光栅图形学初步

冯结青

浙江大学 CAD&CG国家重点实验室

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
- 圆的光栅化算法

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
- 圆的光栅化算法

光栅与光栅图形举例

光栅图形放大

光栅走样与反走样

Aliased Text

Anti-aliased text (Whole pixel)

Anti-aliased text (sub pixel)

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
- 圆的光栅化算法

普通光栅显示的基本结构

普通光栅显示的基本结构

- 传统扫描转换过程由软件实现
 - 当应用程序调用图形软件包中的子程序时,软件包 能设置帧缓存中适当的像素
- 用于帧缓存的内存
 - 共享: 内存的一部分被用来充当帧缓存
 - 独立: 图形处理单元上的显存
- 视频控制器通过一个独立的访问端口访问内存,显示帧缓存中定义的图像(早期/主板显卡)
 - 固定的一部分内存永久地分配给帧缓存
 - 通过寄存器指定任意一部分内存作为帧缓存

复杂光栅显示的基本结构

- 图形处理器(GPU, Graphics Processing Unit)
 - 执行扫描转换、将输出图元写至帧缓存、移动、拷贝、修改像素或者像素块等光栅操作
 - 集成图形卡:与CPU、视频控制器同时连接在系统 总线上,共享系统内存与帧缓存
 - 单地址空间(single-address-space)显示系统体系结构
 - 允许CPU和显示处理器用统一的方式访问内存的任何部分, 且编程简单
 - 独立图形卡: 拥有自己的内存和帧缓存
 - 功能强大,适合于专业用户
 - 现代GPU: 可编程图形处理器

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
- 圆的光栅化算法

光栅与光栅上的直线

12

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
 - 直线生成的要求
 - 直线生成的DDA算法
 - 直线生成的Bresenham算法
- 圆的光栅化算法

直线生成的要求

- 外观笔直: 只有水平、垂直, 其它为锯齿状
- 精确的起点和终点:难以保证直线精确通过指定位置的起点和终点,提高分辨率有助于改善结果
- 亮度沿直线保持不变,且与直线的长度和方向无关: 只有水平、垂直、45°直线
- 直线生成速度要快
- 与端点次序无关(AB=BA)

一般难以完全满足!

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
 - 直线生成的要求
 - 直线生成的DDA算法
 - 直线生成的Bresenham算法
- 圆的光栅化算法

DDA (Digital Differential Analyzer)算法:

数字微分分析器:通过同时在x方向和y方向分别增加与 dx和dy成正比的小数值、来积分微分方程的"计算机"

The MADDIDA (MAgnetic Drum Digital Differential Analyzer) was a special-purpose digital computer used for solving systems of ordinary differential equations (Rleasedin1949!).

直线段光栅化: 起点 (x_1,y_1) 、终点 (x_2,y_2)

$$y_{i+1} = y_i + \Delta y$$

 $y_{i+1} = y_i + \frac{y_2 - y_1}{x_2 - x_1} \Delta x$

$$y_{i+1} = y_i + \Delta y$$

$$y_{i+1} = y_i + \frac{y_2 - y_1}{x_2 - x_1} \Delta x$$

$$x_{i+1} = x_i + \Delta x$$

$$x_{i+1} = x_i + \frac{x_2 - x_1}{y_2 - y_1} \Delta y$$

- 上述公式用于直线光栅化时的算法,称为数字微分分析器算法,即DDA算法
- 简单的DDA算法选择||dx||和||dy||中较大 者为一个光栅单位


```
//直线光栅化的DDA算法: (x_1,y_1)为起点, (x_2,y_2)为终点
//Integer: 取整函数,即,Integer (-8.5)= -9 而不是 -8
//计算直线近似长度
if (abs(x_2-x_1) \ge abs(y_2-y_1)) then
  Length = abs (x_2-x_1)
else
  Length = abs (y_2 - y_1)
end if
//选择dx和dy较大者作为一个光栅化单位
dx = (x_2 - x_1) / \text{Length};
dy = (y_2 - y_1) / \text{Length};
```

```
//将Integer函数改为四舍五入,而不是取整函数
x = x_1 + 0.5; y = y_1 + 0.5;
//主循环
i = 1;
while(i ≤ Length)
  setpixel(Integer(x), Integer(y));
  x = x + dx;
  y = y + dy;
  i = i + 1;
end while
```

- 考虑从(0,0)到(5,5)的直线段
 - •初值计算:

$$x_1 = y_1 = 0$$
; $x_2 = y_2 = 5$; Length = 5;
 $dx = dy = 1$; $x = y = 0.5$;

• 运行结果

I	setpixel	X	у
		0.5	0.5
1	(0,0)		
		1.5	1.5
2	(1,1)		
		2.5	2.5
3	(2,2)		
		3.5	3.5
4	(3,3)		
		4.5	4.5
5	(4,4)		
		5.5	5.5

算法分析

- 没有精确过端点:端点(0,0)精确,但端点(5,5)没有显示,使得线段看起来稍短。
- 如果 *i* 的初值不是1而是0,那么位于(5,5)的像素会被选中:两个端点均被绘制
- dx 或 dy 的数值误差在累加过程中会导致 终点的偏离: 浮点误差累积

- 考虑从(0,0)到(-8,-4)的直线段
 - 初值计算:

$$x_1 = 0$$
; $y_1 = 0$; $x_2 = -8$; $y_2 = -4$;
Length = 8;
 $dx = -1$; $dy = -0.5$; $x = y = 0.5$;

• 运行结果

i	setpixel	X	У
		0.5	0.5
1	(0,0)		
		-0.5	0
2	(-1,0)		
		-1.5	-0.5
3	(-2, -1)		
		-2.5	-1.0
4	(-3, -1)		
		-3.5	-1.5
5	(-4, -2)		
		-4.5	-2.0
6	(-5, -2)		
		-5.5	-2.5
7	(-6, -3)		
		-6.5	-3.0
8	(-7, -3)		
		-7.5	-3.5

算法分析

- 采用DDA算法画(0,0)到(-8,-4) 之间的线段,那么光栅化直线位于实际线段的一侧
- 如用四舍五入取整代替算法中取整函数, 算法如何修改?(课后练习)
- 时间效率:采用浮点运算,计算量大
- ●精确性: 牺牲一定的位置精确性

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
 - 直线生成的要求
 - 直线生成的DDA算法
 - 直线生成的Bresenham算法
- 圆的光栅化算法

DDA算法的复杂度

逐点计算: (x_i,y_i)→ (x_{i+1},y_{i+1})

• 浮点计算: 计算量大

• 误差累积: 偏差

 Bresenham于1962年提出用于数字绘图 仪的直线生成算法

Bresenham, J. E. . "Algorithm for computer control of a digital plotter". *IBM Systems Journal*, 1965.1.1, **4**(1): 25–30

- 根据直线的斜率确定或者选择变量在x或y方向上每次递增(/递减)一个单位
- 另一方向的增量为0或±1,它取决于实际直线与最近网格点位置的距离(误差)
- 每一步只需<u>检查误差项的符号</u>即可

- 算法推导(考虑1/8圆域内,即斜率<≥1)
 - 直线递推公式: y_{i+1} = y_i + m (x_{i+1}-x_i), m = dy / dx
 - DDA算法的下一个像素: x_{i+1} = x_i + 1, y_{i+1} = y_i + m
 - 显示 $(x_i, y_i) \rightarrow (x_i, y_{ir})$, $y_{ir} = \text{round}(y_i)$ (见下页图)
 - 要推导 y_{ir} 与 $y_{i+1,r}$ 的关系: B = (x_{i+1}, y_{i+1})
 - B = (x_{i+1}, y_{i+1}) A = $(x_{i+1}, y_{ir} + 1/2)$
 - 选择 D, if B ">" A (见下页图)
 - 选择 C, if B "<" A (见下页图)

直线生成的Bresenham算法示意图

算法推导(考虑1/8圆域内,即斜率≤1)

记
$$e_{i+1} = y_{i+1} - (y_{ir} + 0.5)$$
,则:
 $y_{i+1,r} = y_{ir} + 1$ if $e_{i+1} \ge 0$
 $y_{i+1,r} = y_{ir}$ if $e_{i+1} < 0$

$$e_{i+2} = y_{i+2} - y_{i+1,r} - 0.5$$

$$= y_{i+1} + m - y_{i+1,r} - 0.5$$

$$= \begin{cases} y_{i+1} + m - y_{i,r} - 1 - 0.5 & \text{if } e_{i+1} \ge 0 \\ y_{i+1} + m - y_{i,r} - 0.5 & \text{if } e_{i+1} < 0 \end{cases}$$

$$= \begin{cases} e_{i+1} + m - 1 & \text{if } e_{i+1} \ge 0 \\ e_{i+1} + m & \text{if } e_{i+1} < 0 \end{cases}$$

```
//1/8圆域中Bresenham算法
//(x<sub>1</sub>,y<sub>1</sub>)→(x<sub>2</sub>,y<sub>2</sub>),整数点
//变量初始化
X=X_1; y=y_1;
dx=(x_2-x_1); dy=(y_2-y_1);
m=dy/dx;
//误差补偿
e=m-1/2; y_{i+1}=y_i+m(x_{i+1}-x_i)
                      e_{i+1} = y_{i+1} - y_{ir} - 0.5
//主循环
```

```
for i=1 to dx
       setpixel(x,y);
       while (e>0)
              y=y+1;
              e=e-1;
       end while
       x=x+1;
       e=e+m;
       next i;
Finish
```

e=m-1/2for i=1 to dxsetpixel(x,y);while(e>0) y=y+1;e=e-1;end while x=x+1; e=e+m; next i; **Finish**

- •从(0,0)到(5,5)线段
 - 初值计算

$$x_1=y_1=0$$
; $dx=dy=5$; $m=1$; $e=1-1/2=1/2$;

i	setpixel	е	Х	У
		1/2	0	0
1	(0,0)			
		-1/2	0	1
		1/2	1	1
2	(1,1)			
		-1/2	1	2
		1/2	2	2
3	(2,2)			
		-1/2	2	3
		1/2	3	3
4	(3,3)			
		-1/2	3	4
		1/2	4	4
5	(4,4)			
		-1/2	4	5
→		1/2	5	5

- 结果和预期相同
- 位于(5,5)的光栅点未被选中。如果将for-next的循环变量改为从0到dx,则该光栅点将被选中(问题?)
- 若将setpixel语句移到 next
 i前,则可消除第一个光栅
 点(0,0),而绘制(5,5)。

整数Bresenham算法

- 直线斜率和误差项计算: 浮点算术运算和除法
 - 整数运算和避免除法: 加速算法
 - Bresenham: 绘图仪连接的处理器只有整数运算!!!
- 不关心误差项数值,只关心误差项符号:
 - 将误差项计算转化为整数计算

$$e=2edx$$

● 整数算法便于硬件实现

整数Bresenham算法

$$y_{i+1} = y_i + m(x_{i+1} - x_i)$$

 $e_{i+1} = y_{i+1} - y_{ir} - 0.5$
 $m = dy/dx$
 $2dxe_{i+1} = 2dxy_i + 2dy(x_{i+1} - x_i) - 2dxy_{ir} - dx$
 $= 2dxy_i + 2dy - 2dxy_{ir} - dx$

课后练习: 推导整数Bresenham公式

整数Bresenham算法描述

```
//1/8圆域中Bresenham算法:
//(x<sub>1</sub>,y<sub>1</sub>)<del>)</del>(x<sub>2</sub>,y<sub>2</sub>), 整数点
//变量初始化
X=X_1; y=y_1;
dx=(x_2-x_1); dy=(y_2-y_1);
//误差补偿:将这里的e除以
//2dx即得上面非整数算法e
e=2*dy-dx;
//主循环
```

```
for i=1 to dx
  setpixel(x,y);
  while (e>0)
     y=y+1;
     e=e-2*dx;
  end while
  x=x+1;
  e=e+2dy;
  next i;
Finish
```

通用Bresenham算法

- 根据直线段斜率和它所在象限
 - 当直线斜率的绝对值大于1时,y值总是生1, 再用Bresenham 误差判别式以确定x变量是 否需要增加1。
 - x或y是增加1还是减去1取决于直线所在的象限

通用Bresenham算法

通用Bresenham算法的增量选择

通用Bresenham算法算法描述

```
//通用Bresenham算法:
// (x₁,y₁)→(x₂,y₂), 整数点
//Sign(x) = 1,0,-1 \stackrel{\text{def}}{=} x>0,=0,<0
//变量初始化
X=X_1; Y=Y_1;
dx=abs(x_2-x_1); dy=abs(y_2-y_1);
s_1 = Sign(x_2 - x_1); s_2 = Sign(y_2 - y_1);
//根据直线斜率的符号,交互dx和dy
if dy > dx then
  Temp=dx; dx=dy; dy=Temp;
  Interchange=1;
else
  Interchange=0;
end if
// 误差补偿
e=2*dy-dx;
```

```
//主循环
for i=1 to dx
   setpixel(x,y);
   while(e>0)
          if(Interchange==1) then
                    X=X+S_1;
          else
                     y=y+S_2;
          end if
          e=e-2*dx;
   end while
    if(Interchange==1) then
          y=y+S_2;
   else
          X=X+S_1;
   end if
          e=e+2dv;
   next i;
Finish
```

通用Bresenham算法实例

● 考虑从(0,0)到(-8, -4)画一条直线, 初值计算:

```
x=y=0;

dx=8; dy=4;

s_1=s_2=-1;

Interchange=0;

e=0
```

通用Bresenham算法实例

i	setpixel	е	X	У
		0	0	0
1	(0,0)			
		8	-1	0
2	(-1, 0)			
		-8	-1	-1
		0	-2	-1
3	(-2, -1)			
		8	-3	-1
4	(-3, -1)			
		-8	-3	-2
		0	-4	-2

i	setpixel	е	X	У
5	(-4,-2)			
		8	- 5	-2
6	(-5,-2)			
		-8	- 5	-3
		0	-6	-3
7	(-6,-3)			
		8	-7	-3
8	(-7,-3)			
		-8	-7	-4
		0	-8	-4

程序运行结果

通用Bresenham算法实例

光栅化结果

Bresenham算法的改进和加速

• 对称法: 从两端向中间一次生成两个点

两步法:沿一个方向,每判断一次就生成两个连续的点

Bresenham算法的改进和加速

- 改进的两步法(对称法):
 - 直线相对于其中点是对称的
 - 每进行一次判断,生成两个点,以及相对于直线中点对称的两个点
 - 算法速度是原Bresenham算法的四到五倍
- N步法: (N=)4步画线算法类似于两步画线算法, 不同的时每判断一次,就生成四个点。
- 推广至画圆的中点法

2022/9/13

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
- 圆的光栅化算法

圆的光栅化算法

对称的圆

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
- 圆的光栅化算法
 - 生成圆的Bresenham算法
 - 生成圆的中点法
 - 生成圆的其它算法

 P_{i-1} 是当前象素,如何确定光栅上的下一个象素是 H_i 还是 L_i ?

判断的原则: H_i还是L_i离
 圆更近?

• 判断函数

$$d_{i} = (x_{i}^{2} + y_{i-1}^{2} - R^{2}) + (x_{i}^{2} + (y_{i-1}^{2} - 1)^{2} - R^{2})$$

d_i的几何意义?

P_{i-1}是当前象素,如何确定光栅上的下一个象素? H_i还是L_i?

$$d_{i} = \underline{\dot{\mathbf{m}}} \underline{\Theta}^{2}(+) + \underline{\mathcal{M}} \underline{\Theta}^{2}(-)$$

$$= (x_{i}^{2} + y_{i-1}^{2} - R^{2}) + (x_{i}^{2} + (y_{i-1}^{2} - 1)^{2} - R^{2})$$

- d_i与d_{i+1}之间的递推关系?
- 终止条件: x<y

$$H_i (x_i, y_{i-1})$$

$$L_i (x_i, y_{i-1}-1)$$

$$X_{i}=X_{i-1}+1$$

●d_i与d_{i+1}之间的递推关系推导

第一个点: (0,R),两个候选点 (1,R),(1,R-1)。根据前面d_i的公式 d₁=3-2R

第i个点已知,可以推出 d_i=2x_i²+2y_{i-1}²-2y_{i-1}-2R²+1

第i+1个点的判断函数递推公式 $d_{i+1}=2x_i^2+4x_i+2y_i^2-2y_i-2R^2+3$

$$P_{i-1} (x_{i-1}, y_{i-1})$$

$$H_{i} (x_{i}, y_{i-1})$$

$$L_{i} (x_{i}, y_{i-1}-1)$$

$$x_{i}=x_{i-1}+1$$

由d_i的符号判断下一个点的位置, 并且递推出d_{i+1}

$$d_i$$
<0,取 H_i , $y_i = y_{i-1}$,
$$d_{i+1} = d_i + 4x_{i-1} + 6$$

生成1/8圆弧的Bresenham算法

```
Bresenham_Arc(radius)
    x=0; y=radius; d=2-3*radius;
    While (x<y) {
      plot(x,y);
      if (d<0) d += 4*x+6;
      else {
        d += 4*(x-y)+10;
          y--;
      X++;
      if (x==y) plot(x,y);
```

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
- 圆的光栅化算法
 - 生成圆的Bresenham算法
 - 生成圆的中点法
 - 生成圆的其它算法

$$P_{i-1}(x_{i-1},y_{i-1})$$

$$H_{i}$$
 (x_{i}, y_{i-1})

$$L_i (x_i, y_{i-1}-1)$$

$$X_{i}=X_{i-1}+1$$

$$F(P_{i-1})=F(x_{i-1},y_{i-1})=0$$
,定义 d_i :

$$d_i = F(x_i, y_{i-1} - 0.5)$$

$$= F(x_{i-1}+1,y_{i-1}-0.5)$$

$$P_{i-1}(x_{i-1},y_{i-1})$$

$$H_{i}$$
 (x_{i}, y_{i-1})

$$L_i (x_i, y_{i-1}-1)$$

$$x_i = x_{i-1} + 1$$

由d_i的符号判断下一个点的位置,并且递推出d_{i+1}

$$d_i$$
<0,取 H_i ;

$$d_{i+1} = F(x_{i+1}, y_i - 0.5)$$

$$= F(x_{i-1}+2,y_{i-1}-0.5)$$

$$= d_i + 2x_{i-1} + 3$$

$$\mathsf{P}_{\mathsf{i-1}} \; (x_{\mathsf{i-1}}, y_{\mathsf{i-1}})$$

$$H_{i}$$
 (x_{i}, y_{i-1})

$$L_i (x_i, y_{i-1}-1)$$

$$x_i = x_{i-1} + 1$$

由d_i的符号判断下一个点的位置,并且递推出d_{i+1}

$$d_i \ge 0$$
, $\mathbb{R}L_i$;
 $d_{i+1} = F(x_{i+1}, y_i - 0.5)$
 $= F(x_{i-1} + 2, y_{i-1} - 1.5)$
 $= d_i + 2(x_{i-1} - y_{i-1}) + 5$

$$d_0 = F(1,R-0.5) = 1.25-R$$

$$P_{i-1}(x_{i-1},y_{i-1})$$

$$H_i (x_i, y_{i-1})$$

$$L_i (x_i, y_{i-1}-1)$$

$$x_i = x_{i-1} + 1$$

```
MiddlePoint_Arc(radius)
   x=0; y=radius; d=1.25-radius;
   while (x<y) {
      if (d<0) d += 2*x+3;
     else {
      d += 2*(x-y)+5;
         y---;
     x++; plot(x,y);
```

内容

- 一些光栅图形的例子
- 光栅显示的体系结构
- 直线的光栅化算法
- 圆的光栅化算法
 - 生成圆的Bresenham算法
 - 生成圆的中点法
 - 生成圆的其它算法

生成圆的其它方法

- 多边形逼近法
- ●正负法
 - 蔡耀志:正负法数控绘图 (工程图学学报1984)
 - 金通洸: TN法数控绘图(Tangent-Normal)
- 圆弧的生成算法
- 任意位置的圆及圆弧生成算法
- 生成园的Bresenham算法与中点法的不同?

Retina Display: 300ppi@10~12in

13-inch MacBook Pro

13-inch MacBook Pro with Retina display

课外阅读(1)

 Malcon Sabin (1999). Explorations in 3D integerbased linear geometry. Technical Report Technical Report DAMTP/1999/NA05, University of Cambridge, Department of Applied Mathematics and Theoretical Physics

● 是否可以用整数定义线性几何?

课外阅读(2)

- Johannes Kopf and Dani Lischinski (2012).
 Depixelizing Pixel Art. ACM Transactions on Graphics (SIGGRAPH 2011), 2011, 30(4):99:1 -- 99:8
- 光栅化的逆过程?

Nearest-neighbor result (Original: 40 x 16 pixels)

Depixelizing Pixel Art result

https://johanneskopf.de/publications/pixelart/

课后阅读

石教英、彭群生等译,《计算机图形学的算法基础》,机械工业出版社,2002.1.pp 47-70