Real-Time Communication Network Architecture Design for Organizations with WebRTC

Pedro Vílchez

2015-07-13 Monday

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Methodology

Contributions an

Why WebRTC?

- It is Relatively new (2011); standardization process is not ended
- It is a convergence between telecommunications and the Internet
- 3. There are already WebRTC applications in the market from telecommunication operators

Real-Time Communication Network Architecture Design for Organizations with WebRTC

Pedro Vílchez

Introduction

-

Methodology

Contributions and

Conclusions and

Contents

Introduction

Fundamentals

State of the art

Methodology

Contributions and Results

Conclusions and Future Work

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamental

ate of the art

thodology

Contributions and Results

Introduction

Fundamentals

State of the ar

Methodology

Contributions and Results

Conclusions and Future Work

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

tate of the art

ethodology

Contributions and Results

Motivation

 Previous project: start a simple community network¹.

- Now: provide Real-Time Communications (RTC) to a community network such as Guiff net.
 - Add value to the network
 - Enhance social cohesion within the community

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

State of the an

lethodology

Contributions and Results

Conclusions and

¹Starting, Contributing and Empowering Community Networks in cities

Objectives

 Free and secure communication between users via an RTC system and community network infrastructure.

- Backward compatibility with VoIP² network.
 Hence, users can communicate to other VoIP operators from inside and/or outside Guifi.net.
- Designing RTC network architecture to fit the community network scenario.
- Ease of installation and usability of RTC.

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamental

Otate of the al

ethodology

Contributions and Results

²Voice over IP. The use of telephone adapted to the Internet network.

Introduction

Fundamentals

State of the ar

Methodology

Contributions and Results

Conclusions and Future Work

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

ntroduction

Fundamentals

State of the art

lethodology

Contributions and

Fundamentals

- Communications
 - Protocol, signaling, gateway
 - Internet, flexible infrastructure for generic data.
 - Standardization: IETF
 - Traditional telephony, guaranteed delivery for real-time data.
 - Standardization: ITU
 - ▶ IETF and ITU did efforts to have networks which process real-time data and generic data
- Basic real-time quality parameters: bandwidth, mean delay, delay variation, etc.

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

lethodology

Results

Introduction

Fundamentals

State of the art

Methodology

Contributions and Results

Conclusions and Future Work

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

undamentals

State of the art

Methodology

Contributions and Results

State of the art

- SIP signaling
 - Nature: establish, modify and terminate multimedia sessions in the Internet
 - Implemented XMPP-based solution (SIMPLE)
- XMPP signaling
 - Nature: manage instant messaging and presence of your contact list
 - Implemented SIP-based solution (Jingle)
- WebRTC
 - Open to any existing signaling method such as SIP or XMPP

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

State of the art

ethodology

Results

Conclusions and

WebRTC

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

State of the art

/lethodology

Results

Introduction

Fundamentals

State of the art

Methodology

Contributions and Results

Conclusions and Future Work

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

state of the a

Methodology

Contributions and Results

Methodology

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

State of the

Methodology

Contributions and Results

Introduction

Fundamentals

State of the art

Methodology

Contributions and Results

Conclusions and Future Work

Real-Time Communication Network Architecture Design for Organizations with WebRTC

Pedro Vílchez

Introduction

Fundamentals

state of the ar

ethodology

Contributions and Results

Network architecture analysis of Guifi.net

The selected scenario to design and implement an RTC system.

- Community: volunteers and professionals
- Government of Guifi.net: manage of Guifi.net's web, legal support
- Behavior, protocols and functionality: similar to Internet
- Network architecture: star topology and mesh
- Links: the vast majority of communication links are wireless
- Known services: Internet sharing and network control

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

otato or the art

ethodology

Contributions and Results

Network requirements

- QoS: differentiate real-time data from non real-time data
 - QoS on Guifi.net is complex
- G.114 says that delay should be below 150ms
 - Guifi.net seems to fit this requeriment
- ▶ Bandwidth: Audio 64 Kbps, Video 1-10 Mbps
 - Guifi.net has common links from 15 to 150 Mbps

Real-Time Communication Network Architecture Design for Organizations with WebRTC

Pedro Vílchez

introduction

Fundamentals

state of the art

ethodology

Contributions and Results

Use cases

- Send calls: a user calls another user with an audio channel. Optional channels of communication if available: video and chat
- Receive calls: a user receives a call only if is connected to the service with at least one device and is available
- Integration: all the services are integrated and is the same account

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

Otate of the ai

lethodology

Contributions and Results

Conclusions and

Network architecture design

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

undamentals

State of the an

lethodology

Contributions and Results

Component selection

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

State of the ar

lethodology

Contributions and Results

Implementation

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

undamentals

State of the at

Methodology

Contributions and Results

Demo Evaluation

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

State of the an

lethodology

Contributions and Results

Demo

Installation instructions in the appendix of the memory

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

ntroduction

i unuamentais

ethodology

Contributions and Results

Demo Performance

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

introduction

Fundamentals

Methodology

Contributions and Results

Introduction

Fundamentals

State of the ar

Methodology

Contributions and Results

Conclusions and Future Work

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

Fundamentals

tate of the art

thodology

Contributions and

Conclusions

- Objectives of the project are attainable
- WebRTC facilitates use of RTC in organizations of all sizes
- WebRTC requires some centralization
- Pending featured topics
 - Anonymity
 - WebRTC media cannot go to HTTP Proxy
 - Interoperability between WebRTC and SIP needs a media gateway

Real-Time Communication Network Architecture Design for Organizations with WebRTC

Pedro Vílchez

Introduction

Fundamentals

.

lethodology

Contributions and Results

Future Work

- ▶ Improve implemented use cases
- Implement remaining use cases
- Stress test of the demo
- Improve integration of XMPP and SIP signaling inside Guifi.net open source firmwares

Real-Time Communication Network Architecture Design for Organizations with WebRTC

Pedro Vílchez

IIIIOddClion

i unuamentais

NA - No - ol - Lo - oc

Methodology

Contributions and Results

Conclusions and

Thanks! Questions?

Introduction

Fundamentals

State of the art

Methodology

Contributions and Results

Conclusions and Future Work

Real-Time
Communication
Network
Architecture
Design for
Organizations with
WebRTC

Pedro Vílchez

Introduction

andamontaio

thodoloav

Contributions and Results