PROBLEMAS DE SATÉLITES

Exemplos de resolución coa folla de cálculo: «SatelitesGal.ods»

Comezo

Cando se execute a folla de cálculo, preme sobre o botón Activar macros.

Pulse a tecla Ctrl mentres preme sobre a cela Enunciado, situada na parte superior dereita, ou preme, sen pulsar a tecla Ctrl, sobre a lapela Enunciado na parte inferior.

Se precisa axuda máis detallada, pulse a tecla Ctrl mentres preme sobre a cela Axuda, situada na parte superior dereita, ou preme, sen pulsar a tecla Ctrl, sobre a lapela Axuda na parte inferior.

Datos

Preme sobre o botón Borrar datos e preme sobre o botón Aceptar do cadro de diálogo que aparecerá.

Ou preme no menú: Editar → Seleccionar → Seleccionar as celas desprotexidas e pulsar a tecla Supr. Borraranse todos os datos e aparecerán as opcións por defecto.

Elixa as magnitudes e unidades nas celas de color salmón e bordo vermello.

Preme sobre a cela de cor salmón e bordo vermello, preme sobre a frecha cara abaixo que aparece á súa dereita, e elixa a opción correspondente.

Escriba os datos nas celas de cor branca e bordo azul.

Preme sobre a cela de cor branca e bordo azul, _______, e escriba nela o dato.

Pode poñer un valor en notación científica dunha destas maneiras:

- Escribindo en formato científico da folla de cálculo. P. ex.: 3E8 (que se verá como 3,00E+08).
- Escribindo en formato de texto. P. ex.: 3·10⁸.
- Seleccionando o valor noutro documento, copiándoo (Ctrl+C) e pegándoo (Ctrl+Alt+ ム+V).

Por exemplo, 3,00·10-9, supoñendo que ten 3 cifras significativas.

No primeiro caso escriba: 3E-9. Na cela aparecerá: 3,00E-09.

No segundo caso escriba 3,00·10^- ^9 . Na cela aparecerá: $3,00\cdot10^{-9}$. Borre o espazo entre $^-$ e 9 e o espazo final: $3,00\cdot10^{-9}$.

Os superíndices pódense escribir, premendo á vez as teclas � e ^ antes de cada cifra ou signo, e escribindo un espazo detrás.

Para obter o punto de multiplicación «·» prema á vez as teclas ◆ e 3.

Se ese número xa estaba nun documento, pode copiar e pegar, seguindo estes pasos:

- 1. Seleccione o número, premendo ao principio do número e arrastrando o rato ata o final.
- 2. Cópieo, premendo á vez as teclas Ctrl e C, ou elixa no menú Editar \rightarrow Copiar.
- 3. Preme sobre a cela de cor branca e bordo azul.
- 4. Pégueo, premendo á vez as teclas Ctrl, Alt, ♠ e V, ou elixa no menú: Editar → Pegado especial → Pegar texto sen formato.

Resultados

Na páxina Enunciado, onde ten escrito os datos, xa aparecen os resultados. Se quere consultar as ecuacións coas que se teñen calculado, manteña pulsada a tecla Ctrl mentres fai clic co rato no tema (Período, Altura, Peso ou Enerxía) que contén a magnitude calculada, ou faga clic co rato na lapela inferior correspondente.

Período 🕯 Altura 🕯 Peso 🕯 Enerxía

Período: Raio de la órbita, masa do astro, velocidade lineal e angular, período, frecuencia do satélite. Altura: Raio da órbita, altura.

Peso: Valor da gravidade no chan, á altura da órbita, relación entre elas, peso do satélite e momento angular

Enerxía: Enerxía potencial, cinética e mecánica na órbita, enerxía potencial no chan, e a enerxía ou velocidade necesaria para alcanzar a altura ou poñelo en órbita, velocidade de escape no chan e na órbita.

♦ PROBLEMAS

- 1. Un satélite artificial de 64,5 kg xira arredor da Terra nunha órbita circular de raio r = 2,32 R. Calcula:
 - a) O período de rotación do satélite.
 - b) O peso do satélite na órbita.

Datos: Terra: $g_0 = 9,80 \text{ m/s}^2$; R = 6370 km

(P.A.U. Xuño 05)

Rta.: a) T = 4 h 58 min.; b) $P_h = 117 \text{ N}$

Respostas. (Lapela ☐ Enunciado)

Elixa Período e as súas unidades, e Forza gravitacional na órbita.

Clic ↓ Velocidade clic ↓ Período

Órbita O4:58:20 h:m:s

Forza gravitacional na órbita 117 N

Cálculo do período. (Lapela 🔒 Período)

	1r				
Raio da órbita		<i>r</i> =	$2,32 \cdot 6,37 \cdot 10^6$	=	1,48·10 ⁷ m
	$G \cdot M = g_o \cdot R^2$	$G \cdot M =$	$9,80 \cdot (6,37 \cdot 10^6)^2$	=	$3,98 \cdot 10^{14} \text{ m}^3/\text{s}^2$
Velocidade do satélite	$\int G \cdot M$	$v = \sqrt{-}$	$3,98 \cdot 10^{14}$ $1,48 \cdot 10^{7}$	_	5,19·10³ m/s
velocidade do satellie	$v = \sqrt{r}$	· ·	· ·	_	J,19·10 III/S
Período do satélite	$T - \frac{2 \cdot \pi \cdot r}{}$	T	$2 \cdot 3,14 \cdot 1,48 \cdot 10^7$		1,79⋅10 ⁴ s
1 criodo do satente	v v	1 -	$5,19\cdot10^{3}$	_	1,77.10 3

Cálculo do peso do satélite (forza gravitacional). (Lapela 🔒 Peso)

Gravidade en la altura	$g = \frac{G \cdot M}{G \cdot M}$	g =	$3,98 \cdot 10^{14}$ $(1,48 \cdot 10^{7})^{2}$	- =	1,82 m/s ²
Peso do satélite	$P = m \cdot g$	P =	(=	117 N

- 2. A nave espacial Discovery, lanzada en outubro de 1998, describía arredor da Terra unha órbita circular cunha velocidade de 7,62 km·s⁻¹:
 - a) A que altura sobre a superficie da Terra atopábase?
 - b) Canto tempo tardaba en dar unha volta completa?
 - c) Cantos amenceres vían cada 24 horas os astronautas que ían no interior da nave?

Datos: $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$; $R_T = 6370 \text{ km}$; $M_T = 5.98 \cdot 10^{24} \text{ kg}$

(P.A.U. Xuño 16)

Rta.: a) h = 503 km; b) T = 1 h 34 min; c) n = 15

Introdución de datos. (Lapela Enunciado)

Un satélite de masa m = kgxira arredor dun astro de masa M = 5,98E+024 kg

e raio R = 6370 km

O satélite xira cunha velocidade v = 7,62 km/s

Cálculo da altura. (Lapela 🔒 Altura)

Altura da órbita h = r - R $6,87 \cdot 10^6 - 6,37 \cdot 10^6$ 5,04·10⁵ m

- Un satélite artificial de masa 10² kg xira arredor da Terra a unha altura de 4·10³ km sobre a superficie terrestre. Calcula:
 - a) A súa velocidade orbital, aceleración e período, suposta a órbita circular.
 - b) Acha o módulo do momento angular do satélite respecto do centro da Terra.
 - c) Enuncia as leis de Kepler.

Datos: $R_T = 6.37 \cdot 10^6 \text{ m}$; $g_0 = 9.81 \text{ m/s}^2$

(P.A.U. Set. 16)

Rta.: a) v = 6,20 km/s; T = 2 h 55 min; $a = 3,70 \text{ m/s}^2$; b) $L_0 = 6,42 \cdot 10^{12} \text{ kg} \cdot \text{m}^2/\text{s}$

Introdución de datos. (Lapela 🔒 Enunciado) Un satélite de masa 1,00E+02 kg *m* = xira arredor dun astro de masa M =kg e raio 6,37E+06 m R =no que a gravidade no chan é 9.81 m/s^2 $g_0 =$ A órbita é circular de altura 4,00E+03 km h =

Respostas. (Lapela 🔒 Enunciado) Elixa as unidades de Velocidade, Período e as súas unidades, e Campo gravitacional na órbita. Raio Velocidade Período Órbita 1,04·10⁷ m $6,20 \cdot 10^3 \text{ m/s}$ 02:55:16 h:m:s Terra M =5,96·10²⁴ kg no chan para Campo gravitacional na órbita 3,70 m/s²

Para o apartado b) cambie Campo gravitacional por Momento angular. Momento angular ea órbita

Cálculo da velocidade orbital e o período. (Lapela 1 Período)

Raio da órbita
$$r = R + h$$
 $r = 6,37 \cdot 10^6 + 4,00 \cdot 10^6 = 1,04 \cdot 10^7 \text{ m}$

$$G \cdot M = g_o \cdot R^2$$
Velocidade do satélite $v = \sqrt{\frac{G \cdot M}{r}}$

$$v = \sqrt{\frac{3,98 \cdot 10^{14}}{1,04 \cdot 10^7}} = 6,20 \cdot 10^3 \text{ m/s}$$
Período do satélite $T = \frac{2 \cdot \pi \cdot r}{v}$

$$T = \frac{2 \cdot 3,14 \cdot 1,04 \cdot 10^7}{6,20 \cdot 10^3} = 1,05 \cdot 10^4 \text{ s}$$

Cálculo da aceleración e do momento angular. (Lapela 🔒 Peso)

Gravidade ea altura	$g = \frac{G \cdot M}{r^2}$	$g = \frac{3,98 \cdot 10^{14}}{(1,04 \cdot 10^7)^2} = 3,70 \text{ m/s}^2$
Momento angular	$L_o = r \cdot m \cdot v$	$L_o = 1.04 \cdot 10^7 \cdot 100 \cdot 6.20 \cdot 10^3 = 6.42 \cdot 10^{12} \text{ kg} \cdot \text{m}^2/\text{s}$

- Un satélite artificial de 500 kg describe unha órbita circular arredor da Terra cun raio de 2·10⁴ km. Calcula:
 - a) A velocidade orbital e o período.
 - b) A enerxía mecánica e a potencial.
 - c) Si por fricción pérdese algo de enerxía, que lle ocorre ao raio e á velocidade? Datos $g_0 = 9.8 \text{ m/s}^2$; R = 6370 km

Rta.: a) v = 4,46 km/s; T = 7 h 50 min; b) $E = -4,97 \cdot 10^9 \text{ J}$; $E_p = -9,94 \cdot 10^9 \text{ J}$

(P.A.U. Set. 10)

Introdución de datos. (Lapela 🔒 Enunciado)

		,			
U	n satélite de masa		<i>m</i> =	500	kg
xi	ra arredor dun astro de masa		<i>M</i> =		kg
e raio			R =	6370	km
no	o que a gravidade no chan é		$g_o =$	9,8	m/s^2
A	órbita é circular de	raio	<i>r</i> =	2,00E+04	km

Respostas. (Lapela 🔒 Enunciado)

Elixa as unidades de Velocidade, Período e as súas unidades, e Enerxía na órbita.

	7		·			
		clic↓	Velocidade		Período	
Órbita			4,46·10 ³ m/s	()7:49:42 <mark>h:n</mark>	1:s
	cinética		potencial	n	necánica <mark>GJ</mark>	
Enerxía na órbita	4,97	GJ	-9,94 GJ		- 4,97 GJ	

Cálculo da velocidade orbital e do período. (Lapela Período)

Velocidade do satélite
$$v = \frac{G \cdot M}{r}$$
 $T = \frac{2 \cdot \pi \cdot r}{v}$ $T = \frac{2 \cdot 3.14 \cdot 2.00 \cdot 10^7}{4.46 \cdot 10^3} = 3.98 \cdot 10^{14} \text{ m}^3/\text{s}^2$

Cálculo da enerxía mecánica e da enerxía potencial. (Lapela 🔒 Enerxía)

Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c = 500 \cdot (4,46 \cdot 10^3)^2 / 2 = 4,97 \cdot 10^9 \text{ J}$
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{-3.98 \cdot 10^{14} \cdot 500}{2.00 \cdot 10^7} = -9.94 \cdot 10^9 \mathrm{J}$
Enerxía mecánica na órbita	$E = E_c + E_p$	$E = -9.94 \cdot 10^9 + 4.97 \cdot 10^9 = -4.97 \cdot 10^9 \text{ J}$

- 5. Un satélite artificial de 500 kg de masa xira nunha órbita circular a 5000 km de altura sobre a superficie da Terra. Calcula:
 - a) A súa velocidade orbital.
 - b) A súa enerxía mecánica na órbita.
 - c) A enerxía que hai que comunicarlle para que, partindo da órbita, chegue ao infinito.

Datos: R = 6370 km; $g_0 = 9.8 \text{ m} \cdot \text{s}^{-2}$

(P.A.U. Set. 15)

Rta.: a) v = 5.91 km/s; b) $E = -8.74 \cdot 10^9 \text{ J}$; c) $\Delta E = 8.74 \cdot 10^9 \text{ J}$

Introdución de datos. (Lapela 🔒 Enunciado)

Respostas. (Lapela 🔒 Enunciado)

Cálculo da velocidade orbital. (Lapela Período)

Cálculo da enerxía mecánica. (Lapela 🔒 Enerxía)

Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c = 500 \cdot (5,91 \cdot 10^3)^2 / 2 = 8,74 \cdot 10^9 \text{ J}$
Enerxía potencial na órbita	$E_p = \underline{\qquad \qquad m \qquad \qquad }$	$E_p = \underline{\qquad} -3.98 \cdot 10^{14} \cdot 500 = -1.75 \cdot 10^{10} \text{ J}$
	r	$1,14 \cdot 10^7$
Enerxía mecánica na órbita	$E = E_c + E_p$	$E = -1,75 \cdot 10^{10} + 8,74 \cdot 10^{9} = -8,74 \cdot 10^{9} \text{ J}$

A enerxía que hai que comunicarlle para que, partindo da órbita, chegue ao infinito, é a diferenza entre a enerxía no infinito, que é nula, e a que ten na órbita.

$$\Delta E = 0 - E = 8,74 \cdot 10^9 \,\text{J}$$

- 6. Deséxase pór en órbita un satélite de 1800 kg que vire a razón de 12,5 voltas por día. Calcula:
 - a) O período do satélite.
 - b) A distancia do satélite á superficie terrestre.
 - c) A enerxía cinética do satélite nesa órbita.

Datos:
$$G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$$
; $R = 6378 \text{ km}$; $M = 5,98 \cdot 10^{24} \text{ kg}$ (*P.A.U. Set. 09*)
Rta.: a) $T = 1 \text{ h} 55 \text{ min}$; b) $h = 1470 \text{ km}$; c) $E_c = 4,58 \cdot 10^{10} \text{ J}$

Introdución de datos. (Lapela fin Enunciado)

Un satélite de masa	<i>m</i> =	1800	kg
xira arredor dun astro de masa	M =	5,98E+024	kg
e raio	R =	6378	km

Respostas. (Lapela 1 Enunciado)

Elixa Período e as súas unidades, Altura e as súas unidades, e Enerxía na órbita.

	· ·	· ·		
	Altura	Velocidade	Período	
Órbita	1,47·10³ <mark>km</mark>	7,13 km/s	01:55:12 h:m:s	
	cinética	potencial	mecánica <mark>GJ</mark>	
Enerxía na órbita	45,8 GJ	-91,6 GJ	-45,8 GJ	

Cálculo do período. (Lapela 🔒 Período)

	\ I			
Período do satélite		$T = \frac{1}{f}$	$T = \frac{86400}{12,5} =$	6,91·10 ³ s

Cálculo da distancia do satélite á superficie terrestre. (Lapela 🔒 Altura)

Raio da órbita
$$r = \sqrt[3]{\frac{G \cdot M \cdot T^2}{4 \pi^2}} \qquad r = \sqrt[3]{\frac{G \cdot M \cdot T^2}{4 \pi^2}} \qquad r = \sqrt[3]{\frac{3,99 \cdot 10^{14} \cdot (6,91 \cdot 10^3)^2}{4 \cdot 3,14^2}} = 7,85 \cdot 10^6 \text{ m}$$
Altura da órbita
$$h = r \cdot R \qquad h = 7,85 \cdot 10^6 - 6,38 \cdot 10^6 = 1,47 \cdot 10^6 \text{ m}$$

Cálculo da enerxía cinética. (Lapela 🔒 Enerxía)

	\ 1	
Na órbita	$v = \frac{2 \cdot \pi \cdot r}{}$	$v = \frac{2 \cdot 3.14 \cdot 7.85 \cdot 10^6}{6.91 \cdot 10^3} = 7.13 \cdot 10^3 \text{ m/s}$
Velocidade na órbita	V = T	$V = 6,91 \cdot 10^3$
Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c = 1800 \cdot (7,13 \cdot 10^3)^2 / 2 = 4,58 \cdot 10^{10} \text{ J}$
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{-3,99 \cdot 10^{14} \cdot 1800}{7,85 \cdot 10^6} = -9,16 \cdot 10^{10} \text{ J}$
Enerxía mecánica na órbita	$E = E_c + E_p$	$E = -9.16 \cdot 10^{10} + 4.58 \cdot 10^{10} = -4.58 \cdot 10^{10} \text{ J}$

- 7. A luz do Sol tarda 5.10^2 s en chegar á Terra e $2.6.10^3$ s en chegar a Xúpiter. Calcula:
 - a) O período de Xúpiter orbitando arredor do Sol.
 - b) A velocidade orbital de Xúpiter.
 - c) A masa do Sol.

Datos: T (Terra) arredor do Sol: $3,15\cdot10^7$ s; $c = 3\cdot10^8$ m/s; $G = 6,67\cdot10^{-11}$ N·m²·kg⁻². (Suponse as órbitas circulares) (*P.A.U. Set. 12*)

Rta.: a) $T = 3.73 \cdot 10^8$ s; $v = 1.31 \cdot 10^4$ m/s; b) $M = 2.01 \cdot 10^{30}$ kg

Calcúlase primeiro a masa do Sol escribindo os datos da Terra.

Introdución de datos. (Lapela 🔒 Enunciado)

introduction at autoor (Eaptia	211011101000)			
A órbita é circular de	raio	<i>r</i> =	5,00E+02 s luz	
O satélite xira cun	período	T=	3,15E+07 s	

Respostas. (Lapela 🔒 Enunciado)

Sol $M = 2,01 \cdot 10^{30} \text{ kg}$

Cálculo da masa do Sol. (Lapela Período)

Masa do astro
$$M = \frac{4 \cdot \pi^2 \cdot r^3}{G \cdot T^2} \qquad M = \frac{4 \cdot 3,14^2 \cdot (1,50 \cdot 10^{11})^3}{6,67 \cdot 10^{-11} \cdot (3,15 \cdot 10^7)^2} = 2,01 \cdot 10^{30} \text{ kg}$$

Introdución de novos datos. (Lapela 🔒 Enunciado)

Borre a opción, o dato e as unidades de período

Escriba a masa do Sol e o raio da órbita de Xúpiter:

Respostas. (Lapela 🔒 Enunciado)

Elixa Período e as súas unidades, e as unidades de Velocidade.

	clic ↓	Velocidade	Período	
Órbita		13,1 km/s	11,8 <mark>anos</mark>	

Cálculo do período e da velocidade. (Lapela 1 Período)

- Os satélites Meteosat son satélites xeoestacionarios (situados sobre o ecuador terrestre e con período orbital dun día). Calcula:
 - a) A altura á que se atopan, respecto da superficie terrestre.
 - b) A forza exercida sobre o satélite.
 - c) A enerxía mecánica.

Datos: $R = 6.38 \cdot 10^6 \text{ m}$; $M = 5.98 \cdot 10^{24} \text{ kg}$; $m = 8 \cdot 10^2 \text{ kg}$; $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$ (P.A.U. set. 08) **Rta.**: a) $h = 3,60.10^7$ m; b) F = 179 N; c) $E_c = 3,78.10^9$ J; $E_p = -7,56.10^9$ J; $E = -3,78.10^9$ J

Introdución de datos. (Lapela | fi Enunciado)

Un satélite de masa	<i>m</i> =	8,00E+02	kg
xira arredor dun astro de masa	M =	5,98E+24	kg
e raio	R =	6,38E+06	m
O satélite xira cun período	T=	24	h

Respostas. (Lapela Enunciado)

Elixa as unidades de Velocidade, Período e as súas unidades, e Enerxía na órbita.

Respostas			Cifras	significativas:	3	
	Altura	Velocidade	clic↓			S
Órbita	3,59·10 ⁴ km					
	cinética	potencial		mecánica		J
Enerxía na órbita	3,78·10° J	$-7,56\cdot10^{9}$	J	$-3,78 \cdot 10^{9}$	J	
	Forza gravitacional	na órbita		179	N	

Cálculo da altura. (Lapela 🔒 Altura)

$$r = \sqrt[3]{\frac{G \cdot M = g_o \cdot R^2}{G \cdot M \cdot T^2}} \qquad r = \sqrt[3]{\frac{G \cdot M \cdot T^2}{4 \pi^2}}$$

$$G \cdot M = \underbrace{\begin{array}{c} 6.67 \cdot 10^{-11} \cdot 5.98 \cdot 10^{24} \\ \hline 3.99 \cdot 10^{14} \cdot (8.64 \cdot 10^{4})^{2} \\ \hline \end{array}}_{= 4.23 \cdot 10^{7} \text{ m}$$

Altura da órbita

Raio da órbita

$$h = r - R$$

$$h = 4,23 \cdot 10^7 - 6,38 \cdot 10^6 = 3,59 \cdot 10^7 \text{ m}$$

Cálculo da forza exercida sobre o satélite. (Lapela Peso)

Gravidade en la altura
$$g = \frac{G \cdot M}{r^2}$$
 $g = \frac{3,99 \cdot 10^{14}}{(4,23 \cdot 10^7)^2} = 0,223 \text{ m/s}^2$
Peso del satélite $P = m \cdot g$ $P = 800 \cdot 0,223 = 179 \text{ N}$

Cálculo da enerxía cinética. (Lapela 🔒 Enerxía)

Na órbita	$v = \frac{2 \cdot \pi \cdot r}{}$	$v = \frac{2 \cdot 3.14 \cdot 4.23 \cdot 10^7}{8.64 \cdot 10^4} = 3.07 \cdot 10^3 \text{ m/s}$
Velocidade na órbita	V = T	$v = 8,64 \cdot 10^4$ = 3,07 \ 10 \ \ \text{III/S}
Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c = 800 \cdot (3,07 \cdot 10^3)^2 / 2 = 3,78 \cdot 10^9 \text{ J}$
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{-3,99 \cdot 10^{14} \cdot 800}{4,23 \cdot 10^7} = -7,56 \cdot 10^9 \mathrm{J}$
Enerxía mecánica na órbita	$E = E_c + E_p$	$E = -7.56 \cdot 10^9 + 3.78 \cdot 10^9 = -3.78 \cdot 10^9 \text{ J}$

- 9. Un satélite artificial de 200 kg describe unha órbita circular a unha altura de 650 km sobre a Terra. Calcula:
 - a) O período e a velocidade do satélite na órbita.
 - b) A enerxía mecánica do satélite.
 - c) O cociente entre os valores da intensidade de campo gravitacional terrestre no satélite e na superficie da Terra.

Datos: $M = 5.98 \cdot 10^{24} \text{ kg}$; $R = 6.37 \cdot 10^6 \text{ m}$; $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$ (P.A.U. Set. 11) **Rta.**: a) v = 7.54 km/s; T = 1 h 38 min; b) $E = -5.68 \cdot 10^9 \text{ J}$; c) $g_b/g_0 = 0.824$

Introdución de datos. (Lapela 🔒 Enunciado)

Un satélite de masa	<i>m</i> =	200	kg
xira arredor dun astro de masa	M =	5,98E+24	kg
e raio	<i>R</i> =	6378	km
A órbita é circular de altura	h =	650	km

Respostas. (Lapela 🔒 Enunciado)

Elixa as unidades de Velocidade, Período e as súas unidades, Enerxía na órbita e Gravidade relativa na órbita.

	Raio	Velocidade	Período
Órbita	7,03·10³ <mark>km</mark>	7,54 km/s	01:37:39 h:m:s
	cinética	potencial	mecánica
Enerxía na órbita	5,68·10° J	$-1,14\cdot10^{10} \text{ J}$	-5,68·10° J
	Gravidade relativa	na órbita	$0,824 g_0$

Cálculo do período e da velocidade orbital. (Lapela 🔒 Período)

Raio da órbita
$$r = R + h$$

$$r = 6,38 \cdot 10^{6} + 6,50 \cdot 10^{5} = 7,03 \cdot 10^{6} \text{ m}$$

$$G \cdot M = 6,67 \cdot 10^{-11} \cdot 5,98 \cdot 10^{24} = 3,99 \cdot 10^{14} \text{ m}^{3}/\text{s}^{2}$$

Velocidade do satélite
$$v = \sqrt{\frac{G \cdot M}{r}}$$
 $v = \sqrt{\frac{3,99 \cdot 10^{14}}{7,03 \cdot 10^6}} = 7,54 \cdot 10^3 \text{ m/s}$

Período do satélite $T = \frac{2 \cdot \pi \cdot r}{v}$ $T = \frac{2 \cdot 3,14 \cdot 7,03 \cdot 10^6}{7,54 \cdot 10^3} = 5,86 \cdot 10^3 \text{ s}$

Cálculo da enerxía mecánica. (Lapela 1 Enerxía)

	· 1 —					
Enerxía cinética na órbita	$E_c = \frac{1}{2} \overline{m \cdot v^2}$	$E_c =$	$200 \cdot (7,54 \cdot 10^3)^2 / 2$	=	5,68·10° J	
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = -$	$-3,99 \cdot 10^{14} \cdot 200$ $7,03 \cdot 10^{6}$	- =	−1,14·10 ¹⁰ J	
Enerxía mecánica na órbita	$E = E_c + E_p$	E =	$-1,14\cdot10^{10} + 5,68\cdot10^{9}$	=	-5,68∙10 ⁹ J	

Cálculo do cociente das intensidades de campo gravitacional. (Lapela Peso)

Gravidade no chan	$g_o = \frac{G \cdot M}{R^2}$	$g_o = \frac{3,99 \cdot 10^{14}}{(6,38 \cdot 10^6)^2}$	- =	9,81 m/s ²
Gravidade na altura	$g = \frac{G \cdot M}{r^2}$	$g = \frac{3,99 \cdot 10^{14}}{(7,03 \cdot 10^6)^2}$	- =	8,08 m/s ²
Gravidade relativa		$\frac{g}{g_o} = \frac{8,08}{9,81}$	- =	0,824

- 10. Ceres é o planeta anano máis pequeno do sistema solar e ten un período orbital arredor do Sol de 4,60 anos, unha masa de 9,43·10²⁰ kg e un raio de 477 km. Calcula:
 - a) O valor da intensidade do campo gravitacional que Ceres crea na súa superficie.
 - b) A enerxía mínima que ha de ter unha nave espacial de 1000 kg de masa para que, saíndo da superficie, poida escapar totalmente da atracción gravitacional do planeta.
 - c) A distancia media entre Ceres e o Sol, tendo en conta que a distancia media entre a Terra e o Sol é de 1,50·10¹¹ m e que o período orbital da Terra arredor do Sol é dun ano.

Dato: $G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$ (P.A.U. Set. 14) **Rta.**: a) $g = 0,277 \text{ m/s}^2$; b) $E = 1,32 \cdot 10^8 \text{ J}$; c) $r = 4,15 \cdot 10^{11} \text{ m}$

Introdución de datos. (Lapela 🔒 Enunciado)

Introduction de datos. (Eupeia	menado	
Un satélite de masa	<i>m</i> = 1	000 kg
xira arredor dun astro de masa	M = 9,43E	+20 kg
e raio	R =	477 km

Respostas. (Lapela 🔒 Enunciado)

Elixa Enerxía no chan para mandalo ao infinito.

Astro $g_o = 0,277 \text{ m/s}^2$ Enerxía no chan para mandalo ao infinito 1,32·10⁸ J

Cálculo da intensidade de campo gravitacional no chan. (Lapela 🔒 Peso)

Gravidade no chan
$$g_0 = \frac{G \cdot M}{R^2}$$
 $g_0 = \frac{6.29 \cdot 10^{10}}{(4.77 \cdot 10^5)^2} = \mathbf{0.277} \text{ m/s}^2$

Cálculo de $G \cdot M$. (Lapela Período) $G \cdot M = 6,67 \cdot 10^{-11} \cdot 9,43 \cdot 10^{20} = 6,29 \cdot 10^{10} \text{ m}^3/\text{s}^2$

Cálculo da enerxía no chan. (Lapela Enerxía) $E_p = \frac{-G \cdot M \cdot m}{R}$ $E_p = \frac{-6,29 \cdot 10^{10} \cdot 1,00 \cdot 10^3}{4,77 \cdot 10^5}$ $E_p = \frac{-6,29 \cdot 10^{10} \cdot 1,00 \cdot 10^3}{4,77 \cdot 10^5}$

A enerxía para mandalo ao infinito é a diferencia entre a enerxía no infinito, que é nula, e a enerxía potencial que ten no chan, porque a enerxía cinética debida á rotación do asteroide é desprezable.

$$\Delta E = 0 - E = 1,32 \cdot 10^8 \text{ J}$$

Introdución de datos. (Lapela 🔒 Enunciado)

Para o apartado c) hai que comezar un problema distinto, porque agora o astro central é o Sol. Calcúlase primeiro a masa do Sol escribindo os datos da Terra.

A órbita é circular de	raio	<i>r</i> =	1,50E+11	m
O satélite xira cun	período	T =	1	anos

Respostas. (Lapela 🔒 Enunciado)

Sol $M = 2,00 \cdot 10^{30} \text{ kg}$

Cálculo da masa do Sol. (Lapela 1 Período)

Período $T = 1,00 \cdot 365,25 \cdot 24 \cdot 3600 = 3,16 \cdot 10^7 \text{ s}$

Masa do astro $M = \frac{4 \cdot \pi^2 \cdot r^3}{G \cdot T^2} \qquad M = \frac{4 \cdot 3.14^2 \cdot (1,50 \cdot 10^{11})^3}{6,67 \cdot 10^{-11} \cdot (3,16 \cdot 10^7)^2} = 2,00 \cdot 10^{30} \text{ kg}$

Introdución de datos. (Lapela 🔒 Enunciado)

Para o apartado c) borre a opción, o valor e as unidades do raio da órbita da Terra e escriba a masa do Sol e o período de Ceres:

Un satélite de masa m= kg xira arredor de un astro de masa M= 2,00E+30 kg e raio R= O satélite xira con un período T= 4,6 anos

Respostas. (Lapela 🔒 Enunciado)

Elixa Raio e as súas unidades.

 Raio
 Velocidade
 clic ↓

 Órbita
 4,15·10¹¹ m

Cálculo do raio da órbita. (Lapela 🔒 Altura)

Raio da órbita $r = \sqrt[3]{\frac{G \cdot M = g_0 \cdot R^2}{4 \pi^2}}$ $r = \sqrt[3]{\frac{G \cdot M \cdot T^2}{4 \cdot 3,14^2}} = 1,33 \cdot 10^{20} \text{ m}^3/\text{s}^2$ $r = \sqrt[3]{\frac{1,33 \cdot 10^{20} \cdot (1,45 \cdot 10^8)^2}{4 \cdot 3,14^2}} = 4,15 \cdot 10^{11} \text{ m}$

Cálculo do período. (Lapela Período)

Período $T = 4,60 \cdot 365,25 \cdot 24 \cdot 3600 = 1,45 \cdot 10^8 \text{ s}$

Actualizado: 06/09/23

Sumario

PROBLEMAS DE SATÉLITES	. 1
• Comezo	. 1
• Datos	
Resultados	
♦ PROBLEMAS	
1. Un satélite artificial de 64,5 kg xira arredor da Terra nunha órbita circular de raio r = 2,32 R. Calcul	a:
2. A nave espacial Discovery, lanzada en outubro de 1998, describía arredor da Terra unha órbita circu	
lar cunha velocidade de 7,62 km·s ⁻¹ :	
3. Un satélite artificial de masa 10 ² kg xira arredor da Terra a unha altura de 4·10 ³ km sobre a superfi-	
cie terrestre. Calcula:	
4. Un satélite artificial de 500 kg describe unha órbita circular arredor da Terra cun raio de 2·10⁴ km.	
Calcula:	.4
5. Un satélite artificial de 500 kg de masa xira nunha órbita circular a 5000 km de altura sobre a super	
ficie da Terra. Calcula:	
6. Deséxase pór en órbita un satélite de 1800 kg que vire a razón de 12,5 voltas por día. Calcula:	.5
7. A luz do Sol tarda 5·10² s en chegar á Terra e 2,6·10³ s en chegar a Xúpiter. Calcula:	.6
8. Os satélites Meteosat son satélites xeoestacionarios (situados sobre o ecuador terrestre e con perío-	
do orbital dun día). Calcula:	.7
9. Un satélite artificial de 200 kg describe unha órbita circular a unha altura de 650 km sobre a Terra.	
Calcula:	
10. Ceres é o planeta anano máis pequeno do sistema solar e ten un período orbital arredor do Sol de	
4,60 anos, unha masa de 9,43·10 ²⁰ kg e un raio de 477 km. Calcula:	.9