UPPSALA UNIVERSITET Matematiska institutionen

Watematiska institutio

Prov i matematik

Algebra I 2014–06–03

Martin Herschend

Skrivtid: 14.00 – 19.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara försedda med motiveringar. Varje korrekt löst uppgift ger högst 5 poäng. För betygen 3, 4, 5 krävs minst 18, 25 respektive 32 poäng.

1. (Obs: denna uppgift löses inte om man har klarat duggan!) Visa att utsagorna $(p \land (\neg q)) \lor ((\neg p) \land q))$ och $(p \lor q) \land (\neg (p \land q))$ är ekvivalenta.

2. Förkorta bråket

$$\frac{x^4 + 2x^3 + 4x^2 + 2x + 3}{x^4 + 2x^3 + 3x^2}$$

så långt som möjligt.

3. Bestäm alla heltalslösningar till den diofantiska ekvationen

$$34x + 700y = 6.$$

4. Bestäm den rest som fås då $10^{10} + 100^{100}$ divideras med 7.

5. Visa med induktion att

$$\sum_{k=2}^{n} \frac{k-1}{2^k} = 1 - \frac{n+1}{2^n}$$

för alla heltal $n \geq 2$.

- **6.** Polynomet $f(x) = 3x^3 + 4x^2 + 10x + 3$ har ett rationellt nollställe.
 - (a) Bestäm alla nollställen till f(x).
 - (b) Skriv f(x) som en produkt av irreducibla rationella polynom.
- 7. Polynomet $f(x) = x^4 + 2x^3 + 2x^2 + 8x 8$ har ett rent imaginärt nollställe (det vill säga ett nollställe med realdel 0). Bestäm alla nollställen till f(x).
- 8. Låt A vara mängden av reella tal x som uppfyller att x^2 är ett rationellt tal, det vill säga

$$A = \{ x \in \mathbb{R} \mid x^2 \in \mathbb{Q} \}.$$

Visa att A är en uppräknelig mängd.

Lycka till!

Lösningar till duggan i Algebra I 2014–06–03

- 1. Båda utsagorna är sanna om och endast om precis en av p och q är sann. Därmed är utsagorna ekvivalenta.
- **2.** Med hjälp av Euklides algoritm finner vi att $x^2 + 2x + 3$ är en största gemensam delare till $x^4 + 2x^3 + 4x^2 + 2x + 3$ och $x^4 + 2x^3 + 3x^2$. Genom att faktorisera får vi

$$\frac{x^4 + 2x^3 + 4x^2 + 2x + 3}{x^4 + 2x^3 + 3x^2} = \frac{(x^2 + 1)(x^2 + 2x + 3)}{x^2(x^2 + 2x + 3)} = \frac{x^2 + 1}{x^2}.$$

3. Vi förenklar först till

$$17x + 350y = 3.$$

Sedan bestämmer vi SGD(350, 17) med hjälp av Euklides algoritm:

$$350 = 20 \cdot 17 + 10$$
$$17 = 10 + 7$$
$$10 = 7 + 3$$
$$7 = 2 \cdot 3 + 1.$$

Alltså är SGD(350, 17) = 1. Dessutom är

$$1 = 7 - 2 \cdot 3 = 7 - 2(10 - 7),$$

= $-2 \cdot 10 + 3 \cdot 7 = -2 \cdot 10 + 3(17 - 10) =$
= $3 \cdot 17 - 5 \cdot 10 = 3 \cdot 17 - 5(350 - 20 \cdot 17) =$
= $-5 \cdot 350 + 103 \cdot 17.$

och därmed är (x, y) = (103, -5) en lösning till 17x + 350y = 1. Alltså är (x, y) = (309, -15) en lösning till 17x + 350y = 3. Eftersom SGD(350, 17) = 1 är lösningarna till 17x + 350y = 3 precis

$$\begin{cases} x = 309 - 350n, \\ y = -15 + 17n, \end{cases} d\ddot{a}r \ n \in \mathbb{Z}.$$

4. Modulo 7 gäller att

$$10^{10} + 100^{100} \equiv 3^{10} + 2^{100} = (3^3)^3 \cdot 3 + (2^3)^{33} \cdot 2 = 27^3 \cdot 3 + 8^{33} \cdot 2 \equiv (-1)^3 \cdot 3 + 1^{33} \cdot 2 = -3 + 2 = -1 \equiv 6$$

Alltså är resten 6.

5. Om n=2 så är vänsterledet $\frac{2-1}{2^2}=\frac{1}{4}$ och högerledet $1-\frac{3}{4}=\frac{1}{4}$. Alltså stämmer utsagan i detta fall.

Låt $m \geq 2$ och antag att

$$\sum_{k=2}^{m} \frac{k-1}{2^k} = 1 - \frac{m+1}{2^m}$$

Då gäller

$$\sum_{k=2}^{m+1} \frac{k-1}{2^k} = \sum_{k=2}^m \frac{k-1}{2^k} + \frac{m+1-1}{2^{m+1}} = 1 - \frac{m+1}{2^m} + \frac{m}{2^{m+1}} = 1 - \frac{2m+2-m}{2^{m+1}} = 1 - \frac{m+1+1}{2^{m+1}}.$$

Det vill säga, om utsagan gäller för n=m så gäller den även för n=m+1. Alltså följer med induktion att

$$\sum_{k=2}^{n} \frac{k-1}{2^k} = 1 - \frac{n+1}{2^n}$$

gäller för alla heltal n > 2.

6. Eftersom f har heltalskoefficienter är varje rationellt nollställe på formen p/q där p|3 och q|3, vilket motsvarar $p/q \in \{\pm 1, \pm 3, \pm 1/3\}$. Eftersom alla koefficienter är positiva måste dessutom p/q < 0. Alltså är $p/q \in \{-1, -3, -1/3\}$. Genom att beräkna f(p/q) i de tre fallen ser vi att det enda rationella nollstället till f är $-\frac{1}{3}$. Alltså delar 3x+1 polynomet f(x). Divisionsalgoritmen ger

$$f(x) = (x^2 + x + 3)(3x + 1).$$

Ekvationen $x^2+x+3=0$ har lösningarna $x=-\frac{1}{2}\pm\sqrt{\frac{1}{4}-3}=-\frac{1}{2}\pm\frac{\sqrt{11}i}{2}$. Nollställena till f är alltså $x_1=-\frac{1}{3},\,x_2=-\frac{1}{2}+\frac{\sqrt{11}i}{2}$ och $x_3=-\frac{1}{2}-\frac{\sqrt{11}i}{2}$. Eftersom x_2 och x_3 har nollskild imaginärdel är de inte reella tal och därmed inte heller rationella

Eftersom x_2 och x_3 har nollskild imaginärdel är de inte reella tal och därmed inte heller rationella tal. Därmed är $x^2 + x + 3$ irreducibelt över \mathbb{Q} . Polynomet 3x + 1 har grad 1 och är därför också irreducibelt över \mathbb{Q} . Faktoriseringen

$$f(x) = (x^2 + x + 3)(3x + 1).$$

ger därmed f skrivet som en produkt av irreducibla rationella polynom.

7. Polynomet f har ett nollställe på formen bi där $b \in \mathbb{R}$. Alltså är f(bi) = 0, vilket betyder att

$$b^4 - 2b^3i - 2b^2 + 8bi - 8 = 0$$

Genom att jämföra real- och imaginärdel får vi

$$\begin{cases} b^4 - 2b^2 - 8 = 0 \\ -2b^3 + 8b = 0 \end{cases}$$

Den andra ekvationen är ekvivalent med $b \in \{0, 2, -2\}$. Insättning i den första ekvationen ger lösningarna $b = \pm 2$. Vi har alltså två nollställen $x_1 = 2i$ och $x_2 = -2i$. Därmed delar $(x - 2i)(x + 2i) = (x^2 + 4)$ polynomet f(x). Divisionsalgoritmen ger

$$x^4 - x^3 + x^2 + 2 = (x^2 + 2x - 2)(x^2 + 4).$$

Vilket ger ytterligare två nollställen $x_3 = -1 + \sqrt{3}$ och $x_4 = -1 - \sqrt{3}$

8. Låt $y \in \mathbb{Q}$. Då har ekvationen $x^2 = y$ två reella lösningar $x = \pm \sqrt{y}$ om y > 0, en reell lösning om y = 0 och inga reella lösningar om y < 0. Det följer att funktionen $f : \mathbb{Q} \to A$, som ges av

$$f(y) = \begin{cases} \sqrt{y} & \text{om } y \ge 0\\ -\sqrt{-y} & \text{om } y < 0 \end{cases}$$

är bijektiv. Alltså finns en bijektion mellan A och \mathbb{Q} (det vill säga A har samma kardinalitet som \mathbb{Q}). Eftersom \mathbb{Q} är uppräknelig är därmed A uppräknelig.