Original

INTRODUCTION

et $X_1, X_2, ..., X_n$ be a sequence of independent and identically with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Dilation

INTRODUCTION

et X₁, X₂,..., X_n be a sequence of independent and identically
with E[X_i] = μ and Var[X_i] = σ² < ∞, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Grid Distortion

INTRODUCTION

et X_1, X_2, \ldots, X_n be a sequence of independent and identically

with
$$E[X_i] = \mu$$
 and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Image Compression

INTRODUCTION

et $X_1, X_2, ..., X_n$ be a sequence of independent and identically with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Bitmap

INTRODUCTION

et X₁, X₂,..., X_n be a sequence of independent and identically with E[X_i] = μ and Var[X_i] = σ² < ∞, and let</p>

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Affine

INTRODUCTION

et $X_1, X_2, ..., X_n$ be a sequence of independent and identically with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Elastic Transform

INTRODUCTION

et X₁, X₂,..., X_n be a sequence of independent and identical with E[X_i] = μ and Var[X_i] = σ² < ∞, and let</p>

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Gauss Noise

INTRODUCTION

et $X_1, X_2, ..., X_n$ be a sequence of independent and identically with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Erosion

INTRODUCTION

et $X_1, X_2, ..., X_n$ be a sequence of independent and identically with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Shift Scale Rotate

INTRODUCTION

et $X_1, X_2, ..., X_n$ be a sequence of independent and with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let $S_n = \frac{X_1 + X_2 + \cdots + X_n}{\pi} = \frac{X_1 + X_2 + \cdots + X_n}{\pi}$

Random Brightness Contrast

INTRODUCTION

et $X_1, X_2, ..., X_n$ be a sequence of independent and identically with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Gaussian Blur

INTRODUCTION

et $X_1, X_2, ..., X_n$ be a sequence of independent and identically with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$