#### Reminder: Student survey

Hi everyone,

This is the final reminder to participate in the anonymous mid-semester survey:

https://melbourneuni.au1.qualtrics.com/jfe/form/SV OJaLNfvPK07klzY

The survey will be active until 5 pm today.

Thanks in advance!



## Local features

Semester 2, 2022 Kris Ehinger



https://www.youtube.com/watch?v=0Pj-jzy6ESE

#### Outline

- Recognition from local features
- Feature detection
- Feature descriptors

#### Learning outcomes

- Explain the differences between bag-of-features and feature-detection-based approaches and their applications
- Implement an algorithm for feature detection (Harris corners)
- Explain the desirable properties of feature descriptors

# Approaches to recognition

#### CNN object recognition

#### Most informative patches





BagNet, trained on ImageNet



#### CNN object recognition

original







texturised images



















VGG-16, trained on ImageNet

Performance drop: 90% → 79%

#### Classification from local texture



## Approaches to recognition

- Detect local features, ignore spatial position
  - Example: bag of words / bag of features
- Local features + weak spatial relations
  - Spatial pyramid models
- Detect local features and model spatial relations between them
  - Deformable-parts models
  - Keypoint tracking / matching

# Recognition from local features

## Bag of words



## Bag of features

**Object** 

Bag of 'words'





## Bag of features

- Based on the method from NLP represent a document using a histogram of word frequency
- In an image, "words" are local features



#### Words -> features

 Problem: in images, the same "word" can have many appearances



 Solution: combine similar local features, e.g., with k-means clustering

## Histogram comparison















Week 6, Lecture 1 COMP90086 Computer Vision 19

- Main idea: run bag of features at multiple scales
- Note that there's a difference between:
  - Detecting features at one scale and pooling at multiple scales
  - Detecting features at multiple scales







## Multiscale pooling



#### Summary

- Bag of words/features = detect local features anywhere in the image, ignore location and spatial relations
- Spatial pyramids add weak spatial relation information to the "bag of features" approach
- Generally works well for category-level recognition
  - high invariance to object translation and pose

# Feature detection

#### Dense vs. sparse features

- Dense feature representation: compute local features everywhere
- Sparse feature representation : compute local features only at a few "important" points





#### **Definitions**

- Feature detection: finding "important" points (interest points or keypoints) in images
  - What's important?
  - Generally, points that can be detected reliably across image transformations
- Feature descriptor: a short code or set of numbers to represent a point in an image

## What makes a good keypoint?







## What makes a good keypoint?







## What makes a good keypoint?



pollev.com/krisehinger432





Figure: R. Szeliski

## Selecting good keypoints

- Should be easy to recognize in a small window
- Shifting the window in any direction should produce a large change in intensity



Uniform = no change in any direction



Edge = no change along edge direction



Corner = change in all directions

 Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$
Window function

Shifted intensity

Unitersity

Common window functions: square, Gaussian



 Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$





Figure: R. Szeliski

 Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$





Figure: R. Szeliski

 Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$



#### Corner detection mathematics

Approximate shifted intensity using Taylor series:

$$E(u,v) = \sum_{x,y} w(x,y) \left[ I(x+u,y+v) - I(x,y) \right]^{2}$$

$$E(u,v) \approx \sum_{x,y} w(x,y) \left[ I(x,y) + uI_{x} + vI_{y} - I(x,y) \right]^{2}$$

$$= \sum_{x,y} w(x,y) \left[ uI_{x} + vI_{y} \right]^{2} \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$$

$$= \sum_{x,y} w(x,y) (u \quad v) \begin{bmatrix} I_{x}I_{x} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}I_{y} \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

#### Corner detection mathematics

 Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

• Simplifies to:  $E(u, v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$ 

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

#### Values of M

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$



**Image** 



$$I_{x} = \frac{\partial I}{\partial x}$$



$$I_y = \frac{\partial I}{\partial y}$$



$$I_x I_y = \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$$

# Corner response function

• Detect corners using eigenvalues  $\lambda_1$ ,  $\lambda_2$  of M

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$



Figure: R. Szeliski

# Corner response function



Uniform:  $\lambda_1$  and  $\lambda_2$  are small



Edge:  $\lambda_1 >> \lambda_2$  $\lambda_2 >> \lambda_1$ 



Corner:  $\lambda_1$  and  $\lambda_2$  are large

To find corners, look for points where  $\lambda_1\lambda_2$  is high, and  $\lambda_1+\lambda_2$  is low

### Harris corners

•  $\lambda_1\lambda_2$  and  $\lambda_1$  +  $\lambda_2$  are the determinant and trace of matrix M:

- det = np.linalg.det(m)
- trace = m.trace()

$$det(M) = \lambda_1 \lambda_2$$
$$tr(M) = \lambda_1 + \lambda_2$$

• Harris corner response:  $R = \det(M) - k(\operatorname{tr}(M))^2$ k determined empirically, around 0.04-0.06



Harris corner response = det(M)-k(tr(M))<sup>2</sup>



### Harris corners



# Invariance / tolerance

- Corner detection is based on the image gradient (edges), so it's
  - Invariant to translation
  - Tolerant to changes in lighting
- Because the corner response is based on eigenvalues, it is invariant to image-plane rotation
- Not invariant to scale!



### Alternatives to Harris corners

- Alternative corner response functions:
  - Shi-Tomasi (1994):  $min(\lambda_1, \lambda_2)$
  - Brown, Szeliski, & Winder (2005):  $\frac{\det M}{\operatorname{tr} M}$
- Alternatives to corner detectors:
  - Blob detectors
  - Machine-learning-based detectors



# Summary

- Rather than detecting local features everywhere, feature detectors can be used to find "important" points (interest points or keypoints)
- Common type of interest point = corners
- Corners can be detected from local gradients

# Feature descriptors

# Feature descriptors

Having found keypoints in an image, we need a way

to represent them

- Options:
  - Image patch
  - Handcrafted descriptors
    - SIFT
    - GLOH
    - BRIEF
    - BRISK
    - ORB
  - Machine-learned descriptors
    - DeTone, Malisiewicz, & Rabinovich (2018)





## Scale-Invariant Feature Transform (SIFT)

- Compute gradient, take histograms in a grid of pixels around interest point
- Weight gradient magnitudes based on distance from centre of patch
- Normalise histograms to sum to 1



## Scale-Invariant Feature Transform (SIFT)

- SIFT implementation details:
  - Patch size = 16 x 16 pixels
  - Grid = 4 x 4 cells
  - Histogram bins = 8 orientations
  - Gaussian weighting from centre of patch
  - Two-step normalisation: normalise to sum to 1, truncate values to 0.2, normalise to sum to 1
- Descriptor length =  $4 \times 4 \times 8 = 128$

## Scale-Invariant Feature Transform (SIFT)

- Interest points (blobs) are detected at multiple scales; descriptor is based on the scale with maximum response
- Histograms are encoded relative to the main orientation in the patch



# Summary

- Feature descriptor = a code to represent a local patch or interest point in an image
- Many handcrafted feature descriptors, with different:
  - Encoding method
  - Speed
  - Descriptor size
  - Feature detection method
- Goal of feature descriptors is invariance, so points can be matched reliably across image transforms

# Summary

- Most recognition approaches are based on local features, but differ in how they represent spatial relations between features:
  - Bag-of-features methods: no spatial information
  - Feature detection methods: precise spatial information
- Choice of approach depends on task
  - Spatial information is probably not needed for categorylevel recognition
  - Spatial information is useful for tasks that require matching structures across images (next lectures!)