.

Projektiranje programabilnih SoC platformi

Predavanja FER, 2022. VDMA

VDMA

- Specification:
 - https://docs.xilinx.com/r/en-US/pg020_axi_vdma
- Features:
 - AXI4 Compliant
 - Primary AXI4 data width support of 32, 64, 128, 256, 512, and 1,024 bits
 - Primary AXI4-Stream data width support of multiples of 8 up to 1,024 bits
 - Optional frame advance or repeat on error
 - Supports up to 32 frame buffers
 - Supports up to 64-bit address space
 - Supports Vertical Flip

VDMA

Projektiranje programabilnih SoC platformi

• The AXI VDMA is designed to allow for efficient high-bandwidth access between the AXI4-Stream video interface and the AXI4 interface.

VDMA

- After registers are programmed through the AXI4-Lite interface, the Control/ Status logic block generates appropriate commands to the DataMover to initiate Write and Read commands on the AXI4 Master interface.
- A configurable asynchronous line buffer is used to temporarily hold the pixel data prior to writing it out to the AXI4-Memory Map interface or the AXI4-Stream interface.
- In the Write path, the AXI VDMA accepts frames on the AXI4-Stream Slave interface and writes it to system memory using the AXI4 Master interface.
- In the Read path, the AXI VDMA uses the AXI4 Master interface for reading frames from system memory and outputs it on the AXI4-Stream Master interface.

Table 2-1: Maximum Frequencies

Family	Speed Grade	Fmax (MHz)		
		AXI4	AXI4-Stream	AXI4-Lite
Virtex®-7		200	200	180
Kintex®-7	-1	200	200	180
Artix®-7		150	150	120
Virtex-7		240	240	200
Kintex-7	-2	240	240	200
Artix-7		180	180	140
			•	
Virtex-7		280	280	220
Kintex-7	-3	280	280	220
Artix-7		200	200	160

Tthe AXI VDMA throughput measured for different data widths. It was measured using standard High Definition (HD) frames on hardware.

Table 2-3: AXI VDMA Throughput

Memory Map and Streaming Data Widths (in bits)	Throughput (frames/sec)
32	96
64	192
128	384
256	500
512	680

- Two separate paths:
 - Read (MM2S) Path
 - Write (S2MM) Path

• Read (MM2S) Path Timing

X13730

Write (S2MM) Path Timing

AXI VDMA Register Address Map

Address Space Offset	Name	Description
28h	PARK_PTR_REG	MM2S and S2MM Park Pointer Register
2Ch	VDMA_VERSION	Video DMA Version Register
30h	S2MM_VDMACR	S2MM VDMA Control Register
34h	S2MM_VDMASR	S2MM VDMA Status Register
3Ch	S2MM_VDMA_IRQ_MASK	S2MM Error Interrupt Mask Register
44h	S2MM_REG_INDEX	S2MM Register Index
A0h	S2MM_VSIZE	S2MM Vertical Size Register
A4h	S2MM_HSIZE	S2MM Horizontal Size Register
A8h	S2MM_FRMDLY_STRIDE	S2MM Frame Delay and Stride Register
ACh to E8h	S2MM_START_ADDRESS (1 to 16) ⁽²⁾	S2MM Start Address (1 to 16)

- 1) Resetirati VDMA
 - U registru s2MM_control_register postaviti reset bit
- 2) Provjeri jeli se VDMA resetirao
 - Čitaj reset bit u S2MM_CONTROL_REGISTER i provjeravaj jel se VDMA pokrenuo
- 3) Do not mask interrupts
 - U s2MM_IRQ_MASK upiši 0xf
- 4) Start up buffer number
 - U registar s2MM_CONTROL_REGISTER upišite:
 - Da imate tri buffera
 - Te da se koristi:
 - VDMA_CONTROL_REGISTER_START |
 - VDMA_CONTROL_REGISTER_GENLOCK_ENABLE |
 - VDMA_CONTROL_REGISTER_INTERNAL_GENLOCK |
 - VDMA_CONTROL_REGISTER_CIRCULAR_PARK

VDMA Inicijalizacija

- 5) Čekajte dok nije ispunjen uvijet:
 - Da je zaustavljen (0x30) ili VDMA kanal "Halted" (0x34)
- 6) Postavi registar S2MM_REG_INDEX u nula
 - lako po specifikaciji to nema utjecaja
- 7) Postavi adrese FrameBuffera (S2MM Start Addresses)
 - VDMA S2MM FRAMEBUFFER1
 - VDMA S2MM FRAMEBUFFER2
 - VDMA S2MM FRAMEBUFFER3
- 8) Write Park pointer register
 - PARK_PTR_REG = 0
- 9) Frame delay and stride (bytes)
 - S2MM_FRMDLY_STRIDE = width * pixelLength
- 10) Write horizontal size (bytes)
 - S2MM_HSIZE, width * pixelLength
- 11) Write vertical size (lines), this actually starts the transfer
 - S2MM_VSIZE, height
- 12) Clear all error bits in status register

Projektiranje programabilnih SoC platformi

- 1) Dodajte VHDL cod za dohvat slike sa kamere
 - U tabu sources -> Design Sources desni klik (add sources)
 - Kad ste dodali datoteku trebao bi vam se pojaviti:

• 2) Prevucite datoteku u Diagram prozor i dobit će te novu komponentu u diagramu:

pdk

d[7:0]

m.axis +

- 3) Podesite porcesor:
 - Potrebno je uključiti HP0 na koji spajamo VDMA

Projektiranje programabilnih SoC platformi

 4) Dodajte AXI Video Direct Memory Access komponentu i izvršite konfiguraciju:

- 5) Pokrenite auto konekciju koju nude alati
- 6) Spojite komponentu za dohvat slike sa VDMA sklopom

- 7) Spojite i ackl ili opet pokrenite automatsko povezivanje
- 8) Postavite preostale priključke (pclk, vsync, href, d[7:0]) na komponenti za dohvat slike u external ("Make External")
- 9) Podesite sve postavke u constrainst datoteci (zadnji put smo dodali samo potrebne za I2C i XCLK, sad moramo dodati novo dodate external priključke)

Projektiranje programabilnih SoC platformi

U konačnici trebate dobiti

- 10) Pokrenite kreiranje Bitstream
 - Generate BitStreame
- 11) File -> Export -> Export Hardware ...
- I to bi trebalo biti to

Neobavezno dodavaje FIFO Generator komponente

FIFO

Projektiranje programabilnih SoC platformi

Postavke FIFO Generator komponente

