Լապտերներ

Խնդրի անուն <u>ը</u>	Լապտերներ
Մուտքի ֆայլ	ստանդարտ մուտք
Ելքի ֆայլ	ստանդարտ ե <u>լք</u>
Ժամանակի սահմանափակում	3 վայրկյան
Հիշողության սահմանափակում	1024 մեգաբայթ

Ֆերմեր Ջոնը կովերի իր նախիրը տարել է Ալպերում արշավի։ Որոշ ժամանակ անց երկինքը մթնեց, և էքսկուրսիան ավարտվեց։ Սակայն որոշ կովեր մոլորվեցին լեռնաշղթայով մեկ, և Ջոնի խնդիրն է փրկել բոլոր կովերին։

Lեռնաշղթան, որով կովերը հիմա անցնում են, կարող է ներկայացվել ուղղահայաց երկչափ (2D) հարթության վրա n գագաթների շարքով։ Այս գագաթները ըստ հերթականության համարակալված են 1-ից n թվերով։ i-րդ գագաթն ունի (i,h_i) կոորդինատները։ h_i արժեքը ցույց է տալիս i-րդ գագաթի **բարձրությունը**։ Երաշխավորված է, որ h_1,h_2,\ldots,h_n արժեքները $1\ldots n$ թվերի տեղափոխություն են կազմում։ (Այսինքն, կամայական $j=1,\ldots,n$ -ի համար ունենք $h_i=j$ ճիշտ մեկ $i\in\{1,\ldots,n\}$ -ի դեպքում։)

Կամայական i-ի համար ($1 \le i < n$), i և i+1 գագաթները միացված են ուղիղ գծով։

Քանի որ գիշեր է, Ձոնը չի կարող ճանապարհորդել սարի ցանկացած մաս, եթե նա չունի գոնե մեկ աշխատող լապտեր։ Քարեբախտաբար, կա վաճառքի ենթակա k հատ լապտեր։ Յուրաքանչյուր j-ի համար ($1 \le j \le k$), j լապտերը հնարավոր է գնել p_j գագաթում c_j ֆրանկով։

Դժբախտաբար, j լապտերն աշխատում է միայն երբ Ջոնի ընթացիկ բարձրությունը $[a_j,b_j]$ միջակայքում է։ Այլ կերպ ասած` եթե Ջոնի ներկայիս բարձրությունը a_j -ից խիստ փոքր է կամ b_j -ից խիստ մեծ է, j լապտերը չի աշխատի։ Նկատեք, որ լապտերները չեն փչանում, երբ դուրս են գալիս իրենց տիրույթից։ Օրինակ, երբ Ջոնի բարձրությունը b_j -ից մեծ է, j լապտերը չի աշխատի, բայց հենց Ջոնը վերադառնա b_j բարձրություն, լապտերը կրկին կսկսի աշխատել։

Եթե Ձոնը կանգնած է p գագաթում, հա կարող է կատարել հետևյալ երեք գործողություններից մեկը`

• Նա կարող է գնել p գագաթում առկա լապտերներից մեկը։ Գնելուց հետո նա հավերժ կարող է օգտագործել այն։

- Եթե p>1, նա կարող է գնալ p-1 գագաթ։
- Եթե p < n, նա կարող է գնալ p + 1 գագաթ։

Ջոնը չի կարող շարժվել առանց աշխատող լապտերի։ Նա կարող է քայլել երկու հարևան գագաթների միջև, եթե ցանկացած պահի նրա ունեցած լապտերներից գոնե մեկն աշխատում է։ (Պարտադիր չէ, որ քայլելու ամբողջ ընթացքում լինի նույն լապտերը։)

Օրինակ` ենթադրենք ֆերմեր Ձոնը հիմա 4 բարձրությամբ գագաթում 1 և ցանկանում 1 գնալ հարևան 1 բարձրությամբ գագաթ։ Եթե Ձոնն ունի [1,3] և [3,4] միջակայքերում աշխատող լապտերներ, նա կարող 1 գնալ մի գագաթից մյուսը։

Սակայն եթե Ջոնն ունի միայն [1,1] և [2,5] միջակայքերում աշխատող լապտերներ, նա դեռ չի կարող շարժվել այս երկու գագաթների միջև, քանի որ, օրինակ, 1.47 բարձրության վրա լապտերներից ոչ մեկը չի գործի։

Ձեր խնդիրն է պատասխանել մի քանի իրարից անկախ հարցերի։

Կամայական $1 \leq j \leq k$ -ի դեպքում $a_j \leq h_{p_j} \leq b_j$ պայմանը բավարարված է։ Ենթադրենք Ձոնը սկսում է իր փնտրումը p_j գագաթում` գնելով j լապտերը։ Ամբողջ լեռնաշղթան հետազոտելու համար նա պետք է n գագաթներից յուրաքանչյուրով անցնի գոնե մեկ անգամ` բազմիցս կատարելով վերևում նշված երեք գործողությունները։ Յուրաքանչյուր j-ի համար որոշեք ֆրանկերի մինիմալ քանակը, որը Ձոնը պետք է ծախսի ամբողջ լեռնաշղթան որոնելու համար։ (Այս ծախսը ներառում է առաջին j լապտերի գինը։)

Մուտքը

Առաջին տողը պարունակում է n և k-ն ($1 \le n \le 2000$, $1 \le k \le 2000$) – համապատասխանաբար լեռնաշղթայի գագաթների ու առկա լապտերների քանակը։

Երկրորդ տողը պարունակում է բացատով անջատված n ամբողջ թվեր h_1,h_2,\ldots,h_n ($1 \le h_i \le n$)` յուրաքանչյուր գագաթի բարձրությունը։ Երաշխավորված է, որ h_1,h_2,\ldots,h_n թվերը $1\ldots n$ թվերի տեղափոխություն են։

Հաջորդող k տողերից j-րդը պարունակում է բացատով անջատված չորս ամբողջ թիվ` p_j , c_j , a_j , և b_j ($1 \le p_j \le n$, $1 \le c_j \le 10^6$, $1 \le a_j \le b_j \le n$) – համապատասխանաբար գագաթի համարը, որտեղ հնարավոր է գնել տվյալ լապտերը, իր գինն ու աշխատելու միջակայքը։

Ելքը

Յուրաքանչյուր j-ի համար ($1 \leq j \leq k$)։

ullet Եթե h_{p_j} -ը $[a_j,b_j]$ միջակայքից դուրս է, արտածել -1։

- Այլապես, եթե Ձոնը չի կարող սկզբում j լապտերը գնելով հետազոտել ամբողջ լեռնաշղթան, արտածել -1։
- Այլապես, տպել Ջոնին հարկավոր ֆրանկերի մինիմալ քանակը, որը նա պետք է ծախսի ամբողջ լեռնաշղթայով անցնելու համար, եթե առաջինը գնի j լապտերը։

Գնահատումը

Ենթախնդիր 1 (9 միավոր)։ $n \leq 20$ և $k \leq 6$ ։

Ենթախնդիր 2 (12 միավոր)։ $n \le 70$ և $k \le 70$ ։

Ենթախնդիր 3 (23 միավոր)։ $n \leq 300$, $k \leq 300$ և $h_i = i$ բոլոր $1 \leq i \leq n$ -ի համար։

Ենթախնդիր 4 (16 միավոր)։ $n \leq 300$, $k \leq 300$.

Ենթախնդիր 5 (40 միավոր)։ առանց լրացուցիչ սահմանափակումների։

Օրինակ

ստանդարտ մուտք	ստանդարտ ելք
7 8	7
4231567	-1
3 1 2 4	4
1 2 1 3	10
4 4 1 7	30
6 10 1 7	-1
6 20 6 6	-1
6 30 5 5	-1
7 40 1 6	
7 50 7 7	

Նշում

Եթե Ձոնն առաջինը գնի 1 լապտերը 3 գագաթում, նա կարող է կատարել հետևյալ գործողությունների հերթականությունը`

- գնալ ձախ երկու անգամ՝ 1 գագաթ
- գնել 2 լապտերը
- գնալ աջ՝ 4 գագաթ
- գնել 3 լապտերը
- quul mo 7 quuque

Այս պահին Զոնն արդեն այցելել է ամեն գագաթ գոնե մեկ անգամ և ծախսել է

րնդհանուր 1+2+4=7 ֆրանկ։

Ջոնը չի կարող սկսել ճանապարհը գնելով 2, 6, կամ 7 լապտերները, քանի որ նրանք չեն գործում նրանց վաճառքի բարձրության վրա։ <ետևաբար, այս լապտերների պատասխանը -1 է։

Եթե Ձոնը սկսի իր ճամփորդությունը` գնելով 3 կամ 4 լապտերը, նա կարող է այցելել բոլոր գագաթները` առանց լրացուցիչ լապտերներ գնելու։

Եթե Չոնր սկզբում գնի 5 լապտերը, նա պետք է հետագայում գնի նաև 3-ը։

Եթե Չոնը սկզբում գնի 8 լապտերը, նա կլովի 7 գագաթում։ Նույնիսկ եթե նա նաև գնի 7 լապտերը, նա միևնույնն է չի կարողանա 7 գագաթից գնալ 6 գագաթ։