Séries numériques (5)

J. Ribault

10 novembre 2016

QCM

Soit $\alpha \in \mathbb{R}$.

La série numérique $\sum rac{(-1)^n}{n^{lpha}}$ est convergente **si et seulement si**

- $\alpha \leq 0$
- $0 < \alpha \le 1$
- \bullet $\alpha > 1$
- $\alpha > 0$

QCM

Soit $\alpha \in \mathbb{R}$.

La série numérique $\sum \frac{(-1)^n}{n^{\alpha}}$ est absolument convergente si et seulement si

- $\alpha \leqslant 0$
- $0 < \alpha \le 1$
- $\alpha > 1$
- $\alpha > 0$

QCM

Soit $\alpha \in \mathbb{R}$.

La série numérique $\sum \frac{(-1)^n}{n^{\alpha}}$ est semi-convergente si et seulement si

- $\alpha \leq 0$
- $0 < \alpha \le 1$
- $\alpha > 1$
- $\alpha > 0$

QCM

Soit $\sum u_n$ une série numérique réelle.

On peut affirmer que la série $\sum \sqrt{u_n}$ est bien définie.

- VRAI
- FAUX

QCM

Soit $\sum u_n$ une série numérique réelle.

On peut affirmer que la série $\sum (u_n)^2$ est bien définie.

- VRAI
- FAUX

QCM

Soit $\sum u_n$ une série numérique réelle à termes positifs.

On peut affirmer que la série $\sum \sqrt{u_n}$ est bien définie.

- VRAI
- FAUX

QCM

Soit $\sum u_n$ une série numérique réelle, à termes positifs, convergente.

On peut affirmer que la série $\sum \sqrt{u_n}$ est convergente.

- VRAI
- FAUX

QCM

Soit $\sum u_n$ une série numérique réelle, à termes positifs, convergente.

On peut affirmer que la série $\sum (u_n)^2$ est convergente.

- VRAI
- FAUX