Maximum-Weight Bipartite Matching

Shusen Wang

Weighted Bipartite Graph

- Bipartite graph: G = (U, V, E).
- Edges have weights: w_{ij} .

Weighted Bipartite Graph

- Bipartite graph: G = (U, V, E).
- Edges have weights: w_{ij} .
- Adjacency matrix:

- Bipartite graph: G = (U, V, E).
- Matching is a subset of edges without common vertices.
- Denote the matching by set $S \subseteq E$.

Sum of weights in matching S:

$$f(S) = \sum_{(u,v) \in S} w_{uv}.$$

Sum of weights in matching 5:

$$f(S) = \sum_{(u,v) \in S} w_{uv}.$$

• In this example,

$$f(S) = 3 + 4 + 5 = 12.$$

Sum of weights in matching S:

$$f(S) = \sum_{(u,v) \in S} w_{uv}.$$

• In this example,

$$f(S) = 4 + 5 + 4 + 2 = 15.$$

Maximum-Weight Bipartite Matching

Sum of weights in matching S:

$$f(S) = \sum_{(u,v) \in S} w_{uv}.$$

• Objective: Finding matching \mathcal{S} that has the maximum sum of weights:

$$\max_{\mathcal{S}} f(\mathcal{S}).$$

Application 1: Match candidates and positions

- Edge weights quantify candidates' skills.
- Maximize the weights of matching. (Match the right person with the right job position to maximize the company's interest.)

Application 2: Pet adoptions

- An edge weight quantifies how much a person loves a pet.
- Maximize the weights of matching. (Maximize people's happiness.)

Application 3: Dating

- An edge weight quantifies how well two persons match (e.g., similar hoppy).
- Maximize the weights of matching.
 (Maximize the change of success.)

Maximum Matching

- Adopting a pet can bring happiness to people.
- A weight quantifies how much a person loves a pet.
- Maximize the weights of matching. (Maximize people's happiness.)

Minimum Matching

- Adopting a pet can cost time and money.
- A weight quantifies how a person dislike a pet.
- Minimize the weights of matching. (Maximize people's happiness.)

- If we have an algorithm for finding minimum matching.
- Then we can use it for finding maximum matching.

- If we have an algorithm for finding minimum matching.
- Then we can use it for finding maximum matching.
 - 1. Flip the signs of all the weights.
 - 2. Run the minimum matching algorithm.

Hungarian Algorithm

- Hungarian algorithm is for finding the minimum-weight bipartite matching.
- On the graph, the cardinality of $\mathcal U$ and $\mathcal V$ must be the same:

$$|\mathcal{U}| = |\mathcal{V}| = n.$$

Reference:

• Harold W. Kuhn. The Hungarian Method for the assignment problem. *Naval Research Logistics Quarterly*, 2: 83–97, 1955.

Hungarian Algorithm

- Hungarian algorithm is for finding the minimum-weight bipartite matching.
- On the graph, the cardinality of \mathcal{U} and \mathcal{V} must be the same:

$$|\mathcal{U}| = |\mathcal{V}| = n$$
.

• Time complexity: $O(n^3)$.

Reference:

• Harold W. Kuhn. The Hungarian Method for the assignment problem. *Naval Research Logistics Quarterly*, 2: 83–97, 1955.

Hungarian Algorithm

- Hungarian algorithm is for finding the minimum-weight bipartite matching.
- How to solve maximum-weight bipartite matching?

- Flip the signs of all the weights.
- On the new graph, run the Hungarian algorithm to find the minimum-matching.
- The outcome is the maximum-matching on the original graph.

Thank You!