Last time:

- · A: mxn, B: nxp. AB: mxp is defined to be the matrix SIT. TAB = TAOTB.
- · A: nxn is invertible if] A: nxn st A A=AA=In. (what are the invertible matrices for n=1?)
- · We proved that if A is inventible, then AZ= 2 has a unique sol'e VBGR. i.e. Ta is bijective (holh injective & surjective).

Loday;

- · Introduce 'lelementary matrices'
 · Prove "TA bijective" > "A invertible".
- · Introduction to determinants lif we have time)

Rmk; A: mxn, m>n B: nxm st. AB= Im Then there doesn't exist · A: mxr, m<n. B: nxm st. BA= In Then there doesn't exist

- Tf A is invertible, then so is A, and $(A^{-1})^{-1} = A$
 - · If A, B invertible, then so is AB, and (AB) = B A
 - If A is invertible, then so is AT, and (AT) = (A-1)T.

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \\ \alpha_{31} & \alpha_{32} \end{bmatrix} = \begin{bmatrix} \alpha_{11} + 2\alpha_{2} & \alpha_{12} + 2\alpha_{22} \\ \alpha_{21} & \alpha_{22} \\ \alpha_{31} & \alpha_{32} \end{bmatrix}$$

the effect of left-multiplying this matrix = adding
$$2 \times (2^{nd} \text{ row})$$
 to the 1st row.

effect of left-multiplying the motions

replace the i-th now

by (i-th now) + a (j-th now)

multiply the lith now) by ato.

Swapping (ith row) & Lith row)

Finds: What happen if we multiply these matter on the right? $\begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix} = \begin{bmatrix}
\alpha_{11} & \alpha_{01} + \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix} = \begin{bmatrix}
\alpha_{21} & \alpha_{21} + \alpha_{22}
\end{bmatrix}$ where is these matter on the right? $\alpha_{21} & \alpha_{21} + \alpha_{12}$ and the right?

This A: nxn invertible (TA is bijective,

(1) was proved last time)

In=[1,0]

Note: The is bijective (A has pivots in each row and column the reduced echelon form of A is In

pf: The bijective
$$\Leftrightarrow$$
 the reduced edular form of A is A .

i.e. $A = E_1 - ... = E_k A = I_n$
 $\Rightarrow E_1 = E_2 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_2 = E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k A = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k^{-1} I = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k^{-1} I = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k^{-1} I = E_1^{-1} I = E_1^{-1}$
 $\Rightarrow E_3 - ... = E_k^{-1} I = E_1^{-1} I = E_1^{-1$

RMK: Suppose A invertible, how to compute A-1?

eg:
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$\frac{e_{i}q_{i}}{Assume_{a \neq 0}} \begin{bmatrix} \alpha & b & | & 0 & | \\ c & d & | & 0 & | \end{bmatrix} \rightarrow \begin{bmatrix} 1 & b/a & | & a & 0 \\ c & d & | & 0 & 1 \end{bmatrix}$$

This (criterions for invertibility); A: nxn.
The following are equivalent.

1) A is invertible. (We provad A invertible of TA is bijactive

a)	TA	13	surjec	tive			6	A ha	s proots how &	in column
	2^{l}	A	has p	pivot	[]	each i				·
			アフ					or.		
3)	TA	13	inject	ive						
•	31)	A	has	pivet	in.	each c	nmula	•		
	311)	A	X=D	has	Ø on	ly 11	e trh	old so) <u>p</u>	
4)	; E	B= 1	λγ	Svf.	BA	; = I	つ			
5)	7	C" 1	1.7 n	st.	A]= T	n.			
PF.	1) (∌ v)•	⇔ 3)	by h	s hat	we p	noved	earlier	· /	
·	·		(A7	n verti	fle s	9 T	A bij.	ect, ve)		
	8	by &	le fact	, that	56	u /	\ i3	a Eq	hare m	atrix,
		i (4 has	pivols	(11 R	ach n	sw ^{li} E	» 11 A	ias pi in each	vot colunn".
1)	⇒ 1	t) n	ad 5):	by	de	finThr	1			
			4)					3)	→ × //	
4	D	311)	\$	Nppos	je	Ax=	7 =	⇒ BA	7 7 = B	7=0
								*		

$$(5) \Rightarrow 2^{11})$$

$$(6) \Rightarrow 2^{11})$$

$$(7) \Rightarrow 2^{11})$$

$$(7) \Rightarrow 2^{11})$$

$$(8) \Rightarrow 2^{11})$$

$$(8)$$

Def: A linear transformation To Rn -> Rn is invertible if I a function S: R" -> R" st.

 $T(S(\vec{x})) = \vec{x} = S(T(\vec{x})) \quad \forall \vec{x} \in \mathbb{R}^n$ ice. To S= iden = SoT

EX: Suppose T = TA for some A: nxn.

Then . T is invertible A is invertible.

· In this case, $S(\vec{x}) = A^{-1}\vec{x}$ is the unique function st. To S= iden = So T.

Determinant (of square matrixe)

- 1 4 1 : [a11], det ([a11]) = a11
- $\det \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} = \alpha_{11} \alpha_{22} \alpha_{12} \alpha_{23}$ QYZ:

det(A) \$0 (B)

A is invertible [asi)

[asi]

[asi]

[asi] det (AB)= det(A) det(B)

