Phil/LPS 31 Introduction to Inductive Logic Lecture 1

David Mwakima dmwakima@uci.edu Department of Logic and Philosophy of Science University of California, Irvine

April 3rd 2023

Topics

- ► Logic in General
- Sentences
- ► Truth-functional connectives
- ► Sentential logic

► A logic is a formal system for representing something whose structure, as opposed to content, we wish to describe.

- ► A logic is a formal system for representing something whose structure, as opposed to content, we wish to describe.
- ► The word "formal" here means that in logic we are concerned with form, i.e., uninterpreted symbols or formulas, not material content. Inevitably, this will involve both abstraction and idealization.

- ► A logic is a formal system for representing something whose structure, as opposed to content, we wish to describe.
- ► The word "formal" here means that in logic we are concerned with form, i.e., uninterpreted symbols or formulas, not material content. Inevitably, this will involve both abstraction and idealization.
- ➤ This distinction between "form" and "content" is crucial to understand a logic in general because logicians distinguish between the formal aspect of a language (syntax) and its content, meaning or interpretation (semantics).

- ► A logic is a formal system for representing something whose structure, as opposed to content, we wish to describe.
- ► The word "formal" here means that in logic we are concerned with form, i.e., uninterpreted symbols or formulas, not material content. Inevitably, this will involve both abstraction and idealization.
- ➤ This distinction between "form" and "content" is crucial to understand a logic in general because logicians distinguish between the formal aspect of a language (syntax) and its content, meaning or interpretation (semantics).
- ► Finally, the word "system" means that given (1) these symbols and (2) rules of transforming these symbols; we can get (3) other symbols that also belong to the representation. The symbols that belong to the representation are called, you guessed it, formulas!

ightharpoonup The symbols are a, b and S.

 $^{^1\}mbox{This}$ example is from Gerstein, "Introduction to Mathematical Structures and Proofs" p. 3

- ▶ The symbols are *a*, *b* and *S*.
- ► The rules of transformation are:

 $^{^1\}mbox{This}$ example is from Gerstein, "Introduction to Mathematical Structures and Proofs" p. 3

- ▶ The symbols are *a*, *b* and *S*.
- ► The rules of transformation are:
 - 1. S is a formula.

 $^{^1\}mbox{This}$ example is from Gerstein, "Introduction to Mathematical Structures and Proofs" p. 3

- ► The symbols are a, b and S.
- The rules of transformation are:
 - 1. S is a formula.
 - 2. The result of replacing S with aSb is a formula.

 $^{^{1}\}mbox{This}$ example is from Gerstein, "Introduction to Mathematical Structures and Proofs" p. 3

- \triangleright The symbols are a, b and S.
- ► The rules of transformation are:
 - 1. S is a formula.
 - 2. The result of replacing S with aSb is a formula.
 - 3. The result of deleting S and closing up any resulting space is a formula.

 $^{^1\}mbox{This}$ example is from Gerstein, "Introduction to Mathematical Structures and Proofs" p. 3

- The symbols are a, b and S.
- The rules of transformation are:
 - 1. S is a formula.
 - 2. The result of replacing S with aSb is a formula.
 - 3. The result of deleting S and closing up any resulting space is a formula.
- ► Closure condition: A formula is anything that results from 1 or a finite number of applications of rule 2 or rule 3. Nothing else is a formula.

 $^{^{1}\}text{This}$ example is from Gerstein, "Introduction to Mathematical Structures and Proofs" p. 3

- ► The symbols are a, b and S.
- The rules of transformation are:
 - 1. S is a formula.
 - 2. The result of replacing S with aSb is a formula.
 - 3. The result of deleting S and closing up any resulting space is a formula.
- Closure condition: A formula is anything that results from 1 or a finite number of applications of rule 2 or rule 3. Nothing else is a formula.
- Verify that all these are examples of formulas of the logic: S, ab, aaSbb, aabb.

 $^{^{1}\}text{This}$ example is from Gerstein, "Introduction to Mathematical Structures and Proofs" p. 3

Sentential logic is a logic for representing the sentence structure of a fragment or piece of natural language. The natural language in our case will be English.

- Sentential logic is a logic for representing the sentence structure of a fragment or piece of natural language. The natural language in our case will be English.
- Philosophers like to distinguish between sentences and propositions.

- Sentential logic is a logic for representing the sentence structure of a fragment or piece of natural language. The natural language in our case will be English.
- Philosophers like to distinguish between sentences and propositions.
- ► A sentence is a linguistic expression (a declarative statement in some language), which expresses a proposition.

- Sentential logic is a logic for representing the sentence structure of a fragment or piece of natural language. The natural language in our case will be English.
- Philosophers like to distinguish between sentences and propositions.
- ► A sentence is a linguistic expression (a declarative statement in some language), which expresses a proposition.
- ▶ Different sentences can express the same proposition, e.g., if they are in different languages.

- Sentential logic is a logic for representing the sentence structure of a fragment or piece of natural language. The natural language in our case will be English.
- Philosophers like to distinguish between sentences and propositions.
- ► A sentence is a linguistic expression (a declarative statement in some language), which expresses a proposition.
- ▶ Different sentences can express the same proposition, e.g., if they are in different languages.
 - Theluji ni nyeupe. (Swahili)

- Sentential logic is a logic for representing the sentence structure of a fragment or piece of natural language. The natural language in our case will be English.
- Philosophers like to distinguish between sentences and propositions.
- ► A sentence is a linguistic expression (a declarative statement in some language), which expresses a proposition.
- ▶ Different sentences can express the same proposition, e.g., if they are in different languages.
 - Theluji ni nyeupe. (Swahili)
 - Snow is white. (English)

- Sentential logic is a logic for representing the sentence structure of a fragment or piece of natural language. The natural language in our case will be English.
- Philosophers like to distinguish between sentences and propositions.
- ► A sentence is a linguistic expression (a declarative statement in some language), which expresses a proposition.
- Different sentences can express the same proposition, e.g., if they are in different languages.
 - ► Theluji ni nyeupe. (Swahili)
 - Snow is white. (English)
- ▶ It turns out that saying what "propositions" are is a hard philosophical problem. So we'll stick to sentences!

▶ I assume we all know what a sentence is.

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:
 - 1. The number two is an even prime number.

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:
 - 1. The number two is an even prime number.
 - 2. Kamala Harris was not a California Senator.

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:
 - 1. The number two is an even prime number.
 - 2. Kamala Harris was not a California Senator.
 - 3. Michelle Yeoh won an Oscar Award.

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:
 - 1. The number two is an even prime number.
 - 2. Kamala Harris was not a California Senator.
 - 3. Michelle Yeoh won an Oscar Award.
- ► The following examples are not sentences (in our sense) because their truth value is either context dependent or vague:

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:
 - 1. The number two is an even prime number.
 - 2. Kamala Harris was not a California Senator.
 - 3. Michelle Yeoh won an Oscar Award.
- The following examples are not sentences (in our sense) because their truth value is either context dependent or vague:
 - 1. He did it yesterday.

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:
 - 1. The number two is an even prime number.
 - 2. Kamala Harris was not a California Senator.
 - 3. Michelle Yeoh won an Oscar Award.
- The following examples are not sentences (in our sense) because their truth value is either context dependent or vague:
 - 1. He did it yesterday.
 - 2. This is black.

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:
 - 1. The number two is an even prime number.
 - 2. Kamala Harris was not a California Senator.
 - 3. Michelle Yeoh won an Oscar Award.
- ► The following examples are not sentences (in our sense) because their truth value is either context dependent or vague:
 - 1. He did it yesterday.
 - 2. This is black.
 - 3. There will be a sea battle tomorrow.

- ▶ I assume we all know what a sentence is.
- ▶ But! For this class (or, more specifically classical logic) a sentence must be unambiguously true or false. This is just a convenient restriction.
- Examples of sentences:
 - 1. The number two is an even prime number.
 - 2. Kamala Harris was not a California Senator.
 - 3. Michelle Yeoh won an Oscar Award.
- The following examples are not sentences (in our sense) because their truth value is either context dependent or vague:
 - 1. He did it yesterday.
 - 2. This is black.
 - 3. There will be a sea battle tomorrow.
 - 4. Having 1001 strands of hair does not make you bald. How about 1000, 999, ...?

► Consider the following sentences, call these Case 1:

- ► Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.

- Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.

- ► Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.
 - Either Michelle Yeoh won an Oscar Award for Best Actress or Ana de Armas won an Oscar Award for Best Actress.

- ► Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.
 - Either Michelle Yeoh won an Oscar Award for Best Actress or Ana de Armas won an Oscar Award for Best Actress.
 - 4. If today is Tuesday, then tomorrow is Wednesday.

- ► Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.
 - Either Michelle Yeoh won an Oscar Award for Best Actress or Ana de Armas won an Oscar Award for Best Actress.
 - 4. If today is Tuesday, then tomorrow is Wednesday.
- ► Each of these sentences, is really a compound sentence of two simpler sentences joined together by a "connective". But so are these sentences, call these Case 2:

- ► Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.
 - 3. Either Michelle Yeoh won an Oscar Award for Best Actress or Ana de Armas won an Oscar Award for Best Actress.
 - 4. If today is Tuesday, then tomorrow is Wednesday.
- ► Each of these sentences, is really a compound sentence of two simpler sentences joined together by a "connective". But so are these sentences, call these Case 2:
 - 1. David is teaching until his students are having fun. (True)

- ► Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.
 - 3. Either Michelle Yeoh won an Oscar Award for Best Actress or Ana de Armas won an Oscar Award for Best Actress.
 - 4. If today is Tuesday, then tomorrow is Wednesday.
- ► Each of these sentences, is really a compound sentence of two simpler sentences joined together by a "connective". But so are these sentences, call these Case 2:
 - 1. David is teaching until his students are having fun. (True)
 - 2. Ukraine is fighting Russia until Russia occupies Crimea. (False)

- ► Consider the following sentences, call these Case 1:
 - The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.
 - 3. Either Michelle Yeoh won an Oscar Award for Best Actress or Ana de Armas won an Oscar Award for Best Actress.
 - 4. If today is Tuesday, then tomorrow is Wednesday.
- ► Each of these sentences, is really a compound sentence of two simpler sentences joined together by a "connective". But so are these sentences, call these Case 2:
 - 1. David is teaching until his students are having fun. (True)
 - 2. Ukraine is fighting Russia until Russia occupies Crimea. (False)
 - The students are having fun because the students like to study logic. (True)

- ► Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.
 - 3. Either Michelle Yeoh won an Oscar Award for Best Actress or Ana de Armas won an Oscar Award for Best Actress.
 - 4. If today is Tuesday, then tomorrow is Wednesday.
- ► Each of these sentences, is really a compound sentence of two simpler sentences joined together by a "connective". But so are these sentences, call these Case 2:
 - 1. David is teaching until his students are having fun. (True)
 - 2. Ukraine is fighting Russia until Russia occupies Crimea. (False)
 - The students are having fun because the students like to study logic. (True)
 - 4. The students like to study logic because the discussions are early in the morning. (False)

- ► Consider the following sentences, call these Case 1:
 - 1. The number two is an even number and the number two is prime.
 - 2. Kamala Harris was not California Senator.
 - 3. Either Michelle Yeoh won an Oscar Award for Best Actress or Ana de Armas won an Oscar Award for Best Actress.
 - 4. If today is Tuesday, then tomorrow is Wednesday.
- ► Each of these sentences, is really a compound sentence of two simpler sentences joined together by a "connective". But so are these sentences, call these Case 2:
 - 1. David is teaching until his students are having fun. (True)
 - 2. Ukraine is fighting Russia until Russia occupies Crimea. (False)
 - 3. The students are having fun because the students like to study logic. (True)
 - 4. The students like to study logic because the discussions are early in the morning. (False)
- ► What's the difference between the sentences in Case 1 and Case 2?

In Case 1, the truth-value of the compound sentence is uniquely and fully determined by the truth-values of the simpler sentences it is composed of.

- In Case 1, the truth-value of the compound sentence is uniquely and fully determined by the truth-values of the simpler sentences it is composed of.
- ► The connectives (and, not, or, if..., then...) in Case 1 are said to be truth-functional. See Homework 1 for more examples.

- In Case 1, the truth-value of the compound sentence is uniquely and fully determined by the truth-values of the simpler sentences it is composed of.
- ► The connectives (and, not, or, if..., then...) in Case 1 are said to be truth-functional. See Homework 1 for more examples.
- ▶ In contrast, the connectives (until, because) in Case 2 are not truth-functional. In order to determine the truth-value of the compound sentences which involve them, we need extra information beyond the truth-value of the simpler sentences. See Homework 1 for more examples.

- In Case 1, the truth-value of the compound sentence is uniquely and fully determined by the truth-values of the simpler sentences it is composed of.
- ► The connectives (and, not, or, if..., then...) in Case 1 are said to be truth-functional. See Homework 1 for more examples.
- ▶ In contrast, the connectives (until, because) in Case 2 are not truth-functional. In order to determine the truth-value of the compound sentences which involve them, we need extra information beyond the truth-value of the simpler sentences. See Homework 1 for more examples.
- Sentential logic is the logic for representing the sentence structure of a fragment of natural language using truth-functional connectives.

▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.

- ▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.
- ► The formal symbols of sentential logic are:

- ▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.
- ► The formal symbols of sentential logic are:
 - 1. p, q, r, s and t as symbols for sentences. If we need more than 5 symbols (rarely!), then add the following countably many symbols p_1 , p_2 , p_3 ,

- ▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.
- The formal symbols of sentential logic are:
 - 1. p, q, r, s and t as symbols for sentences. If we need more than 5 symbols (rarely!), then add the following countably many symbols p_1 , p_2 , p_3 ,
 - 2. ∨ for "or", ¬ for "not" since the other symbols for "and" and "if..., then..." can be defined from these. (More of this later)

- ▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.
- The formal symbols of sentential logic are:
 - 1. p, q, r, s and t as symbols for sentences. If we need more than 5 symbols (rarely!), then add the following countably many symbols p_1 , p_2 , p_3 ,
 - 2. V for "or", ¬ for "not" since the other symbols for "and" and "if..., then..." can be defined from these. (More of this later)
 - 3. (for left bracket and) for right bracket.

- ▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.
- ► The formal symbols of sentential logic are:
 - p, q, r, s and t as symbols for sentences. If we need more than 5 symbols (rarely!), then add the following countably many symbols p₁, p₂, p₃,
 - 2. V for "or", for "not" since the other symbols for "and" and "if..., then..." can be defined from these. (More of this later)
 - 3. (for left bracket and) for right bracket.
- ▶ In order to state the transformation rules (also known as "syntactic rules") of sentential logic we shall introduce the symbols *F*, *G* and *H* to talk about formulas in sentential logic at a meta-level:

- ▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.
- ► The formal symbols of sentential logic are:
 - 1. p, q, r, s and t as symbols for sentences. If we need more than 5 symbols (rarely!), then add the following countably many symbols p_1 , p_2 , p_3 ,
 - 2. V for "or", for "not" since the other symbols for "and" and "if..., then..." can be defined from these. (More of this later)
 - 3. (for left bracket and) for right bracket.
- ▶ In order to state the transformation rules (also known as "syntactic rules") of sentential logic we shall introduce the symbols *F*, *G* and *H* to talk about formulas in sentential logic at a meta-level:
 - 1. Any sentence p is a formula.

- ▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.
- ► The formal symbols of sentential logic are:
 - p, q, r, s and t as symbols for sentences. If we need more than 5 symbols (rarely!), then add the following countably many symbols p₁, p₂, p₃,
 - 2. V for "or", ¬ for "not" since the other symbols for "and" and "if..., then..." can be defined from these. (More of this later)
 - 3. (for left bracket and) for right bracket.
- ▶ In order to state the transformation rules (also known as "syntactic rules") of sentential logic we shall introduce the symbols *F*, *G* and *H* to talk about formulas in sentential logic at a meta-level:
 - 1. Any sentence p is a formula.
 - 2. If F is a formula, then $\neg F$ is formula.

- ▶ We are now in a position to describe sentential logic itself. I need: (1) formal symbols, (2) rules of transformation for getting formulas and (3) a closure condition.
- ► The formal symbols of sentential logic are:
 - 1. p, q, r, s and t as symbols for sentences. If we need more than 5 symbols (rarely!), then add the following countably many symbols p_1 , p_2 , p_3 ,
 - 2. V for "or", for "not" since the other symbols for "and" and "if..., then..." can be defined from these. (More of this later)
 - 3. (for left bracket and) for right bracket.
- ▶ In order to state the transformation rules (also known as "syntactic rules") of sentential logic we shall introduce the symbols *F*, *G* and *H* to talk about formulas in sentential logic at a meta-level:
 - 1. Any sentence p is a formula.
 - 2. If F is a formula, then $\neg F$ is formula.
 - 3. If F is a formula and G is a formula, then $(F \vee G)$ is a formula.

▶ The closure condition states that a formula of sentential logic is anything that results from 1 or from a finite number applications of rule 2 or rule 3. Nothing else is a formula of sentential logic.