десяти итераций по методу Марквардта при решении задачи $f(x) = \left(x_1 - x_2^2\right)^2 + \left(1 - x_1\right)^2 \to \min$ программа остановилась в точке $x = \left(1; 1\right)^T$. Поясните причину остановки.

Ответ: точка $x = (1; 1)^T$ - точка минимума.

3. Методом Ньютона–Рафсона найдите точку безусловного минимума функции $f(x) = x_1^2 + x_1x_2 + 2x_2^2$.

Ответ: точное решение $x^* = (0; 0)^T$.

4. В задаче $f(x) = 100x_1^2 + x_2^2 \rightarrow \min$, $x^0 = (0;10)^T$ определите координаты точки x^1 с помощью метода Ньютона.

Omsem: $x^1 = (0,0)^T$.

5. Будет ли удачной минимизация функции $f(x) = x_1^3 + x_1x_2 + x_2^2x_1^2 - 3x_1$ методом Ньютона из точки $x^0 = (2; 2)^T$?

 Omsem : нет, так как $\mathit{H}(x^0)$ не является положительно определенной.

6. Решается задача

$$f(x) = \frac{1}{(x_1 + 1)^2 + x_2^2} \to \max.$$

Укажите, из какой начальной точки ее решение методом Ньютона потребует не более одной итерации.

Ответ: из любой начальной точки, если решать эту задачу как задачу поиска минимума функции $\frac{1}{f(x)} = (x_1 + 1)^2 + x_2^2$.

7. Методами Ньютона, Ньютона–Рафсона и Марквардта найти безусловный экстремум функций:

a)
$$f(x) = n^2 x_1^2 - x_1 x_2 + \frac{(n+1)^2}{2} x_2^2 - n x_1;$$

6)
$$f(x) = (n+10)x_1^2 + 2nx_1x_2 + (n+30)x_2^2 - 4(n+15)x_1 - 12nx_2$$
.