

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №2 по курсу «Моделирование» на тему: «Марковские процессы»

Студент	ИУ7-73Б		Лагутин Д. В.
	(Группа)	(Подпись, дата)	(Фамилия И. О.)
Преподаватель			Рудаков И. В.
		(Подпись, дата)	(Фамилия И. О.)

Цель работы

Целью работы является реализация программы для определения среднего относительного времени пребывания сложной системы в предельном стационарном состоянии.

Интенсивность переходов из состояния в состояние задается в виде матрицы.

Марковский процесс

Случайный процесс, протекающий в некоторой системе S, называется марковским, если для каждого момента времени вероятность любого состояния системы в будущем зависит только от ее состояния в настоящем времени и не зависит от того, когда и каким образом система пришла в это состояние, то есть не зависит от предыстории.

Для марковской модели составляются уравнения Колмогорова, имеющие вид

$$F(P_i'(t), P_i(t), \lambda) = 0, \quad i = \overline{1, N}, \tag{1}$$

где N — число состояний системы, $P_i(t)$ — вероятность нахождения системы в состоянии i в момент времени t, $P_i'(t)$ — ее производная, λ — вектор коэффициентов, показывающий скорость перехода между состояниями (интенсивность).

Так как стационарное состояние системы характеризуется постоянством системы, то для $\forall i=\overline{1,N}, P_i(t)=0$. Полученная система, вместе с уравнением нормировки $\sum\limits_{i=1}^N P_i(t)=1$, может быть использована для определения предельных вероятностей, которые показывают среднее относительное время пребывания системы в соответствующем состоянии.

Общие правила вывода

- 1) В левой части каждого уравнения стоит производная вероятности состояния.
- 2) Правая часть содержит столько членов, сколько стрелок связано с этим состоянием; если стрелка направлена из состояния соответствующий член имеет знак «-», если в состояние знак «+».
- 3) Каждый член равен плотности вероятности перехода (интенсивности), соответствующей данной стрелке, умноженной на вероятность того состояния, из которого исходит стрелка.

То есть строится система уравнений, которые имеют вид:

$$P_i'(t) = \sum_{j=1}^N \lambda_{ji} P_j(t) - P_i(t) \sum_{j=1}^N \lambda_{ij}, \quad i = \overline{1, N},$$

где λ_{ij} — интенсивность перехода системы из i-ого состояния в j-ое.

Нахождение точки стабилизации

Полученная система

$$\begin{cases} P_1'(t) = \sum_{j=1}^N \lambda_{j1} P_j(t) - P_1(t) \sum_{j=1}^N \lambda_{1j} \\ \dots \\ P_N'(t) = \sum_{j=1}^N \lambda_{jN} P_j(t) - P_N(t) \sum_{j=1}^N \lambda_{Nj} \end{cases}$$

является однородной системой линейных дифференциальных уравнений с постоянными коэффициентами и имеет общее решение вида

$$egin{pmatrix} P_1(t) \ \dots \ P_N(t) \end{pmatrix} = \sum_{i=1}^N e^{kt} E_i,$$

где E_i — собственные векторы матрицы системы уравнений

$$A = egin{pmatrix} -\sum\limits_{i=1}^N \lambda_{1i} & \lambda_{21} & \dots & \lambda_{N1} \ \lambda_{12} & -\sum\limits_{i=1}^N \lambda_{2i} & \dots & \lambda_{N2} \ dots & dots & \ddots & dots \ \lambda_{1N} & \lambda_{2N} & \dots & -\sum\limits_{i=1}^N \lambda_{Ni} \end{pmatrix},$$

а k_i — соответствующие собственные значения, которые могут быть найдены с использованием характеристического уравнения |A-kE|=0.

Так как предельные вероятности достигаются при $t \to \infty$, то время стабилизации необходимо искать с некоторой окрестности

$$t_{\text{CT}} = \min(\{k \in \mathbb{R} : k \ge 0, |P'(k)| < \varepsilon\}).$$

Текст программы

Листинг 1 – Нахождение предельных вероятностей

```
import sys
import scipy

def solve(table : list[list[float]]) -> list[float]:
    matrix = []
    rs = [0 for _ in table]
    for i, line in enumerate(table[:-1]):
        matrix.append([table[j][i]
```

```
9
                           for j
10
                           in range(len(table))])
11
           matrix[i][i] -= sum(line)
12
      matrix.append([1 for _ in table])
      rs[-1] = 1
13
14
      return scipy.linalg.solve(matrix, rs)
15
16 class Derivative:
17
      def __init__(self, table : list[list[float]],
                    state : int):
18
19
           self._lambda = [table[i][state]
20
                            for i
21
                            in range(len(table))]
22
           self._sum_out = -sum(table[state])
23
           self._state = state
24
      def __call__(self, probabilities : list[float]) -> float:
           return sum(map(lambda x, y: x * y,
25
26
                           probabilities, self._lambda)) \
27
                  + self._sum_out * probabilities[self._state]
28
29 def check(derivatives : list[float], time : float,
30
             limit : float, eps : float,
             times : list[float]) -> bool:
31
32
      if (0 <= limit):
33
           return time < limit + sys.float_info.epsilon
34
      out : bool = False
      for i, derivative in enumerate(derivatives):
35
36
           if (eps < abs(derivative)):</pre>
37
               out = True
38
               if (0 <= times[i]):
39
                   times[i] = -1
           elif (0 > times[i]):
40
               times[i] = time
41
      return out
42
43
44 def simulate(table : list[list[float]], step : float,
45
                initial_state : int=0, limit : float=-1,
                eps : float=sys.float_info.epsilon)
46
47
                -> tuple[list[list[float]], list[float]]:
      probabilities : list[list[float]] = \
48
49
           [[1 if initial_state == i else 0
```

```
50
             for i in range(len(table))]]
51
       current : list[float] = probabilities[0]
52
      times : list[float] = [-1 for _ in range(len(table))]
      time : float = 0
53
      run : bool = True
54
55
      derivative_functions = [Derivative(table, i)
56
                                for i in range(len(table))]
57
      while run:
58
           time += step
59
           derivatives = list(map(lambda x : x(current),
                                   derivative_functions))
60
           current = list(map(lambda x, y: x + y * step,
61
                               current, derivatives))
62
63
           probabilities.append(current)
64
           run = check(derivatives, time, limit, eps, times)
      return probabilities, times
65
```

Результаты работы

Рисунок 1 – Результаты работы программы для системы из трех состояний

Вывод

В ходе выполнения лабораторной работы была разработана программа, позволяющая определять среднее относительное время пребывания сложной системы в предельном стационарном состоянии.