Universitatea Tehnica a Moldovei Facultatea Calculatoare, Informatica si Microelectronica Departamentul Informatica Sofware si Automate

RAPORT

despre lucrarea de laborator nr. 3 la disciplina Metode si modele de calcul

Tema: Probleme de PL. Metoda simplex. Teoria dualitatii.

A efectuat: st. gr. TI-173 Heghea Nicolae

A verificat: Ghetmancenco S.

Cuprins

1.	No	otiuni generale	3
		etoda simplex de soluționare a PPL	
		Problema 1	
		Problema 2	
		zultate intermediare	
4.	Co	dul sursa	13
5.	Co	ncluzia	17

1. Notiuni generale

1. Forma generală de prezentare

$$z(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \to \max \text{ sau } \min$$

$$\begin{cases} a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n \le b_i, & i = \overline{1, r} \\ a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n \ge b_i, & i = \overline{r+1, l} \\ a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n = b_i, & i = \overline{l+1, m} \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$$
(2.3)

- Variabilele care apar în funcția obiectiv (2.1), în restricții (2.2) și în condițiile de nenegativitate (2.3) în număr de n notate x_i , j=1, 2, ..., n sau $x=(x_1, x_2, ... x_n)$, sunt variabilele de decizie.
- Coeficienții c_j ai variabilelor x_j din funcția obiectiv sunt numiți coeficienții funcției obiectiv (F.O.). Sunt cunoscuți și pot avea orice semn.
- Sunt m restricții asupra celor n variabile x_j . Coeficienții a_{ij} din linia i ai variabilei x_j sunt constanți, cunoscuți și pot avea orice semn.
- Termenii liberi b_i , i=1, 2, ..., m sunt constanți, cunoscuți și pot avea orice semn.

Condițiile de nenegativitate sunt impuse, deoarece ele sunt necesare în aplicarea algoritmului simplex de rezolvare a PPL și pot fi îndeplinite totdeauna printr-o schimbare convenabilă de variabile. De fapt, variabilele de decizie pot avea orice semn.

2. *Forma simetrică de prezentare* Aspectul general al PPL în forma simetrică:

Pentru PPL de maximizare:
$$z(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \to max$$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ \dots & \dots & \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} \leq b_m \end{cases}$$

$$z(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \to min$$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \geq b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \geq b_2 \\ \dots & \dots & \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} \geq b_m \end{cases}$$

$$x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0$$

$$(2.4)$$

$$(2.5)$$

O PPL de maximizare în formă simetrică are restricții doar cu semnul " \leq ", iar de minimizare - " \geq ".

2. Metoda simplex de soluționare a PPL

2.1 Problema 1

Sarcina:

O companie produce 2 produse de tip A, B, la preturile p_1 , p_2 , pentru care se folosesc 3 resurse r_1 , r_2 , r_3 . Normele de utilizare a acestor resurse sunt :

Profitul	3	2	
Produs Resurse	A	В	b
r_1	1	3	12
r_2	1	0	30
r_3	0	1	3

Conditii:

- 1. Să se determine planul optim de producție astfel încât venitul total să fie maxim..
- 2. Să se scrie problema duală și soluția ei.

Rezolvare:

1. Modelul matematic

$$x_1, x_2 \rightarrow variabile\ de\ decizie.$$

$$Z = 3x_1 + 2x_2 \rightarrow max$$

$$\begin{cases} x_1 + 3x_2 \leq 12 \\ x_1 \leq 30 \\ x_2 \leq 3 \end{cases}$$

2. Aducerea modelului matematic la forma standart. Variabile Eqard pentru fiecare ecuatie. Identificarea matricei I_m .

$$Z = 3x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5$$

$$\begin{cases} x_1 + 3x_2 + x_3 &= 12\\ x_1 &+ x_4 &= 30\\ x_2 &+ x_5 = 3 \end{cases}$$

$$A = \begin{pmatrix} 1 & 3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

4

3. Construim tabelul simplex

Pas 1:

C	Baza	3	2	0	0	0	h
	Daza	x_1	x_2	x_3	x_4	x_5	U
0	x_3	(1)	3	1	0	0	12
0	x_4	1	0	0	1	0	30
0	<i>x</i> ₅	0	1	0	0	1	3
	Δ_j	[-3]	-2	0	0	0	0

$$\Delta_j = (\sum Z_i \cdot C_i) - C_i$$

Colana pivotului se alege coloana unde $\Delta_j \rightarrow$ minim.

Elementul pivot se alege elementul = $\min(\frac{b_i}{x_i})$

Pas 2:

С	Baza	3	2	0	0	0	h
	Daza	x_1	x_2	x_3	x_4	x_5	
3	x_1	1	3	1	0	0	12
0	x_4	0	-3	-1	1	0	18
0	<i>x</i> ₅	0	1	0	0	1	3
	$Z_j - C_j$	0	7	3	0	0	36

Răspuns:

1. Plan optim de productie.

Pentru a obține un profit maxim compania v-a produce 12 unitați de produs A si zero unitați de produs B. Ca urmare profitul maxim v-a fi de 36.

$$x_1^* = 12$$

 $x_2^* = 0$
 $Z^* = 36$

2. PD și soluția ei.

$$W = 12u_1 + 30u_2 + 3u_3 \rightarrow min$$

$$\begin{cases} u_1 + u_2 & \ge 3 \\ 3u_1 & + u_3 \ge 2 \end{cases}$$

$$u_1 \ge 0, u_2 \ge 0, u_3 \ge 0$$

Din ultimul tabel, după rezolvarea problemei primare, observăm că prețurile umbră pentru r_1, r_2, r_3 sunt :

$$u_1 = 3, u_2 = 0, u_3 = 0$$

 $W^* = Z^* => W^* = 36$

Conform soluției problemei duale sau obținut că resursa r_1 este deficitară, deoarece prețul-umbră corespunde u_1^* și este pozitiv. Iar resursele r_2 , și r_3 sunt excedentare, care nu se folosesc în procesul de producție.

2.2 Problema 2

Sarcina:

O companie produce două tipuri de televizoare T_1 și T_2 . Există două linii de fabricație, L_1 și L_2 , câte una pentru fiecare tip de televizoare. Capacitatea primei linii L_1 este de 30 televizoare T_1 pe zi, iar linia a doua L_2 are capacitatea de a produce 25 televizoare T_2 pe zi. Pentru asamblare se folosesc muncitori care lucrează la ambele tipuri de televizoare. Pentru T_1 este necesară o oră, iar pentru T_2 - 2 ore. În prezent sunt disponibile cel mult 70 ore pe zi la asamblare. Contribuția la profitul companiei este de 2 u.m. la T_1 și de 3 u.m. la T_2 .

Condiții:

- 1. Să se determine planul de producție a companiei, reieșind din condiția ca profitul să fie maxim.
- 2. De explicat soluția problemei duale.
- 3. Dacă se va obține un contract zilnic de 22 televizoare T_2 , care va fi planul de producție și profitul maxim?

Rezolvare:

1. Modelul matematic

$$x_1, x_2 \rightarrow variabile\ de\ decizie.$$

$$Z = 2x_1 + 3x_2 \rightarrow max$$

$$\begin{cases} x_1 + 2x_2 \leq 70 \\ x_1 \leq 30 \\ x_2 < 25 \end{cases}$$

2. Aducerea modelului matematic la forma standart. Variabile Eqard pentru fiecare ecuatie. Identificarea matricei I_m .

$$Z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

$$\begin{cases} x_1 + 2x_2 + x_3 &= 70\\ x_1 &+ x_4 &= 30\\ x_2 &+ x_5 = 25 \end{cases}$$

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

7

Pas 1:

С	Baza	2	3	0	0	0	0
		x_1	x_2	x_3	x_4	x_5	b
0	x_3	1	2	1	0	0	70
0	x_4	1	0	0	1	0	30
0	x_5	0	[1]	0	0	1	25
	$Z_j - C_j$	-2	-3	0	0	0	0

Pas 2:

C	Baza	2	3	0	0	0	0
		x_1	x_2	x_3	x_4	x_5	b
0	x_3	[1]	0	1	0	-2	20
0	x_4	1	0	0	1	0	30
3	x_2	0	1	0	0	1	25
	$Z_j - C_j$	-2	0	0	0	3	75

Pas 3:

С	Baza	2	3	0	0	0	0
		x_1	x_2	x_3	x_4	x_5	b
2	x_1	1	0	1	0	-2	20
0	x_4	0	0	-1	1	2	10
3	x_2	0	1	0	0	1	25
	$Z_j - C_j$	0	0	2	0	-1	115

Pas 4:

С	Baza	2	3	0	0	0	0
	Daza	x_1	x_2	x_3	x_4	x_5	b
2	x_1	1	0	0	1	0	30
0	x_5	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	5
3	x_2	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	20
	$Z_j - C_j$	0	0	$\frac{3}{2}$	$\frac{1}{2}$	0	120

Răspuns:

1. Plan optim de productie.

Pentru a obține un profit maxim compania v-a produce 30 unitați de televizoare T_1 si 20 unitați de televizoare T_2 . Ca urmare profitul maxim v-a fi de 120.

$$x_1^* = 30$$
 $x_2^* = 20$
 $Z^* = 2 * 30 + 3 * 20 = 120$

2. PD și soluția ei.

$$W = 70u_1 + 30u_2 + 25u_3 \rightarrow min$$

$$\begin{cases} u_1 + u_2 & \ge 2 \\ 2u_1 & + u_3 \ge 3 \\ u_1 \ge 0, u_2 \ge 0, u_3 \ge 0 \end{cases}$$

Din ultimul tabel, după rezolvarea problemei primare, observăm că prețurile umbră pentru r_1, r_2, r_3 sunt :

$$u_1 = \frac{3}{2}$$
 $u_2 = \frac{1}{2}$ $u_3 = 0$
 $W^* = Z^* = > W^* = 120$

Conform soluției problemei duale sau obținut că resursele r_1 și r_2 sunt deficitare, deoarece prețul-umbră corespunde u_1^* și u_2^* și este pozitiv. Iar resursele r_3 este resursă excedentară, care nu se folosesc în procesul de producție.

3. Dacă se va obține un contract zilnic de 22 televizoare T_2 , care va fi planul de producție și profitul maxim?

Dacă dorim să mai adăugam incă 2 televizoare T_2 , care se vor asambla in $(2 \cdot 2 \ ore) = 4 \ ore$. Timp de 4 ore se asamblează 4 televizoare T_1 , $\left(1 \frac{u}{ora} \cdot 4 \ ora\right) = 4 \ u. \ tv$, rezulta $30 - 4 = 26 \ u. \ tv. \ T_1$.

$$x_1^* = 26,$$
 $x_2^* = 22$
 $Z^* = 2 * 26 + 3 * 22 = 118$

9

3. Rezultate intermediare

Problema 1

```
Command Window
                                                            >> tabelulSimplex
  Simplex =
  [ 0, x3, 1, 3, 1, 0, 0, 12]
  [ 0, x4, 1, 0, 0, 1, 0, 30]
  [ 0, x5, 0, 1, 0, 0, 1, 3]
  Delta =
  [ -3, -2, 0, 0, 0, 0]
  Simplex =
  [ 3, x1, 1, 3, 1, 0, 0, 12]
  [ 0, x4, 0, -3, -1, 1, 0, 18]
  [ 0, x5, 0, 1, 0, 0, 1, 3]
  Delta =
  [ 0, 7, 3, 0, 0, 36]
f_{\overset{\cdot}{\bullet}} >>
```

Problema 2. partea 1

```
×
Command Window

→
  [ -2, -3, 0, 0, 0, 0]
  Simplex =
  [ 0, x3, 1, 0, 1, 0, -2, 20]
  [ 0, x4, 1, 0, 0, 1, 0, 30]
  [ 3, x2, 0, 1, 0, 0, 1, 25]
  Delta =
  [-2, 0, 0, 0, 3, 75]
  Simplex =
  [ 2, x1, 1, 0, 1, 0, -2, 20]
  [ 0, x4, 0, 0, -1, 1, 2, 10]
  [ 3, x2, 0, 1, 0, 0, 1, 25]
  Delta =
  [ 0, 0, 2, 0, -1, 115]
  Simplex =
  [ 2, x1, 1, 0, 0, 1, 0, 30]
  [ 0, x5, 0, 0, -1/2, 1/2, 1, 5]
  [ 3, x2, 0, 1, 1/2, -1/2, 0, 20]
  Delta =
  [ 0, 0, 3/2, 1/2, 0, 120]
f_{\frac{x}{x}} >>
```

Problema 2, partea 2

Datele ultimelor tabele simplex:

```
Command Window
                                                         [ U, A3, I, U, I, U, -2, U, U, 20]
                                                              ⊕ ^
  [ 0, x4, 1, 0, 0, 1, 0, 0, 0, 26]
  [ 0, x6, 0, 0, 0, 0, 1, 1, -1, 3]
  [ 3, x2, 0, 1, 0, 0, 1, 0, 0, 25]
  Delta =
  [ -2, 0, 0, 0, 3, 0, ml, 75]
  Simplex =
  [ 2, x1, 1, 0, 1, 0, -2, 0, 0, 20]
  [ 0, x4, 0, 0, -1, 1, 2, 0, 0, 6]
  [ 0, x6, 0, 0, 0, 0, 1, 1, -1, 3]
  [ 3, x2, 0, 1, 0, 0, 1, 0, 0, 25]
  Delta =
 [ 0, 0, 2, 0, -1, 0, ml, 115]
  Simplex =
  [ 2, x1, 1, 0, 0, 1, 0, 0, 26]
  [ 0, x5, 0, 0, -1/2, 1/2, 1, 0, 0, 3]
  [0, x6, 0, 0, 1/2, -1/2, 0, 1, -1, 0]
  [ 3, x2, 0, 1, 1/2, -1/2, 0, 0, 0, 22]
 Delta =
  [ 0, 0, 3/2, 1/2, 0, 0, ml, 118]
f_{\overset{\cdot}{\bullet}} >>
```

4. Codul sursa

```
function [] = tabelulSimplex
   listSimplex = sym('s', [0 \ 0 \ 0]);
% %%%% Exemplul 1
   re = 1;
용
    M = sym('m', [1 re]);
응
응
    rx = 7;
양
    x = sym('x', [1 rx]);
% %%% | C | Baza | x1 -> xn | b |
          % | C | Baza | x1 -> xn
                                          | b |
응
응
     tableSimplex = [
             {
                 0, x(3), 4, 1, 1, 0, 0, 0, 45
응
양
                 0, x(4), 1, 4, 0, 1, 0, 0, 30
             \{0, x(5),
                           3, 2, 0, 0, 1, 0, 0, 42}
응
             \{-M(1), x(7),
                           0, 1, 0, 0, 0, -1, 1, 6
응
    ];
% %%% p(i) | b = 0 |
% pret = [
응
     3
        2
용
        0
용
        0
응
        0
응
용
        0
90
        -M(1)
%
응
    ];
% %%% Exemplul 2
  re = 0;
응
    M = sym('m', [1 re]);
응
응
    rx = 5;
    x = sym('x', [1 rx]);
% %%% | C | Baza | x1 -> xn | b |
       % | C | Baza | x1 -> xn
                                          | b |
양
     tableSimplex = [
             (0, x(3), 4, 1, 1, 0,
응
                                          0, 45}
응
                 0, x(4), 1, 4, 0, 1, 0, 30
용
                 0, x(5),
                           3, 2, 0, 0, 1, 42}
             {
용
    ];
% \%\% p(i) | b = 0 |
용
   pret = [
응
     3
%
        2
응
        0
응
90
        0
        0
응
    ];
```

```
% %%% Exemplul 3
% re = 0;
응
    M = sym('m', [1 re]);
응
응
    rx = 5;
     x = sym('x', [1 rx]);
% %%% | C | Baza | x1 -> xn | b |
응
             % | C | Baza | x1 -> xn | b |
응
     tableSimplex = [
90
              \{ 0, x(3), 1, 3, 1, 0, 0, 12\}
                             1, 0, 0, 1, 0, 30}
용
                  0, \times (4),
              {
9
                  0, x(5),
              {
                             0, 1, 0, 0,
                                            1,
                                                3 }
응
     ];
응
응
% %%% p(i) | b = 0 |
응
    pret = [
용
        3
용
        2
        0
응
응
        0
응
        0
        0
응
     ];
%%% Exemplul 4
   re = 0;
   M = sym('m', [1 re]);
   rx = 5;
   x = sym('x', [1 rx]);
%%% | C | Baza | x1 -> xn | b |
           % | C | Baza |
                                x1 -> xn | b |
   tableSimplex = [
            {
                 0, x(3), 1, 2, 1, 0, 0,
                                              70}
                  0, x(4), 1, 0, 0, 1, 0,
                                              30}
            {
                  0, x(5),
                           0, 1, 0, 0, 1,
                                              25}
            {
   ];
%%% p(i) | b = 0 |
   pret = [
       2
       3
       0
       0
       0
       0
   ];
% %%% Exemplul 5
  re = 1;
응
    M = sym('m', [1 re]);
응
용
    rx = 7;
    x = sym('x', [1 rx]);
% %%% | C | Baza | x1 -> xn | b |
             % | C | Baza | x1 -> xn
응
                                             | b |
용
     tableSimplex = [
             \{ 0, x(3), 1, 2, 1, 0, 0, 0, 70\}
```

```
Ο,
응
                      0, \times (4),
                                  1, 0, 0, 1, 0,
                                                             0, 26}
                                                  1,
                                                           0, 25}
응
                      0, x(5),
                                 0, 1, 0, 0,
                                                      0,
양
                \{-M(1), x(7),
                                 0, 1,
                                          0,
                                              0,
                                                  Ο,
                                                      -1,
                                                             1,
                                                                22}
응
      ];
양
% %%% p(i) | b = 0 |
양
    pret = [
00
         2
양
          3
용
          0
%
          0
양
          0
응
          0
응
          -M(1)
%
          0
용
     ];
    tableSimplex = cell2sym(tableSimplex);
    listSimplex(:,:,1) = tableSimplex;
    n = size(pret, 1);
    m = size(tableSimplex, 1);
    listiIndex = zeros([0 0]);
    pas = 1;
    D = delta(tableSimplex, pret);
    Simplex = tableSimplex
    Delta = D
    while isOptim(D) < 1
        q = listSimplex(:, :, pas);
        mins = zeros([0 \ 0]);
        jIndex = Min(D);
        for i = 1:m
            t = 1;
            for j = 1:size(listiIndex, 2)
                if i == listiIndex(j)
                    t = 0;
                end
            end
            if t == 1
                s1 = q(i, n+2);
                s2 = q(i, jIndex+2);
                [s1 s2];
                s = s1/s2;
                mins = [mins, s];
            end
        end
        e = min(mins);
        iIndex = 0;
        for i = 1:m
            t = 1;
            for j = 1:size(listiIndex, 2)
                if i == listiIndex(j)
                    t = 0;
                end
            end
            if t == 1
```

```
s1 = q(i, n+2);
            s2 = q(i, jIndex+2);
            s = s1/s2;
            if s == e
                iIndex = i;
            end
        end
    end
    listiIndex = [listiIndex, iIndex];
    q = subs(q, q(iIndex, 2), x(jIndex));
    q(iIndex, 1) = pret(jIndex);
    index = q(iIndex, jIndex+2);
    for i = 1:m
        for j = 1:n
            if iIndex ~= i && jIndex ~= j
                s1 = index * q(i, j+2);
                s2 = q(i, jIndex+2) * q(iIndex, j+2);
                [s1 s2];
                e = (s1 - s2)/index;
                q(i, j+2) = e;
            end
        end
    end
    for i = 1:jIndex-1
        q(iIndex, i+2) = q(iIndex, i+2)/index;
    for i = jIndex+1:n
        q(iIndex, i+2) = q(iIndex, i+2)/index;
    end
    for j = 1:m
        if j ~= iIndex
            q(j, jIndex+2) = 0;
        end
    q(iIndex, jIndex+2) = 1;
    D = delta(q, pret);
    pas = pas + 1;
    listSimplex(:, :, pas) = q;
    Simplex = q
    Delta = D
end
```

end

5. Concluzia

Acestă metodă de rezolvare a problemelor, m-a ajutat sa inteleg asa fel de probleme sub un al unchi. Acest algoritm de rezolvare are un spectru larg de tipuri de probleme în care poate fi aplicat.

Metoda simplex de soluționare a unei PPL constă în trecerea consecutivă de la o soluție admisibilă de bază la alta și la această trecere are loc mărirea valorii funcției obiectiv (dacă problema este de maximizare), în caz dacă fiecare soluția admisibilă de bază este nedegenerată. Dacă o soluție admisibilă de bază este degenerată atunci la o careva iterație de trecere valoarea funcției obiectiv poate să nu se modifice.