METALLIC BONDS

- The electron sea model of metallic bonding proposes that all the metal atoms in the sample contribute their valence electrons to form an "electron sea" that is delocalized throughout the metal
- The nuclei, with their cone linner shell) electrons are submerged within the sea of electrons in an orderly manner.
- The valence electrons are shared amongst all the atoms in the substance and the piece of metal is held together by nutual attractions of the metal cations for the highly delocalised mubile electrons

Structure - Giant metallic lattice

PROPERTIES:

1) High tensile strength

- The attraction between the delocalized electrons and the cations is responsible for the strength of metals

WA lot of energy has to be put in to break the strong metallic bond

3 Electrical Conductivity

4 is due to the mobile delocalized electrons

- The movement of electrons is called an electrical current.

- 3) Good conductors of heat
- The delocalised electrons in the metal conduct heat away from a human hand much faster than the localised electrons in covalent bonds in wood

is thus, wood does not seem good to touch

- Heat energy -> kinetic energy of movement of electron

(1) High melting + boiling point - Melting points are moderately high because the electrostatic forces of altraction between the delocalised electrons and the cations have to broken, which requires a large amount of energy
- Boiling a netal requires even more energy as all forces of attraction have to be completely broken
Na(s) -> Na(l)> Na(g) Solid molten gas regular len regular random gaseous atoms
(3) Malleability / Ductility - Metals are malleable and ductile due to the fact that the cations are arranged in a regular manner surrounded by the sea of electrons.
- The regular layers can slide over each other without shattering the metal