MSBA 7027 Machine Learning Nonlinear Methods in Regression

Zhengli Wang

Faculty of Business and Economics
The University of Hong Kong
2023

Outline

- Introduction
- Piecewise Polynomials (Regression Splines)
- Nonparametric Methods
 - Smoothing Splines
 - Nonparametric Logistic Regression
- Generalized Additive Models

Reading

Chapter 7 of "An Introduction to Statistical Learning"

Outline

- Introduction
- Piecewise Polynomials (Regression Splines)
- Nonparametric Methods
 - Smoothing Splines
 - Nonparametric Logistic Regression
- Generalized Additive Models

Linear Regression

In many scenarios, linear relation may be a poor one to describe relationship between two quantities, e.g.

- Wage's relationship with age
- Heart disease likelihood's relationship with blood pressure

Nonlinear example 1: Wage

Intuition?

Nonlinear example 2: Heart Disease

Recall MSBA7002

• Linear Regression

$$\mathbb{E}(Y|X) = f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Linear model may be a poor one to describe relationship between quantities

Why are linear models still frequently used?

Over large range, may be better to use nonlinear models

Recall MSBA7002

• Linear Regression

$$\mathbb{E}(Y|X)) = f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

However, if we just go from linear to nonlinear methods and are NOT careful: easily overfit

- Nonlinear methods are too powerful
- Need to have some sort of control

Bias-variance tradeoff: linear vs non-linear

This Course: helps you develop a systematic framework on how to appropriately build nonlinear models

Move Beyond Linearity: Derived Input Features

• Have seen models linear in the input features, both for regression and classification.

$$f(X) = \sum_{j=1}^{P} \beta_j X_j$$

- The aim is to find which X_i 's are important to predict well.
- To move beyond linearity, essentially do the followings
 - Augment / replace the vector of inputs *X* with additional variables (transformations of *X*)
 - Then use linear models in this new space of these variables (derived input features)

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X)$$

• E.g. Plot $y = 1 + 2\sqrt{X}$ against X vs against \sqrt{X}

Move Beyond Linearity

- Denote by $h_m(X): \mathbb{R}^P \to \mathbb{R}$ the mth transformation
 - $h_m(X) = X_m$
 - $h_m(X) = X_j^2 \text{ or } h_m(X) = X_j X_k$
 - $h_m(X) = \log(X_j)$, $\sqrt{X_j}$
 - $h_m(X) = I(L_m \le X_j < U_m)$
- Polynomial regression
- Step functions
- Piecewise polynomial: spline
- Smoothing splines for regression

Polynomial Regression

• y_i is expressed as a polynomial of x_i with degree d

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d + \varepsilon_i$$

where ε_i is the error term

- Fit least square regression with predictors x_i, x_i^2, \dots, x_i^d (What does d=1 mean? d=2?)
- For large d, a polynomial regression produces an extremely non-linear curve.
 - A degree-d polynomial can have as many as d-1 turning points.
 - Polynomial regression with a large d suffers from over-fitting.
 - Large d produces overly flexible curve and leads to some very strange shapes
 - Generally speaking, it is unusual to use *d* greater than 3 or 4.

Polynomial Regression

Look at some Code Example

Polynomial Regression

• Polynomial logistic regression

$$\log \frac{P(G=1|x)}{P(G=0|x)} = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d$$

Look at some Code Example

Step functions

- Main idea: Break the range of *X* into bins and fit a different constant in each bin.
- Create cut points $\xi_1, \xi_2, ..., \xi_k$, in the range of X and then construct K+1 new variables,

$$h_0(X) = I(X < \xi_1)$$

$$h_1(X) = I(\xi_1 \le X < \xi_2)$$

$$h_2(X) = I(\xi_2 \le X < \xi_3)$$

$$h_3(X) = I(\xi_3 \le X < \xi_4)$$

:

$$h_{k-1}(X) = I(\xi_{k-1} \le X < \xi_k)$$

$$h_k(X) = I(\xi_k \le X)$$

- Note: 1. if *K* sufficiently large, step funcs can approximate any func, why?
 - 2. In some problem instances, obvious change of behavior after certain point (Most important thing: determine the right cutoff points)

Step functions

• Fit regression function

$$y_i = \beta_0 + \beta_1 h_1(x_i) + \beta_2 h_2(x_i) + \beta_3 h_3(x_i) + \dots + \beta_k h_k(x_i)$$

- Interpretation
 - β_0 : Mean value of *Y* for $X < \xi_1$
 - $\beta_0 + \beta_j$: Mean value of Y for $\xi_j \le X \le \xi_{j+1}$
 - β_j : Difference between mean value of Y for $\xi_j \le X \le \xi_{j+1}$ and mean value of Y and for $X < \xi_1$
- Logistic regression with step functions

$$\log \frac{P(G=1|x)}{P(G=0|x)} = \beta_0 + \beta_1 h_1(x_i) + \beta_2 h_2(x_i) + \beta_3 h_3(x_i) + \dots + \beta_k h_k(x_i)$$

Look at some Code Example: step func

No natural breakpoints in the predictors \rightarrow piecewise constant functions miss the action.

Basis functions

• Polynomial regression and piecewise-constant regression models are **special cases** of a **basis function approach**.

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_k b_k(x_i) + \varepsilon_i$$

- Properties of basis funcs
 - Fixed and known in advance
 - Polynomial reg: $b_j(x_i) = x_i^j$
 - Step func: $b_i(x_i) = I(c_i \le x < c_{i+1})$
 - Linearly independent
- Essentially, standard linear models with predictors $b_1(x_i), b_2(x_i), b_3(x_i), \dots$
- Can use all the inference tools for linear models
 - E.g. standard error for coeff. est., ANOVA

Basis functions

• Polynomial regression and piecewise-constant regression models are special cases of a basis function approach.

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_k b_k(x_i) + \varepsilon_i$$

- Most commonly used basis funcs
 - Regression splines
 - Smoothing splines

Parametric: need to choose cutoff points

Non-parametric: no need to choose cutoff points

- Other basis funcs
 - Fourier basis (Trigonometric funcs) NOT covered in this course;

Wavelets

Splines are useful enough for our purpose

Outline

- Introduction
- Piecewise Polynomials (Regression Splines)
- Nonparametric Methods
 - Smoothing Splines
 - Nonparametric Logistic Regression
- Generalized Additive Models

Piecewise Polynomial Regression

- Main idea: fitting separate polynomials over different regions of X, instead of fitting a polynomial over the entire range.
- The points where the coefficients change are called knots.
- A piecewise cubic polynomial with a single knot at ξ takes the form

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \varepsilon_i & \text{if } x_i < \xi \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \varepsilon_i & \text{if } x_i \ge \xi \end{cases}$$

- Idea: Fit two separate polynomials on two separate regions
 - 1st poly has coeff. β_{01} , β_{11} , β_{21} , β_{31} ; 2nd poly has coeff. β_{02} , β_{12} , β_{22} , β_{32}
 - Each poly can be fitted using OLS

Piecewise Polynomial Regression

- Main idea: fitting separate polynomials over different regions of X, instead of fitting a polynomial over the entire range.
- The points where the coefficients change are called knots.
- A piecewise cubic polynomial with a single knot at ξ takes the form

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \varepsilon_i & \text{if } x_i < \xi \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \varepsilon_i & \text{if } x_i \ge \xi \end{cases}$$

- K different knots \rightarrow What is the # of different polynomials?
- Special cases
 - Polynomial regression = piecewise polynomial regression with 0 knots
 - Step func = piecewise polynomial regression where polynomials are of degree 0 (piecewise constant regression)

Piecewise Cubic Illustration

Most widely-used spline Cubic Spline

(constrained to be cont., and have cont. 1st and 2nd deri.)

(only constrained to be

cont.)

Cubic Spline = Piecewise Cubic + Constraints

- Terminologies
 - Degree d = 3
 - Order M = d+1 = 4
 - #knots K, with placements of knots $\xi_1, ..., \xi_K$
- K knots divides the domain of X into K + 1 intervals:

$$(-\infty, \xi_1), (\xi_1, \xi_2), \dots, (\xi_{k-1}, \xi_k), (\xi_k, \infty)$$

- At each knot ξ_i , there is one cubic polynomial on LHS and one on RHS
 - These two polynomials have the same value, 1st and 2nd derivatives at ξ_i .
- Knot-discontinuity NOT visible to the human eye

Cubic Spline = Piecewise Cubic + Constraints

- Terminologies
 - Degree d = 3
 - Order M = d + 1 = 4
 - #knots K, with placements of knots $\xi_1, ..., \xi_K$
- K knots divides the domain of X into K + 1 intervals:

$$(-\infty, \xi_1), (\xi_1, \xi_2), \dots, (\xi_{k-1}, \xi_k), (\xi_k, \infty)$$

• A cubic spline with *K* knots has _____ degree of freedom

Cubic Spline Basis

• A cubic spline with K knots can be modeled as:

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \varepsilon_i$$

• A truncated power basis function is defined as:

$$h(x,\xi) = (x-\xi)_+^3 = \begin{cases} (x-\xi)^3 & \text{if } x > \xi \\ 0 & \text{otherwise} \end{cases}$$

- Basis: $l, x, x^2, x^3, h(x, \xi_1), ..., h(x, \xi_K)$, i.e. K + 4 df
- R func: bs()

Fit the Spline

- Specify #knots (or the #basis functions or df).
- Specify the placement of the knots
- For each training point (x_i, y_i) , evaluate the 4+K basis functions at the input value x_i and obtain

$$h(x_i) = (h_1(x_i), ..., h_{4+K}(x_i))^T$$

• Fit a linear model with derived inputs

Cubic Spline

• Look at some code examples

Boundary Effect – Motivation to Natural Cubic Spline

- Splines can have high variance at the outer range of predictions
 - i.e. when X is very small or very large

Boundary Effect – Motivation to Natural Cubic Spline

Global Linear (Orange), df = 2: smallest variance Global Cubic Poly (Red), df = 4: Larger variance Cubic Spline (Green), df = 6: Variance explodes at the boundary Natural Cubic Spline (Blue), df = 6: Variance controlled at the boundary