SI231 - Matrix Computations, Fall 2020-21

Homework Set #1

Prof. Yue Qiu and Prof. Ziping Zhao

Acknowledgements:

- 1) Deadline: 2020-09-27 23:59:59
- 2) No handwritten is accepted. You need to use LATEX. (If you have difficulty in using LATEX, you are allowed to use **Word** for the first and the second homework to accommodate yourself.)
- 3) Do use the given template.

I. UNDERSTANDING RANK, RANGE SPACE AND NULL SPACE

Problem 1. (4 points \times 5)

- 1) For matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, prove that $\mathbb{R}^n = \mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A}^T)^{-1}$. **Hint:** $\dim(\mathcal{N}(\mathbf{A})) + \dim(\mathcal{R}(\mathbf{A}^T)) = n$.
- 2) For matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{m \times n}$, prove that $\operatorname{rank}(\mathbf{A} + \mathbf{B}) \leq \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B})$.
- 3) For matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, prove that $\operatorname{rank}(\mathbf{AB}) \leq \min\{\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})\}$ and $\operatorname{rank}(\mathbf{AB}) = n$ only when \mathbf{A} has full-column rank and \mathbf{B} has full-row rank.
- 4) For matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times p}$, prove that $\mathcal{R}(\mathbf{A}|\mathbf{B}) = \mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})^2$
- 5) For matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times p}$, prove that

$$\mathsf{rank}(\mathbf{A}|\mathbf{B}) = \mathsf{rank}(\mathbf{A}) + \mathsf{rank}(\mathbf{B}) - \dim(\mathcal{R}(\mathbf{A}) \cap \mathcal{R}(\mathbf{B})).$$

Hint: Recall the result in 4).

II. UNDERSTANDING SPAN, SUBSPACE

Problem 1. (10 points) For a set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, prove that $\mathrm{span}(S)$ is the intersection of all subspaces that contain S, i.e., prove that $\mathrm{span}(S) = \mathcal{M}$ where $\mathcal{M} := \bigcap_{s \subseteq \mathcal{V}} \mathcal{V}$ is the intersection of all subspaces that contain S and V denotes the subspace containing S.

Hint: Prove that $span(S) \subseteq M$ and $M \subseteq span(S)$.

III. BASIS, DIMENSION AND PROJECTION

Problem 1. (2 points \times 2) Determine the dimension of each of the following vector spaces:

1) The space of polynomials having degree n or less;

¹Let S_1 and S_2 be two subspaces of \mathbb{R}^n , if $S_1 \cap S_2 = \{0\}$ and $S_1 + S_2 = \mathbb{R}^n$, we define the **direct sum** $\mathbb{R}^n = S_1 \oplus S_2$.

²Here
$$\mathbf{A}|\mathbf{B}$$
 denotes a new matrix combined by \mathbf{A} and \mathbf{B} . For example, $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}$, then $\mathbf{A}|\mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & b_{11} \\ a_{21} & a_{22} & b_{21} \end{bmatrix}$.

2) The space of $n \times n$ symmetric matrices.

Problem 2. Some Important linear transformations

- 1) **Rotations.** (6 points) A rotation matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix $(\mathbf{R}\mathbf{R}^T = \mathbf{I})$ such that $\det(\mathbf{R}) = 1$.
 - According to above definition, find all rotation matrix in $\mathbb{R}^{2\times 2}$.
 - Geometrically, if $\mathbf{R} \in \mathbb{R}^{2 \times 2}$, then $\mathbf{R} \mathbf{x}$ means we rotate the vector $\mathbf{x} \in \mathbb{R}^2$ from some angle $\theta \in [0, 2\pi]$ in anti-clockwise direction. For $\mathbf{x} = [\cos(\pi/4), \sin(\pi/4)]^T$, compute $\mathbf{R} \mathbf{x}$, where \mathbf{R} represents the matrix that rotating \mathbf{x} by $7/12\pi$ in anti-clockwise direction.

Hint: draw a plot of x and Rx.

2) **Reflections.** (8 points) Let $\mathbf{u} \in \mathbb{R}^n$ be a unit vector, $\|\mathbf{u}\|_2 = 1$. For a given vector $\mathbf{x} \in \mathbb{R}^n$ and a hyperplane $\mathcal{H}_u = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{u}^T \mathbf{x} = 0\}$. Let $\mathbf{Q} = \mathbf{I} - \mathbf{u}\mathbf{u}^T$. Then a vector $\mathbf{y} \in \mathbb{R}^n$ is said to be a *reflection* of \mathbf{x} with respect to \mathcal{H} if their projections onto the hyperplane \mathcal{H} (denoted as $\mathbf{Q}\mathbf{x}$ and $\mathbf{Q}\mathbf{y}$ respectively) satisfy

$$\mathbf{Q}\mathbf{x} = \mathbf{Q}\mathbf{y}$$
, $\|\mathbf{x} - \mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{y} - \mathbf{Q}\mathbf{y}\|_2$.

See Figure.1 for visualization.

Figure 1. Reflection of x

A Householder matrix has the form $\mathbf{H} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^T$. Prove that $\mathbf{H}\mathbf{x}$ is a reflection of \mathbf{x} with respect to \mathcal{H}_u .

IV. DIRECT SUM

Problem 1. (10 points) Let \mathcal{V} be a vector space, and \mathcal{B} be a basis for \mathcal{V} . Suppose that there exist subsets $\mathcal{B}_1, \mathcal{B}_2$ of \mathcal{B} , such that $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ and $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$. Then show that $\mathcal{V} = \text{span}(\mathcal{B}_1) \oplus \text{span}(\mathcal{B}_2)$.

Problem 2. (10 points) Let \mathcal{V} be a real vector space of dimension n. Let \mathcal{S} be a subspace of \mathcal{V} of dimension d < n. Prove that there exists a subspace \mathcal{T} of \mathcal{V} such that $\mathcal{V} = \mathcal{S} \oplus \mathcal{T}$.

V. UNDERSTANDING THE MATRIX NORM

Problem 1. (7 points \times 2) Matrix norm is induced by vector norm,

$$\|\mathbf{A}\|_p = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_p}{\|\mathbf{x}\|_p} = \max_{\|\mathbf{x}\|_p = 1} \|\mathbf{A}\mathbf{x}\|_p, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n \times 1},$$

prove that

1) the matrix 1-norm

$$\|\mathbf{A}\|_1 = \max_{\|\mathbf{x}\|_1 = 1} \|\mathbf{A}\mathbf{x}\|_1 = \max_j \sum_i^m |a_{ij}|$$

= the largest absolute column sum.

2) the matrix ∞ -norm

$$\|\mathbf{A}\|_{\infty} = \max_{\|\mathbf{x}\|_{\infty} = 1} \|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{i} \sum_{j}^{n} |a_{ij}|$$

= the largest absolute row sum.

VI. UNDERSTANDING THE HÖLDER INEQUALITY

Problem 1. (6 points \times 3) Hölder inequality:

$$|\mathbf{x}^T \mathbf{y}| \leq ||\mathbf{x}||_p ||\mathbf{y}||_q$$

for any p,q such that 1/p + 1/q = 1, $p \ge 1$. Derive this inequality by exexcuting the following steps:

1) Consider the function $f(t) = (1 - \lambda) + \lambda t - t^{\lambda}$ for $0 < \lambda < 1$, establish the inequality

$$\alpha^{\lambda} \beta^{1-\lambda} \le \lambda \alpha + (1-\lambda)\beta$$
,

for nonnegative real numbers α and β .

2) Let $\hat{\mathbf{x}} = \mathbf{x}/\|\mathbf{x}\|_p$ and $\hat{\mathbf{y}} = \mathbf{y}/\|\mathbf{y}\|_q$, and apply the inequality of part (a) to obtain

$$\sum_{i=1}^{n} |\hat{x}_i \hat{y}_i| \le \frac{1}{p} \sum_{i=1}^{n} |\hat{x}_i|^p + \frac{1}{q} \sum_{i=1}^{n} |\hat{y}_i|^q = 1.$$

- 3) Deduce the Hölder inequality with the above results.
- 4) (Bouns question: 10 points) Prove the general form of triangle inequality

$$\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p.$$

Hint: For p > 1, let q be the number such that 1/q = 1 - 1/p. Verify that for scalars α and β ,

$$|\alpha + \beta|^p = |\alpha + \beta||\alpha + \beta|^{p/q} \le |\alpha||\alpha + \beta|^{p+q} + |\beta||\alpha + \beta|^{p/q}$$

and make use of Hölder's inequality.