Math2310 - Fall '22

Syllabus - Lecture 21

BY GENNADY URALTSEV

Topics

1 Surface integrals

1.1 Parameterized surfaces

- defn Parameterized surface
 - $\quad \text{ The parameterization } \Phi(u,v) = \left(\begin{smallmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{smallmatrix} \right)$
 - o relation with the idea of "change of variables"
- exmpl Parameterizing the upper hemisphere inspired by cartesian coordinates:

$$\Phi(x,y) = \begin{pmatrix} x \\ y \\ \sqrt{1-x^2-y^2} \end{pmatrix} \qquad \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 \le 1 \right\}$$

• exmpl Parameterizing the upper hemisphere inspired by cylindrical coordinates:

$$\Phi(\rho, \theta) = \begin{pmatrix} \rho \cos \theta \\ \rho \sin \theta \\ \sqrt{1 - \rho^2} \end{pmatrix} \qquad \rho \in [0, 1], \theta \in [0, 2\pi]$$

 $\bullet \quad \text{exmpl}$ Parameterizing the upper hemisphere inspired by spherical coordinates:

$$\Phi(\phi, \theta) = \begin{pmatrix} \sin(\phi)\cos(\theta) \\ \sin(\phi)\sin(\theta) \\ \cos\phi \end{pmatrix} \qquad \phi \in [0, \pi/2], \theta \in [0, 2\pi].$$

• <u>rmk</u> the theorem of Invariance of domain - Wikipedia: to describe a parameterized surface using a smooth function you always need 2 variables:

1.2 Surface area surfaces

- Deducing the formula: the checkerboard grid obtained using the parameterization $\Phi: \Omega \to S \subset \mathbb{R}^3$ of a surface
- The geometric meaning of the vectors $\partial_u \Phi(u,v)$ and $\partial_v \Phi(u,v)$

• The stretch factor of the squares of the grid:

$$\|\partial_u \Phi(u,v) \times \partial_v \Phi(u,v)\|$$

- The order does not matter for the purposes of computing the area (it will matter for flows, later!)
- exmpl graphically identifying the vectors $\partial_{\phi}\Phi(\phi,\theta)$ and $\partial_{\theta}\Phi(\phi,\theta)$ for spherical coordinates:

$$\Phi(\phi, \theta) = \begin{pmatrix} \sin(\phi)\cos(\theta) \\ \sin(\phi)\sin(\theta) \\ \cos\phi \end{pmatrix}$$

spherical coordinates surface area - GeoGebra

- exmpl surface area of a sphere
- exmpl surface area of a spherical cap (imposing bounds on domain)
- surface area of a graph
 - \circ recall the defintion of a graph of f(x, y)
 - the function z = f(x, y) naturally induces a parameterization:

$$\Phi(u,v) = \begin{pmatrix} u \\ v \\ f(u,v) \end{pmatrix}$$

• Computing the partials:

$$\partial_u \Phi(u,v) = \begin{pmatrix} 1 \\ 0 \\ \partial_u f(u,v) \end{pmatrix}, \qquad \partial_v \Phi(u,v) = \begin{pmatrix} 0 \\ 1 \\ \partial_v f(u,v) \end{pmatrix}.$$

• Computing the dArea:

$$\|\partial_u \Phi(u, v) \times \partial_v \Phi(u, v)\| = \left\| \begin{pmatrix} -\partial_u f(u, v) \\ -\partial_v f(u, v) \\ 1 \end{pmatrix} \right\|$$

• the formula for the area of the graph:

$$\iint_{\mathcal{D}} \sqrt{1 + \partial_u f(u, v)^2 + \partial_v f(u, v)^2} du dv$$

comparison with the 1D formula for the length of a curve described as a graph: y = f(x):

$$Lengt = \int_{x=x_0}^{x_1} \sqrt{1 + f'(x)^2} dx$$

- o geometric intuition and comparison
- exmpl surface area of a paraboloid over a disk

• exmpl surface area of a cone

References

Textbook

- [Ste] Chap 15.5 Surface area
- [Ste] Chap 15 complete **except** Chap 15.4 Applications of Double Integrals (skipped)

Videos

- Introduction to the surface integral | Multivariable Calculus | Khan Academy YouTube
- Parametrizing Surfaces, Surface Area, and Surface Integrals: Part 1 YouTube

Geogebra applets

- spherical coordinates surface area GeoGebra
- parameterized surfaces and dArea GeoGebra