10.4 向量值函数(映射) 及其连续性

向量值函数的连续性

一个向量值函数是一个映射 $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$, 对于 $X \in D$, 它的象是一个向量 $F(X) = (f_1(X), \dots, f_m(X))$. 线性映射是其中最简单的一种情况.

向量值函数在一点处连续的定义

我们称向量值函数F在 $X_0 \in D$ 连续,如果对于任意 $\varepsilon > 0$,存在 $\delta > 0$, 当 $X \in D$, $|X - X_0| < \delta$ 时,有

$$|F(X)-F(X_0)|<\varepsilon.$$

连续映射

连续映射与连续函数一样, 其本质是, 对于 \mathbb{R}^m 中的开球 $B_{\varepsilon}(F(X_0))$, 存 在 \mathbb{R}^n 中的开球 $B_{\delta}(X_0)$, 使得 $F(B_{\delta}(X_0)\cap D)\subseteq B_{\varepsilon}(F(X_0))$.

由范数的等价性, 这里的开球 $B_{\delta}(X_0)$ 与 $B_{\varepsilon}(F(X_0))$ 可分别用由范数所诱导出的距离函数定义开球代替: $B_{\delta}^{\rho_n}(X_0) = \{X \in \mathbb{R}^n | \rho_n(X, X_0) < \delta\}$, $B_{\varepsilon}^{\rho_m}(F(X_0)) = \{Y \in \mathbb{R}^m | \rho_m(Y, F(X_0)) < \varepsilon\}$. 这时连续映射就定义为: 对于任意 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $X \in D$ 且 $\rho_n(X, X_0) < \delta$ 时, 有 $\rho_m(F(X), F(X_0)) < \varepsilon$, 即 $X \in D \cap B_{\delta}^{\rho_n}(X_0) \Rightarrow F(X) \in B_{\varepsilon}^{\rho_m}(F(X_0))$.

从分量的角度来看

容 易 看 出,F在 X_0 连 续 当 且 仅 当 其 每 个 分 量 f_i 在 X_0 连 续(只 要 取 $\rho_m(Y_1, Y_2) = ||Y_1 - Y_2||_{\infty}$). 称一个在定义域内处处连续的映射为<mark>连续</mark>映射.

一致连续

对于连续映射也有一致连续的概念,可以证明一个映射在D上是一致连续的当且仅当其每个分量在D上一致连续,从而 \mathbb{R}^n 的有界闭子集上的连续映射必一致连续.读者可以给出一致连续的定义并证明这一结果.

线性映射是利普希茨连续的

例如线性映射满足 $|AX^T - AY^T| = |A(X - Y)^T| \le |A| \cdot |X - Y|$, 因此所有线性映射在全空间一致连续, 并且是利普希茨连续的.

连续映射的复合还是连续映射

设 Ω 是 \mathbb{R}^m 的子集,D是 \mathbb{R}^n 的子集,映射 $G: \Omega \to \mathbb{R}^n$ 满足 $G(\Omega) \cap D \neq \emptyset$,记 $K = \{Y \in \Omega | G(Y) \in D\}$,映射 $F: D \to \mathbb{R}^p$ 和映射 $G: \Omega \to \mathbb{R}^n$ 的复合 $F \circ G: \Omega \to \mathbb{R}^p$ 定义为

$$(F\circ G)(Y)=F(G(Y)), Y\in K.$$

连续映射的复合还是连续映射

设 Ω 是 \mathbb{R}^m 的子集,D是 \mathbb{R}^n 的子集,映射 $G: \Omega \to \mathbb{R}^n$ 满足 $G(\Omega) \cap D \neq \emptyset$,记 $K = \{Y \in \Omega | G(Y) \in D\}$, $Y_0 \in K$, $X_0 = G(Y_0) \in D$,映射 $F: D \to \mathbb{R}^p$ 在 X_0 连续,映射G在 Y_0 连续,则 $F \circ G: \Omega \to \mathbb{R}^p$ 在 Y_0 连续.

压缩映射原理

压缩映射原理

设D是 \mathbb{R}^n 的非空闭子集,映射 $F: D \to D$ 满足条件"存在常数 $\alpha \in (0,1)$ 使得对任何 $X,Y \in D$,都有 $|F(X) - F(Y)| \leq \alpha |X - Y|$ ",证明存在唯一的 $\xi \in D$,使得 $F(\xi) = \xi$.

证明思路

任意取定一点 X_1 ,令 $X_{m+1}=F(X_m)$, $m=1,2,\cdots$,则容易验证 $\{X_m\}$ 是柯西列.由 \mathbb{R}^n 的完备性知 $\{X_m\}$ 收敛,记 $\xi=\lim_{m\to\infty}X_m$,则由D闭知 $\xi\in D$.又F利普希茨连续,故F连续,从而在 $X_{m+1}=F(X_m)$ 中令 $m\to\infty$ 取极限得 $\xi=F(\xi)$.唯一性易证.

连续的实质

定理1

设D是 \mathbb{R}^n 中的开集,则 $F:D\to\mathbb{R}^m$ 是连续映射,当且仅当对 \mathbb{R}^m 中的任意开集G,其完全原象 $F^{-1}(G)=\{X\in D|\ F(X)\in G\}$ 是 \mathbb{R}^n 的开子集.

注1

如果说D不是开集, 用完全类似的方法, 可以证明 $F: D \to \mathbb{R}^m$ 是连续映射, 当且仅当对 \mathbb{R}^m 中的任意开集G, 其完全原象 $F^{-1}(G)$ 是D的相对开子集.

注2

也可以用闭集来刻画连续性: $F: D \to \mathbb{R}^m$ 是连续映射, 当且仅当对 \mathbb{R}^m 中的任意闭集G, 其完全原象 $F^{-1}(G)$ 是D的相对闭子集.

定理1的证明

先证必要性. 设F在D上连续, G是 \mathbb{R}^m 的开子集, 需证 $F^{-1}(G)$ 是 \mathbb{R}^n 的开子集. 可设 $F^{-1}(G) \neq \emptyset$. 设 $X_0 \in F^{-1}(G)$, 则 $F(X_0) \in G$. 由G是开集, 存在 $\varepsilon > 0$ 使 $B_{\varepsilon}(F(X_0)) \subseteq G$. 又因为F在 X_0 连续, 存在 $\delta > 0$, 当 $X \in D \cap B_{\delta}(X_0)$ 时, 有 $F(X) \in B_{\varepsilon}(F(X_0))$. 从而

$$D \cap B_{\delta}(X_0) \subseteq F^{-1}(G)$$
.

由D是开集, 当 δ 足够小时有 $B_{\delta}(X_0) \subseteq D$, 进而 $B_{\delta}(X_0) \subseteq F^{-1}(G)$, 这正好说明 $F^{-1}(G)$ 是 \mathbb{R}^n 的开子集.

再证明充分性. 任意取 $X_0 \in D$, 对于 $\varepsilon > 0$, 记 $G = B_{\varepsilon}(F(X_0))$, 则G是 \mathbb{R}^m 中的开集. 按假定, $F^{-1}(G)$ 是 \mathbb{R}^n 的开子集. 因为 $X_0 \in F^{-1}(G)$, 故存在 $\delta > 0$, 使 $B_{\delta}(X_0) \subseteq F^{-1}(G)$. 即当 $|X - X_0| < \delta$ 时, 有 $|F(X) - F(X_0)| < \varepsilon$. 所以F在 X_0 连续. 由 X_0 的任意性, F在D上连续.

开映射与闭映射

设D是 \mathbb{R}^n 的非空子集, $F: D \to \mathbb{R}^m$ 是一个映射,如果F把开集映为开集,即对D的每一个相对开子集U, F(U)都是 \mathbb{R}^m 中的开集,则称F是一个开映射.

设D是 \mathbb{R}^n 的非空子集, $F: D \to \mathbb{R}^m$ 是一个映射,如果F把闭集映为闭集,即对D的每一个相对闭子集V, F(V)都是 \mathbb{R}^m 中的闭集,则称F是一个闭映射.

例如,设m < n, 映射 $F : \mathbb{R}^n \to \mathbb{R}^m$ 定义为 $F(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_m)$, $\forall (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, 则F是连续开映射,但F不是闭映射.

举例说明连续映射未必是开映射. 此外, 开映射也不一定是连续映射.

连续映射把紧集映为紧集

定理 2

设 $D \subseteq \mathbb{R}^n$,若 $F : D \to \mathbb{R}^m$ 是连续映射,并且D是紧集,则其象集F(D)是 \mathbb{R}^m 中的紧集. 即连续映射把紧集映为紧集.

证明 任取F(D)中一个点列 $\{Y_k\}$,则存在 $\{X_k\}\subseteq D$,使得 $Y_k=F(X_k)$, $k=1,2,\cdots$. 因为D是紧集,所以D是列紧集,从而点列 $\{X_k\}$ 有收敛于D中点的子列 $\{X_{k_l}\}$. 设 $\lim_{l\to\infty}X_{k_l}=X_0\in D$,令 $Y_0=F(X_0)$,则 $Y_0\in F(D)$. 因为F是连续映射,所以 $\lim_{l\to\infty}Y_{k_l}=\lim_{l\to\infty}F(X_{k_l})=F(X_0)=Y_0$. 因此F(D)中任意点列都有收敛到F(D)中点的子列,按定义知F(D)是 \mathbb{R}^m 中的列紧集,从而F(D)是 \mathbb{R}^m 中的紧集.

连续映射把连通集映为连通集

定理 3

设 $D \subseteq \mathbb{R}^n$,若 $F : D \to \mathbb{R}^m$ 是连续映射,并且D是连通集,则其象集F(D)是 \mathbb{R}^m 中的连通集. 即连续映射把连通集映为连通集.

证明 反设F(D)不连通,则存在 \mathbb{R}^m 的开子集 O_1 , O_2 , 使得 $A = F(D) \cap O_1 \neq \emptyset$, $B = F(D) \cap O_2 \neq \emptyset$, $F(D) = A \cup B$, $A \cap B = \emptyset$. 由连续性假设, $U_i = F^{-1}(O_i \cap F(D)) = F^{-1}(O_i)$, i = 1,2都是D的相对开子集,并且 $U_i \neq \emptyset$, $U_1 \cap U_2 = \emptyset$, $D = U_1 \cup U_2$, 从而D不连通,矛盾! 所以F(D)是连通集.

判断下面的命题是否成立.

设 $D \subseteq \mathbb{R}^n$,若 $F: D \to \mathbb{R}^m$ 是连续映射,并且D是道路连通集,则其象集F(D)是 \mathbb{R}^m 中的道路连通集.即连续映射把道路连通集映为道路连通集.

- A 成立
- B 不成立