ПРИМЕР ОПРЕДЕЛЕНИЯ СВОЙСТВ ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ И ПАР ЭЛЕМЕНТОВ БИНАРНОГО ОТНОШЕНИЯ

На рисунках ниже представлены матрица отношений и соответствующий ей граф отношений.

Матрица отношений (матрица смежности графа):

	1	2	3	4
1	1	0	0	1
2	0	1	0	1
3	1	0	1	0
4	1	1	1	0

Граф отношений:

По матрице отношений можно построить граф, в теории графов такая матрица называется матрицей смежности графа.

Матрица смежности интерпретируется следующим образом: каждая строка матрицы и ее номер отвечает за номер соответствующей вершины в графе и ее свази с другими вершинами.

В примере выше: 1-я строка матрицы 1001:

- Означает связь 1-ой вершины с 1-ой (на пересечении 1-ой строки и 1-ого столбца стоит «1»); и связь 1-ой вершины с 4-ой вершиной (на пересечении 1-ой строки и 4-ого столбца стоит «1»); остальные «0» значит 1-я вершина с остальными не связана.
- И так далее по каждой строке матрицы.

СВОЙСТВА ОТНОШЕНИЙ

- 1. Элементы 1, 2, 3 обладают свойством рефлексивности, остальные элементы в отношении антирефлексивны.
 - В целом бинарное отношение НЕ обладает свойством рефлексивности и НЕ обладает свойством антирефлексивности.
- 2. Пары элементов (1, 4) и (2, 4) обладают свойством симметричности, остальные пары элементов несимметричны.
 - В целом бинарное отношение НЕ обладает свойством симметричности, НЕ обладает свойством антисимметричности и НЕ обладает свойством асимметричности.
- 3. Пара элементов (4,1) транзитивна через элемент 3.
 - В целом бинарное отношение не обладает свойством транзитивности.