Notes: Model Zoo

 $Source: \ https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html \\$

1 Pre-lecture Work

None. Get plenty of sleep and do well on all your midterms :) $\,$

2 Lecture

Problem 1. What is a decision boundary?

Problem 2. What is a universal approximation theorem?

Problem 3. Neural Networks.

1.	Optional Videos:
	(a) 3Blue1Brown on Neural Networks: https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
2.	What is the hypothesis class of 1-layer neural networks?

3. What is the hypothesis class of n-layer neural networks?

4. What is the VC-dimension of neural networks? (Theorem 20.6)

\mathbf{P}

rol	blem 4. Decision Trees
1.	Optional Videos:
	(a) StatQuest on decision trees: https://www.youtube.com/watch?v=7VeUPuFGJHk(b) StatQuest on regression trees: https://www.youtube.com/watch?v=g9c66TUylZ4
2.	What is the hypothesis class of decision stumps?
3.	What is the hypothesis class of depth k decision trees?

4. What is the VC-dimension of depth k decision trees?

Problem 5. Ensemble Methods

- 1. Optional Videos:
 - (a) StatQuest on random forests: $https://www.youtube.com/watch?v=J4Wdy0Wc_xQ$
 - (b) StatQuest on AdaBoost: https://www.youtube.com/watch?v=LsK-xG1cLYA

 - ${\rm (d)\ Alex\ Ihler\ on\ bagging:\ https://www.youtube.com/watch?v=Rm6s6gmLTdg}$
- 2. What is the hypothesis class of ensemble methods?

3. What is the VC-dimension of ensemble methods?

Problem 6. Nearest Neighbor

- 1. Optional Videos:
 - (a) StatQuest: https://www.youtube.com/watch?v=HVXimeOnQeI
- 2. What is the k-nearest neighbor classification rule?

3. What is the VC-dimension of k-nearest neighbor?

4. Nearest neighbor can still be effective in practice. Why?