NTIN071 A&G: CVIČENÍ 3 – MYHILL-NERODEOVA VĚTA, EKVIVALENTNÍ A MINIMÁLNÍ REPREZENTACE, HOMOMORFISMUS AUTOMATŮ

Vyřešte nejprve 1, 2, 3a-f, 4abc pro A&B (zbytek je na procvičení).

Příklad 1 (Equivalence na slovech). Uveďte příklad ekvivalence \sim na Σ^* , která:

- (a) je pravá a levá kongruence
- (b) je pravá, ale ne levá kongruence
- (c) je konečného indexu

Příklad 2 (Myhill–Nerodeova věta: formulace). Zformuluje Myhill–Nerodeovu větu a připomeňte si myšlenku důkazu (bez nahlížení do poznámek z přednášky).

Příklad 3 (Myhill-Nerodeova věta: aplikace). Pomocí Myhill-Nerodeovy věty dokažte nebo vyvratte, že je jazyk regulární.

(a)
$$L = \{aa, ab, ba\}$$

(e)
$$L = \{a^{2^i} \mid i \ge 0\}$$

(b)
$$L = \{a^i b^j \mid i \le j\}$$

(f)
$$L = \{ww^R \mid w \in \Sigma^*\}$$

(c)
$$L = \{a^i b^j \mid i \ge j\}$$

(g)
$$L = \{a^i b^{i+j} a^j \mid i, j \ge 0\}$$

(d)
$$L_k = \{a^i b^j \mid i \leq j \leq k\}$$
 pro dané $k \in \mathbb{N}$ (h) $L = \{ww \mid w \in \Sigma^*\}$

(h)
$$L = \{ww \mid w \in \Sigma^*\}$$

Příklad 4 (Ekvivalentní a minimální reprezentace). Pro následující automaty:

- (a) Najděte a odstraňte nedosažitelné stavy.
- (b) Určete relaci ekvivalence (nerozlišitelnosti) stavů. (Navíc pro každou rozlišitelnou dvojici stavů najděte všechna nejkratší rozlišující slova.)
- (c) Zkonstruujte jejich redukty.
- (d) Jsou některé dva z automatů ekvivalentní? Použijte algoritmus z přednášky.

		a	b			a	b			a	b
	$\rightarrow * 0$	1	2		$\rightarrow * 0$	0	5		$\rightarrow 1$	2	3
	1	3	0		1	1	3		2	2	4
A:	2	4	5		2	2	7		* 3	3	5
	3	0	2	В:	3	3	2	C.	4	2	7
	4	2	5		* 4	6	1	C:	* 5	6	3
	5	0	3		5	5	1		* 6	6	6
		1			* 6	4	2		7	7	4
					7_1	7	0		8	2	3
						'			9	9	4
										•	

Příklad 5 (Homomorfismus automatů). Najděte DFA A, B takové, že:

- (a) Jsou oba redukované, a nejsou izomorfní.
- (b) A je homomorfní na B, ale nejsou izomorfní.
- (c) Jsou ekvivalentní, ale ne izomorfní.
- (d) Jsou oba homomorfní na, ale ne izomorfní sC,a zároveň Anení homomorfní na B ani B na A.

$$C = (\{p,q\},\{0,1\},\{((p,0),q),((p,1),p),((q,0),p),((q,1),q)\},p,\{q\})$$