os_muldif

大島 利雄

Aug 25, 2017

目次

1	L	ist of Functions 4
	1.1 F	Functions related to differential operators
	1.1.1	Fundamental functions
	1.1.2	Fractional calculus
	1.1.3	Some operators
	1.2 U	Jseful functions
	1.2.1	Extended function
	1.2.2	Numbers
	1.2.3	Polynomials and rational functions
	1.2.4	Functions with real/complex variables
	1.2.5	Lists and vectors
	1.2.6	Matrices
	1.2.7	Strings
	1.2.8	Permutations
	1.2.9	T_{EX}
	1.2.10	
	1.2.1	
	1.2.12	11
	1.2.13	
		some functions in the original library
	1.3.1	数の演算
	1.3.2	多項式,有理式の演算 23
	1.3.3	リスト,ベクトル,配列の演算...........................25
	1.3.4	行列の演算 26
	1.3.5	文字列に関する演算
	1.3.6	構造体に関する函数
	1.3.7	入出力
	1.3.8	型や函数,モジュールに関わる函数 28
	1.3.9	数值函数
	1.3.10	
	1.3.1	
	1.3.12	2 その他の函数
2		Risa/Asir 33
	2.1 F	Risa および Asir
	2.2 A	Asir の特徴

2.3	マンドラインオプション	34
		34
		34
		35
		36
		36
		37
2.9.1		37
2.9.2		39
2.9.3		40
		41
2.10.1		41
2.10.2		42
2.10.3		43
2.10.4	引数	44
2.10.5	コメント	44
2.10.6	文	45
2.10.7	return 文	45
2.10.8	if 文	46
2.10.9	ループ	46
2.10.10		47
2.10.11		47
		48
		49
		51
		53
2.12		53
2.12.1 $2.12.2$		53
2.12.3		55
2.12.4		56
2.12.5		56
		59
2.13.1		59
2.13.2		60
2.13.3	小標数有限体上での多項式環の演算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	60
2.13.4	有限体上の楕円曲線に関する演算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
2.14 Ris	a/Asir と os_muldif.rr	61
2.14.1	os_muldif.rr のインストール	62
3 Fur	nctions	64
3.1 Fu	nctions related to differential operators	64
3.1.1	Fundamental functions	64
3.1.2	Fractional calculus	80
3.1.3	Some operators	08
3.2 Use		11
3.2.1	Extended function	11
3.2.2	Numbers	
3.2.3	Polynomials and rational functions	
3 2 4	· ·	50

3.2.5 Lists and vectors	162
3.2.6 Matrices	175
3.2.7 Strings	196
3.2.8 Permutations	201
3.2.9 T _E X	204
3.2.10 Lines and curves	218
3.2.11 Drawing curves and graphs	232
3.2.12 Applications	265
3.2.12.1 表の作成	265
3.2.12.2 表や行列の作成	267
3.2.12.3 函数値の数表	270
3.2.12.4 点数分布表	272
3.2.12.5 Taylor 展開	273
3.2.13 Environments	275
3.2.14 補足	283
3.2.14.1 行列の入力	283
3.2.14.2 平面図形	285
3.2.14.3 リスト形式函数	288
3.2.14.4 実数値/複素数値函数の解析	290
3.2.14.5 表形式データ	293
3.3 Some functions in the original library	295
3.3.1 数の演算	295
3.3.2 多項式,有理式の演算	303
3.3.3 リスト,ベクトル,配列の演算	316
3.3.4 行列の演算	319
3.3.5 文字列に関する演算	324
3.3.6 構造体に関する函数	326
3.3.7 入出力	329
3.3.8 型や函数, モジュールに関わる函数	333
3.3.9 数値函数	335
3.3.10 描画函数	337
3.3.11 有限体に関する演算	340
3.3.12 その他の函数	347
索引	353

os_muldif.rr for Risa/Asir

A library for computing (ordinary/partial) differential operators

by Toshio Oshima

1 List of Functions

1.1 Functions related to differential operators

以下の函数は module 化され、函数名の先頭に os_md. をつけて、os_md.muldo() のように呼び出す.

1.1.1 Fundamental functions

- 1. $\operatorname{muldo}(p_1, p_2, [x, \partial_x] | \text{lim}=n) \notin \operatorname{th} \operatorname{muldo}(p_1, p_2, x | \text{lim}=n)$ $\operatorname{muldo}(p_1, p_2, [[x_1, \partial_{x_1}], [x_2, \partial_{x_2}], \ldots] | \text{lim}=n)$
 - :: 有理函数(初等函数でもよい)係数の常(または偏)微分作用素(の行列)の積(\Leftarrow [∂_x ,x] = 1)
- 2. $\operatorname{muledo}(p_1, p_2, [x, \partial_x])$ $\sharp \text{$t$}$ is $\operatorname{muledo}(p_1, p_2, x)$
 - :: Euler 型常微分作用素(の行列)の積 (\leftarrow [∂_x, x] = x)
- 3. transpdo $(p, [[x_1, \partial_{x_1}], [x_2, \partial_{x_2}], ...], [[y_1, \partial_{y_1}], [y_2, \partial_{y_2}], ...] | ex=1)$
 - :: 微分作用素の変換 $(x_i \mapsto y_i = y_i(x), \partial_{x_i} \mapsto \partial_{y_i} = c_j(x) + \sum_{\nu} a_{j\nu}(x) \partial_{x_{\nu}})$
- 4. translpdo(p,[[x_1 , ∂_{x_1}],[x_2 , ∂_{x_2}],...],mat)
 - :: 微分作用素の線形座標変換 $(x_i \mapsto \sum_i (mat)_{ij} x_j)$
- 5. appldo $(p,r,[x,\partial_x])$ $\exists \text{$t$}$ appldo $(p,r,[x_1,\partial_{x_1},x_2,\partial_{x_2},\ldots])$
 - :: 微分作用素(の行列)の有理式や初等函数(の行列)への作用の計算
- 6. $adj(p, [x, \partial_x])$ \$\pi t adj(p, [[x_1, \partial_{x_1}], [x_2, \partial_{x_2}], \ldots])
 - :: 微分作用素(の行列) p の formal adjoint
- 7. $\operatorname{sftpexp}(p,[x,\partial_x],q,r)$ \$\pi\tau \text{sftpexp}(p,[[x_1,\partial_{x_1}],\ldots],q,r])
 - :: 微分作用素 p を $q^{-r} \circ p \circ q^r$ と変換する
- 8. appledo($p,r,[x,\partial_x]$)
 - :: Euler 型常微分作用素の有理式への作用の計算
- 9. $\operatorname{divdo}(p_1, p_2, [x, \partial_x] | \text{rev=1})$
 - :: 常微分作用素の割り算
- 10. $\operatorname{mygcd}(p_1, p_2, [x, \partial_x] | \operatorname{rev=1,dviout}=n) \quad \sharp \, \text{t it } \operatorname{mygcd}(p_1, p_2, [x] | \operatorname{rev=1,dviout}=n) \\ \operatorname{mygcd}(p_1, p_2, x | \operatorname{dviout}=n), \quad \operatorname{mygcd}(p_1, p_2, 0 | \operatorname{dviout}=n)$
 - :: 有理函数係数の常微分作用素(またはxの多項式,または正整数) p_1 と p_2 の GCD(最大公約元)
- 11. $mylcm(p_1, p_2, [x, \partial_x] | rev=1)$ $\sharp \hbar i$ $mylcm(p_1, p_2, [x] | rev=1)$ $mylcm(p_1, p_2, x),$ $mylcm(p_1, p_2, 0)$
 - :: 有理函数係数の常微分作用素(またはx の多項式,または正整数) p_1 と p_2 の LCM(最小公倍元)
- 12. $m1div(m,n,[x,\partial_x])$ $\sharp \hbar t \ m1div(m,n,[x])$ $\sharp \hbar t \ m1div(m,n,x)$
 - :: 有理函数係数の常微分作用素 (or x の多項式) の正方行列 m と有理式 (or x を含まない有理式) の正方行列 n に対し, $m=R[1](\partial_x-n)+R[0]$ (or m=R[1](x-n)+R[0]) となるリスト R=[R[0],R[1]] を返す. R[0] は微分 (or x) を含まない.
- 13. $qdo(p_1, p_2, [x, \partial_x])$
 - :: 常微分方程式 $p_1u=0$ に対し $q_1p_2u=0$ となる微分作用素 q_1 と $q_2p_2u=u$ となる微分作用素 q_2 の リスト $[q_1,q_2]$ を返す
- 14. $mdivisor(m, [x, \partial] | trans=1, step=1, dviout=t)$
 - mdivisor(m, x | trans=1, step=1, dviout=t), mdivisor(m, 0 | trans=1, step=1, dviout=t)
 - :: 有理函数係数の常微分作用素/1 変数多項式や整数の行列の単因子を得る
- 15. $\operatorname{sqrtdo}(p,[x,\partial_x])$?
 - $x \mapsto 1/x$ で $x \in \mathbb{R}$ のべき倍を除いて)不変な微分作用素 $x \in \mathbb{R}$ に対する変数変換 $x \mapsto y = x + \sqrt{x^2 1}$
- 16. toeul(p,[x, ∂_x],n)

- :: 確定特異点型常微分作用素を x=n で Euler 型に変換
- 17. fromeul(p,[x, p_x],n)
 - :: Euler 型常微分作用素を元に戻す(toeul ($p,[x,\partial_x],n$) の逆変換)
- 18. expat(p,[x, ∂_x],n)
 - :: 確定特異点型常微分作用素の x=n での特性指数を求める
- 19. $sftexp(p, [x, \partial_x], n, r)$
 - :: 常微分作用素 p を $(x-n)^{-r} \circ p \circ (x-n)^r$ に変換する
- 20. fractrans(p,[x, ∂_x], n_0 , n_1 , n_2)
 - \dots 常微分作用素 p に $(n_0, n_1, n_2) \mapsto (0, 1, \infty)$ という一次分数変換を行う
- 21. chkexp(p,[x, ∂_x],n,r,m)
 - $:: j=0,\ldots,m-1$ の全てに対し、確定特異点型常微分作用素 p の解 u_j で $(x-n)^{-(r+j)}u_j$ が x=nで正則でそこでの値が 1 となるものの存在条件
- 22. soldif(p,[x, ∂_x],n,q,m)
 - :: 常微分作用素 p の x=n の近傍での $z^q(1+\sum_{j=1}^\infty c_j z^j)$ の形の形式解に対し、長さ m+1 のベク トル [1 $c_1 c_2 \cdots c_m$] を返す (z = x - n).
- 23. okuboetos(p, [x, ∂_x] | diag=[c_1, c_2, \dots])
 - :: 単独 m 階 Okubo 型方程式 pu=0 (n 階の項の係数が n 次以下の多項式) を Okubo 型の 1 階のシ ステムに変換する
- 24. stoe(p,[x,dx],m)
 - :: 1 階の常微分方程式系を単独高階に直す
- 25. $dform(\ell, x|dif=1)$
 - :: 変数 $x[0],x[1],\ldots$ の 1 次微分形式 $\sum \ell[i][0]d(\ell[i][1])$, または 2 次微分形式 $\sum \ell[i][0]d(\ell[i][1])$ \wedge $d(\ell[i][2])$ の計算. dif=1 は 1 次微分形式の外微分の計算.
- 26. solpokubo $(p, [x, \partial_x], n)$
 - :: 単独 Okubo 型常微分作用素 p の n 次の固有多項式と固有値を求める

1.1.2 Fractional calculus

この項は、[O2] の主要結果(基本的部分は[O1]で解説)をRisa/Asir上で実現したものとなっている.

- 27. laplace $(p, [x, \partial_x])$ $\sharp h$ laplace $(p, [x_1, \partial_{x_1}], [x_2, \partial_{x_2}], \dots])$
 - :: 微分作用素 p の (部分) Laplace 変換
- 28. laplace1(p,[x, ∂_x]) $\sharp t$ laplace1(p,[[x1, ∂_x 1],[x2, ∂_x 2],...])
 - :: 微分作用素 p の(部分)逆 Laplace 変換
- 29. $\operatorname{mc}(p, [x, \partial_x], r)$
 - :: 常微分作用素 p の middle convolution $mc_r(p)$
- 30. $mce(p, [x, \partial_x], n, r)$
 - :: 常微分作用素 p を $(\partial_x n)^{-r} \circ p \circ (\partial_x n)^r$ と変換
- 31. $rede(p,[x,\partial_x])$ $\sharp \hbar i rede(p,[[x_1,\partial_{x_1}],[x_2,\partial_{x_2}],...])$
 - :: 微分作用素 p の reduced representative を返す
- 32. ad(p,[x, ∂_x],f)
 - :: 常微分作用素 p の ∂_x を $\partial_x f$ に置き換える変換
- 33. add(p,[x, ∂_x],f)
 - :: 常微分作用素 p の ∂_x を $\partial_x f$ に置き換える addition, すなわち rede(ad())
- 34. vadd $(p, [x, \partial_x], [[c_0, r_0], [c_1, r_1], \dots])$:: versal addition add $(p, [x, \partial_x], \sum_{j \geq 0} \frac{r_j x^j}{\prod_{\nu=0}^j (1-c_{\nu} x)})$
- 35. addl(p,[x, ∂_x],f)
 - :: 常微分作用素の addition の Laplace 変換 laplace1(add(laplace()))
- 36. $\cot(p, [x, \partial_x], f)$
 - :: 常微分作用素 p の $x \mapsto f(x)$ による座標変換

```
:: 常微分作用素 p \circ x \mapsto f(x) による座標変換の reduced representative
38. s2sp(p|num=1,std=k,short=1)
   :: スペクトル型を表す文字列と"数のリストのリスト"との変換
39. chkspt(m|mat=1) \sharp hlt chkspt(m|opt=t) \sharp hlt fspt(m,t)
   :: 分割の組 m (スペクトルタイプ) または generalized Riemann scheme (GRS) をチェックして
   [pts, ord, idx, fuchs, rod, redsp, fspt] を返す
   opt="sp", "basic", "construct", "strip", "short", "long", "sort"
40. spgen(n|eq=1, str=1, std=fpt=[k, \ell], sp=m, basic=1)
   :: 階数 n 以下の rigid な分割の組(あるいは与えられたものの軌道)を得る
      n が 0 や負のときは、rigidity index が n の basic なものを得る.
   n は -10 以上に対応しているが、okubo O5 が動作する環境にしておけば、この制限はない.
41. \operatorname{sproot}(p, t | \operatorname{dviout}=1, \operatorname{only}=k, \operatorname{null}=1)
   :: スペクトル型を与えて構成やルートの情報を示す. t="base", "length", "type", "part", "pair",
   "pairs", sp
42. sp2grs(m,a,\ell|mat=1)
   :: spectral type から generalized Riemann scheme を生成する
43. ssubgrs (m, \ell)
   :: Generalized Riemann scheme m の \ell に対する特性指数和
44. mcgrs(m, [r_1, r_2, ..., r_n] | mat=1)
   :: middle convolution と addition を generalized Riemann scheme に施す
45. mcop(p, [r_1, r_2, ..., r_n], [x, x_1, x_2, ...])
   :: middle convolution と addition を (偏) 微分作用素 p に順に施していく
46. redgrs(m|mat=1)
   :: 常微分作用素の generalized Riemann scheme の 1-step reduction
47. getbygrs(m,t|perm=\ell,var=v,pt=[p_1,\ldots],mat=1) \sharp \hbar t
   getbygrs(m,[t,s_1,s_2,\dots]|perm=\ell,ver=v,pt=[p_1,\dots],mat=1)
   :: generalized Riemann scheme (GRS) で定義される Fuchs 型常微分方程式の解析 (GRS は短縮形ま
   たはスペクトルタイプでもよい)
   t = "reduction", "construct", "connection", "operator", "series", "TeX", "Fuchs",
    "basic", "", "All", "irreducible", "recurrence"
   s = \text{"TeX"}, "dviout", "keep", "simplify", "short", "general", "operator",
   "irreducible", "sft", "top0", "x1", "x2"
   \ell は特異点の置換または互換 (cf. mperm()), var は exponents の変数 (cf. sp2grs()), p_1, \ldots は特
   異点の位置 (\infty は除く).
48. shiftop(\ell, s|zero=1, raw=k, all=t, dviout=1)
   :: rigid なスペクトル型 \ell と shift <math>s から shift 作用素を求める
49. conf1sp(m|x2=\pm 1, conf=0)
   :: スペクトル型 m の微分作用素の Poincare rank 1 の合流過程を示す
50. anal2sp(m,l)
   :: 同時スペクトル m の解析
51. mc2grs(q,r|dviout=k)
   \dots \mathbb{P}^1 内の 5 点の配置に対する KZ 型方程式の同時スペクトル g の変換
52. m2mc(\ell, [a_0, a_u, a_1, c] | swap=1, small=1, simplify=0, MC=1)
   m2mc(\ell,s|small=1,simplify=0,int=0,swap=t)
   :: Pfaff 形式 du = (A_0 \frac{dx}{x} + A_y \frac{d(x-y)}{x-y} + A_1 \frac{d(x-1)}{x-1} + B_0 \frac{dy}{y} + B_1 \frac{d(y-1)}{y-1})u の x 変数での addition+middle
   convolution を求める (\ell = [A_0, A_u, A_1, B_0, B_1]).
   \ell がスペクトル型や Riemann scheme のとき,上の後者では s ="GRC","GRSC","Pfaff","sp",
   "pairs", "irreducible", "All", "swap"
```

37. $\operatorname{rcotr}(p, [x, \partial_x], f)$

```
53. mcmgrs(g,r|dviout=k)
    \dots \mathbb{P}^1 内の 5 点以上の点配置に対する KZ 型方程式の同時スペクトル g の変換
54. \operatorname{mmc}(l, [\mu, a_1, \ldots, a_n] | \operatorname{mult} = f)
    :: Schlesinger 型常微分方程式および KZ 型方程式の addition+middle convolution
55. linfrac01(\ell | over=1)
    :: x = 0, 1, \infty, y, z, \ldotsの一次分数変換のリスト (\ell = [x, y] etc.)
56. lft01(t, \ell)
    :: \ell = (x_1, x_2, x_3, ...) に対する特殊一次分数変換
    1.1.3 Some operators
57. okubo3e([p_{0,1},\ldots,p_{0,m}],[p_{1,1},\ldots,p_{1,n}],[p_{2,1},\ldots,p_{2,m+n}|opt=1])
    :: 0, 1, \infty に確定特異点を持つ m+n 階の単独 Okubo 型微分作用素を求める
58. fuchs3e([p_{0,1},\ldots,p_{0,n}], [p_{1,1},\ldots,p_{1,n}], [p_{2,1},\ldots,p_{2,n}])
    :: 0, 1, \infty に確定特異点を持つ n 階の Fuchs 型微分作用素を求める
59. ghg([p_{1,1}, p_{1,2}, ..., p_{1,m}], [p_{2,1}, p_{2,2}, ..., p_{2,n}])
    :: 一般超幾何函数 _mF_n(p_1;p_2;x) (cf. seriesHG()) の満たす微分作用素
60. even4e([p_{1,1}, p_{1,2}, p_{1,3}, p_{1,4}], [p_{2,1}, p_{2,2}])
    :: 4 階 even family (Rigid)
61.\ \mathsf{odd5e}(\,[p_{1,1},p_{1,2},p_{1,3},p_{1,4},p_{1,5}]\,\mathsf{,}\,[p_{2,1},p_{2,2}]\,\mathsf{)}
    :: 5 階 odd family (Rigid)
```

- 62. $\mathbf{rigid211}(\llbracket p_{0,1}, p_{0,2} \rrbracket \texttt{,} \llbracket p_{1,1}, p_{1,2} \rrbracket \texttt{,} \llbracket q_0, q_1 \rrbracket)$:: Type 211,211,211
- 63. extra6e($[p_{1,1}, p_{1,2}, p_{1,3}, p_{1,4}, p_{1,5}, p_{1,6}]$, $[p_{2,1}, p_{2,2}]$)
- :: Extra case (Rigid)
- 64. eofamily($[p_{0,1}, p_{0,2}]$, $[p_{1,1}]$, $[p_{2,1}, \dots, p_{2,n}]$)
 - :: even/odd family (obsolete)
- 65. $ev4s(p_1, p_2, p_3, p_4, p_5)$
 - :: Heckman-Opdam 超幾何の (BC_2, BC_1) 型制限常微分 (Rigid)
- 66. b2e(p_1, p_2, p_3, p_4, p_5)
 - :: Heckman-Opdam 超幾何の (BC2, A1) 型制限常微分 (Non Rigid)
- 67. heun([a, b, c, d, e],p,r|)
 - :: Heun の微分方程式を与える. r はアクセサリパラメータ

Useful functions

以下の函数は module 化され, 函数名の先頭に os_md. をつけて os_md.myhelp() のように呼び出す.

1.2.1 Extended function

- 68. myhelp(h)
 - :: os_muldif.rr のマニュアルを表示する
- 69. $\operatorname{chkfun}(f,s)$
 - :: 函数 f (= 文字列) が定義済みかどうか調べ、未定義なら load(s) を実行
- 70. isMs()
 - :: Micorosoft Windows 環境かどうか調べる
- 71. isyes($p | \text{set} = \ell$)
 - :: 1か0を返す函数を定義し、それを使う
- 72. isall(f,m)
 - m の要素に p 対して f(p) が 0 となるものが存在すると 0, そうでなければ 1 を返す

```
73. ptype(p, \ell)
```

 $:: \ell$ は変数、または変数のリストで、それのみを変数とみなした type() を返す

- 74. keyin(s)
 - :: s を表示し、1 行のキー入力を待って、それを文字列として返す
- 75. showbyshell(s)
 - :: shell でコマンド s を実行した標準出力の結果を Risa/Asir で表示
- 76. getbyshell(s)
 - :: shell でコマンド s を実行した標準出力の結果をファイルとして得る
- 77. $makev([\ell_1, \ell_2, ...] | num=1)$
 - $:: \ell_1, \ell_2 ...$ を合わせて一つの変数名を作る
- 78. shortv(p, [v_1 , v_2 , ...] | top=v)
 - :: p の添字番号つき不定元 v_1, \ldots を一文字の v 以下の変数名に変える
- 79. $makenewv(\ell | var=v, num=n)$
 - ::ℓに使われていない新しい不定元を生成する
- 80. isvar(p)
 - :: p が変数かどうか調べる
- 81. varargs(p, x | all = t)
 - :: 式 p に含まれる初等函数の函数子とその変数に現れる不定元のリストを返す
- 82. pfargs(p,x|level=t)
 - x 式 p に現れる x 変数を含んだ初等函数と引数のリストを返す
- 83. **isdif**(*p*)
 - :: p が微分作用素と推測されるときはその変数と微分の組のリストを返し、そうでなければ 0 を返す
- 84. $mysubst(r, [v_1, r_1] | inv=1)$ $\sharp t t mysubst(r, [[v_1, r_1], ...] | inv=1)$
 - :: subst (r,v_1,r_1,\ldots) と同等. r が複雑で r_1 が有理式のときに特に有効.
- 85. $myswap(p, [x_1, x_2, ..., x_n])$
 - :: 有理式またはそのリストなどの不定元の巡回置換 (x_1, x_2, \ldots, x_n)
- 86. $mulsubst(r, [[p_{1,0}, p_{1,1}], [p_{2,0}, p_{2,1}], ...] | inv=1)$
 - :: 有理式またはそのリスト、ベクトル、行列 r に複数の代入 $p_{i,0}\mapsto p_{i,1}$ $(j=1,2,\ldots)$ を同時に行う
- 87. $fmult(f, m, \ell, n | \cdots)$
 - $:: m_i \mapsto m_{i+1} = f(m_i, \ell[i], n[0], n[1], \dots | \dots)$ という変換 $(m_0 = m)$ の最終結果 $m_{length(l)}$ を返す
- 88. $mtransbys(f, m, \ell | \cdots)$
 - :: スカラーに関する変換 f() をリスト、ベクトルまたは行列 m に拡張する
- 89. mmulbys $(f, m, n, \ell | \cdots)$
 - :: 和が定義された objects の 2 つに対して 1 つの object を与える演算 f を、objects を成分とするベクトルまたは行列 m と n の演算に拡張する
- 90. cmpsimple(p,q|comp=t)
 - :: 式 p と q の簡単さを比較
- 91. simplify(p, ℓ ,t|var=[$x_1, x_2, ...$])
 - $:: \ell = [\ell_0, \ell_1]$ のときは、p (の各要素毎) に $\operatorname{subst}(*, \ell_0, \ell_1)$ を調べてより簡単なら置き換える $(t=1\sim7)$. $\ell = [\ell_1]$ で ℓ_1 が多項式のときは、 ℓ_1 に一次に含まれる含まれる変数の線形関係式とみて簡単化する。複数調べるときは ℓ をリストや多項式のリストとする。
- 92. getel(m,i)
 - :: m がリスト,ベクトル,行列でi が非負整数ならm[i] を返す
- 93. evalred($r | opt=[[s_1,t_1],[s_2,t_2]...]$)
 - :: sin(0), cos(0), exp(0) などを 0, 1, 1 などの整数に置き換える
- 94. evals(r|del=s,raw=1)
 - :: 文字列あるいは函数を評価する.
- 95. $myeval([r, [x_1, f_1, v_1], [x_2, f_2, v_2],...])$
 - :: os_md.myeval(subst([r,[x_2 , f_2 , v_2],...], x_1 , f_1 (os_md.myeval(v_1)))) を返す

```
os_myeval([r])=map(eval(r))
96. mydeval([r, [x_1, f_1, v_1], [x_2, f_2, v_2], \ldots])
    :: os_md.mydeval(subst([r,[x_2,f_2,v_2],...],x_1,f_1(os_md.mydeval(v_1)))) を返す
      os_md.mydeval([r])=map(deval(r))
97. myval([r, [x_1, f_1, v_1], [x_2, f_2, v_2], ...])
    :: myeval() と同様な函数であるが、可能な限り正確な値を返す
98. f2df(f|opt=n)
    :: 函数 f から \sin などの函数子を除いて myeval() や mydeval() の引数のリスト形式函数に変換
99. todf(f, [v_1, ..., v_n]) todf([f, [ops]], [v_1, ..., v_n])
    :: 函数子 f で変数が v_1, \ldots, v_n のリスト形式函数を得る (n は f の引数の数)
100. df2big(f|inv=1)
    :: リスト形式函数 f を倍精度浮動小数点計算から bigfloat 計算へ変更する
101. compdf(f, x, g) compdf(f, [x_1, x_2,...], [g_1, g_2,...])
    :: リスト形式函数 f の変数 x にリスト形式函数 g を代入したリスト形式函数を返す
102. \operatorname{cutf}(f, x, [[x_1, v_1], [x_2, v_2], \dots, [x_n, v_n]]) \quad \operatorname{cutf}(f, x, [t, [x_1, v_1], \dots, [x_n, v_n]])
    :: 函数 f の変数が特定の範囲のとき函数値の変更を行い, その値またはリスト形式函数を返す
103. periodicf(f,[a,b],x) periodicf(ltov([g_1,g_2,...,g_n]),c,x)
    :: \mathbf{x} を変数とする函数 f|_{[a,b)} を周期関数に拡張した函数にする
104. cmpf([f, [a, b]] | exp=c)
                             cmpf(x)
    :: 積分区間をコンパクト閉区間 [0,1] に直した函数にする
105. myfeval(f,x) (f,a) myfeval(f,[x,a]) myfeval(f,[[x_1,a_1],...])
106. myfdeval(f,a) myfdeval(f,[x,a]) myfdeval(f,[x_1,a_1],...])
    :: myeval() や mydeval() の引数のリスト形式函数 f の変数に a を代入して値を得る
107. myf2eval(f,x,y)
108. myf2deval(f,x,y)
    :: myeval() や mydeval() の引数のリスト形式 2 変数函数 f に代入して値を得る
109. myf3eval(f,x,y,z)
110. myf3deval(f,x,y,z)
    :: myeval() や mydeval() の引数のリスト形式 3 変数函数 f に代入して値を得る
111. execproc(\ell|all=1, var=k)
    :: リスト形式手続きの実行
112. fsum(f, [m,n,d] | df=1, subst=1) fsum(f, [x,m,n,d] | df=1, subst=1)
    \cdots 一般項が f(x) で与えられる級数の和 \sum_{k=0}^{\left[\frac{m-n}{d}\right]}f(m+kd) を返す
113. fint(f, n, [t_1, t_2]) | cpx=1, exp=c, int=k, prec=v) fint(f, n, \ell | \cdots)
    :: 複素積分を含む数値積分
114. fimag(f,x|inv=g)
    :: 複素変数の指数関数を実変数の関数に変換
115. trig2exp(f,x|inv=g)
    :: 三角関数と指数関数の変換と簡単化
116. isshortneg(f)
    :: f & -f を表現する文字列の長さの比較
117. fshorter(f,x)
    :: x の三角関数の簡単化
118. fzero(f, [x, x_1, x_2] | mesh=m, dev=d, zero=1, trans=1, cont=1)
    :: 実数値函数 f の零点を求める
119. fmmx(f, [x, x_1, x_2] | mesh=m, dev=d, mmx=1, zero=1, trans=1, cont=1, dif=1)
    :: 実数値函数 f の極値を求める
120. flim(f, v|prec=c, init=t)
    :: 変数 \mathbf{x} の実数値関数 f の極限値を求める
```

- 121. $fcont(f, [x, x_1, x_2] | mesh=m, dev=d, zero=1, trans=1, dif=1)$?
 - :: 実数値函数 f の不連続点や滑らかでない点を求める
- 122. **fresidue**($p, q \mid \text{cond} = [f_1, f_2, ...], \text{sum} = 1$)
 - :: 多項式 q を分母とする有理式 p/q の特異点と留数の組のリスト (z が変数で、p は正則函数)

1.2.2 Numbers

- 123. abs(p) abs([p,prec])
 - :: 整数または実数または複素数 p の絶対値を返す
- 124. sgn(n|val=1)
 - ::数nまたは置換nの符号を返す
- 125. $\operatorname{calc}(p, [s, q])$ $\operatorname{calc}(p, s)$
 - :: 数や有理式に対して演算を施す
- 126. isint(p)
 - :: p が整数かどうか調べる
- 127. **israt**(p)
 - :: p が有理数かどうか調べる
- 128. **iscrat**(*p*)
 - :: p が数でその実部と虚部が共に有理数かどうか調べる
- 129. isalpha(n)
 - :: 整数 n がアルファベットの文字コードかどうか調べる
- 130. isnum(n)
 - :: 整数 n が数字 $0\sim9$ の文字コードかどうか調べる
- 131. isalphanum(n)
 - :: 整数 n がアルファベットまたは数字の文字コードかどうか調べる
- 132. isdecimal(s)
 - :: 文字列 s が整数または小数を表しているかどうか調べる
- 133. nthmodp(a, n, p)
 - $:: a^n \mod p$ を返す (a は整数で n, p は自然数)
- 134. issquaremodp(a, p | power=n)
 - x = x :: 平方剰余を調べる (ルジャンドルの平方剰余記号 $\left(\frac{a}{n}\right)$, n は平方を一般べきに)
- 135. rootmodp(a, p | power=n)
 - :: p を法として a の平方根(一般には n 乗根)を求める
- 136. primroot(p|all=1,ind=a)
 - :: 奇素数またはそのべき p の原始根やそれを底とする指数をもとめる
- 137. rabin(p,q)
 - :: pに対しqを底とするミラー・ラビンの素数判定を行う(素数, 擬素数なら1を返す)
- 138. cfrac(x,n)
 - :: 有理数あるいは実数を連分数展開する(n は項数)
- 139. cfrac2n(l|loop=m)
 - :: (循環) 連分数を通常の形に直す
- 140. sqrtrat(r)
 - :: 有理数(または実部と虚部が有理数の複素数)の平方根を得る
- 141. sqrt2rat(r|mult=1)
 - :: 平方根や虚数を含んだ分数の有理化
- 142. sint(r,p|str=t,sqrt=1,zero=0)
 - :: 実数 r または複素数,リストや行列(ネスト対応)などの成分の実数を小数点以下 p 桁に丸める
- 143. frac2n(n|big=1)
 - :: 分数を実数になおす (r は複素数、有理式やそのリストや行列などでもよい)

```
1.2.3 Polynomials and rational functions
144. radd(p,q)
    :: 有理式 (の行列) p と q の和を既約有理式 (の行列) の形で計算する
145. rmul(p,q)
    :: 有理式 (の行列) p と q の積を既約有理式 (の行列) の形で計算する
146. polbyroot([p_1, p_2, ..., p_n], x)
    :: 多項式を根で与える
147. polbyvalue([[a_1, b_1],...,[a_n, b_n]],x)
    x \in x \circ n - 1 次多項式を n 個の点 x = a_i での値 b_i で与える
148. pgen([[x_1, n_1], [x_2, n_2], a|sum=n, shift=m, sep=1, num=1)
    :: 係数が a_* で x_i が n_i 次,全体で n 次以下の x_1, \ldots の一般多項式を作る
149. rpdiv(p,q,x)
    :: x の多項式の割り算
150. easierpol(p,x) \sharp \hbar t easierpol(p,[x_1,x_2,...])
    :: 有理式係数のxの多項式の係数にxを含まない有理式をかけて、係数の最大公約元が1の整数係数
    の多項式に変換
151. getroot(p,x|mult=1,cpx=1)
    :: 多項式の根を有理式または有理数の平方根の範囲で求める
152. polroots(p,x|comp=t,err=r,lim=\ell)
    :: 変数 x の 1 変数多項式の根、多変数多項式の共通根(実根・虚根)の(近似)値を返す
153. fctri(p)
    :: 実部と虚部が有理数係数の1変数多項式を、その範囲で既約分解する
154. polinsym(p, [x_1, \ldots, x_n], s)
    :: (x_1, \ldots, x_n) の対称有理式を基本対称式で表す
155. polinvsym(p, [x_1, \ldots, x_n], s)
    :: polinsym(p,[x_1,\ldots,x_n],s) の逆函数
156. pol2sft(p,x|sft=t)
    :: shifted power 多項式を与える
157. polinsft(p,x)
    :: shifted power 多項式に直す (pol2sft() の逆変換)
158. sftpow(p,n)
159. sftpowext(p,n,s)
    p \mathcal{O} s shifted n power \prod_{\nu=1}^{n} (p + (\nu - 1)s) を返す
160. binom(p,n)
    p(p-1)(p-2)\cdots(p-n+1)/n! を返す
161. expower(p,r,n)
    :: (1+p)^r の展開を p^n まで求める
162. orthpoly(n|pol="type")
                                orthpoly([n,a,...]|pol="type")
    :: 変数 x の n 次直交多項式を返す
163. schurpoly ([m_1, m_2, \ldots]|var=v)
    m_1 \ge m_2 \ge \cdots \ge m_n \ge 0 のウェイトの Schur 多項式を返す
164. seriesMc(f, k, v | evalopt=[[s_1, t_1], [s_2, t_2]...])
    :: 函数 f の変数または変数のリストv に対する k 次の項までの Maclaurin 展開を求める
165. seriesHG([a_1, a_2, ...], [b_1, b_2, ...], p, k)
    seriesHG([[a_1,...],[b_1,...],[c_1,...]],[[d_1,...],[e_1,...],[f_1,...]],[x,y],k)
    \cdots 一般超幾何級数 _mF_n(a_1,a_2,\ldots,a_m;b_1,b_2,\ldots,b_n;p) の p^k 次の項まで求める
または2変数の級数 \sum_{0 \le i+j \le k} \frac{(a_1)_{i+j} \cdots (b_1)_i \cdots (c_1)_j \cdots x^i y^j}{(d_1)_{i+j} \cdots (e_1)_i \cdots (e_1)_j \cdots x^i y^j} を返す.
166. fctrtos(r|var=\ell,rev=1,dic=1,TeX=f,dviout=1,lim=n,small=1,pages=1,add=s)
```

- :: 有理式を因数分解した形の文字列に変換する
- 167. tohomog(r,[$x_1, x_2, ...$],y)
 - $:: (x_1, x_2, \ldots)$ の有理式に変数 y を導入して (y, x_1, x_2, \ldots) の斉次式にする
- 168. substblock(p, x, q, y)
 - $x \in \mathcal{A}$ の多項式 p,q に対し、y=q とおいて p を x の次数が $\mathsf{mydeg}(q,x)$ 未満の (x,y) の多項式に直す
- 169. $invf([p_1,...,p_n],[x_1,...,x_n],[y_1,...,y_n])$
 - $y_j = p_j(x)$ (j = 1, ..., n) を $x_j = q_j(y)$ (j = 1, ..., n) と解く
- 170. mydeg(p,x|opt=1)
 - :: deg(p,x) と同じ. p は行列や配列で係数は有理式でよい.
- 171. mymindeg(p, x | opt=1)
 - :: p がスカラーのときは mindeg(p,x) と同じ、係数は有理式でよいが、p が行列などのスカラーでないときは 0 以外の成分の最小次数を返す.
- 172. iscoef(p, f)
 - :: p の係数の全てが $f(*) \neq 0$ を満たすかどうかチェックする
- 173. mycoef(p,n,x)
 - :: coef(p,n,x) と同じ. n,l は同じ長さのリストでもよい. p は行列や配列で係数は有理式でよい.
- 174. pcoef(p, m, q)
 - $pcoef(p, m, [[x_1, ..., x_n], [m_1, ..., m_n]])$
 - :: 多項式 p^m を展開したときの単項式 q に対する係数を返す
- 175. pfctr(p,x)
 - :: x の多項式または有理式 p の因数分解
- 176. $\operatorname{cterm}(p|\operatorname{var}=[x,y,\dots])$
 - :: 多項式の定数項を返す. 変数を指定可能.
- 177. terms(p, [x, y, ...] | rev=1, dic=1)
 - :: 多項式の存在する項の次数とべき指数のリストを返す
- 178. polcut (p, n, [x, y, ...] | top=m)
 - :: 変数のリスト $[x,y,\ldots]$ の多項式 p から次数が(m 以上)n 以下でない項を削除
- 179. mydiff(p,x)
 - :: diff(p,x) と同じ. p は行列や配列で係数は有理式でよい. x もリストでよい.
- 180. myediff(p,x)
 - :: ediff(p,x) と同じ. p は行列や配列で係数は有理式でよい.
- 181. ptol(p,x|opt=0)
 - :: x の多項式 p の係数のリストを返す
- 182. pfrac(p,x|root=2,dviout=1,TeX=1)
 - :: x の有理式 p を部分分数展開し、分子、分母(多項式とべき)の組のリストを返す
- 183. $lpgcd([p_1, p_2,...])$
 - :: 多項式 p_1, p_2, \ldots の共通因子を返す
- 184. $jacobian([f_1, ..., f_n], [x_1, ..., x_n] | mat=1)$
 - :: 関数の組 (f_1,\ldots,f_n) の変数 (x_1,\ldots,x_n) についてのヤコビアンまたはヤコビ行列を返す.
- 185. hessian([f,[$x_1,...,x_n$]|mat=1)
 - :: 関数の組 f の変数 $(x_1, ..., x_n)$ についてのヘシアンまたはヘッセ行列を返す.
- 186. wronskian[f_1, \ldots, f_n], $x \mid mat=1$)
 - x 関数の組 (f_1, \ldots, f_n) の変数 x についてのロンスキアンまたはロンスキー行列を返す.
- 187. prehombf $(p,q | mem=\pm 1)$
 - x : 概均質ベクトル空間の相対不変式 p の b 函数を得る. q は双対多項式.
- 188. intpoly(p,x|exp=c,cos=c,sin=c)
 - x 変数 x の多項式 p (またはそれと指数関数、対数関数や三角関数の積) や有理式の原始函数を返す
- 189. integrate(f,x|dumb=k,dviout=p,log=1,frac=t,I=[a,b])
 - :: 関数 f を変数 x について不定積分する

```
190. powsum(n)
     x: 1^n + 2^n + \cdots + m^n の m を x で置き換えた n+1 次多項式を返す
191. bernoulli(n)
     :: n 次の Bernoulli 多項式 B_n(x) を返す
     1.2.4 Functions with real/complex variables
     以下の数値函数では変数(引数)を不定変数にすると対応するリスト形式函数を返す.
192. frac(x)
     :: 実数 x の小数部分
193. \operatorname{erfc}(x) \operatorname{erfc}([x, prec])
:: 相補誤差函数 \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt 194. fouriers([a_0, a_1, \dots, a_m], [b_1, b_2, \dots, b_n], z \mid \operatorname{cpx=1, sum} = f, y = t, \operatorname{const} = c)
     fouriers([f,m], [g,n], z | cpx=1, sum=f, y=t, const=c)
     :: 有限 Fourier 級数 a_0+a_1\cos z+a_2\cos 2z+\cdots+a_m\cos mz+b_1\sin x+b_2\sin 2z+\cdots+b_n\sin nz
195. myexp(z)
     :: 指数関数 \exp(z)
196. mysin(z)
     :: 三角関数 \sin(z)
197. mycos(z)
     :: 三角関数 \cos(z)
198. mytan(z)
     :: 三角関数 tan(z)
199. myasin(z)
     :: 逆三角関数 asin(z)
200. myacos(z)
     :: 逆三角関数 acos(z)
201. myatan(z)
     :: 逆三角関数 atan(z)
202. mylog(z)
     :: 対数函数 \log(z)
203. mypow(z, w)
     :: 巾関数 z<sup>w</sup>
204. myarg(z)
     :: 偏角 arg(z)
205. \operatorname{sqrt}(z) \operatorname{sqrt}([z, prec])
     :: z の平方根を与える
206. arg(z) arg([z, prec])
     :: z の偏角
207. gamma(z) gamma([z, prec])
     :: ガンマ函数 \Gamma(z)
208. digamma(z) digamma([z,prec])
     :: ディガンマ函数 \psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}
209. lngamma(z) lngamma([z,prec])
     :: \log(\Gamma(z))
210. dilog(z)
     :: ダイログ函数 \operatorname{Li}_2(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^2}
211. zeta(s) zeta([s,prec])
     :: zeta 函数 \zeta(s)
```

```
212. eta(\tau) eta([\tau, prec])
    :: Dedekind \mathcal{O} Eta 函数 \eta(\tau) = e^{\frac{\pi i \tau}{12}} \prod_{m=1}^{\infty} (1 - e^{2\pi i m \tau})
213. jell(\tau) jell([\tau, prec])
    :: Elliptic j-invariant j(\tau)
    1.2.5 Lists and vectors
214. llsize([m_1, m_2, ...])
    :: リストm_iのリストに対し、成分m_iの個数とm_iの要素の最大個数を返す
215. findin(m, [\ell_0, \ell_1, ...])
    :: m に等しい要素を \ell_0, \ell_1, \ldots から探す
216. countin(s,m,[\ell_0,\ell_1,\ldots]|step=k)
    :: s以上m以下の\{\ell_0,\ell_1,\ldots\}の要素の個数,間隔mでの個数分布表を返す
217. delopt(\ell, s|inv=1) delopt(\ell, [s_1, s_2, ...]|inv=1)
    :: オプションリスト(リストのリスト) からオプション<math>s(複数指定可)を取り除く,または抜き出す
218. mycat([\ell_1, \ldots, \ell_m] | delim=s)
219. mycat0([\ell_1, \ldots, \ell_m], t|delim=s)
    :: \ell_1, \ldots, \ell_m を表示する
220. fcat(f,s|exe=1)
    :: ファイル f に s を書き出す
221. vtozv(v)
    :: 有理式のベクトルをスカラー倍して単純化する
222. 12p(l, v | size = s)
    :: 係数のリストlを与えてvの多項式を返す。またその逆変換を返す。
223. mulseries(v_1, v_2)
    :: 2つのベクトルをべき級数とみなして、その積のベクトルを返す
224. pluspower(p,x,r,m)
    :: (1+p)^r の x に関するべき級数展開を第 m 項まで求める
225. average(\ell|sint=k)
    :: 実数のリストに対し、平均値や標準偏差を求める
226. vprod(v_1, v_2)
227. dvprod(v_1, v_2)
    :: 2 つのベクトル (リストでもよい) の内積を返す
228. llbase(v, \ell)
    :: 変数 \ell[0],\ell[1],\ldots の一次方程式のベクトルv の標準変換を行う(例は 1sol() の項を参照)
229. lsol(v, l)
    :: 変数 \ell[0], \ell[1], ... に関する連立一次方程式を解く
230. lnsol(v, l)
    :: 変数 \ell[0], \ell[1], ... に関する連立一次方程式の有理数解を求める
231. lchange(\ell,k,v|flat=1)
    ::(多重) リスト\ellのkで指定した位置の成分をvに置き換える
232. lmax([m_1, m_2, ...])
    :: m_1, m_2, ... の中の最大のものを返す
233. lmin([m_1, m_2,...])
    :: m_1, m_2, \ldots の中の最小のものを返す
234. lgcd([m_1, m_2,...]|poly=1])
    :: m_1, m_2, \ldots の最大公約数 (元) を返す
235. llcm([m_1, m_2, ...]|poly=1])
    :: m_1, m_2, \ldots の最小公倍数 (元) を返す
236. ldev(\ell,s)
```

- :: リストsの整数倍をリスト ℓ に加えて、成分の絶対値を最小にする
- 237. lsort(ℓ_1 , ℓ_2 , t | c_1=[$c_{1,0}$, $c_{1,1}$, ...], c_2=[$c_{2,0}$, $c_{2,1}$, ...])
 - :: リスト ℓ_1 に対し、 ℓ_2 との合併、共通部分、または ℓ_2 や共通部分を除く その他、表形式データの操作
 - t = "cup", "setminus", "cap", "reduce", "sum", "subst"
- 238. $msort(\ell, s)$
 - :: ベクトルやリストの成分を(多重)キーsに従ってソートする
- 239. addIL([a,b], $[[a_1,b_1], [a_2,b_2],...]$ |in=t)
 - :: 有限区間の合併集合と有限区間の和集合の計算
- 240. vnext(v)
 - :: ベクトルの成分を並べ替え、辞書式順序で次のベクトルに変換する
- 241. vgen(v, w, m | opt=0)
 - :: 成分の和がmの非負成分のベクトルwを順に生成する
- 242. $paracmpl(l,t|lim=1,low=1,para=[v_1,v_2,...])$
 - :: 有理的に t に依存したリスト l の成分(たとえば有理式)で張られる空間の正則完備化

1.2.6 Matrices

- 243. dupmat(m)
 - :: 成分が有理式の行列またはベクトル m の複製を作る
- $244. \, \, m2v(m)$
 - :: 行列 m の成分を 1 行目から順に並べてベクトルに変換する
- 245. m21(m|flat=1)
 - :: 有理式, ベクトルあるいは行列の m の成分を順に並べてリストにする
- 246. m2lv(m)
 - :: 行列 m の行ベクトルを並べてリストにする
- 247. m211(m)
 - :: 行列 m を行べクトルをリストにかえたものを成分とするリストにする
- 248. $lv2m(\ell|fill=n)$
 - :: 行ベクトル(行成分のリストでも可)のリストℓから行列を作る
- 249. s2m(s)
 - :: 文字列での有理数成分の行列表現や、列のリストから行列を作る. 必要最低サイズの行列になる
- 250. c2m(l, v | pow=t)
 - :: 基底の変換から係数行列を作る
- 251. $\operatorname{mperm}(m, [\sigma_0, \sigma_1 \dots], [\tau_0, \tau_1, \dots])$
 - $mperm(m, [[\sigma_0, \sigma_1]], [[\tau_0, \tau_1]]), mperm(m, [\sigma, [m_1]], [\tau, [m_2]])$
 - :: 行列 m から小行列 $(m_{\sigma_i au_i})$ を作る,または置換行列(または互換)で変換する
- 252. mtranspose(m)
 - :: 行列 m の転置行列を求める (m はリストのリストでもよい)
- 253. madjust(m, w | null=n)
 - :: 行列 m の列数を w に調整する
- 254. mpower(m,n)
 - :: 行列 m の n 乗を求める
- 255. mtoupper(m, n | opt=t, step=1, dviout=1, pages=1, tab=k, lim=w)
 - :: 行列 m に対し、行基本変形を行って、行の先頭からの 0 の成分の個数が下の行の方へ狭義単調増加となるようにする、最後の n 列は無視.
- 256. mytrace(m)
 - :: 行列の trace を返す.
- 257. mydet(m)
 - :: det(m) と同じ、ただし成分は有理式でもよい、

```
258. \text{ mydet2}(m)
    :: det(m) と同じ、ただし成分は有理式でもよい、
259. myrank(m)
    :: 行列 m の rank を求める (例は mtoupper() の項)
260. mykernel(m|opt=1)
    :: 行列 m の転置行列の kernel の基底を求める
261. myimage(m | opt=1)
    :: 行列 m の転置行列の像の基底を求める
262. \operatorname{mymod}(v, [v_1, \dots, v_k] \mid \operatorname{opt}=\ell)
    :: ベクトル v_1, \ldots, v_k で張られる空間の商空間への v の射影を求める(例は myimage() の項)
263. mmod(m, [v_1, ..., v_k] | opt=1)
    :: ベクトルv_1,\ldots,v_kで張られる空間の商空間への線形写像mの射影
264. myinv(m)
    :: 正方行列 m の逆行列を求める
265. madj(g,m)
    :: 行列 qmq^{-1} を計算する. m は行列のリストか行列のベクトルでもよい.
266. \operatorname{diagm}(m,a)
    :: 対角行列を作成する
267. mgen(m, n, a, s | sep=1)
    :: size m \times n の一般行列を作成する
268. unim(s|abs=m,num=n,both=1,int=1,rank=r,conj=1,res=1,wt=w,dviout=t,lim=w)
    :: 行列式 1 でサイズ s の整数行列をランダムに生成する,行列 s をランダムに変換する
269. newbmat(m, n, [[r_{00}, r_{01}, ...], [r_{10}, ...], ...] | null=t)
    :: ブロック行列を作成する
270. meigen(m|mult=1)
    :: 行列 m の固有値を返す
271. mdsimplify(m|show=1,type=\ell)
    :: 有理式正方行列 m, またはそのリストやベクトルを対角行列で簡単化
272. transm(m|dviout=1)
    :: 行列 m の基本変形をインタラクティブに行う
    1.2.7 Strings
273. str_char(s, n, t)
    :: 文字列 s の n 文字以降に文字列 t の先頭文字が最初に現れる場所を返す(str\_chr() の拡張)
274. str_pair(s, n, t_1, t_2 | inv=1)
    275. str_str(s,t|top=n,end=m,sjis=1)
    :: 文字列 s に部分文字列 t が最初に現れる場所を返す
276. str_cut(s, m, n)
    :: 文字列 s の先頭から m 文字をスキップして、それ以降 n-m+1 文字を返す
277. str\_subst(s, s_0, s_1 | sjis=1, raw=1) \sharp \hbar t
    str\_subst(s, [s_{00}, s_{01}, ...], [s_{10}, s_{11}, ...] | inv=1, sjis=1, raw=1)
    str\_subst(s, [[s_{00}, s_{10}], [s_{01}, s_{11}], ...], 0|sjis=1)
    :: 文字列 s に含まれる部分文字列 s_0 を s_1 で全て先頭から順に置き換える
278. str_times(s,n)
    :: 文字列 s (またはリスト) を n 回繰り返した文字列 (またはリスト) を返す
279. strip(s, t_1, t_2)
    :: 文字列の外側の括弧を外す
```

 $280. \ s2os(s)$

```
:: 文字列を入力可能な文字列に変換
281. sjis2jis(l)
   :: 文字コードの整数のリストの先頭2つをShiftJISからJISに変換
282. jis2sjis(l)
   :: 文字コードの数字のリストの先頭2つをJISからShiftJISに変換
283. s2euc(s)
   :: ShiftJIS または JIS 文字列を EUC 文字列に変換
284. \text{ s2sjis}(s)
   :: EUC または JIS 文字列を ShiftJIS 文字列に変換
285. str_tb([s_0, s_1, ...], tb) \sharp ttt_tb(0, tb)
   :: テキスト用バッファを作成 (tb=0) し、そこ (戻り値 tb) に文字列 s_0, \ldots を順に追加する。 最初の
   引数を0として文字列を取り出す.
286. \ 12os(l)
   :: リストを入力可能な文字列に変換
287. r2os(l)
   :: 数式を eval_str() で入力可能な文字列に変換
288. r2ma(s)
   :: Mathematica の形式の数式に変換
289. evalma(s|inv=1)
   :: Mathematica の数式を読み込む
290. readcsv(s|eval=[n_1, n_2,...], eval=n, sp=1, col=c, null=t, eq=1)
   :: CSV 形式のデータをリスト形式で読み込む
291. tocsv(l|null=n,exe=f)
   :: リストのリストまたは行列を CSV 形式のデータに変換
   1.2.8 Permutations
292. ldict(n, m | opt=t)
   :: \{0,1,2,\ldots,m-1\} を並べ替えて辞書式順序でn+1番目のリストを返す
293. ndict(\ell \mid opt=t)
   :: \{\ell_0, \ell_1, \dots, \ell_{m-1}\} の並べ替えのリスト \ell が何番目かを返す(最初は 0 番)
294. nextsub([a_0,...,a_{m-1}],n)
   :: \{0,\ldots,n-1\} の m 個の部分集合を並べたとき,\{a_0,\ldots,a_{m-1}\} の次の部分集合を返す.最後を与
    えた時は0を返す.
295. nextpart(\ell)
   :: 自然数の分割のリストℓに対し、辞書式順序で次に大きなものを返す
296. transpart(\ell)
   :: 自然数の分割のリスト (Young 図式に対応) \ell に対し、その双対を返す (例は nextpart() を参照)
297. trpos(a,b,n)
   :: 互換 (a,b) にあたる n 次置換群の元を返す
298. sprod(s,t)
   :: 置換群の積を返す
299. sinv(s)
```

301. sord(s,t) :: 置換を E

 $300. \operatorname{slen}(s)$

:: 置換を Bruhat order で比較する

:: 置換 s の逆元を返す

:: 置換 s の長さを返す

1.2.9 T_EX

302. $my_tex_form(p|subst=[t_0, t_1], frac=f, root=r, ket=k)$

```
:: print_tex_form(p) の戻り値から文字列置換や不要部分削除を行い、読みやすいソースに変換
303. show(p | opt=\ell)
    :: p を dviout で適切に表示する
304. \text{ dviout}(p|\text{clear=1,keep=1,delete=}t,\text{fctr=1,mult=1,subst=}[s0,s1],\text{eq=}k,\text{title=}s)
    :: p を dviout で表示する
305. dviout0(\ell) \sharp t \Leftrightarrow dviout0([\ell_1, \ell_2, ...]) \; \sharp t \Leftrightarrow dviout0(\ell | opt=s)
    :: T<sub>F</sub>X での表示のための内容削除などの基本操作
306. verb_tex_form(p)
    :: p を LATeX で表現可能な文字列にする
307. \, \mathtt{monotos}(p)
    :: 有理式を文字列に変換. 単項式以外では(と)で囲む
308. monototex(p|minus=1)
    :: 有理式を TFX の文字列に変換. 単項式以外では(と)で囲む
309. rtotex(p)
    :: 数式を T_{EX} の文字列に変換. 1 文字を越えるときは \{\, \mathcal{E}\, \} で囲む
310. texsp(s)
    :: T_{FX} の文字列 s の最後が T_{FX} のキーワードのとき、s の末尾に空白をつける.
311. texbegin(t,s|opt=u)
    :: T_{E}X \cap \{t\}[u] s \in \{t\} \} というソースを出力する
312. texcr(k)
    :: 127以下の非負整数 k に応じて T_{
m E}{
m X} における数式の改行の文字列を返す
313. texket(s|all=t)
    :: T_{FX} のソース s における括弧のサイズを可変にする
314. ltotex(l \mid \text{opt}=s, pre="string", cr="cr", small=1, lim=\ell, var=v)
    :: リストまたはベクトルを s= "spt" のとき重複度つきのリストとみて\left\{... または s= "GRS"
    のとき \begin{Bmatrix} … の形の Riemann scheme とみて T<sub>F</sub>X の文字列に変換など
315. mtotex(m|small=1,2, null=1,2, sp=1,2, idx=0,1, mat=s, var=\ell, raw=1, lim=n)
    :: 行列またはベクトルを TeX の文字列に変換するが、成分が有理式のときは因数分解した形にする
316. divmattex(s, l)
    :: 行列の T_{\mathbf{F}}\mathbf{X} のソース s の分割や列の並べ替えを行う
317. smallmattex(s)
    :: T_{E}X のソースで ( ) や \{ \} で囲まれた行列を小サイズに変換する
318. texlen(s)
    :: IATeX の数式の横幅を推測して文字数で返す
319. texlim(s, n | del = s_0, cut = s_1)
    :: 長い TFX の数式を, 複数行に分割する
    1.2.10 Lines and curves
320. ladd(u, v, t)
    321. dnorm(v)
    :: ベクトルまたはリストのノルム, または2点間の距離を返す
322. mrot(\theta | deg=1) mrot([\theta'_z, \theta_y, \theta_z] | deg=1, conj=1)
    :: 角度 θ の回転行列を返す
323. dvangle(v_1, v_2) dvangle([u_1, u_2, u_3], 0)
    :: ベクトルまたはリストの鋏む角度の余弦を返す
324. ptaffine(m, \ell | org=v, shift=w, arg=\theta, deg=\theta, proc=1)
    :: 実数の組(座標)のリストを結合する,またはアフィン変換(こちらは描画実行形式も可)を施す
```

325. $ptpolygon(n,r|org=p,scale=t,arg=\theta,deg=\theta)$

```
:: 半径 r の円に内接する正 n 多角形の頂点の平面座標
326. ptlattice(m, n, v_1, v_2 | \text{org} = p, \text{scale} = t, \text{cond} = [f_1, f_2, ...], \text{line} = 1)
    :: org を始点として v_1 方向に m 個まで、v_2 方向に n 個までの合計 m \times n 個の格子点の座標
327. ptcopy(\ell, v)
    :: 座標のリスト \ell を移動方向のリスト v に従って複製コピーする
328. ptcommon([s_1, s_2], [t_1, t_2]|in=k)
    :: 直線や線分や円に対して共通点,接点や垂線の足,内分点,方向転換進行点,角度などを求める
329. ptwindow(\ell, [x_1, x_2], [y_1, y_2] | scale=t)
    :: 平面座標 (x,y) のリストで x_1 \le x \le x_2, y_1 \le y \le y_2 を満たさないものを 0 に変える
330. ptbbox([[x_1,y_1,...],[x_2,y_2,...],...]|box=b)
    \texttt{ptbbox}([[[x_{min}^{(1)}, x_{max}^{(1)}], [y_{min}^{(1)}, y_{max}^{(1)}], \ldots], [[x_{min}^{(2)}, x_{maxS}^{(2)}], \ldots], \ldots] | \texttt{box=1})
    \cdots 座標 (x,y,\ldots) や箱のリストを囲む箱 [[x_{min},x_{max}],[y_{min},y_{max}],\ldots] を返す
331. iscombox([[x_{min}^{(1)},x_{max}^{(1)}],[y_{min}^{(1)},y_{max}^{(1)}],...], [[x_{min}^{(2)},x_{max}^{(2)}],[x_{min}^{(2)},y_{max}^{(2)}],...])
    :: 2 つの箱 (区間の直積) の共通部分の有無を返す
332. lninbox([p_1,p_2],[[x_{min},x_{max}],[y_{min},y_{max}]]|in=1)
    :: 平面内の2点p_1とp_2を結ぶ直線(または線分)の箱内の部分(2点を結ぶ線分)を返す
333. scale(\ell|scale=[c_1,...],f=f,shift=[s_1,s_2],TeX=1,mes=[t,[a_1,b_1,w_1],...],line=[a,b],
    prec=1, col=s)
    :: 目盛や対数(函数)尺の作成
334. tobezier(\ell|inv=[a,b,t],div=k)
    :: 点のリストℓで定まる Bézier 曲線のパラメータ表示とその逆変換と分割
335. lbezier(l|inv=t)
    :: 区分 Bézier 曲線のデータ変換
336. velbezier(f, [a,b,t])
    :: Bézier 曲線の最大速度ベクトル
337. ptbezier(l, [n, t]) ptbezier(l, s)
    :: (複合) Bézier 曲線上の点と速度ベクトルを求める
338. areabezier(l|rev=1,pt=[p_1,p_2,...],para=1,prec=v,int=k,exp=c,Acc=1,cpx=1)
    :: Bézier 曲線を用いた領域の面積・数値積分の計算
339. ptcombezier(\ell_1, \ell_2, m)
    :: 点のリスト \ell_1,\ell_2 で定まる 2 つの Bézier 曲線の交点を求める
340. ptcombz(b_1, b_2, m | red=t, prec=k)
    :: 区分 Bézier 曲線 b_1, b_2 の交点を求める
    1.2.11 Drawing curves and graphs
341. xyproc(f|dviout=1,opt=s,env=t)
    :: X_{Y-pic}/TikZ や指定した環境の開始 (f=1) と終了 (f=0) や表示
342. xypos([x,y,s]) xypos([x,y,s,t]) xypos([x,y,s,t,u]) xypos([x,y])
    :: X_{Y}-pic/\mathrm{Ti}kZ での座標 (x,y) や式 s などの文字出力. t はラベルの文字, u はオプション文字列.
343. xyput([x,y,s]|scale=r) xyput([x,y,s,t]) xyput([x,y,s,t,u]) xyput([x,y])
    :: X_{Y}-pic/TikZ での座標 (x,y) や式 s などの文字出力. t はラベルの文字, u はオプション文字列.
344. xyline([x_1, y_1, s_1], [x_2, y_2, s_2] | opt=t)  xyline([x_1, y_1], [x_1, y_2] | opt=t)
    :: X_{Y}\text{-pic/Ti}kZ で (x_1, y_1) と (x_2, y_2) を線で結ぶ(引数はベクトルでもよい)
345. xyarrow([x_1, y_1, s_1], [x_2, y_2, s_2] | opt=t, cmd=s)
    :: X_{Y}-pic/TikZ で (x_1, y_1) と (x_2, y_2) を矢印等で結ぶ(引数はベクトルでもよい)
346. xyarrows([f_1, f_2], [v_1, v_2], [[x_1, x_2, m], [y_1, y_2, n]] | scale=r, abs=v)
    :: Xy-pic/TikZ で複数の矢印を描く
```

347. $xybox([[x_1,y_1],[x_2,y_2],[x_3,y_3]]|opt=t,color=s...) xybox([[x_1,y_1],[x_2,y_2]]|opt=t,color=s,...)$ $:: Xy-pic/TikZ で <math>(x_1,y_1)$ と (x_2,y_2) を対角点とし, (x_3,y_3) を頂点とする平行四辺形(あるいは水平

```
な辺をもつ長方形)を描く
348. xycirc([x,y,s],r|opt=t,arg=[\theta_1,\theta_2],deg=[\theta_1,\theta_2],close=1)
           :: X_Y\text{-pic/Ti}kZ で (x,y) 中心の半径 r mm/cm の円を描く
349. xybezier([[x_1,y_1],...,[x_n,y_n]]|verb=k,opt=t,cmd=s,relative=1)
           :: Xy-pic/TikZ で区分 Bézier 曲線(複合 Bézier 曲線)を描く
350. draw_bezier(id, idx, b | col = c, opt = s, init = 1)
           :: キャンバス上に区分 Bézier 曲線を描く
351. xylines([[x_1,y_1,s_1],[x_2,y_2,s_2],...]|opt=t,close=1,curve=1,ratio=c,verb=1,scale=r,
           Acc=1,dviout=1,proc=p)
           :: X_f-pic/TikZ で s_j を (x_j, x_j) に置き、(x_1, y_1), (x_2, y_2), \dots を(Bézier 曲)線で結ぶ
352. xyang(r, p_0, p_1, p_2 | opt=t, scale=r, prec=1, ar=1, dviout=1, proc=1)
           :: X_{Y}	ext{-pic}/	ext{Ti}kZ で角 \angle p_1p_0p_2 の記号や円弧や扇形や矢印を描く
353. xyoval(p,r,q|opt=t,arg=[t_1,t_2,t_3],deg=[t_1,t_2,t_3],scale=r,ar=1,prec=1,dviout=1,
           proc=1)
           :: X_{Y-pic}/TikZ で p を中心として、軸の長さが r と qr の楕円またはその弧や扇形を描く
354. xygrid ([x,t_x,u_x,m_x,s_x], [y,t_y,u_y,m_y,s_y] |raw=r,shift=[s_x,s_y])
           ::(対数) 方眼紙の描画
355. xygraph(f, n, [t_1, t_2], [x_1, x_2], [y_1, y_2] | opt=t, rev=1, ax=[x_0, y_0, s, t, u], axopt=[h, w, o, z],
           \texttt{scale=}r, \texttt{ratio=}c, \texttt{raw=1}, \texttt{org=}[x_0, y_0], \texttt{pt=}[p_1, p_2, \dots], \texttt{verb=1}, \texttt{para=1}, \texttt{prec=}v, \texttt{shift=}[u, v], \texttt{para=1}, \texttt{prec}(u, v), \texttt{para=1}, \texttt{prec}(u, v), \texttt{para=1}, \texttt{prec}(u, v), \texttt{para=1}, \texttt{para=1}, \texttt{prec}(u, v), \texttt{para=1}, \texttt
           Acc=1,dviout=t,proc=p)
           356. xy2graph(f, n, [x_1, x_2], [y_1, y_2], [h_1, h_2], \alpha, \beta | opt=t, scale=r, view=h, raw=1, trans=1,
           ax=[z_1,z_2,t], dev=m, acc=k, org=[x_0,y_0,z_0], pt=[p_1,p_2,...], prec=v, title=s, dviout=k,
           ext=[a,b], shift=[u,v], cl=1, proc=p)
           x : x, y 変数の区間を n 等分して曲面 z = f(x, y) の 3D グラフを描く
357. xy2curve([f_1, f_2, f_3], n, [t_1, t_2], [y_1, y_2], [z_1, z_2], \alpha, \beta|scale=r, gap=g, opt=s, eq=q, raw=w,
           dviout=d)
           :: 空間曲線の隠線処理つき描画
358. execdraw(\ell, t | shift=[u, v], ext=[a, b], cl=1)
           :: 描画実行形式 \ell を出力形態 t に従って実行する
           1.2.12 Applications
359. powprimroot(p,n|all=1,exp=1,log=f)
           :: p以上の素数 n 個とその原始根のリストを作る
360. ntable(f, [a,b], n|dif=1, str=[k_1, k_2, ...], mult=m, title=t, top=[t_1, ...])
           :: 区間 [a,b] を n 等分,または \mathbf{n}= [n_1,n_2] 等分した点での \mathbf{x} 変数の函数 f の函数値の数表を作る
361. distpoint(l | \text{div=5,opt=} s, title=t, size=\ell)
           :: 100 点満点の点数表のデータ l を元に点数分布などを表にする
362. seriesTaylor(f, k, v | evalopt=opt, small=1, frac=0, dviout=n)
           :: 函数 f の変数または変数のリスト v に対する k 次の項までの Taylor 展開を求める
           1.2.13 Environments
363. Canvas
```

:: Risa/Asir の描画キャンバスのデフォルトサイズ

 $364.\ \mathtt{AMSTeX}$

:: この値が 1 は AMSIATEX を意味する

365. TeXEq

:: デフォルトの LATeX の数式環境の指定 (dviout0(3) で値が分かる)

 $366. \, \, \text{TeXLim}$

:: IATeX で長い数式を行分割する際の1行の許容最大横幅文字数のデフォルト値

- 367. TikZ
 - :: グラフ表示に Xy-pic を使うか TikZ を使うかを指定
- 368. **XYPrec**
 - :: グラフ表示の時の座標の小数点以下の丸め桁数
- 369. XYcm
 - :: Xy-pic での単位を cm で表して, TikZ に合わせる
- 370. XYLim
 - :: Xy-pic や TikZ での曲線描画で順に指定する点での改行の間隔
- 371. DVIOUTH
 - :: myhelp() で指定した函数の解説を示すためのプログラムの指定
- 372. DIROUT
 - :: 数式を LATFX に変換したソースが格納されるディレクトリ (書き込み可能なことが要請される)
- 373. DVIOUTA
 - :: IsteX の AMSTeX 環境で risaout.tex を変換して表示するプログラムのパス名
- 374. DVIOUTB
 - :: IFT_EX の *AMS*T_EX 環境で risaout10.tex (または risaout10.tex) を変換して表示するプログラムのパス名で, DVIOUTA と交換できる (cf. dviout0(), risatex.bat).
- 375. DVIOUTL
 - :: I^AT_EX 環境で riasout0.tex を変換して表示するプログラムのパス名
- 376. .muldif
 - :: os_muldif.rr をロードしたときに読み込まれるファイル
- 377. risatex.bat
 - :: os_muldif.rr が出力する IATrX のソースファイルを変換して表示するプログラム

1.3 Some functions in the original library

以下の函数は、module 化されないので、函数名の先頭に os_md. をつけません.

1.3.1 数の演算

- 1. $idiv(i_1, i_2)$
 - :: 整数除算による商
- 2. irem (i_1, i_2)
 - :: 整数除算による剰余
- 3. **fac**(*i*)
 - :: 自然数 i の階乗
- 4. **nm**(*p*)
 - :: 有理数または有理式の分子
- 5. dn(p)
 - :: 有理数または有理式の分母
- 6. $igcd(i_1, i_2)$
 - :: 整数 i_1 と i_2 の GCD を求める
- 7. igcdcntl([i])
 - :: 整数 GCD のアルゴリズムの選択
- 8. $ilcm(i_1, i_2)$
 - :: 整数の最小公倍数を求める
- 9. **isqrt**(n)
 - :: n の平方根を越えない最大の整数を返す
- 10. inv(i,m)
 - :: m を法とする i の逆数

- 11. random([seed])
 - :: 乱数を生成する
- 12. lrandom(bit)
 - :: 多倍長乱数を生成する
- 13. mt_save(fname)
 - :: 乱数生成器の現在の状態をファイルにセーブする
- 14. mt_load(fname)
 - :: ファイルにセーブされた乱数生成器の状態をロードする
- 15. real(comp)
 - :: comp の実数部分
- 16. **imag**(*comp*)
 - :: comp の虚数部分
- 17. conj(comp)
 - :: comp の共役複素数
- 18. eval(obj [, prec])
 - :: obj の値の評価
- 19. deval(obj)
 - :: obj の値の評価 (倍精度浮動小数)
- 20. pari(func, arg, prec)
 - :: PARI の函数 func を呼び出す.
- 21. setprec([n])
 - :: bigfloat の桁数を n 桁に設定する
- 22. setmode([p])
 - :: 有限体を GF(p) に設定する
- 23. ntoint32(n)
 - :: 非負整数と符号なし 32bit 整数の間の型変換
- 24. int32ton(int32)
 - :: 非負整数と符号なし 32bit 整数の間の型変換
- 25. iand(m,n)
 - :: 整数 m, n のビット毎の and
- 26. ior(m,n)
 - :: 整数 m, n のビット毎の or
- 27. ixor(m,n)
 - :: 整数 m, n のビット毎の xor
- 28. ishift(i,count)
 - :: 整数 i の絶対値を bit 列とみて shift する
- 29. i2hex(i|cap=1,num=1,min=m)
 - :: 非負整数 i の 16 進表示
- 30. pari(binary, n)
 - :: 数 n の 2 進数表示
- 31. pari(factor, n)
 - :: 整数 n または1変数多項式 n の素因数分解を求める
- 32. pari(issquare, n)
 - :: 整数 n または多項式 n が平方数 (元) かどうか調べる
- 33. pari(omega, n)
 - :: 整数 n または1変数多項式 n の素因子の個数
- 34. pari(bigomega, n)
 - :: 整数 n または 1 変数多項式 n の素因子の重複度込みの個数
- 35. pari(numdiv, n)

- :: 整数 n を割り切る正整数の個数
- 36. pari(sigma, n)
 - :: n の正の約数の和
- 37. pari(isprime, num)
 - :: 自然数 num が素数かどうか調べる(合成数なら 0 を返す)
- 38. pari(ispsp, num)
 - :: 自然数 num が擬素数かどうか調べる(合成数なら 0 を返す)
- 39. pari(nextprime, num)
 - :: 自然数 num 以上の最小の擬素数を返す
- 40. pari(frac, num)
 - :: 実数 num の小数部分
- 41. pari(conj, num)
 - :: 複素数 num (行列でも可) の共役複素数を返す
- 42. pari(abs, num[, prec])
 - :: 複素数 num の絶対値を返す
- 43. pari(cf, num)
 - :: num の連分数展開を返す
- 44. pari(mu, n)
 - :: 自然数 n のメビウス函数 $\mu(n)$ の値(0 または ± 1)を返す
- 45. pari(phi, n)
 - :: 自然数 n に対する Euler o φ 函数の値(n 以下の n と素なものの個数)を返す

1.3.2 多項式, 有理式の演算

- 46. **var**(*rat*)
 - :: rat の主変数を返す
- 47. vars(obi)
 - :: obj に含まれる変数のリスト
- 48. uc()
 - :: 未定係数法のための vtype が 1 の不定元を生成する.
- 49. coef(poly, deg [, var])
 - :: poly の var (省略時は主変数) に関する deg 次の係数を出力する
- $50. \deg(poly, var)$
 - :: poly の,変数 var に関する最高次数
- 51. mindeg(poly, var)
 - :: poly の, 変数 var に関する最低次数
- 52. nmono(rat)
 - :: rat の単項式の項数
- 53. ord([varlist])
 - :: 変数順序の設定
- 54. sdiv(poly1, poly2[,v])
 - :: poly1 を poly2 で割る除算が最後まで実行できる場合に商を求める
- 55. sdivm(poly1, poly2, mod[,v])
 - :: GF(mod) 上で poly1 を poly2 で割る除算が最後まで実行できる場合に商を求める
- 56. $\operatorname{srem}(\operatorname{poly1}, \operatorname{poly2}[,v])$
 - :: poly1 を poly2 で割る除算が最後まで実行できる場合に剰余を求める
- 57. $\operatorname{sremm}(\operatorname{poly1}, \operatorname{poly2}, \operatorname{mod}[, v])$
 - :: GF(mod) 上で poly1 を poly2 で割る除算が最後まで実行できる場合に剰余を求める
- 58. $\operatorname{sqr}(\operatorname{poly1}, \operatorname{poly2}[, v])$
 - :: poly1 を poly2 で割る除算が最後まで実行できる場合に商、剰余を求める

- 59. $\operatorname{sqrm}(\operatorname{poly1}, \operatorname{poly2}, \operatorname{mod}[, v])$
 - :: GF(mod) 上で poly1 を poly2 で割る除算が最後まで実行できる場合に商, 剰余を求める
- 60. tdiv([poly1, poly2])
 - :: poly1 が poly2 で割れたら商を割れなければ 0 を返す
- 61. subst(rat[, varn, ratn]*)
 - :: 有理式の特定の不定元に、定数あるいは多項式、有理式などを代入する
- 62. psubst(rat[, varn, ratn]*)
 - :: 有理式の特定の不定元に、定数あるいは多項式、有理式などを代入する
- 63. diff(rat[,varn]*) または diff(rat,varlist)
 - :: rat を varn あるいは varlist の中の変数で順次微分する
- 64. res(var, poly1, poly2 [, mod])
 - :: 変数 var に関する多項式 poly1 と poly2 の終結式を求める
- 65. fctr(poly)
 - :: poly を既約因子に分解する
- 66. sqfr(poly)
 - :: poly を無平方分解する
- 67. ufctrhint(poly, hint)
 - :: 次数情報を用いた有理数係数の1変数多項式の因数分解
- 68. modfctr(poly, mod)
 - :: 有限体上での多項式の因数分解
- 69. ptozp(poly|factor=1)
 - :: 有理係数多項式を有理数倍して整数係数で係数の GCD が 1 の多項式に直す
- 70. % poly % m
 - :: poly の各係数を整数 m で割った剰余で置き換えた多項式を返す
- 71. prim(poly[,v])
 - :: 有理係数多項式 poly の原始的部分 (primitive part)
- 72. cont(poly[,v])
 - :: 有理係数多項式 poly の容量 (content)
- 73. gcd(poly1, poly2[, mod])
 - :: 二つの多項式の最大公約式 (GCD) を求める
- 74. gcdz(poly1, poly2)
 - :: 有限体上の二つの多項式の最大公約式 (GCD) を求める
- 75. red(rat)
 - :: rat を約分する
- 76. umul (p_1, p_2)
 - :: 整数係数一変数多項式の高速乗算
- 77. umul_ff(p_1, p_2)
 - :: 有限体係数一変数多項式の高速乗算
- 78. usquare(p_1)
 - :: 整数係数一変数多項式の高速 2 乗算
- 79. usquare_ff(p_1)
 - :: 有限体係数一変数多項式の高速 2 乗算
- 80. utmul(p_1, p_2, d)
 - :: 整数係数一変数多項式の高速乗算 (打ち切り次数指定)
- 81. utmul_ff(p_1 , p_2 ,d)
 - :: 有限体係数一変数多項式の高速乗算 (打ち切り次数指定)
- 82. $kmul(p_1, p_2)$
 - :: 一変数多項式の乗算を Karatsuba 法で行う
- 83. $ksquare(p_1)$

- :: 一変数多項式の高速 2 乗算を Karatsuba 法で行う
- 84. **ktmul**(p_1, p_2, d)
 - 一変数多項式の高速乗算 (打ち切り次数指定) を Karatsuba 法で行う
- 85. set_upkara([threshold])
 - :: 1変数多項式の積演算における N^2 , Karatsuba, FFT アルゴリズムの切替えの閾値
- 86. set_uptkara([threshold])
 - :: 1 変数多項式の積演算における N^2 , Karatsuba, FFT アルゴリズムの切替えの閾値
- 87. set_upfft([threshold])
 - :: 1 変数多項式の積演算における N^2 , Karatsuba, FFT アルゴリズムの切替えの閾値
- 88. utrunc(p,d)
 - :: 一変数多項式を次数で切る
- 89. udecomp(p,d)
 - :: 一変数多項式を次数で分ける
- 90. ureverse(p)
 - :: 一変数多項式の次数を逆にした多項式を作る
- 91. $uinv_as_power_series(p,d)$
 - :: 一変数多項式を冪級数とみて, 逆元計算
- 92. ureverse_inv_as_power_series(p,d)
 - :: 一変数多項式を次数を逆にして冪級数とみて, 逆元計算
- 93. $udiv(p_1, p_2)$
 - :: 一変数多項式 p_1, p_2 に対し、商を返す
- 94. $urem(p_1, p_2)$
 - $:: 変数多項式 <math>p_1, p_2$ に対し、剰余を返す
- 95. urembymul(p_1, p_2)
 - :: 一変数多項式 p_1, p_2 に対し, 剰余を返す
- 96. urembymul_precomp(p_1, p_2, inv)
 - :: 固定された多項式による剰余計算を多数行う場合などに用いる
- 97. $ugcd(p_1, p_2)$
 - :: 一変数多項式 p_1, p_2 に対し, GCD を返す
- 98. pari(content, p)
 - :: x 変数の多項式とみて、係数の最大公約元を返す
- 99. pari(round, p)
 - :: 多項式の各係数を近似整数に置き換える
- 100. pari(roots,p[,prec])
 - :: 多項式の根を求める
- 101. pari(disc, p)
 - $:: \mathbf{x}$ 変数の多項式 p の判別式を返す.

1.3.3 リスト, ベクトル, 配列の演算

- 102. car(list)
 - :: 空でない list の先頭要素(空の場合は空のリスト)を返す
- 103. cdr(list)
 - :: 空でない list から先頭要素を除いた(空の場合は空の) リストを返す
- 104. cons(obj, list)
 - :: list の先頭に obj を加えたリストを返す
- 105. append(list1, list2)
 - :: list1の後に list2をつなげたリストを返す
- 106. reverse(list)
 - :: 逆順に並べ替えたリストを返す

```
107. length(lv)
    :: リストまたはベクトルの長さを返す
108. newvect(len[, list])
    :: 長さ len のベクトルを生成する
109. vector(len[, list])
    :: 長さ len のベクトルを生成する
110. vect([elements])
    :: 要素の並びからベクトルを生成する
111. ltov(list)
   :: list をベクトルに変換する
112. vtol(vect)
    :: ベクトルをリストに変換する
113. newbytearray(len,[listorstring])
    :: newvect と同様にして byte array を生成する
114. size(vect/mat)
    :: 行列のサイズまたはベクトルの長さを求める函数(戻り値はリスト)
115. qsort(array [,func])
    :: 一次元配列 array をソートする.
    1.3.4 行列の演算
116. newmat(row, col[, [[a,b,...], [c,d,...],...]))
117. matrix(row, col[, [[a,b,...], [c,d,...],...]))
    :: row 行 col 列の行列を生成する
118. mat(vector[,...])
119. matr(vector[,...])
    :: 行ベクトル(またはリスト)の並びから行列を生成する
120. matc(vector[,...])
    :: 列ベクトル (またはリスト) の並びから行列を生成する
121. det(mat[, mod])
    :: mat の行列式
122. nd_det(mat[, mod])
    :: 有理数または有限体上の多項式行列 mat の行列式
123. invmat(mat)
    :: 行列 mat の逆行列
124. rowx(matrix, i, j)
    :: 第i行と第j行を交換する
125. rowm(matrix, i, c)
    :: 第 i 行を c 倍する
126. rowa(matrix, i, j, c)
    :: 第i 行に第j 行のc 倍を加える
127. colx(matrix, i, j)
    :: 第 i 列と第 j 列を交換する
128. colm(matrix, i, c)
    :: 第i列をc倍する.
129. cola(matrix, i, j, c)
    :: 第i列に第j列のc倍を加える.
130. pari(adj, mat)
    :: 行列 mat の余因子行列 (元の行列との積が行列式となる) を返す
131. pari(trace, mat)
```

- :: 行列 mat の trace を返す
- 132. pari(signat, mat)
 - :: 実対称行列の符号を返す
- 133. pari(indexrank, mat)
 - :: 行列 mat の階数に等しいサイズの正則小行列の一つの行と列の位置を返す
- 134. pari(supplement, mat)
 - :: 列ベクトルが一次独立な行列 mat の右に列を補って正則正方行列を作る
- 135. pari(hess, mat)
 - :: 正方行列をヘッセンベルグ行列に変換する
- 136. pari(eigen, mat[, prec])
 - :: 数を成分とする行列の固有ベクトルを返す
- 137. pari(jacobi, mat[, prec])
 - :: 実対称行列の固有値と固有ベクトルを返す

1.3.5 文字列に関する演算

- 138. rtostr(obj)
 - :: obj を文字列に変える
- 139. **strtov**(*str*)
 - :: str (文字列) を不定元に変える
- 140. $eval_str(str)$
 - :: str (文字列) を評価する.
- 141. strtoascii(str)
 - :: 文字列をアスキーコード (1以上 255以下の整数) のリストで表す
- 142. asciitostr(list)
 - :: アスキーコードの列を文字列に変換する
- 143. **str_len**(*str*)
 - :: 文字列の長さを返す
- 144. str_chr(str,start,c)
 - :: 文字が最初に現れる位置を返す
- 145. sub_str(str,start,end)
 - :: 部分文字列を返す

1.3.6 構造体に関する函数

- 146. newstruct(name)
 - :: 構造体名が name の構造体を生成する
- 147. arfreg(name, add, sub, mul, div, pwr, chsgn, comp)
 - :: 構造体に体する基本演算を登録する
- 148. str_type(name|object)
 - :: 構造体の識別番号を取得する

1.3.7 入出力

- $149.\ \mathrm{end}$
- $150.\ {\tt quit}$
 - :: 現在読み込み中のファイルを閉じる. トップレベルにおいてはセッションを終了することになる
- 151. load("filename")
 - :: filename を読み込む
- 152. which("filename")
 - :: 引数 filename に対し, load() が読み込むパス名を返す
- 153. output(["filename"])
 - :: 以降の出力先を filename または標準出力に切替える

```
154. bsave(obj, "filename")
   :: filename に obj をバイナリ形式で書き込む
155. bload("filename")
   :: filename から数式をバイナリ形式で読み込む
156. print(obj[,nl])
   :: obj を評価して表示する
157. printf(format[, args])
158. fprintf(fd, format[, args])
159. sprintf(format[, args])
   :: C に似たプリント関数 (実験的仕様関数)
160. access(file)
   :: file の存在をテストし、存在すれば 1、存在しなければ 0 を返す
161. remove_file(file)
   :: file を消去する
162. open_file("filename" [,"mode"])
   :: filename をオープンする
163. close_file(num)
   :: 識別子 num のファイルをクローズする
164. get_line([num])
   :: 識別子 num のファイルから 1 行読む
165. get_byte(num)
   :: 識別子 num のファイルから 1 バイト読む
166. put_byte(num, c)
   :: 識別子 num のファイルに 1 バイト c を書く
167. purge_stdin()
   :: 標準入力のバッファをクリアする
   1.3.8 型や函数、モジュールに関わる函数
168. type(obj)
   :: obj の型を求める函数
169. ntype(num)
   :: num (数)の型(整数)を返す.
170. vtype(var)
   :: var (不定元) の型 (整数) を返す
171. call(name, args)
   :: 函数 name を呼び出す
172. functor(func)
   :: func の函数子を取り出す
173. args(func)
   :: func の引数リストを取り出す
174. funargs(func)
   :: cons(functor(func),args(func)) を返す
175. module_list()
   :: 定義済みのモジュールのリストを得る
176. module_definedp(name)
   :: モジュール name の存在をテストする
177. remove_module(name)
```

:: モジュール name を削除する

1.3.9 数值函数

- 178. dacos(num)
 - :: 函数値 Arccos(num) を倍精度浮動小数で求める
- 179. dasin(num)
 - :: 函数値 Arcsin(num) を倍精度浮動小数で求める
- 180. datan(num)
 - :: 函数値 Arctan(num) を倍精度浮動小数で求める
- 181. dcos(num)
 - :: 函数値 cos(num) を倍精度浮動小数で求める
- 182. dsin(num)
 - :: 函数値 sin(num) を倍精度浮動小数で求める
- 183. dtan(num)
 - :: 函数値 tan(num) を倍精度浮動小数で求める
- 184. dabs(num)
 - :: 絶対値 |num| を倍精度浮動小数で求める
- 185. dexp(num)
 - :: 函数値 exp(num) を倍精度浮動小数で求める
- 186. dlog(num)
 - :: 対数値 log(num) を倍精度浮動小数で求める
- 187. dsqrt(num)
 - :: 平行根 \sqrt{num} を倍精度浮動小数で求める
- 188. ceil(num)
 - :: num 以上の最小の整数を求める
- 189. dceil(num)
 - :: num 以上の最小の整数を求める (ceil()の別名)
- 190. **floor**(num)
 - :: num 以下の最大の整数を求める
- 191. dfloor(num)
 - :: num 以下の最大の整数を求める (floor()の別名)
- 192. rint(num)
 - :: num を整数にまるめる
- 193. drint(num)
 - :: num を整数にまるめる (rint() の別名)
- 194. pari(sqrt, num[, prec])
 - :: (複素) 数 num の平方根を与える
- 195. pari(arg, num[, prec])
 - :: 複素数 num の偏角を与える($-\pi$ < 戻り値 $\leq \pi$)
- 196. pari(gamma, num[, prec])
 - :: ガンマ関数 (num は複素数でもよい)
- 197. pari(gamh, num[, prec])
 - $\Gamma(num + \frac{1}{2})$ (num は複素数でもよい)
- 198. pari(lngamma, num[, prec])
 - $:: \log(\Gamma(x))$
- 199. pari(psi, num[, prec])
 - :: digamma 関数
- 200. pari(erfc, num[, prec])
 - :: 相補誤差関数 (complementary error function)
- 201. pari(dilog, num[, prec])

```
:: dilogarithm 関数
202. pari(eta,\tau[, prec])
    :: Dedekind の Eta 関数 \eta(\tau) で \tau は虚部が正の複素数
203. pari(wp, \tau[, prec])
    :: Weber 関数 f(\tau) で \tau は虚部が正の複素数
204. pari(wp2, \tau[, prec])
    :: Weber 関数 \mathfrak{f}_2(\tau) で \tau は虚部が正の複素数
205. pari(jell,\tau[,prec])
    :: Elliptic j-invariant j(\tau) で \tau は虚部が正の複素数
206. pari(zeta, s[, prec])
    :: Riemann の \zeta 関数
    1.3.10 描画函数
207. ifplot(func [,geometry] [,xrange] [,yrange] [,id] [,name])
    :: 2 変数関数の実数上での零点を表示する
208. conplot(func [,geometry] [,xrange] [,yrange] [,zrange] [,id] [,name])
    :: 2 変数関数の実数上での等高線を表示する
209. plot(func [,geometry] [,xrange] [,id] [,name])
    :: 1 変数関数のグラフを表示する
210. polarplo(func [, geometry] [, thetarange] [, id] [, name])
    :: 極形式 r = func(\theta) で与えられた曲線を表示する
211. plotover(func, id, number)
    :: すでに存在しているウィンドウへ描画する
212. open_canvas(id[, geometry])
    :: 描画用ウィンドウ (キャンバス) を生成する
213. clear_canvas(id, index)
    :: キャンバスをクリアする
214. draw_obj(id,index,pointorsegment [,color])
    :: キャンバス上に点または線分を描画する
215. draw_string(id, index, [x,y], string [, color])
    :: キャンバス上に文字列を描画する
    1.3.11 有限体に関する演算
216. setmod\_ff([p | defpoly2]) setmod\_ff([defpolyp,p]) setmod\_ff([p,n])
    :: 有限体の設定, 設定されている有限体の法, 定義多項式の表示
217. field_type_ff([p|defpoly2])
    :: 設定されている基礎体の種類
218. field_order_ff()
    :: 設定されている基礎体の位数
219. characteristic_ff()
    :: 設定されている体の標数
220. extdeg_ff()
    :: 設定されている基礎体の、素体に対する拡大次数
221. simp_ff(obj)
    :: 数, あるいは多項式の係数を有限体の元に変換
222. random_ff()
    :: 有限体の元の乱数生成
223. lmptop(obj)
    :: GF(p) 係数多項式の係数を整数に変換
```

224. ntogf2n(m)

```
:: 自然数を GF(2^n) の元に変換
```

- 225. gf2nton(m)
 - $:: GF(2^n)$ の元を自然数に変換
- 226. ptogf2n(poly)
 - :: 一変数多項式を $GF(2^n)$ の元に変換
- 227. gf2ntop(m,[v])
 - $:: GF(2^n)$ の元を多項式に変換
- 228. ptosfp(p)
 - :: 小標数有限体への変換
- 229. **sfptop**(*p*)
 - :: 小標数有限体からの変換
- 230. $defpoly_mod2(d)$
 - :: GF(2) 上既約な d 次の一変数多項式の生成
- 231. sffctr(poly)
 - :: 多項式の小標数有限体上での既約分解
- 232. fctr_ff(poly)
 - :: 1 変数多項式の有限体上での既約分解
- 233. irredcheck_ff(poly)
 - :: 1 変数多項式の有限体上での既約判定
- 234. randpoly_ff(d,v)
 - :: 有限体上の乱数係数 1 変数多項式の生成
- 235. $ecm_add_ff(p_1, p_2, ec)$
 - :: 楕円曲線上の点の加算
- 236. $ecm_sub_ff(p_1, p_2, ec)$
 - :: 楕円曲線上の点の減算
- 237. $ecm_chsgn_ff(p_1)$
 - :: 楕円曲線上の点の逆元

1.3.12 その他の函数

- 238. ctrl("switch" [,obj])
 - :: "switch" で指定した環境の設定,設定値を返す.
- 239. debug
 - :: デバッグモードに入る
- 240. error(message)
 - :: エラーメッセージを表示してデバッグモードに入る
- $241. \, time()$
 - :: セッション開始から現在までの CPU 時間および GC 時間を表示する
- 242. cputime(onoff)
 - :: 引数が 0 ならば cputime の表示を止める, それ以外ならば表示を行う
- 243. tstart()
 - :: CPU time 計測開始
- 244. tstop()
 - :: CPU time 計測終了および表示
- 245. timer(interval, expr, val)
 - :: 制限時間つきで計算を実行する
- 246. currenttime()
 - 1970年1月1日0時0分0秒からの経過秒数
- 247. sleep(interval)
 - :: プロセスの実行を interval×10⁻³ 秒停止

```
248. \text{ heap()}
```

:: 現在のヒープの大きさを返す(単位:バイト)

249. version()

:: Asir のバージョン (整数) を返す.

250. shell(command)

:: command をシェルコマンドとして実行する

251. map(function, arg0, arg1,...)

:: リスト, 配列の各要素に函数を適用する

252. flist()

:: 現在定義されている組み込み函数, ユーザ定義函数の函数名を文字列リストとして返す

253. delete_history([index])

:: ヒストリを消去する

254. get_rootdir()

:: Asir のルートディレクトリ名を取り出す

255. **getopt**([key])

:: オプションの値を返す

256. getenv(name)

:: 環境変数 name の値を返す

2 Risa/Asir

Risa/Asir はオープンソースの計算機代数 (数式処理) システムです.

神戸版は OpenXM コミッターによって開発されています. オリジナルの Risa/Asir は富士通研究所で開発されました.

現在の神戸版は Windows 用 (32bit, 64bit), UNIX 用, MAC OS X 用が存在し

http://www.math.kobe-u.ac.jp/Asir/asir-ja.html

からダウンロードできます.

Risa/Asir の著作権, ライセンス同意事項についてはこちらを御覧ください. 要約すると「非商用の場合,配布,改変は自由」という形で提供されています.

以下の $\S 2.1 - \S 2.12$ および 3. Some function in the original library は、Risa/Asir の Help ファイル (chm 形式) の一部を、若干の改変をほどこして取り込んだもので、myhelp() によって os_muldif.rr に含まれる函数とともに Risa/Asir から参照することが出来ます.

2.1 Risa および Asir

Risa の構成は次の通りである.

• 基本演算部

これは、Risa の内部形式に変換されたオブジェクト (数,多項式など)の間の演算を実行する部分であり、UNIXの 'libc.a' などと同様の、ライブラリとして存在する. エンジンは、C および アセンブラで記述され、後述する言語インタフェース Asir の基本演算部として用いられている.

• メモリ管理部

Risa では、メモリ管理部として、[Boehm-Weiser] によるフリーソフトウェア (gc-6.1alpha5) を用いている。これはガーベジコレクション (以下 GC と呼ぶ) を自動的に行うメモリ割り当て機構を持ち、Risa の各部分はすべてこれにより必要なメモリを得ている。

• Asir

Asir は、Risa の計算エンジンの言語インタフェースである。Risa では、比較的容易にユーザ用の言語インタフェースを作ることができる。Asir はその一つの例として作ったもので、C 言語に近い文法をもつ。また、C のデバッガとして広く用いられている C のデバッガも備えている。

2.2 Asir の特徴

Asir は、前述の通り、計算エンジンの言語インタフェースである。通常 Asir という名前の実行可能ファイルとして提供される。現在サポートされている機能は概ね次の通りである。

- C 言語風のユーザ言語
- 数, 多項式, 有理式の加減乗(除)
- ◆ ベクトル, 行列の演算
- 最小限のリスト処理
- 組み込み函数 (因数分解, GCD, グレブナ基底など)
- ユーザ定義函数によるツール (代数体上の因数分解など)
- dbx 風のデバッガ
- 陰函数の描画
- PARI (see section pari()) による初等超越函数を含む式の評価
- UNIX 上での分散計算機能 (Open XM)

2.3 コマンドラインオプション

コマンドラインオプションは次の通り.

- -heap number Risa/Asir では、4KB のブロックをメモリ割り当ての単位として用いている。デフォルトでは、初期 heap として、16 ブロック (64KB) 割り当てるが、それを変更する場合、-heap を用いる。単位はブロックである。heap の大きさは、heap() 函数で調べることができる (単位はバイト)。
- -adj number この値が大きいほど、使用メモリ量は大きくなるが、GC 時間が少なくなる. number として 1 以上の整数が指定できる. デフォルトでは 3 である. この値が 1 以下になると GC をしない設定になるので要注意である. heap をなるべく伸ばさずに、GC を主体にしてメモリ管理したい場合には、この値を大きく (例えば 8) 設定する.
- -norc 初期化ファイル '\$HOME/.asirrc' を読まない.
- -quiet 起動時の著作権表示を行わない.
- -f file 標準入力の代わりに、file から入力を読み込んで実行する. エラーの際にはただちに終了する.
- -paristack number PARI (see section pari()) 専用の領域の大きさを指定する. 単位はバイト. デフォルトでは 1 MB.
- -maxheap number heap 領域の上限を指定する. 単位はバイト. デフォルトでは無制限. UNIX の場合, 実際 には limit コマンドで表示される datasize の値に制限されているため, -maxheap の指定がなくても一 定量以上に heap を獲得できない場合があるので注意.)

2.4 環境変数

Asir の実行に関するいくつかの環境変数が存在する. UNIX 上では環境変数は shell のコマンドラインから直接設定するか, shell の rc ファイルで設定する. Windows NT では, [設定] \rightarrow [システム] \rightarrow [環境] で設定する. Windows 95/98 では, 'c:\autoexec.bat'に書いて reboot する.

- ASIR_LIBDIR Asir のライブラリディレクトリ, すなわちユーザ言語で書かれたファイルなどがおかれる ディレクトリ. 指定がない場合 UNIX 版では '/usr/local/lib/asir', Windows 版では Asir メインディレクトリの下の 'lib' ディレクトリが用いられる. この環境変数は ASIRLOADPATH に統合され 廃止される予定.
- ASIR_CONTRIB_DIR Asir の asir-contrib ディレクトリ, すなわち OpenXM/asir-contrib プロジェクトで書かれたパッケージやデータなどがおかれるディレクトリ. 指定がない場合 UNIX 版では '/usr/local/lib/asir-contrib', Windows 版では Asir メインディレクトリの下の 'lib-asir-contrib' ディレクトリが用いられる. この環境変数は ASIRLOADPATH に統合され廃止される予定.
- ASIRLOADPATH ロードされるファイルがあるディレクトリを UNIX の場合 ':', Windows の場合 ';' で区切って並べる. ディレクトリは左から順にサーチされる. この指定がない場合, および指定されたファイルが ASIRLOADPATH になかった場合, ライブラリディレクトリもサーチされる.
- HOME -norc オプションつきで起動しない場合, '\$HOME/.asirrc' があれば, 予めこのファイルを実行する. HOME が設定されていない場合, UNIX 版ではなにも読まないが, Windows 版では Asir メインディレクトリ (get_rootdir() で返されるディレクトリ) の '.asirrc' を探し, あればそれを実行する.

2.5 起動から終了まで

Asir を起動すると,

[0]

なるプロンプトが表示され、セッションが開始する. **'\$HOME**/.asirrc'(Windows 版の場合, HOME 設定されていない場合には get_rootdir() で返されるディレクトリにある'.asirrc') が存在している場合、このファイルを Asir ユーザ言語でかかれたファイルと見なし、解釈実行する.

プロンプトは入力の番号を表す. セッションは, end; または quit; を入力することにより終了する. 入力は, ';' または '\$' までを一区切りとして評価される. ';' のとき結果は表示され, '\$' のとき表示されない.

```
% asir
[0] A;
0
[1] A=(x+y)^5;
x^5+5*y*x^4+10*y^2*x^3+10*y^3*x^2+5*y^4*x+y^5
[2] A;
x^5+5*y*x^4+10*y^2*x^3+10*y^3*x^2+5*y^4*x+y^5
[3] a=(x+y)^5;
evalpv : invalid assignment
return to toplevel
[3] a;
a
[4] fctr(A);
[[1,1],[x+y,5]]
[5] quit;
%
```

この例では、A, a, x, y なる文字が使用されている。A はプログラムにおける変数で、a, x, y は数学的な意味での不定元である。一般にプログラム変数は大文字で始まり、不定元は小文字で始まる。この例でわかるように、プログラム変数は、数、式などを格納しておくためのものであり、C 言語などにおける変数に対応する。一方、不定元はそれ自身で値を持つことはできず、従って、不定元に対する代入は許されない。後に示すが、不定元に対する代入は、組み込み函数 subst() により明示的に行われる。

2.6 割り込み

計算を実行中に割り込みをかけたい場合、割り込みキャラクタ (通常は C-c, Windows, DOS 版では C-x を入力する.

 $0 (x+y)^1000;$

C-cinterrupt ?(q/t/c/d/u/w/?)

各選択肢の意味は次の通り.

- **q** Asir を終了する. (確認あり)
- t トップレベルに戻る. (確認あり)
- c 実行を継続する.
- d デバッグモードに入る. デバッガに関しては See section デバッガ.
- u register_handler() (see section ox_reset, ox_intr, register_handler) で登録された関数を実 行後トップレベルに戻る. (確認あり)
- w 中断点までの函数の呼び出し列を表示する.
- ? 各選択肢の意味を説明する

2.7 エラー処理

組み込み函数に不正な型の引数を渡した場合などには実行が中断されるが、ユーザ函数の中でエラーが起きた場合にはトップレベルに戻る前に自動的にデバッグモードに入る。この状態でエラーの場所、直前の引数の値などを調べることができる。表示されるエラーメッセージはさまざまであり、内部の函数名に引き続いてメッセージが表示される。これは、呼び出された組み込み函数と必ずしも対応はしない。

その他、さまざまな原因により内部演算函数においてエラーが生ずることがある. UNIX 版の場合、これは次のいずれかの internal error として報告され、通常のエラーと同様に扱って、デバッグモードに入る.

SEGV

- BUS ERROR 組み込み函数によっては、引数の型を厳密にチェックせずに演算ルーチンに引き渡してしまうものも存在している。このような状況において、不正なポインタ、あるいは NULL ポインタによるアクセス違反があった場合、これらのエラーとなる。
- BROKEN PIPE プロセス間通信において、相手先のプロセスとの間のストリームが既に存在していない場合 (例えば既に相手先のプロセスが終了している場合など) に、そのストリームに入出力しようとした場合 にこのエラーとなる. これらは実際には、組み込み函数の入口において、引数を完全にチェックすること により大部分は防げるが、手間が多くかかることと、場合によっては効率を落すことにもなるため、あえて引数チェックはユーザ任せにしてある.

2.8 計算結果, 特殊な数

© はエスケープ文字として使用される. 現在次のような規定がある.

```
@n n 番目の計算結果.
```

@@ 直前の計算結果.

@i 虚数単位.

@pi 円周率.

@e 自然対数の底.

② 2 元体 GF(2) 上の一変数多項式の変数 (不定元)

@>, @<, @>=, @<=, @==, @&&, @|| quantifier elimination における, 一階述語論理演算子

```
[0] fctr(x^10-1);
```

 $[[1,1],[x-1,1],[x+1,1],[x^4+x^3+x^2+x+1,1],[x^4-x^3+x^2-x+1,1]]$

[1] @@[3];

 $[x^4+x^3+x^2+x+1,1]$

[2] eval(sin(@pi/2));

[3] eval(log(@e),20);

0.999999999999999999999999

[4] @0[4][0];

 $x^4-x^3+x^2-x+1$

[5] (1+@i)^5;

(-4-4*@i)

[6] eval(exp(@pi*@i));

[7] (0+1)^9;

(@^9+@^8+@+1)

トップレベルで計算された値はこのようにヒストリとして取り出し可能であるが、このことは、ガベージコレクタにとっては負担をもたらす可能性がある。特に、大きな式をトップレベルで計算した場合、その後の GC 時間が急速に増大する可能性がある。このような場合、delete_history() が有効である。

2.9 型

2.9.1 Asir で使用可能な型

Asir においては、可読な形式で入力されたさまざまな対象は、パーザにより中間言語に変換され、インタプリタにより Risa の計算エンジンを呼び出しながら内部形式に変換される.変換された対象は、次のいずれかの型を持つ. 各番号は、組み込み函数 type() により返される値に対応している. 各例は、Asir のプロンプトに対する入力が可能な形式のいくつかを示す.

- **00** 実際には 0 を識別子にもつ対象は存在しない. 0 は, C における 0 ポインタにより表現されている. しかし, 便宜上 Asir の type(0) は値 0 を返す.
- 1数 1 0x0d 2/3 14.5 3+2*@i

数は (0x0d は 16 進数, @i は虚数単位), さらにいくつかの型に分けられる. これについては下で述べる.

2 **多項式** (数でない) x afo (2.3*x+y)¹⁰

多項式は、全て展開され、その時点における変数順序に従って、再帰的に 1 変数多項式として降冪の順に整理される. (See section 分散表現多項式). この時、その多項式に現れる順序最大の変数を 主変数と呼ぶ.

3 有理式 (多項式でない)(x+1)/(y^2-y-x) x/x

有理式は、分母分子が約分可能でも、明示的に red() が呼ばれない限り約分は行われない. これは、多項式の GCD 演算が極めて重い演算であるためで、有理式の演算は注意が必要である.

4 リスト [] [1,2,[3,4],[x,y]]

リストは読み出し専用である. [] は空リストを意味する. リストに対する操作としては, car(), cdr(), cons() などによる操作の他に, 読み出し専用の配列とみなして, [index] を必要なだけつけることにより要素の取り出しを行うことができる. 例えば

- [0] L = [[1,2,3],[4,[5,6]],7]\$
- [1] L[1][1];

[5,6]

注意すべきことは、リスト、配列 (行列、ベクトル) 共に、インデックスは 0 から始まることと、リストの要素の取り出しをインデックスで行うことは、結局は先頭からポインタをたどることに相当するため、配列に対する操作に比較して大きなリストでは時間がかかる場合があるということである.

5 ベクトル newvect(3) newvect(2,[a,1])

ベクトルは、newvect() で明示的に生成する必要がある. 前者の例では 2 成分の 0 ベクトルが生成され、後者では、第 0 成分が a、第 1 成分が 1 のベクトルが生成される. 初期化のための 第 2 引数は、第 1 引数以下の長さのリストを受け付ける. リストの要素は左から用いられ、足りない分は 0 が補われる. 成分は [index] により取り出せる. 実際には、各成分に、ベクトル、行列、リストを含む任意の型の対象を代入できるので、多次元配列をベクトルで表現することができる.

- [0] A3 = newvect(3);
- [000]
- [1] for (I=0;I<3;I++)A3[I] = newvect(3);
- [2] for (I=0;I<3;I++)for(J=0;J<3;J++)A3[I][J]=newvect(3);
- [3] A3;
- [[000][000]]]
- [[000][000]]

```
[ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ] ]
[4] A3[0];
[ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ]
[5] A3[0][0];
[ 0 0 0 ]
```

6 行列 newmat(2,2) newmat(2,3,[[x,y],[z]])

行列の生成も newmat() により明示的に行われる. 初期化も, 引数がリストのリストとなることを除いてはベクトルと同様で, リストの各要素 (これはまたリストである) は, 各行の初期化に使われ, 足りない部分には 0 が埋められる. 行列も, 各要素には任意の対象を代入できる. 行列の各行は, ベクトルとして取り出すことができる.

```
[0] M=newmat(2,3);
```

[000]

[0 0 0]

[1] M[1];

[0 0 0]

[2] type(@@);

5

7 文字列 "" "afo"

文字列は、主にファイル名などに用いられる. 文字列に対しては加算のみが定義されていて、結果は2つの文字列の結合である.

```
[0] "afo"+"take";
```

afotake

8 構造体 newstruct(afo)

Asir における構造体は、C における構造体を簡易化したものである. 固定長配列の各成分を名前でアクセスできるオブジェクトで、構造体定義毎に名前をつける.

9 分散表現多項式 2*<<0,1,2,3>>-3*<<1,2,3,4>>

これは、ほとんどグレブナ基底専用の型で、通常の計算でこの型が必要となることはまずないが、グレブナ基底計算パッケージ自体がユーザ言語で書かれているため、ユーザが操作できるよう独立した型として Asir で使用できるようにしてある。これについては See section グレブナ基底の計算.

10 符号なしマシン 32bit 整数

11 エラーオブジェクト

以上二つは、Open XM において用いられる特殊オブジェクトである.

12 GF(2) 上の行列

現在,標数2の有限体における基底変換のためのオブジェクトとして用いられる.

13 MATHCAP オブジェクト

Open XM において、実装されている機能を送受信するためのオブジェクトである.

14 first order formula

quantifier elimination で用いられる一階述語論理式.

15 matrix over GF(p)

小標数有限体上の行列.

16 byte array

符号なし byte の配列

−1 VOID オブジェクト

型識別子 -1 をもつオブジェクトは関数の戻り値などが無効であることを示す.

2.9.2 数の型

0 有理数

有理数は、任意多倍長整数 (bignum) により実現されている. 有理数は常に既約分数で表現される.

1 倍精度浮動小数

マシンの提供する倍精度浮動小数である. Asir の起動時には, 通常の形式で入力された浮動小数はこの型に変換される. ただし, ctrl() により bigfloat が選択されている場合には bigfloat に変換される.

```
[0] 1.2;
1.2
[1] 1.2e-1000;
0
[2] ctrl("bigfloat",1);
1
[3] 1.2e-1000;
1.20000000000000000513 E-1000
```

倍精度浮動小数と有理数の演算は、有理数が浮動小数に変換されて、浮動小数として演算される.

2 代数的数 See section 代数的数に関する演算.

3 bigfloat

bigfloat は、Asir では PARI ライブラリにより実現されている. PARI においては、bigfloat は、仮数部のみ任意多倍長で、指数部は 1 ワード以内の整数に限られている. ctrl() で bigfloat を選択することにより、以後の浮動小数の入力は bigfloat として扱われる. 精度はデフォルトでは 10 進 9 桁程度であるが、setprec() により指定可能である.

```
[0] ctrl("bigfloat",1);
1
[1] eval(2^(1/2));
1.414213562373095048763788073031
[2] setprec(100);
9
[3] eval(2^(1/2));
1.41421356237309504880168872420969807856967187537694807317...
```

eval() は、引数に含まれる函数値を可能な限り数値化する函数である. **setprec()** で指定された桁数は、結果の精度を保証するものではなく、PARI 内部で用いられる表現のサイズを示すことに注意すべきである. (See section eval(), deval(), pari().)

4 複素数

複素数は,有理数, 倍精度浮動小数, bigfloat を実部, 虚部として a+b*@i (@i は虚数単位) として与えられる数である. 実部, 虚部はそれぞれ real(), imag() で取り出せる.

5 小標数の有限素体の元

ここで言う小標数とは、標数が 2^{27} 未満のもののことである。このような有限体は、現在のところグレブナ基底計算において内部的に用いられ、有限体係数の分散表現多項式の係数を取り出すことで得られる。それ自身は属する有限体に関する情報は持たず、setmode() で設定されている素数 p を用いて GF(p) 上での演算が適用される。

6 大標数の有限素体の元

標数として任意の素数がとれる.この型の数は、整数に対し simp_ff を適用することにより得られる.

7標数2の有限体の元

標数 2 の任意の有限体の元を表現する. 標数 2 の有限体 F は, 拡大次数 [F:GF(2)] を n とすれば, GF(2) 上既約な n 次多項式 f(t) により F=GF(2)[t]/(f(t)) とあらわされる. さらに, GF(2)[t] の元 g は, f(t) も含めて自然な仕方でビット列とみなされるため, 形式上は, F の元 g mod f は, g, f をあらわす 2 つのビット列で表現することができる. F の元を入力するいくつかの方法が用意されている.

@ & はその後ろに数字, 文字を伴って, ヒストリや特殊な数をあらわすが, 単独で現れた場合には, F = GF(2)[t]/(f(t)) における $t \mod f$ をあらわす. よって, @ の多項式として F の元を入力できる. (@^10+@+1 など)

ptogf2n 任意変数の 1 変数多項式を, ptogf2n() により対応する F の元に変換する.

ntogf2n 任意の自然数を, 自然な仕方で F の元とみなす. 自然数としては, 10 進, 16 進 (0x で始まる), 2 進 (0b で始まる) で入力が可能である.

その他 多項式の係数を丸ごと F の元に変換するような場合、 $simp_ff()$ により変換できる.

8 位数 p^n の有限体の元

位数が p^n (p は任意の素数, n は正整数) は、標数 p および GF(p) 上既約な n 次多項式 m(x) を $setmod_ff$ により指定することにより設定する。この体の元は m(x) を法とする GF(p) 上の多項式として表現される。

9 位数 p^n の有限体の元

(小位数) 位数が p^n の有限体 $(p^n$ が 2^{29} 以下, p が 2^{14} 以上なら n は 1) は, 標数 p および拡大次数 n を $setmod_ff()$ により指定することにより設定する. この体の 0 でない元は, p が 2^{14} 未満の場合, $GF(p^n)$ の乗法群の生成元を固定することにより, この元のべきとして表される. これにより, この体の 0 でない元は, このべき指数として表現される. p が 2^{14} 以上の場合は通常の剰余による表現となるが, 共通のプログラムで双方の場合を扱えるようにこのような仕様となっている.

10 位数 p^n の小位数有限体の代数拡大の元

前項の、位数が p^n の小位数有限体の m 次拡大の元である. 標数 p および拡大次数 n, m を $setmod_ff()$ により指定することにより設定する. 基礎体上の m 次既約多項式が自動生成され、その代数拡大の生成元の定義多項式として用いられる. 生成元は cs である.

11 分散表現の代数的数

See section 代数的数に関する演算. 小標数有限素体以外の有限体は setmod_ff() で設定する. 有限体の元どうしの演算では,一方が有理数の場合には,その有理数は自動的に現在設定されている有限体の元に変換され,演算が行われる.

2.9.3 不定元の型

多項式の変数となり得る対象を不定元とよぶ. Asir では, 英小文字で始まり, 任意個のアルファベット, 数字, '_' からなる文字列を不定元として扱うが, その他にもシステムにより不定元として扱われるものがいくつかある. Asir の内部形式としては, これらは全て多項式としての型を持つが, 数と同様, 不定元の型により区別される.

0 一般不定元

英小文字で始まる文字列. 多項式の変数として最も普通に用いられる.

[0] [vtype(a),vtype(aA_12)]; [0,0]

1 未定係数 uc() は、'_' で始まる文字列を名前とする不定元を生成する.これらは、ユーザが入力できないというだけで、一般不定元と変わらないが、ユーザが入力した不定元と衝突しないという性質を利用して未定係数の自動生成などに用いることができる.

[1] U=uc();

_0

```
[2] vtype(U);
```

2 函数形式

組み込み函数, ユーザ函数の呼び出しは、評価されて何らかの Asir の内部形式に変換されるが、sin(x)、cos(x+1) などは、評価後もそのままの形で存在する。これは函数形式と呼ばれ、それ自身が 1 つの不定元として扱われる。またやや特殊な例として、円周率 @pi や自然対数の底 @e も函数形式として扱われる。

```
[3] V=sin(x);
sin(x)
[4] vtype(V);
2
[5] vars(V^2+V+1);
[sin(x)]
```

3 函数子

函数呼び出しは、fname(args)という形で行なわれるが、fnameの部分を函数子と呼ぶ。函数子には、函数の種類により組み込み函数子、ユーザ定義函数子、初等函数子などがあるが、函数子は単独で不定元として機能する。

```
[6] vtype(sin);
```

2.10 ユーザ言語 Asir

Asir の組み込み函数は、因数分解、GCD などの計算を行うもの、ファイル入出力を行うもの、あるいは数式の一部を取り出すものなどさまざまなものが用意されているが、ユーザが実際に行いたいことを実行させるためには一般にはユーザ言語によるプログラムを書く必要がある。ユーザ言語も Asir と呼ばれる。以下では、ユーザ言語の文法規則および実際のユーザ言語プログラムを例としたプログラムの書き方について述べる。

2.10.1 文法 (C言語との違い)

Asir の文法は C 言語に準拠している. おもな相違点は次の通りである. 以下で,変数とは Asir におけるプログラム用の変数, すなわち大文字で始まる文字列を意味することとする.

• 変数の型がない.

既に説明したとおり、Asirで扱われる対象自身は全て何らかの型を持っている.しかし、プログラム変数自体は、どのような対象でも代入できるという意味で型がないのである.

```
[0] A = 1;
1
[1] type(A);
1
[2] A = [1,2,3];
[1,2,3]
[3] type(A);
```

● 函数内の変数は、デフォルトでは仮引数をこめてすべて局所変数. ただし、extern 宣言された変数は、 トップレベルにおける大域変数となる. すなわち、変数のスコープは大域変数と局所変数の 2 種類に単 純化されている.トップレベル,すなわちプロンプトに対して入力された変数は全て大域変数として登録される.また函数内では次のいずれかとなる.函数が定義されるファイルにおいて,その函数定義以前に,ある変数が extern 宣言されている場合,函数内のその変数も大域変数として扱われる.extern 宣言されていない変数はその函数に局所的となる.

```
% cat afo
def afo() { return A;}
extern A$
def bfo() { return A;}
end$
% asir
[0] load("afo")$
[5] A = 1;
1
[6] afo();
0
[7] bfo();
```

- プログラム変数は大文字で始まり、不定元、函数は小文字で始まる. この点は、既存の数式処理システムのほとんどと異なる点である. Asir がこの仕様を採用したのは、ユーザが不定元のつもりで使用した変数になんらかの値が代入されていた場合に混乱を招く、という、既存のシステムにありがちな状況を避けるためである.
- switch 文, goto がない.
 goto がないため、多重ループを一度に抜けるのがやや複雑になる場合がある.
- コンマ式は、for(A;B;C) または、while(A) の A, B, C にのみ使うことができる. これは、J ストを正式なオブジェクトとして加えたことによる.

以上は制限であるが、拡張としては次の点が挙げられる.

- 有理式に対する計算を, 通常の C における計算と同様にできる.
- リストが扱える. 構造体を用いるまでもない要素の集合体を, リストで表すことができ, C で直接書く場合に比較してプログラムが短く, 読みやすく書ける.
- ユーザ定義函数における一行ヘルプ. Emacs-Lisp に類似した機能である. 詳しくは, See section ユーザ定義函数 を見よ.
- ユーザ定義函数におけるオプション指定. これに関しては, See section オプション指定.

Asir では次の語句がキーワードとして定められている.

- C 言語に由来: break, continue, do, else, extern, for, if, return, static, struct, while
- C 言語からの拡張: def, endmodule, function, global, local, localf, module
- 函数: car, cdr, getopt, newstruct, map, pari, quote, recmap, timer

2.10.2 ユーザ定義函数

ユーザによる函数の定義は 'def' 文で行う. 文法エラーは読み込み時にある程度チェックされ, おおよその場所が表示される. 既に (引数の個数に関係なく) 同名の函数が定義されている場合には, その函数は再定義される. ctrl() 函数により verbose フラグが on になっている場合,

afo() redefined.

というメッセージが表示される. ある函数の定義において, まだ未定義の函数を呼び出していても, 定義時にはエラーにならない. 実行時に未定義の函数を呼び出そうとした場合にエラーとなる.

```
def f(X) {
    if (!X)
        return 1;
    else
       return X * f(X-1);
}
def c(N)
{
    A = newvect(N+1); A[0] = B = newvect(1); B[0] = 1;
    for ( K = 1; K \le N; K++ ) {
        A[K] = B = newvect(K+1); B[0] = B[K] = 1;
        for ( P = A[K-1], J = 1; J < K; J++)
            B[J] = P[J-1]+P[J];
        }
    return A;
}
def add(A,B)
"add two numbers."
   return A+B;
```

2 つ目の例では、長さ N+1 のベクトル (A とする) が返される. A[I] は長さ I+1 の配列であり、そのそれ ぞれの要素がを要素とする配列である.

3つ目の例では、引数並びのあとに文字列が置かれているが、これは Emacs-Lisp の関数定義に類似の機能で、ヘルプ用の文字列である。この例の場合、help(add) によってこの文字列が出力される。

参照 section help.

以下では、Cによるプログラミングの経験がない人のために、Asir 言語によるプログラムの書き方を解説する.

2.10.3 変数および不定元

既に述べた通り、Asir においてはプログラム変数と不定元を明確に区別している.

変数 大文字で始まり、アルファベット、数字、'_' からなる文字列 変数あるいはプログラム変数とは、Asir のさまざまな型の内部形式を格納するための箱であり、格納された内部形式が、この変数の値である.変数が式の要素として評価される時は、そこに収められた値に置き換えられる. すなわち、内部形式の中にはプログラム変数は現れない. 変数は全て 0 で初期化されている.

```
[0] X^2+X+1;
1
[1] X=2;
2
[2] X^2+X+1;
```

7

不定元 小文字で始まり、アルファベット、数字、'_' からなる文字列、またはシングルクオートで囲まれた文字列、もしくは函数形式. 不定元とは、多項式環を構成する際に添加される変数をいう. Asir においては、不定元は値をもたない超越的な元であり、不定元への値の代入は許されない.

```
[3] X=x;
x
[4] X^2+X+1;
x^2+x+1
[5] A='Dx'*(x-1)+x*y-y;
(y+Dx)*x-y-Dx
[6] function foo(x,y);
[7] B=foo(x,y)*x^2-1;
foo(x,y)*x^2-1

2.10.4 引数
def sum(N) {
  for ( I = 1, S = 0; I <= N; I++ )
        S += I;
  return S;
}
```

これは、1 から N までの自然数の和を求める函数 sum() の定義である。この例における sum(N) の N が引数である。この例は、1 引数函数の例であるが、一般に引数の個数は任意であり、必要なだけの個数を','で区切って指定することができる。引数は値が渡される。すなわち、引数を受けとった側が、その引数の値を変更しても、渡した側の変数は変化しない。ただし、例外がある。それは、ベクトル、行列を引数に渡した場合である。この場合も、渡された変数そのものを書き替えることは、その函数に局所的な操作であるが、要素を書き換えた場合、それは、呼び出し側のベクトル、行列の要素を書き換えることになる。

```
def clear_vector(M) {
    /* M is expected to be a vector */
    L = size(M)[0];
    for ( I = 0; I < L; I++ )
        M[I] = 0;
}</pre>
```

この函数は、引数のベクトルを0 ベクトルに初期化するための函数である。また、ベクトルを引数に渡すことにより、複数の結果を引数のベクトルに収納して返すことができる。実際には、このような場合には、結果をリストにして返すこともできる。状況に応じて使いわけすることが望ましい。

2.10.5 コメント

C と同様 '/*, と '*/, で囲まれた部分はコメントとして扱われる.

```
/*
 * This is a comment.
 */
```

def afo(X) {

コメントは複数行に渡っても構わないが、入れ子にすることはできない. '/*' がいくつあっても最初のもののみが有効となり、最初に現れた '*/' でコメントは終了したと見なされる. プログラムなどで、コメントを含む可能性がある部分をコメントアウトした場合には、#if 0, #endif を使えばよい. (See section プリプロセッサ.)

```
#if 0
def bfo(X) {
/* empty */
}
#endif

2.10.6 文
Asir のユーザ函数は、
def 名前(引数,引数,...,引数) {
文
文
...
文
}
```

という形で定義される.このように,文は函数の基本的構成要素であり,プログラムを書くためには,文がどのようなものであるか知らなければならない.最も単純な文として,単文がある.これは,

S = sum(N);

のように、式に終端記号 (';' または \tt '\$') をつけたものである。この単文及び類似の return 文, break 文などが文の最小構成単位となる。if 文や for 文の定義 (section 文法の詳細) を見ればわかる通り、それらの本体は、単なる一つの文として定義されている。通常は、本体には複数の文が書けることが必要となる。このような場合、' $\{$ ' と' $\}$ ' で文の並びを括って、一つの文として扱うことができる。これを複文と呼ぶ。

```
if ( I == 0 ) {
    J = 1;
    K = 2;
    L = 3;
}
```

'}'の後ろには終端記号は必要ない. なぜなら, '' **文並び**'' が既に文となっていて, **if** 文の要請を満たしているからである.

2.10.7 return 文

return 文は、

return 式;

return;

の 2 つの形式がある. いずれも函数から抜けるための文である. 前者は函数の値として 式 を返す. 後者では, 函数の値として何が返されるかはわからない.

2.10.8 if 文

if 文には

 if (式)
 if (式)

 文
 及び

else

文

の 2 種類がある. これらの動作は明らかであるが, 文の位置に if 文が来た場合に注意を要する. 次の例を考えてみよう.

if (式)

if (式)文

else

文

この場合、字下げからは、else 以下は、最初の if に対応するように見えるが、パーザは、自動的に 2 番目の if に対応すると判断する. すなわち、2 種類の if 文を許したために、文法に曖昧性が現れ、それを解消するために、else 以下は、最も近い if に対応するという規則が適用されるのである. 従って、この例は、

if (式) {

if (式)文 else 文

}

という意味となる. 字下げに対応させるためには、

if (式) {

if (式)文

} else

文

としなければならない.

関数の中でなく、top level で if 文を用いるときは \$ または; で終了する必要がある. これらがないと次の文がよみとばされる.

2.10.9 ループ

ループを構成する文は、while 文, for 文, do 文の 3 種類がある.

• while 文 形式は、

while (式)文

で、これは、式 を評価して、その値が 0 でない限り 文 を実行するという意味となる。 たとえば 式 が 1 ならば、単純な無限ループとなる。

for 文 形式は、

for (式並び-1; 式; 式並び-2) 文

で,これは式並び-1(を単文並びにしたもの)

```
while (式) {
    文
    式並び$-2$ (を単文並びにしたもの)
}
と等価である.
• do 文
    do {
    文
} while (式)
```

は、先に 文を実行してから条件式による判定を行う所が while 文と異なっている。ループを抜け出す手段として、break 文及び return 文がある。また、ループの制御をある位置に移す手段として continue 文がある。

• break

break 文は、それを囲むループを一つだけ抜ける.

• return

return 文は、一般に函数から抜けるための文であり、ループの中からでも有効である.

• continue

continue 文は、ループの本体の文の末端に制御を移す. 例えば for 文では、最後の式並びの実行を行い、while 文では条件式の判定に移る.

2.10.10 構造体定義

構造体とは、各成分の要素が名前でアクセスできる固定長配列と思ってよい。各構造体は名前で区別される. 構造体は、struct 文により宣言される。構造体が宣言されるとき、asir は内部で構造体のそれぞれの型に固有の識別番号をつける。この番号は、組み込み関数 str_type() により取得できる。ある型の構造体は、組み込み関数 newstruct() により生成される。構造体の各メンバは、演算子 -> によりアクセスする。メンバが構造体の場合、-> による指定は入れ子にできる。

```
[1] struct rat {num,denom};
0
[2] A = newstruct(rat);
{0,0}
[3] A->num = 1;
1
[4] A->den = 2;
2
[5] A;
{1,2}
[6] struct_type(A);
1
```

2.10.11 さまざまな式

主な式の構成要素としては、次のようなものがある.

• 加減乗除, 冪

冪は、 ' ^ , により表す. 除算 ' / , は、体としての演算に用いる. 例えば、2/3 は有理数の 2/3 を表す. 整

数除算,多項式除算(剰余を含む演算)には別途組み込み函数が用意されている.

x+1 A²*B*afo X/3

• インデックスつきの変数

ベクトル, 行列, リストの要素はインデックスを用いることにより取り出せる. インデックスは 0 から始まることに注意する. 取り出した要素がベクトル, 行列, リストなら, さらにインデックスをつけることも有効である.

V[0] M[1][2]

• 比較演算

等しい ('=='), 等しくない ('!='), 大小 ('>', '<', '>=', '<=') の 2 項演算がある. 真ならば有理数の 1, 偽ならば 0 を値に持つ.

• 論理式

論理積 ('&&'), 論理和 ('||') の 2 項演算と, 否定 ('!') が用意されている. 値はやはり 1,0 である.

代入

通常の代入は '=' で行う. このほか, 算術演算子と組み合わせて特殊な代入を行うこともできる ('+=', '-=', '*=', '/=', '^=')

A = 2 A *= 3 (これは A = A*3 と同じ; その他の演算子も同様)

• 函数呼び出し

函数呼び出しも式の一種である.

• '++', '--'

これらは、変数の前後について、それぞれ次のような操作、値を表す.

A++ 値は元の A の値, A = A+1

A-- 値は元の A の値, A = A-1

++A A = A+1, 値は変化後の値

--A A = A-1, 値は変化後の値

2.10.12 プリプロセッサ

Asir のユーザ言語は C 言語を模したものである. C の特徴として, プリプロセッサ cpp によるマクロ展開, ファイルのインクルードがあるが, Asir においてもユーザ言語ファイルの読み込みの際 cpp を通してから読み込むこととした. これによりユーザ言語ファイル中で #include, #define, #if などが使える.

• #include

UNIX では インクルードファイルは、Asir のライブラリディレクトリ (環境変数 $ASIR_LIBDIR$ で指定されたディレクトリ) と #include が書かれているファイルと同じディレクトリをサーチする. UNIX 以外では cpp に特に引数を渡さないため、#include が書かれているファイルと同じディレクトリのみをサーチする.

• #define

これは、Cにおけるのと全く同様に用いることができる.

• #if

/*, */ によるコメントは入れ子にできないので、プログラムの大きな部分をコメントアウトする際に、 $\#if\ 0$, $\#endif\ e$ 使うと便利である.

次の例は、'defs.h' にあるマクロ定義である.

#define ZERO 0

#define NUM 1

```
#define POLY 2
#define RAT 3
#define LIST 4
#define VECT 5
#define MAT 6
#define STR 7
#define N_Q 0
#define N_R 1
#define N_A 2
#define N_B 3
#define N_C 4
#define V_IND 0
#define V_UC 1
#define V_PF 2
#define V_SR 3
#define isnum(a) (type(a)==NUM)
#define ispoly(a) (type(a)==POLY)
#define israt(a) (type(a)==RAT)
#define islist(a) (type(a)==LIST)
#define isvect(a) (type(a)==VECT)
#define ismat(a) (type(a)==MAT)
#define isstr(a) (type(a)==STR)
#define FIRST(L) (car(L))
#define SECOND(L) (car(cdr(L)))
#define THIRD(L) (car(cdr(cdr(L))))
#define FOURTH(L) (car(cdr(cdr(cdr(L)))))
#define DEG(a) deg(a,var(a))
#define LCOEF(a) coef(a,deg(a,var(a)))
#define LTERM(a) coef(a,deg(a,var(a)))*var(a)^deg(a,var(a))
#define TT(a) car(car(a))
#define TS(a) car(cdr(car(a)))
#define MAX(a,b) ((a)>(b)?(a):(b))
```

C のプリプロセッサを流用しているため、プリプロセッサは \$ を正しく処理できない. たとえば LIST が定義されていても LIST\$は置換されない. \$ の前に空白をおいて LIST \$ と書かないといけない.

2.10.13 オプション指定

ユーザ定義関数が N 変数で宣言された場合, その関数は, N 変数での呼び出しのみが許される.

```
[0] def factor(A) { return fctr(A); }
[1] factor(x^5-1,3);
evalf : argument mismatch in factor()
return to toplevel
```

不定個引数の関数をユーザ言語で記述したい場合, リスト, 配列を用いることで可能となるが, 次のようなより分かりやすい方法も可能である.

```
% cat factor
def factor(F)
{
    Mod = getopt(mod);
    ModType = type(Mod);
    if ( ModType == -1 ) /* 'mod' is not specified. */
        return fctr(F);
    else if ( ModType == 0 ) /* 'mod' is a number */
        return modfctr(F,Mod);
}

[0] load("factor")$
[1] factor(x^5-1);
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]]
[2] factor(x^5-1|mod=11);
[[1,1],[x+6,1],[x+2,1],[x+10,1],[x+7,1],[x+8,1]]
```

2番目の factor() の呼び出しにおいて、関数定義の際に宣言された引数 x^5-1 の後ろに mod=11 が置かれている. これは、関数実行時に、mod という keyword に対して 11 という値を割り当てることを指定している. これをオプション指定と呼ぶことにする. この値は getopt(mod) で取り出すことができる. 1 番目の呼び出しのように mod に対するオプション指定がない場合には、getopt(mod) は型識別子 -1 のオブジェクトを返す. これにより、指定がない場合の動作を if 文により記述できる. '|' の後ろには、任意個のオプションを、',' で区切って指定することができる.

```
[100] xxx(1,2,x^2-1,[1,2,3]|proc=1,index=5);
```

さらに、オプションを key1=value1,key2=value2,... のように','で区切って渡す代わりに、特別なキーワード option_list とオプションリスト [["key1",value1],["key2",value2],...] を用いて渡すことも可能である.

```
[101] dp_gr_main([x^2+y^2-1,x*y-1]|option_list=[["v",[x,y]],["order",[[x,5,y,1]]]]);
```

特に、引数なしの getopt() はオプションリストを返すので、オプションをとる関数から、オプションをとる 関数を呼び出すときには有用である.

```
% cat foo.rr
def foo(F)
{
     OPTS=getopt();
     return factor(F|option_list=OPTS);
}

[3] load("foo.rr")$
[4] foo(x^5-1|mod=11);
[[1,1],[x+6,1],[x+2,1],[x+10,1],[x+7,1],[x+8,1]]
```

2.11 モジュール

ライブラリで定義されている関数,変数をカプセル化する仕組みがモジュール (module) である. はじめに モジュールを用いたプログラムの例をあげよう.

```
module stack;
static Sp $
Sp = 0$
static Ssize$
Ssize = 100$
static Stack $
Stack = newvect(Ssize)$
localf push $
localf pop $
def push(A) {
  if (Sp >= Ssize) {print("Warning: Stack overflow\nDiscard the top"); pop();}
  Stack[Sp] = A;
  Sp++;
}
def pop() {
  local A;
  if (Sp <= 0) {print("Stack underflow"); return 0;}</pre>
  Sp--;
  A = Stack[Sp];
 return A;
endmodule;
def demo() {
  stack.push(1);
  stack.push(2);
 print(stack.pop());
 print(stack.pop());
```

モジュールは module モジュール名 \sim endmodule で囲む。モジュールは入れ子にはできない。モジュールの中だけで使う大域変数は static で宣言する。この変数はモジュールの外からは参照もできないし変更もできない。モジュールの外の大域変数は extern で宣言する。

モジュール内部で定義する関数は localf を用いて宣言しないといけない. 上の例では push と pop を宣言している. この宣言は必須である.

モジュール moduleName で定義された関数 functionName をモジュールの外から呼ぶには moduleName.functionName(引数 1, 引数 2, ...) なる形式でよぶ. モジュールの中からは, 関数名のみでよい. 次の例では, モジュールの外からモジュール stack で定義された関数 push, pop を呼んでいる.

```
stack.push(2);
print( stack.pop() );
2
```

}

モジュールで用いる関数名は局所的である. つまりモジュールの外や別のモジュールで定義されている関数名と同じ名前が利用できる.

モジュール機能は大規模ライブラリの開発を想定している. ライブラリを必要に応じて分割ロードするには, 関数 module_definedp() を用いるのが便利である. デマンドロードはたとえば次のように行なえば良い.

```
if (!module_definedp("stack")) load("stack.rr") $
```

asir では局所変数の宣言は不要であった. しかしモジュール stack の例を見れば分かるように, local A; なる形式で局所変数を宣言できる. キーワード local を用いると, 宣言機能が有効となる. 宣言機能を有効にすると, 宣言されてない変数はロードの段階でエラーを起こす. 変数名のタイプミスによる予期しないトラブルを防ぐには, 宣言機能を有効にしてプログラムするのがよい.

モジュール内の関数をそのモジュールが定義される前に呼び出すような関数を書くときには、その関数の前でモジュールを次のようにプロトタイプ宣言しておく必要がある.

```
/* Prototype declaration of the module stack */
module stack;
localf push $
localf pop $
endmodule;
def demo() {
  print("----");
  stack.push(1);
 print(stack.pop());
 print("----");
}
module stack;
  /* The body of the module stack */
endmodule;
モジュールの中からトップレベルで定義されている関数を呼ぶには、下の例のように::を用いる.
def afo() {
 S = "afo, afo";
 return S;
module abc;
localf foo,afo $
def foo() {
 G = ::afo();
 return G;
```

```
def afo() {
   return "afo, afo in abc";
}
endmodule;
end$
[1200] abc.foo();
afo, afo
[1201] abc.afo();
afo, afo in abc
```

2.12 デバッガ

2.12.1 デバッガとは

C 言語で書かれたプログラムのためのデバッガ dbx は、ソースレベルでのブレークポイントの設定、ステップ実行、変数の参照などが可能な強力なデバッガである. Asir では、dbx 風のデバッガを用意している. デバッグモードに入るには、トップレベルで debug; と入力する.

[10] debug;

(debug)

その他, 次の方法, あるいは状況でデバッグモードに入る.

- 実行中ブレークポイントに達した場合
- 割り込みで 'd' を選択した場合
- 実行中エラーを起こした場合 この場合, 実行の継続は不可能であるが, 直接のエラーの原因となった
- ユーザ定義函数の文を表示してデバッグモードに入るため、エラー時における変数の値を参照でき、デバッグに役立たせることができる.
- error() が呼び出された場合

2.12.2 コマンドの解説

コマンドは dbx のコマンドの内必要最小限のものを採用した. 更に, gdb のコマンドからもいくつか便利なものを採用した. 実際の機能は dbx とほぼ同様であるが, step, next は, 次の行ではなく次の文を実行する. 従って, 1 行に複数の文がある場合は, その文の数だけ next を実行しなければ次の行に進めない. また, dbx と同様 '.dbxinit'を読み込むので, dbx と同じ alias を使うことができる.

step

次の文を実行する. 次の文が函数を含むとき, その函数に入る.

next

次の文を実行する.

finish

現在実行中の函数の実行が終了した時点で再びデバッグモードに入る. 誤って step を実行した場合に有効である.

cont

quit

デバッグモードから抜け、実行を継続する.

up [n]

スタックフレームを 1 段 (引数 n がある時は n 段) 上がる. これにより、そのスタックフレームに属する変数の値の参照、変更ができる.

down [n]

スタックフレームを 1 段 (引数 n がある時は n 段) 下がる.

frame [n]

引数がないとき、現在実行中の函数を表示する. 引数があるとき、スタックフレームを番号 n のものに設定する. ここでスタックフレームの番号とは where により表示される呼び出し列において、先頭に表示される番号のことである.

list [startline]

list function

現在行、または startline、または function の先頭から 10 行ソースファイルを表示する.

print expr

expr を表示する.

func function

対象函数を function に設定する.

stop at sourceline [if cond]

stop in function

sourceline 行目、または function の先頭にブレークポイントを設定する. ブレークポイントは、函数が再定義された場合自動的に取り消される. if が続く場合、cond が評価され、それが 0 でない場合に実行が中断し、デバッグモードに入る.

trace expr at sourceline [if cond]

trace expr in function

stop と同様であるが、trace では単に expr を表示するのみで、デバッグモードには入らない.

delete n

ブレークポイント n を取り消す.

status

ブレークポイントの一覧を表示する.

where

現在の停止点までの呼び出し列を表示する.

alias alias command

command に alias の別名を与える.

print の引数として、トップレベルにおけるほとんどすべての式がとれる. 通常は、変数の内容の表示が主であるが、必要に応じて次のような使い方ができる.

● 変数の書き換え 実行中のブレークポイントにおいて,変数の値を変更して実行を継続させたい場合, 次のような操作を行えばよい.

(debug) print A
A = 2
(debug) print A=1
A=1 = 1
(debug) print A
A = 1

• 函数の呼び出し 函数呼び出しも式であるから, print の引数としてとれる.

(debug) print length(List)
length(List) = 14

この例では、変数 List に格納されているリストの長さを length() により調べている.

```
(debug) print ctrl("cputime",1)
ctrl("cputime",1) = 1
```

この例は、計算開始時に CPU 時間の表示の指定をし忘れた場合などに、計算途中でデバッグモードから指定を行えることを示している. また、止むを得ず計算を中断しなければならない場合、デバッグモードから bsave() などのコマンドにより途中結果をファイルに保存することもできる.

```
(debug) print bsave(A, "savefile")
bsave(A, "savefile") = 1
```

デバッグモードからの函数呼び出しで注意すべきことは、print の引数がユーザ定義函数の呼び出しを含む場合、その函数呼び出しでエラーが起こった場合に元の函数の実行継続が不可能になる場合があるということである.

2.12.3 デバッガの使用例

ここでは、階乗を再帰的に計算させるユーザ定義函数を例として、デバッガの実際の使用法を示す.

```
% asir
[0] load("fac")$
[3] debug$
(debug) list factorial
   def factorial(X) {
       if (!X)
          return 1;
4
       else
5
          return X * factorial(X - 1);
6
  }
7
   end$
                                   <-- ブレークポイントの設定
(debug) stop at 5
(0) stop at "./fac":5
                                   <-- デバッグモードを抜ける
(debug) quit
[4] factorial(6);
                                   <-- factorial(6) の呼び出し
stopped in factorial at line 5 in file "./fac"
           return X * factorial(X - 1);
                                   <-- ブレークポイントまでの呼び出し列の表示
(debug) where
factorial(), line 5 in "./fac"
                                   <-- X の値の表示
(debug) print X
X = 6
(debug) step
                                   <-- ステップ実行(函数に入る)
stopped in factorial at line 2 in file "./fac"
2 if (!X)
(debug) where
factorial(), line 2 in "./fac"
factorial(), line 5 in "./fac"
(debug) print X
X = 5
                                   <-- ブレークポイント 0 の消去
(debug) delete 0
```

```
      (debug) cont
      <-- 実行継続</td>

      720
      <-- 結果 = 6!</td>

      [5] quit;
```

2.12.4 デバッガの初期化ファイルの例

<函数> '(', <式並び> ')'

<函数> '(', <式並び> '|, <オプション並び> '),

前に述べた通り、Asir は、起動時に '\$HOME/.dbxinit' を読み込む. このファイルは、dbx のさまざまな 初期設定用のコマンドを記述しておくファイルであるが、Asir は、alias 行のみを認識する. 例えば、

```
% cat ~/.dbxinit
alias n next
alias c cont
alias p print
alias s step
alias d delete
alias r run
alias l list
alias q quit
```

なる設定により、print、cont など、デバッグモードにおいて頻繁に用いられるコマンドが、それぞれ p, c など、短い文字列で代用できる。また、デバッグモードにおいて、alias コマンドにより alias の追加ができる.

```
lex_hensel(La,[a,b,c],0,[a,b,c],0);
stopped in gennf at line 226 in file "/home/usr3/noro/asir/gr"
226
           N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len);
 (debug) p V
 V = [a,b,c]
 (debug) c
 . . .
2.12.5 文法の詳細
<式>:
    '('<式>')'
   <式> <二項演算子> <式>
    '+'<式>
    '-'<式>
    <左辺値>
   <左辺値> <代入演算子> <式>
   <左辺値> '++'
   <左辺値> '--'
    '++' <左辺値>
    '--' <左辺値>
    '!'<式>
   <式>'?'<式>':'<式>
```

```
<文字列>
   <指数ベクトル>
   <アトム>
   <リスト>
(See section さまざまな式.)
<左辺値>:
   <変数> ['['<式>']']*
<二項演算子>:
   '+'''-'''*''/'''%'''^'(冪)
   `==' `!=' `<' `>' `<=' `>=' `&&' `||'
<代入演算子>:
   <式並び>:
   <空>
   <式>[','<式>]*
<オプション>:
   alphabet で始まる文字列 '=' <式>
<オプション並び>:
   <オプション>
   <オプション> [',' <オプション>]*
<リスト>:
   '['<式並び>']'
<変数>:
   大文字で始まる文字列 (X,Y,Japan など)
(See section 変数と不定元.)
<函数>:
  小文字で始まる文字列 (fctr,gcd など)
<アトム>:
  <不定元>
  <数>
<不定元>:
```

小文字で始まる文字列 (a,bCD,c1_2 など)

```
(See section 変数と不定元.)
<数>:
  <有理数>
  <浮動小数>
  <代数的数>
  <複素数>
(See section 数の型.)
<有理数>:
  0, 1, -2, 3/4
<浮動小数>:
  0.0, 1.2e10
<代数的数>:
  newalg(x^2+1), alg(0)^2+1
(See section 代数的数に関する演算.)
<複素数>:
  1+@i, 2.3*@i
<文字列>:
  '"'で囲まれた文字列
<指数ベクトル>:
  '<<' く式並び> '>>'
(See section グレブナ基底の計算.)
<文>:
   <式> <終端>
   <複文>
   'break'<終端>
   'continue' <終端>
   'return'<終端>
   'return'<式> <終端>
   'if' '(', <式並び> ')' <文>
   'if' '(' <式並び> ')' <文> 'else' <文>
   'for' '(' <式並び> ';' <式並び> ';' <式並び> ')' <文>
   'do' <文> 'while' '(' <式並び> ')' <終端>
   'while' '(' <式並び> ')' <文>
   'def' <函数> '(' <式並び> ')' '{' <変数宣言> <文並び> '}'
```

```
'end(quit)' <終端>
(See section 文.)

<終端>:
    ';' '$'

<変数宣言>:
    ['extern' <変数> [',' <変数>]* <終端>]*

<複文>:
    '{' <文並び> '}'

<文並び>:
    [<文>]*
```

2.13 有限体における演算

2.13.1 有限体の表現および演算

Asir においては、有限体は、正標数素体 GF(p)、標数 2 の有限体 $GF(2^n)$ 、GF(p) の n 次拡大 $GF(p^n)$ が 定義できる。これらは全て、setmod_ff() により定義される。

```
[0] P=pari(nextprime, 2^50);
1125899906842679
[1] setmod_ff(P);
1125899906842679
[2] field_type_ff();
[3] load("fff");
[4] F=defpoly_mod2(50);
x^50+x^4+x^3+x^2+1
[5] setmod_ff(F);
x^50+x^4+x^3+x^2+1
[6] field_type_ff();
[7] setmod_ff(x^3+x+1,1125899906842679);
[1*x^3+1*x+1,1125899906842679]
[8] field_type_ff();
3
[9] setmod_ff(3,5);
[3,x^5+2*x+1,x]
[10] field_type_ff();
```

setmod_ff() は、さまざまなタイプの有限体を基礎体としてセットする. 引数が正整数 p の場合 GF(p)、n 次多項式 f(x) の場合、f(x) mod 2 を定義多項式とする $GF(2^n)$ をそれぞれ基礎体としてセットする. また、有限素体の有限次拡大も定義できる. 詳しくは 数の型を参照. setmod_ff() においては引数の既約チェックは行わず、呼び出し側が責任を持つ.

基礎体とは、あくまで有限体の元として宣言あるいは定義されたオブジェクトが、セットされた基礎体の演算に従うという意味である. 即ち、有理数どうしの演算の結果は有理数となる. 但し、四則演算において一方のオペランドが有限体の元の場合には、他の元も自動的に同じ有限体の元と見なされ、演算結果も同様になる.

0 でない有限体の元は、数オブジェクトであり、識別子の値は 1 である. さらに、0 でない有限体の元の数識別子は、GF(p) の場合 6, $GF(2^n)$ の場合 7 となる.

有限体の元の入力方法は、有限体の種類により様々である. GF(p) の場合、 $simp_ff()$ による.

```
[0] P=pari(nextprime, 2^50);
1125899906842679
 [1] setmod_ff(P);
1125899906842679
 [2] A=simp_ff(2^100);
3025
[3] ntype(@@);
また, GF(2^n) の場合いくつかの方法がある.
 [0] setmod_ff(x^50+x^4+x^3+x^2+1);
x^50+x^4+x^3+x^2+1
 [1] A=@;
 (0)
 [2] ptogf2n(x^50+1);
 (0^50+1)
 [3] simp_ff(@@);
 (0^4+0^3+0^2)
 [4] ntogf2n(2^10-1);
 (0^9+0^8+0^7+0^6+0^5+0^4+0^3+0^2+0+1)
```

有限体の元は数であり、体演算が可能である。 $\mathbf{0}$ は $GF(2^n)$ の、GF(2) 上の生成元である。 詳しくは 数の型を参照.

2.13.2 有限体上での1変数多項式環の演算

fff では、有限体上の 1 変数多項式に対し、無平方分解、DDF、因数分解、多項式の既約判定などの関数が定義されている.

いずれも, 結果は [因子, 重複度] のリストとなるが, 因子は monic となり, 入力多項式の主係数は捨てられる. 無平方分解は, 多項式とその微分との GCD の計算から始まるもっとも一般的なアルゴリズムを採用している.

有限体上での因数分解は、DDF の後、次数別因子の分解の際に、Berlekamp アルゴリズムで零空間を求め、基底ベクトルの最小多項式を求め、その根を Cantor-Zassenhaus アルゴリズムにより求める、という方法を実装している.

2.13.3 小標数有限体上での多項式環の演算

小標数有限体係数の多項式に限り、多変数多項式の因数分解が組み込み関数として実装されている. 関数は sffctr() である. また、modfctr() も、有限素体上で多変数多項式の因数分解を行うが、実際には、内部で十

分大きな拡大体を設定し、sffctr()を呼び出して、最終的に素体上の因子を構成する、という方法で計算している.

2.13.4 有限体上の楕円曲線に関する演算

有限体上の楕円曲線に関するいくつかの基本的な演算が、組み込み関数として提供されている.

楕円曲線の指定は、長さ 2 のベクトル [a b] で行う. a, b は有限体の元で、 $setmod_ff()$ で定義されている有限体が素体の場合、 $y^2=x^3+ax+b$ 、標数 2 の体の場合 $y^2+xy=x^3+ax^2+b$ を表す.

楕円曲線上の点は、無限遠点も込めて加法群をなす. この演算に関して、加算 ($ecm_add_ff()$)、減算 ($ecm_sub_ff()$) および逆元計算のための関数 ($ecm_chsgn_ff()$) が提供されている. 注意すべきは、演算の対象となる点の表現が、

無限遠点は 0. それ以外の点は, 長さ 3 のベクトル $[x\ y\ z]$. ただし, z は 0 でない. という点である. $[x\ y\ z]$ は斉次座標による表現であり, アフィン座標では $[x/z\ y/z]$ なる点を表す. よって, アフィン座標 $[x\ y]$ で表現された点を演算対象とするには, $[x\ y\ 1]$ なるベクトルを生成する必要がある. 演算結果も斉次座標で得られるが, z 座標が 1 とは限らないため, アフィン座標を求めるためには x, y 座標を z 座標で割る必要がある.

2.14 Risa/Asir と os_muldif.rr

Risa/Asir は有理関数の計算を行う場合に注意が必要で、特に有理関数係数の多項式や微分作用素、成分が有理関数の行列の演算が、そのままでは思い通りにならないことがある。いくつかの例を挙げてみよう。

```
[0] 2/x-1/x+1/x-1/x;
(x^3)/(x^4)
[1] x/(x+y)+y/(x+y);
(x^2+2*y*x+y^2)/(x^2+2*y*x+y^2)
[2] x/y*y/x;
(y*x)/(y*x)
[3] 1/(1/x);
(x)/(1)
[4] deg((a/b)*x^2,x);
[5] diff((1/a)*x+1/b,x);
(b^2*a)/(b^2*a^2)
[6] diff((x+1)^{(-3)},x);
(-3*x^2-6*x-3)/(x^6+6*x^5+15*x^4+20*x^3+15*x^2+6*x+1)
[7] A = newmat(2,2,[[a,0],[0,1/a]]);
[a0]
[ 0 (1)/(a) ]
[8] det(A);
internal error (SEGV)
return to toplevel
[9] coef(x+1/a,1,x);
```

このような場合も、より望まれる形で結果が得られるように作ったライブラリが $os_muldif.rr$ [O6] である.

以下, 現状の関数の解説があるが, 流動的かつ暫定的なものである.

- Risa/Asir のサーチパス (標準的には、RisaAsir—のライブラリのある./lib/の下の./lib/asir-contrib で、names.rr などがインストールされている場所に置く. その場所はRisa/Asir を起動して which("names.rr") とすれば表示される) に os_muldif.rr を入れるとRisa/Asir において load("os_muldif.rr")\$ とすることにより、os_muldif.rr の中の函数が使用できるようになる.
- デフォルトではモジュール化して読み込まれるので、函数名の先頭に os_md. をつけて呼び出さなくてはなくてはならない.
- load("names.rr") も実行しておけば(最近の Risa/Asir のパッケージでは動時に読み込まれていることがあり、そのときはこれは不要)、数式や結果を読みやすい TeX のソースで出力可能できる. さらに MS Windows においては、dviout にパスを通しておけば、dviout で表示することが出来る. 他のシステムでも簡単な変更で、TeX のプレビュ機能を使って結果が表示可能になる.
- **chkfun(1,0)** によって Version 番号が分かる (0 から始まるものは暫定版).
- 使用例が書いていないものは未テストなので、正しく動作しない可能性が高い.
- また?の印が付いているものも同様である.
- 不具合は知らせていただけと有り難い.

このライブラリの特徴的な関数としては, dviout(), show(), ltotex(), fctrtos(), mtotex(), myhelp(), xy2graph(), mtoupper(), mdivisor(), getbygrs(), shiftop(), m2mc() などがある.

2.14.1 os_muldif.rr のインストール

• get_rootdir() で示される Risa/Asir のライブラリがインストールされたディレクトリの下の (Risa/Asir のライブラリ・サーチパス) lib\asir-contribに os_muldif.rr を入れる*1. Risa/Asir から

[0] load("os muldif.rr")\$

Loaded muldif Ver. 00140330 (Toshio Oshima)

として読み込むと, os_muldif.rr で定義された函数が使えるようになる.

● デフォルトではモジュール化して読み込まれるので、以下に説明される函数名の先頭に os_md. をつけて呼び出さなくてはなくてはならない.

以下では、例を除いて先頭の os_md. が全て省略されているので注意.

• Risa/Asir の起動時に自動的に読み込むには, get_rootdir() にある .asirrc に

```
import("os_muldif.rr")$
```

の1行を追加しておけばよい. そのときの .asirrc は例えば以下のようである.

import("contrib-setord.rr")\$
import("gr")\$
import("primdec")\$
import("katsura")\$
import("bfct")\$
import("names.rr")\$
import("oxrfc103.rr")\$
import("os_muldif.rr")\$
end\$

● os_muldif.rr の冒頭の

^{*1} names.rr などが置かれている場所なので、Risa/Asir のコマンドラインから which("names.rr") などとすれば、そのディレクトリが分かる.

#define USEMODULE 1

な

#undef USEMODULE

と書き換えると、モジュール化されずに読み込まれるので、函数の先頭に os_md. をつける必要はなくなる. しかしながら、他の函数とのバッティングが起こる可能性が生じるので、それは推奨されない.

● よく使う関数のみ os_md. を略した形や簡単な名前にするには、その関数を呼び出す新たな関数を再定 義しておくとよい. たとえば

```
def cat(X)
{return os_md.mycat(X|option_list=getopt());}
def myhelp(X)
{return os_md.myhelp(X|option_list=getopt());}
def show(X)
{return os_md.show(X|option_list=getopt());}
...
cat("mydef:\n cat, myhelp, show,...")$
```

というような内容を mydef.rr というファイルに書いてライブラリに入れて.asirrc に以下の一行を加えておけばよい.

import("mydef.rr")\$

- TeX を利用して数式を綺麗に表示するには、OS や動作環境に依存するプレビューアの指示などの設定が必要となる. これについては risatex.bat の項の前後を参照してください.
- myhelp("fn") によって函数 fn の説明を表示させる機能の有効化については, DVIOUTH の項を参照してください. また, os_muldif.dvi と os_muldif.pdf は get_rootdir()/help に入れてください. こうすれば dviout にパスが通っていると, DVIOUTH の設定は不要です.

3 Functions

3.1 Functions related to differential operators

以下の函数は module 化され、函数名の先頭に os_md. をつけて、os_md.muldo() のように呼び出す.

3.1.1 Fundamental functions

- 1. $\operatorname{muldo}(p_1, p_2, [x, \partial_x] | \operatorname{lim} = n)$ または $\operatorname{muldo}(p_1, p_2, x | \operatorname{lim} = n)$ $\operatorname{muldo}(p_1, p_2, [[x_1, \partial_{x_1}], [x_2, \partial_{x_2}], \dots] | \operatorname{lim} = n)$ または $\operatorname{muldo}(p_1, p_2, [[x_1], x_2, \dots] | \operatorname{lim} = n)$ $:: 有理函数(初等函数でもよい)係数の常(または偏)微分作用素の積(<math>\Leftarrow [\partial_x, x] = 1$)
 - 有理函数は多項式の商で表される. 多項式の係数は普通は有理数とするが, 実部と虚部が有理数の 複素数でもよい (cf. **数の型**).
 - ∂_x が標準的な $\mathbf{d}x$ のときは、 $[x,\partial_x]$ の代わりに x としてよい、これは以下の函数でも同様とする.
 - 偏微分作用素のときは、3 番目の引数が [[x],[y,v],z] などでもよい. これは d を付加して [[x,dx],[y,v],[z,dz]] と解釈される. ただしリストの最初はリストでなくてはならない. すなわち [[x,dx],[y,dy]] は [[x],y] と書いてもよいが、[x,y] は常微分作用素と解釈される. 以下の函数で微分作用素とある場合は、同様な省略が可能である.
 - p_2 はベクトルまたは行列でもよい. このときは p_1 は行列でもよい.
 - $x や x_i が 0 のときは、単なる積を返す.$
 - $\exp(\partial)$ などの無限階微分作用素や ∂^{-1} などの擬微分作用素も計算可能 (ただし, appldo() などでは不可, また計算が有限回で終わらないこともあり, そのときは途中で打ち切る).
 - Leibniz 公式での積の計算で、各変数の微分の回数が 100 回以上になるとそこで打ち切るのがデフォルトであるが $\lim n$ のオプションで変更可能(これは p_1, p_2 がスカラーのときのみ有効). たとえば、 $\min(dx^{-1}, 1/x, x)$ や $\min(dx^{-1}, 1/x, x)$ や $\min(dx^{-1}, 1/x, x)$ は有限回で計算が終わらない.

[dx,x]=1, [dy,y]=1 という交換関係のとき($\Leftarrow dx=\frac{\partial}{\partial x}, dy=\frac{\partial}{\partial y}$)

```
[0] os_md.muldo((1+x)*dx+1, (1-x)*dx+1, [x,dx]);
(-x^2+1)*dx^2+(-x+1)*dx+1
[1] os_md.muldo(x*dx+1/(x-a), a*dx+1/x, x);
((a*x^3-a^2*x^2)*dx^2+x^2*dx-x+a+1)/(x^2-a*x)
[2] os_md.muldo((a+y)*dy, (b-y)*dy, y);
(-y^2+(-a+b)*y+b*a)*dy^2+(-y-a)*dy
[3] os_md.muldo((a+y)*dy, (b-y)*dy, [0,dy]);
(-y^2+(-a+b)*y+b*a)*dy^2
[4] os_md.muldo(dx+dy, x*dx+y*dy, [[x],y]);
x*dx^2+((x+y)*dy+1)*dx+y*dy^2+dy
[5] os_md.muldo(dx+dy,sin(x+y),[[x],y]);
sin(x+y)*dy+sin(x+y)*dx+2*cos(x+y)
[6] os_md.muldo(exp(dx),(x-1)^4,x);
exp(dx)*x^4
[7] subst(@@,exp(dx),1);
[8] os_md.muldo(x*dx^{(-1)},dx/x,x);
Over 100 derivations!
(x^100*dx^{100}x^99*dx^99+2*x^98*dx^98+...)/(x^100*dx^100)
```

[9] os_md.muldo($dx^{(-1)}, dx/x, x|lim=5$);

Over 5 derivations!

 $(x^5*dx^5+x^4*dx^4+2*x^3*dx^3+6*x^2*dx^2+24*x*dx+120)/(x^5*dx^5)$

[10] os_md.muldo(x*exp(dx),1/x,x|lim=5);

Over 5 derivations!

 $(\exp(dx)*x^5-\exp(dx)*x^4+\exp(dx)*x^3-\exp(dx)*x^2+\exp(dx)*x-\exp(dx))/(x^5)$

[11] deval(os_md.muldo(exp(dx),exp(x),x]);

Over 100 derivations!

2.71828*exp(1*dx)*exp(1*x)

[0] は

$$((1+x)\frac{d}{dx}+1)\circ((1-x)\frac{d}{dx}+1)=(1-x^2)\frac{d^2}{dx^2}+(1-x)\frac{d}{dx}+1$$

を意味する. なお, [6], [8], [9], [10], [11] の結果は、微分と函数とが可換と考えて割り算をして並べ直したものが通常の表記での結果となる. すなわち

[6] は

$$e^{\frac{d}{dx}} \circ \frac{1}{(x-1)^4} = x^4 e^{\frac{d}{dx}} = x^4 (1 + \frac{d}{dx} + \frac{1}{2} \frac{d^2}{dx^2} + \frac{1}{3!} \frac{d^3}{dx^3} + \cdots)$$

[8] は

$$x\left(\frac{d}{dx}\right)^{-1} \circ \frac{1}{x}\frac{d}{dx} = 1 + \frac{1}{x}\left(\frac{d}{dx}\right)^{-1} + \frac{2}{x^2}\left(\frac{d}{dx}\right)^{-2} + \cdots$$

「10] は

$$xe^{\frac{d}{dx}} \circ \frac{1}{x} = \left(1 - \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3} + \frac{1}{x^4} - \frac{1}{x^5}\right)\left(1 + \frac{d}{dx} + \frac{1}{2!}\frac{d^2}{dx^2} + \frac{1}{3!}\frac{d^3}{dx^3} + \cdots\right)$$

と解釈する. [11] は、実際は

$$e^{\frac{d}{dx}} \circ e^x = e^{x+1} e^{\frac{d}{dx}}$$

である.

2. $muledo(p_1, p_2, [x, \partial_x])$ $\sharp \hbar t muledo(p_1, p_2, x)$

:: Euler 型常微分作用素の積 ($\Leftarrow [\partial_x, x] = x$)

 p_2 は行列またはベクトルでもよい. このとき, p_1 は行列でもよい.

 $[\mathbf{dx}, \mathbf{x}] = \mathbf{x}$ という交換関係のとき($\Leftarrow \mathbf{d}x = x\frac{d}{dx}$)

[0] os_md.muledo((1+x)*dx+1, (1-x)*dx+1, x);

 $(-x^2+1)*dx^2+(-x+1)*dx+1$

- 3. transpdo $(p, [[x_1, \partial_{x_1}], [x_2, \partial_{x_2}], \ldots], [[y_1, \partial_{y_1}], [y_2, \partial_{y_2}], \ldots] | ex=1)$
 - :: 微分作用素の変換 $(x_i\mapsto y_i=y_i(x),\,\partial_{x_j}\mapsto\partial_{y_j}=c_j(x)+\sum_{\nu}a_{j\nu}(x)\,\partial_{x_\nu})$
 - ullet $y_i,\,\partial_{y_j}$ は (x_1,\ldots,x_n) の有理式および有理式係数の微分作用素
 - $[x_i,\partial_{x_i}]$ の方は x_i の形の省略形も可(\Leftarrow $\partial_{x_i}=\mathrm{d}x_i$)
 - 引数のリストの2番目が3番目より長い場合、残りは恒等変換とみなす。
 - [0] os_md.transpdo(x^2*dx^2,x ,[[1/x,- x^2*dx]]);

 $x^2*dx^2+2*x*dx$

- [1] os_md.transpdo(x*dx+y*dy,[[x],y],[[x+y,(dx+dy)/2],[x-y,(dx-dy)/2]]); y*dy+x*dx
- [2] os_md.transpdo($4*dx^2$,[[x,dx],[y,dy]],[[x+y,(dx+dy)/2],[x-y,(dx-dy)/2]]); dy^2+2*dx*dy+dx^2
- [3] os_md.transpdo(x*dx,x,[-dx+1/x,x]|ex=1);
 -x*dx

```
• [0] や [1], [2] では、x \mapsto \frac{1}{x} や (x,y) \mapsto (x+y,x-y) という座標変換による微分作用素の変換を求めている。このとき、対応する変換 \frac{d}{dx} \mapsto -\frac{1}{x^2} \frac{d}{dx} や (\frac{\partial}{\partial x},\frac{\partial}{\partial y}) \mapsto (\frac{1}{2} \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial}{\partial y},\frac{1}{2} \frac{\partial}{\partial x} - \frac{1}{2} \frac{\partial}{\partial y})
        も指定する必要がある.
     • 座標変換ではないが (x, \frac{d}{dx}) \mapsto (x, \frac{d}{dx} + c) のような微分作用素環の同型変換となるものでもよい.
     • ex=1: (x_i, \partial_{x_i}) \mapsto (S_i(x, \partial), T_i(x, \partial)) という微分作用素環の準同型写像による変換を計算する.
        すなわち [T_i(x,\partial),S_j(x,\partial)]=\delta_{i,j} であって、p は (x,\partial) について多項式である必要がある.
        [3] は、(x, \frac{d}{dx}) \mapsto (-\frac{d}{dx} + \frac{1}{x}, x) という変換などを考えている.
4. translpdo(p,[[x_1,\partial_{x_1}],[x_2,\partial_{x_2}],...],mat)
   :: 微分作用素の線形座標変換 (x_i \mapsto \sum_j (\mathrm{mat})_{ij} x_j)
   [x_i, \partial_{x_i}] はx_iの形の省略形も可(\Leftarrow \partial_{x_i} = dx_i).
    [0] M=mat([1,1],[1,-1]);
    [11]
    [1-1]
    [1] os_md.translpdo(4*dx^2,[[x,dx],[y,dy]],M);
    dy^2+2*dx*dy+dx^2
5. appldo(p,r,[x,\partial_x]) \sharp h appldo(p,r,[x_1,\partial_{x_1},[x_2,\partial_{x_2},\ldots])
   :: 微分作用素(の行列)の有理式や初等函数(の行列)への作用の計算
   r はベクトルまたは行列でもよい. この場合は p は行列でもよい.
    [0] os_md.appldo(x*dx^2-2*dx, a*x^3+b*x^2, x);
    -2*b*x
    [1] os_md.appldo(x*dx^2+2*dx, x+y/x, x);
    [2] V=newvect(2, [x/y, y/x]);
    [(x)/(y)(y)/(x)]
    [3] os_md.appldo(x*dx+1,V,x);
    [(2*x)/(y) 0]
    [4] P=newmat(2,2,[[x*dx+1,x/y],[0,x*dx]]);
    [x*dx+1(x)/(y)]
    [ 0 x*dx ]
    [5] os_md.appldo(P,V,x);
    [(2*x+y)/(y)(-y)/(x)]
    [6] os_md.appldo(ddx,P,dx);
    [ x 0 ]
    [0x]
    [7] A=\text{newmat}(2,2,[[\cos(x+y),-\sin(x+y)],[\sin(x+y),\cos(x+y)]]);
    [\cos(x+y) - \sin(x+y)]
    [ sin(x+y) cos(x+y) ]
    [8] os_md.appldo(dx^2,A,x);
    [-\cos(x+y) \sin(x+y)]
    [-\sin(x+y)-\cos(x+y)]
6. adj(p, [x, \partial_x]) \sharp t d adj(p, [[x_1, \partial_{x_1}], [x_2, \partial_{x_2}], ...])
   :: 微分作用素(の行列) pの formal adjoint
```

• 上の [0], [1], [3] では、[[x_1 , ∂_{x_1}],[x_2 , ∂_{x_2}],...] について省略形を用いている (cf. muldo()).

```
[0] os_md.adj(x*dx^2+x^3*dx+1,x);
    x*dx^2+(-x^3+2)*dx-3*x^2+1
 7. sftpexp(p, [x, \partial_x], q, r) \sharp t sftpexp(p, [[x_1, \partial_{x_1}], \ldots], q, r])
   :: 微分作用素 p を q^{-r} \circ p \circ q^r と変換する
   q, r は有理式. ただし, r は (x_{\nu} を含まない) パラメータ.
     [0] os_md.sftpexp(dx*dy,[[x,dx],[y,dy]],exp(x-y),a);
     (dx+a)*dy-a*dx-a^2
     [1] os_md.sftpexp(dx*dy,[[x,dx],[y,dy]],x-y,a);
     ((x^2-2*y*x+y^2)*dx+a*x-a*y)*dy+(-a*x+a*y)*dx-a^2+a
     [2] show(@@);
                         (x-y)^2 \partial_x \partial_y - a(x-y) \partial_x + a(x-y) \partial_y - a(a-1)
 8. appledo(p,r,[x,\partial_x])
   :: Euler 型常微分作用素の有理式への作用の計算
     [0] os_md.appledo(dx^2,x^2+y/x,x);
     (4*x^3+y)/(x)
 9. divdo(p_1, p_2, [x, \partial_x] | rev=1)
   :: 常微分作用素の割り算
     戻り値 [q,r,m]
          \Rightarrow m * p_1 = q * p_2 + r \pmod{m} = 0, ord r < \text{ord } p_2
     ● rev=1 を指定すると
            p_1 * m = p_2 * q + r \pmod{m} = 0, \text{ ord } r < \text{ord } p_2
     [0] R=os_md.divdo(dx^2, x*dx+1, x);
     [x*dx-2,2,x^2]
     [1] os_md.muldo(R[0], x*dx+1, x)+R[1];
    x^2*dx^2
     [2] R=os_md.divdo(dx^2,x*dx+1,x|rev=1);
     [x*dx+2,0,x^2]
     [3] os_md.muldo(x*dx+1,R[0],x)+R[1];
    x^2*dx^2+4*x*dx+2
     [4] os_md.muldo(dx^2,R[2],x);
    x^2*dx^2+4*x*dx+2
10. mygcd(p_1, p_2, [x, \partial_x] | rev=1, dviout=n)  \sharp \mathcal{L}it  mygcd(p_1, p_2, [x] | rev=1, dviout=n)
   mygcd(p_1, p_2, x | dviout=n), mygcd(p_1, p_2, 0 | dviout=n)
   :: 有理函数係数の常微分作用素(またはxの多項式,または正整数)p_1と p_2の \mathrm{GCD}(最大公約元)
     • 戻り値を R とおくと GCD は R[0] = R[1] * p_1 + R[2] * p_2 となる.
       R[3]*p_1+R[4]*p_2=0 が成立し、行列 \begin{pmatrix} R[1] & R[2] \\ R[3] & R[4] \end{pmatrix} は可逆.
        また R[3] * p_1 = -R[4] * p_2 が LCM となる
     ● rev=1 を指定すると、上で積の順序が全て逆になる.
     • ユークリッドの互除法による計算であるが、p_1 と p_2 の大きさが同じ場合は p_1 を p_2 で割ることか
```

• dviout=0: ユークリッド互除法での各ステップでのデータがリストのリストで返される.

整数のときは、リストの最初は、最初の整数の組、その後は商と余りの組のリストが、余りが0に

ら始める.

なるまで続く.

多項式と常微分作用素の時は、最初の式の組、その後は商と余りとスカラー倍の3つのデータの組(divdo()の返す値)が続くリスト.

- dviout=1:ユークリッドの互除法の割り算が TFX を使って示される.
- dviout=2: ユークリッドの互除法が行列の形で T_FX を使って示される.
- dviout=-1,-2:上の T_FX のソースが返される.
- [0] $P = os_md.muldo(x*dx+1,x*dx+1,x);$

 $x^2*dx^2+3*x*dx+1$

[1] $Q = os_md.muldo(dx-1,x*dx+1,x);$

 $x*dx^2+(-x+2)*dx-1$

[2] os_md.mygcd(P,Q,[x]);

 $[x*dx+1,(1)/(x+1),(-x)/(x+1),((-x-1)*dx+x+2)/(x+1),((x^2+x)*dx+x+2)/(x+1)]$

[3] os_md.mygcd(P,Q,[dx]);

 $[1,0,(1)/(x*dx^2+(-x+2)*dx-1),1,(-x^2*dx^2-3*x*dx-1)/(x*dx^2+(-x+2)*dx-1)]$

[4] os_md.mygcd(234,111,0);

[3,-9,19,37,-78]

[5] os_md.mygcd(234,111,0|dviout=0);

[[234,111],[2,12],[9,3],[4,0]]

[6] os_md.mygcd(234,111,0|dviout=1);

$$234 = 2 \times 111 + 12$$
$$111 = 9 \times 12 + 3$$
$$12 = 4 \times 3$$

- [7] os_md.mygcd(234,111,0|dviout=-1);
- $234\&=2\times11+12\allowdisplaybreaks\$
- $111\&=9\times12+3\allowdisplaybreaks\$

 $12\&=4\times3$

[8] os_md.mygcd(234,111,0|dviout=2)\$

$$\begin{pmatrix} 234 \\ 111 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 111 \\ 12 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 9 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 12 \\ 3 \end{pmatrix} = \begin{pmatrix} 19 & 2 \\ 9 & 1 \end{pmatrix} \begin{pmatrix} 12 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 19 & 2 \\ 9 & 1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 78 & 19 \\ 37 & 9 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix},$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} -9 & 19 \\ 37 & -78 \end{pmatrix} \begin{pmatrix} 234 \\ 111 \end{pmatrix}$$

[9] os_md.mygcd(P,Q,[x,dx]|dviout=2)\$

$$x^{2}\partial^{2} + 3x\partial + 1 = (x)(x\partial^{2} - (x-2)\partial - 1) + (x(x+1)\partial + (x+1))$$
$$(x^{2} + 2x + 1)(x\partial^{2} - (x-2)\partial - 1) = ((x+1)\partial - (x+2))(x(x+1)\partial + (x+1))$$

[10] os_md.mygcd(P,Q,[x,dx]|dviout=2);

$$\begin{pmatrix} x^2\partial^2 + 3x\partial + 1 \\ x\partial^2 - (x-2)\partial - 1 \end{pmatrix} = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x\partial^2 - (x-2)\partial - 1 \\ x(x+1)\partial + (x+1) \end{pmatrix}$$

$$= \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{x+1}\partial - \frac{x+2}{(x+1)^2} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x(x+1)\partial + (x+1) \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{x}{x+1}\partial + \frac{1}{(x+1)^2} & x \\ \frac{1}{x+1}\partial - \frac{x+2}{(x+1)^2} & 1 \end{pmatrix} \begin{pmatrix} x(x+1)\partial + (x+1) \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} x\partial + 1 & x \\ \partial - 1 & 1 \end{pmatrix} \begin{pmatrix} x\partial + 1 \\ 0 \end{pmatrix} ,$$

$$\begin{pmatrix} x\partial + 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{(x+1)^2} & -\frac{x}{(x+1)^2} \\ -\frac{1}{x+1}\partial + \frac{x+2}{(x+1)^2} & \frac{x}{x+1}\partial + \frac{x+2}{(x+1)^2} \end{pmatrix} \begin{pmatrix} x^2\partial^2 + 3x\partial + 1 \\ x\partial^2 - (x-2)\partial - 1 \end{pmatrix}$$

- 11. $\operatorname{mylcm}(p_1, p_2, [x, \partial_x] | \operatorname{rev=1}) \quad \sharp \text{\hbarit } \operatorname{mylcm}(p_1, p_2, [x] | \operatorname{rev=1}) \\ \operatorname{mylcm}(p_1, p_2, x), \quad \operatorname{mylcm}(p_1, p_2, 0)$
 - :: 有理函数係数の常微分作用素(またはxの多項式,または正整数) p_1 と p_2 の LCM(最小公倍元)
 - [0] P=os_md.mylcm((2-x)*dx-1,x*dx+1,[x,dx]);
 (x^2-2*x)*dx^2+(4*x-4)*dx+2
 [1] os_md.appldo(P,a/x+b/(2-x),[x,dx]);
 - [1] os_md.appldo(P,a/x+b/(2-x),[x,dx]);
 - [2] $Q=os_md.mylcm((2-x)*dx-1,x*dx+1,x);$ (x^2-2*x)* $dx^2+(2*x-2)*dx+1$
 - [3] fctr(Q);
 - [[1,1],[x*dx+1,1],[(x-2)*dx+1,1]]
- 12. $m1div(m,n,[x,\partial_x])$ または m1div(m,n,[x]) または m1div(m,n,x) :: 有理函数係数の常微分作用素 (or x の多項式) の正方行列 m と有理式 (or x を含まない有理式) の正方行列 n に対し, $m=R[1](\partial_x-n)+R[0]$ (or m=R[1](x-n)+R[0]) となるリスト R=[R[0],R[1]] を返す. R[0] は微分 (or x) を含まない.
- 13. $qdo(p_1, p_2, [x, \partial_x])$
 - :: 常微分方程式 $p_1u=0$ に対し $q_1p_2u=0$ となる微分作用素 q_1 と $q_2p_2u=u$ となる微分作用素 q_2 の リスト $[q_1,q_2]$ を返す

 q_1, q_2 は以下の以下の性質をもつ.

 $qp_2u = 0 \implies \exists r \text{ such that } q = rq_1$

 $qp_2u = u \implies \exists r \text{ such that } q = q_2 + rq_1 \text{ and } \operatorname{ord} q_2 \leq \operatorname{ord} q$

- [0] P=os_md.ghg([a,b],[c]);
- $(-x^2+x)*dx^2+((-a-b-1)*x+c)*dx-b*a$
- [1] $os_md.qdo(P,dx,x);$

 $[(x^2-x)*dx^2+((a+b+3)*x-c-1)*dx+(b+1)*a+b+1,((-x^2+x)*dx+(-a-b-1)*x+c)/(b*a)]$

14. $mdivisor(m, [x, \partial] | trans=1, step=1, dviout=t)$

mdivisor(m,x|trans=1,step=1,dviout=t), mdivisor(m,0|trans=1,step=1,dviout=t)

- :: 有理函数係数の常微分作用素/1 変数多項式や整数の行列の単因子を得る
 - 有理函数係数の常微分作用素の行列の場合は [O2, Lemma 1.10] に基づく.
 - step=1: 行と列の基本変形の途中過程を示す
 - trans=1: 単因子, 左からかける行変形行列, 右からかける列変形行列の3成分のリストを返す. trans=2: 上の3成分の後に, 行変形行列の逆行列, 列変形行列の逆行列を加えた5成分のリストを返す.
 - m が可逆 \Leftrightarrow 単因子が $[1,1,\ldots]$. この場合は trans=1 を指定したときの戻り値を R とおくと,

```
R[1] が逆行列,R[2] は単位行列となる.
● dviout=1:基本変形の途中過程を T<sub>F</sub>X で表示.
• dviout=-1: dviout=1 の T_EX のソースを返すが、表示はしない.
• dviout=2:基本変形の途中過程を TFX で表示. 左右からかける行列も表示.
● dviout=-2: dviout=2の T<sub>E</sub>X のソースを返すが,表示はしない.
● dviout=3: 基本変形の結果と変換行列とその逆行列を表示(trans=2の情報).
● dviout=-3: dviout=3の T<sub>F</sub>X のソースを返すが,表示はしない.
• unim()によって単因子計算や対角化の演習のための正方整数行列の生成ができる.
[0] A=os_md.s2m("12-1,2-22,-121");
[ 1 2 -1 ]
[2-22]
[ -1 2 1 ]
[1] os_md.mdivisor(os_md.mgen(3,0,[x],0)-A,x);
[1,x-2,x^2+2*x-8]
[2] os_md.mdivisor(os_md.mgen(3,0,[x],0)-A,x|step=1);
1: start
[ x-1 -2 1 ]
[-2 x+2 -2]
[ 1 -2 x-1 ]
1: (1,2) \rightarrow (1,1)
[ -2 x-1 1 ]
[x+2-2-2]
[ -2 1 x-1 ]
1: unit
[ 1 -1/2*x+1/2 -1/2 ]
[ 0 1/2*x^2+1/2*x-3 1/2*x-1 ]
[0 -x+2 x-2]
2: start
[ 1/2*x^2+1/2*x-3 1/2*x-1 ]
[-x+2 x-2]
2: (1,2) \rightarrow (1,1)
[1/2*x-11/2*x^2+1/2*x-3]
[x-2-x+2]
[20]*
[ -4 2 ]
2: line 1 & 2
[x-2x^2+x-6]
[0 -2*x^2-4*x+16]
*[ 1 -x-3 ]
  [ 0 1 ]
2: column 1 & 2
```

[x-2 0]

3: start

 $[0 -2*x^2-4*x+16]$

```
[-2*x-8]
[1,x-2,x^2+2*x-8]
[3] os_md.mdivisor(os_md.mgen(2,0,[dx],0),[x,dx]|step=1);
1: start
[ dx 0 ]
[ 0 dx ]
1: column 1 += col2*x
[ dx 0 ]
[ x*dx+1 dx ]
 [ -x 1 ]*
 [ x*dx+2 -dx ]
1: line 1 & 2
[ 1 dx ]
[ 0 - dx^2 ]
1: unit
[ 1 dx ]
[ 0 -dx^2 ]
2: start
[-dx^2]
[[1,dx^2],
[4] os_md.mdivisor(os_md.mgen(2,0,[dx],0),[x,dx]|trans=2);
[[1,dx^2],[-x 1]
[-x*dx-2 dx],[1 -dx]
[x -x*dx+1], [dx -1]
[ x*dx+1 -x ], [ -x*dx dx ]
[ -x 1 ]]
[5] os_md.mdivisor(os_md.mgen(2,0,[dx],0),[x,dx]|dviout=2);
                             \begin{pmatrix} \partial & 0 & 1 & 0 \\ 0 & \partial & 0 & 1 \\ 1 & 0 & & \\ 0 & 1 & & \end{pmatrix}
                             C1 += C2 \times (x)
                             \rightarrow \begin{pmatrix} \partial & 0 & 1 & 0 \\ x\partial + 1 & \partial & 0 & 1 \\ 1 & 0 & & \\ x & 1 & & \end{pmatrix}
                             \begin{pmatrix} -x & 1 \\ x\partial + 2 & -\partial \end{pmatrix} \begin{pmatrix} L1 \\ L2 \end{pmatrix}
                            \rightarrow \begin{pmatrix} 1 & \partial & -x & 1\\ 0 & -\partial^2 & x\partial + 2 & -\partial\\ 1 & 0 & & \\ x & 1 & & \end{pmatrix}
                             Cj -= C1 \times \circ \quad (j > 1)
```

$$\rightarrow \begin{pmatrix}
1 & 0 & -x & 1 \\
0 & -\partial^2 & x\partial + 2 & -\partial \\
1 & -\partial & & & \\
x & -x\partial + 1 & & &
\end{pmatrix}$$

$$L2 \leftarrow (-1) \times L2$$

$$\rightarrow \begin{pmatrix}
1 & 0 & -x & 1 \\
0 & \partial^2 & -x\partial - 2 & \partial \\
1 & -\partial & & & \\
x & -x\partial + 1 & & &
\end{pmatrix}$$

As a result,

$$\begin{pmatrix} 1 & 0 \\ 0 & \partial^2 \end{pmatrix} = \begin{pmatrix} -x & 1 \\ -x\partial - 2 & \partial \end{pmatrix} \begin{pmatrix} \partial & 0 \\ 0 & \partial \end{pmatrix} \begin{pmatrix} 1 & -\partial \\ x & -x\partial + 1 \end{pmatrix},$$

$$\begin{pmatrix} -x & 1 \\ -x\partial - 2 & \partial \end{pmatrix}^{-1} = \begin{pmatrix} \partial & -1 \\ x\partial + 1 & -x \end{pmatrix},$$

$$\begin{pmatrix} 1 & -\partial \\ x & -x\partial + 1 \end{pmatrix}^{-1} = \begin{pmatrix} -x\partial & \partial \\ -x & 1 \end{pmatrix}.$$

上の dviout=2 のオプションの結果から分かるように、以下のアルゴリズムで計算を行う. なお、以下にある行列 C は mygcd() によって求めている.

行列 A の成分はユークリッド環 R で、以下のいずれかとします.

- (1) 整数環
- (2) 有理函数係数の1変数多項式環
- (3) 有理函数係数の常微分作用素環

アルゴリズムは以下の通り

- (a) A が零行列なら [0] を返す
- (b) A の零でない最小の (i,j) 成分を、行の交換、列の交換で (1,1) 成分に移す ((i,j) は辞書式順序で最小なもの)。ここで最小とは、(1) 絶対値、(2) 次数、(3) 階数 が基準
- (c) A の 1 列目の 2 行目以下に零でない成分があれば、(1,1) 成分とその最初の零でない成分を並べたサイズ 2 の列ベクトルに適当な GL(2,R) の元 C を左からかけて、ベクトルの第 2 成分を零にするものを求める(\leftarrow ユークリッドの互除法). SL(2,R) でなくて GL(2,R) にしたのは、変換後の第 1 成分の係数が (2)、(3) の時に多項式となるようにするため、1 行目と対応する行に左からC をかけて行変形する、そのあと (b) へ、
- (d) A の 1 列目が第 1 成分を除いて零のとき. 第 1 行の第 2 成分以降で零でないものがあれば、3. と同様にサイズ 2 の行ベクトルとそれに右からかける GL(2,R) の元 C を求めて列変形を行い、(b) へ.
- 以下, (1,1) 成分を除いて A の 1 行目と 1 列目の成分が全て 0 とする -
- (e) A の行または列のサイズが 1 のとき、[(1,1) 成分] を返す.
- 以下はそれ以外 -
- (f) A の (1,1) 成分が可逆のとき、それを 1 と置き直して、以下の (g) ii) と同様なことを行う.
- (1) または (2) のとき —
- (g) (1,1) 成分で割り切れない成分があるかどうか調べる.
 - i) 割り切れない成分をもつ列があれば、その列を 1 列目に加え、その成分が 2 行目でなければ 2 行目と行を交換。その後 (b) へ
 - ii) すべて割り切れれば、1 行目と 1 列目を除いた行列を (1,1) 成分で割ってできる、行と列のサイズが 1 ずつ小さな行列、を引数として、この函数を呼び、戻り値の各成分を (1,1) 成分倍したリストに (1,1) 成分を追加したリストを返す。
- (3) のとき —
- (h) 零でない (0,0) 成分以外の (i,j) 成分を選んで(辞書式順序で最小な (i,j) を選ぶ)それを P と し, Px^k と (1,1) 成分の作る左イデアルが (1,1) 成分の作る左イデアルに入らない k を求める(k

は (i,j) 成分の階数以下の非負整数となる). なおxは微分との交換子が恒等写像となるかけ算作 用素. j列目に x^k を右からかけたものを1列目に加えて(b) へ.

step=1 を指定したときの表示される行列の上のコメントの意味は以下の通り.

- 最初の数字は、mdivisor() が呼ばれたネスティングの深さで、1 段深まると行列サイズが 1 減る (cf. (f), (g) ii)).
- start:この函数が呼び出されたときの行列.
- (a,b) -> (1,1): a 行目と1 行目, b 列目と1 列目を交換して, (a,b) 成分を(1,1) に移動す る (cf. (b)) .
- line 1 & a: 1 行目と a 行目に左から GL(2,R) をかけて (a,1) 成分を 0 にする (cf. (c)).
- column 1 & b:1列目とb列目に右からGL(2,R)をかけて(1,b)成分を0にする(cf. (d)).
- unit: (1,1) 成分が可逆元のときの処理(cf. (f)).
- column 1 += col b, line 2<->a: 1列目にb列目を加えて、2行目とa行目を交換(cf. (g) i)).
- column 1 += col b*x^k: b 列目に右から x^k をかけたものを 1 列目に加える (cf. (h)).

一方, $T_{\rm E}X$ においては,i 行目を Li と表し,j 列目を Cj と表して,たとえば $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ を 3 行目と 5 行 目にかけるのは

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} L3 \\ L5 \end{pmatrix}$$

と表す.

[6] os_md.mdivisor(mat([3,5,7],[5,3,3]),0|dviout=2)

$$\begin{pmatrix} 3 & 5 & 7 & 1 & 0 \\ 5 & 3 & 3 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} L1 \\ L2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 7 & 11 & 2 & -1 \\ 0 & -16 & -26 & -5 & 3 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$Cj = C1 \times \circ \quad (j > 1)$$

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & -16 & -26 & -5 & 3 \\ 1 & -7 & -11 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$(C2 \quad C3) \begin{pmatrix} -5 & -13 \\ 3 & 8 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 2 & 0 & -5 & 3 \\ 1 & 2 & 3 & 0 \\ 0 & 3 & 8 & 0 \end{pmatrix}$$
As a result

As a result,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} 3 & 5 & 7 \\ 5 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -5 & -13 \\ 0 & 3 & 8 \end{pmatrix}$$
$$\begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -5 & -13 \\ 0 & 3 & 8 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 7 & 11 \\ 0 & -8 & -13 \\ 0 & 3 & 5 \end{pmatrix}.$$

[7] os_md.mdivisor(mat([dx,0,0],[0,dx,0],[0,0,dx]),[x,dx]|dviout=3)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \partial^3 \end{pmatrix} = P \begin{pmatrix} \partial & 0 & 0 \\ 0 & \partial & 0 \\ 0 & 0 & \partial \end{pmatrix} Q,$$

$$P = \begin{pmatrix} -x & 1 & 0 \\ -\frac{1}{2}x\partial - 1 & \frac{1}{2}\partial & -\frac{1}{2}x^2\partial - 2x \\ -x\partial^2 - 3\partial & \partial^2 & -x^2\partial^2 - 6x\partial - 6 \end{pmatrix} = \begin{pmatrix} \partial & -x^2\partial^2 - 4x\partial - 2 & \frac{1}{2}x^2\partial + 2x \\ x\partial + 1 & -x^3\partial^2 - 4x^2\partial - 2x & \frac{1}{2}x^3\partial + 2x^2 \\ 0 & \partial & \frac{-1}{2} \end{pmatrix}^{-1},$$

$$Q = \begin{pmatrix} 1 & -x^2\partial - 2x & \frac{1}{2}x^2\partial^3 + x\partial^2 - \partial \\ x & -x^3\partial - x^2 & \frac{1}{2}x^3\partial^3 + \frac{1}{2}x^2\partial^2 - x\partial + 1 \\ 0 & 1 & -\frac{1}{2}\partial^2 \end{pmatrix} = \begin{pmatrix} -x\partial & \partial & 0 \\ -\frac{1}{2}x\partial^2 - \partial & \frac{1}{2}\partial^2 & -\frac{1}{2}x^2\partial^2 - 2x\partial \\ -x & 1 & -x^2 \end{pmatrix}^{-1}.$$

- [8] A=mat([2,-2,-2],[0,1,-1],[0,0,2])\$
- [9] $os_md.mdivisor(os_md.mgen(3,0,[x],0)-A,x|dviout=2)$ \$

$$\begin{pmatrix} x-2 & 2 & 2 & 1 & 0 & 0 \\ 0 & x-1 & 1 & 0 & 1 & 0 \\ 0 & 0 & x-2 & 0 & 0 & 1 \\ 1 & 0 & 0 & & & \\ 0 & 1 & 0 & & & \\ 0 & 0 & 1 & & & \end{pmatrix}$$

 $C1 \leftrightarrow C2$

$$\rightarrow \begin{pmatrix} 2 & x-2 & 2 & 1 & 0 & 0 \\ x-1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & x-2 & 0 & 0 & 1 \\ 0 & 1 & 0 & & & \\ 1 & 0 & 0 & & & \\ 0 & 0 & 1 & & & \end{pmatrix}$$

$$L1 \leftarrow (\frac{1}{2}) \times L1$$

$$\rightarrow \begin{pmatrix} 1 & \frac{1}{2}(x-2) & 1 & \frac{1}{2} & 0 & 0 \\ x-1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & x-2 & 0 & 0 & 1 \\ 0 & 1 & 0 & & & \\ 1 & 0 & 0 & & & & \\ 0 & 0 & 1 & & & & \end{pmatrix}$$

$$Li -= \circ \times L1 \quad (i > 1)$$

$$\rightarrow \begin{pmatrix} 1 & \frac{1}{2}(x-2) & 1 & \frac{1}{2} & 0 & 0\\ 0 & -\frac{1}{2}(x-2)(x-1) & -(x-2) & -\frac{1}{2}(x-1) & 1 & 0\\ 0 & 0 & x-2 & 0 & 0 & 1\\ 0 & 1 & 0 & & & \\ 1 & 0 & 0 & 0 & & \\ 0 & 0 & 1 & & & \end{pmatrix}$$

$$Cj -= C1 \times \circ \quad (j > 1)$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2}(x-2)(x-1) & -(x-2) & -\frac{1}{2}(x-1) & 1 & 0 \\ 0 & 0 & x-2 & 0 & 0 & 1 \\ 0 & 1 & 0 & & & \\ 1 & -\frac{1}{2}(x-2) & -1 & & & \\ 0 & 0 & 1 & & & \end{pmatrix}$$

 $L2 \leftrightarrow L3, C2 \leftrightarrow C3$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0\\ 0 & x-2 & 0 & 0 & 0 & 1\\ 0 & -(x-2) & -\frac{1}{2}(x-2)(x-1) & -\frac{1}{2}(x-1) & 1 & 0\\ 0 & 0 & 1 & & & \\ 1 & -1 & -\frac{1}{2}(x-2) & & & & \\ 0 & 1 & & & & \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} L2 \\ L3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0\\ 0 & x-2 & 0 & 0 & 0 & 1\\ 0 & 0 & (x-2)(x-1) & x-1 & -2 & -2\\ 0 & 0 & 1\\ 1 & -1 & -\frac{1}{2}(x-2)\\ 0 & 1 & 0 \end{pmatrix}$$

As a result.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & x-2 & 0 \\ 0 & 0 & (x-2)(x-1) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ x-1 & -2 & -2 \end{pmatrix} \begin{pmatrix} x-2 & 2 & 2 \\ 0 & x-1 & 1 \\ 0 & 0 & x-2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & -\frac{1}{2}(x-2) \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ x-1 & -2 & -2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ x-1 & -1 & -\frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & -\frac{1}{2}(x-2) & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

- 15. sqrtdo(p,[x, ∂_x])?
 - $:: x \mapsto 1/x$ で (x のべき倍を除いて) 不変な微分作用素 p に対する変数変換 $x \mapsto y = x + \sqrt{x^2 1}$ $x = \frac{1}{2}(y + y^{-1})$ に注意
- 16. toeul(p,[x, ∂_x],n)
 - :: 確定特異点型常微分作用素を x=n で Euler 型に変換

変数変換 $x\mapsto x+n$ のあと $x\partial_x$ を ∂_x で置き換え、多項式係数にする.

ただし, n が文字列 "infty" のときは, 変数変換 $x \mapsto 1/x$ のあと $x \partial_x$ を ∂_x で置き換える. 最後にxの巾を掛けてx=0で消えない作用素に調整する.

[0] os_md.toeul(os_md.ghg([a,b],[c]), x, 0);

```
(-x+1)*dx^2+((-a-b)*x+c-1)*dx-b*a*x
    [1] os_md.toeul(os_md.ghg([a,b],[c]), x, "infty");
    (x-1)*dx^2+((-c+1)*x+a+b)*dx-b*a
17. fromeul(p,[x,p_x],n)
   :: Euler 型常微分作用素を元に戻す (toeul (p, [x, \partial_x], n) の逆変換)
   最後にx-nの巾をかけてx=nで消えない多項式係数とする.
    [0] os_md.fromeul(dx,x,1);
    Дx
    [1] os_md.fromeul(dx-a,x,1);
    (x-1)*dx-a
18. expat(p,[x, \partial_x],n)
   x = n での特性指数を求める
     • n は文字列 "infty" でもよい (n = \infty) に対応).
     • Fuchs 型常微分作用素でnが文字列"?"のときは、全ての特異点とそこでの特性指数とを求める.
     • 以下, 例で現れる ghg() については, (59) を参照
    [0] os_md.expat(os_md.ghg([a,b,c],[d,e]), x, 0);
    [-d+1,-e+1,0]
    [1] os_md.expat(os_md.ghg([a,b,c],[d,e]), x, 1);
    [-a-b-c+d+e,1,0]
    [2] os_md.expat(os_md.ghg([a,b,c],[d,e]), x, 2);
    [1,2,0]
    [3] os_md.expat(os_md.ghg([a,b,c],[d,e]), x, "infty");
    [a,b,c]
    [4] os_md.expat(os_md.ghg([a,b,c],[d,e]), x, "?");
    [[0, [-d+1, -e+1, 0]], [1, [-a-b-c+d+e, 1, 0]], [infty, [a, b, c]]]
19. sftexp(p,[x, \partial_x],n,r)
   :: 常微分作用素 p を (x-n)^{-r} \circ p \circ (x-n)^r に変換する
   ただし、[\partial_x, r] = 0とする (以下同様).
    [0] P=os_md.ghg([a,b],[c]);
    (-x^2+x)*dx^2+((-a-b-1)*x+c)*dx-b*a
    [1] os_md.sftexp(P,x,0,1-c);
    (-x^2+x)*dx^2+((-a-b+2*c-3)*x-c+2)*dx+(-b+c-1)*a+(c-1)*b-c^2+2*c-1
    [2] Q=os_md.sftexp(P,x,"infty",b);
    (-x^3+x^2)*dx^2+((-a+b-1)*x^2+(-2*b+c)*x)*dx+b^2+(-c+1)*b
    [3] os_md.expat(Q,x,"infty");
    [a-b,0]
20. fractrans(p,[x, \partial_x],n_0,n_1,n_2)
   :: 常微分作用素 p に (n_0, n_1, n_2) \mapsto (0, 1, \infty) という一次分数変換を行う
    [0] os_md.fractrans(os_md.ghg([a,b],[c]),x,1,0,"infty");
    (-x^2+x)*dx^2+((-a-b-1)*x+a+b-c+1)*dx-b*a
    [1] P=os_md.fractrans(os_md.ghg([a,b],[c]),x,"infty",1,0);
    (x^3-x^2)*dx^2+((-c+2)*x^2+(a+b-1)*x)*dx-b*a
```

```
[2] os_md.expat(P,x,1);
[-a-b+c,0]
[3] os_md.expat(P,x,0);
[a,b]
```

21. chkexp(p,[x, ∂_x],n,r,m)

 $:: j=0,\dots,m-1$ の全てに対し、確定特異点型常微分作用素 p の解 u_j で $(x-n)^{-(r+j)}u_j$ が x=n で正則でそこでの値が 1 となるものが存在する条件を求める.

- [0] os_md.chkexp(os_md.ghg([a,b],[c]),x,0,0,1);
 []
 [1] os_md.chkexp(os_md.ghg([a,b],[c]),x,"infty",0,2);
 [a+b-1,-b*a]
 [2] os_md.chkexp(os_md.ghg([a,b],[c]),x,"infty",0,1);
 [-b*a]
- 22. soldif(p,[x, ∂_x],n,q,m)

:: 常微分作用素 p の x=n の近傍での $z^q(1+\sum_{j=1}^\infty c_j z^j)$ の形の形式解に対し,長さ m+1 のベクトル $[1\ c_1\ c_2\ \cdots\ c_m]$ を返す (z=x-n).

 $z^j \log z$ の項が現れる解も構成される. ?

 $n = \text{"infty"} \mathcal{O}$ ときは, $x = \infty$, z = 1/x とする.

- [0] R=os_md.soldif(os_md.ghg([a,b],[c]),x,"infty",a,4);
- $[\ 1 \ (a^2+(-c+1)*a)/(a-b+1) \ (1/2*a^4+(-c+2)*a^3+(1/2*c^2-5/2*c+1)]$

. . .

- [1] fctr(dn(R[4]));
- [[1,1],[a-b+1,1],[a-b+2,1],[a-b+3,1],[a-b+4,1]]
- [2] fctr(nm(R[4]));

[[1/24,1],[a,1],[a+1,1],[a+2,1],[a+3,1],[a-c+1,1],[a-c+2,1], [a-c+3,1],[a-c+4,1]]

23. okuboetos $(p, [x, \partial_x] \mid diag=[c_1, c_2, \dots])$

:: 単独 m 階 Okubo 型方程式 pu=0(n 階の項の係数が n 次以下の多項式)を Okubo 型の 1 階のシステムに変換する

- 戻り値は [[a_0, \ldots, a_{m-1}],B,T]
- オプション diag=[$c_0, c_1, ...$] によって、[$a_0, ..., a_{m-1}$] の順序を変えたものを指定することができる.
- 単独 Fuchs 型のとき、 $p\mapsto p*\partial_x+p'$ の変換を何度か施すと Okubo 型になる

$$(x - a_i)u_i' = \sum_{j=0}^{m-1} B_{ij}u_j \qquad (i = 0, \dots, m - 1),$$
$$u_i = \sum_{j=0}^{m-1} T_{i,j}u^{(j)}.$$

[0] P = os_md.ghg([a,b],[c]);

 $(-x^2+x)*dx^2+((-a-b-1)*x+c)*dx-b*a$

- [1] $R = os_md.okuboetos(P,x)$ \$
- [2] R[0];

[0 1]

```
[3] R[1];
[ -c+1 1 ]
[ (-b+c-1)*a+(c-1)*b-c^2+2*c-1 -a-b+c-1 ]
[4] R[2];
[10]
[ c-1 x ]
[5] det(R[1]);
[6] os_md.fctrtos(R[1][1][0]);
-(b-c+1)*(a-c+1)
[7] R = os_md.okuboetos(P,x|diag=[1,0])$
[8] R[0];
[10]
[9] R[1];
[ -a-b+c 1 ]
[ (-b+c)*a+c*b-c^2 -c ]
[10] R[2];
[10]
[ a+b-c x-1 ]]
```

以上から

$$u = F(a, b, c; x),$$

$$\begin{pmatrix} u_0 \\ u_1 \end{pmatrix} = \begin{pmatrix} u \\ (c-1)u + xu' \end{pmatrix},$$

$$\begin{pmatrix} x \\ x-1 \end{pmatrix} \begin{pmatrix} u'_0 \\ u'_1 \end{pmatrix} = \begin{pmatrix} 1-c & 1 \\ -(b-c+1)(a-c+1) & -a-b+c-1 \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}.$$

特に

$$v = \begin{pmatrix} v_0 \\ v_1 \end{pmatrix} = \begin{pmatrix} u \\ \frac{c-1}{a-c+1}u + \frac{x}{a-c+1}u' \end{pmatrix},$$

$$\begin{pmatrix} x \\ x-1 \end{pmatrix} \begin{pmatrix} v_0' \\ v_1' \end{pmatrix} = \begin{pmatrix} 1-c & a-c+1 \\ -(b-c+1) & -a-b+c-1 \end{pmatrix} \begin{pmatrix} v_0 \\ v_1 \end{pmatrix},$$

$$\frac{dv}{dx} = \frac{\begin{pmatrix} 1-c & a-c+1 \\ 0 & 0 \end{pmatrix}}{x}v + \frac{\begin{pmatrix} 0 & 0 \\ -b+c-1 & -a-b+c-1 \end{pmatrix}}{x-1}v$$

- 24. stoe(p,[x,dx],m)
 - :: 1 階の常微分方程式系を単独高階に直す
 - 方程式系 $u_i' = \sum_{j \geq 0} p_{ij}(x) u_j$ の u_m の満たす方程式を返す. p は有理式を成分とする正方行列.
 - m がリスト $[m_1, m_2]$ のときは、 u_{m_1} を u_{m_2} を用いて表す $(u_{m_2}$ に施す微分作用素).
 - m が負数のときは、[-m,0] を表す.
 - [0] A=newmat(2,2,[[(-c+1)/(x),(a-c+1)/(x)],[(-b+c-1)/(x-1),(-a-b+c-1)/(x-1)]); [(-c+1)/(x) (a-c+1)/(x)] [(-b+c-1)/(x-1) (-a-b+c-1)/(x-1)] [1] $os_md.stoe(A,x,0);$ (x^2-x)* $dx^2+((a+b+1)*x-c)*dx+b*a$

```
[2] T=os_md.mgen(4,0,[x,x-1,x,x-1],0);
          [x000]
          [ 0 x-1 0 0 ]
          [0 \times 0]
          [ 0 0 0 x-1 ]
          [3] A=newmat(4,4,[[a1,1],[a21,a2,1],[a31,a32,a3,1],[a41,a42,a43,a4]]);
          [ a1 1 0 0 ]
          [ a21 a2 1 0 ]
          [ a31 a32 a3 1 ]
          [ a41 a42 a43 a4 ]
          [4] C=os_md.myinv(T)*A;
          [ (a1)/(x) (1)/(x) 0 0 ]
          [ (a21)/(x-1) (a2)/(x-1) (1)/(x-1) 0 ]
          [ (a31)/(x) (a32)/(x) (a3)/(x) (1)/(x) ]
          [ (a41)/(x-1) (a42)/(x-1) (a43)/(x-1) (a4)/(x-1) ]
          [5] P=os_md.stoe(C,x,0)$
          [6] os_md.expat(P,x,"?");
          [[0,[a3+1,a1,1,0]],[1,[a4+2,a2+1,1,0]],
          [\inf ty, [dx^4+(a^4+a^3+a^1+a^2)*dx^3+(-a^21-a^32-a^43+(a^3+a^1+a^2)*a^4+(a^1+a^2)*a^3+a^2*a^1)]
          *dx^2+((-a4-a3)*a21+(-a4-a1)*a32+(-a1-a2)*a43+a31+a42+((a1+a2)*a3+a2*a1)*a4+
          a2*a1*a3)*dx+(a43-a3*a4)*a21-a1*a4*a32-a41-a2*a1*a43+a4*a31+a1*a42+a2*a1*a3*a4]]]
          [7] os_md.mperm(A,[0,2,1,3],1);
          [ a1 0 1 0 ]
          [ a31 a3 a32 1 ]
          [ a21 1 a2 0 ]
          [ a41 a43 a42 a4 ]
          [8] Q=E[2][1][0]-os_md.polbyroot([a1,a2,a3,a4],dx);
          (-a21-a32-a43)*dx^2+((-a4-a3)*a21+(-a4-a1)*a32+(-a1-a2)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a42)*dx+(a43)*a43+a31+a43)*dx+(a43)*a43+a31+a43)*dx+(a43)*a43+a31+a43)*dx+(a43)*a43+a31+a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+(a43)*dx+
          -a3*a4)*a21-a1*a4*a32-a41-a2*a1*a43+a4*a31+a1*a42
25. dform(\ell, x \mid \text{dif=1})
        d(\ell[i][2]) の計算. dif=1 は 1 次微分形式の外微分の計算.
           • \ell[i][j] は行列でもよい
           ● dif=1 は, 1 次形式の外微分を計算する
          [0] os_md.dform([[a*y,x/y],[b*x,y/x]],[x,y]);
          [(a*x-b*y)/(x),x],[(-a*x+b*y)/(y),y]]
          [1] os_md.dform([[a*y,x/y,x],[b*x,y/x,y]],[x,y]);
          [[(a*x^2-b*y^2)/(y*x),x,y]]
          [2] os_md.dform([[x-y,y],[x-y+1,x]],[x,y]|dif=1);
          [[2,x,y]]
```

上の計算は,以下を意味する.

$$ay \cdot d(\frac{x}{y}) + bx \cdot d(\frac{y}{x}) = \frac{ax - by}{x} dx + \frac{-ax + by}{y} dy$$
$$ax \cdot d(\frac{x}{y}) \wedge dx + bx \cdot d(\frac{y}{x}) \wedge dy = \frac{ax^2 - by^2}{xy} dx \wedge dy$$
$$d((x - y)dy + (x - y - 1)dx) = 2dx \wedge dy$$

- 26. solpokubo(p,[x, ∂_x],n)
 - :: 単独 Okubo 型常微分作用素 p の n 次の固有多項式と固有値を求める

Okubo 型常微分作用素とは、k 階微分の係数が k 次以下の多項式で、最高階は階数と次数が等しい作用素

- [0] P=x*(1-x)*dx^2+(c-a*x)*dx;
 (-x^2+x)*dx^2+(-a*x+c)*dx
 [1] os_md.solpokuboe(P,[x,dx],1);
 [a*x-c,-a]
 [2] os_md.solpokuboe(P,[x,dx],2);
 [(a^2+3*a+2)*x^2+((-2*c-2)*a-2*c-2)*x+c^2+c,-2*a-2]
 [3] os_md.fctrtos(@@[0]|var=x);
 (a+1)*(a+2)*x^2-2*(c+1)*(a+1)*x+c*(c+1)
- 3.1.2 Fractional calculus

この項は、[O2] の主要結果(基本的部分は[O1] で解説)を Risa/Asir 上で実現したものとなっている.

27. laplace(p,[x, ∂_x])

laplace(p,[[x_1, ∂_{x_1}],[x_2, ∂_{x_2}],...])

:: 微分作用素 p の(部分) Laplace 変換 $(x, \partial_x) \mapsto (-\partial_x, x)$

- [0] os_md.laplace(x^2*dx+1,x);
 x*dx^2+2*dx+1
- 28. laplace1(p,[x, ∂_x])

laplace1(p,[[x_1, ∂_{x_1}],[x_2, ∂_{x_2}],...])

- :: 微分作用素 p の(部分)逆 Laplace 変換 $(x, \partial_x) \mapsto (\partial_x, -x)$
- [0] os_md.laplace1(x^2*dx+1,x);
 -x*dx^2-2*dx+1
- 29. $mc(p, [x, \partial_x], r)$

:: 常微分作用素 p の middle convolution $mc_r(p)$

- [0] P=os_md.mc(x*(1-x)*dx-a-b*x,x,r);
 (x^2-x)*dx^2+((-2*r+b+2)*x+r+a-1)*dx+r^2+(-b-1)*r+b
 [1] os_md.expat(P,x,"?");
 [[0,[r+a,0]],[1,[r-a-b,0]],[infty,[-r+b,-r+1]]]
- 30. $mce(p, [x, \partial_x], n, r)$

:: 常微分作用素 p を $(\partial_x - n)^{-r} \circ p \circ (\partial_x - n)^r$ と変換して常微分作用素に戻す. ただし n は、 ∂_x と可換とする. n = 0 のときは middle convolution $mc_r(p)$.

```
31. rede(p,[x,\partial_x])
   \mathtt{rede}(p, \llbracket \llbracket x_1, \partial_{x_1} \rrbracket, \llbracket x_2, \partial_{x_2} \rrbracket, \dots \rrbracket)
   :: 微分作用素 p の reduced representative を返す
32. ad(p,[x,\partial_x],f)
   :: 常微分作用素 p の \partial_x を \partial_x - f に置き換える変換
33. add(p,[x,\partial_x],f)
   :: 常微分作用素 p の \partial_x を \partial_x - f に置き換える addition, すなわち rede(ad())
    [0] os_md.add(dx^2+x,x,1/x^2);
    x^4*dx^2-2*x^2*dx+x^5+2*x+1
34. vadd(p,[x,\partial_x],[[c_0,r_0],[c_1,r_1],...])
   :: versal addition add(p, [x, \partial_x], \sum_{j\geq 0} \frac{r_j x^j}{\prod_{j=0}^{j} (1-c_j,x)})
35. addl(p,[x,\partial_x],f)
   :: 常微分作用素の addition の Laplace 変換 laplace1(add(laplace()))
    [0] os_md.add(x,x,a/(x-c));
    -x*dx+c*x-a-1
36. cotr(p,[x,\partial_x],f)
   :: 常微分作用素 p \circ x \mapsto f(x) による座標変換
37. \operatorname{rcotr}(p, [x, \partial_x], f)
   :: 常微分作用素 p の x \mapsto f(x) による座標変換の reduced representative
38. s2sp(p|num=1,std=k,short=1)
   :: スペクトル型を表す文字列と"数のリストのリスト"との変換
     • 10,11,12,...,35 は, a,b,c,...,z で表す. 負の数や ^ や分数も有効.
     • ^ は (べき乗ではなく) 同じ数の繰り返しを表す.

    10以上の数を()で括って表してもよいが、括弧のネスティングは不可。

     • num=1 を指定すると、a,b,c,... は戻り値に使わずに括弧で括って表す.
     • 引数においては、36,37,...,60 を A,B,...,Z と表してもよい.
     • 有理数以外は >で囲った文字列に変換される.
     ● std=k を指定すると戻り値を, 各特異点での重複度を大きい順にして
       k=1 の時は各特異点を重複度の辞書式順序を小さい順に
       k=-1 のときは各特異点を重複度の辞書式順序を大きい順に
       並べたスペクトル型とする.
     • short=1 を指定すると、同じ重複度が 4 個以上続くときに ^* を使う短縮形の文字列に変換する.
       このとき std=k のオプションも同次指定可能.
    [0] os_md.s2sp("121,22,211");
    [[1,2,1],[2,2],[2,1,1]]
    [1] os_md.s2sp(@@);
    121,22,211
    [2] os_md.s2sp("5^2,541,1^a");
    [[5,5],[5,4,1],[1,1,1,1,1,1,1,1,1,1]]
    [3] os_md.s2sp("2-3a,1^9");
    [[2,-3,10],[1,1,1,1,1,1,1,1,1]]
    [4] newmat(4,4,os_md.s2sp("1,01,001,0001"));
    [1000]
    [0100]
```

```
[0010]
    [0001]
    [5] S=os_md.s2sp("1(-15)a-b,fg-7/(80)");
    [[1,-15,10,-11],[15,16,-7/80]]
    [6] os_md.s2sp(S);
    1(-15)a(-11),fg(-7/80)
    [7] os_md.s2sp(S|num=1);
    1(-15)(10)(-11),(15)(16)(-7/80)
    [8] os_md.s2sp([[1,2],[a-b,2.5]]);
    12, <a-b><2.5>
    [9] os_md.s2sp(@@);
    [[1,2],[a-b,2.5]]
    [10] os_md.s2sp(os_md.s2sp("32,2111,41,23"|std=1));
    2111,32,32,41
    [11] os_md.s2sp(os_md.s2sp("32,2111,41,23"|std=-1));
    41,32,32,2111
    [12] os_md.s2sp("111111,33,222"|short=1,std=-1);
    33,222,1^6
39. chkspt(m|mat=1) \sharp tt chkspt(m|opt=t) \sharp tt fspt(m,t)
   :: 分割の組 m (スペクトルタイプ) または generalized Riemann scheme (GRS) をチェックして
   [pts, ord, idx, fuchs, rod, redsp, fspt] を返す
   pts 特異点の数 (分割の組の数)
   ord 階数
   idx rigidity index
   fuchs Fuchs の関係式
   rod reduction での階数減
   redsp reduction exponents のリスト
   fspt 対応する basic なスペクトルタイプ
```

mat=1 は、Schleginger 型を意味する.

以下順に $t=0,1,\ldots$ であり fspt(m,t) としてもよいが、文字列により opt を指定した場合 chkspt() のみ可能で

- opt="sp" or 0: 与えられた GRS のスペクトルタイプを返す.
- opt="basic" or 1: chkspt(m) の戻り値のリストの7番目の fspt のみを返す. realizable でないときは0を返す.
- opt="constuct" or 2: basic なスペクトルタイプからの構成を示す. realizable でないときは 0 を返す.
- opt="strip" or 3: generalized Riemann scheme またはスペクトルタイプから重複度 0 の項を 削る.
- opt="short" or 4: GRS を短縮形に
- opt="long" or 5: GRS を短縮形から戻す
- opt="sort" or 6: スペクトル型を各点でソートして返す
- opt="root" or 7: Kac-Moody Weyl 群での構成を示す.
 戻り値のリストは3成分で、最初は base、次は与えたもの、最後が鏡映のリスト、鏡映は3成分で最初が内積の値、次とその次で、枝の番号と頂点からの番号.

短縮形とは、重複度が1の exponent は、重複度込みのリストから exponent のみ短くしたもの.

```
[3,4,2,0,1,[100],[[1],[1],[1]]]]
    [1] os_md.chkspt("121,22,1111");
    [3,4,2,0,1,[100],[[1],[1],[1]]]]
    [2] M=os_md.sp2grs([[1,1,1,1],[2,1,1],[2,2]],[a,b,c],[1,1]);
    [[[1,-2*c1-2*c0-b1-2*b0-a1-b2-a3-a2+3],[1,a1],[1,a2],[1,a3]],
    [[2,b0],[1,b1],[1,b2]],[[2,c0],[2,c1]]]
    [3] os_md.sp2grs([[1,1,1,1],[2,1,1],[2,2]],[a,b,c],[1,1]|mat=1);
    [[[1,-2*c1-2*c0-b1-2*b0-a1-b2-a3-a2],[1,a1],[1,a2],[1,a3]],
    [[2,b0],[1,b1],[1,b2]],[[2,c0],[2,c1]]]
    [4] os_md.chkspt(M|opt="sp");
    [[1,1,1,1],[2,1,1],[2,2]]
    [5] os_md.chkspt(M|opt="basic");
    [[1],[1],[1]]
    [6] os_md.chkspt(M|opt="construct");
     [[1],[1],[1]],
     [[1,1],[1,1],[1,1]],
     [[1,1,1],[1,1,1],[2,1]],
     [[1,1,1,1],[2,1,1],[2,2]]
    ]
    [7] os_md.chkspt(M|opt="short");
    [[-2*c1-2*c0-b2-b1-2*b0-a2-a1-a3+3,a1,a2,a3],
    [[2,b0],b1,b2],[[2,c0],[2,c1]]]
    [8] os_md.chkspt([[0,1,2,1],[2,0,2,0],[1,1,1,1]]|opt="strip");
    [[2,1,1],[2,2],[1,1,1,1]]
    [9] os_md.chkspt([[0,1,2,1],[2,0,2,0],[1,1,1,1]]|opt="sort");
    [[2,1,1,0],[2,2,0,0],[1,1,1,1]]
    [10] os_md.chkspt("21,21,21,21"|opt="root");
    [[[1],[1],[1],[1]],[[2,1],[2,1],[2,1],[2,1]],
    [[1,3,1],[1,2,1],[1,1,1],[1,0,1],[2,0,0]]]
40. spgen(n|eq=1,str=1,std=fpt=[k,\ell],sp=m,basic=1)
   :: 階数 n 以下の rigid な分割の組(あるいは与えられたものの軌道)を得る
     n が 0 や負のときは、rigidity index が n の basic なものを得る.
   n は -10 以上に対応しているが、okubo [O5] が動作する環境にしておけば、この制限はない.
    • eq=1:位数が丁度nのもの(n>1のとき)
    ● str=1: 文字列で得る
    • pt=[k,\ell]: 分割が k 組以上 \ell 組以下のもの
    • \mathbf{sp}=m: スペクトル型が m のものから階数増加の方向で得られるもの
      さらにここで basic=1 を指定すると、階数増加の方向に限らないもの
    • std=f: 各特異点の重複度は大きい順に、特異点間では f=1 小さい (resp. 大きい) 順に並べる.
    [0] os_md.spgen(4|eq=1,pt=[4,4]);
    [[[2,2],[2,2],[2,2],[3,1]],[[2,2],[3,1],[3,1],[2,1,1]]]
    [1] ltov(os_md.spgen(4|eq=1,pt=[4,4],str=1));
```

[0] os_md.chkspt([[1,2,1],[2,2],[1,1,1,1]]);

```
[ 22,22,22,31 22,31,31,211 ]
    [2] ltov(os_md.spgen(4|eq=1,pt=[4,4],str=1,std=-1));
    [ 31,22,22,22 31,31,22,211 ]
    [3] ltov(os_md.msort(os_md.spgen(4|eq=1,pt=[4,4],str=1,std=-1),[-1,0]));
    [ 31,31,22,211 31,22,22,22 ]
   [4] ltov(os_md.spgen(-2|pt=[4,4],str=1));
   [ 211,22,22,22 1^4,22,22,31 111,111,21,21 ]
   [0] 階数が 4 で特異点が 4 個の rigid なスペクトル型のリストを得る
   [1] 同じスペクトル型を文字列形式で得て表示
   [2] rigid 指数が -2 で特異点数 4 のスペクトル型を文字列形式で得て表示
   プログラムの例は
   /* 8 階で特異点が 4 個のリジッドなスペクトル型を辞書式順序の大きい順に
      並べたリストを得る(文字列で)*/
   Rank=8; /* give rank */
   G=os_md.spgen(Rank|eq=1,pt=[4,4]); /* get spectral types */
   for(L=[];G!=[];G=cdr(G))
     L=cons(os_md.s2sp(os_md.s2sp(car(G)|std=-1)),L);
   L=msort(L,[-1,0]);
41. sproot(p,t|dviout=1,only=k,null=1)
   :: スペクトル型を与えて構成やルートの情報を示す.t="base", "length", "type", "part", "pair",
   "pairs", sp
    • length: basic に変換する Weyl 群の長さ (= #\Delta(m))
    ● base: chksp(p|opt="root") と同じ. 単純鏡映での最短積
    • type:上に対応する型 (= [\Delta(\mathbf{m})], cf. [O2, (7.40)]).
    • height: root の高さ (単純ルートの一次結合で表示したときの係数の和. cf. [O2, (7.35)])
    • part:上の Weyl 群の元で正負が変わるルート (=\Delta(\mathbf{m}): 既約条件に対応.cf.[O2, (7.30)]) の
      情報を得る. 最初が対応する basic なルート, 2項目が与えられたルート, 3項目が求めるルート
      および与えられたルートとの内積の組のリスト.
    • pair, pairs: 既約分解に対応するルートの分解
      dviout=1 と only=k が指定可能. ルートは対応する分割で示す.
      iand(k,1) = 1: 分割の相手が分割に対応するもの
      iand(k,2)=2: 分割の相手の位数が 0 のルートとなるもの
      iand(k,4) = 4: 分割の相手が負ルートとなるもの
     null=1:該当のものがなければ出力しない
    ● sp:スペクトル型を与えた場合は、対応するルートの内積を与える
    [0] os_md.sproot("11,11,11","height");
    [1] os_md.sproot("11,11,11","length");
    [2] os_md.sproot("11,11,11","type");
    [[4,1]]
    [3] os_md.sproot("11,11,11","base");
    [[[1],[1],[1]],[[1,1],[1,1],[1,1]],
    [[1,2,1],[1,1,1],[1,0,1],[1,0,0]]]
```

```
[4] os_md.sproot("11,11,11","part");
[[[1],[1],[1]],[[1,1],[1,1],[1,1]],
[[1,[[1,0],[1,0],[0,1]]],[1,[[1,0],[0,1],[1,0]]],
[1,[[0,1],[1,0],[1,0]]],[1,[[1,0],[1,0],[1,0]]]]
[4] os_md.sproot("11,11,11","11,11,11");
[5] os_md.sproot("11,11,11","10,10,10");
[6] os_md.sproot("31,31,22,211","length");
8
[7] os_md.sproot("31,31,22,211","type");
[[6,1],[2,2]]
[8] os_md.sproot("31,31,22,211","height");
11
[9] os_md.sproot("31,31,22,211","pairs"|dviout=1);
                      31, 31, 22, 211 = 10, 10, 01, 001 \oplus 21, 21, 21, 210
                                    =20,11,11,110 \oplus 11,20,11,101
                                    = 11, 20, 11, 110 \oplus 20, 11, 11, 101
                                    = 10, 10, 01, 010 \oplus 21, 21, 21, 201
                                    =10, 10, 10, 001 \oplus 21, 21, 12, 210
                                    =10, 10, 10, 010 \oplus 21, 21, 12, 201
                                    = 2(10, 10, 01, 100) \oplus 11, 11, 20, 011
                                    = 2(10, 10, 10, 100) \oplus 11, 11, 02, 011
```

上の右辺の最初の項は $\Delta(\mathbf{m})$ に属する実正ルートとなる。また、"pair" のときは、上の最後の 2 行が異なり、 $20,20,20,200 \oplus 11,11,02,011$ などとなる。

[O1, 第 8 章] や [O2, Chapter 7] にスペクトル型 $\mathbf{m} = (m_{j,\nu})$ と Kac-Moody ルート系のルート α との 対応が解説されている.

$$\begin{split} \alpha_{\mathbf{m}} &= n\alpha_o + \sum_{j \geq 0} \Bigl(\sum_{\nu > i} m_{j,\nu}\Bigr) \alpha_{j,i}, \quad n = m_{j,1} + m_{j,2} + \cdots \quad (j \ \text{ ໄZ 依 5 か }) \\ & \text{"11,11,11"} \leftrightarrow \alpha = 2\alpha_0 + \alpha_{0,1} + \alpha_{1,1} + \alpha_{2,1} \\ & \text{"21,21,21,21"} \leftrightarrow \alpha = 2\alpha_0 + \alpha_{0,1} + \alpha_{1,1} + \alpha_{2,1} + \alpha_{3,1} \\ & \text{"31,31,22,211"} \leftrightarrow \alpha = 4\alpha_0 + \alpha_{0,1} + \alpha_{1,1} + 2\alpha_{2,1} + 2\alpha_{3,1} + \alpha_{3,2} \\ & (\alpha|\alpha) = 2 \quad (\alpha \in \Pi := \{\alpha_0, \, \alpha_{j,\nu} \mid j \geq 0, \, \nu > 0\}) \\ & (\alpha_0|\alpha_{j,\nu}) = -\delta_{\nu,1} \\ & (\alpha_{i,\mu}|\alpha_{j,\nu}) = \begin{cases} 0 & (i \neq j \quad \text{or} \quad |\mu - \nu| > 1) \\ -1 & (i = j \quad \text{and} \quad |\mu - \nu| = 1) \end{cases} \\ & s_\alpha : \ x \mapsto x - (x|\alpha)\alpha \quad (\alpha \in \Pi) \end{split}$$

Gauss の超幾何に対応する"11,11,11"のときは

$$\alpha_{\mathbf{m}} = 2\alpha_{0} + \alpha_{0,1} + \alpha_{1,1} + \alpha_{1,2} = s_{\alpha_{0}} s_{\alpha_{2,1}} s_{\alpha_{1,1}} s_{\alpha_{0,1}}(\alpha_{0}) = w_{\mathbf{m}}^{-1}(\alpha_{0}),$$

$$w_{\mathbf{m}} = s_{\alpha_{0,1}} s_{\alpha_{1,1}} s_{\alpha_{2,1}} s_{\alpha_{0}},$$

$$\Delta(\mathbf{m}) = \{\alpha_{0} + \alpha_{0,1}, \alpha_{0} + \alpha_{1,1}, \alpha_{0} + \alpha_{2,1}, \alpha_{0}\},$$

$$[\Delta(\mathbf{m})] := \{(\alpha | \alpha_{\mathbf{m}}) \mid \alpha \in \Delta(\mathbf{m})\} = \{1, 1, 1, 1\}$$

$$\leftrightarrow 4 = 1 + 1 + 1 + 1 : 1^{4}$$

であって、height は 2+1+1+1=5 で、rigid な場合は $[\Delta(\mathbf{m})]$ は (height で与えられる数 -1) という自然数の分割となるが、今の場合は 4=1+1+1+1 である.また base で与えられた 3 番目の項のリスト

は、3つの数字の2項目と3項目によって

$$w_{\mathbf{m}}^{-1} = s_{\alpha_{2,1}} s_{\alpha_{1,1}} s_{\alpha_{0,1}} s_{\alpha_0}$$

を意味し、最初の数字は対応する鏡映による height の変化の数を示している. なお、一般に $w_{\mathbf{m}}=s_{\alpha_{i_0}}s_{\alpha_{i_1}}\cdots s_{\alpha_{i_K}}$ のときは

$$\Delta(\mathbf{m}) = \{ s_{\alpha_{i_0}} \cdots s_{\alpha_{i_{\nu-1}}}(\alpha_{i_{\nu}}) \mid \nu = 0, \dots, K \}$$

であり、 \mathbf{m} が rigid なときは $w_{\mathbf{m}}\alpha_{\mathbf{m}}=\alpha_0$ となる長さ (=K) 最小の Weyl 群 (鏡映 s_{α} $(\alpha\in\Pi)$ で生成される群) の元. なお $m_{j,\nu}$ は $m_{j,1}\geq m_{j,2}\geq \cdots$ となるように正規化して考えるので、 $i_0=0$ である.

/* 8 階で特異点が 4 個以上に対応するリジッドなスペクトル型の分解で、

Type 2 と Type 3 のものを全て得る */

- [10] Rank=8; /* give rank */
- [11] G=os_md.spgen(Rank|eq=1,str=1,pt=[4,100]); /* get spectral types */
- [12] for(T=G;T!=[];T=cdr(T))

```
if((os_md.sproot(car(T),"pairs"|only=6))!=[]) /* only type 2, 3 */
  os_md.sproot(os_md.s2sp(car(T)|std=-1), /* in standard order */
  pairs"|only=6,dviout=1);
```

- 42. $sp2grs(m,a,\ell|mat=1)$
 - :: spectral type から generalized Riemann scheme を生成する
 - 逆の変換は, chkspt() で opt="sp"を指定したもの.
 - i+1番目の特異点の j+1番目のスペクトルパラメータは a が変数の時 aij で、リストの時 a[i]j で表される. a や a[i] は文字列でもよい.
 - ℓ が $[\ell_1, \ell_2]$ というリストの時、 ℓ_1 番目の特異点における ℓ_2 番目の exponent は、Fuchs の関係式 を満たすように決められる。その exponent が 0 のときは、別の exponent で調整される。
 - ℓ が正整数 k のとき、aij は aij+k または、a[i]j+k となる.前者と併用するときは、 $\ell=[\ell_1,\ell_2,k]$ というリストにする.
 - ℓ が負整数 -1-k のときは、標準的にいくつかの exponents を 0 とし、上の k シフトを行う.
 - mat=1 は、Schleginger 型を意味する(Fuchs の関係式が異なる).
 - [0] os_md.sp2grs([[1,1],[1,1],[1,1]],a,0); [[[1,a00],[1,a01]],[[1,a10],[1,a11]],[[1,a20],[1,a21]]] [1] M=os_md.sp2grs("111,111,21",[a,b,c],[3,2]); [[[1,a0],[1,a1],[1,a2]],[[1,b0],[1,b1],[1,b2]],[[2,c0],

```
[2] os_md.sp2grs([[1,1,1],[1,1,1],[2,1]],[a,b,c],[3,2,-2]);
    [[[1,a1],[1,a2],[1,a3]],[[1,b1],[1,b2],[1,0]],[[2,0],
    [1,-b1-b2-a3-a2-a1+2]]
    [3] subst(M,b0,0,b1,1-b1,b2,1-b2,c0,0);
    [[[1,a0],[1,a1],[1,a2]],[[1,0],[1,-b1+1],[1,-b2+1]],[[2,0],
    [1,b1+b2-a2-a1-a0]]]
    [4] os_md.sp2grs([[1,1],[1,1],[1,1]],a,1);
    [[[1,a01],[1,a02]],[[1,a11],[1,a12]],[[1,a21],[1,a22]]]
    [5] os_md.ssubgrs(M,"110,110,11");
    -b2-a2-c0+2
    [6] os_md.ssubgrs(M,[[1,1,0],[1,1,0],[1,1]]);
    -b2-a2-c0+2
43. ssubgrs (m, \ell)
   :: Generalized Riemann scheme m の \ell に対する特性指数和
    [0] GRS=os_md.sp2grs("111,111,21",[a,b,c],[1,3,-2]);
    [[[1,a1],[1,a2],[1,-c-b1-b2-a2-a1+2]],[[1,b1],[1,b2],[1,0]],
      [[2,0],[1,c]]]
    [1] os_md.ssubgrs(GRS,"010,100,10");
    b1+a2
    [2] os_md.ssubgrs(GRS,"011,110,11");
    -a1+2
44. mcgrs(m, [r_1, r_2, ..., r_n] | mat=1)
   :: middle convolution と addition を generalized Riemann scheme に施す
   r_j がスカラーの時は mc_{r_j} を,r_j がリスト [r_{j,0},\ldots,r_{j,p}] のときは addition を意味する(r_{j,0} は無視さ
   れる). 施す順序は、最初がr_n、次にr_{n-1}という順で、最後がr_1.
45. mcop(p, [r_1, r_2, ..., r_n], [x, x_1, x_2, ...])
   :: middle convolution と addition を (偏) 微分作用素 p に順に施していく
     • [x, x_1, x_2, ...] によって、x は変数、x_1, x_2, ... は有限の特異点の位置を示す.
     • [r_1, r_2, \ldots] において、r_j = [r_{j,0}, r_{j,1}, \ldots] は middle convolution と additions を表す.
         - まず middle convolution mc_{r_{i,0}} を施し、その後 x = x_{\nu} における additions (関数 u の
           (x-x_{\nu})^{r_{j,\nu}}u へのゲージ変換に対応)を行う (\nu=1,2,...).
         -p に対して r_i に対応する変換を、r_1, r_2, \ldots の順に行う.
    [0] R=os_md.getbygrs("21,21,21,21","construct")$
    [1] R[0][1];
    [[[1,b+c+d+a1+2*a0-2]],[[1,0]],[[1,0]],[[1,0]]]
    [2] S=os_md.lsol(os_md.getbygrs("21,21,21,21","Fuchs"),a1);
    -b-c-d-2*a0+2
    [3] R=subst(R,a1,S,a0,a);
    [[0,[[[1,0]],[[1,0]],[[1,0]],[[1,0]]]],
     \left[ \left[ 0, a+b-1, a+c-1, a+d-1 \right], \left[ \left[ \left[ 1, -3*a-b-c-d+3 \right] \right], \left[ \left[ 1, a+b-1 \right] \right], \left[ \left[ 1, a+c-1 \right] \right], \left[ \left[ 1, a+d-1 \right] \right] \right] \right], 
    [4] RR=[R[1][0],R[2][0]];
    [[0,a+b-1,a+c-1,a+d-1],[-a+1,0,0,0]]
     [5] os_md.mcop(dy,RR,[x,0,1,y]);
```

((-x+y)*dx-a)*dy+(-a-d+1)*dx

[6] show(@@)\$

$$-(x-y)\partial_x\partial_y - (a+d-1)\partial_x - a\partial_y$$

46. redgrs(m|mat=1)

:: 常微分作用素の generalized Riemann scheme の 1-step reduction 結果のデータ [redsp, m'] を返す.

reduction 出来ないときは非負整数 (basic, 0 は rigid) または負の値(非存在)を返す.

47. getbygrs(m,t|perm= ℓ ,var=v,pt=[$p_1,...$],mat=1) $\sharp \hbar k$

getbygrs(m,[t, s_1 , s_2 ,...]|perm= ℓ ,ver=v,pt=[p_1 ,...],mat=1)

:: generalized Riemann scheme (GRS) で定義される Fuchs 型常微分方程式の解析 (GRS は短縮形またはスペクトルタイプでもよい)

- mat=1 は, Schleginger 型を意味する.
- getbygrs(0,0) で渡されるパラメータが示される.
- m の要素の数を p+1 個とすると、それは p+1 個の特異点に対応する.それを順に $x_0=\infty, x_1=0, x_2=1, x_3, \ldots, x_p$ とする.
- Fuchs 型方程式の特異点 $x=x_j$ における generalized exponents (- 般 特性指数) が $\{[\lambda_0]_{(n_0)},\dots,[\lambda_k]_{(n_k)}\}$ であるとは exponents が重複度を込めて $\{\lambda_j+\nu;\ 0\leq \nu< n_j,\ j=0,\dots,k\}$ であって、 $\{\lambda_0,\dots,\lambda_k\}$ に互いに差が整数となる要素が含まれない場合(そうでない場合の定義は略すが,たとえば λ_j が全て等しいなら対応する局所モノドロミー群の Jordan ブロックへの分解サイズが, $n=n_0+\dots+n_k$ の分割の双対分割に対応すること), $x=x_j$ での局所モノドロミー群が半単純(対角化可能)となるとき,すなわち $(x-x_j)^{\lambda_j+\nu}\phi_{j,\nu}(x)$ $(0\leq \nu< n_\nu)$ という形の局所解が存在することをいう $(\phi_{j,\nu}(x)$ は, $x=x_j$ で正則で, $\phi_{j,\nu}(x_j)=1$).
- 各特異点での generalized exponents を並べて表にしたものを generalized Riemann scheme (GRS) という (cf. [O1, 第5章], [O2, Definition 4.6]):

$$\begin{cases} x = \infty & x_j \\ \left[m[0][0][1]\right]_{(m[0][0][0])} & \left[m[j][0][1]\right]_{(m[j][0][0])} \\ \left[m[0][1][1]\right]_{(m[0][1][0])} & \left[m[j][1][1]\right]_{(m[j][1][0])} \\ \vdots & \vdots & \vdots \\ \left[m[0][i][1]\right]_{(m[0][i][0])} & \left[m[j][i][1]\right]_{(m[j][i][0])} \\ \vdots & \vdots & \vdots & \end{cases}$$

- perm=[[i,j]]:i番目の特異点とj番目の特異点の入れ替え
- perm= $[j_0,\ldots,j_p]$:特異点の並べ替え (x_{j_0}) の特性指数が ∞ に移る).
- var=v: exponets の変数の指定. sp2grs() の第2変数の指定にあたる.
- pt=[$p_1, p_2, ...$] : 特異点の位置を $\infty, p_1, p_2, ...$ とする.
- Generalize Riemann scheme *m* の特性指数の一つを指定せずに、それを "?" で表してもよい. その特性指数は Fuchs の関係式から決定される.
- m がスペクトル型 (分割の組) のとき、対応する GRS に変換される。このとき、s= "general" を指定できる (指定しないと、いくつかの exponents が 0 として、Okubo 型またはそれに近いものにする)。

オプション・パラメータsは一つの文字列,あるいは,複数の文字列を指定する."TeX", "dviout", "keep" は,以下のどの機能においても指定できる.

• t = "reduction" or 0: basic な方程式への reduction s = "TeX" を指定したときは、さらに "top0" も指定可能

R[i][0]: i 番目の reduction の x_i での exponents の位置 $R[i][0][\nu]$

 $(\nu = 0, \dots, p, i = 1, \dots)$

 $R[i][0][\nu]$ ($\nu=1,\ldots,p$) に対応する addition を行い,R[i][0][0] に対する middle convolution を

R[i][1]: 上の reduction の結果の GRS

R[0][1]: 元の GRS

• t = "construct" or 1: 方程式の構成法と解の積分表示

R[0][1]: reduction された basic な方程式の GRS (m' とおく).

 $\operatorname{RAd}\left(\prod_{\nu=1}^p (x-x_{\nu})^{R[i][0][\nu]}\right) \circ mc_{R[i][0][0]}$ によって GRS が R[i-1][1] から R[i][1] に変わり $(i=1,2,\ldots)$, \mathbf{m}' から \mathbf{m} への変換が分かる.

s = "short" を指定可能

s = "TeX" を指定すると、解の積分表示が得られる(局所モノドロミーの固有値の重複度が 1 の局

• t = "connection" or 2:接続公式を求める

s="simplify" を指定可能

特異点が p+1 点のときは、特異点の位置が $x_0=\infty, x_1=0, x_2=1, x_3, x_4, \ldots, x_p$ とする上記 GRS であって、x=0 と 1 での最後の exponent の重複度が共に 1 であるとき、対応する正規化 した局所解の 0 から 1 への接続係数は

$$c_B \frac{\prod_{\nu} \Gamma(R[0][\nu])}{\prod_{\nu} \Gamma(R[1][\nu])} \prod_{j \ge 3} (1 - x_j^{-1})^{R[2][j]}$$

で与えられる. c_B は対応する basic 方程式の接続係数であるが、rigid なとき(すなわちアクセサ リ・パラメータの無いとき)は $c_B=1$ となる.特異点が 3 点のときは、 $(1-x_i^{-1})^{R[2][j]}$ の項はな いことに注意.

• t = "operator" or 3 : 方程式を求める

s="simplify" を指定可能.

結果は、x が変数 x, dx が $\frac{d}{dx}$ を表す.

アクセサリ・パラメータは $\mathbf{ri}_{\mathbf{j}}$ と表され、それは帰着 basic 方程式の $x^{j} \frac{d^{i}}{dx^{i}}$ の係数にあたる. この計算は、他の計算に比べて重いので注意.

• t ="series" or 4: x = 0 での最後の exponent (重複度が 1 の必要あり) に対応する局所解のべ キ級数表示を求める.

 $R = [R_0, R_1, R_2]$

$$R_0 = [[R_{00}, [R_{01}, T_1], [R_{02}, T_2], \ldots], [P_1, Q_1], [P_2, Q_2], \ldots]$$

$$R_1 = [[R_{100}, P_{101}, P_{102}, \ldots], [R_{110}, P_{111}, P_{112}, \ldots], \ldots]$$

$$R_2 = [[R_{200}, P_{201}, P_{202}, \ldots], [R_{210}, P_{211}, P_{212}, \ldots], \ldots]$$

$$0 \le P_1 \le P_2 \le P_2 \le \cdots$$

 $0 \le P_1 < P_2 < P_3 < \cdots$

$$\sum_{n_{P_1}, n_{P_2}, \dots} C_{n_0} x^{R_{00} + n_0} \prod_{j \ge 0, \ P_j \ne 0} \left(\frac{x}{x_{Q_j}}\right)^{n_{P_j}} \cdot \prod_{j \ge 1} \left(1 - \frac{x}{x_{T_j}}\right)^{R_{0j}} \frac{\prod_{j \ge 0} (R_{1j0})_{n_{P_{1j1}} + n_{P_{1j2}} + \dots}}{\prod_{j \ge 0} (R_{2j0})_{n_{P_{2j1}} + n_{P_{2j2}} + \dots}},$$

$$x_1 = x_2 = 1,$$

$$P_1 \ne 0 \Rightarrow n_0 = 0 \text{ and } C_0 = 1.$$

• t = "TeX" or 5 : GRS を LATeX で表示

s = "top0" を指定すると、GRS で ∞ を最後に表示する.

- t = "Fuchs" or 6 : Fuchs の関係式を得る
- t = "All" or 7: s に"dviout"を指定したときのみ有効で、dviout での関連する結果の表示. sに"irreducible"を指定すると既約性の判定条件の非表示, "operator"を指定すると方程式の表 示も行う.

```
• t = "basic" or 8: 帰着される basic な GRS を得る
   s="short" を指定可能
 t = "" or 9: GRS を短縮形でない形式で示す
   s = "short" を指定すると、短縮形で示す
 • t = "irreducible" or 10: 既約条件を求める
   s = "simplify を指定可能
   リストの各 liner form が整数値とならないことが既約性の必要十分条件. rigid でないならば, さ
   らに帰着された方程式の既約条件も課される.
 • t = "recurrence" or 11:3 項間漸化式を示す
   \infty, 0, 1 の最後の exponents の重複度がすべて 1 で rigid のときのみ可.
   原点の規格化された局所解について上の exponents をシフトしたもの.
s は文字列または文字列のリスト. 文字列は
 • "simplify": Fuchs の関係式を使って結果を簡単にする
 ● "TeX": LATFX の数式で出力する
 ● "dviout": dviout で表示する
   このときオプション・パラメータ title= で文字列を指定できる
 ● "keep": 上と同様だが、表示はしない
 ● "short": GRS を短縮形で表示
 • "general": スペクトルタイプを与えたとき, exponents を完全に generic にとる
 • "x1": 特異点を、\infty, x_1, x_2, \ldots とする(GRS の T_{\text{E}}X 表示、および作用素を得るときのみ有効)
 • "x2": 特異点を、\infty, 0, x_2,... とする(GRS の \mathrm{Tr} X 表示、および作用素を得るときのみ有効)
 • "top0": GRS の T_{EX} での表示で、\infty を最後とする
 • "sht": 自動生成される exponents の番号を 1 (デフォルトは 0) から始める
 [1] M=os_md.sp2grs([[1,1,1],[1,1,1],[2,1]],[a,b,c],[3,2]);
 [[[1,a0],[1,a1],[1,a2]],[[1,b0],[1,b1],[1,b2]],[[2,c0],
 [1,-2*c0-b2-b1-b0-a2-a1-a0+2]]]
 [2] os_md.getbygrs(M,"reduction");
 ГО.
  [ [[1,a0],[1,a1],[1,a2]],
    [[1,b0],[1,b1],[1,b2]],
    [[2,c0],[1,-2*c0-b2-b1-b0-a2-a1-a0+2]]
  ]
 ],
 [[000],
  [[[0,-c0-b0-a0+2],[1,a1-a0+1],[1,a2-a0+1]],
    [[0,0],[1,c0+b1+a0-1],[1,c0+b2+a0-1]],
    [[1,0],[1,-2*c0-b2-b1-a2-a1+1]]
  1
 ],
 [[110],
  [[[0,-c0-b0-a1+2],[0,-c0-b1-a1+2],[1,a2-a1+1]],
    [[0,a1-a0],[0,0],[1,c0+b2+a1-1]],
    [[0,0],[1,-c0-b2-a2]]
  1
```

]

```
]
[3] os_md.getbygrs(M,"construct");
 [[0,
  [[[1,0]],
    [[1,0]],
    [[1,0]]
  ]
 1
 [[0,c0+b2+a1-1,-c0-b2-a2]
  [ [[1,a2-a1+1]],
    [[1,c0+b2+a1-1]],
    [[1,-c0-b2-a2]]
  ]
 ],
 [[-c0-b1-a1+1,c0+b1+a0-1,0],
  [ [[1,a1-a0+1],[1,a2-a0+1]],
    [[1,c0+b1+a0-1],[1,c0+b2+a0-1]],
    [[1,0],[1,-2*c0-b2-b1-a2-a1+1]]
 ]
 ],
 [[-c0-b0-a0+1,b0,c0],
  [ [[1,a0],[1,a1],[1,a2]],
    [[1,b0],[1,b1],[1,b2]],
    [[2,c0],[1,-2*c0-b2-b1-b0-a2-a1-a0+2]]
 ]
 ]
]
[4] os_md.getbygrs(M,"connection");
[[3*c0+b2+b1+b0+a2+a1+a0-2,b2-b1+1,b2-b0+1],
 [c0+b2+a2,c0+b2+a1,c0+b2+a0],
 [ 0 2*c0+b2+b1+b0+a1+a0-2 -b2-a2 ]]
[5] os_md.getbygrs(M,["construct","TeX"])$
x^{b_{0}}(1-x)^{c_{0}}
\int c^x(x-s_0)^{c_0+b_0+a_0}ds_0
s_0^{c_0+b_1+a_0-1}
\int_{c^{s_0}(s_0-s_1)^{c_0+b_1+a_1}
s_1^{c_0+b_2+a_1-1}
(1-s_1)^{-c_0-b_2-a_2}ds_1
[6] MO=subst(M,b2,0,c0,0,b1,1-b1,b0,1-b0);
 [[1,a0],[1,a1],[1,a2]],
 [[1,-b0+1],[1,-b1+1],[1,0]],
 [[2,0],[1,b1+b0-a2-a1-a0]]
```

```
]
[7] os_md.getbygrs(MO,"connection");
[[b1,-b1-b0+a2+a1+a0,b0],
 [a2,a1,a0],
 [ 0 -b1-b0+a1+a0 -a2 ]]
[8] P=os_md.getbygrs(MO, "operator");
(x^3-x^2)*dx^3+((a1+a0+a2+3)*x^2+(-b1-b0-1)*x)*dx^2+
(((a0+a2+1)*a1+(a2+1)*a0+a2+1)*x-b0*b1)*dx+a2*a0*a1
[9] os_md.expat(P,x,"?");
[[0,[-b1+1,-b0+1,0]],[1,[b1+b0-a1-a0-a2,1,0]],[infty,[a1,a0,a2]]]
[10] os_md.getbygrs(MO,"irreducible");
[b1-a1,b1-a2,a1,a2,b0-a0,b0-a2,b0-a1,a0,b1-a0]
[11] M1=os_md.sp2grs([[1,1,1],[1,1,1],[2,1]],[a,b,c],[]);
[[[1,a0],[1,a1],[1,a2]],[[1,b0],[1,b1],[1,b2]],[[2,c0],[1,c1]]]
[12] M2 = subst(M1,b0,1-b0,b1,1-b1,b2,0,c0,0,c1,-c1);
[[[1,a0],[1,a1],[1,a2]],[[1,-b0+1],[1,-b1+1],[1,0]],[[2,0],[1,-c1]]]
[13] os_md.getbygrs(M2,"connection");
[[c1,b1,b0],[c1+b1+b0-a1-a0,a1,a0],[ 0 -b1-b0+a1+a0 -c1-b1-b0+a1+a0 ]]
[14] os_md.getbygrs(M2,["connection","simplify"]);
[[c1,b1,b0],[a2,a1,a0],[ 0 c1-a2 -a2 ]]
[15] os_md.getbygrs(M2, "Fuchs");
-c1-b1-b0+a2+a1+a0
[16] os_md.getbygrs(M2, "TeX")$
P\begin{Bmatrix}
x=\infty & 0 & 1\\
  a_0 \& -b_0 + 1 \& [0]_{(2)} \& !!; x
  a_1 \& -b_1 + 1 \& -c_1 \setminus
  a_2 & 0 & \\
\end{Bmatrix}
[17] os_md.getbygrs(M2,["connection","simplify","TeX"])$
c(0:0 \rightsquigarrow 1: -c_1)=\frac{
  \operatorname{Gamma}(c_1)
  \Gamma(b_1)
  \Gamma(b_0)
 }{
  \Gamma(a_2)
  \Gamma(a_1)
  \Gamma(a_0)
[18] os_md.getbygrs(M2, ["Fuchs", "TeX"]);
 -c_1-b_1-b_0+a_2+a_1+a_0
[19] os_md.getbygrs([[1,1],[1,1],[1,1]],"operator");
(-x^2+x)*dx^2+((c1+b0-2)*x-b0+1)*dx+a0*c1+a0*b0+a0^2-a0
[20] HO=[[1,1,1],[2,1],[2,1],[2,1]]$
```

```
[21] os_md.getbygrs(HO,["","short"]);
 [[a0,a1,a2],[[2,0],b1],[[2,0],c1],[[2,0],d1]]
 [22] os_md.getbygrs(HO,"TeX");
P\begin{Bmatrix}
x=\infty & 0 & 1& x_3\\
    a_0 & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [x \wedge [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{
    a_{1} \& b_{1} \& c_{1} \& d_{1} 
    a_{2} & & & \\
 \end{Bmatrix}
 [23] os_md.getbygrs(HO,["basic","short"]);
 [[b1+a1,b1+a2],[-b1-a0+1,0],[0,c1+a0-1],[0,a0+d1-1]]
 [24] os_md.getbygrs(HO,["","short","general"]);
 [[a0,a1,a2],[[2,b0],b1],[[2,c0],c1],[[2,d0],d1]]
 [25] os_md.getbygrs(HO,["basic","TeX"]);
P\begin{Bmatrix}
x=\infty & 0 & 1& x_3\\
    b_1+a_1 & -b_1-a_0+1 & 0 & 0&\!\!;x\\
    b_1+a_2 & 0 & c_1+a_0-1 & a_0+d_1-1\\
\end{Bmatrix}
 [26] os_md.getbygrs(HO,"Fuchs");
b1+c1+a1+a0+d1+a2-3
 [27] P=os_md.getbygrs(HO, "operator");
 (-x^3+(x_3+1)*x^2-x_3*x)*dx^3+((-a_1-a_0-a_2-3)*x^2+(-x_3*b_1+(-x_3+1)*c_1+a_1+a_0+a_2)
+4*x_3+1)*x+x_3*b1-2*x_3)*dx^2+(((-a0-a2-1)*a1+(-a2-1)*a0-a2-1)*x-b1^2+((x_3-1)*c1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1+(-a2-1)*a1
-a1-a0-a2-2*x_3+2)*b1+(-x_3+1)*c1+a1+a0+a2+2*x_3-r0_0-1)*dx-a2*a0*a1
 [28] os_md.expat(P,x,"?");
 [[0,[b1,1,0]],[1,[c1,1,0]],[x_3,[-b1-c1-a1-a0-a2+3,1,0]],
 [infty, [a1, a0, a2]]]
```

In the above example we examine the generalized Riemann scheme

$$\mathcal{R} = P \begin{cases} x = \infty & 0 & 1\\ a_0 & b_0 & [c_0]_{(2)} & ; & x\\ a_1 & b_1 & c_1\\ a_2 & b_2 & & \end{cases}$$
with $c_1 = -a_0 - a_1 - a_2 - b_0 - b_1 - b_2 - 2c_0 + 2c_0$

whose spectral type is $\mathbf{m} = 111, 111, 21$. Then $\mathsf{getbygrs}(m, 1)$ shows that the equation Pu = 0 with the GRS \mathcal{R} is given by

$$P = \operatorname{RAd}(x^{b_0}(x-1)^{c_0}) \circ mc_{-a_0-b_0-c_0+1} \circ \operatorname{RAd}(x^{a_0+b_1+c_0-1})$$
$$\circ mc_{-a_1-b_1-c_0+1} \circ \operatorname{RAd}(x^{a_1+b_2+c_0-1}(x-1)^{-a_2-b_2-c_0}) \partial_x$$

and the generalized Riemann scheme changes as follows

$$P \left\{ \begin{matrix} x = \infty & 0 & 1 \\ 0 & 0 & 0 & ; & x \end{matrix} \right\}$$
$$\to \text{RAd} \left(x^{c_0 + a_1 + b_2 - 1} (x - 1)^{-c_0 - b_2 - a_2} \right)$$

$$P \begin{cases} x = \infty & 0 & 1 \\ a_2 - a_1 + 1 & c_0 + b_2 + a_1 - 1 & -c_0 - b_2 - a_2 \ ; \ x \end{cases}$$

$$\rightarrow \text{RAd} \left(x^{a_0 + b_1 + c_0 - 1} \right) \circ mc_{-a_1 - b_1 - c_0 + 1}$$

$$P \begin{cases} x = \infty & 0 & 1 \\ a_1 - a_0 + 1 & c_0 + b_1 + a_0 - 1 & 0 \\ a_2 - a_0 + 1 & c_0 + b_2 + a_0 - 1 & -2c_0 - b_2 - b_1 - a_2 - a_1 + 1 \ ; \ x \end{cases}$$

$$\rightarrow \text{RAd} \left(x^{b_0} (x - 1)^{c_0} \right) \circ mc_{-a_0 - b_0 - c_0 + 1}$$

$$P \begin{cases} x = \infty & 0 & 1 \\ a_0 & b_0 & [c_0]_{(2)} \\ a_1 & b_1 & c_1 := -a_0 - a_1 - a_2 - b_0 - b_1 - b_2 - 2c_0 + 2 \ ; \ x \end{cases}$$

$$P \begin{cases} x = \infty & 0 & 1 \\ a_0 & b_0 & [c_0]_{(2)} \\ a_1 & b_1 & c_1 := -a_0 - a_1 - a_2 - b_0 - b_1 - b_2 - 2c_0 + 2 \ ; \ x \end{cases}$$

Hence an integral representation of the solution is

$$u(x) = x^{b_0} (1 - x)^{c_0} \int_c^x \int_c^{s_0} (x - s_0)^{a_0 + b_0 + c_0} s_0^{a_0 + b_1 + c_0 - 1} \cdot (s_0 - s_1)^{a_1 + b_1 + c_0} s_1^{a_1 + b_2 + c_0 - 1} (1 - s_1)^{-a_2 - b_2 - c_0} ds_1 ds_0.$$

When c = 0 or c = 1 or $c = \infty$, u(x) is a local solution at x = 0 or x = 1 or $x = \infty$ corresponding to the exponent b_2 or c_1 or a_2 , respectively. It corresponds to the local solution for the last exponent with free multiplicity at each singular point.

By getbygrs(m, "connection") we get the connection coefficient

$$c(0:b_2 \leadsto 1:c_1) = \frac{\Gamma(a_0 + a_1 + a_2 + b_0 + b_1 + b_2 + 3c_0 - 2) \prod_{\nu=0}^{1} \Gamma(b_2 - b_{\nu} + 1)}{\prod_{\nu=0}^{2} \Gamma(a_{\nu} + b_2 + c_0)}$$
$$= \frac{\Gamma(c_0 - c_1) \prod_{\nu=0}^{1} \Gamma(b_2 - b_{\nu} + 1)}{\prod_{\nu=0}^{2} \Gamma(a_{\nu} + b_2 + c_0)},$$

which corresponds to the local solution

$$x^{b_2}(1-x)^{c_0} {}_3F_2(a_0+b_2+c_0,a_1+b_2+c_0,a_2+b_2+c_0,1-b_0+b_2,1-b_1+b_2;x).$$

The calculation

```
[29] G=[[a,b],[1-c,0],[c-a-b,0]];
[
    [a, b],
    [-c+1, 0],
    [-a-b+c,0]
]
[30] os_md.getbygrs(G,"operator");
(-x^2+x)*dx^2+((-a-b-1)*x+c)*dx-b*a
[31] os_md.getbygrs(G,"connection");
[[-a-b+c,c],[-a+c,-b+c],[ 0 -b -b ]]
[32] os_md.getbygrs(G,["construct","TeX"])$
x^{-c+1}(1-x)^{-a-b+c}\int_c^x(x-s_0)^{-b+1}$
s_0^{-b+c-1}(1-s_0)^{a-c}ds_0
[33] os_md.getbygrs(G,"irreducible")
[b,a,b-c,a-c]
```

shows Gauss summation formula

$$F(a,b,c;1) = \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)}$$

for the Gauss hypergeometric series

$$F(a,b,c;x) = \sum_{k=0}^{\infty} \frac{(a)(a+1)\cdots(a+k-1)\cdot b(b+1)\cdots(b+k-1)}{(c)(c+1)\cdots(c+k-1)k!} x^k,$$

which is a solution of the hypergeometric equation

$$x(1-x)u'' + (c - (a+b+1)x)u' - abu = 0$$

corresponding to the Riemann scheme

$$P \left\{ \begin{matrix} x = \infty & 0 & 1 \\ a & 0 & 0 \\ b & 1 - c & c - a - b \end{matrix} \right\}.$$

The equation is irreducible if and only if

$$a, b, a-c, b-c \notin \mathbb{Z}$$
.

[34] os_md.getbygrs("11,11,11",["All","dviout","operator"]); とすると、以下が表示される.

Riemann scheme

$$P \left\{ \begin{matrix} x = \infty & 0 & 1 \\ a_0 & 0 & 0 & ; x \\ a_1 & b & c \end{matrix} \right\}$$

Fuchs condition

$$b + c + a_1 + a_0 - 1$$

Connection formula

$$c(0\!:\!b\leadsto 1\!:\!c) = \frac{\Gamma(-c)\Gamma(b+1)}{\Gamma(b+a_0)\Gamma(b+a_1)}$$

Recurrence relation shifting the last exponents at ∞ , 0, 1

$$u_{0,0,0} - u_{+1,0,-1} = \frac{(b+1)}{(b+a_0)} u_{0,+1,-1}$$

Integral representation

$$\int_{p}^{x} (x - s_0)^{-a_0} s_0^{-c - a_1} (1 - s_0)^{-b - a_1} ds_0$$

$$\sim \frac{\Gamma(-a_0 + 1)\Gamma(b + a_0)}{\Gamma(b + 1)} x^b \quad (p = 0, x \to 0)$$

Series expansion

$$\sum_{n>0} \frac{(b+a_0)_n (b+a_1)_n}{(b+1)_n n!} x^{b+n}$$

Irreduciblity \Leftrightarrow any value of the following linear forms $\notin \mathbb{Z}$

$$a_0 \quad a_1$$
$$c + a_0 \quad b + a_0$$

which coorespond to the decompositions

$$11, 11, 11 = 10, 10, 01 \oplus 01, 01, 10$$

$$= 10, 01, 10 \oplus 01, 10, 01$$

$$= 01, 10, 10 \oplus 10, 01, 01$$

$$= 10, 10, 10 \oplus 01, 01, 01$$

Operator

$$-x(x-1)\partial^{2} + ((b+c-2)x - b + 1)\partial - a_{0}a_{1}$$

[35] os_md.getbygrs([[0,a,b],[[2,"?"],0],[d,e,f]],[""]|mat=1); [[[1,0],[1,a],[1,b]],[[2,-1/2*a-1/2*b-1/2*d-1/2*e-1/2*f],[1,0]],[[1,d],[1,e],[1,f]]] [36] os_md.getbygrs([[0,a,b],[[2,"?"],0],[d,e,f]],["","short"]); [[0,a,b],[[2,-1/2*a-1/2*b-1/2*d-1/2*e-1/2*f+1],0],[d,e,f]]

48. $shiftop(\ell, s|zero=1, raw=k, all=t, dviout=1)$

:: rigid なスペクトル型 ℓ と shift s から shift 作用素を求める

 ℓ が Riemann scheme, s がシフトするパラメータとそれの変換後の組のリストでもよい.

shift 作用素, 微分作用素, Riemann scheme の 3 項のリストを返す.

- zero=1: いくつかの特性指数を 0 に正規化
- raw=1: 定数倍も含めて正規化

raw=2: 左逆の shift 作用素との合成のスカラーを返す

このスカラーが 0 となる ⇔ shift 作用素が同型写像でない

raw=3: shift 作用素を上のスカラーとのリストとして返す

raw=4: さらに左逆 shift 作用素を上のリストの最後に加える

- all=0: shift 作用素のみを返す
 - all=1: shift 作用素, 微分方程式, Riemann scheme, shift された微分作用素, shift された Riemann scheme の 5 項のリストを返す
- dviout=1: 結果を dviout によって画面表示する. オプション all を指定可能 (all=1 によって 微分方程式も表示).

なお、shift でずれる特性指数は、各特異点でなるべく後に指定した方が高速に計算できる.

- [0] os_md.shiftop("11,11,11","00,01,0-1"|zero=1);
- [1] [x*dx-b,(-x^2+x)*dx^2+((b+c-2)*x-b+1)*dx+a^2+(b+c-1)*a, [[[1,a],[1,-a-b-c+1]],[[1,0],[1,b]],[[1,0],[1,c]]]]
- [2] R=os_md.shiftop("11,11,11","00,01,0-1"|zero=1,raw=2,all=0);

 $a^2+(b+c-1)*a+(c-1)*b$

- [3] fctr(R);
- [[1,1],[a+c-1,1],[a+b,1]]
- [4] os_md.shiftop("11,11,11","00,01,0-1"|zero=1,raw=4,all=0);

 $[x*dx-b,a^2+(b+c-1)*a+(c-1)*b,(x-1)*dx-c+1]$

- [5] os_md.shiftop("11,11,11","10,00,0-1"|zero=1,raw=2,all=0); a^2+b*a
- [6] fctr(@@);

```
[[1,1],[a,1],[a+b,1]]
```

[7] os_md.shiftop("11,11,11","10,00,0-1"|zero=1,raw=3,all=0); [x*dx+a,a^2+b*a]

[8] os_md.shiftop("11,11,11","1-1,00,00"|zero=1,dviout=1,all=1)\$

Shift Operator

$$\begin{cases} x = \infty & 0 & 1 \\ a & 0 & 0 \\ -a - b - c + 1 & b & c \end{cases} = \{u \mid Pu = 0\}$$

$$\begin{cases} Q_1 \\ A = b - c + 1 & b & c \end{cases}$$

$$\begin{cases} Q_1 \\ A = 0 & 0 & 1 \\ A = 1 & 0 & 0 \\ -a - b - c & b & c \end{cases}$$

$$Q_1 = (2a + b + c)x(x - 1)\partial + a((2a + b + c)x - a - c)$$

$$Q_2 = -(2a + b + c)x(x - 1)\partial + (a + b + c)((2a + b + c)x - a - b)$$

$$Q_2Q_1 \equiv a(a + c)(a + b)(a + b + c) \mod W(x)P$$

$$P = -x(x - 1)\partial^2 + ((b + c - 2)x - b + 1)\partial + a(a + b + c - 1)$$

- 49. conf1sp($m | x2 = \pm 1$, conf=0)
 - :: スペクトル型 m の微分作用素の Poincare rank 1 の合流過程を示す

スペクトル型を与える各分割は,順に特異点 ∞ , $\frac{1}{c}$, x_2 , ... に対応するものとし, ∞ に対応する分割は $\frac{1}{c}$ に対応する分割の細分を指定する(c=0 が合流). ただし, $\mathbf{x2=1}$ を指定しないと $x_2=0$ とする. $\mathbf{x2=-1}$ のときは, x_2 , ... を $\frac{1}{c^2}$, ... とする.

conf=0 を指定すると、特異点を ∞ , 0, c, x_3 , ... とし、原点と点 c の特異点の合流を示す.

[0] P=os_md.conf1sp([[1,1],[1,1],[1,1]]|x2=1);

 $(-c*x^2+(x_2*c+1)*x-x_2)*dx^2+(((-a01-a00-1)*c+a11)*x+x_2*c-x_2*a11+a01+a00)*dx$ -a00*a01*c+a00*a11

[1] os_md.fctrtos(P|TeX=1,var=dx);

 $-(x-x_2)(cx-1)\{dx\}^2-(((a_{01}+a_{00}+1)c-a_{11})x-x_2c+x_2a_{11}-a_{01}-a_{00})$

[2] os_md.expat(P,x,"?");

 $[[x_2, [-a01-a00+1, 0]], [(1)/(c), [(a11)/(c), 0]],$

[infty, [(a01*c-a11)/(c), a00]]]

[3] Q=os_md.conf1sp([[1,1],[1,1],[1,1]]);

 $(-c*x^2+x)*dx^2+(((-a01-a00-1)*c+a11)*x+a01+a00)*dx-a00*a01*c+a00*a11$

[4] subst(Q,c,0);

 $x*dx^2+(a11*x+a01+a00)*dx+a00*a11$

[5] P=os_md.conf1sp([[1,1],[1,1],[1,1]]|conf=0);

 $(-x^2+c*x)*dx^2+((a01-2)*x+(-a01+1)*c+a11)*dx+a20^2+(a01-1)*a20$

[6] os_md.expat(P,x,"?");

[[0,[(a01*c-a11)/(c),0]],[c,[(a11)/(c),0]],[infty,[-a20-a01+1,a20]]]

[7] subst(-P,c,0);

 $-x^2*dx^2+((a01-2)*x+a11)*dx+a20^2+(a01-1)*a20$

[8] os_md.fctrtos(-@@|TeX=1,var=dx);

 $x^2{dx}^2-((a_{01}-2)x+a_{11}){dx}-a_{20}(a_{20}+a_{01}-1)$

50. anal2sp(m,l)

:: 同時スペクトル m の解析

 $m = [[m_1, \lambda_1, \mu_1], [m_2, \lambda_2, \mu_2], \ldots]$ は重複度と同時固有値

```
l は以下の意味を持つ.
          同じスペクトル型をまとめる(同時スペクトルでなくても可).
["add",n] スペクトル型nを加える(同時スペクトルでなくても可).
["sub",n] スペクトル型nを引く(同時スペクトルでなくても可).
         同時スペクト型の順序を入れ替える.
["swap"]
["+",c_1,c_2] 固有値をシフトする.
["*",c_1,c_2] 固有値の一次結合を返す.
["mult",m] 同次固有値の重複度を全てm倍する.
["get",f,c] f 番目の固有値が c となるものを抜き出す.
["put",f,c] f 番目の固有値をc に置き換える.
["get1", f] f 番目の固有値のみを抜き出す(結果は同時スペクトルでない).
["get1",f,c] f 番目の固有値がcのものを抜き出す(結果は他方のスペクトル).
["put1",f,c] 同時でないスペクトルに、f番目の固有値にcを追加する.
["put1"] 同じスペクトル型をコピーする.
["val",f] f 番目のスペクトルの階数と固有値の和を返す.
[[\cdots],[\cdots],\ldots] 複数のコマンドを続けて実行する.
 [0] R=os_md.anal2sp([[2,a,b],[3,a,c],[-1,a,c]],["add",[[-2,a,b],[1,b,c]]]);
 [[2,a,b],[3,a,c],[-1,a,c],[-2,a,b],[1,b,c]] /* R の定義 */
 [1] os_md.anal2sp([[2,a,b],[3,a,c],[-1,a,c]],["sub",[[2,a,b],[-1,b,c]]]);
 [[2,a,b],[3,a,c],[-1,a,c],[-2,a,b],[1,b,c]]
 [2] os_md.anal2sp(R,["swap"]);
                             /* 順番を逆に */
 [[2,b,a],[3,c,a],[-1,c,a],[-2,b,a],[1,c,b]]
 [3] os_md.anal2sp(R,0);
                              /* まとめる */
 [[2,a,c],[1,b,c]]
 [4] os_md.anal2sp(R,["*",f,-g]); /* 固有値のシフト */
 [[2,a+f,b-g],[3,a+f,c-g],[-1,a+f,c-g],[-2,a+f,b-g],[1,b+f,c-g]]
 [5] os_md.anal2sp(R,["x",f,-g]); /* 固有値の一次結合 */
 [[2,f*a-g*b],[3,f*a-g*c],[-1,f*a-g*c],[-2,f*a-g*b],[1,f*b-g*c]]
 [6] os_md.anal2sp([[2,a,b],[3,a,c],[-1,a,c]],["mult",2]); /* 重複度 *= m */
 [[4,a,b],[6,a,c],[-2,a,c]]
 [7] os_md.anal2sp(R,["get",2,c]); /* 指定した固有値のみ抽出 */
 [[3,a,c],[-1,a,c],[1,b,c]]
 [8] os_md.anal2sp(R,["put",1,f]); /* 固有値を置き換える */
 [[2,f,b],[3,f,c],[-1,f,c],[-2,f,b],[1,f,c]]
 [9] os_md.anal2sp(R,["get",1,a]); /* 指定した固有値のみ抽出 */
 [[2,a,b],[3,a,c],[-1,a,c],[-2,a,b]]
 [10] R1=os_md.anal2sp(R,["get1",1,a]); /* 指定した固有値の他方を抽出 */
 [[2,b],[3,c],[-1,c],[-2,b]]
 [11] os_md.anal2sp(R1,["put1",1,a]);
 [[2,a,b],[3,a,c],[-1,a,c],[-2,a,b]]
 [12] os_md.anal2sp(R1,["put1"]);
 [[2,b,b],[3,c,c],[-1,c,c],[-2,b,b]]
 [13] os_md.anal2sp(R,["val",1]); /* 固有値の和 */
 [3,2*a+b]
```

[14] os_md.anal2sp(R,[["get1",1],["put1"],0]);

[[2,a,a],[1,b,b]]

51. mc2grs(g,r|dviout=k)

:: \mathbb{P}^1 内の 5 点の配置に対する KZ 型方程式の同時スペクトル g の変換 KZ 型方程式

$$du = \sum_{0 \le i < j \le 3} A_{i,j} \frac{d(x_i - x_j)}{x_i - x_j} u,$$

$$A_{i,4} = -\sum_{j=0}^{3} A_{i,j}, \ A_{j,i} = A_{i,j}, \ A_{i,i} = 0$$

において, $I, J \subset \{0, 1, 2, 3\}, \#I = \#J = 2, I \cap J = \emptyset$ のとき

$$[A_I, A_J] = 0$$

が満たされるので、 A_I と A_J の同時固有値分解が出来る.このような 15 組の [I,J] に対する同時固有値(重複度と各固有値)のリスト(ヘッダは [I,J] で、 $I=[i_i,i_2]$ 、 $J=[j_i,j_2]$ とすると、 $i_1 < i_2$ 、 $j_1 < j_2$ 、 $i_1 < j_1$ となる)のリストを g とする.

$$A_{0,1} = \begin{pmatrix} a & & \\ & a & \\ & & b \end{pmatrix}, A_{2,3} = \begin{pmatrix} c & & \\ & c & \\ & & d \end{pmatrix}$$

のときは同時固有値のリストは [[[0,1],[2,3]],[2,a,c],[1,b,d]] となる.

なお、既約性から $\sum_{0 \le i < j \le 3} A_{i,j}$ はスカラー行列としてよいので、そのスカラーを κ とする.同時固有値のリストのリストを g で与えるが、それ以外の指定は

- g=0 のとき、自明な [[[[0,1],[2,3]],[1,0,0]],[[[0,1],[2,4]],[1,0,0]],...] を意味 する
- g を、4 行列 $A_{0,4}$ 、 $A_{0,1}$ 、 $A_{0,2}$ 、 $A_{0,3}$ のスペクトル型(文字列あるいは、4 点の GRS)を、この順で指定する。このときは、m2mc() におけると同様なオプション(dep=[m,n]、int=0)などの指定が可能)。なお、top=0 を指定した場合は、 $A_{0,1}$ 、 $A_{0,2}$ 、 $A_{0,3}$ 、 $A_{0,4}$ の順と解釈される。スペクトル型や文字列で指定した場合は、以下のr が特別の意味を持つ。
 - -r=1: スペクトル型を標準的な順序にし、同時固有値のリストのリストをそのまま返す。
 - -r=3: 同時固有値のリストのパラメータを a,b,c,... で表し、Fuchs 条件と同次固有値のリストのリストとの組をリストとして返す.

r によって、以下の機能になる.

- 0:同時固有値のリストのリストをそのまま返す.
- ["sort"]: ヘッダが標準的な順序になるよう, リストを並び替える([]は省略可).
- ["deg"]: κを返す([]は省略可).
- [[i,j], λ] : $A_{i,j} \mapsto A_{i,j} + \lambda$, $A_{i,4} \mapsto A_{i,4} \lambda$, $A_{j,4} \mapsto A_{j,4} \lambda$ という addition を返す $(0 \le i < j \le 3)$.
- ["homog"] : r=[[2,3], $-\kappa$] に対応する addition によって $\kappa=0$ とする([] は省略可).
- ["swap", [i,j]] : 添え字の i と j を交換する. i または j が 4 のときは,r = ["homog"] を行ってから添え字を交換する.
- ["perm", $[i_0, \ldots, i_4]$] : 添え字の置換 $\begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ i_0 & i_1 & i_2 & i_3 & i_4 \end{pmatrix}$ を行う、添え字 4 を変更するときは,r= ["homog"] を行ってから置換する.
- $[\mu]$: x_0 変数に対する middle convolution $\mathrm{mc}_{x_0,\mu}$ を行う(アルゴリズムは [O3] によって与えられた).
- $[i,\mu]$: x_i 変数に対する middle convolution $\mathrm{mc}_{x_i,\mu}$ を行う. ただし, i=4 のときは, r=["swap",[0,4]] を行ってから $\mathrm{mc}_{x_0,\mu}$ を施し, 再度 r=["swap",[0,4]] で戻す.
- $[[[i_1,j_1],\lambda_1],\ldots,[i_k,\mu_k],\ldots]$: additions と middle convolutions を連続して行う.

- [[a,b,c]]: [[[0,1],a],[[0,2],b],[[0,3],c]] と同じ.
- $[[a,b,c,\mu]]$: $[[[0,1],a],[[0,2],b],[[0,3],c],[\mu]]$ と同じ.
- ["get", [I,J]] : $[A_I,A_J]=0$ に対する同時固有値を返す(ヘッダ [I,J] のついたリスト).
- ["get",I] : A_I に対する固有値を返す(ヘッダ I のついたリスト).
- ["get",i] $(0 \le i \le 4)$: $i \in I$ を満たす A_I に対する GRS を返す (変数 x_i についての常微分方程式の GRS).

dviout=1 を指定すると T_EX を使って表示する. dviout=-1 では T_EX のソースを返す. dviout=2 を指定すると, T_EX のソースを書き出すが表示はしない (次回の表示コマンドでまとめて表示する).

- ["get"] : 10 個全ての A_I の固有値のリストを返す. dviout=k の指定が可能.
- ["get0",[I,J]], ["get0",I], ["get0",i] ($0 \le i \le 4$), ["get0"] : "get0" を "get" に変え たものと同じであるが、ヘッダはつけない.
- ["get0",I,J] : $A_I + A_J$ のスペクトルを返す.
- ["show"]: 同時スペクトルを T_EX を使って表示する. dviout=−1 の指定が可能.
- ["show0"]: 15 組の同時スペクトルの固有値の重複度を示す(15 組の順序は、"show"におけると同じ).

dviout=1,-1 の指定が可能.

- ["spct"]: スペクトル型を返す. 5×5 行列で (i,j) 成分は, $i\neq j$ のとき $A_{i,j}$ のスペクトル型, i=j のとき x_i についての index of rigidity $(0\leq i,j\leq 4)$. 5×5 行列で (i,j) 成分は, $i\neq j$ のとき $A_{i,j}$ のスペクトル型, i=j のとき x_i についての index of rigidity $(0\leq i,j\leq 4)$. dviout=k の指定が可能.
- ["mult", ℓ_1 , ..., ℓ_m] : $g_0 = g$ として $g_i = \text{mc2grs}(g_{i-1}, \ell_i)$ を i = 1, ..., m に対して順に実行して g_m を返す.オプションも有効.

```
[0] M=os_md.mc2grs(0,0);
[[[[0,1],[2,3]],[1,0,0]],[[[0,1],[2,4]],[1,0,0]],...
[1] M1=os_md.mc2grs(M,[[[0,1],a],[[0,2],b],[[0,3],c]]);
[[[[0,1],[2,3]],[1,a,0]],[[[0,1],[2,4]],[1,a,-b]],...
[2] os_md.mc2grs(M1,"deg");
a+b+c
[3] os_md.mc2grs(M1,"homog");
[[[[0,1],[2,3]],[1,a,0]],[[[0,1],[2,4]],[1,a,-b]],...,
[[[1,4],[2,3]],[1,-a,-a-b-c]]]
[4] F1=os_md.mc2grs(M1,[d]);
[[[[0,1],[2,3]],[1,a+d,0],[1,0,0],[1,0,b+c]],[[[0,1],[2,4]],[1,a+d,-b],[1,0,-b],
[1,0,-a-b-c-d],...
[5] os_md.mc2grs(F1, "get");
[[[0,1],[1,a+d],[2,0]],[[0,2],[1,b+d],[2,0]],[[0,3],[1,c+d],[2,0]],[[0,4],
[1,-a-b-c-d],[2,-d],[[1,2],[2,0],[1,a+b]],[[1,3],[2,0],[1,a+c]],[[1,4],[2,-a],
[1,-a-b-c-d],[[2,3],[2,0],[1,b+c]],[[2,4],[2,-b],[1,-a-b-c-d]],[[3,4],[2,-c],
[1,-a-b-c-d]]
[6] os_md.mc2grs(F1,[-d])==M1;
1
[7] os_md.mc2grs(F1,["get",0]);
```

[9] os_md.mc2grs(F1,["get",0]|dviout=1);

$$\begin{cases}
A_{01} & A_{02} & A_{03} & A_{04} \\
[0]_2 & [0]_2 & [0]_2 & [-d]_2 \\
a+d & b+d & c+d & -a-b-c-d
\end{cases}$$

[10] os_md.mc2grs(F1,"get"|dviout=1)\$

$$\begin{pmatrix} A_{01} & A_{02} & A_{03} & A_{04} & A_{12} & A_{13} & A_{23} & A_{14} & A_{24} & A_{34} \\ [0]_2 & [0]_2 & [0]_2 & [-d]_2 & [0]_2 & [0]_2 & [0]_2 & [-a]_2 & [-b]_2 & [-c]_2 \\ a+d & b+d & c+d & -a-b-c-d & a+b & a+c & b+c & -a-b-c-d & -a-b-c-d & -a-b-c-d \end{pmatrix}$$

[11] os_md.mc2grs(F1, "show"|dviout=1)\$

$$\begin{split} &[A_{01}:A_{23}] = \{[a+d:0],\,[0:0],\,[0:b+c]\},\\ &[A_{01}:A_{24}] = \{[a+d:-b],\,[0:-b],\,[0:-a-b-c-d]\},\\ &[A_{01}:A_{34}] = \{[a+d:-c],\,[0:-c],\,[0:-a-b-c-d]\},\\ &[A_{02}:A_{13}] = \{[b+d:0],\,[0:0],\,[0:a+c]\},\\ &[A_{02}:A_{14}] = \{[b+d:-a],\,[0:-a],\,[0:-a-b-c-d]\},\\ &[A_{02}:A_{34}] = \{[b+d:-c],\,[0:-c],\,[0:-a-b-c-d]\},\\ &[A_{03}:A_{12}] = \{[c+d:0],\,[0:0],\,[0:a+b]\},\\ &[A_{03}:A_{12}] = \{[c+d:-a],\,[0:-a],\,[0:-a-b-c-d]\},\\ &[A_{03}:A_{24}] = \{[c+d:-b],\,[0:-b],\,[0:-a-b-c-d]\},\\ &[A_{04}:A_{12}] = \{[-a-b-c-d:0],\,[-d:0],\,[-d:a+b]\},\\ &[A_{04}:A_{23}] = \{[-a-b-c-d:0],\,[-d:0],\,[-d:b+c]\},\\ &[A_{12}:A_{34}] = \{[0:-c],\,[0:-a-b-c-d],\,[a+b:-c]\},\\ &[A_{13}:A_{24}] = \{[0:-b],\,[0:-a-b-c-d],\,[a+c:-b]\},\\ &[A_{14}:A_{23}] = \{[-a:0],\,[-a-b-c-d:0],\,[-a:b+c]\},\\ &[A_{14}:A_{23}] = \{[-a:0],\,[-a-b-c-d:0],\,[-a:b+c]],\\ &[A_{14}:A_{23}] = \{[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\\ &[A_{14}:A_{23}] = \{[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\\ &[A_{14}:A_{23}] = \{[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\\ &[A_{14}:A_{23}] = \{[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\\ &[A_{14}:A_{23}] = \{[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\,[-a-b-c-d:0],\\ &[A_{14}:A_{14}:A_{14}:A_{14}],\\ &[A_{14}:A_$$

[12] os_md.mc2grs("322,52,52,43","show0"|dviout=1)\$

$$2^{2}1^{3}, 1^{7}, 1^{7}, 2^{2}1^{3}, 1^{7}, 1^{7}, 21^{5}, 1^{7}, 1^{7}, 1^{7}, 1^{7}, 1^{7}, 1^{7}, 1^{7}, 1^{7}$$

[13] os_md.mc2grs(F1,"spct"|dviout=1)\$

	x_0	x_1	x_2	x_3	x_4	idx
x_0		21	21	21	21	2
x_1	21		21	21	21	2
x_2	21	21		21	21	2
x_3	21	21	21		21	2
x_4	21	21	21	21		2

```
[14] os_md.mc2grs("21,21,21,21","get"|dviout=1)$
 \left\{ \begin{matrix} A_{01} & A_{02} & A_{03} & A_{04} & A_{12} & A_{13} & A_{23} & A_{14} & A_{24} & A_{34} \\ [0]_2 & [0]_2 & [0]_2 & [0]_2 & [0]_2 & [0]_2 & [-a-d]_2 & [-b-d]_2 & [-c-d]_2 \\ a & b & c & -a-b-c-2d & a+b+2d & a+c+2d & b+c+2d & -a-b-c-2d & -a-b-c-2d & -a-b-c-2d \end{matrix} \right\} 
 [15] os_md.mc2grs([[[[2,3],[0,4]],[1,a,b]],[[[0,1],[2,3]],[1,c,d]]],"sort");
 [[[[0,1],[2,3]],[1,c,d]],[[[0,4],[2,3]],[1,b,a]]]
mc2grs()を使った関数の例を挙げる.
/* KZ 方程式への拡張が同一となるリジッドスペクトル型のサーチ
   S:スペクトル型 同一のものがあれば、スペクトル型の組を返す.
                   S階で2変数超幾何に対し、上のリストを返す。*/
   S:数
def sameKZ(S)
    if(type(S)==1){
         SS=os_md.spgen(S|eq=1,pt=[4,4]);
         for(L=[];SS!=[];SS=cdr(SS))
         if((TL=sameKZ(car(SS)))!=0 && TL[0]>TL[1]) L=cons(TL,L);
         return L;
    }
    S=os_md.s2sp(S|std=-1);
    KZ=os_md.mc2grs(S,0);
    Sp=os_md.mc2grs(KZ,"spct");
    for(L=[],I=1;I<5;I++){
         if(Sp[I][I]==2){
             for(S2=[],J=0;J<5;J++) if(I!=J) S2=cons(Sp[I][J],S2);</pre>
             S2=os_md.s2sp(S2|std=-1);
             if(S!=S2) L=cons(S2,L);
         }
    }
    if(L==[]) return 0;
    for(LS=[];L!=[];L=cdr(L)) LS=cons(os_md.s2sp(car(L)),LS);
    LS=os_md.lsort(LS,[],"setminus");
    return cons(os_md.s2sp(S),LS);
}
/* KZ 方程式で N 階で idx が K のものが現れるもののリストを得る */
def idxKZ(K,N)
{
    L=os_md.spgen(N|eq=1,pt=[4,4],std=-1);
    for(LL=[];L!=[];L=cdr(L)){
         KZ=os_md.mc2grs(car(L),0);
         Sp=os_md.mc2grs(KZ,"spct");
         for(I=1;I<5;I++){
             if(Sp[I][I]==K){
```

52. $m2mc(\ell, [a_0, a_u, a_1, c] | swap=1, small=1, simplify=0, MC=1)$

 $m2mc(\ell, s | small=1, simplify=0, int=0, swap=t)$

:: Pfaff 形式 $du = (A_0 \frac{dx}{x} + A_y \frac{d(x-y)}{x-y} + A_1 \frac{d(x-1)}{x-1} + B_0 \frac{dy}{y} + B_1 \frac{d(y-1)}{y-1})u$ の x 変数での addition+middle convolution を求める $(\ell = [A_0, A_y, A_1, B_0, B_1])$.

 ℓ がスペクトル型や Riemann scheme のとき,上の後者では s ="GRC","GRSC","Pfaff","sp","pairs","irreducible","All","swap"

- m2mc(0,0) で使い方が簡略化して表示される.
- ℓ は $[A_0,A_y,A_1,B_0,B_1]$ という 5 個の正方行列のリストまたはベクトル. A_0,A_y,A_1 にそれぞれ a_0,a_y,a_1 による addition を施したあと,パラメータ c による middle convolution (MC=1 を指定した場合は convolution) を行った 5 個の行列のベクトルを返す. addition を行わないときは, $[a_0,a_y,a_1,c]$ の代わりに単に c としてよい. addition のみのときは,c を省いて $[a_0,a_y,a_1]$ と指定する.
- ℓ は x 変数のスペクトル型や Riemann scheme でもよい. スペクトル型や Riemann scheme は $x=\infty, x=0, x=y, x=1$ の順に与える. このときは a_0 や s は 0 ([A_0 , A_y , A_1 , B_0 , B_1] を返す) または次々項に挙げる文字列とする.
- ℓ をスペクトル型で与えるときは、各特異点で重複度が大きな順に並べると結果が簡単になることが多い(オプション dep=[m,n] の項参照).
- a_0 や s が以下の文字列の場合は、特別の意味を持つ
 - GRS: Generelized Riemann scheme を返す. a_y に "dviout" を指定できる.
 - GRSC: 上と同じであるが、さらに x = y = 0, x = y = 1 の一般化特性指数も含める.
 - Pfaff: 文字列で Pfaff 形式を返す. a_y に "dviout" を指定できる.
 - sp: x変数と y変数のスペクトル型を x = y から順に表す.
 - pairs, pair:可約なときの分解を与える分割を示す.
 - irreducible: 既約条件を与えるパラメータを示す.
 - All: 上の全てを指定し、さらに、 a_1 に "dviout" を指定したと見なされる。さらに GRSC を指定すると、GRS でなくて GRSC を指定したと見なされる。operator=0 のオプションで、Pfaff 形式の方程式を示さない。
 - swap: x 変数と y 変数を入れ替えた変換結果を返す.

さらにオプション swap=t を指定すると別の変換の意味になる.

t=1:x変数とy変数の入れ替え(指定しない場合と同じ).

t=2: 座標変換 $(x,y)\mapsto (x,\frac{x}{y})$ を行う.

 $t = [t_0, t_1, t_2]: (t_0, t_1, t_2)$ は (0,1,2) の並べ替えで、0,1,2 は順に特異点 $0,1,\infty$ を意味する. また、以下のオプションがある.

- swap=1:xとyを交換して middle convolution を行う
- small=1: TFX での行列を小さなサイズにする
- simplify=0:対角行列による共役変換による行列の簡単化をしない
- simplify=1,3:対角行列による共役変換による別の簡単化をする
- dep=[m,n]: スペクトル型からの特性指数の自動生成で,m番目の特異点のn番目の特性指数を Fuchs 条件から定める. デフォルトは m=1 (特異点 $x=\infty$) で最後の特性指数とする. なお, $x=\infty$ 以外の特異点の最初の特性指数は 0 に正規化される.
- int=0:スペクトル型からの特性指数の自動生成で、パラメータの分数倍が現れることを許す.

```
[0] Z=newmat(1,1,[[0]]);
 [ 0 ]
 [2] F1=os_md.m2mc([Z,Z,Z,Z,Z],[a,b,c,d]);
 [ [ a+d b c ]
 [ 0 0 0 ]
 [000][000]
 [ a b+d c ]
 [000][000]
 [000]
 [abc+d][b-b0]
 [-a a 0]
 [000][000]
 [ 0 c -c ]
 [ 0 -b b ] ]
 [3] os_md.m2mc(F1,["GRS","dviout"]);
 \begin{cases} x=0 & x=y & x=1 & y=0 & y=1 & x=\infty & y=\infty & x=y=\infty \\ a+d & b+d & c+d & a+b & b+c & -a-b-c-d & -a-b-c-d & [-a-b-c-d]_2 \\ [0]_2 & [0]_2 & [0]_2 & [0]_2 & [-d]_2 & [-b]_2 & -b-d \end{cases} 
 [4] os_md.m2mc(F1,["Pfaff","dviout"]);
             du = \left( \begin{pmatrix} a+d & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{dx}{x} + \begin{pmatrix} 0 & 0 & 0 \\ a & b+d & c \\ 0 & 0 & 0 \end{pmatrix} \frac{d(x-y)}{x-y} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ a & b & c+d \end{pmatrix} \frac{d(x-1)}{x-1} \right)
                  + \begin{pmatrix} b & -b & 0 \\ -a & a & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{dy}{y} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & c & -c \\ 0 & -b & b \end{pmatrix} \frac{d(y-1)}{y-1} \bigg) u
 [5] F2=os_md.m2mc(F1,[-a-d,0,0,e]);
 [ [ -a-d+e 0 c 0 ]
 [ 0 -a-d+e 0 c+d ]
 [0000]
 [0000][0000]
 [0000]
 [(-d*a-d*b-d^2)/(c) -d b+d+e c+d]
 [0000][0000]
 [ 0 0 0 0 ]
 [0000]
 [(-d*b)/(c+d) (-d*a-d*c-d^2)/(c+d) (c*b)/(c+d) c+d+e] [a+b+d c -c 0]
 [0000]
 [ (d*a+d*b+d^2)/(c) d -d 0 ]
 [0000] [c-c00]
 [-bb00]
 [ 0 0 c -c-d ]
 [ 0 0 (-c*b)/(c+d) b ] ]
 [6] os_md.m2mc(F2,["GRS","dviout"]);
```

```
[7] os_md.m2mc(F1,[-a-d,0,0,e]|simplify=1,small=1);
 [ [ -a-d+e 0 1 0 ]
 [ 0 -a-d+e 0 1 ]
 [0000]
 [0000][0000]
 [0000]
 [ -d*a-d*b-d^2 -d b+d+e 1 ]
[0000][0000]
[0000]
 [0000]
 [ -d*c*b -d*a-d*c-d^2 c*b c+d+e ] [ a+b+d 1 -1 0 ]
[0000]
 [ d*a+d*b+d^2 d -d 0 ]
[0000] [c-100]
[ -c*b b 0 0 ]
[00c-1]
[ 0 0 -c*b b ] ]
[8] os_md.m2mc("21,21,21,21",["GRSC","dviout"]|small=1);
[9] os_md.m2mc(0,0)$
m2mc(m,t) or m2mc(m,[t,s]) Calculation of Pfaff system of two variables
  m : list of 5 residue mat. or GRS/spc for rigid 4 singular points
  t : [a0,ay,a1,c], swap, GRS, GRSC, sp, irreducible, pair, pairs, Pfaff, All
  s : TeX, dviout, GRSC
  option : swap, small, simplify, operator
  Ex: m2mc("21,21,21,21","All")
 [10] os_md.m2mc("21,21,21,21", "All")$
Riemann scheme
      Spectre types: 12,12,12,12:12,12,12,12
By the decompositions
                    21, 21, 21, 21 = 10, 10, 10, 01 \oplus 11, 11, 11, 20
                               = 10, 10, 01, 10 \oplus 11, 11, 20, 11
                               = 10,01,10,10 \oplus 11,20,11,11
                               = 01, 10, 10, 10 \oplus 20, 11, 11, 11
                               = 2(10, 10, 10, 10) \oplus 01, 01, 01, 01
irreducibility \Leftrightarrow \emptyset = \mathbb{Z} \cap
```

 $\{d, c+d, b+d, a+d, a+b+c+2d\}$

The equation in a Pfaff form is

$$du = \begin{pmatrix} \begin{pmatrix} a & b+d & c+d \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{dx}{x}$$

$$+ \begin{pmatrix} 0 & 0 & 0 \\ a+d & b & c+d \\ 0 & 0 & 0 \end{pmatrix} \frac{d(x-y)}{x-y}$$

$$+ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ a+d & b+d & c \end{pmatrix} \frac{d(x-1)}{x-1}$$

$$+ \begin{pmatrix} b+d & -(b+d) & 0 \\ -(a+d) & a+d & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{dy}{y}$$

$$+ \begin{pmatrix} 0 & 0 & 0 \\ 0 & c+d & -(c+d) \\ 0 & -(b+d) & b+d \end{pmatrix} \frac{d(y-1)}{y-1} u$$

53. mcmgrs(g,r|dviout=k)

 ${}::\mathbb{P}^1$ 内の 5 点以上の点配置に対する ${}$ KZ 型方程式の同時スペクトル g の変換

KZ 型方程式で mc2grs() にある正方行列 $A_{i,j}$ のインデックスが 0 から一般の N-1 までの場合を扱う(解を多変数超幾何関数と考えたときの変数の個数は N-2 個となる). すなわち

$$\frac{\partial u}{\partial x_i} = \sum_{j \in \{0,1,\dots,N-1\} \setminus \{i\}} \frac{A_{i,j}}{x_i - x_j} u \qquad (i = 0, 1, \dots, N-1),$$

$$A_{i,i} = 0, \ A_{i,j} = A_{j,i}, \ A_{i,N} := -(A_{i,0} + A_{i,1} + \dots + A_{i,N-1}),$$

$$A_{0,i,j} := A_{0,i} + A_{0,j} + A_{i,j}.$$

可換な組 $(A_{0,i},A_{j,k})$ と $(A_{0,i},A_{0,i,j})$ に対する同時固有値(重複度と各固有値)のリストを g として与えることができる(i,j,k は $\{1,\ldots,N\}$ の中の互いに異なるインデックス).前者は $N\times_{N-1}C_2$ 組,後者は $N\times(N-1)$ 組で,合計 $\frac{N^2(N-1)}{2}$ 組のデータとなる.スペクトル型や文字列や数で g を指定した場合は,以下のようになる.

- g が 2 以上の整数の時、自明な g 変数の超幾何に対応する同時固有値のデータを返す (N=g+2).
- g を、行列 $A_{0,N}, A_{0,1}, A_{0,2}, \ldots, A_{0,N-1}$ のスペクトル型(文字列あるいは、4 点の GRS)で、この順で指定する.

このとき, short=0 を指定すると, インデックス付きのパラメータを使う.

r によって、以下の機能になる.

- 0:同時固有値のリストのリストをそのまま返す.
- ["deg"]: κ を返す([]は省略可).
- [[i,j], λ] : $A_{i,j} \mapsto A_{i,j} + \lambda$, $A_{i,N} \mapsto A_{i,N} \lambda$, $A_{j,N} \mapsto A_{j,N} \lambda$ という addition を返す $(0 \le i < j < N)$.
- [μ]: x_0 変数に対する middle convolution $\mathrm{mc}_{x_0,\mu}$ を行う(アルゴリズムは [O3] によって与えられた).
- [[[i_1, j_1], λ_1],...,[μ_k],...]: additions と middle convolutions を連続して行う.
- $[[a_1,\ldots,a_{N-1}]]$: $[[[0,1],a_1],\ldots,[[0,N-1],a_{N-1}]]$ と同じ.
- [[a_1,\ldots,a_{N-1},μ]]: [[[0,1], a_1], \ldots ,[[0,N-1], a_{N-1}],[μ]] と同じ.
- ["get", [I,J]] : $[A_I,A_J]=0$ に対する同時固有値を返す(ヘッダ [I,J] のついたリスト).
- ["get",I] : A_I に対する固有値を返す(ヘッダ I のついたリスト).
- ["get",i] $(0 \le i \le N)$: $i \in I$ を満たす A_I に対する GRS を返す(変数 x_i についての常微分方程式の GRS).

dviout=1 を指定すると TrX を使って表示する. dviout=-1 では TrX のソースを返す.

dviout=2 を指定すると、 T_EX のソースを書き出すが表示はしない(次回の表示コマンドでまとめて表示する)。

- ["get"]: $\frac{(N+1)N}{2}$ 個全ての $A_{i,j}$ の固有値のリストを返す. dviout=k の指定が可能.
- ["get0",[I,J]], ["get0",I], ["get0",i] ($0 \le i \le N$), ["get0"] : "get0" を "get" に変え たものと同じであるが、ヘッダはつけない.
- ["show"]: 同時スペクトルを T_EX を使って表示する. dviout=−1 の指定が可能.
- ["show0"]: $\frac{N^2(N-1)}{2}$ 組の同時スペクトルの固有値の重複度を示す(順序は、"show"におけると同じ).

dviout=1,-1 の指定が可能.

- ["spct"]: スペクトル型を返す. $(N+1)\times (N+1)$ 行列で (i,j) 成分は, $i\neq j$ のとき $A_{i,j}$ のスペクトル型, i=j のとき x_i についての index of rigidity $(0\leq i,j\leq N+1)$. $(N+1)\times (N+1)$ 行列で (i,j) 成分は, $i\neq j$ のとき $A_{i,j}$ のスペクトル型, i=j のとき x_i についての index of rigidity $(0\leq i,j\leq N+1)$. dviout=k の指定が可能.
- ["mult", ℓ_1 , ..., ℓ_m] : $g_0 = g$ として $g_i = \text{mcmgrs}(g_{i-1}, \ell_i)$ を i = 1, ..., m に対して順に実行して g_m を返す. オプションも有効.
- [0] os_md.mcmgrs("31,31,31,31,31",["get"]|dviout=1)\$
- [1] os_md.mcmgrs("31,31,31,31,31",["spct"]|dviout=1)\$
- [2] os_md.mcmgrs("31,31,31,31,31",["show"]|dviout=1)\$

の実行結果は以下のようになる.

$$\begin{cases} A_{01} & A_{02} & A_{03} & A_{04} & A_{05} & A_{12} & A_{13} & A_{14} & A_{15} \\ [0]_3 & [0]_3 & [0]_3 & [0]_3 & [0]_3 & [0]_3 & [0]_3 & [0]_3 & [-a-e]_3 \\ a & b & c & d & -a-b-c-d-3e & a+b+2e & a+c+2e & a+d+2e & -a-b-c-d-3e \\ A_{23} & A_{24} & A_{25} & A_{34} & A_{35} & A_{45} \\ [0]_3 & [0]_3 & [-b-e]_3 & [0]_3 & [-c-e]_3 & [-d-e]_3 \\ b+c+2e & b+d+2e & -a-b-c-d-3e & c+d+2e & -a-b-c-d-3e & -a-b-c-d-3e \\ \end{cases}$$

	x_0	x_1	x_2	x_3	x_4	x_5	idx
x_0		31	31	31	31	31	2
x_1	31		31	31	31	31	2
x_2	31	31		31	31	31	2
x_3	31	31	31		31	31	2
x_4	31	31	31	31		31	2
x_5	31	31	31	31	31		2

$$\begin{split} [A_{01}:A_{23}] &= \left\{ [a:0], \, [0:0]_2, \, [0:b+c+2e] \right\}, \\ [A_{01}:A_{24}] &= \left\{ [a:0], \, [0:0]_2, \, [0:b+d+2e] \right\}, \\ &\cdots \\ [A_{01}:A_{012}] &= \left\{ [a:a+b+e], \, [0:0]_2, \, [0:a+b+e] \right\}, \\ [A_{01}:A_{013}] &= \left\{ [a:a+c+e], \, [0:0]_2, \, [0:a+c+e] \right\}, \end{split}$$

54. $\operatorname{mmc}(l, [\mu, a_1, \ldots, a_n] | \operatorname{mult} = f)$

:: Schlesinger 型常微分方程式および KZ 型方程式の addition+middle convolution Schlesinger 型方程式

$$\frac{du}{dx} = \sum_{j=1}^{n} \frac{A_j}{x - x_j} u$$

または KZ 型方程式

$$\frac{\partial u}{\partial x_i} = \sum_{j \in \{0, \dots, n\} \setminus \{i\}} \frac{A_{i,j}}{x_i - x_j} u \qquad (i = 0, \dots, n)$$

の addition または middle convolution を行う.

前者の場合は ℓ に $[A_1,\ldots,A_n]$,後者の場合は $[A_{0,1},\ldots,A_{0,n},A_{1,2},\ldots,A_{1,n},\ldots,A_{n-1,n}]$ ($\frac{n(n+1)}{2}$ 個の成分)を指定する。あるいはスペクトル型や GRS を指定する(後者の場合は,変数 x_0 の常微分方程式について指定する。このときはリジッドである必要がある)。

• $[a_1,\ldots,a_n,\mu]$: A_j (または $A_{0,j}$) に対して a_j を加えた後、x (または x_0) 変数の middle convolution mc_μ を行う、

一方のみの指定は、 $[a_1,\ldots,a_n]$ または $[\mu]$ とする.

- mult=f: f=0 は Schlesinger 型、f=1 は KZ 型を意味する. デフォルトでは、 ℓ の成分の数が 6 以上の時に KZ 型、5 以下では Schlesinger 型とみなす。また、スペクトル型で指定したときは KZ 型とみなす.
- 55. $linfrac01(\ell | over=1)$

 $x = 0, 1, \infty, y, z, \dots$ の一次分数変換のリスト ($\ell = [x, y]$ etc.)

linfrac01([x,y]) あるいは linfrac01(newvect(10,[...]) の形

後者の場合の特異点は順に

$$0: x = 0, \ 1: x = y, \ 2: x = 1, \ 3: y = 0, \ 4: y = 1, \ 5: x = \infty, \ 6: y = \infty,$$

$$7: x = y = \cdots = 0, \ 8: x = y = \cdots = 1, \ 9: x = y = \cdots = \infty$$

$$10: y_2 = 0, \ 11: y_2 = x, \ 12: y_2 = y, \ 13: y_2 = 1, \ 14: y_2 = \infty$$

$$15: y_3 = 0, \ 16: y_3 = x, \ 17: y_3 = y, \ 18: y_3 = y_2, \ 19: y_3 = 1, \ 20: y_3 = \infty$$

$$21: y_4 = 0, \cdots$$

で,一次分数変換によるそれらの置換が得られる.

ベクトルのサイズは、10,15,21,28,....

 y_4 以上(リストのサイズが 5以上)のときは over=1 を指定.

 y_k までのときは、(k+4)! 個の元が得られる.

[0] os_md.linfrac([x]);

$$[[(x)/(x-1)],[(-1)/(x-1)],[(x-1)/(x)],[(1)/(x)],[-x+1],[x]]$$

[1] os_md.linfrac([x,y]);

$$\hbox{\tt [[((y-1)*x)/(y*x-y),(y-1)/(x-1)],[(y-1)/(x-1),(y)/(x)],}$$

56. lft01(t, ℓ)

 $:: \ell = (x_1, x_2, x_3, ...)$ に対する特殊一次分数変換

以下の座標変換. $linfrac01(\ell)$ の ℓ と同様なベクトルでも可

$$\begin{array}{ll} t=0 & (x_2,x_1,x_3,x_4,\ldots) \\ t=-j & (x_1,x_2,\ldots,x_j,x_{j+2},x_{j+1},x_{j+3},\ldots) \\ t=1 & (1-x_1,1-x_2,1-x_3,1-x_4,\ldots) \\ t=2 & (1/x_1,1/x_2,1/x_3,1/x_4,\ldots) \\ t=3 & (x_1,x_1/x_2,x_1/x_3,x_1/x_4,\ldots) \end{array}$$

3.1.3 Some operators

57. okubo3e($[p_{0,1},\ldots,p_{0,m}]$, $[p_{1,1},\ldots,p_{1,n}]$, $[p_{2,1},\ldots,p_{2,m+n}]$ opt=1]) :: $0,1,\infty$ に確定特異点を持つ m+n 階の単独 Okubo 型微分作用素を求める 0 で n 次元,1 で m 次元の正則解をもつ。Riemann scheme の記号では

アクセサリパラメータが (m-1)(n-1) 個あり, r1,r2,... で表される. $p_{i,j}$ のうちの一つは "?" でもよい (値は Fuchs の関係式から計算される).

- opt=1 を指定すると getbygrs() を用いる.
- [0] $P = os_md.okubo3e([1-e,1-f],[2-g,"?"],[a,b,c,d]);$

1 accessory parameters: r1,r2,...

 $(x^4-2*x^3+x^2)*dx^4+((a+b+c+d+6)*x^3+(-a-b-c-d-e-f-9)*x^2+(e+f+3)*x)*dx^3$ $+(((b+c+d+3)*a+(c+d+3)*b+(d+3)*c+3*d+7)*x^2+((-b-c-d+g-3)*a+(-c-d+g-3)*b+(d+3)*c+3*d+7)*x^2+((-b-c-d+g-3)*a+(-c-d+g-3)*b+(d+3)*c+3*d+7)*x^2+((-b-c-d+g-3)*a+(-c-d+g-3)*b+(d+3)*c+3*d+7)*x^2+((-b-c-d+g-3)*a+(-c-d+g-3)*b+(d+3)*c+3*d+7)*x^2+((-b-c-d+g-3)*a+(-c-d+g-3)*b+(d+3)*c+3*d+7)*x^2+((-b-c-d+g-3)*a+(-c-d+g-3)*b+(d+3)*c+3*d+7)*x^2+((-b-c-d+g-3)*a+(-c-d+g-3)*b+(d+3)*c+3*d+7)*x^2+((-b-c-d+g-3)*a+(-c-d+g-3)*b+(-c-d+g-3)*b+(-c-d+g-3)*a+(-c-d+g-3)*b+(-c-d+g-3)*a+(-c-d+g-3)*b+(-c-d+g-3)$

 $+(-d+g-3)*c+(g-3)*d+(-f-g-1)*e+(-g-1)*f-g^2+2*g-8)*x+(f+1)*e+f+1)*dx^2+$

((((c+d+1)*b+(d+1)*c+d+1)*a+((d+1)*c+d+1)*b+(d+1)*c+d+1)*x-r1)*dx+d*c*b*a

[1] os_md.expat(P,x,1);

[-a-b-c-d+e+f+g,-g+2,1,0]

- 58. fuchs3e($[p_{0,1},\ldots,p_{0,n}]$, $[p_{1,1},\ldots,p_{1,n}]$, $[p_{2,1},\ldots,p_{2,n}]$)
 - $:: 0, 1, \infty$ に確定特異点を持つ n 階の Fuchs 型微分作用素を求める

$$\begin{cases}
0: & p_{0,1} & p_{0,2} & \cdots & p_{0,n} \\
1: & p_{1,1} & p_{1,2} & \cdots & p_{1,n} & \vdots x \\
\infty: & p_{2,1} & p_{2,2} & \cdots & p_{2,n}
\end{cases}$$
Fuchs の関係式:
$$\sum p_{i,j} = \frac{n(n-1)}{2}$$

アクセサリパラメータが $\frac{(n-1)(n-2)}{2}$ 個あり, $\operatorname{ri_j}$ で表される(cf. $\operatorname{getbygrs}()$). $p_{i,j}$ のうちの一つは "?" でもよい (値は Fuchs の関係式から計算される).

- 59. ghg([$p_{1,1}, p_{1,2}, ..., p_{1,m}$],[$p_{2,1}, p_{2,2}, ..., p_{2,n}$])
 - :: 一般超幾何函数 $_mF_n(p_1;p_2;x)$ (cf. seriesHG()) の満たす微分作用素

$$P(x, \frac{d}{dx}) = \prod_{j=1}^{n} (x \frac{d}{dx} + p_{2,j}) \cdot \frac{d}{dx} - \prod_{j=1}^{m} (x \frac{d}{dx} + p_{1,j})$$

$${}_{m}F_{n}(p_{1,1}, \dots, p_{1,m}; p_{2,1}, \dots, p_{2,n}; x) = \sum_{n=0}^{\infty} \frac{\prod_{\nu=1}^{m} (p_{1,\nu})_{n}}{\prod_{\nu=1}^{n} (p_{2,\nu})_{n}} \frac{x^{n}}{n!}$$

変数は x, 微分は dx で表記される.

m=n+1 のときは Rigid な Fuchs 型で

$$\wp \left\{ \begin{array}{llll} 0: & 0 & 1-p_{2,1} & \cdots & 1-p_{2,m-2} & 1-p_{2,m-1} \\ 1: & 0 & 1 & \cdots & m-2 & -\gamma & ; x \\ \infty: & p_{1,1} & p_{1,2} & \cdots & \cdots & p_{1,m} \end{array} \right\}$$

Fuchs の関係式: $\gamma = \sum p_{1,\nu} - \sum p_{2,\nu}$ m=2, n=1 のときが Gauss の超幾何

[0] os_md.ghg([a,b],[c]);

 $(-x^2+x)*dx^2+((-a-b-1)*x+c)*dx-b*a$

60. even4e($[p_{1,1}, p_{1,2}, p_{1,3}, p_{1,4}]$, $[p_{2,1}, p_{2,2}]$)

:: 4 階 even family (Rigid)

$$\wp \left\{ \begin{array}{llll} 0: & 0 & 1 & p_{2,1} & p_{2,2} \\ 1: & 0 & 1 & p_0 & p_0 + 1 & ; x \\ \infty: & p_{1,1} & p_{1,2} & p_{1,3} & p_{1,4} & \end{array} \right\}$$

Fuchs の関係式: $2p_0 + p_{1,1} + p_{1,2} + p_{1,3} + p_{1,4} + p_{2,1} + p_{1,2} = 3$

```
61. odd5e([p_{1,1}, p_{1,2}, p_{1,3}, p_{1,4}, p_{1,5}], [p_{2,1}, p_{2,2}])
    :: 5 階 odd family (Rigid)
        0: 0
                             p_{2,1} p_{2,2} p_{2,2}+1
                                   p_0
                                          p_0 + 1
       \infty: p_{1,1} \quad p_{1,2} \quad p_{1,3} \quad p_{1,4}
                                          p_{1.5}
    Fuchs の関係式 2p_0 + p_{2,1} + 2p_{2,2} + \sum p_{1,j} = 4
62. rigid211([p_{0,1}, p_{0,2}], [p_{1,1}, p_{1,2}], [q_0, q_1])
    :: Type 211,211,211
       (0: 0)
             0
         1:
                      1
                             p_{1,1} p_{1,2} ; x
       \infty: q_0 q_0 + 1 q_1
    Fuchs の関係式 p_{0,1} + p_{0,2} + p_{1,1} + p_{1,2} + 2q_0 + q_1 + q_2 = 4
63. extra6e([p_{1,1}, p_{1,2}, p_{1,3}, p_{1,4}, p_{1,5}, p_{1,6}],[p_{2,1}, p_{2,2}])
    :: Extra case (Rigid)
                       1 p_{2,1} p_{2,1} + 1 p_{2,2} p_{2,2} + 1
        0:
         1:
                      1
                          ^2
                                      3
                                                   p_0 + 1
                                              p_0
       (\infty: p_{1,1} p_{1,2} p_{1,3})
                                    p_{1,4}
                                             p_{1,5}
    Fuchs の関係式 2p_0 + 2p_{2,1} + 2p_{2,2} + \sum p_{1,j} = 5
64. eofamily([p_{0,1}, p_{0,2}], [p_{1,1}], [p_{2,1}, \ldots, p_{2,n}])
    :: even/odd family (obsolete)
    Even family (Rigid)
    Fuchs の関係式: p_{0,1} + (m-1)p_{0,2} + mp_{1,2} + \sum p_{2,\nu} = n-1
       \begin{cases} 0: & 0 \ 1 \ \cdots \ m-1 \\ & p_{0,1} \\ & p_{0,2} \\ & \cdots \\ & p_{0,2}+m-2 \end{cases}
       \langle 1: 0 \ 1 \cdots m-1 \rangle
                                   p_{1,2} p_{1,2}+1 \cdots p_{1,2}+m-1 ; x

    \left( \infty : p_{2,1} \cdots p_{2,m} p_{2,m+1} p_{2,m+2} \cdots p_{2,2m} \right)

    Odd family (Rigid)
    Fuchs の関係式: p_{0,1} + mp_{0,2} + mp_{1,2} + \sum p_{2,\nu} = n - 1
       (0: 0: 1 \cdots m-1 p_{0,1} p_{0,2} \cdots p_{0,2}+m-1)
        1: 0 \ 1 \cdots m-1 m \ p_{1,2} \cdots p_{1,2}+m-1
       (\infty: p_{2,1} \cdots p_{2,m} p_{2,m+1} p_{2,m+2} \cdots p_{2,2m+1})
65. \text{ev4s}(p_1, p_2, p_3, p_4, p_5)
    :: Heckman-Opdam 超幾何の (BC_2, BC_1) 型制限常微分 (Rigid)
      [0] P=os_md.ev4s(a,b,c,d,e);
      . . .
      [1] os_md.expat(P,x,0);
      [a-c+1/2,a+c-1/2,1,0]
      [2] os_md.expat(P,x,1);
      [-b+1/2,-b+3/2,1,0]
      [3] os_md.chkexp(P,x,1,-b+1/2,2);
      [4] os_md.expat(P,x,"infty");
      [-1/2*a+1/2*b-1/2*d+1/2,-1/2*a+1/2*b+1/2*d+1/2,-1/2*a+1/2*b-1/2*e+1/2,
     -1/2*a+1/2*b+1/2*e+1/2]
66. b2e(p_1, p_2, p_3, p_4, p_5)
```

:: Heckman-Opdam 超幾何の (BC_2, A_1) 型制限常微分 (Non Rigid)

```
[0] P = os_md.b2e(a,b,c,d,e);
    (x^4-2*x^3+x^2)*dx^4+((-4*c+10)*x^3+(6*c-15)*x^2+(-2*c+5)*x
    [1] os_md.expat(P,x,0);
    [-a+c+1/2,a+c-1/2,1,0]
    [2] os_md.expat(P,x,1);
    [-b+c+1/2,b+c-1/2,1,0]
    [3] os_md.expat(P,x,"infty");
    [-c-1/2*d-1/2*e+1,-c-1/2*d+1/2*e+1,-c+1/2*d-1/2*e+1,-c+1/2*d+1/2*e+1]
67. heun([a, b, c, d, e], p, r|)
```

:: Heun の微分方程式を与える. r はアクセサリパラメータ

$$\wp \left\{ \begin{array}{lll} 0: & 0 & c \\ 1: & 0 & d & ; \\ p: & 0 & e \\ \infty: & a & b \end{array} \right\} \qquad \text{Fuchs \mathcal{O}関係式: $a+b+1=c+d+e$}$$

[0] os_md.heun([a,b,c,d,"?"],p,r); $(x^3+(-p-1)*x^2+p*x)*dx^2+((a+b+1)*x^2+((-c-d)*p-a-b+d-1)*x+c*p)*dx+b*a*x-b*a*r$

3.2 Useful functions

以下の函数は module 化され, 函数名の先頭に os_md. をつけて os_md.myhelp() のように呼び出す.

3.2.1 Extended function

68. myhelp(h)

:: os_muldif.rr のマニュアルを表示する

- os_muldif.pdf, os_muldif.dvi を get_rootdir()\help に入れておく. それぞれ, h=1,-1で表示される.
- DVIOUTH が正しく設定されていれば、myhelp("m2mc") のようにして myhelp(h) の h に函数名 を文字列で入れると、その函数の解説が(os_muldif.dvi に含まれていれば)表示される.文字 列hには函数の先頭のos_md. は省略できる.
- h = 0, os_md.getbygrs, os_md.m2mc, os_md.mgen でも対応するものが表示される.
- h = [dviout, n]: dviout で dviout のパス名, n で表示する dviout の番号を設定しておく. な お、Risa/Asir の数式などの結果の表示に最初の dviout が使われるので、n=2 などが適当.
- 他の環境やより一般的な場合は DVIOUTH で設定する.
- 69. $\operatorname{chkfun}(f,s)$

:: 函数 f (= 文字列) が定義済みかどうか調べ、未定義なら load(s) を実行

- f = 0: Risa/Asir の version 表示
- f = 1: os_muldif.rr \mathcal{O} version 表示
- s = 0: f が文字列の時、その函数名の函数が定義済みかどうかのみを調べる
- f はモジュール化された函数には対応していない
- [0] os_md.chkfun(0,0)\$ Risa/Asir Ver. 20121217 [1] os_md.chkfun(1,0)\$ Loaded os_muldif Ver. 00140401 (Toshio Oshima)

70. isMs()

:: Micorosoft Windows 環境かどうか調べる

環境変数 temp, tmp を調べて 3 文字目が Y(あるいは \) であれば 1 を返す

71. isyes(p|set= ℓ)

- :: 1か0を返す函数を定義し、それを使う
 - set=1 によって定義する. このとき p は函数とそれに渡すパラメータリストと判断に使うその函数の値をチェックする範囲との 3 つからなるリスト.

```
すなわち p = [fn, [t_1, t_2, ...], [a,b]] ならば、isyes(X|set=p) は def foo(X){ R=fn(X, t_1, t_2, ...); return (R>=a && R<=b)?1:0; }
```

という関数に対応する.

- $-p = [\mathsf{type}, [], [0,1]]$ のときは、 $\mathsf{type}(p)$ の値が 0 以上 1 以下の時は $1(\mathsf{yes})$ を、そうでない ときは $0(\mathsf{no})$ を返す函数の定義. $-\infty$ や ∞ は "" で表す.
- 範囲が1つの値ならば, その値でよい. よって [type,[],1] は [type,[],[1,1]] と同じ.
- 複数の条件を課すときは、上の3つ組をさらにリストにする.この場合は全てが yes のときの み1を返す函数を定義する.
- $-p=[[os_md.isint,[],1],[os_md.calc,[[">",0]],1]]]$ は、正の整数のときのみ 1 を返す函数の定義.
- 新たに set=1 で定義するまでは前回の定義が有効.
- set=0 では、現在定義されているものを返す(以下の例の [11] を参照).
- set= の右辺に上のpで与える設定を指定し、pにはその設定で判定すべきものを渡す.このときは、定義されていた設定は破壊されない.
- set= を指定しないときは、定義に従ってpを判定して1か0を返す.

```
[0] os_md.isyes([[os_md.isint,[],1],[os_md.calc,[[">",0]],1]]|set=1)$
[1] os_md.isyes(0|set=0);
[[os_md.isint,[],1],[os_md.calc,[[>,0]],1]]
[2] os_md.isyes(3/2);
0
[3] os_md.isyes(@i);
0
[4] os_md.isyes(-1);
0
[5] os_md.isyes(3/2);
0
[6] os_md.isyes(3);
1
[7] A=mat([1,2],[3,4]);
[1 2 ]
[3 4 ]
[8] os_md.isall(os_md.isyes,A);
1
[9] A[1][1]=0$
[10] os_md.isall(os_md.isyes,A);
0
[11] def isPositiveInt(X){
```

```
P=os_md.isyes(0|set=0);
     os_md.isyes([[os_md.isint,[],1],[os_md.calc,[[">",0]],1]]|set=1);
     V=os_md.isyes(X);
     os_md.isyes(P|set=1);
     return V;
   }$
    [12] isPositiveInt(3/2);
   上の [11] は以下と同じ.
   def isPositiveInt(X){
    return os_md.isyes(X|set=[[os_md.isint,[],1],[os_md.calc,[[">",0]],1]]);
   }$
72. isall(f,m)
   m の要素に p 対して f(p) が 0 となるものが存在すると 0, そうでなければ 1 を返す
   m がリスト, ベクトル, 行列でなければ m 自身を m の要素とみなす (isyes() の例を参照).
    [0] os_md.isall(isint,[0,2,3,1/2]);
    [1] os_md.isall(isint,[0,2,3,4]);
    [3] os_md.isall(isint,[0,2,3,[1]]);
    [4] os_md.isall(isint,mat([0,2,3,4]));
    1
73. ptype(p, \ell)
   :: \ell は変数, または変数のリストで, それのみを変数とみなした type() を返す
    • ptype(p, vars(p)) は type(p) と同じ.
    • 有理式であって, その分母に与えられた変数の(多項式以外の)初等関数を含む場合は128を,分
      子に与えられた変数の初等関数を含む場合は64を戻り値に加えて返す.
    [0] P=(x+y)^2/a;
    (x^2+2*y*x+y^2)/(a)
    [1] os_md.ptype(P,x);
   2
    [2] os_md.ptype(P,a);
    [3] os_md.ptype(P,z);
    [4] os_md.ptype(P,[x,y]);
    [5] os_md.ptype(P,[x,y,a]);
    [6] os_md.ptype([1,2],[x,y]);
```

```
[7] os_md.ptype(sin(x)+sin(y)+@pi,x);
   65
    [8] os_md.ptype(sin(x)+x,x);
   66
    [8] os_md.ptype(\sin(x)/x,x);
   67
    [9] os_md.ptype(1/sin(x),x);
   129
    [10] os_md.ptype(\sin(x)/(x+\cos(x)),x);
   195
74. keyin(s)
   :: s を表示し、1 行のキー入力を待って、それを文字列として返す
   行末の改行記号を削除した文字列を返す.
    [0] S=os_md.keyin("Input? ")$
   Input? This is a pen.
   [1] S;
   This is a pen.
75. showbyshell(s)
   :: shell でコマンド s を実行した標準出力の結果を Risa/Asir で表示
    [0] os_md.showbyshell("echo %temp%")$
    [1] os_md.showbyshell("dir c:\\")$
76. getbyshell(s)
   :: shell でコマンド s を実行した標準出力の結果をファイルとして得る
    • 戻り値を Id とおくと、 Id \geq 0 なら出力結果が得られたことを意味し、結果は get_line(Id) で
      一行ずつ文字列として読み込める. get_byte(Id) で1バイトずつ読み込むことも出来る.
    • 最終行の後は、getline(Id) は 0 を返す. 終了後は getbyshell(Id) または close_file(Id)
      が(少なくとも再度この函数を呼ぶ前に)必要.
    ● テンポラリファイルが環境変数 %temp% または %tmp% または DIROUT で定義されたディレクトリ
      に作成される. 前回用いられたファイルを消去してから新たにファイルが作られる.
77. makev([\ell_1,\ell_2,...] |num=1)
   :: \ell_1, \ell_2 \dots を合わせて一つの変数名を作る
    • \ell_i には、変数、文字列、非負整数などが可能.
    • 10,11,... という数字は num=1 を指定しないと, a,b,... という文字になる.
    [0] os_md.makev(["a_", 0, 1]);
   a_01
    [1] os_md.makev([a, 0, 1]);
   a01
    [2] os_md.makev([a, 0, b]);
   a0b
    [3] os_md.makev([a, 10, b]);
   aab
    [4] os_md.make([a,10,"_",3]|num=1);
   a10_3
```

```
[5] os_md.my_tex_form(@@);
   a_{10,3}
78. shortv(p, [v_1, v_2, \ldots] | top=v)
   :: p の添字番号つき不定元 v_1, \ldots を一文字の v 以下の変数名に変える
   不定元v_iは一文字の不定元で、それに添え字番号は0または1から始まって連続している変数名の不
   定元に対し、v(デフォルトは a)から始まって順に使われていない変数名(zまで)に変更する.
    [0] P=[a1,a2,b,c0,c1]$
    [1] os_md.shortv(P,[a,c]);
    [a,c,b,d,e]
    [2] os_md.shortv(P,[c,a]);
    [d,e,b,a,c]
    [3] os_md.shortv(P,[a,c]|top=x);
    [x,y,b,z,c1]
79. makenewv(\ell \mid var=v, num=n)
   ::ℓに使われていない新しい不定元を生成する

    不定元は z_0, z_1,...,z_9, z_10,... という順でℓに使われていない最初のものを返す。

    • 不定元のデフォルトの \mathbf{z}_{-}の部分は \mathbf{var} = v と指定して v で置き換えられる.
      ただしvは不定元または文字列.
    ℓの中の関数の引数に含まれる不定元も考慮される.
    • num=n で、n 個の新しい不定元のリストが得られる.
    [0] os_md.makenewv(0);
   z_0
    [1] os_md.makenewv([z_0+z_1,z_2]);
    [2] os_md.makenewv([z_0+z_1,z_2]|var=x);
    [3] os_md.makenewv([z_0,z_1]|num=3);
    [z_2,z_3,z_4]
    [4] os_md.makenewv(z_2*sin(cos(z_0+z_1))+z_3);
   z_4
80. isvar(p)
   :: p が変数かどうか調べる
   p が変数の時 1, そうでないとき 0 を返す
    [0] os_md.isvar(dx);
    [1] os_md.isvar(-dx);
    [3] os_md.isvar(1);
```

- 81. varargs(p,x|all=t)
 - :: 式 p に含まれる初等函数の函数子とその変数に現れる不定元のリストを返す
 - p は行列やリストでもよい.
 - 現れる初等函数の函数子のリストとそれらで使われる変数のリスト.

- 函数の引数に含まれる初等函数についても考慮される.
- all=1 を指定すると含まれる全ての初等函数の函数子と全ての変数を返す.
- all=2 を指定すると含まれる全ての変数を返す.

```
[0] os_md.varargs(x*sin(y)+z+cos(s-t));
[[sin,cos],[y,s,t]]
[1] os_md.varargs(x*sin(y)+z+cos(s-t)|all=1);
[[sin,cos],[x,z,y,s,t]]
[2] os_md.varargs(x*sin(y)+z+cos(s-t)|all=2);
[x,z,y,s,t]
[3] os_md.varargs(sin(cos(x)*sin(y)+@pi+z));
[[sin,cos],[x,y,z]]
```

- 82. pfargs(p,x|level=t)
 - :: 式 p に現れる x 変数を含んだ初等函数と引数のリストを返す
 - pは行列やリストでもよい.
 - 現れる初等函数とその函数子と引数の組のリストをリストにして返す.
 - 函数の引数に含まれる初等函数についても考慮される.
 - level=t: t=1 は函数の引数は無視, t=2 では, 函数の引数のみで, その深さを t で表す(デフォルトは t=0).

```
[0] os_md.pfargs(log(log(x))),x);
[[log(log(log(x))),log,log(log(x))],[log(x),log,x],[log(log(x)),log,log(x)]]
[1] os_md.pfargs(sin(cos(x)*cos(y)+@pi+z),x);
[[sin(z+cos(y)*cos(x)+@pi),sin,z+cos(y)*cos(x)+@pi],[cos(x),cos,x]]
[2] os_md.pfargs(log(log(log(x))),x|level=1);
[[log(log(log(x))),log,log(log(x))]]
[3] os_md.pfargs(log(log(log(x))),x|level=2);
[[log(log(x)),log,log(x)]]
[4] os_md.pfargs(log(log(log(x))),x|level=3);
[[log(x),log,x]]
```

83. isdif(p)

:: p が微分作用素と推測されるときはその変数と微分の組のリストを返し、そうでなければ 0 を返す p が多項式または有理式であって、d で始まる変数で 2 文字目が小文字のアルファベットとなっている d ものが d に存在し、そのような変数全てに対して d が多項式になっているとき、微分作用素と推測する.

```
[0] os_md.isdif((x+dx+dx1+dy+dz)^2/z);
[[x1,dx1],[x,dx],[y,dy],[z,dz]]
[1] os_md.isdif((x+dx+dx1+dy+dz)^2/dz);
0
```

- 84. mysubst $(r, [v_1, r_1] | inv=1)$ \$\pi t \text{mysubst}(r, [[v_1, r_1], \ldots] | inv=1)
 - :: subst (r,v_1,r_1,\ldots) と同等. r が複雑で r_1 が有理式のときに特に有効.
 - r は有理式やそれを成分とするリスト、ベクトル、行列(再帰的)とするが、subst() と異なり、文字列の成分があってもよい(文字列の成分は変換されない).
 - r_i も不定元のとき inv=1 が指定可能で、逆向きの置き換え $(v_i \ | \ v_i \ | \ v_i$
- 85. myswap $(p, [x_1, x_2, ..., x_n])$
 - :: 有理式またはそのリストなどの不定元の巡回置換 (x_1, x_2, \ldots, x_n) n が 2 のときは、不定元の互換.

```
[0] os_md.myswap(os_md.myswap([x,y,z,w],[x,y,z]);
    [y,z,x,w]
    [1] os_md.myswap([x,y,z,w],[x,z]);
    [z,y,x,w]
86. mulsubst(r, [[p_{1,0}, p_{1,1}], [p_{2,0}, p_{2,1}], ...] | inv=1)
   :: 有理式またはそのリスト,ベクトル,行列 r に複数の代入 p_{j,0}\mapsto p_{j,1} (j=1,2,\ldots) を同時に行う
   [[x,y],[y,x]] でxとyを交換.
    [0] os_md.mulsubst(x+y^2+z^3,[[x,y],[y,x]]);
    x^2+y+z^3
    [1] os_md.mysubst(x+y^2+z^3,[[x,y],[y,x]]);
    x^2+x+z^3
    [2] os_md.mysubst(["top",x,y],[x,2]);
    [top,2,y]
    [3] subst(["top",x,y],[x,2]);
    subst : invalid argument
    return to toplevel
    [4] os_md.mulsubst([x,y,z],[x,w]);
    [w,y,z]
    [5] os_md.mulsubst([x,y,z],[x,w]|inv=1);
    [x,y,z]
87. fmult(f, m, \ell, n | \cdots)
   :: m_i \mapsto m_{i+1} = f(m_i, \ell[i], n[0], n[1], \dots | \dots) という変換 (m_0 = m) の最終結果 m_{length(l)} を返す
     • \ell \geq n はリスト.
     • オプション指定はそのまま渡される.
88. mtransbys(f, m, \ell | \cdots)
   :: スカラーに関する変換 f() をリスト、ベクトルまたは行列 m に拡張する
     • m の各成分 m_{\nu} を f(m_{\nu}, l[0], l[1], \ldots | \cdots) と変換する.
     • リスト,ベクトルまたは行列はネストしていてもよい(行列のリストなど).
     ● 引数はリストℓにしてまとめる.
     オプション指定はそのまま渡される.
     • map(f,m,l[0],...) と同じだが、map() はネストやオプション指定が不可.
    [0] A=newmat(2,2,[[(x^2-y^2)/(x+y),x/y],
        [yx/x^2,(x^2-y^2)/(x-y)]);
    [(x^2-y^2)/(x+y)(x)/(y)]
    [ (y*x)/(x^2) (x^2-y^2)/(x-y) ]
    [1] os_md.mtransbys(red,A,[]);
    [x-y(x)/(y)]
    [ (y)/(x) x+y ]
    [3] os_md.mtransbys(os_md.abs,[[1,-2],[3,-4]],[]);
    [[1,2],[3,4]]
    [4] map(os_md.abs,[[1,-2],[3,-4]]);
    [[1,-2],[3,-4]]
89. mmulbys(f, m, n, \ell | \cdots)
```

:: 和が定義された objects の 2 つに対して 1 つの object を与える演算 f を、objects を成分とするベクトルまたは行列 m と n の演算に拡張する

- 引数はリスト ℓ にしてまとめる. m は object または行列.
- m と n が行列のときは以下の行列を返す. $\left(\sum_{\nu} f(m_{i,\nu}, n_{\nu,j}, \ell[0], \ell[1], \ldots)\right)_{i,j}$
- m または n がスカラーのときは、他方 (の成分) にそのスカラーを掛けた結果を返す.
- m がベクトルのときは行ベクトル,n がベクトルのときは列ベクトルとみなし,同様の計算をして(上で,i または j のインデックスがないと考える),結果をベクトルで返す. ただし m と n が共に(同じサイズの)ベクトルのときは,結果はスカラーで返す.
- オプション指定はそのまま渡される.
- 90. cmpsimple($p,q \mid comp=t$)
 - :: 式 p と q の簡単さを比較

pの方がqより簡単な場合負の整数を、逆の場合正の整数を返す。

iand(t,1)!=0 のときは変数の個数を,iand(t,2)!=0 のとき単項式の個数を,iand(t,4)!=0 のときは表示の長さを基準に,最後に P と Q の大小関係を,この順で比較し,差があった時点で簡単とみなす.デフォルトは,t=7.

91. simplify(p, ℓ ,t|var=[$x_1, x_2, ...$])

 $:: \ell = [\ell_0, \ell_1]$ のときは、p (の各要素毎)に $subst(*, \ell_0, \ell_1)$ を調べてより簡単なら置き換える $(t=1\sim7)$. $\ell = [\ell_1]$ で ℓ_1 が多項式のときは、 ℓ_1 に一次に含まれる含まれる変数の線形関係式とみて 簡単化する. 複数調べるときは ℓ をリストや多項式のリストとする.

- iand(t,1)!=0 のときは変数の個数を, iand(t,2)!=0 のとき単項式の個数を, iand(t,4)!=0 のときは表示の長さを基準に, この順で比較し, 差があった時点で簡単とみなす.
- この比較で等しいときは、両者を直接比べて小さい方とする.
- 複数の置き換えを試すときは、 $\ell = [[\ell_{00}, \ell_{01}], [\ell_{10}, \ell_{11}], \ldots]$ とする.
- $var=[x_1, x_2, ...]$ を指定すると、p を $x_1, x_2, ...$ の有理式とみて、その分母分子の多項式の係数毎 に単純化する.

```
[0] os_md.simplify([x+y+z+a+b,x+z+a+b],[a,-x-y-w/2-c],1);
[z-1/2*w+b-c,x+z+a+b]
[1] os_md.simplify([x+y+z+a+b,x+z+a+b],[a,-x-y-w/2-c],4);
[x+y+z+a+b,x+z+a+b]
[1] os_md.simplify(x+3*y+4*z,[x+y+z],1);
2*y+3*z
[2] os_md.simplify(x+3*y+4*z,[x+y+z],4);
-3*x-y
92. getel(m,i)
```

```
:: m がリスト、ベクトル、行列でi が非負整数ならm[i] を返すi が [i_1,i_2] というリストでm が行列ならばm[i_1][i_2] を返すそれ以外ではm をそのまま返す
```

- 93. evalred($r | opt=[[s_1,t_1],[s_2,t_2]...]$)
 - :: sin(0), cos(0), exp(0) などを 0, 1, 1 などの整数に置き換える
 - 置き換えは、以下のものの値 $\sin(k@pi)$ 、 $\cos(k@pi)$ で値が $0,\pm 1,\pm \frac{1}{2}$ のいずれかになるもの、 $\tan(0)$ 、 $a\sin(0)$ 、 $\sinh(0)$ 、 $\cosh(0)$ 、 $\tanh(0)$ 、 $\exp(0)$ 、 $\log(1)$ 、pow(1,x)、 1^x
 - s_j を t_j で置き換える (j=1,2,...), という規則を付加する. 付加する規則が 1 つのみのときは opt=[s,t] としてもよい.

- 94. evals(r|del=s,raw=1)
 - :: 文字列あるいは函数を評価する.
 - r が文字列のときは、 $eval_str(s)$ を返す. さらに del=s が指定されたときは、文字列 s を区切り記号として区切られた文字列を評価して、順にリストとして返す. ただし、raw=1 が指定してあると、評価せずに文字列のリストに分割して返す.
 - r がリスト $[r_0, r_1, ...]$ のとき, r_0 が文字列でなければ r_0 を函数とみなして $r_0(r_1, r_2, ...)$ を返す.

 r_0 が文字列の時も同様なものを返す. 引数 r_1, \ldots の中に文字列があれば、それは eval_str() によって得られる値として変換される (execproc() も似た機能の函数).

```
[0] os_md.evals("(x+1)^2"); x^2+2*x+1 [1] os_md.evals("(x+y)^2,2^3,10/20"|del=","); [x^2+2*y*x+y^2,8,1/2] [2] os_md.evals("(x+y)^2,2^3,10/20"|del=",",raw=1); [(x+y)^2,2^3,10/20] [3] os_md.evals([dexp,1]); 2.71828 [4] os_md.evals(["pari","gamma",3+@i]); (0.96286515302378809804+1.33909717605325744298*@i) 95. myeval([r,[x_1,f_1,v_1],[x_2,f_2,v_2],...]) :: os_md.myeval(subst([r,[x_2,f_2,v_2],...],x_1,f_1(os_md.myeval(v_1)))) \varepsilonis os_myeval([r,[x_1,f_1,v_1],[x_2,f_2,v_2],...]) :: os_md.mydeval(subst([r,[x_2,f_2,v_2],...],x_1,f_1(os_md.mydeval(v_1)))) \varepsilonis os_md.mydeval(subst([r,[x_2,f_2,v_2],...],x_1,f_1(os_md.mydeval(v_1)))) \varepsilonis os_md.mydeval(subst([r,[x_2,f_2,v_2],...],x_1,f_1(os_md.mydeval(v_1)))) \varepsilonis os_md.mydeval(subst([r,[x_2,f_2,v_2],...],x_1,f_1(os_md.mydeval(v_1)))) \varepsilonis os_md.mydeval(subst([r,[x_2,f_2,v_2],...],x_1,f_1(os_md.mydeval(v_1)))) \varepsilonis
```

● r は有理式成分のベクトルや行列やリストなどでもよい.

 $os_md.mydeval([r])=map(deval(r))$

• 引数が多項式や有理式 r のときは、eval(r) または deval(r) に置き換えられる.

- 引数がベクトルや行列 r のときは、map(eval,r) またはmap(deval,r) に置き換えられる.
- $v_1, v_2, ...$ は、数でなくてそれぞれ myeval() で値が求まるものでもよい (ネスティング可能で、合成函数に対応する).
- 函数 f_1, \ldots は、dsin などの函数のほか、引数を数とし、数を返す函数で(ユーザが定義したもので)もよい。より一般に定義されたものが解釈可能であればよい。
- $f_1 = 0$ のときは、恒等写像と解釈される.
- 函数 f_1 の引数が複数あるときは $[x_1,f_1,v_{1,1},v_{1,2},\ldots]$ と指定すると f_1 (os_md.myeval(v_1)) は f_1 (os_md.myeval($v_{1,1}$),os_md.myeval($v_{1,2}$),...)
- v_1, v_2, \dots や $v_{1,1}, v_{1,2}, \dots$ がリストのときは、それらを $[v_1]$ 、 $[v_{1,2}]$ のように指定する (mydeval() や myeval()でなくて deval() や eval() で評価される).
- 函数 f_1 にオプションパラメータを付加して用いるときは、 f_1 の代わりに $[f_1,opt]$ のように函数 とそのオプションリストの組のリストとして指定する。ただし opt は $[[s_1,v_1],[s_2,v_2],\ldots]]$ の 形で、 s_i はオプション文字列、 v_i はその値である(getopt())で得られる形式)。
- f₂ 以下についても同様.
- $F=\sin(x)$ \$

```
for(I=V=0;I<1000;I++) V+=deval(subst(F,x,I/1000));
```

とすると不定元が 1000 個定義され、以降も含めて Risa/Asir の動作が遅くなるが

F=[y,[y,dsin,x]]\$

for(I=V=0;I<1000;I++) V+=os_md.myeval(subst(F,x,I/1000));

とすればそのような不定元の生成が起こらない. これはより簡明に

 $F=f2df(sin(x))$for(I=V=0;I<1000;I++) V+=os_md.myfeval(F,I/1000));$

とすればよい (cf. f2df(), myfeval())

- 函数がこの引数の形に変換されたものは、xygraph() やxy2graph() でサポートされている.
- [0] $F=os_md.f2df(exp(-x^2-y^2));$

 $[z_{-},[z_{-},dexp,-x^2-y^2]]$

- [1] for(V=I=0;I<1000;I++) for(J=0;J<1000;J++)
 V+=os_md.mydeval(subst(F,x,I/1000,y,J/1000));</pre>
- [2] V/1000^2;
- 0.558218
- [3] $F=[w,[z,0,x+y*@i],[w,os_md.abs,z^2+1]]$ \$
- [4] os_md.myeval(subst(F,x,1,y,1));
- 2.23606797749978969619
- [5] def mkC(X,Y){return X+Y*@i;}
- [6] $G=[w,[z,mkC,x,y],[w,os_md.abs,z^2+1]]$ \$
- [7] os_md.myeval(subst(G,x,1,y,1));
- 2.23606797749978969619
- 97. myval($[r, [x_1, f_1, v_1], [x_2, f_2, v_2], \ldots]$)
 - :: myeval() と同様な函数であるが、可能な限り正確な値を返す
 - 三角関数は、その引数が $r*\mathbf{0pi}$ で 4r または 6r が整数のときに正確な値を返す.
 - 指数関数は、その引数が整数または指数またはr*@i*@pi で 4r または 6r が整数のときに正確な値を返す.
 - 対数関数は、その引数が@e または1のとき正確な値を返す.
 - べき函数 x^y において、x が 0 または 1 あるいは y が整数のとき、あるいは $y=\frac{1}{2}$ で x が有理数のときは正確な値を返す.
 - 実数の絶対値は正確な値を返す.
 - 正確な戻り値には、有理数の他、 $\sqrt{-1}$ 、 \sqrt{m} (m は正整数) が含まれることがある.

```
[0] os_md.myval(sin(@pi));
 [1] os_md.myval(sin(@pi/6));
 1/2
 [2] deval(sin(@pi/6));
 0.5
 [3] eval(sin(@pi/6));
 0.499999999999999991
 [4] os_md.myval(4^sin(@pi/6));
 2
 [5] os_md.myval(2^exp(@pi*@i));
 1/2
 [6] os_md.myval(sin(@pi/3));
 1/2*((3)^(1/2))
 [7] os_md.myval(2*exp(@pi/3*@i));
 (1*@i)*((3)^(1/2))+1
 [8] eval(00);
 (1+1.73205080756887729346530507834*@i)
 [9] os_md.myval((2/3)^sin(@pi/6));
 1/3*((6)^(1/2))
 [10] os_md.myval(os_md.abs(1-2^(1/2)));
 ((2)^{(1/2)})^{-1}
 [11] os_md.myval((2^(1/2))^(-2)+(3^(3/2))+\sin(0pi/6));
 3*((3)^(1/2))+1
以上は、次のような正確な値を得ている.
          \sin \pi = 0, 	 4^{\sin \frac{\pi}{6}} = 2, 	 2^{\exp \pi i} = \frac{1}{2},2 \exp \frac{\pi}{3} i = 1 + \sqrt{3}i, 	 (\frac{2}{3})^{\sin \frac{\pi}{6}} = \frac{\sqrt{6}}{3}, 	 |1 - \sqrt{2}| = \sqrt{2} - 1.
                                         4^{\sin\frac{\pi}{6}} = 2, 	 2^{\exp\pi i} = \frac{1}{2},
:: 函数 f から \sin などの函数子を除いて myeval() や mydeval() の引数のmyallのののののので変換
 • 函数子 sin,cos,tan,asin,acos,atan,asin,acos,sinh,cosh,tanh,exp,log,pow を含んだ
```

98. f2df(f|opt=n)

- 函数, および x^y の形のべきの函数を含んだ函数から, それらを除いたリスト形式函数に変換する.
- f は有理式のほか,有理式成分のベクトルや行列でもよい.
- opt=1,3: map(eval,f) に対して変換を行う (@pi や cos(0) などが含まれている場合の効率化) opt=-1,-3: map(deval,f) に対して変換を行う opt=-3,2,3:f がリストの場合も変換を行う (通常は変換せずに返す)

```
[0] os_md.f2df(exp(-x^2-y^2));
[z_{-}, [z_{-}, os_{md.myexp}, -x^2-y^2]]
[1] os_md.f2df(x^(y+1));
[z_{-},[z_{-},os_{md.mypow},x,y+1]]
[2] os_md.f2df(x^0.5);
[z_{-},[z_{-},dsqrt,x]]
[3] os_md.f2df(exp(-x)*(sin(x)+cos(y)));
[(z_1+z_2)*z_1, [z_0, s_md.myexp, -x], [z_1, s_md.mysin, x], [z_2, s_md.mycos, y]]
```

```
[4] os_md.f2df(exp(t*sin(x)+cos(y)));
     [z__,[z__,dexp,[z1__*t+z1__1,[z1__,dsin,x],[z1__1,dcos,y]]]]
     [5] os_md.f2df(exp(t*sin(x)+cos(y))/(sin(x)+2));
     [(z_1)/(z_+2), [z_-, os_md.mysin, x], [z_1, os_md.myexp, [z_*t+z1_, [z1_, c_+]]]
     os_md.mycos,y]]]]
     [6] os_md.f2df(tanh(x));
     [z_{-}, [z_{-}, 0, (z_{-}, 1^2-1)/(z_{-}, 1^2+1)], [z_{-}, os_md.myexp, x]]
     [7] os_md.f2df(exp(x+y^2*@pi));
     [z_{-},[z_{-},os_{md.myexp,x+0pi*y^2}]]
     [8] os_md.f2df(exp(x+y^2*@pi)|opt=1);
     [z_{-}, [z_{-}, os_{md.myexp}, x+3.14159265358979323829*y^2]]
     [9] os_md.f2df(exp(x+y^2*@pi)|opt=-1);
     [1*z_{-}, [z_{-}, os_{md.myexp}, 1*x+3.14159*y^2]]
     [10] M=mat([cos(x), sin(x)], [-sin(x), cos(x)]);
     [\cos(x)\sin(x)]
     [-\sin(x)\cos(x)]
     [11] F=os_md.f2df(M);
     [[ z__1 z__ ]
     [-z_{z_1}, [z_{z_1}, os_{md.mysin,x}], [z_{z_1}, os_{md.mycos,x}]]
     [12] os_md.myeval(subst(F,x,0));
     [10]
     [ 0 1 ]
99. todf(f, [v_1, ..., v_n]) todf([f, [ops]], [v_1, ..., v_n])
    :: 函数子 f で変数が v_1,\ldots,v_n のリスト形式函数を得る(n は f の引数の数)
      • [ops] は f に渡すオプションリスト (getopt() で得られる形式).
      • n=1 で v_1 がリストでないときは, [v_1,...,v_n] は単に v_1 としていしてもよい.
      • v_i は数値、不定元、有理式、リスト形式函数など f2df() で解釈できる函数でよい.
        以下では |z|, [2\exp{\frac{x}{2}}], \zeta(\frac{1}{2}+\sqrt{-1}x), |\zeta(\frac{1}{2}+\sqrt{-1}x)| に対応するリスト形式函数を得ている.
         [0] os_md.todf(os_md.abs,z);
         [z_0, [z_0, os_md.abs, z]]
         [1] os_md.abs(z);
         [z_0,[z_0,os_md.abs,z]]
         [2] os_md.todf(floor, 2*exp(x/2));
         [z_0, [z_0, floor, [2*z_1, [z_1, os_md.myexp, 1/2*x]]]]
         [3] os_md.todf(os_md.zeta,1/2+x*@i)
         [z_0, [z_0, os_md.zeta, (1*@i)*x+1/2]]
         [4] F=os_md.abs(os_md.zeta(1/2+x*@i));
         [z_1,[z_1,os_md.abs,[z_0,[z_0,os_md.zeta,(1*@i)*x+1/2]]]]
         [5] os_md.myfeval(F,98.831194218);
         0.0000000068100083539303687859
100. df2big(f|inv=1)
    :: リスト形式函数 f を倍精度浮動小数点計算から bigfloat 計算へ変更する
      • sin, cos, tan, asin, acos, atan, exp, log に対応.
      • inv=1 の指定は逆変換を意味する.
```

```
[0] F=os_md.f2df(sin(x));
     [z_{-},[z_{-},os_{md.mysin,x}]]
     [1] F=os_md.df2big(F);
     [z_{-},[z_{-},\sin,x]]
     [2] F=os_md.df2big(F|inv=1);
     [z_{-},[z_{-},os_{md.mysin,x}]]
101. compdf(f,x,g) compdf(f,[x_1,x_2,...],[g_1,g_2,...])
    :: リスト形式函数 f の変数 x にリスト形式函数 g を代入したリスト形式函数を返す
     • f は多項式や有理函数でもよい. たとえばリスト形式函数 f と g に対して f \cdot g を得るには
       compdf(x*y,[x,y],[f,g]) extraction extraction compdf(x*y,[x,y],[f,g])
     f や g は f2df() で解釈可能な式でもよい.
     • f が文字列のときは、|p|, [p], abs(p), floor(p), rint(p), zeta(p), gamma(p), arg(p),
       real(p), imag(p), conj(p) が可能. ただし p は f2df() で解釈可能な式. なお (p) を略した場
       合は(x)を指定したとみなす.
     • 変数 x_1, x_2, \ldots にそれぞれリスト形式函数 g_1, g_2, \ldots を代入するときは, x = [x_1, x_2, \ldots]
       g = [g_1, g_2, ...]  とすればよい.
     [0] Sin_x=os_md.f2df(sin(x))$
     [1] Exp_x=os_md.f2df(exp(x))$
     [2] ExpSin_x=os_md.compdf(Exp_x,x,Sin_x)$
     [3] os_md.myfeval(ExpSin_x,0);
     1
     [4] os_md.compdf("|2*sin(x^2)|",x,x);
     [z_{-}, [z_{-}, os_{md.abs}, [2*z_{-}, [z_{-}, os_{md.mysin}, x^2]]]]
102. \operatorname{cutf}(f, x, [[x_1, v_1], [x_2, v_2], \dots, [x_n, v_n]]) \quad \operatorname{cutf}(f, x, [t, [x_1, v_1], \dots, [x_n, v_n]])
    :: 函数 f の変数が特定の範囲のとき函数値の変更を行い, その値またはリスト形式函数を返す
     • 第3引数のリストの個数 n は2以上で、x_1 \le x_2 < x_2 < \cdots < x_{n-1} \le x_n を満たす必要がある.
     • x < x_1 の場合は v_1 を返す、v_1 は (リスト形式函数) でもよい (myfeval(v_1,x) を返す).
       第3引数の最初の要素が[]のときは、その項は無視される.
     • x>x_n の場合は v_n を返す. 第3引数の最後の要素が[] のときは、その項は無視される.
     • 1 < j < n で x = x_j のときは v_j を返す. v_j はリスト形式函数でもよい.
     • 上記以外の時は f(x) を返す.
     • f の変数が x でないときは、それを第 3 引数の最初の要素として指定する. たとえば
       [t, [x_1, v_1], \ldots] などとする.
     ● 2 番目の引数が不定元のときは、その不定元を変数とするリスト形式函数にして返す.
     [0] os_md.cutf(1/x,3,[[-1,0],[0,0],[1,0]]);
     [1] os_md.cutf(1/x,0.5,[[-1,0],[0,0],[1,0]]);
     [3] os_md.cutf(1/x,0,[[-1,0],[0,0],[1,0]]);
     [4] F=os_md.f2df(sin(x)/x)$
     [5] os_md.cutf(F,1.5,[[],[0,1],[]]);
     0.664997
     [6] os_md.cutf(F,0,[[],[0,1],[]]);
```

```
1
     [7] os_md.cutf(1,-2,[[0,-1],[0,0],[]]);
     -1
     [8] os_md.cutf(1,0,[[0,-1],[0,0],[]]);
     [9] os_md.cutf(1,0.5,[[0,-1],[0,0],[]]);
     [10] os_md.cutf(x/y,0.5,[y,[-1,0],[0,0],[1,0]]);
     2*x
     [11] F=os_md.cutf(sin(x)/x,x,[[],[0,1],[]]); /* x=0 のとき 1 と拡張した函数 */
     [z_0, [z_0, os_md.cutf, [(sin(z_1))/(z_1)], x, [[z_1, [], [0,1], []]]]]
     [12] os_md.myfdeval(F,0);
     [13] os_md.myfdeval(F,1)-dsin(1);
103. periodicf(f,[a,b],x) periodicf(ltov([g_1,g_2,...,g_n]),c,x)
    :: \mathbf{x} を変数とする函数 f|_{[a,b)} を周期関数に拡張した函数にする
     • x - k(b - a) の値 y が a \le y < b となる整数 k を選んで f(y) を返す.
     • \left[\frac{x}{c}\right]-kn の値が 0 以上 n 未満の数となる整数 k と,x-(kn+\ell)c の値 y が 0 以上 c 未満にある \ell
       を選んで g_{\ell+1}(y) を返す.
       g_k は数値, あるいは (リスト形式) 函数.
     • x が不定元のとき,x を変数とする上のようなリスト形式函数にして返す.
     [0] os_md.periodicf(x^2,[-1,1],0.2);
    0.04
     [1] os_md.periodicf(x^2,[-1,1],1.2);
     0.64
     [2] os_md.periodicf(x^2,[-1,1],2.2);
     0.04
     [3] F=os_md.periodicf(x^2,[-1,1],x)$
     [4] os_md.myfeval(F,2.2);
    0.04
     [5] os_md.periodicf(ltov([1,2,3,4]),1,2);
     [6] G=os_md.periodicf(ltov([1,2,3,4]),1,x)$
     [7] os_md.myfeval(G,2.2);
     [7] os_md.myfeval(G,4);
     [8] G=os_md.periodicf(ltov([x,1-x,-x,x-1]),1,x);
     [z_1,[z_1,os_md.periodicf,[[z_0-z_0+1-z_0 z_0-1]],1,[[z_0,x]]]]
104. cmpf([f,[a,b]]|exp=c)
                            cmpf(x)
    :: 積分区間をコンパクト閉区間 [0,1] に直した函数にする
     • [f,[a,b]] によって \int_a^b f(x)dx = \int_0^1 g(x)dx となる函数 g(x) を定義し、それをリスト形式函数
```

として返す.

新たな定義をするまでは、cmpf(x) は g(x) を返す.

- a="-infty"は $a=-\infty$ を,b="infty"は $b=\infty$ を意味し,無限区間の積分を有限区間の積分 に変換する. なお, "-infty", "infty"は任意の文字列でよい.
- exp のオプションを指定しない場合は以下でc = -1とする.

 $\exp=c$ と負数 c を指定した場合も含めて

exp=c と負数 c を指定した場合も含め [
$$a,\infty$$
] で a が有限のときは $g(x)=\frac{f(a+\frac{x}{C(1-x)})}{C(1-x)^2}$ $(C=\frac{|c|}{4})$. [$-\infty$, b] で b が有限のときは $g(x)=\frac{f(b+1-\frac{1}{Cx})}{Cx^2}$ $(C=\frac{|c|}{4})$. [$-\infty$, ∞] のときは $g(x)=(\frac{1}{C(1-x)^2}+\frac{1}{Cx^2})f(\frac{1}{C(1-x)}-\frac{1}{Cx})$ $(C=2|c|)$

 \bullet exp=c と正数 c を指定すると

exp=
$$c$$
 と正数 c を指定すると
$$[a,\infty]$$
 で a が有限のときは $g(x) = \frac{e^{\frac{x}{1-x}}}{C(1-x)^2} f(\frac{e^{\frac{x}{1-x}}-1}{C}+a)$ $(C=\frac{c}{6}).$
$$[-\infty,b]$$
 で b が有限のときは $g(x) = \frac{e^{1-\frac{1}{x}}}{Cx^2} f(\frac{1-e^{\frac{1}{x}}}{C}+b)$ $(C=\frac{c}{6}).$
$$[-\infty,\infty]$$
 のときは $g(x) = (\frac{e^{\frac{1}{x}}}{Cx^2} + \frac{e^{1-x}}{C(1-x)^2}) f(\frac{e^{1-x}-e^{\frac{1}{x}}}{C})$ $(C=12c).$ f はリスト形式函数でもよい.

- f はリスト形式函数でもよい.
- cmpf([1/(1+x^2),["",""]]) で得られる関数は

$$g(x) = \mathrm{cmpf}(x) = \begin{cases} \frac{2}{2x^2 - 2x + 1} & x \in [0, 1], \\ 2 & x \notin [0, 1]. \end{cases}$$

- areabezier() で使われている (例にあるグラフを参照).
- 105. myfeval(f,x) (f,a) myfeval(f,[x,a]) $myfeval(f,[x_1,a_1],...])$
- 106. myfdeval(f,a) myfdeval(f,[x,a]) $myfdeval(f,[x_1,a_1],...])$
 - :: myeval() や mydeval() の引数のリスト形式函数 f の変数に a を代入して値を得る
 - f の変数がデフォルトの \mathbf{x} でなくて v のときは x を [v,x] とする.
 - f の複数の変数に代入するときは第2引数を [[x,0.5],[y,3]] などのようにする.
- 107. myf2eval(f,x,y)
- 108. myf2deval(f,x,y)
 - :: myeval() や mydeval() の引数のリスト形式 2 変数函数 f に代入して値を得る
- 109. myf3eval(f,x,y,z)
- 110. myf3deval(f,x,y,z)
 - :: myeval() や mydeval() の引数のリスト形式 3 変数函数 f に代入して値を得る
 - 1変数関数 f は変数 x, 2変数関数 f は変数 x, y, 3変数函数 f は変数 x, y, z を用いて表す.
 - myfeval(f,x) と myeval(mysubst(f,[x,x])) とは同等である. 同様に myf2eval(f,x,y)と myeval(mysubst(f,[[x,x],[y,y]])) とは同等であり, さらに myf3eval(f,x,y,z) と myeval(subst(f, [[x,x], [y,y], [z,z]])) は同等である (eval を deval に置き換えたものも 同様).
 - myf2eval(f,a,b) は myfeval(f,[[x,a],[y,b]]) と同等である.
 - [0] F=[[xx,yy],[xx,dcos,x],[yy,dsin,x]]\$
 - [1] os_md.myfdeval(F,0);
 - [1,0]
 - [2] os_md.myfdeval(F,@pi/3);
 - [0.5,0.866025]

上は

- [3] os_md.mydeval(subst(F,x,@pi/3));
- [0.5, 0.866025]
- [4] def afo(X){ return [dcos(X),dsin(X)];}

```
[5] afo(deval(@pi/3));
     [0.5,0.866025]
    などと同様な結果を得る.
111. execproc(\ell|all=1,var=k)
    :: リスト形式手続きの実行
    リスト形式手続きとは、函数、引数リスト、オプションリストの3つ組のリストを並べたリスト.
    すなわち \ell=[\ell_1,\ell_2,\cdots] で、\ell_j=[f_j,v_j,p_j] となっているとき call(f_j,v_j|option_list=p_j) を j=
    1,2,...と実行する.
     • オプションがない場合は、略して\ell_i=[f_i,v_i] としてよい.
     ● 最後の函数の戻り値が返される.
     • 不定元 v1, v2,...,vk は特別の意味を持ち、それぞれ直前、2 つ前 ,...,k 個前の函数の実行結果の
       戻り値で置き換えられる.
     • 上において、k=2 がデフォルトであるが、var=k によって変更できる.
     • all=1:これを指定すると、全ての函数の実行結果の戻り値が返される(最後の実行結果の戻り値
       を先頭とするリスト).
     • evals() も似た機能の函数で, pari() も扱える.
     [1] L=[[os_md.binom,[x,2]],[os_md.binom,[v1,2]]]$
     [2] os_md.execproc(subst(L,x,6)|all=1);
     [105, 15]
112. fsum(f, [m, n, d] | df=1, subst=1) fsum(f, [x, m, n, d] | df=1, subst=1)
    \cdots 一般項が f(x) で与えられる級数の和 \sum_{k=0}^{\left[\frac{m-n}{d}\right]} f(m+kd) を返す
     • f の変数がデフォルトの x のときは、変数 x の指定は不要.
     • d が指定されていないときは、d=1 と解釈される.
     • df=1 が指定されていると、f を f2df(f) に置き換えてから処理する.
     • subst=1 が指定されていると、単純な代入で処理する (たとえば、sin(0.5) なども実数に変えない).
     [1] os_md.fsum(x,[1,10]);
    55
     [2] os_md.fsum(x^y,[y,0,5]);
    x^5+x^4+x^3+x^2+x+1
    [3] os_md.fsum(x^y,[y,0,5,2]);
    x^4+x^2+1
    [4] P=eval(@pi);
    3.14159265358979
     [5] s_md.fsum(sin(x)/10000,[0,P,P/10000]|df=1)*P;
    1.9999998355037
     [6] An=2*((x)^(2*n-1))/(2*n-1)$
                                        /* term */
     [7] U_{n=2*x^{2*n+1}/(2*n+1)/(1-x^2)} /* error */
     [8] P4=os_md.fsum(An,[n,1,4,1]|subst=1);
    2/7*x^7+2/5*x^5+2/3*x^3+2*x
                                   /* \log((1+x)/(1-x)) */
     [9] os_md.fctrtos(@@|dviout=1,var=x,rev=1,small=1);
                                 2x + \frac{2}{3}x^3 + \frac{2}{5}x^5 + \frac{2}{7}x^7
                                   /* log 2 */
     [10] subst(P4,x,1/3);
```

53056/76545
[11] deval(@@);

- 0.693135
- [12] deval(log(2));
- 0.693147
- [13] deval(subst(Un,x,1/3,n,4));
- 1.27013e-005
- [14] P5=os_md.fsum(An,[n,1,5,1]|subst=1)\$
- [15] subst(P5,x,1/3);

4297606/6200145

- [17] deval(00);
- 0.693146
- [18] deval(subst(Un,x,1/3,n,5));
- 1.15467e-006
- 113. fint $(f, n, [t_1, t_2]] | \text{cpx=1}, \text{exp=}c, \text{int=}k, \text{prec=}v)$ fint $(f, n, \ell | \cdots)$
 - :: 複素積分を含む数値積分
 - f は披積分函数で, 第3引数は積分範囲を表す.
 - n は分割の数であるが、積分範囲の外でも f が定義されているときは -n を与えると精度が上がることが多い.
 - n = 0 は、n = 32 と解釈される.

実変数の積分

- 実変数函数 f のとき、デフォルトの変数は $\mathbf x$ で、n は分割の数、 $[t_1,t_2]$ は積分区間を表す.
- 積分区間で、 $t_1 = "-"$ は $-\infty$ を、 $t_2 = "+"$ は $+\infty$ を表す.
- 変数が x でなくて t のとき,積分区間と合わせて第 3 引数に $[t,t_1,t_2]$ と指定する.
- 実変数関数 f が複素数値のとき、cpx=1 を指定する(たとえば $1/(x^2+0i)$ のとき).

複素積分

- 複素積分のとき、函数 f の変数は x, y, z を使うことができる(同時使用可).
 なお, x は複素変数 z の実部, y は虚部を表す.
- 積分路は、積分路の実部、虚部を表す函数の組と積分区間とのリスト ℓ で表す。函数のパラメータは t とする。たとえば

 $[[(\cos(t),\sin(t)],[0,2*@pi]]$

は単位円を表す.

● 積分路の曲線を表す函数は微分可能な函数でなければならないが、それらの合併でもよい. 各曲線毎にリストにする. たとえば

[[[t,0],[-1,1]], [[($\cos(t),\sin(t)$],[0,2*0pi]]]

は単位円の上半平面の部分の周を表す曲線

• 折線を積分路とする場合は、通過点の座標を指定する. たとえば

$$[[1,-1],[1,1],[1,-1],[-1,-1],[1,-1]]$$

● 始点に戻る閉曲線の場合は、最後に -1 と指定すればよい. 上の長方形の周は

としてもよい.

オプション

- デフォルトではベジェ曲線で積分を近似するが
 - int=1 を指定すると, |n| 分割して台形公式で近似計算する.
 - int=2 を指定すると, |n| 分割してシンプソンの公式で近似計算する. このとき, n が奇数なら |n|+1 分割する.
- 積分変数を t とすると、無限区間での積分において無限遠で $o(|t|^{-2})$ (有理函数のときは $O(|t|^{-2})$) を満たさないと誤差が大きくなるので、prec=16 または exp=1 などと指定すると改善されることが多い.

- 函数に滑らかでない点や不連続点がある場合は、prec=16 などと指定すると計算誤差が少なくなる。
- Acc=1 を指定すると pari() による高精度計算を行う. ただし ctrl("bigfloat",1) および setprec(prec) による精度の設定が必要. また, 有理関数でなくて sin(x) などの初等関数を扱う場合は注意が必要で, 不定元が大量に生成される可能性がある (myeval() の項を参照. ord() で分かる).

以下の [0], [1], [2], [3] はそれぞれ次の積分を表す.

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1} = \pi, \quad \int_{-\infty}^{\infty} \frac{\sqrt{2} \, dx}{x^2 + \sqrt{-1}} = \pi - \pi \sqrt{-1}, \quad \int_{|z| = 1} \frac{dz}{2z} = \pi \sqrt{-1}, \quad \int_{|z| = 1} \frac{e^{\frac{1}{z}}}{2} dz = \pi \sqrt{-1}.$$

- [0] os_md.fint($1/(x^2+1),32,["-","+"]$);
- 3.14159
- [1] os_md.fint(dsqrt(2)/(x^2+0i),96,["-","+"]|cpx=1);
- (3.1416-3.14158*@i)
- [2] os_md.fint(1/(2*z),-96,[[cos(t),sin(t)],[0,2*@pi]]);
- (3.14159*@i)
- [3] os_md.fint(exp(1/z)/2,-96,[[cos(t),sin(t)],[0,2*@pi]]);
- (-4.96894e-016+3.14159*@i)

Bézier 曲線を使った数値積分の相対誤差

	非積分関数	積分範囲	指定	16 分割	32 分割	96 分割	384 分割	1536 分割
	$\frac{1}{x^2+1}$	$-\infty < x < \infty$	(n, -)	1.3×10^{-5}	1.3×10^{-7}	8.5×10^{-10}	4.7×10^{-12}	2.1×10^{-14}
	$\frac{1}{x^2 + \sqrt{-1}}$	$-\infty < x < \infty$	(n, -)	2.3×10^{-3}	1.7×10^{-4}	2.6×10^{-6}	1.9×10^{-8}	8.1×10^{-11}
ĺ	$e^{\frac{1}{z}}$	z = 1	(-n, -)	7.6×10^{-5}	4.1×10^{-6}	4.8×10^{-8}	1.9×10^{-10}	7.3×10^{-13}

114. fimag(f,x|inv=g)

- :: 複素変数の指数関数を実変数の関数に変換
- [1] os_md.fimag(exp(r+x*@i));
 (1*@i)*exp(r)*sin(x)+exp(r)*cos(x)
- [2] os_md.fimag(2^(r+x*@i));
 ((2)^(r))*cos(log(2)*x)+(1*@i)*((2)^(r))*sin(log(2)*x)
- 115. trig2exp(f,x|inv=g)
 - :: 三角関数と指数関数の変換と簡単化
 - デフォルトでは、三角函数を複素変数の指数函数で置き換え、指数関数の積は一つにまとめる.
 - inv=1: 複素変数の指数函数の虚部は、三角函数を使って実変数の函数に置き換える. 三角関数の積は、三角関数の和にまとめられる.
 - inv=sin(y), inv=cos(y), inv=tan(y): x が trig2exp() の第2引数のとき, $\sin x$ または $\cos x$ または $\tan x$ の有理式に可能な限り直す (y=x のとき). より一般に inv=sin(ax+b), inv=cos(ax+b) のように, y は第2変数 x の1次式でもよい (た とえば, inv=cos(x/2), inv=sin(x+@pi/3) など).
 - 合成函数の変数中の三角関数や指数関数は変更されない.
 - [0] os_md.trig2exp(sin(x),x);
 - (-1/2*@i)*exp((1*@i)*x)+(1/2*@i)*exp((-1*@i)*x)
 - [1] os_md.trig2exp(@@,x|inv=1);

sin(x)

[2] os_md.trig2exp($16*sin(x)^5,x|inv=1$);

```
\sin(5*x)+10*\sin(x)-5*\sin(3*x)
 [3] os_md.trig2exp(4*cos(x)^2*exp(x)^2,x);
 2*exp(2*x)+exp((2-2*@i)*x)+exp((2+2*@i)*x)
 [4] os_md.trig2exp(4*x*sin(x)^2*cos(x),x|inv=1);
 (\cos(x)-\cos(3*x))*x
 [5] os_md.trig2exp(sin(5*x),x|inv=sin(x));
 16*\sin(x)^5-20*\sin(x)^3+5\sin(x)
 [6] os_md.trig2exp(cos(x+y),x|inv=cos(x));
 cos(y)*cos(x)-sin(x)*sin(y)
 [7] os_md.trig2exp(cos(2*x+y),x|inv=cos(x));
 -2*\sin(y)*\cos(x)*\sin(x)+2*\cos(y)*\cos(x)^2-\cos(y)
 [8] os_md.trig2exp(cos(2*x+y),x|inv=sin(x));
 -2*\cos(y)*\sin(x)^2-2*\sin(y)*\cos(x)*\sin(x)+\cos(y)
 [9] os_md.trig2exp(cos(2*x+3*@pi/2),x|inv=cos(x));
 2*sin(x)*cos(x)
 [10] os_md.trig2exp(2*cos(2*x+@pi/6),x|inv=cos(x));
2*((3)^(1/2))*\cos(x)^2-\sin(x)*\cos(x)-((3)^(1/2))
 [11] os_md.trig2exp(cos(x),x|inv=cos(x/3));
 4*\cos(1/3*x)^3-3*\cos(1/3*x)
 [12] os_md.trig2exp(2*cos(x),x|inv=cos(x+@pi/3));
 cos(x+1/3*@pi)+sin(x+1/3*@pi)*((3)^(1/2))
 [13] os_md.trig2exp(tan(3*x),x|inv=tan(x));
 (\tan(x)^3-3*\tan(x))/(3*\tan(x)^2-1)
上は以下の等式を示している
                         \sin x = -\frac{i}{2}\exp(xi) + \frac{i}{2}\exp(-xi),
               4\cos^2 x \cdot \exp^2 x = 2\exp 2x + \exp((2-2i)x) + \exp((2+2i)x).
inv=1 を指定した上の例は
                      16\sin^5 x = \sin 5x - 5\sin 3x + 10\sin x,
                4x\sin^2 x \cdot \cos x = x(\cos x - \cos 3x).
```

inv=sin(x) または inv=cos(x) を指定した上の例は

$$\begin{split} \sin 5x &= 16 \sin^5 x - 20 \sin^3 x + 5 \sin x, \\ \cos(x+y) &= \cos x \cdot \cos y - \sin x \cdot \sin y, \\ \cos(2x+y) &= -2 \sin y \cdot \cos x \cdot \sin x + 2 \cos y \cdot \cos^2 x - \cos y \\ &= -2 \cos y \cdot \sin^2 x - 2 \sin y \cdot \cos x \cdot \sin x + \cos y, \\ \cos(2x+\frac{\pi}{2}) &= -2 \sin x \cdot \cos x, \\ 2\cos(2x+\frac{\pi}{6}) &= 2\sqrt{3} \cos^2 x - \sin x \cdot \cos x - \sqrt{3}. \end{split}$$

inv=cos(x/3) を指定すると

$$\cos x = 4\cos^3\frac{x}{3} - 3\cos\frac{x}{3}.$$

inv=cos(x+@pi/3)を指定すると

$$2\cos x = \cos(x + \frac{\pi}{3}) + \sqrt{3}\sin(x + \frac{\pi}{3}).$$

inv=tan(x) を指定すると

$$\tan 3x = \frac{\tan^3 x - 3\tan x}{3\tan^2 x - 1}.$$

- 116. isshortneg(f)
 - :: f & -f を表現する文字列の長さの比較

-f の表示文字列の長さが f の表示文字列の長さより短いかどうか判定する.

- 117. fshorter(f,x)
 - :: x の三角関数の簡単化
 - 三角関数の有理函数を自動的に簡単化する.
 - 現れる三角関数の変数の比は有理数になっている必要がある.
 - [0] os_md.fshorter($8*sin(x)^4-8*sin(x)^2+sin(x)+1,x$); sin(x)+cos(4*x)
 - [1] os_md.fshorter(($\sin(x)-3*\sin(3*x)$)/($3*\cos(x)+\cos(3*x)$),x);

 $tan(x)^3-2*tan(x)$

- [2] os_md.fshorter($(1-\cos(2*x))/(1+\cos(2*x)),x$); $\tan(x)^2$
- 118. fzero(f,[x, x_1 , x_2] |mesh=m,dev=d,zero=1,trans=1,cont=1)
 - :: 実数値函数 f の零点を求める
 - 函数 f は myeval() の引数の形でもよい.
 - x は変数で、区間 $[x_1,x_2]$ での零点を求める。 変数 x がデフォルトの x のときはそれを省略して、二番目の引数は $[x_1,x_2]$ でよい。
 - 戻り値は、零点の近似値とそこでの f の値の組のリスト
 - f が多項式や有理式のときは分子の多項式の零点を調べる.その次数が 2 以下の時は根の公式を,それ以上の次数の時は polroots() を使う.
 - mesh=m: 区間を m 等分してその小区間の両端で f の符号が変わるときに、その間の零点をひとつずつ求める。 デフォルトは m=1024.
 - dev=d: 小区間の両端の値で函数のグラフを線分で近似したときの零点または両端の中点での函数の値を順に調べて(前者は奇数回目,後者は偶数回目)零点の近似計算をするが,その繰り返しの最大回数. デフォルトは d=16.
 - zero=1:区間 $[x_1,x_2]$ の両端で f の符号が変わるときに、その間の零点をひとつ求める.
 - trans=1: myeval() で値が計算できる函数であることを示す(設定しなくてもよい).
 - cont=1: f が連続関数であることを示す (設定しなくてもよい).
 - [0] os_md.fzero($3-x^2$,[-2.0,2.0]);
 - [[-1.73205,-4.44089e-016],[1.73205,-4.44089e-016]]
 - [1] os_md.fzero(exp(x)*sin(x)-cos(x),[0.0,10.0]);
 - [[0.531391,1.11022e-016],[3.18303,-4.44089e-016],[6.28505,3.28626e-013],
 - [9.42486,1.23013e-011]]
 - [2] os_md.fzero(2/x-x,[-1.0,10.0]);
 - [[1.41421,3.14018e-016]]
- 119. $fmmx(f, [x, x_1, x_2] | mesh=m, dev=d, mmx=1, zero=1, trans=1, cont=1, dif=1)$
 - :: 実数値函数 f の極値を求める

- 函数 f は myeval() の引数の形でもよい.
- x は変数で、区間 $[x_1,x_2]$ での極値を求める。 変数 x がデフォルトの x のときはそれを省略して、二番目の引数は $[x_1,x_2]$ でよい。
- 戻り値は、極値をとる x の近似値とそこでの f の値の組のリスト
- mmx=1:極値でなくて最大値と最小値を求める.

 $[[x_{\min}, f(x_{\min})], [x_{\max}, f(x_{\max})]]$ が戻り値で、 $f(x_{\min})$ が最小値、 $f(x_{\max})$ が最大値.

- mesh=m: 区間を m 等分してその隣接した 2 つの小区間の隣接点での函数の値が両端での値の間にないときその間の極値をひとつずつ求める. デフォルトは m=1024.
- $\operatorname{dev}=d$: 上で調べる隣接区間をそれぞれ 2 等分してできる 3 組の隣接小区間を順に調べて、極値のある隣接小区間を選ぶ、ということの繰り返しの最大回数. デフォルトは d=16.
- dif=1: f が微分できる函数のとき、f' の零点を極値を取る点とみなす
- \bullet dif=g: 函数 g の零点を極値を取る点とみなす
- zero=1: dif を指定したとき、区間の両端で f' (または g) の符号が変わるときに、その間の f' (または g) の零点のひとつを極値をとる点とする.
- cont=1: dif を指定したとき、f が連続関数であることを示す(設定しなくてもよい).
- trans=1: myeval() で値が計算できる函数であることを示す(設定しなくてもよい).

```
[0] os_md.fmmx(sin(x),[0.0,6.0]);

[[0,0],[1.5708,1],[4.71239,-1],[6,-0.279415]]

[1] os_md.fmmx(sin(x),[0.0,6.0]|mmx=1);

[[4.71239,-1],[1.5708,1]]

[2] os_md.fmmx(cos(x),[0.0,6.0]|dif=1);

[[0,1],[3.14159,-1],[6,0.96017]]
```

120. flim(f,v|prec=c,init=t)

- x 変数 x の実数値関数 f の極限値を求める
 - 戻り値は極限値. ただし空文字列は極限値なし、あるいは判定できないこと、また"+"、"-"はそれぞれ $+\infty$ 、 $-\infty$ を表す.
 - v = a: $\lim_{x \to a} f(x)$
 - $\bullet \ v = \texttt{["+",}a\texttt{]} : \lim_{x \to a+0} f(x)$
 - $v = ["-", a] : \lim_{x \to a-0} f(x)$
 - $v = "+" : \lim_{x \to a} f(x)$
 - $v = "-" : \lim_{x \to -\infty} f(x)$
 - prec=c:c は -1 以上 30 以下の数で、c を増やすと極限値の正確性が増す(c=0 がデフォルト).
 - f(x) のとる値の範囲を、v=["+",a] のときは、 $[a+8^{-k-1},a+8^{-k}]$ で、v="+" のときは $[8^k,8^{k+1}]$ で、 $k=4,5,\ldots,12$ に対して fmmx(|mmx=1,mesh=16,dev=4) で得て、それによって 極限の存在を判定している.
 - init=t:t は正の実数で、デフォルトと比べてvにt倍近い値に限って調べる.

```
[0] os_md.flim(sin(x)/x,0);
1
[1] os_md.flim(sin(x)/x,"+");
0
[2] os_md.flim((1+2*x^2)/(x+x^2),"+");
2
[3] os_md.flim((1+x^4)/(1-x),"+");
```

131

- 121. fcont(f,[x, x_1 , x_2] |mesh=m,dev=d,zero=1,trans=1,dif=1) ?
 - :: 実数値函数 f の不連続点や滑らかでない点を求める
 - 函数 f は myeval() の引数の形でもよい.
 - x は変数で、区間 $[x_1, x_2]$ での極値を求める。 変数 x がデフォルトの x のときはそれを省略して、二番目の引数は $[x_1, x_2]$ でよい。
 - 戻り値は、特異点を鋏む区間とその2点でのギャップの組のリスト
- 122. fresidue($p,q | \text{cond} = [f_1, f_2,...], \text{sum} = 1$)
 - :: 多項式 q を分母とする有理式 p/q の特異点と留数の組のリスト(z が変数で、p は正則函数)
 - f_1, \ldots は z, x, y を変数とする函数で(z=x+yi)これらが全て正となる留数のみを選ぶ
 - sum=1:条件を満たす留数の和を得る
 - sum=2:条件を満たす留数の和の $2\pi i$ 倍を得る(複素積分の計算に用いる)
 - [0] os_md.fresidue(z^2 ,(z^2+1)^2);
 [[(1*@i),(-1/4*@i)],[(-1*@i),(1/4*@i)]]
 [1] os_md.fresidue(16, z^4+4);
 [[(-1+1*@i),(1-1*@i)],[(-1-1*@i),(1+1*@i)],[(1+1*@i),(-1-1*@i)],
 [(1-1*@i),(-1+1*@i)]]
 [2] os_md.fresidue(16, z^4+4 |cond=[y]);
 [[(-1+1*@i),(1-1*@i)],[(1+1*@i),(-1-1*@i)]]
 [3] os_md.fresidue(16, z^4+4 |cond=[y],sum=1);
 - [3] os_md.fresidue(16,z^4+4|cond=[y],sum=1); (-2*@i)
 - [4] os_md.fresidue(16,z^4+4|cond=[y],sum=2);
 - 4*@pi
 - [5] os_md.fresidue($3*z^4,z^6+1|cond=[y],sum=2$);
 - 2*@pi
 - [6] os_md.fresidue($3*z,z^3+@i|cond=[y],sum=2$);
 - 2*@pi
 - [7] os_md.fresidue(@e^(@i*z*xi),z^2+1|cond=[y],sum=2);
 - ((@e)^(-xi))*@pi
 - [4], [5], [6], [7] ($\xi \ge 0$) は、留数計算により以下の積分計算を得ている.

$$\int_{-\infty}^{\infty} \frac{16}{x^4 + 4} dx = 4\pi, \quad \int_{-\infty}^{\infty} \frac{3x^4}{x^6 + 1} dx = 2\pi, \quad \int_{-\infty}^{\infty} \frac{3x}{x^3 + \sqrt{-1}} dx = 2\pi, \quad \int_{-\infty}^{\infty} \frac{e^{ix\xi}}{x^2 + 1} dx = e^{-\xi}\pi.$$

3.2.2 Numbers

- 123. abs(p) abs([p,prec])
 - :: 整数または実数または複素数 p の絶対値を返す
 - p が複素数のとき [p,prec] として prec で精度の桁数を指定できる.
 - 不定変数を引数とすると対応するリスト形式函数が得られる
- 124. sgn(n|val=1)
 - ::数nまたは置換nの符号を返す
 - n が数の時は、正負に応じて 1, 0, -1 を返す.
 - n がリストまたはベクトルの時、小さい順に並んだものとの転倒数が偶のとき 1、奇のとき -1 を \overline{u}

val=1 を指定すると,転倒数を返す.

[0] os_md.sgn(-1.2);

```
-1
    [1] os_md.sgn(4/3);
    [2] os_md.sgn([4,3,2,1]);
    [3] os_md.sgn([4,3,2,1]|val=1);
    6
125. calc(p, [s, q]) calc(p, s)
   :: 数や有理式に対して演算を施す
   前者はs="+", "-", "*", "/", "^", ">", "<", "=", ">=", "<=", "!=", 後者はs= "abs",
   "neg", "sqr", "inv", "sgn" が有効.
   map() や mtransbys() などと組み合わせて使うと便利.
    [0] os_md.calc(x,["-",y]);
    x-v
    [1] os_md.calc(3,["^",4]);
    81
    [2] os_md.calc(x/y,"inv");
    (y)/(x)
    [3] map(os_md.calc,[3,-3,0,2],"sgn");
    [1,-1,0,1]
126. isint(p)
   :: p が整数かどうか調べる
   p が整数の時 1, そうでないとき 0 を返す
127. israt(p)
   :: p が有理数かどうか調べる
   p が有理数の時 1, そうでないとき 0 を返す
128. iscrat(p)
   :: p が数でその実部と虚部が共に有理数かどうか調べる
   pの実部と虚部が共に有理数の数の時 1, そうでないとき 0を返す
129. isalpha(n)
   :: 整数 n がアルファベットの文字コードかどうか調べる
    [0] strtoascii("1")[0];
    49
    [1] os_md.isalpha(49);
    [2] os_md.isalpha(strtoascii("a")[0]);
130. isnum(n)
   :: 整数 n が数字 0\sim9 の文字コードかどうか調べる
131. isalphanum(n)
   :: 整数 n がアルファベットまたは数字の文字コードかどうか調べる
132. isdecimal(s)
   :: 文字列 s が整数または小数を表しているかどうか調べる
     • s が文字列でないときは0を返す.
```

```
[0] os_md.isdecimal("0");
     [2] os_md.isdecimal(" -2.5 ");
     [3] os_md.isdecimal(" -2.5/2 ");
     [4] os_md.isdecimal(-2.5);
     0
133. nthmodp(a, n, p)
    :: a^n \mod p を返す (a は整数で n, p は自然数)
     [0] os_md.nthmodp(107,10006,10007);
     1
     [1] os_md.nthmodp(107,1006,1007);
     425
134. issquaremodp(a, p \mid power=n)
    x = x :: 平方剰余を調べる (ルジャンドルの平方剰余記号 \left(\frac{a}{n}\right), n は平方を一般べきに)
     p は素数, n は正整数.
     • a \equiv 0 \mod p のときは 0 を返す. そうでないときは以下の値を返す.
     • x^2 \equiv a \mod p が解をもつとき 1, もたないとき -1.
     • power=n を指定したときは、x^n \equiv a \mod p の解の存在問題に置き換える.
     [0] os_md.rootmodp(12,13);
     [5,8]
     [1] os_md.rootmodp(11,13);
     [2] os_md.rootmodp(5,13|power=3);
     [7,8,11]
135. rootmodp(a, p | power=n)
    :: p を法として a の平方根(一般には n 乗根)を求める
     • p を法とした p 未満のべき乗根を小さい順にリストで返す.
     • p が奇素数のべきのときは原始根を用いて計算する.
     [0] os_md.rootmodp(12,13);
     [5,8]
     [1] os_md.issquaremodp(11,13);
     [2] os_md.rootmodp(5,13^2|power=3);
     [7,8,154]
     [3] 154^3%13^2;
     [4] os_md.rootmodp(17,32);
     [7,9]
136. primroot(p|all=1,ind=a)
```

• 前後の空白文字列は無視して判定する.

```
:: 奇素数またはそのべき p の原始根やそれを底とする指数をもとめる
     p が素数のときは自然数の最小の原始根を返す.
     • all=1:原始根を全て小さい順にリストで返す.
     • ind=a: 最小の原始根 \zeta を底とする a の指数 n を返す (\zeta^n \equiv a \mod p).
    [0] os_md.primroot(7);
    [1] os_md.primroot(17|ind=2);
    [2] os_md.nthmodp(3,14,17);
    [3] os_md.primroot(7^2|all=1);
    [3,5,10,12,17,24,26,33,38,40,45,47]
    [4] for(P=3,V=0;;P=pari(nextprime,P+2))
      if((Q=os_md.primroot(P))>V) os_md.mycat([Q,P]);
    2 3
    3 7
    5 23
    6 41
    7 71
    19 191
    21 409
    23 2161
    . . . . . .
137. rabin(p,q)
   :: pに対しqを底とするミラー・ラビンの素数判定を行う (素数、擬素数なら1を返す)
    [0] os_md.rabin(10007,2);
    [1] os_md.rabin(1007,2);
    Λ
138. cfrac(x,n)
   :: 有理数あるいは実数を連分数展開する(n は項数)
     • pari(cf,) を参照.
     • n が負のときは、分母が |n| 以下の近似分数を返す(近似値から分数に戻す).
      たとえば、分母が3桁以下の分数は、近似実数の誤差が10^{-6}以下ならそれから定まる.
    [0] os_md.cfrac(3.14159265358979,10);
    [3,7,15,1,292,1,1,1,2,1,3]
    [1] V=1237.0/4123;
    0.300024
    [2] os_md.cfrac(V,-10000);
    1237/4123
139. cfrac2n(l|loop=m)
   :: (循環) 連分数を通常の形に直す
```

● loop=m: m 項目から循環連している連分数を表す.

```
[0] os_md.cfrac2n([2,3]);
      7/3
      [1] os_md.cfrac2n([2,3]|loop=1);
      1/3*((15)^(1/2))+1
      [2] eval(@@);
      2.29099444873580562818
      [3] os_md.cfrac(@@,11);
      [2,3,2,3,2,3,2,3,2,3,2,3]
      [4] os_md.cfrac2n([1,2,3]|loop=2);
      1/3*((15)^(1/2))+2
      [5] eval(00);
      1.43649167310370844239
      [6] os_md.cfrac(@@,11);
      [1,2,3,2,3,2,3,2,3,2,3,2]
140. sqrtrat(r)
     :: 有理数(または実部と虚部が有理数の複素数)の平方根を得る
       • r が有理数でも実部と虚部が有理数の複素数でもないときは [] を返す.
       • r が有理数のとき,\frac{m}{n}, \frac{m}{n}\sqrt{-1}, \frac{m\sqrt{p}}{n}, \frac{m\sqrt{-p}}{n} のいずれかを返す.ただし,m,n,p は整数 (p>1)
         \sqrt{p} は ((p)^(1/2)), \sqrt{-p} は @i*((p)^(1/2)) と表示される.
      [0] os_md.sqrtrat(4/9);
      2/3
      [1] os_md.sqrtrat(-4/9);
      (2/3*@i)
      [2] os_md.sqrtrat(9/8);
      3/4*((2)^(1/2))
      [3] os_md.sqrtrat(-9/8);
      (3/4*@i)*((2)^(1/2))
      [4] os_md.sqrtrat(-1);
      (1*@i)
      [5] os_md.sqrtrat(os_md.sqrtrat(4*@i-3));
      (1+2*@i)
      [6] os_md.sqrtrat((4*@i-3)*2);
      (1+2*@i)*((2)^(1/2))
      [7] os_md.sqrtrat(1+@i);
      ((1/2*((2)^(1/2))+1/2)^(1/2))+(1*@i)*((1/2*((2)^(1/2))-1/2)^(1/2))
      [8] os_md.sqrtrat(-a^2+2*a-1);
      (1*0i)*a+(-1*0i)
     上は以下を示している
             \sqrt{\frac{4}{9}} = \frac{2}{3}, \ \sqrt{-\frac{4}{9}} = \frac{2}{3}i, \ \sqrt{\frac{9}{8}} = \frac{3\sqrt{2}}{4}, \ \sqrt{-\frac{9}{8}} = \frac{3\sqrt{2}i}{4}, \ \sqrt{-1} = i, \ \sqrt{4i-3} = 1 + 2i,
          \sqrt{2(4i-3)} = \sqrt{2}(1+2i), \ \sqrt{1+i} = \sqrt{\frac{\sqrt{2}}{2}} + \frac{1}{2} + \sqrt{\frac{\sqrt{2}}{2}} - \frac{1}{2}i, \ \sqrt{-a^2+2a-1} = ai-i.
```

141. sqrt2rat(r|mult=1)

:: 平方根や虚数を含んだ分数の有理化

- $p(x)^{n+\frac{1}{2}}$ は, $p(x)^n \cdot p(x)^{\frac{1}{2}}$ の形に直される(n は整数)
- 分子や分母に表れる平方根は高々一つで、共に $a^{(1/2)}$ の形をしている場合が特に有効。
- $a^{(1/2)}$ の有理数係数の有理式は、有理数 r_1 , r_2 によって $r_1 + r_2 \cdot a^{(1/2)}$ の形に標準化される.
- mult=1 を指定すると、函数の引数についてもこの有理化変換を行う.

```
[0] os_md.sqrt2rat((x+@i)/(y+@i));
((y+(-1*@i))*x+(1*@i)*y+1)/(y^2+1)
[1] os_md.sqrt2rat((2+2^(1/2))/(2-2^(1/2)));
2*((2)^(1/2))+3
[2] P=2^(1/2);
((2)^(1/2))
[3] os_md.sqrt2rat(P^4);
4
[4] os_md.sqrt2rat((P+1)^3/(P-1));
4*((2)^(1/2))+13
[5] -((x-1)^(-1/2))*x+((x-1)^(-1/2))+((x-1)^(1/2))
0
```

以上は,以下の等式を示している.

$$\frac{x+i}{y+i} = \frac{xy-xi+yi+1}{y^2+1}, \quad \frac{2+\sqrt{2}}{2-\sqrt{2}} = 2\sqrt{2}+3, \quad \left(\sqrt{2}\right)^4 = 4, \quad \frac{(\sqrt{2}+1)^3}{\sqrt{2}-1} = 4\sqrt{2}+13.$$

142. sint(r,p|str=t,sqrt=1,zero=0)

- :: 実数 r または複素数,リストや行列(ネスト対応)などの成分の実数を小数点以下 p 桁に丸める
 - p が負の時は、四捨五入して下 |p| 桁を 0 にする.
 - rやその成分が数でない場合はそのまま返す。
 - 円周率@pi, ネピア数@e は評価される. 複素数は実部と虚部に分けて処理される.
 - str=0 : p > 0 のとき, p を有効数字の桁数として丸めた概数を返す.
 - str=1 : 文字列で返す.
 - $str=2 : 1.034*10^{(-2)}$ のような文字列で返す.
 - str=3 : 10.34 のような T_FX の文字列で返す.
 - $str=4 : 1.034 \times 10^{-2}$ のような T_{FX} の文字列で返す.
 - sqrt=1: T_FX の文字列で返すとき, 虚数単位の i を \sqrt{-1} に変更する.
 - zero=0:0.··· となるとき,最初の0を省いて,... とする.
- [0] V=eval(exp(1));
- 2.71828182845904523521
- [1] os_md.sint(V,4);
- 2.7183
- [2] os_md.sint(1000*V,-2);

2700

- [3] os_md.sint([2/3,1/7],5);
- [0.66667,0.14286]
- [4] os_md.sint([2/3,1/7],5|str=3,zero=0);
- [.66667,.14286]
- [5] os_md.sint(@pi+@e*@i,5);

```
3.14159+2.71828*@i
     [6] os_md.sint(@pi+@e*@i,5|str=3);
    3.14159+2.71828i
     [7] os_md.sint(@pi+@e*@i,5|str=3,sqrt=1);
     3.14159+2.71828 \cdot \{-1\}
     [8] os_md.sint(-123.0202,3);
     -123.02
     [9] os_md.sint(-123.0202,3|str=1);
    -123.020
     [10] os_md.sint(-123.0202,3|str=2);
    -1.230*10^{(2)}
     [11] os_md.sint(-123.0202,3|str=4);
    -1.230\times10^{2}
     [12] os_md.sint(-12.30202,3|str=4);
    -1.230\times10
     [13] os_md.sint(-123.0202+@i,3|str=4);
     (-1.230+0.010i)\times 10^{2}
     [14] os_md.sint(-123.0202+@i,3|str=4,sqrt=1);
     (-1.230+0.010\sqrt{-1})\times10^{2}
     [15] os_md.sint(1234.567,3|str=0);
     1230
     [16] os_md.sint(1234.567+11.1*@i,3|str=0);
     (1230+10*@i)
143. frac2n(n|big=1)
    :: 分数を実数になおす (r は複素数, 有理式やそのリストや行列などでもよい)
     ● big=1 を指定すると bigfloat で返す.
     [0] os_md.frac2n(1/3);
    0.333333
     [1] os_md.frac2n([1/3,1/4]);
     [0.333333,0.25]
     [2] os_md.frac2n([1/3,1/4]|big=1);
     [3] os_md.frac2n([1/3,1/4+1/6*@i+3/4*x]);
     [0.333333,0.75*x+(0.25+0.166667*@i)]
    3.2.3 Polynomials and rational functions
144. radd(p,q)
    :: 有理式 p と q の和を既約有理式の形で計算する
    p \ge q はベクトルまたは行列でもよい. 一方がスカラーで他方がベクトルまたは正方行列でもよい.
     [0] P=y^3/(x*y+y^2);
     (y^3)/(y*x+y^2)
     [1] Q=(x^2+y-y^3)/(x+y-y^2);
     (y*x^2-y^3)/(y*x-y^2)
```

```
[2] P+Q;
(y^2*x^3+y^3*x^2-2*y^5)/(y^2*x^2-y^4)
[3] os_md.radd(P,Q);
(x^2+2*y*x+2*y^2)/(x+y)
[4] P*Q;
(y^4*x^2-y^6)/(y^2*x^2-y^4)
[5] os_md.rmul(P,Q);
y^2
[6] M = newmat(3,3,[[x,x,x],[x,x,x],[x,x,x]);
[xxx]
[xxx]
[ x x x ]
[7] M1 = subst(M,x,1/x);
[(1)/(x)(1)/(x)(1)/(x)]
[ (1)/(x) (1)/(x) (1)/(x) ]
[(1)/(x)(1)/(x)(1)/(x)]
[8] M2 = subst(M,x,1/(x+y));
[(1)/(x+y)(1)/(x+y)(1)/(x+y)]
[(1)/(x+y)(1)/(x+y)(1)/(x+y)]
[(1)/(x+y)(1)/(x+y)(1)/(x+y)]
[9] M1*M2;
[(3*x^4+6*y*x^3+3*y^2*x^2)/(x^6+3*y*x^5+3*y^2*x^4+y^3*x^3)
[10] os_md.rmul(M1,M2);
[ (3)/(x^2+y*x) (3)/(x^2+y*x) (3)/(x^2+y*x) ]
[ (3)/(x^2+y*x) (3)/(x^2+y*x) (3)/(x^2+y*x) ]
[ (3)/(x^2+y*x) (3)/(x^2+y*x) (3)/(x^2+y*x) ]
[11] N=newmat(2,2,[[a,b],[c,d]]);
[ab]
[ c d ]
[12] os_md.radd(x,-N);
[ x-a -b ]
[ -c x-d ]
[13] os_md.radd(x,N[0]);
[ x+a x+b ]
[14] os_md.rmul(x,N);
[ a*x b*x ]
[ c*x d*x ]
[15] V=ltov([u,v]);
[ u v ]
[16] os_md.rmul(N,V);
[ a*u+b*v c*u+d*v ]
[17] os_md.rmul(V,N);
[ a*u+c*v b*u+d*v ]
```

```
[18] os_md.rmul(V,2);
     [ 2*u 2*v ]
     [19] os_md.rmul(V,V);
     u^2+v^2
145. rmul(p,q)
    :: 有理式 (の行列) p \ge q の積を既約有理式 (の行列) の形で計算する
    q はベクトルまたは行列でもよい. このとき p は行列やベクトルでもよい (例は \mathbf{radd}() の項を参照).
146. polbyroot([p_1, p_2, ..., p_n], x)
    :: 多項式を根で与える
    戻り値: \prod_i (x-p_i)
     [0] os_md.polbyroot([a,b,c],t);
     t^3+(-a-b-c)*t^2+((b+c)*a+c*b)*t-c*b*a
147. polbyvalue([[a_1, b_1],...,[a_n, b_n]],x)
    x \circ n - 1 次多項式を n 個の点 x = a_i での値 b_i で与える
    戻り値: n-1 次多項式
     [0] os_md.polbyvalue([[0,1],[2,3],[3,6]],t);
     2/3*t^2-1/3*t+1
148. pgen([[x_1, n_1],[x_2, n_2]...],a|sum=n,shift=m,sep=1,num=1)
    :: 係数が a_* で x_i が n_i 次,全体で n 次以下の x_1, \ldots の一般多項式を作る
     • shift=1: suffix を 1 から始める
      • num=1:10,11,... を a,b,... でなくて数字のままで表す.
     • sep=1:複数の suffices のとき _ で区切る
     [0] os_md.pgen([[x,2],[y,1]],a_);
     (a_21*y+a_20)*x^2+(a_11*y+a_10)*x+a_01*y+a_00
     [1] os_md.pgen([[x,2],[y,2]],a|sum=3,shift=1);
     (a32*y+a31)*x^2+(a23*y^2+a22*y+a21)*x+a13*y^2+a12*y+a11
     [2] os_md.pgen([x,6],a);
     a6*x^6+a5*x^5+a4*x^4+a3*x^3+a2*x^2+a1*x+a0
     [3] os_md.pgen([[x,2],[y,2]],a|num=1,sep=1);
     (a2_2*y^2+a2_1*y+a2_0)*x^2+(a1_2*y^2+a1_1*y+a1_0)*x+a0_2*y^2+a0_1*y+a0_0
     [4] os_md.my_tex_form(@@);
     (a_{2,2}y^2+a_{2,1}y+a_{2,0})x^2+(a_{1,2}y^2+a_{1,1}y+a_{1,0})x
     +a_{0,2}y^2+a_{0,1}y+a_{0,0}
149. rpdiv(p,q,x)
    :: x の多項式の割り算
    戻り値 [r, m, s]: r = m * p - s * q,
    mydeg(r,x) < mydeg(q,x), mydeg(m,x) = 0
     [0] R=os_md.rpdiv(3*x^3+x^2+5,a*x^2+x+1,x);
     [(-4*a+3)*x+5*a^2-a+3,a^2,3*a*x+a-3]
     [1] R[1]*(3*x^3+x^2+5)-R[2]*(a*x^2+x+1) - R[0];
150. easierpol(p,x) \sharp \hbar t easierpol(p,[x_1, x_2, \dots])
```

x に 有理式係数の x の多項式の係数に x を含まない有理式をかけて、係数の最大公約元が x の整数係数の多項式に変換

```
[0] os_md.easierpol(6*r*y/a-3*r*x^2,x);
a*x^2-2*y
```

- 151. getroot(p,x | mult=1,cpx=1)
 - :: 多項式の根を有理式または有理数の平方根の範囲で求める
 - mult=1 を指定すると、重複度と根の組のリストを返す.
 - 係数が有理数の多項式の場合に cpx=1 を指定すると,実部と虚部が有理数の根も合わせて返す.
 - 係数が有理数の多項式の場合に cpx=2 を指定すると,実部と虚部が有理数の平方根を使って表せる根も合わせて返す.
 - 係数が有理数の多項式の場合に cpx=3 を指定すると, より複雑な根も合わせて返す.
 - これら以外の根は、定義方程式で返す.

```
[0] os_md.getroot(os_md.polbyroot([a,b,a,c+d],t),t);
[a,a,b,c+d]
[1] os_md.getroot(os_md.polbyroot([a,b,(b+c)^2],t^2),t);
[t^2-a,t^2-b,-b-c,b+c]
[2] os_md.getroot(os_md.polbyroot([a^4,(b+c)^2],t^2),t|mult=1);
[[1,-a^2],[1,a^2],[1,-b-c],[1,b+c]]
[3] os_md.getroot(2*x^3-x^2-4*x+2,x);
[x^2-2,1/2]
[4] os_md.getroot((2*x^3-x^2-4*x+2)^2,x|mult=1);
[[2,x^2-2],[2,1/2]]
[5] os_md.getroot(2*x^3+x^2+4*x+2,x|cpx=2);
[(-1*@i)*((2)^(1/2)),(1*@i)*((2)^(1/2)),-1/2]
```

- 152. polroots($p,x \mid comp=t, err=r, lim=\ell$)
 - :: 変数 x の 1 変数多項式の根、多変数多項式の共通根(実根・虚根)の(近似)値を返す
 - デフォルトでは実根を小さい順に返す.
 - comp=1 を指定すると実根と虚根とを重複を込めて返す.
 - ullet comp=-1 とすると、実根と虚根を返すが、多項式の係数が有理数のとき有理根は有理数で返す.
 - comp=-2 とすると, 実根を全て返すが, 多項式の係数が有理数のとき有理根は有理数で返す.
 - comp=2 を指定すると有理根のみを返す (全ての係数が有理数の時のみ有効). 係数に変数以外のパラメータが含まれていてもよい (パラメータについての有理解が得られる).
 - 多変数多項式の場合は、x に変数 n 個のリスト、p に多項式の n 個のリストを指定することによって共通根が得られる.
 - 0以外の数の戻りは、共通根がみつからなかったことを示す. (非存在と推定される).
 - 0 の場合は、一意に定まらなかったことを示す(乱数を用いているので、再度試みると求まる可能性は皆無ではない).
 - 近似計算をしているので,デフォルトでは 2^{-32} 程度の途中計算の誤差を無視して,共通根かどうかを判断している(求めた根の精度とは異なる). この値は, $\mathbf{err} = r$ によって変更できる.
 - $\lim \ell$ によって根の範囲を制限できる.
 - 実根または実部に対し、変数 x の範囲を [a,b] に限るには、 ℓ の要素に [x,[a,b]] を入れる.
 - 虚部も [c,d] に限るには、[x,[a,b],[c,d]] を入れる.
 - 後者で実部を制限しないときは、[x,[],[c,d]] とする.
 - たとえばxとyの実部を[0,1]に制限するには、lim=[[x,[0,1]],[y,[0,1]]]とする.
 - 一つの変数のみの指定のときは、たとえば $\lim[x,[0,1]]$ または $\lim[0,1]$ としてもよい.

```
[1] os_md.polroots(x^4-x-2,x|comp=1);
     (-0.17660498209966221474-1.20282081928547880591*@i),
     (-0.17660498209966221474+1.20282081928547880591*@i)]
     [2] os_md.polroots(x^4-x-2,x|comp=2);
     [-1]
     [3] os_md.polroots(x^4-x-2,x|comp=-1);
     [-1, (-0.17660498209966221474-1.20282081928547880591*@i),
     (-0.17660498209966221474+1.20282081928547880591*@i),
    1.35320996419932442942]
     [4] os_md.polroots(x^4-x-2,x \mid comp=-2);
     [-1,1.35320996419932442942]
     [5] os_md.polroots([x^2+y^2-2,y^2+z^2-2,z^2+x^2-2],[x,y,z]|comp=-1);
     [[-1,-1,-1],[1,-1,-1],[-1,1,-1],[1,1,-1],[-1,-1,1],[1,-1,1],[-1,1],[1,1,1]]
     [6] os_md.polroots([x^2+y^2-2,y^2+z^2-2,z^2+x^2-2],[x,y,z]|comp=2,lim=[x,[0,1]]);
     [[1,-1,-1],[1,1,-1],[1,-1,1],[1,1,1]]
     [7] os_md.polroots([x^2+y^2-2,y^2+z^2-2,x^2+2*y^2+z^2-2], [x,y,z] | comp=-1);
    100
     [8] os_md.polroots([x^2+y^2-2,y^2+z^2-2,x^2+2*y^2+z^2-4], [x,y,z] | comp=-1);
     [9] os_md.polroots([x^3+y^2-2,x^2+y^3-4],[x,y]);
     [[-0.68364887206699437088,1.52299734898613986185]]
     [10] os_md.polroots([x^3+y^2-2,x^2+y^3-4], [x,y]|comp=1);
     [[-0.68364887206699437088,1.52299734898613986185],[(0.55290983195525726542
    +0.67794790320397197786*@i),(1.61325322177512775522-0.096132145655863646024*@i)],
                               /* 1個の実根と8個の複素根 */
    上の [9] の計算には, 0.03 sec 程度かかった.
153. fctri(p)
    :: 実部と虚部が有理数係数の1変数多項式を, その範囲で既約分解する
    af_noalg()を使うので、load("sp")として関数をロードしておくことが必要.
    戻り値はfctr()と同じ形であるが、定数倍は無視される.
     [1] os_md.fctri(4*x^2+1);
     [[1,1],[2*x+(-1*0i),1],[2*x+(1*0i),1],[1,1]]
     [2] os_md.fctri(@i*x^3+1);
     [[1,1],[x+(1*0i),1],[x^2+(-1*0i)*x-1,1]]
154. polinsym(p, [x_1, \ldots, x_n], s)
    :: (x_1, \ldots, x_n) の対称有理式を基本対称式で表す
    k 次の基本対称式を sk と表す (k = 1, ..., n).
     [0] os_md.polinsym((a^2+b^2+c^2+d^2)^2,[a,b,c],s);
    d^4+(2*s1^2-4*s2)*d^2+s1^4-4*s2*s1^2+4*s2^2
     [1] P=os_md.polinsym(x^2+y^2+a/(x+y+b),[x,y],s);
```

[0] os_md.polroots(x^4-x-2,x);

```
(a+(s1^2-2*s2)*b+s1^3-2*s2*s1)/(b+s1)
     [2] os_md.polinvsym(P,[u,v],s);
     (u^3+(v+b)*u^2+v^2*u+v^3+b*v^2+a)/(u+v+b)
155. polinvsym(p, [x_1, \ldots, x_n], s)
    :: polinsym(p,[x_1,...,x_n],s) の逆函数
156. pol2sft(p,x|sft=t)
    :: shifted power 多項式を与える
      • p = \sum c_n x^n \Rightarrow \mathbb{R}^n id: \sum c_n x^n \quad (x^n := x(x-1) \cdots (x-n+1))
      • \mathsf{sft}=t を指定すると x^n \mapsto x(x-t)(x-2t)\cdots(x-(n-1)t) というずらしによる多項式の変換
     [0] os_md.pol2sft(x^3, x);
     x^3-3*x^2+2*x
     [1] os_md.pol2sft(x^3,x|sft=-1);
     x^3+3*x^2+2*x
     [2] os_md.pol2sft(x^3,x|sft=e);
     x^3-3*e*x^2+2*e^2*x
157. polinsft(p,x)
    :: shifted power 多項式に直す (pol2sft() の逆変換)
    p = \sum c_n x^n = \sum a_n x^n \Rightarrow  戻り値: \sum a_n x^n \quad (x^n := x(x-1) \cdots (x-n+1))
     [0] os_md.polinsft(x^3-3*x^2+2*x, x);
     x^3
158. sftpow(p,n)
159. sftpowext(p,n,s)
    :: p \mathcal{O} s shifted n power \prod_{\nu=1}^{n} (p + (\nu - 1)s) を返す
    \prod \left(p+(\nu-1)s\right)を返す. sftpow( ) では, s=1 と解釈される.
160. binom(p,n)
    p(p-1)(p-2)\cdots(p-n+1)/n! を返す
161. expower(p,r,n)
    :: (1+p)^r の展開を p^n まで求める
     [0] os_md.expower(x,r,3);
     (1/6*r^3-1/2*r^2+1/3*r)*x^3+(1/2*r^2-1/2*r)*x^2+r*x+1
     [2] os_md.expower(0.5,1/3,10);
     1.14471
    [2] は \sqrt[3]{1.5} の近似値を求めている.
162. orthpoly(n | pol = "type")
                               orthpoly([n, a, ...]|pol="type")
    :: 変数 x の n 次直交多項式を返す
      • デフォルトでは n 次の Legendre 多項式 P_n(x) を返す
      • type lt, Legendre, Gegenbauer, Tchebycheff, 2Tchebycheff, Jacobi, Laguerre, Hermite,
        Selected のいずれかの文字列が指定可能. ただし, 先頭から2文字のみで判断される(3文字目
        以降は省略可).
      • type が、Gebenbauer のときの引数は [n,a] で、Gegenbauer 多項式 C_n^a(x) を返す.
      • type が、Laguarre のときは、[n,a] を引数として指定すると Laguarre 多項式 L_n^{(a)}(x) を返し、
```

• type が Jacobi のときは、[n,a,c] を指定すると Jacobi 多項式 $G_n(a,b;x) = F(-n,a+n,c;x)$

n を指定すると、 $L_n^{(0)}(x)$ を返す.

を返す.

- type が Tchebycheff のときは、戻り値は Tchebycheff 多項式 $T_n(x)$ で、 $\cos(n\theta) = T_n(\cos\theta)$.
- type が 2Tchebycheff のときは、戻り値 $\bar{U}_n(x)$ (この時のみ n-1 次多項式)に $\sqrt{1-x^2}$ を掛けたものが第 2 種の Tchebycheff 関数 $U_n(x)$ となる.このとき $\sin n\theta = \bar{U}_n(\cos \theta) \sin \theta$.
- type が Selected のときは、引数 [n,a] に対し、選点直交多項式 $P_{n,a}(x)$ を返す.

```
[0] os_md.orthpoly(5);
63/8*x^5-35/4*x^3+15/8*x
[1] os_md.orthpoly(5|pol="Tc");
16*x^5-20*x^3+5*x
[2] os_md.orthpoly(5|pol="He");
x^5-10*x^3+15*x
[3] os_md.orthpoly(1|pol="La");
-x+1
[4] os_md.orthpoly([1,a]|pol="La");
-x+a+1
[5] T=os_md.xylines([[-1,0],[1,0]]|scale=[6,3],opt="thick")$
[6] T+=os_md.xylines([[0,-1],[0,1]]|scale=[6,3],opt="thick")$
[6] T+=os_md.xylines([[-1,1],[1,1],[-1,-1]]|scale=[6,3])$
[7] for(I=2;I<=7;I++) T+=os_md.xygraph(os_md.orthpoly(I),
    -48, [-1,1],0,[-1,1]|scale=[6,3],prec=6,dviout=-1)$
[8] os_md.xyproc(T|dviout=1)$
```

ルジャンドル多項式 $P_0(x) \sim P_7(x)$ のグラフ

163. schurpoly ($[m_1, m_2, \ldots]$ |var=v)

 $:: m_1 \ge m_2 \ge \cdots \ge m_n \ge 0$ のウェイトの Schur 多項式を返す

- デフォルトの変数はx1,x2,...,xn.
- var=y とすると,変数は y1,y2,...,yn
- var=[x,y,...] とすると、変数は x,y,...
- [0] os_md.schurpoly([2,1,0]); (x2+x1)*x3^2+(x2^2+2*x1*x2+x1^2)*x3+x1*x2^2+x1^2*x2 [1] os_md.polinsym(@@,[x1,x2,x3],s);

s2*s1-s3

[2] os_md.schurpoly([2,2,0]|var=[x,y,z]);
(y^2+z*y+z^2)*x^2+(z*y^2+z^2*y)*x+z^2*y^2
[3] os_md.polinsym(@@,[x,y,z],s);
-s3*s1+s2^2

164. seriesMc(f, k, v|evalopt=[[s_1, t_1],[s_2, t_2]...])

:: 函数 f の変数または変数のリスト v に対する k 次の項までの Maclaurin 展開を求める evalopt= により、展開係数に対し evalred() を使うときのオプションを設定する

- [0] os_md.fctrtos(os_md.seriesMc(exp(sin(x)),8,x)|var=x,rev=1); $1+x+1/2*x^2-1/8*x^4-1/15*x^5-1/240*x^6+1/90*x^7+31/5760*x^8$
- [1] os_md.fctrtos(os_md.seriesMc(log(cos(x)+y),4,[x,y])|var=[x,y],rev=1); $y-1/2*y^2-1/2*x^2+1/3*y^3+1/2*x^2*y-1/4*y^4-1/2*x^2*y^2+1/24*x^4$
- [2] $S=os_md.seriesMc(subst(1/x,x,x+a),4,x))$ \$
- [3] $T=os_{md.fctrtos(S|var=[x,"(x-a)"],rev=1,TeX=1); \\ \frac{1}{a}-\frac{1}{a^2}(x-a)+\frac{1}{a^3}(x-a)^2-\frac{1}{a^4}(x-a)^3 +\frac{1}{a^5}(x-a)^4$
- [4] $os_md.dviout("\$\frac1x="+T+"+\cdots$")$ \$

$$\frac{1}{x} = \frac{1}{a} - \frac{1}{a^2}(x-a) + \frac{1}{a^3}(x-a)^2 - \frac{1}{a^4}(x-a)^3 + \frac{1}{a^5}(x-a)^4 + \cdots$$

上の [2],[3] では x = a での 4 次までの Taylor 展開を求めて、 T_{PX} のソースの形で出力している.

165. seriesHG([$a_1, a_2, ...$],[$b_1, b_2, ...$],p, k)

 $seriesHG([[a_1,...],[b_1,...],[c_1,...]],[[d_1,...],[e_1,...],[f_1,...]],[x,y],k)$

:: 一般超幾何級数 $_mF_n(a_1,a_2,\ldots,a_m;b_1,b_2,\ldots,b_n;p)$ の p^k 次の項まで求めるまたは 2 変数の級数 $\sum_{0\leq i+j\leq k}\frac{(a_1)_{i+j}\cdots(b_1)_i\cdots(c_1)_j\cdots}{(d_1)_{i+j}\cdots(e_1)_i\cdots(f_1)_j\cdots}\frac{x^iy^j}{i!j!}$ を返す.

一般超幾何級数は

$$_{m}F_{n}(a_{1},\ldots,a_{m};b_{1},\ldots,b_{n};x) = \sum_{k=0}^{\infty} \left(\frac{\prod_{i=1}^{m} a_{i}(a_{i}+1)\cdots(a_{i}+k-1)}{\prod_{j=1}^{n} b_{j}(b_{j}+1)\cdots(b_{j}+k-1)} \right) \frac{x^{k}}{k!}$$

で与えられる. Gauss の超幾何級数は F(a,b,c;x) = seriesHG([a,b],[c],x,*) となる. 微分方程式は ghg() を、例は fctrtos() の [18] の項を参照.

2変数の級数

$$\sum_{0 \le i+j \le k} \frac{\prod_{k} \prod_{\nu}^{i+j} (a_k + \nu - 1) \cdot \prod_{k} \prod_{\nu}^{i} (b_k + \nu - 1) \cdot \prod_{k} \prod_{\nu}^{j} (c_k + \nu - 1)}{\prod_{k} \prod_{\nu}^{i+j} (d_k + \nu - 1) \cdot \prod_{k} \prod_{\nu}^{i} (e_k + \nu - 1) \cdot \prod_{k} \prod_{\nu}^{j} (f_k + \nu - 1)} \frac{x^i}{i!} \frac{y^j}{j!}$$

を得ることが出来る.

Appell の超幾何級数は2変数の級数で

$$\begin{split} F_1(a;b,b';c;x,y) &= \text{seriesHG([[a],[b],[b']],[[c],[]],[x,y],*)}, \\ F_2(a;b,b';c,c';x,y) &= \text{seriesHG([[a],[b],[b']],[[c],[c],[c']],[x,y],*)}, \\ F_3(a,a';b,b';c;x,y) &= \text{seriesHG([[],[a,b],[a',b']],[[c],[]],[x,y],*)}, \\ F_4(a;b;c,c';x,y) &= \text{seriesHG([[a,b],[],[]],[[],[c],[c']],[x,y],*)}. \end{split}$$

- 166. fctrtos(r|var= ℓ ,rev=1,dic=1,TeX=f,dviout=1,lim=n,small=1,pages=1,add=s)
 - :: 有理式を因数分解した形の文字列に変換する
 - TeX=1: LATeX のソースを出力する. このとき, 多項式でなく有理式の場合は, 分子と分母がリストで出力される.

- ◆ TeX=2,3: LATEX のソースを出力する. 有理式のときは通常の \frac{ }{ } の文字列となるが, それが行幅制限を超えた場合は, \Bigl(\Bigr)\bigm/\Bigl(\Bigr) の形の文字列と途中 に以下の項に述べる必要な改行が出力される.
- var=x:x の多項式として係数(有理式でもよい)を因数分解して表す. さらに、TeX=2 (resp. TeX=3) とすると、1 行の制限を越えないように、指定した変数のベキの後などに \\ (resp. \\ &) が入る. より詳しくは、各項が 1 行の文字幅以内ならば、改行は項と項の間のみ. 1 行の文字幅を超える項があれば、その前の項の後で改行し、さらに項の途中と(次の項があれば)その項の後に改行を入れる.
- var=[x,s]:変数 x を文字列 s で置き換える.
- var=[x,y,...]:(x,y,...) の多項式とみなす.
- var=[[x,s],[y,t],...]: 上で、さらに x,y,... をそれぞれ文字列 s,t,... で置き換える.
- rev=1:変数を指定した場合,通常は次数の高い単項式の順に表示されるが,それを逆順にする.
- dic=1:変数を指定した場合、単項式のべき指数の辞書式順序で大きいものから表示する.
- var="dif0": 先頭が d で,その次が小文字のアルファベットで表されている変数を,先頭の d を 除いた変数の微分作用素とみなす. オプション TeX を指定した場合,微分は ∂ を用いて, ∂_{x_1} のように表す.
- var="dif": 上と同じであるが、TeX が指定されていて、微分する変数が 1 個のみで変数が 1 文字で表されているときは、微分を単に ∂ で表す.また微分する変数が 2 個以上あってもその変数名が全て辞書式順序で x0 と x99 の間にあるならば、微分は ∂_0 や ∂_{99} などと表す.
- var="dif1":上と同様であるが、TeX が指定されると微分は $\frac{d^2}{dx^2}$ または $\frac{\partial^3}{\partial x^2 \partial y}$ の様に表される.
- var="dif2":上と同様であるが、1変数でも常微分の記号は用いず、偏微分の記号を用いる.
- $\lim_n : r$ が多項式のとき, $\lim_n : r$ がの以外の 30 以下の正数ならデフォルトの $\lim_n : r$ がの以外の 30 以下の正数ならデフォルトの $\lim_n : r$ がの以外の 30 以下の正数ならデフォルトの $\lim_n : r$ がのときは文字幅制限は考慮しない。
- small=1: I⁴TeX のソースへの変換で分数をテキストスタイルにする.
 ただし、これによる1行の文字数制限の変化は考慮されない.
- dviout=1: dviout を用いて表示する. TeX=3 が指定されたとみなされる. なお, 画面表示するときは, show() が便利 (オプションパラメータがそのまま有効).
- pages=1: T_EX 出力で 1 ページに入らないような長大な式のときは、 $begin{align*}...$ の数式環境を使って改ページを許す.
- add=s: 各項の最後に文字列 s を入れる. s は式でもよい.

```
[0] S = os_md.fctrtos(1/(x-y)^2-1/(x+y)^2);

4*y*x/((x-y)^2*(x+y)^2);

[1] eval_str(S);

(4*y*x)/(x^4-2*y^2*x^2+y^4)

[2] os_md.fctrtos(1/(x-y)^2-1/(x+y)^2|TeX=1);

[4yx,(x-y)^2(x+y)^2]

[3] os_md.fctrtos(1/(x-y)^2-1/(x+y)^2|TeX=2);

\frac{4yx}{(x-y)^2(x+y)^2}

[4] os_md.fctrtos((x-a^4+1)^2|var=x);

x^2-2*(a-1)*(a+1)*(a^2+1)*x+(a-1)^2*(a+1)^2*(a^2+1)^2

[5] os_md.fctrtos((x-a^4+1)^2|var=x, TeX=1);

x^2-2(a-1)(a+1)(a^2+1)x+(a-1)^2(a+1)^2(a^2+1)^2

[6] os_md.fctrtos((x+y+1/a)^2|var=[x,y],TeX=1);

x^2+2xy+y^2+\frac{2}{a}x+\frac{2}{a}y+\frac{1}{a^2}
```

[7] os_md.fctrtos((x+y+a+b)^2|var=[x,y],TeX=1);

```
x^2+2xy+y^2+2(a+b)x+2(a+b)y+(a+b)^2
[8] os_md.fctrtos((x+y+a+b)^2|var=[x,y],TeX=1,dic=1);
x^2+2xy+2(a+b)x+y^2+2(a+b)y+(a+b)^2
[9] os_md.fctrtos((x+y+a+b)^2|var=[x,y],TeX=1,rev=1);
(a+b)^2+2(a+b)y+2(a+b)x+y^2+2xy+x^2
[10] os_md.fctrtos((a+b+dx)^2|var="dif",TeX=1);
\partial^2+2(a+b)\partial+(a+b)^2
[11] os_md.fctrtos((a+b+dx1)^2|var="dif",TeX=1);
\partial_{x_1}^2+2(a+b)\operatorname{partial}_{x_1}^2+(a+b)^2
[12] os_md.fctrtos((a+b+dx)^2|var="dif1",TeX=1);
\frac{d^2}{dx^2}+2(a+b)\frac{d}{dx}+(a+b)^2
[13] os_md.fctrtos((a+b+dx)^2|var="dif2",TeX=1);
\frac{\partial^2}{\partial x^2}+2(a+b)\frac{\partial}{\partial x}+(a+b)^2
[14] os_md.fctrtos((a+dx+dy)^2|var="dif1",TeX=1);
\partial_x^2+2\partial_x\partial_y+\partial_y^2+2a\partial_x+2a\partial_y+a^2
[15] os_md.fctrtos((dx+dy)^2|var="dif1",TeX=1);
\frac{\partial^2}{\partial x^2}+2\frac{\partial^2}{\partial x\partial y}
+\frac{\partial^2}{\partial y^2}
[16] os_md.fctrtos((x+2*y-z)^(20)+1|dviout=1)$
[17] os_md.fctrtos((x+2*y-z)^(20)+1|var=z,dviout=1)$
[18] os_md.fctrtos(os_md.seriesHG([a,b],[c],x,3)|var=x,rev=1,dviout=1)$
```

上の [18] の画面表示は

$$1 + \frac{ba}{c}x + \frac{b(b+1)a(a+1)}{2c(c+1)}x^2 + \frac{b(b+1)(b+2)a(a+1)(a+2)}{6c(c+1)(c+2)}x^3$$

上の [19] の画面表示は、改行位置も含めて次のようになる。

$$\begin{split} &\frac{d^4}{dx^4} + \frac{4((\alpha+\beta)d+1)}{\alpha+\beta} \frac{d^3}{dx^3} + \frac{6((\alpha+\beta)d+1)^2}{(\alpha+\beta)^2} \frac{d^2}{dx^2} + \frac{4((\alpha+\beta)d+1)^3}{(\alpha+\beta)^3} \frac{d}{dx} \\ &+ \left((\alpha^4 + 4\beta\alpha^3 + 6\beta^2\alpha^2 + 4\beta^3\alpha + \beta^4)d^4 + (4\alpha^3 + 12\beta\alpha^2 + 12\beta^2\alpha + 4\beta^3)d^3 + (6\alpha^2 + 12\beta\alpha + 6\beta^2)d^2 + (4\alpha^4 + 4\beta)d + \alpha^4 + 4\beta\alpha^3 + 6\beta^2\alpha^2 + 4\beta^3\alpha + \beta^4 + 1 \right) \left/ \left((\alpha+\beta)^4 \right) \right. \end{split}$$

var= を指定して微分作用素として扱うと

- [20] os_md.fctrtos($(1/(a+b)+dx1+dx2)^2|var="dif0",dviout=1)$ \$
- [21] os_md.fctrtos($(1/(a+b)+dx1+dx2)^2|var="dif",dviout=1,small=1)$ \$

[19] os_md.fctrtos((1/(alpha+beta)+dx+d)^4+1|var="dif1",dviout=1)\$

- [22] os_md.fctrtos($(1/(b-a)+dx1+dx2)^2|var="dif2",dviout=1)$ \$
- [23] $os_md.fctrtos((1/(a+b)+dx+d)^2|var="dif",dviout=1)$ \$
- [24] os_md.fctrtos($(1/(a+b)+dx+d)^2|var="dif0",dviout=1)$ \$
- [25] os_md.fctrtos($(1/(a+b)+dx+d)^2|var="dif1",dviout=1)$ \$
- [26] os_md.fctrtos($(1/(a+b)+dx+d)^2|var="dif2",dviout=1,add="u")$ \$
- [27] os_md.fctrtos($(1/(a+b)+dx+d)^2|var="dif1",dviout=1,small=1)$ \$

はそれぞれ以下のような表示となる.

$$\partial_{x_1}^2 + 2\partial_{x_1}\partial_{x_2} + \partial_{x_2}^2 + \frac{2}{a+b}\partial_{x_1} + \frac{2}{a+b}\partial_{x_2} + \frac{1}{(a+b)^2}$$
 (20)

$$\partial_1^2 + 2\partial_1\partial_2 + \partial_2^2 + \frac{2}{a+b}\partial_1 + \frac{2}{a+b}\partial_2 + \frac{1}{(a+b)^2}$$
 (21)

$$\frac{\partial^2}{\partial x_1^2} + 2\frac{\partial^2}{\partial x_1 \partial x_2} + \frac{\partial^2}{\partial x_2^2} - \frac{2}{a-b}\frac{\partial}{\partial x_1} - \frac{2}{a-b}\frac{\partial}{\partial x_2} + \frac{1}{(a-b)^2}$$
 (22)

$$\partial^{2} + \frac{2(da+db+1)}{a+b}\partial + \frac{(da+db+1)^{2}}{(a+b)^{2}}$$
 (23)

$$\partial_x^2 + \frac{2(da+db+1)}{a+b}\partial_x + \frac{(da+db+1)^2}{(a+b)^2}$$
 (24)

$$\frac{d^2}{dx^2} + \frac{2(da+db+1)}{a+b} \frac{d}{dx} + \frac{(da+db+1)^2}{(a+b)^2} \tag{25}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{2(da+db+1)}{a+b} \frac{\partial u}{\partial x} + \frac{(da+db+1)^2}{(a+b)^2} u \tag{26}$$

$$\frac{d^2}{dx^2} + \frac{2(da+db+1)}{a+b} \frac{d}{dx} + \frac{(da+db+1)^2}{(a+b)^2}$$
 (27)

167. tohomog(r, [$x_1, x_2, ...$],y)

 $:: (x_1, x_2, \ldots)$ の有理式に変数 y を導入して (y, x_1, x_2, \ldots) の斉次式にする

[0] os_md.tohomog(($x^2+2*x+a*y$)/(y+1), [x,y], t);

 $(x^2+2*t*x+a*t*y)/(y+t)$

[1] $P = subst(os_md.tohomog(x^2+a*x+b, [x], y), y, x-y);$

 $(a+b+1)*x^2+(-a-2*b)*y*x+b*y^2$

[2] subst(P, y, x-1);

 $x^2+a*x+b$

x の n 次多項式 p(x) に対し $p(x)=\sum a_j x^j (x-c)^{n-j}$ を満たす多項式 $\sum a_j x^j y^{n-j}$ は, subst(tohomog(p,[x],y),y,(x-y)/c) で求められる.

168. substblock(p, x, q, y)

x の多項式 p,q に対し、y=q とおいて p を x の次数が mydeg(q,x) 未満の (x,y) の多項式に直す p,y は有理式でもよい、y は x を含んではならない。

[0] os_md.substblock($x^4+a*x^3+2*x+1,x,x^2+1,y$);

 $(a*y-a+2)*x+y^2-2*y+2$

[1] subst(P,y,x^2+1);

x^4+a*x^3+2*x+1

169. $invf([p_1,...,p_n],[x_1,...,x_n],[y_1,...,y_n])$

 $y_i = y_i(x)$ (j = 1, ..., n) を $x_i = q_i(y)$ (j = 1, ..., n) と解く (逆函数).

ただし、 $\deg(p_i, x_j)$ は、i = j のとき 1 で i < j のとき 0 でなければならない.

戻り値: $[q_1(y_1), \ldots, q_n(y_n)]$

170. mydeg(p,x|opt=1)

:: deg(p,x) と同じ. p は行列や配列で係数は有理式でよい.

- 有理式 p が x の多項式でなければ -2 を返す.
- p が行列のとき、オプション opt=1 により、戻り値 R において R[0] が次数で R[1] はその位置(の一つ).
- p = 0 のときは戻り値が -1.
- [0] os_md.mydeg(($a*x+b*x^2$)^2/b^2,x);

4

[1] $os_md.mydeg(0,x)$;

-1

171. mymindeg(p,x|opt=1)

p がスカラーのときは mindeg(p,x) と同じ、係数は有理式でよいが、p が行列などのスカラーでないときは 0 以外の成分の最小次数を返す、

- 有理式pがxの多項式でなければ-2を返す.
- p が行列やベクトルのとき、オプション opt=1 により、戻り値 R において R[0] が次数で R[1] は その位置(先頭から見て最初のもの、行列の場合は、1 行目の次が 2 行目という順).
- 0 ではないが次数が 0 の項が複数あれば、その型が最小の位置を返す.
- 戻り値が
 - -2: x の多項式でなく、有理式である
 - -3: 零行列またはベクトルである

```
[0] os_md.mymindeg((a*x+b*x^2)^2/b^2,x);
[1] A=newmat(2,2,[[x^2,0],[x,x]]);
[ x^2 0 ]
[xx]
[2] os_md.mymindeg(A,x|opt=1);
[1,[1,0]]
[3] A=newmat(2,2,[[x^2,y^2],[x,x]]);
[ x^2 y^2 ]
[ x x ]
[4] os_md.mymindeg(A,x|opt=1);
[0,[0,1]]
[5] os_md.mymindeg(0,x);
[6] os_md.mymindeg(x/(x+1)+a,x);
-2
[7] os_md.mymindeg(newmat(2,2),x);
-3
```

172. iscoef(p, f)

- :: p の係数の全てが $f(*) \neq 0$ を満たすかどうかチェックする
 - 多項式の係数が条件を満たすかどうかのチェックをして, 0 または 1 を返す.
 - P が有理式のときは、その分母と分子について、リストやベクトルや行列のときは、その成分全てが条件を満たすかどうかをチェックする.

```
[0] os_md.iscoef(1+1/2*x*y,os_md.isint); /* 整数係数? */
0
[1] os_md.iscoef(1+1/2*x*y,os_md.israt); /* 有理数係数? */
1
```

173. mycoef(p,n,x)

- :: coef(p,n,x) と同じ、n,l は同じ長さのリストでもよい、p は行列や配列で係数は有理式でよい、
 - 戻り値は(有理式なら)既約に直される.
 - p が x の有理式でなければ 0 を返す.
- [0] os_md.mycoef((a+b*x)^2/b^2,1,x);
 (2*a)/(b)
 [1] os_md.mycoef((a+b*x)^2/b^2,2,x);

```
1
    [2] coef(x+a/b,1,x);
    [3] os_md.mycoef(x+a/b,1,x);
    [4] os_md.mycoef(A,0,x);
     [ 0 1 ]
    [00]
    [5] os_md.mycoef(A,1,x);
    Γ 1 0 T
     [ 0 1 ]
     [6] os_md.mycoef((x/a+y+1)^3,2,x);
     (3*y+3)/(a^2)
     [7] os_md.mycoef((x/a+y+1)^3,[1,1],[x,y]);
     (6)/(a)
174. pcoef(p, m, q)
   pcoef(p,m,[[x_1,..,x_n],[m_1,...,m_n]])
   :: 多項式 p^m を展開したときの単項式 q に対する係数を返す
     • p は多項式, m は非負整数.
     • q は変数とベキのリストでもよい.
     • p の変数が多く、さらに m が大きくて p^m が計算不能な場合にも有効.
     [0] P=(x+2*y+1)^2+w^2+z$
     [1] os_md.pcoef(P,8,x^2*y);
    3360
    [2] os_md.pcoef(P,8,[[x,y,z],[7,2,0]]);
    80640*w^3+887040*w^2+2306304*w+1647360
175. pfctr(p,x)
   :: x の多項式または有理式 p の因数分解
     [0] os_md.pfctr((x^2-y^4)^3*(x-y^2/z)*y^2/((x*z-1)*z),x);
     [[(y^2)/(z^2),1],[x-y^2,3],[x+y^2,3],[z*x-y^2,1],[z*x-1,-1]]
176. cterm(p|var=[x,y,...])
   :: 多項式の定数項を返す. 変数を指定可能.
    [0] os_md.cterm((x+y+a+2)^3);
    [1] os_md.cterm((x+y+a+2)^3|var=[x,y]);
    a^3+6*a^2+12*a+8
    [2] os_md.cterm((x+y+a+2)^3/(a+2)^4|var=[x,y]);
    (1)/(a+2)
177. terms(p,[x,y,...]|rev=1,dic=1)
   :: 多項式の存在する項の次数とべき指数のリストを返す
   次数と各べき指数のリストの辞書式順序で大きい順に並べて返す.
     • rev=1:小さい順に並べて返す
```

```
◆ dic=1:最初の次数は無視してべき指数のみで比較する
     [0] os_md.terms((x^3+y^2+z)^2,[x,y]);
     [[6,6,0],[5,3,2],[4,0,4],[3,3,0],[2,0,2],[0,0,0]]
     [1] os_md.terms((x^3+y^2+z)^2,[x,y]|dic=1);
     [[6,6,0],[5,3,2],[3,3,0],[4,0,4],[2,0,2],[0,0,0]]
     [2] os_md.terms((x^2+y^1+z)^2, [x,y]|rev=1);
     [[0,0,0],[1,0,1],[2,2,0],[2,0,2],[3,2,1],[4,4,0]]
178. polcut (p, n, [x, y, ...] | top=m)
    x :   変数のリスト [x,y,...] の多項式 <math>p から次数が (m 以上) n 以下でない項を削除
     [0] os_md.polcut((x+1)^5,3,x);
     10*x^3+10*x^2+5*x+1
     [1] os_md.polcut((x+y+1)^5,3,[x,y]|top=3);
     10*x^3+30*y*x^2+30*y^2*x+10*y^3
179. mydiff(p,x)
    :: diff(p,x) と同じ. p は行列や配列で係数は有理式でよい. x もリストでよい.
    x = 0 のときは 0 を返す.
     [0] os_md.diff(x+a/b,x);
     (b^2)/(b^2)
     [1] os_md.mydiff(x+a/b,x);
     [2] os_md.mydiff(((x/a+y+1)^3, [x,y]);
     (6*x+6*a*y+6*a)/(a^2)
180. myediff(p,x)
    :: ediff(p,x) と同じ. p は行列や配列で係数は有理式でよい.
    x = 0 のときは 0 を返す.
181. ptol(p,x|opt=0)
    :: x の多項式 p の係数のリストを返す
     • p は多項式のリスト [p_1, p_2, ...] でもよい.
     • x が多変数のときは [x_1, x_2] のように変数のリストを渡す.
     ● opt=0 は, リストから 0 の項が省かれる.
     [0] os_md.ptol((x-1)*(x+1),x);
     [-1,0,1]
     [1] os_md.ptol((a*x+b*y+c)^2,y);
     [a^2*x^2+2*c*a*x+c^2,2*b*a*x+2*c*b,b^2]
     [2] os_md.ptol([a*x+b*y,(a*x+b*y+c*z)^2],[x,y]);
     [0,b,a,c^2*z^2,2*c*b*z,b^2,2*c*a*z,2*b*a,a^2]
     [3] os_md.ptol([a*x+b*y,(a*x+b*y+c*z)^2],[x,y]|opt=0);
     [b,a,c^2*z^2,2*c*b*z,b^2,2*c*a*z,2*b*a,a^2]
182. pfrac(p,x|root=2,dviout=1,TeX=1)
    x の有理式 p を部分分数展開し、分子、分母(多項式とべき)の組のリストを返す
     • dviout=1 を指定すると、結果を dviout で表示する.
```

● TeX=1 を指定すると、上の LATeX のソースが得られる.

- root=2 を指定すると、 $x^4 + (2c r)x^2 + c^2 = (x^2 + \sqrt{r}x + c)(x^2 \sqrt{r}x + c)$ のような分母の因数分解を許す.
- [0] os_md.pfrac($(x^2+1)/((x-1)*(x-2)),x$);

$$[[1,1,1],[-2,x-1,1],[5,x-2,1]] \% 1/1^1+(-2)/(x-1)^1+5/(x-2)^1$$

- [1] os_md.pfrac($1/((x-a)^2*(x-b)),x$);
- $[[(-1)/(a^2-2*b*a+b^2),x-a,1],[(1)/(a-b),x-a,2],$
 - $[(1)/(a^2-2*b*a+b^2),x-b,1]$

 $pfrac(1/((x-a)^2*(x-b)),x|dviout=1)$ とすると、以下の表示を得る.

$$-\frac{1}{(a-b)^2(x-a)} + \frac{1}{(a-b)(x-a)^2} + \frac{1}{(a-b)^2(x-b)}$$

pfrac(1/(x^4+1),x|dviout=1,root=2), pfrac(1/(x^6+1),x|dviout=1,root=2), とすると、次 の = 以下の表示を得る.

$$\frac{1}{x^4+1} = \frac{x+\sqrt{2}}{2\sqrt{2}(x^2+\sqrt{2}x+1)} - \frac{x-\sqrt{2}}{2\sqrt{2}(x^2-\sqrt{2}x+1)},$$

$$\frac{1}{x^6+1} = \frac{\sqrt{3}x+2}{6(x^2+\sqrt{3}x+1)} - \frac{\sqrt{3}x-2}{6(x^2-\sqrt{3}x+1)} + \frac{1}{3(x^2+1)}.$$

- 183. $lpgcd([p_1, p_2,...])$
 - :: 多項式 p_1, p_2, \ldots の共通因子を返す
 - [0] os_md.lpgcd([$(x+y)^3*(x-y),(x+y)^2*x^4,(x+y)^2*(x+y+z)$]);
 - x^2+2*y*x+y^2
 - [1] os_md.lpgcd([0,0]);
 - 0
 - [2] os_md.lpgcd([15/4,9/7,27/2]);
 - 3
 - [3] os_md.lpgcd([4/10,8]);
 - 2
- 184. jacobian($[f_1, ..., f_n]$, $[x_1, ..., x_n]$ | mat=1)
 - :: 関数の組 (f_1, \ldots, f_n) の変数 (x_1, \ldots, x_n) についてのヤコビアンまたはヤコビ行列を返す.
 - [0] os_md.jacobian([x+y+z,x*y+y*z+z*x,x*y*z],[x,y,z]);
 - $(y-z)*x^2+(-y^2+z^2)*x+z*y^2-z^2*y$
 - [1] fctr(@@);
 - [[1,1],[y-z,1],[x-z,1],[x-y,1]]
 - [2] os_md.jacobian([x+y+z,x*y+y*z+z*x,x*y*z],[x,y,z]|mat=1);
 - [111]
 - [y+z x+z x+y]
 - [z*y z*x y*x]
- 185. hessian([f,[$x_1,...,x_n$]|mat=1)
 - :: 関数の組fの変数 $(x_1,...,x_n)$ についてのヘシアンまたはヘッセ行列を返す.
 - [0] os_md.hessian($x^3+x*y+y^3,[x,y]$);
 - 36*y*x-1

```
[ 6*x 1 ]
     [ 1 6*y ]
186. wronskian [f_1, \ldots, f_n], x \mid \text{mat=1})
    :: 関数の組 (f_1, \ldots, f_n) の変数 x についてのロンスキアンまたはロンスキー行列を返す.
     [0] os_md.wronskian([cos(x),sin(x)],x);
     cos(x)^2+sin(x)^2
     [1] os_md.trig2exp(@0,x|inv=1);
     [2] os_md.wronskian([cos(x), sin(x)],x|mat=1);
     [\cos(x) - \sin(x)]
     [\sin(x)\cos(x)]
187. prehombf (p,q | mem = \pm 1)
    :: 概均質ベクトル空間の相対不変式 pの b 函数を得る. q は双対多項式.
     • q(\partial_x)p(x)^{s+1} = b(s)p(x)^s に対し、fctr(b(s)) を返す.
     ● mem=1 を指定すると、速度よりメモリー使用量を優先する.
     ● mem=-1 を指定すると、上と同じだが、計算途中の進行状態も示す.
     [0] os_md.prehombf(os_md.mydet(os_md.mgen(5,5,x,1)),0);
     [[1,1],[s+1,1],[s+2,1],[s+3,1],[s+4,1][s+5,1],]
     [1] A=mgen(2,4,x,1);
     [ x11 x12 x13 x14 ]
     [ x21 x22 x23 x24 ]
     [2] os_md.prehombf(os_md.mydet(A*os_md.mtranspose(A)),0);
     [[4,1],[s+1,1],[s+2,1],[2*s+3,2]]
     [3] os_md.prehombf(os_md.mydet(os_md.mgen(6,6,x,1)),0|mem=-1);
188. intpoly(p,x|exp=c,cos=c,sin=c)
    :: 変数 x の多項式 p (またはそれと指数関数, 対数関数や三角関数の積) や有理式の原始函数を返す
     • p が多項式のときは、定数項のない多項式 \int_0^x p(x) dx を返す
     • exp=c を指定したとき、\int p(x)e^{cx}dx=q(x)e^{cx} となる多項式 q(x) を返す
     • cos=c を指定したとき, \int p(x)\cos cx \, dx = q(x)\cos cx + r(x)\sin cx となる多項式の組 [q(x), r(x)]
       を返す
     • sin=c を指定したとき、\int p(x)\sin cx\,dx=q(x)\cos cx+r(x)\sin cx となる多項式の組 [q(x),r(x)]
       を返す
```

[1] os_md.hessian($x^3+x*y+y^3$,[x,y]|mat=1);

- pow=c を指定したとき、 $\int p(x)x^c dx = q(x)x^c$ となる多項式 q(x) を返す
- log=[c,d] を指定したとき、 $\int p(x) \log(cx+d) dx = q(x) \log(cx+d) + r(x)$ となる多項式の組 [q(x), r(x)] を返す
- log=[c,d,m] を指定したとき、 $\int p(x) \log^m(cx+d) dx = \sum_{j=0}^m q_j(x) \log^{m-j}(cx+d)$ となる多項式のリスト [$q_0(x), q_1(x), \ldots$] を返す (m は正整数).
- c, d は複素数や x を含まない有理式でもよい.
- p が x の有理式の時,その原始関数を返す. ただし分母は x の 2 次以下の多項式の積に因数分解可能され,2 次多項式の判別式の定数倍は完全平方とする.

```
[0] os_md.intpoly(x^2/c+a/b,x);
(b*x^3+3*c*a*x)/(3*c*b)
```

```
[1] os_md.intpoly(x^2,x|exp=1);
x^2-2*x+2
[2] os_md.intpoly(x^2,x|sin=c);
[(-c^2*x^2+2)/(c^3),(2*x)/(c^2)]
[3] os_md.intpoly(4*x,x|log=[1,1,2]);
[2*x^2-2,-2*x^2+4*x+6,x^2-6*x-7]
[4] s_md.intpoly(2/(x^2+a^2)^2,x);
(atan((x)/(a))*x^2+a*x+atan((x)/(a))*a^2)/(a^3*x^2+a^5)
[5] os_md.intpoly(4/(x^2-a^2)^2,x);
((log(x+a)-log(x-a))*x^2-2*a*x+(-log(x+a)+log(x-a))*a^2)/(a^3*x^2-a^5)
[6] os_md.mycoef(R,1,log(x+1));
1
[7] R=os_md.intpoly(1/(x^2-2),x);
1/4*log((x-((2)^(1/2)))/(x+((2)^(1/2))))*((2)^(1/2))
[8] os_md.sqrt2rat(diff(R,x));
(1)/(x^2-2)
```

189. integrate(f,x|dumb=k,dviout=p,log=1,frac=t,I=[a,b])

:: 関数 f を変数 x について不定積分する

- I=[a,b]: 定積分 $\int_a^b f dx$ を返す.
- 不定積分が求められなかった場合は, [] を返す.
- dumb=1:メッセージを表示しない.
- dumb=-1:変数変換の過程を示す.
- dviout=1: 結果の等式を T_{EX} を使って表示する.変形過程を示す dumb=-1 の指定(以下と等価) が可能
- dviout=2:結果を途中過程も含めて TrX を使って表示する.
 - $-\log=1$ を指定すると、 $\log|\cdots|$ でなくて $\log(\cdots)$ とする.
 - frac=t:を指定すると、函数で整理して分けての最終表示の仕方を変える.

iand(t, 1): 使われる函数が一つの時のみ(函数の変数中の函数は無視).

iand(t, 2): より表示が短くなるときのみ.

 $iand(t, 4) : b \ge 0$ まま.

iand(t, 8): 函数の有理式のときも(デフォルトは多項式のときのみ).

- dviout=-1: f も含めた結果の $T_{\rm E}X$ のソースを返す.変形過程を示す. dumb=-1 の指定が可能.
- dviout=-2: 結果の函数の T_EX のソースを返す.

dumb=-1 を指定すると、変数変換の過程を含めてリストで返す.

リストの成分は途中結果を表す以下のリスト(その和が途中結果)のリストとなる.

- $-[x,f(x),\ldots]:x$ を積分変数とする不定積分を表す $(f(x),\ldots$ の和).
- [0,y,p(y),q(x)]:変数 y を導入して p(y)=q(x) と置く. なお, y=p(y) のときは、p(y) の項を省略可能.
- [1:f(x),...]:積分結果を表す (f(x),...の和).

以下ような関数の不定積分に対応(以下の有理式の積分に関連して、求まらない場合もある).

- x の有理関数 (分母が 2 次以下の多項式の積に因数分解される必要がある)
- x および x の (複数個でもよい) 1 次関数の \sin , \cos , \exp を不定元とする多項式
- 多項式と x^c や a^x との積,xとxの1次関数の \log の多項式,さらにはそれらと前項の式との和
- $\sin x$, $\cos x$, $\tan x$ の有理式. 有理数 k を用いた $\sin kx$ や $\cos kx$ などが混ざっていてもよい

$$\int r(\cos x, \sin x) dx = \int R\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) \frac{2}{1+t^2} dt \quad (t = \tan \frac{x}{2})$$

• $r(x) \arctan p(x)$ の形

$$\int r(x) \arctan^m p(x) dx = \int r(x) dx \cdot \arctan^m p(x)$$
$$- m \int \frac{p'(x) \int r(x) dx}{1 + p(x)^2} \arctan^{m-1} p(x) dx$$

- arcsin, arccos, log においても上と同様な部分積分を行う.
- $\exp x$ や e^x の有理式. 有理数 k を用いた $\exp kx$ や e^{kx} などが混ざっていてもよい

$$\int r(e^{kx})dx = \int r(y)\frac{dy}{ky} \qquad (y = e^{kx})$$

• $r(x, \sqrt{c^2 - (ax - b)^2})$ で、r(x, y) が有理式

$$\int r\left(x, \sqrt{c^2 - (ax - b)^2}\right) dx = \int r\left(\frac{c}{a}\sin t + \frac{b}{a}, c\cos t\right) \frac{c}{a}\cos t dt \quad \left(x = \frac{c}{a}\sin t + \frac{b}{a}\right)$$

• $r(x, \sqrt{(ax-b)^2-c^2})$ で、r(x,y) が有理式

$$\int r\left(x,\sqrt{(ax-b)^2-c^2}\right)dx = \int r\left(\frac{c}{a\cos t} + \frac{b}{a},\frac{c\sin t}{\cos t}\right)\frac{c\sin t}{a\cos^2 t}dt \quad \left(x = \frac{c}{a\cos t} + \frac{b}{a}\right)$$

• $r(x, \sqrt{(ax-b)^2+c^2})$ で、r(x,y) が有理式

$$\int r\left(x, \sqrt{c^2 + (ax - b)^2}\right) dx = \int r\left(\frac{c\sin t}{a\cos t} + \frac{b}{a}, \frac{c}{\cos t}\right) \frac{c}{a\cos^2 t} dt \quad \left(x = \frac{c\sin t}{a\cos t} + \frac{b}{a}\right)$$

• $r\left(x, \left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)^{\frac{m}{n}}\right)$ で,r(x, y) が有理式

$$\int r\left(x, \left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)^{\frac{m}{n}}\right) dx = \int r\left(-\frac{\delta t^n - \beta}{\gamma t^n - \alpha}, t^m\right) \left(-\frac{d}{dt} \frac{\delta t^n - \beta}{\gamma t^n - \alpha}\right) dt \quad \left(t = \left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)^{\frac{1}{n}}\right)$$

• $r(x, \sqrt{\alpha x + \beta}, \sqrt{\gamma x + \delta})$ で、r(x, y, z) が有理式

$$\int r\left(x,\sqrt{\alpha x+\beta},\sqrt{\gamma x+\delta}\right)dx = \int r\left(\frac{t^2-\delta}{\gamma},\sqrt{\frac{\alpha t^2-\alpha \delta+\beta \gamma}{\gamma}},t\right)\frac{2t}{\gamma}dt \quad (t=\sqrt{\gamma x+\delta})$$

[0] os_md.integrate($x^2/c+a/b,x$);

 $(b*x^3+3*c*a*x)/(3*c*b)$

[1] os_md.integrate(x^2*exp(x),x);

 $exp(x)*x^2-2*exp(x)*x+2*exp(x)$

[2] os_md.integrate(x*a^x,x);

 $(((a)^(x))*log(a)^2*x-((a)^(x))*log(a))/(log(a)^3)$

[3] os_md.integrate(x^2*sin(c*x),x);

 $(-\cos(c*x)*c^4*x^2+2*\sin(c*x)*c^3*x+2*\cos(c*x)*c^2)/(c^5)$

[4] os_md.integrate($4*x*log(x+1)^2,x$);

 $(2*\log(x+1)^2-2*\log(x+1)+1)*x^2+(4*\log(x+1)-6)*x-2*\log(x+1)^2+6*\log(x+1)$

[5] os_md.integrate($2/(x^2+a^2)^2,x$);

 $(atan((x)/(a))*x^2+a*x+atan((x)/(a))*a^2)/(a^3*x^2+a^5)$

[6] os_md.integrate $(4/(x^2-a^2)^2,x)$;

 $((\log(x+a)-\log(x-a))*x^2-2*a*x+(-\log(x+a)+\log(x-a))*a^2)/(a^3*x^2-a^5)$

```
[7] os_md.integrate(1/(x^2-2),x);
-1/4*log((x+((2)^(1/2)))/(x-((2)^(1/2))))*((2)^(1/2))
[8] os_md.integrate(1/(x^4+1),x);
(1/8*\log(x^2+((2)^(1/2))*x+1)-1/8*\log(x^2-((2)^(1/2))*x+1)+1/4
*atan(((2)^{(1/2)})*x+1)+1/4*atan(((2)^{(1/2)})*x-1))*((2)^{(1/2)})
[9] os_md.integrate(1/(x^6+1),x);
(1/12*\log(x^2+((3)^(1/2))*x+1)-1/12*\log(x^2-((3)^(1/2))*x+1))*((3)^(1/2))
+1/6*atan(2*x+((3)^(1/2)))+1/6*atan(2*x-((3)^(1/2)))+1/3*atan(x)
[10] sqrt2rat(diff(@@,x));
(1)/(x^6+1)
[11] os_md.integrate(2*x*sin(x)*exp(x),x);
(\sin(x)-\cos(x))*\exp(x)*x+\cos(x)*\exp(x)
[12] os_md.integrate(tan(x),x);
-\log(\cos(x))
[13] os_md.integrate(2*sin(2*x)*tan(2*x),x);
-\sin(2*x) + \log((\sin(x) + \cos(x)) / (\sin(x) - \cos(x)))
[14] os_md.integrate(tan(x)^2,x);
(-\cos(x)*x+\sin(x))/(\cos(x))
[15] os_md.integrate(1/(3*cos(x)+4*sin(x)),x);
1/5*log((3*tan(1/2*x)+1)/(tan(1/2*x)-3))
[16] os_md.integrate(atan(x),x);
atan(x)*x-1/2*log(x^2+1)
[17] os_md.integrate(6*(x^2+1)*atan(1/x),x);
2*atan((1)/(x))*x^3+x^2+6*atan((1)/(x))*x+2*log(x^2+1)
[18] os_md.integrate((2*b*x-a^2*x^2)^(-1/2),x);
(asin((a^2*x-b*a)/(b)))/(a)
[19] os_md.integrate((a^2-x^2)^(1/2),x);
1/2*((-x^2+a^2)^(1/2))*x+1/2*asin((x)/(a))*a^2
[20] os_md.integrate((x^2-1)^(-1/2),x);
log(x+((x^2-1)^(1/2)))
[21] os_md.integrate((x^2-1)^(1/2),x);
1/2*((x^2-1)^(1/2))*x-1/2*log(x+((x^2-1)^(1/2)))
[22] os_md.integrate((x^2+a^2)^{-1/2},x);
log(x+((x^2+a^2)^(1/2)))
[23] os_md.integrate(2*(x^2+a^2)^(1/2),x);
((x^2+a^2)^(1/2))*x+\log(x+((x^2+a^2)^(1/2)))*a^2
[24] os_md.sqrt2rat(diff(@@,x));
2*((x^2+a^2)^(1/2))
[25] os_md.integrate(x^{(1/2)}/(x+1),x);
2*((x)^(1/2))-2*atan(((x)^(1/2)))
[26] os_md.integrate(x^{(1/3)}/(x+1),x);
3*((x)^{(1/3)})-atan(2/3*((3)^{(1/2)})*((x)^{(1/3)})-1/3*((3)^{(1/2)})*((3)^{(1/2)})
+1/2*\log(((x)^{(1/3)})^2-((x)^{(1/3)})+1)-\log(((x)^{(1/3)})+1)
[27] os_md.sqrt2rat(diff(@@,x));
```

```
(((x)^{-2/3})*x)/(x+1)
  [28] os_md.integrate(((2-x)/x)^{(1/2)},x);
  (((-x+2)/(x))^(1/2))*x-2*atan((((-x+2)/(x))^(1/2)))
  [29] os_md.integrate(1/(@e^x+@e^(-x)),x);
 atan(exp(x))
  [30] os_md.integrate((\sin(x)*x+\cos(x))/(\cos(x)*x),x);
 log|x|-log|cos(x)|
  [31] os_md.integrate(asin(x)^2,x);
  (asin(x)^2-2)*x+2*asin(x)*((-x^2+1)^(1/2))
  [32] os_md.integrate(1/(x*log(x)),x);
 log(log(x))
上の [0]~[32] では
          \int_{a}^{x} \left(\frac{1}{c}x^{2} + \frac{a}{b}\right) dx = \frac{1}{3c}x^{3} + \frac{a}{b}x,
                    \int x^2 e^x \, dx = (x^2 - 2x + 2)e^x,
                     \int xa^x \, dx = \frac{(x\log a - 1)a^x}{(\log a)^2},
              \int x^2 \sin cx \, dx = \left(-\frac{1}{c}x^2 + \frac{1}{c^3}\right) \cos cx + \frac{2}{c^2}x \sin cx,
      \int 4x \log^2|x+1| \, dx = (2x^2 - 2) \log^2|x+1| - (2x^2 - 4x - 6) \log|x+1| + x^2 - 6x
               \int \frac{2 dx}{(x^2 + a^2)^2} = \frac{1}{a^3} \arctan \frac{x}{a} + \frac{x}{a^2(x^2 + a^2)},
               \int \frac{4 \, dx}{(x^2 - a^2)^2} = \frac{1}{a^3} \left( \log|x + a| - \log|x - a| \right) - \frac{2x}{a^2(x^2 - a^2)}
                     \int \frac{dx}{x^2 - 2} = \frac{\sqrt{2}}{4} \log \left| \frac{x - \sqrt{2}}{x + \sqrt{2}} \right|,
                     \int \frac{dx}{x^4 + 1} = \frac{\sqrt{2}}{8} \log \left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{\sqrt{2}}{4} \left( \arctan(\sqrt{2}x + 1) + \arctan(\sqrt{2}x - 1) \right),
                     \int \frac{dx}{x^6 + 1} = \frac{\sqrt{3}}{12} \left( \log \left| x^2 + \sqrt{3}x + 1 \right| - \log \left| x^2 - \sqrt{3}x + 1 \right| \right)
                                        +\frac{1}{6}\arctan(2x+\sqrt{3})+\frac{1}{6}\arctan(2x-\sqrt{3})+\frac{1}{2}\arctan x
           \int x \sin x \cdot e^x \, dx = (x(\sin x - \cos x) + \cos x)e^x,
                   \int \tan x \, dx = -\log|\cos x|,
                  \int \tan^2 x \, dx = \frac{\sin x}{\cos x} - x,
       \int \frac{dx}{3\cos x + 4\sin x} = \frac{1}{5} \log \left| \frac{3\tan\frac{x}{2} + 1}{\tan\frac{x}{2} - 3} \right|,
               \int \arctan x \, dx = x \arctan x - \frac{1}{2} \log(x^2 + 1),
\int 6(x^2+1)\arctan\frac{1}{x}\,dx = (2x^3+6x)\arctan\frac{1}{x}+x^2+2\log(x^2+1),
```

$$\int (2bx - a^2x^2)^{-\frac{1}{2}} dx = \frac{1}{a} \arcsin \frac{a^2x - ab}{b},$$

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right),$$

$$\int \frac{dx}{\sqrt{x^2 - 1}} = \log|x + \sqrt{x^2 - 1}|,$$

$$\int \sqrt{x^2 - 1} dx = \frac{1}{2} \left(x \sqrt{x^2 - 1} - \log(x + \sqrt{x^2 - 1}) \right),$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log|x + \sqrt{x^2 + a^2}|,$$

$$\int 2\sqrt{x^2 + a^2} dx = x\sqrt{x^2 + a^2} + a^2 \log|x + \sqrt{x^2 + a^2}|,$$

$$\int \frac{\sqrt{x} dx}{x + 1} = 2\sqrt{x} - 2 \arctan \sqrt{x},$$

$$\int \frac{\sqrt[3]{x} dx}{x + 1} = 3\sqrt[3]{x} - \sqrt{3} \arctan(\frac{2\sqrt[3]{3}}{3}\sqrt[3]{x} - \frac{\sqrt[3]{3}}{3}) + \frac{1}{2} \log|\sqrt[3]{x^2} - \sqrt[3]{x} + 1| - \log|\sqrt[3]{x} + 1|,$$

$$\int \sqrt{\frac{2 - x}{x}} dx = x\sqrt{\frac{2 - x}{x}} - 2 \arctan \sqrt{\frac{2 - x}{x}},$$

$$\int \frac{dx}{e^x + e^{-x}} = \arctan \exp(x),$$

$$\int \frac{x \sin x + \cos x}{x \cos x} dx = \log|x| - \log|\cos(x)|,$$

$$\int \arcsin^2 x dx = x \arcsin^2 x + 2\sqrt{1 - x^2} \arcsin x - 2x,$$

$$\int \frac{dx}{x \log x} = \log(\log x)$$

を得ている.

[33] os_md.integrate($1/(x^4+4)$,x|dviout=1,log=1)\$

$$\int \frac{dx}{x^4 + 4} = \frac{1}{8}\arctan(x+1) + \frac{1}{8}\arctan(x-1) + \frac{1}{16}\log\left(\frac{x^2 + 2x + 2}{x^2 - 2x + 2}\right)$$

[34] os_md.integrate($((1-\cos(x))/(1/2-\cos(x)))^(1/2),x|dviout=2)$ \$

$$\int \left(\frac{-\cos(x) + 1}{-\cos(x) + \frac{1}{2}}\right)^{\frac{1}{2}} dx \qquad (t = \tan(\frac{1}{2}x))$$

$$= \int \frac{4\sqrt{\frac{1}{3t^2 - 1}}t}{t^2 + 1} dt$$

$$\left(\sqrt{3}t = \frac{1}{\cos(s)}\right)$$

$$= \int \frac{-4}{3(\sin(s))^2 - 4} dx_1$$

$$(u = \tan(s))$$

$$= \int \frac{4}{u^2 + 4} du$$

$$= 2\arctan\left(\frac{1}{2}u\right)$$

$$= 2\arctan\left(\frac{\frac{1}{2}\sin(s)}{\cos(s)}\right)$$

$$= 2\arctan\left(\frac{1}{2}\sqrt{3t^2 - 1}\right)$$

$$= 2\arctan\left(\frac{1}{2}\sqrt{3\left(\tan\left(\frac{1}{2}x\right)\right)^2 - 1}\right)$$

[35] os_md.integrate(x*sin(x),x|I=[0,@pi]);

@pi

[36] os_md.integrate($x^2*exp(-x),x|I=[0,"infty"]$);

2

[37] os_md.integrate(log(x),x|I=[["+",0],1]);

-1

上の [35] \sim [37] でオプション dviout=1 を指定すると以下が得られる.

$$\int_0^{\pi} \sin(x)x \, dx = \pi, \quad \int_0^{\infty} \exp(-x)x^2 \, dx = 2, \quad \int_0^1 \log(x) \, dx = 1.$$

190. powsum(n)

 $:: 1^n + 2^n + \cdots + m^n$ の m を x で置き換えた n+1 次多項式を返す

[0] os_md.fctrtos(os_md.powsum(3));

 $1/4*x^2*(x+1)^2$

191. bernoulli(n)

:: n 次の Bernoulli 多項式 $B_n(x)$ を返す

[0] os_md.fctrtos(os_md.bernoulli(3));
1/2*x*(x-1)*(2*x-1)

3.2.4 Functions with real/complex variables

以下の数値函数では変数(引数)を不定変数にすると対応するリスト形式函数を返す.

- 192. frac(x)
 - :: 実数 x の小数部分

pari(frac, x) と同等.

- 193. erfc(x) erfc([x,prec])
 - :: 相補誤差函数 $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt$

pari(erfc,x) または pari(erfc,x,prec) と同等.

194. fouriers($[a_0, a_1, \ldots, a_m]$, $[b_1, b_2, \ldots, b_n]$, z | cpx=1,sum = f, y = t, const=c) fouriers([f, m], [g, n], z | cpx=1,sum = f, y = t, const=c)

:: 有限 Fourier 級数 $a_0 + a_1 \cos z + a_2 \cos 2z + \dots + a_m \cos mz + b_1 \sin x + b_2 \sin 2z + \dots + b_n \sin nz$

- cpx=1 のときは、 $a_0 + a_1 e^{iz} + a_2 e^{2iz} + \dots + a_m e^{imz} + b_1 e^{-iz} + b_2 e^{-2iz} + \dots + b_n e^{-niz}$
- $[a_0, a_1, ..., a_m]$ の代わりに [f, m] と指定することができ、このときは $a_k = \mathsf{myf2eval}(f, k, t)$ と解釈される (0 < k < m).

ただし const=c を指定すると、 a_0 は c で与えられる. また、f の変数に y が含まれないときは、y=t の指定は無視される.

- $[b_1,...,b_n]$ の代わりに [g,n] と指定することができ、このときは $b_k = myf2eval(g,k,t)$ と解 釈される (1 < k < n).
- sum=1:チェザロ総和法を用いる.

sum=2:シグマ総和法を用いる.

sum=s(x,y): フーリエ級数の有限和

$$a_0 + \sum_{k=1}^{n-1} s(\frac{k}{n}, n) (a_k \cos kx + b_k \sin kx)$$

において 1 とは限らない項 $s(\frac{k}{n},n)$ で調整して総和を取る総和法を行う。チェザロ総和法では, s(x,y) は 1-x, シグマ総和法では $\frac{\sin \pi x}{\pi x}$ を用いる.

 $sum=0e^(-t*x^2*y^2)$: 熱方程式を満たすフーリエ級数の t 秒後の温度分布を示す.

- [0] for(R=[],I=21;I>0;I--) $R=cons((1-(-1)^I)/(2*I),R);$
- [1] R;

[1,0,1/3,0,1/5,0,1/7,0,1/9,0,1/11,0,1/13,0,1/15,0,1/17,0,1/19,0,1/21]

- [2] F=os_md.fouriers([],R,x)\$
- [3] os_md.xygraph(F,-192,[-3*@pi,3*@pi],0,[-1,1]|scale=[0.7,1.2],ax=[0,0],prec=6,dviout=1);

上の [2] は、次のようにしてもよい $(\sum_{m=0}^{10} \sin(2m+1)x)$.

[2] $F=os_md.fouriers([],[(1-(-1)^x)/2/x,21],x)$ \$

fouriers([],[(1-(-1)^x)/x,n],x): 方形波(最大値は $\frac{\pi}{4}$)

fouriers([],[-(-1)^x/x,n],x): 鋸波 (最大値は $\frac{\pi}{2}$)

fouriers([(1-(-1)^x)/x,n],[],x): 三角波(最大値と最小値は $\pm \frac{\pi^2}{4}$)

fouriers([$\sin(x*y)/x/y,n$],[], $x|\cos(z)$):幅2tの方形パルス波 (t>0は十分小)

fouriers([2*(1-cos(x*y))/ x^2/y^2 ,n],[],x|const=1/2,y=t):幅2tの三角パルス波

fouriers([1,n],[],x|const=1/2): ディリクレ核

fouriers([1,n],[],x|const=1/2,sum=1):フェイエール核

fouriers([e^(-x^2*y),n],[],x|const=1/2,y=t): 熱方程式の基本解

- [4] $P=os_md.fouriers([],[(1-(-1)^x)/x,41],x|sum=@e^(-x^2*y^2/100))$ \$
- [5] os_md.xygraph(P,-24,[0,@pi],0,[0,1.8]|ax=[0,0],prec=6,dviout=1)

上の /100 を /10, /3, /1, *3 とすると、順に以下が表示される.これは有限の長さの一定温度(たとえば 1000°)の棒の両端を時刻 0 以降 0° に冷やしたときの温度分布の時間経過とみることができる.

なお、片端のみ冷やして他端が断熱状態の時は、上の図を横に二分したものが温度分布の時間経過を与える。図示するのは、[5] の [0,0pi] を [0,0pi/2] に変更すればよい。

195. myexp(z)

:: 指数関数 $\exp(z)$

196. mysin(z)

:: 三角関数 $\sin(z)$

```
197. mycos(z)
    :: 三角関数 \cos(z)
198. mytan(z)
    :: 三角関数 tan(z)
199. myasin(z)
    :: 逆三角関数 asin(z)
200. myacos(z)
    :: 逆三角関数 acos(z)
201. myatan(z)
    :: 逆三角関数 atan(z)
202. mylog(z)
    :: 対数函数 \log(z)
203. mypow(z, w)
    :: 巾関数 z<sup>w</sup>
    mypow(0,w) は w に依らずに 0 を、mypow(z,0) は z \neq 0 のとき 1 を返す.
204. myarg(z)
    :: 偏角 arg(z)
    偏角は, (-\pi,\pi] の範囲が返される.
    z は平面の座標 (2 成分のリストかベクトル) でもよい.
     [0] os_md.myarg(2-@i);
     -0.463648
     [1] os_md.myarg([2,-1]);
     -0.463648
    指数関数, 対数関数, 三角関数, 逆三角函数, mypow(), myarg() は, dexp(), dsin(), dcos(), dtan(),
      dacos(), dsqrt(), datan(), real(), imag() を組み合わせて実現されている.
205. \operatorname{sqrt}(z) \operatorname{sqrt}([z, prec])
    :: z の平方根を与える
      • pari(sqrt,z) または pari(sqrt,z,prec) と同等.
      prec は精度(桁数)を与える.
      • \sqrt{z} または \sqrt{-z} が有理数 r となるときは, r あるいは r*@i を返す.
     [0] os_md.sqrt(2);
     1.41421356237309504876
     [1] os_md.sqrt([2,30]);
     1.414213562373095048801688724209698078568\\
     [2] os_md.sqrt(-1);
     (1.00000000000000000000000*@i)
     [3] os_md.sqrt(@i);
     (0.70710678118654752438+0.70710678118654752438*@i)
206. arg(z) arg([z, prec])
    :: z の偏角
    pari(gamma, z) または pari(arg, z, prec) と同等.
     [0] os_md.gamma(1);
     0.99999999999999994
     [1] os_md.gamma(100000);
     2.82422940796034787421 E456568
```

```
[2] os_md.gamma(@i);
      (-0.15494982830181068512-0.49801566811835604271*@i)
207. gamma(z) gamma([z, prec])
    :: ガンマ函数 \Gamma(z)
    pari(gamma, z) または pari(gamma, z, prec) と同等.
      [0] os_md.gamma(1);
      0.99999999999999994
      [1] os_md.gamma(100000);
      2.82422940796034787421 E456568
      [2] os_md.gamma(@i);
      (-0.15494982830181068512-0.49801566811835604271*@i)
208. digamma(z) digamma([z,prec])
    :: ディガンマ函数 \psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}
    pari(psi,z) または pari(digamma,z,prec) と同等.
209. lngamma(z) lngamma([z,prec])
    :: \log(\Gamma(z))
    pari(lngamma, z) または pari(lngamma, z, prec) と同等.
210. dilog(z)
    :: ダイログ函数 \text{Li}_2(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^2}
    pari(dilog,z) と同等.
211. zeta(s) zeta([s, prec])
    :: zeta 函数 \zeta(s)
    pari(zeta,s) または pari(zeta,s,prec) と同等.
212. eta(\tau) eta([\tau, prec])
    :: Dedekind \mathcal{O} Eta 函数 \eta(\tau) = e^{\frac{\pi i \tau}{12}} \prod_{m=1}^{\infty} (1 - e^{2\pi i m \tau})
        \tau は虚部が正の複素数.
    pari(eta,\tau) または pari(eta,\tau,prec) と同等.
213. jell(\tau) jell([\tau, prec])
    :: Elliptic j-invariant j(\tau)
        τ は虚部が正の複素数.
    pari(jell,s) または pari(jell,\tau,prec) と同等.
    3.2.5 Lists and vectors
214. llsize([m_1, m_2, ...])
    :: リストm_{j}のリストに対し、成分m_{j}の個数とm_{j}の要素の最大個数を返す
      [0] os_md.llsize([[1,2],[0,1,2,3],[1]]);
      [3,4]
215. findin(m, [\ell_0, \ell_1, ...])
    :: m に等しい要素を \ell_0, \ell_1, \ldots から探す
      ● 最初に見つかった番号を返す. 存在しなければ -1 を返す.
      • 2番目の引数はリストでなくてベクトルでも可.
      [0] os_md.findin("cat",["man","dog","cat","bird"]);
      [1] 2
216. countin(s,m,[\ell_0,\ell_1,\ldots]|step=k)
```

:: s以上 m 以下の $\{\ell_0,\ell_1,\ldots\}$ の要素の個数,間隔 m での個数分布表を返す 最後の引数はリストでなくてベクトルでも可.

step=k を指定すると、s から等間隔 m 毎に区切った |k| 個の区間に入る元の個数のリストを返す (m > 0) でなければならない).

間隔の区切りと等しいものは、kが正の時は小さい方に入れて数え、負の時は大きい方に数える.ただ し|k|=1のときは、データの最大のものを含む区間まで数える.

```
[0] os_md.countin(2,4,[1,2,3,4,5,2,0]);
[1] os_md.countin(0,0.5,[1.1,1.2,1.4,1.6,3.1,3.4,3.4,3.7]|step=1);
[0,0,3,1,0,0,3,1]
[2] os_md.countin(0,0.5,[1.1,1.2,1.4,1.6,3.1,3.5,3.5,3.7]|step=-1);
[0,0,3,1,0,0,1,3]
[3] os_md.countin(0,0.5,[1.1,1.2,1.4,1.6,3.1,3.4,3.4,3.7]|step=5);
[0,0,3,1,0]
```

217. $delopt(\ell, s|inv=1)$ $delopt(\ell, [s_1, s_2, ...]|inv=1)$

:: オプションリスト(リストのリスト)からオプション s (複数指定可)を取り除く, または抜き出す ℓ をリスト $[\ell_1,\ell_2,\ldots]$ とするとき,成分 ℓ_i がリストであって, ℓ_i の最初の成分が s に等しいときに ℓ_i を除いたリストを返す.

複数のオプションsを指定するときは、それらをリストにまとめて指定する.

- 抜き出された結果の並びは、ℓ内の順序を保つ。
- inv=1:これを指定すると、 ℓ_i の最初の成分がsに(sがリストの時は、そのいずれかに)等しい もののみのリストを返す.

```
[0] Opt=[["opt",1],["inv",0],["s",["title",2]]];
     [[opt,1],[inv,0],[s,[title,2]]]
     [1] os_md.delopt(Opt,"opt");
     [[inv,0],[s,[title,2]]]
     [2] os_md.delopt(Opt,"inv");
     [[opt,1],[s,[title,2]]]
     [3] os_md.delopt(Opt,"inv"|inv=1);
     [[inv,0]]
     [4] L=[[0,1,2],[1,2,3],[3,4,5],[4,5,6],[0,2,4]];
     [[0,1,2],[1,2,3],[3,4,5],[4,5,6],[0,2,4]]
     [5] [2590] os_md.delopt(L,0|inv=1);
     [[0,1,2],[0,2,4]]
     [6] os_md.delopt(L,[0,2]|inv=1);
     [[0,1,2],[0,2,4]]
     [7] os_md.delopt(L,[0,3]|inv=1);
     [[0,1,2],[3,4,5],[0,2,4]]
     [8] os_md.delopt(L,[0,3]);
     [[1,2,3],[4,5,6]]
218. mycat([\ell_1, \ldots, \ell_m]|delim=s)
```

- 219. mycat0($[\ell_1, \ldots, \ell_m]$, $t \mid \text{delim} = s$)

 $:: \ell_1, \ldots, \ell_m$ を表示する

• delim で区切り記号 (デフォルトは mycat() では空白, mycatO() では無し) を設定できる.

- t = 0 で非改行, t = 1 で改行.
- [0] V=100\$
- [1] os_md.mycat([V, (V>10)?"is":"is not","larger than 10."])\$
- 100 is larger than 10.
- [2] V=5\$
- [3] os_md.mycat([V, (V>10)?"is":"is not","larger than 10."])\$
- 5 is not larger than 10.

220. fcat(f,s|exe=1)

:: ファイル f に s を書き出す

- ファイル f に print(s) を書き出す. ファイル f が存在していれば追記. なお, ファイル f を削除するには remove_file(f) とすればよい. 以下では, DIROUT で設定されたディレクトリのファイルとなる.
- f = 0: デフォルトのファイル fcat.txt に追記する.
- f = 1: デフォルトのファイルに上書きする.
- f = 2, ..., 9: ファイル fcat f. txt に上書きする.
- f = -1: デフォルトのファイル名を返す.
- exe=1:出力した後に関連づけされたプログラム(通常はエディター)に渡す.

221. vtozv(v)

- :: 有理式のベクトルをスカラー倍して単純化する
 - v が有理式のときは、それを長さ1のベクトルに自動的に直す
 - 各成分は整数係数で共通因子のない多項式になる
 - 戻り値:単純化されたベクトルとスカラー倍したスカラーのリスト
- [0] $V=newvect(2,[-x*z/(2*y),-3*y*z^2/(5*x)]);$
- $[(-z*x)/(2*y)(-3*z^2*y)/(5*x)]$
- [1] os_md.vtozv(V);
- $[[-5*x^2 -6*z*y^2],(10*y*x)/(z)]$
- 222. 12p(l, v | size = s)
 - :: 係数のリストlを与えてvの多項式を返す.またその逆変換を返す.
 - \bullet l がリストやベクトルの時は、 $\sum_{j} l[j]v^{j}$ を返す.
 - l は v の多項式の時は、係数のリストを返す.この時は、size=s でリストのサイズを指定できる.
 - [0] $P=os_md.12p([a,b,c],x);$
 - c*x^2+b*x+a
 - [1] os_md.l2p(P,x);
 - [a,b,c]
 - [2] os_md.12p(P,x|size=5);
 - [a,b,c,0,0]

 - 1023/512
- 223. mulseries(v_1, v_2)
 - :: 2つのベクトルをべき級数とみなして、その積のベクトルを返す
 - 戻り値の長さは、両者のベクトルの長さの小さい方とする. (cf. vprod().)
- 224. pluspower(p, x, r, m)
 - $:: (1+p)^r$ の x に関するべき級数展開を第 m 項まで求める
 - p は定数項のない x の多項式.

```
• 戻り値は長さ m のベクトルで最初の成分の値は 1.
225. average(\ell|sint=k)
    :: 実数のリストに対し、平均値や標準偏差を求める
    戻り値は[平均値,標準偏差,個数,最小値,最大値].
    sint=k:k が自然数の時は、値を小数点以下 k 桁に丸める(sint() の第 2 引数).
     [0] os_md.average([11,12,34,53,23,12,24,68,55,57,32,20]);
     [33.4167,19.1505,12,11,68]
     [1] os_md.average([11,12,34,53,23,12,24,68,55,57,32,20]|sint=1);
     [33.4,19.2,12,11,68]
226. vprod(v_1, v_2)
227. dvprod(v_1, v_2)
    :: 2 つのベクトル (リストでもよい) の内積を返す
     • dvprod() は、成分が数値のときのみ用いることができる
     [0] V1=\text{newvect}(3,[1,2,3]);
     [123]
     [1] V2=newvect(3,[a,b,c]);
     [abc]
     [2] os_md.vprod(V1,V2);
    a+2*b+3*c
     [3] os_md.mulseries(V1,V2);
     [ a 2*a+b 3*a+2*b+c ]
228. llbase(v, \ell)
    :: 変数 \ell[0], \ell[1], \ldots の一次方程式のベクトル v の標準変換を行う (例は lsol()) の項を参照)
229. lsol(v, l)
    :: 変数 \ell[0], \ell[1], ... に関する連立一次方程式を解く
    変数は、x^3 のような変数の正整数ベキでもよい、ベキが異なるとき異なる変数とみなす.
     • \ell が変数で v が \ell の一次式でもよい. そのときは式を返す.
     [0] V = \text{newvect}(3, [x+2*y-2, 3*x+4*y-1, x+y-k]);
     [ x+2*y-2 3*x+4*y-1 x+y-k ]
     [1] os_md.llbase(V,[x,y]);
     [-x-3-2*y+5\ 2*k+1]
     [2] os_md.lsol(V,[x,y]);
     [ [x,-3] [y,5/2] 2*k+1 ]
     [3] V = \text{newvect}(2, [a*x+b*y-e, c*x+d*y-d]);
     [ a*x+b*y-e c*x+d*y-d ]
     [4] os_md.lsol(V,[x,y]);
     [[x,(-d*b+e*d)/(d*a-c*b)][y,(d*a-e*c)/(d*a-c*b)]]
     [5] VV = subst(V,y,x^2);
     [ b*x^2+a*x-e d*x^2+c*x-f ]
     [6] os_md.lsol(VV,[x^2,x]);
     [ [x^2,(d*a-e*c)/(d*a-c*b)] [x,(-d*b+e*d)/(d*a-c*b)] ]
     [7] os_md.lsol(a*x+b*y+c,x);
     (-b*y-c)/(a)
```

```
230. lnsol(v,l)
    :: 変数 \ell[0], \ell[1], ... に関する連立一次方程式の有理数解を求める
    変数は、x^3のような変数の正整数ベキでもよい、ベキが異なるとき異なる変数とみなす、なおvは多
    項式のリストとする.
     [0] P=(a-1)*x+(a+1)*y-2*a+3;
     (a-1)*x+(a+1)*y-2*a+3
     [1] os_md.lnsol([P],[x,y]);
     [ [x,5/2] [y,-1/2] ]
231. lchange(\ell, k, v|flat=1)
    ::(多重) リスト\ellのkで指定した位置の成分をvに置き換える
     • k はリストで、重複の深さの成分がある。k が数のときは、[k] とみなす。なお、0 は最初の成分。
     • flat=1 を指定したとき、k=[k_1,k_2,\ldots],\,v=[v_1,v_2,\ldots] ならば、\ell[k_{\nu}] を v_{\nu} (\nu=1,2,\ldots)で
       置き換えたリストを返す.
     [0] L=[[1,2,3],[4,5,6],[7,8]]$
     [1] os_md.lchange(L,[1,0],0);
     [[1,2,3],[0,5,6],[7,8]]
     [2] os_md.lchange(L,[2],[7,8,9]);
     [[1,2,3],[4,5,6],[7,8,9]]
     [3] os_md.lchange(L,[1,0],[4,5]|flat=1);
     [5,4,[7,8]]
232. lmax([m_1, m_2, ...])
    :: m_1, m_2, \ldots の中の最大のものを返す
233. lmin([m_1, m_2,...])
    :: m_1, m_2, \ldots の中の最小のものを返す
     • 引数はリストでなく、ベクトルや行列でもよい
     [0] os_md.lmax([1,5,4,2,3]);
     [1] os_md.lmin([1,5,4,2,3]);
     [3] A=mat([1,3],[5,2]);
     [13]
     Γ 5 2 1
     [4] os_md.lmax(A);
     [5] os_md.lmin(A[1]);
    2
234. lgcd([m_1, m_2, ...]|poly=1])
    :: m_1, m_2, \ldots の最大公約数(元)を返す
235. llcm([m_1, m_2, ...]|poly=1])
    :: m_1, m_2, \ldots の最小公倍数 (元) を返す
```

166

poly=1 を指定すると、要素を多項式とみなす。引数はリストでなく、ベクトルや行列でもよい。

• llcm() において,成分が0の元は無視される(ilcm()と異なる).

```
[0] os_md.lgcd([-6,9,-24]);
3
[1] os_md.llcm([-6,9,-24]);
72
[2] os_md.lgcd([(x+y)^2,x^2-y^2]|poly=1);
x+y
[3] os_md.llcm([(x+y)^2,x^2-y^2]|poly=1);
x^3+y*x^2-y^2*x-y^3
```

236. ldev (ℓ,s)

- :: リストsの整数倍をリスト ℓ に加えて、成分の絶対値を最小にする
 - $\ell + ms$ が求めるものとするとき, $[m, \ell + ms]$ 返す.
 - [0] os_md.ldev([1,3,5,9],[1,-1,1,-1]);
 - [1] [2,[3,1,7,7]]
- 237. lsort(ℓ_1 , ℓ_2 , t | c_1=[$c_{1,0}$, $c_{1,1}$, ...], c_2=[$c_{2,0}$, $c_{2,1}$, ...])
 - :: リスト ℓ_1 に対し、 ℓ_2 との合併、共通部分、または ℓ_2 や共通部分を除くその他、表形式データの操作
 - ℓ がリストで、t が数または文字列のとき.
 - 小さい順にソートされたリストを返す.
 - $\ell_2 = []$ $\forall t = 0$ $\exists t$ t = 0 $\exists t$ t = 0 t = 0 t = 0
 - t=1 または"setminus"のときは、さらに重複を除く.
 - t=7または"cut"のときは c1=k で ℓ_1 を最初の k 個の要素と残りの要素の 2 つのリストに分割する. ただし k が負の数のときは、最後の |k| 個を除いた要素と最後の |k| 個の要素との 2 つに分割する.
 - t=8 または"count"のときは、 ℓ_1 の要素数と、それの重複を除いた要素数の組のリストを返す.
 - t=0,4, "cup" または "sum" のときは ℓ_2 の要素を合わせ(て重複を除い)たリスト
 - t=1, "setminus" のときは ℓ_2 に含まれない ℓ_1 の要素の(重複を除いた) リスト
 - t=2, "cap"のときは、共通の要素の(重複を除いた)リスト
 - t=3, "reduce" のときは、同じものを同数消した最小リストの組を返す。
 - t=8, "count" のときは、 ℓ_1 , ℓ_2 の要素数、それぞれで重複を除いた要素数、共通の要素の要素数、同じものを同数消した最初リストの要素数の 8 個の数のリストを返す.
 - t=9 または"cons"で、 ℓ_1 がリストのリストのときは、 ℓ_1 の各要素の先頭に ℓ_2 の要素を順に付加する。 ℓ_2 の要素の数が ℓ_1 の要素より少ないときは、 ℓ_2 の要素の不足部分は、その最後の要素が続いているとみなす。 ℓ_2 がリストでないときは、それのみを要素とするリストとみなす。
 - t=10 または"cmp"で、 ℓ_1 と ℓ_2 の違い(その位置と内容の 3 つ組)のリストを出力する。 ℓ_1 、 ℓ_2 はリストまたはリストのリスト。
 - t=11 または"append"で、 ℓ_1, ℓ_2 がリストのリストのとき、要素を append したリストを返す.
 - $\cdot t = [t_0, t_1, \ldots]$ がリストで、 ℓ_1 がリストのリストのとき

 t_0 については、上の t と同様の指定が可能で、以下のようになる. (エクセルの表のようなものの操作. cf. readcsv()). また t=[] は、[0] と解釈される.

- $\ell_2 = []$ または "sort" のとき
 - $-t_0=0$ または "put" のときはリストの要素の t_1 番目の項をキーとしてソートする(逆順ソートでは, $-t_1-1$ を指定する)
 - $-t_0=3$ または "reduce" のときは、キーが同じものは重複を省いて一つを選ぶ.
- $\ell_2 = 0$ または "col" のとき: オプション c1=を指定すると
 - $-t_0 = 0$ または "put" のとき, $c_{1,1}, c_{1,2}, \dots$ 番目の項目を抜き出したリストのリストを返す.
 - $-t_0=1$ または "setminus" のとき, $c_{1,1}, c_{1,2} \dots$ 番目の項目を削除したリストのリストを返す.
- $\ell_2 = 1$ または "num" のとき

- t_1 が存在しないときは、 $t_1 = 0$ とみなす.
 - $-t_0 = "col" : 項目番号のリストを最初の要素として挿入.$
 - t₁ が数のとき
 - * $t_0=0$ または "put": 各要素の先頭に順に t_1 から番号を挿入する.
 - * $t_0=1$ または "get": c_1 で指定された番号 $c_{1,0},c_{1,1},\cdots$ の要素をこの順に抜き出す.
 - * $t_0=2$ または "sub": c_1 で指定された番号の要素を削除.
 - * $t_0 = 3$ または "sum": 要素の個数を返す
 - それ以外のとき、以下のようにi番目の要素について値 V_i を得る.
 - * t_1 が函数子のとき、その要素(ただし、 t_2 が指定されていれば、要素の t_2 番目の項目)を引数として返された値. **isyes()** や calc() などが利用できる.
 - * t_1 がリスト [s,v] のときは、函数 $calc(\cdot,[s,v])$ という函数にその要素(ただし、 t_2 が指定されていれば、要素の t_2 番目の項目)を入れて返された値 s は ">"、"<"、"="、">="、"<="、"!=" などが可能.
 - * t_1 が文字列 "+" のとき、各要素の $c_{1,1}, c_{1,2} \dots$ 番目の項目の和(数でないものは 0 とみなして足す).

この値に V_i 対し

- * $t_0 = 0$ または "put": 各要素の先頭に V_i を挿入する.
- * $t_0 = 1$ または "get" : V_i が 0 でない要素のみ抜き出す.
- * $t_0 = 2$ または "sub" : V_i が 0 の要素のみ抜き出す.
- * $t_0=3$ または "sum" : V_i の和を返す
- ℓ_2 ="transpose" で t_0 ="put" のとき、行と列を逆にする (転置).
- ℓ_2 ="adjust" で t_0 ="put" のとき,要素の項目の個数が異なっているとき,最大の個数に揃え,後ろには空文字列 "" を詰める.なお, t_1 で空きに詰めるものを指定できる.
- ℓ_2 ="subst" で t_0 ="put" のとき t_j =[a_j , b_j , c_j] : a_j 番目の要素の b_j 番目の項を c_j で置き換える.
- ℓ_1 , ℓ_2 がリストのリストのとき, ℓ_1 の要素の t_1 番目の項を ℓ_1 のキー項目, ℓ_2 の要素の t_2 番目の項を ℓ_2 のキー項目と指定して,以下を行う.
 - $-t_1$ や t_2 が省略された場合は、それらは 0 とみなす。
 - $-\ell_2$ の各要素がリストではない 1 項目からなっているとき、その項目のみを並べたリストを ℓ_2 としてもよい.
 - $-t_0=0$ または "cup" のとき, ℓ_1 の要素に同じキーの ℓ_2 の要素を付け加える.
 - $-t_0=2$ または "cap" のとき、上と同様であるが、同じキーをもつ ℓ_2 の要素がないものは削除する.
 - $-t_0=1$ または "setminus" のときは、同じキーをもつ ℓ_2 の要素があるものを ℓ_1 から削除する (ℓ_2 はキー以外の項は無視される).
 - $-t_0=3$ または "sum" のときは、同じキーをもつ ℓ_1 の要素と ℓ_2 の要素はつにまとめ、 ℓ_1 と ℓ_2 を合併する.
 - $-t_0=4$ または "over" のときは、同じキーをもつ ℓ_1 の要素と ℓ_2 の要素に対し、 ℓ_1 の $c_{1,\nu}$ 番目の項目を ℓ_2 の要素の $c_{2,\nu}$ 番目の項目によって置き換えて返す.
 - $\ell_1 \geq \ell_2$ の要素が 1 つのときは、リストにせずにそのまま指定してもよい. 次においても同様.
 - $-t_0=5$ または "subst" のときは、同じキーをもつ ℓ_1 の要素と ℓ_2 の要素に対し、 ℓ_2 の要素の $c_{2,\nu}$ 番目の項目が空(文字列)でなければ、 ℓ_1 の $c_{1,\nu}$ 番目の項目をそれで置き換えて返す.

上を行って、 $t_0=4,5$ 以外では、オプション c1 と c2 で指定した ℓ_1 と ℓ_2 の要素の項目を抜き出した(指定しないときは($t_0=3$ 以外では ℓ_2 のキーを除いた)全項目のリストのリストを返す.

- [0] os_md.lsort([3,2,0,a,1,2,b],[],0);
- [0,1,2,2,3,b,a]
- [1] os_md.lsort([3,2,0,a,1,2,b],[],1);
- [0,1,2,3,b,a]

```
[2] os_md.lsort([3,2,0,a,1,2,b],[a,c,0],"cup");
[0,1,2,3,c,b,a]
[3] os_md.lsort([3,2,0,1,2,a,b],[a,c,0],"setmins");
[1,2,3,b]
[4] os_md.lsort([3,2,0,a,1,2,b],[a,c,0],"cap");
[0,a]
[5] os_md.lsort([3,2,0,a,1,2,b],[a,c,2],"reduce");
[[0,1,2,3,b],[c]]
[6] os_md.lsort([3,2,0,a,1,2,b],[],"cut"|c1=2);
[[3,2],[0,a,1,2,b]]
[7] os_md.lsort([3,2,0,a,1,2,b],[],"cut"|c1=-2);
[[3,2,0,a,1],[2,b]]
[8] os_md.lsort([3,2,0,1,2,a,b],[a,c,0],"count");
[7,3,6,3,2,5]
[9] L=[[5,"A","P"],[2,"C","Q"],[3,"B","P"]]$
[10] os_md.lsort(L,"sort",["put",0]); /* sort by key 0 */
[[2,C,Q],[3,B,P],[5,A,P]]
[11] os_md.lsort(L1,"sort",["put",-2]); /* reverse sort by key 1 */
[[2,C,Q],[3,B,P],[5,A,P]]
[12] os_md.lsort(L, "sort", ["reduce", 2]); /* reduce duplication by key 2 */
[[3,B,P],[2,C,Q]]
[13] os_md.lsort(L,"col",["put"]|c1=[2,1]); /* extract column */
[[P,A],[Q,C],[P,B]]
[14] os_md.lsort(L,"col",["setminus"]|c1=[0]); /* delete column */
[[A,P],[C,Q],[B,P]]
[15] os_md.lsort(L,"num",["put",1000]);
                                         /* put number */
[[1000,5,A,P],[1001,2,C,Q],[1002,3,B,P]]
[16] os_md.lsort(L,"num",["col"]);
                                          /* add column numbers */
[[0,1,2],[5,A,P],[2,C,Q],[3,B,P]]
[17] os_md.lsort(L,"transpose",[]); /* transpose */
[[5,2,3],[A,C,B],[P,Q,P]]
[18] os_md.lsort(L,"num",["get"]|c1=[2,1]); /* get lines */
[[3,B,P],[2,C,Q]]
[19] os_md.lsort(L,"num",["sub"]|c1=[2,1]); /* delete lines */
[[5,A,P]]
[20] os_md.lsort(L,"num",["sum"]); /* num. of elements */
[21] os_md.lsort(L,"num",["put",[">","B"],1]); /* put number */
[[0,5,A,P],[1,2,C,Q],[0,3,B,P]]
[22] os_md.lsort(L,"num",["get",["=","B"],1]); /* get elements */
[[3,B,P]]
[23] os_md.lsort(L,"num",["get",[">=","B"],1]); /* get elements */
[[2,C,Q],[3,B,P]]
[24] os_md.lsort(L,"num",["get",["!=","B"],1]); /* get elements */
```

```
[[5,A,P],[2,C,Q]]
     [25] os_md.lsort(L,"num",["sub",["=","B"],1]); /* substract elements */
     [[5,A,P],[2,C,Q]]
     [26] os_md.lsort(L,"num",["sum",["!=","B"],1]); /* mum. of elements */
     [27] os_md.lsort(L,"num",["sum","+"]|c1=[0]); /* sum of column entries */
     10
     [28] os_md.lsort(L,"subst",[]|c1=[[0,1,"#"],[1,2,"?"]]); /* substitute */
     [[5,#,P],[2,C,?],[3,B,P]]
     [29] os_md.lsort(L,"","cons");
                                                   /* cons "" */
     [[,5,A,P],[,2,C,Q],[,3,B,P]]
     [30] os_md.lsort(L,["a","b"],"cons");
                                                  /* cons elements */
     [[a,5,A,P],[b,2,C,Q],[b,3,B,P]]
     [31] L2=[["a",3,"r"],["c",2,"p"],["b",7,"q"]]$
     [32] os_md.lsort(L,L2,["cup",0,1]); /* cup two ll */
     [[5,A,P,,],[2,C,Q,c,p],[3,B,P,a,r]]
     [33] os_md.lsort(L,L2,["cap",0,1]); /* cap two ll */
     [[2,C,Q,c,p],[3,B,P,a,r]]
     [34] os_md.lsort(L,L2,["sum",0,1]); /* sum two ll */
     [[5,A,P,,,],[2,C,Q,c,2,p],[3,B,P,a,3,r],[,,,b,7,q]]
     [35] os_md.lsort(L,L2,"append");
                                                   /* append two ll */
     [[5,A,P,a,3,r],[2,C,Q,c,2,p],[3,B,P,b,7,q]]
     [36] os_md.lsort(L,[2,5],["cap",0]); /* get lines by list */
     [[5,A,P],[2,C,Q]]
     [37] os_md.lsort(L,[2,5],["setminus",0]); /* delete lines by list */
     [[3,B,P]]
     [38] os_md.lsort(L,L2,["subst",0,1]|c1=1,c2=0); /* substitute */
     [[5,A,P],[2,c,Q],[3,a,P]]
     [39] os_md.lsort(L,L2,["subst",0,1]|c1=[1,2],c2=[0,1]); /* substitute */
     [[5,A,P],[2,c,2],[3,a,3]]
     [40] os_md.lsort([[a,b,c],[d,e,f]],[[a,b,c],[d,h,f]],"cmp");
     [[[[1,1],e,h]]]
     [41] os_md.lsort([[a,b,c],[d,e,f]],[[a,b,c],[d,e]],"cmp")$
     Different size :line 1
     [42] os_md.lsort([[a,b,c],[d,e,f]],"transpose",[]);
     [[a,d],[b,e],[c,f]]
238. msort(\ell,s)
    :: ベクトルやリストの成分を(多重)キー s に従ってソートする
     • s = [f, m]
       f = 1:小さい順,f = -1:大きい順
       キーのmは
         - 0:成分の大小
         - 1:成分がベクトルまたはリストのとき、その長さ
         - 2:成分がベクトルまたはリストのとき、先頭からの辞書式順序
```

```
- 3:成分のタイプ
```

- 4:成分の絶対値
- 5:表示の長さ
- -fn: 引数が 2 個の比較の函数子 fn を用いる
- -[fn]: 引数が 1 個の函数 fn に代入して返される値の大小
- s = [f, m, k]: 成分がベクトルまたはリストのとき、(k+1)番目の成分で比較する
- $s = [f, m, k_1, k_2]$: 成分がベクトルまたはリストのベクトルまたはリストのとき、 $(k_1 + 1)$ 番目の成分の $(k_2 + 1)$ 番目の成分で比較する(さらに $s = [f, m, k_1, k_2, k_3]$ なども可能).
- $s = [s_1, s_2, ...]$: s_i は上のようなキーで、 s_1 のキーでの大小比較で同一となったときは s_2 キーで 比較というようにキーの辞書式順序で比較する.

```
[0] os_md.msort([3,2,1,5],[-1,0]); /* 逆順 */
[5,3,2,1]
[1] os_md.msort([[1,4],[3,2,1],[4,5]],[1,0,1]); /* 2番目の成分 */
[[3,2,1],[1,4],[4,5]]
[2] os_md.msort([[1,4],[3,2,1],[4,5]],[-1,1]); /* 長い順 */
[[3,2,1],[4,5],[1,4]]
[3] os_md.msort([[2,2],[3,1],[2,1,1]],[-1,2]); /* 辞書式順序の大きい順 */
[[3,1],[2,2],[2,1,1]]
[4] os_md.msort([[1,4],[3,2,1],[4,5]],[[-1,1],[1,0,0]]); /* マルチキー */
[[3,2,1],[1,4],[4,5]]
[5] os_md.msort(["This","is","not","an","ant"],[[1,[str_len]],[1,0]]);
[an,is,ant,not,This]
```

239. addIL([a,b], $[[a_1,b_1], [a_2,b_2],...]$ |in=t)

- :: 有限区間の合併集合と有限区間の和集合の計算
 - $a_1 < b_1 < a_2 < b_2 < \dots$ となっている必要がある.
 - [a,b] の代わりに最初の引数が0のときは、第2引数を上の形に直す.
 - in=-1 を指定すると、[a,b] から [[a_1 , b_1],[a_2 , b_2],...] を除いた集合を返す.
 - in=1 を指定していて最初の引数が数aとすると、aが集合に含まれているかどうかを返す.
 - in=2 を指定していて最初の引数が数 a とすると、a が集合に含まれているかどうかを返す.ただし区間の端になるときは 2 を返す.
 - in=2 を指定していて最初の引数が数 a とすると, a が含まれている区間を返す. それがないときは 0 を返す.

```
[0] os_md.addIL([6,7],[[2,5],[8,11]]);
[[2,5],[6,7],[8,11]]
[1] os_md.addIL([4,6],[[2,5],[8,11]]);
[[2,6],[8,11]]
[2] os_md.addIL([1,6],[[2,5],[8,11]]);
[[1,6],[8,11]]
[3] os_md.addIL([9,10],[[2,5],[8,11]]);
[[2,5],[8,11]]
[4] os_md.addIL([4,8],[[2,5],[8,11]]);
[[2,11]]
[5] os_md.addIL(0,[[4,8],[2,5],[8,11]]);
[[2,11]]
[6] os_md.addIL([0,12],[[2,5],[8,11]]|in=-1);
```

```
[7] os_md.addIL([6,9],[[2,5],[8,11]]|in=-1);
    [[6,8]]
    [8] os_md.addIL(3,[[2,5],[8,11]]|in=1);
    [9] os_md.addIL(6,[[2,5],[8,11]]|in=1);
    [10] os_md.addIL(5,[[2,5],[8,11]]|in=1);
    [11] os_md.addIL(5,[[2,5],[8,11]]|in=2);
    [12] os_md.addIL(3,[[2,5],[8,11]]|in=3);
    [2,5]
    [13] os_md.addIL(6,[[2,5],[8,11]]|in=3);
240. vnext(v)
   :: ベクトルの成分を並べ替え、辞書式順序で次のベクトルに変換する
     成分に等しいものがあってもよい。
     • 最後のベクトルを与えたときは 0, それ以外では 1 を返す.
    [0] V = \text{newvect}(7, [3,1,5,7,6,4,2]);
    [3157642]
    [1] os_md.vnext(V); V;
    [2] [ 3 1 6 2 4 5 7 ]
    [3] V = newvect(4, [4,3,2,1]);
    [4321]
    [4] os_md.vnext(V); V;
    [5] [4321]
    [6] V = newvect(7, [2,1,5,5,6,5,2]);
    [2155652]
    [7] os_md.vnext(V); V;
    [8] [ 2 1 5 6 2 5 5 ]
241. vgen(v, w, m | opt=0)
   :: 成分の和が m の非負成分のベクトル w を順に生成する
     • v, w は同じサイズのベクトルで、w[i] \le v[i] の制限つき.
     \bullet opt=0 は、初期化でそのときの戻り値は 0. それ以外での戻り値は書き換えられた最高桁
     • 最後には 0 を返して、初期化される.
    [0] V=newvect(3,[2,1,2]);
    [212]
    [1] W=newvect(3);
    [000]
```

[[0,2],[5,8],[11,12]]

```
[2] os_md.vgen(V,W,2|opt=0);
[3] W;
[200]
[4] os_md.vgen(V,W,2);
[5] W;
[110]
[6] os_md.vgen(V,W,2);
[7] W;
[101]
[8] os_md.vgen(V,W,2);
[9] W;
[011]
[10] os_md.vgen(V,W,2);
2
[11] W;
[002]
[12] os_md.vgen(V,W,2);
[13] W;
[200]
```

242. paracmpl(l,t|lim=1,low=1,para=[$v_1, v_2,...$])

:: 有理的に t に依存したリスト l の成分(たとえば有理式)で張られる空間の正則完備化 l の成分が有理式 $f_1(x,t),\ldots,f_m(x,t)$ のとき(x は多変数でよい),generic に $t=t_0$ と特殊化した $f_1(x,t_0),\ldots,f_m(x,t_0)$ の一次独立な個数を m とする.1 変数 t の有理式 $g_{i,j}(t)$ を適当に取って

$$h_j(x,t) = \sum_{i=1}^{m} f_i(x,t)g_{i,j}(t)$$

とおくと、0 でない $h_j(x,t)$ の個数は \bar{m} で、しかも $h_j(x,t)$ は t=0 で極を持たず、 $h_1(x,0),\ldots,h_m(x,0)$ の一次独立な個数は \bar{m} とできる(cf. [OSe, Proposition 2.21], [O4, Lemma 6.3]).

paracmpl($[f_1(x,t),\ldots,f_m(x,t)]$,t) は、この $[[h_1(x,t),\ldots,h_m(x,t)]$, $(g_{i,j}(t))]$ を返す.

- lはベクトルでもよいが、リストで返される.
- $[h_1(x,t),\ldots,h_m(x,t)]$ は、t の有理式を成分とする可逆行列 $A=\left(a_{i,j}(t)\right)_{\substack{1\leq i\leq m\\1\leq j\leq m}}$ で、A と A^{-1} の 各成分が t=0 に極を持たないものによる変換を除いて一意となる.
- 返される $G = \left(g_{i,j}(t)\right)_{\substack{1 \leq i \leq m \ 1 \leq j \leq m}}$ は上三角行列となる.
- low=1 を指定すると, x の次数が小さい項に注目する.
- lim=1 を指定すると $[h_1(x,0),\ldots,h_m(x,0)]$ を返す.
- $f_i(x,t)$ は有理式でなく、有理式を成分とするリストやベクトルでもよい.
- para= $[v_1,\ldots,v_k]$ を指定すると、数係数でなくて不定元 v_1,\ldots,v_k 係数の有理関数体係数の有理式とみなす。
- $\bar{m}=m$ のとき、 $f_i(x,t)$ が有理式でなくて $\exp((1+t)x)$ のような式の場合は、適当な次数まで Taylor 展開した式で $f_i(t,x)$ (の分母分子) を置き換え、 $\log 1$ を指定して求めた G で変換すれば

よい.

```
[0] os_md.paracmpl([1/(x-1),1/((t+1)*x-1)],t);
[[(1)/(x-1),(1)/((t+1)*x^2+(-t-2)*x+1)],[ 1 (1)/(t) ]
[ 0 (-t-1)/(t) ]]
[1] os_md.paracmpl([1/(1-x),1/(1-(t+1)*x)],t|lim=1);
[ (1)/(x-1) (1)/(x^2-2*x+1) ]
[2] os_md.paracmpl([1/(x-1),1/((t+1)*x-1)],t|low=1);
[[(-1)/(x-1),(x)/((t+1)*x^2+(-t-2)*x+1)],[ -1 (1)/(t) ]
[ 0 (-1)/(t) ]]
[3] os_md.paracmpl([1/(x-1),1/((t+1)*x-1)],t|low=1,lim=1);
[ (-1)/(x-1) (x)/(x^2-2*x+1) ]
[4] os_md.paracmpl([[1/t,1,1],[1+t,0,-t]],t);
[[[1,t,t],[0,t+1,t+2]],[ t t+1 ]
[ 0 (-1)/(t) ]]
[5] os_md.paracmpl([[1/t,1,1],[1+t,0,-t]],t|lim=1);
[[1,0,0],[0,1,2]]
```

上の [0] \sim [5] は以下を示している.

$$\left(\frac{1}{x-1}, \frac{1}{(t+1)x^2 + (-t-2)x + 1}\right) = \left(\frac{1}{x-1}, \frac{1}{(t+1)x-1}\right) \begin{pmatrix} 1 & \frac{1}{t} \\ 0 & \frac{-t-1}{t} \end{pmatrix}$$

$$= \left(\frac{1}{x-1}, \frac{1}{(x-1)^2}\right) \quad \text{if } t = 0,$$

$$\left(\frac{1}{1-x}, \frac{x}{(t+1)x^2 + (-t-2)x + 1}\right) = \left(\frac{1}{x-1}, \frac{1}{(t+1)x-1}\right) \begin{pmatrix} -1 & \frac{1}{t} \\ 0 & -\frac{1}{t} \end{pmatrix}$$

$$= \left(\frac{1}{1-x}, \frac{x}{(1-x)^2}\right) \quad \text{if } t = 0,$$

$$\left(\begin{pmatrix} 1 \\ t \\ t \end{pmatrix}, \begin{pmatrix} 0 \\ t+1 \\ t+2 \end{pmatrix}\right) = \left(\begin{pmatrix} \frac{1}{t} \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} t+1 \\ 0 \\ t \end{pmatrix}\right) \begin{pmatrix} t & t+1 \\ 0 & -\frac{1}{t} \end{pmatrix}$$

$$= \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}\right) \quad \text{if } t = 0.$$

ここで以下に注意

$$\left(\frac{1}{1-x},\frac{x}{(1-x)^2}\right) = \left(\frac{1}{x-1},\frac{1}{(x-1)^2}\right) \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}.$$

微分方程式

$$((t+1)x^2 - (t+2)x + 1)\frac{d^2u}{dx^2} + 2(2(t+1)x - t - 2)\frac{du}{dx} + 2(t+1)u = 0$$

の解空間は $t \neq 0$ のとき $\{\frac{C_1}{x-1} + \frac{C_2}{(t+1)x-1} \mid C_1, C_2 \in \mathbb{C}\}$ である. このことから t = 0 のときの解空間は $\{\frac{C_1}{x-1} + \frac{C_2}{(x-1)^2} \mid C_1, C_2 \in \mathbb{C}\}$ となることが分かる. より一般に,任意の t で解空間は $\{\frac{C_1}{x-1} + \frac{C_2x}{(t+1)^2x^2-(t+2)x+1} \mid C_1, C_2 \in \mathbb{C}\}$ で与えられる.

x=0 の近くで考えるときは、low=1 を指定する方が便利なことが多い.

3.2.6 Matrices

243. dupmat(*m*)

```
:: 成分が有理式の行列またはベクトル m の複製を作る
    [0] A=B=newmat(2,2,[[1,2],[3,4]]);
    [12]
    [34]
    [1] C=os_md.dupmat(A);
    [12]
    [34]
    [2] C[0][0]=0;
    [3] C;
    [ 0 2 ]
    [34]
    [4] A;
    [12]
    [ 3 4 ]
    [5] B[0][0]=0;
    [6] B;
    [ 0 2 ]
    [ 3 4 ]
    [7] A;
    [02]
    [34]
244. \text{ m2v(m)}
   :: 行列 m の成分を 1 行目から順に並べてベクトルに変換する
    [0] M=newmat(2,2,[[a,b],[c,d]]);
    [ab]
    [ c d ]
    [1] os_md.m2v(M);
    [abcd]
245. m21(m|flat=1)
   :: 有理式, ベクトルあるいは行列の m の成分を順に並べてリストにする
   flat=1: リストのリストのときは、一つ内側のリストを外して並べる.
   たとえば、リスト \ell_1, \ell_2, \ell_3, \ell_4 をこの順に連結したリストを作るには m21([\ell_1,\ell_2,\ell_3,\ell_4] |flat=1) と
   すればよい.
    [0] M=newmat(2,2,[[a,b],[c,d]]);
    [ab]
    [ c d ]
    [1] os_md.m2l(M);
```

```
[a,b,c,d]
    [2] os_md.m2lv(M);
    [[ab],[cd]]
    [3] os_md.m2l(a);
    [a]
    [4] os_md.m21([a,b]);
    [a,b]
    [5] os_md.m2l([[1,2],[3,4,[5,6],7],[8,9]]|flat=1);
    [1,2,3,4,[5,6],7,8,9];
246. \text{ m2lv(m)}
   :: 行列 m の行ベクトルを並べてリストにする (cf. 245, 248)
247. m211(m)
   :: 行列 m を行べクトルをリストにかえたものを成分とするリストにする (cf. 248)
248. lv2m(\ell|fill=n)
   :: 行ベクトル(行成分のリストでも可)のリストℓから行列を作る
     ● 行列の列の大きさは、行ベクトルの最大長で決まり、行ベクトルのサイズが小さい時は、後ろに 0
      が補充される (cf. mat()).
     • fill=n: 行ベクトルのサイズが小さいとき, 0 でなくて n を補充する.
    [0] A=newmat(3,2,[[1,2],[3,4],[5,6]]);
    [12]
    [ 3 4 ]
    [56]
    [1] LV=os_md.m2lv(A);
    [[12],[34],[56]]
    [2] LL=os_md.m211(A);
    [[1,2],[3,4],[5,6]]
    [3] os_md.lv2m(LV);
    [12]
    [ 3 4 ]
    [56]
    [4] os_md.lv2m(LL);
    [12]
    [34]
    [56]
    [5] A0=\text{newvect}(2,[1,2]);
    [12]
    [6] A1=newvect(3,[1,2,3]);
    [123]
    [7] os_md.lv2m([A0,A1]);
    [120]
    [123]
    [8] os_md.lv2m([[1,2],[1,2,3]]);
    [120]
    [123]
```

```
[9] os_md.lv2m([[1,2],[1,2,3]]|fill=" ");
[ 1 2  ]
[ 1 2 3 ]
```

249. s2m(s)

- :: 文字列での有理数成分の行列表現や、列のリストから行列を作る. 必要最低サイズの行列になる
 - 整数や有理数成分の行列を, 行の区切りをコンマで示した文字列で指定する. 成分が一桁の整数のときに便利(以下の[0],[1],[4],[5]を参照).
 - 同じ数が例えば3回続くときは、^3をつけて表してもよい.
 - -a,b,...は 10,11,...を表す.
 - -10 以上の数は (10) のように括弧で囲んで表してもよい. たとえば, 2/b は $\frac{2}{11}$.
 - 分数は / を使って表す.
 - たとえば 12(-2)/3² は、 $1, 2, -\frac{2}{3}, -\frac{2}{3}$ と 4 つの数字が並んでいると解釈される.
 - s2sp() あるいは Risa/Asir の表示の文字列によって行列成分を表すリストから行列に戻す機能をもつ(以下の[0],[6]の例を参照).

すなわち、eval_str()を式でなくて、式が成分のリストや行列に拡張した機能.

- 行列を作成する newmat (m,n,l) の ℓ を [] で囲って渡してもよい (以下の [2], [3] の例).
- 行列のサイズは自動判定されるが mat() と異なり、列サイズは ℓ の成分の最大の長さとなる (mat()) は成分の最初のリストの長さ).
- *s* が行列の時は、そのまま返す.

```
[0] os_md.s2m("21,111,00a");
[210]
[111]
[ 0 0 10 ]
[1] os_md.s2m("-1,0-1,0^2-1,0^3-1");
[ -1 0 0 0 ]
[ 0 -1 0 0 ]
[ 0 0 -1 0 ]
[ 0 0 0 -1 ]
[2] os_md.s2m([[0,a],[0,0,a],[0]]);
[0a0]
[00a]
[ 0 0 0 ]
[3] mat([0,a],[0,0,a],[0]);
[ 0 a ]
[ 0 0 ]
[00]
[4] os_md.s2m("123,32-2/3<sup>2</sup>");
[1230]
[ 3 2 -2/3 -2/3 ]
[5] os_md.s2m("123,32(-3/b)^2");
[1230]
[ 3 2 -3/11 -3/11 ]
[6] os_md.s2m("[x*x 1+2][z w+1]");
[x^2 3]
[ z w+1 ]
```

```
250. c2m(l, v | pow=t)
    :: 基底の変換から係数行列を作る
      • 1 は一次変換した結果のリスト
      t は基底(変数)のリスト
      • pow=t を指定したときは、v は変数で v^j の j=0,1,\ldots,t を基底と考えた係数の行列(v の t 次
        多項式の変換).
      [0] os_md.c2m([a*x+b*y,c*x+d*y],[x,y]);
      [ab]
      [ c d ]
      [1] os_md.c2m([1+2*x+3*x^2,2*x+4*x^2,1+3*x+5*x^2],x|pow=2);
      [123]
     [024]
      [135]
     [2] os_md.c2m([1+2*x+3*x^2,2*x+4*x^2,1+3*x+5*x^2],x); /* 次数は自動判断 */
     [123]
      [024]
      [135]
251. mperm(m, [\sigma_0, \sigma_1, \dots], [\tau_0, \tau_1, \dots])
    \mathtt{mperm}(m, \llbracket [\sigma_0, \sigma_1] \rrbracket, \llbracket [\tau_0, \tau_1] \rrbracket), \ \mathtt{mperm}(m, \llbracket \sigma, \llbracket m_1 \rrbracket \rrbracket, \llbracket \tau, \llbracket m_2 \rrbracket \rrbracket)
    :: 行列 m から小行列 \left(m_{\sigma_i	au_i}
ight) を作る,または置換行列(または互換)で変換する
    M = (m_{ij})_{0 \le i < m} は (m_{\sigma_i \tau_j}) に変わる.
      • 元の行列は破壊されず、新たな行列が返される.
      • 第2引数が [[\sigma_0,\sigma_1]] となっていると、\sigma_0 行目と \sigma_1 行目の入れ替えを意味する.
      ● 第3引数が1のときは、第3引数が第2引数に等しいことを意味する。
      ● 第2引数,または第3引数が0のときは、それらが恒等変換であることを意味する.
      • [\sigma, [k]] は [\sigma, \sigma+1, \ldots, \sigma+k-1] と解釈される.
      • m はベクトルまたはリストでもよい. このとき第3引数は無視される.
      • たとえば、\sigma \leq i < \sigma + k、\sigma \leq j < \sigma + k を満たす m の成分 m_{i,j} からなる k 次の正方行列
        (m_{i,j})_{\sigma \leq i < \sigma + k} は mperm(m, [\sigma, [k]], 1) によって,1, 3, 5 行目のみを抜き出して得られる行列
        はmperm(m,[1,3,5],0)によって得られる.
      [0] A=newmat(3,3,[[a,b,c],[d,e,f],[g,h,i]]);
      [abc]
```

```
[ d e f ]
[ g h i ]
[1] os_md.mperm(A,1,[1,2,0]);
[ e f d ]
[ h i g ]
[ b c a ]
[2] os_md.mperm(A,[1,2],[0,1]);
[ d e ]
[ g h ]
[3] os_md.mperm(A,[1,[2]],[0,[3]]);
[ d e f ]
[ g h i ]
```

```
[4] os_md.mperm(A,[1,[2]],1);
    [ef]
    [hi]
    [5] os_md.mperm(A,[[0,1]],1);
    [ e d f ]
    [bac]
    [hgi]
    [6] os_md.mperm([a,b,c,d],[1,3,0,2],0);
    [b,d,a,c]
    [7] os_md.mperm(ltov([a,b,c,d]),[1,3,0,2],0);
    [bdac]
252. mtranspose(m)
   :: 行列 m の転置行列を求める (m はリストのリストでもよい)
    リストのリストの時は, 内部のリストの長さが順に変わらないか減少していれば転置となる.
   (行列のときの例は mtoupper() の項)
    [0] L=[[1,2,3],[4,5],[6,7]]$
    [1] os_md.mtranspose(L);
    [[1,4,6],[2,5,7],[3]]
253. madjust(m, w|null=n)
   :: 行列 m の列数を w に調整する
     • w > 0 のときは、列数が w になるように分割し、分割されたブロックは行を増やして繋げる.
     • w < 0 のときは、列数を |w| 倍し、w > 0 のときの逆操作で行数を減らす。
     • null=n: 行列の列数調整で定義されない成分を n とする. n=0 がデフォルト.
     [0] M=os_md.mgen(3,5,a,1);
    [ a11 a12 a13 a14 a15 ]
    [ a21 a22 a23 a24 a25 ]
    [ a31 a32 a33 a34 a35 ]
    [1] os_md.madjust(M,3);
    [ a11 a12 a13 ]
    [ a21 a22 a23 ]
    [ a31 a32 a33 ]
    [ a14 a15 0 ]
    [ a24 a25 0 ]
    [ a34 a35 0 ]
    [2] os_md.madjust(M,-2|null="?");
    [ a11 a12 a13 a14 a15 a31 a32 a33 a34 a35 ]
    [ a21 a22 a23 a24 a25 ? ? ? ? ? ]
254. mpower(m,n)
   :: 行列mのn乗を求める
   n は整数.
    [0] M=newmat(2,2,[[a,b],[c,d]]);
    [ab]
```

```
[ c d ]
[1] os_md.mpower(M,0);
[ 1 0 ]
[ 0 1 ]
```

[2] os_md.mpower(M,3);

[a^3+2*c*b*a+d*c*b b*a^2+d*b*a+c*b^2+d^2*b]

[c*a^2+d*c*a+c^2*b+d^2*c c*b*a+2*d*c*b+d^3]

[3] $os_md.mpower(M,-2)$;

```
 \left[ \frac{(c*b+d^2)}{(d^2*a^2-2*d*c*b*a+c^2*b^2)} \frac{(-b*a-d*b)}{(d^2*a^2-2*d*c*b*a+c^2*b^2)} \right] \\ \left[ \frac{(-c*a-d*c)}{(d^2*a^2-2*d*c*b*a+c^2*b^2)} \frac{(a^2+c*b)}{(d^2*a^2-2*d*c*b*a+c^2*b^2)} \right]
```

n が正の時は,m, m^2 , $m^4 = (m^2)^2$, ... と計算して積を求めている (n を 2 進法で表した 1 の部分に対応する積). 負の時は m^{-1} に対して同様な計算.

255. mtoupper(m,n|opt=t,step=1,dviout=1,pages=1,tab=k,lim=w)

:: 行列 m に対し,以下の行基本変形を行って,行の先頭からの 0 の成分の個数が下の行の方へ狭義単調増加となるようにする.最後の n 列は無視.途中の行から全て 0 になることもある.

- 行頭からの 0 の成分の個数の下方への単調性を保って,以下の操作を 1 行目から順に行う.
 - m のある行のスカラー倍を別の行に加える
 - 行を入れ替え, (opt>1 でなければ) 後ろに移動した行を -1 倍する.
- opt=1: さらに行の 0 でない先頭の要素のある列は、行変形でその要素以外を 0 にする.
- opt=2: さらに行に0でないスカラーをかけて0でない行の先頭の成分を1にする.
- opt=3: opt=2 とほぼ同じだが、より簡単な計算になるように行交換を増やす(以下の(b),(c)の み考慮).
- opt=4: opt=3 とほぼ同じだが、さらになるべく分数が現れない簡単な行変形にする.
- opt=5: opt=4 とほぼ同じだが、行列が一つのパラメータを多項式として含むとき、そのパラメータによって必要に応じて場合分けを行う. ただし、パラメータの値が有理数で場合分け可能なときに限る.
- opt=6, opt=7: opt=5 とほぼ同じだが、行列に含まれるパラメータが2個以上でも出来るだけ場合分けを用いて基本変形する.
- 最後の n 列は無視する. よって最後の n 列のみに現れる変数は、上のスカラーには含まれない. 通常 n は 0 または 1 または -1.
 - --n が m の行数に等しいときは、m の右側にサイズ |n| の単位行列を付加して列サイズを |n| だけ増やした行列に対し、最後の |n| 列を無視して行変形を行う.

N=size(m)[0] とおくと mperm(m,-N|opt=2),0,[N,[N]]) が m の変換行列となる. 特に m が可逆行列であるならば、これは m の逆行列となる.

- -n=-1 のときは,第 k 番目の成分が $(\mathbf{z}\mathbf{z})^{k-1}$ となる縦ベクトルを列の最後に付加して列サイズを一つ増やした行列 m' に対して, \mathbf{m} toupper(m',1) を行う.
- A が変数 zz を含まない size $S \times S'$ の行列ならば,B = mtoupper(A, -1) とおくと,変換後の行列は mperm(B,1,[0,[S']]) となり,mycoef(B[I-1][S'],J-1,zz) が左からかける変換行列の (I,J) 成分となる.
- step=1 を指定したときは、途中の行変形過程を表示する.
- dviout=1 は step=1 を指定したときのみ有効で、途中の行変形過程を dviout で表示する.
 - このとき cr= のオプションで改行の LATEX コードを指定可能 (デフォルトは cr="\\\\n & "で, cr=7と同じ).

たとえば、dviout で表示する場合は、risaout.tex の begin{document}の直前に

\def\pause{\special{dviout '+M-}}

- 通常は1ステップ毎に改行されるが、 $\lim w$ を指定すると、行幅がw文字程度と見なして1

行に複数ステップを入れる.

- dviout=2 も同様であるが、表示は行わない.
- dviout=-1 では、T_FX のソースを返す.
- dviout=-2 では、 T_EX のソースの元となるリストを返す.返されたものを L とすると ltotex(reverse(L)|opt=["cr","spts0"],str=1,cr=7) によって T_FX のソースが得られる.
- tab=k: dviout を指定し step に 5 以上を指定したときの場合分けのインデントの幅を k mm と する (デフォルトは k=2).
- pages=1:dviout を指定したとき,途中で改ページを許す(結果が長くなる場合などに指定)
- unim() によって行基本変形の演習用の行列生成ができる.
- 行基本変形の手順は以下のようになっている.
 - (a) 行列 $M=(m_{j,\ell})$ は k-1 列目まで基本変形が終了した行列で、それの j_0-1 行目までの基本変形が完了しているとする。このとき k-1 列までの成分は j_0 行目以降は 0 となっていて、 j_0-1 行目までの行の 0 でない先頭成分は 1 で、それは k-1 列目以下で、その列の他の成分は 0 になっている。また k 列目には j_0 行目またはそれ以降に初めて 0 でない成分 $m_{j,k}$ があるとする。以下のように j_0 行目またはそれ以降の 0 でない t 行目の成分 $m_{t,k}$ を調べて基準の j_1 行目を決め、(必要なら) 行交換してそれを j_0 行目に移動する。得られた行列 $M=(m_{j,\ell})$ において $m_{j_0,k}$ で j_0 行目を制り、 j_0 行目のスカラー倍を他の行に加えて少なくとも k 列目までの基本変形を終了させる。
 - (b) j 行目またはそれ以降の成分 $m_{t,k}$ で 1 となるものがあればその最初の t を j_1 行目とおく.
 - (c) そうでなくてj行目またはそれ以降の成分 $m_{t,k}$ で-1となるものがあればその最初を j_1 行目とおく.
 - (d) そうでなくてj行目またはそれ以降の成分 $m_{t,k}$ が正整数で、その行を $m_{t,k}$ で割ったものが整数行ベクトルになるものがあればその最初の行を j_1 行目とする.
 - (e) そうでなくてj行目またはそれ以降の成分 $m_{t,k}$ が負整数で、その行を $m_{t,k}$ で割ったものが整数行べクトルになるものがあればその最初の行を j_1 行目とする.
 - (f) そうでなくて j 行目またはそれ以降の成分 $m_{t,k}$ が 0 でなくて,その行を $m_{t,k}$ で割ったものが整数行べクトルになるものがあればその最初の行を j_1 行目とする.
 - (g) そうでなければ、t 行目の成分 $m_{t,k}$ が整数で、k 行目以降の t 行目と異なる j 行目に t 行目の整数倍を足して (j,k) 成分を 0 に出来るか調べ、可能ならそれを行う.
 - (h) そうでなければ、t 行目の成分 $m_{t,k}$ が整数で、j 行目以降のある行を t 行目に足すか引くかして (t,k) 成分を 1 に出来るか調べ、可能ならそれを行って $j_1=t$ とする.ただし、j 行目と t 行目に変数を含まないものを優先する.
 - (i) そうでなければ、t 行目の成分 $m_{t,k}$ が整数で、j 行目以降のある行目に j 行目以降のある行の整数倍を足すか引くかして (t,k) 成分を 1 に出来るか調べ、可能ならそれを行ってその行を $j_1=t$ とする. ただし、j 行目と t 行目に変数を含まないものを優先する.
 - (j) そうでなければ、t 行目の成分 $m_{t,k}$ が整数で、j 行目以降のある行に j 行目以降のある行を足すか引くかして (t,k) 成分を -1 に出来るか調べ、可能ならそれを行って $j_1=t$ とする.ただし、j 行目と t 行目に変数を含まないものを優先する.
 - (k) そうでなければ、t 行目に j 行目以降のある行の整数倍を足すか引くかして (t,k) 成分を -1 に出来るか調べ、可能ならそれを行って $j_1=t$ とする. ただし、j 行目と t 行目に変数を含まないものを優先する.
 - (1) そうでなければ最初に現れた整数成分 $m_{t,k}$ の行を、整数の行がなければパラメータを含まない数 $m_{t,k}$ の最初の行を j_1 行とする.
 - (m) opt>4 のとき、k 列目の有理式 $m_{t,k}$ の分子がある一つパラメータの多項式となっているとき、行変形によって k 列目の成分の分子の多項式の最低次数を下げることができればそれを行うことを続ける.
 - (n) $\mathsf{opt}>4$ のとき,k 列目の成分で分子が数となる $m_{t,k}$ があれば,その最初の行 t によって $j_1=t$ とする.
 - (o) opt>4 のとき、有理式 $m_{t,k}$ で分子の最大公約元の多項式の根が有理数で与えられるときは、その項が 0 となる場合をまず扱って行変形の最終形まで求める。そのあと $j_1=t$ とする.
 - (p) opt>4 のとき, $m_{t,k}$ が 0 になるための条件が,ある変数がその変数を含まない変数の多項式や分母が 0 でない有理式(ただし opt=5 のときは有理数)で与えられるものがあるかどうか調べ,そのような t が存在すれば 0 になる場合を最終形まで求め,次に 0 にならない場合を調べるため $j_1=t$ とする.
 - (q) 以上に該当しなければ、成分 $m_{t,k}$ の型が最小となるものが最初に現れる行 t に対して $j_1=t$ とする.

[0] M=newmat(2,3,[[a,b,1],[c,d,x]]);

[ab1]

```
[ c d x ]
[1] os_md.mtoupper(M,1);
[ab1]
[ 0 (d*a-c*b)/(a) (a*x-c)/(a) ]
[2] os_md.mtoupper(M,0);
[ab1]
[ 0 (d*a-c*b)/(a) (a*x-c)/(a) ]
[3] os_md.mtoupper(M,1|opt=1);
[ a \ 0 \ (-b*a*x+d*a)/(d*a-c*b) ]
[ 0 (d*a-c*b)/(a) (a*x-c)/(a) ]
[4] M=os_md.mtranspose(M);
[ac]
[ b d ]
[ 1 x ]
[5] os_md.mtoupper(M,0);
[ac]
[ 0 (d*a-c*b)/(a) ]
[ 0 0 ]
[6] M=newmat(3,3,[[0,0,1],[1,1,1],[1,1,2]]);
[001]
[111]
[112]
[7] os_md.myrank(M);
[8] os_md.mtoupper(M,0|opt=1,step=1)$
[001]
[111]
[112]
line1 <-> line2
[111]
[ 0 0 -1 ]
[112]
line3 -= line1
[111]
[ 0 0 -1 ]
[001]
line1 += line2
[110]
[ 0 0 -1 ]
[001]
```

```
line3 += line2
[110]
[ 0 0 -1 ]
[ 0 0 0 ]
[9] A=mat([2,1],[1,2]);
[21]
[12]
[10] os_md.mtoupper(A,-2|opt=2,step=1)$
[2110]
[1201]
line1 * (1/2)
[ 1 1/2 1/2 0 ]
[1201]
line2 -= line1
[ 1 1/2 1/2 0 ]
[ 0 3/2 -1/2 1 ]
line2 * (2/3)
[ 1 1/2 1/2 0 ]
[ 0 1 -1/3 2/3 ]
line1 += line2 * (-1/2)
[ 1 0 2/3 -1/3 ]
[ 0 1 -1/3 2/3 ]
[11] os_md.mtoupper(A,-2|opt=3,step=1)$
[2110]
[1201]
line1 <-> line2
[1201]
[2110]
line2 += line1 * (-2)
[1201]
[ 0 -3 1 -2 ]
line2 * (-1/3)
[1201]
[ 0 1 -1/3 2/3 ]
line1 += line2 * (-2)
```

[15] os_md.mtoupper(os_md.s2m("32,53"),-2|opt=3,step=1,dviout=1)\$

$$\begin{pmatrix}
3 & 2 & 1 & 0 \\
5 & 3 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{\text{line1 } \times = \left(\frac{1}{3}\right)} \begin{pmatrix} 1 & \frac{2}{3} & \frac{1}{3} & 0 \\
5 & 3 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{\text{line2 } -= \text{line1} \times (5)} \begin{pmatrix} 1 & \frac{2}{3} & \frac{1}{3} & 0 \\
0 & \frac{-1}{3} & \frac{-5}{3} & 1
\end{pmatrix}$$

$$\xrightarrow{\text{line2 } \times = (-3)} \begin{pmatrix} 1 & \frac{2}{3} & \frac{1}{3} & 0 \\
0 & 1 & 5 & -3
\end{pmatrix}$$

$$\xrightarrow{\text{line1 } -= \text{line2} \times \left(\frac{2}{3}\right)} \begin{pmatrix} 1 & 0 & -3 & 2 \\
0 & 1 & 5 & -3
\end{pmatrix}$$

[16] os_md.mtoupper(os_md.s2m("32,53"),-2|opt=4,step=1,dviout=1)\$

$$\frac{\text{line2 } \times = (-1)}{\longrightarrow} \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & 5 & -3 \end{pmatrix}$$

$$\frac{\text{line1 } -= \text{ line2}}{\longrightarrow} \begin{pmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 5 & -3 \end{pmatrix}$$

[16] os_md.mtoupper(mat([a,2],[a+2,4*a+2]),0|step=1,opt=5,dviout=1)\$

$$\begin{array}{c} \begin{pmatrix} a & 2 \\ a+2 & 4a+2 \end{pmatrix} \\ \xrightarrow{\lim 2 + = \lim 1 \times (-1)} \begin{pmatrix} a & 2 \\ 2 & 4a \end{pmatrix} \\ \xrightarrow{\lim 2 + = \lim 2} \begin{pmatrix} 2 & 4a \\ a & 2 \end{pmatrix} \\ \xrightarrow{\lim 2 + = \lim 2 \times (-a)} \begin{pmatrix} 1 & 2a \\ 0 & -2a^2 + 2 \end{pmatrix} \\ \text{If } a = 1, \\ \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \\ \text{If } a = -1, \\ \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix} \\ \text{If } a^2 - 1 \neq 0, \\ \xrightarrow{\lim 2 \times = \begin{pmatrix} \frac{-1}{2} \\ a^2 - 1 \end{pmatrix}} \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix} \\ \xrightarrow{\lim 2 \times = \begin{pmatrix} \frac{-1}{2} \\ a^2 - 1 \end{pmatrix}} \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix} \\ \xrightarrow{\lim 2 + = \lim 2 \times (-2a)} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

[17] os_md.mtoupper(mat([a,b],[c,d]),-2|step=1,opt=6,dviout=1)\$

$$\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$$
If $a = 0$,
$$\begin{pmatrix} 0 & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$$
If $c = 0$,
$$\begin{pmatrix} 0 & b & 1 & 0 \\ 0 & d & 0 & 1 \end{pmatrix}$$
If $b = 0$,
$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & d & 0 & 1 \end{pmatrix}$$
If $d = 0$,
$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{split} & \text{If } d \neq 0, \\ & \frac{ \text{line1} \leftrightarrow \text{line2} }{ \text{line1} \times = \left(\frac{1}{a} \right) } \begin{pmatrix} 0 & d & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \\ & \frac{ \text{line1} \times = \left(\frac{1}{a} \right) }{ \text{log } 0 & 1 & 0 & \frac{1}{d} } \\ & 0 & 0 & 1 & 0 \end{pmatrix} \end{split}$$
 If $b \neq 0$,
$$& \frac{ \text{line1} \times = \left(\frac{1}{b} \right) }{ \text{log } 0 & d & 0 & 1 } \\ & \frac{ \text{line2} + = \text{line1} \times \left(-d \right) }{ \text{log } 0 & d & 0 & 1 } \\ & \frac{ \text{line2} + = \text{line1} \times \left(-d \right) }{ \text{log } 0 & d & 0 & 1 } \\ & \frac{ \text{line1} \leftrightarrow \text{line2} }{ \text{log } 0 & d & 0 & 1 } \\ & \frac{ \text{line1} \times = \left(\frac{1}{c} \right) }{ \text{log } 0 & d & 1 & 0 } \\ & \frac{ \text{line1} \times = \left(\frac{1}{c} \right) }{ \text{log } 0 & 1 & 0 } \\ & \frac{1}{0} & \frac{d}{b} & 1 & 0 \\ & \frac{1}{0} & \frac{d}{b} & 1 & 0 \\ & \frac{1}{b} & 0 \\ & \frac{1}{a} & 0 \\ & 0 & 0 & \frac{1}{a} & 1 \\ & 0 & 0 & \frac{1}{a} & \frac{1}{a} \\ & 0 & 0 \\ & 0 & 0 & \frac{1}{a} & 1 \\ & 0 & 1 & \frac{1}{a} & 0 \\ & 0 & 0 & \frac{1}{a} & 0 \\ & 0 & 0 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 0 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 0 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 0 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 0 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 1 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 1 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 1 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 1 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 1 & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 1 & \frac{1}{a} & \frac{1}{a} & 0 \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 1 & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & 0 \\ & 0 & 1 & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} &$$

[18] os_md.mtoupper(mat([a^4-b^2,b]),0|step=1,opt=6,dviout=1)\$

$$(a^{4} - b^{2} \quad b)$$
If $b = a^{2}$,
$$(0 \quad a^{2})$$
If $a = 0$,
$$(0 \quad 0)$$

If
$$a \neq 0$$
,
$$\frac{|\ln a| \times = \left(\frac{1}{a^2}\right)}{(a^2)} (0 \quad 1)$$
If $b = -a^2$,
$$(0 \quad -a^2)$$
If $a = 0$,
$$(0 \quad 0)$$
If $a \neq 0$,
$$\frac{|\ln a| \times = \left(\frac{-1}{a^2}\right)}{(a^2)} (0 \quad 1)$$
If $a^4 - b^2 \neq 0$,
$$\frac{|\ln a| \times = \left(\frac{1}{a^4 - b^2}\right)}{(a^4 - b^2)} (1 \quad \frac{b}{a^4 - b^2})$$
([a^4+b^2,b]),0|step=1,opt=6,0

[19] os_md.mtoupper(mat([a^4+b^2,b]),0|step=1,opt=6,dviout=1)\$

$$\begin{aligned} & \left(a^4+b^2 \quad b\right) \\ \text{Assume } a^4+b^2 \neq 0, \\ & \xrightarrow{\lim 1 \ \times = \ \left(\frac{1}{a^4+b^2}\right)} \left(1 \quad \frac{b}{a^4+b^2}\right) \end{aligned}$$

```
256. mytrace(m)
    :: 行列の trace を返す.
257. \text{ mydet}(m)
    :: det(m) と同じ、ただし成分は有理式でもよい、
258. \text{ mydet2}(m)
    :: det(m) と同じ、ただし成分は有理式でもよい、
    mydet() は det() を, また mydet2() は mtoupper() を利用する.
     [0] M=newmat(3,3,[[1,x,x^2],[1,y,y^2],[1,z,z^2]]);
     [1 \times x^2]
     [ 1 y y^2 ]
     [1 z z^2]
     [1] fctr(os_md.mydet2(M));
     [[-1,1],[y-z,1],[x-z,1],[x-y,1]]
     [2] N=newmat(3,3,[[1,x/y,x^2/y^2],[1,y/z,y^2/z^2],[1,z/x,z^2/x^2]]);
     [1 (x)/(y) (x^2)/(y^2)]
     [1 (y)/(z) (y^2)/(z^2)]
     [1(z)/(x)(z^2)/(x^2)]
     [3] os_md.fctrtos(os_md.mydet2(N));
     -(z*x-y^2)*(y*x-z^2)*(x^2-z*y)/(z^2*y^2*x^2)
     [4] det(N);
     internal error (SEGV)
     return to toplevel
259. myrank(m)
```

:: 行列 m の rank を求める (例は mtoupper() の項)

260. mykernel(m|opt=1)

:: 行列 m の転置行列の kernel の基底を求める

オプション opt=1 を指定したときは、転置しない行列とする.

```
[0] A=newmat(4,3,[[x],[y,1,1],[0,1,1],[1,1,1]]);
[ x 0 0 ]
[ y 1 1 ]
[ 0 1 1 ]
[ 1 1 1 ]
[1] os_md.mykernel(A);
```

[[y -x x 0],[y-1 -x 0 x]]

261. myimage(m | opt=1)

- :: 行列 m の転置行列の像の基底を求める
 - オプション opt=1 を指定したときは、転置しない像とする.
 - 基底のベクトルの最初の 0 でない成分の位置は狭義単調増加で、他のベクトルのその位置の成分は 0 となっている.

```
[0] A=newmat(4,3,[[x,-x],[y,1-y,1],[0,1,1],[0,1,2]]);
[ x -x 0 ]
[ y -y+1 1 ]
[ 0 1 1 ]
[ 0 1 2 ]
[1] Im=os_md.myimage(A|opt=1);
[[ x 0 -y 0 ],[ 0 1 1 0 ],[ 0 0 0 1 ]]
[2] V=newvect(4,[1,1,1,1]);
[ 1 1 1 1 ]
[3] os_md.mymod(V,Im);
[ 0 0 (y)/(x) 0 ]
[4] os_md.mymod(V,Im|opt=1);
1
[5] os_md.mymod(V,Im|opt=2);
[ (y)/(x) ]
```

- 262. $mymod(v, [v_1, \ldots, v_k] | opt=\ell)$
 - :: ベクトル v_1,\ldots,v_k で張られる空間の商空間への v の射影を求める(例は $\mathsf{myimage}$ ()の項)
 - v_1, \ldots, v_k の 0 でない要素の位置は、順に真に増加している必要がある.
 - オプション opt=1 を指定した場合、射影が0のとき0を、それ以外では1を返す.
 - opt=2 を指定したときは、商空間の標準基底を取った射影を表す.
- 263. $mmod(m, [v_1, ..., v_k] | opt=1)$
 - :: ベクトル v_1, \ldots, v_k で張られる空間の商空間への線形写像mの射影
 - v_1, \ldots, v_k の 0 でない要素の位置は、順に真に増加している必要がある。また、opt=1 を指定しないときは、これらで張られる空間は m で不変でなければならない。
 - opt=1 のときは、商空間上の線形変換でなくて、商空間への線形写像とみなす(このときは m は 正方行列でなくてよい).

264. myinv(m)

:: 正方行列 m の逆行列を求める

成分は有理式でもよい. m が可逆でないとき, 0 を返す.

```
[0] M=newmat(2,2,[[a,b],[c,d]]);
     [ab]
     [ c d ]
    [1] os_md.myinv(M);
     [ (d)/(d*a-c*b) (-b)/(d*a-c*b) ]
     [(-c)/(d*a-c*b)(a)/(d*a-c*b)]
265. madj(g,m)
   :: 行列 qmq^{-1} を計算する. m は行列のリストか行列のベクトルでもよい.
266. \operatorname{diagm}(m,a)
   :: 対角行列を作成する
   mgen(m,0,a,1) と同じ
267. mgen(m, n, a, s | sep=1)
   :: size m \times n の一般行列を作成する
     • (i,j)-成分は a が変数の時 ai'j'で、 リストの時 a[i]j'で与えられる (i'=i+s,\ j'=j+s)
     • s は 0 または 1 で,成分の index は s から始まるものとする.
     • a \Leftrightarrow a[i] は文字列でもよい. また、以下の 3 つの場合 (n = 0, -1, -2) のときは数字でもよい.
     • n = 0 または diag のときは size m の対角行列を返す.
     • n=-1 または highdiag のときは対角成分の一つ上の成分のみ 0 でない size m の正方行列を
       返す.
```

- n=-2 または lowdiag のときは対角成分の一つ下の成分のみ 0 でない size m の正方行列を返す.
- n = -3 または skew のときは size m の歪対称正方行列を返す.
- n = -4 または symmetric のときは size m の対称正方行列を返す.
- n=-5 または perm のときは size m の置換行列を返す.この行列 G で縦ベクトルを変換すると, i 番目に a_i 番目の成分が入る.
- sep=1 を指定すると、二重インデックスの間に _ を入れる.
- リストの要素の個数が足りないときは、最後の要素がそれ以降も続いているとみなされる.

mgen(0,0,0,0) で簡単な仕様が表示される.

```
[0] os_md.mgen(2,2,c,0);
[ c00 c01 ]
[ c10 c11 ]
[1] os_md.mgen(2,3,[a,b],1);
[ a1 a2 a3 ]
[ b1 b2 b3 ]
[3] os_md.mgen(3,"diag","a_",1);
[ a_1 0 0 ]
[ 0 a_2 0 ]
[ 0 0 a_3 ]
[4] os_md.mgen(2,"diag",[a,b],0);
[a0]
[ 0 b ]
[5] os_md.mgen(3,"diag",[1,2,3],0);
[100]
[020]
[003]
[6] os_md.mgen(3,"diag",[x],0);
```

```
[x00]
[0 \times 0]
[ 0 0 x ]
[7] os_md.mgen(3,"highdiag","e_", 1);
[ 0 e_1 0 ]
[ 0 0 e_2 ]
[000]
[8] os_md.mgen(3,"skew",[a,b,c],0);
[ 0 a1 a2 ]
[ -a1 0 b2 ]
[ -a2 -b2 0 ]
[9] os_md.mgen(3,"symmetric",[a,b,c],1);
[ a1 a2 a3 ]
[ a2 b2 b3 ]
[ a3 b3 c3 ]
[10] os_md.mgen(4,"diag",[a],0)+os_md.mgen(4,"lowdiag",[1],0);
[a0001
[1a00]
[01a0]
[001a]
[10] os_md.mgen(3,"perm",[3,1,2],1);
[001]
[100]
[010]
```

268. unim(s|abs=m,num=n,both=1,int=1,rank=r,conj=1,res=1,wt=w,dviout=t,lim=w) :: 行列式 1 でサイズ s の整数行列をランダムに生成する,行列 s をランダムに変換する

- s が正整数の時は、サイズ s で行列式が 1 の行列をランダムに生成する.
- s が正整数で conj=1 を指定したときは、サイズ s の行列とその Jordan 標準型の組をランダムに生成する.
 - -wt=w によって固有値の広がり(サイズ +w)を指定できる(w=2 がデフォルト).
 - diag=1 によって、対角化可能行列に制限する.
 - res=1 によって、変換行列とその逆行列も返す. すなわち戻り値が [A,B,P,Q] ならば $P=Q^{-1},B=PAQ$ で、Bが Aの Jordan 標準形.
 - * int=1 を指定すると自明な部分があって不適切な問題が減らされる.
 - * int=2 を指定すると、上に加えて整数行列 Q がユニモジュラーではない例も含める(このとき P の成分は整数でない)。 ただし、int の値をより大きくすると、その例の割合は少なくなる。
 - * dviout=1 を指定すると、 T_EX を使って結果を画面表示する.
 - * dviout=-1 を指定すると、 T_EX のソースを返す.
- s が行列の時は、ある行の整数倍を別の行に加える変換を何度かランダムに行って返す.
- s が行列で both=1 を指定したときは、列に関しても同様な変換を行う.
- s が正方行列で conj=1 を指定したときは、与えられた行列に共役な行列をランダムに返す.
- s が [p,q] という正整数のリストの時は、行基本変形のための $p \times q$ 行列をランダムに生成する. 行列の階数が 2 以上で p と q を越えないものが、各階数に対してほぼ等確率で得られる.
- s が $[p,q,k_1,k_2,...]$ というリストの時は、ある行の k_{ν} 列目が先頭の 1 となる簡約行列に行基本変形で変換される $p \times q$ 行列をランダムに生成する.

- s がリストの時,rank=r で行列の階数を指定する.
- s がリストの時、int=1 で行基本変形による簡約行列が整数行列になるものに制限する(一般の場合も分母は 1 桁の整数に抑えられている).
- s がリストの時、生成される行列の 1 列目と 2 列目が線形独立となる確率は高めに設定してあるが、wt=w によってそれを変更する(w は非負整数で、デフォルトは w=2 である.この値が大きいほど確率は高くなる).
- s がリストの時、res=1 である行の整数倍を別の行に加える変換で得られる上三角行列も返す.
 - さらに dviout=1 を指定すると、 T_EX を使って基本変形の過程を含めて結果を画面表示する. このとき mtoupper() における lim=w の指定が可能.
 - 前項で dviout=1 と指定した場合は、TFX のソースを返す.
- 現れる行列の成分の絶対値が許される範囲内に留まる整数行列内の変形のみが使われる.
- abs=m: 成分の絶対値の最大値を m 以下とする(デフォルトは m=9).
- num=n: ランダム化の程度 (n=100) または 200 がデフォルト).

```
[0] os_md.unim(4);
                            /* 行列式 1 の 4x4 行列 */
[ 3 -2 -8 3 ]
[ -7 -7 -6 7 ]
[875-7]
[ -3 1 6 -2 ]
[1] os_md.unim([4,5]);
                     /* 行基本変形用 4x5 行列 */
[2-2269]
[ 3 2 -7 -1 -1 ]
[ -6 -1 8 -4 -2 ]
[ 0 4 -8 -8 -5 ]
[2] os_md.unim([3,3]|rank=2); /* 階数が2の行基本変形用3x3行列*/
[ -9 7 5 ]
[5-4-3]
[719]
[3] os_md.unim([3,3]|rank=2,abs=99); /* 階数が2の行基本変形用3x3行列*/
[ 28 -55 24 ]
[ -15 49 -91 ]
[ -33 64 -25 ]
[4] os_md.unim([4,5]|abs=3,res=1); /* 成分の絶対値が 3 以下 + 基本変形結果 */
[[ -1 1 3 -3 3 ]
[ -2 -1 0 1 3 ]
[ -3 -1 1 -1 2 ]
[21011],[10-100]
[ 0 -1 -2 1 0 ]
[00020]
[ 0 0 0 0 -1 ]]
[5] os_md.unim([4,5,0,1,3]);
    /* 0,1,3 列目が先頭の1となる行をもつ簡約型に変換できる行列 */
[ 4 5 -6 2 -7 ]
[ -4 -6 8 1 -1 ]
[ 3 6 -9 -2 3 ]
[ 6 5 -4 -1 4 ]
```

```
[6] os_md.unim(os_md.diagm(3,[0,-1,1])|conj=1); /* 固有値が 0,-1,1 の行列 */
 [ -4 -5 -8 ]
 [ -6 -1 -6 ]
 [7-15]
 [7] A=os_md.mgen(3, "highdiag", [1,0],0)+os_md.diagm(3,[0,0,1]);
 [000]
 [ 0 0 1 ]
 [8] os_md.unim(A|conj=1);
                                               /* A と共役な行列 */
 [3-31]
 [5-1-3]
 [ 4 -2 -1 ]
 [9] os_md.unim(4|conj=1); /* 正方行列と Jordan 標準形の組 */
 [[89-1-9]
  [ -5 -5 6 4 ]
  [ 2 2 -1 -2 ]
  [235-4],
  [ -1 1 0 0 ]
  [ 0 -1 1 0 ]
  [ 0 0 -1 0 ]
  [0001]]
 [10] for(I=0,M=[];I<100;I++) M=cons(os_md.unim([3,4]),M)$
 [11] for(N=[]; M!=[]; M=cdr(M)) N=cons([length(os_md.mtoupper(car(M),0|step=1,
 opt=7,dviout=-2)),car(M)],N)$
 [12] for(M=qsort(N); M!=[]; M=cdr(M)) os_md.mtoupper(car(M)[1], 0|step=1, opt=7,
                                  /* 3x4 行列の行基本変形の問題 100 題 */
 dviout=2,lim=80)$
 [13] dviout(" ");
 [14] for(I=0,R=[];I<100;I++) R=cons(os_md.unim(4|conj=1,res=1,int=1),R);
 [15] S="\&"+os_md.ltotex(R|opt="cr",cr=15)$
 [16] dviout(S|eq="align")$ /* 4 次正方行列の Jordan 標準形と変換行列 100 題 */
上の [15] 以降を以下のようにしてもよい.
 [15] for(T=[],S=R;S!=[];S=cdr(S))
         T=cons([S[0][1],"&=",S[0][2],S[0][0],S[0][3]],T);
 [16] S=os_md.ltotex(T|opt=["cr","spts0"],str=1,cr=11)$
 [17] dviout(S|eq="align")$ /* 4 次正方行列の Jordan 標準形と変換行列 100 題 */
上の[17]は、以下のようになる.
       \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 & 0 \\ -1 & 5 & -3 & -1 \\ 1 & -2 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 5 & 0 & -4 & 0 \\ 2 & 2 & -3 & 1 \\ 1 & 8 & -7 & 0 \\ 1 & -9 & 7 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 3 & 1 & 1 & 0 \\ -1 & 0 & 0 & -1 \end{pmatrix}
        \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & -2 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 6 & 5 & -1 \\ -4 & -1 & 0 & 4 \\ 4 & 4 & 3 & -4 \\ -4 & 6 & 5 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix}
```

[18] os_md.unim(4|int=2,conj=1,res=1,dviout=1);

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} \frac{5}{2} & -\frac{5}{4} & \frac{1}{4} & -\frac{3}{4} \\ -5 & 2 & -1 & 2 \\ 2 & 1 & 1 & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} -6 & 5 & 2 & 0 \\ -4 & 4 & 1 & 0 \\ 6 & -1 & 8 & -6 \\ -8 & 8 & 8 & -3 \end{pmatrix} \begin{pmatrix} 5 & 3 & 1 & 3 \\ 3 & 2 & 1 & 1 \\ 5 & 4 & 1 & 11 \\ 12 & 8 & 2 & 12 \end{pmatrix}$$

- 269. $newbmat(m,n,[[r_{00},r_{01},...],[r_{10},...],...]|null=t)$
 - :: ブロック行列を作成する
 - r_{ij} の行または列のサイズが1のときは、ベクトルまたはリストで表してもよい。
 - r_{ij} がサイズ 1 の正方行列のときは、スカラーで表してもよい.
 - r_{ij} が 0 行列の時は 0 で表してもよい. このとき null=t が指定してあれば、0 行列でなく、各成分が t の行列と解釈される.
 - ブロックに分けた各行や各列には少なくとも1つの行列があればよい.

```
[0] A=os_md.newbmat(2,2,[[a,b],[c,d]]);
[ab]
[ c d ]
[1] os_md.newbmat(2,2,[[0,A],[2*A]]);
[00ab]
[00cd]
[ 2*a 2*b 0 0 ]
[ 2*c 2*d 0 0 ]
[2] os_md.newbmat(2,2,[[A],[0,1]]);
[ab0]
[cd0]
[001]
[3] os_md.newbmat(2,3,[[A]]);
[ab00]
[cd00]
[0000]
[4] os_md.newbmat(1,2,[[A,[e,f]]]);
[abe]
[cdf]
[5] os_md.newbmat(2,2,[[A],[0,0]]|null="A");
[abA]
[cdA]
[ A A A ]
[6] os_md.newbmat(2,2,[[A],[0,[0]]]|null="A");
[abA]
[cdA]
[ A A O ]
```

- 270. meigen(m|mult=1)
 - :: 行列 m の固有値を返す
 - mult=1 のときはスペクトル型の形で、重複度が大きい順に返す.
 - m は行列のリストやベクトルでもよい.
 - 有理式でない固有値は, zz の多項式の根で表される.

```
[0] A=newmat(3,3,[[1,-1,-1],[4,6,5],[-2,-2,-1]]);
    [ 1 -1 -1 ]
    [465]
    [ -2 -2 -1 ]
    [1] os_md.meigen(A);
    [1,2,3]
    [2] B=newmat(3,3,[[1,-1,-1],[4,6,5],[-2,-2,1]]);
    [3] os_md.meigen(B);
    [zz^2-6*zz+13,2]
    [4] C=newmat(3,3,[[a],[0,b,2],[0,0,a]]);
    [a00]
    [0b2]
    [00a]
    [5] os_md.meigen(A);
    [a,a,b]
    [6] os_md.meigen(A|mult=1);
    [[2,a],[1,b]]
    [7] os_md.meigen([A,C]);
    [[1,2,3],[a,a,b]]
    [8] os_md.meigen([A,C]|mult=1);
    [[[1,1],[1,2],[1,3]],[[2,a],[1,b]]]
271. mdsimplify(m \mid \text{show=1,type=}\ell)
   :: 有理式正方行列 m, またはそのリストやベクトルを対角行列で簡単化
     元の行列は保たれない.
     • show=1 を指定すると,用いる対角行列も示す.
     ● type=1 とすると、行と列の分母を列と行に変換する.
     • type=2 (resp. 3) のときは行 (resp. 列) の分母を列 (resp. 行) に変換する.
    [0] A=newmat(2,2,[[a,b/c^2],[c/b,d]]);
    [ a (b)/(c^2) ]
    [(c)/(b) d]
    [1] os_md.mdsimplify(A|show=1);
    [[ a (1)/(c) ]
    [ 1 d ],[ (c)/(b) 1 ]]
272. transm(m|dviout=1)
   :: 行列 m の基本変形をインタラクティブに行う
     ● dviout=1 を指定すると、T<sub>F</sub>X を用いて結果の画面表示ができる.
     • m は s2m() の引数の形式でもよい.
   表示される? の後に1行キー入力して指示することによって基本変形する. 例えば
         : コマンドの表示
   2,5
         :2行目と5行目の入れ替え
   2,5,-2:2行目に5行目の-2倍を加える
   2,2,-2:2行目を-2倍する
   2,5,0 : 2 行目に 5 行目のスカラー倍を加えて、2 行目における 5 行目の先頭の 0 でない列を 0 に
```

• unim()によって固有値計算練習用の行列の生成ができる.

```
\mathbf{r},2,5 : 2列目と5列目の入れ替え(列変形を行うには先頭に \mathbf{r} をつける)
s,x,2 : x に 2 を代入する
    : 転置する
    : 最初の行列に戻る
    :一つ前の行列に戻る
     : 次の行列へ(f の直後のみ可能)
    : 以降, 自動的に行基本変形を行う
    :上と同じだが dviout=1 のときは、T_EX を用いた画面表示となる
     :終わり(変形の過程の行列をリストにして返す)
 [0] L=os_md.transm(mat([2,3,1,-1,a],[3,2,2,1,1],[4,0,3,4,1],[5,4,4,1,1]))$
 [ 2 3 1 -1 a ]
 [32211]
 [40341]
 [54411]
2,5 : line2 <-> line5
2,5,-2; line2 += (-2)*line5
2,2,-2: line2 *= -2
2,5,0: line2 += (?)*line5 for reduction
 . . . .
? 3,2,-1
[ 2 3 1 -1 a ]
 [ 3 2 2 1 1 ]
 [1-2130]
 [54411]
? 1,3
 [1-2130]
[32211]
 [ 2 3 1 -1 a ]
[54411]
? 2,1,0
 [ 1 -2 1 3 0 ]
 [ 0 8 -1 -8 1 ]
 [ 2 3 1 -1 a ]
[54411]
 [1-2130]
 [32211]
 [ 2 3 1 -1 a ]
 [54411]
? s,a,1
[231-11]
 [32211]
 [40341]
```

```
[ 5 4 4 1 1 ]
? q
[1]
```

3.2.7 Strings

273. $str_char(s, n, t)$

- :: 文字列 s の n 文字以降に文字列 t の先頭文字が最初に現れる場所を返す($str_chr()$ の拡張)
 - 見つからないときは -1 を返す.
 - s は、(たとえば strtoascii() で得られる整数の)リストやベクトルなどでもよい.
 - s がリストやベクトルの時は、t は文字列以外(たとえば文字コード)でもよい.
 - sがリストまたはベクトルの場合,型返還せずにそのまま扱うのでメモリー効率がよい.
 - str_str() の方が高機能.

274. str_pair(s,n, t_1 , t_2 |inv=1)

- :: 文字列 s の n 文字以降で、文字(列) t_2 の出現回数が t_1 の出現回数を超える最初の位置を返す
 - 見つからないときは −1 を返す.
 - s は、(たとえば strtoascii() で得られる整数の) リストやベクトルなどでもよい.
 - t_1, t_2 は文字コードでもよい. あるいは文字列でもよい.
 - sjis=1 が指定されると、シフト JIS の文字列とみなして処理する.
 - inv=1 が指定されると、文字列 s の n 文字以前で、文字(列) t_1 の出現回数が t_2 の出現回数を超える最後の位置を返す。ただし、s j is=1 の指定は無視される。
 - sがリストまたはベクトルの場合,型変換せずにそのまま扱うのでメモリー効率がよい.

```
[0] os_md.str_pair("(1+((2+3)*5)/4)(6+",1,"(",")");
14
[1] os_md.str_cut("(1+((2+3)*5)/4)(6+",0,14);
(1+((2+3)*5)/4)
[2] os_md.str_pair("(1+((2+3)*5)/4)(6+",13,"(",")"|inv=1);
0
[3] os_md.str_pair("(1+((2+3)*5)/4)(6+",9,"(",")"|inv=1);
3
```

275. $str_str(s,t|top=n,end=m,sjis=1)$

- :: 文字列 s に部分文字列 t が最初に現れる場所を返す
 - 部分文字列 t が文字列 s に含まれないとき、-1 を返す.
 - top=n が指定されると、最初のn 文字より後を探す (n=0 がデフォルト).
 - end=m が指定されると、最初から m+1 文字を除いた後から現れるものは探さない.
 - sjis=1 が指定されると、シフト JIS の文字列とみなして処理する.
 - s および t は(strtoascii() によって変換されたような)文字コードのリスト,あるいはベクトルでもよい.
 - t の長さが 1 のときは文字コードでもよい.
 - s が文字コードのリストまたはベクトルの場合,型変換しないのでメモリー効率がよくて高速.
 - t がリストで、その成分が文字列(あるいはそれを文字コードのリストやベクトルとしたもの)であった場合、t の何番目(最初が 0 番目と数える)の文字列が s に最初に現れるかと、その位置の組とのリストを返す、いずれもが現れない場合は [-1,-1] を返す。
 - tには頻度の多いものを先に並べる方が効率がよい.
 - 同じ位置からtの複数の文字列が現れた場合,先に並べたものを返す. すなわちs = "aabc..." に対してt = ["abc", "ab"] とした場合,文字列 "abc" が見つけられる.
 - [0] os_md.str_str("abcdefghiabc", "bc");

```
1
    [1] os_md.str_str("abcdefghiabc", "bc"|top=2);
    [2] os_md.str_str("abcdefghiabc", "ac");
    [3] os_md.str_str("abcdefghiabc", ["ab", "gh"] | top=1);
    [1,6]
    [4] os_md.str_str("abcdefghiabc", ["ab", "gh"] | top=1, end=5);
    [-1.0]
    [5] os_md.str_str("abcdefghiabc", ["bcd","bc"]);
    [0,1]
    [6] os_md.str_str("abcdefghiabc", ["bcd","bc"]|top=2);
    [1,10]
276. str_cut(s, m, n)
   :: 文字列 s の先頭から m 文字をスキップして、それ以降 n-m+1 文字を返す
     • s が文字列のときは sub\_str(s,m,n) と同じ (例は str\_pair() を参照).
     • s は文字コードのリストやベクトルでもよい (こちらの方がオーバーヘッドが少ない). ただし, 戻
       り値は文字列.
     • n が十分大きいときは、s の m+1 文字目以降を返す.
277. str_subst(s, s_0, s_1 | sjis=1, raw=1) \sharp h
   str\_subst(s, [s_{00}, s_{01}, ...], [s_{10}, s_{11}, ...] | inv=1, sjis=1, raw=1)
   str\_subst(s, [[s_{00}, s_{10}], [s_{01}, s_{11}], ...], 0|sjis=1)
   :: 文字列 s に含まれる部分文字列 s_0 を s_1 で全て先頭から順に置き換える
     • 複数種の置き換え、すなわち部分文字列 s_{0j} を s_{1j} \sim j = 0,1,\dots の順に s の置き換えができる.
     • 複数種置き換えで、置き換えられた部分文字列の再置き換えは行わない.
     • s は strtoascii() によって置き換えられた整数のリストやベクトルでもよい (こちらの方がオー
       バーヘッドが少ない. ただし, raw=1 を設定しないと, 戻り値は文字列.
     • inv=1 によって、逆に s_{1j} を s_{0j} \sim j = 0, 1, ... の順の置き換えが行われる.
     • sjis=1 が指定されると、シフト JIS の文字列とみなして処理する.
     ● raw=1 が指定されていると、strtoascii() で置き換えられた整数のリストを返す(こちらの方が
       オーバーヘッドが少ない).
    [0] os_md.str_subst("abc", ["a","b"],["b","a"]);
    bac
    [1] os_md.str_subst("abcdefghi", ["bc","cd","ef"],["cd","ab","ef"]);
    acddefghi
    [2] os_md.str_subst("abcdefghi", [["bc","cd"],["cd","ab"],["de","ef"]],0);
    acdeffghi
278. str_times(s,n)
   :: 文字列s (またはリスト) をn 回繰り返した文字列 (またはリスト) を返す
     う長さnのリストを返す.
     • s = [t_1, \ldots, t_k, [s_1, s_2, \ldots, s_k]] のときは、[t_1, \ldots, t_k, s_1, s_2, \ldots, s_k, s_1, s_2, \ldots, s_k, s_1, s_2, \ldots] と
       いう長さnのリストを返す.
    [0] os_md.str_times("Abc",5);
```

AbcAbcAbcAbcAbc

```
[1] os_md.str_times([["Abc"]],5);
     [Abc, Abc, Abc, Abc, Abc]
     [2] os_md.str_times([["Abc","Def"]],5)
     [Abc,Def,Abc,Def,Abc]
     [3] os_md.str_times(["012",["Abc","Def"]],6);
     [012, Abc, Def, Abc, Def, Abc]
279. strip(s, t_1, t_2)
   :: 文字列の外側の括弧を外す
     • s が t_1 と t_2 のペアの括弧で全体が囲まれているとき、その括弧を外した文字列を返す.
     [0] os_md.strip("((x+y)^2+(y+z))","(",")");
     (x+y)^2+(y+z)
     [1] os_md.strip("(x+y)^2+(y+z)","(",")");
     (x+y)^2+(y+z)
280. \text{ s2os}(s)
   :: 文字列を入力可能な文字列に変換
    [0] S="\"表\計算\"";
    "表計算"
    [1] os_md.s2os(S);
    \"表\計算\"
281. sjis2jis(l)
   :: 文字コードの整数のリストの先頭2つをShiftJISからJISに変換
   変換後の長さ2の整数のリストを返す
282. jis2sjis(l)
   :: 文字コードの数字のリストの先頭2つをJISからShiftJISに変換
   変換後の長さ2の整数のリストを返す
    [0] P="整数"$
     [1] L=strtoascii(P);
     [144,174,144,148]
    [2] i2hex(L);
    [90,ae,90,94]
    [3] LL=os_md.sjis2jis(L);
    [64,48]
    [4] os_md.jis2sjis(LL);
    [144,174]
283. \text{ s2euc}(s)
   :: ShiftJIS または JIS 文字列を EUC 文字列に変換
   OxOd のコードは削除して OxOa のコードに変換する.
284. s2sjis(s)
   :: EUC または JIS 文字列を ShiftJIS 文字列に変換
   0x0a のコードは 0x0d 0x0a のコードに変換する.
285. str_tb([s_0, s_1, \dots], tb) \sharp that str_tb(0, tb)
   :: テキスト用バッファを作成(tb=0)し,そこ(戻り値 tb)に文字列 s_0,\dots を順に追加する.最初の
   引数を0として文字列を取り出す.
```

- tb = 0 のときは、tb は空文字列と解釈される.
- tb が文字列ならばそれで初期化されたテキスト用バッファを作成し、さらに第1引数で指定された文字列を順に追加したテキスト用バッファを返す。ただしここで第1引数が0のときは、それは空文字列と解釈される。
- tb がテキスト用バッファの場合は、第1引数が文字列またはそのリストのとき、それが順にバッファに追加される。ただし第1引数が0のときはテキスト用バッファの文字列を取り出して返す。
- 文字列が一つなら, $[s_0]$ は単に s_0 でよい.
- この函数は、細かく文字列を追加していった場合のメモリー消費の非効率性を避けるために用いられる. また、str_len(tb) でバッファに格納された文字列サイズが分かる.

```
[0] Buf=os_md.str_tb("This is ",0);
     This is
     [1] os_md.str_tb("a pen.",Buf)$
     [2] str_len(Buf);
    14
     [3] Str=os_md.str_tb(0,Buf);
    This is a pen.
     [5] Buf=os_md.str_tb(" a pen.", "This is");
    This is a pen.
     [6] type(Buf);
    21
     [7] type(Str);
     [8] Buf=os_md.str_tb(0,0);
     [9] X=3$
     [10] os_md.str_tb([rtostr(X),"^2=",rtostr(X^2)],Buf);
     3^2=9
286. 12os(l)
    :: リストを入力可能な文字列に変換
     • 行列やベクトルはリストに直す. これらはネスティング可能.
     • 成分の文字列は "で囲って表示する.
     [0] P=mat([x+y,"This is"],[(x+y)^2,"\"square\""]);
     [ x+y This is ]
     [ x^2+2*y*x+y^2 "square" ]
     [1] R=os_md.12os(P);
     [[x+y, "This is"], [x^2+2*y*x+y^2, "\"square\""]]
     [2] eval_str(R);
     [[x+y,This is],[x^2+2*y*x+y^2,"square"]]
287. \text{ r2os}(l)
    :: 数式を eval_str() で入力可能な文字列に変換
     • 行列, ベクトル, リストなども許される. これらはネスティング可能.
     ◆ 文字列は "で囲って表示する.
```

[0] $P=mat([x+y,"This is"],[(x+y)^2,"\"square\""]);$

```
[ x+y This is ]
     [ x^2+2*y*x+y^2 "square" ]
     [1] R=os_md.r2os(P);
    mat([x+y,"This is"],[x^2+2*y*x+y^2,"\"square\""])
     [2] eval_str(R);
     [ x+y This is ]
     [ x^2+2*y*x+y^2 "square" ]
288. r2ma(s)
    :: Mathematica の形式の数式に変換
    evalma(s|inv=1) と同じ
289. evalma(s|inv=1)
    :: Mathematica の数式を読み込む
     • Mathematica の函数 Sin, Cos, Tan, ArcSin, ArcCos, ArcTan, Exp, Log, Sinh, Cosh,
       Tanh に対応している.
     • s=0 とすると、Mathematica 形式の文字列を(コピー・ペーストなどにより)直接入力できる.
       複数行に渡ってもよい. また入力終了は文字;の後の改行で示す.
     • inv=1 とすると, 逆変換, すなわち数式から Mathematica 形式の文字列に変換する.
     [0] P=os_md.evalma(0)$
    Mathematica text (terminated by ;) ?
    {(x+y)^2}
    у}
     [1] P;
     [x^2+2*y*x+y^2 y]
     [2] os_md.r2ma(P);
     {x^2+2*y*x+y^2,y}
     [3] os_md.evalma(0)$
    Mathematica text (terminated by ;) ?
     \{x+y\}^2,
    y};
     exprparse : syntax error
     [4] os_md.evalma("\{\{1,2\},\{3,4\}\}\};");
     [12]
     [34]
     [5] os_md.my_tex_form(@@);
    \begin{pmatrix}
     1&2 \\
     3&4 \\
     \end{pmatrix}
290. readcsv(s|eval=[n_1, n_2, ...],eval=n,sp=1,col=c,null=t,eq=1)
```

:: CSV 形式のデータをリスト形式で読み込む

• CSV 形式とは、複数のデータをコンマと改行で区切ったデータ形式であるが、それを1行のデー タをリストにし、さらにそのリストを行順に並べたリストとして読み込む.

- 通常は文字列として読み込むが、各行で n_1, n_2, \ldots で指定した項目は式として読み込む(n_1 は n_1 番目の項目 最初は 1 番目 を表す). n 項目のみの指定のときは、eval=n としてもよい.
- eval="all"というオプションでは、可能な項目は全て(小)数として読み込む。
- sp=1 というオプションでは、空白やタブやそれらが連続したものをデータの区切りとみなす。
- col=c というオプションでは、各行の第 c 項目のみを読んだリストとする.
- null=t というオプションでは、データの無い項目を t とする(デフォルトは空文字列).
- eq=1 というオプションは、数でなくて式として読み込み、tのデフォルトは0.
- CSV 形式では、データにコンマを含む場合は両端を "で囲って表す. さらにその中に "があれば、それを二つ重ねて一つの "を表す.
- ファイルが見つからない場合は、負の数字を返す.
- MS Windows のときは、ShiftJIS の文字列に対応している.

```
[0] os_md.showbyshell("type z:\\test.txt")$
12,abc,(x+y)^2
0,2/3,2/4
2,"a ""b",4/4
[1] os_md.readcsv("z:\\test.txt");
[[12,abc,(x+y)^2],[0,2/3,2/4],[2,a "b,4/4]]
[2] os_md.readcsv("z:\\test.txt"|eval=[3],eq=1);
[[12,abc,x^2+2*y*x+y^2],[0,2/3,1/2],[2,a "b,1]]
[3] os_md.readcsv("z:\\test.txt"|col=3,eval=3,eq=1);
[x^2+2*y*x+y^2,1/2,1]
```

291. tocsv(l|null=n,exe=f)

:: リストのリストまたは行列を CSV 形式のデータに変換

- null=t というオプションでは、t というデータを空の項目とみなす。
- exe=0, 1: DIROUT で指定したディレクトリの risaout.csv というファイルに (存在すれば 0 では追加, 1 では上書き) 出力し, 関連づけされた Excel を呼び出す.
- exe=2,...,9: DIROUT で指定したディレクトリの risaout2.csv,...,risaout9.csv というファイルに上書き出力し、関連づけされた Excel を呼び出す.
- exe=f:f が拡張子.csv というファイル名のときは、そのファイル名のファイルとして出力し、関連づけされた Excel を呼び出す.

3.2.8 Permutations

292. ldict(n, m | opt=t)

 $:: \{0,1,2,\ldots,m-1\}$ を並べ替えて辞書式順序で n+1 番目のリストを返す存在しないときは 0 を返す.

ただし、数字を逆に並べて大きい順の辞書式順序とする.

- m=0 のときは $m=\infty$ とみなし、後ろの並べ替えない部分を省いたリストを返す。
- m > 0 でオプション opt を指定した場合の意味は、次項の ndict() を参照.

```
[0] os_md.ldict(0,3);
[0,1,2]
[1] os_md.ldict(1,3);
[1,0,2]
[2] os_md.ldict(2,3);
[0,2,1]
[3] os_md.ldict(3,3);
```

```
[2,0,1]
     [3] os_md.ldict(4,3);
     [1,2,0]
     [4] os_md.ldict(5,3);
     [2,1,0]
     [5] os_md.ldict(6,3);
     too small size
     [6] os_md.ldict(6,4);
     [0,1,2,3]
     [7] os_md.ldict(7,0);
     [1,0,3,2]
     [8] os_md.ldict(10000,0);
     [4,7,2,3,5,1,0,6]
     [9] os_md.ldict(3,4|opt=0);
     [2,0,1,3]
     [10] os_md.ldict(3,4|opt=1);
     [0,2,3,1]
     [11] os_md.ldict(3,4|opt=2);
     [3,1,0,2]
     [12] os_md.ldict(3,4|opt=3);
     [1,3,2,0]
293. ndict(\ell | opt=t)
    :: \{\ell_0,\ell_1,\dots,\ell_{m-1}\}の並べ替えのリスト \ell が何番目かを返す(最初は 0番)
    ℓの要素は、互いに異なって比較できるものであればよい.
    オプション opt を指定した場合は
     • t = 0: 末尾からみて大きい辞書式順序(デフォルト)
     t = 1: 先頭からみて小さい辞書式順序
     • t=2: 先頭からみて大きい辞書式順序
     t = 3: 末尾からみて小さい辞書式順序
     [0] os_md.ndict([4,7,2,3,5,1,0,6]);
     10000
     [1] os_md.ndict( [0,2,1] | opt=0);
     [2] os_md.ndict( [0,2,1] | opt=1);
     1
     [3] os_md.ndict([0,2,1] | opt=2);
     [4] os_md.ndict([0,2,1] | opt=3);
     3
294. nextsub([a_0, ..., a_{m-1}], n)
    :: \{0,\dots,n-1\} の m 個の部分集合を並べたとき,\{a_0,\dots,a_{m-1}\} の次の部分集合を返す.最後を与
    えた時は0を返す.
     • 0 \le a_0 < \cdots < a_{m-1} \le n の必要がある.
```

```
• 最初の引数が非負整数 m のとき, [0,1,\ldots,m-1] を返す.
      [0] S = os_md.nextsub(3,5);
      [0,1,2];
      [1] while(S != 0){S = os_md.nextsub(S,5); print(S);}$
      [0,1,3]
      [0,1,4]
      [0,2,3]
      [0,2,4]
      [0,3,4]
      [1,2,3]
      [1,2,4]
      [1,3,4]
      [2,3,4]
 295. nextpart(\ell)
     :: 自然数の分割のリストℓに対し、辞書式順序で次に大きなものを返す
     \ell = [\ell_0, \ell_1, \dots] は大きさの順に並んでいなければならない
      [0] S=[5];
      [5]
      [1] while((S = os_md.nextpart(S)) != 0) os_md.mycat([S,os_md.transpart(S)]);
      [4,1] [2,1,1,1]
      [3,2] [2,2,1]
      [3,1,1] [3,1,1]
      [2,2,1] [3,2]
      [2,1,1,1] [4,1]
      [1,1,1,1,1] [5]
 296. transpart (\ell)
     :: 自然数の分割のリスト (Young 図式に対応) \ell に対し、その双対を返す (例は nextpart() を参照)
n 次の置換群の元を \{0,1,2,\ldots,n-1\} の並べ替えと考えて、ベクトル s=[s_0\ldots s_{n-1}] で表す.
以下,s,tはそのような置換群の元とする.
 297. trpos(a,b,n)
     :: 互換 (a,b) にあたる n 次置換群の元を返す
      [0] os_md.trpos(2,4,6);
      [014325]
      [1] os_md.trpos(0,0,6);
      [012345]
 298. sprod(s,t)
     :: 置換群の積を返す
     s = [s_0 \ldots s_{n-1}], t = [t_0 \ldots t_{n-1}] のときは積は [s_{t_0} \ldots s_{t_{n-1}}] となる.
 299. sinv(s)
     :: 置換 s の逆元を返す
 300. \operatorname{slen}(s)
     :: 置換 s の長さを返す
```

● 先頭からの辞書式順序.

```
301. \operatorname{sord}(s,t)
    :: 置換を Bruhat order で比較する
    戻り値は
    0: equal 1: s > t -1: s < t 2: no order
    3.2.9 T<sub>F</sub>X
    以下の函数の他にも, fctrtos(), getbygrs() などが IATeX の出力に対応している.
302. my_tex_form(p|subst=[t_0, t_1], frac=f, root=r, ket=k)
    :: print_tex_form(p) の戻り値から文字列置換や不要部分削除を行い、読みやすいソースに変換
     • 置き換えは str_subst(s,t_0,t_1) でなされる.
     • frac=0:係数が分数のとき, 2/3 のように出力する
     • frac=1: 係数が分数のとき, \frac{2}{3} のように出力する. ただし, AMSTeX=0 のときは
       {2\over 3} のように出力.
     • frac=2: 係数が分数のとき, \tfrac{2}{3} のように出力する (デフォルト). ただし, AMSTeX=0
       のときは {2\over 3} のように出力.
       このとき 2^{(1/2)} は 2^{\frac{1}{2}} でなく,\sqrt{2} となるよう\sqrt{2}が出力される(デフォルトでは \sqrt{\cdots} の
       … が 32 字以内の場合).
       ただし, \operatorname{root}=r の指定で r=0 のときは (\cdots)^{\frac{1}{2}} の形に, r=2 のときは \sqrt{\cdots} の形になるよう出
       力される.
       同様に、2^{\circ}(1/3) は 2^{\frac{1}{3}} でなく、\sqrt[3]{2} と出力される.
     • ket=1:一番内側の()を除いて \left(\right\) とするする.
     ket=2:一番内側の()も含めて \left(\right\)に変換する.
     [O] AMSTeX=1$
     [1] print_tex_form(x_1+x_2^2/y);
     \frac{x}{1} {y}+ {x}_{2}^{2} {y}
     [2] os_md.my_tex_form(x_1+x_2^2/y);
     \frac{x_1y+x_2^2}{y}
     [3] print_tex_form((1+x)^(1/2));
     ((\{x\}+1))^{1/2}
     [4] os_md.my_tex_form((1+x)^(1/2));
     \sqrt{x+1}
     [5] print_tex_form(x/2*(1+x)^(1/2));
      1/2 ((\{x\}+1))^{1/2}
     [6] os_md.my_tex_form(x/2*(1+x)^(1/2)|frac=0);
     1/2(x+1)^{1/2}x
     [7] os_md.my_tex_form(x/2*(1+x)^(1/2)|frac=1);
     \frac{1}{2(x+1)^{\frac{1}{2}}x}
     [8] os_md.my_tex_form(x/2*(1+x)^(1/2)|frac=2);
     \frac{1}{2}\sqrt{x+1}x
     [9] print_tex_form(atan(x));
      \{atan\}(\{x\})
     [10] os_md.my_tex_form(atan(x));
     {\arctan}(x)
     [11] os_md.my_tex_form(2^{(1/3)});
```

 $\sqrt[3]{2}$

303. $show(p | opt=\ell)$

:: *p* を dviout で適切に表示する

微分作用素,重複度つき固有値形式のリスト,GRS形式などを自動判定して dviout で適切に表示する.期待する表示と異なる場合は、オプションを付けるか、別の細かな指定が出来る函数を使う.

- opt="verb"が指定されると、Risa/Asir での表示と同じ形で dviout で表示される. 以下はそれ以外の場合
- p が有理式や多項式のとき
 - fctrtos(p) を使って因数分解して表示する.
 - opt の指定がなかったときは、p が微分作用素かどうかは isdif(p) で判定し、微分作用素と判断された場合は var="dif" のオプションで表示する.
 - opt="pfrac"と指定すると、p の主変数について部分分数展開して表示する.
 - それ以外の場合は、fctrtos()に全てのオプションパラメータを引き渡して表示する.
 - 1 行の横幅を超えてしまう数式は、行分割されて表示される(単項式や数は除く).
- p が行列の時は、mtotex(p|lim=1,small=2) を使って表示する.
 - サイズの大きな行列も考慮されている.
 - opt の指定は, mtotex() に var の指定として渡されて表示する.
- p がリストの時は、opt が文字列かリストで指定されていれば、全てのオプションパラメータを ltotex(p) に渡して結果を表示する。それ以外では
 - GRS 形式, 重複度つきの固有値の形式あるいは文字列のリストなら, それに合わせた形で出力する. なお, 重複度つきの固有値の形式とは, 最初が非負整数, 次が式や数の 2 つの要素からなるリストを集めたリスト, GRS 形式とは, その要素が重複度つきの固有値の形式となっているリスト.
 - リスト p の各要素がリストとし、各要素も文字列かあるいは、式(ここでは有理式、ベクトル、行列のいすれかとする)からなるリストとする。文字列も式も現れているとすると、ltotex(p|opt=["cr","spts"])で変換して表示する。ただしいずれかの文字列に \ が含まれていれば、opt=["cr","spts0"] とし、さらに str=1 のオプションをつける。
- p が文字列の時は、opt="raw"が指定されているとそのまま T_EX の文字列とみなして表示し、opt="eq"が指定されていると数式を表すとみなして\begin{equation} \end{equation} で鋏んで display style で表示する.それ以外では、文字列に \ $^-$ のいずれの文字も含まれていなければそのまま、含まれていれば display style で表示する.
- 上記以外では dviout(p) によって表示される.
- 304. dviout(p|clear=1,keep=1,delete=t,fctr=1,mult=1,subst=[s0,s1],eq=k,title=s)
 - :: *p* を dviout で表示する
 - dviout(@@) とすれば、直前の結果が dviout で表示される.
 - dviout.exe にはパスを通しておく (あるいは, risatex.bat を書き換える. 書き換えによって dviout 以外や Windows 以外の UNIX などの OS にも対応可).
 - この函数によって IfTeX のソースが DIROUT/out.tex に出力され, それが DIROUT/risaout.tex から読み込まれる.
 - p が文字列の場合、通常は \LaTeX のソースとみなして表示するが
 - eq=0のときは、デフォルト数式環境
 - eq=1 のときは \[と\]
 - eq=2のときは \begin{align} と \end{align}
 - eq=3のときは \begin{gather} と \end{gather}
 - eq=4のときは \begin{multline} と \end{multline}
 - eq=5 0 \geq t \begin{align}\begin{split} & t \end{split}\end{align}
 - eq=6のときは \begin{align*} & と \end{align*}
 - eq=7のときは \begin{gather*} と \end{gather*}
 - eq=8のときは \begin{equation} と \end{equation}
 - eq=s と文字列 s で与えられたときは、 $begin\{s\}$ と $end\{s\}$

で挟んで数式とみなして IATEX を使って表示する.

- s_0, s_1 で部分文字列の(複数)置き換えをする(cf. $str_subst()$).
- p=" " (1文字の空白) は, 再表示.
- clear=1 によって、追加でなくて新規の表示となる.
- keep=1 のときは、IATFX のソースのみの変更で、表示はしない(後から表示).
- delete=t によって、最後の t 個の式番号の付いた式を削除する $(0 \le t \le 10)$.
- mult=1 のときは、pがリストなら、各項を別に表示する。
- fcrt=1 のときは、p が多項式または有理式なら因数分解して表示する.
- ullet tilte=s で、s が文字列ならそれのあとに p が表示される.

dviout で source specials が有効になっていれば、dviout の画面で表示された文字の部分のダブルクリックによりエディタが起動され、IATEX のソースの該当箇所が編集可能になる.

この編集処理後の表示(たとえば dviout(""))でこの修正が有効になる.

• risatex.bat や risaout.tex が存在しない場合, それらが (ディレクトリが書き込み可能ならば) 自動的に作成される. これらは必要に応じて書き換えてよい.

risatex.bat を起動可能なように(デフォルトでは **get_rootdir()/bin** に置かれる)設定し、また **risaout.tex** を **DIROUT** で指定されるディレクトリに入れておく必要がある(cf. **DVIOUTA**).

:: TFX での表示のための内容削除などの基本操作

- $\ell=0$: dviout(" "|keep=1,clear=1) と同じで内容の消去
- $\ell = 1$: dviout(" ") と同じで再表示
- $\ell=2$: dviout(" "|clear=1) と同じで、内容を消去して再表示
- $\ell=3$: DIROUT, DVIOUTH, DVIOUTA, DVIOUTB, DVIOUTL, Canvas, TeXLim, TeXEq, AMSTeX, TikZ, XYPrec, XYcm の値が示される.
- ℓ = 4 : DVIOUTA と DVIOUTB の値を交換し、DVIOUTA の値を示す. 実行例は DVIOUTL の項を参照.
- $\ell = 5$: DVIOUTA と DVIOUTB を初期状態と逆にする.
- $\ell = 6$: TikZ を 1 にする(グラフ表示に TikZ を使う).
- $\ell = 7$: TikZ を 0 にする(グラフ表示に X_{ℓ} -pic を使う).
- $\ell > 10$: AMST_FX における行列サイズを ℓ まで許す.
- ℓ が負の整数: dviout(" "|keep=1,delete= $-\ell$) と同じで、最後の ℓ 個の式の消去
- ℓ が文字列: 先頭に \setminus を付加した文字列を $T_{\rm F}X$ のソースに付加して改行する.

たとえば dviout0("newpage") は改ページを意味する.

ただし,以下の文字列の時は別の意味を持つ.

- "":空白一つと改行を付加する.
- "cls": ソースを空にする.
- "show":表示する.
- "?":設定の表示.
- 複数の操作を与えるときは、リストにする.
- opt=s を指定したときは s に ℓ の値が設定される (s は文字列).

ただし、 $\ell = -1$ のときは現在の設定値が返される.

sには TikZ, TeXEq, TeXLim, XYPrec, XYcm, XYLim, DVIOUT, Canvas が可能.

なお、DVIOUT のときは、DVIOUTA、DVIOUTB の設定が $\ell=0$ で初期状態、 $\ell=1$ で逆の設定となる.

 $306. \text{ verb_tex_form}(p)$

:: p を LATEX で表現可能な文字列にする

 $verb_tex_form(p)$ は rtostr(p) と同等であるが、 $begin{align}... \end{align}$ などの数式環境中でも使用できる.

307. monotos(p)

:: 有理式を文字列に変換. 単項式以外では(と)で囲む

```
308. monototex(p|minus=1)
    :: 有理式を TFX の文字列に変換. 単項式以外では(と)で囲む
     minus=1を指定すると、一で始まる場合も(と)で囲む
309. rtotex(p)
    :: 数式を T<sub>F</sub>X の文字列に変換. 1 文字を越えるときは { と } で囲む
     [0] os_md.monotos(a2);
     a2
     [1] os_md.monototex(a2);
     a 2
     [2] os_md.rtotex(a2);
     \{a_2\}
     [3] os_md.monotos(a+1);
     (a+1)
     [4] os_md.monototex(a+1);
     (a+1)
     [5] os_md.rtotex(a+1);
     {a+1}
     [6] P=(a^(12)+b)/(2*c+d)+alpha2;
     (a^12+b+2*alpha_2*c+alpha_2*d)/(2*c+d)
     [7] os_md.monotos(P);
     ((a^12+b+2*alpha_2*c+alpha_2*d)/(2*c+d))
     [8] os_md.monototex(P);
     (\frac{a^{12}+b+2{\alpha}_2c+{\alpha}_2d}{2c+d})
     [9] os_md.rtotex(P);
     {\frac{a^{12}+b+2{\alpha}_{2c+{\alpha}_{2d}}{2c+d}}}
310. texsp(s)
    :: T_{FX} の文字列 s の最後が T_{FX} のキーワードのとき、s の末尾に空白をつける.
     [0] os_md.my_tex_form(alpha*x);
      \alpha{x}
     [1] os_md.my_tex_form(alpha)+"x";
      \alphax
     [2] os_md.texsp(os_md.my_tex_form(alpha))+"x";
     \alpha x
     [3] os_md.texsp(os_md.my_tex_form(alpha*x))+"y";
      \alpha{x}y
311. texbegin(t,s | opt=u)
    :: T_{\mathbb{P}}X \cap \{t\}[u] s \setminus \{t\} \} というソースを出力する
312. texcr(k)
    :: 127 以下の非負整数 k に応じて T_{
m FX} における数式の改行の文字列を返す
    k = 127 のときは、改行のコードは
                            ,\allowdisplaybreaks\\\pause\n& =
    となる (なお、T<sub>E</sub>X のソースでは、上の \\ は \ に、\n は改行になる).
```

iand(cr,k)=0 のときは上の文字列から k に応じて順に以下の文字列が削られる.

```
32:,
8: \allowdisplaybreaks
2: \\
16: \pause
1: \n
4: &
64: =
k = 0 のときは空白 1 文字となる.
k が 0 から 127 までの整数でない場合は、k がそのまま返される.

[0] os_md.texcr(31);
\allowdisplaybreaks\\\pause &
[1] os_md.texcr(7);
```

313. texket(s|all=t)

[2] os_md.texcr(15);
\allowdisplaybreaks\\

\\ &

 $:: T_{FX}$ のソース s における括弧のサイズを可変にする

- 一番内部の()以外を \left(\right) に変更する.
 一番内部は、その中身が空白や英数字や { } や _ 以外の文字が含まれる場合は同様に変更する.
 既に \left(\right) となっている箇所は変更しない.
- all=1:全ての括弧を \left(\right)と変更する.
- all=-1:一番内部の() は変更しない.
- [0] S=os_md.my_tex_form((sin(x+x0)/(cos(x-x0)))^(1/2));
 (\frac{ \sin(x+x_0)}{ \cos(x-x_0)})^{\tfrac{1}2}
 [1] os_md.texket(S);
 \left(\frac{ \sin(x+x_0)}{ \cos(x-x_0)}\right)^{\tfrac{1}2}
 [2] os_md.texket(S|all=1);
 \left(\frac{ \sin\left(x+x_0\right)}{ \cos\left(x-x_0\right)}\right)^{\tfrac{1}2}
- 314. ltotex($l \mid \text{opt}=s$, pre="string", cr="cr", small=1, lim= ℓ , var=v)

:: リストまたはベクトルを s= "spt" のとき重複度つきのリストとみて\left\{... または s= "GRS" のとき \begin{Bmatrix} · · · の形の Riemann scheme とみて $T_{\rm F}X$ の文字列に変換など

- 画面表示する場合は、show()を参照のこと(以下のオプションパラメータはそのまま有効).
- s = "spt" の場合は meigen(|mult=1) のようなリスト形式をスペクトル型にする.
- s = "GRS" の場合は sp2grs() の結果のようなリスト形式を Riemann scheme 形式にする. この場合は、 pre が有効.
- s = "coord" の場合はリストを座標とみなしてその形式 (,,...) にする.
 - cpx=1:複素数 $a+b\sqrt{-1}$ のとき, a+bi と表示する (デフォルト).
 - cpx=2: 複素数 $a + b\sqrt{-1}$ のとき, $a + b\sqrt{-1}$ と表示する.
- s = ["Pfaff",u,x,x-y,...] の場合は行列のリストを

$$du = \left(A_0 \frac{dx}{x} + A_1 \frac{d(x-y)}{x-y} + \cdots\right) u$$

のような Pfaff 形式にする.

• s = ["Fuchs",u,x,x,x-y,x-1,...] の場合は行列のリストを

$$\frac{du}{dx} = \left(\frac{A_0}{x} + \frac{A_1}{x - y} + \frac{A_2}{x - 1} + \cdots\right)u$$

のような Fuchs 形式にする.

• s = "dform" のときは、dform() で扱ったような微分形式を表すリストとみなす. $\ell = [[(a*x-b*y)/(x),x,z],[(-a*x+b*y)/(y),y,z]]$ ならば

$$(\frac{ax-by}{x}) dx \wedge dz + (\frac{-ax+by}{y}) dy \wedge dz$$

となる. 係数は, 有理式や有理式の行列などでよい.

- s = "vect" のときは、縦ベクトルとしての表示形態にする.
- s = "cr" のときは、リストの1項目毎に改行する。
 次項と同様、cr= や var= のオプション指定が可能
- s = "spts" のときはリストの各項目を空白を鋏んで、s = "spts0" のときは空白を鋏まずに、1 行あたり出来るだけ多く入れる.
 - $-\lim \ell$ でデフォルトの 1 行の文字幅を ℓ に変更可能で、 $\ell=0$ のときは文字幅制限なし.
 - str=1 で、文字列はそのまま T_FX の文字列と解釈して挿入する.
 - cr= の指定で改行のコードを指定可能. デフォルトは cr="\\\\n & ". 0 以上 32 未満の数字 k を指定することもできて、改行のコードは texcr(k) となる. すなわちデフォルトは k=7=2+1+4 で、k=0 のときは空白の 1 文字となる. たとえば k=15 のときは \\allowdisplaybreaks\\\\n&
 - var= による変数の指定が行列 (cf. mtotex()) や多項式, 有理式 (cf. ltotex()) に適用される
- s = ["cr", "spts"] または s = ["cr", "spts0"] のときは、リストの1項目毎に改行するが(cr= や var= のオプション指定が可能)、リストの項目がリストのときはその項目を s = "spts" または s = "spts0" の形式にし、それにはさらに str=1 のオプションが有効. ℓ のリスト(改行文字列は s_1)の項目がリストの場合、そこでの改行文字列 s_2 を指定するときは、 $cr=[s_1,s_2]$ とする. s_1,s_2 は数字での指定でもよい.
- s = "text" のときは、s = "spts" のときと同じだがテキストスタイルとする.このときも str=1 や cr= のオプションが可能.
- s = "tab" で ℓ がリストのリストのときは、\begin{tabular}...\end{tabular}の形式でテキストスタイルで出力する.
 - title=s で文字列 s を指定すると、タイトルがつけられる.
 - left=[s_1, s_2, \ldots] を指定すると、それが 1 列目として付加される. 途中の s_i が [$s_{i,1}, s_{i,2}, \ldots$] となっていると、それが最終の行まで繰り返される (以下も同様).
 - right=[$s_1, s_2, ...$] を指定すると、それが最終列として付加される.
 - $top=[s_1,s_2,...]$ を指定すると、それが先頭行として付加される(上の right=などがあれば それの処理の後).
 - last= $[s_1, s_2, ...]$ を指定すると、それが最終行として付加される.
 - null=n を指定すると、n に等しい要素は表では空白とする(デフォルトは n="").
 - hline=[h_1,h_2,\ldots] を指定すると、 h_i 行の後に横線を引く.

(タイトルを除いた)表の始まりが0,最初が1行目と数え,重複しての指定は多重線を表す.

- * z は最終行(の後)を示す. z-1 のような指定も可能.
- * v_j が、 $[k_j,n_j]$ という正整数 n_j と非負整数 k_j の組のリストときは、 n_j で割った余りが k_i となる行全ての指定を意味する.
- vline=[v_1, v_2, \ldots] を指定すると、 v_j 列の後に縦線を引く、表の両端の縦線以外を指定する、最初が 1 列目で、重複しての指定は多重線を表す、
 - * z は最終列(の後)を示す. z-1 のような指定も可能.

- * v_j が、 $[k_j, n_j]$ という正整数 n_j と非負整数 k_j の組のリストのときは、 n_j で割った余りが k_j となる列全ての指定を意味する.
- align=s: \begin{tabular} に続いて配置や縦線を指定する { } の中の文字列を指定する. このオプションがあるときは、vline= の指定は無視される.

ただしsが1文字の時は、各項の配置を指定する文字でvline=の指定は有効. "r" はデフォルトの右寄せ. "c" は中央配置、"1" は右寄せである.

- vert=1: 縦横を転置して表にする.
- width=w:w が正のときは、横をw 項にして縦に積み重ねた表にする。 w が負の時は、横の項数を |w| 倍して行数の少ない表にする.
 - * vert=1 が指定してあれば、縦横を転置してから横の項数調整を行う.

オプションの使用例は powprimroot() の項にある.

リストの調整は lv2m(|null="") で行列に直し, madjust(), mtranspose(), mperm(), newbmat() などを使って変更後, m2ll() でリストに戻すのが便利.

- s = "graph" で ℓ が数字のリストのときは、 X_f -pic または TikZ を使って棒グラフを出力する。棒グラフの下に文字列や数字を入れるときは、それをリストにして数字のリストの後ろにつける。そのリストの個数がデータの個数より1つ少ないときは、棒グラフの間に文字列や数字を入れる。
 - size=ℓ: このときオプションでサイズ指定ができる.ℓは数のリストで,全体の横幅,最も長いグラフの高さ,棒幅の (隣との幅との)比率 (折れ線グラフの時は無視される),文字列との空きの高さ,グラフと文字列との秋の高さ (指定しないときは前者と同じ値),を順に指定できる.最初の2つ以外は省略可能.

 ℓ の 2 番目の成分が負の数 c の時は、棒グラフの高さをデータの数値の c 倍とする.

TikZ=0, 1 に応じてデフォルトは $\ell = [80, 30, 1/2, 2]$, [8, 3, 1/2, 0.2]. (ただし, horiz=1 を指定したときは, 4番目値の 2 または 0.2 のデフォルトは, 3 または 0.3 になる).

- $-\max=m$:上限値をmとする (デフォルトは自動判定,上限値がグラフの高さになる).
- shift=n: 底の基準線の値を n にずらす (デフォルトは 0).
- horiz=1:棒グラフを縦でなくて横に描く.
- line=1:折れ線グラフで描く.
 - line=2:上と同じだが、ポイントを で明示する.
- line=[n,t]: n は 2 または 1 で折れ線グラフでのポイント有無. t は X_{f} -pic/TikZ で使われる線種などの指定文字列. たとえば $s="@{.}"/dotted$ は点線 (cf. xyarrow()).
- line=[-1,r]: rmm を半径とする円グラフで表示する.
- value=0:値を表示しない.
 - value=1:棒グラフが底の基準線の位置につぶれても値を表示する.
- strip=1: \begin{xy} ··· \end{xy}や\begin{tikzpicture} ··· \end{tikzpicture} などの始まりと終わりの部分を出力しない.
 - strip=2: さらに下の基準線や目盛を描かない.
 - strip=3:値のみを表示する (value=0 で抜ける部分のみの表示)
- color=s: というオプション指定をすると、TikZ を用いたグラフの場合には色付けや塗りつ ぶしができる (xybox() のときの指定と同じ). 円グラフでは、指定文字列のデータの個数だけ並べたリストとする.
- mult=1:複数の棒グラフまたは複数の折れ線グラフを重ねて書くことができる.この場合, ℓ は, $[[\ell_1,\ell_2,\ldots],m]$ の形で,color または line も各グラフごとにリストにして指定する 必要がある(無指定は不可).

relative=1: さらにこれを指定すると, ℓ_1,ℓ_2 の値は,順に成分の値を加えたデータとしたグラフを描く.これを指定しない場合は,棒グラフの時は ℓ_j と ℓ_{j+1} の各成分は,後者の方が大きいとしている.

• 返された文字列 s は、s ="text"、"tab"、"graph" の場合は dviout(s) で、それ以外では dviout(s|eq=5) で表示できる.

```
• small=1 のときは行列を小サイズにする.
[0] os_md.ltotex([a+b, c/d,[2,3]]);
\left\{ \right. 
 a+b,\, \frac{c}d,\, [2,3]
\right\}
[1] os_md.dviout(@@|eq=5)$
                                      [a+b,\frac{c}{d},[2,3]]
[2] L=[[12,a+b],[3,c],[1,d]];
[[12,a+b],[3,c],[1,d]]
[3] os_md.ltotex(L|opt="spt");
\left\{ \right.
 [a+b]_{12},\, [c]_{3},\, d
\right\}
[4] os_md.dviout(@@|eq=5)$
                                     {[a+b]_{12}, [c]_3, d}
[5] LL=[L,[[3,3*b],[2,f]]];
[[[12,a+b],[3,c],[1,d]],[[3,3*b],[2,f]]]
[6] os_md.ltotex(LL|opt="GRS",pre=" 0 & 1\\\\n");
\begin{Bmatrix}
 0 & 1\\
 [a+b]_{12} & [3b]_3\\
 [c]_3 & [f]_2\\
 d &
\end{Bmatrix}
[7] os_md.dviout(@@|eq=5)$
                                     \left\{ \begin{matrix} 0 & 1 \\ [a+b]_{12} & [3b]_3 \\ [c]_3 & [f]_2 \\ d \end{matrix} \right\} 
[8] A=newmat(2,2,[[a,b],[c,d]]);
[ab]
[ c d ]
[9] B=newmat(2,2,[[p,q],[r,s]]);
[pq]
[rs]
[10] os_md.ltotex([A,B]|opt=["Pfaff",u,x-1,y]);
du= \Biggl(\begin{pmatrix}
 a&b \\
 c&d
\end{pmatrix}\frac{d(x-1)}{x-1}
```

```
\\&
 + \begin{pmatrix}
 p&q \\
 r&s
\end{pmatrix}\frac{dy}{y}
\Biggr)u
[11] os_md.dviout(@0|eq=5,subst=["\\\&","%"])$
                             du = \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \frac{d(x-1)}{x-1} + \begin{pmatrix} p & q \\ r & s \end{pmatrix} \frac{dy}{y} \right) u
[12] os_md.ltotex([A,B]|opt=["Fuchs",u,x,x,x-1]);
\frac{du}{dx}= \Biggl(\frac{\begin{pmatrix}
 a&b \\
 c&d
\end{pmatrix}}{x}
 + \frac{\begin{pmatrix}
 p&q \\
 r&s
\end{pmatrix}_{x-1}
\Biggr)u
[13] os_md.dviout(os_md.smallmattex(@0)|eq=5);
                                      \frac{du}{dx} = \left(\frac{\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)}{x} + \frac{\left(\begin{smallmatrix} p & q \\ r & s \end{smallmatrix}\right)}{x - 1}\right)u
[14] P=[[2*a,x,y],[(a+b)^2,y,z],[-2,x,z/y]]$
[15] os_md.ltotex(P|opt="dform");
2a\,dx\ dy+(a^2+2ba+b^2)\,dy\ dy-wedge dz-2\,dx\ dy-wedge d(\frac{z}y)
[16] os_md.dviout(@@|eq=5,subst=["\\frac","\\tfrac"]);
                         2a dx \wedge dy + (a^2 + 2ba + b^2) dy \wedge dz - 2 dx \wedge d(\frac{z}{u})
[17] os_md.ltotex(["There are",(n+1)^2,"points."]);
[\texttt{There are},n^2+2n+1,\texttt{points.}]
[18] os_md.dviout(@@|eq=5)$
                                 [There are, n^2 + 2n + 1, points.]
[19] os_md.ltotex(["There are",(n+1)^2,"points."]|opt="text");
$\texttt{There are}$
$n^2+2n+1$
$\texttt{points.}$
[20] os_md.dviout(@@)$
    There are n^2 + 2n + 1 points.
[21] os_md.ltotex(["There are",(n+1)^2,"points."]|opt="text",str=1);
```

There are n^2+2n+1 points.

[22] os_md.dviout(@@)\$

There are $n^2 + 2n + 1$ points.

- [23] L=[10,12,34,53,23,12,24,68,55,57,32,20]\$
- [24] M=[1,2,3,4,5,6,7,8,9,10,11,12]\$
- [25] os_md.dviout(os_md.ltotex([M,L]|opt="tab",title="Year 2014"));

上で得られた TrX のソースを表示または印刷すると(以下の例でも同様).

	Year 2014											
ſ	1	2	3	4	5	6	7	8	9	10	11	12
	10	12	34	53	23	12	24	68	55	57	32	20

[26] os_md.dviout(os_md.ltotex([L,M]|opt="graph"));

- [27] L=[10,12,-10,34,53,23,-12,24,48,52,38,32,20]\$
- [28] os_md.ltotex(L|opt="graph");

- [29] L=[12,15,10,8,12,14,19,15,17,13,10,15]\$
- [30] M=["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]\$
- [31] os_md.ltotex([L,LL]|opt="graph",line=[2,"@{.}"],shift=5,size=[100,40]);

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

- [32] L=cons("number",L)\$
- [33] M=cons("Month",M)\$
- [34] os_md.ltotex([M,L]|opt="tab",hline=[0,1,2],vline=[0,1,1,13], title="Year 2014");

Year 2014

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
number	12	15	10	8	12	14	19	15	17	13	10	15

- [35] L=[35,42,19,38]\$
- [36] LL=["春","夏","秋","冬"]\$
- [37] os_md.ltotex([L,LL]|opt="graph",line=[-1,15]);

- [38] L=[5,12,25,13,22,17,3,2]\$
- [39] M=[0.5,1,1.5,2,2.5,3,3.5]\$
- [40] os_md.dviout0(1|opt="TikZ")\$
- $[41] \ \, \text{os_md.ltotex}([L,M] \,|\, \text{opt="graph",color="fill=blue!50",size=[4.5,-0.1,1]});\\$

\begin{tikzpicture}

draw(0,0)--(4.5,0);

\draw[fill=blue!50](0,0)rectangle(0.563,0.5);

\node at (0.281, 0.7) {\$5\$};

\node at(0.563,-0.2){\$ 0.5\$};

\draw[fill=blue!50](0.563,0)rectangle(1.125,1.2);

. . .

- [42] L2=[10,18,35,20,27,22,8,6]\$
- [43] os_md.ltotex([[L,L2],M]|opt="graph",color=["fill=blue!40","fill=blue!20"], size=[4.5,-0.1,1],mult=1);
- [44] L3=ladd(L2,L,-1);
- [5,6,10,7,5,5,5,4]
- [45] os_md.ltotex([[L,L3],M]|opt="graph",color=["fill=blue!40","fill=blue!20"],

```
size=[4.5,-0.1,1],mult=1,relative=1);
[46] N=cons(0,M);
[0,0.5,1,1.5,2,2.5,3,3.5];
[47] os_md.ltotex([L,N]|opt="graph",color="fill=blue!40",
size=[4.5,-0.1,1],horiz=1);
[48] os_md.ltotex([[L,L3],N]|opt="graph",color=["fill=blue!40",
"fill=blue!20"],size=[4.5,-0.1,1,0.5,0.25],mult=1,horiz=1,relative=1);
[49] os_md.ltotex([L,N]|opt="graph",line=[2,"red"],size=[4.5,-0.1,1]);
[50] L3=[8,17,21,24,15,12,9,6]$
[51] os_md.ltotex([[L,L3],N]|opt="graph",line=[[1,"red"],[1,"blue"]],mult=1,
size=[4.5,-0.1,1], value=0);
[52] L=[35,42,19,38]$LL=["春","夏","秋","冬"]$
[53] os_md.ltotex([L,LL]|opt="graph",line=[-1,15],color=["fill=yellow!30",
     "fill=green!30","fill=red!30","fill=blue!30"]);
                                                                 10
                                   25
                                                                        5
                                                                 25
                                                              6
                                                                           17
         13
  12
                             10
                                                              12
                                                    6
                                                           5
                             5
5
                                                 3
                                                    2
                                                           5
                                                                  1.5
       1.5
                              0.5
                                    1.5 \ 2 \ 2.5
                                                                      2
 3.5
       2
                           3.5 2 4
                               3
                                  5
  3
       3
                            3
  2.5
               17
                           2.5
                                      17 5
                  22
                            2
                                         22
                                            5
  2
             13
                                    13
                                        7
  1.5
                           1.5
                                           25
                                                 10
  1
                   25
                            1
  0.5
            12
                           0.5
                                   12
                                       6
  0
        5
                            0
                                5
                                  5
                                                        0 0.5 1 1.5 2 2.5 3 3.5
                                             春
                                    冬
                                    秋
                                           夏
```

315. $mtotex(m|small=1,2, null=1,2, sp=1,2, idx=0,1, mat=s, var=\ell, raw=1, lim=n)$:: 行列またはベクトルを T_FX の文字列に変換するが,成分が有理式のときは因数分解した形にする

- m がベクトルのときは、1行の行列とみなす.
- null=1 では, 0 の成分は空白にする. null=2 では対角成分は残す.
- $var=\ell$ 多項式や有理式の成分を fctrtos() で変換するときのオプション.
- small=1 とすると、小さな行列にする. 行列の文字数換算の幅は小さくなる.
- small=2 とすると、lim を設定したとき、横幅が大きすぎる行列を小さな行列にする.
- raw=1 を指定しないと、成分が文字列のとき \text{} の形で、指定しない場合は IATeX の文字 列としてそのまま用いる。
- sp=1 成分が 2 個の元からなるリスト [s,t] のとき $[t]_s$ と、sp=2 のとき $[t]_{(s)}$ となるようにする.
- idx=1 とすると、先頭に行を追加して、列の番号を (1), (2), ... のようにつける. idx=0 のときは (0) から始める.
- idx=ℓ でリストやベクトルを指定したときは、先頭に行を追加してそれを各列に順に並べる. 個数 が不足したら、それ以降は最後のものを並べる.
- $\lim n$ とすると、行列がその文字数幅に入らないと推測されるときは、行列を分割して表示する. ただし、0 < n < 30 のときはデフォルトの横幅サイズとする. $\lim n$ は横幅制限なし.
- mat=s において、s="p"、"b"、"B"、"v"、"V" のとき行列は()、[]、{}、||、|| の形になる、s="" のときは、括弧は描かれない。
- len=1 を指定すると、IMEX の文字列と推測された横幅の文字数を 2 項目に加えたリストを返す.

```
[0] A=newmat(2,2,[[y/(x+a),z],[0,1]]);
[ (y)/(x+a) z ]
[ 0 1 ]
[1] os_md.mtotex(A^2);
\begin{pmatrix}
\frac{y^2}{(x+a)^2} & \frac{z(x+y+a)}{x+a}
0 & 1
\end{pmatrix}
[2] os_md.mtotex(A^2|small=1);
\left(\begin{smallmatrix}
\frac{y^2}{(x+a)^2} & \frac{z(x+y+a)}{x+a}
0 & 1
\end{smallmatrix}\right)
[3] B=os_md.mgen(3,"highdiag",a,1);
[ 0 a1 0 ]
[ 0 0 a2 ]
[000]
[4] os_md.mtotex(B);
\begin{pmatrix}
0 & a_1 & 0\\
0 & 0 & a_2\\
0 & 0 & 0
\end{pmatrix}
[5] os_md.mtotex(B|null=1);
\begin{pmatrix}
  & a_1 & \\
  & & a_2\\
```

```
& &
     \end{pmatrix}
     [6] os_md.mtotex(B|null=2);
     \begin{pmatrix}
      0 & a_1 & \\
       & 0 & a_2\\
       & & 0
     \end{pmatrix}
     [7] os_md.mtotex(A^3|len=1)$
     [8] @@[1];
     34
     [8] os_md.mtotex(A^3|len=1,small=1)$
     [9] @@[1];
     27
316. divmattex(s, l)
    :: 行列の T_{\mathbb{E}}X のソース s の分割や列の並べ替えを行う
    lによって以下のように変換される.
      • [[k_0, k_1, \ldots] : \nu 列目をもとの行列の k_{\nu} 列目とする (\nu = 0, 1, \ldots).
      • [[k_0^1, k_1^1, \ldots], [k_0^2, k_0^2, \ldots], \ldots] : 横長の行列を分割して複数に分ける.
        [k_0^1, k_1^1, \ldots] は最初の分割された行列.
      • [m_1, \ldots] : [[0,1,\ldots m_1-1],[m_1,\ldots],\ldots] : を表す.
        特に [m]: とすると、行列を最初の m 列とそれ以降との 2 つに分割する.
      • 0:成分が文字列の Risa/Asir の行列の形で返す. ただし, その成分がない場合は 0 となる.
     [0] S=os_md.my_tex_form(os_md.mgen(3,9,a,0));
     \begin{pmatrix}
      a_{00} \& a_{01} \& a_{02} \& a_{03} \& a_{04} \& a_{05} \& a_{06} \& a_{07} \& a_{08} \
       a_{10} & a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} & a_{17} & a_{18} \\ \\ \end{tabular} 
       a_{20} \& a_{21} \& a_{22} \& a_{23} \& a_{24} \& a_{25} \& a_{26} \& a_{27} \& a_{28} \\
     \end{pmatrix}
     [1] os_md.divmattex(S,[[2,4,1]]);
     \begin{pmatrix}
     a_{02} & a_{04} & a_{01} \
     a_{12} & a_{14} & a_{11} \
     a_{22} & a_{24} & a_{21}
     \end{pmatrix}
     [2] os_md.divmattex(S,[4]);
     \begin{align*}
     &\left(\begin{matrix}
     a_{00} & a_{01} & a_{02} & a_{03} \
     a_{10} & a_{11} & a_{12} & a_{13} \
     a_{20} & a_{21} & a_{22} & a_{23}
     \end{matrix}\right.\\
     &\quad\left.\begin{matrix}
```

```
a_{04} \& a_{05} \& a_{06} \& a_{07} \& a_{08} \
     a_{14} \& a_{15} \& a_{16} \& a_{17} \& a_{18} \
     a_{24} & a_{25} & a_{26} & a_{27} & a_{28}
    \end{matrix}\right)
    \end{align*}
317. smallmattex(s)
   :: T<sub>F</sub>X のソースで()や{}で囲まれた行列を小サイズに変換する(cf. mtotex())
318. texlen(s)
   :: IATeX の数式の横幅を推測して文字数で返す
   Risa/Asir の TrX 出力の文字列で、多項式や有理式に対応する. 改行記号や行列には対応していない.
   より具体的には以下の通り.
    • \frac{...} は、分母と分子の推測横幅文字数の大きい方と数える(ネスティング可)
    ◆ 上を除いて \ で始まりアルファベットか続く部分はまとめて1文字幅とみなす。
    ● 空白や改行文字, & ^ _ { } は文字数に数えない.
     _*^ が存在して * が任意の1文字の場合は _* を文字数に含めない.
    • _{**}^ または _{**}}^ に対しては (* は任意文字), _{**} を1文字とみなして数える.
319. texlim(s, n|del=s_0, cut=s_1)
   :: 長い TFX の数式を, 複数行に分割する
   s は多項式に対応する (\frac などが含まれていない) TeX の数式.
   texlen() で計った文字数幅が n を越えないよう分割する. ただし n < 30 のときは, n = TeXLim と
   みなされる.
    ● 改行は + - (の前. ただし \Bigl(や \biggl(などには正しく対応している.
    \bullet s_0 は元の改行の文字列(これは残される)で s_1 は新たに挿入される改行の文字列.
    • デフォルトは、s_1 = " \setminus (n \& ") かつ s_0 = s_1.
    • s=1 のときは、TeXLim を n に設定するコマンドとなる.
   3.2.10 Lines and curves
320. ladd(u, v, t)
   :: ベクトルまたはリストの成分の和 (t=1) や差 (t=-1) を成分とするリストを返す
   uにvをt倍して加えた座標を返す.
    [0] os_md.ladd([1,2],[3,4],1);
    [4.6]
    [1] os_md.ladd(ltov([1,2]),[3,4],1);
    [4,6]
    [2] os_md.ladd(P,Q,-1);
    [-1, -2]
321. dnorm(v)
   :: ベクトルまたはリストのノルム, または2点間の距離を返す
   v が [v_1, v_2] という 2 つのリストまたはベクトルの時は、その差のノルムを返す。
```

[0] os_md.dnorm([1,2]);

[1] os_md.dnorm([[1,2],[2,3]]);

322. $mrot(\theta|deg=1) mrot([\theta'_z, \theta_y, \theta_z]|deg=1, conj=1)$

2.23607

1.41421

- :: 角度 θ の回転行列を返す
 - deg=1 を指定すると、度単位となる.
 - 引数が $[\theta'_z, \theta_y, \theta_z]$ のときは、z 軸の周りに θ_z 、x 軸の周りに θ_y 最後に z 軸の周りに θ'_z 回転した 3 次元の回転行列を返す.

このとき conj=1 を指定すると、z 軸の周りに θ_z 、y 軸の周りに θ_y 回転したときの z 軸にあたる軸に対する θ_z' の回転を返す.

```
[0] os_md.mrot(@pi/6);
[ 0.866025 -0.5 ]
[ 0.5 0.866025 ]
[1] os_md.mrot(45|deg=1);
[ 0.707107 -0.707107 ]
[ 0.707107 0.707107 ]
[2] os_md.mrot([30,0,0]|deg=1);
[ 0.866025 -0.5 0 ]
[ 0.5 0.866025 0 ]
[001]
[3] os_md.mrot([0,30,0]|deg=1);
[ 0.866025 0 -0.5 ]
[010]
[ 0.5 0 0.866025 ]
[4] os_md.mrot([1,30,45]|deg=1,conj=1);
[ 0.999867 -0.0151333 -0.00612372 ]
[ 0.0150952 0.999867 -0.00621699 ]
[ 0.00621699 0.00612372 0.999962 ]
```

- 323. dvangle(v_1, v_2) dvangle($[u_1, u_2, u_3], 0$)
 - :: ベクトルまたはリストの鋏む角度の余弦を返す
 - dvangle($[u_1, u_2, u_3]$,0) は dvangle($u_2 u_1$, $u_3 u_2$) と解釈される.
 - v_1 または v_2 が 0 のときや u_1 , u_2 , u_3 のいずれかが 0 のときは 1 を返す.
 - 2 次元ベクトル V の偏角 (π 以下で $-\pi$ より大) は myarg(V[0]+V[1]*@i) で得られる.
- 324. ptaffine $(m, \ell | \text{org}=v, \text{shift}=w, \text{arg}=\theta, \text{deg}=\theta, \text{proc}=1)$
 - :: 実数の組(座標)のリストを結合する,またはアフィン変換(こちらは描画実行形式も可)を施す
 - 曲線や折れ線の通過点の座標を表す複数のデータのリストを想定している.
 - *m* は行列またはスカラー
 - org=v:v は座標で、ここを原点とした線型変換とする(デフォルトは原点中心).
 - $arg=\theta$: 平面座標のリストのとき指定可能. 角度 θ の反時計回り回転を行った後, M による線型変換を行う. θ はQpi/2 など deval() によって実数が得られるものでもよい.
 - $deg=\theta$: 上と同じだが、角度をラジアンでなく度で与える.
 - shift=w:w は座標で、変換を行ったあと、w だけ平行移動する.
 - proc=1:描画実行形式 (cf. execdraw()) ℓ のアフィン変換の場合に指定.
 - ℓ の成分に数や文字列などがあってもよい. それはそのままに保たれる (xybezier() の引数 など).
 - ℓは単に座標であってもよい.
 - 座標はリストでなくてベクトルで与えてもよい.
 - m が以下の文字列のときは特別の意味をもつ (connect などで、曲線を繋げることができる).
 - reverse: ℓ を xybezier() のデータとみなして, 描く順序を逆にしたデータに変換
 - union: ℓ を xybezier() のデータのリストとみなして、合わせて一つの曲線データとする.

```
- connect: \ell を xybezier() のデータのリストとみなして、順につなげた一つの曲線データとする.
```

- close: ℓ を xybezier() のデータまたはそのリストとみなして、順につなげ、始点と終点をつなげて閉曲線データとする.
- loop : ℓ を xybezier() のデータまたはそのリストとみなして、順につなげ、終点を始点に変えて閉曲線データとする.

```
[0] L=[[1,0],[0,1],[1,1]]$
[1] os_md.ptaffine(2,L|arg=3.1416/8);
[[1.84776,0.765369],[-0.765369,1.84776],[1.08239,2.61313]]
[2] os_md.ptaffine(2,L|arg=3.1416/8,org=[1,1]);
[[1.76537,-0.847758],[-0.847758,0.234631],[1,1]]
[3] os_md.ptaffine(2,L[0]|arg=3.1416/8,org=[1,1]);
[1.76537, -0.847758]
[4] L1=[[2,0],[1,2],[2,1]]$
[5] os_md.ptaffine("union",[L,L1]);
[[1,0],[0,1],[1,1],0,[2,0],[1,2],[2,1]]
[6] os_md.ptaffine("connect",[L,L1]);
[[1,0],[0,1],[1,1],1,[2,0],1,[1,2],[2,1]]
[7] os_md.ptaffine("close",[L,L1]);
[[1,0],[0,1],[1,1],1,[2,0],1,[1,2],[2,1],1,-1]
[8] L3=[[1,1],[2,0],[1,2],[1,0]]$
[9] os_md.ptaffine("connect",[L,L3]);
[[1,0],[0,1],[1,1],1,[2,0],[1,2],[1,0]]
[10] os_md.ptaffine("close",[L,L3]);
[[1,0],[0,1],[1,1],1,[2,0],[1,2],-1]
[11] L2=[2,1],[1,2],[2,1]]$
[12] os_md.ptaffine("close",[L,L2]);
[[1,0],[0,1],[1,1],1,[2,1],1,[1,2],[2,1],1,-1]
[13] os_md.ptaffine("loop",[L,L2]);
[[1,0],[0,1],[1,1],1,[2,1],1,[1,2],-1]
[14] os_md.ptaffine("reverse",[[1,0],[0,1],[1,1],1,[2,0],[1,2],[2,1]]);
[[2,1],[1,2],[2,0],[1,1],1,[0,1],[1,0]]
```

325. $ptpolygon(n,r|org=p,scale=t,arg=\theta,deg=\theta)$

:: 半径 r の円に内接する正 n 多角形の頂点の平面座標

- 半径 r の円に内接する正多角形の座標のリストを返す
- デフォルトでは下辺が水平となる.
- org=p: 中心の座標(デフォルトは (0,0)).
- $arg=\theta$: 多角形を反時計回りに θ 回転. Qpi/8 などの指定も可能.
- $deg=\theta$: 上と同じだが、角度の単位が度
- xylines()の例を参照.

```
[0] os_md.ptpolygon(5,2);
[[-1.17557,-1.61803],[1.17557,-1.61803],[1.90211,0.618034],[-2.07711e-013,2],
[-1.90211,0.618034]]
[1] os_md.sint(os_md.ptpolygon(5,2),4);
```

os_md.sint(os_md.ptpolygon(5,2),4);

[[-1.1756, -1.618], [1.1756, -1.618], [1.9021, 0.618], [0,2], [-1.9021, 0.618]]

[2] os_md.ptpolygon(4,2);

[[-1.41421, -1.41421], [1.41421, -1.41421], [1.41421, 1.41421], [-1.41421], [-1.41421]]

[3] os_md.sint(os_md.ptpolygon(4,1|deg=45,scale=2),5);

[[0,-2],[2,0],[0,2],[-2,0]]

[4] os_md.xylines(os_md.ptpolygon(7,10)|close=1,dviout=1);

326. ptlattice $(m, n, v_1, v_2 | \text{org}=p, \text{scale}=t, \text{cond}=[f_1, f_2, \ldots], \text{line}=1)$

:: org を始点として v_1 方向に m 個まで、 v_2 方向に n 個までの合計 $m \times n$ 個の格子点の座標

- scale=*t*: 得られた座標を全て *t* 倍にして返す (org も同様).
- line=1:格子点でなくて,格子を描く線分のデータを返す xylines()の例を参照).
- f_1, f_2, \ldots は (\mathbf{x}, \mathbf{y}) の函数で、これらが全て非負の点のみ残す(平面座標の時のみ指定可能).

[0] os_md.ptlattice(2,3,[1,0],[0,1]);

[[0,0],[0,1],[0,2],[1,0],[1,1],[1,2]]

[1] os_md.ptlattice(2,3,[1,0],[0,1]|line=1);

[[0,0],[1,0],0,[0,1],[1,1],0,[0,2],[1,2],0,[0,0],[0,2],0,[1,0],[1,2]]

[2] os_md.xylines(os_md.ptlattice(10,5,[5,0],[0,5]|line=1,cond=[35-x*2+y])|dviout=1);

327. $ptcopy(\ell, v)$

 \dots 座標のリスト ℓ を移動方向のリスト v に従って複製コピーする

- 移動方向のリストの成分で0はそのままコピーされる.
- 各移動の間には 0 が挿入される.
- 移動方向が一つなら、それをvで指定してよい.

[0] os_md.ptcopy([[0,1],[1,2]],[[0.1,0],[0,0.1],[0.1,0.1]]);

[[0.1,1],[1.1,2],0,[0,1.1],[1,2.1],0,[0.1,1.1],[1.1,2.1]]

328. $ptcommon([s_1,s_2],[t_1,t_2]|in=k)$

:: 直線や線分や円に対して共通点、接点や垂線の足、内分点、方向転換進行点、角度などを求める

- $s_1 = [x_1, y_1], s_2 = [x_2, y_2], t_1 = [u_1, v_1], t_2 = [u_2, v_2]$ のとき, s_1 と s_2 とを結ぶ直線と, t_1 と t_2 を結ぶ直線の交点の座標(並行の時は 0 を一致の時は 1)を返す.
- $s_1 = [x_1, y_1], s_2 = [x_2, y_2], t_1 = [u_1, v_1], t_2 = 0$ のとき, s_1 と s_2 とを結ぶ直線に点 t_1 から下ろした垂線の足の座標を返す,
- $s_1 = [x_1, y_1], s_2 = [x_2, y_2], t_1 = [u_1, v_1], t_2 > 0$ のとき、 s_1 と s_2 とを結ぶ直線と、点 t_1 を中心とする半径 t_2 の円との交点を返す(交点をリストで、交点がないときは 0 を返す).
- $s_1 = [x_1, y_1], s_2 > 0, t_1 = [u_1, v_1], t_2 > 0$ のとき、点 s_1 を中心とする半径 s_2 の円と、点 t_1 を中心とする半径 t_2 の円との交点を返す(交点をリストで、交点がないときは 0 を返す).
- $s_1 = [x_1, y_1], s_2 > 0, t_1 = [u_1, v_1], t_2 = 0$ のとき, 点 s_1 を中心とする半径 s_2 の円に t_1 を通る接線を引いたときの接点の座標を返す (接点をリストで,接点がないときは 0 を返す).

- $s_1 = [x_1, y_1], s_2 = [x_2, y_2], t_1$ が数のとき, $\overline{s_1 s_2}$ を t_2 だけ回転した向きの単位ベクトルを t_1 倍したベクトルだけ s_2 から移動した点を返す(方向転換進行点). ただし in=1 を指定すると,線分 $s_1 s_2$ の比 $t_1:t_2$ での内分点を返す.
- in=1 を指定すると、2 点を結ぶ直線が2 点を結ぶ線分で置き換えられる。
- in=-1 を指定すると、2点を結ぶ直線が2点を結ぶ線分の垂直二等分線で置き換えられる.
- in=-2 を指定すると、 s_1 と s_2 とを結ぶ直線が、その 2 点を結ぶ線分の垂直二等分線で置き換えられる。
- in=-3 を指定すると、 s_1 と s_2 とを結ぶ線分の垂直二等分線と、 t_1 と t_2 を結ぶ線分の交点があればそれを返す。
- 直線と直線の交点を求める場合は、座標に不定元が含まれていてもよい。また、全ての座標が有理 数で指定してあれば、直線の交点の座標も有理数で返される。
- in=2 を指定すると、 $\overline{s_1s_2}$ と $\overline{t_1t_2}$ のなす角度を返す($-\pi$ を越えて π 以下で、 $\overline{s_1s_2}$ を基準として反時計回りが正の向き).
- in=3 を指定すると、上と同じだが度単位で返す.

```
[0] os_md.ptcommon([[0,0],[1,2]],[[0,4],[4,0]]); /* 二直線 */
[4/3,8/3]
[1] os_md.ptcommon([[0,0],[1,2]],[[0,4],[x,y]]);
[(4*x)/(2*x-y+4),(8*x)/(2*x-y+4)]
[2] os_md.ptcommon([[0,0],[1,2]],[[0,4],[4,0]|in=1); /* 二線分 */
[3] os_md.ptcommon([[0,0],[2,2]],[[0,0],[2,3]]|in=-2); /* 垂直二等分線と直線 */
[4/5,6/5]
[4] os_md.ptcommon([[0,0],[2,2]],[[5,4],0]);
                                               /* 垂線の足を求める */
[9/2, 9/2]
[5] os_md.ptcommon([[0,a],[1,b]],[[0,c],[1,d]]);
[(a-c)/(a-b-c+d), (d*a-c*b)/(a-b-c+d)]
[6] os_md.ptcommon([[0,0],[4,8]],[[4,8],0.5]|in=1); /* 線分と円 */
[[3.77639,7.55279]]
                                                  /* 二円 */
[7] os_md.ptcommon([[0,0],1],[[1,2],3]);
[[-0.96332495807107996983525630141, -0.26833752096446001508],
[0.36332495807107996975,-0.93166247903553998487]]
[8] os_md.ptcommon([[0,0],1],[[1,4],0]);
                                                  /* 円の接点を求める */
[[-0.88235294117647058813,0.470588235294117647250153324556],[1,0]]
[9] os_md.ptcommon([[0,1],[2,3]],[1,2]|in=1);
                                                 /* 内分点 */
[2/3,5/3]
[10] os_md.ptcommon([[0,1],[2,3]],[t,1-t]|in=1);
[2*t, 2*t+1]
[11] os_md.ptcommon([[0,1],[2,3]],[2,-1]|in=1);
                                                 /* 外分点 */
[4,5]
[12] os_md.ptcommon([[0,0],[2,3]],[1,@pi/2]); /* 方向転換進行点 */
[1.16795,3.5547]
[13] os_md.ptcommon([[0,0],[1,1]],[[0,0],[-2,2]]|in=2); /* 角度 (ラジアン)*/
[14] os_md.ptcommon([[0,0],[1,1]],[[0,0],[-2,2]]|in=3); /* 角度(度)*/
90
```

```
329. ptwindow(\ell, [x_1, x_2], [y_1, y_2] |scale=t)
    :: 平面座標 (x,y) のリストで x_1 \le x \le x_2, y_1 \le y \le y_2 を満たさないものを 0 に変える
      • scale=t: リストで与えられた平面座標は t 倍されているとみなす.
      [0] os_md.ptwindow([[0,3],[2,1],[4,2],[5,6],[1,5]],[0,3],[1,6]);
      [[0,3],[2,1],0,0,[1,5]]
330. ptbbox([[x_1, y_1, ...],[x_2, y_2, ...],...]|box=b)
    \texttt{ptbbox}(\texttt{[[[}x_{min}^{(1)}\texttt{,}x_{max}^{(1)}\texttt{]}\texttt{,}[y_{min}^{(1)}\texttt{,}y_{max}^{(1)}\texttt{]}\texttt{,}...\texttt{],}[[x_{min}^{(2)}\texttt{,}x_{maxS}^{(2)}\texttt{],}...\texttt{],})]\texttt{box=1)}
    :: 座標 (x,y,\ldots) や箱のリストを囲む箱 [[x_{min},x_{max}],[y_{min},y_{max}],\ldots] を返す
      • 各座標はリストでもベクトルでもよい. xybezier() の引数の形式でもよい.
      ● box=1 を指定すると、箱のリストを与えて、それらを囲む箱を返す.
      • box=b として箱 b を指定すると、ptbbox([ptbbox(\ell),b]|box=1)と解釈される.
      [0] os_md.ptbbox([[1,2],[3,4],[0,8],[4,1]]);
      [[0,4],[1,8]]
      [1] os_md.ptbbox([[1,2],[3,4],[0,8],[4,1],-1]);
      [[0,4],[1,8]]
      [2] os_md.ptbbox([[[1,2],[3,4]],[[0,8],[1,3]]]|box=1);
      [[0,8],[1,4]]
      [3] os_md.ptbbox([[1,2],[3,4],[0,8],[4,1]]|box=[[1,5],[0,7]]);
      [[0,5],[0,8]]
331. iscombox([[x_{min}^{(1)},x_{max}^{(1)}],[y_{min}^{(1)},y_{max}^{(1)}],\ldots], [[x_{min}^{(2)},x_{max}^{(2)}],[y_{min}^{(2)},y_{max}^{(2)}],\ldots])
    :: 2 つの箱 (区間の直積) の共通部分の有無を返す
      [0] S=[[1,2],[4,6]]$
      [1] os_md.iscombox(S,[[1.5,3],[4,7]]);
      [2] os_md.iscombox(S,[[3,3],[4,6]]);
332. lninbox([p_1,p_2],[[x_{min},x_{max}],[y_{min},y_{max}]]|in=1)
    :: 平面内の2点p_1とp_2を結ぶ直線(または線分)の箱内の部分(2点を結ぶ線分)を返す
      • 戻り値は、線分を表す両端点の座標のリスト.
      ● in=1: これを指定すると, 2点を結ぶ線分となる.
    2点 (0.2,0.3) と (-1,3) とを結ぶ直線 (または線分) の 0 \le x \le 1, 0 \le y \le 1 内の部分は,
      [0] os_md.lninbox([[0.2,0.3],[-1,3]],[[0,1],[0,1]]);
      [[0.333333,0],[0,0.75]]
      [1] os_md.lninbox([[0.2,0.3],[-1,3]],[[0,1],[0,1]]|in=1);
      [[0.2,0.3],[0,0.75]]
333. scale(\ell|scale=[c_1,...],f=f,shift=[s_1,s_2],TeX=1,mes=[t,[a_1,b_1,w_1],...],line=[a,b],
    prec=1, col=s)
    :: 目盛や対数(函数)尺の作成
    [a,b,w] は a から b までの等幅 w の目盛を表す. これらの目盛を表すリスト (3 つの数字のリスト)
    \ell_{i,j} に対し、\ell=[[\ell_{1,1},\ell_{1,2},...],[\ell_{1,1},\ell_{1,2},...],...] が一般的な目盛の指定で、\ell_{1,\nu} が第1段階、\ell_{2,\nu}
    が第2段階の目盛、というように表す(より多段階も可能).
      なお、1段階の目盛のみの時は単純に [a_1,a_2,a_3,...] と表してもよい.
```

 $scale(\ell)$ は,目盛リスト $m = [[m_{1,1}, m_{1,2}, \ldots], [m_{2,1}, m_{2,2}, \ldots], \ldots]$ を返す.ここで,後ろの段

階に現れる目盛は省かれる.

なお、対数尺の目盛のデフォルトは3段階で

[[[1,2,1/50],[5,10,1/2],[5,10,1/10]],[[1,5,1/10],[5,10,1/2]],[[1,5,1/2],[5,10,1]]] であるが、prec=1 を指定すると、倍程度細かくなる。 $\ell=0$ または 1 のとき、 $\log_{10}x$ ($1 \le x \le 10$) に対する目盛(C 尺に対応)を生成するが、 $\ell=2$ のときは $\frac{1}{2}\log_{10}x$ ($1 \le x \le 100$) に対する目盛(A 尺に対応)を生成し、 $\ell=3$ のときは $\frac{1}{3}\log_{10}x$ ($1 \le x \le 1000$) に対する目盛(K 尺に対応)を生成する。また、CI 尺の目盛を生成するには (c_1,s_1) を $(-c_1,s_1+c_1)$ に変えればよい。

- scale=c: 目盛の位置 [[$cf(m_{1,1}) + s_1$, $cf(m_{1,2}) + s_1$, ...], [$cf(m_{2,1}) + s_1$, $cf(m_{2,2}) + s_1$,...] を返す. ここで f(x) のデフォルトは自然対数 $\log x/\log 10$.
- scale= $[c_1,c_2,\ldots]$: 以下の目盛描画用パラメータを返す(xylines() の引数). なお、shift= $[s_1,s_2]$ によって描画の相対位置を指定する. [$[c_1f(m_{1,1})+s_1,s_2]$, $[c_1f(m_{1,1})+s_1,s_2+c_2]$, 0, $[c_1f(m_{1,2})+s_1,s_2]$, $[c_1f(m_{1,2})+s_1,s_2+c_2]$, 0,...], $[c_1f(m_{2,1})+s_1,s_2]$, $[c_1f(m_{2,1})+s_1,s_2+c_3]$, 0, $[c_1f(m_{2,2})+s_1,s_2]$, $[c_1f(m_{2,2})+s_1,s_2]$, $[c_1f(m_{2,2})+s_1,s_2+c_3]$, 0,...]
 - c_1,c_2,\dots は負の値も設定可能. なお c_3 以降がないときは, c_n のデフォルトは $(n-1)c_2$.
- TeX=1:目盛描画の T_{EX} のソースを返す (戻り値で xyproc()を呼ぶ). 目盛線の色づけなどを行うときは、col="red"などとオプションで指定する (TikZ を用いるとき). このとき、 $mes=[t,[a_1,b_1,w_1],...]$ 、あるいは $mes=[t,c_1,c_2,c_3,...]$ により、それ以降で指定した目盛の数字を、高さ t の位置に描く. なお、目盛の数字の色付けなどを指定するときは、t を [t,"red"] などと、オプション文字列を指定する. line=[a,b] によって基準線を a から b まで描く.
- [0] $S=os_md.scale([[[0,5,1/10]],[[0,5,1/2]],[[0,5,1]]]|scale=[1,0.15],f=x, TeX=1,line=[0,5])$ \$
- [1] $S=os_md.scale(0|scale=[14,0.15], TeX=1, mes=[0.7,[1,2,1/2],[2,10,1]])$ \$
- [2] S+=os_md.scale(0|scale=[-14,-0.15],TeX=1,shift=[14,0],line=[-14,0], mes=[[-0.7,"red"],[1,2,1/2],[2,10,1]])\$
- [3] os_md.xyproc(S|dviout=1)\$
- [4] S=os_md.scale(2|scale=[14,0.15],TeX=1,mes=[0.7,1,2,5,10,20,50,100], line=[0,14])\$
- [5] S=os_md.scale(3|scale=[14,0.15],TeX=1,mes=[0.7,1,2,5,10,20,50,100,200,500,1000],line=[0,14])\$
- [6] $S=os_md.scale(0|scale=[14,0.1], TeX=1, mes=[0.5,[1,2,1/2],[2,10,1]],$ line=[0,14], prec=1)\$

334. tobezier(ℓ |inv=[a,b,t],div=k)

- :: 点のリストℓで定まる Bézier 曲線のパラメータ表示とその逆変換と分割
 - $\ell=[p_0,\ldots,p_n]$ で、 p_j が座標を表すリストまたはベクトルのとき、これらによって定まる Bézier 曲線(パラメータは $\mathbf{t}\in[0,1]$)を、 \mathbf{t} の n 次多項式を成分とするベクトル)を返す. Bézier 曲線とは

$$\gamma(t) = \gamma(p_1, \dots, p_n; t) = \sum_{j=0}^{n} \binom{n}{j} t^j (1-t)^{n-j} p_j \quad (t \in [0, 1]), \quad \binom{n}{j} = \frac{n!}{j! (n-j)!}$$

で定まる曲線である (このとき n 次 Bézier 曲線という).

 $\gamma(p_0,p_1;t)=(1-t)p_0+tp_1$ は線分 p_0p_1 を t:(1-t) に内分する点で、1 次 Bézier 曲線は p_0 と p_1 を結ぶ線分となる。また平面内の 2 次 Bézier 曲線は、x 座標と y 座標が t の 2 次(以下)の 多項式となるが、平面を回転すると x 座標は t の 1 次式にできる。よって、2 次 Bézier 曲線は放物線の一部(または線分)を回転したものとなる。

一方,
$$\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}$$
 であるから

$$\binom{n}{j}t^{j}(1-t)^{n-j} = (1-t)\cdot\binom{n-1}{j}t^{j}(1-t)^{n-1-j} + t\cdot\binom{n-1}{j-1}t^{j-1}(1-t)^{n-1}, \quad \binom{n-1}{-1} = \binom{n-1}{n} = 0$$

となり、 p_j にこれを掛けて $j=0,\ldots,n$ について加えると

$$\gamma(p_0,\ldots,t_n:t) = \gamma(\gamma(p_0,\ldots,p_{n-1};t),\gamma(p_1,\ldots,p_n;t);t)$$

がわかる. これを遡れば、元の点 $\{p_0,\ldots,p_n\}$ の t:(1-t) の内分点を取ることを繰り返すことにより $\gamma(p_0,\ldots,p_n:t)$ が得られる.

たとえば 3 次 (cubic)Bézier 曲線は

$$\gamma(p_0, p_1, p_2, p_3; t) = \gamma(\gamma(p_0, p_1, p_2; t), \gamma(p_1, p_2, p_3; t); t)$$

$$= \gamma(\gamma(\gamma(p_0, p_1; t), \gamma(p_1, p_2; t); t), \gamma(\gamma(p_1, p_2; t), \gamma(p_2, p_3; t), t); t)$$

となる.よって p_0p_1 , p_1p_2 , p_3p_4 の t:(1-t) の内分点を順に q_0 , q_1 , q_2 とし,さらに q_0q_1 と q_1q_2 の t:(1-t) の内分点を r_0 , r_1 とすると r_0r_1 の t:(1-t) の内分点が $\gamma(p_0,p_1,p_2,p_3;t)$ となる.

- inv=[a,b]: パラメータが $t \in [a,b]$ の部分の Bézier 曲線に対応する座標(ベクトルで表す)のリストを返す.
- div=1: Bézier 曲線を 2 分割して,それらを定義する座標の組のリストを返す(3 次のときは,ベクトルの 4 個のリストの 2 つのリストで,前者が $\left[0,\frac{1}{2}\right]$ の部分,後者が $\left[\frac{1}{2},1\right]$ の部分). 3 次のみ高速化対応.
- $\operatorname{div}=k:2\leq k\leq 256$ のとき、Bézier 曲線を k 分割して、それらを定義する座標の組のリスト k 個のリストを返す。

- inv=[a,b] : ℓ が Bézier 曲線のとき,それを $t \in [a,b]$ をパラメータとする Bézier 曲線とみなして,それを定義する点の座標(ベクトルで表す)のリストで返す.パラメータが t でないときは,それを inv=[a,b,t] のようにして明示することができる.
- inv=1: inv=[0,1] とみなす. tobezier() の逆変換となる.
- [0] S=os_md.tobezier([[p0,q0],[p1,q1],[p2,q2],[p3,q3]]);

```
[ (-p0+3*p1-3*p2+p3)*t^3+(3*p0-6*p1+3*p2)*t^2+(-3*p0+3*p1)*t+p0 (-q0+3*q1-3*q2+q3)*t^3+(3*q0-6*q1+3*q2)*t^2+(-3*q0+3*q1)*t+q0 ]
```

[1] T=os_md.tobezier(@@|inv=1);

[[p0 q0],[p1 q1],[p2 q2],[p3 q3]]

[2] os_md.tobezier(T|inv=[0,1/2]); /* Bezier 曲線の 2 分割の前半 */

[[p0 q0],[1/2*p0+1/2*p1 1/2*q0+1/2*q1],

[1/4*p0+1/2*p1+1/4*p2 1/4*q0+1/2*q1+1/4*q2],

[1/8*p0+3/8*p1+3/8*p2+1/8*p3 1/8*q0+3/8*q1+3/8*q2+1/8*q3]]

335. lbezier(l | inv=t)

:: 区分 Bézier 曲線のデータ変換

xybezier() のデータ形式 (座標と、整数 0, 1, -1 のリスト) を、区分 Bézier 曲線を与える座標のリストを成分とするリストに変換する.

- inv=1:上の変換の逆変換を行う. 区分 Bézier 曲線をつなげる指定 1 や,閉曲線を描く指定 -1 を可能な限り使う.
- inv=2:上と同様だが、閉曲線を描く指定を使わない.
- inv=3:上と同様だが、閉曲線を描く指定は、全体として一つの閉曲線となる場合のみ使う.
- [0] P=os_md.xyoval([1,3.5],2.5,2|opt=0); /* 中心 (1,3.5) 半経 2.5x5 の楕円 */

 $\left[\left[3.5, 3.5 \right], \left[3.5, 7.349 \right], \left[1.41667, 9.75463 \right], \left[-0.25, 7.83013 \right], 1, \left[-1.91667, 5.90563 \right], \right.$

[-1.91667, 1.09437], [-0.25, -0.830127], 1, [1.41667, -2.75463], [3.5, -0.349002], -1]

[1] Q=os_md.lbezier(P);

[[[3.5,3.5],[3.5,7.349],[1.41667,9.75463],[-0.25,7.83013]],

[-0.25, 7.83013], [-1.91667, 5.90563], [-1.91667, 1.09437], [-0.25, -0.830127]],

[[-0.25, -0.830127], [1.41667, -2.75463], [3.5, -0.349002], [3.5, 3.5]]]

[2] os_md.lbezier(Q|inv=1);

 $\left[\left[3.5, 3.5 \right], \left[3.5, 7.349 \right], \left[1.41667, 9.75463 \right], \left[-0.25, 7.83013 \right], 1, \left[-1.91667, 5.90563 \right], \right.$

 $\left[-1.91667, 1.09437\right], \left[-0.25, -0.830127\right], 1, \left[1.41667, -2.75463\right], \left[3.5, -0.349002\right], -1 \right]$

336. velbezier(f,[a,b,t])

- :: Bézier 曲線の最大速度ベクトル
 - $t \in [a, b]$ をパラメータとする Bézier 曲線 f の成分毎の最大速度をリストで返す.
 - 2番目の引数が 0 のときは、デフォルトの [0,1,t] を意味する.
 - パラメータが t のときは、2番目の引数を [a,b] としてよい.
 - [0] B=os_md.tobezier([[0,0],[1.2,0.7],[2.1,0.5],[3,0]]);
- $[0.3*t^3-0.9*t^2+3.6*t\ 0.6*t^3-2.7*t^2+2.1*t];$
- [1] os_md.velbezier(B,0);

[3.6, 2.1]

[2] os_md.velbezier(B,[0.5,1]);

[2.925, 1.5]

337. ptbezier(l, [n, t]) ptbezier(l, s)

- :: (複合) Bézier 曲線上の点と速度ベクトルを求める
 - *l* は, xybezier() の引数で与える(複合) Bézier 曲線のデータ, またはそれを lbezier() で変換した形
 - n 番目の Bézier 曲線の t = x の点の座標と速度ベクトルの組を返す.
 - n=0 は最初の Bézier 曲線,n=1 は 2 番目,n=-1 は最後の,n=-2 は最後から 2 番目の Bézier 曲線を表す.
 - 2番目の引数s が非負実数の時は、n はs の整数部分 +1 を、t はs の小数部分を表す。 ただしx が Bésier 曲線の個数より大きいときは、(複合) Bézier 曲線の終点を表す。
 - 2番目の引数 x が -1 のときは、Bésier 曲線の個数を返す.
 - [0] R=os_md.xyang(2,[1,1],0,0|opt=0)\$ /* (1,1) 中心の半径 2 の円のデータ */
 - [1] os_md.ptbezier(R,-1);
- 3 /* 3つのベジェ曲線からなる , 0 <= s <= 3 */
- [2] S=os_md.ptbezier(R,0.5); /* s=0.5 での座標と速度ベクトル */
- [[2 2.73205],[-3.5,2.02073]]
- [3] T=os_md.ladd(S[0],S[1],1/3); /* 速度ベクトルの頂点(長さ 1/3) */
- [0.833333,3.40563]
- [4] R1=os_md.xyang(0.3,T,S[0],2|ar=1,opt=0)\$ /* s=0.5 での速度ベクトルの描画 */
- [5] U=os_md.ptbezier(R,2)\$ /* s=2 での座標と速度ベクトル */
- [6] V=[U[0][0]-U[1][0],U[0][1]-U[1][1]]\$
- [7] R2=os_md.xyang(0.3,U[0],V,3|opt=0)\$ /* s=1.5 に曲線上の矢印の描画 */
- [8] Out=os_md.ptaffine("union",[R,R1,R2])\$
- [9] os_md.dviout(os_md.xyproc(Out));

- 338. areabezier(l|rev=1,pt=[$p_1,p_2,...$],para=1,prec=v,int=k,exp=c,Acc=1,cpx=1)
 - :: Bézier 曲線を用いた領域の面積・数値積分の計算
 - l が $[f,n,[t_1,t_2]]$ という xygraph() の最初の 3 つの引数であって,f が変数 x の函数のときは,Bézier 曲線で近似することによって積分 $\int_{t_1}^{t_2} f(x) dx$ を近似計算する.
 - int=1 を指定すると,|n| 分割して台形公式で近似計算する.
 - int=2 を指定すると, |n| 分割してシンプソンの公式で近似計算する. このとき, n が奇数なら |n|+1 分割する。
 - cpx=1: 非積分関数が複素数値函数であるときに指定する.
 - 変数が x でなくて、たとえば t のときは、 $[t,t_1,t_2]$ と明示する.
 - 等分割の個数は |n| となる (n=0) は、(n=0) は、(n=0) と解釈される).
 - 積分区間外まで函数が定義されているときは、n を負の数にする (n が分割の数).
 - $-t_1$ ="-infty" (""でも可) とすると $a=-\infty$ と, t_2 ="infty" (""でも可) とすると $b=\infty$ と解釈され,無限区間での積分となる. 無限区間での積分のとき $\exp = c$ の指定が有効 (cf. cmpf()).
 - 無限区間での積分において無限遠で $o(|x|^{-2})$ (有理函数のときは $O(|x|^{-2})$ を満たさないとき) は誤差が大きくなるので、prec=16 または exp=1 などと指定すると改善される.
 - 函数に滑らかでない点や不連続点がある場合は、prec=16 などと指定すると計算誤差が少なく

なる.

- f がリストで f=[f1,f2] というパラメータ表示の曲線のときは、3番目の要素が [t,t1,t2] ならば、その曲線を Bézier 曲線で近似した曲線に沿って、積分 $\int_{t_1}^{t_2} f_2(t) \, df_1(t)$ を計算する. 特にこの Bézier 曲線が閉曲線のときは、その曲線で囲まれた領域の面積の計算となる。このとき、時計回りかどうかで正負が決まり、反時計回りに 1回囲まれた部分の面積は -1 倍される.
- Acc=1 を指定すると pari() による高精度計算を行う. ただし ctrl("bigfloat",1) および setprec(prec) による精度の設定が必要. また, 有理関数でなくて sin(x) などの初等関数を扱う場合は注意が必要で, 不定元が大量に生成される可能性がある (myeval() の項を参照. ord() で分かる).
- 以上の時のオプションパラメータは xygraph() のときと同じ意味に解釈される.
- l が lbezier() の引数となる Bézier 曲線 C のデータ(2 形式のいずれでも可)ならば、線積分 $\int_C y dx$ の値を返す.

閉曲線のデータであったなら、その曲線で囲まれた領域の面積となる.

```
[0] os_md.areabezier([x^3, -4, [0, 2]]);
4.01564
[1] os_md.areabezier([x^3,-8,[0,2]]);
4.00105
[2] os_md.areabezier([x^3,-16,[0,2]]);
4.00007
[3] os_md.areabezier([x^3, -32, [0,2]]);
[4] os_md.areabezier([sin(x),-4,[0,@pi]]);
1.98989
[5] os_md.areabezier([sin(x),-8,[0,@pi]]);
1.99935
[6] os_md.areabezier([sin(x),-16,[0,@pi]]);
1.99996
[7] os_md.areabezier([sin(x),-32,[0,@pi]]);
[8] os_md.areabezier([[cos(x), -sin(x)],-16,[0,2*@pi]]);
3.14159
[9] os_md.areabezier([exp(-x),16,[0,"infty"]]);
0.999982
[10] tstart$os_md.areabezier([exp(-x),64,[0,"infty"]]);tstop$
[12] 0.0156sec(0.016sec)
[13] os_md.areabezier([exp(-x^2),32,["-infty","infty"]]);
[14] tstart$R=os_md.areabezier([exp(-x^2),512,["",""]]);tstop$
[15] 1.77245
[16] 0.0312sec + gc : 0.0312sec(0.063sec)
[17] V=eval(@pi^(1/2));
1.77245385090551602720251866962
[18] R-V;
0.0000000061022552223961856743
```

```
[19] os_md.areabezier([x^(-3/2),0,[1,""]]);
1.90184
[20] os_md.areabezier([x^(-3/2),0,[1,""]]|prec=16);
1.99991
[21] os_md.areabezier([x^(-3/2),0,[1,""]]|exp=1);
2,00008
[22] os_md.areabezier([1/(1+x^2),0,["",""]]);
[23] os_md.areabezier([1/(1+x^2),0,["",""]])-eval(@pi);
0.00000040239333897167800513
[24] os_md.areabezier([1/(1+x^2),1000,["",""]])-eval(@pi);
-3.3363329451 E-13
[25] tstart$os_md.areabezier([1/(1+x^2),5000,["",""]])-eval(@pi);tstop;
[26] -5.6638721488 E-16
[27] 0.2964 \text{sec} + \text{gc} : 0.2496 \text{sec} (0.546 \text{sec})
[28] os_md.areabezier([1/(1+x^2),0,["",""]]|exp=1);
[29] os_md.areabezier([1/(1+x^2),-10,["",""]]|exp=1);
[30] tstart$os_md.areabezier([1/(1+x^2),10000,["",""]]|exp=1)-eval(@pi);
tstop$
[31] -9.07164967805 E-14
[32] 0.8268sec + gc : 0.4056sec(1.248sec)
[33] V=eval(@pi*2^{(-1/2)});
2.22144146907918312331
[34] os_md.areabezier([1/(1+x^4),0,["",""]]);
2.22151
[35] os_md.areabezier([1/(1+x^4),0,["",""]]|exp=1);
2.22192
[36] os_md.areabezier([1/(1+x^4),10000,["",""]])-V;
-8.6669820621 E-14
[37] os_md.areabezier([1/(1+x^4),10000,["",""]]|exp=1)-V;
-4.6270379014 E-12
[38] os_md.areabezier([dsqrt(2)/(x^2+@i),0,["",""]]|cpx=1);
(3.14247-3.1418*@i)
[39] os_md.areabezier([dsqrt(2)/(x^2+@i),1000,["",""]]|cpx=1);
(3.14159-3.14159*@i)
[40] ctrl("bigfloat",1)$setprec(30);
[41] F = [cos(x), -sin(x)]$
[42] tstart$os_md.areabezier([F,-1536,[0,2*@pi]])/eval(@pi)-1;tstop$
[43] -3.17671236538252799164 E-17
[44] 0.2496sec + gc : 0.0936sec(0.343sec)
[45] tstartos_md.areabezier([F,-1536,[0,2*@pi]]|Acc=1)/eval(@pi)-1;tstop$
```

- [46] 8.71510564319365765590 E-20
- [47] 0.4212sec + gc : 0.0624sec(0.5sec)

Bézier 曲線を使った数値積分の相対誤差

2021年 画家と及りた然に扱うの情が放在								
非積分関数	積分範囲	指定	16 分割	32 分割	96 分割	384 分割	1536 分割	
$(\cos \theta, \sin \theta)$	$0 \le \theta \le 2\pi$	(-n, -)	6.8×10^{-8}	1.1×10^{-9}	1.5×10^{-12}	3.2×10^{-17}	8.7×10^{-20}	
Cardioid	$-\pi \le \theta \le \pi$	(n, -)	5.4×10^{-4}	3.1×10^{-5}	3.8×10^{-7}	1.5×10^{-9}	5.8×10^{-12}	
$x \sin x$	$0 \le x \le \pi$	(-n, -)	2.9×10^{-4}	1.8×10^{-6}	2.2×10^{-8}	8.7×10^{-11}	3.4×10^{-13}	
$\frac{\sin x}{x}$	$0 < x \le \pi$	(-n, -)	1.5×10^{-6}	9.5×10^{-8}	1.2×10^{-9}	4.6×10^{-12}	1.7×10^{-14}	
$\frac{1}{x^2+1}$	$-\infty < x < \infty$	(n, -)	1.3×10^{-5}	1.3×10^{-7}	8.5×10^{-10}	4.7×10^{-12}	2.1×10^{-14}	
e^{-x^2}	$-\infty < x < \infty$	(n, -)	7.1×10^{-4}	1.3×10^{-4}	2.6×10^{-6}	1.1×10^{-8}	4.3×10^{-11}	
$x^{-\frac{3}{2}}$	$1 \le x < \infty$	(n, -)	7.1×10^{-2}	4.9×10^{-2}	2.8×10^{-2}	1.4×10^{-2}	7.0×10^{-3}	
$x^{-\frac{3}{2}}$	$1 \le x < \infty$	$(n,-)^{16}$	5.9×10^{-6}	4.5×10^{-5}	2.8×10^{-5}	1.4×10^{-5}	6.9×10^{-6}	
$x^{-\frac{3}{2}}$	$1 \le x < \infty$	(n, 1)	3.0×10^{-4}	3.8×10^{-5}	1.4×10^{-6}	6.6×10^{-9}	2.6×10^{-11}	

- 上表の最初は円の面積の数値計算例で、2番目の Cardioid は $((1 + \cos \theta) \cos \theta, (1 + \cos \theta) \sin \theta)$ でカージオイド曲線で囲まれた領域の面積の数値計算例である。
- n 分割による計算で、上表の指定の欄の $\pm n$ は areabezier() の引数の 2 番目を意味する.
- $(n,-)^{16}$ は prec=16 のオプションの指定を意味する.
- (n,1) は $\exp=1$ のオプションを指定したことを意味する. 無限区間での積分では、よい近似には $\exp=c$ のオプションパラメータ c の指定が必要だが、最後の例 $(x \to \infty$ で $o(x^{-2})$ とならない例)のみ標準的な指定をした以外は指定をしていない.
- 上において分割の数が大きくて最も時間がかかる場合の計算時間は, 0.1 sec 程度である.
- $\frac{\sin x}{x}$ の $(0,\pi]$ での数値積分は以下のように行った.
 - [0] $F=os_md.f2df(sin(x)/x)$ \$
 - [1] F=os_md.cutf(F,x,[[],[0,1],[]])\$ /* x=0 のとき 1 となるように拡張 */
 - [2] os_md.areabezier([F,-32,[0,@pi]]);
 - 1.85194

ಸಭಿ
$$\int_0^\pi \frac{\sin x}{x} \, dx = 1.8519370519824661706 \cdots$$

 $f=\tfrac{1}{x^2+1}$

上のグラフは、次のようにして得られる T_{FX} のソースで描かれている:

os_md.xygraph(1/(1+x^2),-32,[-6,6],0,[0,1.5]|ax=[0,0,1,1,1],scale=[1.25,2]); R=os_md.cmpf([1/(1+x^2),["",""]]|exp=1); os_md.xygraph(R,-64,[0,1],0,[0,8]|ax=[0,0,1,1,1],scale=[5,0.5],prec=6);

scale=の指定で $1.25 \times 2 = 5 \times 0.5$ であるから、図の面積が保たれることに注意.

339. ptcombezier(ℓ_1 , ℓ_2 ,m)

:: 点のリスト ℓ_1 , ℓ_2 で定まる 2 つの Bézier 曲線の交点を求める

- ℓ_1 , ℓ_2 は、3次 Bézier 曲線を想定している(それ以外でも可)
- m は交点の正確さ (パラメータを 2^m 分割する). m=0 はデフォルトで, m=20 を意味する.
- 交点は、対応する ℓ_1 のパラメータ値、 ℓ_2 のパラメータ値、交点の座標の 3 つ組のリストで表され、 交点の数だけのそれのリストを返す.
- [0] L1=[[0,0],[1,1],[2,2],[3.0,3.0]]\$
- [1] L2=[[3.0,0],[2,1],[1,2],[0,3.0]]\$
- [2] os_md.ptcombezier(L1,L2,24);

[[0.5,0.5,[1.5,1.5]]]

340. $ptcombz(b_1, b_2, m | red=t, prec=k)$

- :: 区分 Bézier 曲線 b_1, b_2 の交点を求める
 - b_1 , b_2 は、xybezier() の引数の形のデータ、あるいは 1bezier で変換された区分 Bezier 曲線を与える座標のリストのリストのいずれか.
 - $b_2 = 0$ のときは、 b_1 で与えられた曲線の自己交叉点を返す。ただし各区分 Bézier 曲線自身や隣り合った区分 Bézier 曲線の交点は除く。
 - $b_1 \ge b_2$ のそれぞれ何番目の区分 Bézier 曲線かのリスト (最初を 0 番目と数える)を先頭に付加した ptcombezier()の戻り値をまとめてリストの成分としたリストを返す.
 - m は交点の正確さ (パラメータを 2^m 分割する). m=0 はデフォルトで, m=20 を意味する.
 - red=1:ほぼ等しい座標の点が複数あるときは、そのうちの一つデータのみ返す.
 - red=2:交点の座標のみ返す (ほぼ等しい座標の点は重複して表示しない).
 - prec=k: オプション red を指定したとき、x 座標および y 座標の差が曲線の幅(現れる座標の x 座標の最大値と最小値の差,および y 座標の最大値と最小値の差)の $1/2^k$ 程度以下ならば,同じ点と見なす.デフォルトは k=12.
 - [0] P=os_md.xyoval([0,0],1,1|opt=0)\$ /* 中心 (0,0) 半径 1 の円 */
 - [1] Q=os_md.xyoval([1,1],1.2,0.5|opt=0)\$ /* 中心(1,1) 半経 1.2x0.6 の楕円 */
- [2] os_md.ptcombz(P,Q,0);
- [[[0,1],[0.853506,0.515474,[-0.199425,0.981241]]], /* 交点 (-0.200,0.981) */
 [[0,2],[0.188392,0.209443,[0.917957,0.400476]]]] /* 交点 (0.918,0.400) */
- [3] $F=[\sin(2*x),\sin(3*x)]$ \$

```
[4] LS=os_md.xygraph(F,-24,[0,2*@pi],[-2,2],[-2,2]|opt=0)$ /* リサージュ図形 */
[5] tstart$os_md.sint(os_md.ptcombz(LT,0,0),4);tstop;
[[[12,0],[0,0,[0,0]]],[[13,4],[0,1,[0.5,-0.7071]]],[[13,5],[0,0,[0.5,-0.7071]]],
 [[16,0],[1,1,[0.5,0.7071]]],[[16,1],[1,0,[0.5,0.7071]]],[[16,3],[0,1,[0.866,0]]],
 [[16,4],[0,0,[0.866,0]],[[19,8],[1,0,[-0.866,0]],[[19,10],[0,1,[-0.5,0.7071]]],
 [[19,11],[0,0,[-0.5,0.7071]]],[[20,8],[0,0,[-0.866,0]]],
 [[22,6],[1,1,[-0.5,-0.7071]]],[[22,7],[1,0,[-0.5,-0.7071]]]]
[6] 0.0312sec(0.047sec)
[7] LT=os_md.xygraph(F,-96,[0,2*@pi],[-2,2],[-2,2]|opt=0)$
[8] tstart$os_md.ptcombz(LT,0,0)$tstop;
[9] [10] 0.2028sec + gc : 0.078sec(0.281sec)
[11] os_md.sint(os_md.ptcombz(LS,0,0|red=1),4);
[[[12,0],[0,0,[0,0]]],[[13,5],[0,0,[0.5,-0.7071]]],[[16,0],[1,1,[0.5,0.7071]]],
 [[16,4],[0,0,[0.866,0]]],[[19,10],[0,1,[-0.5,0.7071]]],[[20,8],[0,0,[-0.866,0]]],
 [[22,7],[1,0,[-0.5,-0.7071]]]]
[12] os_md.sint(os_md.ptcombz(LS,0,0|red=2),4);
[[0,0],[0.5,-0.7071],[0.5,0.7071],[0.866,0],[-0.5,0.7071],[-0.866,0],
[-0.5, -0.7071]
```

3.2.11 Drawing curves and graphs

- 341. xyproc(f|dviout=1,opt=s,env=t)
 - :: Xy-pic/TikZ や指定した環境の開始 (f=1) と終了 (f=0) や表示
 - f が文字列の時は、TikZ に応じて\begin{xy}と\end{xy}または\begin{tikzpicture}と\end{tikzpicture}で鋏む.

さらに dviout=1 が指定してあれば dviout() を使って画面表示する.

- opt=s で文字列 s を指定してあれば\begin{tikzpicture}[s] などのようにオプションをつける.
- env=t で環境 xy などを別の環境に変更できる (たとえば, env="scope").
- dviout=1 で画面表示などがなされる.
- xyput(), xyline(), xyarrow(), xybox(), xycirc(), xylines(), xygraph() などで得た文字 列を (str_tb() などを使って) 足し合わせてこの函数を呼ぶとよい.

```
[0] os_md.xyproc(1);
\begin{xy}

[1] os_md.xyproc(0);
\end{xy}
```

- 342. xypos([x,y,s]) xypos([x,y,s,t]) xypos([x,y,s,t,u]) xypos([x,y])
 - $:: X_{f}$ -pic/TikZ での座標 (x,y) や式 s などの文字出力. t はラベルの文字, u はオプション文字列.
 - 引数はベクトルでもよい
 - xypos([x,y]) のとき、以下の文字列が返される (x,y)

ただし数字 x, y は小数点以下 XYPrec 桁に丸められる.

- s が文字列なら、テキストとして表示する.
- x が文字列ならばラベルとみなし、y は無視される.このラベルは TikZ=0 のときは"x"の形で、TikZ=1 のときは (x) の形に変換されるが、x が空文字列なら空文字列でラベル無しとなる.
- TikZ=0 の場合

```
- t は一文字. 空文字列 "" のとき出力しない.
```

- -u はオプション文字列でラベルの後につく. 0 などとすると出力しない.
- $-s = [s_1, s_2]$ とすると、 s_1 は前置されるオプション文字列、 s_2 は出力文字列を表す。
 - * $s_1 = "[F]": 枠で囲む$
 - * $s_1 = "[F.]"$: 囲む枠が点線 (. を = とすると二重線)
 - * $s_1 = "+[F]": 余裕のある枠で囲む$
 - * $s_1 = "[Fo]": 丸く囲む (o を oo とすると二重丸)$
 - * s_1 ="+!U":下に置く. U を D, L, R とすると上,右,左に変わる. さらに UL などとすると,右下などとなる.
 - + を ++ とすると, 位置のずらしが大きくなる.

● TikZ=1 の場合

- xypos($[x,y,[s_1,s_2],s_t,s_u]$) で、x,y が数、 s_1,s_2,s_t,s_u が文字列で s_2 が空でないとき node $[s_1](s_t)$ at $(x,y)\{s_2\}s_u$
- $xypos([x,y,[s_1,""],s_t,s_u]) \cap \xi$ $coordinate[s_1](s_t) at (x,y)s_u$
- $xypos([x,y,[s_1,s_2],s_t])$ または $xypos([x,y,s,s_t])$ のときは、上の s_u の項は現れない。
- $-s_t$ が数字 1 のときは、 $s_t = "_"$ と解釈される.
- $-s_t$ が空文字列の時、または xypos([x,y,[s_1 , s_2]]) や xypos([x,y,s]) のとき、上の (s_t) の項は現れない.
- -s や s_1 が文字列でないときは数式として $T_{\rm F}X$ の文字列に変換される.
- $-s_1$ にはたとえば以下のオプション文字が可能(複数の指定は,で区切る).
 - * 位置指定: above, below, right, left, above right,... below=1pt,...

anchor=west, anchor=south east,...

- * 形状指定: circle, rectangle,...
- * 指定した形状を描く: draw
- * テキストボックスの幅指定:width=3cm
- * テキストボックスの角を丸める : rounded corners
- * テキストボックス内の文字位置指定 : text centered
- * 色指定 : red, green, blue, green!20!white,...
- * 塗りつぶし: fill=red, fill=green,...
- [0] os_md.xypos([2/7,5/3]);
- (0.285714, 1.66667)
- [1] os_md.dviout0(0|opt="TikZ")\$

TikZ=0

- [2] os_md.xypos([2/7,5/3,4/5]);
- $(0.285714,1.66667) *{\frac{4}5}$
- [3] os_md.xypos([2.5,3.1,"\$\\bullet\$"]);
- $(2.5,3.1) *{\text{bullet}}$
- [4] os_md.xypos([2.5,3.1,"This is"]);
- (2.5,3.1) * This is
- [5] os_md.xypos([2,3,"\$\\times\$","A"]);
- $(2,3) *{\times} = A$
- [6] os_md.xypos([2,3,"","A"]);
- (2,3)="A"
- [7] os_md.xypos([1,2,["+[F]","Sum"],"S"]);
- (1,2) *+[F] Sum="S"

```
[8] os_md.xypos(["A","B",["+[F]","Sum"],"S"]);
     "A" *+[F]\txt{Sum}="S"
     [9] os_md.dviout0(1|opt="TikZ")$
     TikZ=1
     [10] os_md.xypos([2/7,5/3,4/5]);
     node at (0.2857, 1.6667) {\frac{4}5\}
     [11] os_md.xypos([2.5,3.1,"$\\bullet$"]);
     node at (2.5,3.1) {$\bullet$}
     [12] os_md.xypos([2.5,3.1,"This is"]);
     node at (2.5,3.1) {This is}
     [13] os_md.xypos([2,3,"","A"]);
     coordinate(A) at(2,3)
     [14] os_md.xypos([1,2,["red","Sum"],"S"]);
     node[red](S) at(1,2){Sum}
     [15] os_md.xypos(["A","B",["draw,rectangle","Sum"],"S"]);
     node[draw,rectangle](S) at(A){Sum}
     [16] os_md.dviout0(3|opt="XYPrec")$
     XYPrec=3
     [17] os_md.xypos([@pi,5/3,4/5]);
     node at (3.142, 1.667) {\frac{4}5\}
343. xyput([x,y,s]|scale=r) xyput([x,y,s,t]) xyput([x,y,s,t,u]) xyput([x,y])
    :: X_{Y-pic}/TikZ での座標 (x,y) や式 s などの文字出力. t はラベルの文字, u はオプション文字列.
     • xypos() と同じだが、その結果の前後に
         TikZ=0 のときは "{" および "};\n"
         TikZ=1 のときは "\\" および ";\n"
        を,付加して返す.
     • scale=r: X_f-pic/TikZ の座標に直すときに r 倍する.
     • scale=[r_1,r_2]: Xy-pic/TikZ の座標に直すときに x 座標を r_1 倍, y 座標を r_2 倍する.
     [0] os_md.dviout0([4,6])$
     DVIOUTA="%ASIRROOT%\bin\risatex.bat"
     TikZ=1
     [1] os_md.xyput([0,0,["draw,rectangle","Sum"]]);
     \node[draw,rectangle] at(0,0){Sum};
     [2] os_md.xyput([0,0,["draw,rectangle,rounded corners","Sum"]]);
     \node[draw,rectangle,rounded corners] at(0,0){Sum};
     [3] os_md.xyput([0,0,["draw,rectangle,fill=yellow,text=red","Sum"]]);
     \node[draw,rectangle,fill=yellow,text=red] at(0,0){Sum};
     [4] os_md.xyput([0,0,["draw,circle,thick,dotted,blue,fill=yellow,text=red!50",
         "$\\tfrac12$"]]);
     \node[draw,circle,thick,dotted,blue,fill=yellow,text=red!50] at(0,0){$\tfrac12$};
     [5] os_md.xyput([0,0,["circle,radius=2pt,fill=gray",""]]);
     \node[circle,radius=2pt,fill=gray] at(0,0){};
     [6] os_md.xyput([0,0,["draw,ellipse","Sum"]]);
```

```
\node[draw,ellipse] at(0,0){Sum};
上の [6] は、TeX ファイルの初めに
\usetikzlibrary{shapes}
が必要である.
上の結果を S とおいて、os_md.xyproc(S|dviout=1) とすると以下の表示が得られる.
```

Sum Sum Sum

344. $xyline([x_1,y_1,s_1],[x_2,y_2,s_2]|opt=t)$ $xyline([x_1,y_1],[x_1,y_2]|opt=t)$ xy-pic/TikZ で (x_1,y_1) と (x_2,y_2) を線で結ぶ(引数はベクトルでもよい) $[x_1,y_1,s_1,t_1,u_1]$ などとするとラベル t_1 がつく(cf. xypos()). t_1kZ のときは、 t_1 のときは、 t_2 のときは、 t_3 のときは、 t_4 ではよって色や線種などのオプション指定文字が有効.

[0] os_md.dviout0(0|opt="TikZ")\$ TikZ=0 [1] os_md.xyline([1,2,x],[3,4,y]); ${(1,2) *{x} \ar0{-} (3,4) *{y}};$ [2] os_md.xyline([1,2,x,"A"],[3,4,y,"B"]); ${(1,2) *{x}="A" \ar0{-} (3,4) *{y}="B"};$ [3] os_md.dviout0(1|opt="TikZ"); TikZ=1 [4] os_md.xyline([1,2,x],[3,4,y]); $\frac{0}{2} \cot 0 = 1$, at $(3,4){\$y\$}(0)=-(1)$; [5] os_md.xyline([1,2,x,"A"],[3,4,y,"B"]); $\draw node(A) at(1,2){$x$} node(B) at(3,4){$y$}(A)--(B);$ 上の[5]において、全体を赤にして、線を点線とするには os_md.xyline([1,2,x],[3,4,y]|opt="dotted,red"); とする. また、[5] において、x を緑に、y を黒に、線を赤にするには os_md.xyline([1,2,["green",x]],[3,4,["black",y]]|opt="red"); とする. さらに y を丸で囲むには

os_md.xyline([1,2,["green",x]],[3,4,["black,draw,circle",y]]|opt="red"); とし、さらに y を囲む円内を赤で塗りつぶすには os_md.xyline([1,2,["green",x]],[3,4,["black,draw,circle,fill=red",y]]|opt="red"); とする.

- 345. xyarrow([x_1, y_1, s_1],[x_2, y_2, s_2]|opt=t,cmd=s)
 - $:: X_{Y-pic}/TikZ$ で (x_1, y_1) と (x_2, y_2) を矢印等で結ぶ(引数はベクトルでもよい)
 - 出力する3番目の要素 s₁, s₂ は省略可.
 - xypos() にあるように、 $[x_1,y_1,s_1,t_1,u_1]$ とするとラベル t_1 がつき、 $s_1=[s_{1,1},s_{1,2}]$ の形もサポートされる.
 - 最初の引数が数字のときは "%\n" を、また X_Y -pic の場合は最初の引数が 0 でなくて 2 番目の引数が数字のときは空文字列を返す.
 - オプションの t は線種などを指定する X_{f} -pic/TikZ の文字列.

まず Xy-pic の場合のいくつかの例を挙げる.

```
"@{->}"
           矢印 (デフォルト)
"@{<->}"
           両側矢印
"@{-}"
           実線
"@{.}"
           点線
"@{~}"
           波線
           二重線
"@{=}"
"@{--}"
           破線
           二重点線
"@2{.}"
"@{{*}->}"
           矢印の例
"@{x.o}"
           矢印の例
"@2{|.>>}"
           矢印の例
                                  "@/^1.5mm/"
          進む方向の左側に 1.5 mm 曲げる
"@(ru,ld)"
          右上に出て左下に入る
```

TikZ の場合は、オプション文字列 t で指定する.

線の太さ very thin, thin, semithick, thick, very thick, ultra thick,

width=2pt,...

点線 dashed, dotted, dashe dot, dashe dot dot

点の密度 loosely dashed, densely dashed, loosely dotted, densly dotted

矢印 -, ->, <->, ->>

矢印の形状 >=stealth, >=latex など

二重線 double

色づけ red, blue, green, cyan, magenta, yellow, black, gray, white, darkgray,

lightgray, brown, lime, olive, orange, pink, purple, teal, violet,

green!30!white (緑30%白70%), cyan!10 など

曲線を曲げる bend right, distance=0.2cm など

 $t=[t_0,t_1]$ のときは、 t_0 が上のように解釈され($t_0=0$ はデフォルト)、文字列 t_1 は

-> デフォルト

to[out=60,in=120]出る線と入る線の角度指定to[out=60,in=120,relative]出る線と入る線の相対角度指定|-縦線,次に横線でつなぐ-|横線,次に縦線でつなぐ

t1 の末尾が "+" 相対位置指定

- TikZ の場合は、オプション opt や cmd などを利用して、より広い描画コマンドに使うことができる
 - os_md.xyarrow([x_1,y_1],[x_2,y_2]) で、 x_1, x_2, y_1, y_2 が数字の時 \draw[->](x_1,y_1) -- (x_2,y_2)
 - os_md.xyarrow([x_1 , y_1 , s_1],[x_2 , y_2])で、 x_1 , x_2 , y_1 , y_2 が数字、 s_1 が文字列の時 \draw[->]node(_0) at(x_1 , y_1){ s_1 } coordinate(_1) at(x_2 , y_2)(_0) -- (_1);
 - os_md.xyarrow([x_1,y_1,s_1],[x_2,y_2,s_2]) で、 x_1,x_2,y_1,y_2 が数字、 s_1,s_2 が文字列 \draw[->]node(_0) at(x_1,y_1){ s_1 } node(_1) at(x_2,y_2){ s_2 }(_0) -- (_1); s_1 や s_2 が数式の時は、それを $T_{\rm EX}$ のソースに変換して \$ で鋏んだものに置き換えられる.

- os_md.xyarrow([x_1 , y_1 ,[s_1' , s_1], t_1 , u_1],[x_2 , y_2 ,[s_2' , s_2], t_2 , u_2]|opt=[t,t',t''],cmd=s) で、 x_1 , x_2 , y_1 , y_2 が数字,他が文字列

 $s[t] = [s'_1](t_1)$ at $(x_1, y_1) \{s_1\} u_1$ node $[t'_2](t_2)$ at $(x_2, y_3) \{s_1\} u_2(t_1) t'(t_2) t'';$

なお、s のデフォルトは draw、t' のデフォルトは --、t のデフォルトは -> となっている. また t'、t'' を指定しないときは、opt=t としてよい.

 $-x_1$ や x_2 が文字列のときは、それはラベルとみなされて y_1 や y_2 は無視され、() で囲まれて出力される.

第2引数が数字のときは別の解釈が成される. 第2引数の値をnとすると, n の値に応じてデフォルトのコマンド $\$ なが次のように置き換えられる(デフォルト以外の指定をしたときは、オプションの $\$ cmd= の設定より優先される).

nの値 コマンド

	 •	
0	\draw	\path[draw] と同等
1	\fill	\path[fill] と同等
2	\filldraw	\path[fill,draw] と同等
3	\shade	\path[shade] と同等
4	\shadedraw	\path[shade,draw] と同等
5	\clip	\path[clip] と同等
6	\pettern	\path[pattern] と同等
7	\path	
8	\node	\path node と同等
9	\coordinate	\path coordinate と同等

これで定まるコマンドを \cmd としたとき

os_md.xyarrow([x,y],n|opt=[t,t',t''])

でx, y, nが数字で他が文字列のとき

 $\cmd[t](x,y)t'[t'']$

となる. なお、t'' の項がない場合は上の [t''] の項は現れない.

- [0] os_md.dviout0(7)\$
- TikZ=0
- [1] os_md.xyarrow([1,2,x/y],[30,4,z^2,0,"|f"]|opt="0{<.} 0/_5mm/");
- ${(1,2) *{\frac{x}y} \arg(<.} 0/_5mm/ (30,4) *{z^2}|f};$
- [2] os_md.xyproc(@@|dviout=1);
- [3] os_md.xyarrow([0,0,["+[F]","Sum"]],[20,0,"\$\\sum_{i=1}^na_i\$"]);
- ${(0,0) *+[F] \text{sum} \ar (20,0) *{\sum_{i=1}^na_i}};$
- [4] os_md.xyproc(@@|dviout=1);

$$\frac{x}{y}$$
 $\sum_{i=1}^{n} a_i$

[0] os_md.dviout0(6)\$

TikZ=1

[1] os_md.xyarrow([0,1],[2,3]);

draw[->](0,1) -- (2,3);

- [2] os_md.xyarrow([0,1],[1,2]|opt=["->,thin","to[out=60,in=120]+"]); \draw[->,thin](0,1)to[out=30,in=120]+(2,3);
- [3] os_md.xyarrow([0,1],[2,3]|opt=["bent left, distance=1cm","to"]);

```
\draw[bent left, distance=1cm](0,1)to(2,3);
  [4] os_md.xyarrow([0,1,"A"],[2,3,["draw,circle","B"]]|opt=[0,"|-"]);
 \frac{-\sin(-\infty)}{\sin(-\infty)} at (0,0)\{A\} node [\frac{-\sin(-\infty)}{\sin(-\infty)}] at (1,1)\{B\}(-0)|-(-1);
  [5] os_md.xyarrow([0,1],[2,3]|opt=["very thick","rectangle"]);
  \draw[very thick](0,1)rectangle(2,3);
  [6] os_md.xyarrow([-1,-1],[1,1]|opt=["very thin,step=0.3cm","grid"]);
  \draw[very thin, step=0.3cm](-1,-1)grid(1,1);
  [7] os_md.xyarrow([-1,-1],[1,1]|opt=["help lines,step=0.5cm","grid"]);
 \frac{1}{1}, where \frac{1}{1} in the state of \frac{1}{1}, and \frac{1}{1
  [8] os_md.xyarrow([0,0],[1,1]|opt=["shade","rectangle"]);
 \draw[shade](0,0)rectangle(1,1);
  [9] os_md.xyarrow([0,0],[1,1]|opt=["shade,left color=yellow,right color=black",
          "rectangle"]);
 \draw[shade,left color=yellow,right color=black](0,0)rectangle(1,1);
  [10] os_md.xyarrow([0,0],[".5cm"]|opt=["inner color=red","circle"],cmd="shade");
 \shade[inner color=red](0,0)circle(.5cm);
  [11] os_md.xyarrow([0,0],[".5cm"]|opt=["ball color=red","circle"],cmd="shade");
 \shade[ball color=red](0,0)circle(.5cm);
  [12] os_md.xyarrow([0,0],[1,1]|opt=["pattern=north east lines","rectangle"]);
  \draw[pattern=north east lines](0,0)rectangle(1,1);
  [13] os_md.xyarrow([0,0],[1,1]|opt=["dotted,pattern=bricks,pattern color=blue",
            "rectangle"]);
  \draw[dotted,pattern=bricks,pattern color=blue](0,0)rectangle(1,1);
  [14] os_md.xyarrow([0,0],[1,1]|opt=["pattern=checkboard light gray","rectangle"],
            cmd="fill");
 \fill[pattern=checkboard light gray](0,0)rectangle(1,1);
  [15] os_md.xyarrow([0,0],0|opt=["pattern=dots","circle","radius=.5cm"]);
 \draw[pattern=dots](0,0)circle[radius=.5cm];
  [16] os_md.xyarrow([0,0],1|opt=["pattern=crosshatch,pattern color=blue",
          "circle", "radius=.5cm"]);
 \fill[pattern=crosshatch,pattern color=blue](0,0)circle[radius=.5cm];
  [17] os_md.xyarrow([0,0],3|opt=["shading=color wheel white center","circle",
            "radius=.5cm"]);
 \shade[shading=color wheel white center](0,0)circle[radius=.5cm];
上の [12] 以降の pattern の指定では, T<sub>F</sub>X ファイルの初めに
       \usetikzlibrary{patterns}
が必要である. 上の結果を S として xyproc(S|dviout=1) とすると順に以下が得られる.
```


\shade で指定される塗りつぶしの色変化は

top color=, bottom color=, midddle color=
left color=, right color=, midddle color=
inner color=, outer color=

ball color=

upper left=, upper right=, lower left=, lower right= shading=color wheel, color with black center, color wheel white center

pattern= で設定できる塗りつぶしパターンは

horizontal lines, vertical lines, north east lines, north west lines, grid, crosshatch, dots, crosshatch dots, fivepointed stars, sixpointed stars, bricks, checkerboard

がある. そのバリエーションで以下のようなものも可能である.

checkerboard light gray, horizontal lines light gray, horizontal lines gray, horizontal lines dark gray, horizontal lines light blue, horizontal lines dark blue, crosshatch dots gray, crosshatch dots light steel blue

- 346. xyarrows($[f_1, f_2]$, $[v_1, v_2]$, $[[x_1, x_2, m], [y_1, y_2, n]]$ |scale=r, abs=v)
 - :: Xy-pic/TikZ で複数の矢印を描く

x 変数の区間 $[x_1,x_2]$ を m 等分,**y** 変数の区間 $[y_1,y_2]$ を n 等分し,それぞれの終点を除いた $m\times n$ の各格子点 (x,y) に対して,点 $(f_1(x,y),f_2(x,y))$ を始点として, $(v_1(x,y),v_2(x,y))$ というベクトル (矢印) を X_Y -pic/TikZ で描く.

- y 変数がないときは、第3引数を $[x_1, x_2, m]$ としてよい.
- scale=r: ベクトルをr倍して描く.
- abs=v: ベクトルの長さをvにスケール変換する.
- opt=s: xyarrow() にそのまま渡されるオプション・パラメータ
- [0] os_md.dvi([0,4,6])\$
- [1] Abs=os_md.abs(y)\$Sqrt=os_md.sqrt(x)\$
- [2] SqrtAbs=os_md.compdf(Sqrt,x,Abs)\$
- [3] P=[x,y]\$Q=[1,SqrtAbs]\$
- [4] S=os_md.xyarrows(P,Q,[[-1.5,1.5,36],[-1.5,1.5,36]]|abs=0.05)\$
- [5] $S+=os_md.xygraph((x+1)^2/4,-36,[-1,1.5],[-1,1.5],[-1.5,1.5])$ \$
- [6] $S+=os_md.xygraph(-(x-1)^2/4,-36,[-1.5,1],[-1.5,1],[-1.5,1.5])$ \$
- [7] os_md.xyproc(S|opt="scale=5"|dviout=1)\$

これの実行結果は図1となる.

- 347. $xybox([[x_1,y_1],[x_2,y_2],[x_3,y_3]]|opt=t,color=s...) xybox([[x_1,y_1],[x_2,y_2]]|opt=t,color=s,...)$:: Xy-pic/TikZ で (x_1,y_1) と (x_2,y_2) を対角点とし、 (x_3,y_3) を頂点とする平行四辺形(あるいは水平 な辺をもつ長方形)を描く
 - $[x_j,y_j]$ はベクトルでもよい.
 - xylines() のオプションと同じオプションが有効.
 - TikZ での長方形描画の場合は、color=s のオプションが指定でき、色付けや塗りつぶしなどが可能. このとき、他のオプションは無視される.
 - color=s としてs が文字列の時、draw[s]… となる.
 - color="red":赤で箱を描く
 - color="fill=red":赤で塗りつぶす.枠は(指定しなければ)黒
 - color=[s,cmd]: とすると \cmd \draw [s] \cdots となる.

図 1 微分方程式 $\frac{dy}{dx} = \sqrt{|y|}$

```
~~~~~~~~~~~~~~
  ,,,,,,,,,,,,,,,,,,,,,
  ,,,,,,,,,,,,,,,,,,,,,,
***************
```

```
[0] os_md.dviout0(0|opt="TikZ")$

TikZ=0
[1] os_md.xybox([[1,2],[30,40]]);
{(1,2) \ar@{-} (1,40)};
{(1,40) \ar@{-} (30,40)};
{(30,40) \ar@{-} (30,2)};
{(30,2) \ar@{-} (1,2)};
[2] os_md.xybox([[1,2],[3,4],[0,0]]);
{(1,2) \ar@{-} (0,0)};
{(0,0) \ar@{-} (3,4)};
{(3,4) \ar@{-} (4,6)};
```

```
{(4,6) \ar@{-} (1,2)};
[3] os_md.dviout0(1|opt="TikZ")$
TikZ=1
[4] os_md.xybox([[1,2],[3,4]]);
\draw(1,2)rectangle(3,4);
[5] os_md.xybox([[1,2],[3,4]]|color="red");
\draw[red](1,2)rectangle(30,40);
[6] os_md.xybox([[1,2],[3,4]]|color="red,fill=yellow");
\draw[red,fill=yellow](1,2)rectangle(30,40);
[7] os_md.xybox([[1,2],[3,4]]|color=["yellow","fill"]);
\fill[red](1,2)rectangle(30,40);
[8] os_md.xybox([[1,2],[3,4],[0,0]]);
\draw (1,2) -- (0,0) -- (3,4) -- (4,6) -- cycle;
```

348. $xycirc([x,y,s],r|opt=t,arg=[\theta_1,\theta_2],deg=[\theta_1,\theta_2],close=1)$

:: Xy-pic/TikZ で (x,y) 中心の半径 r mm/cm の円を描く

- 出力する3番目の s は省略可
- opt=t:オプション文字列
- 大きな円が描けない場合は、arg=[-@pi,@pi] を用いる. なお usepackage[pdf,all]{xy} によって pdf ファイルを作成する場合は、このエラーは起きない.
- s があって r = 0 のときは、s を円で囲む.
- arg を指定したときは意味が異なり、偏角 θ_1 から θ_2 までの円弧を描く $(0 < \theta_2 \theta_1 \le 2\pi)$. このときオプション opt は線種指定文字と解釈される (cf. xylines(|curve=1)). また close=1 で中心と線分で繋いで扇型とする.
- より汎用性のある xyang() を用いる方がよい.
- [0] os_md.xycirc([2,3],5|opt="l^d");
 {(2,3) *\cir<5mm>{l^d}};
 [1] os_md.xycirc([2,3,x],0);
 {(2,3) *+{x} *\cir{}};
- 349. xybezier($[[x_1,y_1],\ldots,[x_n,y_n]]$ |verb=k,opt=t,cmd=s,relative=1)
 - :: Xɣ-pic/TikZ で区分 Bézier 曲線(複合 Bézier 曲線)を描く

始点を (x_1,y_1) , 終点を (x_n,y_n) とし、途中の座標を制御点とする Bézier 曲線を描く.

- $[x_i, y_i]$ はベクトルでもよい.
- 途中の $[x_i, y_i]$ を数字の $0, \pm 1$ にすると以下のような特別の意味を持つ.
 - 0: 前後で切り離して別の Bézier 曲線とする.
 - 1: 直前の点を途中の通過点とする Bézier 曲線とする.
 - -1: 始点を終点とする閉じた Bésizer 曲線とし, 前後で切り離す.
- verb=1:始点と終点を •,制御点を × で表示する.単独の Bézier 曲線となる場合のみ有効.
- verb=2:上と同様だが、終点は表示しない。
- verb=[k, t_1 , t_2]: 始点と終点、制御点の描き方を指定する.
 - -k=1,2 は省略できて、省略したときは k=1 (始点と終点を描く) と解釈される.
 - $-t_1$ は始点と終点, t_2 は制御点の示す記号を表し,xyput() の引数のリストのの成分 s に対応する.
 - ー デフォルトは, t_1 ="\$\\bullet\$", t_2 ="\$\\times\$"

- $-t_2$ を省略して verb=[t_1] とすると、始点と終点のみ描いて、制御点は描かない。
- $-\operatorname{Ti}kZ$ のときは、たとえば verb=[["red","\$\\bullet\$"],"\$\\times\$"] とすると、始点と終点を赤で描く.
- relative=1: TikZ のときに、始点以外を座標の相対指定とする.
- cmd=s: TikZ におけるコマンド \draw の代わりに \s を使う.
- XYLim: T_EX のソースで, XYLim 個の点毎に見やすくするため改行を入れる. dviout0(n|opt="XYLim") によって XYLim を n に変更できる (デフォルトは 4).
- opt=t: コマンドの後にオプション t をつける.

TikZ の場合は, xyarrow() の項に書かれた線種指定の他, 以下のような塗りつぶしコマンドが使える.

```
fill
                        塗りつぶし
                        赤で線を描き,内部を黄色で塗りつぶす
fill=yellow,draw=blue
fill=red,opacity=.5
                        赤で透明度 0.5 で塗りつぶす
fill=red, even odd rule winding number が奇数 (デフォルトは 0 以外) の部分を赤で塗りつぶす
[0] A=newvect(8)$
[1] for(I=0;I<8;I++) A[I]=[I,I/2];$
[2] os_md.dviout0(7)$
TikZ=0
[3] os_md.xybezier([A[0],A[1],A[2],A[3],A[4]]);
\{(0,0);(4,2)
**\crv{(1,0.5)&(2,1)&(3,1.5)}};
[4] os_md.xybezier([A[0],A[1],A[2],A[3],O,A[4],A[5],A[6]]);
\{(0,0);(3,1.5)
**\crv{(1,0.5)&(2,1)}};
{(4,2);(6,3)
**\crv{(5,2.5)}};
[5] os_md.xybezier([A[0],A[1],A[2],A[3],1,A[4],A[5],A[6]]);
\{(0,0);(3,1.5)
**\crv{(1,0.5)&(2,1)}};
\{(3,1.5);(6,3)
**\crv{(4,2)&(5,2.5)}};
[6] os_md.dviout0(6)$
TikZ=1
[7] os_md.xybezier([A[0],A[1],A[2],A[3]]);
draw (0,0) ... controls (1,0.5) and (2,1) ... (3,1.5);
[8] os_md.xybezier([A[0],A[1],A[2],A[3],O,A[4],A[5],A[6]]);
draw (0,0) ... controls (1,0.5) and (2,1) ... (3,1.5)
 (4,2) .. controls (5,2.5) .. (6,3);
[9] os_md.xybezier([A[0],A[1],A[2],A[3],1,A[4],A[5],A[6]]);
draw (0,0) ... controls (1,0.5) and (2,1) ... (3,1.5)
  .. controls (4,2) and (5,2.5) .. (6,3);
[10] os_md.xybezier([A[0],A[1],A[2],A[3],-1,A[4],A[5],A[6],-1]);
\dots (0,0) .. controls (1,0.5) and (2,1) and (3,1.5) .. cycle
 (4,2) .. controls (5,2.5) and (6,3) .. cycle;
[11] os_md.xybezier([A[0],A[1],A[2],A[3],O,A[4],A[5],A[6],-1]|relative=1);
```

\draw (0,0) .. controls +(1,0.5) and +(2,1) .. +(3,1.5)

(4,2) .. controls +(5,2.5) and +(6,3) .. cycle;

[11] os_md.xybezier([[0,0],[2,0],1,[1,1],1,-1]|cmd="fill",opt="green");

\fill[green] (0,0) -- (2,0) -- (1,1) -- cycle;

[12] os_md.xybezier([[0,0],[2,0],1,[1,1],1,-1]|opt="fill,red");

\draw[fill,red](0,0) -- (2,0) -- (1,1) -- cycle;

[13] os_md.xybezier([[0,0],[2,0],1,[1,1],1,-1]|opt="fill=yellow,draw=red");

\draw[fill=yellow,draw=red](0,0) -- (2,0) -- (1,1) -- cycle;

- 350. draw_bezier(id, idx, b|col=c, opt=s, init=1)
 - :: キャンバス上に区分 Bézier 曲線を描く

サーバー id が id でキャンバス id が idx のキャンバスに Bézier 曲線を描く (cf. draw_obj()).

- *b* は xybezier() の引数の形式, あるいはそれを lbezier() で変換したもの (よって区分 Bézier 曲線でよい). または, tobezier() の戻り値の t 変数の Bézier 曲線でもよい.
- col=c: 色指定 (0xffffff が白).
- 文字列による指定で, red, blue, green, yellow, cyan, magenta, black, white, gray, thin, very thin, dotted, dashed が可能. opt="red,thin,dotted" などという指定ができる.
- init=1:点線描画の初期化(他の引数はすべて無視).
- [0] Id=ox_launch_nox(0,"ox_plot")\$
- [1] open_canvas(Id)\$
- [2] Idx=ox_pop_cmo(Id)\$
- [3] B=os_md.xyoval([150,150],100,1|opt=0)\$ /* 中心 (150,150) 半径 100 の円 */
- [4] tstart\$os_md.draw_bezier(Id,Ind,B|col=0xff00ff)\$tstop;
- [5] [6] 0.0156sec(0.015sec)
- 351. $xylines([[x_1,y_1,s_1],[x_2,y_2,s_2],...]|opt=t,close=1,curve=1,ratio=c,verb=1,scale=r,Acc=1,dviout=1,proc=p)$
 - :: Xy-pic/TikZ で s_j を (x_j,x_j) に置き、 $(x_1,y_1),(x_2,y_2),\dots$ を(Bézier 曲)線で結ぶ
 - close=1:最後の点を最初の点と結んで、多角形または滑らかな閉曲線を作る.
 - close=-1: 曲線で結ぶ場合に、最初と最後の点は制御点とし、残りの点を滑らかに結ぶ.
 - curve=1: 曲線(Bézier 曲線を使う)で滑らかに結ぶ. P_0, P_1, P_2, P_3 を通る曲線で P_1 と P_2 を結ぶには, P_0P_2 の方向に P_1 から $c_1\overline{P_1P_2}$ の距離進んだ点 Q と, $\overline{P_3P_1}$ の方向に P_2 から $c_2\overline{P_1P_2}$ 進んだ点 R の 2 点を制御点とする 3 次の Bézier 曲線を用いる. P_0 が存在しないときは Q を, P_3 が存在しないときは R を省く. $\overline{P_0P_2}$ と $\overline{P_1P_3}$ のなす角を θ ($0 \le \theta \le \pi$) とするとき,デフォルトでは

$$\frac{c_1 + c_2}{2} = \frac{2}{3(1 + \cos\frac{\theta}{2})}, \quad c_1 : c_2 = \overline{P_0 P_2} : \overline{P_3 P_1}$$

としている.

正 n 角形の頂点を指定し、close=1 を指定すると、デフォルトでは外接円に近い曲線になる. 実際、外接円の半径を 1 としたとき、得られた曲線の中心からの距離と 1 との差の最大値は、n=3 のとき 0.0015、n=4 のとき 0.00027、n=6 のとき 0.000024、n=8 のとき 0.000004 という程度の小さな値となる.

なお、ratio=c を指定したときは、以下のように定める.

$$\overrightarrow{P_1Q} = c\overrightarrow{P_0P_2}, \quad \overrightarrow{P_2R} = c\overrightarrow{P_3P_1}$$

● acc=1: curve=1 を指定したとき, pari() の高精度で制御点を計算する.

- curve=2: B-spline 曲線で結ぶ (途中の点は制御点で通らない). このときは s_j は最初と最後のみ指定可能. TikZ ではサポートされない (3 次以下の Bézier 曲線はサポート).
- s_1, s_2, \ldots は省略可能. また s_i がないときは、 $[x_i, y_i]$ はリストでなくてベクトルでもよい.
- 通過点のデータに 0 があるときは、その前後で直線または曲線を切る.
- $scale=r: X_Y-pic/TikZ$ の座標に直すときに r 倍する.
- scale= $[r_1,r_2]$: Xy-pic/TikZ の座標に直すときに x 座標を r_1 倍, y 座標を r_2 倍する. Xy-pic は数字が mm 単位,TikZ は cm 単位である.
- opt=t: 文字列 t による線種の指定. Xy-pic でオプション curve を指定せずに線分で結ぶときの 線種指定は xyarrow() を参照. curve=1,2のときは,たとえば Xy-pic ならば "~*=<3pt>{.}" は 3pt 間隔の点線.

TikZ のときの線種指定は、xyarrow() の項を参照 (t がオプション opt の値として渡される). また $t = [t_0, t_1]$ と 2 つの文字列のリストのときは、 t_0 と t_1 とが xybezier() の opt と cmd のパラメータに設定される.

- opt=0: xybezier() に渡す引数のリストを返す.
- dviout=1:画面で表示する.
- proc=1: 描画実行形式の描画成分を返す (proc=2 も同様).
- verb=1:通過点を ●,制御点を × で表示する.
- verb=[t_1 , t_2]: 通過点を t_1 ,制御点を t_2 で表す (cf. xybezier()). デフォルトは, t_1 ="\\bullet", t_2 ="\\times" である.
- verb=[t_1]: 通過点を t_1 で表す.

円の中心 O があって, $OP_0=OP_1=OP_2=OP_3$ かつ $P_0P_1=P_1P_2=P_3P_4$ となっている場合を考える. $\angle P_1OP_2=\theta$, $OP_0=r$, $P_1Q=P_2R=a$ とおいて座標を適当に選ぶと,Bézier 曲線上の $t=\frac{1}{2}$ に対応する点 T は以下のようになる.

$$\begin{aligned} O: (0,0), \ P_1: (r\cos\frac{\theta}{2}, r\sin\frac{\theta}{2}), \ P_1: (r\cos\frac{\theta}{2}, -r\sin\frac{\theta}{2}) \\ Q: (r\cos\frac{\theta}{2} + a\cos\frac{\theta - \pi}{2}, r\sin\frac{\theta}{2} + a\sin\frac{\theta - \pi}{2}) \\ &= (r\cos\frac{\theta}{2} + a\sin\frac{\theta}{2}, r\sin\frac{\theta}{2} - a\cos\frac{\theta}{2}) \\ R: (r\cos\frac{\theta}{2} + a\sin\frac{\theta}{2}, -r\sin\frac{\theta}{2} + a\cos\frac{\theta}{2}) \end{aligned}$$

 $T: (r\cos\tfrac{\theta}{2} + \tfrac{3}{4}a\sin\tfrac{\theta}{2}, 0)$

$$r\cos\frac{\theta}{2} + \frac{3}{4}a\sin\frac{\theta}{2} = r$$

 $O(\theta)$

より

$$a = \frac{4}{3} \frac{1 - \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} r = \frac{4}{3} \tan\frac{\theta}{4} r = \frac{4}{3} \frac{\sin\frac{\theta}{2}}{1 + \cos\frac{\theta}{2}} r.$$

このとき

$$\begin{split} Q: \left(r\cos\frac{\theta}{2} + \frac{4}{3}\frac{1-\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}\sin\frac{\theta}{2}r, r\sin\frac{\theta}{2} - \frac{4}{3}\frac{\sin\frac{\theta}{2}}{1+\cos\frac{\theta}{2}}\cos\frac{\theta}{2}r\right) \\ &= \left((\frac{4}{3} - \frac{1}{3}\cos\frac{\theta}{2})r, (1 - \frac{1}{3}\cos\frac{\theta}{2})\frac{\sin\frac{\theta}{2}}{1+\cos\frac{\theta}{2}}r\right), \\ \frac{P_1Q}{P_1P_2} &= \frac{4}{3}\frac{\sin\frac{\theta}{2}}{1+\cos\frac{\theta}{2}}\frac{1}{2\sin\frac{\theta}{2}} = \frac{2}{3(1+\cos\frac{\theta}{2})} \end{split}$$

となる.

r=1 として、Bézier 曲線を $B(t)=\left(x(t),y(t)\right)=P_1(1-t)^3+3Qt(1-t)^2+3Rt^2(1-t)+P_2t^3$ 、 $c=\cos\frac{\theta}{2}$ とおくと

$$\begin{split} L(s) &:= x(s + \frac{1}{2})^2 + y(s + \frac{1}{2})^2 \\ &= \frac{16(1-c)^3}{1+c} s^6 - \frac{8(1-c)^3}{1+c} s^4 + \frac{(1-c)^3}{1+c} s^2 + 1 \\ &= \frac{(1-c)^3}{1+c} s^2 (4s^2 - 1)^2 + 1 \end{split}$$

となるので、 $0 \le s \le \frac{1}{2}$ の範囲で

$$\sqrt[3]{8s^2(1-4s^2)^2} \ge \frac{8s^2 + (1-4s^2) + (1-4s^2)}{3} = \frac{2}{3}$$

となり、等号成立は $8s^2=1-4s^2$ 、すなわち $s^2=\frac{1}{12}$ のときである.よって $|s|\leq \frac{1}{2}$ の範囲で L(s) は $s=0,\,\pm\frac{1}{2}$ で最小値 1 をとり、 $s=\pm\frac{1}{2\sqrt{3}}$ で最大値をとる.

$$L(\pm \frac{1}{2\sqrt{3}}) - 1 = \frac{1}{27} \frac{(1-c)^3}{1+c},$$

$$\sqrt{L(\pm \frac{1}{2\sqrt{3}})} - 1 = \frac{1}{54} \frac{(1-\cos\frac{\theta}{2})^3}{1+\cos\frac{\theta}{2}} = \begin{cases} \frac{1}{648} & (\theta = \frac{2\pi}{3} = 120^\circ) \\ \frac{1}{3668} & (\theta = \frac{\pi}{2} = 90^\circ) \\ \frac{1}{41900} & (\theta = \frac{\pi}{3} = 60^\circ) \\ \frac{1}{235541} & (\theta = \frac{\pi}{4} = 45^\circ) \\ \frac{1}{3682400} & (\theta = \frac{\pi}{6} = 30^\circ) \end{cases}$$

デフォルトでは P_0, P_1, P_2, P_3 を通る滑らかな曲線の P_1 と P_2 を結ぶ部分は

$$\begin{split} \cos\theta &= \frac{(\overline{P_0P_2},\overline{P_3P_1})}{\overline{P_0P_2}\cdot\overline{P_1P_3}},\\ &\cos\frac{\theta}{2} = \sqrt{\frac{1+\cos\theta}{2}},\\ c_1\frac{\overline{P_1P_3}}{\overline{P_0P_2}}\cdot\overline{P_0P_2} &= \frac{2}{3+3\sqrt{\frac{1+\frac{(\overline{P_0P_2},\overline{P_1P_3}}{\overline{P_0P_2}\cdot\overline{P_1P_3}}}{\frac{2}{P_0P_2}+\overline{P_1P_3}}}\frac{2\overline{P_1P_2}}{\overline{P_0P_2}+\overline{P_1P_3}}\cdot\overline{P_0P_2} \end{split}$$

より

$$c := \frac{4\overline{P_1P_2}}{3(\overline{P_0P_2} + \overline{P_1P_3})} \frac{1}{1 + \sqrt{\frac{1 + \frac{(\overline{P_0P_2}, \overline{P_1P_3})}{\overline{P_0P_2}, \overline{P_1P_3}}}{2}}}$$

とおくと

$$\overrightarrow{P_1Q} = c\overrightarrow{P_0P_2}, \ \overrightarrow{P_2R} = c\overrightarrow{P_3P_1}$$

によって、 P_1 を始点、 P_2 を終点、Q と R の 2 点をこの順に制御点とする 3 次 Bézier 曲線となる、 Q_0 , Q_1 , Q_2 , Q_3 と順に与えたとき、 Q_0 を始点、 Q_1 と Q_2 を制御点、 Q_3 を終点とする(3 次)Bézier 曲線は

$$B(t) = Q_0(1-t)^3 + 3Q_1t(1-t)^2 + 3Q_2t^2(1-t) + Q_3t^3$$

= $(-Q_0 + 3Q_1 - 3Q_2 + Q_3)t^3 + (3Q_0 - 6Q_1 + 3Q_2)t^2 + (-3Q_0 + 3Q_1)t + Q_0$

で与えられる.

なお、 P_0 , P_1 , P_2 , P_3 と順に与えたとき、 P_1 を始点、 P_2 を終点とする Catmull-Rom スプライン曲線は

$$C(t) = \left(-\frac{1}{2}P_0 + \frac{3}{2}P_1 - \frac{3}{2}P_2 + \frac{1}{2}P_3\right)t^3 + \left(P_0 - \frac{5}{2}P_1 + 2P_2 + \frac{1}{2}P_3\right)t^2 + \left(-\frac{1}{2}P_0 + \frac{1}{2}P_2\right)t + P_1$$

である. 両者の関係は

$$\begin{cases} Q_0 = P_1, \\ Q_1 = P_1 + \frac{1}{6}(P_2 - P_0), \\ Q_2 = P_2 + \frac{1}{6}(P_3 - P_1), \\ Q_3 = P_2. \end{cases}$$

よって $c = \frac{1}{6}$ と固定したものとみなせる.

- [0] L=[[0,0],[20,0],[20,20],[0,20]]\$
- [1] L0=os_md.xylines(L|close=1);
- ${(0,0) \operatorname{ar0}{-} (20,0)};$
- {(20,0) \ar@{-} (20,20)};
- ${(20,20) \text{ar}(-) (0,20)};$
- ${(0,20) \text{ar}(-) (0,0)};$
- [2] L1=os_md.xylines(L|close=1,curve=1,ratio=1/6)\$
- [3] L2=os_md.xylines(L|close=1,curve=1)\$
- [4] L3=os_md.xylines(L|close=1,curve=2)\$
- [5] L4=os_md.xybezier(append(L,[[0,0]]))\$

として, LO, L1, L2, L3, L4 を順に表示すると

これらは Xy-pic の例であるが、TikZ の場合は座標のスケールの違いから、scale=0.1 を指定するとサイズが同じになる。たとえば、上の [3] の L2 は

{(0,0);(20,0)

**\crv{(5.523,-5.523)&(14.477,-5.523)}};

{(20,0);(20,20)

**\crv{(25.523,5.523)&(25.523,14.477)}};

 $\{(20,20);(0,20)$

**\crv{(14.477,25.523)&(5.523,25.523)}};

 $\{(0,20);(0,0)$

**\crv{(-5.523,14.477)&(-5.523,5.523)}};

であるが, os_md.dviout(6) などとして TikZ 出力になるようにして

os_md.xylines(L|close=1,curve=1,scale=0.1);

を実行したときは

\draw (0,0) .. controls (0.552,-0.552) and (1.448,-0.552) .. (2,0) .. controls (2.552,0.552) and (2.552,1.448) .. (2,2) .. controls (1.448,2.552) and (0.552,2.552) .. (0,2) .. controls (-0.552,1.448) and (-0.552,0.552) .. cycle;

となる. これは以下でも同様である.

- [6] Pi=3.14159265\$
- [7] for(V=[],I=0;I<=48;I++) V=cons([10*Pi*I/12,dsin(Pi*I/12)*10],V);
- [8] os_md.xyproc(os_md.xylines(V|curve=1)|dviout=1)\$

- [9] for(V=[],I=0;I<=6;I++) V=cons([10*Pi*I*2/3,dsin(Pi*2*I/3)*10],V);
- [10] os_md.xylines(V|curve=1,dviout=1,verb=1);

- [11] os_md.xylines(os_md.ptpolygon(5,10)|close=1,dviout=1)\$
- $[12] \ os_md.xylines(os_md.ptlattice(6,4,[4,0],[0,4]|line=1)|dviout=1) \\ \$$
- [13] os_md.xylines(os_md.ptlattice(6,4,[4,0],[3,4]|line=1)|dviout=1)\$

- 352. $xyang(r, p_0, p_1, p_2 | opt=t, scale=r, prec=1, ar=1, dviout=1, proc=1)$
 - $:: X_{Y} ext{-pic}/ ext{Ti}kZ$ で角 $\angle p_1p_0p_2$ の記号や円弧や扇形や矢印を描く
 - $p_0 = [x_0, y_0], p_1 = [x_1, y_1], p_2 = [x_2, y_2]$ のときは、 $\angle p_1 p_0 p_2$ の角の記号を半径 r の弧で描く $(\overline{p_0 p_1})$ から反時計回り).
 - $p_0 = [x_0, y_0], p_1 = [x_1, y_1], p_2 = \pm 1$ のときは、 p_0 を頂点する $\overrightarrow{p_0p_1}$ 方向とそれと直交する方向に一辺 r の直角記号を描く($p_2 = 1$ のときは反時計回り、 $p_2 = -1$ のときは時計回り).
 - $p_0 = [x_0, y_0]$, $p_1 = [x_1, y_1]$, $p_2 = \pm 2$, ± 3 , ± 4 , 0 のときは, p_0 を頂点とする矢印の先を描く.r は先端からの長さ.線分との角度は,順に 45° , 30° , 60° , 90° である.ただし, $p_2 < 0$ の時は矢印の先でなくて尾を示す.
 - $p_2=5,6,7,8$ のときは、矢先が曲がっていて、開きは順に $45^\circ,30^\circ,22.5^\circ,15^\circ$ となる. ar=1 を指定すると、 p_0 と p_1 を結ぶ線分も描いて、矢印となる.
 - $p_0 = [x_0, y_0]$ で、 p_1 と p_2 が数で $p_1 \le p_2 \le p_1 + 2\pi$ の時、 p_0 を中心に半径 r の円弧を、偏角が p_1 から p_2 まで Bézier 曲線を使って描く、ただし、 $p_1 = p_2$ のときは円とする. 円弧の場合、ar=1 を指定すると扇形を描く.
 - prec=1: 真の円弧により近くする(デフォルトでの円の中心からの距離の誤差は,0.16% 以下であるが,それを $\frac{1}{3600} = 0.03\%$ 以下とする). prec=2, 3 に応じて,誤差は $\frac{1}{41900}$, $\frac{1}{235500}$ 以下になる.

- proc=1:描画実行形式の要素を返す.
- 指定したオプションパラメータは、上のものを除いて全て xylines() に渡される. TikZ のときは

```
[0] os_md.xyang(0.3,[1,1],[6,1],[5,5]); /* 角度の弧 */
\draw (1.3,1) .. controls (1.3,1.08) and (1.268,1.156) .. (1.212,1.212);
[1] os_md.xyang(0.3,[1,1],[6,2],1);
                                       /* 直角記号 (反時計回り) */
\draw (1.294,1.059) -- (1.235,1.353) -- (0.941,1.294);
[2] os_md.xyang(0.3,[1,1],[6,2],-1);
                                       /* 直角記号 (時計回り) */
\draw (1.294,1.059) -- (1.235,1.353) -- (0.941,1.294);
[3] os_md.xyang(2,[1,1],0,@pi/2|opt="dotted,red"); /* 円弧 */
\draw[dotted,red] (3,1) .. controls (3,2.105) and (2.105,3) .. (1,3);
[4] os_md.xyang(2,[1,1],@pi/12,@pi/3|ar=1,scale=2); /* 扇形 */
\draw (5.864,3.035) .. controls (5.589,4.06) and (4.919,4.934) .. (4,5.464)
-- (2,2) -- cycle;
[5] os_md.xyang(2,[1,1],0,0);
                                        /* 円 : 誤差 1/640 以下 */
draw (3,1) ... controls (3,2.54) and (1.333,3.502) ... (0,2.732)
.. controls (-1.333, 1.962) and (-1.333, 0.038) .. (0, -0.732) ..
controls (1.333,-1.502) and (3,-0.54) .. cycle;
[6] os_md.xyang(2,[1,1],0,0|prec=1);
                                        /* 円 : 誤差 1/3600 以下 */
draw (3,1) ... controls (3,2.105) and (2.105,3) ... (1,3)
.. controls (-0.105,3) and (-1,2.105) .. (-1,1) .. controls (-1,-0.105)
and (-0.105,-1) .. (1,-1) .. controls (2.105,-1) and (3,-0.105) .. cycle;
[7] P=[0,0]$Q=[2,1]$R=[0,1]$S=[4,0]$ /* 4点 P, Q, R, S を定義 */
[8] [9] [10] [11]
[12] T=os_md.ptcommon([P,Q],[R,S]);
                                     /* T : PQ と RS の交点 */
[4/3,2/3]
[13] SS=os_md.xyang(0.3,T,P,S|opt="red")+os_md.xyline(P,Q)+os_md.xyline(R,S)$
[14] os_md.xyproc(SS|dviout=1)$
                                      /* PQ, RS, 角 PTQ を描く */
[15] U=os_md.ptcommon([R,S],[P,0])$
                                      /* U : P から RS に下ろした垂線の足 */
[16] SS=os_md.xang(0.3,T,P,1)+os_md.xyline(P,T)+os_md.xyline(R,S)$
                                       /* P から RS に下ろした垂線を描く */
[17] os_md.xyproc(SS|dviout=1)$
[18] os_md.xyproc(os_md.xyang(0.2,Q,P,2|ar=1)|dviout=1)$
                                                               /* 矢印 */
[19] os_md.xyproc(os_md.xyang(0.2,Q,P,3|ar=1)|dviout=1)$
[20] os_md.xyproc(os_md.xyang(0.2,Q,P,4|ar=1)|dviout=1)$
[21] os_md.xyproc(os_md.xyang(0.2,Q,P,0|ar=1)|dviout=1)$
[22] os_md.xyproc(os_md.xyang(0.2,Q,P,-2|ar=1)|dviout=1)$
[23] os_md.xyproc(os_md.xyang(0.2,Q,P,-3|ar=1)|dviout=1)$
[24] os_md.xyproc(os_md.xyang(0.2,Q,P,-4|ar=1)|dviout=1)$
[25] os_md.xyproc(os_md.xyang(0.3,Q,P,5|ar=1)|dviout=1)$ /* 曲がった矢先 */
[26] os_md.xyproc(os_md.xyang(0.3,Q,P,6|ar=1)|dviout=1)$
[27] os_md.xyproc(os_md.xyang(0.3,Q,P,7|ar=1)|dviout=1)$
[28] os_md.xyproc(os_md.xyang(0.3,Q,P,8|ar=1)|dviout=1)$
```


- 353. xyoval(p,r,q|opt=t,arg=[t_1 , t_2 , t_3],deg=[t_1 , t_2 , t_3],scale=r,ar=1,prec=1,dviout=1,proc=1)
 - $:: X_{f}-pic/TikZ$ で p を中心として、軸の長さが r と qr の楕円またはその弧や扇形を描く
 - 点 p を中心に,基準軸の半径が r,それに直交する軸の半径が qr の楕円を描く
 - 楕円の基準軸の偏角は t_3 で指定する. この指定がないときは $t_3 = 0$ とみなされる.
 - 楕円の基準軸方向から、パラメータが t_1 と t_2 の間の部分の弧を描く. この場合、ar=1 を指定すると扇形が描かれる.

 $t_1=t_2$ または指定がないときは、楕円全体が描かれる.

$$p + r \begin{pmatrix} \cos t_3 & \sin t_3 \\ -\sin t_3 & \cos t_3 \end{pmatrix} \begin{pmatrix} \cos t \\ q \sin t \end{pmatrix} \qquad (t \in [t_1, t_2])$$

- t_1, t_2, t_3 の指定はラジアン (Ang) または角度 (deg).
- opt=t:xylines() におけるオプションと同じ意味.
- proc=1:描画実行形式の要素を返す.
- [0] os_md.xyoval([0,0],1,1/2|arg=[2*@pi/3,7*@pi/3,@pi/8],scale=10,opt=0);
- [[-6.27647, 2.0871], [-10.6562, -1.40948], [-10.451, -5.23007], [-5.84741, -5.90082],
- 1,[-1.2438,-6.57157],[5.5263,-3.7673],[8.30725,-0.0377664],1,[11.0882,3.69177],
- [8.53175,6.53844],[2.96233,5.91393]]
- [1] os_md.xyoval([0,0],1,1/2|arg=[2*@pi/3,7*@pi/3,@pi/8],scale=10);
- {(-6.276,2.087);(-5.847,-5.901)
- **\crv{(-10.656,-1.409)&(-10.451,-5.23)}};
- {(-5.847,-5.901);(8.307,-0.038)
- **\crv{(-1.244,-6.572)&(5.526,-3.767)}};
- {(8.307,-0.038);(2.962,5.914)
- **\crv{(11.088,3.692)&(8.532,6.538)}};
- [3] os_md.dviout0([0,6])\$
- [4] os_md.xyoval([0,0],1,1/2|dviout=1)\$
- [5] os_md.xyoval([0,0],1,1/2|arg=[2*@pi/3,7*@pi/3,@pi/8],dviout=1)\$
- [6] os_md.xyoval([0,0],1,1/2|arg=[2*@pi/3,7*@pi/3,@pi/8],ar=1,dviout=1)\$
- [7] os_md.xyoval([0,0],1,1/2|opt="red",dviout=1)\$

 $354. \ \mathrm{xygrid} \ (\texttt{[}x\texttt{,}t_x\texttt{,}u_x\texttt{,}m_x\texttt{,}s_x\texttt{]}\texttt{,} \texttt{[}y\texttt{,}t_y\texttt{,}u_y\texttt{,}m_y\texttt{,}s_y\texttt{]}\texttt{|}raw=r\texttt{,}shift=\texttt{[}s_x\texttt{,}s_y\texttt{]}\texttt{)}$

:: (対数) 方眼紙の描画

- 横 x, 縦 y の方眼紙を作成する(xyproc() の引数の形で返す). t_x , t_y は,0 のときは通常の目盛,1 のときは対数目盛,-1 のときは逆対数目盛とし, u_x , u_y は,単位の長さ, m_x , m_y は最小の目盛線の間隔とする.
 - 色付けなどを考慮すると TikZ を利用するのが好ましいので、以下ではそれを念頭に例を述べる (長さの単位は cm となる. dviout0(1|opt="TikZ") によって X_Y -pic でなくて、TikZ 対応となる).
- t_x , t_y は直接 0 からの数字のリストとして指定してもよい (m_x , m_y は無視される). scale() の 返り値の形でもよい.
- 目盛線は、横、縦共に3段階で、線種はそれぞれ s_x , s_y で文字列指定する.3段階で変えるときは、文字列3つのリストで、小さい目盛線、中間の目盛線、大きい目盛線の順に指定する.3段階以外も可能.
- 通常の目盛のときは、単位の長さを、細分なし、2等分、または5等分、または10等分まで、最小間隔以上という条件で細かく取る。10等分のときは、2等分を2段階目の線種とする。あるいは、 m_x, m_y を scale()の引数の形(リスト)で指定してもよい。
- 対数目盛のときは、1 から 2 まで、2 から 5 まで、5 から 10 までに分けて(1 から 10 までの間隔が単位の長さ)、それぞれ細分なし、2 等分、5 等分、10 等分のいずれかで、最小間隔以上という条件で、細かく取る。10 等分のときは、2 等分を中間の線種とする。あるいは、 m_x , m_y を scale()の引数の形(リスト)で指定してもよい。
- $shift=[s_x,s_y]$ によって描画位置の原点を移動できる(左下隅が原点).
- たとえば、五線譜の用紙を描くには y =22.4, t_y =[0,0.2,0.4,0.6,0.8], u_y =2.5, t_x =[] などとすればよい.
- raw=1: 縦線の位置 (3 段階), 横線の位置 (3 段階) の組のリストを返す.
- raw=2: 上を, xylines() の引数のリストの組として返す.
- [0] L=["blue!20","blue!35","blue!50"]\$
 - /* [最小目盛の線種,中間目盛の線種,通常目盛の線種] */
- [1] X=[10,0,2,0.15,L] Y=[3,0,2,0.15,L]
 - /* [方眼紙のサイズ (横/縦 cm), 0:等間隔か 1:対数目盛か, 一つのユニットの大きさ (cm), 細分したときの最小幅 (cm), 線種] */
- [2] SO=xyproc(os_md.xygrid(X,Y))\$ /* 2mm 方眼紙 */
- [3] U=[12,1,3,0.03,L] V=[3,1,3,0.03,L] W=[3,-1,3,0.03,L]
- [4] S1=os_md.xyproc(os_md.xygrid(U,Y))\$ /* 片対数方眼紙 */
- [5] S2=os_md.xyproc(os_md.xygrid(U,V))\$ /* 両対数方眼紙 */
- [6] S3=os_md.xyproc(os_md.xygrid(U,W))\$ /* 左上原点両対数方眼紙 */
- S0, S1, S2, S3 は方眼紙の T_FX のソースとなる.

- 355. $\operatorname{xygraph}(f, n, [t_1, t_2], [x_1, x_2], [y_1, y_2] | \operatorname{opt} = t, \operatorname{rev} = 1, \operatorname{ax} = [x_0, y_0, s, t, u], \operatorname{axopt} = [h, w, o, z], \\ \operatorname{scale} = r, \operatorname{ratio} = c, \operatorname{raw} = 1, \operatorname{org} = [x_0, y_0], \operatorname{pt} = [p_1, p_2, \dots], \operatorname{verb} = 1, \operatorname{para} = 1, \operatorname{prec} = v, \operatorname{shift} = [u, v], \\ \operatorname{Acc} = 1, \operatorname{dviout} = t, \operatorname{proc} = p)$
 - - 点を繋ぐのは xylines() を curve=1 のオプションで用いる.
 - 変数はxで, さらに $x_1 < x_2$, $y_1 < y_2$ でなければならない.
 - f は [f_1 , f_2] の形のパラメータ表示でもよい.
 - para=1: f が $[f_1, f_2]$ のパラメータ表示であることを明示する.
 - f や前項の f_1 , f_2 は有理函数や $\sin(x)$ などの初等関数に限らず、mydeval() が解釈できる函数ならばよい。よってユーザが定義した函数や、 Γ 函数などのように pari() 経由でサポートされた函数でもよい。
 - f_1 が有理式で f_2 がリスト形式の函数のときは、para=1 としてパラメータ表示であることを明示する必要がある.
 - 変数を x でなくて t とするときは、 $[t_1,t_2]$ でなくて $[t,t_1,t_2]$ と指定する.
 - $x_1 = t_1, x_2 = t_2$ のときは、第 4 引数 $[x_1, x_2]$ を 0 と指定してもよい.
 - rev=1 : x = f(y) のグラフとみなす.
 - (x_1, y_1) と (x_2, y_2) で定まる窓から外れる点は除く.
 - n=0 と指定したときは、n=32 とみなす.
 - n < 0 のときは、|n| 等分した区間の両側の 1 区間外に制御点をとる.
 - n 等分点でなくて点を直接指定するときは, $[t_1,t_2]$ でなくて $[t_1,t_2,\ldots,t_m]$ のように指定する (なお, t_1,\ldots,t_m は単調増加な実数列. さらに最初を実数でなく,変数の指定としてもよい). n が負の時は,最初と最後の点 t_1,t_m は制御点とする.
 - prec=[v_1 , v_2 , v_3]: 折れ線で繋ぐと角度が v_2° 以上の分割点の両側を 2 つに細分すること(さらに $v_3>0$ のときは窓の対角線の長さの v_3 分の 1 以上の跳びがある区間の細分)を v_1 ステップ行い, さらに $v_3>0$ のとき、窓の対角線の長さの v_3 分の 1 以上の跳びを不連続点とみなす.
 - $-v_2=1$ のときは $v_2=30$ と解釈され, $1< v_2<10$ のときは $v_2=10$ と解釈され, $v_2>120$ のときは $v_2=120$ と解釈される.

- $-v_3=0$ のときは、不連続点はないものと解釈する.
- $-v_3 = 1$ のときは $v_3 = 16$ と解釈され, $v_3 > 512$ のときは $v_3 = 512$ と解釈される.
- prec=[v_1 , v_2] は、prec=[v_1 , v_2 ,0] と解釈される.
- prec= v_1 は, $v_1 = 0$ のとき prec=[4,30,0] と, $v_1 > 0$ のとき prec=[v_1 ,30,0] と, $v_1 < 0$ のとき prec=[$|v_1|$,30,16] と解釈される.
- opt=t:線種の指定など (xylines()に渡される).
- opt=0: 曲線を xybezier() の引数のデータ形式で返す.
- ratio=c: Bézier 曲線を使うときのパラメータ (xylines() に渡される).
- $ax=[x_0,y_0]:(x_0,y_0)$ を原点として x 軸と y 軸を窓内に描く. 窓内に現れない軸は描かないので、それを利用して一方の軸のみの描画ができる.
- $ax=[x_0,y_0,s,t]:s$ が正数なら、x 軸に原点から s 毎に目盛をつける. 目盛をつける位置を指定するときは $s=[s_1,s_2,\dots]$ と原点からの x 座標の位置を書く. $s_j=[s_{j,0},s_{j,1}]$ となっていると $s_{j,0}$ の位置に目盛をつけて、そこに $s_{j,1}$ を書く. t で同様に y 軸の目盛の指定ができる
- $ax=[x_0,y_0,s,t,u]:s,t$ が数字でu が 1 と 2 とすると,目盛が $ax=[x_0,y_0,s,t]$ に従ってつけられ,u に従ってそこに数字が書かれる。u=0 のとき k 番目の位置のx 軸には $ks+x_0$ が y 軸には $kt+y_0$ が書かれ,u=1 のとき k 番目の位置のx 軸には ks が y 軸には kt が書かれ,u=2 のとき k 番目の位置に k が書かれる.
- axopt=z: z が文字列の時は x 軸と y 軸の線種指定文字列(デフォルトは実線で X_{Y} -pic のときは "Q-").
- axopt=h:h が 0 以外の数字の時は,目盛の軸からの長さを与える. 値が負の時は軸から負方向(x 軸なら下,y 軸なら左)の目盛.
- axopt=[h,w,o,z]: 軸や目盛の描き方の指定
 - $-h=[h_0,h_1]$ または $h=[h_0,h_1,h_2]$ のとき x 軸の目盛の高さを h_0 から h_1 までとする (Xy-pic/TikZの mm/cm 単位).

 h_2 は文字列で、目盛位置に文字などを置く位置指定(デフォルトは下 "+!U"/"below"). h が 0 でない数字なら、 $h_0=0$ 、 $h_1=1$ と解釈される(h=0 のときはデフォルトのまま).

- $-w = [w_0, w_1]$ または $w = [w_0, w_1, w_2]$ のとき y 軸の目盛の幅を w_0 から w_1 までとする (Xy-pic/TikZの mm/cm 単位).
 - w_3 は文字列で、目盛位置に文字などを置く位置指定(デフォルトは左 "+!R"/"left")。 w が数字なら、 $w_0=0$, $w_1=1$ と解釈される(w=0 のときはデフォルトのまま).
- -o が文字列のとき, x 軸の原点に文字を置く位置指定(デフォルトは左下 "+!UR"/"below left").
 - oが文字列でなければ無視される.
- -z:x軸とy軸の線種指定文字列(デフォルトは実線で X_{γ} -pic のときは "Q-").
- -z または z と o を省略可能.
- $pt=[p_1,p_2,...]$: (複数の) 点を明示するまたは線を描く. 仕様は xy2graph() の同様なオプションに習う.
- $scale=r: X_{f}-pic/TikZ$ の座標に直すときに r 倍する.
- scale= $[r_1,r_2]$: Xy-pic/TikZ の座標に直すときに x 座標を r_1 倍, y 座標を r_2 倍する.
- org=[x_0 , y_0]: Xy-pic/TikZ の座標に直すときに (x_0 , y_0) をXy-pic/TikZ の原点に対応させる. 上の両者が指定されたとき、座標 (x,y) は Xy-pic/TikZ の座標 (r_1 (x- x_0), r_2 (y- y_0)) に変換される.
- raw=1:通過点のリストを返す (他のオプションは無視される). これは xylines() のデータとなり,また ptaffine()でアフィン変換が計算できる. なお,範囲外の点は 0 というデータに変換される.
- f = [0,0] のときはグラフを描かない. 座標軸のみを描くときに用いる.
- err=c: 函数の定義域を外れるエラーが生じるときは、c=1, c=-1 などとしてこのオプションを指定すると、エラーが解消される可能性がある (c は絶対値があまり大きくない実数).

- verb=1: グラフ上の通過点を •, 制御点を × で表示する.
- verb=[t_1 , t_2], verb=[t_1]: グラフ上の通過点や制御点の描き方を指定する (cf. xylines()).
- proc=1: execdraw() の描画実行形式を返す.
- proc=2:上と同様であるが、Windows サイズの情報は含めない.
- proc=3:描画実行形式の関数描画成分を返す.
- dviout=1: グラフを T_FX を用いて画面表示する.
- dviout=t:t がリストのとき、execdraw() を用いて処理する. t は execdraw(ℓ,t) の 2 番目の引数に対応する. このとき ext=[a,b],cl=1 の execdraw() のオプションも指定可能. 最も簡単な指定は dviout=[0], あるいは dviout=[0,[500,400]],0] など.

Xy-pic のときは

- [0] os_md.xygraph(x^2 ,0,[-1.5,1.5],[-1.5,1.5],[-0.5,2.3]|dviout=1,ax =[0,0,1,1,1],scale=10);
- [1] os_md.xygraph(x^3 ,0,[-1.2,1.2],[-1.2,1.2],[-1.5,1.5]|dviout=1,ax =[0,0,1,1],axopt="0{.}",scale=10);
- [2] $os_md.xygraph(1/x,0,[-3,3],[-3,3],[-3,3])dviout=1,ax=[0,0],scale=5);$
- [3] $F=[(1+\cos(x))*\cos(x),(1+\cos(x))*\sin(x)]$ \$
- [4] os_md.xygraph(F,0,[-@pi,@pi],[-0.5,2.5],[-1.5,1.5]|dviout=1,scale=10, ax=[0,0]);
- 一方、TikZ のときは、上は
- [0] os_md.xygraph(x^2 ,0,[-1.5,1.5],[-1.5,1.5],[-0.5,2.3]|dviout=1,ax =[0,0,1,1,1]);
- [1] os_md.xygraph(x^3 ,0,[-1.2,1.2],[-1.2,1.2],[-1.5,1.5]|dviout=1,ax =[0,0,1,1],axopt="dotted");
- [2] $os_md.xygraph(1/x,0,[-3,3],[-3,3],[-3,3])dviout=1,ax=[0,0],scale=0.5);$
- [3] $F=[(1+\cos(x))*\cos(x),(1+\cos(x))*\sin(x)]$ \$
- [4] os_md.xygraph(F,0,[-@pi,@pi],[-0.5,2.5],[-1.5,1.5]|dviout=1,ax=[0,0]);

となる.

以下、 X_{pic} の場合の例であるが、TikZ の場合は(前者は mm 単位、後者は cm 単位なので)scale=の値を十分の一に、[9] の opt="~*=<3pt>{.}" を opt="dotted" に、[10] の opt="~*={.}" を opt="very thick" などに変更する.

- [5] $F1=[\sin(2*x),\sin(3*x)]$ \$
- [6] os_md.xygraph(F1,-48,[-@pi,@pi],[-1.2,1.2],[-1.2,1.2]|dviout=1,scale=15, ax=[0,0])\$
- [7] $F2=[\sin(4*x),\sin(3*x)]$ \$
- [8] os_md.xygraph(F2,-48,[-@pi,@pi],[-1.2,1.2],[-1.2,1.2]|dviout=1,scale=15,

 $ax=[0,0],opt="^*=<3pt>{.}")$ \$

[9] os_md.xygraph(F2,-48,[-@pi,@pi],[-1.2,1.2],[-1.2,1.2]|dviout=1,scale=15, ax=[0,0],opt="~*={.}")\$

 $y = |\sin(x)| \ (0 \le x \le 10)$ のような微分不可能点をもつ曲線を描くにはオプション prec を用いる.

- [10] $F=os_md.abs(sin(x))$ \$
- [11] os_md.xygraph(F,-32,[0,10],[0,10],[0,1]|dviout=1,scale=[15,25])\$
- [12] os_md.xygraph(F,-32,[0,10],[0,10],[0,1]|dviout=1,scale=[15,25],prec=0)\$

微分可能でない点の近くでは不正確であるが、prec=0を指定すると以下のようにより正確になる.

この例では,[0,10] を 32 等分した関数の値から 32 本の cubic Bézier 曲線を繋げた近似から,不連続点の近くで自動的に細分して 63 本の cubic Bézier 曲線を繋げたものになった.

 $y = |2\sin(x)| - \text{floor}(|2\sin(x)|)$ $(0 \le x \le 5)$ のような不連続点をもつ曲線を描くにもオプション prec を用いる. ここで floor(t) は t を越えない最大整数を表す.

- [13] $G=[u,[v,dsin,x],[w,os_md.abs,2*v],[z,dfloor,w],[u,0,-z+w]]$ \$
- [14] os_md.xygraph(G,-32,[0,5],[0,5],[0,1]|dviout=1,scale=20)\$
- [15] os_md.xygraph(G,-32,[0,5],[0,5],[0,1]|dviout=1,scale=20,prec=0)\$
- [16] os_md.xygraph(G,-32,[0,5],[0,5],[0,1]|dviout=1,scale=20,prec=[4,0,1])\$

の実行結果は以下のようになる. すなわちオプション prec を指定しない場合 [14] は

となり, prec=0 のとき [15] は

となり、prec=-4 または prec=[4,0,1] のとき [16] は以下のようになる.

この例では、最初 32 本の cubic Bézier 曲線で描かれていたものが、最終的には 70 本の cubic Bezier に分割された.

- [17] $H=[w,[z,os_md.zeta,1/2+@i*x],[w,os_md.abs,z]]$ \$
- [18] os_md.xygraph(H,-64,[0,60],[0,60],[0,4]|dviout=1,scale=[2.5,10],prec=6, ax=[0,0,10,1,1])\$

とすると $|\zeta(\frac{1}{2} + x\sqrt{-1})|$ $(0 \le x \le 60)$ のグラフが得られる.

この例では、[0,60] の 96 等分割から自動的に 355 分割に細分した関数値を得て描かれている.

Risa/Asir のキャンバスでの表示は、たとえば次のようにする(以下の [22] では、重ね書きをしている).

[19] dviout0([0,5,6])\$

DVIOUTA="%ASIRROOT%\bin\risatex1%TikZ%.bat"

TikZ=1

- [20] W=[-1.2,1.2]\$
- [21] P=os_md.xygraph(F1,-48,[-@pi,@pi],W,W|dviout=[0],ax=[0,0])\$
- [22] os_md.xygraph(F2,-48,[-@pi,@pi],W,W|dviout=[P],opt="red,dotted")\$
- [23] S=600\$ /* 窓のサイズ */
- [24] os_md.xygraph(F2,-48,[-@pi,@pi],W,W|dviout=[[0,[S]],ax=[0,0])\$

その他の例を挙げる.

- [25] G=[1/7*x-1/2*cos(x),sin(x)] /* バネ・コイル */
- [26] os_md.xygraph(G,-63,[0,21*@pi],[-1,10],[-2,2]|scale=0.3,dviout=1)\$

- [27] F=os_md.cutf((1-x^2)^3,x,[[-1,0],[],[1,0]])\$ /* 1つの波 */
- [28] G=os_md.periodicf(F,[-4,4],x)\$ /* 周期的拡張 */
- [29] G1=subst(G,x,x-t-2)\$
- /* 進行波 */

[30] G2=subst(G,x,x+t+2)\$

- /* 逆の波 */
- [31] H=os_md.compdf(x-y,[x,y],[G1,G2]); /* 区間 [0,4] の波, 周期 8 */
- [32] $E="\sqrt{2.4,-0.6}-(2.4,-0.6);\n"$
- /* 右端 */
- [33] for(I=1;I<2;I+=0.2) os_md.xyproc(os_md.xygraph(os_md.mysubst(H,[t,I]), -24,[0,4],0,[-1,1]|scale=[0.6,0.6],prec=6,ax=[0,10])+E|dviout=1);

これをパラパラ漫画風にする (160ページ).

- [34] TO="\\newpage\n\\begin{tikzpicture}\n"\$
- [35] T1=" $\draw (0,-3) -- (0,3) (16,-3) -- (16,3)\n\operatorname{tikzpicture}\n"$ \$
- [36] $Tb=os_md.str_tb(0,0)$ \$
- [37] for(I=0;I<8;I+=1/20) os_md.str_tb(T0+os_md.xygraph(os_md.mysubst(H,[t,I]), -24,[0,4],0,[-1,1]|scale=[4,3],prec=6)+T1,Tb);
- [38] dviout(os_md.str_tb(0,Tb))\$
- 356. $xy2graph(f, n, [x_1, x_2], [y_1, y_2], [h_1, h_2], \alpha, \beta | opt=t, scale=r, view=h, raw=1, trans=1, ax=[z_1, z_2, t], dev=m, acc=k, org=[x_0, y_0, z_0], pt=[p_1, p_2, ...], prec=v, title=s, dviout=k, ext=[a,b], shift=[u,v], cl=1, proc=p)$
 - x : x, y 変数の区間を n 等分して曲面 z = f(x, y) の 3D グラフを描く
 - x 軸の正方向から y 軸の正方向に α 度だけ回転した(無限)遠方から β 度 ($-90 < \beta < 90$) の角度で見下ろす方向に見た曲面 z = f(x,y) ($x_1 \le x \le x_2, y_1 \le y \le y_2$) の 3D グラフを描く. なお,投影した高さ方向の座標(y 座標)が $[h_1,h_2]$ に入る範囲のみ描く.
 - より具体的には3次元の点(x,y,z)は以下のように平面の点に投影される.

$$(x, y, z) \mapsto (-x \sin \alpha^{\circ} + y \cos \alpha^{\circ}, z \cos \beta^{\circ} - x \cos \alpha^{\circ} \sin \beta^{\circ} - y \sin \alpha^{\circ} \sin \beta^{\circ})$$

 $\alpha = 0$ のときは $\alpha = 60$, $\beta = 0$ のときは $\beta = 15$ と解釈される.

 α は 0 であるか、または 90 の整数倍とは 5 以上離れていることが必要.

通常は h_1 を十分小さく、 h_2 を十分大きく取っておけばよい(指定した範囲の曲面全体の表示).

- 曲面上でx 座標が定数,あるいはy 座標が定数で定まる曲線を(曲面で隠れる部分,すなわち隠線を消して)描くことで曲面を表す.定数は座標のn 等分点と定める. n<0 のときも |n| 等分点をとるが,その一つ外側を制御点にとる.
- f は有理函数や $\sin(x)$ などの初等関数に限らず、mydeval() が解釈できる函数ならばよい. ユーザが定義した函数でもよい.
- cpx=1,2,3 を指定するか f に Qi が含まれていれば、mydeval() でなくて myeval() が使われる.

• f が 1 変数 z の有理函数ならば、z=x+yi 変数の複素函数と考え z=|f(x+iy)| のグラフを描く. この場合 f は

 $[w,[z,0,x+y@i],[w,os_md.abs,f]]$

で置き換えられる. なお、複素変数の $\sin(z)$, $\cos(z)$, $\tan(z)$, $a\tan(z)$, $a\sin(z)$, $a\cos(z)$, $\sinh(z)$, $\cosh(z)$, $\tanh(z)$, $\exp(z)$, $\log(z)$, z^w や、それらを含む合成関数や有理関数がサポートされている.

 $f \text{ is } \sin(z^2)+1 \text{ obsta}$

 $[w,[z,0,x+y*@i],[w,os_md.abs,[z_+1,[z_-,os_md.sin,z^2]]]]$

のように置き換えられる.

 $|\Gamma(z)|$ のグラフを描くときは、たとえば f を以下のように取ればよい.

 $[w,[z,0,x+y*@i],[u,os_md.gamma,z],[w,os_md.abs,u]]$

このときタイトルの函数は title="\\Gamma(z)" というオプションで表示できる.

- scale=r:表示するために $X_{V-pic}/TikZ$ の座標に直すときに r 倍する.
- scale= $[r_1,r_2]$: 元の曲面の z 座標を $\frac{r_2}{r_1}$ 倍したものを平面に投影したあと、表示するため Xy-pic/TikZ の座標に直すときに座標の単位を r_1 倍する.
- scale= $[r_1,r_2,r_3]$:元の曲面のz座標を $\frac{r_2}{r_1}$ 倍,y座標を $\frac{r_3}{r_1}$ したものを平面に投影したあと,表示するためXy-pic/TikZの座標に直すときに座標の単位を r_1 倍する.
- org=[x_0 , y_0 , z_0]: 元の座標の (x_0 , y_0 , z_0) を X_Y -pic/TikZ の座標での原点にする(デフォルトでは原点が原点に対応).
- |n| が大きいと $T_{\rm E}X$ のソース・ファイルが長大になり、ソース・ファイルから dvi ファイルや pdf ファイルへの変換に時間がかかることがあるので注意.

n = -16 がデフォルト (n = 0 とするとデフォルト値と解釈される).

- view=1:陰線消去を行わない.
 - view=-1: 陰線は点線で表示する.
- raw=1:通過点のリストを返す.
- $\operatorname{dev}=m$: 陰線消去のためのメッシュを、x変数、y変数とも $m \times |n|$ 等分したものとする(デフォルトは m=16). ただし $\operatorname{dev}=[m_1,m_2]$ とすると、 m_2 は出力される x 座標のメッシュの細かさ、 m_1 は曲線間にとるメッシュの細かさ、と別に指定することができる.
- $|n| \times m$ を増やすと処理時間が増える. 特に f が多項式や有理函数でなくて三角関数や指数関数, 対数関数, べき函数などを含むときは注意. なお処理時間は, ほぼ $|n|^2 \times m^2$ に比例.
- acc=k: 描く曲線の等分点の個数を約 k 倍にする (k は実数、曲線の本数は不変)、k=2 なら n を 2 倍にして dev を半分にした場合の曲線を一本おきに描くことにほぼ等しい(結果のファイル・サイズは、 $n^2 \times k$ にほぼ比例).
- err=c: 有理函数の分母が 0 になるなどの、函数の定義域を外れるエラーが生じるときは、c=1、 c=-1 などとしてこのオプションを指定すると、エラーが解消される可能性が大きい(c は絶対値があまり大きくない実数).
- prec=v: xygraph() の同様のパラメータと同じ.
- $ax=[z_1,z_2]:x,y,z$ の座標が $(x_2,y_2,z_1),(x_1,y_1,z_2)$ を対角線の頂点とする直方体の枠を書く,
- $ax=[z_1,z_2,t]$: 上に加え, 一部の頂点の座標を入れる.
 - $-t=\pm 1,\pm 5:2$ 頂点の座標を入れる.
 - $-t=\pm 2,\pm 6:4$ 頂点の座標を入れる.
 - $-t = \pm 5, \pm 6$: 座標の文字を小さくする.
 - -t=0,-8: 頂点の座標を入れない.
 - -t < 0: 直方体の後ろ側の枠を点線で描く(デフォルトは実線)
- 複素変数の実数値函数のときに座標を入れる形式は、(x,y,z)=(1,2,3) の場合に
 - $\text{cpx=1} : (1+2i,3) \quad (デフォルト)$
 - $\text{cpx=2} : (1 + 2\sqrt{-1}, 3)$

- cpx=3 : (1,2,3)
- opt=u: 曲面内の曲線を描くときのオプション文字列を指定する. 表側と裏側で変更するときは opt= $[u_1,u_2]$ と、表側、裏側の順に指定する.

TikZ のときは、さらに直方体の枠を描くときのオプション文字列が指定できる.

たとえば TikZ で opt=["black", "red", "blue"] とすれば, 表側を黒, 裏側を赤, 枠を青で描く.

- title=s: 画面表示するとき、函数名が s で表示される (s は $T_{\rm E}X$ の数式モードでの文字列). 函数がリスト形式のときの函数名表示に役立つ.
- $pt=[p_1,p_2,...]$: (複数の) 点を明示する, あるいは線を引く.
 - $-p_i$ =[x_i,y_i,z_i] とすると (x_i,y_i,z_i) を で明示する,
 - $-p_i$ =[[x_i,y_i,z_i], s_i] とすると、 \bullet (すなわち\bullet) でなくて s_1 で明示される(s_i は数式 モードの文字列で、 \setminus は \setminus で表す).
 - $-p_i$ =[[x_i,y_i,z_i], s_i,t_i] とすると、 \bullet でなくて s_i で明示され(s_i は文字列),Xy-pic のときは、そのあとに文字列 t_i を置く(s_i が文字列でないときは \bullet のまま). s_i が不要なときは、 s_i = "" とする.

TikZ のときは、 t_i はラベル付け文字で、 s_i は $s_i = [s_{i,0}, s_{i,2}]$ というリストでよい.後に置く文字があるときは、 t_i の後に t_i , u_i と続ける.

 t_i =1 は "_" というラベルを表し、その後で座標の代わり 1 または"_" で参照できる.

- 点が一つの時は, $pt=p_1$ としてよい.
- pt=[0,0,1]: (0,0,1) を で明示する.
- pt=[[0,1,2],"\$\\times\$"]: (0,1,2)を×で明示する.

Xy-pic のときは

- * pt=[[0,0,1],0," *+!D{(0,0,1)}"]: (0,0,1) を \bullet で明示し、その上に (0,0,1) と表示する.
- * pt=[[[0,0,1],0," *+!D{(0,0,1)}"],[[0,1,2],"\$\\times\$"]]] : 上の両方を行う.
- * pt=[[0,0,1],0,"=\"A\""]: 点(0,0,1)を \bullet で明示し、ラベル "A" をつける.

TikZ のときは上と同様なことは以下のように書ける

- * pt=[[[0,0,1],0,1],[1,["below","\$(0,0,1)\$"]]]: (0,0,1) を \bullet で明示し,その上に (0,0,1) と表示する.
- * pt=[[[0,0,1],0,1],[1,["below","\$(0,0,1)\$"]],[[0,1,2],"\$\\times\$"]]] : 上の両方を行う.
- * pt=[[0,0,1],0,"A"]: 点(0,0,1)を で明示し、ラベル "A" をつける.
- $-p_i$ =[[x_i, y_i, z_i],[x_i', y_i', z_i']] とすると、2点(x_i, y_i, z_i) と (x_i', y_i', z_i') を線で結ぶ.
- $-p_i$ =[[x_i , y_i , z_i],[x_i' , y_i' , z_i'], t_i] とすると,2点(x_i , y_i , z_i)と(x_i' , y_i' , z_i')を結ぶが
 - * $t_i = 0, 1$: 実線で結ぶ
 - * $t_i = 2$: 点線で結ぶ
 - * $t_i = -1$: 曲面のあるところは除いて実線で結ぶ
 - * $t_i = -2$: 曲面のあるところは除いて点線で結ぶ

さらに t_i の後ろにオプション文字列 u_i を書いて p_i =[[x_i,y_i,z_i],[x_i',y_i',z_i'], t_i,u_i] とし、TikZ では色や線の太さ指定などの指定が可能.

- proc=1: execdraw() の描画実行形式を返す.
- proc=2:上と同様であるが、Windows サイズの情報は含めない.
- dviout=1:画面表示する.
- dviout=2:ディスプレイスタイルで函数式も含めて画面表示する.
- dviout=3: さらに視点の角度と、もとの曲面の高さやy座標のスケールを変えたとき、その倍率を表示する.
- k が -1, -2, -3 の時は,dviout=|k| に対応する T_{EX} のコードがリスト形式で 出力される. リストの最後の成分は xyproc() によってグラフの T_{FX} のソースとなる.その前の成分は函数式

などを表す T_{FX} のソース,tarns=1 を指定した場合はその結果が先頭につく.

- dviout=k:k がリストのとき、execdraw() を用いて処理する. k は execdraw(ℓ,k) の 2番目の引数に対応する. このとき ext=[a,b], shift=[u,v], cl=1 の execdraw() のオプションも指定可能
- dviout=k: この指定が無いときは、戻り値をS したとき、xyproc(S) がグラフの T_EX のコードとなる.
- trans=1: もとの (x, y, z) 座標に対応する $X_{y-pic}/TikZ$ の座標 [X, Y] を返す. 具体的には

$$X = -r_1(x - x_0) \sin \alpha^{\circ} + r_2(y - y_0) \cos \alpha^{\circ},$$

$$Y = r_3(z - z_0) \cos \beta^{\circ} - r_1(x - x_0) \cos \alpha^{\circ} \sin \beta^{\circ} - r_2(y - y_0) \sin \alpha^{\circ} \sin \beta^{\circ}.$$

ただし、これはオプションなどの指定が

- xy2graph の第 6, 7 引数: (α,β) $(\alpha=0$ のときは $\alpha=60$, $\beta=0$ のときは 15 と解釈される)
- scale= $[r_1,r_3,r_2]$ デフォルトは [1,1,1] となり, r_2 を指定しないときは $r_2=r_1$ で, r_3 を指定しないときは $r_3=r_1$ と解釈される.
- $\text{Org}=[x_0, y_0, z_0]$ デフォルトは [0,0,0] の場合である.

F=os_md.xy2graph(・・・|trans=1) とおくと, (x,y,z)に対応する X_{Y} -pic/TikZ での座標は

 $os_md.myf3deval([F],x,y,z)$

によって得られる.

• pdf ファイルを作成するときは、\usepackage[pdf,all]{xy}と指定して dvipdfmx などを用いるとよい. ジャギーがなく、サイズの小さな pdf ファイルが、より短い時間で作成できる. また、複雑な画像でも処理が出来る.

pdf ファイル作成と dvi ファイル作成とを切り替えるなど,異なるやり方で T_EX ファイルを処理 するには DVIOUTB および dvioutO(4) を利用するとよい.

- [0] os_md.xy2graph(x^2-y^2 ,0,[-1,1],[-1,1],[-2,2],0,0|ax=[-1,1,-6],scale=15,dev=64,dviout=3)\$
- [1] os_md.xy2graph(-x^3-y^3,-24,[-1,1],[-1,1],[-2,2],60,-35|scale=20,dev=64, dviout=2)\$

$$z = x^2 - y^2 \quad (-1 \le x \le 1, \, -1 \le y \le 1) \qquad z = -x^3 - y^3 \quad (-1 \le x \le 1, \, -1 \le y \le 1)$$
 angle (60°, 15°)

上は X_f -pic のときで、TikZ を用いる場合の scale の値は $\frac{1}{10}$ 倍にする.

- [2] $S0=[[3.1416,0,0],0,"*+!U{(\leq 0,0)}"]$ \$
- [3] $S1=[[0,0,0],0,"*+!U{(0,0,0)}"]$ \$

- [4] $S2=[[-3.1416,0,0],0,"*+!U{(-\\pi,0,0)}"]$ \$
- [5] S3=[[3.1416,0,0],[-3.1416,0,0],2]\$
- [6] os_md.xy2graph(sin(z),-60,[-@pi,@pi],[-1,1],[-5,8],50,0| scale=[15,45,45],ax=[0,1.543,-6],dviout=3,pt=[S0,S1,S2,S3])\$

上の入力から次のグラフの描画までに、30 秒程度かかる(2014 年におけるメジャーなパソコン). なお、有理函数のグラフなら 10 秒程度.

TikZ のときは、上の [2], [3], [4] [6] は次のようになる.

- [2] $S=[[[3.1416,0,0],0,1], [1,["below","$(\\pi,0,0)$"]]]$ \$
- [3] S=append([[[0,0,0],0,1],[1,["below","\$(0,0,0)\$"]]],S)\$
- [4] $S=append([[[-3.1416,0,0],0,1],[1,["below","$(-\\pi,0,0)$"]]],S)$ \$
- [6] os_md.xy2graph(sin(z),-60,[-@pi,@pi],[-1,1],[-5,8],50,0|dviout=3, scale=[1.5,4.5,4.5],ax=[0,1.543,-6],pt=S,opt=["black","red","blue"])\$

append()を使わずに, os_md.m2l([S1,S2,S3]|list=1) などとする方法もある. この結果は図 2 である.

図2 xy2graph()の例

- 357. xy2curve([f_1 , f_2 , f_3],n,[t_1 , t_2],[y_1 , y_2],[z_1 , z_2], α , β |scale=r,gap=g,opt=s,eq=q,raw=w, dviout=d)
 - :: 空間曲線の隠線処理つき描画
 - $(f_1(x), f_2(x), f_3(x))$ $(x \in [t_1, t_2])$ で定義される空間曲線を x 軸の正方向を y 軸の正方向に α 度 だけ回転した無限遠方から, β 度 $(-90 < \beta < 90)$ 見下ろす方向に回転して,yz 平面に射影した曲線を描く.

ただし変数が \mathbf{x} でなくて t ときは、 $[t_1,t_2]$ の代わりに $[t,t_1,t_2]$ と書く.

描画範囲はy座標,z座標が区間 $[y_1,y_2]$, $[z_1,z_2]$ の範囲(回転や以下のスケール変換後).

- gap=g: 隠線消去の幅を g mm を基準とする. g=0 のときは、隠線消去は行わない. デフォルトは g=0.7.
- gap=[q,m]: 隠線消去の幅の最大値を $m \times q$ mm とする (デフォルトは m=3).
- scale=r: 各座標を r 倍する.
- sacle= $[r_1,r_2]: x$ 座標を r_1 倍,y 座標とz 座標を r_2 倍する.
- sacle= $[r_1,r_2,r_3]$: x座標を r_1 倍, y座標を r_2 倍, z座標を r_3 倍する.
- α が 3 行 3 列の行列の場合は、これによる線形変換に置き換える(回転やスケール変換は無視).
- opt=s: 線種などの指定文字列 (xygraph() のときと同様). ただし gap=0 を指定しないときは、 xybezier() に渡すパラメータの形式に拡張される.
- eq=q: 空間内で q mm 以下の距離の 2 点は同じ点とみなす (デフォルトは q=0.01).
- dviout=1:画面表示を行う.
- raw=1: T_FX のソースを返す.
- raw=2: 隠線処理後の区分 Bézier 曲線を与える座標のリストのリストを返す.
- raw=3: 隠線処理前の区分 Bézier 曲線を与える座標のリストのリストと, 交点の情報を返す.
- raw=4: 隠線処理前の区分 Bézier 曲線を与える座標のリストのリストと, 区分点などのデータを 返す.
- raw=5: 隠線処理前の回転やスケール変換後の曲線を返す.
- [0] F=[cos(x),1/7*x-1/2*cos(x),sin(x)]\$ /* バネ */
- [1] os_md.xy2curve(H,-63,[0,21*@pi],[-1,10],[-2,2],0,0|scale=0.3);
- [2] $G=[\cos(t),t/10,\sin(t)]$ \$V=[t,0,40]\$
- [3] os_md.xy2curve(G,-96,V,[-2,6],[-4,4],30,-20|dviout=1);
- [4] os_md.xy2curve(G,-96,V,[-2,6],[-4,4],30,-20|dviout=1,gap=0.5);
- [5] os_md.xy2curve(G,-96,V,[-2,6],[-4,4],50,-25|dviout=1,opt="thick",gap=0.6);

- 358. $execdraw(\ell, t|shift=[u, v], ext=[a, b], cl=1)$
 - :: 描画実行形式 ℓ を出力形態 t に従って実行する

 ℓ やtはリストであるが、成分が一つの時は成分のみを指定してもよい.

 $t = [t_0, t_1, t_2]$ は、 t_0 により出力先を、 t_1 により描画実行形式と出力先との座標との対応を、 t_2 により描画実行形式の原点の移動を指定する。

- t_2 を指定しないときは、 $t = [t_0, t_1]$ のように、また t_1 と t_2 を共に指定しないときは、 $t = [t_0]$ のように略してよい.
- t_0 が数で t_1 , t_2 を指定しないときは, $t = t_0$ としてよい.

• cl=1:表示画面をクリアーしてから描画する.

出力先を指定する to は

- 0: Risa/Asir におけるキャンバスを用いた描画.
 - リスト形式で [0] あるいは [0, [width, height]] によって新規キャンバス,
 - または [0, index], あるいは [0, id, index], あるいは [0, id, index, width], [0, id, index, width, height], によって描画キャンバスを指定する.
 - id はサーバ Id, index はキャンバス Id, width, height は pixel 単位のサイズ (cf. draw_obj())
 - [0, [width, height]] において width = height のときは [0, [width]] としてよい. ただし
 - -t=[[0,[x]]] は、t=[[0,[x,x]],x] と解釈される(すなわち $t_1=x$).
 - execdraw([],0)は、描画画面を新規に開く.
 - shift=[u,v]: 右方向に u, 上方向に v だけ pixel 単位で移動する.
 - ext = [a, b]: 左側から a, 右側から b だけ pixel 単位で縮めて描く.
 - ext や shift は、キャンバスに応じて描画サイズが変更されても文字列の大きさは不変であることに対処するのが主目的のオプションである.
 - $-\ell$ 中の Window の x 座標と y 座標の範囲指定が同一で、横幅 t_1 と shift と ext の設定が同じであれば(t_2 は設定していないか同じとする)、同一キャンバスに同じ座標系で上書き表示される.
 - $-t=[t_0,t_1,t_2,\ell']$ により、別の描画実行形式 ℓ' のものを用いることができる(t_1 はキャンバスの横幅とする.それが t_0 で指定される場合は $t_1=0$ としてもよい). なお、 ℓ' は、キャンバスサイズとは独立した情報である.
 - 戻り値は [0,id,index], または [0,id,index,width,height]. これは、同じキャンバスへの描画のときの t_0 として用いることができる.
 - $t_1 = 0, t_2 = -1$ のときは、さらに 2 つの 0 と変換情報とを付加して組にしたリストが戻される. 最後(4 番目)の成分は上の ℓ' として用いることができる. また戻り値は、そのまま t として用いることにより、同じ座標でキャンバス上に他の描画実行形式の**重ね描き**ができる.

たとえば t は以下のようになる

- 0: Canvas で設定されたサイズのキャンバスを新規に開いて,それに合わせた横幅で表示. [[0,[300,300]],300] や [[0,[300]]] と同じ.
- [[0,[300,400]],280]: 300×400 pixel のキャンバスを開き、横幅 280 pixel で表示. すなわち、 t_0 = [0,[300,300]], t_1 = 280.
- $-[[0,[500]],0]:500\times500$ pixel のキャンバスを開き、スケールと位置を自動調整して描画.
- [[0,[500]],0,-1]: 上と同様で、さらに調整情報も含めて返す.
- [[0,2,3],400]: サーバ Id が 2, キャンバス Id が 3 の窓に, 横幅 400 pixel で表示
- [[0,2,3,400,400],0]: サーバ Id が 2, キャンバス Id が 3,400 × 400 pixel のキャンバス に、描画スケールと位置を自動調整して描画.
- [[0,2,3,400,400],0,0,T]:上と同じであるが、調整はTに従う.
- 1: T_EX のソースを返す.
- 2: dviout() による画面表示.
- -1: 窓のサイズを表示してその情報を返す.
 - $t=[-1,[x_0,x_1],[y_0,y_1],k]$: 窓のサイズを再定義した ℓ を返す.
 - $t=[-1,[x_0,x_1],[y_0,y_1],k,[a,b],[u,v]]$ も可能.
 - 後者の代わりにオプション shift=[u,v], ext=[a,b] でも指定可能.
- -2: 表示はせずに窓のサイズを返す.
- -3: 中身を読んで描画の箱サイズを返す. 2 項目は Risa/Asir で表示の際の文字列の最大長で、その後は文字表示の箱サイズ(文字列表示があると不正確).
- −4: 含まれる位置情報の個数を返す.
- -5: 含まれる実行形式の函数を返す (ℓ の第 1 成分から重複と負の数を除いたリスト). たとえば、 $delopt(\ell,[0,1]|inv=1)$ とすると、描画実行形式 ℓ から第 1 成分が 0 (描画範囲) と
 - 1 (Bézier 曲線描画) のもののみを抜き出した描画実行形式を得ることができる.

Risa/Asir の描画キャンバスでの表示の場合

• $t_1 = 0$: ℓ の描画範囲の横幅と左上端の位置をキャンバスに合わせる. さらに微調整するには、キャンバスの縦横比率を変更したり、オプションパラメータの ext と shift を用いるとよい.

このとき

- $-t_2=1$: 描画範囲の箱サイズの他, 自動的に得た ext と shift の値が表示される (オプションパラメータは加味されない).
- $-t_2 = -1$: 上の情報が戻り値に付加されたリストを返す(オプションパラメータも加味される). この戻り値が R のとき、execdraw($\tilde{\ell}$,R) とすると、同じキャンバスに同じ座標で、 $\tilde{\ell}$ の重ね書きができる。また、execdraw(ℓ ,[t_0 ,0,0,R[3]]) や execdraw(ℓ ,[t_0 ,0,-1,R[3]]) のようにして(新規、または既存の)別のキャンバスに描くことも出来る.

たとえば, 戻り値は

[[0,2,3,500,400],0,0,[0,[-1.2,1],[-1.2,1],0,[10,10],[0,-10]]] のような形になる.

最初の [0,2,3,500,400] は t_0 に対応する部分で,順に,0 は Risa/Asir のキャンバスへの描画,そのサーバ Id は 2,キャンバス Id は 3,サイズが 500×400 pixel であることを意味する.

次の成分の0は表示の際の調整を意味し、その次の0は特に意味はなく、最後の成分の

$$[0, [-1.2, 1], [-1.2, 1], 0, [10, 10], [5, -15]]$$

は描画実行形式の成分の形である. すなわち

描画実行形式の箱がその座標の単位で $[-1.2,1] \times [-1.2,1]$ であって、次の 0 は単位あたりの実長が無定義を意味し、ext=[10,10]、shift=[5,-15] で Risa/Asir のキャンバスに対応させることを意味している。より具体的には

ext によってキャンバスの横幅 500 pixel の左右に 10 pixel ずつ余裕を持たせるので、座標の単位は描画の際に $\frac{500-10-10}{1-(-1.2)}$ 倍される。また、描画実行形式の箱の左上端が、キャンバスの左上端から右に (10+5) pixel、下に 15 pixel の位置になる。

なお, 画実行形式の箱の外に描画要素があっても, それがキャンバス内に入れば描画される.

- キャンバスへの描画は、まず描画実行形式から描画範囲の箱を読み取ってそれによりキャンバスとの座標対応を定め、次に描画実行種別番号2の文字列表示を先頭から順に実行し、最後に残りを先頭から順に実行する。これはキャンバスにおける文字列表示において、文字でなくて文字の箱が上書きされることに対応するため。
- $t_1 > 0$ のときは Windows の横幅が t_1 pixel になるようにスケール変換される ($t_1 = 1$ は設定に 従う).
- t₁ がリストや行列の時は、以下のキャンバス表示でない場合と同じ.

Risa/Asir の描画キャンバス以外の場合は、 t_1 はスケール変換を表す ($T_{\rm F}X$ 利用などの場合に有益).

- t_1 が 2×2 の行列の時、座標を t_1 によって線型変換する.
- $t_1 = [t_{10}, t_{11}]$ とすると x 座標が t_{10} 倍,y 座標が t_{11} 倍される(負の値も可能).

 $t_2 = [x,y]$ は、座標 (x,y) を原点に移動する平行移動.

 t_1 によるスケール変換の前に行う. Risa/Asir の描画キャンバスでは無効.

以下,描画実行形式 ℓ について説明する.

- ℓ =[ℓ_1 , ℓ_2 ,...], ℓ_j =[f_j ,...] は,execproc()の形式に従う.ただし, f_j が整数の ℓ_j (描画実行 識別番号)は次のような画像描画の特別形式である.
 - [0,[x_0 , x_1],[y_0 , y_1],k]:窓のx座標とy座標の範囲.座標の1がk cmに対応する.kが省略された0,k=0の場合は,k=1と解釈される.

 ℓ にこの成分が複数あるときは、最初のものが有効、 ℓ の初めの方に書かれるのが望ましい。

- [0,[x_0 , x_1],[y_0 , y_1],k,[a,b],[u,v]] : 上の拡張としてこの形式がある.これは Risa/Asir での表示の際のみ意味を持ち、デフォルトで ext=[a,b], shift=[u,v] というオ

プションが設定される.

- $[1,p_j,\ell_{j1},\ell_{j2},...]$: Bézier 曲線描画, p_j は xybezier() のオプション. $\ell_{j\nu}$ はその引数. すなわち xybezier($\ell_{j\nu}$ |optilon_list= p_j) (i=1,2,...) に対応する描画を意味する. あるいは, $\ell_{j\nu}$ は lbezier() で変換されたデータでもよい.
- $[2,p_j,[x_j,y_j],[s_j],t_j]$: 文字列描画函数 xyput($[x_j,y_j,s_j]$) に対応. t_j は Risa/Asir のキャンバス表示での代替文字列(設定しなくてもよい). s_j が文字列の時は, $[2,p_j,[x_j,y_j],s_j,t_j]$ としてもよい.
- [3, p_j ,[x_{j1} , y_{j1}],[x_{j2} , y_{j2}],...]:線分描画函数 xyarrow([x_{j1} , y_{j1}],[x_{j2} , y_{j2}])に対応.
- [4, p_j ,[x_{j1} , y_{j1}],[x_{j2} , y_{j2}],...]:線分描画函数 xyline([x_{j1} , y_{j1}],[x_{j2} , y_{j2}])に対応.
- [5, p_i , s_i]: T_FX の文字列描画の dviout(s_i) に対応.
- -[-1,...]: この項は無視される (コメントなど).
- [-2,s]: この項の s は文字列で、 $T_{\rm E}X$ のソースには、先頭に % を付加してコメントとして 記され、そのあと改行される.
- p_j はオプションリストに対応する (f_j が函数子の場合は、 ℓ_j の 3 番目の成分にあたる).
- 複数の描画実行形式は append(), または m2l(|list=1) によって一つにまとめることが出来る (グラフの**重ね合わせ**に対応).
- $ptaffine(m,\ell|proc=1,shift=w,...)$ で affine 変換(平行移動と線形変換)ができる.
- $[1,p_j,\ell_{j1},\ell_{j2},...]$ における $\ell_{j\nu}$ はリストで、標準の形の場合、各成分は座標(すなわち実数の 2 つの組のリスト)または、区切り記号の数字の 0,1,-1 からなり、複数の Bézier 曲線を表わす. 一つの Bézier 曲線は始点、いくつかの制御点、終点とが連続して並んで定義されている。n+1 個並んでいれば、n 次の Bézier 曲線となる.PDF 化などから 3 次までの Bézier 曲線が望ましい. なお、1 次の Bézier 曲線は制御点がなく、線分を表す.
 - 0 は Bézier 曲線の区切りで,1 は区切った後に直前の終点の座標を次の Bézier 曲線の始点とみなす(座標を挿入する)ことを意味する.1 で区切られていると連続曲線となるが,-1 は連続曲線の先頭を終点として閉曲線とすることを意味する.たとえば

$$[[x_1,y_1],[x_2,y_2],1,[x_3,y_3],1,-1]$$

は (x_1,y_1) , (x_2,y_2) , (x_3,y_3) を頂点とする三角形を意味する.

これが標準の形で、 $T_{\rm E}X$ で ${\rm Ti}k{\rm Z}$ のソースを作成するときは、一つの $\ell_{j\nu}$ が一つの ${\rm draw}$ 文に変換される。

一方、 $\ell_{j\nu}$ は一つの Bézier 曲線を表す座標のリストを成分とするリストの形のものも許される. この場合は、区切り記号の数字は存在しない. $T_{\rm E}X$ で ${\rm Ti}kZ$ のソースを作成する場合は、一つの Bézier 曲線毎に ${\rm draw}$ 文が生成される.上の三角形は、次のように表せる.

 $[[[x_1,y_1],[x_2,y_2]],[[x_2,y_2],[x_3,y_3]],[[x_3,y_3],[x_1,y_1]]]$

 $\ell_{i\nu}$ にはこの二つの形式が許されるが、両者は lbezier() によって相互変換できる.

R が描画実行形式の時, たとえば

- execdraw(R, [[0,[600]],0]): 600×600 の Risa/Asir のキャンバスを開いて表示する
- execdraw(R,[[0,[600,700]],0]|ext=[30,20],shift=[10,-40]): $600 \times 600 \ \mathcal{O}$ Risa/Asir のキャンバスを開いて表示する.

その際, 左側を 30 pixel, 左側を 20 pixel 内側になるように描画を縮小する(負の値で拡大も可). さらに右に 10 pixel, 上に 40 pxel ずらす.

- execdraw(R,[[0,1,5,600],0]|ext=[30,20],shift=[10,-40]): サーバ ID が 1, キャンバス Id が 5 のキャンバスに、横幅が 600 pixel として上と同様に表示する.
- execdraw(R,[1,1.5,[1,1]]): (1,1) を原点に並行移動して、さらに画像を 1.5 倍に拡大した $T_{\rm F}$ X のソースを出力する.
- [0] os_md.dviout0([0,5,6])\$

/* TikZ 形式に */

- [1] $F1=[\sin(2*x),\sin(3*x)]$ \$
- [2] W=[-1.2,1,2]\$

```
[3] R=os_md.xygraph(F1,-48,[-@pi,@pi],W,W|proc=1,ax=[0,0])$ /* リサージュ曲線 */
```

- [4] P=os_md.execdraw(R,0)\$ /* Risa/Asir のキャンパスで表示 */
- [5] S=os_md.execdraw(R,[1,1.5])\$ /* 画像を 1.5 倍した TeX のソースを出力 */
- [6] os_md.execdraw(R,[2,1.5])\$ /* 1.5 倍した画像を TeX を用いて表示 */
- [7] $F2=[\sin(3*x),\sin(4*x)]$ \$
- [8] R2=os_md.xygraph(F2,-48,[-@pi,@pi],W,W|proc=2,opt="red")\$
- [9] R2=append(R,R2)\$

/* グラフの重ね合わせ */

[10] os_md.execdraw(R2,[2,1.5])\$

上の [4], [5], [6] では、描画実行形式 R に対して、それぞれ、Risa/Asir のキャンバスで表示、 T_EX のソースに変換、 T_EX を使って PDF に変換して画面表示を行っている. [5], [6] では、グラフを 1.5 倍に拡大している.

R2 は 2 つのグラフを**重ねた描画実行形式**で, [10] ではそれを表示している.

```
[11] S=os_md.xy2graph(x^2-y^2,0,[-1,1],[-1,1],[-2,2],0,0|ax=[-1,1,-6],scale=1.5,dviout=3,proc=1)$
```

- [12] os_md.execdraw(S,[[0,[500,400]],500]|ext=[80,70],shift=[0,90])\$
- [13] os_md.execdraw(S,[[0,[500]],0])\$
- [14] os_md.execdraw(S,-1);

Windows : -2.04904 < x < 2.04904 , -3.42811 < y < 3.42811 by 1 cm

[[-2.04904,2.04904],[-3.42811,3.42811],1]

[15] os_md.execdraw(S,-3);

[[-2.04904, 2.04904], [-1.97922, 1.97922], 9, [[-2.04904, 2.04904],

[-1.97922,1.97922]]]

[16] os_md.execdraw(S,-4);

1366

[17] $os_md.execdraw(S,-5);$

[0,1,2,5]

3.2.12 Applications

いくつかの函数を応用した例を述べる.

3.2.12.1 表の作成

359. powprimroot(p, n | all=1,exp=1,log = f)

:: p以上の素数 n 個とその原始根のリストを作る

- all=1 各素数に対し最小原始根のみでなく、全ての原始根をリストする
- exp=1 最小原始根とそのべき(指数関数の値)のリストを作る
- log=1 最小原始根に対する対数関数の値のリストを作る
- log=2 上の対数関数のリストにおいて、べき 0 を使わない
- log=3 最小原始根に対する対数関数の素数のときの値のリストを作る

```
[0] os_md.powprimroot(3,4);
```

[[3,2],[5,2],[7,3],[11,2]]

[1] os_md.powprimroot(3,4|all=1);

[[3,2],[5,2,3],[7,3,5],[11,2,6,7,8]]

[2] os_md.powprimroot(3,4|exp=1);

[[\$p\$,1,2,3,4,5,6,7,8,9,10],[3,2,1],[5,2,4,3,1],[7,3,2,6,4,5,1],

```
[11,2,4,8,5,10,9,7,3,6,1]]
[3] os_md.powprimroot(3,4|log=1);
[[$p$,1,2,3,4,5,6,7,8,9,10],[3,0,1],[5,0,1,3,2],[7,0,2,1,4,5,3],
[11,0,1,8,2,4,9,7,3,6,5]]
[4] os_md.powprimroot(3,4|log=2);
[[$p$,1,2,3,4,5,6,7,8,9,10],[3,2,1],[5,4,1,3,2],[7,6,2,1,4,5,3],
[11,10,1,8,2,4,9,7,3,6,5]]
[5] os_md.powprimroot(3,4|log=3);
[[3,2,1],[5,2,1,3],[7,3,2,1,5],[11,2,1,8,4,7],[$p/a$,$r$,2,3,5,7]]
```

実際に ltotex(|opt="tab") によってリストを T_EX の表にして表示してみよう.

- [6] T="素数\$p\$の原始根とそのべきを\$p\$で割った余り"\$
- [7] L=os_md.powprimroot(3,8|exp=1)\$
- [8] Out=os_md.ltotex(L|opt="tab",hline=[0,1,z],vline=[0,1,z],title=T)\$
- [9] os_md.dviout(Out)\$

素数pの原始根とそのべきをpで割った余り

p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
3	2	1																				
5	2	4	3	1																		
7	3	2	6	4	5	1																
11	2	4	8	5	10	9	7	3	6	1												
13	2	4	8	3	6	12	11	9	5	10	7	1										
17	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1						
19	2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1				
23	5	2	10	4	20	8	17	16	11	9	22	18	21	13	19	3	15	6	7	12	14	1

上の hline=[0,1,z] で先頭と最後の行の他(z は最後を表す),1行目の終わりに横線を引いている. 縦線も同様.また title=T でタイトルをつけている.以下も同様の例である.

- [10] T="Table of k satisfying $r^k\leq a^p$
- [11] L=os_md.powprimroot(11,10|log=3);

[[11,2,1,8,4,7],[13,2,1,4,9,11,7],[17,3,14,1,5,11,7,4],[19,2,1,13,16,6,12,5,10],

- [12] $S=os_md.ltotex(L|opt="tab",hline=[0,z-1,z],vline=[0,1,2,z],title=T)$ \$
- [13] os_md.dviout(S)\$

Table of k satisfying $r^k \equiv a \pmod{p}$

							0							
11	2	1	8	4	7									
13	2	1	4	9	11	7								
17	3	14	1	5	11	7	4							
19	2	1	13	16	6	12	5	10						
23	5	2	16	1	19	9	14	7	15					
29	2	1	5	22	12	25	18	21	9	20				
31	3	24	1	20	28	23	11	7	4	27	9			
37	2	1	26	23	32	30	11	7	35	15	21	9		
41	6	26	15	22	39	3	31	33	9	36	7	28	32	
43	3	27	1	25	35	30	32	38	19	16	41	34	7	6
p/a	r	2	3	5	7	11	13	17	19	23	29	31	37	41

次に、多くのリストをたたんで表示することを考える.

70個の素数と原始根の組を表示する例を示そう.

- [13] L=os_md.powprimroot(3,70);
- [[3,2],[5,2],[7,3],[11,2],[13,2],[17,3],[19,2],[23,5],[29,2],[31,3],[37,2],[41,6],

. . . .

- [14] $S=os_md.ltotex(L|opt="tab", width=-10, vline=[[0,2]], hline=[0,1,z], top=[["p","ζ"]])$$
- [15] os_md.dviout(S)\$

横2列で縦に70行の縦長の表を [14] の width=-10 によって行を10分割して横に並べる. vline=[[0,2]] は、2で割った余りが0の列、すなわち先頭から2列毎の罫線を意味している、top=[["\$p\$","\$\\zeta\$"]] によって、1行目にpと ζ の繰り返しを付加している.

p	ζ	p	ζ	p	ζ	p	ζ	p	ζ	p	ζ	p	ζ	p	ζ	p	ζ	p	ζ
3	2	23	5	53	2	83	2	113	3	157	5	193	5	233	3	271	6	313	10
5	2	29	2	59	2	89	3	127	3	163	2	197	2	239	7	277	5	317	2
7	3	31	3	61	2	97	5	131	2	167	5	199	3	241	7	281	3	331	3
11	2	37	2	67	2	101	2	137	3	173	2	211	2	251	6	283	3	337	10
13	2	41	6	71	7	103	5	139	2	179	2	223	3	257	3	293	2	347	2
17	3	43	3	73	5	107	2	149	2	181	2	227	2	263	5	307	5	349	2
19	2	47	5	79	3	109	6	151	6	191	19	229	6	269	2	311	17	353	3

- [16] S=os_md.ltotex(L|opt="tab",width=16,hline=[[0,2]],vert=1);
- [17] os_md.dviout(S)\$

横 2 列で縦に 70 行の表を [16] の vert=1 で転置して横 70 列,縦 2 列に変換し,さらに width=16 によって横幅 16 列で切って折り返して並べる.

3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59
2	2	3	2	2	3	2	5	2	3	2	6	3	5	2	2
61	67	71	73	79	83	89	97	101	103	107	109	113	127	131	137
2	2	7	5	3	2	3	5	2	5	2	6	3	3	2	3
139	149	151	157	163	167	173	179	181	191	193	197	199	211	223	227
2	2	6	5	2	5	2	2	2	19	5	2	3	2	3	2
229	233	239	241	251	257	263	269	271	277	281	283	293	307	311	313
6	3	7	7	6	3	5	2	6	5	3	3	2	5	17	10
317	331	337	347	349	353										
2	3	10	2	2	3										

3.2.12.2 表や行列の作成

- 表とは、Excel の表のように、何項かのデータを縦横に並べたものと考えます. Risa/Asir では、ベクトルのリストか、リストのリストの型のものを意味することとします.
- 表を変形するときは、表を行列に変換すると便利で、様々な変形の機能が使えます.以下では、そのように変換したものも「表」と呼ぶことにします.
- リストのリスト、あるいはベクトルのリストを行列に直すには、1v2m() を用います。データのないところに対応する行列の成分はデフォルトでは0 になりますが、オプションmull=t でt に置き換えられます。
- 逆の変換は, m211() または m211() を用います.
- [0] LL=[[1,2,3],[4,5]];
- [[1,2,3],[4,5]]
- [1] os_md.lv2m(LL);
- [123]
- [450]
- [2] os_md.m2ll(@0);

```
[[1,2,3],[4,5,0]]
[3] LV=[newvect(3,[1,2,3]),newvect(2,[4,5])];
[[ 1 2 3 ], [ 4 5 ]]
[4] os_md.lv2m(LV|null="");
[123]
[45]
[5] os_md.m2ll(@@);
[[1,2,3],[4,5,]]
行列(表)から行や列を抜き出したり入れ替えて、新しい行列(表)を作るには mperm() を用います
(第2引数で行を, 第3引数で列を指定します).
[6] A=os_md.mgen(3,4,a,0);
[ a00 a01 a02 a03 ]
[ a10 a11 a12 a13 ]
[ a20 a21 a22 a23 ]
[7] os_md.mperm(A,[2,0],[1,2,3]);
[ a21 a22 a23 ]
[ a01 a02 a03 ]
上でAから2行目と0行目をこの順に抜き出し、さらにそれの1列目、2列目、3列目を抜き出して作
られる表を得ています. なお, 行と列の番号は 0 から始まることに注意.
順に並んだ数字は、先頭の数字の後に並ぶ個数をリストとして指定することも可能です.
[8] os_md.mperm(A,[2,0],[1,[3]]);
[ a21 a22 a23 ]
[ a01 a02 a03 ]
また順に並んだ全ての行や列を表すには、数字0を用いることができます。よって以下のようにして最
後の列を削除することができます.
[9] os_md.mperm(A,0,[0,[3]]);
[ a00 a01 a02 ]
[ a10 a11 a12 ]
[ a20 a21 a22 ]
{f 2} つの行の入れ替えや {f 2} つの列の入れ替えは,[[m_1,m_2]] で指定します.たとえば,{f 0} 行目と {f 1} 行目
の入れ替えは
[10] os_md.mperm(A,[[0,1]],0);
[ a10 a11 a12 a13 ]
[ a00 a01 a02 a03 ]
[ a20 a21 a22 a23 ]
なお行列は成分を直接指定して変更できます.
[11] AA=os_md.dupmat(A);
[ a00 a01 a02 a03 ]
[ a10 a11 a12 a13 ]
[ a20 a21 a22 a23 ]
[12] AA[0][0]=b00$
```

```
[13] AA;
[ b00 a01 a02 a03 ]
[ a10 a11 a12 a13 ]
[ a20 a21 a22 a23 ]
行と列を入れ替えて転置した表にするには mtranspose() を用います.
[14] AT=os_md.mtranspose(A);
[ a00 a10 a20 ]
[ a01 a11 a21 ]
[ a02 a12 a22 ]
[ a03 a13 a23 ]
2 つ (またはそれ以上) の表を結合するには、newbmat() を用います.
[15] B=os_md.mgen(3,3,b,0);
[ b00 b01 b02 ]
 [ b10 b11 b12 ]
[ b20 b21 b22 ]
[16] C=os_md.newbmat(1,2,[[A,B]]);
[ a00 a01 a02 a03 b00 b01 b02 ]
[ a10 a11 a12 a13 b10 b11 b12 ]
[ a20 a21 a22 a23 b20 b21 b22 ]
[17] D=os_md.newbmat(2,1,[[AT],[B]]);
[ a00 a10 a20 ]
[ a01 a11 a21 ]
[ a02 a12 a22 ]
[ a03 a13 a23 ]
[ b00 b01 b02 ]
[ b10 b11 b12 ]
[ b20 b21 b22 ]
横長の表を分割して縦に繋げるには、madjust() を用います. 列の個数を2番目の引数で指定します.
[18] os_md.newbmat(C,3|null="");
[ a00 a01 a02 ]
[ a10 a11 a12 ]
[ a20 a21 a22 ]
[ a03 b00 b01 ]
[ a13 b10 b11 ]
[ a23 b20 b21 ]
[ b02
       ]
[ b12
       ]
 [ b22
        ]
縦長の表を折り返して横に並べるには、madjust() を用います。いくつ折り返すかの数の -1 倍を 2
番目の引数で指定します.
```

[19] os_md.newbmat(D,-4|null="");

[a00 a10 a20 a02 a12 a22 b00 b01 b02 b20 b21 b22]
[a01 a11 a21 a03 a13 a23 b10 b11 b12]

3.2.12.3 函数値の数表

れる.

- 360. $ntable(f, [a,b], n|dif=1, str=[k_1, k_2, ...], mult=m, title=t, top=[t_1, ...])$
 - :: 区間 [a,b] を n 等分,または \mathbf{n} = $[n_1,n_2]$ 等分した点での \mathbf{x} 変数の函数 f の函数値の数表を作る n が数字のとき
 - f は sin(x*0pi/180) のような通常の関数の他, リスト形式函数でもよい.
 - ◆ dif=1 を指定すると、次の函数値との差の絶対値も表に加える。
 - オプション str を指定すると、文字列の表となる. k_1 は変数の小数点以下の桁数. k_2 は値の小数点以下の桁数. k_3 は dif=1 で加わった値の差の桁数に対応する. k_3 の指定がないときは、 k_2 と等しいとみなさ
 - mult=m を指定すると、分割して横に m 列並べた T_{PX} 形式の表に変換される. このとき
 - title=t を指定すると、表にタイトルt がつく.
 - top=[t_1 ,...] を指定すると、それが表の1行目に入る.

n が数字のリスト $[n_1,n_2]$ のとき、区間 [a,b] を n_1 等分した小区間 $[a_i,b_i]$ をさらに n_2 等分した点での函数値の表を作成する.このとき

- オプション str を指定すると、表の T_FX ソースが出力される.
 - k_1 は変数の小数点以下の桁数. k_2 は値の小数点以下の桁数.
 - k_3 は ${\tt dif=1}$ で加わった値の差の桁数に対応する. k_3 の指定がないときは, k_2 と等しいとみなされる.

さらにこのとき,以下のオプションが指定可能

- dif=1 を指定すると, 次の函数値との差の各小区間での最小値と最大値を表に加える.
- hline=h: 横線の指定 (ltotex(ℓ |opt="tab",hline=h) を参照). デフォルトは h = [0,1,z].
- vline=v: 縦の指定 (ltotex(ℓ |opt="tab",vline=v) を参照). デフォルトは v =[0,1,z] (dif=1 を指定した場合は [0,1,z-2].
- top=[t_1 ,..., t_m] を指定すると、それが表の1行目に入る。m は、 n_2 , n_2+1 , n_2+2 , n_2+3 のいずれか。
- title=s: タイトルを文字列で指定.
- **2 番目の引数が** [a,b] でなくて, $[[a_1,b_1],[a_2,b_2]]$ のときは,2 変数函数 f(x,y) の数値表になる.各行はxの値が $[a_1,b_1]$ を n_1 等分した値を取り,そのときのyの値は $[a_2,b_2]$ の n_2 等分した値を取ったとき f(x,y) の票になる

例えば4桁常用対数表は、以下の様に作成できる.

- [0] os_md.ntable(log(x)/log(10),[1,5.5],[45,10]|str=[1,4],top=[0,1,2,3,4,5,6,7,8,9],hline=[0,[1,5]],vline=[0,6,z]);
 - /* [1,5.5] を 45 等分し、各行はそれを 10 等分した常用対数 (0.01 刻み).

左端は小数点以下1桁、函数値は小数点以下4桁で丸める

横線は最初と1行目の後から5行目毎、縦線は最初と6列目の後と最後*/

4 桁常用対数表

	0	1	2	3	4	5	6	7	8	9
1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106
1.3	.1139	.1173	.1206	.1239	.1271	.1303	.1335	.1367	.1399	.1430
1.4	.1461	.1492	.1523	.1553	.1584	.1614	.1644	.1673	.1703	.1732
1.5	.1761	.1790	.1818	.1847	.1875	.1903	.1931	.1959	.1987	.2014

以下, 5.4 の項まで続く.

4 桁目は線形近似で得るので、例えば30から43までの計算表は

[1] os_md.ntable(x*y/10,[[1,11],[30,44]],[10,14]|hline=[0,z-1,z],str=[0,0],TeX=1);
/* x=1,2,...,10 (10 個) y=30,31,...,43 (14 個) */

とすれば得られる.

1	3	3	3	3	3	4	4	4	4	4	4	4	4	4
2	6	6	6	7	7	7	7	7	8	8	8	8	8	9
3	9	9	10	10	10	11	11	11	11	12	12	12	13	13
4	12	12	13	13	14	14	14	15	15	16	16	16	17	17
5	15	16	16	17	17	18	18	19	19	20	20	21	21	22
6	18	19	19	20	20	21	22	22	23	23	24	25	25	26
7	21	22	22	23	24	25	25	26	27	27	28	29	29	30
8	24	25	26	26	27	28	29	30	30	31	32	33	34	34
9	27	28	29	30	31	32	32	33	34	35	36	37	38	39
10	30	31	32	33	34	35	36	37	38	39	40	41	42	43

各行の函数値の差分の最小と最大の数の組を加えた函数値表を作成するには, 以下のようにすれば よい.

[2] os_md.ntable(log(x)/log(10),[1,5.5],[45,10]|str=[1,4],top=[0,1,2,3,4,5,6,7,8,9],hline=[0,[1,5]],vline=[0,1,6,z-2],dif=1);

	0	1	2	3	4	5	6	7	8	9		
1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374	40	43
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755	36	39
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106	33	36

その他, たとえば 0° から 45° までの 10' 刻みの三角関数表(正弦) は

- [3] T=["\$0'\$","\$10'\$","\$20'\$","\$30'\$","\$40'\$","\$50'\$"]\$
- [4] os_md.ntable($\sin(@pi*x/180)$,[0,45],[45,6]|str=[0,4],top=T,hline=[0,[1,5]], vline=[0,1,z-2],dif=1);

とすると得られる (sin を tan で置き換えると,正接の表になる).

	0'	10'	20'	30'	40'	50'		
0	.0000	.0029	.0058	.0087	.0116	.0145	29	30
1	.0175	.0204	.0233	.0262	.0291	.0320	29	29
2	.0349	.0378	.0407	.0436	.0465	.0494	29	29
3	.0523	.0552	.0581	.0610	.0640	.0669	29	30
4	.0698	.0727	.0756	.0785	.0814	.0843	29	29
5	.0872	.0901	.0929	.0958	.0987	.1016	28	29

90° までの表を 1 ページ内に収めるには

- [5] T=append(T,["\$60'\$","\$70'\$","\$80'\$","\$90'\$","\$100'\$","\$110'\$"])\$
- [6] os_md.ntable($\sin(@pi*x/180)$,[0,90],[45,12]|str=[0,4],top=T,hline=[0,[1,5]], vline=[0,1,7,z-2],dif=1);

とすればよい.

	0'	10'	20'	30'	40'	50'	60'	70′	80'	90'	100′	110'		
0	.0000	.0029	.0058	.0087	.0116	.0145	.0175	.0204	.0233	.0262	.0291	.0320	29	30
2	.0349	.0378	.0407	.0436	.0465	.0494	.0523	.0552	.0581	.0610	.0640	.0669	29	30
4	.0698	.0727	.0756	.0785	.0814	.0843	.0872	.0901	.0929	.0958	.0987	.1016	28	29
6	.1045	.1074	.1103	.1132	.1161	.1190	.1219	.1248	.1276	.1305	.1334	.1363	28	29
8	.1392	.1421	.1449	.1478	.1507	.1536	.1564	.1593	.1622	.1650	.1679	.1708	28	29
10	.1736	.1765	.1794	.1822	.1851	.1880	.1908	.1937	.1965	.1994	.2022	.2051	28	29

3.2.12.4 点数分布表

361. distpoint(l | div=5,opt= s, title=t, size= ℓ)

:: 100 点満点の点数表のデータ l を元に点数分布などを表にする

- 10 点刻みの人数の分布を T_FX の表にする
- *s*="data" 10 点刻みの人数の分布をリストにする
- s="graph" 10 点刻みの人数の分布を棒グラフにする
 size=ℓ でグラフのサイズを指定できる (cf. ltotex(|opt="graph"))
- div=5 上で 10 点刻みを 5 点刻みとする
- s="average" 平均点,標準偏差,受験人数,最低点,最高点を $T_{
 m P}$ X の表にする
- l は、数のリストまたは数のリストのリストとするが、そのなかに非負整数でないものがあれば、それは欠席とみなされ、s="average"でその数が示される
- $\hbox{\tt [O]} \ \ \mathtt{M=[[74,71,47,80,66],[54,71,50,76,45],[75,70,78,x,69],[35,44,74,35,37],}$

[59,x,85,75,52],[92,55,70,61,45],[70,79,77,76,55]]\$

[1] os_md.distpoint(M|opt="data");

[0,0,0,3,4,6,3,14,2,1]

- [2] os_md.distpoint(M|opt="data",div=5);
- [3] [0,0,0,0,0,0,0,3,1,3,3,3,1,2,7,7,1,1,1,0]
- [4] S=os_md.distpoint(M|opt="average",title="線形代数(中間試験)");

\begin{tabular}{|ccccc|}

\multicolumn{6}{c}{k形代数(中間試験)}\\ \hline

平均点& 標準偏差& 最低点& 最高点& 受験人数& 欠席者\\

\$63.7\$& \$15.1\$& \$35\$& \$92\$& \$33\$& \$2\$\\ \hline

\end{tabular}

- [5] os_md.dviout(S)\$
- [1] で M をリストのリストにしているのは、5 人ずつ目印のため、また x は欠席者を表している(アルファベットの任意の文字でよい)。

なお、Excel などに点数のデータが入っているときにそれを読み込むには、それを例えば f_{name} というファイルに CSV 形式で出力する。その n 項目が点数のデータとすると

 $M=os_md.readcsv(fname|col=n,eval=n)$

によって点数のデータが M にリストとして読み込まれる.

なお, 上の [5] の結果は:

線形代数 (中間試験)

平均点	標準偏差	最低点	最高点	受験人数	欠席者
63.7	15.1	35	92	33	2

[6] S=os_md.distpoint(M|title="点数分布");

\begin{tabular}{|rrrrrrrrr|}

\multicolumn{10}{c}{点数分布}\\ \hline

00--09& 10--19& 20--29& 30--39& 40--49& 50--59& 60--69& 70--79& 80--89& 90--100\\
\$0\$& \$0\$& \$0\$& \$3\$& \$4\$& \$6\$& \$3\$& \$14\$& \$2\$& \$1\$\\ hline \end{tabular}

[7] os_md.dviout(S)\$

点数分布

00-09	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-100
0	0	0	3	4	6	3	14	2	1

- [8] S=os_md.distpoint(M|opt="graph")\$
- [9] os_md.dviout(S)\$

3.2.12.5 Taylor 展開

362. seriesTaylor(f, k, v | evalopt=opt, small=1, frac=0, dviout=n)

- :: 函数 f の変数または変数のリスト v に対する k 次の項までの Taylor 展開を求める
 - Taylor 展開を T_FX の形に変換して返す. 式が長いときは、改行が入る.
 - v=x:変数 x について、原点での Taylor 展開を与える.
 - v=[x,a]: 変数 x について, x=a での Taylor 展開を与える. ただし a も変数のときは, v=[[x,a]] としなくてはならない (次項と区別するため).
 - v=[x,y,...]:変数 (x,y,...) についての原点での Taylor 展開を与える.
 - v = [[x,a], [y,b],...]:変数 (x,y,...) について、点 (a,b,...) を中心とする Taylor 展開を与える. ここで、たとえば a = 0 のときは、上の [x,a] の部分は、単に x と表記してよい.
 - evalopt=[$[s_1,t_1]$, $[s_2,t_2]$...]:は evalred()を使うときのオプション(cf. seriesMc()).
 - small=1:分数が現れるとき \frac でなくて \tfrac を使う.
 - frac=0:有理数が現れるとき、それを(近似)実数に変換する. このときは、ctrl(double_output,1)を指定するのがよい.
 - dviout=1: Taylor 展開の式を T_{FX} に変換したものを表示する (元の f も表示).
 - dviout=2: Taylor 展開の部分のみを T_{FX} に変換したものを表示する (元の f は表示せず).
 - dviout=0:デフォルトで、dviout=2の T_FX ソースを返す.

● dviout=-1: dviout=2 のときのソースを返す.

まず $\sin x$ の Taylor 展開を求めてみる.

- [0] os_md.seriesTaylor(sin(x),5,x);
 x-\frac{1}6x^3+\frac{1}{120}x^5
- [1] os_md.seriesTaylor(sin(x),5,x|small=1,dviout=-1);

\begin{align}\begin{split}

 $\sin(x)\&=x-\tfrac{1}6x^3+\tfrac{1}{120}x^5+\cdots $$\left(split\right)\end{align}$

[2] os_md.seriesTaylor(sin(x),7,x|small=1)\$

$$\sin(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{5040}x^7 + \cdots$$

ここでは $\sin x$ の 7 次の項までの Taylor 展開を求め、係数は小さなサイズの分数で表示している. また、展開の係数を近似小数で表した表示を得るには、以下のようにすればよい.

- [3] os_md.seriesTaylor(sin(x),5,x|frac=0,dviout=-1);
 \begin{align}\begin{split}
 \sin(x)&=x- 0.166667x^3+ 0.00833333x^5+\cdots
 \end{split}\end{align}
- [4] os_md.dviout(@@)\$

$$\sin(x) = x - 0.166667x^3 + 0.00833333x^5 + \cdots$$

[5] os_md.seriesTaylor($\sin(x)$,5,[x,@pi/2]|dviout=-1,small=1,evalopt =[[$\sin(@pi/2)$,1],[$\cos(@pi/2)$,0]],dviout=-1);

\begin{align}\begin{split}

 $\sin(x)\&=1-\tfrac{1}2(x-\tfrac{1}2 \pi)^2+\tfrac{1}{24}(x-\tfrac{1}2 \pi)^4 +\cdots$

\end{split}\end{align}

[6] os_md.dviout(@@)\$

$$\sin(x) = 1 - \frac{1}{2}(x - \frac{1}{2}\pi)^2 + \frac{1}{24}(x - \frac{1}{2}\pi)^4 + \cdots$$

- [5] において $\sin(x)$ の $x=\frac{\pi}{2}$ での Taylor 展開を 5 次の項まで求めているが, $\sin(\frac{\pi}{2})=1$, $\cos(\frac{\pi}{2})=0$ という情報を与えている.これを与えないと,係数は近似小数になる $(\sin(0)=0,\cos(0)=1$ などの情報は不要 (cf. evalred())).
 - [7] os_md.seriesTaylor($(x+1)^(1/2)$,10,x|frac=0,dviout=1);

 $\sqrt{x+1} = 1 + 0.5x - 0.125x^2 + 0.0625x^3 - 0.0390625x^4 + 0.0273438x^5 - 0.0205078x^6 + 0.0161133x^7 - 0.013092x^8 + 0.01091x^9 - 0.00927353x^{10} + \cdots$

 $\sqrt{x+1}$ の x=0 での Taylor 展開を求めたが、上のように、長い式は改行して表示される (cf. TeXLim). 最後に 2 変数函数の原点での Taylor 展開の例を挙げる.

[8] os_md.seriesTaylor(exp(sin((x-y)/(x^2+2*y^2+2))),3,[x,y]|small=1,dviout=1)\$

$$\exp(\sin(\frac{x-y}{x^2+2y^2+2})) = 1 + \frac{1}{2}x - \frac{1}{2}y + \frac{1}{8}x^2 - \frac{1}{4}xy + \frac{1}{8}y^2 - \frac{1}{4}x^3 + \frac{1}{4}x^2y - \frac{1}{2}xy^2 + \frac{1}{2}y^3 + \cdots$$

3.2.13 Environments

363. Canvas

:: Risa/Asir の描画キャンバスのデフォルトサイズ

execdraw() などで Risa/Asir の描画キャンバスを開くときのデフォルトサイズ

- 横と縦の pixel サイズのリストで、デフォルトは [400,400] となっている.
- dviout0([800,400]|opt="Canvas") のようにして変更可能
- 初期化ファイル.muldif でデフォルト値の設定変更可能

$364.~\mathtt{AMSTeX}$

:: この値が 1 は AMSIATEX を意味する

os_muldif.rr では、AMSTeX=1 がデフォルトで、これが想定されている。それ以外では、函数によっては作成される T_{FX} のソースファイルが正しくないことがある.

```
[0] M=newmat(2,2,[[a,b],[c,d]]);
[ab]
[ c d ]
[1] AMSTeX=0$
[2] print_tex_form(M);
\pmatrix{
{a}& {b} \cr
 {c}& {d} \cr
}
[3] AMSTeX=1$
[4] print_tex_form(M);
\begin{pmatrix}
 {a}& {b} \\
 {c}& {d}
\end{pmatrix}
[5] os_md.my_tex_form(M);
\begin{pmatrix}
 a&b \\
 c&d
\end{pmatrix}
[6] print_tex_form(x_1+x_2^2/y);
       {x}_{1} {y}+ {x}_{2}^{2} {y}
\frac{
[7] os_md.my_tex_form(x_1+x_2^2/y);
\frac{x_1y+x_2^2}{y}
```

365. TeXEq

:: デフォルトの LATeX の数式環境の指定 (dviout0(3) で値が分かる)

TeXEq の値は, 1, 2, 3, 4, 5, 6, 7 のいずれかで, それは dviout() のオプションパラメータの eq= の

値に対応する.

AMSTeX=1 のときのデフォルトは 5 で、AMSTeX=0 のときは TeXEq=1 とみなされる. dviout0(n|opt="TexEq") で変更できる.

366. TeXLim

- :: LATeX で長い数式を行分割する際の1行の許容最大横幅文字数のデフォルト値
 - .muldif で設定でき, dviout0("?") で値が分かる.
 - texlim(1,n) または dviout0(n|opt="TexLim") で変更できる (デフォルトは 80).

367. TikZ

:: グラフ表示に Xy-pic を使うか TikZ を使うかを指定

TikZ=1 のときは TikZ を、TikZ=0 のときは Xy-pic を使う.

切り替えは dviout0(6), dviout0(7) または dviout0(1|opt="TikZ"), dviout0(0|opt="TikZ").

$368. \ {\tt XYPrec}$

:: グラフ表示の時の座標の小数点以下の丸め桁数

切り替えは dvioutO(n|opt="XYPrec").

369. XYcm

:: Xy-pic での単位を cm で表して, TikZ に合わせる

切り替えは dviout0(0|opt="XYcm"), dviout0(1|opt="XYcm").

$370.\ \mathtt{XYLim}$

:: Xy-pic や TikZ での曲線描画で順に指定する点での改行の間隔

切り替えは dviout0(0|opt="XYLim"), dviout0(1|opt="XYLim").

371. DVIOUTH

:: myhelp() で指定した函数の解説を示すためのプログラムの指定

- .muldif で設定でき、dviout0("?") で設定が分かる.
- デフォルトは Windows 環境の場合の dviout にパスが通っているときの設定で

start dviout -2 -hyper:0x90 "%ASIRROOT%\help\os_muldif.dvi" #%LABEL%

- これは2番目のdvioutに, get_rootdir()\help\os_muldif.dviのラベル %LABEL%(ここは myhelp()がその引数を使って置き換える)がついた箇所を表示させることを意味します.
- 上において、dviout にパスが通っていないときは、それをフルパス名にする.
- -hyper:0x90 はホットスポットを青の文字で示すことを意味します (ox_muldif.pdf と同じ表示となる設定). 指定しないと, さらにアンダーラインが引かれます.

dviout の Option \rightarrow Setup parameters... \rightarrow HyperTeX \rightarrow Color の項を変更して OK ボタン を押すとこの設定が変えられる. Option \rightarrow Non-default Parameters で表示される hyper=の値を上の -hyper: に設定すれば、その設定でホットスポットが表示されるようになる.

- 函数名 fn の説明は、os_muldif.dvi および os_muldif.pdf の中のラベル r:fn がつけられた場所にある。ただし fn にアンダースコアー "_" が含まれるときは、_ を削ってラベルになっている。
- %ASIRROOT% が get_rootdir() に, %LABEL% が函数名に対応する(上で述べた)ラベルに置き換えられて shell() の引数として myhelp() で使われ, 函数に対応するヘルプが表示される.

372. DIROUT

:: 数式を IAT_FX に変換したソースが格納されるディレクトリ(書き込み可能なことが要請される)

373. DVIOUTA

:: IPTEX の AMSTEX 環境で risaout.tex を変換して表示するプログラムのパス名

374. DVIOUTB

:: LPT_EX の *AMS*T_EX 環境で risaout10.tex (または risaout10.tex) を変換して表示するプログラムのパス名で, DVIOUTA と交換できる (cf. dviout0(), risatex.bat).

375. DVIOUTL

:: LATFX 環境で riasout0.tex を変換して表示するプログラムのパス名

.muldif で設定でき、設定された値は dviout0("?") で分かる.

Windows 環境でのデフォルトは

```
[0] os_md.dviout0(3)$
    DIROUT ="%HOME%\tex"
    DVIOUTH="start dviout -2 -hyper:0x90 "%ASIRROOT%\help\os_muldif.dvi" #%LABEL%"
    DVIOUTA="%ASIRROOT%\bin\risatex.bat"
    DVIOUTB="%ASIRROOT%\bin\risatex1%TikZ%.bat"
    DVIOUTL="%ASIRROOT%\bin\risatex0.bat"
    Canvas = [400, 400]
    TeXLim = 80
    TeXEq = 5
    AMSTeX = 1
    TikZ = 0
    XYPrec = 3
    XYcm = 0
    XYLim = 4
    それ以外でのデフォルトは
     [0] os_md.dviout0(3)$
    DIROUT ="%HOME%/asir/tex"
    DVIOUTH="%ASIRROOT%/help/os_muldif.pdf"
    DVIOUTA="%ASIRROOT%/bin/risaout.sh"
    DVIOUTB="%ASIRROOT%/bin/risaout1%TikZ%.sh"
    DVIOUTL="%ASIRROOT%/bin/risaout0.sh"
    DVIOUTL="%ASIRROOT%/bin\risatex0.bat"
    Canvas = [400, 400]
    TeXLim = 80
    TeXEq = 5
    AMSTeX = 1
    TikZ = 0
    XYPrec = 3
    XYcm = 0
    XYLim = 4
    となっている.
    なお, %TikZ% は TikZ の値, %ASIRROOT% は get_rootdir() で得られる Risa/Asir のインストール
    ディレクトリ, %HOME% は環境変数 HOME の値を意味するが, Windows のときの後者のデフォルトは
    %ASIRROOT% に等しい.
    %ASIRROOT% や%HOME% に空白が含まれていると正しく動作しないので、次の .muldif によって " で
    二重に囲んで
    DIROUT ="\"%HOME%\asir\tex\""
    DVIOUTA="\"%ASIRROOT%\\bin\risaout.bat\""
    DVIOUTB="\"%ASIRROOT%\bin\risaout1%TikZ%.bat\""
    DVIOUTL="\"%ASIRROOT%\bin\risaout0.bat\""
    のように設定し直して下さい.
376. .muldif
```

:: os_muldif.rr をロードしたときに読み込まれるファイル

- ファイル.muldif を %HOME% に入れておくと,自動的に読み込まれる. そのほか,順に %HOME%/asir, %ASIRROOT%, %ASIRROOT%/bin, %ASIRROOT%/lib-asir-contrib が探される. なお %ASIRROOT% は get_rootdir() と同じ. また %HOME% は環境変数 HOME の値であるが,Windows では通常 %ASIRROOT% と等しい.
- TeXLim, TeXEq, DIROUT, DVIOUTA, DVIOUTB, DVIOUTL, DVIOUTH, TikZ, XYPrec, XYcm, XYLim, Canvas のデフォルト設定の変更が可能.
- 設定状態は dviout0(3) で表示される.

たとえば, .muldif の例は

DVIOUTH="start c:\\dviout\\dviout -2 \"%ASIRROOT%\\help\\os_muldif.dvi\" #%LABEL%" end\$

なお、Cの文法に準じて、文字列中の文字 \ や " は \\ や \" と書く(そのように書かなくても多くの場合は大丈夫であろう). さらに文字列の始まりと終わりは " で示す(それらは、行で最初にある " と最後にある " とみなしている).

377. risatex.bat

:: os_muldif.rr が出力する LATeX のソースファイルを変換して表示するプログラム

- os_muldif.rr が T_EX を使って結果や数式を綺麗に表示する際には、DIROUT 内の L^AT_EX ファイル out.tex (または out0.tex) に L^AT_EX のソースを書き出しますが、それらを risaout.tex (または risaout1.tex, risaout0.tex) から読み込んで dvi ファイルや pdf に変換して表示する デフォルトのプログラムです (後者は risaout0.bat).
- DVIOUTA (または DVIOUTB, DVIOUTL) で指定されます.

TFX を使って数式や結果を表示するための設定は以下の通りです.

• Windows 環境におけるデフォルト設定で get_rootdir()\bin に入れる risatex.bat は、例えば以下のような内容です (cf. DVIOUTA):

cd "c:\Program Files\asir\tex"

platex -src=cr,display,hbox,math,par risaout

start dviout -1 "c:\Program Files\asir\tex\risaout" 1000

- c:\Program Files\asir の部分は,デフォルトでは get_rootdir() となります.cd の後には,DIROUT で示されるディレクトリを示しますが,数式を LAT_{EX} に直した out.tex を書き込むディレクトリであって書き込み可能である必要があるので,デフォルトを変更するのがよいでしょう.
- また dviout にパスが通っていないときは、上の3行目の dviout をフルパス名に変更します.
- 最後の行のパラメータ -1 は、1 番目の dviout に対する指示を意味し、それが起動していないと起動することも意味します.
- 最後の 1000 は表示するページを表し、十分大きな数にしておけば最終ページを表示することを意味します。表示する数式が最後に追加されていくので、このようにしています。

DIROUT に置かれる risaout.tex は以下のような内容のファイルです:

\documentclass[a4paper]{amsart}

\usepackage{amsmath, amssymb, amsfonts}

\pagestyle{empty}

\begin{document}

\thispagestyle{empty}

\input{out}

\end{document}

以下のように変更すると、より長い式が表示できます.またグラフ表示などで Xy-pic または TikZ を使うことがあるので、それを読み込んでいます.このXy-pic はインタネットなどから情報を得て、インストールしてください.

```
\documentclass[a4paper]{amsart}
 \usepackage{amsmath,amssymb,amsfonts}
 \AtBeginDvi{\special{dviout -y=A3L}}
 \usepackage[all]{xypic}
  \pagestyle{empty}
 \textwidth=7.6in
 \textheight=11in
 \voffset=-1.4in
 \hoffset=-1.4in
 \begin{document}
 \thispagestyle{empty}
 \input{out}
 \end{document}
 dvi ファイルは使わず、dvipdfmx や pdfTeX によって pdf ファイルを生成してそれのみを使
う場合は、上の \usepackage[all]{xypic} を\usepackage[pdf,all]{xypic} に変えた方が、
良質の pdf ファイルが得られます.
それを (dviout0(4) での切り替えに対応の) DVIOUTB に設定するには, たとえば以下の
risaoutpdf.texをc:\Program Files\asir\texにおき
 \documentclass[a4paper]{amsart}
 \usepackage{amsmath,amssymb,amsfonts}
 \usepackage{pdf,all]{xypic}
 \pagestyle{empty}
 \begin{document}
 \thispagestyle{empty}
 \input{out}
 \end{document}
さらに risatex1.bat を
 cd "c:\Program Files\asir\tex"
 platex risaoutpdf
 dvipdfmx risaoutpdf
 risaoutpdf.pdf
とし、risatex1.bat はフルパスで DVIOUTB に設定します.
 pdf ファイルを更新表示可能な SumatraPDF.exe で表示するには、上の最終行の
risaoutpdf.pdf をたとえば
   "c:\Program Files\SumatraPDF\SumatraPDF.exe" -reuse-instance risaoutpdf.pdf
などのように書き換えます.
Xy-pic でなくてより高機能の TikZ (ただし速度はより遅い) を使う場合は, risaoutpdf.tex を
たとえば以下のように変更します.
 \documentclass[dvipdfmx,a4paper]{amsart}
 \usepackage{amsmath,amssymb,amsfonts}
 \usepackage{tkiz}
 \pagestyle{empty}
 \begin{document}
 \thispagestyle{empty}
 \input{out}
```

```
\end{document}
  また上に合わせたグラフィック出力にするには, 初期設定ファイル .muldif に
  という一行を加えます. これは dviout0(6), dviout0(7) で起動後に変更もできます.
   Xy-pic と TikZ の両方に自動対応するには、たとえば以下のようにします.
 DVIOUTB などの中の %TiKZ% には TikZ の値に置き換えられるのでデフォルトの DVIOUTB
 の場合には、XY-pic 対応と TikZ 対応の risaoutpdf.tex をそれぞれ risaoutpdf0.tex,
 risaoutpdf1.tex という異なったファイル名にし, バッチファイル risatex10.bat,
 risatex11.bat をそれぞれ
   cd "c:\Program Files\asir\tex"
   platex risaoutpdf0
   dvipdfmx risaoutpdf0
   "c:\Program Files\SumatraPDF\SumatraPDF.exe" -reuse-instance risaoutpdf0.pdf
 および
   cd "c:\Program Files\asir\tex"
   platex risaoutpdf1
   dvipdfmx risaoutpdf1
   "c:\Program Files\SumatraPDF\SumatraPDF.exe" -reuse-instance risaoutpdf1.pdf
  とします.
 Xy-pic と TikZ を同時に対応することも出来て、例えば以下のようにします.
   \documentclass[dvipdfmx,a4paper]{jsarticle}
   \usepackage{amsmath,amssymb,amsthm,amscd,mathrsfs}
   \usepackage{tikz}
   %\usetikzlibrary{patterns, shapes} % 必要に応じて
   \usepackage[pdf,all]{xy}
   \begin{document}
   \thispagestyle{empty}
   \input{out}
   \end{document}
• なお, AMSTeX=0 のときは, risatex0.bat と risaout0.tex が使われ, それぞれ以下のようです.
   cd "c:\Program Files\asir\tex"
   platex -src=cr,display,hbox,math,par risaout0
   start dviout -1 "c:\Program Files\asir\tex\risaout0" 1000
   \documentclass{article}
   \pagestyle{empty}
   \begin{document}
   \thispagestyle{empty}
   \input{out0}
   \end{document}
• Unix や Mac の場合は、risatex.bat でなくて risatex.sh がデフォルトのファイル名で、例え
 ば以下のようであって、それに実行権限を付加しておきます (chmod 755).
  #!/bin/sh
  cd ${HOME}/asir/tex
  platex -src=cr,display,hbox,math,par risaout
```

dvipdfmx risaout

```
evince risaout.pdf &
 あるいは, 環境によっては
  #!/bin/sh
  cd $HOME/asir/tex
  /usr/local/texlive/2014/bin/x86_64-darwin/platex risaout
  /usr/local/texlive/2014/bin/x86_64-darwin/dvipdfmx risaout
  open -a Preview risaout.pdf
 のようにフルパスで実行ファイルを指定します.このとき risaout.tex は,たとえば以下のよう
 になります.
  \documentclass[a4paper]{amsart}
  \usepackage{amsmath,amssymb,amsfonts}
  \usepackage[pdf,all]{xy}
  \pagestyle{empty}
  \begin{document}
  \thispagestyle{empty}
  \input{out}
  \end{document}
 なお, risatex0.bat や risatex1.bat も, デフォルトのファイル名は risatex0.sh や
 risatex1.sh となります.
• risaout.tex および risaout0.tex が DIROUT に存在しないとき (かつ DIROUT が書き込み可能
 なとき)は、必要に応じてデフォルトのものが自動的に作成されます.
• get_rootdir()\lib-asir-contrib にある noro_print.rr を以下のように変更し, AMSIATEX
 にも対応するようにします.
 なお、この変更は配布版に取り入れられています.
 *** noro_print_org.rr Wed May 24 17:54:34 2006
 --- noro_print.rr Mon Dec 14 00:26:32 2009
 ******
 *** 4,7 ****
 --- 4,8 ----
   extern Taka_png_form_res$
 + extern AMSTeX$
   Taka_png_form_res=150$
 *** 78,84 ****
   def taka_tex_form_matrix(A,Tb) {
     N = size(A)[0];
     M = size(A)[1];
 ! write_to_tb("\\pmatrix{\n",Tb);
     for (I=0; I<N; I++) {
      for (J=0; J<M; J++) {
 --- 79.86 ----
   def taka_tex_form_matrix(A,Tb) {
```

```
+ extern AMSTeX;
   N = size(A)[0];
   M = size(A)[1];
! write_to_tb(AMSTeX?"\\begin{pmatrix}\n":"\\pmatrix{\n",Tb);
   for (I=0; I<N; I++) {
     for (J=0; J<M; J++) {
******
*** 86,102 ****
       if (J != M-1) write_to_tb("& ",Tb);
   write_to_tb(" \\cr\n",Tb);
   }
   write_to_tb("}\n",Tb);
 }
 def taka_tex_form_vector(A,Tb) {
   N = size(A)[0];
! write_to_tb("\\pmatrix{\n",Tb);
   for (I=0; I<N; I++) {
     taka_tex_form(A[I],Tb);
     if (I != N-1) write_to_tb("& ",Tb);
   }
 write_to_tb("\\cr}\n",Tb);
 }
--- 88,105 ----
       if (J != M-1) write_to_tb("& ",Tb);
    write_to_tb(AMSTeX?((I==N-1)?"\n":" \\\\n"):" \\cr\n",Tb);
   write_to_tb(AMSTeX?"\\end{pmatrix}\n":"}\n",Tb);
 }
 def taka_tex_form_vector(A,Tb) {
+ extern AMSTeX;
   N = size(A)[0];
 write_to_tb(AMSTeX?"\\begin{pmatrix}\n":"\\pmatrix{\n",Tb);
   for (I=0; I<N; I++) {
     taka_tex_form(A[I],Tb);
     if (I != N-1) write_to_tb("& ",Tb);
```

3.2.14 補足

3.2.14.1 行列の入力

行列の入力が容易になるよう様々な方法が提供されている.

- 行列 $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ の入力は
 - mat([2,1,0],[0,2,0],[0,0,-1]): 各行をリストで列の数だけ並べる. mat([2,1,0],[0,2],[0,0,-1]) でもよい. 最初の行の成分の個数で列の数が決まるので,最初の行のみ後方の0は省略できない.
 - s2m("210,020,0^2-1"): 行成分を並べて行を","で区切る. s2m("21,02,0^2-1") でもよい. 成分があまり大きくない整数や有理数のとき可能で,入力が短いので便利(詳しくは,s2m()). 行成分の最大個数で列のサイズが決まり,それに足らない成分には0が入る. たとえば数0が4個続くときは,0^4と書いてもよい.
 - -s2m([[2,1,0],[0,2,0],[0,0,-1]]):mat()とほぼ同じ、全体を[]で囲う. s2m([[2,1],[0,2],[0,0,-1]])と省略できる.
 - s2m("[2 1 0][0 2 0][0 0 -1]"): Risa/Asir の行列の画面出力を文字列として指定. s2m("[2 1][0 2][0 0 -1]") と省略できる.

などのいずれもが可能である.

整数成分の2が不定元aのときは、上の2番目方法のみ不可(aは整数10と解釈される).

• 対角行列

• 一般行列

```
egin{pmatrix} a_1 & a_2 & a_3 \\ a_2 & b_2 & b_3 \\ a_3 & b_3 & c_3 \end{pmatrix} : mgen(3,"symmetric",[a,b,c],1) (一重添え字の一般対称行列) egin{pmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{pmatrix} : mgen(3,"skew",a,1): (二重添え字の一般歪対称行列) egin{pmatrix} 0 & a & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix} : mgen(3,"highdiag",[a],1) (対角成分の一つ上) egin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} : diagm(3,[lambda])+mgen(3,"highdiag",[1],1) egin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} : mgen(3,"perm",[3,1,2],1); (置換行列)
```

より詳しくは, mgen() を参照.

行列をつなげる

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 とすると
$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$
 : newbmat(1,2,[[A,B]]) (横につなげる)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 : newbmat(2,1,[[A],[B]]) (縦につなげる)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
 : newbmat(2,2,[[A],[0,B]]) (対角につなげる)
$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$
 : newbmat(2,2,[[A,B],[B,A]])
$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$
 : newbmat(2,2,[[A,B],[B,A]])

 $newbmat(m,n,[[A_{11},A_{12},...],[A_{21},A_{22},...],...])$ は、 $m \times n$ のブロック行列を作る函数である.

行列を抜き出す

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix}$$
とする。ここでは、行や列の番号は 0 から始まると考える。
$$\begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{20} & a_{21} & a_{22} \end{pmatrix} \qquad : \mbox{mperm}(A,[0,2],[0,1,2]) \quad (0 行目 \mbox{と 2 行目}, 0 列目 \mbox{と 1 列目 } \mbox{と 2 列目 } \mbox{を 2 NIII}$$

$$\begin{pmatrix} a_{02} & a_{00} \\ a_{12} & a_{10} \\ a_{22} & a_{20} \\ a_{32} & a_{30} \end{pmatrix} \qquad : \mbox{mperm}(A,0,[2,0]) \quad (2 \mbox{ 列目 } \mbox{を 2 NIII} \mbox{ 2 NIII}$$

```
egin{pmatrix} a_{00} & a_{02} \\ a_{20} & a_{22} \end{pmatrix} : mperm(A,[0,2],1) (0 行目と 2 行目から対角行列を作る) egin{pmatrix} a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \\ a_{00} & a_{01} & a_{02} & a_{03} \end{pmatrix} : mperm(A,[1,2,3,0],0) (0 行目を最後の行に繰り下げる)
```

2番目は行の指定を,3番目は列の指定をリストで表す.

ただし0は変えないこと、3番目の引数1は2番目の引数に等しいことを表す、より詳しくはmperm()を参照.

● 行列の列数の調整: madjust()を参照

3.2.14.2 平面図形

P, Q, R, S, T は座標, s, t は実数とする (平面座標は, Q = [3, 4] のようにリストで与える).

交点や接点を求める

- $\overrightarrow{OX} = \overrightarrow{OP} + \overrightarrow{OQ}$ となる X を返す(O は原点): ladd(P,Q,1)
- $\overrightarrow{OX} = \overrightarrow{OP} \overrightarrow{OQ}$ となる X を返す: ladd(P,Q,-1)
- $\overrightarrow{OX} = \overrightarrow{OP} + t \cdot \overrightarrow{OQ}$ となる X を返す: ladd(P,Q,t)
- 直線 PQ と直線 RS との交点を返す (並行なら 0 を,一致するなら 2 を返す): ptcommon([P,Q],[R,S])
- 線分 PQ と線分 RS との交点を返す: ptcommon([P,Q],[R,S]|in=1) (交わらないときは 0 を返す)
- 点Rから直線PQに下ろした垂線の足を返す: ptcommon([P,Q],[R,0])
- 点 R から線分 PQ に下ろした垂線の足を返す(線分 PQ 上に垂線の足がないときは 0 を返す): ptcommon([P,Q],[R,0]|in=1)
- 直線 PQ の垂直二等分線と直線 RS の垂直二等分線の交点を返す: ptcommon([P,Q],[R,0]|in=-1)
- 直線 PQ の垂直二等分線と直線 RS の交点を返す: ptcommon([P,Q], [R,0] | in=-2)
- 直線 PQ の垂直二等分線と線分 RS の交点を返す (線分 RS と交わらないときは 0 を返す): ptcommon([P,Q],[R,0]|in=-3)
- \overrightarrow{PQ} を s 倍して θ 回転したベクトル \mathbf{v} とするとき, $\overrightarrow{OX} = \overrightarrow{OQ} + \mathbf{v}$ となる X を返す: $\mathsf{ptcommon}([P,Q],[s,\theta])$
- 線分 PQ の s:t の内分点を返す: ptcommon([P,Q], [s,t] | in=1)
- 線分 PQ の s:t の外分点を返す: ptcommon([P,Q], [s,-t] | in=1)
- 直線 PQ と中心が R で半径が r の円との交点を返す(交点がないときは 0 を返す): ptcommon([P,Q],[R,r])
- 線分 PQ と中心が R で半径が r の円との交点を返す(交点がないときは 0 を返す): ptcommon([P,Q],[R,r]|in=1)

- 中心が P で半径 s の円と中心が R で半径が r の円との交点(ないときは 0)を返す: ptcommon([P,s],[R,r]|in=1)
- 中心がPで半径sの円に点Rから引いた接線の接点を返す: ptcommon([P,s], [R,0] | in=1)
- 2 つの Bézier 曲線 ℓ_1 と ℓ_2 の交点を返す: ptcombezier (ℓ_1 , ℓ_2 , m)
- 2 つの複合 Bézier 曲線 b_1 と b_2 の交点を返す: $\mathsf{ptcombz}(\ell_1,\ell_2,m)$
- 直線 PQ の $\{(x,y) \mid x_{min} \le x \le x_{max}, y_{min} \le y \le y_{max}\}$ の部分の両端を返す: lninbox([P,Q], $[[x_{min},x_{max}],[y_{min},y_{max}]]$)
- 線分 PQ の $\{(x,y) \mid x_{min} \le x \le x_{max}, y_{min} \le y \le y_{max}\}$ の部分の両端を返す: lninbox([P,Q],[[x_{min} , x_{max}],[y_{min} , y_{max}]]|in=1)

条件を満たす点のリストを求める

- 点 P, Q, R, \dots の $\{(x, y) \mid x_{min} \le x \le x_{max}, y_{min} \le y \le y_{max} \}$ 外のものを数 0 に変える: ptwindow($[P, Q, R, \dots]$, $[x_{min}, x_{max}]$, $[y_{min}, y_{max}]$)
- 点 P,Q,R,\ldots にアフィン変換を施す: V を中心に θ 回転して行列(またはスカラー)M を掛け、さらに W 平行移動する. 座標でなくて数の成分があれば、それは変換しない(xybezier()の引数など). ptaffine(M,[P,Q,R,\ldots]|org=V,arg= θ ,deg= θ ,shift=W)
- 半径 r で中心 P の円に内接する(始点の偏角が θ の)正 n 多角形の頂点の平面座標を返す: ptpolygon(n,r|org=P,arg= θ ,deg= θ)
- $\overrightarrow{OX} = \overrightarrow{OS} + k \cdot \overrightarrow{OQ} + \ell \cdot \overrightarrow{OR}$ $(0 \le k < m, 0 \le \ell < n)$ の格子点 X の座標のリストを返す: $f_1(X[0], X[1]) \ge 0, f_2(X[0], X[1]) \ge 0, \dots$ を満たさない点は除く. ptlattice $(m, n, P, Q | \text{org} = S, \text{scale} = t, \text{cond} = [f_1, f_2, \dots])$

長さや角度を求める

- \overrightarrow{OP} の長さを返す: dnorm(P)
- \overrightarrow{PQ} の長さを返す: dnorm([P,Q])
- \overrightarrow{OP} と \overrightarrow{OQ} の内積を返す: $\operatorname{dyprod}(P,Q)$
- \overrightarrow{PQ} と \overrightarrow{RS} のなす角 θ $(-\pi < \theta \le \pi)$ をラジアンで返す: ptcommon([P,Q], [R,S] | in=2)
- \overrightarrow{PQ} と \overrightarrow{RS} のなす角 θ (-180 < θ ≤ 180) を度で返す: ptcommon([P,Q],[R,S]|in=3)
- $\angle POQ$ の余弦を返す (P = O s.t. t Q = O o.t. e s.t. 1 を返す): dvangle(P,Q)
- $\angle PQR$ の余弦を返す (P=Q または Q=R のときは 1 を返す): dvangle([P,Q,R],0)

基本的図形の描画

以下はデフォルトでは T_{EX} のソースを返すが、オプション proc=1 で描画実行形式を返し、dviout=1 で画面表示する.

点 P, Q,...を折れ線で順に繋ぐ:

xylines([P,Q,...]|opt=s)

TikZ の場合は、s に以下のような指定が可能(重複指定は "red,dotted" のように指定).

線の太さ指定 "thick", "thin", "width=2pt",...

線種指定 "dotted", "densely dotted", "loosely dotted", "dashed",...

二重線 "double", "double distance=2pt",...

色指定 "red", "blue", "lightgray", "green!30!white",...

• 点 P,Q,\ldots を順に折れ線で繋ぎ、最後の点と最初の点も繋ぐ:

xylines([P,Q,...]|close=1,opt=s)

TikZ の場合は、さらにs に以下のような塗りつぶし指定も可能

塗りつぶしの色 "fill=red", "fill=lightgray", ...

パターン塗りつぶし "pattern=northeastline", "pattern=grid", "pattern=dots",...

パターンの色 "pattern color=red",...

塗りつぶしの透明度 "opacity=.5"

塗りつぶし部分 "even odd rule"

塗りつぶしのみで境界線を描かないときは、opt=[s,"fill"]と指定する.

- 点 P, Q,... を順に通る滑らかな曲線:xylines([P,Q,...]|curve=1,opt=s)
- 点 P, Q,... を順に通る滑らかな閉曲線:
 xylines([P,Q...]|curve=1,close=1,opt=s)
- y = f(x) $(x_1 \le x \le x_2)$ で定まる函数のグラフの $y_1 \le y \le y_2$ の部分: $xygraph(f, n, [x_1, x_2], 0, [y_1, y_2] | opt=s, org=P, scale=r, prec=v)$
- $(f_1(t), f_2(t))$ $(t_1 \le t \le t_2)$ で定まる平面曲線の $x_1 \le x \le x_2$, $y_1 \le y \le y_2$ の部分: xygraph([f_1, f_2],n,[t, t_1 , t_2],[x_1, x_2],[y_1, y_2]|opt=s,org=P,scale=r,prec=v)
- 点 P, Q を対角の頂点とする水平な長方形:xybox([P,Q])
- 点 P, Q を対角の頂点とする水平な長方形の TikZ での色付けと塗りつぶし: xybox([P,Q]|color=s,fill=t)
- 点 P,Q を対角の頂点とし、R をもう一つの頂点とする**平行四辺形**: xybox([P,Q,R])
- P を中心とする半径 r の円に内接し、一つの頂点の偏角が θ となる**正** n 角形: xylines(ptpolygon(n,r|org=P,arg= θ))
- 点 P を中心とする半径 r の円:xyang(r,P,0,0)
- 中心 P,半径 r の円の偏角が $[\alpha, \beta]$ の部分の**円弧**: $xyang(r, P, \alpha, \beta)$
- 中心 P,半径 r の円の偏角が $[\alpha, \beta]$ の部分の**扇形**: xyang $(r, P, \alpha, \beta | ar=1)$
- 中心がPで基準軸の半径がrとqrの楕円: xyoval(P,r,q)
- 中心が P で基準軸の半径が r と qr で,基準軸の偏角が γ の楕円: xyoval $(P,r,q|\text{ang}=[0,0,\gamma]$, $\text{deg}=[0,0,\gamma]$)
- 中心が点 P で基準軸の偏角が γ ,半径が r と qr で,偏角が $[\alpha,\beta]$ の部分の**楕円弧**: xyoval $(P,r,q|\text{ang}=[\alpha,\beta,\gamma],\text{deg}=[\alpha,\beta,\gamma])$
- 点 P が中心,基準軸の偏角が γ ,半径が r と qr で,偏角が $[\alpha,\beta]$ の部分の**楕円扇形**: xyoval $(P,r,q|\text{ar=1,ang=[0,0,}\gamma],\text{deg=[0,0,}\gamma])$

- 格子点を $(f_j \ge 0$ を満たす) $\overrightarrow{OS} + k \cdot \overrightarrow{OQ} + \ell \cdot \overrightarrow{OR}$ $(0 \le k < m, 0 \le \ell < n)$ とする格子: xylines(ptlattice(m, n, P, Q|line=1,org=S,scale=t,cond= $[f_1, f_2, ...]$))
- $\angle QPR$ に半径 r の角度記号(\overrightarrow{PQ} から反時計回りに \overrightarrow{PR} まで): $\mathbf{xyang}(r,P,Q,R)$
- \bullet \overrightarrow{PQ} の始点 P に一辺 r で反時計回りに**直角記号**を描く: xyang(r,P,Q,1)
- \overrightarrow{PQ} の始点 P に一辺 r で時計回りに**直角記号**を描く: xyang(r,P,Q,-1)
- \overrightarrow{QP} の終点 P に種々の矢印記号の矢先を長さ r で描く $(-4 \le t \le -2,\ t=0,\ 2 \le t \le 8)$: $t=-4(135^\circ),\ -3(120^\circ),\ -2(150^\circ),\ 0(90^\circ),\ 2,5(45^\circ),\ 3,6(30^\circ),\ 4(60^\circ),\ 7(22.5^\circ),\ 8(15^\circ)$ $t\ge 5$ のときは曲線 $\mathbf{xyang}(r,P,Q,t)$
- \overrightarrow{QP} の終点 P に種々の矢印を長さ r で描く $(-4 \le t \le -2,\ t=0,\ 2 \le t \le 8)$: xyang(r,P,Q,t|ar=1)

3.2.14.3 リスト形式函数

数値に対して値を取る函数には、dsin(x) のような函数と sin(x) のような函数がある.

前者のxは dsin(0.1)のように実数のみが可能で不定元のxを用いて dsin(x)とするとエラーとなる. 後者は不定元xを用いたsin(x)という形が可能で、たとえばそれの導関数はdiff(sin(x),x)によって

俊者は不足元 x を用いた sin(x) という形か可能で、たとえばそれの導関数は diff(sin(x),x) によって cos(x) が得られる. これらの函数を代入した exp(sin(x)+y) のような函数を定義することも可能である.

一方, subst(sin(x),x,0.1) としても $\sin 0.1$ の値が得られるのでなく不定元 $\sin (0.1)$ が得られ,実際の $\sin 0.1$ の値を得るには $\operatorname{eval}(\sin (0.1))$ としなければならない. ところが $\sin (0.1)$ や $\sin (0.2)$ は異なる不定元として $\operatorname{Risa/Asir}$ のメモリー・エリアに登録されたままになるので、いろいろな数値を代入することを何度も行うと大量の不定元が登録されて、 $\operatorname{Risa/Asir}$ の動作が極端に遅くなったり不安定になったりする*2. (3D グラフ描画の際に生じた) このような不具合への対処のためリスト形式函数を定義した.

最も簡単なものは

[返す式, [不定元, 函数子, 引数]]

というリストの形で、上の引数に不定元xが含まれているとすると、リストのxに数を代入し、次に(代入を行った)引数を与えて函数を呼んだ戻り値を返す式の不定元に代入して得られた値を返す、という形でリスト形式函数の値が求められる。

sin(x) をリスト形式函数で表現すると [z,[z,sin,x]] となり*3, リスト形式函数に対する eval() や deval() に対応するものとして myeval() と mydeval() が定義されている. よってたとえば $sin^2(0.1)$ は

- [0] $F=\sin(x)^2$
- [1] $FL=[z^2,[z,\sin,x]]$ \$
- [2] eval(subst(F,x,0.1));
- 0.0099667110793791855371
- [3] myeval(subst(FL,x,0.1));
- 0.0099667110793791855371
- [4] dsin(0.1)^2;
- 0.00996671
- [5] deval(sin(0.1)^2)-dsin(0.1)^2;

0

^{*&}lt;sup>2</sup> 現時点では,Risa/Asir の再起動以外には,このように発生した不定元をメモリーから消す手段が提供されていない.

^{*3} この z は任意の不定元でよい.

```
[6] os_md.myfdeval([z^2,[z,dsin,x]],0.1);
0.00996671
```

のようになる.

ここで myfdeval() は, subst() と mydeval() とを同事に行う函数である (同様な myfeval() もある). より複雑なリスト形式函数の仕様については myeval() の項を参照して下さい. なお, 次のようなものはリスト形式函数である.

- sin などの函数子を含まない x^2+1 や (x+1)/(y-1) のような多項式や有理式
- リスト形式函数にリスト形式函数を代入したものは、リスト形式函数となる (compdf() で代入が可能).

f2df() は、函数子を含む通常の函数をリスト形式函数に変換する. 変換で \sin のような函数は $d\sin$ のような数値のみを引数とする函数で置き換えるので、多くの値を代入しても不定元の大量発生は起こらない. 一方 $\sin(0.1)^2$ の計算は $d\sin(0.1)^2$ に置き換えられるので、任意精度(bigfloat)浮動小数の計算ではなく倍精度浮動小数計算となる(cf. §2.9.2).

```
[0] deval(exp(sin(1)));
2.31978
[1] Exp_x=os_md.f2df(exp(x));
[z_{-},[z_{-},os_{md.myexp,x}]]
[2] Sin_x=os_md.f2df(sin(x));
[z_{-},[z_{-},os_{md.mysin,x}]]
[3] F=os_md.compdf(Exp_x,x,Sin_x);
[z_{-}, [z_{-}00, os_{md.mysin,x}], [z_{-}, os_{md.myexp,z_{-}00}]]
[4] os_md.myfdeval(F,1);
2.31978
[5] G=os_md.f2df(exp(sin(x)));
[z__,[z__,os_md.myexp,[z1__,[z1__,os_md.mysin,x]]]]
[6] os_md.myfdeval(G,1);
2.31978
[7] os_md.compdf(y/(x^2+1),[x,y],[Exp_x,Sin_x]);
[(z_01)/(z_00^2+1), [z_01, os_md.mysin, x], [z_00, os_md.myexp, x]]
```

なお,上のmyexp()やmysin()はdexp()やdsin()と違って複素変数も許す拡張された数値函数である.

- 数値函数で、**不定変数**、すなわち、不定元、有理式、函数やリスト形式函数(など **f2df()** で扱える函数) を引数としたとき、対応するリスト形式函数を返す函数に次のようなものがある
 - 倍精度浮動小数点計算の数値函数 myexp(), mycos(), mysin(), mytan(), myacos(), myasin(), myatan(), mylog(), mypow(), myarg(), fouriers()
 - bigfloat にも対応した
 abs(), sqrt(), frac(), arg(), gamma(), lngamma(), digamma(), dilog(), erfc(), zeta(), eta(), jell()
- 函数 f をリスト形式函数に変換する f2df(f)
- 函数 f の不定元 x に函数 g を代入したリスト形式函数を得る(f, g はリスト形式函数でもよい) compdf (f,x,g)
- 函数 f の不定元 x_1, x_2, \ldots のそれぞれに函数 g_1, g_2, \ldots を代入したリスト形式函数を得る compdf $(f, [x_1, x_2, \ldots], [g_1, g_2, \ldots])$

- 函数子 f で変数が v_1, \ldots, v_n のリスト形式函数を得る(n は f の引数の数) v_j は数値,不定元,有理式,リスト形式函数など f2df() で解釈できる函数でよい、 $todf(f, [v_1, \ldots, v_n])$
- 函数子 f のオプションリストが [ops] で変数が v_1,\ldots,v_n のリスト形式函数を得る. v_j は数値,不定元,有理式,リスト形式函数など f2df() で解釈できる函数でよい. $todf([f,[ops]],[v_1,\ldots,v_n])$
- 変数への代入などによって値を評価できる(リスト形式)函数 f を評価して函数値を得る
 myeval(f) mydeval(f) myval(f)

myeval() は eval() にあたり (可能なら bigfloat), mydeval() は deval() にあたり (複素数値には 非対応), myval() は可能な限り浮動小数点を用いない値を得る.

- (リスト形式) 函数 f の不定元 x に値 a を代入した函数値を得る myfeval(f,a) myfdeval(f,a) in者は eval() に対応 (可能なら bigfloat), 後者は deval() に対応 (複素数値には非対応).
- (リスト形式) 函数 f の不定元 x に値 a を代入した函数値を得る myfeval(f,[x,a]) myfdeval(f,[x,a])
- (リスト形式) 函数 f の不定元 x_1, x_2, \ldots に値 a_1, a_2, \ldots を代入した函数値を得る myfeval(f,[[x_1, a_1],[x_2, a_2],...]) myfdeval()(f,[[x_1, a_1],[x_2, a_2],...])
- (リスト形式) 函数 f の不定元 x, y に値 a, b を代入した函数値を得る myf2eval(f,a,b) myf2deval(f,a,b)
- リスト形式函数 f を倍精度浮動小数点計算から bigfloat 計算へ変更する df2big(f)
- リスト形式函数 f を bigfloat 計算から倍精度浮動小数点計算へ変更する df2big(f|inv=1)
- 函数 f の変数 \mathbf{x} の a_j での値を b_j に変更した($j=1,\ldots,n-1$)変数 x のリスト形式函数を得る $\mathrm{cutf}(f,x,[[],[a_1,b_1],\ldots,[a_{n-1},b_{n-1}],[]])$
- $a \le x < b$ のとき f(x) となる周期 b-a の x 変数のリスト形式函数を得る(f の変数は x とする). periodicf (f, [a, b], x)
- $k=1,\ldots,n$ に対して $(k-1)c \le x < kc$ のとき $h_k(y)$ $(0 \le y < c, \frac{x-y}{c} \in \mathbb{Z})$ となる周期 nc の x 変数 のリスト形式函数を得る periodicf(ltov([h_1,h_2,\ldots,h_n]),c,x)
- 変数の範囲によって異なる函数の値を取るリスト形式函数を得る

$$g(x) = \begin{cases} v_1(x) & (x < a_0), \\ v_k & (x = a_k, \ k = 1, \dots, n - 1), \\ v_n(x) & (x > a_n), \\ f(x) & (\text{Liff} \mathcal{O} \ x) \end{cases}$$

という x を変数とするリスト形式函数 g(x) は次のようにして得られる. ただし, f, v_1, v_n の変数は x で $(v_1, v_n$ は数でもよい), $a_0 \leq a_1 < a_2 < \cdots < a_{n-1} \leq a_n$ となっている必要がある(以下で $[t, [a_0, v_0], [a_1, v_1], \ldots, [a_n, v_n]]$ とすると,f の変数の t に対応する).cutf $(f, x, [[a_0, v_1], [a_1, v_2], \ldots, [a_n, v_n]])$

● pari(funct,) で呼び出される函数 funct を変数 x のリスト形式函数にする [z_,[z_,os_md.evals,["pari","funct",x]]]

3.2.14.4 実数値/複素数値函数の解析

以下の函数には sin(x) のような函数のほか、リスト形式函数も含まれる.

零点

- 実数値函数 f の区間 $[x_1, x_2]$ における(近似)零点とそこでの f の値を求める fzero(f, $[x_1, x_2]$ |mesh=m, dev=d, dif=1, zero=1)
- x 変数の多項式 p の実根を求める polroots(p,x)
- x 変数の多項式 p の実根を $a \le x \le b$ の範囲で求める polroots (p,x|lim=[a,b])
- x 変数の多項式 p の(指定した範囲にある)有理根を求める polroots(p,x|comp=2,lim=[a,b])
- z 変数の多項式 p の(指定した範囲 $a \leq \operatorname{Re} z \leq b$, $b \leq \operatorname{Im} z \leq d$)内の)複素根をすべて求める polroots(p,z|comp=1,lim=[z,[a,b],[c,d]]) 実部の制限がないときは [z,[a,b]] とする.
- z 変数の多項式 p の(指定した範囲内の)複素根をすべて求め,有理根は近似値でなく有理数を返す polroots (p,z|comp=-1,lim=[z,[a,b],[c,d]])
- x_1, \ldots, x_n 変数の n 個の多項式 p_1, \ldots, p_n の共通実根をもとめる polroots($[p_1, \ldots, p_n]$, $[x_1, \ldots, x_n]$ | err=r)
- z_1, \ldots, z_n 変数の n 個の多項式 p_1, \ldots, p_n の(範囲など)指定した条件を満たす共通根もとめる polroots($[p_1, \ldots], [z_1, \ldots]$ | comp=t, lim= $[[z_1, [a_1, b_1], [c_1, d_1]], \ldots]$, err=r)

極値

- 実数値函数 f の点 a での極限値を求める($a=-\infty$ を "-" で, $a=\infty$ を "+" で表す) flim(f,a|prec=c,init=t)
- 実数値函数 f の点 a での右極限値や左極限値を求める flim(f,["±",a]|prec=c,init=t)
- 実数値函数 f の区間 $[x_1, x_2]$ の極値とそのときの変数の値を求める $fmmx(f, [x_1, x_2] | mesh=m, dev=d, dif=1, zero=1)$
- 実数値函数 g の区間 $[x_1,x_2]$ 内の零点とその点における函数 f の値を求める $fmmx(f,[x_1,x_2] | mesh=m, dev=d, dif=g, zero=1)$
- 実数値函数 f の区間 $[x_1, x_2]$ での最小値と最大値とそのときの変数の値を求める fmmx(f, $[x_1, x_2]$ | mmx=1, mesh=m, dev=d, dif=1, zero=1)

数值積分

- 区間 [a,b] での実数値函数 f の数値積分(n は分割点の個数) a = "-" は $-\infty$ を,b = "+" は $+\infty$ を意味する。 変数が x でなくて t のときは,[a,b] を [t,a,b] とする。 [a,b] の外でも f が滑らかに定義されているときは,分割点の個数の -1 倍を n とする。 fint(f,n,[a,b]|exp=c,int=k,prec=v)
- 区間 [a,b] での複素数値函数 f の数値積分(n は分割点の個数) fint(f,n,[a,b] | cpx=1,exp=c,int=k,prec=v)
- 複素数値函数 f の C^1 級曲線 [a,b] \ni $t \mapsto (\phi(t), \psi(t))$ に沿った複素積分 f の変数は複素数 z とその実部 x と虚部 y を用いることができる. fint(f,n, $[[\phi,\psi]$, [a,b]] $|\exp c$, $\inf k$, $\inf k$
- 複素数値函数 f の区分的 C^1 級曲線に沿った複素積分(f の変数は z, x, y) fint(f,n,[[[ϕ_1 , ψ_1],[a_1 , b_1]],[[ϕ_2 , ψ_2],[a_2 , b_2]]...]|exp=c,int=k,prec=v)
- 点 $(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)$ を順に繋ぐ折線に沿った複素数値函数 f の複素積分 fint $(f,n,[[a_1,b_1],[a_2,b_2],\ldots,[a_n,b_n]]$ | exp=c,int=k,prec=v)

- 点 $(a_1,b_1),\ldots,(a_n,b_n),(a_1,b_1)$ を順に繋ぐ閉じた折線に沿った複素数値函数 f の複素積分 fint $(f,n,[[a_1,b_1],[a_2,b_2],\ldots,[a_n,b_n],-1]$ |exp=c,int=k,prec=v)
- 曲線 $C:[a,b] \ni t \mapsto \left(\phi(t),\psi(t)\right)$ に沿った線積分 $\int_C y\,dx$ 無限区間,すなわち a= "-"($-\infty$ を意味する),b= "+"($+\infty$ を意味する)も可 areabezier([[ϕ , ψ], η ,[t,a,b]]|exp=c,int=k,prec=v)
- z 変数の有理式 $\frac{p}{q}$ (q は多項式) の $\forall f_j > 0$ で表される領域の周での複素積分(留数計算) fresidue(p,q|cond=[f_1,f_2,\ldots],sum=2)
- 滑らかな閉曲線 $C:[a,b] \ni t \mapsto (\phi(t),\psi(t))$ で囲まれた領域の面積(曲線が時計回りならその -1 倍) areabezier($[[\phi,\psi],n,[t,a,b]]$ |int=k,prec=v)
- 点 $(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)$ を順に通り始点にもどる折線で囲まれた多角形の面積 areabezier(xylines([[a_1,b_1],...,[a_n,b_n]]|close=1))
- 点 $(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)$ を順に通り始点にもどる滑らかな閉曲線で囲まれた部分の面積 areabezier(xylines([[a_1,b_1],...,[a_n,b_n]]|close=1,curve=1))
- 区分的 Bézier 曲線 ℓ で囲まれた部分の面積 (ℓ は lbezier() で扱われるデータ形式のいずれか)
 areabezier(ℓ)

不定積分 (原始関数)

- x を変数とする函数 f の不定積分 $\int f(x) dx$ integrate (f,x)
- x を変数とする多項式 p の [0,x] での積分 $\int_0^x p(x) dx$ intpoly(p,x)
- 原始関数を求めることによる定積分 $\int_a^b f(x) dx$ の計算 integrate(f,x|I=[a,b])
- x を変数とする有理函数 p の原始関数 $\int p(x) dx$ intpoly(p,x)
- 多項式 p と三角関数 $\sin \lambda x$ の積の原始関数 $intpoly(p,x|\sin=\lambda)$ 戻り値 [g(x),h(x)] は $\int p(x)\sin \lambda x\,dx=g(x)\cos \lambda x+h(x)\sin \lambda x$ を意味する.
- 多項式 p と三角関数 $\cos \lambda x$ の積の原始関数 $intpoly(p,x|\cos=\lambda)$ 戻り値 [g(x),h(x)] は $\int p(x)\cos \lambda x\,dx=g(x)\cos \lambda x+h(x)\sin \lambda x$ を意味する.
- 多項式 p とべき函数 x^λ の積の原始関数 intpoly(p,x|pow=λ)
- 戻り値 g(x) は $\int p(x)x^{\lambda x}dx = g(x)x^{\lambda}$ を意味する.
- 多項式 p と対数関数 $\log(\lambda x + c)$ の積の原始関数 intpoly(p,x|log=[λ,c]) 戻り値 [g(x),h(x)] は $\int p(x)\log(\lambda x + c)dx\,dx = g(x)\log(\lambda x + c) + h(x)$ を意味する.
- 多項式 p と対数関数の自然数べき $\log^m(\lambda x + c)$ の積の原始関数 $intpoly(p,x|\log [\lambda,c,m])$ 戻り値 $[g_0(x),g_1(x),\ldots]$ は $\int p(x)\log^m(\lambda x + c)dx = \sum_{j=0}^m g_j(x)\log^{m-j}(\lambda x + c)$ を意味する.

密数

- \mathbf{z} 変数の多項式 q を分母とする有理式 $\frac{p}{q}$ の特異点と留数のリストを得る $\mathbf{fresidue}(p,q)$
- $f_1 > 0$, $f_2 > 0$,... を満たす領域での有理式 $\frac{p}{q}$ の特異点と留数のリストを得る f_j は, \mathbf{z} , \mathbf{x} , \mathbf{y} の (リスト形式) 函数 ($\mathbf{z} = \mathbf{x} + \mathbf{y}i$) fresidue(p,q|cond=[f_1 , f_2 ,...])

- 条件を満たす留数の和を求める
 - fresidue($p,q \mid \text{cond}=[f_1,f_2,\ldots]$, sum=1)
- load("sp") によって af_noalg() を使えるようにおくと、正確な値が求められる範囲が拡がる (cf. fctri()).

初等関数の変換

- x 変数の三角関数を、複素変数の指数関数に変更し、指数関数の積は一つにまとめる trig2exp(f,x)
- \bullet x 変数の三角関数や複素変数の指数関数を実変数の三角関数と指数関数に変換し、三角関数の積は和にまとめる

trig2exp(f,x|inv=1)

- x 変数の三角関数を、可能な限り $\sin x$ の多項式や $\sin x$ の多項式と $\cos x$ との積の和に変換する $\operatorname{trig2exp}(f,x|\operatorname{inv=sin}(x))$
- x 変数の三角関数を、可能な限り $\cos x$ の多項式や $\cos x$ の多項式と $\sin x$ との積の和に変換する $\mathrm{trig2exp}(f,x|\mathrm{inv=cos}(x))$

3.2.14.5 表形式データ

エクセルの表形式データのような表形式データを、Risa/Asir で処理するための函数について記す.そこでは、各行をリストとし、それを集めたリストを**リスト形式データ**と呼ぶことにする.また、行をリスト形式データの要素、縦の列を「項目」と呼ぶことにする.

表形式データの変換

● エクセルの CSV 形式データをリスト形式データに変換して読み込む (eval="all"とすると,整数または小数を数として読み込む.デフォルトは文字列として読み込み,空の要素の項目は空文字列として読み込む)

 $readcsv(s|eval=[n_1, n_2, \cdots], eval=n, null=t)$

- リスト形式データを CSV 形式に変換(ファイルとして出力するには、fcat() を用いるとよい) $tocsv(\ell)$
- リスト形式データを CSV 形式に変換して、それを Excel に渡す tocsv(ℓ|exe=f)
- リスト形式データを行列に変換 lv2m(ℓ)
- 行列をリスト形式データに変換 m211(m)
- リスト形式データを T_EX の表に変換 ltotex(ℓ|opt="tab",title=s)
- 最初の n 個とそれ以降の要素との 2 つの表形式リストに分割する lsort(ℓ,[],"cut"|c1=n)
- 最初の方の要素とそれ以降の n 個の要素の 2 つの表形式リストに分割する $lsort(\ell,[],"cut"|c1=-n)$
- 要素の項目数が異なっているとき、後ろにs(デフォルトは空文字)を詰めて揃える lsort(ℓ ,"adjust",["put",s])
- 表を転置する(行と列をひっくり返す) lsort(ℓ,"transpose",[])

データのソート

- t_1 番目の項目でソート lsort(ℓ , "sort", ["put", t_1])
- t₁番目の項目で逆順ソート

 $lsort(\ell, "sort", ["put", -t_1 - 1])$

- 多重キーを用いた要素のソート msort(ℓ,s)
- t₁ 番目が同じものは一つを除いて削除(重複を省く) lsort(ℓ, "sort", ["reduce"])

項目を付加

- 要素の先頭に、中身がsの項目を付加 $lsort(\ell, s, "cons")$
- 要素の先頭に、 s_1, s_2, \dots を順に付加 lsort(ℓ ,[s_1, s_2, \dots],"cons")
- 項目番号を順に入れたリストを最初の要素として付加 lsort(ℓ,"num",["col"])
- 各要素の先頭に要素番号をnから順に入れた項目を付加 $lsort(\ell,"num",["put",n])$

要素や項目を抜き出す

- 項目 $c_{1,1}, c_{1,2}, \cdots$ を抜き出す lsort(ℓ ,"col",["put"]| c_1 =[$c_{1,1}, c_{1,2}, \ldots$])
- 項目 $c_{1,1}, c_{1,2}, \cdots$ を除く lsort(ℓ ,"col",["setminus"]| c_1 =[$c_{1,1}, c_{1,2}, \ldots$])
- $c_{1,1}$ 番目, $c_{1,2}$ 番目 ... の要素をこの順に抜き出す lsort(ℓ ,"num",["get"]| c_1 =[$c_{1,1}$, $c_{1,2}$,...])
- $c_{1,1}$ 番目, $c_{1,2}$ 番目,... の要素を削除 lsort(ℓ ,"num",["sub"]| c_1 =[$c_{1,1}$, $c_{1,2}$,...])
- n番目の項目が s と等しいものを抜きだす lsort(ℓ,"num",["get",["=",s],n])
- n番目の項目が s と等しいものを除く lsort(ℓ,"num",["sub",["=",s],n])
- n番目の項目が s より大きい (小さい etc.) ものを抜きだす (次とその次の ">" は "<", ">=", "<=", "!=" などが可能) lsort(ℓ, "num", ["get", [">", s], n])
- n 番目の項目が s より大きい(小さい etc.)ものを削除する lsort(ℓ ,"num",["sub",[">",s],n])
- n 番目の項目 (n) がなければ要素)を函数 f に入れた戻り値が 0 でない要素を抜き出す lsort(ℓ ,"num",["get",f,n])
- n 番目の項目 (n がなければ要素) を函数 f に入れた戻り値が 0 でない要素を削除 lsort(ℓ ,"num",["sub",f,n])

数を数える

- 要素の個数を返す lsort(ℓ,"num",["sum"])
- n 番目の項目が s に等しいもの個数を返す(以下の "=" は, "!=", ">", "<", ">=", <=" が可能) lsort(ℓ ,"num",["sum",["=",s],n])
- c_1 番目の項目, c_1 番目の項目,...の和(数でない項目は 0)を全ての要素に渡って足し合わせて返す $lsort(\ell,"num",["sum","+"] | c1=[c_{1,1},c_{1,2},...])$
- c_1 番目の項目, c_1 番目の項目,...の和を足し合わせたものを要素の最初の項目に追加 $lsort(\ell,"num",["put","+"]|c1=[c_{1,1},c_{1,2},...])$
- n 番目の項目 (n がなければ要素) を函数 f に入れた戻り値を要素の最初の項目に追加

 $lsort(\ell,"num",["put",f,n])$

• n 番目の項目 (n がなければ要素) を函数 f に入れた戻り値を全ての要素について足した和を返す lsort(ℓ ,"num",["sum",f,n])

項目の書き換え

• m_{ν} 番目の要素の n_{ν} 番目の項目を s_{ν} に置き換える lsort(ℓ ,"subst",[]|c1=[[m_1,n_1,s_1],[m_2,n_2,s_2],...)

${f 2}$ つのリスト型式データ $\ell,\,\ell'$ に対し、指定したキー項目が同じものを対応する要素とみなして ℓ を変換

- ℓ の要素に対応する ℓ' の要素があれば、項目を合わせた要素にする lsort(ℓ_1 , ℓ_2 , ["cup", m, n] | c1=[c_1 1, c_1 2, ...], c2=[c_2 1, c_2 2, ...])
- ℓ の要素に対応する ℓ' の要素があれば、項目を合わせた要素にして抜き出す $lsort(\ell_1,\ell_2,["cap",m,n]|c1=[c_{1,1},c_{1,2},...],c2=[c_{2,1},c_{2,2},...])$
- ℓ の要素に対応する ℓ' の要素があれば、 ℓ から削除する lsort(ℓ_1 , ℓ_2 ,["setminus",m,n]|c1=[$c_{1,1}$, $c_{1,2}$,...])
- ℓ の要素に対応する ℓ' の要素があれば、対応する要素で ℓ' の指定した項目を ℓ の指定した項目を上書きする (複数あればリストにする)

 $lsort(\ell_1, \ell_2, ["over", m, n] | c1=c_1, c2=c_2])$

• ℓ の要素に対応する ℓ' の要素がり、対応する要素で ℓ' の指定した項目が空文字列でなければ、それで ℓ の指定した項目を上書きする

 $lsort(\ell_1, \ell_2, ["subst", m, n] | c1=c_1, c2=c_2])$

その他

- 2 つのリスト型式データの中身の違いをリストで返す lsort(ℓ_1 , ℓ_2 ,"cmp")
- 要素数が同じ 2 つのリスト型式データの各要素を繋げて返す $lsort(\ell_1, \ell_2, "append")$

3.3 Some functions in the original library

以下の函数は、module 化されないので、函数名の先頭に os_md. をつけません.

3.3.1 数の演算

- 1. $idiv(i_1, i_2)$
 - :: 整数除算による商
- 2. irem (i_1, i_2)
 - :: 整数除算による剰余
 - i_1 の i_2 による整数除算による商, 剰余を求める.
 - i_2 は 0 であってはならない.
 - 被除数が負の場合, 絶対値に対する値にマイナスをつけた値を返す.
 - $i_1\%i_2$ は、結果が正に正規化されることを除けば irem() の代わりに用いることができる.
 - 多項式の場合は sdiv(), srem() を用いる.

```
[0] idiv(100,7);
14
[0] idiv(-100,7);
-14
[1] irem(100,7);
```

```
[2] irem(-100,7);
   -2
3. fac(i)
  :: 自然数 i の階乗
   • i が負の場合は 0 を返す.
  :: 有理数または有理式の分子
5. \operatorname{dn}(p)
  :: 有理数または有理式の分母
   • 与えられた有理数また有理式の分子及び分母を返す.
   • 有理数の場合, 分母は常に正で, 符号は分子が持つ.
   • 有理式の場合、単に分母、分子を取り出すだけである. 有理式に対しては、約分は自動的には行われ
     ない. red() を明示的に呼び出す必要がある.
   [0] [nm(-43/8), dn(-43/8)];
   [-43,8]
   [1] dn((x*z)/(x*y));
   y*x
   [2] dn(red((x*z)/(x*y)));
   У
6. igcd(i_1, i_2)
  :: 整数 i_1 と i_2 の GCD を求める
   • 引数が整数でない場合は、エラーまたは無意味な結果を返す.
   ● 多項式の場合は, gcd(), gcdz() を用いる.
   • 整数 GCD にはさまざまな方法があり, igcdcntl() で設定できる.
7. igcdcntl([i])
  :: 整数 GCD のアルゴリズムの選択
    Euclid 互除法 (default)
  1
    binary GCD
    bmod GCD
     accelerated integer GCD
  2,3 は [Weber] による. おおむね3 が高速だが, 例外もある.
   [0] A=lrandom(10<sup>4</sup>)$
   [1] B=lrandom(10<sup>4</sup>)$
   [2] C=lrandom(10<sup>4</sup>)$
   [3] D=A*C$
   [4] E=A*B$
   [5] cputime(1)$
   [6] igcd(D,E)$
   0.6sec + gc : 1.93sec(2.531sec)
   [7] igcdcntl(1)$
   [8] igcd(D,E)$
   0.27 sec(0.2635 sec)
```

[9] igcdcntl(2)\$
[10] igcd(D,E)\$
0.19sec(0.1928sec)

```
[11] igcdcntl(3)$
    [12] igcd(D,E)$
   0.08sec(0.08023sec)
8. ilcm(i_1, i_2)
   :: 整数の最小公倍数を求める
   一方が 0 のとき 0 を返す.
9. isqrt(n)
   :: n の平方根を越えない最大の整数を返す
10. inv(i,m)
   :: m を法とする i の逆数
    • ia = 1 \mod (m) なる整数 a を求める.
    • i \ge m は互いに素でなければならないが、inv() はそのチェックは行わない
    [0] igcd(1234,4321);
    [1] inv(1234,4321);
   3239
    [2] irem(3239*1234,4321);
    1
11. random([seed])
```

- - :: 乱数を生成する
 - 最大 2³² − 1 の非負整数の乱数を生成する.
 - 0 でない引数がある時、その値を seed として設定してから、乱数を生成する.
 - default の seed は固定のため、種を設定しなければ、生成される乱数の系列は起動毎に一定である.
 - 松本眞-西村拓士による Mersenne Twister アルゴリズムの、彼ら自身による実装を用いている. (http://www.math.keio.ac.jp/matsumoto/mt.html)
 - 周期は $2^{19937}-1$ と非常に長い. mt_save により state をファイルに save できる. これを mt_load で読み込むことにより、異る Asir セッション間で一つの乱数の系列を辿ることができる
- 12. lrandom(bit)
 - :: 多倍長乱数を生成する
 - 高々 bit の非負整数の乱数を生成する.
 - random を複数回呼び出して結合し、指定の bit 長にマスクしている
- 13. mt_save(fname)
 - :: 乱数生成器の現在の状態をファイルにセーブする
- 14. mt_load(fname)
 - :: ファイルにセーブされた乱数生成器の状態をロードする
 - ある状態をセーブし、その状態をロードすることで、一つの疑似乱数系列を、新規の Asir セッショ ンで続けてたどることができる.

```
[0] random();
3510405877
[1] mt_save("/tmp/mt_state");
[2] random();
4290933890
[3] quit;
% asir
```

```
This is Asir, Version 991108.
   Copyright (C) FUJITSU LABORATORIES LIMITED.
   3 March 1994. All rights reserved.
   [4] mt_load("/tmp/mt_state");
    [5] random();
   4290933890
15. real(comp)
   :: comp の実数部分
16. imag(comp)
   :: comp の虚数部分
17. conj(comp)
   :: comp の共役複素数
    ● 複素数に対し、実部、虚部、共役を求める.
    • これらは、多項式に対しても働く.
    [0] A=(2+@i)^3;
    (2+11*@i)
    [1] [real(A),imag(A),conj(A)];
    [2,11,(2-11*@i)]
18. eval(obj [, prec])
   :: obj の値の評価
19. deval(obj)
   :: obj の値の評価(倍精度浮動小数)
    • obj に含まれる函数の値を可能な限り評価する.
    • deval は倍精度浮動小数を結果として返すが、eval は有理数はそのまま残す.
    • eval においては、計算は PARI (section pari) が行う. deval においては、計算は C 数学ライブ
      ラリの函数を用いて行う.
    ● deval は複素数は扱えない.
    • eval においては、prec を指定した場合、計算は、10 進 prec 桁程度で行われる. prec の指定がな
      い場合, 現在設定されている精度で行われる. (See section setprec().)
    • 扱える函数は、次の通り. sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh,
      atanh, exp, log, pow(a,b), (a^b)
    • 以下の記号を数として評価できる. ただし @i を扱えるのは eval() のみである.
          虚数単位
      @pi 円周率
          自然対数の底
    [0] eval(exp(@pi*@i));
   [1] eval(2^(1/2));
   1.414213562373095048763788073031
    [2] eval(sin(@pi/3));
   0.86602540378443864674620506632
    [3] eval(sin(@pi/3)-3^(1/2)/2,50);
   -2.78791084448179148471 E-58
   [4] eval(1/2);
```

```
1/2
[5] deval(sin(1)^2+cos(1)^2);
1
```

20. pari(func, arg, prec)

:: PARI の函数 func を呼び出す.

- PARI [Batut et al.] は Bordeaux 大学で開発されフリーソフトウェアとして公開されている. PARI は数式処理的な機能を有してはいるが、主なターゲットは整数論に関連した数 (bignum, bigfloat) の演算で、四則演算に限らず bigfloat によるさまざまな函数値の評価を高速に行うことができる. PARI は他のプログラムからサブルーチンライブラリとして用いることができ、また、gp という PARI ライブラリのインタフェースにより UNIX のアプリケーションとして利用することもできる. 現在のバージョンは 2.0.17beta でいくつかの ftp site (たとえばhttp://pari.math.u-bordeaux.fr/) から anonymous ftp できる.
- 最後の引数 prec で計算精度を指定できる. prec を省略した場合 setprec() で指定した精度とな る. 現時点で実行できる PARI の函数は次の通りである. いずれも 1 引数で Asir が対応できる型 の引数をとる函数である. なお各々の機能については PARI のマニュアルを参照のこと. abs, adj, arg, bigomega, binary, ceil, centerlift, cf, classno, classno2, conj, content, denom, det, det2, detr, dilog, disc, discf, divisors, eigen, eintg1, erfc, eta, factor, floor, frac, galois, galoisconj, gamh, gamma, hclassno, hermite, hess, imag, image, image2, indexrank, indsort, initalg, isfund, isprime, ispsp, isqrt, issqfree, issquare, jacobi, jell, ker, keri, kerint, kerintg1, kerint2, kerr, length, lexsort, lift, lindep, 111, 111g1, 111gen, 111gram, 111gramg1, 111gramgen, 111gramint, lllgramkerim, lllgramkerimgen, lllint, lllkerim, lllkerimgen, lllrat, lngamma, logagm, mat, matrixqz2, matrixqz3, matsize, modreverse, mu, nextprime, norm, norml2, numdiv, numer, omega, order, ordred, phi, pnqn, polred, polred2, primroot, psi, quadgen, quadpoly, real, recip, redcomp, redreal, regula, reorder, reverse, rhoreal, roots, rootslong, round, sigma, signat, simplify, smalldiscf, smallfact, smallpolred, smallpolred2, smith, smith2, sort, sqr, sqred, sqrt, supplement, trace, trans, trunc, type, unit, vec, wp, wp2, zeta
- Asir で用いているのは PARI のほんの一部の機能であるが、今後より多くの機能が利用できるよう改良する予定である.

```
/* 行列の固有ベクトルを求める. */
```

[0] pari(eigen, newmat(2,2,[[1,1],[1,2]]));

[-1.61803398874989484819771921990 0.61803398874989484826]

[11]

/* 1変数多項式の根を求める. */

[1] pari(roots,t^2-2);

[-1.41421356237309504876 1.41421356237309504876]

21. setprec([n])

:: bigfloat の桁数を n 桁に設定する

- 引数がある場合, bigfloat の桁数を n 桁に設定する. 引数のあるなしにかかわらず, 以前に設定されていた値を返す.
- bigfloat の計算は PARI によって行われる.
- bigfloat での計算に対し有効である. bigfloat の flag を on にする方法は, ctr1() を参照. 設定できる桁数に上限はないが, 指定した桁数に設定されるとは限らない. 大きめの値を設定するのが安全である.

[0] setprec();

```
[3] setprec(100);
   96
22. setmode([p])
   :: 有限体を GF(p) に設定する

 pは2<sup>27</sup>未満の素数

    • 有限体を GF(p) に設定する. 設定値を返す.
    ● 有限体の元の型を持つ数は、それ自身はどの有限体に属するかの情報を持たず、現在設定されてい
      る素数 p により GF(p) 上での演算が適用される.

● 位数の大きな有限体に関しては有限体に関する演算を参照。
    [0] A=dp_mod(dp_ptod(2*x,[x]),3,[]);
    (2) * < < 1>>
   [1] A+A;
   addmi : invalid modulus
   return to toplevel
   [2] setmod(3);
   [3] A+A;
    (1) * < < 1>>
23. ntoint32(n)
   :: 非負整数と符号なし 32bit 整数の間の型変換
24. int32ton(int32)
   :: 非負整数と符号なし 32bit 整数の間の型変換
    ● n は 2<sup>32</sup> 未満の非負整数, int32 は符号なし 32bit 整数
    • 非負整数 (識別子 1) の符号なし 32bit 整数 (識別子 10) への変換, またはその逆変換を行う.
    • 32bit 整数は OpenXM の基本構成要素であり、整数をその型で送信する必要がある場合に用いる.
25. iand(m,n)
  :: 整数 m, n のビット毎の and
26. ior(m,n)
  :: 整数 m, n のビット毎の or
27. ixor(m,n)
   :: 整数 m, n のビット毎の xor

    整数 m, n の絶対値を bit 列とみて演算する.

    • 引数の符号は無視し、非負の値を返す.
    [0] ctrl("hex",1);
    [1] iand(0xeeeeeeeeeeeeee,0x2984723234812312312);
   0x4622224802202202
    [2] ior(0xa0a0a0a0a0a0a0a0,0xb0c0b0b0b0b0b0b);
   0xabacababababab
    [3] ixor(0xfffffffffffff,0x234234234234);
   0x2cbdcbdcbdcb
```

[1] setprec(100);

```
28. ishift(i,count)
   :: 整数 i の絶対値を bit 列とみて shift する
    • iの符号は無視し、非負の値を返す.
    • count が正ならば右 shift, 負ならば左 shift を行う
    [0] ctrl("hex",1);
    0x1
    [1] ishift(0x1000000,12);
    0x1000
    [2] ishift(0x1000,-12);
    0x1000000
    [3] ixor(0x1248, ishift(1, -16) - 1);
    0xedb7
29. i2hex(i|cap=1,num=1,min=m)
   :: 非負整数 i の 16 進表示
    ● cap=1 16 進数表示に大文字を使う
    ● num=1 16 進数表示の先頭に 0x をつける
    • min=m 必要なら先頭に 0 をつけて m 桁以上にする (デフォルトは m=2)
    • i が非負整数のリストのときは、各成分を16進表示して返す
    • i が非負整数やリストでないときは整数 0 を返す
    [0] os_md.i2hex(123);
    7b
    [1] os_md.i2hex(123|cap=1);
    [2] os_md.i2hex(123|cap=1,num=1);
    0x7B
    [3] os_md.i2hex([123,0,231]);
    [7b,00,e7]
30. pari(binary,n)
   :: 数 n の 2 進数表示
    [0] pari(binary,6);
    [110]
    [1] pari(binary, 6.3);
    [\ [\ 1\ 1\ 0\ ]\ [\ 0\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0
    000000000]]
31. pari(factor, n)
   :: 整数 n または1変数多項式 n の素因数分解を求める
    [0] pari(factor,1239321);
    [ 3 1 ]
    [ 73 1 ]
    [ 5659 1 ]
    [1] pari(factor,-24);
    [ -1 1 ]
```

```
[23]
    [ 3 1 ]
    [2] pari(factor,2*x^3-2);
    [ x-1 1 ]
    [x^2+x+11]
    [3] pari(factor,x^2-y^2);
          sorry, factor for general polynomials is not yet implemented.
32. pari(issquare, n)
   :: 整数 n または多項式 n が平方数 (元) かどうか調べる
    [0] pari(issquare,36);
    [1] pari(issquare,8);
    [2] pari(issquare,16/9);
    [3] pari(issquare,9*x^2+12*x*y+4*y^2);
    [4] pari(issquare,2*x^2);
33. pari(omega, n)
   :: 整数 n または 1 変数多項式 n の素因子の個数
34. pari(bigomega, n)
   :: 整数 n または 1 変数多項式 n の素因子の重複度込みの個数
    [0] pari(omega,-24);
    [1] pari(bigomega,-24);
35. pari(numdiv, n)
   :: 整数 n を割り切る正整数の個数
    [0] pari(numdiv,-12);
    12
36. pari(sigma, n)
   :: n の正の約数の和
    [0] pari(sigma,-12);
    28
37. pari(isprime, num)
   :: 自然数 num が素数かどうか調べる(合成数なら 0 を返す)
    [0] pari(isprime,113);
    1
38. pari(ispsp, num)
   :: 自然数 num が擬素数かどうか調べる (合成数なら 0 を返す)
```

```
Baillie-Pomerance-Selfridge-Wagstaff の擬素数かどうかを調べる.
   少なくとも 2^{64} = 1.84 \cdots \times 10^{20} 以下では素数と一致.
    [0] pari(ispsp,113);
39. pari(nextprime, num)
   :: 自然数 num 以上の最小の擬素数を返す
    [0] pari(nextprime, 10^30);
    40. pari(frac, num)
   :: 実数 num の小数部分
    [0] pari(frac,2.25);
    0.25000000000000000000
41. pari(conj, num)
   :: 複素数 num (行列でも可) の共役複素数を返す
    [0] pari(conj,2+3*@i);
    (2-3*@i)
42. pari(abs, num[, prec])
   :: 複素数 num の絶対値を返す
    [0] pari(abs,1+@i);
    1.41421356237309504876
    [1] pari(abs,1+@i,50);
    1.41421356237309504880168872420969807856967187537694807317638
43. pari(cf, num)
   :: num の連分数展開を返す
    [0] pari(cf,1234567/678901);
    [ 1 1 4 1 1 27 3 2 2 3 3 5 2 ]
    [1] pari(cf,eval(@pi));
    [\ 3\ 7\ 15\ 1\ 292\ 1\ 1\ 1\ 2\ 1\ 3\ 1\ 14\ 2\ 1\ 1\ 2\ 2\ 2\ ]
44. pari(mu, n)
   \dots 自然数 n のメビウス函数 \mu(n) の値(0 または \pm 1)を返す
    [0] pari(mu,230);
    -1
45. pari(phi, n)
   \dots 自然数 n に対する Euler o \varphi 函数の値(n 以下の n と素なものの個数)を返す
    [0] pari(phi,12);
    4
   3.3.2 多項式,有理式の演算
46. var(rat)
```

```
:: rat の主変数を返す
```

- 主変数に関しては、Asir で使用可能な型の項を参照
- デフォルトの変数順序は次のようになっている. x, y, z, u, v, w, p, q, r, s, t, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, 以後は変数の現れた順.
- [0] var(x^2+y^2+a^2); x [1] var(a*b*c*d*e);
- [2] var(3/abc+2*xy/efg);
- 47. vars(obj)
 - :: objに含まれる変数のリスト
 - 与えられた式に含まれる変数のリストを返す.
 - 変数順序の高いものから順に並べる.
 - 関数の引数に現れる変数(たとえば exp(x*sin(y+z)))もリストするには varargs() を用いる.
 - [0] vars(x^2+y^2+a^2);
 [x,y,a]
 [1] vars(3/abc+2*xy/efg);
 [abc,xy,efg]
 [2] vars([x,y,z]);
 [x,y,z]
- 48. uc()
 - :: 未定係数法のための vtype が 1 の不定元を生成する.
 - uc() を実行するたびに, _0, _1, _2,... という不定元を生成する.
 - uc() で生成された不定元は,直接キーボードから入力することができない. これは,プログラム中で未定係数を自動生成する場合,入力などに含まれる不定元と同一のものが生成されることを防ぐためである.
 - 通常の不定元 (vtype が 0) の自動生成には rtostr(), strtov() を用いる.
 - uc() で生成された不定元の不定元としての型 (vtype) は 1 である. (See section 不定元の型.)
 - makev() では不定元の生成が容易に出来る.
 - [0] A=uc(); _0 [1] B=uc(); _1 [2] (uc()+uc())^2; _2^2+2*_3*_2+_3^2 [3] (A+B)^2; _0^2+2*_1*_0+_1^2
- 49. coef(poly, deg [, var])
 - :: poly の var (省略時は主変数) に関する deg 次の係数を出力する
 - var は、省略すると主変数 var(poly) だとみなされる.
 - var が主変数でない時, var が主変数の場合に比較して効率が落ちる.
 - mycoef() は、初等函数係数や行列係数の多項式にも対応する.
 - [0] $A = (x+y+z)^3$;

```
x^3+(3*y+3*z)*x^2+(3*y^2+6*z*y+3*z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
[1] coef(A,1,y);
3*x^2+6*z*x+3*z^2
[2] coef(A,0);
y^3+3*z*y^2+3*z^2*y+z^3
```

- 50. deg(poly, var)
 - :: poly の,変数 var に関する最高次数
- 51. mindeg(poly, var)
 - :: poly の, 変数 var に関する最低次数
 - 与えられた多項式の変数 var に関する最高次数, 最低次数を出力する.
 - 変数 var を省略することは出来ない.
 - 初等函数成分の行列係数多項式などにも対応した上位互換函数 mydeg(), mymindeg() がある.

```
[0] deg((x+y+z)^10,x);
10
[1] deg((x+y+z)^10,w);
[75] mindeg(x^2+3*x*y,x);
1
```

52. nmono(rat)

- :: rat の単項式の項数
 - 多項式を展開した状態での 0 でない係数を持つ単項式の項数を求める.
 - 有理式の場合は、分子と分母の項数の和が返される.
 - 函数形式 (section 不定元の型) は、引数が何であっても単項とみなされる.(1 個の不定元と同じ).

```
[0] nmono((x+y)^10);
11
[1] nmono((x+y)^10/(x+z)^10);
22
[2] nmono(sin((x+y)^10));
1
```

53. ord([varlist])

- :: 変数順序の設定
 - 引数があるとき、引数の変数リストを先頭に出し、残りの変数がその後に続くように変数順序を設 定する. 引数のあるなしに関わらず, ord() の終了時における変数順序リストを返す.
 - この函数による変数順序の変更を行っても、既にプログラム変数などに代入されている式の内部形 式は新しい順序に従っては変更されない. 従って, この函数による順序の変更は, Asir の起動直後, あるいは、新たな変数が現れた時点に行われるべきである. 異なる変数順序のもとで生成された式 どうしの演算が行われた場合、予期せぬ結果が生ずることもあり得る.

```
[0] ord();
```

```
[x,y,z,u,v,w,p,q,r,s,t,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,\_x,\_y,\_z,\_u,\_v,
\verb""", p, q, r, s, t, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o,
\exp(x),(x)^{(y)},\log(x),(x)^{(y-1)},\cos(x),\sin(x),\tan(x),
(-x^2+1)^(-1/2), \cosh(x), \sinh(x), \tanh(x),
(x^2+1)^(-1/2), (x^2-1)^(-1/2)
```

```
[1] ord([dx,dy,dz,a,b,c]);

[dx,dy,dz,a,b,c,x,y,z,u,v,w,p,q,r,s,t,d,e,f,g,h,i,j,k,l,m,n,o,_x,_y,

_z,_u,_v,_w,_p,_q,_r,_s,_t,_a,_b,_c,_d,_e,_f,_g,_h,_i,_j,_k,_l,_m,_n,

_o,exp(_x),(_x)^(_y),log(_x),(_x)^(_y-1),cos(_x),sin(_x),tan(_x),

(-_x^2+1)^(-1/2),cosh(_x),sinh(_x),tanh(_x),

(_x^2+1)^(-1/2),(_x^2-1)^(-1/2)]
```

- 54. sdiv(poly1, poly2[,v])
 - :: poly1 を poly2 で割る除算が最後まで実行できる場合に商を求める
- 55. $\operatorname{sdivm}(\operatorname{poly1}, \operatorname{poly2}, \operatorname{mod}[, v])$
 - :: GF(mod) 上で poly1 を poly2 で割る除算が最後まで実行できる場合に商を求める
- 56. $\operatorname{srem}(\operatorname{poly1}, \operatorname{poly2}[,v])$
 - :: poly1 を poly2 で割る除算が最後まで実行できる場合に剰余を求める
- 57. $\operatorname{sremm}(\operatorname{poly1}, \operatorname{poly2}, \operatorname{mod}[, v])$
 - :: GF(mod) 上で polv1 を polv2 で割る除算が最後まで実行できる場合に剰余を求める
- 58. sqr(poly1, poly2[,v])
 - :: poly1 を poly2 で割る除算が最後まで実行できる場合に商, 剰余を求める
- 59. $\operatorname{sqrm}(poly1, poly2, mod[, v])$
 - :: GF(mod) 上で poly1 を poly2 で割る除算が最後まで実行できる場合に商, 剰余を求める
 - poly1 を poly2 の主変数 var(poly2) (引数 v がある場合には v) に関する多項式と見て, poly2 で、割り算を行う.
 - sdivm(), sremm(), sqrm() は GF(mod) 上で計算する.
 - 多項式の除算は、主係数どうしの割算により得られた商と、主変数の適当な冪の積を poly2 に掛けて、poly1 から引くという操作を poly1 の次数が poly2 の次数より小さくなるまで繰り返して行う。この操作が、多項式の範囲内で行われるためには、各ステップにおいて主係数どうしの除算が、多項式としての整除である必要がある。これが、「除算が最後まで実行できる」ことの意味である。典型的な場合として、poly2 の主係数が、有理数である場合、あるいは、poly2 が poly1 の因子であることがわかっている場合などがある。
 - sqr() は商と剰余を同時に求めたい時に用いる.
 - 整数除算の商, 剰余は idiv, irem を用いる.
 - 係数に対する剰余演算は%を用いる.
 - 上の仮定を満たさない、より一般の場合の割り算を行う函数 rpdiv() がある.

```
[0] sdiv((x+y+z)^3,x^2+y+a);
x+3*y+3*z
[1] srem((x+y+z)^2,x^2+y+a);
(2*y+2*z)*x+y^2+(2*z-1)*y+z^2-a
[2] X=(x+y+z)*(x-y-z)^2;
x^3+(-y-z)*x^2+(-y^2-2*z*y-z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
[3] Y=(x+y+z)^2*(x-y-z);
x^3+(y+z)*x^2+(-y^2-2*z*y-z^2)*x-y^3-3*z*y^2-3*z^2*y-z^3
[4] G=gcd(X,Y);
x^2-y^2-2*z*y-z^2
[5] sqr(X,G);
[x-y-z,0]
[6] sqr(Y,G);
[x+y+z,0]
[7] sdiv(y*x^3+x+1,y*x+1);
```

```
divsp: cannot happen
return to toplevel
```

- 60. tdiv([poly1,poly2])
 - :: poly1 が poly2 で割れたら商を割れなければ 0 を返す
 - ある多項式が既約因子であることはわかっているが、その重複度がわからない場合に、tdiv()を繰り返し呼ぶことにより重複度がわかる.

```
[1] Y=(x+y+z)^5*(x-y-z)^3; x^8+(2*y+2*z)*x^7+(-2*y^2-4*z*y-2*z^2)*x^6 +(-6*y^3-18*z*y^2-18*z^2*y-6*z^3)*x^5 +(6*y^5+30*z*y^4+60*z^2*y^3+60*z^3*y^2+30*z^4*y+6*z^5)*x^3 +(2*y^6+12*z*y^5+30*z^2*y^4+40*z^3*y^3+30*z^4*y^2+12*z^5*y+2*z^6)*x^2 +(-2*y^7-14*z*y^6-42*z^2*y^5-70*z^3*y^4-70*z^4*y^3-42*z^5*y^2 -14*z^6*y-2*z^7)*x-y^8-8*z*y^7-28*z^2*y^6-56*z^3*y^5-70*z^4*y^4 -56*z^5*y^3-28*z^6*y^2-8*z^7*y-z^8 [2] for(I=0,F=x+y+z,T=Y; T=tdiv(T,F); I++); [3] I;
```

- 61. subst(rat[, varn, ratn]*)
 - :: 有理式の特定の不定元に、定数あるいは多項式、有理式などを代入する
- 62. psubst(rat[,varn,ratn]*)
 - :: 有理式の特定の不定元に、定数あるいは多項式、有理式などを代入する
 - subst(rat, var1, rat1, var2, rat2,...) は, subst(subst(rat, var1, rat1), var2, rat2,...) と同じ意味である.
 - 入力の左側から順に代入を繰り返すために、入力の順によって結果が変わることがある.
 - subst() は, sin() などの函数の引数に対しても代入を行う. psubst() は, このような函数を一つの独立した不定元と見なして, その引数には代入は行わない (partial substitution のつもり)
 - Asir では、有理式の約分は自動的には行わないため、有理式の代入は、思わぬ計算時間の増大を引き起こす場合がある。有理式を代入する場合には、問題に応じた独自の函数を書いて、なるべく分母、分子が大きくならないように配慮することもしばしば必要なる。分数を代入する場合も同様である。
 - 約分しながら代入を行う函数 mysubst() がある. また mulsubst() は、複数の代入の順序にはよらない.
 - subst() の引数 rat が文字列ならばエラーとなるが, mysubst() や mulsubst() はそのまま rat を返す
 - subst の引数 rat がリスト, 配列, 行列, あるいは分散表現多項式であった場合には, それぞれの要素または係数に対して再帰的に subst を行う.

```
[0] subst(x^3-3*y*x^2+3*y^2*x-y^3,y,2);
x^3-6*x^2+12*x-8
[1] subst(@@,x,-1);
-27
[2] subst(x^3-3*y*x^2+3*y^2*x-y^3,y,2,x,-1);
-27
[3] subst(x*y^3,x,y,y,x);
x^4
[4] subst(x*y^3,y,x,x,y);
```

```
[5] subst(x*y^3,x,t,y,x,t,y);
    y*x^3
    [6] mulsubst(x*y^3,[[x,y],[y,x]]);
    y*x^3
    [7] subst(x*sin(x),x,t);
    sin(t)*t
    [8] psubst(x*sin(x),x,t);
    sin(x)*t
    [9] subst(["afo",x],x,2);
    subst : invalid argument
    return to toplevel
    [10] os_md.mysubst(["afo",x],[x,2]);
    [afo,2]
63. diff(rat[, varn]*) または diff(rat, varlist)
   :: rat を varn あるいは varlist の中の変数で順次微分する
    • 与えられた初等函数を varn あるいは varlist の中の変数で順次微分する.
    ● 左側の不定元より, 順に微分していく. つまり, diff(rat,x,y) は, diff(diff(rat,x),y) と同じ
      である.
    • 有理式を微分する場合は約分されないので分母が膨らんで計算が複雑になるのを避ける appldo()
      という函数がある.これは行列やベクトルにも対応している.
    [0] diff((x+2*y)^2,x);
    2*x+4*y
    [1] diff((x+2*y)^2,x,y);
    [2] diff(x/sin(log(x)+1),x);
    (\sin(\log(x)+1)-\cos(\log(x)+1))/(\sin(\log(x)+1)^2)
    [3] diff(sin(x),[x,x,x,x]);
    sin(x)
    [4] diff(sin(x)+1/(a+1),x,x);
    (-\sin(x)*a^4-4*\sin(x)*a^3-6*\sin(x)*a^2-4*\sin(x)*a-\sin(x))/(a^4+4*a^3+6*a^2+4*a+1)
    [5] appldo(dx^2, sin(x)+1/(a+1), x);
    -\sin(x)
64. res(var, poly1, poly2 [, mod])
   :: 変数 var に関する多項式 poly1 と poly2 の終結式を求める
    • 部分終結式アルゴリズムによる.
    ● 引数 mod がある時, GF(mod) 上での計算を行う.
    [0] res(t,(t^3+1)*x+1,(t^3+1)*y+t);
    -x^3-x^2-y^3
65. fctr(poly)
   :: poly を既約因子に分解する
66. sqfr(poly)
   :: poly を無平方分解する
```

y^4

- 有理数係数の多項式 poly を因数分解する. fctr() は既約因子分解, sqfr() は無平方因子分解.
- 結果は [[数係数,1],[因子, 重複度],...] なるリスト.
- 数係数と全ての因子^{*}重複度 の積が poly と等しい.
- 数係数 は、(poly/数係数)が、整数係数で、係数の GCD が 1 となるような多項式になるように選ばれている (cf. ptozp()).

```
[0] fctr(x^10-1);

[[1,1],[x-1,1],[x+1,1],[x^4+x^3+x^2+x+1,1],[x^4-x^3+x^2-x+1,1]]

[1] fctr(x^3+y^3+(z/3)^3-x*y*z);

[[1/27,1],[9*x^2+(-9*y-3*z)*x+9*y^2-3*z*y+z^2,1],[3*x+3*y+z,1]]

[2] A=(a+b+c+d)^2;

a^2+(2*b+2*c+2*d)*a+b^2+(2*c+2*d)*b+c^2+2*d*c+d^2

[3] fctr(A);

[[1,1],[a+b+c+d,2]]

[4] A=(x+1)*(x^2-y^2)^2;

x^5+x^4-2*y^2*x^3-2*y^2*x^2+y^4*x+y^4

[5] sqfr(A);

[[1,1],[x+1,1],[-x^2+y^2,2]]

[6] fctr(A);

[[1,1],[x+1,1],[-x-y,2],[x-y,2]]
```

67. ufctrhint(poly, hint)

- :: 次数情報を用いた有理数係数の1変数多項式の因数分解
 - 各既約因子の次数が自然数 hint の倍数であることがわかっている場合に poly の既約因子分解を fctr() より効率良く行う. poly が, d 次の拡大体上におけるある多項式のノルム (section 代数的 数に関する演算) で無平方である場合, 各既約因子の次数は d の倍数となる. このような場合に用いられる
- [0] A=t^9-15*t^6-87*t^3-125; t^9-15*t^6-87*t^3-125

Omsec

- [1] N=res(t,subst(A,t,x-2*t),A);
- $-x^81+1215*x^78-567405*x^75+139519665*x^72-19360343142*x^69$
- +1720634125410*x^66-88249977024390*x^63-4856095669551930*x^60
- +1999385245240571421*x^57-15579689952590251515*x^54
- $+15956967531741971462865*x^51$

. . .

- +140395588720353973535526123612661444550659875*x^6
- +10122324287343155430042768923500799484375*x^3
- +139262743444407310133459021182733314453125

980msec + gc : 250msec

[2] sqfr(N);

- $[[-1,1],[x^81-1215*x^78+567405*x^75-139519665*x^72+19360343142*x^69]$
- -1720634125410*x^66+88249977024390*x^63+4856095669551930*x^60
- $-1999385245240571421*x^57+15579689952590251515*x^54$

. . .

-10122324287343155430042768923500799484375*x^3

```
-139262743444407310133459021182733314453125,1]]
    20msec
    [3] fctr(N);
    [[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
    [x^18-486*x^15+98739*x^12-9316620*x^9+945468531*x^6-12368049246*x^3]
    +296607516309,1],[x^18-8667*x^12+19842651*x^6+19683,1],
    [x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3]
    +31524548679,1],
    [x^18+10773*x^12+2784051*x^6+307546875,1]
    167.050sec + gc : 1.890sec
    [4] ufctrhint(N,9);
    [[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
    [x^18-486*x^15+98739*x^12-9316620*x^9+945468531*x^6-12368049246*x^3]
    +296607516309,1],[x^18-8667*x^12+19842651*x^6+19683,1],
    [x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3]
    +31524548679,1],
    [x^18+10773*x^12+2784051*x^6+307546875,1]]
    119.340sec + gc : 1.300sec
68. modfctr(poly, mod)
   :: 有限体上での多項式の因数分解
    • 2^{29} 未満の自然数 mod を標数とする素体上で多項式 poly を既約因子に分解する.
    ◆ 結果は [[数係数,1],[因子,重複度],...] なるリスト.
    • 数係数 と 全ての 因子 重複度 の積が poly と等しい.
    ● 大きな位数を持つ有限体上の因数分解には fctr_ff() を用いる. (cf. 有限体に関する演算)
    [0] modfctr(x^10+x^2+1,2147483647);
    [[1,1],[x+1513477736,1],[x+2055628767,1],[x+91854880,1],
    [x+634005911,1], [x+1513477735,1], [x+634005912,1],
    [x^4+1759639395*x^2+2045307031,1]]
    [1] modfctr(2*x^6+(y^2+z*y)*x^4+2*z*y^3*x^2+(2*z^2*y^2+z^3*y)*x+z^4,3);
    [[2,1],[2*x^3+z*y*x+z^2,1],[2*x^3+y^2*x+2*z^2,1]]
```

- 69. ptozp(poly|factor=1)
 - :: 有理係数多項式を有理数倍して整数係数で係数の GCD が 1 の多項式に直す
 - 与えられた多項式 poly に適当な有理数を掛けて、整数係数かつ係数の GCD が 1 になるようにする.
 - 分数の四則演算は,整数の演算に比較して遅いため,種々の多項式演算の前に,多項式を整数係数に しておくことが望ましい.
 - 有理式を約分する red() で分数係数有理式を約分しても,分子多項式の係数は有理数のままであり,有理式の分子を求める nm() では,分数係数多項式は,分数係数のままの形で出力されるため,直ちに整数係数多項式を得る事は出来ない.
 - オプション factor が設定された場合の戻り値はリスト [g,c] である. ここで c は有理数であり、g がオプションのない場合の戻り値であり、poly = c * g となる.

```
[0] ptozp(2*x+5/3);
6*x+5
```

```
2*x+5/3
70. % poly % m
   :: poly の各係数を整数 m で割った剰余で置き換えた多項式を返す
    • 結果の係数は全て正の整数となる.
    • poly は整数でもよい. この場合, 結果が正に正規化されることを除けば irem() と同様に用いるこ
      とができる.
    • poly の係数, m とも整数である必要があるが, チェックは行なわれない.
    [0] (x+2)^5 \% 3;
   x^5+x^4+x^3+2*x^2+2*x+2
   [1] (x-2)^5 \% 3;
   x^5+2*x^4+x^3+x^2+2*x+1
   [2] (-5) % 4;
   [3] irem(-5,4);
   -1
71. prim(poly[,v])
   :: 有理係数多項式 poly の原始的部分 (primitive part)
72. cont(poly[,v])
   :: 有理係数多項式 poly の容量 (content)
    • poly の主変数 (引数 v がある場合には v) に関する原始的部分, 容量を求める
    [0] E=(y-z)*(x+y)*(x-z)*(2*x-y);
    (2*y-2*z)*x^3+(y^2-3*z*y+2*z^2)*x^2+(-y^3+z^2*y)*x+z*y^3-z^2*y^2
    [1] prim(E);
   2*x^3+(y-2*z)*x^2+(-y^2-z*y)*x+z*y^2
   [2] cont(E):
   y-z
```

(y-z)*x-z*y+z^2 73. gcd(poly1,poly2[,mod])

[3] prim(E,z);

[1] nm(2*x+5/3);

- :: 二つの多項式の最大公約式 (GCD) を求める
- 74. gcdz(poly1, poly2)
 - :: 有限体上の二つの多項式の最大公約式 (GCD) を求める
 - gcd() は有理数体上の多項式としての GCD を返す. すなわち, 結果は整数係数で, かつ係数の GCD が 1 になるような多項式, または, 互いに素の場合は 1 を返す.
 - gcdz() は poly1, poly2 ともに整数係数の場合に, 整数環上の多項式としての GCD を返す. すなわち, gcd() の値に, 係数全体の整数 GCD の値を掛けたものを返す.
 - 引数 mod がある時, gcd() は GF(mod) 上での GCD を返す.
 - gcd(), gcdz() は Extended Zassenhaus アルゴリズムによる. 有限体上の GCD は PRS アルゴリズムによっているため、大きな問題、GCD が 1 の場合などにおいて効率が悪い.
 - 有理函数体係数の多項式環や常微分作用素環, さらには整数環に汎用的に対応している mygcd() がある.
 - [0] $gcd(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);$ $x^3+3*x^2+3*x+1$

```
[1] gcdz(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
6*x^3+18*x^2+18*x+6
[2] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y));
x^2-y^2
[3] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y),2);
x^3+y*x^2+y^2*x+y^3
```

75. red(rat)

:: rat を約分する

- Asir は有理数の約分を常に自動的に行う. しかし, 有理式については通分は行うが, 約分はユーザーが指定しない限り行わない. この約分を行うコマンドが red である.
- EZGCD により rat の分子, 分母を約分する.
- 出力される有理式の分母の多項式は、各係数の GCD が 1 の整数係数多項式である. 分子について は整数係数多項式となるとは限らない.
- GCD は大変重い演算なので、他の方法で除ける共通因子は可能な限り除くのが望ましい。また、分母、分子が大きくなってからのこの函数の呼び出しは、非常に時間が掛かる場合が多い。有理式演算を行う場合は、ある程度頻繁に、約分を行う必要がある。

```
[0] (x^3-1)/(x-1);

(x^3-1)/(x-1)

[1] red((x^3-1)/(x-1));

x^2+x+1

[2] red((x^3+y^3+z^3-3*x*y*z)/(x+y+z));

x^2+(-y-z)*x+y^2-z*y+z^2

[3] red((3*x*y)/(12*x^2+21*y^3*x));

(y)/(4*x+7*y^3)

[4] red((3/4*x^2+5/6*x)/(2*y*x+4/3*x));

(9/8*x+5/4)/(3*y+2)
```

- 76. umul (p_1, p_2)
 - :: 整数係数一変数多項式の高速乗算
- 77. umul_ff(p_1, p_2)
 - :: 有限体係数一変数多項式の高速乗算
- 78. usquare(p_1)
 - :: 整数係数一変数多項式の高速 2 乗算
- 79. usquare_ff(p_1)
 - :: 有限体係数一変数多項式の高速 2 乗算
- 80. utmul (p_1, p_2, d)
 - :: 整数係数一変数多項式の高速乗算 (打ち切り次数指定)
- 81. utmul_ff(p_1 , p_2 , d)
 - :: 有限体係数一変数多項式の高速乗算 (打ち切り次数指定)
 - 一変数多項式の乗算を,次数に応じて決まるアルゴリズムを用いて高速に行う.
 - umul(), usquare(), utmul() は係数を整数と見なして,整数係数の多項式として積を求める. 係数が有限体 GF(p) の元の場合には,係数は 0 以上 p 未満の整数と見なされる.
 - umul_ff(), usquare_ff(), utmul_ff() は、係数を有限体の元と見なして、有限体上の多項式として積を求める。ただし、引数の係数が整数の場合、整数係数の多項式を返す場合もあるので、これらを呼び出した結果が有限体係数であることを保証するためにはあらかじめ simp_ff() で係数を有限体の元に変換しておくとよい。
 - umul_ff(), usquare_ff(), utmul_ff() は, $GF(2^n)$ 係数の多項式を引数に取れない.

- umul(), umul_ff() の結果は p_1 , p_2 の積, usquare(), usquare_ff() の結果は p_1 の 2 乗, utmul(), utmul_ff() の結果は p_1 , p_2 の積の, d 次以下の部分となる.
- いずれも、set_upkara() (utmul, utmul_ff については set_uptkara()) で返される値以下の次数に対しては通常の筆算形式の方法、set_upfft() で返される値以下の次数に対しては Karatsuba 法、それ以上では FFT および中国剰余定理が用いられる。 すなわち、整数に対する FFT ではなく、十分多くの 1 ワード以内の法 mi を用意し、 p_1 、 p_2 の係数を mi で割った余りとしたものの積を、FFT で計算し、最後に中国剰余定理で合成する。 その際、有限体版の函数においては、最後に基礎体を表す法で各係数の剰余を計算するが、ここでは Shoup によるトリック [Shoup] を用いて高速化してある

[0] load("fff")\$

```
[1] cputime(1)$
    0sec(1.407e-05sec)
    [2] setmod_ff(2^160-47);
    1461501637330902918203684832716283019655932542929
    0sec(0.00028sec)
    [3] A=randpoly_ff(100,x)$
    0sec(0.001422sec)
    [4] B=randpoly_ff(100,x)$
    0sec(0.00107sec)
    [5] for(I=0;I<100;I++)A*B;</pre>
    7.77 \sec + \gcd : 8.38 \sec (16.15 \sec)
    [6] for(I=0;I<100;I++)umul(A,B);</pre>
    2.24sec + gc : 1.52sec(3.767sec)
    [7] for(I=0;I<100;I++)umul_ff(A,B);</pre>
    1.42 sec + gc : 0.24 sec(1.653 sec)
    [8] for(I=0;I<100;I++)usquare_ff(A);</pre>
    1.08sec + gc : 0.21sec(1.297sec)
    [9] for(I=0;I<100;I++)utmul_ff(A,B,100);</pre>
    1.2sec + gc : 0.17sec(1.366sec)
    [10] deg(utmul_ff(A,B,100),x);
    100
82. kmul(p_1, p_2)
   :: 一変数多項式の乗算を Karatsuba 法で行う
83. ksquare(p_1)
   :: 一変数多項式の高速 2 乗算を Karatsuba 法で行う
84. ktmul(p_1, p_2, d)
   一変数多項式の高速乗算 (打ち切り次数指定) を Karatsuba 法で行う
     ● 一変数多項式の乗算を Karatsuba 法で行う.
     ● 基本的には umul() と同様だが、次数が大きくなっても FFT を用いた高速化は行わない.
     • GF(2^n) 係数の多項式にも用いることができる.
    [0] load("code/fff");
    [1] setmod_ff(defpoly_mod2(160));
    x^160+x^5+x^3+x^2+1
```

A=randpoly_ff(100,x)\$
B=randpoly_ff(100,x)\$
[2] umul(A,B)\$
umul : invalid argument
return to toplevel
[3] kmul(A,B)\$

- 85. set_upkara([threshold])
 - :: 1 変数多項式の積演算における N^2 , Karatsuba, FFT アルゴリズムの切替えの閾値
- 86. set_uptkara([threshold])
 - :: 1 変数多項式の積演算における N^2 , Karatsuba, FFT アルゴリズムの切替えの閾値
- 87. set_upfft([threshold])
 - :: 1 変数多項式の積演算における N^2 , Karatsuba, FFT アルゴリズムの切替えの閾値
 - いずれも、一変数多項式の積の計算における、アルゴリズム切替えの閾値を設定する.
 - 一変数多項式の積は、次数 N が小さい範囲では通常の N^2 アルゴリズム、中程度の場合 Karatsuba アルゴリズム、大きい場合には FFT アルゴリズムで計算される. この切替えの次数を設定する.
 - 詳細は、それぞれの積函数の項を参照のこと.
- 88. utrunc(p,d)
 - :: 一変数多項式を次数で切る
- 89. udecomp(p,d)
 - :: 一変数多項式を次数で分ける
- 90. ureverse(p)
 - :: 一変数多項式の次数を逆にした多項式を作る
 - p の変数を x とする. このとき $p = p_1 + x^{d+1}p_2$ (p_1 の次数は d 以下) と分解できる. utrunc() は p_1 を返し, udecomp() は [p_1 , p_2] を返す.
 - p の次数を e とし, i 次の係数を p[i] とすれば, ureverse() は $p[e] + p[e-1]x + \cdots$ を返す
 - [0] utrunc($(x+1)^10,5$);

252*x^5+210*x^4+120*x^3+45*x^2+10*x+1

[1] $udecomp((x+1)^10,5);$

[252*x^5+210*x^4+120*x^3+45*x^2+10*x+1,x^4+10*x^3+45*x^2+120*x+210]

[2] ureverse($3*x^3+x^2+2*x$);

 $2*x^2+x+3$

- 91. uinv_as_power_series(p,d)
 - :: 一変数多項式を冪級数とみて, 逆元計算
- 92. ureverse_inv_as_power_series(p,d)
 - :: 一変数多項式を次数を逆にして冪級数とみて, 逆元計算
 - uinv_as_power_series (p,d) は、定数項が 0 でない多項式 p に対し、pr-1 の最低次数が d+1 以上になるような 高々 d 次の多項式 r を求める.
 - ureverse_inv_as_power_series(p,d) は p の次数を e とするとき, p_1 =ureverse(p,e) に対して uinv_as_power_series(p_1 ,d) を計算する.
 - rembymul_precomp() の引数として用いる場合, ureverse_inv_as_power_series() の結果を そのまま用いることができる.

[123] $A=(x+1)^5$;

 $x^5+5*x^4+10*x^3+10*x^2+5*x+1$

[124] uinv_as_power_series(A,5);

-126*x^5+70*x^4-35*x^3+15*x^2-5*x+1

```
[126] A*R;
   -126*x^10-560*x^9-945*x^8-720*x^7-210*x^6+1
   [127] A=x^10+x^9;
   x^10+x^9
   [128] R=ureverse_inv_as_power_series(A,5);
   -x^5+x^4-x^3+x^2-x+1
   [129] ureverse(A)*R;
   -x^6+1
93. udiv(p_1, p_2)
   :: 一変数多項式 p_1, p_2 に対し、商を返す
94. urem(p_1, p_2)
   :: - 変数多項式 <math>p_1, p_2 に対し、剰余を返す
95. urembymul(p_1, p_2)
   :: - 変数多項式 <math>p_1, p_2 に対し、剰余を返す
96. urembymul_precomp(p_1, p_2, inv)
   :: 固定された多項式による剰余計算を多数行う場合などに用いる
97. ugcd(p_1, p_2)
   :: 一変数多項式 p_1, p_2 に対し, GCD を返す
    • 一変数多項式 p_1, p_2 に対し、udiv は商、urem、urembymul は剰余、ugcd は GCD を返す. これら
      は、密な一変数多項式に対する高速化を図ったものである. urembymul は、p_2 による剰余計算を、
      p_2 の冪級数としての逆元計算および, 乗算 2 回に置き換えたもので, 次数が大きい場合に有効で
      ある.
    • urembymul_precomp は、固定された多項式による剰余計算を多数行う場合などに効果を発揮する.
      第3引数は,あらかじめ ureverse_inv_as_power_series() により計算しておく.
    [0] setmod_ff(2^160-47);
    1461501637330902918203684832716283019655932542929
    [1] A=randpoly_ff(200,x)$
    [2] B=randpoly_ff(101,x)$
    [3] cputime(1)$
    0sec(1.597e-05sec)
    [4] srem(A,B)$
    0.15 sec + gc : 0.15 sec(0.3035 sec)
    [5] urem(A,B)$
    0.11sec + gc : 0.12sec(0.2347sec)
    [6] urembymul(A,B)$
    0.08sec + gc : 0.09sec(0.1651sec)
    [7] R=ureverse_inv_as_power_series(B,101)$
    0.04sec + gc : 0.03sec(0.063sec)
    [8] urembymul_precomp(A,B,R)$
    0.03 sec(0.02501 sec)
98. pari(content,p)
   :: x 変数の多項式とみて、係数の最大公約元を返す
    [0] pari(content, 12*x^2-9*x+15);
```

```
1/3
    [2] pari(content,3*y^2*x^2-2*x*y+2/3*y);
    1/3*y
99. pari(round,p)
   :: 多項式の各係数を近似整数に置き換える
    [0] pari(round, (1.3+x+3*y)^2);
    x^2+(6*y+3)*x+9*y^2+8*y+2
100. pari(roots, p[,prec])
   :: 多項式の根を求める
    [0] pari(roots,x^3+2);
    [ -1.25992104989487316475
     (0.62996052494743658237-1.091123635971721403457*@i)
     (0.62996052494743658237+1.091123635971721403457*@i) ]
101. pari(disc,p)
   :: x 変数の多項式 p の判別式を返す.
    [0] pari(disc,a*x^2+b*x+c);
    -4*c*a+b^2
    [1] pari(disc,x^4+a*x^2+b*x+c);
    16*c*a^4-4*b^2*a^3-128*c^2*a^2+144*c*b^2*a-27*b^4+256*c^3
   3.3.3 リスト, ベクトル, 配列の演算
102. car(list)
   :: 空でない list の先頭要素(空の場合は空のリスト)を返す
103. cdr(list)
   :: 空でない list から先頭要素を除いた(空の場合は空の) リストを返す
104. cons(obj, list)
   :: list の先頭に obj を加えたリストを返す
105. append(list1, list2)
   :: list1 の後に list2 をつなげたリストを返す
   m21(|list=1)を使うと,一度に多くのリストをつなげることができる.
106. reverse(list)
   :: 逆順に並べ替えたリストを返す
107. length(lv)
   :: リストまたはベクトルの長さを返す
     • リストは [obj1,obj2,...] と表される. obj1 が先頭要素である.
     • car() は、空でない list の先頭要素を出力する. 空リストが入力された場合は、空リストが出力さ
      れる.
     • cdr() は、空でない list から先頭要素を取り除いたリストを出力する. 空リストが入力された場合
```

[1] pari(content,3*x^2-2*x+2/3);

は, 空リストが出力される.

の要素の並び]を出力する.

• cons() は, *list* の先頭に obj を付け加えたリストを出力する.

• reverse() は, list を逆順にしたリストを出力する.

• append() は, list1 の要素と list2 のすべての要素を結合させたリスト [list1 の要素の並び,list2

- length() は, list または vect の長さを出力する. 行列の要素の個数は, size() を用いる.
- リストは読み出し専用で、要素の入れ替えはできない. リストの n 番目の要素の取り出しは、cdr()を n 回適用した後 car() を適用することにより可能であるが、 便法として、ベクトル、 行列などの 配列と同様, インデックス [n] を後ろに付けることにより取り出すことができる. ただし、システ ム内部では、実際にポインタをn回たどるので、後ろの要素ほど取り出しに時間がかかる.
- cdr() は新しいセルを生成しないが, append() は, 実際には第1引数のリストの長さだけの cons()の繰り返しとなるため、第1引数のリストが長い場合には多くのメモリを消費することに なる. reverse() に関しても同様である.

```
[0] L = [[1,2,3],4,[5,6]];
     [[1,2,3],4,[5,6]]
     [1] car(L);
     [1,2,3]
     [2] cdr(L);
     [4, [5, 6]]
     [3] cons(x*y,L);
     [y*x,[1,2,3],4,[5,6]]
     [4] append([a,b,c],[d]);
     [a,b,c,d]
     [5] reverse([a,b,c,d]);
     [d,c,b,a]
     [6] length(L);
     [7] length(ltov(L));
     [8] L[2][0];
     5
108. newvect(len[, list])
    :: 長さ len のベクトルを生成する
109. vector(len[, list])
    :: 長さ len のベクトルを生成する
110. vect([elements])
```

- :: 要素の並びからベクトルを生成する
 - vect() は要素の並びからベクトルを生成する.
 - vector() は newvect() の別名である.
 - newvect() は長さ len のベクトルを生成する. 第2引数がない場合, 各成分は0 に初期化される. 第2引数がある場合、インデックスの小さい成分から、リストの各要素により初期化される. 各要 素は、先頭から順に使われ、足りない分は 0 が埋められる.
 - ベクトルの成分は, 第0成分から第 len-1 成分となる. (第1成分からではない事に注意.)
 - リストは各成分が、ポインタを辿る事によってシーケンシャルに呼び出されるのに対し、ベクトル は各成分が第一成分からのメモリ上の displacement (変位) によってランダムアクセスで呼び出さ れ、その結果、成分のアクセス時間に大きな差が出てくる.成分アクセスは、リストでは、成分の量 が増えるに従って時間がかかるようになるが、ベクトルでは、成分の量に依存せずほぼ一定である.
 - Asir では、縦ベクトル、横ベクトルの区別はない. 行列を左から掛ければ縦ベクトルとみなされる し、右から掛ければ横ベクトルとみなされる.
 - ベクトルの長さは size() によって得られる. 函数の引数としてベクトルを渡した場合, 渡された 函数は、そのベクトルの成分を書き換えることができる.

```
[0] A=newvect(5);
     [00000]
    [1] A=newvect(5,[1,2,3,4,[5,6]]);
    [ 1 2 3 4 [5,6] ]
    [2] A[0];
    [3] A[4];
    [5,6]
    [4] size(A);
    [5]
    [5] length(A);
    [6] vect(1,2,3,4,[5,6]);
    [ 1 2 3 4 [5,6] ]
    [7] def afo(V) { V[0] = x; }
    [8] afo(A)$
    [9] A;
    [ x 2 3 4 [5,6] ]
111. ltov(list)
    :: list をベクトルに変換する
     • リスト list を同じ長さのベクトルに変換する.
     • この函数は newvect(length(list), list) に等しい
    [0] A=[1,2,3];
    [1] ltov(A);
    [123]
112. vtol(vect)
   :: ベクトルをリストに変換する
     • 長さ n のベクトル vect を [vect[0], ..., vect[n-1]] なるリストに変換する.
     • リストからベクトルへの変換は newvect() で行う.
     [0] A=newvect(3,[1,2,3]);
    [123]
    [1] vtol(A);
    [1,2,3]
113. newbytearray(len,[listorstring])
    :: newvect と同様にして byte array を生成する
     • 文字列で初期値を指定することも可能である.
     • byte array の要素のアクセスは配列と同様である.
     [0] A=newbytearray(3);
    100 00 001
     [1] A=newbytearray(3,[1,2,3]);
    |01 02 03|
     [2] A=newbytearray(3,"abc");
    |61 62 63|
```

```
[3] A[0];
    97
    [4] A[1]=123;
    123
    [5] A;
    |61 7b 63|
114. size(vect/mat)
   :: 行列のサイズまたはベクトルの長さを求める函数(戻り値はリスト)
     • vect の長さ、または mat の大きさをリスト [vect の長さ]、 [mat の行数, mat の列数] で出力
      する.
     • vect の長さは length() で求めることもできる.
     • list の長さは length() を, 有理式に現れる単項式の数は nmono() を用いる.
    [0] A = newvect(4);
    [0000]
    [1] size(A);
    [4]
    [2] length(A);
    [3] B = newmat(2,3,[[1,2,3],[4,5,6]]);
    [123]
    [456]
    [4] size(B);
    [2,3]
115. qsort(array [,func])
   :: 一次元配列 array をソートする.
     ● 一次元配列 (リストまたはベクトル) を quick sort でソートする.
     • 比較用函数が指定されていない場合、オブジェクトどうしの比較結果で順序が下のものから順に並
      べ換えられる.
     • 0, 1, -1 を返す 2 引数函数が func として与えられた場合, func(A,B)=1 の場合に A<B として,
      順序が下のものから順に並べ換えられる.
     • 配列は新たに生成されず、引数の配列の要素のみ入れ替わる.
    [0] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]));
    [ -1 0 1 2 3 4 6 6 7 9 ]
    [1] def rev(A,B) { return A>B?-1:(A<B?1:0); }</pre>
    [2] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]),rev);
    [ 9 7 6 6 4 3 2 1 0 -1 ]
    [3] qsort([1,4,6,7,3,2,9,6,0,-1]);
    [-1,0,1,2,3,4,6,6,7,9]
```

3.3.4 行列の演算

```
116. newmat(row, col [, [[a,b,...], [c,d,...],...]])
117. matrix(row, col [, [[a,b,...], [c,d,...],...]])
```

:: row 行 col 列の行列を生成する

• matrix は newmat の別名である.

- row 行 col 列の行列を生成する. 第3引数がない場合,各成分は0に初期化される. 第3引数がある場合,インデックスの小さい成分から,各行が,リストの各要素(これはまたリストである)により初期化される. 各要素は,先頭から順に使われ,足りない分は0が埋められる.
- 行列のサイズは size() で得られる.

[12]

- Mが行列のとき, M[I] により第 I 行をベクトルとして取り出すことができる. このベクトルは, もとの行列と成分を共有しており, いずれかの成分を書き換えれば, 他の対応する成分も書き換わることになる.
- 函数の引数として行列を渡した場合, 渡された函数は, その行列の成分を書き換えることができる.

```
[0] A = newmat(3,3,[[1,1,1],[x,y],[x^2]]);
    [111]
    [xy0]
    [x^2 0 0]
    [1] det(A);
    -y*x^2
    [2] size(A);
    [3,3]
    [3] A[1];
    [xy0]
    [4] A[1][3];
    getarray : Out of range
    return to toplevel
118. mat(vector[,...])
119. matr(vector[,...])
   :: 行ベクトル(またはリスト)の並びから行列を生成する
120. matc(vector[,...])
   :: 列ベクトル(またはリスト)の並びから行列を生成する
     • mat() は matr() の別名.
     ● 行列のサイズは、最初のベクトル(リスト)の長さと引数の個数で決まり、足りない部分は0で埋
      められる.
     ● s2m() の方が高機能
    [0] matr([1,2,3],[4,5,6],[7,8]);
    [123]
    [456]
    [780]
    [1] matr([1,2],[4,5,6],[7,8,0]);
    [12]
    Γ45<sub>1</sub>
    [78]
    [2] matc([1,2,3],[4,5,6],[7,8]);
    [ 1 4 7 ]
    [258]
    [360]
    [3] mat(1tov([1,2]), [4,5,6]);
```

[45]

121. det(mat[,mod])

:: mat の行列式

122. $nd_det(mat[,mod])$

- :: 有理数または有限体上の多項式行列 mat の行列式
 - det() および nd_det() は行列 mat の行列式を求める.
 - 引数 mod がある時, GF(mod) 上での行列式を求める. 分数なしのガウス消去法によっているため, 多変数多項式を成分とする行列に対しては小行列式展開による方法のほうが効率がよい場合もある.
 - nd_det() は有理数または有限体上の多項式行列の行列式計算専用である. アルゴリズムはやはり 分数なしのガウス消去法だが, データ構造および乗除算の工夫により, 一般に det() より高速に計 算できる.
 - 有理式を成分とする行列には非対応なので、mydet() または mydet2() を用いる.

```
[0] A=newmat(5,5)$
     [1] V=[x,y,z,u,v];
     [x,y,z,u,v]
     [2] for(I=0;I<5;I++)for(J=0,B=A[I],W=V[I];J<5;J++)B[J]=W^J;
     [3] A;
     [ 1 \times \times^2 \times^3 \times^4 ]
     [ 1 y y^2 y^3 y^4 ]
     [1 z z^2 z^3 z^4]
     [ 1 u u^2 u^3 u^4 ]
     [ 1 v v^2 v^3 v^4 ]
     [4] fctr(det(A));
     [[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],
     [-x+z,1],[-x+v,1],[-x+y,1]]
     B=mat([1,0],[0,1/x]);
     Γ 1 0 T
     [ 0 (1)/(x) ]
     [5] det(B);
     internal error (SEGV)
     return to toplevel
     [6] os_md.mydet(B);
     (1)/(x)
123. invmat(mat)
    :: 行列 mat の逆行列
     ● 逆行列は [分母, 分子] の形で返され, 分母が行列, 分母/分子 が逆行列となる.
     • 有理式を成分とする行列には非対応なので、そのときは myinv()を用いる.
     [0] A = newmat(3,3)$
     [1] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J;
     [2] A;
     [1 \times x^2]
     [ 1 y y^2 ]
     [1 z z^2]
```

```
[3] invmat(A);
     [[-z*y^2+z^2*y z*x^2-z^2*x -y*x^2+y^2*x]
     [ y^2-z^2 -x^2+z^2 x^2-y^2 ]
     [ -y+z x-z -x+y ], (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y]
     [4] A*B[0];
     [ (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 0 ]
     [ 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 ]
     [ 0 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y ]
     [5] map(red, A*B[0]/B[1]);
     [100]
     [010]
     [001]
     [6] C=mat([1,0],[0,1/x]);
     [10]
     [ 0 (1)/(x) ]
     [7] invmat(C);
     internal error (SEGV)
    return to toplevel
     [8] os_md.myinv(C);
     [10]
     [ 0 x ]
     [9] M=mat([2,0],[0,1/2]);
     [20]
     [ 0 1/2 ]
     [10] invmat(M);
     [[ 1/2 0 ]
     [ 0 2 ],1]
     [11] N=mat([2,0],[0,1]);
     [20]
     [ 0 1 ]
     [12] invmat(N);
     [[10]
     [ 0 2 ],2]
124. rowx(matrix, i, j)
    :: 第i行と第j行を交換する
125. rowm(matrix, i, c)
    :: 第i行をc倍する
126. rowa(matrix, i, j, c)
    :: 第i 行に第j 行のc 倍を加える
127. colx(matrix, i, j)
    :: 第i列と第j列を交換する
128. colm(matrix, i, c)
   :: 第 i 列を c 倍する.
129. cola(matrix, i, j, c)
    :: 第i列に第j列のc倍を加える.
```

```
• 行列が破壊されることに注意する.
    [0] A=newmat(3,3,[[1,2,3],[4,5,6],[7,8,9]]);
    [123]
    [456]
    [789]
    [1] rowx(A,1,2)$
    [2] A;
    [123]
    [789]
    [456]
    [3] rowm(A,2,x);
    [123]
    「789]
    [ 4*x 5*x 6*x ]
    [4] rowa(A,0,1,z);
    [ 7*z+1 8*z+2 9*z+3 ]
    [789]
    [ 4*x 5*x 6*x ]
130. pari(adj, mat)
   :: 行列 mat の余因子行列 (元の行列との積が行列式となる) を返す
    [0] pari(adj,mat([1,1,1],[x,1,1],[1,y,1]));
    [ -y+1 y-1 0 ]
    [-x+1 \ 0 \ x-1]
    [ y*x-1 -y+1 -x+1 ]
131. pari(trace, mat)
   :: 行列 mat の trace を返す
    [0] pari(trace, mat([1,1,1],[x,1,1],[1,y,1]));
132. pari(signat, mat)
   :: 実対称行列の符号を返す
    [0] pari(signat,mat([1,2,3],[1,1,1],[3,2,1]));
    [21]
133. pari(indexrank, mat)
   :: 行列 mat の階数に等しいサイズの正則小行列の一つの行と列の位置を返す
    [0] pari(indexrank,mat([1,2,3],[2,4,6],[1,3,2],[2,5,5],[0,1,-1]));
    [[13][12]]
134. pari(supplement, mat)
   :: 列ベクトルが一次独立な行列 mat の右に列を補って正則正方行列を作る
    [0] A=mat([1,1],[1,1],[1,0],[0,1]);
```

• 行列の基本変形を行うための函数である.

```
[11]
    [11]
    [10]
    [ 0 1 ]
    [1] pari(supplement,A);
    [1100]
    [1110]
    [1000]
    [0101]
135. pari(hess, mat)
   :: 正方行列をヘッセンベルグ行列に変換する
   ヘッセンベルグ行列(対角成分の2つより下の成分が0の行列)に相似変換する.
    [0]pari(hess,mat([1,2,3],[4,5,6],[7,8,9]));
    [ 1 29/7 2 ]
    [ 7 95/7 8 ]
    [ 0 54/49 3/7 ]
136. pari(eigen, mat[, prec])
   :: 数を成分とする行列の固有ベクトルを返す
    [0] A=os_md.s2m("(13)2,(10)(14)");
    [ 13 2 ]
    [ 10 14 ]
    [1] pari(eigen,A);
    [-1/2 \ 2/5]
    [11]
137. pari(jacobi, mat[, prec])
   :: 実対称行列の固有値と固有ベクトルを返す
    [0] pari(jacobi,mat([1,2],[2,1]));
    [ 0.70710678118654752449 -0.70710678118654752438 ]
     [ 0.70710678118654752438  0.70710678118654752449 ] ]
   3.3.5 文字列に関する演算
138. rtostr(obj)
   :: obj を文字列に変える
    ● 任意のオブジェクト obj を文字列に変える.
    ● 整数などを文字列に変換して変数名と結合することにより, 添字付きの不定元を生成する場合に多
      く用いられる.
    ● 逆に, 文字列を不定元に変換する時には, strtov() (cf. makev()) を用いる.
    [0] A=afo;
    afo
    [1] type(A);
    2
```

```
[2] B=rtostr(A);
    afo
    [3] type(B);
    7
    [4] B+"1";
    afo1
139. strtov(str)
   :: str (文字列) を不定元に変える
     • 不定元として変換可能な文字列とは, 英小文字で始まり, 英字, 数字および記号 _ で作られる文字列
     • rtostr() と組合せて、プログラム中で自動的に不定元を生成したい時に用いられる.
    [0] A="afo";
    afo
    [1] for (I=0;I<3;I++) {B=strtov(A+rtostr(I)); print([B,type(B)]);}</pre>
    [afo0,2]
    [afo1,2]
140. eval_str(str)
   :: str (文字列) を評価する.
     • Asir の parser が受理可能な文字列を評価してその結果を返す.
     • 評価可能な文字列は、式を表すものに限る.
     • 論理的には rtostr() の逆函数となる.
     • Mathematica の文字列の評価には evalma() を用いる.
    [0] eval_str("1+2");
    [1] fctr(eval_str(rtostr((x+y)^10)));
    [[1,1],[x+y,10]]
141. strtoascii(str)
   :: 文字列をアスキーコード (1以上 255以下の整数) のリストで表す
   strtoascii() は文字列を整数のリストに変換する. 各整数は文字列のアスキーコードを表す.
142. asciitostr(list)
   :: アスキーコードの列を文字列に変換する
   asciitostr() は asciitostr() の逆函数である.
    [0] strtoascii("abcxyz");
    [97,98,99,120,121,122]
    [1] asciitostr(0);
    abcxyz
    [2] asciitostr([256]);
    asciitostr : argument out of range
    return to toplevel
143. str_len(str)
   :: 文字列の長さを返す
144. str_chr(str,start,c)
   :: 文字が最初に現れる位置を返す
```

- str の start 番目の文字からスキャンして 最初に c の最初の文字が現れた位置を返す. 文字列の先頭は 0 番目とする
- str_char() が上位互換函数. str_str() はより多機能な函数.

```
[0] Line="123 456 (x+y)^3";
123 456 (x+y)^3
[1] Sp1 = str_chr(Line,0," ");
3
[2] D0 = eval_str(sub_str(Line,0,Sp1-1));
123
[3] Sp2 = str_chr(Line,Sp1+1," ");
7
[4] D1 = eval_str(sub_str(Line,Sp1+1,Sp2-1));
456
[5] C = eval_str(sub_str(Line,Sp2+1,str_len(Line)-1));
x^3+3*y*x^2+3*y^2*x+y^3
```

- 145. sub_str(str,start,end)
 - :: 部分文字列を返す
 - str_cut() はより多機能な函数.

3.3.6 構造体に関する函数

- 146. newstruct(name)
 - :: 構造体名が name の構造体を生成する
 - あらかじめ, name なる構造体が定義されていなければならない.
 - 構造体の各メンバは演算子 -> により名前でアクセスする. メンバが構造体の場合, 更に -> による 指定を続けることができる

```
[0] struct list {h,t};
0
[1] A=newstruct(list);
{0,0}
[2] A->t = newstruct(list);
{0,0}
[3] A;
{0,{0,0}}
[4] A->h = 1;
1
[5] A->t->h = 2;
2
[6] A->t->t = 3;
3
[7] A;
{1,{2,3}}
```

- 147. arfreg(name, add, sub, mul, div, pwr, chsgn, comp)
 - :: 構造体に体する基本演算を登録する
 - 登録したくない基本演算に対しては引数に 0 を与える. これによって一部の演算のみを利用するこ

```
とができる.
• それぞれの函数の仕様は次の通りである.
    add(A,B)
              A+B
    sub(A,B) A-B
    mul(A,B) A*B
    div(A,B) A/B
    pwr(A,B)
             A^B
    chsgn(A)
             -A
    comp(A,B) 1,0,-1 according to the result of a comparison between A and B.
% cat test
struct a {id,body}\$
def add(A,B)
 C = newstruct(a);
 C->id = A->id; C->body = A->body+B->body;
 return C;
}
def sub(A,B)
 C = newstruct(a);
 C->id = A->id; C->body = A->body-B->body;
 return C;
}
def mul(A,B)
 C = newstruct(a);
 C->id = A->id; C->body = A->body*B->body;
 return C;
}
def div(A,B)
 C = newstruct(a);
 C->id = A->id; C->body = A->body/B->body;
 return C;
}
def pwr(A,B)
```

C = newstruct(a);

return C;

 $C->id = A->id; C->body = A->body^B;$

```
def chsgn(A)
       C = newstruct(a);
       C->id = A->id; C->body = -A->body;
       return C;
     def comp(A,B)
       if ( A \rightarrow body > B \rightarrow body )
         return 1;
       else if ( A \rightarrow body < B \rightarrow body )
         return -1;
       else
         return 0;
     }
     arfreg("a",add,sub,mul,div,pwr,chsgn,comp)$
     end$
     % asir
     This is Risa/Asir, Version 20000908.
     Copyright (C) FUJITSU LABORATORIES LIMITED.
     1994-2000. All rights reserved.
     [0] load("./test")$
     [11] A=newstruct(a);
     {0,0}
     [12] B=newstruct(a);
     {0,0}
     [13] A \rightarrow body = 3;
     [14] B->body = 4;
     [15] A*B;
     {0,12}
148. str_type(name|object)
    :: 構造体の識別番号を取得する
      • 名前が name である構造体、または object の指す構造体の識別番号を取得する. エラーのときは
        -1 を返す
     [0] struct list {h,t};
     [1] A=newstruct(list);
```

}

```
{0,0}
[2] struct_type(A);
3
[3] struct_type("list");
3
```

3.3.7 入出力

149. end

150. quit

:: 現在読み込み中のファイルを閉じる. トップレベルにおいてはセッションを終了することになる

- end, quit ともに無引数の函数であるが, '()'なしで呼び出すことができる. いずれも現在読み込み中のファイルを閉じる. これは, トップレベルにおいてはセッションを終了させることになる.
- ファイルの場合, ファイルの終端まで読めば, 自動的にファイルは閉じられるが, トップレベルの場合プロンプトが出ないまま, 入力待ちになるので, ファイルの終端には end\$ を書くのが望ましい.

[0] quit; %

151. load("filename")

:: filename を読み込む

- 実際のプログラムの書き方は、ユーザ言語 Asir を参照. テキストファイルを読み込む場合、cpp を通すので、C のプログラム同様 #include、#define を使うことができる.
- 指定したファイルが存在した時には1を返し、存在しなかった時は0を返す.
- ファイル名が'/'で始まる場合は絶対パス、'.'で始まる場合はカレントディレクトリからの相対パスと見なされる。それ以外の場合、環境変数 ASIRLOADPATH に設定されているディレクトリを左から順にサーチする。それらに該当するファイルが存在しない場合、標準ライブラリディレクトリ(あるいは環境変数 ASIR_LIBDIR に設定されているディレクトリ) もサーチする。Windows 版の場合、ASIR_LIBDIR が設定されていない場合には、get_rootdir()/lib をサーチする。
- 読み込むファイルの最後に, end\$ がないと load() 終了後にプロンプトがでないが, 実際には入力を受け付ける. しかし, 混乱を招くおそれがあるのでファイルの最後に end\$ を書いておくことが望ましい. (end; でもよいが, end が返す値 0 が表示されるため, end\$ をお勧めする.)
- Windows 版もディレクトリのセパレータとして'/'を用いる

152. which("filename")

:: 引数 filename に対し、load() が読み込むパス名を返す

- load()がファイルをサーチする手順に従ってサーチし、ファイルが存在する場合にはパス名を文字列として、存在しない場合には 0 を返す.
- サーチの手順については load() を参照.
- Windows 版もディレクトリのセパレータとして'/'を用いる

```
[0] which("gr");
./gb/gr
[1] which("/usr/local/lib/gr");
0
[2] which("/usr/local/lib/asir/gr");
/usr/local/lib/asir/gr
```

153. output(["filename"])

:: 以降の出力先を filename または標準出力に切替える

• Asir の出力を標準出力から、ファイルへの出力に切替える. なお、ファイル出力の間は、標準出力

にはキーボードからの入力以外, 出力されない.

- 別のファイル出力に切替える時には, 再び output("filename") を実行する. 又, ファイル出力を 終了し標準出力に戻りたい時には, 引数なしで output() を実行する.
- 指定したファイル filename が存在した時は、そのファイルの末尾に追書きされ、存在しなかった時には、新たにファイルを作成し、そこに書き込まれる.
- ファイルネームを " " ダブルクォートなしで指定をしたり, ユーザが, 書き込めないファイルを指定したりすると, エラーによりトップレベルに戻る.
- 入力したものも込めてファイルに出力したい場合には、ctrl("echo",1) を実行した後でファイル出力に切替えれば良い. 計算時間など、標準エラー出力に書き出されるものはファイルには書き出されない. 函数形式、未定係数 (vtype() 参照) を含まない数式のファイルへの読み書きは、bload()、bsave() を使うのが、時間、空間ともに効率がよい.
- Windows 版もディレクトリのセパレータとして'/'を用いる.

```
[0] output("afo");
fctr(x^2-y^2);
print("afo");
output();
1
[1] quit;
% cat afo
1
[2] [[1,1],[x+y,1],[x-y,1]]
[3] afo
0
[4]
```

- 154. bsave(obj, "filename")
 - :: filename に obj をバイナリ形式で書き込む
- 155. bload("filename")
 - :: filename から数式をバイナリ形式で読み込む
 - obi は 函数形式、未定係数を含まない任意の数式
 - bsave() は内部形式をほぼそのままバイナリ形式でファイルに書き込む. bload() は, bsave() で書き込んだ数式を読み込んで内部形式に変換する. 現在のインプリメンテーションの制限により, 函数形式, 未定係数 (vtype()) を含まないリスト, 配列などを含む任意の数式をファイルに保存することができる. output などで保存した場合, 読み込み時にパーザが起動されるが, bsave() で保存したものを bload() で読む場合, 直接内部形式が構成できるため, 時間的, 空間的に効率がよい.
 - 多項式の場合,書き込み時と読み込み時で変数順序が異なる場合があるが,その場合には,自動的に現在の変数順序における内部形式に変換される.
 - Windows 版もディレクトリのセパレータとして'/'を用いる.

```
[0] A=(x+y+z+u+v+w)^20$
[1] bsave(A,"afo");
1
[2] B = bload("afo")$
[3] A == B;
1
[4] X=(x+y)^2;
x^2+2*y*x+y^2
```

```
[5] bsave(X,"afo")$
    [6] quit;
    % asir
    [0] ord([y,x])$
    [1] bload("afo");
    y^2+2*x*y+x^2
156. print(obj[, nl])
   :: obj を評価して表示する
     ● 第2引数がないか、または0,2以外の場合、改行する. 第2引数が0の場合、改行せず、出力はバッ
      ファに書き込まれ、バッファはフラッシュされない. 第2引数が2の場合、改行しないがバッファ
      はフラッシュされる. この函数の戻り値は 0 であるから, print(); で実行すると, 出力の後に 0
      が返される. print()$ とすれば、最後の 0 は出力されない.
     ● 複数の obj を同時に出力したい時は obj をリストにするとよい. mycat(), mycat0() を参照.
    [0] def cat(L) { while ( L != [] ) { print(car(L),0); L = cdr(L);}
    print(""); }
    [1] cat([xyz,123, "gahaha"])$
    xyz123gahaha
157. printf(format[, args])
158. fprintf(fd, format[, args])
159. sprintf(format[, args])
   :: C に似たプリント関数 (実験的仕様関数)
     • printf は書式文字列 format にしたがい、オブジェクト args を標準出力に書き出す.
     • fprintf は結果を,ファイル記述子 fd の指すファイルに書き出す.
     • sprintf は結果を文字列で返し、標準出力には書き出さない.
     • 書式文字列の中で %a (any) が利用可能. args の個数は書式文字列の中の %a の個数に等しくする
       こと.ファイル記述子は openfile() 関数を用いて得ること.
    [0] printf("%a: rat = %a\n",10,x^2-1)$
    10: rat = x^2-1
    [1] S=sprintf("%a: rat = %a",20,x^2-1)$
    [2] S;
    20: rat = x^2-1
    [3] Fd=open_file("hoge.txt","w");
    [4] fprintf(Fd, "Poly=%a\n", (x-1)^3)$
    [5] close_file(Fd)$
    [6] quit;
    $ cat hoge.txt
    Poly=x^3-3*x^2+3*x-1
```

:: file の存在をテストし、存在すれば 1、存在しなければ 0 を返す

160. access(file)

161. remove_file(file)
:: file を消去する

162. open_file("filename" [,"mode"])

```
:: filename をオープンする
```

- 163. close_file(num)
 - :: 識別子 num のファイルをクローズする
- 164. get_line([num])
 - :: 識別子 num のファイルから 1 行読む
- 165. get_byte(num)
 - :: 識別子 num のファイルから 1 バイト読む
- 166. $put_byte(num, c)$
 - :: 識別子 num のファイルに 1 バイト c を書く
- 167. purge_stdin()
 - :: 標準入力のバッファをクリアする
 - open_file() はファイルをオープンする. mode 指定がない場合は読み出し用, mode 指定がある場合には, C の標準入出力関数 fopen() に対するモード指定とみなす. たとえば新規書き込み用の場合 "w", 末尾追加の場合 "a" など. 成功した場合, ファイル識別子として非負整数を返す. 失敗の場合エラーとなる. 不要になったファイルは close_file() でクローズする. 特別なファイル名 unix://stdin, unix://stdout, unix://stderr を与えるとそれぞれ標準入力, 標準出力, 標準エラー出力をオープンする. この場合モード指定は無視される.
 - get_line() は現在オープンしているファイルから 1 行読み, 文字列として返す. 引数がない場合, 標準入力から 1 行読む.
 - ファイルの終りまで読んだ後に get_line() が呼ばれた場合, 整数の 0 を返す.
 - get_byte() は現在オープンしているファイルから 1 バイト読み 整数として返す.
 - put_byte() は現在オープンしているファイルに 1 バイト書き, そのバイトを整数として返す.
 - 読み出した文字列は、必要があれば sub_str() などの文字列処理関数で加工したのち eval_str() により内部形式に変換できる.
 - purge_stdin() は、標準入力バッファを空にする. 関数内で get_line() により標準入力から文字列を受け取る場合、既にバッファ内に存在する文字列による誤動作を防ぐためにあらかじめ呼び出す.

```
[0] Id = open_file("test");
0
[1] get_line(Id);
12345

[2] get_line(Id);
67890

[3] get_line(Id);
0
[4] type(@@);
0
[5] close_file(Id);
1
[6] open_file("test");
1
[7] get_line(1);
12345
```

```
54
                       /* the ASCII code of '6' */
    [9] get_line(1);
    7890
                       /* the rest of the last line */
    [10] def test() { return get_line(); }
    [11] def test1() { purge_stdin(); return get_line(); }
    [12] test();
                       /* a remaining newline character has been read */
                       /* returns immediately */
    [13] test1();
    123;
                       /* input from a keyboard */
                       /* returned value */
    123;
   3.3.8 型や函数、モジュールに関わる函数
168. type(obj)
   :: obj の型を求める函数
   -1:空 0:0 1:数 2:多項式 3:有理式 4:リスト 5:ベクトル 6:行列 7:文字列 8:構造体
   9: 分散表現多項式 10: 符号なしマシン 32bit 整数 11: エラーオブジェクト 12: GF(2) 上の行列
   13: MATHCAP オブジェクト 14: first order formula 15: matrix over GF(p) 16: ビット列
     ● 数の型を求めるには、ntype()を用いる. 不定元の型を求めるには、vtype()を用いる.
169. ntype(num)
   :: num (数)の型(整数)を返す.数の型の値は
   0: 有理数 1: 倍精度浮動小数 2: 代数的数 3: 任意精度浮動小数 (bigfloat) 4: 複素数
   5: 有限体の元 6: 大標数素体の元 7: 標数 2 の有限体の元
     • newalg(x^2+1) で生成した数と, 虚数単位 @i は, 異なるものとして扱われる.
     • 代数的数に関しては, See section 代数的数に関する演算.
    [0] [10/37, ntype(10/37)];
    [10/37,0]
    [1] [10.0/37.0,ntype(10.0/37.0)];
    [0.27027,1]
    [2] [newalg(x^2+1)+1,ntype(newalg(x^2+1)+1)];
    [(#0+1),2]
    [3] [eval(sin(@pi/6)),ntype(eval(sin(@pi/6)))];
    [0.49999999999999991,3]
    [4] [@i+1,ntype(@i+1)];
    [(1+1*@i),4]
170. vtype(var)
   :: var (不定元) の型 (整数) を返す
     var (不定元) の型の値は次の通り.
      0 一般不定元 (a,b,x,afo,bfo,..., etc)
      1 uc() で生成された不定元 (_0, _1, _2, ... etc)
         函数形式 (sin(x), log(a+1), acosh(1), @pi, @e, ... etc)
         函数子 (組み込み函数子, ユーザ定義函数子, 初等函数子: sin, log, ... etc)
       3
171. call(name, args)
   :: 函数 name を呼び出す
```

[8] get_byte(1);

```
函数子に関しては, vtype() を参照.
     • 引数の個数があらかじめ分かっているときは *(name)() の形式が使える.
    [0] A=igcd;
    igcd
    [1] call(A,[4,6]);
    [2] (*A)(4,6);
    2
172. functor(func)
   :: func の函数子を取り出す
173. args(func)
   :: func の引数リストを取り出す
174. funargs(func)
   :: cons(functor(func), args(func)) を返す
     ● 函数形式に関しては, vtype() を参照.
     • 函数形式 func の函数子, 引数リストを取り出す.
     • 逆に、取り出した函数子を値に持つプログラム変数を F とすれば (*F)(x) で x を引数とする函数
      呼び出しまたは函数形式が入力できる
    [0] functor(sin(x));
    sin
    [1] args(sin(x));
    [x]
    [2] funargs(sin(3*cos(y)));
    [\sin, 3*\cos(y)]
    [3] for (L=[sin,cos,tan];L!=[];L=cdr(L)) {A=car(L);
    print(eval((*A)(@pi/3)));}
    0.86602540349122136831
    0.5000000002
    1.7320508058
175. module_list()
   :: 定義済みのモジュールのリストを得る
    [0] module_list();
    [gr,primdec,bfct,sm1,gnuplot,tigers,phc]
176. module_definedp(name)
```

177. remove_module(name)

1

:: モジュール name を削除する

[0] module_definedp("gr");

• 削除に成功すれば 1, 失敗すれば 0 を返す.

● モジュール name が存在すれば 1, 存在しなければ 0 を返す

:: モジュール name の存在をテストする

[0] remove_module("gr");

1

3.3.9 数值函数

- 178. dacos(num)
 - :: 函数値 Arccos(num) を倍精度浮動小数で求める
- 179. dasin(num)
 - :: 函数値 Arcsin(num) を倍精度浮動小数で求める
- 180. datan(num)
 - :: 函数値 Arctan(num) を倍精度浮動小数で求める
- 181. dcos(num)
 - :: 函数値 cos(num) を倍精度浮動小数で求める
- 182. dsin(num)
 - :: 函数値 sin(num) を倍精度浮動小数で求める
- 183. dtan(num)
 - :: 函数値 tan(num) を倍精度浮動小数で求める
 - これらの函数は C 言語の標準数学ライブラリを用いる. したがって, 計算結果はオペレーティングシステムとコンパイラに依存する.
 - 複素数に対しては正しくない結果を返すので注意しなければならない.
 - Opi などのシンボルを引数に与えることはできない.

[0] 4*datan(1);

3.14159

- 184. dabs(num)
 - :: 絶対値 |num| を倍精度浮動小数で求める
- 185. dexp(num)
 - :: 函数値 exp(num) を倍精度浮動小数で求める
- 186. dlog(num)
 - :: 対数値 log(num) を倍精度浮動小数で求める
- 187. dsqrt(num)
 - :: 平行根 \sqrt{num} を倍精度浮動小数で求める
 - これらの函数は C 言語の標準数学ライブラリを用いる. したがって, 計算結果はオペレーティングシステムとコンパイラに依存する.
 - dabs()と dsqrt()を除き、複素数に対しては正しくない結果を返すので注意しなければならない.
 - **@pi** などのシンボルを引数に与えることはできない

[0] dexp(1);

2.71828

188. ceil(num)

:: num 以上の最小の整数を求める

[0] dceil(1.1);

- $189. \, \, \mathrm{dceil}(\mathit{num})$
 - :: num 以上の最小の整数を求める (ceil()の別名)
- 190. floor(num)
 - :: num 以下の最大の整数を求める
- 191. dfloor(num)
 - :: num 以下の最大の整数を求める (floor()の別名)

```
192. rint(num)
     :: num を整数にまるめる
193. drint(num)
     :: num を整数にまるめる (rint() の別名)
194. pari(sqrt, num[, prec])
     :: (複素) 数 num の平方根を与える
      [0] pari(sqrt,2);
      1.41421356237309504876
      [1] pari(sqrt,1+0i);
      (1.098684113467809965957+0.45508986056222734133*@i)
195. pari(arg, num[, prec])
     :: 複素数 num の偏角を与える (-\pi < 戻り値 \le \pi)
      [0] pari(arg,1+0i);
      0.78539816339744830961566084581
196. pari(gamma, num[, prec])
     :: ガンマ関数 (num は複素数でもよい)
197. pari(gamh, num[, prec])
     :: \Gamma(num + \frac{1}{2}) (num は複素数でもよい)
      [0] pari(gamma,5);
      23.99999999999999826
      [1] pari(gamma, 1+@i);
      (0.49801566811835604271-0.15494982830181068512*@i)
198. pari(lngamma, num[, prec])
     :: \log(\Gamma(x))
      [0] pari(lngamma, 1000);
      5905.22042320918121172113
199. pari(psi, num[, prec])
     :: digamma 関数
     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
      [0] pari(psi,1);
      -0.57721566490153286077
      [1] pari(psi,1+@i);
      (0.094650320622476976191 + 1.076674047468581172509*@i)\\
200. pari(erfc, num[, prec])
     :: 相補誤差関数 (complementary error function) \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt = 1 - \operatorname{erc}(x)
      [0] pari(erfc,1);
      0.15729920705028513139
201. pari(dilog, num[, prec])
     :: dilogarithm 関数
     \operatorname{Li}_2(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^2}
```

```
[0] pari(dilog,1);
       1.64493406684822643609
202. pari(eta,\tau[,prec])
     :: Dedekind の Eta 関数 \eta(\tau) で \tau は虚部が正の複素数 \eta(\tau) = e^{\frac{\pi i \tau}{12}} \prod_{m=1}^{\infty} (1 - e^{2\pi i m \tau})
       [0] pari(eta,1/2*@i+1/3);
       (1.0225406050061628844976445066022 - 0.035807228435521009596 * @i)
203. pari(wp,\tau[,prec])
     :: Weber 関数 \mathfrak{f}(\tau) で \tau は虚部が正の複素数
     \mathfrak{f}(\tau) = e^{\frac{-2\pi i\tau}{48}} \frac{\eta(\frac{\tau+1}{2})}{\eta(x)}
204. pari(wp2,\tau[,prec])
     :: Weber 関数 \mathfrak{f}_2(\tau) で \tau は虚部が正の複素数
     \mathfrak{f}_2(\tau) = \sqrt{2} \frac{\eta(2\tau)}{\eta(\tau)}
       [0] pari(wf,1/2*@i+1/3);
       (1.17550045802164239612+0.13899974799314382921*@i)
       [1] pari(wf2,1/2*@i+1/3);
       (1.20443909031006247316+0.14997728710366899256*@i)
205. pari(jell,\tau[,prec])
     :: Elliptic j-invariant j(\tau) で \tau は虚部が正の複素数
     j(\tau) = 1728 \frac{g_2^2}{g_2^3 - 27g_3^2}
     g_2 = 60 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-4}, \quad g_3 = 140 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-6}
       [0] pari(jell,1/3+1/2*@i);
       (6087.61214259402217852112-2773.38047013180067823512*@i)
206. pari(zeta,s[,prec])
     :: Riemann の \zeta 関数
     \zeta(s) = \sum_{n=1}^{\infty} n^{-s}
       [0] pari(zeta,2);
       1.64493406684822643609
     3.3.10 描画函数
207. ifplot(func [,geometry] [,xrange] [,yrange] [,id] [,name])
     :: 2 変数関数の実数上での零点を表示する
208. conplot(func [,geometry] [,xrange] [,yrange] [,zrange] [,id] [,name])
     :: 2 変数関数の実数上での等高線を表示する
209. plot(func [,geometry] [,xrange] [,id] [,name])
     :: 1 変数関数のグラフを表示する
210. polarplo(func [,geometry] [,thetarange] [,id] [,name])
     :: 極形式 r = func(\theta) で与えられた曲線を表示する
211. plotover(func, id, number)
```

:: すでに存在しているウィンドウへ描画する
 ◆ これらは OpenXM サーバとして実現されている. UNIX 上では 'ox_plot' が, Windows 上では 'engine' がこれらの機能を提供しており, これらは Asir の標準ライブラリディレクトリにある. アクティブな 'ox_plot' の id が id として指定された場合, そのサーバが用いられる. id の

指定がない場合には、起動されているサーバのうち、'ox_plot'があればそのサーバが用いられる. 'ox_plot'が起動されていない場合には、ox_launch_nox() が自動的に実行されて、'ox_plot'が立ち上がり、それが用いられる. 引数の内、func は必須である. その他の引数はオプションである. オプションの形式およびそのデフォルト値 (カッコ内) は次の通り.

geometry ウィンドウのサイズをドット単位で [x,y] で指定する. ([300,300].)

xrange yrange 変数の範囲の指定で、[v,vmin,vmax] で指定する. (いずれの変数も [v,-2,2].) この指定がない場合、func に含まれる変数の内変数順序の上の変数が 'x', 下の変数が 'y' として扱われる. これを避けるためには xrange、yrange を指定する. また、func が 1 変数の場合、これらの指定は必須となる.

zrange conplot() の場合のみ指定できる. 形式は [v,vmin,vmax [,step]] で, step が指定された場合には, 等高線の間隔が (vmax-vmin)/step となる. ([z,-2,2,16].)

id 遠隔プロセスの番号, すなわち ox_launch() が返した番号を指定する. (一番・近に作られ, かつアクティブなプロセスに対応する番号.)

name ウィンドウの名前. (Plot.) 生成されたウィンドウのタイトルは name:n/m となる. これは、プロセス番号 n のプロセスの、m 番のウィンドウを意味する. この番号は、plotover() で用いられる.

- 一つのプロセス上で描画できるウィンドウの数は最大 128 個である.
- plotover() は、指定したウィンドウ上に、引数である2変数多項式の零点を上書きする.
- 描画終了後のウィンドウ上で、マウスの左ボタンを押しながらのドラッグで範囲を指定しボタンを離すと新たなウィンドウが生成され、指定した範囲が拡大して表示される。ドラッグは左上から右下へと行う。ドラッグを始めた後キャンセルする場合は、マウスポインタを始点の上か左に持っていってボタンを離せばよい。新しいウインドウの形は、指定領域と相似で、最大辺が、元のウィンドウの最大辺と一致するように定められる。以下で説明する precise が on の場合、選択した領域が同一 window 上で書き直される。
- ウィンドウ内で右ボタンを押すと、その点の座標がウィンドウの下部に表示される.
- conplot() で生成したウィンドウにおいて、ウィンドウの右側のマーカを中ボタンでドラッグすると、対応する等高線の色が変わり、右上のウィンドウに対応するレベルが表示される.
- UNIX 版ではいくつかのボタンによりいくつかの設定変更, 操作ができる. UNIX 版では次のボタンがある.

quit window を破壊する. 計算を中断する場合, ox_reset() を用いる.

wide (トグル) 現在の表示部分を縦横各 10 倍した領域を表示する. 現在表示されている範囲はこの表示において中央部に長方形で示される. この表示で範囲指定を行うと, その範囲が新しいウィンドウに描画される.

precise (トグル) 選択領域を,整数演算により、より正確に再描画する。これは、func が有理数係数の 2 変数多項式の場合にのみ有効である。このモードでは Sturm 列と二分法により、区間内の零点の個数を正確に求めていくもので、デフォルトの計算法よりも正確な描画が期待できる。ただし、描画時間は余計にかかる場合が多い。この説明から明らかなように、この機能は有理数係数の多項式の描画に対してのみ有効である($(x^2+y^2-1)^2$ の描画で試してみよ。)

formula 対応する式を表示する.

noaxis (トグル) 座標軸を消す.

- 'ox_plot' が起動されるマシンによっては、スタックを大量に使用するものもあるため、'.cshrc' でスタックサイズを大きめ (16MB 程度) に指定しておくのが安全である。 スタックサイズは limit stacksize 16m などと指定する.
- X では、ウインドウの各部分について resource により色付けや、ボタンの形を変えることができる. resource の指定の仕方は以下の通り. (デフォルトを示しておく) plot*form*shapeStyle は、rectangle, oval, ellipse, roundedRectangle が、指定できる.

plot*background:white

plot*form*shapeStyle:rectangle
plot*form*background:white

```
plot*form*quit*background:white
        plot*form*wide*background:white
        plot*form*precise*background:white
        plot*form*formula*background:white
        plot*form*noaxis*background:white
        plot*form*xcoord*background:white
        plot*form*ycoord*background:white
        plot*form*level*background:white
        plot*form*xdone*background:white
        plot*form*ydone*background:white
212. open_canvas(id[,geometry])
    :: 描画用ウィンドウ (キャンバス) を生成する
213. clear_canvas(id, index)
    :: キャンバスをクリアする
214. draw_obj(id,index,pointorsegment [,color])
    :: キャンバス上に点または線分を描画する
215. draw_string(id,index,[x,y],string[,color])
    :: キャンバス上に文字列を描画する
```

- これらは OpenXM サーバ 'ox_plot' (Windows 上では 'engine') により提供される.
- open_canvas() は、描画用のウィンドウ (キャンバス) を生成する. *geometry* によりウィンドウ のサイズを pixel 単位で [x,y] で指定する. default size は [300,300]. キャンバスの識別子として、整数値を OpenXM サーバのスタックに push する. この識別子は draw_obj の呼び出しに必要であり、ox_pop_cmo により取り出して保持する必要がある.
- clear_canvas() は、サーバ id id、キャンバス id index で指定されるキャンバスをクリアする.
- draw_obj は、サーバ id id、キャンバス id index で指定されるキャンバスに点または線分を描画する. pointorsegment が [x,y] の場合点の座標、[x,y,u,v] の場合 [x,y], [u,v] を結ぶ線分を表すと見なされる. キャンバスの座標は、左上隅を原点として横方向に第一座標、縦方向に第二座標をとる. 値は pixel 単位で指定する. color の指定がある場合、color/65536 mod 256、color/256 mod 256、color mod 256 をそれぞれ Red、Green、Blue の値 (最大 255) とみなす.
- draw_string は、サーバ id id、キャンバス id index で指定されるキャンバスに文字列を描画する. 位置は [x,y] により指定する.

```
[182] Id=ox_launch_nox(0,"ox_plot");
0
[183] open_canvas(Id);
0
[184] Ind=ox_pop_cmo(Id);
0
[185] draw_obj(Id,Ind,[100,100]);
0
[186] draw_obj(Id,Ind,[200,200],0xfffff);
0
[187] draw_obj(Id,Ind,[10,10,50,50],0xff00ff);
0
[187] draw_string(Id,Ind,[100,50],"hello",0xffff00);
0
[189] clear_canvas(Id,Ind);
```

3.3.11 有限体に関する演算

- 216. $setmod_ff([p | defpoly2])$ $setmod_ff([defpolyp,p])$ $setmod_ff([p,n])$:: 有限体の設定, 設定されている有限体の法, 定義多項式の表示 p 素数 defpoly2 GF(2) 上既約な 1 変数多項式 defpolyp GF(p) 上既約な 1 変数多項式
 - n 拡大次数
 - 引数が正整数 p の時, GF(p) を基礎体として設定する.
 - 引数が多項式 defpoly2 の時, $GF(2^{\text{deg}}(\text{defpoly2} \mod 2)) = GF(2)[t]/(\text{defpoly2}(t) \mod 2)$ を 基礎体として設定する.
 - 引数が defpolyp と p の時, $GF(p^{\text{deg}}(\text{defpolyp}))$ を基礎体として設定する.
 - 引数が p と n の時, $GF(p^n)$ を基礎体として設定する. p^n は 2^{29} 未満でなければならない. また, p が 2^{14} 以上のとき, n は 1 でなければならない.
 - 無引数の時、設定されている基礎体が GF(p) の場合 p, $GF(2^n)$ の場合定義多項式を返す. 基礎体が $GF(p^n)$ の場合、 $GF(p^n)$ の場合、 $GF(p^n)$ の場合、 $GF(p^n)$ を返す. 基礎体が $GF(p^n)$ の場合、 $GF(p^n)$ の場合、 $GF(p^n)$ の場合、 $GF(p^n)$ の場合、 $GF(p^n)$ の乗法群の生成元を意味する.
 - $GF(2^n)$ の定義多項式は, GF(2) 上 n 次既約ならなんでも良いが, 効率に影響するため, defpoly_mod2() で生成するのがよい.

```
[0] defpoly_mod2(100);
     x^100+x^15+1
     [1] setmod_ff(@@);
     x^100+x^15+1
     [2] setmod_ff();
     x^100+x^15+1
     [3] setmod_ff(x^4+x+1,547);
     [1*x^4+1*x+1,547]
     [4] setmod_ff(2,5);
     [2,x^5+x^2+1,x]
217. field_type_ff([p|defpoly2])
    :: 設定されている基礎体の種類
     • 設定されている基礎体の種類を返す.
     • 設定なしなら 0, GF(p) なら 1, GF(2^n) なら 2 を返す.
     [0] field_type_ff();
     [1] setmod_ff(3);
     [2] field_type_ff();
     [3] setmod_ff(x^2+x+1);
     x^2+x+1
```

[4] field_type_ff();

2

```
218. field_order_ff()
    :: 設定されている基礎体の位数
     • 設定されている基礎体の位数 (元の個数) を返す.
     • 設定されている体が GF(q) ならば q を返す.
     [0] field_order_ff();
     field_order_ff : current_ff is not set
     return to toplevel
     [1] setmod_ff(3);
     [2] field_order_ff();
     [3] setmod_ff(x^2+x+1);
     x^2+x+1
     [4] field_order_ff();
219. characteristic_ff()
    :: 設定されている体の標数
    GF(p) の場合 p, GF(2^n) の場合 2 を返す.
     [0] characteristic_ff();
     characteristic_ff : current_ff is not set
    return to toplevel
     [1] setmod_ff(3);
     [2] characteristic_ff();
     [3] setmod_ff(x^2+x+1);
    x^2+x+1
     [4] characteristic_ff();
220. extdeg_ff()
    :: 設定されている基礎体の、素体に対する拡大次数
    GF(p) の場合 1, GF(2^n) の場合 n を返す.
     [0] extdeg_ff();
     extdeg_ff : current_ff is not set
    return to toplevel
     [1] setmod_ff(3);
    3
     [2] extdeg_ff();
     [3] setmod_ff(x^2+x+1);
     x^2+x+1
     [4] extdeg_ff();
```

2

221. $simp_ff(obj)$

- :: 数, あるいは多項式の係数を有限体の元に変換
 - 数, あるいは多項式の係数を有限体の元に変換する.
 - 整数, あるいは整数係数多項式を, 有限体, あるいは有限体係数に変換するために用いる.
 - 有限体の元に対し、法あるいは定義多項式による reduction を行う場合にも用いる.
 - 小標数有限体の元に変換する場合, 一旦素体上に射影してから, 拡大体の元に変換される. 拡大体の元に直接変換するには ptosfp() を用いる.

```
[0] simp_ff((x+1)^10);
x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+1
[1] setmod_ff(3);
3
[2] simp_ff((x+1)^10);
1*x^10+1*x^9+1*x+1
[3] ntype(coef(@@,10));
6
[4] setmod_ff(2,3);
[2,x^3+x+1,x]
[5] simp_ff(1);
@_0
[6] simp_ff(2);
0
[7] ptosfp(2);
@_1
```

$222. random_ff()$

- :: 有限体の元の乱数生成
 - 有限体の元を乱数生成する.
 - random(), lrandom() と同じ 32bit 乱数発生器を使用している.

```
[0] random_ff();
random_ff : current_ff is not set
return to toplevel
[1] setmod_ff(pari(nextprime,2^40));
1099511627791
[2] random_ff();
561856154357
[3] random_ff();
45141628299
```

223. lmptop(obj)

:: GF(p) 係数多項式の係数を整数に変換

obj GF(p) 係数多項式

- GF(p) 係数多項式の係数を整数に変換する.
- GF(p) の元は, 0 以上 p 未満の整数で表現されている. 多項式の各係数は, その値を整数オブジェクト (数識別子 0) としたものに変換される.

```
[0] setmod_ff(pari(nextprime,2^40));
     1099511627791
     [1] F=simp_ff((x-1)^10);
     1*x^10+1099511627781*x^9+45*x^8+1099511627671*x^7+210*x^6
     +1099511627539*x^5+210*x^4+1099511627671*x^3+45*x^2+1099511627781*x+1
     [2] setmod_ff(547);
     547
     [3] F=simp_ff((x-1)^10);
     1*x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3
     +45*x^2+537*x+1
     [4] lmptop(F);
    x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3
     +45*x^2+537*x+1
     [5] lmptop(coef(F,1));
     537
     [6] ntype(@@);
224. ntogf2n(m)
    :: 自然数を GF(2^n) の元に変換
         非負整数
     • 自然数 m の 2 進表現 m=m_0+m_12+\cdots+m_k2^k に対し, GF(2^n)=GF(2)[t]/(g(t)) の元
       m_0 + m_1 t + \cdots + m_k t^k \mod g(t) を返す.
     • 定義多項式による剰余は自動的には計算されないため、simp_ff()を適用する必要がある.
     [0] setmod_ff(x^30+x+1);
     x^30+x+1
     [1] N=ntogf2n(2^100);
     (@^100)
     [2] simp_ff(N);
     (0^13+0^12+0^11+0^10)
225. gf2nton(m)
    :: GF(2^n) の元を自然数に変換
        GF(2^n) の元
     ● gf2nton の逆変換である.
     [1] setmod_ff(x^30+x+1);
     x^30+x+1
     [2] N=gf2nton(2^100);
     (0^100)
     [3] simp_ff(N);
     (0^13+0^12+0^11+0^10)
     [4] gf2nton(N);
     1267650600228229401496703205376
     [5] gf2nton(simp_ff(N));
     15360
```

226. ptogf2n(poly) :: 一変数多項式を $GF(2^n)$ の元に変換 一変数多項式 • poly の表す $GF(2^n)$ の元を生成する. 係数は、2 で割った余りに変換される. poly の変数に @ を 代入した結果と等しい. [0] $setmod_ff(x^30+x+1)$; x^30+x+1 [1] ptogf2n(x^100); (@^100) 227. gf2ntop(m,[v]) $:: GF(2^n)$ の元を多項式に変換 m $GF(2^n)$ の元 v 不定元 • m を表す多項式を,整数係数の多項式オブジェクトとして返す. • v の指定がない場合, 直前の ptogf2n() 呼び出しにおける引数の変数 (デフォルトは x), 指定があ る場合には指定された不定元を変数とする多項式を返す. [0] $setmod_ff(x^30+x+1)$; x^30+x+1 [1] N=simp_ff(gf2ntop(2^100)); (0^13+0^12+0^11+0^10) [2] gf2ntop(N); x^13+x^12+x^11+x^10 [3] gf2ntop(N,t); t^13+t^12+t^11+t^10 228. ptosfp(p):: 小標数有限体への変換 229. sfptop(p):: 小標数有限体からの変換 多項式 • ptosfp() は、多項式の係数を、現在設定されている小標数有限体 $GF(p^n)$ の元に直接変換する. 係数が既に有限体の元の場合は変化しない. 正整数の場合, まず位数で剰余を計算したあと, 標数 p により p 進展開し、p を x に置き換えた多項式を、原始元表現に変換する。例えば、 $GF(3^5)$ は $GF(3)[x]/(x^5+2x+1)$ として表現され、その各元は原始元 x に関するべき指数 k により e と して表示される. このとき, 例えば $23 = 2 \cdot 3^2 + 3 + 2$ は, $2x^2 + x + 2$ と表現され, これは結局 x^{17} と法 $x^5 + 2x + 1$ で等しいので、**Q_17** と変換される. • sfptop() は ptosfp() の逆変換である.

```
[3,x^5+2*x+1,x]

[1] A = ptosfp(23);

@_17

[2] 9*2+3+2;

23

[3] x^17-(2*x^2+x+2);

x^17-2*x^2-x-2
```

[0] setmod_ff(3,5);

```
[4] sremm(0,x^5+2*x+1,3);
    [5] sfptop(A);
    23
230. defpoly_mod2(d)
   :: GF(2) 上既約な d 次の一変数多項式の生成
     正整数
   d
    ● fff で定義されている.
     • 与えられた次数 d に対し, GF(2) 上 d 次の既約多項式を返す.
    ● もし 既約 3 項式が存在すれば、第 2 項の次数がもっとも小さい 3 項式、もし既約 3 項式が存在し
      なければ、既約5項式の中で、第2項の次数がもっとも小さく、その中で第3項の次数がもっとも
      小さく、その中で第4項の次数がもっとも小さいものを返す.
231. sffctr(poly)
   :: 多項式の小標数有限体上での既約分解
   poly
         有限体上の多項式
     • 多項式を, 現在設定されている小標数有限体上で既約分解する.
    • 結果は、[[f_1, m_1], [f_2, m_2], \ldots] なるリストである.ここで、f_i は monic な既約因子、m_i はそ
      の重複度である.
       [0] setmod_ff(2,10);
       [2,x^10+x^3+1,x]
       [1] sffctr((z*y^3+z*y)*x^3+(y^5+y^3+z*y^2+z)*x^2+z^11*y*x+z^10*y^3+z^11);
       [[@_0,1],[@_0*z*y*x+@_0*y^3+@_0*z,1],[(@_0*y+@_0)*x+@_0*z^5,2]]
232. fctr_ff(poly)
   :: 1 変数多項式の有限体上での既約分解
   poly
         有限体上の 1 変数多項式
    ● fff で定義されている.
    • 一変数多項式を, 現在設定されている有限体上で既約分解する.
    • 結果は、[[f_1, m_1], [f_2, m_2], \ldots] なるリストである. ここで、f_i は monic な既約因子、m_i はそ
      の重複度である.
    • poly の主係数は捨てられる.
    [0] setmod_ff(2^64-95);
    18446744073709551521
    [1] fctr_ff(x^5+x+1);
    [[1*x+14123390394564558010,1],[1*x+6782485570826905238,1],
    [1*x+15987612182027639793,1],[1*x^2+1*x+1,1]]
233. irredcheck_ff(poly)
   :: 1 変数多項式の有限体上での既約判定
    有限体上の1変数多項式
    • fff で定義されている.
    ● 有限体上の 1 変数多項式の既約判定を行い, 既約の場合 1, それ以外は 0 を返す.
```

[1] setmod_ff(2^64-95);
18446744073709551521
[2] F=x^10+random_ff();
x^10+14687973587364016969
[3] irredcheck_ff(F);

1

234. randpoly_ff(d,v)

- :: 有限体上の乱数係数 1 変数多項式の生成
- d 正整数
- v 不定元
- fff で定義されている.
- d 次未満, 変数が v, 係数が現在設定されている有限体に属する 1 変数多項式を生成する. 係数は $gotor: randomffrandom_ff()$ により生成される.
- [0] setmod_ff(2^64-95);
 18446744073709551521
 [1] F=x^10+random_ff();
 [2] randpoly_ff(3,x);
 17135261454578964298*x^2+4766826699653615429*x+18317369440429479651
 [3] randpoly_ff(3,x);
 7565988813172050604*x^2+7430075767279665339*x+4699662986224873544
 [4] randpoly_ff(3,x);
- 10247781277095450395*x^2+10243690944992524936*x+4063829049268845492
- 235. $ecm_add_ff(p_1, p_2, ec)$
 - :: 楕円曲線上の点の加算
- 236. $ecm_sub_ff(p_1, p_2, ec)$
 - :: 楕円曲線上の点の減算
- 237. $ecm_chsgn_ff(p_1)$
 - :: 楕円曲線上の点の逆元
 - $p_1 p_2$ 長さ3のベクトルまたは0
 - ec 長さ2のベクトル
 - 現在設定されている有限体上で, ec で定義される楕円曲線上の点 p_1 , p_2 の和 p_1+p_2 , 差 p_1-p_2 , 逆元 $-p_1$ を返す.
 - ec は、設定されている有限体が奇標数素体の場合、 $y^2=x^3+ec[0]x+ec[1]$ 、標数 2 の場合 $y^2+xy=x^3+ec[0]x^2+ec[1]$ を表す.
 - 引数,結果ともに,無限遠点は0で表される.
 - p_1, p_2 が長さ 3 のベクトルの場合、斉次座標による曲線上の点を表す。この場合、第 3 座標は 0 であってはいけない。
 - 結果が長さ 3 のベクトルの場合, 第 3 座標は 0 でないが, 1 とは限らない. アフィン座標による結果を得るためには, 第 1 座標, 第 2 座標を第 3 座標で割る必要がある.
 - p_1, p_2 が楕円曲線上の点かどうかのチェックはしない.
 - [0] setmod_ff(1125899906842679)\$
 - [1] EC=newvect(2,[ptolmp(1),ptolmp(1)])\$
 - [2] Pt1=newvect(3,[1,-412127497938252,1])\$
 - [3] Pt2=newvect(3,[6,-252647084363045,1])\$
 - [4] Pt3=ecm_add_ff(Pt1,Pt2,EC);
 - [560137044461222 184453736165476 125]
 - [5] $F=y^2-(x^3+EC[0]*x+EC[1])$ \$
 - [6] subst(F,x,Pt3[0]/Pt3[2],y,Pt3[1]/Pt3[2]);

0

[7] ecm_add_ff(Pt3,ecm_chsgn_ff(Pt3),EC);

```
0
[8] D=ecm_sub_ff(Pt3,Pt2,EC);
[ 886545905133065 119584559149586 886545905133065 ]
[9] D[0]/D[2]==Pt1[0]/Pt1[2];
1
[10] D[1]/D[2]==Pt1[1]/Pt1[2];
1
```

3.3.12 その他の函数

238. ctrl("switch" [,obj])

:: "switch" で指定した環境の設定, 設定値を返す.

- Asir の実行環境の設定変更, 参照を行う.
- switch のみの場合, そのスイッチの現在の状態を返す.
- obj が与えられているとき、その値を設定する.
- スイッチは文字列として入力する. すなわちダブルクォートで囲む.
- スイッチは次の通り. 以下で, on は 1, off は 0 を意味する.

cputime on の時 CPU time および GC time を表示, off の時 表示しない. ctrl("cputime", onoff) は cputime(onoff) と同じである.

nez EZGCD のアルゴリズムの切替え. デフォルトで 1 であり, とくに切替える必要はない.

echo on の時は標準入力を繰り返して出力し, off の時は標準入力を繰り返さない. output コマンドを用いる際に有効である.

bigfloat on の時,入力された浮動小数は bigfloat に変換され,浮動小数演算は PARI により行われる. デフォルトの有効桁数は 9 桁である. 有効桁数を増やしたい時には setprec() を用いる. off の時,入力された浮動小数は,倍精度浮動小数に変換される.

adj ガーベッジコレクションの頻度の変更. 1 以上の有理数が指定できる. デフォルト値は 3. 1 に近い程, ガーベッジコレクションせずにヒープを大きくとるようになる. 整数値はコマンドラインで指定できる. See section コマンドラインオプション.

verbose on の時, 函数の再定義時にメッセージを表示する.

quiet_mode 1 のとき、起動時に著作権表示を行わない. See section コマンドラインオプション.

prompt 0 のときプロンプトを表示しない. 1 のとき標準プロンプトを表示. $\mathbb C$ スタイルのフォマット 文字列をもちいるとユーザ定義のプロンプト.

例 (asirgui では不可): ctrl("prompt","\033[32m[%d]:= \033[0m")

hex 1 のとき, 整数は 0x で始まる 16 進数として表示される. -1 のとき, 16 進数は, 間に '—'をはさんで 8 桁ごとに区切って表示される.

real_digit 倍精度浮動小数の表示の桁数を指定する.

double_output 1のとき, 倍精度浮動小数はつねに ddd.ddd の形で表示される.

fortran_output 1 のとき, 多項式の表示が FORTRAN スタイルになる. すなわち冪が '^' の代わりに '**' で表される. (デフォルト値は 0.)

ox_batch 1 のとき, 送信バッファがいっぱいになった時のみ自動的に flush. 0 のとき, データ, コマンド送信毎に flush. (デフォルト値は 0.) See section 分散計算.

ox_check 1 のとき、送信データを相手プロセスが受け取れるかどうかチェックする. 0 のときしない. (デフォルト値は 1.) See section 分散計算.

ox_exchange_mathcap 1 のとき, OX server との接続開始時に, 自動的に mathcap の交換を行う. (デフォルト値は 1.) See section 分散計算.

loadpath asir のロードパスの出力または設定を行う.

[0] L=ctrl("loadpath");

[/home/you/OpenXM/lib/asir-contrib,/home/you/OpenXM/lib/asir,.]

[1] ctrl("loadpath", cons(getenv("HOME")+"/lib",L));

0

239. debug

:: デバッグモードに入る

- debug は無引数の函数であるが、'()' なしで呼び出せる.
- デバッグモードに入るとプロンプトが (debug) となり, コマンド受け付け状態となる. quit を入 力するとデバッガから抜ける.
- デバッグモードについての詳細はデバッガを参照.

240. error(message)

:: エラーメッセージを表示してデバッグモードに入る

- 一般に、引数の間違いなど、続行不可能なエラーが組み込み函数において発生した時、トップレベル に戻る前に、可能ならばそのエラーの時点でデバッグモードに入る. error()は、ユーザ函数の内 部でこの動作と同様の動作を行わせるための函数である.
- 引数は, error() が呼び出される際に表示されるメッセージで, 文字列である.
- ユーザ函数において,変数をチェックして,あり得ない値の場合に error()を呼び出すようにしておけば,その時点で自動的にデバッグモードに入れる.

```
% cat mod3
def mod3(A) {
    if (type(A) >= 2)
        error("invalid argument");
        return A % 3;
}
end$
% asir
[0] load("mod3");
[1] \mod 3(5);
[2] \mod 3(x);
invalid argument
stopped in mod3 at line 3 in file "./mod3"
                        error("invalid argument");
(debug) print A
A = x
(debug) quit
return to toplevel
[3]
```

241. time()

:: セッション開始から現在までの CPU 時間および GC 時間を表示する

- CPU 時間および GC 時間の表示に関するコマンドである.
- GC 時間とは、ガーベジコレクタにより消費されたと見なされる時間、CPU 時間は、全体の CPU 時間から GC 時間を引いた残りで、単位は秒である.
- time() は引数なしで、セッション開始から現在までの CPU 時間、GC 時間、現在までに要求されたメモリののべ容量、およびセッション開始から現在までの経過時間の表示をする. すなわち、 [CPU 時間 (秒)、GC 時間 (秒)、メモリ量 (ワード)、経過時間 (秒)] なるリストを返す. 1 ワードは通常 4 バイトである.

- 計算の実行開始時、終了時の time() から、その計算に対する CPU 時間、GC 時間がわかる.
- メモリ量は多倍長数ではないため、ある値を越えると無意味な値となるためあくまでも目安として 用いるべきである. ctrl() や cputime() により cputime スイッチが on になっている場合には、 トップレベルの文を一つの単位として、その実行時間が表示される. しかし、プログラムの内部など で、特定の計算に対する計算時間を知りたい時には、time() などを使う必要がある. getrusage() が使える UNIX 上では time() は信頼性のある値を返すが、Windows 95、98 上では時刻を用いる ほか方法がないため経過時間そのものが表示される. よって、待ち状態があると、それも経過時間に 加算される.
- [0] TO=time();
- [2.390885,0.484358,46560,9.157768]
- [1] G=hgr(katsura(4),[u4,u3,u2,u1,u0],2)\$
- [2] T1=time();
- [8.968048,7.705907,1514833,63.359717]
- [3] ["CPU",T1[0]-T0[0],"GC",T1[1]-T0[1]];

[CPU, 6.577163, GC, 7.221549]

- 242. cputime(onoff)
 - :: 引数が 0 ならば cputime の表示を止める, それ以外ならば表示を行う
- 243. tstart()
 - :: CPU time 計測開始
- 244. tstop()
 - :: CPU time 計測終了および表示
 - cputime() は、引数が 0 ならば CPU time の表示を止める. それ以外ならば表示を行う.
 - tsart は引数なし、'()' なしで、CPU time 計測を開始する.
 - tstop は引数なし, '()' なしで, CPU time 計測を終了, および表示する.
 - cputime(onoff) は ctrl("cputime",onoff) と同じである.
 - tstart, tstop は,入れ子にして使われることは想定していないため,そのような可能性がある場合には、time()による計測を行う必要がある.
 - cputime() による on, off は、単に表示の on, off であり、トップレベルの一つの文に対する計測は 常に行われている. よって、計算を始めてからでも、計算終了前にデバッガに入って cputime(1) を実行させれば計算時間は表示される.
 - [0] tstart\$
 - [1] $fctr(x^10-y^10)$;

 $[[1,1],[x+y,1],[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],[x-y,1],$

 $[x^4+y*x^3+y^2*x^2+y^3*x+y^4,1]]$

[2] tstop\$

80msec + gc : 40msec

- 245. timer(interval, expr, val)
 - :: 制限時間つきで計算を実行する
 - 時間を指定して計算を実行する. 指定時間内に計算が完了した場合その値を返す. 指定時間内に計算が完了しなかった場合. 第3引数を返す.
 - 第3引数の値は、計算が完了した場合の値と区別できる必要がある.
 - [0] load("cyclic");
 1
 [1] timer(10,dp_gr_main(cyclic(7),[c0,c1,c2,c3,c4,c5,c6],1,1,0),0);
 interval timer expired (VTALRM)

0 [2]

246. currenttime()

1970年1月1日0時0分0秒からの経過秒数

• currenttime() は現在時刻を返す. UNIX の場合, time(3) を呼んでいるだけである.

[0] currenttime();
1071639228

[1]

247. sleep(interval)

- :: プロセスの実行を $interval \times 10^{-3}$ 秒停止
 - sleep() は、プロセスの実行を停止する. UNIX の場合、usleep を呼んでいるだけである
 - [0] sleep(1000);
 1
 [1]

248. heap()

:: 現在のヒープの大きさを返す(単位:バイト)

- 現在のヒープの大きさ (単位:バイト) を返す. ヒープとは、Asir のさまざまな数式や、ユーザプログラムなどがおかれるメモリの領域で、ガーベジコレクタにより管理されている. プログラムの動作中は、ヒープの大きさは単調非減少であり、実メモリの量をこえて大きくなった場合には、OSによるスワップエリアへの読み書きがほとんどの計算時間を占めることになる.
- 実メモリが少ない場合には、起動時の -adj オプションにより、GC 主体の設定を行っておく必要がある.

```
% asir -adj 16
[0] load("fctrdata")$
[97] cputime(1)$
Omsec
[98] heap();
524288
0msec
[99] fctr(Wang[8])$
3.190sec + gc : 3.420sec
[100] heap();
1118208
Omsec
[101] quit;
% asir
[0] load("fctrdata")$
[97] cputime(1)$
Omsec
[98] heap();
827392
```

```
Omsec
[99] fctr(Wang[8])$
3.000sec + gc : 1.180sec
[100] heap();
1626112
Omsec
[101] quit;
```

249. version()

:: Asir のバージョン (整数) を返す.

[0] version();

991214

250. shell(command)

:: command をシェルコマンドとして実行する

• command を C の system() 函数によりシェルコマンドとして実行する. シェルの終了ステータスを返す.

[0] shell("ls");

alg	da	katsura	ralg	suit
algt	defs.h	kimura	ratint	test
alpi	edet	kimura3	robot	texput.log
asir.o	fee	mfee	sasa	wang
asir_symtab	gr	mksym	shira	wang_data
base	gr.h	mp	snf1	wt
bgk	help	msubst	solve	
chou	hom	p	sp	
const	ifplot	proot	strum	
cyclic	is	r	sugar	
0				

251. map(function, arg0, arg1,...)

- :: リスト, 配列の各要素に函数を適用する
 - arg0 の各要素を最初の引数, arg1 以下の残りの引数として函数 function を呼び出し, arg0 の対応する要素の位置に函数呼び出しの結果が入った同じ型のオブジェクトを生成して返す.
 - function は、ダブルクォートのない函数名を用いる.
 - function にプログラム変数は使えない.
 - arg0 がリスト、ベクトル、行列以外の場合、単に arg0、arg1、… を引数として function を呼び出し その結果を返す.
 - map の引数 function で与えられる函数は、内部的にも函数として実装されていなければならない。 そうでなければ parse error になる. 例えば map 自身や car, cdr などは内部的には函数ではなく、 Asir の文法におけるキーワードとして実装されている. したがって map の引数に map をとることはできない
 - オプションやネスティングが可能な函数 mtransbys() がある.
 - [0] def afo(X) { return X^3; }
 [1] map(afo,[1,2,3]);
 [1,8,27]

252. flist()

- :: 現在定義されている組み込み函数、ユーザ定義函数の函数名を文字列リストとして返す
 - システム函数の後にユーザ定義函数が続く.

[0] flist();

[defpoly,newalg,mainalg,algtorat,rattoalg,getalg,alg,algv,...]

253. delete_history([index])

- :: ヒストリを消去する
 - 引数がないとき、これまで計算したヒストリを全て消去する.
 - 引数があるとき、その番号の結果のみ消去する.
 - ここでヒストリとは、番号つきのプロンプトに対しての入力を評価して得られた式で、この式は **@number** により取り出すことができる.このことは、ガーベッジコレクションの際にもこの式が生き残ることを意味する.
 - 大きな式がヒストリとして残った場合,以降のメモリ管理に支障を来す場合が多いため,bsave() などでファイルにセーブして,delete_history()によりヒストリを消去しておくのが有効である.
- $[0] (x+y+z)^100$
- [1] @0;

. . .

[2] delete_history(0);

[3] @0;

0

254. get_rootdir()

:: Asir のルートディレクトリ名を取り出す

- UNIX 版の場合, 環境変数 ASIR_LIBDIR が定義されている場合にはその値, されていない場合には '/usr/local/lib/asir' を返す.
- Windows 版の場合, 'asirgui.exe' のあるディレクトリ ('bin' という名前のはずである) の親 ディレクトリが返される.
- この関数が返すディレクトリ名を基準とした相対パス名を指定することにより、インストールされた場所によらないファイル読み込みプログラムを書くことができる.

255. getopt([key])

:: オプションの値を返す

- ユーザ定義関数は、固定個数引数でしか宣言できない. ユーザ定義関数で可変個引数を実現する方法の一つとして、オプションによる引数の指定がある (see オプション指定). 指定されたオプションを関数内で受け取るためにこの関数を用いる.
- 無引数で呼び出された場合, getopt() は [[key1, value1], [key2, value2],...] なるリストを返す. ここで, key は関数呼び出し時に指定されたオプション, value はその値である.
- 関数呼び出しの際に key がオプションとして指定されている場合には、その値を返す. もし指定がない場合には、VOID 型オブジェクト (型識別子-1) を返す. getopt() が返した値の型をtype() で調べることで、そのオプションが指定されたかどうか調べることができる.
- 関数呼び出しにおけるオプションの指定は、正規の引数ならびの後ろに

xxx(A,B,C,D|x=X,y=Y,z=Z)

という風に、'|' に続く、 key=value の',' で区切られた並びを置くことで行う.

256. getenv(name)

:: 環境変数 name の値を返す

[0] getenv("HOME");

/home/pcrf/noro

参考文献

- [Batut et al.] C. Batut, D. Bernardi, H. Cohen, M. Olivier, User's Guide to PARI-GP, 1993.
- [Boehm-Weiser] H. Boehm, M. Weiser, Garbage Collection in an Uncooperative Environment, Software Practice & Experience, September 1988, 807–820.
- [DR] M. Dettweiler and S. Reiter, An algorithm of Katz and its applications to the inverse Galois problems, J. Symbolic Comput. **30**(2000), 761–798.
- [Ha] Y. Haraoka, Middle convolution for completely integrable systems with logarithmic singularities along hyperplane arrangements, Adv. Studies in Pure Math. **62**(2012), 109–136.
- [O1] T. Oshima, 特殊関数と代数的線型常微分方程式, 東京大学数理科学レクチャーノート **11**, 2011, http://www.ms.u-tokyo.ac.jp/publication/documents/spfct3.pdf.
- [O2] T. Oshima, Fractional calculus of Weyl algebra and Fuchsian differential equations, MSJ Memoirs 28, Mathematical Society of Japan, Tokyo, 2012.
- [O3] T. Oshima, Transformation of KZ type equations, to appear in RIMS Kôkyûroku Bessatsu, 2016.
- [O4] T. Oshima, Annihilators of generalized Verma modules of the scalar type for classical Lie algebras, "Harmonic Analysis, Group Representations, Automorphic forms and Invariant Theory", in honor of Roger Howe, Vol. 12, Lecture Notes Series, 2007, 277-319, National University of Singapore.
- [O5] T. Oshima, okubo, a computer program for Katz/Yokoyama/Oshima algorithms for spectral types, 2007-8, ftp://akagi.ms.u-tokyo.ac.jp/pub/math/okubo/
- [O6] T. Oshima, os_muldif.rr, a library of the calculation of differential operators for computer algebra Risa/Asir, 2007-2016, ftp://akagi.ms.u-tokyo.ac.jp/pub/math/muldif/
- [OSe] T. Oshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric spaces, Invent. Math. 57(1980), 1–81.
- [OSh] T. Oshima and N. Shimeno, Heckman-Opdam hypergeometric functions and their specializations, RIMS Kôkyûroku Bessatsu **B20** (2010), 129–162.
- [Shoup] V. Shoup, A new polynomial factorization algorithm and its implementation, J. Symb. Comp. **20**(1995), 364–397.
- [Weber] K. Weber, The accelerated Integer GCD Algorithm, ACM TOMS, 21, 1(1995), 111–122.

索引

1–2. Functions in os_muldif.rr, 4, 64	b2e, 110
1.1 Fundamental Function, 4, 64	bernoulli, 159
1.2 Fractional calculus, 5, 80	binom, 143
1.3 Some operators, 7, 108	bload, 330
2.1 Extended function, 7, 111	bsave, 330
	bsave, 900
2.2 Numbers, 10, 132	0 150
2.3 Polynomials and rational functions, 11, 138	c2m, 178
2.4 Functions with real/complex variables, 13, 159	calc, 133
2.5 List and vectors, 14, 162	call, 333
2.6 Matrices, 15, 175	Canvas, 275
2.7 Strings, 16, 196	car, 316
2.8 Permutations, 17, 201	cdr, 316
2.9 T _E X, 17, 204	ceil, 335
2.10 Lines and curves, 18, 218	cfrac, 135
2.11 Drawing curves and graphs, 19, 232	cfrac2n, 135
2.12 Applications, 20, 265	characteristic_ff, 341
2.12.1 表の作成, 265	chkexp, 77
2.12.2 表や行列の変形, 267	chkfun, 111
2.12.3 函数値の数表, 270	chkspt, 82
2.12.4 点数分布表, 272	clear_canvas, 339
2.12.5 Taylor 展開, 273	close_file, 332
2.13 Environments, 20, 275	cmpf, 124
2.14 補足, 283	cmpsimple, 118
2.14.1 行列の入力, 283	
	coef, 304
2.14.2 平面図形, 285	cola, 322
2.14.3 リスト形式函数, 288	colm, 322
2.14.4 函数値の解析, 290	colx, 322
3. Some functions in the original library, 21, 295	compdf, 123
3.1 数の演算, 21, 295	conf1sp, 97
3.2 多項式, 有理式の演算, 23, 303	conj, 298
3.3 リスト,ベクトル,配列の演算,25,316	conplot, 337
3.4 行列の演算, 26, 319	cons, 316
3.5 文字列に関する演算, 27, 324	cont, 311
3.6 構造体に関する函数, 27, 326	
	cotr, 81
3.7 入出力, 27, 329	countin, 162
3.8 型や函数, モジュールに関わる函数, 28, 333	cputime, 349
3.9 数值函数, 29, 335	cterm, 150
3.10 描画函数, 30, 337	ctrl, 347
3.11 有限体に関する演算, 30, 340	currenttime, 350
3.12 その他の函数, 31, 347	cutf, 123
%, 311	dabs, 335
asirrc, 62	dacos, 335
.muldif, 277	
	dasin, 335
abs, 132	datan, 335
access, 331	dceil, 335
ad, 81	$d\cos, 335$
add, 81	debug, 348
addIL, 171	defpoly_mod2, 345
addl, 81	\deg , 305
adj, 66	delete_history, 352
AMSTeX, 275	delopt, 163
anal2sp, 97	det, 321
append, 316	deval, 298
appled, 66	
11 /	dexp, 335
appledo, 67	df2big, 122
areabezier, 227	dfloor, 335
arfreg, 326	dform, 79
arg, 161	diagm, 189
args, 334	diff, 308
asciitostr, 325	digamma, 162
average, 165	dilog, 162
	DIROUT, 276
'	21100 0 1, 210

distpoint, 272	frac, 159
divdo, 67	frac2n, 138
divmattex, 217	fractrans, 76
dlog, 335	fresidue, 132
dn, 296	fromeul, 76
dnorm, 218	fshorter, 130
draw_bezier, 243	fsum, 126
draw_obj, 339	fuchs3e, 109
draw_string, 339	funargs, 334
drint, 336	functor, 334
dsin, 335	
*	fzero, 130
dsqrt, 335	100
dtan, 335	gamma, 162
dupmat, 175	gcd, 311
dvangle, 219	gcdz, 311
dviout, 205	get_byte, 332
dviout0, 206	get_line, 332
DVIOUTA, 276	get_rootdir, 352
DVIOUTB, 259, 276, 279	getbygrs, 88
DVIOUTH, 276	getbyshell, 114
DVIOUTL, 276	getel, 118
dvprod, 165	getenv, 352
	getopt, 352
easierpol, 140	getroot, 141
ecm_add_ff, 346	gf2nton, 343
ecm_chsgn_ff, 346	gf2ntop, 344
ecm_sub_ff, 346	ghg, 109
end, 329	
eofamily, 110	heap, 350
erfc, 159	hessian, 152
error, 348	heun, 111
eta, 162	,
ev4s, 110	i2hex, 301
eval, 298	iand, 300
eval_str, 325	idiv, 295
evalma, 200	ifplot, 337
evalred, 119	igcd, 296
evals, 119	igcdcntl, 296
even4e, 109	ilcm, 297
execdraw, 261	
execuraw, 201 execproc, 126	imag, 298 int32ton, 300
expat, 76	,
expower, 143	integrate, 154
- '	intpoly, 153
extdeg_ff, 341	inv, 297
extra6e, 110	invf, 148
(0.10 ±0.1	invmat, 321
f2df, 121	ior, 300
fac, 296	irem, 295
fcat, 164	irredcheck_ff, 345
fcont, 132	isall, 113
fctr, 308	isalpha, 133
fctr_ff, 345	isalphanum, 133
fctri, 142	iscoef, 149
fctrtos, 145	iscombox, 223
field_order_ff, 341	iscrat, 133
field_type_ff, 340	isdecimal, 133
fimag, 128	isdif, 116
findin, 162	ishift, 301
fint, 127	isint, 133
flim, 131	isMs, 111
flist, 352	isnum, 133
floor, 335	isqrt, 297
fmmx, 130	israt, 133
C14 117	
fmult, 117	isshortneg, 130
fouriers, 159	isshortneg, 130 issquaremodp, 134
·	

isyes, 112	meigen, 193
ixor, 300	mgen, 189
,	mindeg, 305
jacobian, 152	mmc, 107
jell, 162	mmod, 188
jis2sjis, 198	mmulbys, 117
	modfctr, 310
keyin, 114	module_definedp, 334
kmul, 313	$module_list, 334$
ksquare, 313	monotos, 206
ktmul, 313	monototex, 207
	mperm, 178
l2os, 199	mpower, 179
l2p, 164	mrot, 218
ladd, 218	msort, 170
laplace, 80	$mt_{load}, 297$
laplace1, 80	mt_save, 297
lbezier, 226	mtotex, 215
lchange, 166	mtoupper, 180
ldev, 167	mtransbys, 117
ldict, 201	mtranspose, 179
length, 316	muldo, 64
lft01, 108	muledo, 65
lgcd, 166	mulseries, 164
linfrac01, 108	mulsubst, 117 my_tex_form, 204
llbase, 165	myacos, 161
llem, 166	myarg, 161
llsize, 162	myasin, 161
lmax, 166 lmin, 166	myatan, 161
lmptop, 342	mycat, 163
lngamma, 162	mycat0, 163
lninbox, 223	mycoef, 149
Insol, 166	mycos, 161
load, 329	mydeg, 148
lpgcd, 152	mydet, 187
lrandom, 297	mydet2, 187
lsol, 165	mydeval, 119
lsort, 167	mydiff, 151
ltotex, 208	myediff, 151
ltov, 318	myeval, 119
lv2m, 176	myexp, 160
	myf2deval, 125
m1div, 69	myf2eval, 125
m2l, 175	myf3deval, 125
m2ll, 176	myf3eval, 125
m2lv, 176	myfdeval, 125
m2mc, 103	myfeval, 125
m2v, 175	mygcd, 67
madj, 189	myhelp, 111
madjust, 179	myimage, 188
makenewy, 115	myinv, 188 mykernel, 188
makev, 114	
map, 351	mylcm, 69 mylog, 161
mat, 320	mymindeg, 149
matc, 320	mymod, 188
matr, 320	mypow, 161
matrix, 319	myrank, 187
mc, 80	mysin, 160
mc2grs, 99 mce, 80	mysubst, 116
mcgrs, 87	myswap, 116
mcmgrs, 106	mytan, 161
mcop, 87	mytrace, 187
mdivisor, 69	myval, 120
mdsimplify, 194	
r <i>yı</i>	l

nd_det, 321	wp, 337
ndict, 202	wp2, 337
newbmat, 193	zeta, 337
newbytearray, 318	pcoef, 150
newmat, 319	periodicf, 124
newstruct, 326 newvect, 317	pfargs, 116 pfctr, 150
nextpart, 203	pfrac, 151
nextsub, 202	pgen, 140
nm, 296	plot, 337
nmono, 305	plotover, 337
ntable, 270	pluspower, 164
nthmodp, 134	pol2sft, 143
ntogf2n, 343	polarplo, 337
ntoint32, 300	polbyroot, 140
ntype, 333	polbyvalue, 140
addE_ 110	polcut, 151
odd5e, 110 okubo3e, 108	polinsft, 143 polinsym, 142
okuboetos, 77	polinvsym, 143
open_canvas, 339	polroots, 141
open_file, 331	powprimroot, 265
ord, 305	powsum, 159
orthpoly, 143	prehombf, 153
output, 329	prim, 311
	primroot, 134
paracmpl, 173	print, 331
pari, 299	printf, 331
abs, 303	psubst, 307
adj, 323	ptaffine, 219 ptbbox, 223
arg, 336 bigomega, 302	ptboox, 225 ptbezier, 226
binary, 301	ptcombezier, 231
cf, 303	ptcombz, 231
conj, 303	ptcommon, 221
content, 315	ptcopy, 221
dilog, 336	ptlattice, 221
disc, 316	ptogf2n, 344
eigen, 324	ptol, 151
erfc, 336	ptosfp, 344
eta, 337	ptozp, 310
factor, 301	ptpolygon, 220 ptwindow, 223
frac, 303 gamh, 336	ptype, 113
gamma, 336	purge_stdin, 332
hess, 324	put_byte, 332
indexrank, 323	. ,
isprime, 302	qdo, 69
ispsp, 302	qsort, 319
issquare, 302	quit, 329
jacobi, 324	
jell, 337	r2ma, 200
lngamma, 336	r2os, 199
mu, 303 nextprime, 303	rabin, 135 radd, 138
numdiv, 302	random, 297
omega, 302	random_ff, 342
phi, 303	randpoly_ff, 346
psi, 336	rcotr, 81
roots, 316	readcsv, 200
round, 316	real, 298
sigma, 302	red, 312
signat, 323	rede, 81
sqrt, 336	redgrs, 88
supplement, 323	remove_file, 331
trace, 323	remove_module, 334

res, 308	sgrt2rat, 137
reverse, 316	sqrtdo, 75
rigid211, 110	sqrtrat, 136
rint, 336	srem, 306
risaout.tex, 278	sremm, 306
risatex.bat, 278	ssubgrs, 87
rmul, 140	stoe, 78
rootmodp, 134	str_char, 196
rowa, 322	str_chr, 325
rowm, 322	str_cut, 197
rowx, 322	str_len, 325
rpdiv, 140	str_pair, 196
rtostr, 324	str_str, 196
rtotex, 207	str_subst, 197
	str_tb, 198
s2euc, 198	$str_times, 197$
s2m, 177	$str_type, 328$
s2os, 198	strip, 198
s2sjis, 198	strtoascii, 325
s2sp, 81	strtov, 325
scale, 223	$sub_str, 326$
schurpoly, 144	subst, 307
sdiv, 306	substblock, 148
sdivm, 306	
seriesHG, 145	tdiv, 307
seriesMc, 145	terms, 150
seriesTaylor, 273	texbegin, 207
set_upfft, 314	texcr, 207
set_upkara, 314	TeXEq, 275
set_uptkara, 314	texket, 208
setmod_ff, 340	texlen, 218
setmode, 300	TeXLim, 276
setprec, 299	texlim, 218
sffctr, 345	texsp, 207
sfptop, 344	TikZ, 276
sftexp, 76	time, 348
sftpexp, 67	timer, 349
sftpow, 143	tobezier, 225
sftpowext, 143	tocsv, 201
sgn, 132	todf, 122
shell, 351	toeul, 75
shiftop, 96	tohomog, 148
shortv, 115	translpdo, 66
show, 205	transm, 194
showbyshell, 114	transpart, 203
simp_ff, 342	transpdo, 65
simplify, 118	trig2exp, 128
sint, 137	trpos, 203
sinv, 203	tstart, 349
size, 319	tstop, 349
sjis2jis, 198	type, 333
sleep, 350	
slen, 203	uc, 304
smallmattex, 218	udecomp, 314
soldif, 77	udiv, 315
solpokubo, 80	ufctrhint, 309
sord, 204	ugcd, 315
sp2grs, 86	uinv_as_power_series, 314
spgen, 83	umul, 312
sprintf, 331	umul_ff, 312
sprod, 203	unim, 190
sproot, 84	urem, 315
sqfr, 308	urembymul, 315
sqr, 306	urembymul_precomp, 315
sqrm, 306	ureverse, 314
sqrt, 161	ureverse_inv_as_power_series, 314
•	

010	
usquare, 312	ShiftJIS/JIS $\dot{\chi} \rightarrow EUC \dot{\chi}$, 198
usquare_ff, 312	数 → 文字列, 137
utmul, 312	函数 → リスト形式函数, 121, 122
utmul_ff, 312	行列 → T _E X, 215
utrunc, 314	行列 → リスト, 175, 176
11 01	互換 → 置換, 203
vadd, 81	式 → 文字列, 200, 324
var, 303	実数 → 整数, 335
varargs, 115	実数 → 分数, 135
vars, 304	数式 → T _E X, 206 数式 → 九可能立字例 100
vect, 317	数式 → 入力可能文字列, 199 敷数 、16 维文字列 201
vector, 317	整数 →16 進文字列, 301 整数のリスト → 文字列, 325
velbezier, 226	金頭式 → リスト, 164
verb_tex_form, 206	数分作用素 \rightarrow T _F X, 145, 147
version, 351	分数 → 実数, 138
vgen, 172 vnext, 172	分数の有理化, 137
vprod, 165	ベクトル \rightarrow TFX, 208, 215
vtol, 318	ベクトル → リスト, 318
vtozy, 164	文字列 → 行列, 177
vtype, 333	文字列 → 式, 200, 325
vtype, soo	文字列 → 整数のリスト, 325
which, 329	文字列 → 入力可能文字列, 198
wronskian, 153	文字列 → バイト列, 318
wronskian, 100	文字列 → 変数, 114, 325
xy2curve, 261	有理式 \rightarrow T _F X, 145, 207
xy2curve, 201 xy2graph, 256	有理式 → 文字列, 145
xyang, 247	リスト →CSV 形式, 201
xyarrow, 235	リスト \rightarrow T _F X $, 208$
xyarrows, 239	リスト → 行列, 176, 177
xybezier, 241	リスト → 多項式, 164
xybox, 239	リスト → 入力可能文字列, 199
xycirc, 241	リスト \rightarrow ベクトル, 317, 318
XYcm, 276	リスト形式函数 →bigfloat リスト形式函数, 122
xygraph, 251	連分数 → 分数, 135
xygrid, 249	函数
XYLim, 276	値を得る, 125
xyline, 235	オプション, 352
xylines, 243	オプションリストの変更 $, 163$
xyoval, 249	函数子, 334
xypos, 232	自明簡略化, 119
XYPrec, 276	スカラー演算を行列演算に拡張, 118
xyproc, 232	定義済みかとうかのチェック, 111
xyput, 234	定義済み函数, 352
	引数リスト, 334
zeta, 162	評価, 119
	含まれる初等函数のリスト, 116
応用	含まれる変数と初等関数, 115
Taylor 展開, 273	呼び出し, 333
函数値の数表, 270	リスト形式函数, 288
三角函数表, 271	リスト形式手続きの実行, 126
常用対数表, 270	リスト,配列に拡張, 117, 351
行列の行基本変形, 184	
グラフ	行列
円グラフ, 214	trace, 187, 323
折線グラフ, 213	演習用の整数行列生成, 190
棒グラフ, 213	階数, 187
原始根の表, 265	回転行列, 219
点数分布表, 272	核, 188
不定積分の解法, 158	簡単化, 194
	基本変形, 194
	3MA LAU LAS 571
型変換	逆行列, 188, 321 行其大亦形, 180, 222
CSV 形式 → リスト, 200	行基本変形, 180, 322
CSV 形式 → リスト, 200 EUC/JIS 文 →ShiftJIS 文, 198	行基本変形, 180, 322 演習問題生成, 190
CSV 形式 → リスト, 200	行基本変形, 180, 322

行のスカラー倍, <mark>322</mark>	CPU time, 348
共役変換, 189	開始, 349
,	
行列式, 187, 321	終了, 349
係数行列, 178	ガベジコレクション, 347
固有値, 193	環境変数, 352
固有ベクトル, 324	時刻, 350
サイズ, 319	制限時間つき実行, 349
実対称行列の符号, 323	設定の表示, 206
小行列,178	デバッグモード, 348
商写像, 188	エラー表示, 348
正則拡張,323	ヒープサイズ, 350
正則小行列, 323	ヒストリの消去, 352
像, 188	プロセスの一時停止, 350
単因子, 69	プロンプト, 347
置換行列で変換, 178	マニュアル表示, 111
· · · ·	
定義, 177, 193, 319, 320	常微分作用素
一般行列, 189	addition, 81
対角行列, 189	versal, 81
对称行列, 189	Euler 型から変換, 76
置換行列, 189	Euler 型の積, 65
転置, 179	Euler 型へ変換, 75
	· · · · · · · · · · · · · · · · · · ·
複製, 175	middle convolution, 80
べき, 179	Riemann scheme
ヘッセンベルグ行列 $,324$	reduction, 88
ユニモジュラー行列生成, 190	解析, 82
余因子行列, 323	生成,86
列基本変形, 322	部分特性指数和,87
列数調整, 179	
the state of the s	一次分数変換, 76
列の交換, 322	合流, 97
列のスカラー倍, 322	固有多項式,80
	最小公倍元, 69
座標	最大公約元,67
Bézier 曲線, 225	スペクトル型
キャンバスに描画, 243	Riemann scheme 生成, 86
結合, 219	解析, 82, 84
交点, 231	生成, 83
最大速度, 226	並べ替え, 81
座標と速度, 227	文字列との変換, 81
データ変換, 226	単因子, 69
	割り算,67
Bounding box, 223	
Window, 223	常微分方程式
アフィン変換, 21 9	Okubo 型に変換, 77
回転行列, 219	一階システムを高階単独へ変換, 78
角度, <mark>221</mark>	基底の変換, 69
共通部分の有無, 223	形式解, 77
距離, 218	特性指数, 76
格子点, 221	Fuchs 型の解析, 88
交点, <mark>221</mark>	隣接関係式,96
コピー, 221	
垂線の足, 221	数値関数
正多角形, 220	sgn, 132
接点, 221	数值函数
直線と箱内の共通部分, 223	arccos, 335
	· · · · · · · · · · · · · · · · · · ·
内分点, 221	arcsin, 335
描画実行形式,219	arctan, 335
平行移動, 221	$\cos, 161, 335$
偏角, 161	log, 161, 335
方向転換進行点, <u>221</u>	acos, 161
	asin, 161
孟结 227	
面積, 227	· · · · · · · · · · · · · · · · · · ·
面積, 227 和や差の座標, 218	atan, 161
	· · · · · · · · · · · · · · · · · · ·
和や差の座標, 218	atan, 161 sin, 160, 335
和や差の座標, 218 GRS, 88	atan, 161 sin, 160, 335 tan, 161, 335
和や差の座標, 218 GRS, 88 CSV 形式, 200, 201	atan, 161 \sin , 160, 335 \tan , 161, 335 x^y , 161
和や差の座標, 218 GRS, 88 CSV 形式, 200, 201 システム	atan, 161 \sin , 160, 335 \tan , 161, 335 x^y , 161 erf , 159
和や差の座標, 218 GRS, 88 CSV 形式, 200, 201	atan, 161 \sin , 160, 335 \tan , 161, 335 x^y , 161

値を得る, 119, 120, 125, 298	素因数分解, 301
函数形式削除, 121	素数
函数値の変更, 123	生成, 303
ガンマ函数, 162	判定, 135, 302
級数の和, 126	単因子, 6 9
極限値, 131	分割
極値, 130	生成 , 203
切り上げ整数, 335	双対, 203
最大值,最小值, 130	平方根, 297
三角函数と指数函数の簡単化, 128, 130	
	平方数, 302
四捨五入	メビウス函数, 303
桁指定, 137	約数の個数, 302
整数に, 336	約数の和, 302
指数函数, 160, 335	乱数, 297
実数の小数部分, 159	
周期函数に拡張, 124	対数尺, 223
小数部分, 303	
	l
数值積分, 127, 227, 291	Schur 多項式,144
整数部分, 335	shifted power, 143
積分区間変更,124	一変数
絶対値, 132, 335	Gauss 整数体上の既約分解, 142
零点, 130	Gegenbauer 多項式, 143
相補誤差関数, 336	Hermiter 多項式, 143
対数ガンマ函数, 162	Jacobi 多項式, 143
ダイログ函数, 162	
· · · · · · · · · · · · · · · · · · ·	Laguarre 多項式, 143
ディガンマ函数, 162	Legendre 多項式, 143
特異点, 132	shifted power, 143
任意精度浮動小数, 299, 347	因数分解 $, 150$
標準偏差, 165	係数の最大公約元, 315
複素積分, 127	原始函数, 153
符号反転との表示比較, 130	根, 140, 141, 316
不定積分, 154	最小公倍式, 69
	[* * * * * * * * * * * * * * * * * * *
解法生成,154	最大公約式,67
不定変数, 289	最低次数, 305
平均值, 165	次数, 148, 305
平方根, 161, 335	終結式, 308
ヘシアン, 152	選点直交多項式, 143
偏角, 161	素因子の個数, 302
ヤコビアン, 152	単因子, 69
有限フーリエ級数, 159	チェビシェフ多項式, 143
リスト形式函数, 288	l ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
	直交多項式, 143
リスト形式函数の合成, 123	判別式, 316
リスト形式函数の生成, 122	べき和多項式, 159
ロンスキアン、 153	ベルヌーイ多項式, 159
	割り算, 140
整数	因数分解, 308
16 進表示, 301	基本対称式, 142, 143
2 進数, 301	共通因子 , 152
and, 22, 300	共通根 , 141
bit shift, 301	係数, 304
or, 22, 300	係数抽出, 149
xor, 22, 300	係数のチェック, 149
オイラーの φ 函数, 303	係数を整数に丸める, 316
階乗, 296	項数, 305
原始根, 135	項の抽出, 151
表作成, 265	最低次数, 149
合同式	斉次化, 148
	生成, 140
逆数, 297	l
平方剰余, 134	定数項, 150
べき, 134	べき指数のリスト, 150
べき乗根, 134	割り算, 306
最小公倍数, 69, 297	
最大公約数, 67, 296	チェック
商, 295	Windows 環境, 112
剰余, 295, 311	アルファベット/数字の文字コード, 133
表因数の個数 302	アルファベットの文字コード、133

実部虚部共に有理数数, 133	グラフ
小数を表す文字列, 133	I
	2 変数関数, 256
数字の文字コード, 133	円グラフ, 210, 214
整数, 133	折線グラフ, 210, 213
多項式の係数, 149	関数のグラフ, 25 1
定義済み函数, 111	棒グラフ, 210, 213
微分作用素, 116	消去, 206
平方式, 302	常微分方程式の解析,88
平方数, 302	数式, 207
変数, 115	数式の改行文字列, 207
有理数数, 133	微分形式, 209
置換	I
	微分作用素, 145, 147
Bruhat order, 204	表, 209
逆元, 203	変形, 267
互換, 203	例, 213, 214, 265
積, 203	部分分数展開, 151
次の置換, 201	ベクトル, 215
長さ、203	文字数幅, 218, 276
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	有理式, 145, 207
$T_{F}X$	リスト, 208
	l · · · · · · · · · · · · · · · · · · ·
Pfaff 形式,208	列ベクトル, 209
Riemann scheme, 208	
xypic, 278	人出力
2 変数関数の 3D グラフ, 256	shell, 351
Bézier 曲線, 241	結果の表示, 114
円, 241	結果を文字列として取得, 114
円弧, 247	環境変数, 352
扇形, 247	キー入力, 114
折線, 243	出力
	l
開始と終了、232	切り替え, 329 CDU time 247
角の記号, 247	CPU time, 347
関数のグラフ, 251	表示, 163, 331
曲線, 243	実数, 347
空間曲線の描画, 261	標準入力
座標, 式, 233	バッファクリア, 332
座標軸, 252	ファイル
線種, 235, 287	1 行読む, 332
方眼紙, 249	1 バイト書く, 332
楕円の弧, 249	1 バイト読む, 332
	· ·
多角形, 243	CSV 形式に変換, 201
長方形, 239	CSV 形式読み込み, 200
直線, 235	出力, 164
通過点のアフィン変換, 21 9	消去, 331
通過点の複数コピー, 247	存在チェック, 331
塗りつぶし, 242, 287	閉じる, 332
描画実行形式の実行, 261	バイナリ読み書き, 330
表示, 232	開く, 332
閉曲線, 243	フォーマットつき表示, 331
平行四辺形, 239	プログラム
目盛, 223	読み込みパス名, 329
	読み込み、329
文字列,式,234	DLOF 129
矢印, 235, 239, 247	0
因数分解, 145	パッフ形式
改行, 20 6	addition, middle convolution, 103
改ページ, 206	変換
数, 137	Riemann scheme, 99, 106
括弧のサイズ調整, 208	パラメータ
画面表示, 205, 206	基底の完備化, 173
自動制御, 205	
制御, 206	 微分形式
キーワード、207	外微分, 79
行分割, 218	T _E X, 209
行列,215	微分作用素
小サイズ, 218	formal adjoint, 66
分割と並べ替え, 217	一般準同型変換,65
行列の行基本変形, 180, 184	積, 64
	l '

線形座標変換, 66	含まれる不定元のリスト, 115
有理式への作用積,67	分数
ラプラス変換, 80	循環連分数, 135
描画 1 亦粉兩粉 227	有理化, 137
1 変数函数, 337	連分数展開, 135, 303
T _E X, 251	t to the
2 変数函数	巾級数, 164
$T_{ m E}X,256$	Appell の超幾何級数, 145
零点, 337	Maclaurin 展開, 145
等高線, 337	Taylor 級数, 273
Bézier 曲線, 243	一般超幾何級数, 145
円弧, 247	逆元, 314
扇形, 247	
	高次のカット, 151
角の記号, 247 またまた。210, 264, 267	積, 164
重ね書き, 219, 264, 265	2 変数超幾何級数, 145
キャンバス	巾関数, 164
クリア, 339	ベクトル
生成, 339	ソート, 319
デフォルトサイズ, 275	マルチキー, 170
極形式, 337	次の並び替えたベクトル, 172
空間曲線, 261	定義, 317
方眼紙, 249	内積, 165
楕円, 249	ノルム, 218
. 1	
点,線分,339	鋏む角の余弦, 219
描画実行形式,263	範囲内の成分数, 163
種別番号, 263	要素の値の個数分布表, 163
描画実行形式の実行,261	変数 \mid see 不定元, 40
文字列,339	
矢印, 247	Mathematica, 200
複素変数	目盛, 223
Appell の超幾何級数, 145	ii.m., 220
Nppen の Eta 函数, 162, 337	
	文字列
digamma 函数, 336	EUC/JIS 文を ShiftJIS 文に変換, 198
digamma 函数, 336 dilogarithm 函数, 336	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162	EUC/JIS 文を ShiftJIS 文に変換, 198
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $f(\tau)$, 337	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $f(\tau)$, 337	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列置換, 197
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列置換, 197 部分文字列抽出, 197, 326
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数函数, 160	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列置換, 197
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数函数, 160 指数関数を実変数に, 128	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列置換, 197 部分文字列抽出, 197, 326 文字検索, 196, 325
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数函数, 160 指数函数, 160 指数関数を実変数に, 128 実部, 298	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列置換, 197 部分文字列抽出, 197, 326
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数函数, 160 指数函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列置換, 197 部分文字列抽出, 197, 326 文字検索, 196, 325
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数函数, 160 指数函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列檢索, 196 部分文字列置換, 197 部分文字列置換, 197 部分文字列抽出, 197, 326 文字検索, 196, 325
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数函数, 160 指数函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列置換, 197 部分文字列曲出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数函数, 160 指数函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列世換, 197 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161 対数ガンマ函数, 162	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列対応検索, 196 部分文字列抽出, 197 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j -invariant, 162 一般超幾何級数, 145 ウエーバー函数 $\mathfrak{f}(\tau)$, 337 ウエーバー函数 $\mathfrak{f}_2(\tau)$, 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298 三角函数, 160 指数函数, 160 指数对少マ函数, 162 ダイログ函数, 162 ダイログ函数, 162	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列置換, 197 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340
digamma 函数、336 dilogarithm 函数、336 ellpitic j -invariant、162 一般超幾何級数、145 ウエーバー函数 $\mathfrak{f}(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ガンマ函数、162、336 逆三角関数、161 共役複素数、298 三角函数、160 指数函数、160 指数函数、160 指数函数を実変数に、128 実部、298 絶対値、132、303 対数関数、161 対数ガンマ函数、162 ダイログ函数、162 ディガンマ函数、162 2 変数超幾何級数、145	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列世換索, 196 部分文字列間換, 197 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342
digamma 函数、336 dilogarithm 函数、336 ellpitic j -invariant、162 一般超幾何級数、145 ウエーバー函数 $\mathfrak{f}(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ガンマ函数、162、336 逆三角関数、161 共役複素数、298 三角函数、160 指数函数、160 指数函数、160 指数函数、160 指数函数、160 指数函数、160 指数例数を実変数に、128 実部、298 絶対値、132、303 対数関数、161 対数ガンマ函数、162 ダイログ函数、162 ディガンマ函数、162 で オガンマ函数、162 2 変数超幾何級数、145 複素積分、127	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列間換, 197 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340
digamma 函数、336 dilogarithm 函数、336 ellpitic j -invariant、162 一般超幾何級数、145 ウエーバー函数 $\mathfrak{f}(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ガンマ函数、162、336 逆三角関数、161 共役複素数、298、303 虚部、298 三角函数、160 指数函数、160 指数函数、160 指数関数を実変数に、128 実部、298 絶対値、132、303 対数関数、161 対数ガンマ函数、162 ダイログ函数、162 ディガンマ函数、162 アィガンマ函数、162 変数超幾何級数、145 複素積分、127 平方根、161、336	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342
digamma 函数、336 dilogarithm 函数、336 ellpitic j -invariant、162 一般超幾何級数、145 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ガンマ函数、162、336 逆三角関数、161 共役複素数、298、303 虚部、298 三角函数、160 指数函数、160 指数関数を実変数に、128 実部、298 絶対値、132、303 対数関数、161 対数ガンマ函数、162 ダイログ函数、162 ダイログ函数、162 ディガンマ函数、162 ディガンマ函数、162 アィガンマ函数、162 アオカンマ函数、162	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列曲出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j-invariant, 162 一般超幾何級数, 145 ウエーバー函数 f(て), 337 ウエーバー函数 f2(て), 337 ガンマ函数, 162, 336 逆三角関数, 161 共役衰素数, 298, 303 虚部, 298 三角函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161 対数ガンマ函数, 162 ダイログ函数, 162 ダイログ函数, 162 ディガンマ函数, 162 ディガンマ函数, 162 アィガンマ函数, 162 アィガンマ函数, 162 アィガンマ函数, 162 アィガンマ函数, 162 アィガンマ函数, 145 複素積分, 127 平方根, 161, 336 ベき函数, 143 巾関数, 161	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列槽檢, 197 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 既約分解, 345
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j-invariant, 162 一般超幾何級数, 145 ウエーバー函数 f(プ), 337 ウエーバー函数 f2(ア), 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298 三角函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161 対数ガンマ函数, 162 ダイログ函数, 162 ディガンマ函数, 162 ディガンマ函数, 162 ディガンマ函数, 162 アマ数超幾何級数, 145 複素積分, 127 平方根, 161, 336 べき函数, 143 巾関数, 161 偏角, 161, 336	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列曲出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345
digamma 函数、336 dilogarithm 函数、336 ellpitic j -invariant、162 一般超幾何級数、145 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ガンマ函数、162、336 逆三角関数、161 共役複素数、298 三角函数、160 指数関数を実変数に、128 実部、298 絶対値、132、303 対数関数、161 対数ガンマ函数、162 ダイログ函数、162 ディガンマ函数、162 ディガンマ函数、162 ディガンマ函数、162 アィガンマ函数、162 アィガンマ函数、162 アィガンマ函数、161 対象 \mathfrak{f}_3 00 でき函数、143 中関数、161 偏角、161、336 リーマンの ζ 函数、162、337	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列槽檢, 197 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 既約分解, 345
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j-invariant, 162 一般超幾何級数, 145 ウエーバー函数 f(プ), 337 ウエーバー函数 f2(ア), 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298 三角函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161 対数ガンマ函数, 162 ダイログ函数, 162 ディガンマ函数, 162 ディガンマ函数, 162 ディガンマ函数, 162 アマ数超幾何級数, 145 複素積分, 127 平方根, 161, 336 べき函数, 143 巾関数, 161 偏角, 161, 336	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列描地, 197 部分文字列抽出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 生成, 345, 346
digamma 函数、336 dilogarithm 函数、336 ellpitic j -invariant、162 一般超幾何級数、145 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ガンマ函数、162、336 逆三角関数、161 共役複素数、298 三角函数、160 指数関数を実変数に、128 実部、298 絶対値、132、303 対数関数、161 対数ガンマ函数、162 ダイログ函数、162 ディガンマ函数、162 ディガンマ函数、162 ディガンマ函数、162 アィガンマ函数、162 アィガンマ函数、162 アィガンマ函数、161 対象 \mathfrak{f}_3 00 でき函数、143 中関数、161 偏角、161、336 リーマンの ζ 函数、162、337	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列檢索, 196 部分文字列対応檢索, 196 部分文字列置換, 197 部分文字列置換, 197 部分文字列曲出, 197, 326 文字檢索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 生成, 345, 346 多項式の変換, 344 標数, 341
digamma 函数, 336 dilogarithm 函数, 336 ellpitic <i>j</i> -invariant, 162 一般超幾何級数, 145 ウエーバー函数 f(τ), 337 ウエーバー函数 f(τ), 337 ウエーバー函数 f(z), 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161 対数ガンマ函数, 162 ダイログ函数, 162 ディガンマ函数, 162 ディガンマ函数数, 145 複素積分, 127 平方根, 161, 336 ベき函数, 143 中関数, 161 偏角, 161, 336 リーマンの ζ 函数, 162, 337 留数, 132	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列檢索, 196 部分文字列置換, 197 部分文字列置換, 197 部分文字列曲出, 197, 326 文字檢索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 度成, 345 生成, 345, 346 多項式の変換, 344 標数, 341 変換, 343, 344
digamma 函数、336 dilogarithm 函数、336 ellpitic j -invariant、162 一般超幾何級数、145 ウエーバー函数 $\mathfrak{f}(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}(\tau)$ 、337 ガンマ函数、162、336 逆三角関数、161 共役複素数、298、303 虚部、298 三角函数、160 指数関数を実変数に、128 実部、298 絶対値、132、303 対数関数、161 対数ガンマ函数、162 ダイログ函数、162 ディガンマ函数、162 ディガンマ函数、162 アィガンマ函数、162 で変数超幾何級数、145 複素積分、127 平方根、161、336 ベき函数、143 中関数、161 偏角、161、336 リーマンの ζ 函数、162、337 留数、132	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列檢索, 196 部分文字列置換, 197 部分文字列置換, 197 部分文字列出出, 197, 326 文字檢索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 里成約分解, 345 生成, 345, 346 多項式の変換, 344 標数, 341 変換, 343, 344 乱数, 342
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j-invariant, 162 一般超幾何級数, 145 ウエーバー函数 f ₂ (τ), 337 ウエーバー函数 f ₂ (τ), 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161 対数ガンマ函数, 162 ダイログ函数, 162 ディガンマ函数, 162 ディガンマ函数, 162 アイガンマ函数, 163 (き函数, 143 中関数, 161 偏角, 161, 336 ベき函数, 143 中関数, 161 偏角, 161, 336 リーマンのζ函数, 162, 337 留数, 132 不定元 型, 333 順序, 305	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列檢索, 196 部分文字列置換, 197 部分文字列描出, 197, 326 文字檢索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 里成, 345 里成, 345 里成, 345 里成, 345 里成, 345 里成, 345 里成, 344 標数, 341 変換, 343, 344 乱数, 342 有理式
digamma 函数、336 dilogarithm 函数、336 ellpitic j -invariant、162 一般超幾何級数、145 ウエーバー函数 $\mathfrak{f}(\tau)$ 、337 ウエーバー函数 $\mathfrak{f}_2(\tau)$ 、337 ガンマ函数、162、336 逆三角関数、161 共役複素数、298、303 虚部、298 三角函数、160 指数関数を実変数に、128 実部、298 絶対値、132、303 対数関数、161 対数ガンマ函数、162 ダイログ函数、162 ディガンマ函数、162 アイガンマ函数、162 ディガンマ函数、162 アイガンマ函数、143 市関数、161 偏角、161、336 ベき函数、143 市関数、161 偏角、161、336 リーマンの ζ 函数、162、337 留数、132 不定元 型、333 順序、305 生成、114、115、325	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列検索, 196 部分文字列対応検索, 196 部分文字列間換, 197 部分文字列間換, 197 部分文字列間出, 197, 326 文字検索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 生成, 345, 346 多項式の変換, 344 標数, 341 変換, 343, 344 乱数, 342 有理式 TEX, 145
digamma 函数, 336 dilogarithm 函数, 336 ellpitic j-invariant, 162 一般超幾何級数, 145 ウエーバー函数 f ₂ (τ), 337 ウエーバー函数 f ₂ (τ), 337 ガンマ函数, 162, 336 逆三角関数, 161 共役複素数, 298, 303 虚部, 298 三角函数, 160 指数関数を実変数に, 128 実部, 298 絶対値, 132, 303 対数関数, 161 対数ガンマ函数, 162 ダイログ函数, 162 ディガンマ函数, 162 ディガンマ函数, 162 アイガンマ函数, 163 (き函数, 143 中関数, 161 偏角, 161, 336 ベき函数, 143 中関数, 161 偏角, 161, 336 リーマンのζ函数, 162, 337 留数, 132 不定元 型, 333 順序, 305	EUC/JIS 文を ShiftJIS 文に変換, 198 ShiftJIS/JIS 文を EUC 文に変換, 198 繰り返し, 197 数式を入力可能文字列に, 199 外側の括弧を外す, 198 テキスト用バッファ, 198 長さ, 325 部分文字列檢索, 196 部分文字列置換, 197 部分文字列描出, 197, 326 文字檢索, 196, 325 ユークリッドの互除法, 67 有限体 基礎体 位数, 341 拡大次数, 341 種類, 340 元の定義, 342 設定, 340 多項式, 342 既約判定, 345 里成, 345 里成, 345 里成, 345 里成, 345 里成, 345 里成, 345 里成, 344 標数, 341 変換, 343, 344 乱数, 342 有理式

)
主変数, 304
代入, 116, 117, 307
不定元の巡回置換, 116
部分分数展開,151
分子, 296
分母, 296
変数のリスト, 304
偏微分, 66
m/以刀,00
文字列 $^{\circ}$, 145
約分, 312
有理数
近似実数から変換, 135
分子, 29 6
分母, 2 96
平方根, 136
,
11 1
リスト
合併,共通部分,除外, 167
逆順, 316
繰り返し, 197
が、フルトレ、エジー 目、エハ 位米 (二) 100
最小公倍数(元),166
最小の成分, 166
最大公約数(元),166
最大の成分、166
整数商での割り算, 167
成分の置き換え, 166
成分の削除と抽出, 163
先頭, 316
たまたい自由 91 <i>6</i>
先頭に追加, 316
先頭を除く, 316
ソート, 319
マルチキー, 170
次の並び替え, 202
転倒数, 132
内部のリストをほどく, 175
長さ、316
*
並び替え番目, 202
入力可能文字列に変換, 199
範囲内の要素数, 163
表形式データの操作, 167
秋形以 7 9 01来下, 107
符号, 132
有限区間の集合, 171
要素検索, 162
要素数調整, 179
要素の値の分布個数表, 163
リスト形式函数, 119–122
リストのリストのサイズ, 162
リストのリストを転置, 179
連結, 175, 316
リスト形式データ, <mark>293</mark>
連立一次方程式, 165
簡易化, 165
有理数解, 166
Risa/Asir, 33
1000/1011, 00
コマンドラインオプション, 34
環境変数,34
起動から終了まで、34
割り込み, 35
エラー処理, 36
計算結果,特殊な数,36
型, 37
Asir で使用可能な型, 37
数の型, 39
不定元の型, 40

```
ユーザ言語 Asir, 41
  文法 (C 言語との違い), 41
  ユーザ定義函数, 42
  変数および不定元,43
  引数, 44
  コメント, 44
文, 45
  return 文, 45
  if 文, 46
ループ, 46
  構造体定義, 47
  さまざまな式, 47
  プリプロセッサ, 48
  オプション指定, 49
モジュール, 51
デバッガ, 53
  デバッガとは, 53
  コマンドの解説, 53
  デバッガの使用例, 55
デバッガの初期化の例, 56
文法の詳細,56
有限体における演算, 59
  有限体の表現および演算,59
  有限体上での1変数多項式環の演算,60
  小標数有限体上での多項式環の演算,60
  有限体上の楕円曲線に関する演算,61
Risa/Asir \succeqos_muldif.rr, 61
  os_muldif.rr のインストール, 62
```