

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЗВЕЗД И ПЛАНЕТЫ В ТРОЙНОЙ ЗВЕЗДНОЙ СИСТЕМЕ

Студент: Завойских Евгения Васильевна

Руководитель: Рязанова Наталья Юрьевна

Цель и задачи

Целью данной курсовой работы является создание ПО для моделирования движения звезд и планеты в тройной звездной системе.

Задачи:

- выделить объекты сцены и выбрать модель их представления;
- проанализировать и выбрать алгоритмы построения реалистичного трехмерного изображения;
- разработать физическую модель поведения объектов;
- разработать программу на основе выбранных алгоритмов;
- провести исследование на основе разработанной программы.

Описание моделей объектов сцены

- Камера наблюдатель. Характеризуется своим пространственным положением и направлением просмотра.
- Планета сфера. Характеризуется положением центра, массой и радиусом.
- Звезды сферы, излучающие свет во все стороны (источники света).
 Характеризуются положением центра, массой, радиусом и интенсивностью света.

Выбрано полигональное представление объектов.

Способ хранения полигональной сетки - список граней.

Алгоритм удаления невидимых линий и поверхностей

- Алгоритм, использующий z-буфер.
- Алгоритм обратной трассировки лучей.
- Алгоритм Робертса.
- □ Алгоритм Варнока.

Алгоритм закрашивания

- □ Простая закраска.
- □ Закраска по Гуро.
- □ Закраска по Фонгу.

Модель освещения

- Модель Ламберта.
- □ Модель Фонга.

Алгоритм триангуляции сферы

- Задать число сечений (параллелей) и количество разбиений для каждого сечения (меридиан).
- На каждом сечении подсчитать углы поворота радиуса вектора для очередной точки грани.
- На каждом сечении найти нужные точки, разделив окружность на равные части.
- Соединив точки, получим сферу, разбитую на треугольники.

Объединенный алгоритм z-буфера и закраски по Гуро

Алгоритм перемещения сферы

Для нахождения точек орбиты сферы используется метод численного интегрирования Верле. Это алгоритм позволяет определить следующее положение тела, зная текущее и предыдущее положения без использования скорости.

$$\vec{r}(t+\Delta t) = 2\vec{r}(t) - \vec{r}(t-\Delta t) + \vec{a}(t)\Delta t^2 + O(\Delta t^4)$$

$$\vec{a}(t) = \frac{\vec{F}(t)}{m}$$
 $\vec{F} = G \frac{m_1 * m_2}{r^3} * \vec{r}(t)$

Язык и среда программирования

- В качестве языка программирования выбран C++.
- В качестве среды программирования выбран QtCreator

Диаграмма классов

Интерфейс программы

Эксперимент

 В рамках данной курсовой работы проведено исследование зависимости времени отрисовки сцены от количества полигонов, аппроксимирующих объекты сцены. Критерием измерения выбрано среднее время отрисовки кадра.

Количество полигонов сферы	Время, мкс
100	42052
300	48833
500	53089
800	60611
1000	67723
1200	70069
1400	75393

Заключение

В ходе работы над курсовым проектом была достигнута поставленная цель: создание ПО для моделирования движения звезд и планеты в тройной звездной системе. Были выполнены следующие задачи:

- выделены объекты сцены и выбрана модель их представления;
- проанализированы и выбраны необходимые существующие алгоритмы построения реалистичного трехмерного изображения;
- разработана физическая модель поведения объектов;
- разработана программа на основе выбранных алгоритмов;
- проведено исследование на основе разработанной программы.