

ЭТИКЕТКА

$\frac{\text{СЛКН.431232.066 ЭТ}}{\text{Микросхема интегральная 564 ИЕ14ТЭП}}$

Функциональное назначение – Двоичный/двоично-десятичный 4-х-разрядный реверсивный счетчик с предварительной установкой

Климатическое исполнение УХЛ Схема расположения выводов

Схема электрическая функциональная

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	V – вход разрешения установки	9	2/10 — вход двоичный/двоично-десятичный
2	Q8 – выход четвертого разряда	10	± 1 – вход сложение / вычитание
3	D8 – вход четвертого разряда	11	Q2 – выход второго разряда
4	D1 - вход первого разряда	12	D2 – вход второго разряда
5	РО – вход переноса	13	D4 – вход третьего разряда
6	Q1 - выход первого разряда	14	Q4 – выход третьего разряда
7	Р – выход переноса	15	С – вход тактовый
8	0V - Общий	16	V _{CC} - Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = U_{IH} = 10$ B, $U_{IL} = 0$ B	U_{OL}	-	0,01 0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = U_{IH} = 10$ B, $U_{IL} = 0$ B	U _{ОН}	4,99 9,99	- -
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OH min}	4,2 9,0	
5. Входной ток низкого уровня, мкА, при: $U_{CC}\!=\!U_{IH}=10\;B,\;U_{IL}\!=\!0B \\ U_{CC}\!=\!U_{IH}=15\;B,\;U_{IL}\!=\!0B$	$I_{\rm IL}$	-	/-0,05/ /-0,10/
6 . Входной ток высокого уровня, мкA, при: $U_{CC} = U_{IH} = 10~B,~U_{IL} = 0B$ $U_{CC} = U_{IH} = 15~B,~U_{IL} = 0B$	I_{IH}	-	0,05 0,10
7. Выходной ток низкого уровня (по выходам разрядов), мА, при: $U_{CC}=5~B,~U_{IH}=U_{CC},~U_{IL}=0B,~U_0=0,5~B$ $U_{CC}=10~B,~U_{IH}=U_{CC},~U_{IL}=0B~,U_0=0,5~B$	I_{OL1}	0,40 0,60	1 1
8. Выходной ток низкого уровня (по выходу переноса), мА, при: $U_{CC}=5~B,~U_{IH}=U_{CC},~U_{IL}=0B,~U_{O}=0,5~B$ $U_{CC}=10~B,~U_{IH}=U_{CC},~U_{IL}=0B~,U_{O}=0,5~B$	$I_{O1.2}$	0,08 0,32	
9. Выходной ток высокого уровня (по выходам разрядов), мА, при: $U_{CC}=5~B,~U_{IH}=U_{CC},~U_{IL}=0B,~U_0=4,5~B$ $U_{CC}=10~B,~U_{IH}=U_{CC},~U_{IL}=0B~,U_0=9,5~B$	І _{оні}	/-0,12/ /-0,20/	

Продолжение таблицы 1			
1	2	3	4
10. Выходной ток высокого уровня (по выходам переноса), мА, при: $U_{CC}=5~B,~U_{IH}=U_{CC},~U_{IL}=0B,~U_0=4,5~B$ $U_{CC}=10~B,~U_{IH}=U_{CC},~U_{IL}=0B~,U_0=9,5~B$	$ m I_{OH2}$	/-0,06/ /-0,10/	-
$11.\ $ Ток потребления, мк A , при: $U_{CC}=10\ B,\ U_{IH}=U_{CC},\ U_{IL}=0B$ $U_{CC}=15\ B,\ U_{IH}=U_{CC},\ U_{IL}=0B$	I_{CC}	-	10,0 20,0
12. Максимальная тактовая частота, М Γ ц, при: $U_{CC}=5$ B, $U_{IH}=U_{CC}$, $U_{IL}=0$ B, $C_L=50$ п Φ $U_{CC}=10$ B, $U_{IH}=U_{CC}$, $U_{IL}=0$ B, $C_L=50$ п Φ	f _{max}	1,5 3,0	
13. Время задержки распространения при включении и выключении (от тактового входа к выходу разряда), нс, при: $U_{CC} = 5 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0B, \; C_L = 50 \; \pi \Phi$ $U_{CC} = 10 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0B, \; C_L = 50 \; \pi \Phi$	$t_{\mathrm{PHL1}} \ (t_{\mathrm{PLH1}})$	- -	880 320
14. Время задержки распространения при включении и выключении (от тактового входа к выходу переноса), нс, при: $U_{CC} = 5 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0B, \; C_L = 50 \; \pi \Phi$ $U_{CC} = 10 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0B, \; C_L = 50 \; \pi \Phi$	$t_{PHL2} \ (t_{PLH2})$	- -	1200 360
15. Время задержки распространения при включении и выключении (от входа разрешения установки к выходу разряда), нс, при: $U_{CC} = 5 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0B, \; C_L = 50 \; \pi \Phi$ $U_{CC} = 10 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0B, \; C_L = 50 \; \pi \Phi$	t_{PHL3} (t_{PLH3})	-	880 320
16. Время задержки распространения при включении и выключении (от входа «разрешения установки» к выходу переноса), нс, при: $U_{CC} = 5$ B, $U_{IH} = U_{CC}$, $U_{IL} = 0$ B, $C_L = 50$ пФ $U_{CC} = 10$ B, $U_{IH} = U_{CC}$, $U_{IL} = 0$ B, $U_{L} = 50$ пФ	$t_{\mathrm{PHL}4} \ (t_{\mathrm{PLH4}})$	-	1200 360
17. Время задержки распространения при включении и выключении (от входа переноса к выходу переноса), нс, при: $U_{CC} = 5 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0B, \; C_L = 50 \; \text{п} \Phi$ $U_{CC} = 10 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0B, \; C_L = 50 \; \text{п} \Phi$	t _{PHL5} (t _{PLH5})	- -	650 230
18. Входная емкость, п Φ , при: $U_{CC} = 10~B,~U_I = 0~B$	Cı	-	10

1	.2	Солержание	драгоценных	металлов	в 1000	шт.	излелий

золото г, серебро г,

золото г/мм на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

в том числе:

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5)°С не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10В)- не менее 120000 ч.

2.2 Гамма — процентный срок сохраняемости ($T_{\text{Су}}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП , должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-16ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИЕ14ТЭП соответствуют техническим условиям АЕЯР.431200.610-16ТУ и признаны годными для эксплуатации.

Приняты по $\underline{\hspace{1cm}}$ (извещение, акт и др.)	от(дат	<u>a)</u>
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепроверка и	произведена	
Приняты по	ОТ(дата	a)
Место для штампа ОТК		Место для штампа ВГ

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): общая точка, выход – общая точка, вход – выход, питание-общая точка.