Math 395: Homework 2 Name: Avinash Iyer

Due: 09/24/2024

Collaborators: Noah Smith, Gianluca Crescenzo, Carly Venenciano, Timothy Rainone, Clarissa Ly, Ben Langer Weida

Problem 1

Problem: Let $V = P_n(\mathbb{F})$. Let $\mathcal{B} = \{1, x, \dots, x^n\}$ be a basis of V. Let $\lambda \in \mathbb{F}$, and set $C = \{1, x - \lambda, \dots, (x - \lambda)^{n-1}, (x - \lambda)^n\}$.

Define a linear transformation $T \in \operatorname{Hom}_{\mathbb{F}}(V,V)$ by taking $T\left(x^{j}\right) = (x-\lambda)^{j}$. Determine the matrix of this linear transformation. Use this to conclude that C is also a basis of V.

Solution. Considering our basis $\mathcal{B} = \{1, x, \dots, x^n\}$, we evaluate $T(x^j)$ for each j. In particular, this yields

$$T(1) = 1$$

$$T(x) = x - \lambda$$

$$\vdots$$

$$T(x^{n-1}) = (x - \lambda)^{n-1}$$

$$T(x^n) = (x - \lambda)^n.$$

In particular, $T(x^j) = (1)(x - \lambda)^j$, implying that our matrix is

$$[T]_{\mathcal{B}}^{C} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
$$= I_{n}.$$

In particular, since I_n is an isomorphism, it is the case that T maps one basis of V to another basis of V, meaning C is a basis of P_n (\mathbb{F}).