Sinkformers: Transformers with Doubly Stochastic Attention (AISTATS2022)

Michael E. Sander, Pierre Ablin.etc.

LieTransformer: Equivariant Self-Attention for Lie Groups (ICML2021)

Michael Hutchinson, Charline Le Lan.etc.

Presenter: Minjie Cheng

Outline

- 1. Self-Attention
- 2. Sinkformers
 - 2.1. Motivation
 - 2.2. Algorithm
 - 2.3. Experiments
- 3. LieTransformer
 - 3.1. Motivation
 - 3.2. Algorithm

 - 3.3. Experiments

Overview of Self-Attention

- ► A mapping $X = [x_1, ..., x_n] \in \mathbb{R}^{N \times D} \mapsto Z \in \mathbb{R}^{N \times D}$
- Using m to index the head (m = 1, ..., M), the output of the mth head can be writen as:

$$f^{m}(\mathbf{X}) \triangleq WXW^{V,m} \in \mathbb{R}^{N \times D/M}$$
 $W \triangleq softmax(\mathbf{X}\mathbf{W}^{Q,m}(\mathbf{X}\mathbf{W}^{K,m})^{T}) \in \mathbb{R}^{N \times N}$
 $MSA(\mathbf{X}) \triangleq [f^{1}(\mathbf{X}),...,f^{M}(\mathbf{X})]W^{O} \in \mathbb{R}^{N \times D}$

Motivation-Sinkformers

► This attention matrix is normalized with the SoftMax operator, which makes it row-wise stochastic

Motivation-Sinkformers

- ► This attention matrix is normalized with the SoftMax operator, which makes it row-wise stochastic
- ▶ Use Sinkhorn's algorithm to make attention matrices **doubly** stochastic.(i.e., rows and columns both sum to 1)

Important Notations

- $m{X} = [m{x}_1,...,m{x}_n] \in \mathbb{R}^{N imes D}$
- $ightharpoonup oldsymbol{x}_i \leftarrow oldsymbol{x}_i + \sum_{j=1}^n oldsymbol{K}_{i,j}^1 oldsymbol{W}_V oldsymbol{x}_j,$
 - $ightharpoonup K^1 := Softmax(C)$
 - $C_{i,j} = (\boldsymbol{W}_{Q}\boldsymbol{x}_{i})^{T}\boldsymbol{W}_{K}\boldsymbol{x}_{j}$
 - Query, key, value matrices are $W_O \in \mathbb{R}^{m \times d}$, $W_K \in \mathbb{R}^{m \times d}$, $W_V \in \mathbb{R}^{d \times d}$
 - ightharpoonup Denote $\mathbf{K}^0 := exp(\mathbf{C})$
 - $ightharpoonup K_{ii}^1 := K_{ii}^0 / \sum_{l=1}^n K_{il}^0$
 - $ightharpoonup K^1$ is row-wise stochastic

Illustration of the different normalizations of attention matrices

- $ightharpoonup C_{i,j} = (\mathbf{W}_O \mathbf{x}_i)^T \mathbf{W}_K \mathbf{x}_i \text{(correlation coefficient)}$
- ▶ We form two point clouds $W_Q x_i$ (green) and $W_K x_j$ (red).
- We only display connections with $K_{ii}^k \geq 10^{-12}$
- ▶ For K^{∞} (Sinkhorn), all points are involved in an interaction.

Experiment for Sum over clumns

- ► We sum over columns of attention matrices at different training epochs (color) when training.
- ▶ The majority of columns naturally sum closely to 1.

Sinkhorn's algorithm

$$K^{l+1} = egin{cases} N_R\left(K^l
ight) & ext{if l is even} \ N_C\left(K^l
ight) & ext{if l is odd} \end{cases}$$

 \triangleright N_R and N_C correspond to row-wise and column-wise normalizations:

$$(N_R(K))_{i,j} := rac{K_{i,j}}{\sum_{l=1}^n K_{i,l}}$$
 $(N_C(K))_{i,j} := rac{K_{i,j}}{\sum_{l=1}^n K_{l,i}}$

Note that it is doubly stochastic in the sense that $K^{\infty} \mathbb{1}_n = \mathbb{1}_n$ and $K^{\infty T} \mathbb{1}_n = \mathbb{1}_n$.

Sinkformers

Note that $K^1 := \text{SoftMax}(C)$ is precisely the output of Sinkhorn's algorithm after 1 iteration.

$$x_i \leftarrow x_i + \sum_{j=1}^n K_{i,j}^{\infty} W_V x_j$$

- ▶ Only a few iterations of Sinkhorn are sufficient (**typically 3 to 5**) to converge to a doubly stochastic matrix.
- ► The practical training time of Sinkformers is comparable to regular Transformers.

Invariance to the cost function

Proposition 1. Let $C \in \mathbb{R}^{n \times n}$. Consider, for $(f, g) \in \mathbb{R}^n \times \mathbb{R}^n$ the modified cost function $\tilde{C}_{i,j} := C_{i,j} + f_i + g_j$. Then Sinkhorn $(C) = \text{Sinkhorn}(\tilde{C})$.

$$ilde{C}_{i,j} := -rac{1}{2} \left\| W_Q x_i - W_K x_j
ight\|^2$$

• We can consider the cost $\tilde{C}_{i,j}$ instead of $C_{i,j} = (W_Q x_i)^\top W_K x_j$, without affecting K^∞ .

Residual maps for attention-continuous counterparts

▶ We denote $c(x,x') := (W_Q x)^\top W_K x'$ and $k^0 := \exp(c)$. For some measure $\mu \in \mathcal{M}\left(\mathbb{R}^d\right)$, we define the SoftMax operator on the cost c by $k^1(x,x') = \operatorname{SoftMax}(c)(x,x') := \frac{k^0(x,x')}{\int k^0(x,y)d\mu(y)}$. Similarly, we define Sinkhorn's algorithm as the following iterations, starting from $k^0 = \exp(c)$:

$$k^{l+1}\left(x,x'
ight) = egin{cases} rac{k^l(x,x')}{\int k^l(x,y)d\mu(y)} & ext{if l is even} \\ rac{k^l(x,x')}{\int k^l(y,x)d\mu(y)} & ext{if l is odd.} \end{cases}$$

We denote $k^{\infty} := \text{Sinkhorn } (c)$ the resulting limit. Note that if μ is a discrete measure supported on a n sequence of particles (x_1, x_2, \ldots, x_n) , $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$, then for all (i,j), k^0 $(x_i, x_j) = K^0_{i,j}$, k^1 $(x_i, x_j) = K^1_{i,j}$ and k^{∞} $(x_i, x_j) = K^{\infty}_{i,j}$, so that k^0 , k^1 and k^{∞} are indeed the **continuous equivalent** of the matrices K^0 , K^1 and K^{∞} respectively.

depth limit

► Transformer equation

$$x_i \leftarrow x_i + \sum_{j=1}^n K_{i,j}^1 W_V x_j$$

ResNet equation

$$x_i \leftarrow x_i + T(x_i)$$

► Sinkformer equation

$$x_i \leftarrow x_i + \sum_{j=1}^n K_{i,j}^{\infty} W_V x_j$$

Infinitesimal step-size regime

▶ In this framework, iterating the Transformer equation, the ResNet equation and the Sinkformer equation corresponds to a Euler discretization with step-size 1 of the ODEs

$$\dot{x}_i = T_{\mu}(x_i)$$
 for all i ,

where $x_i(t)$ is the position of x_i at time t. For an arbitrary measure $\mu \in \mathcal{M}(\mathbb{R}^d)$, these ODEs can be equivalently written as a continuity equation

$$\partial_t \mu + \operatorname{div}(\mu T_\mu) = 0$$

- ▶ When T_{μ} is defined by the ResNet equation 2 , $T_{\mu} = T$ does not depend on μ . It defines an advection equation where the particles do not interact and evolve independently.
- $T_{\mu}^{1}(x) = \int k^{1}(x, x') W_{V'} x' d\mu(x')$
- $T_{\mu}^{\infty}(x) = \int k^{\infty}(x, x') W_{V'} x' d\mu(x')$

Implementation details

We implement Sinkhorn's algorithm in log domain for stability. Given a matrix $K^0 \in \mathbb{R}^{n \times n}$ such that $K^0_{i,j} = e^{C_{i,j}}$ for some $C \in \mathbb{R}^{n \times n}$, Sinkhorn's algorithm approaches $(f,g) \in \mathbb{R}^n \times \mathbb{R}^n$ such that $K^\infty = \operatorname{diag}\left(e^{f^\infty}\right) K^0 \operatorname{diag}\left(e^{g^\infty}\right)$ by iterating in log domain, starting from $g^0 = \mathbb{O}_n$,

$$\begin{split} & \textit{f}^{l+1} = \log \left(\mathbb{1}_n/n \right) - \log \left(\textit{Ke}^{\textit{g}^l} \right) & \text{if l is even} \\ & g^{l+1} = \log \left(\mathbb{1}_n/n \right) - \log \left(\textit{K}^T e^{\textit{f}^l} \right) & \text{if l is odd.} \end{split}$$

This allows for fast and accurate computations, where $\log\left(Ke^{g^l}\right)$ and $\log\left(K^\top e^{f^l}\right)$ are computed using log-sum-exp.

Experiments

► ModelNet 40 classification

Model	Best	Median	Mean	Worst
Set Transformer	87.8%	86.3%	85.8%	84.7%
Set Sinkformer	89.1%	88.4%	88.3%	88.1%
Point Cloud Transformer	93.2%	92.5%	92.5%	92.3%
Point Cloud Sinkformer	93.1%	92.8%	92.7%	92.5 %

Experiments

► Sentiment Analysis

Figure 4: Learning curves when training a Transformer and a Sinkformer on the Sentiment Analysis task on the IMDb Dataset.

2. LieTransformer: Equivariant Self-Attention for Lie Groups (ICML2021)

Motivation-LieTransformer

► Extend **group equivariance** to self-attention,**non-linear** map

Motivation-LieTransformer

- ▶ 3D point clouds
- ▶ We may want a classifier to output the same classification when the input is translated or rotated.
- ► Transformer-based model that is **permutation invariant**, but **not invariant to rotations or translations**.

Equivariant Self-Attention for Lie Groups

Figure 2. Visualisation of lifting, sampling \hat{H} , and subsampling in the local neighbourhood for SE(2) acting on \mathbb{R}^2 . Self-attention is performed on this subsampled neighbourhood.

Formal definitions for Groups and Representation Theory

- ▶ **Group** G is a set of symmetries, with each group element g corresponding to a symmetry transformation, group element $g \in G$
- ▶ **Graph representation** $\rho(g)$ takes the form of a matrix. For SO(2),

$$ho\left(g_{ heta}
ight) = \left[egin{array}{ccc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight]$$

- ▶ Definition. A group *G* is a set endowed with a single operator : $G \times G \mapsto G$ such that
 - 1. Associativity: $\forall g, g', g'' \in G, (g \cdot g') \cdot g'' = g \cdot (g' \cdot g'')$
 - 2. Identity: $\exists e \in G, \forall g \in G, g \cdot e = e \cdot g = g$
 - 3. Invertibility: $\forall g \in G, \exists g^{-1} \in G, g \cdot g^{-1} = g^{-1} \cdot g = e$

G-equivariance

- ▶ Definition 1. We say that a map $\Phi: V_1 \to V_2$ is G equivariant with respect to actions ρ_1, ρ_2 of G acting on V_1, V_2 respectively if: $\Phi\left[\rho_1(g)f\right] = \rho_2(g)\Phi[f]$ for any $g \in G, f \in V_1$.
- ▶ In the context of group equivariant neural networks, V is commonly defined to be the space of scalar-valued functions on some set S, so that $V = \{f \mid f : S \to \mathbb{R}\}.$
- ▶ i.e. a grey-scale image can be expressed as a feature map $f: \mathbb{R}^2 \to \mathbb{R}$ from pixel coordinate x_i to pixel intensity f_i , supported on the grid of pixel coordinates.(Linear operation)

Overview

Figure 2. Visualisation of lifting sampling \hat{H} and subsampling in the local neighbourhood for SE(2) acting on \mathbb{R}^2 . Self-attention is performed on this subsampled neighbourhood.

Lifting

- ▶ Suppose we have data in the form of a set of input pairs $(x_i, \mathbf{f}_i)_{i=1}^n$ where $x_i \in \mathcal{X}$ are **spatial coordinates** and $\mathbf{f}_i \in \mathcal{F}$ are **feature values**.
- ▶ All elements of \mathcal{X} are connected by the action: $\forall x, x' \in \mathcal{X}, \exists g \in G : \rho(g)x = x'$

LieSelfAttention

Figure 1. Architecture of the LieTransformer.

Content-based attention

- ► Content-based attention $k_c(f(g), f(g'))$:
 - 1. Dot-product: $\frac{1}{\sqrt{d_v}} \left(W^Q f(g) \right)^{\top} W^K f(g') \in \mathbb{R} \text{ for } W^Q, W^K \in \mathbb{R}^{d_v \times d_v}$
 - 2. Concat: Concat $[W^Q f(g), W^K f(g')] \in \mathbb{R}^{2d_v}$
 - 3. Linear-Concat-linear: W Concat $\left[W^Q f(g), W^K f(g')\right] \in \mathbb{R}^{d_s}$ for $W \in \mathbb{R}^{d_s \times 2d_v}$.

Location-based attention

▶ Location-based attention $k_l(g^{-1}g')$ for Lie groups G:

1. Plain: $\nu \left[\log \left(g^{-1} g' \right) \right]$ 2. MLP: MLP $\left(\nu \left[\log \left(g^{-1} g' \right) \right] \right)$

Experiments-Counting Shapes in 2D Point Clouds

Training data	D_{train}	D_{train}	D_{train}	D_{train}^{T2}	D_{train}^{T2}	D_{train}^{SE2}		
Test data	D_{test}	D_{test}^{T2}	D_{test}^{SE2}	D_{test}^{T2}	D_{test}^{SE2}	D_{test}^{SE2}		
SetTransformer	0.58 ± 0.07	0.44 ± 0.02	0.44 ± 0.02	0.61 ± 0.02	0.51 ± 0.01	0.55 ± 0.01		
LieTransformer-T2	0.75 ± 0.03	0.75 ± 0.03	0.63 ± 0.06	0.75 ± 0.03	0.63 ± 0.06	0.70 ± 0.03		
LieTransformer-SE2	0.71 ± 0.01	0.71 ± 0.01	0.69 ± 0.02	0.71 ± 0.01	0.69 ± 0.02	0.72 ± 0.04		

Table 1. Mean and standard deviation of test accuracies on the shape counting task at convergence (over 8 random initialisations).

- ► Transformer-based model that is **permutation invariant**, but **not invariant to rotations or translations**.
- ► *G*-equivariance: rotations, translation

Experiments-QM9: Molecule Property Regression

Task Units	$\begin{array}{c} \alpha \\ \mathrm{bohr}^3 \end{array}$	$\Delta\epsilon$ meV	€номо meV	€LUMO meV	μ D	C_{ν} cal/mol K	$_{\rm meV}^{G}$	H meV	$\begin{array}{c} R^2 \\ \mathrm{bohr}^2 \end{array}$	$_{\rm meV}^{U}$	U_0 meV	ZPVE meV
WaveScatt (Hirn et al., 2017) NMP (Gilmer et al., 2017) SchNet (Schütt et al., 2017)	.160 .092 .235	118 69 63	85 43 41	76 38 34	.340 . 030 .033	.049 .040 .033	19 14	17 14	.180 .073	20 19	20 14	1.50 1.70
Cormorant (Anderson et al., 2019) DimeNet++ (Klicpera et al., 2020) *	.085	61 34 68	34 26 45	38 20 35	.038	.026 .024	20 7.7 14	21 7.1	.961	21 6.7 14	22 6.9 13	2.03 1.23
L1Net (Miller et al., 2020) TFN (Thomas et al., 2018) SE3-Transformer (Fuchs et al., 2020)	.088	58 53	40 36	38 33	.043 .064 .053	.031 .101 .057	- -	14 - -	.354	- -	- -	1.56
LieConv-T3 (Finzi et al., 2020) † LieConv-T3 + SO3 Aug (Finzi et al., 2020) LieConv-SE3 (Finzi et al., 2020)†	.125 .084 .097	60 49 45	36 30 27	32 25 25	.057 .032 .039	.046 .038 .041	35 22 39	37 24 46	1.54 .800 2.18	36 19 49	35 19 48	3.62 2.28 3.27
LieConv-SE3 + SO3 Aug (Finzi et al., 2020) [†] LieTransformer-T3 (Us) LieTransformer-T3 + SO3 Aug (Us)	.088 .179	45 67 51	27 47 33	25 37 27	.038 .063	.043 .046	47 27 19	46 29	2.12 .717 .448	44 27 16	45 28 17	3.25 2.75 2.10
LieTransformer-SE3 (Us) LieTransformer-SE3 + SO3 Aug (Us)	.104 .105	52 52	33 33	29 29	.061	.041 .041	23 22	27 25	2.29 2.31	26 24	26 25	3.55 3.67

- ▶ **non-invariant** models specifically designed for the QM9 task.
- ▶ invariant models specifically designed for the QM9 task.

Summary and Future Work

- Mapping
- ▶ UOT-based module replace the self-attention modules in Transformer.

