

STL66N3LLH5

Automotive-grade N-channel 30 V, 4.5 mΩ typ., 80 A STripFET™ H5 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	Order code V _{DS}		ΙD	
STL66N3LLH5	30 V	5.8 mΩ	80 A	

- Low on-resistance R_{DS(on)}
- High avalanche ruggedness
- Low gate drive power loss
- Wettable flank package

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using STMicroelectronics' STripFET™ H5 technology. The device has been optimized to achieve very low on-state resistance, contributing to a FoM that is among the best in its class.

Table 1: Device summary

Order code	Marking	Package	Packing
STL66N3LLH5	66N3LLH5	PowerFLAT™ 5x6	Tape and reel

Contents STL66N3LLH5

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	PowerFLAT™ 5x6 package information	10
	4.2	PowerFLAT™ 5X6 packing information	13
5	Revisio	n history	15

STL66N3LLH5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V_{GS}	Gate-source voltage	±22	V
Ip ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	80	۸
ID ^(*)	Drain current (continuous) at T _{case} = 100 °C	57	Α
Ip ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	21	А
ID(=)	Drain current (continuous) at T _{pcb} = 100 °C	14.5	A
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	84	Α
P _{TOT} ⁽¹⁾	Total dissipation at T _{case} = 25 °C	72	W
P _{TOT} ⁽²⁾	Total dissipation at T _{pcb} = 25 °C	4.8	VV
TJ	Operating junction temperature range -55 to 175		
T _{stg}	Storage temperature range	-55 (0 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.08	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	0/00

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lav	Avalanche current, not repetitive	10.5	Α
Eas	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AV}$, $V_{DD} = 24$ V)	180	mJ

 $^{^{(1)}}$ This value is rated according to $R_{\text{thj-c}}$

 $^{^{(2)}}$ This value is rated according to $R_{\mbox{\scriptsize thj-pcb}}$

⁽³⁾ Pulse width is limited by safe operating area.

 $^{^{(1)}}$ When mounted on a 1-inch² FR-4, 2 Oz copper board, t < 10 s.

Electrical characteristics STL66N3LLH5

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
	Zaro goto voltago drois	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			10	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 22 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1		3	V
R _{DS(on)}	Static drain-source on-	$V_{GS} = 10 \text{ V}, I_D = 10.5 \text{ A}$		4.5	5.8	mΩ
	resistance	V _{GS} = 4.5 V, I _D = 10.5 A		6	7.5	11122

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1500	ı	
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	-	295	•	pF
Crss	Reverse transfer capacitance	V _G S = 0 V	-	39	-	ρ.
Qg	Total gate charge	$V_{DD} = 15 \text{ V}, I_D = 21 \text{ A}, V_{GS} = 0$	-	12	ı	
Q_{gs}	Gate-source charge	to 4.5 V (see Figure 14: "Test circuit for gate charge	-	4	ı	nC
Q_gd	Gate-drain charge	behavior")	-	4.7	-	

Table 7: Switching times

Table 11 Contouring times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 15 V, I _D = 10.5 A	-	9.3	ı	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit	-	14.5	ı	
t _{d(off)}	Turn-off delay time	for resistive load switching	-	22.7	ı	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	-	4.5	-	

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		21	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		84	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 19 A	ı		1.1	V
t _{rr}	Reverse recovery time	$I_{SD} = 19 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	ı	25		ns
Qrr	Reverse recovery charge	$V_{DD} = 25 \text{ V}, T_j = 150 ^{\circ}\text{C}$ (see Figure 15: "Test circuit for	-	17.5		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	1.4		Α

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

Electrical characteristics STL66N3LLH5

2.1 Electrical characteristics (curves)

STL66N3LLH5 Test circuits

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 NF D.U.T.

VGS 1 KΩ 100 NF D.U.T.

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x6 package information

Figure 19: PowerFLAT™ 5x6 WF type C package outline

Table 9: PowerFLAT™ 5x6 WF type C mechanical data

D:		mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
Е	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
K	1.05		1.35
L	0.90	1.00	1.10
L1	0.175	0.275	0.375
θ	0°		12°

STL66N3LLH5 Package information

4.2 PowerFLAT™ 5X6 packing information

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm)

Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

Figure 23: PowerFLAT™ 5x6 reel (dimensions are in mm)

STL66N3LLH5 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
19-Oct-2011	1	First release.
17-dec-2014	2	Document status promoted from preliminary to production data. Updated title, features and description in cover page. Updated Chapter: Package mechanical data and Chapter: Packaging mechanical data.
22-Jan-2016	3	Updated title and features in cover page. Updated Section 4.1: "PowerFLAT™ 5X6 package information" Minor text changes.
09-May-2017	4	Updated title and features in cover page. Updated Section 4.1: "PowerFLAT™ 5x6 package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

