VIII. Resolvent and Spectrum

Let T be a linear operator whose domain D(T) and range R(T) both lie in the same complex linear topological space X. We consider the linear operator

$$T_{\lambda} = \lambda I - T \tag{1}$$

where λ is a complex number and I the identity operator. The distribution of the values of λ for which T_{λ} has an inverse and the properties of the inverse when it exists, are called the *spectral theory* for the operator T. We shall thus discuss the general theory of the inverse of T_{λ} .

1. The Resolvent and Spectrum

Definition 1

If λ_0 is such that the range $R(T_{\lambda_0})$ is dense in X and T_{λ_0} has a continuous inverse $(\lambda_0 I - T)^{-1}$, we say that λ_0 is in the resolvent set $\rho(T)$ of T and denote this inverse $(\lambda_0 I - T)^{-1}$ by $R(\lambda_0; T)$ and call it the resolvent (at λ_0) of T. All complex numbers λ not in $\rho(T)$ form a set $\sigma(T)$ called the spectrum of T. The spectrum $\sigma(T)$ is composed of disjoint sets P(T), C(T) and R(T) with the following properties:

- The the point spectrum P(T) of T is the totality of complex numbers λ for which T_{λ} does not have an inverse;
- The continuous spectrum C(T) of T is the totality of complex numbers λ for which T_{λ} has a continuous inverse with domain dense in X
- The residual spectrum R(T) of T is the totality of complex numbers λ for which T_{λ} has an inverse whose domain is not dense in of T is the totality of complex numbers λ *for which $T_{\hat{I}}$ » does not have an inverse;

From these definitions and the linearity of T we have the following

Proposition 2

A necessary and sufficient condition for λ_0 to be in P(T) is that the equation $Tx = \lambda_0 x$ has a solution $x \neq 0$. In this case λ_0 is called an eigenvalue of T, and the corresponding eigenvector. The null space $N(\lambda_0 I - T)$ of T_{λ} is called the eigenspace of T corresponding to the eigenvalue λ_0 . It consists of the vector or the totality of eigenvectors corresponding to λ_0 . The dimension of the eigenspace corresponding to λ_0 is called the multiplicity of the eigenvalue λ_0 .

Theorem 3

Let X be a complex B-space, and T a closed linear operator with its domain D(T) and range R(T) both in X. Then, for any λ_0 in $\rho(T)$,

$$\frac{1}{\lambda_0 I - T} \tag{2}$$

is an everywhere defined continuous linear operator.

Proof. Since λ_0 is in the resolvent set $\rho(T)$, $R(\lambda_0; T) = D((\lambda_0 I - T)^{-1})$ is dense in X in such a way that there exists a positive constant c for which

 $\|(\lambda_0 \text{ I - T}) \text{ x }\| \ge c \| \text{ x }\|$ whenever $\text{ x } \in D(\text{T})$. We have to show that $R(\lambda_0 I - T) = X$. But, if s- $\lim_{n\to\infty} x_n = y$ exists, then by the above inequality, s- $\lim_{n\to\infty} Tx_n = Ty$ exists, and so, by the closure property of T, we must have $(\lambda_0 I - T)x = y$. Hence, by the assumption that $R(\lambda_0 I - T)^{-1} = X$, we must have $R(\lambda_0 I - T) = X$.

Example 4. If the space X is of finite dimension, then any bounded linear operator T is represented by a matrix (t_{ij}) . It is known that the eigenvalues of T are obtained as the roots of the algebraic equation, the so-called *secular* or *characteristic equation* of the matrix (t_{ij}) :

$$\det\left(\lambda_0 I_{ij} - t_{ij}\right) = 0 \tag{3}$$

where $\det(A)$ denotes the determinant of the matrix A.

Example 5. Let $X = L^2(-\infty, \infty)$ and let T be defined by

$$T: (x(t) \mapsto t \, x(t)) \tag{4}$$

that is, $D(T) = \{x(t): x(t) \in L^2(-\infty, \infty)\}$ and Tx(t) = t x(t) for $x(t) \in D(T)$. Then every real number λ_0 is in $C_c(T)$.

Proof. The condition $(\lambda_0 I - T) x = 0$ implies $(\lambda_0 - t) x(t) = 0$ a.e., and so x(t) = 0 a.e. Thus $\rho(\lambda_0 - T) = \mathbb{C}$. The domain $D((\lambda_0 I - T)^{-1})$ comprises those $y(t) \in L^2(-\infty, \infty)$ which vanish identically in the neighbourhood of $t = \lambda_0$; the neighbourhood may vary with y(t). Hence $D((\lambda_0 I - T)^{-1})$ is dense in $L^2(-\infty, \infty)$. It is easy to see that the norm of $(\lambda_0 I - T)^{-1}$ is not bounded on the totality of such y(t)'s.

Example 6. Let X be the Hilbert space (ℓ^2) , and let T_0 be defined by

$$T_0({s_1, s_2, \dots}) = (0, s_1, s_2, \dots)$$
 (5)

Then 0 is in the residual spectrum of T, since $R(T_0)$ is not dense in X.

Example 7. Let H be a self-adjoint operator in a Hilbert space X. Then the resolvent set $\rho(H)$ of H comprises all the complex numbers λ with $\text{Im}(\lambda) \neq 0$, and the resolvent $R(\lambda; H)$ is a bounded linear operator with the estimate

$$||R(\lambda;H)|| \le \frac{1}{|\operatorname{Im}(\lambda)|} \tag{6}$$

Moreover,

$$\operatorname{Im}((\lambda I - H) x, x) = \operatorname{Im}(\lambda) \|x\|^2 \forall x \in D(H)$$
(7)

Proof. If $x \in D(H)$, then (Hx, x) is real since (Hx, x) = (x, Hx). Therefore we have (3) and so by Schwarz's inequality

$$\|(\lambda I - H) x\| \geqslant |(\lambda I - H) x| \geqslant \operatorname{Im}(\lambda) \|x\|^2 \tag{8}$$

which implies that

$$\|(\lambda I - H) x\| \ge |\operatorname{Im}(\lambda)| \|x\| \tag{9}$$

Hence the inverse $\frac{1}{\lambda I - H}$ exists if $\text{Im}(\lambda) \neq 0$. Moreover, the range $R(\lambda I - H)$ is dense in X if $\text{Im}(\lambda) \neq 0$. If otherwise, there would exist a $y \neq 0$ orthogonal to $R(\lambda I - H)$, i.e., $((\lambda I - H) x, y) = 0 \forall x \in D(H)$, and so $(x, (\bar{\lambda} I - H) y) = 0 \forall x \in D(H)$. Since the domain D(H) of a self-adjoint operator H is dense in X, we must have $(\bar{\lambda} I - H)y = 0$, that is, $Hy = \bar{\lambda} y$, contrary to the reality of the value (Hy, y).

Therefore, by the above theorem, we see that for any complex number λ with $\text{Im}(\lambda) \neq 0$, the resolvent $R(\lambda; H)$ is a bounded linear operator with the estimate (2).

2. The Resolvent Equation and Spectral Radius

Theorem 8

Let T be a closed linear operator with domain and range both in a complex B-space X. Then the resolvent set $\rho(T)$ is an open set of the complex plane. In each component (the maximal connected sets) of $\rho(T)$, $R(\lambda;T)$ is a holomorphic function of λ .

Proof. By the Theorem of the preceding section, $R(\lambda; T)$ for $\lambda \in \rho(T)$ is an everywhere defined continuous operator. Let $\lambda_0 \in \rho(T)$ and consider

$$S(\lambda) = R(\lambda_0; T) \left[I + \sum_{n=1}^{\infty} (\lambda_0 - \lambda)^n R(\lambda_0; T)^n \right]$$
(10)

The series is convergent in the operator norm whenever $|\lambda_0 - \lambda|$. $||R(\lambda_0; T)|| < 1$, and within this circle of the complex plane, the series defines a holomorphic function of λ . Multiplication by $(\lambda - T)$ on the left or right gives I so that the series $S(\lambda)$ actually represents the resolvent $R(\lambda; T)$. Thus we have proved that a circular neighbourhood of λ_0 belongs to $\rho(T)$ and $R(\lambda; T)$ are everywhere defined continuous operators, then the resolvent equation holds:

$$R(\lambda;T) - R(\mu;T) = (\mu - \lambda) R(\lambda;T) R(\mu;T)$$
(11)

Proof. We have

$$R(\lambda;T) = R(\mu;T) [(\mu - T) R(\mu;T)]$$

$$= R(\mu;T) [(\mu - \lambda) I + (\lambda - T)] R(\mu;T)$$

$$= (\mu - \lambda) R(\lambda;T) R(\mu;T)$$
(12)

Theorem 9

If T is a bounded linear operator on a complex B-space X, then the following limit exists:

$$\lim_{n \to \infty} \|T^n\|^{\frac{1}{n}} = r_0(T) \tag{13}$$

It is called the spectral radius of T, and we have

$$r_0(T) \le ||T|| \tag{14}$$

If $|\lambda| > r_0(T)$, then the resolvent $R(\lambda; T)$ exists and is given by the series

$$R(\lambda;T) = \sum_{n=1}^{\infty} \lambda^{-n} T^{n-1}$$
(15)

which converges in the norm of operators.

Proof. Set $r = \inf_n ||T^n||^{1/n}$. We have to show that $\lim_{n\to\infty} ||T^n||^{1/n} \le r$. For any $\epsilon > 0$, choose m such that $||T^m||^{1/m} \le r + \epsilon$, for arbitrary n, write $n = p \, m + q$ where $0 \le q < m$. Then, by $||AB|| \le ||A|| ||B||$, we obtain

$$||T^n||^{1/n} \le ||T^m||^{p/n} ||T^q||^{1/n} \le (r+\epsilon)^{pm/n} ||T^q||^{1/n} \tag{16}$$

Since $p \, m \, / \, n \to 1$ and $q \, / \, n \to 0$ as $n \to \infty$, we must have $||T^n||^{1/n} \le r + \epsilon$. Since ϵ was arbitrary, we have proved $\lim_{n \to \infty} ||T^n||^{1/n} \le r$.

Since $||T^n|| \le ||T||^n$, we have $\lim_{n\to\infty} ||T^n||^{1/n} \le ||T||$. The series (5) is convergent in the norm of operators when $|\lambda| > r_0(T)$. For if $|\lambda| \ge r_0(T) + \epsilon > 0$, then, by (3), $||R(\lambda;T)||^{1/n} \le (r_0(T) + 2\epsilon)^{-n}$ for large n. Multiplication by $(\lambda I - T)$ on the left or right of this series gives I so that the series actually represents the resolvent $R(\lambda;T)$.

Corollary 10

The resolvent set $\rho(T)$ is not empty when T is a bounded linear operator.

Theorem 11

For a bounded linear operator T in L(X,X), we have

$$r_0(T) = \sup_{\lambda \in \sigma(T)} |\lambda| \tag{17}$$

Proof. By Theorem 3, we know that $R(\lambda;T)$ is holomorphic in λ when $|\lambda| > \sup_{\mu \in \sigma(T)} |\mu|$. Hence we have only to show that $r_0(T)$ is equal to $\sup_{\lambda \in \sigma(T)} |\lambda|$.

By Theorem 1, $R(\lambda; T)$ is holomorphic in λ where $|\lambda| > \sup_{\mu \in \sigma(T)} |\mu|$. Thus it admits a uniquely determined Laurent expansion in positive and non-positive powers of λ converging in the operator norm for $|\lambda| > \sup_{\mu \in \sigma(T)} |\mu|$. By Theorem 3, this Laurent series must coincide with

$$\sum_{n=1}^{\infty} \lambda^{-n} T^{n-1} \tag{18}$$

Hence $\lim_{n\to\infty} \frac{T^{n-1}}{\lambda^n} = 0$ if $|\lambda| > \sup_{\mu\in\sigma(T)} |\mu|$, and so, for any $\epsilon > 0$, we must have $||T|| \le (\epsilon + \sup_{\mu\in\sigma(T)} |\mu|)^n$ for large n. This proves that

$$r_0(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} = \sup_{\lambda \in \sigma(T)} |\lambda| \tag{19}$$

Corollary 12

The series $\sum_{n=1}^{\infty} \lambda^{-n} T^{n-1}$ diverges if $|\lambda| < r_0(T)$.

Proof. Let γ be the smallest number ≥ 0 such that the series

$$\sum_{n=1}^{\infty} \lambda^{-n} T^{n-1} \tag{20}$$

converges in the operator norm for $|\lambda| > \gamma$. The existence of such an n is proved as for ordinary power series in λ^{-1} . Then, for $|\lambda| > \gamma$, $\lim_{n \to \infty} \lambda^{-n} T^{n-1} = 0$ and so, as in the proof of $r_0(T) \le \sup_{\mu \in \sigma(T)} |\mu|$, we must have $\lim_{n \to \infty} ||T^n||^{1/n} \le \gamma$. This proves that $r_0(T) \le \gamma$.