TD n°6

Questions de cours

- Rappeler la définition de la fonction de répartition d'une variable aléatoire réelle.
- Rappeler le théorème de transfert pour une loi continue.
- Rappeler la définition de la loi exponentielle de paramètre $\lambda > 0$.

Exercice 1

Dans un jeu, on commence un tirage à pile ou face. Si on obtient pile, le gain, noté X, est une variable aléatoire U de loi uniforme sur (0,1), indépendante du tirage précédent. Sinon, le gain est 2U. La probabilité d'obtenir pile est p=2/3. Pour calibrer le prix du ticket, on souhaite calculer le gain moyen et le gain médian d'un joueur donné.

Question 1

- ullet Calculer la fonction de répartition de la variable aléatoire X.
- ullet Justifier que la loi de X admet une densité de probabilité et décrire cette densité (sans calcul).

Question 2

- ullet Calculer la valeur médiane de la variable X.
- Calculer l'espérance de la variable aléatoire X.

Question 3

Soit Y une variable aléatoire de Bernoulli de paramètre q=1-p, indépendante de U.

• Montrer que X peut se représenter de la manière suivante

$$X = (1 + Y)U$$

- En déduire la valeur de l'espérance de X.
- Vérifier les résultats par simulation d'un grand nombre, n, de joueurs.

```
n = 1000000
y <- rbinom(n, 1, p = 1/3)
x <- (1+y)*runif(n)
median(x)
mean(x)</pre>
```

Exercice 2

Soit U une variable aléatoire de loi uniforme sur l'intervalle (0,1). L'objectif de cet exercice est de déterminer la fonction de répartition, la densité, l'espérance et la variance de la variable X définie par

$$X = \sqrt{U}$$

Question 1

- ullet Calculer la fonction de répartition de X et en déduire la densité de la loi.
- En utilisant la densité de X, calculer l'espérance de X.
- Vérifier le résultat à l'aide d'une simulation.

```
mean(sqrt(runif(1000000)))
```

Question 2

- En utilisant la densité de la loi uniforme et le théorème de transfert, calculer l'espérance de X.
- En utilisant le fait que X est une variable aléatoire positive, calculer l'espérance de X d'une nouvelle manière.

Question 3

- Déterminer la variance de X sans calcul intégral.
- Vérifier le résultat à l'aide d'une simulation.

```
var(sqrt(runif(1000000)))
```

Exercice 3

Soient X_1, \ldots, X_n , n variables aléatoires indépendantes de loi exponentielle de paramètre $\lambda > 0$. L'objectif de cet exercice est de déterminer la loi et l'espérance de la variable aléatoire.

$$X = \min(X_1, \dots, X_n)$$

Question 1

• Calculer la probabilité que la variable aléatoire X soit supérieure à t, pour tout t réel positif.

Question 2

- ullet En déduire la fonction de répartition, puis la densité de la loi de X. Reconnaître cette loi.
- En déduire l'espérance de la variable aléatoire X.

Exercice 4

Soient U_1, U_2, \ldots, U_N des variables aléatoires réelles indépendantes de loi uniforme sur (0,1) et N une variable aléatoire de loi géométrique de paramètre p indépendante de la suite (U_i) . On pose

$$X = \max_{1 \le i \le N} U_i$$

Question 1

ullet Déterminer la fonction de répartition de la variable aléatoire X.

Question 2

ullet Calculer l'espérance de X.

Question 3

• Vérifier le résultat par une simulation pour p=1/3.

```
n <- 100000
# La loi géometrique est décalée
x <- sapply(1 + rgeom(n, p = 1/3), FUN = function(i) max(runif(i))) # ?sapply : très utile
mean(x)</pre>
```