

Grundlagen der Mathematik und Informatik

Aufbaukurs: Fit für Psychologie WiSe 2022/23

Belinda Fleischmann

Inhalte basieren auf Einführung in Mathematik und Informatik von Dirk Ostwald, lizenziert unter CC BY-NC-SA 4.0

(5) Differentialrechnung

Analytische Optimierung

Analytische Optimierung

Definition (Ableitung)

Es sei $I \subseteq \mathbb{R}$ ein Intervall und

$$f: I \to \mathbb{R}, x \mapsto f(x)$$
 (1)

eine univariate reellwertige Funktion. f heißt in $a \in I$ differenzierbar, wenn der Grenzwert

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 (2)

existiert. f'(a) heißt dann die Ableitung von f an der Stelle a. Ist f differenzierbar für alle $x \in I$, so heißt f differenzierbar und die Funktion

$$f': I \to \mathbb{R}, x \mapsto f'(x)$$
 (3)

heißt Ableitung von f

- Für h > 0 heißt $\frac{f(a+h)-f(a)}{h}$ Differenzquotient.
- ullet Der Differenzquotient misst die Änderung f(a+h)-f(a) von f pro Strecke h.
- Für $h \to 0$ misst der Differenzquotient die Änderungsrate von f in a.
- f'(a) ist eine Zahl, f' ist eine Funktion.
- Wir werden keine Grenzwertbildung zur Berechnung von Ableitungen benötigen.

Definition (Notation für Ableitungen univariater reellwertiger Funktionen)

Es sei f eine univariate reellwertige Funktion. Äquivalente Schreibweisen für die Ableitung von f und die Ableitung von f an einer Stelle x sind

- (1) die Lagrange-Notation f' und f'(x),
- (2) die Newton-Notation \dot{f} und $\dot{f}(x)$,
- (3) die Leibniz-Notation $\frac{df}{dx}$ und $\frac{df(x)}{dx}$ und
- (4) die Euler-Notation Df und Df(x).

- Für univariate reellwertige Funktionen benutzen wir f' und f'(x) als Bezeichner.
- In Berechnungen benutzen wir auch die "Operator-Schreibweise" $\frac{d}{dx}f(x)$.
- Wir verstehen $\frac{d}{dx}f(x)$ als den Auftrag, die Ableitung von f zu berechnen.

Definition (Höhere Ableitungen)

Es sei f eine univariate reellwertige Funktion und

$$f^{(1)} := f' \tag{4}$$

sei die Ableitung von f. Die k-te Ableitung von f ist rekursiv definiert durch

$$f^{(k)} := (f^{(k-1)})'$$
 für $k \ge 0$, (5)

unter der Annahme, dass $f^{(k-1)}$ differenzierbar ist. Insbesondere ist die *zweite Ableitung von f* definiert durch die Ableitung von f', also

$$f^{\prime\prime} := (f^{\prime})^{\prime}. \tag{6}$$

- Wir schreiben auch $\frac{d^2}{dx^2} f(x)$ für den Auftrag, die zweite Ableitung von f zu bestimmen.
- Die nullte Ableitung $f^{(0)}$ von f ist f selbst.
- Üblicherweise schreibt man für k < 4 f', f'', f''' statt $f^{(1)}, f^{(2)}, f^{(3)}$.
- Im Allgemeinen benötigen wir nur f' und f''.

Theorem (Rechenregeln für Ableitungen)

Für $i=1,\dots,n$ seien g_i reellwertige univariate differenzierbare Funktionen. Dann gelten folgende Rechenregeln für Ableitungen

(1) Summenregel

$$\operatorname{F\"{u}r} f(x) := \sum_{i=1}^{n} g_i(x) \text{ gilt } f'(x) = \sum_{i=1}^{n} g_i'(x). \tag{7}$$

(2) Produktregel

$$\operatorname{F\"{u}r} f(x) := g_1(x)g_2(x) \text{ gilt } f'(x) = g_1'(x)g_2(x) + g_1(x)g_2'(x). \tag{8}$$

(3) Quotientenregel

$$\operatorname{F\"{u}r} f(x) := \frac{g_1(x)}{g_2(x)} \operatorname{gilt} f'(x) = \frac{g_1'(x)g_2(x) - g_1(x)g_2'(x)}{g_2^2(x)}. \tag{9}$$

(4) Kettenregel

$$\operatorname{F\"{u}r} f(x) := g_1(g_2(x)) \text{ gilt } f'(x) = g_1'(g_2(x))g_2'(x). \tag{10}$$

Bemerkung

• Für Beweise der Rechenregeln wird auf die einschlägige Literatur verwiesen.

Theorem (Ableitungen elementarer Funktionen)

Für einige elementare Funktionen der Datenanalyse ergeben sich folgende Ableitungen

Name	Definition	Ableitung
Polynomfunktionen	$f(x) := \sum_{i=0}^{n} a_i x^i$	$f'(x) = \sum_{i=1}^{n} i a_i x^{i-1}$
Konstante Funktion	f(x) := a	f'(x) = 0
Identitätsfunktion	f(x) := x	f'(x) = 1
Lineare Funktion	f(x) := ax + b	f'(x) = a
Quadratfunktion	$f(x) := x^2$	f'(x) = 2x
Exponentialfunktion	$f(x) := \exp(x)$	$f'(x) = \exp(x)$
Logarithmusfunktion	$f(x) := \ln(x)$	$f'(x) = \frac{1}{x}$

Bemerkung

• Für Beweise wird auf die einschlägige Literatur verwiesen.

Ableitungen elementarer Funktionen

Ableitungen elementarer Funktionen

Analytische Optimierung

Definition (Extremstellen und Extremwerte)

Es sei $U\subseteq\mathbb{R}$ und $f:U o\mathbb{R}$ eine univariate reellwertige Funktion. Dann hat f an der Stelle $x_0\in U$

ullet ein lokales Minimum, wenn es ein Intervall I:=]a,b[gibt mit $x_0\in]a,b[$ und

$$f(x_0) \le f(x)$$
 für alle $x \in I \cap U$, (11)

• ein globales Minimum, wenn gilt, dass

$$f(x_0) \le f(x)$$
 für alle $x \in U$, (12)

• ein lokales Maximum, wenn es ein Intervall I :=]a, b[gibt mit $x_0 \in]a, b[$ und

$$f(x_0) \ge f(x)$$
 für alle $x \in I \cap U$, (13)

· lokales Maximum, wenn gilt, dass

$$f(x_0) \ge f(x)$$
 für alle $x \in U$. (14)

Der Wert $x_0 \in U$ der Definitionsmenge von f heißt entsprechend lokale oder globale Minimalstelle oder Maximalstelle, der Funktionswert $f(x_0) \in \mathbb{R}$ heißt entsprechend lokales oder globales Minimum oder Maximum. Generell heißt der Wert $x_0 \in U$ Extremstelle und der Funktionswert $f(x_0) \in \mathbb{R}$ Extremsert.

- Extremstellen werden auch mit $\arg\min_{x\in I\cap U}f(x)$ oder $\arg\max_{x\in I\cap U}f(x)$ bezeichnet.
- Extremwerte werden auch mit $\min_{x \in I \cap U} f(x)$ oder $\max_{x \in I \cap U} f(x)$ bezeichnet.

Definition (Notwendige Bedingung für Extrema)

f sei eine univariate reellwertige Funktion. Dann gilt

$$x_0$$
 ist Extremstelle von $f \Rightarrow f'(x_0) = 0$. (15)

- · Notwendige Bedingung sagt aus:
 - Wenn x_0 eine Extremstelle von f ist, dann ist die erste Ableitung von f in x_0 null.
 - Aber wenn die erste Ableitung von f in x₀ null ist, ist x₀ nicht unbedingt eine Extremstelle, weil das auch ein Sattelpunkt sein könnte.
- Sei zum Beispiel x_0 eine lokale Maximalstelle von f. Dann gilt
 - Links von x_0 steigt f an, rechts von x_0 fällt f ab.
 - In x_0 steigt f weder an, noch fällt f ab, also ist $f'(x_0) = 0$.

Veranschaulichung

Definition (Hinreichende Bedingungen für lokale Extrema)

f sei eine zweimal differenzierbare univariate reellwertige Funktion.

• Wenn für $x_0 \in U \subseteq \mathbb{R}$

$$f'(x_0) = 0 \text{ und } f''(x_0) > 0$$
 (16)

gilt, dann hat f an der Stelle x_0 ein Minimum.

• Wenn für $x_0 \in U \subseteq \mathbb{R}$

$$f'(x_0) = 0 \text{ und } f''(x_0) < 0$$
 (17)

gilt, dann hat f an der Stelle x_0 ein Maximum.

Bemerkung

• Eine Intuition vermittelt nachfolgende Abbildung.

Hier ist offenbar $x_0 = 1$ eine lokale Minimalstelle von $f(x) = (x-1)^2$. Man erkennt:

- ullet Links von x_0 fällt f ab, rechts von x_0 steigt f an.
- In x_0 steigt f weder an, noch fällt f ab, also ist $f'(x_0) = 0$.
- Links und rechts von x_0 und in x_0 ist die Änderung $f^{\prime\prime}$ von f^\prime positiv.
- ullet Links von x_0 schwächt sich die Negativitaet von f' zu 0 ab.
- Rechts von x_0 verstärkt sich die Positivitaet von f'.

Definition (Standardverfahren der analytischen Optimierung)

f sei eine univariate reellwertige Funktion. Lokale Extremstellen von f können mit folgendem Standardverfahren der analytischen Optimierung identifiziert werden:

- (1) Berechnen der ersten und zweiten Ableitung von f.
- (2) Bestimmen von Nullstellen x^* von f' durch Auflösen von $f'(x^*) = 0$ nach x^* .
 - \Rightarrow Nullstellen von f' sind Kandidaten für Extremstellen von f.
- (3) Evaluation von $f''(x^*)$.
 - \Rightarrow Wenn $f''(x^*) > 0$, dann ist x^* lokale Minimumstelle von f.
 - \Rightarrow Wenn $f''(x^*) < 0$, dann ist x^* lokale Maximumstelle von f.
 - \Rightarrow Wenn $f''(x^*) = 0$, dann ist x^* keine Extremstelle von f.

Beispiel für Standardverfahren analytischer Optimierung

Wir betrachten die Funktion

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) := (x-1)^2. \tag{18}$$

Die erste Ableitung von f ergibt sich mit der Kettenregel zu

$$f'(x) = \frac{d}{dx}\left((x-1)^2\right) = 2(x-1) \cdot \frac{d}{dx}(x-1) = 2x-2.$$
 (19)

Die zweite Ableitung von f ergibt sich zu

$$f''(x) = \frac{d}{dx}f'(x) = \frac{d}{dx}(2x - 2) = 2 > 0 \text{ für alle } x \in \mathbb{R}.$$
 (20)

Auflösen von $f'(x^*) = 0$ nach x^* ergibt

$$f'(x^*) = 0 \Leftrightarrow 2x^* - 2 = 0 \Leftrightarrow 2x^* = 2 \Leftrightarrow x^* = 1.$$
 (21)

 $x^* = 1$ ist folglich eine Minimalstelle von f mit zugehörigen Minimalwert f(1) = 0.

Analytische Optimierung

- 1. Definieren Sie den Begriff der Ableitung $f^{\prime}(a)$ einer Funktion f an einer Stelle a.
- 2. Definieren den Begriff der Ableitung f' einer Funktion f.
- 3. Erläutern Sie die Symbole $f'(x),\dot{f}(x),\,\frac{df(x)}{dx}$, und $\frac{d}{dx}f(x)$.
- 4. Definieren Sie den Begriff der zweiten Ableitung $f^{\prime\prime}$ einer Funktion f.
- 5. Geben Sie die Summenregel für Ableitungen wieder.
- 6. Geben Sie die Produktregel für Ableitungen wieder.
- 7. Geben Sie die Quotientenregel für Ableitungen wieder.
- 8. Geben Sie die Kettenregel für Ableitungen wieder.
- 9. Bestimmen Sie die Ableitung der Funktion $f(x) := 3x^2 + \exp\left(-x^2\right) x\ln(x)$.
- 10. Bestimmen Sie die Ableitung der Funktion $f(x):=\frac{1}{2}\sum_{i=1}^n(x_i-\mu)^2$ für $\mu\in\mathbb{R}$.
- 11. Definieren Sie die Begriffe des globalen und lokalen Maximums/Minimums einer Funktion.
- 12. Geben Sie die notwendige Bedingung für ein Extremum einer Funktion wieder.
- 13. Geben Sie die hinreichende Bedingung für ein lokales Extremum einer Funktion wieder.
- 14. Geben Sie das Standardverfahren der analytischen Optimierung wieder.
- 15. Bestimmen Sie einen Extremwert von $f(x):=\exp\left(-\frac{1}{2}(x-\mu)^2\right)$ für $\mu\in\mathbb{R}.$