Name of Student: Aniket Patil	Class: TE MECH 2
Semester/ Year: 6 th / 3 rd	Roll No: 29
Date of performance:	Date of Submission
Examined by: Prof. B.R Pujari	Expt No: 4

AIM OF EXPERIMENT:- Stress and deflection analysis of beam using finite element package. Finite Element Package: ANSYS 2022
Stress distribution in a beam with applied load.

E= 2x10e5 Mpa R= 25mm μ = 0.3

Step 1: Select type of Analysis ----- Preferences> structural>Press Ok

Step 2: Add the element type.....preprocessor>element type>beam>2node 188> Press ok

Step 3: Preprocessor>Material prop.>Material models>Material number1

Step 4: Material models>structural>linear>elastic>isotropic.

Step 5: selecting section of beam....section>beam>common section>select section.

Step6: Creating Keypoints:- modeling>create>keypoint>in active cs>select co- ordinate.

Step7: Lines>Lines>In active co-ordinate cs> Join Co Ordinates

Step8: meshing:- Meshing> meshtools>lines>Set>Select Model>Apply

Step9: Enter no division>ok>mesh>selectmodel>ok

Step10: Apply loads: Laods>define loads>apply>structural>displacement>on keypoints> All Dof>0>ok

Step11: Loads>Define loads>apply>forces>on keypoints> selecting direction of forces (here FY)>ok

Step12:Solution:- solution>solve>currentls> done

Step13: General postproc> plot result> Nodal solution> Dof >Vector sum displacement> apply.

Step14: Nodal solution> stress> von misses stress> apply

RESULTS:-

NODAL DISPLACEMENT:-

STRESSES:-

SO HERE BY ANALYSIS WE HAVE GOT MAX. INDUCED STRESS IS 10.913 N/MM2 MAX.

DISPLACEMENT IS 0.005 MM

By analytical Solution:

CONCLUSION:-

Thus by comparing analytical and software solution we have got Max.

stresses:-

By ansys solution:-10.139 N/mm2 By

analytical solution:- 20.2 N/mm2

Max. displacement:-

By ansys solution:- 0.00509 mm By

analytical solution:- 0.0101 mm

Thus we have got 50% error in finding displacement and stresses.