MATH 2418: Linear Algebra

Assignment 7 (sections 4.4 and 5.1)

Due: October 19, 2016 Term: Fall, 2016

Suggested problems(do not turn in): Section 3.5: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17; Section 4.1: 3, 8, 11, 12, 17, 18, 19, 24, 27, 28, 29. Note that solutions to these suggested problems are available at *math.mit.edu/linearalgebra*

1. [10 points] Find bases for the four fundamental subspaces $(C(A^T), N(A), C(A), N(A^T))$ of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- 2. [10 points] (a) (4 points) Give an example of a 3×3 matrix whose column space is a plane through the origin in \mathbb{R}^3 .
 - (b) (3 points) What kind of geometric object is the nullspace of your matrix? Explain your answer.
 - (c) (3 points) What kind of geometric object is the row space of your matrix? Explain your answer.

- 3. [10 points] (a) (5 points) Suppose that A is a 3×3 matrix whose nullspace is a line through the origin in \mathbb{R}^3 . Can the row and column space of A also be a line through the origin? Explain.
 - (b) (5 points) Let A be a 7×6 matrix such that $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Find the rank and the dimension of the nullspace of A.

- 4. [10 points] Let A be 5×7 matrix with rank 4.
 - (a) (5 points) What is the dimension of the solution space of $A\mathbf{x} = 0$?
 - (b) (5 points) Is there a solution for $A\mathbf{x} = \mathbf{b}$ for all vectors \mathbf{b} in \mathbb{R}^5 ? Explain your answer.

5. True or False? (1 point each)

- (a) Either the row vectors or the column vectors of a square matrix are linearly independent.
- (b) A matrix with linearly independent row vectors and linearly independent column vectors is square.
- (c) The dimension of the nullspace of a nonzero $m \times n$ matrix is at most m.
- (d) Adding one additional column to a matrix increases its rank by one.
- (e) The dimension of the nullspace of a square matrix with linearly dependent rows is at least one.
- (f) If A is square and $A\mathbf{x} = \mathbf{b}$ does not have a solution for some vector \mathbf{b} , then the dimension of the nullspace of A is zero.
- (g) If a matrix A has more rows than columns, then the dimension of the row space is greater than the dimension of the column space.
- (h) If $rank(A^T) = rank(A)$, then A is square.
- (i) There is no 3×3 matrix whose row space and nullspace are both lines in 3-space.
- (j) If V is a subspace of R^n and W a subspace of V, then W^{\perp} is a subspace of V^{\perp} .