

Geometria Analítica

Prof.: Francielle Kuerten Boeing

Equação geral do plano:

Seja $A(x_1, y_1, z_1)$ um ponto pertencente a um plano π e $\vec{n} = (a, b, c) \neq \vec{0}$ um vetor normal (ortogonal) ao plano.

Equação geral do plano:

Seja $A(x_1, y_1, z_1)$ um ponto pertencente a um plano π e $\vec{n} = (a, b, c) \neq \vec{0}$ um vetor normal (ortogonal) ao plano.

Assim, um ponto P(x, y, z) pertence ao plano se, e somente se,

$$\overrightarrow{AP} \cdot \overrightarrow{n} = 0$$
.

Equação geral do plano:

Dessa forma, temos

$$(x - x_1, y - y_1, z - z_1) \cdot (a, b, c) = 0$$

$$a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$$

(equação geral do plano)

ou ainda,

$$ax + by + cz - ax_1 - by_1 - cz_1 = 0$$

 $\pi: ax + by + cz + d = 0$

$$com d = -ax_1 - by_1 - cz_1.$$

Observações:

- (1) O plano é perfeitamente identificado por um vetor normal $\vec{n} \neq \vec{0}$ e um ponto P;
- (2) O vetor \vec{n} é ortogonal a qualquer vetor paralelo a π ;
- (3) Para obter pontos do plano, basta jogar valores aleatórios a duas das variáveis e encontrar o valor da terceira usando a equação do plano.
- (4) O vetor normal \vec{n} é também normal a qualquer plano paralelo a π . Como exemplo, o vetor normal $\vec{n}=(-1,3,4)$ é um vetor normal de qualquer plano da forma

$$-x + 3y + 4z + d = 0.$$

O que diferencia os planos paralelos é o valor de d.

Exemplo 1: Encontre a equação geral (ou cartesiana) do plano π_1 que passa pelo ponto A(3,1,-4) e é paralelo ao plano π_2 : 2x-3y+z-6=0.

Determinação de um plano. Apenas um plano é determinado nas seguintes situações:

(1) O plano passa por um ponto A e é paralelo a dois vetores $\overrightarrow{v_1}$ e $\overrightarrow{v_2}$ não colineares:

Determinação de um plano. Apenas um plano é determinado nas seguintes situações:

(1) O plano passa por um ponto A e é paralelo a dois vetores $\overrightarrow{v_1}$ e $\overrightarrow{v_2}$ não colineares:

nesse caso, $\vec{n} = \overrightarrow{v_1} \times \overrightarrow{v_2}$.

Determinação de um plano.

(2) O plano passa por dois pontos A e B e é paralelo a um vetor $\overrightarrow{v_2}$ não colinear ao vetor \overrightarrow{AB} :

Determinação de um plano.

(2) O plano passa por dois pontos A e B e é paralelo a um vetor $\overrightarrow{v_2}$ não colinear ao

vetor \overrightarrow{AB} :

nesse caso, $\vec{n} = \overrightarrow{AB} \times \overrightarrow{v_2}$.

Determinação de um plano.

(3) Passa por três pontos não colineares A, B e C:

Determinação de um plano.

(3) Passa por três pontos não colineares A, B e C:

nesse caso, $\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$.

Determinação de um plano.

(4) Contém duas retas concorrentes r e s:

Determinação de um plano.

(4) Contém duas retas concorrentes r e s:

nesse caso, $\vec{n} = \vec{v_1} \times \vec{v_2}$. E basta tomar qualquer ponto de r ou de s.

Determinação de um plano.

(5) Contém duas retas paralelas r e s:

Determinação de um plano.

(5) Contém duas retas paralelas r e s:

nesse caso, $\vec{n} = \vec{v_1} \times \overrightarrow{A_1 A_2}$. E basta tomar qualquer ponto de r ou de s.

Determinação de um plano.

(6) Contém uma reta r e um ponto $B \notin r$:

Determinação de um plano.

(6) Contém uma reta r e um ponto $B \notin r$:

nesse caso, $\vec{n} = \vec{v} \times \overrightarrow{AB}$.

Exemplo 2: Encontre a equação do plano que passa pelo ponto A(1, -3, 4) e é paralelo aos vetores $\overrightarrow{v_1} = (3, 1, -2)$ e $\overrightarrow{v_2} = (1, -1, 1)$.

Exemplo 3: Encontre a equação do plano que contém as retas

$$r_1$$
:
$$\begin{cases} y = 2x + 1 \\ z = -3x - 2 \end{cases}$$
 e r_2 :
$$\begin{cases} x = -1 + 2t \\ y = 4t \\ z = 3 - 6t \end{cases}$$

Exemplo 4: Quando a, b, c > 0 e d < 0, a representação do plano

$$\pi : ax + by + cz + d = 0$$

no primeiro octante é um triângulo. Para o plano π : x + 2y + 6z - 6 = 0, por exemplo, temos

Considere o plano π : ax + by + cz + d = 0 e os seguintes casos particulares:

$$(1) d = 0$$
:

Considere o plano π : ax + by + cz + d = 0 e os seguintes casos particulares:

(1) d = 0: nesse caso, o plano π passa pela origem O(0,0,0).

$$(2) a = 0$$
:

(2) $\mathbf{a} = \mathbf{0}$: nesse caso, temos a equação π : by + cz + d = 0, com $\vec{n} = (0, b, c) \perp \vec{\iota}$. Logo, π é paralelo ao eixo x.

Exemplo: π : 2y + 3z - 6 = 0.

$$(3) b = 0$$
:

(3) $\mathbf{b} = \mathbf{0}$: nesse caso, temos a equação π : ax + cz + d = 0, com $\vec{n} = (a, 0, c) \perp \vec{j}$. Logo, π é paralelo ao eixo y.

Exemplo: π : 2x + 3z - 6 = 0.

$$(4) c = 0$$
:

(4) $\mathbf{c} = \mathbf{0}$: nesse caso, temos a equação π : ax + by + d = 0, com $\vec{n} = (a, b, 0) \perp \vec{k}$. Logo, π é paralelo ao eixo z.

Exemplo: π : x + 2y - 4 = 0.

$$(5) a = b = 0$$
:

(5) $\mathbf{a} = \mathbf{b} = \mathbf{0}$: nesse caso, temos a equação π : cz + d = 0, com $\vec{n} = (0,0,c) \parallel \vec{k}$. Logo, π é paralelo ao plano xy e tem \vec{k} como vetor normal.

(6)
$$a = c = 0$$
:

(6) $\mathbf{a} = c = 0$: nesse caso, temos a equação π : by + d = 0, com $\vec{n} = (0, b, 0) \parallel \vec{j}$. Logo, π é paralelo ao plano xz e tem \vec{j} como vetor normal.

(7)
$$b = c = 0$$
:

(7) $\mathbf{b} = \mathbf{c} = \mathbf{0}$: nesse caso, temos a equação π : ax + d = 0, com $\vec{n} = (a, 0, 0) \parallel \vec{\iota}$. Logo, π é paralelo ao plano yz e tem $\vec{\iota}$ como vetor normal.

Exemplo 5: Determine a equação geral do plano que contém o ponto A(2,2,-1) e a reta

$$\begin{cases} x = 4 \\ y = 3 \end{cases}$$

Exemplo 5: Determine a equação geral do plano que contém o ponto A(2,2,-1) e a reta

$$\begin{cases} x = 4 \\ y = 3 \end{cases}$$

Exemplo 6: Considere o paralelepípedo.

- (a) Quais lados são paralelos aos planos coordenados?
- (b) Quais lados são perpendiculares aos eixos coordenados?

Equações paramétricas

Seja $A(x_0, y_0, z_0)$ um ponto de um plano π e $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$ dois vetores não colineares. Temos que um ponto P(x, y, z) está no plano π se existem $h, t \in \mathbb{R}$ tais que

$$\overrightarrow{AP} = h \vec{u} + t \vec{v}$$
.

Escrevendo com as coordenadas, temos

$$(x - x_0, y - y_0, z - z_0) = h(a_1, b_1, c_1) + t(a_2, b_2, c_2).$$

Então, as equações paramétricas do plano π são dadas por

$$\pi: \begin{cases} x = x_0 + a_1 h + a_2 t \\ y = y_0 + b_1 h + b_2 t, \\ z = z_0 + c_1 h + c_2 t \end{cases}$$

com $h, t \in \mathbb{R}$.

Equações paramétricas

Exemplo 7: Escreva as equações paramétricas do plano que passa pelo ponto A(2,1,3) e é paralelo aos vetores $\vec{u}=(-3,-3,1)$ e $\vec{v}=(2,1,-2)$.

Ângulo entre dois planos

Sendo os planos π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$, o ângulo θ entre os planos π_1 e π_2 é o menor ângulo entre vetores normais de π_1 e π_2 :

$$\cos\theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|},$$

$$com \overrightarrow{n_1} = (a_1, b_1, c_1),
\overrightarrow{n_2} = (a_2, b_2, c_2) e
0 \le \theta \le \frac{\pi}{2}.$$

Ângulo entre dois planos

Exemplo 8: Determine o ângulo entre os planos

$$\pi_1$$
: $2x - 3y + 5z - 8 = 0$

e

$$\pi_2$$
: $3x + 2y + 5z - 4 = 0$.

Condição de paralelismo

Sendo os planos π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$, com $\overrightarrow{n_1} = (a_1, b_1, c_1)$ e $\overrightarrow{n_2} = (a_2, b_2, c_2)$, temos

• π_1 e π_2 são paralelos se $\overrightarrow{n_1} \parallel \overrightarrow{n_2}$, ou seja, se

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}.$$

Se, além disso, tivermos

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2},$$

então π_1 e π_2 são coincidentes.

Condição de perpendicularismo

Sendo os planos π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$, com $\overrightarrow{n_1} = (a_1, b_1, c_1)$ e $\overrightarrow{n_2} = (a_2, b_2, c_2)$, temos

• π_1 e π_2 são perpendiculares se $\overrightarrow{n_1} \perp \overrightarrow{n_2}$, ou seja, se

$$\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0.$$