

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Facultad de Ingeniería Mecánica y Eléctrica PE Maestría en Ciencias de la Ingeniería con Orientación en Sistemas

PROGRAMA ANALÍTICO

I. Datos de Identificación de la Unidad de Aprendizaj	e:
1. Clave y nombre de la Unidad de Aprendizaje: 712 Análisis y d	seño de algoritmos
2. Frecuencia semanal: horas de trabajo presencial 4	
3. Horas de trabajo extra aula por semana: 2	
4. Modalidad: ⊠ Escolarizada □ No escolarizada □ Mixto	
5. Período académico: ⊠ Semestral □ Tetramestral □ Modular	
6. LGAC: Sistemas estocásticos y simulación	
7. Ubicación semestral: 1 o 2	
3. Área curricular: formación básica, formación avanzada, de aplicac	ón, libre elección, investig
9. Créditos: <u>4</u>	
10. Requisito: Ninguno	
11. Fecha de elaboración: 20/01/2010	
12. Fecha de la última actualización: 10/06/2021	
13. Responsable(s) del diseño:	

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

095808 Dr. Fernando López Irarragorri

096633 Dra. Satu Elisa Schaeffer

II. Presentación:

Se analiza la complejidad de dos conceptos diferentes de la computación: problemas y algoritmos. Un problema es un conjunto (posiblemente infinita) de instancias junto con una pregunta sobre alguna propiedad de las instancias. Un algoritmo es un proceso formal para encontrar la respuesta correcta a la pregunta de un problema para una cierta instancia del problema.

III. Propósito(s):

Aplicar los métodos de análisis y diseño de algoritmos para mejorar la eficiencia en de sus implementaciones.

IV. Competencias del perfil de egreso:

14. Competencias del perfil de egreso

- P1) Resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.
- P2) Resolver problemas concretos en sistemas de la industria, la academia o el sector público en base a las herramientas de la toma de decisiones con bases científicas para lograr el mejor diseño, análisis, planeación o gestión de dichos sistemas.
- P3) Establecer comunicación con los distintos sectores de la sociedad a fin de establecer proyectos estratégicos en las distintas disciplinas de la ingeniería de sistemas y crear la cultura de la creación de riqueza basada en el conocimiento.

15. Competencias generales a que se vincula la Unidad de Aprendizaje:

Declaración de la competencia general vinculada a la unidad de aprendizaje	Evidencia
C2) Utiliza los lenguajes lógico, formal, matemático, icónico, verbal y no verbal de	Tareas
acuerdo a su etapa de vida en el área de las ciencias para comprender, interpretar	
y expresar ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque	
ecuménico.	
C3) Maneja las tecnologías de la información de acuerdo a los usos del campo de las	Tareas
ciencias y la comunicación como herramientas para el acceso a la información y su	
transformación en conocimiento, así como para el aprendizaje y trabajo colaborativo	
con técnicas de vanguardia que le permitan su participación constructiva en la	
sociedad.	
C5) Emplea pensamiento lógico, crítico, creativo y propositivo, siguiendo los mo-	Tareas, proyecto
delos de pensamiento científico para analizar fenómenos naturales y sociales que le	
permitan tomar decisiones pertinentes en su ámbito de influencia con responsabi-	
lidad social.	

Revisión: 1 Página 2 de 7

16. Competencias específicas y nivel de dominio a que se vincula la unidad de aprendizaje:

Competencia Espe- cífica	Nivel I Inicial	Evidencia	Nivel II Básico	Evidencia	Nivel III Autónomo	Evidencia	Nivel IV Estratégico	Evidencia
E1) Realizar investigación original y resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.			Resuelve problemas de libro de texto en el área de toma de decisiones con bases científicas.	Tareas.	Encuentra soluciones para la consecución de objetivos establecidos para un problema dado, revisando literatura científica de frontera.	Tareas.		

V. Representación gráfica:

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

VI. Estructuración en capítulos, etapas o fases de la unidad de aprendizaje:

17. Desarrollo de las fases de la Unidad de Aprendizaje:

Se cubren los principios teóricos del análisis y el diseño de algoritmos computacionales. Desarrollar habilidades en el diseño como en el análisis en casos prácticos concretos basados en algoritmos clásicos. Se necesita contar con un buen entendimiento de varios los conceptos matemáticos, especialmente de matemáticas discretas y probabilidad, o en el caso contrario, estar preparado a estudiarlos según necesidad. También se necesita conocimiento de programación.

Unidades temáticas

U1 Fundamentos de la complejidad computacional (8 semanas)

U2 Elementos básicos de algoritmos (7 semanas)

U3 Algoritmos no-exactos (2 semanas)

Revisión: 1 Página 4 de 7

Temario semanal La sesiones son de cuatro horas cada una y son veinte semanas en total.

- Introducción; selección de temas de proyecto
- U1: Problemas y algoritmos (2 semanas)
- U1: Modelos de computación (2 semanas)
- U1: Complejidad computacional de problemas (2 semanas)
- U1: Clases de complejidad (2 semanas)
- U2: Estructuras de datos (2 semanas)
- U2: Análisis de algoritmos (2 semanas)
- U2: Técnicas de diseño de algoritmos (2 semanas)
- U2: Optimización combinatoria (1 semana)
- U3: Algoritmos de aproximación (1 semana).
- U3: Algoritmos aleatorizados (1 semana)
- Presentaciones de proyectos
- Revisión de portafolios de evidencia

Elementos de competencia

Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Reporte escrito y código de la im- plementación del algoritmo diseñado con su análisis	Calidad de la redac- ción científica del reporte; precisión del algoritmo pro- puesto; eficiencia de la implementa- ción del algoritmo; cobertura de la experimentación.	Experimentación con ejemplos; lectura de material de apoyo; modificación de ejemplos; diseño y ejecución de experimentos; análisis y reportaje de resultados obtenidos.	Métodos diversos de diseño y análisis de algoritmos.	Material en la pági- na web de la uni- dad y la literatura ci- tada; lenguaje Pyt- hon o similar; paque- te LATEX para redac- ción científica; repo- sitorios de públicos de código fuente.

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

VII. Evaluación integral de procesos y productos:

Las tareas son individuales; se recomienda estudiar juntos y discutir las soluciones, pero no se tolera ningún tipo de plagio en absoluto, ni de otros estudiantes ni de la red ni de libros — toda referencia bibliográfica tiene que ser apropiadamente citada. La entrega se realiza por un repositorio público que debe reflejar todas las fases del trabajo.

No habrá examen. Son 17 tareas (A1–A17) que reportan avances semanales de aplicación de la lectura de la semana para el proyecto del estudiante, otorgando por máximo 5 puntos por tarea:

NP = tarea omitida

5 =excede lo que se esperaba

4 = cumple con lo que se esperaba

3 = débil en alcance y/o calidad

2 = débil en ambos alcance y calidad

 ${f 1} = {\sf sin}$ contribuciones o méritos aunque fue entregada

 $\mathbf{0} = \mathsf{completamente}$ inadecuado en alzance y calidad

El proyecto final (A18) otorga un máximo de 15 puntos, evaluados en los siguientes rubros

- 1. Variedad de técnicas de empleadas
- 2. Cobertura y validez de la experimentación
- 3. Claridad y relevancia de los resultados
- 4. Calidad de visualización científica
- 5. Calidad de redacción científica

con la escala:

3 = cumple con lo que se esperaba

2 = débil en alcance y/o calidad

1 = débil en ambos alcance y calidad

 $\mathbf{0} = \text{inadecuado en alzance y calidad}$

Ponderación específica

Actividad	A1	A2	А3	A4	A 5	A 6	A7	A 8	A 9	A10	A11	A12	A13	A14	A15	A16	A17	A18	Total
Ponderación	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5 %	5%	5%	5%	5 %	5%	5 %	15%	100 %

VIII. Producto integrador de aprendizaje de la unidad:

18. Producto integrador de Aprendizaje:

Portafolio en un repositorio digital público que contiene los reportes escritos y los códigos de la implemetación de todas las tareas y el proyecto.

IX. Fuentes de apoyo y consulta:

19. Fuentes de apoyo y consulta

19.1. Básicas

- R. SEDGEWICK & P. FLAJOLET: An Introduction to the Analysis of Algorithms. Addison Wesley, 512 páginas, 1995. ISBN-13 978-0201400090.
- C.H. PAPADIMITRIOU: Computational Complexity. Addison Wesley, 500 páginas, 1993. ISBN-13 978-0201530827.
- D.L. Kreher & Douglas R. Stinton: Combinatorial Algorithms Generation, Enumeration, and Search. CRC Press, 344 páginas, 1998. ISBN-13 978-0849339882.
- M.R. GAREY & D.S. JOHNSON: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 340 páginas, 1979. ISBN-13: 978-0716710455.

19.2. Complementarias

- T.H. CORMEN, C.E. LEISERSON, R.L. Rivest & C. STEIN: *Introduction to Algorithms*. MIT Press, 1184 páginas, segunda edición, 2001. ISBN-13 978-0262032933.
- R. DIESTEL: *Graph Theory*. Graduate Texts in Mathematics, Volume 173. Springer-Verlag, 431 páginas, 2005. ISBN 3-540-26183-4. Tercera edición.
- M. MITZENMACHER y Eli UPFAL: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 368 páginas, 2005. ISBN-13 978-0521835404.
- D.E. KNUTH: The Art of Computer Programming. Volúmenes 1–3. Addison Wesley, 896 páginas, segunda edición, 1998. ISBN-13 978-0201485417. Volumen 4: Generating All Trees-History of Combinatorial Generation. Addison Wesley, 128 páginas, 2006. ISBN-13 978-0321335708.
- D. JUNGNICKEL: *Graphs, Networks and Algorithms*. Springer, 611 páginas, segunda edición, 2004. ISBN-13 978-3540219057.
- R.L. Graham, D.E. Knuth & O. Patashnik: *Concrete Mathematics: A Foundation for Computer Science*. Addison Wesley, 672 páginas, segunda edición, 1994. ISBN-13 978-0201558029.
- N. Alon & J.H. Spencer: The Probabilistic Method. Wiley Intersecience, 328 páginas, 2000. ISBN-13 978-0471370468.
- E. AARTS & J.K. LENSTRA: Local Search in Combinatorial Optimization. Princeton University Press, 536 páginas, 2003. ISBN-13 978-0691115221.
- A.V. Aho, et al: Compilers Principles, Techniques & Tools. Addison Wesley, 1040 páginas, 2006. (Segunda edición.)
 ISBN-13 978-0321486813.

Artículos científicos especializados.

Revisión: 1 Página 7 de 7

Autorizó: Dr. César Emilio Villarreal Rodríguez

ALERE FLAMMAM VERITATIS
Ciudad Universitaria, 24 de junio de 2021

Dr. César Emilio Villarreal Rodríguez Coordinador Académico Posgrado en Ingeniería de Sistemas **Vo. Bo. Dr. Simón Martínez Martínez** Subdirector de Estudios de Posgrado Facultad de Ingeniería Mecánica y Eléctrica

Revisión: 1