Table of Contents

Question 1:			
Question 2:			
Question 3:			
Question 4:			
Question 5:			

Question 1.

The most-significant digit of the sum is a # in the b^3 column. However, we are only adding two 2-digit numbers, which cannot be more than $2 \times b^3$

This means that # = 1.

So we have

In the b^1 column, two identical digits adding up to one must mean that the sum carries over, so *+*=b+1

This also means that b is odd, since * + * must be even.

In the b^2 column, we have a carry over from the b^1 column. So

$$1 + 1 + 1 = b + \Diamond$$

Since LS is odd, and b is odd, this means \Diamond is even.

Since 1+1+1 carries over, this means that $b \le 3$. And since b is odd, then $b=3 \Longrightarrow \Diamond =0$

Answer:

Where b = 3

Question 2.

 $(0.1)_{10} = ()_2$?

$$(0.1)_{10} = ()_6?$$

Multiplier	Base	Product	Integral	Fraction
0.1	2	0.2	0	0.2
0.2	2	0.4	0	0.4
0.4	2	0.8	0	0.8
0.8	2	1.6	1	0.6
0.6	2	1.2	1	0.2

Multiplier	Base	Product	Integral	Fraction
0.1	6	0.6	0	0.6
0.6	6	3.6	3	<mark>0.6</mark>

 $(0.1)_{10} = ()_7?$

(0.1)		$()_3$	-
(U, I)	10	() 9	, (
(0 • - /	111	\ /.	٠.

Multiplier	Base	Product	Integral	Fraction
0.1	3	0.3	0	0.3
0.3	3	0.9	0	0.9
0.9	3	2.7	2	0.7
0.7	3	2.1	2	0.1
0.1	3	0.3	0	0.3

	Multiplier	Base	Product	Integral	Fraction
	0.1	7	0.7	0	0.7
ì	0.7	7	4.9	4	0.9
	0.9	7	6.3	6	0.3
	0.3	7	2.1	2	0.1
	0.1	7	0.7	0	0.7

 $(0.1)_{10} = ()_8?$

(0.1)		_	()	4?
(U.1)	10	=	().	4 :

Multiplier	Base	Product	Integral	Fraction
0.1	4	0.4	0	0.4
0.4	4	1.6	1	0.6
0.6	4	2.4	2	0.4

Multiplier	Base	Product	Integral	Fraction
0.1	8	0.8	0	0.8
0.8	8	6.4	6	0.4
0.4	8	3.2	3	0.2
0.2	8	1.6	1	0.6
0.6	8	4.8	4	0.8

 $(0.1)_{10} = ()_9?$

$$(0.1)_{10} = ()_5$$
?

Multiplier	Base	Product	Integral	Fraction
0.1	5	0.5	0	0.5
0.5	5	2.5	2	0.5

Multiplier	Base	Product	Integral	Fraction
0.1	9	0.9	0	0.9
0.9	9	8.1	8	0.1
0.1	9	0.9	0	0.9

In every base from 2 to 9, the decimal expansion loops. \therefore (0.1)₁₀ cannot be represented exactly with a finite mantissa.

Question 3.

$$\delta = \frac{x - fl(x)}{x}$$

To find an upper bound, we need to see what's the maximum value of x - fl(x)

We want to prove that δ is bounded above by

$$\epsilon = \begin{cases} b^{1-t} & \text{chopping} \\ \frac{1}{2}b^{1-t} & \text{rounding} \end{cases}$$

Let
$$x = \pm d_k \times b^k + d_{k-1} \times b^{k-1} + d_{k-2} \times b^{k-2} + \dots$$

Let
$$x = \pm d_k \times b^k + d_{k-1} \times b^{k-1} + d_{k-2} \times b^{k-2} + \dots$$

Then $fl(x) = \pm \underbrace{d_k \times b^k + d_{k-1} \times b^{k-1} + d_{k-2} \times b^{k-2} + \dots + d_{k-t-1} \times b^{k-t-1}}_{t \text{ values}}$

$$x - fl(x) = d_{k-t-2} \times b^{k-t-2} + d_{k-t-3} \times b^{k-t-3} + \dots$$

Which is bounded above by

$$\begin{cases} 1 \times b^{k-t-1} & \text{chopping} & [\text{max value is 1 decimal place above}] \\ \frac{1}{2} \times b^{k-t-1} & \text{rounding} & [\text{since adding } \frac{1}{2} \text{ reduces reduces RRO}] \end{cases}$$

if t is the mantissa length, then the amount of significant digits b^{k-t-1} has is $b^1 - t$. So

$$\epsilon = \begin{cases} 1 \times b^{k-t-1} & \text{chopping} \\ \frac{1}{2} \times b^{k-t-1} & \text{rounding} \end{cases}$$

Question 4.

Question 5.