VQVAEによって獲得された キャラクター演技スタイルに基づく 多話者オーディオブック音声合成

〇中田亘 郡山知樹 高道慎之介 齋藤佑樹 (東大) 井島勇祐 増村亮 (NTT) 猿渡洋 (東大)

オーディオブックとは

オーディオブック

- 朗読を聞く形式の本
- 急速な市場の拡大が見込まれている*

代表的なオーディオブックサービス

- Amazon Audible
- audiobook.jp

オーディオブックの利点

- 両手が空くため、ながら読書が可能
- 複数人で同期的にコンテンツを楽しめる

^{*}日本能率総合研究所プレスリリース https://prtimes.jp/main/html/rd/p/00000015.000035568.html

研究背景

既存のオーディオブック作成方法

- プロ声優の録音音声
- 長時間の録音となるため、多大な時間と資金が必要
- **オーディオブック音声合成による負担の軽減**が望まれる

オーディオブック音声合成とは

- 声優による録音を合成音声に置き換える
- 時間的、人的コストの削減が期待される

オーディオブック音声合成における課題

- 複数文に渡る長い文脈を考慮した韻律の実現「Nakata+21]
- キャラクター演技の実現(本研究)

オーディオブック内のキャラクター演技

ありくん 主人公

ありの女の子 脇役

かえるくん ありくんのライバル

キャラクターによって異なる演技スタイルが 実<u>現されている</u> 出典 音声:

J-KACコーパス[Nakata+21] 紙芝居:

ありくんとかえる 作/絵 ようふゆか 制作 教育画劇

本研究の目指すシステム

多大な時間、人的コストが発生

大幅なコストの削減 声優の演技の幅を超えた音声 多くの話者を実現可能

具体的なアプローチ

キャラクター演技スタイルに焦点を当てる

離散的な演技スタイル

人間による解釈が比較的容易 合成 -> 選択が可能

発表概要

目的

多話者オーディオブック音声合成におけるキャラクタ演技スタイルの獲得・制御

手法

VQVAE [van den Oord+17] を用いてキャラクター演技スタイルの離散表現を獲得 話者不変学習 [Meng+18] を用いて離散表現の話者非依存性を確保

結果

話者により自然性が劣化

多様なキャラクタ演技スタイルが実現可能

話者間でキャラクタ演技スタイルの転写が可能

関連する研究

Learning latent representations for style control and transfer in end-toend speech synthesis[Zhang+19]

RNNを内包するReference Encoder+VAEを用いて連続的な音声スタイル表現を 獲得・制御

連続な潜在空間は人間による解釈が難しい

大量の合成音声を用意する点では不向き

本研究

ResCNN[Li+17]を用いて発話内で時間変化しない音声特徴量(キャラクター演技スタイル)に着目

VQVAEを用いて離散的な表現を獲得し制御を容易にする

VQVAEとは

ベースライン

MultiSentences[Nakata+21]を使用

複数文から得られる言語特徴を利用 文脈を考慮した音声合成 多話者音声合成に適用するために話者エンコーダーを追加

提案する音声合成モデルー推論時

提案する音声合成モデルー訓練時

実験条件

データセット	J-KAC[Nakata+21] 単一話者紙芝居・オーディオブック音声 男性1名 9時間 J-MAC https://doi.org/10.32130/src.J-MAC 多話者オーディオブック音声 男性23名 女性16名 25.5時間
音素エンコーダ入力	音素列 アクセント列
BERT[Delvin+18] 事前学習済みモデル	日本語Wikipedia学習済みモデル
コードブック次元数	256
コードブックサイズ	64(学習後に実際に使用されるのは21)
ボコーダー	HiFi-GAN[Kong+20]

評価指標

ベースライン:MultiSentences[Nakata+21]と比較

合成音声の自然性

キャラクター演技スタイルを付与する事により品質が劣化していないか

話者類似性

キャラクター演技スタイルを付与することにより話者性が変化していないか

音声の多様性

キャラクター演技スタイルを付与することにより多様な音声が合成できるか

話者間のキャラクター演技スタイルの転写

応用例として、ある話者から得られた演技スタイルを他の話者に転写可能か

音声の自然性

5段階の自然性MOSによる主観評価

原音声から得られたキャラクター演技スタイルを用いて合成

手法	平均
Baseline	2.943
Proposed	2.862

エラーバー:95%信頼区間

話者類似性

Resemblyzerを用いて抽出したd-vectorの分布を比較 原音声から得られるキャラクター演技スタイルを使用

キャラクター演技スタイルを導入したことによる 大きな差異は見られない 話者類似性は変わっていない

多様性 -ピッチの平均

コードブックを変化させることによりピッチが変化 話者非依存

多様性 -ピッチの標準偏差

多様性 -話速の平均

コードブックを変化させることにより話速が変化 話者非依存

多様性 -話速の標準偏差

標準偏差に関しても同様の変化が見られる 話者非依存

*原稿の結果に誤りあり

20

多様性ーパワーの標準偏差

コードブックを変える事によりパワーの標準偏差が 大きく/小さくなる

多様性 - 合成音声間のMCD

異なるコードブック(キャラクター演技スタイル)で合成された音声間のメルケプストラム歪(MCD)を可視化

最低値は1.7[dB] 多様な音声が実現されている

コードブックを変化させることにより合成音声が変化することを確認 多様な音声が実現されている

話者間のキャラクター演技スタイルの転写

J-KACから抽出したキャラクター演技スタイルを他の話者(男性6名女性4名)に転写

評価基準:「以下の音声は参照音声のキャラクター演技スタイルを元に他の話者に転写した ものです」どちらがより参照音声のキャラクター演技スタイルに近いですか?|

p值 0.022

提案法は参照音声に近い キャラクター演技スタイルを実現できることを確認

音声サンプル - ベースラインとの比較

連続した文章の音声

原音声(JKAC)	ベースライン	提案法
0000		

音声サンプルーキャラクター演技スタイル

まとめ

目的

多話者オーディオブック音声合成におけるキャラクタ演技スタイルの獲得・制御

手法

VQVAE [Oord+17] を用いてキャラクター演技スタイルの離散表現を獲得 話者不変学習 [Meng+18] を用いて離散表現の話者非依存性を確保

結果

話者により自然性が劣化 多様なキャラクタ演技スタイルが実現可能 話者間でキャラクタ演技スタイルの転写が可能

今後の課題

オーディオブック音声合成の具体的な評価方法の検討

順位相関係数

	ピッチの標準偏差	話速の平均	話速の標準偏差	パワーの標準偏差
ピッチの平均	0.731	-0.39	-0.10	0.049
ピッチの標準偏差		-0.75	-0.49	0.49
話速の平均			0.84	-0.88
話速の標準偏差				-0.88
パワーの標準偏差				

太字:p<0.05 相関がある

話速とパワーの標準偏差の間に強い相関

音声の自然性

5段階の自然性MOSによる主観評価

原音声から得られたキャラクター演技スタイルを用いて合成

特に評価結果が 異なる音声 ベースライン

