

ENTROPIA

Até aqui o estudo da segunda lei da termodinâmica esteve afeto aos ciclos termodinâmicos.

Mas estamos mais interessados na análise de processos.

No estudo da primeira lei, estabelecemos, inicialmente, esta lei para ciclos e depois definimos a propriedade energia interna, que possibilitou usar quantitativamente primeira lei em processos.

Analogamente, estabelecemos a segunda lei para um ciclo e agora verificaremos que a segunda lei conduz a uma outra propriedade, a entropia, que nos possibilita aplicar quantitativamente a segunda lei em processos.

A termodinâmica pode ser definida como a ciência da energia e da entropia.

DESIGUALDADE DE CLAUSIUS

O primeiro passo do estudo que leva a formulação da propriedade termodinâmica entropia é o estabelecimento da desigualdade de Clausius:

A desigualdade de Clausius é um $\frac{\delta Q}{T}$ segunda lei da termodinâmica.

O que é **corolário**: proposição resultante de uma verdade; consequência direta de uma proposição demonstrada

A sua validade será demonstrada para todos os ciclos possíveis. Isso inclui os motores térmicos e os refrigeradores reversíveis e irreversíveis.

No caso dos ciclos reversíveis, é preciso considerar apenas um ciclo de Carnot porque qualquer ciclo reversível pode ser representado por uma série de ciclos de Carnot.

Consideremos, inicialmente, o ciclo reversível (Carnot) de um motor térmico que opera entre os reservatórios térmicos que apresentam temperaturas iguais a T_H e T_L .

Para este ciclo, a integral cíclica do calor trocado é maior do que zero.

$$\oint \delta Q = Q_H - Q_L > 0$$

Como T_H e T_L são constantes, utilizando a definição da escala de temperatura absoluta e do fato de que este é um ciclo reversível, concluímos que

 $\oint \frac{\partial Q}{T} = \frac{Q_H}{T_H} - \frac{Q_L}{T_L} = 0$

Consideremos, agora, um ciclo motor térmico irreversível que opera entre as mesmas temperaturas T_H e T_L do motor reversível e recebendo a mesma quantidade de calor Q_H .

Comparando o ciclo irreversível com o reversível, concluímos, pela segunda lei, que:

$$W_{irr} < W_{rev}$$

Como $Q_H - Q_L = W$ para os ciclos, reversíveis ou irreversíveis, concluímos que

$$Q_H - Q_{Lirr} < Q_H - Q_{Lrev}$$

e portanto

$$Q_{Lirr} > Q_{Lrev}$$

Consequentemente, para o motor cíclico irreversível,

$$\oint \delta Q = Q_H - Q_{Lirr} > 0 \qquad \qquad \oint \frac{\delta Q}{T} = \frac{Q_H}{T_H} - \frac{Q_{Lirr}}{T_I} < 0$$

Demonstração similar pode ser feita para os ciclos de refrigeração.

Assim podemos escrever, para todos os ciclos, a desigualdade de Clausius:

$$\oint \frac{\delta Q}{T} \le 0$$

A igualdade é valida para os ciclos reversíveis e a desigualdade para os ciclos irreversíveis.

No exemplo a seguir o ciclo satisfaz a desigualdade de Clausius? Se satisfaz, o ciclo não viola a segunda lei da termodinâmica.

Calor é transferido em dois loçais, na caldeira e no condensador.

$$\oint \frac{\delta Q}{T} = \iint \frac{\delta Q}{T} \Big|_{caldeira} + \iint \frac{\delta Q}{T} \Big|_{condensador}$$

Como a temperatura permanece constante, tanto na caldeira como no condensador:

$$\oint \frac{\delta Q}{T} = \frac{1}{T} \int_{1}^{2} \delta Q + \frac{1}{T} \int_{2}^{4} \delta Q = \frac{1}{T} \frac{Q_{2}}{T_{1}} + \frac{3}{3} \frac{Q_{4}}{T_{3}}$$
The proof of the decrease of the state of th

Considerando um quilograma de fluido de trabalho, temos

$$_{1}q_{2} = h_{2} - h_{1} = 2066,3 \text{ kJ/kg}; T_{1} = 164,97^{\circ}\text{C}$$

$$_{3}q_{4} = h_{4} - h_{3} = 463,4 - 2361,8 = -1898,4 \text{ kJ / kg}; T_{3} = 53,97^{\circ}\text{C}$$

Portanto
$$\int \frac{\delta Q}{T} = \frac{2066,3}{164,97+273,15} - \frac{1898,4}{53,97+273,15} = -1,087 \, kJ \, / \, kgK$$
 Ciclo satisfaz a desigualdade de Clausius \rightarrow não viola a segunda lei da termodinâmica.

ENTROPIA UMA PROPRIEDADE TERMODINÂMICA

A segunda lei da termodinâmica conduz a propriedade termodinâmica denominada entropia.

Um sistema percorre um processo reversível do estado 1 ao estado 2, representado pelo caminho A.

O ciclo é completado através de um processo reversível, representado pelo caminho B.

Como esse ciclo é reversível, podemos escrever

$$\int \frac{\delta Q}{T} = 0 = \int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{A} + \int_{2}^{1} \left(\frac{\delta Q}{T} \right)_{B}$$

Outro ciclo reversível tem o processo inicial alterado para o representado pelo caminho C e completado através do mesmo processo reversível representado pelo caminho B.

Para esse ciclo:

$$\int \frac{\delta Q}{T} = 0 = \int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{C} + \int_{2}^{1} \left(\frac{\delta Q}{T} \right)_{B}$$

Subtraindo a segunda equação da primeira, temos

$$\int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{A} = \int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{C}$$

Como ∫δQ/T é constante para todos os caminhos reversíveis entre os estados 1 e 2, conclui-se que essa quantidade é independente do caminho e é uma função apenas dos estados inicial e final; portanto, ela é uma propriedade.

Esta propriedade é denominada entropia e é designada por S.

Concluímos que a propriedade termodinâmica entropia pode ser definida por:

$$dS \equiv \left(\frac{\delta Q}{T}\right)_{rev}$$

A entropia é uma propriedade extensiva, e a entropia por unidade de massa é indicada por **s**.

E importante observar que a entropia é definida em função de um processo reversível.

A variação de entropia de um sistema numa mudança de estado, pode ser obtida pela integração:

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T} \right)_{rev}$$

Para efetuar essa integração, a relação entre T e Q deve ser conhecida

ENTROPIA

substantivo feminino

- 1. fís num sistema termodinâmico bem definido e reversível, função de estado cuja variação infinitesimal é igual à razão entre o calor infinitesimal trocado com meio externo e a temperatura absoluta do sistema [símb.: S].
- 2. fís num sistema físico, a medida da energia não disponível para a realização de trabalho.

Em termodinâmica, **entropia** é a medida de desordem das partículas em um sistema físico.

Boltzmann diz que a entropia mede o grau de *desordem*, mas existem certos fenômenos simples que parecem desafiar essa lei.

"paradoxo do ovo cozido": ao ferver um ovo, o acréscimo de temperatura aumenta a entropia, no entanto o ovo fica duro, o que parece corresponder a um estado mais ordenado.

Observação: como a entropia é uma propriedade, a variação de entropia de uma substância, ao ir de um estado a outro, é a mesma para todos os processos, tanto reversíveis como irreversíveis, entre estes dois estados.

A equação permite obter a variação de entropia somente através de um caminho reversível. Entretanto, uma vez determinado, esse será o valor da variação de entropia para todos os processe entre esses dois estados.

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T} \right)_{rev}$$

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T} \right)_{rev}$$

A equação permite calcular variações de entropia, porém não informa nada a respeito dos valores absolutos da entropia.

Pela terceira lei da termodinâmica pode-se atribuir o valor zero para a entropia de todas substâncias puras na temperatura zero absoluto. Disto resultam valores absolutos de entropia que são necessários para que se possa fazer a análise de reações químicas.

A **terceira lei da termodinâmica** foi desenvolvida por Walther Nernst entre 1906 e 1912, e diz que, quando um sistema se aproxima da temperatura do zero absoluto, todos os processos cessam, e a entropia tem como um valor mínimo.

A lei fornece um ponto de referência para a determinação do valor da entropia.

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T} \right)_{rev}$$

Quando não está envolvida nenhuma mudança de composição, é adequado atribuir valores de entropia em relação a um estado de referência arbitrário. Este é o método utilizado na maioria das tabelas de propriedades termodinâmicas.

Comentário relativo ao papel de T como fator integrante: Q é uma função de linha, e portanto δQ é uma diferencial inexata. Como $(\delta Q/T)_{rev}$ é uma propriedade termodinâmica, ela é uma diferencial exata.

Do ponto de vista matemático, uma diferencial inexata pode ser transformada numa exata pela introdução de um fator integrante. Portanto, num processo reversível, 1/T funciona como o fator integrante na transformação da diferencial inexata δQ para diferencial exata $\delta Q/T$.

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T} \right)_{rev}$$

Comentário relativo ao papel de T como fator integrante: Q é uma função de linha, e portanto δQ é uma diferencial inexata. Como $(\delta Q/T)_{rev}$ é uma propriedade termodinâmica, ela é uma diferencial exata.

Do ponto de vista matemático, uma diferencial inexata pode ser transformada numa exata pela introdução de um fator integrante. Portanto, num processo reversível, 1/T funciona como o fator integrante na transformação da diferencial inexata δQ para diferencial exata $\delta Q/T$.

VARIAÇÃO DE ENTROPIA EM PROCESSOS REVERSÍVEIS

Motor térmico que opera segundo o ciclo de Carnot:

Primeiro processo – transferência de calor is temperatura para o fluido de trabalho.

Processo isotérmico:

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T} \right)_{rev}$$

Processo representado pelà área a paix o da $\overline{\lim}_{H} 2$ 1-2, área 1-2-b-a-1, que representa o calor transferido ao fluido de trabalho durante o processo.

O segundo processo de um ciclo de Carnot é adiabático reversível.

Da definição de entropia:

$$dS \equiv \left(\frac{\delta Q}{T}\right)_{rev}$$

A entropia permanece constante num processo adiabático reversível.

Um processo entropia constante é chamado de processo isoentrópico.

A linha 2-3 representa esse processo que termina no estado 3 (onde a temperatura do fluido de trabalho atinge o valor T_1).

O terceiro processo é isotérmico reversível, no qual o calor é transferido do fluido de trabalho reservatório térmico a baixa temperatura.

Para esse processo:

$$S_4 - S_3 = \int_3^4 \left(\frac{\delta Q}{T}\right)_{rev} = \frac{1}{T_L} \int_3^4 \delta Q = \frac{{}_3Q_4}{T_L}$$

Durante esse processo, o calor transferido é negativo (em relação ao fluido de trabalho) e a entropia do fluido decresce.

A área abaixo da linha 3-4, área 3-4-a-b-3, representa o calor transferido do fluido de trabalho ao reservatório a baixa temperatura.

O processo final, 4-1, é um processo adiabático reversível (e portanto isoentrópico).

A diminuição de entropia no processo 3-4 é exatamente igual ao aumento de entropia no processo 1-2.

Como o trabalho líquido do ciclo é igual à transferência líquida de calor, a área 1-2-3-4-1 representa o trabalho líquido do ciclo.

O rendimento térmico do ciclo pode ser expresso em função de áreas:

$$\eta_{t\acute{e}rmico} = \frac{W_{liq}}{Q_{H}} = \frac{\acute{a}rea\,1\text{--}\,2\text{--}\,3\text{--}\,4\text{--}\,1}{\acute{a}rea\,1\text{--}\,2\text{--}\,b\text{--}\,a\text{--}\,1}$$

$$\eta_{t\acute{e}rmico} = \frac{W_{liq}}{Q_{tt}} = \frac{\acute{a}rea1 - 2 - 3 - 4 - 1}{\acute{a}rea1 - 2 - b - a - 1}$$

Visualizações gráficas:

O aumento de T_H , enquanto T_L permanece constante, aumenta o rendimento térmico e aumenta o trabalho líquido.

A diminuição de T_L , enquanto T_H permanece constante, aumenta o rendimento térmico e aumenta o trabalho líquido.

O rendimento térmico se aproxima de 100 %, quando a temperatura absoluta, na qual o calor é rejeitado, tende a zero.

21

Se o ciclo for invertido, teremos um refrigerador ou uma bomba de calor.

A entropia do fluido de trabalho aumenta à temperatura T_L , pois o calor é transferido ao fluido de trabalho.

A entropia decresce à temperatura T_H devido à transferência de calor do fluido de trabalho.

Qual o comportamento dos coeficientes de desempenho do refrigerador e da bomba de calor com a variação das temperaturas?

22

$$dS \equiv \left(\frac{\delta Q}{T}\right)_{rev}$$

Processos que são internamente reversíveis, isto é, processos que não envolvem irreversibilidades dentro da fronteira do sistema.

Para tais processos, o calor transferido para ou do sistema pode ser indicado como uma área no diagrama temperatura-entropia.

Mudança de estado de líquido saturado para vapor saturado a pressão constante – processo 1-2 no diagrama T-s (operar com temperaturas absolutas). A área 1-2-b-a-1 representa o calor transferido.

Faculdade de

Engenharia

MEC 011 MÁQUINAS TÉRMICAS

23

Vapor d'água a 10 MPa $\rightarrow h_{lv} = 1317,1 \text{ kJ 1kg}$; T=311,06+273,15=584,21 K

Portanto:

$$s_{lv} = \frac{h_{lv}}{T} = \frac{1317,1}{584,21} = 2,2544 \text{ kJ/kg K}$$

Esse é o valor de s_{lv} apresentado nas tabelas de vapor d'água.

Na transferência de calor ao vapor saturado, à pressão constante, o vapor é superaquecido longo da linha 2-3.

Para o processo:

$${}_{2}q_{3} = \frac{1}{m} \int_{2}^{3} \delta Q = \int_{2}^{3} T dS$$

A área abaixo da linha 2-3, a área 2-3-c-b-2, representa a integral de Tds entre os estados 2 e 3. Portanto, esta representa o calor transferido durante o processo de transferência de calor reversível mencionado.

25

Uma conclusão importante é que, para processos internamente reversíveis, a área abaixo da linha que representa o processo no diagrama temperatura-entropia é igual a quantidade de calor transferida.

Isso não é verdade para processos irreversíveis.

26

Um cilindro provido de êmbolo que contém vapor saturado de R-134a a -5°C. O vapor é comprimido, segundo um processo adiabático reversível, até a pressão de 1,0 MPa. Determine o trabalho específico neste processo.

Primeira lei:

$$_{1}q_{2} = u_{2} - u_{1} + _{1}w_{2} = 0$$
 : $_{1}w_{2} = u_{2} - u_{1}$

Segunda lei:

$$s_2 = s_1$$

DUAS RELAÇÕES TERMODINAMICAS IMPORTANTES

Primeira lei da termodinâmica:

 $\delta Q = dU + \delta W$

Processo reversível:

 $\delta Q = TdS$

Trabalho dado por:

 $\delta W = pdV$

Resulta:

Equação pode ser usada em um ponto.

A integração da equação só pode ser realizada ao longo de um processo reversível.

28

DUAS RELAÇÕES TERMODINAMICAS IMPORTANTES

Entalpia:

Derivando:

Substituindo:

Equações de Gibbs.

Por unidade de massa:

$$H = U + pV$$

$$dH = dU + pdV + Vdp$$

$$||TdS = dH - Vdp||$$

VARIAÇÃO DE ENTROPIA DO SISTEMA DURANTE UM PROCESSO IRREVERSÍVEL

O ciclo dos processos rev

reversível:

O ciclo do processo irreversive F e do processo reversível B é irreversível. Da desigualdade de Clausius.

Subtraindo e rearranjan
$$\frac{\partial Q}{T} = \int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{C} + \int_{2}^{1} \left(\frac{\delta Q}{T}\right)_{B} < 0$$

$$\int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{A} > \int_{2}^{1} \left(\frac{\delta Q}{T} \right)_{C}$$

30

A entropia é uma propriedade:

$$\int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{A} = \int_{1}^{2} dS_{A} = \int_{1}^{2} dS_{C}$$

Portanto:

$$\int_{1}^{2} dS_{C} > \int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{C}$$

Como C é arbritário, pode-se generalizar.

Uma das equações mais importantes da termodinâmica –

Igualdade, processo reversível; Desigualdade, processo irreversível
$$\frac{\partial Q}{T}$$

GERAÇÃO DE ENTROPIA

ou^{dS}
$$\geq \frac{\delta Q}{T}$$
 $dS = \frac{\delta Q}{T} + \delta S_{ger}$

$$S_2 - S_1 \geq \int_{-\infty}^{\infty} \delta Q dS = \frac{\delta Q}{T} + \delta S_{ger} \leq 0$$

 $S_2 - S_1 \ge \int_1^{\delta Q} \frac{\delta S_{ger} \ge 0}{T_{processo}}$ $\delta S_{ger} - geração de entropia no <math>T_{processo}$ devido à irreversibilidades internas (atrito, expansão não assistida, etc.) e externas (transcal com diferença de temperatura finita, por ex.)

$$dS = \frac{\delta Q}{T} + \delta S_{ger} \rightarrow \delta Q_{irr} = TdS - T\delta S_{ger}$$

$$1^{a} \operatorname{Lei} \rightarrow \delta Q_{irr} = dU + \delta W_{irr}$$
Relação entre propiedades $\rightarrow TdS = dU + pdV$

O trabalho realizado no processo reversível e a diferença é proporcional a δS_{ger} .

 δS_{ger} é chamado "trabalho perdido" — na verdade uma oportunidade perdida de realização de trabalho.

$$dS = \frac{\delta Q}{T} + \delta S_{ger}$$

integrando:

$$S_2 - S_1 = \int_1^2 dS = \int_1^2 \frac{\delta Q}{T} + S_{2ger}$$

Expressão para a variação de entropia para um processo irreversível que envolve uma igualdade e não uma desigualdade.

Conclusões importantes:

- Existem dois modos de aumentar a entropia de um sistema pela transferência de calor ao sistema ou fazendo-o percorrer um processo irreversível.
- 2. Como a geração de entropia não pode ser negativa, há somente um único modo pelo qual a entropia de um sistema pode ser diminuída: transferindo-se calor do sistema.
- 3. Em um processo adiabático o aumento de entropia está associado com as irreversibilidades.
- 4. Representação de processos irreversíveis nos diagramas p-V e T-S: as áreas abaixo das curvas não representam, respectivamente, o trabalho e o calor envolvidos nos processos. Como não se conhece os estados intermediários, usa-se linhas pontilhadas na representação.

Irreversível reversível

MEC 011

MÁQUINAS TÉRMICAS

PRINCÍPIO DO AUMENTO DE ENTROPIA

Efeito da transferência de calor no sistema e, também, no meio.

Na figura uma quantidade de calor δQ é transferida do meio, a temperatura T_0 , para o sistema que está a temperatura T_0 o trabalho realizado pelo sistema durante o processo. Tem-se:

Para o sistema:
$$dS_{sistema} \ge \frac{\delta Q}{T}$$

Para o meio,
$$\delta Q$$
 é negativo: $dS_{meio} = \frac{-\delta Q}{T_0}$

A variação líquida total de entropia é:
$$dS_{líq} = dS_{sistema} + dS_{meio} \ge \frac{\delta Q}{T} - \frac{\delta Q}{T_0}$$
 \therefore $dS_{líq} \ge \delta Q \left(\frac{1}{T} - \frac{1}{T_0}\right)$

Como $T_0 > T$ a quantidade $(1/T - 1/T_0)$ é positiva.

Conclui-se:
$$dS_{liq} = dS_{sistema} + dS_{meio} \ge 0$$

Se T > T_0 , o calor é transferido do sistema para o meio. Assim tanto δQ como a quantidade. (1/ $T - 1/T_0$) são negativos e o mesmo resultado continuará válido.

Note que o lado direito de $dS_{liq} \ge \delta Q \left(r_F^2 p_{T_0}^2 \right)$ senta uma geração de entropia externa e que é provocada por uma transferência de calor com diferença de temperaturas finita.

Deste modo, a variação líquida de entropia pode ser denominada geração total de entropia, ou seja

$$dS_{liq} = dS_{sistema} + dS_{meio} = \sum \delta S_{ger} \ge 0$$

onde a igualdade vale para processos reversíveis e a desigualdade para processos irreversíveis.

$$dS_{liq} = dS_{sistema} + dS_{meio} = \sum \delta S_{qer} \ge 0$$

Essa é uma equação muito importante, não somente para a termodinâmica, mas também para pensamento filosófico e é denominada de princípio do aumento de entropia. O seu grande significado é que os únicos processos que podem ocorrer são aqueles nos quais a variação líquida entropia, do sistema mais do seu meio, aumenta (ou, no limite, permanece constante). O processo inverso, no qual tanto o sistema como o meio são trazidos de volta aos seus estados originais, não pode ocorrer. Em outras palavras, a equação indica que todos os processos ocorrem num sentido único. Assim, o princípio do aumento de entropia pode ser considerado como um enunciado geral quantitativo da segunda lei da termodinâmica, sob o ponto de vista macroscópico, e se aplica à queima do combustível nos motores dos nossos automóveis, ao resfriamento do nosso café e a processos que ocorrem no nosso corpo.

Às vezes, esse princípio do aumento de entropia é enunciado para um sistema isolado, no qual não há interação entre o sistema e o meio. Nesse caso, não há variação de entropia do meio concluí-se que $dS_{sistema isolado} = \delta S_{ger} \ge 0$

Isto é, para um sistema isolado, os únicos processos que podem ocorrer são aqueles que apresentam um aumento de entropia.

O desenvolvimento do princípio do aumento de entropia, foi realizado para uma variação infinitesimal de estados. Quando nós quisermos saber se um processo satisfaz a segunda lei da termodinâmica, será necessário analisar uma variação finita de estados.

Considere sistema que percorre um processo do estado inicial, 1, até o estado final, 2. A transferência de calor no processo, $_{1}Q_{2}$ (que pode ser calculada com a primeira lei) ocorre de ou para um reservatório térmico que apresenta temperatura T_{0} .

 $\Delta S_{\text{sistema}} = S_2 - S_1 \qquad \Delta S_{\text{meio}} = -\frac{Q_2}{T_0}$

Para este processo. $\Delta S_{liq} = \Delta S_{sistema} + \Delta S_{meio}$

A variação líquida de entropia precisa ser maior que zero (processo irreversível) ou, no limite, igual a zero (processo reversível tanto interna quanto externamente).

Exemplo:

Suponha que 1 kg de vapor d'água saturado a 100 °C seja condensado, obtendose líquido saturado a 100 °C num processo a pressão constante, através da transferência de calor para o ar ambiente que está a 25 °C. Qual é o aumento líquido de entropia para o conjunto sistema e meio?

Para o sistema, das tabelas de vapor d'água,

$$\Delta S_{\text{sistema}} = - \text{ m.s}_{\text{lv}} = -1 \text{ x } 6,0480 = - 6,0480 \text{ kJ/K}$$

Considerando o meio

$$\begin{split} Q_{para \, o \, meio} &= m h_{lv} = 1 \times 2257, 0 = 2257 \, kJ \\ \Delta S_{meio} &= \frac{Q}{T_0} = \frac{2257, 0}{298, 15} = 7,57 \, kJ \, / \, K \\ \Delta S_{liquido} &= \Delta S_{sistema} + \Delta S_{meio} = -6,0480 + 7,5700 = 1,5220 \, kJ \, / \, K \end{split}$$

Esse aumento de entropia está de acordo com o princípio do aumento de entropia e diz, do mesmo modo que a nossa experiência, que este processo pode ocorrer.

A transferência de calor, da água para o meio, poderia acontecer de maneira reversível.

Seja um motor térmico, operando segundo um ciclo de Carnot, que recebe calor da água e rejeite calor no meio. Neste caso, a diminuição de entropia da água é igual ao aumento de entropia do meio.

$$\Delta S_{sistema} =$$
 - 6,0480 kJ / kg
 $\Delta S_{meio} =$ 6,0480 kJ / kg
 $Q_{para\,o\,meio} = T_0 \Delta S =$ 298,15 • 6,0489 =1803,2 kJ
 $W = Q_H - Q_L =$ 2257 - 1803,2 =453,8 kJ

Como esse ciclo é reversível, o motor pode ser invertido e operar como bomba de calor.

Para se ciclo, o trabalho necessário para a bomba de calor seria 453,8 kJ.

Faculdade de Engenharia

MEC 011 MÁQUINAS TÉRMICAS

41

VARIAÇÃO DE ENTROPIA DE UM SÓLIDO OU LÍQUIDO

$$Tds = dh - vdp = du + pdv \qquad com \qquad v \approx 0$$

$$ds \approx \frac{dh}{T} \approx \frac{du}{T}$$

$$dh \approx du \approx cdT$$

$$ds \approx c \frac{dT}{T}$$

Um quilograma da água líquida $\begin{vmatrix} c - constante \Rightarrow \\ s_2 - s_1 = c \ln \left(\frac{T_2}{C} \right) \end{vmatrix}$ de 20 a 90 °C. Calcule a variação de entropia admitindo calor específico constante e compare o resultado com dados tabelados.

$$s_2 - s_1 = c \ln \left(\frac{T_2}{T_1} \right) = 4,184 \ln \left(\frac{363,2}{293,2} \right) = 0,8958 \, kJ / kgK$$

Tabelas: $s_2 - s_1 = 0,8959 \, kJ / kgK$

VARIAÇÃO DE ENTROPIA PARA UM GÁS PERFEITO

$$Tds = du + pdv$$

$$du = c_{v0}dT$$
 e $\frac{p}{T} = \frac{R}{V}$

$$\therefore ds = c_{v_0} \frac{dT}{T} + \frac{Rdv}{v} \quad \therefore \qquad s_2 - s_1 = \int_1^2 c_{v_0} \frac{dT}{T} + R \ln \left(\frac{v_2}{v_1} \right)$$

$$Tds = dh - vdp$$

$$dh = c_{p0}dT$$
 e $\frac{v}{T} = \frac{R}{p}$

$$\therefore ds = c_{p0} \frac{dT}{T} - \frac{Rdp}{p} \quad \therefore \qquad s_2 - s_1 = \int_1^2 c_{p0} \frac{dT}{T} - R \ln \left(\frac{p_2}{p_1} \right)$$

43

VARIAÇÃO DE ENTROPIA PARA UM GÁS PERFEITO

$$R = c_{p0} - c_{v0} = cte$$

$$c_{v0} = cte \qquad e \qquad c_{p0} = cte$$

$$s_2 - s_1 = c_{v0} \ln \left(\frac{T_2}{T_1}\right) + R \ln \left(\frac{v_2}{v_1}\right)$$

$$s_2 - s_1 = c_{p0} \ln \left(\frac{T_2}{T_1} \right) - R \ln \left(\frac{p_2}{p_1} \right)$$

Outras possibilidades:

$$c_{p0} = f(T)$$

e

$$s_2 - s_1 = (s_{T_2}^0 - s_{T_1}^0) - R \ln \left(\frac{p_2}{p_1}\right) \rightarrow s_{T_2}^0 e s_{T_1}^0$$
 cálculos da termodinâmica estatísitca e são tabelados.

A precisão dos cálculos aumenta em função do modelo adotado.

PROCESSO ISENTRÓPICO RELAÇÕES IMPORTANTES

Em um processo isentrópico (adiabático reversível) temos:

$$Tds = dh - vdp = 0$$

$$dh = c_{p0}dT = vdp = RT \frac{dp}{p} \Rightarrow \frac{dp}{p} = \frac{c_{p0}}{R} \frac{dT}{T}$$

Integrando de um estado de referência To e po:

$$\ln\left(\frac{p}{p_0}\right) = \frac{1}{R} \int_{T_0}^T c_{p0} \frac{dT}{T}$$

$$\ln p_{r} \equiv \ln \left(\frac{p}{p_{0}}\right) = \frac{1}{R} \int_{T_{0}}^{T} c_{p0} \frac{dT}{T} = \phi(T) = \frac{s_{T}^{0}}{R}$$

Relações entre os estados 1 e 2 de um processo isentrópico:

$$\ln\left(\frac{p_2}{p_1}\right) = \ln\left(\frac{p_2}{p_0}\frac{p_0}{p_1}\right) = \ln\left(\frac{p_2}{p_0}\right) - \ln\left(\frac{p_1}{p_0}\right) = \phi(T_2) - \phi(T_1)$$

$$p_2 = p_1 e^{(\phi(T_2) - \phi(T_1))}$$
 ou $\phi(T_2) = \phi(T_1) + \ln\left(\frac{p_2}{p_1}\right)$

RAZÃO ENTRE OS CALORES ESPECÍFICOS

A razão entre os calores específicos é definida como a razão entre o calor específico a pressão constante e o calor específico a volume constante:

$$k(ou \, \gamma) = \frac{c_{p0}}{c_{v0}}$$

Como:

$$R = c_{p0} - c_{v0} = cte$$

Se
$$c_{p0} = f(T)$$
 e $c_{v0} = f(T) \Rightarrow k = f(T)$

ou
$$c_{p0}$$
 =cte e c_{v0} =cte \Rightarrow k =cte

Ainda:

$$c_{v0} = \frac{R}{k-1} e c_{p0} = \frac{kR}{k-1}$$

Relações úteis para os processos adiabáticos reversíveis

$$k(ou\,\gamma) = \frac{c_{p0}}{c_{v0}}$$

$$Tds = du + pdv = c_{v0}dT + pdv = 0$$

Equação estado:

$$dT = \frac{1}{R}(pdv + vdp) \cdot \cdot \cdot \frac{c_{v0}}{R}(pdv + vdp) + pdv = 0$$

$$\frac{1}{k-1}(pdv + vdp) + pdv = 0$$

$$vdp + kpdv = 0$$

$$\frac{dp}{p} + k \frac{dv}{v} = 0$$

Se
$$k = cte$$

$$\ln p + k \ln v = \ln pv^k = cte \Rightarrow pv^k = cte$$

Válida para processos isentrópicos, gás perfeito com calores específicos constantes.

47

Relações úteis para os processos adiabáticos reversíveis

$$pv^{k} = p_{1}v_{1}^{k} = p_{2}v_{2}^{k} = cte$$

$$\frac{p_{2}}{p_{1}} = \left(\frac{v_{1}}{v_{2}}\right)^{k} = \left(\frac{V_{1}}{V_{2}}\right)^{k}$$

$$\frac{T_{2}}{T_{1}} = \left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}} = \left(\frac{v_{1}}{v_{2}}\right)^{k-1}$$

GÁS PERFEITO PROCESSO POLITRÓPICO REVERSÍVEL

Gás perfeito, processo reversível com transferência de calor, frequentemente a curva logP X logV é uma linha reta. Portanto pVⁿ=cte.

Esse processo é chamado politrópico e n é o coeficiente da politrópica.

Exemplo: expansão dos gases de combustão em um cilindro refrigerado a água.

$$pv^{n} = p_{1}v_{1}^{n} = p_{2}v_{2}^{n} = cte$$

$$\frac{p_{2}}{p_{1}} = \left(\frac{v_{1}}{v_{2}}\right)^{n} = \left(\frac{V_{1}}{V_{2}}\right)^{n}$$

$$\frac{T_{2}}{T_{1}} = \left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}} = \left(\frac{v_{1}}{v_{2}}\right)^{n-1}$$

$${}_{1}W_{2} = \int_{1}^{2} p dV \quad e \qquad pV^{n} = cte$$

$${}_{1}W_{2} = \int_{1}^{2} p dV = cte \int_{1}^{2} \frac{dV}{V^{n}}$$

$${}_{1}W_{2} = \frac{p_{2}V_{2} - p_{1}V_{1}}{1 - n} = \frac{mR}{1 - n} (T_{2} - T_{1})$$

n = 0 processo isobárico (p=const)

n = 1 processo isotérmico (T=const)

n = k processo isoentrópico (S=const)

n = ∞ processo isocórico (V=const)

Exemplo 8.5

Calcule a variação de entropia específica para o ar quando este é aquecido de 300 a 600 K e a pressão diminui de 400 para 300 kPa, admitindo:

- 1. Calor específico constante;
- **2.** Calor específico variável.

Um conjunto cilindro – pistão contém um quilograma de ar. Inicialmente, a pressão e a temperatura são iguais a 400 kPa e 600 K. O ar é então expandido até a pressão de 150 kPa num processo adiabático e reversível. Calcular o trabalho realizado pelo ar.

Sistema: Ar.

Estado inicial: p_1, T_1 ; estado 1 determinado.

Estado final: p_2 .

Processo: Adiabático e reversível.

Modelo: Gás perfeito e Tabela de Ar, Tab. A.7.

Análise: Primeira lei da termodinâmica: $0 = u_2 - u_1 + w$

Segunda lei da termodinâmica: $s_2 = s_1$