Assignment -2

Assignment Date	1 November 2022
Student Name	Althaf.SK
Student Register Number	110719104044
Topic	VirtualEye - Life Guardfor Swimming Pools to
	Detect Active Drowning

In[2]: data=pd.read_csv('Churn_Modelling.csv')
 data

Out[2]:		RowNumber C	CustomerId	Surname Cree	ditScore Ge	eography Gende	r Age Tenure	Balance NumOfP
	0	1	15634602	Hargrave	619	France Fema	le 42	2 0.00
	1	2	15647311	Hill	608	Spain Fema	le 41	1 83807.86
	2	3	15619304	Onio	502	France Fema	le 42	8 159660.80
	3	4	15701354	Boni	699	France Fema	le 39	1 0.00
	4	5	15737888	Mitchell	850	Spain Fema	le 43	2 125510.82
		9995 15606229	9996	Obijiaku	771	France	Male 39	5 0.00
		9996 15569892	9997	Johnstone	516	France	Male 35	10 57369.61
		9997 15584532	9998	Liu	709	France F	emale 36	7 0.00
		9998 15682355	9999	Sabbatini	772	Germany	Male 42	3 75075.31
		9999 10000	15628319	Walker 792	France	Female 28	4 130142.79	

10000 rows **x** 14 columns

Describe Function

std	10.487806	2.892174	62397.405202
min	18.000000	0.000000	0.000000
25%	32.000000	3.000000	0.000000
50%	37.000000	5.000000	97198.540000
75%	44.000000	7.000000	127644.240000
max	92.000000	10.000000	250898.090000

Data Type

Loading [MathJax]/extensions/Safe.js

```
In [15]: data.dtypes
Out[15]:
                             int64
         RowNumber
                             int64
         CustomerId
         Surname
                            object
         CreditScore
                             int64
         Geography
                            object
         Gender
                            object
         Age
                             int64
         Tenure
                             int64
                          float64
         Balance
         NumOfProducts
                             int64
         HasCrCard
                             int64
         IsActiveMember
                             int64
         EstimatedSalary
                          float64
         Exited dtype:
                             int64
         object
In [16]:
         data.isnull().any()
Out[16]: RowNumber
                           False
         CustomerId
                          False
         Surname
                           False
         CreditScore
                          False
         Geography
                          False
         Gender
                          False
         Age
                          False
         Tenure
                           False
         Balance
                          False
                          False
         NumOfProducts
                          False
         HasCrCard
         IsActiveMember
                          False
          EstimatedSalary False
```

UNIVARIATE ANALYSIS

dtype: bool

```
In [18]: sns.histplot(data.Age,kde=True)
```

Out[18]: <AxesSubplot:xlabel='Age', ylabel='Count'>

False

Exited

BIVARIATE ANALYSIS

MULTIVARIATE ANALYSIS

In [47]: sns.pairplot(data)

Out[47]: <seaborn.axisgrid.PairGrid at 0x1cb8b759610>

Out [3]: RowNumber Customerld Surname CreditScore Geography Gender Age Tenure

	count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000
	unique	NaN	NaN	2932	NaN	3	2	NaN	NaN
	top	NaN	NaN	Smith	NaN	France	Male	NaN	NaN
In [4]:	freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN
	mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800
	std	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174
	min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000
	25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000
	50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000
	75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000
	max	10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000

data.count()

Out[4]:	RowNumber	10000
	CustomerId	10000
	Surname	10000
	CreditScore	10000
	Geography	10000
	Gender	10000
	Age	10000
	Tenure	10000
	Balance	10000
	NumOfProducts	10000
	HasCrCard	10000
	IsActiveMember	10000
	EstimatedSalary	10000
	Exited dtype:	10000
	int64	

Handle the Missing values.

Fill with Zeros for NAN values

```
In [7]: a =data.fillna(0) a
```


Out[7]:		RowNumber C	ustomerId	Surnam	ne Credi	itScore G	eography	Gender A	ge Tenur	е	Baland	e NumOfP
	0	1	15634602	Hargrave		619	France	Female	42	2	0.00	
	1	2	15647311	Hill		608	Spain	Female	41	1	83807.86	
	2	3	15619304	Onio		502	France	Female	42	8	159660.80	
	3	4	15701354	Boni		699	France	Female	39	1	0.00	
	4	5	15737888	Mitchell		850	Spain	Female	43	2	125510.82	
	9995	9996	15606229	Obijiaku		771	France	Male	39	5	0.00	
	9996	9997	15569892	Johnstone		516	France	Male	35	10	57369.61	
	9997	9998	15584532	Liu		709	France	Female	36	7	0.00	
	9998	9999	15682355	Sabbatini		772	Germany	Male	42	3	75075.31	
		9999 10000 10000 rows ×	15628319 : 14 column	Walker S	792	France	Female	28 4	130142.7	9		

Find the outliers and replace the outliers

```
In [13]: cols =3
    rows =4
    num_cols=data.select_dtypes(exclude='object').co
    fig = plt.figure( figsize=(cols*5, rows*5))
    for i, col in enumerate(num_cols):
```

In [8]:

RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure **Balance NumOfP** Out[8]: 2 0 15634602 Hargrave 619 France Female 42 0.00 Hill 1 2 15647311 608 Spain Female 41 1 83807.86 2 Onio 502 42 3 15619304 France Female 159660.80 3 15701354 Boni 699 France Female 39 1 0.00 4 5 15737888 Mitchell 850 Spain Female 43 2 125510.82 9995 9996 15606229 Obijiaku 771 France Male 39 5 0.00 9996 9997 15569892 **Johnstone** 516 France Male 35 10 57369.61 9997 9998 15584532 Liu 709 France Female 36 7 0.00 9998 9999 15682355 Sabbatini 772 Germany Male 42 75075.31

10000 rows **x** 14 columns

15628319

9999 10000

```
In [9]: missing_values=data.isnull().sum()
   missing_values[missing_values>0]/len(data)*100
```

France Female 28

4 130142.79

Walker 792

Out[9]: Series([], dtype:float64)

```
sns.boxplot(x=data[col],ax=ax)
fig.tight_layout()
plt.show()
                                                                                                             1.580
le7
                     4000 6000
RowNumber
                                                                                     1.570
CustomerId
            2000
                                                                                                                                                 600
CreditScore
                                          8000
                                                    10000
                                                                    1.560
                                                                               1.565
                                                                                                                                           500
                                                                                                                                                                          800
                        50 60
Age
                                                                                                                                             100000 150000
Balance
                                                                                                                                    50000
                                                                                                                                                                  200000
                                                                                                                                                                             250000
  1.0
          1.5
                   2.0 2.5
NumOfProducts
                                             3.5
                                                     4.0
                                                                                   0.4 0.6
HasCrCard
                                                                                                                  1.0
                                                                                                                                               0.4 0.6
IsActiveMember
                                                                                                                                                                               1.0
                                    3.0
                                                              0.0
                                                                         0.2
                                                                                                        0.8
                                                                                                                           0.0
                                                                                                                                      0.2
  0 25000 50000 75000 100000 125000 150000 175000 200000
Estimated Salary
                                                                                                                  1.0
```

ax=fig.add_subplot(rows,cols,i+1)

```
In [14]:
```

Out[14]: <AxesSubplot:>


```
In [ ]: #data1=pd.read_csv('Churn_Modelling.csv')
     #data1.head()
```

```
dataset using sklearn
          from sklearn.model selectionimport train test split
          # load titanic dataset 'Churn Modelling.csv',
          data1 =
                 pd.read csv (
         /extensions/Safe.js
         data['CreditScore'].hist()
In[15]:
         print('SkewnessvalueofAge:',data['Age'].skew())
         Age mean=data['Age'].mean() print('Mean of Age
         is:',Age mean) Age std= data['Age'].std()
         print('Standard Deviation of Age is: ',Age std)
         low= Age mean-(3 * Age std) high= Age mean+ (3 *
         Age std)
         Age outliers= data[(data['Age'] <low) | (data['Age'] >high)]
          #print('OutliersofAgeis:\n',Age outliers)
         print('Outliers of Age is:')
         Age outliers.head()
         Skewness value of Age: 1.0113202630234552
         Mean of Age is:38.9218
         Standard Deviation of Age is: 10.487806451704591
         Outliers of Age is:
               RowNumber CustomerId
                                         Surname CreditScore Geography Gender Age Tenure
                                                                                           Balance NumOfPro
Out[15]:
           85
                            15805254
                                      Ndukaku
                                                     652
                                                                     Female
                                                                                     10
                                                                                            0.00
                                                              Spain
          158
                     159
                            15589975
                                       Maclean
                                                     646
                                                              France
                                                                     Female
                                                                             73
                                                                                     6 97259.25
          230
                     231
                            15808473
                                      Ringrose
                                                     673
                                                              France
                                                                       Male
                                                                             72
                                                                                     1
                                                                                            0.00
```

In [4]: import numpyas np #for numpy operations import pandas as

pd#for creating DataFrame using Pandas # to split the

Check for Categorical columns and perform encoding.

681

652

France

France

Female

Female

80

0.00

0.00

```
usecols=['Surname','Gender','Geography'])
data1.head()
```

Out[4]:	Surname Geography Gender							
	0	Hargrave	France	Female				
	1	Hill	Spain	Female				
	2	Onio	France	Female				

252

310

253

311

15793726

15712287

Matveyeva

Pokrovskii

```
3 Boni France Female4 Mitchell Spain Female
```

```
In [5]: pd.get_dummies(data1)
```

Out[5]:		Sur	name_A	bazu Surnam	e_Abbi	ie Surname_Abbott \$	Surname_Abdullah Sur	name_Abdulov Surna	ame_Abel
	0		0	0		0	0	0	0
	1		0	0		0	0	0	0
	2		0	0		0	0	0	0
	3		0	0		0	0	0	0
	4		0	0		0	0	0	0
	•••								
	9995		0	0		0	0	0	0
	9996		0	0		0	0	0	0
	9997		0	0		0	0	0	0
	9998		0	0		0	0	0	0
9999		0 0	0	0 0		0			

```
10000 rows x 2937 columns
```

```
In [17]: # Returns dictionary having key as category and values asnumber
    deffind_category_mappings(data, variable):
        return {k: i for i, k inenumerate(data[variable].unique())}

# Returns the column after mapping with dictionary
    definteger_encode(data,variable, ordinal_mapping):
        data[variable]=data[variable].map(ordinal_mapping)
    for variable in ['Surname','Geography','Gender']:
    mappings=find_category_mappings(datal,variable)
    integer_encode(datal, variable, mappings) datal.head()
```

Out[17]:	Surname Geography Gende						
0	0	0	0				
1	1	1	0				
2	2	0	0				
3	3	0	0				
4	4	1	0				

Split the data into dependent and independent variables.

Dependent Variable: A dependent variable is a variable whose value depends on another variable.

Independent Variable: An Independent variable is a variable whose value never depends on another variable.

```
In [6]: print("TheMinimumvalueofDataset:\n", data1.min(numeric_only=True)) print("\n")
    print("TheMaximumvalueofDataset:\n", data1.max(numeric_only=True)) print("\n")
    print("TheMeanvalueofDataset:\n", data1.mean(numeric_only=True)) print("\n")

print(data1.count(0))
    print(data1.shape) print(data1.size)
```

Loading [MathJax]/extensions/Safe.js

0

France Female

Spain Female

2	Franc	e Female
3	France	Female
4	Spain	Female

Scale the independent variables

```
In[8]:
                  names=x.columnsnam es
      Out[8]: Index(['Geography', 'Gender'],dtype='object') In[12]:
                   \textbf{from} \  \, \text{sklearn.preprocessing} \\ \textbf{import} \\ \text{scale} \  \, \text{x=scale} \left( \text{x} \right) \\
     In[16]:
     Out[16]: x
     Geography
Gender
```

0	France	Female
1	Spain	Female
2	France	Female
3	France	Female
4	Spain	Female
9995	France	Male
9996	France	Male
9997	France	Female
9998	Germany	Male
9999	France	Female

10000

rows x 2 columns

Split the data into training and testing

The train-test split is used to estimate the performance of machine learning algorithms that are applicable for prediction-based Algorithms/Applications. By default, the Test set is split into 30 % of actual data and the training set is split into 70% of the actual data.

```
In[18]:
          from sklearn.model selectionimport train test split
In[19]:
          x train, x test, y train, y test=train test split(x,y,test size=0.2,random state=0)
In[20]:
          x_train.head()
                 Geography Gender
Out[20]:
           7389
                     Spain
                           Female
          9275
                  Germany
                              Male
                           Female
           2995
                    France
           5316
                     Spain
                              Male
            356
                           Female
                     Spain
```

```
Out[21]: ((8000, 2), (8000,), (2000, 2), (2000,))
```

