University of California San Diego

MATH 100 Notes

Textbook: Abstract Algebra by I.N. Herstein (3rd ed.)

Organized by Ray Tsai

MATH 100A

Definition.

A nonempty set G is said to be a group if in G there is defined an operation * such that:

- (a) $a, b \in G$ implies that $a * b \in G$. (Closure)
- (b) Given $a, b, c \in G$, then a * (b * c) = (a * b) * c. (Associativity)
- (c) There exists a special element $e \in G$ such that a * e = e * a = a for all $a \in G$. (Identity element)
- (d) For every $a \in G$ there exists an element $b \in G$ such that a * b = b * a = e. (Inverse element)

Lemma 1.3.1.

If $h: S \to T$, $g: T \to U$, and $f: U \to V$, then $f \circ (g \circ h) = (f \circ g) \circ h$.

Note: overpowered for checking associativity

Definition.

A group G is said to be a abelian if a*b=b*a , for all $a,b\in G$.

Lemma 2.2.1.

If G is a group, then:

- (a) Its identity element is unique.
- (b) Every $a \in G$ has a unique inverse $a^{-1} \in G$.
- (c) If $a \in G$, $(a^{-1})^{-1} = a$.
- (d) For $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$.

Lemma 2.2.2.

In any group G and $a, b, c \in G$, we have:

- (a) If ab = ac, then b = c.
- (b) If ba = ca, then b = c.

Definition.

A nonempty subset, H, of a group G is called a *subgroup* of G if, relative to the product in G, H itself forms a group.

Lemma 2.3.1.

A nonempty subset $A \subset G$ is a subgroup of G if and only if A is closed with respect to the operation of G and, given $a \in A$, then $a^{-1} \in A$.

Definition-Lemma 8.4.

Let G be a group, and let $S \subseteq G$. The subgroup generated by S, denoted as $\langle S \rangle$, is the smallest subgroup containing S.

Note: From Lecture 5.

Definition.

The cyclic subgroup of G generated by a is a set $\{a^i \mid i \in \mathbb{Z}\}$. It is denoted $\langle a \rangle$.

Definition-Lemma 6.5.

Let G be a group, and let $g \in G$. The *centralizer* of g is defined to be

$$C(g) = \{ h \in G \mid hg = gh \}.$$

Then, C(g) is a subgroup of G.

Note: From Lecture 3.

Lemma 2.3.2.

Suppose that G is a group and H a nonempty *finite* subset of G closed under the product in G. Then H is a subgroup of G.

Corollary.

If G is a finite group and H a nonempty subset of G closed under multiplication, then H is a subgroup of G.

Definition.

A relation is \sim on a set S is called an *equivalence relation* if, for all $a, b, c \in S$, it satisfies:

- (a) $a \sim a$. (reflexivity)
- (b) $a \sim b$ implies that $b \sim a$. (symmetry)
- (c) $a \sim b, b \sim c$ implies that $a \sim c$. (transitivity)

Lemma 7.2.

Let G be a group and let H be a subgroup. Let \sim be the relation on G if and only if $b^{-1}a \in H$. Then \sim is an equivalence relation.

Note: From Lecture 4.

Definition.

If \sim is an equivalence relation on S, then [a], the class of a, is defined by $[a] = \{b \in S \mid b \sim a\}$.

Theorem 2.4.1.

If \sim is an equivalence relation on S, then $S = \cup [a]$, where this union runs over one element from each class, and where $[a] \neq [b]$ implies that $[a] \cap [b] = \emptyset$. That is, $\sim partition\ S$ into equivalence classes.

Definition-Lemma 7.7.

Let G be a group and let H be a subgroup. Let $g \in G$.

$$[g] = gH = \{gh \mid h \in H\}$$

gH is called a $left\ coset$.

Note: From Lecture 4.

Definition.

Let G be a group and let H be a subgroup. The *index* of H in G, denoted [G; H], is equal the number of left cosets of H in G.

Note: From Lecture 4.

Theorem 2.4.2 (Lagrange's Theorem).

Let G be a group and let H be a subgroup. Then

$$|H| \cdot [G; H] = |G|.$$

In particular, if G is finite, then the order of H divides the order of G.

Note: From Lecture 4.

Lemma 8.3.

Let G be a group and let H_i , $i \in I$ be a collection of subgroups. Then $\bigcap_{i \in I} H_i$ is a subgroup.

Note: From Lecture 5.

Theorem 2.4.3.

A group G of prime order is cyclic.

Definition.

If G is finite, then the order of a, written o(a), is the least positive integer m such that $a^m = e$. Note: $o(a) = |\langle a \rangle|$.

Theorem 2.4.4.

If G is finite and $a \in G$, then o(a) | |G|.

Theorem 2.4.5.

If G is a finite group of order n, then $a^n = e$ for all $a \in G$.

Lemma 9.3.

Let G be a cyclic group generated by a. Then,

- (a) G is abelian.
- (b) If G is infinite, then $G = \{a^i \mid i \in \mathbb{Z}\}.$
- (c) If G is of finite n, then G is precisely $\{e, a, a^2, \dots, a^{n-1}\}$.

Note: From Lecture 5.

Theorem 2.4.6.

 \mathbb{Z}_n forms a cyclic group under the addition [a] + [b] = [a+b].

Definition.

The Euler φ -function, $\varphi(n)$, is defined by $\varphi(1) = 1$ and, for n > 1, $\varphi(n) =$ the number of positive integers m with $1 \le m < n$ such that (m, n) = 1.

Theorem 2.4.7.

 U_n forms an abelian group, under the product [a][b] = [ab], of order $\varphi(n)$.

Theorem 2.4.8 (Euler).

If a is an integer relatively prime to n, then $a^{\varphi(n)} \equiv 1 \mod n$.

Corollary (Fermat).

If p is a prime and $p \nmid a$, then

$$a^{p-1} \equiv 1 \mod p$$
.

For any integer $b, b^p \equiv b \mod p$.