Partially coherent ptychography

Tong Wu

September 28, 2021

Coherent model

$$f_j = |\mathcal{F}(\mathcal{S}_j u \circ \omega)|^2 \tag{1}$$

In a discrete setting, $u \in \mathbb{C}^n$ is a 2D image with $\sqrt{n} \times \sqrt{n}$ pixels, $\omega \in \mathbb{C}^{\bar{m}}$ is a localized 2D probe with $\sqrt{\bar{m}} \times \sqrt{\bar{m}}$ pixels. $f_j \in \mathbb{R}^{\bar{m}}_+(\forall 0 \leq j \leq J-1)$ is a stack of phaseless measurements. Here $|\cdot|$ represents the element-wise absolute value of a vector, o denotes the elementwise multiplication, and $\mathcal F$ denotes the normalized 2 dimensional discrete Fourier transform. Each $\mathcal S_j \in \mathbb{R}^{\bar{m} \times n}$ is a binary matrix that crops a region j of size \bar{m} from the image u.

Partially coherent model: a general one

Thibault, Pierre, and Andreas Menzel. "Reconstructing state mixtures from diffraction measurements." Nature 494.7435 (2013): 68-71.

Blind ptychography model + quantum state tomography¹.

Phobe w is assumed to be in mixed state to represent partially coherent effect.

Find u, r othogonal w_k s.t.

$$f_{pc,j} = \sum_{k=1}^{r} |\mathcal{F}(\mathcal{S}_{j}u \circ (\omega_{k}))|^{2}$$
(2)

https://homepage.univie.ac.at/reinhold.bertlmann/pdfs/T2_ Skript_Ch_9corr.pdf Many symbols in quantum mechanics are included here. <a>> <a><a>> <a>> <a>> <a>> <a><a>> <a>> <a><a>> <a><a><a>><

Algorithm ePIE

Step1: Fourier magnitude projection

We have used the shorthand notation $\tilde{\phi} = \mathcal{F}[\phi]$. Taking the form

$$\psi_{j\mathbf{x}}^{(k)} = \bar{\Pi}_{F} \left(\phi_{j\mathbf{x}}^{(0)}, \phi_{j\mathbf{x}}^{(1)}, \dots, \phi_{j\mathbf{x}}^{(r=M_{\mathbf{p}})} \right)$$
$$= \mathcal{F}^{-1} \left[\sqrt{I_{j\mathbf{q}}} \frac{\tilde{\phi}_{j\mathbf{q}}^{(k)}}{\sqrt{\sum_{k} \left| \tilde{\phi}_{j\mathbf{q}}^{(k)} \right|^{2}}} \right]$$

again with

$$\tilde{\phi}_{j\mathbf{q}}^{(k)} = \mathcal{F}\left[P_{\mathbf{x}}^{(k)}O_{\mathbf{x}-\mathbf{x}_{j}}\right]$$

Step2: Overlap projection

$$O_{x} = \frac{\sum_{k} \sum_{j} P_{x+x_{j}}^{(k)*} \psi_{j,x+x_{j}}^{(k)}}{\sum_{k} \sum_{j} \left| P_{x+x_{j}}^{(k)} \right|^{2}}$$

$$P_{x}^{(k)} = \frac{\sum_{j} O_{x-x_{j}}^{*} \psi_{jx}^{(k)}}{\sum_{j} \left| O_{x-x_{j}} \right|^{2}}$$

solved numerically by applying them sequentially for a few iterations.

Outcome

Another form

Denote $O_j \in C^{\bar{m} \times \bar{m}}$ as a (diagonal) matrix to represent linear transform to w, s.t. $S_j u \circ \omega = O_j w$. Denote $f_q^* \in C^{1 \times \bar{m}}$ as a row vector constructed from Fourier transform \mathcal{F} , to represent projection on frepuency element. Construct measurement matrix $\mathcal{I}_{j\mathbf{q}} = O_j^* f_q f_q^* O_j$ and density matrix ρ , we get another form(actually a natural one in quantum state tomography) of the model:

Find
$$O_j, \rho, s.t.$$

 $f_{pc,j}(q) = Tr(\mathcal{I}_{j\mathbf{q}}\rho)$ (3)
 ρ is positive semi-definite, with rank $\leq r$

Derivation

Simple calculation process:

$$f_{pc,j}(q) = |f_q^* O_j w|^2 = (f_q^* O_j w)^* (f_q^* O_j w) = w^* (O_j^* f_q f_q^* O_j) w$$

$$= Tr[w^* (O_j^* f_q f_q^* O_j) w] = Tr[(O_j^* f_q f_q^* O_j) (ww^*)]$$

$$= Tr(\mathcal{I}_{j\mathbf{q}}\rho)$$

When w is in pure state(a vector in Hilbert space), $\rho = ww^*$ is a rank-one matirx. In partially coherent case, we use mixed state to model w. Mixed state is represented by generalizing the density matrix to one with higher rank:

$$\rho = \sum_{k=1}^{r} w_k w_k^*$$

$$f_{pc,j}(q) = \text{Tr}\,\mathcal{I}_{j\mathbf{q}}\rho = \text{Tr}[\mathcal{I}_{j\mathbf{q}}\sum_{k=1}^{r}w_{k}w_{k}^{*}] = \sum_{k=1}^{r}w_{k}^{*}\mathcal{I}_{j\mathbf{q}}w_{k} = \sum_{k=1}^{r}|f_{q}^{*}O_{j}w_{k}|^{2}$$

And that is exactly $(2)f_{pc,j} = \sum_{k=1}^{r} |\mathcal{F}(\mathcal{S}_{j}u \circ (\omega_{k}))|^{2}$.

Further explaination about mixed state

Fow example, with probability 0.5 in state ψ_1 and 0.5 in ψ_2 (ψ_1 and ψ_2 are not neccesarily orthogonal here). Now w can no longer be represented by a vector(ps. $w \neq p_1\psi_1 + p_2\psi_2$, the latter is still a determined pure state vector).

$$\rho = \sum_{k} p_{k} \psi_{k} \psi_{k}^{*}$$

Easy to find ρ is a positive semi-definite matrix, we can decompose ρ using spectral theorem, with $r(\text{rank of }\rho)$ othogonal state w_k :

$$\rho = \sum_{k=1}^{r} w_k w_k^*$$

Related work

Fannjiang, Albert, and Thomas Strohmer. "The numerics of phase retrieval." Acta Numerica 29 (2020): 125-228. 6.3. Low-rank phase retrieval problems.

The phase retrieval problem has a natural generalization to recovering low-rank positive semidefinite matrices. More precisely, we are concerned with the task of reconstructing a finite-dimensional quantum mechanical system which is fully characterized by its density operator ρ (an n x n positive semidefinite matrix with trace one.)