Lune-incidence Algebra and Non-commutative Möbius Theory

Udit Mavinkurve

Based on chapter 15 from Topics in Hyperplane Arrangements by Marcelo Aguiar and Swapneel Mahajan

1 The main result

We will attempt to prove the following theorem:

Theorem 1. The following pieces of data are equivalent:

- 1. a non-commutative zeta function ζ of ${\mathcal A}$
- 2. a homogeneous section ${\tt u}$ of ${\cal A}$
- 3. an Eulerian family E of \mathcal{A}
- 4. a complete system of primitive orthogonal idempotents of $\Sigma\left[\mathcal{A}\right]$
- 5. an algebra section of the support map

$$s: \Sigma [A] \to \Pi [A]$$

- 6. a Q-basis for $\Sigma\left[\mathcal{A}
 ight]$
- 7. a special Zie family P of A
- 8. a non-commutative Möbius function $oldsymbol{\mu}$ of ${\mathcal A}$

We have seen that 2. - 7. are equivalent:

- $2. \Rightarrow 3.$: Saliola construction
- $3. \Rightarrow 2.$: base term
- 4. ⇔ 5. : general fact about elementary algebras
- 3. \Rightarrow 5. : $Q_X \mapsto E_X$
- 5. \Rightarrow 3. : image of \mathbb{Q}_{X} under algebra section
- 3. \Rightarrow 6. : $Q_{\mathrm{F}} = H_{\mathrm{F}} \cdot E_{\mathrm{s}\,(\mathrm{F})}$

6.
$$\Rightarrow$$
 3. $: H_O = \sum_{\mathrm{F}} \mathrm{u}^{\mathrm{F}} \mathrm{Q}_{\mathrm{F}}; \quad \mathrm{u}_{\mathrm{X}} = \sum_{\mathrm{F:s}\,(\mathrm{F}) = \mathrm{X}} \mathrm{u}^{\mathrm{F}} \mathrm{H}_{\mathrm{F}}$

6.
$$\Rightarrow$$
 7. : $\mathsf{P}_{\mathsf{X}} = (\beta_{\mathsf{X},\mathsf{F}} \circ \Delta_{\mathsf{F}}) (\mathsf{Q}_{\mathsf{F}})$

7.
$$\Rightarrow$$
 6. : $Q_F = (\mu_F \circ \beta_{F,X}) (P_X)$

The theorem is proved by demonstrating the equivalences $1. \Leftrightarrow 2.$ and $7. \Leftrightarrow 8.$

Objective: define non-commutative zeta functions for ${\cal A}$ and show that:

Due to the limited time, we will omit showing $7. \Leftrightarrow 8$.

The full details can be found in chapter 15 of notes.

We start off by recalling some classical Möbius theory.

2 Classical Möbius Theory

2.1 Incidence algebra of a poset

Recall that for any finite poset P, we defined its incidence algebra $\mathrm{I}(P)$ as the vector space of incidence functions:

$$f: \left\{ (x, y) \in P^2 \mid x \le y \right\} \to \mathbb{k}$$

and for any $f,g\in I(P)$, we define $f\cdot g\in I(P)$ by:

$$(f \cdot g)(x, z) = \sum_{y: x \le y \le z} f(x, y) g(y, z)$$

The (multiplicative) identity is given by $\delta \in I(P)$, defined as follows:

$$\delta\left(x,y\right) = \begin{cases} 1 & \text{if } x = y\\ 0 & \text{otherwise} \end{cases}$$

The zeta function $\zeta \in I[P]$ is defined by:

$$\zeta\left(x,y\right)=1\quad \text{for all }x\leq y$$

It is an invertible element of I[P].

Its inverse is the Möbius function $\mu \in I[P]$, which is uniquely characterized by:

$$\mu\left(x,x\right) = 1 \quad \text{for all } x$$

$$\sum_{z:x \leq z \leq y} \mu\left(z,y\right) = 0 \quad \text{for all } x < y$$

2.2 Example: the flat-incidence algebra

Taking $P=\Pi\left[\mathcal{A}\right]$, the lattice of flats, we get the flat-incidence algebra $I_{\mathrm{flat}}\left[\mathcal{A}\right]$.

It consists of functions on nested flats (i.e. pairs (X,Y) s.t. $X \leq Y$) with:

$$(f \cdot g)(\mathbf{X}, \mathbf{Y}) = \sum_{\mathbf{Y}: \mathbf{X} \leq \mathbf{Y} \leq \mathbf{Z}} f(\mathbf{X}, \mathbf{Y}) g(\mathbf{Y}, \mathbf{Z})$$

We have the identity element, the zeta function, the Möbius function, the incidence module and Möbius inversion exactly as in the general case.

Since the underlying poset $\Pi\left[\mathcal{A}\right]$ is a lattice, $I_{flat}\left[\mathcal{A}\right]$ is very well-behaved as an algebra.

In fact, we have the following result:

Proposition 1. The flat-incidence algebra I_{flat} [\mathcal{A}] is elementary. Its split semi-simple quotient is the Birkhoff algebra Π [\mathcal{A}] with the quotient map given by:

$$I_{\mathrm{flat}}\left[\mathcal{A}\right] \twoheadrightarrow \Pi\left[\mathcal{A}\right] \quad ; \quad f \mapsto \sum_{X} f\left(X,X\right) \mathtt{Q}_{X}$$

In particular, its radical consists of functions $f \in I_{\mathrm{flat}}\left[\mathcal{A}\right]$ with $f\left(X,X\right)=0$ for all flats X.

We omit the proof.

2.3 Example: the face-incidence algebra

Taking $P = \Sigma [\mathcal{A}]$, the poset of faces, we get the face-incidence algebra $I_{face} [\mathcal{A}]$.

It consists of functions on nested faces (i.e. pairs (F,G) s.t. $F \leq G$) with:

$$(f \cdot g) (F, H) = \sum_{G:F \leq G \leq H} f (F, G) g (G, H)$$

We have the identity element, the zeta function, the Möbius function, the incidence module and Möbius inversion exactly as in the general case.

 $I_{face}\left[\mathcal{A}\right]$ is not quite as well-behaved as $I_{flat}\left[\mathcal{A}\right]$.

We will focus instead on a subalgebra $I_{lune}\left[\mathcal{A}\right]\subseteq I_{face}\left[\mathcal{A}\right]$ which, as we will see, is more well-behaved.

3 The Lune-incidence Algebra

3.1 Nested faces and lunes

Let A and B be faces of the same support. Recall that we have the isomorphism of posets:

$$\Sigma \left[\mathcal{A}_{A} \right] \xrightarrow{\cong} \Sigma \left[\mathcal{A}_{B} \right] \; ; \; F/A \mapsto BF/B$$

We define an equivalence relation \sim on nested faces:

$$(A, F) \sim (B, G) \Leftrightarrow s(A) = s(B), G = BF, F = AG$$

or equivalently,

$$(A, F) \sim (B, G) \Leftrightarrow AB = A, BA = BG = BF, F = AG$$

The equivalence classes are called lunes. We will typically label lunes as $L,\,M,\,N.$

Lemma 1. Let $(A,F) \sim (B,G)$. Then, for H such that $A \leq H \leq F$, we have:

$$(A, H) \sim (B, BH)$$
 $(H, F) \sim (BH, G)$

Proof.

 $ABH = A \cdot H = H$. This proves the first equivalence.

$$s(BH) = s(B) s(H) = s(A) s(H) = s(AH) = s(H)$$

$$BHF = BF = G$$

AG=F and $A\leq G\leq F\Rightarrow HG=F.$ This proves the second equivalence.

3.2 Lune-incidence algebra

Let $I_{lune}\left[\mathcal{A}\right]$ be the vector subspace of $I_{face}\left[\mathcal{A}\right]$ consisting of functions f such that $f\left(A,F\right)=f\left(B,G\right)$ whenever $(A,F)\sim(B,G)$.

By the above lemma, for any $f,g\in I_{lune}[\mathcal{A}]$, if $(A,F)\sim (B,G)$ then:

$$(f \cdot g) (A, F) = \sum_{H:A \le H \le G} f (A, H) g (H, F)$$

$$= \sum_{H:A \le H \le G} f (B, BH) g (BH, G)$$

$$= \sum_{H:B \le H \le G} f (B, H) g (H, G)$$

$$= (f \cdot g) (B, G)$$

Thus, we have the result:

Proposition 2. $I_{lune} [\mathcal{A}]$ is a subalgebra of the face-incidence algebra $I_{face} [\mathcal{A}]$. It consists of functions f which are constant on each lune L. We call $I_{lune} [\mathcal{A}]$ the lune-incidence algebra of \mathcal{A} .

Warning. Unlike the flat-incidence algebra and the face-incidence algebra, the lune-incidence algebra is not an incidence algebra of a poset.

3.3 The base-support map

Given a nested face (F,G), there are two (possibly distinct) flats associated to it via the support map, viz. $s\left(F\right)$ and $s\left(G\right)$.

We call s(F), the base of (F,G), and s(G) the support of (F,G):

$$b(F,G) = s(F) \qquad s(F,G) = s(G)$$

We make the following observations:

- 1. $b(F,G) \le s(F,G)$ for all nested faces (F,G).
- 2. If $(A,F)\sim (B,G)$ then $b\left(A,F\right)=b\left(B,G\right)$ and $s\left(A,F\right)=s\left(B,G\right)$. Thus, the base and support maps are constant on lunes.

Hence, we have a map from lunes to nested flats given by $L \mapsto (b(L), s(L)).$

Let (X,Y) be any nested flat and fix any face A with $s\left(A\right)=X.$

Consider the map

$$\{F \mid F \ge A, s(F) = Y\} \rightarrow \{L \mid b(L) = X, s(L) = Y\}$$
$$F \mapsto (A, F)_{\sim}$$

Since $(A,F)\sim (A,G)$ implies F=G, the above map is injective.

Furthermore, since any $L=(B,G)_{\sim}$ with $s\left(B\right)=X$ and $s\left(G\right)=Y$ is the image of AG, the above map is also surjective.

Thus, the two sets are in bijection.

The base-support map $bs: I_{lune}\left[\mathcal{A}\right] \to I_{flat}\left[\mathcal{A}\right]$ takes any function $f \in I_{lune}\left[\mathcal{A}\right]$ to the function $bs\left(f\right) \in I_{flat}\left[\mathcal{A}\right]$ given by:

$$bs(f)(X,Y) = \sum_{L:b(L)=X,s(L)=Y} f(L)$$

By the discussion above, we have the alternative description:

$$bs(f)(X,Y) = \sum_{F:F \ge A, s(F) = Y} f(A,F)$$

for any face A of support X.

In particular, the definition is independent of choice of the face A.

Using the alternative description of the base-support map, it is easy to verify that

$$bs(f \cdot g)(X, Z) = (bs(f) \cdot bs(g))(X, Z)$$

for any $f,g \in I_{lune}[\mathcal{A}]$ and any nested flat (X,Z).

Proposition 3. The base-support map

 $\mathrm{bs}: \mathrm{I}_{\mathrm{lune}}\left[\mathcal{A}
ight]
ightarrow \mathrm{I}_{\mathrm{flat}}\left[\mathcal{A}
ight]$ is an algebra homomorphism.

We omit the proof.

3.4 Lune-incidence algebra is elementary

As promised, the lune-incidence algebra is well-behaved:

Proposition 4. The lune-incidence algebra $I_{lune}[A]$ is elementary. Its split semi-simple quotient is the Birkhoff algebra $\Pi[A]$ with the quotient map given by:

$$I_{lune}\left[\mathcal{A}\right] \twoheadrightarrow \Pi\left[\mathcal{A}\right] \quad ; \quad f \mapsto \sum_{X} f\left(F,F\right) \mathbb{Q}_{X}$$

where, for each flat X, we have fixed a face F of support X. In particular, its radical consists of functions $f \in I_{\mathrm{lune}}\left[\mathcal{A}\right]$ with $f\left(F,F\right)=0$ for all faces F.

We omit the proof.

3.5 Non-commutative zeta functions

A non-commutative zeta function is an element $\pmb{\zeta} \in I_{\mathrm{lune}}\left[\mathcal{A}\right] \text{ such that } \pmb{\zeta}\left(F,F\right) = 1 \text{ for all faces } F \text{ and }$

(1)
$$\sum_{F:F \geq A, s (F) = s (G), HF = G,} \zeta(A, F) = \zeta(H, G)$$

for all $A \leq H \leq G$.

For A=H, we have $HF=G\Rightarrow F=G$ and so the second condition is automatically satisfied.

On the other hand, taking H = G, we get:

$$\sum_{F:F\geq A,s\;(F)=s\;(G)}\boldsymbol{\zeta}\left(A,F\right)=\boldsymbol{\zeta}\left(G,G\right)=1\quad\text{for all }A\leq G$$

Thus, we have the following result:

Proposition 5. The base-support map

bs :
$$I_{lune} [A] \rightarrow I_{flat} [A]$$

maps any non-commutative zeta function $\zeta \in I_{lune} [\mathcal{A}]$ to the classical zeta function $\zeta \in I_{flat} [\mathcal{A}]$.

Proof. For any nested flat (X,Y) we fix a face A of support X to obtain:

$$bs(\zeta)(X, Y) = \sum_{F:F \ge A, s(F) = Y} \zeta(A, F)$$
$$= \zeta(G, G) = 1$$

where $G \ge A$ is any face of support Y.

We have not yet made any comments about the existence or uniqueness of non-commutative zeta functions in I_{lune} [\mathcal{A}]. The following result should help.

3.6 Inching towards the main result

Lemma 2. A non-commutative zeta function is the same as a homogeneous section.

Proof. Given ζ , take $\mathbf{u}^{\mathrm{F}} = \zeta(O, \mathrm{F})$.

Taking A = O and B = G in (1), we get:

$$\sum_{F:s\,(F)=X} \mathbf{u}^F = 1$$

for $X=s\left(B\right)$, so that the scalars u^F define a homogeneous section of $\mathcal{A}.$

Conversely, given a homogeneous section \mathbf{u} , take $\boldsymbol{\zeta}\left(A,F\right)=\mathbf{u}_{A}^{F}.$

For $(A, F) \sim (B, G)$, we have:

$$\begin{split} \boldsymbol{\zeta}\left(\mathbf{A},\mathbf{F}\right) &= \mathbf{u}_{\mathbf{A}}^{\mathbf{F}} = \sum_{\mathbf{H}:\mathbf{A}\mathbf{H} = \mathbf{F},\mathbf{s}\left(\mathbf{H}\right) = \mathbf{s}\left(\mathbf{F}\right)} \mathbf{u}^{\mathbf{H}} \\ &= \sum_{\mathbf{H}:\mathbf{B}\mathbf{H} = \mathbf{G},\mathbf{s}\left(\mathbf{H}\right) = \mathbf{s}\left(\mathbf{G}\right)} \mathbf{u}^{\mathbf{H}} = \mathbf{u}_{\mathbf{B}}^{\mathbf{G}} = \boldsymbol{\zeta}\left(\mathbf{B},\mathbf{G}\right) \end{split}$$

so that $\zeta \in I_{lune}[\mathcal{A}]$.

Since $\mathbf{u}_{F}^{F}=1$ for any face F, we obtain the first condition:

$$\zeta\left(\mathbf{F},\mathbf{F}\right) = \mathbf{u}_{\mathbf{F}}^{\mathbf{F}} = 1$$

Furthermore, for any $A \leq H \leq G$, we have:

$$\sum_{F:F\geq A,s\,(F)=s\,(G),HF=G}u_A^F$$

$$=\sum_{F:F\geq A,s\,(F)=s\,(G),HF=G}\left(\sum_{H':AH'=F,s\,(H')=s\,(F)}u^{H'}\right)$$

$$= \sum_{\text{H':HAH'=G,s (H')=s (G)}} u^{\text{H'}}$$

$$= \sum_{\text{H':HH'=G,s (H')=s (G)}} u^{\text{H'}}$$

$$=$$
 $\mathbf{u}_{\mathrm{H}}^{\mathrm{G}}$

which gives us the second condition.