4 自顶向下解析

徐辉, xuh@fudan.edu.cn

本章学习目标:

- 了解 Earley 解析算法;
- 掌握 LL(1) 文法;
- 掌握 LL(1) 解析算法;

4.1 自顶向下解析

给定 CFG 文法 G 和句子 s,找到由文法推导出该句子的过程称为解析。本章介绍一种自顶向下的解析思路,即从 G 的初始符号或语法解析树的根结点开始,根据语法规则递归向下展开每个非终结符,直至最终生成的语法解释树叶子节点顺序与目标句子完全匹配。本章采用最左推导的方法,即每次选择当前状态最左侧的非终结符展开。对于无二义性的 CFG 文法 G,每个句子 $s \in L(G)$ 至多存在一种解析方式;如不存在则说明此句子不属于该语言,即 $s \notin L(G)$ 。

该解析问题的难点是每一步应如何选取合适的规则。一个基本思路是根据当前非终结符和目标终结符选取产生式。下面分别介绍两种解析方法,Earley 算法和 LL(1) 文法。

4.2 Earley 解析算法

Earley 解析算法 [1] 是一种通用的 CFG 解析算法,即可解析任意 CFG 文法。Earley 算法涉及以下三种基本操作(非正式定义):

- **预测**: 对于状态 $X \to \alpha \circ Y\beta$,根据语法规则展开 $Y \to \circ \gamma$;符号 。 表示当前解析位置;
- 扫描: 如果下一个终结符是 a, 且存在状态 $X \to \alpha \circ a\beta$, 则将状态变更为 $X \to \alpha a \circ \beta$;
- **完成 (或更新)**: $Y \to \circ \gamma$ 即完成了对 Y 的分析,将所有关联状态 $X \to \alpha \circ Y \beta$ 更新为 $X \to \alpha Y \circ \beta$ 。 为避免左递归等导致的展开方式选择爆炸问题,Earley 有很多独特的设计,详细算法可参考 1。

算法 1 Earley 解析算法

```
Input: G: context-free grammar; ts: token stream; Output: a parse tree;
 1: procedure Earley Parse(ts, G)
        S[0].\mathrm{add}((G\to \ \dot{\bullet}\ \gamma,\ 0))
        for each i in 0..ts.len() do
 3:
            for each item in S[i] do
 4:
 5:
                 \mathbf{match}\ item:
 6:
                     case FIN \Rightarrow // a complete state
 7:
                         Complete(item, i)
                     \mathbf{case} \text{ others} \Rightarrow \text{ } // \text{ not a complete state}
 8:
                         if NextSymbol(item) == ts[i] then
 9:
                             \mathrm{Scan}(item,\,i,\,ts)
10:
                         \mathbf{else}// not a terminal symbol
11:
12:
                             Predict(item, i, G)
13:
                         end if
14:
                 end match
15:
             end for
         end for
16:
17: end procedure
18: procedure Complete((A \rightarrow \beta \cdot, j), i)
         for each (B \to \alpha \stackrel{.}{\bullet} A\delta, \, k) \in S[j] do
19:
20:
             S[i].add((B \to \alpha A \cdot \delta, k))
21:
             if \delta == \epsilon then
22:
                 \operatorname{Complete}((B \to \alpha A \, \dot{\bullet} \, , \, k), \, i)
             end if
23:
24:
         end for
25: end procedure
26: procedure Predict((A \rightarrow \alpha \cdot B\beta, j), i)
         for each B \to \gamma in G do
27:
28:
             S[i].add((B \to \gamma, j))
29:
         end for
30: end procedure
31: procedure Scan((A \rightarrow \alpha \cdot a\beta, j), i)
32:
         if a == ts[i] then
33:
             S[i+1].add((A \to \alpha a \cdot \beta, j))
         end if
34:
35: end procedure
```

下面以解析算式 1+2*3 为例演示 Earley 算法的解析步骤。

表 4.1: 状态 S[0]: E ightarrow 。 <UNUM> '+' <UNUM> '*' <UNUM>

序号	操作	条目					
万分 採作		规范项	起源				
1	初始化	$ extsf{E} ightarrow f \circ \ extsf{E} \ extsf{OP1} \ extsf{E1}$	S[0]				
2	初始化	$ extsf{E} ightarrow oldsymbol{\circ}$ E1	S[0]				
3	预测 2	E1 $ ightarrow$ e1 OP2 E2	S[0]				
4	预测 2	E1 $ ightarrow$ E2	S[0]				
5	预测 4	$ exttt{E2} ightarrow exttt{o}$ $ exttt{E3}$ $ exttt{OP3}$ $ exttt{E2}$	S[0]				
6	预测 5	$ exttt{E2} ightarrow exttt{o}$ E3	S[0]				
7	预测 5	E3 $ ightarrow$ NUM	S[0]				
8	预测 5	E3 $ ightarrow$ \circ <lpar> E <rpar></rpar></lpar>	S[0]				
9	预测 7	NUM $ ightarrow$ \circ <unum></unum>	S[0]				
10	预测 7	NUM $ ightarrow$ \circ _{<unum></unum>}	S[0]				
11	扫描 9	-	-				

表 4.2: 状态 $S[1]\colon \mathsf{E} \to \mathsf{-VNUM} \circ \mathsf{'+'} \mathsf{-VNUM} \mathsf{'*'} \mathsf{-VNUM} \mathsf{-VM} \mathsf{-$

序号	操作	条目			
万 5	1年1月	规范项	起源		
1	扫描 s[0][9]	NUM $ ightarrow$ <unum> $ullet$</unum>	S[0]		
2	完成:基于 1 更新 s[0][7]	E3 $ ightarrow$ NUM $ ullet$	S[0]		
3	完成: 基于 2 更新 s[0][5]	${ t E2} ightarrow { t E3}$ $ullet$ OP3 ${ t E2}$	S[0]		
4	完成: 基于 2 更新 s[0][6]	${ t E2} ightarrow { t E3}$ $ullet$	S[0]		
5	完成: 基于 4 更新 s[0][4]	$ extstyle{E1} ightarrow extstyle{E2}$ $ullet$	S[0]		
6	完成: 基于 5 更新 s[0][2]	$ extsf{E} ightarrow extsf{E} extsf{1}$ $ullet$	S[0]		
7	完成: 基于 5 更新 s[0][3]	$ exttt{E1} ightarrow exttt{E1} ightarrow exttt{CP2} exttt{E2}$	S[0]		
8	完成: 基于 6 更新 s[0][1]	$ extsf{E} ightarrow extsf{E}$ $ extsf{o}$ OP1 E1	S[0]		
9	预测 3	0P3 → • '^'	S[1]		
10	预测 7	OP2 → ∘ '*'	S[1]		
11	预测 7	OP2 → • '/'	S[1]		
12	预测 8	$\texttt{OP1} \rightarrow \bullet \ \texttt{'+'}$	S[1]		
13	预测 8	0P1 → • '-'	S[1]		
14	扫描 12	-	-		

导目	₩.//-	条目			
序号	操作	规范项	起源		
1	扫描 s[1][12]	OP1 $ ightarrow$ '+' $ ightharpoonup$	S[1]		
2	完成: 基于 1 更新 s[1][8]	$ extsf{E} ightarrow extsf{E}$ OP1 \circ E1	S[0]		
3	预测 2	E1 $ ightarrow$ e1 OP2 E2	S[2]		
4	预测 2	E1 $ ightarrow$ E2	S[2]		
5	预测 4	${ t E2} ightarrow { t o}$ ${ t E3}$ ${ t OP3}$ ${ t E2}$	S[2]		
6	预测 5	$ exttt{E2} ightarrow exttt{o}$ E3	S[2]		
7	预测 5	E3 $ ightarrow$ NUM	S[2]		
8	预测 5	E3 $ ightarrow$ \circ <lpar> E <rpar></rpar></lpar>	S[2]		
9	预测 7	NUM $ ightarrow$ \circ <unum></unum>	S[2]		
10	预测 7	NUM $ ightarrow$ \circ _{<unum></unum>}	S[2]		
11	扫描 9	-	-		

表 4.4: 状态 $S[3]\colon$ E $\to~$ <UNUM> '+' <UNUM> 。 '*' <UNUM>

序号	操作	条目			
	1年1月	规范项	起源		
1	扫描 s[11][9]	NUM $ ightarrow$ <unum> $ullet$</unum>	S[2]		
2	完成: 基于 1 更新 s[2][7]	E3 $ ightarrow$ NUM $ ullet$	S[2]		
3	完成: 基于 2 更新 s[2][5]	$ ext{E2} ightarrow ext{E3}$ $ullet$ OP3 $ ext{E2}$	S[2]		
4	完成: 基于 2 更新 s[2][6]	$ extsf{E2} o extsf{E3}$ $ullet$	S[2]		
5	完成: 基于 4 更新 s[2][4]	$ exttt{E1} ightarrow exttt{E2}$ $ullet$	S[2]		
6	完成: 基于 5 更新 s[2][2]	$ extsf{E} ightarrow extsf{E}$ OP1 E1 $ullet$	S[0]		
7	完成: 基于 5 更新 s[2][3]	$ exttt{E1} ightarrow exttt{E1} ightarrow exttt{CP2} exttt{E2}$	S[2]		
8	预测 3	OP3 → • '^'	S[3]		
9	预测 7	OP2 → ∘ '*'	S[3]		
10	预测 7	OP2 → • '/'	S[3]		
11	扫描 9	-	-		

表 4.5: 状态 S[4]: E \rightarrow <UNUM> '+' <UNUM> '*' 。 <UNUM>

停旦	操作	条目			
序号	1年1月	规范项	起源		
1	扫描 s[1][9]	OP2 → '*' ∘	S[3]		
2	完成: 基于 1 更新 s[3][7]	$\mathtt{E1} o \mathtt{E1}$ OP2 • E2	S[2]		
3	预测 2	$ exttt{E2} ightarrow exttt{o}$ $ exttt{E3}$ $ exttt{OP3}$ $ exttt{E2}$	S[4]		
4	预测 2	$ exttt{E2} ightarrow exttt{o}$ E3	S[4]		
5	预测 3	E3 $ ightarrow$ NUM	S[4]		
6	预测 3	E3 $ ightarrow$ < < LPAR> E < RPAR>	S[4]		
7	预测 5	NUM $ ightarrow$ \circ <unum></unum>	S[4]		
8	预测 5	NUM $ ightarrow$ \circ _{<unum></unum>}	S[4]		
11	扫描 7	-	-		

表 4.6: 状态 S[5]: E \rightarrow $\,$
 $\,$ '+' $\,$
 $\,$ '*' $\,$
 $\,$ $\,$ $\,$

序号	操作	条目			
から	採作	规范项	起源		
1	扫描 s[4][7]	NUM $ ightarrow$ <unum> \circ</unum>	S[4]		
2	完成: 基于 1 更新 s[4][5]	E3 $ ightarrow$ NUM $ \circ $	S[4]		
3	完成: 基于 2 更新 s[4][3]	${\tt E2} ightarrow {\tt E3}$ $ullet$ OP3 ${\tt E2}$	S[4]		
4	完成: 基于 2 更新 s[4][4]	$ extsf{E2} o extsf{E3}$ $ullet$	S[4]		
5	完成: 基于 4 更新 s[4][2]	$ ext{E1} ightarrow ext{E1}$ OP2 E2 $ullet$	S[2]		
6	完成: 基于 5 更新 s[2][2]	$ extsf{E} ightarrow extsf{E}$ OP1 E1 $ullet$	S[0]		

4.3 LL(1) 文法和解析

4.3.1 LL(1) 文法

为了降低解析算法的复杂度,我们可以强制要求 CFG 文法具备某些特性,如 LL(1) (Left-to-right, Left most, lookahead 1 symbol) 有两个基本要求,一是不含左递归,二是无回溯特性。下面对这两个特性进行探讨。

4.3.1.1 左递归和消除

对一条文法规则来说,如果其右侧推导出的第一个符号与左侧符号相同,则存在左递归问题,如($E \mapsto E$ OP1 E1)。左递归可能会使搜索过程无限递归下去,无法终止。一般可以采用下列方式对左递归文法进行修改。

将该方法应用于上一章的计算器文法,可消除其左递归问题。结果如语法规则 4.5所示。

4.3.1.2 无回溯语法

对于每个非终结符的任意两条规则,如果其产生的首个终结符均不同,则前瞻一个单词总能够选择正确的规则。当规则的首个字符是非终结符时,应对该非终结符递归展开直至遇到终结符为止。

$$X \xrightarrow{[i]} 'a' \dots$$

$$X \xrightarrow{[j]} 'b' \dots$$

$$X \xrightarrow{[k]} Y \dots \xrightarrow{[l]} 'c' \dots$$

$$(4.3)$$

当文法规则存在回溯问题时,可以通过提取左公因子消除回溯。

$$X \to' a'A|'a'B|'b'$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \to' a'Y|'b'$$

$$Y \to A|B$$

$$(4.4)$$

将该方法应用于语法规则 4.5, 可消除其回溯问题。结果如语法规则 [1]所示。

4.3.2 构造 LL(1) 解析表

我们定义 $First(X \xrightarrow{[i]} \beta_1\beta_2...\beta_n)$ 表示 X 的第 i 条规则产生的首字符集合。如果 $\epsilon \notin \beta_1$,则 $First(X) = First(\beta_1)$;如果 $\epsilon \in \beta_1 \& ... \& \epsilon \in \beta_i$,则 $First(X) = First(\beta_{i+1})$ 。如果 $\epsilon \in \beta_1 \& ... \& \epsilon \in \beta_n$,我们还需考虑 X 之后可能出现的字符 $Follow(X \xrightarrow{[i]} ...)$,并据此决定是否采用规则 $X \mapsto \epsilon$ 。因此我们使用 $First^+(X \xrightarrow{[i]} \beta)$ X 的第 i 条规则可产生的首字符集合(不含 ϵ)。

$$First^{+}(X \mapsto \beta) = \begin{cases} First(\beta), & \text{if } \epsilon \in \beta \\ First(\beta) \cup Follow(X), & \text{otherwise} \end{cases}$$

基于上述定义,我们可以准确描述出无回溯语法的必要性质。

$$\forall 1 \leq i, j \leq n, First^+(X \to \beta_i) \cap First^+(X \to \beta_i) = \emptyset$$

表 ??展示了语法 [1]中每条规则对应的 First 集合;其每一行表示一个非终结符,每一列表示一个终结符,单元格内容表示对应的规则编号。

表 4.7: 记录每条生成式的 First 集合。

	<unum></unum>	'+'	'-'	'*'	'/'	1 ^ 1	'('	')'	ϵ
E	[1]		[1]				[1]		
E'		[2]	[2]						[3]
E1	[4]		[4]				[4]		
E1'				[5]	[5]				[6]
E2	[7]		[7]				[7]		
E2'						[8]			[9]
E3	[10]		[10]				[11]		
NUM	[12]		[13]						
OP1		[14]	[15]						
OP2				[16]	[17]				
OP3						[18]			

进一步消除表 4.7中的 ϵ 字符便可以得到 $First^+$ 或 LL(1) 解析表 4.8。基于无回溯文法的特性,该表的所有单元格至多存在一条规则。通过查表便可以实现精准快速解析。

表 4.8: LL(1) 解析表: 生成式的 First+ 集合。

	<unum></unum>	'+'	'-'	'*'	'/'	1 ^ 1	'('	')'
E	[1]		[1]				[1]	
E'		[2]	[2]					[3]
E1	[4]		[4]				[4]	
E1'		[6]	[6]	[5]	[5]			[6]
E2	[7]		[7]				[7]	
E2'		[9]	[9]	[9]	[9]	[8]		[9]
E3	[10]		[10]				[11]	
NUM	[12]		[13]					
OP1		[14]	[15]					
OP2				[16]	[17]			
OP3						[18]		

图 4.1: 应用表 4.8解析 1+2*3 的过程和最终的语法解析树

图 4.1展示了使用表 4.8解析算式 1+2*3 的过程和最终结果。

4.4 练习

1. 已知下列正则表达式 CFG 文法,应用 Earley 算法解析正则表达式 ab*|c。

- 2. 上述文法是否是 LL(1), 如果不是将其改为 LL(1) 并构造解析表。
- 3. 分析比较 Earley 算法和 LL(1) 算法的复杂度。

Bibliography

[1] Jay Earley. "An efficient context-free parsing algorithm." Communications of the ACM 13, no. 2 (1970): 94-102.