## nhanes

March 9, 2020

## 1 Survival analysis of NHANES III data

```
Data sources:
```

NHANES data files NHANES mortality files

```
[1]: import statsmodels.api as sm
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
```

/nfs/kshedden/python3/lib/python3.7/sitepackages/statsmodels/compat/pandas.py:23: FutureWarning: The Panel class is removed from pandas. Accessing it from the top-level namespace will also be removed in the next version
 data\_klasses = (pandas.Series, pandas.DataFrame, pandas.Panel)

Read the survival data

```
[2]: fname = "NHANES_III_MORT_2011_PUBLIC.dat.gz"
   colspecs = [(0, 5), (14, 15), (15, 16), (43, 46), (46, 49)]
   names = ["seqn", "eligstat", "mortstat", "permth_int", "permth_exam"]
   f = os.path.join("../data", fname)
   surv = pd.read_fwf(f, colspecs=colspecs, names=names, compression="gzip")
```

Read the interview/examination data

These are variables that may predict mortality.

```
[4]: df["poverty"] = df["poverty"].replace({888888: np.nan})
    df["female"] = (df.sex == 2).astype(np.int)
    df["rural"] = (df.urbanrural == 2).astype(np.int)
```

Calculate the age at death or censoring

```
[5]: df["age_int"] = 12*df.age # months
df["end"] = df.age_int + df.permth_int # months
```

It is possible to do something more sophisticated about missing data, but here we will do a complete case analysis.

```
[6]: df = df.dropna()
```

SurvfuncRight can't handle 0 survival times

```
[7]: df = df.loc[df.end > df.age_int]
```

The hazard function is the derivative of the cumulative hazard function. Here we calculate the derivative numerically using second differences. This tends to produce a noisy estimate of the derivative, so we smooth it below with local polynomial smoothing.

```
[8]: def hazard(sf):
    tm = s.surv_times
    pr = s.surv_prob
    ii = (pr > 0)
    tm = tm[ii]
    pr = pr[ii]
    lpr = np.log(pr)
    return tm[0:-1], -np.diff(lpr) / np.diff(tm)
```

Plot the hazard functions for women and men. These are unadjusted hazard functions, i.e. they describe the hazard for all people at a given age.

```
[9]: plt.grid(True)
    sex = {0: "Male", 1: "Female"}
    for female in (0, 1):
        ii = df.female == female
        s = sm.SurvfuncRight(df.loc[ii, "end"], df.loc[ii, "mortstat"], entry=df.
        →loc[ii, "age_int"])
        tm, hz = hazard(s)
        ha = sm.nonparametric.lowess(np.log(hz), tm/12)
        plt.plot(ha[:, 0], ha[:, 1], lw=3, label=sex[female])
        ha, lb = plt.gca().get_legend_handles_labels()
        leg = plt.figlegend(ha, lb, "upper center", ncol=2)
        leg.draw_frame(False)
        plt.xlabel("Age", size=15)
        plt.ylabel("Log hazard", size=15)
        _ = plt.xlim(18, 90)
```



Fit a proportional hazards regression model, using sex, urbanicity, and poverty status to explain the variation in life span.

## Results: PHReg

| Model: Dependent variable: Ties: |                    | PH Reg<br>end<br>Breslow |        | Sample size:<br>Num. events: |        |        | 7361<br>2105 |
|----------------------------------|--------------------|--------------------------|--------|------------------------------|--------|--------|--------------|
|                                  | log HR             | log HR SE                | HR     | t                            | P> t   | [0.025 | 0.975]       |
| C(region)[T.2]<br>C(region)[T.3] | 0.0879             |                          |        | 1.3138<br>0.5134             |        |        |              |
| C(region)[T.4]                   | -0.0493            | 0.0573                   | 0.9519 | -0.8614                      | 0.3890 | 0.8508 | 1.0649       |
| female<br>rural                  | -0.3856<br>-0.0089 |                          |        | -8.7196<br>-0.1303           |        |        |              |
| poverty                          | -0.1044            | 0.0128                   | 0.9009 | -8.1307                      | 0.0000 | 0.8785 | 0.9238       |

Confidence intervals are for the hazard ratios 7361 observations have positive entry times

Fit the same model as above, not stratifying by state of residence.

```
Results: PHReg
______
Model:
                    PH Reg
                                                8
                             Num strata:
                                               154
Dependent variable:
                    end
                             Min stratum size:
                            Max stratum size:
Ties:
                    Breslow
                                               3612
Sample size:
                    7320
                             Avg stratum size:
                                               920.1
Num. events:
                    2105
            log HR log HR SE HR t
                                    P>|t| [0.025 0.975]
C(region)[T.2] 0.0499
                   0.1093 1.0512 0.4565 0.6480 0.8485 1.3023
C(region)[T.3] 0.0143 0.1236 1.0144 0.1161 0.9076 0.7962 1.2925
C(region) [T.4] -0.0352 0.0688 0.9654 -0.5109 0.6094 0.8436 1.1049
female
           -0.0190 0.0798 0.9812 -0.2376 0.8122 0.8391 1.1474
rural
```

\_\_\_\_\_\_

Confidence intervals are for the hazard ratios 7361 observations have positive entry times

poverty

Now stratify instead on county. Note that the sex and poverty coefficients are similar to what we saw above, but the urbanicity coefficient (rural) changes substantially. Below, we compare people living in rural areas to people living in non-rural areas, while living in the same county. Above, we compare people living in rural areas to people living in non-rural areas without the requirement that they live in the same county.

Results: PHReg

Model: PH Reg Num strata: 31
Dependent variable: end Min stratum size: 126
Ties: Breslow Max stratum size: 937

| Sample size:<br>Num. events: |         | 7169<br>2105 |        | Avg stratum size: |        |        | 237.5  |
|------------------------------|---------|--------------|--------|-------------------|--------|--------|--------|
|                              | log HR  | log HR SE    | HR     | t                 | P> t   | [0.025 | 0.975] |
| C(region)[T.2]               | 0.3164  | 0.2159       | 1.3722 | 1.4658            | 0.1427 | 0.8988 | 2.0949 |
| C(region)[T.3]               | -0.1490 | 0.1716       | 0.8616 | -0.8682           | 0.3853 | 0.6156 | 1.2060 |
| C(region)[T.4]               | -0.1837 | 0.2080       | 0.8322 | -0.8831           | 0.3772 | 0.5536 | 1.2510 |
| female                       | -0.4137 | 0.0457       | 0.6612 | -9.0492           | 0.0000 | 0.6045 | 0.7232 |
| rural                        | 0.5815  | 0.3195       | 1.7887 | 1.8199            | 0.0688 | 0.9562 | 3.3459 |
| poverty                      | -0.1115 | 0.0138       | 0.8945 | -8.0980           | 0.0000 | 0.8707 | 0.9190 |
|                              |         |              |        | ===               |        |        | =      |

Confidence intervals are for the hazard ratios 7361 observations have positive entry times