

# Missouri Department of Natural Resources Air Pollution Control Program 2011 Monitoring Network Plan

# TABLE OF CONTENTS

| SUMMARY OF PROPOSED CHANGES                                    | . 3  |
|----------------------------------------------------------------|------|
| INTRODUCTION                                                   | . 4  |
| CURRENT NETWORK                                                | 6    |
| PROPOSED CHANGES TO NETWORK                                    | . 8  |
| 1. Lead Monitoring Network                                     | 8    |
| 2. Sulfur Dioxide Monitoring Network                           |      |
| 3. NATTS and Special Purpose Monitoring                        |      |
| 4. PM <sub>2.5</sub> Monitoring Network                        |      |
| 5. Ozone Monitoring Network                                    |      |
| 6. Rural National Core                                         | 26   |
| 7. PM <sub>10</sub> Monitoring Network                         | 26   |
| 8. Monitor Discontinuances                                     | . 26 |
| NETWORK DESCRIPTION/COMPONENTS                                 | 3(   |
| APPENDIX 1: MISSOURI MONITORING NETWORK DESCRIPTION            | 34   |
| APPENDIX 2: MISSOURI LEAD SOURCE MODELING RESULTS AND PROTOCOL |      |

#### SUMMARY OF PROPOSED CHANGES

Missouri's 2011 Monitoring Network Plan proposes to add:

- Two new lead sites:
  - o The Blair St., St. Louis (National Core) site.
  - o A special purpose monitor at the Exide Facility in Forest City.
- One new sulfur dioxide site at Buick Northeast in Boss.

The plan also proposes relocating the Bixby West, Iron County and Herculaneum Main St. monitoring sites.

Several modifications to the existing network are proposed, including permanent monitor discontinuances and modifications to the  $PM_{10}$ ,  $PM_{2.5}$ , air toxics, lead filter analytical method and special purpose monitor network.

More details on these proposed changes are included throughout this Monitoring Network Plan.

#### INTRODUCTION

The Missouri Department of Natural Resources operates an extensive network of ambient air monitors to comply with the Clean Air Act and its amendments. The Ambient Air Quality Monitoring Network for the State of Missouri consists of State and Local Air Monitoring Stations (SLAMS), Special Purpose Monitoring Stations (SPMS) monitoring and the National Core (NCore) monitoring consistent with requirements in federal regulation 40 CFR 58.10.

40 CFR 58.10 requires states submit to EPA an annual monitoring network plan including any proposed network changes. With regard to state and local air monitoring station changes, approval by the Environmental Protection Agency Regional Administrator is required.

The plan must contain the following information for each monitoring station in the network:

- 1. The Air Quality System site identification number for existing stations.
- 2. The location, including the street address and geographical coordinates, for each monitoring station.
- 3. The sampling and analysis method used for each measured parameter.
- 4. The operating schedule for each monitor.
- 5. Any proposal to remove or move a monitoring station within a period of eighteen months following the plan submittal.
- 6. The monitoring objective and spatial scale of representativeness for each monitor.
- 7. The identification of any sites that are or are not suitable for comparison against the annual PM<sub>2.5</sub> National Ambient Air Quality Standard (NAAQS).
- 8. The metropolitan statistical area, core-based statistical area, combined statistical area or other area represented by the monitor.

#### Network Design

Federal regulations (CFR 58) establish the design criteria for the ambient air monitoring network. The network is designed to meet three general objectives:

- Provide air pollution data to the public in a timely manner.
- Support compliance with ambient air quality standards and emissions strategy development.
- Support air pollution research studies.

Specific objectives for the monitoring sites are to determine the highest pollution concentrations in an area, to measure typical concentrations in areas of high population density, to determine the impact of significant sources or source categories, to determine general background levels and to determine the extent of regional pollutant transport among populated areas. Minimum site requirements are provided for ozone and particulate matter based on metropolitan statistical area population. Nitrogen dioxide and potentially carbon monoxide monitoring requirements are to be fulfilled in the plan to be submitted by July 1, 2012. These requirements include roadside and area sites for large metropolitan areas. Current lead monitoring requirements for lead sources emitting 1 ton per year, or tpy, are being met and this plan will address any changes to the lead

monitoring network and an evaluation of lead sources with a 2008 National Emissions Inventory of 0.25 to 0.50 tpy.

Federal regulations also establish the specific requirements for monitor/probe siting to ensure the ambient data represents the stated objectives and spatial scale. The requirements are pollutant/scale specific and involve horizontal/vertical placement. Additional details concerning the sites may be found in Appendix 1.

There is only one PM<sub>2.5</sub> sampler in Missouri that is not applicable for comparison to the annual NAAQS - Branch Street. It is a middle-scale site focused on a group of sources in the industrial riverfront area and is not neighborhood scale. The identification of any sites that are or are not suitable for comparison against the annual PM2.5 National Ambient Air Quality Standard is required of 40 CFR Part 58.10 (7).

#### **CURRENT NETWORK**

The current network is shown below in the map and table.



|          | gend                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                                         |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|-----------------------------------------|-----------|------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| St.      | Louis Area           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Her          | <u>culaneum Area</u>                    |                                         | <u>Ou</u> | tsta | ite Area (Cont      | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | e#Site Name          | Parameter Monitored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Site         | #Site Name                              | Parameter Monitored                     |           |      | Site Name           | Parameter Monitored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 01       | Hall Street          | $PM_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25           | Pevely North                            | РЬ                                      |           |      | ew Bloomfield       | lo, WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 02       | Margaretta           | PM 10, SO2, NO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26           | Pevely                                  | Pb                                      | 49        | Fi   | inger Lakes         | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 03       | Blair Street         | PM <sub>10</sub> , PM <sub>10-2</sub> , PM <sub>2.5</sub> , PM <sub>2.5</sub> (Spec),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27           | Herculaneum,                            | Pb                                      | 50        | M    | ark Twain           | PM <sub>10</sub> , O <sub>1</sub> , WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                      | PMCoarse, O., SO., NO., CO, BC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Sherman                                 |                                         |           | St   | ate Park            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                      | Carbonyls, Hexa Chromium, PAHs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28           | Herculaneum,                            | РЬ                                      | 51        | Sa   | avannah             | O, WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                      | VOCs, WS, WD, SR, BP, RH, Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Dunklin H. Sch.                         |                                         | 52        | St   | . Joseph            | PM <sub>10-4</sub> , PM <sub>10</sub> , PM <sub>2.5</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 04       | Branch Street        | PM <sub>10</sub> , PM <sub>10-</sub> , PM <sub>2.5</sub> , PMCoarse,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29           | Herculaneum,                            | SO <sub>1</sub> , Pb, WS, WD            |           |      |                     | PMCoarse,OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                      | WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | Mott Street                             |                                         |           |      |                     | 175(0.0) 175(7),75(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 05       | South Broadway       | PM ,, PM ,, PM ,, PMCoarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Ursuline North                          | РЬ                                      |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Orchard Farm         | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.20         | 017441111111111111111111111111111111111 |                                         |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | West Alton           | O, WS, WD, OT, SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Old          | Lead Belt Area                          |                                         | Acr       | ron  | 10725               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Maryland             | O, WS, WD, OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | #Site Name                              | Parameter Monitor                       | PM        | 1    |                     | e Matter (Diameter size≤10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -        | Heights              | 0,, 110, 112, 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Park Hills                              | Рь                                      |           | 10   | micromet            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ng       | Ladue                | PM25, WS, WD, OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | St. Joe State                           | Pb                                      | PM        |      |                     | al Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | Pacific              | O <sub>1</sub> , WS, WD, OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Park                                    | 10                                      | PM        |      |                     | an Containion<br>e Matter (Diameter size≤2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11       | 1-24:17VD2           | PM , WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Lank                                    |                                         | 1 1/1     | 2.5  | micromet            | 1 Table 1 Tabl |
| 50,00    | Amold West           | PM <sub>10.</sub> , PM <sub>23</sub> , PM <sub>23</sub> (Spec),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Man          | Lead Belt Area                          |                                         | DM        | IC-  |                     | er)<br>e Matter (Diameter size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12       | Amon west            | PMCoarse, O., WS, WD, OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | #Site Name                              | Parameter Monitored                     | FIVE      | 100  |                     | .5 and 10 micrometer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10       | W-1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Glover                                  | Pb                                      | c         |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15       | Foley                | O <sub>3</sub> , WS, WD, OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                         |                                         | Spe       |      | Speciation<br>Ozone | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7/       | e                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Buick NE                                | Pb, SO, WS, WD                          | 0,        |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | nsas City Area       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Oates                                   | Pb                                      | SO        |      | Sulfur Die          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | e#Site Name          | Parameter Monitored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Bill's Creek                            | Pb                                      | NO        |      | Nitrogen l          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.75.550 | Trimble              | O, WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - CS (A) (A) | Fletcher                                | Pb                                      | NO        |      |                     | Oxides of Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Watkins Mill         | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38           | Corridon                                | Pb                                      | CO        |      | Carbon M            | onoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16       | Liberty              | PM <sub>10-4</sub> , PM <sub>2.5</sub> , PM <sub>2.5</sub> (Spec),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52250        | 200000000 90                            |                                         | Рь        |      | Lead                | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12727    | NERVE NEW STR        | PMCoarse, O <sub>1</sub> , WS, WD, OT, SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | State Mining Ar                         |                                         | BC        |      | Black Car           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17       |                      | O <sub>3</sub> , WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | #Site Name                              | Parameter Monitored                     | WS        |      |                     | Wind Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 73.34    | Troost               | PM <sub>16</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> , NO <sub>3</sub> , OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39           | Webb City                               | Рь                                      | WI        |      |                     | Wind Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19       |                      | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                         |                                         | OT        |      |                     | emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20       | Richards             | PM <sub>10-4</sub> , PM <sub>2.5</sub> , PMCoarse, O <sub>3</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | tate Area                               |                                         | BP        |      | Baromete            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Gebaur-South         | WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | #Site Name                              | Parameter Monitored                     | RH        |      | Relative F          | 1,000 to 100 at 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40           | Alba                                    | 0,                                      | SR        |      | Solar Rad           | TO A CONTROL PROPERTY OF THE P |
| Spi      | ringfield Area       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41           | Carthage                                | PM <sub>10</sub> , WS, WD               | IM        | PR   |                     | icy Monitoring of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sin      | e#Site Name          | Parameter Monitored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42           | El Dorado                               | PM 10-1, PM 2.5, PM Coarse, O3,         |           |      | PROtecte            | d Visual Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21       | Fellows Lake         | O <sub>1</sub> , WS, WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | Springs                                 | WS, WD                                  |           |      | (Regional           | Haze)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22       | Hillcrest H. Sch     | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43           | Branson                                 | O, WS, WD                               |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23       | Missouri State       | PM <sub>10</sub> , PM <sub>10-s</sub> , PM <sub>2.5</sub> , PMCoarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44           | Hercules Glades                         |                                         |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | University           | The second secon | 45           | Mingo                                   | IMPROVE                                 |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24       | South                | SO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46           | Farrar                                  | O <sub>1</sub> , WS, WD                 |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Charleston           | 5.00 CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47           | Bonne Terre                             | PM <sub>24</sub> (Spec), O <sub>1</sub> |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | A PERSONAL PROPERTY. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2000)       |                                         | va.com+es *1 \$ 0.004 (1.000)           |           |      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### PROPOSED CHANGES TO THE NETWORK

#### 1. Lead Monitoring Network

Changes to airborne lead monitoring requirements were published in the Federal Register: December 27, 2010 (Volume 75, Number 247). These new rules require a plan for monitoring lead sources emitting 0.50 tons per year or more, revised from the previous requirement for monitoring sources emitting one ton per year or more. Airports are specifically exempted from these requirements except for a special study being conducted at specific airports, none of which are in Missouri. Newly required lead source-oriented monitors are to be included in the July 1, 2011 annual network plan (this document) and begin operation by December 29, 2011 (i.e., the first scheduled sampling day one year after publication of the rule change).

The rule change also requires lead monitoring at NCore sites by the same date along with the other required parameters. Federal regulation, 40 CFR 58, calls for NCore sites to measure PM<sub>2.5</sub> mass, speciated PM<sub>2.5</sub>, PM<sub>10-2.5</sub> mass, speciated PM<sub>10-2.5</sub>, ozone, sulfur dioxide, carbon monoxide, nitrogen oxide/NO<sub>y</sub>, wind speed, wind direction, relative humidity, ambient temperature and lead (at this time there is no method to sample speciated PM<sub>10-2.5</sub>). We will meet these requirements at the Blair Street site in St. Louis, including utilizing a total suspended particulate matter Federal Equivalent Method sampler for lead. The rule change also eliminated the requirement for urban area lead monitoring at sites other than NCore sites, so lead monitoring in the Kansas City urban area is no longer required.

#### 1.1 Review of Half-Ton Lead Sources

Half-ton lead sources are identified in the 2008 National Emissions Inventory. This inventory is comprised of actual emissions data reported to the state of Missouri through annual Emissions Inventory Questionnaires. Emissions data is collected, quality assured and submitted to EPA for inclusion in the national inventory. A review of the 2008 National Emissions Inventory identified five sources, in addition to the existing lead processing facilities discussed in the 2009 Missouri Lead Monitoring Network plan that are currently being monitored. These additional facilities are reporting emissions of more than 0.50 tpy of lead, as listed in the following table. All these sources are electric generating stations that combust coal as their primary fuel.

| Source                                               | Lead Emissions  |
|------------------------------------------------------|-----------------|
|                                                      | (tons per year) |
| Ameren UE Rush Island Plant                          | 1.067           |
| Associated Electric Cooperative New Madrid Plant     | 0.927           |
| Ameren UE Meramec Plant                              | 0.744           |
| Kansas City Power and Light Iatan Generating Station | 0.528           |
| Ameren UE Labadie Plant                              | 2.093*          |

<sup>\*</sup>Corrections to be posted to the National Emissions Inventory in June 2011.

EPA staff has stated on recent conference calls that, in the process of developing recent National Emissions Standards for hazardous air pollutants for electric generating units, it has been learned that published emission factors are high for airborne lead emissions from coal combustion in electric generating units. Guidance on estimating lead emissions from such facilities is supposed

be issued soon but has not been issued as of this writing, so revision (downward) of the emission estimates tabulated above and based on that guidance is not yet possible.

Therefore, air quality simulation modeling was used to estimate the maximum potential ground level airborne lead concentrations from these facilities using the emission rates tabulated above. The model used was AERMOD, EPA's preferred non-reactive dispersion model. Post-processing was done using LEADPOST, whose output is limited to two significant figures (i.e., hundredths of micrograms per cubic meter  $[\mu g/m^3]$  which is sufficient to resolve concentrations at or below 50% of the NAAQS). The modeling protocol is attached to this plan as Appendix 2.

The result of this modeling is the maximum 3-month average lead concentration at each of these facilities is  $0.00 \, \mu g/m^3$ , which is below 50% of the NAAQS. The modeled maximum monthly average lead concentration for any one of the facilities did not exceed  $0.004 \, \mu g/m^3$ , which is only 3% of the NAAQS. Therefore, the department requests a waiver of the lead ambient air monitoring requirements for these facilities.

One non-electric generating unit source was identified in the 2008 National Emissions Inventory (version 1) as reporting emissions over 0.50 tpy. The Connector Castings emissions report of 0.88 tpy of lead was examined and determined to be in error due to misinterpretation of the Material Safety Data Sheets that did not apply controls. The corrected calculation, including controls, shows their emissions were 0.26 tpy in 2008, and that data has been corrected in the 2008 National Emissions Inventory version 1.5.

A special case examination of lead emissions for Exide Technologies Cannon Hollow Plant arose due to docket publications included for the revisions to the secondary lead smelter MACT. The current MACT requires biannual stack tests that are witnessed and approved by Missouri Air Pollution Control Program staff, and 2008 National Emissions Inventory lead emissions calculated from these stack tests are 0.060 tpy. EPA's docket publication proposes to significantly change the method of determining the fugitive emissions from secondary lead smelters and suggests that Exide's 2008 fugitive emissions place them over the 0.50 tpy monitoring threshold. Exide's facility design minimizes fugitive emissions through enclosure and negative pressure ventilation, and EPA's proposed fugitive emission calculation does not adequately reflect these conditions. This method also has no calibration to monitored data. Fortunately, historical monitoring data is available from near the Exide facility. During the monitoring period, the verified and validated data was consistently at non-detect levels, and Exide had comparable production rates and facility operations during that period and 2008. Although this monitor measured 24 hour samples, in our engineering judgment, the new standards would not be reached, all things being equal. The proposed EPA method for calculating fugitive emissions lacks both operating characteristic and monitoring data consideration.

For these reasons, the reported lead emissions of 0.06 tpy from Exide are preferable to EPA's estimated values. If the reported data is overridden by the EPA at the Exide site, we would first request a review of the historical monitoring data with EPA staff before considering a request for an exemption to the monitoring. Despite reservations about Exide meeting the 0.50 tpy emission threshold, a special purpose monitor, or SPM, is proposed for the area to evaluate EPA's modeling results of the facility and demonste the area is in compliance with the lead NAAQS.

After reviewing sources reporting lead emissions between 0.25 and 0.50 tpy, there is no justification to increase the reported emissions above 0.50 tpy which would subject them to the monitoring network rules.

#### 1.3 Relocation of the Bixby West Site

The Bixby West Site began operation in February 2010 to monitor the impact of the Buick secondary lead smelter. In mid-2010, the Doe Run Company acquired the property where that monitor was located and relocation of that monitor was necessary. A new site, called Buick Northeast, was located by department staff during August 2010 and visited by EPA on September 8, 2010. EPA approved the Buick Northeast Site by email correspondence on September 10, 2010. In this correspondence, EPA Region 7 staff proposed to formally approve the Buick Northeast Site as part of the 2011 Monitoring Network Plan since the change occurred after the approval of the 2010 Monitoring Network Plan.

The last sample at Bixby West was collected on September 11, 2010. The first sample at Buick Northeast was collected on November 22, 2010. The following aerial photograph (Figure 1.3) shows the locations of the Buick smelter and the two monitoring sites. The 3-month rolling average lead concentrations for the Bixby West and Buick Northeast site are listed in the following table.

# 3-Month Average Lead Concentrations, ug/m3

Highlights indicate 3-month averages greater than the 0.15 ug/m3 standard

|                   | Bixby West* | Buick Northeast |
|-------------------|-------------|-----------------|
| Feb-Apr 2010      | 0.542       |                 |
| Mar-May 2010      | 0.557       |                 |
| Apr-Jun 2010      | 0.510       |                 |
| May-Jul 2010      | 0.238       |                 |
| Jun-Aug 2010      | 0.273       |                 |
| Jul-Sep 2010      | 0.198       |                 |
| Aug-Oct 2010      |             |                 |
| Sep-Nov 2010      |             |                 |
| Oct-Dec 2010      |             |                 |
| Nov 2010-Jan 2011 |             | 0.209           |
| Dec 2010-Feb 2011 |             | 0.291           |
| Jan-Mar 2011      |             | 0.299           |

<sup>\*</sup>Site discontinued in September; replaced by Buick Northeast site in November.

Figure 1.3 Buick Facility and Ambient Air Monitoring Sites



- 1. Buick Smelter
- 2. Bixby West Site (approx 1.4 miles from smelter)
- 3. New Buick Northeast Site (approx. 1.6 miles from smelter)

### 1.4 Relocation of the Herculaneum Main St. Site

On April 6, 2011 the department received a letter from the City of Herculaneum requesting the state move its Herculaneum Main St. monitoring site from city property to make room for widening of the entrance to City Hall. Department staff contacted City of Herculaneum staff to

discuss other possible city property locations on which the monitor could be placed, but no viable location could be negotiated. On April 27, 2011, Air Program, EPA and Doe Run Company staff met to discuss using the former Doe Run Mott Street Site as a candidate for relocating the Herculaneum Main Street lead and sulfur dioxide monitors. All parties agreed this would be the best location since the site had historical lead monitoring and the site is adjacent to residential property. The Mott Street Site is located about 80 meters (263 feet) to the west of the current Herculaneum Main Street Site. The Herculaneum Main Street monitoring site will be removed from the current location to the Mott St. Site. Monitoring at the Mott St. Site is expected to begin in June 2011. The following aerial photograph (Figure 1.4) shows the locations of the Main Street and Mott Street sites.

Doe Run Company conducted lead monitoring at the Mott Street Site from April 2008 through October 2010. Lead concentrations measurements at that site were slightly lower but very well correlated with concentrations measured at the Main Street Site, as shown in the following x-y plot. The following bar graph shows average lead concentrations measured by the state and Doe Run Company at Main Street, by Doe Run at Mott Street, and by both organizations at Dunklin High School, all for the time period of April 2008 through October 2010. This graph also shows that the average Mott Street concentration is lower than that measured at Main Street, but closer to the Main Street concentration than is the concentration at the somewhat more distant Dunklin High School Site.

S 201 Congle
DETS/U.S. Geological Durcy.

September 2016 2016 20 1992

SSERA 65'N 9022' 46 57'N 46V- 4440

Event - 5000 C

Figure 1.4 Herculaneum Main St. and Mott St. Sites

- 1. Former Herculaneum Main St. (Herc. Main) site
- Mott St. Site (approx. 80 meters from Herc. Main) (Note: several nearby buildings have been demolished since the date of the satellite image)

Correlation of Doe Run Mott St. and ESP Main St. Airborne Lead Concentrations, 24-hour Measurements, April 2008-October 2010



Airborne Lead Concentration Average, April 2008-October 2010



#### 1.5 Transition From The Lead Analytical Analysis Method 085 to Method 192.

The state of Missouri will transition from the Current Federal Equivalent Method (Method 085) for lead analysis to the recently approved US EPA Region 9 method, cited below. US EPA Region 9 method will improve the detection limits of the lead filter analysis and be consistent with the ICP/MS method EPA intends to use for the Performance Evaluation Program.

# Inductively Coupled Plasma - Mass Spectrometry (US EPA/Region 9) Manual Equivalent Method: EOL-0710-192

""Heated Nitric Acid Hot Block Digestion and ICP/MS Analysis for Lead on total suspended particulate High-Volume Filters."" In this method, total suspended particulate matter is collected on glass fiber filters according to 40 CFR Appendix B to part 50, EPA Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method), extracted with a solution of nitric acid, heated on a hot block to 95°C for one hour, and brought to a final volume of 50 mL. The lead content of the sample extract is analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP–MS) based on EPA Method 200.8 and SW–846 Method 6020A.

Federal Register: Vol.75, page 45627, 08/03/10

#### 2. Sulfur Dioxide Monitoring Network

On June 2, 2010, the US EPA revised the primary sulfur dioxide standard by establishing a 1-hour standard at the level of 75 parts per billion, or ppb. The EPA revoked the two previous primary standards of 140 ppb evaluated over 24-hrs and 30 ppb evaluated over an entire year.

As part of the rulemaking, EPA revised the monitoring regulations to require a minimum number of sulfur dioxide monitors in core based statistical areas based on a population weighted emissions index. Additional sulfur dioxide monitoring may be required by the EPA Regional Administrator under certain circumstances.

#### 2.1.0 Population Weighted Emissions Index Required Sulfur Dioxide Monitoring

Federal regulation, Part 58, Network, Design Criteria for Ambient Air Quality Monitoring section 4.4.2 cites the requirements for the population weighted emissions index monitoring as follows: "The population weighted emissions index shall be calculated by States for each core based statistical area they contain or share with another State or States for use in the implementation of or adjustment to the sulfur dioxide monitoring network. The population weighted emissions index shall be calculated by multiplying the population of each core-based statistical area, using the most current census data or estimates, and the total amount of sulfur dioxide in tons per year emitted within the core-based statistical area area, using an aggregate of the most recent county level emissions data available in the National Emissions Inventory for each county in each core-based statistical area. The resulting product shall be divided by one million, providing a population weighted emissions index value, the units of which are million persons-tons per year."

After review of the 2008 National Emissions Inventory for total sulfur dioxide emissions and the 2009 estimated population data, minimum sulfur dioxide monitoring is required in two Missouri core-based statistical areas, Kansas City and St. Louis. The Kansas City and St. Louis core-based statistical areas are shared with the states of Kansas and Illinois respectively. The following table identifies several of the larger core-based statistical areas, population weighted emissions index and minimum number of required sulfur dioxide monitors.

#### **PWEI Results for Missouri Metropolitan Statistical Areas**

calculated using 2009 estimated population and 2008 NEI SO2 emissions

| Metropolitan Statistical Area | PWEI    | No. of Monitors Required |
|-------------------------------|---------|--------------------------|
| St. Louis                     | 681,418 | 2                        |
| Kansas City                   | 188,899 | 2                        |
| Springfield                   | 4,759   | 0                        |
| Joplin                        | 2,147   | 0                        |
| Columbia                      | 1,728   | 0                        |
| Jefferson City                | 834     | 0                        |
| St. Joseph                    | 749     | 0                        |
|                               |         |                          |

 $PWEI \ge 1,000,000: 3 \text{ monitors}$ 

 $1,000,000 > PWEI \ge 100,000: 2 monitors$  $100,000 > PWEI \ge 5,000: 1 monitor$ 

The minimum monitoring requirements in the St. Louis core-based statistical area are satisfied at the Margaretta (SLAMS) and Blair St. (NCore) air monitoring sites in Missouri. In addition to the Missouri sulfur dioxide monitoring sites, Illinois operates three sulfur dioxide monitoring sites at South Roxana, Wood River and East St. Louis.

The minimum monitoring requirements in the Kansas City core-based statistical area are satisfied at the JFK site (NCore) in the State of Kansas and the Troost monitoring site (SLAMS) in the state of Missouri.

The Troost monitoring site is currently in violation of the 1-hour sulfur dioxide standard. Continued sulfur dioxide monitoring is required in Greene and Jefferson counties since existing monitors in those counties currently violate the 1-hour sulfur dioxide NAAQS.

#### Missouri Statewide and the Surrounding SO<sub>2</sub> Monitoring Network, 2011



#### 2.2.0 Additional SO<sub>2</sub> Monitoring

State and local air monitoring agencies and the EPA regional administrator are to work together to design and/or maintain the most appropriate sulfur dioxide network to provide sufficient data to meet monitoring objectives. In addition to the minimum sulfur dioxide monitoring required by the population weighted emissions index, there is one facility for which ambient sulfur dioxide monitoring is proposed. Based on relatively recent ambient air monitoring conducted as part of a Prevention of Significant Deterioration pre-construction monitoring project at the Buick Recycling facility there is concern that the area may be at risk of not meeting the sulfur dioxide NAAQS. Since Prevention of Significant Deterioration pre-construction monitoring is normally conducted by the facility over a period of one year and the data is reported to the permit granting authority rather than the EPA Air Quality System, the data does not meet the criteria necessary to be used to designate the area as non-attainment. A summary of the data collected for this Prevention of Significant Deterioration project is listed below.

| Buick SO2 | 2 Summary               |            | Concentra      | itions in pp   | m              |                |                         |
|-----------|-------------------------|------------|----------------|----------------|----------------|----------------|-------------------------|
|           |                         | Days       | 1st high       | 2nd high       | 3rd high       | 4th high       | 99th %ile               |
| South     | 2005                    | 90         | 0.110          | 0.067          | 0.067          | 0.063          | 0.110                   |
|           | 2006                    | 352        | 0.132          | 0.115          | 0.112          | 0.102          | 0.102                   |
|           | 2007                    | 176        | 0.127          | 0.066          | 0.064          | 0.061          | 0.066                   |
|           | average                 |            |                |                |                |                | 0.093                   |
| North     | 2006<br>2007<br>average | 208<br>176 | 0.172<br>0.143 | 0.132<br>0.117 | 0.132<br>0.109 | 0.117<br>0.082 | 0.132<br>0.117<br>0.125 |

The Doe Run Buick recycling facility is a unique source to the extent that it is located in an area of relatively complex terrain which is not as conducive to modeling. The facility also has a production process that may not necessarily yield consistent sulfur dioxide emissions which could contribute to the likelihood of higher ground level sulfur dioxide concentrations. The state of Missouri currently operates a lead monitoring site (Buick North East) which began sampling on November 22, 2010 and is located north east of the facility which appears to be an appropriate location to monitor for sulfur dioxide concentrations from the facility since the highest concentrations during the pre-construction sulfur dioxide monitoring were generally north of the facility.

Since the new sulfur dioxide NAAQS suggests using a combined monitoring and modeling approach in certain situations to demonstrate NAAQS compliance, the monitoring site need not necessarily be focused solely on locations of expected maximum concentrations. The future modeling results of this facility, based on the anticipated EPA refined dispersion modeling guidance, will be used with this sulfur dioxide monitoring data to understand the impact this facility has on ambient air quality in this area. The sulfur dioxide monitor will be designated as a middle scale, source oriented, special purpose monitor, since it is not needed to satisfy the minimum sulfur dioxide monitoring requirements of the population weighted emissions index .

The map below (Figure 2.2.0) shows the site locations relative to the Buick Smelter. Over the last two complete three month rolling average periods, the Buick Northeast lead monitor has

measured ambient air lead three month rolling average concentrations which exceed the lead NAAQS of 0.15 . $\mu g/m^3$ . On days where lead concentrations are higher the winds are generally from the southwest.

We intend to install this sulfur dioxide monitor in the fall of 2011.

Figure 2.2.0



- 1. Buick Smelter
- 2. Former Bixby West Site (approx 1.4 miles from smelter)
- 3. Buick Northeast Site (approx. 1.6 miles from smelter)
- 4. Former North Station (preconstruction SO<sub>2</sub> monitoring site)

#### 2.3.0 Relocated Sulfur Dioxide Monitoring

On April 6, 2011 the department received a letter from the City of Herculaneum requesting the state move its Herculaneum Main St. monitoring site from city property to make room for widening of the entrance to City Hall. Department staff contacted the City of Herculaneum staff to discuss other possible nearby city property locations on which the monitor could be placed, but no viable location could be negotiated. On April 27, 2011, Air Program, EPA and Doe Run Company staff met to discuss using the former Mott St. Site as a candidate for relocating the Herculaneum Main St. Lead and sulfur dioxide monitoring site. All parties agreed this would be the best location since the site had historical lead monitoring data and the site is adjacent to residential property. The Mott St. Site is located about 80 meters (263 feet) to the west of the current Herculaneum Main St. Site. The Herculaneum Main St. monitoring site will be removed from the current location to the Mott St. Site. Since the Herculaneum Main St. sulfur dioxide monitor is classified as a middle scale monitor and is currently in violation of the 75 ppb sulfur dioxide federal standard, it is technically desirable to move the site the minimum distance possible from its current location. We anticipate the Mott St. Site will be operation by June 2011. Another sulfur dioxide site is being considered for the area to monitor for the maximum ground level sulfur dioxide concentrations due to the smelter's stack emissions. Additional time is needed to determine the most appropriate location and formally propose the site to EPA for approval.



- 1. Former Herculaneum Main St. (Herc. Main) site
- Mott St. Site (approx. 80 meters from Herc. Main) (Note: several nearby buildings have been demolished since the date of the satellite image)

#### 3. National Air Toxics Trends Stations and Special Purpose Monitoring.

#### 3.1 National Air Toxics Trends Stations Monitoring:

EPA Office of Air Quality Planning and Standards staff has indicated they intend to eventually request agencies convert from the  $PM_{10}$  High Volume method for  $PM_{10}$  to the  $PM_{10}$  low volume method for the National Air Toxics Trends Stations, or NATTS, metals analysis. Department staff agree this change is desirable for several technical and operational advantages and intend to switch to the  $PM_{10}$  low volume sampling method effective July 1, 2011. In addition the regular NATTS monitoring at Blair St., the department and EPA staff are negotiating whether additional NATTS grant funds could be utilized to support collocating a near real time  $PM_{10}$  Metals Monitor (Xact at the NATTS site to increase understanding of the temporal variation of metals in the ambient air (particularly arsenic and lead) routinely measured by the time integrated 24-hr filter based  $PM_{10}$  sampling at this site.

#### 3.2 OPSIS

The OPSIS Ultraviolet Differential Optical Absorption Spectrometer (UV-DOAS) has been operated at the Mound St. Station in St. Louis as a special purpose monitor. The OPSIS provides hourly formaldehyde, benzene, toluene and mercury concentration data. Originally these data were compared to the 24-hour time-integrated data from the Blair Street Station provide information about the temporal and spatial variation between the two sites for these pollutants. Since other multi-pollutants, in particular, particulate matter, elemental and organic carbon are not monitored at Mount St., the OPSIS data do not appear to be as valuable in satisfying the multi-pollutant strategy described in the St. Louis Air Quality Management Plan. Due to resource constraints and the magnitude of network changes over the past year, the decision was made to suspend OPSIS special purpose monitor monitoring and data has not been collected for about the last two quarters. After a review of our state special purpose monitoring projects, the decision was made to discontinue monitoring at this location in favor of participating in a joint EPA and state monitoring study to be conducted at the Blair St., St. Louis Site discussed in section 3.3.

#### 3.3 Organic and Elemental Carbon Monitor Evaluation Project

EPA Office of Air Quality Planning and Standards contacted the EPA Regional Office and the state of Missouri about participating in a three year monitor evaluation study scheduled to begin in the summer/fall of 2011. As part of the project the EPA would provide the monitor and certain related components in exchange for the state providing in-kind staff time to operate and report data to the EPA Air Quality System from the instrument. The proposed location for the study is the Blair St. Site since the site currently part of the NCore, NATTS and Chemical Speciation monitoring programs and data from the Blair St. site is used extensively in various heath and air pollution studies. Since elemental and organic carbon account for a significant amount of the particulate mater mass measured at this site at various times, understanding the temporal variation in carbon species relative to the 24-hr integrated filter based carbon data will be useful in understanding the local source contributions and diurnal variation in the carbon concentrations. This project will be useful in supplementing ambient air monitoring data objectives addressed in the St. Louis Air Quality Management Plan.

#### 4. PM<sub>2.5</sub> Monitoring Network

The revised PM<sub>2.5</sub> monitoring network submitted in 2010 included

- Continuous Federal Equivalent Method tapered element oscillating microbalance, or TEOM, sampling.
- Everyday federal reference method, or FRM, sampling.
- Installation of two PM<sub>2.5</sub>/PMCoarse dichotomous samplers (TEOM 1405-DF, Federal Equivalent Method for PM<sub>2.5</sub>) at Blair Street and St. Joseph pump station.
- Collocated FRM monitoring at the Troost site for Federal Equivalent Method comparisons and data quality assessment requirements for 40 CFR Part 58 Appendix A.

In addition, PM<sub>2.5</sub>/PM Coarse dichotomous samplers (Federal Equivalent Method for PM<sub>2.5</sub>) will be deployed at the Branch St., South Broadway and MSU sites by the end of 2011. This is consistent with an approved amendment to the PM<sub>2.5</sub> Grant Workplan (April 2009 – March 2010). The FRM samplers currently at the Branch St. and South Broadway sites will be used as spares should they be needed elsewhere in the network. The SHARP continuous monitor at the MSU site will be removed from service (replaced with the TEOM 1405-DF) and the collocated FRM PM2.5 sampler will also be removed since the Network PM<sub>2.5</sub> collocated FRM requirements are satisfied at Blair street NCore site.

The current PM<sub>2.5</sub> Grant Workplan (April 2011 – March 2012) includes purchasing four new TEOM 1405-DF continuous PM<sub>2.5</sub> monitors and four new data loggers to upgrade aging TEOM-FDMS-8500C monitors at Arnold West, Liberty, El Dorado Springs and RG\_South. The existing FDMS-8500C PM<sub>2.5</sub> monitors at Arnold and Liberty will remain at those sites for emergency response use. The others will be used as spares.

The  $PM_{10}$  local conditions ( $PM_{10c}$ ) channel and PMcoarse channel from the TEOM-1405-DF will be reported for each site as a special purpose monitor since they are available simultaneously with the  $PM_{2.5}$  channel but neither is currently designated as a Federal Equivalent Method. This will provide more temporal and special coverage for the various fractions of particulate mater at the  $PM_{2.5}$  monitoring sites in the network. The manufacturer of the TEOM-1405-DF is in the process of obtaining a Federal Equivalent Method designation for both the  $PM_{10}$  and PMcoarse channels on the TEOM-1405-DF monitor.

The following page reports the FRM/Federal Equivalent Method Comparability statistics (Class III performance criteria of 40 CFR Part 53) for the initial burn-in period of the TEOM-1405-DF at the Blair St. St. Louis NCore site.

# Class III Performance Criteria of 40 CFR Part 53 Blair St. St. Louis Air Quality System # 29-510-0085 TEOM-1405-DF, EQPM-0609-182 (PM<sub>2.5</sub>) January 6, 2011 through March 6, 2011

| Applicant:        | Missouri Department of Natural Resources             |
|-------------------|------------------------------------------------------|
| Candidate method: | PM 2.5 2025 FRM compared to TEOM-1405-DF FEM - Class |
| Test site:        | Blair Street - (Site location )                      |

| Data sets                                              | Number       |
|--------------------------------------------------------|--------------|
| Valid data sets available:                             | 52           |
| Number of valid data sets required for ARM Comparison: | 90           |
| Number of valid data sets for this test is:            | Insufficient |
| Additional data sets needed:                           | 38           |

| Precision               | Data set n | nean, µg/m³ | Data set pi  | recision, µg/m³ | Relative pr | ecision (CV) |
|-------------------------|------------|-------------|--------------|-----------------|-------------|--------------|
| (if data are available) | FRM        | Candidate   | FRM          | Candidate       | FRM         | Candidate    |
| Mean:                   | 16.5       | 16.9        | 0.2          |                 | 1.5%        |              |
| Maximum:                | 35.7       | 38.9        | 70.7%        |                 | 2.8%        |              |
| Minimum:                | 4.3        | 4.9         | 0.0%         |                 | 0.0%        |              |
| Candidate / FRM Ratio:  |            | 102.4%      |              |                 |             |              |
|                         | RMS Re     | elative Pre | cision for   | this site:      | 1.9%        |              |
|                         | Test re    | quirement   | s - Class II | l:              | 10.0%       | 15.0%        |
|                         | Precision  | on Test Re  | sults for s  | ite:            | OK          |              |



| Regression statistics          |       | Slope | Intercept <sup>2</sup> | Correlation (r) |
|--------------------------------|-------|-------|------------------------|-----------------|
| Statistics for this test site: |       | 1.016 | 0.188                  | 0.97291         |
| Limits for Up                  | per:  | 1.100 | 1.639                  |                 |
| Class III Lov                  | wer:  | 0.900 | -2.000                 | 0.94165         |
| Test Results (Pass/Fa          | ail): | PASS  | PASS                   | PASS            |

Note: Precision statistics can be calculated only for data sets containing multiple FRM or multiple candidate ARM measurements.







# REVISED PM<sub>2.5</sub> MONITORING NETWORK

| Site                        | Schedule*   | Туре                        | Agency                    | NAAQS                                   |
|-----------------------------|-------------|-----------------------------|---------------------------|-----------------------------------------|
| St. Louis                   |             |                             |                           |                                         |
| 1. Blair St.                | 1           | FRM                         | ESP                       | 24 hr & Annual, NCore PMcoarse          |
|                             | 6           | Collocated                  | ESP                       | Doubles as PMcoarse collocated sampler  |
|                             | 3           | Speciation                  | ESP                       |                                         |
|                             | Н           | TEOM-1405-DF FEM            | ESP                       | AQI, NCore PM10-2.5 continuous          |
| 2. Branch St.               | Н           | TEOM-1405-DF FEM            | St. Louis City            | 24 hr & AQI (Middle Scale Monitor)      |
| 3. South Broadway           | Н           | TEOM-1405-DF FEM            | St. Louis City            | 24 hr & Annual/AQI                      |
| 4. Ladue                    | Н           | TEOM-8500C FEM              | St. Louis County DOH      | 24 hr & Annual/AQI                      |
| 5. Arnold West              | 3           | Speciation                  | ESP                       |                                         |
|                             | Н           | TEOM-1405-DF FEM            | ESP                       | 24 hr & Annual/AQI                      |
| Kansas City                 |             |                             |                           |                                         |
| 6. Liberty                  | 3           | Speciation                  | ESP                       |                                         |
|                             | Н           | TEOM-1405-DF FEM            | ESP                       | 24 hr & Annual/AQI                      |
| 7. Troost                   | 6           | Collocated FRM              | ESP                       | 24 hr & Annual (Quality Assurance)      |
|                             | Н           | TEOM-8500C FEM              | ESP                       | 24 hr & Annual/AQI                      |
| 8. Richards-Gebaur South    | Н           | TEOM-1405-DF FEM            | ESP                       | 24 hr & Annual/AQI                      |
| Springfield                 |             |                             |                           |                                         |
| 9. MSU                      | Н           | TEOM-1405-DF FEM            | ESP                       | AQI, PM10-2.5 continuous                |
| St. Joseph                  |             |                             |                           |                                         |
| 10. Pump Station            | Н           | TEOM-1405-DF FEM            | ESP                       | 24 hr & Annual/AQI, PM10-2.5 continuous |
| Outstate                    |             |                             |                           |                                         |
| 11. El Dorado Springs       | Н           | TEOM-1405-DF FEM            | ESP                       | 24 hr & Annual/AQI                      |
|                             | 3           | IMPROVE                     | ESP                       |                                         |
| 12. Bonne Terre             | 3           | Speciation                  | ESP                       |                                         |
| 13. Mingo                   | 3           | IMPROVE                     | Fish & Wildlife Service   |                                         |
| 14. Hercules Glades         | 3           | IMPROVE                     | Forest Service            |                                         |
| * 1 = Everday sampling; 3 = | Every third | day; 6 = Every sixth day; F | I = Continuous monitoring | , hourly data reported.                 |

#### 5. Ozone Monitoring Network

There are no plan changes to the ozone monitoring network. The current monitoring network is based on the proposed ozone standard and ground-level ozone air quality monitoring network design requirements. If significant changes occur in the final ozone standard or the ground-level ozone air quality monitoring network design requirements these changes will be implemented as required pending available financial resources and any necessary EPA approval.



#### 6. Rural National Core

EPA expressed interest in pursuing the installation and operation of a rural NCore site in Missouri. Department staff suggested EPA consider the Mark Twain State Park Site as a candidate for consideration of the rural NCore site due to its location and the historically low PM<sub>10</sub> and SO<sub>2</sub> concentrations measured at the site. The Mark Twain State Park site also appears to be in a unique Omernik Ecoregion III classification scheme region from which NCore monitoring data could help support the potential NOx/SOx Secondary Standard that will likely be proposed by EPA. EPA Region 7 Staff intend to visit the site and render an evaluation of its suitability for a rural NCore site. EPA is considering providing up-front one-time equipment purchases and continued operation and maintenance funds to support this project. Since this project would be in addition to existing NCore monitoring requirements which the state of Missouri has satisfied at the Blair St. site, the department is waiting for EPA to identify specifically what funding will be available for this project before committing resources to the project. The department will continue to work with EPA Region 7 staff to pursue this project for 2011.

#### 7. PM<sub>10</sub> Monitoring Network

Only one minor change to the  $PM_{10}$  network is planned for 2011. The Margaretta high volume sampling method (the last of this method operating in the state  $PM_{10}$  network) will be replaced with a  $PM_{10}$  tapered element oscillating microbalance which is used at multiple sites throughout the network. This increases efficiency by reducing the resources necessary to maintain a number of different  $PM_{10}$  methods in the network and increases the sampling frequency from every 6 days to hourly for additional temporal resolution of  $PM_{10}$  data at this site.

Depending on the decision concerning the rural NCore site proposed at Mark Twain State Park discussed previously in section 6, the  $PM_{10}$  sampling at Mark Twain State Park will be resumed as a special purpose monitor for the purposes of monitoring background  $PM_{10}$  concentrations that have been used to support  $PM_{10}$  Prevention of Significant Deterioration monitoring project evaluations.

#### 8. Monitor Discontinuances

The state of Missouri proposes to permanently discontinue the following samplers, including several nitrogen dioxide, sulfur dioxide, carbon monoxide, PM<sub>10</sub> and lead samplers and one ammonia and one hydrogen sulfide samplers (see the table below). These samplers were shut down last year due to economic hardship with regard to state budgets. Most of these samplers are the carbon monoxide, nitrogen dioxide, sulfur dioxide monitors which are required to be addressed in monitoring network plans by 2012 to meet network criteria in 2013. All of these samplers are showing levels well within NAAQS compliance for several years as shown on the following tables. There are no minimum requirements for carbon monoxide sampler numbers, other than NCore which will be maintained. The lead and PM<sub>10</sub> samplers named are not required by federal regulations. Depending on the decision concerning the rural NCore site proposed at Mark Twain State Park discussed previously in section 6, the PM<sub>10</sub> sampling at the state park

will be resumed as a special purpose monitor for the purposes of monitoring background  $PM_{10}$  concentrations that have been used to support  $PM_{10}$  Prevention of Significant Deterioration monitoring project evaluations.

### MONITORS TO BE PERMANENTLY DISCONTINUED

| norary shutdown  10  MS                           |
|---------------------------------------------------|
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
| Pb                                                |
| SLAMS                                             |
| SLAWS                                             |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
| 10                                                |
| cated                                             |
| atou .                                            |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
| 10                                                |
| MS MS                                             |
|                                                   |
| H2S NH3                                           |
| SPM SPM                                           |
| S. W. S. W.                                       |
|                                                   |
|                                                   |
| <del>-                                     </del> |
|                                                   |
| ,                                                 |

# Tables of Sample Results Showing Compliance for Samplers to be Permanently Discontinued

| PM <sub>10</sub> 24hr (u            | ıg/m3)                         |            |            |            |            |              |            |            |
|-------------------------------------|--------------------------------|------------|------------|------------|------------|--------------|------------|------------|
| Site<br>Name<br>2nd &               | 2003                           | 2004       | 2005       | 2006       | 2007       | 2008         | 2009       | 2010*      |
| Mound:<br>1st Max                   | 62                             | 58         | 65         | 71         | 66         | 70           | 40         | 104        |
| 2 <sup>nd</sup> Max                 | 57                             | 49         | 63         | 55         | 66         | 38           | 37         | 90         |
| 3rd Max                             | 47                             | 46         | 61         | 44         | 60         | 38           | 36         | 86         |
| 4th Max                             | 45                             | 44         | 61         | 42         | 58         | 37           | 34         | 86         |
| MSU: 1st<br>Max                     | 40                             | 36         | 45         | 35         | 38         | 39           | 27         | 36         |
| 2nd Max                             | 39                             | 30         | 44         | 30         | 37         | 34           | 26         | 32         |
| 3rd Max                             | 30                             | 30         | 38         | 29         | 36         | 29           | 25         | 30         |
| 4th Max                             | 27                             | 29         | 35         | 28         | 31         | 25           | 23         | 30         |
| Mark<br>Twain:                      |                                |            |            |            |            |              |            |            |
| 1st Max                             | 38                             | 32         | 46         | 32         | 33         | 35           | 36         | 26         |
| 2nd Max                             | 38                             | 29         | 35         | 29         | 32         | 32           | 24         | 25         |
| 3rd Max                             | 36                             | 23         | 34         | 29         | 26         | 29           | 23         | 24         |
| 4th Max                             | 31                             | 23         | 33         | 25         | 26         | 27           | 23         | 21         |
| CO                                  |                                |            |            |            |            |              |            |            |
| Site Name                           | 2003                           | 2004       | 2005       | 2006       | 2007       | 2008         | 2009       | 2010*      |
| 1-hour 2 <sup>nd</sup> Hi<br>35 ppm | igh                            |            |            |            |            |              |            |            |
| Sunset Hills                        | -                              | -          | 1.7**      | 1.5        | 1.2        | 1.4          | 0.9        | 0.8        |
| Margaretta<br>MSU                   | 4.5<br>4.0                     | 4.3<br>4.0 | 4.7<br>4.0 | 3.9<br>3.0 | 3.4<br>4.0 | 4.2<br>1.8   | 2.4<br>2.2 | 1.9<br>1.7 |
| 8-hour 2 <sup>nd</sup> H<br>9 ppm   | igh                            |            |            |            |            |              |            |            |
| Sunset Hills<br>Margaretta          | 3.0                            | 2.8        | 1.3<br>3.0 | 1.2<br>2.5 | 1.0<br>2.7 | 0.8<br>2.8   | 0.7<br>1.7 | 0.6<br>1.2 |
| MSU                                 | 2.0                            | 2.4        | 2.8        | 2.3        | 2.7        | 1.2          | 1.7        | 1.0        |
| *Data throu                         | igh September 30 <sup>th</sup> | 2010       |            |            |            | - · <b>-</b> | 0          | 2.0        |

SO<sub>2</sub> 1-hour Average Daily Maximum Concentrations (ppb)

|                     | 99th Percentile |      |      |      |      |      |      |       |               | Design Values (NAAQS = 75 ppb) |               |               |               |                |  |  |
|---------------------|-----------------|------|------|------|------|------|------|-------|---------------|--------------------------------|---------------|---------------|---------------|----------------|--|--|
| Site Name           | 2003            | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010* | 2003-<br>2005 | 2004-<br>2006                  | 2005-<br>2007 | 2006-<br>2008 | 2007-<br>2009 | 2008-<br>2010* |  |  |
| MSU                 | 14              | 18   | 23   | 26   | 26   | 33   | 25   | 33    | 18            | 22                             | 25            | 28            | 28            | 30             |  |  |
| MTSP<br>Magyland    | 13              | 17   | 15   | 12   | 12   | 12   | 13   | 11    | 15            | 15                             | 13            | 12            | 12            | 12             |  |  |
| Maryland<br>Heights | -               | -    | 34   | 35   | 38   | 35   | 41   | 34    | -             | -                              | 36            | 36            | 38            | 37             |  |  |
| Ladue               | 50              | 59   | 48   | 57   | 44   | 47   | 47   | 38    | 52            | 55                             | 50            | 49            | 46            | 44             |  |  |
| South Broadway      | 62              | 62   | 54   | 74   | 42   | 57   | 35   | 34    | 59            | 63                             | 57            | 58            | 45            | 42             |  |  |

<sup>\*</sup>Data through September 30<sup>th</sup> 2010

NO<sub>2</sub> 1-hour Average Daily Maximum Concentrations (ppb)

|                         |      |      |      | 98th P | ercentil | e    |      | Design Values (NAAQS = 100 ppb) |               |               |               |               |               |                |
|-------------------------|------|------|------|--------|----------|------|------|---------------------------------|---------------|---------------|---------------|---------------|---------------|----------------|
| Site Name               | 2003 | 2004 | 2005 | 2006   | 2007     | 2008 | 2009 | 2010*                           | 2003-<br>2005 | 2004-<br>2006 | 2005-<br>2007 | 2006-<br>2008 | 2007-<br>2009 | 2008-<br>2010* |
| West Alton              | 37   | 35   | 39   | 35     | 37       | 31   | 34   | 33                              | 37            | 36            | 37            | 34            | 34            | 33             |
| Sunset Hill<br>Maryland | 52   | 42   | 45   | 46     | 44       | 43   | 39   | 42                              | 46            | 44            | 45            | 44            | 42            | 41             |
| Heights                 | -    | -    | 41   | 42     | 40       | 35   | 33   | 38                              | -             | -             | 41            | 39            | 36            | 35             |
| Ladue                   | 54   | 49   | 50   | 52     | 46       | 46   | 40   | 44                              | 51            | 50            | 49            | 48            | 44            | 43             |
| Liberty                 | 40   | 41   | 41   | 37     | 39       | 36   | 32   | 39                              | 41            | 40            | 39            | 37            | 36            | 36             |
| Hillcrest H. Sch        | 55   | 49   | 54   | 52     | 50       | 45   | 50   | 52                              | 53            | 52            | 52            | 49            | 48            | 49             |
| Bonne Terre             | 25   | 21   | 22   | 17     | 20       | 17   | 17   | 19                              | 23            | 20            | 20            | 18            | 18            | 18             |

<sup>\*</sup>Data through September 30<sup>th</sup> 2010

### **Network Description/Components**

See Appendix 1 for the Network Description, which includes the following components.

#### Site Data

All ambient air monitoring sites are recorded in the EPA's Air Quality System database. Data includes location data such as latitude & longitude.

#### Air Quality System Site Code

The site code includes a numerical designation for State, county, and individual site. The state and county codes are assigned a number based on the alphabetical order of the State or county. Site numbers are assigned sequentially by date established in most counties. St. Louis County sites also have a division for municipality within St. Louis County.

#### Street Address

The official Post Office address of the lot where the monitors are located. Because not all sites are located in cities or towns, the street address is occasionally given as the intersection of the nearest streets or highways.

#### **Geographical Coordinates**

The coordinate system used by Missouri Department of Natural Resources is latitude and longitude.

#### Air Quality Control Region

Air Quality Control Regions, or AQCR, are defined by EPA and designates either urban regions, like St. Louis or Kansas City, or rural sections of a state, such as northeast or southwest Missouri.

| <u>AQCR</u> | AQCR Name                |
|-------------|--------------------------|
| 070         | Metropolitan St. Louis   |
| 094         | Metropolitan Kansas City |
| 137         | Northern Missouri        |
| 138         | SE Missouri              |
| 139         | SW Missouri              |

#### Metropolitan Statistical Area

MOA O 1 MOANT

Metropolitan statistical areas, or MSA, are defined by the U.S. Census Bureau.

| MSA Code | MSA Name           |
|----------|--------------------|
| 0000     | Not in a MSA       |
| 1740     | Columbia           |
| 3710     | Joplin             |
| 3760     | Kansas City, MO-KS |
| 7000     | St. Joseph         |
| 7040     | St. Louis, MO-IL   |
| 7920     | Springfield        |
|          |                    |

### Monitor Data

Each monitor is designed to detect a specific chemical pollutant or group of related pollutants. A site may have one or many monitors and not all sites will have the same monitors.

#### Pollutant

The common name of the pollutant. "Criteria" pollutants are defined by statute in the Clean Air Act.

#### Air Quality System Pollutant Code

Each pollutant has a specific numerical code to distinguish it from others. One monitor in St. Louis City uses a code of '00000' because the monitor detects an entire group of chemicals, volatile organic pollutants, which are too numerous to list individually.

| Pollutant Codo          | Dollutant                                    |
|-------------------------|----------------------------------------------|
| Pollutant Code<br>00000 | Pollutant Volotila Organia Compounds or VOCs |
| 12128                   | Volatile Organic Compounds, or VOCs<br>Lead  |
|                         | Lead – Local Conditions                      |
| 14129                   |                                              |
| 42101                   | Carbon Monoxide                              |
| 42242                   | Mercury vapor                                |
| 42401                   | Sulfur Dioxide                               |
| 42402                   | Hydrogen Sulfide                             |
| 42406                   | Sulfur Dioxide 5-min                         |
| 42602                   | Nitrogen Dioxide                             |
| 42604                   | Ammonia                                      |
| 43502                   | Formaldehyde                                 |
| 44201                   | Ozone                                        |
| 45201                   | Benzene                                      |
| 45202                   | Toluene                                      |
| 61103                   | Resultant Wind Speed                         |
| 61104                   | Resultant Wind Direct                        |
| 62101                   | Outdoor Temperature                          |
| 62107                   | Indoor Temperature                           |
| 62201                   | Relative Humidity                            |
| 63301                   | Solar Radiation                              |
| 64101                   | Barometric Pressure                          |
| 81102                   | $PM_{10}$                                    |
| 84313                   | Black Carbon                                 |
| 85101                   | PM <sub>10</sub> - LC                        |
| 88101                   | PM <sub>2.5</sub> FRM                        |
| 88500                   | PM <sub>2.5</sub> Tot Atmospheric            |
| 88501                   | PM <sub>2.5</sub> Raw Data                   |
| 88502                   | PM <sub>2.5</sub> AQI/Speciation             |
| 88503                   | PM <sub>2.5</sub> reference                  |
| 00505                   | 1 1112.3 1010101100                          |

#### Parameter Occurrence Code

The Parameter Occurrence Code distinguishes between different monitors for the same pollutant, most often collocated monitors used for precision and quality assurance. For PM<sub>2.5</sub>, different parameter occurrence codes are assigned to FRM, collocated FRM, continuous, and speciation monitors.

#### Collocated

Collocated monitors are used for precision and quality assurance activities, and for redundancy for critical pollutants such as ozone.

#### **Sampling Frequency**

Sampling frequency varies for each pollutant, depending on the nature of the NAAQS standard and the technology used in the monitoring method. Most gaseous pollutants use continuous monitors and are averaged over one hour. Particulate pollutants are mostly filter-based and averaged over one day.

#### Scale of Representation

Each monitor is intended to represent an area with similar pollutant concentration. The scales range from only a few meters to many kilometers.

- <u>MIC</u> <u>Microscale</u> defines the concentration in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- MID Middle defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometers.
- Neighborhood defines concentrations within an extended area of a city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers.
- <u>URB</u> <u>Urban</u> defines an overall citywide condition with dimensions on the order of 4 to 50 kilometers.
  - <u>REG</u> <u>Regional</u> defines air quality levels over areas having dimensions of 50 to hundreds of kilometers.

#### Monitoring Objective

Each monitor has a distinct objective such as providing real-time data for public awareness or use in determining compliance with regulations.

Objective Code

Objective

| Objective Code | Objective                 |
|----------------|---------------------------|
| AQI            | <b>Public Information</b> |
| COM            | NAAQS Compliance          |
| MET            | Meteorological Data       |
| RES            | Research                  |
| STA            | State Standard            |

#### Units

The physical terms used to quantify the pollutant concentration, such as parts per million or micrograms per cubic meter.

| <b>Unit Code</b> | <b>Unit Description</b> |
|------------------|-------------------------|
| 001              | $\mu g/m^3$             |
| 007              | parts per million       |
| 800              | parts per billion       |
| 012              | miles per hour          |
| 013              | knots                   |
| 014              | degree, compass         |
| 015              | degree Fahrenheit       |
| 017              | degree Celsius          |
| 018              | Langleys                |
| 019              | percent humidity        |
| 022              | inches Mercury          |
| 025              | Langleys per minute     |
| 079              | Watts/m <sup>2</sup>    |
| 105              | $\mu g/m^3 LC$          |
| 121              | parts per trillion      |

### Monitoring/Analytical Method

Each monitor relies on a scientific principle to determine the pollutant concentration, which is described by the sampling method. Each method code is specific for a particular pollutant; therefore a three numeral code may be used for different methods for different pollutants.

# Missouri Ambient Air Monitoring Network



MICMicroscale1 to 100 square metersMIDMiddle0.1 to 0.5 square kilometerNBRNeighborhood0.5 to 4 square kilometersREGRegional> 10 square kilometers, ruralURBUrban4 to 50 square kilometers, city

COM NAAQS Compliance MET Meteorological Data

Mpsd Monitor Proposed for Temporary Shutdown NCore National Multi-pollutant Monitoring Stations

NON-A Non-Ambient Site
NON-R Non-Regulatory

RES Research

**SLAMS** State and Local Monitoring Stations

SIP State Implementation Plan

SPEC Speciation STA State Standard

SPM Special Purpose Monitoring

\*\* TEOM 1405-DFs Approved for Purchase

Friday, May 20, 2011 Page 1 of 38

# City Utilities

James River South

AQS Site Number 29-077-0037

James River South, Springfield, MO 12435

**Latitude:** 37.104461

**AQCR:** 139

MSA:

139 SW Missouri

Longitude:

-93.25339

7920

Springfield, MO

Elevation (ft): 1227

|                                |          | Monitor    | -   |     |      |       |     | Unit- |      | Method- |                       | Monitor- |
|--------------------------------|----------|------------|-----|-----|------|-------|-----|-------|------|---------|-----------------------|----------|
| Pollutant                      | AQS Code | Type       | POC | Col | Freq | Scale | Obj | Code  | Unit | Code    | Method                | Status   |
| Sulfur Dioxide                 | 42401    | Industrial | 3   |     | Н    | MID   | COM | 800   | ppb  | 060     | Pulsed<br>Fluorescent |          |
| Sulfur Dioxide Max 5-mi<br>Avg | in 42406 | Industrial | 3   |     | Н    | MID   | COM | 800   | ppb  | 060     | Pulsed<br>Fluorescent |          |

# Wildwood Lane

AQS Site Number 29-077-0040

1234 Wildwood Lane, Springfield, MO 12435

Latitude:

37.108889

**AQCR:** 139

SW Missouri

Longitude:

-93.252778

MSA:

7920 Springfield, MO

Elevation (ft): 1231

|                               |          | Monitor    | <u>-</u>   |     |      |       |     | Unit- |      | Method- |                       | Monitor- |
|-------------------------------|----------|------------|------------|-----|------|-------|-----|-------|------|---------|-----------------------|----------|
| Pollutant                     | AQS Code | Type       | <b>POC</b> | Col | Freq | Scale | Obj | Code  | Unit | Code    | Method                | Status   |
| Sulfur Dioxide                | 42401    | Industrial | 1          |     | Н    | MID   | COM | 800   | ppb  | 060     | Pulsed<br>Fluorescent |          |
| Sulfur Dioxide Max 5-m<br>Avg | in 42406 | Industrial | 1          |     | Н    | MID   | СОМ | 800   | ppb  | 060     | Pulsed<br>Fluorescent |          |

Friday, May 20, 2011 Page 2 of 38

# Doe Run Buick

# Doe Run Buick - Buick NE

AQS Site Number 29-093-9008

347 Power Lane (Address, Elevation, Lati, and Longi to be confirmed)

Latitude: 37.65214 AQCR: 138 SE Missouri

**Longitude:** -91.11689 **MSA:** 0000 Not in a MSA

Elevation (ft): 1423

|                            |          | Monitor    | _   |     |      |       |     | Unit- |           | Method | <b>!_</b>                    | Monitor- |
|----------------------------|----------|------------|-----|-----|------|-------|-----|-------|-----------|--------|------------------------------|----------|
| Pollutant                  | AQS Code | Type       | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                       | Status   |
| Ambient Temperature        | 68105    | Industrial | 1   |     | 1/6  | MID   | СОМ | 017   | deg C     | 780    | Instrumental                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1   |     | 1/6  | MID   | СОМ | 105   | ug/m^3-L0 | 113    | Doe Run Mass<br>Spectra ICAP |          |
| Sample Baro Pressure       | e 68108  | Industrial | 1   |     | 1/6  | MID   | COM | 059   | mm (Hg)   | 780    | Instrumental                 |          |

# Doe Run Buick - North #5

*AQS Site Number* 29-093-0021

Doe Run Buick - North#5, Buick, MO 65439

Latitude: 37.654167 AQCR: 138 SE Missouri

**Longitude:** -91.130556 **MSA:** 0000 Not in a MSA

Elevation (ft):

|                            |          | Monitor    | _   |     |      |       |     | Unit- |           | Method | <u>!</u> _                   | Monitor- |
|----------------------------|----------|------------|-----|-----|------|-------|-----|-------|-----------|--------|------------------------------|----------|
| Pollutant                  | AQS Code | Type       | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                       | Status   |
| Ambient Temperature        | 68105    | Industrial | 1   |     | 1/6  | MID   | СОМ | 017   | deg C     | 780    | Instrumental                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1   |     | 1/6  | MID   | СОМ | 105   | ug/m^3-L0 | 113    | Doe Run Mass<br>Spectra ICAP |          |
| Sample Baro Pressure       | 68108    | Industrial | 1   |     | 1/6  | MID   | СОМ | 059   | mm (Hg)   | 780    | Instrumental                 |          |

Friday, May 20, 2011 Page 3 of 38

Doe Run Buick - South#1, Buick, MO 65439

Latitude: 37.625278 AQCR: 138 SE Missouri

**Longitude:** -91.129167 **MSA:** 0000 Not in a MSA

Elevation (ft):

|                            |          | Monitor    | <u>-</u> |          |      |       |     | Unit- |           | Method | 1-                           | Monitor-  |
|----------------------------|----------|------------|----------|----------|------|-------|-----|-------|-----------|--------|------------------------------|-----------|
| Pollutant                  | AQS Code | Type       | POC      | Col      | Freq | Scale | Obj | Code  | Unit      | Code   | Method                       | Status    |
| Ambient Temperature        | 68105    | Industrial | 1        | <b>✓</b> | 1/6  | MID   | SIP | 017   | deg C     | 780    | Instrumental                 | NON-<br>A |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1        | <b>✓</b> | 1/6  | MID   | SIP | 105   | ug/m^3-LC | 113    | Doe Run Mass<br>Spectra ICAP | NON-<br>A |
| Sample Baro Pressure       | e 68108  | Industrial | 1        | <b>✓</b> | 1/6  | MID   | SIP | 059   | mm (Hg)   | 780    | Instrumental                 | NON-<br>A |

Friday, May 20, 2011 Page 4 of 38

## Doe Run Glover

#### Doe Run Glover - Big Creek #5

AQS Site Number 29-093-0029

Doe Run Glover - Big Creek #5, Glover, MO 65439

**Latitude:** 37.471667 **AQCR:** 138 SE Missouri

**Longitude:** -90.689444 **MSA:** 0000 Not in a MSA

Elevation (ft): 927

|                            |          | Monitor    | _   |     |      |       |     | Unit- |           | Method | <u> </u> _                           | Monitor- |
|----------------------------|----------|------------|-----|-----|------|-------|-----|-------|-----------|--------|--------------------------------------|----------|
| Pollutant                  | AQS Code | Type       | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                               | Status   |
| Ambient Temperature        | 68105    | Industrial | 1   |     | 1/6  | MID   | СОМ | 017   | deg C     | 780    | Instrumental                         |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1   |     | 1/6  | MID   | СОМ | 105   | ug/m^3-LC | 110    | Pima Co., AZ<br>Mass Spectra<br>ICAP |          |
| Sample Baro Pressure       | e 68108  | Industrial | 1   |     | 1/6  | MID   | COM | 059   | mm (Hg)   | 780    | Instrumental                         |          |

## Doe Run Glover - Post Office #2

AQS Site Number 29-093-0027

Doe Run Glover - Post Office #2, Glover, MO 65439

**Latitude:** 37.486111 **AQCR:** 138 SE Missouri

Longitude: -90.69 MSA: 0000 Not in a MSA

Elevation (ft): 927

|                            |          | Monitor    | _   |          |      |       |     | Unit- |           | Method | <i>l-</i>                            | Monitor- |
|----------------------------|----------|------------|-----|----------|------|-------|-----|-------|-----------|--------|--------------------------------------|----------|
| Pollutant                  | AQS Code | Type       | POC | Col      | Freq | Scale | Obj | Code  | Unit      | Code   | Method                               | Status   |
| Ambient Temperature        | 68105    | Industrial | 1   | <b>✓</b> | 1/6  | MID   | СОМ | 017   | deg C     | 780    | Instrumental                         |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1   | <b>✓</b> | 1/6  | MID   | СОМ | 105   | ug/m^3-LC | 2 110  | Pima Co., AZ<br>Mass Spectra<br>ICAP |          |
| Sample Baro Pressure       | 68108    | Industrial | 1   | <b>✓</b> | 1/6  | MID   | СОМ | 059   | mm (Hg)   | 780    | Instrumental                         |          |

Friday, May 20, 2011 Page 5 of 38

## Doe Run Herculaneum

#### Herculaneum, Broad Street

AQS Site Number 29-099-9005

Broad St., Herculaneum, MO, 63048

Latitude: 38.261667 AQCR: 070 Metropolitan St. Louis

Longitude: -90.379722 MSA: 7040 St. Louis, MO-IL

Elevation (ft): 500

|                            |          | Monitor    | _   |     |      |       |     | Unit- |           | Method | <u>'</u> _                   | Monitor-  |
|----------------------------|----------|------------|-----|-----|------|-------|-----|-------|-----------|--------|------------------------------|-----------|
| Pollutant                  | AQS Code | Type       | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                       | Status    |
| Ambient Temperature        | 68105    | Industrial | 1   |     | 1/6  | MID   | SIP | 017   | deg C     | 780    | Instrumental                 | NON-<br>A |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1   |     | 1/6  | MID   | SIP | 105   | ug/m^3-LC | 113    | Doe Run Mass<br>Spectra ICAP | NON-<br>A |
| Sample Baro Pressure       | e 68108  | Industrial | 1   |     | 1/6  | MID   | SIP | 059   | mm (Hg)   | 780    | Instrumental                 | NON-<br>A |

## Herculaneum, Church Street

AQS Site Number 29-099-0024

951 Church St., Herculaneum, MO 63048

Latitude: 38.258667 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.380889 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 463

|                            |          | Monitor    | _   |          |      |       |     | Unit- |           | Method | <i>l-</i>                    | Monitor- |
|----------------------------|----------|------------|-----|----------|------|-------|-----|-------|-----------|--------|------------------------------|----------|
| Pollutant                  | AQS Code | Type       | POC | Col      | Freq | Scale | Obj | Code  | Unit      | Code   | Method                       | Status   |
| Ambient Temperature        | 68105    | Industrial | 1   | <b>✓</b> | 1/3  | NBR   | СОМ | 017   | deg C     | 780    | Instrumental                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1   | <b>✓</b> | 1/3  | NBR   | COM | 105   | ug/m^3-L0 | 113    | Doe Run Mass<br>Spectra ICAP |          |
| Sample Baro Pressure       | e 68108  | Industrial | 1   | <b>✓</b> | 1/3  | NBR   | СОМ | 059   | mm (Hg)   | 780    | Instrumental                 |          |

Friday, May 20, 2011 Page 6 of 38

#### Herculaneum, Dunklin High School

AQS Site Number 29-099-9002

1 Black Cat Dr., Herculaneum, MO, 63048

Latitude: 38.267222 AQCR: 070 Metropolitan St. Louis

Longitude: -90.37833 MSA: 7040 St. Louis, MO-IL

Elevation (ft): 445

|                            |          | Monitor    | _   |     |      |       |     | Unit- |           | Method | <u>'</u> _                   | Monitor- |
|----------------------------|----------|------------|-----|-----|------|-------|-----|-------|-----------|--------|------------------------------|----------|
| Pollutant                  | AQS Code | Type       | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                       | Status   |
| Ambient Temperature        | 68105    | Industrial | 1   |     | 1/3  | NBR   | СОМ | 017   | deg C     | 780    | Instrumental                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1   |     | 1/3  | NBR   | СОМ | 105   | ug/m^3-LC | 2 113  | Doe Run Mass<br>Spectra ICAP |          |
| Sample Baro Pressure       | 68108    | Industrial | 1   |     | 1/3  | NBR   | СОМ | 059   | mm (Hg)   | 780    | Instrumental                 |          |

#### Herculaneum, Mott Street

*AQS Site Number* 29-099-9007

Mott Street, Herculaneum, MO, 63048

Latitude: 38.263394 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.379667 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 468

|                            |          | Monitor    | _          |          |      |       |     | Unit- |           | Method | <u>'</u> _                   | Monitor- |
|----------------------------|----------|------------|------------|----------|------|-------|-----|-------|-----------|--------|------------------------------|----------|
| Pollutant                  | AQS Code | Type       | <b>POC</b> | Col      | Freq | Scale | Obj | Code  | Unit      | Code   | Method                       | Status   |
| Ambient Temperature        | 68105    | Industrial | 1          | <b>✓</b> | 1/1  | MID   | СОМ | 017   | deg C     | 780    | Instrumental                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | Industrial | 1          | <b>✓</b> | 1/1  | MID   | СОМ | 105   | ug/m^3-L0 | 113    | Doe Run Mass<br>Spectra ICAP |          |
| Sample Baro Pressure       | e 68108  | Industrial | 1          | <b>✓</b> | 1/1  | MID   | СОМ | 059   | mm (Hg)   | 780    | Instrumental                 |          |

### Herculaneum, North Cross

AQS Site Number 29-099-0023

North Cross, Herculaneum, MO 63048

Latitude: 38.263378 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.381122 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 463

Monitor- Unit- Method- Monitor-Pollutant AQS Code Type POC Col Freq Scale Obj Code Unit Code Method Status

Friday, May 20, 2011 Page 7 of 38

| Ambient Temperature        | 68105      | Industrial       | 1      |       | 1/1      | NBR       | СОМ | 017   | deg C     | 780     | Instrumental                 |          |
|----------------------------|------------|------------------|--------|-------|----------|-----------|-----|-------|-----------|---------|------------------------------|----------|
| Lead (TSP) - LC<br>FRM/FEM | 14129      | Industrial       | 1      |       | 1/1      | NBR       | СОМ | 105   | ug/m^3-L0 | C 113   | Doe Run Mass<br>Spectra ICAP |          |
| Sample Baro Pressure       | 68108      | Industrial       | 1      |       | 1/1      | NBR       | СОМ | 059   | mm (Hg)   | 780     | Instrumental                 |          |
| Herculaneum, S             | Shermo     | ın               |        |       |          |           |     | AQ    | S Site Ni | umber 2 | 29-099-9004                  |          |
| 460 Sherman St., H         |            |                  | , 6304 | 8     |          |           |     |       |           |         |                              |          |
| Latitude: 38.27            | 17         | AQCR:            | 070    | Metro | opolitan | St. Louis |     |       |           |         |                              |          |
| Longitude: -90.37          | 76520      | MSA:             | 7040   | St. L | ouis, MC | )-IL      |     |       |           |         |                              |          |
| Elevation (ft): 462        |            |                  |        |       |          |           |     |       |           |         |                              |          |
|                            |            | Monitor          | -      |       |          |           |     | Unit- |           | Method- | _                            | Monitor- |
| Pollutant A                | QS Code    | Type             | POC    | Col   | Freq     | Scale     | Obj | Code  | Unit      | Code    | Method                       | Status   |
| Ambient Temperature        | 68105      | SPM              | 1      |       | 1/6      | NBR       | СОМ | 017   | deg C     | 780     | Instrumental                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129      | Industrial       | 1      |       | 1/6      | NBR       | COM | 105   | ug/m^3-LC | C 113   | Doe Run Mass<br>Spectra ICAP |          |
| Sample Baro Pressure       | 68108      | SPM              | 1      |       | 1/6      | NBR       | СОМ | 059   | mm (Hg)   | 780     | Instrumental                 |          |
|                            |            |                  |        |       |          |           |     |       |           |         |                              |          |
| Ursuline North             | - D 1 - C  | 1 0              |        |       | 10       |           |     | ΑQ    | S Site Ni | umber 2 | 29-099-9006                  |          |
| 210 Glennon Heigh          | its Rd., C | •                | •      |       |          | 0.1.      |     |       |           |         |                              |          |
| Latitude: 38.24            | 3          | AQCR:            | 070    |       |          | St. Louis |     |       |           |         |                              |          |
| Longitude: -90.37          | 7372       | MSA:             | 7040   | St. L | ouis, MC | )-IL      |     |       |           |         |                              |          |
| Elevation (ft): 578        |            |                  |        |       |          |           |     |       |           |         |                              |          |
| Pollutant A                | OS Code    | Monitor-<br>Type |        | Col   | Enga     | Scale     | Ob; | Unit- | Unit      | Method- | -<br>Method                  | Monitor- |
|                            |            |                  |        |       | •        |           | Obj | Code  |           | Code    |                              | Status   |
| Ambient Temperature        | 68105      | Industrial       | 1      | Ш     | 1/6      | NBR       | COM | 017   | deg C     | 780     | Instrumental                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129      | Industrial       | 1      |       | 1/6      | NBR       | СОМ | 105   | ug/m^3-LC | C 113   | Doe Run Mass<br>Spectra ICAP |          |
| Sample Baro Pressure       | 68108      | Industrial       | 1      |       | 1/6      | NBR       | СОМ | 059   | mm (Hg)   | 780     | Instrumental                 |          |

Friday, May 20, 2011 Page 8 of 38

## **Environmental Services**

*AQS Site Number* 29-097-0004

20400 Millwood Rd., Alba, MO 64755

Latitude: 37.2348 AQCR: 139 SW Missouri

**Longitude:** -94.42475 **MSA:** 3710 Joplin, MO

Elevation (ft): 965

|                      |          | Monito | r-  |          |      |       |     | Unit- |         | Method | l-                         | Monitor- |
|----------------------|----------|--------|-----|----------|------|-------|-----|-------|---------|--------|----------------------------|----------|
| Pollutant            | AQS Code | Type   | POC | Col      | Freq | Scale | Obj | Code  | Unit    | Code   | Method                     | Status   |
| Ambient Temperature  | 68105    | SPM    | 1   |          | 1/1  | NBR   | СОМ | 017   | deg C   | 780    | Instrumental               |          |
| Indoor Temperature   | 62107    | SPM    | 1   |          | Н    | N/A   | MET | 017   | deg C   | 013    | Electronic<br>Averaging    |          |
| Ozone                | 44201    | SLAMS  | 1   | <b>✓</b> | Н    | NBR   | COM | 007   | ppm     | 047    | Ultraviolet<br>Photometric |          |
| Sample Baro Pressure | e 68108  | SPM    | 1   |          | 1/1  | NBR   | СОМ | 059   | mm (Hg) | 780    | Instrumental               |          |

Arnold West AQS Site Number 29-099-0019

1709 Lonedell Dr., Arnold, MO 63010

Latitude: 38.448581 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.398436 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 636

| Pollutant                    | AQS Code | Monitor<br>Type |   | Col      | Freq | Scale | Obj | Unit-<br>Code | Unit      | Method-<br>Code | Method                          | Monitor-<br>Status |
|------------------------------|----------|-----------------|---|----------|------|-------|-----|---------------|-----------|-----------------|---------------------------------|--------------------|
| Acceptable PM2.5<br>AQI/SPEC | 88502    | SPEC            | 6 |          | 1/3  | NBR   | RES | 105           | ug/m^3-L0 | C 810           | METONE SASS                     |                    |
| Acceptable PMCoarse<br>LC    | - 86502  | SPM             | 1 |          | Н    | NBR   | СОМ | 105           | ug/m^3-L0 | C 790           | FDMS-<br>Gravimetric 1405<br>DF | **                 |
| Indoor Temperature           | 62107    | SPM             | 1 |          | Н    | N/A   | MET | 017           | deg C     | 013             | Electronic<br>Averaging         |                    |
| Outdoor Temperature          | 62101    | SPM             | 1 |          | Н    | NBR   | MET | 017           | deg C     | 040             | Electronic<br>Averaging         |                    |
| Ozone                        | 44201    | SLAMS           | 1 | <b>✓</b> | Н    | NBR   | COM | 007           | ppm       | 047             | Ultraviolet<br>Photometric      |                    |

Friday, May 20, 2011 Page 9 of 38

| PM10 - LC                 | 85101   | SPM   | 5 | Н | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF | ** |
|---------------------------|---------|-------|---|---|-----|-----|-----|-----------|-----|----------------------------------|----|
| PM2.5 - LC                | 88101   | SLAMS | 4 | Н | NBR | COM | 105 | ug/m^3-LC | 182 | FMDS-<br>Gravimetric 1405-<br>DF | ** |
| PM2.5 - LC                | 88101   | SLAMS | 3 | Н | NBR | COM | 105 | ug/m^3-LC | 181 | PM2.5 VSCC<br>FEM                |    |
| PM2.5 Tot Atmospheric     | 88500   | SPM   | 1 | Н | NBR | СОМ | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF | ** |
| PM2.5 Tot Atmospheric     | 88500   | NON-R | 3 | Н | NBR | AQI | 105 | ug/m^3-LC | 761 | PM2.5 VSCC<br>FDMS               |    |
| PM2.5 Volatile Channel    | 88503   | NON-R | 1 | Н | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF | ** |
| PM2.5 Volatile Channel    | 88503   | NON-R | 3 | Н | NBR | AQI | 105 | ug/m^3-LC | 761 | PM2.5 VSCC<br>FDMS               |    |
| Wind Direction - Resultan | t 61104 | SPM   | 1 | Н | NBR | MET | 014 | deg       | 020 | Vector<br>Summation              |    |
| Wind Speed - Resultant    | 61103   | SPM   | 1 | Н | NBR | MET | 012 | mph       | 020 | Vector<br>Summation              |    |

0.75 mile S. of 3229 County Rd., Boss, MO 65440

*Latitude*: 37.53467 *AQCR*: 138 SE Missouri

**Longitude:** -91.14857 **MSA:** 0000 Not in a MSA

Elevation (ft): 996

Bill's Creek

|                            |          | Monito | r-  |     |      |       |     | Unit- |           | Method- | -                                           | Monitor- |
|----------------------------|----------|--------|-----|-----|------|-------|-----|-------|-----------|---------|---------------------------------------------|----------|
| Pollutant                  | AQS Code | Type   | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code    | Method                                      | Status   |
| Ambient Temperature        | 68105    | SPM    | 1   |     | 1/6  | NBR   | COM | 017   | deg C     | 803     | Off-Site Avg<br>Temperature                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SLAMS  | 1   |     | 1/6  | NBR   | COM | 105   | ug/m^3-LC | 192     | Inductive<br>Coupled Plasma<br>Spectrometry |          |
| Sample Baro Pressure       | e 68108  | SPM    | 1   |     | 1/6  | NBR   | COM | 059   | mm (Hg)   | 803     | Off-Site Avg<br>Pressure                    |          |

AQS Site Number 29-179-0001

Friday, May 20, 2011 Page 10 of 38

3247 Blair Street, St. Louis, MO 63107

Latitude: 38.65640 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.19845 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 450

| Pollutant A                  | QS Code | Monitor<br>Type | POC | Col      | Freq | Scale | Obj | Unit-<br>Code | Unit      | Method<br>Code | - Monitor-<br>Method Status                 |
|------------------------------|---------|-----------------|-----|----------|------|-------|-----|---------------|-----------|----------------|---------------------------------------------|
| Acceptable PM2.5<br>AQI/SPEC | 88502   | SPEC            | 6   |          | 1/3  | NBR   | RES | 105           | ug/m^3-L0 | C 810          | METONE SASS                                 |
| Acceptable PMCoarse -<br>LC  | 86502   | NCORE           | 1   |          | Н    | NBR   | COM | 105           | ug/m^3-L0 | C 790          | FDMS-<br>Gravimetric 1405-<br>DF            |
| Ambient Temperature          | 68105   | SLAMS           | 3   | <b>✓</b> | 1/3  | NBR   | СОМ | 017           | deg C     | 127            | Lo-Vol R&P<br>2025 Sequential               |
| Ambient Temperature          | 68105   | SLAMS           | 1   | <b>✓</b> | 1/1  | NBR   | СОМ | 017           | deg C     | 118            | Lo-Vol R&P<br>2025 Sequential               |
| Baro Pressure                | 64101   | SLAMS           | 1   |          | Н    | NBR   | MET | 022           | in (Hg)   | 011            | Aneroid                                     |
| Black Carbon PM2.5 STF       | 84313   | SLAMS           | 1   |          | Н    | NBR   | RES | 001           | ug/m^3    | 866            | Magee Scientific<br>AE21ER                  |
| Carbon Monoxide              | 42101   | NCORE           | 1   |          | Н    | MID   | COM | 007           | ppm       | 054            | Non-dispersive<br>Infrared                  |
| Indoor Temperature           | 62107   | SLAMS           | 1   |          | Н    | N/A   | COM | 017           | deg C     | 013            | Electronic<br>Averaging                     |
| Lead (TSP) - LC<br>FRM/FEM   | 14129   | NCORE           | 1   |          | 1/6  | NBR   | СОМ | 105           | ug/m^3-L0 | C 192          | Inductive<br>Coupled Plasma<br>Spectrometry |
| Outdoor Temperature          | 62101   | SLAMS           | 1   |          | Н    | NBR   | MET | 017           | deg C     | 040            | Electronic<br>Averaging                     |
| Ozone                        | 44201   | NCORE           | 1   | <b>✓</b> | Н    | NBR   | COM | 007           | ppm       | 047            | Ultraviolet<br>Photometric                  |
| PM10 - LC                    | 85101   | SLAMS           | 5   |          | Н    | NBR   | СОМ | 105           | ug/m^3-L0 | 790            | FDMS-<br>Gravimetric 1405-<br>DF            |
| PM10 - LC                    | 85101   | SLAMS           | 1   | <b>✓</b> | 1/3  | NBR   | COM | 105           | ug/m^3-L0 | C 127          | Lo-Vol R&P<br>2025 Sequential               |
| PM10 - Total STP             | 81102   | SLAMS           | 1   | <b>✓</b> | 1/3  | NBR   | COM | 001           | ug/m^3    | 127            | Lo-Vol R&P<br>2025 Sequential               |

Friday, May 20, 2011 Page 11 of 38

| PM2.5 - LC                      | 88101 | SLAMS | 1 | <b>✓</b> | 1/1 | NBR | СОМ | 105 | ug/m^3-LC | 118 | Lo-Vol R&P<br>2025 Sequential              |
|---------------------------------|-------|-------|---|----------|-----|-----|-----|-----|-----------|-----|--------------------------------------------|
| PM2.5 - LC                      | 88101 | SLAMS | 4 |          | Н   | NBR | COM | 105 | ug/m^3-LC | 182 | FMDS-<br>Gravimetric 1405-<br>DF           |
| PM2.5 Tot Atmospheric           | 88500 | SLAMS | 1 |          | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF           |
| PM2.5 Volatile Channel          | 88503 | SLAMS | 1 |          | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF           |
| PMCoarse - LC (FRM Diff)        | 86101 | SLAMS | 1 |          | 1/3 | NBR | COM | 105 | ug/m^3-LC | 176 | Thermo 2025<br>Sequential PM10-<br>PM2.5   |
| Reactive Oxides of N (NOY)      | 42600 | NCORE | 1 |          | Н   | NBR | COM | 800 | ppb       | 074 | Chemiluminesce<br>nce                      |
| Relative Humidity               | 62201 | SLAMS | 1 |          | Н   | N/A | MET | 019 | %humidity | 020 | Instrumental                               |
| Sample Baro Pressure            | 68108 | SLAMS | 3 | <b>✓</b> | 1/3 | NBR | COM | 059 | mm (Hg)   | 127 | Lo-Vol R&P<br>2025 Sequential              |
| Sample Baro Pressure            | 68108 | SLAMS | 1 | <b>✓</b> | 1/1 | NBR | COM | 059 | mm (Hg)   | 118 | Lo-Vol R&P<br>2025 Sequential              |
| Solar Radiation                 | 63301 | SLAMS | 1 |          | Н   | NBR | MET | 079 | W/m^2     | 011 | Instrumental                               |
| Sulfur Dioxide                  | 42401 | NCORE | 1 |          | Н   | NBR | СОМ | 800 | ppb       | 600 | Ultraviolet<br>Fluorenscence<br>API 100 EU |
| Sulfur Dioxide Max 5-min<br>Avg | 42406 | NCORE | 1 |          | Н   | NBR | COM | 800 | ppb       | 600 | Ultraviolet<br>Fluorenscence<br>API 100 EU |
| Wind Direction - Resultant      | 61104 | SLAMS | 1 |          | Н   | NBR | MET | 014 | deg       | 020 | Vector<br>Summation                        |
| Wind Speed - Resultant          | 61103 | SLAMS | 1 |          | Н   | NBR | MET | 012 | mph       | 020 | Vector<br>Summation                        |

15797 Highway D, Bonne Terre, MO 63628

Latitude: 37.90084 AQCR: 138 SE Missouri

**Longitude:** -90.42388 **MSA:** 0000 Not in a MSA

Elevation (ft): 840

Bonne Terre

Monitor- Unit- Method- Monitor-Pollutant AQS Code Type POC Col Freq Scale Obj Code Unit Code Method Status

AQS Site Number 29-186-0005

Friday, May 20, 2011 Page 12 of 38

| Acceptable PM2.5<br>AQI/SPEC | 88502   | SPEC  | 5 |          | 1/6 | REG | RES | 105 | ug/m^3-LC | 810 | METONE SASS                |
|------------------------------|---------|-------|---|----------|-----|-----|-----|-----|-----------|-----|----------------------------|
| Ambient Temperature          | 68105   | SPM   | 1 |          | 1/1 | REG | COM | 017 | deg C     | 780 | Instrumental               |
| Indoor Temperature           | 62107   | SPM   | 1 |          | Н   | N/A | MET | 017 | deg C     | 013 | Electronic<br>Averaging    |
| Ozone                        | 44201   | SLAMS | 1 | <b>✓</b> | Н   | REG | COM | 007 | ppm       | 047 | Ultraviolet<br>Photometric |
| Sample Baro Pressure         | 68108   | SPM   | 1 |          | 1/1 | REG | СОМ | 059 | mm (Hg)   | 780 | Instrumental               |
| Solar Radiation              | 63301   | SPM   | 1 |          | Н   | REG | MET | 079 | W/m^2     | 011 | Instrumental               |
| Wind Direction - Resultant   | t 61104 | SPM   | 1 |          | Н   | REG | MET | 014 | deg       | 020 | Vector<br>Summation        |
| Wind Speed - Resultant       | 61103   | SPM   | 1 |          | Н   | REG | MET | 012 | mph       | 020 | Vector<br>Summation        |

Branson

AQS Site Number 29-213-0004

251 SW. Outer Rd., Branson, MO 65616

**AQCR:** 139 Latitude: 36.70765

SW Missouri

Longitude: 0000 Not in a MSA MSA: -93.22181

Elevation (ft): 1052

|                          |           | Monito | r-  |          |      |       |     | Unit- |       | Method | _                          | Monitor- |
|--------------------------|-----------|--------|-----|----------|------|-------|-----|-------|-------|--------|----------------------------|----------|
| <b>Pollutant</b>         | AQS Code  | Type   | POC | Col      | Freq | Scale | Obj | Code  | Unit  | Code   | Method                     | Status   |
| Indoor Temperature       | 62107     | SPM    | 1   |          | Н    | N/A   | COM | 017   | deg C | 013    | Electronic<br>Averaging    |          |
| Ozone                    | 44201     | SPM    | 1   | <b>✓</b> | Н    | NBR   | СОМ | 007   | ppm   | 047    | Ultraviolet<br>Photometric |          |
| Wind Direction - Resulta | ant 61104 | SPM    | 1   |          | Н    | NBR   | COM | 014   | deg   | 020    | Vector<br>Summation        |          |
| Wind Speed - Resultant   | 61103     | SPM    | 1   |          | Н    | NBR   | СОМ | 012   | mph   | 020    | Vector<br>Summation        |          |

Friday, May 20, 2011 Page 13 of 38

#### Buick NE (SO2, WS, WD Monitors: Proposed)

AQS Site Number 29-093-0034

AQS Site Number 29-097-0003

347 Power Lane (Address, Elevation, Lati, and Longi to be confirmed)

Latitude: 37.65214 AQCR: 138 SE Missouri

**Longitude:** -91.11689 **MSA:** 0000 Not in a MSA

Elevation (ft): 1423

|                                 |          | Monitor | r_         |          |      |       |     | Unit- |           | Method- | -                                           | Monitor- |
|---------------------------------|----------|---------|------------|----------|------|-------|-----|-------|-----------|---------|---------------------------------------------|----------|
| <b>Pollutant</b> 2              | AQS Code | Type    | <b>POC</b> | Col      | Freq | Scale | Obj | Code  | Unit      | Code    | Method                                      | Status   |
| Ambient Temperature             | 68105    | SPM     | 1          | <b>✓</b> | 1/1  | MID   | COM | 017   | deg C     | 780     | Instrumental                                |          |
| Lead (TSP) - LC<br>FRM/FEM      | 14129    | SLAMS   | 1          | ✓        | 1/6  | MID   | СОМ | 105   | ug/m^3-L0 | C 192   | Inductive<br>Coupled Plasma<br>Spectrometry | a        |
| Sample Baro Pressure            | 68108    | SPM     | 1          | <b>✓</b> | 1/1  | MID   | COM | 059   | mm (Hg)   | 780     | Instrumental                                |          |
| Sulfur Dioxide                  | 42401    | SLAMS   | 1          |          | Н    | MID   | СОМ | 008   | ppb       | 060     | Pulsed<br>Fluorescent                       |          |
| Sulfur Dioxide Max 5-mir<br>Avg | n 42406  | SLAMS   | 1          |          | Н    | MID   | COM | 800   | ppb       | 060     | Pulsed<br>Fluorescent                       |          |
| Wind Direction - Resulta        | nt 61104 | SPM     | 1          |          | Н    | NBR   | MET | 014   | deg       | 020     | Vector<br>Summation                         |          |
| Wind Speed - Resultant          | 61103    | SPM     | 1          |          | Н    | NBR   | MET | 012   | mph       | 020     | Vector<br>Summation                         |          |

# Carthage 530 Juniper, Carthage, MO 64836

Latitude: 37.21000 AQCR: 139 SW Missouri

**Longitude:** -94.307778 **MSA:** 3710 Joplin, MO

Elevation (ft): 986

|                         |           | Monito | r_         |     |      |       |     | Unit- |        | Method | _                       | <b>Monitor-</b> |
|-------------------------|-----------|--------|------------|-----|------|-------|-----|-------|--------|--------|-------------------------|-----------------|
| Pollutant               | AQS Code  | Type   | <b>POC</b> | Col | Freq | Scale | Obj | Code  | Unit   | Code   | Method                  | Status          |
| Indoor Temperature      | 62107     | SPM    | 1          |     | Н    | N/A   | MET | 017   | deg C  | 013    | Electronic<br>Averaging |                 |
| PM10 - Total STP        | 81102     | SLAMS  | 3          |     | Н    | MID   | СОМ | 001   | ug/m^3 | 079    | R&P SA246B<br>TEOM      |                 |
| Wind Direction - Result | ant 61104 | SPM    | 1          |     | Н    | NBR   | MET | 014   | deg    | 020    | Vector<br>Summation     |                 |

Friday, May 20, 2011 Page 14 of 38

Corridon

AQS Site Number 29-179-0003

415 RR1, Ellington, MO 63638

Latitude: 37.36414 AQCR: 138 SE Missouri

**Longitude:** -91.12226 **MSA:** 0000 Not in a MSA

Elevation (ft): 980

|                            |          | Monitor | r_  |     |      |       |     | Unit- |           | Method- | _                                           | Monitor- |
|----------------------------|----------|---------|-----|-----|------|-------|-----|-------|-----------|---------|---------------------------------------------|----------|
| Pollutant                  | AQS Code | Type    | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code    | Method                                      | Status   |
| Ambient Temperature        | 68105    | SPM     | 1   |     | 1/6  | NBR   | COM | 017   | deg C     | 803     | Off-Site Avg<br>Temperature                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SLAMS   | 1   |     | 1/6  | NBR   | СОМ | 105   | ug/m^3-L0 | C 192   | Inductive<br>Coupled Plasma<br>Spectrometry | ı        |
| Sample Baro Pressure       | 68108    | SPM     | 1   |     | 1/6  | NBR   | СОМ | 059   | mm (Hg)   | 803     | Off-Site Avg<br>Pressure                    |          |

#### El Dorado Springs

AQS Site Number 29-039-0001

Highway 97 & Barnes Road, El Dorado Springs, MO 64744

Latitude: 37.6900 AQCR: 139 SW Missouri

Longitude: -94.035 MSA: 0000 Not in a MSA

Elevation (ft): 965

| Pollutant                 | AQS Code | Monitor<br>Type |   | Col | Freq | Scale | Obj | Unit-<br>Code | Unit      | Method-<br>Code | Method                          | Monitor-<br>Status |
|---------------------------|----------|-----------------|---|-----|------|-------|-----|---------------|-----------|-----------------|---------------------------------|--------------------|
| Acceptable PMCoarse<br>LC | - 86502  | SPM             | 1 |     | Н    | NBR   | СОМ | 105           | ug/m^3-LC | 790             | FDMS-<br>Gravimetric 1409<br>DF | **                 |
| Indoor Temperature        | 62107    | SPM             | 1 |     | Н    | N/A   | MET | 017           | deg C     | 013             | Electronic<br>Averaging         |                    |
| Outdoor Temperature       | 62101    | SLAMS           | 1 |     | Н    | REG   | MET | 017           | deg C     | 040             | Electronic<br>Averaging         |                    |
| Ozone                     | 44201    | SLAMS           | 1 |     | Н    | REG   | СОМ | 007           | ppm       | 047             | Ultraviolet<br>Photometric      |                    |
| PM10 - LC                 | 85101    | SPM             | 5 |     | Н    | NBR   | COM | 105           | ug/m^3-LC | 790             | FDMS-<br>Gravimetric 1409<br>DF | **                 |
| PM2.5 - LC                | 88101    | SLAMS           | 3 |     | Н    | REG   | COM | 105           | ug/m^3-LC | 181             | PM2.5 VSCC<br>FEM               |                    |

Friday, May 20, 2011 Page 15 of 38

| PM2.5 - LC                 | 88101 | SLAMS | 4 | Н | NBR | COM | 105 | ug/m^3-LC | 182 | FMDS-<br>Gravimetric 1405-<br>DF | ** |
|----------------------------|-------|-------|---|---|-----|-----|-----|-----------|-----|----------------------------------|----|
| PM2.5 Tot Atmospheric      | 88500 | NON-R | 1 | Н | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF | ** |
| PM2.5 Tot Atmospheric      | 88500 | NON-R | 3 | Н | REG | AQI | 105 | ug/m^3-LC | 761 | PM2.5 VSCC<br>FDMS               |    |
| PM2.5 Volatile Channel     | 88503 | NON-R | 3 | Н | REG | AQI | 105 | ug/m^3-LC | 761 | PM2.5 VSCC<br>FDMS               |    |
| PM2.5 Volatile Channel     | 88503 | NON-R | 1 | Н | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF | ** |
| Wind Direction - Resultant | 61104 | SPM   | 1 | Н | REG | MET | 014 | deg       | 020 | Vector<br>Summation              |    |
| Wind Speed - Resultant     | 61103 | SPM   | 1 | Н | REG | MET | 012 | mph       | 020 | Vector<br>Summation              |    |

County Rd. 342, Farrar, MO 63746

Latitude: 37.70264 AQCR: 138 SE Missouri

**Longitude:** -89.698640 **MSA:** 0000 Not in a MSA

Elevation (ft): 497

| <b>Pollutant</b> 2       | AQS Code  | Monitor<br>Type |     | Col      | Fraa | Scale | Obj | Unit-<br>Code | Unit  | Method<br>Code | -<br>Method                | Monitor-<br>Status |
|--------------------------|-----------|-----------------|-----|----------|------|-------|-----|---------------|-------|----------------|----------------------------|--------------------|
|                          | 1Q5 Coue  | -JP -           | 100 | Coi      | Treq | Scure | Ouj | Coue          | Onn   | Coue           | Петон                      | Status             |
| Indoor Temperature       | 62107     | SPM             | 1   |          | Н    | N/A   | MET | 017           | deg C | 013            | Electronic<br>Averaging    |                    |
| Ozone                    | 44201     | SLAMS           | 1   | <b>✓</b> | Н    | NBR   | СОМ | 007           | ppm   | 047            | Ultraviolet<br>Photometric |                    |
| Wind Direction - Resulta | ant 61104 | SPM             | 1   |          | Н    | NBR   | MET | 014           | deg   | 020            | Vector<br>Summation        |                    |
| Wind Speed - Resultant   | 61103     | SPM             | 1   |          | Н    | NBR   | MET | 012           | mph   | 020            | Vector<br>Summation        |                    |

AQS Site Number 29-157-0001

Friday, May 20, 2011 Page 16 of 38

1505 E. Peabody Road, Columbia, MO 65202

Latitude: 39.0786 AQCR: 137 Northern Missouri

**Longitude:** -92.31517 **MSA:** 1740 Columbia, MO

Elevation (ft): 710

|                    |          | Monito | r-  |          |      |       |     | Unit- |       | Method | 1-                         | Monitor- |
|--------------------|----------|--------|-----|----------|------|-------|-----|-------|-------|--------|----------------------------|----------|
| Pollutant          | AQS Code | Type   | POC | Col      | Freq | Scale | Obj | Code  | Unit  | Code   | Method                     | Status   |
| Indoor Temperature | 62107    | SPM    | 1   |          | Н    | N/A   | MET | 017   | deg C | 013    | Electronic<br>Averaging    |          |
| Ozone              | 44201    | SLAMS  | 1   | <b>✓</b> | Н    | NBR   | СОМ | 007   | ppm   | 047    | Ultraviolet<br>Photometric |          |

Hetcher AQS Site Number 29-179-0002

Forest Rd. 2236, Westfork, MO 64498

Latitude: 37.46889 AQCR: 138 SE Missouri

**Longitude:** -91.08847 **MSA:** 0000 Not in a MSA

Elevation (ft): 1256

|                            |          | Monitor | r_  |     |      |       |     | Unit- |           | Method- | _                                           | Monitor- |
|----------------------------|----------|---------|-----|-----|------|-------|-----|-------|-----------|---------|---------------------------------------------|----------|
| Pollutant                  | AQS Code | Type    | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code    | Method                                      | Status   |
| Ambient Temperature        | 68105    | SPM     | 1   |     | 1/6  | NBR   | COM | 017   | deg C     | 803     | Off-Site Avg<br>Temperature                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SLAMS   | 1   |     | 1/6  | NBR   | COM | 105   | ug/m^3-L0 | 192     | Inductive<br>Coupled Plasma<br>Spectrometry | ı        |
| Sample Baro Pressure       | 68108    | SPM     | 1   |     | 1/6  | NBR   | COM | 059   | mm (Hg)   | 803     | Off-Site Avg<br>Pressure                    |          |

Foley AQS Site Number 29-113-0003

#7 Wild Horse, Foley, MO 63347

Latitude: 39.0447 AQCR: 137 Northern Missouri

Longitude: -90.8647 MSA: 7040 St. Louis, MO-IL

Elevation (ft): 715

|                    |          | Monito | or- |     |      |       |     | Unit- |       | Method | <i>l</i> -              | Monitor- |
|--------------------|----------|--------|-----|-----|------|-------|-----|-------|-------|--------|-------------------------|----------|
| Pollutant          | AQS Code | Type   | POC | Col | Freq | Scale | Obj | Code  | Unit  | Code   | Method                  | Status   |
| Indoor Temperature | 62107    | SPM    | 1   |     | Н    | N/A   | MET | 017   | deg C | 013    | Electronic<br>Averaging |          |

Friday, May 20, 2011 Page 17 of 38

| Ozone                     | 44201   | SLAMS | 1 | <b>✓</b> | Н | NBR | COM | 007 | ppm | 047 | Ultraviolet<br>Photometric |
|---------------------------|---------|-------|---|----------|---|-----|-----|-----|-----|-----|----------------------------|
| Wind Direction - Resultan | t 61104 | SPM   | 1 |          | Н | NBR | MET | 014 | deg | 020 | Vector<br>Summation        |
| Wind Speed - Resultant    | 61103   | SPM   | 1 |          | Н | NBR | MET | 012 | mph | 020 | Vector<br>Summation        |

### Front Street

AQS Site Number 29-095-0018

1331 N. Jackson, Kansas City, MO 64120

Latitude: 39.13198 AQCR: 094 Metropolitan Kansas City

Longitude: -94.53128 MSA: 3760 Kansas City, MO-KS

Elevation (ft): 728

| Pollutant            | AQS Code | Monitor<br>Type |   | Col | Freq | Scale | Obj | Unit-<br>Code | Unit      | Method-<br>Code | Method                        | Monitor-<br>Status |
|----------------------|----------|-----------------|---|-----|------|-------|-----|---------------|-----------|-----------------|-------------------------------|--------------------|
| Ambient Temperature  | 68105    | SPM             | 1 |     | 1/6  | NBR   | COM | 017           | deg C     | 127             | Lo-Vol R&P<br>2025 Sequential | l                  |
| PM10 - LC            | 85101    | SPM             | 1 |     | 1/6  | NBR   | СОМ | 105           | ug/m^3-LC | 127             | Lo-Vol R&P<br>2025 Sequential | l                  |
| PM10 - Total STP     | 81102    | SLAMS           | 1 |     | 1/6  | NBR   | СОМ | 001           | ug/m^3    | 127             | Lo-Vol R&P<br>2025 Sequential | l                  |
| Sample Baro Pressure | 68108    | SPM             | 1 |     | 1/6  | NBR   | COM | 059           | mm (Hg)   | 127             | Lo-Vol R&P<br>2025 Sequential | l                  |

#### Glover

AQS Site Number 29-093-0033

Highway 49, approx. 0.4m South Highways 21/49/72 Intersection, Glover, 63620

Latitude: 37.48964 AQCR: 138 SE Missouri

**Longitude:** -90.69247 **MSA:** 0000 Not in a MSA

Elevation (ft): 881

|                            |          | Monitor | <b>-</b> _ |     |      |       |     | Unit- |           | Method | _                                           | Monitor- |
|----------------------------|----------|---------|------------|-----|------|-------|-----|-------|-----------|--------|---------------------------------------------|----------|
| Pollutant                  | AQS Code | Type    | POC        | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                                      | Status   |
| Ambient Temperature        | 68105    | SPM     | 1          |     | 1/6  | NBR   | COM | 017   | deg C     | 803    | Off-Site Avg<br>Temperature                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SLAMS   | 1          |     | 1/6  | NBR   | СОМ | 105   | ug/m^3-LC | 192    | Inductive<br>Coupled Plasma<br>Spectrometry | ı        |
| Sample Baro Pressure       | 68108    | SPM     | 1          |     | 1/6  | NBR   | COM | 059   | mm (Hg)   | 803    | Off-Site Avg<br>Pressure                    |          |

Friday, May 20, 2011 Page 18 of 38

1 Black Cat Dr., Herculaneum, MO, 63048

Latitude: 38.267222 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.37833 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 445

|                            |          | Monitor | r_  |     |      |       |     | Unit- |           | Method | <u>'-</u>                                   | Monitor- |
|----------------------------|----------|---------|-----|-----|------|-------|-----|-------|-----------|--------|---------------------------------------------|----------|
| Pollutant                  | AQS Code | Type    | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                                      | Status   |
| Ambient Temperature        | 68105    | SPM     | 1   |     | 1/3  | NBR   | COM | 017   | deg C     | 780    | Instrumental                                |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SLAMS   | 1   |     | 1/3  | NBR   | COM | 105   | ug/m^3-LC | 192    | Inductive<br>Coupled Plasma<br>Spectrometry | 1        |
| Sample Baro Pressure       | 68108    | SPM     | 1   |     | 1/3  | NBR   | COM | 059   | mm (Hg)   | 780    | Instrumental                                |          |

#### Herculaneum, Mott Street

AQS Site Number 29-099-0027

Mott Street, Herculaneum, MO, 63048

Latitude: 38.263394 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.379667 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 468

|                                |           | Monitor     | r_         |          |      |       |            | Unit- |           | Method- | •                                           | Monitor- |
|--------------------------------|-----------|-------------|------------|----------|------|-------|------------|-------|-----------|---------|---------------------------------------------|----------|
| Pollutant                      | AQS Code  | <i>Type</i> | <b>POC</b> | Col      | Freq | Scale | <i>Obj</i> | Code  | Unit      | Code    | Method                                      | Status   |
| Ambient Temperature            | 68105     | SPM         | 1          | <b>✓</b> | 1/1  | MID   | СОМ        | 017   | deg C     | 780     | Instrumental                                |          |
| Indoor Temperature             | 62107     | SPM         | 1          |          | Н    | N/A   | MET        | 017   | deg C     | 013     | Electronic<br>Averaging                     |          |
| Lead (TSP) - LC<br>FRM/FEM     | 14129     | SLAMS       | 1          | <b>V</b> | 1/1  | MID   | COM        | 105   | ug/m^3-L0 | 192     | Inductive<br>Coupled Plasma<br>Spectrometry | ı        |
| Sample Baro Pressure           | 68108     | SPM         | 1          | <b>✓</b> | 1/1  | MID   | СОМ        | 059   | mm (Hg)   | 780     | Instrumental                                |          |
| Sulfur Dioxide                 | 42401     | SLAMS       | 1          | <b>✓</b> | Н    | MID   | СОМ        | 008   | ppb       | 060     | Pulsed<br>Fluorescent                       |          |
| Sulfur Dioxide Max 5-mi<br>Avg | n 42406   | SPM         | 1          | <b>✓</b> | Н    | MID   | COM        | 800   | ppb       | 060     | Pulsed<br>Fluorescent                       |          |
| Wind Direction - Resulta       | ant 61104 | SPM         | 1          |          | Н    | MID   | MET        | 014   | deg       | 020     | Vector<br>Summation                         |          |

Friday, May 20, 2011 Page 19 of 38

#### Herculaneum, Sherman

AQS Site Number 29-099-0013

460 Sherman St., Herculaneum, MO, 63048

Latitude: 38.27171 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.376520 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 462

|                            |          | Monitor | r_  |     |      |       |     | Unit- |           | Method | <u>'</u> _                                  | Monitor- |
|----------------------------|----------|---------|-----|-----|------|-------|-----|-------|-----------|--------|---------------------------------------------|----------|
| Pollutant                  | AQS Code | Type    | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                                      | Status   |
| Ambient Temperature        | 68105    | SPM     | 1   |     | 1/3  | NBR   | COM | 017   | deg C     | 780    | Instrumental                                |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SLAMS   | 1   |     | 1/3  | NBR   | СОМ | 105   | ug/m^3-LC | 192    | Inductive<br>Coupled Plasma<br>Spectrometry | ı        |
| Sample Baro Pressure       | 68108    | SPM     | 1   |     | 1/3  | NBR   | COM | 059   | mm (Hg)   | 780    | Instrumental                                |          |

iberty AQS Site Number 29-047-0005

Highway 33 & County Home Rd., Liberty, MO 64068

Latitude: 39.303056 AQCR: 094 Metropolitan Kansas City

Longitude: -94.376389 MSA: 3760 Kansas City, MO-KS

Elevation (ft): 930

|                              |           | Monitor | <b>-</b> |          |      |       |     | Unit- |           | Method- |                                 | Monitor- |
|------------------------------|-----------|---------|----------|----------|------|-------|-----|-------|-----------|---------|---------------------------------|----------|
| Pollutant                    | AQS Code  | Type    | POC      | Col      | Freq | Scale | Obj | Code  | Unit      | Code    | Method                          | Status   |
| Acceptable PM2.5<br>AQI/SPEC | 88502     | SPEC    | 5        |          | 1/3  | NBR   | RES | 105   | ug/m^3-L0 | 810     | METONE SASS                     |          |
| Acceptable PMCoarse<br>LC    | e - 86502 | SPM     | 1        |          | Н    | NBR   | СОМ | 105   | ug/m^3-L0 | 790     | FDMS-<br>Gravimetric 1405<br>DF | **       |
| Indoor Temperature           | 62107     | SPM     | 1        |          | Н    | N/A   | MET | 017   | deg C     | 013     | Electronic<br>Averaging         |          |
| Outdoor Temperature          | 62101     | SPM     | 1        |          | Н    | URB   | MET | 017   | deg C     | 040     | Electronic<br>Averaging         |          |
| Ozone                        | 44201     | SLAMS   | 1        | <b>✓</b> | Н    | NBR   | COM | 007   | ppm       | 047     | Ultraviolet<br>Photometric      |          |
| PM10 - LC                    | 85101     | SPM     | 5        |          | Н    | NBR   | СОМ | 105   | ug/m^3-L0 | 790     | FDMS-<br>Gravimetric 1405<br>DF | **       |

Friday, May 20, 2011 Page 20 of 38

| PM2.5 - LC                 | 88101 | SLAMS | 4 | Н | NBR | COM | 105 | ug/m^3-LC | 182 | FMDS-<br>Gravimetric 1405-<br>DF | ** |
|----------------------------|-------|-------|---|---|-----|-----|-----|-----------|-----|----------------------------------|----|
| PM2.5 - LC                 | 88101 | SLAMS | 3 | Н | NBR | COM | 105 | ug/m^3-LC | 181 | PM2.5 VSCC<br>FEM                |    |
| PM2.5 Tot Atmospheric      | 88500 | SPM   | 1 | Н | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF | ** |
| PM2.5 Tot Atmospheric      | 88500 | NON-R | 3 | Н | NBR | AQI | 105 | ug/m^3-LC | 761 | PM2.5 VSCC<br>FDMS               |    |
| PM2.5 Volatile Channel     | 88503 | NON-R | 3 | Н | NBR | AQI | 105 | ug/m^3-LC | 761 | PM2.5 VSCC<br>FDMS               |    |
| PM2.5 Volatile Channel     | 88503 | NON-R | 1 | Н | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF | ** |
| Solar Radiation            | 63301 | SPM   | 1 | Н | URB | MET | 079 | W/m^2     | 011 | Instrumental                     |    |
| Wind Direction - Resultant | 61104 | SPM   | 1 | Н | URB | MET | 014 | deg       | 020 | Vector<br>Summation              |    |
| Wind Speed - Resultant     | 61103 | SPM   | 1 | Н | URB | MET | 012 | mph       | 020 | Vector<br>Summation              |    |

20057 State Park Office Rd., Stoutville, MO 65283

Latitude: 39.46528 AQCR: 137 Northern Missouri

Mark Twain State Park (PM10 Monitor: Proposed)

**Longitude:** -91.78972 **MSA:** 0000 Not in a MSA

Elevation (ft): 714

| Pollutant            | AQS Code | Monitor<br>Type |   | Col | Freq | Scale | Obj | Unit-<br>Code | Unit    | Method<br>Code | -<br>Method                   | Monitor-<br>Status |
|----------------------|----------|-----------------|---|-----|------|-------|-----|---------------|---------|----------------|-------------------------------|--------------------|
| Ambient Temperature  | 68105    | SPM             | 1 |     | 1/6  | NBR   | COM | 017           | deg C   | 127            | Lo-Vol R&P<br>2025 Sequential |                    |
| Indoor Temperature   | 62107    | SPM             | 1 |     | Н    | N/A   | MET | 017           | deg C   | 013            | Electronic<br>Averaging       |                    |
| Ozone                | 44201    | SLAMS           | 1 |     | Н    | REG   | COM | 007           | ppm     | 047            | Ultraviolet<br>Photometric    |                    |
| PM10 - Total STP     | 81102    | SLAMS           | 1 |     | Н    | REG   | СОМ | 001           | ug/m^3  | 079            | R&P SA246B<br>TEOM            | NON-<br>R          |
| Sample Baro Pressure | e 68108  | SPM             | 1 |     | 1/6  | NBR   | СОМ | 059           | mm (Hg) | 127            | Lo-Vol R&P<br>2025 Sequential |                    |

AQS Site Number 29-137-0001

Friday, May 20, 2011 Page 21 of 38

| Wind Direction - Resultant 61104 | SPM 1               | □ н         | REG      | MET | 014           | deg        | 020             | Vector<br>Summation                         |                    |
|----------------------------------|---------------------|-------------|----------|-----|---------------|------------|-----------------|---------------------------------------------|--------------------|
| Wind Speed - Resultant 61103     | SPM 1               | □ н         | REG      | MET | 012           | mph        | 020             | Vector<br>Summation                         |                    |
| New Bloomfield                   |                     |             |          |     | AQ            | QS Site Ni | umber 2         | 29-027-0002                                 |                    |
| 2625 Meadow Lake View,           | New Bloomfi         | eld, MO, 65 | 5063     |     |               |            |                 |                                             |                    |
| <b>Latitude:</b> 38.70608        | <i>AQCR</i> : 137   | Northern M  | lissouri |     |               |            |                 |                                             |                    |
| <b>Longitude:</b> -92.09308      | <i>MSA</i> : 0000   | Not in a MS | SA       |     |               |            |                 |                                             |                    |
| Elevation (ft): 860              |                     |             |          |     |               |            |                 |                                             |                    |
| Pollutant AQS Code               | Monitor-<br>Type PO | C Col Fred  | g Scale  | Obj | Unit-<br>Code | Unit       | Method-<br>Code | -<br>Method                                 | Monitor-<br>Status |
| Indoor Temperature 62107         | SPM 1               | □ н         | N/A      | MET | 017           | deg C      | 013             | Electronic<br>Averaging                     |                    |
| Ozone 44201                      | SLAMS 1             | <b>У</b> Н  | NBR      | COM | 007           | ppm        | 047             | Ultraviolet<br>Photometric                  |                    |
| Wind Direction - Resultant 61104 | SPM 1               | □ н         | NBR      | MET | 014           | deg        | 020             | Vector<br>Summation                         |                    |
| Wind Speed - Resultant 61103     | SPM 1               | □ н         | NBR      | MET | 012           | mph        | 020             | Vector<br>Summation                         |                    |
| Oates                            |                     |             |          |     | AQ            | S Site Ni  | umber 2         | 29-179-0034                                 |                    |
| 13155 Highway KK, Boss,          | MO 65440            |             |          |     |               |            |                 |                                             |                    |
| <b>Latitude:</b> 37.56485        | <i>AQCR</i> : 138   | SE Missou   | ri       |     |               |            |                 |                                             |                    |
| <b>Longitude:</b> -91.11423      | <i>MSA</i> : 0000   | Not in a MS | SA       |     |               |            |                 |                                             |                    |
| Elevation (ft): 1134             |                     |             |          |     |               |            |                 |                                             |                    |
| Pollutant AQS Code               | Monitor-<br>Type PO | C Col Fred  | g Scale  | Obj | Unit-<br>Code | Unit       | Method-<br>Code | -<br><i>Method</i>                          | Monitor-<br>Status |
| Ambient Temperature 68105        | SPM 1               | <u> </u>    |          | COM | 017           | deg C      | 803             | Off-Site Avg<br>Temperature                 |                    |
| Lead (TSP) - LC 14129<br>FRM/FEM | SLAMS 1             | <u> </u>    | 8 NBR    | COM | 105           | ug/m^3-LC  | 192             | Inductive<br>Coupled Plasma<br>Spectrometry |                    |
| Sample Baro Pressure 68108       | SPM 1               | <u> </u>    | 8 NBR    | COM | 059           | mm (Hg)    | 803             | Off-Site Avg<br>Pressure                    |                    |

Friday, May 20, 2011 Page 22 of 38 2165 Highway V, St. Charles, MO 63301

Latitude: 38.8994 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.44917 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 441

|                    |          | Monito | r_  |          |      |       |     | Unit- |       | Method | <i>l-</i>                  | Monitor- |
|--------------------|----------|--------|-----|----------|------|-------|-----|-------|-------|--------|----------------------------|----------|
| Pollutant          | AQS Code | Type   | POC | Col      | Freq | Scale | Obj | Code  | Unit  | Code   | Method                     | Status   |
| Indoor Temperature | 62107    | SPM    | 1   |          | Н    | N/A   | MET | 017   | deg C | 013    | Electronic<br>Averaging    |          |
| Ozone              | 44201    | SLAMS  | 1   | <b>✓</b> | Н    | URB   | СОМ | 007   | ppm   | 047    | Ultraviolet<br>Photometric |          |

Park Hills AQS Site Number 29-187-0006

105 Industrial Dr., Park Hills, MO 63601

Latitude: 37.86485 AQCR: 138 SE Missouri

Longitude: -90.50804 MSA: 0000 Not in a MSA

Elevation (ft): 743

|                            |          | Monito | r-  |     |      |       |     | Unit- |           | Method | _                                           | Monitor- |
|----------------------------|----------|--------|-----|-----|------|-------|-----|-------|-----------|--------|---------------------------------------------|----------|
| Pollutant                  | AQS Code | Type   | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                                      | Status   |
| Ambient Temperature        | 68105    | SPM    | 1   |     | 1/6  | NBR   | COM | 017   | deg C     | 803    | Off-Site Avg<br>Temperature                 |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SPM    | 1   |     | 1/6  | NBR   | СОМ | 105   | ug/m^3-LC | 192    | Inductive<br>Coupled Plasma<br>Spectrometry |          |
| Sample Baro Pressure       | 68108    | SPM    | 1   |     | 1/6  | NBR   | COM | 059   | mm (Hg)   | 803    | Off-Site Avg<br>Pressure                    |          |

Pevely AQS Site Number 29-099-0009

500 Dow Industrial Dr., Pevely, MO 63070

Latitude: 38.2861 AQCR: 070 Metropolitan St. Louis

Longitude: -90.38094 MSA: 7040 St. Louis, MO-IL

Elevation (ft): 409

|                     |          | Monit | or-        |     |      |       | Unit- |      | Method | 1-   | Monitor-     |        |
|---------------------|----------|-------|------------|-----|------|-------|-------|------|--------|------|--------------|--------|
| Pollutant           | AQS Code | Type  | <b>POC</b> | Col | Freq | Scale | Obj   | Code | Unit   | Code | Method       | Status |
| Ambient Temperature | 68105    | SPM   | 1          |     | 1/6  | NBR   | COM   | 017  | dea C  | 780  | Instrumental |        |

Friday, May 20, 2011 Page 23 of 38

| Lead (TSP) - LC<br>FRM/FEM | 14129 | SLAMS | 1 | 1/6 | NBR | COM | 105 | ug/m^3-LC | 192 | Inductive<br>Coupled Plasma<br>Spectrometry |
|----------------------------|-------|-------|---|-----|-----|-----|-----|-----------|-----|---------------------------------------------|
| Sample Baro Pressure       | 68108 | SPM   | 1 | 1/6 | NBR | COM | 059 | mm (Hg)   | 780 | Instrumental                                |

Pevely North AQS Site Number 29-099-0026

Tiarre at the Abbey, Station 150N, Christine Drive, Pevely, MO 63070

Latitude: 38.296 AQCR: 070 Metropolitan St. Louis

Longitude: -90.393 MSA: 7040 St. Louis, MO-IL

Elevation (ft): 582

|                            |          | Monitor | r_  |     |      |       |     | Unit- |           | Method | <u>'</u> _                                  | Monitor- |
|----------------------------|----------|---------|-----|-----|------|-------|-----|-------|-----------|--------|---------------------------------------------|----------|
| Pollutant                  | AQS Code | Type    | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code   | Method                                      | Status   |
| Ambient Temperature        | 68105    | SPM     | 1   |     | 1/6  | NBR   | COM | 017   | deg C     | 780    | Instrumental                                |          |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SLAMS   | 1   |     | 1/6  | NBR   | COM | 105   | ug/m^3-LC | 192    | Inductive<br>Coupled Plasma<br>Spectrometry | ı        |
| Sample Baro Pressure       | 68108    | SPM     | 1   |     | 1/6  | NBR   | COM | 059   | mm (Hg)   | 780    | Instrumental                                |          |

#### Richards Gebaur-South

AQS Site Number 29-037-0003

1802 E. 203rd Street, Belton, MO, 64012

Latitude: 38.75976 AQCR: 094 Metropolitan Kansas City

Longitude: -94.57997 MSA: 3760 Kansas City, MO-KS

Elevation (ft): 1031

|                           |          | Monitor |     |          |      |       |     | Unit- |           | Method- |                                 | Monitor- |
|---------------------------|----------|---------|-----|----------|------|-------|-----|-------|-----------|---------|---------------------------------|----------|
| Pollutant                 | AQS Code | Type    | POC | Col      | Freq | Scale | Obj | Code  | Unit      | Code    | Method                          | Status   |
| Acceptable PMCoarse<br>LC | - 86502  | SPM     | 1   |          | Н    | NBR   | COM | 105   | ug/m^3-L0 | C 790   | FDMS-<br>Gravimetric 1408<br>DF | **       |
| Indoor Temperature        | 62107    | SPM     | 1   |          | Н    | N/A   | MET | 017   | deg C     | 013     | Electronic<br>Averaging         |          |
| Ozone                     | 44201    | SLAMS   | 1   | <b>✓</b> | Н    | NBR   | COM | 007   | ppm       | 047     | Ultraviolet<br>Photometric      |          |
| PM10 - LC                 | 85101    | SPM     | 5   |          | Н    | NBR   | СОМ | 105   | ug/m^3-L0 | 790     | FDMS-<br>Gravimetric 1405<br>DF | **       |
| PM2.5 - LC                | 88101    | SLAMS   | 3   |          | Н    | NBR   | COM | 105   | ug/m^3-L0 | C 181   | PM2.5 VSCC<br>FEM               |          |

Friday, May 20, 2011 Page 24 of 38

| PM2.5 Tot Atmospheric 885                                                                                                                                          | 000 NON-R                                                                                                               | 3                           |                               | Н                | NBR                 | AQI               | 105                      | ug/m^3-LC            | 761             | PM2.5 VSCC<br>FDMS                                                                        |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|------------------|---------------------|-------------------|--------------------------|----------------------|-----------------|-------------------------------------------------------------------------------------------|--------------------|
| PM2.5 Tot Atmospheric 885                                                                                                                                          | 00 SPM                                                                                                                  | 1                           |                               | Н                | NBR                 | СОМ               | 105                      | ug/m^3-LC            | 790             | FDMS-<br>Gravimetric 1405-<br>DF                                                          | **                 |
| PM2.5 Volatile Channel 885                                                                                                                                         | 03 NON-R                                                                                                                | 3                           |                               | Н                | NBR                 | AQI               | 105                      | ug/m^3-LC            | 761             | PM2.5 VSCC<br>FDMS                                                                        |                    |
| PM2.5 Volatile Channel 885                                                                                                                                         | 03 NON-R                                                                                                                | 1                           |                               | Н                | NBR                 | СОМ               | 105                      | ug/m^3-LC            | 790             | FDMS-<br>Gravimetric 1405<br>DF                                                           | **                 |
| Wind Direction - Resultant 611                                                                                                                                     | 04 SPM                                                                                                                  | 1                           |                               | Н                | URB                 | MET               | 014                      | deg                  | 020             | Vector<br>Summation                                                                       |                    |
| Wind Speed - Resultant 611                                                                                                                                         | 03 SPM                                                                                                                  | 1                           |                               | Н                | URB                 | MET               | 012                      | mph                  | 020             | Vector<br>Summation                                                                       |                    |
| Rocky Creek                                                                                                                                                        |                                                                                                                         |                             |                               |                  |                     |                   | AQ                       | S Site Nu            | ımber 2         | 29-047-0006                                                                               |                    |
| 13131 Highway 169 NI                                                                                                                                               | E., Smithvill                                                                                                           | e, MO                       | 64089                         |                  |                     |                   |                          |                      |                 |                                                                                           |                    |
| <b>Latitude:</b> 39.33188                                                                                                                                          | AQCR.                                                                                                                   | 094                         | Metrop                        | oolitan K        | Kansas C            | ty                |                          |                      |                 |                                                                                           |                    |
| <b>Longitude:</b> -94.5806                                                                                                                                         | MSA:                                                                                                                    | 3760                        | Kansa                         | s City, N        | MO-KS               |                   |                          |                      |                 |                                                                                           |                    |
| Elevation (ft): 993                                                                                                                                                |                                                                                                                         |                             |                               |                  |                     |                   |                          |                      |                 |                                                                                           |                    |
| Lievation (ji).                                                                                                                                                    |                                                                                                                         |                             |                               |                  |                     |                   |                          |                      |                 |                                                                                           |                    |
| Pollutant AQS (                                                                                                                                                    | Monito<br>Code Type                                                                                                     | or-<br>POC                  | Col 1                         | Freq             | Scale               | Obj               | Unit-<br>Code            |                      | Method-<br>Code |                                                                                           | Monitor-<br>Status |
| Lievation (11).                                                                                                                                                    | Code Type                                                                                                               |                             | Col I                         | <b>Freq</b><br>H | <i>Scale</i><br>N/A | <i>Obj</i><br>MET |                          |                      |                 |                                                                                           |                    |
| Pollutant AQS (                                                                                                                                                    | Code Type  07 SPM                                                                                                       | POC                         |                               |                  |                     |                   | Code                     | Unit                 | Code            | Method  Electronic                                                                        |                    |
| Pollutant AQS (Indoor Temperature 621                                                                                                                              | Code Type  O7 SPM  O1 SLAMS                                                                                             | <b>POC</b>                  |                               | Н                | N/A                 | MET               | <b>Code</b> 017          | <i>Unit</i> deg C    | <b>Code</b> 013 | Method  Electronic Averaging  Ultraviolet                                                 |                    |
| Pollutant AQS (Indoor Temperature 621 Ozone 442                                                                                                                    | Code Type  07 SPM  01 SLAMS  04 SPM                                                                                     | 1<br>1                      |                               | H<br>H           | N/A<br>NBR          | MET               | 017<br>007               | Unit  deg C  ppm     | 013<br>047      | Method  Electronic Averaging  Ultraviolet Photometric  Vector                             |                    |
| Pollutant AQS (Indoor Temperature 621  Ozone 442  Wind Direction - Resultant 611                                                                                   | Code Type  07 SPM  01 SLAMS  04 SPM                                                                                     | 1 1 1                       |                               | H<br>H           | N/A<br>NBR<br>NBR   | MET  COM  MET     | 017<br>007<br>014<br>012 | deg C  ppm  deg  mph | 013 047 020 020 | Method  Electronic Averaging  Ultraviolet Photometric  Vector Summation  Vector Summation |                    |
| Pollutant AQS (Indoor Temperature 621)  Ozone 442  Wind Direction - Resultant 611  Wind Speed - Resultant 611                                                      | Code         Type           07         SPM           01         SLAMS           04         SPM           03         SPM | 1 1 1 1                     |                               | H<br>H           | N/A<br>NBR<br>NBR   | MET  COM  MET     | 017<br>007<br>014<br>012 | deg C  ppm  deg  mph | 013 047 020 020 | Method  Electronic Averaging  Ultraviolet Photometric  Vector Summation                   |                    |
| Pollutant AQS (Indoor Temperature 621  Ozone 442  Wind Direction - Resultant 611  Wind Speed - Resultant 611                                                       | Code         Type           07         SPM           01         SLAMS           04         SPM           03         SPM | 1 1 1 1 64485               | <ul><li>✓</li><li>✓</li></ul> | H<br>H           | N/A<br>NBR<br>NBR   | MET  COM  MET     | 017<br>007<br>014<br>012 | deg C  ppm  deg  mph | 013 047 020 020 | Method  Electronic Averaging  Ultraviolet Photometric  Vector Summation  Vector Summation |                    |
| Pollutant AQS (Indoor Temperature 621)  Ozone 442  Wind Direction - Resultant 611  Wind Speed - Resultant 611  Varyannah  11796 Highway 71, San                    | Code Type  O7 SPM  O1 SLAMS  O4 SPM  O3 SPM  vannah, MO                                                                 | 1 1 1 1 64485               | □ ✓ □ □ Northe                | н<br>н<br>н      | N/A  NBR  NBR  NBR  | MET  COM  MET     | 017<br>007<br>014<br>012 | deg C  ppm  deg  mph | 013 047 020 020 | Method  Electronic Averaging  Ultraviolet Photometric  Vector Summation  Vector Summation |                    |
| Pollutant AQS (Indoor Temperature 621)  Ozone 442  Wind Direction - Resultant 611  Wind Speed - Resultant 611  Varyannah  11796 Highway 71, San  Latitude: 39.9544 | Code Type  07 SPM  01 SLAMS  04 SPM  03 SPM  vannah, MO  AQCR                                                           | POC  1  1  1  1  64485  137 | □ ✓ □ □ Northe                | H<br>H<br>H      | N/A  NBR  NBR  NBR  | MET  COM  MET     | 017<br>007<br>014<br>012 | deg C  ppm  deg  mph | 013 047 020 020 | Method  Electronic Averaging  Ultraviolet Photometric  Vector Summation  Vector Summation |                    |

Friday, May 20, 2011 Page 25 of 38

|   | Indoor Temperature         | 62107      | SPM       | 1   |          | Н | N/A | MET | 017 | deg C      | 013    | Electronic<br>Averaging    |
|---|----------------------------|------------|-----------|-----|----------|---|-----|-----|-----|------------|--------|----------------------------|
|   | Ozone                      | 44201      | SLAMS     | 1   | <b>✓</b> | Н | NBR | СОМ | 007 | ppm        | 047    | Ultraviolet<br>Photometric |
|   | Wind Direction - Resultant | 61104      | SPM       | 1   |          | Н | NBR | MET | 014 | deg        | 020    | Vector<br>Summation        |
|   | Wind Speed - Resultant     | 61103      | SPM       | 1   |          | Н | NBR | MET | 012 | mph        | 020    | Vector<br>Summation        |
| 1 | St. Joe State Pai          | rk         |           |     |          |   |     |     | AQ  | S Site Num | iber 2 | 9-187-0007                 |
|   | 2800 Pimville Rd., I       | Park Hills | s, MO 630 | 601 |          |   |     |     |     |            |        |                            |

*Latitude:* 37.81413 *AQCR*: 138 SE Missouri

**Longitude:** -90.50738 **MSA:** 0000 Not in a MSA

Elevation (ft): 937

| Pollutant                  | AQS Code | Monito<br>Type |   | Col | Freq | Scale | Obj | Unit-<br>Code | Unit      | Method-<br>Code | -<br>Method                                 | Monitor-<br>Status |
|----------------------------|----------|----------------|---|-----|------|-------|-----|---------------|-----------|-----------------|---------------------------------------------|--------------------|
| Ambient Temperature        | 68105    | SPM            | 1 |     | 1/6  | NBR   | COM | 017           | deg C     | 803             | Off-Site Avg<br>Temperature                 |                    |
| Lead (TSP) - LC<br>FRM/FEM | 14129    | SPM            | 1 |     | 1/6  | NBR   | COM | 105           | ug/m^3-LC | 192             | Inductive<br>Coupled Plasma<br>Spectrometry | ı                  |
| Sample Baro Pressure       | e 68108  | SPM            | 1 |     | 1/6  | NBR   | СОМ | 059           | mm (Hg)   | 803             | Off-Site Avg<br>Pressure                    |                    |

## St. Joseph Pump Station

AQS Site Number 29-021-0005

S. Highway 759, St. Joseph, MO 64501

Latitude: 39.741667 AQCR: 094 Metropolitan Kansas City

**Longitude:** -94.858333 **MSA:** 7000 St. Joseph, MO

Elevation (ft): 845

|                           |          | Monito | r-  |          |      |       |     | Unit- |           | Method- | _                              | Monitor- |
|---------------------------|----------|--------|-----|----------|------|-------|-----|-------|-----------|---------|--------------------------------|----------|
| Pollutant                 | AQS Code | Type   | POC | Col      | Freq | Scale | Obj | Code  | Unit      | Code    | Method                         | Status   |
| Acceptable PMCoarse<br>LC | - 86502  | SLAMS  | 1   |          | Н    | NBR   | СОМ | 105   | ug/m^3-LC | 790     | FDMS-<br>Gravimetric 140<br>DF | 5-       |
| Ambient Temperature       | 68105    | SPM    | 3   | <b>✓</b> | 1/3  | NBR   | COM | 017   | deg C     | 127     | Lo-Vol R&P<br>2025 Sequential  |          |
| Indoor Temperature        | 62107    | SPM    | 1   |          | Н    | N/A   | MET | 017   | deg C     | 013     | Electronic<br>Averaging        |          |

Friday, May 20, 2011 Page 26 of 38

| Outdoor Temperature    | 62101 | SPM   | 1 |          | Н   | NBR | MET | 017 | deg C     | 040 | Electronic<br>Averaging          |
|------------------------|-------|-------|---|----------|-----|-----|-----|-----|-----------|-----|----------------------------------|
| PM10 - LC              | 85101 | SPM   | 5 |          | Н   | NBR | СОМ | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| PM10 - LC              | 85101 | SPM   | 1 | <b>✓</b> | 1/3 | NBR | COM | 105 | ug/m^3-LC | 127 | Lo-Vol R&P<br>2025 Sequential    |
| PM10 - Total STP       | 81102 | SLAMS | 1 | <b>✓</b> | 1/3 | NBR | СОМ | 001 | ug/m^3    | 127 | Lo-Vol R&P<br>2025 Sequential    |
| PM2.5 - LC             | 88101 | SLAMS | 4 |          | Н   | NBR | СОМ | 105 | ug/m^3-LC | 182 | FMDS-<br>Gravimetric 1405-<br>DF |
| PM2.5 Tot Atmospheric  | 88500 | NON-R | 1 |          | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| PM2.5 Volatile Channel | 88503 | NON-R | 1 |          | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| Sample Baro Pressure   | 68108 | SPM   | 3 | <b>✓</b> | 1/3 | NBR | СОМ | 059 | mm (Hg)   | 127 | Lo-Vol R&P<br>2025 Sequential    |

*Trimble*7536 SW. O Highway, Trimble, MO 64492

Latitude: 39.5306 AQCR: 137 Northern Missouri

Longitude: -94.556 MSA: 3760 Kansas City, MO-KS

Elevation (ft): 955

|                          |           | Monitor | r-  |          |      |       |     | Unit- |       | Method | <b>'-</b>                  | Monitor- |
|--------------------------|-----------|---------|-----|----------|------|-------|-----|-------|-------|--------|----------------------------|----------|
| <b>Pollutant</b>         | AQS Code  | Type    | POC | Col      | Freq | Scale | Obj | Code  | Unit  | Code   | Method                     | Status   |
| Indoor Temperature       | 62107     | SPM     | 1   |          | Н    | N/A   | MET | 017   | deg C | 013    | Electronic<br>Averaging    |          |
| Ozone                    | 44201     | SLAMS   | 1   | <b>✓</b> | Н    | NBR   | СОМ | 007   | ppm   | 047    | Ultraviolet<br>Photometric |          |
| Wind Direction - Resulta | ant 61104 | SPM     | 1   |          | Н    | NBR   | MET | 014   | deg   | 020    | Vector<br>Summation        |          |
| Wind Speed - Resultant   | 61103     | SPM     | 1   |          | Н    | NBR   | MET | 012   | mph   | 020    | Vector<br>Summation        |          |

AQS Site Number 29-049-0001

Friday, May 20, 2011 Page 27 of 38

#### Troost

724 Troost (Rear), Kansas City, MO 64106

Latitude: 39.104722 AQCR: 094 Metropolitan Kansas City

Longitude: -94.570556 MSA: 3760 Kansas City, MO-KS

Elevation (ft): 971

|                              |         | Monitor | -   |          |      |       |     | Unit- |           | Method- | _                             | Monitor- |
|------------------------------|---------|---------|-----|----------|------|-------|-----|-------|-----------|---------|-------------------------------|----------|
| Pollutant A                  | QS Code | Type    | POC | Col      | Freq | Scale | Obj | Code  | Unit      | Code    | Method                        | Status   |
| Acceptable PM2.5<br>AQI/SPEC | 88502   | NON-R   | 3   |          | Н    | NBR   | AQI | 105   | ug/m^3-L0 | C 761   | PM2.5 VSCC<br>FDMS            |          |
| Ambient Temperature          | 68105   | SPM     | 3   |          | 1/6  | NBR   | СОМ | 017   | deg C     | 127     | Lo-Vol R&P<br>2025 Sequential |          |
| Ambient Temperature          | 68105   | SPM     | 1   |          | 1/1  | NBR   | MET | 017   | deg C     | 118     | Lo-Vol R&P<br>2025 Sequential |          |
| Indoor Temperature           | 62107   | SPM     | 1   |          | н    | N/A   | MET | 017   | deg C     | 013     | Electronic<br>Averaging       |          |
| Nitric Oxide (NO)            | 42601   | SPM     | 1   |          | Н    | URB   | СОМ | 008   | ppb       | 074     | Chemiluminesce<br>nce         |          |
| Nitrogen Dioxide (NO2)       | 42602   | SLAMS   | 1   |          | Н    | URB   | СОМ | 800   | ppb       | 074     | Chemiluminesce<br>nce         |          |
| Outdoor Temperature          | 62101   | SPM     | 1   |          | Н    | NBR   | MET | 017   | deg C     | 040     | Electronic<br>Averaging       |          |
| Oxides of Nitrogen (NOx)     | 42603   | SPM     | 1   |          | Н    | URB   | СОМ | 800   | ppb       | 074     | Chemiluminesce<br>nce         |          |
| PM10 - LC                    | 85101   | SPM     | 1   |          | 1/6  | NBR   | СОМ | 105   | ug/m^3-L0 | C 127   | Lo-Vol R&P<br>2025 Sequential |          |
| PM10 - Total STP             | 81102   | SLAMS   | 1   |          | 1/6  | NBR   | СОМ | 001   | ug/m^3    | 127     | Lo-Vol R&P<br>2025 Sequential |          |
| PM2.5 - LC                   | 88101   | SLAMS   | 3   | <b>✓</b> | Н    | NBR   | СОМ | 105   | ug/m^3-L0 | C 181   | PM2.5 VSCC<br>FEM             |          |
| PM2.5 Tot Atmospheric        | 88500   | NON-R   | 3   |          | Н    | NBR   | AQI | 105   | ug/m^3-L0 | C 761   | PM2.5 VSCC<br>FDMS            |          |
| PM2.5 Volatile Channel       | 88503   | NON-R   | 3   |          | Н    | NBR   | AQI | 105   | ug/m^3-L0 | C 761   | PM2.5 VSCC<br>FDMS            |          |
| Sample Baro Pressure         | 68108   | SPM     | 3   |          | 1/6  | NBR   | СОМ | 059   | mm (Hg)   | 127     | Lo-Vol R&P<br>2025 Sequential |          |

Friday, May 20, 2011 Page 28 of 38

| Sample Baro Pressure            | 68108          | SPM       | 1       |       | 1/1      | NBR        | СОМ | 059        | mm (Hg)              | 118   | Lo-Vol R&P<br>2025 Sequential               |          |
|---------------------------------|----------------|-----------|---------|-------|----------|------------|-----|------------|----------------------|-------|---------------------------------------------|----------|
| Sulfur Dioxide                  | 42401          | SLAMS     | 1       |       | Н        | MID        | СОМ | 008        | ppb                  | 060   | Pulsed<br>Fluorescent                       |          |
| Sulfur Dioxide Max 5-min<br>Avg | 42406          | SLAMS     | 1       |       | н        | MID        | СОМ | 008        | ppb                  | 060   | Pulsed<br>Fluorescent                       |          |
| Ursuline North                  | ļ.             |           |         |       |          |            |     | ΑQ         | QS Site Ni           | umber | 29-099-0025                                 |          |
| 210 Glennon Heigh               | hts Rd., C     | Crystal C | ity, Mo | ) 630 | )19      |            |     |            |                      |       |                                             |          |
| Latitude: 38.24                 | 13             | AQCR:     | 070     | Metr  | opolitan | St. Louis  |     |            |                      |       |                                             |          |
| Longitude: -90.3                | 7372           | MSA:      | 7040    | St. L | ouis, MC | )-IL       |     |            |                      |       |                                             |          |
| Elevation (ft): 578             |                |           |         |       |          |            |     |            |                      |       |                                             |          |
|                                 |                | Monitor   | _       |       |          |            |     | Unit-      |                      | Metho | d-                                          | Monitor- |
| <b>Pollutant</b> A              | <b>QS</b> Code | Type      | POC     | Col   | Freq     | Scale      | Obj | Code       | Unit                 | Code  | Method                                      | Status   |
| Ambient Temperature             | 68105          | SPM       | 1       |       | 1/6      | NBR        | COM | 017        | deg C                | 780   | Instrumental                                |          |
|                                 |                |           |         |       |          |            |     |            |                      |       |                                             |          |
| Lead (TSP) - LC<br>FRM/FEM      | 14129          | SLAMS     | 1       |       | 1/6      | NBR        | СОМ | 105        | ug/m^3-LC            | 192   | Inductive<br>Coupled Plasma<br>Spectrometry |          |
|                                 | 14129<br>68108 | SLAMS     | 1       |       | 1/6      | NBR<br>NBR | СОМ | 105<br>059 | ug/m^3-LC<br>mm (Hg) | 780   | Coupled Plasma                              |          |

Watkins Mill Road, Lawson, MO 64062

Latitude: 39.407419 AQCR: 094 Metropolitan Kansas City

Longitude: -94.265142 MSA: 3760 Kansas City, MO-KS

Elevation (ft): 1009

|                    |          | Monito | r-  |          |      |       |     | Unit- |       | Method | <i>l-</i>                  | Monitor- |
|--------------------|----------|--------|-----|----------|------|-------|-----|-------|-------|--------|----------------------------|----------|
| Pollutant          | AQS Code | Type   | POC | Col      | Freq | Scale | Obj | Code  | Unit  | Code   | Method                     | Status   |
| Indoor Temperature | 62107    | SPM    | 1   |          | Н    | N/A   | MET | 017   | deg C | 013    | Electronic<br>Averaging    |          |
| Ozone              | 44201    | SLAMS  | 1   | <b>✓</b> | Н    | URB   | СОМ | 007   | ppm   | 047    | Ultraviolet<br>Photometric |          |

Friday, May 20, 2011 Page 29 of 38

General Elecric Store, Highway 94, West Alton, MO 63386

Latitude: 38.8725 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.226389 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 425

|                          |           | Monitor | r_         |     |      |       |            | Unit- |       | Method- |                            | Monitor- |
|--------------------------|-----------|---------|------------|-----|------|-------|------------|-------|-------|---------|----------------------------|----------|
| Pollutant                | AQS Code  | Type    | <b>POC</b> | Col | Freq | Scale | <i>Obj</i> | Code  | Unit  | Code    | Method                     | Status   |
| Indoor Temperature       | 62107     | SPM     | 1          |     | Н    | N/A   | MET        | 017   | deg C | 013     | Electronic<br>Averaging    |          |
| Outdoor Temperature      | 62101     | SPM     | 1          |     | Н    | NBR   | MET        | 017   | deg C | 040     | Electronic<br>Averaging    |          |
| Ozone                    | 44201     | SLAMS   | 1          | ✓   | Н    | URB   | СОМ        | 007   | ppm   | 047     | Ultraviolet<br>Photometric |          |
| Solar Radiation          | 63301     | SPM     | 1          |     | Н    | NBR   | MET        | 079   | W/m^2 | 011     | Instrumental               |          |
| Wind Direction - Resulta | ant 61104 | SPM     | 1          |     | Н    | NBR   | MET        | 014   | deg   | 020     | Vector<br>Summation        |          |
| Wind Speed - Resultant   | 61103     | SPM     | 1          |     | Н    | NBR   | MET        | 012   | mph   | 020     | Vector<br>Summation        |          |

Friday, May 20, 2011 Page 30 of 38

## Springfield

| Fellows La             | ke              |                 |        |         |            |       |     | ΑQ            | QS Site N | umber          | 29-077-0042                    |                    |
|------------------------|-----------------|-----------------|--------|---------|------------|-------|-----|---------------|-----------|----------------|--------------------------------|--------------------|
| 4208 E. Farm           | Rd. 66, Sprin   | gfield, M       | O 656  | 648     |            |       |     |               |           |                |                                |                    |
| Latitude:              | 37.319444       | AQCR:           | 139    | SW      | Missouri   |       |     |               |           |                |                                |                    |
| Longitude:             | -93.204444      | MSA:            | 7920   | Sprir   | ngfield, N | МО    |     |               |           |                |                                |                    |
| Elevation (ft):        | 1346            |                 |        |         |            |       |     |               |           |                |                                |                    |
| Pollutant              | AQS Code        | Monitor<br>Type | POC    | Col     | Freq       | Scale | Obj | Unit-<br>Code | Unit      | Method<br>Code | l-<br>Method                   | Monitor-<br>Status |
| Ozone                  | 44201           | SLAMS           | 1      |         | Н          | NBR   | COM | 007           | ppm       | 047            | Ultraviolet<br>Photometric     |                    |
| Wind Direction - R     | esultant 61104  | SPM             | 1      |         | Н          | URB   | MET | 014           | deg       | 020            | Vector<br>Summation            |                    |
| Wind Speed - Res       | sultant 61103   | SPM             | 1      |         | Н          | URB   | MET | 012           | mph       | 020            | Vector<br>Summation            |                    |
| Hillcrest H            | igh School      |                 |        |         |            |       |     | AQ            | OS Site N | umber          | 29-077-0036                    |                    |
| 3319 N. Gran           | t, Springfield, | MO 658          | 03     |         |            |       |     |               |           |                |                                |                    |
| Latitude:              | 37.256069       | AQCR:           | 139    | SW      | Missouri   |       |     |               |           |                |                                |                    |
| Longitude:             | -93.299692      | MSA:            | 7920   | Sprir   | ngfield, N | МО    |     |               |           |                |                                |                    |
| Elevation (ft):        | 1321            |                 |        |         |            |       |     |               |           |                |                                |                    |
|                        |                 | Monitor         |        |         |            |       |     | Unit-         |           | Method         | !-                             | Monitor-           |
| Pollutant              | AQS Code        | Type            | POC    | Col     | Freq       | Scale | Obj | Code          | Unit      | Code           | Method                         | Status             |
| Ozone                  | 44201           | SLAMS           | 1      |         | Н          | NBR   | СОМ | 007           | ppm       | 047            | Ultraviolet<br>Photometric     |                    |
| Missouri Si            | tate Univer     | rsity           |        |         |            |       |     | AQ            | QS Site N | umber          | 29-077-0032                    |                    |
| 710 S. Hollan          | d St. at Madis  | on St., Sp      | oringf | ield, l | MO 65      | 5806  |     |               |           |                |                                |                    |
| Latitude:              | 37.199473       | AQCR:           | 139    | SW      | Missouri   |       |     |               |           |                |                                |                    |
| Longitude:             | -93.284681      | MSA:            | 7920   | Sprir   | ngfield, N | МО    |     |               |           |                |                                |                    |
| Elevation (ft):        | 1316            |                 |        |         |            |       |     |               |           |                |                                |                    |
| Pollutant              | AQS Code        | Monitor<br>Type |        | Col     | Freq       | Scale | Obj | Unit-<br>Code | Unit      | Method<br>Code | l-<br>Method                   | Monitor-<br>Status |
| Acceptable PMCo.<br>LC | arse - 86502    | SPM             | 1      |         | Н          | NBR   | COM | 105           | ug/m^3-L  | C 790          | FDMS-<br>Gravimetric 140<br>DF | 5-                 |

Friday, May 20, 2011 Page 31 of 38

| Ambient Temperature    | 68105 | SPM   | 3 |          | 1/6 | NBR | COM | 017 | deg C     | 127 | Lo-Vol R&P<br>2025 Sequential    |
|------------------------|-------|-------|---|----------|-----|-----|-----|-----|-----------|-----|----------------------------------|
| Ambient Temperature    | 68105 | SPM   | 1 | ✓        | 1/3 | NBR | СОМ | 017 | deg C     | 118 | Lo-Vol R&P<br>2025 Sequential    |
| PM10 - LC              | 85101 | SPM   | 5 |          | Н   | NBR | СОМ | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| PM10 - Total STP       | 81102 | SLAMS | 1 |          | 1/6 | NBR | СОМ | 001 | ug/m^3    | 127 | Lo-Vol R&P<br>2025 Sequential    |
| PM2.5 - LC             | 88101 | SLAMS | 4 |          | Н   | NBR | СОМ | 105 | ug/m^3-LC | 182 | FMDS-<br>Gravimetric 1405-<br>DF |
| PM2.5 - LC             | 88101 | SLAMS | 1 | <b>✓</b> | 1/3 | NBR | COM | 105 | ug/m^3-LC | 118 | Lo-Vol R&P<br>2025 Sequential    |
| PM2.5 Tot Atmospheric  | 88500 | NON-R | 1 |          | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| PM2.5 Volatile Channel | 88503 | NON-R | 1 |          | н   | NBR | СОМ | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| Sample Baro Pressure   | 68108 | SPM   | 1 | <b>✓</b> | 1/3 | NBR | COM | 059 | mm (Hg)   | 118 | Lo-Vol R&P<br>2025 Sequential    |
| Sample Baro Pressure   | 68108 | SPM   | 3 |          | 1/6 | NBR | COM | 059 | mm (Hg)   | 127 | Lo-Vol R&P<br>2025 Sequential    |

South Charleston

AQS Site Number 29-077-0026

5012 S. Charleston, Springfield, MO 65804

*Latitude:* 37.122561

AQCR:

139 SW Missouri

Longitude:

-93.263161 *MSA*:

7920

Springfield, MO

Elevation (ft): 1234

|                               |          | Monitor | r_  |     |      |       |     | Unit- |      | Method | <i>l-</i>             | Monitor- |
|-------------------------------|----------|---------|-----|-----|------|-------|-----|-------|------|--------|-----------------------|----------|
| Pollutant                     | AQS Code | Type    | POC | Col | Freq | Scale | Obj | Code  | Unit | Code   | Method                | Status   |
| Sulfur Dioxide                | 42401    | SLAMS   | 1   |     | Н    | NBR   | COM | 800   | ppb  | 060    | Pulsed<br>Fluorescent |          |
| Sulfur Dioxide Max 5-m<br>Avg | in 42406 | SLAMS   | 1   |     | Н    | NBR   | СОМ | 008   | ppb  | 060    | Pulsed<br>Fluorescent |          |

Friday, May 20, 2011 Page 32 of 38

## St. Louis City

Branch Street AQS Site Number 29-510-0093

100 Branch St., St. Louis, MO 63102

Latitude: 38.653716 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.186816 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 422

|                           |          | Monitor | -   |     |      |       |     | Unit- |           | Method- | _                               | Monitor-   |
|---------------------------|----------|---------|-----|-----|------|-------|-----|-------|-----------|---------|---------------------------------|------------|
| <b>Pollutant</b> A        | IQS Code | Type    | POC | Col | Freq | Scale | Obj | Code  | Unit      | Code    | Method                          | Status     |
| Acceptable PMCoarse - LC  | 86502    | SPM     | 1   |     | Н    | MID   | COM | 105   | ug/m^3-L0 | C 790   | FDMS-<br>Gravimetric 1409<br>DF | <b>5</b> - |
| Ambient Temperature       | 68105    | SPM     | 1   |     | 1/3  | NBR   | COM | 017   | deg C     | 118     | Lo-Vol R&P<br>2025 Sequential   |            |
| Elapsed Sample Time       | 68109    | SPM     | 1   |     | 1/1  | N/A   | COM | 106   | minutes   | 118     | Lo-Vol R&P<br>2025 Sequential   |            |
| PM10 - LC                 | 85101    | SPM     | 5   |     | Н    | MID   | COM | 105   | ug/m^3-L0 | 790     | FDMS-<br>Gravimetric 1408<br>DF | -          |
| PM10 - Total STP          | 81102    | SLAMS   | 1   |     | Н    | MID   | COM | 001   | ug/m^3    | 079     | R&P SA246B<br>TEOM              |            |
| PM2.5 - LC                | 88101    | SLAMS   | 1   |     | 1/3  | MID   | СОМ | 105   | ug/m^3-L0 | C 118   | Lo-Vol R&P<br>2025 Sequential   |            |
| PM2.5 - LC                | 88101    | SLAMS   | 4   |     | Н    | MID   | COM | 105   | ug/m^3-L0 | C 182   | FMDS-<br>Gravimetric 1409<br>DF | ō-         |
| PM2.5 Tot Atmospheric     | 88500    | NON-R   | 1   |     | Н    | MID   | COM | 105   | ug/m^3-L0 | 790     | FDMS-<br>Gravimetric 1405<br>DF | -          |
| PM2.5 Volatile Channel    | 88503    | NON-R   | 1   |     | Н    | MID   | COM | 105   | ug/m^3-L0 | 790     | FDMS-<br>Gravimetric 1409<br>DF | -          |
| Sample Baro Pressure      | 68108    | SPM     | 1   |     | 1/3  | NBR   | COM | 059   | mm (Hg)   | 118     | Lo-Vol R&P<br>2025 Sequential   |            |
| Wind Direction - Resultar | nt 61104 | SPM     | 1   |     | Н    | NBR   | MET | 014   | deg       | 020     | Vector<br>Summation             |            |
| Wind Speed - Resultant    | 61103    | SPM     | 1   |     | Н    | NBR   | MET | 012   | mph       | 020     | Vector<br>Summation             |            |

Friday, May 20, 2011 Page 33 of 38

6204 Hall St., St. Louis, MO 63147

Latitude: 38.69075 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.209306 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 417

Monitor-Monitor-Unit-Method-AQS Code Type POC Col Freq Scale **Pollutant Obj** Code Unit Code Method Status PM10 - Total STP R&P SA246B 81102 **SLAMS** MID COM 001 ug/m^3 079 TEOM

#### Margaretta (PM10 TEOM to replace PM10 Hi-vol) AQS Site

AQS Site Number 29-510-0086

AQS Site Number 29-510-0007

4520 Margaretta, St. Louis, MO 63105

Latitude: 38.673172 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.239086 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 514

| Pollutant                     | AQS Code | Monitor<br>Type |   | Col | Freq | Scale | Obj | Unit-<br>Code | Unit   | Method-<br>Code | Method                  | Monitor-<br>Status |
|-------------------------------|----------|-----------------|---|-----|------|-------|-----|---------------|--------|-----------------|-------------------------|--------------------|
| Nitrogen Dioxide (NO2)        | 42602    | SLAMS           | 1 |     | Н    | URB   | COM | 800           | ppb    | 074             | Chemiluminesce<br>nce   |                    |
| PM10 - Total STP              | 81102    | SLAMS           | 1 |     | Н    | NBR   | COM | 001           | ug/m^3 | 079             | R&P SA246B<br>TEOM      |                    |
| PM10 - Total STP              | 81102    | SLAMS           | 1 |     | 1/6  | NBR   | COM | 001           | ug/m^3 | 064             | Hi-vol SA/GMW-<br>321-B |                    |
| Sulfur Dioxide                | 42401    | SLAMS           | 1 |     | Н    | NBR   | СОМ | 008           | ppb    | 060             | Pulsed<br>Fluorescent   |                    |
| Sulfur Dioxide Max 5-m<br>Avg | in 42406 | SLAMS           | 1 |     | Н    | NBR   | СОМ | 800           | ppb    | 060             | Pulsed<br>Fluorescent   |                    |

#### 8227 South Broadway, St. Louis, MO 63111

Latitude: 38.5425 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.263611 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 452

outh Broadway

Monitor- Unit- Method- Monitor-Pollutant AQS Code Type POC Col Freq Scale Obj Code Unit Code Method Status

Friday, May 20, 2011 Page 34 of 38

| Acceptable PMCoarse -<br>LC | 86502 | SLAMS | 1 | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
|-----------------------------|-------|-------|---|-----|-----|-----|-----|-----------|-----|----------------------------------|
| Ambient Temperature         | 68105 | SPM   | 1 | 1/1 | NBR | COM | 017 | deg C     | 118 | Lo-Vol R&P<br>2025 Sequential    |
| Elapsed Sample Time         | 68109 | SPM   | 1 | 1/1 | N/A | COM | 106 | minutes   | 118 | Lo-Vol R&P<br>2025 Sequential    |
| PM10 - LC                   | 85101 | SPM   | 5 | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| PM2.5 - LC                  | 88101 | SLAMS | 4 | Н   | NBR | СОМ | 105 | ug/m^3-LC | 182 | FMDS-<br>Gravimetric 1405-<br>DF |
| PM2.5 - LC                  | 88101 | SLAMS | 1 | 1/1 | NBR | COM | 105 | ug/m^3-LC | 118 | Lo-Vol R&P<br>2025 Sequential    |
| PM2.5 Tot Atmospheric       | 88500 | NON-R | 1 | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| PM2.5 Volatile Channel      | 88503 | NON-R | 1 | Н   | NBR | COM | 105 | ug/m^3-LC | 790 | FDMS-<br>Gravimetric 1405-<br>DF |
| Sample Baro Pressure        | 68108 | SPM   | 1 | 1/1 | NBR | СОМ | 059 | mm (Hg)   | 118 | Lo-Vol R&P<br>2025 Sequential    |

Friday, May 20, 2011 Page 35 of 38

## St. Louis County

Ladue AQS Site Number 29-189-3001

73 Hunter Ave., Ladue, MO 63124

Latitude: 38.65021 AQCR: 070 Metropolitan St. Louis

Longitude: -90.35036 MSA: 7040 St. Louis, MO-IL

Elevation (ft): 528

|                              |           | Monitor | · <b>-</b> |     |      |       |     | Unit- |           | Method- | •                       | Monitor- |
|------------------------------|-----------|---------|------------|-----|------|-------|-----|-------|-----------|---------|-------------------------|----------|
| Pollutant                    | AQS Code  | Type    | <b>POC</b> | Col | Freq | Scale | Obj | Code  | Unit      | Code    | Method                  | Status   |
| Acceptable PM2.5<br>AQI/SPEC | 88502     | NON-R   | 1          |     | Н    | NBR   | COM | 105   | ug/m^3-LC | 761     | PM2.5 VSCC<br>FDMS      |          |
| Indoor Temperature           | 62107     | SPM     | 1          |     | Н    | N/A   | MET | 017   | deg C     | 013     | Electronic<br>Averaging |          |
| Outdoor Temperature          | 62101     | SPM     | 1          |     | Н    | NBR   | MET | 015   | deg F     | 040     | Electronic<br>Averaging |          |
| PM2.5 - LC                   | 88101     | SLAMS   | 3          |     | Н    | NBR   | COM | 105   | ug/m^3-LC | 181     | PM2.5 VSCC<br>FEM       |          |
| PM2.5 Tot Atmospheric        | 88500     | NON-R   | 3          |     | Н    | NBR   | AQI | 105   | ug/m^3-LC | 761     | PM2.5 VSCC<br>FDMS      |          |
| PM2.5 Volatile Channel       | 88503     | NON-R   | 3          |     | Н    | NBR   | AQI | 105   | ug/m^3-LC | 761     | PM2.5 VSCC<br>FDMS      |          |
| Wind Direction - Resulta     | ant 61104 | SPM     | 1          |     | Н    | NBR   | MET | 014   | deg       | 020     | Vector<br>Summation     |          |
| Wind Speed - Resultant       | 61103     | SPM     | 1          |     | Н    | NBR   | MET | 012   | mph       | 020     | Vector<br>Summation     |          |

#### Maryland Heights

AQS Site Number 29-189-0014

13044 Marine Ave., Maryland Heights, MO 63146

Latitude: 38.7109 AQCR: 070 Metropolitan St. Louis

**Longitude:** -90.4759 **MSA:** 7040 St. Louis, MO-IL

Elevation (ft): 633

|                    |          | Monito | -   |     |      |       |     | Unit- |       | Method | 1-                      | Monitor- |
|--------------------|----------|--------|-----|-----|------|-------|-----|-------|-------|--------|-------------------------|----------|
| Pollutant          | AQS Code | Type   | POC | Col | Freq | Scale | Obj | Code  | Unit  | Code   | Method                  | Status   |
| Indoor Temperature | 62107    | SPM    | 1   |     | Н    | N/A   | MET | 017   | deg C | 013    | Electronic<br>Averaging |          |

Friday, May 20, 2011 Page 36 of 38

| Outdoor Temperature       | 62101      | SPM             | 1        |          | Н        | NBR       | MET | 015           | deg F     | 040            | Electronic<br>Averaging   |                    |
|---------------------------|------------|-----------------|----------|----------|----------|-----------|-----|---------------|-----------|----------------|---------------------------|--------------------|
| Ozone                     | 44201      | SLAMS           | 1        | <b>✓</b> | Н        | NBR       | СОМ | 007           | ppm       | 087            | Ultraviolet<br>Absorption |                    |
| Wind Direction - Resultar | nt 61104   | SPM             | 1        |          | Н        | NBR       | MET | 014           | deg       | 020            | Vector<br>Summation       |                    |
| Wind Speed - Resultant    | 61103      | SPM             | 1        |          | Н        | NBR       | MET | 012           | mph       | 020            | Vector<br>Summation       |                    |
| Oakville                  |            |                 |          |          |          |           |     | AQ            | QS Site N | Number 2       | 29-189-0015               |                    |
| 6115 Frontenac Po         | inte Ct.,  | Oakville.       | . MO 6   | 53129    | )        |           |     |               |           |                |                           |                    |
| Latitude: 38.45           | ĺ          | AQCR:           | 070      |          |          | St. Louis |     |               |           |                |                           |                    |
|                           | 27477      | MSA:            | 7040     | St. L    | ouis, MC | )-IL      |     |               |           |                |                           |                    |
|                           | 21411      | MSA.            |          |          | ,        |           |     |               |           |                |                           |                    |
| Elevation (ft): 477       |            | 1.6             |          |          |          |           |     |               |           |                |                           |                    |
| Pollutant A               | QS Code    | Monitor<br>Type | POC      | Col      | Freq     | Scale     | Obj | Unit-<br>Code | Unit      | Method<br>Code | -<br>Method               | Monitor-<br>Status |
| Indoor Temperature        | 62107      | SPM             | 1        |          | Н        | N/A       | MET | 017           | deg C     | 013            | Electronic<br>Averaging   |                    |
| PM10 - Total STP          | 81102      | SLAMS           | 1        |          | Н        | MID       | СОМ | 001           | ug/m^3    | 079            | R&P SA246B<br>TEOM        |                    |
| Wind Direction - Resultar | nt 61104   | SPM             | 1        |          | Н        | NBR       | MET | 014           | deg       | 020            | Vector<br>Summation       |                    |
| Wind Speed - Resultant    | 61103      | SPM             | 1        |          | Н        | NBR       | MET | 012           | mph       | 020            | Vector<br>Summation       |                    |
| Pacific                   |            |                 |          |          |          |           |     | AQ            | OS Site N | Number 2       | 29-189-0005               |                    |
| 18701 Old Highwa          | ıv 66, Pac | cific, MC       | 6303     | 9        |          |           |     |               |           |                |                           |                    |
| Latitude: 38.49           | •          | AQCR:           | 070      |          | opolitan | St. Louis |     |               |           |                |                           |                    |
| Longitude: -90.7          |            | MSA:            | 7040     | St. L    | ouis, MC | )-IL      |     |               |           |                |                           |                    |
| Elevation (ft): 524       | •          |                 |          |          |          |           |     |               |           |                |                           |                    |
|                           |            | Monitor         | <u>.</u> |          |          |           |     | <b>T</b> 724  |           | M -41 - 1      | ,                         | Moniter            |
| <b>Pollutant</b> A        | QS Code    |                 | POC      | Col      | Freq     | Scale     | Obj | Unit-<br>Code | Unit      | Method<br>Code | -<br>Method               | Monitor-<br>Status |
| Indoor Temperature        | 62107      | SPM             | 1        |          | Н        | N/A       | MET | 017           | deg C     | 013            | Electronic<br>Averaging   |                    |
| Outdoor Temperature       | 62101      | SPM             | 1        |          | Н        | NBR       | MET | 017           | deg C     | 040            | Electronic<br>Averaging   |                    |

Friday, May 20, 2011 Page 37 of 38

Averaging

| Ozone                     | 44201   | SLAMS | 1 | <b>✓</b> | Н | NBR | COM | 007 | ppm | 047 | Ultraviolet<br>Photometric |
|---------------------------|---------|-------|---|----------|---|-----|-----|-----|-----|-----|----------------------------|
| Wind Direction - Resultan | t 61104 | SPM   | 1 |          | Н | NBR | MET | 014 | deg | 020 | Vector<br>Summation        |
| Wind Speed - Resultant    | 61103   | SPM   | 1 |          | Н | NBR | MET | 012 | mph | 020 | Vector<br>Summation        |

Sunset Hills

AQS Site Number 29-189-0004

4580 S. Lindbergh & Gravios, Sunset Hills, MO 63126

Latitude: 38.53278 AQCR: 070 Metropolitan St. Louis

Longitude: -90.38243 MSA: 7040 St. Louis, MO-IL

Elevation (ft): 600

|                          |           | Monitor | r_         |     |      |       |     | Unit- |       | Method | _                       | Monitor- |
|--------------------------|-----------|---------|------------|-----|------|-------|-----|-------|-------|--------|-------------------------|----------|
| Pollutant                | AQS Code  | Type    | <b>POC</b> | Col | Freq | Scale | Obj | Code  | Unit  | Code   | Method                  | Status   |
| Indoor Temperature       | 62107     | SPM     | 1          |     | Н    | N/A   | MET | 017   | deg C | 013    | Electronic<br>Averaging |          |
| Outdoor Temperature      | 62101     | SPM     | 1          |     | Н    | NBR   | MET | 017   | deg C | 040    | Electronic<br>Averaging |          |
| Wind Direction - Resulta | ant 61104 | SPM     | 1          |     | Н    | NBR   | MET | 014   | deg   | 020    | Vector<br>Summation     |          |
| Wind Speed - Resultant   | 61103     | SPM     | 1          |     | Н    | NBR   | MET | 012   | mph   | 020    | Vector<br>Summation     |          |

Friday, May 20, 2011 Page 38 of 38



www.dnr.mo.gov

#### **MEMORANDUM**

To:

Calvin Ku, Stephen Hall

CK 5/25

Through:

Wendy Vit, Tiffany Drake

*۱*۷ پ

From:

Assem Abdul, Mark Leath, Bern Johnson

Subject:

Small Lead Source Modeling Results

In response to the lower National Ambient Air Quality Standard for Lead, the United States Environmental Protection Agency requires States to monitor lead in ambient air near sources that emit greater than one-half of one ton of lead. A waiver for this monitoring requirement is available if dispersion modeling shows that ambient air concentrations will be less than one-half of the new standard, or  $0.075~\mu g/m^3$ . Modeling results indicate that ambient air concentrations near sources with low lead emissions will not exceed one-half of the new standard.

The State Implementation Plan unit of the Air Program's Planning Section was asked to perform dispersion modeling for five power plants: Labadie, Rush Island, Meramec, New Madrid, and Iatan. The results are presented in Table 1. A modeling protocol was developed and is attached to this memorandum.

Table 1 – Highest Rolling Three-Month Average

| Site                                | Labadie | Rush<br>Island | Meramec | New<br>Madrid | Iatan |
|-------------------------------------|---------|----------------|---------|---------------|-------|
| Modeled<br>Concentration<br>(μg/m³) | 0.00    | 0.00           | 0.00    | 0.00          | 0.00  |

Calvin Ku, Stephen Hall Page Two

The model chosen for this assignment was AERMOD, the EPA's preferred non-reactive dispersion model. Terrain heights were calculated by the AERMAP terrain pre-processor. Post-processing was done by LEADPOST, whose output is limited to two significant figures (i.e. hundredths of  $\mu g/m^3$ ).

If you have any questions, please contact Mr. Bern Johnson for additional information.

BJ:kb

Attachment

Modeling Protocol for Selection of Monitoring Sites Near Low-Emitting Lead Sources

#### 1. Introduction

The United States Environmental Protection Agency (EPA) recently modified the National Ambient Air Quality Standard (NAAQS) for Lead. The level of the standard was reduced from 1.5 µg/m³ to 0.15 µg/m³. One result of this lower standard is that sources other than lead mining or refining need to be reviewed for possible violations of the NAAQS. EPA has recommended that sources emitting over one-half tons of lead per year be reviewed.

#### a. Objectives

The goal of this project is twofold: to identify sources that may violate the Lead NAAQS and to locate optimum locations for ambient air monitors to verify the model projections.

#### b. Products

- i. A table of maximum modeled concentrations near each source, indicating which sources violate the NAAQS, and
- ii. maps of the vicinity of each source which may violate the NAAQS (if needed).

#### c. Deadline

The due date is Friday, May 6, 2011.

#### 2. Model Selection

The AERMOD modeling system will be used for this project. Pre-processing will be done with AERMAP, using digital elevation maps. AERMOD itself will be used to determine projected ambient air concentrations. LEADPOST post-processing will be used to generate three-month rolling averages.

#### 3. Model Options

This exercise will be conducted using the DFAULT control option.

#### a. Averaging Time

The form of the Lead NAAQS is a rolling three-month average. The AVERTIME control option will be set to MONTH, followed by post processing to generate three-month rolling averages. The MONTH option is required for post-processing by LEADPOST.

#### b. Sources

A list of sources with lead emissions of one-quarter ton or greater has been provided by the Emission Inventory Unit. From that list, the following electric generating units (EGU) were selected for modeling: Labadie, Rush Island, Meramec, Iatan, and New Madrid.

#### i. Emission Rates

Emission rates for the above named sources will be determined by converting actual annual emissions from 2008 from tons per year into grams per second. Since all five facilities are EGUs, all will be assumed to have run 8,784 hours in 2008-a leap year. This total emission rate will be divided by the number of stacks at the facility to divide emissions evenly between stacks. Stack parameters will be determined from data in MOEIS.

#### ii. Pollutant Parameters

Particle diameter, density, and mass fraction data for lead from these sources has not be determined and will not be used.

#### iii. Building Parameters

Building parameters are not available for all five facilities; therefore they will not be used. This omission should not impact the results due the height of the stacks.

#### c. Receptor Grid

A convential cartesian receptor grid will be used around each source. It will consist of 50-meter spacing to 1 kilometer and 250-meter spacing to 10 kilometers. Individual receptors at the property line will not used for this project.

#### 4. Meteorology

To ensure a wide variety of weather conditions are represented, five years of available meteorological data from the nearest National Weather Service (NWS) station will be used.

- i. Labadie, Rush Island, and Meramec 2001-2005 from St. Louis NWS station.
- ii. New Madrid 2003-2007 from Cape Girardaeu NWS
- iii. Iatan 2002-2006 from St. Joseph NWS

#### 5. Output Options

The POSTFILE output option will be used for both creating the table and maps. This is necessary for use in the LEADPOST post-processor.

#### 6. Post-Processing

AERMOD results will be processed by LEADPOST to obtain three-month rolling averages. The LEADPOST results will then be analyzed and condensed into a table for inclusion in the final report and for use by ArcGIS 9 graphics software to create maps for the report.

#### 7. Time to Completion

This project will require one week to prepare inputs, one week to run models and post-processors, and one week for analysis and document writing.

\*note – this includes time needed to train Mark and Assem.

## Description of AERMOD inputs for Halfton modeling

#### **Emission Rate Calculation**

| Facility    | MOEIS     | Number of | Emissions | Emission rate |
|-------------|-----------|-----------|-----------|---------------|
|             | emissions | stacks    | per stack | per stack     |
|             | (tpy)*    |           | (tpy)     | (gm/sec)      |
| Labadie     | 2.0925    | 4         | 0.5231    | 0.015048548   |
| Rush Island | 1.067     | 2         | 0.5335    | 0.015347003   |
| Meramec     | 0.7441    | 1         | 0.7441    | 0.021405256   |
| New Madrid  | 0.9270    | 1         | 0.9270    | 0.026666675   |
| Iatan       | 0.5278    | 1         | 0.5278    | 0.015183032   |

<sup>\*</sup> actual emissions for 2008

#### **Stack Parameters**

| Facility      | Emission Rate | Stack   | Gas Exit | Gas Exit | Stack         |
|---------------|---------------|---------|----------|----------|---------------|
|               | (gm/s)        | Height  | Temp (K) | Velocity | Interior Dia. |
|               |               | (m)     |          | (m/s)    | (m)           |
| Labadie 1     | 0.015048548   | 255.93  | 450.93   | 32.3088  | 8.8392        |
| Labadie 2     | 0.015048548   | 255.93  | 455.93   | 35.3568  | 8.8392        |
| Labadie 3     | 0.015048548   | 255.93  | 445.93   | 36.2712  | 8.8392        |
| Labadie 4     | 0.015048548   | 255.93  | 449.26   | 36.5760  | 8.8392        |
| Rush Island 1 | 0.015347003   | 213.36  | 405.37   | 24.9936  | 8.8392        |
| Rush Island 2 | 0.015347003   | 213.36  | 405.37   | 24.9936  | 8.8392        |
| Meramec       | 0.021405256   | 76.2    | 436.48   | 27.3192  | 3.3528        |
| New Madrid    | 0.026666675   | 243.84  | 450.59   | 21.336   | 6.096         |
| Iatan         | 0.015183032   | 184.404 | 329.26   | 18.4     | 8.69          |