PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-335241

(43)Date of publication of application: 22.11.2002

(51)Int.Cl.

H04L 9/32 G09C 1/00

(21)Application number: 2002-059674

(71)Applicant: HITACHI LTD

(22)Date of filing:

06.03.2002

(72)Inventor: MIYAZAKI KUNIHIKO

YOSHIURA YUTAKA **SUZAKI SEIICHI** SASAKI RYOICHI TAKARAGI KAZUO

TOYOSHIMA HISASHI MATSUKI TAKESHI

(30)Priority

Priority number : 2001 816777

Priority date: 22.03.2001

Priority country: US

(54) METHOD AND SYSTEM FOR RECOVERING VALIDITY OF CRYPTOGRAPHICALLY SIGNED DIGITAL DATA

(57)Abstract:

PROBLEM TO BE SOLVED: To provide techniques including a method and a system for recovering and/or validating data and/or associated signature log entries. SOLUTION: In the method for validating a restored message having an entry generated in a signature log for a message, where the entry includes cryptographic information associated with the message. When the message is lost, the restored message is generated in response to a request and the restored message is validated by using the signature log. In another embodiment, a method for validating a selected log entry by using a signature log having a plurality of recorded log entries is provided. The method includes a step for computing a cryptographic value for the selected log entry and a step for determining whether the cryptographic value is part of another recorded log entry or not.

LEGAL STATUS

[Date of request for examination]

07.03.2005

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002—335241

(P2002-335241A)

(43)公開日 平成14年11月22日(2002.11.22)

(51) Int.Cl.7		識別記号	F I	テーマコード(参考)
H04L	9/32		G 0 9 C 1/00	640D 5J104
G09C	1/00	6 4 0	H 0 4 L 9/00	675B

審査請求 未請求 請求項の数40 OL (全 20 頁)

(21)出願番号	特願2002-59674(P2002-59674)	(71)出顧人	000005108
			株式会社日立製作所
(22)出顧日	平成14年3月6日(2002.3.6)		東京都千代田区神田駿河台四丁目6番地
		(72)発明者	宮崎 邦彦
(31)優先権主張番号	09/816, 777		神奈川県川崎市麻生区王禅寺1099番地 株
(32)優先日	平成13年3月22日(2001.3.22)		式会社日立製作所システム開発研究所内
(33)優先権主張国	米国(US)	(72)発明者	吉浦 裕
			神奈川県川崎市麻生区王禅寺1099番地 株
			式会社日立製作所システム開発研究所内
		(74)代理人	100075096
			弁理士 作田 康夫
			最終頁に続く
		İ	规附只に成く

(54) 【発明の名称】 暗号化署名付きデジタルデータの有効性を回復する方法とシステム

(57)【要約】

【課題】データおよび/または関連する署名ログエントリを復元および/または確認する方法とシステムを含む技術を提供すること。

【解決手段】メッセージに対して署名ログ中に生成されるエントリを有する復元メッセージを確認する方法が提供される。この時エントリにはメッセージに関連する暗号化情報が含まれる。メッセージが失われている時、復元メッセージが要求に応答して生成され、復元メッセージは署名ログを使用して確認される。他の実施形態では、複数の記録されたログエントリを有する署名ログを使用することによって選択されたログエントリを確認する方法が提供される。この方法には、選択されたログエントリに対する暗号化値を計算するステップと、暗号化値が別の記録されたログエントリの一部であるかを判定するステップとが含まれる。

【特許請求の範囲】

【請求項1】復元メッセージを確認する方法であって、 メッセージに対する署名ログ中のエントリを生成するス テップであって、前記エントリが前記メッセージに関連 する暗号化情報を含むステップと、

前記メッセージが失われている場合、要求に応答して前 記復元メッセージを生成するステップと、

前記署名ログを使用して前記復元メッセージを確認する ステップとを含む方法。

【請求項2】請求項1記載の方法であって、前記署名ログがヒステリシス署名を含む方法。

【請求項3】請求項1記載の方法であって、前記暗号化 情報がデジタル署名を含む方法。

【請求項4】請求項3記載の方法であって、前記デジタル署名が前の署名ログエントリからの情報を使用して生成される方法。

【請求項5】ユーザ情報を回復および確認するシステムであって、

署名ログを含むユーザシステムであって、前記署名ログ が前記ユーザ情報に関連する暗号化情報を含むユーザシ ステムと、

通信ネットワークを介して前記ユーザシステムと結合され、ユーザ情報を復元する回復システムと、

前記通信ネットワークを介して前記ユーザシステムと結合され、前記署名ログを使用して復元ユーザ情報を確認する有効性システムとを備えるシステム。

【請求項6】請求項5記載のシステムであって、前記ユーザ情報が前記署名ログのログエントリを含むシステム

【請求項7】請求項5記載のシステムであって、前記ユーザ情報がユーザメッセージを含むシステム。

【請求項8】請求項5記載のシステムであって、前記暗 号化情報がハッシュ値を含むシステム。

【請求項9】請求項5記載のシステムであって、前記署名ログが、前記署名ログの第2のログエントリによって部分的に決定される前記署名ログの第1のログエントリを含むシステム。

【請求項10】ユーザメッセージが有効かどうかを判定 するシステムであって、前記システムが、

ログを有するユーザコンピュータシステムであって、前 記ログが前記ユーザによって送信されるメッセージに関 連するログエントリを含み、前記ログエントリが、前記 ログの前のログエントリに関連する情報を含むデジタル 署名を有するユーザコンピュータシステムと、

前記ユーザコンピュータシステムと結合され、前記ログを使用して前記ユーザメッセージを確認する確認ユニットとを備えるシステム。

【請求項11】請求項10記載のシステムであって、さらに、前記ユーザメッセージが失われている時、前記確認ユニットに応答して前記ユーザメッセージを取り出す

収集ユニットを備えるシステム。

【請求項12】請求項10記載のシステムであって、さらに、前記ユーザメッセージが失われている時、前記確認ユニットに応答して前記メッセージの受信機から前記メッセージのコピーを取り出す収集ユニットを備えるシステム。

【請求項13】請求項10記載のシステムであって、さらに、前記ログの選択されたログエントリを公開する公開ユニットを備えるシステム。

【請求項14】請求項13記載のシステムであって、前 記選択されたログエントリが前記ユーザメッセージを確 認する際使用されるシステム。

【請求項15】請求項13記載のシステムであって、公開ユニットが新聞発行者またはウェブサイトからなるグループから選択されるシステム。

【請求項16】請求項10記載のシステムであって、さらに、前記ログの選択されたログエントリを登録する公証人ユニットを備えるシステム。

【請求項17】請求項10記載のシステムであって、さらに、前記ユーザコンピュータシステムに結合されるログチェーンクロスユニットと、前記ユーザコンピュータシステムと第2のユーザコンピュータシステムの間のトランザクションを記録する前記第2のユーザコンピュータシステムとを備えるシステム。

【請求項18】請求項10記載のシステムであって、さらに、前記ユーザコンピュータシステムに結合されるログチェーンクロスユニットと、前記ユーザコンピュータシステムと第2のユーザコンピュータシステムと第2のユーザコンピュータンステムとを備えるシステム。

【請求項19】メッセージ情報を確認するデータ構造を 含むコンピュータ可読データ伝送媒体であって、

ユーザメッセージのハッシュを有する第1の部分と、

署名ログエントリのハッシュを有する第2の部分と、 前記第1の部分と前記第2の部分とに基づくデジタル署 名とを含む、コンピュータ可読データ伝送媒体。

【請求項20】請求項19記載のコンピュータ可読データ伝送媒体であって、前記署名ログエントリが前記ユーザメッセージの前の別のユーザメッセージに関連するコンピュータ可読データ伝送媒体。

【請求項21】請求項19記載のコンピュータ可読データ伝送媒体であって、さらにタイムスタンプを有する第3の部分を含むコンピュータ可読データ伝送媒体。

【請求項22】コンピュータを使用して、複数のログエントリを含む署名ログを生成する方法であって、前記方法が、

前記複数のログエントリの第1のログエントリを生成するステップであって、前記第1のログエントリが第1のユーザメッセージに関連する第1の暗号化値を含むステップと、

前記複数のログエントリの第2のログエントリを生成するステップであって、前記第2のログエントリが、前記第1のログエントリに関連する第2の暗号化値と、第2のユーザメッセージに関連する第3の暗号化値と、デジタル署名とを含むステップとを含む方法。

【請求項23】請求項22記載の方法であって、前記デジタル署名が前記第2の暗号化値と前記第3の暗号化値を含む情報を使用して形成される方法。

【請求項24】請求項22記載の方法であって、前記第2の暗号化値が前記第1のログエントリのハッシュである方法。

【請求項25】請求項22記載の方法であって、前記第2のログエントリがさらにタイムスタンプを含む方法。

【請求項26】コンピュータ可読媒体中に格納され、複数のユーザメッセージの選択されたユーザメッセージを確認するデータ構造であって、

前記複数のユーザメッセージの第1のユーザメッセージ の第2のハッシュを含む第1のログエントリの第1のハ ッシュと、

前記複数のユーザメッセージの前記選択されたユーザメッセージの第3のハッシュと、

前記第3のハッシュと結合された前記第1のハッシュの デジタル署名とを含むデータ構造。

【請求項27】コンピュータシステムにおいて、複数の 記録されたログエントリを有する署名ログを使用するこ とによって選択されたログエントリを確認する方法であ って、前記方法が、

前記選択されたログエントリに対する暗号化値を計算するステップと、

前記暗号化値が前記複数の記録されたログエントリの第 1の記録されたログエントリの一部であるかどうかを判 定するステップとを含む方法。

【請求項28】請求項27記載の方法であって、前記選択されたログエントリが、前記第1の記録されたログエントリの1つ前の前記複数の記録されたログエントリの第2の記録されたログエントリに対応する方法。

【請求項29】複数のユーザコンピュータシステムの1 つによるトランザクションの拒否を防止するシステムで あって、前記システムが、

前記複数のユーザコンピュータシステムの第1のユーザと、

前記第1のユーザと前記トランザクションを行う前記複 数のユーザコンピュータシステムの第2のユーザと、

前記第1のまたは前記第2のユーザの何れかによる要求 に応答して前記トランザクションを記録するログチェー ンクロスコンピュータであって、前記記録が前記トラン ザクションのヒステリシス署名を含むログチェーンクロ スコンピュータとを備えるシステム。

【請求項30】コンピュータシステムを使用して、公式 に承認された主体によってユーザのログエントリを登録 する方法であって、

前記公式に承認された主体によって署名ログチェーンを 維持するステップであって、前記署名ログチェーンの第 1のログエントリが前記署名ログチェーンの前の第2の ログエントリに関連するステップと、

前記ユーザからユーザログエントリを受信するステップ レ

前記ユーザログエントリに関連する暗号化値を生成する ステップと、

前記署名ログチェーンの第3のログエントリを生成する ステップであって、前記第3のログエントリが前記暗号 化値を含むステップとを含む方法。

【請求項31】請求項30記載の方法であって、前記署 名ログチェーンの選択されたログエントリが公開される 方法。

【請求項32】請求項30記載の方法であって、前記公式に承認された主体が公証人である方法。

【請求項33】ユーザの署名ログを使用するコンピュー タシステムによってユーザデータ項目を確認する方法で あって、

前記ユーザの署名ログを受信するステップと、

前記ユーザデータ項目に関連する暗号化値が前記ユーザ の署名ログ中の第1のログエントリにあるかを確認する ステップと、

チェックポイントされた前記ユーザの署名ログ中の第2 のログエントリを判定するステップと、

前記第2のログエントリから前記第1のログエントリへ の後方連鎖によって前記第1のログエントリを検証する ステップと、

結果を前記ユーザに戻すステップとを含む方法。

【請求項34】コンピュータシステムを使用して、2つの時点間のデータ項目を回復する方法であって、

ユーザから2つの時点間のデータを回復せよという要求 を受信するステップであって、前記データ項目が前記2 つの時点間にあるステップと、

データ回復ユニットから前記データ項目と関連する署名 ログエントリとを受信するステップと、

前記関連する署名ログエントリを使用して前記データ項 目を確認するステップと、

前記データ項目が確認されたならば、前記データ項目を 前記ユーザに送信するステップとを含む方法。

【請求項35】ユーザメッセージを確認するシステムであって、

ユーザから署名ログを受信する入力モジュールであって、前記署名ログが複数の関連ログエントリを含む入力 モジュールと、

前記ユーザメッセージから暗号化値を生成する暗号化モ ジュールと、

前記暗号化値が前記署名ログ中にあることを確認する検 証モジュールとを備えるシステム。 【請求項36】請求項35記載のシステムであって、さらに、前記複数の関連ログエントリの第1のログエントリが損傷しているかどうかを判定するログ検証モジュールを備え、前記判定が、

前記第1のログエントリの次の前記複数の関連ログエントリの第2のログエントリを選択するステップと、

ハッシュ値を示すため前記第1のログエントリをハッシュするステップと、

前記ハッシュ値が前記第2のログエントリの一部である かを確認するステップとを含むシステム。

【請求項37】復元メッセージを確認するコンピュータ プログラム製品であって、

メッセージに対して署名ログ中にエントリを生成するコードであって、前記エントリが前記メッセージに関連する暗号化情報を含むコードと、

前記メッセージが失われている時、要求に応答して前記 復元メッセージを生成するコードと、

前記署名ログを使用して前記復元メッセージを確認するコードと、

前記コードを具現するコンピュータ使用可能媒体とを含むコンピュータプログラム製品。

【請求項38】請求項37記載のコンピュータプログラム製品であって、前記コンピュータ使用可能媒体が記憶 媒体であるコンピュータプログラム製品。

【請求項39】請求項37記載のコンピュータプログラム製品であって、前記コンピュータ使用可能媒体が搬送波であるコンピュータプログラム製品。

【請求項40】搬送波中に具現される、復元メッセージ を確認するコンピュータデータ信号であって、

メッセージに対して署名ログ中にエントリを生成するプログラムコードであって、前記エントリが前記メッセージに関連する暗号化情報を含むプログラムコードと、

前記メッセージが失われている時、要求に応答して前記 復元メッセージを生成するプログラムコードと、

前記署名ログを使用して前記復元メッセージを確認する プログラムコードとを含むコンピュータデータ信号。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は一般にデータの回復 に関し、特にデジタル署名付きデータの回復および/ま たは確認に関する。

[0002]

【従来の技術】業務および個人両方の通信のためのインターネットの使用は、過去数年間、特に電子商取引の分野で劇的に成長した。ハードウェアおよびソフトウェアの複雑さの増大を伴うこのメッセージトラフィックの大幅な増加によって、データを失う可能性も増大した。コンピュータクラッシュの数が増加しているため、現在多くのシステムはバックアップを提供している。

【0003】従来のデータ回復方法が多数存在するが、

ユーザにとって、回復された情報が不正に変更されているかどうかをどうやって知るかという問題が発生している。これは特にコンピュータのいくつかの広く公表されたアカウントの侵入があった時に言えることである。メッセージ、特に回復されたメッセージへの不正変更があったかを検出する従来の技術の1つはデジタル署名である。米国政府はデジタル署名の標準を確立しているが、これは、その全体を引用によって本出願の記載に援用する、連邦情報処理標準公告(FIPS PUB)186に示されている。

【0004】図1は、従来のデジタル署名技術を例示す る。メッセージ (M) 110の送信機は署名生成ユニッ ト112を有する。メッセージ110の受信機は署名検 証ユニット114を有する。署名生成ユニット112は メッセージ110を受け取りM110に対してセキュア ハッシュ116を行ってH (M) 118を生じる。H (M) 118と秘密鍵120はデジタル署名アルゴリズ ム (DSA) 署名122に入力されH (M) 118に対 するデジタル署名、すなわちSign (H (M)) 12 4を生じる。M110とSign (H (M)) 124は ユーザ送信機の署名生成ユニット112からユーザ受信 機の署名検証ユニット114に送信される。次にM11 0は署名検証ユニット114でハッシュ130されH (M) 132を生じる。セキュアハッシュ130はセキ ュアハッシュ116と同じ関数である。H (M) 132 とSign (H (M)) 124は公開鍵134と共にD SA検証136に入力されメッセージ内容が確認され る。"no"結果はメッセージ110が不正変更されて いることを示し、"yes"結果は不正変更がないこと を示すが、それを保証するわけではない。さらに、デジ タル署名はメッセージを認証する、すなわち、メッセー ジが、そのメッセージが要求された出所からのものであ ることを受信者に保証する。

[0005]

【発明が解決しようとする課題】しかし、デジタル署名は、解読することが非常に困難であるが不可能ではないと想定される周知のアルゴリズムに依存している。解読困難という想定は、コンピュータの能力の急速な増大と共に次第に説得力がないものになりつつある。さらに、デジタル署名は秘密鍵が秘密のものであることを前提としている。秘密鍵が危殆に瀕した場合、セキュリティはその場で、回復されたデータと共に失われる。従って、回復されたデータを確認するよりよい技術が必要である。

[0006]

【課題を解決するための手段】本発明によれば、データおよび/または関連する署名ログエントリを復元および/または確認する方法とシステムを含む技術が提供される。1つの態様では、データにはデジタル署名付きユーザメッセージが含まれ、関連署名ログエントリが関連付

け、たとえばリンクされる。各署名ログエントリは、最初のものを除いて、前の署名ログエントリからのデータは、一夕を使用する。前の署名ログエントリからのデータは、現在の署名ログエントリのデジタル署名を形成する際1つの入力として使用される。すなわち、連鎖またはヒステリシス署名が生成される。この態様では、失われたメセージが復元された後、署名ログが使用され、メエレージに関連するデジタル署名を対応する署名ログエントリと比較することによってメッセージを確認する。署名関係で選択されたエントリを公開刊行物、たとえば新聞、ニューズレター、ウェブサイト、雑誌、または定期刊行物といった公開媒体で選択されたエントリを公開工工といった公開媒体で選択されたエントリを公開工工とによって向上しうる。メッセージはさらに、公開工工といからメッセージの署名ログエントリに戻る形で署名ログの一貫性を検査することによって確認される。

【0007】本発明の態様の中にはメッセージ用ヒステリシス署名の使用を示すものもあるが、本発明はメッセージに制限されない。たとえば、業務用コンピュータシステム上の一連の業務文書の有効性について、バックアップ媒体からデータを復元した後で、業務用署名ログと各文書に関連するヒステリシス署名を使用してデータを確認することがある。また、ユーザは、ユーザ自身のコンピュータシステム上で、復元されたバックアップデータ、たとえば前の電子商取引購入の確認をしようとすることもある。

【0008】本発明の1つの態様では、メッセージに対して署名ログ中に生成されるエントリを有する復元メッセージを確認する方法を提供されるが、ここでエントリには、メッセージに関連する暗号化情報、たとえばデジタル署名が含まれる。次に、上記メッセージが失われた場合、要求に応答して復元メッセージが生成され、復元メッセージは署名ログを使用して確認される。

【0009】本発明の第2の態様では、ユーザ情報を回復および確認するシステムが提供される。このシステムには、ユーザ情報に関連する暗号化情報を有する署名ログを有するユーザシステムと、通信ネットワークを介してユーザシステムと結合されユーザ情報を復元する回復システムと、上記通信ネットワークを介してユーザシステムと結合され署名ログを使用して復元ユーザ情報を確認する確認システムとが含まれる。

【0010】本発明の第3の態様では、ユーザメッセージが有効かを判定するシステムが提供されるが、このシステムには、ログを有するユーザコンピュータシステムであって、ログがユーザによって送信されたメッセージに関連するログエントリを有し、ログエントリがログの前のログエントリに関連する情報を有するデジタル署名を有するユーザコンピュータシステムと、ユーザコンピュータシステムに結合されログを使用してユーザメッセージを確認する確認ユニットとが含まれる。

【0011】本発明の第4の態様では、メッセージ情報

を確認するデータ構造を含むコンピュータ可読データ伝送媒体が提供される。このデータ構造には、ユーザメッセージのハッシュまたはユーザメッセージ自体を有する第1の部分と、署名ログエントリのハッシュを有する第2の部分と、第1の部分と第2の部分とに基づくデジタル署名とが含まれる。

【0012】本発明の第5の態様では、コンピュータを使用して、複数のログエントリを有する署名ログを生成する方法が提供される。まず、第1のログエントリが生成される。第1のログエントリは第1のユーザメッセージに関連する第1の暗号化値を有する。次に、第2のログエントリが生成される。第2のログエントリは、第1のログエントリに関連する第2の暗号化値と、第2のユーザメッセージに関連する第3の暗号化値と、デジタル署名とを有する。

【0013】本発明の第6の態様では、コンピュータシステムにおいて、複数の記録されたログエントリを有する署名ログを使用することで選択されたログエントリを確認する方法が提供される。この方法には、選択されたログエントリに対する暗号化値を計算するステップと、その暗号化値が別の記録されたログエントリの一部であるかを判定するステップとが含まれる。

【0014】本発明の第7の態様では、複数のユーザコンピュータシステムの1つによるトランザクションの拒否を防止するシステムが提供される。このシステムには、第1のユーザコンピュータシステムと、第1のユーザとトランザクションを行う第2ユーザコンピュータシステムと、第1のまたは第2の何れかのユーザの要求に応答してトランザクションを記録する、ログチェーンクロスコンピュータとが含まれ、この記録にはトランザクションのヒステリシス署名が含まれる。

【0015】本発明の第8の態様では、コンピュータシステムを使用して、公式に承認された主体、たとえば(リンクを有するかまたは有さない)公証人によってユーザのログエントリを登録する方法が提供される。この方法には、公式に承認された主体による署名ログチェーンを維持するステップであって、その際署名ログチェーンの第1のログエントリが署名ログチェーンの前の第2のログエントリに関連するステップと、ユーザからユーザログエントリを受信するステップと、ユーザログエントリに関連する暗号化値を生成するステップと、署名ログチェーンの第3のログエントリを生成するステップであって、その際第3のログエントリが暗号化値を含むステップとが含まれる。

【0016】本発明の第9の態様では、ユーザの署名ログを使用するコンピュータシステムによってユーザデータ項目を確認する方法が提供される。コンピュータシステムはユーザの署名ログを受信し、ユーザデータ項目に関連する暗号化値がユーザの署名ログ中の第1のログエントリにあるかを確認する。次に、コンピュータは、チ

ェックポイントされたユーザの署名ログ中の第2の署名ログを判定した後第2のログエントリから第1のログエントリに後方連鎖することで第1のログエントリを検証し、結果はユーザに戻される。

【0017】本発明の第10の態様では、コンピュータシステムを使用して、2つの時点間のデータ項目を回復する方法が提供される。この方法には、ユーザから2つの時点間のデータを回復せよという要求を受信するステップと、データ回復ユニットからデータ項目と関連署名ログエントリとを受信するステップと、関連署名ログエントリを使用してデータ項目を確認するステップと、データ項目が確認された場合、データ項目をユーザに送信するステップとが含まれる。

【0018】本発明の第11の態様では、ユーザメッセージを確認するシステムが提供される。このシステムには、ユーザから複数の関連ログエントリを含む署名ログを受信する入力モジュールと、ユーザメッセージから暗号化値を生成する暗号化モジュールと、暗号化値が署名ログ中にあることを確認する検証モジュールとが含まれる。

【0019】第12の態様では、復元メッセージを確認するコンピュータプログラム製品が提供されるが、これは、メッセージについて署名ログ中に、メッセージに関連する暗号化情報を含むエントリを生成するコードと、メッセージが失われている場合、要求に応答して復元メッセージを生成するコードと、署名ログを使用して復元メッセージを確認するコードと、上記のコードを具現するコンピュータ使用可能媒体とを有する。

【0020】他の態様では、復元メッセージを確認する、搬送波中に具現されるコンピュータデータ信号が提供されるが、これは、メッセージについて署名ログ中に、メッセージに関連する暗号化情報を含むエントリを生成するプログラムコードと、上記メッセージを生成するプログラムコードと、署名ログを使用して復元メッセージを確認するプログラムコードとを有する。

【0021】本発明のこれらと他の態様は以下の本文および添付の図面に関連してさらに詳細に説明される。

[0022]

【発明の実施の形態】図2は、本発明の有効性回復システムの実施形態を示す。このシステムには、ネットワーク210を介して互いに結合された有効性回復サーバ212とユーザ_1 214とが含まれる。必要に応じて、ユーザ_2 216、証拠収集サーバ220、リンクのない公証人事務所222、リンクのある公証人事務所224、マスメディアサーバ230、およびログチェーンクロスサーバ240の1つかそれ以上が含まれ、ネットワーク210を介して互いに結合されることがある。ユーザ_1 214とユーザ_2 216はありうるユーザの例に過ぎず、他の

実施形態には2人より多いユーザが含まれる。マスメディアサーバ230には新聞232および/またはウェブサイト234が含まれる。

【0023】有効性回復サーバ212は証拠収集サーバ220から回復されたメッセージおよび/または署名ログエントリを受信し、メッセージおよび/またはメッセージに関連する署名ログエントリを確認する。ユーザまたは証拠収集サーバ220はマスメディアサーバ230を介して選択された署名ログエントリを公開することを要求することがあり、リンクのない公証人事務所222、またはリンクのある公証人事務所222によって他の選択された署名ログエントリを登録する。この登録または公開によって、署名ログエントリはチェックポイントされ、後で前の署名ログエントリを個々に確認する際使用される。

【0024】証拠収集サーバ220はネットワーク21 0上で送信されたユーザメッセージに関連する情報を収 集しデータベース(DB)中に格納する。この情報に は、メッセージに関連する署名ログエントリとそのメッ セージの送信相手先が含まれる。この実施形態では、証 拠収集サーバ220はそのDB中に全てのユーザの署名 ログエントリのコピーを維持しているので、ユーザの署 名ログのバックアップの役目を果たしている。メッセー ジを回復するため、証拠収集サーバ220は誰がメッセ ージを受信したかを知っており、受信者からメッセージ を回復しようとする。代替実施形態では、証拠収集サー バ220はユーザによって送信されたメッセージの一部 または全てのコピーを維持し、要求に応じて有効性回復 サーバ212にバックアップコピーを供給する。他の実 施形態では、証拠収集サーバ220には検索エンジンが 含まれるが、これは有効性回復サーバ212の要求に応 じて、ネットワーク210を介して失われたメッセージ のバックアップコピーを検索する。検索エンジンがバッ クアップコピーを発見すると、証拠収集サーバはバック アップコピーを取り出し、それを有効性回復サーバ21 2に転送する。

【0025】公証人事務所222および224は有資格公設または私設の公証人サービスまたは何らかの公式に承認された主体であり、ヒステリシス署名(すなわち、リンクあり)かまたは従来のログブック(すなわち、リンクなし)の何れかを使用して署名ログを維持する。すなわち、ユーザは、公証人サービスによって自分の署名ログに選択されたエントリを定期的に登録できる。こうしたチェックポイントが使用され、個々の前の署名ログエントリを確認する。

【0026】ここで使用されるようなヒステリシス署名は、メッセージに関連する第1の暗号化情報と、少なくとも1つの前のヒステリシス署名に関連する第2の暗号化情報とを含むデジタルデータを使用するセキュリティ機構である。第1の暗号化情報の例はメッセージ暗号化

の結果である。第1の暗号化情報の別の例には、一部または全体がメッセージから形成されたデジタル署名が含まれる。第2の暗号化情報の例には少なくとも1つの前のヒステリシス署名のデジタルデータの暗号化の結果が含まれるが、ここで当初第1のヒステリシス署名は所定の値であることがある。上記の定義を使用すると、ヒステリシス署名の1つの例には、ログエントリのチェーンにおいて、各ログエントリが、最初のログエントリを除いて、前のログエントリに依存する、ログエントリのチェーン中の1つのログエントリが含まれる。

【0027】マスメディアサーバ230は、ユーザまたは証拠収集サーバ220の何れかの要求に応じて、広範な対象者に選択されたユーザ署名ログエントリを公開する。署名ログエントリを公開することで、それが公開された後ログエントリを不正変更することは困難になる。ログエントリを公証人によって登録することと同様、署名ログエントリの公開はエントリをチェックポイントし、特定の前の署名ログエントリを確認するために使用される。新聞発行者232とウェブサイト234という、公開者の2つの例が示される。公開者の他の例には、雑誌、書籍、定期刊行物、ニューズレター、または会議議事録の発行者が含まれる。

【0028】ログチェーンクロスサーバ240は、相互トランザクション、たとえば、連絡、商品の販売、融資、または電子商取引トランザクションが行われる時、たとえば、ユーザ_1 214とユーザ_2 216によって使用される。ログチェーンクロスサーバ240は、ヒステリシス署名を使用して署名ログ中にメッセージ転送のコピーを維持する。トランザクション上の紛争が生じた場合、ログチェーンクロスサーバ240はトランザクションの証人の役目を果たす。これによって何れかの当事者がトランザクションを拒否するのが防止される。代替実施形態では、ログチェーンクロスサーバ240はユーザ_1 214とユーザ_2 216の間のトランザクションの転送またはメッセージの交換を促進するが、コピーは維持しない。この場合、自分のコピーを維持するのは各ユーザの責任である。

【0029】図3は、図2に示される各コンピュータシステムの1つの実施形態を表すコンピュータシステム310の例を示す。こうした図2のコンピュータシステムには、有効性回復サーバ212、ユーザ_1 214、ユーザ_2 216、証拠収集サーバ220、リンクのない公証人事務所222、リンクのある公証人事務所224、マスメディアサーバ230、およびログチェーンクロスサーバ240が含まれる。コンピュータシステム310には、中央処理装置(CPU)312、一時記憶用揮発性記憶装置314(たとえばRAM)、たとえばハードディスク、CD-ROM、またはフレキシブルディスクといった、データおよびソフトウェアを格納する不揮発性記憶装置316、ネットワークに接続するネッ

トワークインターフェース318、ディスプレイ、マウスおよびキーボードに接続するI/Oインターフェース320、および上記の構成要素を互いに接続するバス325が含まれる。別のハードウェア実施形態には、RAIDディスク駆動装置を備えたサーバ用の多重プロセッサ Microsoft Windows NTシステムと、ユーザ用のMicrosoft Windowsオペレーティングシステムを備えたパーソナルコンピュータとが含まれる(Microsoft、Windows、Windows NTは米国Microsoft Corporationの米国およびその他の国における登録商標である)。

【0030】図4は、本発明の1つの実施形態のメッセ ージ形式410を示す。メッセージは、ネットワーク2 10上で、ユーザ、たとえばユーザ_1 214から別 のユーザ、たとえばユーザ_2 216に送信される。 メッセージ形式410には、索引番号"i"412と、 出所、たとえばユーザ_1 214のユーザアドレス4 14が含まれる。さらに、宛先、たとえばユーザ_2 216のアドレス(図示せず)も含まれる。メッセージ 内容、M_i、メッセージ内容のハッシュ、H(M_i)4 18、前の(i-1) ログエントリのハッシュ、H(P i-1)、H(P_{i-1})とH(M_i)の連結のデジタ ル署名、すなわち $Sign_i(H(P_{i-1}) \mid H$ (M₁)) 422、および公開鍵証明424が含まれ る。メッセージ内容、M,にはたとえば、テキスト、H TML、XML、イメージ、ビデオクリップ、音声クリ ップ、デジタルデータ、またはプログラムが含まれる。 1つの実施形態では、メッセージ内容 (M_i) には添付 ファイルが含まれる。代替実施形態では、添付ファイル は除外される。デジタル署名、Sign;(H(P;_ 1) | H (M;)) 422は、前のログエントリ、P i - 1 からの情報がデジタル署名中に含まれているとい う点でヒステリシス署名である。

【0031】図5は、本発明の他の実施形態の別のメッセージ形式510を示す。メッセージの形式は図4と同様であるが、タイムスタンプ_iフィールド524が加わっている点が異なっている。1つの実施形態では、タイムスタンプ_iフィールド524はメッセージが送信された時間である。他の実施形態では、タイムスタンプ_iフィールド524は、メッセージが作成された時間またはメッセージが受信された時間のこともある。

【0032】図6は、本発明の実施形態のユーザの署名ログの例を示す。各ユーザは時間順で、送信および受信されたメッセージの署名ログを維持する。署名ログエントリは記号 P_i 、たとえば、 P_1 610、 P_2 620、 P_{n-1} 630および P_n 640によって表される。最初の署名ログエントリ P_1 610はフィールド"IV" 612を有するが、これは所定の値に設定された定数である。次のフィールドH(M_1) 614は最初のメッセージ内容、 M_1 のハッシュである。そして第3のフィールド $Sign_1$ (IV|H(M_1)) 61

8は、H(M₁)と連結されたIVのデジタル署名であ る。次の署名ログエントリア2 620はフィールドH (P₁) 622を有するが、これは前の署名ログエント リP₁610のハッシュである。次のフィールドH (M 2) 624は第2のメッセージ内容、M₂のハッシュで ある。第3のフィールドSign₂(H(P₁) | | H (M₂)) 626は、H (M₂) と連結されたH (P₁) のデジタル署名である。n番目の署名ログエン |V| = 1642中に前の署名ログエントリP_{n-1} 630から の情報が含まれる。n番目のメッセージ内容、Mnはハ ッシュされ、H (M_n) 644を生じる。このデジタル 署名はヒステリシス署名、 $Sign_n(H(P_{n-1}))$ $| | H (M_n)) 646$ である。すなわち、 P_n は [H $(P_{n-1}) \mid | H (M_n) | | Sign_n (H (P_n)) |$ n-1) | | H (M_n))] に等しい。 (n-1) 番目 の署名ログエントリはP_{n-1} 630であるが、これ にはH(P_{n-2})632中に前の署名ログエントリP n-2からの情報が含まれる。 (n-1) 番目のメッセ ージ内容、 M_{n-1} はハッシュされ、 $H(M_{n-1})$ 6 34を生じる。このデジタル署名はやはりヒステリシス 署名、Sign_{n-1} (H(P_{n-2}) | | H(M_{n-1} $_{1}$)) 636である。すなわち、各ログエントリ、 P_{i} は、前のログエントリ、P_{i-1}に向かって後方に連鎖

する。この連鎖によって、現在の情報と共に過去の情報 も知らなければならないため、デジタル署名を偽造する 困難は大きく増大する。他の実施形態では、ユーザは別 個の送信ログと受信ログを有することがある。

【0033】図7は、本発明の他の実施形態のユーザ署名ログの例を示す。この署名ログエントリは図6と同様であるが、各エントリの追加タイムスタンプフィールド、たとえば、716、726、736、および746がある点が異なっている。タイムスタンプフィールドは図5のものと同じである。

【0034】図8は、本発明の実施形態の署名ログファイル中のログエントリの確認を示すフロー図を示す。k > mである2つのログエントリ P_k EP_m がある場合、 $P_m \sim P_{k-1}$ の計算済みハッシュがユーザの署名ログファイル中になければならず、そうでない場合署名ログは損傷している。ステップ810では、 P_k EP_m が、たとえば有効性回復サーバ212によって受信される。 EP_m EP_m

[0035]

【数1】

$H(P_{j-1})=H[H(P_{j-2})||H(M_{j-1})||Sign_{j-1}(H(P_{j-2})||H(M_{j-1}))]$

【0036】次に、ステップ814で、計算されたH (P_{j-1})が P_{j} に対するユーザの署名ログ中にあるかを検査する。答えがノーであれば、ステップ818で署名ログは損傷している。答えがイエスであれば、j-1がmより大きいかが検査される(ステップ820)。ノーであれば、処理は完了し822、署名ログエントリ $P_{m} \sim P_{k-1}$ が確認される(P_{k} は前に確認されていると想定する)。イエスであれば、jは1つ減らされ、処理はステップ812に進んでH(P_{j-1})を計算する。

【0037】たとえば、k=5でm=3であるとする。ステップ810ではj=k=5である。ステップ812では、 P_4 に対する署名ログエントリを使用してH(P_4)が計算される。次に、図6から示されているように、 P_5 に対するユーザの署名ログ中にH(P_4)が前に確認される。答えがイエスであれば、 P_5 が前に確認されていると想定すれば P_4 は確認される。(5-1)>3(ステップ820)であるので、jは1つ減らされる(ステップ824でj=4)。ステップ812で P_3 に対するログエントリからH(P_3)が計算され、計算されたH(P_3)がログエントリ P_4 中の対応するフィールドに対して検査される。H(P_3)が署名ログ中にあるならば、 P_3 が確認され、ステップ820で、(4-1)>3が検査される。答えはノーなので、処理

はステップ822で終了し、結果として P_3 および P_4 が確認された。 P_5 は、チェックポイントによって、たとえばマスメディアサーバ230を使用して P_5 を公開するか、または公証人222および224によって P_5 を登録することで前もって確認することができる。チェックポイントの意味は、 P_5 がチェックポイントされた後不正変更することが困難になるということである。

【0038】図9は、本発明の1つの実施形態のチェッ クポイントの例を示す。縦軸840は時間を表し、相対 時間 t = 0 841 で始まる。最初の署名ログエントリ 842は図6のPnと同様の形式を有する。次のログエ ントリは844によって示される。ログエントリ846 は時間862(t=t1)で発生し、この例では第1の チェックポイントを表す。これは、ログエントリ846 が公開されるかまたは公証人によって登録されたことを 意味する。846がP₅でチェックポイントされ、84 4がP3 (P4は図示せず)であるとする。図8が使用 され P_3 および P_4 を確認することがある。 t = t 2864の時間、すなわち、署名ログ850と852の間 にログの損傷があるならば、ログエントリ852、85 4、および856が疑わしい。時間 t = t3 866で のチェックポイント856は、損傷したログエントリが 公開または登録されているため意味がない。ログエント リ848および850はまだ有効である。損傷がメッセ

ージに対するものであって署名ログに対するものでないならば、ログエントリ856 (チェックポイント2)から846 (チェックポイント1)への後方連鎖を行う時に損傷が検出される見込みがある。従って、ユーザの署名ログを保護することが重要である。

【0039】図10は、本発明の実施形態のログチェー ンクロスサーバを使用する例を示す。アリスとボブとい う2人のユーザがおり、彼らはトランザクション、たと えば商品販売の提案と受け入れを行おうとしているとす る。アリスは、ログエントリ912、914、916、 および918を含む署名ログ910を有し、ボブは、ロ グエントリ932、934、936、および938を含 む署名ログ930を有する。凡例は、アリスのヒステリ シス署名フロー920とボブのヒステリシス署名フロー 940を示す。トランザクションは、ボブとアリスの両 方がトランザクションを促進するログチェーンクロスサ ーバ240に接触することによって開始される。ボブは ログチェーンクロスサーバ922を介してアリスに自分 の提案メッセージを送信する。提案メッセージに関連す るログエントリ934がボブの署名ログ930に入力さ れる。ログチェーンクロスサーバ240はボブからの提 案を受信すると、対応する署名ログエントリをログに記 録し、提案メッセージをアリスに送信する。アリスは、 提案メッセージを受信すると、自分の署名ログ910に ログエントリ914を記録する。次にアリスはボブの宛 先と共に受け入れメッセージをログチェーンクロスサー バ240に送信する。アリスは受け入れメッセージに関 連する署名ログエントリ916を自分の署名ログ910 に入力する。ログチェーンクロスサーバ240は受け入 れメッセージを受信すると、対応する署名ログエントリ をログに記録し、メッセージをボブに伝える。ボブは受 け入れメッセージを受信すると署名ログエントリ936 を自分の署名ログ930に入力し、トランザクションは 完了する。すなわち、トランザクション、すなわち提案 および受け入れメッセージがログエントリを有する場所 は、アリスのログ910、ボブのログ930、およびロ グチェーンクロスサーバ240のログと3つある。これ によってアリスまたはボブが後でトランザクションを拒 否することが防止される。ログチェーンクロスサーバ2 40はトランザクションの公平な証人の役目を果たす。

【0040】図11は、リンクのある公証人による署名ログエントリの登録の例を示す。すなわち、公証人はヒステリシス署名または連鎖ログ1030を有する。ユーザはヒステリシス署名ログ1010を有し、これにはエントリ1012、1014、および1016が含まれる。公証人はヒステリシス署名ログ1030を有し、これにはログエントリ1032、1034、1036、および1038が含まれる。この実施形態では公証人は、マスメディアサーバ230を使用して、そのログエントリ、たとえばエントリ1034およびエントリ1038

を定期的に公開する。ユーザは、ログエントリ、たとえばエントリ1014を公証人に送信することによって登録できる。次に公証人はユーザのログエントリ1014を公証人の署名ログ1030に入力し、エントリ1036に与える。すなわち、ユーザのログエントリは公証人のログチェーンの一部となる。

【0041】図12は、本発明の実施形態のマスメディ アサーバ230に関するフロー図を示す。ステップ11 10では、マスメディアサーバ230は、ユーザログエ ントリPiを公開せよというユーザ要求を受信する。次 にマスメディアサーバ230は公開者、たとえばウェブ サイト234または新聞232に、ログエントリ項目P ,を送信する。公開の後、ステップ1114では、マス メディアサーバ230は公開者からタイムスタンプ、た とえばP,が公開された日付/時間を受信する。ステッ プ1116では、 P_i が公開者のIDおよび/または公 開の日付/時間と共に格納される。ステップ1118で は、マスメディアサーバ230は有効性回復サーバ21 2に要求ユーザ I D、公開者、および/または公開の日 付/時間を通知する。そしてステップ1120では、ユ ーザは公開者および/または公開の日付/時間を通知さ れる。

【0042】図13は、本発明の実施形態において署名 ログエントリがチェックポイントされているかを判定す る有効性サーバを示すフロー図を示す。ステップ121 Oでは、有効性回復サーバ212はP_iがチェックポイ ントされたかを判定せよという要求を受信する。有効性 回復サーバ212は、可能性のある公開者または公証人 のユーザによって索引付けされるリストを検索する(ス テップ1212)。次に有効性回復サーバ212は、可 能性のある公開者または公証人があればその識別情報を 含む要求をマスメディアサーバ230または公証人22 2または224に送信する。この要求はP,が公開/公 証されているかを問い合わせるものである。 ステップ1 216では、イエスの答えが公開者または公証人の名称 および/または日付/時間と共にマスメディアサーバか ら受信される。答えがノーであれば、「公開されていな い」という回答だけが戻される。

【0043】図14は、ユーザ署名ログエントリ、 P_i を確認する有効性回復サーバの実施形態を示す。ステップ1420では、有効性回復サーバ212は署名ログエントリ P_i を確認せよというユーザ要求を受信する。 P_i には $H(M_i)$ 1410、 $H(P_{i-1})$ 1412および $Sign_i$ ($H(M_i)$ | $H(P_{i-1})$)1412および $Sign_i$ ($H(M_i)$ | $H(P_{i-1})$)142および $Sign_i$ ($H(M_i)$ | $H(P_{i-1})$)1414が含まれる。有効性回復サーバ212はまず、たとえば図1のDSA検証136を使用することでデジタル署名を検証する(ステップ1422)。DSA検証136への入力は $H(M_i)$ | $H(P_{i-1})$ 、 $Sign_i$ ($H(M_i)$ | $H(P_{i-1})$)1414、および公開鍵134である。デジタル署名が検証されるならば

(ステップ1422のイエス結果)、有効性回復サーバ212はユーザからユーザ署名ログを要求し受信する (ステップ1424)。ステップ1426では、H(M_i)1410とH(P_{i-1})1412が、ユーザの署名ログ中の対応する値に対して検査される。こうしたハッシュ値がログ中にあるならば、ステップ1428で、kがiより大きいかiに等しい、チェックポイントされた P_k が探索される。図8のフロー図を使用して、ユーザの署名ログの一貫性が、チェックポイント P_k から P_i に戻って検査される(ステップ1430)。署名ログが損傷していないならば、肯定的な確認結果がユーザに送信される(ステップ1432)。

【0044】図15は、ユーザメッセージ内容、 M_i を確認する有効性回復サーバの実施形態を示す。ステップ1520では、有効性回復サーバ212はデータ M_i を確認せよというユーザ要求を受信する。メッセージには M_i 1510、 $H(M_i)$ 1512、 $H(P_{i-1})$ 1514、および $Sign_i(H(M_i)|+H(P_{i-1}))$ 1516が含まれる。有効性回復サーバ212はまず、 M_i のハッシュを計算し、それが $H(M_i)$ 1512と同じであるか検査する(ステップ1521)。

第2に、デジタル署名が、たとえば図1のDSA検証1 36を使用することで確認される(ステップ152 2)。DSA検証136への入力は(H(M_i) | H (P_{i-1})), Sign_i $(H(M_i) | H(P$ i_{i-1})) 1516、および公開鍵134である。デジ タル署名が検証されるならば (ステップ138のイエス 結果)、有効性回復サーバ212はユーザからユーザ署 名ログを要求し受信する (ステップ1524)。ステッ J_{1526} では、 $H(M_1)_{1512}$ と $H(P_{11})_{11}$ 1514が、ユーザの署名ログ中の対応する値に対して 検査される。こうしたハッシュ値がログ中にあるなら ば、次にステップ1528で、kがiより大きいかiに 等しい、チェックポイントされたPLが探索される。図 8のフロー図を使用して、ユーザの署名ログの一貫性 が、チェックポイントPょからPょに戻って検査される (ステップ1530)。署名ログが損傷していないなら ば、Miに関する肯定的な確認結果がユーザに送信され る(ステップ1532)。

【0045】表1は、障害と回復の表を示す。

[0046]

【表1】

表1

損失	原因の例	回復
署名ログエントリ、P _i	記憶媒体の障害	バックアップファイル。 バックアップファイルが ない場合、 証拠収集サーバから P.を取り出して確認する
データ、M _i	記憶媒体の障害、 ユーザの譲り	バックアップファイル。 バックアップファイルが ない場合、 証拠収集サーバから M、およびP ₁ を取り出して 確認する
データセキュリティ (データまたはログエントリは 損失していないが、 データまたはログエントリの 有効性が不明) -ユーザは誠実	秘密鍵の漏洩、 メッセージの不正な 変更または挿入	ユーザの署名ログ および チェックポイント
データセキュリティ ーユーザが不正に変更	ユーザによる ログの変更、 ユーザによる メッセージの拒否	ログチェーンクロス、 および チェックポイント

【0047】各縦列の見出しは、失われる情報の種類、損失の原因の例、および可能性のある回復方法である。署名ログエントリ P_i の損失は、たとえば記憶媒体の障害によって発生する。可能性のある回復方法はバックアップファイルから署名ログエントリを回復することである。バックアップファイルが存在しない場合、 P_i のコピー、すなわち、 $H(M_i)$ 、 $H(P_{i-1})$ 、および

Sign_i (H(M_i), H(P_{i-1}))が証拠収集 サーバ220のDBから取り出され、有効性回復サーバ 212は、図14に示された手順を使用して署名ログエ ントリP_iを確認するよう要求される。

【0048】メッセージ内容 M_i の損失が記憶媒体の障害またはユーザの誤りによって発生している場合、可能性のある回復手順にはバックアップファイルからの復元

が含まれる。バックアップファイルが存在しない場合、証拠収集サーバ220は、メッセージ内容 M_i と、関連する署名ログエントリ P_i を取り出して戻すように要求される。次に、有効性回復サーバ212は、図15に示される手順を使用してメッセージ内容 M_i を確認するよう要求される。

【0049】メッセージ内容または署名ログエントリは失われていないがデータ M_i または署名ログエントリアの有効性が不明であるというようなデータセキュリティの損失は、ユーザの秘密鍵の危殆化、メッセージの不正な変更または挿入によって発生する。ユーザすなわちメッセージの作成者が誠実で、ユーザ、たとえばユーザ $_1$ 214によって維持されるユーザ署名ログが損傷していない場合、可能性のある回復手順には、図14および図15に示された手順を使用し、ユーザ署名ログと関連するチェックポイントを使用して M_i または P_i を確認することが含まれる。

【0050】たとえば、メッセージのユーザ/第3者による変更またはユーザによる拒否による署名ログの損傷に起因するデータセキュリティの損失がある場合、回復は原因に基づく。ユーザがトランザクションメッセージを不正変更および拒否した場合、トランザクションの際に交換されたメッセージのコピーがログチェーンクロスサーバ240を使用して回復される。第3者がユーザの署名ログを変更した場合、損傷以前の最後の公開/登録された署名ログエントリが使用される。この公開/登録された署名ログエントリの前の全てのログエントリは回復および確認することができる。

【0051】図16は、本発明の実施形態においてデータを収集する証拠収集サーバのフロー図を示す。ステップ1710では、証拠収集サーバ220はユーザから証拠メッセージを受信する。証拠メッセージには、 P_i 、 M_i の日付/時間、索引 I、 M_i の送信機のアドレスまたは ID、またはユーザの送信時間の中、1つかそれ以上が含まれる。代替実施形態では、証拠メッセージは図4または図5の何れかに示される形式のものである。ステップ1712では、証拠メッセージはユーザアドレスまたは IDによって索引付けされる証拠収集サーバのデータベース(DB)に格納される。

【0052】図17は、本発明の実施形態においてデータを回復する証拠収集サーバのフロー図を示す。ステップ1810では、証拠収集サーバ220は有効性回復サーバ212からメッセージ内容 M_i を回復せよという要求を受信する。ステップ1812では、証拠収集サーバ220はそのデータベースから M_i に関連する証拠メッセージを検索する。次にステップ1814で、証拠収集サーバ220は、 M_i を受信したユーザから M_i と P_i のコピーを証拠収集サーバに戻すよう要求する。代替実施形態では、証拠収集サーバ220はすでにそのDBに

格納された M_i と P_i のコピーを有しておりこれらのコピーを使用する。また他の実施形態では、証拠収集サーバは P_i を有し、ネットワーク 210を検索して M_i を回復する。次に P_i が検査され、受信された P_i が証拠収集サーバのデータベース中の P_i と同じかが調べられる(ステップ 18180)。 P_i がDB中にあるならば、ステップ 18180、 M_i と P_i は確認のため有効性回復サーバ 212に送信される。

【0053】図18は、他の実施形態においてユーザ署名ログエントリを回復する有効性回復サーバのフロー図を示す。ステップ1910では、ユーザ、たとえばユーザ_1 214は有効性回復サーバ212に署名ログエントリ P_i を回復せよという要求を行う。ステップ1912では、一時変数 "j"はiに等しく設定される。次にステップ1914では、証拠収集サーバ220に対して P_j を入手して戻すようにという要求がなされる。次に有効性回復サーバ212は、図1に示された手順を使用し、H(M)の代わりに(H(P_{i-1}) | | H(M_i))によって P_j のデジタル署名を検証する(ステップ1916)。

【0054】ステップ1918では、 P_j が検査され、チェックポイントされているかが調べられる。答えがイエスであれば、ステップ1920で、図8に示された手順を使用して、ユーザ署名ログの一貫性がチェックポイントリア」に戻って検査される。そしてユーザの署名ログ中の P_i が損傷していないならば、 P_i はステップ1922でユーザに戻される。ステップ1918の答えがノーであれば、 P_j はログエントリの一時順次リストまたは待ち行列に入力され(ステップ1924)、jが1つ増やされて(ステップ1926)ステップ1914~1918が繰り返される。連鎖ログエントリを含むリストをチェックポイントしたアjが発見されると、ステップ1920で P_j から P_i に戻ってログエントリの一貫性を検査するために使用される

【0055】図19は、他の実施形態においてユーザメッセージを回復する有効性回復サーバのフロー図を示す。ステップ2010では、ユーザ、たとえばユーザー1214は有効性回復サーバ212にメッセージ内容 M_i を回復せよという要求を行う。次にステップ2012では、証拠収集サーバ220に対して M_i および関連する署名ログエントリ P_i を入手して戻すようにとの要求がなされる。ステップ2013では、 M_i のハッシュが P_i 中にあるかが検査される。ステップ2014では、一時変数"j"は"i"に等しく設定される。ステップ2016では、証拠収集サーバ220に対して P_i を入手し戻すようにとの要求がなされる(i=jの時、 P_i はステップ2012で前に入手されているのでこのステップは省略される)。

【0056】次に有効性回復サーバ212は、図1に示

された手順を使用し、H (M) の代わりに (H (P i - 1) | | H (M i)) によって P i のデジタル署名 を検証する(ステップ2018)。ステップ2020で は、P,が検査され、チェックポイントされているかが 調べられる。答えがイエスであれば、ステップ2022 で、図8に示された手順を使用して、ユーザ署名ログの 一貫性がチェックポイントP_iから署名ログエントリP iに戻って検査される。そしてユーザの署名ログ中のP ,が損傷していないならば、M,はステップ2024で ユーザに戻される。ステップ2020の答えがノーであ れば、P、はログエントリの一時順次リストまたは待ち 行列に入力され(ステップ2026)、jが1つ増やさ れてステップ2016~2020が繰り返される。連鎖 ログエントリを含むリストをチェックポイントしたPi が発見されると、ステップ2022でPjからPiに戻 ってログエントリの一貫性を検査するために使用され る。

【0057】図20は、他の実施形態の2つの時点間の ユーザメッセージを回復する有効性回復サーバのフロー 図を示す。この実施形態では、ユーザメッセージは図5 の形式であり、タイムスタンプフィールド524が存在 する。ステップ2050では、ユーザは時間 t1と時間 t 2の間のメッセージ M_i を回復せよという要求を有効 性回復サーバ212に送信する。有効性回復サーバ21 2は、証拠収集サーバ220からM,と関連するP,を 要求する(ステップ2052)。ステップ2054で は、有効性回復サーバ212は図15の手順を使用して M,を確認する。ステップ2056では、有効性回復サ ーバ212または証拠収集サーバ220は、t1とt2 の間に別のMiが存在するかを検査する。存在する場 合、ステップ2052~2056が繰り返される。答え がノーであれば、Miがユーザに送信される。他の実施 形態では、M_iは証拠収集サーバから一括して入手され る。すなわちステップ2052はt1とt2の間の全て のM,を戻すようにという証拠収集サーバ220に対す る一括要求となり、ステップ2054および2056は 必要なくなる。

【0058】上記の実施形態は一般に特定のハードウェアおよびソフトウェアに関して説明されたが、認識されるように、本発明はさらに広範な適用可能性を有する。たとえば、ソフトウェア機能はさらに結合され、またさらには分離されることがある。同様に、ハードウェア機能がハードウェアまたはハードウェアとソフトウェアの組み合わせによって実現されることもある。同様に、ハードウェアとソフトウェアの組み合わせによって実現されることもある。適用業務に応じて、任意の数の異なった組み合わせが行われることがある。

【0059】上記の教示を考慮して本発明の多くの修正

および変形が可能である。従って、理解されるように、 添付の請求項の範囲内で、本発明は上記で特に説明され た以外の形で実施されることがある。

[0060]

【発明の効果】本発明によれば、データおよび/または 関連する署名ログエントリを復元および/または確認す ることが可能になる。

【図面の簡単な説明】

【図1】従来のデジタル署名技術(先行技術)を例示する。

【図2】本発明の有効性回復システムの実施形態を示す。

【図3】図2に示されるコンピュータシステムの1つの 実施形態を表すコンピュータシステムの例を示す。

【図4】本発明の1つの実施形態のメッセージ形式を示す。

【図5】本発明の他の実施形態の別のメッセージ形式を示す。

【図 6 】本発明の実施形態のユーザの署名ログの例を示 す。

【図7】本発明の他の実施形態のユーザの署名ログの例 を示す。

【図8】本発明の実施形態の署名ログファイル中のログ エントリの確認を示すフロー図を示す。

【図9】本発明の1つの実施形態のチェックポイントの 例を示す

【図10】本発明の実施形態のログチェーンクロスサー バを使用する例を示す。

【図11】本発明の実施形態のリンクを有する公証人に よる署名ログの登録の例を示す。

【図12】本発明の実施形態のマスメディアサーバ23 0に関するフロー図を示す。

【図13】本発明の実施形態において署名ログエントリ がチェックポイントされているかを判定する有効性サー バを示すフロー図を示す。

【図14】ユーザ署名ログエントリを確認する有効性回復サーバの実施形態を示す。

【図15】ユーザメッセージ内容を確認する有効性回復 サーバの実施形態を示す。

【図16】本発明の実施形態においてデータを収集する 証拠収集サーバのフロー図を示す。

【図17】本発明の実施形態においてデータを回復する 証拠収集サーバのフロー図を示す。

【図18】本発明の他の実施形態においてユーザ署名ログエントリを回復する有効性回復サーバのフロー図を示す。

【図19】本発明の他の実施形態においてユーザメッセージを回復する有効性回復サーバのフロー図を示す。

【図20】本発明の他の実施形態の2つの時点間のユーザメッセージを回復する有効性回復サーバのフロー図を

示す。

【符号の説明】

210…ネットワーク、212…有効性回復サーバ、2 14…ユーザ1、216…ユーザ2、220…証拠収集 サーバ、222…公証人事務所(リンクなし)、224 …公証人事務所(リンクあり)、230…マスメディア サーバ、232…新聞、234…ウェブサイト、240 …ログチェーンクロスサーバ

【図1】

【図2】

【図4】

図 4

メッセージ形式

【図5】

図 5

タイムスタンプを伴うメッセージ形式

【図6】

【図9】

【図7】

タイムスタンプを伴う別の署名ログ

[図8]

ログエントリの確認一後方連鎖

図8 図9 **/810** ログエントリ、PkおよびPmを受信する。 840 ここで k>m であり、j=k とする 866 856 812 t = t3チェックポイント2 Pj-1に対するログエントリから 854 H(P_{j-1})を計算する 864 852 824 814ر t=t2-850 損傷 H(P_{j-1})がP_jに対するユーザ署名 j = j-1848 ログ中にあるかを検査する 862~ t=t1チェックポイント1 820 816 署名ログ中に あるか? Yes 844 Yes j-1>m か? No No 841 -842 818 t=0822 署名ログは損傷している 終了 ログエントリのチェックポイント (たとえば、公開または公証)

【図10】

【図12】

【図13】

マスメディアサーバ

図13

署名ログエントリがチェックポイント されているかを判定する回復サーバ

【図15】

図15

[図17]

【図18】

図17

データを回復する証拠収集サーバ

ユーザ署名ログエントリを回復する回復サーバ

Piをユーザに送信する

/1922

_2050

2052

2054

Yes

2060

【図19】

- 2010

2012

2013

2016

2018

2022

2024

2020

【図20】

図20

図19

データM _i を回復せよ

というユーザ要求

証拠収集サーバからデータMi

および Piを入手する

H(M;)がPj中にあるかを検証する

j=iに設定する

デジタル署名を検証する

Pjは チェックポイントされて いるか?

ユーザ署名ログの一貫性を検査する

Miをユーザに送信する

Yes チェックポイントP jからP jに戻って

j≠1の場合、証拠収集サ・ P_jを入手する

ユーザデータ項目を回復する回復サーバ

2つの時点間のユーザデータを回復する回復サーバ

フロントページの続き

(72)発明者 洲崎 誠一

神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内

式会社日立製作所システム開発研究所内

(72)発明者 佐々木 良一 神奈川県川崎市麻生区王禅寺1099番地 株

(72)発明者 宝木 和夫 神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内 (72)発明者 豊島 久

東京都江東区新砂一丁目6番27号 株式会 社日立製作所公共システム事業部内

(72)発明者 松木 武

神奈川県川崎市幸区鹿島田890番地 株式 会社日立製作所情報サービス事業部内

Fターム(参考) 5J104 AA09 AA11 AA12 EA19 JA01

JA21 LA01 LA03 LA04 LA06 MA01 NA02 NA12 NA27

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第3区分

【発行日】平成17年9月2日(2005.9.2)

【公開番号】特開2002-335241(P2002-335241A)

【公開日】 平成14年11月22日(2002.11.22)

【出願番号】特願2002-59674(P2002-59674)

【国際特許分類第7版】

H 0 4 L 9/32

G 0 9 C 1/00

[FI]

H 0 4 L 9/00 6 7 5 B G 0 9 C 1/00 6 4 0 D

【手続補正書】

【提出日】平成17年3月7日(2005.3.7)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

ユーザ情報を回復および確認するシステムであって、

前記ユーザ情報に関連する暗号化情報を含む署名ログを備えるユーザシステムと、

通信ネットワークを介して前記ユーザシステムと結合され、ユーザ情報を復元する回復 システムと、

前記通信ネットワークを介して前記ユーザシステムと結合され、前記署名ログを使用して復元ユーザ情報を確認する有効性システムとを備えるシステム。

【請求項2】

請求項1記載のシステムであって、

前記ユーザ情報が前記署名ログのログエントリを含むシステム。

【請求項3】

請求項1記載のシステムであって、

前記ユーザ情報がユーザメッセージを含むシステム。

【請求項4】

請求項1記載のシステムであって、

前記暗号化情報がハッシュ値を含むシステム。

【請求項5】

請求項1記載のシステムであって、

前記署名ログが、前記署名ログの第2のログエントリによって部分的に決定される前記署名ログの第1のログエントリを含むシステム。

【請求項6】

ユーザメッセージが有効かどうかを判定するシステムであって、ログを有するユーザコ ンピュータシステムと、

前記ユーザコンピュータシステムと結合され、前記ログを使用して前記ユーザメッセージを確認する確認ユニットとを備え、

前記ログは、前記ユーザによって送信されるメッセージに関連するログエントリを含み

前記ログエントリは、前記ログの前のログエントリに関連する情報を含むデジタル署名

を有するシステム。

【請求項7】

請求項6記載のシステムであって、さらに、

前記ユーザメッセージが失われている時、前記確認ユニットに応答して前記ユーザメッセージを取り出す収集ユニットを備えるシステム。

【請求項8】

請求項6記載のシステムであって、さらに、

前記ユーザメッセージが失われている時、前記確認ユニットに応答して前記メッセージ の受信機から前記メッセージのコピーを取り出す収集ユニットを備えるシステム。

【請求項9】

請求項6記載のシステムであって、さらに、

前記ログの選択されたログエントリを公開する公開ユニットを備えるシステム。

【請求項10】

請求項9記載のシステムであって、

前記選択されたログエントリが前記ユーザメッセージを確認する際使用されるシステム

【請求項11】

請求項9記載のシステムであって、

公開ユニットが新聞発行者またはウェブサイトからなるグループから選択されるシステム。

【請求項12】

請求項6記載のシステムであって、さらに、

前記ログの選択されたログエントリを登録する公証人ユニットを備えるシステム。

【請求項13】

請求項6記載のシステムであって、さらに、

前記ユーザコンピュータシステムに結合されるログチェーンクロスユニットと、

前記ユーザコンピュータシステムと第2のユーザコンピュータシステムの間のトランザクションを記録する前記第2のユーザコンピュータシステムとを備えるシステム。

【請求項14】

請求項6記載のシステムであって、さらに、

前記ユーザコンピュータシステムに結合されるログチェーンクロスユニットと、

前記ユーザコンピュータシステムと第2のユーザコンピュータシステム間のトランザクションを促進する前記第2のユーザコンピュータシステムとを備えるシステム。