GASP - GENERAL AVIATION SYNTHESIS PROGRAM

NASA-CR-152303

VOLUME I - MAIN PROGRAM

PART 1 - THEORETICAL DEVELOPMENT

(NASA-CR-152303-Vol-1-Pt-1) GASP- GENERAL N81-19088
AVIATION SYNTHESIS PROGRAM. VOLUME 1: HAIN
PROGRAM. PART 1: THEORETICAL DEVELOPMENT
(Aerophysics Research Corp., Bellevue, Unclast
Wash.) 197 p HC A09/MF A01 CSCL 01C G3/05 10989

JANUARY 1978

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Ames Research Center
Moffett Field, California

Under

CONTRACT NAS 2-9352

AEROPHYSICS RESEARCH CORPORATION

·				
•			•	
•				
	-			

FOREWORD

The General Aviation Synthesis Program (GASP) was initially developed by engineers in the Mission Analysis Division at the National Aeronautics and Space Administration's Ames Research Center, Moffett Field, CA. Improvements continue to be implemented by individuals in the V/STOL Systems Technology Branch at Ames. Those people providing the major development contributions are:

- T. L. Galloway
- E. T. Schairer
- J. V. Bowles
- M. H. Waters

This documentation was prepared by the staff of Aerophysics Research Corporation, Bellevue, WA., under NASA contract NAS 2-9352. In addition to the contributions from the NASA personnel, Aerophysics people contributing to the documentation are:

- D. S. Hague
- J. F: MacRae
- A. W. Merz
- N. W. Woodbury
- A. M. Hague

The NASA technical monitor for the documentation was Mr. T. L. Galloway. The Aerophysics Research Corporation project leader was Mr. D. S. Hague. The GASP program has been used by a number of companies and universities through NASA contracted studies and is under continuing development. Prospective users should consult NASA's Ames Research Center regarding the latest details of the computer code.

TABLE OF CONTENTS

SECTION				PAGE
1.1	INTRODUCTION			1.1-1
	1.1.1	Discussi	on	I.1-2
		1.1.1.1	Geometry	I.1-2
		1.1.1.2	Aerodynamics	1.1-3
		1.1.1.3	Propulsion	I.1-3
		1.1.1.4	Weight and Balance	I.1-3
		1.1.1.5	Mission Performance	1.1-3
		1.1.1.6	Economics	1.1-4
	1.1.2	Document	ation	I.1-4
	1.1.3	Utility	Subroutines	I.1-7
		1.1.3.1	BILINE (I, I,XI,YI,Z,K)	1.1-8
		1.1.3.2	BIQUAD (T.I.XI,YI,Z,K)	I.1-8
		I.1.3.3	BISC (Y,X,N,IL,IH,J)	1.1-8
		1.1.3.4	BIV (Z,X,Y,AX,AY,AZ1,NX,NY,NERR)	1.1-8
		1.1.3.5	DTABX (XTAB, YTAB, X, Z, L)	1.1-9
		1.1.3.6	<pre>INTS (T,M,L,E,B,C,HMA,HMI,BET,DERIV)</pre>	1.1-9
		1.1.3.7	ITRLN (AX,AY,X,Y,N)	I.1-9
		1.1.3.8	ITRMHW (ERROR, ERRM1, DRIVER, F, FF, JC, JX)	1.1-9
		1.1.3.9	MAPS	I.1-10
		1.1.3.10	MAXBND (PARAM, PRMM1, DRIVER, DMIN, DMAX, F,	
			FF,KC,KX)	1.1-10
		T.1.3.17	MAXMHW (PARAM.PRMM].DRIVER.F.FF.KC.KX)	T. 1-10

TABLE OF CONTENTS

SECTION				PAGE
		1.1.3.12	OUTPUT	1.1-10
		1.1.3.13	STORE3 (MAPS, NPTS, NLINE, AMAP, Z, X, Y,	
			IREAD, IPRINT, ITAPE)	1.1-10
		1.1.3.14	TABX (XTAB, YTAB, 0. 1)	1.1-11
		1.1.3.15	TPALT (ALTX,ALT,PO,FKALT,TO GO, XKV)	1.1-11
		1.1.3.16	TTABX (NMAPS, NPTS, NLINE, Z, X, Y, ZPR, XPR,	
			WPR, ZVAL)	1.1-11
		1.1.3.17	UNINT (N, XA, YZ, X,Y, C)	I.1-12
1.2	MAIN P	ROGRAM USE	R'S MANUAL	1.2-1
	Append	ix A- Turb	oprop Powered Design, Fixed Engine Size	I.2-Al
	Append	ix B - Two	-Placed Trainer with Fixed Pitch Propeller	I.2-B1
	Append	ix C - Tur	bofan Design Using Scaled TFE-731 Engine	I.2-Cl
1.3	PROGRA	MMERS MANUA	AL FOR MAIN PROGRAM AND UTILITY	
	SUBROU	TINES		1.3-1
	1.3.1	MAIN Prog	ram	1.3-1
	1.3.2	Subroutin	e BIV - Linear Interpolation in Two	
		Independe	nt Variables	I.3-12
	1.3.3	Subroutin	e INTS - Double Precision Finite	
		Difference	e Integrator	I.3-14
	1.3.4	Subroutin	e ITRLN - Linear Interpolation in	
		One Indep	endent Variable	I.3-20
	1.3.5	Subroutine	e ITRMHW - Location of Root by Newton-	
		Raphson M	ethod	1.3-22
	1.3.6	Subroutin	e MAXMHW - Maximum of a Function of One	
		Independer	nt Variable	I.3-24

TABLE OF CONTENTS

SECTION		•	PAGE
	1.3.7	Subroutine OUTPUT - Program Print Output Routine	I.3-26
	1.3.8	Subroutine TPALT - Atmospheric Properties	
		Routine	I.3-30
	1.3.9	Subroutine BILINE - Linear Interpolation, One	
		Independent Variable	1.3-34
	1.3.10	Subroutine BIQUAD - Quadratic Interpolation, One	
		Independent Variable	1.3-39
	1.3.11	Subroutine MAXBND - Maximum Value of a Variable	1.3-42
	1.3.12	Subroutine UNINT - Four Point Smooth Interpolation	1.3-45

LIST OF FIGURES

FIGURE		PAGE
1.1.1	GASP Program Structure	1.1-3
1.1.2	Typical GASP Computational Sequence	1.1-5
1.1.3	GASP Documentation and Major Subroutine Layout	1.1-6
I.1.4	Programs and Their Subroutines	1.1-13
1.1.5	Contents of Each Volume	1.1-16
1.2.1	Typical Input Stream	I.2-2
1.2.2	Input - Program MAIN (INGASP)	I.2-3
1.2.3	Input - Program MAIN (INPROP)	I.2-17
1.2.4	Optional Input to Subroutines MAPS and STORE3	I.2-22
1.2.5	Functional Listing of INGASP Input Data	I.2-23
1.2.6	Functional Listing of INPROP Input Data	I.2-39
1.2.7	Input Format for Engine Table	I.2-43
1.3.1	Main Program and Subroutine Structure	1.1-3
1.3.2	Program MAIN	1.3-4
1.3.3	Subroutine BIV	1.3-13
1.3.4	Subroutine INTS	1.3-15
1.3.5	Subroutine ITRLN	1.3-21
1.3.6	Subroutine ITRMHW	1.3-23
1.3.7	Subroutine MAXMHW	1.3-25
1.3.8	Subroutine OUTPUT	1.3-27
1.3.9	Subroutine TPALT	1.3-31
1.3.10	Subroutine BILINE	1.3-35
1.3.11	Subroutine BIQUAD	1.3-40
1.3.12	Subroutine MAXBND	1.3-43
т з 13	Subroutine ININT	I.3-46

ı		

I.1 INTRODUCTION

Over the past several years, NASA's Ames Research Center has developed the General Aviation Synthesis Program, GASP. This computer program performs tasks generally associated with aircraft preliminary design and allows an analyst the capability of performing parametric studies in a rapid manner.

GASP emphasizes small fixed-wing aircraft employing propulsion systems varying from a single piston engine with fixed pitch propeller through twin turboprop/turbofan powered business or transport type aircraft. The program may be operated from a computer terminal in either the "batch" or "interactive graphics" mode.

The program is comprised of modules representing the various technical disciplines integrated into a computational flow which ensures that the interacting effects of design variables are continuously accounted for in the aircraft sizing procedure. The model is a useful tool for comparing configurations, assessing aircraft performance and economics, performing tradeoff and sensitivity studies, and assessing the impact of advanced technologies on aircraft performance and economics. By utilizing the computer model the impact of various aircraft requirements and design factors may be studied in a systematic manner with benefits measured in terms of overall aircraft performance and economics.

The GASP program has as its purpose the numerical specification of many aircraft design characteristics. Input quantities are general indicators of aircraft type, size, and performance, and the synthesis is extended to the point at which all of the important aircraft characteristics have been analyzed quantitatively. The synthesis model and procedure together develop the

aircraft configurations in a manner useful in parametric analysis and also provide a useful step toward more detailed analytical and experimental studies.

The synthesis program consists of a control module and several technology submodules which perform the various independent studies required in the design of general aviation or small transport type aircraft. Each of the six technology modules shown in Figure I.l.l is composed of one or more computer subroutines, and the input to each module may be either the output of another module, or it may be input directly to the module. The integrated approach ensures that results contain the effects of design interactions among the various modules. For example, a change in wing loading affects wing area, tail size, lift, drag, propulsion system size, cruise attitude, structural weight, range and other parameters. Any particular net effect may be large or small; nevertheless it is determined numerically regardless of its magnitude.

I.1.1 Discussion

This section provides a brief description of the engineering methods used in the synthesis program. The descriptions are in the order shown in Figure I.1.1.

I.1.1.1 Geometry. In this module, the dimensions of the aircraft components are calculated. Typical input parameters are the number of passengers, aspect ratio, taper ratio, sweep angles and thicknesses of wing and tail surfaces. The cabin is assumed to be of circular cross section, and tail surfaces are sized using trend equations derived for existing aircraft. Output of this module provides areas, lengths, angles, etc., which may be needed by other modules.

FIGURE 1.1.1 - GASP PROGRAM STRUCTURE

- I.1.1.2 Aerodynamics. Lift coefficient is determined as the sum of a term proportional to angle of attack, and a term due to high lift devices such as slots, flaps, etc. Lift curve slope computation includes ground effect and the effects of aspect ratio, Mach number and sweepback. Drag coefficient is the sum of profile drag, increments due to high lift devices, landing gear and compressibility, and the induced drag due to lift, including ground effect. Configuration geometry, flight conditions and type of high lift devices are input, while drag polars are output for the cruise, takeoff, and landing flight condition.
- I.1.1.3 Propulsion. Currently, turbojet, turbofan, turboprop, and reciprocating or rotating combustion engines can be simulated. Both engine size and performance are determined. Both cruise and take-off requirements of the aircraft may be specified. The results also provide engine thrust and fuel flow at any flight condition using performance data for the specific engine of interest.
- I.1.1.4 Weight and Balance. Gross weight and payload are input, together with details regarding aircraft geometry and weight trend coefficients. The program has options for sizing tip tanks and locating the wing such that the aircraft is in balance for the center of gravity travel of the aircraft. An acceptable value of static margin is input for this purpose.
- I.1.1.5 Mission Performance. The taxi, take-off, climb, cruise and landing segments of a mission are analyzed, and total range is computed.

 Options are available for calculating engine out and accelerate/stop distance, best rate of climb, high speed climb and other operating characteristics. When a specific range is required, the aircraft size is determined which provides this range within a specified tolerance.

I.1.1.6 Economics. Both flyaway and operating costs are determined in this module. Flyaway cost is found by summing estimates of labor costs, material costs, and purchased equipment costs including overhead, tooling, sales, and profit for manufacturer and dealer. Operating costs include fuel, oil, inspection, maintenance, storage, insurance, depreciation, and taxes, and the variable and fixed costs are combined to determine total operating costs as a function of annual utilization rates.

A typical computational flow through the GASP program is illustrated in Figure I.1.2.

I.1.2 Documentation

The six major submodules of the GASP program, as listed in Figure I.1.1 are of quite different lengths and levels of complexity. In addition, many subroutines are called by more than one other subroutine, so that it may be unclear, for example, whether it is a "propulsion" or a "performance" subroutine. The choice is usually made arbitrarily, for the sake of convenience alone.

The seven volumes of the report are organized as shown in Figure I.1.3. The GASP program is composed of 65 computer subroutines, 48 of which are documented in detail. Utility subroutines are listed in Figure I.1.3 for completeness; however, they were not documented in detail but are described in Section I.3.

Each of the subsequent volumes is organized by first defining the "major" and "minor" subroutines of that section. The discussion is then directed at explaining how the subroutines interact, and how the computer logic is related to the purpose of each subprogram. Each significant equation of the subroutine is defined and discussed, and this discussion may include comment as to the

FIGURE 1.1.2 TYPICAL GASP COMPUTATIONAL SEQUENCE

	MAIN Program Utility Subroutines:	
Propeller or Turbofan	(Propeller Only)	(Tabular Turbofan
OUTPUT INTS	BILINE	MAPS DTABX
ITRLN MAXMHW	UNINT	STORE3 BISC
BIV ITRMHW	BIQUAD	TTABX
TPALT	MAXBND	TABX
Volume 2 - Geometry	Program	
_	SIZE	
Volume 3 - Aerodynam	nics Programs	
_	-	
AERO	CTAER	APPFLP
AEROUT	DRAG	
CLIFT	FLAPS	
Volume 4 - Propulsio	n Programs	
(Turbofan)	!	(Propeller)
ENGDTT ENGSZ	FNC	DAT HOPWSZ RCWSZ
	1	
ENGRY1-7 NACEG	FNC	THE DEPEM MIDERC
ENGDT1-7 NACDG		INE PERFM TURBEG SZ PNOYS ZNENG
ENGDT1-7 NACDG ENGINE	ENG	INE PERFM TURBEG SZ PNOYS ZNENG RBX PWRPLT ZNOISE
ENGINE	ENG GEA	SZ PNOYS ZNENG
ENGINE Volume 5 - Weight an	ENG GEA	SZ PNOYS ZNENG RBX PWRPLT ZNOISE
ENGINE	ENG GEA d Balance Programs	SZ PNOYS ZNENG
Volume 5 - Weight an DLOAD ENGWGT	ENG GEA d Balance Programs TAIL WGHT	SZ PNOYS ZNENG RBX PWRPLT ZNOISE
Volume 5 - Weight an DLOAD ENGWGT	ENG GEA d Balance Programs TAIL WGHT	SZ PNOYS ZNENG RBX PWRPLT ZNOISE
Volume 5 - Weight an DLOAD ENGWGT Volume 6 - Performan	ENG GEA d Balance Programs TAIL WGHT ace Programs	SZ PNOYS ZNENG RBX PWRPLT ZNOISE WAIT (Propeller Weight
Volume 5 - Weight an DLOAD ENGWGT Volume 6 - Performan	ENG GEA d Balance Programs TAIL WGHT ACE Programs DLAND	SZ PNOYS ZNENG RBX PWRPLT ZNOISE WAIT (Propeller Weight TAXI
Volume 5 - Weight an DLOAD ENGWGT Volume 6 - Performan ACCEL ASPEED	ENG GEA d Balance Programs TAIL WGHT ACE Programs DLAND PERFRM	SZ PNOYS ZNENG RBX PWRPLT ZNOISE WAIT (Propeller Weight TAXI TURN
Volume 5 - Weight an DLOAD ENGWGT Volume 6 - Performan ACCEL ASPEED CLIMB	ENG GEA d Balance Programs TAIL WGHT CE Programs DLAND PERFRM RGBAL TAKOFF	SZ PNOYS ZNENG RBX PWRPLT ZNOISE WAIT (Propeller Weight TAXI TURN

FIGURE 1.1.3 - GASP DOCUMENTATION AND MAJOR SUBROUTINE LAYOUT

each volume is the user's manual in which the input and output parameters of each subroutine are tabulated and defined alphabetically, including the units in which each is measured. A sample problem is also represented in terms of its numerical input and output. Finally, Part 3 of each volume is a programmer's manual showing detailed flow charts for all subroutines in the volume.

I.1.3 Utility Subroutines

The GASP system includes a number of subroutines which can be termed "utility" subroutines. These are relatively brief programs which may be called by several other subroutines, and which typically perform a numerical function such as tabular lookup. These utility programs are listed alphabetically below, and are described very briefly in terms of their significant input and output quantities.

The utility programs that will be used by the GASP system depends on the propulsion option being exercised. The utility programs may be catalogued by propulsion option as follows:

1. Turbofan or propeller option uses the following:

BIV MAXMHW

INTS OUTPUT

ITRLN TPALT

ITRMHW

2. If the turbofan engine data is input in tabular form, then the following are used in addition to those in (1) above:

BISC STORES

DTABX TABX

MAPS TTABX

I-1

3. If a propeller type of propulsion system is used, then the following are used in addition to those mentioned in (1) above:

BILINE

MAXBND

BIQUAD

UNINT

- Independent Variable.— Tabular interpolation generates a numerical value for Z, corresponding to input values of XI and YI. The tabular data T(I) specifies the table number; T(I+1)=0, 1 or 3 denotes the order of the interpolation; T(I+2) is the number of X values; T(I+3) is the number of Y values; and T(I+4) are the values of X in ascending order. Output K denotes the number of interpolations performed.
- Independent Variable.— This subroutine performs an interpolation over a four point interval, to maintain slope continuity. Table number T(I), T(I + 1) is the number of X values; T(I + 2) is the number of Y values, and T(I + 3) are the values of X in ascending order. Output K measures the number of interpolations.
- I.1.3.3 BISC (Y, X, N, IL, IH, J).— This subroutine determines the "low" and "high" integers IL and IH specifying the output values Y(IL) and Y(IH) which bracket the input number X. The dimension of Y is N, and output J is 0, 1, or 2 according to whether $Y(1) \le X \le Y(N)$, X < Y(1) or X > Y(N) respectively.
- I.1.3.4 BIV(Z, X, Y, AX, AY, AZ1, NX, NY, NERR) Linear Interpolation,

 Two Independent Variables.— If input data X and Y fall in the tabular

range AX(NX) and AY(NY), respectively, then NERR = 1. The input data AZ1 is given at NX * NY points, and the output is Z unless X or Y fall outside the associated tabular range (X < AX(1), etc.) in which case NERR = 2.

- I.1.3.5 <u>DTABX(XTAB, YTAB, ZTAB, X, Z, L)</u>. This is a function which calls subroutines BISC and TABX, and which is itself called by TTABX. Independent variables X, Z define the dependent variable DTABX, according to principles of Lagrange interpolation.
- I.1.3.6 INTS(T, M, L, E, B, C, HMA, HMI, BET, DERIV).— A finite difference integrator, performed in double precision, of a system of M simultaneous first-order differential equations, which are defined in external subroutine DERIV. The non-zero components of T(100) are related to the state variables in DERIV. The other parameters in the calling sequence are input, and are associated with the numerical aspects of integration (error magnitudes, step sizes, etc.).
- I.1.3.7 ITRIN (AX, AY, X, Y, N).— This subroutine returns a value for Y corresponding to an input quantity X. The input parameters for the N pairs AX(IP and AY(I), and AX(I) must increase nonotonically. If X is less than AX(I) or greater than AX(N), the subroutine extrapolates for Y(X).
- Method in GASP.— This subroutine determines a zero to a function defined externally. Inputs are ERROR, the current (non-zero) value of the dependent variable; DRIVER, the current value of the independent variable; and F, a multiplier near unity. Outputs are ERRM1 and DRIVER, the augmented values of the dependent and independent variables, and JC, the counter. FF and JX are not used.

- I.1.3.9 MAPS.— This program is called by program MAIN, and it calls subroutine STORE3 three times to develop tables for thrust, fuel flow and airflow in the cruise configuration. The independent variables are altitude, Mach number and turbine inlet temperature ratio.
- I.1.3.10 MAXBND (PARAM, PRMM1, DRIVER, DMIN, DMAX, F, FF, KC, KX).—

 Determines the maximum values of the dependent variable PARAM, and the associated independent variable DRIVER, subject to DMIN

 DRIVER

 DMAX. F and FF are input multipliers near unity in magnitude, and KC and KX are output counters; KX is initially zero, and is set to 1 when the maximum is determined.
- I.1.3.11 MAXMHW (PARAM, PRMM1, DRIVER, F, FF, KC, KX).— This subroutine determines the maximum of an input function Y(X) = PARAM (DRIVER), which is defined externally. F and FF are input multipliers near unity, and KC is an output interaction counter, while KX changes from 0 to 1 when the maximum is determined. The previous value of Y(X) is PRMM1, and DRIVER is both input and output value of X. MAXBND is similar to MAXMHW except limits are placed on DRIVER.
- I.1.3.12 OUTPUT.— This subroutine begins with thirteen common block statements, and it includes 34 FORMAT statements. The subroutine is called by MAIN for the purpose of printing over 100 input and output figures related to geometry, weights, aerodynamics of the aircraft.
- I.1.3.13 STORE3 (NMAPS, NPTS, NLINE, AMAP, Z, X, Y, IREAD, IPRINT, ITAPE).—

 This is called by MAPS, and it stores the dependent variable Y(144, NMAPS)

 and the two independent variables X(12, NMAPS) and Z(12, NMAPS). Other

 input quantities are NMAPS the number of maps, NPTS, the number of points

on a line of constant Z; NLINE, the number of lines of constant Z, and

AMAP, the identifying parameter of a map. The last three integers are also

input, and at least one must be nonzero for the program to read or write data.

I.1.3.14 TABX(XTAB, YTAB, 0, L).— This function is called by TTABX, and it acts as an interpolation subroutine. In effect, TABX is the value of the independent variable XTAB(2) for which Y is zero, and this function calls subroutine BISC, which brackets the X-value 0 satisfying XTAB(I) $\leq 0 \leq$ XTAB(J).

relates static pressure, temperature and gravity, kinematic viscosity (PO, TO, GO, XKV) to the altitude. ALTZ is geometric altitude, ft. and ALT is potential altitude, ft, while PO is measured in 1b per sq in., TO in deg R, and GO in ft per sec per sec. XLV is returned in ft² per sec units. If PO is input, ALTZ and ALT are output, and vice versa. FKALT determines whether geometric or geopotential altitude is used.

I.1.3.16 TTABX (NMAPS, NPTS, NLINE, Z, X, Y, ZPR, XPR, WPR, ZVAL),

Interpolation, Three Independent Variables.— This is another function which is
a four-dimensional interpolator, where NPTS are the number of points on a
line, NLINE the number of lines on a map, and NMAPS the number of maps.

For a choice of map value WPR, X-value XPR and Z-value ZPR, the function
takes the value TTABX. The dimensions are X(12, J), Z(12, J) and Y(144, J),
where Y is the dependent variable and J is the map number. Typical inputs
are values of temperature ratio, Mach number and altitude, and output might
be thrust, fuel flow or airflow.

I.1.3.17 UNINT(N, XA, YA, X, Y, C).— This subroutine performs a four-point interpolation to generate a smooth curve with continuous slope between

adjacent intervals. The number of input pairs is N, and YA(I) is monotonic from I to N. No such restriction applies to YA(I). If the input X is less than XA(I), then let Y = YA(I); if X is greater than XA(N) then L = 2 and Y = YA(N). Otherwise, L = 0 and Y is calculated by interpolation.

I.1.4 External Subroutines

The GASP program is composed of over 60 subroutines some of which call as many as 8 or 10 other subroutines. The alphabetic listing of these subroutines is given in Figure I.1.4 where the programs indicated parenthetically may be called by the indicated subroutine. The volume in which each subroutine can be found is also indicated in this tabulation.

The contents of each volume of the documentation are listed symbolically in Figure I.1.5, where the parenthetic numbers correspond to the subroutines listed in Figure I.1.4.

FIGURE I.1.4

PROGRAMS AND THEIR SUBROUTINES

	PROGRAM	<u>vo</u>	LUME
MAIN	(AEROUT, CTAER, DLAND, ENGSZ, ENGWGT, FLAPS, GACOST, MAPS, OUTPUT, PERFRM, PNOYS, RGBAL, SIZE, WGHT)	•	I
	SUBROUTINES - TURBOFAN AND PROPELLER OPTIONS		
1.	ACCEL (DRAG, ENGINE, TPALT)	•	VI
2.	AERO	•	III
3.	AEROUT (CLIFT, DRAG)	•	III
4.	APPFLP (FLAPS, ITRMHW)	•	IV
5.	ASPEED (CTAER, ENGINE, ITRMHW, TPALT)	•	VI
6.	BISC	•	I
7.	BIV	•	I
8.	CLIFT	•	III
9.	CLIMB (CLIFT, DRAG, ENGINE, TPALT)	•	VI
10.	CTAER (AERO, CLIFT, DRAG, TPALT)	•	III
11.	DERIV (CLIFT, DRAG)	•	VI
12.	DLAND (AERO, CLIFT, DRAG, ENGINE, TPALT)	•	VI
13.	DLOAD	•	V
14.	DRAG (ITRLN)	•	III
15.	DTABX (BISC, TABX)	•	I
16.	ENGDTT (TTABX)	•	IV
L7-23	ENGDT1-7 (ITRLN, BIV)	•	IV
24.	ENGINE (ENGDTT, ENGDT1-7, WACDG, ITRMHW)	•	IV
25.	ENGSZ (APPFLP, DRAG, ENGINE, ENGWGT, PERFRM, TPALT, TURN)	•	IV
26	ENGWGT (ENGINE, HOPWSZ, RCWSZ)		v

FIGURE 1.1.4 PROGRAMS AND THEIR SUBROUTINES

SUBROUTINES - TURBOFAN AND PROPELLER OPTIONS (Continued)

27.	FLAPS (ITRLN, ITRMHW, TPALT)	III
28.	GACOST (ASPEED, ENGINE, TPALT)	VII
29.	INTS (DERIV)	ı
30.	ITRLN	I
31.	ITRMHW	I
32.	MAPS	ı
33.	MAXMHW	ı
34.	NACDG	IV
35.	OUTPUT (CLIFT, TPALT)	I
36.	PERFRM (ACCEL, CLIMB, DLAND, TAKOFF, TAXI, TURN, XRANGE)	VI
37.	RGBAL (AEROUT, CTAER, ENGSZ, ENGWGT, FLAPS, OUTPUT, PERFRM, SIZE, WGHT)	VI
38.	SIZE (TPALT)	II
39.	STORE3	I
40.	TABX	I
41.	TAIL (BIV, CLIFT, ENGINE, ITRLN, TPALT)	v
42.	TAKOFF (CLIFT, DERIV, DRAG, ENGINE, INTS, TPALT)	VI
43.	TAXI (ENGINE, TPALT)	VI
44.	TPALT	I
45.	TTABX	I
46.	TURN (DRAG, ENGINE, TPALT)	vı
47.	WGHT (DLOAD, ENGSZ, ENGWGT, TAIL)	v
49	YPANCE (ACRED CTAFR ENGINE TOPMEN TRAIT)	VΤ

FIGURE 1.1.4 PROGRAMS AND THEIR SUBROUTINES

ADDITIONAL AND REPLACEMENT SUBROUTINES - USED BY PROPELLER OPTIONS

	PROGRAM	VOLUME
49.	BILINE	I
50.	BIQUAD	I
51.	COST	IV
52.	ENGDAT (COST, GEARBX, PERFM, WAIT, ZNOISE)	īv
53.	ENGINE (MAXBND, MAXMHW, PWRPLT, TPALT, TURBEG)	IV
54.	ENGSZ (APPFLP, DRAG, ENGINE, ENGWGT, ITRMHW, PERFRM, TPALT)	. IV
55.	GEARBX	IV
56.	HOPWSZ (ITRLN)	IV
57.	MAXBND	īv
58.	PERFM (BIQUAD, UNINT)	IV
59.	PNOYS (ASPEED, ENGINE, GEARBX, TPALT, ZNENG)	IV
60.	PWRPLT (ITRLN)	IV
61.	TCWSZ (BIV, ITRLN)	IV
62.	TURBEG (BIV, ITRLN, ITRMHW)	IV
63.	UNINT	IV
64.	WAIT	IV
65.	ZNENG (UNINT)	IV
66.	ZNOISE (BILINE)	T37

FIGURE 1.1.5 CONTENTS OF EACH VOLUME

VOLUME	CONTENTS
I	Introduction *(MAIN, 6, 7, 15, 29-33, 35, 39, 40, 44, 45, 49, 50, 63)
11	Geometry *(38)
III	Aerodynamics *(2, 3, 4, 8, 10, 14, 27)
IV	Propulsion *(16-25, 34, 52-62, 65, 66)
v	Weight and Balance *(13, 26, 41, 47, 64)
VI	Performance *(1, 5, 9, 11, 12, 36, 37, 42, 43, 46, 48)
VII	Economics *(28, 51)

^{*} Parenthetic numbers refer to subroutine numbers of Figure I.1.4

·			
1			

GASP - GENERAL AVIATION SYNTHESIS PROGRAM

VOLUME I - MAIN PROGRAM

PART 2 - USER'S MANUAL

JANUARY 1978

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Ames Research Center
Moffett Field, California

Under

CONTRACT NAS 2-9352

AEROPHYSICS RESEARCH CORPORATION

				•	•
	-				
			•		
		3			
1					

I.2 MAIN PROGRAM USER'S MANUAL

Program MAIN acts as the control program in the computer synthesis of general aviation aircraft. By calling 14 principal subroutines, MAIN effectively controls all the 66 subroutines which make up the GASP package, and it is the input to MAIN which specifies the aircraft being designed. The GASP computer program is intended to apply to a broad spectrum of aircraft types, and each aircraft design is specified by over 200 aircraft input parameters and about 60 propeller input parameters, as tabulated under namelists INGASP and INPROP in the following pages.

Many different vehicle sizing and performance options are available in GASP. The user may select certain options and bypass others according to his needs by inputting appropriate values for several indicator variables. For example, economic and/or noise calculations will be performed or bypassed according to the values input for TBO and KNOYS, respectively. Likewise, mission performance calculations may be terminated at the end of any segment according to the value of IFLY. Thus, one of the important functions of Program MAIN is to control the sequence in which the various subroutines are called.

It is obviously required that the input data be physically consistent, and for this reason the units of each input parameter should be carefully noted. Errors in input data will often be apparent in the numerical results. More troublesome, however, are those errors which have smaller, but still significant effects on the resulting design, since these errors may not be suspected.

Many of the input parameters are given default values, and these are indicated parenthetically following the definition of the parameter. All other

parameters must be input before the program will run. Many variables are used only when certain program options are selected, and thus they need not be input when these options are not used. For example, 24 variables are used only when the tail is sized in TAIL (stability and control analysis, LCWING=2). Likewise, some input variables are required only when noise and cost options are exercised. A typical input stream to GASP is presented in Figure I.2.1. The data input begins with a Title Card assigned by the analyst which also contains the integer IENGSC. Data input basically follows the format: (1) Title Card; (2) Additional data read by MAPS and STORE3, if IENGSC is negative on the title card; (3) NAMELIST INGASP; and (4) NAMELIST INPROP.

The variables for these data blocks are presented in alphabetical order in Figures I.2.2 to I.2.4. Breakdowns of the Namelist INGASP and INPROP inputs arranged by categories are presented in Figures I.2.5 and I.2.6. Format of the Title card is

TITLE CARD

COL 2-72

COL 75-76

used for title

Engine cycle indicator (IENGSZ)

= 0, propeller aircraft (default value)

= 1, General Electric CJ-610

= 2, Garrett TFE 731

= 3, UACL JT-15D

= 4, AFCO/Lycoming ALF 502

= 5, General Electric CF-34

= 6, General Electric TF-34

= 7, General Electric T700/F1-QCGAT

= -1, engine data input in tabular form

If engine data input in tabular form, engine data follows the title card and is set up as described in section headed Engine Table, Figure 1.2.7.

I-2

2

19

A typical input stream to the GASP program has the appearance

```
SAMPLE TURBOPROP SPECIFIED ENGINE SIZE SINGASP
      MG-12500., MGS-45.045, EMP-2., NTYE-6, EMCRU-.4000, HHCRU-10000...
KMRITE*2,
SAB*2 . VS*18 . AS*1 . VAS*18 . PAX*19 . PS*40.865,
AR*7 71 . TCR* 15 . TCT* 15 . DLHC4* 9 . SLH* 400. YP* 324,
ARHT*3 35 . ARVI*1 544 . TCVT* 09 . TCHT* 09 . SLHV* 35 . SLH* 40,
YHG* 324 . EYEV* 5 . ELRV*0 . DELP*7 . CATD*0 . ALPHLO**2 .
VHLFSL*357 . KNAC*1 . SAH* 299
ELODN*2 216 . ELODT*2 515 . HCK*1 80 . ELPC*4 73,
YBARXX* 123 . VBARXX*1 165 . COELTH* 235 . BOELTV*1 639 .
DELCD* 00159 . MCD*12 .
ACLS** 66 .* 32 .* 10.0 . 10 . 20 . 30 . 40 . 575 . 70 . 90 . 1 . 13 .
ACCCOR*1 8 . 1 . 175 . 1 . 05 . 1 . 025 . 1 . 009 . 1 . 0. 1 . 009 . 1 . 025 . 1 . 10 . 1 . 225 . 1 . 55 . 2 . 28 .
CFOC* 27 . BTEOB* 55 . RCLHAX*1 . 280 . JFLYP*4 .
DELTT* 1500 . HTMAX*500 . JELTY*14 .
JENGZ*3 . IPART*3 . RCCRU*0 . XLQDE*3 . UANAC*2 .
SKWF* 4250 . SKB*98 5 . SKY* . 243 . SKZ* . 356 . UMPAX*181 .
SKWF* 4250 . SKB*98 5 . SKY* . 243 . SKZ* . 356 . UMPAX*181 .
      KWRITE . 2.
    SKW+155 1,
    WEX-1749 .. WELL-686 .. WPLX-2300 ..
 LCWING-0.
NFAIL-0 ICRUS-1.
RICRIX- 992, DVI-9.0, DVR-0., XLFMAX-1.250, NUB-.350,
                                                                                                                                                                                                                                                                                                                                                                                                                              FIGURE I.2.1
   DELTVR-1.0.
DELTYR+1.0,
RSHX+600, XLFHX+1.10, TDELAY+2., TIDLE+300., HTG+3.4,
NCADE+1, TB0+3000., CNY+0., CCRY+0., SRPH+ 150.,
CNF+0., FCSF+.70, OHR+40., CLIAB+1000.,
UCSENG+100., ALR+5.0,
DV1+8.0, DVR+7.0, DELTYR+2.5,
1CLH+3., VCLHB+140.,
ICLH+3., VCLHB+140.,
ICH+3., VCLHB+140
                                                                                                                                                                                                                                                                                                                                                                                                              TYPICAL INPUT STREAM
SEND
SINPROP
                                                                                                                                                                                                                                                                                                                                                                                                                ORIGINAL PAGE IS
NTYP+15.
VPROP1+151.5.
                                                                                                                                                                                                                                                                                                                                                                                                           OF POOR QUALTTY
BL-3 .AF-114., Q.1-.55.
                                                                                                                                                                                 DIST-1000., IDATE-1970,
CL1+5,
XMMAX+41730 GR+ 04/32,
KODECR+4, DPROP+8.5, TSPDHX+1000., KODETH+6,
KODECR.7. HPHSLS-840.
JSIZE+2, ANCOMP+ 12.
MKPFAC+ 863.
1010YS-1, HNOYS-1000., 91ST-1000.,
```

This is card image of input deck: for propeller configurations both namelist "ingasp" and "inprop" are required; for turbofan configurations only namelist "ingasp" is required.

Three examples illustrating use of the GASP program are presented in Appendices A, B, and C as follows: Appendix A - Turboprop Powered Design, Fixed Engine Size; Appendix B - Two-Place Trainer with Fixed Pitch Propeller, and Appendix C - Turbofan Design Using Scaled TFE-731 Engine.

VARIABLE	DESCRIPTION
ACDCDR	normalized wing profile drag values in drag table (if KWCD ≠ 0)
ACLS	array of C_L values in wing profile drag table (if KWCD \neq 0)
ALPHLO	zero lift angle of attack, deg
ALTFLP	altitude during takeoff and landing for Reynold's number calculation, ft (0.)
ALTLND	altitude of landing field, ft (0.)
ALR	manhour labor rate \$ per hr (3.40)
AR	wing aspect ratio
ARHT	aspect ratio of horizontal tail
ARVT	aspect ratio of vertical tail
ARVTE	effective aspect ratio of vertical tail (numerical function of ARVT and SAH), if LCWING = 2.
AS	number of aisles
atmxqe	maximum tip tank length/wing tip chord (3.16 if KTIPX = 1)
BENGOB	fraction of flap-free wing span due to engines (0.)
BMLOD	length to diameter ratio of tail boom (14.5 if KCONFG=1)
BOELTV	wing span/vertical tail moment arm (if VBARVX input)
BTEOB	flap span to wing span ratio (.75)
CATD	0, normal design structural category, FAR Part 23 1, utility design structural category, FAR Part 23 2, aerobatic design structural category FAR Part 23 3, transport design structural category FAR Part 25
CCRW	annual cost of crew, \$(0.)
CFOC	flap chord to wing chord ratio (.3)

FIGURE 1.2.2 INPUT - PROGRAM MAIN (INGASP)

VARIABLE	DESCRIPTION
CHALF	two-dimensional variation with angle of attack of elevator hinge moment coefficient (function of RH) if LCWING = 2
CHDEL	two-dimensional variation with elevator deflection of elevator hinge moment coefficient (function of RH) if LCWING = 2
CINP	cost of annual inspection, \$ (1500.)
CKF	fuselage form factor (numerical function of fuselage fineness ratio)
СКНТ	horizontal tail form factor (numerical function of TCHT and SAH)
CKN	nacelle form factor (numerical function of nacelle fine- ness ratio)
СКТР	tip tank form factor (numerical function of tip tank fineness ratio)
CKVT .	vertical tail form factor (numerical function of TCVT)
CKW	wing form factor (numerical function of TCR and TCT)
CLEOC	leading edge device chord/wing chord (0.)
CLIAB	cost of liability insurance, \$ (215.)
CLTLMT	limiting C_L in turn, if JTRS2 = 1 (1.0)
CMF	increment to fixed annual cost, \$ (0.)
CMFLPL	wing C_{M} about cg, landing flaps (function of DFLPLD) if LCWING = 2
CMFLPT	wing C _M about cg, takeoff flaps (function of DFLPTO) if LCWING = 2
CMPLD	pitching moment coefficient of all engines about cg at landing (0.) if LCWING = 2

VARIABLE	DESCRIPTION
CMV	increment to hourly operating cost, \$ (0.)
CNPAC	required directional stability of aircraft, per deg., if LCWING = 2.
COELTH	wing chord/horizontal tail moment arm (if VBARHX input)
CP	aircraft price, \$ (default program calculations)
CPMRGN	wing cg relative to quarter chord mac, fraction mac $(.10)$ if LCWING $\neq 0$
CRALT	mission cruise altitude, ft (HNCRU)
CRMACH	mission cruise Mach number (EMCRU)
СКИОН	crew overhead rate (.50)
CXA	distance main wheel contact point aft of mac leading edge, fraction mac., if LCWING = 2
DBARN	nacelle mean diameter, KNAC = 2, ft
DCDOTE	drag coefficient increment due to optimally deflected trailing edge default flaps (function of JFLAP)
DCLMLE	lift coefficient increment due to optimally deflected leading edge slat (.93)
DCLMTE	lift coefficient increment due to optimally deflected trailing edge flaps (default function of JFLAP)
DCMCLP	one engine propulsion stability term if LCWING = 2
DELCD	increment in CD (.0015)
DELFE	increment in equivalent flap plate area of fuselage sq ft (.25)
DELH	altitude increment during climb, ft (1000.)
DELLED	deflection of leading edge device, deg (0.)
DELLEO	optimal deflection for leading edge device, deg (45.)
DELP	fuselage pressure differential, psi

FIGURE 1.2.2 INPUT - PROGRAM MAIN (INGASP)

VARIABLE	DESCRIPTION
DELTEO	optimum trailing edge flap deflection angle, deg. (default function of JFLAP)
DELTT	time spent taxiing before takeoff and after landing, hrs.
DELWFC	incremental control group weight, lb. (0.)
DELTVR	estimate of time required to rotate aircraft during takeoff, sec (3.5)
DELWST	incremental structural weight, lb. (0.)
DEMAX	maximum up elevator deflection, deg (-25.), if LCWING=2
DFLPTO	takeoff flap deflection, deg
DFLPLD	landing flap deflection, deg
DLMC4	sweep of wing quarter chord, deg
DLSWSW	increment in wetted area/wing area (0.)
DRMAX	maximum rudder deflection, deg (25.0) if LCWING = 2
DV1	increment of engine failure decision speed above stall, kts (5.)
DVR	increment of takeoff rotation speed above engine failure decision speed, kts (5.)
DWPQCH	horizontal tail quarter chord sweep, deg, if LCWING #0
DWPQCV	vertical tail quarter chord sweep, deg, if LCWING≠0
DYR	aircraft depreciation period, year (8.)
EGMRGN	engine cg relative to leading edge of mac, for wing-mounted engines; fraction mac, positive aft (0.), if LCWING #0
ELINC	distance from leading edge of vertical tail to leading edge horizontal tail on line of intersection of vertical tail and horizontal tail, ft, if LCWING \neq 0
ELN	nacelle length, KNAC = 2, ft
ELODN	length to diameter ratio of nose cone of fuselage (2.0)

VARIABLE	DESCRIPTION
ELODT	length to diameter ratio of tail cone of fuselage (3.2)
ELPC	length of pilot compartment, ft (4.44)
ELRW	length of pylon attachment, for fuselage mounted engines
EMCRU	design cruise Mach numbèr
EMTURN	turn Mach number, if JTRSZ = 1
ENP	number of engines
EYET	horizontal tail incidence angle, deg (0.) if LCWING = 2
EYEW	wing incidence to fuselage horizontal reference deg.
FACWl	change in gross weight to start range iteration (default function of gross weight and range)
FCSF	fuel cost, \$ per gal (.51)
FLAPN	number of flap segments per wing panel (1.)
FPYL	factor for turbofan engine pylon weight (.7) if NTYE=7 and KNAC≠2
FRESF.	required reserve fuel; $<$ 10, fraction of 45 min; $>$ 10, lb fuel (1.0)
GRFE	landing gear flat plate area, sq`ft; (function of gross weight)
нарр	landing obstacle height, ft (50.)
нвтр	turbofan engine face hub/tip ratio, if NTYE=7 and KNAC ≠2
нск	mean fuselage cabin diameter minus mean fuselage nose diameter, ft (2.47)
HIR	hull insurance rate; insurance cost/aircraft price (.02)
HNCRU	design cruise altitude, ft
ноо	altitude at start of mission, ft (0.)

VARIABLE	DESCRIPTION
HPORT	takeoff altitude, when JENGSZ=1 or 2, ft (0.)
HRI	hours between annual inspection (100.)
htg	wing height above ground during ground run, ft (3.)
нтмах	terminal altitude for takeoff segment, ft (500.)
HTURN	altitude of turn, ft, if JTRSZ = 1
HWING	0, low wing position on fuselage if LCWING = 2 1, high wing position on fuselage if LCWING = 2
ICLM	 climb at maximum rate of climb (default) climb at maximum allowable operating speed climb at input EAS
ICRUS	 cruise at EMCRU (default) for cost and range calculation cruise at normal power for cost and range calculation cruise for best specific range for cost and range calculation
IFLY .	 compute full mission (default) compute mission through takeoff segment only compute mission through climb segment only compute landing performance only
IGEAR	type of landing gear: 0, retractable ⁽ default) 1, fixed gear
IPART	 FAR Part 25 Turbine (default) propulsion sizing requirements FAR, Part 23, General Aviation propulsion sizing requirements
ISWING	 keep wing loading fixed during range balance (default) keep wing area fixed during range balance
IWLD	<pre>0, landing weight = gross weight (default) 1, landing weight = weight at end of mission 2, landing weight = fraction of gross weight</pre>

VARIABLE	DESCRIPTION
JENGSZ	<pre>0, size engine for cruise only 1, size for cruise and takeoff 2, size for cruise and takeoff and climb requirement 3, size for cruise and climb requirement 4, engine thrust specified; input KNAC = 2, ELN, DBARN, WENG, WNAC, if NTYE = 7, only</pre>
JFLTYP	 plain flap split flap single slotted flap (default) double slotted flap triple slotted flap Fowler flap double slotted Fowler flap
JTRSZ∉	0, no turn (default) (available only if NTYE=7) 1, turn sizing option (available only if NTYE=7)
KCONFG	type of fuselage tail cone: 0, conventional cone (default) 1, tail boom support
KNAC	 nacelle drag computed as penalty to engine performance (turbofans only) nacelle drag part of aircraft drag; nacelle sized by engine same as 1, except nacelle size input DRARN, ELN
KODETO *	engine power setting during takeoff segment if NTYE=7
KODECL *	engine power setting during climb segment if NTYE-7
KODETR *	engine power setting during turn segment if NTYE = 7
KODEAC *	engine power setting during acceleration segment if NTYE = 7
1	* These variable are set to 5, 6, 7 where 5 = maximum power (default) 6 = maximum continuous power 7 = maximum climb power
KPLOT	0, no plotting (default) 1, aerodynamic data plotted

FIGURE 1.2.2 INPUT - PROGRAM MAIN (INGASP)

VARIABLE	DESCRIPTION
KTIPX	tip tank indicator: 0, no tip tanks ⁽ default) 1, allows tip tanks
KWCD	number of points in wing profile drag table if input (0.)
KWRITE	 0, no print 1, all write statements are printed 2, selected summary statements are printed (normal option) -1, selected summary statements are printed (abbreviated option) 9, additional write of propulsion performance (debugging)
LCWING	0, do not locate wing to balance aircraft1, balance aircraft2, compute cg limits and size horizontal and vertical tail for stability
LDCKMX	maximum fineness ratio of tip tank (8.0), if KTIPX = 1
MUB	coefficient of braking friction (.4)
NCADE	0, no additional equipment cost (default) 1, additional equipment cost a function of base cost
NFAIL	0, computes engine out and accelerate/stop distance l, computes only all engine performance(default)
NTYE	 reciprocating engine with carburetor reciprocating engine with fuel injection reciprocating engine with fuel injection and geared rotary combustion engine turboshaft engine turboprop engine turbojet or turbofan engine 12, 13; same as 1, 2, 3 except HOPWSZ computes geometry and weight same as 4 except RCWSZ computes geometry and weight
OHR	overhaul cost of one engine, \$ per lb thrust or \$per HP (5.5)

VARIABLE	DESCRIPTION
PAX	number of passengers, excluding pilot
PR	inlet pressure recovery factor (1.) if NTYE = 7
PRV	aircraft residual value/original value (.20)
PS	seat pitch, in
RCCRU	required rate of climb at cruise sizing condition, fpm (0.)
RCLMAX	CLMAX reference value of basic wing reference condition aspect ratio = 12 taper ratio = 1. t/c = 0.10 Λ /4 = 00 Reynolds number = 6 x 10 ⁶
RCRRQ	<pre>0, no range or endurance requirement (default) < 24, design endurance, hrs > 24, design range, nm</pre>
RELP	engine cg fraction of fuselage length, for fuselage-mounted engines (0.) if LCWING \neq 0
RELR	cg of fuselage and contents, fraction fuselage length (.4) if LCWING \neq 0
RH	elevator chord/horizontal tail chord (.4) if LCWING = 2
RI	loan interest rate; yearly interest/loan (0.)
RSMX ,	maximum allowable rate of sink during landing approach, ft per min (1000.)
RV	rudder chord/vertical tail chord (.4) if LCWING = 2
RVMCS	ratio of minimum control speed to stall speed in takeoff configuration (1.0) , if LCWING = 2
RWCRTX	ratio of cruise weight to gross weight for porpulsion sizing (1.0)
SAB	seats abreast in fuselage

FIGURE 1.2.2 INPUT - PROGRAM MAIN (INGASP)

VARIABLE	DESCRIPTION
SAH	horizontal tail location on vertical tail: 0, low tail 1, T-tail
SCFAC	shift in divergence Mach number due to supercritical design (0.)
SINKTD	landing touchdown sink rate, ft per sec (3.0)
SKB	weight trend coefficient of fuselage (136.)
SKCC	weight trend coefficient of cockpit controls (11.)
skfs	weight trend coefficient for fuel system (.0195)
SKFT	fraction of total theoretical tip tank volume used for fuel (.979)
SKFW	weight trend coefficient of fixed wing controls (.404)
SKLG	weight trend coefficient of landing gear, fraction gross weight (.0318)
SKMG	weight trend coefficient main gear, fraction of landing gear (.80)
SKPEI.	weight trend coefficient of engine installation, fraction dry engine (.135)
SKPES	weight trend coefficient of engine nacelle, fraction dry engine (.338) if KNAC \neq 2
SKSAS	weight of stability augmentation system, 1b (0.)
SKTL	factor on tail weight for arresting hook (1.)
SKWF	fraction of total theoretical wing volume used for wing fuel (.430)
SKWTP	tip tank weight trend coefficient, lb per sq ft (1.89)
SKWW	weight trend coefficient of wing without high lift devices (133.4)
SKY	weight trend coefficient horizontal tail (.18)

FIGURE 1.2.2 INPUT - PROGRAM MAIN (INGASP)

VARIABLE	DESCRIPTION
SKZ	weight trend coefficient vertical tail (.22)
SLM	wing taper ratio
SLMH	taper ratio of horizontal tail
SLMV	taper ratio of vertical tail
SMID	engine face Mach number sea level static if NTYE = 7 and KNAC \neq 2
SRPM	storage or tie down rate, \$/mo
STATIC	aircraft static margin, fraction mac (.03) if LCWING = 2
STMRGN	aircraft cg relative to quarter chord of mac, fraction mac, positive aft $(0.)$, if LCWING $\neq 0$.
STRUT	wing strut attachment point, fraction semispan (0.)
SWSLS	engine specific weight lb/lb thrust or lb/HP for recip/ turboprop if KNAC \neq 2
TAUH ·	elevator effectiveness if LCWING = 2., (default function of RH)
TAUV	rudder effectiveness if LCWING = 2 (default function of RV)
TBO	time between overhauls, hr (0. default which deletes cost computations)
TCHT	horizontal tail root thickness to chord ratio
TCR	wing root thickness to chord ratio
TCT	wing tip thickness to chord ratio
TCVT	vertical tail root thickness to chord ratio
TDELAY	delay for brake and reverse thrust application during landing, sec (1.0)

FIGURE 1.2.2 INPUT - PROGRAM MAIN (INGASP)

VARIABLE	DESCRIPTION
TDELLD	temperature increment above standard during landing, deg. F, (0.)
TDELTO	takeoff temperature above standard during engine sizing, JENGSZ=1 or 2 (0.)
TDELTX	takeoff temperature above standard during mission, deg. F (0.)
THEMAX	maximum allowable fuselage floor angle, deg (15.)
THIN	input thrust for one engine, lb., if JENGSZ=4 and NTYE=7
TIDLE	idle thrust for propeller configurations, lb., if NTYE≠7 (0.)
TP	vertical position of thrust line relative to cg, positive for thrust below cg, ft (0.), if LCWING = 2
TR	property tax rate; tax/value (0.)
TROTID	ratio of reverse thrust to idle thrust during landing (0.)
ucseng um	unit cost of engine, \$ per lb thrust or \$ per HP (default program calculates) coefficient of rolling friction (.02)
UWNAC	nacelle weight/nacelle surface area; lb per sq ft,if KNAC≠2
UWPAX	weight per passenger, including baggage, 1b (200.)
VBARHX	horizontal tail volume coefficient (default function of fuselage length and diameter)
VBARVX	vertical tail volume coefficient (default function of fuselage length and diameter)
VCLMB	climb speed, EAS, kts (input only if ICLM=3)
VMLFSL	maximum structural design flight speed, mi per hr.
VRAT	ratio of allowable lift off speed to stall speed (1.1)

VARIABLE	DESCRIPTION
VRATT	ratio of landing approach speed to stall speed (1.3)
VTDRAT WAS	ratio of touchdown speed to stall speed (1.15) aisle width, in.
WCFLAP	weight trend coefficient in flap weight equation (default function of JFLTYP)
WENG	dry weight of one engine, lb if KNAC = 2
WFEX	fixed equipment weight, 1b (default function of PAX)
WFUL	fixed useful load weight, lb
WG	initial gross weight, lb
WGS	wing loading, 1b per sq ft
WLPCT	ratio of landing weight to gross weight, if IWLD=2
WNAC	weight of one nacelle, lb if KNAC = 2
WPLX	design payload, lb (default function of PAX)
WPYLON	weight of one pylon, lb, if KNAC=2 and TYPE=7
ws ,	seat width, in
WTMISN	aircraft weight at start of mission, lb (default gross weight)
WTRFAC	weight during turn, % of gross, if JTRSZ = 1 (1.0)
XLDGRQ	required landing distance, ft (99999.)
XLFMAX	maximum load factor during takeoff rotation (1.1)
XLFMX (landing flare load factor if < 4 or landing flare initiation height, ft if > 4. (1.2)
XLFTRN	sustained turn load factor, if JTRSZ=1
XLQDE	nacelle length to diameter ratio, KNAC=0 or 1
XTORQ	required takeoff distance to clear 35 ft, input if JENGSZ=1 or 2 (999999.)

FIGURE 1.2.2 INPUT - PROGRAM MAIN (INGASP)

DESCRIPTION
location of main gear on wing: 0, on fuselage 1, at tip
location of engines on wing: 0, on fuselage 1, at tip
height above runway of cg at nose wheel lift off, ft, (function of HWING) if LCWING = 2
·

FIGURE 1.2.3 INPUT - PROGRAM MAIN (INPROP)

VARIABLE	DESCRIPTION
AF	propeller or Q-FAN blade activity factor per blade
ANCQHP	nacelle area per horsepower (.12)
BL	number of propeller or Q-FAN blades
BLANG	propeller blade angle at 3/4 rad., deg., only if specifying blade angle when NTYP = 1
вмер	brake mean effective pressure, psi (0.) if NTYE > 10.
CAMT	initial production quantity of propellers to be used for costing (default function of propeller type)
CLI	propeller blade integrated design lift coefficient
CTI	initial estimate of propeller thrust coefficient (.2)
DIST	slant distance to observer for propeller noise, ft (1000.)
DPROP	propeller diameter, ft
EMNOYS	aircraft Mach number for noise calculation if KNOYS=0
FT	fraction of total propulsor thrust which is lost due to installation (0.)
GR	gear ratio, propeller rpm/engine rpm (1.)
HCRIT	critical altitude for turbocharger engines, ft (16000).
HNOYS	aircraft altitude for noise calculation, ft (1000.) if KNOYS 0 or 1
HPMSLS	maximum sea level static horsepower (0.) if KODECR=7
нроав	horsepower/bore area, piston engines, HP per sq in (2.6) if NTYE > 10.
IDATE	propeller weight technology level; 1970 or 1980, if NTYP > 10

VARIABLE	DESCRIPTION
JSIZE	 increase HP with constant propeller diameter increase both HP and diameter, keep disk loading constant (default)
KNOYS	-1, no prop noise calculation (default) 0, compute prop noise for aircraft at HNOYS and EMNOYS 1, compute prop noise for aircraft at HNOYS at maximum level speed
KODECR	used during engine sizing
	<pre>for piston engines: = 1, size engine and prop diameter at specified flight condition to maximize prop efficiency; engine operating point (PCRCR, PCPCR) specified</pre>
	<pre>for turboprop engines:</pre>
	<pre>for either piston or turboprop:</pre>
	 = 3, 4, size engine at specified flight condition - percent max engine power and prop size are fixed; KODECR = 3, prop RPM not specified (iterate to max prop eff); KODECR = 4, prop RPM is specified (no iteration involved). = 7, for horsepower and prop diameter input
KODETH	used during mission calculations = 5 or 6, find engine operating point (per cent max power) at specified flight condition for a fixed engine and prop size
	<pre># 5, prop RPM not specified (iterate to minimize fuel flow) # 6, prop RPM specified (no iteration involved)</pre>
KSPCHG	0, no turbocharger (naturally aspirated) (0) 1, turbocharged engine

VARIABLE	DESCRIPTION
NCYL	number of cylinders, piston engines (4) if NTYE > 10
NTYP	<pre>1, fixed pitch propeller 2, constant speed propeller 3, constant speed full feathering propeller 4, constant speed, full feathering, deicing propeller 5, constant speed, full feathering, deicing propeller with reverse 6, Q-FAN propulsor 11 to 16, same as 1 to 6, except Hamilton-Standard routines are used for estimating weight, cost, and noise</pre>
PCNCCL	<pre>per cent corrected rotor speed at climb for turboprop (1.0)if NTYE = 5 or 6</pre>
PCNCCR	<pre>per cent corrected rotor speed at cruise for turboprop (.96), if NTYE = 5 or 6</pre>
PCNCTO	per cent corrected rotor speed at takeoff for turboprop (1.0), if NTYE = 5 or 6
PCPCL	per cent maximum power in climb for reciprocating engines (1.0) , if NTYE $<$ 5
PCPCR	per cent maximum power in cruise for reciprocating engines (.75) if NTYE < 5
PCPTO	per cent maximum power at takeoff for reciprocating engines (1.), if NTYE < 5

VARIABLE	DESCRIPTION	
PCRCL	per cent maximum rpm in climb for reciprocating engines (1.), if NTYE < 5	
PCRCR	per cent maximum rpm in cruise for reciprocating engines (.907), if NTYE < 5	
PCRTO	per cent maximum rpm at takeoff for reciprocating engines (1.), if NTYE < 5	
ROTN	number of rotors, rotating combustion engines (2.) if NTYE = 14	
RWH	ratio of width to height of piston engine (1.3) if NTYE > 10	
SKDIM	dimension trend coefficient - engine cross-section (1.0)	
SKWGT	weight trend coefficient - bare engine (1.0)	
T4STCL	turboprop turbine inlet temperature at climb, deg R (Garrett TPE331 engine), if NTYE = 5 or 6	
T4STCR	turboprop turbine inlet temperature at cruise, deg R (Garrett TYE331 engine), if NTYE = 5 or 6	
T4STTO	turboprop turbine inlet temperature at takeoff, deg R (Garrett TPE331 engine), if NTYE = 5 or 6	
TSPDMX	maximum allowable propeller tip speed, ft per sec (900.)	
UCSPP	unit cost of propulsor, \$ per lb (default program calcu- lates)	
WKPFAC	propeller weight adjustment factor (1.0)	
WPROP1	weight of one propeller, lb., if KNAC = 2	
XCLF	propeller learning curve factor in costing for 1000 units (1.02)	
XCLF1	learning curve factor for single unit for propeller cost (3.2178)	
XCK70	single unit propeller cost 1970 technology, \$ per lb., (default function of NTYP)	
хск80	single unit propeller cost 1980 technology, \$ per lb., (function of NTYP)	

VARIABLE	DESCRIPTION
XCW	propeller counterweight factor (function of NTYP)
XK1	coefficient in propeller or Q-FAN weight equation (function of NTYP)
хк2	coefficient in Q-FAN shroud weight equation (function of NTYP)
х к3	coefficient in gearbox weight equation (function of NTYP)
XNMAX	maximum engine speed, rpm
	·
,	
,	

FIGURE 1.2.4 OPTIONAL INPUT TO SUBROUTINES MAPS AND STORE3

VARIABLE	DESCRIPTION
AMAP	value of altitude
IPRINT	0, do not print input data 1, print input data
IREAD	0, no data input 1, read data from cards 2, read data from Tape 11
ITITL	table title
NLINE	number of T4/T2 points
NMAPS	number of altitudes
NPTS	number of Mach number points
SFNIDL	idle specific thrust, lb per lb per sec
T4MAX	maximum turbine inlet temperature, deg R
T4MC	cruise turbine inlet temperature, deg R
T4MCL	maximum continuous or climb turbine inlet temperature, deg R
WAMAP,	SLS airflow of engine, lb per sec
X(L, M)	Mach number values
Y(L, M)	table values (thrust, fuel flow or corrected airflow) at altitude M
Z(L, M)	T4/T2 values at altitude M
(

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA

GENERAL CONFIGURA-	INPUT VARIABLE	VALUE OF	
TION DATA	NAME	DEFAULT	DESCRIPTION
	WG	-	Gross Weight (1b)
	WGS	-	Wing Loading (psf)
	PAX	-	Number of Passengers (excluding pilot)
	ENP		Number of Engines
	IGEAR	0	= 0 - Retractable Gear; = 1 - Fixed Gear
	KCONFG	0	<pre>= 0 - Conventional Tail Cone = 1 - Boom Type Tail Support</pre>
	KTIPX	0	Tip Tank Indicator = 0 - No Tip Tanks; = 1 - Allows Tip Tanks
	NTYE*	-	Type of Engine Indicator
	KWRITE**	-	Print Control Parameter
	EMCRU	-	Design Cruise Mach Number
	HNCRU		Design Cruise Altitude

*NTYE = 1 indicates reciprocating engine with carburetor.

- = 2 indicates reciprocating engine with fuel injection.
- = 3 indicates reciprocating engine geared with fuel injection.
- = 4 indicates rotary combustion engine.
- = 5 indicates turboshaft engine.
- = 6 indicates turboprop engine.
- = 7 indicates turbojet or turb of an engine.
- = 11, 12, 13 same as 1, 2, 3 except routine HOPWSZ used to compute engine geometry and weight.
- = 14 same as 4 except routine RCWSZ used to compute engine geometry and weight.
- = 0 no propulsor.

**KWRITE = 0 no print.

- = 1 all write statements are printed.
- = 2 selected summary write statements printed (normal output option).
- = -1 selected summary write statements printed (abbreviated output option).
- 9 additional write of propulsion performance (use for debugging).

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

GEOMETRY	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION
FUSELAGE	SAB	-	Seats abreast in fuselage
	WS	-	Seat width (inches)
	AS	-	Number of aisles
	WAS	-	Aisle width (inches)
	PS	-	Seat pitch (inches)
	ELPC	4.44	Length of pilot compartment (ft)
	нск	2.47	Mean dia. cabin minus mean dia. nose (ft)
	ELODN	2.	Length/dia. ratio of fuselage nose section
	ELODT	3.2	Length/dia. ratio of tail cone
	BMLOD	14.5	Length/dia. ratio of boom (KCONFC =1)
NACELLE	KNAC*	-	Nacelle drag indicator
	ELN	f(eng size)	Nacelle length (KNAC=2), ft
	DBARN	f(eng size)	Nacelle mean diameter (KNAC=2), ft
	ELRW	-	Length of pylon attachment for fuselage mounted engines (ft)
WING .	AR	-	Wing aspect ratio
	TCR	-	Wing root thickness/chord ratio
	TCT	-	Wing tip thickness/chord ratio
	SLM	-	Wing taper ratio
	DLMC4	-	Sweep of wing 1/4 chord (deg)
	EYEW	-	Wing incidence to horiz. reference (deg)

^{*}KNAC = 0 - nacelle drag accounted for in engine performance (only used with turbofans).

^{= 1 -} nacelle drag accounted for as an aerodynamic force; nacelle sized in engine routine.

^{■ 2 -} same as 1 except nacelle dimensions input in SIZE routine.

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

HORIZ TAIL	VBARHX	f(geom)	Horizontal tail volume coefficient
	TCHT	-	Horizontal tail root thickness/chord ratio
	ARHT	-	Aspect ratio of horizontal tail
	SLMH	-	Taper ratio of horizontal tail
	DWPQCH	-	Horizontal quarter chord sweep, deg
	COELTH	f(geom)	Wing chord/horizontal tail arm
	SAH	-	Location of horizontal on vertical = 0 low tail; = 1 - T tail
VERT			
TAIL	VBARVX	f(geom)	Vertical tail volume coefficient
	TCVT	-	Vertical tail root thickness/chord
	ARVT	-	Aspect ratio of vertical tail
	SLMV	-	Taper ratio of vertical tail
	DWPQCV		Vertical tail quarter chord sweep, deg
	BOELTV	f(geom)	Wing span/vertical tail arm

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA

AERO-	INPUT VARIABLE	WALUE OF	
DYNAMICS	NAME	VALUE OF DEFAULT	DESCRIPTION
•	CKW	*	Wing form factor
	CKF	*	Fuselage form factor
	CKN	*	Nacelle form factor
	CKVT	*	Vertical tail form factor
	CKHT	*	Horizontal tail form factor
	CKTP	*	Tip tank form factor
	ALPHLO	-	Angle of attack at $C_L = 0$
	DLSWSW	0.	Increment in wetted area/wing area
	DELCD	.0015	Increment in C _D
	DELFE	.25	Increment in equiv. flat plate area of fuselage
	SCFAC	0.	<pre>0 - conventional drag divergence; > 0 - shift in M_D due to supercritical</pre>
	GRFE	0.	<pre>0 - correlated on gross weight; >0 - landing gear flat plate area (ft²)</pre>
	KWCD	0	Number of points in wing profile drag table
	ACLS	-	C _L values in wing profile drag table
	ACDCDR	-	Normalized wing profile drag values in wing profile drag table.

*Form factor defaults

CKW = 1.03
$$[2 + 4(t/c)_w + 240(t/c)_w^4]$$

$$CKVT = 2 + 4(t/c)_{VT} + 240(t/c)_{VT}^{4}$$

CKHT =
$$[1 + .10(1-SAH)][2 + 4(t/c)_{HT} + 240(t/c)_{HT}^{4}]$$

CKF = 1.35
$$\left[1 + \frac{60}{(1/d)_{F}^{3}} + .0025(1/d)_{F}\right]$$

CKN = 1.50 [1 +
$$\frac{.35}{(1/d)_N}$$
]

CKTP =
$$1 + \frac{60}{(1/d)_{TP}^3} + .0025(1/d)_{TP}$$

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

HIGH	INPUT		
LIFT	VARIABLE	VALUE OF	
DEVICES	NAME	DEFAULT	DESCRIPTION
	RCLMAX*		C _{LMAX} of basic wing at reference conditions
	ALTFLP	0.	Altitude for Reynolds number calc, ft
FLAPS	FLAPN	1.	Number of flap segments per wing panel
	WCFLAP	f (JFLTYP)	Coefficient in flap weight equation
	BENGOB	0.	Fraction of wing span without flaps due to wign mounted engines (0 fuselage mounted)
	JFLTYP**	3	Flap type indicator
	DFLPTO		Takeoff flap deflection, deg
	DFLPLD		Landing flap deflection, deg
	CFOC	.30	Flap chord to wing chord ratio
	ВТЕОВ	.75	Ratio of flap span/wing span
	DCLMTE	f (JFLTYP)	$\Delta c_{ m L_{MAX}}$ of ref. wing due to flaps at opt deflec.
	DCDOTE	f (JFLTYP)	$\Delta C_{ extstyle D}$ of ref. wing due to flaps at opt. deflec.
	DELTEO	f (JFLTYP)	Optimum flap deflection angle
L.E. DEVICES	CLEOC	0.	L.E. device chord/wing chord ratio
	DELLED	0.	Deflection of leading edge device
	DCLMLE	.93	$\Lambda \mathtt{C}_{\mathtt{L}_{ exttt{MAX}}}$ of ref wing due to L.E. device at opt
	DELLEO	45.	Opt deflection angle for L.E. device (deg)

^{*} Reference conditions: Aspect ratio = 12; taper ratio = 1.0; thickness ratio = 0.10; c/4 sweepback = 00. Reynolds No. = 6 x 10⁶

JFLTYP = 1, plain

= 2, split

= 3, single slotted

= 4, double slotted

JFLTYP = 5, triple slotted

= 6, Fowler

= 7, double slotted Fowler

This FLAPS routine is based on the methodology in the following reference: Sanders, Karl L.: "High Lift Devices, A Weight and Performance Tradeoff Methodology," Tech. Paper No. 761, The Society of Aeronautical Weight Engineers, Inc. May 1969.

^{**} Type of trailing edge devices:

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

PRODUT -	INPUT VARIABLE	VALUE OF		
PROPUL- SION	NAME	DEFAULT	DESCRIPTION	
	JENGSZ*	_	Engine sizing options	
	IPART	1	1 - Part 25 turbine, 3 - Part 23 Ger	n Aviation
	PR	1.	Inlet pressure recovery factor	
	THIN	-	<pre>Input thrust for one engine (lbs) (l if JENGSZ = 4)</pre>	Input only
	XTORQ	99999.	Required takeoff distance to 35 ft only if JENGSZ = 1 or 2)	(input
	RWCRTX	1.0	Ratio of cruise wt/gross wt (used for	or eng. siz)
	RCCRU	-	Required rate of climb @ cruise cond	litions
	HPORT	0.	Takeoff altitude (ft) Used only engine s	
	TDELTO	0.	1 -	NGSZ = 1 or 2
	SMlD .	-	Engine face Mach no. S.L. static	Input only if KNAC=0
	нвтр	-	Engine face hub/tip ratio	or 1
	XLQDE	-	Nacelle length/diameter ratio	
	JTRSZ	0	0 = no turn, 1 = turn sizing option	
	XLFTRN**	-	Turn load factor	
	CLTLMT**	1.0	C _L limit in turn	out only
	HTURN**	- .	,	JTRSZ=1
	EMTURN**	-	Turn Mach number	
	WTRFAC	1.0	weight during turn (% gross) or serve weight	rice ceiling
	ROCREQ	50.0	Engine out service ceiling rate of o	climb
	HSCREQ	0.	Engine out service ceiling required	

^{*}JENGSZ = 0, size for cruise only

^{= 3,} size for cruise and climb req.

^{= 1,} size for cruise and takeoff

^{= 2,} size for cruise and takeoff
and climb required

^{= 4,} engine thrust specified for turbofan aircraft (must use KNAC=2). Must also input ELN, DBARN, WENG, WNAC

^{**} If turning performance is desired in mission profile, these variables must be input. Turning performance will be computed after climb segment.

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

PROPU- SION	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION	
Turbofan Version	KODETO***	5	Takeoff power indicator	
Only	KODECL***	5	Climb power indicator	
	KODETR***	5	Turn power indicator	
	KODEAC***	5	Acceleration power indicator	

^{***} If value = 5, maximum power

^{= 6,} maximum continuous power

^{= 7,} maximum climb power

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

WEIGHTS	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION
,	SKPEI	.135	Wt coef engine instal (fraction of dry eng)
	SKLG	.0318	Wt coef landing gear (fraction of gross wt)
	SKMG	.80	Wt coef main gear (fraction of landing gear
	SKPES*	.338	Wt coef eng nacelle (fraction of dry engine O for buried in fuselage
	SKY	.180	Wt coef horizontal tail
	SKZ	.220	Wt coef vertical tail
	SKTL	1.0	Factor on tail wt for arresting hook
	SKWW	133.4	Wt coef wing (excluding high lift devices)
	SKB	136.	Wt coef fuselage
	SKCC	11.	Wt coef cockpit controls
	SKFW ,	.404	Wt coef fixed wing controls
	SKSAS	0.	Wt of stability augmentor system
	SKFS	.0195	Wt coef for fuel system
	SKWF	.430	Fraction of wing volume for wing fuel
	SKFT	.979	Fraction of theoretical tip tank volume for fuel
	SKWTP	1.890	Tip tank wt coef (lb/surface area,ft ²)
	LCWING	0	 0 - will not locate wing and balance aircraft; 1 - balance aircraft 2 - compute fwd and aft c.g. limits. Size tail based on stability and control.
	RELP	0.	Engine c.g. fraction of fuselage length (fo fuselage mounted engines)
	EGMRGN**	0.	Engine c.g. in relation to L.E. of MAC (fraction of MAC) for wing mounted engine
	CPMRGN**	.10	Wing c.g. with respect to c/4 MAC (fraction of MAC)

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

WEIGHTS	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION
	STMRGN**	0.	Aircraft c.g. with respect to c/4 MAC (fraction of MAC)
	RELR	.4	<pre>c.g. of fuselage and contents (fraction of fuselage length)</pre>
	UWPAX	200.	Weight per passenger (UWPAX times PAX used maximum payload case)
	ATMXQC	3.16	Max tip tank length/wing tip chord
	LDCKMX	8.	Max 1/d of tip tank
	ELINC	0.	Distance between L.E. of V.T. and L.E. of H.T. on line of intersection of V.T. and H. T. (ft)
	WPLX	f (PAX)	Design payload (LB)
	WFEX	f (PAX)	Fixed equipment weight (lbx)
	WFUL.	-	Fixed useful load (includes crew), lbs
	UWPAX	200.	Weight per passenger (UWPAX times PAX is used for maximum payload case), lbs
	STRUT	0.	Wing strut attachment point, fraction of semi-span (= 0, cantilever)
	VMLFSL	-	Maximum operating design flight speed (mph)
	CATD***	-	Design category (structure)
	DELP***	-	Fuselage pressure differential (psi)
	YP	-	Location of engines on Wing. O., on fuselage
	YMG		<pre>1., at tip Location of main gear on wing,0 on fuselag and 1 at tip</pre>

^{*} Comes from ENGWGT routine if engine geometry computed there, otherwise default value

^{**} Positive direction is aft; negative direction is forward.

^{***} CATD = 0, normal (FAR 23)

^{= 1,} utility (FAR 23)

^{= 2,} aerobatic (FAR 23)

^{= 3,} transport (FAR 25)

Used to determine allowable load factors and design speeds

^{****} If input DELP is not adequate to maintain an 8000 ft. cabin at cruise altitude the proper DELP will be computed in the program. If DELP is input as zero, it is assumed that the cabin is not pressurized.

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

WEIGHTS	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION
ENGINE	WENG*	f(eng size)	Dry weight of one engine, 1b (includes gearbox if geared)
	WNAC*	f(eng size)	Wt of one nacelle, 1b
	wpylon*	f(eng size)	Wt of one pylon, 1b
	SWSLS**		Engine specific wt = lb/lb thrust for turbofan/jet = lb/HP for recip and turboprop
	UWNAC**		Nacelle wt/nacelle surface area (lb/ft ²)
	FPYL**	0.7	Factor for pylon weight

^{*}Must be input if KNAC=2 (for non-zero weights); may be input for KNAC=0 or 1 (no call to ENGWGT).

**Input only if KNAC=0 or KNAC=1.

.

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

PERFORMANCE	INPUT VARIABLE VALUE OF NAME DEFAULT		DESCRIPTION	
	H00	0.	Altitude at start of mission, ft	
	IFLY*	1	Partial mission indicator	
	WIMISN	WG	Aircraft wt at start of mission, 1b	
	THEMAX	15.	Max allowable fuselage angle, deg	
	UM	.02	Coefficient of rolling friction	
	MUB	.4	Coefficient of braking friction	
	HTG	3.0	Wing height above ground during ground ru	
TAXI	DELTT	-	Time spent to taxi before takeoff (hrs)	
TAKEOFF	XLFMAX	1.10	Max load factor during takeoff rotation	
	DELTVR	3.5	Guess on time required to rotate, sec	
	DV1	5.0	Increment of decision speed above stall (
	DVR	5.0	Increment of rotation speed above decision	
	VRAT	1.10	speed (kts) Ratio of allowable lift-off speed to stal	
	TDELTX	0	Increment in ambient temperature above standard day (°F)	
	HTMAX	500.	Terminal altitude for takeoff segment, ft	
	NFAIL	1	 0 - computes engine out and accel/stop of the state of th	
CLIMB	ICLM	1	<pre>= 1 - max rate of climb = 2 - climb at max allowable speed = 3 - climb at input EAS (VCLMB)</pre>	
	VCLMB	0.	Climb speed, EAS, kts (input only if ICLM=3)	
	DELH	1000.	Altitude increment during climb	

^{*}IFLY = 1 compute full mission

^{= 2} compute mission through takeoff

^{= 3} compute mission through climb

^{- 4} compute landing performance only

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

PERFOR-	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION
CRUISE	CRMACH	EMCRU	Cruise Mach number
CIWIDD			
	CRALT	HNCRU	Cruise altitude, ft
	ICRUS*	0	Cruise speed indicator
	FRESF	1.	Required reserve fuel < 10 = fraction of 45 min > 10 = lbs fuel
	RCRRQ	0.	Required range or endurance = 0, no requirement <24, design endurance, hrs. >24, design range, n.mi.
	FACWI	**	Change in gross weight to start range iteration
	ISWING	0.	= 0, hold wing loading fixed during range balance= 1, hold wing area fixed during range balance
LANDING	XLDGRQ	99999.	Required landing distance (ft)
	ALTIND	0.	Altitude of landing field (ft)
	VRATT	1.3	Ratio of approach speed to stall speed
	RSMX	1000.	Maximum allowable rate of sink (fpm)
	TROTID	0.	Ratio of reverse thrust to idle thrust
	НАРР	50.	Obstacle height (ft)
	SINKTD	3.	Touchdown sink rate (fps)
	XLFMX	1.20	Flare load factor (XLFMX<4); flare initiation height, ft (XLFMX > 4)
	TDELAY	1.0	Delay for brake and reverse thrust application
	IWLD	0	<pre>(seconds) 0, landing weight = gross weight 1, landing weight = weight at end of mission 2, landing weight = fraction of gross weight</pre>
	WLPCT	-	<pre>WLPCT, landing weight/gross weight ratio (IWLD = 2)</pre>

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

PERFOR-	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION
	TDELLD	0.	Temperature increment above std. (OF)
	VTDRAT	1.15	Ratio of touchdown speed to stall speed

^{*} ICRUS = 0, cruise flown at input speed (EMCRU)

^{= 1,} Cruise flown at speed at normal cruise power

^{= 2,} Cruise flown at speed for best specific range

^{**} For gross weights below 5000 lbs or design ranges less than 800 n. mi., FACWl = 0.95. Otherwise FACWl = 0.75.

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

CØST	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION	
	NCADE	0	 0 no additional equipment cost 1 add equip cost a function of base cost 	
	CMV	0.	Increment to hourly operating cost(\$)	
	CCRW	0.	Cost of crew (\$)	
	CMF	0.	Increment to fixed annual cost (\$)	
	HIR	.02	Hull insurance rate (%/100)	
	CLIAB	215.	Cost of liability insurance (\$)	
	PRV	. 20	Aircraft residual value (%/100)	
	DYR	8.	Years for depreciation (years)	
	RI	0.	Loan interest rate (%/100)	
	TR	0.	Property tax rate (%/100)	
	CR₩ØH	.50	Crew overhead rate (%/100)	
	CINP	1500.	Cost of annual inspection (\$)	
	HRI	100.	Hours between annual inspection (hrs)	
	ØHR	5.5	One engine overhaul cost (\$/#T; \$/HP)	
	· UCSENG	f(NTYE)	Unit cost of engine (\$/#T; \$/HP)	
	UCSPP	f(NTYP)	Unit cost of propulsor (\$/#)(NTYP < 10)	
	TBØ	•••	Time between overhaul (hrs)	
	SRPM	-	Storage or tie-down rate (\$/month)	
	СР	Routine Computes	Aircraft price - if not input routine computes	
	ALR	3.40	Manhour labor rate (\$/hr)	
,	FCSF	.51	Fuel cost (\$/gal)	

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

STABILITY AND CONTROL TAIL SIZING	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION
LONGITUDINAL	CMFLPL	$f(\delta_{\mathbf{F}})$	Wing pitching moment coefficient about aircraft (landing flaps)
	CMFLPT	f(δ_{F})	Wing pitching moment coefficient about aircraft (takeoff flaps)
	CMPLD	0.	Pitching moment coefficient about center of gravity due to all engines during landing
	STATIC	.03	Aircraft static margin, fraction of MAC
	CHALF	f(RH)	2-D variation of elevator hinge moment coefficient with angle of attack
	CHDEL	f(RH)	2-D variation of elevator hinge moment coefficient with elevator deflection,
	RH ,	0.40	Elevator chord/horizontal tail chord
	DEMAX	-25.	Maximum trailing-edge-up elevator deflection, deg (<0 for T.E. up)
	EYET	0.	Horizontal tail incidence angle relative to horizontal reference, deg
	ZCG	ZAC=f (HWING)	Height of center of gravity above runway a nose wheel liftoff, ft
. •	TP	0.	Vertical position of thrust line relative center of gravity, ft (> 0 for thrust below center of gravity)
	CXA		Distance of main wheel contact point aft of MAC leading edge, fraction of MAC
	DCMCLP	0 for Jets f(T _C ,DPROP)	Propulsion stability term (d C_m/d C_L) power, one engine
	HWING		Position of wing on fuselage = 0, low wing = 1, high wing

FIGURE 1.2.5 FUNCTIONAL LISTING OF INGASP INPUT DATA (Continued)

STABILITY AND CONTROL TAIL SIZING	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION	
LONGITUDINAL	TAUH	f(RH)	Elevator effectiveness	
DIRECTIONAL	CNPAC	f(WG, B)	Required directional stability of aircraf $C_{\mathrm{N}_{\psi}}$, per deg	
	ARVTE	f(ARVT, SAH)	Vertical tail effective aspect ratio	
	RV	0.40	Rudder chord/vertical tail chord	
	RVMCS	1.0	Minimum control speed Stall speed (takeoff configuration)	
	DRMAX	25.	Maximum rudder deflection, deg	
	TAUV	f (RV)	Rudder effectiveness d $\alpha_{ m VT}^{ m /d}$ $\delta_{ m Rudder}$	

FIGURE 1.2.6 FUNCTIONAL LISTING OF INPROP INPUT DATA

ENGINES	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTIO N
	KODECR*	. -	Recip/turboprop engine cruise sizing option
	KODETH*	-	Recip/turboprop eng throttling options
	XNMAX	-	Max engine speed, rpm
	GR	1.	Gear ratio = propeller spd/eng spd
	HPMSLS	0.	Max SLS horsepower; input if KODECR=7
	ANCQHP	.12	Nacelle area/horsepower (for NTYE 10)
	JSIZE	2	Engine sizing indicator, takeoff and climb: = 1 increase HP with no inc in prop diam; = 2 increase both power and prop diam but hold disk loading const (HPMSLS/ADISK)

* KODECR - used during engine sizing

For piston engines:

KODECR = 1, size engine and prop diameter at specified flight condition
to maximize prop efficiency; engine operating point
(PCRCR, PCPCR) specified.

For turboprop engines:

KODECR = 1, engine being sized at a given flight condition; PCNCCR
is input. T4 may be input T4STCR, otherwise T4/T2 = f(PCNCCR).

For either piston or turboprop:

- * KODECR = 2, size prop diameter at specified flight condition to maximize prop efficiency - engine size and operating point are fixed.
 - =3, 4 size engine at specified flight condition per cent max engine power and prop size are fixed; KODECR = 3, prop RPM not specified (iterate to max prop eff); KODECR = 4, prop RPM is specified (no iteration involved).
 - = 7, for horsepower and prop diameter input.

KODETH - used during mission calculations

FIGURE 1.2.6 FUNCTIONAL LISTING OF INPROP INPUT DATA

•	TAIDIM		
ENGINES	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION
RECIP	PCPTO	1.	<pre>% power @ takeoff for recip engine (= POWER/HPMSL)</pre>
	PCRTO	1.	<pre>% RPM @ takeoff for recip engine (= RPM takeoff/XNMAX)</pre>
	PCPCL	1.	<pre>% power @ climb for recip engine (= POWER_CL/HPMSLS)</pre>
	PCRCL	1.	% RPM @ climb for recip engine (= RPM_CL/XNMAX)
	PCPCR	.75	<pre>% power @ cruise for recip engines (= POWER_/HPMSLS)</pre>
	PCRCR	.907	% RPM @ cruise for recip engine (=RPM / CR/
	KSPCHG	0	<pre>Supercharger indicator: = 0, naturally aspirated engine = 1, supercharged engine</pre>
	BMEP	0.	Brake mean effective pressure, psi
	HCRIT	16000.	Cricital altitude, ft (KSPCHG=1)
TURBOPROP	PCNCCR	0.961	<pre>% corrected rotor speed at cruise (turboshaft/prop)</pre>
	PCNCCL	1.0	<pre>% corrected rotor speed at climb (turbo- shaft/prop)</pre>
	PCNCTO	1.0	<pre>% corrected rotor speed at takeoff (turboshaft/prop)</pre>
	T4STCR	0.	Turbine inlet temperature at cruise, OR (turboshaft or turboprop)
	T4STCL**	0.	Turbine inlet temperature at climb, OR (turboshaft or turboprop)
	T4STTO**	0.	Turbine inlet temperature at takeoff, OR (turboshaft or turboprop)

^{**} If the default values (zero) are used, the program uses the limits specified in routine TURBEG for the Garrett TPE 331 turboprop.

FIGURE 1.2.6 FUNCTIONAL LISTING OF INPROP INPUT DATA

PROPELLER	INPUT VARIABLE VALUE OF NAME DEFAULT		DESCRIPTION	
	NTYP*	*	Type of propulsor indicator	
	AF	-	Propeller blade activity factor/blade	
	DPROP	-	Propulsor diameter, ft	
	BL	••	Number of propeller blades	
	CLI**	-	Prop blade integrated design lift coefficien	
	BLANG	-	Propeller blade angle @ r/R=.75 (deg) (this is only input if blade angle is specified for fixed pitch)	
	IDATE	-	Propeller tech level, 1970 or 1980	
	TSPDMX	900.	Max propeller tip speed, ft/sec	
	FT	0.	Thrust loss factor (fraction of total thrust: T = (1 - FT) T _{FT=0} . FT =-1.0, Program computes FT.	
	CTI	.2	Initial guess on thrust coefficient (propeller)	
	PCLER	0.058	Propeller tip - fuselage clearance, fraction of propeller diameter	

^{*} NTYP = 1, fixed pitch propeller

^{= 2,} constant speed propeller

^{= 3,} constant speed, full feathering propeller

^{= 4,} constant speed, full feathering, de-ice propeller

^{= 5,} constant speed, full feathering, de-ice propeller, with reverse

^{= 6,} QFAN propulsor

^{= 11, 12, 13, 14, 15, 16 -} same as 1, 2, 3, 4, 5, 6, except Hamilton Standard routines used for propulsor weight, cost and noise.

^{**} Recommended value: CLI = .5

FIGURE 1.2.6 FUNCTIONAL LISTING OF INPROP INPUT DATA

	INPUT VARIABLE NAME	VALUE OF DEFAULT	DESCRIPTION	
WEIGHTS	XKI	f(NTYP)	Coefficient in propulsor wt equation	
(input only if KNAC=1)	XK2	f(NTYP)	Coefficient in propulsor shroud wt	
	XIX 3	f(NTYP)	Coefficient in gearbox wt	
	XCW	f (NTYP)	Accounts for propeller counterweights	
	BNUM	-	Number of blades for propulsor (QFAN)	
	AFT Ø T	-	Total activity factor of QFAN	
	SKWGT	1.0	Wt coefficient - bare engine wt	
	SKDIM*	1.0	Dimension coef - eng crosssectional dimensi	
	RWH	1.3	Ratio of width/height of piston engines	
	NCYL	4	Number of cylinders - piston engines	
	RØTN	2.	Number of rotors - R/C engines	
	нроав	2.6	$\mathtt{HP/bore}$ area - piston eng $(\mathtt{HP/in}^2)$	
	WKPFAC	1.0	Propeller wt adjustment factor	
	WPRØP1	-	Wt of one propeller, 1b (KNAC=2 only) (includes gearbox, if geared)	
COST	SCLF1**	3.2178	Learning curve factor for single unit	
	XCLF**	1.02	Learning curve factor for 1000 units	
	XCK70**	Computed	Single unit O.E.M. prop cost 1970, \$/1b	
	SCK80**	Computed	Single unit O.E.M. prop cost 1980, \$/1b	
	CAMT**	Computed	Initial quantity to be used	
NOISE	KNØYS***	-1	Propeller noise indicator	
	DIST	1000.	Slant distance to observer, it	
	HNØYS	1000.	Aircraft altitude for noise calc., fr	
	EMNØYS	_	Aircraft Mach no. for noise calc. (KNØYS-0)	

^{*}Diameter for rotary combustion engines; width for piston engines

^{**}Default values for these parameters are taken from NASA CR-2066, "Computer

Program User's Manual for Advanced General Aviation Propeller Study," May 1975

^{***} KNØYS = -1 No noise calculation

^{= 0} Compute noise for aircraft flying at HNØYS and EMNØYS

^{= 1} Comput noise for aircraft flying at max level speed at HN∳YS

FIGURE I.2.7 -

INPUT FORMAT FOR ENGINE TABLE (IF IENGSZ = -1) TURBOFAN VERSION ONLY

Card 1

IREAD	Col.	1-5	right justified
IPRINT	Col.	6-10	right justified
WAMAP	Col.	21-30	left justified
T4MAX	Col.	31-40	left justified
T4MCL	Col.	41-50	left justified
T4MC	Col.	51-60	left justified
SFNIDL	Col.	61-70	left justified

IREAD = 0 No data input

= 1 Read data from cards

= 2 Read data from Tape 11

IPRINT = 0 Do not print input data

= 1 Print input data

WAMAP = SLS Airflow of engine (1b/sec)

T4MAX = Maximum turbine inlet temperature (°R)

T4MCL = Maximum cont. or climb TIT (°R)

T4MC = Cruise TIT (°R)

SFNIDL = Idle specific thrust (lb/lb/sec)

Card 2

ITITL - Table Title

Card 3

NMAPS - Number of altitudes

Card 4

Blank Card.

Card 5

NPTS - Number of Mach number points

NLINE - Number of T4/T2 points

AMAP - Value of Altitude

Card 6

X(1, 1) ----- X(NPTS, 1) - Mach no. values

Card 7

Z(1, 1), Y(L, 1) ----- Y(NPTS, 1)

Z(NLINE, 1), Y(NLINE, 1) -----

Z = T4/T2 values Y = Table values (thrust, fuel flow, or airflow) Group for each Altitude

APPENDIX A

TURBOPROP POWERED DESIGN, FIXED ENGINE SIZE

Ũ

·	·		
	ı		

```
WELLEON. WES-45 045. EMP-2. NITE-6. ERCRU- 4000. MACRU-10000.

KARITE-2.

SAR-2. WELLE AS-I. WAS-IB. PAX-19. PS-40.0003.

ARR-2. TT TGA-15. TCT-1. IS CLR-4.9. S.H. -400. PW-2. 3.4.

ARR-2. 37. TGA-15. TCT-1. IS CLR-4.9. S.H. -400. PR-2. 3.4.

ARR-2. 37. TRACT. SAL PUTT-1. SAL PUTT-1. O. S.H. -20.

VINES. 37. TRACT. SAL PUTT-1. SAL PUTT-1. S.H. -20.

VINES. 37. TRACT. SAL PUTT-1. SAL PUTT-1. S.H. -20.

VINES. 37. TRACT. SAL PUTT-1. SAL PUTT-1. S.H. -20.

VINES. 37. TRACT. SAL PUTT-1. SAL PUTT-1
```

This is card image of input deck; for propeller configurations both namelist "ingasp" and "inprop" are required for turbofan configurations only namelist "ingasp" is required

SAMPLE TURBOPROP SPECIFIED ENGINE SIZE

OF POOR QUALITY

SAIPLE-TURBOPROP SPECIFIED ENGINE SIZE THIS IS A PROPELLER AIRCRAFT INPUT GATA FOLLOW

	22.22 22.22 22.22 22.20 20 20 20 20 20 20 20 20 20 20 20 20 2								Š.		8888	9.00	
	ELOON ELOOT KNAC ELN DBARN ELN			,	2.250				PACRETX • HSCREQ •		CANT	EPHOYS .	
	MCELLE			•	700 900	,					OSEO		
	18 .000 18 .000 14 730 18 000 18 000	- K- 5005 5005 5005		000ņ	575		00 00 00 00 00 00 00 00 00 00 00 00 00		0 000 200 0 120 0	08	- 6000 6000 6000	900	
	# \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	RT VBARVX TCVT SLIV SLIV BOELTV		SCFAC SCFAC DLSVSV ALPALO	. 300 1. 009 1. 025		נונס טינס פורנס פ		MCCRU XTORO HPHSLS ANCOMP	TASTCR .	LDATE XCLF1 XCLF1	HNOTS .	
	TASA.	VERT TAIL	.•	,	88		3			,			
ETRY		1 1650 1 3 350 3 0 000 2 350 2 350	AERODYNAHICS		0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	LSION	41730 04792	•8 -	# 4 0 80000	' 8	475
**************************************	KARITE ICEAR KCONFC KTIPX ENP NITE RPLOT	HORIZ VBARAC TAIL TCHT ARHT SCHW DWPQCH COELTH SAH	***AERODY	0001 0019 00100	320100 0.000 1.175 1.050 1.025		PLAPS JFLYYP OFLPTO OFLPTO OFLPTO OFLPTO DCLYTE DCDOTE DCDOTE DCDOTE	*** PROPULSION ***	HPORT TOEL TO KNOWAX	T4STG. PCNCC.	P PRO	DIST	VEIGHTS
	25.64 20.00 20.45 20.00	555588 55588		8888	1.800		000 0		446	-8	2.000 000	-	
	FOR ECC.	TO A STANDARD TO		 2885	KVCO ACCOOR		ALTELY ALTELY FLAPN WCFLAP WCFLAP WCFLAP WCFLAP		JENGSZ • IPART • KODECR • KODETH • KODE	TASTTO PCACTO	NTYP BL. 1SPONX FT	KNOVS .	
	96 ic	9 5								_	ğ.	35.00	

SCS	м.00Е • 3.000	TDELTX • 0.000 HTHAK • 500.000 NFAIL • 0	FACUI 950 ISVING 0 OFEN	HAPP • 60. SINKTD • 3.0 XLFNX • 1.100	CCRV • 0.000 CCRV • 0.000 UCSPN • 100.000 UCSPP • 0.000
25 500 0 0 000 0 0 000 0 0 000 0 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 0 000 0	000	0000	800 -	000 00 - 000 00 - 000 000	000 000 000 000 000 000 000 000 000 00
SKE	FPTL	PAS NEW YEAR	FRESF RCRRQ OF ALT	WRATT RSMX TROTIO VTDRAT	268.03
2436 1.0000 1.0000 155.100 3.240 0.0000 0.0000 14000 0.0000	2.037	***PERFORMANCE*** *********************************	10000	99999 0.0000 300.0	00000 00000 000000
888 1888 1888 1888 1888 1888 1888 1888	WAAC	***PENFO XLFNAX O DELTYR O DVI	CRUISE CRUACH CRALT ICRUS	XLDGRQ ALTLNO WLPCT TIDLE	13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
2300 240 250 250 250 250 250 250 250 250 250 25	358.0 .314 .51.5	051. 00.31 00.0	1973. 145.0	0004 0004	-0.000 000 000 000 000 000 000 000 000 0
SOCCE SOCCE STATE STATE STATE	ENGINE WENG SWSLS WPROPI	TAX! DELTT TO !FLY INFINX	CLIME IOUN	LAND TALLS	NCADE CLIAB LAF 1780

This is the formatted repeat of the input data

	************				•••••••				
	FLAP F	YSTALL.	CE SUMMARY KTS FLAP	NACLE LE	ANGLE	FLAP PEPFORM: NCE SUPPLARY (OUT OF GROUND EFFECT) CLNAX VSTALL, KTS FLAP ANCLE LE ANCLE DELTA CL	DELTA CO		
T.O. COFIC LGC. COFIC	1,3763	88% 660		000	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000 0.052		Results of computation for flap characteristics
	DOUBLE OPT ANG	SLOTTED !	DOUBLE SLOTTED FLAPS OPT ANGLE DELCL AT OPT	OELCO AT OPT		AREA(FT2)	K CHT(LB)	_	
FLAS	8.0	•	.5600	. 1250	_	4.6	118.6		Y.
	•			7000000000			************		
		***************************************				************			
LANDING ELE LANDING VIN	TEMP - 518. DEG-STD - 0. LANDING ELEVATION: 0. FT. LANDING WING LOADING: 45.05 PSF. LANDING WEIGHT - 12500. LBS.	6.570.• (FT 45.05.PS	.			•			
LANDING DIS	LANDING DISTANCE FROM 50. FT.+	0. FT. •	2944. FT.				İ	į	Landing performance
F.A.R. FACT	F.A.R. FACTORED FIELD LENGTH .	ENGTH .	4906. FT.						
	APPROACH	Ą	TRAN	TRANS I TI ON	7	DELAY	שמד		
٠	DIST. R/S. VAPEAS. VAPTAS. THETA: THETA:	200 200 200 200 200 200 200 200 200 200	DIST. XLFHX. SINKTO. VSTEAS: CLHX.	2. 165 3. 000 8. 74 14.2	DIST. TOELAY. TIOLE. VYDTAS.	337	DIST. MUB. TR/TICLE: O	1510. . 3500. . 2928	

Results of design cruise aerodynamic calculations

8

MACH

ALTITUDE - 10000 0

SUPPLARY OF CRUISE LIFT-WEIGHT BALANCE
ANGLE OF ATTACKIDEGREES!» 1.029 LIFT: 12400.0 L/D: 10.440

יפוס			•				!	- 78	•	B		2 .	
		808	. 567.08	•				- 79	•	200	672	-	
ENCINE SIZING DATA FOLLOW	_	RTHET2 .	D. (HPAYLB)	41730	2612	2.28		0 7	312.5	3 8	2	7.0	2
₽;	P. 1.1560	12 · 498.48 RINET2 ·	NO FLT.COM	XXCREF	14012	CO-0-1		56 8 78 8 78	55	8 0 0 E	- 58.5 58.4	m,	P. ~
	E INTO. CR	8	THIS PAR SET, AND FLT. COND. (HPAYLB)	40103	028	THIS PLT. COND.	POLER(HPHS	HPANLB.	9			_	
	TURBOTHOP ENGINE INFO. (RAP. 1. 1560)	MACH NO 40	HP AVE AT THE	SON S	PCNCR	HAX AVAIL HP. A	RATED SLS HORSEPONER (HPHSLS)	PCPOIR PCRPH	BSFC.WF.	XNHAX CR. DPROP.	XJ.CP.CT.	B. AF. COD. BLANG.	KODE, TSFC.

	8 .	. 729.84			729.8		= 7
19601	32 RTMET2 •	COND (HPAYLB)	KX - 1.0780			7 416.4 023 048	1324 3124 7292
TURBOPROP ENGINE INFO. (R.P. 1.1560)	2114 T2 · 505.32	15 PM SET. AND FLT. COND. (HPAYLB) = 41189. HPSLPF + 726.6	41730 XNC/	4 4741 14072 4 4741 14124 14 1741 517 COMP 14	121	.57 1.6FP.: 1362.	
TUPBOPROP ENGII	5	;₹	PONS	14012 14012	เรรร	BSFC, WF	XJ. CP. CT. • BL. AF. COD. BLANK JET THRUST • KODE. TSFC •

23.0

.772

X.

		862.7
	. 662.71	7.298
_	FE ST 12 - 522.53 RTNET2 - 1.0037 FE ST AND FLT COND. HPAYLB1 - 86 41730	868 39 00 840.0
P. 1.15601	522. 53 ND FLT. COM HFSLFF XNCREF PCNCHX 14012H 14123F	S1 - 840 (868.4
JEROPROP ENGINE INFO. (R.P. 1.1560)	1929 T2 522.53 RTNET2 1 CYCLE THIS PAR SET AND FLT. COND. (HPAYLB) 1 41730 HFSLEF 725 6 14576 XWEFF 41730. 1 0000 PCKCHX 1 0780 1 9963 T4072H 4 4438	AL THIS FLT CEEPONER (HPHSLS)
TUPBOPROP ENC	- E	RAY AVAIL HE RATED SLS HORS HPM. HPMSLS. HPM

Performance of one engine at design cruise for specified engine

Performance of one engine at T.O. flaps - one engine out climb condition

Performance of one engine at T.O. flaps - all engine climb condition

<u> </u>	34.82
767 8 500	-122
486 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25.5 26.5 28.
1.027 575 1684.6 41730 0	25 C C C C C C C C C C C C C C C C C C C
PCPOAR, PCRPH, • BSFC, WF. THEROP, FT, EFFP, 197P, • AMANA, CR, DPROP. •	X J.C.P. CT BL. AF. CCO. BLANG. JET THRUSTS KODE, TSFC.

TURBOPROP ENGINE INFO. (RHP+ 1.1560)

								88			8	;			8		
828	520 23							629.9			12	8		8	-		
72 · 521.69 RTHET2 · 1.0029	D. THPANELS	726.6	0.00	4 4509	4 4509	. 864.46	8	840 0	86. -	53.3	20	84		~	0.71		ž
• 521.69	AND FLT.COM	HPSLRF F	PCNCHX	T4072H .	1412RF	THIS FLT COND (HPM)	72) • 840 00	864.5	28.	576	1795.00	41730.0	0.06	9	m	2	•
1706 T2	HIS PUR SET	1730	88	1766	4 4509	AT THIS FLT	SEPONERINAMIS	HPHSLS, HPLIR, HPAVLB, .			ft.effpi.effp. •	••			ڔ		
• TPE-331 CYCLE	HE ANTE AT T	2 5		PCNCR	14072	MAX AVAIL HE	RATED SLS HORSEPONER I HPHSLS	THE HOMES S. HO	PCPOLIN. PCRPH.	SSFC. LF.	THEROP, FT. EFF	MANAX CR. DPROP	280	XJ.CP.CT.	BL. AF. COD. BLANG.	LET THRUST.	K00E. 15FCs

Performance of one engine at landing flaps + LD gear ext. - all engine climb condition

> 0.0 DEG F TAKE OFF RATE OF CLING REQUIRENENTS - FAR PART 23
> AIRPORT ALTITUDE - 0. FT. AMBIENT TEMP ABOVE STO. DAY-

200
237.16 1078.35 381.62
532 70 2671 64 2083 79
137.7
800
T.O. FLAPS - ONE ENG OUT T.O. FLAPS - ALL ENGINES LANDING FLAPS-LD GEAR EXT - ALL ENGINES
FLAPS - ON FLAPS - AU NG FLAPS-U

154 6 KTAS 154 6 KTAS 50 0 FPH 12000.0 LBS ENCINE-OUT SERVICE CELLING BEST RATE OF CLINB SPEED ENCINE-OUT RATE OF CLINB NEIGHT AT ALTITUDE :

PESIZE ENGINES AT CRUISE TO ACCOUNT FOR RESIZED MACELLES

567.08 ** TPE-331 CYCLE ** 498.48 RTHET2 **
** TPE-331 CYCLE **
**PP AVLB AT THIS PAR SET AND FLT COND (HPAVLB) **
** 71 ** 393.14 **
** XNCR ** 40103. XNCREF ** 41730. TURBOPROP ENCINE INFO. (RNP+ 1.1560)

size was determined during engine sizing KNAC=1 option was specified and nacelle The previous series is repeated for properly sized nacelle since the

ORIGINAL PAGE IS

2		729.8	8	,	7.28	742	37 . 38
967.1 9 917 0072	.8870 • 729.6	729.8 . 786 8.500	2 -	1.0037 • 862.71	7.	764	<u> </u>
1.0780 4.2192 4.3803 840.0 840.0 312.5 048 048 114.0	RTHETZ • 1. (HPAN.B) 726 6 41730 1 0780 1 4741 4 4741	88.4 6.6.4 6.6.4 6.6.4 6.6.4	23.0	RTET2 - (HPAYLB) - 726. 6 41730 1 0780 4 4438 4 4438 4 4438		496 4 029 048	25. 56. 26. 56.
PONCIX - 14012H - 14012H - 14012H - 14012H - 15012H - 150	1.156 505.32 FLT.CO HPS.IPF PCNCRE PCNCRE T4128F NO. HPM	729.8 729.8 869 1359.9 41730.0	6.5 5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	1.15601 522.53 FLT.COND HPSLIF * XKCREF * PCNCHX * 14072H *	847	575 1680 8 1730 0	04. cr
9421 9610 1.2192 NERILPIN PAVLB.	14 T2 « PMR SET.A 1189 1730 29870 0000 4741 THIS FLT	FOREKIERTSC.		70. (1946) 72 • 72 • 72 • 70 • 70 • 70 • 70 • 70 •	ERCHPHSLS NVLB. •	EFFP. •	
* 45 £ 5 \$	ANT TATE	ALS HOWEN	CT. • COD. BLANG• RUST• SFC•	ENGINE 331 CYCLE NT THIS THIS THIS THIS THIS THIS THIS THIS	S HORSEPON S.S. HPWR. HPV CRPH. *	F. FFFP. EF CR. DPROP.	OBLANG ST. C.
PCNR MAX. AVAIL. H MAX. AVAIL. H MAY. HPMSLS. I PCPOUR. PCRP BSFC. W. I THERD' FT. EI XMAX. GR. CP. CT. E XJ. CP. CT. E KJ. CP. CT. E RL. AF. COO. B LET THRUSTON	TURBOPACE "MACH NO." "PE-3 "H AVLB." XN. XN. XN. AN. AVA. PCC. "AN. AVA. "AN.		M. CP. CT.	**************************************	PATED SE PCPOLA.	THEROP IN THE STATE OF THE STAT	M. CP. CT. JET THRUS KODE. TSFC

TURBOPROP EXCINE INFO. (RIP. 1.1560)

						6 65		•	ğ			8.2		
6200	829.83					628.9		333			<u>8</u>	-		
T2 • 521.69 RTNET2 • 1.0029	. (HPAYLB)	41730	4 4509	4509	8	3.048	8	1 50.3	9	! •	2	0.7		787
. 521.69	AND FLT.COM	XXCREF	PCNCHX 14012H	141285	5.5	264.5	- 024	275.5 8 00.7	41730.0	0.068	3 6	m	2	^
. 1706 T2	HIS PAR SET.	41609.	0000	4 4509	HORSEPOLERINPHS	SLS. HPWR. HPAM.B	•	PEPI EFFD .				ģ		
• TPE-331 CYCLF	HP AVLE AT T	SACS SACS		14012 AX AVA 11 AB	ATED SLS HOR	PH. HPHSLS. HP	CPOIN PCRPH	PROP FT PEF	NATAX GR. DPRO	PSPO	J. CP. CT.	L. AF. COO. BLANC	ET THRUST.	DOE JSFC.
	• •	•	-	• =	: E	X.	a. (0 ←	×	-	×	8	7	¥

TAKE OF RATE OF CLINB REQUIREMENTS - FAR PART 23
AIRPORT ALTITUDE. 0. FT. ANBIENT TEMP ABOVE STD. DAY. 0.0 DEG F

5	55°
CL PEO	858
R/C REG (FPH)	237 18 1078 35 381 62
RAC (FPH) A	517.49 2652 63 2066 88
V (KTAS)	137.7
ALT IFTI	900
8	T.O. FLAPS - ONE ENG OUT T.O. FLAPS - ALL ENGINES LANDING FLAPS-LO GEAR EXT - ALL ENGINES
CONFIGURATIO	T.O. FLAPS T.O. FLAPS LANDING FLAI

•• ENGINE-OUT SERVICE CEILING • 13134.4 FT.
BEST RATE OF CLIMB SPEED • 152.4 KTAS
ENGINE-OUT RATE OF CLIMB • 50.0 FPM
MEIGHT AT ALTITUDE • 12000.0 LBS

ENGINE SIZEO TO HATCH CRUISE DRAG PROP DIAMETER* 8:50 FT. S.L. HORSEPOWER* 84 ENGINE SIZE METS RATE OF CLIMB REQUIREMENTS
RATE OF CLIMB. 2066.9 FPM. RATE OF CLIMB REQ. 361.6 FPM

MAXINLM S.L.S. ENGINE PERFORMACE POWER 840 00 PROP RPH 1999 7 PROP DIAH 850 PROP TIPSPD 890.0 MOLANT AND GEAR BOX ASSENBLY WEIGHT

Summary of engine sizing

\$80. 500. 500.

PROPLESION SYSTEM VEIGHTS
ENGINE VEIGHT/ENGINE
NACELLE VEIGHT/ENGINE
PYLON VEIGHT/ENGINE
PROPLESOR VEIGHT/ENGINE

MOUNT AND GEAR BOX + 94. POUNDS AFTERBOOY + 0. POUNDS

TNO-STACE . 94. POUNDS

ŗ
S IX
DENE
Pecirio
TAROPROP
MAR

			•		
REV OF 1	FFŞĒ	27 52 F	ğ== =	ğit i	FT FT SQFT SRLINE
19. PLUS CREV OF	12.00 14.00 16.00	27,72 26,35 6,37 9,00 15	45 ñ n 5 5 - 5 8 5 8 8 5 - 8	-8008- 208586-	11.04 FT 2.91 FT 2.0 SOFT 1.A/C CENTERLINE
PASSENCERS .	25.58	(SV) (SV) (SV) (CBARV) (SCH) (TCR) (TCR) (TCR) (YCV)	(ARMT) (SMT) (BMT) (CBARMT) (TCMT) (ELTH)	(ARVT) (SVT) (BVT) (CBARVT) (TCVT) (ELTV)	(ELN) (OBARN) (ENP) (SN) 7.5 FT. FROM
. 12500.	LENGTH VIOTH VETTED AREA DELTA P	ASPECT RATIO AREA SPAN GEORI HEAN CHORD QUARTER CHORD SNEI TAPER RATIO TAPER RATIO TAPER RATIO TAPER LOADING WING LOADING	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS/CHORD MOMENT ARR	ASPECT RATIO AREA SPAN SPAN THEAN CHORD THICKNESS/CHORD MONENT ARH VOLUME COEFF.	LENGTH MEAN DIAMETER NUMBER ENGINES METTED AREA LOCATION
GROSS VEIGHT	FUSELACE	3	HOR. TAIL	VERT. TAIL	DG.MCELLES

WIVE + 310, KTS VNO + ULT. UF + 5.70 MAN. UF	264. KTS HHO 3.80 GUST UF	S. P. C.	543 F . 2.96	
PROPULSION GROUP PRINARY ENGINES PRINARY ENGINE INST. FUEL SYSTEM PROPULSOR VEICHT GEAR BOX VEICHT TOTAL PROP CROUP VT.	(WE) (WE) (WESS) (WE) (WE)	200 200 200 200 200 200 200 200 200 200		
STRUCTURES CROUP VING HOR. TAIL VERT. TAIL FUSELAGE LANDING GEAR PRINARY EGA PRINARY ENC. SECTION GROUP VEIGHT INC. TOTAL STRUC.GROUP VT.	(W) (W) (W) (WC) (WC) (DELVST) (OELVST)	2367 226. 229. 220. 220.		
PLIGHT CONTROLS GROUP COCKPLT CONTROLS FIXED WING CONTROLS SAS SAS GROUP WEIGHT INC. TOTAL CONTROL WT.	INCC) INCC) INCA) (OELUFC) (WC)	2400K		
MT. OF FIXED EQUIPMENT	(ME	1749.		
NEIGHT EIPTY	(ję	7471.		
FIXED USEFUL LOAD		88	LINC. CREV 1	
OPERATING VEIGHT ENPTY	(OKE)	8157.		
PAYLOAD	Ē	2300	IPAX.VOL 19. DESIGN PAX.	-
Tal.	(NEA)	2043	(MFV+ 2043.) (MFTP+ 0.)	
GROSS VEIGHT	(NC)	12500		

			•				CL 39544 39544 9138 9138 0838 25534 42732 5930
		٠		FER RADIAN	FILE DRAGE		0 0000 6 40074 0 91416 0 91416 3 45620 1 64369 1 64369
VETTED AREA (SQFT)	248-1-20 25-1-20 28-1-	1796.37		25.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	HININGH VING PROFILE DRAGE		TAKEOFF CD 02553 02553 03151 0515 06590 108712 11081
-3	00764 00985 00197 00298 00000 00000	.02534	. 003914	2 CLALPH 5 (SEE)	(ASSUMES MINIMU	1 2	0.0000 17196 17196 17196 17196 17196 17196 17196 17196 17196
FLATPLATE INEA(SQFT)	1213 7335 3614 5465 6266 4412		•.		3	INC. • .02185	10 G.E. 10 C.D. 10 C.D. 10 C.D. 10 C.D. 10 C.D. 10 C.D. 11 C.D. 12 C.D. 13 C.D. 14 C.D. 16 C.D. 17 C.D. 18
PEA	NN O	7.	MEAN SKIN FRICTION COEF	R) AT CRUISE HACH	. 0512	CEAR CD	-GR UPLIF RIL FLAPS UP CO CO CO CO CO CO CO CO CO CO CO CO CO
BFEADOW	USELACE USELACE ERT.TAIL OR. TAIL NOINE NAC. IP TAINS	TOTAL	HEAN SKIN	DTWATIC COEFF. A1 A2 A4 A4 A5 A5 A6 A7 A7 A7 A7 A7 A7 A7 A7 A7		RETRACTABLE LANDING CEAR CD INC.	D LIFT/DRAG-GR ALPHA CL 00000 17112 00000 34275 00000 681337 00000 68562 00000 19787
290C BPE	VING FUSE FUSE TIP	,		ADROTHAM! A1 A2 A3 A3-C00 A5-1/1 A7-1/1 A5-1/1	CONTINUE CO	RETRACTAB	LOW SPEED LIFT/DRAG-GR UPLIF RID ALPM CL -2 00000 0 00000 0.2553 0 00000 17112 0.2553 2 00000 34225 0.3145 4 00000 5137 0.3939 6 00000 68450 0.6647 10 00000 1 19787 10993

LANDING CD 06232 6 06758 8 06758 10 07657 9 07657 9 15934 9 15547 9 16500 8

TAX! AT IDLE THRUST

TINE RANCE (MRS) (MR) 97.8 KTS EAS VRAT: 1.100 CLT0: 1.143

Š

ITEM. 519. 066-5TD. + 0.1

(ELEVATION.

TAKEOFF

00

00

85-88-

55 55 55	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	\$335 \$335 \$335 \$355 \$355 \$355 \$355 \$355	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.
THRUST 1 Bes	5446 5234 5234 5234 6400 6400 6400 6400 6400 6400 6400 64	85 85 85 85 85 85 85 85 85 85 85 85 85 8	2470 2448 2448 2448 2329 2329 2328 2328 2328 2328 2328
LOAD		3558	2 850000000000
Ş	000000000000000000	242 242 713 1195 0	2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CAMMA			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ALPHA (DEC)		€ 7000 7 8000 8000	
8	2000 2000 2000 2000 2000 2000 2000 200	0548 0806 0898 0949	942 9643 9643 9643 9653 9653 9653 9653 9653 9653 9653 965
ี ช	2315 2315 2315 2315 2315 2315 2315 2315	5344 9075 9943 9764 9483 3308	7995 7605 7605 7124 7124 7115 7115 6988 6988 6989 6860
ACCEL (FPS2)		~ ## ## ## ## ## ## ## ## ## ## ## ## ##	
X X X X	00000000000000000000000000000000000000	5 177 181 189 198 198 198	28888888888888888888888888888888888888
EAS (KTS	07.82.62.42.62.62.62.62.62.62.62.62.62.62.62.62.62	20 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20000000000000000000000000000000000000
TAS	2000 4 20 20 20 20 20 20 20 20 20 20 20 20 20	NS: 17.4 12.6 12.6 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9	19
ALT.	00000000000000000	2228.0 10 0.0 10 0.0 10 0.0 10 10 br>10 10 10 br>10 10 10 br>10 10 10 br>10 1	0 87 87 87 87 87 87 87 87 87 87 87 87 87
VEIGHT (LBS)	22.22.22.22.22.22.22.22.22.22.22.22.22.	ν. · · · · · · · · · · · · · · · · · · ·	A7 24 12437 12437 12437 12436 12436 12435 12435 12435 12435
72E 0580 (185)	######################################	<u> </u>	017ATA 027ATE 037A
OIST. (FEET)	00000000000000000000000000000000000000		78ACTION S 3356 - 3356 - 3356 - 4229 - 4622 - 4672 - 4670 - 5355 - 5813 - 5813 -
71.FE	0-44464867895-4448678 000000000000000000	141 101 101 101 101 101 101 101 101 101	R R R R R E E R R R R R R R R R R R R R

2 2025 2 2028

3.8

8888888888888888

		4979	9.99 9.00 9.00	888	888	88 6.4	88 88 89 80 80	986 887.	888	§ \$	£.
		THRUST (LBS)	5446. 5331. 5214.	5101 4990 1.002	4778	4579.	- 66 - 66 - 66 - 66 - 66 - 66 - 66 - 66	4214	3974	, 68 	888
		FACT	888								888
		ŞĒ	000								00
		CAPPIA (DEG)	888	000	00	00	00	00	000	•	888
		ALPYA COECU	ន្ទនន្	ន្តន្តន	88	88	ያ ያ	ଅଧ	888	8 8	888
		8	2000 2000 2000 2000	229 888	200	263	0485	25.55	26.5		984
		8	2314	23.5 23.6 7.6 7.6	23.68	2322	232	2323 2329	233	ניני. נוני	2338
		ACCD.	12 22								88
		20	0 000 024 024	2000 8000 8000 8000 8000 8000 8000 8000	967	86	8 2 8	32	- 97	8	88
		EAS (KTS)	0 V Ñ	288 - 10 10	5.0	22	2%	82 1	- 6 - 6 - 6	EAS	100
		TAS (KTS)	0.5	288 - 10 10	4.2 8.0	6.7 6.7	2 % 4 %	85 7.7	28.5 - 6.5	388	109
	E	Æ	000	000	00	00 00	00 00	00	000	TAS.	00
9. DEG.STD.	ö	ME IGHT	1244 1244 1244	1244.	12443	12442.	12442.	12441	2440 2440 2440	16.5 16.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18	12440
TEMP 51	ELEVATION.	488 488 488 488 488 488 488 488 488 488	888	888 866	57.3	57. 58 –	2 2 4 4	20 G	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 ± 5	88
ב	_	DIST. (FEET)	00%	8 5 3 6 6 6	312.4	5 % 5 %	621.4 745.3	879 - 1022 5	1336.9	FAILURE 1685 9	1869 6 2056 4
	TAKEOFF	1:NE	000 0-N	u 4 ₪	90	60 00	00 2=			_	86
		ORIG OF PO	INAL OOR (P_A QU_A	GE LIT	IS Y					

WSTLKT - 97.8 KTS EAS WRAT - 1.100 CLT0 - 1.1431

ENGINE OUT PETFORMINCE FOLLOWS VEND + 140.0 HOUTS EAS

0000000000000000000

00		Nice	i n	٧
32	22	232	2 29	Y
÷	60 00	200		0
25	59	883	: 39	P
0575	90	888	88	5
0.6	90	~~	w no s	
2.0	80.0	860	255 255 255 255 255 255 255 255 255 255	
	-	-		
8=	<u></u> 3	358	3 5	3
~~-	~-		Š	
25.	57	225	8 V35/VS* C	9
			•	-
E- 19.8 AND TAS- 112.8 EAS- 112.8 1 1 60.7 12439 0.0 113.2 113.2 11 7 60.8 12439 0.0 114.8 114.9 11 2 18 DIST- 2894 6 TAS- 116.0 FAS-	4 80	900		D
555	200	22:	= =:	
~~~			Š	
SG.	9	220	200	-
33		==:	<u> </u>	-
700	00	4	6	
		-=7	(	ì
X	<b>.</b>		ِ <b>خ</b> ر	
<b>₹88</b> .	22	888	5 88	3
8555	22	225	200	•
0 N 00 S	<b>6</b> –	W 4 F	៳៳៰	•
2882	82	555	- 5	
_ "	•		7	
<u> </u>	60	004	N.	•
E 22.	93	823		
MOTATION (TIME 20 0 2246.1 21.0 2438.7			֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	
<b>282</b>	25	200	2 × 0 0	9
8	, ~ ~	14141	. <u>5</u>	4

-2 88888 KK

867-0

848 838 835 835 835

M-884 PO 88000 S

86 2792 88

**22 2**28222

**88**==8 **87** 

00

22

88

200

535

3789.8 FEET ACCELERATE - STOP DISTANCE

3613.7 FEET 3455 ENGINE OUT DISTANCE TO 35 FT. ALL ENGINE DISTANCE TO 35 FT. FAR 25 T O. DISTANCE (1. 15xL) ALL ENGINE DISTANCE TO 50 FT.

12434. LBS KE GHT 5 3 END OF TAKEOFF PHASE ... 160 HPS FUEL USED. TIME

ACCELERATE TO MACH NO.

									l cruise			limb to	ed speed -			climb to speed -		
				407 407 878	8 8 9 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	774. 744. 715. 687. 659.			mal rated	, ט		au .	c specified		,	end of max. s		
				THRUST (LBS)	288 288 288 288 288 288 288 288 288 288	2317. 2203. 2095. 2095.	•		at normal	specified		from	cruise ar ayload			tion from cruise at	oad	
				ΣĒ	2354 2275 2344 2090 2090	247 247 260 260 260 260 260 260 260 260 260 260			s peed	for sp		ration	<b>→</b> 124		•	ration of cru	m payload	
				A ANG.E	52 14 73 10 14 31 10 14 31 10 16 13 80 13 19 19 19 19 19 19 19 19 19 19 19 19 19	7=000			Max. s			Acceleration			•	Acceleration from start of cruise at	maximum	
- 3 EL		-		ALPHA GAIRIA (DEG) (DEG)	0.0000	0 60 50 54	Ŧ				_	ب					_	
452 452 1878 1878 1	88 88	•		8	200000 200000 200000 200000	0497 0497 0497			-		הלה הפר הפאשו	719	5. E		1978 168/81	688	2	
TAUST (LBS)	3328	RANCE		ರ	6650 6650 6650 6650 6651 77	6682 6683 6683	RANCE.	£	1		THRUST (LBS)	2107	RANCE.		THRUST	2107	RANCE.	
MACH	635	8		MACH	86666666666666666666666666666666666666	2222	39. LBS	4059	1		MACH	638	587		MACH	88	- 891	
Ž.	282	12434	KTS	A S	2222222	2888	12369	ģ			<b>3</b> 5	<b>K</b> K	12360		<b>35</b>	<b>%</b> §	12351.	
EXS EXTS	150	VEIGHT.	( 140.000 KTS)	EAS (KTS)	555555	4444	K CHT.	MACH NO			EAS (KTS)	5.8	VEIGHT.		EAS (KTS)	22.2	KICHT	
TAS (KTS)	8=	5	EAS ( )	TAS	227288 227388 227388 227388 227388 227388 227388 227388 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 22738 2273		S	.44 KTS			TAS	223.	<b>8</b>		TAS (KTS)	85 26 26		
AT.	88	8	CIFIED	ALT.	85688888888888888888888888888888888888	8888 8888		3			ALT. (FT)	88 88 88	140.01		ALT.	988	149.2 LBS	
WEIGHT (LBS)	12434	SCHENT USED	10000. FT. AT SPECIFIED	VEIGHT (LBS)	12434. 12431. 12424. 12418. 12405.		10000 FT FUEL USED:	TAS	986		VEIGHT (LBS)	12369. 12360.	GHENT USEO:	•	WE IGHT (LBS)	12369.	SED.	8
<b>5</b> 85 885 885	65.7	ACCELERATION SEGMENT . 160 HRS FUEL USED.	9000 FI	9850 USEO (BS)	<b>88588</b> 9	22.58	TO 10	10000. FT	MACH NO		1350 1850 1831	131.5	NTION SE	MACH NO	7050 1050 1050	131.5	TION SEC	MACH NO.
RANCE (NH)	82 83		CL 188 TO 1	RANGE (NH)	0-46466	٧.٩. <u>- ٧</u>	OF CL. INB TO 243 HRS		ACCELERATE TO MACH NO.		RANCE	12.38	ACCELERATION SEGRENT 254 HRS FUEL USED.	ACCELERATE TO HACH NO	RANCE (NH)	25 25 25 25 25 25 25 25 25 25 25 25 25 2	ACCELERATION SECRENT 267 HPS FUEL USED.	ACCELERATE TO MACH NO
THE	<b>8</b> 8	DO OF	2	E SE	8225825		END OF	ALTI TUDE.	ACCEL		THE SE	28	END OF THE:	ACCELE	THE	% 2%	1100	ACCELE

ſ	•	
다. 다. 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	822	5 F
THRUST (LBS)	2107	RANCE .
¥0 ×	636	ş
MON	83	12358
EAS (KTS)	200	EIGHT.
TAS (KTS)	233	2
E E	98 98 98	
ME CONT	12369.	GENT USED
555 555 555 555 555 555 555 555 555 55	12.5	ERATION SECHENT HRS FUEL USED
RANCE	5.38	ACCELERA .257 HRS
## ## #85	252	ENO OF

Acceleration from end of climb to start of cruise at speed for best specific range - maximum payload

CHUISE PERFORMANCE SURLARY
*** MAXIMM PAYLOAD ****
FUEL AVAILABLE* 904.

																							į					
	RANCE	5				575	2		Ç	25			633	8	Y		ç	- 559	2	60-6		2	554.7	9	1000	3	•	·
-	BEST SPEC	1																									;	•
	POWER	2				21/	2	2		5	9 0 0 0	X1.4		*	\$0 <b>7</b>	CBEC	3	3	<b>4</b> 03	2630	200	5	Ç	676	40903		2	;
¥	NORMAL																										4	<b>;</b>
	SPEED	2	<u> </u>	*****	200	R,	2	S	1007		8	223.6	500		8	6763	5	26	8	3464	10 771		- 1	ŝ	42.09		_	
J W		SIVE	2 2 3 3 3		X		2	9	250		3	23.6	C C C C		3	675	5		2	996	0.963	27.5			41839		5	_
					¥	2	2	6	ž		- (	K18	KTS	•					_								FVEL (LB)	15.0 MIN.
						AMA		3		AL TITUE		3	EYS	272			ANCLE ATTAL	S CAN SAID		<b>3</b> .	3	200	ביני נייני		ALC: MARK	•	RESERVE FLE	_

8
ğ
¥
5
ERATE
ğ

242		_
25.5 18.78 18.78	688 7.9	E
19805T 11853	2107.	RANCE.
7 × ×	638	S
Ž Q	K K	12360.
EAS (KTS)	140.	Elat.
TAS (KTS)	233	¥ 162
AT.	000 000 000	140.01
ME IGHT	12369.	CHENT USED.
PER USED (LBS)	131.5	
RANCE	12.38	ACCELERATION SE .254 HRS FUEL
A S	ZŽ	THE.

# ACCELERATE TO MACH NO. . . 403

197 197 197 197 197 197 197 197 197 197	688 742	5
THRUST (LBS)	2107	RANCE.
A P	8 89 80 89	5
A O	<b>%</b> 3	12361
EAS (KTS)	140.	E CHT.
TAS (KTS)	5.K	
ALT. IFT)	88 88 88	149.2 LBS
WEIGHT (LBS)	12369. 12351.	CHENT USED.
다. 1.65년 1.65년	131.5	LERATION SE HAS FUEL
PANCE	7.2 7.38 .88	ACCELERA 267 HRS
TIME EMSS	3,8	20 of

Similar acceleration segments for maximum fuel

# ACCELERATE TO HACH NO. + .365

덛

ğ

A-17

15/97 (16/19)	85K	5
THRUST (LBS)	2107	PANCE.
M V	80.00 87.00	2
Ž.	<b>8</b> 3	12358.
EAS (KTS)	28 28	E1011.
TAS	233	25 25
P.T.	88 88	141.7
ME ICHT	12369.	CHENT USED.
55 55 55	131.5	ERATION SEC.
PANCE (NR)	22. 22.	ACCELERA 257 HR
THE THEST	26	20 136 9

SUPPLART	100000
CASE PERFORMANCE FOR	HUM FUEL
CENTRA CAST	FUEL AVAILARES

				•
PANCE ENO ENO ENO ENO ENO ENO ENO ENO ENO EN	7 251 1648 3916 8584	2000 2013 2003 3654 6901	2275 2275 2275 529 6 3787 4081	
AT GEST SPEC START CRUISE	257 142 12358	233 4 200 6 200 6 3654 6785	1 - 60 3274 10 455 10 455 116 1176	
<b>-</b>			6.938 6.938 604.9 3680	674.
NOPHAL START CRUISE	267 18 12351	257 4 221 2 221 2 4029 6853	2691 9 259 632 0 632 0 5034	
<b>⊢</b> 8	•		2473 2473 504 0 3804 4369	. 101
START START SPUSE	W. 525	223 6 223 6 32.2 6751	1.507 3568 10.963 534.5 5175	35)
	LESS ESS	×	E OEG.	ESERVE FUEL (LB
	PANCE PUEL USED WEIGHT	EAS HACH NO. DIV. HACH	FUSE. ANGLE OL. FUSE. FLOV FUSE. FACTOR SPEC. RANGE	PESERV L

ACCELERATE TO MACH NO. . . 350

457 87.53	688 719	ē.		77 187 187 187 187 187 187 187 187 187 1	82%	£
THUST (LBS)	2107	RANGE.		THRUST (LBS)	2107	PANCE.
\$0 50	8.6 8.6	5	,	₹ >	25	ş
FAC.	KK	12360. LBS		A A C	<b>K</b> 3	12351
EAS (KTS)	192	VEICHT.		EAS (KTS)	22.0	VEIGHT.
TAS (KTS)	163 223			TAS (KTS)	<u>8</u> 6	
ALT:	986 886 886	140.0 LBS		PET.	88	149.2 LBS
WEIGHT (LBS)	12369.	GHENT USED.	. 603	VE CHT	12369. 12351.	WENT USED
355 355 355 355 355 355 355 355 355 355	20.04	TION SE	MACH NO	70EL USEO (1.851)	131.5	TION SEC
PANCE (NE)	12.38	ACCELERATION SECHENT 254 HRS FUEL USED.	ACCELERATE TO MACH NO. + .403	RANGE	7.38	ACCELERATION SECHENT . 267 HPS FUEL USED
TIPE	žķ	ENO OF	ACCELE	7. 3.65 3.05	2%	TINE OF

Similar acceleration segments for design payload

ğ

ACCELERATE TO MACH NO. + . 365

덜

25 26/87	725	5 5
THRUST (LBS)	2107.	RANCE.
ŠŠ	86	5
Ž S	X X	12358.
EAS (KTS)	2.5 4.5	E CHT.
TAS	233.	25 25
A.T.	988 888 888	141.7 [
VE IGHT	12369.	SENT USED.
(88) (88)	13.5	TION SEC
PANCE INT	5.5 88	ACCELERAT
ES ES	32	100 1169

CRUISE PERFORMACE SUPPLARY
FOR
FUEL AVAILABLE 2043.

AT AT

		A		7		A1	
			o speed	NORMAL	Poen	BEST SPEC	. RANCE
	•	2	3		2	START	2
		K	8 8 8		₩ Ā	35 35 35	SEIN
	Š	Ķ	2		2.538	K	2 948
		ŗ	CRA		-		
					3	2	. ***
		2	7		269	27	1624
		2002 2002	8280		1001	23.CC	10076
					8		3
			3		3	3	0000
		243	6.63.6		7.70	233 4	233 4
		192.2	2 2		22.2	2	2
		Ş	2		9		3
244 >16			3			R	ç
		C/0.	3		200	6765	200
WALE ATTACK	E	8.8	25		2	2	1 22
FUSE. ANGLE (	, W	507	- 02		2	3	
d		X	× =			3	- 6
Ę		2				36/4	1997
		2	2		7	10 455	9 594
ו ארם		534.5	22		619	557.8	7 Y7'Y
BREG. FACTOR !		5175	1664		44.7	K176	7666
SONT DANCE		21870	700.				000
		201	• > 6 > 6		8	3	42803
		3					
TENEME TO	ברור פצי	¥	5	•	Z	•	=
-	- KE					٠.	

RANGE - 603. BLOCK TIME: 2.538 USED FOR DESIGN RANGE AND COST

2936. FT. LANDING ELEVATION: 0, FT.
LANDING WING LOADING: 45.05 PSF.
LANDING WEIGHT: 12500 LBS. LANDING DISTANCE FROM 50. FT. .

4896. FT.

F.A.R. FACTORED FIELD LENGTH .

specified iteration on gross

weight would follow until

range or endurance had been

Design range results if

required value was satisfied

APPROACH TRANSITION DELAY

DIST. 952. DIST. 145. DIST. 337. DIST.

R/S. 600. XLFHX. I 100 TDELAY. 2 00 HUB.

VAPEAS. 112.76 SINKTO. 3 000 TIOLE. 300. TR/TIO

VAPIAS. 112.84 VSTEAS. 86.74 VTDTAS. 99.82 ABARIG.

THETA. 3 01 CLHAR. 1.7651

258.75 KTS NACH NO. MOUNT AND GEAR BOX ASSENBLY WEIGHT 10000 FT TAS* ALTITUDE.

TNO-STACE . 94. POUNDS

HOLNT AND GEAR BOX + \$4. POUNDS
AFTERBOOT + 0. POUNDS
GEAR BOX COST + 6323. DOLLARS

A-22

AIRCRAFT PRICING ... COST DATA ...

7

~

NUMBER .

NAX CRUISE SPEED. 259. 10075	BASIC PRICE - 766192 DOL. ADD. EQUIPPENT COST - 183985. DOL.		11212. 241743.		366123 SUB-101AL	99473. MANUFACTURING COST 89905.	589379. DEALER COST	766192 BASIC PRICE
DPTY VEIGHT 7471. LBS	CONSUMER PRICE - 950177. DOL.	O. MARS. 1 PCT1	PURCHASED EQUIP. 2417	(\$/PROP* 1813.) (\$/GRBx* 6323.) (014ER = 57470.)	5681 ENG. PL. SALES, G-A1 36, PCT) 1333	FACTORY PROFITE 18.PCT1 899	į.	•

DESIGN MISSION

0 10VER-EAD 50 PCT) 463 117284. TOTAL (DQL/YR) 1830. 2004. (HULL 2. OPCT) V 95018. ( 8. YR-20. PCT) BLOCK TIME - 2.538 HRS HOURS/INSP. + 100. HRS FIXED COST STORACE INSURANCE DEPRECIATION 9 OTHER FAA TAX 1569 LBS CPERATING COST FOR NOR.RATED POWER AND 10000. ALTITUDE 700 \$/CAL 88 4.2 88 94 89 94 TBO+ 3000, HRS. BLOCK FUEL. FUEL COST. UTILIZATIONIHAS/YRI TOTAL OPR. COSTIDOL/HRI TOTAL OPR. COSTIDOL/HRI 5 37 TOTAL OPR. COSTIC/ASMI) 28.26 102.23 TOTAL g2220 £2848 603. N.H. FLEL RATE: 92.2 CPH. VARIABLE COST FUEL-OIL FOSP - HAIN OVERHAUL RES. OTHER RANCE. SEATS:

1724 67 2176 67 FNRQ. SPEED LIMITED BY 1990 OR VINO .... HACH NO. . . 4059 PHAY.

PROPELLER NOISE FOR 2. ENGINES AT 268.0 KTAS AND AT 1000 O FEET REF.LEVEL+ 93.97 DIA AND BLADE CORR:+ 4.33 DIST.CORR:+ -6.02 NO.ENGINE CORR:+ 3.01 PML ADJUST+ 5.60 **** WARNING HELICAL TIP HACH NUMBER GREATER THAN .9

TOTAL . 100.89 PACE OR 88.89 DB(A)

Far field propeller noise estimate

	·	

### APPENDIX B

÷

# TWO PLACED TRAINER WITH FIXED PITCH PROPELLER

·			

			-44 000 888-888							80		98	88	8		9362
			•••••	•									• •			• • •
			ELODY ELODY ENAC KNAC ELN OBARN	}						RACRTX HSCREQ		CAMT	PCLER	EHNOYS		SKTS SKTT
			MACELLE											•		
CH PROP		-	4 0 4-	- 12 - 0.5 2000 0.5 2000 0.5 2000 0.5		0000 0000 0007		60 & 80 8 80 8		000 000 000 000 000 000	13 302 0 302 0 302 0	0.970 000 000	80 0	900		130 1200 1200 1200 1300
F				• • • • •		• • • •		••••						•		•••
H FIXED			2222 2222 2222 2222 2222 2222 2222 2222 2222	VBARYX TCVT ARVT SLNV DVPQCV BOELTV		GOFE SCFAC OL SWSV ALPHLO		ברנט סבורנט סבורנט סבורנט		RCCRU XTORQ HPMSLS ANCOHP	PCPCA PCRCA BMEP	IDATE XCLF!	XCK 70	HOTS		20 A 20 A 30 A
GASP SAMPLE: 2 PLACE TRAINER WITH FIXED PITCH PROP	5			VERT TAIL				7						-		
E. 2 PLACE	THIS IS A PROPELLER AIRCRAFT INDUT DATA FOLLOW	···· GE CHE TRY · · · · ·	n-000	2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	***AERODYNAMICS***	000 9 00 000 = 00 00 00 br>00 = 00 00 00 = 00 00 00 00 = 00 00 00 00 00 00 00 00 00 00 00 00 00	DEVICES.	000 000 000 000 000 000 000 000 000 00	****PROPULSION***	2750	000 9 9	≈8 800 800 800	88°	900	2	2040 2270 0000
₹	944 944	35	m_0	*	8	••••	Ē		Z		• • •	• •	• • •	•	Ž	• • •
8 3	S A E		KWRITE IGEAR KCONFG KTIPX ENP NIYE KPLOT		•• AER	CRAT CRAP DELCO DELCO	HICH LIFT	JELTYP OFLPTO OFLPTO CFOC BTEOB OCLNTE OCOTE	PRO	MPORT TDEL TO XNMAX GR	\$25. \$25. \$25. \$25. \$25. \$25. \$25. \$25.	DPROP AF	BLANG XCK 80	DIST	·····VE ICATS·····	รัชส์ สัสส์
	Ē	•		HORIZ TAIL				FLAPS								
			73.00 73.00 73.00 73.00	90000000000000000000000000000000000000		8888		0 860 - 860 - 800		<b>ന</b> നന <b>ന</b> ∽	88°	= ~ 5	000	-		0710 0710 8000
			• • • •	• • • • •		• • • •				• • • • •		• • •				
			WG PAGS ENCRU HACRU	TCT TCR AR SLH CLHC4 EYEV		XX XX		RCLMAX ALTFLP FLAPN WCFLAP BENGGB		JENGSZ IPART KODECR KODETH JSIZE	PCRTO SPCHG	NTYP BL TSPIRK	7.1	KONOYS		<u></u>
			900	2						·	<b>-</b>	8				

- 900 E	9888 9888 9888		900 900 900 900 900	80-	200 200 -		80888 0 00m
40	ر رمپري	٠ س	4		• • •	,	
SKVTP LCVING ELINC LDCKHX ATHXOC DELNST	KK 406 KK 2 KK 3 KK 3		TDELTX HTHAX NFAIL	FACVI ISVING OFEN	HAPP SINKTO XLFHX		CCRV CCRV CCSENG ALR
60000000000000000000000000000000000000	00000		8889 8880	8°°	0 000 0 000 0 000 0 000 0 000		88889 98889 98889
• • • • •	• • • •			• • •	• • • •		• • • • •
SKSAS EGHECH CPHRCA STHRCA OELP	PPTLON FPTL SXOIN FMH SXWC7		OVR UN VINISN	FRESF RCRRQ OF ALT	YRATT RSHX TROTIO YTDRAT		E GAS
137 860 0 0000 0 0570 0 2780 0 123 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g	148 - 1 108 148 - 1 108 1 1 10	• • •	FRQ = 99999 FRQ = 0 11 = 0.0000	***********	20000 20000 200000 200000
SKE THE TELP CATO YHE SE	WAC UNAC HPOAB ROTA	4	XLFMAX DELTVR DV I VRAT	CRALT CRALT ICRUS	XLDGAG ALTINO MLPCT TIDLE		H 4 8 9 8 8
				CRUSE			
8.14.25 8.14.25 8.14.05 8.14.05 9.14.16	054 80		5 8 8 8 0	- 00 00 00	0000 0-n		215 100 200 200 200 000 000 000
•••••	• • • • •		• • • •	• • •	• • • •		
SEPERATE STREET			DELTT IFLY THEMAX HOO	282 848 8	IND TOELLD TOELAY HTG		NCAOE CL.1AB CH.7 TBO TCSF
	DCIK		TAX1 01	ā.	3		

	FLAP GLMXX	FLAP PERFORMANCE SUMMARY (OUT OF GROUND EFFECT) MAX VSTALL,KTS FLAP ANGLE LE ANGLE DELTA CL	SUMMARY IS FLAP	IOUT OF CL	POUND EFFE	CT) DELTA CL	DELTA CO		
FLAPS UP 1 0 CONFIG LDC. CONFIG	1.2784	6 4 4 6 6 5 6 6 6	000	000	000	0 0000 0 0000 3870	00 000 000 000 000 000		
	SINGLE OPT ANG	SINGLE SLOTTED FLAPS OPT ANGLE DELCL AT OPT	APS AT OPT	DELCO AT OPT		AREA (FT2)			
255	0 07		6923	0985		•	17.7	_	
		•		••••••	••••••				
LANDING ELE LANDING VIN LANDING VE	TEMP. S18. DE ELEYATION. VING LOADING. VEICHT .	518 DEG-STD • 0. 10N* 0 FT. 0ADING• 10 20 PSF				•	•	•	
LANDING DIS	LANDING DISTANCE FROM 50, FT.+	. FT. •	824. FT.						
F A R FACT	FACTORED FIELD LENGTH .		1374, FT.						
	APPROACH	NO.	TRANS	TRANS! TION	DELAY	AY	9		•
	DIST. R/S. YAPEAS: YAPTAS: THETA:	688 85 83 7 87 0 0	DIST. XLFHX. SINKTD. VSTEAS. CLHX.	3 000 3 000 42 72 6480	DIST. TDELAY. TIDLE: VTOTAS:	8 - 6 00 - 9	DIST. M.B. TR/TIDLE. O	0 3000 3000 3000 3000	,
IDLE IMMUST LIMITING RATE OF SINK	MITING RATE	OF SINK							
SUMARY OF CRUISE LIFT-VEIGHT BALANCE	SE LIFT-VEIG	HT BALANCE							
ANGLE OF ATTA	CK LDEGREES!	2 2	LIFT: 1600 0	500 0 L/O·	3+ B 092		ALTITUDE: 7500.0	MACH	529

				1 1					
100	۶ 0	2	200	8	8	<b>9</b> 	67.3	636	9. 19.
ENGINE SIZING DATA FOLLOW	ĸ	853 5.750	§-	8	25 26 26 26	<b>8</b> -	87 3	2. 25.	<b>8</b>
ENGINE SIZI	101 247	,88 ,0-	80 042 50 053	101.4	# 000 2000 * 0 ~	80 0 80 0 167	101 4	- 00 200 200 200 200	800 800 181
	78. 7.40.	2787.2 2780.0 2780.0	6 0 0 W	101 4	315 7 2750 0	77.00	101 138	2750 0	64.0 0.00 0.00
	HPH, HPHSLS, HPMP, HPAYLB. • PCPOUR, PCRPH. • BSFC VF.	NEROP FT EFFPI EFFP XMAX, GR. DPROP TIPSPI.	XJ.CP.CT." DL. AF. COD. BLANG. JET THRUST. KODE, TSFC.	HPM, HPMSLS, HPMR, HPANLB PCPOMR, PCRPM, .	DSFC, W TAPROP, FT, EFFPI, EFFP XOMMAX, GR, OPROP, TIPSON.	XJ, CP, CT, • GL, AF, COO, BLANG. JET THRUST. KOOE, TSFC.	HPM: HPMSLS: HPWR; HPAVLB; *	DS-C.W TH-PROP. FT. EFFP XN-M.X. CA. DP-ROP T. PC-DN.	XJ.CP.CT. * BL. AF.CCO.BLANG* JET THRUST* KODE, TSFC*

26 CL REG V (KTAS) R/C (FPH) R/C REQ (FPH) 558 49 246 42 675 68 459 10 9 0 0 0 FG F 22 -~ TAKE OFF RATE OF CLINB REQUIREMENTS - FAR PART 23
AIRPORT ALTITUDE: 0 FT. AMBIENT TEMP ABOVE STO. DAY: ALT IFT! 00 T O FLAPS - ALL ENGINES LANDING FLAPS-LD GEAR EXT - ALL ENGINES CONFICURATION

5 m

5

DIGINE SIZED TO MATCH CRUISE DRAG PROP DIANETER* 5 75 FT, S L. HORSEPOVER* 101. ENGINE SIZE MEETS RATE OF CLIMB REQUIREMENTS
RATE OF CLIMB . 459 I FPM. RATE OF CLIMB REQ. 246 4 FPM

MAXIMUM S.L.S. ENGINE. PERFORMANCE POWER 101.40 THRUST/MT 2.461 PROP FRM 2.110.0 PROP DIAM 5.75 PROP TIPSPO 635.2

B-4

PROPLESION SYSTEM VEIGHTS
ENGINE VEIGHT/FINGINE
NACELLE VEIGHT/FINGINE
PYLON VC.GHT/FINGINE
PROPLESOR VEIGHT/FINGINE
20.0

C G LOCATION OF PROPULSION. MAQ ALTITUDE: 7500 0 222822 680 H-TAIL VOL. ARH
H-TAIL C G LOCATION •
H-TAIL LOCAT ON VERT •
V-TAIL VOL ARH
V-TAIL C G LOCATION • 1600.0 1/0 250 OF MAC LIFT 8 SUPPLANT OF CRUISE LIFT-VEIGHT BALANCE ANGLE OF ATTACKIDECREESI 2.179 **13** 8000000 5000000 S VING LOCATION INFO.
FUSELAGE LENGTH
WING 1/4C LOC ON C.L.
MAC 1/4C LOCATION
MAC DIST FRON C.L.
VING C.G. LOCATION
TIP TANKS C.G. LOCATE AIRCRAFT C.G. LOCATION AREA SPAN ASPECT RATIO 17AEC SNEEP L E SNEEP L E SNEEP C CHORD HEAN CHORD

GASP SAIPLE. GROSS VEICHT	2 PLACE TRAINER W 1600.	ITH FIXED PITC PASSENCERS •	H PROP  1. PLUS CREV OF	EK 04
SELVICE.	LENGTH VIOTH VETTED AREA DELTA P		8 m 2 0	FFZ
	ASPECT RATIO AREA AREA GEON MEAN CHORD GLUARTER CHORD SWEEP TAPER RATIO ROOT THICKNESS T.P THICKNESS VING LOADING VING FUEL VOLURE	(AR) (SV) (B) (CBARV) (CBARV) (TCR) (TCR) (MCS)	##### 000000 0000000000000000000000000	ğrr <b>ğ</b> 83
141L	ASPECT RATIO AREA SPAN FRANCHORD THICKNESS/CHORD MOYENT ARK VOLUNE COEFF	(ARMT) (SMT) (GMT) (CBARMT) (CLAT) (ELTH)	2 93 2 93 2 93 12 6	8 F
VEAT. TAIL	ASPECT RATIO AREA SPAN HEAN CHORD THICKNESS/CHOPD HOPENT KRM	(ARV1) (SV1) (BV1) (CBARV1) (ICV1) (ELTV)	14 0 14 0 17 0 13 6 13 6	
ENG. MACELLES	LENGTH HEAN DIAMETER NUMBER ENGINES WETTED AREA LOCATION	(ELN) (DBARN) (ENP) (SN)	e Kg 88085	PO FT O FT O SOFT FUSELAGE

	~	
8	<b>%</b> -	
<b>P</b> 10	.5	
	ESS.	
¥ = =	3 KTS	
Ž	2.	
E TR	A Y	
2	STX F	9
GASP SAMPLE: 2 PLACE TRAINER WITH FIXED PITCH PROP	VOIVE . 144 KTS VNO : 123 KTS 1110 . 252 ULT LF : 6.60 MAN LF : 4.40 GUST LF : 4 02	PROPULSION CROUP
SAP	٠,	U.S.O
5	ξż	E.

				. TINC. CREW 1	. (PAX.VOL. + 1. DESIGN PAX.
\$87.45	85 E E E E E E E E E E E E E E E E E E E	1000K	<u>§</u>	211.	8
(WE) (WE) (WE) (WE)	(WY) (WY) (WB) (WB) (WES) (WES) (WSY)	(VC) (VCV) (VSAS) (VEC) (VEC)	(NE)	(WFUL.)	(MPL)
FREE STEEN WALLS FREE STEEN FROM FOR THE STEEN FROM FOR THE STEEN FROM FOR THE STEEN FROM FROM FROM FROM FROM FROM FROM FROM	STRUCTURES GROUP VING MOR TAIL VERT TAIL FUSELACE LANDING GEAR PRINARY ENG. SECTION GROUP WEIGHT INC. TOTAL STRUC GROUP UT.	FLIGHT CONTROLS CROLP COCKPIT CONTROLS FIRED VING CONTROLS SAS GROUP WEIGHT INC. TOTAL CONTROL WI.	MT. OF FIXED EQUIPMENT WEIGHT EMPTY	FIXED USEFUL LOAD , OPERATING MEIGHT EMPTY	PATLOND FUEL GROSS WEIGHT

GUIGNAL PAGE IS

CASP SAMPLE: 2 PLACE TRAINER WITH FIXED PITCH PROP

CRUISE HACH * . 162 CRUISE ALTITUCE * 7500. CRUISE Q IPSF1 * 29 48
CRUISE RE. NUM. PER FT. * 9.336E+05 FLATPLATE CF AT RE+10EX7 IS . 00292
AERODINAMIC DATA

PRAGE BREAKDOWN AREA1SQFT1 CDD AREA1SQFT1

VING

VING
FUSELAGE 9383 00598 151 04

VERT TAIL 2696 151 04

VERT TAIL 2696 00076 26 01

FINCHEMENTAL 0 00000 0 00000 0 00

TIP TANKS 0 00000 0 00000 0 00

FINED GEAR 1 1707 00746 NOT INCL.

TOTAL 5.6081 03575 512 62

	_
n	
>	•
0	
-4	
×	
~	-
	-
•	=
-	
200	
	•
	=
۳,	Ξ
¥	=
₹	-
×	
0	•
ŧ	
•	Ξ
٣	Ξ
_	ē
Z	•
Э	•
=	•
7	=
"	=
_	
_	ã

TAX! AT ICLE THRUST

TINE RANCE (HR)

555	8888	88888		rz	34928	22222	32832433 3283
£\$0	0000	00000	00000	<b>N</b> 4	~=2==	=====	
چ چ ج ہے	2220	28888		88	22222		
45.5 6.66.6	7777	4 60 60 60 60 (C)		មេស	ម្ចាម្ចាម្ចាម្ច	પે ભે ભે ભે ભે ભે _"	<b>2000000000000000000000000000000000000</b>
=							1
5.5	7887	357.55	20,500	8.0	44000	FFFF	
THRUST (LBS)	หหหล	กลผลแล	2222	22.2	322	555555	<u> </u>
-							
LOAD	8888	88888	88888	52	85858	588858	5583888585
52	0000	00000	0000				
=	0000	00000	0000	00	-0-00	P00000	71000 TION TO TO TO
ŞE	0000	00000	0000	00	191 379 560 668		
~					688	22222	644 659 659 659 650 650 651 653
≤::	2222	88888	0000	88	<b>^-~~</b>		05.000000000
CAMPA		000000		00	923at		82528885235
							សសេសសសសសស
ALPA (DEC)	2222	22222 2422	3222 2	22	azzzz	<b>xxxxxx</b>	xxxxxxxxxxx
₹9				Me		$\nu\nu\nu\nu\nu$	~~~~
8	88888	000000000000000000000000000000000000000	8888	0444	18837	===3=3	-8-4400844
	0000	90000	60000	28	0655 0702 0702 0717	666666	0711 0689 0711 0704 0704 0704
	00	~~~		_			
ರ	2222	22222	2222	3253 1371	9580 9169 8713 7431	329292	7740 7492 7740 7658 7658 7658 7658
	C) C) P) P)	, ii) (ii) (ii) (ii) (ii)		80 K	229944	アアアアア	222662B888
ದನ	2222	:B=%=8	<b>CRS2</b>	82	W8044	~ <b>4</b> N D	DMM800-0
ACCEL. IFPS2)		900000		104 Q	28242 28242	000000	520855252 <b>2</b>
_		_		2	<u> </u>		
ž S	88500	048 054 054	2885	93.8	<b>789989</b>	889888	00000000000000000000000000000000000000
<b>E</b> -	0		0000	•	00000	000000	888888888
N.S	0000	- N.W.O.R	-400	46 8 8 5 E	ည က တ က က ကို	999777	NN00000
EAS	04876	382838	8444	4 m 20	5000 E	555555	222222
_	00000			22	· ·		
TAS	04806	22222	0 4 k to		70000 February	~~~~~	9000NWW4
-3	~ _	· M M M M M	W444	EAS 54	N. N. R. R. P.	<u> </u>	222222222
		00000			๛๛๚๛๛๛	DD0-N-0	MP-0-0
T.F.	00000	00000	0000	400m	0-027	48888	2525787585 500787875
-				3.6	ras.	, , , , , , , , , , , , ,	77777
<b>=</b> -				Š.			
16 S	22222	55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55	0000	1598 1598 1598	2000		55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3=				<u>S</u>	2 2		
~o~	$\nu$	80,000	900	<b>8</b> 9 9 6	ကရ၈ဝဝ ^ဣ ်	0000	
555 1850 1850				Z2.			กกกกกกกกก
=				=	Ë		
FE		87400		ည်ဖစ	- NG NG NG		4869VVWOV
DIST	0uz88	8%=%%	3=88	100 ± 6	. ಸ್ಥಾಪ್ತ್ವಾಸ್ತ್ರಿ	22222	728282855
76		44	744R)		000-77	4.00.00	22.50 22.50 22.50 22.50 22.50 22.50 22.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50
받음		00000		2001	20000	000000	22222222 20000000000000000000000000000
71.PE	0-444	867895	2=22	<b>Z</b> 475	22222	283233	<b>888</b> 282368
_				8 2	õ		- 4 - 4 1.3 1.3 1.3 1.3 1.3 (L) (L)

ITEMP. - SIB. DEG. STD. - O. I TAMEOFF IELEVATION: O. FT)

				!			THRUST (LBS)	SCREEK	R. S. S. S.	
							ج <u>ق</u>	707 668 559 550	478 478 129	
							ANGLE (DEC)	88888	, , , , , , , , , , , , , , , , , , ,	
	<b>.</b>						CANTA	88444 6482 8482 8482	2000 2000 2000 2000	-
	200		->E	,	5		ALPHA (DEG)	22.00.00	2830	<b>5</b>
		٠	196	33			8	95347 95547 9557 9557	2=28 8=28	9
	A.T.		THRUST	28	RANCE.		ರ	5806 5806 5806 5805 590 590 590 590 590 590 590 590 590 5	623 6333 6233 6233	RANCE.
	1690. LBS		MACH	888 888	182		MACH O V	688 688 688 688 688 688	689 679 678	8
	<b>8</b> 9		Ž 9	8= 2	1598		A CA	=2267	555	1587
1339 4 FEET 1540_3 FEET 1479_2 FEET	K loft		EAS (KTS)	22	VEICHT.	CL: NB	EAS (KTS)	£527.25	9669	E GHT.
25. 55 27. 57 27. 57	8		TAS (KTS)	32			TAS	22222	KKK	<b>2</b>
	ĸ		A FT	88	2.3 LBS	HUT R	ALT.	88888	35½ 8888	Ξ.
5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	75. 15.00		VEIGHT ILBS)	1598 1598	SENT USED:	7500. FT. AT HAXINUM RATE OF	VE IGNT	1598 1597 1594 1593	1588 1588 1587	7500 FT FUEL USED+
DISTANCE TO 35 F DISTANCE II 15X DISTANCE TO 50 F	EOF PA	MCM NO	585 585	20	TON SE	500. FT	PER USED (SES)	พพพเดษเ	2555	5 5 5 5
ME DIST	AT END OF TAKEOFF PAUSE TIME: 093 HAS FUEL USED:	ACCELERATE TO MACH NO. • ,112	RANCE INTO	82	ACCELERATION SECHENT 095 HRS FUEL USED:	2	RANCE	ONMINE	<u> </u>	7 CLIMB TO 311 HRS
ALL ENGINE FAR 25 TO ALL ENGINE	AT EV	ACCELE	THE S	88	END OF	Q. IS	TIPE	8-168-16	188 <u>5</u>	END OF

ACCELERATE TO HACH NO. . . 162

FUEL
THE RANCE USED WEIGHT ALT TAS EAS MACH MACH THANST FLOW
(HPS) (NH) (LBS) (LBS) (FT) (KTS) (KTS) NO DIV (LBS) (LB/HR)

311 16 07 12 9 1587. 7500. 75. 67. 116 678 235 45

324 17.34 13 5 1586. 7500. 104. 93. 162 714 215 47

END OF VCCELERATION SECRENT

:	AT MAKE START END CRUISE CRUISE	80000	6 000000000000000000000000000000000000	9000 0 00000 0 9 0 0 0 900 0 0 000 0	Ö
DESIGN CASE CRUISE PERFORMANCE SUMMANY TON MAXIMA FUEL ***** ***FIXED PITCH PROPELLER**** FUEL AVAILABLE**	AT NORMAL POVER E START END CRUISE CRUISE		93 6 94 3 1624 1636 7169 7205 1 949 1 571	7.241 29.8 4939 3.53864	23
CRUISE CR	SPECIFIED SPEED START END CRUISE CRUISE	80000	00000000000000000000000000000000000000	0.00 0 00000.0	.0
		THE HRS.  ANGE N.HI UEL USED LBS. ETGAT LBS.  LTT.  LTT.  ETG.  ETG.  ETG.  ETG.  ETG.  ETG.	AS RIS. ACH NO. 17 HACH NGLE ATTACK DEG. USE. ANGLE DEG.	70 UEL FLOV LB74R REG. FACTOR N.N. PEC. RANCE NH7LB (	RESERVE FUEL(185)

N CASE E PERFORMANCE SUM FOR DESIGN PAYLOAD •	FUEL AVALABLE. 155
--------------------------------------------------------	--------------------

	SPECIFIED	03365 03		שטיעם		
	START	2		Š		
	20	CRUSE	CRUISE	CRUSE		25.
301	3					
	3	8		2	i	8
MANGE. N. PI	•	0		5		0
בתבר תצבם נופצ	0	0		-25		•
MEICHT LBS	0	0		37-		•
ALT: TUDE FT	0	•		250		•
TAS KTS.	0	0		2		C
_	0	0		6 6		•
	000 000	000		1630		
	8	0000		7187		
ATTACK	0	8		788		
FUSE ANGLE DEG	8	000		<b>5</b>		88
	0000	0000		3141		
	8	000		7 550		
202	0	0		2		3
FACTOR	0	) o		2		3
SPEC RANGE NHILB	00000	00000		3 50406	00000	9000
PESERVE FUELIL	ž.	Ö		23.		.0
X T O S7	_					,

USED FOR DESIGN RANCE AND COST BLOCK TIME - 4.261 RANCE . 430.

1373 FT LANDING ELEVATION: 0 FT LANDING WING LOADING: 10 20 PSF LANDING WEIGHT : 1600 LBS LANDING DISTANCE FROM 50 FT . F.A.R. FACTORED FIELD LENGTH .

B-12

AIRCRAFT PRICING

	ED+ 104, KNOTS	8			051		
_	MAX CRUISE SPEED.	BASIC PRICE. 9465 DOLADO EQUIPMENT COST.		SUB-TOTAL		DEALER COST	BASIC PRICE
1. TYPES		<b>9</b> 0	15.27 15.20 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00	5123	<b>6</b> 686 594	7280	9465
NUMBER 1.	982. LBS	9465. DOL.	346 NAS 1 132 PCT1 NLS 17 1 17 1	11 31.PCT)	9.PCT)	BKUP ( 30 PCT)	
DCINES NO	EPTY VEIGHT.	CONSUMER PRICE.	DIRECT LABOR ( 346 MMS) LABOR OVES.EAD(132 PCT) AIRFRAKE MATERIALS PURCHASED EQUIP (\$/FMG + 137 ) (\$/FMG + 137 )	ENG, TL. SALES, G-AL 31, PCT)	FACTORY PROFITE 9.PCT.	DEALER-DIST. HARKUP! 30 PCT.)	

DESIGN HISSION

(DOL/YR)
300
404 (HUL 2 OPCT)
N 946 ( B 7R-20 PCT)
0 (OVERNEAD 50 PCT)
25
1676, TOTAL BLOCK TINE - 4 261 HPS HOURS/INSP . 100 HRS FIXED COST STORAGE INSURANCE DOPRECIATION OTHER CREW FAA TAK OPERATING COST FOR NOR RATED POWER AND 7500. ALTITUDE 132 LBS 700 \$/CAL TBO: 2000 HPS BLOCK FUEL. FUEL COST. 25 = 28 23 = 8 6.39 TOTAL . 2.00 2.78 2.00 0.00 UTILIZATIONIHRS/TRI TOTAL OPR COSTIDOL/HRI TOTAL OPR COSTIC/ASMI TOTAL OPR COSTIC/ASMI FUEL RATE: 5.2 GPH. VARIABLE COST ( FUEL-OIL INSP - HAIN OVERHAUL RES. OTHER ~ RANCE. SEATS:

PROPELLER NOISE FOR 1. ENGINES AT 112.9 KTAS AND AT 1000 O FEET REF LEVEL+ 77.32 DIA AND BLADE CORR + 11.25 DIST CORR + -6 02 NO ENGINE CORR + 0 00 PNL ADJUST+ 2.24 17.0 112.86 KTS MACH NO. TOTAL - 84 79 PADB OR 72.79 08(A)

B-13

			,	•
•				
		•		
1				

## APPENDIX C

TURBOFAN DESIGN USING SCALED TFE-731 ENGINE

÷

·		
·		
,		

	ELODN . 2.000 ELODT . 3.200 BALOD . 14.500 KACELLE KNAC . 14.500 ELN . 0.000 ELN . 5.000				.800 1 000 1.200 1.333 1.743 2.718				RACREY 1.000 HSCREQ 0.0 THIN 0.0		SKF
	FUSEL SAB . 20 000 AS . 20 000 BS . 20 000 BS . 4 000 BS . 50 0 ELPC . 4 440 MCK . 2 470	VERT YBARVX • 0 0000 TAIL TOYT • 100 ARYY • 2 000 SLAY • 35 000 BOELTY • 0 000		CPFE • 0 000 SCFAC • 0 000 DLSVSW • 0 000 ALPML0 • -1 200	100 200 400 600 1 000 1 005 1 046 1 138		LED CLEOC • 0 000 DCLNLE • 930 DCLNLE • 930		RCCRU - 30 000 XTORQ - 3100 SHID - 500 HBTP - 720		SKG 125 000 SKC 11 000 SKFW 3550 SKSS 0 000 EGHRCH 0 0000 CPHRCH 1000 STHRCL 0 0000 OELP 4 200
*****GEOMETRY****	KWRITE	HORIZ VBARAC • 0.0000 TAIL TCHT • 080 SAPAT • 4.250 SAPACH • 25 000 COELTH • 0 000 SAM • 500	***AERODYNANICS***	CKTP - 1 000 CKTP - 1 000 DELCO - 00150 DELFE - 250	600400200 0.000 1.466 1.221 1.636 1.005	*HIGH LIFT DEVICES.	FLAPS JELTYP 15 000 0 000 0 000 0 000 0 000 0 000 0 000 0	PROPULS ON	HPORT • 0. TDELTO • 0. KODECL • 7 KODEAC • 5	**************************************	SK7 1800 SK7 1.0000 SK1L 1.0000 SKNW 133.400 YMG 25:00 FRLP 65:00 FRLP 55:00 CATO 3
	CONF 1G WG 7500. WGS 55 000 WGS 55 000 ENCRU 700 MWCRU 40000.	WING TCT 120 TCR 120 AR 7.000 SAH 5.000 BLNC4 15.000 ETEV 1.000	•	0000 0000 0000 0000 0000 0000 0000 0000 0000	ACLS - 1.000 ACCOR - 2.400	-	RCLMAX • 1.400 ALTELP • 0. FLAPN • 1.000 BENGGB • 0.000		JENGSZ • 2 IPART • 1 KOCETR • 5		SCRE 1 1350 SKIG 10400 SKIG 10400 SKPIS 13380 WPLX 6:50 WPLX 86:5 0 WPLX 200 0 STRUT 0 0000

2.740		88	888 888	X S		880° 080°	8.8	8 C _		6 00m
•		• •		• •		• • •	• • •	• • •		• • • • •
70° Tu		CHENC	146	DEPLAX		TOEL TX HTHAX HE A IL	FACVI ISVING OF EN	SINCTO SINCTO		CCRV CCRV UCSPA ALR
000		000	889	•		86660	800	00000 9000 9		00000000000000000000000000000000000000
		8	\$			•	-2%		·	95 X
• •		• •	. ÷	•		• • • •	• • •	• • • •		••••
₹9. 19.		25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	į		255 255 255 255 255 255 255 255 255 255	FREST PC(S)O OF ALT	WRATT RSHX IROTID VTORAT		28508
WAG . 2 287	ID CONTROL.	200	886 886 8	000 666	CE	- 100 8 500 1 000 1 000	000°	2300	•	\$0000 \$0000 \$0000 \$0000
	¥	- 8:3	5 		₹ E					• • • • •
WAC	• STABIL IT	STATIC			***	ALFHAX DELTVR OV! VRAT	CRACK CRALT ICRUS	MLDCRQ . 2300 ALTLND . 0 MLPCT . 0 0000 TIBLE . 0 0	\$03	784 787 787 788 788 788 788 788 788 788
							CRUISE			
522		000 666	900 888	3		51 000 000 000 000	- 000	ó-u 0000		200 200 200 200 200 200 200 200 200 200
• •		•	•	•		• • • •	• • •	• • • •		•••••
WENG SVSLS		4		3		DELTT IFLY THEMAX MOO	SCL**	INC TOELLO TOELA TOELA		CCLIAB CCLIAB TGF TCGF
ENGINE						TAX! TO	<u>r</u>	3		

3609   109 6   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0000 1984 4627 AMEA(FT2) 27 6 27 6 LOADING- 55 0 ELTA CL 0 0000 1989 1589 1589 4639	APS UP 1 3699 109 6 0.0 0 0000 0 0000  C. CONFIG. 1 5013 95.2 40.0 0.0 0.0 4627 0482  PLAIN FLAPS  OPT ANGLE DELCL AT OPT DELCD AT OPT AMERITZ? WEIGHTILB!  APS 60 0 9000 1200 27.6 49.9  ERATE ON WING AREA TO REET REQ LDG FLD LGTH OF 2300 WING LOADING- 55 000 LDG FLD LGTH- 2379.  APS UP 1 3472 91.9 0.0 0.0000  C. CONFIG. 1 5853 96.1 15.0 0.0 0.0000  C. CONFIG. 1 5853 96.1 15.0 0.0 4639 0159  C. CONFIG. 1 7885 79.9 40.0 0.0000  BRAIL ANGLE DELCL AT OPT DELCD AT OPT AMERITZ! WEIGHTILB!
AT OPT / TOOWING L LE ANGLE O 0 0 0 0 0 0 0	0401NG- 55 0 0401NG- 55 0 05000 1989 4639 4639	MEIGHTILBI 49 9 200 -LDG FLD LGTH- 2378 0 0000 0 159 0 0491
DO. WING LE ANGLE	27.6 0ADING- 55 0 ECT1 DELTA Q. 0 0000 1989 4639	49 9 200 .LDC FLD LGTM: 2378 0 0000 0 159 0 049!
DOO. WING L	0ADING- 55 0 ECT1 DELTA CL 0 0000 1989 4639 4639	000 -LDG FLD LGTM- 2378 DELTA CD 0 0000 0159 0491
CROUND EFF LE ANGLE 0 0 0 0 0 0 AT OPT AI	ECT1 DELTA CL 0 0000 1989 4639 4639 40 7	DELTA CD 0 0000 0159 0491 WEIGHTILBS
AT OPT A	0 0000 1989 4639 4639 40 7	DELTA CD 0 0000 0159 0491
000 tA 00 00 00 00 00 00 00 00 00 00 00 00 00	0 0000 1989 4639 4639 40 7	0 0000 0159 0491 WEIGHTILBI
AT OPT AL	EA(FT2)	VEIGHT(LB)
8	40.7	
}		•
		<b>-</b>
OC. INING EC	MDING 38 SC	00 .LDG FLD LGTM: 1829
GROUND EFFE	CT) OELTA Q	DELTA CD
000		0 0000 0 156 0483
DELCO AT OPT AR		
	2300 . WING LC OF GROUND EFFE LE ANGLE CD AT OPT AR	ING LOA

OPTGINAL PAGE TO OUALITY

LANDING DISTANCE FROM 50. FT. - 2303. FT. F A R. FACTORED FIELD LENGTH = 3838. FT.

	1277 4000 0 0000 3952
AG.	DIST- MUB- TR/TIDLE- ABARIG)-
<b>.</b>	80 60 60 7
OELAY	DIST. TDELAY. TIDLE: VTDTAS.
1 9 E	237 1 150 3 000 92 70 4 8064 27 9
TRANSITIO	DIST. XLFMX. SINKTD. VSTEAS. CLMX.
AQ4	12000 12000 120 50 120 50 120 50
APPROAC	DIST. R/S. VAPEAS. VAPTAS. THETA.

7000 ALTITUDE+ 40000 0 MACH+ SUPPLARY OF CRUISE LIFT-VEIGHT BALANCE
ANGLE OF ATTACKIDEGREESI* 2.717 LIFT: 7500.0 L/D* 11.654

## ENGINE SIZING DATA FOLLOW

VSTLKT+ 100.0 KTS EAS VRAT+ 1.100 CLT0+ 1.2039 VENO + 228 4 MMTS EAS

ROTATION (TIME: 17.5 AND TAS: 109.9 EAS: 110.0)
LIFTOFF (TIME: 20.0 DIST: 2208.9 TAS: 122.4 EAS: 122.4)
DISTANCE TO 35 FT: 3305.3 TAS: 139.4 EAS: 139.4 V35/VS: 1.3940

HERATION TO HATCH TAKEOFF DISTANCE XTO, XTORQ, MASLS 3305, 3100, 48.62

VSTLKT+ 100 0 KTS EAS - VRAT+ 1, 100 CL.TO+ 1, 2839 VSTLKT+ VEND + 240, 3 KHOTS EAS

ROTATION (TIME: 15 2 AND TAS: 109 9 EAS: 110.0) LIFTOFF (TIME: 17 6 DIST: 1964 B TAS: 124 2 EAS: 124 2) DISTANCE TO 35 FT: 3067 6 TAS: 144 B EAS: 144 7 V35/VS: 1.4477

ITERATION TO MATCH TAKEOFF DISTANCE XTO.XTORQ.WASLS 3068. 3100. 55.27

VST.KT- 100 0 KTS EAS VRAT- 1.100 CL.TO- 1.2839 VEND - 240.3 KNOTS EAS

ROTATION ITIME: 15.5 AND TAS: 109.9 EAS: 110.01 LIFTOFF ITIME: 17.8 DIST: 1972 6 TAS: 123.3 EAS: 123.31 DISTANCE TO 35 FT: 3113.1 TAS: 144.3 EAS: 144.2 V35/VS: 1.4426

HERATION TO HATCH TAKEOFF DISTANCE XTO.XTORQ.WASLS 3113. 3100. 54.28

0.0 DEG F TAKE OFF RATE OF CLINB REQUIRENENTS - FAR PART 25
AIRPORT ALTITUDE: 0. FT. ANBIENT TEMP ABOVE STO. DAY:

CONFIGURATION

R/C (FPH) R/C REQ (FPH) 736 14 1093 72 1432 67 1388 09 2924 90 V (KTAS) ALT (FT) -88-e 1ST SEG. T. O. FLAPS-LD GEAR EXT. - ONE ENG OUT FINAL TO CRUISE CONFIG. ONE ENG OUT LANDING FLAPS - ONE ENG OUT LANDING FLAPS - ALL ENGINES

2552 2552 2552

28262

3

م 180

APPROACH FLAP SETTING . 11.9 DEG

ENGINE-OUT SERVICE CEILLING • 31212 0 FT.

REST RATE OF CLINB SPEED • 256 0 KTAS
ENGINE-OUT RATE OF CLINB • 100 0 FPR
VEIGHT AT ALTITUDE

29.87 ENGINE SIZED TO MATCH CRUISE DRAG - SLS AIRFLON.

2 O. I SLS AIRFLOW. O. DEG R.ALT. ENGINE SIZED TO MATCH T.O. DISTANCE OF 3100. FT ISTO DAY-ENGINE SIZE MEETS ALL RATE OF CLIMB REQUIREMENTS RATED SEA LEVEL STATIC THRUST PER ENGINE: 1681 2 LBS

PROPLISION SYSTEM VEIGHTS
ENGINE VEIGHT/ENGINE
NACELLE VEIGHT/ENGINE
PYLON VEIGHT/ENGINE
FARP OR GFAN
GEARBOX
GEARBOX
0.0

ENGINE POD DIMENSIOMS ENGINE FACE DIAMETERIFT! NACELLE LENGTHIFT! **** FESIZE ENGINES TO ACCOUNT FOR TIP TANKS****

8 ALTITUDE: 40000 0 HACH: SUPPLART OF ERUISE LIFT-WEIGHT BALANCE
ANGLE OF ATTACKIOEGREESI= 2.717 LIFT= 7500.0 L/D+ 11 293

## ENGINE SIZING DATA FOLLOW

VSTLKT: 100.0 KTS EAS VRAT: 1.100 CLT0: 1.2839 VENO : 228.4 KNOTS EAS MOTATION (TIME: 15 5 AND TAS: 109 9 EAS: 110 0) LIFTOFF (TIME: 18.0 DIST: 2011.9 TAS: 124.1 EAS: 124.1) DISTANCE TO 35 FT : 3102.3 TAS: 143.6 EAS: 143.6 V35/VS: 1.4363 TAKE OFF RATE OF CLINB REQUIREMENTS - FAR PART 25
AIRPORT ALTITUCE. 0. FT. ANBIENT TEMP ABOVE STD. DAY. 0.0 DEG F

8 8 R/C (FPH) R/C REQ (FPH) 293 45 166 71 186 71 391 48 52655 V (KTAS) 28258 ALT (FT) 98899 1ST SEG.T.O. FLAPS.LD GEAR EXT. ONE ENG OUT SEC. SEG. T.O. FLAPS. ONE ENGINE OUT FINAL T.O.: CRINISE CONFIG. ONE ENG OUT LANDING FLAPS. ONE ENG OUT LANDING FLAPS. ALL ENGINES CONFIGURATION

28787 78787

3

APPROACH FLAP SETTING . 11.9 DEG.

BEST RATE OF CLIMB SPEED 1 241 5 KTAR ENGINE-OUT RATE OF CLIMB 99 9 FPM WEIGHT AT ALTITUDE 17200 0 LBS ****RESIZE ENGINES AT CRUISE TO ACCOUNT FOR RESIZED NACELLES****

PROPULSION SYSTEM VEIGHTS
ENGINE VEIGHT/ENGINE
NACELLE VEIGHT/ENGINE
PROP PROP OF GFAT/ENGINE
4.5
EARBOX
6.0
SAROLD
54-80-LD
0.0

ENGINE POD DIMENSIONS ENGINE FACE DIAMETERIFTI MACELLE LENGTHIFTI V\$1LKT+ 100.0 KTS EAS VRAT+ 1.100 CLT0+ 1.2839 V\$1LKT+ VEND + 228 4 KNOTS EAS

ROTATION (THE: 15 5 AND TAS: 109 9 EAS: 110 0) LIFTOFF (THE: 18.0 DIST: 2011 9 TAS: 124 1 EAS: 124 11 DISTANCE TO 35 FT: 3102.3 TAS: 143.6 EAS: 143.6 V35/VS: 1.4363 TAKE OF RATE OF CLINE REQUIREMENTS - FAR PART 25
AIRPORT ALTITUDE. 0. FT. AMBIENT TEMP ABOVE STD. DAY. 0.0 DEG F

CONFIGURATION

ALT (FT) Y IKTAS) R/C (FPH) R/C REG (FPH)

5

CL REQ

1ST SEG.T.O. FLAPS-LD CEAR EXT. ONE ENG OUT SEC SEG. T.O. FLAPS - ONE ENGINE OUT FINAL T.O. CRUISE COMFIG ONE ENG OUT APPROACH FLAPS - ONE ENG OUT LANDING FLAPS - ALL ENGINES	00000	2025 2030 2030 2030 2030 2030 2030 2030	715 43 1068 63 1394 48 1327 52 2897 65	293 41 166 71 325 38 39 48		20:07 20:07 20:07 20:07
APPROACH FLAP SETTING . 11.9 DEG.						
EST RATE OF CLING * 30021.1 FT. BEST RATE OF CLINB SPEED * 241.5 KTAS ENGINE-DUT RATE OF CLINB * 99.9 FPN VEIGHT AT ALTITUCE * 7200.0 LBS	!	:				
ENGINE SIZED TO MATCH CRUISE DRAG . SLS AIRFLON*	\$2.47		Ì			
ENGINE SIZED TO MATCH T.O. DISTANCE OF 3100, FT (STD DAT+ 0. DEG R.ALT+	STD DAY- 0	. DEG R.	ALT:	0.1 SLS AIRFLOV.	2	
ENGINE SIZE MEETS ALL RATE OF CLINB REQUIREMENTS						
RATED SEA LEVEL STATIC THRUST PER ENGINE. 1681.2 LBS	. Tes					•

000 PROPULSION SYSTEM MEIGHTS
ENGINE WEIGHT/ENGINE
PYLON WEIGHT/ENGINE
PROP OR GFAN
GEARBOX
SHROLD

ENGINE POD DIMENSIONS ENGINE FACE DIAMETERIFT) NACELLE LENGTHIFT;

A SOCIATION CONTINUES CONT

CG	16.82	17.73	88	28
DESIGN VT	4539 11		25	7500 00
1 LOAD	16.82			
MOST AF	4539 11	385 285 285 285 285 285 285 285 285 285 2	88	4946.74
8 8 8	16.82			
MOST FY	4539 11	88	2 2 3 3 3 3 3	529.72
	A/C 04E	BACCACE	11 P.	101AL
	FND LOAD HOST AFT	MOST FUD LOAD MOST AFT LOAD DESIGN LOA VT CG VT CG VT 4539 11 16.82 4539 11 16.82 4539.11	MOST FUD LOAD HOST AFT LOAD DESIGN LOA VT CG	FIG. LOAD MOST AFT LOAD DESIGN LOAD OF SIGN LOAD NT 16:82 4539 11 16:82 4539 11 0 0 0 0 17:73 165 00 17:73 165 00 15:33 242 63 15:53 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33 15:33

---TAIL SIZING SUMARY---

0000 CH CT 80 80 80 80 7A IL CLA 0759 0659 0660 VING 0997 0811 0812 CCADITION ALPHA CRUISE 2 7170 LIFTOFF 1 0000 LANDING 13.6894

--

ELEVATOR PARAMETERS

	36 6669 38 4 130 38 4633 15 6459					186	•		ОСИ СИ СТ 0 0000 0 0000 -1		38 2419 39 3239 39 2955 39 3239 15 6578	
VING DE/DALPHA + 40819	MCRIZONTAL TAIL SIZES STATIC STABILITY AND TRIM STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL APRIELTHI	TABILITY OF - 00200	•	71/L-177 - 14 5004	:	DESIGN LOAD	4497 10 16 98 165 00 17 73 1213 15 16 89 553 32 16 84 7500 00 16 51		FUSELAGE NACELLE. FLAP DCH CH CH CH 2824 0049 3471 0 0000 0049 0 0000 - 1031 3487 3572 0049 0050 - 2000	VING DE/DALPHA . 42531	ARED STATES	ABILITY OF - 00200 SPEED - 99 10 KTS IELTV) - 14 3218
G TENDENCY) • - 00511 NG TENDENCY) • - 01204 POVER) • - 02766 ESS1 • - 48250	FRACTION STATION MSE 12881 16.783 0300 16.42 1405 15.988		5	TATALON THE COMPANY OF THE COMPANY O	:-	DAD MOST AFT LOAD	16.98 4497.10 16.98 000 17.73 165.00 17.73 165.00 17.73 16.84 12.13.15 16.89 16.84 7.00 16.84 16.30 6436.68 16.96	TAIL SIZING SUMMARY	TAIL TAIL DOWN WING. CLA EFF MASH CL 0759 9500 3904 0659 9500 2127 3958 0660 9500 2 9111 1 7997	i TENDENCY) • • 00511 ic TENDENCY) • • 01204 POVER) • • 02794 :SS)	FRACTION STATION NOSE: 2694 17 006 0300 17 12 2394 16 866 1423 16 200	VERTICAL TAIL AREA - 18.2258 FOR DIRECTIONAL STABILITY OF VERTICAL TAIL AREA - 17.8874 FOR MINIMUM CONTROL SPEED - 9 REQUIRED VERTICAL TAIL AREA - 18.2258 TAIL ARMIELTY) - 14
CHALPHAIFLOATING TENCENCY) CHOELTAIRESTORING TENCENCY) CHOELTAICONTROL POVER) TAURIEFFECTIVENESS)	NEUTRAL POINT STATIC MARGIN AFT CC LINITISTABILITY! CG RANCELLOADING! FNO CG L'HITICONTROL!	VERTICAL TAIL AREA .	VERTICAL TAIL AREA: 17.914		**************************************	MOST FVD LOAD	A/C OVE 4497 10 PAX 850 00 BAGGAGE 0 00 VING FUEL 242 63 TIP FUEL 0 00 FUS FUEL 0 00 TOTAL 5589 73	14	CONDITION ALPWA CLA CRUISE 2 7170 0997 LIFTOFF I 0000 0811 LANDING 13 6894 0812	ELEVATOR PARAMETERS CHALPMAIFLOATING TENDENCY) CHOELTAIRESTORING TENDENCY) CHOELTAICONTROL POMER) TAUMIEFFECTIVENESS)		VERTICAL TAIL AREA - 18.25 VERTICAL TAIL AREA - 17.883 REQUIRED VERTICAL TAIL AREA

						: :			
		0000 0 0000 0		40 4049 40 0681 40 0109 40 4049 15 5210		AFRCAFT C.G. SUMMARY (DATUM-NOSE)			DCH CH CT
	•	2000 2000 2000 2000 2000 2000 2000 200	42668	7. H 1814					సైక
נפעם	17 06 17 13 16 86 17 15 16 62	NACELLE 0CH CH CH 0040 0040 0000	VING DE/DALPHA + 42	HORIZONTAL TAIL SIZES STATIC STABILITY AND TRIN STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL ARRIELTHI	99 IB KTS 14. 1702		CG CG	67777	DCH CH
DESIGN LOAD	429 269 269 261 261 261 261 262 263 263 263 263 263 263 263 263 263	FUSELAGE DCH CH 2894	30	HORIZONTAL STATIC STABILI LIFTOFF REQUIRE TAIL AR		350		510 00 1213 15 561 42 567 21 560 00	FUSELAGE DCH CH
50 50 50	7 7 7 9 7 1 0 8 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	N-NG CL 3904 3958 1.7997	00511 01204 02846 48250	STATION (DATUM NOSE) 17.154 17.014 16.281	H CONTR	DA. TUM	1 CG 1	77 33 37 7 39 7 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16	N J
MOST AFT LOAD	244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TAIL SIZING SURHARY ING TAIL TAIL DOWN CLA CLA EFF WASH 997 0759 9500 2133 BII 0659 9500 2133 BIZ 0660 9500 2 9205	• • • •	FRACTION STATION MORE: MAC (DATUM NOSE) 2369 17.154 S 2369 17.014 R 1566 16.281 T 18 5201 FOR DIRECTIONAL STABILITY	18.0788 FOR MINIMUM CONTROL SPEED. AREA . 18.5201 TAIL ARMIELTY!	ARCAFT C.G. SUMMARY (DATUM-NOSE)		163 00 1213 15 0 00 5881 37	TAIL SIZING SUMMARY ING TAIL TAIL DOWN CLA CLA EFF WASH
MOST FUD LOAD VT	17 05 17 73 16 86 16 86 16 86	VING TAIL CLA CLA 0997 0759 0811 0659	ERS TING TENDER ORING TENDER POL POVERI	£	EA: 18.07 L TAIL AREA	A PRCRAFT	01 . 71 17 19	17.73	TAIL SIZII KG TAIL A CLA
MOST F.	4198 70 450 80 0 00 242 63 0 00 5592 33	>-888	ELEVATOR PARAMETERS CHALPHA (FLOATING TENDENCY) CHOELTA (RESTORING TENDENCY) CHOELTA (CONTROL PONER) TAUMIEFFECTI VENESS)	NEUTRAL POINT STATIC HARGIN AFT CG LIHIT(STABILITY) CG RANCE(LOADING) FNO CG LIHIT(CONTROL) VERTICAL TAIL AREA =	VERTICAL TAIL AREA: 18.0788 REQUIRED VERTICAL TAIL AREA :		- ~	55 2 20 0 50 0 50 0 50 0 50 0 50 0 50 0	ALPHA CLA
	AAC OAC BACCACE WING TOEL TOTAL TOTAL	CONDITION ALPHA CRUISE 2 7170 LIFTOFF 1 0000 LANDING 13 6894	ELEVA	NEUTRAL STATIC AFT CG CG PANC FNO CG VERTICA	VERTI		A/C 94E	PAX BACCACE VING FUEL TIP FUEL FUS FUEL TOTAL	COLOTION

## ORIGINAL PAGE IS OF POOR QUALITY

1.000   0.991   0.759   9500   2139   3594   2946   0.000   0.0014   0.005   2.200   0.000   0.0014   0.005   2.200   0.000   0.0014   0.005   2.200   0.000   0.0014   0.005   2.200   0.000   0.0014   0.005   2.200   0.000   0.0014   0.005   2.200   0.000   0.0014   0.005   2.200   0.000   0.0014   0.005   2.200   0.000   0.0014   0.000   0.0014   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000	0000 0	41 4229 40 563 40 4210 15 4053		0 0000 CT	42 0738 40 8421 40 8421 42 0738 15 3474
STORING   COSSO   STORE   ST	2948 3623 0 0000 0034 0 0000 - 1031 3619 3729 0034 0035 - 2000 VING DE/DALPM - 42751	HORI ABILIT SPEED	MOSE)  DESIGN LOAD  WT CG  4508 41 17 15 510 00 17 73 1213 13 73 561 42 17 13	FUSELAGEMACELLE FLAP FUSELAGEMACELLE FLAP	HOPPIZONTAL TAIL SIZES STATIC STABILITY AND TRIM STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL ARMIELTHI STABILITY OF - 00200
ELEVATOR PARAM ELEVATOR PARAM ELEVATOR PARAM ENCITATION STATIC HARGIN AFT CA LIMITIC VERTICAL TAIL VERTICAL TAIL VERTICAL TAIL VERTICAL TAIL VERTICAL TAIL VERTICAL TAIL VERTICAL VERTI	. 0997 . 0759 . 950 0811 . 0659 . 950 0812 . 0660 . 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950	CTIVENESSI STABILITY INCI CONTROL I AREA •	4506 41 17 15 4506 41 17 15 850 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165 00 17 73 165	5599 04 16.45 5884.56 17 TAIL SIZING SUMMARY  MING TAIL TAIL DOWN WI ALPHA CLA CLA EFF WASH C 2 7170 0997 0759 9500 2 9276 1 79 3 6894 0812 0660 9500 2 9276 1 79 108 PARMETERS HALPHAIFLEOTRING TENDENCY 1 - 00511 HOELTAIRESTORING TENDENCY 1 - 01204 HOELTAIRESTORING TENDENCY 1 - 02930	FRACTION HAC

99 IB KTS	
•	
18.3496 FOR MINIMUM CONTROL SPEED .	- 174 131704 1147
Ĕ	į
8	
į	
Ē	0
£	-
8	•
<b>16</b> .3	ě
	DECRIBED VEDTICAL TAIL ABOV.
Ř	į
VERTICAL TAIL AREA.	7007
3	5
Ē	Ē
>	ā

	!							A 14 01 66	
760	IREO VEI	PTICAL	TAIL AR	EA • 11	3.9172	TAIL	REQUIRED VERTICAL TAIL AREA . 18.9172 TAIL ARHIELTY) .	13 % 61	
	,							***********	
			-AIRCRAF	10.0 S	MMARY	OA TUT	AIRCRAFT C.G. SUMMARY (DATUM-NOSE)	• • • • • • • • • • • • • • • • • • • •	**************************************
	δ≥	MOST FUD LOAD	92	23	MOST AFT LOAD	85	DESIGN	DESIGN LOAD	
A/C OVE	8	28	17.17	4508	88	17.17	4508 32	17.17	
BACCACE	20	38	17.73	165	38	17.73	2.5.0 5.6.0 5.00 5.00 5.00	27 73	
VING FUEL	076	88	22	1213		22	1213 15	2:	
25	0	38	22	0		22	542 11	25 22	
T0TAL	8	ĸ	16 47	2886		2	7500 80	9	
		i	TAIL SIZING SUPPART	TING SUM	tart			•	-
CONDITION	ALPHA	V CLA	TAIL		MASH	<u> </u>	FUSELAGE	TAIL DOWN VINGFUSELAGENACELLE FLAP	FLAPPOMER
LIFTOFF 1 0000	200				2139	386	2990 3674 0 0000	0029 0 0000	0000 0 1601 •

DCM CM CT	0000 0		42 3920 40 9796 40 7403 42 3920 15 3187	
CH CH CO CH CH CH	0,000 0 0000 0 0000 0000 0000 0000 000	VING DE/DALPIM . 42781	FRACTION STATION HORE)  MEUTRAL POINT  SERBE 17.385  STATIC STABILITY AND TRIM 42.3920  STATIC STABILITY AND TRIM 42.3920  AFT CG LIMITISTABILITY  2388  AFT CG LIMITISTABILITY  3389  AFT CG LIMITISTABILITY  3389  AFT CG LIMITISTABILITY  AND TRIM  33920  AFT CG LIMITISTABILITY  AND AFT CONTROL SPEED  399.18 KTS  FEQUIRED VERTICAL TAIL AREA - 18 9923 TAIL ARMIELTY  - 13 9216	
CLA EFF WASH CL D	0,559   9500   2139   3958   3 0660   9500   28282   7997   3	TENDENCY) • - 00511 TENDENCY) • - 01204 2VER1 • - 02947 51	FRACTION STATION HORIZONTAL TAIL SIZI  MC (DATUM NOSE) STATIC STABILITY STATIC MARCIN  AFT CG LIMITISTABILITY and CONTROL COLUMITICS TABILITY CG RANGELLOADING) 1675 FAU CG LIMITICOMING) 1675 16 461 17 245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 16 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 17 7245 1	
2 4 8	LIFTOFF 1 0000 0811 C	ELEVATOR PARAMETERS CHALPHAFLOATING TENDENCY) CHOELTAIRESTORING TENDENCY) CHOELTAICONTROL POWER) TAUHIEFFECTIVENESS)	NEUTRAL POINT STATIC HARGIN AFT CG LIMITISTABILITYI CG RINGE (LOADING) FUD CG LIMITICOMTROL) VERTICAL TAIL AREA • 18 REQUIRED VERTICAL TAIL	

85 88 C G LOCATION OF PROPULSION. PACH: ALT: TUDE: 40000 0 **20:** 10 875 H-TAIL CG LOCATION .
H-TAIL MAC FRON C. L.
H-TAIL LOCAT RON VERT .
V-TAIL VOL. ARN
V-TAIL C G LOCATION . SUPPLART OF CRUISE LIFT-VEIGHT BALANCE
ANGLE OF ATTACKIDEGREES! 2.717 LIFT: 7500.0 228825 VING LOCATION INFO.
FUSELAGE LENGTH
VING 1/4C LOC ON C.L.
HAC 1/4C LOCATION
HAC DIST FROM C.L.
VING C.G. LOCATION
TIP TANKS C.G. LOCATE

4-1Ai.

H-TAIL 13 423 482 13 423 482 28 556 28 578 2 273 2 273 2 273

42.461 31.579 7.500 7.500 17.514 6.015 9.008

> AREA SPAN ASPECT RATIO 174C. SUEEP C.L. CHORD C.L. CHORD TIP CHORD

CASP TURBOFAN	gasp turbofan sample using scaled tfe-731	ED TFE-731		
CAGSS VEICHT	• 7500. P	PASSENCERS .	5. PLUS CREV O	و د
FUSELAGE	LENGTH VIOTH NETTEO AREA DELTA P	(5) (5) (6) (6)	32 10 4 67 372 8 19	regr
9 2	ASPECT RATIO AREA SPAN GEORI. MEAN CHORD GLORITE CHORD SVE TAPER RATIO ROOT THICKNESS VING LOADING VING FUEL VOLUME	(AR) (SV) (SV) (SV) (SV) (SCH) (SCH) (TCR) (TCR) (TCR) (VCS)	74 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$115 <b>\$</b> 3
HOR. TAIL	ASPECT RATIO AREA SPAN THICKNESS/CHORD HOMENT ARM	(SMT) (SMT) (BMT) (CBARNT) (TCHT) (ELTH)	22.23 22.23 3.24 3.26 080 5.3 27.8	ätt t
VERT. TAIL	ASPECT RATIO AREA SPAN HEAN CHORD HICKNESS/CHORD MOHENT ARH VOLUME COEFF	(SVT) (SVT) (BVT) (CBARVT) (TCVT) (ELTV)	2 00 00 00 00 00 00 00 00 00 00 00 00 00	אבב ב
ENG. MACELLES	LENGTH HEAN DIAMETER NUMBER ENGINES METTED AREA LOCATION	(ELN) (DBARN) (EMP) (SN)	5. 40 FT 1. 97 FT 2. 0 66. 82 SOF ON FUSELAG	FF SQLAG
TIP TANKS	VOLUME DIAMETER LENGTH METTED AREA	(VFTP) (BX15) (AX15) (ST1P)	R - 9 R - 9 A - 9 C - 0 C - 0 C - 0	ระะร

UPBOTAN SAMPLE USING SCALED TFE-731	* 360 KTS VMO * 300 KTS MMO *
CASP TURBOFA	VOIVE - 360 ULT. UF - 5

									ı					(INC. CREW.)		(PAX.VOL. + 5. DESIGN PAX.	(WW 1213.) (WTP 56).)		
*	57 <b>8</b>		8≅	28	85	5.	2293		Ka	00	=	8	2	36	4506	675	2317	7500	
1		į	33		(MC)	(VTIP)	(187)		S S S S S S S S S S S S S S S S S S S	(VSAS)	(MC)	(ME)	Ŝ	ואנתו	(OVE)	ŝ	(NFA)	Š	
PROPLESION GROUP		STRUCTURES GROUP	HOR TAIL	FUSELACE	LANDING GEAR PRIHARY ENG. SECTION	TIP TANKS GROUP WEIGHT INC	TOTAL STRUC CROUP WT.	-	COCKPIT CONTROLS FIXED VING CONTROLS	SAS GROUP WEIGHT INC.	TOTAL CONTROL NT.	VT OF FIXED EQUIPMENT	VEICHT EMPTY	FIXED USEFUL LOND	OPERATING WEIGHT ENPTY	PAYLOVO	Tan and	GROSS WEIGHT	

CASP TURBOFAN SAMPLE USING SCALED TFE-731

CRUISE MACH - 700 CRUISE ALTITUDE + 40000 CRUISE Q (PSF) +135 04
CRUISE RE MAR. PER FT. + 1.342E-06 FLATPLATE CF AT RE+10EX7 15 .00277
AERODYNAMIC DATA

VETTED AREA (SQFT)	230 371 58 37 58 25 28 25 28 26 26 26 26 26 26 br>26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 2	29 978
8	00765 00112 00231 00232 00116	02709
FLATPLATE AREA (SOFT)	1 0892 1 5835 1 469 1 3295 1 528 2 1 538	TOTAL 3.8589 MEAN SKIN FRICTION COEF.
ORAG BREAKDOWN	VING FUSELACE VERT TAIL HOR TAIL ENGINE NAC. TIP TAINS INCRENTAL	TOTAL . MEAN SKIN FF

ACRODYNAMIC COEFF.

A1

A2

A3

A4. 75x(1/C)

A5.CDO-
A6

A7. / (P) SEE AR)

CSSB

A7. / (P) SEE ARDIAN

TAX! AT IDLE THRUST

588 588

TIME RANCE (HPS) (NM)

VSTLKT 99 8 KTS EAS VRAT : 1,100 CLTO 1,2839 VENO = 231,2 KNOTS EAS

00

27. 28. 28.

88 88

(TDP. - 519, DEG.STD. - 0.)

TAKEOFF (ELEVATION.

ANGE	8888888888888888	- 58748 88 - 68748 88	6455624888 43
457.83 187.83	1655 1655 1655 1655 1659 1659 1659 1659	1665 1665 1665 1665 1665 1665 1665	1663 1663 1653 1653 1653 1654 1654 1654
THRUST (LBS)	33162 33162 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 33163 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 3316 331	2828 2828 2777 2777 2761 2761	272 2652 2663 2663 2663 2663 2663 2663 266
LOAD	888888888888888	<b>48 38888</b> 9	8228222888
FPH	00000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CAMMA (DEC)	88888888888888888	00 -uu u 22,22 00 7,22 20 00	4226-12500 01-
ALPM (DEG)	888888888888888	24 ~~~~ & & ~~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~ & & ~~~~~~ & & ~~~~~ & & ~~~~~ & & ~~~~~~ & & ~~~~~~~~	888444466 84 8888448888 84 8888888888888
8	000000000000000000000000000000000000000	0768 0864 1024 1032 1052 1052	00914 00914 0075 0075 0075 0075 0075 0075 0075 007
៨ .	3946 3947 3947 3948 3958 3968 3968 3968 3968 3968 3968	4939 7475 1 0:00 9835 9206 8657 8657 4420	7586 7342 7098 6653 6652 6528 6365 6038 5956
ACCEL (FPS2)	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88448578828 8448578828 148888 14888	44400000012 74-80000001 74-6000000 84-6000000
A C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	202 203 204 204 204 204 204 204 204 204 204 204	22.2.2.3.8.2.3.2.2.3.6.6.2.3.6.6.6.2.3.6.6.6.6.6.6
EAS	0 8 7 4 4 6 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	124 ENS 129 B B B B B B B B B B B B B B B B B B B	FA C C C C C C C C C C C C C C C C C C C
TAS (KTS)	0 8 7 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	EAS. 1133 124 4 123 133 9 4 123 137 9 123 141 5 141 8	153 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALT. IFT)	00000000000000	975 9 1 A S	5 SEC. CO
VE CONT ILBS)	7480 7470 7470 7470 7476 7476 7476 7476 747	AND TAS: 7472 7471 7471 7470 7470 7470 7470	7469 7469 7469 7467 7466 7465 7465 7465 7465 7465 7465
	288388222333355588 28838253333355588		248484848484848484848484848484848484848
	0 0 6 0 6 0 7 2 2 7 2 2 8 3 2 8 3 2 8 3 2 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11.00 A 20 A	3407 4 3407 4 3413 5 3413 5 3413 5 4417 1 4470 1 4470 1 4470 1 5516 2 5516 2 5516 2
TIME	o-uwanaraab <u>-uua</u> n ooooooooooo	PG\$71Q 160 180 180 200 210 220 0151ANCE	24888888888888888888888888888888888888

털

MACH MACH

¥

KIOT

55 55 55

RANCE

Ę

(TEPP. + 519, DEG-STD. + .Q. )

SEG MEIGHT ALT TAS EAS MACH ACCEL CL. CD ALPHA GAMMA FROC. LOAD THOSES INCOME. SEG. LOAD THOSES	Mail
7480	0
7479 0 0 16 2 16 2 024 13 40 3947 0743 1 00 0 00 0 0 0 3274  7478 0 0 0 24 1 24 1 24 1 396 13 18 3947 0743 1 00 0 00 0 0 0 0 0 0 0 3233  7477 0 0 0 46 9 46 9 06 12 70 3949 0743 1 00 0 0 0 0 0 0 0 0 3233  7477 0 0 0 46 9 46 9 06 12 70 3949 0743 1 00 0 0 0 0 0 0 0 0 0 3153  7477 0 0 0 66 9 46 9 46 9 124 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 16 2 10 2 10 2 13 10 3947 0743 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7477 00 0 314 316 048 12 34 3747 000 000 000 000 3153 1747 00 0 314 315 040 12 70 3949 0743 100 000 000 000 000 3153 1747 00 0 346 46 9 46 9 071 12 45 3949 0743 100 0 000 00 0 0 0 0 0 0 0 0 0 0 0 0 0	S. 109 8 KAS. 109 81 17 2 34 137 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7477 00 39 4 39 5 060 12 70 3949 0741 100 0 00 0 0 0 0 0 3153 1747 00 46 9 46 9 071 12 45 3949 0744 100 0 00 0 0 0 0 0 0 0 3155 1747 00 6 64 68 4 103 11 60 3953 0744 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$Action of the content of the
7477 00 46 9 46 9 071 12 45 3949 0744 1 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 46 9 46 9 46 9 071 12 45 3949 0744 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7476 0 0 54 2 54 3 062 12 19 3951 0744 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 654 2 54 3 062 12 19 3951 0744 100 0 00 0 00 3078 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AND TAS. 109 B EAS. 109 B 1 75 3 112 11 1210 9 95 42 10 10 10 10 10 10 10 10 10 10 10 10 10	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100
7475 00 75 75 75 114 11 41 3955 0744 100 000 000 2965 17474 100 000 000 2965 17475 00 88 6 88 6 134 10 90 3958 0744 100 000 000 2995 17475 00 88 6 88 6 134 10 90 3958 0744 100 000 00 00 2995 17475 00 1012 1013 153 10 38 3967 0744 100 000 00 00 00 2995 174 100 000 00 00 00 2995 17473 00 107 1 162 3 86 3765 0744 100 000 00 00 00 2995 17473 00 107 1 162 3 86 3765 0744 100 000 00 00 1435 17473 00 107 1 162 3 86 3765 0744 100 000 00 00 00 1435 17473 00 115 115 7 115 7 175 3 94 105 8 2 0 0 0 0 0 0 0 0 0 1431 174 174 174 174 174 174 174 174 174 17	S. 109 8 EAS. 109 81 141 151 1555 0744 100 000 2965 110 110 110 110 110 110 110 110 110 11
7475 0 0 82 0 82 0 124 11 16 3956 0744 1 00 0 0 0 0 0 0 2950 1 7474 0 0 88 6 88 6 134 10 90 3958 0744 1 00 0 0 0 0 0 0 2935 1 7473 0 0 101 2 101 3 153 10 84 3962 0744 1 00 0 0 0 0 0 0 0 2935 1 7473 0 0 101 2 101 3 153 10 38 3962 0744 1 00 0 0 0 0 0 0 0 2890 1 7473 0 0 107 0 107 1 162 3 95 3964 0744 1 00 0 0 0 0 0 0 0 0 0 2995 1 7473 0 0 109 3 109 3 165 3 86 3765 0744 1 00 0 0 0 0 0 0 1435 1 7473 0 0 109 3 109 3 165 3 86 3765 0744 1 00 0 0 0 0 0 0 1435 1 7473 0 0 109 1 109 3 165 3 86 3765 0744 1 00 0 0 0 0 0 0 1431 1 7472 0 0 113 1 113 8 172 3 51 7944 0888 5 42 0 00 0 0 0 0 1431 1 7472 0 0 113 7 113 8 172 3 51 7944 0888 5 42 0 00 0 0 0 0 1412 1 7472 0 0 113 7 113 8 172 3 51 7944 0888 5 42 0 00 0 0 0 1413 1 7472 0 0 113 7 113 8 172 3 51 7944 0888 5 42 0 00 0 0 0 1413 1 7472 0 0 113 7 113 8 172 3 51 7944 0888 5 42 0 00 0 0 0 0 1413 1 7472 0 0 119 7 113 8 172 3 51 7944 0888 5 42 0 00 0 0 0 0 1413 1 7472 0 0 119 7 119 8 119 7 15 7 15 7 15 7 15 7 15 7 10 1413 1 7471 3 3 118 5 118 5 119 7 15 1 1 15 16 118 10 05 1 29 269 8 1 10 1413 1 7471 18 6 119 5 119 7 119 1 15 16 118 10 05 1 29 269 8 1 10 1413 1 7471 18 6 119 5 119 7 119 1 15 16 1130 9 35 3 72 785 4 1 01 1411 1 7471 43 2 119 5 119 4 180 0 11 10634 1320 9 35 3 72 785 4 1 01 1411 1	S. 109 8 EAS. 109 81
7474   0 0 88 6 88 6 134 10 90 3958 0744 1 00 0 0 0 0 0 0 0 2935   1474 0 0 95 0 95 0 143 10 64 3960 0744 1 00 0 00 0 0 0 0 0 2912   146 AND 7A5	S. 109 8 EAS. 104 81 10 90 3958 0744 100 0 00 0 00 2915 10 10 95 0 143 10 90 3958 0744 100 0 00 0 0 0 0 0 0 0 2915 10 10 95 0 143 10 38 3962 0744 100 0 00 0 0 0 0 0 0 0 0 2915 10 10 95 10 13 153 10 38 3962 0744 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AND TAST 0 0 0 95 0 95 0 143 10 64 3950 0744 1 00 0 00 0 0 0 0 0 2892 1 1 4 7 3 0 0 101 2 101 3 153 10 38 3967 0744 1 00 0 00 0 0 0 0 0 0 2899 1 1 4 7 3 0 0 107 0 107 1 162 3 95 3964 0744 1 00 0 00 0 0 0 0 0 0 0 1435 1 7 4 7 3 0 0 107 0 107 1 162 3 95 3964 0744 1 00 0 00 0 0 0 0 0 0 1431 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S. 109 8 EAS. 109 81 153 10 64 3950 0744 1 000 0 0 0 0 0 0 0 2590 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AND TAS.   104   EAS.   104   B.	S. 109 8 EAS. 109 8 1 55 3 95 3 954 0744 1 00 0 00 0 0 0 1435  S. 109 8 EAS. 109 8 1 65 3 95 3 954 0744 1 00 0 0 0 0 0 0 1431  S. 109 8 EAS. 109 8 1 65 3 95 3 95 4 0 0 0 0 0 0 0 0 1431  S. 109 8 EAS. 109 8 1 65 3 95 3 95 4 0 0 0 0 0 0 0 0 1431  S. 109 8 EAS. 109 8 1 65 3 95 3 95 1 0 0 0 0 0 0 0 0 0 0 1431  S. 109 8 EAS. 109 8 1 65 3 95 3 75 5408 0782 2 60 0 0 0 0 0 0 1431  S. 109 8 EAS. 109 8 1 65 3 95 3 75 5408 0782 2 60 0 0 0 0 0 0 1431  S. 109 8 EAS. 109 8 1 72 3 51 7944 0888 5 42 0 0 0 0 0 0 0 1432  S. 109 8 EAS. 116 11 6 118 12 119 9 95 40 83 0 1 09 1420  S. 100 111 7 111 7 1 1 1 1 1 1 1 1 1 1 1 1
AND TAST 00 107 0 107 1 162 3 95 3964 0744 1 00 0 00 0 0 0 1435  AND TAST 00 109 3 109 3 165 3 86 3765 0744 1 00 0 0 0 0 0 0 1431  AND TAST 00 119 6 116 1 6 18 3 75 5408 0782 2 60 0 0 0 0 0 1431  7472 0 0 113 7 113 8 172 3 51 7944 0888 5 42 0 0 0 0 67 1427  7472 0 0 113 7 113 8 172 3 51 7944 0888 5 42 0 0 0 0 0 67 1427  7472 0 0 113 7 113 8 172 3 51 7944 0888 5 42 0 0 0 0 0 67 1427  7472 0 0 113 7 113 8 172 3 51 794 1052 8 23 0 0 0 0 0 1417  7472 0 0 113 7 113 8 172 3 51 1201 1210 9 95 40 83 0 1 09 1417  7471 3 3 118 5 118 5 119 2 180 78 1 155 133 10 05 1 29 269 8 1 10 1413  7471 18 6 119 2 119 2 180 78 1 156 1 1816 10 35 3 50 6 642 2 1 09 1412  7471 18 6 119 2 119 4 180 03 1 0806 1343 9 55 3 56 752 3 1 01 1412  7471 43 2 119 5 EAS  119 4 180 01 1 0634 1320 9 35 3 72 785 4 1 01 1411	109 B EAS.   109 B   165 3 95 3964   0744   100 0 00   1431   162 3 95 3964   0744   100 0 00   100 0 0   1431   169 B EAS.   109 B   165 3 86 3765   0744   100 0 00   0 0 0 0   1431   175   175 3 95 1 0479   1052 8 20 0 00   0 0   0 0   1427   175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3 175 3
AND TAS. 109 B EAS. 109 8 1 165 3 86 3765 0744 1 00 0 0 0 0 0 1431 7472 0 0 111 6 11 6 188 3 75 5408 0782 2 60 0 0 0 0 44 1427 7472 0 0 115 7 115 7 175 3 51 7944 0888 5 42 0 0 0 0 0 1427 0 115 7 115 7 175 3 09 1 0479 1052 8 23 0 0 0 0 0 93 1420 0 157 2 222 0 TAS. 116 1 1 2 10 9 95 40 83 0 1 09 1417 7471 3 3 118 5 118 5 179 1 56 1 1818 1 283 10 05 1 29 269 8 1 10 1415 7471 18 6 119 2 119 2 119 2 119 2 119 1 1516 1418 10 35 3 04 642 2 1 09 1412 7471 3 0 4 119 5 119 4 180 03 1 0806 1343 9 55 3 56 752 8 1 03 1412 7471 3 0 4 119 5 119 4 180 03 1 0806 1343 9 55 3 56 752 8 1 03 1412 7471 43 2 119 5 EAS. 119 4 180 01 1 0634 1320 9 35 3 72 785 4 1 01 1411.	S- 109 0 EAS- 109 81 165 3 86 3765 0744 1 00 0 0 0 0 0 0 14111 0 0 119 1 109 3 109 3 165 3 86 3765 0744 1 00 0 0 0 0 0 0 0 0 14127 0 0 119 6 1116 1116 112 3 51 7944 0888 5 42 0 0 0 0 0 0 14127 0 0 113 7 115 7 175 3 09 1 0479 1052 8 20 0 0 0 0 93 1 420 0 0 113 7 115 7 175 3 09 1 0479 1052 8 20 0 0 0 0 93 1 420 0 0 113 7 115 7 175 3 09 1 0479 1052 8 20 0 0 0 0 93 1 420 0 0 113 7 115 7 175 3 19 1 0479 1052 8 20 0 0 0 0 93 1 420 3 3 118 5 119 7 12 3 1 2011 1210 9 95 40 83 0 1 09 1417 1 3 3 118 5 119 5 119 7 2 3 1 2011 1210 9 95 40 83 0 1 09 1417 1 8 119 5 119 6 119 6 119 1 1950 131 10 25 2 16 455 2 1 10 1413 1 8 119 5 119 7 119 6 119 1 1950 131 1320 9 35 3 72 785 4 1 01 1411. 1 1 3568 6 FEET  1 1 368 6 FEET  1 2 3569 6 FEET  1 2 3569 6 FEET  1 3 3 118 5 119 4 180 0 1 1 0634 1320 9 35 3 72 785 4 1 01 1411.
AND TAS- 109 B EAS- 109 B	Second   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1
AND TAS.   109   0   EAS.   109   0   1   1   1   1   1   1   1   1   1	Second   S
7472 00 113 7 113 8 172 3 73 544 0888 5 42 0 00 0 0 67 1423 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 1420 8 7 14	2222 0 113 7 113 8 172 3 73 51 7944 0888 5 42 0 00 0 0 0 0 1420 2222 0 155 7 115 7 175 3 09 1 0479 1052 8 23 0 0 0 0 0 0 1420 2222 0 155 7 115 7 175 3 09 1 0479 1052 8 23 0 0 0 0 0 1 1420 3 3 118 5 118 5 177 2 34 1 2011 1210 9 95 40 83 0 1 09 1417 8 4 119 2 119 5 119 4 180 11 1655 1363 10 25 2 16 42 2 1 10 1413 18 6 119 4 119 4 180 0 1 1 0634 1320 9 35 3 72 785 4 1 01 1411  E - 3406 5 FEET  1, 3558 6 FEET  37 LBS WEIGHT 7463 LBS ALT 500 FT
7472   0   115 7   115 7   175 3 (9   0479   1052 8 23 0 0 0 0 0 93   1420 8 0 0 0 0 155   116   EAS.   116   1   1   1   1   1   1   1   1	2222 0 TAS. 116 1 EAS. 116 1) 2222 0 TAS. 116 1 EAS. 116 1) 3 3 118 5 118 7 175 3 09 1 0479 1052 8 23 0 0 0 0 9 3 1420 8 1 10 1 17 2 3 4 120 10 9 55 4 0 83 0 1 0 9 1417 8 3 3 118 5 118 5 179 1 56 1 1818 1 120 9 95 4 0 83 0 1 0 9 1417 8 9 4 119 2 119 2 119 2 119 2 119 2 119 2 119 2 119 2 119 2 119 2 119 4 119 4 119 6 111 1 1516 1416 10 35 3 04 642 2 1 0 9 1412 8 30 4 119 5 119 4 180 0 03 1 0806 1343 9 59 3 52 785 4 1 0 1 1412 8 1 19 4 735 785 1 10 1412 8 1 19 4 735 785 1 10 1 1412 8 1 19 4 735 785 1 10 1 1411 8 1 180 1 10 1 1 1 1 1 1 1 1 1 1 1 1
0151. 2222 0 TAS. 116 1 EAS. 116 1!  7472 4 117 3 117 4 177 2 34 1 2011 1210 9 95 40 83 0 1 09 1417 8 1 7471 3 3 118 5 118 5 179 1 56 1 1818 1203 10 05 1 29 269 8 1 10 1415 8 1 7471 9 4 119 2 119 2 100 78 1 1625 1363 10 25 2 16 455 2 1 10 1413 8 1 7471 9 4 119 4 119 4 100 11 1 1516 1416 10 35 3 04 642 2 1 09 1412 8 1 7471 30 4 119 5 119 4 100 03 1 0006 1343 9 55 3 56 752 8 1 03 1412 8 1 7471 43 2 119 5 119 4 100 01 1 0634 1320 9 35 3 72 785 4 1 01 1411 8	2222 0 TAS. 116   EAS. 116   1   1   1   1   1   1   1   1   1
7472	### 117 3 117 4 177 2 34 1 2011 1210 9 95 40 83 0 1 09 1417 8 3 1 18 5 118 5 118 6 129 1 189 5 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 189 1 180 1 189 1 180 1 180 1 180 1 180 1 189 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 1
7471 3 3 118 5 118 5 179 1 56 1 818 1 283 10 05 1 29 269 8 1 10 1415. 8 7471 9 4 119 2 119 2 119 2 119 2 110 1415. 8 7471 18 6 119 4 119 4 119 0 11 11516 11610 135 3 04 645 2 1 09 1412 8 7471 18 6 119 5 119 4 180 03 1 0806 1343 8 55 3 66 752 5 1 03 1412 8 7471 30 4 119 5 119 4 V35/VS. 1 1961 1320 8 35 3 72 785.4 1 01 1411. 8 7471 43 2 119 5 119 4 180 01 1 0634 1320 9 35 3 72 785.4 1 01 1411. 8	3 3 118 5 118 5 118 5 118 1 120 1 20 1 20 2 1 20 1 415 1 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7471 9 4 119 4 119 4 190 7 10 1156 1361 10 75 2 10 55 2 1 10 1412 10 7 7471 18 6 119 4 119 4 190 11 11516 1341 9 55 3 06 642 2 1 09 1412 10 7471 30 4 119 5 119 4 190 03 1 0806 1343 9 55 3 56 752 5 1 03 1412 16 755 9 765 119 5 645 119 4 735/VS* 1 1961 1320 9 35 3 72 785.4 1 01 1411 18	TAS. 119 5 119 4 119 6 119 1516 1116 10 25 5 10 6 42 2 1 0 9 1412 10 2 1 19 5 119 4 119 6 10 1 1 1516 113 9 55 3 56 752 5 1 0 9 1412 10 5 1 19 5 119 4 180
7471 30 4 119 5 119 4 180 03 10806 1343 9 55 3 56 752 5 1 03 1412 8 255 9 TAS* 119 5 EAS* 119 4 V35/VS* 1 1961 1320 9 35 3 72 785.4 1.01 1411. 8	TAS. 119 5 119 4 180 03 1 0806 1343 9 55 3 56 752 5 1 03 1412 8  TAS. 119 5 EAS. 119 4 180 03 1 0634 1320 9 35 3 72 785 4 1 01 1411 8  E . 3406 5 FEET  T . 3255 9 FEET  1L) . 3569 6 FEET  37 LBS WEIGHT 7463 LBS ALT . 500 FT
255 9 745- 119 5 EAS- 119 4 V35/VS- 1 1961 7471. 43:2 119:5 119 4 180 01 1 0634 1320 9 35 3 72 785.4 1.01 1411. 8	TAS- 119 5 EAS- 119 4 735/VS- 1 1961  43 2 119 5 EAS- 119 4 180
7471, 43.2 119.5 119.4 1190 .01 1 0634 1,320 9 35 3 72 785.4 1,01 1411, 8	T = 3255 9 FEET  T = 3255 9 FEET  T = 3255 9 FEET  1L
	E . 3406 S FEET. 11. 3255 9 FEET 11. 3568 6 FEET . 3323 3 FEET 37. LBS WEIGHT 7463 LBS ALT.
	1L) . 3103 2 FEET . 3568 6 FEET . 3323 3 FEET . 37. LBS WEIGHT 7463 LBS ALT.
FT. 3255	37. LBS 4E/GMT+ 7463 LBS ALT.
35 FT. 3255 9 FEI 1 FT 1L1 3103 2 5xL1 3323 3 FEEI	

-47 60-55 5 845 854-85 0

				48	989	20.5	583	1677	23	1499	1,39	2		2	8	<u> </u>	2		1123	100	. 667		8	ŝ		885	2	55	2	3	25	Ê	92	3	•		
				THRUST 12 RS 1	2482	2484. 2486.	2482	2302	2257	2212	2122	22	1989	1945	88	1818	1772	200	638	1891	1544	(53	9	, y	282	1245	25		088	800	35	927	86		}		
				7. 7. 1.	5268	5034	5088	5.38	4773	4689	4514	1424	4242	4149	4055	3864	3767	36.59	22	3345	3164	88	2826	87/7	2492	2375	200	1922	1633	1767	503	380	200	200			
				ANCLE (DEC)		6 E	13 12	13 23	12 37	<u>`</u>	=	= :	29	9	99	2	25	20	0	<b>O</b> (	<b>3</b> D <b>6</b> C	8 34	200	2 6	<b>2</b> 68	2	<u>գ</u>	. 5	26.5	( g	2 32	5 84	2	5 5 5 5 5			
				CAMMA	8:	22	& E	38 :=					5 <b>2</b>		8 95 8 65	8	8	88	8	6 92	9 - 9 - 9 -	5 88	5 63	) (C	8	8;	, 2	3 61	88	28	2 68	7:	9 0 7 -	3			
LBAR	~~	Ę		ALPKA (DEG)	7	77	٠. ت:	3×2	% %	34	2 5	727	2 7	2 78	98 6 7 C	300	8:	: X n m	9 19	۳; ۳	* & * ~	3 46		, c	3 82	6	52	=	88	35	4 24	90	7	6 4		€9 ME	
3	1653	-		8	0317	0316	93.6	932	0322	0326	0328	בנים הנינים	0336	0338	0344	0347	0320	0353	0354	0358	9364	0367	0371	0380	0385	930	0000	0402	0397	0409	0414	0423		25			
165	280	RANGE		ರ																												5103	0 K 1 J	2299		RANCE.	
Š	727	8		MACH	774	7.	774	27	772	770	770	768	767	767	765 765	764	763	9	762		8 K	6	Ç K	100	Ž,	S K	Ę	2	Ç K	3.5	748	746	2	740		28	
2	22	7457		Z S	27	38	969	E.	ב ב ב ב ב	88	8	86	405	8	-	817	423	5	673	9 (	3	8	111	482	8	28	S	516	א ה א	546	554		9	570		7217	
(KTS)	168	KEICHT.	a is	EAS (KTS)	23	22	23.	227		221	219	2.7	212	2 6	88 88 88	2	88	86-	8	<u> </u>	192	261	<u> </u>	187	2 2 2 2 3 3 3 3	2 =	179	92	8 2	176	<b>Z</b> :	2	38	163		KIGHT.	
(KTS)	233	<b>3</b> 83	8	TAS	233	8	2.6	7	242	249	ę, ć	18	ić,	ę X	38	2	88	9	273	22	279	782	8	88	8		23	<u></u>		313	E 6	22	2	327		res A	
(FT)	88	42.9	MAXIMUM RATE	ALT.	88	88	38	88	88	000		88	88		2000	000	200	0006		882	23000	200	888	27000		0000	31000	3200	360	35000	200	38000	39000	<b>4</b> 0000		283	
(LBS)	7463.	ION SECRENT FUEL USEDS	A	VE CONT	7457	7449	738	7432	7422	7416	7605	8	25 28 28 28	7385	7379	7374	7363	7358	22	7341	7336	35.5	7318	7312	96	78.	7288	1281	7266	229	35	7235	7227	7217	40000 FT	0350	
(FBS)	8.6	=	0000 FT	P.C. USED I.BS	5,4	5	3	8.	, <b>6</b>	28	6 6	8	85	25	2	<u> </u>	137	25	23	23	164	2.5	8	8	35	Ŕ	215	5 X	234	25	9 %	36	273	<b>283</b>	9		
ŝ	8.P.	ACCELER .097 HR	2	RANCE		ni r	'n	48	9	~ 0	D 01	0	2:	~	2	ē, Ā	2	<b>∞</b> 9	2 2	2	X)	Ç.	8	8	7	8	<b>8</b> 9	3.2	9	<b>9</b> 2	ž	8	3	6	CL ING	336 143	
EAS	88	EN CO	S. J.	7 7 88	88	āā	8	<u>~</u> £	<b>.</b> -	27	2,2	2	137	145	67	5.5	3	<u>8</u> :	92	<u>.</u>	187	26	Ŕ	, 0	223	230	237	ę X	ž	22	į į	S	2	85	8 83	•	

ALTITUCE. 40000 FT TAS" 438.79 KTS MACH NO. 7643

ACCELERATE TO HACH NO. . . 700

## #\$	RANCE	독립	VE IGHT	ALT.	TAS	EAS (KTS)	Ž S	MACH D	THRUST (LBS)		ಧಕ್ಕಿ
85	25 24	00 000 000 000	7217.	000 000 000	327	28	58	739	85 838 838	621 664	
END OF	ACCELERATION SECHENT .375 HRS FUEL USED:	TION SE	SENT USED:	309.0 LBS		KE ICHT.	7191.	8	RANCE.	2	ž
ACCEL	ACCELERATE TO HACH NO. + .764	MACH NO	. 764								
TIRE (FRS)	RANGE (NP)	FUEL USED (LBS)	WE (CHT	ALT. IFT:	TAS	EAS (KTS)	N S	MACH 0 = V	THRUST (LBS)	184/81 178/81	ಕೃತ್ತ
505 505	88 98 98	283.0 328.2	7217.	40000 40000	439	163	52	85	: 823 848	683	
END OF	ACCELERATION SECHENT 402 HRS FUEL USED.	TION SEC	SHENT USED:	328.2 LBS		K rent.	7172	2	RANGE	<b>5</b> 8	Ē
ACCEL	ACCELERATE TO HACH NO • .642	HACH NO	. 642					•			
TIRE	RANGE	SEC.	VE IGHT (LBS)	ALT. (FT)	TAS (KTS)	EAS IKTS!	NA CA	MACH D V	THRUST (LBS)	705 708 18/48)	ವಕ್ಕಿ
88	38 83	283 0 294 8	7217.	40000 40000	327.	5.5	570	85. 8. E.	<b>623</b>	62 643	_
9.0	END OF ACCELERATION SECHENT TIME. 354 HRS FUEL USED.	TION SEC	SENT USED:	294.8 LBS		VE CHT.	7205	8	RANCE.	92 E	Ē

DESIGN CASE
CRUISE PERFORMANCE SUPPLARY
FOR
FUR. HAXIMUM PAYLOAD
FUEL AVAILABLE. 1992.

•	BEST SPEC. RANGE		CRUISE CRUISE	٠																		348
	POVER	20	CRUSE		2 557	20	1552	5948	40000	438 8	218 1	7643	1166	8	1 264	797	2597	8 514	50.00	47.36	79565	.04
<b>Y</b>	MORMAL	START	35. 25.		405	8	92 25	7172	40000	438.8	218.1	7643	1077		2/	7.0	3132	9 700	286	5370	74834	-
	O SPEED	2	<b>X</b>		8	1142	3	293	000	60	<b>8</b>	2000	7708	0.0	D/C	878	890	9 432	474.3	4997	R4735	<b>S</b>
~	2000	1 7 7 1	3		r.	3	Ş	7191	000	0	8	8	7626	2 666	9	2	3/43	10 637	5130	5637	78342	5
				•	çi E	Ē į	6	6	- {		_			•		_			_	_	100 X	ESERVE FUEL (LBS ( 45.0 HIN.)
				1	- 6			5		. Y		_		u	,	X X X		•	_	BREG FACTO	SPEC RANGE	RESERVE

ACCELERATE TO HACH NO. . . 700

FUEL FLOW (18/48)	621 864	2	
THRUST (LBS)	823 838	RANGE.	
MACH	739	28	
A CH	200	7191	
EAS (KTS)	200.	VEIGHT.	
TAS	55 50 50 50		
ALT.	40004 60004	309.1 LBS	
VE IGHT	7217.	USED.	NO. • .764
58 58 58 58	303	TION SE FUEL	TO MACH NO
RANCE	88 88	ACCELERATION SECHENT 375 HRS FUEL USED	CCELERATE TO 1
THE HRS	338	TIME.	ACCELE

705 108 (84/8)	621	¥ 8
THRUST (LBS)	823 848	RANCE.
MACH	739	r _B s
NA NA	570	2112
EAS (KTS)	218.	ÆIGHT.
TAS	439	
ALT. IFT:	600 600 600 600	328 2 LBS
WE CONT	7217	CHENT USED.
755 755 1685 1685	3283	LERATION SECHENT HRS FUEL USED
RANCE	88	ACCELERA 402 HPS
TIRE IRRS	<b>5</b> 5	000 1116

ACCELERATE TO MACH NO . 642

<del>g</del>

Ę,

18/87 (18/87)	55	76. NE
THRUST (LBS)	222	RANCE.
AAC O V	753	8
¥ 5	570	7205
EAS	163	ÆIGHT.
TAS (KTS)	327	•
ALT.	900	294.8 LBS
VE IQH (LBS)	7217	CHENT USED
0350 (S <del>8</del> 7)	283	28 82 28.28
RANCE	35 83	ACCELERATION 354 HRS
# 55 # 55	88	END OF

DESIGN CASE
CRUISE PERFORMANCE SUMMANY
FOR
TOWN DESIGN PAYLOAD
FUEL AVAILABLE. 2317

	RANCE	9	CRUSE		761 7	1692	836	44.3			Š	193 3	6424	36.6	8	2 375	375	617	9	8	3	665	8		_	
-	BEST SPEC			•																					370	
	POVER	2	<b>35</b>		3 - £6	<u>8</u>	1877	\$623	40000	4.29		917	7643	7783	3 5	2	<u>R</u>	255	9 9	777	,	<b>1</b>	80603		2	
I	NORMAL	START			407	8	9% 3%	2/17	0000	8.8	9 -	- (	/643	1077	22	2 :	2/	3132	8	SAC A	45.5	2	74834		<b>→</b>	
•	03365 0			•																					É	
₹	SPECIFIE	2017	3		2	5	8	1617	<b>4</b> 000	60	8		3	929/	2 555	-	2	14/5	10 637	5130	647		18342		-	_
					Ç i			_	_		_				X	_	-			_	_					NE DO
				1	7	¥ 0			ALTIMOS	LAS	EAS	2774		K) VI	ANCLE ATTAC	S CNV SYIN		٠ . د	2	יים אינו	BREG FACTO	2000	ACC NAME	4	DE SERVE FO	-

RANCE - 1301. BLOCK TINE: 3 148 USED FOR DESIGN RANCE AND COST

LANDING ELEVATION C FT LANDING MING LOADING S2 65 PSF LANDING WEIGHT : 7530 LBS LANDING DISTANCE FROM SO FT . 2459 FT.
F A R FACTORED FIELD LENGTH . 4090 FT.

APPROACH TRANSITION

ACL	DIST. 1433 MB: 4000 TR/TIDLE: 0 0000 ABARIGI: 3521
_	55.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05 50.05
DELAY	DIST. TOELAT. TIDLE. VTOTAS.
1.0v	237 3 000 92 70 8064 27 4
TRANSITIO	DIST. XLFHX. SINKTO. VSTEAS. CLMX. HFLAR.
PPROACH	2000 2000 2000 2000 2000 2000 2000 200
APPR	DIST. R/S. VAPEAS. VAPTAS: THETA: THETA:

TERATION TO BALANCE RANCE RANCE ERROR: RANC, ERROR HIMUS I 0841 I 0000 GROSS WGT, GROSS WGT HIMUS I 5625 0 7500 0

**~9196** 43088 5 8 25888 ರ ¥Q. R/C REG IFFE 29 - 29 167 26 3327 66 393 - 26 0 SE SE CE 9 9 ALTITUDE: 40000 0000 0153 0474 R/C (FPM) **\$885** 9 0 0EG F 757 1132 1457 3080 CROUND EFFECT!
LE ANGLE DELTA CL 0 0000 1949 4551 AREA IF T21 21 0 ROTATION (TIME: 14.7 AND TAS: 110.3 EAS: 110.4) LIFTOFF (TIME: 17.2 DIST: 1938.7 TAS: 125.0 EAS: 125.0) DISTANCE TO 35 FT: 3039.5 TAS: 145.5 EAS: 145.5 V35/VS: 1.449) 3 V (KTAS) 25552 TAKE OFF RATE OF CLIMB REQUIREMENTS - FAR PART 25
AIRPORT ALTITUDE. 0. FT. AMBIENT TEMP ABOVE STD. DAY. 000 DELCO AT OPT ġ 000 200 8 ALT (FT) ٥<u>٧</u>٥٠. SUPPLARY OF CRUISE LIFT-VEIGHT BALANCE
ANGLE OF ATTACKIOEGREESI+ 2 717 LIFT+ 5625 0 FLAP PERFORMANCE SUMMARY 10UT CLMAX VSTALL, KTS. FLAP ANCLE VSTLKT+ 100 4 KTS EAS VRAT+ 1 100 CLTO+ 1 2736 VEND + 223 5 KNOTS EAS 000 IST SEG. T.O. FLAPS-LO GEAR EXT. - ONE ENG OUT SEC SEG. T.O. FLAPS - ONE ENGINE OUT FINAL T.O. CRUISE CONFIG. - ONE ENG OUT LANDING FLAPS - ONE ENG OUT LANDING FLAPS - ALL ENGINES 050 DELCL AT OPT 7000 4 m m PLAIN FLAPS OPT ANCLE 8 3486 5344 7847 COFICURATION TO CONFIG TO CONFIG LOC. CONFIG 5 POOR QUALITY

APPROACH FLAP SETTING . 11.0 DEG

29548 9 FT. 234 0 KTAS 99 8 FPN 5400 0 LBS ENGINE-OUT SERVICE CELLING BEST RATE OF CLINB SPEED ENGINE-OUT RATE OF CLINB NEIGHT AT ALTITUDE :

**** RESIZE ENGINES AT CRUISE TO ACCOUNT FOR RESIZED NACELLES****

000 PROPLEION SYSTEM WEIGHTS
ENGINE WEIGHT/ENGINE
NACELLE VEIGHT/ENGINE
PYLON VEIGHT/ENGINE
CEARBOX
SYROLO

¥8.

C-24

FT
9
ENST PART
F PACE LENGE
교육교
DESEMBLE OF THE PROPERTY OF TH

-4 88 VSTLKT* 100.4 KTS EAS VRAT* 1.100 CLTO* 1.2736 VEND * 223.0 KNOTS EAS ROTATION (TIME. 14.0 AND TAS. 110 3 EAS. 110 4)
LIFTOFF (TIME. 16.4 DIST. 1847 6 TAS. 125.0 EAS. 125.1)
DISTANCE TO 35 FT. 2979 5 TAS. 147.4 EAS. 147.4 V35/VS. 1.4684
TAKE OFF RATE OF CLIMB REQUIREMENTS. FAR BARY.

TAKE OFF RATE OF CLIMB REQUIREHENTS - FAR PART 25
AIRPORT ALTITUDE: 0 FT. AMBIENT TEMP ABOVE STO DAY: 0 0 C

A 180 88862. V IKTAS! R/C IFPH! R/C REQ (FPH) -88882 33778 28582 0 0 0EG F 844 1220 1550 1490 3278 25052 ALT IFT! **0**00000 1ST SEG.T O FLAPSNLD GEAR EXT - ONE ENG OUT SEC SEG. T.O FLAPS - ONE ENGINE OUT FINAL T.O. CRUISE (ONFIG - ONE ENG OUT APPROACH FLAPS - ONE ENG OUT LANDING FLAPS - ALL ENGINES CONFIGURATION

てのののものなった。

3

APPROACH FLAP SETTING . 11.0 DEG.

*** ENGINE-OUT SERVICE CETLING + 30002 B FT.
BEST RATE OF CLINB SPEED + 234 S KTAS
ENGINE-OUT RATE OF CLINB + 99 6 FPN
WEIGHT AT ALTITUDE + 5400.0 LBS

ENGINE SIZEO TO MATCH CRUISE DRAG - SLS AIRFLON: 44.84

O. I SLS AIRFLOY. O. DEG RIALTS ENGINE SIZED TO MATCH T.O. DISTANCE OF 3100 FT 15TO DAY. ENGINE SIZE METS ALL RATE OF CLIMB REQUIREMENTS RATEO SEA LEVEL STATRE THRUST PER ENGINE: 1389 O LBS

PROPULSION SYSTEM WEIGHTS
ENGINE WEIGHT/ENGINE
MICELLE WEIGHT/ENGINE
PROP OR GFAN
GEARBOX
SHOOLD
SHOOLD

280

DIGINE POD DIMENSIONS ENGINE FACE DIMETERIFTI MACELLE LENGTHIFTI VSTLKT+ 100 4 KTS EAS - VRAT+ 1, 100 CLTO+ 1, 2736 VENO + 223.0 KNOTS EAS

		5	7.9.5.e.e.		
		Q. <b>15</b> 0	68 88 68 88		
		V IKTASI RIC IFPHI RIC REQ IFPHI	294 59 167 26 327 56 139 56		
.4763	0.0 DEG F	R/C (FPH)	886 51 1262 40 1594 09 1530 41 3363 32		
125.71 V35/VS*	<b>. . .</b> .	V (KTAS)	121 37 7 8 15 15 15 15 15 15 15 15 15 15 15 15 15		
HOLATION (TIME: 13.8 AND TAS: 110.3 EAS: 110.4) LIFTOFF (TIME: 16.2 DIST: 1835.0 TAS: 125.7 EAS: 125.7) DISTANCE TO 35 FT: 2956.0 TAS: 148.2 EAS: 148.2 V35/VS: 1.4763	TAKE OFF RATE OF CLINB REQUIREMENTS - FAR PART 28 AIRPORT ALTITUDE: 0. FT. AMBIENT TEMP ABOVE STD. DAY:	CONFIGURATION ALT IFTI	1ST SEG.T O FLAPS - LD GEAR EXT - ONE ENG OUT 250 SEC SEG. T O FLAPS - ONE ENGINE OUT 250 FINAL T O CRUISE COMFIG - ONE ENG OUT 1500 APPROACH FLAPS - ONE ENG OUT 0 LANDING FLAPS - ALL ENGINES 0	APPROACH FLAP SETTING + 11.0 DEG.	*** ENGINE-OUT SERVICE CEILING * 30270.2 FT. BEST RATE OF CLIMB \$PEED * 233.1 KTAS ENGINE-OUT RATE OF CLIMB * 99.6 FPN WEIGHT AT ALTITUDE * 5400.0 LBS

****RESIZE ENGINES AT CRUISE TO ACCOUNT FOR RESIZED NACELLES****

					ರ	
					V KKTASI R/C (FPM) R/C REQ (FPM)	27 28 27 28 37 28
			4790	0 0 056 F	R/C (FPH)	893 35 1269 30 1601 40 1537 49
			124 91 : V35/VS= 1	D DAY.	V (KTAS!	115 7 121 3 137 7 154 2
		.2736	124.8 EAS. EAS. 148 5	ART 25 EMP ABOVE ST	ALT (FT)	250 0.550 0.000 0.000
000 E 20 E 20 E 20 E 20 E 20 E 20 E 20 E	-4 -8	T. 1.100 CLT0. 1	TAS* 110.3 EAS 1798.4 TAS* TAS* 148.5	IREMENTS - FAR P		R EXT - ONE ENG ENGINE OUT - ONE ENG OUT OUT
PROPULSION SYSTEM VEIGHTS ENGINE VEIGHTZENGINE NACELLE VEIGHTZENGINE PYLON VEIGHTZENGINE PROP OR GFAN GEARBOX SYROUG	ENGINE POD DIMENSIONS ENGINE FACE DIAMETERIFTI NACELLE LENGTHIFTI	VSTLKT* 100.4 KTS EAS VRAT* 1.100 CLTO* 1.2736 VEND * 223.0 KNOTS EAS	ROTATION (THE: 13.7 AND TAS: 110.3 EAS: 110.4) LIFTOFF (THE: 16.0 DIST: 1798.4 TAS: 124.8 EAS: 124.9) DISTANCE TO 35 FT : 2957.7 TAS: 148.5 EAS: 148.5 V35/VS: 1.4790	TAKE OFF RATE OF CLIMB REQUIREMENTS - FAR PART 25 AIRPORT ALTITUDE: 0 FT. AMBIENT TEMP ABOVE STD. DAY.	CONFIGURATION	IST SEG T O FLAPS LD GEAR EXT - ONE ENG OUT SEC SEG T O FLAPS - ONE ENGINE OUT FINAL T O CRUISE COMFIG - ONE ENG OUT APPROACH FLAPS - ONE ENG OUT

7608 2658

6.76

8

393 12

APPROACH FLAP SETTING . 11.0 DEG.

BEST RATE OF CLING • 30304.9 FT.
BEST RATE OF CLING \$PEED • 232.9 KTAS
ENGINE-OUT RATE OF CLING • 99.6 FPH
VEIGHT AT ALTITUDE • 5400.0 LBS

ENGINE SIZED TO MATCH CRUISE DRAG - SLS AIRPLOUM 45.78

0.1 SLS AIRPLOY. O. DEG R.ALT. ENGINE SIZED TO MATCH T.O. DISTANCE OF 3100, FT (STD DAY.

ENGINE SIZE MEETS ALL RATE OF CLINB REQUIREMENTS

RATED SEA LEVEL STATIC THRUST PER ENGINE: 1418 | LBS

PROPULSION SYSTEM VEIGHTS
ENCINE VEIGHT/ENGINE
NACELLE VEIGHT/ENGINE
PIEON VEIGHT/ENGINE
EARBOX
GEARBOX
0.0
SAROUD
0.0

-76 -76

> ENGINE POD DIMENSIONS ENGINE FACE DIAMETERIFT) NACELLE LENGTHIFTI

- Z

MOST FUD LOAD

VT CG

V

---TAIL SIZING SUMMARY---

DCH CH CT 0058 0000 - 1031 0058 0 0000 - 1031 0058 0060 - 2000 DCH CH DCM CM 4634 5694 0 0000 5688 5870 i --FUSELAGE... Š 7804 7804 7847 TAIL DOWN EFF WASH 9500 1875 9500 2 5708 7A1L CLA 0759 0659 0660 CLA CLA 0897 0811 0812 CRUISE 2 7170 LIFTOFF 1 0000 LANDING 13 7080

ELEVATOR PARAMETERS
CHILPHAFLOATING TENDENCY) • - 00511
CHOELTAIRESTO-ING TENDENCY) • - 01204
CHOELTAICONTROL, PONER) • - 03551
TAUHIEFFECTIVENESS) • - 48250

37507

WING DE/DALPHA .

· Pr.	FRACTION STATION MORIZONTAL TAIL SIZES  HAC IDATUM MOSE) STATIC STABILITY AND TRIM 32 4725  STATIC HAGIN 0.000 STABILITY AND LIFTOFF 28 8556  CG RANGELLOADING) 2223 IG 774 LIFTOFF 32 4725  FAD CG LIMITICONTROL)0496 IS 874 TAIL ARMIELTH) IS 6501	VERTICAL TAIL AREA . 16 1853 FOR DIRECTIONAL STABILITY OF . 00200 VERTICAL TAIL AREA. 14 8489 FOR MINIMUM CONTROL SPEED . 99 58 KTS	REQUIRED VERTICAL TAIL AREA . 16 1853 TAIL ARHIELTVI . 14		AIRCRAFT C.G. SUMMARY (DATUM-NOSE)	MOST FUD LOAD HOST AFT LOAD DESIGN LOAD  VI CG VI CG VI	A/C ONE 3892 97 16 80 3892 97 16 80 3892 97 16 80 80 80 80 80 80 80 80 80 80 80 80 80	TAIL SIZING SUMMARY	CONDITION ALPHA CLA CLA EFF WASH CL DCM CH DCM CH CM CM CM CM CM CT	ELEVATOR PARAMETERS  CHALPHAFLOATING TENDENCY! 00511 VING DE/DALPHA - 40151  CHDELTAFESTORING TENDENCY! 01204  CHDELTAFCONTROL POVER! 03604  TAUHIEFFECTIVENESS! 48253	FRACTION STATION HORIZONTAL TAIL SIZES  NEUTRAL POINT STATIC HARGIN STATIC HARGIN STATIC CHARGIN	VERTICAL TAIL AREA . 15.9840 FOR DIRECTIONAL STABILITY OF . 00200	VERTICAL TAIL AREA. 14 5496 FOR MINIMUM CONTROL SPEED . 99 58 KTS	The fall of the fall of the party of the par
-------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------	--	------------------------------------	---------------------------------------------------------	---------------------------------------------------------------------------------------	---------------------	---------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------	-------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

	DCN CH CT	33.6191 28.9883 28.1786 33.6191 15.5167		0 0000 0 0000 -1 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000
04D DESIGN LOND CG VI 73 VI CG S3 VI CG CG S4 VI CG	INGFUSELAGENACELLE FLAP LL DCH CH CH CH NA 4862 0040 0000 1031 NO 5974 0 0000 0040 0000 1031 NING 7E/DALPHA + 40279	TATION MORIZONTAL TAIL SIZES TUM NOSE: 17.086 STATIC STABILITY AND TRIM 16.965 LIFTOFF 16.965 LIFTOFF 16.079 TAIL ARMIELTH: 16.079 TAIL ARMIELTH: 17.080 00000 UM CONTROL SPEED • 99.58 KTS TAIL ARMIELTY: 14.2774	AIRCRAFT C. C. SUFINARY (DATUM-NOSE)  DST FUD LOAD MOST AFT LOAD DESIGN LOAD  WT CG WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT CG  WT	WINGFUSELAGENACELLE FLAP CL DCH CH DCH CH CH 3904 4898 0038 0038 0000 - 1031 7847 6012 6204 0038 0039 - 2000
HOST FUD LOAD HOST AFT L 3893 27 16 83 3893 27 850 00 17 73 165 00 0 00 17 49 785 53 157 11 17 37 271 21 0 00 17 49 00 4900.37 16.11 5115.00	**************************************	CAL T	F 800 7 8	TAIL SIZING SUPPLART  ALPHA CLA CLA EFF UASH 2 7170 0997 0759 9500 2015 1 0000 0811 0659 9500 2015 13 7090 0812 0660 9500 2 7620 1
AAC OFE PACCAGE WING FUEL TIP FUEL TOTAL	Courties Caution Litror Litror Livoing	NEUTR STATI STATI AFT C CG RA FNO C VERTI	AC OF PAX PAX BACCACE VING FUE TIP FUE TOTAL	COURT CAUST LIFTOFF

				8 <u>e</u>					
	34 0460 279 1627 27 3090 34 0460 15 4712	· .		G LOCATION OF PROPULSION.					·
16209	S AND TRIH FTOFF	•		C G LOCATIC					
WING DE/DALPHA .	HORIZONTAL TAIL SIZES STATIC STABILITY AND TRIM STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL APPRIECTHI	SPEED + . 99 56 KTS	PEQUIPED VERTICAL TAIL APEA - 16.2383 TAIL ARMIELTVI - 14.2220	22 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25					125 41 -V35/VS* 1.4827 8 5CC 2 5CC
- 01204 - 01204 - 03680 - 48250	STATION (DATUM NOSE) 17 137 17 016 16 114	16.2383 FOR DIRECTIONAL STABILITY OF 14.6937 FOR MINIMUM CONTROL SPEED +	383 TAIL ARMIELTVI	VOL ARM LOCATON VOL ARM C G LOCATON	6 238 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		74E 1.187.49 208	C. TO: 1.2736	0.21 [EAS* 148 6 28
	FRACTION HAC 1742 0300 1442 2224 - 0782	2383 FOR D	(A + 16.2383	H-TAIL H-TAIL H-TAIL V-TAIL W-TAIL	35 25 25 25 25 25 25 25 25 25 25 25 25 25		FF 9.0	100 C. 70•	805 1 A5• 7 SEC
TERS ATING TENDE TORING TENDE TROL POVERI	ABILITY) SI VIROL)		NL TAIL AR	25 25 25 25 25 25 25 25 25 25 25 25 25 2	106 24 24 348 7 200 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15 500 15	<b>.</b>	WEIGHT (LBS)	. ystc	2.0
ELEVATOR PARAMETERS CHALPHAIFLOATING TENDENCY) CHOELTAICONTROL POWER) TAUHIEFFECTIVENESS	NEUTRAL POINT STATIC MAGIN AFT CG LIMITISTABILITY) CG RANCELLOADING) FVO CG LIMITICONTROL)	VERTICAL TAIL AREA VERTICAL TAIL AREA.	REQUIRED VERTICAL TAIL AREA .	TION INFO. ENGTH LOC ON C.L. OCATION FOR C.L OCATION C.C C.C.LOCATE	741.0 2000.00	TAXI AT IDLE THRUST	PANCE USED (NET) (LBS)	2 KTS E	- F. P. P.
7 7 0 0 0 0	NEUTRA STATIC CG RANG	VERTI	REGUL	VING LOCATION INFO FUSELACE LENGTH WING 1/4C LOCATION HAC 1/4C LOCATION HAC DIST FROM C. L WING C. G. LOCATION TIP TAWES C. G. LOCATION	APEA SPAN ASPECT RATIO TAPER RATIO 1/4C SWEEP C L CHORD MEAN CHORD TIP CHORD	TAX! AT	TIME RANGE (HRS) (NRS)	VSTLKT. 100 VEND .	ROTATION (TIME: LIFTOFF (TIME: DISTANCE TO 35 I CEAR RETRACTION FLAP RETRACTION
									_ <b></b>

WRAT - 1 100 CL.10 - 1 2736

VSTLKT: 100 2 KTS EAS

DICINE OUT PERFORMANCE FOLLOWS
VEND . 228 7 KNOTS EAS

DICINE FAILURE (TIME: 12.9 AND TAS: 105.2 EAS: 105.2)

ROTATION (THE: 14 2 AND TAS: 110 2 EAS: 110 21 TITTE TO DIST: 17 0 DIST: 1976 4 TAS: 117 1 EAS: TITTE DISTANCE TO 35 FT = 3046 0 TAS: 122.1 EAS: 122.1 V35/VS: 1.2181

ACCELERATE - STOP DISTANCE . 3276.1 FEET.

ENGINE OUT DISTANCE TO 35 FT.+ 3046.0 FEET

ALL ENGINE DISTANCE TO 35 FT. (L) + 2934 0 FEET FAR 25 T 0 DISTANCE TO 50 FT. + 3162:5 FEET

ALL EMGINE DISTANCE TO 50 FT. . 3162.5 FEET
AT END OF TAKEOFF PHASE
TIME: 093 HRS FUEL USED: 30. LBS VEIGHT: \$595 LBS ALT: 500. FT.

ACCELERATE TO HACH NO. + .349

DIO OF ACCELERATION SECHENT
THE: .095 HRS FUEL USED: 33 8 LBS VEIGHT: 5591 LBS RANGE: 1. NA
END OF CLINB TO 40000. FT
THE: .305 HRS FUEL USED: 212. LBS VEIGHT: 5413. LBS RANGE: 59. NA

ALTITUDE: 40000 FT TAS: 434.91 KTS HACH NO: 7578

ACCELERATE TO NACH NO. • .700

DAD OF ACCELERATION SECRENT TIME: 343 HRS FUEL USED: 233.3 LBS NEIGHT: 5392. LBS RANCE: 74, NM

ACCELERATE TO HACH NO. + ,758

DIO OF ACCELERATION SECHENT THE: 363 HPS FUEL USED: 245.0 LBS NEIGHT: 5380 LBS RANCE: 82 NM ACCELERATE TO MACH 110 : 625

END OF ACCELERATION SECRENT THE: 320 HPS FUEL USED: 220 0 LBS WEIGHT: 5405 LBS RANGE:

3

DESIGN CASE
CRUISE PERFORMANCE SUMBART
**** HAXIMUM PATLOAD ****
FUEL AVAILABLE**
727.

	PANCE	Š	*****	\$	276		5:84	0000	888	- 0/-	5252	75.28	3 567	2 567	151	191 01	371 3	205	89996	\$8.	
AT.	_	35 in 15																			
	100 E	<b>3</b> 5		591	182	<b>3</b>	\$268	0000	434 9	216.2	7576	7707	1 781	781	3122	887 80	9 887	4692	69013	370	
[¥	MORMAL	CRUSE		363	8	245	5380	40000	6 767	216.2	7576	7699	- 844	844	3188	8 610	492 7	4752	88273		
	O SPEED	35 35 35		& ~	<b>%</b>	8	5225	40000	6 -04	<b>8</b>	2000	7646	2 438	<b>87</b>	3626	9 227	429 7	4890	93527	82	
AŢ	SPECIFIE	35 S		323	7	233	5392	0000	6 104	<b>8</b>	200	7631	2 555	1 555	3742	9 401	53.2	4982	92338		
							8						2	8			E 54	ī	2		
				<u> </u>	<b>2</b> 20 20 20 20 20 20 20 20 20 20 20 20 20		20.3	ALT: TOE	TAS	EAS	MACH NO	OIV MACH	ANCLE ATTACK	FUSE ANGLE	ರ	5	_		SPEC RANCE	RESCRVE 1 4	

ACCELERATE TO HACH NO. . . 700

END OF ACCELERATION SECHENT THE . 343 HPS FUEL USED: 233.4 LBS NEIGHT: 5392. LBS RANCE: 74. NR

ACCELERATE TO HACH NO . . 758

END OF ACCELERATION SECREDIT 11NE . 363 HPS FUEL USED: 245.0 LBS VEIGHT: 5380. LBS RANGE: 82

£

ACCELERATE TO HACH NO. . . 625

END OF ACCELERATION SECHENT
TIME: 320 MPS FUEL USED: 220.0 LBS VEIGHT: 5405 LBS RANGE: 64

DESIGN CASE
CRUISE PERFORMANCE SURVARY
FOR PALOAD *****
FUEL AVAILABLE 1052

| START END START END START END START END CRUISE CR

RANGE + 475. BLOCK TIME | 265 USED FOR DESIGN RANGE AND COST

LANDING ELEVATION: 0 FT
LANDING WING LOADING: 52 65 PSF
LANDING WEIGHT = 5625 LBS

LANDING DISTANCE FROM 50. FT. . 2488, FT. F A.R. FACTORED FIELD LENGTH + 4147, FT.

APPROACH TRANSITION DELAY FOLL

DIST. 612 DIST. 238 DIST. 181 DIST. 14

R/S. 1000 XLFHX. 1.150 TOELAY. 1 00 MUB. VAPEAS. 121 01 SINKTD. 3 000 TIDLE. 139 TR/TIDLE. 0 THETA. 4 67 CLLHA: 1.7913 YTDTAS. 107 12 ABARIGI. 1 THEOLET. 366 HFLAR. 27 9

TERATION TO BALANCE RANCE RANCE ERROR, RANCE ERROR HIMUS I GROSS MCT, GROSS MCT HIMUS! MEIGHT CON DELTA CL 0 0 0 0 0 0 0 0 0 0 0 0 0 AREA (FT2) 0 **8** FLAP PERFORMANCE SURMARY (QUT OF CROUND EFFECT)
CLMAX VSTALL,KTS FLAP ANGLE LE ANGLE DEL' 000 PLAIN FLAPS
OPT ANGLE DELCE AT OPT DELCO AT OPT o⊼ 8 ၀၀၀ 988 -44 FLAPS UP TO CONFIG LDC. CONFIG 2

8 MACH SUPPLARY OF CRUISE LIFT-VEIGHT BALANCE
ANGLE OF ATTACKIDEGREES! 2.717 LIFT: 7270.9 L/D: 11.469 ALTITUDE: 40000.0

VSTLKT* 100.0 KTS EAS VRAT* 1.100 CLTO* 1.2026 VEND * 228.5 KNOTS EAS ROTATION (TIME: 17 2 AND TAS: 110 0 EAS: 110.0) LIFTOFF (TIME: 19.6 DIST: 2158,1 TAS: 122,1 EAS: 122,1 DISTANCE TO 35 FT.: 3296,1 TAS: 140,3 EAS: 140,3 V35/VS: 1.4021

ITERATION TO HATCH TAKEOFF DISTANCE XTO, XTO, XTORQ, MASLS 3296. 3100. 47.87

VSTLKT+ 100.0 KTS EAS VRAT+ 1.100 CLT0+ 1.2826 VEND + 240.3 KNOTS EAS

ROTATION ITHE: 15 0 AND TAS: 110 0 EAS: 110 01 LIFTOFF (THE: 17 4 DIST: 1940 9 TAS: 124.1 EAS: 124.1 DISTANCE TO 35 FT.: 3062.6 TAS: 145.3 EAS: 145.3 V35/VS: 1.4524

ITERATION TO MATCH TAKEOFF DISTANCE XTO, XTORO, WASLS 3063. 3100. 54.12

WSTLKT* 100.0 KTS EAS WRAT* 1.100 CLTO* 1.2826 VENO * 236.8 KNOTS EAS ROTATION (TIME: 15.3 AND TAS: 110.0 EAS: 110.0) LIFTOFF (TIME: 17.8 DIST: 1986.6 TAS: 124.1 EAS: 124.1) DISTANCE TO 35 FT: 3087.9 TAS: 144.2 EAS: 144.2 V3S/VS: 1.4416

ITERATION TO MATCH TAKEOFF DISTANCE XTO XTORY UASLS 3088 3100 53.03

TAKE OFF RATE OF OLINB REQUIREMENTS - FAR PART 25
AIRPORT ALTITODE: 0. FT. ANBIENT TENP ABOVE STD. DAY: 0.0066 F

ENCINE-OUT SERVICE CEILING - 31121.7 FT.

BEST RATE OF CLINB SPEED - 254.3 KTAS
ENCINE-OUT RATE OF CLINB - 100.0 FPN
WEIGHT AT ALTITUDE - 6980.0 LBS

:

000 PROPULSION SYSTEM WEIGHTS
ENGINE WEIGHT/ENGINE
PYLON WEIGHT/ENGINE
PROP OR OF AN
CRABOX
SAROX

ENGINE POD DIMENSIONS ENSINE FACE DIAMETERIFT) NACELLE LENGTHIFT)

RATED SEA LEVEL STATIC THRUST PER ENGINE. 1642 S LBS O. ) SLS AIRFLOW. O. DEG RIALT. 17.87 ENGINE SIZED TO MATCH T.O. DISTANCE OF 3100. FT (STD DAY. ENGINE SIZED TO MATCH CRUISE DRAG - SLS AIRPLOY. ENGINE SIZE MEETS ALL RATE OF CLINB REQUIREMENTS

8.8

000 PROPULSION SYSTEM MEIGHTS ENGINE MEIGHT/ENGINE PACELLE MEIGHT/ENGINE PROP OR GFAN GEARBOX SHROLD

363 8

ENGINE POD DINENSIONS ENGINE FACE DIAMETER(FT) MACELLE LENGTH(FT)

2.5 5.8

VSTLKT+ 100 0 KTS EAS VRAT+ 1.100 CLT0+ 1.2826 VENO + 228 5 KNOTS EAS

123.51 ROTATION (TIME: 15 4 AND TAS: 110 0 EAS: 110 01 LIFTOFF (TIME: 17 8 DIST: 1979 2 TAS: 123.5 EAS:

-8566 ರ R/C REG IFPRI 8%2%8 -2325 V (KTAS) R/C (FPH) 717 69 1072 93 1397 38 1328 37 2912 57 0 0 056 5 28582 46000 143 9 YJS/YS. DAV TAKE OFF RATE OF CLINB REQUIRENENTS - FAR PART 25
AIRPORT ALTITUDE - 0. FT. AMBIENT TENP ABOVE STD ALT (FT) -88-e 143 9 EAS. 1ST SEG.T.O. FLAPS-LO GEAR EXT - ONE ENG.OUT SEC SEG. TO FLAPS - ONE ENGINE OUT FINAL TO. CRISE CONFIG. ONE ENG OUT LANDING FLAPS - ONE ENG OUT LANDING FLAPS - ALL ENGINES TAS DISTANCE TO 35 FT. + 3105.0 CONFICURATION

20207 20845

5

8

APPROACH FLAP SETTING . 11.9 DEG.

29677.9 FT. 239.5 KTAS 99.8 FPH 6980.0 LBS ENGINE-OUT SERVICE CELLING BEST RATE OF CLIMB SPEED ENGINE-OUT RATE OF CLIMB NEIGHT AT ALTITUDE : .

**** RESIZE ENCINES AT CRUISE TO ACCOUNT FOR RESIZED NACELLES****

000 000 PROPULSION SYSTEM VEIGHTS
ENGINE VEIGHT/ENGINE
NACELLE VEIGHT/ENGINE
PPLON VEIGHT/ENGINE
PROP OR OF AN
GEARBOX
SHROUD

8B ENGINE POD DIMENSIONS ENGINE FACE DIAMETERIFT) NACELLE LENGTHIFT) VSTLKT* 100.0 KTS EAS VRAT* 1.100 CLTO* 1.2826 VEND * 228 5 KNOTS EAS

**F 5268**5 ರ R/C REG (FPM) 8%232 -8388 V IKTASI R/C IFPHI **-6448** 0 0 DEG F 717 1072 1397 1328 2912 RDIATION ITIME: 15.4 AND TAS: 110 0 EAS: 110 01 LIFTOFF ITIME: 17.8 DIST: 1979.2 TAS: 123.5 EAS: 123.51 DISTANCE TO 35 FT.: 3105.3 TAS: 144.0 EAS: 143.9 V35/VS: 1.4388 28562 DAT. TAKE OFF RATE OF CLINB REQUIREMENTS - FAR PART 25
AIRPORT ALTITUDE. 0 FT. AMBIENT TEMP ABOVE STD. ALT (FT) -8800 1ST SEG.T O. FLAPS-LD GEAR EXT - ONE ENG OUT SEC. SEG. T.O. FLAPS - ONE ENGINE OUT FINAL T.O. CRUISE CONFIG. - ONE ENG OUT LANDING FLAPS - CHE ENG OUT LANDING FLAPS - ALL ENGINES CONFICURATION

\$284<u>5</u>

~0=0

2

APPROACH FLAP SETTING . 11.9 DEG

ノヨウ

000 000 PROPULSION SYSTEM WEIGHTS
ENCINE VEIGHT/ENGINE
MICELLE WEIGHT/ENGINE
PROP OR GFAN
GEARBOX
SHOLD

RATED SEA LEVEL STATIC THRUST PER ENGINE: 1638 2 LBS

2

0 1 SLS AIPPLON-

0. DEG R.ALT.

200

ENGINE-OUT SERVICE CELLING BEST RATE OF CLINB SPEED ENGINE-OUT RATE OF CLINB WEIGHT AT ALTITUDE

DIGINE SIZED TO MATCH T.O. DISTANCE OF 3100 FT 1STD DAT-

ENGINE SIZE MEETS ALL RATE OF CLINB REQUIREMENTS

ENGINE SIZED TO MATCH CRUISE DRAG - SLS AIRFLOY.

ENGINE POD DINENSIONS ENGINE FACE DIANETERIFT) NACELLE LENGTHIFT)

- s 22

STATION (DATUM NOSE) 17 596 FRACTION HAC 2302

28

STATI AFT C CC RA	STATIC MARGIN AFT CG LINITISTABILITY) CG RANGEILOADING) FVD CG LINITICONTROL)	TABIL! MG1 DNTROL	Ē.	2002		17 458	STAB LIFT REQU TAIL	OFF OFF HREO TA ARMIEL	STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL ARMIELTHI	<u>.</u>	38 6230 38 6230 38 7906 15 0381	
VERFI	VERTICAL TAIL AREA	ğ		1243 FOR	DIREC	TIONAL	19.5243 FOR DIRECTIONAL STABILITY OF		- 00200			
VERT	VERTICAL TAIL AREA.	NREA:	7 81	173 FOR	MINIE	M CONTA	18.4173 FOR HINIMAN CONTROL SPEED .	8	99 23 KTS			
Rewi	REQUIRED VERTICAL TAIL AREA .	CAL 74	IIL ARE	61	19 5243	TAIL A	TAIL ARMIELTY! .	13 4801			PEQUIPED VERTICAL TAIL AREA . 19 5243 TAIL ARNIELTVI . 13 4001	•
•			AIRCRAFT C G	300	HMARY	5 40	SUMMARY (DATUM-NOSE)				SUMMARY (DA'UM-NOSE)	: :
	MOST FUD LOAD VI CG	8	ક્રેડ	£05	HOST AFT LOAD	000	OESICH LOAD	1040				
A/C ONE	44 800				28				· ജ	•	·	
WING FUEL TIP FUEL FUS FUEL	88888		7 7 73 7 9 2 7 1 9 2 6 6 7 1		8228	17 73 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	165 00 1157 62 535 89 476 22	2222	52 <b>2</b> 2	,		
<b>1</b>			7 7 7 E	TAIL SIZING SIMMABY				<b>.</b>	<b>S</b>	,		
				<u> </u>								
CRUISE	N ALPW 2 2170 0	CLA CLA 0997	7A IL CLA 0759	14!L	NASH.	2 0 k	¥ ,	:	ゴ	\$5	5	
LANDING 1		2 2 2	688 888 888 888 888	200 200 200 200 200 200 200 200 200 200	212 8915	3952 1979	3775 0 0000		000 000 000 000 000	<u>.</u> .	• • • • • •	
FLEVA	ELEVATOR PARAMETERS CHALPHAIFLOATING TENDENCY! CHOELTAIRESTORING TENDENCY! CHOELTAICONIROL PONER! TAUMIEFFECTIVENESS!	TERS NATING TORIN ITROL	C TENCEN C TENCE POVER! SS!	CY1	0004	00511 01204 03130 48250		VING DE/OALPHA	•	42244		
			•	FRACTION	ST	STATION	HORIZONTAL TAIL SIZES	AL TAIL	S321S			
NEUTRAL STATIC AFT CG CG RANG	NEUTRAL POINT STATIC HARGIN AFT CG LIHITISTABILITY) CG RANCEILOADING)	ABILI	Ē	28% 28% 28% 28%	5	17 286		C STAB	STATIC STABILITY AND TRIN STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SLOTE	HE	42 9003 39 5947 39 0300	
<b>9</b>	FUD CG LIMITICONTROLI	NT PO	_	7190	Ξ	992 91	TAIL	ARMIEL	TAIL ARMIELTHI			
VERTI	VERTICAL TAIL AREA .	Æ.		570 FOR	DIREC	TIONAL S	18 4570 FOR DIRECTIONAL STABILITY OF	٠	- 00200			
VERTI	VERTICAL TAIL AREA.	Æ4.	17.73	95 FOR A	TINITE	1 CONTR	17,7395 FOR HINIHUM CONTROL SPEED +	8	99 23 KTS			
RECOL	REQUIRED VERTICAL TAIL AREA	AL TA	IL AFEA	•	18 4570	TAIL AF	TAIL APHIELTY! .	14 0035	,,,,, ,,,,,			
	•	- A I É	AIRCRAFT C G	150 S	WARY (	DATUM	SUMBAY (DATUM-NOSE)				AIRCRAFT C G SUMMARY (DATUM-NOSE)	:
	•		9					1				

DESIGN LOAD

MOST AFT LOAD VI CG 4428 72 17 11

4428 72

17 11

22 8277

AC OF

MOST FVO LOVO

		0 0000 0 0000 0 0 0000 0 0 0000 0 0 0000	•	40 5209 39 1125 38 8727 40 5209 15 4103		•						0 0000 0 0000 -1	•
67173 72173 72173		0031 0000 - 1031	•	HORIZONTAL TAIL SIZES STATIC STABILITY AND TRIM STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL ARMIELTHI	. 00200	99 23 KTS	13 9996		040 CG	77 77 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75		DCH CH CH CH CH CH CO	<b>1</b> 00
510 00 1 57 62 5 47 63 7 27 63		FUSELAGE DCN CN 3128 3856 0 0000 3852 3969	VING DE/DALPHA	<b>Q</b>	18.5529 FOR DIRECTIONAL STABILITY OF	TOL SPEED	-	 (DATUM:NOSE)	DESIGN LOAD	4424 41 510 00 165 00 115 00 117 93 7270 83		FUSELAGE DCH CH 3145 3864 0 0000 3860 3977	VING DE/DALPHA .
20 17 73 23 17 73 17 17 17 17 17 17 17 17 17 17 17 17 17	ARY	DOWN WING UASH CL. 2123 3992 9058 1.7979	. 00511 . 01204 . 02969 . 46250	STATION (DATUM NOSE) 17 316 17 178 16 400	DIRECTIONAL	17.7442 FOR MINIMUM CONTROL SPEED	18 5529 TAIL A	SUMMARY (DATUM:	MOST AFT LOAD VT CG	62 17 73 62 17 73 63 17 73 64 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65 17 73 65	RY	DOM VING VASH CL 3904 2125 3952 9090 1 7979	- 01204
165 1157 7 535 7 535 1 6267	TAIL SIZING SUPPARY	35 9500 9500 2	DENCY!	FRACTION HAC 2580 0300 2280 1673 0607	8.5529 FOR	.7442 FOR 1	REA . 18	FT C.G. SUP	NOS VT	4424 0 165 1157 0 0 0	TAIL SIZING SUMMARY	7A:L 6FF 9500 9500 2	DENCY) **
17.73	TAIL	CLA CLA 0997 0759 0811 0659 0812 0660	ETERS OATING TEN STORING TENTROL POY	TABIL!TY! NG! ONTROL!			CAL TAIL A	AIRCRAFT	FWO LOAD	17 13 17 73 17 51 17 18 16 42	TAIL S	VING TAIL CLA CLA 0997 0759 0811 0659 0812 0660	TERS SATING TEN TORING TEI ITROL POVE
% % % % % % % % % % % % % % % % % % %			ELEVATOR PARAMETERS CHALPHAIFLOATING TENDENCY) CHOELTAIRESTORING TENDENCY) CHOELTAICONTROL POWER) TALHIEFFECTIVENESS)	NEUTRAL POINT STATIC MARGIN AFT CG LINITISTABILITYI CG RANCEILDADINGI FND CG LINITICONTROLI	VERTICAL TAIL AREA .	VERTICAL TAIL AREA.	REQUIRED VERTICAL TAIL AREA .		MOST	23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		• •	ELEVATOR PARAMETERS CHALPHAIFLOATING TENDENCY) CHOELTAIRESTORING TENDENCY) CHOELTAICONTROL POWER)
PAX BAGGAGE VING FUEL TIP FUEL FUS FUEL TOTAL		CONDITION ALPHA CRUISE 2 7170 LIFTOFF 1 0000 LANDING 13 6894	ELEV	NEUT STAT AFT - FVD -	VERT	VERT	FEOU			AAC ONE PAX PAX BACCACE VING FUEL TIP FUEL FUS FUEL TOTAL		CONDITION ALPHA CRUISE 2 7170 LIFTOFF 1 0000 LANDING 13 6894	ELEW CO

STABILITY AND LIFTOFF 39 4373 17 212 LIFTOFF 39 4373 REQUIRED TAIL SIZE 41 4021 16 412 TAIL ARMIELTHI 15 3346 DIRECTIONAL STABILITY OF00200	REQUIRED VERTICAL TAIL AREA - 18 6094 TAIL ARRIGELTY) - 13 9634	HORIZONTAL TAIL SIZES
CG RANGETLOADING! 1737 RECU. FUD CG LIHITICONTROL! 0589 16 412 TAIL VERTICAL TAIL AREA . 18 6094 FOR DIRECTIONAL STABILITY OF	REQUIRED VERTICAL TAIL AREA   18.6094 TAIL ARHIELTY    13.9634	FRACTION STATION

_			
2			
REMAINING			
<b>B D D</b>			
		•	
3°	3	E:	7

V-TAIL				980 000 000 000
H-TAIL	41 445	889 <b>X</b>	28 578	878 878 77
N N	138 109 109 109 109	, ž 888	17 514 5 922	4 5 8 9 1 9 1 9
	AREA SPAN ASPECT BATIO	TAPER RATIO	C C CYCEP	HEAN CHORD TIP CHORD
	H-TAIL	130 109 41 445 1	136 109 41 445 1 31 093 13 272 7 7 000 4 250 500 15 500 500 500 500 500 500 500 50	HG H-TAIL 109 41 242 000 4 250 500 25 500 151 28 578 154 4 154

00 **LE** 1047 <u>5</u>2 583 583 583 TAXI AT IOLE THRUST TIPE RANCE INFI 0 0 0 0

23 S SEC. COMPLETE AT 33 S SEC. COMPLETE AT ROTATION (TIME: 15 3 AND TAS. LIFTOFF (TIME: 17 8 DIST: 15 DISTANCE TO 35 FT: 3087 3 TI GEAR RETRACTION STARTED AT 23 FLAP RETRACTION STARTED AT 33

VSTLKT. 99 9 KTS EAS VRAT. 1.100 CLTO. 1 2826 VEND + 230.1 KNOTS EAS

VRAT+ 1 100 CL.TO+ 1, 2826 VSTLKT. 99 9 KTS EAS

ENGINE OUT PERFORMANCE FOLLOWS VEND * 230 I KNOTS EAS ENGINE FAILURE (TIME* 14 5 AND TAS* 104.9 EAS* 104.9)

ROTATION (TIME: 16 0 AND TAS: 109 9 EAS: 109 9; LIFTOFF (TIME: 19 0 DIST: 2192 8 TAS: 116 | EAS: 116 | 1) DISTANCE TO 35 FT.: 3231 8 TAS: 119 5 EAS: 119 5 V35/VS: 1.1963

3401 5 FEET ACCELERATE - STOP DISTANCE .

3231 8 FEET ENGINE OUT DISTANCE TO 35 FT. ALL ENGINE DISTANCE TO 35 FT (L)
FAR 25 T 0 DISTANCE (1 15%) +
ALL ENGINE DISTANCE TO 50 FT.

38. LBS AT END OF TAKEOFF PHASE TIME. 093 HPS FUEL USED.

VEICHT. ACCELERATE TO MACH NO. + .351

58 F

7235 LBS

END OF ACCELERATION SECHENT
THE: . .097 HPS FUEL USED: 41.6 LBS WEIGHT: 7229 LBS RANGE: 1. NOT
END OF CLINB TO 40000 FT
THE: .336 HPS FUEL USED: 276. LBS WEIGHT: 6995, LBS RANGE: 69
ALTITUDE: 40000 FT TAS: 435.66 KTS NACH NO: 7589

END OF ACCELERATION SECRENT
THE: 376 HPS FUEL USED: 301.6 LBS WEIGHT: 6969 LBS ANGE: 84. NM
ACCELERATE TO HACH NO. - 759

ACCELERATE TO MACH NO. . . 700

END OF ACCELERATION SECHENT
THE: .402 MPS FLEL LISED: 319.1 LBS VEIGHT: A952, LBS RANGE: 95 MM
ACCELERATE TO MACH NO. 4. 640.

END OF ACCELERATION SECHENT TIME: .354 MRS FUEL USED: 287.3 LBS WEIGHT: 6984. LBS RANGE: 7 DESIGN CASE
CRUISE PERFORMANCE SUPHARY
FOR
FUEL AVAILABLE 1844.

:	•				11 275 10 293 454 2 411 9 5657 5152 80945 89268	341
					8 568 11 537 6 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<b>12</b>
AT MORHAL F START CRUISE	28 E	40000 40000	216 6 7589	828 × 5	9 648 568 6 5330 76618	4
SPEED END CRUISE	2 775	5804 6000 401 9	7000 8 007 8 007	927	9 403 468 5 4982 85774	. 878
SPECIFIE START CRUISE	376	6969 6000 6000 6000	199 2005 1000 1000	2 555 1 555 3742	10 501 503 8 5563 79773	_
	Z Z S		XTX	200 200 200 200 200 200 200 200 200 200	2 = Z	RESERVE FUELILBS
	TINE RANCE FUEL USED	VEIGHT ALTITUDE TAS	EAS HACH NO. DIV HACH	ANGLE ATTAC FUSE ANGLE CL	L/O FUEL FLOV LI BREG FACTOR N SPEC RANCE N	RESERV 1

ACCELERATE TO MACH NO. . . 700

END OF ACCELERATION SECRENT TIME: .376 HRS FUEL USED: 301.6 LBS WEIGMT: 6969 LBS RANGE: 84. NM

ACCELERATE TO MACH NO. . . 759

END OF ACCELERATION SCHENT TIME . 402 MPS FUEL USED: 319.1 LBS VEIGHT: 6952. LBS RANCE: 95 NM

ACCELERATE TO HACH NO. . . 640

END OF ACCELERATION SECRENT TIME: 354 HPS FUEL USED: 287.3 LBS WEIGHT: 6984 LBS RANGE: 75. NR DESIGN CASE
CRUISE PERFORMANCE SUMMARY
FOR
FOR
FOR
FOR
FUEL AVAILABLE 2169

11	SPEC RANGE			٠																	7
	342 1236			Ī																	٠
AT	AL PONER			•																	84
	NORMAL			•																	
AT	03365 031			٠																	378
	SPECIFI	- X - X	35	٠		_						8	762	2 55	- 55	374		_			1.683 1.033
					_		_	_	<b>E</b>	_	_	0	_	ATTACK DEG	– پر			_	8	SANCE MALB	ESERVE FUEL
					=	A A A	ಎ ವ್ಯ	F. ST	ダニュ	TAS	Evs		ž >	ANGE	FUSE AND	ರ	5	7 13 13	- B	298	<b>E</b>

USED FOR DESIGN RANCE AND COST BLOCK TIME: 2 998

LANDING ELEVATION: 0 FT.
LANDING WING LOADING: 52 65 PSF.
LANDING WEIGHT : 7271 LBS

LANDING DISTANCE FROM SO FT. . 2461, FT. F. A. R. FACTOREO FIELD LENGTH . . 4101, FT.

 ITERATION TO BALANCE RANCE RANCE ERROR MANCE FROM HIMUS 1 0222 - 6044 GROSS WGT. GROSS WGT MINUS 1 7212 S 7270 9 0222 · 6044 7212 5 7270 9

	Ū	FLAP PER	FORMANCE SI STALL.KTS	FI,AP ANG	FLAP PERFORMANCE SUMMARY 1001 OF GROJAG EFFECT) MAX VSTALLIKTS FI,AP ANGLE LE ANGLE DELI	EFFECT) DELTA CL	DEL 14 CD
7.0 COVE COVE COVE COVE COVE COVE COVE COVE	00	3573 5448 7974	9367	oř.ô	000	0 0000 1979 4617	0 0 0 156 0485
		PLAIN FLAPS OPT ANCLE	PS DELCL AT OPT		DELCO AT OPT	AREA (FT2)	WE CONTICE
<b>7.48</b>		8	0006				

8 Š ALTITUDE . 40000 0 ANGLE OF ATTACKIDECREESIS 2 717 LIFTS 7212 S L/Ds 11 421

VSTLKT. 100 0 KTS EAS VRAT. 1 100 CLTO. 1 2823 VEND. 228 5 KNOTS EAS ROTATION ITIME 17 1 AND TAS: 110 0 EAS: 110 01 LIFTOFF ITIME: 19 6 DIST: 2166 4 TAS: 122 5 EAS: 122 61 DISTANCE TO 35 FT: 3273 2 TAS: 140 1 EAS: 140 1 V35/VS: 1 4006

ITERATION TO HATCH TAKEOFF DISTANCE XTO.XTORQ.WASLS 3273 3100. 47 68

WSTLKT - 100 O KTS EAS WRAT - 1.100 CLTO - 1.2823 VEND - 240.3 KNOTS EAS

ROTATION (TIME: 15.2 AND TAS: 110 D EAS: 110 D1 LIFTOFF (TIME: 17.6 D1ST: 1964 4 TAS: 124 1 EAS: 124 1) DISTANCE TO 35 FT: 3078 8 TAS: 144 8 EAS: 144 8 V35/VS: 1.4474

ITERATION TO MATCH TAKEGEF DISTANCE XTO.XTORQ.WASLS 3079 3100 53 16

TAKE OFF RATE OF CLIMB REQUIREMENTS - FAR PART 25
AHRORT ALTITUDE: 0. FT. AMBIENT TEMP ABOVE STO DAY: 0.0 DEG F

1ST SEG-T O FLAPS-LD GEAR EXT - ONE ENG OUT 0 115 4 765 64 1 00 SEC SEG T O FLAPS - ONE ENGINE OUT 250 120 9 1126 70 293 59 FINAL T O CRUISE CONFIG - ONE ENG OUT 1500 137 4 1467 53 166 79 APPROACH FLAPS - ONE ENG OUT 0 153 2 1423 26 325 59 LANDING FLAPS - ALL ENGINES 0 121 0 2999 05 391 73

70707 82082

25282

5

A 80

V IKTAS! R/C IFPH! R/C REQ IFPH!

ALT IFT!

CONFIGURATION

APPROACH FLAP SETTING . 11.8 DEC.

31312.7 FT 254 8 KTAS 100 0 FPH 6924.0 LBS ENGINE-OUT SERVICE CEILING BEST RATE OF CLINB SPEED ENGINE-OUT RATE OF CLINB NEIGHT AT ALTITUDE

PROPULSION SYSTEM VEIGHTS
ENGINE VEIGHT/ENGINE
NACELLE VEIGHT/ENGINE
PYLON VEIGHT/ENGINE
CEARBOX
SHOUD

777

000 000

ENGINE POD DIMENSIONS ENGINE FACE DIAMETER(FT) NACELLE LENGTH(FT)

O. I SLS AIRFLOW O. DEG R.ALT. ENGINE SIZED TO MATCH T.O. DISTANCE OF 3100. FT ISTO DAY. ENGINE SIZED TO MATCH CRUISE DRAG - SLS AIRPLOVA

53. 16

ENGINE SIZE MEETS ALL RATE OF CLIMB REQUIREMENTS

RATED SEA LEVEL STATIC THRUST PER ENGINE: 1646 S LBS

000 000 PROPLESION SYSTEM VEIGHTS
ENGINE VEIGHT/ENGINE
NACELLE VEIGHT/ENGINE
PYLON VEIGHT/ENGINE
PROP OR GFAN
GEARBOX
SARBOX

ENGINE POD DIMENSIONS ENGINE FACE DIAMETERIFT! NACELLE LENGTHIFT!

87

VSTLKT+ 100.0 KTS EAS VRAT+ 1,100 CLTO+ 1,2623 VEND + 228 5 KNOTS EAS

ROTATION ITIME: 15 3 AND TAS: 110 0 EAS: 110 0) LIFTOFF (TIME: 17 6 DIST: 1956.0 TAS: 123 5 EAS: 123 5) DISTANCE TO 35 FT: 310[.] TAS: 144 6 EAS: 144 6 V35/VS: 1.4451

0 0 0EC F V (KTAS) ā TAKE OFF RATE OF CLINB REQUIREMENTS - FAR PART 25
AIRPORT ALTITUDE. 0. FT. AMBIENT TEMP ABOVE STD ALT IFTI COFICURATION

26585

88285 -8388

28245

40400 2858**2** 

-XX-0-0

1ST SEG T O FLAPS-LD GEAR EXT - ONE ENG OUT
SEC SEG T O FLAPS - ONE ENGINE OUT
FINAL T O - CRUSE CONFIG - ONE ENG OUT
LANDING FLAPS - ALL ENGINES

**28847** 

~0=0~

8

ರ

R/C (FPH) R/C REQ (FPH)

## APPROACH FLAP SETTING . 11.8 DEG.

ENSINE-OUT SERVICE CEILING = 30084-2-FF
ENSINE-OUT RATE OF CLINB = 99 9 FPN
MEIGHT AT ALTITUDE = 6924 0 LBS

## **** PESIZE ENGINES AT CRUISE TO ACCOUNT FOR RESIZED MACELLES****

86.4	•
	000
PROPLESION SYSTEM VEIGHTS ENGINE VEIGHT/ENGINE NACELLE VEIGHT/ENGINE PYLON VEIGHT/ENGINE	PROP OR OFAN CEARBOX S-ROLD

ENGINE POD DIMENSIONS ENGINE FACE DIAMETERIFTI MACELLE LENGTHIFTI

VSTLKT+ 100 0 KTS EAS VRAT+ 1.100 CLT0+ 1.2823 VEND + 228 5 KNOTS EAS

C. R.O. 25662 R/C REG (FPM) 88282 V (KTAS) R/C (FPM) 737 26 1093 62 1420 13 2956 16 0 0 000 ROTATION ITIME: 15 3 AND TAS: 110 0 EAS: 110 0) LIFTOFF (TIME: 17 6 DIST: 1955 9 TAS: 123 § EAS: 123 § 1 DISTANCE TO 35 FT: 3101.5 TAS: 144 6 EAS: 144 6 V35/VS: 1.4452 TAKE OFF RATE OF CLINB REQUIREMENTS - FAR PART 25
AIPPORT ALTITUDE: 0 FT. AMBIENT TEMP ABOVE STO DAT: 28582 ALT IFTI 1ST SEG. T. O. FLAPS-LD GEAR EXT. ONE ENG OUT SEC. SEG. T. O. FLAPS. ONE ENGINE OUT FINAL T. O. CRUISE CONFIG. ONE ENG OUT LANDING FLAPS. ONE ENG OUT LANDING FLAPS. ALL ENGINES CONFIGURATION

£3645

NO-01

5

## APPROACH FLAP SETTING . 11 8 DEG.

O I SLS AIRFLOW. O DEG R.ALT. DIGINE SIZED TO MATCH T O DISTANCE OF 3100 FT (STO DATA ENGINE SIZED TO MATCH CRUISE DRAG - SLS AIRPLON. ENCINE SIZE MEETS ALL PLATE OF CLING REQUIREMENTS ENGINE-OUT SERVICE CELLING BEST RATE OF CLINB SPEED ENGINE-OUT RATE OF CLINB MEIGHT AT ALTITUDE

8

1641 2 185	
RATED SEA LEYEL STATIC THAUST PER ENCINE. 1641 2 LBS	

363 5	•
	000
MOPULSION SYSTEM VEIGHTS ENGINE VEIGHT/ENGINE MACELLE VEIGHT/ENGINE	Prich Weighting Prop or grav GEARBOX SHROLD

BAGINE POD DINENSIONS ENGINE FACE DIANETERIFTI NACELLE LENGTHIFTI

## ---TAIL SIZING SUPPLARY ---

	• •		
DCM CM CT	_		30 708 30 708 30 80 30 30 80 30 80 30 30 80 80 30 80 30 80 br>30 80 8
OCH CH OCH CH C	3790 0 0000 0044 0 0000 - 1031 3785 3900 0044 0045 - 2000	WING DE/DALPHA . 40872	MORIZONTAL TAIL SIZFS STATIC STABILITY AND TRIN STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL ARMIELTHI
NASH KING	7976 - 79	. 0051 . 01204 48250	STATION (DATUM NOSE) 17 089 16 952 16 554
A EFF	2 2 3 3 3 3 3	DENCY! .	FRACTION NAC 2537 0300 2237 0863 1374
VING TAIL VING T		ELEVATOR PARAMETERS CHALPHAIFLOATING TEN CHOELTAIRESTORING TEI CHOELTAIGONTROL PONEI TAUHIEFFECTIVENESSI	NEUTRAL POINT STATIC MARGIN AFT CG LINITISTABILITY) CG RANCE(LOADING) FND CG LINITICONTROL)
98	ŽË		

VERTICAL TAIL AREA . 18 3461 FOR DIRECTIONAL STABILITY OF

REQUIRED VERTICAL TAIL AREA . 18 3461 TAIL ARHIELTVI . VERTICAL TAIL AREA 17.7826 FOR HINIMUM CONTROL SPEED .

13 9956

	MOST -	<b>60</b>	MOST VI	MOST AFT LO	25	DESIGN	CG		
AAC ONE PAX PAX PAX PAY TIP FUEL FUS FUEL TOTAL	22 22 22 22 22 22 22 22 22 22 22 22 22	7 77773 2 2 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	404 1143 529 529 529	<b>1885888</b>	8 28582 8	404 810 810 820 1143 820 820 820 820 820 820 820 820 820 820	6 55555 5 8 55555 5		
CO-0110N		WING TAIL S	ZING SURNA TAIL EFF		<u>.</u>	FUSELACE	NACELLE DCH CH	25	POCR.
CRUSE 2 7170 LIFTOFF 1 0000 LANDING 13 6895	•	0997 0759 0811 0659 0812 0660	\$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200	_	7875 2875 2875	2293 2677 0 0000 3673 3785	0053 0 0000 0053 0 0000		0
ELEV	ELEVATOR PARAMETERS CHALPHAIFLOATING TENDENCY) CHOELTAIRESTORING TENDENCY) CHOELTAIRESTORING TENDENCY) TAUHIEFFECTIVENESSI	ETERS DATING TEN STORING TEI NTROL PONEI	DENCY 1	. 01204 . 01204 . 02936 . 48250	-460	30 SHIP	VING DE/DALPHA	42053	•
NEUTRAL STATIC I AFT CG I CG RANG	NEUTRAL POINT STATIC MARCIN AFT CG LINITISTABILIT CG RANCEILOADING) FVO CG LINITICONTROLI	POINT MARGIN LIHITISTABILITY! EILOADING! LIHITICONTROL!	FRACT 10N 2689 0300 2389 1675 0714	STATION (DATUM NOSE, 16 S61 16 B24 16 OSS	14110N 10H NOSE 16 961 16 824 16 055	ğ	HORIZONTAL TAIL SIZES STATIC STABILITY AND TRIM STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL ARMIELTHI	er F	36 9527 37 7736 37 7736 38 9527 15 6618
VERT	VERTICAL TAIL AREA .		17,7621 FOR DIRECTIONAL STABILITY 17,3349 FOR HINIMUN CONTROL SPEED	DIRECT	OWL S	17.7621 FOR DIRECTIONAL STABILITY OF 3349 FOR HINIMUM CONTROL SPEED .	· 00200		
<b>E</b>	REQUIRED VERTICAL TAIL AREA .	CAL TAIL AF	EA - 17	17 7621 1	AIL AR	TAIL APPRIECTY? .	14 3570		
		AIRCRAFT	T C G. SUMMARY (DATUM-NOSE)	4ARY 10.	ATUR	AIRCRAFT C.G. SUMMARY (DATUM-NOSE)			**************************************
	MOST .	MOST FVD LOAD	NOST VI	HOST AFT LOAD	52	DESIGN LOAD	93 1040		
AAC OF PAX BACCACE VING FUEL TIP FUEL FUS FUEL TOTAL	22.00 22.00 22.00 22.00 22.00 22.00 23.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	10 71 13 15 15 15 15 15 15 15 15 15 15 15 15 15	4405 92 0 00 1143 62 529 45 6213 99		27 72 80 77 80 80 77 80 80 77 80 80 77 80 80 77 80 80 80 80 80 80 80 80 80 80 80 80 80	405 92 510 00 165 00 1143 62 529 45 7212 50	1		
	•	TAIL SI	ZING SURRA		<u> </u>	i i		9	
CONDITION	ACPA	15 ·	171C	8 % S	2 2	DCM CM	DCM CM	ີ້25	DCH CH CT

		*				80							
77		- 1 - 2			:	82 86							
••					:	֥							
88 88		00.00			:	G LOCATION OF PROPULSIONS G OF REMAINING WEIGHT							
00		60094 5224 60094 60094 60094			•	Ş Ş							
0000		<b>BBBB</b>			i	7 S							
						NO K							
103	42357	Ē			•	S M							
82	<b>?</b> .	2 AND 7 10F			:	99 99							
0	•	S. C. T. B.	80	2 x x	:								
888	VING OE/DALPNA	FIGNIZONTAL TAIL SIZES STATIC STABILITY AND TRIM STATIC STABILITY AND LIFTOFF LIFTOFF REQUIRED TAIL SIZE TAIL ARMIELTHI	· 00200	99 24 KTS 1965	:	40000		i .					57
3933	86.70 06.70	TAL TIC TOFF		_ =		555 2 1: 2588 24							-
88	2	STA STA STA STA STA	7	 e =	:	• • • • •							123 9) 35/VS• SEC SEC
3110 3822 0 3817	_	<b>≅</b>	A <b>B</b> I.L	ב ב		878 8							
		. <del>.</del>	L ST.	M CONTROL SPEED TAIL ARMIELTY)		VOL ARH C G LOCATION LNCC FROM C L LOCAT ON VERT VOL ARH C G LOCATION	¥	0.22 0.22 0.22 0.22 0.22 0.23 0.23 0.23					2 % 4 W W
3904 3951	2883 2883	147 107 107 107 16.999 16.278	20.	7 Z	:	0 K C K C C C C C C C C C C C C C C C C	Y-TAIL	500 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 ×				R	56° + +
9500 9500 2118 9500 2 8992	- 00511 - 01204 - 02888 - 48250	STATION (DATUM NOSE) 17. 137 16. 999	EC.		:	441114 441414 441414 441444				457 467 467 87 87 87 87 87 87 87 87 87 87 87 87 87	22	8	St. 25
000 9	• • • •		8	18 1218		H-171 H-171 H-171 V-171 V-171	H-TAIL	0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00				6	109 9 EAS* 12 2 0 TAS* 13 144 4 EAS SEC. COMPLETE SEC. COMPLETE
888	E E	FRACTION PAC 2516 0300 2216 1572 0645	18.1218 FOR DIRECTIONAL STABILITY OF	17.5310 FOR HINIMUM CONTROL SPEED LAREA + 18 1218 TAIL ARMIELTVI			÷	854 X8450		ALT.	00	8	109 9 E. 1962 0 TAS+ TAS+ 144 4 3 4 SEC.COM
0759 0659 0660	SE S			7.53		858 858 858				<b>5</b> _		-	78. 1962 175. 23.4 33.3
	S NC 18	£	_	A. 17.53 TAIL AREA		825-05-6	Z NC	00000000000000000000000000000000000000		VEIGHT (LBS)	7213	VRAT EAS	51. 51. 51. 51.
888	ELEVATOR PARAMETERS CHALPHA (FLOATING TENDENCT) CHOELTA (RESTORING TENDENCT) CHOELTA (CONTROL POWER) TAUHLEFFECTI (VÉNESS)	NEUTRAL POINT STATIC MARGIN AFT CG LINITISTABILITY CG RANCEILOADING! FVD CG LINITICONTROL!	VERTICAL TAIL AREA	VERTICAL TAIL AFEA. REQUIRED VERTICAL 1/			_	28v 27.044	75	독합장	08	9 KTS EAS VAAT+ 1.100 CLTO+ 1.2823 231.3 KNOTS EAS	15 2 AND TAS- 17 6 D1ST- 19 17 - 3070 2 TA STARTED AT 23
	PARA! HA (F) TA (R) TA (C) EFFEC	POINT MARGIN LIMITIS ELLOADI	TA1L	VENTICAL TAIL ANG. REQUIRED VENTICAL		VG LOCATION INFO- ELAGE LENGTH 3 174C LOCATION 174C LOCATION DIST FROM C.L. 5 C.G. LOCATION TANKS C.G. LOCATE			THRUST	25 25 183 183 183 183 183 183 183 183 183 183	••	15 E	
2 7170 1 0000 13 6895	HALP HOEL AGEL	NEUTRAL POINT STATIC MARGIN AFT CG LIMITIC CG RANCEILOAD FUD CG LIMITIC	3			LOCATION IN AGE LENGTH 1/4C LOC ON ( /4C LOCATION 1ST FROM C. L. C. G. LOCATION WKS. C. G. LOCATION		A710 1000 1000 1000 1000 1000 1000 1000	TAX! AT IDLE	RANCE (NR)	00	•	TIME. TO 35
₩₽ <u>₹</u>	BEVA 100	NEUTRAL STATIC I AFT CG I CG RANCI	ERT!		:	2019/15/25 21/20/25/28/28/29/29/29/29/29/29/29/29/29/29/29/29/29/		AREA SPAN ASPECT RA TAPER RAT 174C SWEE C L E SWEE C LOOR	I AT			T. 99	TANGE TO SERVICE TO SE
CRUISE LIFTOFF LANDING	-	20704	- ;	- 4	:	VING LOCATION ( PUSELAGE LENGTH VING 1/4C LOC OP HAC 1/4C LOC OP HAC DIST FROM C VING C G LOCATIO		AREA SPAN ASPECT RATIO 1APER RATIO 1.4C SNEEP C. L. CHOND MEAN CHOND TIP CHOND	TAX	TIPE SPS:	88	VSTLKT.	ROTATION ITIME. LIFTOFF ITIME: DISTANCE TO 35 FT CEAR PETRACTION S
					ē	-EzîîăF					•	ζ.	용고르워로

DICINE OUT PERFORMANCE FOLLOWS
VEND + 231 3 KNOTS EAS
DICINE FAILURE ITHE: 14 4 AND TAS+ 104 9 EAS+ VSTLKT - 99 9 KTS EAS . VRAT+ 1, 100 CL TO+ 1 2823

3

3389 S FEET ACCELERATE - STOP DISTANCE .

3240 2 FEET ENGINE OUT DISTANCE TO 35 FT ..

ALL ENGINE DISTANCE TO 35 FT IL) + FAR 25 T O DISTANCE II ISKL) + ALL ENGINE DISTANCE TO 50 FT +

AT END OF TAKEOFF PAUSE TIME: 093 HAS FUEL USED:

7177 LBS ALT .

36 LBS MEIGHT.

ACCELERATE TO MACH NO . 353

3 Ē 41 5 LBS VEIGHT+ 7171, LBS RANGE+ END OF CLIMB TO 40000 FT THE. 331 HRS FUEL USED. END OF ACCELERATION SECRENT TIME . 097 HRS FUEL USED.

6941 LBS RANCE. KIGHT. 271 LBS

439 69 KTS NACH NO-

£

ACCELERATE TO HACH NO . 700

ALTITUDE: 40000 FT TAS-

6916 LBS RANCE. KIOT 296 3 LBS END OF ACCELERATION SECRENT TIME: 369 HPS FUEL USED:

ACCELERATE TO NACH NO . 766

ょ RANCE. 5838 Kigi. 314 9 LBS END OF ACCELERATION SECHENT THE 396 HRS FUEL USED.

£

ACCELERATE TO NACH NO. + . 640

Ē 2 HANCE. VEICHT 6930 LBS 282 5 185 END OF ACCELERATION SECRENT TIME 348 HPS FUEL USED!

DESIGN CASE
CRUISE PEFFORMANCE SUPHARY
FOR

TOTAL AVAILABLE. 1807

	PANCE	ŠŠ	6.1.6	900	1469	5744	9000	7 29	182	2404	7630	2 688 2	689	3714	10 324	604	5166	18968	R
AT	BEST SPEC	CRUSE	876		2	069	0000	200	182 8	6404	7537	167 €	2 491	1817	787	4 054	995	81630	E
		Z Ž																	8
•	MORMAL	CRUSC	Ž	76	315	<b>8689</b>	<b>40000</b>	439 7	218 6	7659	7703	754	754	3119	5 557	573.2	5294	76705	
		25 25 26																	74
TA.	SPECIFIE	25 E	×	82	8	6916	0000	<b>6</b> 0	8	200	7627	2 556	955 -	3744	10 512	£98 J	5571	80491	M
			-	Ž					KTS.			050	200			87E	Ē	M M V	RESERVE FUEL (LBS)
			7136	RACE	ביבר מצבם	F G	ALT TUDE	TAS	EAS	<b>32 TOX</b>	OIV HACH	ANCLE ATTAC	FUSE ANGLE	ರ	2	FLE FL	BREG FACTOR	SPEC PANGE N	PESERVE ( 4!

ACCELERATE TO MACH NO. . . 700

END OF ACCELERATION SECRENT TIME - 369 HRS FUEL USED: 296.3 LBS WEIGHT - 6916 LBS RANGE - 82 NM

ACCELERATE TO HACH NO. . 766

END OF ACCELERATION SECRENT THE . 396 HRS FLEL USED: 314 9 LBS WEIGHT: 6696 LBS RANGE: 9

ACCELERATE TO HACH NO . 640

DIO OF ACCELERATION SECICENT
TIME . 348 HPS FUEL USED . 282 5 LBS WEIGHT . 6930 LBS RANCE . 74 NM

DESIGN CASE
CRUISE PERFORMANCE SUPHARY
FOR FUEL AVAILABLE: 2132

14		_	S CAUSE	•																			- 7	R.
	PONER BEST SPE																							
AT	NORTHAL PO																						5	3
	O SPEED	2			3 435	1313	1757	5455	40000	401	5	0 66	80.	7723	1 763	76.3		\$	9 075	7 95	4807	88060	2	į
AT	SPECIFIE	STATE OF THE STATE	3			8	8	9169	900 <del>0</del>	6 107	8		8	7627	2 556	- 656	3	44/5	10.512	669	5570	80491		
					£		20	<b>7</b>	<b>-</b>	KTS	KTC			1	× 95	2						87 E	FUELCE	S O MIN I
				3	1	NAME OF	FUEL USED		ALTITUDE	TAS	FAS	2		A HACK	ANGLE ATTAC	FUSS AND F		3.		יייייייייייייייייייייייייייייייייייייי	BACTO FACTO	ALC: MARK	RESERVE F	-

PLOCK TIME - 2 905 USED FOR DESIGN RANGE AND COST RANCE . 1197.

TEND + 518 DEG-STD + 0.
LANDING ELEVATION 0 FT
LANDING WING LOADING 52 65 PET
LANDING WEIGHT + 7213 LBS.

138 FT. LANDING DISTANCE FROM 50. FT. . 2463. FT. F A R FACTORED FIELD LENGTH .

DELAY TRANSITION APPROACH DIST. R/S. VAPEAS. VAPTAS. THETA:

DIST. 1436 PUB: 4000 TR/TIDLE: 0 0000 ABARIGI: 3517

RANCE OR INDURANCE LITERATION SUPPLANT

GROSS RANCE INNI OR ITERATION NEIGHTILB! ENGURANCE HAI

CASP TURBOFN CROSS VEICHT	4 SAMPLE USING SCA 4 7213.	LED TFE-731 PASSENGERS •	S. PLUS CHEN OF	REV OF 1
PUSELACE	LENGTH VIDTH VETTED AREA OELTA P	(ELF) (SVF) (SF) (OELP)	32 4 67 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	::ār
	ASPECT RATIO  AREA SPAN 18 SCOM HEAN CHORD 10 GLARTER CHORD SWEEPID 1APER RATIO 170 THICKNESS 171 110 THICKNESS 171 VING LOADING 191 VING LOADING 191 VING LOADING 191	(AR) (SV) (CBAN) (CBAN) (SLN) (TCR) (TCR) (YCS)	2008085.22 8008086.28	5cc8 83
TAIL	ASPECT RATIO AREA SPAN FEAN CHORD THICKNESS/CHORD HOPENT ARM	(ARMT) (SMT) (CBARMT) (TCMT) (ELTH) (VBARM)	46 46 46 46 46 46 46 46 46 46 46 46 46 4	
VERT. TAIL	ASPECT RATIO AREA SPAN FEAN CHORD THICKNESS/CHORD MOYENT ARK VOLUME COEFF	(ARVT) (SVT) (CBAT) (CBARVT) (TCVT) (ELTV)	8-8-5-29 8-8-6-29 8-8-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	ğ:: :
ENG. MACELLES	LENGTH MEAN DIAMETER NUMBER ENGINES WETTED AREA LOCATION	(ELN) (DBARN) (END) (SN)	65.29 20.29 20.29 20.29	33 FT 95 FT 23 SQFT FUSELAGE
TIP TANKS	VOLUNE DIANETER LENGTH VETTED AREA	(VFTP) (BX1S) (AX1S)	2-03 2543	2::2

CASP TURBOFAN SAMPLE USING SCALED TFE-731

VDIVE * 360 KTS VNO * 300 KTS NHO * 305

ULT LE * 5 60 MAN LF * 2 50 GUST LF * 3 73

PROPLESION GROUP
FRINARY ENGINES
FRIENTY ENG. SECTION (VNT) 72
FRIENTY ENG. SECTION (VNT) 99
FRIENTY ENG. SECTION (VNT) 99
FRIENTY ENG. SECTION (VNT) 99
GROUP WEIGHT INC (TOELWET) 0
FRIENT CONTROLS
FRIENTY ENG. STANCE GROUP
FRIENTY ENG.

OPERATING WEIGHT EMPTY (OVE) 4406

PAYLOAD (WPL) 675 (PAX. VOL. • S DESIGN PAX+ 3-1)

PUEL (WFA) 2132 (WFV+ 1144.) (WFTP+ 529.)

GROSS WEIGHT (WG) 7213.

340, CINC. CREW 1

(VFUL)

NEIGHT EIPTY FIXED USEFUL LOAD

(AFE)

VT OF FIXED EQUIPMENT

Ŝ

	CRUISE O IPSF	E-10Ex7 15 00277	
SCALED TFE-731	CRUISE ALTITUCE . 40000	+ 1.343E-06 FLATPLATE OF AT RE-10EX7 1S 00277	
GASP TURBOFAN SAMPLE USING SCALED TTE-731	CRUISE MICH . 700	CRUISE RE NUM PER FT I	AERODINAHIC DATA

CAUSE O IPSF1 -135 OA

			•	
VETTED APEA (SOFT)	252 252 252 252 252 252 252 252 252 252	623 62		•
8	00156 00221 00221 00221 00236 0017	02749	. 004572	
PLATPLATE APEA (SOFT)	1 58.05 1407 1407 123.1 25.05 25.55	3,7662	. JOS NOLLON	
DRAG BREAKDOWN	VING FUSFLACE VERT TAIL HORT TAIL ENGINE NAC TIP TANKS INCREMENTAL	TOTAL	HEAN SKIN FRICTION COEF	AERODINANIC COEFF.

CRUISE CD + ... 0275 + ... 0557 CL2 IASSURES HINIMUN VING PROFILE DRAGI 8082 - 1216 - 033 - 033 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 - 0757 A1 A2 A3 A4. 75x17/C1 A5.CD0--A7.17(P1 SEE AR1 3-D LIFT SLOPE AT CRUISE MACH OSWALD FACTOR

RETRACTABLE LANDING GEAR CD INC. . . 02050

CRUISE DRAG

	AL PAS	- 0727	200	- 1272	200	-	- <del>2</del>	2362	<b>8</b>	3409		***		- 3	10034	9576	600	34	32	200	60.0	20.0		ALPAK	2 1818	
	LAD CLALPH	5 5654 5 0827	3 5654 5 2006	3 5654 4 3408	2007 A 1737 E	COOC 0 9000 0	3 5654 5 7109	3 5654 5 9569	3 5652 6 2692	3.1193 6 6630 -		8	5						8	60% 4 80% 4 80% 4	4664			רש כועה	5 0827	
	8	02805	02805	02805	2808		S	280	02803	93200		ε	300	200	02976	92620	92620	02976	376	6	03714			8		
8	A A	20000	22000	00009	65000	38	300	000	00000	82000		24	Š		2200	8000	65000	2000	25000	80000	85000		600	7	86%	
3	•										Ė	j											ď			

	,; • • • • • • • • • • • • • • • • • • •	, ,	LANDING CO 07678 \$ 164.4 08143 6 87425 089143 6 87425 11759 8 89832 1381 1381 15662 8 31204 16562 8 31204 16562 8 31204 16562 8 31204
		,	CL 3639 95377 72:14 72:14 12:196 13:196 13:196 13:196 13:196 13:196 13:196 13:196 13:196 13:196 13:196 13:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 14:196 16:196 16:196 16:196 16:196 16:196 16:196 16:196 16:196 16:196 16:196 16:1
	•		TAKEOFF CO CO CO CO CO CO CO CO CO CO CO CO CO
2 1051 2 0184 1 9204 1 6845 1 5418	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PH 4 353 4 353 6 353 8 163 8 163 9 1	CL 13259 04 22559 04 45934 05 62272 06 78610 07 94948 09 1 1285 11 1 27623 13 1 43961 16
88888888 888888888 688888888888	CLALPH 28 5 0827 28 5 2006 28 5 5085 28 5 5085 28 5 7 109 20 6 5 559	Thirting 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	L/D 1.2 32932 3.48068 8.28508 11.15765 11.2 29773 12.2 29773 12.2 29773 11.67458 10.71992 9.72178
03270 5-1736 03270 9-1736 03270 9-1736 03270 9-1736 03270 9-1736 03328 9-0145	CO L/O C.	CD L/O 04213 11 8675 04213 11 8675 04213 11 8675 04213 11 8675 04213 11 8675 04213 11 8675 04213 11 8675	AG-GR UP I.F RIO CL CO 0653 02792 09754 02802 26010 03139 42267 03788 5623 04798 91036 06083 91036 07798 07293 12009
55.000 60000 77.0000 77.000 87.000	### ##################################	#600 #ACA #ACA #50000 #5000 #5000 #5000 #5000 #5000	ED LIFT/9R ARPH ARPH 00000 00000 00000 00000 00000 00000 0000
	ġ	ġ	LOV SPE 2001 1200 1200 1200 1200 1200 1200 120

AIRCRAFT PRICING

7	MAX CRUISE SPEED+ 442, KNOTS	BASIC PRICE: 470077 DOL. ADD EQUIPMENT COST: 112055 DOL.		SUB-TOTAL	HANUFACTURING COST	DEALER COST BASIC PRICE
TIPE.	j	884 40	34162 49695 7647 140052	79969	50073	361597 108479 470077
NUMBER . 2	4066 LBS	CONSUMER PRICE: 582132, DOL.	1 6832 NGS 1 VOL145 PCT1 ENIALS 11P 14641 1	6-A( 35 PCT)	TI 16 PCT)	DEALER-DIST. HARKUPI 30 PCT)
ENGINES	EMPTY VEIGHT.	CONSUMER PRIC	DIRECT LABOR 1 6832 NAS LABOR OVER-EAD1145 PCT) AIRFRANE MATEMIALS PURCHASED EQUIP 15/FG 44641 )	ENG. TL. SALES, G-A1 35 PCT)	FACTORY PROFITE 16 PCT	DEALER-DIST

DESIGN MISSION

FIXED COST (DOL/YR)

STORAGE 1200
INSURANCE 15553 (HULL 2 SPCT)
DEPRECIATIC4 58213 (8 YR-20 PCT)
OTHER 0 (OVERHEAD 50 PCT)
FAA TAX 277
75244 TOTAL BLOCK TIME. 2.905 HRS. 252 22 22 22 10 22 HOURS/INSP . 100 HRS 28 = 28 = 20 × 20 × BLOCK FUEL 1702 LBS OPERATING COST FOR NOT RATED POWER AND 40000 ALTITUDE 750 \$/GAL TBO: 2000 HPS FUEL COST. 102.25 TOTAL UTILIZATIONIHRS/YRI TOTAL OPR COSTIDOL/HRI TOTAL UPR COSTIDOL/HRI TOTAL OPR COSTIC/ASMI) RANGE 1197 N. M. FUEL RATE: 87.4 GPH. VARIABLE COST FUEL-OIL INSP -MAIN OVERHALL RES. OTHER SEATS.

1123 23

SPEED EIHETED BY MAD OR WIG----- MACHING .

OFF DESIGN CASE
CRUISE PERFORMANCE SUMMARY
FOR
THE MAXIMUM PAYLOAD ****
FUEL AVAILABLE* 1807

AT BEST SPEC. RANCE START END	CPU SE	197	2	2,5	2005	289 9	194.2	4812	7592	3 383	2 383	4034	296 01	E 777	4599	66.360
PO CNO	25.	- 2	9		2003	447	8	743	780	≂	- 76	146	10 10 10	905	8	7767
AT NORMAL START	CRUSE	233	7	25.5	2003 X	447 9	000	7433	7678	<b>9</b> 2	- 574	168	6 237	916	3416	48749
SPEED ENO	<b>S</b>	5	998	1457	25000	30	2	2005	7711	2 241	- 24	869	9 371	437	3969	68924
SPECIFIE START	35	8	۶.	- 5	800	5	<b>8</b> 0	2000	7628	0.00	2 010	3735	10 592	465.9	4557	64674
	•	•	_		36					98	9			<b>E</b>	Ī	<b>8</b> 7₹
		41.16	PANCE	יינים האבים על היינים	ALTITUDE	TAS	Evs	HACH NO	20	ANGLE ATTACK	FUSE ANGLE	ರ	S	FLE 72	BHEG FACTOR	SPEC. RANCE

FUEL AVAILABLE 2132. OFF DESIGN CASE CRUISE PEPFORMANCE SUPPLARY

	•	DEC 16 1E	0.3365 0	NOPHAI	POLE	BEAT COST	DANCE
	,	START	ENO	START	200	START	2
	_	<u> </u>	<u> </u>		<u> </u>	CRU SC	
•	•			•	• • • • • • • • • • • • • • • • • • • •	•	
		<b>8</b> 2	282	233	- 591	197	<b>9</b> 50 <b>7</b>
_	_	27	<u>~</u>	=	679	R	7
_		171	1782	210	1442	22	282
_		7041	5430	7003	5770	7043	5414
<b>R</b>		25000	25000	25000	25000	2000	25000
_		۳. 8	2	447 9	447.9	289 9	289
_		B 중	<b>8</b> .	8	000	194.2	194 2
0		2000	2000	7433	7433	4812	4812
ş		7628	7732	7878	1914	7592	7705
ğ		3 010	2.047	426	9	3 383	2 323
ANG.E DEG		2 010	- 047	. 574	98	2 383	1 323
		3735	2880	- 69	382	4034	3101
		10 592	900	6 237	5 238	10 964	917 6
		465.9	4313	8 8 6	9	2 777	0.7
200		4557	3796	3416	2868	1590	2
SPEC. RANGE NA	M M M	64674	09869	48749	49679	65259	70674
ESERVE FUEL (LB:	L'CLOS!	ñ	67	•	<b>8.69</b>	333	•

USED FOR OFF DESIGN RANGE AND COST BLOCK TIME: 1,591 PANCE . 649.

MACH NO 441.99 KTS TASE 40000 FT ALTI TUDE .

OFF DESIGN MISSION

OPERATING COST FOR NOR. RATED POWER AND 25000 ALTITUDE

BLOCK TIME. 1.591 HRS. HOURS/INSP . 100. HRS 1442 LBS 750 \$/CAL TBO: 2000 HPS BLOCK FUEL. FUEL COST. 649. R.H. FUEL RATE 135 3 GPH. RANCE. SEATS:

·		
	·	

## GASP - GENERAL AVIATION SYNTHESIS PROGRAM

VOLUME I - MAIN PROGRAM

PART 3 - PROGRAMMER'S MANUAL

### **JANUARY 1978**

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Ames Research Center
Moffett Field, California

Under

CONTRACT NAS 2-9352

### **AEROPHYSICS RESEARCH CORPORATION**

			·	
			·	
	,			
ı				

#### I.3 PROGRAMMERS MANUAL FOR

#### MAIN PROGRAM AND UTILITY SUBROUTINES

This volume presents a description of the GASP Executive Program and the Utility Subroutines of GASP.

#### I.3.1 MAIN Program

The principal purposes of the MAIN program are the reading of input data required for the aircraft design, and the calling of the subroutines which carry out this design. The input data is read as a title card, NAMELIST/INGASP/ and NAMELIST/INPROP/, and tabular input if that propulsion option is selected which total about 220 and 50 parameters respectively. Many of these are given default values in the event that no numerical value is assigned in the NAMELIST format. These parameters vary from the fundamental (gross weight, cruise Mach number, etc.) to the detailed (takeoff rotation rate, seat width, etc.), and are listed alphabetically in Section 1.5. The subroutine structure of MAIN down to the first level arrayed by technology is presented in Figure I.3.1.

The main program calls one minor data reading subroutine (MAPS) and thirteen major subroutines which are normally called in the following order. Each subroutine may call other subroutines as indicated parenthetically:

SIZE

FLAPS

DLAND (AERO, CLIFT, DRAG, ENGINE)

CTAER (AERO, CLIFT, DRAG)

ENGSZ (APPFLP, DRAG, ENGINE, ENGWGT, PERFRM, TURN)

**I-3** 

ENGWGT (ENGINE, HOPWSZ, RCWSZ

WGHT (LOAD, ENGSZ, ENGWGT, TAIL)

OUTPUT (CLIFT)

AEROUT (CLIFT, DRAG)

PERFRM (ACCEL, CLIMB, DLAND, TAKOFF, TAXI, TURN, XRANGE)

RGBAL (AEROUT, CTAER, ENGSZ, ENGWGT, FLAPS, OUTPUT, PERFORM,

SIZE, WGHT)

GACOST (ASPEED, ENGINE)

PNOYS (ASPEED, ENGINE, GEARBX, ZNENG)

It may be noted, for example, that subroutine PERFRM is also called by ENGSZ and RGBAL, and that ENGSZ is called by WGHT. That is, there exists a very strong and complex connection between the various subroutines and the final effect of changing a parametric value is usually impossible to predict a priori. A detailed flow chart for the MAIN program is presented in Figure I.3.2.



SUBROUTINE STRUCTURE FIGURE 1.3.1 - MAIN PROGRAM &

















OF POOR OU ACE

#### I.3.2 Subroutine BIV - Linear Interpolation

in Two Independent Variables

A utility routine performing a linear interpolation in stored data of the form

$$z_{jk} = z_{jk}(x_j, y_k)$$
  $i = 1, 2, ..., N_i$   
 $j = 1, 2, ..., N_j$ 

Interpolation only is permitted. If an independent variable value falls outside the stored range, an error exit is made and the independent variable values being employed together with their boundary values are printed out.

Figure I.3.3 presents a detailed flow chart for this subroutine.

FIGURE 1.3.3 SUBROUTINE BIV



## I.3.3 Subroutine INTS - Double Precision Finite Difference Integrator

The calling sequence is

CALL INTS (T, M, L, E, B, C, HMA, HMI, BET, DERIV)

This utility routine is a finite difference integrator, performed in double precision, of a system of M simultaneous first-order differential equations which are defined in external subroutine DERIV. The non-zero components of T(100) are related to the state variables in DERIV. The other parameters in the calling sequence are input and are associated with the numerical aspects of integration (error magnitudes, step sizes, etc.).

A detailed flow chart for INTS is provided in Figure I.3.4.













#### I.3.4 Subroutine ITRLN - Linear

Interpolation in One Independent Variable

This routine performs a linear interpolation in stored data of the form

$$Y_{i} = Y_{i}(X_{i})$$
  $i = 1, 2, ..., N$ 

The calling sequence is

#### CALL ITRLN(AX, AY, X, Y, N)

This subroutine returns a value for Y corresponding to an input quantity X. The input parameters are the N pairs AX(I) and AY(I), and AXOIP must increase monotonically. If X is less than AX(I) or greater than AX(N), the subroutine extrapolates for Y(X).

A deailed flow chart for ITRLN is presented in Figure I.3.5.

FIGURE 1.3.5 SUBROUTINE ITRLN



I.3.5 Subroutine ITRMHW - Location of Root

by Newton-Raphson Method

This utility routine finds a zero of the function

E = f(D)

The calling sequence is

CALL ITRMHW (ERROR, ERRM1, DRIVER, F, FF, JC, JX)

This subroutine determines a zero to a function defined externally.

Inputs are ERROR, the current (non-zero) value of the dependent variable;

DRIVER, the current value of the independent variable; and F, a multiplier near unity. Outputs are ERRM1 and DRIVER, the augmented values of the dependent and independent variables, and JC, the counter. FF and JX are not used.

A detailed flow chart for ITRMHW is presented in Figure 1.3.6.

FIGURE 1.3.6 SUBROUTINE ITRMHW



# I.3.6 Subroutine MAXMHW - Maximum of a Function of One Independent Variable

This utility routine determines a local maximum of the function

Y = f(D)

The calling sequence is

CALL MAXMHW (PARAM, PRMM1, DRIVER, F, FF, KC, KX)

This subroutine determines the maximum of an input function Y(X)=PARAM(DRIVER, which is defined externally. F and FF are input multipliers near unity, and KC is an output interaction counter, while KX changes from 0 to 1 when the maximum is determined. The previous value of Y(X) is PRMM1, and DRIVER is both input and output value of X.

A detailed flow chart for MAXMHW is presented in Figure 1.3.7.

FIGURE 1.3.7 SUBROUTINE MAXMHW



#### I.3.7 Subroutine OUTPUT - Program Print Output Routine

This routine provides print output of the aircraft characteristics.

Calling sequence is

#### CALL OUTPUT

This subroutine begins with thirteen common block statements, and it includes 34 FORMAT statements. The subroutine is called by MAIN for the purpose of printing over 100 input and output figures related to geometry, weights, aerodynamics or the aircraft design.

A detailed flow chart for subroutine OUTPUT is presented in Figure I.3.8.







#### I.3.8 Subroutine TPALT - Atmospheric Properties Routine

This routine provides characteristics as a function of altitude. The calling sequence is

CALL TPALT (ALTZ, ALT, PO, FKALT, TO GO, XKV)

This subroutine relates static pressure, temperature and gravity, and kinematic viscosity in ft²/sec, (PO, TO, GO, XKV) to the altitude. ALTZ is geometric altitude, ft., and ALT is potential altitude, ft., while PO is measured in 1b per sq in., TO in deg R, and GO in ft per sec per sec.

If PO is in input, ALTZ and ALT are output, and vice versa. FKALT determines whether geometric or geopotential altitude is used.

A detailed flow chart for TPALT is presented in Figure 1.3.9.

FIGURE 1.3.9 SUBROUTINE TPALT

Subroutine TPALT(ALTZ, ALT, PO, FKALT, TO, GO, XKV)







#### I.3.9 Subroutine BILINE -

Linear Interpolation, One Independent Variable

This is a utility routine performing linear interpolation in stored data of the form

$$z_{i} = z_{i}(x_{i}); i = 1, 2, ... N$$

A detailed flow chart for this routine is provided in Figure 1.3.10.



FIGURE 1.3.10 - SUBROUTINE BILINE



I-3 36



BILINE 4

I-3

## I.3.10 Subroutine BIQUAD -

Quadratic Interpolation, One Independent Variable

This is a utility routine performing quadratic interpolation in one independent variable using data stored in the form

$$z_{i} = z_{i}(x_{i}); i = 1, 2, ... N$$

A detailed flow chart for subroutine BIQUAD is presented in Figure 1.3.11.





## 1.3.11 Subroutine MAXBND Maximum Value of a Variable

This is a utility routine which determines the maximum value of a variable in the interval DMIN to DMAX. A detailed flow chart for MAXBND is presented in Figure I.3.12.





I-3 44

## I.3.12 Subroutine UNINT -

## Four Point Smooth Interpolation

This is a utility routine which performs a smooth four point interpolation in stored tabular data of the form

$$U_{i} = Y_{i}(X_{i}); i = 1, 2, ... N$$

A detailed flow chart for UNINT is provided in Figure I.3.13.

