Chapter 8 Multioperand Addition

- ☐ Using Two-Operand Adders
- ☐ Carry-Save Adders
- ☐ Wallace and Dadda Trees
- ☐ Parallel Counters
- ☐ Generalized Parallel Counters
- ☐ Adding Multiple Signed Numbers

Uses of Multioperand Addition

- Multiplication
 - partial products are formed and must be added

- ☐ Inner-product computation (Dot Product, Convolution, FIR filter, IIR filter, etc.)
 - terms must be added

"Dot Notation"

- ☐ Useful when positioning or alignment of the bits, rather that there values, is important.
 - Each dot represents a digit in a positional number system.
 - Dots in the same column have the same positional weight.
 - Rightmost column is the least significant position.

Serial Multioperand Addition

Operands x(0), x(1), ..., x(n-1) are shifted in, one per clock cycle.

Final sum can be as large as $n(2^k-1)$.

Partial sum register must be $\log_2(n2^k - n + 1) \approx k + \log_2 n$ bits wide.

Pipelined Serial Addition

Binary Adder Tree

Ripple-carry might deliver better times than carry-lookahead!?

Analysis of Ripple-Carry Tree Adder

 $T_{\text{tree-ripple-multi-add}} = O(k + \log n)$

Whereas, for carry-lookahead adders

$$T_{\text{tree-fast-multi-add}} = O(\log k + \log(k+1) + \dots + \log(k + \lceil \log_2 n \rceil - 1))$$
$$= O(\log n \log k + \log n \log \log n)$$

Can we do better?

$$T_{\text{tree-ripple-multi-add}} = O(k + \log n)$$

The absolute minimum time is $O(\log(kn)) = O(\log k + \log n)$, where kn is the total number of input bits.

The minimum is achievable with (next slide please)

Carry-Save Adders

Ripple-Carry

Reduce 2 numbers to their sum.

Reduce 3 numbers to two numbers.

More "Dot Notation"

Carry-Save Adder Tree

A carry save tree can reduce n binary numbers to two numbers have the same sum in $O(\log n)$ levels.

Assumes fast logarithmic time adder

 $T_{\text{carry-save-multi-add}} = O(\text{tree height } + T_{\text{CPA}}) = O(\log n + \log k)$

Adding seven 6-bit numbers

Seven Input Wallace Tree

In general, an n-input Wallace tree reduces its k-bit inputs to two $(k + \log_2 n - 1)$ -bit outputs.

Analysis of Wallace Trees

 \square The smallest height h(n) of an n-input Wallace tree, satisfies the recurrence:

$$h(n) = 1 + h(\lceil 2n/3 \rceil)$$

solution: $h(n) \ge \log_{1.5}(n/2)$

 \square The number of inputs n(h) that can be reduced to two outputs by an h-level tree, satisfies the recurrence:

$$n(h) = \lfloor 3n(k-1)/2 \rfloor$$

solution: upper bound $n(h) \le 2(3/2)^h$

lower bound $n(h) > 2(3/2)^{h-1}$

Max number of inputs n(h) for an h-level tree

h	n(h)	h	n(h)	h	n(h)
0	2	7	28	14	474
1	3	8	42	15	711
2	4	9	63	16	1066
3	6	10	94	17	1599
4	9	11	141	18	2398
5	13	12	211	19	3597
6	19	13	316	20	5395

Wallace Tree

- ☐ Reduce the number of operands at the earliest opportunity.
- ☐ If there are m dots in a column, apply $\lfloor m/3 \rfloor$ full adders to that column.
- ☐ Tends to minimize overall delay by making the final CPA as short as possible.

Dadda Trees

- \square Reduce the number of operands in the tree to the next lower n(h) number in the table using the fewest FA's and HA's possible.
- ☐ Reduces the hardware cost without increasing the number of levels in the tree.

Dadda Tree for 7-input 6-bit addition

Total cost = 7-bit CPA + 28 FAs + 1 HA

Taking advantage of the carry-in of the final CPA stage

Parallel Counters

- \square Receives n inputs.
- \square Counts the number of 1's among the *n* inputs.
- \square Outputs a $\lfloor \log_2(n+1) \rfloor$ bit number.
- Reduces n dots in the same bit position to $\lfloor \log_2 (n+1) \rfloor$ dots in different positions.

Parallel Counters

(10, 4) counter

Generalized Parallel Adders

- Reduces "dot patterns" (not necessarily in the same column) to other dot patterns (not necessarily only one in the each column).
- ☐ Book speaks less generally, and restricts output to only one dot in each column.

4 Examples

4-bit binary full adder, with carry in, is a (2, 2, 2, 3; 5) counter

Reducing 5 Numbers with (5, 5; 4) Counters

(n; 2) Counters

- ☐ Difference in notation from other counters.
- \square Reduce *n* (larger than 3) numbers to two numbers.
- \square Each slice *i* of an (n; 2) counter:
 - receives carry bits from one or more positions to the right (i-1, i-2,)
 - produces outputs to positions i and i+1
 - produces carries to one or more positions to the left (i+1, i+2,)

(n; 2) Counters Slice by Slice

Adding Multiple Signed Numbers

• By means of sign extension

Extended positions	Sign	Magnitude positions	
$x_{k-1} x_{k-1} x_{k-1} x_{k-1} x_{k-1}$	x_{k-1}	$x_{k-2} x_{k-3} x_{k-4} \cdots$	
y_{k-1} y_{k-1} y_{k-1} y_{k-1} y_{k-1}	y_{k-1}	$y_{k-2} y_{k-3} y_{k-4} \cdots$	
z_{k-1} z_{k-1} z_{k-1} z_{k-1} z_{k-1}	z_{k-1}	$z_{k-2} z_{k-3} z_{k-4} \cdots$	

• By method of negative weighted sign bits

Extended positions					Sign	Magnitude positions
1	1	1	1	0	\overline{x}_{k-1}	$x_{k-2} x_{k-3} x_{k-4} \cdots$
					\overline{y}_{k-1}	y_{k-2} y_{k-3} y_{k-4} · · ·
					\overline{z}_{k-1}	$z_{k-2} z_{k-3} z_{k-4} \cdots$
					1	