Theoretische Informatik Beweisideen 101

1 Grundbegriffe

Für eine Menge A bezeichnet |A| die Kardinalität von A und $\mathcal{P}(A) = \{S \mid S \subseteq A\}$ die Potenzmenge von A.

In diesem Kurs definieren wir $\mathbb{N} = \{0, 1, 2, \dots\}$.

1.1 Alphabet

Definition Alphabet

Eine endliche, nichtleere Menge Σ heisst **Alphabet**. Die Elemente eines Alphabets werden **Buchstaben** (**Zeichen**, **Symbole**) genannt.

Beispiele

- $\Sigma_{\text{bool}} = \{0, 1\}$
- $\Sigma_{\text{lat}} = \{a, ..., z\}$
- $\Sigma_{\text{Tastatur}} = \Sigma_{\text{lat}} \cup \{A, ..., Z, \neg, >, <, (,), ..., !\}$
- $\Sigma_{\text{logic}} = \{0, 1, (,), \land, \lor, \lnot\}$
- $\Sigma_{abc} = \{a, b, c\}$ (unser Beispiel für weitere Definitionen)

1.2 Wort

Definition Wort

- Sei Σ ein Alphabet. Ein **Wort** über Σ ist eine endliche (eventuell leere) Folge von Buchstaben aus Σ .
- Das **leere Wort** λ ist die leere Buchstabenfolge.
- Die **Länge** |w| eines Wortes w ist die Länge des Wortes als Folge, i.e. die Anzahl der Vorkommen von Buchstaben in w.
- Σ^* ist die Menge aller Wörter über Σ . $\Sigma^+ := \Sigma^* \setminus \{\lambda\}$ ist Menge aller nichtleeren Wörter über Σ .
- Seien $x \in \Sigma^*$ und $a \in \Sigma$. Dann ist $|x|_a$ definiert als die Anzahl der Vorkommen von a in x.

Achtung Metavariablen! I.e. Das a in der Definition ist steht für einen beliebigen Buchstaben aus Σ und **nicht** nur für den Buchstaben 'a', der in Σ sein könnte.

Bemerkungen

- Wir schreiben Wörter ohne Komma, i.e. eine Folge $x_1, x_2, ..., x_n$ schreiben wir $x_1x_2...x_n$.
- $|\lambda| = 0$ aber $|\omega| = 1$ von Σ_{Tastatur} .
- Der Begriff **Wort** als Fachbegriff der Informatik entspricht **nicht** der Bedeutung des Begriffs Wort in natürlichen Sprachen!

- E.g. Mit $_{-}$ kann der Inhalt eines Buches oder ein Programm als ein Wort über $\Sigma_{\mathrm{Tastatur}}$ betrachtet werden.

Beispiel Verschiedene Wörter über Σ_{abc} :

a, aa, aba, cba, caaaab etc.

Die Verkettung (Konkatenation) für ein Alphabet Σ ist eine Abbildung Kon: $\Sigma^* \times \Sigma^* \to \Sigma^*$, so dass

$$Kon(x, y) = x \cdot y = xy$$

für alle $x, y \in \Sigma^*$.

- Die Verkettung Kon (i.e. Kon von einem Kon (über das gleiche Alphabet Σ)) ist eine assoziative Operation über Σ^* .

$$Kon(u, Kon(v, w)) = Kon(Kon(u, v), w), \forall u, v, w \in \Sigma^*$$

- $x \cdot \lambda = \lambda \cdot x = x, \ \forall x \in \Sigma^*$
- \Longrightarrow (Σ^* , Kon) ist ein Monoid mit neutralem Element λ .
- Kon nur kommutativ, falls $|\Sigma| = 1$.
- $|xy| = |x \cdot y| = |x| + |y|$. (Wir schreiben ab jetzt xy statt Kon(x, y))

Beispiel

Wir betrachten wieder Σ_{abc} . Sei x = abba, y = cbcbc, z = aaac.

- Kon(x, Kon(y, z)) = Kon(x, yz) = xyz = abbacbcbcaaac
- -|xy| = |abbacbcbc| = 9 = 4 + 5 = |abba| + |cbcbc| = |x| + |y|

Für eine Wort $a = a_1 a_2 ... a_n$, wobei $\forall i \in \{1, 2, ..., n\}$. $a_i \in \Sigma$, bezeichnet $a^{\mathbb{R}} = a_n a_{n-1} ... a_1$ die Umkehrung (Reversal) von a.

Sei Σ ein Alphabet. Für alle $x \in \Sigma^*$ und alle $i \in \mathbb{N}$ definieren wir die i-te **Iteration** x^i von x als

$$x^0 = \lambda, x^1 = x \text{ und } x^i = xx^{i-1}.$$

Beispiel

Wir betrachten wieder Σ_{abc} . Sei x = abba, y = cbcbc, z = aaac.

- $-z^{R} = (aaac)^{R} = caaa$
- $x^{R} = (abba)^{R} = abba$
- $-x^0=\lambda$
- $y^2 = yy^{2-1} = yy = cbcbccbcbc$
- $z^3 = zz^2 = zzz = aaacaaacaaac$
- $(x^{R}z^{R})^{R} = ((abba)^{R}(aaac)^{R})^{R} = (abbacaaa)^{R} = aaacabba$

Seien $v, w \in \Sigma^*$ für ein Alphabet Σ .

- v heisst ein **Teilwort** von $w \iff \exists x, y \in \Sigma^* : w = xvy$
- v heisst ein **Präfix** von $w \iff \exists y \in \Sigma^*: \ w = vy$
- v heisst ein **Suffix** von $w \iff \exists x \in \Sigma^* : w = xv$
- $v \neq \lambda$ heisst ein **echtes** Teilwort (Präfix, Suffix) von $w \iff v \neq w$ und v Teilwort(Präfix, Suffix) von w

Beispiel

Wir betrachten wieder Σ_{abc} . Sei x = abba, y = cbcbc, z = aaac.

- bc ist ein echtes Suffix von y
- abba ist kein echtes Teilwort von x.
- cbcb ist ein echtes Teilwort und echtes Präfix von y.
- ac ist ein echtes Suffix.
- abba ist ein Suffix, Präfix und Teilwort von x.

Aufgabe 1

Sei Σ ein Alphabet und sei $w \in \Sigma^*$ ein Wort der Länge $n \in \mathbb{N} \setminus \{0\}$. Wie viele unterschiedliche Teilwörter kann w höchstens haben?

Lösung

Wir haben $w = w_1 w_2 ... w_n$ mit $w_i \in \Sigma$ für i = 1, ..., n. Wie viele Teilwörter beginnen mit w_1 ? Wie viele Teilwörter beginnen mit w_2 ?

Wir haben also $n + (n-1) + ... + 1 = \frac{n(n+1)}{2}$ Teilwörter. Etwas fehlt aber in unserer Berechnung...

Das leere Wort λ ist auch ein Teilwort! Also haben wir $\frac{n(n+1)}{2} + 1$ Teilwörter.

Aufgabe 2

Sei $\Sigma = \{a, b, c\}$ und $n \in \mathbb{N}$. Bestimme die Anzahl der Wörter aus Σ^n , die das Teilwort a enthalten.

Lösung

In solchen Aufgaben ist es manchmal einfach, das Gegenteil zu berechnen und so auf die Lösung zu kommen. Wie viele Wörter aus Σ^n enthalten das Teilwort a nicht?

Da wir jetzt die Anzahl Wörter der Länge n wollen, die nur b und c enthalten, kommen wir auf $|\{b,c\}|^n=2^n$.

Daraus folgt, dass genau $|\Sigma|^n - 2^n = 3^n - 2^n$ Wörter das Teilwort a enthalten.

Aufgabe 3

Sei $\Sigma = \{a, b, c\}$ und $n \in \mathbb{N} \setminus \{0\}$. Bestimme die Anzahl der Wörter aus Σ^n , die das Teilwort aa nicht enthalten.

Lösung

Wir bezeichnen die Menge aller Wörter mit Länge n über Σ , die aa nicht enthalten als L_n .

Schauen wir mal die ersten zwei Fälle an:

•
$$L_1 = \{a, b, c\} \implies |L_1| = 3$$

• $L_2 = \{ab, ac, ba, bb, bc, ca, cb, cc\} \implies |L_2| = 8$

Nun können wir für $m \geq 3$ jedes Wort $w \in L_m$ als Konkatination $w = x \cdot y \cdot z$ schreiben, wobei wir zwei Fälle unterscheiden:

(a) $z \neq a$

In diesem Fall kann $y \in \{a, b, c\}$ sein, ohne dass die Teilfolge aa entsteht und somit ist xy ein beliebiges Wort aus L_{m-1} .

Dann könnten wir alle Wörter in diesem Case durch $L_{m-1} \cdot \{b, c\}$ beschreiben, was uns die Kardinalität $2 \cdot |L_{m-1}|$ gibt.

(b) z = a

In diesem Fall muss $y \neq a$ sein, da sonst aa entstehen würde.

Somit kann xy nur in b oder c enden. x kann aber ein beliebiges Wort der Länge m-2 sein.

Deshalb können wir alle Wörter in diesem Case durch $L_{m-2} \cdot \{b, c\} \cdot \{a\}$ beschreiben. Kardinalität: $2 \cdot |L_{m-2}|$.

Daraus folgt

$$|L_n| = \begin{cases} 3 & n = 1\\ 8 & n = 2\\ 2|L_{n-1}| + 2|L_{n-2}| & n \ge 3 \end{cases}$$

Sei $\Sigma = \{s_1, s_2, ..., s_m\}, m \geq 1$, ein Alphabet und sei $s_1 < s_2 < ... < s_m$ eine Ordnung auf Σ . Wir definieren die **kanonische Ordnung** auf Σ^* für $u, v \in \Sigma^*$ wie folgt:

$$u < v \iff |u| < |v| \lor (|u| = |v| \land u = x \cdot s_i \cdot u' \land x \cdot s_j \cdot v')$$

für irgendwelche $x, u', v' \in \Sigma^*$ und $i < j$.

Sei $\Sigma_{abc} = \{a, b, c\}$ und wir betrachten folgende Ordnung auf Σ_{abc} : c < a < b.

Was wäre die kanonische Ordnung folgender Wörter?

c, abc, aaac, aaab, bacc, a, λ

 λ , c, a, abc, aaac, aaab, bacc

1.3 Sprache

Eine **Sprache** L über einem Alphabet Σ ist eine Teilmenge von Σ^* .

- Das Komplement L^{\complement} der Sprache L bezüglich Σ ist die Sprache $\Sigma^* \setminus L$.
- $L_{\emptyset} = \emptyset$ ist die **leere Sprache**.
- $L_{\lambda} = \{\lambda\}$ ist die einelementige Sprache, die nur aus dem leeren Wort besteht.

Konkatenation von Sprachen

Sind L_1 und L_2 Sprachen über Σ , so ist

$$L_1 \cdot L_2 = L_1 L_2 = \{vw \mid v \in L_1 \text{ und } w \in L_2\}$$

die Konkatenation von L_1 und L_2 .

Ist L eine Sprache über Σ , so definieren wir

$$L^{0} := L_{\lambda} \text{ und } L^{i+1} := L^{i} \cdot L \text{ für alle } i \in \mathbb{N},$$

$$L^{*} = \bigcup_{i \in \mathbb{N}} L^{i} \text{ und } L^{+} = \bigcup_{i \in \mathbb{N} \setminus \{0\}} L^{i} = L \cdot L^{*}.$$

 L^* nennt man den Kleene'schen Stern von L.

Man bemerke, dass $\Sigma^i = \{x \in \Sigma^* \mid |x| = i\}, L_{\emptyset}L = L_{\emptyset} = \emptyset \text{ und } L_{\lambda} \cdot L = L.$

Mögliche Sprachen über Σ_{abc}

- $L_1 = \emptyset$
- $L_2 = \{\lambda\}$
- $L_3 = \{\lambda, ab, baca\}$
- $L_4 = \Sigma_{abc}^*$, $L_5 = \Sigma_{abc}^+$, $L_6 = \Sigma_{abc}$ oder $L_7 = \Sigma_{abc}^{27}$
- $L_8 = \{c\}^* = \{c^i \mid i \in \mathbb{N}\}$
- $L_9 = \{a^p \mid p \text{ ist prim.}\}$
- $L_{10} = \{c^i a^{3i^2} b a^i c \mid i \in \mathbb{N}\}$

 λ ist ein Wort über jedes Alphabet. Aber es muss nicht in jeder Sprache enthalten sein!

Seien L_1 , L_2 und L_3 Sprachen über einem Alphabet Σ . Dann gilt

$$L_1 L_2 \cup L_1 L_3 = L_1 (L_2 \cup L_3) \tag{1}$$

$$L_1(L_2 \cap L_3) \subseteq L_1 L_2 \cap L_1 L_3 \tag{2}$$

Weshalb nicht '=' bei (2)?

Sei
$$\Sigma = \Sigma_{\text{bool}} = \{0, 1\}, L_1 = \{\lambda, 1\}, L_2 = \{0\} \text{ und } L_3 = \{10\}.$$

Dann haben wir $L_1(L_2 \cap L_3) = \emptyset \neq \{10\} = L_1L_2 \cap L_1L_3$.

Beweise im Buch/Vorlesung

Homomorphismus

Seien Σ_1 und Σ_2 zwei beliebige Alphabete. Ein Homomorphismus von Σ_1^* nach Σ_2^* ist jede Funktion $h: \Sigma_1^* \to \Sigma_2^*$ mit den folgenden Eigenschaften:

- $\begin{array}{l} \text{(i)} \ h(\lambda) = \lambda \text{ und} \\ \\ \text{(ii)} \ h(uv) = h(u) \cdot h(v) \text{ für alle } u,v \in \Sigma_1^*. \end{array}$

Wir können Probleme etc. in anderen Alphabeten kodieren. So wie wir verschiedenste Konzepte, die wir auf Computer übertragen in Σ_{bool} kodieren.

2 Algorithmische Probleme

Mathematische Definition folgt in Kapitel 4 (Turingmaschinen).

Algorithmen - Provisorische Definition

Vorerst betrachten wir Programme, die für jede zulässige Eingabe halten und eine Ausgabe liefern, als Algorithmen.

Wir betrachten ein Programm (Algorithmus) A als Abbildung $A: \Sigma_1^* \to \Sigma_2^*$ für beliebige Alphabete Σ_1 und Σ_2 . Dies bedeutet, dass

- (i) die Eingaben als Wörter über Σ_1 kodiert sind,
- (ii) die Ausgaben als Wörter über Σ_2 kodiert sind und
- (iii) A für jede Eingabe eine eindeutige Ausgabe bestimmt.

A und B äquivalent \iff Eingabealphabet Σ gleich, $A(x) = B(x), \forall x \in \Sigma^*$

Ie. diese Notion von "Äquivalenz" bezieht sich nur auf die Ein und Ausgabe.

Entscheidungsproblem

Das **Entscheidungsproblem** (Σ, L) für ein gegebenes Alphabet Σ und eine gegebene Sprache $L \subseteq \Sigma^*$ ist, für jedes $x \in \Sigma^*$ zu entscheiden, ob

$$x \in L \text{ oder } x \notin L.$$

Ein Algorithmus A löst das Entscheidungsproblem (Σ, L) , falls für alle $x \in \Sigma^*$ gilt:

$$A(x) = \begin{cases} 1, & \text{falls } x \in L, \\ 0, & \text{falls } x \notin L. \end{cases}$$

Wir sagen auch, dass A die Sprache L erkennt.

Rekursive Sprachen

Wenn für eine Sprache L ein Algorithmus existiert, der L erkennt, sagen wir, dass L rekursiv ist.

Wir sind oft an spezifischen Eigenschaften von Wörtern aus Σ^* interessiert, die wir mit einer Sprache $L \subseteq \Sigma^*$ beschreiben können.

Dabei sind dann L die Wörter, die die Eigenschaft haben und $L^{\complement} = \Sigma^* \setminus L$ die Wörter, die diese Eigenschaft nicht haben.

Jetzt ist die allgemeine Formulierung von Vorteil!

i. Primzahlen finden:

Entscheidungsproblem $(\Sigma_{\text{bool}}, L_p)$ wobei $L_p = \{x \in (\Sigma_{\text{bool}})^* \mid \text{Nummer}(x) \text{ ist prim}\}.$

ii. Syntaktisch korrekte Programme:

Entscheidungsproblem $(\Sigma_{\text{Tastatur}}, L_{C++})$ wobei $L_{C++} = \{x \in (\Sigma_{\text{Tastatur}})^* \mid x \text{ ist ein syntaktisch korrektes C++ Programm}\}.$

iii. Hamiltonkreise finden:

Entscheidungsproblem (Σ, HK) wobei $\Sigma = \{0, 1, \#\}$ und $HK = \{x \in \Sigma^* \mid x \text{ kodiert einen Graphen, der einen Hamiltonkreis enthält.}\}$

 \ddot{A} quivalenzprobleme \subset Entscheidungsprobleme

Seien Σ und Γ zwei Alphabete.

- Wir sagen, dass ein Algorithmus A eine Funktion (Transformation) $f: \Sigma^* \to \Gamma^*$ berechnet (realisiert), falls

$$A(x) = f(x)$$
 für alle $x \in \Sigma^*$

- Sei $R \subseteq \Sigma^* \times \Gamma^*$ eine Relation in Σ^* und Γ^* . Ein Algorithmus A berechnet R (bzw. löst das Relationsproblem R), falls für jedes $x \in \Sigma^*$, für das ein $y \in \Gamma^*$ mit $(x, y) \in R$ existiert, gilt:

$$(x, A(x)) \in R$$

Optimierungsproblem

Ein **Optimierungsproblem** ist ein 6-Tupel $\mathcal{U} = (\Sigma_I, \Sigma_O, L, M, \cos t, goal)$, wobei:

- (i) Σ_I ist ein Alphabet (genannt **Eingabealphabet**),
- (ii) Σ_O ist ein Alphabet (genannt **Ausgabealphabet**),
- (iii) $L \subseteq \Sigma_I^*$ ist die Sprache der **zulässigen Eingaben** (als Eingaben kommen nur Wörter in Frage, die eine sinnvolle Bedeutung haben). Ein $x \in L$ wird ein **Problemfall (Instanz) von** \mathcal{U} genannt.
- (iv) M ist eine Funktion von L nach $\mathcal{P}(\Sigma_O^*)$, und für jedes $x \in L$ ist M(x) die **Menge der zulässigen** Lösungen für x,
- (v) **cost** ist eine Funktion, **cost**: $\bigcup_{x \in L} (\mathcal{M}(x) \times \{x\}) \to \mathbb{R}^+$, genannt **Kostenfunktion**,
- (vi) goal ∈ {Minimum, Maximum} ist das Optimierungsziel.

Eine zulässige Lösung $\alpha \in \mathcal{M}(x)$ heisst **optimal** für den Problemfall x des Optimierungsproblems \mathcal{U} , falls

$$cost(\alpha, x) = \mathbf{Opt}_{\mathcal{U}}(x) = goal\{cost(\beta, x) \mid \beta \mathcal{M}(x)\}.$$

Ein Algorithmus A löst \mathcal{U} , falls für jedes $x \in L$

- (i) $A(x) \in \mathcal{M}(x)$
- (ii) $cost(A(x), x) = goal\{cost(\beta, x) \mid \beta \in \mathcal{M}(x)\}.$

3 Kolmogorov Komplexität

3.1 Theorie

Algorithmen generieren Wörter

Sei Σ ein Alphabet und $x \in \Sigma^*$. Wir sagen, dass ein Algorithmus A das Wort x generiert, falls A für die Eingabe λ die Ausgabe x liefert.

Beispiel:

$$A_n$$
: begin for $i = 1$ to n ; write (01) ; end

 A_n generiert $(01)^n$.

Aufzählungsalgorithmus

Sei Σ ein Alphabet und sei $L \subseteq \Sigma^*$. A ist ein **Aufzählungsalgorithmus für** L, falls A für jede Eingabe $n \in \mathbb{N} \setminus \{0\}$ die Wortfolge $x_1, ..., x_n$ ausgibt, wobei $x_1, ..., x_n$ die kanonisch n ersten Wörter in L sind.

Aufgabe 2.21

Beweisen Sie, dass eine Sprache L genau dann rekursiv ist, wenn ein Aufzählungsalgorithmus für L existiert.

Das **Entscheidungsproblem** (Σ, L) für ein gegebenes Alphabet Σ und eine gegebene Sprache $L \subseteq \Sigma^*$ ist, für jedes $x \in \Sigma^*$ zu entscheiden, ob

$$x \in L \text{ oder } x \notin L.$$

Ein Algorithmus A löst das Entscheidungsproblem (Σ, L) , falls für alle $x \in \Sigma^*$ gilt:

$$A(x) = \begin{cases} 1, & \text{falls } x \in L, \\ 0, & \text{falls } x \notin L. \end{cases}$$

Wir sagen auch, dass A die Sprache L erkennt.

L rekursiv (\Longrightarrow) existiert Aufzählungsalgorithmus:

Sei A ein Algorithmus, der L erkennt. Wir beschreiben nun einen Aufzählungsalgorithmus B konstruktiv.

Algorithm 1 $B(\Sigma, n)$

```
\mathbf{i} \leftarrow 0

while \mathbf{i} \leq n do

w \leftarrow \text{kanonisch nächstes Wort "über $\Sigma^*$}

if A(w) = 1 then

\operatorname{print}(w)

i \leftarrow i + 1

end if
end while
```

Aufzählungsalgorithmus $B \implies L$ rekursiv:

Algorithm 2 $A(\Sigma, w)$

```
n \leftarrow |\Sigma|^{|w|+1}

L \leftarrow B(\Sigma, n)

if w \in L then

\operatorname{print}(1)

else

\operatorname{print}(0)

end if
```

Es gibt ein kleines Problem. B könnte unendlich lange laufen, falls n > |L|.

Es sollte nicht so schwierig sein, B zu modifizieren, dass es die Berechnung aufhört, falls es keine weiteren Wörter in L gibt.

Information messen Wir beschränken uns auf Σ_{bool}

Kolmogorov-Komplexität

Für jedes Wort $x \in (\Sigma_{\text{bool}})^*$ ist die **Kolmogorov-Komplexität** K(x) des Wortes x das Minimum der binären Längen, der Pascal-Programme, die x generieren.

K(x) ist die kürzestmögliche Länge einer Beschreibung von x.

Die einfachste (und triviale) Beschreibung von x, ist wenn man x direkt angibt.

x kann aber eine Struktur oder Regelmässigkeit haben, die eine Komprimierung erlaubt.

Welche Programmiersprache gewählt wird verändert die Kolmogorov-Komplexität nur um eine Konstante. (Satz 2.1)

Beispiel

Aber durch die Regelmässigkeit von einer 20-fachen Wiederholung der Sequenz 01, können w auch durch $(01)^{20}$ beschreiben. Hierbei ist die Beschreibungslänge ein wenig mehr als 4 Zeichen.

Grundlegende Resultate

Es existiert eine Konstante d, so dass für jedes $x \in (\Sigma_{\text{bool}})^*$

$$K(x) \le |x| + d$$

Die Kolmogorov-Komplexität einer natürlichen Zahl n ist K(n) = K(Bin(n)).

Lemma 2.5 - Nichtkomprimierbar

Für jede Zahl $n \in \mathbb{N} \setminus \{0\}$ existiert ein Wort $w_n \in (\Sigma_{\text{bool}})^n$, so dass

$$K(w_n) \ge |w_n| = n$$

Beweis

Es gibt 2^n Wörter $x_1, ..., x_{2^n}$ über Σ_{bool} der Länge n. Wir bezeichnen $C(x_i)$ als den Bitstring des kürzesten Programms, der x_i generieren kann. Es ist klar, dass für $i \neq j : C(x_i) \neq C(x_j)$.

Die Anzahl der nichtleeren Bitstrings, i.e. der Wörter der Länge < n über Σ_{bool} ist:

$$\sum_{i=1}^{n-1} 2^i = 2^n - 2 < 2^n$$

Also muss es unter den Wörtern $x_1, ..., x_{2^n}$ mindestens ein Wort x_k mit $K(x_k) \geq n$ geben.

Satz 2.1 - Programmiersprachen

Für jedes Wort $x \in (\Sigma_{\text{bool}})^*$ und jede Programmiersprache A sei $K_A(x)$ die Kolmogorov-Komplexität von x bezüglich der Programmiersprache A.

Seien A und B Programmiersprachen. Es existiert eine Konstante $c_{A,B}$, die nur von A und B abhängt, so dass

$$|K_A(x) - K_B(x)| \le c_{A,B}$$

für alle $x \in (\Sigma_{\text{bool}})^*$.

Beweis im Buch/Vorlesung

Ein zufälliges Wort

Ein Wort $x \in (\Sigma_{\text{bool}})^*$ heisst **zufällig**, falls $K(x) \ge |x|$. Eine Zahl n heisst **zufällig**, falls $K(n) = K(\text{Bin}(n)) \ge \lceil \log_2(n+1) \rceil - 1$.

Jede Binär-Darstellung beginnt immer mit einer 1, deshalb können wir die Länge der Binär-Darstellung um 1 verkürzen.

Zufälligkeit hier bedeutet, dass ein Wort völlig unstrukturiert ist und sich nicht komprimieren lässt. Es hat nichts mit Wahrscheinlichkeit zu tun.

Satz 2.2

Sei L eine Sprache über Σ_{bool} . Sei für jedes $n \in \mathbb{N} \setminus \{0\}$, z_n das n-te Wort in L bezüglich der kanonischen Ordnung. Wenn ein Programm A_L existiert, das das Entscheidungsproblem $(\Sigma_{\text{bool}}, L)$ löst, dann gilt für alle $n \in \mathbb{N} \setminus \{0\}$, dass

$$K(z_n) \le \lceil \log_2(n+1) \rceil + c$$

wobei c eine von n unabhängige Konstante ist.

Beweisidee

Wir können aus A_L , ein Programm entwerfen, dass das kanonisch n-te Wort generiert, indem wir in der kanonischen Reihenfolge alle Wörter $x \in (\Sigma_{bool})^*$ durchgehen und mit A_L entscheiden, ob $x \in L$. Dann können wir einen Counter c haben und den Prozess abbrechen, wenn der Counter c = n wird und dann dieses Wort ausgeben.

Wir sehen, dass dieses Programm ausser der Eingabe n immer gleich ist. Sei die Länge dieses Programms c, dann können wir für das n-te Wort der Sprache L, z_n , die Kolmogorov-Komplexität auf n reduzieren, bzw:

$$K(z_n) \le \lceil \log_2(n+1) \rceil + c$$

Primzahlsatz

Für jede positive ganz Zahl n sei Prim(n) die Anzahl der Primzahlen kleiner gleich n.

$$\lim_{n \to \infty} \frac{\operatorname{Prim}(n)}{n/\ln n} = 1$$

Nützliche Ungleichung

$$\ln n - \frac{3}{2} < \frac{n}{\operatorname{Prim}(\mathbf{n})} < \ln n - \frac{1}{2}$$

für alle $n \geq 67$.

Lemma 2.6 - schwache Version des Primzahlsatzes

Sei $n_1, n_2, n_3, ...$ eine steigende unendliche Folge natürlicher Zahlen mit $K(n_i) \geq \lceil \log_2 n_i \rceil / 2$. Für jedes $i \in \mathbb{N} \setminus \{0\}$ sei q_i die grösste Primzahl, die die Zahl n_i teilt. Dann ist die Menge $Q = \{q_i \mid i \in \mathbb{N} \setminus \{0\}\}$ unendlich.

Beweis: Wir beweisen diese Aussage per Widerspruch:

Nehmen wir zum Widerspruch an, dass die Menge $Q = \{q_i \mid i \in \mathbb{N} \setminus \{0\}\}$ sei endlich.

Sei q_m die grösste Primzahl in Q. Dann können wir jede Zahl n_i eindeutig als

$$n_i = q_1^{r_{i,1}} \cdot q_2^{r_{i,2}} \cdot \dots \cdot q_m^{r_{i,m}}$$

für irgendwelche $r_{i,1}, r_{i,2}, ..., r_{i,m} \in \mathbb{N}$ darstellen. Sei c die binäre Länge eines Programms, dass diese $r_{i,j}$ als Eingaben nimmt und n_i erzeugt (A ist für alle $i \in \mathbb{N}$ bis auf die Eingaben $r_{i,1}, ..., r_{i,m}$ gleich).

Dann gilt:

$$K(n_i) \le c + 8 \cdot (\lceil \log_2(r_{i,1} + 1) \rceil + \lceil \log_2(r_{i,2} + 1) \rceil + \dots + \lceil \log_2(r_{i,m} + 1) \rceil)$$

Die multiplikative Konstante 8 kommt daher, dass wir für die Zahlen $r_{i,1}, r_{i,2}, ..., r_{i,m}$ dieselbe Kodierung, wie für den Rest des Programmes verwenden (z.B. ASCII-Kodierung), damit ihre Darstellungen eindeutig voneinander getrennt werden können. Weil $r_{i,j} \leq \log_2 n_i, \forall j \in \{1, ..., m\}$ erhalten wir

$$K(n_i) \le c + 8m \cdot \lceil \log_2(\log_2 n_i + 1) \rceil, \forall i \in \mathbb{N} \setminus \{0\}$$

Weil m und c Konstanten unabhängig von i sind, kann

$$\lceil \log_2 n_i \rceil / 2 \le K(n_i) \le c + 8m \cdot \lceil \log_2 (\log_2 n_i + 1) \rceil$$
$$\lceil \log_2 n_i \rceil / 2 \le c + 8m \cdot \lceil \log_2 (\log_2 n_i + 1) \rceil$$

nur für endlich viele $i \in \mathbb{N} \setminus \{0\}$ gelten.

Dies ist ein Widerspruch!

Folglich ist die Menge Q unendlich.

3.2 How To Kolmogorov

Aufgabentyp 1

Sei $w_n = (010)^{3^{2n^3}} \in \{0,1\}^*$ für alle $n \in \mathbb{N} \setminus \{0\}$. Gib eine möglichst gute obere Schranke für die Kolmogorov-Komplexität von w_n an, gemessen in der Länge von w_n .

Lösung Typ 1

Wir zeigen ein Programm, dass n als Eingabe nimmt und w_n druckt:

$$W_n$$
: begin $M := n$; $M := 2 \times M \times M \times M$; $J := 1$; for $I = 1$ to M $J := J \times 3$; for $I = 1$ to J ; write (010) ; end

Der einzige variable Teil dieses Algorithmus ist n. Der restliche Code ist von konstanter Länge. Die binäre Länge dieses Programms kann von oben durch

$$\lceil \log_2(n+1) \rceil + c$$

beschränkt werden, für eine Konstante c.

Somit folgt

$$K(w_n) \leq \log_2(n) + c'$$

Wir berechnen die Länge von w_n als $|w_n| = |010| \cdot 3^{2n^3} = 3^{2n^3+1}$.

Mit ein wenig umrechnen erhalten wir

$$n = \sqrt[3]{\frac{\log_3|w_n| - 1}{2}}$$

und die obere Schranke

$$K(w_n) \le \log_2\left(\sqrt[3]{\frac{\log_3|w_n|-1}{2}}\right) + c' \le \log_2\log_3|w_n| + c''$$

Aufgabentyp 2

Geben Sie eine unendliche Folge von Wörtern $y_1 < y_2 < \dots$ an, so dass eine Konstante $c \in \mathbb{N}$ existiert, so dass für alle $i \geq 1$

$$K(y_i) \le \log_2 \log_2 \log_3 \log_2(|y_i|) + c$$

Lösung Typ 2

Wir definieren die Folge $y_1, y_2, ...$ mit $y_i = 0^{2^{3^{2^i}}}$ für alle $i \in \mathbb{N}$. Da $|y_i| < |y_{i+1}|$ folgt die geforderte Ordnung. Es gilt

$$i = \log_2 \log_3 \log_2 |y_i|$$
 für $i \ge 1$

Wir zeigen ein Programm, dass i als Eingabe nimmt und y_i druckt:

$\begin{aligned} \mathbf{begin} \\ M &:= i \,; \\ M &:= 2 \, \hat{} \, \left(\, 3 \, \hat{} \, \left(\, 2 \, \hat{} \, M \, \right) \, \right) \,; \\ \mathbf{for} \ \ I &= 1 \ \ \mathbf{to} \ \ M \,; \\ \mathbf{write} \, \left(\, 0 \, 1 \, 0 \, \right) \,; \\ \mathbf{end} \end{aligned}$

Das ^ für die Exponentiation ist nicht Teil der originalen Pascal Syntax, aber wir verwenden es um unser Programm lesbarer zu machen.

Der einzige variable Teil dieses Programms ist das i. Der Rest hat konstante Länge. Demnach kann die Länge diese Programms für eine Konstante c' durch

$$\lceil \log_2(i+1) \rceil + c'$$

von oben beschränkt werden.

Somit folgt

$$K(y_i) \le \log_2(i) + c$$

$$\le \log_2 \log_2 \log_3 \log_2 |y_i| + c$$

für eine Konstante c.

Aufgabentyp 3

Sei $M = \{7^i \mid i \in \mathbb{N}, i \leq 2^n - 1\}$. Beweisen Sie, dass mindestens sieben Achtel der Zahlen in M Kolmogorov-Komplexität von mindestens n-3 haben.

Lösung Typ 3

Wir zeigen, dass höchstens $\frac{1}{8}$ der Zahlen $x \in M$ eine Kolmogorov-Komplexität $K(x) \le n-4$ haben.

Nehmen wir zum Widerspruch an, dass M mehr als $\frac{1}{8}|M|$ Zahlen x enthält, mit $K(x) \leq n-4$.

Die Programme, die diese Wörter generieren, müssen paarweise verschieden sein, da die Wörter paarweise verschieden sind.

Es gibt aber höchstens

$$\sum_{k=0}^{n-4} 2^k = 2^{n-3} - 1 < \frac{1}{8} |M|$$

Bitstrings mit Länge $\leq n-4$. Widerspruch.

4 Beweisesammlung

Kapitel 2

Lemma 2.5

Für jede Zahl $n \in \mathbb{N}$ existiert ein Wort $w_n \in (\Sigma_{bool})^n$, so dass

$$K(w_n) > |w_n| = n$$

d.h., es existiert für jede Zahl n ein nichtkomprimierbares Wort der Länge n.

Beweis:

Es gibt 2^n Wörter $x_1, ..., x_{2^n}$ über Σ_{bool} der Länge n. Wir bezeichnen $C(x_i)$ als den Bitstring des kürzesten Programms, der x_i generieren kann. Es ist klar, dass für $i \neq j : C(x_i) \neq C(x_j)$.

Die Anzahl der Bitstrings, i.e. der Wörter der Länge < n über Σ_{bool} ist:

$$\sum_{i=1}^{n-1} 2^i = 2^n - 2 < 2^n$$

Also muss es unter den Wörtern $x_1, ..., x_{2^n}$ mindestens ein Wort x_k mit $K(x_k) \ge n$ geben.

Satz 2.2

Sei L eine Sprache über Σ_{bool} . Sei, für jedes $n \in \mathbb{N} \setminus \{0\}$, z_n das n-te Wort in L bezüglich der kanonischen Ordnung. Wenn ein Programm A_L existiert, dass das Entscheidungsproblem (Σ_{bool}, L) löst, dann gilt für alle $n \in \mathbb{N} \setminus \{0\}$, dass

$$K(z_n) \le \lceil \log_2(n+1) \rceil + c$$

wobei c eine von n unabhängige Konstante ist.

Beweisidee:

Wir können aus A_L , ein Programm entwerfen, dass das kanonisch n-te Wort generiert, indem wir in der kanonischen Reihenfolge alle Wörter $x \in (\Sigma_{bool})^*$ durchgehen und mit A_L entscheiden, ob $x \in L$. Dann können wir einen Counter c haben und den Prozess abbrechen, wenn der Counter c = n wird und dann dieses Wort ausgeben.

Wir sehen, dass dieses Programm ausser der Eingabe n immer gleich ist. Sei die Länge dieses Programms c, dann können wir für das n-te Wort der Sprache L, z_n , die Kolmogorov-Komplexität auf n reduzieren, bzw:

$$K(z_n) \le \lceil \log_2(n+1) \rceil + c$$

Lemma 2.6

Sei $n_1, n_2, n_3, ...$ eine steigende unendliche Folge natürlicher Zahlen mit $K(n_i) \geq \lceil \log_2 n_i \rceil / 2$. Für jedes $i \in \mathbb{N} \setminus \{0\}$ sei q_i die grösste Primzahl, die die Zahl n_i teilt. Dann ist die Menge $Q = \{q_i \mid i \in \mathbb{N} \setminus \{0\}\}$ unendlich.

Beweis: Wir beweisen diese Aussage per Widerspruch:

Nehmen wir zum Widerspruch an, dass die Menge $Q = \{q_i \mid i \in \mathbb{N} \setminus \{0\}\}$ sei endlich. Sei q_m die grösste Primzahl in Q. Dann können wir jede Zahl n_i eindeutig als

$$n_i = q_1^{r_{i,1}} \cdot q_2^{r_{i,2}} \cdot \dots \cdot q_m^{r_{i,m}}$$

für irgendwelche $r_{i,1}, r_{i,2}, ..., r_{i,m} \in \mathbb{N}$ darstellen. Sei c die binäre Länge eines Programms, dass diese $r_{i,j}$ als Eingaben nimmt und n_i erzeugt (A ist für alle $i \in \mathbb{N}$ bis auf die Eingaben $r_{i,1}, ..., r_{i,m}$ gleich).

Dann gilt:

$$K(n_i) \le c + 8 \cdot (\lceil \log_2(r_{i,1} + 1) \rceil + \lceil \log_2(r_{i,2} + 1) \rceil + \dots + \lceil \log_2(r_{i,m} + 1) \rceil)$$

Die multiplikative Konstante 8 kommt daher, dass wir für die Zahlen $r_{i,1}, r_{i,2}, ..., r_{i,m}$ dieselbe Kodierung, wie für den Rest des Programmes verwenden (z.B. ASCII-Kodierung), damit ihre Darstellungen eindeutig voneinander getrennt werden können. Weil $r_{i,j} \leq \log_2 n_i, \forall j \in \{1, ..., m\}$ erhalten wir

$$K(n_i) \le c + 8m \cdot \lceil \log_2(\log_2 n_i + 1) \rceil, \forall i \in \mathbb{N} \setminus \{0\}$$

Weil m und c Konstanten unabhängig von i sind, kann

$$\lceil \log_2 n_i \rceil / 2 \le K(n_i) \le c + 8m \cdot \lceil \log_2(\log_2 n_i + 1) \rceil$$

$$\lceil \log_2 n_i \rceil / 2 \le c + 8m \cdot \lceil \log_2 (\log_2 n_i + 1) \rceil$$

nur für endlich viele $i \in \mathbb{N} \setminus \{0\}$ gelten.

Dies ist ein Widerspruch!

Folglich ist die Menge Q unendlich.

Kapitel 3

Lemma 3.3

Sei $A = (Q, \Sigma, \delta_A, q_0, F)$ ein EA. Seien $x, y \in \Sigma^*, x \neq y$, so dass

$$\hat{\delta}_A(q_0, x) = p = \hat{\delta}_A(q_0, y)$$

für ein $p \in Q$ (also $x, y \in \mathrm{Kl}[p]$). Dann existiert für jedes $z \in \Sigma^*$ ein $r \in Q$, so dass xz und $yz \in \mathrm{Kl}[r]$, also gilt insbesondere

$$xz \in L(A) \iff yz \in L(A)$$

Beweis:

Aus der Existenz der Berechnungen

 $(q_0,x) \mid_{A}^{*} (p,\lambda)$ und $(q_0,y) \mid_{A}^{*} (p,\lambda)$ von A folgt die Existenz der Berechnungen auf xz und yz:

$$(q_0, xz) \left| \frac{*}{A} (p, z) \right|$$
 und $(q_0, yz) \left| \frac{*}{A} (p, z) \right|$ für alle $z \in \Sigma^*$.

Wenn $r = \hat{\delta}_A(p, z)$ ist, dann ist die Berechnung von A auf xz und yz:

$$(q_0, xz) \left| \frac{*}{A} (p, z) \right| \frac{*}{A} (r, \lambda) \text{ und } (q_0, yz) \left| \frac{*}{A} (p, z) \right| \frac{*}{A} (r, \lambda).$$

Wenn $r \in F$, dann sind beide Wörter xz und yz in L(A). Falls $r \notin F$, dann sind $xz, yz \notin L(A)$.

Lemma 3.4: Pumping-Lemma

Sei L regulär. Dann existiert eine Konstante $n_0 \in \mathbb{N}$, so dass sich jedes Wort $w \in \Sigma^*$ mit $|w| \ge n_0$ in drei Teile y, x und z zerlegen lässt, das heisst w = yxz, wobei

- (i) $|yx| \le n_0$,
- (ii) $|x| \ge 1$ und
- (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$.

Beweis:

Sei $L \in \Sigma^*$ regulär. Dann existiert ein EA $A = (Q, \Sigma, \delta_A, q_0, F)$, so dass L(A) = L. Sei $n_0 = |Q|$ und $w \in \Sigma^*$ mit $|w| \ge n_0$. Dann ist $w = w_1 w_2 ... w_{n_0} u$, wobei $w_i \in \Sigma$ für $i = 1, ..., n_0$ und $u \in \Sigma^*$. Betrachten wir die Berechnung auf $w_1 w_2 ... w_{n_0}$:

$$(q_0, w_1 w_2 w_3 ... w_{n_0}) \mid_{\overline{A}} (q_1, w_2 w_3 ... w_{n_0}) \mid_{\overline{A}} (q_2, w_3 ... w_{n_0}) \mid_{\overline{A}} ... \mid_{\overline{A}} (q_{n_0-1}, w_{n_0}) \mid_{\overline{A}} (q_{n_0}, \lambda)$$

In dieser Berechnung kommen n_0+1 Zustände $q_0, q_1, ..., q_{n_0}$ vor. Da $|Q| = n_0$, existieren $i, j \in \{0, 1, ..., n_0\}, i < j$, so dass $q_i = q_j$. Daher haben wir in der Berechnung die Konfigurationen

$$(q_0, w_1 w_2 w_3 ... w_{n_0}) \left| \frac{*}{A} (q_i, w_{i+1} w_{i+2} ... w_{n_0}) \right| \frac{*}{A} (q_i, w_{j+1} ... w_{n_0}) \left| \frac{*}{A} (q_{n_0}, \lambda) \right|$$

Dies impliziert

$$(q_i, w_{i+1}w_{i+2}...w_j) \stackrel{|*}{\underset{A}{\longrightarrow}} (q_i, \lambda) \tag{1}$$

Wir setzen nun $y = w_1...w_i$, $x = w_{i+1}...w_j$ und $z = w_{j+1}...w_{n_0}u$, so dass w = yxz.

Wir überprüfen nun die Eigenschaften (i),(ii) und (iii):

- (i) $yx = w_1...w_i w_{i+1}...w_i$ und daher $|yx| = j \le n_0$.
- (ii) Da $|x| \ge j i$ und i < j, ist $|x| \ge 1$.
- (iii) (1) impliziert $(q_i, x^k) | \frac{*}{A} (q_i, \lambda)$ für alle $k \in \mathbb{N}$. Folglich gilt für alle $k \in \mathbb{N}$:

$$(q_0, yx^kz) \stackrel{|*}{\underset{A}{\mid}} (q_i, x^kz) \stackrel{|*}{\underset{A}{\mid}} (q_i, z) \stackrel{|*}{\underset{A}{\mid}} (\hat{\delta}_A(q_i, z), \lambda)$$

Wir sehen, dass für alle $k \in \mathbb{N}$ die Berechnungen im gleichen Zustand $q_{end} = \hat{\delta}_A(q_i, z)$ enden. Falls also $q_{end} \in F$, akzeptiert A alle Wörter aus $\{yx^kz \mid k \in \mathbb{N}\}$. Falls $q_{end} \notin F$, dann akzeptiert A kein Wort aus $\{yx^kz \mid k \in \mathbb{N}\}$.

Lemma 3.6

Sei $L_k = \{x1y \mid x \in (\Sigma_{bool})^*, y \in (\Sigma_{bool})^k\}.$

Für alle $k \in \mathbb{N} \setminus \{0\}$ muss jeder EA, der L_k akzeptiert, mindestens 2^k Zustände haben.

Beweis:

Sei $B_k = (Q_k, \Sigma_{bool}, \delta_k, q_{0k}, F_k)$ ein EA mit $L(B_k) = L_k$.

Nach **Lemma 3.3** gilt für $x, y \in (\Sigma_{bool})^*$:

Wenn $\hat{\delta}_k(q_{0k}, x) = \hat{\delta}_k(q_{0k}, y)$, dann gilt für alle $z \in (\Sigma_{bool})^*$:

$$xz \in L(B_k) \iff yz \in L(B_k)$$

Die Idee des Beweises ist es, eine Menge S_k von Wörtern zu finden, so dass für keine zwei unterschiedlichen Wörter $x, y \in S_k$ die Gleichung $\hat{\delta}_k(q_{0k}, x) = \hat{\delta}_k(q_{0k}, y)$ gelten darf. Dann müsste B_k mindestens $|S_k|$ viele Zustände haben.

Wir wählen $S_k = (\Sigma_{bool})^k$ und zeigen, dass $\hat{\delta}_k(q_{0k}, q)$ paarweise unterschiedliche Zustände für alle $u \in S_k$ sind

Wir beweisen dies per Widerspruch.

Seien $x = x_1x_2...x_k$ und $y = y_1y_2...y_k$ für $x_i, y_i \in \Sigma_{bool}, i \in \{1, ..., k\}$ zwei unterschiedliche Wörter aus S_k .

Nehmen wir zum Widerspruch an, dass $\hat{\delta}_k(q_{0k}, x) = \hat{\delta}_k(q_{0k}, y)$.

Weil $x \neq y$, existiert ein $j \in \{1, ..., k\}$, so dass $x_j \neq y_j$. O.B.d.A. setzen wir $x_j = 1$ und $y_j = 0$. Betrachten wir nun $z = 0^{j-1}$. Dann ist

$$xz = x_1...x_{j-1}1x_{j+1}...x_k0^{j-1}$$
 und $yz = y_1...y_{j-1}0y_{j+1}...y_k0^{j-1}$

und daher $xz \in L_k$ und $yz \notin L_k$. Dies ist ein Widerspruch! Folglich gilt $\hat{\delta}_k(q_{0k}, x) \neq \hat{\delta}_k(q_{0k}, y)$ für alle paarweise unterschiedliche $x, y \in S_k = (\Sigma_{bool})^k$.

Daher hat B_k mindestens $|S_k| = 2^k$ viele Zustände.

Kapitel 4

Lemma 4.2

Für jede Mehrband-TM A existiert eine zu A äquivalente TM B.

Beweis:

Sei A eine k-Band-Turingmaschine für ein $k \in \mathbb{N} \setminus \{0\}$. Wir konstruieren eine TM B, die Schritt für Schritt A simuliert.

B speichert die Inhalte aller k+1 Bänder von A auf ihrem einzigen Band. Anschaulich gesprochen ist jedes Feld auf dem Band von B ein 2(k+1)-Tupel und jedes Element dieses Tupels ist auf einer Spur. Sei Γ_A das Arbeitsalphabet von A. Dann gilt

$$\Gamma_B = (\Sigma_A \cup \{ \circlearrowright, \$, \square \}) \times \{ \sqcup, \uparrow \} \times (\Gamma_A \times \{ \sqcup, \uparrow \})^k \cup \Sigma_A \cup \{ \sqcup, \circlearrowleft \}$$

Für ein Symbol $\alpha = (a_0, a_1, a_2, ..., a_{2k+1}) \in \Gamma_B$ sagen wir, dass a_i auf der *i*-ten Spur liegt. Daher bestimmen die *i*-ten Elemente der Symbole auf dem Band von B den Inhalt der *i*-ten Spur. Eine Konfiguration $(q, w, i, x_1, i_1, x_2, i_2, ..., x_k, i_k)$ von A ist dann in B wie folgt gespeichert.

• Der Zustand q ist in der endlichen Kontrolle von B gespeichert.

- Die 0-te Spur des Bandes von B enthält die cw (i.e. den Inhalt des Eingabebandes von A)
- Für alle $i \in \{1, ..., k\}$ enthält die (2i)-te Spur des Bandes von B den Inhalt vom i-ten Band von A (i.e. $c c x_i$).
- Für alle $i \in \{1, ..., k\}$ bestimmt die (2i+1)-te Spur des Bandes von B mit dem Symbol \uparrow die Position des Kopfes auf dem i-ten Arbeitsband von A.

Ein Schritt von A kann jetzt durch folgende Prozedur von B simuliert werden:

- 1. B liest einmal den Inhalt ihres Bandes von links nach rechts, bis sie alle k+1 Kopfpositionen von A gefunden hat, und speichert dabei in ihrem Zustand die k+1 Symbole, die an diesen Positionen stehen. (Dies kann ohne weiteres in der Zustandsmenge abgespeichert werden, da k fix ist, folglich ist dann Γ_A^k auch endlich)
- 2. Nach der ersten Phase kennt B das ganze Argument (der Zustand von A ist im Zustand von B gespeichert) der Transitionsfunktion von A und kann also die entsprechenden Aktionen (Köpfe bewegen, Ersetzen von Symbolen) von A bestimmen. Diese Änderungen führt B in einem Lauf über ihr Band von rechts nach links durch.

Kapitel 5

Satz 5.4

 $\mathcal{P}((\Sigma_{bool})^*)$ ist nicht abzählbar.

Beweis:

Wir definieren eine injektive Funktion von $f:[0,1]\to \mathcal{P}((\Sigma_{bool})^*)$ und beweisen so $|\mathcal{P}((\Sigma_{bool})^*)|\geq |[0,1]|$.

Sei $a \in [0,1]$ beliebig. Wir können a wie folgt binär darstellen: Nummer $(a) = 0.a_1a_2a_3a_4...$ mit $a = \sum_{i=1}^{\infty} a_i \cdot 2^{-i}$. Hier ist zu beachten, dass wir für eine Zahl a immer die lexikographisch letzte Darstellung. Dies tun wir, weil eine reelle Zahl 2 verschiedene Binärdarstellungen haben kann. Beispiel: $\frac{1}{2} = 0.1\overline{0} = 0.0\overline{1}$.

Für jedes a definieren wir:

$$f(a) = \{a_1, a_2a_3, a_4a_5a_6, \dots, a_{\binom{n}{2}+1}a_{\binom{n}{2}+2}\dots a_{\binom{n+1}{2}}, \dots\}$$

Da
$$f(a) \subseteq (\Sigma_{bool})^*$$
 gilt $f(a) \in \mathcal{P}((\Sigma_{bool})^*)$.

Wir haben für alle $n \in \mathbb{N} \setminus \{0\}$, dass f(a) genau ein Wort dieser Länge enthält. Nun können wir daraus folgendes schliessen:

Weil die Binärdarstellung zweier unterschiedlichen reellen Zahlen an mindestens einer Stelle unterschiedlich ist, gilt $b \neq c \implies f(b) \neq f(c), \forall b, c \in [0, 1].$

Folglich ist f injektiv und wir haben $|\mathcal{P}((\Sigma_{bool})^*)| \ge |[0,1]|$.

Da [0, 1] nicht abzählbar ist, folgt daraus:

 $\mathcal{P}((\Sigma_{bool})^*)$ ist nicht abzählbar.

Satz 5.5

 $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$.

Beweis:

Wir haben

$$L_{\text{diag}} = \{ w \mid w = w_i \text{ und } M_i \text{ akzeptiert } w_i \text{ nicht für ein } i \in \mathbb{N} \setminus \{0\} \}$$

Widerspruchsbeweis:

Sei $L_{\text{diag}} \in \mathcal{L}_{\text{RE}}$. Dann existiert eine TM M, so dass $L(M) = L_{\text{diag}}$. Da diese TM eine TM in der Nummerierung aller TM ist, existiert ein $i \in \mathbb{N}$, so dass $M_i = M$.

Wir betrachten nun das Wort w_i für diese $i \in \mathbb{N}$. Per Definition von L_{diag} , gilt:

$$w_i \in L_{\text{diag}} \iff w_i \notin L(M_i)$$

Da aber $L(M_i) = L_{\text{diag}}$, haben wir folgenden Widerspruch:

$$w_i \in L_{\text{diag}} \iff w_i \notin L_{\text{diag}}$$

Folglich gilt $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$.

Lemma 5.4

Sei Σ ein Alphabet. Für jede Sprache $L \subseteq \Sigma^*$ gilt:

$$L \leq_{\mathbf{R}} L^{\complement} \text{ und } L^{\complement} \leq_{\mathbf{R}} L$$

Beweis: Es reicht $L^{\complement} \leq_{\mathbf{R}} L$ zu zeigen, da $(L^{\complement})^{\complement} = L$ und somit dann $(L^{\complement})^{\complement} = L \leq_{\mathbf{R}} L^{\complement}$.

Sei M' ein Algorithmus für L, der immer hält $(L \in \mathcal{L}_R)$. Dann beschreiben wir einen Algorithmus B, der L^{\complement} entscheidet.

B übernimmt die Eingaben und gibt sie an M' weiter und invertiert dann die Entscheidung von M'. Weil M' immer hält, hält auch B immer und wir haben offensichtlich L(B) = L.

Korollar 5.2 (bzw. Anwendung von Lemma 5.4)

$$(L_{\mathrm{diag}})^{\complement} \notin \mathcal{L}_{\mathrm{R}}.$$

Beweis:

Aus Lemma 5.4 haben wir $L_{\text{diag}} \leq_{\mathbf{R}} (L_{\text{diag}})^{\complement}$. Daraus folgt $L_{\text{diag}} \notin \mathcal{L}_{\mathbf{R}} \implies (L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbf{R}}$. Da $L_{\text{diag}} \notin \mathcal{L}_{\mathbf{RE}}$ gilt auch $L_{\text{diag}} \notin \mathcal{L}_{\mathbf{R}}$.

Folglich gilt $(L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbf{R}}$.

Lemma 5.8

 $L_{\mathrm{H},\lambda} \notin \mathcal{L}_{\mathrm{R}}$.

Beweis:

Wir zeigen $L_{\rm H} \leq_{\rm EE} L_{\rm H,\lambda}$. Wir beschreiben einen Algorithmus B, so dass $x \in L_{\rm H} \iff B(x) \in L_{\rm H,\lambda}$. Für jede Eingabe arbeitet B wie folgt:

- Falls x von der falschen Form, dann $B(x) = M_{inf}$, wobei M_{inf} unabhängig von der Eingabe immer unendlich läuft.
- Sonst x = Kod(M) # w: Dann B(x) = M', wobei M' die Eingabe ignoriert und immer M auf w simuliert.

Wir sehen, dass M' genau dann auf λ hält, wenn $x \in L_{\mathrm{H}}$.

Daraus folgt $x \in L_H \iff B(x) \in L_{H,\lambda}$.

Kapitel 6

Lemma 6.1

Sei k eine positive ganze Zahl. Für jede k-Band Turingmaschine A, die immer hält, existiert eine äquivalente 1-Band-TM B, so dass

$$\operatorname{Space}_B(n) \leq \operatorname{Space}_A(n)$$

Beweisskizze:

Gleiche Konstruktion wie in Lemma 4.2. Wir können leicht sehen, dass B genau so viele Felder braucht, wie A.

Lemma 6.2

Zu jeder MTM A existiert eine äquivalente MTM B mit

$$\operatorname{Space}_B(n) \le \frac{\operatorname{Space}_A(n)}{2} + 2$$

Beweisskizze:

Wir fassen jeweils 2 Felder von A zu einem Feld in B zusammen. $\Gamma_B = \Gamma_A \times \Gamma_A$. Wir addieren 1 für das φ am linken Rand und 1 für das Aufrunden im Fall von ungerader Länge.

Lemma 6.3

 $TIME(t) \subseteq SPACE(t)$

Beweisskizze: In t Schritten sind höchstens t Felder beschreibbar.

Lemma 6.4

Sei S platzkonstruierbar. Für jede MTM M, für welche $\operatorname{Space}_M(w) \leq s(|w|)$ nur für alle $w \in L(M)$ erfüllt, existiert eine äquivalente MTM M', welche dies für alle $w \in \Sigma^*$ erfüllt.

Beweisskizze: Erzeuge für jede Eingabe $x \in \Sigma^*$ zuerst $0^{s(|x|)}$ auf einem zusätzlichen Band und nutze das als Platzüberwachung. Wenn M' diesen Platz überschreiten will, wird die Simulation unterbrochen und die Eingabe verworfen.

Lemma 6.5

Sei t zeitkonstruierbar. Zu jeder MTM, welche $\mathrm{Time}_M(w) \leq t(|w|)$ nur für alle $w \in L(M)$ erfüllt, existiert eine äquivalente MTM M', welche zumindest $\mathrm{Time}_M(w) \leq 2t(|w|) \in \mathcal{O}(t(|w|))$ für alle $w \in \Sigma^*$ erfüllt.

Beweisskizze: Schreibe für jede Eingabe $x \in \Sigma^*$ $0^{t(|x|)}$ auf ein zusätzliches Arbeitsband und nutze dies zur Zeitzählung. Wenn M' mehr Schritte machen will, wird die Simulation abgebrochen und die Eingabe verworfen.

Satz 6.2

Für jede Funktion s mit $s(n) \ge \log_2(n)$ gilt:

$$\mathbf{SPACE}(s(n)) \subseteq \bigcup_{c \in \mathbb{N}} \mathbf{TIME}(c^{s(n)})$$

Beweis:

Sei $L \in \mathbf{SPACE}(s(n))$. Nach Lemma 6.1 existiert eine 1-Band-TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, die **immer hält**, so dass L = L(M) und $\mathrm{Space}_M(n) \leq d \cdot s(n)$ für $d \in \mathbb{N}$ gelten. Für jede Konfiguration C = (q, w, i, x, j) von M definieren wir die **innere Konfiguration von** C als

$$In(C) = (q, i, x, j).$$

Die innere Konfiguration enthält das Eingabewort w nicht, da dies sich während einer Berechnung nicht ändert.

Wir betrachten die Menge aller inneren Konfigurationen , dass bei einer **deterministischen** TM jede Berechnung $D = C_1, C_2, C_3, ...$ von M auf einem Wort w mit |w| = n, die länger als

5 EE-Reduktionen und R-Reduktionen – Komplexitätsbeweise

Mit Inspiration von der Zsf. von Fabian Frei

Generelle Bemerkungen:

- L rekursiv (entscheidbar) $\iff L \in \mathcal{L}_{R}$
- L rekursiv aufzählbar $\iff L \in \mathcal{L}_{RE}$
- "Algorithmus" ist ein anderes Wort für eine Turingmaschine, die **immer** terminiert.

5.1 $L \in \mathcal{L}_{\mathbf{R}}$

Wir kennen zwei Methoden um dies zu beweisen:

- Wir finden eine Sprache $L' \in \mathcal{L}_R$ und zeigen $L \leq_R L'$. (Meistens ein wenig umständlich)
- Direkter Beweis: Eine TM (bzw. ein Algorithmus) A beschreiben, so dass L(A) = L und A immer terminiert.

5.2 $L \notin \mathcal{L}_{\mathbf{R}}$

Wir kennen hier auch 3 Arten:

- Folgt sofort aus $L \notin \mathcal{L}_{RE}$, da $\mathcal{L}_{R} \subset \mathcal{L}_{RE}$.
- Wir wählen eine Sprache L', so dass $L' \notin \mathcal{L}_R$ und beweisen $L' \leq_{R/EE} L$. Geeignete Sprachen als L' sind: $L^{\complement}_{empty}, L^{\complement}_{diag}, L_H, L_U, L_{H,\lambda}$. (Alle im Buch bewiesen)

• Satz von Rice

Für den Satz von Rice:

- Wir können mit diesem Satz nur $L \notin \mathcal{L}_{R}$ beweisen!
- Wir haben folgende Bedingungen:
 - 1. $L \subseteq \text{KodTM}$
 - 2. $\exists \text{ TM } M \colon \text{Kod}(M) \in L$
 - 3. $\exists \text{ TM } M \colon \text{Kod}(M) \notin L$
 - 4. $\forall \text{ TM } M_1, M_2: L(M_1) = L(M_2) \implies (\text{Kod}(M_1) \in L \iff \text{Kod}(M_2) \in L)$

Für den letzten Punkt (4) muss man überprüfen, ob in der Definition von $L = \{ \text{Kod}(M) \mid M \text{ ist TM und } ... \}$ überall nur L(M) vorkommt und nirgends M direkt. Beziehungsweise reicht es, wenn man die Bedingung so umschreiben kann, dass sie nur noch durch L(M) beschrieben ist.

5.3 $L \in \mathcal{L}_{RE}$

Wir beschreiben eine TM M mit L(M) = L, die nicht immer halten muss.

Meistens muss die TM eine Eigenschaft, für alle möglichen Wörter prüfen. (Bsp. $Kod(M_1) \in L_H^{\complement}$: Wir gehen alle Wörter durch, um dasjenige zu finden, für das M_1 hält.)

Wir verwenden oft einen von den folgenden 2 Tricks, um dies zu tun:

- Da es für jede NTM M', eine TM M gibt, so dass L(M') = L(M), können wir eine solche definieren, für die L(M') = L gilt.
- Die andere Variante, ist die parallele Simulation von Wörtern, bei dem man das Diagonalisierungsverfahren aus dem Buch verwendet. (Bsp: Beweis $L_{\text{empty}} \in \mathcal{L}_{\text{RE}}$, S. 156 Buch)

5.4 $L \notin \mathcal{L}_{RE}$

Hier haben wir 2 mögliche (offizielle) Methoden:

- Diagonalisierungsargument mit Widerspruch, wie beim Beweis von $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$.
- Widerspruchsbeweis mit der Aussage $L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE} \implies L \in \mathcal{L}_{R}$.

Inoffiziell könnten wir auch die EE-Reduktion verwenden, wird aber weder in der Vorlesung noch im Buch erwähnt.

5.5 EE- und R-Reduktionen: Tipps und Tricks

- Die vorgeschaltete TM A muss immer terminieren! I.e. sie muss ein Algorithmus sein.
- Die Eingabe sollte immer zuerst auf die Richtige Form überprüft werden! Auch im Korrektsheitsbeweis, sollte dieser Fall als erstes abgehandelt werden.
- Für Korrektheit müssen wir immer $x \in L_1 \iff A(x) \in L_2$ beweisen.
- Wir verwenden meistens folgende 2 Tricks:
 - 1. Transitionen nach q_{accept} oder q_{reject} umleiten nach q_{reject}/q_{accept} oder einer Endlosschleife.
 - 2. TM M' konstruieren, die ihre Eingabe ignoriert und immer dasselbe tut (z.B. eine TM dessen Kodierung gegeben ist, auf ein fixes Wort simuliern).
- Die Kodierung einer TM generieren, dessen Sprache gewisse Eigenschaften hat(z.B. sie akzeptiert alle Eingaben, läuft immer unendlich etc.)

6 Polynomialzeitreduktionen

Typische Aufgabe: L ist NP-Vollständig. Dann müssen wir (i) L in NP und (ii) L ist NP-schwer zeigen.

- (i) Wir beschreiben eine NTM M, so dass L(M) = L. M errät (nichtdeterministisch) ein Zertifikat und verfiziert dies (deterministisch) in Polynomialzeit. M akzeptiert, wenn die Verfikation erfolgreich ist. M akzeptiert $\iff M$ hat eine akzeptierende Berechnung
- (ii) Wir nehmen eine Sprache L' die NP-Schwer ist und zeigen $L' \leq_p L$.

Beweisidee:

Wir zeigen eine Reduktion indem wir einen Polynomialzeit Algorithmus A beschreiben, so dass $x \in L \iff A(x) \in L'$. Wir müssen also folgende 2 Punkte für A beweisen:

- $-x \in L \iff A(x) \in L'$ (meist recht komplex, beide Richtungen einzeln beweisen)
- A läuft in Polynomialzeit (meist trivial, es reicht eine High-Level Begründung zu geben)
- Wir könnten es auch direkt beweisen(wie Beweis vom Satz von Cook). Dies ist aber meist zu komplex.

7 Grammatiken

Beispiel 10.6

Sei $L = \{a^n b^n c^n \mid n \in \mathbb{N}\}$

Beweis durch Widerspruch:

Sei L kontextfrei. Dann gilt das Pumping Lemma für kontextfreie Sprachen.

Sei n_L die Konstante aus dem Pumping Lemma.

Dann wählen wir $z = a^{n_L} b^{n_L} c^{n_L}, |z| \ge n_L, z \in L.$

Dann gilt für jede Partition z = uvwxy mit (i) $|vx| \ge 1$ und (ii) $|vwx| \le n_L$, auch (iii) $\{uv^iwx^iy \mid i \in \mathbb{N}\}$.