Алгебра и теория чисел

Иванова Ольга Юрьевна¹

08.09.2023 - ...

¹ "Записал Сергей Киселев"

Оглавление

1	Мн	Множества	
	1.1	Операции над множествами	2
	1.2	Отображения	7
	1.3	Бинарные отношения	16
	1.4	Множество с алгебраическими операциями	23
	1.5	Группы	25

Глава 1

Множества

Лекция 1: Операции над множествами

08.09.2023

1.1 Операции над множествами

Обозначение. $x \in A$ означает, что элемент х принадлежит множеству A.

 $x \notin A$ означает, что элемент x не принадлежит множеству A.

Определение 1. \emptyset , пустое множество - множество, не содержащее ни одного элемента.

Определение 2. Множество B называют подмножеством A, если любой элемент B принадлежит A.

Обозначение. $B \subset A$

Пример. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

Операции.

1. Пересечение множеств A и B - это множество из элементов принадлежащих A и B.

Обозначение. $A \cap B$

2. Объединение множеств А и В - множество из элементов А или В.

Обозначение. $A \cup B$

3. Разность множеств A и B - множество элементов A, не принадлежащих B.

Обозначение. $A \setminus B$

4. Симметрическая разность

Пример.
$$A\triangle B=(A\setminus B)\cup (B\setminus A)$$
 $A\triangle B=(A\cup B)\setminus (A\cap B)$

5. Дополнение

Если предположить, что все множества являются подниножествами некоторого универсального множества, дополнение множества A - это множество элементов U, не принадлежащих A.

Пример. $U = \mathbb{Z}$

A - множество чётных чисел

 \overline{A} - множество нечётных чисел

Порядок действий

- 1. Дополнение
- 2. Пересечение
- 3. Объединение, рахность, симметрическая разность

Приоритет слева направо.

Пример.
$$U=\{1,2,3,4,5\}$$
 $A=\{1,2,3\}$ $B=\{3,4\}$ $C=\{4,5\}$ $\overline{A\cup B\cap \overline{C}\setminus \overline{B}}$

- 1. $\overline{C} = \{1, 2, 3\}$
- 2. $\overline{B} = \{1, 2, 5\}$
- 3. $B \cap \overline{C} = \{3\}$

4.
$$A \cup B \cap \overline{C} = \{1, 2, 3\}$$

5.
$$A \cup B \cap \overline{C} \setminus \overline{B} = \{3\}$$

6.
$$\dots = \{1, 2, 4, 5\}$$

Свойства:

1. Дистрибутивность

(a)
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

(b)
$$(A \cup B) \cap = (A \cap C) \cup (B \cap C)$$

Доказательство. Положим $D=(A\cap B)\cup C$

$$E = (A \cup C) \cap (B \cup C)$$

Докажем, что $C\subset E$

Пусть $x \in D$, тогда выполняется

- (a) $x \in A \cup B$ или
- (b) $x \in C$

Если выполнено 1, то $\mathbf{x} \in A \cup B => x \in A => x \in A \cup C \in A \cap B => A \in B => x \in B \cup C => x \in (A \cup C) \cap (B \cup C)$

Если выполнено 2, то $x \in C => x \in AcupC => x \in (A \cup C) \cap (B \cup C)$

 $x \in C => x \in B \cup c$

 $x \in E => x \in A \cup C$ и $x \in B \cup C$

Случай 1. $x \notin C$

 $\bullet \ \ x \not\in C, \, x \in A \cup C => x \in A$

•
$$x \neq C, x \in B \cup C => x \in B$$

$$=> x \in A \cap B = .x \in B$$
 Случай 2. $x \in C$
$$=> x \in (A \cap B) \cup C => x \in D$$

- 2. Законы де Моргана
 - (a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 - (b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Прямым или декартовым произведеним множеств A и B называют множество упорядоченных пар (a, b), где $a \in A, b \in B$

Обозначение. $A \times B$

Пример. 1.
$$A=\{1,2\},\,B=\{x,y\}$$
 $A\times B=\{(1,x),(1,y),(2,x),(2,y)\}$ 2. $A=\{1,2\},\,B=\{1\}$ $A\times B=\{(x,y)|x,y\in\mathbb{R}\}$ 3. $A=B=R$ $A\times B=\{(x,y)|x,y\in\mathbb{R}\}$

Св-во: между элементами множеств $(A \times B) \times C$ и $A \times (B\ timesC)$ есть взаимно однозначное соответствие.

Определение 3.
$$A \times B \times C$$
 - Это $(A \times B) \times C$ $A^n = A \times A \times ...A$

Пример.
$$0, 1^3$$
 элементов $(0,0,0), (0,0,1), ..., (1,1,1)$

1.2 Отображения

Определение 4. Отображением или функцией из множества X в множество Y называют правило, которое каждому элементу множества X сопоставляет ровно один элемент из множества Y.

Пример. 1.
$$X = \{a,b,c,d\}$$
 $Y = \{1,2,3\}$ $f(a) = 1$ $f(b) = 2$ $f(c) = 1$ $f(d) = 1$

$$2. \ X = Y = \mathbb{R}$$
$$f(x) = x^2 =$$

Определение 5. Образом отображения f называют множество элементов f(x) т.к. $\{f(x)|x\in X\}$

Обозначение. Imf, f(X)

Определение 6. Прообразом элемента $y \in X$ называют множество элементов множества X, которые переходят в y, т.е.

$$\{x \in X | f(x) = y\}$$

Обозначение. $f^{-1}(y)$ Если $y_1 \subset y$, то $f^{-1}(y_1) = \{x \in X | f(x) \in y_1\}$

Определение 7. Отображением f называют инъективным, если прообраз любого элемента содержит не более одного элемента.

Др. названия:

- ullet иньекция
- \bullet f является отображением в

Определение 8. Отображение f называется сюрьективным, если если прообраз любого элемента содержит хотя бы один элемент.

Др. названия:

- \bullet f сюрьекция
- \bullet f является отображением на

Определение 9. Отображение f называется биективным, если прообраз любого элемента состоит ровно из одного элемента.

Др. названия:

- \bullet f биекция
- ullet взаимно однозначное отображение

Замечание. f биекция <=> f - инъекция и сюръекция.

Пример. $f: \mathbb{Z} \to \mathbb{Z}$

- 1. f(x) = x + 1 биекция
- 2. $f(x) = x^2$ не иньекция, не биекция

$$f^{-1}(4) = \{2. - 2\}$$
$$f^{-1}(5) = \emptyset$$
$$\alpha \subset 2$$

- 3. f(x)=2x инъекция, не сюръекция $f^{-1}=\emptyset$ $x_1\neq x_2=>2x_1\neq 2x_2$
- $f(x)=[rac{x}{2}]$ не иньекция $[rac{0}{2}]=[rac{1}{2}]$ $2n\in f^{-1}(n)$ => $f^{-1}(n)
 eq \emptyset$

Определение 10. Тождественное отображение $e_x: x \to x_1, e_x(x) = x$

Определение 11. Пусть y:X-Y,f:X o Z

отображение композиция fog определяется как (fog)(x) = f(g(x))

Пример.
$$X = Y = \mathbb{Z} = \mathbb{R}$$
 $f(x) = x + 1, y(x) = x$ $(fog)(x) = x^2 + 1$ $(gof)(x) = (x + 1)^2$

Замечание. (fog)oh = fo(goh)

Обозначение. fogoh

Определение 12. Пусть $f:X \to Y, y:Y \to V$

Отображение у называют образом к отображениб f, если

$$fog = e$$

$$gof = e$$

Пример.
$$X=Y=[0;+\infty]$$
 $f(x)=x^2,y(x)=\sqrt{x}$

Определение 13. Обратное отображение к f обозначается f^{-1} (Корректность, т.е. единственность отображения обратных - ниже)

Теорема 1. (Существование обр. отображения) Обратное отображение к f существует тогда и только тогда, когда f является биекцией.

Доказательство. 1. Доказать, что если f биекция, то существует y, обратное к f

Пусть $y \in X \exists ! x$, такой, что f(x) = y

Положим y(y) = x

Глава 1. МНОЖЕСТВА

Теорема 2. (Единственности обратного отображения) Пусть f - Биекция $X \to Y$. Тогда не существует различных отображений y_1, y_2 являющихся обратными к A. Доказательство: Упражнение!

Лекция 2: Бинарные отношения

15.09.2023

1.3 Бинарные отношения

Определение 14. Бинарноным отношением между множествами X и Y называют подмножество $X \times Y$

Обозначение. Пусть задано $w \subset X \times Y$. Тогда, условие $(x,y) \in w$ записывается как XwY

Обозначение. Если X = Y, то говорят, что w - отношение на X.

Глава 1. МНОЖЕСТВА

Доказательство. Пусть g_1, g_2 - отображения к R. $q_1 \neq q_2 \\ \exists g: g, (g) \neq g = (g) \\ x_i = y_1(y), x_2 := g_2(y) \\ f(x_1) = f(g_1(y)) = g = f(g_2(y)) = f(x_2) \\ f(x_1) = f(x_2) \\ x_1 \neq x_2$

Пример. 1. f(x) = 2x xwy, если g = f(x)

2. xwy, если $x^2 = y$

Определение 15. Бинарное отношения w на X называется

- 1. Рефлексивным, если xwy и ywz
- 2. Симметричным, если из того что xwy и ywz следует, что xwf

Пример. 1. =, \leq - рефлексивное

<, паралленльно на множестве прямых - не рефлексивно

2. = , || - симметрично

leq, < - не симметрично

3. = < : - транзитивно

⊥ - на множестве прямх - не транзитивно

Определение 16. Бинарное отношение на множестве X называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Обозначение. Обычно обозначается ∼.

Пример. $1. = Ha \mathbb{R}$

2. Множество \mathbb{Z} $a \sim b$, если a - b:5

Обозначение. $\overline{\overline{5}}$

- 3. Множество проямых на плоскости $l_1 \sim l_2$, если $l_2 || l_2'$, если $L_1 = l_2$
- 4. Пусть множество это множество направленных отрезков $\overline{AB}\sim \overline{CD},$ если $|\overline{AB}|=|\overline{CD}|,$ AB||CD.
- 5. f(x),g(x) функции $f\sim g,$ если $\lim_{x\rightarrow\infty}\frac{f(x)}{f(y)}=1$

Определение 17. Пусть на X задано отношение эквивалентности. Классом эквивалентности x называется множество элементов $\{y \in X | y \sim X\}$.

Обозначение. \overline{x} , [x], ((x)

Примечание. Черта над х должна быть немного загнута вниз слева. Также первый вариант обозначения является основным.

```
Пример. R, x \sim y, x - y \in \mathbb{Z} x = 0, 1 0,1; \ 1,1; -0.9 \in \overline{x} \overline{x} = \{y | \{y\} = \{x\}\}
```

Пример.
$$1,1\in\overline{0,1}$$
 $0,1\in\overline{1,1}$ $\{y\}=0,1$

5 классов эквивалентности:

5k

5k + 1

5k + 2

5k + 3

5k + 4

Теорема 3. (Разбиение на классы жкивалентности) На множестве X задано отношение эквивалентности . Тогда, множество X разбивается на классы эквивалентности, т.е. X является объединением не пересекающихся подмножеств, каждое из которых является классом эквивалентности некоторого элемента.

Пример. $1.\overline{\frac{1}{5}}$

 $a \sim b$, если a - b:5

- 2. = в каждом классе 1 элемент
- 3. Направленные отрезки $overline AB \sim \overline{CD},$ если $|\overline{AB}| = |\overline{CD}|,$ $AB \uparrow \uparrow CD$

Класс эквивалентности - вектор.

4. R $a \sim b$, если $\alpha - \beta = 2\pi \kappa$

Доказательство. 1. Докажем, что любой элемент X принадлежит некоторому классу эквивалентности.

$$X \in \overline{X}$$
, т.к. $\sim ???$, X х

2. Докажем, что классы не пересекаются

т.е. докажем, что если $\exists z \in \overline{x} \cap \overline{y},$ то $\overline{x} = \overline{y}$

$$z\in x=>z\sim x=>$$
 (симм) $x\sim z$ $z\in \overline{y}=>z$ Y x z, z y=> (тр) x y=> $x\in y=>x\in \overline{y}$ аналогично $y\in \overline{x}$

$$x=\overline{y}$$
 Докажем, что $\overline{x}\subset y$ Пусть $\exists f\in \overline{x}=>f\sim x$ $f\sim x, x=y=>f\sim y$ Аналогично $\overline{y}\subset \overline{x}$ $\overline{x}=\overline{y}$

1.4 Множество с алгебраическими операциями

Определение 18. X - множество бинарныой алгебраической операции на X Назвается отображением $X \times X \to X$

Обозначение. 1. Буква, например $f: X \times X \to X$ пишут f(x,y) или xfy

2. Спец. символ: +, ·, 0, * Пишут x + y, x * у часто вместо $x \cdot y$, x * у пишут ху

Пример. 1. $X = \mathbb{Z}$

Определить $+, \cdot, -$

- 2. X множество отображений $\mathbb{Z} \to \mathbb{Z}$, операция - композиция.
- 3. Х множество векторов

Обозначение. Множество X с операцией V обозначается (V, *)

Определение 19. Бинарная операция * на X Назвается

- 1. Ассоциативной, если $(x * y * z) = x * (y * z) \forall x, y, z$
- 2. Коммутативной, если $x * y = y * x \forall x, y$

1. $+, \cdot -$ коммутативные, ассоциативные

X : y на $\mathbb{R} \setminus \{0\}$ не ассоциативно, не коммутативно

x - y на $\mathbb R$

х - векторное произведение

2. ассоциативны, не коммутативны о - композиция для отображения $\mathbb{Z} \to \mathbb{Z}$

Обозначение. Пусть * - ассоциативно

Тогда пишут а * b * c, а * b * c * d

Используют обозначение степени, например $a^4 = a * a * a * a$

Если операция обозначается +, пишут

4a = a + a + a + a

Пример. 1. $(Z, \cdot) e = 1$

- 2. (Z, +) e = 0
- 3. $(2Z, \cdot)$ нет ? элемента, множества четных чисел

Замечание. Если операция обозначается +, то неитральный элемент обозначается 0.

Свойство. (единственности единичного элемента)

На х Задана операция *. Тогда существует не более одного единичного элемента.

Доказательство. Пусть e_1, e_2 - единичные, т.е. $\forall_x \ e_1 + x = x, x + e_1 = x \ e_2 * x = x, x * e_2 = x$

$$e_2 = ($$
ед. эл. $)e_1 * e_2 = ($ ед.эл. $)e_1 => e_1 = e_2$

Определение 20. Полугруппой называется множество с заданной на нем бинарной ассоциативной операцией.

Определение 21. Моноидом называется полугруппа, в которой есть неитральный элемент

Пример. 1. $(\mathbb{Z}, +)$ - моноид

- 2. (Z, ⋅) моноид
- $3. \ (2\mathbb{Z}, \cdot)$ полугруппа, не моноид
- 4. $(\mathbb{Z}, -)$ вектор $\subset x$ не полугруппа

1.5 Группы

Определение 22. Множество G с бинарной операцией * называется группой, если выполнены следующие условия.

- 1. Операция * ассоциативна, т.е. (а * е) * с = а * (b * с) $\forall a, b, c$
- 2. \exists единица $e: a*e = e*a = a \forall a$
- 3. $\forall a \exists$ Обратный элемент а'
 $\in G$ такой, что $a*a^-1 = a^-1*a = e$

Обозначение. Если операция обозначается -1, то единичные жлементы обозначаются о, а обратный элемент а обозначается -a.

Определение 23. Пусть (G, *) - группа, если * коммутативна, то группа G называется коммутативной или абелевой.