The Makam Metalanguage

Reducing the cost of PL experimentation

Antonis Stampoulis Adam Chlipala

MIT Computer Science and Artifical Intelligence Laboratory

Softlab PL Seminar 2013

We have various crazy PL ideas

We have various crazy PL ideas

- Dependent types: capture program invariants in types
- VeriML: programs to prove the invariants
- Ur/Web: avoid SQL injections etc. in webapps statically

We have various crazy PL ideas

- Dependent types: capture program invariants in types
- VeriML: programs to prove the invariants
- Ur/Web: avoid SQL injections etc. in webapps statically

... but running experiments takes huge up-front cost

Experimentation requires implementation

Experimentation requires implementation

- Design space is large; many choices arbitrary at initial phases
- Implement a language from scratch vs. extend an existing language
- Practical aspects are important but tricky- efficiency? error-messages?
- Extensibility/malleability of implementation is key but runs counter to doing full-fledged implementation

Experimentation requires implementation

- Design space is large; many choices arbitrary at initial phases
- Implement a language from scratch vs. extend an existing language
- Practical aspects are important but tricky- efficiency? error-messages?
- Extensibility/malleability of implementation is key but runs counter to doing full-fledged implementation
 - → Many PL ideas stay at prototype level

Makam a metalanguage for quick PL prototyping

Makam a metalanguage for quick PL prototyping

- declarative and executable rules for specifying languages
- logic programming (Prolog) + PL-related magic
- can model type systems, transformations to existing languages, etc.

Makam a metalanguage for quick PL prototyping

- declarative and executable rules for specifying languages
- logic programming (Prolog) + PL-related magic
- can model type systems, transformations to existing languages, etc.
- reduce time for prototype from months to days
- fast changes to key design decisions
- specifications are easy to extend
- metalanguage takes care of tricky parts

Let's use Makam to model the simply-typed lambda calculus.

$$\tau ::= Int \mid Bool \mid \tau_1 \rightarrow \tau_2$$

$$\tau ::= Int \mid Bool \mid \tau_1 \rightarrow \tau_2$$

typ : sort.

```
\tau ::= Int \mid Bool \mid \tau_1 \rightarrow \tau_2 typ : sort.
```

tint : typ. tbool : typ.
tarrow : typ -> typ -> typ.

```
\tau ::= Int \mid Bool \mid \tau_1 \rightarrow \tau_2 \mathsf{typ} : \mathsf{sort}. \mathsf{tint} : \mathsf{typ}. \mathsf{tbool} : \mathsf{typ}. \mathsf{tarrow} : \mathsf{typ} -> \mathsf{typ} -> \mathsf{typ}. e ::= e_1 + e_2 \mid e_1 < e_2 \mid n \mid \mathsf{if} \; e \; \mathsf{then} \; e_1 \; \mathsf{else} \; e_2 \\ \mid e_1 \; e_2 \mid \lambda x. e
```

```
\tau ::= Int \mid Bool \mid \tau_1 \to \tau_2 \texttt{typ: sort.} \texttt{tint: typ. tbool: typ.} \texttt{tarrow: typ -> typ.} e ::= e_1 + e_2 \mid e_1 < e_2 \mid n \mid \texttt{if } e \texttt{ then } e_1 \texttt{ else } e_2 \\ \mid e_1 \mid e_2 \mid \lambda x.e
```

expr : sort.
plus : expr -> expr -> expr.
lt : expr -> expr -> expr.
intconst : int -> expr.

Typing and evaluation relations.

Typing
$$\Gamma \vdash e : \tau$$

typeof : expr -> typ -> prop.

Big-step semantics $e \Downarrow e'$

eval : expr -> expr -> prop.

Let's do an easy rule first.

Let's do an easy rule first.

$$\frac{\Gamma \vdash e_1 : Int \qquad \Gamma \vdash e_2 : Int}{\Gamma \vdash e_1 < e_2 : Bool}$$

Let's do an easy rule first.

$$\frac{\Gamma \vdash e_1 : Int \qquad \Gamma \vdash e_2 : Int}{\Gamma \vdash e_1 < e_2 : Bool}$$

```
typeof (lt E1 E2) tbool <-
  typeof E1 tint,
  typeof E2 tint.</pre>
```

Let's do an easy rule first.

$$\frac{\Gamma \vdash e_1 : Int \qquad \Gamma \vdash e_2 : Int}{\Gamma \vdash e_1 < e_2 : Bool}$$

```
typeof (lt E1 E2) tbool <-
typeof E1 tint,
typeof E2 tint.</pre>
```

Easy: Just as in Prolog.

If-then-else.

$e \Downarrow True$	$e_1 \Downarrow v$
if e then e_1	else $e_2 \Downarrow v$

If-then-else.

$e \Downarrow True$	$e_1 \Downarrow v$	
if e then e_1 else $e_2 \Downarrow v$		

eval (ifthenelse E E1 E2) V <eval E btrue, eval E1 V.

Application is easy too.

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \ e_2 : \tau'}$$

```
app : expr -> expr -> expr.
tarrow : typ -> typ -> typ.
```

```
typeof (app E1 E2) T' <-
  typeof E1 (tarrow T T'),
  typeof E2 T.</pre>
```

$$\boxed{ \frac{\Gamma, \ x: \tau \vdash e: \tau'}{\Gamma \vdash \lambda \ x.e: \tau \to \tau'} }$$

$$\boxed{ \frac{\Gamma, \ x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda \ x.e : \tau \rightarrow \tau'} }$$

```
var : string -> expr. lam : string -> expr -> expr.
typeof (lam X E) (tarrow T T') <-
  (typeof (var X) T ->
  typeof E T').
```

$$\frac{\Gamma, \ x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda \ x.e : \tau \to \tau'}$$

```
var : string -> expr. lam : string -> expr -> expr.
typeof (lam X E) (tarrow T T') <-
  (typeof (var X) T ->
  typeof E T').
```

Now let's do the evaluation rules.

$e_1 \Downarrow \lambda x.e'$	$e_2 \downarrow v$	$e'[v/x] \Downarrow v'$
$e_1 \ e_2 \Downarrow v'$		

Now let's do the evaluation rules.

$$\begin{array}{c|ccccc}
e_1 \Downarrow \lambda x. e' & e_2 \Downarrow v & e'[v/x] \Downarrow v' \\
\hline
& e_1 e_2 \Downarrow v'
\end{array}$$

```
x[e/x] = e

y[e/x] = y

(\lambda x.e)[e'/x] = \lambda x.e

(\lambda y.e)[e'/x] = \lambda y.(e[e'/x]) \text{ if } y \notin fv(e')

(e_1 \ e_2)[e/x] = e_1[e/x] \ e_2[e/x]

...
```

Now let's do the evaluation rules.

$$\begin{array}{c|cccc}
e_1 \Downarrow \lambda x. e' & e_2 \Downarrow v & e'[v/x] \Downarrow v' \\
\hline
& e_1 e_2 \Downarrow v' &
\end{array}$$

```
x[e/x] = e
y[e/x] = y
(\lambda x. e)[e'/x] = \lambda x. e
(\lambda y. e)[e'/x] = \lambda y. (e[e'/x]) \text{ if } y \notin fv(e')
(e_1 \ e_2)[e/x] = e_1[e/x] \ e_2[e/x]
...
```

This seems like a lot of work. Let's backtrack...

$$\boxed{ \begin{array}{c} \Gamma, \ x : \tau \vdash e : \tau' \\ \Gamma \vdash \lambda \ x.e : \tau \rightarrow \tau' \end{array}}$$

$$\begin{array}{|c|c|}
\hline
\Gamma, \ x: \tau \vdash e: \tau' \\
\hline
\Gamma \vdash \lambda \ x.e: \tau \to \tau'
\end{array}$$

lam : ?

$$\frac{\Gamma, \ x: \tau \vdash e: \tau'}{\Gamma \vdash \lambda \ x.e: \tau \to \tau'}$$

lam : ?

Idea: use meta-level function type to represent binding. Meta-level application is object-level substitution. (Higher-order abstract syntax.)

$$\boxed{ \frac{\Gamma, \ x: \tau \vdash e: \tau'}{\Gamma \vdash \lambda \ x.e: \tau \to \tau'} }$$

lam : (expr -> expr) -> expr.

$$\frac{\Gamma, \ x: \tau \vdash e: \tau'}{\Gamma \vdash \lambda \ x.e: \tau \to \tau'}$$

lam : (expr -> expr) -> expr.

```
typeof (lam EF) (tarrow T T') <-
  (x:expr ->
  typeof x T -> typeof (EF x) T').
```

$$\frac{\Gamma, \ x: \tau \vdash e: \tau'}{\Gamma \vdash \lambda \ x.e: \tau \to \tau'}$$

lam : (expr -> expr) -> expr.

```
typeof (lam EF) (tarrow T T') <-
  (x:expr ->
  typeof x T -> typeof (EF x) T').

eval (app E1 E2) V' <-
  eval E1 (lam EF), eval E2 V,
  eval (EF V) V'.</pre>
```

Querying.

```
\Gamma \vdash e : ?
```

```
typeof (lam (fun x => lam (fun y =>
        ifthenelse x y (plus y y))))
T ?
```

Querying.

```
\Gamma \vdash e : ?
```

```
typeof (lam (fun x => lam (fun y =>
        ifthenelse x y (plus y y))))
T ?
```

» T := tarrow tbool (tarrow tint tint)

typing features?

What about more complicated

Polymorphism.

$$\frac{\Delta,\ \alpha;\Gamma\vdash e:\tau}{\Delta;\Gamma\vdash\Lambda\alpha.e:\Pi\alpha.\tau}$$

Polymorphism.

$$\frac{\Delta, \ \alpha; \Gamma \vdash e : \tau}{\Delta; \Gamma \vdash \Lambda \alpha. e : \Pi \alpha. \tau}$$

```
pi : (typ -> typ) -> typ.
lamt : (typ -> expr) -> expr.

typeof (lamt EF) (pi TF) <-
    (a:typ -> typeof (EF a) (TF a)).
```

Polymorphism.

$$\frac{\Delta; \Gamma \vdash e : \Pi \alpha. \tau}{\Delta; \Gamma \vdash e \; \tau' : \tau[\tau'/\alpha]}$$

```
appt : expr -> typ -> expr.
typeof (appt E T) (TF T) <-
  typeof E (pi TF).</pre>
```

```
typeof (lam (fun x \Rightarrow x)) ?
```

```
typeof (lam (fun x => x)) ?
» T := tarrow T1 T1
```

```
typeof (lam (fun x => x)) ?
» T := tarrow T1 T1
gen (tarrow T1 T1) T ?
```

```
typeof (lam (fun x => x)) ?
» T := tarrow T1 T1

gen (tarrow T1 T1) T ?
» T := tpi (fun a => tarrow a a)
```

```
typeof (lam (fun x => x)) ?
» T := tarrow T1 T1
gen (tarrow T1 T1) T ?
» T := tpi (fun a => tarrow a a)
gen : typ -> typ -> prop.
gen T T <- not(getunif T (X : typ)_).
gen T (pi TF) <-
 getunif T (X : typ) T',
 (a:typ \rightarrow gen (T'a) (TFa)).
```

```
typeof (lam (fun x => x)) ?
» T := tarrow T1 T1
gen (tarrow T1 T1) T ?
» T := tpi (fun a => tarrow a a)
gen : typ -> typ -> prop.
gen T T <- not(getunif T (X : typ) _).</pre>
gen T (pi TF) <-
 getunif T (X : typ) T',
 (a:typ \rightarrow gen (T'a) (TFa)).
```

Given T, get the first unification variable of type typ and abstract over it.

Mutually recursive definitions.

$ \Gamma, \overrightarrow{xs} : \overrightarrow{\tau} \vdash es_i : \tau_i $	$\Gamma, \overrightarrow{xs}: \overrightarrow{\tau} \vdash e: \tau'$
$\Gamma \vdash letrec \ \overrightarrow{xs} = \overrightarrow{es} \ in \ e : au'$	

Mutually recursive definitions.

$$\frac{\Gamma, \overrightarrow{xs} : \overrightarrow{\tau} \vdash es_i : \tau_i \qquad \Gamma, \overrightarrow{xs} : \overrightarrow{\tau} \vdash e : \tau'}{\Gamma \vdash \text{letrec } \overrightarrow{xs} = \overrightarrow{es} \text{ in } e : \tau'}$$

```
typeof (letrec F) T' <-
  open F as (Defs, Body) binding xs in
  assumemany typeof xs TS in
  (map typeof Defs TS,
  typeof Body T').</pre>
```

Scalable in terms of expressivity.

- Big part of the OCaml type system in ~500 lines of code.
- Mutually recursive definitions of types and expressions.
- Algebraic datatypes.
- Pattern matching.
- Modules and module signatures.
- HM-style generalization.
- Type synonyms with expansion.
- Extensions are possible: e.g. type classes.
- No code modified, new code: ~100 lines of code.

Existential types.

```
typeof (pack T' E) (sigma TF) <-
  typeof E (TF T').

typeof (unpack E EF) T' <-
  typeof E (sigma TF),
  (a:typ -> x:term ->
    typeof x (TF a) -> typeof (EF a x) T').
```

Existential types.

```
typeof (pack T' E) (sigma TF) <-
  typeof E (TF T').

typeof (unpack E EF) T' <-
  typeof E (sigma TF),
  (a:typ -> x:term ->
    typeof x (TF a) -> typeof (EF a x) T').
```

These two rules are comparably effective to serious type inferencing for existential types. How is this possible?

Makam is essentially a new implementation and refinement of λ Prolog.

- Prolog uses *s-expressions* as atomic terms.

- Prolog uses *s-expressions* as atomic terms.
- Typed abstract syntax \rightarrow *typed s-expressions*.

- Prolog uses *s-expressions* as atomic terms.
- Typed abstract syntax \rightarrow *typed s-expressions*.
- Meta-level functions for HOAS \rightarrow terms of the simply-typed lambda calculus.

- Prolog uses *s-expressions* as atomic terms.
- Typed abstract syntax \rightarrow *typed s-expressions*.
- Meta-level functions for HOAS \rightarrow terms of the simply-typed lambda calculus.
- Polymorphic types (e.g. lists) \rightarrow terms of the polymorphic lambda calculus.

- Prolog uses *s-expressions* as atomic terms.
- Typed abstract syntax \rightarrow *typed s-expressions*.
- Meta-level functions for HOAS \rightarrow terms of the simply-typed lambda calculus.
- Polymorphic types (e.g. lists) \rightarrow terms of the polymorphic lambda calculus.
- -These are the atomic terms of λ Prolog.

- Main operation in Prolog: first-order unification.

- Main operation in Prolog: first-order unification.
- Switch to polymorphic lambda calculus \rightarrow typed higher-order unification.

- Main operation in Prolog: first-order unification.
- Switch to polymorphic lambda calculus \rightarrow typed higher-order unification.
- Unify up to $\beta\eta$ -equivalence.

- Main operation in Prolog: first-order unification.
- Switch to polymorphic lambda calculus \rightarrow typed higher-order unification.
- Unify up to $\beta\eta$ -equivalence.
- Undecidable in the general case; restrict to decidable subset.

- Main operation in Prolog: first-order unification.
- Switch to polymorphic lambda calculus \rightarrow typed higher-order unification.
- Unify up to $\beta\eta$ -equivalence.
- Undecidable in the general case; restrict to decidable subset.
- Even the restriction subsumes most common type inferencing problems.

- Main operation in Prolog: first-order unification.
- Switch to polymorphic lambda calculus \rightarrow typed higher-order unification.
- Unify up to $\beta\eta$ -equivalence.
- Undecidable in the general case; restrict to decidable subset.
- Even the restriction subsumes most common type inferencing problems.
- Also useful elsewhere: e.g. semantics of pattern matching.

Main difference with λ Prolog: weak hereditary Harrop formulas.

 No distinction between propositions determined statically and dynamically.

- No distinction between propositions determined statically and dynamically.
- Made possible by the use of interpretation vs. compilation.

- No distinction between propositions determined statically and dynamically.
- Made possible by the use of interpretation vs. compilation.
- A technicality with far-reaching consequences.

- No distinction between propositions determined statically and dynamically.
- Made possible by the use of interpretation vs. compilation.
- A technicality with far-reaching consequences.
- ... e.g. generic binding structures

- No distinction between propositions determined statically and dynamically.
- Made possible by the use of interpretation vs. compilation.
- A technicality with far-reaching consequences.
- ... e.g. generic binding structures

```
bnil : B -> bindmany A B.
bcons : (A -> bindmany A B) -> bindmany A B.
```

Main difference with λ Prolog: weak hereditary Harrop formulas.

-... but more importantly:Makam does staging for free.

- -... but more importantly:Makam does staging for free.
- Makam programs can compute Makam programs.

- -... but more importantly:
 Makam does staging for free.
- Makam programs can compute Makam programs.
- Useful for all sorts of things:

- -... but more importantly:Makam does staging for free.
- Makam programs can compute Makam programs.
- Useful for all sorts of things:
- implementing DSLs (e.g. LM: invertible ML-like language)

- -... but more importantly:Makam does staging for free.
- Makam programs can compute Makam programs.
- Useful for all sorts of things:
- implementing DSLs (e.g. LM: invertible ML-like language)
- -doing parsing (PEG combinators + LM semantic actions)

- -... but more importantly:Makam does staging for free.
- Makam programs can compute Makam programs.
- Useful for all sorts of things:
- implementing DSLs (e.g. LM: invertible ML-like language)
- doing parsing (PEG combinators + LM semantic actions) with pretty-printing for free

- -... but more importantly:Makam does staging for free.
- Makam programs can compute Makam programs.
- Useful for all sorts of things:
- implementing DSLs (e.g. LM: invertible ML-like language)
- doing parsing (PEG combinators + LM semantic actions) with pretty-printing for free
- (eventually) implementing intermediate languages for Makam and bootstrapping

Parsing.

Invertible functional-style code.

```
forward : lm\ A\ B\ ->\ (A\ ->\ B\ ->\ prop)\ ->\ prop. backward : lm\ A\ B\ ->\ (B\ ->\ A\ ->\ prop)\ ->\ prop.
```

PEG combinators compiled to invertible code.

```
pegcompile : peg A -> lm string A -> prop.
pegparse = forward ○ pegcompile.
pegprint = backward ○ pegcompile.
```

Parsing.

```
pterm ->
    "λ" id:ident "." body:pterm
    { return lam (bind id body) }
    / f:pbaseterm args:rep(pbaseterm)
    { foldl (return app) f args }

pbaseterm ->
    id:ident { lookup id }
    / e:parenthesized(pterm) { e }
```

Guaranteed to produce well-typed, well-bound abstract syntax.

Summary.

- Makam: a tool to simplify prototype PL implementation.
- Declarative, Prolog-style rules for specifying different aspects of languages.
- Re-use tricky stuff as implemented in the meta-language.
- Higher-order features allow powerful abstractions.
- Surprisingly expressive formalism still figuring things out!

Current & future work.

- Base language features are fairly stable.
- Doing a profiling and optimization phase.
- Plan to experiment with further type systems using Makam (VeriML, Ur/Web, etc.)

Backup slides.

Existential types.

$$\frac{\Delta; \Gamma \vdash e : \tau[\tau'/\alpha]}{\Delta; \Gamma \vdash \langle \ \tau', \ e \ \rangle : \Sigma \alpha.\tau}$$

```
sigma : (typ -> typ) -> typ.
pack : typ -> expr -> expr.

typeof (pack T' E) (sigma TF) <-
  typeof E (TF T').</pre>
```

Existential types.

$$\frac{\Delta; \Gamma \vdash e : \Sigma \alpha. \tau}{\Delta; \; \alpha'; \; \Gamma, \; x : \tau[\alpha'/\alpha] \vdash e' : \tau' \qquad \alpha' \not\in \mathit{fv}(\tau')}{\Delta; \; \Gamma \vdash \mathsf{let} \; \langle \; \alpha, \; x \, \rangle = e \; \mathsf{in} \; e' : \tau'}$$

Differences with λ Prolog.

- Some small practical features: e.g. proper naming through hybrid abstract/concrete variables.

- Some small practical features: e.g. proper naming through hybrid abstract/concrete variables.
- Implemented in OCaml instead of C.

- Some small practical features: e.g. proper naming through hybrid abstract/concrete variables.
- Implemented in OCaml instead of C.
- Interpreted* instead of compiled.

- Some small practical features: e.g. proper naming through hybrid abstract/concrete variables.
- Implemented in OCaml instead of C.
- Interpreted* instead of compiled.
- -*In a naive way instead of after N years of research.

- Some small practical features: e.g. proper naming through hybrid abstract/concrete variables.
- Implemented in OCaml instead of C.
- Interpreted* instead of compiled.
- -*In a naive way instead of after N years of research.
- Makam is many times slower.

- Some small practical features: e.g. proper naming through hybrid abstract/concrete variables.
- Implemented in OCaml instead of C.
- Interpreted* instead of compiled.
- -*In a naive way instead of after N years of research.
- Makam is many times slower.
- Still, we plan to use it as a practical tool.

- Some small practical features: e.g. proper naming through hybrid abstract/concrete variables.
- Implemented in OCaml instead of C.
- Interpreted* instead of compiled.
- -*In a naive way instead of after N years of research.
- Makam is many times slower.
- Still, we plan to use it as a practical tool.
- ?!?

?!?

```
typeof (letrec F) T' <-
  open F as (Defs, Body) binding xs in
  assumemany typeof xs TS in
  (map typeof Defs TS,
  typeof Body T').</pre>
```

?!?

```
typeof (letrec F) T' <-
  open F as (Defs, Body) binding xs in
  assumemany typeof xs TS in
  (map typeof Defs TS,
  typeof Body T').</pre>
```

```
typeof (letrec F) T' <-
 open F as (Defs, Body) binding xs in
 assumemany typeof xs TS in
 (map typeof Defs TS,
 typeof Body T').
assumemany : (A -> B -> prop) -> list A -> list B
       -> prop -> prop.
assumemany P[][] Q <- Q.
assumemany P(X :: XS)(T :: TS) Q <-
 (P X T \rightarrow assumemany P XS TS Q).
```

```
typeof (letrec F) T' <-
 open F as (Defs, Body) binding xs in
 assumemany typeof xs TS in
 (map typeof Defs TS,
 typeof Body T').
assumemany : (A -> B -> prop) -> list A -> list B
       -> prop -> prop.
assumemany P[][] Q <- Q.
assumemany P(X :: XS)(T :: TS) Q <-
 (P X T \rightarrow assumemany P XS TS Q).
```

Staging in Makam.

Connectives, clauses, etc. are normal terms.

```
and : prop -> prop -> prop.
or : prop -> prop -> prop.
newvar : (A -> prop) -> prop.
newmeta : (A -> prop) -> prop.
assume : prop -> prop -> prop.
...
```

Predicates can compute propositions; we can then use the result normally.

```
invert : prop -> prop -> prop.
invert (and P Q) (and Q' P') <-
invert P P', invert Q Q'.</pre>
```