JPL ENCAPSULATION TASK

SPRINGBORN LABORATORIES, INC.

P. Willis

JPL Encapsulation Task (Inception: 1975)

OVERALL GOAL: •

- PRODUCTION OF ELECTRICAL POWER FROM PHOTOVOLTAICS COMPETITIVE WITH COMMERCIAL POWER SOURCES
- TARGET: \$0.70 PER PEAK WATT (1980 DOLLARS)

WHY ENCAPSULATION?

- MECHANICAL SUPPORT PREVENT CELL BREAKAGE
- THERMAL CONDUCTION DISSIPATE HEAT
- **ENVIRONMENTAL** PROTECTION
- PREVENT CORROSION
- PACKAGING / HANDLING
- TRANSPORTATION AND FIEL DEPLOYMENT OF MODULES

Performance Requirements

SERVICE LIFE

- 30 YEARS
- LIGHT TRANSMISSION TO SOLAR CELLS >90% OF INCIDENT
- LOSS IN MODULE POWER AFTER 30 YEARS < 10% OF INITIAL
- PROCESSING AND FABRICATION

AUTOMATED

STRUCTURAL PERFORMANCE

NO FAILURES

(INCLUDING HANDLING AND WEATHERING)

MUST CONFORM TO COST GOALS

PRECEDING PACE BLANK NOT FILMED

Encapsulation Cost Goals

• \$ 0.70/W_{PK} x 10 W/FT² = <u>\$7.00 / FT</u>²

SOLAR CELLS, COST ENCAPSULATION COST:
\$5.60 / FT2 (RAW MATERIALS ONLY)
\$1.40 / FT2

TOF MODULE COST S/M2 S/FT2

ENCAPSULATION SYSTEM 20 14 1.40

1980 \$

- .300 \$
 - COST NOW SERVED AS DRIVER FOR SELECTION OF MATERIALS
 - NEED TO REDEFINE ENCAPSULATION REQUIREMENTS
 - WHAT COMPONENTS ARE NEEDED ?
 - WHAT MUST MATERIALS DO ?
 - DOES ENCAPSULATION PACKAGE MEET BOTH COST AND PERFORMANCE REQUIREMENTS?

Early Encapsulation Systems

TWO SCHOOLS OF THOUGHT:

- A. POURABLE SYRUPS
- B. DRY FILM LAMINATION

APPROACHES

COMPONENTS

- SILICONE LIQUIDS
 VERY HIGH COST (\$12 / LB)
 (CASTING SYRUP)
- URETHANE LIQUIDS (CASTING SYRUP)
- POLYVINYL BUTYRAL (PVB)
 (LAMINATION FILM)
- SUBSTRATES:
 FIBERGLASS, ALUMINUM
- INDUSTRIAL PROCESSING

DEFICIENCES

MIXING AND PUMPING UNPREDICTABLE ADHESION LONG CURE TIMES BUBBLE ENTRAPMENT MOISTURE SENSITIVE YELLOWING WITH AGE

SPECIALIZED STORAGE
DIFFICULT PROCESS - AUTOCLAVE
LONG LAMINATION TIMES
MODERATE COST

HIGH THERMAL EXPANSIONS HIGH MOISTURE EXPANSION HIGH COST

NOT CONSIDERED AT THIS TIME

- OVERALL PERFORMANCE QUESTIONABLE ?
- MAJOR OBJECTION: CANNOT MEET FSA COST GOALS

Module Construction Elements

- ADHESIVES AND PRIMERS WHERE REQUIRED
- NUTE: TMO DESIGNS SUBSTRATE OR SUPERSTRATE ONLY ONE STRUCTURAL COMPONENT

MODULE FABRICATION TECHNIQUES

- (1) SHEET LAMINATION METHOD
- (2) LIQUID CASTING METHOD
- GOAL : IDENTIFY COST-EFFECTIVE MATERIALS AND PROCESSES

Pottant Development

- POTTANY IS THE HEART OF THE ENCSPSULATION PACKAGE -RECEIVED GREATEST EMPHASIS
- · REQUIREMENTS:
 - OPTICAL TRANSPARENCY
 - . LOW MELTING POINT
 - ELECTRICAL INSULATION
 - RUBBERY (LOW MODULUS)
 - NO CELL BREAKAGE !
 - RESISTANT TO FLOW IN SERVICE
 - SUITABLE FOR AUTOMATED PRODUCTION (HIGH VOLUME)
 - COST EFFECTIVE
- THESE PROPERTIES FOUND IN TRANSPARENT "ELASTOMERS"
- PROBLEM LOW COST POLYMERS MAY HAVE DEFICIENCIES:
 - HEAT (OXIDATION) SENSITIVITY
 - LIGHT (ULTRAVIOLET) SENSITIVITY
 - WATER (HYDROLYSIS) SENSITIVITY
- ALL TRANSPARENT "ELASTOMERS" SURVEYED TO SELECT COMPOUND WITH DESIRED PROPERTIES AND ABILITY TO BE STABILIZED WITH ADDITIVES - IMPART ENVIRONMENTAL STABILITY

Current Candidates

A.	LAMINATION FILMS:	COST
	ETHYLENE VINYL ACETATE (EVA) ETHYLENE METHYL ACRYLATE (EMA)	\$ 0.95/ LB \$ 0.95/ LB
B.	CASTING LIQUIDS:	
	POLY N-BUTYL ACRYLATE (BA)	\$ 1.00/ LB
	ALIPHATIC POLYURETHANE (PU)	\$ 3,60/ LB

Development of EVA Pottant

EVA BEST OVERALL CHOICE: ETHYLENE VINYL ACETATE POLYMERS (EVA)

ADVANTAGES

DEFICIENCIES

MANY GRADES AVAILABLE OXIDATION (HEAT) STABLE HYDROLYSIS (WATER) STABLE WIDE RANGE OF VISCOSITY EASY TO PROCESS LOW COST GOOD ADHESIVE PROPERTIES

THERMOPLASTIC (NO CREEP RESISTANCE)

ULTRAVIOLET SENSITIVE

- MCDULE FABRICATION GRADE DEVELOPED DESIGNATION: EVA A9918
- CONTAINS CURING AGENTS AND STABILIZERS
- DEFICIENCIES SUCCESSFULLY CORRECTED

Properties/Benefits EVA A-9918

- NO COLD STORAGE REQUIRED
- HIGH TRANSPARENCY
- DIMENSIONAL STABILITY
- 600D FLOW AND VOLUMETRIC FILL
- FAST CURE (\$0.10 /FT2 IN VOLUME)
 EASY LAMINATION (MODULE PROCESSING)
- EXCELLENT ENVIRONMENTAL STABILITY
- LOW COST
- PRODUCED AS ROLLS OF FILM

Other Candidate Encapsulation Materials

STRUCTURAL COMPONENTS:

SUPERSTRATE: LOAD - BEARING TOP SURFACE • TEMPERED LOW-IRON FLOAT GLASS 1/8" THICK	\$0.75 /FT ²			
SUBSTRATES: LOAD-BEARING UNDER SURFACE				
 COLD ROLLED MILD STEEL, 28 GA. 	\$0.26 /FT ²			
 WOOD HARDBOARDS, 1/8" THICK 	\$0.14 /FT ²			
(NOTE: THESE MATERIALS REQUIRE ADDITIONAL TREAT- MENT FOR ENVIRONMENTAL STABILITY)				
POROUS SPACER: VACUUM EVACUATION, MECHANICAL SPACING AND ELECTRICAL ISOLATION				
 CRANEGLAS 230 NON-WOVEN GLASS MAT 	\$0.02 /FT ²			
OUTER COVERS: MECHANICAL PROTECTION, SOIL RESISTANT, UV SCREENING				
 ACRYLAR X-22417 (3M CORP.) 	\$0.07 /FT ²			
TEDLAR 100B630UT (DU PONT)	\$0.10 /FT ²			
TEDLAR 400B620SE (DU PONT)	\$0.30 /FT ²			
 FEP FILM , 2 MIL THICK 	\$0.20 /FT ²			
(NON-SCREENING, OUTSTANDING WEATHERABILITY HIGH TRANSPARENCY, OPTICAL COUPLING)				

ALL PRICES ARE FOR VOLUME PRODUCTION

Other Candidate Encapsulation Materials (Cont'd)

BACK COVER FILMS: MECHANICAL PROTECTION, ELECTRICAL ISOLATION, AND HEAT REFLECTION

•	TEDLAR 150BS30WH (DU PONT)	\$ 0.13 /FT ²
•	TEDLAR 2008L20WH (DU PONT)	\$ 0.16 /FT ²
•	SCOTCHPAR 20CP WHITE (3M)	\$ 0.12 /FT ²
	KORAD 63000 WHITE (XCEL CORP)	\$ 0.09 /FT ²

GASKETS & SEALANTS : EDGE PROTECTION

- EPDM GASKET (E-633, PAWLING RUBBER CO)
- BUTYL TAPE (5354, 5M CORP)
 ----- OTHERS -----

ADHESIVES / PRIMERS:

- PRIMERS IDENTIFIED FOR ALMOST ALL INTERFACES
- HIGH DURAEILITY AND LOW COST (~ \$0.02 /FT²)
- SELF PRIMING CRADE OF EVA DEVELOPED

EVA Bond Strengths, Pound/Inch of Width

MATERIALS	CONTROL	2 WK IMMERSION	2 HR BOILING WATER
SUNADEX GLASS	34.8	30.0	32.3
WINDOW GLASS	39.6	37.9	27.1
WINDOW GLASS (SELF-PRIMING EVA)	35.4	41.9	COHESIVE

VARIES WITH PERIMETER

Anti-Soiling Treatments

Aging and Lifetime Predictions

- HOW LONG WILL MODULES LAST ?
- NEW ACCELERATED AGING TECHNIQUE DEVELOPED: OUTDOOR PHOTOTHERMAL REACTOR (OPTAR)
- COMBINES NATURAL LIGHT AND HEAT

Severity Index

- OPTARS MOST EFFICIENT AGING TECHNIQUE
- MODULES HAVE VERY HIGH ENDURANCE
 NO EFFECT: 20,000 HRS 70°C / SUNLIGHT
 LITTLE EFFECT: 20,000 HRS 90°C / SUNLIGHT
 STRONG EFFECT: 20,000 HRS 105°C/ SUNLIGHT
- DEGRADED MODULES SHOW NO POWER LOSS
- ENCAPSULATION SYSTEM WORKS WELL LIFE PROGNOSIS: GOOD!

Module Fabrication

ORIGINAL PAGE IS OF POOR QUALITY

VACUUM LAMINATION - METHOD OF CHOICE

- RELATIVELY SIMPLE EQUIPMENT
- DRY FILMS NO LIQUIDS
- ALL COMPONENTS ASSEMBLED IN ONE STEP
- FAST CYCLE TIPES
- AUTOMATION / HIGH VOLUME POSSIBLE
- COST EFFECTIVE
- LAMINATORS COPPERCIALLY AVAILABLE
 (SPIRE CORPORATION)

Current Status

HOW CLOSE DID WE COME ?

"TYPICAL" MODULE	VOLUME COST, \$/FT ²
LOW IRON GLASS	0.75
EVA (TWO LAYERS)	0.20
POROUS SPACER	0.02
PRIMERS / ADHESIVES	0.02
BACK COVER (TEDLAR)	0.16
GASKET / SEAL (EST.)	0.15
	\$ 1.30 / FT ²

- MAJOR ENCAPSULATION COMPONENTS DEVELOPED/ IDENTIFIED AND COMMERCIALLY AVAILABLE
- EVA POTTANT FILM WIDE INDUSTRIAL ACCEPTANCE
- VIABLE MANUFACTURING PROCESS IDENTIFIED
- FIELD PERFORMANCE VERY PROMISING

Remaining Efforts

 LIFETIME ANALYSIS: DEVELOP AND VERIFY PREDICTIVE AGING METHODS

Summary

FSA PROGRAM HAS RESULTED IN HIGH PERFORMANCE COST-EFFECTIVE ENCAP-SULATION SYSTEMS FOR PHOTOVOLTAIC MODULES