CSC 2305 Numerical Methods for Optimization Problems (Winter 2016) Assignment # 5

1002119049 Hao Wang (UTORid: wangh110)

March 28, 2016

1 Problem 1

1.1 Output:

1 n	n k true error		condition number	
2 =====				
з 5	6	1.56282e-07	476607	
4 8	19	0.0131867	1.52576e+10	
5 12	38	3.98753e+08	1.63145e+16	
6 20	73	6.00139e+14	2.50718e+18	

1.2 Comments

We can see the number of iterations becomes larger when the dimension of system gets larger. This is because the condition number of the Hilbert matrix is very large and becomes larger when dimension increases. Large condition number means Hilbert is nearly singular, or we can say it is "numerically" singular. Given a right hand side b, it may not belong to the range of Hilbert matrix. Hence it is hard to solve.

1.3 Source code list

```
function [ ] = CG( n, x, tol )
A = hilb(n);
b = ones(length(x) , 1);
```

```
r = A * x - b;
     p = -r;
      k = 0;
      while norm(r) > tol
          alpha = (r' *r) / (p' *A*p);
          x = x + alpha*p;
10
          old_r = r;
11
          r = r + alpha*A*p;
          beta = (r' *r) / (old_r' * old_r);
          p = -r + beta*p;
          k = k + 1;
      end
16
17
      % true error
18
      err = norm(invhilb(n) *b - x);
      disp([sprintf('%g\t', n), sprintf('%g\t', k),...
          sprintf('%g\t', err), sprintf('%g', cond(A))]);
22 end
```

2 Problem 2

2.1 Plots

Figure 1: With model function as $y = f(t, x) = x_1 e^{x_2 t}$.

Figure 2: With model function as $y = f(t, x) = \log(x_1) + x_2t$.

2.2 Comments

- (a) From the plots and outputs, we can observe the solution process is not sensitive to different solution methods, such as Normal equations, QR and SVD.
- (b) The values obtained in this model does not agree with values in (a). The \mathbf{x} leads to a larger $f(\mathbf{x})$ compared to the \mathbf{x} in (a). The reason why this happens is that in (b) we use a linear least

squares method to approximate the non-linear model, which introduces more errors compared to the non-linear least squares method – Gauss-Newton Method.

2.3 Output:

2.3.1 (a)

The outputs of Normal equations, QR, SVD are the same.

1	n x1		x2	norm(gy)	f(x)
2	=====				========
3	1	12.749097	-1.736746	9.153186	7.851829
4	2	14.252544	-1.447724	6.881350	1.644517
5	3	14.306967	-1.505248	1.745266	0.094809
6	4	14.370120	-1.513220	0.069292	0.048154
7	5	14.376136	-1.513862	0.003133	0.047956
8	6	14.376591	-1.513912	0.000257	0.047955
9	7	14.376626	-1.513915	0.000020	0.047955
10	8	14.376629	-1.513916	0.000002	0.047955
11	9	14.376629	-1.513916	0.00000	0.047955

2.3.2 (b)

The outputs of Normal equations, QR, SVD are the same.

1	n	log(x1)	x2	norm(gy)	f(x)
2	=======				
3	0	2.155818	-1.096669	2.331118	1.855976

2.4 Source code list

```
1 function a5_2()
           func = @objFunc;
     func = @objFunc2;
     TOL = 1e-6;
     x0 = [2, -1]';
     x = x0;
     [\tilde{x}, \tilde{x}, \tilde{x}] = func(x(1), x(2));
     n = 0;
     disp([sprintf('n\t'), sprintf('x1\t'), sprintf('x2\t'), ...
10
         sprintf('norm(gy) \t'), 'f(x)']);
11
     disp(['======', ...
12
         <u>'</u>=========']);
14
     while norm(gy) > TOL
```

```
16
           [r, y, Jr, gy] = func(x(1), x(2));
17
           %% normal equations
             p = - inv(Jr'*Jr)*Jr'*r;
20
           응응 QR
21
             [Q,R,E] = qr(Jr);
22 %
             p = -E/R *Q' *r;
23
           응응 SVD
25
           [U,S,V] = svd(Jr, 0);
           p = -V/S*U'*r;
28
           alpha = backtracking(func, p, x, 0.5, 0.1);
29
           x = x + alpha*p;
30
           n = n + 1;
31
32
           disp([sprintf('%g\t', n), sprintf('%f\t', x(1)), ...
33
               sprintf(' f t', x(2)), sprintf(' f t', norm(gy)), ...
               sprintf('%f\t', y)]);
35
      end
36
             disp(x);
37
38
      ee plot
39
      t = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0];
40
      y = [6.80, 3.00, 1.50, 0.75, 0.48, 0.25, 0.20, 0.15];
41
      figure;
43
      hold on;
44
      box on;
45
      grid on;
46
      scatter(t, y, 'x');
47
      set(gcf, 'Position', [0 0 300 400]);
48
      set(gca,'FontSize',14);
      fplot(@(a) x(1) * exp(x(2) * a), [0 5]);
50
51 end
```

```
function [ r, y, Jr, gy] = objFunc( x1, x2 )

r = [34/5 - x1*exp(x2/2), 3 - x1*exp(x2), ...

3/2 - x1*exp((3*x2)/2), 3/4 - x1*exp(2*x2), ...

12/25 - x1*exp((5*x2)/2), 1/4 - x1*exp(3*x2), ...

1/5 - x1*exp((7*x2)/2), 3/20 - x1*exp(4*x2)]';

y = 1/2*((x1*exp(x2) - 3)^2 + (x1*exp(3*x2) - 1/4)^2 ...

+ (x1*exp(2*x2) - 3/4)^2 + (x1*exp((3*x2)/2) - 3/2)^2 ...

+ (x1*exp((7*x2)/2) - 1/5)^2 + (x1*exp(4*x2) - 3/20)^2 ...

+ (x1*exp(x2/2) - 34/5)^2 + (x1*exp((5*x2)/2) - 12/25)^2);
```

```
11
        qy = [exp(2*x2)*(x1*exp(2*x2) - 3/4) + ...
12
             \exp(3*x2)*(x1*\exp(3*x2) - 1/4) ...
13
             + \exp((3*x2)/2)*(x1*\exp((3*x2)/2) - 3/2) ...
14
             + \exp((7*x2)/2)*(x1*\exp((7*x2)/2) - 1/5) \dots
15
             + \exp(4 \times x^2) \times (x^1 \times \exp(4 \times x^2) - 3/20) \dots
16
             + \exp(x^2/2) * (x^1 * \exp(x^2/2) - 3^4/5) \dots
17
             + \exp((5*x2)/2)*(x1*\exp((5*x2)/2) - 12/25) \dots
18
             + \exp(x2) * (x1 * \exp(x2) - 3); ...
19
             2*x1*exp(2*x2)*(x1*exp(2*x2) - 3/4) ...
             + 3*x1*exp(3*x2)*(x1*exp(3*x2) - 1/4) ...
21
             + (3*x1*exp((3*x2)/2)*(x1*exp((3*x2)/2) - 3/2))/2 ...
22
             + (7*x1*exp((7*x2)/2)*(x1*exp((7*x2)/2) - 1/5))/2 ...
23
             + 4 \times x1 \times exp(4 \times x2) \times (x1 \times exp(4 \times x2) - 3/20) \dots
24
             + (x1*exp(x2/2)*(x1*exp(x2/2) - 34/5))/2 ...
25
             + (5*x1*exp((5*x2)/2)*(x1*exp((5*x2)/2) - 12/25))/2 ...
26
             + x1*exp(x2)*(x1*exp(x2) - 3)];
27
28
        Jr = [-exp(conj(x2)/2),
                                                  -(\exp(\cos(x2)/2) \cdot \cos(x1))/2;
             -\exp(\operatorname{conj}(x2)),
                                                     -\exp(\operatorname{conj}(x2)) * \operatorname{conj}(x1);
30
             -\exp((3*\cos(x2))/2), -(3*\exp((3*\cos(x2))/2)*\cos(x1))/2;
31
                                                  -2 \times \exp(2 \times \operatorname{conj}(x2)) \times \operatorname{conj}(x1);
             -\exp(2 \times \operatorname{conj}(x2)),
32
             -\exp((5*\cos(x^2))/2), -(5*\exp((5*\cos(x^2))/2)*\cos(x^2))/2;
33
             -\exp(3*\cos(x2)),
                                                  -3 \times \exp(3 \times \operatorname{conj}(x2)) \times \operatorname{conj}(x1);
34
             -\exp((7*\cos(x^2))/2), -(7*\exp((7*\cos(x^2))/2)*\cos(x^2))/2;
35
                                                  -4 \times \exp(4 \times \operatorname{conj}(x2)) \times \operatorname{conj}(x1);
             -\exp(4 \times \operatorname{conj}(x2)),
37 end
```

```
1 function [ r, y, Jr, gy] = objFunc2( x1, x2 )
      r = [1079131495240151/562949953421312 - x2/2 - x1, ...
          2473854946935173/2251799813685248 - x2 - x1, \dots
          1826052509787667/4503599627370496 - (3*x2)/2 - x1, ...
          -x1 - 2 \times x2 - 2591209748590025/9007199254740992, ...
          -x1 - (5*x2)/2 - 3305503303392621/4503599627370496, ...
          -x1 - 3*x2 - 6243314768165359/4503599627370496, ...
          -x1 - (7*x2)/2 - 7248263982714163/4503599627370496, ...
9
          -x1 - 4 \times x2 - 1067983607126147/562949953421312]';
10
11
      y = (abs(x1 + x2 - 2473854946935173/2251799813685248)^2 ...
          + abs(x1 + x2/2 - 1079131495240151/562949953421312)^2 ...
13
          + abs(x1 + (7*x2)/2 + 7248263982714163/4503599627370496)^2 ...
14
          + abs(x1 + (3*x2)/2 - 1826052509787667/4503599627370496)^2 ...
15
          + abs(x1 + 3*x2 + 6243314768165359/4503599627370496)^2 ...
          + abs(x1 + 2*x2 + 2591209748590025/9007199254740992)^2 ...
17
          + abs(x1 + 4*x2 + 1067983607126147/562949953421312)^2 ...
          + abs(x1 + (5*x2)/2 ...
```

```
+ 3305503303392621/4503599627370496)^2)^(1/2)/2;
20
21
      qy = [(2*abs(x1 + 4*x2 ...
22
          + 1067983607126147/562949953421312) *sign(x1 ...
23
          + 4 \times x^2 + 1067983607126147/562949953421312) ...
24
          + 2*sign(x1 + x2 - 2473854946935173/2251799813685248)*abs(x1 ...
25
          + x2 - 2473854946935173/2251799813685248) ...
26
          + 2*sign(x1 + x2/2 - 1079131495240151/562949953421312)*abs(x1 ...
27
          + x2/2 - 1079131495240151/562949953421312) + 2*abs(x1 ...
28
          + (5*x2)/2 + 3305503303392621/4503599627370496)*sign(x1 ...
29
          + (5 \times x^2)/2 + 3305503303392621/4503599627370496) \dots
30
          + 2*abs(x1 + (7*x2)/2 + 7248263982714163/4503599627370496)
31
          *sign(x1 + (7*x2)/2 + 7248263982714163/4503599627370496) ...
32
          + 2*abs(x1 + (3*x2)/2 - 1826052509787667/4503599627370496) ...
33
          *sign(x1 + (3*x2)/2 - 1826052509787667/4503599627370496) ...
34
          + 2*abs(x1 + 3*x2 + 6243314768165359/4503599627370496) ...
35
          *sign(x1 + 3*x2 + 6243314768165359/4503599627370496) ...
36
          + 2*abs(x1 + 2*x2 + 2591209748590025/9007199254740992) ...
37
          *sign(x1 + 2*x2 + 2591209748590025/9007199254740992))/(4*(abs(x1)
38
          + x2 - 2473854946935173/2251799813685248)^2 + abs(x1 ...
39
          + x2/2 - 1079131495240151/562949953421312)^2 + abs(x1 ...
40
          + (7*x2)/2 + 7248263982714163/4503599627370496)^2 ...
41
          + abs(x1 + (3*x2)/2 - 1826052509787667/4503599627370496)^2
42
          + abs(x1 + 3*x2 + 6243314768165359/4503599627370496)^2 ...
43
          + abs(x1 + 2*x2 + 2591209748590025/9007199254740992)^2 ...
44
          + abs(x1 + 4*x2 + 1067983607126147/562949953421312)^2 ...
45
          + abs(x1 + (5*x2)/2 + 3305503303392621/4503599627370496)^2)^(1/2));
46
          (8*abs(x1 + 4*x2 + 1067983607126147/562949953421312) ...
47
          *sign(x1 + 4*x2 + 1067983607126147/562949953421312) ...
48
          + 2 * sign(x1 + x2 - 2473854946935173/2251799813685248) ...
49
          *abs(x1 + x2 - 2473854946935173/2251799813685248) ...
50
          + \text{ sign}(x1 + x2/2 - 1079131495240151/562949953421312) ...
51
          *abs(x1 + x2/2 - 1079131495240151/562949953421312) ...
52
          + 5*abs(x1 + (5*x2)/2 + 3305503303392621/4503599627370496) ...
53
          *sign(x1 + (5*x2)/2 + 3305503303392621/4503599627370496) ...
54
          + 7*abs(x1 + (7*x2)/2 + 7248263982714163/4503599627370496) ...
55
          *sign(x1 + (7*x2)/2 + 7248263982714163/4503599627370496) ...
56
          + 3*abs(x1 + (3*x2)/2 - 1826052509787667/4503599627370496) ...
57
          *sign(x1 + (3*x2)/2 - 1826052509787667/4503599627370496) ...
58
          + 6*abs(x1 + 3*x2 + 6243314768165359/4503599627370496) ...
59
          *sign(x1 + 3*x2 + 6243314768165359/4503599627370496) ...
          + 4*abs(x1 + 2*x2 + 2591209748590025/9007199254740992) ...
61
          *sign(x1 + 2*x2 + 2591209748590025/9007199254740992)) ...
62
          /(4*(abs(x1 + x2 - 2473854946935173/2251799813685248)^2)...
63
          + abs(x1 + x2/2 - 1079131495240151/562949953421312)^2 ...
64
          + abs(x1 + (7*x2)/2 + 7248263982714163/4503599627370496)^2 ...
65
          + abs(x1 + (3*x2)/2 - 1826052509787667/4503599627370496)^2 ...
66
          + abs(x1 + 3*x2 + 6243314768165359/4503599627370496)^2 ...
```

```
+ abs(x1 + 2*x2 + 2591209748590025/9007199254740992)^2 ...
68
          + abs(x1 + 4*x2 + 1067983607126147/562949953421312)^2 ...
69
          + abs (x1 + (5*x2)/2 ...
70
          + 3305503303392621/4503599627370496)^2)^(1/2))];
72
      Jr = [-1, -1/2;
73
          -1, -1;
74
          -1, -3/2;
75
          -1, -2;
76
          -1, -5/2;
          -1, -3;
          -1, -7/2;
          -1, -4];
81 end
```

```
function [r, f, gf, Jr] = a5 ()

t = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0];
y = [6.80, 3.00, 1.50, 0.75, 0.48, 0.25, 0.20, 0.15];

syms x1 x2;
r = log(y) - x1 - x2*t;
r = y - x1*exp(x2*t);
f = 1/2*norm(r);
gf = gradient(f);
Jr = jacobian(r);

and
```

3 Problem 3

3.1 Comments

It reaches the convergence at iteration number k = 180. In the Section 3.2, we can verify that when k < n, the two inequality-equations are satisfied. From the output, we can see when the iteration begins, the equation (5.6) has provided a tight upper bound and the Theorem 5.5 has provided a tight upper bound when k approaches n:

$$k = 0, \ \|x_k - x^*\|_A = 29.577 \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k \|x_0 - x^*\|_A = 59.2$$

$$k = 97, \ \|x_{k+1} - x^*\|_A^2 = 0.001 \le \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 \|x_0 - x^*\|_A^2 = 0.138$$

3.2 Output

left1 denotes
$$\|x_{k+1} - x^*\|_A^2$$
, right1 denotes $\left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 \|x_0 - x^*\|_A^2$, left2 denotes $\|x_k - x^*\|_A$, right2 denotes $2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k \|x_0 - x^*\|_A$, incel denotes the equation from Theorem

ineq1 denotes the equation from Theorem 5.5 and ineq2 denotes the equation (5.36). Once the equation is satisfied, the output will be T, which means "True", and F means "False".

1	k 	true error	left1	right1	left2	right2 ineq1 ineq2
3	0	9.94	852.896	5.72e+09	 29.577	59.2 T T
4	1	6.77	139.560	8.22e+05	29.204	59.1 T T
5	2	5.45	40.349	7.2e+05	11.814	59.1 T T
6	3	4.87	20.719	6.66e+05	6.352	59.1 T T
7	4	4.46	13.673	6.17e+05	4.552	59 T T
8	5	3.97	8.742	5.99e+05	3.698	59 T T
9	6	3.54	5.875	5.39e+05	2.957	59 T T
10	7	3.33	4.838	5.13e+05	2.424	58.9 T T
11	8	3.15	3.745	5.01e+05	2.199	58.9 T T
12	9	2.89	2.558	4.8e+05	1.935	58.9 T T
13	10	2.68	1.887	4.42e+05	1.599	58.9 T T
14	11	2.48	1.382	4.1e+05	1.374	58.8 T T
15	12	2.31	1.045	3.46e+05	1.176	58.8 T T
16	13	2.16	0.776	3.35e+05	1.022	58.8 T T
17	14	2.07	0.636	3.25e+05	0.881	58.7 T T
18	15	2.02	0.558	2.9e+05	0.797	58.7 T T
19	16	1.91	0.377	2.77e+05	0.747	58.7 T T
20	17	1.85	0.304	2.65e+05	0.614	58.6 T T
21	18	1.79	0.238	2.46e+05	0.551	58.6 T T
22	19	1.75	0.195	2.41e+05	0.488	58.6 T T
23	20	1.71	0.167	2.27e+05	0.442	58.6 T T

24 21	1.71	0.166	2.08e+05	0.409	58.5 T T
25 22	1.67	0.144	2e+05	0.408	58.5 T T
26 23	1.62	0.123	1.9e+05	0.379	58.5 T T
27 24	1.58	0.107	1.85e+05	0.350	58.4 T T
28 25	1.55	0.097	1.72e+05	0.327	58.4 T T
29 26	1.51	0.087	1.61e+05	0.312	58.4 T T
зо 27	1.47	0.080	1.45e+05	0.296	58.4 T T
31 28	1.47	0.079	1.41e+05	0.282	58.3 T T
32 29	1.43	0.073	1.23e+05	0.281	58.3 T T
зз 30	1.4	0.067	1.19e+05	0.270	58.3 T T
34 31	1.36	0.062	1.14e+05	0.259	58.2 T T
35 32	1.31	0.057	1.01e+05	0.249	58.2 T T
36 33	1.27	0.052	9.52e+04	0.238	58.2 T T
37 34	1.25	0.050	8.88e+04	0.227	58.1 T T
38 35	1.2	0.045	8.32e+04	0.224	58.1 T T
39 36	1.14	0.039	7.42e+04	0.213	58.1 T T
40 37	1.09	0.034	7.17e+04	0.198	58.1 T T
41 38	1.03	0.029	6.66e+04	0.185	58 T T
42 39	0.996	0.025	6.28e+04	0.170	58 T T
43 40	0.964	0.022	6.14e+04	0.158	58 T T
44 41	0.964	0.022	5.17e+04	0.148	57.9 T T
45 42	0.928	0.019	5.1e+04	0.148	57.9 T T
46 43	0.904	0.016	4.36e+04	0.136	57.9 T T
47 44	0.87	0.013	4.1e+04	0.128	57.9 T T
48 45	0.852	0.012	3.86e+04	0.115	57.8 T T
49 46	0.838	0.010	3.59e+04	0.107	57.8 T T
50 47	0.837	0.010	3.32e+04	0.101	57.8 T T
51 48	0.822	0.009	2.99e+04	0.101	57.7 T T
52 49	0.813	0.008	2.78e+04	0.095	57.7 T T
53 50	0.806	0.008	2.7e+04	0.091	57.7 T T
54 51	0.799	0.007	2.59e+04	0.088	57.6 T T
55 52	0.791	0.007	2.19e+04	0.086	57.6 T T
56 53	0.78	0.006	1.65e+04	0.083	57.6 T T
57 54	0.779	0.006	1.49e+04	0.080	57.6 T T
58 55	0.765	0.006	1.45e+04	0.080	57.5 T T
59 56	0.75	0.005	1.41e+04	0.075	57.5 T T
60 57	0.741	0.005	1.32e+04	0.071	57.5 T T
61 58	0.729	0.004	1.15e+04	0.069	57.4 T T
62 59	0.721	0.004	1.12e+04	0.065	57.4 T T
63 60	0.718	0.004	1e+04	0.063	57.4 T T
64 61	0.713	0.004	9.91e+03	0.062	57.4 T T
65 62	0.701	0.003	8.72e+03	0.061	57.3 T T
66 63	0.693	0.003	7.53e+03	0.057	57.3 T T
67 64	0.685	0.003	6.65e+03	0.055	57.3 T T
68 65	0.675	0.002	5.99e+03	0.052	57.2 T T
69 66	0.671	0.002	5.35e+03	0.049	57.2 T T
70 67	0.671	0.002	4.63e+03	0.047	57.2 T T
71 68	0.668	0.002	3.99e+03	0.047	57.2 T T

72	69	0.666	0.002	3.29e+03	0.046		5	7.1	-	Т	Τ
73	70	0.662	0.002	2.74e+03	0.046		5	7.1	_	Τ	Τ
74	71	0.66	0.002	2.61e+03	0.045		5	7.1	-	Τ	Τ
75	72	0.656	0.002	2.46e+03	0.045		5	7	Τ	Τ	
76	73	0.655	0.002	1.88e+03	0.044		5	7	Τ	Τ	
77	74	0.652	0.002	1.63e+03	0.044		5	7	Τ	Τ	
78	75	0.646	0.002	1.25e+03	0.044		5	7	Τ	Τ	
79	76	0.634	0.002	1.07e+03	0.043		5	6.9)	Τ	Τ
80	77	0.62	0.002	911	0.042		5	6.9)	Τ	Τ
81	78	0.612	0.002	875	0.041		5	6.9)	Τ	Τ
82	79	0.603	0.002	685	0.040		5	6.8	3	Τ	Τ
83	80	0.602	0.002	573	0.039		5	6.8	3	Τ	Τ
84	81	0.587	0.001	429	0.039		5	6.8	3	Τ	Τ
85	82	0.577	0.001	369	0.037		5	6.8	3	Τ	Τ
86	83	0.571	0.001	299	0.036		5	6.7	7	Τ	Τ
87	84	0.562	0.001	213	0.036		5	6.7	7	Τ	Τ
88	85	0.557	0.001	126	0.035		5	6.7	7	Τ	Τ
89	86	0.545	0.001	120	0.034		5	6.6	5	Τ	Τ
90	87	0.544	0.001	117	0.033		5	6.6	5	Τ	Τ
91	88	0.531	0.001	79.5	0.033		5	6.6	5	Τ	Τ
92	89	0.523	0.001	60.8	0.031		5	6.6	ō	Τ	Τ
93	90	0.513	0.001	50.3	0.030		5	6.5	5	Τ	Τ
94	91	0.506	0.001	26.6	0.029		5	6.5	5	Τ	Τ
95	92	0.501	0.001	19	0.028		5	6.5	5	Τ	Τ
96	93	0.501	0.001	7.67	0.027		5	6.4	ł	Τ	Τ
97	94	0.497	0.001	4.79	0.027		5	6.4	ł	Τ	Τ
98	95	0.493	0.001	1.37	0.026		5	6.4	ł	Τ	Τ
99	96	0.489	0.001	1.08	0.026		5	6.4	ł	Τ	Τ
100	97	0.482	0.001	0.138	0.025		5	6.3	3	Τ	Τ
101	98	0.476	0.001	0.243	0.024		5	6.3	3	Τ	Τ
102	99	0.469	0.000	874	0.023		5	6.3	3	Τ	Τ
103	100	0.467				F	F				
104	101	0.462				F	F				
105	102	0.458				F	F				
106	103	0.456				F	F				
107	104	0.454				F	F				
108	105	0.450				F	F				
109											
110	172	0.002				F	F				
111	173	0.000				F	F				
	174	0.000				F	F				
113	175	0.000				F	F				
	176	0.000				F	F				
	177	0.000				F	F				
	178	0.000				F	F				
117	179	0.000				F	F				

3.3 Source code list

```
1 function a5_3()
      TOL = 1e-6;
      disp([sprintf('k '), sprintf('true error\t'), ...
          sprintf('left1\t'), sprintf('right1\t\t'), ...
          sprintf('left2\t'), sprintf('right2\t'), ...
          sprintf('ineq1 '), sprintf('ineq2')]);
      disp('=========');
      n = 100;
10
      M = rand(n, n);
11
      A = M' * M;
12
      x_{opt} = repmat([1, -1], 1, 50)';
13
14
      b = A * x_opt;
      x0 = zeros(n, 1);
      x = x0;
17
      r = A * x - b;
18
      p = -r;
19
      k = 0;
20
      e = eig(A);
^{21}
22
      while norm(r) > TOL
          ineq1 = 'F';
          ineq2 = 'F';
25
          alpha = (r' *r) / (p' *A*p);
26
          old_x = x;
27
          x = x + alpha*p;
28
          old_r = r;
29
          r = r + alpha*A*p;
          beta = (r'*r) / (old_r' * old_r);
31
          p = -r + beta*p;
32
33
          err = norm(x_opt - x);
34
35
          if k >= n
36
              disp([sprintf('%g ', k),...
                   sprintf('%.3f\t', err), ineq1, sprintf(' '), ineq2]);
          else
39
              left1 = (x - x_opt)' *A*(x - x_opt);
40
              right1 = (e(n-k) - e(1) / e(n-k) + e(1))^2 ...
41
                   * (x0 - x_{opt})' *A* (x0 - x_{opt});
42
43
              left2 = (old_x - x_opt)' *A* (old_x - x_opt);
              right2 = ((sqrt(e(1)/e(n))-1)/(sqrt((e(1)/e(n)))+1))^(2*k) ...
```

```
* (x0-x_{opt})'*A*(x0-x_{opt});
46
47
               if left1 <= right1</pre>
                    ineq1 = 'T';
49
               end
50
51
               if left2 <= right2</pre>
52
                    ineq2 = 'T';
53
               end
54
               disp([sprintf('%g ', k),...
56
                    sprintf('%6.3g\t', err), sprintf('%3.3f\t', left1), ...
57
                    sprintf('%8.3g\t', right1), sprintf('%4.3f\t', left2), ...
58
                    sprintf('%.3g ', right2), ineq1, sprintf(' '), ineq2]);
59
           end
60
          k = k + 1;
61
      end
62
63 end
```