### Genetic Fuzzy Systems (GFS's)

- genetic design of fuzzy systems
- automated <u>tuning</u> of the fuzzy knowledge base
- automated <u>learning</u> of the fuzzy knowledge base
- objective of tuning/learning process
  - optimizing the performance of the fuzzy system:
    - e.g.: fuzzy modeling: minimizing quadratic error between data set and the fuzzy system outputs
    - e.g : fuzzy control system: optimize the behavior of the plant + fuzzy controller

# Genetic Fuzzy System for Data Modeling



# Fuzzy Systems





If X<sub>1</sub> is A<sub>1</sub> and ... and X<sub>n</sub> is A<sub>n</sub> then Y is B

## Genetic Tuning Process

- tuning problems utilize an already existing rule base
- tuning aims to find a set of optimal parameters for the database :
  - points of membership-functions [a,b,c,d]
     or
  - scaling factors for input and output variables

#### Linear Scaling Functions

#### Chromosome for linear scaling:

- for each input x<sub>i</sub>: two parameters a<sub>i</sub>,b<sub>i</sub> i=1..n
- for the output y: two parameter a<sub>0</sub>,b<sub>0</sub>

#### Genetic Algorithms:

 encode each parameter by k bit using Gray code total length = 2\*(n+1)\*k bit

| $a_0$  | $b_0$  | a <sub>1</sub> |
|--------|--------|----------------|
| 100101 | 011111 | 110101         |

| $b_{2*(n+1)}$ |
|---------------|
| 100101        |

#### **Evolutionary Strategies:**

each parameter a<sub>i</sub> or b<sub>i</sub> corresponds to one object variable x<sub>m</sub> m: 1... 2\*(n+1)

| $\mathbf{a}_{0}$   | $b_0$            | a <sub>1</sub>                  |
|--------------------|------------------|---------------------------------|
| X <sub>0</sub> , • | $X_1, \bullet_1$ | X <sub>2</sub> , * <sub>2</sub> |



### Descriptive Knowledge Base

descriptive knowledge base



all rules share the same global membership functions :

R1: if X is sm then Y is neg

R2: if X is me then Y is ze

R3: if X is Ig then Y is pos

### Approximate Knowledge Base

each rule employs its own local membership function



 tradeoff: more degrees of freedom and therefore better approximation but intuitive meaning of fuzzy sets gets lost

# **Tuning Membership Functions**

encode each fuzzy set by characteristic parameters

Trapezoid:  $\langle a,b,c,d \rangle$   $\mu(x)$  0 a b c d x

Gaussian: N(m,s)



Triangular: <a,b,c>



#### Approximate Genetic Tuning Process

 a chromosome encodes the entire knowledge base, database and rulebase

 $R_i$ : if  $x_1$  is  $A_{i1}$  and ...  $x_n$  is  $A_{in}$  then y is  $B_i$  encoded by the i-th segment  $C_i$  of the chromosome using triangular membership-functions (a,b,c)

$$C_i$$
 =  $(a_{i1}, b_{i1}, c_{i1}, \ldots, a_{in}, b_{in}, c_{in}, a_i, b_i, c_i)$ 

each parameter may be binary or real-coded

The chromosome is the concatenation of the individual segments corresponding to rules:

$$C_1$$
  $C_2$   $C_3$   $C_4$   $C_k$ 

#### Descriptive Genetic Tuning Process

- the rule base already exists
- assume the i-th variable is composed of N<sub>i</sub> terms



The chromosome is the concatenation of the individual segments corresponding to variables:

$$C_1$$
  $C_2$   $C_3$   $C_4$   $C_k$ 

### Descriptive Genetic Tuning

 in the previous coding scheme fuzzy sets might change their order and optimization is subject to the constraints: a<sub>ii</sub> < b<sub>ii</sub> < c<sub>ii</sub>



#### Fitness Function for Tuning

 minimize quadratic error among training data (xi,yi) and fuzzy system output f(xi)

```
E = Sum_i (y_i-f(x_i))^2
Fitness = 1 / E (maximize fitness)
```

 minimize maximal error among training data (xi,yi) and fuzzy system output f(xi)

```
E = max_i (y_i-f(x_i))^2
Fitness = 1 / E (maximize fitness)
```

#### Genetic Learning Systems

- genetic learning aim to :
  - learn the fuzzy rule base or
  - learn the entire knowledge base
- three different approaches
  - Michigan approach : each chromosome represents a single rule
  - Pittsburgh approach : each chromosome represents an entire rule base / knowledge base
  - Iterative rule learning: each chromosome represents a single rule, but rules are injected one after the other into the knowledge base

# Thanks for your attention!

That's all.