Assignment 4 Requirements for bosis

1. spon(cols) = R'

2. linearly independent

1) [1 2 3] = [0 a o | doesn't spon R' X

L1 2 3] = [0 a o | doesn't spon R' X Not a Bosis $\begin{bmatrix} -2 & 1 & 2 & -5 \\ 0 & -3 & 3 & -3 \\ -11 & 2 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{3}{2} \\ 0 & 1 & 0 & -2 \\ 0 & 1 & -\frac{3}{2} \end{bmatrix}$ Spons \mathbb{R}^3 / free Not a Bosis 3) No free variables so the parametric form is a zero vector a zero vector is not linearly independent so no basis exists 4) old is a basis for A [-6 -3 S 0] [1 1/2 0 0] -4 -2 2 0 = 0 0 1 0 [-8 -4 0 0 0 0 0 0]

Porametric form: 5)

	$\begin{bmatrix} 2 & 1 & -1 \\ 10 & 5 & -5 \\ -8 & -11 & 11 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$
	using theorem S. the pivot vectors form a basis for colA $B = \{0\}$
7)	T(0+0)=T(0)=b but T(0)+T(0)=2b A trons- formation where b≠0 is not a linear transformation under addition; b≠2b
8.] Ax=	$ \begin{bmatrix} 1 & 0 & 0 & 0 & & 0 & 0 & \\ 0 & \cos(30) & -\sin(30) & 0 & & & & & & \\ 0 & \sin(30) & \cos(30) & 0 & & & & & & \\ 0 & 0 & 0 & & & & & & & & $
a: [/	$M = 7, RT_{2}$ $\cos 30 = \sqrt{3}$ $\sin 30 = \sqrt{12}$ $0 0 -2$ $\sin 30 = \sqrt{12}$ $0 0 -1$
b!.	$ \begin{bmatrix} 1 & 0 & 0 & -1 & -2 & -3 & -2 & -3 & -2 & -3 & -2 & -3 & -2 & -3 & -2 & -3 & -2 & -3 & -2 & -2$

9)
$$R_{X} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{12} & \frac{1}{12} & 0 \\ 0 & -\frac{1}{12} & \frac{1}{12} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & \frac{1}{12} & \frac{1}{12} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\$$

(11) 0) [cose sine] [k 0] = [kcose ksine] AB=BA

-sine cose] [0 k] = [ksine kcose]

[K 0] [cose sine] = [kcose ksine]

[O K] [-sine cose] = [ksine kcose] b) Ratisting than shifting I shifting than Radding ABIBA because by shifting you change the distance the rotation moves. C) Scaling then shifting # Shifting then scaling Ab#BA because by scaling 2nd you also scale the shift, while if you shift 2nd then the shift is not scoled 12) a) 00-10 Right 0 11 & forward coords

b) [0] [0] [16] [0] [16] «X
[15] [0] [0] [0] [0] «Z

dist = 5 4 5 6

13)	P21/P11 0 0 17	
The second secon	0 10 -4/53	Solwions given by program
engal self-momentum sensimi sela mandali kapa sela kambapanina sa sa di sanggan yang selakan sensimi	0 0 1 28/53	
the state of the contract of the state of th		
h)	131 [87 [5	
~ 1	3 -6 -7	
	3 4 2	

$$() \times_{1} = \frac{119}{159}$$

$$\times_{2} = \frac{28}{53}$$

$$\times_{3} = \frac{28}{53}$$

B[X]_B =
$$\begin{bmatrix} -18 \\ 8 \end{bmatrix}$$
 Solution given by program