Hyperparameter tuning

how do we tune hyperparameter

- 1. 가장 influential한 parameter를 정하자.
- 2. 그들을 바꿀 때마다 training에 어떤 영향을 주는지 파악한다.
- 3. Tune them! : manually or automatically

result

hyperparameter를 fitting한 결과로

- underfitting
- good
- overfitting

이다. 결과에 따라 적절히 수정해나간다.

tree

- · GBDT: XGBoost, LightGBM, CatBoost
 - 。 GBDT는 상대적으로 hyperparameter에 민감하다.
- Random forest

GBDT

- 기본적인 hyperparameter를 알아보자.
- 아래 XGBoost, LightGBM 순서대로 매칭되는 hyperparameter
- XGBoost
 - o max_depth: tree 만들 때 깊이 (7로 시작하길 추천한다고 한다, 크게하면 시간이 너무 걸린다고 한다)
 - o subsample : object를 sampling하여 사용
 - colsample_bytree, colsample_bylevel
 - o min_child_weight : 0으로 갈수록 less constrained (가장 중요한 parameter 중 하나라고 한다), lambda, alpha
 - eta: learning rate (클수록 train에 빠르게 fit되겠다, overfitting 주의, 너무 크면 converge 안할수도 있겠다),
 num_round
- LightGBM
 - o max_depth/num_leaves
 - bagging_fraction
 - feature_fraction
 - ∘ min_data_in_leaf, lambda_l1, lambda_l2
 - learning_rate, num_iterations
- sklearn.RandomForest
 - GB랑 다르게 각 tree가 독립이니까 tree 많이 만들어도 overfitting되는 정도는 약하다. 대신에 굳이 필요없는 training 시 간을 피하는게 좋을 것이다.
 - N estimators
 - o max_depth: 7로 시작하길 추천 (GBDT보다는 더 깊게 해도 된다)
 - o max_features
 - o min_samples_leaf : GBDT에서 min child weight와 같은 역할 (regularization)
 - o criterion : Gini, Entropy인데 Gini가 더 좋은 것 같다고 한다.
 - RF에서 tree 갯수 정할때 사용 코드: fit하고 rf.estimators_ 이용

NN (fully connected)

- layer의 neurons 갯수
- layer의 갯수
- optimizer
 - SGD+momentum, Adam, Adadelta, Adagrad...
- Batch size : 클수록 overfitting쪽
- · Learning rate
- Regularization
 - o dropout, L1, L2...

Linear model

- tuning할게 거의 없다.
- 주로 Regularization parameter

practical guide

- competition goal을 정해라.
 - o problem 해결책
 - o software 사용법
 - o medal hunt
- · after enter competition
 - o organize idea in some structure
 - o select the most important and promising ideas
 - o try to understand the reasons why something does/doesn't work
- · data loading
 - 。 csv/txt file을 hdf5/npy로 바꾸면 더 빠른 loading이 가능하다.
 - pandas가 default로 data를 높은 bit에 저장하니 가능하면 낮추자.
 - 。 Large dataset은 chunk로 나눠서 다룰수 있다.
- 주로 LightGBM으로 빠르게 시작한다. 처음부터 tuning까지 하는 loop를 할 필요없다. 처음에는 빠르게 모델링해서 이해해 보자.
- · Fast and dirty always better
- · Initial pipeline
 - 。 simple하게 시작해서 전체적인 pipeline을 만들자.
 - From simple to complex
- reproducible
 - o Fix random seed, resuse code
- Read paper
- · Start with EDA and a baseline
 - o check validation is stable
- Feature을 많이 만든다. 그리고 hyperparameter등으로 regularization한다.
- jupyter notebook에 매크로로 주요 coding 만들어라.

pipeline tip

- 전체적인 순서
 - 。 문제 이해
 - EDA
 - o cv strategy 정하기
 - FE
 - Modeling
 - Ensemble

- EDA
 - 。 각 변수 histogram
 - o train, test가 비슷한지 확인
 - binning numerical features
 - correlation
- · cross validation strategy
 - 。 매우 중요
 - time ? Time-based validation
 - o different entity? Stratified validation
 - Random validation
 - 。 이런거 다 섞어서
- FE
 - 。다양하다!!
- Modelling
 - 。 다양하다!!
- Ensemble
 - ∘ low-correlated prediction을 average하는게 좋은 성능을 낸다.
 - 。 다양한 model을 사용

참고링크

- · sklearn hyperparameter tuning
- · hyperopt hyperparameter tuning
- jupyter-notebook-tips-tricks

FE

- Statictics and distance based features
 - Groupby
 - user_id로 groupby
 - standard deviation 등등
 - o Neighbors
 - 거리와 관련한 feature를 이용 예를 들어, 500m안에 지하철 몇개 있는지
 - mean encoding해서 KNN 등등
- Matrix factorization
 - recommendation
 - o SVD, PCA
 - o PCA할때,
 - train, test set을 합쳐서 pca.fit하고 각자 transform한다.
- · Feature interaction
 - ∘ categorical feature o combination
 - combination만들고 one-hot encoding해도 되고
 - one-hot하고 column끼리 곱해도 된다.
 - 。 곱, 합, 차, 나누기 다 사용해도 된다!
 - 여러개의 feature를 만들고 feature selection을 한다.
 - ∘ tree model에서 만드는 interaction을 이용
 - sklearn: tree_model.apply()
 - xgboost: booster.predict(pred_leag=True)
- t-sne
 - o manifold learning methods
 - o hyperparameter(Perplexity)를 잘 선택
 - 。 EDA, FE에 사용가능

참고링크

· facebook Research's paper about extracting categorical features from trees

Ensembling

- intro
 - averaging : 각 model의 output을 average하는 것
 - averaging (or blending)
 - weighted averaging
 - conditional averaging
 - o bagging
 - boosting
 - stacking
 - stacknet
- bagging
 - ∘ RF같이 different version의 같은 model을 average
 - how?
 - seed를 바꾸기
 - row sampling or bootstrapping
 - shuffling
 - column sampling
 - model specific parameter
 - control number of models
- boosting
 - o weighted averaging of model in sequentially
 - main type
 - weight based : error에 따라 각 sample에 weight를 준다.
 - parameter
 - learning rate (eta) : 각 model을 average할 때, 앞에 곱해지는 값
 - number of estimators : 이게 커지면 learning rate는 줄여야겠다.
 - adaboost
 - residual based : error를 새로운 target 으로 만든다.
 - parameter
 - learning rate (eta)
 - number of estimators
 - sampling(row, column)
 - Xgboost, Lightgbm, H2O's GBM, Catboost, sklearn's GBM
- stacking
 - making predictions of a number of models in a hold-out sete and then using a dfferent model to train on these predictions
 - o how? (meta model)
 - 1. train set을 두 개로 나눈다.
 - 2. 첫번째 set으로 여러개의 base model을 train 시킨다.
 - 3. 이것들로 두번째 set을 predict한다.
 - 4. 해당 prediction 값들을 input으로 하여 highter level model을 train 한다.
 - time sensetive data인 경우는 주의해야겠군
 - 。 모델의 다양성도 중요하다.
- Stacknet
 - ∘ neural net에서 각 node는 simple linear model이다. 이를 대신해서 다양한 모델을 사용할 수 있다는 아이디어를 이용한다.
 - · How?

- backpropagation을 사용하지 않는다.
- · Ensembling tips
 - o 1st level tips
 - diversity on algorithm!
 - 2~3개 GBDT
 - 2~3개 neural net
 - 1~2개 RF
 - 1~2개 linear model, svm
 - 1~2개 KNN
 - 1개 nonlinear kernel svm
 - diversity on input data
 - categorical feature : one hot, label, target ..encoding
 - numerical : outlier, binning, derivative, percetiles...
 - interaction : col끼리 연산, groupby, unsupervised
 - subsequent level tip
 - simpler algorithm 사용
 - FE
 - pairwise difference between meta features
 - row-wise statictics
 - feature selection
 - for every 7.5 model in previous level we add 1 in meta
 - data leakage 조심

Catboost

- · categorical feature
 - one hot encoding 기능 제공
 - o number of apprearace encoding 기능제공
 - data의 random permutation하여 target encoding보다 더 좋은 encoding 제공
 - o feature combination 기능 제공 (numerical도 가능)
- · symmetric decision trees
 - predcition speed가 빠르다고 한다.
 - ∘ hyperparameter의 영향을 덜 받는 형태
- ordered boosting으로 overffiting을 막는다.
 - 다른 boosting은 leaf의 모든 object의 gradient를 average하는데
 - o catboost는 past objects를 permutation하여 사용
- · overfitting detector
- · evaluating custom metrics during training
- · Nan features support
- cross validation
- · feature importance
- · training parameter
 - o number of tree + learning rate
 - o tree depth
 - 。 L2
 - bagging temperature