

c14bazAAR & oxcAAR

Two R packages for the collection, calibration and modelling of ^{14}C dates

Clemens Schmid, Martin Hinz March 2018

Institute of Pre- and Protohistoric Archaeology, Kiel University

¹⁴C: The backbone of absolute chronology

- ¹⁴C dating with calibration has revolutionized the previous typology-based chronology in many branches of archaeology
- thanks to Bayesian statistics, Monte-Carlo simulation and seriation based models, accuracy now reaches the level of generations
- ¹⁴C data are gold standard today for much of the (pre-)history: almost no archaeologist can work meaningfully at present without using ¹⁴C data

c14bazAAR & oxcAAR

c14bazAAR

R package for **download** and **preparation** of ¹⁴C dates from different source databases

oxcAAR

R package API to OxCal for reproducible ¹⁴C calibration, sequencing and simulation

c14bazAAR

A thousand databases

14SEA: ¹⁴C database for Southeast Europe and Anatolia (10,000–3000 calBC)

aDRAC: Archives des datations radiocarbone d'Afrique centrale

AustArch: Database of ¹⁴C and Luminescence Ages from Archaeological Sites in Australia.

Banadora: Banque nationale de données radiocarbone.

CalPal: Radiocarbon Database of the CalPal software package.

CARD: Canadian Archaeological Radiocarbon Database.

CONTEXT: Collection of radiocarbon dates from sites in the Near East and neighboring regions (20.000 - 5.000 calBC).

Euroevol: Cultural Evolution of Neolithic Europe Dataset.

INQUA: Radiocarbon Palaeolithic Europe Database.

Ibercrono: Cronometrías Para la Historia de la Península Ibérica.

KITE East Africa: Radiocarbon dates from eastern Africa in the CARD2.0 format

PPND: The platform for neolithic radiocarbon dates.

RADON: Central European and Scandinavian database of ^{14}C dates for the Neolithic and Early Bronze Age.

. . .

c14bazAAR is a R package to **download**, **merge** and **prepare** ¹⁴C dates from **different source databases**

```
# basic workflow
get_dates() %>%  # get dates
...() %>%
calibrate() %>%  # apply some data preparation tools
...() %>%
...() -> list_of_dates # get a nice date list for your research
```

- User perspective
 - access many highly different databases with one interface
 - reproducibility with scripted data selection
 - standard data structure for direct access to powerful R tools (tidyverse)
- Developer perspective
 - Open Source: examine & improve the implementation and adjust everything for your needs
 - simple parser development framework to add further databases
 - embed bulk ¹⁴C dates into your own application

c14bazAAR stocks a ¹⁴C dates search engine: www.neolithicRC.de

Common data structure: The c14_date_list S3 class

c14bazAAR::get aDRAC()

```
Radiocarbon date list
##
##
   dates
             1258
##
   sites 478
   countries 12
##
   uncalBP 46500 - 0
##
##
## # A tibble: 1,258 x 12
    sourcedb labnr c14age c14std c13val site feature material country
##
  <chr> <chr> <int> <int> <dbl> <chr> <chr> <chr>
                                                         <chr>>
##
##
   1 aDRAC AA-78447 2362
                            39
                                  O. Mbaere <NA> <NA>
                                                         CAF
   2 aDRAC AA-78448 2171
                                 O. Mbaere <NA> <NA>
##
                            37
                                                         CAF
   3 aDRAC AA-78449 834
                            35
                                  O. Mbaere <NA> <NA>
                                                         CAF
##
   4 aDRAC AA-94529 215
                            34
                                  O. Ngotto BB01-29 <NA>
                                                         CAF
##
##
   5 aDRAC AA-94530 168
                            35
                                  O. Ngotto BB01-30 <NA>
                                                         CAF
##
   6 aDRAC AA-94531 207
                            35
                                  O. Ngotto BB01-31 <NA>
                                                         CAF
   7 aDRAC AA-94532 148
                            34
                                  O. Ngotto BB01-36 <NA>
                                                         CAF
##
   8 aDRAC AA-94533 231
                            34
                                  O. Ngotto BB05-32 <NA>
                                                         CAF
##
##
   9 aDRAC AA-94534 187
                            34
                                  O. Ngotto BB05-41 <NA>
                                                         CAF
## 10 aDRAC AA-94537 160
                             35
                                  O. Ngotto NDO1-03 <NA>
                                                         CAF
## # ... with 1,248 more rows, and 3 more variables: lat <dbl>, lon <dbl>,
     shortref <chr>
## #
```

Common data structure: The c14_date_list S3 class

c14_date_list ...

- ... is a modified tibble/data.frame
- has a set of predefined variables essence of source databases

general information	location	archaeological context	sample analysis
labnr	region	period	c14age
sourcedb	country	culture	c14std
method	lat	sitetype	c13val
shortref	lon	feature	material
comment	site		species

See c14bazAAR::variable_reference for the documentation how variables from different databases are related.

• ... provides own class methods

Features - calibration

labnr	c14age	c14std	site	material	country	lat	lon	etc.
AB-123	5530	30	Ingen 5	human	Görmany	48.385	9.121	
CD-456	5340	50	Dorf 4	Charcool	DE	50.778	8.945	
CD-456	5340	50	Dorf IV	glass	FRG	50.778	8.945	

labnr	c14age	c14std	calprobdistr	calrange	sigma	site	material	etc.
AB-123	5530	30	<data.frame></data.frame>	<data.frame></data.frame>	2	Ingen 5	human	
CD-456	5340	50	<data.frame></data.frame>	<data.frame></data.frame>	2	Dorf 4	Charcool	
CD-456	5340	50	<data.frame></data.frame>	<data.frame></data.frame>	2	Dorf IV	glass	

 $\textbf{Figure 1:} \ \, \textbf{Bulk calibration with calibrate}()$

Features - material classification

labnr	c14age	c14std	site	material	country	lat	lon	etc.
AB-123	5530	30	Ingen 5	human	Görmany	48.385	9.121	
CD-456	5340	50	Dorf 4	Charcool	DE	50.778	8.945	
CD-456	5340	50	Dorf IV	glass	FRG	50.778	8.945	

labnr	c14age	c14std	site	material	material_thes	country	lat	etc.
AB-123	5530	30	Ingen 5	human	bone	Görmany	48.385	
CD-456	5340	50	Dorf 4	Charcool	charcoal	DE	50.778	
CD-456	5340	50	Dorf IV	glass	other	FRG	50.778	

Figure 2: Simplification of material information with classify_material()

Features – country correction

labnr	c14age	c14std	site	material	country	lat	lon	etc.
AB-123	5530	30	Ingen 5	human	Görmany	48.385	9.121	
CD-456	5340	50	Dorf 4	Charcool	DE	50.778	8.945	
CD-456	5340	50	Dorf IV	glass	FRG	50.778	8.945	

labnr	c14age	c14std	country	country_coord	lat	lon	etc.	
AB-123	5530	30	Görmany	Germany	Germany	48.385	9.121	
CD-456	5340	50	DE	Germany	Germany	50.778	8.945	
CD-456	5340	50	FRG	Germany	Germany	50.778	8.945	

Figure 3: Unification of country information with finalize_country()

Features – duplicates

labnr	c14age	c14std	site	material country		lat	lon	etc.
AB-123	5530	30	Ingen 5	human	Görmany	48.385	9.121	
CD-456	5340	50	Dorf 4	Charcool	DE	50.778	8.945	
CD-456	5340	50	Dorf IV	glass	FRG	50.778	8.945	

labnr	c14age	c14std	site	etc.	duplicate_group	duplicate_remove_log
AB-123	5530	30	Ingen 5		NA	site: Ingen 5
CD-456	5340	50	NA		0	site: Dorf 4 Dorf IV
-CD-456	5340	50	Derf IV		0	

Figure 4: Finding duplicates with mark_duplicates()

```
library(magrittr)
c14bazAAR::get all dates() %>%
  # dplyr::sample n(500) \%
  # c14bazAAR::as.c14 date list() %>%
  c14bazAAR::calibrate(
    choices = c("calprobdistr", "calrange")
  ) %>%
  c14bazAAR::classify_material() %>%
  c14bazAAR::finalize country name() %>%
  c14bazAAR::mark_duplicates() %>%
 dplyr::arrange(dplyr::desc(c14age))
```

oxcAAR

Several possibilities for calibration

outside of R

- CalPal, BCal, CALIB, Fairbanks calibration, OxCal, iosacal, MatCal
- calibrator
- ChronoModel

within R

Andrew Parnell: Bchron

Bchron::BchronCalibrate(5000, 30, calCurves = "intcal13")

Andrew Bevan: rcarbon

rcarbon::calibrate(5000, 30)

■ SAAK: oxcAAR

oxcAAR::oxcalCalibrate(5000, 30)

Motivation: Why another calibration package?

1. Every package produces slightly different results

2. Sequential calibration with other tools (currently) not available

oxcAAR is a R package to calibrate, simulate and sum ^{14}C dates using OxCal as calibration engine

```
quickSetupOxcal()
                              # download Oxcal to tempory folder
## NUT.I.
oxcalCalibrate( bp=5000, std=20) # do the calibration
##
## -----
## R Date: 1
## -----
##
##
## BP = 5000, std = 20
##
##
## unmodelled:
##
## one sigma
## 3794 BC - 3759 BC (43.8%)
## 3740 BC - 3712 BC (24.4%)
##
## two sigma
## 3910 BC - 3876 BC (12.1%)
## 3802 BC - 3706 BC (83.3%)
## three sigma
## 3939 BC - 3858 BC (15.5%)
## 3813 BC - 3698 BC (84.2%)
##
## Calibrated with:
     IntCall3 atmospheric curve (Reimer et al 2013)
```

Accessing the calibration result - structure

```
mv cal date <- oxcalCalibrate( bp=5000, std=20)
str(my_cal_date, max.level = 3)
## List of 1
## $ 1.T.ist of 9
                            : chr "1"
   ..$ name
   ..$ type
                            : chr "R_Date"
   ..$ bp
                            : int 5000
## ..$ std
                            : int 20
## ..$ cal curve
                         :List of 5
## .... name : chr " IntCall3 atmospheric curve (Reimer et al 2013)"
   .. .. $ resolution: num 5
   ....$ bp : num [1:10001] 46401 46396 46391 46386 46381 ...
   ....$ bc : num [1:10001] -48050 -48044 -48040 -48034 -48030 ...
   ....$ sigma : num [1:10001] 274 274 274 273 273 ...
   ..$ sigma ranges
                             :List of 3
   .. .. $ one_sigma :'data.frame': 2 obs. of 3 variables:
   .. .. $ two_sigma :'data.frame': 2 obs. of 3 variables:
   .. .. $ three_sigma:'data.frame': 2 obs. of 3 variables:
    ..$ raw_probabilities
                            :'data.frame': 67 obs. of 2 variables:
                     : num [1:67] -3970 -3964 -3960 -3954 -3950 ...
    .. ..$ dates
    ....$ probabilities: num [1:67] 0.00 0.00 0.00 1.43e-07 1.94e-06 ...
   ..$ posterior_sigma_ranges :List of 3
   .. .. $ one_sigma : logi NA
   .. .. $ two_sigma : logi NA
   .. .. $ three_sigma: logi NA
   ..$ posterior probabilities: logi NA
   ..- attr(*, "class")= chr "oxcAARCalibratedDate"
## - attr(*, "class")= chr [1:2] "list" "oxcAARCalibratedDatesList"
```

Accessing the calibration result - for basic plot

```
plot(
   my_cal_date$'1'$raw_probabilities$dates,
   my_cal_date$'1'$raw_probabilities$probabilities,
   type = "l", xlab = "years", ylab = "probs"
)
```


Features - plotting an individual date

Plotting an individual date

oxcalCalibrate(bp=5000, std=20) %>% plot()

R_Date: 1 (5000 ± 20)

Features - plotting multiple dates

Features - plotting on the calibration curve

Features - simulating a R_Date

oxcalSimulate(-3400, 25, "SimDate_1") %>% plot()

R_Simulate: SimDate_1 (4695 ± 25)

Features - simulating a sum calibration

```
oxcalSumSim(

timeframe_begin = -4000,  # From when

timeframe_end = -3000,  # To when

n = 50,  # Number of dates

stds = 35,  # Standard deviation of dates (can also be a vector of length n)
date_distribution = "uniform" # random uniform; alternatively: equidist for equidistant dates
) %>% plot()
```


Features - injecting arbitray OxCal code

```
my_sequence <- Sequence(
  c(
    Boundary("begin"),
    Phase(
      R Date(
        c("ABC-123", "ABC-321"),
       c(5020, 5200),
       20), "first"
    ),
    Boundary("between"),
    Phase(
     R Date(
       c("CBA-123", "CBA-321"),
       c(5010, 4810),
        20), "second"
    Boundary("end")
  ), "my_sequence"
cat(my_sequence)
```

```
## Sequence("my_sequence")
## {Boundary("begin");
## Phase("first"){
## R_Date("ABC-123", 5020, 20);};
## R_Date("ABC-321", 5200, 20);};
## Boundary("betveen");
## Phase("Second"){
## R_Date("CBA-123", 5010, 20);
## R_Date("CBA-321", 4810, 20);};
## Boundary("end");};
```

Features - using Bayesian calibration of OxCal

```
my_result_data <- my_sequence %>%
executeOxcalScript() %>%
readOxcalOutput() %>%
parseOxcalOutput(only.R_Date = F)

plot(my_result_data)
```


State and Roadmap

- c14bazAAR
 - Ready for takeoff at Github
 - https://github.com/ISAAKiel/c14bazAAR
 - · CRAN release within this month
- oxcAAR
 - oxcAAR 1.0.0 'Nicola' released at CRAN
 - Bayesian Calibration available at Github
 - https://github.com/ISAAKiel/oxcAAR
 - oxcAAR 1.1.0 'Flora'
 - · CRAN release within this month

Thank you for your attention

Clemens Schmid

clemens@nevrome.de

Martin Hinz

martin.hinz@ufg.uni-kiel.de