- **1.** [2 valores] Visto da lua, uma nave espacial parece ser contraída no seu comprimento por um fator de dois. Faça um desenho da lua visto da nave espacial.
- **2.** [6 valores] Num referencial R um evento B acontece 2 μ s (1 μ s = 10⁻⁶ s) depois o evento A a uma distância Δx = 1.5 km.
 - (a) Com qual velocidade (expresso como uma fração de c) terá um observador se deslocar ao longo do eixo dos xxs para observar os dois eventos com sendo simultâneos?
 - (b) Será possível que eventos A e B ocorrem no mesmo sítio por algum observador que se desloca ao longo o eixos dos xxs? Justifique a sua resposta.
- **3.** [6 valores] Uma nave espacial com comprimento próprio de 100m passa acima da Terra. Segundo um relógio estacionário na Terra o tempo de passagem é apenas (1/3)x10⁻⁶ segundos.
 - (a) Qual á a velocidade da nave relativa a Terra?
 - (b) Segundo um observador na Terra qual é o comprimento da nave?
- **4.** [6 valores] Um fotão com uma energia de 12 TeV (1 TeV = 10^{12} eV) incide numa partícula de massa M_0 em repouso. Da colisão sai uma única partícula de massa M com uma velocidade de (12/13)c. Determine:
 - (a) o momento da partícula final (em unidades de TeV/c);
 - (b) a massa final M (em unidades de TeV/c2);
 - (c) a massa inicial M_0 (em unidades de TeV/ c^2);.

Algumas expressões que podem ser uteis:

$$c \approx 3x10^8 m/s$$
;

$$1eV = 1.6x10^{-19}J$$

massa do eletrão: $m_e = 9.1x10^{-31} kg$; massa do protão: $m_p = 1.67x10^{-27} kg$

$$\gamma = 1/\sqrt{1-\beta^2}$$
; $\beta = v/c$ Contração do comprimento: $\Delta L_0 = \gamma \Delta L$

Dilatação do tempo: $\Delta t = \gamma \Delta t_0$ Efeito do relógio atrás estar adiantado: vL_0 / c^2

$$\Delta x = \gamma \left[\Delta x' + \beta \left(c \Delta t' \right) \right]$$

Transformações do Lorentz: $c\Delta t = \gamma \Big[\beta \Delta x' + \Big(c\Delta t' \Big) \Big]$

$$\Delta y = \Delta y'; \quad \Delta z = \Delta z'$$

Soma das velocidades longitudinais: $u' = (v+u)/(1+uv/c^2)$

Intervalo invariante:
$$\Delta s^2 = (c\Delta t)^2 - [\Delta x^2 + \Delta y^2 + \Delta z^2]$$

Produto invariante entre 2 tetra-vetors: $\mathbf{A} \bullet \mathbf{B} = \mathbf{A}_t \mathbf{B}_t - (\mathbf{A}_x \mathbf{B}_x + \mathbf{A}_y \mathbf{B}_y + \mathbf{A}_z \mathbf{B}_z)$

Tetra-vetor energia momento: $P = (E/c, \vec{p}) = (\gamma_v mc, \gamma_v m \vec{v})$

$$E^2 = p^2c^2 + m^2c^4$$
; $\frac{\vec{V}}{c} = \frac{c\vec{p}}{F}$ Energia cinética: $E - mc^2$

Fotões não têm massa.

Fotões: $E = hf = 1240 (eV \cdot nm) / \lambda$ $f \lambda = c$ $p = h / \lambda$