PCA i zbalansowanie zbioru treningowego

Marcin Wierzbiński

Titanic data

X: y:

	Age	Fare
1	38.0	71.2833
3	35.0	53.1000
6	54.0	51.8625
10	4.0	16.7000
11	58.0	26.5500

```
data['Survived'].value_counts()
1 123
```

Name: Survived, dtype: int64

Mnist is balanced

```
mnist train dataset = np.genfromtxt('/content/sample data/mnist train small.csv', delimiter=',')
mnist test dataset = np.genfromtxt('/content/sample data/mnist test.csv', delimiter=',')
X train = mnist train dataset[:, 1:]
y train = mnist train dataset[:, 0].astype(int)
X test = mnist test dataset[:, 1:]
y test = mnist test dataset[:, 0].astype(int)
np.unique(y test, return counts=True)
    np.unique(y train, return counts=True)
   (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
     array([1962, 2243, 1989, 2021, 1924, 1761, 2039, 2126, 1912, 2023]))
    np.unique(y test, return counts=True)
    (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
     array([ 980, 1135, 1032, 1010, 982, 892, 958, 1028, 974, 1009]))
```

Augmentation of data

rotate by 20 degree

problem:

rotate by 45 degree

Correlation

tax = 0.23 * total_bill

to	tal_bill	tip	sex	smoker	day	time	size	tax
0	16.99	1.01	Female	No	Sun	Dinner	2	3.9077
1	10.34	1.66	Male	No	Sun	Dinner	3	2.3782
2	21.01	3.50	Male	No	Sun	Dinner	3	4.8323
3	23.68	3.31	Male	No	Sun	Dinner	2	5.4464
4	24.59	3.61	Female	No	Sun	Dinner	4	5.6557

correlation matrix

	total_bill	tip	size	tax
total_bill	1.000000	0.675734	0.598315	1.000000
tip	0.675734	1.000000	0.489299	0.675734
size	0.598315	0.489299	1.000000	0.598315
tax	1.000000	0.675734	0.598315	1.000000

Principal Component Analysis (PCA)

- Technique used to reduce the dimensionality of dataset
- Goal: Transform of a large set of variables into a smaller set of variables, while retaining as much information as possible.
- Achievements: to identify patterns in data by fining the direction of maximum variance in high dimensional data
- The PCA first calculate the covariance matrix of dataset
- Then finding the directions of maximum variance in the data, and amount of variance explained.

Example:

Implementation for tips

```
X = tips[['tip', 'total_bill', 'tax', 'size']]

X = (X - X.mean()) / X.std()

pca = PCA(n_components=4)

X_trans = pca.fit_transform(X)
```

Toy example:

PCA sklearn

```
from sklearn.decompositionimport PCA
import numpy as np
# Załadowanie danych
data = pd.read csv(income.csv', sep=';')
data = data[['GDP per capita', 'Life expectancy']]
# Wykonanie standaryzacji danych
mean = np.mean(data, axis⊕)
std = np.std(data, axis\theta)
data standardized = (data - mean) / std
# Tworzenie instancji klasy PCA i wyznaczanie głównych składowych
pca = PCA(n components⊋) # redukcja do dwóch wymiarów
principal components = pca.fit transform(data standardized)
# Wyświetlenie wyjaśnionej wariancji dla każdej z głównych składowych
print("Wyjaśniona wariancja: ", pca.explained variance ratio )
# Wykres punktowy nowych zmiennych
import matplotlib.pyplotas plt
plt.scatter(principal components[:,0], principal components[:,1])
plt.title ("Wizualizacja zbioru danych po redukcji wymiarowości PCA"
plt.xlabel ("Główna składowa 1")
plt.ylabel ("Główna składowa 2")
plt.show()
```

PCA from scratch

```
def PCA by(X , n components):
   X \text{ meaned} = X - \text{np.mean}(X , \text{axis} = 0) \# \text{Step-1}
   cov mat = np.cov(X meaned , rowvar = False) #Step-2
   eigen values , eigen vectors = np.linalg.eigh(cov mat) #Step-3
   sorted index = np.argsort(eigen values)[::-1] #Step-4
   sorted eigenvalue = eigen values[sorted index]
   sorted eigenvectors = eigen vectors[:,sorted index]
   eigenvector subset = sorted eigenvectors[:,0:n components] #Step-5
   X reduced = np.dot(eigenvector subset.transpose() , X meaned.transpose() ).transpose() #Step-6
   return X reduced, eigen vectors, eigen values
```

PCA for mnist

Wizualizacja zbioru danych mnist po redukcji wymiarowości PCA

