

Física Geral I – 1° semestre de 2022

2^{as} e 4^{as} (16:00 às 18:00) – Auditório CC

Cap. 5: Força e movimento - I

UENF Física Geral I Prof. André Guimarães

Origem do movimento...

- Aristóteles: Força nula ⇒ repouso
- Newton (1687, Principia)
 - ★ 1ª Lei de Newton ou Lei da Inércia

"Todo corpo persiste em seu estado de repouso ou MRU, a menos que seja compelido a modificar esse estado pela ação de forças impressas sobre ele"

3

- Aristóteles: Força nula ⇒ repouso
- Newton (1687, Principia)
 - ★ 1ª Lei de Newton ou Lei da Inércia

FfO =>
$$\tilde{c}_{i}$$
 (ACELERAÇÃO)

o \tilde{f} / \tilde{c}_{i} > \tilde{f} = $m\tilde{c}_{i}$

o \tilde{f} = \tilde{d}_{i}

massa

[F] = \tilde{l} = \tilde{l} (NEWTON)

= \tilde{k}_{g} · m = \tilde{l} (NEWTON)

- Força: grandeza vetorial ⇒ Princípio de superposição

Problema 7 (8^a ed.):

Três astronautas guiam um asteróide de 120 kg exercendo as forças mostradas na figura, com F_1 =32 N, F_2 =55 N, F_3 =41 N, θ_1 =30° e θ_3 =60°. Determine a aceleração do asteróide (a) em termos dos vetores unitários e como (b) módulo e (c) ângulo em relação ao semi-eixo x.

UENF

Algumas forças especiais

Peso

O peso de um corpo é a força gravitacional que age sobre ele em virtude de um astro massivo."

 $F_{S} = 6 M \text{ MM} = \text{ Ma}$ $V = \sqrt{\pi^{2}} = 9 \text{ a} = 6 M$ $0,67.10^{-11}$ $\bar{v} = 6,34.10^{6} \text{ m}$ $M = 5,78.16^{24} \text{ K}_{S}$ = 9,83 m

★ Um corpo sob a ação da gravidade, nas proximidades da superfície da Terra, cai com aceleração g = 9,8 m/s²

$$\vec{P} = m\vec{g}$$

★ Não confundir peso e massa!

Força Normal

"Quando um corpo exerce uma força sobre uma superfície, esta se deforma e empurra o corpo com uma força Normal que é perpendicular à superfície"

- Direção e sentido ⇒ dependem da orientação da superfície
- Módulo ⇒ depende da resultante de forças

★ Esqueça o jargão: normal = peso!!!

Força Normal

$$N = P$$

Tração (tensão)

★ A corda faz a conexão entre os corpos e considera-se geralmente que ela não tem massa.

10

Tração (tensão)

* Roldanas móveis produzem uma vantagem mecânica.

★ 3^a Lei de Newton:

"Quando dois corpos interagem, as forças que cada corpo exerce sobre o outro são iguais em módulo e têm sentidos opostos"

Força exercida no corpo 1 pelo corpo 2

- Pares de forças da terceira lei (atuam em corpos diferentes)
- Limitações...
 (exemplo: aniquilação de partículas)