第二次作业

葛旭

2020年4月19日

1. $\omega_1 = \omega_2 = 0, \text{ so } \vec{0} \text{ vector is in } \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}$ $\text{addition: } \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} + \begin{bmatrix} \omega_3 \\ \omega_4 \end{bmatrix} = \begin{bmatrix} \omega_1 + \omega_3 \\ \omega_2 + \omega_4 \end{bmatrix}$ $\omega_1^2 = \omega_2^2, \omega_3^2 = \omega_4^2$ $\frac{\omega_1}{\omega_2} = \pm 1, \frac{\omega_3}{\omega_4} = \pm 1 (\text{except for } \vec{0} \text{ vector})$ so $\frac{\omega_1}{\omega_2}$ may not be equal to $\frac{\omega_4}{\omega_3}$ $\Rightarrow \omega_1 \omega_3 \text{ may not be equal to } \omega_2 \omega_4$ $\Rightarrow (\omega_1 + \omega_3)^2 \text{may not be equal to } (\omega_2 + \omega_4)^2$ $\Rightarrow \text{ so } S \text{ is not closed under vector addition}$ $S \text{ is not a subspace of } \mathbb{R}^2$

2.

define
$$f: R \to R, f(x) \equiv 0$$
,
so $f(t) = f(-t) = 0$, so $\vec{0}$ vector is in X
addition: $(f_1 + f_2)(t) = f_1(t) + f_2(t) = f_1(-t) + f_2(-t) = (f_1 + f_2)(-t)$
so f is closed under addition.
scalar multiplication: $(kf)(t) = kf(t) = kf(-t) = (kf)(-t)$
so f is closed ubder scalar multiplication.
so X is a subspace of real - valued functions.