Reinforcement Learning and Optimal Control

IFT6760C, Fall 2021

Pierre-Luc Bacon

September 23, 2021

Policy iteration

- ▶ Given: $d^{(0)} \in \mathcal{D}^{MD}$
 - ► Repeat:
 - **Policy evaluation**: find $v^{(k)}$ by solving for v in $(I \gamma P_{d^{(k)}})v = r_{d^{(k)}}$
 - ▶ **Policy improvement**: choose $d^{(k+1)} \in \arg\max_{d \in \mathcal{D}} \left\{ r_d + \gamma P_d v^{(k)} \right\}$, breaking ties with $d^{(k+1)} = d^{(k)}$ if possible.
 - ightharpoonup Terminate if $d^{(k+1)} = d^{(k)}$
- ▶ Return the policy $(d^*)^{\infty} \triangleq (d^{(k)})^{\infty}$

In practice: component-wise maximization

Don't forget that when maximizing over the set of deterministic decision rules, this means that in practice we should simply take the maximum over actions in a component-wise fashion, ie: $d^{(k+1)}(s) \in \arg\max_{a \in \mathcal{A}(s)} \left\{ r(s,a) + \gamma \sum_{j \in \mathcal{S}} p(j|s,a) v^{(k)}(j) \right\}.$

Improvement step

Rather than choosing $d^{(k+1)} \in \arg\max_{d \in \mathcal{D}} \left\{ r_d + \gamma P_d v^{(k)} \right\}$, we could also pick any $d^{(k+1)} \in \mathcal{D}^{MD}$ such that $r_{d^{(k+1)}} + \gamma P_{d^{(k)}} v^{(k)} \geq r_{d^{(k)}} + \gamma P_{d^{(k)}} v^{(k)}$ with strict inequality in at least one state. This is what Sutton & Barto call generalized policy

While this is true in finite state and action MDPs, this procedure may terminate with suboptimal policies in the general case over compact sets.

Monotonicity

Theorem Let $v^{(k)}$ and $v^{(k+1)}$ be two successive iterates of policy iteration, then $v^{(k+1)} \ge v^{(k)}$.

Proof

In the policy improvement step of policy iteration, we choose the next decision rule as $d^{(k+1)} \in \arg\max_{d \in \mathcal{D}^{MD}} \left\{ r_d + \gamma P_d v^{(k)} \right\}$. Therefore:

$$r_{d^{(k+1)}} + \gamma P_{d^{(k+1)}} v^{(k)} \ge r_{d^{(k)}} + \gamma P_{d^{(k)}} v^{(k)} = v^{(k)}$$
.

where the right-hand side follows from the fact that we found $v^{(k)}$ by solving for v in $(I + \gamma P_{d^{(k)}})v = r_{d^{(k)}}$.

Proof

Rearranging the terms in the inequality gives us:

$$r_{d^{(k+1)}} \ge \left(I - \gamma P_{d^{(k+1)}} v^{(k)}\right) v^{(k)}$$
.

Multiplying both sides by $(I - \gamma P_{d^{(k+1)}} v^{(k)})^{-1}$ gives us:

$$\left(I - \gamma P_{d^{(k+1)}} v^{(k)} \right)^{-1} r_{d^{(k+1)}} = v^{(k+1)} \ge v^{(k)} .$$

Proof

In order to make sure that the order of inequality remains the same in the above proof, we need to show that $\left(I-\gamma P_{d^{(k+1)}}v^{(k)}\right)^{-1}$ is a *positive* operator. That is, $(I-\gamma P_d)^{-1}u\geq 0$ for $u\geq 0, u\in \mathcal{V}, d\in \mathcal{D}^{MR}$, which we write as $(I-\gamma P_d)^{-1}\geq 0$.

Positive operator

Theorem Let $\gamma \in [0, 1), u, v \in \mathcal{V}$, then for any $d \in \mathcal{D}^{MR}$:

- 1. if $u \ge 0$, then $(I \gamma P_d)^{-1}u \ge 0$ and $(I \gamma P_d)^{-1}u \ge u$
- 2. if $u \ge v$, then $(I \gamma P_d)^{-1} u \ge (I \gamma P_d)^{-1} v$
- 3. if $u \ge 0$, then $u^{\top}(I \gamma P_d)^{-1} \ge 0$ and $u^{\top}(I \gamma P_d)^{-1} \ge u^{\top}$

Proof

Because P_d is a stochastic matrix and $\sigma(\gamma P_d) < 1$, $(I - \gamma P_d)^{-1}$ has a Neumann series expansion where each term is positive:

$$(I - \gamma P_d)^{-1}u = u + \gamma P_d u + \gamma^2 P_d u + \ldots \ge u \ge 0.$$

2 is a subcase of 1 with u set to u-v, 3 is obtained from 1 by taking the transpose.

Convergence in the finite state and action case

Theorem Let S be finite and for each $s \in S$, A(s) is finite. Policy iteration terminates in a finite number of iterations and returns a discount optimal policy $(d^*)^{\infty}$.

Proof Because of the monotonicity property of the sequence $\{v^{(k)}\}$ and the fact that there is a finite number of deterministic decision rules, policy iteration must terminate in a finite number of steps under the given termination criterion. Because the last iterate satisfies:

$$v^{(k)} = r_{d^{(k+1)}} + \gamma P_{d^{(k+1)}} v^{(k)} = \max_{d \in \mathcal{D}^{MD}} \left\{ r_d + \gamma P_d v^{(k)} \right\} \ ,$$

 $d^{(k)}$ solves the optimality equation and $v_{d^{(k)}} = v_{\gamma}^{\star}$.

Nonlinear system of equations

At a high level, solving nonlinear system of equations entails answering the problem:

find
$$x^* \in \mathbb{R}^n$$

such that $f(x^*) = 0$
given $f : \mathbb{R}^n \to \mathbb{R}^n$

Unlike the case of linear equations, nonlinear system of equations rarely admit closed-form solutions

Spivak notation: recap

Let $f: \mathbb{R}^n \to \mathbb{R}^m$

- 1. Df(x): derivative of f at x (a linear map)
- 2. $D_i f(x_1, ..., x_n)$, $i \in \{1, ..., n\}$: the partial derivative of f with respect to the i-th argument.
 - Eg: $D_1 f(x, y)$: partial derivative of f with respect to x
- D_vf(x): the directional derivative of f at x in the direction of v (general concept: Gâteaux derivative)

The matrix of Df at x is called the Jacobian matrix, which we denote by $f'(x) \in \mathbb{R}^{m \times n}$.

Newton's method

Let $f: \mathbb{R}^n \to \mathbb{R}^n: x \mapsto f(x)$ be a continuously differentiable function of $x \in \mathbb{R}^n$

- ▶ Given $x^{(0)} \in \mathbb{R}^n, \epsilon > 0$
- Repeat:
 - Find $\Delta^{(k)}$ by solving for Δ in $\left[Df(x^{(k)})\right]\Delta = f(x^{(k)})$
 - ightharpoonup Set $x^{(k+1)} = x^{(k)} \Delta^{(k)}$
 - ► Terminate if $||x^{(k+1)} x^{(k)}|| \le \epsilon$
- ightharpoonup Return $x^{(k)}$

Taylor approximation

If f is differentiable at $x^{(k)}$ then:

$$f(x^*) = f(x^{(k)}) + Df(x^{(k)})(x^* - x^{(k)}) + R(x^* - x^{(k)}) .$$

where $R(x^*-x^{(k)})$ is a remainder term such that $\lim_{h\to 0} R(h)/\|h\|=0$. As $x^{(k)}$ gets close to x^* , the remainder term becomes negligeable and we have: Therefore, we can approximate $\Delta^{(k)} \triangleq x^*-x^{(k)}$ by solving for Δ in:

$$Df(x^{(k)})\Delta = -f(x^{(k)})$$

and $x^{(k+1)} = x^{(k)} + \Delta^{(k)}$.

Newton Attraction Theorem

Theorem (simplified statement of 10.2.2 in O&R) Let

 $f: D \subset \mathbb{R}^n \to \mathbb{R}^n$ be differentiable in an open neighborhood $S_0 \subset D$ of a point $x^* \in D$ and that $f(x^*) = 0$. Furthermore, assume that Df is continuous at x^* and $Df(x^*)$ is nonsingular. Then x^* is a point of attraction for the sequence of iterates:

$$x^{(k+1)} = x^{(k)} - Df(x^{(k)})f(x^{(k)}), \quad k = 0, 1, ...$$

An attractive feature of Newton's method is that it can exhibits quadratic convergence, that is we can show that there exists a λ such that: $\|x^{(k+1)} - x^\star\| \le \lambda \|x^{(k)} - x^\star\|^2$.

Variants

Newton's method may not be *norm-reducing*, ie it need not be the case that $||f(x^{(k+1)})| \le ||f(x^{(k)})||, \quad k = 0, 1, ...$

1. To address this, it is customary to use a damping parameter ω_k :

$$x^{(k+1)} = x^{(k)} - \omega_k [Df(x^{(k)})]^{-1} f(x^{(k)})$$
.

2. Furthermore, to ensure that $Df(x^{(k)})$ is nonsingular, we could also use:

$$x^{(k+1)} = x^{(k)} - [Df(x^{(k)}) + \lambda_k I]^{-1} f(x^{(k)})$$
.

where λ_k is a scalar parameter chosen so that the inverse exists.

Variants

3. For computational reason, we could also allow ourselves to use a *stale* derivative information. That is:

$$x^{(k+1)} = x^{(k)} - [Df(x^{p(k)})]^{-1}f(x^{(k)})$$
,

where p(k) is an integer less than or equal to k. If p(k) = k, then we get back the original Newton's method whereas p(k) = 0 gives what Ortega and Rheinboldt call the *simplified Newton method*.

4. Combining the above:

$$x^{(k+1)} = x^{(k)} - \omega_k [Df(x^{p(k)}) + \lambda_k I]^{-1} f(x^{(k)}) ,$$

with Newton's method corresponding to ω_k = 1, p(k) = k, λ_k = 0.

Solving the optimality equations as root-finding problem

We have seen the optimality equations can be viewed as a fixed point problem of the form Lv = v where L is defined as:

$$Lv \triangleq \max_{d \in \mathcal{D}^{MD}} \left\{ r_d + \gamma P_d v \right\} .$$

Equivalently, the above can be viewed as a **root finding** problem:

$$Lv - v = 0$$
.

Accordingly, we define the operator $Bv \triangleq Lv - v$, or more explicitely:

$$Bv \triangleq \max_{d \in \mathcal{D}^{MD}} \left\{ r_d + (\gamma P_d - I)v \right\} .$$

Beyond derivatives

The presence of the max operator in the Bellman optimality equation is problematic for a direct application of Newton's method using the usual notion of derivative. While Newton's method has been studied by Kantorovich for the case where $f: D \subset X \to Y$ where X and Y are Banach spaces, this is still not enough for us. The right notion to use is that of so-called *partially ordered topological vector space* (PTL) (Vandergraft, 1967)

The formal treatment of policy iteration as Newton's method under the PTL setting is due Puterman and Brumelle (1979), based on a generalization of Vandergraft (1967) to the nondifferentiable setting in Brumelle and Puterman (1976).

Convex functions

A set $\mathcal{X} \in \mathbb{R}^n$ is *convex* if any two points in \mathcal{X} can be connected by a straight line segment lying entirely inside \mathcal{X} , that is:

▶ Given any $x \in \mathcal{X}$ and $y \in \mathcal{X}$, $\alpha x + (1 - \alpha)y \in \mathcal{X}$ for all $\alpha \in [0, 1]$.

A function is *convex* if its **domain** is a convex set and if for any two points $x \in \mathcal{X}$ and $y \in \mathcal{X}$:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \ \forall \alpha \in [0, 1]$$

First-order characterization

If a function f is convex and differentiable, then:

$$f(x) + Df(x)(y - x) \le f(y) ,$$

for all x and y in the domain of f.

This means that for **convex functions**, the first-order Taylor approximation of *f* is a *global underestimator* of *f*: ie. its graph is always above all of its tangents.

Support inequality

Let \mathcal{D}_{v}^{MD} denote the set of v-improving decision rules, ie $d_{v} \in \mathcal{D}_{v}^{MD}$ means that:

$$d_{v} \in \arg\max_{d \in \mathcal{D}^{MD}} \left\{ r_{d} + (I - \gamma P_{d}) v \right\}$$

Theorem For any $u, v \in \mathcal{V}$ and $d_v \in \mathcal{D}_v^{MD}$:

$$Bu \ge Bv + (\gamma P_{d_v} - I)(u - v)$$
.

Proof

By definition:

$$Bu = \max_{d \in \mathcal{D}^{MD}} \left\{ r_d + (\gamma P_d - I)u \right\} \ge r_{d_v} + \left(\gamma P_{d_v} - I \right) u$$

Because d_v is v-improving:

$$Bv = r_{d_v} + (\gamma P_{d_v} - I) v .$$

Therefore:

$$Bu = Bv + (Bu - Bv) \ge Bv + (\gamma P_{d_v} - I)(u - v)$$

Closed-form expression for policy iteration

Theorem Let $\{v^{(k)}\}$ be the sequence of value functions produced by policy iteration, and $d_{v^{(k)}} \in \mathcal{D}_{d_{v^{(k)}}}^{MD}$

$$v^{(k+1)} = v^{(k)} - (\gamma P_{d_v^{(k)}} - I)^{-1} B v^{(k)} \ .$$

Proof

Using the closed-form expression for $v_{d_{v(k)}}$:

$$v^{(k+1)} \triangleq v_{d_{v^{(k)}}} = \left(I - \gamma P_{d_{v^{(k)}}}\right)^{-1} r_{d_{v^{(k)}}} \ .$$

Adding and subtracting:

$$\begin{split} v^{(k+1)} &= \left(I - \gamma P_{d_{v^{(k)}}}\right)^{-1} r_{d_{v^{(k)}}} - v^{(k)} + v^{(k)} \\ &= v^{(k)} - \left(\gamma P_{d_{v^{(k)}}} - I\right)^{-1} \left(r_{d_{v^{(k)}}} + \left(\gamma P_{d_{v^{(k)}}} - I\right) v^{(k)}\right) \\ &= v^{(k)} - \left(\gamma P_{d_{v^{(k)}}} - I\right)^{-1} B v^{(k)} \ . \end{split}$$

Differentiable case

What if instead of using the nondifferentiable Bellman equations we would instead use a differentiable approximation?

This is the topic for next class on Wednesday: the smooth Bellman equations and the begining of the section on approximate dynamic programming.