Relatório de experimentos com classificação - Projeto Final IA

Professor: Aurora Trinidad Ramirez Pozo

Aluno: Erick Eckermann Cardoso

GRR20186075

1. Especificações

Projeto final da disciplina de Inteligência Artificial. O tema escolhido foi o de classificação de imagens utilizando redes neurais convolucionais (CNN), que é uma classe de rede neural utilizada para processamento e análise de imagens, onde foram utilizadas uma base de imagens para treinamento e outra para a validação da rede treinada. As imagens foram divididas em 6 classes, baseadas nos personagens da família de Os Simpsons, onde cada classe representa um personagem da família e a última classe seria a família toda completa.

A implementação e os conceitos foram baseados no artigo de Marcos Tanaka, "Classificação de imagens com deep learning e TensorFlow", disponível no endereço web: https://imasters.com.br/back-end/classificacao-de-imagens-com-deep-learning-e-tensorflow. O algoritmo foi implementado em **Python 3** e foi utilizado o módulo **Tensor Flow e a API Keras**, para os modelos pré-treinados.

Neste exemplo não foi escrita uma CNN do zero, mas sim treinados alguns modelos prontos utilizando um processo chamado Transfer Learning. Com Transfer Learning, usamos uma CNN já treinada e adicionamos uma camada a mais, treinando apenas esta camada para nosso objetivo. Os testes foram feitos com um total de 3 modelos pré-treinados disponibilizados pela API Keras. Estes são: **ResNet50**, **ResNet50V2**, **EfficientNetB4.** O único onde foi realizado o treinamento pela camada densa foi **ResNet50**, onde foram atingidos os melhores resultados. Nestes mesmos modelos, foram feitos testes também com as imagens da base cortadas em 20%, ou seja, 20% de cada imagem foi cortada, onde a acurácia obteve aumento significativo devido ao menor número de características para serem avaliadas..

Diversos parâmetros foram modificados para procurar a melhor acurácia na validação. Para todos os testes, o número de épocas para o treinamento foi fixado em 100. Será apresentado neste relatório, em maior parte, os parâmetros que receberam maior desempenho em cada base.

2. Metodologia

Foi utilizado a metodologia de transfer learning para re-treinar os modelos para objetivo específico de classificar a família dos Simpsons. Também foram realizados testes com as redes sem o treinamento, a fim de comparação.

O processo de treinamento e classificação se encontra no código Simpsons.py. Quando é executado, o algoritmo procura a base com o caminho especificado e extrai as bases de treinamento e validação. Então o modelo especificado é treinado e então se inicia a validação. Para a classificação, foi utilizado um script baseado em classificação KNN com o k = 1. O algoritmo KNN permite com que você faça previsões de dados com base nos K vizinhos mais próximos a esse ponto, indicando que por estar próximo daqueles pontos, ele

pertence à mesma classe. O script que foi baseado se encontra no código knn.py. Os resultados são impressos no terminal, indicando a acurácia para cada Classe.

3. Resultado dos experimentos

3.2 ResNet50

Os testes para esse modelo foram realizados com e sem treinamento, utilizando a base com as imagens cortadas e não.

3.2.1 Sem treinamento

 Para a base com as imagens n\u00e3o cortadas obteve-se os seguintes resultados com os par\u00e1metros:

Numéro de Bach: 32

Paciência: 15 Accuracy: 0.5

Resultados por classe:

р	recision	recall	f1-score	supp	ort
0	0.49	0.49	0.49	35	
1	0.54	0.64	0.58	11	
2	0.44	0.44	0.44	25	
3	0.43	0.69	0.53	13	
4	0.67	0.17	0.27	12	
5	0.78	0.70	0.74	10	
accurac	СУ		0.50	106	
macro a	vg 0.	56 0	.52 0.5	51	106
weighted	avg 0	.52	0.50 0	.49	106

Imagens cortadas:

Numéro de Bach: 32

Paciência: 15

Accuracy: 0.6226415094339622

Resultados por classe:

	precis	ion	reca	ıll 1	f1-sc	ore	supp	ort
0	0.6	62	0.83	3	0.7	1	35	
1	0.7	70	0.64	1	0.6	7	11	
2	0.6	32	0.60)	0.6	1	25	
3	0.5	50	0.38	3	0.4	3	13	
4	0.6	67	0.33	3	0.4	4	12	
5	0.6	67	0.60)	0.6	3	10	
accur	acy				0.62	2	106	
macro	avg	0.6	3	0.5	56	0.5	8	106
weighted	d avg	0.0	62	0	.62	0.6	31	106

Percebe-se que houve um significativo aumento na acurácia para os testes com as imagens cortadas. Isso se deve provavelmente pelo menor número de características que atrapalham a classificação.

3.2.2 Com treinamento

O treinamento foi realizado em **camada densa**, alterando os parâmetros para se buscar os melhores resultados.

Para o primeiro treinamento as camadas convolucionais não são treinadas.

A camada densa não teve ativação, e a loss foi definida como from_logits=True.

O otimizador utilizado foi o Adam com a taxa de aprendizado padrão.

Imagens não cortadas

Número de bach: 32

Paciência: 10

Accuracy: 0.4339622641509434 Resultados para as classes:

	precisio	n rec	all f1-s	score	supp	ort
0	0.46	0.6	3 0	.53	35	
1	0.57	7 0.3	6 0	.44	11	
2	0.31	I 0.4	4 0	.37	25	
3	0.75	5 0.2	23 0	.35	13	
4	0.20	0.0	8 0	.12	12	
5	0.7	0.5	0 0	.59	10	
accura	асу		0.	.43	106	
macro	avg	0.50	0.37	0.4	10	106
weighted	l avg	0.47	0.43	0.	42	106

Resultado aumentando a paciência da rede

Paciência: 15

Número de Bach: 32

Accuracy: 0.5377358490566038 Resultados para as classes:

	pre	cision	re	call	f1	-score	S	uppo	ort
0)	0.64	0	.71	(0.68		35	
1		0.64	0	.82	(0.72		11	
2		0.38	0	.56	(0.45		25	
3	,	0.67	0	.15	(0.25		13	
4		0.60	0	.25	(0.35		12	
5	,	0.50	0	.40	(0.44		10	
accur	асу				(0.54	1	106	

0.48

0.54

0.57

0.56

Percebe-se um pequeno aumento na acurácia devido ao aumento da paciência no treinamento.

106

106

0.48

0.52

Imagens da base cortadas

macro avg

weighted avg

Paciência: 15

Número de Bach: 32

Accuracy: 0.7264150943396226

Resultados para as classes:

рі	recision	recall	f1-score	support
0	0.70	0.89	0.78	35
1	0.78	0.64	0.70	11
2	0.77	0.80	0.78	25
3	0.50	0.38	0.43	13
4	0.71	0.42	0.53	12
5	0.90	0.90	0.90	10

accuracy		0.7	3 10	6
macro avg	0.73	0.67	0.69	106
weighted avg	0.72	0.73	0.71	106

Houve um aumento considerável na acurácia geral.

2.3 ResNet50V2

• Imagens não cortadas:

Numéro de Bach: 32

Paciência: 15

Accuracy: 0.44339622641509435

Resultados por classe:

р	recision	recall	f1-score	support
0	0.45	0.43	0.44	35
1	0.00	0.00	0.00	11
2	0.36	0.64	0.46	25
3	0.40	0.31	0.35	13
4	0.80	0.33	0.47	12
5	0.62	0.80	0.70	10

accuracy		0.4	4 10	6
macro avg	0.44	0.42	0.40	106
weighted avg	0.43	0.44	0.42	106

Imagens cortadas

Numéro de Bach: 32

Paciência: 15

Accuracy: 0.4528301886792453

Resultados por classe:

	. p				
pro	ecision	recall	f1-score	support	
0	0.45	0.71	0.55	35	
1	0.80	0.36	0.50	11	
2	0.39	0.36	0.37	25	
3	0.30	0.23	0.26	13	
4	0.40	0.17	0.24	12	
5	0.71	0.50	0.59	10	
accuracy	/		0.45	106	
macro av	g 0.5	51 0	.39 0.4	106	

Perceba que não houve aumento significativo para as duas bases nesse caso.

106

2.4 EfficientNetB4

• Imagens das bases cortadas

Numéro de Bach: 32

Paciência: 15

Accuracy: 0.5566037735849056

weighted avg 0.47 0.45 0.44

Resultados por classe:

р	recision	recall	f1-score	support
0	0.59	0.77	0.67	35
1	0.67	0.73	0.70	11
2	0.37	0.28	0.32	25
3	0.50	0.46	0.48	13
4	0.64	0.58	0.61	12
5	0.67	0.40	0.50	10

accuracy		0.5	6 10)6
macro avg	0.57	0.54	0.54	106
weighted avg	0.55	0.56	0.54	106

• Imagens não cortadas

Numéro de Bach: 32

Paciência: 15

Accuracy: 0.5566037735849056

Resultados por classe:

	prec	ision	rec	all	f1-sc	ore	supp	ort
0	().57	0.8	33	0.6	7	35	
1	().29	0.0	36	0.3	2	11	
2	. (0.55	0.2	24	0.3	3	25	
3	(0.64	0.5	54	0.5	8	13	
4	. (0.67	0.6	67	0.6	7	12	
5	().71	0.5	50	0.5	9	10	
accur	асу				0.5	6	106	
macro	avg	C).57	0	.52	0.5	3	106
weighte	d avg		0.57	(0.56	0.	54	106

Perceba que não houve diferença na acurácia para as bases nesse modelo.

4. Conclusão

Em geral, os resultados com as bases onde as imagens tiveram seus tamanhos cortados em 20%, os resultados foram melhores e mantendo na média dos 60% de acurácia.

Com a rede treinada utilizando a camada Densa, o maior resultado atingido foi em média 72%, o que é significativamente melhor do que os outros resultados. Percebe-se também que, no geral, aumentar a paciência interfere no resultado positivamente, porém o custo computacional também aumenta dado ao aumento de iterações. Modificar o bach_size em geral não trouxe mudanças significativas.

Para uma rede apresentar resultados melhores em geral, deve-se haver uma base de treino maior e de maior qualidade, que permita extrair a maior quantidade possível de informações de representação. Assim, pode-se concluir que os resultados com as imagens cortadas tiveram melhor eficiência pois cortar a imagem permitia uma melhor representação, tornando a base mais bem preparada.