算法基础HW15

PB18000203 汪洪韬

2021年1月3日

32.3-3 如果由 $P_k \supseteq P_q$ 导出k = 0或k = q,则称模式P是**不可重叠的**。试描述与不可重叠模式相应的字符串匹配自动机的状态转换图。

solution:

状态转换图中,若状态返回,只会返回到第一个点(若当前字母不为模式第一个字母),或者返回 到第二个点(当前字母为模式的第一个字母)。

32.4-2 给出关于q的函数 $\pi^*[q]$ 的规模的上界。举例说明所给出的上界是严格的。

solution:

上界为模式P的长度。举例:对于一个字符全相同的模式P,如 $P = aa \cdots a$,长度为m,由定义 $\pi^*[q]$,则 $\pi^*[q] = \{0, 1, 2, \cdots, m-1\}$,规模为m。

32.4-6 试说明如何通过以下方式对过程KMP-MATCHER进行改进: 把第七行(不是第12行中)出现的 π 替换为 π' ,其中对于 $q=1,2,\cdots,m-1,\pi'$ 递归定义如下:

$$\pi'[q] = \begin{cases} 0, & if \quad \pi[q] = 0 \\ \pi'[\pi[q]], & if \quad \pi[q] \neq 0 \&\& P[\pi[q] + 1] = P[q + 1] \\ \pi[q], & if \quad \pi[q] \neq 0 \&\& P[\pi[q] + 1] \neq P[q + 1] \end{cases}$$

试说明为什么修改后的算法是正确的,并说明在何种意义上,这一修改是对原算法的改进。

solution:

只需证明在结束6,7行的循环后,q的值与修改前循环后得到的值不变即可。第6,7行while循环的作用是: 当匹配 $P[q+1] \neq T[i]$ 时,寻找最大的k满足: $k < q \& \& P_k \not = P_q$ 的后缀,同时,要求P[k+1] == T[i]。而 π' 与 π 不同的是,它仅仅选择寻找最大的k,满足 $k < q \& \& P_k \not = P_q$ 的后缀, $P[k+1] \neq P[q+1]$ 。所以 $\pi' * [q] \not = P[q+1]$ 的子集,其去除了其中P[k+1] == P[q+1]的部分。所以 $\pi' * [q]$ 的遍历直接跳过了P[k+1] == P[q+1]的k值,这样就对算法进行了优化。

EX 己知:

 $T[1\cdots 30]$ =ACGCTDAGAAGDCAGADGTDAGCDGDAGC.

 $P[1 \cdots 10] = DAGCDGDAGC.$

1.计算Shift Or 算法中的 S_c 数组(S[T(i)])t和R数组(state)变换的情况(给出表格),

2.给出QS算法中的 Q_s-B_c 数组,计算QS算法找到第1个成功匹配所需的字符比较次数;

solution:

1.

$S_A[10\cdots 1] =$	(11011111011111011111100101111111)
$S_C[10\cdots 1] =$	(0111110111111111111111111111111111111
$S_D[10\cdots 1] =$	(11101011101101111101111110111111)
$S_G[10\cdots 1] =$	(101101101110110111011011111011)
$S_T[10\cdots 1] =$	(11111111111011111111111111111111111111

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
		A	С	G	\mathbf{C}	Т	D	A	G	A					A								G	С	D	G	D	A	G	C
1	D	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	0	1	1	0	1	1	1	0	1	0	1	1	1
2	A	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1
3	G	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1
4	\mathbf{C}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0
5	D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
6	G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
7	D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
8	A	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
9	G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
10	\mathbf{C}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

2.

compare 1 characters, $Q_s - B_c[G]$, shiff by 2;

compare 1 characters, $Q_s - B_c[C]$, shift by 1;

compare 1 characters, $Q_s - B_c[A]$, shiff by 3;

compare 1 characters, $Q_s - B_c[D]$, shift by 4;

compare 1 characters, $Q_s - B_c[A]$, shiff by 3;

compare 1 characters, $Q_s - B_c[D]$, shift by 4;

compare 1 characters, $Q_s - B_c[A]$, shiff by 3;

compare 10 characters, find the match;

the algorithm end, performs 17 charater comparasions.