45. The population of a particular country consists of three ethnic groups. Each individual belongs to one of the four major blood groups. The accompanying *joint probability table* gives the proportions of individuals in the various ethnic group–blood group combinations.

		Blood Group			
		О	A	В	AB
	1	.082	.106	.008	.004
Ethnic Group	2	.135	.141	.018	.006
	3	.215	.200	.065	.020

Suppose that an individual is randomly selected from the population, and define events by $A = \{\text{type A selected}\}$, $B = \{\text{type B selected}\}$, and $C = \{\text{ethnic group 3 selected}\}$.

- **a.** Calculate P(A), P(C), and $P(A \cap C)$.
- **b.** Calculate both $P(A \mid C)$ and $P(C \mid A)$, and explain in context what each of these probabilities represents.
- **c.** If the selected individual does not have type B blood, what is the probability that he or she is from ethnic group 1?
- **47.** Return to the credit card scenario of Exercise 12 (Section 2.2), where $A = \{\text{Visa}\}$, $B = \{\text{MasterCard}\}$, P(A) = .5, P(B) = .4, and $P(A \cap B) = .25$. Calculate and interpret each of the following probabilities (a Venn diagram might help).
 - **a.** P(B|A) **b.** P(B'|A)
 - **c.** P(A|B) **d.** P(A'|B)
 - **e.** Given that the selected individual has at least one card, what is the probability that he or she has a Visa card?

49. The accompanying table gives information on the type of coffee selected by someone purchasing a single cup at a particular airport kiosk.

	Small	Medium	Large
Regular	14%	20%	26%
Decaf	20%	10%	10%

Consider randomly selecting such a coffee purchaser.

- a. What is the probability that the individual purchased a small cup? A cup of decaf coffee?
- b. If we learn that the selected individual purchased a small cup, what now is the probability that he/she chose decaf coffee, and how would you interpret this probability?
- c. If we learn that the selected individual purchased decaf, what now is the probability that a small size was selected, and how does this compare to the corresponding unconditional probability of (a)?
- 51. One box contains six red balls and four green balls, and a second box contains seven red balls and three green balls. A ball is randomly chosen from the first box and placed in the second box. Then a ball is randomly selected from the second box and placed in the first box.
 - a. What is the probability that a red ball is selected from the first box and a red ball is selected from the second box?
 - **b.** At the conclusion of the selection process, what is the probability that the numbers of red and green balls in the first box are identical to the numbers at the beginning?

Example 2.31 Incidence of a rare disease. Only 1 in 1000 adults is afflicted with a rare disease for which a diagnostic test has been developed. The test is such that when an individual actually has the disease, a positive result will occur 99% of the time, whereas an individual without the disease will show a positive test result only 2% of the time. If a randomly selected individual is tested and the result is positive, what is the probability that the individual has the disease?