Elementi di Teoria della Computazione

Classe: Resto_2 - Prof.ssa Marcella Anselmo

Tutorato 13/06/2022 ore 12:00-14:00

Quinta Esercitazione

a cura della dott.ssa Manuela Flores

Prima Prova Intercorso 14/04/2022: linguaggi regolari

- 1. Per ognuno dei seguenti linguaggi, indicare se sono regolari o no, giustificando la risposta.
 - (a) $X = \{ww \mid w \in \{a\}^*\}.$
 - (b) $Y = \{ww^r \mid w \in \{a,b\}^*\}$, dove w^r indica il reverse di una stringa.

Lezione 13 pag. 91

Pumping lemma: dimostrare la non regolarità (esempio)

Dimostriamo che $L = \{a^n b^n \mid n \ge 0\}$ non è regolare!

Dimostrazione.

Supponiamo per assurdo che L sia regolare. Allora vale il pumping lemma. Sia p la lunghezza del pumping.

Consideriamo la stringa $s = a^p b^p$.

Ovviamente $s \in L$ e |s| = 2p (soddisfa le ipotesi $|s| \ge p$).

Consideriamo **TUTTE** le possibili fattorizzazioni di $s = a^p b^p$ in 3 stringhe x, y, z con le proprietà delle condizioni: $|xy| \le p$ e $|y| \ge 1$.

Lezione 13 pag. 97

Pumping lemma: dimostrare la non regolarità (esempio)

Dimostriamo che $L = \{a^n b^n \mid n \ge 0\}$ non è regolare!

Dimostrazione.

. . .

Consideriamo **TUTTE** le possibili fattorizzazioni di $s = a^p b^p$ in 3 stringhe x, y, z con le proprietà delle condizioni: $|xy| \le p$ e $|y| \ge 1$.

Quindi
$$y = a^m$$
, per $1 \le m \le p$. Per $i = 2$, $xy^2z = a^{p+m}b^p \notin L$.

Prima Prova Intercorso 14/04/2022: Da NFA a DFA

2. Trasformare il seguente NFA nel DFA equivalente utilizzando la costruzione studiata durante le lezioni. Riportare con precisione la descrizione della funzione di transizione e produrre il diagramma di stato (limitandosi agli stati raggiungibili dallo stato iniziale del DFA). Fornire una espressione regolare che descrive il linguaggio riconosciuto dall'automa.

Prima Prova Intercorso 14/04/2022: espressioni regolari

- 3. Dimostrare o confutare le seguenti affermazioni. Ricordiamo che se E è una espressione regolare, con L(E) indichiamo il linguaggio descritto da E.
 - (a) $L(a^*b^*) \cap L(b^*a^*) = L(a^* \cup b^*)$
 - (b) $L((1*011*)*(0 \cup \epsilon) \cup 1*) = \text{insieme delle stringhe binarie che contengono 11.}$

Lezione 12 pag. 10

Espressioni regolari (RE)

```
DEF[espressione regolare]
Sia \Sigma un alfabeto,

passo base: le "espressioni regolari primitive" sono \epsilon, \emptyset, ed ogni a \in \Sigma.

passo ricorsivo: siano E_1 ed E_2 espressioni regolari, allora
```

- (E_1) è un'espressione regolare
- $(E_1 \cup E_2)$ è un'espressione regolare
- $(E_1 \cdot E_2)$ (oppure $(E_1 \circ E_2)$ o $(E_1 E_2)$) è un'espressione regolare
- (E_1^*) è un'espressione regolare

Lezione 12 pag. 71

Esercizio (1.53, sipser)

Sia $\Sigma = \{0,1\}$. Per ogni espressione regolare seguente, indichiamo il linguaggio rappresentato.

- 1. $0*10* = \{ w \in \Sigma^* \mid w \text{ contiene un solo } 1 \}$
- 2. $\Sigma^* 1 \Sigma^* = \{ w \in \Sigma^* \mid w \text{ contiene almeno un } 1 \}$
- 3. $\Sigma^*001\Sigma^* = \{w \in \Sigma^* \mid w \text{ contiene la stringa } 001 \text{ come sottostringa} \}$
- 4. $1^*(01^+)^* = \{ w \in \Sigma^* \mid ogni \ 0 \ in \ w \ e \ seguito \ da \ almeno \ un \ 1 \}$
- 5. $(\Sigma\Sigma)^* = \{ w \in \Sigma^* \mid w \text{ è una stringa di lunghezza pari} \}$
- 6. $(\Sigma\Sigma\Sigma)^* = \{w \in \Sigma^* \mid \text{la lunghezza di } w \text{ è un multiplo di } 3\}$
- 7. $01 \cup 10 = \{01, 10\}$
- 8. $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w \in \Sigma^* \mid w \text{ inizia e termina con lo stesso simbolo}\}$
- 9. $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- 10. $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- 11. $1^*\emptyset = \emptyset$
- 12. $\emptyset^* = \{\epsilon\}$

Prima Prova Intercorso 14/04/2022: DFA

4. Fornire un DFA che accetta tutte le stringhe su $\{a,b\}$ che non contengono un numero dispari di b e non contengono la stringhe in $\{a\}^+$ come fattore. Fornire una espressione regolare che descrive il linguaggio riconosciuto dall'automa.

Seconda Prova Intercorso 08/06/2022: Computazione di MdT

Quesito 1 (5 punti) (Computazione di MdT)

Si consideri la seguente Macchina di Turing, $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, dove $Q = \{q_0, q_1, q_2, q_3, q_{accept}, q_{reject}, \}, \Sigma = \{a, b\}, \Gamma = \{a, b, _\}$ e la funzione δ è definita come segue

$$\delta(q_0, a) = (q_1, a, R),$$

$$\delta(q_0, a) = (q_1, a, R), \qquad \delta(q_0, b) = (q_2, b, R),$$

$$\delta(q_0,) = (q_{reject}, R),$$

$$\delta(q_1, a) = (q_1, a, R),$$

$$\delta(q_1, a) = (q_1, a, R), \qquad \delta(q_1, b) = (q_1, a, R),$$

$$\delta(q_1,) = (q_{accept}, , R),$$

$$\delta(q_2, a) = (q_{reject}, b, R), \qquad \delta(q_2, b) = (q_3, b, L),$$

$$\delta(q_2, b) = (q_3, b, L),$$

$$\delta (q_2, \underline{\hspace{0.1cm}}) = (q_{accept}, \underline{\hspace{0.1cm}}, R),$$

$$\delta(q_3, a) = (q_{reject}, b, R), \qquad \delta(q_3, b) = (q_2, b, R),$$

$$\delta(q_3, b) = (q_2, b, R)$$

$$\delta(q_3, \underline{\hspace{0.1cm}}) = (q_{\text{reject}}, b, R).$$

- a) Indicare
 - una stringa w_a di Σ* che sia accettata da M
 - una stringa $\mathbf{w_r}$ di Σ^* che sia **rifiutata** da M
 - una stringa \mathbf{w}_c di Σ^* su cui M **cicla**
- b) Mostrare la computazione di M, dalla configurazionale iniziale a una configurazione di arresto, su input $\mathbf{w_a}$ e su input $\mathbf{w_r}$, indicando le configurazioni intermedie e il numero di passi effettuati.
- c) Giustificare perché M cicla su input w_c.

Seconda Prova Intercorso 08/06/2022: MdT che calcola

Quesito 2 (7 punti) (MdT che calcola)

Sia $\Sigma = \{0, 1\}$. **Descrivere** una **MdT** deterministica che **calcola** la funzione **f**: $\Sigma^* \to \Sigma^*$ che ad ogni

 $\mathbf{w} \in \Sigma^*$ associa la stringa 111 se la lunghezza di \mathbf{w} è dispari, 00, altrimenti.

La descrizione deve essere fornita tramite **settupla** o **diagramma di stato** e deve essere accompagnata da una descrizione **ad alto livello** che ne giustifichi il funzionamento e non è necessario che si fermi sulla prima cella.

Seconda Prova Intercorso 08/06/2022: Vero o Falso

Quesito 3 (5 punti)

Per ognuna delle seguenti affermazioni dire se è **Vera** o **Falsa**. In entrambi i casi, occorre **motivare** la risposta, citando i risultati noti utilizzati.

- a) Se L è **riconosciuto** da una MdT a 2 nastri allora L è riconosciuto da una MdT a singolo nastro.
- b) Se L è **riconosciuto in tempo polinomiale** da una MdT a 2 nastri allora L è riconosciuto in tempo polinomiale da una MdT a singolo nastro.
- c) A_{TM} è NP-completo.

Lezione 21 pag. 8

Equivalenza fra MdT e MdTM

Il modello di MdT «potenziato» con la possibilità di avere più di un nastro, permette di riconoscere più linguaggi?

Teorema

I due modelli di Mdt e MdTM hanno stesso potere computazionale.

Dimostrazione

In un verso è ovvio: ogni MdT è una MdTM con k=1 nastri.

Viceversa, dimostriamo che per ogni MdT multinastro M esiste una MdT (a singolo nastro) S equivalente ad M, cioè L(S) = L(M).

Ci riferiremo al contenuto (significativo) del nastro.

Lezione 29 pag. 42

La classe P

Teorema

Sia t(n) una funzione tale che $t(n) \ge n$. Per ogni macchina di Turing multinastro M con complessità di tempo t(n) esiste una macchina di Turing a nastro singolo M' con complessità di tempo $O(t^2(n))$, equivalente a M.

Quindi, se L è deciso in tempo polinomiale su una macchina di Turing multinastro, allora L è deciso in tempo polinomiale su una macchina di Turing a nastro singolo.

Lezione 30 pag. 16

La classe NP

Teorema 7.20

Un linguaggio L è in NP se e solo se esiste una macchina di Turing non deterministica che decide L in tempo polinomiale.

Dunque i linguaggi della classe NP sono decidibili: Definizione A_{TM} è indecidibile \Rightarrow NON può essere NP-completo

Sia t : $\mathbb{N} \to \mathbb{R}^+$ una funzione. La classe di complessità in tempo non deterministico NTIME(t(n)) è

 $NTIME(t(n)) = \{L \mid \exists una macchina di Turing non deterministica \}$ M che decide L in tempo O(t(n))

Corollario 7.22

$$NP = \bigcup_{k \ge 0} NTIME(n^k)$$

Seconda Prova Intercorso 08/06/2022: Rice

Quesito 4 (6 punti)

- a) Enunciare il teorema di Rice.
- b) Dire se il **teorema di Rice** può essere **applicato** al seguente linguaggio sull'alfabeto $\Sigma = \{0, 1\}$, giustificando la risposta. L'eventuale descrizione di MdT può essere data ad alto livello.

 $X = \{ \langle M \rangle \mid M \text{ è una MdT e M accetta soltanto stringhe di } \Sigma^* \text{ che finiscono per } 0 \}$

Lezione 28 pag. 24

Teorema di Rice

Teorema di Rice. Sia

 $L = \{ \langle M \rangle \mid M \text{ è una MdT che verifica la proprietà } \mathcal{P} \}$

un linguaggio che soddisfa le seguenti due condizioni:

1. \mathcal{P} è una proprietà del linguaggio L(M), cioè: prese comunque due MdT M_1, M_2 tali che $L(M_1) = L(M_2)$ risulta

$$\langle M_1 \rangle \in L \Leftrightarrow \langle M_2 \rangle \in L$$

2. \mathcal{P} è una proprietà non banale, cioè: esistono due MdT M_1, M_2 tali che

$$\langle M_1 \rangle \in L, \langle M_2 \rangle \not\in L.$$

Allora L è indecidibile.

Seconda Prova Intercorso 08/06/2022: Hampath e Uhampath

Quesito 5 (7 punti)

- a) **Definire** i linguaggi HAMPATH e UHAMPATH.
- b) Mostrare che **UHAMPATH** appartiene a **NP**.
- c) Siano A e B due linguaggi. **Definire** cosa significa che $A \leq_p B$, ovvero che A si riduce in tempo polinomiale a B.

Quesito bonus*

d) Durante il corso abbiamo visto che HAMPATH \leq_p UHAMPATH. Dimostrare adesso che UHAMPATH \leq_p HAMPATH.

Lezione 34(b) pag. 2

UHAMPATH

È possibile definire una "versione non orientata" del problema del cammino Hamiltoniano.

 Un cammino Hamiltoniano in un grafo non orientato è un cammino che passa per ogni vertice del grafo una e una sola volta.

> $UHAMPATH = \{\langle G, s, t \rangle \mid G \text{ è un grafo non orientato}$ e ha un cammino Hamiltoniano da s a $t\}$

Per mostrare che *UHAMPATH* è *NP*-completo, definiamo una riduzione di tempo polinomiale da *HAMPATH* a *UHAMPATH*.

Lezione 34(b) pag. 3

UHAMPATH

Teorema

 $UHAMPATH \in NP$

Dimostrazione.

Un algoritmo N che verifica UHAMPATH in tempo polinomiale: N = "Sull'input $\langle \langle G, s, t \rangle, c \rangle$, dove G = (V, E) è un grafo non orientato:

- 1 Verifica se $c = (u_1, \dots, u_{|V|})$ è una sequenza di |V| vertici di G, altrimenti rifiuta.
- 2 Verifica se i nodi della sequenza sono distinti, $u_1 = s$, $u_{|V|} = t$ e, per ogni i con $2 \le i \le n$, se $(u_{i-1}, u_i) \in E$, accetta in caso affermativo; altrimenti rifiuta."

 $\exists c : \langle \langle G, s, t \rangle, c \rangle \in L(N)$ se e solo se $\langle G, s, t \rangle \in UHAMPATH$. \square

Lezione 32 pag. 3

Riduzioni in tempo polinomiale

Definizione

Siano A, B linguaggi sull'alfabeto Σ .

Una riduzione in tempo polinomiale f di A in B è

- una funzione $f: \Sigma^* \to \Sigma^*$
- calcolabile in tempo polinomiale
- tale che per ogni $w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

Definizione

Un linguaggio $A \subseteq \Sigma^*$ è riducibile in tempo polinomiale a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_p B$, se esiste una riduzione di tempo polinomiale di A in B.

Lezione 34(b) pag. 7

$HAMPATH \leq_{p} UHAMPATH$

Costruzione di *G'*:

- Ogni vertice u di G, diverso da s e t è rimpiazzato da tre vertici uⁱⁿ, u^{mid} e u^{out} in G'.
- I vertici s e t sono sostituiti con i vertici s^{out} e t^{in} in G'.
- Per ogni $u \in V \setminus \{s, t\}$, (u^{in}, u^{mid}) e (u^{mid}, u^{out}) sono in E'.
- Se $(u, v) \in E$ allora $(u^{out}, v^{in}) \in E'$.

Prossimo tutorato

Prima del primo appello di luglio: data da definire, la troverete pianificata su questo canale del Team...

> ... buono studio e in bocca al lupo per il preappello di mercoledì prossimo ©