

CSE 473 Pattern Recognition

Nonlinear Classifier

Recall the AND or OR functions

X ₁	X ₂	AND	OR
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Recall the AND or OR functions

X ₁	X ₂	AND	Class	OR	Class
0	0	0	В	0	В
0	1	0	В	~	Α
1	0	0	В	1	Α
1	1	1	A	1	Α

Can you remember the perceptron's capability to separate them?

X ₁	X ₂	AND	Class	OR	Class
0	0	0	В	0	В
0	1	0	В	7	Α
1	0	0	В	1	Α
1	1	1	Α	1	Α

Now recall the XOR function

X ₁	X ₂	XOR	Class
0	0	0	В
0	1	1	Α
1	0	1	Α
1	1	0	В

Now recall the XOR function

X ₁	X ₂	XOR	Class
0	0	0	В
0	1	1	Α
1	0	1	Α
1	1	0	В

For the XOR problem, draw two lines instead of one

Each of them is realized by a <u>perceptron</u>.

$$y_i = f(g_i(\underline{x})) = \begin{cases} 0 \\ 1 \end{cases} i = 1, 2$$

• Find the position of \underline{x} w.r.t. both lines, based on the values of y_1 , y_2 .

	1 st	phase	
X ₁	X ₂	y ₁	y ₂
0	0	-	ı
0	1	+	-
1	0	+	-
1	1	+	+

	1 st	phase	1
X ₁	X ₂	y ₁	y ₂
0	0	0(-)	0(-)
0	1	1(+)	0(-)
1	0	1(+)	0(-)
1	1	1(+)	1(+)

43- 11	4 et	145 Mg	
X ₁	1 st	phase y ₁	y ₂
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

45	2 nd			
X ₁	X ₂	y ₁	y ₂	phase
0	0	0	0	B(0)
0	1	1	0	A(1)
1	0	1	0	A(1)
1	1	1	1	B(0)

45	2 nd			
X ₁	X ₂	y ₁	y ₂	phase
0	0	0	0	B(0)
0	1	1	0	A(1)
1	0	1	0	A(1)
1	1	1	1	B(0)

Now classify based on $[y_1, y_2]$

The decision is now performed on the transformed \underline{y} data.

This can be performed via a second line, which can also be realized by a <u>perceptron</u>.

Two phases, Two Layers

 Computations of the first phase perform a mapping that transforms the nonlinearly separable problem to a linearly separable one.

The architecture

Two Layer Perceptron

hidden layer

output layer

nodes realizes hyper planes:

$$g_{1}(\underline{x}) = x_{1} + x_{2} - \frac{1}{2} = 0$$

$$g_{2}(\underline{x}) = x_{1} + x_{2} - \frac{3}{2} = 0$$

$$g(\underline{y}) = y_{1} - 2y_{2} - \frac{1}{2} = 0$$

Activation function:

$$f(.) = \begin{cases} 0 \\ 1 \end{cases}$$

The mapping performed by the first layer neurons is onto the vertices of the unit side square, e.g., (0, 0), (0, 1), (1, 0), (1, 1).

Consider a more general case,

$$\underline{x} \in R^{l}$$

$$\underline{x} \rightarrow \underline{y} = [y_{1},...y_{p}]^{T}, y_{i} \in \{0,1\} \ i = 1, 2,...p$$

- maps a vector onto the vertices of the unit side hypercube,
 Hp
- mapping is through p neurons each realizing a hyper plane.
- The output of each of these neurons is 0 or 1

Intersections of hyperplanes form regions.

- Intersections of hyperplanes form regions.
- Each region corresponds to a vertex of the ${\cal H}_p$ unit hypercube.

For example, the 001 vertex corresponds to the region which is located

to the (-) side of $g_1(\underline{x})=0$ to the (-) side of $g_2(\underline{x})=0$ to the (+) side of $g_3(\underline{x})=0$

- A two-class problem
 - Class A patterns from regions marked as A
 - Class B patterns from regions marked as B

The output neuron

- realizes another hyperplane
- separates the hypercube.
- can classify vectors consisting some unions of polyhedral regions.

- The output neuron, i.e., a 2 layer perceptron
 - cannot classify vectors consisting of arbitrary unions of polyhedral regions.

Solution: Three Layer Perceptron

- capable to classify vectors consisting of ANY union of polyhedral regions.
 - The idea is similar to the XOR problem.
 - Realizes more than one planes in the

$$\underline{y} \in R^p$$
 space.

layer

layer

layer

layer

How does The Three Layer Perceptron Do It?

- Let, any J polyhedral regions constitutes vectors of class A.
- Learn a neuron in the 2nd hidden layer for each of J regions

How does The Three Layer Perceptron Do It?

Learn a neuron in the 2nd hidden layer for each of J regions

How does The Three Layer Perceptron Do It?

- For training vectors of a particular region of class **A**, only one of the 2nd-layer neuron produces 1, the rest of neurons produce 0.
- Now realize the output neuron as an OR gate.

Training of a Multi Layer Perceptron (MLP)

 use rationale and develop a structure that classifies correctly all the training patterns.

OR

 choose a structure and compute the synaptic weights to optimize a cost function.

