

FPV Tutorübung

Woche 2

Preconditions, Postconditions and Local Consistency

Manuel Lerchner

02.05.2023

Quiz

Passwort:

1.

2.

3.

- 1. For each of these graphs show whether the assertion ${\cal Z}$ holds...
- (a) ...using strongest postconditions and
- (b) ...using weakest preconditions.
- 2. Discuss advantages and disadvantages of either approach.

Post-Condition:

Pre-Condition:

Post-Condition:

Pre-Condition:

Post-Condition:

Pre-Condition:

T02: Local Consistency

Check whether the annotated assertions prove that the program computes an $x \neq 0$ and discuss why this is the case.

T02: Local Consistency (Extra Space)

T03: Trouble Sort

- 1. Annotate each program point in the following control flow diagram with a suitable assertion, then show that your annotations are locally consistent and prove that Z holds at the given program point.
- 2. Discuss the drawbacks of annotating each program point with an assertion before applying weakest preconditions, and discuss how you could optimize the approach to proving that Z holds.

T03: Trouble Sort (Extra Space)

