

## NTE2383 **MOSFET** P-Channel Enhancement Mode, **High Speed Switch** (Compl to NTE2382)

## **Description:**

The NTE2383 is a MOS power P-Channel FET in a TO220 type package designed for high voltage, high speed power switching applications such as switching regulators, converters, solenoid, and relay drivers.

## Features:

- Lower R<sub>DS(ON)</sub>
- Improved Inductive Ruggedness
- Fast Switching Times
- Rugged Polysilicon Gate Cell Structure
- Lower Input Capacitance
- Extended Safe Operating Area
- Improved High Temperature Reliability

| Absolute Maximim Ratings: Drain-Source Voltage (Note 1), V <sub>DSS</sub>                |
|------------------------------------------------------------------------------------------|
|                                                                                          |
| Drain–Gate Voltage ( $R_{GS} = 1M\Omega$ , Note 1), $V_{DGR}$                            |
| Gate-Source Voltage, V <sub>GS</sub> ±20V                                                |
| Continuous Drain Current, I <sub>D</sub>                                                 |
| $T_C = +25^{\circ}C$                                                                     |
| $T_{C} = +25^{\circ}C$                                                                   |
| Drain Current, Pulsed (Note 3), I <sub>DM</sub>                                          |
| Gate Current, Pulsed, I <sub>GM</sub> ±1.5A                                              |
| Single Pulsed Avalanvhe Energy (Note 4), E <sub>AS</sub>                                 |
| Avalanche Current, I <sub>AS</sub>                                                       |
| Total Power Dissipation ( $T_C = +25^{\circ}C$ ), $P_D$                                  |
| Derate Above 25°C                                                                        |
| Operating Junction Temperature Range, T <sub>opr</sub> –55° to +150°C                    |
| Storage Temperature Range, T <sub>stg</sub> –55° to +150°C                               |
| Thermal Resistance, Junction–to–Ambient, R <sub>th,JA</sub>                              |
| Thermal Resistance, Junction–to–Case, R <sub>thJC</sub>                                  |
| Thermal Resistance, Case–to–Sink (Note 5), R <sub>thCS</sub>                             |
| Maximum Lead Temperature (During Soldering, 1/8" from case, 5sec), T <sub>L</sub> +300°C |
| Note 1. $T_{.1} = +25^{\circ}$ to $+150^{\circ}$ C                                       |
| Note 2. Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2%.                                |

- Note 3. Repetitive rating: Pulse width limited by max. junction temperature.
- Note 4. L = 8.5mH,  $V_{DD}$  = 25V,  $R_G$  = 25 $\Omega$ , Starting  $T_J$  = +25°C.
- Note 5. Mounting surface flat, smooth, and greased.

## **Electrical Characteristics:** $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

| Parameter                                      | Symbol               | Test Conditions                                                                                                                      | Min | Тур  | Max  | Unit |  |
|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|--|
| Drain–Source Breakdown Voltage                 | V <sub>(BR)DSS</sub> | $V_{GS} = 0, I_D = 0.25 \text{mA}$                                                                                                   | 100 | _    | _    | V    |  |
| Zero Gate Voltage Drain Current                | I <sub>DSS</sub>     | V <sub>DS</sub> = 100V, V <sub>GS</sub> = 0                                                                                          | _   | _    | 0.25 | mΑ   |  |
|                                                |                      | $V_{DS} = 80V, V_{GS} = 0, T_{J} = +125^{\circ}C$                                                                                    | _   | _    | 1.0  | mΑ   |  |
| Gate-Body Leakage Current, Forward             | I <sub>GSS</sub>     | V <sub>GS</sub> = 20V                                                                                                                | _   | _    | 100  | nA   |  |
| Gate-Body Leakage Current, Reverse             | I <sub>GSS</sub>     | V <sub>GS</sub> = 20V                                                                                                                | _   | _    | -100 | nA   |  |
| Gate Threshold Voltage                         | V <sub>GS(th)</sub>  | $V_{DS} = V_{GS}$ , $I_D = 0.25$ mA                                                                                                  | 2.0 | _    | 4.0  | V    |  |
| Static Drain–Source On–Resistance              | r <sub>DS(on)</sub>  | V <sub>GS</sub> = 10V, I <sub>D</sub> = 5.3A, Note 2                                                                                 | _   | _    | 0.3  | Ω    |  |
| Forward Transconductance                       | 9 <sub>FS</sub>      | $V_{DS} \le 50V$ , $I_{D} = 5.3A$ , Note 2                                                                                           | 2.0 | _    | _    | mhos |  |
| Input Capacitance                              | C <sub>iss</sub>     | $V_{DS} = 25V, V_{GS} = 0, f = 1MHz$                                                                                                 | _   | 835  | _    | pF   |  |
| Output Capacitance                             | C <sub>oss</sub>     |                                                                                                                                      | _   | 357  | _    | pF   |  |
| Reverse Transfer Capacitance                   | C <sub>rss</sub>     |                                                                                                                                      | _   | 94   | _    | pF   |  |
| Turn-On Delay Time                             | t <sub>d(on)</sub>   | $V_{DD}$ = 50V, $I_{D}$ = 10.5A, $Z_{O}$ = 24 $\Omega$ , MOSFET switching times are essentially independent of operating temperature | _   | _    | 60   | ns   |  |
| Rise Time                                      | t <sub>r</sub>       |                                                                                                                                      | _   | -    | 140  | ns   |  |
| Turn–Off Delay Time                            | t <sub>d(off)</sub>  |                                                                                                                                      | _   | -    | 140  | ns   |  |
| Fall Time                                      | t <sub>f</sub>       |                                                                                                                                      | _   | -    | 140  | ns   |  |
| Total Gate Charge                              | $Q_g$                | $V_{GS}$ = 10V, $V_{DS}$ = 80V, $I_{D}$ = 10.5A, Gate charge is essentially independent of operating temperature                     | _   | -    | 58   | nC   |  |
| Gate-Source Charge                             | $Q_{gs}$             |                                                                                                                                      | _   | 12.6 | _    | nC   |  |
| Gate-Drain ("Miller") Charge                   | $Q_{gd}$             |                                                                                                                                      | _   | 16.6 | _    | ns   |  |
| Source-Drain Diode Ratings and Characteristics |                      |                                                                                                                                      |     |      |      |      |  |
| Continuous Source Current (Body Diode)         | I <sub>S</sub>       |                                                                                                                                      | _   | _    | 10.5 | Α    |  |
| Pulse Source Current (Body Diode)              | I <sub>SM</sub>      | Note 3                                                                                                                               | _   | _    | 42   | Α    |  |
| Diode Forward Voltage                          | $V_{SD}$             | $T_J = +25$ °C, $I_S = 10.5$ A, $V_{GS} = 0$ V, Note 2                                                                               | -   | _    | 6.3  | V    |  |
| Reverse Recovery Time                          | t <sub>rr</sub>      | $T_J = +25^{\circ}C$ , $I_F = 10.5A$ , $dI_F/dt = 100A/\mu s$                                                                        | -   | _    | 300  | ns   |  |

Note 2. Pulse Test: Pulse Width  $\leq 300 \mu s$ , Duty Cycle  $\leq 2\%$ .

Note 3. Repetitive rating: Pulse width limited by max. junction temperature.

