TERMODINÁMICA

Examen Intersemestral

	Nombre	Grupo)
--	--------	-------	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -1 (5 puntos)

Un cilindro 200 dm³ de volumen y 0,25 m² de sección en posición vertical tiene todas sus paredes aisladas térmicamente. El interior del cilindro está dividido en dos cámaras por un pistón diatermo de 3500 kg y espesor despreciable que desliza sin fricción. La cámara superior contiene aire, (gas ideal, ver tabla al dorso; R = 287 J/kg-K) a 5 bar y 20 °C y la cámara inferior contiene 0,5 kg de agua (sustancia pura, tabla inferior). El estado inicial es de equilibrio.

Se retira el aislamiento de la base del cilindro y se suministra calor al agua hasta que se convierte en vapor saturado, verificándose un proceso cuasiestático.

Determinar:

- a) Estado inicial del agua
- b) Presión y temperatura finales del agua
- c) Presión y temperatura finales del aire
- d) Cantidad de calor suministrado

Tabla de saturación del agua (líquido - vapor)

					- 6 - (1	<u>, , , , , , , , , , , , , , , , , , , </u>		
р	Т	Vf	Vg	Uf	ug	h _f	hg	Sf	Sg
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
0,0171	15,0	0,0010009	77,8851	62,98	2395,5	62,98	2528,3	0,2245	8,7803
0,0234	20,0	0,0010018	57,7619	83,91	2402,3	83,91	2537,4	0,2965	8,6660
0,0317	25,0	0,0010030	43,3395	104,83	2409,1	104,83	2546,5	0,3672	8,5567
0,0425	30,0	0,0010044	32,8788	125,73	2415,9	125,73	2555,5	0,4368	8,4520
10,0281	180,0	0,0011274	0,1938	761,92	2582,8	763,05	2777,2	2,1392	6,5841
10,4978	182,0	0,0011301	0,1856	770,71	2584,1	771,89	2778,9	2,1586	6,5682
10,9847	184,0	0,0011329	0,1777	779,50	2585,4	780,75	2780,6	2,1779	6,5525
11,4891	186,0	0,0011357	0,1702	788,32	2586,7	789,62	2782,2	2,1971	6,5369
12,0115	188,0	0,0011386	0,1631	797,15	2587,9	798,52	2783,8	2,2163	6,5213
12,5524	190,0	0,0011414	0,1564	805,99	2589,0	807,43	2785,3	2,2355	6,5059
13,1122	192,0	0,0011444	0,1499	814,85	2590,1	816,35	2786,7	2,2546	6,4906
13,6913	194,0	0,0011473	0,1438	823,73	2591,2	825,30	2788,1	2,2736	6,4754
14,2902	196,0	0,0011504	0,1380	832,62	2592,3	834,27	2789,5	2,2926	6,4602
14,9095	198,0	0,0011534	0,1325	841,53	2593,2	843,25	2790,8	2,3116	6,4451
15,5494	200,0	0,0011565	0,1272	850,46	2594,2	852,26	2792,0	2,3305	6,4302

Tabla del aire como gas ideal

T [°C]	u [kJ/kg]	h [kJ/kg]				
8	-72,62	8,031				
10	-71,18	10,04				
12	-69,75	12,05				
14	-68,31	14,05				
16	-66,88	16,06				
18	-65,44	18,07				
20	-64,01	20,08				
22	-62,58	22,09				
24	-61,14	24,1				
26	-59,7	26,11				
180	51,85	181,9				
182	53,31	183,9				
184	54,78	185,9				
186	56,25	188				
188	57,72	190				
190	59,19	192,1				
192	60,67	194,1				
194	62,14	196,2				
196	63,61	198,2				
198	65,09	200,3				
200	66,56	202,3				
202	68,03	204,4				
204	69,51	206,4				
206	70,99	208,5				

estado inicial vapur

ESTADO INICIAL GAS

Tanteos

T2		VVa	Vv2	P82	V82	Vv2+ Vg2	
190	12.5524	0.1564	0,0782	11.179	0,1410	0,2192	
			0,0719		0,1291	0,2010]	
196	14,2902	0,1380	0.0650	12917	0.1236	a1926 J	INT. LINEAL
194,23	13,76			1239		0,2	IN I. TIOSIZ
		1.10					

Tourando todo el sistema:

Paro hallor la variorir de coto del pistòn:

$$V_{y2} = \frac{1.186 \times 0.287 \times (194,23 + 273)}{1239} = 0.1284 \text{ m}^3$$

(Ty2 - Ty1) = 0,1284 -0,1995 = -0,0711m3 Dado que el volumen del que reduce, el pristion sube, por trento:

(DJ3)/Ap = 17 = 0,7846 m

Final wente:

volumente:

$$0.7 = 1.186(62.31 - (-64.01)) + 0.5(2591.3 - 83.91) + 3500 \times 9.8 \times 10^3 \times 0.2846 = 1413.27 \text{ KJ}$$

TERMODINÁMICA

Examen Intersemestral

Nombre	Grupo

No está permitido el empleo de calculadoras programables ni la consulta de libro, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -2 (5 puntos)

Las hidrogeneras (estaciones de repostaje de hidrógeno) requieren de un sistema de compresión para elevar la presión del hidrógeno desde el depósito que se llena con el electrolizador, a 30 bar, hasta el tanque del vehículo, a 700 bar. La Figura adjunta al dorso muestra un esquema de este sistema de compresión (encerrado en la línea discontinua), constituido por los compresores C1 y C2, un interrefrigerador IR, un postrefrigerador PR y un motor eléctrico ME para accionar ambos compresores.

Ambos compresores están refrigerados. El proceso de compresión, libre de irreversibilidades internas, puede representarse por una politrópica de índice 1,25. Tanto IR como PR disipan calor al ambiente, no habiendo caída de presión en los mismos. El motor eléctrico y los acoplamientos mecánicos tienen rendimiento 100%. Ambos compresores consumen la misma cantidad de trabajo.

El hidrógeno (R = 4,157 kJ/kg-K; γ = 1,4) se encuentra en el depósito a 30 bar y 25 °C y se quiere suministrar al vehículo a 700 bar y 25 °C. El hidrógeno se encuentra a 25 °C a la salida del interrefrigerador IR. Se pretende rellenar el depósito del vehículo (6 kg de hidrógeno) en 3 minutos con 20 segundos.

Se pide:

- a) Presión del hidrógeno en IR
- b) Potencia eléctrica que es preciso suministrar al motor ME
- c) Potencia térmica total disipada por el sistema de compresión
- d) Representar el diagrama p-v del proceso 1-5

Compressor

$$H_2 \neq R = 4.157 \text{ KJ/Kg-K}$$
 $f = 1.4$

$$L = \frac{6 \, \text{Ky}}{3.33 \times 60} = 0.03 \, \text{Kg/s}$$

Compresor CI

$$\dot{W}_{C1} = \frac{\dot{m}_{1}}{n-1} R T_{1} \left[\frac{T_{2}}{T_{1}} - 1 \right] = \frac{\dot{m}_{1} R T_{1}}{n-1} \left[\left(\frac{P_{2}}{P_{1}} \right)^{\frac{1}{n}} \right]$$

Comprose (2

$$\ddot{W}_{C2} = \frac{\dot{m} \, n \, RT_3}{\Lambda - 1} \left[\left(\frac{P_4}{P_3} \right)^{\frac{\Lambda - 1}{n}} - 1 \right]$$

$$\dot{W}_{CI} = \dot{W}_{CZ} \iff \frac{\dot{W}_{I} \cdot \dot{W}_{I}}{N-1} \left[\left(\frac{\dot{P}_{Z}}{\dot{P}_{I}} \right)^{\frac{N-1}{N}} - 1 \right] =$$

$$= \frac{m n RT3}{n-1} \left[\left(\frac{P_4}{P_3} \right)^{\frac{N-1}{N}} - 1 \right]$$

$$\left(\frac{P_4}{P_2}\right)^{\frac{1}{2}} = \left(\frac{P_2}{P_1}\right)^{\frac{1}{2}} \qquad P_2^2 = P_1 P_4$$

$$P_2 = \sqrt{30 \times 700} = 144,914 \text{ bor}$$
 (a)

$$\dot{W}_{ME} = \dot{W}_{C1} + \dot{W}_{C2} = 2 \dot{W}_{C1} = \frac{2 \dot{m} \dot{n} RT_{1}}{\Lambda - 1} \left[\left(\frac{P_{2}}{P_{1}} \right)^{\frac{1}{1}} - 1 \right]$$

$$= \frac{2 \times 0.03 \times 1.25 \times 4.157 \times 298}{1.25 - 1} \left[\frac{144.914}{30} \right]_{1.25}^{1.257} - 1 =$$

Tomando la livre discontinue con VC:

