MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2014 SOLUTION KEY

Round 1

- A) Since 195 = 3.5.13, the only integral right triangles with a hypotenuse of length 195 are triangles similar to a 3-4-5 or 5-12-13 right triangle, namely, triangles with sides of length $39(3,4,5) = (117,156,195) \Rightarrow \underline{468}$ or $15(5,12,13) = (75,180,195) \Rightarrow \underline{450}$.
- B) $AC = 6\sqrt{2}$. Since P cannot coincide with A, k < 6. When $\overline{BP} \perp \overline{AC}$, $k = 3\sqrt{2}$. Thus, $3\sqrt{2} < BP < 6$ and the only integer value in this range is 5.

Using the Law of Sines on $\triangle APB$, $\frac{\sin 45^{\circ}}{k} = \frac{\sin \angle APB}{6}$.

Substituting, $\sin \angle APB = \frac{3\sqrt{2}}{5} \Rightarrow \left(5, \frac{3\sqrt{2}}{5}\right)$.

A

X

C) Let *x* denote the length of \overline{BC} .

Clearly, to satisfy the triangle inequality, the maximum value of x is 19.

As the value of x increases, so does the measure of $\angle A$.

However, since the value of the cosine decreases as the measure of the angle increases from 90° to 180° , we want the minimum possible value of x for which $\angle A$ is obtuse!

Using the Law of Cosines, we have

$$x^2 = 7^2 + 13^2 - 2 \cdot 7 \cdot 13 \cdot \cos A \Rightarrow \cos A = \frac{218 - x^2}{2 \cdot 7 \cdot 13}$$
.

If $\angle A$ is obtuse, then $\cos A < 0$ and this occurs when $218 - x^2 < 0 \Leftrightarrow x^2 > 218 \Rightarrow x > 14$.

Thus, the minimum value of x is 15 and $\cos A = \frac{218 - 15^2}{2 \cdot 7 \cdot 13} = \frac{-7}{2 \cdot 7 \cdot 13} = \frac{1}{26}$.