Математическая логика

Михайлов Максим

17 февраля 2021 г.

Оглавление

Пекция 1	12 февраля
0. Мот	ивация
0.1.	Математикам
0.2.	Программистам
1. Исч	исление высказываний
1.1.	Язык
1.2.	Метаязык и предметный язык
1.3.	Сокращения записи
1.4.	Теория моделей
1.5.	Теория доказательств
1.6.	Правило Modus Ponens и доказательство

Лекция 1

12 февраля

0. Мотивация

0.1. Математикам

Аксиома 1 (Архимеда). Для любого k > 0 найдётся n, такое что kn > 1.

Под эту аксиому не подходят бесконечно малые числа и это является проблемой. Например, $\lim_{x\to +\infty} \frac{1}{x} = 0 = \lim_{x\to +\infty} \frac{1}{x^2}$, но мы хотим уметь различать эти два числа. Ньютон предложил идею бесконечно малых чисел, откуда пошли последовательности. Возникает вопрос — что такое последовательность и что такое число?

Общепринятое определение целых чисел $\mathbb N$ происходит из теории множеств. Однако эта теория содержит в себе множество фундаментальных парадоксов, от которых нельзя избавиться.

Возникает вопрос — а что такое множество? Посмотрим на некоторое множество $A=\{x\mid x\not\in x\}$. Содержит ли оно себя, $A\in A$? На этот вопрос нельзя ответить, это называется парадокс Рассела. Есть простой способ его разрешить — запретить ставить такой вопрос. Нет вопроса — нет парадокса. Существование такого парадокса ставит под вопрос существование любого множества — а существует ли \mathbb{N} ? Может быть его существование парадоксально, просто мы не нашли этот парадокс. Пришло чуть более умное решение парадокса — запретим множества, содержащие себя. Таким образом вывели аксиоматику теории множеств (Цермело — Френкеля).

Пример. Рассмотрим множество всех чисел, которые можно задать в ≤ 1000 слов русского языка. Фраза "наименьшее число, которое нельзя задать в ≤ 1000 слов" содержит ≤ 1000 слов, т.е. такое число принадлежит искомому множеству — парадокс.

Возникает идея — человеческий язык порождает парадоксы, поэтому нужно задать новый язык, который их не порождает. Этот язык и является математической логикой.

0.2. Программистам

Математическая логика применяется в двух областях (для программистов):

- 1. Языки программирования
- 2. Формальные доказательства

Для языков программирования матлогика применима как теория типов (переменных).

Формальные доказательства нужны например для smart-контрактов, где корректность программы критически важна, т.к. если в нём есть ошибка, у вас злоумышленник заберет все деньги, а вы не сможете этот контракт откатить.

1. Исчисление высказываний

1.1. Язык

Определение. Язык содержит в себе:

1. Пропозициональные переменные

 A_i' — большая буква начала латинского алфавита, возможно с индексом и/или штрихом.

2. Связки

Пусть α, β — высказывания. Тогда $(\alpha \to \beta), (\alpha \& \beta), (\alpha \lor \beta), (\neg \alpha)$ — высказывания. α, β называются метапеременными.

Примечание. Математическая логика алгеброподобна (а не анализоподобна), т.к. в ней много определений и мало доказательств.

1.2. Метаязык и предметный язык

У нас есть два различных языка — предметный язык и метаязык. Метаязык — русский, предметный язык мы определили выше.

Пример. $\alpha \to \beta$ — метавыражение; $A \to (A \to A)$ — предметное выражение.

Обозначение. Метапеременные обозначаются различными способами в зависимости от того, что они обозначают:

- Буквы греческого алфавита $(\alpha, \beta, \gamma, ..., \varphi, \psi)$ выражения
- Заглавные буквы конца латинского алфавита (X,Y,Z) произвольные переменные

Пример. $X \to Y \Rightarrow A \to B$ — подстановка переменных. Этот синтаксис не формален, мы будем записывать так:

$$(X \to Y)[X := A, Y := B] \equiv A \to B$$

Соглашение. символы логических операций не пишутся в метаязыке.

Пример.

$$(\alpha \to (A \to X))[\alpha := A, X := B] \equiv A \to (A \to B)$$
$$(\alpha \to (A \to X))[\alpha := (A \to P), X := B] \equiv (A \to P) \to (A \to B)$$

1.3. Сокращения записи

- \lor , &, \lnot скобки слева направо (лево-ассоциативные операции) (не коммутативные)
- \rightarrow правоассоциативная.

Примечание. Здесь операторы записаны в порядке их приоритета

Пример. Расставим скобки в следующем выражении:

$$A \rightarrow B \& C \rightarrow D$$

$$A \rightarrow ((B \& C) \rightarrow D)$$

1.4. Теория моделей

Модель состоит из:

Обозначение.

- P некоторое множество предметных переменных
- au множество высказываний предметного языка
- V множество истинных значений. Классическое $\{\Pi, \Pi\}$
- $[\![\,]\!]: au o V$ оценка высказывания (высказывание ставится в скобки).
- 1. $[\![x]\!]: P \to V$ задается при оценке.
- 2. $[\![\alpha\star\beta]\!]=[\![\alpha]\!]\star[\![\beta]\!]$, где \star есть логическая операция (\vee , &, \neg , \rightarrow), а \star определено естественным образом как элемент метаязыка.

1.5. Теория доказательств

Определение. Схема высказывания — строка, соответствующая определению высказывания + метапеременные.

Пример.

$$(\alpha \to (\beta \to (A \to \alpha)))$$

10 схем аксиом:

- 1. $\alpha \to \beta \to \alpha$
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- 3. $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
- 4. $\alpha \& \beta \rightarrow \alpha$
- 5. $\alpha \& \beta \rightarrow \beta$
- 6. $\alpha \rightarrow \alpha \vee \beta$
- 7. $\beta \rightarrow \alpha \vee \beta$
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10. $\neg \neg \alpha \rightarrow \alpha$

1.6. Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) есть конечная последовательность высказываний $\alpha_1 \dots \alpha_n$, где α_i — либо аксиома, либо $\exists k, l < i : \alpha_k \equiv \alpha_l \to \alpha_i$ (правило Modus Ponens)

Пример. $\vdash A \rightarrow A$

- 1. $A \rightarrow A \rightarrow A$ cx. akc. 1
- 2. $A \rightarrow (A \rightarrow A) \rightarrow A$ cx. akc. 1
- 3. $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A)$ cx. akc. 2
- 4. $(A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A)$ M.P. 1, 3
- 5. $A \rightarrow A$ M.P. 2, 4

Определение. Доказательство $\alpha_1 \dots \alpha_n$ доказывает выражение β , если $\alpha_n \equiv \beta$