Lista 2 - Séries de Potências

Séries de potências

- 1. O que é uma série de potências?
- 2. (a) O que é o raio de convergência de uma série de potências? Como você pode determiná-lo?
 - (b) O que é o intervalo de convergência de uma série de potências? Como você pode determiná-lo?
- 3. Encontre o raio de convergência e o intervalo de convegência das séries.
 - (a) $\sum_{n=1}^{\infty} (-1)^n x^n$
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$ (c) $\sum_{n=1}^{\infty} \frac{x^n}{2n+1}$

 - (d) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+1}$ (e) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$

 - (f) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2 x^n}{2^n}$
 - (g) $\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$

 - (i) $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$ (i) $\sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^n}{2n+1}$ (j) $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2+1}$

 - (k) $\sum_{n=1}^{\infty} \frac{n}{4^n} (x+1)^n$

 - (l) $\sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3}$ (m) $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n}}$

 - (n) $\sum_{n=1}^{\infty} \frac{4^n x^n}{n!}$ (o) $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^3 3^n}$
- 4. Verdadeiro ou falso? Justifique! Sabendo que a série $\sum_{n=0}^{\infty} c_n 4^n$ é convergente pode-se dizer que que:
 - (a) a série $\sum_{n=0}^{\infty} c_n (-2)^n$ é convergente.
 - (b) a série $\sum_{n=0}^{\infty} c_n(-4)^n$ é convergente.
- 5. Sendo k um inteiro positivo, determine o raio de convergência da série

$$\sum_{n=0}^{\infty} \frac{(n!)^k x^n}{(kn)!}$$

6. Determine o intervalo de convergência da série

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(n+1)! 2^{2n+1}}$$

1

- 7. Determine o intervalo de convergência da série e, dentro desse intervalo, encontre a soma da série como uma função de x.
 - (a) $\sum_{n=1}^{\infty} 3^n x^n$
 - (b) $\sum_{n=1}^{\infty} \left(\frac{\sqrt{x}}{2} 1 \right)^n$
 - (c) $\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{4^n}$
 - (d) $\sum_{n=1}^{\infty} (e^x 4)^n$
- 8. Encontre uma representação em série de potências para a função e determine o intervalo de convergência.
 - (a) $f(x) = \frac{1}{1+x}$
 - (b) $f(x) = \frac{3}{1-x^4}$
 - (c) $f(x) = \frac{x}{9+x^2}$
 - (d) $f(x) = \frac{1+x}{1-x}$
 - (e) $f(x) = \frac{1}{x+10}$
 - (f) $f(x) = \frac{x}{2x^2 + 1}$
- 9. Use derivação para encontrar a representação em série de potências para a função

$$f(x) = \frac{1}{(1+x)^2}$$

Qual é o raio de convergência?

10. Use o exercício anterior para encontrar uma série de potências para

$$f(x) = \frac{1}{(1+x)^3}$$

11. Agora encontre uma série de potências para

$$f(x) = \frac{x^2}{(1+x)^3}$$

Séries de Taylor e Maclaurin

- 12. Se $f(x) = \sum_{n=0}^{\infty} b_n (x-5)^n$ escreva uma fórmula adequada para o coeficiente b_8 .
- 13. Se $f^{(n)}(0) = (n+1)!$ para $n = 0, 1, 2, 3, \dots$ encontre a série de Maclaurin de f e seu raio de convergência.
- 14. Encontre a série de Taylor de f centrada em 4 sabendo que

$$f^{(n)}(4) = \frac{(-1)^n n!}{3^n (n+1)}$$

Qual o raio de convergência da série?

- 15. Encontre a série de Maclaurin de f(x) a partir da definição de uma série de Maclaurin. Encontre também o raio de convergência da série.
 - (a) $f(x) = (1-x)^2$
 - (b) $f(x) = \ln(1+x)$
 - (c) $f(x) = \operatorname{sen}(\pi x)$
 - (d) $f(x) = 2^x$
 - (e) $f(x) = \cos 3x$
 - (f) $f(x) = x e^x$
 - (g) f(x) =
 - (h) f(x) =
- 16. Encontre a série de Taylor de f(x) centrada no valor dado de a. Encontre também o raio de convergência da série.
 - (a) $f(x) = \sin x, \quad a = \frac{\pi}{3}$
 - (b) $f(x) = x^4 3x^2 + 1$, a = 1
 - (c) $f(x) = \ln x$, a = 2
 - (d) $f(x) = e^{2x}$, a = 3
 - (e) $f(x) = \cos x$, $a = \pi$
 - (f) $f(x) = \frac{1}{x}$, a = -3
 - (g) $f(x) = \sqrt{x}, \quad a = 16$
- 17. Mostre que a série obtida no exercício 15c representa sen (πx) para todo x.
- 18. Mostre que a série obtida no exercício 16a representa sen x para todo x.
- 19. Use a série binomial para expandir a função como série de potências. Examine o raio de convergência.

- (a) $\sqrt[4]{1-x}$
- (b) $\sqrt[3]{8+x}$
- (c) $\frac{1}{(2+x)^3}$
- (d) $(1-x)^{2/3}$
- 20. Use uma série de Maclurin da tabela ?? para obter a série de Maclaurin da função
 - (a) $f(x) = e^x + e^{2x}$
 - (b) $f(x) = \cos(\pi x/2)$
 - (c) $f(x) = e^x + 2e^{-x}$
 - (d) $f(x) = x^2 \ln(1+x^3)$
 - (e) $f(x) = \frac{x}{\sqrt{4+x^2}}$
 - (f) $f(x) = \sin^2 x$ (Dica: use $sen^2 x =$ $\frac{1}{2}(1-\cos 2x))$
- 21. Use a série de Maclaurin de $\cos x$ para calcular $\cos 5^{\circ}$ com precisão de cinco casas decimais.
- 22. Encontre a soma da série dada.
 - (a) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$
 - (b) $\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{6^{2n}(2n)!}$
 - (c) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{n5^n}$
 - (d) $\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n1}}{4^{2n+1}(2n+1)!}$

 - (e) $\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$ (f) $3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \cdots$
- 23. Encontre os polinômios de Taylor até ordem 6 de $f(x) = \cos x$ centrados em a = 0. Calcule f e esses polinômios em $x = \pi/4$, $\pi/2 \ \mathrm{e} \ \pi$.
- 24. Encontre os polinômios de Taylor até ordem 3 de $f(x) = \frac{1}{x}$ centrados em a = 1. Calcule f e esses polinômios em x = 0, 9 e
- 25. Encontre o polinômio de Taylor $T_3(x)$ de f centrado em a.
 - (a) $f(x) = x + e^{-x}$, a = 0
 - (b) $f(x) = \cos x$, $a = \frac{\pi}{2}$
 - (c) $f(x) = e^{-x} \sin x$,
 - (d) $f(x) = \ln x$, a = 1
 - (e) $f(x) = x \cos x$, a=0
 - (f) $f(x) = xe^{-2x}$, a = 0
 - (g) $f(x) = \frac{1}{x}$, a = 2

- 26. Aproxime f por um pilnômio de Taylor de ordem n no número a. Em seguida use a Desigualdade de Taylor para estimar a precisão da aproximação $f(x) \approx T_n(x)$ quando x estiver no intervalo dado.
 - (a) $f(x) = \sqrt{x}$, a = 4, n = 2, $4 \le x \le 4.2$
 - (b) $f(x) = x^{-2}$, a = 1, n = 2, $0, 9 \le x < 1, 1$
 - (c) $f(x) = x^{2/3}$, a = 1, n = 3, $0, 8 \le x < 1, 2$
 - (d) $f(x) = \sin x$, $a = \pi/6$, n = 4, $0 \le x \le \pi/3$
 - (e) $f(x) = e^{x^2}$, a = 0, n = 3, $0 \le x \le 0.1$
 - (f) $f(x) = x \ln x$, a = 1, n = 3, $0, 5 \le x \le 1, 5$
 - (g) $f(x) = x \sin x$, a = 0, n = 4, $-1 \le x \le 1$

- 27. Use a informação do exercício 25b para estimar cos 80° com precisão de cinco casas decimais.
- 28. Use a informação do exercício 26d para estimar sen 38° com precisão de cinco casas decimais.
- 29. Use a Desigualdade de Taylor para determinar o número de termos da série de Maclaurin de e^x são necessários para estimar $e^{0,1}$ com precisão de 0,00001.
- 30. Use o Teorema da Estimativa de Séries Alternadas ou a Desigualdade de Taylor para estimar os valores de x para os quais a aproximação dada tem precisão dentro do erro estabelecido.
 - (a) $\sin x \approx x \frac{x}{6} \ (|Erro| < 0,001)$
 - (b) $\cos x \approx 1 \frac{x^2}{2} + \frac{x^4}{24} (|Erro| < 0,005)$