University of Engineering & Technology, Peshawar

Programme: BSc Computer Systems Engineering

Semester: 3rd Semester

Paper: Digital Logic Design Date: 10th March, 2021

Exam Type: Final Term

Allowed Time: 180 Minutes	Max Marks: 50
Student's Name:	
Student's Registration :	

Instructions:

- 1- This exam is OPEN books/notes/Internet.
- 2- Sharing of books, notes and other materials during this exam is not permitted.
- 3- Answer ALL questions on the question sheet.
- 4- There are 3 problems (and 9 questions) in total. Some questions are harder than others. Answer the easy ones first to maximize your score.
- 5- Questions will not be interpreted during the exam.

Probl	em 1: Decoders and Encoders (20 pts.)
1(a)	(6 pts.)
. ,	The truth table shown below is for a 3-line to 8-line binary Decoder circuit:

<u>lr</u>	npu	ts	Outputs							
С	В	Α	D_0	D_1	D ₂	Dз	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

For each of the eight output lines, there is a Boolean expression describing its function. Write the Boolean expressions for output lines D_2 , D_6 , and D_7 .

Solution:

$D_2 = _{-}$	 	
D ₆ = _		
_ D ₇ =		

1(b)	Design a combinational circuit using a Decoder and OR gates. The circuit accepts a 2-bit number and generates an output binary number equal to the square of the input number.
Solutio	n:
	Truth Table:
	Design:

1(c) (5 pts.)
Construct a 4x16 Decoder using 2x4 Decoders.
Solution:
1(d) (3 pts.)
What is a priority Encoder, and how does it differ from a regular Encoder?
Solution:

Problem 2: Multiplexers and De-Multiplexers	(15 pts.)
2(a) (5 pts.)	
Construct an 8x1 Multiplexer using two 4x1 Multiplexe	ers and a 2x1 Multiplexer.
Solution:	

2(b)	(5 pts.)
. ,	Implement the following function using a Multiplexer
	$F(A, B, C) = \sum_{m} (1, 4, 6, 7)$

Solution:

2(c)
Solution:
Truth Table:
Logic Circuit:

Problem 3: Latches and Flip-Flops	(15 pts.)
3(a)	(5 pts.)
What is the difference betwee	n a Latch and a Flip-Flop?
Solution:	

3(b) (10 pts.)

The waveforms in Fig 1 are applied to the J, K and CLK inputs of the positive edgetriggered JK flip-flop shown in Fig 2. Determine the Q output, starting in RESET state.

Fig 1. Input waveforms

	INPUTS			PUTS		
J	K	CLK	Q	Q	COMMENTS	
0	0	1	Q_0	\overline{Q}_0	No change	
0	1	Î	0	1	RESET	
1	0	1	1	0	SET	$\rightarrow c$
1	t	1	\overline{Q}_0	Q_0	Toggle	
= clock	transition LOW	to HIGH				
= outp	ut level prior to	clock transition				

Fig 2. Truth table (left) and logic symbol (right) for a positive edge-triggered JK flip-flop

Solution:

