

УНИВЕРЗИТЕТ У НОВОМ САДУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

Димитрије Ћук

Од изворног С кода до извршне бинарне слике - компилација и распоред у меморији микроконтролера

Дипломски рад

Нови Сад 2025.

УНИВЕРЗИТЕТ У НОВОМ САДУ ● **ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА**21000 НОВИ САД, Трг Доситеја Обрадовића 6

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР :				
Идентификациони број,	ИБР:			
Тип документације, ТД :		Монографска публикација		
Тип записа, Т3 :		Текстуални штампани примерак		
Врста рада, ВР :		Дипломски рад		
Аутор, АУ :		Димитрије Ћук		
Ментор, МН :		проф. др Дарко Марчетић		
Наслов рада, НР :		Од изворног С кода до извршне бинарне слике - компилација и распоред у меморији микроконтролера		
Језик публикације, ЈП :		српски		
Језик извода, ЈИ :		српски		
Земља публиковања, 3	П:	Република Србија		
Уже географско подруч	je, УГП :	АП Војводина		
Година, ГО :		2024.		
Издавач, ИЗ :		Ауторски репринт		
Место и адреса, МА :		Факултет техничких наука, 21000 Нови Сад, Трг Д	Јоситеја Обрадовића 6	
Физички опис рада, ФО: (поглавља/страна/ цитата/табела/слика/графика/прилога)		(9/72/15/2/35/0/0)		
Научна област, НО :		Електротехничко и рачунарско инжењерство		
Научна дисциплина, НД :		Рачунарске науке и уграђени системи		
Предметна одредница/Кључне речи, ПО :		Меморија у микроконтролеру, компајлер и компајлирање, линкер и линковање		
удк				
Чува се, ЧУ :		Библиотека ФТН, Трг Доситеја Обрадовића 6, Нови Сад		
Важна напомена, ВН :				
Извод, ИЗ :		С обзиром да у микроконтролеру не постоји оперативни систем који управља меморијом, потребно је конфигурисати линкер кроз линкер директиву, односно линкер скрипту, на начин да уважи физичку расподелу меморије по врстама и адресама, на основу техничког листа, тј. спецификације коју произвођач доставља.		
		Дигитално потписивање је процес који осигурава аутентичност и интегритет података коришћењем криптографије. Користи се асиметрична енкрипција која подразумева постојање приватног и јавног кључа.		
Датум прихватања теме, ДП :		10.09.2024.		
Датум одбране, ДО :		27.09.2024.		
Чланови комисије, КО : Председник:		др Владимир Поповић, доц., ФТН Нови Сад		
	Члан:	др Стеван Цветићанин, ван. проф., ФТН Нови Сад		
	Члан:		Потпис ментора	
	Члан: 			
	Члан, ментор:	др Дарко Марчетић, ред. проф., ФТН Нови Сад		

Образац **Q2.HA.06-05** - Издање 1

UNIVERSITY OF NOVI SAD • FACULTY OF TECHNICAL SCIENCES

21000 NOVI SAD, Trg Dositeja Obradovića 6

KEY WORDS DOCUMENTATION

Accession number, ANO:				
Identification number, INO:				
Document type, DT :		Monographic publication		
Type of record, TR :		Textual Printed Material		
Contents code, CC:		Bachelor thesis		
Author, AU :		Dimitrije Ćuk		
Mentor, MN :		prof. dr Darko Marčetić		
Title, TI :		Memory Mapping in a Microcontroller and the Use of I	Digital Signatures	
Language of text, LT :		Serbian		
Language of abstract, I	_A :	Serbian		
Country of publication,	CP:	Republic of Serbia		
Locality of publication,	LP:	AP of Vojvodina		
Publication year, PY :		2024.		
Publisher, PB :		Author's reprint		
Publication place, PP :		Faculty of technical sciences, 21000 Novi Sad, Trg Dositeja Obradovića 6		
Physical description, PD: (chapters/pages/ref./tables/pictures/graphs/appendixes		(9/72/15/2/35/0/0)		
Scientific field, SF :		Electrical and computer engineering		
Scientific discipline, SD :		Computer science and embedded systems		
Subject/Key words, S/KW :		From Source C Code to Executable Binary Image – Compilation and Memory Layout in Microcontrollers		
UC				
Holding data, HD :		Library of Faculty of technical sciences, Trg Dositeja Obradovića 6, Novi Sad		
Note, N : Abstract, AB :		Since there is no operating system in a microcontroller to manage memory, it is necessary to configure the linker through a linker directive or linker script in such a way that it takes into account the physical distribution of memory by type and address, based on the datasheet or specification provided by the manufacturer. Digital signing is a process that ensures the authenticity and integrity of data through cryptography. It uses asymmetric encryption, which involves the existence of both a private and a public key.		
Accepted by the Scientific Board on, ASB :		10.09.2024.		
Defended on, DE :		27.09.2024.		
Defended Board, DB : President:		dr Vladimir Popović, assist. prof., FTN Novi Sad		
	Member:	dr Stevan Cvetićanin, assoc. prof., FTN Novi Sad	•	
	Member:		Menthor's sign	
	Member:			
	Member, mentor:	dr Darko Marčetić, full prof., FTN Novi Sad		

Образац **Q2.HA.06-05** - Издање 1

УНИВЕРЗИТЕТ У НОВОМ САДУ ● ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА 21000 НОВИ САД, Трг Доситеја Обрадовића 6

Број: 012-40/1732
Датум:
10.09.2024.

ЗАДАТАК ЗА ДИПЛОМСКИ РАД

(Податке уноси предметни наставник - ментор)

СТУДИЈСКИ ПРОГРАМ:		E1 – енергетика, електроника, телекомуникације			
РУКОВОДИЛАЦ СТУДИЈСКОГ ПРОГРАМА:		др Милан Сечујски			
Студент:	Димитрије Ћук Број индекса: ЕЕ 3/2016			EE 3/2016	
Област:	Рачунарске науке и уграђени системи				
Ментор:		о Марчетић			
·			ОКУМЕНТАІ	ДИЈЕ И ОДРЕДБ	И СТАТУТА ФАКУЛТЕТА
ИЗДАЈЕ СЕ ЗАДА	АТАК ЗА Д	ИПЛОМСКИ РАД, СА СЛ	ІЕДЕЋИМ Е.	ЛЕМЕНТИМА:	
	_	а; роблема и начин практи	чне провере	е резултата рада	а, ако је таква провера
наслов ,	диплог	МСКОГ РАДА:			
Од изворног С кода до извршне бинарне слике - компилација и распоред у меморији микроконтролера					
ТЕКСТ ЗАДАТКА:					
Руководилац студ	дијског про	грама:	Ментор рад	да:	
др Милан Сечујски			др Дарко І	 Марчетић	

Примерак за: о - Студента; о - Ментора

Садржај

1. Увод	5
1.1. Циљ и мотивација рада	
1.2. Методологија и приступ	
1.3. Релевантност теме	
2. Улога С језика у програмирању микроконтролера	6
2.1. Историјска еволуција С језика у embedded окружењима	
2.2. Кључне особине C језика у embedded контексту	
2.3. Упоредна анализа С језика и алтернативних језика	
3. Организација С изворног кода за embedded окружења	
3.1. Основне компоненте embedded пројекта	
3.2. Употреба CMSIS и HAL слојева	
3.3. Стил програмирања и стандардизација	
3.4. Приступ меморијски мапираним регистрима	
3.5. Пример за Infineon TRAVEOTM T2G	19
4. Фазе компилације (превођења) у GCC	20
4.1. Препроцесирање	21
4.2. Компилација	
4.3. Асемблирање	
4.4. Линковање	
4.5. Интеграција фаза компилације у оквиру GCC алатке	
5. Формати резултујућих датотека	
5.1. ELF формат	
5.2. Intel HEX формат	
5.3. RAW бинарни формат (.bin)	
6. Употреба GNU алата: objcopy, readelf, nm, size, objdump	
6.1. objeopy	
6.2. readelf	
6.3. nm	
6.4. size	
6.5. objdump	
6.6. Закључак	
7. Линкерска скрипта: MEMORY и SECTIONS дефиниције	
7.1. MEMORY дефиниција	
7.2. SECTIONS расподела	
8. Закъучак	

1. Увод

Програмски језик С доминира у развоју софтвера за микроконтролере захваљујући својој ефикасности и близини хардверу. Овај рад обрађује процес развоја једног С програма за 32-битни аутомобилски микроконтролер TRAVEOTM T2G (породица СYT3BB/4BB) заснован на ARM Cortex-M7 архитектури. Кроз логичку целину, рад покрива фазе писања и организације изворног кода, преко превођења (компилације) и линковања у извршну бинарну датотеку. Биће описан формат генерисаних датотека (ELF, HEX, BIN) и алати за њихову анализу (GNU binutils алати), као и структура линкерске скрипте прилагођена конкретној меморијској архитектури TRAVEO T2G чипа.

1.1. Циљ и мотивација рада

Циљ овог рада је да се систематски прикаже цео ток развоја уграђеног софтвера — од писања изворног С кода до добијања финалне бинарне слике која се програмира у меморију микроконтролера. Фокус је на компилационом процесу у оквиру GCC алатке, као и на детаљној анализи распореда меморијских секција кроз линкерску скрипту прилагођену конкретном микроконтролеру. У контексту растуће примене микроконтролера у аутомобилској индустрији, индустрији аутоматике и ІоТ систему, дубље разумевање унутрашњег функционисања овог процеса је од суштинске важности за пројектовање поузданих и безбедних система.

1.2. Методологија и приступ

Рад прати практичан инжењерски приступ: анализира се развој С програма за Infineon TRAVEOTM T2G микроконтролер (СYT4BB породица), који користи ARM Cortex-M7 језгро. Изложена су сва релевантна техничка средства: GCC компајлер и GNU binutils алати, структура startup кода и организација пројекта, као и конфигурација линкерске скрипте на основу спецификације меморијске мапе циљног хардвера. Кроз све фазе (препроцесирање, компилација, асемблирање, линковање), обрађен је начин на који се С код претвара у ELF датотеку, која се затим конвертује у HEX или BIN формат погодан за флешовање.

1.3. Релевантност теме

Обрада теме је уско везана за потребе реалног развоја софтвера у embedded окружењу, посебно у системима који раде без оперативног система (bare-metal). Правилна организација извора, разумевање формата резултујућих датотека и контрола над меморијским распоредом су предуслов за функционалан и безбедан рад микроконтролера у критичним апликацијама. Такође, разумевање ових аспеката представља основу за проширене теме као што су имплементација bootloader-а, сигурносна верификација кода (нпр. путем дигиталног потписа), и оптимизација потрошње ресурса.

2. Улога С језика у програмирању микроконтролера

Језик С је најзаступљенији у програмирању микроконтролера због своје флексибилности и ефикасности (мали оверхед). Под флексибилношћу се подразумева могућност директног приступа хардверским ресурсима, као што су меморијске адресе и регистри. Са друге стране, мали оверхед значи да компајлирани код заузима минимално меморије и омогућава брзо извршавање. Захваљујући овим особинама, С омогућава оптимално коришћење ограничених ресурса карактеристичних за уграђене системе.

Практично све – од малих контролера у уређајима до оперативних система – може бити написано у С-у због његове преносивости и способности да уз минималне наредбе пружи максималну контролу над хардвером. У домену уграђених система, С пружа низак ниво апстракције: омогућава директан приступ меморијским адресама и периферијама, управљање битовима и регистрима, као и прецизну контролу над временски критичним секцијама кода. За разлику од виших језика, компајлер С језика генерише ефикасан машински код који се извршава готово једнако брзо као ручно писани асемблер, чиме је погодан за примене у реалном времену (real-time). Истовремено, С код је знатно читљивији и одрживији од чистог асемблера, што је важно при тимском развоју софтвера. Захваљујући овим особинама, С (и његов надскуп С++) је постао стандард у развоју фирмвера за микроконтролере, омогућивши и преносивост кода између различитих архитектура. Другим речима, С обезбеђује директан приступ хардверу и високе перформансе, што су кључни захтеви у embedded систему.

2.1. Историјска еволуција С језика у embedded окружењима

Језик С је развијен раних 1970-их у Bell Labs-у за потребе оперативног система UNIX, али је због своје минималистичке и ефикасне структуре веома брзо нашао примену у embedded системима. Током развоја микроконтролера и појаве 8-битних и 16-битних архитектура, С је потиснуо асемблер као доминантни језик због боље читљивости и лакше преносивости. Данас, С представља основну полазну тачку за развој софтвера у реалновременским и ресурсно ограниченим системима, посебно захваљујући стандардизацији преко ISO/IEC 9899:2018 (C18) и спецификацијама као што је CMSIS (Cortex Microcontroller Software Interface Standard) од стране ARM-а.

2.2. Кључне особине С језика у embedded контексту

У контексту програмирања микроконтролера, С се издваја следећим особинама:

- Директан рад са меморијом Показивачи омогућавају манипулацију на нивоу бајта и регистра, што је неопходно за рад са периферијама. Кроз volatile квалификатор могуће је обезбедити исправно понашање при асинхроним изменама вредности (нпр. од стране хардвера или прекида).
- Фино управљање меморијским распоредом Коришћењем __attribute__((section(".ceкција"))), програмер може утицати на то у коју меморијску регију ће одређена функција или променљива бити смештена, што је критично у систему без оперативног система.
- Интеграција са асемблером Када је неопходна максимална оптимизација или директна манипулација регистрима, С омогућава уметање асемблерских инструкција (__asm__) или позиве на екстерне рутине, што га чини флексибилним алатом за нисконивоовски развој.
- **Прецизна контрола времена извршавања** У real-time системима детерминистичност је од пресудне важности. С не садржи runtime механизме попут garbage collector-a, чиме обезбеђује временски предвидљиво понашање.

2.3. Упоредна анализа С језика и алтернативних језика

Иако се у embedded индустрији појављују и други језици (нпр. Rust, Ada, Python/MicroPython), ниједан не достиже ниво подршке и зрелости који има С. Python се користи углавном у образовне и прототипске сврхе, Rust још увек има ограничену подршку за специфичне архитектуре и toolchain-ове, док је Ada присутна углавном у високо-регулисаним индустријама (авионика, нуклеарна техника).

С се тако намеће као оптималан компромис између перформанси, контроле и одрживости. Он пружа довољну блискост хардверу за временски критичне апликације, а истовремено омогућава тимски развој, проверу стандарда као што су MISRA и лако повезивање са библиотекахама и хардверским апстракционим слојевима.

3. Организација С изворног кода за embedded окружења

Развој софтвера за микроконтролере у програмском језику С захтева дисциплиновану и модуларну организацију изворног кода, посебно у условима где не постоји оперативни систем и где је програм одговоран за директно управљање хардвером — такозвано baremetal програмирање. У овом контексту, коректна организација пројекта није само питање структуралне естетике, већ предуслов за исправно иницијализовање система, ефикасну меморијску расподелу и могућност проширивости и тестирања.

3.1. Основне компоненте embedded пројекта

Типичан С-пројекат за ARM Cortex-M4 микроконтролер у bare-metal окружењу састоји се из више међусобно повезаних компоненти. Произвођач микроконтролера обично испоручује почетни startup код (нпр. асемблерску или С датотеку) са векторском табелом прекида и reset рутином, као и одговарајућа CMSIS заглавља и HAL библиотеке за рад са периферијама. На основу тога, програмер развија сопствени изворни код у main.c датотеци и повезаним модулима (нпр. сензори, управљање мотором), укључујући потребне хедере за сваки модул. Поред тога, пројекат садржи и линкерску скрипту (нпр. linker.ld) која описује меморијске регије микроконтролера (Flash, RAM) и дефинише распоред секција програма (.text, .data, .bss, stack итд.) у те регије. Оваква структура обезбеђује да сваки део кода и података буде смештен на предвиђено место током линковања, што је основа за стабилан и поуздан embedded систем.

1. таіп.с (улазна тачка програма)

main.c је главна изворна јединица програма која садржи функцију main(), односно улазну тачку извршавања. У овој датотеци врши се иницијализација хардвера и система по покретању микроконтролера, након чега програм прелази у главну петљу (тзв. *superloop*) у оквиру које се обавља његова главна функционалност. Типично се у main() функцији омогућавају прекиди и покрећу иницијализације свих потребних периферија, па затим следи бесконачна петља која одржава рад програма. Уколико систем користи RTOS, у main() се уместо бесконачне петље може стартовати *scheduler*, али у *bare-metal* приступу main() сам управља током извршавања.

У наставку је приказан један могући поједностављен пример структуре функције main(). После ресета, најпре се иницијализују плоча и периферије позивом функције за подешавање хардвера (у овом случају cybsp_init()), а резултат иницијализације се проверава. Потом се омогућавају глобални прекиди, након чега би следила подешавања комуникације (нпр. UART за debug излаз) и осталих уређаја, па улазак у главну петљу програма:

```
int main(void)
{
    result = cybsp_init(); /* Иницијализација платформе и периферија */

    if (result != CY_RSLT_SUCCESS)
    {
        CY_ASSERT(0); /* Заустави извршење ако иницијализација није успела */
    }

    __enable_irq(); /* Омогућавање глобалних прекида */

    /* Укључење UART-а и LED */
    cy_retarget_io_init_fc(...);
    cyhal_gpio_init(CYBSP_USER_LED, ...);

    timer_init(); /* Старт тајмера који генерише прекид сваке секунде */
```

```
while (true)
{
    if (timer_interrupt_flag)
    {
       timer_interrupt_flag = false;
       cyhal_gpio_toggle(CYBSP_USER_LED); // трептање LED-ом
    }
}
```

Горњи пример демонстрира типичне кораке на почетку main() функције – иницијализацију хардвера и омогућавање прекида. Након тога, main() обично улази у бесконачну петљу (while(1) или for(;;)) у којој се обрађују догађаји или сензорски подаци, шаљу поруке, управља актуаторима и сл. (нпр. очитавање УАРТ улаза и укључивање/искључивање LED диоде у примеру). Напомена: конкретна реализација main() може знатно да варира у зависности од пројекта – наведени код је само једна могућа варијанта имплементације.

2. Модули и драјвери (.с/.h парови)

Већи пројекти се организују на модуларни начин, тако да се поједине функционалне целине реализују у виду одвојених модула (нпр. gpio.c, uart.c, sensor.c, motor_control.c, итд.). Сваки такав модул обично долази у пару: изворна датотека са имплементацијом (.c) и одговарајућа заглавна датотека (.h) која декларише његов јавни интерфејс. Заглавни (.h) фајл садржи прототипове функција, декларације структура, епит типова и глобалних променљивих које модул излаже другим деловима програма. На тај начин се постиже јасна подела кода и боља могућност поновне употребе и тестирања — остале јединице укључују само потребне хедере и позивају функције модула преко дефинисаног интерфејса.

Пример једног таквог модула је драјвер за тајмер. У његовом заглављу може бити декларација функције за покретање тајмера, на пример:

```
cy_rslt_t cyhal_timer_start(cyhal_timer_t *obj);
```

Ова функција је у .h датотеци само најављена (прототип), а у изворној .c датотеци дата је њена реализација. У коду испод видимо делић имплементације функције cyhal_timer_start у оквиру драјвера тајмера: након провера објекта и услова, функција позива ниско-нивоске рутине за подешавање периферије – укључивање бројача и стартовање тајмера:

```
if (CY_RSLT_SUCCESS == result)
{
    result = Cy_TCPWM_Counter_Init(obj->tcpwm.base, ..., config); /* Иницијализација хардверског
тајмер блока */
}
if (CY_RSLT_SUCCESS == result)
{
    Cy_TCPWM_Counter_Enable(obj->tcpwm.base, ...); /* Enable тајмер (покретање бројања) */
}
```

У овом сегменту кода функција драјвера користи функције из произвођачке PDL библиотеке (Cy_TCPWM_Counter_Init/Enable) да конфигурише и покрене одговарајући тајмерски периферни блок микроконтролера. На тај начин се остварује апстракција – виши нивои кода позивају једноставну cyhal_timer_start() функцију, док она интерно обавља комплексне операције над регистрима. *Напомена:* структура модула и стил имплементације могу се разликовати; приказани пример је само један могући начин организације .c/.h пара датотека у склопу драјвера.

3. startup.s (векторска табела, Reset рутина, итд.)

 \mathbf{C} Startup датотека (често названа **startup.s** за асемблерску или **startup.c** за имплементацију) садржи код који се извршава први након укључења или ресетовања микроконтролера. Њене главне улоге су: (1) дефинисање векторске табеле прекида, која на познатој адреси (нпр. почетак Flash меморије) садржи почетне адресе свих рутина. ѵҝљѵҹѵіѵћи и почетну вредност стек показивача прекидних адресу Reset Handler-a; (2) имплементација саме Reset Handler рутине, која припрема извршно окружење пре него што се позове функција main().

Векторска табела је низ од 32-битних вредности које одговарају почетном стек показивачу и адресама свих излазних тачака прекида. На примеру испод видимо почетак векторске табеле за један Cortex-M4 уређај — прва вредност је иницијални адресни врх стека (**Stack Top**), а затим следе адресе обрадних рутина: Reset_Handler, *Non-Maskable Interrupt* (NMI), *HardFault*, и осталих дефинисаних изузетака и прекида:

```
Vectors:
                     /* Почетна адреса стека */
.long
        StackTop
      Reset Handler
                      /* Reset Handler */
.long
      CY NMI HANLDER ADDR /* NMI Handler */
.long
      HardFault_Handler /* Hard Fault Handler */
.long
      MemManage Handler /* MPU Fault Handler */
.long
      BusFault Handler
                          /* Bus Fault Handler */
.long
      UsageFault Handler /* Usage Fault Handler */
.long
               /* (наставак листе прекида) */
```

Након векторске табеле, *startup* код реализује саму *Reset_Handler* функцију. Ова рутина се извршава на самом почетку (на њу упућује други елемент векторске табеле) и њен задатак је да припреми окружење за С програм. То типично обухвата: постављање почетног стека, копирање иницијализационих података из Flash у RAM (секција .data), брисање (иницијализација на нуле) неиницијализованих статичких променљивих (секција .bss), потенцијално омогућавање FPU јединице, подешавање векторске табеле ако се преселила у RAM, и позив функције за почетно подешавање система (нпр. SystemInit()). Тек након тога, *startup* рутина позива корисничку функцију main() и предаје јој даљу контролу извршавања програма. На крају *Reset_Handler*-а се обично налази бесконачна петља као заштита ако main икада врати управљање (што се у исправном програму не дешава):

```
/* ... (иницијализација .data и .bss секција) ... */
#ifndef __NO_SYSTEM_INIT
bl SystemInit /* Позив функције за системску иницијализацију */
#endif
```

```
/* ... (позив конструктора C++ објеката) ... */
bl __libc_init_array

/* Execute main application */
bl main /* Позив корисничке main() функције */

/* Call C/C++ static destructors */
bl __libc_fini_array

/* Should never get here */
b . /* Бесконачна петља (dead loop) */
```

Горњи код илуструје завршни део *startup* секвенце: након припреме меморије, позива се SystemInit (осим ако није искључен макроом), затим библиотечка рутина за статичке конструкторе (_libc_init_array), па корисничка функција main. По повратку из main (који се у правилу не дешава у *bare-metal* програмима), позвали би се деструктори статичких објеката и програм улази у бесконачну петљу. *Напомена*: конкретан садржај *startup* кода зависи од конкретног архитектурног језгра и алатног ланца — приказани пример одговара CMSIS шаблону за Cortex-M4 и једно могуће извођење *reset* рутине.

4. linker.ld (меморијско мапирање)

Линкерска скрипта (најчешће названа **linker.ld**) одређује како ће се секције кода и података распоредити у физичкој меморији микроконтролера током процеса линковања. Она описује расположиве меморијске регије (нпр. флеш и рам) и правила смештања различитих секција програма у те регије. Тиме линкер зна тачно на које адресе треба ставити сваки део извршног кода и података, што је од критичне важности у *baremetal* систему где нема оперативног система да динамички управља меморијом.

У делу ниже видимо пример дефиниције меморијских регија у линкерској скрипти. Дефинисана су два главна региона: flash (са атрибутима rx — за извршавање и читање) од адресе 0x10000000 дужине 0x410000 бајтова, и ram (са rwx атрибутима) од адресе 0x08020000 дужине 0x5F800 бајтова. Ове адресе и величине одговарају конкретном микроконтролеру (овде пример двојезгарног система где CM4 језгро користи одређени део меморије):

```
ram (rwx): ORIGIN = 0x08020000, LENGTH = 0x5F800 flash (rx): ORIGIN = 0x10000000, LENGTH = 0x410000 sflash_user_data (rx): ORIGIN = 0x17000800, LENGTH = 0x800 /* специјални Flash */ ...
```

Након дефинисања меморије, линкерска скрипта описује распоред секција. На пример, код за Cortex-M4 језгро може поставити секцију .text (садржи извршни код програма) у Flash на адресу одмах након резервисаног простора за M0+ језгро (ако постоји). Секција .data (иницијализовани подаци) мора бити смештена у RAM, али њене иницијалне вредности треба сачувати у Flash – што се постиже директивом AT> flash у скрипти. Извод из линкер скрипте који то илуструје:

```
.data __ram_vectors_end__ : AT>flash {
    ...
    __data_end__ = .;
} > ram
```

У горњем примеру, секција .data се алоцира у RAM (ознака > ram), али јој је *Load Memory Address* постављена на Flash (AT>flash). То значи да ће сви бајтови .data секције бити уписани у извршну датотеку на одговарајућим Flash адресама, одакле ће их *startup* код копирати у RAM при покретању. Слично, секција .bss (неиницијализовани подаци) дефинише се са атрибутом NOLOAD и смешта у RAM, чиме линкер означава да за њу не треба резервисати простор у Flash фајлу већ ће бити само обележена за касније занулявање у RAM-у. Линкерска скрипта обично додељује и симболе као што су __StackTop и __StackLimit на крају RAM меморије, чиме се дефинише позиција и величина стека програма.

Добро осмишљена линкерска скрипта обезбеђује исправно мапирање целокупног програма у меморију микроконтролера. *Напомена*: иако постоје унапред припремљене генераичке скрипте, увек је потребно прилагодити их конкретном чипу (према подацима из *datasheet*-а) како би се сви сегменти (нпр. више блокова RAM-а, посебне меморије) исправно обухватили.

5. system *.c (иницијализација такта, PLL, напајања)

Уз startup кол. vобичајено посебна ie ла постоји И латотека облика system <device>.c, која садржи функције за почетну конфигурацију система такта и напајања. ARM CMSIS стандард предвиђа функцију SystemInit() у овој датотеци, коју startup позива непосредно пре корисничког кода. Улога SystemInit() је да подеси основне параметре система: такт микроконтролера (нпр. учитава унутрашњи осцилатор или подешава PLL множилац и делитеље такта за жељену фреквенцију), подеси брзину рада Flash меморије (нпр. wait-state-ове) у складу са тактом, омогући FPU (уколико постоји) и припреми глобалну променљиву SystemCoreClock која садржи вредност фреквенције језгра (arm-software.github.ioarm-software.github.io). Ова датотека је специфична за сваки device и типично је испоручује произвођач – програмер је обично не мења, осим ако је потребно прилагодити такт нестандардно.

Уколико се користи произвођачки *Hardware Abstraction Layer* (HAL), део системске иницијализације може бити распоређен и у функције за иницијализацију плоче или периферија. На пример, Infineon-ова функција cybsp_init() позива низ потпроцедура које укључују подешавање хардвер менаџера ресурса и система напајања:

Овај фрагмент кода илуструје да позивом једне функције (cybsp init) у main.c заправо покрећемо вишеструка подешавања у позадини - од менаџмента тактова и напона до резервисања ресурса за вишејезгарне системе (нпр. функције cycfg config init() и др. у наставку кода). У класичној CMSIS поставци, сличне акције обавља SystemInit(), али у HAL иницијализације примеру оне сy лео специфичне овом произвођача. Напомена: без обзира на конкретну реализацију, суштина system *.c јесте да се сви кључни системски параметри микроконтролера подесе на самом почетку (пре апликационог кода), како би остатак програма могао да ради на предвидљивој тактној фреквенцији и конфигурацији.

6. Makefile (компилација и линковање)

Makefile представља скрипт за аутоматизацију процеса превођења кода и линковања у извршну бинарну слику. У GCC окружењу, *Makefile* прописује кораке: који се фајлови требају компајлирати, са којим опцијама, и како их затим повезати линкером. На пример, наредба:

arm-none-eabi-gcc -O2 -mcpu=cortex-m7 -o program.elf main.c uart.c startup.s -T linker.ld

илуструје како се у једном кораку могу обавити све фазе превођења — наведеном командом GCC ће аутоматски препроцесирати и компајлирати main.c, uart.c и асемблерски startup.s, а затим их линковати користећи линкер скрипту -Т linker.ld, производећи извршни ELF фајл (program.elf). У пракси, Makefile управо генерише овакве командне позиве за све изворне јединице пројекта, укључујући и додавање неопходних путева до заглавља, библиотека и дефинисање макроа за условну компилацију. Он такође води рачуна о редоследу извршавања — да се сваки .c преведе у .o пре линковања, да се асемблерске датотеке такође преведу, и на крају да се позове линкер са свим насталим објектним фајловима и одговарајућом .ld скриптом.

У случају интегрисаних развојних окружења (IDE) као што су IAR или Keil, не постоји експлицитан *Makefile*, али концепт је исти — пројекат садржи подешавања која дефинишу који се фајлови компајлирају и како, а IDE интерно генерише командне позиве компајлера и линкера. Било да се користи ручно написан *Makefile* или IDE, резултат је на крају исти: сви претходно описани делови пројекта (startup код, main.c, модули, системске функције и линкерска скрипта) бивају састављени и повезани у једну извршну бинарну слику спремну за учитавање у микроконтролер. *Напомена:* конкретна синтакса и организација *Makefile*-а могу бити различити (нпр. коришћење CMake уместо ручног *Makefile*-а), али увек служе истој сврси — аутоматизацији и контролисању процеса грађења *embedded* софтвера.

3.2. Употреба CMSIS и HAL слојева

У пракси, развојни процес се ослања на стандардизоване библиотеке:

• CMSIS (Cortex Microcontroller Software Interface Standard), развијен од ARM-а, дефинише структуре, симболе и функције за приступ системским и периферијским регистрима у Cortex-M архитектури. Пример су заглавља типа core_cm7.h, system_device.h и дефиниције као што је SCB->VTOR.

• HAL (Hardware Abstraction Layer) библиотеке, које пружају генерализоване функције за рад са периферијама (нпр. HAL_UART_Transmit()), смањују количину хардверски зависног кода. Иако уносе одређени оверхед, HAL слојеви убрзавају развој и олакшавају преносивост између различитих модела микроконтролера истог произвођача.

CMSIS обезбеђује формалну конзистентност, док HAL омогућава брзу продукцију прототипа. За перформансно критичне секције, HAL функције могу бити замењене директним приступом регистрима преко CMSIS симбола.

3.3. Стил програмирања и стандардизација

Због природе критичних апликација (аутомобилска индустрија, индустријска аутоматика, медицински уређаји), развој С кода у embedded систему често подлеже строгим стилским и безбедносним смерницама. Најзначајнији од њих је **MISRA** С стандард (Motor Industry Software Reliability Association), који дефинише правила за избегавање неодређеног понашања, нпр. забрана употребе динамичке алокације (malloc), неконтролисаних type cast-ова, и употребе goto.

Придржавање оваквих стандарда омогућава формалну верификацију, аутоматизовану анализу кода (нпр. алатима попут PC-lint или Coverity), и повећава поузданост и сигурност система. Поред MISRA-е, користе се и други стандарди као што су CERT C (сигурносне смернице) и ISO 26262 (функционална безбедност у аутомотив домену).

3.4. Приступ меморијски мапираним регистрима

Комуникација између процесора и хардвера у *embedded* системима реализује се кроз меморијски мапиране регистре, што подразумева директан упис у специфичне адресе у меморијском простору. Програмски језик С омогућава дефинисање структура које одговарају распореду регистра, уз употребу кључне речи volatile, која обавештава компајлер да не сме оптимизовати приступ тим променљивим, јер се њихове вредности могу мењати асинхроно — нпр. од стране прекидне рутине, хардверског тајмера или другог језгра процесора.

На пример:

```
typedef struct {
    volatile uint32_t IN;
    volatile uint32_t OUT;
    volatile uint32_t DIR;
    // ... οσταπμ ρεγματρμ
} GPIO_TypeDef;
#define GPIO ((GPIO TypeDef *) 0x50000000UL)
```

Горњи код показује дефиницију структуре која моделује GPIO регистре и симболичку адресу на коју она мапира. У том случају, приступ регистру 0UT врши се на следећи начин:

• GPIO -> OUT = 0x1;

Ова једноставна линија кода представља суштину рада са периферијама у *bare-metal* окружењу. Она подразумева:

- да GPI0 представља показивач на структуру која моделује GPIO регистре;
- да оператор -> омогућава приступ пољу OUT те структуре;
- да се вредност 0x1 уписује у регистар 0UT, чиме се поставља логичка "1" на пин број 0, док се остали пинови постављају на "0".

Под условом да је претходно извршена конфигурација правца рада пинова (нпр. GPIO->DIR |= 0x1;), ова наредба резултује у појави високог логичког нивоа на излазном пину. У Assembly коду, оваква операција се мапира на једну инструкцију (STR) која уписује вредност у конкретну адресу у меморијском простору, чиме се постиже детерминистичко и брзо извршавање — особина кључна за реалновременске системе.

Захваљујући CMSIS библиотеци и заглављима произвођача, програмери више не морају да користе непрегледне изразе склоне грешкама попут:

```
*(volatile uint32 t *)(0x50000004) = 0x1;
```

већ могу користити симболичке, типски безбедне и читљиве форме попут $GPIO->OUT = 0 \times 1$;, чиме се обезбеђује значајно већа одрживост, транспарентност и преносивост кода.

3.5. Пример за Infineon TRAVEO™ T2G

У случају микроконтролера TRAVEO T2G (нпр. из породице CYT4BB), произвођач Infineon испоручује почетни код (*startup* assembly или C датотеку) који садржи векторску табелу прекида и функцију за ресет. Такође, обезбеђују се CMSIS-заглавља специфична за циљани модел, као и HAL библиотеке за руковање периферијама. Програмер затим развија сопствени код у main.c, организује логичке модуле (нпр. motor_control.c, sensors.c), и укључује потребна заглавља.

Пројекат поред тога садржи и линкерску скрипту (.ld датотеку), као што је TRAVEO_T2G.ld, прилагођену меморијској мапи микроконтролера. Ова скрипта дефинише секције као што су .text, .data, .bss, .stack, и њихово постављање у Flash или RAM меморију. Тиме се омогућава да свака компонента програма буде смештена у предвиђено меморијско подручје током фазе линковања.

На овај начин, добром организацијом извора, доследним коришћењем CMSIS-а и HAL библиотека, као и строго дефинисаним фазама иницијализације и петље извршавања, обезбеђује се основа за стабилан, поуздан и преносив *embedded* систем, који може бити успешно преведен и повезан у потпуности током следеће фазе — компилације у оквиру GCC окружења.

4. Фазе компилације (превођења) у GCC

Превођење С програма у машински код одвија се кроз више дискретних фаза. GCC компајлер (GNU Compiler Collection) интерно дели процес на до четири корака: препроцесирање, компилацију (у ужем смислу), асемблирање и линковање, тим редоследом (Overall Options (Using the GNU Compiler Collection (GCC)). Свака фаза има своју улогу у претварању изворног . с кода у извршну бинарну датотеку. Следи преглед ових фаза у табели 1.

Табела 1. Фазе превођења С програма уз GCC

Фаза	Алат (GCC позив)	Улаз	Излаз
Препроцесирање	gcc -E	*.c, *.h (изворник)	Препроцесирани код (*.i)
Компилација (C- >ASM)	gcc -S	*.і (из претходног)	Асемблерски код (*.s)
Асемблирање	gcc -сили as	*.s (асемблерски код)	Објектни фајл (*.o)
Линковање	gcc или ld	*.о (+ библиотеке)	Извршна датотека (ELF)

4.1. Препроцесирање

Препроцесирање: Прва фаза у којој се извршава С препроцесор. Он обрађује директиве почевши знаком # — на пример, убацује садржај хедер датотека на место #include директива, проширује макрое дефинисане са #define, и условно уклања/укључује делове кода на основу #ifdef услова. Резултат ове фазе је препроцесирани исходни код, типично са екстензијом .i (или .ii за C++) који више не садржи препроцесорске директиве, већ само "чист" С код.

4.2. Компилација

Компилација (у ужем смислу): У овој фази GCC преводи препроцесирани С код у асемблерски код за циљну архитектуру. То значи да се синтакса и конструкције С језика преводе у низ асемблерских инструкција (нпр. ARM Cortex-M7 инструкције) које остварују еквивалентну функционалност. Излаз из ове фазе је . s датотека (асемблерски код у текстуалном облику). Ова фаза укључује и различите оптимизације које компајлер примењује (према подешеним опцијама, нпр. -O2) како би генерисани код био што ефикаснији.

4.3. Асемблирање

Асемблирање: Генерисани . s асемблерски код затим пролази кроз асемблер (саставни део GCC алата, нпр. arm-none-eabi-as), који га претвара у релокативни објектни фајл – машински код са нерешеним релокацијама и симболима. Ова датотека обично има екстензију . о и у формату је објектне датотеке (најчешће ELF формат, о чему ће бити речи касније). Објектни фајл садржи машинске инструкције за дати модул, али још увек није самостално извршна целина, јер адресе функција и података који се налазе у другим модулима нису још познате (остају као симболи које треба повезати).

4.4. Линковање

Линковање: Последња фаза је позив линкера (нпр. GNU ld) који узима један или више објектних фајлова (.о), као и евентуално предефинисане библиотеке (нпр. libc, или драјверске библиотеке), и **повезује** их у јединствену извршну датотеку. Линкер разрешава све међусобне референце — нпр. када функција у main.o зове функцију која је имплементирана у uart.o, линкер ће уписати исправну адресу те функције у машински код позива. Такође, линкер припаја и стандардни стартуп код (нпр. **crt0** за C) ако је део toolchain-а, мада у embedded окружењу стартуп и векторска табела обично долазе као засебан модул пројекта. Резултат линковања је извршна бинарна датотека у *ELF формату* (или сличном), са свим спојеним секцијама на одговарајућим меморијским адресама. Ова датотека је сада самосталан програм који се може учитати у меморију микроконтролера и покренути.

4.5. Интеграција фаза компилације у оквиру GCC алатке

Напоменимо да се у пракси већина ових корака обавља "у пролазу" помоћу исте дсс наредбе, јер GCC аутоматски позива препроцесор, па компајлер, асемблер и линкер. На пример, позив arm-none-eabi-gcc -02 -mcpu=cortex-m7 -o program.elf main.c uart.c startup.s -T linker.ld ће обавити све кораке и произвести коначни program.elf. Ипак, корисно је разумети ове међукоре, јер алати омогућавају да се сваки корак изведе одвојено (нпр. опција -save-temps чува привремене .i и .s датотеке). GCC документација наглашава постојање наведене четири фазе и одговарајуће суфиксе/екстензије фајлова (Overall Options (Using the GNU Compiler Collection (GCC))). Током компилације могу настати и помоћни фајлови као што је листина (са мешовитим С кодом и асемблером, ако је затражено), али они нису нужни у даљем процесу.

Важно је истаћи да линкер за успешно повезивање за *embedded* мету мора знати распоред меморије циљног микроконтролера – ту ступа на снагу *пинкерска скрипта* која описује меморијске регије (Flash, RAM) и како распоредити секције програма у њих. Линкерска скрипта је критична за добијање исправне бинарне слике програма и њена структура биће детаљно анализирана у посебном одељку.

5. Формати резултујућих датотека

Увод.

5.1. ELF формат

По завршеном линковању, добија се извршна датотека, најчешће у **ELF формату** (Executable and Linkable Format). ELF је стандардни бинарни формат који се користи на Unix/Linux системима за извршне датотеке, објектне модуле, па чак и библиотеке (Executable and Linkable Format - Wikipedia). Он је прихваћен и код cross-компајлера за микроконтролере јер је флексибилан и независан од архитектуре – подржава различите процесоре, ендијаност и величине адресног простора (Executable and Linkable Format - Wikipedia). За потребе embedded програмирања, ELF садржи све потребне информације о програму: машински код сегментиран у секције (.text, .data, .bss, итд.), али и симболичке табеле, таблице релокација, програмска заглавља са описом сегмената за извршавање, и опционе дебаг информације. ELF формат подржава двоструку анализу: према табели секција (section header table), која описује структуру изворног кода и симболе, или према табели сегмената (program header table), која описује начин учитавања у меморију при извршавању (Executable and Linkable Format - Wikipedia). У контексту микроконтролера, важнији је распоред секција, јер сегменти одговарају меморијским регијама у које ће секције бити смештене (Flash, RAM).

Иако ELF датотека садржи извршни код, она се обично не програмира директно у микроконтролер. Разлог је што ELF носи и метаподатке (нпр. симболе, одређене секције које нису потребне за сам рад програма) и није у формату који типични програмабилни хардвер очекује. Зато се из ELF-а изводе чисти бинарни формати погодни за флешовање. Најчешће се срећу три таква формата у embedded свету: Intel HEX, RAW BIN (сиров бинарни фајл), и Motorola S-Record (S19) формат.

5.2. Intel HEX формат

Intel HEX формат је текстуални формат у ASCII нотацији који представља садржај меморије у хексадецималном облику. Датотека се састоји од више линија, где свака линија представља један рекорд са одређеним бројем бајтова, њиховом адресом у меморији и контролном сумом (Intel HEX - Wikipedia). Конкретно, свака линија почиње двотачком :, затим следи бајт бројача (колико бајтова података та линија носи), па 16битна почетна адреса, бајт типа записа (нпр. 00 за податке, 01 за крај датотеке, 04 за проширену адресу код већих адресних простора итд.), затим сами подаци (парови хекс цифара), и на крају једна контролна сума за проверу тачности (Intel HEX - Wikipedia). Овај формат је веома погодан јер је читљив и садржи адресе – нпр. ако програм није континуиран у меморији, НЕХ фајл може имати "рупе" у адресама између линија. Програматори (alati за флешовање) читају НЕХ датотеку линију по линију и уписују бајтове на наведене адресе у флеш меморију микроконтролера (Intel HEX - Wikipedia). Intel HEX је историјски настао 1970-их за потребе учитавања програма са папирне траке v Intel MCS systems. али је и данас широко коришћен због једноставности и поузданости провере (свака линија носи своју контролну суму) (Intel HEX - Wikipedia). Генерисање НЕХ фајла се обично ради алатом објсору, о чему ће бити речи касније.

5.3. RAW бинарни формат (.bin)

RAW бинарни формат (.bin) је најједноставнији могући формат – низ бајтова идентичан бајтовима који треба да се упишу у меморију, без икакве додатне структуре или информација. Сирови бинарни фајл представља меморијски дамп програма, обично тачно оних секција које се налазе у непрекидном опсегу адреса. При конверзији ELF-а у .bin, одбацују се сви симболи, заглавља и вишак информација, и добија се само секвенца бајтова која одговара садржају флеша (и евентуално других меморија ако се спајају у један фајл). GNU об ј сору алат омогућава ову конверзију: на пример команда arm-none-eabi-objcopy -O binary program.elf program.bin узима ELF и ствара .bin фајл. Према документацији, када се објсору користи за генерисање raw binary датотеке, он ефективно производи меморијски дамп укупног садржаја ELF-а - од најнижег до највишег адресног бајта садржаног у ELF-у - одбацујући све симболе и релокације (objcopy (GNU Binary Utilities)). Битно је напоменути да .bin не носи информацију о томе на коју адресу ти бајтови треба да се упишу; претпоставља се подразумевани почетак (нпр. код већине микроконтролера почетак флеша је или 0x00000000 или нека позната базна адреса). Због тога, .bin формат се углавном користи када се читава слика програма ставља на почетак флеш меморије. Ако је потребно флешовати програм који не почиње од 0 или ако програм обухвата више одвојених меморијских области, Intel HEX је погоднији, јер носи адресе.

У пракси, многи произвођачи алата и IDE-ови (нпр. KEIL uVision, IAR EWARM, GCC toolchain) омогућавају генерисање HEX или BIN датотека из ELF-а. Неки debugger-и и програматори могу чак директно учитати ELF (користећи информације из ELF заглавља о сегментима за учитавање). Ипак, имајући у виду да HEX и BIN представљају стандард у размену фирмвер слика (нпр. HEX за надоградњу софтвера у сервису, или BIN за брзо учитавање преко bootloader-а), важно је разумети њихову структуру и разлике.

Motorola S-Record (S19)

Поред Intel HEX-а, чест је и **Motorola S-Record (S19)** формат — сличан ASCII хекс запису линија. Alati objcopy са опцијом –0 srec може генерисати S-Record фајл (objcopy (GNU Binary Utilities)). Разлика је углавном у синтакси линија (S-Record линије почињу са 'S' и имају мало другачију организацију адресних поља). Пошто је у питању алтернативни формат, нећемо детаљно разматрати његову структуру, али вреди споменути да алат **srec_cat** (део SRecord пакета) може манипулисати и HEX и S19 фајловима.

6. Употреба GNU алата: objcopy, readelf, nm, size, objdump

При раду на озбиљним embedded пројектима, корисно је познавати алате за анализу и конверзију објектних и извршних датотека. GCC toolchain долази са низом **GNU** binutils алата који омогућавају увид у ELF садржај, конверзију формата, дисасемблирање, мерење величине и друго. У наставку су описани најважнији алати и њихова примена у контексту програмигања микроконтролера.

6.1. objcopy

objcopy: Алат за копирање и конверзију формата објектних датотека. Користи се за генерисање НЕХ или ВІN фајла из ELF-a. Примери: objcopy -0 ihex program.elf program.hex (створи Intel HEX из ELF-a), objcopy -0 binary program.elf program.bin (створи гаw бинарни дамп). objcopy може и издвајати поједине секције, уклањати debug информације опцијом -S, итд. Базиран је на BFD библиотеци, тако да подржава бројне формате и аутоматски препознаје улазни и излазни формат (objcopy (GNU Binary Utilities)). Треба бити опрезан: при конверзији у .bin, ако ELF садржи "празнину" (нпр. секције које нису континуалне у меморији), objcopy ће ту празнину испунити нулама у .bin фајлу (јер прави континуални дамп од најнижег до највишег адресног бајта). Стога .bin може бити већи него износ корисног кода ако постоје велике неиницијализоване секције на високим адресама.

6.2. readelf

readelf: Алат за читање ELF датотека – даје детаљан увид у ELF заглавља, секције, сегменте, симболе, итд. На пример, readelf -h program.elf приказује опште заглавље (тип, машина, ендијаност, улазну тачку...), readelf -S program.elf листа секције (са именима, величинама, стартним адресама у фајлу и у меморији), а readelf -s program.elf листа симбол таблицу (са именима функција/променљивих и њиховим адресама или офсетовима). У анализи линкер скрипте и меморијског распореда, readelf -S је посебно користан да видимо где су .text, .data, .bss и друге секције смештене и колике су. Пример: излаз readelf -S може показати да је .text секција величине, 0x1000 бајтова на адреси 0x10000000 (у флешу), .data величине 0x100 бајтова на адреси 0x08040000 (RAM), са LMA (Load Memory Address) у флешу, итд. Ово нам јасно говори распоред по меморијским регијама.

6.3. nm

nm: Листирање симбола (из објектних или извршних фајлова). nm program.elf ће исцртати листу свих симбола (функција, глобалних променљивих) које постоје у програму, са њиховим адресама и ознаком типа (Т=текст/функција, D=иницијализовани податак, B=неиницијализовани податак bss, и сл.). Ово је корисно кад желимо да знамо на којој адреси се налази одређена функција или променљива након линковања. На пример, можемо проверити да ли је глобална променљива мапирана у RAM (биће означена са В или D и имаће адресу у опсегу RAM меморије), или да ли је функција у флешу (ознака Т са адресом у опсегу флеша). nm је посебно драгоцен за грубу проверу исправности линкер скрипте – нпр. да ли симбол _estack (врх стека) има очекивану вредност, да ли су неки симболи преклопљени итд.

6.4. size

size: Приказује резиме величина секција у извршној датотеци. Обично се позива као size program.elf и избацује три колоне: величину .text (код + константни подаци у флешу), .data (иницијални подаци који ће бити учитани у RAM) и .bss (неиницијализовани подаци који ће заузети RAM), као и укупан збир. Ово је врло прегледно да се види колики је "отисак" програма у флешу и RAM-у. На пример, output може бити:

text	data	bss	dec	hex	filename
4528	128	256	4912	1330	program.elf

што значи да код заузима ~4528 бајтова флеша, статички иницијализовани подаци 128 бајтова RAM-а (плус још толико у флешу за њихове почетне вредности), а .bss (нпр. глобалне променљиве иницијализоване на 0) заузимају 256 бајтова RAM-а. Ови бројеви су битни у планирању да ли програм стаје у меморију микроконтролера. (Напомена: size уз опцију -A или --format=SysV даје детаљнији приказ по именованим секцијама.)

6.5. objdump

objdump: Многофункционални алат за испис садржаја објектних датотека. Може да прикаже хексадецимални *dump* секција (objdump -s program.elf), али најкориснија функционалност је **дисасемблирање** машинског кода у читљив асемблер.

Наредба objdump -d -M reg-names-std program.elf произвешће асемблерски листинг свих секција које имају код (нпр. .text, .init) са људски читљивим именима регистара. Ово је изузетно корисно за дебаговање ниског нивоа – можемо видети тачно које је инструкције компајлер генерисао из нашег С кода, што помаже у оптимизацији или трагању за баговима на ниском нивоу.

- objdump -t program.elf исписује таблицу симбола (слично nm).
- objdump -x program.elf исписује пуна ELF заглавља, секције, сегменте, симболе (комбинација информација, мање читљива од специјализованих алата попут readelf или nm).

Углавном, objdump је згодан за брзи увид у садржај бинарног кода – било у хекс или у асемблерском облику.

6.6. Закључак

Набројани алати покривају најважније аспекте: конверзију формата (objcopy, srec_cat), анализу садржаја (readelf, nm, objdump) и величину (size). У типичном развојном циклусу, након добијања program.elf, програмер може покренути size да провери заузеће меморије, objdump -d ако сумња у неку оптимизацију компајлера, или nm да пронађе адресу битне променљиве за дебаговање. При припреми HEX-а за програмирање, користи се objcopy или srec_cat. На тај начин, ови алати представљају продужетак функционалности самог компајлера и линкера, дајући увид "испод хаубе" готовог програма.

7. Линкерска скрипта: MEMORY и SECTIONS дефиниције

Линкерска скрипта или линкер директива (.1d датотека) је суштински део embedded пројекта – она диктира како ће линкер распоредити преведене секције програма у меморијски адресни простор микроконтролера. Пошто микроконтролер има одређене величине и адресе флеш и RAM меморије, потребно је линкер обавестити где може смештати код, а где податке. GNU ld линкер има свој интерни језик за скрипте који омогућава опис меморијских региона и расподелу секција.

7.1. MEMORY дефиниција

У скрипти се најпре дефинишу именовани *меморијски региони*. Пример за неки Cortex-M7 микроконтролер може бити:

```
MEMORY
{
    FLASH (rx) : ORIGIN = 0x10000000, LENGTH = 4096K
    WORK_FLASH (rx) : ORIGIN = 0x14000000, LENGTH = 256K
    SRAM (rwx) : ORIGIN = 0x28000000, LENGTH = 768K
}
```

Овим смо линкеру дали до знања да постоје три региона: FLASH који почиње на адреси 0x1000_0000 величине 4 МВ, додатни WORK_FLASH од 256 КВ, и SRAM од 768 КВ почев од 0x2800_0000. Сваки регион има атрибуте: г (читљив), w (уписив), х (извршан). Флеш је обично означен са rx (читање + извршавање, није уписив у току рада програма), RAM са rwx (читање/писање, извршавање ако се код копира у RAM). Ове МЕМОRY декларације омогућавају линкеру да разуме расположиви адресни простор и да пријави грешку ако одређена секција премашује додељени меморијски блок. На пример, ако код постане превелик (прелази 4МВ флеша), линкер ће јавити да FLASH регион нема довољно простора. МЕМОRY секција дакле описује распон и намену меморијских блокова циљног система (<u>The most thoroughly commented linker script (probably) - Stargirl (Thea) Flowers</u>).

7.2. SECTIONS расподела

Након дефинисања меморије, линкерска скрипта садржи SECTIONS блок, који је срце скрипте – ту се наводи како се свакој излазној секцији ELF-а додељује меморијски регион и адреса. Пример делимичне SECTIONS скрипте за ARM:

```
SECTIONS {
    .text:
      _stext = .;
                          /* почетак .text секције */
      KEEP(*(.isr\_vector)) /* векторска табела, ако је дефинисана у секцији
.isr_vector */
      *(.text*)
                          /* све .text секције из свих објеката */
                         /* све .rodata (константе) секције */
      *(.rodata*)
                          /* крај .text/.rodata секције */
      _etext = .;
                          /* овај блок иде у FLASH меморију */
   } > FLASH
    .data : AT (ADDR(FLASH) + SIZEOF(.text)) /* AT(...) каже да се почетни
садржај .data налази након .text y FLASH */
                          /* почетак .data y RAM */
      sdata = .;
                          /* све иницијализоване статичке променљиве */
      *(.data*)
      _edata = .;
   } > SRAM
                           /* овај блок се мапира у SRAM на извршавање */
    .bss (NOLOAD) :
                         /* почетак .bss */
      _sbss = .;
      *(.bss*)
      *(COMMON)
      ebss = .;
                          /* .bss је у SRAM, NOLOAD јер нема почетних
   } > SRAM
података у флешу */
    /* ... остале секције (стек, heap, секције за C++ EH, итд.) ... */
```

Овај пример илуструје кључне концепте. Прво, .text (са .rodata) је смештен у FLASH регион. У њему се чак принудно чува (КЕЕР) векторска табела ако је дефинисана у посебној секцији .isr_vector (многи startup кодови стављају векторску таблицу у засебну секцију на почетак флеша). Затим .text обухвата сав програмски код и неизменљиве податке. Симболи као _stext и _etext су обележивачи које можемо касније користити (нпр. _etext указује на крај садржаја који се налази у флешу, што је уједно почетак података за копирање у RAM).

Део за .data је интересантан јер демонстрира одвајање LOAD адресе и RUN адресе: секција .data ће током извршавања бити у SRAM (због > SRAM), али је наведено AT (ADDR(FLASH) + SIZEOF(.text)). Ово каже линкеру да резервише простор у FLASH-у за иницијалне вредности .data секције, одмах након .text блока.

Практично, то значи да ће у ELF-у . data имати два различита почетка: VMA (Virtual Memory Address) у RAM (нпр. $0x2800_0000$ ако ту почиње SRAM) и LMA (Load Memory Address) у флешу (нпр. $0x1000_1234$ ако .text заузима до $0x1000_1233$). Линкер ће поред ELF секције уписати и тај садржај (иницијалне бајтове) на LMA адресу. Потом, стартуп код микроконтролера копира те бајтове из флеша на одговарајућу VMA адресу у SRAM током покретања програма. На овај начин, глобалне променљиве које имају иницијалне вредности (нпр. int count = 5;) налазе се у .data секцији: након ресета, у RAM-у на адреси $_sdata$ треба да се нађе вредност 5, коју је програм негде морао сачувати — управо у флешу, у склопу .data LMA. Директива AT() у линкер скрипти се користи да раздвоји те адресе и веома је битна за исправно покретање програма (\underline{The} $\underline{most thoroughly commented linker script (probably) - Stargirl (<math>\underline{Thea}$) Flowers).

Секција .bss у примеру има атрибут NOLOAD – то значи да за њу не постоји садржај у флешу; она представља блок RAM меморије коју треба испунити нулама. Линкерски симболи _sbss и _ebss означавају почетак и крај .bss. Важно је и да су сви *COMMON* симболи (неиницијализоване глобалне променљиве које нису експлицитно у .bss) такође стављени у .bss (директива *(COMMON)). Стартуп код ће једноставно обрисати (испунити нулама) овај RAM опсег при покретању.

Поред ових, линкер скрипта често резервише простор за стек (нпр. дефинише симбол _estack на крај SRAM-a), за heap (ако се користи), и укључује специјалне секције за C++ ако су присутне (нпр. .init_array за конструкторе објеката). У случају ARM Cortex-M, потребне су и секције .ARM.exidx и .ARM.extab за информације о изузецима (корисно ако се користе одређене библиотеке и функције или C++ бацање изузетака – throw exception). Они се обично смештају на крај .text сегмента. Укључујући све те ставке, линкерска скрипта обезбеђује да у излазном ELF-у стоје исправно дефинисане адресе и границе секција.

За пример TRAVEO T2G микроконтролера, линкерска скрипта би била прилагођена тачним величинама меморија тог чипа. На основу **меморијске архитектуре**, могли бисмо дефинисати MEMORY са FLASH (rx): ORIGIN = 0×10000000 , LENGTH = 4160K (главна флеш меморија од ~ 4.16 MB), евентуално WORKFLASH (rx): ORIGIN = 0×14000000 , LENGTH = 256K, SRAM (rwx): ORIGIN = 0×28000000 , LENGTH = 768K, и можда посебно ITCM и DTCM меморије ако би се користиле (16KB + 16KB по језгру). За једноставност, претпоставимо да сав код иде у главни FLASH, а сав RAM садржај у главни SRAM. Линкерска скрипта би онда одразила тај модел: .text, .rodata, евентуално векторска табела и startup код у FLASH; .data LMA у FLASH али VMA у SRAM; .bss у SRAM.

Закључак о линкер скрипти: Она повезује свет С кода са физичком меморијом хардвера. MEMORY секција описује аде може шта да иде (<u>The most thoroughly commented linker script (probably) - Stargirl (Thea) Flowers</u>), а SECTIONS секција како да се садржај распореди (<u>The most thoroughly commented linker script (probably) - Stargirl (Thea) Flowers</u>). За типичан Cortex-М пројекат, већина програмера користи унапред припремљену скрипту (било од произвођача или генерисану алатом), али разумевање исте је кључно при решавању проблема као што су: преливање меморије, смештање специфичних функција у одређени регион (нпр. у посебан сегмент који се може ажурирати независно), прављење боотлоадер/апликација поделе, итд.

8. Закључак