

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS MATEMATICA DISCRETA

LOGICA PROPOSICIONAL

Ciro Rodriguez • Marzo 2025

1. TAREA I

1.1 Identificación de propocisiones

1. Ejercicio 01

Indique cuáles de los siguientes enunciados son proposiciones lógicas y expréselos simbólicamente.

- a) Álgebra Lineal es una asignatura de Ciencias Básicas.
- b) Carlos comprará un auto nuevo si y solo si consigue un ascenso en su trabajo.
- c) El docente del curso.
- d) El Sol es una estrella o la Tierra es el centro del universo.
- e) Si José estudia mucho, entonces no sacará mala nota ni reprobará el curso.
- f) ¿La lluvia cesará en la próxima hora?

2. Ejercicio 02

La fórmula $[(p \lor q) \to r]$ se traduce como:

- a) Si estudio y practico, entonces aprobaré el examen.
- b) Si hace frío y llueve, entonces me quedaré en casa.
- c) Comer saludable y hacer ejercicio es bueno para la salud.
- d) Si duermo temprano y me levanto temprano, entonces tendré más energía.
- e) Si no leo libros ni veo documentales, no aprenderé sobre historia.

Además: Elija *al menos dos* de las traducciones anteriores y construya su tabla de verdad. Justifique si las proposiciones resultantes son tautologías, contradicciones o contingencias.

1.2 Tablas de verdad

1. Ejercicio 03

Construya las tablas de verdad de las siguientes proposiciones:

a)
$$\big[(p \vee q) \to r\big] \to \big[(p \wedge \neg q) \to r\big]$$

b)
$$[(p \lor q \lor s) \to r] \to [(p \land \neg q) \to (r \lor s)]$$

c)
$$(p \rightarrow \neg q) \lor (\neg p \lor r)$$

d)
$$((p \rightarrow q)) \rightarrow [(p \lor \neg q) \rightarrow (p \land q)]$$

1.3 Simplificación de proposiciones

1. Ejercicio 04

Decida si los siguientes esquemas proposicionales son tautología, contradicción o contingencia, y realice una breve simplificación cuando sea posible:

a)
$$(\neg(p \rightarrow r) \leftrightarrow (\neg p \lor r))$$

b)
$$((p \rightarrow q) \rightarrow [(r \land p) \rightarrow (q \land r)])$$

c)
$$((p \land r) \rightarrow (p \lor q))$$

d)
$$((q \land r) \rightarrow p)$$

e)
$$(r \rightarrow [p \rightarrow (q \rightarrow q)])$$

2. Ejercicio 05

Simplifique las siguientes proposiciones utilizando equivalencias lógicas:

a)
$$\left[(\neg p \land q) \rightarrow (\neg r \lor r) \right] \land \neg q$$

b)
$$\lceil (p \to p) \lor q \rceil \land \lceil \neg q \lor (r \land q) \rceil \land \lceil (p \to p) \lor \neg q \rceil$$

c)
$$\neg [(p \lor q) \rightarrow \neg (r \rightarrow p)] \lor \neg (q \rightarrow p)$$

d)
$$\{[(p \rightarrow q) \land p] \lor \neg(q \rightarrow p)\} \rightarrow \neg(p \lor \neg q)$$

1.4 Formalización y análisis de argumentos

1. Ejercicio 06

Formalice y analice los siguientes argumentos:

- a) Si hace frío o empieza a llover, nos quedaremos en casa o iremos al cine. Si nos quedamos en casa o vamos al cine, no iremos al parque mañana. Pero sí iremos al parque mañana. Concluya que no hace frío.
- b) Conseguiré el trabajo si tengo experiencia. Conseguiré el trabajo si y solo si paso la entrevista y tengo buenas referencias. Sin embargo, no tengo buenas referencias, por lo que no tengo experiencia. Determine la validez del argumento.
- c) Si hay tráfico o el autobús se retrasa, llegaré tarde o tendré que tomar un taxi. Si llego tarde o tomo un taxi, no podré asistir a la reunión a tiempo. Pero sí asistí a la reunión a tiempo. Por lo tanto, no hay tráfico.

Indicaciones:

- Asigne variables proposicionales a cada enunciado simple.
- Escriba el argumento en forma condicional, colocando la conclusión como consecuente.
- Construya la tabla de verdad y analice si el argumento es válido.

1.5 Verificación de negaciones en lógica de predicados

1. Ejercicio 07

Verifique que la negación de cada una de las siguientes proposiciones cuantificadas sea la que se indica.

- a) $\forall x \exists y (x < y) \text{ es } \exists x \forall y (x \geqslant y).$
- b) $\exists x \, \forall y \, (xy \ge 0) \text{ es } \forall x \, \exists y \, (xy < 0).$
- c) $\forall x (P(x) \lor Q(x))$ es $\exists x (\neg P(x) \land \neg Q(x))$.
- d) $\exists x \, \forall y \, (R(x,y) \to S(y)) \text{ es } \forall x \, \exists y \, (R(x,y) \land \neg S(y)).$