Week 4 Quiz

LATEST SUBMISSION GRADE

100%

1. How do you add a 1 dimensional convolution to your model for predicting time series data?

1/1 point

- Use a Convolution1D layer type
- Use a 1DConvolution layer type
- Use a Conv1D layer type
- Use a 1DConv layer type

[None, 1]

(1, None)

O [

[1]

✓

Correct

3.	You used a sunspots dataset that was stored in CSV. What's the name of the Python library used to
	read CSVs?

PyCSV

Comma Separated Values

PyFiles

4.	If your CSV file has a header that you don't want to read into your dataset, what do you execute
	before iterating through the file using a 'reader' object?

reader.next

reader.read(next)

next(reader)

reader.ignore_header()

When you read a row from a reader and want to cast column 2 to another data type, for example, a
float, what's the correct syntax?

You can't. It needs to be read into a buffer and a new float instantiated from the buffer

float f = row[2].read()

Convert.toFloat(row[2])

float(row[2])

11 or 22 years depending on who you ask

4 times a year

11 years

22 years

7.	After studying this course, what neural network type do you think is best for predicting time series
	like our sunspots dataset?

Convolutions

DNN

It punishes larger errors

It doesn't heavily punish larger errors like square errors do

It biases towards small errors

It only counts positive errors