Qı.

(a) : a Orthogonal : By def: aTa= aaT= I a= 1Rmm

(i) $(\alpha^{\tau})^{\tau}\alpha^{\tau}$ (Q-1) T (Q-1) - aat = (aT)-1 a-1

- = I

From $Q^TQ=I$, We also get $Q^T=Q^{-1}$: QT is orthogonal

: (QT)-1 Q-1 = (Q-1)-1 Q-1 = QQ-1=Z

: Q-1 is orthogonal

((ii)

Let Q Vi = 1 i Vi (1i, Vi > is a pair of eigenvalue - eigenvector $(Q v_i)^T = v_i^T Q^T = (\lambda_i v_i)^T = \lambda_i v_i^T \quad (\lambda_i \in R)$

: (ari) ari: lirit. livi vitatavi = Ai vitvi

· QTQ=I

· Vit I Vi = Ait Vit vi

" viT I = vi

· vitvi= xi2 vitvi

. : ! vill2 = Ai ! | vill2 !

 $\lambda_i^2 = 1$ $\lambda_i = 1 \quad \text{or} \quad \lambda_i = -1$

(iii)
$$det (Q) = \prod_{i=1}^{n} \lambda_i$$

(iv)
$$Qv_i = \lambda_i v_i$$

(6) Consider Matrix A diagonalizable

Assume A not Full Rank

A = TD T-1 - D Diagonal

A= UZVT = U.SV,T; -S Consists of non-zero Sinsular Values of A

- Columns of U, V, T As orthonormal basis of Col (A)

- U, V orthogonal; I diagonal

(ii) According to how SVD is Calculated

Si, (Singular values of A)

= $\int \lambda_i$ (λ_i is the eigenvalue of A^TA)

= $\int \lambda i'$ ($\lambda i'$ is the eigenvalue of AA^{T})

(i) po SVD on A

A= UEVT = U.SVIT

AAT = U.SVITV, STUIT = U.SZUIT

Let's do Diagonalization on AAT

" (ABT) = ABT , BBT is Symmetric

: ANTE TOTT

" UIS" UIT = TDTT

Again: $S^2 = D \rightarrow \delta_i^2 = \lambda_i$

 $U_i = T \rightarrow Sinsular vectors (u_i) of A = Eigenvectors of <math>AA^T$

$$A^{\mathsf{T}} A = V_{i} S^{\mathsf{T}} V_{i}^{\mathsf{T}} U_{i} S V_{i}^{\mathsf{T}}$$

$$= V_{i} S^{2} V_{i}^{\mathsf{T}}$$

$$= T P T^{\mathsf{T}}$$

$$V_i = T$$

$$\rightarrow$$
 singular vector $v_i = eigenvector$ of $A^{T}A$

Cc)

i. False

Counter E.g. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\lambda_1 = \lambda_2 = 1$

Should be At Most n distinct eigenvalues

ii. False

AVI = NIVI

Ar .: 12 /2

A (vit ru) = Ni Vit Ni Vi , Generally # X'(Vit ru)

iii True | A: P.S.D Matrix

Let Avi: livi

Vitarie vitaivi

= Ni ViTri (Ni Elk)

= \(\lambda_i \| \Vi\|_1^2

: ||Vi||2 >0

A P.S.b. : ViTA Vi ≥ 0

: li Must be =0

iv. True

eg. A: [! "]

Pank (A) = 2

 $\lambda_1 = \lambda_2 = 1$

of distill Ai = 1 < Rank (A)

V. [Time]

A 2,: 22,

Ar: Ar

A (vitril: X Vi + Ari

Let Vith: V' => Av'= Xv'

= X (Y,+ Y)

(i)
$$P(A \text{ not hit})$$
= $\sum_{n=1}^{\infty} P(A \text{ not hit}, nth nound)$

Assume duel ends in the 11th wound and A not hit

$$P(A^{C}, n) \stackrel{Both}{=} \frac{Both}{1} \frac{Both}{2} \frac{Both}{3} \frac{Both}{n-1} \frac{B}{n}$$

It's a sum of oo Geometric Series

liv P (Both A, B are hit)

Similar to (i)

Р (Both A & B hit) =
$$\sum_{n=1}^{\infty}$$
 (Both A & B hit, nth Round)

= $\sum_{n=1}^{\infty} \left[(1-P_A) (1-P_B) \right]^{n-1} P_A P_B$

= $\frac{P_A P_B}{1-(1-P_A)(1-P_B)}$

(iii) Let S (=) puel Ending in the nth Round

: P(S) = P(A hit, nth Round) + P(B hit, nth Round)

= [(1-Pa) (1-Pa)] = Pa (1-Pa) + [(1-Pa) (1-Pa)] = Pa (1-Pa) = 0 : A.B Mis

= [(1-Pa)(1-PB)]" [Pa(1-PB) + PB(1-Pa) + PaPB]

(iv)
$$P(A^{c}, duel ends @ nth round)$$

= $P(B hits, nth wound)$

= $[(1-P_{A})(1-P_{B})]^{n-1}P_{B}$

(b) Let R.V.
$$X \sim \# of Faculties$$
 Isolated

Let
$$x_i \sim \begin{cases} 1 & \text{ith faculty 150} & \text{it } [1,18] \\ 0 & \text{ith faculty not 156} \end{cases}$$

$$X = \sum_{i=1}^{18} x_i$$

$$E[x] = E\left[\sum_{i=1}^{18} x_i\right] = \sum_{i=1}^{18} E[x_i] = 18 \cdot E[x_i]$$

: Xi ~ Bernoulli R.V.

Assume if $x_i \in ECE$

P[xi=1/xiecs] P[xiecs]

P[xi=1| xi e MTH] P[xi e MTH]

$$= \frac{12}{17} \cdot \frac{11}{16} = \frac{33}{68}$$

(d)
$$E[Ax+b] = E[Ax] + E[b]$$

$$= AE[x] + b$$

$$= A \cdot \begin{bmatrix} E[x, j] \\ E[x, j] \\ E[x, j] \end{bmatrix} + b$$

$$= E[A \cdot [(x - E[x])(x - E[x])^T] \cdot A^T]$$

$$= E[A] \cdot E[(x - E[x])^T \cdot A^T]$$

$$= E[A] \cdot E[(x - E[x]) (x - E[x])^{T}] \cdot A^{T}]$$

$$= A \cdot Cov[x] \cdot A^{T}$$

(i)
$$P [D] +] = P[D, +]$$

$$P[+]$$

(ii)
$$P[O] = \frac{P[D,-]}{P[-]} = \frac{P[-]D]P[D]}{P[-]D^{c}]}$$

COU
$$\nabla_{x} x^{T} A y = \frac{\partial (x^{T} A y)}{\partial x} = \frac{\partial (x^{T} (A y))}{\partial x}$$

(b)
$$\nabla_{\vec{y}} x^T A y = \frac{\partial ((x^T A) y)}{\partial y} = \frac{\partial ((A^T x)^T y)}{\partial y}$$

(c)
$$\nabla_A x^T A y = x y^T$$
 (property Zo)

$$\nabla_{x} f = \frac{\partial (x^{1}A \times + b^{1}x)}{\partial x} = \frac{\partial (x^{1}Ax)}{\partial x} + \frac{\partial (b^{1}x)}{\partial x}$$

(e)
$$f=Tr(AB)$$

$$\nabla_A f = \frac{\partial (Tr(AB))}{\partial A} = B^T \quad (property \ loo)$$

i ...

$$\nabla_{A} f = \frac{\partial (Tr(AB))}{\partial A} + \frac{\partial (A^{T}B)}{\partial A} + \frac{\partial (Tr(A^{2}B))}{\partial A}$$

$$= B^{T} + B + (AB + BA)^{T}$$

$$= \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A}$$

$$= \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A}$$

$$= \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A}$$

$$= \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A} + \frac{\partial T}{\partial A}$$

$$= \frac{\partial T}{\partial A} + \frac{\partial T}{\partial$$

$$\frac{\partial (Tr(AB))}{\partial A} = \frac{\partial (AB)}{\partial A}$$
$$= B = B^{T}$$

$$\frac{\partial f}{\partial A} = 2Bt 2AB$$
$$= B^T t Bt (ABt BA)^T$$

Dropping term with no A dependence, $f = Tr(ATA) + 2\lambda \cdot Tr(ATB)$

$$X \in \mathbb{R}^{nan}$$
, $X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$ $||X_1||_2^2 = \sum_{i=1}^m (x_i)^2 \in Sun all entries in Cohem I$

$$||x||_{F}^{2} = \sum_{i=1}^{n} ||x_{i}||_{2}^{2} \in Sum Column norm$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{ij})^{2}$$

Let Y= [yeu, yeu, ..., yen]

.. According to $\|x\|_F^2 = \sum_{i=1}^n \|x_i\|_2^2$

$$= \frac{1}{2} \cdot \left[Tr(Y^TY) - Tr(Y^TWX) - Tr((Y^TWX)^T) + Tr(X^TW^TWX) \right]$$

$$= \frac{1}{2} \cdot \left[Tr(Y^TY) - 2 \cdot Tr(Y^TWX) - Tr(X^TWX) \right]$$

$$= \frac{1}{2} \cdot \left[Tr(Y'Y) - 2 \cdot Tr(Y'WX) + Tr(X'W'WX) \right]$$

Prop terms with no dependence to W

· L(w)= - Tr (YTWX) + + . Tr (XTWTWX)

" Tr (ABC) = Tr (CAB) . Tr (BCA)

.: Tr (XTNTNX) = Tr (WTWXXT)

: 2 L(w) = - (YT) xT + 1 . (W. (XXT) + W. (XXT)) = - YxT + 1 . 2. W xxT

= - TxT + WXXT (property 101, 113)

Set Left Hand to O

" YXT = WXXT

- W= YXT(XXT)+

Qs. We've known from the Lecture that:

$$\mathcal{L}(\theta) : \frac{1}{2} \stackrel{\mathcal{H}}{\vdash} (y^{(t)} - \theta^T \hat{\chi}^{(t)})^2$$
$$= \frac{1}{2} (\Upsilon^T \Upsilon - 2\Upsilon^T T \theta + \theta^T \chi^T \chi \theta)$$

Now:
$$L(\theta) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \theta^{T} \hat{x}^{(i)})^{2} + \frac{\lambda}{2} ||\theta||_{2}^{2}$$

$$= \frac{1}{2} (y^{T} - 2 y^{T} x \theta + \theta^{T} x^{T} x \theta) + \frac{\lambda}{2} \theta^{T} \theta$$

Find of yty since it's not a related

1(0)= - YTXO+ + 07xTXO+ 200 V (-Y X 0) = - (Y X) T (property 69)

10 XX OF 3 OT O

= + 0T (XTX0+ AIO)

= 101. (xTx + xI). 0

 $\nabla_{\vec{\theta}} \left(\frac{1}{2} \theta^{\mathsf{T}} x^{\mathsf{T}} x \theta + \frac{\lambda}{2} \theta^{\mathsf{T}} \theta \right) = \frac{1}{2} \cdot \left(x^{\mathsf{T}} x + \lambda \mathbf{I} + (x^{\mathsf{T}} x + \lambda \mathbf{I})^{\mathsf{T}} \right) \theta$ = 1 · (x1x+x1x+x1x+ XI) 0

= (x1x+x1)0

: V (L(0)) = - XTY+ (XTX+XI)0

Let % (2(0)) =0

 $X^T Y = (X^T X + \lambda I) \theta^* \qquad \theta^* = (X^T X + \lambda I)^T X^T Y$

linear_regression

January 22, 2024

0.1 Linear regression workbook

This workbook will walk you through a linear regression example. It will provide familiarity with Jupyter Notebook and Python. Please print (to pdf) a completed version of this workbook for submission with HW #1.

ECE C147/C247, Winter Quarter 2024, Prof. J.C. Kao, TAs: T.Monsoor, Y. Liu, S. Rajesh, L. Julakanti, K. Pang

```
[19]: import numpy as np
import matplotlib.pyplot as plt

#allows matlab plots to be generated in line
%matplotlib inline
```

0.1.1 Data generation

For any example, we first have to generate some appropriate data to use. The following cell generates data according to the model: $y = x - 2x^2 + x^3 + \epsilon$

```
[20]: np.random.seed(0) # Sets the random seed.
num_train = 200 # Number of training data points

# Generate the training data
x = np.random.uniform(low=0, high=1, size=(num_train,))
y = x - 2*x**2 + x**3 + np.random.normal(loc=0, scale=0.03, size=(num_train,))
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
```

```
[20]: Text(0, 0.5, '$y$')
```


0.1.2 QUESTIONS:

Write your answers in the markdown cell below this one:

- (1) What is the generating distribution of x?
- (2) What is the distribution of the additive noise ϵ ?

0.1.3 ANSWERS:

- (1) x is a uniform distribution
- (2) ϵ is a normal distribution with mean 0 and STD 0.03

0.1.4 Fitting data to the model (5 points)

Here, we'll do linear regression to fit the parameters of a model y = ax + b.

```
[22]: # Plot the data and your model fit.
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

# Plot the regression line
xs = np.linspace(min(x), max(x),50)
xs = np.vstack((xs, np.ones_like(xs)))
plt.plot(xs[0,:], theta.dot(xs))
```

[22]: [<matplotlib.lines.Line2D at 0x1e7a296c790>]

0.1.5 QUESTIONS

- (1) Does the linear model under- or overfit the data?
- (2) How to change the model to improve the fitting?

0.1.6 ANSWERS

- (1) It underfits the data.
- (2) We can instead use a higher order polynomial.

0.1.7 Fitting data to the model (5 points)

Here, we'll now do regression to polynomial models of orders 1 to 5. Note, the order 1 model is the linear model you prior fit.

```
[23]: N = 5
     xhats = []
     thetas = []
      # ====== #
      # START YOUR CODE HERE #
      # ====== #
      # GOAL: create a variable thetas.
      # thetas is a list, where theta[i] are the model parameters for the polynomial_
      \hookrightarrow fit of order i+1.
        i.e., thetas[0] is equivalent to theta above.
      # i.e., thetas[1] should be a length 3 np.array with the coefficients of the
       \rightarrow x^2, x, and 1 respectively.
        ... etc.
     xhats.append(xhat)
     thetas.append(theta)
     xhat_i = xhat
     for i in range (2,6):
         x_power = np.array(x**i)
         xhat_i = np.vstack((x_power, xhat_i))
         theta_i = (np.linalg.inv((xhat_i)@(xhat_i.T))) @ (xhat_i@y)
         xhats.append(xhat_i)
         thetas.append(theta_i)
      # ====== #
      # END YOUR CODE HERE #
      # ====== #
```

```
[24]: # Plot the data
      f = plt.figure()
      ax = f.gca()
      ax.plot(x, y, '.')
      ax.set_xlabel('$x$')
      ax.set_ylabel('$y$')
      # Plot the regression lines
      plot_xs = []
      for i in np.arange(N):
          if i == 0:
              plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
          else:
              plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
          plot_xs.append(plot_x)
      for i in np.arange(N):
          ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))
      labels = ['data']
      [labels.append('n={}'.format(i+1)) for i in np.arange(N)]
      bbox_to_anchor=(1.3, 1)
      lgd = ax.legend(labels, bbox_to_anchor=bbox_to_anchor)
```


0.1.8 Calculating the training error (5 points)

Here, we'll now calculate the training error of polynomial models of orders 1 to 5.

```
[25]: training errors = []
     # ====== #
     # START YOUR CODE HERE #
     # ======= #
     # GOAL: create a variable training_errors, a list of 5 elements,
     # where training errors[i] are the training loss for the polynomial fit of u
      \hookrightarrow order i+1.
     for i in range(5):
         y_predict = thetas[i]@xhats[i]
         my_errors = 0
         for j in range(len(y)):
             error_ = ((y[j] - y_predict[j])**2)
             my_errors = my_errors + error_
         training_errors.append(my_errors)
     # ======= #
      # END YOUR CODE HERE #
     # ====== #
     print ('Training errors are: \n', training_errors)
```

Training errors are:

[0.4759922176725402, 0.21849844418537054, 0.16339207602210745, 0.16330707470593958, 0.16322958391050585]

0.1.9 QUESTIONS

- (1) What polynomial has the best training error?
- (2) Why is this expected?

0.1.10 ANSWERS

- (1) 5th order polynomial has the best training error.
- (2) This is expected because we can fit more data training data points with higer order polynomial models.

0.1.11 Generating new samples and testing error (5 points)

Here, we'll now generate new samples and calculate testing error of polynomial models of orders 1 to 5.

```
[26]: x = np.random.uniform(low=1, high=2, size=(num_train,))
y = x - 2*x**2 + x**3 + np.random.normal(loc=0, scale=0.03, size=(num_train,))
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
```

[26]: Text(0, 0.5, '\$y\$')


```
[27]: xhats = []
for i in np.arange(N):
    if i == 0:
        xhat = np.vstack((x, np.ones_like(x)))
        plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
    else:
        xhat = np.vstack((x**(i+1), xhat))
        plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
    xhats.append(xhat)
```

```
[28]: # Plot the data
      f = plt.figure()
      ax = f.gca()
      ax.plot(x, y, '.')
      ax.set_xlabel('$x$')
      ax.set_ylabel('$y$')
      # Plot the regression lines
      plot_xs = []
      for i in np.arange(N):
          if i == 0:
              plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
          else:
              plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
          plot_xs.append(plot_x)
      for i in np.arange(N):
          ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))
      labels = ['data']
      [labels.append('n={}'.format(i+1)) for i in np.arange(N)]
      bbox_to_anchor=(1.3, 1)
      lgd = ax.legend(labels, bbox_to_anchor=bbox_to_anchor)
```



```
[29]: testing_errors = []
     # ====== #
     # START YOUR CODE HERE #
     # ====== #
     # GOAL: create a variable testing_errors, a list of 5 elements,
     # where testing_errors[i] are the testing loss for the polynomial fit of order_
      \hookrightarrow i+1.
     for i in range(5):
         y_predict = thetas[i]@xhats[i]
         my_errors = 0
         for j in range(len(y)):
             error_ = ((y[j] - y_predict[j])**2)
             my_errors = my_errors + error_
         testing_errors.append(my_errors)
     # ====== #
     # END YOUR CODE HERE #
     # ====== #
     print ('Testing errors are: \n', testing_errors)
```

Testing errors are:

[161.72330369101164, 426.38384890115776, 6.251394216552787, 2.3741530378949403, 429.82043635305246]

0.1.12 QUESTIONS

- (1) What polynomial has the best testing error?
- (2) Why polynomial models of orders 5 does not generalize well?

0.1.13 ANSWERS

- (1) 4th order polynomial has the best testing error.
- (2) Because it has the issue of overfitting. It fits the training data well but instead loses generality since it can't predict unseen data well.