Data explorations with R

Ken Mwai and Greg Fegan

June 1, 2015

1 / 14

Reading data files

Import dataset

> data <- read.csv("bwmal_subset.csv")</pre>

Reading data files

Import dataset

- > data <- read.csv("bwmal_subset.csv")</pre>
 - Once read in, assigning the loaded data to objects
 - Datasets in R are typically stored as data frames, which have a matrix structure
 - Observations are arranged as rows and variables, either numerical or categorical, are arranged as columns
 - Dataset contains 8 demographic variables for 20 individuals

Reading data files

Import dataset

- > data <- read.csv("bwmal_subset.csv")</pre>
 - Once read in, assigning the loaded data to objects
 - Datasets in R are typically stored as data frames, which have a matrix structure
 - Observations are arranged as rows and variables, either numerical or categorical, are arranged as columns
 - Dataset contains 8 demographic variables for 20 individuals

Get the dimension of the dataset

> dim(data)

[1] 21 8

Viewing data

Explore variable names of the dataset

> names(data)

```
[1] "X" "matage" "mheight" "gestwks" "sex" "bweight" [8] "pfplacen"
```

R has ways to look at the dataset at a glance

> head(data) #Returns first six rows of dataset

```
X matage mheight gestwks sex bweight smoke pfplacen
1 1
      26
           1.575
                    40
                        0
                             3.11
2 2
      23 1.529
                    40
                             2.65
3 3
      18 1.540
                    40
                           3.41
                    40 1
      25 1.581
                           2.99
5 5
      25 1.555
                    40
                          3.16
6 6
      21
           1.561
                    40
                             2.82
                                     0
```

Viewing data

We can access variables directly by using their names, using the object \$ variable notation

> data\$gestwks

[1] 40 40 40 40 40 40 41 38 40 41 39 38 39 39 39 37 39 39 39 40 39

Check last six rows of the dataset

> tail(data , n=6) #Returns first six rows of dataset

	X	matage	mheight	gestwks	sex	bweight	smoke	pfplacen
16	195	19	1.583	37	0	2.42	0	0
17	196	20	1.534	39	1	2.93	0	0
18	197	30	1.543	39	0	2.59	1	1
19	198	38	1.602	39	0	2.48	1	0
20	199	20	1.540	40	1	3.02	1	1
21	200	24	1.503	39	0	2.79	0	1

Viewing data

To access a certain entry, we most commonly use object[row,column] Single cell value

> data[2,3]

[1] 1.529

Omitting row value implies all rows; here all rows in column 3

> data[,3]

[1] 1.575 1.529 1.540 1.581 1.555 1.561 1.590 1.502 1.666 1.5

[13] 1.540 1.502 1.560 1.583 1.534 1.543 1.602 1.540 1.503

More data viewing

Omitting column values implies all columns; here all columns in row 2

> data[2,]

X matage mheight gestwks sex bweight smoke pfplacen
2 2 23 1.529 40 0 2.65 0 0

Can also use ranges - rows 2 and 3, columns 2 and 3

> data[2:3, 2:3]

matage mheight

- 2 23 1.529
- 3 18 1.540

Data summaries

- Enables us to see the main characteristics of data before any formal modeling or hypothesis testing
- Particular techniques depends on the type of variable: Continuous or categorical
- Continuous eg. age, height
- Categorical eg. smoking status, sex

7 / 14

Some data explorations: Continuous variables

- > #some data explorations
- > mean(data\$mheight)
- [1] 1.558571

Some data explorations: Continuous variables

- > #some data explorations
- > mean(data\$mheight)
- [1] 1.558571
- > var(data\$mheight)
- [1] 0.001461357

Some data explorations: Continuous variables

```
> #some data explorations
> mean(data$mheight)
[1] 1.558571
> var(data$mheight)
[1] 0.001461357
> sd(data$matage)
[1] 5.527852
> median(data$matage)
[1] 22
```

More data explorations

Produce various summaries of continous variable

> summary(data\$matage) #sumarize continous variable

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 17.00 20.00 22.00 23.57 25.00 38.00
```

Explorations for categorical variables

```
Summarize single categorical variable
```

```
> table(data$sex)
```

0 1

11 10

Cross-tabulation of two categorical variables

> table(data\$sex,data\$smoke)

0 1

0 8 3

1 9 1

Alternative cross tabulation

```
Using 'with' command includes variable labels in the table
> with(data, table(sex,smoke))
    smoke
sex 0 1
    0 8 3
    1 9 1
```

Use R as calculator

```
> 1000-2*10^2/(8+2) #expression to evaluate
[1] 980
> #Built-in functions:
> log(1.4) #returns the natural logarithm of the number 1.4
[1] 0.3364722
> log10(1.4) # returns the log to the base of 10
[1] 0.146128
> sqrt(16) #returns the square root of 16
[1] 4
```

Calculations with assignment statements

We can store a value(s) in an R object using the assignment symbol <- ("less than" followed by a hyphen)

To check what is in a variable type the variable name

> x

[1] 2.5

Can store a computation under a new R object or change the current value stored in an old object

$$> y <- 3*log(x)$$

Search and Replace

```
> x <- "Lorem Ipsum is simply dummy text of the
+ printing and typesetting industry. This is for the dummy ter
> grep("the", x)
[1] 1
> grep("the",x,value=TRUE)
[1] "Lorem Ipsum is simply dummy text of the \nprinting and to
> #first replacement
> x2 \leftarrow sub("the", "THE",x)
> x2
[1] "Lorem Ipsum is simply dummy text of THE \nprinting and ty
> #All replacement
> x3 \leftarrow gsub("the", "THE", x)
> x3
```