

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA Departamento de Informática Integrado / Análise e Desenvolvimento de Sistemas / Licenciatura em Computação

Modelo Lógico

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

Modelo Lógico

- É o mais próximo de uma implementação de projeto físico de banco de dados
- Existem vários modelos, porém o mais usado é o modelo relacional, baseado em tabelas

Tabela de Clientes							
ID	<u>Nome</u>	ID Conta					
1	Julia	111.222.333-44	2				
2	Carlos	555.666.777-88	1				
3	Amanda	123.456.789-00	3				

	Tabela de Contas						
ID	<u>Agência</u>	<u>Número</u>					
1	3460	71542					
2	5421	65321					
3	7410	02145					

Modelo Relacional

- No modelo relacional, dados são armazenados no formato de tabelas (relações)
- Cada atributo é uma coluna e cada instância é uma linha

Não podemos ter instâncias exatamente iguais (todos os

atributos idênticos)

	Tabela de Clientes							
ID	<u>Nome</u>	ID Conta						
1	Julia	111.222.333-44	2					
2	Carlos	555.666.777-88	1					
3	Amanda	123.456.789-00	3					

Representação com Diagrama de Esquemas

- Representar todos os atributos e instâncias em uma tabela ocupa muito espaço
 - Solução: descrever apenas o esquema da tabela usando o diagrama de esquemas
 - **■** Ex:

Esquema é a estrutura da tabela (ex: nome, atributos, chaves, relacionamentos, etc)

Representação "UML"

- Outra forma de representar o esquema de tabelas é usando a notação da ferramenta brModelo
 - Notação semelhante ao diagrama de classes UML

Problema: Descrever o esquema da tabela de forma gráfica ocupa

muito espaço

- Solução: descrever o esquema usando notação matemática
 - Ex: Clientes(id, nome, cpf, id_conta)
 Contas(id, agencia, numero)

- Sintaxe: $R(A_1, A_2, ..., A_n)$
 - o R é o nome da relação
 - A_i é o nome do atributo
 - o **n** é o grau ou aridade da relação
 - dom(A_i) é o domínio do atributo A_i
- Ex: Contas(id, agencia, numero)
 - A relação Contas tem atributos id, agencia e numero
 - A relação Contas tem grau 3

- Ex: Clientes(id, nome, cpf, id_conta)
 - A relação Clientes tem atributos id, nome, cpf e id_conta
 - A relação Clientes tem aridade 4
 - o dom(id) = INT
 - o dom(nome) = VARCHAR(50)
 - o dom(cpf) = VARCHAR(11)
 - o dom(id_conta) = INT

- Uma relação R possui estados r(R) que representam que dados estão armazenados em um determinado momento nessa relação
- $r(R) = \{t_1, t_2, ..., t_m\}$ onde $t_k = \langle v_1, v_2, ..., v_n \rangle$ é uma tupla
 - v_i são os valores de cada atributo A_i da tupla t
 - \circ $v_i \in dom(A_i)$
- Ex: Seja R = Clientes(id, nome, cpf, id_conta)
 - \circ t₁ = <1, 'Julia', 111.222.333-44, 2>
 - \circ t₂ = <2, 'Carlos', 555.666.777-88, 1>
 - $t_3 = <3$, 'Amanda', 123.456.789-00, 3>

ID	Nome	CPF	ID Conta
1	Julia	111.222.333-44	2
2	Carlos	555.666.777-88	1
3	Amanda	123.456.789-00	3

- Podemos acessar o valor de cada atributo de uma tupla usando a notação
 t[A_i] ou t.A_i
- **Ex:** Seja R = Clientes(id, nome, cpf, id_conta) e r(R)={t₁, t₂}
 - \circ t₁ = <1, 'Julia', 111.222.333-44, 2>
 - \circ t₂ = <2, 'Carlos', 555.666.777-88, 1>
- Podemos acessar os valores dos atributos de t_i.
 - \circ t₁[nome] = <'Julia'>
 - \circ t₁.nome = <'Julia'>
 - o t₂[cpf, id_conta]= <555.666.777-88, 1>

Exercício - Representação matemática

- Seja um sistema de livraria online, com as seguintes relações:
 - \circ R₁ = Clientes(id, nome, cpf, endereco)
 - \circ R₂ = Livros(id, titulo, autor, editora, genero)
- Forneça exemplos de tuplas de cada uma das relações acima
- Explique porque n\u00e3o \u00e9 poss\u00edvel inserir duas tuplas id\u00e9nticas.
 Forne\u00e7a exemplos.

Tipo de Dados de Atributos

- Define que valores de dados um atributo pode assumir (domínio do atributo)
- Cada sistema de gerenciamento de banco de dados (SGBD) fornece suporte a tipos de dados diferentes
 - o int, smallint, bigint
 - o float, double
 - boolean
 - date, datetime, time
 - varchar(n), text

INT ou INTEGER

- Inteiro de tamanho normal (4 bytes),
 - Um inteiro com sinal pertence ao intervalo:
 - $[-2^{31}, +2^{31}-1] = [-2147483648, +2147483647]$
 - Um inteiro sem sinal pertence ao intervalo:
 - \blacksquare [0, 2³²] = [0, 4294967295]
- Podemos ter números inteiros de tamanho maior ou menor que 4 bytes, de acordo com o que for necessário para a aplicação
 - TINYINT (1B), SMALLINT (2B), INT (4B), BIGINT (8B)

INT ou INTEGER

- Cálculo do intervalo de valores de um inteiro de tamanho N bytes:
 - Se o inteiro possui sinal (+/-):
 - \blacksquare [-2^{N*8}/2, +2^{N*8}/2 1]
 - Se o inteiro não possui sinal (+/-):
 - \blacksquare [0, +2^{N*8}]

FLOAT, DOUBLE e NUMERIC(p,d)

- Computadores não conseguem armazenar um conjunto de valores infinito com exatidão, pois eles são sistemas binários
 - Porém números fracionários são infinitos
 - Problema: ao fazer operações com números fracionários, podemos ter erros de aproximação
 - Erros de aproximação são minimizados pela precisão do número fracionário (FLOAT ou DOUBLE)

FLOAT, DOUBLE e NUMERIC(p,d)

- Float: Número decimal de precisão simples (32 bits)
- Double: Número de decimal de precisão dupla (64 bits)
- Numeric(p,d): número decimal de ponto fixo com p dígitos (incluindo a parte inteira e fracionária) e d casas decimais (algarismos da parte fracionária)
 - **Ex**: numeric(3,1) permite armazenar os números:
 - **44,2**
 - **1**,8

BOOLEAN

- BOOLEAN: Valores booleanos que podem ser representado por false/true ou 0/1
 - Ex: Aprovação ou reprovação em uma disciplina

```
create table disciplina (
nome_aluno varchar(20),
nota double,
aprovado_reprovado boolean
);
```

DATE e TIME

- DATE: Uma data. A faixa suportada é entre '1000-01-01' e '9999-12-31'
 - MySQL mostra valores DATE no formato 'AAAA-MM-DD'
 - Ex: armazenar data de nascimento de uma pessoa
- **TIME:** A faixa é entre '-838:59:59' e '838:59:59'.
 - MySQL mostra valores TIME no formato 'HH:MM:SS'
 - Ex: armazenar o horário de chegada e saída no IFBA

DATETIME

- DATETIME: Um combinação de hora e data. A faixa suportada é entre '1000-01-01 00:00:00' e '9999-12-31 23:59:59'
 - MySQL mostra valores DATETIME no formato 'AAAA-MM-DD HH:MM:SS
 - Ex: armazenar o dia e horário que um funcionário chegou para trabalhar

VARCHAR e TEXT

- VARCHAR (M): Uma string de tamanho variável M caracteres
 - \circ M = [1, 255]
 - Se o valor M especificado for maior que 255, o tipo do atributo é convertido para **TEXT**
- TEXT: String com tamanho máximo de 65535 caracteres
 - Cada valor do atributo consome 2¹⁶-1 bytes
- LONGTEXT: máximo de 4,294,967,295 caracteres
 - Cada valor do atributo consome 2³²-1 bytes

Chave em Banco de Dados

- É um ou mais atributos de uma tabela que identificam um registro ou conjunto de registros de forma exclusiva
 - Chave candidata
 - Chave primária
 - Chave primária surrogada
 - Chave estrangeira

Chave Candidata

- São atributos determinantes que PODEM identificar registros de uma tabela de forma exclusiva
 - Não pode ter valores repetidos ou nulos (restrição de integridade de entidade)

- Funcionários diferentes possuem
 CPFs e RGs distintos
- Podemos usar CPF e/ou RG para identificar cada funcionário

Chave Primária (*Primary Key ou PK*)

• É uma **chave candidata** ESCOLHIDA pelo projetista do banco de dados para identificar os registros

Funcionario

P cpf: INT
rg: INT
nome: VARCHAR(50)
idade: INT
data_nascimento: DATE
tel 1: INT
tel 2: INT

Representação no modelo E-R: círculo preenchido

Representação no modelo lógico: atributo sublinhado, ou com chave dourada ou preta ao lado

Chave Primária Surrogada

- Não possui significado para aplicação ou usuário
- Serve apenas para garantir a exclusividade dos registros
- Normalmente esse atributo é escondido do usuário

Tabela de Clientes						
ID	<u>Nome</u>	CPF	ID Conta			
1	Julia	111.222.333-44	2			
2	Carlos	555.666.777-88	1			
3	Amanda	123.456.789-00	3			

	Tabela de Contas							
ID	<u>Agência</u>	<u>Número</u>						
1	3460	71542						
2	5421	65321						
3	7410	02145						

Chave Estrangeira (*Foreign Key ou FK*)

- É um atributo de uma tabela que estabelece um relacionamento com a chave primária de outra tabela
- Permite buscar dados armazenados em múltiplas tabelas

	Ta	abela de Clientes		PK Tabela de Contas			
ID	<u>Nome</u>	<u>CPF</u>	ID Conta		ID	<u>Agência</u>	<u>Número</u>
1	Julia	111.222.333-44	2	7	(-)	3460	71542
2	Carlos	555.666.777-88	1	>>	2	5421	65321
3	Amanda	123.456.789-00	3	\rightarrow	(3)	7410	02145

Chave Estrangeira (Foreign Key ou FK)

Representação no modelo lógico: atributo com chave prata ou verde ao lado

Dizemos que o atributo "Cliente.id_conta" é uma chave estrangeira que referencia o atributo "Contas.id"

Outra forma de falar é que "Cliente.id_conta" refere-se ao atributo "Contas.id"

Isto é, há **restrição de integridade referencial** de
Clientes para Contas

Chave Estrangeira (*Foreign Key ou FK*)

Uma chave estrangeira pode se referir a um atributo de sua mesma tabela

Ex: cpf_supervisor em Funcionário se refere a um cpf da mesma tabela Funcionário

FUNCIONARIO

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco Rua das Flores, 751, São Paulo, SP		Salario	Cpf_supervisor	Dnr
João	В	Silva	12345678966	09-01-1965			20.000	33344555587	5
Fernando	Т	Wong	33344555587	03-12-1955	Rua da Lapa, 34, São Paulo, SP M		40.000	88866555576	5
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F	25.000	98765432168	4
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo Andre, SP	F	43.000	88866555576	4
Ronaldo	K	Lima	66688444476	15-09-1962	Rua Rebouças, 65 Piracicaba, SP		38.000	33344555587	5
Joice	Α	Leite	45345345376	31-07-1972	Av. Lucas Obes, 74, São Paulo, SP	F	25.000	33344555587	5
André	V	Pereira	98798798733	29-03-1963	Rua Timbira, 35, São Paulo, SP	М	25.000	98765432168	4
Jorge	E	Brito	88866555576	10-11-1937	Rua do H <mark>orto, 35, São Paulo, SP</mark>	M	55.000	NULL	1

Chaves estrangeiras podem conter o valor NULL

Exercício - Chaves

- Seja um sistema de vendas online, onde temos:
 - Clientes que compram um ou mais produtos
 - Produtos precisam ser entregues no endereço do cliente
 - Ha um frete a ser pago e um prazo de entrega
 - Funcionários organizam as entregas para cada cidade
- Quais são as chaves primárias e estrangeiras das tabelas desse sistema?
- Porque n\u00e3o podemos ter valores NULL nas chaves prim\u00e1rias?

Relacionamentos no Modelo Lógico

- Chaves estrangeiras e primárias são usadas para estabelecer relacionamentos
 - Chave estrangeira => chave primária

	Ta	abela de Clientes		PK Tabela de Contas			
ID	<u>Nome</u>	<u>CPF</u>	ID Conta		ID	<u>Agência</u>	<u>Número</u>
1	Julia	111.222.333-44	2	7	(1)	3460	71542
2	Carlos	555.666.777-88	1	>	2	5421	65321
3	Amanda	123.456.789-00	3	\rightarrow	(က	7410	02145

Relacionamentos 1:N (um para muitos)

Podemos ter N clientes associados a 1 mesma conta

Clientes						Contas	G.
id	nome	cpf	id_conta		id	agencia	numero
1	João	111.222.333-44	4		4	1234	1111
2	Josefa	444.555.666-77	5		5	5678	2222
3	Carlos	888.999.000-11	4		6	9102	3333
4	Maria	123.456.789-12	6		7	3456	4444

Representação no modelo lógico:

seta com uma das extremidades com cardinalidade máxima N

Cada cliente pode ter mais de uma conta no banco.

Como representar isso no DB?

Relacionamentos N:N (muitos para muitos)

Tabela de referência cruzada (ou de Junção):

Tabela associativa que mapeia duas ou mais tabelas através de suas chaves primárias

A tabela é composta pelas chaves estrangeiras das tabelas referenciadas

Convenção: nome da tabela formado pelo nome das tabelas referenciadas

Relacionamentos N:N (muitos para muitos)

Cada 1 cliente pode possuir N contas no banco

	Clientes							
	id	nome	cpf					
→ [1 João		111.222.333-44					
la La	2	Josefa	444.555.666-77					
	3	Carlos	888.999.000-11					
18	4	Maria	123.456.789-12					

Cliente	_Conta			Contas	
id cliente	id_conta		id	agencia	numero
1	4	≻ [4	1234	1111
1	5	> [5	5678	2222
2	6		6	9102	3333
3	6		7	3456	4444
4	7	· «			

Relacionamentos N:N (muitos para muitos)

E N clientes podem possuir a mesma conta no banco

Tabela de referência cruzada (ou de Junção)

Exercício - Relacionamentos

- Construa um modelo lógico para um sistema bancário, no qual:
 - Cada gerente pode gerenciar mais de uma conta
 - Existem diferentes tipos de conta (corrente ou poupança)
 - Cada cliente pode ter mais de uma conta no banco
- Forneça exemplos de como as tabelas se relacionam entre si

Como traduzir do Modelo Conceitual para o Modelo Relacional?

- Tivemos um trabalho considerável para criar o modelo conceitual para facilitar a criação do modelo relacional do DB, mas como conseguimos traduzir de um modelo para o outro ?
 - Devemos seguir a sequência de passos:
 - Tradução das entidades em tabelas (relações)
 - Tradução dos relacionamentos 1:1 e 1:N binários
 - Tradução dos relacionamentos N:N e relacionamentos n-ários
 - Tradução dos atributos multivalorados ou repetitivos
 - Tradução dos entidades especializadas

Tradução de Entidades e Relacionamentos 1:1 ou 1:N

Tabela de Clientes				Tabela de Contas		a de Contas	
ID	<u>Nome</u>	CPF	ID Conta		ID	<u>Agência</u>	<u>Número</u>
1	Julia	111.222.333-44	2	1	1	3460	71542
2	Carlos	555.666.777-88	1	M	2	5421	65321
3	Amanda	123.456.789-00	3	\rightarrow	3	7410	02145

Tradução de Relacionamentos N:N

Tradução de Atributos Multivalorados

Cliente			
id	nome	telefone	
	1 João	99115-4584	
	2 Josefa	3214-5869	
	Carlos	NULL	
	4 João	98561-5869	

Problema 1:

Como telefone é multivalorado, precisamos **repetir todos os outros atributos** somente para adicionar um novo telefone.

Problema 2:

Pessoas sem telefone tem atributo NULL.

Tradução de Atributos Multivalorados

Tradução de Atributos Repetitivos

Para cada atributo repetitivo, criamos uma nova entidade e um relacionamento binário

Alguns autores chamam essa nova entidade de entidade (ou tabela) de cadastro

Tradução de Atributos Repetitivos

Agora podemos traduzir para o modelo relacional usando a regra dos relacionamentos 1:N

	Funcionari	0	Cargo	Cargo_Cliente		
<u>id</u>	nome	id_cargo	<u>i d</u>	cargo		
1	João	1	1	Padeiro		
2	Josefa	1	2	Caixa		
3	Carlos	2	•	Gerente		

Tradução de Entidades Especializadas

Para cada entidade especializada, criamos uma tabela com uma chave estrangeira para a entidade geral (ou generalizada, pai)

F		
nome	<u>cpf</u>	
João	111.222	✓
Josefa	333.444	←
Carlos	555.666	$\overline{}$

23	Funcionario	20
<u>id</u>	salario	cpf
1	1320	111.222
2	2500	333.444

	Cliente					
<u>id</u>	saldo_devedor	cpf				
1	-120.05	555.666				

Exercício - Relacionamentos

- Construa um modelo conceitual para uma padaria, traduza-o para o modelo lógico no qual:
 - Funcionários possuem supervisores, que também são funcionários
 - Cada funcionário possui um cargo, com um salário associado ao cargo
 - Cada funcionário pode realizar uma venda
 - Cada venda é feita para um cliente
 - Clientes e funcionários são pessoas
 - Cada pessoa possui um CPF e um ou mais telefones

Descreva quais são as **chaves** (primárias e estrangeiras), **relacionamentos** (1:N ou N:N), seus **graus** (unário, binário, ternário) e **tabelas de junção**

Referencial Bibliográfico

 KORTH, H.; SILBERSCHATZ, A.; SUDARSHAN, S.
 Sistemas de bancos de dados. 5. ed. Rio de Janeiro: Ed. Campus, 2006.

 DATE, C. J. Introdução a sistemas de bancos de dados. Rio de Janeiro: Ed. Campus, 2004. Tradução da 8ª edição americana.