Zeitreihenanalyse und Prognose

Zeitreihenanalyse

R Package für die Time Serie Analyse

Datum-Spalte einfügen

```
motor.df<-motor.df%>%
mutate(Date= seq.Date(from=as.Date("2016-01-01"), by="months",length.out = 48))%>%
mutate(jahr=as.factor(year(Date)))
```

Daten von data.Frame zu tsibble transformieren

```
motor_tsibble<-as_tsibble(motor.df,key=complaints,index = Date)
head(motor_tsibble)</pre>
```

```
## # A tsibble: 6 x 3 [1D]
## # Key:
           complaints [4]
## complaints Date
         <int> <date>
##
                         <fct>
## 1
             4 2017-11-01 2017
            6 2019-04-01 2019
## 2
## 3
            9 2019-05-01 2019
## 4
            10 2017-05-01 2017
## 5
            10 2017-10-01 2017
## 6
            10 2018-07-01 2018
```

Daten-Verteilung visualisieren

```
Farben <- c("#E7B800", "#2E9FDF", "#FC4E07", "red", "green")

p <- ggplot(motor.df, aes(x = jahr, y = complaints))

bxp <- p + geom_boxplot(aes(color = jahr)) +
    scale_color_manual(values = Farben)

dp <- p + geom_dotplot(aes(color = jahr, fill = jahr),</pre>
```

```
binaxis='y', stackdir='center') +
  scale_color_manual(values = Farben) +
  scale_fill_manual(values = Farben)
bxp
   30 -
                                                                                 jahr
complaints
                                                                                  2016
                                                                                      2017
                                                                                      2018
                                                                                      2019
   10-
              2016
                               2017
                                                 2018
                                                                  2019
                                        jahr
dр
```

`stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

###Hier wurde ein tserie kreiert

Stationarität Prüfung ### Keine Autokorrelation vorhanden

```
layout(1:2)
acf(ts.df)
pacf(ts.df)
```

Series ts.df

Series ts.df

Die Zerlegung der Time Serie in Trend, Saisonalität und Random, dabei kann man die jährliche Saisonalität erkennen

Wir haben einen senkenden Trend

```
ts.decom<-decompose(ts.df)
plot(decompose(ts.df))</pre>
```

Decomposition of additive time series

Wir haben eine deutliche 12 monatige Saisonalität ### die 6 monataige Saisonalität ist auch vorhanden plot(ts.decom\$figure,type="l",ylab="Seasonality index")

Die jährliche Saisonalität ist ganz klar zu erkennen, während die 6 monatige Saisonalität nicht ganz deutlich zu erkennen sei.

ggseasonplot(ts.df)+ggtitle("Saisonalität-Darstellung")

Saisonalität-Darstellung

Mit hilfe auto.arima Funktion suchen wir die optimale Order für die Parameter d, q und p

```
df.arima<-auto.arima(ts.df,seasonal = TRUE,</pre>
           D=NA, d=NA,
    ic = c("aicc", "aic", "bic"),
  stepwise = TRUE,nmodels = 100, seasonal.test = c("seas", "ocsb", "hegy", "ch"),
 allowdrift = TRUE,
 allowmean = TRUE,
 lambda = TRUE,
 biasadj = FALSE,
  parallel = FALSE,
  trace = FALSE)
df.arima
## Series: ts.df
## ARIMA(0,1,2)(1,0,0)[12]
## Box Cox transformation: lambda= TRUE
##
## Coefficients:
##
             ma1
                      ma2
                             sar1
         -0.6564 -0.2707 0.3509
##
## s.e.
        0.1528
                  0.1546 0.1578
## sigma^2 estimated as 46.54: log likelihood=-156.89
## AIC=321.78 AICc=322.74 BIC=329.18
```

Die Resudien der Zeitreihe haben ein p_Value von 3%, sodass die Nullhypothese beibehalten kann. Das Diagramm bestätigt, dass die Residuen weiß Rausch sind. Schließlich kann man mit der Prognose Anfangen.

checkresiduals(df.arima)

Prognose durchführen

```
df.arima%>%forecast(h=12)%>%autoplot()
```

Forecasts from ARIMA(0,1,2)(1,0,0)[12]

Prognose Tabelle

df.arima%>%forecast(h=12)

##			${\tt Point}$	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
##	Jan	2020		18.54142	9.798248	27.28459	5.1698913	31.91295
##	Feb	2020		18.57151	9.326461	27.81657	4.4324259	32.71060
##	Mar	2020		18.92243	9.655432	28.18942	4.7497820	33.09507
##	Apr	2020		13.65875	4.369865	22.94763	-0.5473721	27.86487
##	May	2020		14.71148	5.400763	24.02220	0.4719656	28.95100
##	Jun	2020		21.72972	12.397213	31.06223	7.4568827	36.00256
##	Jul	2020		15.76422	6.409976	25.11846	1.4581394	30.07030
##	Aug	2020		18.22060	8.844674	27.59653	3.8813573	32.55985
##	Sep	2020		16.46604	7.068479	25.86361	2.0937097	30.83838
##	Oct	2020		18.22060	8.801453	27.63975	3.8152564	32.62595
##	Nov	2020		17.16787	7.727181	26.60855	2.7295839	31.60615
##	Dec	2020		19.62425	10.162076	29.08642	5.1531048	34.09539