Trabalho 01 Otimização sem Restrições

MEC 2403 - Otimização e Algoritmos para Engenhria Mecânica

Felipe da Costa Pereira felipecostapereira@gmail.com

Professor: Ivan Menezes

Departamento de Engenharia Mecânica PUC-RJ Pontifícia Universidade Católica do Rio de Janeiro outubro, 2022

1 Introdução

Otimização sem restrição (OSR) consiste em encontrar o mínimo de uma função $f(\vec{x})$ onde não há restrição em relação ao domínio das variáveis \vec{x} . A fim de se encontrar o minimo da função $f(\vec{x})$ a partir de um ponto de partida $(\vec{x_0})$, os métodos apresentados nesse trabalho consistem na repetição das etapas seguintes até que um critério de parada seja atingido:

- 1. Selecionar uma direção \vec{d} a partir do ponto $\vec{x_0}$
- 2. Encontrar o mínimo da função f nessa direção, chegando a um novo ponto $\vec{x_1} = \vec{x_0} + \alpha \vec{d}$, onde α é um número real (busca linear).
- 3. Tomar $\vec{x_1}$ como o novo ponto de partida $\vec{x_0}$
- 4. Repetir os passos de 1 a 3 até que uma condição de parada seja atingida: mínimo encontrado $(|\vec{\nabla f}| = 0)$, ou máximo número de iterações atingido.

A etapa descrita no item 2 consiste na minimização de uma função de uma única variável (α) . Dessa forma o problema de minimização da função $f(\vec{x})$ se torna um problema de sucessivas determinações de direções de busca e suas respectivas buscas lineares nessas direções.

2 Objetivos

Os principais objetivos deste trabalho são:

- Implementar numericamente os algoritmos de otimização: Univariante, Powell, Steepest Descent, Fletcher-Reeves, Newton-Raphson e BFGS.
- Avaliar a influência dos parâmetros dos algoritmos nas métricas de convergência e comparar essas úlltimas com os valores esperados da teoria.
- Aplicar os algoritmos implementados na solução do problema de OSR em três casos: uma função quadrática, uma não quadrática e uma terceira função que representa um problema de engenharia (minimizazção da energia de um sistema massa-mola visando encontrar seu ponto de equilíbrio estático)

As funções a serem minimizadas neste trabalho são:

Problema 01a):

$$f(x_1, x_2) = x_1^2 - 3x_1x_2 + 4x_2^2 + x_1 - x_2$$
(1a)

a partir dos pontos iniciais $x^0 = \{2,2\}^t$ e $x^0 = \{-1,-3\}^t$

Problema 01b):

$$f(x_1, x_2) = (1 + a - bx_1 - bx_2)^2 + (b + x_1 + ax_2 - bx_1x_2)^2$$
(1b)

com a=10e b=1a partir dos pontos iniciais $x^0=\{10,2\}^t$ e $x^0=\{-2,-3\}^t$

Problema 02:

$$\Pi(x_1, x_2) = 450(\sqrt{(30 + x_1)^2 + x_2^2} - 30)^2 + 300(\sqrt{(30 - x_1)^2 + x_2^2} - 30)^2 - 360x_2$$
(2)

a partir dos ponto inicial $x^0 = \{0.01, -0.10\}^t$

3 Algoritmos de Busca Linear

Os algoritmos de minimização são executados em duas etapas conforme citado anteriormente: a primeira etapa consiste em determinar uma direção de busca \vec{d} e em seguida promove-se a minimização da função f nessa direção, o que significa encontrar o valor de $\alpha = \alpha_k$ que minimiza a função $f(x = x_0 + \alpha \vec{d})$ ao longo da direção \vec{d} . A partir do valor de α_k encontra-se um novo ponto de partida $f(x_{k+1} = x_k + \alpha_k \vec{d}_k)$. Uma nova direção d_{k+1} é então determinada e o processo se repete até que uma condição de parada seja atingida.

Neste trabalho, a busca linear é relizada em duas etapas: Passo constante e refinamento do cálculo de α através do método da seção áurea.

Um maior detalhamento dos métodos de busca aqui apresentados, assim como outros comumente utilizados na solução de problemas de otimização pode ser encontrado em [Menezes et al., 2012].

3.1 Passo Constante

A primeira etapa da busca linear consiste numa busca inexata que visa encontrar um intervalo de valores do passo α , $[\alpha_L, \alpha_H]$ que represente uma redução suficientemente grande da função f. Essa implementação numérica incrementa o passo de um valor $d\alpha$ até que a função pare de diminuir.

3.2 Bisseção e Seção Áurea

Após a etapa do passo constante, os métodos da Bisseção ou Seção Áurea são aplicados para encontrar o valor de α , entre os valores determinados no intervalo da etapa 1. Em ambos os casos, o intervalo de ocorrência do valor mínimo de f é sucessivamente reduzido até que seja muito pequeno e considera-se, dado esse critério numérico, solucionado o problema da minimização de f nessa direção, encontrando o passo α_k correspondente a esse mínimo.

O método da bisseção divide sucessivamente o intervalo descartando a parte superior ou inferior do mesmo avaliando o valor da função f na vizinhança esquerda e direita de um α_M médio do intervalo. Já o método da seção áurea utiliza a razão áurea para descarte dos intervalos onde f aumenta. Este último método realiza mais passos, porém possui a vantagem de avaliar menos vezes a função f uma vez que os valores avaliados no passo anterior podem ser reutilizados no passo seguinte do algoritmo, o que pode ser interessante em problemas onde a avaliação da função f é computacionalmente cara.

4 Algoritmos de Direção

Conforme descrito anteriorm
tente, os métodos de direção determinam direções de busca do mínimo de f a partir
 de um ponto $\vec{x_k}$. A partir da busca linear encontra-se o valor do passo nessa direção que minimiza f, (α_k) , os
 algoritmos de direção calculam, então, a próxima direção onde se deve minimizar f e a partir do novo ponto
 $\vec{x_{k+1}} = \vec{x_k} + \alpha_k \vec{d}$.

Os algoritmos de determinação das direções de busca utilizados nesse trabalho são brevemente descritos a seguir.

Um maior detalhamento dos algortimos de direção aqui apresentados, assim como outros comumente utilizados na solução de problemas de otimização pode ser encontrado em [Menezes et al., 2012].

4.1 Univariante

O método univariante é o mais simples, onde as direções de busca são as direções canônicas, $\vec{d_k} = \vec{e_k}$. Esse procedimento é equivalente a modificar uma variável de cada vez no processo iterativo, ou seja, apenas a variável na posição k do vetor de variáveis \vec{x} é modificada na iteração k ([Menezes et al., 2012])

4.2 Powell

O método de Powell utiliza em seu algoritmo direções denominadas "movimento padrão". O método de Powell gera direções Q-conjugadas, o que representa uma aceleração em relação ao método univariante. Um maior detalhamento sobre o método de Powell e a demonstração de que o método de Powell converge para o mínimo de uma função quadrática de n variáveis em um número finito de passos dado por n+1 está descrito em ([Menezes et al., 2012]).

4.3 Steepest Descent

O mét
do Steepest Descent é um método onde as direções são dadas pela direção oposta ao gradiente da função
 f. Ou seja, $\vec{d_k} = -\vec{\nabla} f(\vec{x_k})$.

4.4 Fletcher-Reeves

Este método consiste em uma adaptação do método dos Gradientes Conjugados que o torna capaz de ser usado para minimização de uma função qualquer. Para anto, duas modificações precisam ser realizadas, a avaliação da matriz Q (ou Hessiana para função nao quadratica) é substituida por uma busca linear e o parametro β modificado ([Menezes et al., 2012]).

4.5 Newton-Raphson

O princípio deste método é minimizar uma função f através de uma aproximação local por uma função quadrática. A direção de minimização de f é obtida a partir da derivada da expansão de f numa série de Taylor de ordem 2 em relação a d_k , de onde se obtém: $d_k = -H^{-1} \vec{\nabla} f(\vec{x_k})$, onde H é a matriz Hessiana da função f ([Menezes et al., 2012]).

4.6 BFGS

O método Broyden-Fletcher-Goldfarb-Shanno (BFGS) é um método para resolver um problema de otimização não linear sem restrições. trata-se de uma solução frequentemente usada quando se deseja um algoritmo com direções de descida.

A ideia principal deste método é evitar a construção explícita da matriz Hessiana e, em vez disso, construir uma aproximação da inversa da segunda derivada da função a ser minimizada, analisando os diferentes gradientes sucessivos. Esta aproximação das derivadas da função leva a um método quaseNewton (uma variante do método de Newton) para encontrar a direção de busca. A matriz Hessiana não precisa ser recalculada a cada iteração do algoritmo. No entanto, o método assume que a função pode ser aproximada localmente por uma expansão quadrática limitada em torno do ótimo ([Broyden et al.,]).

5 Metodologia

Para atingir os objetivos do trabalho, foram programados scripts em linguagem Matlab, organizados conforme esquematizado na figura 1.

Figura 1: Fluxo dos scripts

Um script principal t01.m escolhe os parâmetros do algoritmo: $a=d\alpha$ (passo da busca linear), máximo número de iterações (iter_max) e tolerâncias para avaliar a convergência da função para um mínimo ou da seção áurea: TOL e TOL2, respectivamente. Além disso esse script cria as funções, seus gradientes, matriz Hessiana e pontos iniciais, a serem passados como parâmetros para o script que implementa os algoritmos, conforme ilustrado no anexo 1.

Em seguida, o script t01.m chama o script osr.m (anexo 2) para cada método e plota as curvas de nível da função f e todos os pontos visitados durante a busca do algoritmo através do script $plot_result.m$

O script osr.m implementa de fato os algoritmos a partir dos parâmetros recebidos, retornando todos os valores de \vec{x} visitados e o tempo de execução, conforme o anexo 3.

Outros dois scripts invocados na solução dos problemas propostos são passo_constante.m e secao_aurea.m, que realizam a etapa de busca linear para cada direção de busca. Esses códigos encontram-se nos anexos 4 e 5, respectivamente. O script plot_result.m é listado no anexo 6.

6 Resultados

Visando a convergência de todos os métodos, foram testados alguns valores dos parâmetros dos algoritmos. A melhor combinação dos parâmetros, para as funções dos problemas 1 e 2 em termos de convergência dos algoritmos está listada na tabela 1.

Tabela 1: Melhores parâmetros para convergência dos algoritmos

	$d\alpha$	TOL(gradiente)	TOL2(busca linear)	max_iter
Problema 01	0.002	1e-4	1e-7	100
Problema 02	0.005	5e-4	1e-7	100

As tabelas 2, 3 apresentam os principais resultados dos algoritmos implementados para as funções dos itens 1a e 1b. Além dos pontos de mínimo encontrado, as tabelas apresentam também o número de passos para a convergência e o tempo de execução.

Tabela 2: Resultados para a função 1a

método	x^0	x^{min}	passos	$\Delta t (\mathrm{ms})$
Univariante	${\{2,2\}}^t$	$\{-0.7142, -0.1428\}^t$	34	4.8
Univariante	$\{-1, -3\}^t$	$\{-0.7144, -0.1429\}^t$	36	6.9
Powell	${2,2}^t$	$\{-0.7143, -0.1429\}^t$	6	24.8
Powell	$\{-1, -3\}^t$	$\{-0.7143, -0.1429\}^t$	12	7.2
Steepest Descent	${\{2,2\}}^t$	$\{-0.7142, -0.1428\}^t$	25	6.5
Steepest Descent	$\{-1, -3\}^t$	$\{-0.7143, -0.1429\}^t$	7	3.0
Flecher-Reeves	${2,2}^t$	$\{-0.7143, -0.1429\}^t$	2	2.5
Flecher-Reeves	$\{-1, -3\}^t$	$\{-0.7143, -0.1429\}^t$	2	1.7
Newton-Raphson	${\{2,2\}}^t$	$\{-0.7143, -0.1429\}^t$	1	2.5
Newton-Raphson	$\{-1, -3\}^t$	$\{-0.7143, -0.1429\}^t$	1	1.1
BFGS	${2,2}^t$	$\{-0.7143, -0.1429\}^t$	2	2.2
BFGS	$\{-1, -3\}^t$	$\{-0.7143, -0.1429\}^t$	2	1.5

No caso da função do item 1a, o método de Powell levou mais passos do que o esperado em teoria para uma função quadrática, já que nesse caso é esperado que o mesmo atinja a convergência em até 9 passos.

Tabela 3: Resultados para a função 1b

método	x^{0}	x^{min}	passos	$\Delta t(\text{ms})$
Univariante	$\{10, 2\}^t$	$\{13.0000, 4.0000\}^t$	45	9.9
Univariante	$\{-2, -3\}^t$	$\{7, -2\}^t$	45	10.8
Powell	$\{10, 2\}^t$	$\{13.0000, 4.0000\}^t$	24	11.6
Powell	$\{-2, -3\}^t$	$\{7, -2\}^t$	18	8.0
Steepest Descent	$\{10, 2\}^t$	$\{13.0000, 4.0000\}^t$	46	2.3
Steepest Descent	$\{-2, -3\}^t$	$\{7, -2\}^t$	59	2.6
Flecher-Reeves	$\{10, 2\}^t$	$\{13.0000, 4.0000\}^t$	41	1.6
Flecher-Reeves	$\{-2, -3\}^t$	$\{7, -2\}^t$	16	0.9
Newton-Raphson(*)	$\{10, 2\}^t$	$\{10,1\}^t$	1	0.9
Newton-Raphson	$\{-2, -3\}^t$	$\{12.9999, 4.0001\}^t$	6	4.1
BFGS	$\{10, 2\}^t$	$\{13.0000, 4.0000\}^t$	7	4.1
BFGS	$\{-2, -3\}^t$	$\{7, -2\}^t$	6	5.7

No caso da função do item 1b nota-se que o método de Newton-Raphson não convegiu para o primeiro ponto (*). Na verdade o algoritmo parou no critério de norma do gradiente no primeiro passo, o que leva a uma convergência para um valor equivocado. De fato a busca linear nesse caso retornou um valor tal que, ao final do primeiro passo o algoritmo caiu num ponto o gradiente de f é muito pequeno. Tal problema pode ser visualizado também graficamente na figura 6b.

As figuras de 2 a 7 a seguir ilustram as curvas de nível de f para os casos das funções dos itens 1a e 1b, bem como a trajetória dos pontos $\vec{x_k}$ associadoas ao algoritmo de minimização.

Figura 2: Resultados do método univariante, para as duas funções e pontos iniciais

Figura 3: Resultados do método de Powell, para as duas funções e pontos iniciais

Figura 4: Resultados do método Steepest Descent, para as duas funções e pontos iniciais

Figura 5: Resultados do método Fletcher-Reeves, para as duas funções e pontos iniciais

Figura 6: Resultados do método Newton-Raphson, para as duas funções e pontos iniciais

Figura 7: Resultados do método BFGS, para as duas funções e pontos iniciais

A tabela 4 apresenta os principais resultados dos algoritmos implementados para a função do item 2. Além

dos pontos de mínimo encontrados, as tabelas apresentam também o número de passos para a convergência e o tempo de execução.

Tabela 4: Resultados para a função 2

método	x^0	x^{min}	passos	$\Delta t (\mathrm{ms})$
Univariante	$\{0.01, -0.10\}^t$	$\{-0.205, 7.789\}^t$	11	2.1
Powell	$\{0.01, -0.10\}^t$	$\{-0.205, 7.789\}^t$	12	6340.8(**)
Steepest Descent	$\{0.01, -0.10\}^t$	$\{-0.205, 7.789\}^t$	6	0.3
Flecher-Reeves	$\{0.01, -0.10\}^t$	$\{-0.205, 7.789\}^t$	10	0.4
Newton-Raphson	$\{0.01, -0.10\}^t$	$\{-0.205, 7.789\}^t$	3	4.4
BFGS	$\{0.01, -0.10\}^t$	$\{-0.205, 7.789\}^t$	3	0.3

No caso da função do item 2 nota-se que o elevado tempo de execução do m
todo de Powell (**) em relação aos demais.

A figuras 8, 9 e 10 a seguir ilustram, para os seis métodos, as curvas de nível de f para os casos da função do item 2, bem como a trajetória dos pontos $\vec{x_k}$ associadoas ao algoritmo de minimização.

Figura 8: Curvas de nível de f_2 e pontos x_k , métodos de ordem zero

Figura 9: Curvas de nível de f_2 e pontos x_k , métodos de ordem um

Figura 10: Curvas de nível de f_2 e pontos x_k , métodos de Newton-Rapshon e BFGS

7 Conclusões

8 Anexos

A seguir estão ilustrados alguns dos códigos ou trechos de códigos decritos na metodologia.

Anexo 1: script t01.m setando parâmetros e criando as funções

```
% dados do item Ola, f, grad f, hess f e x0
fa = @(x) x(1)^2-3*x(1)*x(2)+4*x(2)^2+x(1)-x(2);
gfa = @(x) [2*x(1)-3*x(2)+1; -3*x(1)*8*x(2)-1];
Ha = @(x) [2-3;-3 8];
x01 = [2;2];
x02 = [-1;-3];
% parametros dos algoritmos
iter_max = 100;
a = 0.002; % passo
TOL = 1e-4; % parada do gradiente
TOL2 = 1e-7; % busca linear
methods = ["Univariante", "Fowell", "Steepest Descent", "Fletcher Reeves", "Newton-Raphson", "BFGS"];
```

Anexo 2: script t01.m chamando o script osr.m para a função do item 1a para cada um dos 6 métodos estudados

Anexo 3: script osr.m implementando o método de Powell

Anexo 4: script passo_constante.m

```
function [alpha_L, alpha_H] = passo_constante(f, x0, d, a)
    alpha = 0;
    f_min = Inf;
    f_val = f(x0);
    alphas = [];
    if = f(x0 - a*d);
    if = f(x0 - a*d);
    if f < f2
        a = a; % desce a esq (d-)
    end
    while f_val <= f_min
        x = x0 + alpha * d;
    f_val = f(x);
        if f_val < f_min
        f_min = f_val;
    end
        alphas = [alphas; alpha];
        alpha = alpha + a;
    end
        alpha_L = alphas(end-1);
        alpha_H = alphas(end-1);
        alpha_L = alphas(end);
        if a < 0
            alpha_L = alphas(end);
        end
        end
        alpha_L = alphas(end-1);
        alpha_L = alphas(end);
    end
    end
end</pre>
```

Anexo 5: script secao_aurea.m

Anexo 6: script plot_result.m

Referências

[Broyden et al.,] Broyden, C. G., Fletcher, R., Goldfarb, D., and Shanno, D. F. Método de broyden-fletcher-goldfarb-shanno. https://pt.frwiki.wiki/M%C3%A9thode_de_Broyden-Fletcher-Goldfarb-Shanno#R%C3%A9f%C3%A9rences. Acessado em: 10/10/2022.

[Menezes et al., 2012] Menezes, I. F. M., Luiz, E. V., and Pereira, A. (2012). Programação matemática, teoria, algoritmos e aplicações.