F-03 (ANSYS)

Формулировка задачи:

Дано: Консольный стержень постоянной жёсткости нагружен поперечной силой F на конце (в точке A). E — модуль упругости материала; I_z — изгибный момент инерции.

Построить: Эпюру внутренней перерезывающей силы Q_r ; Эпюру внутреннего изгибающего момента M_z .

Аналитический расчёт (см. F-03) даёт следующие решения:

Puc. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить эти же эпюры методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U M > PlotCtrls > Style > Colors > Reverse Video

Oставить в меню только пункты, относящиеся к прочностным расчётам:

M M > Preferences > Отметить "Structural" > OK

Нумеровать точки и линии твердотельной модели, а также номера узлов модели конечноэлементной:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE, NODE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers" > OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > 
Установить «Размер» на «22» > OK
U_M > PlotCtrls > Font Controls > Entity Font > 
Установить «Размер» на «22» > OK
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

Приравняв E, I_z , F и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > F=1 > Accept > l=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3:M_M > PreprocessorC_P > ET,1,BEAM3 > EnterПосмотрим таблицу конечных элементов:M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Defined Element Types: Defined Element Types: Update Updat

№	Действие	Результат
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента:Площадь поперечного сечения = A ;момент инерции = Iz ; высота = $I/100$ (не будем использовать, но формально надо что-то задать, например $I/100$). С_P> R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Add Edit Delete Close Help
4	Cooйcmsa материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».	Material Models Behavior Material Edit Favorite Help Material Models Defined Material Models Defined Material Models Defined Material Models Available Material Number 1 Linear Isotropic Material Properties for Material Number 1 Linear Isotropic Material Properties for Material Number 1 EX PRXY Add Temperature Delete Temperature OK Carcel Help
	Твердотельное моделирование	
5	K лючевые точки — границы участков (две точки): М_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X,Y,Z пишем 0,0,0 > Apply > NPT пишем 2 X,Y,Z пишем l ,0,0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit	x 2

№	Действие	Результат
6	$Odun\ yчасток- odna\ линия\ между\ точками:$ М_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши нажать на ключевую точку 1, потом на 2 > OK Линии нужно вести слева направо. По ним будут ориентированы элементы; в случае иной ориентации элементов будет неверно начерчена эпюра Mx .	Y T.1 2
7	Заделка: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "All DOF" > OK	T.1 2
8	Внешняя сила F: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на ключевую точку 2 > OK > Lab установить "FY" VALUE установить "-F" > OK	X T.1 2
	Конечноэлементная модель	
9	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > Picked Lines > Левой кнопкой мыши нажать на линию L1 > OK > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK	

№	Действие	Результат
10	Vuacmok без pacnpedenëнных нагрузок можно бить одним конечным элементом: M_M > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines> Левой кнопкой мыши нажать на линию L1 > OK > NDIV пишем 1 > OK Обновляем изображение: U_M > Plot > Multi-Plots	T.1 2
11	Рабиваем линию на элементы (в данном случае, один элемент):M_M > Preprocessor > Meshing > Mesh > Lines >Левой кнопкой мыши нажать на линию L1> ОК >Обновляем изображение: U_M > Plot > Elements	узлы
12	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK	Y Z
	Расчёт	
13	Запускаем расчёт: M_M > Solution > Solve > Current LS Когда он закончится, появится окно «Solution is done!». Закройте это окно. Расчёт окончен.	

№	Действие	Результат
	Просмотр результатов	
14	Скрываем оси системы координат: U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > OK	2
	Cunoвая cxema: U_M > PlotCtrls > Symbols > [/PBC] устанавливаем в положение "For Individual" Убираем галочку с "Miscellaneous" > OK	
	B окне "Applied Boundary Conditions" U установить "Off" Rot установить "Off" F установить "Symbol+Value" M установить "Symbol+Value" > OK >	ELEMENTS F RFOR RMOM 1
15	B окне "Reactions" NFOR установить "Off" NMOM установить "Off" RFOR установить "Symbol+Value" RMOM установить "Symbol+Value" > OK >	2
	Обновляем изображение: U_M > Plot > Elements - изометрия; при необходимости корректируйте масштаб: или или	
	Получаем тот же результат, что и на <i>puc. 1a.</i> Красным цветом указана внешняя сила (узел 2), малиновым — реактивная сила (узел 1), фиолетовым — двуглавый <i>вектор</i> реактивного момента (узел 1).	

No	Действие	Результат
16	Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK	
17	Cocmaвление эпюры внутренней перерезывающей силы: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "2" > Apply > "By sequence num", "SMISC,", "8" > OK > > Close	
18	Vмножение эпоры внутренней перерезывающей силы на "-1": Строчку SMISC2 умножаем на -1, получаем строчку QYI: M_M > General Postproc > Element Table > Multiply LabR пишем QYI FACT1 пишем −1 Lab1 устанавливаем SMIS2 Lab2 устанавливаем −none- > Apply Строчку SMISC8 умножаем на -1, получаем строчку QYJ: M_M > General Postproc > Element Table > Multiply LabR пишем QYJ FACT1 пишем −1 Lab1 устанавливаем SMIS8 Lab2 устанавливаем SMIS8 Lab2 устанавливаем −none- > OK Смотрим таблицу результатов, видим две новые строчки - QYI и QYJ:	Currently Defined Data and Status: Label Item Comp Time Stamp Status SMIS2 SMIS 2 Time= 1 0000 (Current) SMIS3 SMIS 8 Time= 1 0000 (Current) GYI CALC SMUL Time= 1 0000 (Current) GYI CALC SMUL Time= 1 0000 (Current) GYI CALC SMUL Time= 1 0000 (Current) Add Update Delete Close Help
	Смотрим таблицу результатов, видим две новые строчки - QYI и QYJ: M_M> General Postproc > Element Table > Define Table > Close	

No	Действие	Результат
19	Прорисовка эпюры внутренней перерезывающей силы: — фронтальный вид; — автоформат. М_М > General Postproc > Plot Results > Contour Plot > Line Elem Res > Установить LabI в положение "QYI" Установить LabJ в положение "QYJ" Fact пишем −1 > ОК Получаем тот же результат, что и на рис. 16 (цифры, выделенные синим цветом).	LINE STRESS STEP=1 SUB =1 TIME=1 QYI QYJ MIN =1 ELEM=1 MAX =1 ELEM=1
20	Cocmaвление эпюры внутреннего изгибающего момента: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > Close	A Dement Table Data and Status:
21	Прорисовка эпюры внутреннего изгибающего момента: М_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "SMIS6" LabJ установить "SMIS12" Fact пишем 1 > ОК Получаем тот же результат, что и на рис. 1в. (только числа, выделенные на рис. 1в. синим цветом). Значения показывает цветовая шкала: минимум слева (-1, синий цвет), максимум — справа (0, красный цвет).	LINE STRESS STEP=1 SUB =1 TIME=1 SMIS6 SMIS12 MIN =-1 ELEM=1 MAX =0 ELEM=1 1 -1 8 6 4 0

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.