Interfejsy w Systemach Komputerowych - ULTIMATE

SonMati Ervelan Doxus

27 grudnia 2014

Pytania i odpowiedzi

1 RS-232

Prawda/Fałsz

RS-232 jest portem przeznaczonym do synchronicznej transmisji znakowej. Generator taktu odpowiedzialny za wyprowadzanie znaków typowo ustawiany jest na: 1200bd, 2400bd, 4800bd, 9600bd, 19200bd.

RS-232 jest portem przeznaczonym do asynchronicznej transmisji znakowej. Da się sztucznie stworzyć synchroniczną transmisję.

- Linie kontrolne w interfejsie RS-232 to: DTR, DSR, RTS, CTS, RI, DCD. Pary DTR/DSR i RTS/CTS wykorzystywane są do realizacji handshake'u w połączeniach bezmodemowych. Tak, te pary linii mogą być wykorzystywane do handshake podczas gdy RxD i TxD zajmują się przesylem danych.
- Transakcja w systemie MODBUS składa się z zapytania (query) wysyłanego przez stację Slave i
 odpowiedzi odsyłanej przez stację Master.
 Jest odwrotnie zapytanie wysyła Master, a odpowiedź odsyła Slave.
- W trybie transmisji ASCII znacznikiem początku ramki jest znak ':', a kooca ramki para znaków CR LF. W trybie transmisji RTU znacznikiem początku ramki jest znak 'Ctrl-A', a kooca para znaków CTRL-Y CTRL-Z.

Zdanie jest poprawne dla ASCII. Dla RTU, znacznikiem początku i końca ramki jest przerwa o długości minimum 4T, gdzie T jest czasem trwania jednego znaku.

- Standard RS-232 transmituje znaki synchronicznie, bity w znakach [asynchronicznie] Ostatnie słowo ucięte, więc spekuluję że tak właśnie było napisane. To nieprawda, jest odwrotnie.
- Standard RS-422 pozwala na osiągnięcie szybkości 10MBodów na odległości 100m. IMO pozwala, na słajdzie 12 jest napisane że 10 Mbd przy zasięgu DO 100m - czyli 100m chyba też.
- Liniami kontrolnymi w RS-232 nie są linie TxD, RxD, SG. Owszem, TxD i RxD są liniami danych, a SG to po prostu masa.
- System MODBUS składa się z faz zapytania i odpowiedzi. *Tak właśnie jest*.
- W systemie MODBUS
 - Obowiązuje master/slave.
 Pewnie, a w dodatku Slave'ów może być wielu.
 - Prędkości transmisji wynoszą od 1200 do 19200bd.
 Jak najbardziej.
 - Ramka w ASCII może mieć format 7N2 (lub np. 7E1, 7O1).
 Tak, patrz warstwa fizyczna MODBUS.
 - Ramka w RTU może mieć format 8N2 *(lub np. 8E1, 8O1).
 Tak, patrz warstwa fizyczna MODBUS.
- W trybie transmisji RTU jest kontrola błędów CRC.
 Tak, jest elementem budowy ramki RTU.
- Bit kontrolny w RS-232 zależy od bitu danych i bitu stopu.

 Bit kontrolny słuzy do kontroli parzystości/nieparzystości, nie ma związku z bitem stopu.

- Za pomocą RS-232 możemy połączyć ze sobą 2 stacje DCE Połączyć możemy dwie stacje DTE, lub DTE z DCE. Dwie stacje DCE łączą się za pomocą łącza telefonicznego.
- W MODBUS kontrola błędów jest realizowana za pomocą LRC lub CRC. Tak, LRC wykorzystywane jest w trybie ASCII, CRC w trybie RTU.
- Do portu RS 485 można podłączyć tylko jedno urządzenie, ale za to obsługiwać go z dużo większą szybkością i na większą odległość niż jest to możliwe w przypadku interfejsu RS 232.
 Można podłączyć do 32 stacji.
- Format ramki w protokole Modbus jest następujący: znacznik początku ramki, adres urządzenia slave, adres mastera, pole danych, znacznik końca ramki.

 Opis nie pasuje ani do trybu ASCII, ani RTU
- RS 232 jest portem przeznaczonym dla asynchronicznej transmisji znakowej, realizowanej zazwyczaj w trybie dupleksowym, czyli dwukierunkowej transmisji niejednoczenej (naprzemiennej)

 Tryb dupleksowy jest równoczesny, to półdupleksowy jest niejednoczesny.
- W interfejsie RS 232 linie TxD i RxD służą do transmisji znaków, natomiast DTR, RTS to wyjścia kontrolne, a DSR, CTS, RI i DCD to wejścia kontrolne.
 Indeed
- Multipleksowanie urządzeń ze znakowym portem asynchronicznym pozwala na ich kontrolę poprzez jeden port RS-232.
 - Żeby kontrolować kilka urządzeń z jednego portu potrzebny jest koncentrator. Jeśli "używanie koncentratora" równa się "multipleksowanie", to PRAWDA.
- Węzeł podrzędny w systemie MODBUS po wykryciu błędu w komunikacie wysyła potwierdzenie negatywne do węzła nadrzędnego.
 - W odpowiedzi pole to jest wykorzystywane do pozytywnego lub negatywnego potwierdzenia wykonania polecenia
- Czy w trybie ASCII systemu MODBUS każdy bajt wysyłany jest jako znak z przedziału 0x00, 0xFF?
 - Bajt dzielimy na 2 części i wysyłamy jako 2 znaki z przedziału 0-9 i Ah-Fh

2 USB

Prawda/Fałsz

- Kontrola urządzenia USB odbywa się poprzez zapisy komunikatów do bufora o numerze 0 i odczycie informacji statusowych z bufora o numerze 0.
 Zgadza się.
- W przypadku błędu transmisji każda transakcja USB jest powtarzana, ponieważ niedopuszczalne jest przekazywanie danych przekłamanych.
 - $Transakcje\ izochroniczne\ nie\ są\ powtarzane\ w\ przypadku\ blędu\ transmisji.$
- Hub nie dopuszcza ruchu full speed do portów, do których są podłączone urządzenia low speed. Tak, urządzenie lowspeed blokuje możliwość włączenia fullspeed na całym porcie.
- Reset portu USB polega na rekonfiguracji hosta, po której host zapisuje tablicę deskryptorów do urzadzenia podłaczonego do tego portu.
 - Reset portu USB polega na rekonfiguracji urządzenia. W następującej procedurze enumeracji między innymi dochodzi do odczytu tablicy deskryptorów z urządzenia przez host.
- Typowa transakcja USB składa się z pakietów żądania i odpowiedzi, z których każdy potwierdzany jest osobnym potwierdzeniem.
 - Typowa transakcja USB składa sie z pakietów token, data i handshake. Transakcje izochroniczne nie są potwierdzane.

 W systemie USB urządzenia zgłaszają żądania do hosta, który je kolejkuje i następnie obsługuje w kolejności pojawiania się zgłoszenia.

Urządzenia nie zglaszają żądania, tylko są odpytywane przez hosta. Host nie tworzy jednej kolejki, tylko w miarę możliwości stara się obsługiwać wszystkie urządzenia jednocześnie, równomiernie, zapobiegając zawlaszczeniu.

- W USB można połączyd kaskadowo do 5 hubów, korzystających z zasilania magistralowego Podlączyć je można tylko korzystając z zasilania zewnętrznego lub hybrydowego. Przy zasilaniu magistralowym zabraknie zasilania już na drugim hubie. Co więcej, należy mieć na uwadze maksymalne dopuszczalne opóźnienie sygnalu, które przy przejściu przez 5 hubów jest osiągane 350ns. Urządzenia podpięte do 5'tego huba mogą nie działać poprawnie.
- Mechanizm data toggle w USB służy do przywracania synchronizacji pomiędzy hostem i urządzeniem, utraconej na skutek wystąpienia błędów w pakietach danych.

 Mechanizm data toggle zabezpiecza przed utratą synchronizacji pomiędzy hostem i urządzeniem na skutek blędu w potwierdzeniu odsylanym przez odbiorcę.
- Host kontroler USB komunikuje się z interfejsem magistrali USB urządzenia peryferyjnego za pomocą fizycznego kanału komunikacyjnego.
 Tak, używamy kabelka.
- Kamera internetowa może przesyłać obraz do komputera za pomocą transferu izochronicznego z szybkością LowSpeed w interfejsie USB.
 Z tabelki można wyczytać, że dla transferu izochronicznego nie można wykorzystać szybkości LowSpeed.
- Pakiety USB przesyłane z szybkością LowSpeed muszą byd poprzedzone pakietem preambuły
 Tak, jest on charakterystyczny dla pakietów przesyłanych z szybkością LowSpeed
- Urządzenie peryferyjne USB 2.0 może być podłączone do host kontrolera za pośrednictwem maksymalnie sześciu hubów.

Aby spełnić normę (ograniczenie czasowe oczekiwania na odpowiedź), można podłączyd za pośrednictwem maksymalnie 5 hubów.

- Pole PID w pakiecie USB zabezpieczone jest 16-bitową sumą kontrolną CRC.

 Pole PID zabezpieczone jest 4-bitowym polem kontroli, będącym prostą negacją bitów pola PID.
- Do portu dolnego huba podłączane mogą byd tylko wtyki USB typu B. *Tylko wtyki typu A*.
- Transakcja dzielona w USB 1.1 składa sie z dwóch części: SSPLIT i CSPLIT. Takie czary dopiero w USB 2.0
- W przypadku połączenia USB HighSpeed wykonywane jest podparcie linii D- do Vcc za pośrednictwem rezystora 1,5k.

Po podlączeniu urządzenia High Speed wpierw jest ono identyfikowane jako Full Speed, więc wykonywane jest podparcie linii D+ do Vcc za pośrednictwem rezystora 1,5k. Następnie, poprzez chirp ("dwierkanie") host i urządzenie ustalają, czy możliwa jest komunikacja w trybie High Speed. Jeśli tak, usuwane jest podparcie przez rezystor, a obwód zamykany jest terminatorami.

- W kodowaniu NRZI co sześć jedynek jest wstawiany bit synchronizacji "0".

 Pomieszane pojęcia. W kodowaniu NRZI nie występuje dodawanie bitu synchronizacji. Proces ten nazywa się bit stuffing. Zdanie było by poprawne, gdyby brzmiało np. W kodowaniu NRZI z bit stuffingiem co sześć.
- $\bullet\,$ Transakcje kontrolna i przerwaniowa w USB 1.1 są transakcjami aperiodycznymi z gwarantowanym pasmem w ramach jednej mikroramki.

Transakcja kontrola jest transakcją aperiodyczną. Transakcją przerwaniowa jest transakcją periodyczną.

• W kontrolerze OHC transakcje izochroniczne są porządkowane/kolejkowane w drzewo/strukturę drzewiasta.

Tak, OHC wykorzystuje strukturę drzewa, a UHC tablicę wskaźników (listę podwieszaną).

- Standard USB 2.0 wymaga skręconych, ekranowanych kabli. Well, High speed all the way, więc wymaga
- Transfer kontrolny i przerwaniowy są transferami aperiodycznymi.

 Było podobne pytanie. Transfer kontrolny jest aperiodyczny, transfer przerwaniowy jest periodyczny.
- Wielowarstwowa architektura USB 2.0 składa się z 3 warstw.

 Tak warstwa interfejsu magistrali USB, warstwa urządzenia USB, warstwa funkcji urządzenia
- W porcie USB dane są dzielone na transakcje. Dane w ramce są dzielone na transakcje, więc tak
- Hub podłączony do portu USB ma obciążalność 100uA.

Hub podlączony do portu USB bez własnego zasilania (zasilanie magistralowe) ma obciążalnośd dla portów dolnych do 100mA na port (maksymalną 400mA na cały hub). Hub z zasilaniem zewnętrznym lub hybrydowym ma obciążalnośd do 500mA na port.

- W systemie USB do mechanizmów kontroli danych należą:
 - Przełączanie pakietów danych Tzw. Data Toggle
 - Wykrywanie braku aktywności na linii danych;
 - Zabezpieczenie znacznika SOF lub EOF
 Reakcją jest natomiast objęte wystąpienie falszywego znacznika kooca pakietu (false EOP)
 - kodowanie LRC
 Pakiety zabezpieczone są kodowaniem CRC.
- Wydajnośd dolnego portu (USB 2.0) wynosi 500mA.

 Nie wiadomo. Zasilany Hub może wystawić te 500mA, ale niezasilany już tylko 100mA
- USB 2.0 ma parę przewodów ekranowanych. *Taki upgrade.*
- W kodowaniu NZR wstawia się dodatkowe bity synchroniczne.

 Dodatkowe bity synchroniczne wstawia się w kodowaniu NRZI
- Urządzenie USB 2.0 może zasygnalizować swoją niegotowość do zapisu danych z szybkością High-Speed wysyłając pakiet PING-NYET.

Wychodzi na to, że niegotowość zglasza samym NYET? Pyta – PING, odpowiada (niegotowość) NYET. I Tak cały czas, chyba że dostanie ACK. ACK – wykonanie transakcji OUT. NYRT – host kontynuuje wysyłanie zapytań PING

- W systemie deskryptorów urządzenia USB może wystąpić kilka deskryptorów urządzenia, konfiguracji, interfejsów I punktów końcowych.
 - $Deskryptor\ urządzenia\ może\ być\ jeden.\ Innych-konfiguracji,\ interfejsu,\ końcowych\ może\ być\ więcej.$
- Hub USB ma przerwaniowy punkt końcowy, który wykorzystuje do powiadamiania hosta o podłączeniu urządzenia USB do któregoś z jego portów dolnych.
 Chyba.
- Na wierzchołku wielopoziomowego, hierarchicznego układu deskryptorów USB znajduje się deskryptor konfiguracji. Na szczycie znajduje się pojedynczy deskryptor urządzenia.
- Transfer masowy I izochroniczny USB 1.1 są przykładami transferów aperiodycznych z zagwarantowanym pasmem w ramach jednej mikroramki.
 - Izochroniczny jest periodyczny, masowy nie ma zagwarantowanego pasma (wg tabelki z prędkościami)
- W deskryptorze konfiguracji USB jest jakiś pole statusowe, które mówi o maksymalnym poborze prądu. Dla wartości 50 urządzenie pobiera 50mA.

Pole to jest tak skonstruowane, żeby wartość zmieściła się w jednym bajcie, ze skokiem co 2mA. Dlatego urządzenie, które zglasza, że 50 może zasysać maksymalnie 100mA.

- Uszeregowanie transakcji w USB. Nie zależy od implementacji kontrolera. W OHC przerwaniowe są w strukturze drzewa, a w UCH listy podwieszanej, co ma wpływ na uszeregowanie (do sprawdzenia).
- Host może zasygnalizować chęć zapisu danych do urządzenia wysyłając pakiet NYET do urządzenia USB 2.0, które z kolei odpowiada pakietem PING jeśli jest gotowe do zapisu.

To host posyła PING - zapytanie, czy urządzenie jest gotowe do zapisu. Te odsyła ACK - gotowe, lub NYET - jeszcze nie.

3 IEEE 1394 Firewire

4 IEEE-488 i SCPI

Prawda/Fałsz

- GPIB (IEEE-488) jest interfejsem równoległym, opartym na 8-bitowej, 2 kierunkowej magistrali danych i 8 sygnałach sterujących: REN, IFC, ATN, SRQ, EOI, NRFD, NDAC, DAV Tak, bity wysyła się ósemkami, stąd m. in. podaje się prędkość w bajtach na sekundę
- SCPI to język programowania na bazie języka C wyposażony w biblioteki funkcji sterujących urządzeniami pomiarowo-kontrolnymi.
 SCPI jest językiem kontroli urządzeo (i nie bazuje na C).
- Znak ':' w rozkazach SCPI reprezentuje przejście pomiędzy poziomami w rozgałęzionej strukturze subsystemu, natomiast prefiks '*' oznacza rozkaz wspólny.

 Tak, dwukropek służy do precyzowania zapytania, gwiazdka jako nagłówek komunikatu wspólnego.
- System statusowy urządzenia SCPI składa się tylko z jednego, 8-bitowego rejestru, w którym bit B6 jest zgłoszeniem żądania obsługi.
 Składa się z minimum dwóch rejestrów, których układ jest wielopoziomowy (hierarchiczny).
- Kontrola szeregowa I kontrola równoległa to mechanizmy automatycznego wykrywania urządzeń podłączonych do systemu IEEE 488.

 Kontrola szeregowa I równoległa służą do identyfikacji urządzeń zgłaszających żadanie obsługi.
- Maska związana z bajtem statusowym SCPI służy do blokowania ustawiania wybranych bitów bajtu statusowego.

maską związaną z bitem statusowym jest rejestr maski żądania obsługi, który odpowiada za selekcję bitów powodujących zgłoszenie żądania, ale nie ma on wpływu na stan samych bitów w bajcie statusowym. Bajt statusowy jest rejestrem zbiorczym swoich rejestrów nadrzędnych, więc jego wartość zależy do wartości tamtych rejestrów i ich masek.

5 Inne

Prawda/Fałsz

• Interfejsy USB, IEEE1394 oraz RS-232 udostępniają zasilanie systemowe i mają mechanizmy zarządzania zasilaniem.

USB i IEEE-1394 owszem, ale nie RS-232.

Opracowanie materiałów

1 RS-232 – szeregowy port znakowy

1.1 Co to jest?

Standard RS-232 został wprowadzony w 1962 r. w celu normalizacji interfejsu pomiędzy urządzeniem końcowym dla danych (DTE - Data Terminal Equipment), a urządzeniem komunikacyjnym (DCE - Data Communication Equipment). Na zajęciach zajmujemy się tak naprawdę zrewindowaną wersją standardu: RS-232C, wprowadzoną w 1969 roku.

RS-232C umożliwia przesył danych na niewielkie odległości - do 15 metrów - oraz niewielką szybkość - do 20 kb/s - przez niesymetryczne łącze.

1.2 Charakterystyka interfejsu RS-232

Łącze szeregowe przeznaczone do asynchronicznej transmisji znakowej realizowanej zazwyczaj w trybie półdupleksowym.

1.2.1 Transmisja danych

Szeregowa asynchroniczna transmisja znakowa w trybie półdupleksowym (praktycznie tylko w tym trybie, ale mogą być inne). CIEKAWOSTKA: ma budowę dupleksową.

1.2.2 Rodzaje transmisji

• Szeregowa - sekwencyjne przesyłanie bitów w ustalonej kolejności (od LSD lub MSB) po jednej linii transmisyjnej.

• Równoległa - przesyłanie bitów słowa po przyporządkowanej każdemu bitowi linii transmisyjnej (bity przesyłane równolegle, słowa przesyłane szeregowo).

1.2.3 Definicje danych

- "0" 0V
- "1" 12V

- Czas transmisji jednego bitu T stały, nie większy niż czas propagacji.
- $\frac{1}{T}$ liczba bitów przesyłana w jednostce czasu. Standardowe wartości 110, 150, 300, 600, 1200, 2400 ... [b/s]
- Impulsy rozeznające sprawdzają stan bitów odebranych (następują co T, które narzuca nadawca).

1.2.4 Jednostka informacyjna - znak

Jednostka informacji o ściśle określonym formacie. Odbiorca dysponuje impulsami próbkującymi, które rozpoznają stan sygnału (odpytują).

1.2.5 Przekazywanie konfiguracji

Aby nadawca i odbiorca mogli się porozumieć i interpretować znaki w ten sam sposób, muszą zostać tak samo skonfigurowane. Innymi słowy, muszą posiadać ten sam takt nadawania. Metody:

- dodatkowe łącze
- jako element konfiguracji (wykorzystanie generatorów kwarcowych, synchronizm częstotliwościowy)

Nominalne położenie impulsu = ok. $\frac{1}{2} \times T$ - pośrodku, największe bezpieczeństwo próbkowania. Służą do tego układy korekcji fazy impulsu - liczniki, zliczają liczbę impulsów na wejściu i dają 1 na wyjściu.

1.2.6 Definicja znaku

- START bit kontrolny, znacznik początku (SOF Start Of Frame) jałowy z punktu widzenia przesyłanej informacji i służący jedynie w celu synchronizacji. START zapewnia $\frac{n}{2}$ jako stan licznika (fazy impulsu).
- DANE 7-8 bitów (kiedyś też 5-6, obecnie już nieużywane), które są treścią znaku, począwszy od bitu najmniej znaczącego (LSB least significant bit). Tym bitem jest B0.
- PARITY bit kontroli poprawności znaku, służy jako zabezpieczenie informacji. Może, ale nie musi występować. Jednak decyzja o jego występowaniu ma charakter globalny dotyczy każdego znaku w danej transmisji. Jego stan określa zasada:
 - Kontrola parzystości (Even parity) polega na sprawdzeniu liczby jedynek na polu danych i ustawieniu bitu kontrolnego na "1" w przypadku nieparzystej liczby jedynek lub na "0" w przypadku parzystej (uzupełnienie do parzystości).
 - Kontrola nieparzystości (Odd parity) polega na sprawdzeniu liczby zer na polu danych i ustawieniu bitu kontrolnego na "1" w przypadku nieparzystej liczby zer lub na "0" w przeciwnym przypadku.
 - Brak kontroli (None)

Ten bit kontroli pozwala wykryć przekłamanie w transmisji danych pod warunkiem, ze liczba przekłamań jest nieparzysta.

• STOP – 1 lub 2 bity kontrolne, znacznik końca znaku.

1.2.7 Konwencja nazewnicza rodzajów transmisji

[Ilość bitów danych][Rodzaj kontroli][Liczba bitów stopu] Przykłady:

- 7E2 7 bitów danych, kontrola parzystości, 2 bity stopu (10 bitów + START = 11 bitów)
- 801 8 bitów danych, kontrola nieparzystości, 1 bit stopu (11 bitów)
- 8N2 8 bitów danych, brak kontroli, 2 bity stopu (11 bitów)

1.2.8 Rodzaje transmisji

- **Synchroniczna** elementy informacji wysyłane w takt zegara nadajnika. W ten sposób przesyłane są bity w ramach pojedynczej jednostki informacyjnej.
- Asynchroniczna wysyłanie elementów informacji niesynchronizowane zegarem nadajnika. W ten sposób są wysyłane poszczególne jednostki ich wprowadzanie nie jest sygnalizowany żadnym sygnałem, więc odstęp między nimi jest dowolny. Czas trwania bitu nazywa się odstępem jednostkowym i oznaczamy go t_b . Jego odwrotność ($f = \frac{1}{t_b}$) określa szybkość transmisji w bodach, gdzie 1 [bd] = 1 [bit/s].

1.2.9 Transmisja w RS-232

- Synchroniczne wysyłanie bitów
- Asynchroniczne wysyłanie znaków
 - Polega na wysyłaniu pojedynczych znaków, które mają ścisłe określony format.
 - Brak sygnału zegarowego określającego momenty wysyłania znaków.
 - Odstępy między znakami nieokreślone.

1.2.10 Tryby transmisji

- Simpleksowa jednokierunkowa, z nadajnika do odbiornika.
- Półdupleksowa (HDX) dwukierunkowa, niejednoczesna (w danej chwili czasu jedno urządzenia jest nadajnikiem, a drugie odbiornikiem). Zakłada istnienie tylko jednej linii transmisyjnej. Wymaga konfiguracji (informacja, kto kiedy nadaje).
- Dupleksowa (FDX) dwukierunkowa, jednoczesna (w danej chwili czasu oba urządzenia mogą spełniać rolę nadajnika lub odbiornika). Brak konieczności sprawdzania czy łącze jest wolne oraz mechanizmu rezerwacji łącza.

1.3 Komunikacja DTE-DCE - sygnały w porcie RS-232

Komunikacja dwóch stacji DTE przez komutowane łącze telefoniczne.

Urządzenia				
DTE	Data Terminal Equipment		Komputer	
DCE	Data Communication Equipment		Modem	
Linie (sygnały)				
Skrót	Nazwa	Znaczenie	Przeznaczenie	Kierunek
TxD	Transmitted Data	Dane nadawane	Linia danych	Wyjście
RxD	Received Data	Dane odbierane	Linia danych	Wejście
DTR	Data Terminal Ready	Gotowość DTE	Linia kontrolna	Wyjście
DSR	Data Set Ready	Gotowość DCE	Linia kontrolna	Wejście
RTS	Request to Send	Żądanie nadawania	Linia kontrolna	Wyjście
CTS	Clear To Send	Zgoda na nadawanie	Linia kontrolna	Wejście
RI	Ring Indicator	Wskaźnik wywołania	Linia kontrolna	Wejście
DCD	Data Carrier Detected	Wykrycie nośnej	Linia kontrolna	Wejście
SG	Signal Ground	Masa sygnałowa	Masa	

1.3.1 Fazy pracy układu

- Tryb nawiązywania połączenia
- Tryb transmisji danych (wtedy nas interesują dupleksy i inne)

1.3.2 Linie w złączu RS-232

- $\bullet\,$ Linie danych: TxD, RxD
- Linie kontrolne: DTR, DSR, RTS, CTS, RI, DCD

1.4 Połaczenie bezmodemowe DTE-DTE

Przykład połączenia dla transmisji dupleksowej.

- PG, SG masa
- TxD, RxD dane
- RTS, CTS, DCD, DSR, DTR sterowanie

1.5 Kontrola transmisji: handshake i protokół XON/XOFF

1.5.1 Handshake

- DTR = 1 zgoda na nadawanie
- \bullet DTR = 0 brak zgody na nadawanie
- $\bullet\,$ DTR informuje, czy bufor jest zapełniony. DSR sprawdza go u partnera przed wysłaniem dalszych danych.
- Analogiczna sytuacja, kiedy podłączone są RTS i CTS zamiast DTR i DSR. RTS wystawia informację, CTS sprawdza.

1.5.2 Protokół XON/XOFF

Występuje przy wymianie informacji w trybie dupleksowym. Umożliwia blokowanie i odblokowywanie transmisji danych. Np. drukarka - gdy skończy się papier w trakcie drukowania, przesył jest blokowany, Gdy użytkownik uzupełni papier, transmisja jest wznawiana. Taki protokół XON/OFF nazywany jest programowym (software XON/OFF). Rozwiązanie hardware to transmisja półdupleksowa za pośrednictwem

sygnałów w kanale wtórnym.

- XON ASCII 19 (CTRL-S)
- XOFF ASCII 17 (CTRL-Q)

1.6 Parametry elektryczne sygnałów

Poniżej przestawiono schemat "obwodu stykowego" złożonego ze źródła sygnału, toru transmisyjnego i odbiornika. Parametry zdefiniowano przy założeniu, że szybkość transmisji nie przekracza 20 kbd.

Model obwodu transmisyjnego

$|U_{\circ}| < 25 \text{ V}$ 1. Sygnał danych:

2. Sygnały kontrolne:

-15 V < U1 < -3 V 0 logiczne +3 V < U1 < +15 V 1 logiczna

1 nadajnik – 1 odbiornik

 $C_{\circ} + C_{\scriptscriptstyle L} < 2500 \; pF$ Zmiana $U_{\scriptscriptstyle 1} < 30 \; V/_{\blacksquare} s$

Na rysunku powyżej: kiloomy oraz mikrosekundy.

Wada: jest to obwód represyjny, da się go silnie zakłócić poprzez różnicę potencjałów pomiędzy masami.

1.7 Standardy RS-423, RS-422, RS-485

Niesymetryczna przesyłanie danych w RS-232C ogranicza szybkość i odległość transmisji, a ponadto nie jest zabezpieczone przed zakłóceniami zewnętrznymi. Aby to polepszyć wymyślono inne standardy.

1.7.1 RS-423A

- szybkość do 100 kbd (przy zasięgu do 30 m)
- zasięg do 1200 m (przy szybkosci do 3 kbd)

Standard RS-423A określa elektryczną charakterystykę napięciowego obwodu transmisyjnego złożonego z niesymetrycznego nadajnika oraz symetrycznego (różnicowego) odbiornika. Takie obwody stosuje się do przesyłania sygnałów binarnych pomiędzy DTE i DCE, które reprezentują dane lub funkcje sterujące. Zastosowanie różnicowego obciążenia pozwala na znaczne zmniejszenie wpływu napięcia wspólnego U_G powstałego na wskutek różnicy potencjałów masy nadajnika i odbiornika, jak również przesłuchów między nimi.

Standard wymaga aby dla każdego kierunku transmisji istniał przynajmniej jeden niezależny przewód powrotny.

Typowa prędkość wynosi 100 kb/s przy odległości do 30 m.

1.7.2 RS-422A

- szybkość do 10 Mbd (przy zasięgu do 100 m)
- zasięg do 1200 m (przy szybkości 100 kbd)

Wykorzystuje pełną symetryzację łącza, zapewnia szybka transmisję w obecności zakłóceń. Standardy RS-423 oraz RS-485 określają symetryczny, zrównoważony system transmisji danych złożony z:

- różnicowego nadajnika
- dwuprzewodowego zrównoważonego toru przesyłowego
- odbiornika o różnicowym obwodzie wejściowym.

Standard RS-422A nie wprowadza ograniczeń na minimalną i maksymalną częstotliwość, a jedynie na zależność między szybkością zmian sygnału, a czasem trwania bitu.

1.7.3 RS-485A

Standard RS-485A jest rozwinięciem RS-422. Łącze RS-485A jest również zrównoważone i symetryczne, przy czym dopuszcza się nie tylko wiele odbiorników, ale i wiele nadajników podłączonych do jednej linii. Nadajniki muszą być trójstanowe.

Magistrala interfejsu RS-485

1.8 Systemy komunikacyjne oparte na łączu znakowym

1.8.1 System oparty na szeregowym łączu znakowym

Podłączenie urządzenia RS-232 do portu COM z pom. int. RS-485

R_T- Rezystory zabezpieczające przed niekorzystnym odbiciem fali (tzw. Terminatory).

Problem: dostęp do magistrali kontrolera i urządzeń systemu

Rozwiązanie: Implementacja protokołu komunikacyjnego (warstwa łącza danych). Komputer zarządza innymi urządzeniami w całym systemie. Do zbudowania tego wystarczają proste przejściówki do zmian sygnałów.

Komunikacja:

- Selekcja urządzenia kontrolującego (master) generuje on rozgłoszenie (broadcast) do wszystkich urządzeń i zbiera dane.
- Selekcja urządzenia odbierającego konieczna gdy wiele urządzeń chce przesłać odpowiedź do mastera, co może powodować konflikt.
 - nadanie identyfikatorów (adresacja urządzeń)
 - zastosowanie przejściówek są inteligentne i odpowiadają za dostęp do urządzenia.

1.8.2 System oparty na łączu znakowym

Koncentrator zawiera 4 klucze portu RS. Dostęp jest tylko do jednego wyjścia naraz.

Kaskadowe połączenie - przełącznik podłączony do przełącznika. Pojawia się problem wyboru drogi do urządzenia, która musi być znana. Koncentratory muszą mieć informacje o mapie urządzeń.

1.9 System MODBUS

Interfejs MODBUS został opracowany w firmie Modicon i jest przyjętym standardem w dla asynchronicznej, znakowej wymiany informacji pomiędzy urządzeniami systemów pomiarowo-kontrolnych.

1.9.1 Charakterystyka

- Regula dostępu do łącza na zasadzie Master-Slave.
- Zabezpieczenie przesyłanych komunikatów przed błędami
- Potwierdzenie wykonania rozkazów zdalnych i sygnalizacja błędów
- Mechanizmy zabezpieczające przed zawieszeniem systemu
- Wykorzystanie asynchronicznej transmisji znakowej zgodnej z RS-232C

1.9.2 Transakcja

Jedno urządzenie może inicjować transakcje (master), a pozostałe (slave) odpowiadają jedynie na zapytania mastera. Transakcja składa się z polecenia (query) wysyłanego z master do slave oraz z odpowiedzi

(response) przesyłanej ze slave do master. Odpowiedź zawiera dane żądane przez master lub potwierdzenie realizacji jego połączenia. Wykrycie końca kończy fazę w której następuje przekazanie łącza masterowi.

1.9.3 Format wiadomości

Dotyczy zarówno poleceń jednostki nadrzędnej, jak i odpowiedzi podrzędnych.

- Adres
- Kod funkcji reprezentujący rozkaz, pierwszy bit rozkazu oznacza jego rodzaj. 0 normalny, 1 szczególny.
- Dane
- Kontrola błędów (dla pracy w warunkach przemysłowych)

W przypadku odpowiedzi odpowiednio w polach znajdują się:

- Adres (swój, slave'a, do kontroli poprawności)
- Pole potwierdzenia realizacji rozkazu
- Dane żądane przez master
- Kontrola błędów

1.9.4 Rodzaje transakcji

- Adresowana przeznaczona dla pojedynczej jednostki slave
- Rozgłoszeniowa (broadcast) wysyłana do wszystkich jednostek podrzędnych. Na ten rodzaj polecenia jednostki nie przesyłają odpowiedzi.

1.9.5 Rodzaje odpowiedzi

- Normalna w przypadku poprawnego wykonania polecenia.
- Szczególna jeżeli slave wykryje błąd przy odbiorze wiadomości lub nie jest w stanie wykonać polecenia, to przygotowuje specjalny komunikat o wystąpieniu błędu i przesyła jako odpowiedź. W przypadku tej wiadomości jest ona **powiększona** o 128 miejsce na kod błędu.

1.9.6 Parametry protokołu

- Regula dostępu do łącza: Master-Slave
- Zakres adresów: 1 247 (identyfikatory slave'ów)
- Adres rozgłoszeniowy: 0, rozpoznawany przez wszystkie slave'y
- Kontrola błędów: LRC/CRC, ograniczenie czasowe odpowiedzi
- Wymagana ciągłość przesyłania znaków w ramce

1.9.7 Ramka w systemie MODBUS

W systemie MODBUS wiadomości są zorganizowane w ramki o określonym początku i końcu. Umożliwia do odbiornikowi odrzucenie ramek niekompletnych i sygnalizację błędów.

1.9.8 Rodzaje transmisji ramek

- ASCII
- RTU

1.9.9 Ramka w trybie ASCII

Każdy bajt wiadomości przesyłany jest w postaci dwóch znaków ASCII. Zaletą tego rozwiązania jest to, że pozwala na długie odstępy między znakami (1 s) bez powodowania błędów.

Format znaku

- System kodowania: heksadecymalny, znaki ASCII 0-9, A-F. Jeden znak heksadecymalny zawarty jest w każdym znaku ASCII wiadomości.
- Jednostka informacyjna: ograniczona znakami start (na początku) i stop (na końcu), 10-bitowa.
- Znacznikiem poczatku ramki jest znak dwukropka (":" ASCII 3Ah).
- Dopuszczalne znaki dla pozostałych pól (poza znacznikiem końca ramki) to 0-9, A-F.
- Pole funkcji: dwa znaki w trybie ASCII
- Podsumowując: wykorzystujemy 2 znaki heksadecymalne do przesyłu 1go znaku ASCII. Dzielimy ten na dwie części i przesyłamy w dwóch pakietach po 10 bitów.
- Urządzenie po wykryciu znacznika początku sprawdza czy pole adresowe zawiera jego własny adres. Jeżeli tak, to odczytuje zawartość pola funkcji i pola danych.
- Pole kontrolne LRC (1-bitowe) zabezpiecza część informacyjną. Sumuje cześć informacyjną bajtu i uzupełnia do 2.
- Ramka kończy się przesłaniem dwóch znaków: CR i LF.
- $\bullet\,$ Ramkę kończy przerwa czasowa trwająca co najmniej $3.5\times(\mathrm{d} \cdot \mathrm{lugo} \cdot \mathrm{sci} \, \mathrm{znaku})$
- \bullet Ramki muszą być przesyłane w postaci ciągłej, tzn. odstęp między kolejnymi znakami tworzącymi ramkę nie może być większy niż $1.5 \times (\text{długości znaku})$.

Stosowane jest zabezpieczenie części informacyjnej ramki kodem LRC (Longitudinal Redundancy Check).

1.9.10 Ramka w trybie RTU

W trybie RTU wiadomości zaczynają się odstępem czasowym trwającym minimum $3.5 \times (czas\ trwania\ pojedynczego\ znaku)$, w którym panuje cisza na łączu (można to zrealizować np. przez odmierzanie czasu trwania znaku przy zadanej na łączu szybkości bodowej).

- Pierwszym polem informacyjnym jest adres urządzenia
- Dopuszczalne znaki w ramach pól ramki: 0-9, A-F
- Zakres kodów operacji: 1 255
- Urządzenia stale monitorują magistralę. Jak adres odebrany w wiadomości zgadza się z ich własnym, to lecą dalej.
- Ramkę kończy przerwa czasowa trwająca co najmniej 3.5×(długości znaku)

- W przypadku gdy nowa wiadomość pojawia się przed upływem niezbędnej przerwy to będzie ona potraktowana jako kontynuacja poprzedniej wiadomości. Doprowadzi to do błędu sumy kontrolnej.
- Ramki muszą być przesyłane w postaci ciągłej, tzn. odstęp między kolejnymi znakami tworzącymi ramkę nie może być większy niż 1.5×(długości znaku).
- Przekroczenie odstępu powoduje uznanie ramki za niekompletną i błędną.
- Kontrola danych typu CRC 2-bajtowe, silniejsze niż LRC.

1.9.11 Warstwa fizyczna

- Asynchroniczna transmisja znakowa
- Formaty znaków
 - Tryb ASCII: 7E1, 7O1, 7N2
 - Tryb RTU: 8E1, 8O1, 8N2
- $\bullet\,$ Szybkość: od 1200 bd do 19200 bd
- Rodzaj łącza:
 - Magistrala RS-485
 - Multipleksowany RS-232
- Rodzaj transmisji (zależny od łącza):
 - różnicowa dla RS-485
 - odniesiona do masy dla RS-232

1.10 Kontroler RS-232 w komputerze PC

- 2 USB Uniwersalny interfejs szeregowy
- 3 IEEE-488 and SCPI standards
- 4 IEEE-1394 (FireWire)
- 5 Tłumienie zakłóceń w rozproszonych systemach komputerowych