主管	
领导	
审核	
签字	

《概率论与数理统计 A》试 题

哈尔滨工业大学 2017 学年秋季学期

题号	_	=	=	四	五	六	七	八	九	+	+-	+=	总分
得分													
阅卷人													

片纸鉴心 诚信不败

一、单项选择题(每小题3分,共5小题,满分15分)

- (A) $P(AB) \le P(A)P(B)$. (B) $P(AB) \ge P(A)P(B)$.

- (C) $P(AB) \le \frac{P(A) + P(B)}{2}$. (D) $P(AB) \ge \frac{P(A) + P(B)}{2}$.
- 2. 给定总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知,令 $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$,则

- (A) 显著性水平 $\alpha = 0.05$ 时拒绝 H_0 ,则 $\alpha = 0.01$ 时也拒绝 H_1 ;
- (B) 显著性水平 $\alpha = 0.05$ 时接受 H_0 ,则 $\alpha = 0.01$ 时拒绝 H_1 ;
- (C) 显著性水平 $\alpha = 0.05$ 时拒绝 H_0 ,则 $\alpha = 0.01$ 时接受 H_1 ;
- (D) 显著性水平 $\alpha = 0.05$ 时接受 H_0 ,则 $\alpha = 0.01$ 时也接受 H_1 ;
- 3. 设总体 $X \sim B(m,\theta)$, X_1, X_2, \cdots, X_n 为来自该总体的简单随机样本, \overline{X} 为样本均值,则 $E[\sum_{i=1}^{n}(X_i \overline{X})^2] =$
 - (A) $(m-1)n\theta(1-\theta)$.
- (B) $m(n-1)\theta(1-\theta)$.

- (C) $(m-1)(n-1)\theta(1-\theta)$.
- (D) $mn\theta(1-\theta)$.
- 4. 设二维随机变量(X,Y)服从正态分布N(2,1;2,1;0),则E(XY-Y)=_____.

- (C) 1 (D) 4
- 5. 设随机变量 $X \sim U[0,1], Y \sim N(1,2^2)$, 且 X 与 Y 独立, 令 Z = X + Y, 则根据切比雪夫不等式 $P(|Z-1.5|<7) \ge$ _____.

草

(草纸内不得答题)

授课教师

$$(A) \frac{1}{3}$$

$$(\mathsf{B})\ \frac{1}{4}$$

(B)
$$\frac{1}{4}$$
 (C) $\frac{5}{6}$ (D) $\frac{11}{12}$

- 二、填空题(每小题3分,共5小题,满分15分)
- 2. 设随机变量 X 具有概率密度为 $f(x) = \begin{cases} \frac{2}{\pi(1+x^2)}, & x>0 \\ &, \text{则 } Y = \ln X \end{cases}$ 的概率密度 $f_Y(y) = _-$
- 3. 设 $X \sim N(2,1)$, $Y \sim N(0,2)$, 且X,Y相互独立,令Z = XY,则Z的方差 $D(Z) = ______.$
- 4. 设总体 $X \sim N(\mu, 0.04)$, 抽取容量设总体 $X \sim N(\mu, 0.04)$, 抽取容量为 16 的样本,测得均值为 1. 416,若 μ 的置信区 间是(1.416-0.098, 1.416+0.098),则置信度为.
- 5. 设有三台机器用来生产规格相同的铝合金薄板,取样,测量薄板的厚度(厘米),检验各台机器生产的薄板厚度有无显 著差异,得如下方差分析表:

方差来源	平方和	自由度	均方	F值
因素	0.00105333	2	0.00052667	
误差	0.000192	12	0.000016	
总和	0.00124533	14		

在显著性水平 $\alpha = 0.05$ 下,得到的检验结论是

- 三、(6分)病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为0.8. 若浇水则树死去的概率为0.1. 有0.9 的把握确定邻居会记得浇水。
 - (1) 求主人回来树还活着的概率;
 - (2) 若主人回来树已死去,求邻居忘记浇水的概率.

纸

- 压允
- 小伙伙

烧

- 四、(9 分). 设二维随机变量 (X,Y) 在区域 $D = \{(x,y) | 0 < x < 1, x^2 < y < \sqrt{x}\}$ 上服从均匀分布,令 $U = \begin{cases} 1, & X \leq Y, \\ 0, & X > Y. \end{cases}$
 - (I) 写出(*X*,*Y*)的概率密度;
 - (II) 问X与Y是否相互独立?并说明理由;
 - (III) 求Z = U + X的分布函数F(z).

第3页(共6页)

草 纸

草 纸

六、(9分) 设总体 X 的概率密度函数是 $f_X(x) = \frac{1}{2\sigma}e^{\frac{|X|}{\sigma}}$ (σ 未知), X_1, X_2, \cdots, X_n 为总体 X 的简单随机样本,

- (1) 求 σ 的矩估计 $\hat{\sigma}_1$ 和最大似然估计 $\hat{\sigma}_2$;
- (2) 判别 $\hat{\sigma}_1$ 和 $\hat{\sigma}_2$ 的无偏性;
- (3) 求 σ 的 C-R 方差下界;

草 纸

温度 x (℃)	100	110	120	130	140	150
得率 y (%)	45	51	54	61	66	71

计算

- (1) 画散点图; x和 y之间是否大致呈线性关系?
- (2) 用最大似然法求出回归方程 $\hat{y} = \hat{a} + \hat{b}x$;
- (3) 求回归标准差 $\overset{\wedge}{\sigma}$;
- (4)给出b的置信度为95%的置信区间;
- (5)用 F 检验对回归方程作显著性检验(α = 0.05).

纸

草