

CURSO DE DISEÑO PCB

Curso 100% ONLINE (No videos pregrabados)

❖ ¿POR QUÉ DEBERÍAS APRENDER A CREAR TARJETAS ELECTRÓNICAS (PCB's)?

Hoy en día la tecnología está más presente que nunca en nuestras vidas, y aprender a crear diseños PCB's nos permitirán concretar todos nuestros proyectos o circuitos electrónicos que tenemos hechos en un protoboard o simulado en una computadora. Tambien, todas aquellas ideas que tenemos en la cabeza, ya sea proyectos de IOT, proyectos de automatización Industrial, proyectos embebidos, proyectos de innovación, entretenimiento, etc.

❖ ¿POR QUÉ TOMAR EL CURSO DE ELECTROALL?

- > Tenemos más de 7 años de experiencia en el desarrollo y creación de esquemáticos y diseños PCB's.
- ➤ A lo largo de nuestra carrera hemos diseñados más de 1000 PCB's para proyectos de IOT, proyectos industriales, proyectos embebidos, proyectos de entretenimiento y proyectos de innovación.
- Hemos colaborado con muchas empresas, emprendedores e ingenieros de software y hardware.
- Contamos con más de 170,000 suscriptores en nuestro canal de YouTube quienes pueden garantizar nuestros trabajos y diseños con acabados profesionales.

♦ OBJETIVO

Al terminar el curso:

- Serás capaz de diseñar esquemáticos electrónicos profesionales
- Serás capaz de diseñar tarjetas de circuitos impresos (PCB's)
- Podrás integrar fácilmente la tarjeta PCB en modelados 3D
- Serás capaz de integrar cualquier microcontrolador a tus diseños PCB's
- Serás capaz de mandar a ensamblar tarjetas electrónicas a cualquier empresa que fabrica y ensambla PCB's y PCBA

RESUMEN DE LOS TEMAS DEL CURSO

Módulo 1	Módulo 2	Módulo 3	Módulo 4	
SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	
 Introducción. Normas IPC. Reconocimiento tipos de dispositivos. EasyEDA PRO para PC Reconocimiento del programa. Organización y gestión de proyecto. Creación de mesa de trabajo y membrete. Gestión de atajos de teclados. 	 Gestión para la elección de componentes adecuados. Creación del esquemático electrónico. Creación de nuevos dispositivos "símbolos, huellas". Integración modelo 3d de los componentes Correcta organización del esquemático electrónico verificación y corrección de errores. Conversión de esquemático a PCB. 	 Metodologías para la organización de componentes en el diseño PCB. Correcta distribución de componentes (TOP, BOT). Manejo del gestor de reglas de diseño. Creación de pistas con medidas adecuadas. Creación de TearDrop (Lágrimas). 	 Generación de superficie de disipación general y para un componente específico. Integración de logos personalizados. Generación de Esquemático, Gerber, pick&place, BOM. Generar archivo 3D de toda la placa. Mandar a ensamblar. Feedback de todo lo aprendido. 	

DETALLES MÓDULO 1

1 Introducción

- ¿Qué significa PCB?
- ¿Cómo surgieron las PCB?

2 Normas IPC

- ¿Qué son las normas IPC?
- ¿Para qué sirven las normas IPC?
- IPC-2581; Transferencia de datos y documentación.
- IPC-2221 + 7351; Diseño PCB
- IPC-4101; Para tipo de material de PCB
- IPC-6011; Clases de PCB's

3 Reconocimiento tipos de dispositivos

- Tipos de empaquetados de dispositivos electrónicos
- THT, 'through hole technology'
 - Axial, Radial, SIL, DIP, TO-92, TO-220, TO-3, TO-126
- SMT, 'Surface Mount Technology'
 - SOT23, SOT223, SOP, TSOP, QFP, DPAK, BGA, QFN,
- THT vs SMT

4 EasyEDA PRO para PC

- Softwares para diseños PCB's
 - EasyEDA, Proteus, Altium, Eagle, Kicad, OrCAD, etc.
- ¿Por que EasyEDA?
- Instalación de EasyEDA PRO para PC.
- Reconocimiento de las herramientas principales de diseño de esquemático y diseño PCB.

5 Organización y gestión de proyecto

Carpetas, Subcarpetas, proyecto, esquemáticos; paginas,
 PCB.

- 6 Creación de mesa de trabajo y membrete personalizado
 - Integración de fuentes para textos
- 7 Personalización de atajos de teclado para agilizar el diseño del esquemático electrónico y PCB.

❖ DETALLES MÓDULO 2

- 8 Gestión para la elección de componentes adecuados.
 - Estrategias de elección de componentes en stock listo para el ensamble.
- 9 Creación del esquemático electrónico.
 - Integración de componentes en el esquemático electrónico.
 - Correcta integración de las fuentes de alimentación
 - VCC, +XV, GND, PGND, AGND
 - Integración de buses y etiquetas como alternativa de cableados desordenados.

10 Creación de un nuevo dispositivo

- Creación de footprint (huella) de un componente
- Creación de un solo dispositivo sólido
- Creación de un dispositivo con varias partes

11 Diseño modelo 3d de los componentes

- Creación y modificación de componentes nativos de EasyEDA.
- Integración de diseño de componentes en 3D desde otros programas externos (solidworks)
- Lista de páginas webs gratuitos para descargar componentes en
 3D
- Correcta organización de las etiquetas de referencia de un componente
- Convertir de esquemático electrónico a PCB

❖ DETALLES MÓDULO 3

- 12 Metodologías para la organización de componentes en el diseño PCB.
- 13 Correcta distribución y ubicación de componentes, según la función del circuito.
 - Ubicación de componentes en ambos lados (TOP, BOT)
 - Aislamiento de corrientes diferentes
- 14 Gestión de reglas de diseño para la correcta distribución de las pistas
- 15 Correcta conexión de las pistas y vias con los respectivos pads
- 16 Creación de pistas con medidas adecuadas
- 17 Gestión de reglas de differential pair, pistas tipo serpiente
- 18 Creación de TearDrop (gotas de Lágrimas).

❖ DETALLES MÓDULO 4

- 19 Generación de superficie de disipación
 - Generación de superficie de disipación en toda la placa
 - Generación de superficie de disipación para un componente específico
 - generación de superficies de disipación descubierta
- 20 Integración de logos personalizados.
- 21 Generación de gerber, pick&place y BOM
 - Generación del archivo gerber para la fabricación del diseño pcb
 - Generación de las coordenadas donde se va a colocar cada componente (PICK&PLACE) para PCBA
 - Generación de la lista de materiales (BOM) para PCBA

22 Generar archivo 3d de toda la PCB

 Generación de archivo 3D de toda la placa para integrar en un diseño de solidworks u otros softwares a fines

23 Mandar a ensamblar

- Interpretación de las especificaciones y tipo de materiales de las compañías que fabricarán nuestro diseño
- Mandar a ensamblar tarjetas profesionales de todo tipo de colores

24 Feedback de todo lo aprendido

- Un breve repaso de algún tema en particular a sugerencia de los estudiantes
- Preguntas, respuestas y sugerencias

❖ SOBRE LAS FECHAS Y HORARIOS

MES -2024	MODULO 1 (fecha)	MODULO 2 (fecha)	MODULO 3 (fecha)	MODULO 4 (fecha)
ABRIL	Sa. 6 y do. 7	Sa. 13 y do. 14	Sa. 20 y do. 21	Sa. 27 y do. 28
JUNIO	Sa. 1 y do. 2	Sa. 8 y do. 9	Sa. 15 y do. 16	Sa. 22 y do. 23
AGOSTO	Sa. 3 y do. 4	Sa. 10 y do. 11	Sa. 17 y do. 19	Sa. 24 y do. 25
OCTUBRE	Sa. 5 y do. 6	Sa. 12 y do. 13	Sa. 19 y do. 20	Sa. 26 y do. 27
NOVIEMBRE	Sa. 2 y do. 3	Sa. 9 y do. 10	Sa. 16 y do. 17	Sa. 23 y do. 24

- Las clases solo se dictarán los sábados y domingos
- Horario clases sábados 16:00 (GMT-5)
- Horario clases domingos 16:00 (GMT-5)

