Preliminary Data Exploration

Features explored

- Stock opening price S_d^{open} on a given versus the stock news sentiment scores s_d^{stock} and general news sentiments s_d^{news} on a given day d.
- \circ Stock closing price $S_d^{\ close}$ versus the sentiment scores s_d .
- O Difference between the opening and closing $\Delta S_d = S_d^{\ closing} S_d^{\ open}$ prices against the daily stock news sentiment scores $s^{stock}_{\ d}$ and general news sentiments $s^{news}_{\ d}$ on a given day d.
- O Difference between the opening on day d and closing on day d+1 $\Delta S'_{d} = S_{d+1}^{\quad \ \ close} S_{d}^{\quad \ \ open} \text{ prices against the daily sentiment scores } s_{d}.$
- $\circ \quad \text{Binary stock price variable } I_{d,d-1} \ = \ 1 \ \textit{if } \Delta S'_{\ d} > \ 0 \ \text{and} \ \ I_{d,d-1} \ = \ 0 \ \textit{if } \Delta S'_{\ d} < \ 0.$

• Models explored

- \circ Simple linear regression SLR for ΔS_d versus s_d (both general and stock news).
- \circ $\,$ KNN regression for ΔS_d versus $s_d^{}$ (both general and stock news).
- \circ Logistic regression for the binary stock price variable against the sentiment score s^{stock} .

• Preliminary Results

o SLR model

Figure 1. Scatter plots for each stock symbol show sentiment scores vs. stock price difference, with red linear regression lines. The mostly flat lines indicate weak but positive correlation across the stocks.

Dep. Variable:			у	R-squa	red:		0.014
Model:		c	DLS	Adj. R	-squared:		0.009
Method:		Least Squar	res	F-stat	istic:		2.683
Date:	٤	Sun, 03 Nov 20	24	Prob (F-statistic)		0.103
Γime:	e: 00:08:56		56	Log-Likelihood:			-160.41
No. Observations:		1	L85	AIC:			324.8
Of Residuals:		1	183	BIC:			331.3
Of Model:			1				
Covariance Typ	e:	non robu	ıst				
	coef	std err		t	P> t	[0.025	0.975]
const	-0.0108	0.047	 -0	.229	0.819	-0.104	0.082
d	0.1656	0.101	1	.638	0.103	-0.034	0.365
mnibus:		35.3	==== 325	Durbin	======= -Watson:		1.944
Prob(Omnibus):		0.0	000	Jarque	-Bera (JB):		189.554
Skew: -0.512		512	Prob(JB):			6.90e-42	
Curtosis:		7.8	352	Cond. I	No.		2.49

Figure 2. This table shows OLS regression results for GOOG, with sentiment scores as the independent variable. The low R-squared (0.014) and non-significant slope suggest a weak relationship between sentiment and stock price difference.

Figure 3. This figure shows scatter plots and linear regression lines (in red) for sentiment scores versus daily stock price differences for GOOG, MSFT, NVDA, AMZN, and AAPL. The nearly flat lines suggest minimal correlation between sentiment scores and stock price changes.

Dep. Variable:	у	R-squar	ed:		0.003
lodel:	0LS	Adj. R-	squared:		0.002
lethod:	Least Squares	F-stati	stic:		2.012
ate:	Sun, 03 Nov 2024	Prob (F	-statistic):		0.157
Time:	19:20:05	Log-Lik	elihood:		-56.768
lo. Observations:	604	AIC:			117.5
Of Residuals:	602	BIC:			126.3
of Model:	1				
Covariance Type:	nonrobust				
со	ef std err	t	P> t	[0.025	0.975]
 onst -0.01	41 0.012 ·	 -1.229	0.220	-0.037	0.008
0.03	79 0.027	1.418	0.157	-0.015	0.090
nibus:	 150.777	Durbin-Watson:			2.080
rob(Omnibus):	0.000	Jarque-	Bera (JB):		964.820
kew:	-0.938	Prob(JB	:):		3.11e-210
ırtosis:	8.901	Cond. N	lo.		2.53

Figure 4. OLS regression for GOOG stock also shows a low R-squared, with no significant relationship between sentiment and the stock price difference. But a p-value of 22% means we are unable to rule out the null hypothesis that there is no relationship between the two.

On going work

- Checking for non-linearity via parametric bootstrap
 - We have a kNN regression fit for our data which has a far smaller MSE than the linear regression fit

Our current goal is to assess the statistical significance of the fit and to identify any potential non-linearity in the data. To achieve this, we're currently using parametric bootstrapping, which involves generating resampled datasets based on estimated model parameters. This approach will allow us to evaluate how frequently similar or more extreme results would be expected under the null hypothesis, helping to determine if the observed fit is statistically significant and if there are any signs of non-linearity in the relationship.

Exploring timeline for the predictors

- We want to investigate the appropriate timeline to compare the stock price with respect to the sentiment scores.
- For example, perhaps the average stock price over a timeline T is more significantly correlated to the sentiment scores than the daily stock price data. Or the difference between the opening price on day d and the closing price on d + T is a better parameter to predict against the sentiment scores (again averaged over the timeline T).

Correlation between various features/predictors

Stocks Data	News Data
Opening	Compound stock news sentiment score
Closing	Compound general news sentiment score
Volume	Positive stock news sentiment score
High	Positive general news sentiment score
Low	Negative stock news sentiment score
Volume	Negative general news sentiment score
Dividends	Neutral stock news sentiment score
Stock Splits	Neutral general news sentiment score

We are trying to obtain a correlation matrix between these features which would enable us to conduct a more robust features selection analysis.

- o Binary stocks function as a response variable
 - We have used Logistic regression as a model to predict $I_{d,d-1}$ from the sentiment scores and achieved an accuracy of only about 50%.
 - In order to do better we now aim to define a more general version of this function over a certain timeline $I_{d,d-T}$ and then test its behavior against the sentiment score via the Logistic regression model.
- Time series analysis of the stocks and news data
 - We now aim to explore the time series based models like ARIMA and SARIMA and study the corresponding autocorrelation functions.