FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS

Grupo F Grado Ingeniería Informática Convocatoria de septiembre 2016

Duración: 3 horas

Responde a cada pregunta en hojas separadas. Indica en cada hoja tu nombre, el número de página y el número de páginas totales que

Lee detenidamente los enunciados antes de contestar

Nombre	D.N.I.	Grupo

- a) Calcula la resistencia Thevenin del circuito visto entre los terminales A y B.
 (0.75 puntos)
 - b) Calcula el valor de la fuente de tensión V para que la tensión Thevenin sea de 10 V. (1.25 puntos)

2.- Calcula y representa la característica de transferencia del siguiente circuito para cualquier valor positivo de la tensión de entrada v_i. **(2 puntos)**

$$V_{y} = 0.6 V$$

3.- Implementa usando lógica CMOS una puerta que realice la operación $\overline{A+(B\cdot C\cdot D)}$ (1 puntos)

- 4.- Para el circuito de la imagen calcula:
- a) La función de transferencia (1.5 punto)
- b) El módulo y el argumento de la función de transferencia (1 punto)
- c) El valor de la salida para la entrada $v_i(t) = 4\cos(10t) + 4\cos(10^5t + \pi/2)$ V (1 punto)

5.- Calcula el valor de V_{\circ}

Datos: R_B = 30 $k\Omega$; R_C = 1 $k\Omega$; V_{BB} = 2 V; V_{CC} = 5 V

(1.5 puntos)

Datos: k = 2 mA/V²; V_T =1 V

Región lineal u óhmica:

$$I_D = \frac{k}{2} \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$

Región de saturación:

$$I_{D} = \frac{k}{2} (V_{GS} - V_{T})^{2}$$

