dronePowertrainSizingNotes

Hover power

List of methods (non-CFD)

- 1. Momentum theory
- 2. Blade element theory

Momentum theory

- . Momentum refers to the linear momentum of the airflow that is accelerated as the rotor (propeller) spins
- The theory is based on momentum conservation, which translates to the increase in momentum corresponding to equal and opposite reaction force (thrust) generated by the propeller
- Assumptions
 - · propeller is an actuator disk
 - flow is incompressible
 - · air is accelerated from still air to fully developed wake

•
$$v_{wake} = v_{induced}$$

- Links
 - link1
 - link2

Equation

$$P_{hover} = rac{W^{3/2}}{\sqrt{2
ho(n_{prop}A)}} imes rac{1}{\eta_{hover}}$$

Symbol	Description	Unit
W	weight of aircraft	N
ρ	air density	kg/m^3
n_{prop}	number of propellers	-
A	disk area of a single prop	m^2
η_{hover}	prop efficiency at hover	-

Cruise power

List of methods (non-CFD)

- 1. Lift-to-drag (L/D) ratio based
- 2. Drag based

L/D method

- 1. Every aircraft will have a L/D curve
- 2. It is parabolic in nature with a minimum at the best cruise speed
- 3. Obviously, lift = weight at cruise (fully airborne \rightarrow weight fully supported by the wings)

Equation

$$P_{cruise} = rac{W}{L/D} \; v_{cruise} imes rac{1}{\eta_{cruise}}$$

L/D (just drag, as lift is constant in wing-borne flight) has a parabolic dependence on cruise speed

For derivation aero101 > Equations

Battery sizing

Power sizing

Additional parameters / models necessary

1. $\eta_{powertrain}$ powertrain efficiency

$$P_{maxBattery} = rac{1}{\eta_{powertrain}} imes max(P_{hover},\ P_{cruise})$$

- Most likely $P_{hover} >> P_{cruise}$ around best range speed
- There will be slight difference (a percent or two) in $\eta_{powertrain}$ during hover and cruise

Energy sizing

Additional Parameters / models / requirements necessary

- 1. $\eta_{powertrain}$ powertrain efficiency
- 2. d total range requirement
- 3. t_{hover} hover time
- 4. v_{cruise} cruise speed

Cell architecture

· number of cells in series is a simple

$$n_s = rac{V_{bat_{min}}}{V_{cell_{min}}}$$

 $V_{bat_{min}}$ is a requirement, $V_{cell_{min}}$ is cell specification

- number of cells is parallel (#parallel branches of series cell) needs two main consideration
 - · energy required for the mission
 - · maximum discharge C-rate of the cell
- if the cell chemistry doesn't allow, we might need to add parallel branches just to be below the maximum allowable discharge C-rates and end up with higher than required energy

Choice of cell chemistry

Comparison is limited to Li-Polymer and Li-ion

- Li-Po is more popular for drones
- Li-Po has more than twice the power density W/kg (higher C-rates) and about 25% less energy density Wh/kg
- Depending on the ratio of battery-to-drone mass the 25% might look even less
- But if the range requirements are *really* high, Li-ion batteries might be a better option as <u>this reasoning</u> would no longer be valid
- For heavy lifting Li-Po are a better option
- Other relevant differences Li-Po \rightarrow
 - life span is lower by about 50% (300 cycles)
 - safety
 - more prone to swelling
 - · less prone to thermal runaway
 - higher lowest operating voltage (part of reason why less energy dense)
 - comes mostly in pouch configuration (as opposed to cylindrical Li-ion), but pouch cells might need structural
 reinforcements that might take away the volumetric density advantage of Li-Po (pouch cell) when it comes to
 making a battery with multiple cells
 - note that when making a battery, the volumetric density drops for both types of cells (wasted space for cylindrical), (structural reinforcements for punch), but the mass density will also decrease for pouch cells

Motor sizing