Advanced Time Series

Lecture 1: Introduction to time series

Gleb Ivashkevich

whoami

Gleb Ivashkevich

doing deep learning - time series, satellite imagery

PhD in theoretical physics

6 years in **academia** doing numerical simulations

7 years in data science and machine learning

Our TA

Anatoly Bardukov

doing image similarity search in Yandex

applied math from HSE

back/front-end, data engineering

What is ATS about?

Time series are **sequences**.

- all the sequential **deep learning** blocks can be applied (RNN, CNN, combinations, etc.)
- various problems: forecasting, classification, event prediction
- **mental image** of time series problems how to select parameters, architectures, etc.

What ATS is not about?

- AR, VAR, ARIMA, etc.
- specific domains
- econometrics
- financial time series

But we will **overview** the classical stuff. And will use it to build **intuition**.

You should attend if...

... most of the following is true:

- you have some basic experience with classical time series approaches
- know how to read research papers
- have some understanding of deep learning in general and RNN and CNN in particular
- have no problems at all with Python stack (especially PyTorch)

How do we check prerequisites

- qualification homework
- Pandas time series functionality + PyTorch
- **10 days to submit** (deadline is 24:00 Feb 3)
- at least 5 points out of 7
- individual submissions

Course logistics

6 lectures, 3 hours each, Google classroom

- slides + notebook(-s)
- 4 homeworks (in pairs)
- 2 paper reviews + 2 paper implementations
- manual grading
- Slack

Course structure

Intro + 4 topics:

- TS **forecasting**: RNNs^(various)
- TS **classification**: CNN^(various) and combined^(RNN+CNN) models
- **TTE prediction**: DL models for predictive maintenance, survival analysis
- TS **representation learning**: VAMPnets, autoencoders^(various)

Course structure

Power consumption

Weather

Sales

Traffic

Forecasting

AR models RNNs Probabilistic forecasts

Any highly structured TS

Representation

VAMPnets AEs

ATS

Activity data (inertial sensors) Sound Medical signals

Classification

Dilated/causal convolutions CNNs and hybrid models Attention mechanism Segmentation

Equipment data Earthquakes and other physical signals

TTE prediction

Survival models interpretability

Time series basics: time domain

Electricity load dataset

- 370 individual households
- 15 minutes sampling interval

Electricity load dataset

- 370 individual households
- 15 minutes sampling interval

Temporal structure?

- shift the data: 12 hours

Temporal structure?

- shift the data: 24 hours

Temporal structure?

- shift the data: 12, 24 hours

Autocorrelation function

Temporal structure?

- calculate correlations at different shifts: **autocorrelation function** (ACF)

Autocorrelation function

Temporal structure?

- calculate correlations at different shifts: **autocorrelation function** (ACF)

$$ACF(\tau) = C(y(t)y(t-\tau))$$

Autocorrelation function

ACF:

- quick assessment of signal temporal structure
- correlation length -> model parameters

$$ACF(\tau) = C(y(t)y(t-\tau))$$

Modeling

Modeling ideas:

- use some AR-alike classical model
- use some RF, gradient boosting, provide lags explicitly
- **recurrent** model (modified?)

Time series basics: frequency domain

ADL Recognition dataset

- multiple activities, short samples
- 50 Hz sampling rate

ACF? Non-informative: wrong "scale"

- FFT for the rescue

Power spectrum:

Modeling

Modeling ideas:

- use manual features (tsfresh) and some classical model
- **CNN** model (modified?)

Time series basics: other examples

Industrial equipment

Condition monitoring of hydraulic systems dataset

- multiple sensors (temperature, pressure)
- 100 Hz sampling rate

Industrial equipment

Time series basics: tools

Pandas

Mostly for preprocessing:

- datetime operations
- resampling, rolling
- shifts

Cross-validation

Random split cannot be applied to time series

- use fixed split
- use rolling CV
- otherwise, autocorrelation will kill your model

questions?