

The National School of Artificial Intelligence

2023-2024

Probability Semestre 3

Resit Exam (2h00)

Exercise 1 (3 points) Let f be defined by: $f(x) = \begin{cases} 0 & \text{if } x < 0 \\ xe^{-\frac{x^2}{2}} & \text{if } x \ge 0 \end{cases}$.

- 1. Show that f is a probability distribution.
- 2. Let X be a real random variable having f as a distribution. Determine the distribution of $Y = X^2$.
- 3. Determine $\mathbb{E}[Y]$.

Exercise 2 (4 points) Let X and Y be two independent random variables with the same distribution, given by

$$P(X = 1) = P(X = -1) = \frac{1}{4}$$
 and $P(X = 0) = \frac{1}{2}$.

- 1. Determine the distribution of the couple (X + Y, XY), its marginale distributions, $\mathbb{E}[X + Y]$ and $\mathbb{E}[XY]$.
- 2. Calculate Cov(X, X + Y). Are the random variables X and X + Y indépendent?

Exercise 3 (13 points) Let f be a probability distribution on \mathbb{R} with cumulative distribution function F, verifying

$$\mu = \int_{-\infty}^{+\infty} x f(x) dx < \infty \text{ and } \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx < \infty.$$

For $\theta > 0$, we define by μ_{θ} the uniform distribution on $]-\theta, \theta[$, defined by: $u_{\theta}(x) = \frac{1}{2\theta}\mathbb{I}_{]-\theta,\theta[}(x)$. We define the function h_{θ} by

$$\forall x \in \mathbb{R}, h_{\theta}(x) = f * u_{\theta}(x) = \int_{-\infty}^{+\infty} f(t) u_{\theta}(x - t) dt.$$

1. Show that h_{θ} is a probability distribution on \mathbb{R} .

Express h_{θ} in function of F. Let T be a random variable with distribution h_{θ} , calculate $\mathbb{E}[T]$ and Var(T).

2. Let X_1, X_2, \dots, X_n be independent random variables. We suppose that for all fixed $k \in \{1, \dots, n-1\}, X_1, \dots, X_k$ follow the same distribution f and X_{k+1}, \dots, X_n follow the same distribution h_{θ} .

We put

$$S_k = \sum_{i=1}^k X_i, S_k^{\star} = \sum_{i=k+1}^n X_i, S_n = \sum_{i=1}^n X_i$$
$$\overline{X}_k = \frac{S_k}{k}, \overline{X}_k^{\star} = \frac{S_k^{\star}}{n-k}, \overline{X}_n = \frac{S_n}{n}.$$

We suppose that when n goes to infinity, $\frac{k}{n}$ converges to $\tau \in]0,1[$.

- **a.** Determine $\mathbb{E}[S_n]$ and $Var(S_n)$.
- **b.** Study the quadratic mean convergence of \overline{X}_n .
- **c.** Study the convegence in law of $U_n = \frac{1}{\sqrt{n}} (S_n n\mu)$.
- **d.** For $\eta > 0$, calculate $\lim_{n \to \infty} \mathbb{P}\left(|U_n| \ge \eta\right)$.
- **e.** We note by ρ_n correlation coefficient between \overline{X}_k and $\overline{X}_n, \rho_n^{\star}$ correlation coefficient between \overline{X}_k^{\star} and \overline{X}_n . Calculate $\lim_{n \longrightarrow \infty} \rho_n$ et $\lim_{n \longrightarrow \infty} \rho_n^{\star}$.