МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №6

по дисциплине: Исследование операций тема: «Нахождение седловой точки в смешанных стратегиях для матричной игры с нулевой суммой»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: проф. Вирченко Юрий Петрович

Лабораторная работа №6

Нахождение седловой точки в смешанных стратегиях для матричной игры с нулевой суммой

Цель работы: освоить метод нахождения седловой точки в смешанных стратегиях с помощью построения пары двойственных задач ЛП.

Задание: составить и отладить программу для нахождения седловой точки игры с помощью решения пары симметрично двойственных задач ЛП. Для подготовки тестовых данных решить вручную одну из следующих ниже задач.

Вариант 10

$$\begin{pmatrix}
12 & 6 & 5 & 10 \\
5 & 9 & 7 & 8 \\
9 & 4 & 6 & 8
\end{pmatrix}$$

Блок-схемы:

Листинг программы:

```
#include <vector>
#include <array>
#include "../libs/alg/alg.h"
int main() {
   // Подготовить входные данные
    std::vector<std::array<Fraction, 5>> matrix;
   matrix.push_back({{{12}, {6}, {5}, {10}, {1}}});
   matrix.push_back({{{5}}, {9}, {7}, {8}, {1}}});
   matrix.push_back({{{9}, {4}, {6}, {8}, {1}}});
    std::array < Fraction, 5> function {\{\{1\}, \{1\}, \{1\}, \{1\}, \{0\}\}\};}
    // Решить задачу двойственным симплекс методом
   auto ans = solveDualSimplexMethod<5, 3, Fraction>(matrix, function, MAX, Fraction());
    // Вывести ответ
    std::cout << "A = " << std::get<0>(ans) << std::endl;
    std::cout << "Q = ";
    for (int i = 0; i < 4; i++) {
```

```
auto r = (std::get<1>(ans))[i] / std::get<0>(ans);
    std::cout << r << ", ";
}
std::cout << std::endl;

std::cout << "P = ";
for (int i = 0; i < 3; i++) {
    auto r = (std::get<1>(ans))[4 + i] / std::get<0>(ans);
    std::cout << r << ", ";
}
}</pre>
```

Результат выполнения программы:

```
A = 5/33
Q = 0, 2/5, 0, 1_2/5,
P = 0, 3/5, 2/5,
```

Результаты вычислений:

$$\begin{pmatrix}
12 & 6 & 5 & 10 \\
5 & 9 & 7 & 8 \\
9 & 4 & 6 & 8
\end{pmatrix}$$

Подготовим задачу к двойственному симплекс-методу

$$z = y_1 + y_2 + y_3 + y_4 \to max;$$

$$\begin{cases} 12y_1 + 6y_2 + 5y_3 + 10y_4 \le 1, \\ 5y_1 + 9y_2 + 7y_3 + 8y_4 \le 1, \\ 9y_1 + 4y_2 + 6y_3 + 8y_4 \le 1, \\ y_i \ge 0 (i = \overline{1, 4}). \end{cases}$$

Решим задачу двойственным симплекс-методом

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_5	1	12	6	5	10	1	0	0
y_6	1	5	9	7	8	0	1	0
y_7	1	9	4	6	8	0	0	1
\overline{z}	0	-1	-1	-1	-1	0	0	0

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_4	1/10	6/5	3/5	1/2	1	1/10	0	0
y_6	1/5	-23/5	21/5	3	0	-4/5	1	0
y_7	1/5	-3/5	-4/5	2	0	-4/5	0	1
z	1/10	1/5	-2/5	-1/2	0	1/10	0	0

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_4	1/15	59/30	-1/10	0	1	7/30	-1/6	0
y_3	1/15	-23/15	7/5	1	0	-4/15	1/3	0
y_7	1/15	37/15	-18/5	0	0	-4/15	-2/3	1
z	2/15	-17/30	3/10	0	0	-1/30	1/6	0

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_4	1/74	0	205/74	0	1	33/74	27/74	-59/74
y_3	4/37	0	-31/37	1	0	-16/37	-3/37	23/37
y_1	1/37	1	-54/37	0	0	-4/37	-10/37	15/37
\overline{z}	11/74	0	-39/74	0	0	-7/74	1/74	17/74

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_2	1/205	0	1	0	74/205	33/205	27/205	-59/205
y_3	23/205	0	0	1	62/205	-61/205	6/205	78/205
y_1	7/205	1	0	0	108/205	26/205	-16/205	-3/205
z	31/205	0	0	0	39/205	-2/205	17/205	16/205

Баз. пер.	Св. чл.	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_5	1/33	0	205/33	0	74/33	1	9/11	-59/33
y_3	4/33	0	61/33	1	32/33	0	3/11	-5/33
y_1	1/33	1	-26/33	0	8/33	0	-2/11	7/33
z	5/33	0	2/33	0	7/33	0	1/11	2/33

$$A=5/33; Q=[0,2/5,0,7/5]; P=[0,3/5,2/5]$$

Вывод: в ходе лабораторной работы освоили метод нахождения седловой точки в смешанных стратегиях с помощью построения пары двойственных задач ЛП. Написали и отладили программу для нахождения седловой точки игры с помощью решения пары симметрично двойственных задач ЛП.