# **CMPS 101 Fall 2018**

## Midterm Exam 2

# **Solutions**

- 1. (20 Points) Use the Master Theorem to find tight asymptotic bounds for the following recurrences.
  - a. (10 Points)  $T(n) = 5T(n/2) + n^2 \log(n)$

#### **Solution:**

Let  $\epsilon = \frac{1}{2}(\log_2(5) - 2)$ . Then  $4 < 5 \Rightarrow 2 < \log_2(5) \Rightarrow \epsilon > 0$ . We have  $2\epsilon = \log_2(5) - 2$ , and hence  $\log_2(5) - \epsilon = 2 + \epsilon$ . Therefore

$$\lim_{n\to\infty} \left(\frac{n^2\log(n)}{n^{\log_2(5)-\epsilon}}\right) = \lim_{n\to\infty} \left(\frac{n^2\log(n)}{n^{2+\epsilon}}\right) = \lim_{n\to\infty} \left(\frac{\log(n)}{n^{\epsilon}}\right) = 0,$$

and hence

$$n^2 \log(n) = o\left(n^{\log_2(5) - \epsilon}\right) \subseteq O\left(n^{\log_2(5) - \epsilon}\right).$$

Case 1 of the Master Theorem gives us  $T(n) = \Theta(n^{\log_2(5)})$ .

b. (10 Points) 
$$T(n) = 16T(n/8) + n^{4/3}$$

#### **Solution:**

Observe that  $\log_8(16) = 4/3$  since  $8^{4/3} = 2^4 = 16$ . Thus  $n^{4/3} = n^{\log_8(16)} = \Theta(n^{\log_8(16)})$ , and by case 2 we have  $T(n) = \Theta(n^{4/3} \log n)$ .

2. (20 Points) Let G be a connected graph with n vertices and m edges. Use induction on m to prove that  $m \ge n - 1$ . (Hint: you may use the following fact without proof. If an edge e is removed from G, then the resulting graph G - e is either connected, or has exactly two connected components  $H_1$  and  $H_2$ .)

#### **Proof:**

- I. Let m = 0. Then G, being connected, can have only one vertex. Therefore  $m \ge n 1$  reduces to  $0 \ge 0$ , and the base case is satisfied.
- II. Let m > 0. Assume for any connected graph G' with |E(G')| < m that  $|E(G')| \ge |V(G')| 1$ . We must show that  $m \ge n 1$ . Pick any edge  $e \in E(G)$  and remove it. By the above hint, we have two cases to consider.

Case 1: G - e is connected.

In this case the induction hypothesis gives  $m-1=|E(G-e)| \ge |V(G-e)|-1=n-1$ , whence  $m \ge n > n-1$ , and therefore  $m \ge n-1$  as required.

## Case 2: G - e is disconnected.

Following the hint, G - e consists of two connected components  $H_1$  and  $H_2$ , each having fewer than m edges. The induction hypothesis now guarantees  $|E(H_i)| \ge |V(H_i)| - 1$  for i = 1, 2. Since no vertices were removed,  $n = |V(H_1)| + |V(H_2)|$ , and therefore

$$m = |E(H_1)| + |E(H_2)| + 1$$
  
 $\geq (|V(H_1)| - 1) + (|V(H_2)| - 1) + 1$  (by the induction hypothesis)  
 $= (|V(H_1)| + |V(H_2)|) - 1$   
 $= n - 1$ 

In this case also,  $m \ge n - 1$ .

The result now follows for all connected graphs by induction.

3. (20 Points) Let G be a graph with n vertices, m edges and k connected components. Prove  $m \ge n - k$ . (Hint: Use the result of problem 2).

#### **Proof:**

Let the connected components of G be  $H_1, H_2, H_3, ... H_k$ . Suppose component  $H_i$  has  $n_i$  vertices and  $m_i$  edges (for i = 1, 2, ..., k). Then by the result of problem 2, we have  $m_i \ge n_i - 1$  (for i = 1, 2, ..., k). Summing these inequalities we get

$$m = \sum_{i=1}^{k} m_i \ge \sum_{i=1}^{k} (n_i - 1) = \sum_{i=1}^{k} n_i - \sum_{i=1}^{k} 1 = n - k,$$

i.e.  $m \ge n - k$ , as required.

4. (20 Points) Let G be a connected graph with n vertices and m edges. Suppose also that m = n. Prove that G contains exactly one cycle. (Hint: Use the result of problem 2, and also Lemma 1 which says that if T is a tree then |E(T)| = |V(T)| - 1.)

#### **Proof:**

G contains at least one cycle since if not, G is a tree and hence m = n - 1 (by Lemma 1), contrary to the hypothesis m = n. It remains to show that G contains at most one cycle.

Assume, to get a contradiction, that G contains two distinct cycles, call them  $C_1$  and  $C_2$ . It is not possible that either  $E(C_1) \subsetneq E(C_2)$  or  $E(C_2) \subsetneq E(C_1)$  since removing an edge from a cycle destroys it. Therefore both  $E(C_1) - E(C_2) \neq \emptyset$  and  $E(C_1) - E(C_2) \neq \emptyset$ . Pick  $e_1 \in E(C_1) - E(C_2)$  and  $e_2 \in E(C_2) - E(C_1)$ . Then  $G - e_1$  is a connected graph with the cycle  $C_2$  still intact. Therefore  $G - e_1 - e_2$  is also connected. Applying the result of problem 2 to this graph, we have  $|E(G - e_1 - e_2)| \geq |V(G - e_1 - e_2)| - 1$ , which says  $m - 2 \geq n - 1$ , and hence  $m \geq n + 1 > n$ , contrary to the hypothesis m = n. This contradiction shows our assumption was false, and therefore G must contain exactly one cycle.

- 5. (20 Points) Run BFS on the graph pictured on the back page of this exam, using source vertex s = 9. Pseudo-code for BFS is also included on the back page. Execute the for loop on lines 12-17 of BFS in increasing order by vertex label.
  - a. (14 Points) Fill in the following table, determine the order in which vertices enter the Queue, and draw the BFS Tree.

#### **Solution:**

|    | Adjacency List | Color | Distance | Parent |
|----|----------------|-------|----------|--------|
| 1  | 2 4            | b     | 4        | 2      |
| 2  | 1 3 4 5        | b     | 3        | 3      |
| 3  | 2 5 6          | b     | 2        | 6      |
| 4  | 1 2            | b     | 4        | 2      |
| 5  | 2 3 8          | b     | 3        | 3      |
| 6  | 3 7 8 9        | b     | 1        | 9      |
| 7  | 6 9            | b     | 1        | 9      |
| 8  | 5 6            | b     | 2        | 6      |
| 9  | 6 7 11 12      | b     | 0        | NIL    |
| 10 | 11             | b     | 2        | 11     |
| 11 | 9 10 12        | b     | 1        | 9      |
| 12 | 11 9           | b     | 1        | 9      |

| 8 10 2 5 1 4 | ð. | 3 | 12 | 11 | 7 | 6 | 9 | Queue |
|--------------|----|---|----|----|---|---|---|-------|
|--------------|----|---|----|----|---|---|---|-------|

### **BFS Tree:**



b. (6 Points) Determine the shortest 9-4 path found by BFS, and the shortest 9-10 path found by BFS. Find a shortest 9-5 path *not* found by BFS.

#### **Solution:**

Shortest 9-4 path found by BFS: 9 6 3 2 4 Shortest 9-10 path found by BFS: 9 11 12 Shortest 9-5 path *not* found by BFS: 9 6 8 5

Problem 5 refers to the following graph (you may tear off this page and keep it)



The following pseudo-code is included for reference.

```
BFS(G,s)
1. for all x \in V(G) - \{s\}
       color[x] = white
2.
3.
       d[x] = \infty
       p[x] = NIL
4.
5. \operatorname{color}[s] = \operatorname{gray}
6. d[s] = 0
7. p[s] = NIL
8. Q = \emptyset
9. Enqueue(Q, s)
10. while Q \neq \emptyset
       x = Dequeue(Q)
11.
       for all y \in adj[x]
12.
          if color[y] == white
13.
             color[y] = gray
14.
             d[y] = d[x] + 1
15.
             p[y] = x
16.
             Enqueue(Q, y)
17.
       color[x] = black
18.
```