Boosting

AdaBoost

Boosting

- Can weak learners H be combined to generate a strong learner with low bias?
- Two modifications from bagging
 - 1. instead of a random sample of the training data, use a weighted sample to focus learning on most difficult examples.
 - 2. instead of combining classifiers with equal vote, use a weighted vote.
- Boosting: An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Unlike bagging, each record in boosting method is assigned a weight
 - Initially, all records are assigned equal weights
 - At each iteration, a new classifier (weak learner) is learned
 - Each record is reweighted to focus the system on data that the most recently learned classifier got wrong.
- Final classification based on weighted vote of weak learners

Strong and Weak Learners

- Strong Learner
 - Produce a classifier with high accuracy
 - Relatively difficult to construct
 - E.g.: SVM, deep learning, etc
- Weak Learner
 - Produce a classifier which is more accurate than random guessing (accuracy>0.5)
 - Relatively easy to construct
 - E.g.: decision stump, etc
- Can a set of weak learners create a single strong learner?
 - YES! Boost weak classifiers to a strong learner

Updating Weights of Data

- Using Different Data Distribution
 - Start with uniform weighting
 - During each step of learning
 - ◆ Increase weights of the examples which are not correctly learned by the weak learner
 - ◆ Decrease weights of the examples which are correctly learned by the weak learner
- Idea
 - Focus on difficult examples which are not correctly classified in the previous steps

Updating Weights of Data

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Combine Weak Classifiers

- Weighted Voting
 - Construct strong classifier by weighted voting of the weak classifiers
- Idea
 - Better weak classifier gets a larger weight
 - Iteratively add weak classifiers

Boosting

- Each rectangle corresponds to an example, with weight proportional to its height.
- Crosses correspond to misclassified examples.
- Size of decision tree indicates the weight of that hypothesis in the final ensemble.

Boosting

- M = number of weak learners to generate
- 1. Set same weight for all the examples (e.g., weight = 1);
- 2. For i = 1, ..., M
 - 2.1 Generate classifier h_i.
 - 2.2 Recompute weights of examples from the predictions of hi
 - 2.3 Recompute the weight of classifier hi
- 3. Weighted majority combination of all M classifiers (weights according to how well it performed on the training set).
- Many variants depending on how to set the weights and how to combine the classifiers.

A Toy Example

A Toy Example

A Toy Example

AdaBoost

- Base classifiers: C_1 , C_2 , ..., C_T
- Error rate: (ε_i : error of classifier i)

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

- N: number of data
- $\delta(p)$ =1 if p is true, and =0 otherwise
- Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost by Yoav Freund and Robert E. Schapire, 1996

AdaBoost

Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \times \begin{cases} e^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ e^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases} \qquad \epsilon_j < 0.5 \& \alpha_j > 0$$

- $W_i^{(j)}$: the weight assigned to example (x_i, y_i) during j-th round
- Z_j : normalization factor so that $\sum_i w_i^{(j+1)} = 1$
- If any intermediate rounds produce error rate(ϵ_j) > 0.5, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification: weighted vote according to α_i

$$C*(x) = \underset{y}{\operatorname{arg max}} \sum_{j=1}^{T} \alpha_{j} \delta(C_{j}(x) = y)$$

Illustrating AdaBoost

Original data	Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Original data	Y	1	1	1	-1	-1	-1	-1	1	1	1
		_									
Boosting round 1	Х	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1.0
	Υ	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boosting round 2	X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
	Y	1	1	1	1	1	1	1	1	1	1
Boosting round 3	X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
	Υ	1	1	-1	-1	-1	-1	-1	-1	-1	-1
•											

Weights of records

Round	X=0.1	X=0.2	X=0.3	X=0.4	X=0.5	X=0.6	X=0.7	X=0.8	X=0.9	X=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.31	0.31	0.31	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.03	0.03	0.03	0.23	0.23	0.23	0.23	0.01	0.01	0.01

Illustrating AdaBoost

Round	Split Point	Left Class	Right Class	α
1	0.75	-1	1	1.738
2	0.05	1	1	2.778
3	0.3	1	-1	4.119

Round	X=0.1	X=0.2	X=0.3	X=0.4	X=0.5	X=0.6	X=0.7	X=0.8	X=0.9	X=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.40	0.40	0.40
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

Pros and Cons of AdaBoost

- Advantages
 - Very simple to implement
 - Fairly good generalization
- Disadvantages
 - Suboptimal solution
 - Sensitive to noisy data and outliers
- AdaBoost with decision trees has been referred to as "the best offthe-shelf classifier". However,
 - If weak learners are actually quite strong (i.e., error gets small very quickly), boosting might not help
 - If hypotheses too complex, test error might be much larger than training error

- Trees are added one at a time, and existing trees in the model are not changed.
- A gradient descent procedure is used to minimize the loss when adding trees.
- Traditionally, gradient descent is used to minimize a set of parameters, such as the coefficients in a regression equation or weights in a neural network.
- In gradient boosting, instead of updating parameters, we must add a tree to the model that reduces the loss (i.e. follow the gradient).
- We modify the parameters of the new tree so that it moves in the right direction by (reducing the residual loss). In other words, we train a decision tree to reduce the residual loss.
- The output for the new tree is then added to the output of the existing sequence of trees

Create ensemble classifier

$$H_T(\vec{x}) = \sum_{t=1}^{T} \alpha_t h_t(\vec{x})$$

- This ensemble classifier is built in an iterative fashion.
- In iteration t we add the classifier $\alpha_t h_t(\vec{x})$ to the ensemble.
- At test time we evaluate all classifier and return the weighted sum.

- The process of constructing such an ensemble in a step-wise fashion is very similar to gradient descent.
- However, instead of updating the model parameters in each iteration, we add functions to our ensemble.
- Error function:

$$\sum_{i=1}^{n} l(y_i, \hat{y}_i)$$

• We add a new function h_t each time.

$$\hat{y}_{i}^{(0)} = 0$$

$$\hat{y}_{i}^{(1)} = h_{1}(x_{i}) = \hat{y}_{i}^{(0)} + h_{1}(x_{i})$$

$$\hat{y}_{i}^{(2)} = h_{1}(x_{i}) + h_{2}(x_{i}) = \hat{y}_{i}^{(1)} + h_{2}(x_{i})$$
...
$$\hat{y}_{i}^{(t)} = \sum_{t=1}^{t} h_{k}(x_{i}) = \hat{y}_{i}^{(t-1)} + h_{t}(x_{i})$$

We want to optimize the error function:

$$L = \sum_{i=1}^{n} l(y_i, \hat{y}_i)$$

- Assume we have already finished t-1 iterations and already have an ensemble classifier $\hat{y}_i^{(t-1)}$.
- Now in iteration t, we want to add one more weak learner h_t to the ensemble.
- Performance at round t is

$$\hat{y}_i^{(t)} = \sum_{k=1}^t h_k(x_i) = \hat{y}_i^{(t-1)} + h_t(x_i)$$

- To this end, we search for the weak learner h_t that minimizes the loss the most.
- How do we decide which h_t to add?
- Find h_t that minimizes the following

$$L = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + h_t(x_i))$$

$$L = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + h_t(x_i))$$

- Take Taylor expansion of the error function
 - Recall: $f(x + \Delta x) \approx f(x) + f'(x)\Delta x + \frac{1}{2}f(x)\Delta x^2 + \cdots$ (we will use first-degree term only)
 - Define:

$$\underset{h_t}{\operatorname{argmin}} \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i h_t(x_i) \right] \approx \underset{h_t}{\operatorname{argmin}} \sum_{i=1}^{n} [g_i h_t(x_i)] + \operatorname{const}$$

where

$$g_i = \frac{\partial l(y_i, \hat{y}_i^{(t-1)})}{\partial \hat{y}_i^{(t-1)}}$$

You can use any other differentiable and convex loss function l, and the solution for your next weak learner h will always be the regression tree minimizing the squared loss

For simplicity, suppose the error function is squared error.

$$g_{i} = \frac{\partial l(y_{i}, \hat{y}_{i}^{(t-1)})}{\partial \hat{y}_{i}^{(t-1)}} = \frac{\partial \left(\hat{y}_{i}^{(t-1)} - y_{i}\right)^{2}}{\partial \hat{y}_{i}^{(t-1)}} = 2(\hat{y}_{i}^{(t-1)} - y_{i})$$

Therefore, the error function is

$$\underset{h_t}{\operatorname{argmin}} \sum_{i=1}^{n} \left[2(\hat{y}_i^{(t-1)} - y_i) h_t(x_i) \right]$$

- Suppose $r_i = \hat{y}_i^{(t-1)} y_i$
- We need a function(weak learner) A such that

$$A(\{(x_1, r_1), \dots, (x_n, r_n)\}) = \underset{h_t}{\operatorname{argmin}} \sum_{i=1}^{n} [r_i h_t(x_i)]$$

In order to make progress, this h_t does not have to be great. We still make progress as long as $\sum_{i=1}^{n} [r_i h_t(x_i)] < 0$.

(*) Minimizing Dot Product

$$\underset{h_t}{\operatorname{argmin}} \sum_{i=1}^{n} [r_i \ h_t(x_i)]$$

To minimize the inner product of a given vector v with another vector u, you want to find a vector u that is as close to orthogonal to v as possible. Since the inner product is given by:

$$v \cdot u = ||v|| ||u|| \cos \theta$$

where θ is the angle between v and u, the inner product is minimized when $\cos \theta = -1$. This corresponds to $\theta = \pi$, meaning u is in the opposite direction of v.

• Therefore, the vector u that minimizes the inner product with v:

$$u = -\alpha v$$

where α is a positive scalar that scales u (it can be any positive number depending on the magnitude you want for u).

In short, to minimize the inner product, you should choose u as a vector pointing in the exact opposite direction of v, scaled by any positive factor.

$$\underset{h_t}{\operatorname{argmin}} \sum_{i=1}^{n} [r_i \ h_t(x_i)]$$

- From previous slide, in order to minimize above formula, we know that the prediction of $h_t(x_i)$ should be the opposite value of r_i
- For example, if r = [3, -2, 6], then the prediction of h_t should be [-3, 2, -6]. (suppose there are three data points)
- In other words, when we build a new weak learner, $(-1) * r_i$ becomes the target value of the new weak learner.

Gradient Boosting Algorithm

* Regression with squared error

```
Input: \{(x_i, y_i)\}: initial training data; A: weak classifier;
         T total number of iterations; H^0: ensemble at step t
h_0 = \overline{y_i} # mean of y_i
H^{(0)} = \{h_0\}
for t = 1; T - 1 do
  r_i = \hat{y}_i^{(t-1)} - y_i # for each data i, compute residual
   # with r_i as the target values, generate next weak classifier A
  h_t = A(\{(x_1, r_1), ..., (x_n, r_n)\}) = \operatorname{argmin} \sum_{i=1}^n [r_i h_t(x_i)]
   if \sum_{i=1}^{n} [r_i h_t(x_i)] < 0 then
      H^{(t)} = H^{(t-1)} + h_t
   else
      return H^{(t)}
   end if
end for
return H^{(T)}
```

XGBoost Algorithm

- XGBoost stands for "eXtreme Gradient Boosting" and is a specific implementation of the gradient boosting algorithm.
- One of the state-of-the-art methods for tabular data
- Some differences between the two:
 - Algorithm: XGBoost uses Newton-Raphson in function space, while gradient boosting uses gradient descent.
 - Regularization: XGBoost uses advanced regularization (L1 and L2) to improve model generalization.
 - Parallelization: XGBoost is faster to train than gradient boosting and can be parallelized across clusters.
 - Missing Data: XGBoost has its own in-built missing data handler, whereas GBM doesn't.

Gradient Boosting Example

Age	Sft.	Location	Price
5	1500	5	480
11	2030	12	1090
14	1442	6	350
8	2501	4	1310
12	1300	9	400
10	1789	11	500

Age	Sft.	Location	Price	Average_Price
5	1500	5	480	688
11	2030	12	1090	688
14	1442	6	350	688
8	2501	4	1310	688
12	1300	9	400	688
10	1789	11	500	688

 h_1 is the mean of targer value(Price)

6

'Average_Price' is the prediction of h_1

Gradient Boosting Example

Age	Sft.	Location	Price	Average_Price	Residual
5	1500	5	480	688	-208
11	2030	12	1090	688	402
14	1442	6	350	688	-338
8	2501	4	1310	688	622
12	1300	9	400	688	-288
10	1789	11	500	688	-188

From the prediction of h_1 , we compute 'Residual'

Residual = target value – predicted value

Gradient Boosting Example

Using this decision tree, we compute 'New Residual'

Age	Sft.	Location	Price	Average_Price	Residual
5	1500	5	480	688	-208
11	2030	12	1090	688	402
14	1442	6	350	688	-338
8	2501	4	1310	688	622
12	1300	9	400	688	-288
10	1789	11	500	688	-188

Age	Sft.	Location	Price	Average_Price	Residual	New Residual
5	1500	5	480	688	-208	-187.2
11	2030	12	1090	688	402	350.8
14	1442	6	350	688	-338	-304.2
8	2501	4	1310	688	622	570.8
12	1300	9	400	688	-288	-254.1
10	1789	11	500	688	-188	-169.2

Repeat this process using 'New Residual'