

Machine Learning: Yoshinari Fujinuma University of Colorado Boulder

Slides adapted from Chenhao Tan, Chris Ketelsen, Jordan Boyd-Graber

Learning objectives

- Revisiting bias-variance tradeoff
- Understand K-nearest neighbor classifiers

Outline

Bias-variance tradeoff

K-nearest neighbors Overview Weighted KNN

Outline

Bias-variance tradeoff

K-nearest neighbors
Overview
Weighted KNN

Bias-Variance Tradeoff

Generallization error = Irreducible $Error + Bias^2 + Variance$

http://scott.fortmann-roe.com/docs/BiasVariance.html

Overfitting Example

Assume a binary classification model, classifies orange vs. blue

Training examples are given above

Overfitting Example

Assume a binary classification model, classifies orange vs. blue

Is this a "good" model?

Overfitting Example

Assume a binary classification model, classifies orange vs. blue

Let's see by adding unseen examples

Bias-Variance Tradeoff

Assume

- a simple model $y = f(x) + \epsilon$,
- noise ϵ is $E(\epsilon) = 0$, $Var(\epsilon) = \sigma_{\epsilon}^2$,
- use squared error $(y h(x))^2$ as the loss function,
- h is a function learned by the model from training samples

$$\begin{array}{lll} \epsilon_{\mathsf{general}}(x) & = & \mathrm{E}[(y-h(x))^2] \\ & = & \sigma_{\epsilon}^2 + [\mathrm{E}h(x) - f(x)]^2 + \mathrm{E}[h(x) - \mathrm{E}h(x)]^2 \\ & = & \sigma_{\epsilon}^2 + \mathrm{Bias}^2(h(x)) + \mathrm{Var}(h(x)) \\ & = & \mathsf{Irreducible Error} + \mathsf{Bias}^2 + \mathsf{Variance} \end{array}$$

Outline

Bias-variance tradeof

K-nearest neighbors Overview Weighted KNN

K-nearest neighbors (K-NN)

- Suppose we have an input data x that we want to classify.
- Look in training set for K examples that are nearest to x
- Classify x by the label of those K points.

Question: What does nearest mean?

K-nearest neighbors (K-NN)

- Suppose we have an input data x that we want to classify.
- Look in training set for K examples that are nearest to x
- Classify x by the label of those K points.

Question: What does nearest mean?

One answer: Euclidean distance $\|\vec{x}_1 - \vec{x}_2\|_2$

Example: Will the Green Point Classified as Blue or Red?

- 1-NN predicts:
- 2-NN predicts:
- 5-NN predicts:

Example: Will the Green Point Classified as Blue or Red?

- 1-NN predicts: blue
- 2-NN predicts:
- 5-NN predicts:

- 1-NN predicts: blue
- 2-NN predicts: unclear
- 5-NN predicts:

- 1-NN predicts: blue
- 2-NN predicts: unclear
- 5-NN predicts: red

Find the K-nearest neighbors of x in training data and predict the majority label of those K points.

Find the K-nearest neighbors of x in training data and predict the majority label of those K points.

$$h(x) = \arg \max_{y \in \{+1, -1\}} \sum_{(x', y') \in NN(x, S_{train}, k)} I(y = y')$$

where

- *I* is the identity function i.e., I(y = y') = 1, $I(y \neq y') = 0$,
- $NN(x, S_{train}, k)$ is the k nearest neighbors of x in the training data S_{train}

Find the K-nearest neighbors of x in training data and predict the majority label of those K points.

$$h(x) = \arg \max_{y \in \{+1, -1\}} \sum_{(x', y') \in NN(x, S_{train}, k)} I(y = y')$$

where

- I is the identity function i.e., I(y = y') = 1, $I(y \neq y') = 0$,
- $NN(x, S_{train}, k)$ is the k nearest neighbors of x in the training data S_{train}

Assumptions in the algorithm: nearby instances share similar labels.

Distance function d

Distance function d

Discrete

$$d(x_1, x_2) = 1 - \frac{|x_1 \cap x_2|}{|x_1 \cup x_2|} \tag{1}$$

i.e., 1- fraction of number of shared features

Continuous

Euclidean distance

$$d(x_1, x_2) = \|\vec{x}_1 - \vec{x}_2\|_2 \tag{2}$$

Distance function d

Discrete

$$d(x_1, x_2) = 1 - \frac{|x_1 \cap x_2|}{|x_1 \cup x_2|} \tag{1}$$

i.e., 1- fraction of number of shared features

Continuous

Euclidean distance

$$d(x_1, x_2) = \|\vec{x}_1 - \vec{x}_2\|_2 \tag{2}$$

Manhattan distance

$$d(x_1, x_2) = \|\vec{x}_1 - \vec{x}_2\|_1 \tag{3}$$

Machine Learning: Yoshinari Fujinuma

Distance function d

Discrete

$$d(x_1, x_2) = 1 - \frac{|x_1 \cap x_2|}{|x_1 \cup x_2|} \tag{1}$$

i.e., 1- fraction of number of shared features

Number of nearest neighbors k

Continuous

Euclidean distance

$$d(x_1, x_2) = \|\vec{x}_1 - \vec{x}_2\|_2 \tag{2}$$

Manhattan distance

$$d(x_1, x_2) = \|\vec{x}_1 - \vec{x}_2\|_1 \tag{3}$$

Example of Eucledian vs. Manhattan Distance

Euclidean distance:

$$\|\vec{x}_1 - \vec{x}_2\|_2 = \sqrt{(x_{1,1} - x_{2,1})^2 + (x_{1,2} - x_{2,2})^2}$$

Manhattan distance:

$$\|\vec{x}_1 - \vec{x}_2\|_1 = |x_{1,1} - x_{2,1}| + |x_{1,2} - x_{2,2}|$$

Example: Distance between the green and its closest blue point

- Decision tree uses one feature at a time, and splits the data to reduce entropy.
- KNN takes a geometry perspective and quickly finds the closest points in the training data.

KNN Classification

What about ties?

KNN Classification

What about ties?

One reasonable strategy:

- try classifying with k-1
- repeat for k-2,... until the tie is broken

Another example

Euclidean distance: $\|\vec{x}_1 - \vec{x}_2\|_2$ k = 1

Another example

Euclidean distance: $\|\vec{x}_1 - \vec{x}_2\|_2$ k = 2

KNN Classification

Another example

Euclidean distance: $\|\vec{x}_1 - \vec{x}_2\|_2$ k = 3

K-nearest neighbors

Recall the danger of overfitting

$$k = 1$$

$$k = 15$$

Choose optimal k by varying k and computing error rate on the development set.

- x-axis: $\frac{1}{k}$ (degree of freedom)
- Lower k leads to more flexibility

Feature Scaling

Practical tips:

- Important to normalize features to similar sizes
- Consider doing 2-NN on unscaled and scaled data

Feature Scaling

Practical tips:

- Important to normalize features to similar sizes
- Consider doing 2-NN on unscaled and scaled data

What should 5-NN predict in the following figure?

What should 5-NN predict in the following figure?

Weighted-KNN:

$$h(x) = \arg \max_{y \in \{+1, -1\}} \sum_{(x', y') \in \text{NN}(x, S_{\text{train}}, k)} \frac{1}{d(x, x')} I(y = y')$$

- Find $\mathrm{NN}(x, S_{\text{train}}, k)$: the set of K training examples nearest to
- Predict \hat{y} to be weighted-majority label in $NN(x, S_{train}, k)$, weighted by inverse-distance

Improvements over KNN:

- Gives more weight to examples that are very close to query point
- Less tie-breaking required

What should 5-NN predict in the following figure?

- Red distance:
- Blue distance:
- Red weighted-Majority vote:
- Blue weighted-majority vote:
- Prediction:

Memory and Efficiency of the naive implementation

How does the algorithm scale?

Memory and Efficiency of the naive implementation

How does the algorithm scale? When N training examples with d features, the naive implementation takes

• memory: O(Nd)

• time: *O*(*Nd*)

to classify (loop through each example, compute distance)

Better Implementation

Use Ball tree or KD tree to ignore examples farther than the seen ones

- memory: O(Nd)
- time: $O(\log(N)d)$

Summary

- Show bias-variance tradeoff using a simple model
- Learned about KNN and weighted KNN

References

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. *IEEE transactions on information theory*, 13(1):21–27, 1967.

Machine Learning: Yoshinari Fujinuma