Nitehawk-36 Toolboard

Introduction

Nitehawk-36 by LDO is a toolboard featuring RP2040 MCU, TMC2209 stepper drive, ADXL345 accelerometer, and USB port. Nitehawk-36's USB based connection method allows for a simple and easy setup compared to other CAN toolboards. The USB connnection also allows for a secondary USB port to connect your nozzle webcam or eddy current probe.

Features

- Convenient wiring, no more complicated and error prone breakout cables nitehawk only requires 24V power and a USB connector to the RPI host.
- ► **USB Klipper connection**, no additional software or hardware setup compared to CAN.
- Secondary USB port, an onboard USB port allows you to connect a second USB device to your toolhead without running an additional umbilical cable.
- Custom toolhead cable, a single combined USB data and power cable rated for drag chain use, but can also be used in umbilical configuration.
- Convenient Input Shaping, run input shaper calibration at anytime with an onboard accelerometer.
- Tacho enabled HEF, the hotend fan port is three pin tachometer compatible, allowing for additional diagnostics and safety.

System Overview

The Nitehawk system consists of two PCBs and the Umbilical Cable. A simplified wiring diagram is shown below:

- ▶ **Nitehawk-36**, this is the main PCB, which houses the MCU, stepper driver, fan drivers, and other circuits.
- **Umbilical Cable**, this is a custom flex cable that is rated for drag chain use. It delivers 24V power to the main Nitehawk PCB while also carrying USB data.
- ► **USB Adapter**, this simple PCB combines 24V power from the power supply and USB data from the Raspberry Pi into a unified connection to the main Nitehawk PCB via the Umbilical cable.

Printed Parts

The printed part is available in the Nitehawk github repo $\underline{\text{here}} \ \square$.

▶ <u>USB Adapter Mount</u> ☑, this is the mount for the USB adapter PCB. It is designed to be used with a standard Voron DIN clip and can be <u>mounted</u> ☑ in two different orientations. It also features a cover to reduce the chance of static discharge onto the PCB.

Klipper Config Files

A Klipper Configuation can be found in the Nitehawk-36 github repo here .

Port and Pin Definitions

Device/Port	PCB Label	Connector Type	RP2040 Pin	Description
E Motor	MOTOR	JST-XH2.5 4P	gpio23/24/25/0/1 (step/dir/ena/uart/tx)	A stepper motor port for the extruder. Driven by a TMC2209 chip. The current sense resistor is $100 \text{ m}\Omega$. Enable is active low
Filament Sensor		JST-PH2.0 2P	gpio3	Connects to the filament sensor. Supports switch based sensors only.
Probe	PRB	JST-PH2.0 3P	gpio10	Probe for bed leveling and/or Z sensing.
X Endstop	X-STOP	JST-PH2.0 2P	gpio13	Connects to the X endstop. Supports switch based endstops only.
Part Fan	PCF	JST-PH2.0 2P	gpio6	Connects to part cooling fan.
Hotend Fan	HEF	JST-PH2.0 3P	gpio5/16 (fan/tacho)	Connects to hotend fan. The fan control pin is gpio5 and the tachometer sensor pin is gpio16.

PCF Voltage Selector		2.0mm Jumper		Selects the supply voltage of the part fan. Selection of 24V or 5V.
HEF Voltage Selector		2.0mm Jumper		Selects the supply voltage of the hotend fan. Selection of 24V or 5V.
Probe Votage Selector		2.0mm Jumper		Selects the supply voltage of the probe port. Selection of 24V or 5V.
USB Expansion Port		JST-ZH1.5 5P		Connects to USB expansion board.
Neopixel		JST-PH2.0 3P	gpio7	Connects to neopixel LEDs.
Hotend Heater	HE0	E0506 Ferrule	gpio9	Connects to the hotend heater.
Hotend Thermistor	TH0	JST-PH2.0 2P	gpio29	Connects to the hotend thermistor. Uses a $2.2k\Omega$ pull up resistor.
Activity LED	ACT		gpio8	A small software controlled onboard LED. Active low.
Accelerometer			gpio27/18/20/19 (cs/clk/mosi/miso)	ADXL345 accelerometer for input shaping. Controlled via software SPI.
Toolhead Cable		XT30(2+2)		A USB port for toolhead.

Electrical Specifications

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Comments
Power Supply Input	V _{in}	20	24	28	V	power input for the toolboard.
Temperature	T _{env}			85	°C	operating ambient temperature
5V Current	I _{rpi}			5	A	current output for the 5V buck converter.
Fan Current	I _{fan}			TBD	A	current rating for each fan port (HEF and PCF).

Firmware Setup and Update

The firmware for Nitehawk consists of two components: Katapult and Klipper. Katapult is a bootloader designed specifically for Klipper, it ensures that the software on the RP2040 MCU boots up smoothly and allows for easy updating of the Klipper firmware. You can learn more about Katapult <a href="https://example.com/here-pi-main-firmware-pi-ma

Your Nitehawk will come shipped with both Katapult and Klipper installed. Ideally, you will only ever need to occasionally update the Klipper firmware and never have to touch Katapult. If the Katapult bootloader was erased or is not present for any reason, you can check this below Installing the Katapult Bootloader section for instructions on how to reupload Katapult.

Hardware Setup

No special setup is required for installing either Klipper or Katapult. Nitehawk simply needs to be hooked up as it operates normally in your 3D printer, with the toolboard connected to your Klipper host device (e.g. Raspberry Pi) via the USB adapter board. You also need access to the two buttons (RESET and BOOTO) on the toolboard. Also ACT light are important later. Reference the photo below to find the buttons and the ACT light.

Compiling Klipper Firmware

The following instructions are for compiling and upload new Klipper firmware to your Nitehawk toolboard. You need to perform these steps if you want to update your klipper firmware to the newest version or if you are doing a fresh install and just uploaded Katapult (see the previous sections). Before compiling the firmware, you will need to have Klipper already installed on your host device (e.g. Raspberry Pi).

- Log on to your Klipper host via SSH, windows users can use <u>putty</u> ☑ or any other SSH client. Mac and Linux users can simply connect with the <u>ssh</u> command in their command line terminal. Run the following commands to open the firmware configuration interface:
 - 1 ∣ cd ~/klipper
 - 2 | make menuconfig

In the configurator, Enable extra low-level configuration options, choose Raspberry Pi RP2040, match the rest of the settings with the screenshot below:

```
(Top)

Rlipper Firmware Configuration

[*] Enable extra low-level configuration options

Micro-controller Architecture (Raspberry Pi RP2040) --->

Bootloader offset (16KiB bootloader) --->
Communication interface (USB) --->

USB ids --->
(!gpio8) GPIO pins to set at micro-controller startup

[Space/Enter] Toggle/enter [?] Help [/] Search
[0] Quit (prompts for save) [ESC] Leave menu
```

- Most importantly, make sure you set the 16KiB bootloader offset. Otherwise you will erase the Katapult bootloader!
- Enter Q to quit and confirm with Y es when prompted to save. And run the following to generate the firmware file:

```
1 | make clean
2 | make
```

A firmware file called will now be generated and can be located in the directory $\sim/klipper/out$. You are now ready to upload this firmware to the Nitehawk toolboard. The recommended method is uploading via the make flash command.

Uploading Klipper (via make flash)

- Run ls /dev/serial/by-id to find the USB ID of your Nitehawk toolboard. The USB ID should have a format similar to this: usb-Klipper_rp2040_1234567890000000-if00.
- Run the following commands. This will install the python, pip, and the pyserial python module if it is not present. You may receive an error: externally managed environment when running the last command. This simply means pyserial has already been installed and you may move on to the next step.

```
sudo apt install python3 python3-pip
pip install pyserial
```

Run the following commands to upload the firmware to the MCU directly:

```
1   cd ~/klipper
2   sudo service klipper stop
3   make flash FLASH_DEVICE=/dev/serial/by-id/<your USB ID>
4   sudo service klipper start
```

If you encounter any connection issues after flashing the new firmware, reboot your printer. Your toolboard should now have the newest firmware. If the flashing process failed, you may want to try using the the second method and <u>upload Klipper via Katapult</u>

Uploading Klipper (via Katapult)

In this section we will use an alternative method to upload klipper firmware using the Katapult bootloader. If your toolboad is missing the Katapult bootloader for any reason, you should follow the <u>next section</u> to install it first.

► First we will check and install the Katapult package (if necessary):

```
1 | test -e ~/katapult && (cd ~/katapult && git pull) || (cd ~ && git clone https:
```

To upload Klipper, we will use a Python script to communicate with the Katapult bootloader inside of the Nitehawk Toolboard. First, we will first need to setup a Python3 environment. Run the following:

```
1 virtualenv -p python3 ~/katapult-env
2 ~/katapult-env/bin/pip3 install pyserial
```

This creates a Python 3 environment in the location ~/katapult-env/ and installs the module pyserial which is required to run the upload script.

- Now we must force Nitehawk to enter the Katapult bootloader and obtain the USB serial address. Start by quickly double clicking the **RESET** button, you should see the **ACT** light blinking slowly.
- Next run ls /dev/serial/by-id/. You should see something like usb-katapult_rp2040_A1234567898D1234-if00 note that the address contains the word katapult . If not, this means either your Nitehawk did not have Katapult installed or you did not enter the Katapult bootloader properly. Copy the address down for the next step, do not exit the bootloader yet.
- Finally run the following but substituting the address with the one you obtained in the previous step. If everything was correct, you should see some write and verification progress followed by Flash Success at the end.

```
1 | ~/katapult-env/bin/python3 ~/katapult/scripts/flashtool.py -d /dev/serial/by-id
```

As a finally verification, run 1s / dev/serial/by-id/. you should see a Klipper USB serial address in the form of $usb-Klipper_rp2040_E1234567A12D9835-if00$.

Installing the Katapult Bootloader

In this section we will compile and upload the Katapult Bootloader. Note that your Nitehawk toolboard normally ships with Katapult pre-installed and you only need to perform the following operations if Katapult was

inadvertently overwritten or lost.

Login to the Raspberry Pi. We will check and download the Katapult package (if necessary):

```
1 | test -e ~/katapult && (cd ~/katapult && git pull) || (cd ~ && git clone https:/
```

Now we will configure need to configure some options:

```
1 cd ~/katapult
```

2 | make menuconfig

This will bring us to the configuration menu. Make sure to set the options as below:

```
Micro-controller Architecture (Raspherry Pi RP2040) --->
Flash chip (W25080 with CLKDIV 2) --->
Build Katapult deployment application (Do not build) --->
Communication interface (USB) --->
USB ids --->
() GFIO pins to set on bootloader entry
[*] Support bootloader entry on rapid double click of reset button
[] Enable bootloader entry on button (or gpio) state
[*] Enable Status LED
(!gpio8) Status LED GPIO Pin

[Space/Enter] Toggle/enter [?] Help [/] Search
[0] Quit (prompts for save) [ESC] Leave menu
```

Enter Q to quit and confirm with Y es when prompted to save. next run the following command to compile and generate the Katapult binary files:

```
1 | make clean
2 | make
```

A binary file called katapult.uf2 will now be created in the location \sim /katapult/out/. Our next job is to upload this file into the RP2040 MCU on the Nitehawk toolboard.

- ► We now need to reboot the Nitehawk toolboard into system boot mode. This is done in three steps:
- Press and hold both the RESET and BOOTO button.
- 2. Release the RESET button
- 3. Release the BOOTO button
- ► If done correctly, your Nitehawk should now have entered boot mode and become a sort of semi "thumbdrive". Run the command 1s /dev/sda* to confirm. You should see something like /dev/sda/ dev/sda1. If you get something like 1s: cannot access '/dev/sda*':

No such file or directory this means either Nitehawk didn't enter boot mode or there is a problem with the physical connection between the Raspberry Pi and Nitehawk.

We are now finally ready to upload Katapult. Run following commands:

```
sudo mkdir -p /mnt/pico
sudo mount /dev/sda1 /mnt/pico
sudo cp ~/katapult/out/katapult.uf2 /mnt/pico
sudo sync
sudo umount /mnt/pico
```

The above commands basically mount the Nitehawk as a storage drive and copies the katapult binary files into that drive. It then unmounts the drive. If everything went smoothly, you should now be able to see the **ACT** light located below the **BOOTO** button blink slowly. To double check that Katapult is installed, run 1s

/dev/serial/by-id . You should see something like: usb-

katapult_rp2040_A1234567898D1234-if00 which is USB serial address of Nitehawk running Katapult. A few small details to note here:

- 1. You will only see this address when Nitehawk is in Katapult bootloader mode and **not** in system boot mode or when Nitehawk is normally running Klipper.
- 2. You can force Nitehawk to enter the Katapult bootloader by quickly double clicking the **RESET** button on the toolboard. The **ACT** light blinks slowly in this mode as previously mentioned.
- 3. You will need enter the Katapult bootloader and the Katapult USB serial address to upload Klipper.
- 4. By following the above instructions, you will have uploaded Katapult but erased all other firmware, including any previously installed Klipper firmware.
- 5. Exit the Katapult bootloader by single pressing the **RESET** button, normally you would enter Klipper firmware. Since you just erased Klipper, you will just re-enter the Katapult bootloader.
- you are now ready to compile and upload Klipper see the previous section here.

What's included in the kit?

Items	QTY
Toolhead PCB	1
USB Adapter PCB	1
USB Umbilical Cable 2.15m	1
USB-A to USB-C Data Cable, 0.4m	1
24V Power Cable	1
USB Hookup Cable	1
Self-Tapping Screw, M2x10	3

Machine Screw, SHCS, M3x8	2
Machine Screw, SHCS, M3x12	4
MicroFit3 style Male Connector, 3x2pin	1
MicroFit3 style Female Crimp Terminal	8
XH2.5 Female Connector, 4pin	1
XH2.5 Female Crimp Terminal	8
PH2.0 Female Connector, 2pin	5
PH2.0 Female Connector, 3pin	3
PH2.0 Female Crimp Terminal	30
Ferrule, 1008	4
Ferrule, 0508	4