Predicting and

Explaining Caravan

Policy Ownership

Manohari Wijesooriya Student #501212269

Introduction

- Insurance company is looking for predictive modelling solution to reduce the cost of marketing of their new product, caravan insurance to internal customers.
- Given sociodemographic and product variables, they are requesting to flag best possible customers to reach out to sell their product.
- Various machine learning algorithms were used in the effort in predicting
- Recommendations Use Naïve Bayes algorithm for prediction

- Explored dataset of 43 socio-demographic and 42 product ownership data
- Target variable: having a caravan insurance policy 0/1 represent 6% of training data
- Data cleaning no null values
- Identify duplicates 602 records indicated as duplicates but those were not dropped as all sociodemographic data are scaled. Customers in the same postal code have same values.
- Low variance attributes were identified and removed

Distinct profiles of Caravan Insurance customers based on sociodemographic data

Most customers are in age range of 40 - 50 years

Most customers are middle class families or lower class large families

High average income for higher purchasing power class

Distinct profiles of Caravan Insurance customers based on Product data

Lower third party insurance premiums High car insurance premiums High fire insurance premiums

Most customers have either 1 car or no car

Product	Count	Percentage (out of 5822 customers)
Fire	2270	39%
Car	2150	37%
Third Party Private	1749	30%
Scooter	294	5%

Correlation Matrix

Product data

Sociodemographic data

Predictive Modelling

Baseline model

Final model

Initial model criteria

Validation/test split: 70/30, random state 7

Sampling technique: SMOTE Encoding categorical attributes

Predictions by segments of Data

Predicting a customer's likelihood to purchase Caravan Insurance based on their sociodemographic characteristics

Best model - Naïve Bayes Accuracy 57%, True positive = 123

Best features	
Attribute	Score
sd_religion_other_2	71619.19
sd_empst_unskill_labour_2	62334.3
sd_income_l_30k_2	61913.47
sd_education_medium_3	61581.3
sd_religion_protestant_5	61457.34

Predicting a customer's likelihood to purchase Caravan Insurance based on their product characteristics

Best model - Decision Tree , Random Forest Accuracy 64% True positive = 153

Best features	
Attribute	Score
po_ins_pol_car_6	387.4142
dr_car_tptypvt	367.1447
po_ins_pol_car_0	356.6783
po_no_ins_pol_car	257.3392
po_ins_pol_thirdparty_pvt_2	183.6167

July 27, 2023

Predictions by segments of Data

Predicting a customer's likelihood to purchase Caravan Insurance based on their sociodemographic and product characteristics

Best Attributes	
Attribute	Score
po ins pol car 0	723.2143
dr car tptypvt 1	584.9565
dr_car_tptypvt_0	444.7121
po ins pol thirdparty pvt 0	414.5592
sd_empst_skill_labour_3	404.4648
po_ins_pol_car_5	363.6918
sd_empst_unskill_labour_3	340.1657
sd_income_avg_3	310.5957
sd_socialclassC_5	301.8962
sd_income_l_30k_5	289.1691

Best model - Naïve Bayes Accuracy 73%, True positive = 139

	precision	n recall	f1-score	support	
0	0.97	0.73	0.83	3762	
1	0.12	0.58	0.20	238	
accuracy			0.73	4000	
macro avg	0.54	0.66	0.52	4000	
weighted avg	0.92	0.73	0.80	4000	
confusion matrix					
[[2765 997]				
[99 139]]				
TP: 139 , F	P: 997 , TN:	2765 , FN:	99		
accuracy 0.	726				
recall 0.	584				

Conclusion and Recommendation

- Naïve Bayes is the best algorithm to predict caravan customers.
- Model could correctly identify 139 caravan customers out of 238 with 73% accuracy
- Model predictions are to contact 28% of the customer base to promote caravan policy
- Best predictive attributes are : car policy, private third party policy, average income 3, skill labour 3, unskill labour 3

Thank you. Chang School, Professors, Technical Assistants, Colleges

