Putnam preparation

Induction, pigeonholing

Induction: Let a be an integer and P(n) a proposition (statement) about n for each integer $n \ge a$. The principle of mathematical induction states that:

If

- (i) P(a) is true, and
- (ii) for each integer $k \ge a$, P(k) true implies P(k+1) true, then P(n) is true for all integers $n \ge a$.

The following variant, sometimes called **strong induction**, is occasionally useful: If

- (i) P(a) is true, and
- (ii) for each integer $k \geq a$, P(a), P(a+1), ..., P(k) true implies P(k+1) true, then P(n) is true for all integers $n \geq a$.

Pigeonhole principle: If kn+1 objects $(k \ge 1)$ are distributed among n boxes, one of the boxes will contain at least k+1 objects.