ASPEN PLUS Introduction to Aspen Plus Interface

What is Aspen Plus?

- Computer package/software provided by **AspenTech**
- ASPEN: Advanced System for Process Engineering
- Market leading Chemical process optimization software
- Iconic flowsheet simulator to predict process behavior using basic engineering relationships

Aspen Plus in fields of Chemical Engineering:

Powerful tool that can be used in

- Oil and gas production
- Refining
- Chemical Processing
- Environmental studies etc,.

Why Process Modelling/Simulation?

- Industrial process are often not solved by hand because of
 - Human error
 - Time constraints
- Using Process simulations:
 - Makes process easier and Faster
 - Multiple and simultaneous simulations

Aspen Plus flowsheet simulation enables us to run many tasks, such as:

- conduct "what if" tests;
- design specification (plant configuration) checks;
- carry out "de-bottlenecking of constricting parts of a process" studies;
- perform sensitivity analyses;
- run optimization investigations.

Translate a process into an Aspen Plus process simulation model

- 1. Specify the chemical components in the process. We can fetch these components from Aspen Plus databanks, or we can introduce them to Aspen Plus platform.
- 2. Specify thermodynamic models to represent the physical properties of the components and mixtures in the process. These models are built into Aspen Plus.
- **3.** Define the process flowsheet:
- Define the unit operations in the process.
- Define the process streams that flow into and out of the unit operations.
- Select models from Aspen Plus Model Library to describe each unit operation or chemical synthesis and place them onto the process flowsheet.
- Label each unit operation model (i.e., block) as part of the process flowsheet and connect the blocks via process streams.
- 4. Specify the component flow rates and the thermodynamic conditions (temperature, pressure, and composition) of all feed streams.
- 5. Specify the operating conditions for the unit operation models (i.e., blocks).

Launch ASPEN PLUS

Knowing the interface

- Product updates Training, Examples and Resources
- New and Open icons, Template windows
- Quick Access Toolbar and Ribbons
- Navigation Pane and Environments: Properties, Simulation, Safety Analysis, Energy Analysis
- Status Bar, Zoom Bar
- Help icon

This Symbol	On a(n)	Means
00	Input form or sheet	Required input complete, or visited and no data required
₽	Input form or sheet	Required input incomplete
○	Input form	No data entered
2	Mixed form	Input and results
3	Results form	No results present (calculations have not been run)
	Results form	Results available without Errors or Warnings (OK) **
4 1	Results form or flowsheet	Results available with Warnings **
60	Results form or flowsheet	Results available with Errors **
<u></u>	Results form	Results inconsistent with current input (input changed)
	Input folder	No data entered
2	Input folder	Required input incomplete
3 3	Input folder	Required input complete, or visited and no data required
	Results folder	No results present
13 B	Results folder	Results available - OK **
	Results folder	Results available with Warnings **
0 0	Results folder	Results available with Errors **
	Results folder	Results inconsistent with current input (input changed)
00	Folder or form	Object deactivated

Databanks for Component Selection

- A component can be either picked up from one of Aspen Plus built-in component databanks, or can be defined by the user and in the latter case it is considered as a non-databank member.
- The database is provided under an agreement with the National Institute of Standards and Technology's (NIST) Standard Reference Data Program (SRDP).
- The property parameters and the experimental data used were collected and evaluated by the Thermodynamics Research Center (TRC) using the NIST ThermoData Engine (TDE) and the NIST-TRC source data archival system for experimental thermophysical and thermochemical property data.
- The "NIST-TRC" source data is one of the world's most comprehensive collections of such data.

Try it yourself:

Add the following components from the databank - water, acetone, methane

Property Method

- A property method is a set of models used to calculate thermodynamic, kinetic, and transport properties.
- Aspen Plus provides what is called the property method selection assistant (or wizard) that can be reached via clicking on the "Methods Assistant..." button found in "Methods" | "Specifications" | "Global" tab window.

Property Models in Apsen Plus:

- Equations of State
- Activity Coefficient Models (non-ideal systems at low pressures)
 - NRTL (Non-Random-Two-Liquid)
 - UNIFAC (Universal Functional Activity Coefficient)
 - UNIQUAC (Universal Quasichemical Activity Coefficient)
 - Wilson
 - Van Laar

Saving Aspen Plus Simulations

File formats: .bkp, .rep, .aprbkp, .aprrep

Practice Exercises

Exercise 1: Component Property Analysis

Determine the vapour pressure of ethane at 25°C using Aspen Plus properties database.

Solution:

1. First, open up a New Simulation on the Aspen Plus Interface and put a suitable title and description. Set the **Global Unit Set** as **SI** and **Free Water Method** as **No**.

2. Click **Next** on the Home Ribbon and you will be directed to component selection. Choose ETHANE as your component from the databank using **FIND** option.

3. Click **Next** again and move to the **Method**→ **Specifications** tab. Use **Method Assistant** to choose a suitable method by selecting *Specify Component Type* followed by *Chemical System* component type.

4. Click **Next** after selecting a property method. Check the Status Bar at the bottom left corner for the message **Required Properties Input Complete**. A dialog box appears on the screen with the radio button checked for **Run Property Analysis/Setup**. Click **OK**. The control panel will open up showing no error logs. If error logs persist, repeat the previous steps afresh.

5. Now, on the Home Ribbon's **Analysis** pane click on **Pure**. Since you are dealing with a single component, this is the appropriate Analysis option.

6. The Pure Analysis input interface opens up with your chosen property method. On the **Property** section, select **Property Type** from the dropdown menu as **PL.** This option corresponds to liquid vapor pressure. You may explore the other options on the dropdown menu for knowledge. Choose the suitable unit for the result.

On the **Temperature** section, choose the required temperature value with correct units as stated in the question. On the **Components** section, select Ethane from the *Available Components* list and move it to the *Selected Components* list using the

arrows.

- 7. On successful input, the **Run Analysis** button gets activated. Click on it. A plot of Vapor pressure vs. Temperature opens up with a marker on the query point. Report this value.
- 8. You can save your entire simulation as a .bkp or .aprbkp file and generate a report of your analysis by exporting the simulation as .aprrep file. These options are available from the File Menu.

Exercise 2: Component Property Analysis

Generate the T-xy diagram for ammonia-water binary system and determine their separation mode. Save the relevant file, appropriately. *Use Property Method: UNIQ-RK*

Solution:

- 1. Like Exercise 1, open up a New Simulation on the Aspen Plus Interface and put a suitable title and description. Set the **Global Unit Set** as **SI** and **Free Water Method** as **No**.
- 2. Click **Next** on the Home Ribbon and choose AMMONIA and WATER as your components from the databank using **FIND** option.
- 3. Select the property method as mentioned in question. Click **Next**, and a Binary Interaction window opens up. Click **Next** again and **Run Property Analysis/Setup**. The *Control Panel* opens up without error logs, after this.

4. Click on Binary tab of the Analysis Section in the Home Ribbon

5. Choose Analysis type as **Txy** on the Binary Input Interface. Vary the mole fraction of Ammonia from 0 to 1 with the 50 equidistant plot points. Click **Run Analysis** when the input is complete. The Txy plot will be generated. You may explore other plots like y-x for the Binary Analysis. Save the simulation and report files appropriately as taught in Exercise 1.

Continue to Tutorial 1 of Aspen Plus