Dostępna pamięć: 64 MB.

OI, Etap II, dzień próbny, 10.02.2009

Wyspy na trójkątnej sieci

Sieć trójkątów jest zbudowana z równobocznych trójkątów o boku 1 (ilustracja na końcu treści zadania). Ścieżką na sieci trójkątów nazywamy dowolny skończony ciąg trójkątów (o boku 1) sieci, taki, że każde kolejne dwa trójkąty w tym ciągu mają wspólny bok.

Figurę utworzoną przez punkty skończonej liczby trójkątów sieci nazywamy **wyspą**, jeśli dowolne dwa zawarte w niej trójkąty sieci można połączyć ścieżką utworzoną z trójkątów zawartych w tej figurze.

Figury przedstawione na rysunkach 1.1, 1.2 i 1.3 są wyspami. Figura na rysunku 1.4 nie jest wyspą. Figury na rysunkach 2.2, 2.3 i 2.5 są przystające.

Zamierzamy dla każdego $n \leq 10$ opisać w systematyczny sposób wszystkie nieprzystające wyspy, jakie można utworzyć z n trójkątów o boku 1, i policzyć, ile ich jest.

Brzeg każdej wyspy, zbudowanej z co najwyżej dziesięciu trójkątów, jest łamaną zamkniętą złożoną z jednostkowych odcinków siatki i można go obiec (obrysować bez odrywania ołówka od papieru) w ten sposób, że dokładnie raz przebiegamy każdy odcinek brzegu i wracamy do punktu wyjścia. Może się zdarzyć, że trzeba będzie przy tym przejechać więcej niż raz przez ten sam punkt (patrz rysunek 2.4).

W przypadku wysp zbudowanych z co najwyżej dziesięciu trójkątów nie jest możliwa sytuacja taka, jak na rysunku 1.2, że brzeg figury składa się z dwóch rozłącznych części i nie można go obiec (obrysować bez odrywania ołówka od papieru).

 $Obiegając\ brzeg,\ po\ każdym\ jednostkowym\ odcinku\ wykonujemy\ skręt\ jednego\ z\ następujących\ typów:$

- a o 120 stopni w lewo,
- b o 60 stopni w lewo,
- c o 0 stopni (tzn. brak skrętu),
- d o 60 stopni w prawo,
- \bullet e o 120 stopni w prawo.

Każdy obieg brzegu wyspy można opisać za pomocą słowa złożonego z liter ze zbioru {a,b,c,d,e}, odnotowując za pomocą odpowiedniej litery skręt, jaki należy wykonać po każdym kolejnym, jednostkowym odcinku lamanej tworzącej brzeg. Opis obiegu brzegu wyspy ma tyle liter, z ilu jednostkowych odcinków składa się lamana tworząca ten brzeg. Odnotowujemy skręt także po ostatnim odcinku lamanej, chociaż nie jest to konieczne dla jednoznacznego określenia jej kształtu. Ta, w pewnym sensie nadmiarowa, litera ulatwia przekształcenie danego opisu w opis innego obiegu tej samej figury, który zaczyna się w innym punkcie.

Slowa cdddcddd, dcdddcdd, cbbbcbbb opisują różne obiegi figury na rysunku 2.1.

Slowa cheddcde, adcabchb, abchbadc opisują różne obiegi figury na rysunku 2.2.

Słowa acdabbcb i cddebced opisują różne obiegi figury na rysunku 2.3.

Jeśli obiegając brzeg wyspy mamy stale jej wnętrze po prawej stronie, to mówimy, że jest to obieg prawoskrętny.

92 Wyspy na trójkatnej sieci

Dla każdej wyspy można wyznaczyć zbiór wszystkich wysp do niej przystających oraz ich obiegi prawoskrętne. Kodem wyspy nazwiemy słowo, które:

- 1. jest opisem pewnego prawoskrętnego obiegu brzegu jakiejś wyspy do niej przystającej,
- jest wcześniejsze w porządku alfabetycznym od wszystkich innych słów spełniających warunek 1.

Dla wysp przedstawionych na rysunkach 2.2 i 2.3, które są przystające, bierzemy pod uwagę wszystkie prawoskrętne obiegi obydwu:

beddcdec, eddcdecb, ddcdecbe, dcdecbed, cdecbedd, decbeddc, ecbeddcd, cbeddcde $\ oraz$

bcedcdde, cedcddeb, edcddebc, dcddebce, cddebced, ddebcedc, debcedcd, ebcedcdd

i jako kod każdej z nich bierzemy to słowo, które w porządku alfabetycznym należy umieścić na pierwszym miejscu: bcedcdde.

Kodem wyspy przedstawionej na rysunku 2.4 jest słowo: aadecddcddde.

Napisz program, który:

- dla podanego kodu wyspy o rozmiarze k wygeneruje kody wszystkich wysp o rozmiarze k + 1, które można utworzyć przez dodanie do niej jednego trójkąta,
- dla podanej liczby całkowitej n wygeneruje kody wszystkich wysp rozmiaru n.

Wejście

W pierwszym wierszu standardowego wejścia podana jest liczba całkowita t $(1 \le t \le 5)$, oznaczająca liczbę zapytań. Każdy z kolejnych t wierszy zawiera opis zapytania pewnego typu. Zapytanie pierwszego typu składa się z litery K oraz kodu wyspy składającej się z co najwyżej dziewięciu trójkątów, oddzielonych pojedynczym odstępem. Zapytanie drugiego typu składa się z litery K oraz liczby całkowitej K oraz liczby

Wyjście

Na standardowe wyjście wypisz odpowiedzi na poszczególne zapytania.

Dla zapytań pierwszego typu należy najpierw wypisać liczbę różnych kodów wysp, które można utworzyć z przystających wysp opisanych podanym kodem poprzez dodanie jednego trójkąta. W następnym wierszu należy wypisać wszystkie te kody w kolejności alfabetycznej, po-oddzielane pojedynczymi odstępami.

Dla zapytań drugiego typu należy wypisać liczbę różnych kodów wysp utworzonych z n trójkątów. W kolejnym wierszu należy wypisać wszystkie te kody w kolejności alfabetycznej.

Przykład

Dla danych wejściowych:

K adeccecced

 $poprawnym\ wynikiem\ jest:$

acedccecced addebcecced adebebecced adecbedcced cceccecce

aedddde bdecdde bececde ccedcde

Rozwiązanie

Zadanie o *Wyspach na trójkątnej sieci* zajmuje wyjątkowe miejsce wśród zadań olimpijskich, gdyż pojawiło się na zawodach Olimpiady Informatycznej już dwukrotnie: na II etapie pierwszej OI i teraz, na II etapie XVI OI. Celem ponownego wykorzystania tego zadania było m.in. porównanie, jak zmienił się charakter i poziom Olimpiady w ciągu tych piętnastu lat. Jakąś wskazówką w tym zakresie mogą być statystyki tego zadania z I Olimpiady — wówczas spośród 64 uczestników II etapu, troje uzyskało maksymalną liczbę 100 punktów, dziewięcioro miało ponad 90 punktów, a 0 punktów otrzymało 16 uczestników. Trudno jednak wysnuć jakieś konkretne wnioski z zestawienia tego typu statystyk, gdyż podczas owej olimpiady sposób sprawdzania był inny niż obecnie (m.in. przydzielano punkty uznaniowe, tudzież sprawdzano zachowanie programów na testach niezgodnych z opisem wejścia), no a poza tym zadanie o Wyspach nie było wtedy zadaniem próbnym. Dlatego dalsze dywagacje na ten temat pozostawiamy Czytelnikom.

Jako że opis rozwiązania tego zadania można znaleźć w książeczce I Olimpiady [1], nie publikujemy go w niniejszej książeczce. Ponieważ jednak publikacja [1] jest, niestety, w obecnych czasach trudno dostępna, więc umieszczamy dwie wskazówki dotyczące rozwiązania:

- Łączna liczba wszystkich wysp złożonych z co najwyżej 10 trójkątów jest stosunkowo mała (np. dla *n* = 10 mamy 448 takich wysp). Z tego względu odpowiadanie na zapytania drugiego typu można zrealizować za pomocą zapytań pierwszego typu.
- Dokładany trójkąt może mieć z wyspą 1, 2 lub 3 boki wspólne. Ostatnia z tych sytuacji ma jednak miejsce tylko dla jednego typu wyspy (2.4 na rysunku w treści zadania).

Poza powyższymi, trudność zadania jest czysto implementacyjna — w oryginalnym rozwiązaniu z I OI czyniono pewne sprytne spostrzeżenia dotyczące własności wysp, lecz można sobie poradzić i bez nich, np. konwertując wyspy z postaci tekstowej na wielokątową i nachalnie dodając jeden trójkąt wszędzie, gdzie się da. Po szczegóły odsyłamy Czytelników do programów wzorcowych, które reprezentują rozmaite podejścia do rozwiązania: wys.java, wysl.pas, wysl.pas, wysl.cpp i wysl.cpp.

Dodajmy na koniec, że zestaw testów użytych na tegorocznych zawodach był inny niż oryginalny. Ułożono 10 testów, z czego testy 2, 4, 6, 7 i 8 zawierają tylko zapytania pierwszego typu, testy 1, 3 i 5 — drugiego typu, a testy 9 i 10 — obydwu typów.