SM302 - A/C Structures

Flight Loads Flight Mechanics - Regulation - Failures

Aerodynamics - Surface Loads Inertial Flight Loads - Flexible Structures

Sym. / Asym Manoeuvre. Turbulence / Gusts Pressure, Gyroscopic & Thermal Loads

Ground Loads *Landing Loads - Ground Roll Loads*

Certification of Civil A/C | MTOW ≥ 5700 kg

Quality Process : Design, Compute, Test, Service Fulfill JAR Part25 (≈FAR25) & Obtain Type Certificate

Limit Load ≡ Max. in Service

Ultimate Load ≡ LL* Regulation Coeff

RC = 1.5 if no other specification

RC is JAR-Statutory, depending: Load Nature (hydr.= 2)

Occurrence Probability

NB: Fatigue is specific (SL<LL, A/C lives)

Safety Goal ~10⁻⁷/FI.Hour (~10⁻⁹/FH/Pax)

Two <u>Aerodynamical Orthonormed Direct G-Bases</u> defined by 2 <u>Plans</u>

Aircraft Ref. $x_{A/C} \equiv \text{Held by } \underline{A/C \ Longi.Axe} \ \text{Fwd (see sheet 5)}$ $x_{A/C}z_{A/C} \equiv \underline{A/C \ Sym.Plan} \ (z_{A/C}Down)$

Aerodyn.Ref. $X = \text{Held by } \underline{\text{Relative Speed A/C-Air}} \text{ (Fwd)}$ $XY = \text{Plan } \bot x_{A/C} z_{A/C} \text{ (Y RH)}$

3 A/C Rates Roll Rate $p \equiv A/C$ Angular Speed around $x_{A/C}$ Pitch Rate $q \equiv$ " " " $y_{A/C}$ Yaw Rate $r \equiv$ " " " $z_{A/C}$

2 Aero Angles Attack $\alpha \equiv \text{angle } (X; x_{A/C}) \text{ proj.on } x_{A/C} z_{A/C}$ $\beta \equiv \text{angle } (x_{A/C}; X) \text{ proj.on } XY$

Aerodynamic Efforts Definitions

Moments on Aircraft

Roll (around
$$x_{A/C}$$
)

Pitch (around $y_{A/C}$)

Yaw (around $z_{A/C}$)

$$L \equiv \overline{q} \mathcal{S}_{ref} \ell_{ref} C_{l}$$

$$M \equiv \overline{q} \mathcal{S}_{ref} \ell_{ref} C_{m}$$

$$N \equiv \overline{q} \mathcal{S}_{ref} \ell_{ref} C_{m}$$

<u>Aerodynamic Resultants</u>

With:
$$\overline{\mathbf{q}}$$
 = Bernoulli Kinetik Pressure = $\frac{1}{2}\rho\mathbf{V}^2$ = $\frac{1}{2}\rho_0\mathbf{V}_{\text{equiv}0}^2$ $\left[\rho_0 = 1.225 \text{ kg/m}^3\right]$

S_{ref} = A/C Reference Aero Area (= Wing Conventional Surface)

 $\ell_{ref} = A/C$ Reference Aero Distance $= V_{ref}$ = Wing Conventional Cord

Aerodynamic Wing Profile (2D) Pitch Model

Possible Convention Zero Lift $\Leftrightarrow \alpha \equiv 0$ (\Rightarrow precise definition of $x_{A/C}$ axe)

X a A

Control : No effect on profile $\Leftrightarrow \delta = 0$

The Flow induces the constant pure moment $M_0 = \overline{q} S_{ref} \ell_{ref} C_{m0}$ and the Resultant Lift

$$R_z \equiv R_{z\alpha} + R_{z\delta} + R_{z\delta}$$
| Iift induced by α and applied at F_α and applied at F_δ | Iin linear model : $C_z \equiv \frac{\partial C_z}{\partial \alpha} \alpha + \frac{\partial C_z}{\partial \delta} \delta \equiv A\alpha + D\delta$

 F_{α} = Main Aerodyn.Center (classically 25% of Cord); F_{β} = Secondary Aerodyn.Center

The Lift Center F_{LC} is the Point where M = 0

Inertial Loads

NB: $g_0 = 9.80665 \text{ m/s}^2$ (conventional), whereas g is the local gravity

Flexible A/C

Quasi-Static Modification of Shape

Dynamic Coupling Transcient and Vibration

JAR Part 25-333b Flight Limit Domain

Inertia (JAR §25.337): $n_{z_{min/max}} \Leftrightarrow Extremal Continuous Loads (3 sec):$

$$\mathbf{n}_{z \min < 0} \stackrel{\text{JAR}}{=} -1 ; \mathbf{n}_{z \max > 0} \stackrel{\text{JAR}}{=} \left[2.5 (\text{LargeA/C}) ; 3.8 (\text{MiddleA/C}) \right] \left[\mathbf{n}_{z \max > 0} \stackrel{\text{JAR}}{=} 2.1 + \frac{10886}{\text{MTOW(kg)} + 4536} \right]$$

Aerodynamics (JAR §25.103&333)

2 Min and 2 Max Equivalent Ground Design Velocities

 $V_A \stackrel{\text{JAR}}{=} \text{Min V for Continuous Stable Flight with Maneuvers} = V_{\text{S1G}} \cdot \sqrt{n_{z_{\text{max}}>0}}$ where $V_{\text{S1G}} = \text{Stall Velocity at n}_z = 1G$, MTOW, Flaps Retracted

 $V_{c} \stackrel{\text{JAR}}{=} \text{Max Cruise V with Full Engine (in Horizontal Flight)}$ $V_{c} \text{ must be significantly (\sim twice)$ Higher than V_{B}, where}$ $V_{B} \stackrel{\text{JAR}}{=} \text{Simil.} V_{A} \text{ but with additional 17m/s Cruise Gust } = V_{\text{S1G}} \cdot \sqrt{N_{\text{zmax with Gust Migher Simil.}}}$

 $V_{D} \stackrel{\text{JAR}}{=} \text{Never Exceed V Engine+Dive} \approx 1.25 V_{NE}$

Flight Manoeuvres

Symmetrical Pitch

Antisymmetrical Roll

Asymmetrical Yaw Command

Turbulence & Gusts

Commands: p (Roll) Ailerons

q (Pitch) Elevator

r (Yaw) Rudder

n₂ dominant ⇒ Pitch (& Roll) are critical for operation (joystick)

Symmetrical Steady Ressource

Resultant:
$$n_z Mg_0 \equiv \overline{q} \mathcal{S}_{ref} C_z = \frac{1}{2} \rho V^2 \mathcal{S}_{ref} \frac{\partial C_z}{\partial \alpha} \alpha$$

Accel. at low point
$$\gamma_z = g_0(n_z - 1) = \frac{V^2}{R}$$

Stabilised Pitch Rate $q = \frac{V}{R}$

$$\Rightarrow q_{ressour.} = \frac{g_0(n_z - 1)}{V}$$

NB: In Stabilised Turn
$$q_{turn} = \frac{g_0 \left(n_z - \frac{1}{n_z} \right)}{V}$$

Angles of Attack: General: $\alpha = q \frac{d_F}{V}$ d_F being $x_{A/C}$ distance G to F (A/C main center)

Average Horiz. Empennage:
$$\alpha_{\rm E} = \alpha_{\rm Etrim} + (\alpha - \epsilon_{\rm defl.}) + q \frac{d_{\rm E}}{V}$$

 $\alpha_{\text{Etrim}} = \text{Adjusted Incidence of Horiz.Empen.} / x_{\text{A/C}}$

$$\epsilon_{\text{defl.}} \equiv \text{Aero Deflection made by Wing, possibly linearised } \left[= \epsilon_{\text{defl.}0} + \frac{\partial \epsilon_{\text{defl.}}}{\partial \alpha} \alpha \right]$$

 $d_{E} x_{A/C}$ distance G to F_{E} (empennage main center)

Transcient Ressource State (JAR §25.331)

- Inertial Rotation Loads and Structure Flexion
- α_{E} max at V_{A} , Pilot Control for other Speeds

Steady Roll Manoeuvre

Rigid A/C Equation-Type:
$$\alpha_{\text{induced by p at y distance}} \equiv \frac{py}{V}$$

$$\mathbf{I}_{\mathbf{x}}\mathbf{p}^{\bullet} \equiv \overline{\mathbf{q}} \, \mathbf{S}_{\mathrm{ref}} \ell_{\mathrm{ref}} \left(\frac{\partial \mathbf{C}_{\ell_{\mathrm{ref}}}}{\partial \delta_{\ell_{\mathrm{ref}}}} \delta_{\ell_{\mathrm{ref}}} - \frac{\partial \mathbf{C}_{\ell_{\mathrm{ref}}}}{\partial \frac{\mathbf{p}\ell_{\mathrm{ref}}}{\mathbf{V}}} \mathbf{p}_{\mathrm{ref}} \right) \quad \text{(= driving-resisting)} \, \, \textit{steady if} \, \, \mathbf{p} \equiv \mathbf{0} \quad \textit{dynamic if} \, \, \mathbf{p}^{\bullet} \, \textit{max}$$

NB: All parameters being unsymmetrical and non-constants, are equivalent coefficients

Rolling Certification Conditions (JAR §25.349):

- At any $n_z \in [0; \frac{2n_{zmax>0}}{3}]$
- At V_A with $\delta_{\ell_{max}}$ aileron maximal deflection (p_A = induced roll rate) At V_C with δ_{ℓ} inducing the same p_A At V_D with δ_{ℓ} inducing no less than $p_A/3$

NB : Aileron Efficiency $\eta_{\text{aileron}} = \frac{p_{\text{rigid A/C}}}{p_{\text{flexibl A/C}}}$ must remain significant in spite of wing torsion