一. 实验目的

- 1. 掌握 00 门电路设计测试方法。
- 2. 掌握用触发器设计实现时序逻辑电路(计数器)。
- 3. 掌握译码器的设计实现方法。
- 4. 掌握逻辑电路的调试和测试方法。

二. 实验任务与验收要求

1.00 门实验

- (1) 组装如图 1 所示电路, 取发光二极管正向导通压降 VF=1.5V, 导通电流 IF=2MA, 为使电路正常工作, 计算负载电阻 RLmax RLmin 和二极管限流电阻 RD 的值, 选取 RL 和 RD 的值;
- (2) 调整信号源,使其输出 1KHz, 4V 峰峰值正方波,将其连接到 vi 点,用示波器的"直流耦合"输入方式观测波形。在坐标纸上画出 Vi, Vo, Vo1 及 Vo2 的波形,并标出 VoH、VoL 的电平值。

图 1 0C 门电路图

2. 流水灯设计

用 D 触发器附加必要的门电路,设计一个流水灯电路。 电路框图如图 2 所示:

设计要求为:

- 1. 写出计数器电路的状态转换表,写出状态方程和驱动方程,画出逻辑电路图和时序图;
- 2. 写出译码器的逻辑方程,画出逻辑电路图;
- 3. 将计数器模块和译码器模块连接起来,对设计结果进行实验测试;
- 4. 将 CP 改为 1kHz, 示波器用直流耦合输入方式, 用 Y3 作触发源, 在示波器上观测 EN=0 时 CP、Q1、Q0 及译码器输出 Y0 $^{\sim}$ Y3 的波形

图 2 流水灯电路图

三. 实验器件

类型	型号 (参数)	数量
四 2 输入与非门	74HC00	2 片
六反相器	74HC04	1片
四2输入与非门(00)	74LS03	1片
三3输入与非门	74HC10	2 片
上升沿双D触发器	74HC74	1片
电阻	2k Ω	1只;
	1kΩ	1只;
	510 Ω	1只;
LED灯		5 个
导线		若干

四. 实验原理与电路设计

1.00 门实验

(1) 74LS03 芯片

本实验使用 74LS03 芯片, 引脚与输入输出关系如图 3 所示:

输	输出	
A	В	Y
L	L	Н
L	Н	Н
Н	L	Н
н	н	L

图 3 74LS03

主要参数如图 4 所示:

Symi	bol Paramet	er	Min	Nom	Max		Units
Vcc	Supply Voltage		4.75	5	5.25		V
/ _{IH}	HIGH Level Input Voltage	ge	2				V
/ _{IL}	LOW Level Input Voltag	je			0.8		V
/он	HIGH Level Output Volt	age			5.5		V
OL	LOW Level Output Cur	rent			8		mA
Γ _A	Free Air Operating Tem	perature	0		70		°C
Symbol	mmended operating free air temperat Parameter		nditions	Min	Typ (Note 2)	Max	Unit
Symbol			nditions	Min	2000	Max -1.5	Units
Symbol 'i	Parameter	Cor	nditions 8 mA	Min	2000	_1.5	V
Symbol /I DEX	Parameter Input Clamp Voltage HIGH Level Output Current	V _{CC} = Min, ⅓ = −1 V _{CC} = Min, √ ₆ = V _{IL} = Max	8 mA 5.5V,	Min	2000		1 13-00-00
Symbol /I DEX	Parameter Input Clamp Voltage HIGH Level Output Current LOW Level V	$V_{CC} = Min, \ = -1$ $V_{CC} = Min, \ \leq -1$ $V_{IL} = Max$ $CC = Min, \ \leq L$	8 mA 5.5V,	Min	2000	_1.5	coA
Symbol /I DEX	Parameter Input Clamp Voltage HIGH Level Output Current	$\begin{tabular}{c} $Cor $ \\ $V_{CC} = Min, \ \rlap/= -1 \\ $V_{CC} = Min, \ \rlap/= -1 \\ $V_{IL} = Max $ \\ $C_{CC} = Min, \ \rlap/= -1 \\ $U_{IH} = Min $ \\ $U_{IH} = Min $ \\ \end{tabular}$	nditions 8 mA 5.5V, Max,	Min	(Note 2)	-1.5 100 0.5	V
Symbol /i DEX /oL	Parameter Input Clamp Voltage HIGH Level Output Current LOW Level V Output Voltage	V _{CC} = Min, ¼ = −1 V _{CC} = Min, ¼ = −1 V _{IL} = Max C _C = Min, ½ = V _{IH} = Min I _{OL} = 4 mA, ½ c=	nditions 8 mA 5.5V, Max,	Min	(Note 2)	-1.5 100 0.5 0.4	V ∞A V
Symbol //I DEX /OL	Parameter Input Clamp Voltage HIGH Level Output Current LOW Level V Output Voltage Input Current @ Max Input Voltage	V _{CC} = Min, ⅓ = −1 V _{CC} = Min, ⅓ = −1 V _L = Max c = Min, ♭ _L = V _H = Min I _{OL} = 4 mA, ⅙c= V _{CC} = Max, γ=	mditions 8 mA 5.5V, Max, - Min 7V	Min	(Note 2)	-1.5 100 0.5 0.4 0.1	V ∞A V
Symbol //i DEX /OL	Parameter Input Clamp Voltage HIGH Level Output Current LOW Level V Output Voltage Input Current @ Max Input Voltage HIGH Level Input Current	Cor V _{CC} = Min, ¼ = -1 V _{CC} = Min, V _S = V _{IL} = Max cc = Min, b _L = V _H = Min lo _L = 4 mA, ½c = V _{CC} = Max, Y = V _{CCC} = Max, Y = V _{CC} = Max, Y = V _{CC} = Max, Y = V _{CC} = Max, Y =	nditions 8 mA 5.5V, Max, - Min 7V 2.7V	Min	(Note 2)	-1.5 100 0.5 0.4 0.1 20	V
Symbol //I CCEX //OL	Parameter Input Clamp Voltage HIGH Level Output Current LOW Level V Output Voltage Input Current @ Max Input Voltage	Coi V _{CC} = Min, ⅓ = −1 V _{CC} = Min, √ ₆ = V _{IL} = Max cc = Min, ⅙ = V _{IH} = Min loL = 4 mA, ⅙c = v _{CC} = Max, γ = v _{CC} = Max, γ = V _{CC} = Max, γ =	nditions 8 mA 5.5V, Max, - Min 7V 2.7V	Min	(Note 2)	-1.5 100 0.5 0.4 0.1	V ∞A V
Symbol /I CEX /OL	Parameter Input Clamp Voltage HIGH Level Output Current LOW Level V Output Voltage Input Current @ Max Input Voltage HIGH Level Input Current	Cor V _{CC} = Min, ¼ = -1 V _{CC} = Min, V _S = V _{IL} = Max cc = Min, b _L = V _H = Min lo _L = 4 mA, ½c = V _{CC} = Max, Y = V _{CCC} = Max, Y = V _{CC} = Max, Y = V _{CC} = Max, Y = V _{CC} = Max, Y =	nditions 8 mA 5.5V, Max, - Min 7V 2.7V	Min	(Note 2)	-1.5 100 0.5 0.4 0.1 20	V wA

图 4 74LS03 主要参数

(2) 计算限流电阻 RD

$$R_D = \frac{V_{\text{OH min}} - V_F}{I_F} = \frac{(2.4 - 1.5)V}{2mA} = 450\Omega$$

所以,可选取 RD 为阻值为 510 Ω 的电阻。

(3) 负载电阻 RLmax、 RLmin 计算与选取

$$R_{\text{L min}} = \frac{V_{\text{CC}} - V_{\text{OL max}}}{I_{\text{OL}} - mI_{\text{IL}}} = \frac{(5 - 0.4)V}{(8 - 2 \times 0.4)mA} = 639\Omega$$

$$R_{\rm L\ max} \ = \ \frac{V_{\rm CC} \ - \ V_{\rm OH\ min}}{n I_{\rm OH} \ + \ m I_{\rm IH}} \ = \ \frac{\left(5 \ - \ 2.\ 4\right)\!\!V}{\left(1 \times 100 \ + \ 2 \times 50\right)\!\!\mu\!A} \ = \ 1.\ 2{\rm k}\Omega$$

所以,可以选取 RL 为阻值约为 1k Ω的电阻。

2. 流水灯电路

(1) 设计同步 4 进制计数器

可知,一个4进制加法计数器即可满足设计要求,其状态转移图与状态转换表如图5所示:

Q ₁ ⁿ	Q ₀ ⁿ	Q ₁ ⁿ⁺¹	Q_0^{n+1}	D ₁	D_0
0	0	0	1	0	1
0	1	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
Q ₁ ⁿ	Q ₀ ⁿ	Q ₁ ⁿ⁺¹	Q ₀ n+1	D ₁	D ₀

图 5 4 进制加法计数器状态转移图与激励表

通过状态转换表,得到激励方程为:

$$D_{0} = \overline{Q_{0}^{n}} \qquad D_{1} = \overline{Q_{0}^{n} Q_{1}^{n} \bullet Q_{0}^{n} \overline{Q_{1}^{n}}}$$

由激励方程,使用 D 触发器与 2 输入与非门,可设计逻辑电路图与相应信号时序图如图 6 所示:

图 6 4 进制加法计数器逻辑电路图与相应信号时序图

(2) 设计 2/4 译码组合逻辑电路

可知, 2/4 译码器的真值表如图 7 所示:

EN	Q_1	Q_0	Y_3	Y_2	\mathbf{Y}_1	Y_0
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1
1	X	X	1	1	1	1

图 7 2/4 译码器真值表

通过真值表,得到其状态方程为:

$$Y_{0} = \overline{En} \, \overline{Q_{1}} \, \overline{Q_{0}} \qquad Y_{2} = \overline{En} \, \overline{Q_{1}} \, \overline{Q_{0}}$$

$$Y_{1} = \overline{En} \, \overline{Q_{1}} \, \overline{Q_{0}} \qquad Y_{3} = \overline{En} \, \overline{Q_{1}} \, \overline{Q_{0}}$$

由状态方程,使用非门与3输入与非门,可设计电路如图8所示:

图 8 2/4 译码器电路图

(3) 两部分电路合并与连接

可知, 两部分电路之间通过 Q0 与 Q1 相联系, 可通过非门实现两部分信号的交流与传输。

由输出信号为低电平有效,可知,驱动发光二极管时,应把发光二极管上拉到高电平,为了保护二极管,由输出电压与电源电压,计算知,可在高电平与 LED 灯之间加一个阻值为 1. $5k\Omega$ 至 $2k\Omega$ 的限流电阻。本次实验选取阻值为 $2k\Omega$ 的限流电阻。

五. 实验步骤及测量结果

- 1. 0C 门实验.
 - (1) 由逻辑电路图,并查阅相关芯片的引脚信息,搭建实际电路如图 9 所示:

图 9 OC 门实际电路

- (2) 调整信号源,使其输出 1KHz, 4V 峰峰值正方波,将其连接到 v 点,用示波器的"直流耦合"输入方式观测波形。得到示波器显示波形如下:
 - ① Vi与Vo(如图10):

图 10 Vi与 Vo

② Vo1与Vo2(如图11):

图 11 Vo1 与 Vo2

从图 10 可以看出,VoH = 3.04V 、VoL = 240mV,可以正常驱动后面的 2 输入与非门 74HC00。

(3) 在坐标纸上画出 Vi, Vo, Vo1 及 Vo2 的波形, 并标出 VoH、VoL 的电平值。 如图 12 所示:

图 12 Vi, Vo, Vo1及 Vo2

2. 流水灯实验

(1) 由逻辑电路图,并查阅相关芯片的引脚信息,搭建实际电路如图 13 所示:

图 13 流水灯实际电路

- (2) 将 CP 改为 1kHz, 示波器用直流耦合输入方式, 用 Y3 作触发源, 在示波器上观测 EN=0 时 CP、Q1、Q0 波形:
 - ① Q1与Q0(如图14):

设置触发类型为边沿触发,触发信源选为频率最低的 Q1(接入 CH1),触发斜率选择下降,并把 Q0 接入 CH2,即可得到 T=0 时,Q0 与 Q1 都从 0 开始的波形,也就是该 4 进制加法计数器从 00 开始计数的波形。

且可以观察到 Q0 的周期为 Q1 的两倍。

图 14 Q1 与 Q0 波形图

② Q1与CP(如图15):

保持 Q1 接入 CH1 不变,将 CP 信号接入 CH2,观察波形,可知: Q1 的周期为时钟信号 CP 的 4 倍;

且可以看出,该计数器在工作时,是上升沿触发。

图 15 Q1与CP波形图

六. 问题分析与实验总结

- 1. 实验中的问题与解决方案
 - a) 在 oc 门实验中,接通电源后,在 Vo、Vo1 与 Vo2 端,都未观察到正确波形。解: 开始时,74HC00 中多余的输入端悬空未处理。CMOS 门的任何输入端都不能悬空,应将多余的输入端接入高电平。
 - b) 在 oc 门实验中, 打开电源后后电路无反应, LED 处于长灭状态。 解: 开启电源后, 未按下"output"键, 电源处于断路状态, 未通电。
 - c) 在流水灯实验中, LED 灯亮度与温度过高。
 - 解: 开始时未在 LED 灯与高电平之间设计限流电阻, 使 LED 灯的电流过大。通过示波器观察 2/4 译码器的输出电压后,计算选择在 LED 灯与高电平之间加入一个阻值为 2k Ω的限流电阻, LED 灯正常发光。
 - d) 在流水灯实验中,观察 4 进制计数器 Q0 与 Q1 的波形时,未能得到 t=0, Q0 与 Q1 都从 0 开始计数的波形。
 - 解:该电路为加法计数器,用示波器观察 Q0 与 Q1 波形时,应设置用周期最长的 Q1 来触发,并设置触发方式为边沿触发——下降沿触发,可得到 Q0 与 Q1 从 0 开始计数的波形,把 Q0 通道改为 CP 信号,可得它们与时钟信号周期之间的倍数关系。
 - e) 在流水灯实验中,接通电源后,4 进制计数器未能输出正确的结果。 解:使用 74HC74 时,当不使用 RD 与 SD(低电平有效)时,应将输入端接入 高电平。

2. 实验总结

通过本次实验,我对 0C 门电路的结构,特性与功能有了进一步的认识,对 0C 门电路的设计与测试方法有了进一步的认识:

- 1. 与普通的与非门不同, OC 门可以直接并联使用(线与)。
- 2. 由于 0C 门输出端是悬空的,使用时一定要在输出端与电源之间接一电阻 Rp, 其值需要根据应用环境条件加以计算决定。
- 3. CMOS 门的任何输入端都不能悬空。
- 4. 为了保护 LED 灯与电路、需要在高电平与 LED 灯之间加入限流电阻。

通过与流水灯的电路设计与测试,我初步掌握了时序逻辑电路设计的一般 方法与设计步骤:首先由给定的逻辑功能,建立原始状态图和原始状态表,并 进一步进行状态的化简与分配;再由所需功能选择合适的数字芯片,确定针对 该芯片的激励方程与输出方程;结合方程画出逻辑电路图,通过查阅芯片引脚 得到具体电路图;最后根据电路图搭建电路,并针对各个部分进行测试与检查。 在电路错误排查中,灵活使用万用表与示波器,使用信号寻迹法,可以事半功 倍的快速找到电路中的问题与错误

并能够设计和验证时序逻辑电路,掌握触发器芯片的使用与通过示波器观察实验结果。同时,通过使用示波器观察同步4进制计数器的输出波形时,我对如何正确设置示波器的触发类型有了进一步的认识,并通过设置用周期最长的信号的下降沿触发,得到了加法计数器从00开始的波形。

综上,本次实验不仅加深了我对 00 门与同步时序逻辑电路原理的认识,也让我了解了一些在电路实际搭建中一些常见的问题与相关的处理方法,掌握了利用电路原理图加管脚标注法来快速搭建电路的技巧,与利用信号寻迹法来快速找到电路中的问题与错误。同时,对时序逻辑电路设计从需求分析到设计方案再到具体实现的流程有了切身的体会,为后面更加复杂的电路设计打下了一定的基础。