Arranging space - I

Visualization Sebastian Ratzenböck

What is the "best" visualization for the following data?

VIS 1

VIS 2

VIS 1 or 2?

Why?

Recap: effectiveness ranking

Munzner

Recap: effectiveness ranking

- How do we determine the ranking?
 - Accuracy
 - Discriminability
 - Separability
 - Popout

Recap: Steven's psychophysical law

What do we mean by arranging space?

Arranging space

- Spatial channels for visual encoding
- Most effective encoding choice

Arranging space

- Spatial channels for visual encoding
- Most effective encoding choice

 ← tied to effectiveness principle

Effectiveness principle

The most important attributes/features should be encoded with the most effective channels in order to be most noticeable.

Arranging space

- Spatial channels for visual encoding
- Spatial channel dominates the users mental model of the data set.

What's more "natural"?

Readings

- Munzner, "Visualization Analysis and Design":
 - Chapter 7 (Arrange Tables)
 - Chapter 8 (Arrange Spatial Data)

Overview

- Quantitative vs. categorical attributes
- Keys/attributes: the importance of ordering
 - list (1D) vs. matrix (2D) vs. partition / subdivide
 - o (multiple D)
- Spatial layout
 - Rectilinear
 - o Parallel
 - o Radial
- Spacefilling

Spatial attributes

- 1D line graphs
- 2D cartographic views
- 3D volumes
- scalar vs. vector vs. tensor data

quantitative: express

e.g. dot plot, scatterplot

quantitative: express

e.g. dot plot, scatterplot

How does the effectiveness principle apply here?

quantitative: express

e.g. dot plot, scatterplot

Attributes

- Life expectancy
- Infant mortality
- Country size
- Continent

How to use the spatial channel for **categorical** data?

- Encoding categorical attributes like quantitative ones forces order that does not exist!
 - violates principle of expressiveness

Principle of expressiveness

The visual encoding should express all of, and only, the information in the dataset attributes.

- quantitative: express
 - e.g. dot plot, scatterplot
- Categorical
 - separate 2D space into regions
 - order along an axis
 - align along an axis

Separate 2D space into regions

- Regions: bounded areas distinct from another
- Draw all items with same value into one region

→ Separate

- Categorical
 - separate 2D space into regions
 - order along an axis
 - align along an axis

1 key - 1 value → one region per key-value pair

	A	В
1	Name	Age
	Kevin	15
	Lucy	24
	Marc	11
	Maria	13

- → Arrange region into 1D list alignment
- → Now add channel

1 key - 1 value → one region per key-value pair

	A	В
1	Name	Age
	Kevin	15
	Lucy	24
	Marc	11
	Maria	13

- → Arrange region into 1D list alignment
- → Now add channel: Color

1 key - 1 value → one region per key-value pair

	A	В
1	Name	Age
2	Kevin	15
3	Lucy	24
4	Marc	11
5	Maria	13

- → Arrange region into 1D list alignment
- → Now add channel: Length

→ Magnitude Channels: Ordered Attributes

- categorical: bar charts
 - aligned / ordered

Bar chart

Line marks Length channel

- categorical: bar charts
 - aligned / ordered

- categorical: bar charts
 - aligned / ordered

quantitative/ ordered: dot plot / line chart

Line graphs

- 1. Aspect ratio
- 2. Expressiveness principle

Line plots: aspect ratio

- Aspect ratio is important
- Which of these two lines is steeper, 1 or 2?
- Did the aspect ratio influence the difficulty of the task?

Banking to 45 degrees

- Perceptual principle:
 - Most accurate angle judgement at 45°
- Maximize the number of line segments that fall close to 45°
 - → adjust aspect ratio accordingly

Banking to 45 degrees

What is the difference between the two ARs?

Banking to 45 degrees

Multi-Scale Banking to 45 Degrees. Heer and Agrawala, Proc InfoVis 2006 vis.berkeley.edu/papers/banking © Munzner/Möller

Banking to 45 degrees

- frequency analysis → find dominant frequencies
- Each frequency corresponds to aspect ratio
- AR = 3.96 vs. AR = 22.35

Quantitative vs. categorical

- Encoding categorical attributes like quantitative ones forces order that does not exist!*
 - violates principle of expressiveness

Principle of expressiveness

The visual encoding should express all of, and only, the information in the dataset attributes.

Quantitative vs. categorical

- Encoding categorical attributes like quantitative ones forces order that does not exist!*
 - violates principle of expressiveness

Principle of expressiveness

The visual encoding should express all of, and only, the information in the dataset attributes.

* This implication is in fact so strong that it can override common knowledge.

Bar vs. line charts

 line implies trend, not appropriate for categorical data

2D keys

2D keys

2 keys - 1 value → 2D matrix alignment

Country	Education level	Percentage
Austria	Primary school	99
Austria	High school	60
Austria	College	20
Germany	Primary school	98
Germany	High school	65
Germany	College	25

→ Magnitude Channels: Ordered Attributes

→ Heatmap

→ Magnitude Channels: Ordered Attributes

→ Heatmap

2D keys examples: tasks, size

Old Faithful Eruptions

Heatmap

Meaning of distances

Old Faithful Eruptions

1426981_a

1437339 s

1444147_at

1437453 s

1418518_a 1448240_a 1447991_a 1416965_a

1428305_at

E189S232R386

Heatmaps

- Find structure in data
 - Outliers, clusters, etc.
 - Needs sorted rows & columns
 - → cluster heatmap
- Very compact
 - Limit: area mark=pixel
 - Good data overview

2D matrix arrangement - graph

- Value attribute: link exists yes/no
- Weighted networks: e.g. color coding
- Undirected networks: half matrix
- Directed networks: full matrix
- Avoids hairball effect

Multiple keys

Multiple keys: partitioning / subdivide

- e.g. 2 keys
 - use two perpendicular axes OR
 - use alignment on one axes
 - separate by key 1 first and then by key 2
- also known as dimensional stacking

Dimensional stacking: 2D

two perpendicular axes

Country	Education level	Percentage				
Austria	Primary school	99	F) Н	С	
Austria	High school	60				1
Austria	College	20	\rightarrow			Austria
Germany	Primary school	98				
Germany	High school	65				Germany
Germany	College	25				

alignment on one axes

2D keys - 1D list alignment

© https://cra.org/crn/wp-content/uploads/sites/7/2015/06/Feb-2015.png

Source: Wikipedia, 2010

What is the "correct/best" way to display your data?

Graphical perception

 The visual decoding of information encoded in graphs

Graphical perception

 The visual decoding of information encoded in graphs

"Best" way to visualise data

accurately decodes displayed information for given task. **Tasks** ?! decode encode Derived attributes Trends Data Clusters Visualisation

Graphical perception

- Visual decoding of information encoded in graphs
- Human capacity to visually interpret information on graphs and charts → aim to maximize it
 - Graph & encoding choice determines ability to obtain "correct" information from chart

Experiment: graphical perception

- Goal: Investigate effect the different layouts on the ability/task to compare
- Study
 - make a quick visual judgment
 - judge the percentage difference of two highlighted bars
 - 3 seconds for each task

Results

Cleveland & McGill's Results

- Cleveland & McGill's results
- Your results

Results summary

- Comparing by using aligned position channel against a common scale is the most accurately perceived visual channel.
- Comparing by using unaligned position channel adds mental overhead of due to different start and the end of each bar → reduced accuracy.

Magnitude Channels: Ordered Attributes Position on common scale Most Position on unaligned scale Length (1D size) Tilt/angle Effectiveness Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

Apply what you just learned

C. Xiong, et al., "Visual Arrangements of Bar Charts Influence Comparisons in Viewer Takeaways" in IEEE Transactions on Visualization & Computer Graphics, vol., no. 01, 2021, pp. 1-1, 5555.

Apply what you just learned

C. Xiong, et al., "Visual Arrangements of Bar Charts Influence Comparisons in Viewer Takeaways" in IEEE Transactions on Visualization & Computer Graphics, vol., no. 01, pp. 1-1, 5555.

Apply what you just learned

A & B Companies | 1,2,3 Continents | Bar height: revenue

- 1. Comparing revenue between companies A & B in continent 1.
- 2. Comparing total revenue of A & B in given continent.
- 3. Comparing revenue of company A among different continents.
- 4. Comparing the global revenue of company A to B

A & B Companies | 1,2,3 Continents | Bar height: revenue Comparing revenue between companies A & B in continent 1.

A & B Companies | 1,2,3 Continents | Bar height: revenue Comparing revenue between companies A & B in continent 1.

A & B Companies | 1,2,3 Continents | Bar height: revenue Comparing total revenue of A & B in given continent.

A & B Companies | 1,2,3 Continents | Bar height: revenue Comparing total revenue of A & B in given continent.

A & B Companies | 1,2,3 Continents | Bar height: revenue Comparing revenue of company A among different continents.

A & B Companies | 1,2,3 Continents | Bar height: revenue Comparing revenue of company A among different continents.

A & B Companies | 1,2,3 Continents | Bar height: revenue Comparing the global revenue of company A to B.

A & B Companies | 1,2,3 Continents | Bar height: revenue Comparing the global revenue of company A to B.

