Methods 3: Multilevel Statistical Modeling and Machine Learning

Week 3: Generalized linear mixed effects models September 28, 2021

by: Lau Møller Andersen

These slides are distributed according to the CC BY 4.0 licence:

https://creativecommons.org/licenses/by/4.0/

Attribution 4.0 International (CC BY 4.0)

Messages

- Practical exercise due 23.59 tomorrow
- Make sure to add your GitHub repository a few are still missing:

https://cryptpad.fr/pad/#/2/pad/edit/U21qNTbLgfkRiGZU1bnmDE2o/

 Remember, Class 2 (10-12) will be in 1453-116 tomorrow

RECAP on pooling

SLEEP STUDY EXAMPLE

https://psyteachr.github.io/stat-models-v1/introducing-linear-mixed-effects-models.html

Learning goals and outline –

Linear Mixed Effects Models (LMM)

- 1) Why can it be a good idea to do mixed effects modelling?
- 2) Understanding the basics of multilevel modelling
 - also known as linear mixed effects modelling
- 3) Appreciating the difference between the different levels of effects
 - or random and fixed effects, as they are also called
- 4) Understanding the concept of pooling (none, complete and partial)

Pooling - summary

- Complete pooling
 - ignoring a categorical predictor (e.g. *subject*)

- No pooling
 - model each level of the categorical predictor separately
- Partial pooling
 - we model both an average and each level of the categorical predictor (e.g. subject)

Figure 5.3: Data from Belenky et al. (2003), showing reaction time at baseline (0) and after each day of sleep deprivation.


```
lm(formula = Reaction ~ days_deprived + Subject + days_deprived:Subject,
    data = sleep2)
```

```
## Coefficients:
##
                                  Estimate
                                                   ## days_deprived:Subject309 -17.3334
## (Intercept)
                                  288,2175
                                                   ## days_deprived:Subject310 -17.7915
## days_deprived
                                   21.6905
                                                   ## days_deprived:Subject330 -13.6849
                                                   ## days_deprived:Subject331 -16.8231
## Subject309
                                  -87.9262
                                                   ## days_deprived:Subject332 -19.2947
## Subject310
                                  -62.2856
                                                   ## days_deprived:Subject333 -10.8151
## Subject330
                                  -14.9533
## Subject331
                                    9.9658
                                                    ... and the remaining 12 subjects
```

27.8157

... and the remaining 12 subjects

Subject332

NO POOLING

Figure 5.5: Data plotted against fits from the no-pooling approach.

NO POOLING

Good fits now:

What are the limits of this model?

Figure 5.6: Data plotted against predictions from a partial pooling approach.

PARTIAL POOLING

Fixed effects:				
	Estimate	Std.	Error	t value
(Intercept)	267.967		8.266	32.418
days_deprived	11.435		1.845	6.197

ranef(pp_mod)[["S	ubject"]]	Ш
	(Intercept)	days_deprived
308	24.4992891	8.6020000
309	-59.3723102	-8.1277534
310	-39.4762764	-7.4292365
330	1.3500428	-2.3845976

Linear mixed model fit by REML ['lmerMod']

Formula: Reaction ~ days_deprived + (days_deprived | Subject)

Data: sleep2

No pooling vs partial pooling

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 Days deprived of sleep (0 = baseline) Figure 5.6: Data plotted against predictions from a partial pooling approach.

Both model the individual variance – but only one is generalisable outside the subject pool

Partial pooling

(Gelman and Hill, 2006 (12.1))

$$\hat{lpha}_{j}^{multilevel}$$

$$rac{n_j}{\sigma_y^2} ar{y}_j + rac{1}{\sigma_\alpha^2} ar{y}_{all}$$
 another scary looking thing... $rac{n_j}{\sigma_\alpha^2} + rac{1}{\sigma_\alpha^2}$

What is the advantage of the partial pooling model?

Now with different sample sizes

What is the advantage of the partial pooling model?

(Gelman and Hill, 2006)

$$\hat{lpha}^{multilevel} pprox$$

$$rac{n_j}{\sigma_y^2}ar{y}_j + rac{1}{\sigma_lpha^2}ar{y}_{all}}{n_j}$$

(Gelman and Hill, 2006)

 $\hat{\alpha}_j$: estimated mean for subject j n_j : sample size for subject j σ_y^2 : within-subject variance σ_α^2 : variance around the average \bar{y}_j : unpooled estimate of subject j \bar{y}_{gll} : the pooled estimate

Discuss in small groups

What happens to the estimated mean, \hat{a}_{i} , when n_{i} :

- 1) increases?
- 2) decreases?
- 3) is 0?
- 4) goes towards infinity?

Same n for each subject

Different n for each county

"baseline" sigma.y <- 3 y.j <- 7 sigma.mean <- 1.5 y.all <- 4 ns <- 0:100

"Baseline" plot


```
## "baseline"

sigma.y <- 3
y.j <- 7
sigma.mean <- 1.5
y.all <- 4
ns <- 0:100
```


"Baseline" plot

Small group effect

noisy individual effect sigma.y <- 6 y.j <- 7 sigma.mean <- 1.5 y.all <- 4 ns <- 0:100</pre>

"Baseline" plot

Noisy individual effect

Noisy group effect

FROM LAST WEEK Motivation for multilevel modelling:

We want to use all the information in the data while fulfilling the assumptions necessary for the residuals

We can add:

Without letting small or uncertain samples unduly affect our group estimate

$$\hat{lpha}^{multilevel}pprox$$

$$\frac{\frac{n_j}{\sigma_y^2}\bar{y}_j + \frac{1}{\sigma_\alpha^2}\bar{y}_{all}}{\frac{n_j}{\sigma_\alpha^2} + \frac{1}{\sigma_\alpha^2}}$$

(Gelman and Hill, 2006 (12.1))

 $\hat{\alpha}_j$: estimated mean for subject j n_j : sample size for subject j σ_y^2 : within-subject variance σ_α^2 : variance around the average \bar{y}_j : unpooled estimate of subject j \bar{y}_{gll} : the pooled estimate

Revisiting equation 12.1

Why is this not very interesting for purposes of fitting models?

Now with parameters (β)

$$\hat{lpha}_{j}pproxrac{rac{n_{j}}{\sigma_{y}^{2}}}{rac{n_{j}}{\sigma_{y}^{2}}+rac{1}{\sigma_{lpha}^{2}}}(ar{y_{j}}-etaar{x_{j}})+rac{rac{1}{\sigma_{lpha}^{2}}}{rac{n_{j}}{\sigma_{y}^{2}}+rac{1}{\sigma_{lpha}^{2}}}\mu_{lpha}$$

 $\hat{\alpha}_j$: group level parameters

 n_j : sample size for subject j

 σ_y^2 : within-subject variance

 σ_{α}^2 : variance around the average

 \bar{y}_i : unpooled estimate of subject j

 y_{all}^- : the pooled estimate

 $(\bar{y}_i - \beta \bar{x}_i)$: the unpooled estimate for the subject

 μ_{α} : mean

Now on to generalized linear mixed models ...

Did you learn?

Linear Mixed Effects Models (LMM)

- 1) Why can it be a good idea to do mixed effects modelling?
- 2) Understanding the basics of multilevel modelling
 - also known as linear mixed effects modelling
- 3) Appreciating the difference between the different levels of effects
 - or random and fixed effects, as they are also called
- 4) Understanding the concept of pooling (none, complete and partial)

... but let's do a recap of the generalized linear model first

Learning goals

Generalized Linear Mixed Effects Models (GLMM)

- 1) Understanding that we can extend the scope of our multilevel modelling by using appropriate link functions and data distributions
- 2) Understanding the multilevel equivalent of the GLM

At least four ingredients needed

- 1) A data vector: $y = (y_1, ..., y_n)$
- 2) Predictors: *X* and coefficients β , forming a linear predictor $X\beta$
- 3) A *link function g* : yielding a vector of transformed data $\hat{y} = g^{-1}(X\beta)$ that are used to model the data
- 4) A data distribution: $p(y|\hat{y})$

$$(X\beta = \beta_0 + X_1\beta_1 + \dots + X_k\beta_k)$$

(Gelman and Hill, 2006, Chapter 6)

Breaking all promises and going back to *mtcars*

1) A data vector: $y = (y_1, ..., y_n)$

```
print(y <- mtcars$am)
## [1] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1</pre>
```

2) Predictors: X and coefficients β , forming a linear predictor $X\beta$

```
logistic.model <- glm(am ~ wt + 1, data=mtcars, family='binomial')</pre>
X <- model.matrix(logistic.model)</pre>
print(head(X))
##
                     (Intercept) wt
## Mazda RX4
                              1 2.620
## Mazda RX4 Wag
                              1 2.875
## Datsun 710
                           1 2.320
## Hornet 4 Drive
                    1 3.215
                    1 3.440
## Hornet Sportabout
## Valiant
                              1 3.460
print(beta.hat <- logistic.model$coefficients)</pre>
## (Intercept)
##
      12.04037 -4.02397
```

3) A *link function g* : yielding a vector of transformed data $\hat{y} = g^{-1}(X\beta)$ that are used to model the data

```
g \leftarrow function(x) log(x / (1 - x)) ## logit

inv.g \leftarrow function(x) exp(x) / (1 + exp(x)) ##logit-1
```

```
x <- seq(0.001, 0.999, 0.001) plot(x, main='Original probability data (on the range from 0-1)')
```

Original probability data (on the range from 0-1)

plot(x, g(x), main='Log-it transformed, on the range from -Inf to Inf')

Log-it transformed, on the range from -Inf to Inf

plot(x, inv.g(g(x)), main='Back on the original scale')

Back on the original scale

These are the fitted values

```
y.hat <- inv.g(X %*% beta.hat)</pre>
print(head(y.hat))
##
                           [,1]
                     0.8172115
## Mazda RX4
                     0.6157283
## Mazda RX4 Wag
## Datsun 710
                     0.9373069
## Hornet 4 Drive 0.2897304
## Hornet Sportabout 0.1415972
## Valiant
                      0.1320944
```

These are the linear predictors

```
y.hat.linear <- X %*% beta.hat
print(head(y.hat.linear - logistic.model$linear.predictors))
                      [,1]
##
## Mazda RX4
## Mazda RX4 Wag
## Datsun 710
## Hornet 4 Drive
## Hornet Sportabout
## Valiant
```

Looks like a "normal" linear regression

Linear predictors

4) A data distribution: $p(y|\hat{y})$

Binomial distribution

$$\Pr(y=1)=\hat{y}$$

Some link functions

Usage

```
family(object, ...)

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
```

Important difference from the general linear model

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$
 (least squares solution)

The least squares solution is the maximum likelihood estimation

Important difference from the general linear model

We also make maximum likelihood estimates for logistic regression, but there are no analytical solutions for those

Maximum likelihood estimate

Likelihood:
$$L(\theta \mid O) = \prod_{i=1}^{n} f_X(x_i \mid \mu, \sigma^2)$$

where μ and σ^2 are parameters describing a normal distribution

 θ : the unknown parameters, e.g. $\hat{\beta}$ and $\hat{\sigma}^2$

O: the observations from a given sample

log-likelihood:
$$l(\theta \mid 0) = \ln(L(\theta \mid O))$$

$$MLE: \hat{\theta} = \arg \max l(\theta \mid O)$$

The general linear mixed model (GLMM)

$$y = X\beta + Zu + \epsilon$$

y:*N x* 1 column vector

 $X: N \times p$ matrix of p predictor variables

 β : $p \times 1$ column vector of the first level regression coefficients

 $Z: N \times q$ design matrix for the q random effects

 $u:q \times 1$ column vector of the second-level effects

 ϵ : *N x* 1 column vector of the residuals

To generalize to non-linear functions At least four ingredients needed

- 1) A data vector: $y = (y_1, ..., y_n)$
- 2) Predictors: *X* and coefficients β , forming a linear predictor $X\beta$
- 3) A *link function g* : yielding a vector of transformed data $\hat{y} = g^{-1}(X\beta)$ that are used to model the data
- 4) A data distribution: $p(y|\hat{y})$

$$(X\beta = \beta_{0j} + X_{1j}\beta_{1j} + ... + X_{kj}\beta_{kj})$$

This time a , added to indicate that all of these are modelled at a second level as well

Did you learn?

Generalized Linear Mixed Effects Models (GLMM)

- 1) Understanding that we can extend the scope of our multilevel modelling by using appropriate link functions and data distributions
- 2) Understanding the multilevel equivalent of the GLM

References

 Gelman, A., Hill, J., 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.