补充的作业题

(作业题) 设 \mathbb{F} 为域且 char $\mathbb{F} \neq 2$, 设 S 是 \mathbb{F} 上的 n 阶对称矩阵, $\mathrm{rank}(A) = r \leq n$, 证明:

(1) 存在行满秩矩阵 $P \in \mathbb{F}^{r \times n}$ 以及可逆对角矩阵 $D \in \mathbb{F}^{r \times r}$ 使得

$$S = P^T D P$$

(2) S 存在 r 阶非零主子式.

(3) 若
$$r < n-1, S = \begin{pmatrix} S_1 & \alpha \\ \alpha^T & a \end{pmatrix}, a \in \mathbb{F}$$
且 $\operatorname{rank}(S_1) = r,$ 则 S 与 $\begin{pmatrix} S_1 & 0 \\ 0 & 0 \end{pmatrix}$ 相合.

证明: (1) 由于 char $\mathbb{F} \neq 2$, 则存在 \mathbb{F} 上的 n 阶可逆矩阵 Q 以及 $d_1, d_2, \cdots, d_r \in \mathbb{F}^*$ 使得

$$S = Q^T \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} Q$$

其中 $D=\mathrm{diag}\{d_1,d_2,\cdots,d_r\}$. 再将 Q 进行分块 $Q=\binom{P}{Q_1}$, 其中 $P\in\mathbb{F}^{r\times n}$ 且 P 是行满秩的,则

$$S = P^T D P$$

(2). 由 (1) 的结论与 Cauchy-Binet 公式得

$$S\begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix} = P^T \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ 1 & 2 & \cdots & r \end{pmatrix} (DP) \begin{pmatrix} 1 & 2 & \cdots & r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix}$$

以及

$$(DP)\begin{pmatrix} 1 & 2 & \cdots & r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix} = D\begin{pmatrix} 1 & 2 & \cdots & r \\ 1 & 2 & \cdots & r \end{pmatrix} P\begin{pmatrix} 1 & 2 & \cdots & r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix}$$

因此

$$S\begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix} = P\begin{pmatrix} 1 & 2 & \cdots & r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix}^2 \cdot \det D$$

由于 $\operatorname{rank}(P) = r$, 则存在 $1 \leq i_1 < i_2 < \cdots < i_r \leq n$ 使得

$$P\begin{pmatrix} 1 & 2 & \cdots & r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix} \neq 0$$

因此 S 有非零主子式.

(3) 由于 $r = \operatorname{rank}(S_1) \leq \operatorname{rank}(S_1, \alpha) \leq \operatorname{rank}(S) = r$, 则 $\operatorname{rank}(S_1, \alpha) = \operatorname{rank}(S_1)$, 故存在 $\beta \in \mathbb{F}^{n-1}$ 使得 $S_1\beta = \alpha$, 则

$$\begin{pmatrix} I_{n-1} & 0 \\ -\beta^T & 1 \end{pmatrix} \begin{pmatrix} S_1 & \alpha \\ \alpha^T & a \end{pmatrix} \begin{pmatrix} I_{n-1} & -\beta \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} S_1 & 0 \\ 0 & a - \beta^T \alpha \end{pmatrix}$$

即
$$\begin{pmatrix} S_1 & \alpha \\ \alpha^T & a \end{pmatrix}$$
 与 $\begin{pmatrix} S_1 & 0 \\ 0 & a - \beta^T \alpha \end{pmatrix}$ 相合,再由二者秩相等知, $a - \beta^T \alpha = 0$,故 S 与 $\begin{pmatrix} S_1 & 0 \\ 0 & 0 \end{pmatrix}$ 相合.