Sprawozdanie

Aproksymacja średniokwadratowa

Franciszek Zdobylak nr ind. 310313

29 grudnia 2019

Streszczenie

W sprawozdaniu przedstawię aproksymację średniokwadratową. W testach skupie się na aproksymacji wielomianów.

1 Aproksymacja wielomianowa

Zadanie aproksymacji polega na znalezieniu wielomianu optymalnego w_n^* do danej funkcji f. Wielomian optymalny (n-tego stopnia) to taki dla którego zachodzi:

$$||f - w_n^*|| = \inf_{w \in \Pi_n} ||f - w||$$

Symbol $||\cdot||$ oznacza normę. Jest to funkcja $||\cdot||:X\to\mathbb{R}$, gdzie X to pewna przestrzeń liniowa (nad \mathbb{R}), która musi spełniać następujące aksjomaty:

$$(N1) ||f|| \ge 0$$

(N2)
$$||\alpha f|| = |\alpha| \cdot ||f||$$

(N3)
$$||f + g|| \le ||f|| + ||g||$$

Przykłady aproksymacji wielomianowej to na przykład:

Aproksymacja jednostajna - zdefiniowana przy pomocy normy jednostajnej (normy supremum) $||\cdot||_{\infty}$

Aproksymacja średniokwadratowa – zdefiniowana przy pomocy normy indukowanej przez ilocznyn skalarny

2 Aproksymacja średniokwadratowa

W aproksymacji średniokwadratowej, podstawowym pojęciem jest iloczyn skalarny. Jest to funkcja $<\cdot,\cdot>:X\times X\to\mathbb{R},$ spełniająca:

(I1)
$$\langle f, f \rangle \ge 0, \langle f, f \rangle = 0 \iff f = 0$$

(I2)
$$\langle f, g \rangle = \langle g, f \rangle$$

(I3)
$$\langle \alpha f, g \rangle = \alpha \langle f, g \rangle = \langle f, \alpha g \rangle$$

 $\langle f_1 + f_2, g \rangle = \langle f_1, g \rangle + \langle f_2, g \rangle$
 $\langle f, g_1 + g_2 \rangle = \langle f, g_1 \rangle + \langle f, g_2 \rangle$

Aproksymacja średniokwadratowa polega na znalezieniu n-tego wielomianu optymalnego w sensie normy średniokwadratowej zdefiniowanej w następujący sposób:

$$||f||_2 = \sqrt{\langle f, f \rangle}$$

Najczęściej używanymi iloczynami skalarnymi w aproksymacji średniokwadratowej jest iloczyn zdefiniowany przy pomocy całki:

$$\langle f,g\rangle = \int_a^b f(x)g(x)p(x)dx$$
, gdzie $p(x)$ to pewna funkcja wagowa

oraz iloczyn skalarny dyskretny:

$$\langle f, g \rangle = \sum_{i=1}^{n} f(x_i)g(x_i)p(x_i)$$

gdzie p(x) – funkcja wagowa, a $x_1, ..., x_n$ – pewne punkty z przedziału na którym aproksymujemy funkcję.

3 Ortogonalność

Do znajdywania wielomianu optymalnego w sensie aproksymacji średniokwadratowej używamy ciągu wielomianów ortogonalnych.

Definicja.

Funkcje fi gnazywamy orogonalnymi, gdy $\langle f,g\rangle=0$

Układ f_1, f_2, \dots nazywany ortogonalnym, gdy $\langle f_i, f_j \rangle = 0$ dla $i \neq j$

Definicja.

Ciąg $P_{k,k=1,2,...}$, gdzie P_k jest wielomianem stopnia dokładnie k, nazywamy ciągiem wie
omianów ortogonalnych, gdy $\langle P_k, P_l \rangle = 0$ dla $k \neq l$.

Definicja.

Wielomian $\overline{P_k}$ nazywamy wielomianem standardowym, gdy $\overline{P_k} = x^k + Q_k(x)$, gdzie $Q_k(x)$ jest wielomianem stopnia k-1.

Twierdzenie. Wielomiany ortogonalne $\overline{P_k}$ spełniają warunek rekurencyjny:

$$\overline{P_0} = 1 \qquad \overline{P_1} = x - c_1$$

$$\overline{P_k} = (x - c_k)\overline{P_{k-1}} - d_k\overline{P_{k-2}}$$

$$c_k = \frac{\langle x\overline{P_{k-1}}, \overline{P_{k-1}} \rangle}{\langle \overline{P_{k-1}}, \overline{P_{k-1}} \rangle} \qquad d_k = \frac{\langle \overline{P_{k-1}}, \overline{P_{k-1}} \rangle}{\langle \overline{P_{k-2}}, \overline{P_{k-2}} \rangle}$$

Twierdzenie. Jeśli ciąg P_k jest ciągiem wielomianów ortogonalnych to n-ty wielomian optymalny wyraża sie wzorem:

$$w_n^* = \sum_{k=0}^n \frac{\langle f, P_k \rangle}{\langle P_k, P_k \rangle} P_k$$

4 Konstruowanie wielomianu optymalnego

Podczas konstuowania wielomianów optymalnych na potrzeby doświadczeń będę korzystał z twierdzeń wspomnianych w poprzednim rozdziale. Tzn. skonstuuję ciąg standardowych wielomianów ortogonalnych. Będę pamiętał:

- współczynniki relacji rekurencyjnej c_k i d_k
- iloczyny skalarne $\langle P_k, P_k \rangle$
- wartości $P(x_i)$, gdzie x_i punkty, w których liczymy iloczyn skalarny

Przy konstrukcji wielomianu optymalnego będę wyliczał współczynniki $a_k = \frac{\langle f, P_k \rangle}{\langle P_k, P_k \rangle}$. Wtedy wielomian optymalny będzie miał postać: $\sum_{k=0}^n a_k P_k$.

Do wyliczenia wartości wielomianu w punkcie wystarczy znać wartości wielomianów P_k w punkcie, co w prosty sposób możemy wyliczyć z zależności rekurencyjnej.

5 Opis doświadczenia

W moich doświadczeniach chciałem sprawdzić jak dobrze oryginalny wielomian jest przybliżany przez wielomian optymalny policzony dla zaburzonych danych.

W doświadczeniach dla losowych wielomianów o stopniach n=1,2,...,10 konstruowałem wielomiany optymalne stopnia k=1,2,...,2n. Konstrukcja jest oparta na iloczynie skalarnym dyskretnym liczonym w 100 losowych punktach przedziału [-1,1]. W każdym z tych punktów policzyłem wartość dokładną wielomianu oraz zaburzyłem ją o czynnik z przedziału $[-10^{-1},10^{-1}]$ (w drugim teście $[-10^{-2},10^{-2}]$). W ten sposób otrzymałem dwa wielomiany stopnia k – dokładniejszy i mniej dokładny. Następnie dla dla każdego z wielomianów optymalnych liczyłem średni błąd (różnicę między oryginalnym, a optymalnym wielomianem).

Wielomian stopnia 5

Wielomian stopnia 8

	ı				T		
Stopień				Stopień			
wielomianu	Dokł. dane	Zaburzone dane	Różnica	wielomianu	Dokł. dane	Zaburzone dane	Różnica
optymalnego				optymalnego			
1	1.3359e-01	1.3558e-01	1.9898e-03	1	2.0270e-01	2.0697e-01	4.2749e-03
2	8.2468e-02	8.3564 e-02	1.0959e-03	2	2.0500e-01	2.0470e-01	2.9797e-04
3	1.4890e-02	1.4756 e-02	1.3407e-04	3	2.0542e-01	2.0505 e-01	3.7528e-04
4	1.1408e-02	1.2784 e-02	1.3766e-03	4	4.7134e-02	4.8454 e-02	1.3199e-03
5	4.2738e-16	1.1982e-02	1.1982e-02	5	4.7309e-02	5.0095e-02	2.7856e-03
6	5.3945e-16	1.3387e-02	1.3387e-02	6	5.6457e-03	1.2941e-02	7.2952e-03
7	5.4510e-16	1.3337e-02	1.3337e-02	7	3.8832e-03	1.2384e-02	8.5010 e-03
8	5.6015e-16	1.3313e-02	1.3313e-02	8	5.7125e-16	1.3044e-02	1.3044e-02
9	6.1901e-16	1.5448e-02	1.5448e-02	9	6.3786e-16	1.3786e-02	1.3786e-02
10	6.4117e-16	1.5211e-02	1.5211e-02	10	7.7591e-16	1.3753 e-02	1.3753e-02

Tablica 1: Tabele błędu między wielomianem, a wielomianem optymalnym (zaburzenia rzędu 10^{-2})

Stopień				Stopień			
wielomianu	Dokł. dane	Zaburzone dane	Różnica	wielomianu	Dokł. dane	Zaburzone dane	Różnica
optymalnego				optymalnego			
1	2.5232e-01	2.5228e-01	3.2581e-05	1	1.1701e-01	1.1669e-01	3.1822e-04
2	8.4324e-02	8.4292 e-02	3.2035 e-05	2	1.1889e-01	1.1876e-01	1.3113e-04
3	1.2920e-02	1.3103 e-02	1.8292e-04	3	6.2387e-02	6.2332 e-02	5.5088e-05
4	7.0644e-03	7.1434e-03	7.8946e-05	4	2.5028e-02	2.5182e-02	1.5406e-04
5	2.0485e-15	1.2360 e-03	1.2360 e-03	5	2.3842e-02	2.3997e-02	1.5507e-04
6	2.1978e-15	1.4856 e - 03	1.4856e-03	6	2.5572e-03	3.1450 e-03	5.8776e-04
7	2.0802e-15	1.5474 e - 03	1.5474e-03	7	1.3698e-03	2.4639 e - 03	1.0940e-03
8	2.1841e-15	1.5453 e - 03	1.5453 e-03	8	2.2003e-15	2.0592 e-03	2.0592 e-03
9	3.6605e-15	2.0681e-03	2.0681e-03	9	2.5084e-15	2.0653 e - 03	2.0653 e-03
10	4.0250e-15	1.9599e-03	1.9599e-03	10	2.6487e-15	2.9676e-03	2.9676e-03

Tablica 2: Tabele błędu między wielomianem, a wielomianem optymalnym (zaburzenia rzędu 10^{-3})

6 Podsumowanie

Po przeprowadzonych testach można zauważyć, że wielomian optymalny dla zaburzonych danych nie jest dużo gorszy od wielomianu optymalnego dla dokładnych danych. Przybliża on oryginalny wielomian z dokładnością rzędu równego rzędowi zaburzeń.