

Methods and Practice

Minh Bui *Australian National University*

Workshop on Molecular Evolution Woods Hole, June 2022

IQ-TREE DEVELOPMENT TEAM

James Barbetti
Contribution: Software engineering for COVID-19 data

Robert Lanfear

Google Scholar

Contribution: Inspiring ideas and advice.

Thomas Wong
Contribution: ModelFinder 2

Michael Woodhams

Google Scholar

Contribution: Lie Markov models.

Google Scholar

Contribution: Team leader, software core, ultrafast bootstrap, model

Nhan Trong Ly
Contribution: sequence simulations.

Austria

Australia

Olga Chernomor
Google Scholar
Contribution: Partition models and phylogenomic search.

Arndt von Haeseler
Google Scholar
Contribution: Inspiring ideas and advice.

Dominik Schrempf
Google Scholar
Contribution: Polymorphism-aware
models (PoMo).

Heiko A. Schmidt
Google Scholar
Contribution: Integration of TREE-PUZZLE features.

Diep Thi Hoang

Contribution: Improving ultrafast bootstrap.

Vietnam

Thanks to plenty of users for feedback and bug reports!

Why IQ-TREE?

Next generation sequencing data represent both a blessing and a curse:

- Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.
- Curse: Many model assumptions become increasingly distant from the truth due to growing data complexity.

"All models are wrong, but some are useful" (Box, 1976)

With IQ-TREE we aim to:

- Analyze ultra-large data sets.
- Provide many (if not most) "useful" models of sequence evolution.

But still, there are RAxML, PhyML out there, why do I need IQ-TREE?

- We better have at least 2 software independently developed for similar purpose. Only then, the pros and cons (sometimes **bugs**) can be identified. This creates a *friendly* competition, which helps to advance the field!
- Same as having MrBayes, RevBayes, BEAST for Bayesian inference.

Typical phylogenetic analysis under maximum likelihood

Substitution model Multiple sequence alignment ACGGGAT--C--CATTAC ACGGGAT--C--C--CACTAC **Model selection** CCGGGATAGCTTC----CATTAC ACCCCCTATC--CACTGGATTAC ModelFinder (2017) ACGACATATC--CACTGGATTCC My work focused on improving all three steps for large datasets! IQ-TREE (2015, 2020) Tree reconstruction iqtree2 -s ALN_FILE -B 1000 Ultrafast bootstrap (2013, 2018) 85% 94% **Assessment of branch supports**

Phylogenetic tree

Tree with branch supports

63%

Step 1: Model selection

Multiple sequence alignment

ACGGGAT--C--C--CATTAC
ACGGGAT--C--C--CACTAC
CCGGGATAGCTTC---CATTAC
ACCCCCTATC--CACTGGATTAC
ACGACATATC--CACTGGATTCC

Model selection

ModelFinder (2017)

Substitution model

Tree with branch supports

Assessment of branch supports

Model selection approaches

- models.
- PartitionFinder: better models for genomic data but still slow.
- ModelFinder: >10x faster and more realistic models.
- Current work: ModelFinder 2 = ModelFinder + **PartitionFinder**

Robert Lanfear (ANU)

Lars Jermiin (ANU & CSIRO)

Thomas Wong (ANU)

(https://www.nature.com/articles/nmeth.4285)

Models of sequence evolution

Rate heterogeneity: alignment sites evolved at different rates. Some slow, some fast.

Rate model	Explanation
+I	Some sites are <i>invariable</i> (zero rate), e.g. due to selective force.
+G	Site rates follow a Gamma distribution.
+I+G	Some sites are invariable, the rest follow a Gamma distribution.
+R	Sites fall into several categories from slow to fast rates. No assumption of rate distribution (free-rate model).

A model = substitution model + rate heterogeneity, e.g. "GTR+G"

Step 2: Tree reconstruction

Search heuristics for finding maximum likelihood trees

Search heuristics for finding maximum likelihood trees

- 1. Hill-climbing / greedy algorithms: Fast but local optimum
- 2. Genetic algorithm: Slow but escaping local optima
- 3. IQ-TREE: Fast and escaping local optima

Tree search algorithms in RAxML and IQ-TREE

Feature	RAxML	IQ-TREE
Starting tree	Parsimony: Stepwise addition + subtree pruning and regrafting (SPR)	99 parsimony trees (like RAxML) and 1 Neighbor-joining tree
Tree search heuristics	Hill-climbing SPR	Stochastic: Hill-climbing Nearest Neighbor Interchange (NNI) and downhill NNI

IQ-TREE: A new stochastic algorithm

Metaheuristics: Random restart, Iterated local search, Evolution strategy

An independent benchmark by Zhou et al. (2018)

Step 2: Summary

Step 3: Ultrafast bootstrap

Multiple sequence alignment

ACGGGAT--C--C--CATTAC
ACGGGAT--C--C--CACTAC
CCGGGATAGCTTC---CATTAC
ACCCCCTATC--CACTGGATTAC
ACGACATATC--CACTGGATTCC

Model selection

Substitution model

Tree with branch supports

Ultrafast bootstrap (2013, 2018)

Assessment of branch supports

Bootstrap: How reliable are branches of the tree?

Consensus tree

Bootstrap analysis is extremely time-consuming!

UFBoot: Ultrafast bootstrap approximation

M.A.T. Nguyen, A. von Haeseler

Use UFBoot >= 95% instead of 70%!

Genome-scale data: Concatenation methods

Supermatrix

Gene 1	Gene 2	•••••	Gene 1,000
CACCTGTCGT			TCTGGTGCAG
CAGCTGTCGT	GCTCTTTCTG	TTGAGCCTGG	TCTGGTGCAG
CAGCTGCCGT	GTTTTCTCTG	TTGAGCCTGG	TCTGGTACAG
CAGCTGCCGC	GTTCTCTCCG		TCTGGTGCAA
CTCCTGCCGG	GTGCTCTCAG		
CTCCTGCCGG		CTGAGCCGGG	TCTGGTGCAG
CTCTTGCCGG		CTGAGCCTTG	

Species tree of life

30 days of computation and 280 GB RAM for an insect data set!

Partition model

Supermatrix

Recommended for typical analysis (Duchene et al. 2020)

How to reduce potential model overfitting?

Substitution models:

HKY

... GTR+G

PartitionFinder algorithm

(Lanfear et al. 2012):

- 1. Evaluate to merge all pairs of genes.
- 2. Choose the pair with the best score.
- 3. If score improves, merge two genes and repeat steps 1-3.
- 4. Otherwise, stop.

Relaxed clustering algorithm

(Lanfear et al. 2014):

In step 1: only examine the top k% of most "promising" pairs.

Tree topology tests

Testing two trees (Kishino & Hasegawa, 1989):

- 1. Statistic: $\delta = \log(likelihood(T_1)) \log(likelihood(T_0))$.
- 2. Generate distribution of δ from many "random" data (e.g. by 1000 bootstrap resampling).
- 3. Compare the statistic between original and random data to obtain *p-value*.
- 4. If p-value < 0.05: YES! two trees are significantly different.
- 5. If p-value \geq 0.05: NO! they are not.

Concatenation methods: Limitation

Supermatrix

Species tree of life

Bootstrap supports and Bayesian posteriors tend to 100% as #genes increases!

Concatenation assumes a single tree across all loci

Potential systematic bias

Felsenstein (1985):

which not. Where the method of inferring phylogenies is one with undesirable statistical properties such as inconsistency, the bootstrap does not correct for these.

Coalescent/reconciliation methods

Gene Concordance Factor (gCF): How often a branch in species tree is found among gene trees? $0\% \le gCF \le 100\%$

Implementation in IQ-TREE fully accounts for missing data

Problem: Uncertainties in gene trees!

Site Concordance Factor (sCF)

Supermatrix Gene 1 Gene 2 Gene 1,000 CACCTGTCGT TCTGGTGCAG CAGCTGTCGT GCTCTTTCTG TTGAGCCTGG TCTGGTGCAG CAGCTGCCGT **GTTTTCTCTG** TTGAGCCTGG **TCTGGTACAG** CAGCTGCCGC **GTTCTCTCCG TCTGGTGCAA** CTCCTGCCGG **GTGCTCTCAG** CTCCTGCCGG CTGAGCCGGG TCTGGTGCAG CTCTTGCCGG CTGAGCCTTG

Site Concordance Factor (sCF):

How often a branch is

"supported" by alignment sites?

33.3% ≤ sCF ≤ 100%

An example birds data set (Reddy et al., 2017)

- gCF and sCF are useful when bootstrap supports reach 100%.
- CAUTION when gCF ~ 0% or sCF ~ 33%, even if BS ~ 100%.
- GREAT when gCF and sCF > 50%.

Dataset for IQ-TREE lab: Where is Turtle in the tree?

Thanks Jeremy Brown

IQ-TREE lab

- 1. Input data
- 2. Inferring the first phylogeny
- 3. Applying partition model
- 4. Choosing the best partitioning scheme
- 5. Tree topology tests
- 6. Identifying most influential genes
- 7. Removing influential genes
- 8. Concordance factors (*advanced)

http://www.iqtree.org/workshop/molevol2022

Fill out your answers in a Google form (shared via Slack)