第58回情報技術検定試験実施結果

(平成29年9月)

公益社団法人 全国工業高等学校長協会

まえがき

平成29年度も工業に関する学科で学ぶ生徒を対象に、前期・後期2回の情報技術検定試験を実施してまいりますが、前期の第58回情報技術検定試験が終了しましたので実施結果を報告いたします。

情報技術検定試験の目的は、1級から3級までの3つの検定レベルに分けて、基礎的な情報技術に関するスキルが、どの程度身についているかを計ることにあります。今回検定試験に合格した生徒諸君は、自信を持ってさらなる上級試験に挑戦し、IPA(独立行政法人情報処理推進機構情報処理技術者試験センター)が実施するITパスポート試験や基本情報技術者試験などの国家試験にも積極的にチャレンジして欲しいと思います。

高度情報通信技術が急速に進展している二十一世紀を逞しく生きるには、情報や情報通信技術を活用する知識や技能の習得は欠かすことが出来ません。さらに工業の各分野でも、ネットワーク技術や組込み技術に対応できる専門的応用的な内容の習得も必要になってきています。

これらの時代の要請にも対応できるように、高等学校で情報技術を学習する生徒の能力開発、資格取得を目的として、情報技術検定試験を実施してまいりました。平成28年度版に訂正を加え、平成29年度版情報技術検定試験標準問題集(1~3級)を発行しています。これらの問題集も積極的に活用して、本検定試験に合格されますよう願っています。

本協会は、検定試験の合格者が社会的評価や各企業からのより高い評価が受けられるよう、引き続き外部の関係機関等に働きかけてまいります。本検定試験はすでにご案内の通り、文部科学省の後援を受けており、今後も高度情報通信ネットワーク社会の人材育成に寄与できるよう、引き続き関係各位のご支援・ご協力をお願いいたします。

I 級別受検者調査

受検者の報告期限を5月12日として受検者数報告を求めた。

項目	1 級	2 級	3 級	合 計
校数	176	340	341	413
人数	1, 119	4, 974	6, 043	12, 136

Ⅱ 級別合格調査

結果の報告期限を7月7日として実施結果の報告を求めた。

項目	1 級	2 級	3 級	合 計
受検者	1, 069	4, 806	5, 873	11, 748
合格者	172	1,730	3, 905	5, 807
合格率%	16. 09%	36. 00%	66. 49%	49. 43%

Ⅲ 実 施 結 果

実施結果は下表のとおり。

	1級	C言語	2級	C言語	2級 🦻	新BASIC	3級	C言語	3級 🦻	新BASIC	全体	b 数
	学校数	人数										
申込者数	176	1, 119	297	4, 555	105	419	240	3, 930	183	2, 113	413	12, 136
受検者数	169	1, 069	295	4, 401	102	405	236	3, 816	179	2, 057	412	11, 748
合格者数	57	172	208	1, 651	41	79	211	2, 656	146	1, 249	371	5, 807
受検率%	96. 02%	95. 53%	99. 33%	96. 62%	97. 14%	96. 66%	98. 33%	97. 10%	97. 81%	97. 35%	99. 76%	96.80%
合格率%	33. 73%	16. 09%	70. 51%	37. 51%	40. 20%	19. 51%	89. 41%	69. 60%	81. 56%	60. 72%	90. 05%	49. 43%

都道府県別実施結果 (1級 C言語)

	_	項目	F	申込数		A 11. In	A 10 -11
都道	府県	名	校数	人数	受検者	合格者	合格率
01	北		4	6	6	1	16. 7%
02	青	森	3	29	28	4	14. 3%
03	岩	手	4	6	6	0	0.0%
04	宮	城	1	13	13	3	23. 1%
05	秋	田	2	2	1	0	0.0%
06	Щ	形	2	10	2	0	0.0%
07	福	島	3	44	43	22	51. 2%
08	茨	城	1	3	3	3	100.0%
09	栃	木	4	15	11	0	0.0%
10	群	馬	4	18	18	0	0.0%
11	埼	玉	5	56	55	3	5. 5%
12	千	葉	2	4	4	0	0.0%
13	東	京	4	9	6	1	16. 7%
14	神	奈 川	4	26	22	5	22.7%
15	山	梨	1	2	2	1	50.0%
16	新	潟	5	8	8	0	0.0%
17	長	野	7	20	19	2	10.5%
18	富	山	3	8	8	1	12.5%
19	石	Ш	4	9	9	3	33. 3%
20	福	井	1	4	4	2	50.0%
21	静	岡	6	55	41	8	19.5%
22	愛	知	19	103	101	11	10.9%
23	岐	阜	6	28	26	1	3.8%
24	三	重	3	5	5	3	60.0%
25	滋	賀	5	98	97	9	9.3%
26	京	都	1	1	1	0	0.0%
27	大	阪	9	87	82	6	7.3%
28	兵	庫	9	50	50	4	8.0%
29	奈	良	1	2	2	0	0.0%
30	和	歌山	3	9	9	1	11.1%
31	鳥	取	2	8	8	2	25.0%
32	島	根	1	16	16	0	0.0%
33	岡	<u> </u>	6	53	53	3	5. 7%
34	広	島	6	16	15	4	26. 7%
35	山		3	6	6	0	0.0%
36	徳	島	1	7	7	1	14. 3%
37	香	<u> </u>	0	0	0	0	0.0%
38	愛	媛	3	59	59	5	8.5%
39	高短	知	1	29	29	4	13.8%
40	福	岡	5	11	11	1	9. 1%
41	佐	賀	2	5	5	2	40.0%
42	長能	崎	1	15	1 1 5	1 3	100.0%
43	熊大	本 分	5	15	15	0	20.0%
44 45	宮		1 5	106	$\frac{1}{106}$	46	0. 0% 43. 4%
46	鹿	児 島	7	53	52	6	11. 5%
47	产油	<u> </u>		 ეა 3	3	0	0.0%
	合	計	176	1, 119	1, 069	172	16. 1%

都道府県別実施結果 (2級 C言語)

		項目	F	申込数	巫₩₩	↑ ₩ ₩	Λ 14
都道	府県	名	校数	人数	受検者	合格者	合格率
01	北		12	165	160	67	41. 9%
02	青	森	7	86	86	55	64.0%
03	岩	手	4	22	22	8	36.4%
04	宮	城	4	20	20	4	20.0%
05	秋	田	6	38	37	10	27.0%
06	山	形	3	18	12	1	8.3%
07	福	島	4	128	128	84	65.6%
08	茨	城	7	43	43	24	55.8%
09	栃	木	8	90	88	45	51.1%
10	群	馬	6	100	98	35	35. 7%
11	埼	玉	11	216	211	45	21.3%
12	千	葉	3	43	39	15	38.5%
13	東	京	8	129	128	59	46. 1%
14	神	奈 川	9	69	67	6	9.0%
15	山	梨	3	42	42	20	47.6%
16	新	潟	7	114	113	37	32. 7%
17	長	野	9	148	144	62	43. 1%
18	富	Щ	4	64	64	31	48.4%
19	石	Ш	4	30	24	5	20.8%
20	福	井	2	20	20	7	35.0%
21	静	岡	9	252	242	134	55.4%
22	愛	知	25	678	664	214	32.2%
23	岐	阜	8	187	187	53	28.3%
24	三	重	5	38	38	8	21.1%
25	滋	賀	5	106	105	47	44.8%
26	京	都	5	57	54	10	18. 5%
27	大	阪	12	177	170	33	19. 4%
28	兵	庫	15	306	297	104	35.0%
29	奈	良	1	1	1	1	100.0%
30	和	歌山	3	46	46	7	15. 2%
31	鳥	取	4	48	48	10	20.8%
32	島	根	3	57	57	22	38.6%
33	岡	<u> </u>	7	96	96	32	33. 3%
34	広	島	7	163	158	85	53. 8%
35	山	<u>口</u>	9	44	44	11	25. 0%
36	徳	島	1	7	7	0	0.0%
37	香	川畑	4	35	35	13	37. 1%
38	愛	媛	5	72	72	33	45. 8%
39	高	知	3	21	19	7	36.8%
40	福	岡	9	195	191	91	47. 6%
41	佐	賀	3	26	26	13	50.0%
42	長	崎七	3	4	4	0	0.0%
43	熊	本	8	78	75	9	12.0%
44	大	<u>分</u>	6	68	68	16	23. 5%
45	宮	崎田東	5	64	64	17	26.6%
46	鹿	児島	6	55	53	31	58. 5%
47	沖	縄	5	89	34	30	88. 2%
	合	計	297	4, 555	4, 401	1,651	37.5%

都道府県別実施結果 (2級 新BASIC)

	_	項目			日 込数			
都道	府県	名		校数	人数	受検者	合格者	合格率
01	北		道	4	9	8	1	12. 5%
02	青		森	2	30	30	3	10.0%
03	岩		手	0	0	0	0	0.0%
04	宮		城	1	1	1	1	100.0%
05	秋		田	1	4	4	1	25.0%
06	山	:	形	1	2	0	0	0.0%
07	福		島	1	1	1	0	0.0%
08	茨	:	城	1	1	1	0	0.0%
09	栃		木	0	0	0	0	0.0%
10	群		馬	1	1	0	0	0.0%
11	埼		玉	1	1	1	1	100.0%
12	千	;	葉	2	3	3	0	0.0%
13	東		京	1	2	2	2	100.0%
14	神		Ш	1	2	2	0	0.0%
15	山		梨	1	12	12	1	8.3%
16	新		潟	1	2	2	1	50.0%
17	長		野	0	0	0	0	0.0%
18	富		山	4	8	8	1	12.5%
19	石	,	Ш	1	2	2	1	50.0%
20	福		井	1	1	1	0	0.0%
21	静		岡	5	9	9	4	44. 4%
22	愛		知	9	50	48	12	25.0%
23	岐		阜	4	34	34	4	11.8%
24	三		重	3	12	12	0	0.0%
25	滋		賀	2	3	3	1	33. 3%
26	京		都	1	1	0	0	0.0%
27	大		阪	7	67	64	14	21. 9%
28	兵		庫	3	21	20	5	25. 0%
29	奈		良	0	0	0	0	0.0%
30	和		山	0	0	0	0	0.0%
31	鳥		取	0	0	0	0	0.0%
32	島		根	1	3	3	2	66. 7%
33	岡		山	5	21	21	4	19.0%
34	広山		島口	3	7	7	$\frac{1}{2}$	14. 3%
35	山油		白白	3	9	9	2	22. 2%
36	徳		島	1			0	0.0%
37	香		川 媛	2	5 5	5 5	0	0.0%
38	愛高		短知		5 5	5 5	1	20.0%
39 40	福		別岡	1 8	20	18	$\frac{0}{3}$	0. 0% 16. 7%
41	佐		賀	0	0	0	0	0.0%
42	長		順崎	1	2	2	1	50.0%
43	だ熊		本	3	15	15	$\frac{1}{4}$	26. 7%
44	大		分分	3	12	11	3	27. 3%
45	宮		万崎	3	6	6	0	0.0%
46	鹿		島	9	23	23	5	21. 7%
47	池沖		超縄	0	0	0	0	0.0%
	<u>作</u> 合		小巴	105	419	405	79	19. 5%
	口	口口		105	419	405	19	19. 5%

都道府県別実施結果 (3級 C言語)

	$\overline{}$	項目	F	中込数		۸ اد سه	Λ [.έ. - 1.
都道	府県	名	校数	人数	受検者	合格者	合格率
01	北			172	171	128	74. 9%
02	青	森		90	90	68	75.6%
03	岩	手	2	6	5	2	40.0%
04	宮	城	4	38	35	13	37. 1%
05	秋	田	4	27	27	17	63.0%
06	Щ	形	4	49	48	35	72.9%
07	福	島	4	87	80	49	61. 3%
08	茨	城	4	34	34	20	58.8%
09	栃	木	5	35	35	25	71.4%
10	群	馬	5	55	52	47	90.4%
11	埼	玉		52	49	25	51.0%
12	千	葉	6	155	152	114	75.0%
13	東	京		86	74	36	48.6%
14	神	奈 川	8	50	47	25	53. 2%
15	Ш	梨		31	31	25	80.6%
16	新	潟	5	31	31	13	41.9%
17	長	野	9	97	95	42	44. 2%
18	富	Щ	4	23	23	16	69.6%
19	石	JII	3	28	28	21	75.0%
20	福	井	0	0	0	0	0.0%
21	静	岡	8	146	144	124	86. 1%
22	愛	知		987	965	827	85. 7%
23	岐	阜		74	72	54	75.0%
24	三	重		138	135	82	60. 7%
25	滋	賀		242	239	94	39. 3%
26	京	都		145	145	121	83.4%
27	大	阪		238	228	176	77. 2%
28	兵	庫		193	191	95	49. 7%
29	奈	良	1	5	4	2	50.0%
30	和	歌山		75	73	51	69. 9%
31	鳥	取		5	5	4	80.0%
32	島	根.		9	9	7	77. 8%
33	岡	<u> </u>	4	10	10	8	80.0%
34	広	島		39	38	14	36. 8%
35	山		9	64	64	43	67. 2%
36	徳	島		3	3	3	100.0%
37	香	川		5	4	4	100.0%
38	愛	媛		40	40	28	70.0%
39	高短	知		2	2	2	100.0%
40	福	田カロ	7	31	27	17	63.0%
41	佐	賀		8	7	3	42. 9%
42	長能	崎		24	24	20	83. 3%
43	熊士	本	6	126	120	80	66. 7%
44	大宮	分	4	21	17	7	41. 2%
45	宮	h 旧 自		67	62	17	27. 4%
46	鹿	児島		10	8	7	87.5%
47	冲	- 縄		77	73	45	61. 6%
	合	計	240	3, 930	3, 816	2,656	69.6%

都道府県別実施結果 (3級 新BASIC)

	_	項目	F	 申込数		A 11. 14	A 14 1
都道	府県	名	校数	人数	受検者	合格者	合格率
01	北		8	41	38	22	57.9%
02	青	森		60	59	18	30. 5%
03	岩	手	1	1	1	1	100.0%
04	宮	城	4	9	9	5	55.6%
05	秋	田	3	5	5	3	60.0%
06	Щ	形	3	6	4	2	50.0%
07	福	島	2	28	25	12	48.0%
80	茨	城	2	32	32	12	37. 5%
09	栃	木	1	12	12	5	41.7%
10	群	馬	2	10	10	8	80.0%
11	埼	玉	2	3	3	3	100.0%
12	千	葉	4	52	51	44	86.3%
13	東	京		11	10	8	80.0%
14	神	奈 川	3	11	11	8	72.7%
15	Щ	梨	1	6	6	4	66. 7%
16	新	潟	1	3	3	0	0.0%
17	長	野	0	0	0	0	0.0%
18	富	山	4	48	48	31	64.6%
19	石	Щ	3	8	8	5	62.5%
20	福	井	1	1	1	0	0.0%
21	静	岡	5	79	76	52	68.4%
22	愛	知	16	381	369	248	67. 2%
23	岐	阜	7	72	66	40	60.6%
24	三	重	5	73	73	41	56. 2%
25	滋	賀		64	61	21	34. 4%
26	京	都		37	37	37	100.0%
27	大	阪	9	34	33	18	54. 5%
28	兵	庫	10	128	127	66	52.0%
29	奈	良.	1	2	2	1	50.0%
30	和	歌山	2	4	4	2	50.0%
31	鳥	取		0	0	0	0.0%
32	島	根	0	0	0	0	0.0%
33	岡	<u>山</u> 自	5	67	67	31	46. 3%
34	広	島	4	65	63	40	63. 5%
35	山油	自	4	43	39	28	71. 8%
36	徳	島	4	44	44	16	36. 4%
37	香	<u>川</u>	3	21	20	8	40.0%
38	愛古	媛	5 3	32	32	19	59. 4%
39 40	高福	<u>知</u> 岡	8	18 48	15	11 26	73.3%
41	佐	 一 賀	1	1	48	0	54. 2% 0. 0%
42	長	 		29	26	6	23. 1%
43	対熊		7	104	103	86	83. 5%
44	大	 分	7	205	203	128	63. 1%
45	宮		3	26	25	9	36. 0%
46	鹿			189	188	124	66.0%
47	沖	<u>ル 円</u> 縄		0	0	0	0.0%
	hir 合	 計	183		2, 057		
	口	耳目	183	2, 113	∠, U5 <i>1</i>	1, 249	60. 7%

IV 特別表彰

1級の受検者1,069名中 [I] [Ⅱ] の合計が190点以上を対象とした。 今回の特別表彰者は2名であった。以下学校名を掲げ、敬意を表する次第である。

	都道府県	学 校 名	人数
1	長野	長野県駒ケ根工業高等学校	1
2	滋賀	滋賀県立瀬田工業高等学校	1

年度別情報技術検定実績

回	数	級別	校数	申込者数	受検者数	合格者数	合格率	特別
(実	施 日)			A	В	С	C/B(%)	表彰
第 (51.	1 1.17) 2 回	1級 相当	94	3, 045	2, 597	666	25. 64	17
第	2 回	1級	98	2, 533	2, 214	907	40. 97	27
(52.	1. 29) 3 回	2級	110	3, 450	2,888	2,070	71. 68	
第	3 回	1級	142	3, 356	2, 928	490	16. 73	12
(53.	1.21) 4 回	2級	161	6, 633	5, 778	2, 906	50. 29	
第	4 回	1級	160	3, 083	2, 706	1,086	40. 13	30
(54.	1.20) 5 回	2級	185	8,878	7, 986	5, 485	68. 68	
第	9 1	1級	180	3, 405	3, 028	963	31.80	26
(55.	1. 19)	2級	222	10, 853	9,672	5, 307	54. 87	
第	6 回	1級	200	3, 789	3, 155	473	14. 99	6
(56.	1. 17) 7 回	2級	231	13, 168	12, 049	8, 171	67.81	Ü
第		1級	213	3,954	3, 370	928	27. 54	24
(57.	1. 16)	2級	253	14, 923	13, 399	6, 697	49. 98	47
第	8 回	1級	223	3, 996	3, 236	716	22. 13	12
(58.	1. 22)	2級	260	17,801	15, 577	9, 901	63. 56	14
第	9 回	1級	242	4,876	4,060	828	20.39	
		2級	291	16, 468	14, 992	9, 378	62. 55	7
(59.	1. 21)	3級	246	15, 358	14, 112	13, 176	93. 37	
公	0 🖪	1級	269	4, 978	4, 215	1, 323	31. 39	
第 1		2級	337	21, 516	19, 338	11,002	56.89	40
(60.	1. 19)	3級	321	31, 222	28, 319	23, 887	84. 35	
<i>bb</i> 1		1級	311	543	4, 639	992	21. 38	
第 1		2級	387	24, 248	21, 760	10, 758	49. 44	16
(61.	1. 18)	3級	397	44, 498	39, 826	34, 627	86. 95	
Entra	o H	1級	332	4, 904	4, 335	1, 085	25. 03	
第 1		2級	429	29, 301	25, 911	11, 965	46. 18	26
(62.	1. 17)	3級	551	57, 728	55, 019	46, 698	84. 88	20
..		1級	345	5, 354	4, 448	1, 472	33. 09	
第 1		2級	470	33, 087	29, 647	9, 736	32. 84	39
(63.	1. 16)	3級	576	72, 495	67, 992	56, 788	83. 52	00
		1級	374	5, 514	4, 727	1, 432	30. 29	
第 1		2級	517	43, 023	38, 778	21, 525	55. 51	48
(元.	1. 21)	3級	517 554	43, 023 83, 588			87. 35	40
				,	77, 984	68, 118		
第 1		1級	416 566	7, 845	6,675	967	14. 49 72. 15	13
(2.	1.20)	2級	566 502	50, 427	45, 845	33, 537	73. 15	19
		3級	592	84, 602	79, 716	62, 693	78.65	
第 1	6 回	1級	445	9, 173	7, 646	837	10. 95	10
(3.	1. 19)	2級	593	52, 032	48, 133	34, 653	71. 99	18
	•	3級	604	85, 625	80, 709	63, 785	79. 03	
第 1	7 回	1級	454	9, 333	8, 059	1, 045	12. 97	
(4.	1. 18)	2級	601	55, 573	51, 830	31, 183	60. 16	11
,	,	3級	613	85, 444	81, 068	65, 471	80. 76	
第 1	8 囯	1級	434	8, 326	7, 193	429	5. 96	
(5.	1. 16)	2級	606	53, 429	49, 264	24, 234	49. 19	8
, J.	1. 10/	3級	628	83, 911	79, 166	61, 844	78. 12	
第 1	9 回	1級	407	7, 022	6, 087	1, 175	19. 30	0.5
(6.	1. 22)	2級	619	53, 302	50, 236	24, 306	48. 38	80
, 0.	1. 22)	3級	632	85, 433	81, 514	56, 893	69.80	
第 2	0 回	1級	403	6, 709	5, 705	1,009	17. 69	
(7.	1. 21)	2級	605	50, 368	46, 710	25, 701	55.02	56
' ' .	1. 41)	3級	646	91, 436	85, 806	47, 117	54. 91	

回数	級別	校数	申込者数	受検者数	合格者数	合格率	特別
(実施日)			A	B	С	C/B(%)	表彰
第 2 1 回	1級	403	5, 767	5, 078	414	8. 15	1.0
(8. 1.20)	2 級	615	44, 729	42, 436	27, 875	65. 69	10
, , , , , , , , , , , , , , , , , , , ,	3級	645	93, 893	89, 494	68, 572	76. 62	
第 2 2 回	1級	408	5, 608	4, 797	417	8. 69	_
(9. 1.18)	2 級	623	43, 825	41, 115	23, 039	56. 04	8
(0. 1. 10)	3級	655	87, 614	83, 114	41,808	50. 30	
第 2 3 回	1級	387	5, 381	4, 762	908	19.07	
(10. 1.17)	2級	609	38, 988	37, 207	19,681	52.90	67
$\begin{bmatrix} (10. & 1. & 17) \end{bmatrix}$	3級	651	87,007	82, 746	51, 262	61.95	
学 9 4 E	1級	405	5, 251	4, 591	1,029	22. 41	
第 2 4 巨	2級	603	37, 146	35, 397	14, 340	40. 51	38
(11. 1.16)	3級	644	85, 542	81, 183	42, 361	52. 18	
hote o	1 級	365	4, 880	4, 406	1, 711	38. 83	
第 2 5 回	2級	577	36, 329	34, 712	16, 451	47. 39	120
(12. 1.15)	3級	634	87, 636	83, 739	50, 147	59. 88	
	1 級	380	5, 235	4, 759	707	14. 86	
第 2 6 回	2級	579	33, 536	32, 221	13, 524	41. 97	20
(13. 1.20)							20
	3級	628	84, 872	81, 527	55, 507	68. 08	
第 2 7 回	1級	361	4, 483	4, 122	1, 017	24. 67	07
(14. 1.19)	2 級	556	31, 734	30, 637	12, 219	39. 88	97
(11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	3級	616	79, 089	76, 333	44, 196	57. 90	
第 2 8 回	1級	288	2, 154	1, 939	493	25. 43	
(14. 6.22)	2級	417	9, 395	8,656	3, 273	37.81	24
(14. 0. 22)	3級	374	6, 178	5, 445	1, 246	22.88	
第 0 0 E	1 級	369	4, 093	3, 755	727	19. 36	
第 2 9 回	2級	532	25, 451	24, 325	8, 155	33. 53	45
(15. 1.18)	3級	601	74, 479	70, 644	39, 775	56. 30	
heles o o	1 級	313	2,637	2, 365	336	14. 21	
第 3 0 叵	2級	433	10, 239	9, 419	2, 940	31. 21	9
(15. 6.28)	3級	390	7, 719	6, 888	4, 002	58. 10	Ü
	1 級	339	3, 527	3, 207	491	15. 31	
第 3 1 回	2級	518	21, 642	20, 703	10, 617	51. 28	11
(16. 1.17)	3級		· ·	66, 358	36, 840		11
		578	69, 506		272	55. 52	
第 3 2 回		306	2, 695	2, 468		11. 02	1
(16. 6.26)	2級	438	8, 708	8,007	1, 750	21. 86	1
	3級	399	7, 450	6, 663	2, 363	35. 46	
第 3 3 巨	1級	327	3, 139	2, 857	580	20. 30	0.0
(17. 1.15)	2 般	495	20, 084	19, 173	9, 898	51. 62	38
	3 般	577	65, 483	62, 488	35, 784	57. 27	
第 3 4 回	1級	304	2, 444	2, 266	368	16. 24	
(17. 6.24)	2 般	435	7, 896	7, 436	3, 046	40. 96	12
(11, 0, 24)	3 般	400	6, 548	6, 057	3, 570	58. 94	
第 3 5 回	1級	328	3, 232	2, 998	550	18. 35	
	•) 🗓	490	17, 843	17, 164	8, 170	47.60	31
(18. 1.24)	3級	567	59, 001	56, 655	40, 740	71. 91	
学 9 C =	1 級	296	2, 314	2, 127	185	8. 70	
第 3 6 巨	2級	426	8, 386	7, 891	2, 278	28. 87	4
(18. 6.23)	3級	370	5, 123	4, 693	2, 182	46. 49	_
tota	1 級	308	2, 900	2, 716	473	17. 42	
第 3 7 回	2級	480	17, 013	16, 463	4, 878	29. 63	17
(19. 1.23)				· ·			11
	3級	556	57, 198	55, 309	39, 368	71. 18	
第 3 8 回	1級	273	1,870	1, 765	177	10. 03	0
(19. 6.22)	2 級	425	9, 146	8, 767	4, 418	50. 39	8
· = - /	3級	376	5, 983	5, 601	2, 916	52.06	

日	数			由は李粉		△ 坂	△按索	特別
	施日)	級別	校数	申込者数 A	受検者数 B	合格者数 C	合格率 C/B(%)	表彰
		1級	292	2, 884	2,711	276	10. 18	2 ()
第 3	9 回	2級	454	15, 124	14, 660	6, 869	46. 86	9
(20.	1. 22)	3級	559	58, 472	56, 469	37, 855	67. 04	
tota .		1級	286	1, 854	1,686	347	20. 58	
第 4	0 回	2級	409	8, 243	7, 837	1, 725	22. 01	16
(20.	6. 27)	3級	371	5, 903	5, 510	3, 930	71. 32	10
		1級	276	2, 349	2, 178	512	23. 51	
第 4	1 回		469		i -			18
(21.	1.20)	2級		15, 594	14, 982	6, 794	45. 35	10
		3級	555	58, 751	56, 657	45, 473	80. 26	
第 4	2 回	1級	278	1, 797	1,654	166	10.04	0
(21.	6.26)	2級	425	9, 199	8, 694	3, 324	38. 23	3
`		3級	362	4, 939	4, 622	2,600	56. 25	
第 4	3 回	1級	278	2, 327	2, 178	463	21. 26	
(22.	$1. \ \ 2.2)$	2級	425	14, 608	14, 236	5, 901	41. 45	44
(22.	1. 22)	3級	362	56, 881	55, 269	41,646	75. 35	
第 4	4 回	1級	261	1, 776	1,654	365	22. 07	
(22.	6. 25)	2級	422	9, 116	8,720	4, 249	48. 73	20
(22.	O. 20)	3級	366	5, 281	4,970	2, 572	51. 75	
第 4	E 151	1級	287	2,614	2, 461	502	20.40	
第 4	5 回 1.21)	2級	439	13, 639	13, 183	4,067	30.85	53
(23.	1. 21)	3級	550	58, 134	56, 234	47, 207	83. 95	
<i>5</i> 55° 4	0 🖂	1級	231	1, 336	1, 275	217	17. 02	
第 4	6 回	2級	414	9, 686	9, 416	4, 038	42.88	14
(23.	6.24)	3級	359	5, 112	4, 867	3, 010	61. 85	
tota .		1級	236	1, 923	1,835	520	28. 34	
第 4	7 回	2級	437	13, 437	13, 080	6, 545	50. 04	21
(24.	1. 20)	3級	549	57, 413	56, 052	33, 987	60. 63	21
		1級	229	1, 380	1, 344	254	18. 90	
第 4	8 回	2級	392	7, 630	7, 469	2, 621	35. 09	9
(24.	6.22)	3級	388	7, 338	7, 409	3, 688	51. 97	3
					·	375	20. 20	
第 4	9 回	1級 2級	$237 \\ 422$	1, 931	1,856			32
(25.	1. 18)			13, 120	12, 837	7, 755	60. 41	32
		3級	536	58, 940	57, 339	39, 231	68. 42	
第 5	0 回	1級	236	1, 280	1, 234	288	23. 34	1.4
(25.	6.28)	2級	390	6, 627	6, 443	3, 525	54. 71	14
	•	3級	362	5, 589	5, 347	2, 446	45. 75	
第 5	1 回	1級	238	1, 995	1, 921	312	16. 24	000
(26.	1. 17)	2級	408	11, 389	11, 222	5, 490	48. 92	28
· · ·	- ,	3級	541	57, 304	56, 172	35, 054	62. 40	
第 5	2 回	1級	208	1, 138	1, 064	115	10.81	_
(26.	6. 27)	2級	371	5, 594	5, 368	2, 767	51. 55	6
. 2 0 .	J. 2 1)	3級	373	5, 872	5, 579	2, 919	52. 32	
第 5	3 回	1級	220	1, 583	1, 501	379	25. 25	
(27.	1. 16)	2級	388	11,006	10, 696	3,857	36.06	20
(21.	1. 10)	3級	527	55, 273	53, 595	32, 514	60.67	
第 5	4 旦	1級	181	1,077	1,015	246	24. 24	
宛 5 (27.	• • •	2級	361	5, 772	5, 561	2, 244	40.35	19
(21.	6.26)	3級	349	5, 839	5, 546	3, 399	61. 29	
学 「		1級	192	1, 352	1, 279	295	23. 06	
第 5	5 回	2級	367	10, 869	10, 434	3, 342	32. 03	41
(28.	1. 15)	3級	519	54, 243	52, 606	39, 267	74. 64	
/*/* -	o 🖂	1級	184	1, 005	964	189	19. 61	
第 5	6 回	2級	344	6, 078	5, 883	1, 746	29. 68	7
(28.	6.24)	3級	327	4, 517	4, 329	2, 512	58. 03	
		の脳	J41	4,017	4, 349	۷, ۵۱۷	90 . U3	

回 (実)	数 を 日)	級別	校数	申込者数 A	受検者数 B	合格者数 C	合格率 C/B(%)	特別 表彰
第 5 (29.	7 回 1.20)	1級 2級 3級	179 347 515	1, 310 9, 977 52, 713	1, 231 9, 609 50, 796	197 4, 169 32, 475	16. 00 43. 39 63. 93	3
第 5 (29.	8 回 6.23)	1級 2級 3級	176 340 341	1, 119 4, 974 6, 043	1, 069 4, 806 5, 873	172 1, 730 3, 905	16. 09 36. 00 66. 49	2

情報技術検定試験(1,2,3)級合計数の推移

情報技術検定試験年度別データ(1級)

情報技術検定試験年度別データ(2級)

情報技術検定試験年度別データ(3級)

まとめ

第58回検定試験(平成29年6月23日実施)について、前年同期と比較しながらまとめを行いました。() 内の数値は昨年同期第56回検定試験のものです。

1 級別受検校と受検者

項目	1級	2 級	3 級	合計
受検校	176	340	341	413
	(184)	(344)	(327)	(416)
申込者	1,119	4,974	6,043	12,136
	(1,005)	(6,078)	(4,517)	(11,600)

受検校総数は3校の減少となりました。申込者については、2級で減少となりましたが、1級が114名、3級が1, 526名の増加となり、申込者総数では、536名の増加となりました。

2 級別合格者

項目	1級	2級	3 級	合計
受検者	1,069	4,806	5,873	11,748
合格者	172	1,730	3,905	5,807
合格率	16.09% (19.61%)	36.00% (29.68%)	66.49% (58.03%)	49.43% (39.79%)

合格率については、1級は昨年度同期より 3.52 ポイント下がりましたが、2級は 6.32 ポイント、3級は 8.46 ポイント上がりました。全体の合格率は昨年度同期より 9.64 ポイント上がっています。

合格目標として、全体で 60%、 1級 20%、 2級 50%、 3級 70%の合格率を期待して 検定問題作成を行っています。

今後も検定問題と合格率の分析をして目標の合格率が達成出来るように、出題したいと考えています。

1級は「C言語」のみ、2級と3級が「JIS Full BASIC」「C言語」からの選択受 検になっています。各言語による合格率は次表のとおりです。

項目	C言語	JIS Full BASIC
1級	16.09(19.61)	_
2級	37.51(30.64)	19.51(20.74)
3級	69.60(59.44)	60.72(55.79)

今回は1級の合格率が目標値(20%)より4ポイントほど低くなりました。 2級においては「C言語」が「JIS Full BASIC」より 18 ポイントも高い結果となりました。また、3級においてもC言語の方が9ポイント近く高くなっています。

次回の出題についても、当協会発行の「平成29年度版情報技術検定標準問題集」 をしっかり学習をしておけば、合格率がアップするものと確信しています。

1級の受検者で、特に優秀な成績を収めた生徒を特別表彰者とし、学校名を掲載いたしました。

該当生徒はもちろんですが、表彰されることを目指して日々努力するように励ましと、 今後の指導をお願いいたします。

最後になりますが、問題集の活用と受検者数の増加について、会員各位の積極的な ご支援ご協力をお願い申し上げます。

平成29年度 前期 文部科学省 後援 第58回 情報技術検定試験問題

1級種目[I]ハードウェアの基礎知識

試験時間 50分

==注意事項 =

- 1. 「始め」の合図があるまで、試験問題を開かないこと。
- 2. 「用意」の合図があったら、問題用紙の最後についている解答用紙を切り離して、科、学年、組、受検番号及び氏名を記入すること。
- 3. 「始め」の合図があったら、試験問題を開き、試験をはじめること。
- 4. 解答は解答用紙に記入すること。また、解答群のあるものは記号で答えること。
- 5. 試験終了後, 試験問題及び解答用紙を提出すること。

公益社団法人 全国工業高等学校長協会

	بمدر	T. 7		
	子	一 一 一	L	
1	在	松	124	·
科	+-	(円)		
וי ין	•	番	b	
	₩	一		
	1211	一一一一一一一一一一一一一一一一一一一	"	

- 1 次の各間に答えなさい。
 - ① 16進数小数(19.DD)16と2進数(1000)2について、(19.DD)16×(1000)2の計算結果を、10進数の分数で表しなさい。ただし、分数は約分の結果、分母が最も小さな整数になるように表しなさい。
 - ② 2の補数で表された2進数8ビットの負数10101110の絶対値を2進数で表しなさい。
 - ③ 負数ではない 2 進数 $(b_2 b_1 b_0)_2$ を18倍したものを, b_2 , b_1 , b_0 , 1, 0のいずれかを各けたに使って, 最も簡潔な 2 進数で表しなさい。ただし, 元の数の b_2 , b_1 , b_0 は, 2 進数の各けたの数を表し, 1 または 0 のいずれかである。また, 18倍された 2 進数の各けたは, b_2 + b_1 , b_2 × b_1 , b_0 +1, などの式で表されることはないものとする。
 - ④ 関数int (x) は,実数xを引数として,xを超えない最大の整数値を返すものとする。たとえば,x=12.3のとき,int (x)=12となり,x=-45.6のとき,int (x)=-46となる。 yが正の整数 (y>0),zが正の小数 (0<z<1)のとき,x=-(y+z)であるとする。 x-int(x)をzを用いた式で表しなさい。
 - ⑤ 4桁の10進数の整数(A₃ A₂ A₁ A₀)₁₀から、C=mod ((A₀×1+A₁×2+A₂×3+A₃×4), 10)の演算で検査数字(チェックディジット)Cを計算した。4桁の10進数の整数が(2017)₁₀のとき、検査数字(チェックディジット)Cの値はいくらになるか。ただし、関数mod(x, y)は、xをyで割った余りとする。また、A₃、A₂、A₁、A₀は、10進数の各けたの数を表し、0~9のいずれかとする。

|2| 次の各問に答えなさい。

問1 コンパレータは、二つの入力電圧を比較して、その結果を出力する回路である。下図の回路 のコンパレータは、入力電圧Vin-を一定にして入力電圧Vin+を変化するとき、入力電圧Vin+が 入力電圧Vin-より高いとき出力Voutの論理は1で、入力電圧Vin+が入力電圧Vin-以下のとき出 力Voutの論理が0であるとする。下図の回路でアナログ入力電圧Vaを変化させると、コンパレ ータCMP1~CMP3のはたらきにより、Vaの値によってA、B、Cへ出力される論理が変化する ことがわかる。この回路において次の各間に答えなさい。

(1) Vaの値によってA, B, Cへ出力される論理を表す真理値表を完成しなさい。

Va	A	В	С	D	Е
Va≦V1				0	0
$V_1 < V_a \leq V_2$				0	1
$V_2 < V_a \leq V_3$				1	0
V3 <va< td=""><td></td><td></td><td></td><td>1</td><td>1</td></va<>				1	1

(2) 真理値表を満たす回路になるように、回路図中の空欄①、②に適する論理回路を解答群から 選び、記号で答えなさい。

(3) この回路を表す最も適切なものを解答群から選び、記号で答えなさい。

- 解答群 —

- ア. 2ビットエンコーダ イ. 4ビットエンコーダ ウ. 2ビットA-Dコンバータ

- エ. 4ビットA-Dコンバータ オ. 2ビットD-Aコンバータ カ. 4ビットD-Aコンバータ

問2 次のJKフリップフロップを組み合わせた回路のタイムチャートを完成しなさい。

3 次の各間に答えなさい。

問1 次の①~③の空欄を適切な数値で埋めなさい。

下表の仕様の磁気ディスク装置において、1セクタ分のデータの読み出しに必要な平均時間 を求めたい。まず、回転数からこのディスクが1回転するのに何ミリ秒必要であるのかがわか る。これから、平均回転待ち時間は ① ミリ秒と計算できる。1セクタのデータ長は512バ イトであるので、1セクタ分のデータ転送時間は ② ミリ秒となる。したがって、1セクタ 分だけのデータ呼出しに必要な平均時間は ③ ミリ秒となる。ただし、データの読み出しの 開始時には、シークが完了しているものとする。

データ長	512バイト/セクタ
回転数	7500回転/分
平均シーク時間	7ミリ秒
データ転送時間	128000バイト/秒

問2 インターネットの通信に関する説明について, 次の①~⑥の空欄に当てはまる最も適切な ものを解答群から選び、記号で答えなさい。

家庭などでインターネットを利用する際には、さまざまな通信回線を使い、インターネット 接続業者をとおして、コンピュータをインターネットに接続することが多い。

自宅から数km以内の収容局まで電話回線用の金属線を用いて電話の音声に使わない高い周 波数帯を使って通信する方式を, □ □ という。下り(収容局→利用者)と上り(利用者→収 容局)の通信速度が異なり、通信速度は下りが上りより ② 。この方式では、収容局まで の距離が長いと通信速度が遅いという欠点がある。

光ファイバーを一般個人宅へ直接引き込む通信方式を「③」という。集合住宅などにおい て、配管の都合で光ファイバーを戸別住戸へ直接引き込めないような場合、
④ と組み合わ せる技術が用いられる。電話回線用の主配電盤(MDF: Main Distributing Frame)までは光 ファイバーを用いて、そこから戸別住戸の短い区間のみ既存の電話回線用の ⑤ 線を利用 して通信する。

また、モバイルブロードバンドは、 ⑥ 「でインターネットに接続する技術である。

- 解答群 –

ア. 遅い

イ. 速い

ウ. 距離

工、時間

オ. パケット

カ. スプリッタ

キ. モデム

ク. 無線

ケ. 金属

コ. 光ファイバー

サ. VDSL (Very high-bit-rate Digital Subscriber Line) シ. FTTH (Fiber To The Home)

ス. ADSL (Asymmetric Digital Subscriber Line) セ. ISP (Internet Service Provider)

4 アセンブリ言語に関する説明について、次の ①~⑩ の空欄に当てはまる最も適切なものを解答群から選び、 記号で答えなさい。ただし、 以下のアセンブリ言語が実行される仮想コンピュータは、1 語16ビットで構成されているものとする。また、同じ記号を複数回使用してもよい。

アセンブリ言語のプログラムにおいて、メインルーチンから ① を呼び出して実行すると、処理内容によって ② レジスタの値が変化することがある。 ① 実行前に ② レジスタの値を一時的にスタック領域に待避しておくと、 ② 実行後に待避しておいた値を ② レジスタに復帰することができる。

データの待避にPUSH命令、データの復帰にPOP命令を用いるとき、次の順で10個の命令を実行すると、スタック領域に格納されているデータは図のようになった。このとき、1番目のPUSH命令(① PUSH)で待避されたデータは② で、9番目のPUSH命令(⑨ PUSH)で待避されたデータは② である。

 $1 \text{ PUSH} \rightarrow 2 \text{ PUSH} \rightarrow 3 \text{ PUSH} \rightarrow 4 \text{ PUSH} \rightarrow 5 \text{ PUSH} \rightarrow 6 \text{ POP} \rightarrow 7 \text{ POP} \rightarrow 8 \text{ POP} \rightarrow 9 \text{ PUSH} \rightarrow 10 \text{ PUSH}$

アセンブリ言語のプログラムの一例を次に示す。

	ラベル欄	命令コード欄	オペランド欄	注釈欄
1	EX1	START		;プログラムの始まり
2		LAD	GR1, 10	;値10をレジスタGR1に格納する
3		LAD	GR2, 20	;値20をレジスタGR2に格納する
4		PUSH	0, GR1	;レジスタGR1の値を待避する
5		PUSH	0, GR2	;レジスタGR2の値を待避する
6		ADDA	GR1, GR2	;レジスタGR2の値をレジスタGR1の値に加算してGR1に格納する
7		POP	GR2	;待避した値をレジスタGR2に復帰する
8		POP	GR1	;待避した値をレジスタGR1に復帰する
9		SUBA	GR1, GR2	;レジスタGR1の値からレジスタGR2の値を減算してGR1に格納する
10		ST	GR1, A	;レジスタGR1の値をメモリ領域Aに格納する
11		ADDA	GR1, GR2	;レジスタGR2の値をレジスタGR1の値に加算してGR1に格納する
12		ST	GR1, B	;レジスタGR1の値をメモリ領域Bに格納する
13		RET		;プログラムの実行を終了
14	A	DS	1	;Aという名前をつけた1語分のメモリ領域を確保する
15	В	DS	1	;Bという名前をつけた1語分のメモリ領域を確保する
16		END		;プログラムの終わり

このプログラムでは、 4行目のPUSH命令実行時にレジスタGR1の値は(⑤)10であり、5行目のPUSH命令実行時にレジスタGR2の値は(⑥)10である。また、 7行目のPOP命令実行直後のレジスタGR2の値は(⑦)10であり、8行目のPOP命令実行直後のレジスタGR1の値は(⑧)10である。その後の演算の結果、メモリ領域Aの値は(⑨)10となり、 メモリ領域Bの値は(⑩)10となる。

┌── 解答群 ──						
ア.0	イ. 10	ウ. 20	エ. 30	才10	カ20	キ30
ク. 110	ケ. 234	コ. 89	サ. 96	シ. 34	ス. 85	セ. 汎用
ソ. 関数	タ. サブ	ルーチン	チ. フラグ	ツ. オブジュ	こクト	

5 ソフトウェアの開発に関する説明について、次の①~⑩の空欄に当てはまる最も適切なものを解答群から選び、記号で答えなさい。

ウォータフォールモデルによるソフトウェア開発行程において,テストはまず ① から行われる。これは,作成したモジュールがうまく動作するかどうかのテストである。

次に、モジュールどうしを結合させて ② を行う。このとき、上位モジュールから下位モジュールへと順番に結合していくテスト方法を ③ という。このとき、未完成の下位モジュールの代わりをするプログラムを ④ と呼ぶ。

また、下位モジュールから上位モジュールへという順序で行うテスト方法を ⑤ と呼ぶ。 このとき、未完成の上位モジュールの代わりをするプログラムを ⑥ と呼ぶ。この他にすべ てのモジュールをすべて結合して行う ⑦ という方法もある。

一応完成したソフトウェアについて、機能・性能・操作性などが、要求仕様を満たしているかどうかというテストを総合的にテストする。このテストを、総合テストまたは「®」という。

最終テストは運用テストと呼ばれ、実際に運用する時と同じ環境やデータでテストを行う。

これらのテストのうち、プログラムの内部構造や論理に基づいて行うテストを ⑨ と呼び、 ⑩ が、この方法で行われる。一方、プログラムの内部構造は分からないものとして、プログラムの仕様だけからテストする方法を ⑩ という。 ② 以降のテストはこの方法で行われる。

- 解答群 —

ア. 結合テスト イ. システムテスト ウ. ホワイトボックステスト エ. ブラックボックステスト

オ. 折衷テスト カ. トップダウンテスト キ. ボトムアップテスト ク. ビッグバンテスト

ケ. 単体テスト コ. テストデータ サ. ドライバ シ. オブジェクト

ス. スタブ セ. イニシエータ ソ. ターミネータ

公益社団法人 全国工業高等学校長協会 平成29年度前期 第58回1級情報技術検定

試験問題〔Ⅰ〕解答用紙

1	1	2	3		4	(5)
		($)_2$	$\Big)_2$		
			, , ,	,,,		
2		Va A Va≦V1 V1 V1 V2 V2 V3 V3 Va	B C D E 0 0 1 1 0 1 1	(2)	2	
	問 2	CK_{0} D_{0} Q_{1} Q_{1} Q_{2} Q_{3} Q_{4} Q_{4}				
3	問 1		2	COTT-SEPARTO HIT	3	
	問 ①	2	3	4	(5)	6
4	1	2	3	4		<u>.</u>
	6	7	8	9		10
5	① ⑥	② ⑦	(3) (8)	9		(5) (1)
1情技術	級 è[I]	学 年 · 組	受検番号	氏 名		得 点

平成29年度 前期 文部科学省 後援 第58回 情報技術検定試験問題

1級種目[Ⅱ]プログラミングの基礎知識

試験時間 50分

4			
*/ * .	-	- I -	
V/T-	意	-	1111
1-1-	. 🖂	#	

- 1. 「始め」の合図があるまで、試験問題を開かないこと。
- 2. 「用意」の合図があったら、問題用紙の最後についている解答用紙を切り離して、科、学年、組、受検番号及び氏名を記入すること。
- 3. 「始め」の合図があったら、試験問題を開き、試験をはじめること。
- 4. 解答は解答用紙に記入すること。また、解答群のあるものは記号で答えること。
- 5. 問題のアルゴリズムは、最適化されているものとする。したがって、 流れ図やプログラムにおいては、無駄な繰り返しや意味のない代入は 行われていないものとする。
- 6. 試験終了後, 試験問題及び解答用紙を提出すること。

公益社団法人 全国工業高等学校長協会

		1.5		3.14	fill facilities from the fill for the fill f	1 5/15/14/17	
科	学年	受検番	E.	,			
	組	号	2	1			

1 次の流れ図は、基本挿入法によりn個のデータを昇順に並べ替えるアルゴリズムを示している。 ただし、並べ替えの対象となるデータは、配列d(1)~d(n)に入力されるものとする。また、ループ2とループ3のループ端の条件式は繰り返しの終了条件である。①~⑤の空欄を埋めて流れ図を完成しなさい。

考え方

基本挿入法による並べ替えは、既に整列しているデータ列に対し、次のデータを挿入すべき位置を探し、挿入位置以降のデータを1つずらしてそこにデータを挿入するという操作を繰り返して並べ替える方法である。この操作を、先頭データの1つがソート済みデータ列であるとして、次のデータを挿入するところから始める。

the first of the f

1 / 1 / 1 / E

 $\boxed{2}$ 次の流れ図は、シンプソンの公式を利用して定積分 $\int_a^b f(x)dx$ の近似値を求めるものである。 ただし、関数 f(x) は定義されているものとする。 ①~⑤の空欄を埋めて流れ図を完成しなさい。

考え方

定積分 $\int_a^b f(x)dx$ の値は、下図のように x=a, x=b, y=0, y=f(x) によって囲まれた部分の面積に等しい。

シンプソンの公式を使う区分求積法は、等分割した微小区間を二次曲線により曲線を近似して定積分の近似値を求める方法である。

いま,区間 [a, b] を 2n 等分すると,各微小区間の幅 h は,

$$h = \frac{b-a}{2n}$$

となる。関数 y=f(x) 上の 3 点 $f(x_0)$, $f(x_1)$, $f(x_2)$, を通る 2 次曲線をy=g(x) とすると,微小区間 $[x_0, x_2]$ において, 2 次曲線y=g(x) と直線 $x=x_0$, $x=x_2$ および x 軸とで囲まれた図形の面積 S_1 は,

$$S_1 = \int_{x_0}^{x_2} g(x) dx = \frac{h}{3} \{ f(x_0) + 4 f(x_1) + f(x_2) \}$$

で求められる。この式をシンプソンの公式という。

このシンプソンの公式を用いて、区間 [a, b] について微小区間の面積を合計すれば定積分の近似値を求めることができる。

 $\boxed{\bf 3}$ 次の流れ図は、キーボードから実数 A(A>0) を入力し、その平方根をニュートン法により求めるものである。ただし、ループ端の条件式は繰り返しの終了条件である。① \sim ⑤の空欄を埋めて流れ図を完成しなさい。

考え方

 $x=\sqrt{a}$ とすると, $x^2=a$, すなわち $x^2-a=0$ である。したがって, 正の実数 a の平方根を求めることは, x軸 (y=0)と関数 $f(x)=x^2-a$ との交点を求めることと同じである。

ある値 x_0 における関数の接線の方程式は、

微分係数を使って,

$$y-f(x_0)=f'(x_0)(x-x_0)$$

であるから, x軸との交点を xiとすると,

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

となる。したがって、漸化式で表すと、

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = \frac{x_i^2 + a}{2x_i}$$

となる。これにより、 x_2 、 x_3 , x_4 と次々に値を求めることができ、 x_1 と x_{1+1} との差が十分小さくなったら収束したものとして、そのときのxの値を、求める平方根の近似値とする。

また,一定回数反復しても収束しないとき は,処理を中止する。

ここでは、繰り返し回数の上限を20回とし、 収束したかどうかの判定の限度を10⁻⁶とする。

|4| 縦・横・斜めの合計がすべて同じになるように, $1\sim$ N 2 までの連続した異なる数を正方形に並 べたものをN次の魔方陣という。次のプログラムは、Nが奇数の魔方陣を作成するもので、 今回は 5次の魔方陣を作成するように設定している。①~⑤の空欄を埋めてプログラムを完成しなさい。

```
#include <stdio.h>
#define NUM 5
int main(void)
    int ms[NUM][NUM];
    int x, y, j;
    int p, q; //表示用
    x = (NUM - 1) / 2;
    y = 0;
    ms[y][x] = 1;
    for (j = 0); j \leftarrow NUM * NUM; <math>j++)
        if (j % NUM == (2)) {
            y = y + 1;
        }
        else{
            3 = x + 1;
            y = y - 1;
            if (y == -1) {
                   \boxed{4} = NUM - 1;
            else if (x > (NUM - 1)) {
                 x = 0;
        ms[y][x] = \boxed{5};
    }
    /*表示用*/
    for (p = 0; p \le NUM - 1; p++) {
        for (q = 0; q \le NUM - 1; q++) {
            printf("%d\f", ms[p][q]);
        printf("\frac{Y}n");
    return 0;
```

考え方

魔方陣は、Nが奇数の場合に限り、比較的簡 単に作ることができる。配列をA、最大数を Nとして、手順とその参考図を示す。

- 1) 1行目の中央に1を入れる。図(a)
- 2) 右斜め上に、次の数字を順次入れて行く。
- 3) 枠の外に出たら、反対側の端に入れる。 (2のとき図(b)のように、4のとき図(c) のように。)
- 4) すでに数が入っていて進めないときは、 すぐ下に入れる。
 - (6のとき図(d)のように。) ただし、これが起こるのは、入れようと している数を魔方陣の次数Nで割ったと きの余りが1の時のみである。
- 5) これをN²まで繰り返す。

A(0,0)	A(0,1)	A(0,2)	A(0,3)	A(0,4)	
A(1,0)	A(1,1)	A(1,2)	A(1,3)	A(1,4)	
A(2,0)	A(2,1)	A(2,2)	A(2,3)	A(2,4)	
A(3,0)	A(3,1)	A(3,2)	A(3,3)	A(3,4)	
A(4,0)	A(4,1)	A(4,2)	A(4,3)	A(4,4)	
2 次元配列					

}

		1]
4 →	-				- 4
				3	
			2		
		(c)			

		1		
	5			
4	6			
				3
			2	

		2	1
	1		
		4	
		2	
	(b)		

17	24	1	8	15			
23	5	7	14	16			
4	6	13	20	22			
10	12	19	21	3			
11	18	25	2	9			
	(A)						

5 次のプログラムは、自然数 (今回は65535以下の正の整数) をキーボードから入力し、2 進数に変換し出力するものである。ただし、NUMBEROFBITに設定された数値 (今回は16、最大32) のビット数をすべて出力し、4 ビットごとに区切って表示するように、例えば、10進数の5 が入力されれば、2 進数としては101であるが、出力は、0000 0000 0000 0101 と表示できるように、①~⑤の空欄を埋めてプログラムを完成しなさい。

考え方

}

- (1) 10進数を2進数に変換するためには、右下の図のように2で割った余りを逆向きに並べれば良い。
- (2) 4桁ごとに区切るために、桁数を5で割った余りが4である場所にスペースを入れている。

```
#include <stdio.h>
                                           /*表示したいビット数を4の倍数で設定*/
#define NUMBEROFBIT 16
#define NOB NUMBEROFBIT + NUMBEROFBIT / 4 /*必要な配列の大きさを計算し NOB に設定*/
int main(void)
   int dec, i;
                                            2) 10
   char code[NOB];
                                            2) 5 · · · 0
   code[NOB - 1] = '\forall 0';
                                            2) 2 \cdot \cdot \cdot 1
                                                             余りを下から読む
                                            1 \cdot \cdot \cdot 0
   for (i = NOB - 2; i >= 0; | ① |) {
        if (i \% 5 == 4) {
                                                  0 \cdot \cdot \cdot 1
            (2) = ''-';
        }
                                                    商が0になれば終わり
       else {
            code[i] = '0';
    }
   printf("65535以下の正の整数を入れてください。");
    scanf("%d", &dec);
    i = NOB - 2;
    while (dec > 0) {
        if ( ③ % 2) {
            code[i] = '1';
        }
        dec /= 4 ;
        i--;
        if (i % 5 == 4) {
            i--;
    printf("%s\n", \(\bar{5}\);
    return 0;
                               (注)プログラム中の「山」はスペース(空白)を表す。
```

公益社団法人 全国工業高等学校長協会 平成29年度前期 第58回1級情報技術検定 試験問題〔Ⅱ〕解答用紙

1	1	2	3	4	5
				`	
2	1	2	3	4	(5)
3	1)	2	3	4	(5)
					<u> </u>
4	1)	2	3	4	(5)
				water to the state of the state	<u> </u>
<u></u>					
5	1)	2	3	(4)	(5)
					:
		举 巫			
1 情技	級 検〔Ⅱ〕	学 年 · 組	氏 名		得点

平成29年度 前期 文部科学省 後援 第58回 情報技術検定試験

2 級 JIS Full BASIC · C言語 問題

試験時間 50分

==注意事項 =

- 1. 前もって問題用紙の最後についている解答用紙を切り離して、科、学年・組、受検番号及び氏名を記入し、「始め」の合図で試験問題を開くこと。
- 問題 ① から ⑦ は各言語共通問題, 8, 9 はJIS Full BASICとC言語 からの選択問題となっている。

JIS Full BASIC、C言語の順になっているので注意すること。

- 3. 解答は解答用紙に記入し、問題图、9は解答する言語を丸で囲むこと。
- 4. 問題のアルゴリズムは最適化されているものとし、無駄な繰り返しや 代入は行われていないものとする。
- 5. 試験終了後, 試験問題及び解答用紙を提出すること。

公益社団法人 全国工業高等学校長協会

				4. 1.14.14.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	•	
科	学年 組	NAME OF STREET	受険番号	氏名	£	

次の)各問に答えなさい。		
問1	次の2進数を 10 進数に変換しなさい。		
1)	(1011 0011)2	2	(1001.011)2
問 2	次の 10 進数を 16 進数に変換しなさい。		
3	(73)10	4	(2 2 9)10
問3	次の 16 進数を2進数に変換しなさい。		
(5)	(B 5) ₁₆	6	(A8.C) ₁₆
		なさい。	ただし,負の数は2の補数を用いること
7	(1 2 6) 10	8	$(-84)_{10}$
問 5	次の各問に答えなさい。		
(1)	3 バイトは ⑨ ビットである。		
(2)	7ビットで表現できる状態の数は、最大	10]通りである。
	問 1 1 2 3 3 3 5 4 7 5 1 1 1	① (1011 0011)2 問2 次の10進数を16進数に変換しなさい。 ③ (73)10 問3 次の16進数を2進数に変換しなさい。 ⑤ (B5)16 問4 次の10進数を2進数8ビットで表現したとする。 ⑦ (126)10 問5 次の各間に答えなさい。 (1)3バイトは ⑨ ビットである。	問1 次の2進数を10進数に変換しなさい。 ① (1011 0011)2 ② 問2 次の10進数を16進数に変換しなさい。 ③ (73)10 ④ 問3 次の16進数を2進数に変換しなさい。 ⑤ (B5)16 ⑥ 問4 次の10進数を2進数8ビットで表現しなさい。 とする。 ⑦ (126)10 ⑧ 問5 次の各間に答えなさい。 (1) 3バイトは ⑨ ビットである。

2 次の論理回路について、各問に答えなさい。

問1 次の論理回路と同じ結果となる論理式を解答群から選び、記号で答えなさい。

エ. $X = \overline{A} \cdot B + A \cdot \overline{B}$ オ. $X = \overline{A} + B \cdot A + \overline{B}$

問2 次の論理回路について、各間に答えなさい。

(1) 次の真理値表を完成させなさい。

入	カ	出力			
A	B	C S			
0	0	1	(5)		
0	1	2	6		
1	0	3	7		
1	1	4	8		

(2) この論理回路の名称を解答群から選び、記号で答えなさい。

3 次の回路について、各問に答えなさい。

問1 回路の動作を示すタイムチャートを完成させなさい。

問2 回路の名称を解答群から選び、記号で答えなさい。

解答群 ————		
ア. デコーダ	イ. クロック	ウ. シフトレジスタ
エ. アップカウンタ	オ. エンコーダ	カ. ダウンカウンタ

	入出カインターフェイスについ 選び,記号で答えなさい。	いて,次の文の ① ~ ⑤	に入る適切な語句を解答群か
(1) ① インターフェイス ② : 入出力装置 能を持つ。	置の接続を統一するインターフェ	イスで、プラグアンドプレイ機
		こハードディスクを接続するため 患になり7芯ケーブルを使用する	
(ス こ拡張カードを挿すために用いら 当初のバス幅は32ビット幅であ	
		D内蔵ハードディスクインターフ 格とも呼ばれる。	ェイスとして広く普及し, ATA/
	解答群 ————————————————————————————————————		
	ア. シリアル	イ. パラレル	ウ. シリアルATA
	エ. PCI	オ. USB	カ. SCSI
		て,次の文の ① ~ ⑤	に入る適切な語句を解答群から
選	マルチメディアの基礎についてが、記号で答えなさい。 人の音声をコンピュータで扱う る。この信号はアナログ信号で	て,次の文の ① ~ ⑤ うためには,音声をマイクロフォ であり,これをコンピュータで扱 コック図は ② の原理を示す	に入る適切な語句を解答群から ンなどを用いて ① に変換 えるディジタル信号に変換する
	マルチメディアの基礎についてが、記号で答えなさい。 人の音声をコンピュータで扱う る。この信号はアナログ信号で	うためには,音声をマイクロフォ であり,これをコンピュータで扱 コック図は ② の原理を示す	に入る適切な語句を解答群から ンなどを用いて ① に変換 えるディジタル信号に変換する
	マルチメディアの基礎についで、記号で答えなさい。 人の音声をコンピュータで扱うる。この信号はアナログ信号でという。次のブロン・サログ信号・フナログ信号・フナログ信号・コープに号・コープに号・コープに号・コープに号・コープに号・コープに号・コープに対象ル量で表	うためには,音声をマイクロフォ であり,これをコンピュータで扱 コック図は ② の原理を示す	に入る適切な語句を解答群から ンなどを用いて ① に変換えるディジタル信号に変換する ものである。 ・ ディジタル信号 を取り出す。 変換する。
	マルチメディアの基礎についてが、記号で答えなさい。 人の音声をコンピュータで扱う る。この信号はアナログ信号でとを ② という。次のブロアナログ信号 → ③ ③ : アナログ信号から 量子化: ディジタル量で表 ② : 量子化された値を	5ためには、音声をマイクロフォであり、これをコンピュータで扱コック図は ② の原理を示す → 量子化 → ④ → 一定時間ごとに変換する元の値を現できる最小単位の ⑤ に変わるように 2 i	に入る適切な語句を解答群から ンなどを用いて ① に変換えるディジタル信号に変換する ものである。 ・ ディジタル信号 を取り出す。 変換する。 進数の信号に変換する。
	マルチメディアの基礎についで、記号で答えなさい。 人の音声をコンピュータで扱うる。この信号はアナログ信号でとを ② という。次のブロアナログ信号 → ③ 3 : アナログ信号から量子化: ディジタル量で表 ④ : 量子化された値を	5ためには、音声をマイクロフォ であり、これをコンピュータで扱 コック図は ② の原理を示す → 量子化 → ④ → 一定時間ごとに変換する元の値を 現できる最小単位の ⑤ に変	に入る適切な語句を解答群から ンなどを用いて ① に変換えるディジタル信号に変換する ものである。 ・ ディジタル信号 を取り出す。 変換する。

 $\boxed{6}$ 次の流れ図は,二次方程式 $AX^2 + BX + C = 0$ (ただし $A \neq 0$)の係数A,B,Cを入力して,公式を用いて解を求めるものである。ただし,実数解が無いときは「実数解無し」と出力し,重解のときは解を一つのみ出力する。① \sim ③に適するものを解答群から選び,記号で答えなさい。

[7] 次の流れ図は、下記の成績表の得点を要素に持つ二次元配列の科目ごとの合計点を求めて、出力するものである。①~③に適するものを解答群から選び、記号で答えなさい。ただし、得点はあらかじめ配列に格納されており、配列の添え字は1から始まることとする。

数学, 英語, 情報の成績表

生徒番号	数学	英語	情報
1	50	100	80
2	45	80	73
3	98	58	95
4	98	77	90

-解答群

- ア. 0
- イ. 1
- ウ. 3
- 工. 4
- 才. SUM + SCORE (M, N)
- 力. SUM + SCORE (N, M)

8 次のプログラムは、Xの値を0度~180度まで10度刻みで増やしたとき、角度X、SIN(X)、COS(X)、TAN(X)の各値を出力するものである。プログラム中の ① ~ ⑤ に適するものを答えなさい。ただし、90度のときのTAN(X)の値は「----」と出力する。またプログラム中の円周率の値は、3.14159とする。

参考 1 一角度 X [$^\circ$] をラジアン角A [$^\pi$] に変換する式 $A = \frac{\pi}{180} \times X$ [$^\pi$]

```
100 \text{ LET PAI} = 3.14159
110 PRINT x \sin(x) \cos(x) \tan(x)
120 FOR X = 0 TO 180 1
        LET A = PAI * 
130
       PRINT USING "###": X;
140
       PRINT USING " ##.###": SIN( 3 );
150
        PRINT USING " ##.###": COS( 3) ;
160
170
        IF X 4 90 THEN
            PRINT USING " ##.###": TAN( 3 )
180
190
         (5)
            PRINT " -----"
200
        END IF
210
220 NEXT X
230 END
```

参考 2

PRINT USING 文の###は整数3桁で出力することを指示する。 また,##.###は整数部2桁と小数部3桁で出力することを指示する。 9 次のプログラムは、配列Aに格納された10件のデータを大きい順に並べ替えて出力するものである。プログラム中の ① ~ ⑤ に適するものを答えなさい。

```
100 DIM A(10)
110 DATA 27, 30, 1, 8, 99, 50, 45, 69, 18, 60
120 FOR M = 1 TO 10 STEP 1
130 READ A (M)
140 NEXT M
150 FOR M = 1 TO ① STEP 1
       FOR N = 2 TO 10 STEP 1
160
170
            IF A(M) \mid \Im \mid A(N) THEN
180
                LET TEMP = A(N)
                LET A(N) = A(M)
190
200
                LET A(M) = 4
210
            END IF
220 NEXT N
230 NEXT M
240 FOR M = 1 TO 10 STEP 1
250 PRINT "A(";M;") = "; \boxed{\$}
260 NEXT M
270 END
```

图 次のプログラムは、xの値を0度~180度まで10度刻みで増やしたとき、角度x、 $\sin(x)$ 、 $\cos(x)$ 、 $\tan(x)$ の各値を出力するものである。プログラム中の ① ~ ⑤ に適するものを答えなさい。ただし、90度のときの $\tan(x)$ の値は「----」と出力する。またプログラム中の円周率の値は、3.14159とする。

```
参考 1 
角度 x [°] をラジアン角a [rad] に変換する式 a = \frac{\pi}{180} \times x [rad]
```

```
#include <stdio.h>
#include <math.h>
int main(void)
    int x;
    float a, pai;
    pai = 3.14159;
    printf("x \sin(x) \cos(x) \tan(x) \frac{\pi}{2});
    for (x = 0; x \le 180; \boxed{1})
        a = pai * 2 ;
        printf("%3d", x);
        printf(" %6.3f", sin( 3 ));
        printf(" %6.3f", cos( 3 ));
        if (x 4 90) {
             printf(" %6.3f\fmu, tan( 3 ));
          (5) {
            printf(" -----\fm");
         }
    }
    return 0;
}
```

参考 2

printf 文の%3dは整数3桁で出力することを指示する。 また、%6.3fは全体6桁で小数部3桁で出力することを指示する。 9 次のプログラムは、配列 a に格納された10件のデータを大きい順に並べ替えて出力するものである。プログラム中の ① ~ ⑤ に適するものを答えなさい。

```
#include <stdio.h>
int main(void)
     int m, n, temp;
     int a[10] = \{27, 30, 1, 8, 99, 50, 45, 69, 18, 60\};
     for (m = 0; m < \boxed{1}; m++) {
          for (n = \boxed{2}; n < 10; n++) {
               if (a[m] 3 a[n]) {
                    temp = a[n];
                    a[n] = a[m];
                    a[m] = \boxed{4};
               }
          }
     }
     for (m = 0; m < 10; m++) {
         printf("a[%d]=%d\formath{\text{r}}", m, \bigcolumn{3}{\infty});
     }
    return 0;
}
```

公益社団法人 全国工業高等学校長協会 平成29年度前期 第58回 2 級情報技術検定

解答用紙

	日日	1 1		2		····	問 3		
1	問 ①	2	<u></u>	4		<u>(5)</u>	1 <u>L1</u> 2	6	
		D							
	ļ.	月 4		問 5					
	7	8	9	(10				
					On .				
9		打				2			
2	(1)	(2)			1)			(2	2)
			1 2	3 4	(5)	6 (7 8		
								<u>-17.77. 18</u>	
3			引 1			問 2			
U	1	2 3	4 5	6 7					
		1 1	1	<u> </u>	_				
	Q_1					,			
	Q_2								
	0								
	0	ii							
4	1 2	3 4	5	5	1	2	3	4	(5)
						<u> </u>			
6	1	2	3	7	(1	<u> </u>	2		3
	(JIS Full B	ASIC) · (C	言語)← 選抜	尺する言語を(つで囲み	なさい。			
8	1	(2	3		4		(5)	
				<u> </u>		Ø.		<u></u>	
9	1	1	2	3		4		(5)	
				- MANGHON ,					· - Smisms

2 級	科	学年	受検	氏	得	\$
情技検	科	<u>'</u> 組	番号	名	点	

平成29年度 前期 文部科学省 後援 第58回 情報技術検定試験

3 級 JIS Full BASIC · C言語 問題

試験時間 50分

=注意事項 =

- 1. 前もって問題用紙の最後についている解答用紙を切り離して、科、学年・組、受検番号及び氏名を記入し、「始め」の合図で試験問題を開くこと。
- 問題①から⑤は各言語共通問題,⑥ から⑨ はJIS Full BASICとC 言語からの選択問題となっている。

JIS Full BASIC, C言語の順になっているので注意すること。

- 3. 解答は解答用紙に記入し、問題 6 から 9 は解答する言語を丸で囲む こと。
- 4. 問題のアルゴリズムは最適化されているものとし、無駄な繰り返しや代入は行われていないものとする。
- 5. 試験終了後, 試験問題及び解答用紙を提出すること。

公益社団法人 全国工業高等学校長協会

科 学年 組	番	氏名	

1 次の各間に名	答えなさい。		
問1 次の文の	の ① ~ ⑤ に	入る適切な語句を解答群から	選び,記号で答えなさい。
		タが理解しやすい ① と	
		人間が理解しやすい言葉で記述	
		タが理解できる言語に変換され がら実行するプログラム言語の	
		ハウ美行するテログラム音品v よ命令を用いて,文章のデザイ	
,	」で,クラー・フィッパ///// 定義できるマークアップ[
·		7,74	
	\$群		
ア.	コンパイラ言語	イ. 低水準言語 (機械語)	ウ. HTML
I.	高水準言語	オ. インタプリタ言語	
問2 コンピ:	ュータの構成について, 「	 ① ~ ⑤ に入る適切	な語句を解答群から選び、記
号で答えた			
(1)中央级	処理装置は制御装置と	① 装置で構成され、②]とも呼ばれる。また, 主記
憶装置	置とあわせて ③ 装	置という。	
(2) コンロ	_{ピュータの機能は一般に3}	互つに大別して考えられ, それ	いらを ④ 装置という。
(3) コンロ	プュータ本体以外の装置?	を⑤数という。	
解名			
	処理	イ、周辺	ウ. 算術論理演算
	СРИ	才. 五大	力. 大別
, <u>,</u> ,		ハ・ 上八	/4 · /\/\/\/

2 次の各間に答えなさい。

問1 次の表中の空欄①~⑥に当てはまる数値を答えなさい。

2 進数	10進数	16進数
1111	1)	2
3	53	4
(5)	6	AB

問2 次の2進数の計算を行い、2進数で答えなさい。

問3 次の論理式と同じ論理回路になるように空いている部分①,②に適する図記号を解答群から選び、記号で答えなさい。

論理式: $X = \overline{A} + B$

問4 次の真理値表を完成させなさい。

入	入力			
A	A B			
0	, 0	1		
0	1	2		
1	0	3		
1	1	4		

③ 次の流れ図は、図に示す直角三角形の2辺の長さAとBを入力し、斜辺の長さCを求め出力するものである。①~③に適するものを解答群から選び、記号で答えなさい。

- 解答群 -

- ア.Cを入力
- イ. Cを出力
- ウ. $C \leftarrow \sqrt{A^2 + B^2}$
- I. $C \leftarrow A^2 + B^2$
- 才. Aを入力
- カ. Aを出力

4 次の流れ図は、「こんにちは」を5回出力するものである。①~③に適するものを解答群から選び、記号で答えなさい。 、

FY. M←1 イ. M←0 ウ. M←M+1 エ. M←M-1 オ. M<5 カ. M>5 5 次の流れ図は、データDに20回数値を入力し、正の値の個数Kを数えその平均値AVGを求め、 出力するものである。①~③に適するものを解答群から選び、記号で答えなさい。

ア. 1 イ. 20 ウ. SUM ← SUM ÷ K エ. AVG ← SUM ÷ K オ. K ← K + 1

力. K←K+D

[6] 次のプログラムは、電熱線に100 [V] の電圧を加え、3 [A] の電流が2 秒間流れたときに発生するジュール熱を求めて出力するものである。プログラム中の ① \sim ② に適するものを答えなさい。なお、ジュール熱は次の式で求められる。

ジュール熱 = 電圧 [V] × 電流 [A] × 時間 [秒]

- 100 LET V = 100
- 110 LET I = 3
- 120 LET T = ①
- 130 LET H = V * 2 * T
- 140 PRINT T; "秒間に発生するジュール熱は"; ③ ; "[J]"
- 150 END

- 「7」 次のプログラムは、台形の上底A、下底B、高さHを入力し、その面積Sを求め、出力するものである。プログラム中の □ ~ ③ に適するものを答えなさい。なお、面積は「参考」に示す公式を用いて求める。
 - 100 INPUT PROMPT "上底 Aを入力":A
 - 110 INPUT PROMPT "下底 Bを入力":B
 - 120 INPUT PROMPT "高さHを入力":H
 - 130 LET S = 1
 - 140 ② "面積は"; ③
 - 150 END

8	次のプログラムは, 1から1	0までの整数の和を求め出力するものである。	プログラム中の	1
	~ ③ に適するものを答	Sえなさい。		

```
100 LET SUM = 1
```

120 LET SUM =
$$\boxed{3}$$
 + I

- 130 NEXT I
- 140 PRINT "1から10までの合計=";SUM
- 150 END

9 次のプログラムは、整数Nを入力し、Nが奇数ならば「奇数」、偶数ならば「偶数」と出力する ものである。プログラム中の ① ~ ③ に適するものを答えなさい。 ただし、MOD(A, B)はAをBで割ったときの余りを求める関数である。

```
100 INPUT PROMPT "整数を入力": ①
```

120 IF
$$A = 3$$
 THEN

- 140 ELSE
- 150 PRINT N; "は奇数"
- 160 END IF
- 170 END

6 次のプログラムは、電熱線に100 [V] の電圧を加え、3 [A] の電流が2秒間流れたときに発生するジュール熱を求めて出力するものである。プログラム中の ① ~ ③ に適するものを答えなさい。なお、ジュール熱は次の式で求められる。

```
ジュール熱 = 電圧 [V] × 電流 [A] × 時間 [秒]
```

```
#include <stdio.h>
int main(void)
{
    int h, i, t, v;

    v = 100;
    i = 3;
    t = ①;
    h = v * ② * t;
    printf("%d秒間に発生するジュール熱は%d[J]\n", t, ③);

    return 0;
}
```

[7] 次のプログラムは、台形の上底a、下底b、高さhを入力し、その面積sを求め、出力するものである。プログラム中の ① ~ ③ に適するものを答えなさい。なお、面積は「参考」に示す公式を用いて求める。

```
#include <stdio.h>
int main(void)
{
    float a, b, h, s;

    printf("上底aを入力");
    scanf("%f", &a);
    printf("下底bを入力");
    scanf("%f", &b);
    printf("高さhを入力");
    scanf("%f", &h);
    s = ① ;
    ② ("面積は%f\fm", ③ );

return 0;
```

}

8 次のプログラムは、1から10までの整数の和を求め出力するものである。プログラム中の ① ~ ③ に適するものを答えなさい。

```
#include <stdio.h>
int main(void)
{
    int i, sum;

    sum = ①;
    for (i = 1; i <= ②); i++) {
        sum = ③ + i;
    }
    printf("1から10までの合計=%d\formath{*n}", sum);

    return 0;
}
```

9 次のプログラムは、整数nを入力し、nが奇数ならば「奇数」、偶数ならば「偶数」と出力する ものである。プログラム中の ① ~ ③ に適するものを答えなさい。 ただし、a % bはaをbで割ったときの余りを求めるものである。

```
#include <stdio.h>
int main(void)
{
    int a, n;

    printf("整数を入力");
    scanf("%d", ①);
    a = n % ②;
    if (a == ③)) {
        printf("%dは偶数\n", n);
    }

    else {
        printf("%dは奇数\n", n);
    }

    return 0;
}
```

平成29年度前期 第58回3級情報技術検定

解答用紙

1		問 1				問 2		
	① ②	3 4	5	1	2	3	4	5
2	1 2	問 1	D	(5)	6	 		
		問 2		問 3			月 4	
	(1)	(2) (3	3)	1 (2 1	2	3	4
3	① ②	3		4	1	2		3
5	① (2	3						
6	(JIS Full BASIC)・(C言語) ←		言語を〇つ 	で囲みなさ	γ ,	3	
7	1		(2			3	
8	①		(2			3	
9	1		(2			3	
3 級		受		氏				1
・	科科・経	受検番号		名			点	

平成29年度前期 第58回1級情報技術検定

試験問題〔Ⅰ〕標準解答

1	各	5点	×5€	計25点												
		1	662	21	2				3				4			(5)
		-	32		(0)	101	001	$0)_{2}$	(b ₂ b	o1 b0 b	02 b ₁	$b_0 0)_2$		1-z		7
2	問	1 (1) 完智	筝3点(2	?)各:	2点×	2 合	計4	点(3)	2点,	問 2	各2点	× 4 슨	計8点	問題	2 合計17点
			(1)	Va		A	В	С	D	E		(2)	1		ア	
		問 1		Va≦\ V1< Va		0	0	0	0	0			2		エ	
		T		V2< Va		0	1	1	1	0		(3)				
				V3<\	√a	1	1	1	1	1				ŗ	7	
				CK_0^1		<u> </u>	<u> </u>	¥			Ţ	V	T		1 1 1 1 1	
				$D \begin{bmatrix} 1 \\ 0 \end{bmatrix}$				1 1 1 1 -	1				1		1	
		問 2		${Q_1} \frac{1}{0}$		J				1						
		2		$Q_2 \frac{1}{0}$			P1			; ;					1 1 1	
				Q_3				1	-		+		-		1 1 1 1	
				$Q_4 = 0$] 1 1 1 1							1	
3	各	2点	× 9 台	計18点												
		$\begin{vmatrix} \hat{1} \end{vmatrix}$	1	4	$\phantom{00000000000000000000000000000000000$			2		4		· · · · · · · · · · · · · · · · · · ·	3		8	
		問 2	1	ス	2	イ		3	シ	(4)	サ	(5)	ケ	(6)	ク
4	各		×10 €	合計20点						•						
		1	タ	7	2	ť	<u> </u>		3	サ		4	ケ		5	1
		6	ゥ	7	7	رًا	7		8	1		9	才		10	1
5	各		×10 台	合計20点	· · · · · · · · · · · · · · · · · · ·			•								
		1	ケ	<u>*</u>	2	フ	7		3	力		4	ス		⑤	+
		6	サ	†	7	Ż	7	_	8	1		9	ウ		10	I

平成29年度前期 第58回1級情報技術検定

試験問題〔Ⅱ〕標準解答

1 各4点×5	合計20点
---------	-------

1	2	3	4	(5)
n — 1	i	j — 1	d(j+1)	i+1

2 各4点×5 合計20点

①	2	3	4	(5)
Н	X	X + H	D	S

3 各4点×5 合計20点

1	2	3	4	(5)
0	EPS	FLG	Xo	X

4 各4点×5 合計20点

1	2	3	4	⑤
2	1	х	У	j

5 各4点×5 合計20点

1	2	3	4	5
i または i=i-1	code[i]	dec	2	code

注 標準解答以外でも,論理的に正しいものは正解とする。 ただし,無駄な繰り返しや意味のない代入は行われていないこと。

平成29年度前期 第58回2級情報技術検定

標準解答

1 各2点 計20点

問	1	問	2	問 3		
1	2	3	4	5	6	
179	9.375	49	E5	1011 0101	1010 1000.11(00)	

問	4	問 5		
7	8	9	10	
0111 1110	1010 1100	24	2 ⁷ または 128	

2 計10点

問1は各2点, 問2(1)は①~④, ⑤~⑧について全部正解で各2点, (2)は2点

(1)(2)(1)(2) 1 3 4 (5) 8 6 ウ 1 1 0 1 1

3 点8情

問1は $Q_1 \sim Q_3$ について各2点, 問2は2点

4 各2点 計10点

1	2	3	4	⑤
ア	才	ウ	1.	エ

5 各2点 計10点

1	2	3	4	⑤
オ	ア	ウ	カ	1

6 各2点 計6点

1	2	3
1	ウ	力

7 各2点 計6点

1	2	3
ア	工	力

8 各3点 計15点

JIS Full BA

Full BASIC	
C言語	-

1	2	3	4	(5)
STEP 10	X / 180	A	<>	ELSE
x = x + 10 または x + = 10	x / 180	a	!=	else

9 各3点 計15点

JIS Full BASIC

C言語

	1	2	3	4	(5)		
С	9	M + 1	<	TEMP	A (M)		
	9	m + 1	<	temp	a[m]		

平成29年度前期 第58回3級情報技術検定

標準解答

1	問 1 問 2														
問1各2点	1	2	3	(4	⑤	(5)	1)	Ć	2)	3		4	⑤
問2各2点 計20点	1	I	ア		オ	ウ		ウ		J	ב	ア		オ	1
	問1各2点,	問2各2	点,問3各2,	点,問	14①~④	全部	でき	て4点	į						-
2				問 1											
計26点	1 2		-		4					6					
	15	F	(00)11 0	101	35		1010 1011 171								
			問 2					間		_			問 4		
	(1)		(2)		(3)		·	1	2		1		2	3	4
	(000)10	110	(0)101	((00)11 1	100		ウ		1	1		1	0	1
2	<u> </u>				<u>ন</u>	1			_		7)	1	<u> </u>		
3 各2点	1		2		3		:	<u>【4</u> 各2点	. -		D		2		3
計6点	才		ウ		1			計6点			1	オーウ			Ð,
5	1		2	(3)	1									
各2点	ア		オ		ř L										
計6点															
G						1						1			
6 各3点	TTO TO 11 TO 4.0		<u> </u>			2						3			
計9点	JIS Full BAS	SIC	2						I			H			
	C言語		2						i					h	
7				·····		T						T		6	
A Y.	по гын рас		(7) ±P) *		2				2					3	
計9点	JIS Full BASIC (A+B) * H / 2 C言語 (a+b) * h / 2.0					PRINT printf						S			
	C言語		(a+D) * 1	1 / 2	• •			Pr.	LIIL					S	
8			<u>(1)</u>						<u></u>					<u> </u>	
A t.	TIS Full RAS	了 ① ② ② ② ② ② ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③			2 10						3 SUM				
計9点	C言語				10						sum				
								-						- Cam	
9			①			Τ			2					3	
各3点											0				
計9点	C言語		&n		2				0						

注)標準解答以外でも、論理的に正しいものは正解とする。 ただし、無駄な繰り返しや意味の無い代入は行われていないこと。