Fundamentals of Machine Learning

Chapter 6: Probability-based Learning Sections 6.4, 6.5

- Smoothing
- Continuous Features: Probability Density Functions
- Continuous Features: Binning
- Bayesian Networks
- 5 Summary

Chapter 6B 2 / 74

Smoothing

Example: Loan application fraud detection

	CREDIT	GUARANTOR/		
ID	HISTORY	COAPPLICANT	ACCOMMODATION	FRAUD
1	current	none	own	true
2	paid	none	own	false
3	paid	none	own	false
4	paid	guarantor	rent	true
5	arrears	none	own	false
6	arrears	none	own	true
7	current	none	own	false
8	arrears	none	own	false
9	current	none	rent	false
10	none	none	own	true
11	current	coapplicant	own	false
12	current	none	own	true
13	current	none	rent	true
14	paid	none	own	false
15	arrears	none	own	false
16	current	none	own	false
17	arrears	coapplicant	rent	false
18	arrears	none	free	false
19	arrears	none	own	false
20	paid	none	own	false

P(fr)	=	0.3		P($\neg fr)$	=	0.7
P(CH = 'none' fr)	=	0.1666		P(CH = 'none'	$\neg fr)$	=	0
P(CH = 'paid' fr)	=	0.1666		P(CH = 'paid'	$\neg fr)$	=	0.2857
P(CH = 'current' fr)	=	0.5		P(CH = 'current'	$\neg fr)$	=	0.2857
P(CH = 'arrears' fr)	=	0.1666		P(CH = 'arrears'	$\neg fr)$	=	0.4286
P(GC = 'none' fr)	=	0.8334		P(GC = 'none'	$\neg fr)$	=	0.8571
P(GC = 'guarantor' fr)	=	0.1666	P(GC = 'guarantor'	$\neg fr)$	=	0
P(GC = 'coapplicant' fr)	=	0	P(G	C = 'coapplicant'	$\neg fr)$	=	0.1429
P(ACC = 'own' fr)	=	0.6666		P(ACC = 'own'	$\neg fr)$	=	0.7857
P(ACC = 'rent' fr)	=	0.3333		P(ACC = 'rent'	$\neg fr)$	=	0.1429
P(ACC = 'free' fr)	=	0		P(ACC = 'free'	$\neg fr)$	=	0.0714
CREDIT HISTORY GUA	RANT	OR/COAP	PLICANT	ACCOMMODATION	FR	AUDU	LENT
paid		gı	uarantor	free			?

$$P(fr) = 0.3$$
 $P(\neg fr) = 0.7$
 $P(CH = paid \mid fr) = 0.1666$ $P(CH = paid \mid \neg fr) = 0.2857$
 $P(GC = guarantor \mid fr) = 0.1666$ $P(GC = guarantor \mid \neg fr) = 0$
 $P(ACC = free \mid fr) = 0$ $P(ACC = free \mid \neg fr) = 0.0714$
 $\left(\prod_{k=1}^{m} P(\mathbf{q}[k] \mid fr)\right) \times P(fr) = 0.0$

 $\left(\prod_{k=1}^{m} P(\mathbf{q}[k] \mid \neg fr)\right) \times P(\neg fr) = 0.0$

CREDIT HISTORY	GUARANTOR/COAPPLICANT	ACCOMMODATION	FRAUDULENT
paid	guarantor	free	?

Chapter 6B 5 / 74

- The standard way to avoid this issue is to use smoothing.
- Smoothing takes some of the probability from the events with lots
 of the probability share and gives it to the other probabilities in the
 set.

Chapter 6B 6 / 74

 There are several different ways to smooth probabilities, we will use Laplacian smoothing.

Laplacian Smoothing (conditional probabilities)

$$P(f = v|t) = \frac{count(f = v|t) + k}{count(f|t) + (k \times |Domain(f)|)}$$

Chapter 6B 7 / 74

0.007		1 (do = 110110 111)	11011
0	=	$P(GC = guarantor \neg fr)$	Probabilities
0.1429	=	$P(GC = coapplicant \neg fr)$	
3	=	k	Smoothing
14	=	count(GC eg fr)	Parameters
12	=	$\mathit{count}(\mathit{GC} = \mathit{none} \neg \mathit{fr})$	
0	=	$count(GC = guarantor \neg fr)$	
2	=	$count(GC = coapplicant \neg fr)$	
3	=	Domain(GC)	
0.6522	=	$P(GC = none \neg fr) = \frac{12+3}{14+(3\times 3)}$	Smoothed
0.1304	=	$P(GC = guarantor \neg fr) = \frac{0+3}{14+(3\times 3)}$	Probabilities
0.2174	=	$P(GC = coapplicant \neg fr) = \frac{2+3}{14+(3\times 3)}$	

Raw

 $P(GC = none | \neg fr) = 0.8571$

Table: Smoothing the posterior probabilities for the GUARANTOR/COAPPLICANT feature conditioned on FRAUDULENT being False.

()			` ,		
P(CH = none fr)	=	0.2222	$P(CH = none \neg fr)$	=	0.1154
P(CH = paid fr)	=	0.2222	$P(CH = paid \neg fr)$	=	0.2692
P(CH = current fr)	=	0.3333	$P(CH = current \neg fr)$	=	0.2692
P(CH = arrears fr)	=	0.2222	$P(CH = arrears \neg fr)$	=	0.3462
P(GC = none fr)	=	0.5333	$P(GC = none \neg fr)$	=	0.6522
P(GC = guarantor fr)	=	0.2667	$P(GC = guarantor \neg fr)$	=	0.1304
P(GC = coapplicant fr)	=	0.2	$P(GC = coapplicant \neg fr)$	=	0.2174
P(ACC = own fr)	=	0.4667	$P(ACC = own \neg fr)$	=	0.6087
P(ACC = rent fr)	=	0.3333	$P(ACC = rent \neg fr)$	=	0.2174
P(ACC = Free fr)	=	0.2	$P(ACC = Free \neg fr)$	=	0.1739

 $P(\neg fr) = 0.7$

P(fr)

= 0.3

Table: The Laplacian smoothed, with k=3, probabilities needed by a Naive Bayes prediction model calculated from the fraud detection dataset. Notation key: FR=FRAUDULENT, CH=CREDIT HISTORY, GC = GUARANTOR/COAPPLICANT, ACC = ACCOMODATION, T='True', F='False'.

CREDIT HISTORY	GUARANTOR/COAPPLICANT	ACCOMMODATION	FRAUDULENT
paid	guarantor	free	?

$$P(fr) = 0.3$$
 $P(\neg fr) = 0.7$ $P(CH = paid|fr) = 0.2222$ $P(CH = paid|\neg fr) = 0.2692$ $P(GC = guarantor|fr) = 0.2667$ $P(GC = guarantor|\neg fr) = 0.1304$ $P(ACC = Free|fr) = 0.2$ $P(ACC = Free|\neg fr) = 0.1739$ $(\prod_{k=1}^{m} P(\mathbf{q}[m]|fr)) \times P(fr) = 0.0036$ $(\prod_{k=1}^{m} P(\mathbf{q}[m]|\neg fr)) \times P(\neg fr) = 0.0043$

Table: The relevant smoothed probabilities, from Table 2 ^[9], needed by the Naive Bayes prediction model in order to classify the query from the previous slide and the calculation of the scores for each candidate classification.

Chapter 6B 11 / 74

Continuous Features: Probability Density Functions

Table: The dataset from the loan application fraud detection domain with <u>a</u> new continuous descriptive features added: ACCOUNT BALANCE

-	CREDIT	Guarantor/		ACCOUNT	
ID	HISTORY	COAPPLICANT	ACCOMMODATION	BALANCE	FRAUD
1	current	none	own	56.75	true
2	current	none	own	1,800.11	false
3	current	none	own	1,341.03	false
4	paid	guarantor	rent	749.50	true
5	arrears	none	own	1,150.00	false
6	arrears	none	own	928.30	true
7	current	none	own	250.90	false
8	arrears	none	own	806.15	false
9	current	none	rent	1,209.02	false
10	none	none	own	405.72	true
11	current	coapplicant	own	550.00	false
12	current	none	free	223.89	true
13	current	none	rent	103.23	true
14	paid	none	own	758.22	false
15	arrears	none	own	430.79	false

none

none

none

coapplicant

675.11

1,657.20

1,405.18

760.51

005 44

own

rent

free

own

false

false

false

false

16

17

18

19

 \sim

current

arrears

arrears

arrears

(PDF: Probability Density Function)

 We need to define two PDFs for the new ACCOUNT BALANCE (AB) feature with each PDF conditioned on a different value in the domain or the target:

- $P(AB = X|fr) = PDF_1(AB = X|fr)$
- $P(AB = X | \neg fr) = PDF_2(AB = X | \neg fr)$
- Note that these two PDFs do not have to be defined using the same statistical distribution.

Chapter 6B 24 / 74

Figure: Histograms, using a bin size of 250 units, and density curves for the ACCOUNT BALANCE feature: (a) <u>the fraudulent instances</u> overlaid with a fitted exponential distribution; (b) <u>the non-fraudulent instances</u> overlaid with a fitted normal distribution.

Chapter 6B 25 / 74

- From the shape of these histograms it appears that
 - the distribution of values taken by the ACCOUNT BALANCE feature in the set of instances where the target feature <u>FRAUDULENT='True'</u> follows an exponential distribution
 - the distributions of values taken by the ACCOUNT BALANCE feature in the set of instances where the target feature FRAUDULENT='False' is similar to a normal distribution.
- Once we have selected the distributions the next step is to fit the distributions to the data.

Chapter 6B 26 / 74

- To fit the exponential distribution we simply compute the sample mean, \bar{x} , of the ACCOUNT BALANCE feature in the set of instances where FRAUDULENT='True' and set the λ parameter equal to one divided by \bar{x} .
- To fit the normal distribution to the set of instances where FRAUDULENT='False' we simply compute the sample mean and sample standard deviation, s, for the ACCOUNT BALANCE feature for this set of instances and set the parameters of the normal distribution to these values.

Gaussian Naive Bayes Classifier assumes that ALL continuous descriptive features follow a normal (Gaussian) distribution and uses each features' mean and std.deviation for fitting this normal distribution.

Chapter 6B 27 / 74

Table: Partitioning the dataset based on the value of the target feature and fitting the parameters of a statistical distribution to model the ACCOUNT BALANCE feature in each partition.

							ACCOUNT	
					ID		BALANCE	FRAUD
					2		1 800.11	false
					3		1 341.03	false
		ACCOUNT		-	5		1 150.00	false
ID		BALANCE	FRAUD		7		250.90	false
1		56.75	true	-	8		806.15	false
4		749.50	true		9		1 209.02	false
6		928.30	true		11		550.00	false
10		405.72	true		14		758.22	false
12		223.89	true		15		430.79	false
13		103.23	true		16		675.11	false
AB		411.22		-	17		1 657.20	false
$\lambda = 1$	$^{1}!/_{\overline{AB}}$	0.0024			18		1 405.18	false
	/ //			-	19		760.51	false
					20		985.41	false
					AB		984.26	
					sd(AB)	460.94	

Table: The Laplace smoothed (with k=3) probabilities needed by a naive Bayes prediction model calculated from the dataset in Table 5 ^[23], extended to include the conditional probabilities for the new ACCOUNT BALANCE feature, which are defined in terms of PDFs.

Chapter 6B 29 / 74

Table: A query loan application from the fraud detection domain.

Credit Guarantor/ History CoApplicant		Accomodation	Fraudulent	
paid	guarantor	free	759.07	?

Chapter 6B 30 / 74

Table: The probabilities, from Table 7 ^[29], needed by the naive Bayes prediction model to make a prediction for the query $\langle CH = 'paid', GC = 'guarantor', ACC = 'free', AB = 759.07 \rangle$ and the calculation of the scores for each candidate prediction.

$$P(fr) = 0.3 \qquad P(\neg fr) = 0.7$$

$$P(CH = paid|fr) = 0.2222 \qquad P(CH = paid|\neg fr) = 0.2692$$

$$P(GC = guarantor|fr) = 0.2667 \qquad P(GC = guarantor|\neg fr) = 0.1304$$

$$P(ACC = free|fr) = 0.2 \qquad P(ACC = free|\neg fr) = 0.1739$$

$$P(AB = 759.07|fr) \qquad P(AB = 759.07|\neg fr)$$

$$\approx E\left(\frac{759.07}{\lambda = 0.0024}\right) = 0.00039 \qquad \approx N\left(\frac{759.07}{\mu = 984.26}, \frac{1}{\sigma = 460.94}\right) = 0.00077$$

$$\left(\prod_{k=1}^{m} P(\mathbf{q}[k]|fr)\right) \times P(fr) = 0.0000014$$

$$\left(\prod_{k=1}^{m} P(\mathbf{q}[k]|\neg fr)\right) \times P(\neg fr) = 0.0000033$$

Chapter 6B 31 / 74

For a continuous probability distribution, P(X=c) = 0 for any constant c. So, we use an approximation as below to avoid zero probability issue where epsilon is just a very small number, like 1 dollar in our example:

Figure: (a) The area under a density curve between the limits $x-\frac{\epsilon}{2}$ and $x+\frac{\epsilon}{2}$; (b) the approximation of this area computed by $PDF(x)\times\epsilon$; and (c) the error in the approximation is equal to the difference between area A, the area under the curve omitted from the approximation, and area B, the area above the curve erroneously included in the approximation. Both of these areas will get smaller as the width of the interval gets smaller, resulting in a smaller error in the approximation.

Chapter 6B 21 / 74

Continuous Features: Binning

- In Section 3.6.2 we explained two of the best known binning techniques equal-width and equal-frequency.
- We can use these techniques to bin continuous features into categorical features
- In general we recommend equal-frequency binning.

For equal-frequency binning, we can use Panda's "qcut" function.

Chapter 6B 33 / 74

Table: The dataset from a loan application fraud detection domain with a

seco	second continuous descriptive feature added: LOAN AMOUNT									
	CREDIT	Guarantor/		Account	Loan					
ID	HISTORY	COAPPLICANT	ACCOMMODATION	BALANCE	AMOUNT	FRAUD				
1	current	none	own	56.75	900	true				
2	current	none	own	1 800.11	150 000	false				
3	current	none	own	1 341.03	48 000	false				
4	paid	guarantor	rent	749.50	10 000	true				
5	arrears	none	own	1 150.00	32 000	false				
6	arrears	none	own	928.30	250 000	true				
7	current	none	own	250.90	25 000	false				
8	arrears	none	own	806.15	18500	false				
9	current	none	rent	1 209.02	20 000	false				

none

none

none

none

none

none

none

none

none

coapplicant

coapplicant

405.72

550.00

223.89

103.23

758.22

430.79

675.11

1657.20

1405.18

760.51

985.41

own

own

free

rent

own

own

own

rent

free

own

own

9500

9850

16750

95 500

65000

16000

15450

50000

35000

500

500

true

false

true

true

false

false

false

false

false

false

false

10

11

12

13

14

15

16

17

18

19

20

none

current

current

current

arrears

current

arrears

arrears

arrears

current

paid

Table: The LOAN AMOUNT continuous feature discretized into 4 equal-frequency bins. Here, we first need to sort from smallest to largest

ual-frequency birds. Here, we first need to sort from smallest to largest.								
		BINNED				BINNED		
	LOAN	LOAN			LOAN	LOAN		
ID	AMOUNT	A MOUNT	FRAUD	ID	AMOUNT	A MOUNT	FRAUD	
15	500	bin1	false	9	20,000	bin3	false	
19	500	bin1	false	7	25,000	bin3	false	
1	900	bin1	true	5	32,000	bin3	false	
10	9,500	bin1	true	20	35,000	bin3	false	
12	9,850	bin1	true	3	48,000	bin3	false	
4	10,000	bin2	true	18	50,000	bin4	false	
17	15,450	bin2	false	14	65,000	bin4	false	
16	16,000	bin2	false	13	95,500	bin4	true	
11	16,750	bin2	false	2	150,000	bin4	false	
8	18,500	bin2	false	6	250,000	bin4	true	

 Once we have discretized the data we need to record the raw continuous feature threshold between the bins so that we can use these for query feature values.

Table: The thresholds used to discretize the LOAN AMOUNT feature in queries.

Bin Thresholds								
	Bin1	\leq 9, 925						
9,925 <	Bin2	\le 19, 250						
19, 225 <	Bin3	\le 49,000						
49,000 <	Bin4	· 						

Table: The Laplace smoothed (with k=3) probabilities needed by a naive Bayes prediction model calculated from the fraud detection dataset. Notation key: FR = FRAUD, CH = CREDIT HISTORY, AB = ACCOUNT BALANCE, GC = GUARANTOR/COAPPLICANT, ACC = ACCOMMODATION, BLA = BINNED LOAN AMOUNT.

0.3 0.2222 0.2222	$P(\neg fr)$ $P(CH = none \neg fr)$	=	0.7	
	$P(CH = none \neg fr)$			
0.2222		=	0.1154	
	$P(CH = paid \neg fr)$	=	0.2692	
0.3333	$P(CH = current \neg fr)$	=	0.2692	
0.2222	$P(CH = arrears \neg fr)$	=	0.3462	
0.5333	$P(GC = none \neg fr)$	=	0.6522	
0.2667	$P(GC = guarantor \neg fr)$	=	0.1304	
0.2	$P(GC = coapplicant \neg fr)$	-	0.2174	
0.4667	$P(ACC = own \neg fr)$	-	0.6087	
0.3333	$P(ACC = rent \neg fr)$	-	0.2174	
0.2	$P(ACC = free \neg fr)$	-	0.1739	
	$P(AB = x \neg fr)$			
	$\int x$)		
	\approx N $\mu = 984.2$	26,		
	$pprox N \left(egin{array}{c} x, \\ \mu = 984.26, \\ \sigma = 460.94 \end{array} ight)$			
0.3333	$P(BLA = bin1 \neg fr)$	-	0.1923	
0.2222	$P(BLA = bin2 \neg fr)$	-	0.2692	
0.1667	$P(BLA = bin3 \neg fr)$	-	0.3077	
0.2778	$P(BLA = bin4 \neg fr)$	=	0.2308	
		` ' '	` ' '	

Table: A query loan application from the fraud detection domain.

Credit History	Guarantor/ CoApplicant	Accomodation	Account Balance	Loan Amount	Fraudulent
paid	guarantor	free	759.07	8,000	?

Chapter 6B 38 / 74

Table: The relevant smoothed probabilities, from Table 13 $^{[37]}$, needed by the naive Bayes model to make a prediction for the query $\langle CH = 'paid', GC = 'guarantor', ACC = 'free', AB = 759.07, LA = 8000 \rangle$ and the calculation of the scores for each candidate prediction.

the calculation of the scores for each candidate prediction.
$$P(fr) = 0.3 \qquad P(\neg fr) = 0.7$$

$$P(CH = paid|fr) = 0.2222 \qquad P(CH = paid|\neg fr) = 0.2692$$

$$P(GC = guarantor|fr) = 0.2667 \qquad P(GC = guarantor|\neg fr) = 0.1304$$

$$P(ACC = free|fr) = 0.2 \qquad P(ACC = free|\neg fr) = 0.1739$$

$$P(AB = 759.07|fr) \qquad P(AB = 759.07|\neg fr)$$

$$\approx E\left(\frac{759.07}{\lambda = 0.0024}\right) = 0.00039 \qquad \approx N\left(\frac{759.07}{\mu = 984.26}, \frac{1}{\sqrt{\sigma}}\right) = 0.00077$$

$$P(BLA = bin1|fr) = 0.3333 \qquad P(BLA = bin1|\neg fr) = 0.1923$$

$$\left(\prod_{k=1}^{m} P(\mathbf{q}[k] \mid fr)\right) \times P(fr) = 0.000000462$$

$$\left(\prod_{k=1}^{m} P(\mathbf{q}[k] \mid \neg fr)\right) \times P(\neg fr) = 0.000000633$$

Summary

- Naive Bayes models can suffer from zero probabilities of relatively rare events. Smoothing is an easy way to combat this.
- Two ways to handle continuous features in probability-based models are: Probability density functions and Binning
- Using probability density functions requires that we match the observed data to an existing distribution.
- Although binning results in information loss it is a simple and effective way to handle continuous features in probability-based models.
- Bayesian network representation is generally more compact than a full joint distribution, yet is not forced to assert global conditional independence between all descriptive features.

Chapter 6B 73 / 74