Построив касательную к параболе, можно построить ее фокус F. Напомним, что фокусом является точка, в которую нужно поместить источник света, чтобы все лучи, отраженные от параболического зеркала, были параллельны оси симметрии параболы. Для построения фокуса F нужно построить прямую AB, параллельную оси Oy, и прямую AF, образующую с касательной такой же угол, как и прямая АВ (рис. 117).

Упражнения

857 Найти значения k и b, если прямая y = kx + b проходит через точку $(x_0; y_0)$ и образует с осью Ox угол α :

1)
$$\alpha = \frac{\pi}{4}$$
, $x_0 = 2$, $y_0 = -3$;

1)
$$\alpha = \frac{\pi}{4}$$
, $x_0 = 2$, $y_0 = -3$; 2) $\alpha = \frac{\pi}{4}$, $x_0 = -3$, $y_0 = 2$;

3)
$$\alpha = -\frac{\pi}{2}$$
, $x_0 = 1$, $y_0 = 1$

3)
$$\alpha = -\frac{\pi}{3}$$
, $x_0 = 1$, $y_0 = 1$; 4) $\alpha = -\frac{\pi}{6}$, $x_0 = -1$, $y_0 = -1$.

858 Найти угловой коэффициент касательной к графику функции y = f(x) в точке с абсциссой x_0 :

1)
$$f(x) = x^3, x_0 = 1;$$

1)
$$f(x) = x^3$$
, $x_0 = 1$; 2) $f(x) = \sin x$, $x_0 = \frac{\pi}{4}$;

3)
$$f(x) = \ln x$$
, $x_0 = 1$; 4) $f(x) = e^x$, $x_0 = \ln 3$.

4)
$$f(x) = e^x$$
, $x_0 = \ln 3$.

859 Найти угол между касательной к графику функции y = f(x)в точке с абсциссой x_0 и осью Ox:

1)
$$f(x) = \frac{1}{3} x^3$$
, $x_0 = 1$; 2) $f(x) = \frac{1}{x}$, $x_0 = 1$;

2)
$$f(x) = \frac{1}{x}$$
, $x_0 = 1$;

3)
$$f(x) = 2\sqrt{x}$$
, $x_0 = 3$;

3)
$$f(x) = 2\sqrt{x}$$
, $x_0 = 3$; 4) $f(x) = \frac{18}{\sqrt{x}}$, $x_0 = 3$;

5)
$$f(x) = e^{\frac{3x+1}{2}}$$
, $x_0 = 0$; 6) $f(x) = \ln(2x+1)$, $x_0 = 2$.

6)
$$f(x) = \ln (2x + 1), x_0 = 2.$$

860 Написать уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 :

1)
$$f(x) = x^2 + x + 1$$
, $x_0 = 1$; 2) $f(x) = x - 3x^2$, $x_0 = 2$;

2)
$$f(x) = x - 3x^2$$
, $x_0 = 2$;

3)
$$f(x) = \frac{1}{x}$$
, $x_0 = 3$;

4)
$$f(x) = \frac{1}{x}, x_0 = -2;$$

5)
$$f(x) = \sin x$$
, $x_0 = \frac{\pi}{4}$; 6) $f(x) = e^x$, $x_0 = 0$;

6)
$$f(x) = e^x$$
, $x_0 = 0$;

7)
$$f(x) = \ln x$$
, $x_0 = 1$;

8)
$$f(x) = \sqrt{x}, x_0 = 1.$$

- Функция y = f(x) задана своим графиком (рис. 118, a, δ). 861 В каких точках A, B, C, D, E, F, G производная этой функции принимает:
 - а) положительные значения; б) отрицательные значения;
 - в) значения, равные 0?

Puc. 118

862 Написать уравнение касательной к графику функции y = f(x) в точке с абсциссой x = 0:

1)
$$f(x) = x + \frac{1}{x+1}$$
; 2) $f(x) = \sin 2x - \ln (x+1)$.

863 Найти угол между осью Oy и касательной к графику функции y = f(x) в точке с абсциссой x = 0:

1)
$$f(x) = x + e^{-x}$$
; 2) $f(x) = \cos x$; 3) $f(x) = \sqrt{x+1} + e^2$.

864 Под каким углом пересекаются графики функций (*углом между кривыми* в точке их пересечения называют угол между касательными к этим кривым в этой точке):

1)
$$y = 8 - x$$
 if $y = 4\sqrt{x+4}$; 2) $y = \frac{1}{2}(x+1)^2$ if $y = \frac{1}{2}(x-1)^2$;

3)
$$y = \ln (1 + x)$$
 $y = \ln (1 - x)$; 4) $y = e^{x}$ $y = e^{-x}$?

865 Показать, что графики двух данных функций имеют одну общую точку и в этой точке общую касательную. Написать уравнение этой касательной:

1)
$$y = x^4$$
 $y = x^6 + 2x^2$;

2)
$$y = x^4$$
 u $y = x^3 - 3x^2$;

3)
$$y = (x + 2)^2$$
 $y = 2 - x^2$;

4)
$$y = x (2 + x)$$
 $y = x (2 - x)$.

866 Найти точки графика функции y = f(x), в которых касательная к этому графику параллельна прямой y = kx:

1)
$$f(x) = e^x + e^{-x}$$
, $k = \frac{3}{2}$; 2) $f(x) = \sqrt{3x-1}$, $k = \frac{3}{4}$;

3)
$$f(x) = \sin 2x$$
, $k = 2$; 4) $f(x) = x + \sin x$, $k = 0$.

- 867 В каких точках касательная к графику функции $y = \frac{x+2}{x-2}$ образует с осью Ox угол, равный $-\frac{\pi}{4}$?
- 868 Найти точки, в которых касательные к кривым $f(x) = x^3 x 1$ и $g(x) = 3x^2 4x + 1$ параллельны. Написать уравнения этих касательных.