RAPPELS ET BASES

TDs Modélisation Charge Sinistre – 2019-2020 Romain Gauchon

1. Fonctions caractéristiques:

- (a) Rappeler la définition et les principales propriétés des fonctions caractéristiques Φ_X .
- (b) Montrer que si X et Y suivent des lois de Poisson indépendantes de paramètres λ_1 et λ_2 , alors X+Y suit une loi de Poisson de paramètre $\lambda_1+\lambda_2$.

2. Transformée de Laplace et fonction génératrice des probabilités

- (a) Soit X une variable aléatoire continue positive de densité f. Rappeler la définition et les principales propriétés de la transformée de Laplace L_X .
- (b) Soit N une variable aléatoire discrète. Rappeler la définition et les principales propriétés de la fonction génératrice des probabilités G_N .
- (c) Soit (X_i) une famille de va iid continues positives de densité f, indépendantes de N. Soit $S = \sum_{i=1}^{N} X_i$. Montrer que $L_S = G_N \circ L_f$.

3. Lien variance / variance conditionnelle

Soit X, Y deux va discrètes. Montrer que

$$V(X) = -\mathbb{E}(X)^2 + \sum_{i=0}^{\infty} \mathbb{P}(Y = y_i)(V(X|Y = y_i) + \mathbb{E}(X|Y = y_i)^2).$$

4. Modèle de Poisson composé

Soit (X_i) une famille de va iid de loi exponentielle de paramètre θ et de densité $f_X(x) = \theta e^{-\theta x}$ pour tout $x \ge 0$. Soit N une variable aléatoire suivant une loi de Poisson de paramètre λ indépendante des autres variables aléatoires. Calculer la fonction de répartition de $S = \sum_{i=1}^{N} X_i$.

5. Décomposition de la variance

- (a) Rappeler la formule de décomposition de la variance.
- (b) Appliquer la formule de décomposition de la variance à $S = \sum_{i=0}^{N} X_i$, avec N une variable aléatoire discrète positive et $(X)_{i \in \mathbb{N}}$ une famille de variables aléatoires positives i.i.d. . Quelle partie correspond à la variabilité de la fréquence des sinistres ?