頁/行	訂正前	訂正後	更新日
10/5	任意の反復列	反復列	2023.07.05
26/1	アーバスの方法	アバースの方法	2023.07.05
46/2	$\frac{1}{2k}$	$\frac{1}{2k^2}$ (読者の方から指摘を頂きました. あ	2019.01.28
		りがとうございます.)	
61/2	ψ_n	$\psi_{m k}$ (読者の方から指摘を頂きました)	2019.01.28
79/8, 9	正值性	正定値性	2017.04.01
80/9	$\sum_{j \neq i}$ (2 箇所)	$\sum_{j eq k}$ (読者の方から指摘を頂きました)	2019.01.28
88/1	$0 \le m \le k - 1$	$1 \le m \le k-1$ (読者の方から指摘を頂	2019.01.28
		きました)	
88/2	$Aoldsymbol{p}_k$	$\langle \pmb{r}_m, A \pmb{p}_k angle$ (読者の方から指摘を頂きま	2019.01.28
		した)	
88/6	一方で,	同様に、 $\langle {m r}_0, {m r}_{k+1} \rangle = 0$ もわかる.一方	2019.01.28
		で、(読者の方から指摘を頂きました)	
88/13, 14	$Aoldsymbol{p}^{k-1}$	Ap_{k-1} (読者の方から指摘を頂きました)	2019.01.28
105/6	(1 - a - b)	(1-a-b) f (読者の方から指摘を頂きま	2017.06.26
		した)	
124/7	(1-x)	(L-x)(読者の方から指摘を頂きまし	2019.01.28
		た)	
133/4	$g(t) = \frac{t}{\sqrt{1-t^2}} - 1 + t^2$	$g(t) = \frac{-t}{\sqrt{1-t^2}} - 1 + t^2$ (読者の方から	2017.07.19
	VI U	指摘を頂きました)	
133/7	$u(t) = 0.1t - 0.001 + 10.01e^{-10t}$	$u(t) = 0.1t - 0.01 + 10.01e^{-10t}$ (読者)	2017.07.19
		の方から指摘を頂きました)	
157/-11	渡辺善隆	渡部善隆(渡部先生,申し訳ありません	2017.04.01
		でした)	
193/-6	ともに, $(x,y) = (0.50001, 0.49999)$ とな	(x,y) = (1,0.49999) (行交換なし),	2018.12.17
	る.	$(x,y) = (0.50001, 0.49999) $ ($\forall \vec{x} \ y \ $	
		選択あり)となる. (読者の方から指摘	
		を頂きました)	
???/???			2017.**.**

コメント

p.36 の下から 6 行目に「t は、x と ξ の間にある適当な数である」とあります。すなわち、t は、x の関数 t=t(x) です。しかしながら、どんな関数であるのかは、これだけの情報からは、よくわかりません。その意味で、(2.12) にある $\int_{x_{j-1}}^{x_j} f''(t)(x-\xi)^2 \, dx$ は、本当は、 $\int_{x_{j-1}}^{x_j} f''(t(x))(x-\xi)^2 \, dx$ はと書くべきで、また、t(x) がどのような関数か全くわからないので(可測関数かどうかも不明)、この積分自体、きちんと定義されていいません。すなわち、(2.12) に始まり、定理 2.2 を述べるまでの議論の中では、f''(t) が x の関数として [a,b] で連続であることが、暗に仮定され

ています. このような仮定を避けるためには, (2.11) の代わりに,

$$f(x) = f(\xi) + f'(\xi)(x - \xi) + \underbrace{\int_0^1 (1 - s)(x - \xi)^2 f''(\xi + s(x - \xi)) ds}_{=\varphi(x)}$$
(2.11')

を用いれば大丈夫です (例えば, [1] の命題 4.1.2). 実際, $\xi = x_{j-1}$ とすると,

$$\left| \int_{x_{j-1}}^{x_j} \varphi(x) \ dx \right| \le \frac{h^3}{6} L_j$$

と評価できます.

p.43 の 4 行目に出てくる r についても, $f^{(4)}(r)$ が x の関数として [a,b] で連続であることが,暗に仮定されています.回避方法は,上と同じです.

なお,定理 2.2,定理 2.6,および定理 2.7 については,Taylor の定理を用いない証明も可能です.これについては,[1] の定理 7.4.8 を見て下さい.

一 以上 一