Выбор оптимальных моделей локальной аппроксимации для классификации временных рядов

Сергей Дмитриевич Иванычев

Московский физико-технический институт Физтех-школа прикладной математики и информатики Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

Научный руководитель: д.ф.-м.н. В.В. Стрижов

Выпускная квалификационная работа бакалавра

Москва 2018

Классификация временных рядов

Цель

Предложить способ построения набора моделей локальной аппроксимации для устойчивой классификации сигналов носимых устройств.

Гипотеза

Суперпозиция моделей локальной аппроксимации доставляет более высокое качество при меньшей сложности чем универсальные модели.

Прямая задача

Исследование статистических свойств промежуточного параметрического пространства, строящегося моделями локальной аппроксимации.

Обратная задача

Оптимизировать структурные параметры выбираемых моделей по порождающей выборке с целью получения выборки с оптимальными свойствами.

Литература

- Кузнецов М. П., Ивкин Н. П., Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию, 2015.
- Карасиков М. Е., Стрижов В. В. Классификация временных рядов в пространстве параметров порождающих моделей, 2016.
- Артемов А. В., *Математические модели временных рядов с* трендом в задачах обнаружения разладки, 2016.

Постановка задачи классификации

Задан временной ряд

$$S: T \to \mathbb{R}$$
, где $T = \{t_0, t_0 + d, t_0 + 2d \ldots\}$.

Опрееделен сегмент временного ряда

$$\mathbf{x}_i = [S(t_i), S(t_i-d), S(t_i-2d), \dots, S(t_i-(n-1)d)]^\mathsf{T}, \ \mathbf{x}_i \in X \equiv \mathbb{R}^n.$$

X — набор сегментов данных акселерометра,

у — метки классов движения (бег, ходьба, подъем и спуск по лестнице).

Задана выборка $\mathfrak{D} = \{(x_i, y_i)\}_{i=1}^I, y_i \in \{1, 2, \dots K\}.$

3адан \mathbf{h} — конечный набор моделей локальной аппроксимации.

Постановка задачи классификации

Модель локальной аппроксимации

$$g_i(\mathbf{w}, \mathbf{x}) \in \mathbf{X}$$
, где $\mathbf{w} \in \mathbb{R}^{n_g}$.

Оптимальные параметры определяются как

$$\mathbf{h}_i(\mathbf{x}) = \arg\min_{\mathbf{w} \in \mathbb{R}^{n_g}} \rho\left(g(\mathbf{w}, \mathbf{x}), \mathbf{x}\right),$$

 \mathbf{h}_i — модель локальной аппроксимации.

Набор функций $\mathbf{h} = [\mathbf{h}_1 \dots \mathbf{h}_k] : x \mapsto [w_1^* \dots w_k^*]$ отображает пространство сегментов \mathbf{X} в промежуточное пространство признаковых описаний \mathbf{Z} .

Модель классификации

$$T \to \mathbf{X} \xrightarrow{\mathbf{h}} \mathbf{Z} \xrightarrow{a} Y$$
,

h — набор моделей локальной аппроксимации, $a(\cdot, \gamma)$ — многоклассовый классификатор.

Постановка задачи классификации

Минимизация функций ошибки каждой модели локальной аппроксимации

$$\arg\min_{\mathbf{w}\in W} L_g(\mathbf{X},\mathbf{w}) = \arg\min_{\mathbf{w}\in W} \sum_{i=1}^{l} \sum_{k=1}^{n} ||g(\mathbf{w},\mathbf{x}_i) - \mathbf{x}_i||_2^2$$

Оптимизация функции ошибки обобщенной линейной модели

$$\arg\min_{\theta\in\Theta} L_{a}(\mathbf{Z},\mathbf{y},\theta) = \arg\min_{\theta\in\Theta} \left[-\sum_{i=1}^{l} \sum_{k=1}^{K} [y_{i} = k] \log P(y_{i} = k | \mathbf{z}_{i}, \theta) \right]$$

Построение промежуточного пространства

Модели локальной аппроксимации

Модель	Структурные параметры
SEMOR	-
AR-авторегрессия	порядок
Фурье-модель FFT	количество главных частот
Вейвлет-модель SSE	количество сингулярных чисел

Модели локальной аппроксимации

AR-авторегрессия

Структурный параметр: порядок т,

$$g_{\mathsf{AR}}(w,x) = \hat{\mathbf{x}},$$
 где $\hat{x}_i = egin{cases} x_k & \mathsf{при}\ k \in [1,m], \ w_0 + \sum_{i=1}^m w_i x_{k-i} & \mathsf{при}\ k \in [m+1,n]. \end{cases}$

Фурье-модель (SSA)

Структурный параметр: количество главных собственных значений k. Сингулярное разложение траекторной матрицы,

$$S^{\mathsf{T}}S = VHV^{\mathsf{T}}, H = \operatorname{diag}(\lambda_1 \dots \lambda_m),$$

параметры образуют k главных собственных значения.

Модели локальной аппроксимации

Вейвлет-модель (FFT)

Структурный параметр: *k* частот из прямого преобъразования Фурье, соответствующие наибольшим амплитудам

$$w_{2j} = \operatorname{Re} \sum_{k=1}^{n} x_k \exp \left(-\frac{2\pi i}{n} kj \right), \ w_{2j+1} = \operatorname{Im} \sum_{k=1}^{n} x_k \exp \left(-\frac{2\pi i}{n} kj \right)$$

Self-Modeling Regression

$$g(\mathbf{x}, \mathbf{w}) = w_1 + w_2 p(w_3 + w_4 t),$$

 $w_{\text{SEMOR}} = [\hat{w_1}, \hat{w_2}, \hat{w_3}, \hat{w_4}, \rho].$

Построение промежуточной выборки и оптимизация функции потерь обобщенной линейной модели

 $oldsymbol{0}$ Для каждого $oldsymbol{h}_i \in oldsymbol{h}$ вычисляем

$$[\mathbf{z}_i^1 \dots \mathbf{z}_i^k]^{\mathsf{T}} = [\mathbf{h}_i(\mathbf{x}_1) \dots \mathbf{h}_i(\mathbf{x}_k)]$$

- ② Конкатенируем вектора параметров $\mathbf{z}_i = (\mathbf{z}_1^i \dots \mathbf{z}_k^i)$, то есть $\mathbf{z}_i = \mathbf{h}(\mathbf{x}_i)$. Получили выборку в промежуточном пространстве \mathbf{Z} .
- Минимизируем функции потерь обобщенной линейной модели

$$\hat{\theta} = \arg\min_{\theta \in \Theta} L(f(\mathbf{Z}), \mathbf{y}).$$

Решение задачи: генерация данных

Данные с акселерометра: 4 типа движения, частота дискретизации 100 Гц. Сегментация: локальные экстремумы с окном и квантиль по длине сегментов. Нормализация: приведение к одной размерности с помощью кубических сплайнов.

Решение задачи: проверка гипотезы простоты выборки

Тесты простоты выборки: (T-тест) $\mathbb{E}\varepsilon=0, D\varepsilon=\mathrm{const}$, а также

анализ унимодальности распределений анализ спектра выборки

Обобщенная линейная модель: отбор признаков

Сравниваем обобщающую способность обобщенной линейной модели (GLE) с универсальной моделью при одинаковой сложности.

Определим сложность модели как

$$Comp(\mu) = \#|neurons|$$
 in the hidden layer|

Отбираем признаки в (Z, y) для обобщенной линейной модели. Логистическая регрессия с L_1 регуляризацией.

Универсальная модель

На выборке (\mathbf{X}, \mathbf{y}) оптимизируем параметры двуслойной нейронной сети (NN) . Получаем зависимости

$$L(\text{Comp}), D_L(\text{Comp}).$$

14 / 16

Сравнение ошибки при разных сложностях универсальной модели

Рис.: Отношение ошибок от отношения сложностей

Результат: при
$$Comp(GLE) = Comp(NN)$$
, имеем $\frac{L(NN)}{L(GLE)} = 1.4, \frac{D_L(NN)}{D_L(GLE)} > 1.$

Выводы

- Предлоджен тест простоты выборки в промежуточном пространстве признаковых описаний, способ простроения обобщенной линейной модели на этих признаках а также способ оценки ее обобщающей способности по сравнению с универсальными моделями.
- Исследованы статистические свойства промежуточного пространства признаковых описаний временных рядов.
 Выборка в промежуточном пространстве простая, а аппроксимирующие ее линейная модель являются адекватной.
- GLM адекватнее разделяет выборку чем универсальная модель, то есть при одинаковой сложности обеспечивает более высокое качество и меньше переобучается.