EE 414 Supplementary Problems

Problem 1: This problem concerns the CMOS op-amp shown in Fig. 1.

Fig. 1.

Variable	NMOS	PMOS	Unit
X_d	0.1	0.1	μm
dX_d/dV_{ds}	0.02	0.04	μm/V
t_{ox}	80	80	A
μ	450	150	cm ² /Vs
V_t	0.7	0.7	V
γ	0	0	$V^{-1/2}$

Table 1

- **a.** Calculate the open-loop voltage gain, unity-gain bandwidth, and slew rate, for the circuit in Fig. 1 (a). Use the parameters of Table 1. Assume that the gate of M_9 is connected to the positive power supply V_{DD} and that the W/L ratio of M_9 has been chosen to cancel the right half-plane zero.
- **b.** If the circuit of Fig. 1 (b) is used to generate the voltage to be applied to the gate of M_9 in Fig. 1 (a), calculate the required W/L ratio of M_9 to move the right-half plane zero to infinity. Let $V_{DD} = 1.5$ V and $I_s = 200\mu$ A. Use $L = 1\mu$ m for all transistors, $W_{13} = W_{10} = 150\mu$ m, and $W_{11} = W_{12} = 100\mu$ m. Use Table 1 for other parameters.
- **c.** Assuming that the zero has been moved to infinity, determine the maximum load capacitance that can be attached directly to the output node of the circuit in Fig 1 (a) and still maintain a phase margin of 45°. Neglect all higher order poles except the one due to the load capacitance. Use the value of *W/L* ratio obtained in part (b) for *M*9 with the bias circuit of Fig. 1 (b). Ignore junction capacitance for all transistors. Use Table 1 for other parameters.

Problem 2:

What is the gain and -3 dB bandwidth (in Hz) of Fig. 2 if C_L =1 pF? Ignore reverse bias voltage effects on the pn junctions and assume the bulk-source and bulk-drain areas are given by Wx5 μ m. The W/L ratios for M1 and M2 are 10μ m/1 μ m and for the remaining PMOS transistors the W/L ratios are all 2μ m/1 μ m.

