2012 ISL N2

Lin Liu

December 19, 2021

Problem

Find all triples (x,y,z) of positive integers such that $x \leq y \leq z$ and

$$x^3(y^3 + z^3) = 2012(xyz + 2).$$

Solution

Taking mod x we get that $x \mid 4024$. Notice that if $x \geq 503$ we arrive at a contradiction since $503^3 > 2012$ and $z^3 \geq xyz$ and $y^3 > 2$. Thus x = 1, 2, 4, 8. If $x \geq 4$ then $\nu_2(x^3(y^3+z^3)) \geq 6$ while $\nu_2(2012(xyz+2)) \leq 3$. Thus x = 1, 2.

Claim 1. $y + z \equiv 0 \pmod{503}$

Proof. We have

$$\begin{aligned} y^3 &\equiv -z^3 \pmod{503} \\ y^{502} &\equiv z^{502} \pmod{503} \\ y^{501} &= (y^3)^{167} \equiv (-z^3)^{167} = -z^{501} \pmod{503} \end{aligned}$$

Now multiplying both sides by y in the last congruence we have $y^{502} \equiv -z^{501} \cdot y \pmod{503}$ but because of the second congruence we have $y + z \equiv 0 \pmod{503}$.

Case 1. x = 1

We have $(y+z)(y^2-yz+z^2)=2012(yz+2)$. Let y+z=503k. Then since y,z have the same parity, k must be even. Then

$$k((y-z)^2 + yz) = 4yz + 8 \implies k(y-z)^2 + yz(k-4) = 8.$$

Since $yz \ge y + z - 1 \implies yz \ge 502$ we must have $k \le 4$. This means that k = 2, 4.

Case 1.1 k = 2

We then have y+z=1006. Thus $2(y-z)^2-2yz=8 \implies (y+z)^2-5yz=4$ which is a contradiction since $1006^2-4\equiv 2\pmod 5$.

Case 1.2 k = 4

We then have y+z=2012. Then $y^2-2yz+z^2=2 \implies (y-z)^2=2$ which is a contradiction.

Case 2. x = 2

We get $y^3 + z^3 = 503(yz+1)$. Let y + z = 503k and we get $k(y^2 - yz + z^2) = yz + 1$. Then $k(y-z)^2 + yz(k-1) = 1$. This means that $k \le 1$ or that k = 1. Then we get y - z = -1 and then we find the solution (2, 251, 252).

Thus our only solution is the ordered triplet (2, 251, 252).