Fundamentals of Data Science

Semester B 20-21

Tutorial 9

1a.
$$s({e}) = \frac{8}{10} = 0.8$$

 $s({b,d}) = \frac{2}{10} = 0.2$
 $s({b,d,e}) = \frac{2}{10} = 0.2$

b.
$$c(\{b,d\} \to \{e\}) = \frac{\sigma(\{b,d,e\})}{\sigma(\{b,d\})} = \frac{s(\{b,d,e\})}{s(\{b,d\})} = \frac{0.2}{0.2} = 1$$

$$c(\{e\} \to \{b,d\}) = \frac{\sigma(\{b,d,e\})}{\sigma(\{e\})} = \frac{s(\{b,d,e\})}{s(\{e\})} = \frac{0.2}{0.8} = 0.25$$

c.
$$s({e}) = \frac{4}{5} = 0.8$$

 $s({b,d}) = \frac{5}{5} = 1$
 $s({b,d,e}) = \frac{4}{5} = 0.8$

d.
$$c(\{b,d\} \to \{e\}) = \frac{\sigma(\{b,d,e\})}{\sigma(\{b,d\})} = \frac{s(\{b,d,e\})}{s(\{b,d\})} = \frac{0.8}{1} = 0.8$$

$$c(\{e\} \to \{b,d\}) = \frac{\sigma(\{b,d,e\})}{\sigma(\{e\})} = \frac{s(\{b,d,e\})}{s(\{e\})} = \frac{0.8}{0.8} = 1$$

2.
$$c_1 = \frac{\sigma(\{p,q\})}{\sigma(\{p\})}$$

$$c_2 = \frac{\sigma(\{p,q,r\})}{\sigma(\{p\})}$$

$$c_3 = \frac{\sigma(\{p,q,r\})}{\sigma(\{p,r\})}$$

Since $\sigma(\{p,q\}) \ge \sigma(\{p,q,r\})$ and $\sigma(\{p\}) \ge \sigma(\{p,r\})$, $c_1 \ge c_2$ and $c_3 \ge c_2$ Since c_1, c_2 and c_3 all have different values, $c_1 > c_2$ and $c_3 > c_2$ As a result, c_2 is the lowest confidence value.