Calculus 2 2013/14

Multivariable Calculus and Differential Equations

Section A

1. (a)
$$\lim_{x \to \infty} \frac{x^2 + 2}{3x^2 + 4x} = \lim_{x \to \infty} \frac{1 + \frac{2}{x^2}}{3 + \frac{4}{x}} = \frac{\lim_{x \to \infty} \left(1 + \frac{2}{x^2}\right)}{\lim_{x \to \infty} \left(3 + \frac{4}{x}\right)} = \frac{1 + 0}{3 + 0} = \frac{1}{3}$$

(b) Without using L'Hôpital's rule: $\lim_{h\to 0}\frac{e^{-2h}-1}{e^h-1}=\lim_{h\to 0}-e^{-2h}\frac{e^{2h}-1}{e^h-1}=\lim_{h\to 0}-e^{-2h}(e^h+1)=-1\cdot(1+1)=-2$ Alternatively use L'Hôpital's rule.

2. (a)
$$\nabla f(x,y) = \begin{pmatrix} f_x(x,y) \\ f_y(x,y) \end{pmatrix} = \begin{pmatrix} 3x^2 + y \\ x + 2y \end{pmatrix}$$

- (b) Note that **u** is a unit vector. We have $f_{\mathbf{u}}(1,3) = \nabla f(1,3) \cdot \mathbf{u} = \begin{pmatrix} 6 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} -3/5 \\ 4/5 \end{pmatrix} = -\frac{18}{5} + \frac{28}{5} = 2.$
- 3. (a) By the chain rule we have $\frac{\partial g}{\partial x}(x,y) = f'(x^2-2y)\cdot 2x$ and $\frac{\partial g}{\partial y}(x,y) = f'(x^2-2y)\cdot (-2)$. Hence $g(2,1)=f(2)=1, \frac{\partial g}{\partial x}(2,1)=f'(2)\cdot 4=8$ and $\frac{\partial g}{\partial y}(2,1)=f'(2)\cdot (-2)=-4$.
 - (b) We have $g(2+h, 1+k) = g(2,1) + (hg_x(2,1) + kg_y(2,1)) + \cdots = 1 + 8h 4k + \cdots$. So the degree 1 Taylor approximation is $g(2+h, 1+k) \approx 1 + 8h 4k$.

4.

$$\iint_D xy \, dx dy = \int_0^2 \int_0^{4-2x} xy \, dy dx$$

$$= \int_0^2 \left[\frac{1}{2} x y^2 \right]_0^{4-2x} \, dx$$

$$= \int_0^2 (8x - 8x^2 + 2x^3) \, dx$$

$$= \left[4x^2 - \frac{8}{3}x^3 + \frac{1}{2}x^4 \right]_0^2 = \frac{8}{3}.$$

- 5. (a) After multiplying the equation with x we have (with the notation from the course) $M(x,y)=x+xy^2$ and $N(x,y)=x^2y$. Hence $\frac{\partial M}{\partial y}=2xy=\frac{\partial N}{\partial x}$, so the equation becomes exact, i.e. x is an integrating factor for the original equation.
 - (b) We have to find a function f(x,y) with $\frac{\partial f}{\partial x} = x + xy^2$ and $\frac{\partial f}{\partial y} = x^2y$. The first equation gives $f(x,y) = 1/2x^2 + 1/2x^2y^2 + g(y)$. Then the second equation gives g'(y) = 0, so we can take g(y) = 0. Then $f(x,y) = 1/2x^2 + 1/2x^2y^2$, and the general solution is $1/2x^2 + 1/2x^2y^2 = c$ where c is a constant.

6. With z = x + y + 2 we get

$$\frac{\mathrm{d}z}{\mathrm{d}x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= 1 + \frac{1}{z}$$
$$= \frac{z+1}{z}.$$

The differential equation $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{z+1}{z}$ is variables separable, and separating the variables gives $\int \frac{z}{z+1} \, \mathrm{d}z = \int \mathrm{d}x$. After evaluating the integrals we find $z - \ln(z+1) = x + c$ where c is a constant. Hence the general solution of the differential equation is

$$x + y + 2 - \ln(x + y + 2 + 1) = x + c$$

which can be simplified to

$$y + 2 - \ln(x + y + 3) = c$$
.

- 7. (a) $\frac{dM}{dt} = \alpha M$
 - (b) Separating the variables gives $\int \frac{1}{M} dM = \int \alpha dt$, so $\ln M = \alpha t + c$ and hence $M(t) = Ae^{\alpha t}$ for a constant $A = e^c$. From M(0) = 2 we get A = 2, so $M(t) = 2e^{\alpha t}$.
 - (c) From M(100) = 0.5 we get $2e^{100\alpha} = 0.5$, so $\alpha = \ln(0.25)/100 \approx -0.0139$.
- 8. (a) Use integration by parts with $u = t^{x-1}$ and $v' = e^{-t}$. Then

$$\Gamma(x) = \left[-t^{x-1}e^{-t} \right]_0^{\infty} + \int_0^{\infty} (x-1)t^{x-2}e^{-t} dt$$
$$= (x-1)\int_0^{\infty} (x-1)t^{(x-1)-1}e^{-t} dt$$
$$= (x-1)\Gamma(x-1).$$

(b) From the given formula with $x = \frac{1}{2}$ we get $\Gamma(\frac{1}{2})\Gamma(1 - \frac{1}{2}) = \frac{\pi}{\sin(\frac{\pi}{2})} = \pi$, so $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Hence $\Gamma(\frac{5}{2}) = \frac{3}{2}\Gamma(\frac{3}{2}) = \frac{3}{2}\frac{1}{2}\Gamma(\frac{1}{2}) = \frac{3}{4}\sqrt{\pi}$.

Section B

- 9. (a) (i) stationary point of f: A stationary point of f is a point $(a,b) \in U$ such that the tangent plane to f at (a,b) exists and is horizontal. local maximum of f: A local maximum of f is a point $(a,b) \in U$ such that $f(a,b) \geq f(x,y)$ for all $(x,y) \in U$ that are in a sufficiently small disk around (a,b). global maximum of f: A global maximum of f is a point $(a,b) \in U$ such that $f(a,b) \geq f(x,y)$ for all $(x,y) \in U$.
 - (ii) A boundary point of U is a point $(a, b) \in \mathbb{R}^2$ such that every disk around (a, b) contains points from U and from $\mathbb{R}^2 \setminus U$.

(b) (i)
$$f_x = 4x + y + 6$$
, $f_y = x + 4y$, $f_{xx} = 4$, $f_{xy} = 1$, $f_{yy} = 4$

- (ii) To find the stationary points we have to solve $f_x = 0$ and $f_y = 0$. This gives the stationary point $\left(-\frac{8}{5}, \frac{2}{5}\right)$. The Hessian matrix is $\begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$ which has determinant > 0 and diagonal elements > 0, so the stationary point is a local minimum.
- (iii) The Lagrange function is

$$L(x, y, \lambda) = 2x^2 + xy + 2y^2 + 6x - \lambda(x^2 + y^2 - 8).$$

We have to solve $L_x = L_y = L_\lambda = 0$, i.e.

$$4x + y + 6 - 2\lambda x = 0$$
$$x + 4y - 2\lambda y = 0$$
$$x^2 + y^2 - 8 = 0.$$

The first two equations give $y^2 + 6y - x^2 = 0$. Substituting $x^2 = 8 - y^2$ into this equation gives the quadratic equation $y^2 + 3y - 4 = 0$ with solutions y = 1 and y = -4. Clearly y = -4 is impossible because of $x^2 + y^2 - 8 = 0$. So y = 1 and it follows that $x = \pm \sqrt{7}$. So the two critical points are $(\sqrt{7}, 1)$ and $(-\sqrt{7}, 1)$. Since

$$f(\sqrt{7}, 1) = 16 + 7\sqrt{7} \approx 34.5$$

 $f(-\sqrt{7}, 1) = 16 - 7\sqrt{7} \approx -2.5,$

it follows that the first point is the maximum and the second is the minimum on the circle.

- (iv) Note that the stationary point is inside the disk and we have $f(-\frac{8}{5}, \frac{2}{5}) = \frac{-24}{5} \approx -4.8$. The global extrema are either local extrema inside the disk or extrema on the boundary. Hence the global minimum value is -4.8 and the global maximum value is $16 + 7\sqrt{7}$.
- 10. (a) (i) A function $f: U \to \mathbb{R}$ is continuous at a point $a \in U$ if $\lim_{x \to a} f(x) = f(a)$.
 - (ii) The derivative of a function f is defined as

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

For the function $f(x) = e^x$ we have

$$\frac{d}{dx}e^x = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x(e^h - 1)}{h}$$

$$= e^x \lim_{h \to 0} \frac{e^h - 1}{h}$$

$$= e^x.$$

- (b) (i) $\frac{\partial f}{\partial x} = (y 2x^2y)e^{-(x^2+y^2)}, \frac{\partial f}{\partial y} = (x 2y^2x)e^{-(x^2+y^2)}$
 - (ii) We have $f(1,2) = 2e^{-5}$, $f_x(1,2) = -2e^{-5}$, $f_y(1,2) = -7e^{-5}$. The tangent plane has equation

$$\begin{pmatrix} x-1\\y-2\\z-f(1,2)\end{pmatrix}\cdot\begin{pmatrix} f_x(1,2)\\f_y(1,2)\\-1\end{pmatrix}=0,$$

so in this case we obtain

$$z = -2e^{-5}x - 7e^{-5}y + 18e^{-5}.$$

- (iii) $f(0.9, 2.1) \approx (-2 \cdot 0.9 7 \cdot 2.1 + 18)e^{-5} = \frac{3}{2}e^{-5} \approx 0.0101.$
- (c) Using polar coordinates $x = r \cos \theta$, $y = r \sin \theta$ we get:

$$\iint_D xy e^{-(x^2+y^2)} dxdy = \int_0^{\pi/2} \int_0^{\sqrt{2}} r \cos \theta \cdot r \sin \theta \cdot e^{-r^2} \cdot r drd\theta$$
$$= \int_0^{\pi/2} \cos \theta \sin \theta d\theta \cdot \int_0^{\sqrt{2}} r^3 e^{-r^2} dr$$

Substituting $u = \sin \theta$ in the first integral gives

$$\int_0^{\pi/2} \cos \theta \sin \theta \, d\theta = \int_0^1 u \, du = \left[\frac{1}{2} u^2 \right]_0^1 = \frac{1}{2}.$$

Substituting $u = -r^2$ in the second integral gives

$$\int_0^{\sqrt{2}} r^3 e^{-r^2} dr = \frac{1}{2} \int_0^{-2} u e^u du = \frac{1}{2} \left[u e^u - e^u \right]_0^{-2} = \frac{1}{2} \left(-2e^{-2} - e^{-2} + 1 \right).$$

Hence

$$\iint_D xye^{-(x^2+y^2)} dxdy = \frac{1}{4} \left(-3e^{-2} + 1 \right).$$

11. (a) (i) For $y(x) = e^{tx}$ we have $\frac{dy}{dx} = te^{tx}$ and $\frac{d^2y}{dx^2} = t^2e^{tx}$. Thus if y(x) is a solution of the differential equation then

$$Pt^2e^{tx} + Qte^{tx} + Re^{tx} = 0.$$

We can divide by e^{tx} because $e^{tx} \neq 0$, and obtain $Pt^2 + Qt + R = 0$ as required.

- (ii) In this case the general solution is $y(x) = Ae^{\alpha x} + Be^{\beta x}$ where A and B are constants.
- (b) (i) The auxiliary equation is $t^2 + 6t + 25 = 0$. This has solutions $t = -3 \pm 4i$. Hence the general solution of the differential equation is

$$y(x) = e^{-3x} (A\cos(4x) + B\sin(4x))$$

where A and B are constants.

(ii) We have

$$y'(x) = -3e^{-3x}(A\cos(4x) + B\sin(4x)) + e^{-3x}(-4A\sin(4x) + 4B\cos(4x))$$
$$= e^{-3x}((-3A + 4B)\cos(4x) + (-4A - 3B)\sin(4x)).$$

Hence y(0) = 2 and y'(0) = 5 imply that A = 2 and -3A + 4B = 5, so $B = \frac{11}{4}$. Therefore the required solution is

$$y(x) = e^{-3x} (2\cos(4x) + \frac{11}{4}\sin(4x)).$$

Since $\lim_{x\to\infty} e^{-3x}=0$ and $2\cos(4x)+\frac{11}{4}\sin(4x)$ is bounded, it follows that $\lim_{x\to\infty} y(x)=0$.

(c) We look for a particular integral of the form $p(x) = a\cos(2x) + b\sin(2x)$. Then $p'(x) = -2a\sin(2x) + 2b\cos(2x)$ and $p''(x) = -4a\cos(2x) - 4b\sin(2x)$. Substituting this into the differential equation gives

$$(-4a\cos(2x) - 4b\sin(2x)) + 6(-2a\sin(2x) + 2b\cos(2x)) + 25(a\cos(2x) + b\sin(2x))$$
$$= 39\sin(2x).$$

Hence

$$21a + 12b = 0$$
$$-12a + 21b = 39.$$

This has the solution $a=-\frac{4}{5}$, $b=\frac{7}{5}$. Hence a particular integral is $p(x)=-\frac{4}{5}\cos(2x)+\frac{7}{5}\sin(2x)$. The general solution is the complementary function plus the particular integral, so

$$y(x) = e^{-3x} (A\cos(4x) + B\sin(4x)) - \frac{4}{5}\cos(2x) + \frac{7}{5}\sin(2x).$$

- 12. (a) $\sinh x = \frac{e^x e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$, $\frac{d}{dx} \sinh x = \frac{e^x (-1)e^{-x}}{2} = \cosh x$, $\frac{d}{dx} \cosh x = \frac{e^x + (-1)e^{-x}}{2} = \sinh x$
 - (b) (i) We have $x_{i+1} = x_i + 0.5$ and $y_{i+1} = y_i + 0.5(y_i + \sinh x_i) = 1.5y_i + 0.5 \sinh x_i$ with $x_0 = 0, y_0 = 1$.

i	x_i	y_i
0	0	1
1	0.5	1.5
2	1	2.5105

Hence $y(1) \approx 2.5105$.

(ii) We assume the solution has the form

$$y(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y^{(3)}(0)}{3!}x^3 + \dots$$

Now

$$y(0) = 1$$

$$y' = y + \sinh x \implies y'(0) = y(0) + \sinh 0 = 1$$

$$y'' = y' + \cosh x \implies y''(0) = y'(0) + \cosh 0 = 2$$

$$y^{(3)} = y'' + \sinh x \implies y^{(3)}(0) = y''(0) + \sinh 0 = 2$$

Hence

$$y(x) \approx 1 + x + x^2 + \frac{1}{3}x^3$$

so $y(1) \approx 3.3333$.

(iii) The equation $\frac{\mathrm{d}y}{\mathrm{d}x} - y = \sinh x$ is linear. The integrating factor is $\mu(x) = \exp(\int -1 \, \mathrm{d}x) = e^{-x}$. Hence the general solution is

$$y = \frac{1}{e^{-x}} \int e^{-x} \sinh x \, dx$$

$$= e^x \int e^{-x} \frac{e^x - e^{-x}}{2} \, dx$$

$$= \frac{e^x}{2} \int (1 - e^{-2x}) \, dx$$

$$= \frac{e^x}{2} \left(x + \frac{e^{-2x}}{2} + c \right)$$

$$= \frac{xe^x}{2} + \frac{e^{-x}}{4} + \frac{ce^x}{2}$$

where c is a constant. The initial condition y(0) = 1 gives $0 + \frac{1}{4} + \frac{c}{2} = 1$, so $c = \frac{3}{2}$. Thus the required solution is

$$y = \frac{xe^x}{2} + \frac{e^{-x}}{4} + \frac{3e^x}{4}.$$

We obtain

$$y(1) = \frac{e}{2} + \frac{e^{-1}}{4} + \frac{3e}{4} = \frac{5e}{4} + \frac{1}{4e} \approx 3.4898.$$

(c) If $x = \sinh y = \frac{e^y - e^{-y}}{2}$ then $y = \operatorname{arcsinh}(x)$. Set $z = e^y$. Then $2x = z - \frac{1}{z}$ and hence $z^2 - 2xz - 1 = 0$. It follows that $z = x \pm \sqrt{x^2 + 1}$, and since $z = e^y > 0$ we must have $z = x + \sqrt{x^2 + 1}$. Now $e^y = x + \sqrt{x^2 + 1}$ implies $y = \ln \left(x + \sqrt{x^2 + 1} \right)$, as required.