NORMAL ERROR REGRESSION MODEL

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

The random error term ε_i has:

• Mean: $E(\varepsilon_i) =$

• Variance: $\sigma^2(\varepsilon_i) =$

 $\underline{\mathsf{AND}}\, \varepsilon_i$

•

• Are independent $\forall i, j \ such \ that \ i \neq j$

(The size of the error term for each trial has no effect on the size for any other.)

•

• The model implies that Y_i are also independent normal random variables (as shown below).

FIGURE 1.6 Illustration of Simple Linear Regression Model (1.1).

http://www.nielsen.sites.oasis.unc.edu/soci708/m15/m1005.gif

Note: Both distributions shown are **Normally** distributed with:

• Mean: $E(Y_i) =$

• E(Y|X=25) =

• E(Y|X=45) =

• Variance: $\sigma^2(Y_i) =$

· Spread is equal in both

Note: Unless specified, this model is assumed in the remainder of Chapters 2-5!

^{**}These are two distributions we showed in last week's notes!

INFERENCE & SAMPLING DISTRIBUTIONS

As reviewed in the first two weeks, methods of inference are based on sampling distributions of estimators.

For each sampling distribution discussed, we will look at:

- Shape:
- · Center:
- Spread:

INFERENCE ABOUT THE SLOPE, β_1

Component	Interpretation
(slope) β ₁	Change in the expected (average) value of Y per unit change in X

Implications of $\beta_1 = 0$

0

With the Normal Error Regression Model (shown below)

0

0

FIGURE 2.1 Regression Model (2.1) when $\beta_1 = 0$.

Sampling Distribution of b_1

- $b_1 =$ is the **point estimator** of β_1
- The sampling distribution of b_1 means that we are looking at all the different values of b_1 in repeated samples, while **holding the level of the predictor variable constant** from sample to sample.
- Assuming a Normal Error Regression Model, we have:
 - SHAPE:
 - CENTER (MEAN): $E(b_1) =$
 - SPREAD (VARIANCE): $\sigma^2(b_1) =$

SHAPE: WHY **NORMAL?** (b_1 is a <u>linear estimator</u> of β_1)

• A linear combination of the Y_i means that Y_i is not multiplied by itself or another variable, but may be multiplied by constants, and combined by addition or subtraction.

If $Y_1, Y_2, ..., Y_n$ are independent normally distributed random variables, the linear combination $a_1Y_1 + a_2Y_2 + ... + a_nY_n$ is normally distributed.

•

- Let's define $k_i = \frac{X_i \overline{X}}{\sum_{i=1}^n (X_i \overline{X})^2} = \frac{X_i \overline{X}}{s_{xx}}$.
- Then we can write the estimated slope as $b_1 =$
- Some properties of k_i :
 - 1. $\sum_{i=1}^{n} k_i =$
 - $2. \quad \sum_{i=1}^{n} k_i X_i =$
 - 3. $\sum_{i=1}^{n} k_i^2 =$

CENTER (MEAN): WHY IS $E(b_1) = \beta_1$? (b_1 is an <u>unbiased estimator</u> of β_1)

SPREAD (VARIANCE): WHY IS $\sigma^2(b_1)=rac{\sigma^2}{s_{xx}}$?

Recall: Y_i are independent random variables with constant variance $\sigma^2(Y_i) = \sigma^2$.

ESTIMATED VARIANCE of b_1

Replacing σ^2 with MSE we get:

$$s^2(b_1) =$$

- $s^2(b_1)$ is an unbiased estimator of $\sigma^2(b_1)$.
- The estimated standard deviation is $s(b_1)=$ and is an unbiased estimator of $\sigma(b_1)$.
- · Recall:

$$MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2}$$

Sampling Distribution of $\frac{(b_1-\beta_1)}{s(b_1)}$

- ullet We know that the distribution of $oldsymbol{b_1}$ is Normal. So, then we have that the standardized statistic
- As usual, we need to estimate the **unknown** value of $\sigma(b_1)$ using $\mathbf{s}(b_1)$. This introduces more uncertainty and so,
 - $\frac{(b_1-eta_1)}{s(b_1)}$ follows a **t-distribution** with df=n-2 (we are estimating **two** parameters, $m{eta}_0$ and $m{eta}_1$, in our regression model)

CONFIDENCE INTERVAL FOR $oldsymbol{eta}_1$

lower and upper limits of the $(1-\alpha)\%$ confidence interval for β_1 are:

How is this based on the sampling distribution of $\frac{(b_1-\beta_1)}{s(b_1)}$?

Example: Lean Body Mass (LBM) and Calorie Rate

In our regression model predicting a Calorie Rate (in calories per day) based on LBM (in kg), find a 98% confidence interval for the slope, β_1 .

We need to know:

• t critical values for C=0.98 (from R)

•
$$\alpha =$$
 and $1 - \frac{\alpha}{2} =$; $df =$

• Values of the estimated slope (b_1) , error mean square (MSE), sum of squares for $X(S_{xx})$, and estimated standard deviation of slope $S(b_1)$.

		$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$	
x_i	y_i						
(LBM)	(Rate)						
36.1	995	-6.933333333	-240.0833333	48.0711111	57640.0069		1664.577778
54.6	1425	11.56666667	189.9166667	133.787778	36068.3403		2196.702778
48.5	1396	5.466666667	160.9166667	29.8844444	25894.1736		879.6777778
42	1418	-1.033333333	182.9166667	1.06777778	33458.5069		-189.0138889
50.6	1502	7.566666667	266.9166667	57.2544444	71244.5069		2019.669444
42	1256	-1.033333333	20.91666667	1.06777778	437.506944		-21.61388889
40.3	1189	-2.733333333	-46.08333333	7.47111111	2123.67361		125.9611111
33.1	913	-9.933333333	-322.0833333	98.6711111	103737.674		3199.361111
42.4	1124	-0.633333333	-111.0833333	0.40111111	12339.5069		70.35277778
34.5	1052	-8.533333333	-183.0833333	72.8177778	33519.5069		1562.311111
51.1	1347	8.066666667	111.9166667	65.0711111	12525.3403		902.7944444
41.2	1204	-1.833333333	-31.08333333	3.36111111	966.173611		56.98611111
	SUM	2.84217E-14	9.09495E-13	518.926667	389954.917		12467.76667

$$\boldsymbol{b_1} = \frac{S_{xy}}{S_{xx}} =$$

$$S_{xx} =$$

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2 = 90403.5241$$

$$s^2 = MSE =$$

$$s(b_1) = \sqrt{\frac{MSE}{s_{xx}}} =$$

The lower and upper limits are:

T TESTS FOR β_1

We test the null hypothesis H_0 :

• Represents *no linear association* between *X* and *Y*.

The alternative hypothesis, as usual, can be two-sided or one-sided.

Two-sided

 H_A :

- Represents *a linear association* between *X* and *Y*.
- One-sided (lower-tail)

 H_A :

- Represents a *negative* slope (and thus negative association).
- One-sided (upper-tail)

 H_A :

- Represents a *positive* slope (and thus positive association).
- The test statistic is:

 $t_0 =$

• Note: This follows the usual formula of $\frac{Estimator-Hypothesized\ Parameter\ Value}{SD\ of\ Estimator}$.

Example: Lean body mass (LBM) and Calorie Rate

Is there a **linear association** between LBM and Calorie Rate? Use $\alpha = 0.02$.

 H_0 :

 H_A :

From our earlier example, we had a 98% confidence interval:

Is there a **positive association** between LBM and Calorie Rate? Use $\alpha = 0.02$.

 H_0 : H_A :

The test statistic is:

 $t_0 =$

The p-value is:

p-value =

INFERENCE ABOUT THE INTERCEPT, β_0

Component	Interpretation
(Y-intercept) β_0	Mean value of Y when X=0 (meaningful when X=0 is within the range of the model)

SAMPLING DISTRIBUTION OF $oldsymbol{b}_0$

- $b_0 =$ is the **point estimator** of β_0
- The sampling distribution of b_0 means that we are looking at all the different values of b_0 in repeated samples, while **holding the level of the predictor variable constant** from sample to sample.
- Assuming a Normal Error Regression Model, we have:
 - SHAPE:
 - CENTER (MEAN): $E(b_0) =$
 - SPREAD (VARIANCE): $\sigma^2(b_0) =$
 - •
 - ESTIMATED VARIANCE: $S^2(b_0) =$
 - ESTIMATED STANDARD DEVIATION: $S(b_0) =$

Sampling Distribution of $\frac{(b_0 - \beta_0)}{s(b_0)}$

- We know that the distribution of $oldsymbol{b_0}$ is Normal.
- As usual, we need to estimate the **unknown** value of $\sigma(b_0)$ using $\mathbf{s}(b_0)$.
 - $rac{(b_0-eta_0)}{s(b_0)}$ also follows a **t-distribution** with df=n-2

Confidence Interval for β_0

The **lower** and **upper limits** of the (1-lpha)% confidence interval for $oldsymbol{eta}_0$ are:

Considerations for Inference About β_0 and β_1

- We are working with t distributions, so must remember that:
 - If the distributions of Y_i are not Normal:
 - Sampling distributions of b_0 and b_1 will be when there is not clear non-Normality in distributions of Y_i .
 - Sampling distributions of $m{b_0}$ and $m{b_1}$ approach Normal as sample size increases.
- In summary:

INTERVAL ESTIMATION OF PREDICTED VALUES, $E(Y_h)$

Inference About $E(Y_h)$

- GOAL:
- Let X_h=

(may be an observed value of X occurring in the data or any value within the domain/scope of the model)

•
$$\mathbf{E}(Y_h) =$$

Sampling Distribution Of \widehat{Y}_h

- $\widehat{Y}_h =$ is the **point estimator** of $E(Y_h) =$
- The sampling distribution of \widehat{Y}_h means that we are looking at all the different values of \widehat{Y}_h in repeated samples, while **holding the level of the predictor variable constant** from sample to sample.
- Assuming a Normal Error Regression Model, we have:
 - SHAPE:

(follows from fact that \hat{Y}_h is a linear combination of Y_i)

• CENTER (MEAN): $E(\widehat{Y}_h) =$

 (\widehat{Y}_h) is an unbiased estimator of $E(Y_h)$

• SPREAD (VARIANCE): $\sigma^2(\widehat{Y}_h) =$

Variation in \hat{Y}_h values will be **greater** from sample to sample when X_h is **far from** the **mean** and **smaller**

when X_h is closer to the mean.

FIGURE 2.3 Effect on \widehat{Y}_h of Variation in b_1 from Sample to Sample in Two Samples with Same Means \overline{Y} and \overline{X} .

- Assuming a Normal Error Regression Model, we have:
 - ESTIMATED VARIANCE: $S^2(\widehat{Y}_h) =$

•

• ESTIMATED STANDARD DEVIATION: $S(\widehat{\boldsymbol{Y}}_h) =$

Sampling Distribution of $\frac{(\widehat{Y}_h - E(Y_h))}{s(\widehat{Y}_h)}$

$$rac{ig(\widehat{Y}_h - E(Y_h)ig)}{s(\widehat{Y}_h)}$$
 also follows a **t-distribution** with $df = n-2$

Confidence Interval For \widehat{Y}_h

The **lower** and **upper limits** of the $(1-\alpha)\%$ confidence interval for $E(Y_h)$ are:

Example: Lean Body Mass (LBM) and Calorie Rate

In our regression model predicting a Calorie Rate (in calories per day) based on LBM (in kg), find a 96% confidence interval for the mean number of calories burned per day, $E(Y_h)$, for a woman with LBM of

$$X_h = 50 kg$$
.

We need to know:

• t critical values for C=0.96 (from R)

•
$$\alpha =$$
 and $1 - \frac{\alpha}{2} =$; $df =$

- Values of the estimated/predicted mean (\widehat{Y}_h) , error mean square(MSE), sum of squares for X (S_{xx}) , deviation from the mean of X $((X_h \bar{X})^2)$, and estimated standard deviation $S(\widehat{Y}_h)$.
- The equation of the LSRL is:

 $\hat{Y} = 201.1616 + 24.0260666 X_i$

•
$$\widehat{Y_h} =$$

$$MSE = 9040.352$$
 $S_{xx} = 518.926667$

$$\overline{X} =$$

$$(X_h - \overline{X})^2 =$$

$$S(\widehat{Y}_h) = \sqrt{MSE[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{xx}}]} =$$

The lower and upper limits are: