Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (государственный университет)»

Факультет проблем физики и энергетики

дипломная Работа

Захват темной материи Солнцем и Землей.

Выполнил: студент 783а группы

Товстун Артем Александрович

Научный руководитель: д.ф.-м.н., проф.

Содержание

3
4
5
10
12
16
17
20

Введение

1.Расчет сечения захвата

Сечение захвата в данной задаче — это характеристика, показывающая вероятность столкновения частицы темной материи с ядром и ее захватом небесным телом.

Для нахождения сечения захвата необходимо определить матричный элемент теории и проинтегрировать его по той части фазового объема, при котором частица темной материи переходит на стационарную орбиту.

1.1. Определение матричного элемента

Мы запишем лагранжиан теории, содержащую фермионы: частицу ТМ и нуклон, взаимодействующие при помощи четырёхточечной вершины, и электромагнитное поле.

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}\big(\gamma^{\mu}\big(i\,\partial_{\mu} - e_{n}A_{\mu}\big) - m_{n}\,\big)\psi + \bar{\chi}\big(i\gamma^{\mu}\,\partial_{\mu} - m_{k}\,\big)\chi - \bar{\psi}\Delta_{1}^{a}\psi\bar{\chi}\Delta_{2a}\chi\,(1)$$

где ψ , m_n , χ , m_k — 4-х компонентные спиноры и массы мишени и частицы темной материи соответственно, A_μ , $F^{\mu\nu}$ — вектор потенциал и тензор напряженности ЭМП, e_n — заряд нуклона.

 Δ_1^a и Δ_{2a} – матрицы которые должны быть самосопряженными по Дираку, чтобы лагранжиан был вещественным.

$$\mathcal{L}^* = \mathcal{L} \Rightarrow (\bar{\psi} \Delta_1^a \psi \bar{\chi} \Delta_{2a} \chi)^* = \bar{\psi} \overline{\Delta_1^a} \psi \bar{\chi} \overline{\Delta_{2a}} \chi = \bar{\psi} \Delta_1^a \psi \bar{\chi} \Delta_{2a} \chi \Rightarrow \Delta_i^a = \overline{\Delta_i^a}$$

Мы рассмотрим два случая возможного взаимодействия

$$\Delta_i^a = egin{cases} (a_i + i \gamma^5 b_i), & \text{скалярного взаимодействие} \ \gamma^\mu (a_i - \gamma^5 b_i), & \text{векторное взаимодействие} \end{cases}$$

Сразу заметим, что если рассеивается не частица, а античастица темной материи (со входным и выходным импульсом \hat{k} и \hat{k}'), то вычисления определялись бы лагранжианом преобразованным оператором $\hat{\mathcal{C}}_k$ зарядового сопряжения ТМ.

$$\mathcal{L}^{C_k} = \hat{C}_k \mathcal{L} \hat{C}_k$$

Исходя из правил преобразования вершин [ППВ]

$$\hat{C}_{k}\bar{\chi}\chi\hat{C}_{k} = \bar{\chi}\chi, \qquad \hat{C}_{k}\bar{\chi}\gamma^{5}\chi\hat{C}_{k} = \bar{\chi}\gamma^{5}\chi, \\ \hat{C}_{k}\bar{\chi}\gamma^{\mu}\chi\hat{C}_{k} = -\bar{\chi}\gamma^{\mu}\chi, \qquad \hat{C}_{k}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\hat{C}_{k} = \bar{\chi}\gamma^{\mu}\gamma^{5}\chi$$

можно получить, что Δ_{2a} не изменится в скалярном взаимодействии, и изменится с $\gamma^{\mu}(a_2-\gamma^5b_2)$ на $-\gamma^{\mu}(a_2+\gamma^5b_2)$ в векторном случае. Что соответствует замене $a_2\to -a_2$.

Итак, матричный элемент упругого рассеяния равен

$$i\mathcal{M}_0 = \bar{\psi}(p')\Delta_1^a\psi(p)\bar{\chi}(k')\Delta_{2a}\chi(k)$$

будем обозначать входящий/выходящий спинор как поле с индексом импульса.

1.2. Кинематика и дифференциальное сечение.

Сечение находится из матричного элемента по формуле[PDG]

$$d\sigma = \frac{|\mathcal{M}|^2}{4\sqrt{(pk)^2 - m_p^2 m_k^2}} d\Phi$$

$$d\Phi = (2\pi)\delta(E_f - E_i) \times \frac{1}{2E_{p'}} \frac{d^3\vec{q}}{(2\pi)^3 2q} \times \frac{d^3\vec{k}'}{(2\pi)^3 2E_{k'}}$$

где \vec{k}' , $E_{k'}$ – импульс и энергия вылетающей частицы, \vec{q} , q – импульс и энергия фотона, $E_{p'}$ – приобретаемая энергия мишени. Интеграл будем брать в системе центра масс (рисунок 1), где кинематика относительно простая.

Рисунок 1.

В сферических координатах фазовый объем и телесные углы равны

$$d\Phi = \int \frac{{\mathbf{k'}}^2 q}{4E_{k'}} \times (2\pi) \delta \left(E_f - E_i \right) \times \frac{1}{2E_{p'}} \times \frac{d\Omega_q}{(2\pi)^3} \times \frac{d\Omega_{k'}}{(2\pi)^3} d\mathbf{k'} d\mathbf{q}$$
$$d\Omega_{k'} = 2\pi \ d\cos\theta$$
$$d\Omega_q = d\cos\theta_1 \ d\varphi_1$$

При этом телесный угол $d\Omega_q$ отсчитывается не от оси $z \parallel \vec{k}$, а от \vec{k}' , а телесный угол $d\Omega_{k'} = 2\pi \ d \cos \theta$, если матричный элемент инвариантен относительно вращений вокруг оси z.

Введя систему координат, связанную с вектором \vec{k}' , находим выражение для импульса фотона и ядра из закона сохранения импульса.

$$\vec{k}' = \mathbf{k}'(\sin\theta, 0, \cos\theta)^T = \mathbf{k}'\vec{e}_3'$$

$$\vec{e}_1' = (\cos\theta, 0, -\sin\theta)^T$$

$$\vec{e}_2' = \vec{e}_2 = (0, 1, 0)^T$$

$$\vec{q} = q\vec{n}_q = q(\cos\theta_1 \vec{e}_3' + \sin\theta_1 \sin\varphi_1 \vec{e}_2' + \sin\theta_1 \cos\varphi_1 \vec{e}_1')$$

$$\vec{p}' = -\vec{q} - \vec{k}'$$

Далее дельта функция снимается с помощью интегрирования по энергии фотона

$$\frac{\delta(E_f - E_i)}{2E_{p'}} dq = dq \frac{\delta(q + \sqrt{m_p^2 + p'^2(q)} - E_{\mu\mu} + E_{k'})}{2E_{p'}} = \frac{1}{2(E_{p'} + q + k'\cos\theta_1)}$$

А из закона сохранения энергии и импульса находится импульс фотона.

$$q + \sqrt{m_p^2 + p'^2} + \sqrt{m_k^2 + k'^2} = E_{\mu\mu}$$
$$p'^2 = k'^2 + q^2 + 2qk'\cos\theta_1$$
$$q(\cos\theta_1) = \frac{E_{\mu\mu}(E_k - E_{k'})}{(E_k - E_{k'}) + E_p + k'\cos\theta_1}$$

Итого дифференциальное сечение в системе центра масс выражается следующим образом

$$\frac{d\sigma}{\mathrm{d}^{3}\vec{k}'} = \frac{|\mathcal{M}|^{2}}{4\mathrm{k}E_{\text{II}^{\text{II}}}} \cdot \frac{E_{\text{II}^{\text{II}}}(E_{k} - E_{k'})}{8E_{k'}\left((E_{k} - E_{k'}) + E_{p} + \mathrm{k}'\cos\theta_{1}\right)^{2} \cdot (2\pi)^{5}} d\Omega_{q}$$
(1.2.1)

Видно, что при неупругом соударении в системе центра масс выходящий импульс k' пробегает весь шар радиуса k, а не только его границу. Интегрирование по телесному углу фотона не содержит никакой сингулярности, поэтому его можно проводить численно с помощью схемы сколь угодно высокого порядка, например, методом гаусса.

1.3. Сечение при малых импульсах фотона.

При испускании мягкого фотона с бесконечно малой энергией учитывается только инфракрасно расходящийся вклад матричного элемента равный

$$-Z^{2}e^{2}\left(\frac{{v'}^{\mu}}{v'q}-\frac{v^{\mu}}{vq}\right)^{2}|\mathcal{M}_{0}|^{2}(p'(q),k'(q),p,k)$$

где $|\mathcal{M}_0|^2$ – матричный элемент упругого рассеяния.

Если ввести малую массу фотона $\mu[\Pi \coprod KT\Pi]$, сделать замену и ввести обозначения

$$q = \mu \sinh \phi = x,$$
 $\sqrt{q^2 + \mu^2} = \mu \cosh \phi = y,$ $\frac{q}{\sqrt{q^2 + \mu^2}} = \tanh \phi = t$ (1.3.1) $\vec{q} = q \cdot \vec{n}_q$ (1.3.1')

то сечение процесса с испусканием фотона будет иметь следующий вид

$$d\sigma_{\gamma} = \int_{0}^{\epsilon} \frac{dx}{y} \cdot f(y, t)$$
 (1.3.2)

Но так как матричный элемент и фазовый объем — непрерывно дифференцируемые функции по импульсам p' и k', которые при малых

импульсах фотона являются гладкими по y и t, потому что задаются в неявном виде с помощью функции, производные которой не ноль и не бесконечность

$$\begin{split} F(\mathbf{k}',y,t) &= y + \sqrt{m_p^2 + p'^2(\mathbf{k}',yt,\cos\theta_1)} + \sqrt{m_k^2 + \mathbf{k}'^2} - E_{\mathbf{I}\mathbf{I}\mathbf{I}} = 0 \\ F'_{k'} &= \frac{\mathbf{k}'}{E_{k'}} + \frac{\mathbf{k}' + \mathbf{q} \cdot \cos\theta_1}{E_{p'}} \geq \frac{\mathbf{k}}{2} \left(\frac{1}{E_p} + \frac{1}{E_k} \right) = c_0 \\ F'_{y} &= 1 + \frac{t^2 y + t k' \cos\theta_1}{E_{p'}} < 1 + \frac{2\mathbf{k}}{E_p} = c_1 \end{split}$$

из чего следует, что $\partial k'/\partial y = F_y'/F_{k'}' < \infty$, то есть k' - гладкая функция (y,t) при $(y,t) \in [0,\epsilon] \times [0,1]$, значит функция из (1.3.2) – гладкая и имеет константу Липшица C_f по переменной y. Следовательно, интеграл (1.3.2) можно представить в виде суммы его упрощенного варианта, где y=0, и добавки D_2 , стремящейся к нулю с первым по ϵ порядку.

$$(2) = \int_0^{\epsilon} \frac{dx}{y} \cdot f(0, t) + D_2$$

$$|D_2| = \left| \int_0^{\epsilon} \frac{dx}{y} \cdot \left(f(y, t) - f(0, t) \right) \right| \le \int_0^{\epsilon} \frac{dx}{y} \cdot y C_f = \epsilon C_f$$

$$(1.3.2')$$

Далее, в интеграле (1.3.2') проводим замену переменных (1.3.1)

$$\int_0^{\ln\left(\frac{2\epsilon}{\mu}\right)} d\phi \cdot f(0, \operatorname{th} \phi)$$

и выделяем расходящуюся часть, приравняв th ϕ к единице и проделав похожие рассуждения с константой Липшица по аргументу t. Поэтому расходящаяся часть сечения имеет вид

$$d\sigma_{\gamma}^{\text{pacx}} = f(0,1) \ln \left(\frac{\epsilon}{\mu}\right) \tag{1.3.3}$$

В итоге (1.3.3) переходит при подстановки фазового объема и матричного элемента в следующее выражение

$$d\sigma_{\gamma}^{\text{pacx}} = d\sigma_0 \cdot \frac{Z^2 \alpha}{\pi} \ln \left(\frac{\epsilon}{\mu}\right) \int -\frac{d\Omega_q}{4\pi} \left(\frac{v'^{\mu}}{v'_0 - \vec{v}' \vec{n}_q} - \frac{v^{\mu}}{v_0 - \vec{v} \vec{n}_q}\right)^2$$

Этот интеграл берется с помощью техники усреднения по телесному углу и параметров Фейнмана.

$$\int \frac{d\Omega_q}{4\pi} \frac{v'v}{(v'_0 - \vec{v}'\vec{n}_q)(v_0 - \vec{v}\vec{n}_q)} =$$

$$\int_0^1 dx \frac{d\Omega_q}{4\pi} \frac{v'v}{(xv'_0 + (1-x)v_0 - (\vec{v}'x + \vec{v}(1-x))\vec{n}_q)^2}$$
(1.3.4)

Зная, как проводится усреднение по телесному углу,

$$\int \frac{d\Omega_q}{4\pi} \frac{1}{\left(A - \vec{\mathbf{n}}_q \vec{B}\right)^2} = \frac{1}{A^2 - \vec{B}^2}$$

получаем значение интеграла (1.3.4).

$$\int_{0}^{1} dx \frac{v'v}{(xv'_{0} + (1-x)v_{0})^{2} - (\vec{v}'x + \vec{v}(1-x))^{2}} = \frac{1}{2} \cdot \frac{v'v}{\sqrt{(v'v)^{2} - 1}} \ln \left(\frac{v'v + \sqrt{(v'v)^{2} - 1}}{v'v - \sqrt{(v'v)^{2} - 1}} \right)$$

Мягкая часть сечения равна известному результату [Вайнберг]

$$d\sigma_{\gamma}^{\text{pacx}} = d\sigma_0 \cdot \frac{Z^2 \alpha}{\pi} \ln \left(\frac{\epsilon}{\mu}\right) \cdot W(x) \tag{1.3.5}$$

Где W(x) и x равны следующим выражениям

$$W(x) = \left(\frac{1}{x} \ln \frac{(1+x)}{(1-x)} - 2\right)$$
$$x = \frac{\sqrt{(v'v)^2 - 1}}{(v'v)}$$

В нерелятивистском приближении они равны соответственно

$$W(x) = \frac{2}{3}x^2 + \frac{2}{5}x^4 + \cdots$$
$$x = \sqrt{(\vec{v}' - \vec{v})^2}$$

Известно [ПШ], что петлевой вклад в упругом сечении сокращает расходимость, тогда регуляризованные массой фотона упругое и неупругое сечения имеют соответственно вид

$$d\sigma_{\gamma}^{\text{упругое}} = d\sigma_0 \cdot \left(1 + \frac{Z^2 \alpha}{\pi} \ln\left(\frac{\mu}{m}\right) \cdot W(x)\right)$$
$$d\sigma_{\gamma}^{\text{неупругое}} = d\sigma_0 \cdot \frac{Z^2 \alpha}{\pi} \ln\left(\frac{\epsilon}{\mu}\right) \cdot W(x)$$

Хотя сумма сечений не расходится, однако нельзя строго разделить упругое сечение и неупругое — результат будет зависеть от μ . Это отражает тот факт, что экспериментально невозможно отличить чисто упругое рассеяние и неупругое с бесконечно маленьким импульсом фотона. Поэтому корректно считать неупругими лишь те столкновения, где кинематика нисколько не задевает упругую часть.

Далее, продифференцировав (1.3.5) по ϵ , получаем в нерелятивистском случае выражение для неупругого сечение, которое совпадает с [СТАТЬЯ].

$$d\sigma_{\gamma}^{\text{неупругое}} = d\sigma_0 \cdot \frac{Z^2 \alpha}{\pi} \cdot \frac{dq}{q} \cdot \frac{2}{3} (\vec{v}' - \vec{v})^2$$
 (1.3.6)

Также, используя результаты выше, можно в нерелятивистском случае выразить интеграл по телесному углу в формуле (1.2.1).

$$\frac{d\sigma}{\mathrm{d}^3\vec{k}'} = \frac{|\mathcal{M}_0|^2}{64\mathrm{k}E_{\text{\tiny IUM}}^2 \cdot \pi^3} \cdot \frac{Z^2\alpha W(x)}{E_{k'}(E_k - E_{k'})}$$

1.4. Кинематика захвата и сечение.

Захваченной частица считается в том случае, если ее энергия станет менее чем гравитационный барьер небесного тела. Это условие эквивалентно тому, что скорость частицы в лабораторной системе отсчета станет меньше чем скорость вылета ($v'_{JCO} \leq v_{esc}$), которая выражается через гравитационный потенциал $\phi(r)$.

$$v_{esc} = \sqrt{2\phi(r)} \tag{1.4.1}$$

Изобразим условие захвата на рисунке 2 (в лабораторной СО и в системе центра масс). Зеленым цветом закрашена область возможного выходного импульса, а красным — область, при в которой происходит захват. Для нахождения сечения захвата необходимо проинтегрировать дифференциальное сечение по пересечению красной и зеленой области.

В системе центра масс скорость частицы ТМ равна v

$$v = \frac{m_p}{m_p + m_k} v_{\text{JICO}} \tag{1.4.2}$$

Расстояние от центра красной сферы захвата до центра мисс равно v_t

$$v_t = v_{\text{JCO}} - v = \frac{m_k}{m_p + m_k} v_{\text{JCO}}$$
 (1.4.3)

В системе центра масс условие захвата выглядит следующим образом

$$(\vec{v}' + \vec{v}_t)^2 < v_{esc}^2 \Leftrightarrow v'^2 + v'v_t \cos \theta' + v_t^2 < v_{esc}^2$$
 (1.4.4)

Существует несколько вариантов расположения двух сфер:

- 1) При $v_t + v_{esc} \le v$ красная сфера внутри зеленой. Происходит неупругий процесс.
- 2) При $v_t + v_{esc} \ge v$, $v + v_{esc} \ge v_t$ упругое столкновение. Неупругий вклад не учитывается из соображений в предыдущем разделе.
- 3) При $v_t \ge v_{esc} + v$ частица ТМ не замечает ядро и не захватывается.

Как мы выяснили в предыдущем разделе, для упругого сечения захвата нужно проинтегрировать дифференциальное по переменной $\cos \theta$ от -1 до $\cos \theta^{**}$, который находится из (1.4.4).

$$\cos \theta^{**} = \frac{v_{esc}^2 - v_t^2 - v^2}{vv_t} \tag{1.4.5}$$

Для неупругого случая можно интегрировать дифференциальное сечение в сферическое системе координат, связанной с красным шаром.

$$\sigma_c = \int_0^{m_k v_{esc}} 2\pi k_e^{\prime 2} dk_e^{\prime} d\cos\theta_e \cdot \frac{d\sigma}{d^3 \vec{k}^{\prime}}$$
 (1.4.6)

Импульс k' и $\cos \theta$ через вспомогательный импульс k'_e и косинус $\cos \theta_e$ выражаются следующим образом:

$$k'^{2} = k_e'^{2} + k_t^{2} - 2k_e'k_t \cdot \cos\theta_e$$
$$\cos\theta' = \frac{k_e'\cos\theta_e - k_t}{k'}$$

1.5. Влияние температуры.

При ненулевой температуре красная сфера смещается и может попасть на границу зеленой, тогда происходит упругий захват. Из-за температуры происходит и испарение.

Рисунок 3.

Если \vec{w} – скорость ядра, а \vec{v} – частицы ТМ, то скорость переноса (1.4.3) и скорость в системе центра масс изменятся, а между ними появляется угол θ_0 .

$$\vec{v}_t = \frac{m_p \vec{w} + m_k \vec{v}}{m_p + m_k} \tag{1.5.1}$$

$$\vec{v}_{\text{II}} = \vec{v} - \vec{v}_t = \frac{m_p}{m_p + m_k} (\vec{v} - \vec{w})$$
 (1.5.2)

$$\cos \theta_0 = -\frac{\vec{v}_t \vec{v}_{\mathrm{II}}}{v_{\mathrm{II}} v_t}$$

Упругое столкновение происходит, как мы выяснили выше, при $v_{esc} > |v_{\rm L} - v_t|$. Если раскрыть модуль и найти предельные при постоянных модулях скоростей случаи, достигающиеся при коллинеарных векторах \vec{w} и \vec{v} , то мы получим ограничения модуля скорости ядра, при котором происходит температурное взаимодействие.

$$w > \frac{m_p + m_k}{2 \cdot m_p} \cdot \left(\left| \frac{m_p - m_k}{m_p + m_k} \right| v - v_{esc} \right) \tag{1.5.3}$$

$$w > \frac{m_p + m_k}{2 \cdot m_p} \cdot (v_{esc} - v) \tag{1.5.4}$$

С помощью отрицания (1.5.3) можно получить условие, при котором не происходит упругого захвата.

$$\frac{v_{esc}}{v_{\text{JCO}}} \le \left| \frac{m_k - m_p}{m_p + m_k} \right| - 2 \frac{m_p}{m_p + m_k} \frac{w}{v_{\text{JCO}}}$$
 (1.5.3')

Для Солнца при характерных скоростях ТМ u_0 (2.1.6), $v_{ЛСО}$ близко к v_{esc} , поэтому, разлагая его в ряд Тейлора, получится условие неупругости захвата

$$\left(\frac{u_0}{v_{esc}}\right)^2 \ge 4\left(\frac{m_k}{m_p + m_k} + \frac{m_p}{m_p + m_k} \frac{w}{v_{esc}}\right)$$
$$0.1 \ge \frac{m_k}{m_p + m_k} + \frac{m_p}{m_p + m_k} \frac{w}{v_{esc}}$$

Это условие не мажет быть выполнено в интересующих нас массах и при Солнечных температурных скоростях. Поэтому на Солнце неупругий процесс не вносит никакого вклада в захват.

Для Земли (1.5.3') выполняется, когда массы ядра и частицы ТМ различаются.

Сечение для процесса с температурой будем брать методом Монте-Карло, поскольку пределы интегрирования сложны, а подынтегральные выражения не гладкие функции.

Частично сечение можно посчитать и аналитически. Для этого в системе центра масс нужно перейти в сферические координаты относительно вектора $-\vec{v}_t$, выразить угол вылета θ' (угол между вектором конечной скорости и начальной) через θ'' (угол между вектором конечной скорости и скорости переноса $-\vec{v}_t$).

$$\cos \theta' = \cos \theta'' \cos \theta_0 - \sin \theta'' \sin \theta_0 \cos \varphi$$

Тогда в формуле для сечения интегрируем по φ от 0 до 2π , а $\cos\theta'$ от 1 до $\cos\theta^*$ в случае захвата и от -1 до $\cos\theta^*$ в случае испарения.

$$\cos \theta^* = \frac{v_t^2 + v_{II}^2 - v_{esc}^2}{2v_t v_{II}}$$

Если сечение взаимодействия имеет следующий вид

$$\frac{d\sigma}{d\cos\theta'} = A(v_{\mathrm{II}}) \cdot \frac{(n+1)}{2} \cdot \left(\frac{1-\cos\theta'}{2}\right)^n$$

то сечение захвата или испарения мы представим в следующем виде:

$$\sigma_c = A(v) \cdot \tilde{\sigma}_c$$

где $\tilde{\sigma}_c$ — безразмерный множитель, приведенный в таблице ниже и выраженный через переменные x и y, равные

$$x = \frac{1 - \cos \theta^*}{2}, \qquad y = \frac{1 + \cos \theta^*}{2}$$

n	захват	испарение
0	x	y
1	$x\cdot (1-y\cos\theta_0)$	$y(1+x\cos\theta_0)$
2	$x \cdot \left(1 - y\left(\frac{3}{2}\cos\theta_0 + \frac{3}{4}\cos^2\theta_0\right) - \frac{1}{4} + y\left(\frac{3}{2}\cos^2\theta_0 - \frac{1}{2}\right)\right)\right)$	$y \cdot \left(1 + x\left(\frac{3}{2}\cos\theta_0 - \frac{3}{4}\cos^2\theta_0\right) + \frac{1}{4} + x\left(\frac{3}{2}\cos^2\theta_0 - \frac{1}{2}\right)\right)\right)$

Таблица 1.

Для того, чтобы получить эффективное сечение захвата, как в неупругом случае (т.е. вероятность процесса на единицу времени равна $\sigma_c nv$), нужно проинтегрировать по температурному распределению ядер сечение, полученное выше.

$$\sigma_c^{9\phi\phi} = \int \frac{d^3\vec{w}}{(2\pi w_T^2)^{\frac{3}{2}}} \cdot e^{-\frac{\vec{w}^2}{2w_T^2}} \cdot \sigma_c(v, v_{esc}, \vec{w}) \cdot \frac{|\vec{v} - \vec{w}|}{v}$$
(1.5.5)

Этот интеграл мы будем брать методом Монте-Карло. Направление вектора \overrightarrow{w} находится с помощью сферического распределения, когда косинус угла $\theta_{\overrightarrow{w}}$ распределен равномерно от -1 до 1. Модуль вектора \overrightarrow{w} мы разыграем со следующим генератором:

$$\frac{w}{w_T} = \sqrt{-2 \ln \left(e^{-\frac{w_m^2}{2w_T^2}} \cdot \text{rand}(0..1) \right)}$$

где w_m — минимальная скорость из (1.5.3) или (1.5.4), а rand(0..1) — рандомное число от нуля до единицы.

Поскольку плотность распределения в таком распределении следующая

$$dw \frac{w}{w_T^2} e^{-\frac{w^2}{2w_T^2}}$$

то для взятия интеграла (1.5.5) методом Монте-Карло нужно еще до множить подынтегральную функцию на множитель ниже и найти среднее значение итоговой функции в случайных точках.

$$\sqrt{\frac{2}{\pi}} \frac{w}{w_T} e^{-\frac{w_m^2}{2w_T^2}}$$

2.Расчет скорости захвата

Если $\sigma_c^i = \sigma_c^i(v, v_{esc})$ — сечение захвата на частице определенного сорта, то вероятность захвата на такой частице за единицу времени выражается через концентрацию элемента сорта i.

$$\frac{dP}{dt} = \sigma_c^i(v, v_{esc}) \cdot n_i \cdot v \tag{2.1}$$

где n_i — концентрация элемента сорта i.

Для нахождения скорости захвата нужно проинтегрировать (2.1) по фазовой плотности $\rho(\vec{x}, \vec{v})$ (распределение частиц по скоростям и координатам).

$$\frac{dC}{dt} = \int \rho(\vec{x}, \vec{v}) d^3 \vec{x} d^3 \vec{v} \cdot \sigma_c^i n_i v \tag{2.2}$$

Если по индексу i ведется суммирование, то (2.2) – полная скорость захвата, иначе – скорость захвата на конкретном элементе.

2.1. Определение фазовой плотности.

Фазовая плотность удовлетворяет кинетическому уравнению Больцмана [], которое следует из закона сохранения частиц (что верно при малом взаимодействии частиц TM) и теоремы Лиувилля. Предположим, что ρ имеет стационарное распределение, в итоге стационарное уравнение будет следующим

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial\vec{x}} \cdot \frac{d\vec{x}}{dt} + \frac{\partial\rho}{\partial\vec{v}} \cdot \frac{d\vec{v}}{dt} = 0$$
 (2.1.1)

$$\frac{d\vec{x}}{dt} = \vec{v}, \qquad \frac{d\vec{v}}{dt} = \nabla\phi \tag{2.1.2}$$

здесь ϕ – это гравитационный потенциал с обратным знаком (т.е. его модуль).

Мы не будем учитывать неоднородности сферического тела по угловым координатам, поэтому уравнения движения и фазовая плотность зависит только от трех переменных: скорость v, радиус r и угол θ_v (рисунок 3).

Рисунок 3.

Известно [], решением линейного уравнения первого порядка с тремя переменными — функция, зависящая от двух первых интегралов движения (2.1.2) частицы в центральном поле. Это уравнение имеет два известных интеграла — энергия и момент импульса (мы будем брать их на единицу массы).

$$u^2 = v^2 - 2\phi, \quad L = rv\sin\theta_v$$
 (2.1.3)

$$\rho = \rho(u^2, L) \tag{2.1.4}$$

В этих переменных фазовый объем будет следующим

$$d\Phi = d^{3}\vec{x}d^{3}\vec{v} = dV \cdot \frac{\pi}{\sqrt{v^{2} - \frac{L^{2}}{r^{2}}}} du^{2} \frac{dL^{2}}{r^{2}}$$
 (2.1.5)

Для решения (2.1.4) осталось определить граничные условия вдали от тела, где фазовая плотность ТМ состоит из постоянной плотности ρ_V и плотности распределения по скоростям $f(\vec{u})$.

$$\rho(r = \infty, \vec{u}) = \rho_V \cdot f(\vec{u})$$

Если $f(\vec{u})$ – однородно распределена, то ответ найден

$$\rho(r, v, L) = \rho_V \cdot f\left(\sqrt{v^2 - 2\phi}\right) = \rho_V \cdot f(u)$$

Иной случай возникает, когда тело движется относительно гало ТМ со скоростью \vec{u}_0 (скорость вращения Солнечной системы вокруг центра галактики).

$$u_0 = 230 \frac{\text{KM}}{\text{C}} = 0.7667 \cdot 10^{-3} \tag{2.1.6}$$

А вот внутри гало ТМ распределена однородно и выражается через скорость $\vec{\xi} = \vec{u} - \vec{u}_0$

$$f(\vec{u})d^3\vec{u} = f(\xi^2)d^3\vec{\xi}$$

Для того, чтобы найти f(u,L), необходимо усреднить по углу θ_0 (рисунок 4), определяющего положение частицы (рисунок) и углу φ , указывающего на направление скорости частицы в полярных координатах репера $\vec{e}_1, \vec{e}_2, \vec{e}_3$. Тогда можно найти координаты вектора $\vec{\xi}$ и его модуль.

Рисунок 4.

$$\xi^2 = u_\theta^2 + u_r^2 + u_0^2 - 2u_0(u\cos\theta\cos\theta_0 + u\sin\theta\cos\phi\sin\theta_0)$$

$$f(u,L) = \int \frac{d\cos\theta_0 \, d\varphi}{4\pi} f(\xi^2)$$

Если заметить, что $d\cos\theta_0\,d\varphi$ – это телесный угол $d\Omega$, который проходится вектором $\vec{n}=(\cos\theta_0\,\cos\varphi\sin\theta_0\,\sin\varphi\sin\theta_0)^T$ и ввести вектор $\vec{y}=(\cos\theta$, $\sin\theta$, 0), то усреднение будет следующим

$$f(u,L) = \int d^2\vec{n} f(u^2 + u_0^2 - 2u_0 u(\vec{y}\vec{n}))$$

В результате, эффективная функция распределения будет изотропна.

$$f_{\theta \phi}(u) = \int_{-1}^{1} f(u^2 + u_0^2 - 2u_0 u \cdot x) \cdot \frac{dx}{2}$$
 (2.1.7)

В нашей задаче мы возьмем нормальное распределение по скоростям темной материи

$$f(\vec{\xi}^2) = \frac{1}{(2\pi\xi_0)^{\frac{3}{2}}} e^{-\frac{\vec{\xi}^2}{2\xi_0^2}}$$

Итоговая функция распределения будет следующей

$$f(u) = \frac{e^{-\frac{(u-u_0)^2}{2\xi_0^2}}}{(2\pi\xi_0^2)^{\frac{3}{2}}} \operatorname{thc}\left(\frac{2u_0u}{\xi_0^2}\right)$$

$$\operatorname{thc}(x) = \frac{(1-e^{-x})}{x}$$
(2.1.8)

Поскольку функция распределения однородная, то в (2.1.5) можно проинтегрировать по моменту импульса и получить конечное выражение для скорости захвата.

$$\frac{dC}{dt} = \rho_V \int dV f(u) \cdot \sigma_c^i n_i v^2 \cdot 4\pi u du \qquad (2.1.9)$$

2.2. Описание процесса интегрирования.

Для интегрирования (2.1.9) будем использовать модель Солнца[] и Земли [], где задана таблица величин, зависящих от безразмерного радиуса ξ .

$$\xi = \frac{r}{R}$$

Для Солнца и Земли радиусы равны соответственно

$$R_{\rm C} = 6.957 \cdot 10^8 {\rm M}$$

$$R_3 = 6.4 \cdot 10^6 \text{ M}$$

Мы также введем безразмерную массу μ и безразмерный потенциал ω , равные отношению соответствующих величин к их значениям в

$$\mu = \frac{M(r)}{M_T}$$

$$\omega = \frac{\phi(r)}{\phi(R)}$$

Потенциалы на поверхности Солнца и Земли следующие

$$\phi_{\rm C}(R) = 2.114 \cdot 10^{-6}$$

$$\phi_3(R) = 6.97 \cdot 10^{-10}$$

Из уравнения Пуассона находится безразмерный гравитационный потенциал внутри тела.

$$\frac{\partial \omega}{\partial \xi} = -\frac{\mu}{\xi^2}$$

$$\omega = 1 + \int_{\xi}^{1} \frac{\mu(\xi')}{\xi'^2} d\xi'$$

Скорость захвата v_{esc} выражается через безразмерный потенциал.

$$v_{esc} = \sqrt{2\phi} = v_{esc}^0 \sqrt{\omega}$$

где v_{esc}^{0} – скорость вылета на поверхности. Для Солнца и Земли это

$$v_{esc}^0 = 2.056 \cdot 10^{-3}$$
 (Солнце) (2.2.1)

$$v_{esc}^0 = 3.7336 \cdot 10^{-5}$$
 (Земля) (2.2.1')

Для интегрирования (2.1.9) будем использовать безразмерные параметры: радиус ξ , безразмерное сечение захвата на элементе $\hat{\sigma}_i = \sigma_c/\sigma_0$ (σ_0 – полное упругое сечение взаимодействия, посчитанное при скорости частицы ТМ на бесконечности равной u_0), массовую долю элемента α_i , безразмерную плотность вещества $\hat{\rho} = \rho(r)/\langle \rho \rangle$ ($\langle \rho \rangle$ – средняя плотность вещества) и массовое число ядер μ_i . Тогда скорость захвата на i-ом элементе равна

$$\frac{dC_i}{dt} = \rho_V \cdot \sigma_0 \left(\frac{4}{3} \pi R^3 \frac{\langle \rho \rangle}{m_{\text{HyK}}} \right) \int 3\xi^2 d\xi \cdot f(u) \cdot \hat{\sigma}_i \frac{\alpha_i}{\mu_i} \, \hat{\rho} \frac{v^2 u}{u_0} \cdot 4\pi du^2$$

Этот интеграл будем считать численно в два этапа. Сначала находим безразмерную величину, характеризующую вероятность захвата при начальной скорости \boldsymbol{u}

$$\tilde{\sigma}_i(u) = \int 3\xi^2 d\xi \cdot \hat{\sigma}_i \alpha_i \hat{\rho} \cdot \frac{v^2}{u_0^2}$$
 (2.2.2)

Данные для параметров сферического тела заданы в таблице, и мы будем их аппроксимировать кусочно-линейной функцией. $\hat{\sigma}_i$ тоже будет задан в виде таблицы (матрицы), поэтому (2.2.2) будем интегрировать с помощью метода трапеций. Результатом будет одномерный массив.

Далее берем второй интеграл по скоростному распределению методом трапеций и получаем безразмерный фактор подавления.

$$\vartheta_i = \int f(u) \cdot \tilde{\sigma}_i(u) \cdot 4\pi u_0 u du$$

Скорость захвата выражается через ϑ_i .

$$\frac{dC_i}{dt} = \rho_V \sigma_0^i \cdot \frac{M}{\mu_i m_{\text{HYK}}} \cdot u_0 \cdot \vartheta_i \tag{2.2.3}$$

Из плотности темной материи равной $0.4 \frac{\Gamma_{9B}}{c_{M}^{3}}$ можно найти концентрацию ТМ ρ_{V} зная ее массу. Запишем тогда для Солнца и Земли (2.2.3), подставив известные числа.

$$\frac{dC_i^C}{dt} = 1.2 \cdot 10^{28} \frac{\sigma_0^i}{\text{пбн}} \cdot \frac{\vartheta_i}{\mu_i \mu_k}$$
 (2.2.4)

$$\frac{dC_i^3}{dt} = 3.5 \cdot 10^{22} \frac{\sigma_0^i}{\text{пбн}} \cdot \frac{\vartheta_i}{\mu_i \mu_k}$$
 (2.2.4')

где σ_0^i – выражаются в пикобарнах, а μ_k – отношение массы частицы ТМ к массе нуклона.

Скорость захвата на единицу объема Солнца и Земли тогда следующие

$$\frac{dC_i^C}{dt} = 0.83 \cdot 10^{-5} \frac{1}{\text{см}^3} \frac{\sigma_0^i}{\text{пбн}} \cdot \frac{\vartheta_i}{\mu_i \mu_k}$$
(2.2.5)

$$\frac{dC_i^3}{dt} = 3.2 \cdot 10^{-5} \frac{1}{\text{cm}^3} \frac{\sigma_0^i}{\text{nGH}} \cdot \frac{\vartheta_i}{\mu_i \mu_k}$$
 (2.2.5')