# Pràctiques de Matemàtica Discreta: Introducció a la teoria de grafs

Sessió 6

Algorisme de cerca BFS

Algorisme de cerca DFS

#### Algorismes de cerca

Un algorisme de cerca en un graf connex G és un procediment sistemàtic l'objectiu del qual és "visitar" tots els vèrtexs de G "viatjant" a través de les arestes. Un vèrtex pot visitar-se més d'una vegada i una aresta pot travessar-se més d'una vegada al llarg del procés de cerca.

Dit d'una altra manera, un algorisme de cerca és un procés sistemàtic per a construir un subgraf de *G* que conté a tots els seus vèrtexs, és a dir, un subgraf generador de *G*.

Veurem dos algorismes per a construir un tipus particular de subgraf generador: un arbre generador. Són els següents:

- Breadth-first search (o BFS).
- Depth-first search (o DFS).

# Algorisme Breadth-first search (BFS)

#### Siga G un graf connex.

- 1 Tria un vèrtex  $v_0$  del graf.
- 2 Siguen m = 0,  $w := v_m = v_0$  i n = 0. (Al vèrtex  $w = v_m$  l'anomenarem "centre actual" de la cerca). Siga  $T_0$  l'arbre sense arestes l'únic vèrtex del qual és  $v_0$ .
- 3 Si existeix algun vèrtex nou (nou vol dir "que no és un vèrtex de l'arbre actual") que siga adjacent a w llavors
  - tria un d'ells,  $v_{n+1}$ ;
  - afegeig a  $T_n$  el nou vèrtex  $v_{n+1}$  així com una aresta  $e_n$  els extrems de la qual siguen w i  $v_{n+1}$ . Formarem, així, el següent arbre  $T_{n+1}$ ;
  - incrementa *n* en una unitat:
  - repeteix el pas 3 fins que no hi haja nous vèrtexs adjacents a w.
- Si tots els vèrtexs han sigut visitats llavors T<sub>n</sub> és un arbre generador de G i hem acabat. En un altre cas incrementa m en una unitat, posa w = v<sub>m</sub> i torna al pas 3.

# **Exemple**



#### Exemple (Passos 1 i 2)



m = 0 Centre:  $w = v_0 = D$  n = 0  $T_0$ : (arbre dibuixat)



m = 0 Centre:  $w = v_0 = D$  n = 1  $T_1$ : (arbre dibuixat)



m = 1 Centre:  $w = v_1 = E$  n = 1  $T_1$ : (arbre dibuixat)



$$m = 1$$
 Centre:  $w = v_1 = E$   $n = 2$   $T_2$ : (arbre dibuixat)



m = 1 Centre:  $w = v_1 = E$  n = 3  $T_3$ : (arbre dibuixat)



m = 1 Centre:  $w = v_1 = E$  n = 4  $T_4$ : (arbre dibuixat)



m = 1 Centre:  $w = v_1 = E$  n = 5  $T_5$ : (arbre dibuixat)



m = 2 Centre:  $w = v_2 = A$  n = 5  $T_5$ : (arbre dibuixat)



m = 3 Centre:  $w = v_3 = B$  n = 5  $T_5$ : (arbre dibuixat)



m = 3 Centre:  $w = v_3 = B$  n = 6  $T_6$ : (arbre dibuixat)



m = 4 Centre:  $w = v_4 = F$  n = 6  $T_6$ : (arbre dibuixat)



m = 4 Centre:  $w = v_4 = F$  n = 7  $T_7$ : (arbre dibuixat)



m = 4 Centre:  $w = v_4 = F$  n = 8  $T_8$ : (arbre dibuixat)



m = 5 Centre:  $w = v_5 = I$  n = 8  $T_8$ : (arbre dibuixat)



m = 5 Centre:  $w = v_5 = I$  n = 9  $T_9$ : (arbre dibuixat)



m = 6 Centre:  $w = v_6 = C$  n = 9  $T_9$ : (arbre dibuixat)



m = 7 Centre:  $w = v_7 = G$  n = 9  $T_9$ : (arbre dibuixat)



m = 7 Centre:  $w = v_7 = G$  n = 10  $T_{10}$ : (arbre dibuixat)



m = 8 Centre:  $w = v_8 = J$  n = 10  $T_{10}$ : (arbre dibuixat)



m=8 Centre:  $w=v_8=J$  n=11  $T_{11}$ : (arbre dibuixat)



m = 8 Centre:  $w = v_8 = J$  n = 12  $T_{12}$ : (arbre dibuixat)



m = 9 Centre:  $w = v_9 = L$  n = 12  $T_{12}$ : (arbre dibuixat)



m = 9 Centre:  $w = v_9 = L$  n = 13  $T_{13}$ : (arbre dibuixat)

Algorisme de cerca BFS

2 Algorisme de cerca DFS

# Algorisme Depth-first search (DFS)

- Tria un vèrtex  $v_0$  del graf i defineix n = 0, m = 0,  $w_m = v_0$  i  $w = w_m$  (w és el "centre" actual de la cerca). Siga  $T_0$  l'arbre sense arestes l'únic vèrtex del qual és  $v_0$ .
- Si existeix algun vèrtex nou (nou vol dir "que no és un vèrtex de l'arbre actual") que siga adjacent a w llavors
  - tria un d'ells,  $v_{n+1}$ ;
  - afegeig a  $T_n$  el nou vèrtex  $v_{n+1}$  així com una aresta els extrems de la qual siguen w i  $v_{n+1}$ . Formarem, així, el següent arbre  $T_{n+1}$ ;
  - posa  $w_{m+1} = v_{n+1}$ ,  $w = w_{m+1}$  i incrementa m i n en una unitat:
  - repeteix el pas 2 fins que no hi haja nous vèrtexs adjacents a w.
- 3 Si tots els vèrtexs han sigut visitats llavors l'últim arbre obtingut és un arbre generador de G i hem acabat. En un altre cas: agafa com a nou centre w el centre anterior, és a dir,  $w = w_{m-1}$ , resta-li una unitat a m i torna al pas 2.

#### **Exercici**

Aplica l'algorisme DFS per a calcular un arbre generador del graf de l'exemple anterior.

#### **Observacions**

Encara que hem presentat els algorismes BFS i DFS com dos mètodes de càlcul d'un arbre generador d'un graf connex, poden també aplicar-se sobre grafs no connexos:

- Si partim d'un vèrtex inicial v, l'aplicació dels algorismes dóna com resultat un arbre els vèrtexs del qual són els vèrtexs del graf que estan connectats amb v. Dit d'una altra manera, son els vèrtexs del component connex de v.
- Si, com a resultat de l'algorisme, s'obtenen tots els vèrtexs del graf, llavors aquest és connex. En cas contrari, aplicant de nou l'algorisme però començant amb un vèrtex no obtingut, calcularem els vèrtexs d'un altre component connex diferent. Repetint el procés podrem calcular el vèrtexs de tots els components connexos del graf.