Calcolatori Elettronici (12AGA) – esame del 8.9.2015 - A

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Tempo: 15 minuti.

1	Si consideri l'istruzione			
	ADD VAR, AX			
	dove VAR è una variabile su 16 bit in			
	memoria. Sapendo che il codice macchina			
	dell'istruzione occupa 4 byte, quanti accessi in			
	memoria richede l'esecuzione dell'istruzione in un sistema 8086?			
2	Si confrontino un sommatore con architettura	Il sommatore con architettura Carry Lookahead è più veloce di quello con architettura	Α	
2	Ripple Carry e un altro con architettura Carry	Ripple Carry.	A	
	Lookahead. Quale delle seguenti affermazioni	Il sommatore con architettura Carry Lookahead richiede meno hardware di quello con	В	
	è vera?	architettura Ripple Carry.	<i>D</i>	
		Il sommatore con architettura Carry Lookahead è più facile da progettare di quello con	С	
		architettura Ripple Carry.		
		Il sommatore con architettura Carry Lookahead utilizza per ciascun calcolo un numero	D	
		di colpi di clock minore di quello con architettura Ripple Carry.		
3	Che cos'è un microcontrollore?	Un processore destinato specificatamente ad applicazioni robotiche	A	
		Un processore con un set ridotto di istruzioni	В	
		Un dispositivo destinato ad applicazioni special purpose, che integra sullo stesso	С	
		dispositivo un processore, alcuni moduli di memoria, e alcune periferiche		
		Un processore integrato a bordo di un singolo circuito integrato	D	
4	Si consideri una cache direct-mapped	0	A	
	composta da 512 linee da 32 byte ciascuna che	1	В	
	usa la tecnica nota come write-back. Quanti	512	C	
	dirty-bit esistono nella cache?	16K	D	
5	Dove è memorizzata la Interrupt Vector Table	Nella memoria ROM del sistema	Α	
	in un sistema a microprocessore?	Nella memoria RAM del sistema	В	
		Nella cache	С	
		Nell'Interrupt Controller	D	
6	Si desidera utilizzare la porta A di un 8255 in	Modo 0	Α	
	modo che sia collegata con una connessione	Modo 1	В	
	bidirezionale a una periferica e scateni una	Modo 2	С	
	richiesta di interrupt ogni volta che la	L'8255 non prevede un simile meccanismo di funzionamento	D	
	periferica connessa è pronta a inviare o			
	ricevere un nuovo dato. In quale modo va			
7	programmata tale porta? Si consideri un banco di memoria composto da			
′	1M parole da 24 bit ciascuna. Quanti moduli			
	composti ciascuno da 256K parole da 8 bit			
	ciascuna sono richiesti per la sua			
	realizzazione?			
8	Quali operazioni esegue l'istruzione IRET?	Ripristina dallo stack il valore di IP (ed eventualmente CS)	Α	
Ŭ	Common coogue i isuazione inchi:		• •	
		Ripristina dallo stack il valore di IP (ed eventualmente CS) e del registro di stato (PSW)	В	
		Ripristina dallo stack il valore di IP (ed eventualmente CS), del registro di stato (PSW)	C	
		e dei registri modificati dalla procedura		
		Ripristina dallo stack il valore di IP (ed eventualmente CS), del registro di stato (PSW)		
		e dei registri modificati dalla procedura, e segnala all'8259 che è terminata la procedura di servizio dell'interrupt		
9	Sia dato un vettore di word VET contenente N	di servizio den interrupt		
7	valori interi con segno (N è una costante			
	predefinita). Si scriva un frammento di codice			
	che calcoli il valore minimo tra gli elementi di			
	VET e lo scriva in AX.			
	1			

Risposte corrette

1	2	3	4	5	6	7	8	9
4	A	C	C	В	С	12	В	

Domanda 1

In un sistema 8086 ogni accesso in memoria comporta la lettura o scrittura di 16 bit. Quindi l'istruzione in questione richiede

- 2 accessi per il fetch
- 1 accesso per leggere VAR
- 1 accesso per scrivere VAR.

In totale sono necessari 4 accessi.

Domanda 9 (esempio di soluzione)

MOV CX, N

LEA BX, VET MOV AX, 07FFFh

; valore massimo positivo

CMPCiclo: AX, [BX]

JL Dopo

MOV AX, [BX]

Dopo: ADD BX, 2

LOOP Ciclo

Nome, cogn	ome, matricola	 	

Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.

Si scrivano le microistruzioni eseguite da un processore avente l'architettura in figura durante l'esecuzione dell'istruzione ADD R1, [R2], R3

Tale istruzione somma il contenuto di R3 al contenuto della cella di memoria il cui indirizzo è scritto in R2, e scrive il risultato in R1.

Si illustri brevemente il meccanismo di arbitraggio centralizzato di un bus noto come *daisy chaining*, corredando la propria risposta di un disegno esplicativo delle connessioni necessarie. Si utilizzi come esempio il caso in cui i dispositivi connessi siano 5, e si riportino i segnali necessari in tale situazione.

12	Si disegni l'architettura di un Flip Flop di tipo D in termini di porte logiche e se ne illustri il funzionamento utilizzando la relativa
	tabella degli stati.
13	Si descrivano le operazioni eseguite da un sistema a processore dotato di DMA Controller (DMAC) a partire dal momento in cui il
	processore decide di eseguire un trasferimento da memoria a periferico utilizzando il DMAC sino al momento in cui l'intera procedura di trasferimento è conclusa.

Esercizio di programmazione

sino a 12 punti – è possibile consultare qualunque materiale cartaceo - tempo: 60 minuti

Sia dato un vettore *vett_input* di interi con segno su 16 bit di dimensione N (N dichiarato come costante), che rappresenta una funzione definita in N punti. Si vuole interpolare linearmente ogni coppia (*vett_input*[j], *vett_input*[j+1]), ossia si vuole calcolare il valor medio di ogni coppia di punti.

Si scriva una procedura interpola che riceve tramite stack

- l'offset del vettore in input vett input
- il numero di elementi N
- l'offset del vettore in output *vett_output*.

vett_output è un vettore di interi con segno su 16 bit di dimensione 2 * N - 1, contenente sia i valori di ingresso sia quelli interpolati. Più precisamente:

$$vett_output[i] = \begin{cases} vett_input\left[\frac{i}{2}\right] & \text{se i è pari} \\ \frac{vett_input\left[\frac{i-1}{2}\right] + vett_input\left[\frac{i+1}{2}\right]}{2} & \text{se i è dispari} \end{cases}$$

Si noti che il valore medio fra ogni coppia di elementi di *vett_input* è sicuramente rappresentabile su 16 bit, ma ciò non vale a priori per la somma di due elementi consecutivi di *vett_input*. È necessario quindi effettuare una scelta opportuna dell'ordine dei calcoli e della dimensione dei dati intermedi in modo che <u>non</u> si verifichi overflow nei calcoli.

Di seguito un esempio di programma chiamante:

```
N EOU 13
.MODEL small
.STACK
.DATA
                DW 0, 782, 975, 434, -434, -975, -782
DW 0, 782, 975, 434, -434, -975
vett input
vett_output DW 2 * N - 1 DUP (?)
.CODE
.STARTUP
[...]
PUSH OFFSET vett input
PUSH N
PUSH OFFSET vett output
CALL interpola
[...]
.EXIT
```

Di seguito si fornisce una rappresentazione grafica con i valori di vett_input indicati nel codice:

vett_ouput contiene i valori di *vett_input* alternati con i valori interpolati. Nell'esempio riportato, dopo la chiamata della funzione **interpola**, *vett_output* = [0, 391, 782, 878, 975, 704, 434, 0, -434, -705, -975, -879, -782, -391, 0, 391, 782, 878, 975, 704, 434, 0, -434, -705, -975].