US FLIGHTS ANALYSIS WITH PYTHON

Group - 7

DATA SUMMARY

- US domestic flights dataset for the year 2017
- Source US Bureau of Transportation
- Contains approx. 6 million records with 70 columns (~2 GB)

DATA CLEANING

- Merging data of each month together
- Replacing null values with appropriate values
- Changing datetimes to proper format (e.g. $1020 \rightarrow 10:20:00$)
- Merging data with geographical coordinates

DATA DESCRIPTION

- DEP_DELAY & ARR_DELAY (Departure & Arrival Delay in mins.) Negative delay implies early departure/arrival.
- CRS_ELAPSED_TIME (Computerized Reservations System): Elapsed Time = Airtime + Taxi In + Taxi Out
- TAXI_IN: Time elapsed between wheels on and gate arrival at the destination airport
- TAXI_OUT: Time elapsed between departure from origin airport gate and wheels off

Would you prefer to choose a particular airline if you knew 45% of its flights are delayed?

Probably not!?

Using clustering, we found out that:

- Even though some flights have delayed departures, they still arrive on time or in many cases even before the scheduled arrival time!
- Reason?
- → CRS time adjustment

	- 1110000000000000000000000000000000000	
luster		
0.0	1.849170	-3.701989
1.0	121.278625	119.624648
2.0	659.669278	651.941197

Southwest and Delta Airlines Delayed but Early Arrival Flights

• Predicting arrival delays using regression models.

Steps overview:

- 1)Used Lasso to find important attributes for prediction.
- 2) Trained and predicted delays using Lasso Regression Model. (MAD=4.33 mins)
- 3) Trained and predicted delays using Linear Regression Models. (MAD=3.80 mins)
- 4) Used Linear Regression Model to predict 2018 quarter 1, delays. (MAD = 3.885 mins)

• Shorter distance flights have comparatively more delays than longer

distance flights!

	DEP_DELAY	ARR_DELAY	DISTANCE
cluster			
0.0	9.109806	5.611746	293.301731
1.0	9.554211	2.171681	1624.293096
2.0	10.101546	3.947220	1021.161403
3.0	9.214863	3.974665	631.592727
4.0	11.406771	3.380153	2440.436203

Long Distance Delayed Flights

Short Distance Delayed Flights

JUST FOR FUN!

Flights are delayed more in summers
than monsoon or winters!
 Causes → Low air density makes it difficult for
planes to take off.

 Flights are delayed more during weekdays than weekends.

THANK YOU!