データベースシステム 第1回

理工学部情報科学科 松澤 智史

教員紹介

- 名前
 - 松澤智史
- 所属
 - 理工学部情報科学科
- 専門
 - ネットワーク工学
- 学位
 - ・博士(工学) 東京大学
- 研究分野
 - インターネットアーキテクチャ・暗号
 - モバイルアドホックネットワーク
 - 深層学習

講義の特徴

- 講義資料
 - LETUSで配布
 - ・ 指定教科書:なし
 - 参考書:SQLやMySQLの各種書籍
- 成績
 - 単位は単純に能力に与える
 - ・レポートでの採点予定
- 推奨事項
 - 自前PC上で実験を推奨
- 講義形態
 - ・非同期オンライン(動画配信)

データサイエンス

- IPAが定めるITSS(ITスキル標準)へ2017年4月に追加される
 - ITSS+ https://www.ipa.go.jp/jinzai/itss/itssplus.html
- 現在注目を浴びている分野の一つ
- ITSS+のデータサイエンス領域におけるスキルカテゴリ
 - 1. ビジネス
 - 2. データサイエンス
 - データサイエンティスト →データ分析を行うスペシャリスト
 - 3. データエンジニアリング
 - データベースエンジニア →データ分析のためのデータベース設計・管理

講義の対象

データサイエンティストとデータベースエンジニアを目指す学生

講義の予定

- ・データベースとは?
- ・データベースの基礎理論
- データベースの設計
- SQL-DBMS
- 概念設計•論理設計•物理設計
- ・最新データベース技術

詳細はシラバスを参照すること

今回の内容

- ・ 本題に入る前に知っておくと良いお話
 - 知らなくても問題は無い
 - データベースとは?のお話
 - データモデルのお話
 - DBMS(ソフトウェア)のお話
- ・ 講義の本題は次回以降
- ・講義の方針

データベースとは

- ・1950年代に米国国防省において軍事情報を1か所に集める
 - データの基地ということでデータベースという用語が誕生
- ・データを1か所で集中管理
 - 欠落がなくなる
 - 重複がなくなる
- ・データ独立が可能

データモデル

現実世界にあるデータをデータベースに格納するために変換するためのモデルをデータモデルという

- データモデルの種類
 - 概念データモデルデータの内容や概念をまとめた抽象的なモデル
 - ・論理データモデル データベースで実際に実装可能なモデル ※下に行くほど具体的
 - ・物理データモデル データをDBMS(後述)で物理的に配置するモデル

DBMS(詳細は別回で解説する)

- データベースを操作するための言語を提供する
- ・データの整合性を保障した管理手段を提供する
- ・データ利用の標準化を行い、各種プログラムへのインタフェースを提供する
- データへのアクセス制限を 管理する
- ・複数ユーザの同時処理に対応する

主な論理データモデル

- ・階層型モデル
- ・ネットワークモデル
- ・関係(リレーショナル)モデル
- オブジェクト指向型モデル

データ例

学生: A,B,Cの3人, 学籍番号は1, 2, 3

講義: IとⅡの2種類

A君とB君は講義 I を履修してA君:80点, B君:70点 BとCは講義 II を履修してB君:50点、C君:100点

という試験結果を各データモデルで表現してみる

階層型データモデル

- データを親子関係で表現する古い手法
- 親は複数の子を持つことが可能であるが、 子は複数の親を持つことはできない

具体的なDBMS

IBM社のIMS

ネットワークモデル

・子が複数の親を持つ場合などを 網(ネットワーク)状に表現可能なモデル

関係(リレーショナル)モデル

・テーブル(表)とテーブル間の関連でデータを表現するモデル

講義番号	講義名
100	講義I
200	講義Ⅱ

学籍番号	氏名
1	Α
2	В
3	С

講義番号	学籍番号	評点
100	1	80
100	2	70
200	2	50
200	3	100

具体的なDBMS

- MySQL
- Postgres
- Oracle

オブジェクト指向モデル

・データと操作を一体化して扱うモデル

論理データモデル まとめ

- ・階層型モデル、ネットワークモデルは データの変更がシステムの変更につながる
- 関係モデルとオブジェクト指向モデルは,システムからデータを独立させる(データ独立)ことが可能
- 処理効率的にオブジェクト指向モデルより関係モデルが上

データベースの3値論理

- 通常の論理では「真(true)」「偽(false)」の2値論理で表現される
- ・データベースは「真」「偽」の他に「NULL」を使用する

リレーショナルデータベースのDBMS

- MySQL
 - シンプルな構造なら高速
 - お節介機能等あり
 - 単純なWebシステムならMySQL
- Postgres PostgreSQL
 - そこそこ複雑なことができる
- Oracle
 - かなり複雑なことができる
 - SQLの文法に癖がある
 - 高価

講義の方針

- 理論
 - ・実践のために必要な知識を習得する
- 実践
 - 理論を検証するための実験を行い知識を習得する

両方やっていきます

質問あればどうぞ