1 Nutzende

Einführung 1.1

• Behinderung

- physische oder mentale Einschränkung
- Einfluss auf Lebensabläufe
- Zugang zu Multimedia/Internet betrifft 8,7% der Bevölkerung Europas
- vielfältiges soziales Problem
- IT muss individuelle, situationsbezogene, umgebungsbedingte und gruppenspezifische Einschränkungen durch Adaptierung dem Menschen anpassen \rightarrow Integration

• Barrierefreiheit

- Umfang, in dem Produkte, Systeme, Dienstleistungen, Umgebungen und Einrichtungen von Menschen aus einer Bevölkerungsgruppe mit den unterschiedlichsten Nutzerbedürfnissen, Merkmalen und Fähigkeiten genutzt werden können, um bestimmte Ziele in bestimmten Nutzungskontexten zu erreichen

• Barrieren durch neue Formen der MCI

- graphische Benutzungsoberflächen (Pixel-Barriere, Maus und andere Zeigeinstrumente)
- Hypertext/Internet (Mangel an Überblick)
- Multimedia und Interaktive Medien (Multimedia-Barriere, Mangel an temporaler Steuerbarkeit)
- Virtual Reality (Nicht-visuelle Immersion)
- Sprachassistenten (Sprechvermögen als Barriere)

• Gebrauchstauglichkeit vs Barrierefreiheit

• Inklusion

- inklusive Kulturen schaffen
- inklusive Strukturen verankern (Unterstützung für Vielfalt)
- inklusive Praktiken entwickeln

• Prozess zur Indexerstellung

• Universelles Design

- Breite Nutzbarkeit
- Flexibilität in der Benutzung
- einfache intuitive Benutzung
- sensorisch wahrnehmbare Informationen (verschiedene sensorische Ausgabekanäle)
- Fehlertoleranz
- niedriger körperlicher Aufwand
- Größe und Platz für Zugang und Benutzung
- z.B. E-Buch (PDF, Großdruck, Braille, Sprachsynthese, Druck, HTML+CSS)

1.2 Behinderte Menschen

• Sehbehinderung

- Blindheit
 - * Braille (6/8-Punkt, Basis-, Voll- und Kurzschrift)
 - * synthetische Sprachen
 - * Tastaturerfahrungen
 - * taktile Grafiken
 - * Screenreader (bottom-up, top-down, middle-out)
 - Sehbehinderung
 - * Zoom
 - * Falschfarben
 - * Bildverfremdung (SVG für Bildskalierung, um Qualitätsverlust zu verhindern)
 - * Anforderunungen an Text (änderbare Schriftgröße, Hintergrundfarbe, Zeilenhöhe und -abstand)

• Hörschädigung

- Gehörlos
 - * Gebärdensprache (Sprachkompetenz auf Grundschulniveau bei geburtstauben)

- * Videotelefonie
- * Probleme mit Text (weil wie Fremdsprache für Gehörlosen)
- * Probleme mit vielen Icons (Lösung z.B. Tooltip mit Gebärdensprachevideo)
- Hörbehindert
 - * Hörgeräte
 - * Untertitel (Geschwindigkeit, korrekte Synchronisation, Geräusche umschreiben, Sprecher in Diskussion nennen)
 - * Sichtbare Sprache (Lippenbewegungen unterstützen)

• Kognitive Behinderungen

- Sprachbehinderung
 - * viel mit Bildern
 - * Bildtastatur
 - * Bildsprache (z.B. BLISS)
- Sprachverlust (Aphasie)
- Legastheniker (Dyslexie)
 - * viel mit hören, da vertauschen der Buchstaben
- Geistige Behinderung

• Körperbehinderung

- Rollstuhlfahrer (anpassbarer Tisch)
- einhändige Bedienung
- keine/begrenze Kontrolle über Hand (kleine/große Tastatur, "Kopfmaus")
- Zittern (Wiederholte Anschläge unterdrücken StickyKeys)
- Ältere Menschen (Zittern, Demenz, Langsam, Sehen, Hören, Motorik)
 - alle Techniken anwenden
 - Robotik als Hilfe
- (Analphabeten)
- Taubblind
 - Buchstaben mit den Fingern malen (Daktylieren)
 - abtasten Handfläche (lormen)
 - Vibration (z.B. Vibrationsuhr)
 - Braille

Barrierefreies Web 2

- Anforderungen/Barrieren im Web
 - Äquivalente Inhalte (Alternativen)
 - Farben (Unterschied Farbhelligkeit min. 1:3)
 - Kontrast (min. 4,5:1)
 - Überschriften (lange Texte strukturieren)
 - Sprachliche Besonderheiten
 - Tabellen (Daten strukturieren)
 - Benutzeragenten (Fall Back Lösungen)

- Grafik, Audio, Video (Zugänglichkeit)
- Zeitgesteuerte Änderungen
- Benutzerschnittstellen (**Zugang**)
- Eingabe- und Ausgabegeräte (Unabhängigkeit)
- Stand der Technik (Kompatibilität)
- Verwendete Technologien (**Standards**)
- Informationen zum Kontext (**Orientierung**)
- Navigationsmechanismen (**Gebrauchstauglichkeit**)
- Allgemeines Verständnis
- ASCII Grafiken vermeiden

• WCAG 2.0

- Wahrnehmbarkeit

- * Textalternativen für alle nicht-Text-Inhalte
- * Zeitbasierte Medien: Alternativen
- * Anpassbar: Inhalte auf verschiedene Arten darstellen
- * Unterscheidbar: erleichtern, Inhalte zu sehen und zu hören

- Bedienbarkeit

- * alle Funktion per Tastatur
- * Ausreichend Zeit für Inhalte
- * Anfälle: keine Gestaltung, die zu Anfällen führt
- * Navigierbar

Verstehbarkeit

- * lesbar und verständlich
- * Vorhersehbarkeit von Aussehen und Funktion
- * Hilfestellung bei Eingabe: Fehlervermeidung und Fehlerkorrektur

- Robustheit

- * kompatibel mit aktuellen und zukünftigen Benutzeragenten
- 12 Richtlinien
- 3 Konformitätsstufen: A, AA, AAA
- BITV 2.0 nach Behindertengleichstellungsgesetz für öffentliche Stellen
- Responsive Design... auf unterschiedliche Displaygrößen flexibel reagieren

• Struktur in HTML5

– Überschriften

- * wichtig für Navigation des Screenreader
- * <h1> nur einmal verwenden
- * nach <h1> folgt <h2> und nicht <h3>

- Listen

- * ohne Mark-up vom Screenreader nicht interpretierbar
- * besser z.B. (ungeordnete Liste) oder Gestaltung per CSS
- Sprachinhalt (vorherschende Sprache kenntlich machen: lang="de")
- Einfache Sprache
- Tabellen
 - * keine Layout Tabellen

* Abkürzung von Spaltentitel hilfreich

- Navigation

- * am Anfang unsichtbar einbauen
- * benannte Anker (Seitenanfang, Inhaltsverzeichnis...)
- **Suche** (einfaches Texteingabefeld mit Beschriftung)
- **Graphik** (Textalternativen)
- Multimedia (Untertitel, Gebärdensprache)
- Dynamischer Inhalt
 - * durch Javascript
 - * generisch erstellte Elemente wie ausklappbare Baumstrukturen problematisch
 - * AJAX (asynchrones Laden von Webinhalten während Website angezeigt wird)
 - * Beschreibung mittels ARIA (z.B. aria-label, aria-hidden)
- Interaktion (Tastaturbedienung)
- Formulare (Beschriftungen, Fehlerbehandlung)
- Konformitätserklärung (Datum, Titel+Version der Richtlinie, Konformitätsstufe...)

3 Evaluierung der Barrieren

• Evaluationsmethoden

- Testen (mit Benutzern)
- Inspektion (durch Prüfer)
- Befragung
- Simulation (Verhalten Benutzer nachbilden)
- Analytisches Modellieren (Entwicklung Modell und Bewertung)

• Evaluation mit Benutzern

- Mockup (früh, z.B. 2D Brailledrucke)
- Protoyp
- verschiedene Benutzer
- manuelles Prüfen (WAVE)

- Planung

- * Umfang festlegen (Was?, Ziele, Konformitätsstufe)
- * Website erkunden (wichtige Seiten, Funktionen...)
- * Festlegen repräsentativer Beispiele
- * Erfolgreiche / fehlerhafte Seiten bestimmen
- * Bericht über Ergebnis

- Kriterien

- * Vollständigkeit
- * Korrektheit
- * Detailierungsgrad
- * Anpassbarkeit
- * Informativ
- * Kosten

• Manuelle Prüfung

- z.B. WAVE-Tool (Fehler, Struktur, Links)

- ARIA Roles

• Automatisiertes Prüfen

- z.B. WAVE
- Definition Prüfregeln
- Eineindeutige Referenz auf das Testobjekt (HTTP mit RDF beschreiben)
- Berichtsgenerierung
- Evaluationswerkzeug (untersucht nach Richtlinien, z.B. Kontrast)
- Reparaturwerkzeuge (Eingriff in HTML code)
- Filter- und Transformationswerkzeuge (unterstützend)
- jedoch oft Fehler/unvollständig
- Crawling: Bewertung mit FIFO (Auf Startseite suchen nach neuen URLs und Prüfung dieser, sowie erneuter Suche nach neuen URLs und hinzufügen dieser zu Liste)
- Beschreibung Navigation: Automat mit Wahrscheinlichkeiten
- Beschreibungssprachen (für Prüfregeln): XML, EARL, TCDL, UGL

• Barrier Walkthrough

- Expertentest im Kontext von Benutzungsszenarien (heuristisch)
- 1) Definiere Benutzerprofil (z.B. Art der Behinderung)
- 2) definiere Benutzerszenarios (z.B. Hilfsmittel, Ziele)
- 3) Bestimmung möglicher Barrieren
- 4) evaluiere Seiten
- 5) Auswirkungsgrad schätzen (Auswirkung(wie stark) + Nachhaltigkeit(wie oft))

Mathematik, personalisiertes Multimedia

• DAISY Hörbücher

- package file (PACKAGE IDENTITY, METADATA, MANIFEST, SPINE, TOURS, GUIDE)
- Text und Mark-up
- Audio Dateien
- SMIL-Datei (Verknüpfung Audio, Text)
- NCX-Datei (Navigation)
- Lesetechniken (Lesen, Spulen, Springen, Suchen, Navigieren, Zusammenfassung...)
- mehrere DTDs (Dokumententypdefinitionen)
- Mathematik durch MathML

• Mathematik

- Kohärenz (Eingabe entspricht Ausgabe → Braille Eingabe und Braille Ausgabe)
- Erkundung (Navigation)
- graphische Symbole (durch Namen verbalisieren)
- Lernbarkeit
- Adaptierbarkeit (Individualisierbarkeit \rightarrow Einsatz Braille Notation je nach Kenntnissen des Lesers)
- HTML nicht für Mathe vorbereitet (z.B. LaTeX code in ALT packen)

- Brailleschriften, MathML, Latex
 - * Sprachausgabe, Klangausgabe (Tonhöhe, 16 Stufen)
 - * Projekte: MATHs, Lambda Projekt
 - * OCR Analyse und z.B. Umsetzung in LaTeX

- MathML

- * Presentation Markup für Symbole (mo für Operatoren, mi für Variablen, mn für Zahlen)
- * Content Markup für Funktionen (sin, plus, vector)

- Graphen

- * Bildbeschreibung
- * Touch basiert (abfahren der Konturen)
- * Nicht-verbale Klänge (z.B. Tonhöhe für y-Achse, Raumklang für x-Achse)

• Ein Dokument für Alle

- HTML+CSS
- MathML
- SVG (Bildskalierung ohne Qualitätsverlust)
- VoiceML (Beschreibung von Dialog Abläufen)
- SMIL (Synchro Audio und Text)
- XML (Auszeichnungssprache zur Darstellung strukturierter Daten)

• Multimedia Barrier

- MultiReader → verschiedene Benutzer Anforderungen (Blinde, Gehörlose...)
- angereicherte Dokumente (xHTML (bassiert auf XML) → SMIL + Widgets für Navigation(<tour>))
- Trennung von Inhalt und Präsentation (Layout per CSS)
- Markup Techniken (verschiedene Lesergruppen)
- Interaktionsspanne (Dauer der Wahrnehmung eines Mediums) → zeitabhängig, zeitunabhängig
- Personalisierung (individuelle Einstellungen)

• Benutzerprofile

- behinderungsspezifische Merkmale \rightarrow Usability vs Accessibility
- Matching der Adaptierungen
- User Profile Management (UPM) → synchronisiert, legt an, ändert, löscht User Profiles

• Infrastruktur

- z.B. Cloud4All

- * z.B. Stick mit nötigen Anforderungen \rightarrow automatische Umwandlung
- * Bedarf \rightarrow mögliche Lösungen \rightarrow Konfliktlösung \rightarrow Ausgabe

• Kollaborative Barrierefreiheit

- Crowd Sourcing (z.B. Beseitigung von Barrieren im Web)
- Karten (bessere Karten mit Infos für Rollstuhlfahrer)
- Erstellung Untertitel (Scribe)
- BeMyEyes (Kommunikation mit sehenden Menschen), LookTell als automatische Erkennung

• Dokumente mit XML

- Inhalt + Struktur \rightarrow (Formatierung/Mark-up) \rightarrow Präsentation
- tags können weitere tags beinhalten
- case sensitive
- Aufbau:

- Elemte tragen Attribute

```
<person born= "1912/06/23" died= "1954/06/07" >
 Alan Turing
</person>
```

- Syntaxbeschreibung:
 - * DTD...Deklaration von Regeln zur Strukturierung von XML
 - * **XSLT**...Verarbeitung von XML anhand von Templates (Regeln): match \rightarrow com $ment \rightarrow text (mit < if > für Auswahlbedingung)$

PDF 5

- Dokumente enthalten Dictionaries, Page Objekte und Aktionen
- Strukturen vererben Attribute
- meist hierarchisch
- XMP für Metadaten

• Page Objekte

- Pfadobjekte... beliebige Kombination aus Geraden, Rechtecken und kubischen Bezierkur-
- Textobjekte... Kombination aus mehreren Buchstaben
- Externe Objekte... für Grafiken
- Inline-Images... kleine Grafiken
- Shading Objekte... Umriss mit Farbe abhängig von Position im Umriss (z.B. für Farbverläufe)
- Interaktive Elemente (z.B. Inhaltsverzeichnis)
- Annotationen (z.B.ein aufklappbarer Kommentar)
- Hyperlinks

- File-Attachment-Annotation
- Audio/Video-Annotation

• PDF/A

- zur Langzeitarchivierung
- geräteunabhängig
- abgeschlossen (alle für Renderer notwendigen Ressourcen)
- selbstdokumentierend (enthält eigene Metadaten)
- transparent (zugänglich für unmittelbare Auswertung)
- keine technischen Schutzmaßnahmen (Verschlüsselung etc.)
- offen (Spezifikation öffentlich verfügbar)
- eingesetzt (verbreiteter Einsatz)

• PDF/A-2

- 3 Stufen
- 1) alles von PDF/A-2a
- 2) minimale Anforderungen von PDF/A-2b
- 3) minimale Anforderungen und Unicode von PDF/A-2u
- PDF/A-1 Dateien können in PDF/A-2 Dateien eingebettet werden

• PDF/UA

- Barrierefreiheit durch Prüfprotokoll (Matterhorn) abgesichert
- z.B. mathematische Formeln, Überschriften, Verweise, Lesereihenfolge, Grafiken, Farben, Zeichensätze
- jedoch z.B. kein Mindestkontrastverhältnis, kennt (außer bei Bildern) keine alternative Darstellung
- Tags in PDF
 - Verbesserte Lesbarkeit, logische Leserichtung
 - <Art> (Article), <H1> (Heading), <Table>...
- Artefakte... Elemete ohne Zuordnung zum Tag-Stamm
- PAC als Prüfwerkzeug für tagged PDF (Titel, Sprache, Tags, Tabs, Fonts...), auch PAVE möglich

Zugängliche Grafiken

- Grafiktypen (Screenshots, Diagramme, Karten, Kunst...)
- **Distribution** (Schwellpapier, Reliefs...)
- Erstellung (analog, digital, verschiedene Techniken)
- Bildbeschreibungen
 - Grafiken zugänglich machen
 - alles beschreiben außer Schmuckgrafik
 - mindestens Alternativtext
- Was?

- Grafiktyp
- Zweck des Bildes
- Ort, Objekte, Gebäude, Menschen
- Farben
- Atmosphäre
- Handlungen
- Kontext (keine redundanten Infos geben)

• Wie?

- vom Allgemeinen zum speziellen
- zielgruppenangepasst
- objektiv
- kurz und verständlich
- verschiedene Beschreibungen:
 - * 1) Alternativtext (1-2 Sätze)
 - * 2) Bildunterschrift (kurze Beschreibung mit zusätzlichen Infos)
 - * 3) Bildbeschreibung (detaillierte Beschreibung, auch visuelle Inhalte)
- <alt> für Beschreibung
- <alt> leer lassen für Schmuckgrafik
- <longdesc> für ausführliche externe Beschreibungen
- SVG Bilddateien können Beschreibung intern enthalten
- automatische Erstellung
 - * größtenteils durch MS Office
 - * SVG Plott für Diagramme (taktile Diagramme)

6.1 Taktile Grafiken

- Zugang zu Grafiken für Blinde (z.B. Schaltpläne durch Bildbeschreibung schwer darstellbar)
- erhabene Punktsymbole, Linien, Texturen (Unterscheidung \rightarrow Farbersatz)

• Schwellpapier

- Vorteile
 - * handelsübliche Laserprinter verwendbar
 - * glatte Linienverläufe
 - * unterschiedliche Reliefhöhen
 - * hohe Auflösung
- Nachteile
 - * Spezialgerät für "Schwellen"
 - * schlecht für Braille

• Braille Drucker

- Vorteile
 - * für Braille optimiert
 - * kann aus Text generiert werden
 - * Duplex möglich
- Nachteile

- * geringe Auflösung
- * nur eine Reliefhöhe
- Kollagen (realitätsnah)
- Punktreliefs (manuell auf Zinkblech prägen → Vervielfältigung auf Papier)
- Folienreliefs
- 3D-Modelle/3D-Drucker
- Probleme
 - zu viele Informationen
 - Objekte voneinander trennen (Hilfslinien)
- Allgemeine Richtlinien
 - Wahrung der ursprünglichen Aussage
 - Reduzierung Komplexität
 - Aufteilen komplexer Objekte
 - Unterscheidbarkeit
 - Verwendung Braille Schrift

• Digital

- berührungsempfindliches Tablet (akustische Rückmeldung bei Fingerkontakt)
- sprechende Grafiken mit zusätzlichen Informationen z.B. SVG + HTML
- Taktile Displays (z.B. Hyper Braille)
- Sprechende Stifte
- Hyper Reader

• Zeichnen

- sehr schwer + kein Feedback des Gezeichneten
- Unterstützung:
 - * Koordinaten Steckbrett (Nadeln und Spannen von Gummis)
 - * Thermostift auf Schwellpapier
 - * 3D Stift (erhitzen Filamente)
 - * Zeichnen durch programmieren
 - * Taktile Displays (Freihandzeichnen, Zugang zu Mathematik, Eingabefläche = Ausgabefläche)

• Digital

- Vorteile
 - * gute Fehlerkorrektur
 - * hohe Reproduzierbarkeit
- Nachteile
 - * erfordert hohe kognitive Ressourcen
 - * spezielle Hardware notwendig

• Analog

- Vorteile
 - * schnell, einfach, günstig

- * naturgetreue Darstellung möglich
- Nachteile
 - * schwierige/keine Fehlerkorrektur
 - * schwer reproduzierbar

• TANGRAM Workstation

- kollaborative Grafikerstellung mit blinden und sehenden
- normaler PC + taktiles Tablet

6.2 Barrierefreie Karten

- "Wheelmap" mit speziellen Infos für Rollstuhlfahrer
- Herausforderung: Adressierung gesamter Reisekette (Planung/Orientierung + Sicherheit + Navigation)
- selten bis keine Indoor Karten (Räume, Stockwerke, Hindernisse) weil viele Herausforderungen (z.B. wenige Gebäude vollständig getagged, Zielgruppenanpassung...)
- YAH-Maps (You-are-here Maps): mobile Stiftplatte mit Informationen zum aktuellen Standort
- OpenStreetMap für Indoor geeignet