16CS207: Formal Languages and Automata Theory (FLAT)

P.Ramadoss
Assistant Professor,
Department of Information Technology,
VFSTR (Deemed to be)University,
Guntur, Andhra Pradesh.

Textbook

- Introduction to Automata Theory, Languages and Computation.
- By J.E. Hopcroft, and Ullman
- 2rd Edition
- Pearson/Prentice Hall India, 2007.

Automata Theory

Automata (singular: automation) are abstract models of machines that perform computations on an input by moving through a series of states.

At each state of the computation, a transition function determines the next configuration on the basis of a finite portion of the present state.

Automata Theory

An automaton has a mechanism to read input, which is string over a given alphabet. This input is actually written on an input tape /file, which can be read by automaton but cannot change it.

Input file is divided into cells each of which can hold one symbol. Automaton has a control unit which is said to be in one of finite number of internal states. The automation can change states in a defined way.

Finite Automata

Fig: Diagrammatic representation of a generic automation

Finite automata

A finite automata consists of a finite memory called input tape, a finite non empty set of states, an alphabet, a readonly head, a transition function which defines the change of configuration, an initial state and a finite-non empty set of final states.

Input tape is divided into cells and each cell contains one symbol from of which can hold one symbol.

Types of Finite Automata:

Note: Both NFA and DFA are capable of recognizing what regular expression can denote.

Deterministic Finite Automata(DFA) Definition

A deterministic finite automaton is defined by a quintuple (5-tuple): $A = (Q, \sum, \delta, qo, F)$. Where,

Q = Finite set of states,

 \sum = Finite set of input symbols,

 δ = A transition function that maps Q X $\Sigma \rightarrow$ Q

qo: A start state; qo∈Q

F= Set of final states; $F\subseteq Q$.

A transition function δ that takes as arguments a state, an input symbol and returns a state.

In our diagram, is represented by arcs between states and the labels on the arcs.

If s is a state and a is an input symbol then $\delta(p,a)$ is that state q such that there are arcs labeled 'a' from p to q.

General Notations of DFA:

There are two preferred notations for describing automata.

- 1. Transition Diagrams
- 2. Transition Tables

1. Transition Diagrams

A transition diagram for a DFA A = (Q, \sum , δ , qo, F). is a graph

defined as follows:

(q is State)

For each state is node represented by circle.

General Notations of DFA:

A start stat is represented by a circle with preceding arrow labeled at start.

> Final state is marked by a double circle (q is Final State)

(q is Final State)

General Notations of DFA:

For each state q in Q and each input a in Σ , if δ (q, a) = p then there is an arc from node q to p labeled a in the Transition diagram.

If more than one input symbol cause the transition from state q top then arc from q to p is labeled by a list of those symbols.

Example #1

- Build a DFA for the following language:
 - L = {w | w is a binary string that contains 01 as a substring}
- Steps for building a DFA to recognize L:
 - $\sum = \{0,1\}$
 - Decide on the states: Q
 - Designate start state and final state(s)
 - δ: Decide on the transitions:
- "Final" states == same as "accepting states"
- Other states == same as "non-accepting states"

DFA for strings containing 01

• What makes this DFA deterministic?

•
$$Q = \{q_0, q_1, q_2\}$$

Accepting state

•
$$\sum = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

• Transition Table

symbols

δ	0	1
\longrightarrow q_0	q_1	\mathbf{q}_{0}
$\mathbf{q_1}$	q ₁	q ₂
q_2	q_2	${f q_2}$

Language of a DFA

A DFA A accepts string w if there is a path from q_0 to an accepting (or final) state that is labeled by w

• i.e.,
$$L(A) = \{ w \mid \widehat{\delta}(q_0, w) \in F \}$$

 I.e., L(A) = all strings that lead to an accepting state from q₀

Example #2

DFA accepting all and only strings with an even number of 0's and an even number of 1's.

Transition Table

δ	О	1
$\star \to q_0$	q_2	q_1
q_{1}	q_3	q_{O}
q_2	q_{O}	q_3
q_3	q_1	q_2

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

•
$$\sum = \{0,1\}$$

- start state = q_0
- $F = \{q_0\}$

Example #3

DFA accepting all and only strings with an even number of 0's.

Transition Table

δ	0	1
	$\mathbf{q_1}$	\mathbf{q}_3
$\longrightarrow \mathbf{q}_0$	\mathbf{q}_2	$\mathbf{q_1}$
$\mathbf{q_1}$	\mathbf{q}_1	\mathbf{q}_2
\star \mathbf{q}_2	$\mathbf{q_1}$	\mathbf{q}_3

Example: The following figure shows a DFA that recognizes the language (a|b)*abb

Example: The following figure shows a DFA that recognizes the language (a|b)*abb

The Transition Table is:

State	a	b
0	1	0
1	1	2
2	1	3
3	1	0

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) consists of:
 - Q ==> a finite set of states
 - ∑ ==> a finite set of input symbols (alphabet)
 - $q_0 ==> a$ start state
 - F ==> set of accepting states
 - $\delta ==>$ a transition function, which is a mapping between Q x $\sum ==>$ subset of Q
- An NFA is also defined by the 5-tuple:
 - {Q, \sum , q₀,F, δ }

How to use an NFA?

- Input: a word w in ∑*
- Question: Is w acceptable by the NFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Determine all possible next states from all current states, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed <u>and</u> if at least one of the current states is a final state then *accept w;* Otherwise, *reject w.*

NFA for strings containing 01

Why is this non-deterministic?

What will hapen if at state q₁ an input of 0 is received?

Final state

symbols

	δ	0	1
<u>()</u>	\mathbf{q}_0	{q ₀ ,q ₁ }	{q ₀ }
state	q ₁	Ф	{q ₂ }
	q ₂	{q ₂ }	{q ₂ }

Regular expression: (0+1)*01(0+1)*

- $\bullet Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{0,1\}$
- start state = q_0
- $F = \{q_2\}$
- Transition table

Non-Deterministic Finite Automata (NFA)

NFA: means that more than one transition out of a state may be possible on a same input symbol.

Also a transition on input ε (ε -transition) is possible

Example #1 : The NFA that recognizes the language (a | b)*abb is shown below:

Example #2 The NFA that recognizes the language aa*|bb* is shown below:

Language of an NFA

An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w.

$$L(N) = \{ w \mid \delta (q_0, w) \cap F \neq \Phi \}$$

But, DFAs and NFAs are equivalent in their power to capture langauges!!

Differences: DFA vs. NFA

DFA

- 1. All transitions are deterministic each transition leads to exactly one state.
- 2. Accepts input if the last state visited is in F
- 3. Sometimes harder to construct because of the number of states.
- 4. Practical implementation is feasible

NFA

- 1. Some transitions could be nondeterministic A transition could lead to a subset of states
- 2. Accepts input if *one of* the last states is in F
- 3. Generally easier than a DFA to construct
- 4. Practical implementations limited but emerging (e.g., Micron automata processor)

Summary

- DFA
 - Definition
 - Transition diagrams & tables
- Regular language
- NFA
 - Definition
 - Transition diagrams & tables
- DFA vs. NFA

Exercise

- 1.Give DFA's accepting the following strings over the alphabet {0,1}:
- a) The set of all strings beginning with 101.
- b) The set of all strings containing 1101 as a substring.
- c) The set of all strings with exactly three consecutive 0's.

THANK YOU