Project Introduction

Team 5

Members:

Gilgal Ansah Javon Grimes Jonathan Nguyen Jacob Sindorf

Refined Research Question:

"How can foldable techniques translate a small number of actuators into motion for a robot traveling through small spaces?"

Biomechanics-driven Inspiration

Figure 1. Lumbricus terrestris locomotion $^{\mathrm{1}}$

Figure 2. Free-body diagram 2

Figure 3. Cable driven worm ³

Figure 4. Four sarrus linkage worm with endplates ⁴

Figure 5. "Feet" on existing Origami Inspired worm ⁵

Table of max specifications

Parameter	Value
GRF	1.07×10 ⁻¹ N
Mass	8.9×10 ⁻³ kg
Velocity	0.02 m/s
Kinetic Energy	1.78×10 ⁻⁶ J
Axial Acceleration	2.71m/s^2
Radial Burrow Force	0.042 N
Axial Burrow Force	0.028 N
Mean Length	124×10 ⁻³ m
Mean Length/Mean diameter	18.1

Table 1. Max specifications

Proposed Mechanism

Figure 6. Paper mechanism concept.

Figure 7. Final mechanism concept.

direction of friction.

Figure 9. SOLIDWORKS 3D motion study.

Figure 8. Cable + motor motion concept.

Kinematics

Figure 10. Kinematic diagram.

Python System Kinematics and Constraints

Figure 11. Python kinematics plot.

p Co ⊕

F_ee = numpy.array([-0.5, 0,0,0,0]).T # Arbitrary force vector on end effector; F in = 3.T.dot(F_ee) F_in

Figure 13. Force and Velocity.

```
efine the closed loop kinematics of the four bar linkage.
_vector = pB - pC
_vector1 = pCtip - pBtip

:[] # eq -> equation

ippend((eq_vector1).dot(N.x)) #same x value for B and C tip

ippend((eq_vector1).length() - 10) #length constraint between B and C tip

ippend((eq_vector).dot(N.x)) #B and C have same x
```

Figure 12. Kinematics vector constraints.

l=[(system.derivative(item)) for item in eq]

Future Plans

Figure 14. Next Steps diagram.

- actuator. (vary spring stiffness Add springs, cables and an to time compression cycle)
 - compression so that two links times, allowing the system to touch the ground at specific Explore the sequence of 'step'
- expands, the other compresses -Motion concept. As one

Figure 15. Next Steps cable motion concept.

Figure 16. Next Steps 3D motion concept.

Bibliography

- (1)R. Liu and Y. Yao, "A novel serial-parallel hybrid worm-like robot with multi-mode undulatory locomotion," Mech. Mach. Theory, vol. 137, pp. 404-431, 2019.
 - (2)G. Miller, The motion dynamics of snakes and worms, vol. 22. 1988.
- (3)K. A. Daltorio, A. S. Boxerbaum, A. D. Horchler, K. M. Shaw, H. J. Chiel, and R. D. Quinn, "Efficient worm-like locomotion: Slip and control of soft-bodied peristaltic robots," Bioinspiration and Biomimetics, vol. 8, no. 3,
- (4)C. D. Onal, R. Wood, and D. Rus, "An Origami-Inspired Approach to Worm Robots," Mechatronics, IEEE/ASME Trans., vol. 18, pp. 430-438, Apr. 2013.
 - (5)T. Nakamura, T. Kato, T. Iwanaga, and
br>and Yoichi Muranaka, "Development of a Peristaltic Crawling Robot Based on Earthworm Locomotion," J. Robot. Mechatronics, vol. 18, no. 3, pp. 299–304, 2006.