

1

The ElGamal Cryptosystem

INTRODUCTION

May-22

The ElGamal Cryptosystem

Introduction

- Taher ElGamal, 1985
- · An "extension" of Diffie-Hellman Key Exchange
- One-way function: Discrete Logarithm
- Appliable in any cyclic group where DLP and DHP are intractable
 - We consider \mathbb{Z}_p^*

May-22

The ElGamal Cryptosystem

5

3

From DHKE to ElGamal encryption


```
Alice Bob
```

(a) choose d = priv $K_B \in \{2, ..., p-2\}$

(b) compute β = pubK $_{\text{B}} \equiv \alpha^{\text{d}} \; \text{mod} \; p$

< ----- β -----

(c) choose i = $privK_A \in \{2, ..., p-2\}$

(d) compute $k_E = pubK_A \equiv \alpha^i \mod p$

----->

 $(a) compute k = \beta_i \mod n$ (f) co

(e) compute $k_M \equiv \beta^i \mod p$ (f) compute $k_M \equiv k_E^d \mod p$

(g) Encrypt $x \in Z_p^*$ $y \equiv x \cdot k_M \mod p$

----->

(g) decrypt $x \equiv y \cdot k_M^{-1} \mod p$

May-22 The ElGamal Cryptosystem

al Cryptosystem 4

From DHKE to ElGamal encryption

- On parameters and keys
 - Domain parameters
 - Large p and primitive element $\boldsymbol{\alpha}$
 - Keys
 - The public-private pair (d, β) does not change
 - The public-private pair (i, k_E) is generated for every new message
 - k_E is called *ephemeral key*
 - k_M is called the masking key

May-22

The ElGamal Cryptosystem

5

5

From DHKE to ElGamal encryption

- Intuition
 - One property of cyclic groups is that, given $k_M\in\mathbb{Z}_p^*$, every message x maps to another ciphertext if the two values are multiplied
 - If every k_M is randomly chosen from \mathbb{Z}_p^* then every y in $\{1, 2, ..., p-1\}$ is equally likely
- Remark
 - In the ElGamal encryption scheme we do not need a TTP which generates p and $\boldsymbol{\alpha}$

May-22

The ElGamal Cryptosystem

6

The ElGamal encryption scheme

THE ELGAMAL ENCRYPTION SCHEME

May-22

The ElGamal Cryptosystem

7

7

From DHKE to ElGamal encryption


```
choose large prime p choose primitive element \alpha of (a subgroup of) Zp* choose d = privK<sub>B</sub> \in {2, ..., p - 2} compute \beta = pubK<sub>B</sub> \equiv \alpha^d mod p
```

<------ pubK_B= (p, α , β) ------

 $\begin{aligned} &\text{choose } i = privK_A \in \{2, ..., p-2\} \\ &\text{compute ephemeral key: } k_E = pubK_A \equiv \alpha^i \text{ mod } p \end{aligned}$

compute masking key: $k_M \! \equiv \beta^i \, mod \, p$

encrypt $x \in Z_p^*$: $y \equiv x \cdot k_M \mod p$

Alice

Bob

May-22 The ElGamal Cryptosystem

8

Proof

- Prove that $x \equiv y \cdot k_M^{-1} \mod p$
 - Proof
 - $\bullet \quad y \cdot k_M^{-1} \equiv (x \cdot k_M) \cdot (k_E^d)^{\text{-}1} \equiv (x \cdot (\alpha^d)^i) \cdot ((\alpha^i)^d)^{\text{-}1} \equiv$
 - $\mathbf{x} \cdot \alpha^{d \cdot i d \cdot i} \equiv \mathbf{x} \mod \mathbf{p}$

May-22

The ElGamal Cryptosystem

9

ElGamal is probabilistic

- ElGamal encryption scheme is probabilistic
 - Encrypting two identical messages x_1 and x_2 with the same public key pubK_B= (p, α , β) results in two different ciphertext y_1 and y_2 (with high probability)
 - Masking key $k_{\rm M}$ is chosen at random for every new message
 - Brute force against x is avoided a priori

May-22

The ElGamal Cryptosystem

10

Performance issues

- Communication issues
 - Cyphertext expansion factor is 2
 - The bit size of (y, kE) is twice as the bit size of x
- Computational issues
 - Key Generation
 - Generation of large prime p (at least 1024 bits)
 - privK is generated by a RBG
 - pubK requires a modular exponentiation

May-22

The ElGamal Cryptosystem

11

11

Performance issues

- · Computational issues
 - Encryption
 - · Two modular exponentiations and a modular multiplication
 - Exponentiations are independent of plaintext
 - Pre-computation of k_E and k_M
 - Decryption
 - A modular exponentiation, a modular inverse and a modular multiplication
 - EEA can be used for modular inverse, or
 - We may combine exponentiation and inverse together, so we just need an exponentiation and a multiplication (→)

May-22

The ElGamal Cryptosystem

12

Computational issues

- How to combine exponentiation and inverse together
 - Proof
 - Recall Fermat's Little Theorem: Let a be an integer and p be a prime, $a^{p-1} \equiv 1 \mod p$
 - Merge the two steps of decryption: $k_M^{-1} \equiv (k_E^d)^{-1} \equiv (k_E^d)^{-1} \ k_E^{p-1} \equiv k_E^p d-1 \ \text{mod} \ p$

May-22

The ElGamal Cryptosystem

13

13

ElGamal Cryptosystem

SECURITY ISSUES

May-22

The ElGamal Cryptosystem

14

Security issues – passive attacks

- The ElGamal problem
 - Recovering x from (p, α , β) and (y, k_E) where $\beta \equiv \alpha^d \mod p$; $k_E = \alpha^i \mod p$, and $y = x \cdot \beta^i \mod p$
- The ElGamal Problem relies on the hardness of DHP
 - Currently there is no other known method for solving the DHP than solving the DLP
 - The adversary needs to compute Bob's secret exponent *d* or Alice's secret random exponent *i*
 - The Index-calculus method can be applied therefore |p| = 1024+

May-22

The ElGamal Cryptosystem

15

15

Security issues – active attacks

- Active attacks
 - Bob's public key must be authentic
 - Secret exponent i must be not reused (→)
 - ElGamal is malleable (→)

May-22

The ElGamal Cryptosystem

16

Security issues - active attacks

- · On reusing the secret exponent i
 - Alice uses the same i for x1 and x2, then
 - both the masking keys and the ephemeral keys would be the same
 - $k_F = \alpha^i \equiv \text{mod } p$
 - $k_M = \beta^i \equiv mod p$
 - She transmits (y_1, k_E) and (y_2, k_E)
 - The adversary
 - · Can easily identify the reuse of i
 - If (s)he can guess/know x_1 , then (s)he can compute $x_2 \equiv y_2 \cdot k_M^{-1}$ mod p with $k_M \equiv y_1 \cdot x_1^{-1}$ mod p

May-22

The ElGamal Cryptosystem

17

17

Security issues – active attacks

- · On malleability
 - The adversary replaces (k_E, y) by (k_E, s⋅y)
 - The receiver decrypts $x' \equiv x \cdot s \mod p$
 - Schoolbook ElGamal is often not used in practice, but some padding is introduced

May-22

The ElGamal Cryptosystem

18

