Introducción a Matplotlib: Visualización de Datos en Python

Matplotlib es una librería fundamental en Python. Permite crear gráficos estáticos, interactivos y animados. Se integra con NumPy y Pandas. Es esencial en ciencia de datos e ingeniería.

by Juan Luis Cueto Morelo

Arquitectura de Matplotlib

Scripting (pyplot)

Interfaz sencilla para gráficos rápidos. Por ejemplo,

Artist

Control granular de cada elemento del gráfico. Por ejemplo,

Backend

Renderizado del gráfico en varios formatos. Por ejemplo,

```
plt.savefig('mi_grafico.png')
```

•

Tipos de Gráficos Comunes

Líneas

Muestra tendencias y series temporales. Utiliza

plt.plot(x, y)

Dispersión

Muestra la relación entre dos variables. Utiliza

plt.scatter(x, y)

Barras

Compara categorías y valores. Utiliza

plt.bar(categorias,
valores)

Histogramas

Representa la distribución de datos. Utiliza

plt.hist(datos)

Tartas

Muestra proporciones de un conjunto. Utiliza

plt.pie(sizes)

Personalización de Gráficos

Títulos y Etiquetas

Añade claridad con

plt.title()

plt.xlabel()

Leyendas

Identifica los elementos con

plt.legend()

Estilos y Colores

Mejora la estética con

linestyle

color

Límites de Ejes

Enfoca en la región relevante con

plt.xlim()

plt.ylim()

Anotaciones

Destaca puntos clave con

plt.annotate()

Subplots y Figuras Múltiples

Organización Flexible

Crea múltiples gráficos en una sola figura para comparaciones en varias cuadrículas.

```
plt.figure(figsize=(8, 6))
```

Define el tamaño de la figura para optimizar la visualización con

```
plt.subplot(2, 2, 1)
```

GridSpec ofrece un control avanzado sobre la disposición de subplots complejos permitiendo definir rejillas irregulares.

Gráficos 3D

Importar Módulo 3D

Necesario para todas las visualizaciones 3D:

from mpl_toolkits.mplot3d import Axes3D

Gráficos de Dispersión 3D

Muestra puntos en un espacio tridimensional. Utiliza

ax.scatter(x, y, z)

Gráficos de Superficie

Visualiza funciones de dos variables. Utiliza

Gráficos de Contorno 3D

Representa curvas de nivel en el espacio. Utiliza

Gráficos Especializados

Contorno

Representa la densidad de datos 2D. Se usa con

plt.contourf(X, Y, Z)

Diagramas de Caja (Boxplots)

Muestra distribución, mediana y valores atípicos. Se usa con

plt.boxplot(data)

Violin Plots

Similar a boxplots, muestra la densidad de distribución. Se usa con

plt.violinplot(data)

Heatmaps

Visualiza matrices de datos con colores. Se usa con

plt.imshow(matriz)

Integración con Pandas

En simples palabras...

Resumen Clave

Matplotlib es una librería fundamental. Permite visualizaciones de datos variadas. Esencial para análisis y comunicación.

Aplicaciones Futuras

Ideal para analítica avanzada. Desarrollar cuadros de mando interactivos. Soporte a modelos de IA y ML.

Usos Complementarios

Se integra con Pandas, NumPy y SciPy. Mejora la preparación de datos. Facilita informes detallados.