

HAIR STYLING TEAM

Submitted on July 18th, 2019

Project completed by:

Noureen Ayesha 11136999
Anih John. T 11132186
Amadi. Bede. C 11136225
Umeokpala Chima .F 11135834
Sundram Reeshika 11134553

Instructor: Prof. Dr. Hartmut Westenberger

Technology Arts Sciences

TH Köln

Our Agenda

Introduction

A hair cutting shop offers three services:

- 1. Shampooing (washing)
- 2. Cutting
- 3. Coloring hair

The percentage of customers service request is randomly distributed.

- But if a customer asks for washing one or two additional services are required.
- But if the hair should be coloured then it should be washed before.

Exactly one employee is responsible for washing only. This employee is not allowed to cut or colour.

All other employees are allowed to process all services. But they will wash only when the hair washer is busy.

The shop's employees work 4.5 hours. They should take a 30-min break preferable in the middle of their shift

Assumption: Customers will decide whether they wait depending on the current waiting queue. A distinct percentage of the customers will return to the shop after a random distributed time period.

Customers who can't wait are to refer to as lost customers resulting in a loss in the business.

Technology Arts Sciences TH Köln

Project goal:

The shop manager wants to have a tool to optimize the hairdessers' schedule from an economic point of view:

- Maximize profit
- Minimize loss
- Minimize wait time for the customers

Needed Data

Before moving into the project implementation, it is important we talk about the data available and the assumed data in order to accomplish this project.

Available Data	Assumed Data				
Period length (p=1 hour=3600 seconds)	Number of customers in each period 10				
Working hours for employee = 4.5 hours	Number of agents in each period 3				
Break and refreshment time = 30 minutes	Traffic Intensity 0.83				
Number of Stations= 5 Stations/Seats	Service duration(5min) & Average Service duration				
	Price for cutting, coloring and washing (10 Euro)				
	Target Answer time				

Business Model

Before moving further into the details of the project, it is important we understand the business and give a description of the project overview in lame man term.

Plant building boxes used for the simulation

Plant Simulation Model

The event controller is used to keep track of the simulation time. We set our simulation time to 9 hours, since our saloon opens from 11:00 to 20:00.

Event Controller

Customer Generation

Customers are randomly generated at interval at the source. This is done using a probability function (Negexp) and a Table.

	object 1	real 2	integer 3	string 4	table 5
string	MU	Frequency	Number	Name	Attributes
1	.MUs.Wcut	0.40			
2	.MUs.Wc	0.40			
3	.MUs.Wc	0.50			
4	.MUs.cut	0.30			
5					
6					
7					
8					
9					
10					
11					

Fig 1.2: Probability distribution for Customer generation

Customer Wait or Return

Customers will decide whether they wait depending on the current waiting queue. A distinct percentage of the customers will return to the shop after a random distributed time period. Some of the customers who are not willing to wait are recorded lost as customers


```
if Buffer.NumMU >= 4 AND @.WaitingTolerance = FALSE then
var CustomerReturn := z_uniform(1,0,1);
if CustomerReturn < 0.5 then
    @.move(CustomerLost)
    LostCustomer:= LostCustomer + 1
else
    @.move(ReturnBuffer)
end
end</pre>
```

```
// Customer Patience and Tolerance attributed

var zval1 := z_uniform(1,0,1);
var zval2 := z_triangle(1,20,0,160);
if zval1 > 0.5 then -- 50% tolerate waiting

@.WaitingTolerance := TRUE;
@.Patience := zval2;
print "Values zval1: ",zval1," zval2: ", zval2; |

else @.WaitingTolerance := FALSE;

end;

IncomingCustomer:= IncomingCustomer + 1.
```

```
// Returning Customers joins Queue or Leave based on Queue length

if Buffer.NumMU < 4 then
@.move(Buffer)
ReturningCustomer:= ReturningCustomer + 1
else @.move(CustomerLost)
end
```

Routing and Processing Time


```
-- Direct customers based on their the service request
 var ar: object[]
 ar :=makeARray(Cutting,Colorcut2,Colorcut3,Colorcut4)
switch @.Name
 case "Wcut"
     @.move(Washing)
 case "Wcolor"
     @.move(Washing)
 case "Wcutcolor"
     @.move(Washing)
 case "cut"
     @.move(ar)
 end
  -- Direct cutomers based on their the service request
  var ar: object[]
  ar :=makeARray(Colorcut2,Colorcut3,Colorcut4)
- if @.Name = "Wcut"
      @.move(ar)
  elseif @.Name = "Wcolor"
      @.move(ar)
  elseif @.Name = "Wcutcolor"
      @.move(ar)
  end
  --if @.Name = "Wcutcolor" spend twice the processing time
if @.Name = "Wcutcolor"
  Colorcut2.ProcTime := 10:00.0000
  Colorcut2.ProcTime := 5:00.0000
  end
```

Employee Shift Implementation

Workers in all shifts:

Shift 1: Worker, Worker1, Worker2,

Shift2: Worker3, Worker4, Worker5,

ShiftA, ShiftB: These employees are available for both shifts to do mini job in case

of break. Worker6, Worker7, Worker8

Conditions:

Worker- This agent is only for Washing, He cannot perform cutting or coloring job, If he goes on break, other worker comes and serve his place

We have three shift calendars in our Simulation

- 1. FullTime: Shift Calendar
- 2. Mini Job AShift calendar
- 3. Mini Job BShift calendar

Employee Shift Implementation

We obtained above graph in which it shows intensity of customers versus time and showing how agents provides services to agents according to time schedule.

We have three shift calendars in our Simulation, for FullTime(Shift Calendar) following settings are implemented

Time	Customers	Intensity	Agents	Occup.	Worker	Worker1	Worker 2	Worker 3	Worker 4	Worker 5	worker6	worker 7	worker 8	
11:00	2	0.7	3	22%	1	1	1							
11:30	3	1.0	3	33%	1	1	1							
12:00	3	1.0	3	33%	1	1	1							
12:30	3	1.0	3	33%	1	1	1							
13:00	4	1.3	3	44%	1	1	1							
13:30	4	1.3	3	44%	0	0	0				1	1	. :	1
14:00	4	1.3	3	44%	1	1	1							
14:30	3	1.0	3	33%	1	1	1							
15:00	4	1.3	3	44%	1	1	1							
15:30	8	2.7	6	44%	1	1	1	. 1	1	1				
16:00	2	0.7	3	22%				1	1	1				
16:30	4	1.3	3	44%				1	1	1				
17:00	3	1.0	3	33%				1	1	1				
17:30	3	1.0	3	33%				1	1	1				
18:00	4	1.3	3	44%				0	0	0	1	1		1
18:30	4	1.3	3	44%				1	1	1				
19:00	4	1.3	3	44%				1	1	1				
19:30	3	1.0	3	33%				1	1	1				
20:00	3	1.0	3	33%				1	1	1				

Employee Shift Implementation

1. Full time shift calender:

Fulltime Worker pool

Employee Shift Implementation

2. Mini Job A Shift calendar:

MinijobA Worker pool

MinijobB Worker pool

Payment implementation

Total service charge is computed and also total money lost due to lost customers.

```
// Servicecharge for all service Booths

□ if @.Name = "Wcut" then
ServiceCharge := ServiceCharge + 20;
Wcut:=Wcut + 1;

elseif @.Name = "Wcolor" then
ServiceCharge := ServiceCharge +20;
Wcolor:=Wcolor + 1;

elseif @.Name = "cut" then
ServiceCharge := ServiceCharge +10;
cut:=cut + 1;

elseif @.Name = "Wcutcolor" then
ServiceCharge := ServiceCharge + 30;
Wcutcolor:=Wcutcolor + 1;

end;

TotalNoServed:= Wcut + Wcolor + Wcutcolor + cut;
```

```
//Loss 'due to lost Customers

if @.Name = "Wcut" then
  Loss := Loss + 20;

elseif @.Name = "Wcolor" then
  Loss := Loss + 20;

elseif @.Name = "cut" then
  Loss := Loss + 20;

elseif @.Name = "Wcutcolor" then
  Loss := Loss + 30;
end;
```

$$Total \ Profit = \frac{Profit \ (Service \ charge)}{Profit (service \ charge) \ + Loss (lost \ customers)} * 100\%$$

Charts

We have implemented bar charts to observe the % occupancy of our service units within our model and also agent % utilization over the working duration

Using the ExperimentManager

Experiments in general, comprises of changes in input variables and investigation of the output varible behaviours.

The ExperimentManager is a crucial tool that is used for planning and executing experiments.

Results with 1 observation

Model

Overview

Overview of all executed experiments, their parametrizations and the mean values of the target values.

	root.Fulltime_workers	root.Part_time_workers	root.IncomingCustomer	Our profit/ or earnings in this case	Our loss	The customers that never returned	The customers that came back and waited to be processed
Exp 1	6	6	109	2180	180	6	9

er to many the state to

Output results

Statistics of output values

Evaluations of the output value 'Our profit/ or earnings in this case

Technology Arts Sciences TH Köln

Evaluations of the output value 'Our loss'

Experiment	Our loss	Standard Deviation	Minimum	Maximum	Left interval bound	Right interval bound
Exp 1	180	0				

Evaluations of the output value 'The customers that came back and waited to be processed'

Experiment	The customers that came back and waited to be processed	Standard Deviation	Minimum	Maximum	Left interval bound	Right interval bound
Exp 1	9	0				

Results with 100 observations

Overview

 $Overview\ of\ all\ executed\ experiments,\ their\ parametrizations\ and\ the\ mean\ values\ of\ the\ target\ values.$

		root.Fulltime_workers	root.Part_time_workers	root.IncomingCustomer	Our profit/ or earnings in this case	Our loss	The customers that never returned	The customers that came back and waited to be processed
Ex	p 1	6	6	109	2177.4	153.7	5.81	4.76

Simulation effort: 1 experiments with 100 simulation runs No special diagrams

Output results

Statistics of output values

Evaluations of the output value 'Our profit/ or earnings in this case

Evaluations of the output value 'The customers that never returned'

Technology Arts Sciences TH Köln

Evaluations of the output value 'Our loss'

Experiment	Our loss	Standard Deviation	Minimum	Maximum	Left interval bound	Right interval bound
Exp 1	153.7	100.168091050226	0	490	133.819961383801	173.580038616199

Evaluations of the output value 'The customers that came back and waited to be processed

Experiment	The customers that came back and waited to be processed	Standard Deviation	Minimum	Maximum	Left interval bound	Right interval bound
Exp 1	4.76	3.64073474657925	0	15	4.03743509340671	5.48256490659329

Results with 1000 observations

Simulation effort: 1 experiments with 1000 simulation runs No special diagrams

LIVE DEMO!

Conclusion

Experimenting with this model we discovered that quite a number of variables influences our goal of reducing waiting time and making profit. One of such is customer intensity and agent occupancy. To achieve our goal for this project, we tested out several methods and strategies and implemented those which gave optimum results for our target goal.

References

- Lecture slides delivered by Prof. Dr. Hartmut Westenberger
- Dr.ir. M.R.K. (Martijn) Mes, Department of Industrial Engineering and Business Information Systems . Simulation Modelling using Practical Examples: A Plant Simulation Tutorial

THANKS FOR LISTENING

