Co-simulation VHDL/MATLAB d'une chaîne de communication numérique OFDM

Table des matières

Rappels des objectifs

Partie 1: Co-simulation VHDL/Matlab

Implémentation de la chaîne émission et réception sur Matlab

Description VHDL du codeur de canal en émission

Partie 2 : Simulation Matlab modulateur / démodulateur

Communications numériques OFDM sur canal AWGN

Communications numériques OFDM sur canal multi-trajets en présence de bruit

Objectifs du projet

La chaîne d'émission: mise en forme de l'information

Partie 1 : Co-Simulation Matlab/VHDL

Scrambler

1) Etude du code Matlab

```
scrambler = comm. Scrambler(base, poly, cond)
\frac{1}{1} \frac{2}{p_1} \frac{M}{p_2}
\frac{1}{p_{m-1}} \frac{M}{p_m}
```

```
%% Scrambler parameters
```

```
scramb_polynomial=[1 1 1 0 1]; % 1 + z^-1 + z^-2 + 0 + z^-4
scramb_init_state=[0 0 0 0]; %condition initiale mise à zéro
Scrambler_U_obj=comm.Scrambler(2,scramb_polynomial,scramb_init_state);
```

Scrambler

2) Description VHDL

Scrambler

Name	Value	0.000000 us	5.000000 us	10.000000 us	15.000000 us
₩ clk	0				
Transmitter					
> w stream_in[7:0]	1	0 1	0	1 0	1 0 1 0 0
₩ enable	0				
Scrambler					
₩ iEN	0				
₩ iData	1				
₩ oDataValid	0			2 S	
₩ oData	1				

Codeur BCH

1) Etude du code Matlab

```
X_gf_soft = bchenc(gf(reshape(S_soft, bch_k, bch_cwd_nb).',1), bch_n, bch_k);

G1 = bchenc(gf([1 0 0 0]), bch_n, bch_k);

G2 = bchenc(gf([0 1 0 0]), bch_n, bch_k);

G3 = bchenc(gf([0 0 1 0]), bch_n, bch_k);

G4 = bchenc(gf([0 0 0 1]), bch_n, bch_k);

G4 = bchenc(gf([0 0 0 1]), bch_n, bch_k);

G5 = bchenc(gf([0 0 0 1]), bch_n, bch_k);

G6 = bchenc(gf([0 0 0 1]), bch_n, bch_k);

G7 = bchenc(gf([0 0 0 1]), bch_n, bch_k);

G8 = bchenc(gf([0 0 0 1]), bch_n, bch_k);

G9 = bchenc(gf([0 0 0 0]), bch_n, bch_k);

G9 = bchenc(gf([0 0 0]), bch_n, bch_k);

G9 = bchenc(gf([0 0 0]), bch_n, bch_k);

G9 = bchenc(gf([0 0]), bch_n, bch_k);

G
```

Codeur BCH

Codeur BCH (1)

2) Etude du codeur

(1) MSB (7) LSB

- (1) = A
- (2) = B
- (3) = C
- (4) = D
- (5) = A + B + C
- (6) = B+C+D
- (7) = A + B + D

Codeur BCH

3) Implémentation VHDL & Chronogramme

Entrelaceur

1) Implémentation VHDL & Chronogramme

Entrelaceur

Codeur Convolutif

1) Etude du code matlab

```
trellis = poly2trellis(3,[5 3]); % generator polynomial : (15,13)
C soft = convenc(P soft, trellis);
                                                                                 Data out 1
                                    7-1
                      Input data -
                                                              Z-1
                              0
                                                                                 Data out 0
```

Codeur Convolutif

2) Implémentation VHDL & Chronogramme

Partie 2 : Génération chaîne de communication OFDM sur Matlab

1) Mise en place du modulateur/démodulateur sur canal AWGN

Données à disposition :

- 2 bits / symboles (modulation QPSK)
- 448 bits à transmettre
- o 64 sous-porteuses
- ⇒ 3,5 symboles / sous-porteuses

Modulateur OFDM

Au niveau modulateur:

- Mélangeurs
- Filtres adaptés
- Oscillateurs locaux

Peuvent être remplacés par une IFFT

Modulateur OFDM

Code Matlab à générer :

```
symb_utiles_padding = reshape(symb_utiles, [64,4]); % Demux 1 vers 64

OFMD_mod = ifft(symb_utiles_padding,64);

OFMD_mod = [ OFMD_mod(:,1),OFMD_mod(:,2),OFMD_mod(:,3),OFMD_mod(:,4)]; % Mux 64 vers 1
```

Démodulateur OFDM

Démodulateur opposé au modulateur ⇒ FFT au lieu de IFFT

Démodulateur OFDM

Modulateur OFDM (préfixe cyclique)

Mise en place du modulateur/démodulateur sur canal Multi Trajets avec bruit

```
h=\operatorname{sqrt}(1/(2*L))*(\operatorname{randn}(1,L)+1i*\operatorname{randn}(1,L));
```

L : nombre de trajets discrets équivalents dans la réponse impulsionnelle du canal

CP contient au moins D échantillons >= L

```
D = L; % Taille du préxife cyclique
CP(:,1) = OFMD_mod([NFFT-D+1 : NFFT],1);
CP(:,2) = OFMD_mod([NFFT-D+1 : NFFT],2);
CP(:,3) = OFMD_mod([NFFT-D+1 : NFFT],3);
CP(:,4) = OFMD_mod([NFFT-D+1 : NFFT],4);
```

Modulateur OFDM (préfixe cyclique)

Pour éviter l'IES (interférences entre symboles) :

- Récupération des D derniers bits
- Rajouter devant les symboles utiles

```
symb_utiles_padding = reshape(symb_utiles, [64,4]);

OFMD_mod = ifft(symb_utiles_padding,64);

D = L; % Taille du préxife cyclique

CP(:,1) = OFMD_mod([NFFT-D+1 : NFFT],1);

CP(:,2) = OFMD_mod([NFFT-D+1 : NFFT],2);

CP(:,3) = OFMD_mod([NFFT-D+1 : NFFT],3);

CP(:,4) = OFMD_mod([NFFT-D+1 : NFFT],4);

CP OFDM = [ CP(:,1); OFMD mod(:,1); CP(:,2); OFMD mod(:,2); CP(:,3); OFMD mod(:,3); CP(:,4); OFMD mod(:,4)];
```

Démodulateur OFDM (préfixe cyclique)

Suppression du préfixe cyclique avant la FFT

Channel equalizer

On vient chercher à supprimer la contribution du canal

```
H = fft(h,NFFT);
CP_OFDM_E(:,1) = OFMD_mod_RX(:,1)./H.';
CP_OFDM_E(:,2) = OFMD_mod_RX(:,2)./H.';
CP_OFDM_E(:,3) = OFMD_mod_RX(:,3)./H.';
CP_OFDM_E(:,4) = OFMD_mod_RX(:,4)./H.';
```

Channel equalizer

Démonstration sur carte en co-simulation