Quasigeostrophic fluids and resonant interactions

James Hawley

University of Waterloo

August 14, 2015

Contents

Background
Hamiltonian Dynamics
Shallow Water Model
Quasigeostrophic Model
Hamiltonian Equations

Main Work

References

Classical Mechanics

Classical Mechanics

• Newtonian Dynamics

- Newtonian Dynamics
- Solve system of ODEs or PDEs
- $\frac{d\vec{p}}{dt} = -\nabla \Pi$

- Newtonian Dynamics
- Solve system of ODEs or PDEs
- $\frac{d\vec{p}}{dt} = -\nabla \Pi$

• Navier-Stokes Equations

- Newtonian Dynamics
- Solve system of ODEs or **PDEs**
- $\frac{d\vec{p}}{dt} = -\nabla \Pi$

- Navier-Stokes Equations
- Solve system of coupled, non-linear, PDEs
- $\rho \frac{d\vec{u}}{dt} = -\nabla p + \rho \nabla \Pi + F$

Shallow Water Model

Shallow Water Model

Geostrophic Model

Geostropic Model

$$\frac{d\vec{u}}{dt} + 2\vec{\Omega} \times \vec{u} = -\frac{\nabla \rho}{\rho} + \nabla \Pi + \frac{F}{\rho}$$

$$\vec{u} = \text{velocity field}$$

$$\vec{\Omega} = \text{rotation vector}$$

$$\rho = \text{pressure}$$

$$\Pi = \text{scalar potential field}$$

$$F = \text{viscous forces}$$

Quasigeostrophic Model

$$0 = \frac{\partial q}{\partial t} + J(\psi, q)$$
$$J(a, b) = \frac{\partial a}{\partial x} \frac{\partial b}{\partial y} - \frac{\partial a}{\partial y} \frac{\partial b}{\partial x}$$

References

1. Reference