Read the data from the device

```
In [3]: import pandas as pd
import numpy as np
df=pd.read_csv("E://Data Science//salesdataset.csv")
df
```

Out[3]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

Print the entire data from dataset

In [4]: df.to_string()

Out[4]:		TV	Radio	Newspaper	Sales\n0	230.1	37.8	69.2	22.1
	\n1	44.5	39.3	45.1		17.2	45.9	69.3	12.0
	\n3	151.5	41.3	58.5	16.5\n4	180.8	10.8	58.4	17.9
	\n5	8.7	48.9	75.0	7.2\n6	57.5	32.8	23.5	11.8
	\n7	120.2	19.6	11.6	13.2\n8	8.6	2.1	1.0	4.8
	\n9	199.8	2.6	21.2		66.1	5.8	24.2	12.6
	\n11	214.7	24.0	4.0		23.8	35.1	65.9	9.2
	\n13	97.5	7.6	7.2		204.1	32.9	46.0	19.0
	\n15	195.4	47.7	52.9	22.4\n16	67.8	36.6	114.0	12.5
	\n17	281.4	39.6	55.8	24.4\n18	69.2	20.5	18.3	11.3
	\n19	147.3	23.9	19.1	14.6\n20	218.4	27.7	53.4	18.0
	\n21	237.4	5.1	23.5	17.5\n22	13.2	15.9	49.6	5.6
	\n23	228.3	16.9	26.2	20.5\n24	62.3	12.6	18.3	9.7
	\n25	262.9	3.5	19.5	17.0\n26	142.9	29.3	12.6	15.0
	\n27	240.1	16.7	22.9	20.9\n28	248.8	27.1	22.9	18.9
	\n29	70.6	16.0	40.8	10.5\n30	292.9	28.3	43.2	21.4
	\n31	112.9	17.4	38.6	11.9\n32	97.2	1.5	30.0	13.2
	\n33	265.6	20.0	0.3		95.7	1.4	7.4	11.9
	\n35	290.7	4.1	8.5	17.8\n36	266.9	43.8	5.0	25.4
	\n37	74.7	49.4	45.7		43.1	26.7	35.1	10.1
	\n39	228.0	37.7	32.0	21.5\n40	202.5	22.3	31.6	16.6
	\n41	177.0	33.4	38.7		293.6	27.7	1.8	20.7
	\n43	206.9	8.4	26.4		25.1	25.7	43.3	8.5
	\n45	175.1	22.5	31.5		89.7	9.9	35.7	10.6
	\n47	239.9	41.5	18.5		227.2	15.8	49.9	19.8
	\n49 \n51	66.9 100.4	11.7 9.6	36.8 3.6	9.7\n50 10.7\n52	199.8	3.1 41.7	34.6 39.6	16.4 22.6
	\n51 \n53	182.6	46.2	58.7		216.4 262.7	28.8	15.9	20.2
	\n55	198.9	49.4	60.0	23.7\n56	7.3	28.1	41.4	5.5
	\n57	136.2	19.2	16.6	13.2\n58	210.8	49.6	37.7	23.8
	\n59	210.7		9.3	18.4\n60	53.5	2.0	21.4	8.1
	\n61	261.3	42.7	54.7		239.3	15.5	27.3	20.7
	\n63	102.7	29.6	8.4		131.1	42.8	28.9	16.0
	\n65	69.0	9.3	0.9		31.5	24.6	2.2	11.0
	\n67	139.3	14.5	10.2	13.4\n68	237.4	27.5	11.0	18.9
	\n69	216.8	43.9	27.2	22.3\n70	199.1	30.6	38.7	18.3
	\n71	109.8	14.3	31.7		26.8	33.0	19.3	8.8
	\n73	129.4	5.7	31.3		213.4	24.6	13.1	17.0
	\n75	16.9		89.4		27.5	1.6	20.7	6.9
	\n77	120.5	28.5	14.2		5.4	29.9	9.4	5.3
	\n79	116.0	7.7	23.1		76.4	26.7	22.3	11.8
	\n81	239.8	4.1	36.9		75.3	20.3	32.5	11.3
	\n83	68.4	44.5	35.6		213.5	43.0	33.8	21.7
	\n85	193.2	18.4	65.7		76.3	27.5	16.0	12.0
	\n87	110.7		63.2		88.3	25.5	73.4	12.9
	\n89 \n91	109.8 28.6	47.8 1.5	51.4 33.0		134.3 217.7	4.9 33.5	9.3 59.0	14.0 19.4
	\n93	250.9		72.3		107.4	14.0	10.9	11.5
	\n95	163.3		52.9		197.6	3.5	5.9	16.7
	\n97	184.9	21.0			289.7	42.3	51.2	25.4
	\n99	135.2	41.7	45.9			4.3	49.8	16.7
	\n101	296.4	36.3	100.9			10.1	21.4	19.8
	\n103	187.9	17.2	17.9			34.3	5.3	20.7
	\n105	137.9	46.4	59.0			11.0	29.7	7.2
	\n107	90.4	0.3	23.2	12.0\n108	13.1	0.4	25.6	5.3
	\n109	255.4	26.9	5.5		225.8	8.2	56.5	18.4
	\n111	241.7		23.2			15.4	2.4	17.1
	\n113	209.6	20.6	10.7			46.8	34.5	14.6
	\n115	75.1	35.0	52.7			14.3	25.6	12.2
	\n117	76.4	0.8	14.8			36.9	79.2	15.9
	\n119	19.4	16.0	22.3	6.6\n120	141.3	26.8	46.2	15.5

\n121	18.8	21.7	50.4	7.0\n122	224.0	2.4	15.6	16.6
\n123	123.1	34.6	12.4	15.2\n124	229.5	32.3	74.2	19.7
\n125	87.2	11.8	25.9	10.6\n126	7.8	38.9	50.6	6.6
\n127	80.2	0.0	9.2	11.9\n128	220.3	49.0	3.2	24.7
\n129	59.6	12.0	43.1	9.7\n130	0.7	39.6	8.7	1.6
\n131	265.2	2.9	43.0	17.7\n132	8.4	27.2	2.1	5.7
\n133	219.8	33.5	45.1	19.6\n134	36.9	38.6	65.6	10.8
\n135	48.3	47.0	8.5	11.6\n136	25.6	39.0	9.3	9.5
\n137	273.7	28.9	59.7	20.8\n138	43.0	25.9	20.5	9.6
\n139	184.9	43.9	1.7	20.7\n140	73.4	17.0	12.9	10.9
\n141	193.7	35.4	75.6	19.2\n142	220.5	33.2	37.9	20.1
\n143	104.6	5.7	34.4	10.4\n144	96.2	14.8	38.9	12.3
\n145	140.3	1.9	9.0	10.3\n146	240.1	7.3	8.7	18.2
\n147	243.2	49.0	44.3	25.4\n148	38.0	40.3	11.9	10.9
\n149	44.7	25.8	20.6	10.1\n150	280.7	13.9	37.0	16.1
\n151	121.0	8.4	48.7	11.6\n152	197.6	23.3	14.2	16.6
\n153	171.3	39.7	37.7	16.0\n154	187.8	21.1	9.5	20.6
\n155	4.1	11.6	5.7	3.2\n156	93.9	43.5	50.5	15.3
\n157	149.8	1.3	24.3	10.1\n158	11.7	36.9	45.2	7.3
\n159	131.7	18.4	34.6	12.9\n160	172.5	18.1	30.7	16.4
\n161	85.7	35.8	49.3	13.3\n162	188.4	18.1	25.6	19.9
\n163	163.5	36.8	7.4	18.0\n164	117.2	14.7	5.4	11.9
\n165	234.5	3.4	84.8	16.9\n166	17.9	37.6	21.6	8.0
\n167	206.8	5.2	19.4	17.2\n168	215.4	23.6	57.6	17.1
\n169	284.3	10.6	6.4	20.0\n170	50.0	11.6	18.4	8.4
\n171	164.5	20.9	47.4	17.5\n172	19.6	20.1	17.0	7.6
\n173	168.4	7.1	12.8	16.7\n174	222.4	3.4	13.1	16.5
\n175	276.9	48.9	41.8	27.0\n176	248.4	30.2	20.3	20.2
\n177	170.2	7.8	35.2	16.7\n178	276.7	2.3	23.7	16.8
\n179	165.6	10.0	17.6	17.6\n180	156.6	2.6	8.3	15.5
\n181	218.5	5.4	27.4	17.2\n182	56.2	5.7	29.7	8.7
\n183	287.6	43.0	71.8	26.2\n184	253.8	21.3	30.0	17.6
\n185	205.0	45.1	19.6	22.6\n186	139.5	2.1	26.6	10.3
\n187	191.1	28.7	18.2	17.3\n188	286.0	13.9	3.7	20.9
\n189	18.7	12.1	23.4	6.7\n190	39.5	41.1	5.8	10.8
\n191	75.5	10.8	6.0	11.9\n192	17.2	4.1	31.6	5.9
\n193	166.8	42.0	3.6	19.6\n194	149.7	35.6	6.0	17.3
\n195	38.2	3.7	13.8	7.6\n196	94.2	4.9	8.1	14.0
\n197	177.0	9.3	6.4	14.8\n198	283.6	42.0	66.2	25.5
\n199	232.1	8.6	8.7	18.4'				

Data preprocessing

```
In [5]:
         print(df.head())
         df.describe()
                TV
                    Radio Newspaper
                                        Sales
            230.1
                                          22.1
                      37.8
         0
                                  69.2
             44.5
                      39.3
                                  45.1
                                          10.4
             17.2
                     45.9
         2
                                  69.3
                                          12.0
            151.5
                      41.3
                                  58.5
                                          16.5
            180.8
                      10.8
                                  58.4
                                          17.9
Out[5]:
                        TV
                                Radio
                                       Newspaper
                                                       Sales
          count 200.000000
                            200.000000
                                       200.000000
                                                  200.000000
                147.042500
                             23.264000
                                        30.554000
                                                   15.130500
          mean
            std
                  85.854236
                             14.846809
                                        21.778621
                                                    5.283892
            min
                  0.700000
                              0.000000
                                         0.300000
                                                    1.600000
                  74.375000
                              9.975000
                                        12.750000
                                                   11.000000
           25%
           50%
                149.750000
                             22.900000
                                        25.750000
                                                   16.000000
                218.825000
                             36.525000
                                                   19.050000
                                        45.100000
           max 296.400000
                             49.600000 114.000000
                                                   27.000000
In [6]: | df.isnull().sum()
Out[6]: TV
                        0
         Radio
         Newspaper
         Sales
         dtype: int64
In [7]: df.duplicated()
Out[7]: 0
                 False
         1
                 False
         2
                 False
         3
                 False
                 False
         195
                 False
         196
                 False
         197
                 False
         198
                 False
         199
                 False
         Length: 200, dtype: bool
```

Plotting the data using scatter plot from pandas package

```
In [8]:
         print(df.plot())
         df.plot(kind='scatter',x='TV',y='Radio')
         AxesSubplot(0.125,0.125;0.775x0.755)
Out[8]: <AxesSubplot:xlabel='TV', ylabel='Radio'>
          300
          250
          200
                   Radio
          150
                   Newspaper
          100
           50
            0
                     25
                                     100
                           50
                                                            200
            50
            40
            30
            20
            10
                               100
                                      150
                                              200
                                                      250
                                                             300
In [9]: df.corr()
Out[9]:
```

	TV	Radio	Newspaper	Sales
TV	1.000000	0.054809	0.056648	0.901208
Radio	0.054809	1.000000	0.354104	0.349631
Newspaper	0.056648	0.354104	1.000000	0.157960
Sales	0.901208	0.349631	0.157960	1.000000

Training and Testing the data using certain packages

```
from sklearn.model_selection import train_test_split
In [10]:
         X=df.drop('Sales',axis=1)
         Y=df['Sales']
         print(X)
         print(Y)
         X_train, X_test, Y_train, Y_test=train_test_split(X, Y, test_size=0.2, random_statest)
                 TV Radio Newspaper
         0
              230.1 37.8
                                 69.2
              44.5
                    39.3
                                 45.1
         1
         2
               17.2
                     45.9
                                 69.3
         3
              151.5
                     41.3
                                 58.5
              180.8
         4
                     10.8
                                 58.4
                       . . .
                                  ...
         195
               38.2
                      3.7
                                 13.8
             94.2
                      4.9
                                 8.1
         196
         197 177.0
                      9.3
                                 6.4
         198 283.6 42.0
                                 66.2
         199 232.1
                    8.6
                                  8.7
         [200 rows x 3 columns]
                22.1
         1
                10.4
         2
                12.0
         3
                16.5
         4
                17.9
         195
                7.6
         196
                14.0
         197
                14.8
         198
                25.5
         199
                18.4
         Name: Sales, Length: 200, dtype: float64
In [11]: | from sklearn.linear_model import LinearRegression
         f1=LinearRegression()
         f1.fit(X_train,Y_train)
         y=f1.predict(X_test)
         11=f1.score(X_test,Y_test)*100
         print("Accuracy of Sales prediction using LinearRegression is",11)
```

Accuracy of Sales prediction using LinearRegression is 90.59011844150827

```
import matplotlib.pyplot as plt
In [12]:
         a=df['TV'].head()
         b=df['Radio'].head()
         print(a)
         b
               230.1
         0
               44.5
         1
         2
               17.2
         3
               151.5
         4
               180.8
         Name: TV, dtype: float64
Out[12]: 0
               37.8
         1
               39.3
         2
               45.9
         3
               41.3
         4
               10.8
         Name: Radio, dtype: float64
In [13]: arr1=np.array(a)
         arr2=np.array(b)
         print(arr1)
         arr2
         [230.1 44.5 17.2 151.5 180.8]
Out[13]: array([37.8, 39.3, 45.9, 41.3, 10.8])
In [14]: plt.plot(a,b,marker='o',mec='r',mfc='k',ls='-',markersize=20,linewidth=10)
         plt.xlabel("TV")
         plt.ylabel("Radio")
         plt.title("Analysis between TV and Radio")
         plt.show()
```


Using Flatten() convert the 2d into 1d

```
In [20]: import pandas as pd
data=pd.DataFrame(data={"Predicted Sales":y.flatten()})
print(data)
```

```
Predicted Sales
0
          17.034772
1
          20.409740
2
          23.723989
3
           9.272785
4
          21.682719
5
          12.569402
6
          21.081195
7
           8.690350
8
          17.237013
9
          16.666575
10
           8.923965
11
           8.481734
12
          18.207512
13
           8.067507
14
          12.645510
15
          14.931628
16
           8.128146
17
          17.898766
          11.008806
18
19
          20.478328
20
          20.806318
21
          12.598833
22
          10.905183
          22.388548
23
24
           9.417961
25
           7.925067
26
          20.839085
27
          13.815209
28
          10.770809
29
           7.926825
30
          15.959474
31
          10.634909
32
          20.802920
33
          10.434342
34
          21.578475
35
          21.183645
36
          12.128218
37
          22.809533
          12.609928
38
39
           6.464413
```