EC205 Analog Electronics Lab Lab – 3

Sannan Ali 201EC159 Utkarsh R Mahajan 201EC164

Experiment 3: Full-wave Rectifier, Unregulated and Regulated Power supply

Aim:

- To design a full-wave bridge rectifier for an average output voltage of 8 V to feed 1kQ load.
- To design an unregulated power supply for an output voltage of approximately 10 V and current 0.1 A.
- To design a regulated power supply for an output voltage of 5 V and current of 0.1 A using voltage regulator chip /iA7805.

Experiment (a)

Circuit in LTspice:

Output Waveform

a) $V_{Out(avg)} = 8V$

$$V_{\text{transformer}} = V_{\text{Out(peak)}} = \frac{V_{\text{Out(avg)}} \times \pi}{2} = \frac{8 \times \pi}{2} = 12.566370V$$

b) we can expect a drop in our final average output voltage.

Here with standard diode without changing secondary voltage of transformer in Itspice from ideal diode, New V_{out(avg)} will be 6.6504V instead of 8V.

c) $V_{DC} = 8V V_{AC} = 9.1352V$ for standard diode

d)
$$\gamma = \sqrt{(V_{ac}/V_{dc})^2 - 1}$$

= $\sqrt{\left(\frac{9.1352}{8}\right)^2 - 1}$
= 0.5513

f) Voltage waveform across D2

- g) peak inverse voltage with Ideal diode will be 0V. while -0.7V with standard diode
- h) $V_{rms} = 4V$

Experiment (b)

Circuit in LTspice:

Waveform:

Values Observed in LTspice:

$$V_{DC} = 9.7479V$$

$$V_{AC} = 9.8255V$$

$$\gamma = \sqrt{(V_{ac}/V_{dc})^2 - 1}$$

$$= \sqrt{\left(\frac{9.8255}{9.7479}\right)^2 - 1}$$

$$= 0.1264$$

Waveform: V(vout)	
Interval Start:	0s
Interval End:	100ms
Average:	9.7479V
RMS:	9.8255V

Theoretical Values considering unfilitered output:

$$V_{DC} = \frac{VOutx2}{\pi} = \frac{10x2}{\pi} = 6.366V$$

$$V_{AC} = \frac{VOutx2}{\sqrt{2}} = \frac{10}{\sqrt{2}} = 7.0710V$$

$$\gamma = \sqrt{(V_{ac}/V_{dc})^2 - 1}$$

$$= \sqrt{\left(\frac{7.0710}{6.366}\right)^2 - 1}$$

$$= 0.4834$$

Theortical values considering Filtered output:

$$V_{AC} = V_{Out} = V_{DC} = 10V$$
 $\gamma = 0$

We can see that the experimented voltages are bit lower than the theoretical values considering filtered output.

Unfilitered Rectifier Circuit:

Waveform:

 $V_{AC} = 6.9848V$

 $V_{\text{Out}} = 10V$

 $V_{DC} = 6.0576V$

The Unfiltered rectifier output ac and dc voltage values are lower than the filtered rectifier output as expected.

Experiment (c)

Circuit in LTspice:

Waveform:

 $V_{DC} = 4.8878V$

Answer the following (Not more than two sentences for each question)

1. Why electrolytic capacitors are used in the filter circuit?

Electrolytic capacitors are preferred because they have polarity and are available in values from $1\mu F$ to thousands of μF and are also cheap.

2. How to identify the polarity of the capacitor?

The stripe on the electrolytic capacitor indicates the negative end.

3. Discuss the limitations of the electrolytic capacitor.

large leakage currents: They have large current leakage, value tolerances: they have high tolerance compared to some alternatives, equivalent series resistance and a limited lifetime.

4. What is a rectifier diode?

Rectifier Diode is a semiconductor device used to convert alternating current to direct current. It has obvious unidirectional conductivity, and can be made of materials such as semiconductor germanium or silicon.

5. What is the repetitive peak current of the diode?

The repetitive peak forward surge current is the maximum current surge the diode can handle as repetitive pulses without damaging itself.