Flow Filtering and the Physical Sources of Aerodynamic Sound

Samuel Sinayoko, A. Agarwal

IUTAM Symposium, March 2010

Introduction

Objective

To understand the physical sources of jet noise.

Introduction

Objective

To understand the physical sources of jet noise.

Motivation

- By-pass ratio is limited
- We need alternative strategies

Introduction

Objective

To understand the physical sources of jet noise.

Motivation

- By-pass ratio is limited
- We need alternative strategies

Methods

- Goldstein's theory
- Direct Numerical Simulation

Outline

- Defining the physical sources of sound
- Sound sources in a laminar jet

How to define sound sources?

Navier–Stokes equations

$$\mathbf{N}\mathbf{q}=\mathbf{0} \tag{1}$$

ullet Choose base flow $\overline{\mathbf{q}}$

$$\mathbf{q}=\overline{\mathbf{q}}+\mathbf{q}' \hspace{1cm} (2)$$

 $\bullet \ \ \text{Rearrange equation for } \mathbf{q}' :$

$$\mathbf{L}\mathbf{q}'=\mathbf{s} \tag{3}$$

How to define sound sources?

Navier–Stokes equations

$$\mathbf{Nq} = 0 \tag{1}$$

 \bullet Choose base flow $\overline{\mathbf{q}}$

$$\mathbf{q} = \overline{\mathbf{q}} + \mathbf{q}' \tag{2}$$

• Rearrange equation for q':

$$\mathbf{Lq'} = \mathbf{s} \tag{3}$$

Scalar wave equation

$$\mathfrak{N}\mathbf{q} = 0 \tag{4}$$

 \bullet Choose base flow $\overline{\mathbf{q}}$

$$\mathbf{q} = \overline{\mathbf{q}} + \mathbf{q}' \tag{5}$$

• Rearrange equation for q':

$$\mathcal{L}\mathbf{q}' = \mathbf{s} \tag{6}$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho v_i) = 0 \tag{7}$$

- ullet Time averaged base flow, ${f q}={f \overline q}+{f q}'$
- ullet Rearrange equation for ${f q}'$:

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_{i}} (\rho v_{i})' = 0$$
 (8)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho v_i) = 0 \tag{7}$$

- Time averaged base flow, $\mathbf{q} = \overline{\mathbf{q}} + \mathbf{q}'$
- Rearrange equation for q':

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_j)' = 0$$
 (8)

$$\rho \nu_{j} = \overline{\rho} \, \overline{\nu_{j}} + \rho' \overline{\nu_{j}} + \overline{\rho} \nu_{j}' + \rho' \nu_{j}' \tag{9}$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho v_j) = 0 \tag{7}$$

- Time averaged base flow, $q = \overline{q} + q'$
- Rearrange equation for q':

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_{j}} (\rho v_{j})' = 0$$
 (8)

$$\rho \nu_{j} = \overline{\rho} \, \overline{\nu_{j}} + \rho' \overline{\nu_{j}} + \overline{\rho} \nu_{j}' + \rho' \nu_{j}' \tag{9}$$

$$(\rho v_{j})' = \underbrace{\rho' \overline{v_{j}} + \overline{\rho} v_{j}'}_{\text{propagation}} + \underbrace{(\rho' v_{j}')'}_{\text{source}}$$
(10)

Continuity equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho v_j) = 0 \tag{7}$$

(8)

(10)

- ullet Time averaged base flow, ${f q}={f \overline q}+{f q}'$
- Rearrange equation for q':

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_j)' = 0$$

$$\rho \nu_{j} = \overline{\rho} \, \overline{\nu_{j}} + \rho' \overline{\nu_{j}} + \overline{\rho} \nu_{j}' + \rho' \nu_{j}' \tag{9}$$

$$(\rho \nu_j)' = \underbrace{\rho' \overline{\nu_j} + \overline{\rho} \nu_j'}_{\text{propagation}} + \underbrace{(\rho' \nu_j')'}_{\text{source}}$$

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_{j}} (\rho' \overline{v_{j}} + \overline{\rho} v_{j}') = -\frac{\partial}{\partial x_{j}} (\rho' v_{j}')'$$
 (11)

Continuity equation

$$\boxed{\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{j}}(\rho v_{j}) = 0}$$
(4)

- \bullet Time averaged base flow, $\quad \boxed{\mathbf{q}=\overline{\mathbf{q}}+\mathbf{q}'}$
- Rearrange equation for q':

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_{j}} (\rho v_{j})' = 0$$
 (5)

(7)

(8)

$$\rho\nu_{j} = \overline{\rho}\,\overline{\nu_{j}} + \rho'\overline{\nu_{j}} + \overline{\rho}\nu_{j}' + \rho'\nu_{j}' \tag{6}$$

$$(\rho \nu_j)' = \underbrace{\rho' \overline{\nu_j} + \overline{\rho} \nu_j'}_{\text{propagation}} + \underbrace{(\rho' \nu_j')'}_{\text{source}}$$

$$\left| \frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_j} (\rho' \overline{v_j} + \overline{\rho} v_j') = -\frac{\partial}{\partial x_j} (\rho' v_j')' \right|$$

Physical interpretation

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_{j}} (\overline{v_{j}} \rho' + \overline{\rho} v_{j}') = -\frac{\partial}{\partial x_{j}} (\rho' v_{j}')'$$
 (9)

Propagation operator

Linearised Euler operator

→ well defined

Physical interpretation

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_{j}} (\overline{v_{j}} \rho' + \overline{\rho} v_{j}') = -\frac{\partial}{\partial x_{j}} (\rho' v_{j}')'$$
 (9)

Propagation operator

Linearised Euler operator

→ well defined

Sources

- Depend on acoustic variables
- Only a small portion produces sound
- Include propagation effects
 - → ambiguous

Flow decomposition

Flow decomposition

$$\mathbf{q} = \widetilde{\mathbf{q}} + \mathbf{q}''$$

 $\widetilde{\mathbf{q}} \to \text{non-radiating base flow}, \quad \mathbf{q}'' \to \text{radiating components}$

Flow decomposition

Flow decomposition

$$\mathbf{q} = \widetilde{\mathbf{q}} + \mathbf{q}''$$

 $\widetilde{\mathbf{q}} \to \text{non-radiating base flow,} \quad \mathbf{q}'' \to \text{radiating components}$

Fourier transform:

$$q(\textbf{x},t) \rightarrow Q(\textbf{k},\omega), \quad \widetilde{q}(\textbf{x},t) \rightarrow \widetilde{Q}(\textbf{k},\omega)$$

Non-radiating condition

$$\label{eq:Q} \widetilde{Q}(\mathbf{k},\omega) = 0 \qquad \qquad \text{if} \quad |\mathbf{k}| = |\omega|/c_{\infty}$$

$$\widetilde{Q}(\textbf{k},\omega) = Q(\textbf{k},\omega) \qquad \text{if} \quad |\textbf{k}| \neq |\omega|/c_{\infty}$$

Flow decomposition: convolution filters

 $\widetilde{q} = w * q$

Wavenumber-frequency domain

$$\widetilde{Q} = W \times Q$$

Flow decomposition: convolution filters

$$\widetilde{q} = w * q$$

Wavenumber-frequency domain

$$\widetilde{Q} = W \times Q$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho v_i) = 0 \tag{10}$$

- Non-radiating base flow, $\mathbf{q} = \widetilde{\mathbf{q}} + \mathbf{q}''$
- Rearrange equation for q'':

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_j)'' = 0 \tag{11}$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho v_i) = 0 \tag{10}$$

- Non-radiating base flow, $\mathbf{q} = \widetilde{\mathbf{q}} + \mathbf{q}''$
- Rearrange equation for q":

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_j)'' = 0 \tag{11}$$

$$\rho \nu_{j} = \widetilde{\rho} \, \widetilde{\nu_{j}} + \rho'' \widetilde{\nu_{j}} + \widetilde{\rho} \nu_{j}'' + \rho'' \nu_{j}'' \tag{12}$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho v_i) = 0 \tag{10}$$

- Non-radiating base flow, $\mathbf{q} = \widetilde{\mathbf{q}} + \mathbf{q}''$
- Rearrange equation for q":

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_{i}} (\rho v_{i})'' = 0$$
 (11)

$$\rho \nu_{j} = \widetilde{\rho} \, \widetilde{\nu_{j}} + \rho'' \widetilde{\nu_{j}} + \widetilde{\rho} \nu_{j}'' + \rho'' \nu_{j}'' \tag{12}$$

$$(\rho v_{j})'' = \underbrace{(\widetilde{\rho} \, \widetilde{v_{j}})''}_{\text{source}} + \underbrace{(\rho'' \widetilde{v_{j}} + \widetilde{\rho} v_{j}'')''}_{\text{propagation}} + \underbrace{(\rho'' v_{j}'')''}_{\approx 0}$$
(13)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho v_i) = 0 \tag{10}$$

- Non-radiating base flow, $\mathbf{q} = \widetilde{\mathbf{q}} + \mathbf{q}''$
- Rearrange equation for q":

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_j)'' = 0 \tag{11}$$

$$\rho\nu_{j}=\widetilde{\rho}\,\widetilde{\nu_{j}}+\rho''\widetilde{\nu_{j}}+\widetilde{\rho}\nu_{j}''+\rho''\nu_{j}'' \tag{12} \label{eq:2.1}$$

$$(\rho v_{j})'' = \underbrace{(\widetilde{\rho} \, \widetilde{v_{j}})''}_{\text{source}} + \underbrace{(\rho'' \widetilde{v_{j}} + \widetilde{\rho} v_{j}'')''}_{\text{propagation}} + \underbrace{(\rho'' v_{j}'')''}_{\approx 0}$$
 (13)

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_{j}} (\rho'' \widetilde{v_{j}} + \widetilde{\rho} v_{j}'')'' = -\frac{\partial}{\partial x_{j}} (\widetilde{\rho} \widetilde{v_{j}})''$$
(14)

$$\boxed{\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{j}}(\rho v_{j}) = 0}$$
 (15)

- ullet Non-radiating base flow, $\mathbf{q} = \widetilde{\mathbf{q}} + \mathbf{q}''$
- Rearrange equation for q":

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_j} (\rho v_j)'' = 0$$
 (16)

$$\rho \nu_{j} = \widetilde{\rho} \, \widetilde{\nu_{j}} + \rho'' \widetilde{\nu_{j}} + \widetilde{\rho} \nu_{j}'' + \rho'' \nu_{j}''$$

$$(\rho \nu_{i})'' = (\widetilde{\rho} \, \widetilde{\nu_{i}})'' + (\rho'' \widetilde{\nu_{i}} + \widetilde{\rho} \nu_{i}'')'' + (\rho'' \nu_{i}'')''$$
(18)

$$(\rho \nu_j)'' = \underbrace{(\widetilde{\rho}\,\widetilde{\nu_j})''}_{\text{source}} + \underbrace{(\rho''\widetilde{\nu_j} + \widetilde{\rho}\nu_j'')''}_{\text{propagation}} + \underbrace{(\rho''\nu_j'')''}_{\approx 0}$$

$$\left| \frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_{j}} (\rho'' \widetilde{\nu_{j}} + \widetilde{\rho} \nu_{j}'')'' = -\frac{\partial}{\partial x_{j}} (\widetilde{\rho} \widetilde{\nu_{j}})'' \right|$$
(19)

Physical interpretation

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_{j}} (\widetilde{\nu_{j}} \rho'' + \widetilde{\rho} \nu_{j}'')'' = -\frac{\partial}{\partial x_{j}} (\widetilde{\rho} \widetilde{\nu_{j}})''$$
 (20)

Propagation operator

Depends on the filter

 \rightarrow a bit more complex

Physical interpretation

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_{j}} (\widetilde{\nu_{j}} \rho'' + \widetilde{\rho} \nu_{j}'')'' = -\frac{\partial}{\partial x_{j}} (\widetilde{\rho} \widetilde{\nu_{j}})''$$
 (20)

Propagation operator

Depends on the filter \rightarrow a bit more complex

Sources

- Depends on non-radiating flow only
- Is purely radiating
- No propagation effect

→ well defined

Outline

- Defining the physical sources of sound
- Sound sources in a laminar jet

Mean flow

Mean flow excited at two frequencies:

$$\omega_1 = 2.2$$
,

$$\omega_2 = 3.4$$
,

$$\Delta \omega = 1.2$$
.

Pressure field

Pressure field

Frequency analysis

Hydrodynamic region

Frequency analysis

Hydrodynamic region

Acoustic region

Filter definition

Butterworth filter

$$W(\mathbf{k}, \omega) = \left(1 + \frac{|\mathbf{k}|\sigma}{|\mathbf{k}|^2 - k_{\alpha c}^2}\right)^{-4}$$

$$k_{\alpha c} = \Delta \omega/c_{\infty} = 1.08, \quad \sigma = 0.25.$$

Results

Pressure field p

Results

Filtered pressure $\widetilde{\mathfrak{p}}$

Results

Radiating pressure p''

Defining a scalar source term

Start with a wave-like equation

$$\frac{\partial^2 p}{\partial x_i \partial x_i} - \frac{\partial^2 \rho}{\partial t^2} + \frac{\partial^2 \rho \nu_i \nu_j}{\partial x_i \partial x_j} = \frac{\partial^2 \sigma_{ij}}{\partial x_i \partial x_j} \tag{21}$$

Start with a wave-like equation

$$\frac{\partial^2 p}{\partial x_i \partial x_i} - \frac{\partial^2 \rho}{\partial t^2} + \frac{\partial^2 \rho \nu_i \nu_j}{\partial x_i \partial x_j} = \frac{\partial^2 \sigma_{ij}}{\partial x_i \partial x_j} \tag{21}$$

Acoustic analogy source

$$\begin{split} s_2 &= \partial^2 T_{ij}/\partial x_i \partial x_j \\ T_{ij} &= -(\overline{\rho} \nu_i' \nu_j' + \overline{\nu_i} \rho' \nu_j' + \overline{\nu_j} \rho' \nu_i')' \end{split}$$

Start with a wave-like equation

$$\frac{\partial^2 p}{\partial x_i \partial x_i} - \frac{\partial^2 \rho}{\partial t^2} + \frac{\partial^2 \rho \nu_i \nu_j}{\partial x_i \partial x_j} = \frac{\partial^2 \sigma_{ij}}{\partial x_i \partial x_j}$$
 (21)

Acoustic analogy source

$$\begin{split} s_2 &= \vartheta^2 T_{ij}/\vartheta x_i \vartheta x_j \\ T_{ij} &= -(\overline{\rho} \nu_i' \nu_j' + \overline{\nu_i} \rho' \nu_j' + \overline{\nu_j} \rho' \nu_i')' \end{split}$$

Physical sound source

$$\begin{split} s_1 &= \vartheta^2 S_{ij} / \vartheta x_i \vartheta x_j \\ S_{ij} &= - (\widetilde{\rho} \, \widetilde{\nu_i} \, \widetilde{\nu_j})'' = - (\widetilde{\rho} \, \widetilde{\nu_i} \, \widetilde{\nu_j} - \widetilde{\widetilde{\rho} \, \widetilde{\nu_i} \, \widetilde{\nu_j}}) \end{split}$$

Comparison with Goldstein's definition

Physical sound source:

$$S_{\mathfrak{i}\mathfrak{j}} = -(\widetilde{\rho}\,\widetilde{\nu_{\mathfrak{i}}}\,\widetilde{\nu_{\mathfrak{j}}})'' = -(\widetilde{\rho}\,\widetilde{\nu_{\mathfrak{i}}}\,\widetilde{\nu_{\mathfrak{j}}} - \widetilde{\widetilde{\rho}\,\widetilde{\nu_{\mathfrak{i}}}\,\widetilde{\nu_{\mathfrak{j}}}})$$

Goldstein's sound source:

$$G_{\mathfrak{i}\mathfrak{j}} = -(\widetilde{\rho}\,\widetilde{\nu_{\mathfrak{i}}}\,\widetilde{\nu_{\mathfrak{j}}} - \widetilde{\rho\,\nu_{\mathfrak{i}}\,\nu_{\mathfrak{j}}})$$

Comparison with Goldstein's definition

Physical sound source:

$$S_{\mathfrak{i}\mathfrak{j}}=-(\widetilde{\rho}\,\widetilde{\nu_{\mathfrak{i}}}\,\widetilde{\nu_{\mathfrak{j}}})''=-(\widetilde{\rho}\,\widetilde{\nu_{\mathfrak{i}}}\,\widetilde{\nu_{\mathfrak{j}}}-\widetilde{\widetilde{\rho}\,\widetilde{\nu_{\mathfrak{i}}}\,\widetilde{\nu_{\mathfrak{j}}}})$$

Goldstein's sound source:

$$G_{\mathfrak{i}\mathfrak{j}} = - (\widetilde{\rho}\,\widetilde{\nu_{\mathfrak{i}}}\,\widetilde{\nu_{\mathfrak{j}}} - \widetilde{\rho\,\nu_{\mathfrak{i}}\,\nu_{\mathfrak{j}}})$$

Comparison:

$$G_{ij} = S_{ij} + \underbrace{\widetilde{\widetilde{\nu_i}\,\widetilde{\nu_j}\,\rho'} + \widetilde{\widetilde{\rho}\,\widetilde{\nu_j}\,\nu_i'} + \widetilde{\widetilde{\rho}\,\widetilde{\nu_i}\,\nu_j'}}_{\text{non-radiating terms}}$$

Sound sources

Sources distribution

Sound sources Movie

(source)

Physical sound sources

Power spectrum

Acoustic analogy sources

Conclusion

Results

- Flow decomposition is possible using convolution filters
- Sources obtained in a laminar jet
- Goldstein's sources can be further decomposed

Conclusion

Results

- Flow decomposition is possible using convolution filters
- Sources obtained in a laminar jet
- Goldstein's sources can be further decomposed

Future work

- Reconstruct the sound field
- Filter the flow in 3 dimensions (ω, k_z, k_r) ,
- Sound sources in a mixing layer
- Sound sources in a turbulent jet
- Understand the physical mechanisms

Acknowledgements

Thank you!

Scalar wave equation

Continuity equation,
$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho v_j}{\partial x_j} = 0$$
 (22)

Momentum equation,
$$\frac{\partial \rho v_i}{\partial t} + \frac{\partial \rho v_i v_j}{\partial x_j} + \frac{\partial \rho}{\partial x_i} = \frac{\partial \sigma_{ij}}{\partial x_j} \quad (23)$$

Taking $\partial(23)/\partial x_i - \partial(22)/\partial t$ gives

$$\frac{\partial^2 p}{\partial x_i \partial x_i} - \frac{\partial^2 \rho}{\partial t^2} + \frac{\partial^2 \rho v_i v_j}{\partial x_i \partial x_j} = \frac{\partial^2 \sigma_{ij}}{\partial x_i \partial x_j}$$
(24)

Return 1

◆ Return 2

Acoustic analogy sources

The governing equation for fluctuating quantities is

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_i} (\overline{\rho} v_j' + \overline{v_j} \rho') = m$$
 (25)

$$\frac{\partial}{\partial t}(\overline{\rho}\nu_{i}' + \overline{\nu_{i}}\rho') + \frac{\partial}{\partial x_{j}}(\overline{\nu_{i}}\,\overline{\nu_{j}}\,\rho' + \overline{\rho}\,\overline{\nu_{j}}\,\nu_{i}' + \overline{\rho}\,\overline{\nu_{i}}\,\nu_{j}') + \frac{\partial}{\partial x_{i}}p' = f_{i}, \tag{26}$$

where

$$m = -\frac{\partial}{\partial x_{i}} (\rho' v_{j}')' \tag{27}$$

$$f_{i} = -\frac{\partial}{\partial t} (\rho' \nu'_{i})' - \frac{\partial}{\partial x_{i}} (\overline{\rho} \nu'_{i} \nu'_{j} + \overline{\nu_{i}} \rho' \nu'_{j} + \overline{\nu_{j}} \rho' \nu'_{i})'$$
 (28)

Physical sound sources

The governing equation for fluctuating quantities is

$$\frac{\partial \rho''}{\partial t} + \frac{\partial}{\partial x_j} (\widetilde{\rho} v_j'' + \widetilde{v_j} \rho'') = m$$
 (29)

$$\frac{\partial}{\partial t}(\widetilde{\rho}v_{i}'' + \widetilde{v_{i}}\rho'') + \frac{\partial}{\partial x_{j}}(\widetilde{v_{i}}\,\widetilde{v_{j}}\,\rho'' + \widetilde{\rho}\,\widetilde{v_{j}}\,v_{i}'' + \widetilde{\rho}\,\widetilde{v_{i}}\,v_{j}'') + \frac{\partial}{\partial x_{i}}p'' = f_{i},$$
(30)

where

$$m = -\frac{\partial}{\partial x_{i}} (\widetilde{\rho} \widetilde{v_{i}})^{"} \tag{31}$$

$$f_{i} = -\frac{\partial}{\partial t} (\widetilde{\rho} \widetilde{v_{i}})'' - \frac{\partial}{\partial x_{i}} (\widetilde{\rho} \widetilde{v_{i}} \widetilde{v_{j}})''$$
(32)

Filtering of a two-dimensional shear layer

Flow description

Filtering of a two-dimensional shear layer problem Pressure field

Filtering of a two-dimensional shear layer

Filter design

Gaussian filter
$$W(\mathbf{k},\omega)=\exp\left(-\frac{(k_x-k_0)^2}{2\sigma^2}\right)+\exp\left(-\frac{(k_x+k_0)^2}{2\sigma^2}\right)$$

$$k_0=0.41459,\quad \sigma=0.1$$

Filtering of a two-dimensional shear layer Results

Filter of a two-dimensional shear layer problem Results

Filtering of a two-dimensional shear layer

Effect of windowing

Radiating components: $k_{\infty} = 0.219 m^{-1}$

