TD5: Les Réseaux de neurones (2h)

Exercice 1 – Perceptron linéaire

On considère un perceptron linéaire avec deux entrées et une sortie, et une fonction d'activation g(z) = Heaviside(z).

- 1) Donner l'expression de la sortie y_i en fonction des entrées x_1 x_2 . Les poids w_1 =2, et w_2 = 3 et le biais b = 0 (seuil=0)
- 2) Donner l'expression de la sortie y_i pour les mêmes valeurs des poids et une biais b>0
- 3) Représenter l'hyperplan et déduire la frontière en absence du biais et pour une valeur de biais b=2.

Note: La fonction Heaviside() est la fonction échelon unité

Exercice 2 – Fonction Not et perceptron

On considère un perceptron non linéaire avec une entrée et une sortie, et une fonction d'activation g(z) =Heaviside(z).

- 1) Donner l'expression de la sortie y_i en fonction des entrées x_1 . Les poids w_1 =-1, et le biais b=-0.5 (seuil=0)
- 2) Donner l'expression de la sortie y_i
- 3) Représenter l'hyperplan et déduire la frontière
- 4) Mettre en cascade les deux perceptrons réalisant la fonction NOT et déduire la nouvelle sortie.

Note: La fonction Heaviside() est la fonction échelon unité

Exercice 3 – Fonctions Logiques et Perceptron

On considère un perceptron simple avec deux entrées et une sortie, et une fonction d'activation suivante :

$$g(z) = \begin{cases} 1 & si \ w_1 x_1 + w_2 x_2 - b > 0 \\ 0 & \end{cases}$$

- 1. Trouvez les poids pour que le perceptron calcule la fonction ET logique.
- 2. Trouvez les poids pour que le perceptron calcule la fonction OU logique.
- 3. Essayer de trouver des poids pour la fonction XOR.

Exercice 4 – Réseau de neurones multicouches

Soit le réseau de neurones multicouches décrit par la figure ci-dessous :

- 1. Calculer les expressions mathématiques qui déterminent les sorties intermédiaires f11, f12, h11, h12, f21 ainsi que la sortie final du réseau y pour $x_1 = 1$, $x_2 = x_n = x$
- 2. Calculer la fonction cout ou critère /
- 3. Utiliser l'algorithme de de rétropropagation (backpropagation), et calculer les expressions des mises à jour des paramètres Δw_i pour j = 1, ..., 6

Nous fixons les poids $w_1 = 0.5$, $w_2 = -1$, $w_3 = -2$, $w_4 = 1.5$, $w_5 = 1$ et les

- entrées/ sorties du réseaux sont définies par (x, d) = (2, 1)
- 4. Calculer les sorties des couches intermédiaires *f11*, *f12*, *h11*, *h12*, *f21* ainsi que la sortie finale.
- 5. Calculer les paramètres Δw_j et w_j pour $\mathbf{j} = \mathbf{1}, ..., \mathbf{7}$ après une itération de mise à jour (en considérant le paramètre d'apprentissage $\alpha = 0.2$.

Exercice 5 – XOR et les réseaux de neurones

Soit A et B deux variables booléennes.

- 1) Concevoir un réseau de neurones à deux entrées permettant d'implémenter la fonction booléenne A AND NOT(B).
- 2) Concevoir un réseau de neurones à deux couches implémentant la fonction booléenne A XOR B.