Statistical Computing

Week 4: 25. October 2019

Descriptive Statistics: Measures of dispersion

Contents

- ► Measures of dispersion
 - Sample variance
 - Standard Deviation
 - Range
 - Interquartile range
- ▶ Linear transformation

Introduction

When we have a numeric variable in a dataset, the values are almost never constant. The variable has **Variablility**.

Variability is a very important concept in statistics, and is a consequence of *randomness*.

In the probability world, a variable X is a random variable when its value (outcome) is unknown.

In the statistics world, we usually assume that the data come from a random sample (e.g. 20 Berlin residents chosen at random).

Before we have sampled the data, the values are unknown, they are random.

Once the sample is obtained and stored in a data file it is no longer random, but it is a **realisation** of a random process.

Dispersion (Spread, Variability)

A measure of location tells us where the data sits.

A measure of dispersion tells us how much variability the data has.

Example:

Samples are obtained for two variables *X* and *Y*. Both have the same sample size and mean.

$$n_x = 10$$
 $\overline{x} = 404$ $n_y = 10$ $\overline{y} = 404$

X: 210, 250, 340, 360, 400, 430, 440, 450, 530, 630

Y: 340, 350, 360, 380, 390, 410, 420, 440, 460, 490

The variability in X is bigger than in Y

sc-wise1920: wk4

3

Sample Variance

The sample variance for variable X is defined as

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

 $(x_1 - \overline{x})$ is the deviance from the mean for the first observation.

 $(x_i - \overline{x})$ is the deviance from the mean for the *i*-th observation.

 $(x_i - \overline{x})^2$ is the *squared* deviance from the mean for the *i*th observation (≥ 0).

 $\sum_{i=1}^{n} (x_i - \overline{x})^2$ is the sum of all the *squared* deviances.

Two small examples:

Left sample has values 2,3,6 and 9. Right sample has values 0, 2, 8, 10. In both cases the mean is $\overline{x} = 5$.

The area of each square corresponds to a squared deviation $(x_i - \overline{x})^2$ The sum of all the squares is bigger in the right diagram because the data points are more spread out.

SC-Wise1920: wk4

In R

```
> sum((x-mean(x))^2)/(length(x)-1)
[1] 22.66667
> var(x)
[1] 22.66667
```

Sample and population variance

In the above formula we have n-1 in the denominator, this is for the *sample variance*.

If we know that our data contains the whole population (i.e. all the objects that we are interested in), then we use the *population variance* with *n* in the denominator.

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

If we are unclear whether our data contains the whole population, then use the *sample variance*.

SC-Wise1920: wk4 Set/UH NOCHSCHULE FÜR TECHNIK BERJIN 6

Standard Deviation

Another common measure for variability is the standard deviation (sd), which is the square root of the variance.

$$s_x = \sqrt{s_x^2} = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2}$$

Why do we need both standard deviation and variance?

- ▶ Maths is easier using the variance.
- ▶ Understanding the data is easier with the standard deviation.
- ► The standard deviation has the same units as the measured variable eg cm.
- ► The variance has squared units e.g. cm², which makes it difficult to interpret the variance.

sc-wise1920: wk4

7

Interpreting the standard deviation:

A rough rule of thumb is: 95% of the sampled values fall in the interval

$$[\overline{x} - 2s_x; \overline{x} + 2s_x] \qquad \Leftrightarrow \quad [\overline{x} \pm 2s_x]$$

The approximation is better when the values are roughly symmetric.

R Example.

```
> set.seed(4062875)
> x<-rnorm(100,175,12)
> xbar<-mean(x)
> xbar
[1] 175.0881
> stddev<-sd(x)
> stddev
[1] 13.45704
> xbar-2*stddev
[1] 148.1741
> xbar+2*stddev
[1] 202.0022
> sum(x>=(xbar-2*stddev) & x<=(xbar+2*stddev))
[1] 94</pre>
```

$$[\overline{x} - 2s_x; \overline{x} + 2s_x] = [148.2; 202.0]$$

There are 94 out of 100 values that lie in this interval.

sc-wise1920: wk4

9

Other measures of dispersion

Range Largest value minus the smallest value. $x_{(n)} - x_{(1)}$ Not good! The range is sensitive to outliers and is unstable

```
> x<-rnorm(100,175,12)
> round(diff(range(x)),1)
[1] 58
> x<-rnorm(100,175,12)
> round(diff(range(x)),1)
[1] 54.4
> x<-rnorm(100,175,12)
> round(diff(range(x)),1)
[1] 51.5
> x<-rnorm(100,175,12)
> round(diff(range(x)),1)
[1] 63.3
```

A good measure of dispersion should give similar values for each of these samples.

Interquartile range: Quantile definition

Last week you learnt about quantiles: Recap...

The median $x_{0.5}$ divides the data values into two halves.

The 0.1-quantile $x_{0.1}$ is chosen so that p = 0.1 (10%) of the data values are less than or equal to $x_{0.1}$

The p-quantile x_p is chosen so that the proportion p of the data values are less than or equal to x_p

sc-wise1920: wk4

11

Interquartile range: IQR

The quartiles are two special quantiles.

The lower quartile Q_1 is the p = 0.25 quantile, and the upper quartile Q_3 is the p = 0.75 quantile.

The quartiles and the median divide the data values into four equally sized groups. The median is sometimes called the second or middle quartile.

The **interquartile range** is the difference between upper and lower quartiles.

$$IQR = Q_1 - Q_3$$

```
> x<-5:15
> diff(quantile(x,c(0.25,0.75)))
75%
    5
> IQR(x)
[1] 5
```

Measures of dispersion and linear transformation

Last week we considered what happens to the mean and median after a variable is linear transformed.

Reminder: Suppose the variable X is transformed into a new variable Y using the formula Y = aX + b, where a and b are known constants.

If
$$y_i = ax_i + b$$
 for $i = 1, \dots, n$, then $\overline{y} = a\overline{x} + b$ and $y_{0.5} = ax_{0.5} + b$.

SC-WiSe1920: wk4 Sci-wise 1920: wk4 Sci-wise Statum Mochischung Filter Michael Sciences 13

For the standard deviation there is a similar formula.

It is important to understand that the shifting the position of data has no effect on how spread out the data is.

The sd of x and y is 2.

But multiplying the data by a factor does change the spread.

The s.d. of x is 2 the s.d. of z is 5.

SC-Wise1920: wk4 Schwick Berlin Mochschule Für Echnikk Berlin 15

Which gives the formula

16

Note that b has no effect on the s.d.

The s.d. of x is 2 the s.d. of w is $2.5 \cdot 2 = 5$.

SC-Wise1920: wk4 Significance 1920: wk4 Significance 1920: wk4

To summarise: if the variable Y is a linear transformation of variable X, which means there relationship can be written using formula

$$y_i = ax_i + b,$$

with *a* and *b* constants, then the following statistics can be directly transformed using these Formulae:

Mean
$$\overline{y} = a\overline{x} + b$$

Median
$$y_{0.5} = ax_{0.5} + b$$

Standard deviation
$$s_y = as_x$$

Variance
$$s_y^2 = a^2 s_x^2$$

Range Range_y =
$$a$$
Range_x

$$IQR IQR_y = aIQR_x$$

RHD Short Workshop on Measures of dispersion