24. 3. 23. 오전 2:49 1주차_개별실습

fifa_train 데이터

- 연령(age)
- 대륙(continent)
- 계약종료일(contact_until)
- 포지션(position)
- 선호하는 발(prefer_foot): right, left
- 평판(reputation)
- 현재 능력치(stat_overall)
- 잠재 능력치(stat_potential)
- 기술력(stat_skill_moves)
- 이적료(values)

```
In [94]: import pandas as pd import numpy as np
```

In [95]: train = pd.read_csv('FIFA_train.csv')
 test = pd.read_csv('FIFA_test.csv')

In [96]: train

Out[96]:

:	id	name	age	continent	contract_until	position	prefer_foot	reputation	stat_overall	stat_potential	stat_skill_moves	value
0	0	L. Messi	31	south america	2021	ST	left	5	94	94	4	110500000
1	3	De Gea	27	europe	2020	GK	right	4	91	93	1	72000000
2	7	L. Suárez	31	south america	2021	ST	right	5	91	91	3	80000000
3	8	Sergio Ramos	32	europe	2020	DF	right	4	91	91	3	51000000
4	9	J. Oblak	25	europe	2021	GK	right	3	90	93	1	68000000
•••					•••					•••		
8878	16925	S. Adewusi	18	africa	2019	MF	right	1	48	63	3	60000
8879	16936	C. Ehlich	19	europe	2020	DF	right	1	47	59	2	40000
8880	16941	N. Fuentes	18	south america	2021	DF	right	1	47	64	2	50000
8881	16942	J. Milli	18	europe	2021	GK	right	1	47	65	1	50000
8882	16948	N. Christoffersson	19	europe	2020	ST	right	1	47	63	2	60000

8883 rows × 12 columns

In [97]: train.dtypes

int64 id Out[97]: name object age int64 continent object contract_until object position object prefer_foot object reputation int64 stat_overall int64 stat_potential int64 stat_skill_moves int64

dtype: object

int64

전처리

va l ue

In [98]: train.isnull().sum()

Out[98]:

id name 0 0 age 0 continent contract_until 0 position prefer_foot 0 reputation stat_overall stat_potential 0 stat_skill_moves 0 value 0 dtype: int64

In [99]: train['contract_until'].value_counts()

```
24. 3. 23. 오전 2:49
```

```
contract_until
Out[99]:
         2019
                      2308
         2021
         2020
                      2041
         2022
                       761
         2023
                       506
         30-Jun-19
                       388
         2018
                       327
         31-Dec-18
                        60
         31-May-19
                        13
         2024
                        12
         31-Jan-19
                        10
         30-Jun-20
                         6
         2025
                         3
         01-Jan-19
                         2
         2026
          12-Jan-19
                         1
         Name: count, dtype: int64
```

In [101... train['contract_until'] = train['contract_until'].str.replace('30-Jun-19', '2019')
 train['contract_until'] = train['contract_until'].str.replace('31-May-19', '2019')
 train['contract_until'] = train['contract_until'].str.replace('31-Jan-19', '2019')
 train['contract_until'] = train['contract_until'].str.replace('12-Jan-19', '2019')
 train['contract_until'] = train['contract_until'].str.replace('01-Jan-19', '2019')
 train['contract_until'] = train['contract_until'].str.replace('31-Dec-18', '2018')
 train['contract_until'] = train['contract_until'].str.replace('30-Jun-20', '2020')

In [102... train['contract_until'].value_counts()

```
contract_until
2019 2858
Out[102]:
           2021
                    2308
           2020
                    2047
           2022
                     761
           2023
                     506
           2018
                     387
           2024
                      12
           2025
                       3
           2026
```

Name: count, dtype: int64

시각화

```
In [16]: %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns

In [17]: plt.style.use('ggplot')
```

포지션과 선호하는 발 - 바 그래프

In [18]: train[['position', 'prefer_foot','id']]

Out[18]:		position	prefer_foot	id
	0	ST	left	0
	1	GK	right	3
	2	ST	right	7
	3	DF	right	8
	4	GK	right	9
	•••			
	8878	MF	right	16925
	8879	DF	right	16936
	8880	DF	right	16941
	8881	GK	right	16942
	8882	ST	right	16948

8883 rows × 3 columns

```
In [19]: train[['position', 'prefer_foot','id']].groupby(['position', 'prefer_foot']).count()
```

Out[19]:

 position
 prefer_foot

 DF
 left
 908

 right
 1876

 GK
 left
 98

 right
 907

 MF
 left
 757

 right
 2645

 ST
 left
 320

 right
 1372

id

In [23]: embarked_df = train[['position', 'prefer_foot','id']].groupby(['position', 'prefer_foot']).count().unstack()
embarked_df

```
Out[23]: id

prefer_foot left right

position
```

DF 908 1876**GK** 98 907**MF** 757 2645**ST** 320 1372

In [128... embarked_df.plot.bar(stacked = True)

Out[128]: <Axes: xlabel='reputation'>

<Figure size 500x300 with 0 Axes>

평판과 발 선호도

In [106... embarked_df = train[['reputation', 'prefer_foot','id']].groupby(['reputation', 'prefer_foot']).count().unstack()
embarked_df

Out[106]: id

In [127... ticket_df = train[['reputation','prefer_foot','id']].dropna().groupby(['reputation','prefer_foot']).count().unstack()
ticket_df.plot.bar(stacked=True)

Out[127]: <Axes: xlabel='reputation'>

<Figure size 500x300 with 0 Axes>

In [107... embarked_df['left_ratio'] = embarked_df['id']['left'] / embarked_df['id']['right']
embarked_df

24. 3. 23. 오전 2:49 1주차_개별실습

```
        prefer_foot
        left
        right
        reputation

        1
        1877
        6127
        0.306349

        2
        162
        511
        0.317025

        3
        36
        136
        0.264706

        4
        7
        23
        0.304348

        5
        1
        3
        0.3333333
```

연령 별 선호하는 발을 히스토그램으로 표현

```
In [33]: train['age'].describe()
         count
                 8883.000000
Out[33]:
         mean
                   25.208713
                    4.643264
         std
                   16.000000
         min
         25%
                   21.000000
         50%
                   25.000000
                   29.000000
         max
                   40.000000
         Name: age, dtype: float64
 In [50]: embarked_df = train[['age', 'prefer_foot','id']].groupby(['age', 'prefer_foot']).count().unstack()
         embarked_df
Out[50]:
                          id
          prefer_foot left right
               age
               16
                    3.0 15.0
               17 31.0 100.0
                18 69.0 275.0
               19 117.0 373.0
               20 127.0 454.0
               21 154.0 522.0
               22 137.0 491.0
               23 156.0 497.0
               24 187.0 495.0
               25 160.0 493.0
               26 179.0 523.0
               27 144.0 430.0
               28 131.0 397.0
               29 112.0 359.0
               30 121.0 353.0
               31 65.0 280.0
                32 58.0 227.0
                33 40.0 161.0
                34 56.0 160.0
                   17.0 72.0
                35
                36
                    8.0 56.0
                37
                    6.0 36.0
                38
                    2.0 15.0
                39
                    3.0 13.0
                40 NaN
                         3.0
        plt.xticks(range(16, 41, 3), [str(i) for i in range(16, 41, 3)])
         plt.legend()
Out[131]: <matplotlib.legend.Legend at 0x28aff8cf670>
```

24. 3. 23. 오전 2:49 1주차_개별실습

박스플롯

In [129... #대륙별 현재 능력치 train.boxplot(column='stat_overall', by='continent', figsize=(10, 6)) plt.ylabel('stat_overall')

Out[129]: Text(0, 0.5, 'stat_overall')

<Figure size 500x300 with 0 Axes>

Boxplot grouped by continent stat overall

In [130... #대륙별 잠재 능력치 train.boxplot(column='stat_potential', by='continent', figsize=(10, 6)) plt.ylabel('stat_potential')

Out[130]: Text(0, 0.5, 'stat_potential')

<Figure size 500x300 with 0 Axes>

1주차_개별실습 24. 3. 23. 오전 2:49

Boxplot grouped by continent stat_potential

상관관계분석

In [62]: train.dtypes int64 Out[62]: object int64 name age continent object contract_until object position object prefer_foot object reputation int64 stat_overall int64 stat_potential int64 stat_skill_moves int64 va l ue int64 dtype: object In [66]: df_corr = train[['age', 'continent', 'position', 'reputation', 'stat_overall', 'stat_potential', 'stat_skill_moves', 'value']] In [67]: df_corr

]:		age	continent	position	reputation	stat_overall	stat_potential	stat_skill_moves	value
	0	31	south america	ST	5	94	94	4	110500000
	1	27	europe	GK	4	91	93	1	72000000
	2	31	south america	ST	5	91	91	3	80000000
	3	32	europe	DF	4	91	91	3	51000000
	4	25	europe	GK	3	90	93	1	68000000
	•••			•••					
	8878	18	africa	MF	1	48	63	3	60000
	8879	19	europe	DF	1	47	59	2	40000
	8880	18	south america	DF	1	47	64	2	50000
	8881	18	europe	GK	1	47	65	1	50000
	8882	19	europe	ST	1	47	63	2	60000

8883 rows × 8 columns

In [69]: df_corr = pd.get_dummies(df_corr, columns=['continent', 'position'])

In [70]: df_corr.head()

Out[67

Out[70]:	i	age	reputation	stat_overall	stat_potential	stat_skill_moves	value	continent_africa	continent_asia	continent_europe	continent_oceania	continent_south america	position_DF	positio
	0	31	5	94	94	4	110500000	False	False	False	False	True	False	
	1	27	4	91	93	1	72000000	False	False	True	False	False	False	
	2	31	5	91	91	3	80000000	False	False	False	False	True	False	
	3	32	4	91	91	3	51000000	False	False	True	False	False	True	
	4	25	3	90	93	1	68000000	False	False	True	False	False	False	

In [72]: df_corr_res = df_corr.corr()

In [73]: df_corr_res

Out[73]:

	age	reputation	stat_overall	stat_potential	stat_skill_moves	value	continent_africa	continent_asia	continent_europe	continent_oceania	continent_south america
age	1.000000	0.318879	0.427288	-0.192996	-0.010552	0.119474	-0.026449	0.000814	-0.158905	-0.100230	0.246510
reputation	0.318879	1.000000	0.796329	0.666404	0.340456	0.892277	-0.058821	-0.236849	0.160088	-0.221088	0.042426
stat_overall	0.427288	0.796329	1.000000	0.796941	0.532457	0.870486	0.010628	-0.364174	0.079079	-0.285272	0.204383
stat_potential	-0.192996	0.666404	0.796941	1.000000	0.518440	0.859533	-0.000519	-0.404287	0.194251	-0.248747	0.078714
stat_skill_moves	-0.010552	0.340456	0.532457	0.518440	1.000000	0.471352	0.131337	-0.172264	-0.036032	-0.143812	0.119332
value	0.119474	0.892277	0.870486	0.859533	0.471352	1.000000	-0.021999	-0.297886	0.145624	-0.239465	0.083332
continent_africa	-0.026449	-0.058821	0.010628	-0.000519	0.131337	-0.021999	1.000000	-0.026046	-0.402450	-0.023388	-0.046256
continent_asia	0.000814	-0.236849	-0.364174	-0.404287	-0.172264	-0.297886	-0.026046	1.000000	-0.433451	0.031325	-0.073622
continent_europe	-0.158905	0.160088	0.079079	0.194251	-0.036032	0.145624	-0.402450	-0.433451	1.000000	-0.191759	-0.714585
continent_oceania	-0.100230	-0.221088	-0.285272	-0.248747	-0.143812	-0.239465	-0.023388	0.031325	-0.191759	1.000000	-0.043977
continent_south america	0.246510	0.042426	0.204383	0.078714	0.119332	0.083332	-0.046256	-0.073622	-0.714585	-0.043977	1.000000
position_DF	0.136768	-0.020412	0.017436	-0.073528	-0.235570	-0.075726	-0.072209	-0.017613	0.034304	0.006717	0.007576
position_GK	0.063363	-0.096508	-0.252644	-0.242119	-0.848716	-0.180062	-0.124998	0.070472	0.078763	0.048855	-0.086243
position_MF	-0.086004	0.054971	0.112296	0.144545	0.526889	0.125620	0.037451	0.027012	-0.028847	-0.023787	0.004615
position_ST	-0.107087	0.034724	0.046502	0.105646	0.315237	0.079791	0.147801	-0.077061	-0.072095	-0.018638	0.060026

In [74]: plt.figure(figsize = (9,9))
sns.heatmap(df_corr_res, vmax = 1, vmin = -1, center = 0, annot = True)

Out[74]: <Axes: >

In []: