Predictive models for P&C insurance

Himchan Jeong

University of Connecticut

Data Science in Action

10 April, 2018

Purpose of the Project

- Introduce current practice done by property and casualty (P&C) insurance company
- Suggest the more sophisticated predictive model which can outperform the benchmarks

Current Approches for Claim Modeling

- (1) Two-parts model for frequency and severity
- (2) Tweedie model

Pitfalls in Current Practices

- (1) Dependence between the frequency and the severity
- (2) Longitudinal property of data structure.
 - For example, if we observed a policyholder i for T_i years, then we have following observation $N_{i1}, N_{i2}, \ldots, N_{iT_i}$, which may not be identically and independently distributed.

Possible Alternatives for the Benchmarks

- For dependence between the frequency and severity
 - Set $\mathbb{E}\left[\overline{C}|N\right] = e^{X\beta + N\theta}$
- For longitudinal property
 - Random effects model
- Non-traditional approaches
 - Neural network
 - Regression for each group classified by decision tree

Data Description

- Here I use a public dataset on insurance claim, provided by Wisconsin Propery Fund.
 (https://sites.google.com/a/wisc.edu/jed-frees/)
- It consists of 5,677 observation in traning set and 1,098 observation in test set.
- It is a longitudinal data with more or less 1,234 policyholder, followed for 5 years.
- Since the dataset includes information on multi-line insurance, here I used building and contents (BC), inland marine (IM), and new motor vehicle (PN) claim information.

Observable Policy Characteristics used as Covariates

Categorical	Description		Pro	portions
variables				
TypeCity	Indicator for city entity:	Y=1	14 %	
TypeCounty	Indicator for county entity:	Y=1	5.78 %	
TypeMisc	Indicator for miscellaneous entity:	Y=1	11.04 %	
TypeSchool	Indicator for school entity:	Y=1	28.17 %	
TypeTown	Indicator for town entity:	Y=1	17.28 %	
TypeVillage	Indicator for village entity:	Y=1	23.73 %	
NoClaimCreditBC	No BC claim in prior year:	Y=1	32.83 %	
NoClaimCreditIM	No IM claim in prior year:	Y=1	42.1 %	
NoClaimCreditPN	No PN claim in prior year:	Y=1	10.96 %	
Continuous		Minimum	Mean	Maximum
variables				
CoverageBC	Log coverage amount of BC claim in mm	0	37.05	2444.8
InDeductBC	Log deductible amount for BC claim	0	7.14	11.51
CoverageIM	Log coverage amount of IM claim in mm	0	0.85	46.75
InDeductIM	Log deductible amount for IM claim	0	5.34	9.21
CoveragePN	Log coverage amount of PN claim in mm	0	0.16	25.67

Summary Statistics for Frequency

		Minimum	Mean	Variance	Maximum
FreqBC	number of BC claim in a year	0	0.88	37.31	231
FreqIM	number of IM claim in a year	0	0.06	0.1	6
FreqPN	number of PN claim in a year	0	0.16	0.92	19

In terms of frequency, IM has relatively moderate dispersion of the number of claim per year, whereas BC has very wide range. Usually, dataset used to calibrate two-parts GLM in practice rarely contains a policy which has more than six claims in a year. So we may need a different methodology for modelling such unusual high frequency.

Summary Statistics for Frequency (Cont'D)

Table 1: Distribution of frequency per claim type

Count	ВС	IM	PN
0	3993	5441	5360
1	997	182	155
2	333	40	51
3	136	6	33
4	76	4	19
5	31	2	16
6	19	2	13
7	19	0	7
8	16	0	4
9	5	0	4
>9	52	0	15

Summary Statistics for Severity

		Minimum	Mean	Variance	Maximum
log(yAvgBC)	(log) avg size of BC claim in a year	5.17	8.76	1.86	16.37
log(yAvgIM)	(log) avg size of IM claim in a year	4.09	8.45	2.23	13.09
log(yAvgPN)	(log) avg size of PN claim in a year	3.56	7.63	1.22	10.71

Entertained Models

- Independent Two-parts $[\mathbb{E}[C|n] = \exp(X\beta)]$: Poisson-Gamma GLM, ZIP-Gamma GLM, neural network
- Dependent Two-parts $[\mathbb{E}[C|n] = \exp(X\beta + n\theta)]$: Poisson-Gamma GLM, ZIP-Gamma GLM, neural network
- One-part $[\mathbb{E}[S] = \exp(X\eta)]$: Tweedie GLM, neural network

Fitting Frequency in Neural Network

Fitting Average Severity in Neural Network

Fitting Average Severity in Neural Network

Fitting Aggregate Claim in Neural Network

Retrieving Prediction from fitted NN Model

When I got (a few) negative predictive values for frequency and total claim, I rounded up those values to 0.

Retrieving Prediction from fitted NN Model (Cont'D)

In case of dependent two-part NN, we need to use n as a covariate so we need to first estimate n with fitted frequency model.

Validation Measures for Model Comparison

- Mean Squared Error
- Gini Index
 - Gini index is equal to $2\times$ the area between the line of equality and the Lorenz curve drawn below.
 - In Lorenz curve, x-coordinate stands for cumulative proportion for number of policyholders, whereas y-coordinates stands for cumulative proportion of actual loss ordered by estimated premium.
 - Therefore, it measures the ability of differentiation of risk per model.

Gini Indices for BC Claim

Figure 1: The Lorenz curve and the Gini index values for BC claim

Gini Indices IM Claim

Figure 2: The Lorenz curve and the Gini index values for IM claim

Gini Indices PN Claim

Figure 3: The Lorenz curve and the Gini index values for PN claim

MSEs for all Type of Claim per Model

MSEs

```
##
                        BC
                                  TM
                                           PN
  Indep Pois-Gamma 314562.2 12541.825 4349.914
## Dep Pois-Gamma 183466.2 6647.310 4349.914
## Indep ZIP-Gamma
                  305939.2 7983.752 3655.829
                  203612.1 6939.829 3672.773
## Dep ZIP-Gamma
              142480.4 6720.742 4070.260
  Indep-2P NN
                  142480.2 6720.774 4070.372
  Dep-2P NN
## 1P NN
                   141360.4 6684.799 3983.987
## Tweedie GLM
                  182278.8 30998.432 4401.668
```

Analysis of the Results

- According to the MSE and Gini indices of given models, in BC claim one part neural network outperforms the other models, whereas two-part dependent GLM was the best for IM and PN claim.
- Note that the difference of performance between neural network and traditional GLM was greater when observed claim had a lot of outlier.
- Therefore, we may consider using neural network for predictive modeling of non-trivial dataset, whereas traditional GLM still works well with trivial dataset.

Need of Compromise between two Objectives

Figure 4: Interpretability and Performance

Himchan Jeong

Future Works for this Project

- Now we have two categories of benchmarks; one is GLM (for interpretability) and the other is neural network.
- Following work should be refining current GLM by incorporating longitudinal property or more sophisticated distrubutional assumption.