Representation Theory I

Jendrik Stelzner

April 12, 2015

Contents

1	Basic Definitions	2
2	Nilpotent and solvable Lie algebras	8

1 Basic Definitions

Definition. A k-Lie algebra is a vector space $\mathfrak g$ (over some field k) together with a k-bilinear map

$$[\cdot,\cdot]\colon \mathfrak{g} imes \mathfrak{g} o \mathfrak{g}$$

satisfying the following:

- 1. $[\cdot,\cdot]$ is alternating, i.e. [x,x]=0 for every $x\in\mathfrak{g}$.
- 2. The Jacobi identity

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
 for all $x, y, z \in \mathfrak{g}$.

 $[\cdot,\cdot]$ is called a *Lie bracket*.

Remark. $[\cdot,\cdot]$ is antisymmetric, i.e. [y,x]=-[x,y] for all $x,y\in\mathfrak{g}$, because

$$0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].$$

Definition. Let A be a k-algebra. A *derivation of* A is a k-linear map $d \colon A \to A$ such that

$$d(ab)=d(a)b+ad(b)\quad \text{for al } \mathrm{l} a,b\in A.$$

We set

$$Der(A) := \{d : A \to A \mid d \text{ is a derivation of } A\}.$$

Remark. Der(A) is clearly a k-vector space.

Examples. 1. Any vector space V becomes a Lie algebra via

$$[x, y] = 0$$
 for all $x, y \in V$.

2. Any associative k-algebra A becomes a Lie algebra via

$$[a, b] = ab - ba$$
 for all $a, b \in A$.

It is clear that $[\cdot,\cdot]$ is alternating and the Jacobi identity can be verified by some easy calculation.

In particular $M_n(k)$ is a Lie algebra via

$$[A, B] = AB - BA$$
 for all $A, B \in M_n(k)$.

This is called the *general linear Lie algebra* and is denoted by $\mathfrak{gl}_n(k)$ or $\mathfrak{gl}(n,k)$.

More generally for any k-vector space the space $\mathrm{End}_k(V)$ becomes a Lie algebra via

$$[\varphi_1,\varphi_2] \coloneqq \varphi_1 \circ \varphi_2 - \varphi_2 \circ \varphi_1 \quad \text{for all } \varphi_1,\varphi_2 \in \operatorname{End}_k.$$

This is called the *general linear Lie algebra for* V and is denoted by $\mathfrak{gl}(V)$.

A Lie algebra $\mathfrak g$ is called linear if $\mathfrak g\subseteq\mathfrak g\mathfrak l(V)$ for some finite dimensional vector space V.

3. Let A be a k-algebra. Der(A) is a Lie algebra via

$$[d, d'] := d \circ d' - d' \circ d$$
 for all $d, d' \in \text{Der}(A)$.

Is is an easy calculation to show that [d, d'] is again a derivation. Notice that the Jacobi identity for Der(A) follows from the Jacobi identity for $\mathfrak{gl}(A)$.

We will now look at how to construct new Lie algebras from old ones.

Definition. Let \mathfrak{g}_1 and \mathfrak{g}_2 be Lie algebras over the same field k. Then the *product* of \mathfrak{g}_1 and \mathfrak{g}_2 is defined as the k-vector space $\mathfrak{g}_1 \times \mathfrak{g}_2$ together with the Lie bracket

$$[(x_1,y_1),(x_2,y_2)] = ([x_1,x_2],[y_1,y_2]) \quad \text{for all } (x_1,y_1),(x_2,y_2) \in \mathfrak{g}_1 \times \mathfrak{g}_2.$$

Let $\mathfrak g$ be a Lie algebra over k and A an associative, commutative k-algebra. Then $\mathfrak g \otimes_k A$ is a Lie algebra via

$$[x\otimes a,y\otimes b]=[x,y]\otimes (ab)\quad \text{for all } x,y\in \mathfrak{g} \text{ and } a,b\in A.$$

Definition. Let $\mathfrak g$ be a Lie algebra and $A=k[t,t^{-1}]$ be the algebra of Laurent polynomials over k. Then

$$\mathcal{L}(\mathfrak{g}) \coloneqq \mathfrak{g} \otimes_k A$$

with the Lie bracket as above is called the *loop (Lie) algebra* of g.

Another example of construction new Lie algebras from old ones are *central extensions*: Let \mathfrak{g} be any k-Lie algebra.

$$\tilde{\mathfrak{g}} := \mathfrak{g} \otimes k = \{x + \lambda c \mid x \in \mathfrak{g}, \lambda \in k\},\$$

where we understand c as a formal variable. Suppose that $\kappa \colon \mathfrak{g} \times \mathfrak{g} \to k$ is a k-bilinear map satisfying the following properties:

- 1. κ is antisymmetric, i.e. $\kappa(x,y) = -\kappa(y,x)$ for all $x,y \in \mathfrak{g}$.
- 2. The 2-cocycle condition

$$\kappa([x,y],z) + \kappa([y,z],x) + \kappa([z,x],y) = 0$$
 for all $x,y,z \in \mathfrak{g}$.

Then $\tilde{\mathfrak{g}}$ becomes a Lie algebra via

$$[x + \lambda c, y + \mu c] := [x, y] + \kappa(x, y)\lambda\mu c.$$

Note that c is central in $\tilde{\mathfrak{g}}$ in the sense that [x,c]=0 for all $x\in\mathfrak{g}$.

Example. Let $\mathfrak{g} = \mathfrak{gl}_n(k)$. We define a symmetric bilinear form on \mathfrak{g} via

$$(A,B)_{tr} = tr(AB).$$

We define a bilinear form

$$\mathcal{L}(\mathfrak{g}) \times \mathcal{L}(\mathfrak{g}) \to k[t, t^{-1}], (x \otimes p, y \otimes q) \mapsto (x, y)_{tr} pq$$

We now get a 2-cocycle $\kappa \colon \mathcal{L}(\mathfrak{g}) \times \mathcal{L}(\mathfrak{g}) \to k$ via

$$\kappa(a,b) \coloneqq \operatorname{Res}\left(\frac{\partial a}{\partial t},b\right).$$

 κ is also antisymmetric: Let $a=x\otimes t^i$ and $b=y\otimes t^j$ with $x,y\in\mathfrak{g}$ and $i,j\in\mathbb{Z}$. Then

$$\begin{split} \kappa(x\otimes t^i,y\otimes t^j) &= \operatorname{Res}(ix\otimes t^{i-1},y\otimes t^j) = \operatorname{Res}(it^{i+j-1}(x,y)_{\operatorname{tr}}) \\ &= \begin{cases} i(x,y)_{\operatorname{tr}} & \text{if } i+j=0,\\ 0 & \text{otherwise.} \end{cases} \end{split}$$

In the same way we find that

$$\kappa(y \otimes t^j, x \otimes t^i) = \begin{cases} j(x, y)_{\mathrm{tr}} & \text{if } i + j = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Since $(\cdot,\cdot)_{tr}$ is symmetric we find that

$$\begin{split} \kappa(x\otimes t^i,y\otimes t^j) &= \begin{cases} i(x,y)_{\mathrm{tr}} & \text{if } i+j=0,\\ 0 & \text{otherwise}, \end{cases} \\ &= \begin{cases} -j(x,y)_{\mathrm{tr}} & \text{if } i+j=0,\\ 0 & \text{otherwise}, \end{cases} \\ &= -\kappa(y\otimes t^j,x\otimes t^i). \end{split}$$

As for all algebraic structures morphisms are of interest.

Definition. Given k-Lie algebras \mathfrak{g}_1 and \mathfrak{g}_2 a homomorphism of Lie algebras $\mathfrak{g}_1 \to \mathfrak{g}_2$ is a k-linear map $f \colon \mathfrak{g}_1 \to \mathfrak{g}_2$ such that

$$f([x,y]) = [f(x), f(y)]$$
 for all $x, y \in \mathfrak{g}_1$.

Examples. 1. For any Lie algebra $\mathfrak g$ the identity $\mathrm{id}_{\mathfrak g}\colon \mathfrak g\to \mathfrak g$ is a Lie algebra homomorphism.

2. Given Lie algebras \mathfrak{g}_1 , \mathfrak{g}_2 and \mathfrak{g}_3 and Lie algebra homomorphisms $f_1\colon \mathfrak{g}_1\to \mathfrak{g}_2$ and $f_2\colon \mathfrak{g}_2\to \mathfrak{g}_3$ the composition $f_2\circ f_1\colon \mathfrak{g}_1\to \mathfrak{g}_3$ is also a homomorphism of Lie algebras.

Remark. We find that we have a category of k-Lie algebras. An isomorphism of k-Lie algebras is an isomorphism in the category of k-Lie algebras. Clearly every isomorphism is an homomorphism and bijective. The converse also holds: If $f:\mathfrak{g}_1\to\mathfrak{g}_2$ is a bijective homomorphism of k-Lie algebras, then the k-linear map $f^{-1}:\mathfrak{g}_2\to\mathfrak{g}_1$ is also an homomorphism of k-Lie algebras, because for all $x,y\in\mathfrak{g}_2$

$$f^{-1}([x,y]) = f^{-1}([f(f^{-1}(x)), f(f^{-1}(y))])$$

$$= f^{-1}(f([f^{-1}(x), f^{-1}(y)]))$$

$$= [f^{-1}(x), f^{-1}(y)].$$

So an isomorphism of Lie algebras is just a homomorphism of Lie algebras which is bijective.

Definition. Let $\mathfrak g$ be a k-Lie algebra. A representation of $\mathfrak g$ is a k-vector space V together with a homomorphism of Lie algebras $\rho \colon \mathfrak g \to \mathfrak{gl}(V)$.

Remark. Equivalently a representation of $\mathfrak g$ is a k-vector space V together with a k-bilinear map $\mathfrak g \times V \to V, (x,v) \mapsto x.v$ such that

$$x.y.v - y.x.v = [x, y].v$$
 for all $x, y \in \mathfrak{g}$ and $v \in V$.

Definition. Let g be a Lie algebra. Then

ad:
$$\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}), x \mapsto [x, \cdot]$$

is called the adjoint representation of g.

Remark. That ad is a homomorphism of Lie algebras is equivalent to

$$ad([x,y])(z) = [ad(x), ad(y)](z)$$
 for all $x, y, z \in \mathfrak{g}$.

Because

$$ad([x,y])(z) = [[x,y],z] = -[z,[x,y]]$$

and

$$[\mathrm{ad}(x),\mathrm{ad}(y)](z) = (\mathrm{ad}(x)\circ\mathrm{ad}(y))(z) - (\mathrm{ad}(y)\circ\mathrm{ad}(x))(z)$$
$$= [x,[y,z]] - [y,[x,z]] = [x,[y,z]] + [y,[z,x]]$$

this is equivalent to the Jacobi identity.

Definition. Let $\mathfrak g$ be a k-Lie algebra. A Lie subalgebra of a $\mathfrak g$ is a k-linear subspace $L\subseteq \mathfrak g$ such that

$$[x, y] \in L$$
 for all $x, y \in L$.

An *ideal* inside $\mathfrak g$ is a k-linear subspace $I \subseteq \mathfrak g$ such that

$$[x,y] \in I$$
 for all $x \in \mathfrak{g}$ and $y \in I$.

We denote ideals by $I \lhd \mathfrak{g}$.

For a Lie algebra $\mathfrak g$ and a subalgebra $\mathfrak h\subseteq \mathfrak g$ it is clear that $\mathfrak h$ becomes a Lie algebra by restricting the Lie bracket of $\mathfrak g$ to $\mathfrak h$. The inclusion $\mathfrak h\hookrightarrow \mathfrak g$ is then clearly a homomorphism of Lie algebras.

Also notice that every ideal inside \mathfrak{g} is also a subalgebra of \mathfrak{g} .

Example. Let $\mathfrak{g} = \mathfrak{gl}_n(k)$. Then

$$\mathfrak{sl}_n(k) = \{ A \in \mathfrak{g} \mid \operatorname{tr} A = 0 \}$$

is a subalgebra. Even more

$$\mathfrak{sl}_n(k) = [\mathfrak{g}, \mathfrak{g}].$$

To see this first notice that on the one hand $A,B\in\mathfrak{g}$

$$\operatorname{tr}[A,B] = \operatorname{tr}(AB - BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = \operatorname{tr}(AB) - \operatorname{tr}(AB) = 0.$$

Therefore $[\mathfrak{g},\mathfrak{g}] \subseteq \mathfrak{sl}_n(k)$. On the other hand notice that $\mathfrak{sl}_n(k)$ has a basis given by the elementary matrices e_{ij} with $1 \le i \ne j \le n$ and $e_{11} - e_{ii}$ with $1 < i \le n$. Each of these matrices is given as a commutator, namely $e_{ij} = [e_{ii}, e_{ij}]$ for $1 \le i \ne j \le n$ and $e_{11} - e_{ii} = [e_{1i}, e_{i1}]$ for $1 < i \le n$. Therefore $\mathfrak{sl}_n(k) \subseteq [\mathfrak{g},\mathfrak{g}]$.

We have similar properties for ideals inside of Lie algebras als for ideals inside of a ring: For a collection of ideals $I_{\lambda}, \lambda \in \Lambda$, their intersection $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ and their sum $\sum_{\lambda \in \Lambda} I_{\lambda}$ are also ideals inside \mathfrak{g} . For ideals $I, J \lhd \mathfrak{g}$ the subspace [I, J] is also an ideal inside \mathfrak{g} . (For any two subsets $X, Y \subseteq \mathfrak{g}$ we denote by [X, Y] the linear subspace generated by the commutators [x, y] with $x \in X, y \in Y$.) To see that [I, J] is an ideal notice that for any $x \in I, y \in J$ and $z \in \mathfrak{g}$

$$[z,[x,y]] = -[x,\underbrace{[y,z]}_{\in I}] - [y,\underbrace{[z,x]}_{\in I}].$$

Remark. If $\mathfrak g$ is a Lie algebra and $I \lhd \mathfrak g$ then the quotient vector space $\mathfrak g/I$ is also a Lie algebra via

$$[x + I, y + I] = [x, y] + I.$$

It is easy to see that this bilinear map is well-defined. The properties for the Lie bracket on \mathfrak{g}/I follow from the ones for the Lie bracket on \mathfrak{g} .

From the definition of the Lie bracket on \mathfrak{g}/I it is clear that the canonical projection $\pi\colon \mathfrak{g}\to \mathfrak{g}/I$ is a homomorphism of Lie algebras.

We have the usual theorems about homomorphisms and ideals.

Proposition 1. Let \mathfrak{g}_1 and \mathfrak{g}_2 be Lie algebras and $f \colon \mathfrak{g}_1 \to \mathfrak{g}_2$ a homomorphism of Lie algebras.

- 1. $\ker f \lhd \mathfrak{g}_1$ is an ideal.
- 2. im $f \subseteq \mathfrak{g}_2$ is a Lie subalgebra.
- 3. If $I \lhd \mathfrak{g}_1$ is an ideal with $\ker f \subseteq I$ then there exists a unique homomorphism of Lie algebras $\tilde{f} \colon \mathfrak{g}_1/I \to \mathfrak{g}_2$ with $f = \tilde{f} \circ \pi$ where $\pi \colon \mathfrak{g}_1 \to \mathfrak{g}_1/I$ is the canonical projection.

4. If $I, J \triangleleft \mathfrak{g}$ are subideals with $I \subseteq J$ then J/I is an ideal inside \mathfrak{g}/I and the map

$$(\mathfrak{g}/I)/(J/I) \to \mathfrak{g}/I, (x+I) + (J/I) \mapsto x+I$$

is a natural isomorphism of Lie algebras.

5. If $I, J \triangleleft \mathfrak{g}$ are subideals then there is a natural isomorphism

$$(I+J)/J \to I/(I \cap J)$$

defined by

$$(x+J)+I\mapsto x+(I\cap J)$$
 for every $x\in I$

is a natural isomorphism of Lie algebras.

Definition. Let \mathfrak{g} be a Lie algebra. The *center* of \mathfrak{g} is

$$Z(\mathfrak{g}) := \{x \in \mathfrak{g} \mid [x, y] = 0 \text{ for every } y \in \mathfrak{g}\} = \ker \operatorname{ad}.$$

 \mathfrak{g} is called *abelian* if $[\mathfrak{g},\mathfrak{g}]=0$.

Clearly $\mathfrak g$ is abelian if and only if $Z(\mathfrak g)=\mathfrak g$. Notice that $[\mathfrak g,\mathfrak g]$ and $Z(\mathfrak g)$ are ideals inside $\mathfrak g$.

Definition. A Lie algebra $\mathfrak g$ is *simple* if 0 and $\mathfrak g$ are the only ideals inside $\mathfrak g$ and $\mathfrak g$ is not abelian.

Lemma 2. Let $\mathfrak g$ be a simple Lie algebra. Then $[\mathfrak g,\mathfrak g]=\mathfrak g$ and $Z(\mathfrak g)=0$.

Proof. Because $\mathfrak g$ is simple it is not abelian. Therefore $[\mathfrak g,\mathfrak g]\neq 0$ and $Z(\mathfrak g)\neq \mathfrak g$. Since $[\mathfrak g,\mathfrak g]$ and $Z(\mathfrak g)$ are ideals inside $\mathfrak g$ it follows that $[\mathfrak g,\mathfrak g]=\mathfrak g$ and $Z(\mathfrak g)=0$.

Corollary 3. Let \mathfrak{g} be simple. Then ad: $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is injective. In particular \mathfrak{g} is linear.

Proof. This directly follows from ker ad
$$= Z(\mathfrak{g}) = 0$$
.

Theorem 4 (Ado). Any finite dimensional Lie algebra is linear.

A proof of Ado's theorem will (maybe) be given later.

Remark. For a Lie algebra \mathfrak{g} the ideal $[\mathfrak{g},\mathfrak{g}]$ is the minimal ideal inside \mathfrak{g} such that $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ is abelian. Furthermore given any abelian Lie algebra \mathfrak{h} any homomorphism of Lie algebras $\mathfrak{g}\to\mathfrak{h}$ factorizes through a unique homomorphism of Lie algebras $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]\to\mathfrak{h}$.

Examples. 1. Since $[\mathfrak{gl}_n(k),\mathfrak{gl}_n(k)]=\mathfrak{sl}_n(k)\neq\mathfrak{gl}_n(k)$ we find that $\mathfrak{gl}_n(k)$ is not simple.

2. Let $\mathfrak{g}=\mathfrak{sl}_2(k)$. Then \mathfrak{g} is simple if and only if char $k\neq 2$. To see this consider the basis

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

of $\mathfrak{sl}_2(k)$. Then

$$[e, h] = -2e, [e, f] = h, [h, f] = -2f.$$

If char k=2 then h spans a 1-dimensional ideal, thus $\mathfrak{sl}_2(k)$ is not simple. Suppose that char $k\neq 2$ and let $I\subseteq \mathfrak{sl}_2(k)$ be an ideal with $I\neq 0$. It is clear that if I contains one of the basis vectors e,h or f it follows that $I=\mathfrak{sl}_2(k)$. Let $x\in I$ with $x\neq 0$ and write $x=\alpha e+\beta h+\gamma f$. Then

$$[e, x] = -2\beta e + \gamma h$$
 and $[e, [e, x]] = -2\gamma e$.

Since $\gamma = 0$ or $\gamma \neq 0$ we find that $e \in I$.

Remark. $\mathfrak{sl}_n(\mathbb{C})$ is simple for all $n \geq 2$.

2 Nilpotent and solvable Lie algebras

Definition. Let A be a k-algebra. An element $a \in A$ is called *nilpotent* if $a^n = 0$ for some $n \geq 1$. Given a Lie algebra $\mathfrak g$ an element $x \in \mathfrak g$ is called ad-*nilpotent* if $\mathrm{ad}(x) \in \mathrm{End}_k(\mathfrak g)$ is nilpotent.

Definition. Let g be a Lie algebra. Define $\mathfrak{g}^0 \coloneqq \mathfrak{g}$ and $\mathfrak{g}^{i+1} \coloneqq [\mathfrak{g}, \mathfrak{g}^i]$ for all $i \ge 0$. Then

$$\mathfrak{g}=\mathfrak{g}^0\supseteq\mathfrak{g}^1\supseteq\mathfrak{g}^2\supseteq\dots$$

is called the *central series* of \mathfrak{g} . Also define $\mathfrak{g}^{(0)} \coloneqq \mathfrak{g}$ and $\mathfrak{g}^{(i+1)} \coloneqq [\mathfrak{g}^{(i)}, g^{(i)}]$ for all $i \ge 0$. Then

$$\mathfrak{g}^{(0)}\supseteq\mathfrak{g}^{(1)}\supseteq\mathfrak{g}^{(2)}\supseteq\dots$$

is called the *derived series* of \mathfrak{g} . \mathfrak{g} is called *nilpotent* if $\mathfrak{g}^i=0$ for some i and *solvable* if $g^{(i)}=0$ for some i.

It is clear that every nilpotent Lie algebra is also solvable.

Examples. 1. Because $[\mathfrak{gl}_n(\mathbb{C}),\mathfrak{gl}_n(\mathbb{C})] = \mathfrak{sl}_n(\mathbb{C})$ and $[\mathfrak{sl}_n(\mathbb{C}),\mathfrak{sl}_n(\mathbb{C})] = \mathfrak{sl}_n(\mathbb{C})$ for $n \geq 2$ (since $\mathfrak{sl}_n(\mathbb{C})$ is simple) $\mathfrak{gl}_n(\mathbb{C})$ is not simple.

- 2. If g is abelian then g is nilpotent.
- 3. A Heisenberge Lie algebras consists of a real vector space with basis P_1, \ldots, P_n , Q_1, \ldots, Q_n , C together with the Lie bracket satisfying the following conditions:

$$[P_i, P_j] = [Q_i, Q_j] = [P_i, C] = [Q_i, C] = 0$$
 and $[P_i, Q_j] = \delta_{ij}C$.

This defines a nilpotent Lie algebra.

Proposition 5. Let g be a Lie algebra.

- 1. If \mathfrak{h} is a Lie algebra and $f: \mathfrak{g} \to \mathfrak{h}$ aLie algebras homomorphism then $f(\mathfrak{g})^i = f(\mathfrak{g}^i)$ and $f(\mathfrak{g})^{(i)} = f(\mathfrak{g}^{(i)})$ for all $i \geq 0$.
- 2. If $\mathfrak g$ is nilpotent (resp. solvable) then any Lie subalgebra $\mathfrak h \subseteq \mathfrak g$ and any quotient of $\mathfrak g$ (by an ideal) is nilpotent (resp. nilpotent).
- 3. If $I \triangleleft \mathfrak{g}$ with $I \subseteq Z(\mathfrak{g})$ and \mathfrak{g}/I is nilpotent then \mathfrak{g} is nilpotent.
- 4. If $\mathfrak{g} \neq 0$ is nilpotent then $Z(\mathfrak{g}) \neq 0$.
- 5. If \mathfrak{g} is nilpotent and $x \in \mathfrak{g}$ then x is ad-nilpotent.
- 6. If $I \triangleleft \mathfrak{g}$ then I^i and $I^{(i)}$ are ideals inside \mathfrak{g} for all i > 0.

Proof. 1. It suficies to show that for any two subsets $X,Y\subseteq \mathfrak{g}$

$$f([X,Y]) = [f(X), f(Y)]$$

the statement then follows inductively. It holds because f is a Lie algebra homomorphism and therefore

$$\begin{split} f([X,Y]) &= f(\mathrm{span}_k\{[x,y] \mid x \in X, y \in Y\}) \\ &= \mathrm{span}_k\{f([x,y]) \mid x \in X, y \in Y\} \\ &= \mathrm{span}_k\{[f(x),f(y)] \mid x \in X, y \in Y\} \\ &= \mathrm{span}_k\{[x',y'] \mid x' \in f(X), y' \in f(Y)\} \\ &= [f(X),f(Y)]. \end{split}$$

2. The statement about subalgebras is clear since $\mathfrak{h}^i\subseteq\mathfrak{g}^i$ and $\mathfrak{h}^{(i)}\subseteq\mathfrak{g}^{(i)}$ for all i. The statement about quotient follow using the canonical projection $\pi\colon\mathfrak{g}/I$ where $I\lhd\mathfrak{g}$. Because π is a Lie algebra homomorphism we have

$$(\mathfrak{g}/I)^i = \pi(\mathfrak{g})^i = \pi(\mathfrak{g}^i) = 0$$

for i big enough. For solvable ${\mathfrak g}$ the corresponding statements follow in the same way.

3. Let $\pi \colon \mathfrak{g} \to \mathfrak{g}/I$ be the canonical projection. Because \mathfrak{g}/I is nilpotent there exists some $i \geq 0$ with $(\mathfrak{g}/I)^i = 0$ and therefore

$$0 = (\mathfrak{g}/I)^i = \pi(\mathfrak{g})^i = \pi(\mathfrak{g}^i).$$

Thus $\mathfrak{g}^i\subseteq I\subseteq Z(G)$ and hence $\mathfrak{g}^{i+1}=0.$

- 4. Let $i \geq 1$ be minimal such that $\mathfrak{g}^{i-1} \neq 0$ but $\mathfrak{g}^i = 0$. Then $\mathfrak{g}^{i-1} \subseteq Z(\mathfrak{g})$ and therefore $Z(\mathfrak{g}) \neq 0$.
- 5. Since \mathfrak{g} is nilpotent $\mathfrak{g}^i=0$ for some $i\geq 0$. Then

$$(\operatorname{ad}(x))^i(\mathfrak{g}) \subseteq \mathfrak{g}^i = 0,$$

so
$$(ad(x))^i = 0$$
.

6. This follows inductively by using that [I,J] is an ideal inside $\mathfrak g$ for any $I,J\lhd \mathfrak g$.

9