

Machin Learning

Practice5

실습 1. Decision Region of Decision Tree

Sklearn

Make a decision Region of Decision Tree

Decision surface of a decision tree using paired features

실습 2. Custom Decision Tree Implementation

Make a Entropy Function and Information gain Function

Exercise 1 make a entropy function def entropy(rows): no_mixing = [['Apple'], print("1. no mixing: ", entropy(no_mixing)) ['Apple'], ['Orange]] print("2. some mixing: ", entropy(some_mixing)) half_and_half = [['Apple'], print("3. half mixing: ", entropy(half_and_half)) print("4. lots of mixing: ", entropy(lots_of_mixing)) 1. no mixing: 0.0 2. some mixing: 0.8112781244591328 3. half mixing: 1.0 4. lots of mixing: 2.321928094887362

Exercise 2 make a info_gain function using entropy def info_gain(left, right, current_entropy): current_entropy = entropy(training_data) print("1. current entropy: ", current_entropy) true_rows, false_rows = partition(training_data, Question(0, 'Green')) print("2. informatino gain: ", info_gain(true_rows, false_rows, current_entropy)) true_rows, false_rows = partition(training_data, Question(0,'Red')) print("3. informatino gain: ", info_gain(true_rows, false_rows, current_entropy)) 1. current entropy: 1.5219280948873621 2. informatino gain: 0.32192809488736196 3. informatino gain: 0.9709505944546685

실습 3. Clustering

Outlier Detection using DBSCAN

실습 3. Clustering

Outlier Detection using DBSCAN

