```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score

loan_dataset = pd.read_csv("loan.csv")
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Am
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	

loan_dataset.isnull().sum()

Loan_ID 0 Gender 13 Married Dependents 15 Education 0 Self_Employed 32 ApplicantIncome CoapplicantIncome LoanAmount 22 Loan_Amount_Term 14 Credit_History 50 Property_Area 0 Loan_Status 0 dtype: int64

loan_dataset["Loan_Status"].describe()

count 614 unique 2 top Y freq 422

Name: Loan_Status, dtype: object

loan_dataset["Loan_Status"] = loan_dataset["Loan_Status"].map({"Y":1, "N":0})

loan_dataset.shape

(614, 13)

loan dataset.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Am
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	

loan_dataset = loan_dataset.dropna()

loan_dataset.isnull().sum()

```
0
Loan_ID
Gender
                     0
Married
Dependents
Education
Self Employed
ApplicantIncome
CoapplicantIncome
LoanAmount
Loan Amount Term
Credit_History
                     0
Property_Area
                     0
Loan Status
dtype: int64
```

loan_dataset = loan_dataset.replace(to_replace = '3+', value=4)

loan_dataset["Dependents"].value_counts()

0 274 2 85 1 80 4 41

Name: Dependents, dtype: int64

sns.countplot(x ='Education', hue = "Loan_Status", data = loan_dataset)

<Axes: xlabel='Education', ylabel='count'>

sns.countplot(x ="Married", hue = "Loan_Status", data = loan_dataset)

```
<Axes: xlabel='Married', ylabel='count'>

loan_dataset = loan_dataset.drop("Loan_ID", axis =1)
loan_dataset = pd.get_dummies(loan_dataset, drop_first = True)
|
loan_dataset.head()
```

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Loan_Status	Gender_Male	Married_Yes
1	4583	1508.0	128.0	360.0	1.0	0	1	1
2	3000	0.0	66.0	360.0	1.0	1	1	1
3	2583	2358.0	120.0	360.0	1.0	1	1	1
4	6000	0.0	141.0	360.0	1.0	1	1	0
5	5417	4196.0	267.0	360.0	1.0	1	1	1

loan_dataset.shape

(480, 15)

```
X = loan_dataset.drop("Loan_Status", axis =1).values
```

y = loan_dataset["Loan_Status"].values

X_train, X_test, y_train,y_test = train_test_split(X,y, stratify = y, test_size = 0.25)

classifier = svm.SVC(kernel = 'linear')

classifier.fit(X_train, y_train)

v SVC
SVC(kernel='linear')

y_pred = classifier.predict(X_test)

from sklearn.metrics import classification_report

print(classification_report(y_pred,y_test))

	precision	recall	f1-score	support
0	0.43	0.89	0.58	18
1	0.98	0.79	0.88	102
accuracy			0.81	120
macro avg	0.70	0.84	0.73	120
weighted avg	0.89	0.81	0.83	120

✓ 0s completed at 10:30 PM