Аналитическая платформа биржевых событий на основе текстовых данн<u>ых</u>

Команда 29

17.03.2025

Цель проекта

- Исследовать влияние новостных статей на динамику цены акций компании.
- Решить две задачи:
 - Регрессионное предсказание точного значения цены.
 - Классификация направления изменения цены (повышение/понижение).

Источник данных и базовая предобработка

• Данные: Apple_data.csv

Содержат: Date, company, headline, abstract, url, section, Open Price,

Сlose Price

Для получения новостных статей был написан парсер NYTimes, а для цен vahoo finance.

• Предобработка:

- Слияние новостных данных и цен на основе поля Date.
- Преобразование поля Date в формат даты и сортировка по возрастанию.
- Заполнение пропусков:
 - Если отсутствует Open Price заполняем предыдущей Close Price.
 - Если отсутствует Close Price заполняем следующей Open Price.
- Удаление оставшихся пропусков.

Очистка текстовых данных и извлечение признаков

• Очистка текста:

- Приведение к нижнему регистру, удаление знаков препинания и чисел.
- Лемматизация и удаление стоп-слов (NLTK).

• Извлечение признаков:

- Создание очищенных полей: cleaned_headline и cleaned_abstract.
- Сентимент-анализ:
 - TextBlob для оценки полярности.
 - VADER для получения compound оценки.
- Вычисление относительного изменения цены:

$${\tt price_change} = \frac{{\tt Close \ Price} - {\tt Open \ Price}}{{\tt Open \ Price}}$$

Базовые модели (прошлые эксперименты)

Регрессия (Линейная регрессия):

- Признаки: headline_sentiment, abstract_sentiment; целевая переменная: Close Price.
- Результаты:

MAE: 23.18MSE: 820.59

• R²: 0.0003

• MAPE: 12.64%

Классификация:

- Бинарный признак: price_increase (1, если Close Price > Open Price).
- Агрегация данных по датам с вычислением среднего, максимума и количества новостей по сентиментам.
- Результаты (Логистическая регрессия): Accuracy: 55.7%.

Новая модель: Расширенное признаковое пространство

• Текстовые эмбеддинги:

- Использование pre-trained модели BERT через SentenceTransformer для получения эмбеддингов заголовков.
- Агрегация эмбеддингов по датам (среднее значение).

• Технические индикаторы:

- 5-дневная и 10-дневная скользящие средние по цене закрытия.
- Дневной процентный прирост цены (return).

• Объединение признаков:

• Объединяются агрегированные текстовые эмбеддинги и технические индикаторы по датам.

Результаты новой модели

- Ensemble Stacking Classifier показал ассигасу около 79.3%.
- Отчёт по классификации (на тестовой выборке):

Accuracy: 0.7931

	precision	recall	f1-score	support
0	0.75	0.82	0.79	40
1	0.84	0.77	0.80	47
accuracy			0.79	87

Модель	Accuracy	Macro (P / R / F1)	Confusion Matrix
XGBoost Classifier CatBoost Classifier	79.5% 84.1%	0.79 / 0.79 / 0.79 0.84 / 0.84 / 0.84	[31, 9; 9, 39] [33, 7; 7, 41]
Ensemble Stacking	79.3%	0.79 / 0.80 / 0.79	[33, 7; 11, 36]

Ансамблевый классификатор (Stacking)

- Базовые модели:
 - XGBoost Classifier
 - CatBoost Classifier
 - RandomForest Classifier
- Финальная модель: Logistic Regression.
- Используется StackingClassifier для объединения предсказаний базовых моделей.

Заключение

- Объединение эмбеддингов текстовых данных и технических индикаторов позволило создать более хорошую модель предсказания.
- Ensemble Stacking Classifier показал стабильную точность (около 79%).
- В дальнейшем планируется использовать данную модель в телеграмм-боте для прогнозирования направления изменения цены.