Remark. $\mathbb H$ is a division ring but not an integral domain, because it is not commutative.

Remark. Idempotent elements in integral domain: 0 and 1.

In \mathbb{Z}_6 , we have 0, 1, . They pair up because $e^2 = e \Rightarrow (1 - e)^2 = 1 - e$.

If $S \leq R$ and S has identity e, then e is an idempotent in R.

Example.
$$R = M_3(\mathbb{R})$$
. $S = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 0 \end{pmatrix}$: $a, b, c, d \in \mathbb{R}$. Then $S \leq R$. $S \neq \emptyset$

and S is closed under $+, -, \times$. S has the identity

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

So the identity of the subring doesn't have to be the identity of the parent ring, but it has to be idempotent.

Recall we are trying to construct a field F containing an integral domain D so that F is as small as possible.

Intuition. Consider $\frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$. We denote (a, b) as an element in $S = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : b \neq 0\}$. So we want to express that two fractions are the same by using ad = bc. We would use an equivalence relation to show that.

Lemma

Define $(a, b) \sim (c, d) \Leftrightarrow ad = bc$. Then \sim is an equivalence relation on S.

Proof

- (i) Reflective: ab = ba is true by commutativity.
- (ii) Symmetric: $ad = bc \Rightarrow^3 = da$ is true by commutativity.
- (iii) Transitive: If $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, then $(a,b) \sim (e,f)$. Assume ad = bc, cf = de. Then

$$adcf = bcde$$

$$acfd = bced$$

acf = bce by cancellation and $d \neq 0$

Case. $c \neq 0$. Then $afc = bec \Rightarrow af = be$. Done.

Case. c=0. Then $ad=bc=0 \Rightarrow a=0$ since $d\neq 0$. Also $cf=de\Rightarrow de=0 \Rightarrow e=0$ since $d\neq 0$. So af=be=0.

Notation. Define (the set of) the field F as $F = S/\sim$, which is the set of the \sim -equivalence classes of S.

Example. Suppose $D = \mathbb{Z}$, then denote the equivalence class of (1,2) as $[(1,2)] = \{b = 2a : a, b \in \mathbb{Z}, b \neq 0\}.$

Example. In \mathbb{Q} , $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$. What if we use different names will it still be well-defined? Yes.

How can we add them?

$$[(a,b)] + [(c,d)] = [(ad + bc, ad)].$$

For multiplication,

$$[(a,b)] \times [(c,d)] = [(ac,db)].$$

We need to check they are well-defined.

Proof

Suppose $(a',b') \sim (a,b), (c',d') \sim (c,d)$. We need to show that $(a'd'+b'c',a'd') \sim (ad+bc,ad)$. Equivalence gives us a'b=b'a,c'd=d'c.

$$(a'd' + b'c')ad = a'd'(ad + bc)$$

$$a'd'ad + b'c'ad = a'd'ad + bca'd'$$

$$b'c'ad = bc'a'd = bca'd'$$

Likewise for addition. So both are well-defined.

Addition is closed in S because $b, d \neq 0$ and D is a domain without zero divisors. Likewise for multiplication and subtraction.

We still need to show addition and multiplication are associative (omitted).

What is the additive identity? [(a,b)] = [(0,1)]. b can be anything nonzero since $(0,1) \sim (0,b)$. This works.

Additive inverse of [(a,b)] is [(-a,b)]. We again can check it's true since $[(0,b^2)] \sim [(0,1)]$.

What is the multiplicative identity? [(a,b)] = [(1,1)].

Multiplicative inverse of [(a,b)] is [(b,a)] since if a=0, then [(a,b)]=[(0,b)]=[(0,1)] which is the zero so we can ignore. And [(ab,ab)]=[(1,1)].

Commutative? Yes.

Division ring? If $[(a,b)] \neq 0_F$ then $a \neq 0$ and [(b,a)] is the inverse.

So F is a field. We still need to show that F contains the D or has a subring that looks like D.