Hypothesis testing 1: z-test and t-test

Y. Polyanskiy, D. Shah, J. Tsitsiklis

6.S077

2018

Outline:

- Examples & types
- Relation to philosophy of science and law
- Formal definitions
- z-test and t-test
- The Wald test

- Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's
- How to confirm/deny it?

- Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's
- How to confirm/deny it?
- Use data!
- Crime and Punishment and Tom Sawyer
- Histogram?

- Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's
- How to confirm/deny it?
- Use data!
- Crime and Punishment and Tom Sawyer
- Histogram?

- Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's
- How to confirm/deny it?
- Use data!
- Crime and Punishment and Tom Sawyer
- Histogram? Inconclusive...
- Sample mean? This lecturer: aka empirical mean

- Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's
- How to confirm/deny it?
- Use data!
- Crime and Punishment and Tom Sawyer
- Histogram? Inconclusive...
- Sample mean? This lecturer: aka empirical mean

$$\hat{\mu}_{FD} = 93.8 \ \text{char.} \, , \quad \hat{\mu}_{MT} = 105.6 \ \text{char.} \label{eq:multiple}$$

• Is difference significant to declare $\mu_{FD} \geqslant \mu_{MT}$? Or could this fluctuation be attributed to chance?

- Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's
- How to confirm/deny it?
- Use data!
- Crime and Punishment and Tom Sawyer
- Histogram? Inconclusive...
- Sample mean? This lecturer: aka empirical mean

$$\hat{\mu}_{FD}=93.8$$
 char. , $\quad \hat{\mu}_{MT}=105.6$ char.

- Is difference significant to declare $\mu_{FD} > \mu_{MT}$? Or could this fluctuation be attributed to chance?
- Main topic of Hypothesis Testing .

More examples:

Hyp: Is this stock price growing faster than market?

Data: stock prices

Type: one-sample test for mean

More examples:

Hyp: Is this stock price growing faster than market?
 Data: stock prices
 Type: one-sample test for mean

Hyp: Is this drug better than placebo (nothing)?
 Data: patient health records
 Type: two-sample test for mean difference

More examples:

- Hyp: Is this stock price growing faster than market?
 Data: stock prices
 Type: one sample test for mean
- Type: one-sample test for mean
- Hyp: Is this drug better than placebo (nothing)?
 Data: patient health records
 Type: two-sample test for mean difference
- Hyp: Is NN1 better than NN2 for cat/dog?
 Data: 2x2 table NN1/NN2 vs correct/incorrect
 Type: analysis of contingency tables

More examples:

- Hyp: Is this stock price growing faster than market?
 Data: stock prices
 - Type: one-sample test for mean
- Hyp: Is this drug better than placebo (nothing)?
 Data: patient health records
 - Type: two-sample test for mean difference
- Hyp: Is NN1 better than NN2 for cat/dog?
 Data: 2x2 table NN1/NN2 vs correct/incorrect
 Type: analysis of contingency tables

Remarks:

- Hypotheses start life as vague statements
- ... then we add data and probabilistic model
- ... after this hypothesis becomes testable
- Key difference from classification: no prior examples (!) and asymmetric hypotheses (!)

Philosophy of science and HT

"No amount of experimentation can ever prove me right; a single experiment can prove me wrong."

- Cornerstone of scientific method: falsifiability (K. Popper)
- Theory makes predictions. Supported by experiments?
 Then, theory is valid
- ... as opposed to true.
- Key point: Can never prove null (theory). But can REJECT

Philosophy of science and HT

"No amount of experimentation can ever prove me right; a single experiment can prove me wrong."

- Cornerstone of scientific method: falsifiability (K. Popper)
- Theory makes predictions. Supported by experiments?
 Then, theory is valid
- ... as opposed to true.
- Key point: Can never **prove** null (theory). But can REJECT
- · Hypotheses are asymmetric!

Law and HT

Ei incumbit probatio qui dicit, non qui negat

Proof lies on him who asserts, not on him who denies.

Justinian I

- In law, presumption of innocence
- Null (not guilty) has to be rejected "beyond reasonable doubt".
- ... compare "innocent" vs. "found not guilty"
- ullet ... guilt "proved" by showing that data is very unlikely under null H.
- Equivalences: lenient jury \iff low α amount of evidence \iff sample size, etc.

- Consider testing for validity of birth records of a city.
- First consider this record:

```
M, M, M, F, F, F, F, M, M, M, F, F, F, F, M, F, M, F, F, M, M, M, F, M, F, F, F, M, F, M, F, M, F, M, M, F, F, F, M, M, F, F, F, M, M, M, M, F, M, M, M, M, F, M, M, M, F, M, M, M, F, M, M, F, M, M, F, M, F, M, F, M, F, M, M, F, M,
```

Looks ok...

- Consider testing for validity of birth records of a city.
- First consider this record:

M, M, M, F, F, F, F, M, M, M, F, F, F, F, M, F, M, F, M, M, M, F, M, F, F, M, F, M, F, M, F, M, F, M, M, F, F, F, M, M, M, F, F, F, M, M, M, M, F, F, M, M, M, F, F, M, M, M, F, F, M, M, M, M, F, M, M, M, M, F, M, M, M, F, M, M, M, F, M, M, F, M, F, M, F, M, M, F, M, F,

- Looks ok...
- Second, consider this record:

Hmm... Is it valid?

- Consider testing for validity of birth records of a city.
- First consider this record:

M, M, M, F, F, F, F, M, M, M, F, F, F, F, M, F, M, F, M, M, M, F, M, F, F, M, F, M, F, M, F, M, F, M, M, F, F, F, M, M, M, M, F, F, M, M, M, M, F, M, M, M, F, M, M, M, F, M, M, F, M, F, M, F, M, M, F, M, F, M, F, M, F, M, M, F, M, F,

- Looks ok...
- Second, consider this record:

- Hmm... Is it valid?
- In nature, $\mathbb{P}[M] = 0.51$. Compare probabilities of two records.

- Consider testing for validity of birth records of a city.
- First consider this record:

```
M, M, M, F, F, F, F, M, M, M, F, F, F, F, M, F, M, F, F, M, M, M, F, F, F, F, M, F, M, F, M, F, M, F, F, F, M, M, F, F, F, M, M, M, F, M, M, M, F, M, M, M, F, M, M, M, F, M, F, M, F, M, M, F, M, F, M, F, M, F, M, M, F, M, F, M, F, M, F, M, M, M, F, M, F, M, F, M, F, M, M, M, F, M,
```

- Looks ok...
- Second, consider this record:

- Hmm... Is it valid?
- In nature, $\mathbb{P}[M] = 0.51$. Compare probabilities of two records.
- Second record is even more likely!

Formal setting for HT

Definition

Statistical hypotheses:

- ullet H: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$

where C_0, C_1 are COLLECTIONS OF DISTRIBUTIONS.

Formal setting for HT

Definition

Statistical hypotheses:

- $H: \mathsf{data}\ X_1, \dots, X_n$ distributed according to $P \in \mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$

where C_0, C_1 are COLLECTIONS OF DISTRIBUTIONS.

Remarks:

- ALWAYS (!) make sure you can formulate in the form above
- Most common special case: X_i are i.i.d. from P
- ... So will just write things like:

$$H:\mathbb{E}[X]=0 \qquad \text{vs.} \qquad K:\mathbb{E}[X]\neq 0\,.$$

- Caution: for subsets of population (e.g. polls), iid holds only approximately
 - Rule of thumb: iid if sample size is <10% of population
- \bullet Example: 10 out of 30 is not iid, 1000 out of $7\cdot 10^9$ is iid.

Formal setting for HT

Definition

Statistical hypotheses:

- H : data X_1, \ldots, X_n distributed according to $P \in \mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$

where C_0, C_1 are COLLECTIONS OF DISTRIBUTIONS.

Remarks:

- ALWAYS (!) make sure you can formulate in the form above
- Most common special case: X_i are i.i.d. from P
- ... S

 AGAIN: hypothesis = collection of distributions
- Caution: 10: Subsets of population (e.g. poils), no noids only approximately

 Definition of the control of
 - Rule of thumb: iid if sample size is <10% of population
- \bullet Example: 10 out of 30 is not iid, 1000 out of $7\cdot 10^9$ is iid.

Roadmap

Tests we will learn:

- One-sample tests:
 - **1** for mean of population: $\mathbb{E}[X] = \mu_0$ vs $\mathbb{E}[X] \neq \mu_0$
 - **2** for other parameters: $\theta \in \Theta_0$ vs $\theta \notin \Theta_0$
 - 3 generalized likelihood-ratio test: $X \sim \text{Uniform vs } X \sim \text{not Uniform}$
 - **4** testing normality: $X \sim \mathcal{N}(0,1)$ vs $X \nsim \mathcal{N}(0,1)$
- Two-sample tests:
 - **1** Equality of means: $\mathbb{E}[X] = \mathbb{E}[Y]$ vs. $\mathbb{E}[X] \neq \mathbb{E}[Y]$
 - **2** Equality of distributions: $P_X = P_Y$ vs. $P_X \neq P_Y$
 - **3** Testing independence: $X \perp\!\!\!\perp Y$ vs $X \not\perp\!\!\!\perp Y$

z-test and t-test

One-sample tests for mean: common sense

- Setting:
 - ▶ iid samples $X_1, ..., X_n$ are observed
 - ▶ Goal: test if $\mathbb{E}[X] = 0$ or $\mathbb{E}[X] \neq 0$

One-sample tests for mean: common sense

- Setting:
 - ▶ iid samples $X_1, ..., X_n$ are observed
 - ▶ Goal: test if $\mathbb{E}[X] = 0$ or $\mathbb{E}[X] \neq 0$
- Bro-data-science method:
 - ▶ Take first n/10 samples, compute empirical mean. Say you got 0.1
 - ▶ Take next n/10 samples, empirical mean 0.09
 - ... keep going, get sample means like:

$$0.1, 0.09, 0.11, 0.1, \cdots$$

- ▶ Conclude, true mean is about 0.1 ± 0.01
- Move on to REJECT null.
- Is this the end of our 5 lectures?

One-sample tests for mean: common sense

- Setting:
 - ▶ iid samples $X_1, ..., X_n$ are observed
 - ▶ Goal: test if $\mathbb{E}[X] = 0$ or $\mathbb{E}[X] \neq 0$
- Bro-data-science method:
 - ▶ Take first n/10 samples, compute empirical mean. Say you got 0.1
 - ▶ Take next n/10 samples, empirical mean 0.09
 - ... keep going, get sample means like:

$$0.1, 0.09, 0.11, 0.1, \cdots$$

- ▶ Conclude, true mean is about 0.1 ± 0.01
- Move on to REJECT null.
- Is this the end of our 5 lectures?
- Well, this method is bad because (at least)
 - Very wasteful of data (will need huge n to work)
 - \triangleright Does not provide clear guarantees (even asymptotic in n)
 - ▶ Not well-specified (what if means were 0.01, 0.001?)

One-sample tests for mean: machine learning (F)

- Setting:
 - ▶ iid samples $X_1, ..., X_n$ are observed
 - ▶ Goal: test if $\mathbb{E}[X] = 0$ or $\mathbb{E}[X] \neq 0$
- ML method:
 - Generate 10^9 datasets from $\mu = 0$
 - Generate 10^9 datasets from $\mu \neq 0$
 - Train classifier (DNN, of course)
 - Ask it to classify the observed example
- What is wrong with this?

One-sample tests for mean: machine learning (F)

- Setting:
 - ▶ iid samples $X_1, ..., X_n$ are observed
 - ▶ Goal: test if $\mathbb{E}[X] = 0$ or $\mathbb{E}[X] \neq 0$
- ML method:
 - Generate 10^9 datasets from $\mu = 0$
 - Generate 10^9 datasets from $\mu \neq 0$
 - Train classifier (DNN, of course)
 - Ask it to classify the observed example
- What is wrong with this?
 - Non-reproducible (same data leads to different answers)
 - What distributions to generate from?
 - No false-positive guarantees

One-sample tests for mean: machine learning (F)

- Setting:
 - ▶ iid samples $X_1, ..., X_n$ are observed
 - ▶ Goal: test if $\mathbb{E}[X] = 0$ or $\mathbb{E}[X] \neq 0$
- ML method:
 - Generate 10^9 datasets from $\mu = 0$
 - Generate 10^9 datasets from $\mu \neq 0$
 - Train classifier (DNN, of course)
 - Ask it to classify the observed example
- What is wrong with this?
 - Non-reproducible (same data leads to different answers)
 - What distributions to generate from?
 - No false-positive guarantees
- How binary HT is different from 'cat/dog' classification:
 - Hypotheses are not symmetric
 - No good choice for Bayesian priors on P's in C₀ or C₁
 - Futuristic: train on actually labeled experiments?...

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

1
$$\mu = \mu_0$$
 vs. $\mu \neq \mu_0$

2
$$\mu = \mu_0 \text{ vs. } \mu > \mu_0$$

3
$$\mu < \mu_0$$
 vs. $\mu > \mu_0$

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

3
$$\mu < \mu_0$$
 vs. $\mu > \mu$

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

2
$$\mu = \mu_0$$
 vs. $\mu > \mu_0$

"Known variance" special case:

• Suppose under $H: \operatorname{Var}[X] = \sigma_0^2$

z-statistic

$$Z \triangleq \frac{\sum_{i=1}^{n} (X_i - \mu_0)}{\sqrt{n\sigma_0^2}}$$

- Depending on the version of HTs the z-test is
 - 1 If |z| > t then REJECT null
 - 2 If $z > t_1$ the REJECT null
 - 3 . . . same test . . .

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

1
$$\mu = \mu_0$$
 vs. $\mu \neq \mu_0$ "two-sided"

2
$$\mu = \mu_0$$
 vs. $\mu > \mu_0$

"Known variance" special case:

• Suppose under H: $Var[X] = \sigma_0^2$

z-statistic

$$Z \triangleq \frac{\sum_{i=1}^{n} (X_i - \mu_0)}{\sqrt{n\sigma_0^2}} = (\hat{\mu} - \mu_0) \sqrt{\frac{n}{\sigma_0^2}}$$

- Depending on the version of HTs the z-test is
 - 1 If |z| > t then REJECT null
 - 2 If $z > t_1$ the REJECT null
 - 3 . . . same test . . .

Understanding z-test

Carefully restating the null-hypothesis in case 1:

- X_i are iid from some P
- P has mean μ_0
- P has variance σ_0^2

Reasoning for z-test:

From CLT:

$$Z \triangleq \frac{\sum_{i=1}^{n} (X_i - \mu_0)}{\sqrt{n\sigma_0^2}} \stackrel{d}{\approx} \mathcal{N}(0, 1)$$
.

- Great: Under null z should be very close to standard normal.
- Even better: if $\mu \neq \mu_0$ we will have: $|z| \to \infty$ (with speed of $\sqrt{n}(\mu \mu_0)$)
- If z looks suspiciously large for a $\mathcal{N}(0,1)$, reject null!

Understanding z-test: selecting threshold

Carefully restating the null-hypothesis in case 1:

- X_i are iid from some P
- P has mean μ_0
- $\bullet \ P \ {\rm has \ variance} \ \sigma_0^2$

Reasoning for z-test:

• From CLT:

$$Z \triangleq \frac{\sum_{i=1}^{n} (X_i - \mu_0)}{\sqrt{n\sigma_0^2}} \stackrel{d}{\approx} \mathcal{N}(0,1).$$

- Q: What Z is suspiciously large?
- A: Depends on required probability of false-positive!
 (... Yes, HT is always subject to error probability.)
- Under null

$$\mathbb{P}[|Z| > t] \approx 2 \times \text{scipy.stats.norm.sf(t)}$$

Nicknames for false-positive rate:
 size of test, significance level, type-1 error, p-value

Thresholding Z: two-tailed case

Thresholding Z: one-tailed case

Seattle

- Famous for its rain
- Naive probability: $\mathbb{P}[rain] = 1/2$?

H:
$$\mathbb{P}[Rain\ in\ Seattle] = 1/2$$

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

REJECT null if |Z| > 1.96

H:
$$\mathbb{P}[Rain\ in\ Seattle] = 1/2$$

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

REJECT null if
$$|Z| > 1.96$$

ullet Take random n days from Seattle weather data

	RAIN	
DATE		
1950-05-25	False	
1957-07-14	True	
1960-05-18	False	
1982-02-10	False	
1994-08-11	False	
1994-09-24	False	
1996-07-29	False	
1997-06-01	True	
1997-12-22	True	
2001-02-14	False	
Z = -1.26		

$$H: \mathbb{P}[Rain in Seattle] = 1/2$$

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

REJECT null if
$$|Z| > 1.96$$

- ullet Take random n days from Seattle weather data
- n = 10 samples, got Z-scores:

$$Z = 0.0, -1.89, -0.63, 0.63, -0.63$$

Test: accept null

	RAIN
DATE	
1950-05-25	False
1957-07-14	True
1960-05-18	False
1982-02-10	False
1994-08-11	False
1994-09-24	False
1996-07-29	False
1997-06-01	True
1997-12-22	True
2001-02-14	False

Z = -1.26

$$H: \mathbb{P}[Rain in Seattle] = 1/2$$

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

$$\begin{array}{c|c} \textbf{REJECT} & \textbf{null if} & |Z| > 1.96 \end{array}$$

- ullet Take random n days from Seattle weather data
- n = 10 samples, got Z-scores:

$$Z = 0.0, -1.89, -0.63, 0.63, -0.63$$

Test: accept null

• n = 100, got Z-scores:

$$Z = -3.2, -2.0, -1.4, -3.6, -1.2$$

Test: sometimes reject sometimes accept

DATE	RAIN
DATE	
1950-05-25	False
1957-07-14	True
1960-05-18	False
1982-02-10	False
1994-08-11	False
1994-09-24	False
1996-07-29	False
1997-06-01	True
1997-12-22	True
2001-02-14	False
Z = -1.26	

H:
$$\mathbb{P}[Rain\ in\ Seattle] = 1/2$$

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

REJECT null if |Z| > 1.96

- ullet Take random n days from Seattle weather data
- n = 10 samples, got Z-scores:

$$Z = 0.0, -1.89, -0.63, 0.63, -0.63$$

Test: accept null

• n = 100, got Z-scores:

$$Z = -3.2, -2.0, -1.4, -3.6, -1.2$$

DATE		
1950-05-25	False	
1957-07-14	True	
1960-05-18	False	
1982-02-10	False	
1994-08-11	False	
1994-09-24	False	
1996-07-29	False	
1997-06-01	True	
1997-12-22	True	
2001-02-14	False	
Z = -1.26		

RAIN

Test: sometimes reject sometimes accept

• n = 1000, got Z-scores:

$$Z = -5.76, -2.72, -3.29, -3.92, -4.42$$

Test: reject null (always)

(FYI: over 1948-2017
$$\hat{P}[\mathsf{rain}] = 42.6\%$$
)

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

1
$$\mu = \mu_0$$
 vs. $\mu \neq \mu_0$ two-sided
2 $\mu = \mu_0$ vs. $\mu > \mu_0$ "one-sided"
3 $\mu < \mu_0$ vs. $\mu > \mu_0$

• "Known variance" case: use z-statistic $Z=(\hat{\mu}-\mu_0)\sqrt{\frac{n}{\sigma_0^2}}$

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

- **3** $\mu < \mu_0$ vs. $\mu > \mu_0$

1
$$\mu = \mu_0$$
 vs. $\mu \neq \mu_0$ "two-sided"
2 $\mu = \mu_0$ vs. $\mu > \mu_0$ "one-sided"
3 $\mu < \mu_0$ vs. $\mu > \mu_0$

- "Known variance" case: use z-statistic $Z=(\hat{\mu}-\mu_0)\sqrt{\frac{n}{\sigma_0^2}}$
- "Unknown variance" case:

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

- 1 $\mu = \mu_0$ vs. $\mu \neq \mu_0$ "two-sided"
- $\mu = \mu_0 \text{ vs. } \mu > \mu_0$ "one-sided"
- **3** $\mu < \mu_0$ vs. $\mu > \mu_0$

- "Known variance" case: use z-statistic $Z=(\hat{\mu}-\mu_0)\sqrt{\frac{n}{\sigma_0^2}}$
- "Unknown variance" case:

$$T \triangleq (\hat{\mu} - \mu_0) \sqrt{\frac{n}{\widehat{\sigma}^2}}$$

with
$$\hat{\mu} = \frac{1}{n} \sum_i X_i, \quad \widehat{\sigma^2} = \frac{1}{n-1} \sum_i (X_i - \hat{\mu})^2$$

- The resulting *t*-test: If $|T| \ge t_{\alpha}$ then REJECT
- t-test is a workhorse of data science
- The heart of HT: "measure effect and normalize by typical deviation"

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

- - "Unknown variance" case:

t-statistic

$$T \triangleq (\hat{\mu} - \mu_0) \sqrt{\frac{n}{\widehat{\sigma}^2}}$$

with
$$\hat{\mu} = \frac{1}{n} \sum_i X_i, \quad \widehat{\sigma^2} = \frac{1}{n-1} \sum_i (X_i - \hat{\mu})^2$$

How to threshold T?

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

- - "Unknown variance" case:

$$T \triangleq (\hat{\mu} - \mu_0) \sqrt{\frac{n}{\widehat{\sigma}^2}}$$

with
$$\hat{\mu} = \frac{1}{n} \sum_i X_i$$
, $\widehat{\sigma^2} = \frac{1}{n-1} \sum_i (X_i - \hat{\mu})^2$

- How to threshold T?
- Under $H: \mathbb{E}[X] = \mu_0, \text{Var}[X] = ???$
- Magic 1: dist. of T does not depend on μ_0 or $\mathrm{Var}[X]$ (PSet 2)

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

- - "Unknown variance" case:

$$T \triangleq (\hat{\mu} - \mu_0) \sqrt{\frac{n}{\widehat{\sigma}^2}}$$

with
$$\hat{\mu} = \frac{1}{n} \sum_i X_i, \quad \widehat{\sigma^2} = \frac{1}{n-1} \sum_i (X_i - \hat{\mu})^2$$

- How to threshold T?
- Under $H: \mathbb{E}[X] = \mu_0, \text{Var}[X] = ???$
- Magic 1: dist. of T does not depend on μ_0 or $\mathrm{Var}[X]$ (PSet 2)
- Magic 2: CLT and LLN (!)
- By LLN $\hat{\mu} \to \mu_0$, $\widehat{\sigma^2} \to \operatorname{Var}[X]$

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

- - "Unknown variance" case:

$$T \triangleq (\hat{\mu} - \mu_0) \sqrt{\frac{n}{\widehat{\sigma}^2}}$$

with
$$\hat{\mu} = \frac{1}{n} \sum_i X_i$$
, $\widehat{\sigma^2} = \frac{1}{n-1} \sum_i (X_i - \hat{\mu})^2$

- How to threshold T?
- Under $H: \mathbb{E}[X] = \mu_0, \text{Var}[X] = ???$
- Magic 1: dist. of T does not depend on μ_0 or $\mathrm{Var}[X]$ (PSet 2)
- Magic 2: CLT and LLN (!)
- By LLN $\hat{\mu} \to \mu_0$, $\widehat{\sigma^2} \to \mathrm{Var}[X]$
- So by CLT: Distribution of $T \to \mathcal{N}(0,1)$ as $n \to \infty$ (iff $\mathrm{Var}[X] < \infty$)

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

- - "Unknown variance" case:

$$T \triangleq (\hat{\mu} - \mu_0) \sqrt{\frac{n}{\widehat{\sigma}^2}}$$

with
$$\hat{\mu} = \frac{1}{n} \sum_i X_i$$
, $\widehat{\sigma^2} = \frac{1}{n-1} \sum_i (X_i - \hat{\mu})^2$

- How to threshold T?
- Under $H: \mathbb{E}[X] = \mu_0, \text{Var}[X] = ???$
- Magic 1: dist. of T does not depend on μ_0 or $\mathrm{Var}[X]$ (PSet 2)
- Magic 2: CLT and LLN (!)
- By LLN $\hat{\mu} \to \mu_0$, $\widehat{\sigma^2} \to \mathrm{Var}[X]$
- So by CLT: Distribution of $T \to \mathcal{N}(0,1)$ as $n \to \infty$ (iff $\mathrm{Var}[X] < \infty$)
- Punchline: $T \approx \mathcal{N}(0,1)$ for large n

Let $\mu \triangleq \mathbb{E}[X]$ and consider one of

- **1** $\mu = \mu_0$ vs. $\mu \neq \mu_0$ "two-sided"
- "Unknown variance" case:

t-statistic

$$T \triangleq (\hat{\mu} - \mu_0) \sqrt{\frac{n}{\widehat{\sigma^2}}}$$

with $\hat{\mu} = \frac{1}{n} \sum_i X_i$, $\widehat{\sigma^2} = \frac{1}{n-1} \sum_i (X_i - \hat{\mu})^2$

- How to threshold T?
- Under $H: \mathbb{E}[X] = \mu_0, \operatorname{Var}[X] = ????$ • Magic 1: dist. of T does not depend on μ_0 or $\operatorname{Var}[X]$ (PSet 2)
- Magic 1: dist. of 1 does
 Magic 2: CLT and LLN (!)
- By LLN $\hat{\mu} \rightarrow \mu_0$, $\widehat{\sigma^2} \rightarrow \mathrm{Var}[X]$
- So by CLT: Distribution of $T \to \mathcal{N}(0,1)$ as $n \to \infty$ (iff $\mathrm{Var}[X] < \infty$)
- Punchline: $T \approx \mathcal{N}(0,1)$ for large n
- (!) When $X_i \approx \text{Gaussian}$, then $T \approx \text{sp.stats.t.pdf}(\cdot, n-1)$

In 2015:

- S&P 500 grew by 1.4%
- Google grew by 45.5%
- Is this statistically significant?
- Let's find out...

In 2015:

- S&P 500 grew by 1.4%
- Google grew by 45.5%
- Is this statistically significant?
- Let's find out...

- Let G_t = price of GOOG, S_t = price of SPY.
- Define $\Delta_t \triangleq \log \frac{G_t}{G_{t-1}} \log \frac{S_t}{S_{t-1}}$
- ... equals relative daily growth of Google stock w.r.t. S&P500
- Null hypothesis: $H: \mathbb{E}[\Delta] = 0$. Alternative $K: \mathbb{E}[\Delta] \neq 0$

In 2015:

- S&P 500 grew by 1.4%
- Google grew by 45.5%
- Is this statistically significant?
- Let's find out...

Hypothesis testing setup

- Let G_t = price of GOOG, S_t = price of SPY.
- Define $\Delta_t \triangleq \log \frac{G_t}{G_{t-1}} \log \frac{S_t}{S_{t-1}}$
- ... equals relative daily growth of Google stock w.r.t. S&P500
- Null hypothesis: $H: \mathbb{E}[\Delta] = 0$. Alternative $K: \mathbb{E}[\Delta] \neq 0$

Note: Before running t-test, check that Δ has nice distribution

Distribution of daily differences Δ_t

Distribution of daily differences Δ_t

- Let $G_t = \text{price of GOOG}$, $S_t = \text{price of SPY}$.
- Define $\Delta_t \triangleq \log \frac{G_t}{G_{t-1}} \log \frac{S_t}{S_{t-1}}$
- Null hypothesis: $H:\mathbb{E}[\Delta]=0$. Alternative $K:\mathbb{E}[\Delta]\neq 0$
- Data: n = 252 daily values
- Empirical mean $\hat{\mathbb{E}}[\Delta_t] = 0.0014$ (or 0.14% relative daily growth)
- Empirical std. deviation: $\sqrt{\widehat{\sigma^2}} = 0.015$ (or $\pm 1.5\%$ r.d.g.)

$$t_{obs} = \sqrt{\frac{n}{\widehat{\sigma}^2}} \hat{\mu} \approx 1.54$$

- Let G_t = price of GOOG, S_t = price of SPY.
- Define $\Delta_t \triangleq \log \frac{G_t}{G_{t-1}} \log \frac{S_t}{S_{t-1}}$
- Null hypothesis: $H:\mathbb{E}[\Delta]=0$. Alternative $K:\mathbb{E}[\Delta]\neq 0$
- Data: n = 252 daily values
- Empirical mean $\hat{\mathbb{E}}[\Delta_t] = 0.0014$ (or 0.14% relative daily growth)
- Empirical std. deviation: $\sqrt{\widehat{\sigma^2}} = 0.015$ (or $\pm 1.5\%$ r.d.g.)

$$t_{obs} = \sqrt{\frac{n}{\widehat{\sigma^2}}} \hat{\mu} \approx 1.54$$

- Under null $\mathbb{P}[T > t_{obs}] \approx 2\Phi(t_{obs}) \approx 0.12$
- ... about 12% chance to see this data under null.

- Let G_t = price of GOOG, S_t = price of SPY.
- Define $\Delta_t \triangleq \log \frac{G_t}{G_{t-1}} \log \frac{S_t}{S_{t-1}}$
- Null hypothesis: $H:\mathbb{E}[\Delta]=0$. Alternative $K:\mathbb{E}[\Delta]\neq 0$
- Data: n = 252 daily values
- Empirical mean $\hat{\mathbb{E}}[\Delta_t] = 0.0014$ (or 0.14% relative daily growth)
- Empirical std. deviation: $\sqrt{\widehat{\sigma^2}} = 0.015$ (or $\pm 1.5\%$ r.d.g.)

$$t_{obs} = \sqrt{\frac{n}{\widehat{\sigma}^2}} \hat{\mu} \approx 1.54$$

- Under null $\mathbb{P}[T > t_{obs}] \approx 2\Phi(t_{obs}) \approx 0.12$
- ullet ... If GOOG were SPY with larger σ^2 , 12% chance to see this return

- Let G_t = price of GOOG, S_t = price of SPY.
- Define $\Delta_t \triangleq \log \frac{G_t}{G_{t-1}} \log \frac{S_t}{S_{t-1}}$
- Null hypothesis: $H:\mathbb{E}[\Delta]=0$. Alternative $K:\mathbb{E}[\Delta]\neq 0$
- Data: n = 252 daily values
- Empirical mean $\hat{\mathbb{E}}[\Delta_t] = 0.0014$ (or 0.14% relative daily growth)
- Empirical std. deviation: $\sqrt{\widehat{\sigma^2}} = 0.015$ (or $\pm 1.5\%$ r.d.g.)

$$t_{obs} = \sqrt{\frac{n}{\widehat{\sigma}^2}} \hat{\mu} \approx 1.54$$

- Under null $\mathbb{P}[T > t_{obs}] \approx 2\Phi(t_{obs}) \approx 0.12$
- \bullet ... If GOOG were SPY with larger σ^2 , 12% chance to see this return
- NOT SIGNIFICANT

- Let G_t = price of GOOG, S_t = price of SPY.
- Define $\Delta_t \triangleq \log \frac{G_t}{G_{t-1}} \log \frac{S_t}{S_{t-1}}$
- Null hypothesis: $H:\mathbb{E}[\Delta]=0$. Alternative $K:\mathbb{E}[\Delta]\neq 0$
- Data: n = 252 daily values
- Empirical mean $\hat{\mathbb{E}}[\Delta_t] = 0.0014$ (or 0.14% relative daily growth)
- Empirical std. deviation: $\sqrt{\widehat{\sigma^2}} = 0.015$ (or $\pm 1.5\%$ r.d.g.)

$$t_{obs} = \sqrt{\frac{n}{\widehat{\sigma^2}}} \hat{\mu} \approx 1.54$$

- Under null $\mathbb{P}[T > t_{obs}] \approx 2\Phi(t_{obs}) \approx 0.12$
- \bullet ... If GOOG were SPY with larger σ^2 , 12% chance to see this return
- NOT SIGNIFICANT
- AMZN grew by 120%. Significant: only 1% chance under null.

The Wald test

The next set of HT is:

- Have a good parametric model $X \sim P_{\theta}$ (e.g. Gaussian, $\theta = (\mu, \sigma)$)
- Want to test:

$$H: \theta \in \Theta_0$$
 vs. $K: \theta \not\in \Theta_0$

• Idea: Use (some) $\hat{\theta}$ and just check $\hat{\theta} \in \Theta_0$

The next set of HT is:

- Have a good parametric model $X \sim P_{\theta}$ (e.g. Gaussian, $\theta = (\mu, \sigma)$)
- Want to test:

$$H:\theta\in\Theta_0$$
 vs. $K:\theta\not\in\Theta_0$

- Idea: Use (some) $\hat{\theta}$ and just check $\hat{\theta} \in \Theta_0$
- Problems: What if Θ_0 is a point? How to adjust significance?

The next set of HT is:

- Have a good parametric model $X \sim P_{\theta}$ (e.g. Gaussian, $\theta = (\mu, \sigma)$)
- Want to test:

$$H: \theta \in \Theta_0$$
 vs. $K: \theta \notin \Theta_0$

- Idea: Use (some) $\hat{\theta}$ and just check $\hat{\theta} \in \Theta_0$
- Problems: What if Θ_0 is a point? How to adjust significance?
- Special case: θ scalar, $\Theta_0 = \{\theta_0\}$:

$$H:\theta=\theta_0 \qquad \text{vs.} \qquad K:\theta\neq\theta_0\,.$$

The Wald test-statistic

$$W = \frac{\hat{\theta} - \theta_0}{\widehat{se}}$$

$$\hat{ heta} = \mathsf{parameter}$$
 estimator (eg. MLE),

$$\widehat{se} = ext{estimate of } \sqrt{\mathbb{E}^{\theta_0}[(\hat{ heta} - heta_0)^2]}$$

The next set of HT is:

- Have a good parametric model $X \sim P_{\theta}$ (e.g. $X \sim \mathrm{Ber}(\theta)$)
- Special case: θ scalar, $\Theta_0 = \{\theta_0\}$:

$$H:\theta=\theta_0 \qquad \text{vs.} \qquad K:\theta\neq\theta_0\,.$$

The Wald test-statistic

$$W = \frac{\hat{\theta} - \theta_0}{\widehat{se}}$$

 $\hat{\theta}=$ parameter estimator (eg. MLE),

$$\widehat{se}=$$
 estimate of std.err. (e.g. $\widehat{se}=\sqrt{\frac{\widehat{\theta}(1-\widehat{\theta})}{n}})$

• Assuming a) asymptotic normality of $\hat{\theta}$, b) consistency of \hat{V} :

$$W \approx \mathcal{N}(0,1)$$
 for large n

• So the Wald test (two-sided): If $|W|>z_{\frac{\alpha}{2}}$ then REJECT .

The next set of HT is:

- Have a good parametric model $X \sim P_{\theta}$ (e.g. $X \sim \mathrm{Ber}(\theta)$)
- Special case: θ scalar, $\Theta_0 = \{\theta_0\}$:

$$H: \theta = \theta_0 \qquad {
m vs.} \qquad K: \theta
eq \theta_0 \, .$$

The Wald test-statistic

$$W = \frac{\hat{\theta} - \theta_0}{\widehat{se}}$$

- $\hat{\theta}=$ parameter estimator (eg. MLE), $\widehat{se}=$ estimate of std.err. (e.g. $\widehat{se}=\sqrt{rac{\hat{\theta}(1-\hat{\theta})}{n}}$)
 - Assuming a) asymptotic normality of $\hat{\theta}$, b) consistency of \hat{V} :

$$W \approx \mathcal{N}(0,1)$$
 for large n

- So the Wald test (two-sided): If $|W|>z_{\frac{\alpha}{2}}$ then REJECT .
- General Wald: If $\theta_0 \notin CI_{1-\alpha}$ then REJECT

Summary

Hypothesis testing mindset:

- Formulate hypotheses as two collections of distributions
- Come up with statistic whose distribution under H is known (or approximately known)
- Threshold statistic s.t. $\mathbb{P}[\text{reject}|H] \leq \alpha$ for pre-specified α .
- Only then see the data

Summary

Hypothesis testing mindset:

- Formulate hypotheses as two collections of distributions
- Come up with statistic whose distribution under H is known (or approximately known)
- Threshold statistic s.t. $\mathbb{P}[\text{reject}|H] \leq \alpha$ for pre-specified α .
- Only then see the data

Key lessons today:

- For null $\mathbb{E}[X] = \mu_0$: Compare empirical mean $\hat{\mu}$ to μ_0
- Reject null if $|\hat{\mu} \mu_0|$ larger than $1.96 \cdot \mathrm{std}(\hat{\mu})$
- If $\operatorname{std}(\hat{\mu})$ is unknown, use $\widehat{se}(\hat{\mu})$
- ... trick known as Studentization

Summary

Hypothesis testing mindset:

- Formulate hypotheses as two collections of distributions
- Come up with statistic whose distribution under H is known (or approximately known)
- Threshold statistic s.t. $\mathbb{P}[\text{reject}|H] \leq \alpha$ for pre-specified α .
- Only then see the data

Key less

For

AGAIN: hypothesis = collection of distributions

- Reject null if $|\hat{\mu} \mu_0|$ larger than $1.96 \cdot \operatorname{std}(\hat{\mu})$
- If $\operatorname{std}(\hat{\mu})$ is unknown, use $\widehat{se}(\hat{\mu})$
- ... trick known as Studentization