# FNLP Sequence Tagging II – Linear Models and Beyond

# Yansong Feng fengyansong@pku.edu.cn

Wangxuan Institute of Computer Technology Peking University

March 26, 2025

#### Outline

- HMM POS Tagger
- Peature-based Discriminative Models
- A Perceptron POS Tagger
- A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- Tagging with Global Features
- Neural Sequence Tagger

#### Outline

- HMM POS Tagger
- 2 Feature-based Discriminative Models
- A Perceptron POS Tagger
- A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- Tagging with Global Features
- 6 Neural Sequence Tagger

- We represent
  - a sentence of any length  $n: x_1, x_2, x_3, ...x_n$
  - its corresponding POS tag sequence;  $y_1, y_2, y_3, ... y_n$
- We care the joint probability of a sentence and its POS tag sequence:

$$p(x_1, x_2, x_3, ...x_n, y_1, y_2, y_3, ...y_n)$$

#### (Generative Model)

• Then the most likely POS tag sequence for  $x_1, x_2, x_3, ... x_n$ :

$$\arg\max_{y_1...y_n} p(y_1, y_2, y_3, ...y_n) p(x_1, x_2, x_3, ...x_n | y_1, y_2, y_3, ...y_n)$$

Make Markov Assumptions (e.g., Trigram)

$$\arg \max_{y_1...y_n} \prod_{i} p(y_i|y_{i-2}, y_{i-1}) \prod_{i} p(x_i|y_i)$$

# **Elements in HMM POS Tagger**

- Elements
  - a sequence of words
  - a sequence of POS tags
  - the beginning and end of a sentence
- Parameters
  - Sequences of POS tags
  - Co-occurrences of words and POS tags

#### Elements

- a sequence of words
- a sequence of POS tags
- the beginning and end of a sentence

#### Parameters

- Sequences of POS tags o transition probabilities (  $p(y_n|y_{n-2},y_{n-1}))$
- Co-occurrences of words and POS tags ightarrow emission probabilities  $(p(x_n|y_n))$



- Elements
  - a sequence of words
  - a sequence of POS tags
  - the beginning and end of a sentence
- Parameters
  - Sequences of POS tags  $\rightarrow$  transition probabilities (  $p(y_n|y_{n-2},y_{n-1})$ )
  - Co-occurrences of words and POS tags o emission probabilities  $(p(x_n|y_n))$

#### Anything else useful?

- if the current word ending with ing, ed, se, ly, ical, or ....
- if the previous word is the
- if the next word is .
- ..

# A Naive Way to Incorporate

..... many  $p_{ML}$ s

- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ing)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ed)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } se)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } \textit{ly})$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ical)$
- $p_{ML}(POS_{w_i} = VB|w_{i-1} = the)$
- $p_{ML}(POS_{w_i} = VB|w_{i+1} = . (a period))$
- ...

# A Naive Way to Incorporate

..... many  $p_{ML}$ s

- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ing)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ed)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } se)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ly)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ical)$
- $p_{ML}(POS_{w_i} = VB|w_{i-1} = the)$
- $p_{ML}(POS_{w_i} = VB|w_{i+1} = . (a period))$
- ...

### This gives you lots of $\lambda$ s to tune.

How about using a classifier ?

I love Beijing .

How about using a classifier ?

- make predictions for each word
- for each word:
  - extract various features regarding that word
  - find the best POS label for the word

How about using a classifier ?

- make predictions for each word
- for each word:
  - extract various features regarding that word
  - find the best POS label for the word

How about using a classifier ?

- make predictions for each word
- for each word:
  - extract various features regarding that word
  - find the best POS label for the word

How about using a classifier ?

- make predictions for each word
- for each word:
  - extract various features regarding that word
  - find the best POS label for the word
- Anything more?

How about using a classifier ?

- make predictions for each word
- for each word:
  - extract various features regarding that word
  - find the best POS label for the word
- Anything different from HMM?

How about using a classifier ?

- make predictions for each word
- for each word:
  - extract various features regarding that word
  - find the best POS label for the word
- Anything different from HMM?
  - more features?

How about using a classifier ?

- make predictions for each word
- for each word:
  - extract various features regarding that word
  - find the best POS label for the word
- Anything different from HMM?
  - more features?
  - individual decisions v.s. a sequence of decisions

#### **Another View: Features**

Features: pieces of evidences describing some aspects of observed data x, usually with respect to the predicted label y

- computer vision
  - the shape, color, texture, size.....of an object
  - other objects nearby, relative postions
  - number of objects available
  - ...
- natural language process, e.g., POS tagging
  - the target word itself, prefix, suffix, capital or not, ...
  - context: words before/after the target, their morphology
  - number of those indications
  - ...

#### **Another View: Features**

Features: pieces of evidences describing some aspects of observed data x, usually with respect to the predicted label y

- computer vision
  - the shape, color, texture, size.....of an object
  - other objects nearby, relative postions
  - number of objects available
  - dense features
  - ...
- natural language process, e.g., POS tagging
  - the target word itself, prefix, suffix, capital or not, ...
  - context: words before/after the target, their morphology
  - number of those indications
  - dense features
  - ...

Features in NLP: pieces of evidences describing some aspects of observed data x with respect to the predicted label y, usually with the purpose of providing a conditional probability  $p(y|x) \rightarrow \text{discriminative models}$ 

#### Often

- A feature is a function  $f_i(x,y) \in \mathcal{R}$
- more often, it is a binary or indicator function
- for example,

$$f_i(x,y) = \begin{cases} 1 & \text{if } x = \text{Beijing and } y = \text{NNP} \\ 0 & \text{otherwise} \end{cases}$$

- ullet if we have m aspects to describe an instance, i.e., m features:
  - a feature vector for each instance, (x, y)
  - $[f_1(x,y_1), f_2(x,y_1), f_3(x,y_1), ..., f_m(x,y_1), f_1(x,y_2), ..., f_m(x,y_2), ...]$
  - [1, 0, 0, ..., 1, 0, 0, 0, ..., 0, ...] when we evaluate  $y_1$

**FNLP** March 26, 2025 8 / 47 Y Feng (wict@pku)

#### Recall: Features in NLP

**Features in NLP**: pieces of evidences describing some aspects of observed data x with respect to the predicted label y, usually with the purpose of providing a conditional probability  $p(y|x) \to \text{discriminative models}$ 

#### **Also**

We may also want to introduce features that are slightly complex

considering previous sub-decisions

$$f_j(x,y) = \begin{cases} 1 & \text{if previous tag is ADJ and } y = \text{NNP} \\ 0 & \text{otherwise} \end{cases}$$

#### Outline

- HMM POS Tagger
- 2 Feature-based Discriminative Models
- A Perceptron POS Tagger
- A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- 5 Tagging with Global Features
- Neural Sequence Tagger

A linear classifier with the form like,  $\lambda_{f(x,y)}f(x,y)$ , where  $\lambda$ s are weights,

- ullet build a linear function to map input x to label y
- ullet possibly need a weight  $\lambda_{f_i(x,y)}$  for each feature  $f_i(x,y)$
- ullet then, for each possible label y of instance x, we can compute a score:

$$score(x, y) = \sum_{i} \lambda_{f_i(x, y)} f_i(x, y)$$

the classifier should choose y\*:

$$y^* = \arg\max_{y} \sum_{i} \lambda_{f_i(x,y)} f_i(x,y)$$

A linear classifier with the form like,  $\lambda_{f(x,y)}f(x,y)$ , where  $\lambda$ s are weights,

- ullet build a linear function to map input x to label y
- ullet possibly need a weight  $\lambda_{f_i(x,y)}$  for each feature  $f_i(x,y)$
- ullet then, for each possible label y of instance x, we can compute a score:

$$score(x, y) = \sum_{i} \lambda_{f_i(x, y)} f_i(x, y)$$

the classifier should choose y\*:

$$y^* = \arg\max_{y} \sum_{i} \lambda_{f_i(x,y)} f_i(x,y)$$

That is, for each y, compute the score, and select the  $y^{\ast}$  that gives the largest score.

A linear classifier with the form like,  $\lambda_{f(x,y)}f(x,y)$ , where  $\lambda$ s are weights,

- build a linear function to map input x to label y
- possibly need a weight  $\lambda_{f_i(x,y)}$  for each feature  $f_i(x,y)$
- then, for each possible label y of instance x, we can compute a score:

$$score(x, y) = \sum_{i} \lambda_{f_i(x, y)} f_i(x, y)$$

• the classifier should choose y\*:

$$y^* = \arg\max_{y} \sum_{i} \lambda_{f_i(x,y)} f_i(x,y)$$

**The KEY**: figure out those  $\lambda$ s?

**FNLP** March 26, 2025 9 / 47 Y Feng (wict@pku)

A linear classifier with the form like,  $\lambda_{f(x,y)}f(x,y)$ , where  $\lambda$ s are weights,

- ullet build a linear function to map input x to label y
- ullet possibly need a weight  $\lambda_{f_i(x,y)}$  for each feature  $f_i(x,y)$
- ullet then, for each possible label y of instance x, we can compute a score:

$$score(x, y) = \sum_{i} \lambda_{f_i(x, y)} f_i(x, y)$$

the classifier should choose y\*:

$$y^* = \arg\max_{y} \sum_{i} \lambda_{f_i(x,y)} f_i(x,y)$$

**The KEY**: figure out those  $\lambda$ s?  $\rightarrow$  We did this before in **Log-linear Models.** 

Tagging Beijing with a trained model:

I love Beijing.

- Clues: the target word, previous words, suffix, prefix, capitalized, ...
- curwd\_Beijing\_, pre1wd\_love\_, pref\_Be\_, cap\_1\_, ...

Tagging Beijing with a trained model:

I love Beijing.

- Clues: the target word, previous words, suffix, prefix, capitalized, ...
- curwd\_Beijing\_, pre1wd\_love\_, pref\_Be\_, cap\_1\_, ...
- for each possible label (NNP, VB, ...), coupling clues with labels:

Tagging *Beijing* with a trained model:

# I love Beijing.

- Clues: the target word, previous words, suffix, prefix, capitalized, ...
- curwd\_Beijing\_, pre1wd\_love\_, pref\_Be\_, cap\_1\_, ...
- for each possible label (NNP, VB, ...), coupling clues with labels:
  - curwd\_Beijing\_NNP, pre1wd\_love\_NNP, pref\_Be\_NNP, cap\_1\_NNP...
  - curwd\_Beijing\_VB, pre1wd\_love\_VB, pref\_Be\_VB, cap\_1\_VB...

Tagging Beijing with a trained model:

# I love Beijing.

- Clues: the target word, previous words, suffix, prefix, capitalized, ...
- curwd\_Beijing\_, pre1wd\_love\_, pref\_Be\_, cap\_1\_, ...
- for each possible label (NNP, VB, ...), coupling clues with labels:
  - curwd\_Beijing\_NNP, pre1wd\_love\_NNP, pref\_Be\_NNP, cap\_1\_NNP...
  - curwd\_Beijing\_VB, pre1wd\_love\_VB, pref\_Be\_VB, cap\_1\_VB...
- obtain  $\lambda$ s using certain algorithms,

$$\lambda_{\text{curwd\_Beijing\_NNP}} = 10$$
,  $\lambda_{\text{pref\_Be\_NNP}} = 5$ ,  $\lambda_{\text{cap\_1\_DT}} = -10$ , ...

Tagging Beijing with a trained model:

# I love Beijing.

- Clues: the target word, previous words, suffix, prefix, capitalized, ...
- curwd\_Beijing\_, pre1wd\_love\_, pref\_Be\_, cap\_1\_, ...
- for each possible label (NNP, VB, ...), coupling clues with labels:
  - curwd\_Beijing\_NNP, pre1wd\_love\_NNP, pref\_Be\_NNP, cap\_1\_NNP...
  - curwd\_Beijing\_VB, pre1wd\_love\_VB, pref\_Be\_VB, cap\_1\_VB...
- obtain  $\lambda$ s using certain algorithms,  $\lambda_{\text{curwd-Beijing-NNP}} = 10$ ,  $\lambda_{\text{pref-Be-NNP}} = 5$ ,  $\lambda_{\text{cap-1-DT}} = -10$ , ...
- compute: score(Beijing, NNP), score(Beijing, VB), score(Beijing, DT), ...

Tagging Beijing with a trained model:

# I love Beijing .

- Clues: the target word, previous words, suffix, prefix, capitalized, ...
- curwd\_Beijing\_, pre1wd\_love\_, pref\_Be\_, cap\_1\_, ...
- for each possible label (NNP, VB, ...), coupling clues with labels:
  - curwd\_Beijing\_NNP, pre1wd\_love\_NNP, pref\_Be\_NNP, cap\_1\_NNP...
  - curwd\_Beijing\_VB, pre1wd\_love\_VB, pref\_Be\_VB, cap\_1\_VB...
- obtain  $\lambda$ s using certain algorithms,  $\lambda_{\text{curwd-Beijing-NNP}} = 10$ ,  $\lambda_{\text{pref-Be-NNP}} = 5$ ,  $\lambda_{\text{cap-1-DT}} = -10$ , ...
- compute: score(Beijing, NNP), score(Beijing, VB), score(Beijing, DT), ...
- choose the largest one: score(Beijing, NNP)

Tagging Beijing with a trained model:

# I love Beijing.

- Clues: the target word, previous words, suffix, prefix, capitalized, ...
- curwd\_Beijing\_, pre1wd\_love\_, pref\_Be\_, cap\_1\_, ...
- for each possible label (NNP, VB, ...), coupling clues with labels:
  - curwd\_Beijing\_NNP, pre1wd\_love\_NNP, pref\_Be\_NNP, cap\_1\_NNP...
  - curwd\_Beijing\_VB, pre1wd\_love\_VB, pref\_Be\_VB, cap\_1\_VB...
- obtain  $\lambda$ s using certain algorithms,  $\lambda_{\text{curwd\_Beijing\_NNP}} = 10$ ,  $\lambda_{\text{pref\_Be\_NNP}} = 5$ ,  $\lambda_{\text{cap\_1\_DT}} = -10$ , ...
- compute: score(Beijing, NNP), score(Beijing, VB), score(Beijing, DT), ...
- choose the largest one: score(Beijing, NNP)
- tag Beijing with NNP

Tagging Beijing with a trained model:

# I love Beijing.

- Clues: the target word, previous words, suffix, prefix, capitalized, ...
- curwd\_Beijing\_, pre1wd\_love\_, pref\_Be\_, cap\_1\_, ...
- for each possible label (NNP, VB, ...), coupling clues with labels:
  - curwd\_Beijing\_NNP, pre1wd\_love\_NNP, pref\_Be\_NNP, cap\_1\_NNP...
  - curwd\_Beijing\_VB, pre1wd\_love\_VB, pref\_Be\_VB, cap\_1\_VB...
- ullet obtain  $\lambda$ s using **certain algorithms**,

```
\lambda_{\rm curwd\_Beijing\_NNP} = 10, \ \lambda_{\rm pref\_Be\_NNP} = 5, \ \lambda_{\rm cap\_1\_DT} = -10, \ \dots
```

- compute: score(Beijing, NNP), score(Beijing, VB), score(Beijing, DT), ...
- choose the largest one: score(Beijing, NNP)
- tag Beijing with NNP

# Features based Linear Models: Algorithms

#### The key is to choose proper weights $\lambda$ s for features

- the Perceptron algorithm
- Margin-based models (the Support Vector Machines, SVM)
- Exponential Models:
  - log-linear models, maximum entropy models, logistic models, ...
  - basically, produce a probabilistic model according to score(x, y)

$$p(y|x) = \frac{\exp score(x,y)}{\sum_{y'} \exp score(x,y')} = \frac{\exp \sum_{i} \lambda_{i} f_{i}(x,y)}{\sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(x,y')}$$

a powerful tool! (e.g., the log-linear model)

11 / 47 Y Feng (wict@pku)

# Features based Linear Models: Algorithms

#### The key is to choose proper weights $\lambda$ s for features

- the Perceptron algorithm (covered in this lecture)
- Margin-based models (the Support Vector Machines, SVM)
- Exponential Models:
  - log-linear models, maximum entropy models, logistic models, ...
  - basically, produce a probabilistic model according to score(x, y)

$$p(y|x) = \frac{\exp score(x,y)}{\sum_{y'} \exp score(x,y')} = \frac{\exp \sum_{i} \lambda_{i} f_{i}(x,y)}{\sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(x,y')}$$

a powerful tool! (e.g., the log-linear model)

11 / 47 Y Feng (wict@pku)

## Outline

- HMM POS Tagger
- 2 Feature-based Discriminative Models
- A Perceptron POS Tagger
- 4 A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- 5 Tagging with Global Features
- Meural Sequence Tagger

# The Perceptron Algorithm

- Classic: Rosenblatt (1958)
- Modern: Freund and Schapire (1999)
  - proof for convergence
  - very competitive performance in various classification tasks
- NLP: Michael Collins (2002, 2004, ...)
  - modifications with respect to NLP applications
  - serves as alternative parameter estimation methods for many ML models
  - You SHOULD read at least the 2002 paper (M. Collins, 2002)

# The Perceptron Algorithm

- Inputs:
  - Training set  $(x_k, y_k)$  for k = 1, 2, ..., n
  - $\bullet$   $x_k$  the data, and  $y_k$  the label
- Initialization:
  - $\lambda = [0, 0, 0....], T$
- Define:
  - ullet follow Collins: GEN enumerates possible candidate labels ys for data x
  - $z = \arg\max_{y \in GEN(x)} \sum_{i} \lambda_{f_i(x,y)} f_i(x,y)$
- Loop:
  - For q=1,2,3...,T, k=1,2,3,...,n compute  $z_k=\arg\max_{y\in GEN(x_k)}\sum_i\lambda_{f_i(x,y)}f_i(x_k,y)$  update  $\lambda$ s
    - if  $z_k \neq y_k$ :  $\lambda = \lambda + f(x_k, y_k) f(x_k, z_k)$
- Output:
  - λs

# The Perceptron Algorithm

- Inputs:
  - Training set  $(x_k, y_k)$  for k = 1, 2, ..., n
  - $x_k$  the data, and  $y_k$  the label Here: we treat each word as an instance
- Initialization:

• 
$$\lambda = [0, 0, 0, ...], T$$

- Define:
  - ullet follow Collins: GEN enumerates possible candidate labels ys for data x
  - $z = \arg\max_{y \in GEN(x)} \sum_{i} \lambda_{f_i(x,y)} f_i(x,y)$
- Loop:
  - For  $q=1,2,3...,T,\ k=1,2,3,...,n$  compute  $z_k=\arg\max_{y\in GEN(x_k)}\sum_i\lambda_{f_i(x,y)}f_i(x_k,y)$  (Key: decode z by ranking over GEN(x)) update  $\lambda$ s
    - if  $z_k \neq y_k$ :  $\lambda = \lambda + f(x_k, y_k) f(x_k, z_k)$
- Output:
  - $\bullet$   $\lambda$ s

13 / 47

# A Simple Perceptron Solution for POS Tagging

training data: China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N ...

- in a step during training: China/N Mobile/N ... communication/N giant/?? in east Asia
  - word giant may have many choices of tags: N, V, DT, P, ADJ, ...

# A Simple Perceptron Solution for POS Tagging

training data: China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N ...

- in a step during training: China/N Mobile/N ... communication/N giant/?? in east Asia
  - word giant may have many choices of tags: N, V, DT, P, ADJ, ...
  - $\bullet$  for each choice, .e.g, N, ADJ, we extract m features :
    - $f_1(x,y)=1$  if current word is giant and y=N.  $\to f_1(x,y)=1$
    - $f_{11}(x,y)=1$  if current word is giant and y=ADJ.  $\rightarrow f_{11}(x,y)=0$
    - $f_2(x,y)=1$  if previous word is the and y=N.  $\to f_2(x,y)=0$
    - $f_{22}(x,y)=1$  if previous word is the and y=ADJ.  $\rightarrow f_{22}(x,y)=0$
    - $f_3(x,y)=1$  if sufix of current word is ant and y=N.  $\to f_3(x,y)=1$
    - $f_{33}(x,y)=1$  if sufix of current word is ant and y=ADJ.  $\rightarrow$  $f_{33}(x,y) = 0$
  - compute score(giant, N) =  $\sum_{i} \lambda_{f_i(giant,N)} f_i(giant,N) = 0.40$ , score(giant, ADJ) = 0.42, ...
  - choose the largest score(giant, y), e.g., ADJ

# A Simple Perceptron Solution for POS Tagging

training data: China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N ...

- in a step during training:
  - China/N Mobile/N ... communication/N giant/?? in east Asia
    - word giant may have many choices of tags: N, V, DT, P, ADJ, ...
    - ullet for each choice, .e.g, N, ADJ, we extract m features :
      - $f_1(x,y)=1$  if current word is giant and y=N.  $\to f_1(x,y)=1$
      - $f_{11}(x,y)=1$  if current word is giant and y=ADJ.  $\rightarrow f_{11}(x,y)=0$
      - $f_2(x,y)=1$  if previous word is the and y=N.  $\to f_2(x,y)=0$
      - $f_{22}(x,y)=1$  if previous word is the and y=ADJ.  $\rightarrow f_{22}(x,y)=0$
      - $f_3(x,y)=1$  if sufix of current word is ant and y=N.  $\to f_3(x,y)=1$
      - $f_{33}(x,y)=1$  if sufix of current word is ant and y=ADJ.  $\rightarrow$  $f_{33}(x,y) = 0$
    - compute score(giant, N) =  $\sum_{i} \lambda_{f_i(giant,N)} f_i(giant,N) = 0.40$ , score(giant, ADJ) = 0.42, ...
    - choose the largest score(giant, y), e.g., ADJ
- we should at least punish those feature weights that makes us choose AD.I

- the resulting tag is China/N Mobile/N is/V a/DT communication/N giant/ADJ in east Asia
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

Y Feng (wict@pku) FNLP March 26, 2025 15 / 47

- the resulting tag is China/N Mobile/N is/V a/DT communication/N giant/ADJ in east Asia
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

Y Feng (wict@pku) FNLP March 26, 2025 15 / 47

- the resulting tag is China/N Mobile/N is/V a/DT communication/N giant/ADJ in east Asia
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N
- Which features make us choose the wrong tag ADJ?

- the resulting tag is China/N Mobile/N is/V a/DT communication/N giant/ADJ in east Asia
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N
- Which features make us choose the wrong tag ADJ?
  - features related to ADJ
  - features related to N

- the resulting tag is China/N Mobile/N is/V a/DT communication/N giant/ADJ in east Asia
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N
- Which features make us choose the wrong tag ADJ?
  - features related to ADJ
  - features related to N
- Update these feature weights accordingly

$$\begin{array}{l} \bullet \ \lambda_{f_{1}(x,y)}^{*} = \lambda_{f_{1}(x,y)} + 1 \\ \bullet \ \lambda_{f_{3}(x,y)}^{*} = \lambda_{f_{3}(x,y)} + 1 \\ \bullet \ \lambda_{f_{11}(x,y)}^{*} = \lambda_{f_{11}(x,y)} - 1 \\ \bullet \ \lambda_{f_{33}(x,y)}^{*} = \lambda_{f_{33}(x,y)} - 1 \end{array}$$

• 
$$\lambda_{f_3(x,y)}^* = \lambda_{f_3(x,y)} + 1$$

• 
$$\lambda_{f_{11}(x,y)}^{*} = \lambda_{f_{11}(x,y)}^{*} - 1$$

• 
$$\lambda_{f_{33}(x,y)}^{*} = \lambda_{f_{33}(x,y)}^{f_{11}(x,y)} - 1$$

- the resulting tag is China/N Mobile/N is/V a/DT communication/N giant/ADJ in east Asia
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N
- Which features make us choose the wrong tag ADJ?
  - features related to ADJ
  - features related to N
- Update these feature weights accordingly

  - $\begin{array}{l} \bullet \ \lambda_{f_{1}(x,y)}^{*} = \lambda_{f_{1}(x,y)} + 1 \\ \bullet \ \lambda_{f_{3}(x,y)}^{*} = \lambda_{f_{3}(x,y)} + 1 \\ \bullet \ \lambda_{f_{11}(x,y)}^{*} = \lambda_{f_{11}(x,y)} 1 \\ \bullet \ \lambda_{f_{33}(x,y)}^{*} = \lambda_{f_{33}(x,y)} 1 \end{array}$
- Repeat the process until convergence

What we have:

# No.1 Tagger

An HMM POS Tagger

- A Perceptron POS Tagger
- (A Log-linear POS Tagger)

#### What we have:

## No.1 Tagger

- An HMM POS Tagger
  - NO features at all
  - easy training strategies

- A Perceptron POS Tagger
- (A Log-linear POS Tagger)
  - Rich features
  - need training algorithms

#### What we have:

## No.1 Tagger

- An HMM POS Tagger
  - NO features at all
  - easy training strategies
  - specific decoding: the Viterbi algorithm

- A Perceptron POS Tagger
- (A Log-linear POS Tagger)
  - Rich features
  - need training algorithms
  - How do we decode?

#### What we have:

## No.1 Tagger

- An HMM POS Tagger
  - NO features at all
  - easy training strategies
  - specific decoding: the Viterbi algorithm

- A Perceptron POS Tagger
- (A Log-linear POS Tagger)
  - Rich features
  - need training algorithms
  - can we just do greedy search?

## Outline

- HMM POS Tagger
- Peature-based Discriminative Models
- 3 A Perceptron POS Tagger
- A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- Tagging with Global Features
- Meural Sequence Tagger

• Anything more we can improve?

- Anything more we can improve?
- Currently, we examine one word by another

- Anything more we can improve?
- Currently, we examine one word by another
  - individual decisions v.s. a sequence of decisions

- Anything more we can improve?
- Currently, we examine one word by another
  - individual decisions v.s. a sequence of decisions
- Local v.s. Global

- Anything more we can improve?
- Currently, we examine one word by another
  - individual decisions v.s. a sequence of decisions
- Local v.s. Global
  - Can we utilize the decisions made previously?

- Anything more we can improve?
- Currently, we examine one word by another
  - individual decisions v.s. a sequence of decisions
- Local v.s. Global
  - Can we utilize the decisions made previously?
  - Use history decisions as new features

- Anything more we can improve?
- Currently, we examine one word by another
  - individual decisions v.s. a sequence of decisions
- Local v.s. Global
  - Can we utilize the decisions made previously?
  - Use history decisions as new features

if the previous word has been tagged as N and we want to label the current word  $w_x$  as N again  $\Rightarrow f_{1000000}(w_x,N)=1$ 

- Anything more we can improve?
- Currently, we examine one word by another
  - individual decisions v.s. a sequence of decisions
- Local v.s. Global
  - Can we utilize the decisions made previously?
  - Use history decisions as new features

if the previous word has been tagged as N and we want to label the current word  $w_x$  as N again  $\Rightarrow f_{1000000}(w_x, N) = 1$ 

- Local models + new/history-based features
  - Perceptron/Log-linear + history-based features

- Anything more we can improve?
- Currently, we examine one word by another
  - individual decisions v.s. a sequence of decisions
- Local v.s. Global
  - Can we utilize the decisions made previously?
  - Use history decisions as new features

if the previous word has been tagged as N and we want to label the current word  $w_x$  as N again  $\Rightarrow f_{1000000}(w_x, N) = 1$ 

- Local models + new/history-based features
  - Perceptron/Log-linear + history-based features
- Need specific decoding algorithms?

- Inputs:
  - Training set  $S:(x_k,y_k)$  for k=1,2,...,n, belonging to |S| sentences
  - $x_k$  the data, and  $y_k$  the label,
- Initialization:
  - $\lambda = [0, 0, 0....], T$
- Define:
  - ullet GEN enumerates possible candidate label ys for data x
  - $score_y = \sum_i \lambda_{f_i(x,y)} f_i(x,y)$  : compute the score for a pair of x and y
- Loop:
  - For q=1,2,3...,T, each sentence  $s\in S$  for each word  $x\in s,\ y\in \mathsf{GEN}(x)$ :
    - compute  $score_y = \sum_i \lambda_{f_i(x,y)} f_i(x,y)$

Decode the **best sequence** for sentence s Update  $\lambda$ s regarding sentence s

- Output:
  - λs

Y Feng (wict@pku) FNLP March 26, 2025 18 / 47

- Inputs:
  - Training set  $S:(x_k,y_k)$  for k=1,2,...,n, belonging to |S| sentences
  - $x_k$  the data, and  $y_k$  the label, treat one sentence as one instance?
- Initialization:
  - $\lambda = [0, 0, 0, \dots], T$
- Define:
  - ullet GEN enumerates possible candidate label ys for data x
  - $score_y = \sum_i \lambda_{f_i(x,y)} f_i(x,y)$  : compute the score for a pair of x and y
- Loop:
  - For q=1,2,3...,T, each sentence  $s\in S$  for each word  $x\in s,\ y\in \mathsf{GEN}(x)$ :
    - compute  $score_y = \sum_i \lambda_{f_i(x,y)} f_i(x,y)$

Decode the **best sequence** for sentence s Update  $\lambda$ s regarding sentence s

- Output:
  - λs

Y Feng (wict@pku) FNLP March 26, 2025 18 / 47

- Inputs:
  - Training set  $S:(x_k,y_k)$  for k=1,2,...,n, belonging to |S| sentences
  - $x_k$  the data, and  $y_k$  the label, treat one sentence as one instance?
- Initialization:
  - $\lambda = [0, 0, 0....], T$
- Define:
  - ullet GEN enumerates possible candidate label ys for data x
  - $score_y = \sum_i \lambda_{f_i(x,y)} f_i(x,y)$  : compute the score for a pair of x and y
- Loop:
  - For q=1,2,3...,T, each sentence  $s\in S$  for each word  $x\in s,\ y\in \mathsf{GEN}(x)$ :
    - ullet compute  $score_y = \sum_i \lambda_{f_i(x,y)} f_i(x,y) 
      ightarrow {f a}$  lattice ( $|s| imes |{f y}|$ )

Decode the **best sequence** for sentence s Update  $\lambda s$  regarding sentence s

- Output:
  - λs

Y Feng (wict@pku) FNLP March 26, 2025 18 / 47

- Inputs:
  - Training set  $S:(x_k,y_k)$  for k=1,2,...,n, belonging to |S| sentences
  - $x_k$  the data, and  $y_k$  the label, treat one sentence as one instance?
- Initialization:
  - $\lambda = [0, 0, 0....], T$
- Define:
  - GEN enumerates possible candidate label ys for data x
  - $score_y = \sum_i \lambda_{f_i(x,y)} f_i(x,y)$  : compute the score for a pair of x and y
- Loop:
  - For q=1,2,3...,T, each sentence  $s\in S$  for each word  $x\in s,\ y\in \mathsf{GEN}(x)$ :
    - compute  $score_y = \sum_i \lambda_{f_i(x,y)} f_i(x,y) \to \mathbf{a}$  lattice  $(|s| \times |\mathbf{y}|)$

Decode the best sequence for sentence s with the Viterbi Algorithm Update  $\lambda$ s regarding sentence s by comparing

the currently best y sequence with its gold-standard y\* sequence

18 / 47

- Output:
  - $\bullet \lambda s$

Y Feng (wict@pku) FNLP March 26, 2025

# Perceptron v.s. Structured Perceptron

## Perceptron

- only use all words in the sentence as features
- use greedy search as the decoder
- a local solution

## **Structured Perceptron**

- besides local features, can also take previous decisions, e.g.,  $y_{k-2}, y_{k-1}$ , as features
- use the Viterbi Algorithm or others as the decoder
- a solution with more global-views/history-views

# A Structured Perceptron Solution for POS Tagging

**training data:** China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

- at time t during training
  - each word  $x = \{\text{China, Mobile, ..., Asia}\}$  in the sentence, try every every possible tag: **N, V, DT, P, ADJ, ...**

Y Feng (wict@pku) FNLP March 26, 2025 20 / 47

# A Structured Perceptron Solution for POS Tagging

**training data:** China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

- at time t during training
  - each word  $x = \{\text{China, Mobile, ..., Asia}\}$  in the sentence, try every every possible tag: **N, V, DT, P, ADJ, ...**
  - $\bullet$  for each choice, .e.g, N, we extract m features :
    - $f_1(x,y)=1$  if current word is *China* and  $y=N. \rightarrow f_1(x,y)=1$
    - $f_{11}(x,y)=1$  if current word is *China* and  $y=ADJ. \to f_{11}(x,y)=0$
    - $f_2(x,y)=1$  if previous word is < S and y=N.  $\rightarrow f_2(x,y)=0$
    - $f_{22}(x,y)=1$  if previous word is  $\langle S \rangle$  and y=ADJ.  $\rightarrow f_{22}(x,y)=0$
    - $f_3(x,y)=1$  if prefix of current word is  $\mathit{Chi}$  and y=N.  $\to f_3(x,y)=1$
    - $f_{33}(x,y)=1$  if prefix of current word is *Chi* and  $y=ADJ. \rightarrow f_{33}(x,y)=0$
    - ...
  - compute and keep score(x, N), score(x, ADJ), score(x, DT), ...

Y Feng (wict@pku) FNLP March 26, 2025 20 / 47

# A Structured Perceptron Solution for POS Tagging

**training data:** China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

- at time t during training
  - each word  $x = \{China, Mobile, ..., Asia\}$  in the sentence, try every every possible tag: **N, V, DT, P, ADJ, ...**
  - $\bullet$  for each choice, .e.g, N, we extract m features :
    - $f_1(x,y)=1$  if current word is China and  $y=N. \rightarrow f_1(x,y)=1$
    - $f_{11}(x,y)=1$  if current word is *China* and  $y=ADJ. \to f_{11}(x,y)=0$
    - $f_2(x,y) = 1$  if previous word is  $\langle S \rangle$  and y = N.  $\rightarrow f_2(x,y) = 0$
    - $f_{22}(x,y)=1$  if previous word is <S> and y=ADJ.  $\rightarrow f_{22}(x,y)=0$
    - $f_3(x,y)=1$  if prefix of current word is *Chi* and  $y=N. \rightarrow f_3(x,y)=1$
    - $f_{33}(x,y)=1$  if prefix of current word is *Chi* and y=ADJ.  $\rightarrow f_{33}(x,y)=0$
    - ...
  - compute and keep score(x, N), score(x, ADJ), score(x, DT), ...
- Build a lattice ( $|s| \times |y|$ ) for this sentence
- Decode the best sequence for this sentence with the Viterbi Algorithm

Y Feng (wict@pku) FNLP March 26, 2025 20 / 47

# Structured Perceptron for POS Tagging (A simple case)

- the resulting sequence is China/N Mobile/N is/V a/DT communication/N giant/ADJ in/DT east/ADJ Asia/N
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

## Structured Perceptron for POS Tagging (A simple case)

- the resulting sequence is China/N Mobile/N is/V a/DT communication/N giant/ADJ in/DT east/ADJ Asia/N
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N
- we compare the two sequences, and find the differences

**FNLP** March 26, 2025 21 / 47 Y Feng (wict@pku)

## Structured Perceptron for POS Tagging (A simple case)

- the resulting sequence is China/N Mobile/N is/V a/DT communication/N giant/ADJ in/DT east/ADJ Asia/N
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N
- we compare the two sequences, and find the differences
- we update the features related to the correct/wrong predictions
- for example, we should do something regarding giant/ADJ in/DT

  - $\begin{array}{l} \bullet \ \lambda_{f_{1}(x,y)}^{*} = \lambda_{f_{1}(x,y)} + 1 \\ \bullet \ \lambda_{f_{3}(x,y)}^{*} = \lambda_{f_{3}(x,y)} + 1 \\ \bullet \ \lambda_{f_{11}(x,y)}^{*} = \lambda_{f_{11}(x,y)} 1 \\ \bullet \ \lambda_{f_{33}(x,y)}^{*} = \lambda_{f_{33}(x,y)} 1 \end{array}$

- the resulting sequence is China/N Mobile/N is/V a/DT communication/N giant/ADJ in/DT east/ADJ Asia/N
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N
- we compare the two sequences, and find the differences
- we update the features related to the correct/wrong predictions
- for example, we should do something regarding giant/ADJ in/DT
  - $\begin{array}{l} \bullet \ \lambda_{f_{1}(x,y)}^{*} = \lambda_{f_{1}(x,y)} + 1 \\ \bullet \ \lambda_{f_{3}(x,y)}^{*} = \lambda_{f_{3}(x,y)} + 1 \\ \bullet \ \lambda_{f_{11}(x,y)}^{*} = \lambda_{f_{11}(x,y)} 1 \\ \bullet \ \lambda_{f_{33}(x,y)}^{*} = \lambda_{f_{33}(x,y)} 1 \end{array}$
- update the parameters in a sentence level

Outline

- 1 HMM POS Tagger
- 2 Feature-based Discriminative Models
- 3 A Perceptron POS Tagger
- A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- 5 Tagging with Global Features
- 6 Neural Sequence Tagger

Y Feng (wict@pku) FNLP March 26, 2025 22 / 47

## A Bit Complex: Why We Need the Viterbi Algorithm

If we include history-based features like

- $f_{100}(x,y)=1$  if previous tag is N and  $y=N. \rightarrow f_{100}(giant,N)=1$
- $f_{101}(x,y)=1$  if previous two tags are  $DT_{-}N$  and  $y=N_{-}\to f_{101}(giant,N)=1$
- ...
- we can NOT directly/individually compute score(giant, N), score(giant, ADJ), ...

Y Feng (wict@pku) FNLP March 26, 2025 22 / 47

If we include history-based features like

- $f_{100}(x,y)=1$  if previous tag is N and y=N.  $\rightarrow f_{100}(giant,N)=1$
- $f_{101}(x,y) = 1$  if previous two tags are  $DT_-N$  and  $y = N_- \rightarrow 0$  $f_{101}(qiant, N) = 1$
- ...
- we can **NOT** directly/individually compute score(giant, N), score(giant, ADJ), ...
- we need to decode the currently best tag sequence for the whole sentence using Dynamic Programming

**FNLP** March 26, 2025 22 / 47 Y Feng (wict@pku)

## A Bit Complex: Why We Need the Viterbi Algorithm

If we include history-based features like

- $f_{100}(x,y)=1$  if previous tag is N and y=N.  $\rightarrow f_{100}(giant,N)=1$
- $f_{101}(x,y)=1$  if previous two tags are  $DT_-N$  and  $y=N_$  $f_{101}(qiant, N) = 1$
- ...
- we can **NOT** directly/individually compute score(giant, N), score(qiant, ADJ), ...
- we need to decode the currently best tag sequence for the whole sentence using Dynamic Programming  $\rightarrow$  the Viterbi Algorithm

•

$$\arg\max_{t_{[1:n]} \in GEN'(s)} \sum_{w \in s, y \in t_{[1:n]}} \sum_{i} \lambda_{f_i(\mathsf{history}(w), y)} f_i(\mathsf{history}(w), y)$$

**FNLP** March 26, 2025 22 / 47 Y Feng (wict@pku)

# ullet for a sentence s of length n

- define the score of tag sequence  $t_1, t_2, ... t_j$ :  $score(t_1, t_2, ... t_j) = \sum_{w \in s} \sum_i \lambda_{f_i'(w, t_{w-2}, t_{w-1}, t_w)} f_i'(w, t_{w-2}, t_{w-1}, t_w)$
- define the dynamic programming table  $\pi(j,u,v) = \text{maximum probability of a tag sequence ending with tags } u,v \text{ at position } j$
- SO,

$$\pi(j, u, v) = \max_{\langle t_1, t_2, \dots t_{j-2} \rangle} \mathsf{score}(t_1, t_2, \dots t_{j-2}, u, v)$$

• Recursively: start with  $\pi(0, \mathsf{START}, \mathsf{START}) = 0$  for any  $j \in 1, 2, ..., n$ , for possible u and v:

$$\pi(j, u, v) = \max_{q} (\pi(j - 1, q, u) + \sum_{i} \lambda_{f'_i(word_v, q, u, v)} f'_i(word_v, q, u, v))$$

ullet the Viterbi Algorithm with Backpointers o the optimal sequence!

Y Feng (wict@pku) FNLP March 26, 2025 23 / 47

### Outline

- 1 HMM POS Tagger
- 2 Feature-based Discriminative Models
- 3 A Perceptron POS Tagger
- A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- 5 Tagging with Global Features
- Meural Sequence Tagger

Y Feng (wict@pku) FNLP March 26, 2025 24 / 47

## An Alternative: Beam Search

**Input:** an input sentence x of length n, a trained model score(\*), and a predefined beam size k

Let  $H_i$  store the current hypotheses (or, possible results) at position  $i \in \{1, 2, ..., n\}$ :

- let C be a temporal storage
- for each hypothesis (or, possible result)  $y_{1:i-1}^H$  in  $H_{i-1}$  at position i-1
  - try every possible  $y_i^h$ , and form a new tag sequence,  $y_{1:i-1}^H, y_i^h$ , and store it with its score in C
- Choose the k-best sequences in C to form the  $H_i$

**Output:** the best-scored sequence in  $H_i$ 

24 / 47 Y Feng (wict@pku)

**Input:** an input sentence x of length n, a trained model score(\*), and a predefined beam size k

Let  $H_i$  store the current hypotheses (or, possible results) at position  $i \in \{1, 2, ..., n\}$ :

- let C be a temporal storage
- for each hypothesis (or, possible result)  $y_{1:i-1}^H$  in  $H_{i-1}$  at position i-1
  - try every possible  $y_i^h$ , and form a new tag sequence,  $y_{1:i-1}^H, y_i^h$ , and store it with its score in C
- Choose the k-best sequences in C to form the  $H_i$

**Output:** the best-scored sequence in  $H_i$ 

- Easy to implement, Effective and Efficient in most of time
- Generally no guarantee for global optimal :-(
- Runtime is  $O(n^2k|\mathbf{y}|)$ , space is  $O(n^2k)$

Y Feng (wict@pku)

## **More about Structured Perceptron**

- Voted Perceptron (Collins 2002)
- Averaged Perceptron (Collins 2002)
- Early Update (Collins and Roak 2004)

#### Questions

• can this model take features like:

how many times we see a verb in this sentence? Is there a verb appearing in this sentence?

Y Feng (wict@pku) FNLP March 26, 2025 25 / 47

### **Perceptron**

- Rosenblatt, 1958
- Freund and Schapire, 1999
- Collins, 2002
- Collins and Roak, 2004
- ...

#### You see Perceptron in neural times as well

- Transition system
- Multiple Layer Perceptron (MLP)!

Y Feng (wict@pku) FNLP March 26, 2025 26 / 47

#### Outline

- HMM POS Tagger
- 2 Feature-based Discriminative Models
- A Perceptron POS Tagger
- A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- Tagging with Global Features
- Meural Sequence Tagger

#### Local features are indicator functions, e.g.,

$$f_{101}(w_i,t_i) = \begin{cases} 1 & \text{if current word } w_i \text{ ends in ing and } t_i = \text{VBG} \\ 0 & \text{otherwise} \end{cases}$$
 
$$f_{109}(w_i,t_{[i-1,i]}) = \begin{cases} 1 & \text{if } t_{i-1} = \text{ADJ and } t_i = \text{VBG} \\ 0 & \text{otherwise} \end{cases}$$

- Then, global features can be simply counts:
  - $F_{101}(w_{[1:n]}, t_{[1:n]})$  is the number of times that a word ending in **ing** is tagged as VBG in  $(w_{[1:n]}, t_{[1:n]})$ :  $F_{101}(w_{[1:n]}, t_{[1:n]}) = \sum_{i=1}^{n} f_{101}(w_i, t_i)$
  - $F_{109}(w_{[1:n]},t_{[1:n]})$  is the number of times that a word is tagged as VBG and its previous neighbor tagged as ADJ in  $(w_{[1:n]},t_{[1:n]})$ :  $F_{109}(w_{[1:n]},t_{[1:n]}) = \sum_{i=1}^n f_{109}(w_i,t_{[i-1,i]})$

Y Feng (wict@pku) FNLP March 26, 2025 27 / 47

## Plug into a Log-linear Model

• Look in a sentence level: p(Y|X) the probability of one sentence X labeled with tag sequence Y:

$$Y^* = \arg\max p(Y|X) = \arg\max \frac{\exp(\boldsymbol{\lambda} \cdot \boldsymbol{F}(X,Y))}{\sum_{Y'} \exp(\boldsymbol{\lambda} \cdot \boldsymbol{F}(X,Y'))}$$
$$= \arg\max \frac{\exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y))}{\sum_{Y'} \exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y'))}$$
$$= \arg\max \frac{1}{Z(X)} \exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y))$$

- slightly simply with:  $Z(X) = \sum_{Y'} \exp(\sum_{m=1}^{M} \lambda_m F_m(X, Y'))$
- $\bullet$   $F_m(X,Y)$  could be history-based or sentence level global features

Y Feng (wict@pku) FNLP March 26, 2025 28 / 47

## Plug into a Log-linear Model

• Look in a sentence level: p(Y|X) the probability of one sentence X labeled with tag sequence Y:

$$Y^* = \arg\max p(Y|X) = \arg\max \frac{\exp(\boldsymbol{\lambda} \cdot \boldsymbol{F}(X,Y))}{\sum_{Y'} \exp(\boldsymbol{\lambda} \cdot \boldsymbol{F}(X,Y'))}$$
$$= \arg\max \frac{\exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y))}{\sum_{Y'} \exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y'))}$$
$$= \arg\max \frac{1}{Z(X)} \exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y))$$

- slightly simply with:  $Z(X) = \sum_{Y'} \exp(\sum_{m=1}^M \lambda_m F_m(X,Y'))$
- $\bullet$   $F_m(X,Y)$  could be history-based or sentence level global features
- training objective:  $-\sum \log p(Y_i|X_i) = \sum -\pmb{\lambda} \cdot \pmb{F}(X_i,Y_i) + \log Z(X_i)$

Y Feng (wict@pku) FNLP March 26, 2025 28 / 47

## Plug into a Log-linear Model

• Look in a sentence level: p(Y|X) the probability of one sentence X labeled with tag sequence Y:

$$Y^* = \arg\max p(Y|X) = \arg\max \frac{\exp(\lambda \cdot F(X,Y))}{\sum_{Y'} \exp(\lambda \cdot F(X,Y'))}$$
$$= \arg\max \frac{\exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y))}{\sum_{Y'} \exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y'))}$$
$$= \arg\max \frac{1}{Z(X)} \exp(\sum_{m=1}^{M} \lambda_m F_m(X,Y))$$

- slightly simply with:  $Z(X) = \sum_{V'} \exp(\sum_{m=1}^{M} \lambda_m F_m(X, Y'))$
- $\bullet$   $F_m(X,Y)$  could be history-based or sentence level global features
- training objective:  $-\sum \log p(Y_i|X_i) = \sum -\lambda \cdot F(X_i,Y_i) + \log Z(X_i)$
- going over all possible Ys is horrible!  $\rightarrow Z(X)$  !!!

**FNLP** March 26, 2025 28 / 47 Y Feng (wict@pku)

## This is a (linear chain) Conditional Random Fields (CRF) model.

- one of the most influential models in statistical learning for structured predictions, especially sequence tagging.
- ullet usually in the following form, with Y as various target structures.

$$Y^* = \arg\max \frac{1}{Z(X)} \exp(\sum_{m=1}^{M} \lambda_m F_m(X, Y))$$

Y Feng (wict@pku) FNLP March 26, 2025 29 / 47

## Conditional Random Fields (Lafferty et al. (2001))

This is a (linear chain) Conditional Random Fields (CRF) model.

- one of the most influential models in statistical learning for structured predictions, especially sequence tagging.
- usually in the following form, with Y as various target structures.

$$Y^* = \arg\max \frac{1}{Z(X)} \exp(\sum_{m=1}^{M} \lambda_m F_m(X, Y))$$

trained with MLE

$$-\sum \log p(Y_i|X_i) = \sum -\lambda \cdot F(X_i, Y_i) + \log Z(X_i)$$

**FNLP** March 26, 2025 29 / 47 Y Feng (wict@pku)

## Conditional Random Fields (Lafferty et al. (2001))

- This is a (linear chain) Conditional Random Fields (CRF) model.
  - one of the most influential models in statistical learning for structured predictions, especially sequence tagging.
  - usually in the following form, with Y as various target structures.

$$Y^* = \arg\max \frac{1}{Z(X)} \exp(\sum_{m=1}^{M} \lambda_m F_m(X, Y))$$

trained with MLE

$$-\sum \log p(Y_i|X_i) = \sum -\lambda \cdot F(X_i, Y_i) + \log Z(X_i)$$

• use SGD if we can calculate and differentiate the F(\*) and Z(\*)

**FNLP** March 26, 2025 29 / 47 Y Feng (wict@pku)

## Conditional Random Fields (Lafferty et al. (2001))

This is a (linear chain) Conditional Random Fields (CRF) model.

- one of the most influential models in statistical learning for structured predictions, especially sequence tagging.
- usually in the following form, with Y as various target structures.

$$Y^* = \arg\max \frac{1}{Z(X)} \exp(\sum_{m=1}^{M} \lambda_m F_m(X, Y))$$

trained with MLE

$$-\sum \log p(Y_i|X_i) = \sum -\lambda \cdot F(X_i, Y_i) + \log Z(X_i)$$

- use SGD if we can calculate and differentiate the F(\*) and Z(\*)
- How to decode? the Forward Algorithm! very similar to the Viterbi algorithm

29 / 47 Y Feng (wict@pku)

#### What we have:

## **Sequential Tagger**

- An HMM POS Tagger
- A Structured Perceptron POS Tagger
- A CRF POS Tagger

### **Local Tagger**

- A Perceptron POS Tagger
- (A Log-linear POS Tagger)

#### What we have:

## **Sequential Tagger**

- An HMM POS Tagger
- A Structured Perceptron POS Tagger
- A CRF POS Tagger

### **Local Tagger**

- A Perceptron POS Tagger
- (A Log-linear POS Tagger)
- various learning tricks: counting, simple plus, SGD
- various decoding tricks: greedy, Viterbi, beam search
- remember to regularize!

#### Outline

- 1 HMM POS Tagger
- 2 Feature-based Discriminative Models
- 3 A Perceptron POS Tagger
- A Structured Perceptron Tagger
  - The Viterbi Algorithm
  - Beam Search
- 5 Tagging with Global Features
- Meural Sequence Tagger

## Traditionally:

- Feature engineering
- Language issues
- Out of vocabulary (OOV)
- Local/Global
- Label bias

### **Traditionally:** → SOTA: Conditional Random Field (CRF)

- Feature engineering
- Language issues
- Out of vocabulary (OOV)
- Local/Global
- Label bias

### **Traditionally:** → SOTA: Conditional Random Field (CRF)

- Feature engineering
- Language issues
- Out of vocabulary (OOV)
- Local/Global
- Label bias

#### **Neural Times:**

- No feature engineering
- No language barriers
  - Continuous representations
  - Letter/Character levels
  - glyph level (stroke)
- Various NN architectures to capture local/long context, both forward and backward
  - CNN, RNN, LSTM, BLSTM, BLSTM-CNN

### **Traditionally:** → SOTA: Conditional Random Field (CRF)

- Feature engineering
- Language issues
- Out of vocabulary (OOV)
- Local/Global
- Label bias

#### **Neural Times:**

- No feature engineering
- No language barriers
  - Continuous representations
  - Letter/Character levels
  - glyph level (stroke)
- Various NN architectures to capture local/long context, both forward and backward
  - CNN, RNN, LSTM, BLSTM, BLSTM-CNN
- CRF with Viterbi to find the best sequence

Y Feng (wict@pku) FNLP March 26, 2025 31 / 47

#### **BSLTM** for NER

## Vanilla BLSTM [Huang et al., 2015]



#### **BSLTM** for NER

### BLSTM with CNN [Chiu and Nicols., 2016]



#### **BSLTM** for NER

## BLSTM with CRF (conditional random field) [Lample et al., 2016]



#### **NER on CoNLL 03**

#### NER performance on CoNLL03 until 2016



## **Modeling the Context**

### Context: LSTM, BLSTM, CRF, ...

| 33 | CRF + AutoEncoder                 | 91.87 | × | Evaluating the Utility of Hand-crafted Features in<br>Sequence Labelling              | 0 | Ð   | 2018 |
|----|-----------------------------------|-------|---|---------------------------------------------------------------------------------------|---|-----|------|
| 34 | PRISM                             | 91.8  | × | A Prism Module for Semantic Disentanglement in Name Entity Recognition                | O | •   | 2019 |
| 35 | GraphIE<br>(GCN+BiLSTM)           | 91.74 | × |                                                                                       |   |     | 2019 |
| 36 | Bi-LSTM-CRF + Lexical<br>Features | 91.73 | × | Robust Lexical Features for Improved Neural Network<br>Named-Entity Recognition       | 0 | Ð   | 2018 |
| 37 | IntNet + BILSTM-CRF               | 91.64 | × | Learning Better Internal Structure of Words for Sequence<br>Labeling                  |   | Ð   | 2018 |
| 38 | Yang et al.<br>([2017a])          | 91.62 | × | Neural Reranking for Named Entity Recognition                                         | 0 | Ð   | 2017 |
| 39 | Bi-LSTM-CNN                       | 91.62 | × | Named Entity Recognition with Bidirectional LSTM-CNNs                                 | 0 | -91 | 2015 |
| 40 | S-LSTM                            | 91.57 | × | Sentence-State LSTM for Text Representation                                           | 0 | -91 | 2018 |
| 41 | LSTM with dynamic skip            | 91.56 | × | Long Short-Term Memory with Dynamic Skip Connections                                  | 0 | -91 | 2018 |
| 42 | Adversarial Bi-LSTM               | 91.56 | × | Robust Multilingual Part-of-Speech Tagging via<br>Adversarial Training                | 0 | Ð   | 2017 |
| 43 | HSCRF                             | 91.38 | × | Hybrid semi-Markov CRF for Neural Sequence Labeling                                   | 0 | -9  | 2018 |
| 44 | IXA pipes                         | 91.36 | × | Robust Multilingual Named Entity Recognition with<br>Shallow Semi-Supervised Features | O | •   | 2017 |
| 45 | NCRF+                             | 91.35 | × | NCRF++: An Open-source Neural Sequence Labeling<br>Toolkit                            | 0 | Ð   | 2018 |
| 46 | Yang et al.                       | 91.26 | × | Transfer Learning for Sequence Tagging with Hierarchical Recurrent Networks           | 0 | Ð   | 2017 |
| 47 | LM-LSTM-CRF                       | 91.24 | × | Empower Sequence Labeling with Task-Aware Neural<br>Language Model                    | o | -9  | 2017 |
| 48 | Bi-LSTM-CNN-CRF                   | 91.22 | × | A Deep Neural Network Model for the Task of Named                                     | 0 | Ð   | 2018 |
|    |                                   |       |   |                                                                                       |   |     |      |

### Flair: contextual string embeddings



Y Feng (wict@pku) FNLP March 26, 2025 37 / 47

#### Flair: contextual string embeddings



Y Feng (wict@pku) FNLP March 26, 2025 37 / 47

# Language Understanding with Knowledge-based Embeddings

LUKE: transformer (BERT), masked entity predition, entity-aware self-attention, ...



# **Using Document Level Features!**

#### FLERT: Document level features for NER



Y Feng (wict@pku) FNLP March 26, 2025 39 / 47

# **Using Document Level Features!**

#### FLERT: Document level features for NER



Y Feng (wict@pku) FNLP March 26, 2025

39 / 47

## **Modeling the Context**

## Context: transformer, contextualized, Bert, attention, ...

| 1  | ACE + document-context         | 94.6  | × | Automated Concatenation of Embeddings for<br>Structured Prediction                                                | O | Ð   | 2021 | LSTM                   |
|----|--------------------------------|-------|---|-------------------------------------------------------------------------------------------------------------------|---|-----|------|------------------------|
| 2  | Co-regularized LUKE            | 94.22 | × | Learning from Noisy Labels for Entity-Centric Information Extraction                                              | 0 | -9  | 2021 | knowledge distillation |
| 3  | ASP+T5-3B                      | 94.1  | × | Autoregressive Structured Prediction with<br>Language Models                                                      | 0 | -9  | 2022 |                        |
| 4  | FLERT XLM-R                    | 94.09 | × | FLERT: Document-Level Features for Named Entity Recognition                                                       | 0 | -9  | 2020 | Transformer            |
| 5  | PL-Marker                      | 94.0  | × | Packed Levitated Marker for Entity and Relation<br>Extraction                                                     | 0 | -9  | 2021 |                        |
| 6  | LUKE                           | 93.91 | × | LUKE: Deep Contextualized Entity<br>Representations with Entity-aware Self-<br>attention                          | O | -91 | 2020 | Transformer            |
| 7  | CL-KL                          | 93.85 | × | Improving Named Entity Recognition by<br>External Context Retrieving and Cooperative<br>Learning                  | C | -9  | 2021 | Transformer            |
| 8  | XLNet-GCN                      | 93.82 | × | Named entity recognition architecture combining contextual and global features                                    | 0 | Ð   | 2020 |                        |
| 9  | ASP+flan-T5-large              | 93.8  | × | Autoregressive Structured Prediction with<br>Language Models                                                      | 0 | -9  | 2022 |                        |
| 10 | InferNER                       | 93.76 | × | InferNER: an attentive model leveraging the sentence-level information for Named Entity Recognition in Microblogs |   | Ð   | 2021 | LSTM                   |
| 11 | Cross-sentence context (First) | 93.74 | × | Exploring Cross-sentence Contexts for Named Entity Recognition with BERT                                          | O | -9  | 2020 | Transformer            |
| 12 | Baseline + BS                  | 93.65 | × | Boundary Smoothing for Named Entity<br>Recognition                                                                | 0 | Ð   | 2022 |                        |
| 13 | ACE                            | 93.64 | × | Automated Concatenation of Embeddings for<br>Structured Prediction                                                | O | Ð   | 2020 |                        |

### **NER on CoNLL03**

## NER performance on CoNLL03 after 2016 (until 2022)



Y Feng (wict@pku) **FNLP** March 26, 2025 41 / 47 Maybe we need a bit more machine/deep learning...



Y Feng (wict@pku) FNLP March 26, 2025 42 / 47

Maybe we need a bit more machine/deep learning... Automated Concatenation of Embeddings ⇒ Neural Architecture Search



Y Feng (wict@pku) March 26, 2025 42 / 47

## The Key

The Context.

## Readings

- SLP-3 Chapter 17, Speech and Language Processing (SLP)
- 1999 Large Margin Classification using the Perceptron Algorithm, Machine Learning, 1999
- 2001 John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. of ICML, 2001.
- 2002 Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. Michael Collins, EMNLP. 2002
- 2004 Incremental parsing with the Perceptron algorithm. Michael Collins and Brian Roark, ACL, 2004
- 2016 Methods and theories for large-scale structured prediction. Xu Sun and Yansong Feng, EMNLP Tutorial, 2016

### Reference

- Alexandre Passos, Vineet Kumar, Andrew McCallum, Lexicon Infused Phrase Embeddings for Named Entity Resolution, In Proceedings of the Eighteenth Conference on Computational Language Learning, pages 78-86, Baltimore, Maryland USA, June 26-27 2014.
- Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov and Michael Collin, Globally Normalized Transition-Based Neural Networks, Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 2442-2452, Berlin, Germany, August 7-12, 2016
- Jason P.C. Chiu and Eric Nichols, Named Entity Recognition with Bidirectional LSTM-CNNs, In Transactions of the Association for Computational Linguistics, vol. 4, pp. 357-370, 2016
- Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493-2537.

### Reference

- Wang Ling, Tiago Lus, Lus Marujo, Ramon Fernandez Astudillo, Silvio Amir, Chris Dyer, Alan W Black, Isabel Trancoso, Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation, In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1520-1530, Lisbon, Portugal, 17-21 September 2015.
- Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi- rectional LSTM-CRF models for sequence tagging. CoRR, abs/1508.01991.
- Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya KawakamiandChris Dyer, Neural Architectures for Named Entity Recognition, NAACL 2016, 260-270
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019

#### Reference

- Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, Michael Auli, Cloze-driven Pretraining of Self-attention Networks, IJCNLP 2019
- Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda andYuji Matsumoto, LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention, EMNLP 2020