Category Theory in Type Systems

AKA: BUCKLE YOUR SEATBELTS BECAUSE IN THREE SHORT MINUTES I AM GOING TO LEARN YOU A THING I ONLY LEARNED MYSELF HALF AN HOUR AGO.

Jonathan Hayase

April 24, 2018

Math 171 - Abstract Algebra - Spring 2018

Review: Categories

Recall: Informally, a category ${\mathcal C}$ consists of

- 1. class ob(C) of **objects**;
- 2. class hom(\mathcal{C}) of **arrows** $\phi : A \rightarrow B$ for objects A and B;
- 3. a composition operation \circ on arrows.

Review: Functors

Recall: Informally, a functor* F from $\mathcal A$ to $\mathcal B$

- 1. assigns every object in A to an object in B,
- 2. assigns every arrow in ${\mathcal A}$ to an arrow in ${\mathcal B}$

such that domains, codomains, compositions, and identities are preserved.

^{*}For simplicity, I am only covering no convariant functors in this presentation.

Category Theory of Type Systems

In programming, systems of types have a natural interpretation as a category!

Let the \mathcal{T} be the category of types in a programming language L.

- 1. The objects of \mathcal{T} are **types** (i.e. integers, floats, bools).
- 2. The arrows of \mathcal{T} are **functions** which map values of one type to those of another.
- 3. The operation \circ is just regular function composition.

Functions as composable arrows

Figure 1: A commutative diagram of three functions: f, g, and h.

4

So now what?

Collections

- So far, we've only discussed "primitive" types.
- What about lists, sets, matrices, etc.?
- For now, consider list<T>, a type representing ordered collections of objects of type T.

A bold claim

list is a functor

Explanation

- 1. list is an endofunctor (i.e. it maps \mathcal{T} to itself).
- 2. It's pretty clear to see that list maps a type $T \in \mathcal{T}$ to the list type containing elements of type T, also in T.
- 3. But what do we assign to the arrows of \mathcal{T} ?

"Mapping"

Q: Given an arrow (i.e. function) from type A to type B, how can we define a function from list<A> to list?

A: By "mapping" †

In this example, given int : string \to integer we can define a new arrow mapint : list<string> \to list<integer>.

[†]Not to be confused with mapping in mathematics.

Functors are everywhere!

- Collection types such as lists, vector, matrices, etc.
- Nullable types like std::optional in C++, Maybe in Haskell, and T? in C#.
- And more!

Just the beginning...