

LAPORAN PRAKTIKUM SISTEM DIGITAL MODUL 8 : APLIKASI FLIP-FLOP

DISUSUN OLEH:

NAMA : BIMA TRIADMAJA

NIM : L200210137

KELAS : C

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS KOMUNIKASI DAN INFORMATIKA
UNIVERSITAS MUHAMMADIYAH SURAKARTA
TAHUN 2021/2022

Percobaan 1. Membuat Counter JK-FF

1. Buat kombinasi flip-flop JK seperti pada gambar!

Jawab:

2. Simulasikan rangkaian anda!

Klik pada switch berdasarkan pada tabel dan isi kolom kosong pada tabel!

NO	INPUT			OUTPUT			
	CLR	JK	CLK	A	В	C	D
1	1	1	0	0	0	0	0
2	1	1	1	0	0	0	0
3	1	1	0	0	0	0	1
4	1	1	1	0	0	0	1
5	1	1	0	0	0	1	0
6	1	1	1	0	0	1	0
7	1	1	0	0	0	1	1
8	1	1	1	0	0	1	1
9	1	1	0	0	1	0	0
10	1	1	1	0	1	0	0
11	1	1	0	0	1	0	1
12	1	1	1	0	1	0	1
13	1	1	0	0	1	1	0
14	1	1	1	0	1	1	0
15	1	0	0	0	1	1	0

16	1	0	1	0	1	1	0
17	1	1	0	0	1	1	1
18	1	1	1	0	1	1	1
19	0	1	0	0	0	0	0
20	0	1	1	0	0	0	0

3. Apa fungsi dari:

a. Switch CLK:

Berfungsi untuk memberi sinyal inputan pulsa clock yang akan mempengaruhi output suatu flip-flop.

b. Switch JK:

Berfungsi untuk menentukan apa yang akan dilakukan oleh flip-flop ketika menerima pulsa clock.

c. Switch CLEAR:

Berfungsi untuk membersihkan/me-reset isi memori dan mengembalikan ke bit awal/semula.

4. Kesimpulan:

Output Q pada flip-flop pertama akan menjadi input clock pada flip-flop setelahnya. Pada saat pulsa pertama bergerak dari 1 ke 0, maka output flip flop pertama akan berubah dari 0 ke 1 dan akan menjadi inputan clock pada flip-flop berikutnya. Output flip-flop kedua dan setelahnya tidak mengalami perubahan karena pulsa input clocknya belum mengalami perubahan dari 1 ke 0. Begitu juga seterusnya, jika pulsa input clocknya berubah dari 1 ke 0, maka output flip-flopnya akan berubah. Untuk membersihkan/me-reset isi memorinya maka kita gunakan switch clear.

Percobaan 2. Counter Mod 10

1. Buat kombinasi flip-flop JK seperti pada gambar!

Jawab:

2. Simulasikan rangkaian anda!

Klik pada switch berdasarkan pada tabel dan isi kolom kosong pada tabel!

NO	INF	PUT	OUTPUT				
NO	JK	CLK	A	В	C	D	
1	1	0	0	0	0	0	
2	1	1	0	0	0	0	
3	1	0	0	0	0	1	
4	1	1	0	0	0	1	
5	1	0	0	0	1	0	
6	1	1	0	0	1	0	
7	1	0	0	0	1	1	
8	1	1	0	0	1	1	
9	1	0	0	1	0	0	
10	1	1	0	1	0	0	
11	1	0	0	1	0	1	
12	1	1	0	1	0	1	
13	1	0	0	1	1	0	
14	1	1	0	1	1	0	
15	1	0	0	1	1	1	
16	1	1	0	1	1	1	
17	1	0	1	0	0	0	
18	1	1	1	0	0	0	
19	1	0	1	0	0	1	
20	1	1	1	0	0	1	
21	0	0	1	0	0	1	
22	0	1	1	0	0	1	
23	1	0	0	0	0	0	
24	1	1	0	0	0	0	

Kesimpulan:

Counter modul X merupakan suatu counter yang akan melakukan pencacahan hingga bit tertentu, seperti pada praktikum di atas, yaitu counter modul 10 yang akan mencacah dari 0 hingga 9. Kemudian digunakan pin masukan reset yang berfungsi untuk mengatur agar pada bit 10 ia akan kembali ke bit awal dan tidak menampilkan bit 10.

Percobaan 3. Membuat Register JK-FF

1. Buat kombinasi flip-flop JK seperti pada gambar!

Jawab:

2. Simulasikan rangkaian anda!

Klik pada switch berdasarkan pada tabel dan isi kolom kosong pada tabel!

NO	INPUT			OUTPUT			
	CLR	JK	CLK	A	В	C	D
1	0	X	-	0	0	0	0
2	1	1	-	0	0	0	0
3	1	1	1	0	0	0	1
4	1	1	2	0	0	1	1
5	1	1	3	0	1	1	1
6	1	0	4	1	1	1	0
7	1	0	5	1	1	0	0
8	1	0	6	1	0	0	0
9	1	0	7	0	0	0	0

10	1	0	8	0	0	0	0
11	1	0	9	0	0	0	0
12	1	0	10	0	0	0	0
13	1	0	11	0	0	0	0
14	1	0	12	0	0	0	0
15	1	0	13	0	0	0	0

Kesimpulan:

Nilai dari input J dan K tergantung pada output Q dan Q' pada rangkaian/flip-flop sebelumnya. Jika input clock = 1, maka informasi/data yang berada pada output Q dan Q' sebelumnya yang masuk ke register J dan K akan berpindah ke output storage register setelahnya. Selanjutnya jika input clock berubah menjadi 0, maka informasi tadi akan tetap tersimpan walaupun output Q dan Q' yang masuk ke input register J dan K setelahnya berubah nilainya. Input clear berfungsi untuk membersihkan/me-reset isi memori.