Задача А. Стек (!) (1 балл)

Имя входного файла: stack.in
Имя выходного файла: stack.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Реализуйте работу стека. Для каждой операции изъятия элемента выведите ее результат.

На вход программе подаются строки, содержащие команды. Каждая строка содержит одну команду. Команда — это либо "+ N", либо "-". Команда "+ N" означает добавление в стек числа N, по модулю не превышающего 10^9 . Команда "-" означает изъятие элемента из стека. Гарантируется, что не происходит извлечения из пустого стека. Гарантируется, что размер стека в процессе выполнения команд не превысит 10^6 элементов.

Формат входного файла

В первой строке входного файла содержится количество команд — M ($1 \le M \le 10^6$). Каждая последующая строка исходного файла содержит ровно одну команду.

Формат выходного файла

Выведите числа, которые удаляются из стека, по одному в каждой строке. Гарантируется, что изъятий из пустого стека не производится.

Пример

stack.in	stack.out
6	10
+ 1	1234
+ 10	
-	
+ 2	
+ 1234	
-	

Примечание

Необходимо написать свой стек.

Задача В. Очередь (1 балл)

Имя входного файла: queue.in Имя выходного файла: queue.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Реализуйте работу очереди. Для каждой операции изъятия элемента выведите ее результат.

На вход программе подаются строки, содержащие команды. Каждая строка содержит одну команду. Команда — это либо "+ N", либо "-". Команда "+ N" означает добавление в очередь числа N, по модулю не превышающего 10^9 . Команда "-" означает изъятие элемента из очереди. Гарантируется, что размер очереди в процессе выполнения команд не превысит 10^6 элементов.

Формат входного файла

В первой строке содержится количество команд — M ($1 \le M \le 10^6$). В последующих строках содержатся команды, по одной в каждой строке.

Формат выходного файла

Выведите числа, которые удаляются из очереди, по одному в каждой строке. Гарантируется, что извлечения из пустой очереди не производится.

Пример

queue.in	queue.out
4	1
+ 1	10
+ 10	
-	
-	

Примечание

Необходимо написать свою очередь.

Задача С. Правильная скобочная последовательность (1 балл)

Имя входного файла: brackets.in Имя выходного файла: brackets.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Входной файл содержит несколько строк, каждая из которых содержит последовательность символов '(', ')', '[' и ']'. Выясните, является ли она правильной скобочной последовательностью с двумя типами скобок.

Подсказка: используйте стек.

Формат входного файла

Входной файл содержит $1 \le n \le 500$ строк, каждая из которых содержит скобочную последовательность длиной $1 \le l \le 10^4$.

Формат выходного файла

Для каждой строки входного файла выведите в выходной файл «YES», если соответствующая последовательность является правильной скобочной последовательностью, или «NO», если не является.

Пример

brackets.in	brackets.out
()()	YES
([])	YES
([)]	NO
((]]	NO
)(NO

Примечание

Необходимо написать свой стек.

Задача D. Постфиксная запись (2 балла)

 Имя входного файла:
 postfix.in

 Имя выходного файла:
 postfix.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

В постфиксной записи (или обратной польской записи) операция записывается после двух операндов. Например, сумма двух чисел A и B записывается как A B +. Запись B C + D * обозначает привычное нам (B+C)*D, а запись A B C + D * + означает A+(B+C)*D. Достоинство постфиксной записи в том, что она не требует скобок и дополнительных соглашений о приоритете операторов для своего чтения.

Дано выражение в обратной польской записи. Определите его значение.

Подсказка: используйте стек.

Формат входного файла

В единственной строке записано выражение в постфиксной записи, содержащее однозначные числа и операции +, -, *. Строка содержит не более 100 чисел и операций.

Формат выходного файла

Необходимо вывести значение записанного выражения. Гарантируется, что результат выражения, а также результаты всех промежуточных вычислений по модулю меньше 2^{31} .

Пример

postfix.in	postfix.out
8 9 + 1 7 - *	-102

Примечание

Необходимо написать свой стек.

Задача Е. Двоичный поиск (!) (1 балл)

Имя входного файла: binsearch.in Имя выходного файла: binsearch.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан массив из n элементов, упорядоченный в порядке неубывания, и m запросов: найти первое и последнее вхождение числа в массив.

Формат входного файла

В первой строке входного файла содержится одно число n — размер массива ($1 \le n \le 100000$). Во второй строке находится n чисел в порядке неубывания — элементы массива. В третьей строке находится число m — количество запросов. В следующей строке находится m чисел — запросы.

Формат выходного файла

Для каждого запроса выведите в отдельной строке номер первого и последнего вхождения этого числа в массив. Если числа в массиве нет, выведите два раза -1.

Пример

binsearch.in	binsearch.out
5	1 2
1 1 2 2 2	3 5
3	-1 -1
1 2 3	

Примечание

Необходимо написать свой бинарный поиск.

Задача F. Гирлянда (3 балла)

 Имя входного файла:
 garland.in

 Имя выходного файла:
 garland.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Гирлянда состоит из n лампочек на общем проводе. Один её конец закреплён на заданной высоте A мм $(h_1 = A)$. Благодаря силе тяжести гирлянда прогибается: высота каждой неконцевой лампы на 1 мм меньше, чем средняя высота ближайших соседей $(h_i = \frac{(h_{i-1} + h_{i+1})}{2} - 1$ для 1 < i < N). Требуется найти минимальную высоту второго конца B $(B = h_n)$ при условии, что лишь одна лампочка может касаться земли, а для остальных выполняется условие $h_i > 0$.

Подсказка: используйте двоичный поиск.

Формат входного файла

В первую строке входного файла содержится два числа n и A ($3 \le n \le 1000, n-$ целое, $10 \le A \le 1000, A-$ вещественное).

Формат выходного файла

Вывести одно вещественное число В с двумя знаками после запятой.

Пример

garland.in	garland.out
8 15	9.75
692 532.81	446113.34