Semester Review

6 Dec 2011 BUSI275 Dr. Sean Ho

- Paper due tomorrow
- Final this Sat

Overview: foundation

- Intro: variables, sampling (Ch1)
- Exploring data:
 - Via charts (Ch2), via descriptives (Ch3)
- Probability and independence (Ch4)
- Probability distributions:
 - Discrete: binom, Poisson, hypg (Ch5)
 - Continuous: norm, unif, expon (Ch6)
- Sampling distributions (Ch7, 8)
 - SDSM (norm and t-dist), binomial
 - Types of problems: % area, conf. int., n
- Hypothesis testing (Ch9):
- TRINITY HO/HA, rej / fail rej, Type-I/II, α/β, p-value
 WESTERN
 BUSI275: review
 6 Dec 201

Overview: statistical tests

- *T*-tests (Ch10):
 - 1 sample mean (ch9)
 - Two independent samples (het σ , hom σ)
 - Paired data (Excel type 1)
- Regression (Ch14-15):
 - Linear model, predicted ŷ, residuals
 - R², F-test, t-test on slopes, interaction
- ANOVA (ch12):
 - One-way + Tukey-Kramer
 - Blocking (w/o repl) + Fisher's LSD
 - Two-way (w/repl), interaction

Ch2-3: Exploring Data

- For nominal variables:
 - Charts: bar/col, pie
 - Joint distrib of 2 vars: pivot table
 - Stats: frequency distribution
- For scale (quantitative) (interval/ratio) vars:
 - Charts: histogram, ogive (cum), boxplot
 - ◆ 2 vars: scatter
 - Time series: line
 - Centre: mean, median, mode, (skew)
 - Quantile: Q₁/Q₃, %ile, IQR
 - Std dev: σ, s, CV, empirical rule, z-score

Ch4: Probability

- Tree diagrams
- P(A) notation, Venn diagrams
 - Sample space, outcome, event
 - n, U, complement
- Addition rule: $A \cup B = A + B (A \cap B)$
 - Mutual exclusivity
- Conditional probability
 - What does it mean; how to find it (Bayes)
 - Statistical independence
 - ◆ Does P(A|B) = P(A) ?

Ch5: Discrete distributions

- Binomial: BINOM(x, n, p, cum)
 - x: counting # of successes out of n trials
 - p: probability of success (binom proportion)
- Poisson: POISSON(x, λ, cum)
 - x: # occurrences within the time period
 - λ : mean (expected) # occ w/in the period
- Hypergeometric: HYPGEOMDIST(X, N, x, n)
 - X, N: # successes & tot size of population
 - Binomial p = X/N
 - x, n: # successes & tot size of sample

Ch6: Continuous distributions

- Normal: NORMDIST(x, μ, σ, cum)
 - Also NORMINV(area, μ, σ),
 NORMSDIST(z), NORMSINV(area)
- Uniform:
 - $P(x) = 1/(b-a), \mu = (a+b)/2, \sigma = \sqrt{((b-a)^2/12)}$
- Exponential: EXPONDIST(x, λ, cum)
 - x: time between occurrences
 - λ : 1 / (mean time between occurrences)
 - λ = expected frequency of occurrences (e.g., occurrences per min)

Ch7-8: Sampling distributions

- Sampling distributions:
 - SDSM, w/ σ : NORMDIST(), SE = σ/\sqrt{n}
 - SDSM, w/s: TDIST(), SE = s/\sqrt{n}
 - Binomial proportion: norm, $SE = \sqrt{(pq / n)}$
- Types of problems: area, μ, thresh, n, σ
 - Area: prob of getting a sample in given range
 - Threshold: e.g., confidence interval
 - n: minimum sample size

Ch9: Hypothesis testing

- Decision making
- H_0 vs. H_A , in words and notation (e.g., $\mu_1 \neq \mu_2$)
- Conclusions: reject H₀ vs. fail to reject H₀
- Risks/errors: Type-I vs. Type-II
 - Level of significance: α
 - Power: 1-β
- p-value: what is it, how do we use it?

Ch10: t-tests

- T-test on 1 sample (ch8-9):
 - SDSM: $SE = s/\sqrt{n}$
 - Binomial proportions: SE = √(pq/n)
- T-test on two independent samples, general:
 - $SE = \sqrt{(SE_1^2 + SE_2^2)}$, df = complicated
- T-test on two independent samples, similar σ:
 - $SE = s_p \sqrt{(1/n_1 + 1/n_2)}$, $df = df_1 + df_2$
- T-test on two proportions:
 - $SE = \sqrt{(SE_1^2 + SE_2^2)}$, use z instead of t
- T-test on paired data:
 - SE = s_d / \sqrt{n} , df = (#pairs) 1

Ch14-15: Regression

- Scatter plots and correlation, t-test on r
 - R² and % variability explained
- Linear model $Y = b_0 + b_1 X + \epsilon$
 - Finding+interpreting slope+intercept
 - Finding+interpreting s_ε (STEYX)
- Assumptions / diagnostics:
 - Linearity + homoscedasticity (residual plots)
 - Normality of residuals (histogram)
 - (skip: non-collinearity + indep of resids)
- Multiple regression + concept of moderation

Ch12-13: Categorical data

- Ch12: ANOVA:
 - H₀ / H_A, global F-test, concept of follow-up
 - One-way ANOVA + Tukey-Kramer
 - Blocking ANOVA + Fisher's LSD
 - F-test for main factor effect
 - F-test for whether blocking is needed
 - Two-way ANOVA
 - F-test for each main effect
 - F-test for interaction
- Ch13: χ² (○ vs. E)
 - 1 var vs. uniform, normal
 - 2 vars (contingency table): independence