Decision Tree and SVM

Decision Tree

- Its a tree like data structure to make a model of the data
- uses if-else at every node of the tree
- Supervised Algorithm For Classification & regression
- DT algorithm generates a decision tree for prediction
- Leafs are the decisions
- DT creation can be based on entropy or gini

Decision Tree Classification

Stopping Criteria

Issues without Stopping Criteria:

computationally expensive, difficult to interpret and would probably not work very well with new data

- We decide the maximum depth of the tree (max_depth)
- Purity of the node is more than some pre-specified limit
- Number of cases in the node is less than some pre-specified limit
- Predictor values for all records are identical in which no rule could be generated to split them

DisAdv:

tend to degrade the tree's performance

Pruning Trees

 we allow the tree to overfit on the data and after that we start cutting the branches which are not leading to better accuracy

Gini and Entropy Comparison

- Gini is faster
- Entropy results are better

Decision Tree Regression

- Continues target is predicted with Tree.
- ID3 is modified for regression by replacing Information Gain with Mean Squared Error.
- Decision Tree tries to partition data into subsets of homogenous contents (minimize mean squared error)

Decision Tree Regression

