1 Limiti per funzioni

1.1 Definizioni

Definizione 1 (Intorno di $\pm \infty$):

L'intorno $di + \infty$ è l'insieme:

$$[k, +\infty[, k \in \mathbb{R}]$$
 (1)

L'intorno $di - \infty$ è l'insieme:

$$]-\infty, k[, \ k \in \mathbb{R}$$
 (2)

Intendiamo che se $A \subseteq \mathbb{R}$ come i seguenti

$$sup A = +\infty \iff +\infty \in D(A)$$

$$in f A = -\infty \iff -\infty \in D(A)$$
(3)

Un limite λ può essere:

$$\lambda \in \overline{R} \iff \begin{cases} \lambda \in R \\ \lambda = +\infty \\ \lambda = -\infty \end{cases} \tag{4}$$

Definizione 2:

Siano $A \subseteq \mathbb{R}, x_0 \in D(A), \lambda \in \overline{R}. f : A \to \mathbb{R}.$

A un insieme contenuto fra i numeri reali, x_0 si trovi in un punto di accumulazione di A, λ contenuto nella retta reale estesa e f una funzione che ad ogni elemento di A corrisponde un elemento di R.

Diremo che f(x) tende a λ per x che tende a x_0 .

$$\forall V \in \mathcal{U}_{\lambda} \ \exists W \in \mathcal{U}_{x_0} : \ f(x) \in V \ \forall x \in A \setminus \{x_0\} \cap W \tag{5}$$

Qualunque intorno V all'interno della famiglia degli intorni \mathcal{U}_{λ} di λ (ricordando che $\lambda \in \overline{R}$ quindi può assumere o un valore reale o è uguale $a \pm \infty$), esiste un intorno W all'interno della famiglia degli insiemi di \mathcal{U}_{x_0} di x_0 (un punto di accumulazione)

$$x_0 \in \mathbb{R} \qquad]x_0 - \delta, x_0 + \delta[\tag{6}$$

tale che l'immagine x sia in V tutte le volte che x in $A \setminus x_0$ intersecato con l'intorno W, W_{x_0} è per definzione un punto di accumulazione quindi l'interesezione è non vuota

La scrittura semplificata:

$$\lim_{x \to x_0} f(x) = \lambda \tag{7}$$

se **per ogni** $\epsilon > 0$ esiste un numero $\delta > 0$ tale che per ogni $x \in A, 0 < |x - x_0| < \delta$.

$$|f(x) - \lambda| < \epsilon \tag{8}$$

Esempio 1.

Abbiamo $x_0 \in \mathbb{R}$ e $\lambda = -\infty$ avremo che:

$$\mathcal{U}_{x_0} = \{]x_0 - \delta, x_0 + \delta[: \delta > 0 \}$$

$$\mathcal{U}_{\lambda} = \mathcal{U}_{-\infty} = \{] - \infty, k[: k \in \mathbb{R} \}$$
(9)

Quindi avremo che:

$$\lim_{x \to x_0} f(x) = -\infty \tag{10}$$

se e solo se:

$$\forall k \in \mathbb{R} \ \exists \delta > 0: \ \forall x \in A \setminus \{x_0\} \ \{|x - x_0| < \delta \implies f(x) < k\} \tag{11}$$

Vale a dire che: qualunque valore noi diamo a k che è un numero appartenente ai numeri reali (quindi ha un valore finito), esiste un numero δ maggiore di 0 tale che, quale che sia x contenuta in A meno x_0 , il **modulo** della differenza di x e x_0 ($|x-x_0|$) è **minore** di δ , questo vuol dire che l'immagine di f(x) è sempre **strettamente minore** di k.

Ovvero f(x) avrà sempre un valore piccolissimo inferiore a qualsiasi numero reale

Anche se f(x) è definita nel punto x_0 non è necessario che soddisfare $\lim_{x\to x_0} f(x) = \lambda$, quindi nel punto in cui $x=x_0$. Affermiamo che il valore del limite λ è indipendente dal valore della funzione nel punto x_0 .

1.2 Teoremi Fondamentali

Definizione 3 (Unicità del limite):

Sia $A \subseteq \mathbb{R}$ e siano $x_0 \in D(A)$, $x_0 \in \overline{R}$, $f : A \to \mathbb{R}$. Se esistono $\lambda, \mu \in \overline{\mathbb{R}}$ t.c.:

$$\lim_{x \to x_0} f(x) = \lambda \quad \wedge \quad \lim_{x \to x_0} f(x) = \mu \quad \iff \quad \lambda = \mu$$
 (12)

Prendiamo un sottoinsieme A di \mathbb{R} , che è il dominio di una funzione $f(x): A \to \mathbb{R}$, e prendiamo x_0 un punto di accumulazione dell'insieme A, contenuto in \mathbb{R} . Supponiamo che ci siano **due** limiti (per assurdo), ma allora questi due limiti **SONO UGUALI**.

DIMOSTRAZIONE 1.

Partiamo dalla nozione che: punti distinti ammettono intorni disgiunti:

$$\lambda, \mu \in \overline{\mathbb{R}} \qquad \Longrightarrow \qquad \exists V \in \mathcal{U}_{\lambda}, W \in \mathcal{U}_{\mu} : V \cap W \neq \emptyset$$
 (13)

Supponendo per assurdo che i due numeri siano diversi fra loro, allora ci basterà prendere un numero $\epsilon>0$ minore della **metà** della distanza fra questi due numeri e noteremo che i due numeri hanno intorni distinti.

Questo è assurdo in quanto avevamo affermato che l'interesezione dei loro intorni era **non vuota**. Questo quando i due numeri λ , μ sono numeri reali, quando uno di questi due invece é $\pm \infty$ allora per l'assioma di completezza c'è sempre un numero reale che si trova fra questi due per seprararli.

Per assurdo ℓ , poniamo $\lambda \neq \mu$, per quanto abbaimo dimostrato prima abbiamo che **punti disgiunti** hanno **intorni disgiunti**. Ovvero:

$$\exists V \in \mathcal{U}_{\lambda}, \exists W \in \mathcal{U}_{\mu} : V \cap W = \varnothing. \tag{14}$$

Stiamo affermando che l'interesezione dei due intorni è un'insieme vuoto. Notiamo anche che:

$$\lim_{x \to x_0} f(x) = \lambda \iff \exists U_1 \in \mathcal{U}_{x_0} : f(x) \in V \quad \forall x \in (A \setminus \{x_0\}) \cap U_1 \quad (15)$$

e che

$$\lim_{x \to x_0} f(x) = \mu \iff \exists U_2 \in \mathcal{U}_{x_0} : f(x) \in W \quad \forall x \in (A \setminus \{x_0\}) \cap U_2 \quad (16)$$

Quindi avremo che:

$$f(x) \in V \cap W \ \forall x \in (A \setminus \{x_0\}) \cap (U_1 \cap U_2) \tag{17}$$

Questo é assurdo perchè $U_1 \cap U_2 \in \mathcal{U}_{x_0}$ e

$$x_0 \in D(A) \iff (A \setminus \{x_0\}) \cap (U_1 \cap U_2) \neq \emptyset$$
 (18)

e questo dimostra che $V \cap W \neq \emptyset$ che contraddice il fatto che $V \cap W = \emptyset$

Definizione 4 (Località del limite):

Siano $A \subseteq \mathbb{R}, x_0 \in D(A)$ intendendo che $x_0 \in \overline{\mathbb{R}}$ e $f, g : A \to \mathbb{R}$ e siano f, g due funzioni con dominio l'insieme A. Se esiste $\tilde{W} \in \mathcal{U}_{x_0}$:

$$f(x) = g(x) \ \forall x \in \tilde{W} \cap (A \setminus \{x_0\}) \tag{19}$$

se esiste il $\lim_{x\to x_0} f(x)$, quindi esiste $\lim_{x\to x_0} g(x)$ e i due limiti coincidiono.

Esempio 2.

Prendiamo due funzioni $f, g : \mathbb{R} \to \mathbb{R}$ con:

$$g(x) = \begin{cases} 1 & \sec x \neq 0 \\ 0 & \sec x = 0 \end{cases} \tag{20}$$

е

$$f(x) = 1 \tag{21}$$

Possiamo subito osservare che $f(x) \neq g(x)$ se e solo se x = 0Inoltre il limite di:

$$\lim_{x \to 0} g(x) = 1 \qquad g(x) = 1 \ \forall x \in \mathbb{R} \setminus \{0\}$$
 (22)

Infatti non è importante il valore della funzione in quello specifico punto ma il valore che assume **nell'intorno** di quel punto.

Abbiamo dimostrato quindi che $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$.

il limite è unico e dipende solo da un intorno del punto in cui lo calcoliamo e non dal valore assoluto della funzione nel punto.

Il vaolre assoluto avrà un valore importante nella nozione di continuità.

Definizione 5 (Restrizione di limiti):

Sia $f: A \to \mathbb{R}$ e $B \subseteq A$ diremo che la sua restrizione per B è:

$$f_{|_B}: B \to \mathbb{R} \qquad f_{|_B}(x) = f(x)^{\forall x \in B}$$
 (23)

I punti della funzione ristretta in B sono tutti i punti della funzione di di partenza restrigendo il Dominio da A a B.

Se esiste il limite di $\lim_{x\to x_0} f(x)$ allora esite anche il limite di $\lim_{x\to x_0} f_{|_B}(x)$ e questi due limiti coincidono:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f_{|_B}(x) \tag{24}$$

Definizione 6:

Se $A = \mathbb{R} \setminus \{x_0\}$, $B =]x_0, +\infty[$ oppure $B =]-\infty, x_0[$ limite destro e limite sinistro di f in x_0 si definiscono:

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0} f_{|_{]x_0, +\infty[}}(x) \qquad \land \qquad \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0} f_{|_{]-\infty, x_0[}}(x) \quad (25)$$

Con x_0^+ intendiamo un numero poco più grande di x_0

Definizione 7:

La definizione di limite destro è:

$$\forall \epsilon > 0 \ \exists \delta > 0 : (x_0 < x < x_0 + \delta \implies |f(x) - \lambda| < \epsilon) \tag{26}$$

per il limite sinistro serve una sostituzione ovvero:

$$x_0 - \delta < x < x_0 \tag{27}$$

Da quest'ultima definizione otteniamo che se f(x) ha limite per $x \to x_0$ allora esiste il limite per $x \to x_0^+$ e per $x \to x_0^-$

Serve a precisare anche che se i limiti destro e sinistro di una funzione sono diversi fra loro in uno specifico punto x_0 allora il limite di f(x) in x_0 non esiste

Definizione 8 (Teorema del collegamento):

Siano $A \subseteq \mathbb{R}, x_0 \in D(A), \lambda, x_0 \in \overline{\mathbb{R}}, f : A \to \mathbb{R}$ Abbiamo che:

$$\lim_{x \to x_0} f(x) = \lambda \iff \lim_{n \to +\infty} f(x_n) = \lambda \ \forall \{x_n\}_{n \in \mathbb{N}} \subseteq A \setminus \{x_0\}, \ x_n \underset{n \to +\infty}{\to} x_0$$
(28)

Vuol dire che se abbiamo una funzione f(x) con **limite**, possiamo "collegare" **ogni** successione contenuta nel dominio e se usiamo come immagine della funzione un qualsiasi valore della successione, avremo come limite di questa nuova funzione il limite iniziale.

Questo teorema è fondamentale in quanto riconduce il limite di una funzione a quello di una successione.

IMPORTANTE: il simbolo di ∞ non preceduto da nessun segno non ha nessun valore e non dobbiamo utilizzarlo nella risoluzione degli esercizi in quanto è un simbolo troppo **impreciso e fuorviante**.

Definizione 9:

Il limite della somma di due limiti è la somma dei due limiti. Il limite del prodotto di due funzioni è il prodotto dei due limiti. Abbiamo vari casi a seconda del valore dei limiti: Poniamo $A \subseteq \mathbb{R}, f, g: A \to \mathbb{R}, x_0 \in D(A) \cap \overline{\mathbb{R}}$, allora:

1. A. i limiti sono dei numeri reali:

$$f(x) \underset{x \to x_0}{\to} \lambda \in \mathbb{R}$$

$$g(x) \underset{x \to x_0}{\to} \mu \in \mathbb{R}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$SOMMA: f(x) + g(x) \underset{x \to x_0}{\to} \lambda + \mu \qquad \qquad (29)$$

$$PRODOTTO: f(x) \cdot g(x) \underset{x \to x_0}{\to} \lambda \cdot \mu$$

$$QUOZIENTE: \frac{f(x)}{g(x)} \underset{x \to x_0}{\to} \frac{\lambda}{\mu} \qquad (\mu \neq 0; g(x) \neq 0)$$

B. i limiti sono $\pm \infty$

Se le due funzioni f, g hanno segni concordi per $x \to x_0$, allora: il limite della somma è $\pm \infty$

il limite del prodotto è il prodotto dei limiti e il segno è definito dal prodotto dei segni.

2. Se $f(x) \underset{x \to x_0}{\to} \pm \infty$, $f(x) \neq 0$ in $A \setminus \{x_0\}$:

$$\lim_{x \to x_0} \frac{1}{f(x)} = 0 \tag{30}$$

e viceversa:

Se $f(x) \underset{x \to x_0}{\longrightarrow} 0, f(x) > 0$ in $A \setminus \{x_0\}$:

$$\lim_{x \to x_0} \frac{1}{f(x)} = \pm \infty \tag{31}$$

- 3. A. Se $f(x) \leq g(x)$, $\forall x \in A \setminus \{x_0\}$, $\lim_{x \to x_0} f(x) = +\infty$ allora questo implica che $\lim_{x \to x_0} g(x) = +\infty$
 - B. Se $f(x) \leq g(x)$, $\forall x \in A \setminus \{x_0\}$, $\lim_{x \to x_0} f(x) = -\infty$ allora questo implica che $\lim_{x \to x_0} g(x) = -\infty$

4.
$$f(x) \underset{x \to x_0}{\to} \lambda \implies |f(x)| \underset{x \to x_0}{\to} |\lambda|$$

Definizione 10 (2 carabinieri):

Poniamo $A \subseteq \mathbb{R}, x_0 \in D(A) \cap \overline{\mathbb{R}}; f, g, h : A \to \mathbb{R}.$ A è un sottoinsieme di \mathbb{R}, x_0 è un punto di accumulazione di A, e f, g, h sono delle funzioni con dominio A.

Se esiste un intorno $W \in \mathcal{U}_{x_0}$ tale che:

$$f(x) \le h(x) \le g(x) \ \forall x \in (A \setminus \{x_0\} \cap W) \tag{32}$$

allora è vero che:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \lambda \in \overline{\mathbb{R}} \implies \lim_{x \to x_0} h(x) = \lambda$$
 (33)

DIMOSTRAZIONE 2.

Per dimostrare questo teorema ci sono due casi differenti:

- 1. $\lambda = \pm \infty$, la dimostrazione è banale in quanto basta rivedere i lemmi derivati dai prodotti e le somme dei limiti.
- $2. \lambda \in \mathbb{R}.$

Definiamo una successione $\{x_n\}_{n\in\mathbb{N}}\subseteq A\setminus\{x_0\},\ x_n\underset{n\to+\infty}{\longrightarrow} x_0$ convergente in x_0 .

Dal teorema del "collegamento" sappiamo che

$$f(x_n) \underset{n \to +\infty}{\to} \lambda \& g(x_n) \underset{n \to +\infty}{\to} \lambda$$
 (34)

Sappiamo inoltre che esiste un indice \overline{n} per il quale $x_n \in (A \setminus \{x_0\}) \cap W$; $\forall n > \overline{n}$

Quindi è vero che:

$$f(x_n) \le h(x_n) \le g(x_n) \ \forall n > \overline{n}$$
 (35)

Dal Teorema dei 2 Carabinieri (per successioni) otteniamo che $\lim_{n \to +\infty} h(x_n) = \lambda$

Definizione 11 (Cauchy):

Poniamo $A \subseteq \mathbb{R}, x_0 \in D(A) \cap \overline{\mathbb{R}}, f : A \to \mathbb{R}.$

Allora sono equivalenti le seguenti:

1.

$$\exists \lambda \in \mathbb{R} : \lim_{x \to x_0} f(x) = \lambda \tag{36}$$

2.

$$\forall \epsilon > 0 \exists W \in \mathcal{U}_{x_0} : \forall x, y \in A \setminus \{x_0\} \ (x, y \in W \implies |f(x) - f(y)| < \epsilon$$
(37)

Questo teorema afferma che quando una funzione converge al proprio limite, esiste un numero positivo (ϵ) tale per cui esiste un intorno (W) per cui la differenza del modulo di due termini arbitrari (x,y) sono minori di qualsiasi numero positivo (ϵ) noi scegliamo.

Dimostrazione 3. 1. 1 \Longrightarrow 2

$$\forall \epsilon > 0 \exists W \in \mathcal{U}_{x_0} : |f(x) - \lambda| < \frac{\epsilon}{2} \ \forall x \in W \cap (A \setminus \{x_0\})$$
 (38)

Allora utilizzando un'applicazione della disuguaglianza triangolare:

$$|f(x) - f(y)| \le |f(x) - \lambda + \lambda| \le |f(x) - \lambda| + |\lambda - f(y)| < 2\frac{\epsilon}{2} = \epsilon \quad (39)$$

 $2. 2 \implies 1$

Sia $\{x_n\}$ una successione convergente (e quindi di Cauchy) $x_n \underset{n \to +\infty}{\to} x_0$, dalle nostre ipotesi sappiamo che:

$$\forall \epsilon > 0 \exists W \in \mathcal{U}_{x_0} : \forall x, y \in A \setminus \{x_0\} \ (x, y \in W \implies |f(x) - f(y)| < \epsilon$$
(40)

Dato che la successione è convergente dai teoremi sulle successioni possiamo dedurre che esiste un indice \overline{n} per il quale $n, m > \overline{n}$ il che implica che:

$$|f(x_n) - f(x_m)| < \epsilon \ \forall n, m > \overline{n}$$
 (41)

Quindi la successione $\{f(x_n)\}_{n\in\mathbb{N}}$ è di Cauchy e dall'assioma di completezza sappiamo anche che:

$$\exists \lambda \in \mathbb{R} : \lim_{n \to +\infty} f(x_n) = \lambda \tag{42}$$

Ovvero che esiste un numero reale che è il limite di questa successione. Per dimostrare che questa condizione è valida **per ogni** successione convergente a x_0 .

Consideriamo un'altra successione $\{y_n\} \subseteq A \setminus \{x_0\}, \ y_n \underset{n \to +\infty}{\to} x_0$. Allora deve esistere un indice $\overline{\overline{n}} \in \mathbb{N}$ per cui ogni indice maggiore di esso "cade" nell'intervallo W, ovvero:

$$n > \overline{\overline{n}} \implies y_n \in W \cap (A \setminus \{x_0\})$$
 (43)

Se allora consideriamo un indice n tale che esso sia maggiore del massimo dei due altri indici implica che le due successioni si trovano all'interno dell'intervallo W:

$$n > max\{\overline{n}, \overline{\overline{n}}\} \implies x_n, y_n \in (A \setminus \{x_0\}) \cap W$$
 (44)

Dalla prima dimostrazione sappiamo che la differenza del modulo delle due funzioni è più piccola di un numero arbitrariamente piccolo (ϵ) Perciò:

$$\lim_{n \to +\infty} (f(x_n) - f(y_n)) = 0 \tag{45}$$

Ma dato che il limite di $f(x_n)$ è λ allora esso sarà il limite anche della funzione dell'altra successione:

$$\lim_{n \to +\infty} f(y_n) = \lambda \tag{46}$$

Questo è valido per qualsiasi arbitraria funzione $\{y_n\}$

1.3 Limiti di funzioni monotone

Definizione 12:

Poniamo $A \neq \emptyset, f : A \to \mathbb{R}$

. Si dice una funzione superiormente limitata se è superiormente limitato l'insieme f(A).

Si dice una funzione **inferiormente limitata** se è inferiormente limitato l'insieme f(A).

Più semplicemente diremo che esiste una costante (M) sempre maggiore (o minore) dei valori della funzione nel suo dominio:

$$\exists M \in \mathbb{R} : f(x) \ge M, \ \forall x \in A \tag{47}$$

$$\exists M \in \mathbb{R} : f(x) \le M, \ \forall x \in A \tag{48}$$

Si dice che una funzione è limitata se essa è minore del modulo di una costante (M):

$$\exists M \in \mathbb{R} : f(x) \le |M|, \ \forall x \in A \tag{49}$$

1.4 Notazione

Poniamo:

$$\sup_{A} f = \sup(f(A)), \quad \& \quad \inf_{A} f = \inf(f(A)) \tag{50}$$

Allora sono vere le seguenti affermazioni:

$$\sup_{A} f = \lambda \iff \begin{cases} f(x) \le \lambda, & \forall x \in A, \\ \forall \epsilon > 0, \ \exists \overline{x} \in A: \ \lambda - \epsilon < f(\overline{x}) \end{cases}$$
 (51)

La spiegazione segue che:

- (1): se λ è il superiore della funzione $f(x), A \to \mathbb{R}$, allora **ogni** immagine di essa sarà inferiore o uguale a λ e questo e' valido per ogni elemento del dominio.
- (2): Vale a dire che il sup é il minimo maggiorante, prendendo un qualsiasi numero positivo (ϵ) se sottraiamo questo numero dal sup questa differenza sarà minore di una certa immagine della funzione, se fosse vero il contrario ℓ , il sup non sarebbe il minimo maggiorante.

Delle derivazioni di queste affermazioni sono che:

• $\sup_A f = +\infty$, implica che comunque noi scegliamo una costante M, esiste un elemento di x tale che la sua immagine sia maggiore di questa costante.

$$\forall M \in \mathbb{R}, \ \exists x \in A : f(x) > M \tag{52}$$

si ha un discorso analogo se l'inf e' $-\infty$

Il sup di una funzione puó appartenere alla funzione o no, mentre il max di una funzione

$$\max_{A} f = \max(f(A)) \tag{53}$$

appartiene alla funzione stessa perchè è un'elemento del dominio.

Definizione 13 (Monotonia di una funzione):

Siano $A \subseteq \mathbb{R}, f: A \to \mathbb{R}$ si dice che questa funzione è monotona crescente se

$$f(x) \le f(y) \ \forall x, y \in A, \ x \le y \tag{54}$$

 \dot{E} strettamente crescente se le disuguaglianze sono strette. (<)

$$f(x) < f(y) \ \forall x, y \in A, \ x < y \tag{55}$$

Mentre una funzione è strettamente decrescente se la definzione precedente è valida con le disuguaglianze invertite.

$$f \nearrow \equiv f$$
 crescente (56)

Con x_0 di solito ci si riferisce al punto di massimo della funzione.

Definizione 14:

Poniamo $A \subseteq \mathbb{R}, f : A \to \mathbb{R}, f \nearrow$, allora è vero che:

1.
$$x_0 \in D(A \cap]x_0, +\infty[) \implies \lim_{x \to x_0^+} f(x)$$

 $se x_0 \ entropy \ un punto di accumulazione dell'insieme formato dal suo dominio$ intersecato con $]x_0, +\infty[$, esiste il limite destro di questo punto.

2.
$$x_0 \in D(A \cap]-\infty, x_0[) \implies \lim_{x \to x_0^-} f(x)$$

2. $x_0 \in D(A \cap]-\infty, x_0[) \implies \lim_{x \to x_0^-} f(x)$ se x_0 è un punto di accumulazione dell'insieme formato dal suo dominio intersecato con $]-\infty, x_0[$, esiste il limite sinistro di questo punto.

Funzioni Continue 1.5

Definizione 15 (Continuità):

Un modo pratico per definire la continuità di una funzione è quello di pensare di dover disegnare il grafico della funzione, se non si è mai staccata la penna dal foglio, allora la funzione sarà continua.

Definiamo $A \subseteq \mathbb{R}, f : A \to \mathbb{R}, x_0 \in A$.

Una funzione si definisce **continua** in x_0 se:

$$\forall V \in \mathcal{U}_{f(x_0)} \exists W \in \mathcal{U}_{x_0} : \ \forall x \in A(x \in W \Longrightarrow f(x) \in V)$$
 (57)

Questa definizione è molto simile alla definzione di limite, in questa circostanza però il punto x_0 è incluso.

La notazione di continuità:

$$f \in C(A, \mathbb{R}) = \{ f : A \to \mathbb{R} : f \text{continua} \}$$
 (58)

Inoltre una funzione continua è composta da due punti diversi:

1. Se x_0 è un punto isolato: $x_0 \notin D(A)$, implica che la funzione è continua in x_0 quale che sia la funzione.

$$x_0 \notin D(A) \Longrightarrow \exists W \in \mathcal{U}_{x_0} : A \cap W = \{x_0\}$$
 (59)

Se x_0 è un punto isolato (quindi non un punto di accumulazione) esiste un intorno nella famiglia degli intorni di x_0 . Se interesechiamo l'intorno scelto con il dominio, otterremo esattamente x_0 .

$$\forall V \in \mathcal{U}_{f(x_0)} \Longrightarrow f(x) \in V, \in A \cap W$$

$$x \in A \cap W \iff x = x_0$$
(60)

Ogni intorno dell'immagine di x_0 , ogni immagine di x si trova in questo intorno: se $x \in A \cap W$

2. Se x_0 è un punto di accumulazione: Allora f è continua in x_0 se e solo se $\lim_{x\to x_0} f(x) = f(x_0)$

Dei teoremi che derivano da questa definzione: Se $A \subseteq \mathbb{R}, f, g \in C(A)$:

- $f + g \in C(A)$;
- $f \cdot g \in C(A)$;
- se $g \neq 0$ in A, allora $\frac{f}{g} \in C(A)$
- $|f| \in C(A)$

Definizione 16 (Continuità e successioni): Siano $A \subseteq \mathbb{R}, x_0 \in A, f : A \to \mathbb{R}$.

$$f \in C(A) \iff \forall \{x_n\}_{n \in \mathbb{N}} \subseteq A, x_n \underset{n \to +\infty}{x_0}; \lim_{n \to +\infty} f(x_n) = f(x_0)$$
 (61)

Se abbiamo una funzione continua in un certo dominio, questo è valido se e solo se per ogni **successione** contenuta in questo dominio converge a x_0 e il limite dell'immagine di questa successione è l'immagine del punto di convergenza.

DIMOSTRAZIONE 4.

Per dimostrare partendo dalla definzione di continuità:

$$\forall V \in \mathcal{U}_{f(x_0)} \exists W \in \mathcal{U}_{x_0} : \ \forall x \in A (x \in W \Longrightarrow f(x) \in V)$$
 (62)

Sappiamo anche che per una successione convergente esiste un indice $\overline{n} \in \mathbb{N}$ tale che $x_n \in W, n > \overline{n} \implies x_n \in A \implies x_n \in W \cap A \ (n > \overline{n}$

$$\forall V \in \mathcal{U}_{f(x_0)} \exists \overline{n} \in \mathbb{N} : \forall n (n > \overline{n} \Longrightarrow f(x) \in V)$$
 (63)

Ma questo vuol dire che il limite dell'immagine della successione è l'immagine del punto di convergenza.

$$\lim_{n \to +\infty} f(x_n) = f(x_0) \tag{64}$$

DIMOSTRAZIONE 5.

Dimostriamo la continuità partendo dalla nozione per cui ogni successione convergente in un punto x_0 di A il limite dell'immagine della successione è l'immagine del punto di convergenza:

Per assurdo &pensiamo che la funzione sia **non** continua:

(Neghiamo la definizione di continuità)

$$\exists V \in \mathcal{U}_{fx_0} : \forall W \in \mathcal{U}_{x_0} \ \exists x \in A \cap W \ \& \ f(x) \notin V$$
 (65)

Si può riscrivere come:

$$\forall n \in \mathbb{N}, \ \exists x_n \in A \cap \left] x_0 - \frac{1}{n}, x_0 + \frac{1}{n} \right[\& f(x_n) \notin V$$
 (66)

La successione allora è contenuta in $A, x_n \to x_0$, dato che per ogni $n \in \mathbb{N}$:

$$x_0 - \frac{1}{n} < x_n < x_0 + \frac{1}{n} \tag{67}$$

Per ipotesi abbiamo posto che l'immagine della successione non si trova nell'intorno V ma allo stesso tempo è nell'intorno il che è assurdo.

$$f(x_n) \notin V; f(x_n) \in V$$

$$\tag{68}$$

Definizione 17 (Teorema di Weierstrass):

Sia $A \subseteq \mathbb{R}$ un insieme compatto, ovvero un insieme chiuso e limitato, se $f \in C(A)$ Allora la funzione ha **massimo** e **minimo**

DIMOSTRAZIONE 6.

Sia $A \neq \emptyset, f: A \to \mathbb{R}$:

•
$$\exists \{a_n\}_{n \in \mathbb{N}} \subseteq A : \lim_{n \to +\infty} f(a_n) = \sup_{A} f(a_n)$$

•
$$\exists \{b_n\}_{n \in \mathbb{N}} \subseteq A : \lim_{n \to +\infty} f(b_n) = \inf_A f$$

Dimostriamo l'esistenza del massimo $max_A f$.

Sappiamo che esiste una successione che tende al sup della funzione.

$$\exists \{x_n\}_{n\in\mathbb{N}} \subseteq A : \lim_{n\to+\infty} f(x) = \sup_{A} f$$
 (69)

Dato che l'insieme in cui la successione è contenuta possiamo estrarre una sottosuccessione $\{x_{k_n}\}$ che converge in un certo punto x_0 .

Allo stesso tempo per la continuità della funzione che l'immagine della sottosuccessione converge all'immagine del punto in cui converge

$$\lim_{n \to +\infty} f(x_{k_n}) = f(x_0) \tag{70}$$

Dai teoremi sulle successioni sappiamo che se una successione converge in un certo punto anche **ogni** sua sottosuccessione convergerà a quel punto. Quindi:

$$\lim_{n \to +\infty} f(x_{k_n}) = \sup_{A} f \tag{71}$$

Per il teorema dell'unicità del limite allora

$$f(x_0) = \sup_{A} f \implies f(x_0) = \max_{A} f$$
 (72)

Definizione 18 (Teorema di Bolzano):

Presupponiamo come ipotesi che:

 $a, b \in \mathbb{R}, a < b \ e \ f \ sia \ continua \ in \ questo \ intervallo, \ f \in C([a, b]), \ tale \ che \ f(a) \cdot f(b) \leq 0.$

Ipotizziamo che esista $x_0 \in [a,b]: f(x_0) = 0$

DIMOSTRAZIONE 7.

La dimostrazione di questo teorema si basa sul dividere la funzione a metà (trovandone il punto medio $\frac{a+b}{2}=c$).

In questo punto ci sono 3 scenari possibili:

- 1. c=0, il punto medio è = 0, non abbiamo bisogno di procedere
- 2. la prima metà è = 0, quindi iteriamo il procedimento con questa parte della funzione.

3. la seconda metà della funzione $\dot{e} = 0$, iteriamo il procedimento.

Iterando questo procedimento, per un certo indice $n \in \mathbb{N}$ otterremo che:

- 1. $f(c_n) = 0$, troviamo un certo punto medio uguale a 0;
- 2. otteniamo 2 successioni, $\{a_n\}, \{b_n\} \subseteq [a, b]$:

$$a_n \le a_{n+1} \le b_{n+1} \le b_n, \quad f(a_n) \cdot f(b_n) \le 0$$
 (73)

$$b_n - a_n = \frac{b - a}{2^n}, \forall n \in \mathbb{N}$$
 (74)

e il limite di queste due successioni è lo stesso

$$\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n = x_0 \in [a, b] \tag{75}$$

Per la continuità della funzione, presupposta nell'ipotesi,

$$\lim_{n \to +\infty} f(a_n) \cdot f(b_n) = (f(x_0)^2)$$

$$f^2(x_0) \le 0 \iff f(a_n) \cdot f(b_n) \le 0 \ \forall n \in \mathbb{N}$$

$$f(x_0) = 0$$
(76)

Definizione 19 (Teorema dei valori intermedi):

Una conseguenza del teorema di Blzano è il teorema dei valori intermedi: Se $f: I \to \mathbb{R}$, $f \in C(I)$, allora f(I) è un intervallo. Vale a dire che se abbiamo una funzione continua in un certo intervallo, l'immagine di questo intervallo è un intervallo.

Sia $I \subseteq R$, $f \in C(I)$, f non costante (altrimenti sarebbe banale).

$$\forall x_1, x_2 \in I : f(x_1) < f(x_2) \forall y \in]f(x_1), f(x_2)[\exists x \in I : f(x) = y$$
 (77)

DIMOSTRAZIONE 8.

Sappiamo che $x_1 \neq x_2$, allora poniamo $x_1 < x_2$, (ciò potrebbe essere invertito senza nessun problema).

Definiamo una funzione g che ha come dominio l'intervallo chiuso definito dalle due variabili prima definite:

$$g: [x_1, x_2] \to \mathbb{R}, g(x) = f(x) - y \implies g \in C([x_1, x_2])$$
 (78)

Definiamo la funzione g nell'intervallo chiuso $[x_1, x_2]$, questa funzione sarà uguale alla funzione di partenza f se gli sottraiamo una costante y, che è un punto intermedio fra i due punti di partenza.

$$f(x_1) < f(x_0) = y < f(x_2) \tag{79}$$

Come conseguenza del teorema di Bolzano, esiste un punto della funzione $x_0 \in [x_1, x_2]$ tale che la funzione si annulli. $g(x_0) = 0$

Se $f: I \to \mathbb{R}, f \in C(I) \implies f(I)$ è un intervallo e:

- 1. $f(I) =]inf_I f$, $sup_I f[$ se f non ha nè max nè min
- 2. $f(I) =]inf_I f$, $max_I f[$ se f ha max e non ha min
- 3. $f(I) =]min_I f$, $sup_I f[$ se f non ha max ma ha min
- 4. $f(I) = |min_I f|$, $max_I f|$ se f ha max e min

Possiamo osservare che se abbiamo un intervallo $I \subseteq \mathbb{R}$:

- Se $f \in C(I)$ e iniettiva, allora la funzione è **monotona**
- Se f è monotonae f(I) è un intervallo allora la funzione è continua $f \in C(I)$

Un teorema che ne deriva è:

Se abbiamo una funzione continua in un certo intervallo $f \in C(I), I \subseteq \mathbb{R}$ e la funzione è iniettiva, poniamo J = f(I):

- J è un intervallo e $f:I\to J$ è sia suriettiva che iniettiva
- L'inversa della funzione è continua nell'intervallo J: $f^{-1} \in C(J)$

1.6 Uniforme Continuità

Siano: $A \subseteq \mathbb{R}, f : A \to \mathbb{R}$, si dice che una funzione è **uniformemente continua** su A, se:

$$\forall \epsilon > 0, \ \exists \delta > 0 : \forall x, y \in A(|x - y|) < \delta \Longrightarrow |f(x) - f(y)| < \epsilon$$
 (80)

Si può leggere come: qualsiasi numero reale positivo noi scegliamo (ϵ) , per quantopiccolo esso sia, esiste un altro numero reale positivo (δ) , tale per cui,

qualsiasi due elementi di una fuznione (x, y), la loro differenza sarà **sempre** minore di δ , e ciò implica che la differenza delle immagini di questi di punti sia minore di ϵ , questa è la condizione di **uniforme continuità** Notiamo che la continuità non implica l'uniforme continuità, invece l'uniforme continuità implica la continuità.

Definizione 20 (Heine-Cantor):

Sia $A \subseteq \mathbb{R}$ un insieme compatto, poniamo una funzione $f \in C(A)$ continua, allora questo implica che è anche uniformemente continua.

Più semplicemente, una funzione continua in un insieme compatto è uniformemente continua.

DIMOSTRAZIONE 9 (Facoltativa).

Ipotizziamo per assurdo 4che la funzione non sia uniformemente continua:

$$\exists \epsilon > 0: \ \forall \delta > 0 \ \exists x, y \in A: \ |x - y| < \delta \ \& |f(x) - f(y)| \ge \epsilon \tag{81}$$

Traducendo in termini di successioni (in particolare in una successione convergente per x_0) sostituiamo δ con un certo indice n della successione.

$$\forall n, \ \exists x_n, y_n \in A : |x_n - y_n| < \frac{1}{n} \& |f(x_n) - f(y_n) \ge \epsilon$$
 (82)

Sapendo che il dominio della funzione è un insieme compatto (ovvero chiuso e limitato), possiamo estrarre una sotto-successione $\{x_{k_n}\}$ che converge ad un punto $x_0 \in A$

$$|x_{k_n} - y_{k_n}| < \frac{1}{k_n} \ \forall n \in \mathbb{N}$$
 (83)

Questo implica che anche y_{k_n} converge a x_0

Inoltre possiamo dedurre dalla nozione di continuità che:

$$\lim_{n \to +\infty} (f(x_{k_n}) - f(y_{k_n})) = f(x_0) - f(x_0) = 0$$
(84)

Questo fatto è assurdo poichè per ipotesi avevamo posto che:

$$|f(x_{k_n} - f(y_{k_n})| \ge \epsilon > 0 \ \forall n \in \mathbb{N}$$
 (85)

FINE PARTE DI TEORIA