Nem gramática, nem autômato – diagramas sintáticos

Professor Eraldo Pereira Marinho

<u>Compiladores 2º semestre 2020</u>

UNESP/IGCE Rio Claro

Forma normal de Backus-Naur estendida

A forma normal de Backus-Naur estendida, em inglês EBNF, é uma forma necessária para evitar que notação gramatical seja misturada com a notação de expressões regulares, o que causa inconsistência quando se representa linguagens regulares.

Comecemos pelo fecho de Kleene de uma forma sentencial α . Para tanto, consideremos $A \to A\alpha | \beta$. Como sabemos, essa não é uma boa forma para implementação de analisadores sintáticos descendentes. Contudo, por indução, temos $A \Rightarrow^{n+1} \beta \alpha^n$, $\forall n \in \mathbb{N}$. Sabemos que α^n é um caso particular de α^* , para qualquer $n \in \mathbb{N}$ – informalmente, teríamos $A \Rightarrow^* \beta \alpha^*$.

Introduzimos a notação $\{\alpha\}$ para denotar o significado de α^* . Assim, $A \to A\alpha \mid \beta$ é equivalente a $A \to \beta\{\alpha\}$.

EBNF

Observemos que a forma equivalente a $A \to A\alpha \mid \beta$, sem recursão esquerda, é $A \to \beta R$, $R \to \alpha R \mid \varepsilon$. É imediato que $R \to \alpha R \mid \varepsilon$ é equivalente a $R \to \{\alpha\}$, na EBNF. Assim, $A \to \beta R$, $R \to \alpha R \mid \varepsilon$ é, também, equivalente a $A \to \beta \{\alpha\}$, uma vez que $A \to \beta R$, $R \to \{\alpha\}$ teria uma produção adicional desnecessária.

Tomemos o caso $A \to \alpha A \mid \beta$, com recursão direita. É fácil mostrar que $A \Rightarrow^{n+1} \alpha^n \beta$. Neste caso, $A \to \{\alpha\}\beta$.

EBNF

Agora, consideremos a produção $A \to \alpha \mid \varepsilon$. Isso quer dizer que a forma sentencial que deriva de α é opcional, uma vez que A, em $\beta A \gamma$, pode ser substituído por $\beta \alpha \gamma$, mas pode ser substituído por $\beta \gamma$. Assim, a condição opcional de α é denotada por $[\alpha]$, ou seja, $[\alpha] \equiv \alpha \mid \varepsilon$. Portanto, $A \to \alpha \mid \varepsilon$ é equivalente à EBNF $A \to [\alpha]$. Neste caso, teríamos $\beta A \gamma \Rightarrow \beta [\alpha] \gamma$, deixando claro que α é opcional em $\beta \alpha \gamma$.

EBNF

Sumariamente:

- 1. $A \rightarrow A\alpha \mid \beta$ ou $A \rightarrow \beta R$, $R \rightarrow \alpha R \mid \varepsilon$ é o mesmo que $A \rightarrow \beta \{\alpha\}$
- 2. $A \rightarrow \alpha A \mid \beta$ é o mesmo que $A \rightarrow \{\alpha\}\beta$
- 3. $A \rightarrow \alpha \mid \varepsilon$ equivale a $A \rightarrow [\alpha]$

No caso de $A \to A\alpha_1 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \cdots \mid \beta_n$, generalizamos para

$$A \to \beta_l \{\alpha_1 | \cdots | \alpha_m\}, \text{ com } l = 1, \dots, n$$

Como ficaria $A \to \alpha_1 A | \cdots | \alpha_m A | \beta_1 | \cdots \beta_n$?

Adotamos a notação Pascal (Wirth 1972) para diagrama sintático.

Para mais bem ilustrar, tomemos, novamente, a gramática simplificada de expressões, na forma LL(1), mas agora incluindo o operador unário de negação ⊖:

$$E \to \bigoplus TR \mid TR$$

$$R \to \bigoplus TR \mid \varepsilon$$

$$T \to FQ$$

$$Q \to \bigotimes FQ \mid \varepsilon$$

$$F \to (E) \mid \boldsymbol{v} \mid \boldsymbol{c}$$

Passando para a EBNF, a gramática anterior fica reduzida a

$$E \to [\bigoplus] T \{ \bigoplus T \}$$

$$T \to F \{ \bigotimes F \}$$

$$F \to (E) \mid \boldsymbol{v} \mid \boldsymbol{c}$$

Essas produções podem ser denotadas conforme os seguintes diagramas sintáticos (próximo slide)

Vamos dar um zoom na produção $E \rightarrow \bigcirc T\{\bigoplus T\}$:

Observemos que esse diagrama é topologicamente idêntico a

Deste modo, T é invocado pelo menos uma vez como no diagrama original. O loopback só ocorre se lookahead avistar o operador \bigoplus . Caso contrário, o fluxo deixa o diagrama.

Diagrama sintático – aplicação

Aproveitando essa última representação de um diagrama sintático de expressões, podemos escrever os seguintes módulos:

```
void E(void) {
           if (lookahead == \Theta) {
                     match(\Theta);
_T:
                                          .E
           T();
           if (lookahead == \bigoplus) {
                                                   \Theta
                     match(\bigoplus);
                      goto T;
void T(void) {
_F:
           F();
           if (lookahead == \otimes) {
                     match(\otimes);
                      goto F;
void F(void) {
           switch (lookahead)
           case '(': match('('); E(); match(')'); break;
           case c: match(c); break;
           default: match(v);
```

Diagrama sintático – pondo tudo junto

Questões, valendo 2 horas

- 1. O que é um diagrama sintático e qual sua vantagem no projeto de um analisador sintático?
- 2. Diagrama sintático pode ser utilizado no desenvolvimento de um analisador léxico?
- 3. De que modo a expressão regular $a^* \mid b$ seria representada num diagrama sintático?
- 4. Podemos afirmar que gramáticas EBNF são facilmente transliteradas para diagramas sintáticos? Justifique.