PROBLEME 2:

ECOLE NATIONALE DES PONTS ET CHAUSSEES,

ECOLES NATIONALES SUPERIEURES DE L'AERONAUTIQUE ET DE L'ESPACE,

DE TECHNIQUES AVANCEES, DES TELECOMMUNICATIONS,

DES MINES DE PARIS, DES MINES DE SAINT-ETIENNE, DES MINES DE NANCY,

DES TELECOMMUNICATIONS DE BRETAGNE,

ECOLE POLYTECHNIQUE

(Option T.A.)

CONCOURS D'ADMISSION 1992

MATHEMATIQUES

PREMIERE EPREUVE

OPTIONS M ET P'

(Durée de l'épreuve : 4 heures)

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie : MATHEMATIQUES I.

L'énoncé de cette épreuve, commune aux candidats des options M et P', comporte i pages.

Dans tout le problème, on désigne par λ un réel appartenant à l'intervalle]0, l[et ar g la fonction définie sur]1, + ∞ [par :

$$g(x) = \frac{1}{x^{1-\lambda} (x-1)^{\lambda}}.$$

On se propose de déterminer une suite (v_n) de fractions rationnelles convergeant niformément vers g sur tout intervalle compact de]1, $+\infty$ [, ce qui fait l'objet de la artie III .

La partie II est consacrée à l'étude d'un produit scalaire sur $\mathbb{R}[X]$ et la partie I au alcul, utile dans la suite, de l'intégrale $u_k = \int_0^1 t^k \, \omega(t) \, dt$, k désignant un entier aturel et ω la fonction définie sur]0, 1[par :

$$\omega(t) = \frac{\sin (\pi \lambda)}{\pi} \frac{1}{t^{1-\lambda} (1-t)^{\lambda}}.$$

CONCOURS MINES PONTS M & P'. HA

$$I - \underline{Calcul \ de} \ u_k = \int_0^1 \ t^k \ \omega(t) \ dt :$$

On note
$$I(\lambda) = \int_0^1 \frac{dt}{t^{1-\lambda} (1-t)^{\lambda}}$$
.

1. Transformation de $I(\lambda)$:

- a) Etablir la convergence de $I(\lambda)$.
- b) A l'aide d'un changement de variable homographique, montrer que :

$$I(\lambda) = \int_0^{+\infty} \frac{du}{u^{1-\lambda} (1+u)}.$$

c) En déduire l'expression de $I(\lambda)$ au moyen de $J(\lambda)$ et de $J(1-\lambda)$

où
$$J(\lambda) = \int_0^1 \frac{du}{u^{1-\lambda} (1+u)}$$
.

2. Développement en série de $I(\lambda)$:

a) Prouver que, pour tout entier $n \ge 1$ et tout $u \in [0, 1]$:

$$\frac{1}{1+u} = \sum_{k=0}^{n-1} (-1)^k u^k + (-1)^n \frac{u^n}{1+u}.$$

En déduire une expression de $J(\lambda)$ comme somme d'une série convergente.

b) En déduire que :
$$I(\lambda) = \frac{1}{\lambda} + 2\lambda \sum_{n=1}^{+\infty} \frac{(-1)^n}{\lambda^2 - n^2}.$$

3. Calcul de u :

Soit f la fonction 2π -périodique telle que : $\forall t \in [-\pi, +\pi]$ $f(t) = \cos(\lambda t)$.

- a) f est-elle développable en série de Fourier sur R?
- b) Déterminer le développement en série de Fourier de f.
- c) En déduire u .

4. Calcul de u_k , $k \in \mathbb{N}^n$:

- a) Prouver que, si $k \in \mathbb{N}'$: $u_k = \frac{k + \lambda 1}{k} u_{k-1}$.
- b) En déduire uk .

- 5. Application au calcul de $\int_0^1 \frac{\omega(t)}{x-t} dt \text{ pour } x > 1$:
 - a) Démontrer que, pour x > 1, $\int_0^1 \frac{\omega(t)}{x-t} dt = \sum_{n=0}^{+\infty} \frac{u_n}{x^{n+1}}$. (On procèdera comme au I-2.a) .)
 - b) Démontrer que la fonction g, définie dans l'introduction, est égale à la somme d'une série entière par rapport à 1/x.
 - c) En déduire l'égalité : $\int_0^1 \frac{\omega(t)}{x-t} dt = g(x) .$

II - Etude d'un produit scalaire dans R[X] :

Dans toute la suite, on munit R[X] du produit scalaire

$$(P, Q) \mapsto (P|Q) = \int_0^1 \omega(t) P(t) Q(t) dt$$

et de la norme euclidienne associée $P \mapsto \|P\| = \sqrt{(P|P)}$.

 $\mathbb{R}[X]$ muni de ce produit scalaire sera noté ($\mathbb{R}[X]$, (|)). (On ne demande pas de vérifier que (|) est un produit scalaire.)

1. Etude de la projection orthogonale de X^n sur \mathbb{R}_{n-1} [X] pour $n \ge 1$:

Pour tout entier $n \ge 1$, on note $A_n(X) = \sum_{k=0}^{n-1} a_k(n) \ X^k$ la projection orthogonale de X^n sur $\mathbb{R}_{n-1}[X]$ (espace des polynômes de degré inférieur ou égal à n-1).

a) Montrer que la suite des réels $(a_0(n), a_1(n), \ldots, a_{n-1}(n))$ est solution du système

$$\forall \ p \in \{0, 1, \dots, n-1\} \quad , \qquad \sum_{k=0}^{n-1} a_k(n) \prod_{i=k+1}^n \frac{i+p}{i+\lambda-1+p} = 1 \ .$$

b) On associe à $A_n(X)$ la fraction rationnelle :

$$F(X) = 1 - \sum_{k=0}^{n-1} a_k(n) \prod_{i=k+1}^{n} \frac{i + X}{i + \lambda - 1 + X}.$$

Déterminer les zéros et les pôles de F ; que vaut F(-n) ? En déduire :

$$F(X) = \prod_{p=0}^{n-1} \frac{n-\lambda-p}{n+p} \cdot \frac{X-p}{X+\lambda+p}.$$

c) En déduire la valeur de $a_{n-1}(n)$ coefficient dominant de $A_n(X)$.

2. Etude d'une famille orthogonale de polynômes de R[X]:

- a) Démontrer qu'il existe une famille unique (P_n) de polynômes de $\mathbb{R}[X]$, vérifiant pour tout entier n, les propriétés suivantes :
 - i) le coefficient dominant de P_n est égal à 1 ,
 - ii) $(P_0, P_1, ..., P_n)$ est une base orthogonale de $(R_n[X], (I))$.

Ecrire P_0 et P_1 et exprimer, pour $n \ge 1$, $P_n(X)$ en fonction de $A_n(X)$.

b) Norme de P_n pour $n \ge 1$:

Montrer que $\|P_n\|^2 = (X^n \mid X^n - A_n(X)) = u_{2n} F(n)$.

c) Racines de P_n pour $n \ge 1$:
Soit p le nombre des racines a_i d'ordre impair du polynôme P_n appartenant à l'intervalle]0, 1[.

Si p = 0 , on pose S(x) = 1 ; sinon , on pose $S(x) = \prod_{i=1}^{p} (x - a_i)$.

Démontrer que l'intégrale $\int_0^1 P_n(x) \ S(x) \ \omega(x) \ dx \ \text{est nulle si } p < n \ .$

En déduire que P_n a n racines distinctes appartenant à]0, 1[.

d) Relation de récurrence vérifiée par $(P_n)_{n \in \mathbb{N}}$:

Montrer que, pour tout entier $n \ge 1$, il existe des réels α_n et β_n tels que :

$$X P_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1} .$$

Calculer (X $P_n \mid P_{n+1}$) puis β_n en fonction de $\|P_{n-1}\|^2$, $\|P_n\|^2$ et de $\|P_{n+1}\|^2$. Calculer α_n en fonction de n et de λ .

3. Application à l'étude de la famille de polynômes $(Q_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N} , \forall x \geqslant 1 \qquad Q_n(x) = \int_0^1 \omega(t) \frac{P_n(x) - P_n(t)}{x - t} dt.$$

- a) Déterminer Q_0 et Q_1 et montrer que pour $n \ge 1$: $X Q_n = Q_{n+1} + \alpha_n Q_n + \beta_n Q_{n-1}$.
- b) En déduire que $(P_n Q_{n+1} P_{n+1} Q_n) \frac{1}{\|P_n\|^2}$ est indépendant de n et donner sa valeur.

- III Application à l'étude de la suite des fractions rationnelles $v_n = \frac{Q_n}{P_n}$, n = 0, 1, 2, ...Dans ce qui suit, x désigne un réel strictement supérieur à 1.
 - 1. Que vaut $v_0(x)$?

 Exprimer $v_{n+1}(x)$ en fonction de $v_0(x)$, $P_0(x)$ et $P_{n+1}(x)$.

2. a) Que vaut
$$\int_{0}^{1} \omega(t) \frac{P_{n}(t) - P_{n}(x)}{t - x} P_{n}(t) dt$$
?

b) En déduire que :
$$g(x) - v_n(x) = \frac{1}{P_n(x)^2} \int_0^1 \omega(t) \frac{P_n(t)^2}{x - t} dt$$
.

L'espace euclidien ainsi défini sera noté : ($\mathbb{R}_n[X]$, < , >) et la norme déduite du produit scalaire : $|\cdot|\cdot|\cdot|\cdot|$.

a) Soit $F_n(a)$ le sous-ensemble des polynômes de $\mathbb{R}_n[X]$ nuls en a : $F_n(a) = \{P \mid P \in \mathbb{R}_n[X] , P(a) = 0\}$.

Démontrer que $F_n(a)$ est l'hyperplan orthogonal au polynôme P_n dans $(R_n[X], <, >)$.

b) Soit $G_n(a)$ le sous-ensemble des polynômes de $\mathbb{R}_n[X]$ prenant la valeur 1 en a .

Démontrer que $G_n(a)$ est un sous-ensemble de $\mathbb{R}_n[X]$ obtenu à partir de $F_n(a)$ par une translation. Déterminer le vecteur translation lorsque ce vecteur est orthogonal à $F_n(a)$.

En déduire l'égalité :
$$\inf_{P \in G_n(a)} |||P|||^2 = |||P_n|||^2 / |P_n(a)|^2 .$$

4. Convergence de la suite vo :

Déduire des résultats précédents, pour tout réel a , a > 1, l'inégalité :

$$g(a) - v_n(a) \le \frac{1}{a^2 P_{n-1}(a)^2} \int_0^1 \frac{\omega(t)}{a-t} t^2 P_{n-1}(t)^2 dt$$

5. Démontrer, pour tout réel a , a > 1, les inégalités : $0 \le g(a) - v_n(a) \le \frac{1}{a^{2n}} g(a)$.

En déduire que la suite des fractions rationnelles v_n converge simplement vers g sur]1, $+\infty$ et converge uniformément sur tout intervalle compact contenu dans]1, $+\infty$.

FIN DU PROBLEME