التعامد في الفضاء

I- تعامد مستقيمين في الفضاء

1- تعرىف

نقول إن مستقيمين D و Δ متعامدان في الفضاء إذا و فقط إذا كان الموازيان لهما و الماران من نقطة D في الفضاء متعامدين. نكتب Δ

مثاك ABCDEFGH مكعب

- $(AD) \perp (AE)$
- $(AD) \perp (CG)$
- $(EF) \perp (DH)$

ملاحظة

مستقيمان متعامدان يمكن أن يكونا غير مستوائيين

تمرين

و [CB] و [AC] و [AB] و [AB] و [AB] على التوالي BD = DC رباعي الأوجه حيث BD = DC و $(U) \pm (DK)$ بين أن

2- خاصبات

حاصية1

إذا كان مستقيمان متوازيين فكل مستقيم عمودي على أحدهما يكون عموديا على الآخر

<u>خاصىة2</u>

إذا كان مستقيمان متعامدين فكل مستقيم مواز لأحدهما يكون عموديا على الآخر

<u>ملاحظة</u>

يمكن لمستقيمين أن يكون عموديين على مستقيم ثالث دون أن يكونا متوازيين.

<u>II- تعامد مستقيم و مستوى في الفضاء</u>

<u>- مىرھنة</u>

إذا كان مستقيم (D) عمودي على مستقيمين متقاطعين ضمن مستوى (P) فان (P) عمودي على جميع مستقيمات المستوى (P)

<u>2- تعرىف</u>

نقول إن المستقيم (D) عمودي على المستوى (P) إذا و فقط (D) عموديا على جميع مستقيمات المستوى (P).

<u>3- مىرھنة</u>

يكون مستقيم (D) عمودي على مستوى (P) إذا و فقط إذا كان المستقيم (D) عمودي على مستقيمين متقاطعين ضمن المستوى (P)

ABCDEFGH مکعب $(AD) \perp (ABE)$

 $(AD) \perp (CHG)$

4- خاصيات

حاصية1

إذا كان مستويان متوازيين فان كل مستقيم عمودي على أحدهما يكون عموديا على الآخر

خاصىة2

<u>خاصىة</u>4

يكون مستقيمان متعامدين إذا و فقط إذا كان أحدهما عمودبا على مستوى يتضمن الآخر

<u>حاصىة5</u>

يكون مستويان متوازيين إذا وفقط إذا كانا عموديين على نفس المستقيم

<u>تمرىن</u>

ABCDEFGH مكعب

 $(\mathit{EBG}\,)\,\bot(\mathit{DF}\,)$ أتبث أن $(\mathit{EB}\,)\,\bot(\mathit{DF}\,)$ ثم أتبث أن

<u>تمرين</u>

(C) العمودي على (P) في (C) العمودي على (P) في (C)

 $M \neq B$; $M \in (C)$ و $S \neq A$ حيث $S \in (\Delta)$

 $.(MB) \perp (SM)$ أتبث أن

5- <u>مىرھنات</u>

مىرھنة1

من كل نقطة في الفضاء يمر مستوى وحيد عمودي على مستقيم معلوم.

(D) المسقط العمودي للنقطة M على المستقيم H

<u>مىرھنة2</u>

من كل نقطة في الفضاء يمر مستقيم وحيد عمودي على مستوى معلوم.

(P) المسقط العمودي للنقطة M على المستوى H

<u>III- تعامد مستوسن</u>

تعریف

نقول ان المستویین (P) و (Q) متعامدان اذا و فقط اذا کان أحدهما يتضمن مستقيما عموديا على الآخر نكتب $(P) \pm (Q)$

D C B G G

ABCDEFGH مثال $(ADC) \perp (ABE)$ $(ADF) \perp (CHG)$

<u>ملاحظة</u>

إذا تعامد مستويين في الفضاء فلا يعني أن كل مستقيم ضمن أحدهما عمودي على المستوى الآخر.

تمرين

ليكن ABC مثلثا متساوي الساقين في A ضمن مستوى Pو I منتصف I لتكن S نقطة من S نقطة من S ليكن S حيث S

 $(SAI) \perp (SCI)$ أتبث أن -1

(SI) على المسقط العمودي لـ A على -2

 $(AH) \perp (SC)$ أتبث أن

تمرين

مكعب ABCDEFGHأتبث أن AGF أتبث أن

<u>تمرىن</u>

في الْفضاء نعتبر ABC مثلثا قائم الزاوية في A ضمن مستوى

لتكن B مماثلة B بالنسبة لـ A ، و S نقطة خارج P حيث SB=SD. لتكن B و A بالنسبة لـ B

و $\begin{bmatrix}DC\end{bmatrix}$ على التوالي

$$(P) \perp (\mathit{SAC}\,)$$
 استنتج أن $(\mathit{AB}\,) \perp (\mathit{SAC}\,)$ -1

$$(AB)ot(IJ)$$
 بين أن -2

