The Genetic Code

How is the information for a polypeptide sequence stored within an mRNA molecule? There are twenty different common amino acids, but only four different bases in RNA (A, C, G, and U).

Base Arrangement	Possible Combinations
1	41=4
2	42=16
3	41=64
4	4 ⁴ n256

A triplet arrangement would seem to be the minimum possible combination necessary to code for the 20 different amino acids. Although, there are obviously going to be a lot of codons "left over". Most amino acids are coded for by more than a single unique triplet, and therefore the genetic code is said to be **degenerate**.

Experiments which led to the solution of the genetic code:

Nirenberg and Matthei (1961): Nirenberg and Matthel worked with bacterial extracts which contained everything needed for translation, with the exception of mRNA. To this they added either poly A, poly U or poly C RNA. The proteins produced by the translation of these RNA's was determined (poly G did not work, probably due to conformational problems):

Poly U	Poly A	Poly C
Phe	Lγs	Pro

40 "-

Genetic Code - Codon

	(5') pNpNpN (3') in mRNA					
			Middle Base of Codon →			
	Base at 5' End of Codon \$	U	c	A	G	Base at 3' End of Codon↓
Codon: 3-base	U	phe (UUU) leu	ser ser ser	tyr tyr termination	cys cys termination	U C A
RNA sequence	с	leu leu leu	buo buo zes		top top odons arg	G U C
		leu leu	pro pro	Z _j u Zju	ья mg	A G
	A	ile ile ile met (and	thr thr thr thr	asn asn lys	ser ser srg	U C A
	С	initiation) val Start val codon val val	ala	asp asp	sly sly sly sly	G U C A G

List of Amino Acids

٨٠	nino acid Sym	bol	Codon
	Alanine	Ala	GC*
Α		Cys	UGU, UGC
С	Cysteine		GAU, GAC
D	Aspartic Acid		GAA, GAG
Ε	Glutamic Acid	Glu	
F	Phenylalanine	Phe	ບບບ, ບບC
G	Glycine	Gly	GG*
Н	Histidine	His	CAU, CAC
llso	leucine Ile		AUU, AUC, AUA
K	Lysine	Lys	AAA, AAG
L	Leucine	Leu	UUA, UUG, CU*

List of Amino Acids

Amino acid Symbol Codon M Methionine Met AUG N Asparagine Asn AAU, AAC P Proline Pro CC* Q Glutamine Gln CAA, CAG R Arginine Arg CG*, AGA, AGG S Serine Ser UC*, AGU, AGC T Threonine Thr AC* V Valine Val GU* W Tryptophan Trp UGG Y Tyrosine Tyr

20 letters, no B J O U X Z

UAU, UAC

Codon and Reading Frame

- 4 letters → 4³ = 64 triplet possibilities
- 20 (< 64) known amino acids
- Wobbling 3rd base
- Redundant -> Resistant to mutation
- Reading frame: linear sequence of codons in a gene
- Open Reading Frame (ORF), definition varies:
 - a reading frame that begins with a start codon and end at a stop codon
 - a series of codons in a DNA sequence uninterrupted by the presence of a stop codon
 - → a potential protein-coding region of DNA sequence

Translation (RNA \rightarrow Protein)

2nd base in codon

		U	C	Α	G	
nope	U	Fine Pine Less Less	Set Set Set Set	Tyr STOP STOP	Cyn Cyn STOP Yrp	UCAG
1st base in codon	С	Lou Lou Lou Lou	Pro Pro Pro	His His Cia Cia	Arg Arg Arg Arg	DOAG
1st E	A	tte tte ttet	The The The The	Am Lyn Lyn	Ser Ser Arg Arg	DUAG
	G	Val Val Val Val	Ala Ala Ala Ala	Anp Anp Gha Gha	Gy Gy Gy	DOAG

The Genetic Code

Supply the Assess Supply and to Sussess the Paper of the

DNA Structure

Conseque 1000 Access becomes 40 the Toronal Health Manner, M region recovered

Genetic Material

- DNA (deoxyribonucleic acid) is the genetic material
- · Information stored in DNA
 - · the basis of inheritance
 - distinguishes living things from nonliving things
- Genes
 - various units that govern living thing's characteristics at the genetic level

Nucleotides

- Complicated genes can be many thousands of nucleotides long
- All of an organism's genetic instructions, its genome, can be maintained in millions or even billions of nucleotides

Orientation

- Strings of nucleotides can be attached to each other to make long polynucleotide chains
- 5' (5 prime) end
 - The end of a string of nucleotides with a 5' carbon not attached to another nucleotide
- 3' (3 prime) end
 - · The other end of the molecule with an unattached 3' carbon.

Central dogma

Background

A few years after he and James Watson had proposed the double helical structure for DNA, Francis Crick (with other collaborators) proposed that a less stable nucleic acid, RNA, served as a messenger RNA that provided a transient copy of the genetic material that could be translated into the protein product encoded by the gene. Such mRNAs were indeed found. These and other studies led Francis Crick to formulate this "central dogma" of molecular biology.

This model states that DNA serves as the repository of genetic information. It can be replicated accurately and indefinitely. The genetic information is expressed by the DNA first serving as a template for the synthesis of (messenger) RNA; this occurs in a process called transcription. The mRNA then serves as a template, which is read by ribosomes and translated into protein. The protein products can be enzymes that catalyze the many metabolic transformations in the cell, or they can be structural proteins.

Note the **static role of DNA** in this process. Implicit in this model is the idea that DNA does not provide an active cellular function, but rather it encodes macromolecules that are functional.

Central Dogma of Molecular Biology

"The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred back from protein to either protein or nucleic acid."

Francis Crick, 1958

Central Dogma of Molecular Biology

DNA: information storage

Protein: function unit, such as enzyme

Gene: instructions needed to make protein

Central dogma

FIGURE 1.4 The central dogma of molecular biology. Information in cells passes from DNA to RNA to proteins. RNA is made from DNA molecules during transcription by RNA polymerases. Proteins are made from the information content of RNA molecules as they are translated by ribosomes. DNA polymerases also make copies of DNA molecules during the replication process of cell is a second passes.

Central Dogma of Molecular Biology

 DNA obtained from reverse transcription is called complementary DNA (cDNA)