Phase 1 Project: Aviation Safety Risk Analysis

Student: Patricia Louissaint

Cohort: DTSC-FLEX-070824-P1

Date: July 2025

Introduction

This project aims to identify the **safest aircraft makes** for a company planning to enter the aviation industry.

By analyzing historical aviation accident data from the **National Transportation Safety Board (NTSB)** from 1962 to 2023, we evaluate patterns in accident frequency, injury severity, and weather/flight factors to build a **composite risk score** for each aircraft make.

Our goal is to help business stakeholders make informed decisions about which aircraft types pose the **least operational risk**.

Business Understanding

Stakeholder: Head of the new Aviation Division

Problem: The company wants to enter the aviation industry but lacks knowledge of aircraft safety risks.

Objective: Analyze accident data to recommend the lowest-risk aircraft makes for purchase.

Key Questions:

- Which aircraft makes are involved in the most accidents?
- What types of injuries (fatal, serious, minor) are most common?
- Which aircraft makes have the lowest composite risk score based on accident frequency and severity?

```
In [37]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

aviation_df = pd.read_csv('AviationData.csv', encoding='latin1', low_memory=F.states_df = pd.read_csv('USState_Codes.csv', encoding='latin1')
```

Data Understanding

We are working with two datasets:

- AviationData.csv: Accident records from the NTSB
- USState_Codes.csv: US state abbreviations and full names

```
In [38]: print("Aviation Data Preview:")
    display(aviation_df.head())

    print("\nUS State Codes Preview:")
    display(states_df.head())

    print("\nAviation Data Info:")
    aviation_df.info()

    print("\nMissing Values (Aviation):")
    print(aviation_df.isnull().sum())
```

Aviation Data Preview:

	Event.Id	Investigation.Type	Accident.Number	Event.Date	Location	Country	
0	20001218X45444	Accident	SEA87LA080	1948-10- 24	MOOSE CREEK, ID	United States	
1	20001218X45447	Accident	LAX94LA336	1962-07- 19	BRIDGEPORT, CA	United States	
2	20061025X01555	Accident	NYC07LA005	1974-08- 30	Saltville, VA	United States	:
3	20001218X45448	Accident	LAX96LA321	1977-06- 19	EUREKA, CA	United States	
4	20041105X01764	Accident	CHI79FA064	1979-08- 02	Canton, OH	United States	

5 rows × 31 columns

US State Codes Preview:

	US_State	Abbreviation
0	Alabama	AL
1	Alaska	AK
2	Arizona	AZ
3	Arkansas	AR
4	California	CA
*		

AVIATION DATA INIO: <class 'pandas.core.frame.DataFrame'> RangeIndex: 88889 entries, 0 to 88888 Data columns (total 31 columns):

#	Column	•	ull Count	Dtype
0	Event.Id	88889	non-null	object
1	Investigation. Type	88889	non-null	object
2	Accident.Number	88889		object
3	Event.Date	88889		object
4	Location	88837		object
5	Country	88663		object
6	Latitude	34382		object
7	Longitude	34373		object
8	Airport.Code	50249		object
9	Airport.Name	52790		object
10	Injury.Severity	87889		object
11	Aircraft.damage	85695	non-null	object
12	Aircraft.Category	32287	non-null	object
13	Registration.Number	87572		object
14	Make	88826		object
15	Model	88797	non-null	object
16	Amateur.Built	88787	non-null	object
17	Number.of.Engines	82805		float64
18	Engine.Type	81812		object
19	FAR.Description	32023		object
20	Schedule	12582	non-null	object
21	Purpose.of.flight	82697	non-null	object
22	Air.carrier	16648	non-null	object
23	Total.Fatal.Injuries	77488	non-null	float64
24	Total.Serious.Injuries	76379	non-null	float64
25	Total.Minor.Injuries	76956	non-null	float64
26	Total.Uninjured	82977	non-null	float64
27	Weather.Condition	84397	non-null	object
28	Broad.phase.of.flight	61724	non-null	object
29	Report.Status	82508	non-null	object
30	Publication.Date	75118	non-null	object
dtvp	es: float64(5), object(2	6)		

dtypes: float64(5), object(26)

memory usage: 21.0+ MB

Missing Values (Aviation):

missing values (Aviacion)	•
Event.Id	0
Investigation. Type	0
Accident.Number	0
Event.Date	0
Location	52
Country	226
Latitude	54507
Longitude	54516
Airport.Code	38640
Airport.Name	36099
Injury.Severity	1000
Aircraft.damage	3194
Aircraft.Category	56602
Registration.Number	1317
Make	63
Model	92

Amateur.Built	102
Number.of.Engines	6084
Engine. Type	7077
FAR.Description	56866
Schedule	76307
Purpose.of.flight	6192
Air.carrier	72241
Total.Fatal.Injuries	11401
Total.Serious.Injuries	12510
Total.Minor.Injuries	11933
Total.Uninjured	5912
Weather.Condition	4492
Broad.phase.of.flight	27165
Report.Status	6381
Publication.Date	13771
dtype: int64	

Data Preparation

We will:

- Fill missing injury columns with 0
- Standardize state codes from Location

```
In [39]: # Missing injury values with 0
  injury_cols = ['Total.Fatal.Injuries', 'Total.Serious.Injuries', 'Total.Minor
  aviation_df[injury_cols] = aviation_df[injury_cols].fillna(0)
```

Exploratory Data Analysis (EDA)

We'll explore:

- · Accident frequency by aircraft make
- · Injury severity
- Weather and flight phase impact
- Engine counts and state-wise accidents

```
In [40]: # Data by 'Make' and the number of accidents (Event.Id)
    accidents_by_make = aviation_df.groupby('Make')['Event.Id'].count().sort_value

# Top 10 accident-prone aircraft types
    plt.figure(figsize=(12, 6))
    accidents_by_make.head(10).plot(kind='bar', color='skyblue')
    plt.title('Top 10 Accident-Prone Aircraft Makes')
    plt.xlabel('Aircraft Make')
    plt.ylabel('Number of Accidents')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.savefig('accidents_by_make.png') # Save image
    plt.show()
```



```
In [42]: # Broad phase of flight and accidents
accidents_by_phase = aviation_df.groupby('Broad.phase.of.flight')['Event.Id']

# Accident frequency during different flight phases
plt.figure(figsize=(12, 6))
accidents_by_phase.plot(kind='barh', color='coral')
plt.title('Accidents by Broad Phase of Flight')
plt.xlabel('Number of Accidents')
plt.ylabel('Flight Phase')
plt.tight_layout()
plt.show()
```



```
In [43]: # Accidents by weather condition
  weather_conditions = aviation_df['Weather.Condition'].value_counts()

# Pie chart for the weather conditions
  plt.figure(figsize=(8, 8))
  weather_conditions.plot(kind='pie', autopct='%1.1f%%', startangle=90, cmap='Soplt.title('Accidents by Weather Condition')
  plt.ylabel('')
  plt.tight_layout()
  plt.show()
```

Accidents by Weather Condition


```
In [44]: # Engines
    aviation_df.groupby('Number.of.Engines')['Event.Id'].count().plot(kind='bar',
    plt.title('Accidents by Number of Engines')
    plt.xlabel('Number of Engines')
    plt.ylabel('Accident Count')
    plt.show()
```



```
In [45]: # States_df to get state codes
    accidents_by_state = aviation_df['Location'].str.extract(r'(\b\w{2}\b)')[0].v

# State names with state codes
    accidents_by_state = accidents_by_state.rename_axis('State').reset_index(name accidents_by_state = accidents_by_state.merge(states_df, how='left', left_on=

# Bar chart for accidents by state
    plt.figure(figsize=(14, 8))
    sns.barplot(data=accidents_by_state, x='Accident Count', y='State', palette='plt.title('Accidents by US State')
    plt.xlabel('Number of Accidents')
    plt.ylabel('State')
    plt.tight_layout()
    plt.show()
```


Risk Score Calculation

We create a composite risk score for each aircraft make using:

- Fatal Injuries (weight 3)
- Serious Injuries (weight 2)
- Minor Injuries (weight 1)
- IMC Weather (+1)

```
In [46]:
          # Risk score combining accident frequency and severity
          aviation_df['Risk_Score'] = (aviation_df['Total.Fatal.Injuries'] * 3 +
                                       aviation_df['Total.Serious.Injuries'] * 2 +
                                       aviation df['Total.Minor.Injuries'] * 1 +
                                       (aviation_df['Weather.Condition'] == 'IMC').asty
          # Aircraft make and average risk score
          risk_by_make = aviation_df.groupby('Make')['Risk_Score'].mean().sort_values(a
          # Plot risk score
          plt.figure(figsize=(12, 6))
          risk_by_make.head(10).plot(kind='bar', color='purple')
          plt.title('Top 10 Aircraft Makes by Risk Score')
          plt.xlabel('Aircraft Make')
          plt.ylabel('Risk Score')
          plt.tight_layout()
          plt.show()
```



```
In [48]:
         # Standardize Make column
          aviation df['Make'] = aviation df['Make'].str.upper().str.strip()
          # Calculate accident frequency and fatality rate by Make
          accidents by make = aviation df.groupby('Make')['Event.Id'].count()
          fatalities by make = aviation df.groupby('Make')['Total.Fatal.Injuries'].sum(
          fatality rate = fatalities by make / accidents by make
          # Calculate severity score
          aviation df['Severity Score'] = (
              aviation df['Total.Fatal.Injuries'] * 3 +
              aviation df['Total.Serious.Injuries'] * 2 +
              aviation df['Total.Minor.Injuries'] * 1
          severity by make = aviation_df.groupby('Make')['Severity_Score'].sum()
          severity score = severity by make / accidents by make
          # Normalize for composite score
          accidents normalized = accidents by make / accidents by make.max()
          fatality_rate_normalized = fatality_rate / fatality_rate.max()
          severity normalized = severity score / severity score.max()
          # Combine into composite risk score (lower is safer)
          composite risk score = (accidents normalized + fatality rate normalized + sev
          # Create final dataframe
          risk df = pd.DataFrame({
              'Accident Frequency': accidents by make,
              'Fatality Rate': fatality rate,
              'Injury Severity Score': severity score,
              'Risk Score': composite risk score
          }).sort values(by='Risk Score')
          # Select top 10 least dangerous aircraft *makes*
          top 10 least dangerous aircraft = risk df.head(10)
          # Plot and save chart
          plt.figure(figsize=(12, 6))
          top_10_least_dangerous_aircraft['Risk Score'].plot(kind='bar', color='green')
          plt.title('Top 10 Lowest-Risk Aircraft Makes')
          plt.xlabel('Aircraft Make')
          plt.ylabel('Composite Risk Score')
          plt.xticks(rotation=45)
          plt.tight layout()
          plt.savefig('risk_df.png') # Save image
          plt.show()
```

7/13/25, 7:36 PM aviation_safety_analysis

Conclusion

Based on the risk analysis, the **Top 10 Lowest-Risk Aircraft Makes** include:

- 1. Pettigrew, Richard
- 2. Mosley High School
- 3. Morton S. Dismuke
- 4. Defelici
- 5. Degair
- 6. Morse
- 7. Mork
- 8. Morgan, Marvin R.
- 9. Morane-Saulnier
- 10. Moyes Bailey

Nusiness Recommendations:

- 1. Prioritize purchasing aircraft from the top 3 lowest-risk makes.
- 2. Avoid models with high accident and injury rates (see "risk" section).
- 3. Further analyze accident types for targeted safety investments.

These insights help the company make data-driven decisions in entering the aviation industry.

Export Instructions

- File > Save and Checkpoint
- File > Download as > PDF via Browser
- Also save .ipynb to upload to GitHub

In []: