WO 2004/072088 PCT/JP2004/001514

51

CLAIMS

1. A phosphine compound of formula (1),

$$(R^{6})p$$
 $(R^{7})q$
 R^{5}
 R^{4}
 $(R^{8})r$
 $R^{2}R^{3}$
 $(R^{9})s$
 (1)

5

10

15

wherein R^1 is a hydrogen atom, an alkyl group, a cycloalkyl group or a phenyl group which may be substituted; R^2 and R^3 are each, the same or different, an alkyl group, a cycloalkyl group or a phenyl group which may be substituted; R^4 and R^5 are each, the same or different, a hydrogen atom, an alkyl group, a cycloalkyl group or a phenyl group which may be substituted; R^6 , R^7 , R^8 and R^9 are each, the same or different, an alkyl group, a cycloalkyl group, a phenyl group which may be substituted, an alkoxyl group, a dialkylamino group, a halogen atom, a benzyl group, a naphthyl group or a halogenated alkyl group; R^6 and R^7 , or R^8 and R^9 each may be combined to form, a fused ring, a trimethylene group, a tetramethylene group or a methylenedioxy group; p, q, r and s are each an integer of from 0 to 5; and p + q, and r + s are each in the range of from 0 to 5.

20

2. A palladium-phosphine complex which can be obtained by reacting the phosphine compound of claim 1 with a palladium compound.

3. The palladium-phosphine complex of claim 2, wherein the palladium compound is a palladium salt or a palladium complex in which the valency of palladium is 4, 2 or 0.

5

20

- 4. A manufacturing method of an unsaturated compound or an aromatic compound by the use of palladium-phosphine complexes mentioned in claim 2 or 3 as a catalyst.
- 5. A manufacturing method of an unsaturated compound or an aromatic compound by the use of the phosphine compound mentioned in claim 1 and a palladium compound.
- 6. The manufacturing method of claim 4 or 5, which comprises reacting a compound of formula (3) or (4) below:

$$Ar^{1}(X^{1})m^{1} \tag{3}$$

wherein, in formula (3), Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group and m¹ is an integer of 1 to 4, and,

in formula (4), R¹⁰¹, R¹¹¹ and R¹²¹ are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted,

an alkoxycarbonyl group or a cyano group; X¹¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group,

5 with a compound, of formula (5) or (6) below,

WO 2004/072088

10

15

20

wherein, in formula (5), Ar^2 is an aryl group which may be substituted or a heteroaryl group which may be substituted; X^2 is $B(OR^{13})(OR^{14})$, $Sn(R^{15})_3$, MgX, ZnX, $Al(R^{15})_2$ or Li, and,

in formula (6), R^{10} , R^{11} and R^{12} are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted, an alkoxycarbonyl group or a cyano group; R^{10} and R^{12} may be combined to form a single bond, forming together with the existing double bond a triple bond; X^3 is a hydrogen atom, $B(OR^{13})(OR^{14})$, $Sn(R^{15})_3$, MgX, ZnX, $Al(R^{15})_2$ or Li; R^{13} and R^{14} are each, the same or different, a hydrogen atom, an alkyl group, or, combined to form an ethylene group or a 1,2-dimethylethylene group; R^{15} is an alkyl group, and X is a chlorine atom, a bromine atom or an iodine atom,

to give a compound of formula (7), (8), (9) or (10),

5

wherein Ar^1 , Ar^2 , R^{10} , R^{11} , R^{12} , R^{101} , R^{111} and R^{121} are as defined above and m^2 is an integer of 1 to 4.

7. A manufacturing method of claim 4 or 5, which comprises reacting a compound of formula (3) or (4) below,

$$Ar^{1}(X^{1})m^{1} \tag{3}$$

$$\begin{array}{c}
R^{101} \\
 R^{111}
\end{array}$$

$$\begin{array}{c}
R^{121} \\
 X^{11}
\end{array}$$
(4)

wherein, in formula (3), Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group

5

15

20

or a para-toluenesulfonyloxy group and m¹ is an integer of from 1 to 4, and,

in formula (4), R¹⁰¹, R¹¹¹ and R¹²¹ are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted, an alkoxycarbonyl group or a cyano group; X¹¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group,

with an oxygen compound or a nitrogen compound of formula (11) below,

$$R^{16}$$
-QH (11)

wherein R^{16} is an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted; Q is an oxygen atom,

$$R^{17}$$
 $C=C-R^{18}$ R^{19} N , or N

wherein R^{17} , R^{18} and R^{19} are each a hydrogen atom, an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted; and R^{16} and R^{17} may be combined to form a divalent aromatic ring which may be substituted, to give a compound of formula (12) or (13) below,

$$Ar^{1}(QR^{16})m^{3}$$
 (12)

$$R^{101}$$
 R^{121}
 R^{111}
 QR^{16}
 R^{111}

wherein Ar^1 , Q, R^{16} , R^{101} , R^{111} and R^{121} are as defined above and

10

15

m³ is an integer of 1 to 4.

8. The manufacturing method of claim 4 or 5, which comprises reacting an aromatic compound of formula (3),

5 $Ar^{1}(X^{1})_{m}^{1}$ (3)

wherein Ar^1 is an aryl group which may be substituted or a heteroaryl group which may be substituted; X^1 is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group, and m^1 is an integer of from 1 to 4,

with a carbonyl compound or a cyano compound of formula (14),

$$R^{18}$$
-CH₂- R^{19} (14)

wherein R^{18} is a hydrogen atom, CO_2R^{20} , $C(=O)R^{21}$ or a cyano group; R^{19} is CO_2R^{22} , $C(=O)R^{23}$ or a cyano group; R^{20} , R^{21} , R^{22} and R^{23} are each an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted,

to give a compound of formula (15),

wherein Ar^1 , R^{18} and R^{19} are as defined above and m^4 is an integer of 1 to 4.

9. The manufacturing method of claim 4 or 5, which comprises reacting an aromatic compound of formula (3),

$$Ar^{1}(X^{1})_{m}^{1}$$
 (3)

25 wherein Ar^1 is an aryl group which may be substituted or a heteroaryl group which may be substituted; X^1 is a chlorine atom,

a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group; and m^1 is an integer of from 1 to 4, with carbon monoxide and an alcohol of formula (16),

$$R^{24}OH$$
 (16)

5

wherein R24 is an alkyl group,

to give a carboxylic ester of formula (17),

$$Ar^{1}(CO_{2}R^{24})m^{5}$$
 (17)

wherein ${\rm Ar}^1$ and ${\rm R}^{24}$ are as defined above and ${\rm m}^5$ is an integer of 1 to 4.

10. The manufacturing method of unsaturated compounds, as claimed in any one of claims 4 to 9, which comprises carrying out the reaction in the presence of a base.

15

20

11. A halogeno compound of formula (2) below,

wherein R^1 , R^4 and R^5 are each, the same or different, a hydrogen atom, an alkyl group, a cycloalkyl group or a phenyl group which may be substituted; X^4 is a halogen atom; R^6 , R^7 , R^8 and R^9 are each, the same or different, an alkyl group, a cycloalkyl group or a phenyl group which may be substituted, an alkoxy group, a dialkylamino group, a halogen atom, a phenyl group, a benzyl

group, a naphthyl group or a halogenated alkyl group; R^6 and R^7 , and R^8 and R^9 each may be combined to form a fused ring, a trimethylene group, a tetramethylene group or a methylenedioxy group; p, q, r and s are each an integer of from 0 to 5; and p + q and r + s are each in the range of from 0 to 5.