anuary 20, 2020 7:21 PM

(i)
$$\int_{a}^{\infty} \frac{1}{x^{p}} dx$$
 Converge if $p \le 1$
(ii)
$$\int_{a}^{\infty} \frac{1}{x^{p}} dx$$
 Converge if $p < 1$
(iii)
$$\int_{a}^{\infty} \frac{1}{x^{p}} dx$$
 Converge if $p \ge 1$
(iverge if $p \ge 1$

$$\int_{0}^{a} \frac{1}{x^{p}} dx$$
 Converges if $p < 1$ diverge if $p \ge 1$

Proof

(i)
$$\int_{a}^{\infty} \frac{1}{\chi^{p}} dx = \lim_{b \to \infty} \int_{a}^{b} \frac{1}{\chi^{p}} dx = \lim_{b \to \infty} \int_{a}^{x^{p}} dx$$

$$= \lim_{b \to \infty} \frac{x^{1-p}}{1-p} \Big|_{x=a}^{b} = \frac{1}{1-p} \lim_{b \to \infty} \left(\frac{1-p}{p-a} \right)$$

$$\int_{a}^{1} dx = \lim_{b \to \infty} \int_{a}^{1} dx = \lim_{b \to \infty} \int_{a}^{r} dx$$

$$= \lim_{b \to \infty} \frac{x^{1-p}}{|-p|} \Big|_{x=a}^{b} = \lim_{b \to \infty} \left(\frac{|-p|}{|-p|} \right) \Big|_{x=a}^{r} =$$

$$= \frac{1}{1-p} \left(0 - a^{1-p}\right) = -\frac{a}{1-p} \quad a \quad \text{finite number}$$

$$\int_{a}^{\infty} \frac{1}{2c^{p}} dx \quad is \quad convergent \quad if \quad p > 1$$

and
$$\int_{a}^{\infty} \frac{1}{\chi_{p}} dx$$
 is divergent if $p < 1$

It
$$p=1$$
, then $\int_{a}^{1} \frac{1}{x} dx = \lim_{b \to \infty} \int_{a}^{b} \frac{1}{x} dx = \lim_{b \to \infty} \ln|x| \Big|_{x=a}^{b}$

All $\frac{1}{x}$ (b) - $\ln a$] = $\frac{1}{x}$

All $\frac{1}{x}$ (b) - $\ln a$] = $\frac{1}{x}$

All $\frac{1}{x}$ (b) - $\frac{1}{x}$ (c) $\frac{1}{x}$ (d) $\frac{1}{x}$ (e) $\frac{1}{x}$ (f) $\frac{1}{x}$

$$\frac{1}{2}$$
 $\frac{1}{2}$ dx is divergent if $p \le 1$.

(ii)
$$\int_{0}^{a} \frac{1}{\lambda^{p}} dx = \lim_{\alpha \to 0} \int_{0}^{a} \frac{1}{\lambda^{p}} dx = \lim_{\alpha \to 0} \frac{\chi^{1-p}}{1-p} \Big|_{x=\alpha}^{a}$$

(11)
$$\int \frac{1}{\lambda^p} dx = \lim_{x \to 0} \int \frac{x^p}{\lambda^p} dx = \lim_{x \to 0} \frac{x^{-1}}{1-p} \Big|_{x = x}$$
is a constant

$$=\frac{1}{1-p}\lim_{\alpha\to 0}\left[a^{1-p}-a^{1-p}\right]$$

), e olx = lm (-e + =) = é. => 7 inite number. Let $I = \int_{0}^{\infty} \bar{e}^{x^{2}} dx$. Then => e-x2 is convergent. Consider I, O Since e^{x^2} is continuous on [0,1] and this interval is finite, $I_1 = \int_0^1 e^{x^2} dx$ is finite! () continuous 2) Finite interval. = 2) Finite interval. Consider I_2 . $I_2 = \int_{1}^{\infty} e^{x^2} dx$ is an impurper integral of type I. 5 > 3 $\Rightarrow \underbrace{\frac{1}{e^{x^{2}}}} \underbrace{\left(\frac{1}{e^{x}}\right)}_{\frac{1}{5}} \underbrace{\left(\frac{1}{e^{x}}\right)}_{\frac{1}{6}} \underbrace{\left(\frac{1}{e^{x}}\right)}_{\frac{1}{5}} \underbrace{\left(\frac{1}{e^{x}}\right)}_{\frac{$ $\frac{1}{1} = \int_{1}^{\infty} \frac{e^{x} dx}{e^{x} dx} = \lim_{b \to \infty} \int_{1}^{b} e^{-x} dx = \lim_{b \to \infty} \left(-e^{x} \right) \Big|_{x=1}^{b}$ 从差色等 $\frac{1}{2} \frac{1}{2} \frac{1}$ (3): By the comparison theorem Iz = $\int_{1}^{\infty} e^{x^{2}} dx$ is convergent. Since I is a sum of two binite numbers, I is also finite, i.e., I = fext dx is convergent. / Ams. $\frac{\text{Ex6}}{\text{Determine}}$ if $\int_{0}^{\infty} \frac{dx}{\sqrt{x+x^{3}}}$ is convergent on divergent. Solm We note that the integral is of both type I and II. $\int_{0}^{\infty} \frac{dx}{\sqrt{x+x^{3}}} = \int_{0}^{1} \frac{dx}{\sqrt{x+x^{3}}} + \int_{1}^{\infty} \frac{dx}{\sqrt{x+x^{3}}}$ I_{1} Consider I_1 . $I_1 = \int_1^1 \frac{dx}{\sqrt{x+y^2}}$ where $f(x) = \frac{1}{\sqrt{y+y^2}}$

convergent => p<1. Consider I_1 . $I_1 = \int_0^1 \frac{dx}{\sqrt{x + x^3}}$ where $f(x) = \frac{1}{\sqrt{x + x^3}}$ $f(x) = \frac{1}{\sqrt{x + x^3}} < \frac{1}{\sqrt{x}} = \frac{1}{x^{1/2}}$ $\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{dx}{\sqrt{x+x^{3}}} \leq \int_{0}^{1} \frac{dx}{\sqrt{x+x^{3}}} \leq \int_{0}^{1} \frac{dx}{\sqrt{x^{2}}} dx \quad converges \quad \text{diverges if } p \geq 1$.. By the unparison test $I_1 = \int_0^1 \frac{dx}{\sqrt{x+x^2}} dx$ converges. Mph Consider I_z where $I_z = \int_{1}^{\infty} \frac{dx}{\sqrt{x+x^3}}$ The p-integral test $I_z = \int_{1}^{\infty} \frac{dx}{\sqrt{x+x^3}} = \frac{1}{x^{3/2}} \int_{0}^{\infty} \frac{dx}{x^p} = \int_{0}^{\infty} \frac{dx}{x^p} \int_{0}^{\infty} \frac{dx}{x^p$ LLan .. Iz is convergent by the Companison lest. Hence, $I=I_1+I_2$ is also finite, i.e. $I=\int_0^\infty \frac{dx}{\sqrt{x_+x_-^3}}$ converges. Sequences and Series (Chapter 11) A sequence is an ordered list of numbers a_1 , a_2 , a_3 , a_4 , ..., a_{100} , ... The number a, is called the first term, az is called the 2nd term, and an is called the nth term of the Segnence. If a sequence DOES NOT have the last term that it is called an infinite sequence. The sequence a, , az , a, , ... , an , ... is denoted as $\{a_1, a_2, a_3, \dots\}$ or $\{a_n\}_{n=1}^{\infty}$ $\frac{g_{\times 1}}{(i)}$: (i) $\{n\} = \{1, 1, 3, 4, 5, \dots \}$ (ii) $\{\sqrt{n}\} = \{1, \sqrt{2}, \sqrt{3}, 2, \sqrt{5}, \sqrt{6}, \dots \}$

(iii)
$$\{\sqrt{n}\} = \{1, \sqrt{2}, \sqrt{3}, 2, \sqrt{5}, \sqrt{6}, \dots\}$$

(iii) $\{\frac{(-1)^{n+1}}{n}\}_{n=1}^{\infty} = \{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots\}$
in (i) $a_n = n$, (ii) $a_n = \sqrt{n}$, (iii) $a_n = \frac{(-1)^{n+1}}{n}$
So far a sequence is defined by a single formula as in Ex1. However, there are some sequences which cannot be defined by a single formula! For example, the Fibonacci sequence which is defined as $a_1 = 1$, $a_2 = 1$ and $a_{n+2} = a_{n+1} + a_n$, $n \geqslant 1$
Then this sequence is $\{1, 1, 2, 3, 5, 8, \dots\}$