Corrigé exercice 35:

Pour tout $x \in \mathbb{R}$, $\cos(2x) \ge -1$ et $\sin\left(\frac{x}{2}\right) \ge -1$ d'où, pour tout $x \in \mathbb{R}$, $\cos(2x) + \sin\left(\frac{x}{2}\right) \ge -2$. Ainsi l'équation $\cos(2x) + \sin\left(\frac{x}{2}\right) = -3$ ne peut pas admettre de solution dans \mathbb{R} .

Corrigé exercice 36:

 π est une solution de cette équation car $\cos(2\pi) + \sin\left(\frac{\pi}{2}\right) = 1 + 1 = 2$.

Corrigé exercice 37:

1. On construit le tableau de signes suivant.

x	$-\pi$		$-\frac{3\pi}{4}$		$-\frac{\pi}{4}$		0		$\frac{\pi}{4}$		$\frac{3\pi}{4}$		π
$\cos(2x)$		+	0	_	0		+		0	_	0	+	
$\sin x$				_			0			+			
$\cos(2x) \times \sin(x)$		_	0	+	0	_	0	+	0	_	0	+	

Donc l'ensemble des solutions de $\cos(2x)\sin(x) > 0$ sur $[-\pi;\pi]$ est $\left] -\frac{3\pi}{4}; -\frac{\pi}{4} \right[\cup \left] 0; \frac{\pi}{4} \left[\cup \right] \frac{3\pi}{4}; \pi \right[$.

2. On construit le tableau de signes suivant.

x	$-\pi$		$-\frac{\pi}{2}$		0		$rac{\pi}{2}$		π
$\sin(2x)$		+	0	_	0	+	0	_	
$\cos x$		_	0		+		0	_	
$\cos(x) \times \sin(2x)$		_	0	_	0	+	0	+	

 $\text{Donc l'ensemble des solutions de } \cos(x)\sin(2x) < 0 \text{ sur } [-\pi;\pi] \text{ est } \Big] - \pi; -\frac{\pi}{2} \Big[\, \cup \, \Big] - \frac{\pi}{2}; 0 \Big[.$

Corrigé exercice 38:

- 1. $\cos(x)\sin(x) = 0$ si, et seulement si, $\cos(x) = 0$ ou $\sin(x) = 0$ c'est-à-dire si, et seulement si, $x = k\frac{\pi}{2}$ avec $k \in \mathbb{Z}$.
- 2. Pour tout $x \in \mathbb{R}$, $\cos(x) \le 1$ et $\sin(x) \le 1$ donc $\cos(x)\sin(x) \le 1$. Ainsi, l'équation $\cos(x)\sin(x) = 2$ n'admet pas de solution.
- 3. $\cos^2(x) = 1$ si, et seulement si, $\cos(x) = 1$ ou $\cos(x) = -1$ d'où $x = k\pi$ avec $k \in \mathbb{Z}$.
- 4. $\sin^2(x) = 0.5$ si, et seulement si, $\sin(x) = \frac{\sqrt{2}}{2}$ ou $\sin(x) = -\frac{\sqrt{2}}{2}$ d'où $x = \frac{\pi}{4} + k\frac{\pi}{2}$ avec $k \in \mathbb{Z}$.