$And(M_1, M_2)$

Remember the and construction for the And of two DFA's M_1 , M_2 .

The formula is in the question sheet:

Given two DFA's:

$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$$

 $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

The DFA defined as:

$$M = (Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F_1 \times F_2)$$
$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

Is the DFA which is in an accepting state when BOTH M_1 , M_2 are in accepting states.

Pumping Lemma

Note that L is a regular language implies that L enjoys the Pumping Lemma property.

A language L enjoys the Pumping Lemma property does not imply that it is regular:

Regular Language \Longrightarrow Pumping Lemma

Pumping Lemma \Longrightarrow Regular

The Pumping Lemma states that for all regular languages, if they accept a string s of length $\geq \ell$ for some ℓ then there exists some $u_1vu_2 = s$ where $|v| \geq 1$ $(v \neq \varepsilon)$ and $|u_1v| \leq \ell$ such that $\forall n \in \mathbb{N}. u_1v^nu_2 \in L$.

To prove a language is not regular, you must find some w_{ℓ} for arbitrary ℓ which cannot be pumped.

So for $L = a^n b^n$, you find $w_\ell = a^\ell b^\ell$ and say that "since the first ℓ letters are a, v must be some sequence of a's of length s, u_1 is length r and u_2 is $a^{\ell-r-s}b^\ell$. Then consider v^2 then the string is now $a^{\ell+r}b^\ell$. $r \neq 0$ so $\ell + r \neq \ell$. So the string is not of the form $a^n b^n$. However it is still in the language L. So L cannot be pumped and hence L is not regular.