Kz与Nz的等价性

王捍贫

北京大学信息科学技术学院软件研究所

证明思路

目标:证明: $\Sigma \vdash_{\mathsf{K}_{\mathscr{L}}} \alpha$ iff $\Sigma \vdash_{\mathsf{N}_{\mathscr{L}}} \alpha$.

证明思路与命题情形一样:

- $\bullet \; \Sigma \vdash_{\mathsf{K}_{\mathscr{L}}} \alpha \implies \Sigma \vdash_{\mathsf{N}_{\mathscr{L}}} \alpha.$
 - 引理1: 当 α 为公理的情形。
- $\&\Sigma \vdash_{\mathsf{N}_{\mathscr{L}}} \alpha \Longrightarrow \Sigma \vdash_{\mathsf{K}_{\mathscr{L}}} \alpha.$

引理

证: 对 γ 的构造复杂性归纳证明.

- (1) $若\gamma为(K1)-(K6)$ 中的某一条.
- (1.1) 若 γ 为(K1)-(K3)中某条, 由定理3.1可证;
- (1.2) 当 γ 为(K4)时:

由(\forall -): $\forall x \alpha \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha(x/t)$ (其中t对x在 α 中自由).

 $\pm (\rightarrow +): \emptyset \vdash_{\mathbf{N}_f} \forall x \alpha \rightarrow \alpha(x/t).$

由于Σ是有限集, 故 $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \forall x \alpha \rightarrow \alpha(x/t)$.

引理(续)

(1.3) 当 γ 为(K5)时:

由(\forall +): $\alpha \vdash_{\mathbf{N}_{\mathcal{L}}} \forall x \alpha$ (其中x不在 α 中自由出现).

从而 $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha \rightarrow \forall x \alpha$.

(1.4) 当 γ 为(K6)时:

曲例6可证: $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \forall x(\alpha \rightarrow \beta) \rightarrow (\forall x\alpha \rightarrow \forall x\beta).$

(2) 若 γ 为 $\forall x \gamma'$ 时, 其中 γ' 为 $\mathbf{K}_{\mathcal{L}}$ 的一个公理.

由归纳假设得: $\emptyset \vdash_{\mathbf{N}_{\mathcal{L}}} \gamma'$.

从而由(\forall +)知: $\emptyset \vdash_{\mathbf{N}_{\mathcal{L}}} \forall x \gamma'$.

故: $\Sigma \vdash_{\mathbf{N}_{f}} \forall x \gamma'$.

$\mathsf{K}_{\mathscr{L}}$ " \subseteq " $\mathsf{N}_{\mathscr{L}}$

设 Σ , α 分别为有限公式集与公式. 若 $\Sigma \vdash_{\mathsf{K}_{\mathscr{L}}} \alpha$,则 $\Sigma \vdash_{\mathsf{N}_{\mathscr{L}}} \alpha$.

证:

由于 $\Sigma \vdash_{\mathsf{K}_{\mathscr{L}}} \alpha$, 在 $\mathsf{K}_{\mathscr{L}}$ 中存在由 Σ 推出 α 的证明序列 $\alpha_1, \alpha_2, \cdots, \alpha_n \ (= \alpha)$

下证:对任意i (1 $\leq i \leq n$), $\Sigma \vdash_{N_{\mathscr{L}}} \alpha_i$ (*)对i进行归纳证明.

- (1) 当i = 1时, α_1 为 $K_{\mathcal{L}}$ 的公理或 $\alpha_1 \in \Sigma$.
- (1.2) 若 $\alpha_1 \in \Sigma$, 由 (\in) 知: $\Sigma \vdash_{\mathsf{N}_{\mathscr{L}}} \alpha_1$.

$\mathsf{K}_{\mathscr{L}}$ " \subseteq " $\mathsf{N}_{\mathscr{L}}$ (续)

- (2) 设(*)对满足i < k的所有自然数i成立(k > 1), 下证i = k时(*)也成立.

由归纳假设得: $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha_j$, $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha_l$.

 $\mathbb{D}: \; \Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha_l \to \alpha_k, \; \Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha_l.$

由 $(\rightarrow -)$ 知: $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha_k$.

归纳证完,(*)成立.

从而 $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha_n$. 即: $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha$.

$\mathsf{K}_{\mathscr{L}}"\supseteq "\mathsf{N}_{\mathscr{L}}$

设 Σ , α 分别 $N_{\mathcal{L}}$ 中的有限公式集与公式, 若 $\Sigma \vdash_{N_{\mathcal{L}}}$ α , 则 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha$.

证:

由于 $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha$, 在 $\mathbf{N}_{\mathcal{L}}$ 中 存在证明序列: $\Sigma_1 \vdash \alpha_1$, $\Sigma_2 \vdash \alpha_2$, ..., $\Sigma_n \vdash \alpha_n$ 使得: $\Sigma_n = \Sigma$, $\alpha_n = \alpha$.

下证:对任意i (1 $\leq i \leq n$), $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_i$ (**)对i进行归纳证明.

- (1) 当i = 1时, $\Sigma_1 \vdash \alpha_1$ 只能由(\in)得到,从而 $\alpha_1 \in \Sigma_1$,故 $\Sigma \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_1$.
- (2) 假设(**)对满足i < k的所有i成立,考察(**)当i = k时情形.
- (2.1) 若 $\Sigma_k \vdash \alpha_k$ 是用 (\in) 、 $(\neg -)$ 、 $(\lor -)$ 、 $(\lor +)$ 、 $(\land -)$ 、 $(\land +)$ 、 $(\rightarrow -)$ 、 $(\rightarrow +)$ 、 $(\leftrightarrow -)$ 或 $(\leftrightarrow +)$ 得到的,仿上章定理2.15可证.
- (2.2) 若 $\Sigma_k \vdash \alpha_k$ 是对某个 $\Sigma_i \vdash \alpha_i$ (1 ≤ i < k)用(+)得到的,即: $\Sigma_k = \Sigma_i \cup \{\gamma\}$, $\alpha_k = \alpha_i$.由归纳假设得: $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_i$,从而 $\Sigma_k \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_i$,

(2.3) 若 $\Sigma_k \vdash \alpha_k$ 是对 $\Sigma_i \vdash \alpha_i$ 用(\forall -)得到的,即: $\Sigma_k = \Sigma_i$, $\alpha_i = \forall x\beta$, $\alpha_k = \beta(x/t)$,其中: t是 $\mathbf{N}_{\mathcal{L}}$ 中的项, t对x在 β 中自由. 由归纳假设知: $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_i$,即: $\Sigma_k \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x\beta$. 由公理(K4)知: $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x\beta \to \beta(x/t)$,故 $\Sigma_k \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x\beta \to \beta(x/t)$,从而 $\Sigma_k \vdash_{\mathbf{K}_{\mathcal{L}}} \beta(x/t)$,即: $\Sigma_k \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_k$.

(2.4) 若 $\Sigma_k \vdash \alpha_k$ 是对 $\Sigma_i \vdash \alpha_i$ 用(\forall +)得到的,即: $\Sigma_k = \Sigma_i$, $\alpha_k = \forall x\alpha_i$,其中: 个体变元符号x不在 Σ_i 的任何公式中自由出现.由归纳假设得: $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_i$.由上节性质(4)知: $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x\alpha_i$,即: $\Sigma_k \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_k$.

(2.5) 若 $\Sigma_k \vdash \alpha_k$ 是对 $\Sigma_i \vdash \alpha_i$ 用(¬-)得到的, 即: $\Sigma_i = \Gamma \cup \{\gamma\}, \quad \Sigma_k = \Gamma \cup \{\exists x\gamma\}, \quad \alpha_k = \alpha_i, \ \sharp$ 中: Γ 是 $\mathbf{N}_{\mathcal{L}}$ 的一个有限公式集, x不在 $\Gamma \cup \{\alpha_i\}$ 的任 一个公式中自由出现. 由归纳假设知: $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_i$, 即: $\Gamma \cup \{\gamma\} \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_i$. 由演泽定理知: $\Gamma \vdash_{\mathbf{K}_{\mathcal{L}}} \gamma \rightarrow$ α_i . 由于x不在 Γ 的任何公式中自由出现,故 $\Gamma \vdash_{\mathbf{K}_{\mathcal{L}}}$ $\gamma \to \alpha_i$. 因x不在 α_i 中自由出现,由上节例3.19知: $\vdash_{\mathbf{K}_{\mathcal{L}}} \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall \Gamma \vdash_{\mathbf{K}_{\mathcal{L}}} \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x \gamma \rightarrow \alpha_i), \quad \forall x (\gamma \rightarrow \alpha_i) \rightarrow (\exists x (\gamma \rightarrow \alpha_i), \quad \forall x$ $(\exists x \gamma \to \alpha_i)$,从而 $\Gamma \vdash_{\mathbf{K}_{\mathcal{L}}} \exists x \gamma \to \alpha_i$. 再由演 泽定理知: $\Gamma \cup \{\exists x \gamma\} \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_i$, 即: $\mathbf{\Sigma}_k \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_k$.

(2.6) 若 $\Sigma_k \vdash \alpha_k$ 是对 $\Sigma_i \vdash \alpha_i$ 用(\exists +)得到的,即: $\Sigma_k = \Sigma_i$, $\alpha_i = \beta(x/t)$, $\alpha_k = \exists x\beta$,其中: $N_{\mathcal{L}}$ 的个体变元符号x不在 β 中自由. 由归纳假设知: $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \beta(x/t)$. 由上节例3.14知: $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \beta(x/t) \rightarrow \exists x\beta$,从而 $\Sigma_i \vdash_{\mathbf{K}_{\mathcal{L}}} \exists x\beta$,即 $\Sigma_k \vdash_{\mathbf{K}_{\mathcal{L}}} \alpha_k$.

归纳证完, (**)成立.

$K_{\mathscr{L}}$ 与NL的等价性

谢谢